

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

LIBRARY

OF THE

UNIVERSITY OF CALIFORNIA.

GIFT OF

Printes man Institution
Received Sept., 1888.

ccessions No. 37478 Shelf No.

. . . .

SMITHSONIAN

MISCELLANEOUS COLLECTIONS.

VOL. XXXII.

STREET MAN IS A VALUABLE MEMBER OF SOCIETY WHO BY HIS OBSERVATIONS, RESEARCHES,

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

Cy Company

ADVERTISEMENT.

The present series, entitled "Smithsonian Miscellaneous Collections," is intended to embrace all the publications issued directly by the Smithsonian Institution in octavo form; those in quarto constituting the "Smithsonian Contributions to Knowledge." The quarto series includes memoirs, embracing the records of extended original investigations and researches, resulting in what are believed to be new truths, and constituting positive additions to the sum of human knowledge. The octavo series is designed to contain reports on the present state of our knowledge of particular branches of science; instructions for collecting and digesting facts and materials for research; lists and synopses of species of the organic and inorganic world; museum catalogues; reports of explorations; aids to bibliographical investigations, etc., generally prepared at the express request of the Institution, and at its expense.

In the Smithsonian Contributions to Knowledge, as well as in the present series, each article is separately paged and indexed, and the actual date of its publication is that given on its special title page, and not that of the volume in which it is placed. In many cases works have been published and largely distributed, years before their combination into volumes.

S. P. LANGLEY,

Secretary S. I.

CONTENTS OF VOL. XXXII

- ARTICLE I. (No. 659.) THE CONSTANTS OF NATURE. PART I. A
 TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.
 [New Edition: revised and enlarged.] By Frank Wigglesworth Clarke. 1888. Pp. 420.
- ARTICLE II. (No. 658.) INDEX TO THE LITERATURE OF THE SPECTROSCOPE. By ALFRED TUCKERMAN. 1888. Pp. 433.

---- 659 ----

THE CONSTANTS OF NATURE.

PART I.

A TABLE OF SPECIFIC GRAVITY FOR SOLIDS AND LIQUIDS.

[NEW EDITION. REVISED AND ENLARGED.]

BY

FRANK WIGGLESWORTH CLARKE,

Chief Chemist U. S. Geological Survey.

WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

PRINTED AND STEREOTYPED BY
JUDD & DETWEILER,

AT WASHINGTON, D. Q.

37478 Supt. 1888

₽.

Iw	Production	DN	Page.			
EXPLANATORY NOTES						
	I. Elements					
II. Inorganic fluorides						
	III. Inorganic chlorides					
		1st. Simple chlorides	19 19			
		2d. Double chlorides	27			
		8d. Oxy- and sulpho-chlorides	29			
	IV.	Inorganic bromides	81			
		1st. Simple bromides	81			
		2d. Double, oxy-, and sulpho-bromides	88			
	V.	Inorganic iodides	84			
		1st. Simple iodides	84			
		2d. Double and oxy-iodides	86			
	VI.	Chlorobromides, chloriodides, and bromiodides	87			
	VII.	Ammonio-chlorides, ammonio-bromides, and ammonio-iodides	88			
	VIII.	Inorganic oxides	89			
	•	1st. Simple oxides	89			
١		2d. Double and triple oxides	55			
1	IX.	Inorganic sulphides	56			
•		1st. Simple sulphides	56			
		2d. Sulpho-salts of arsenic, antimony, and bismuth	61			
		8d. Miscellaneous double and oxy-sulphides	64			
ì	X.	Selenides	65			
1	XI.	Tellurides	66			
ı	XII.	Phosphides	66			
	XIII.	Arsenides	67			
ľ	XIV.	Antimonides	68			
ŀ	XV.	Sulphides with arsenides or antimonides	69			
ł	XVI.	Hydrides, borides, carbides, silicides, and nitrides	69			
ŀ	XVII.	Hydroxides	70			
ŀ	XVIII.	Chlorates and perchlorates	72			
	XIX.	Bromates	78			
	XX.	Iodates and periodates	74			
	XXI.	Thiosulphates (hyposulphites), sulphites, and dithionates	74			
	XXII.	Sulphates	75			
		1st. Simple sulphates	75			
		2d. Double and triple sulphates	88			
		8d. Basic and ammonio-sulphates	96			
	XXIII.	Selenites and selenates	98			

TABLE OF CONTENTS.

	en .	Page.
XXV.	Chromates	
XXVI.	Manganites, manganates, and permanganates	
XXVII.	Molybdates	
XXVIII.	Tungstates	
XXIX.	Borates	_ 107
XXX.	Nitrates	
	1st. Simple nitrates	_ 108
	2d. Basic and ammonio-nitrates	
XXXI.	Hypophosphites and phosphites.	
XXXII.	Hypophosphates	
XXXIII.	Phosphates	
	1st. Normal orthophosphates	114
	2d. Basic orthophosphates	
	8d. Meta- and pyro-phosphates	118
XXXIV.	Vanadates	120
XXXV.	Arsenites and arsenates	
	1st. Normal orthoarsenates	121
	2d. Basic orthoarsenates	122
	8d. Pyroarsenates and arsenites	
XXXVI.	Phosphates, vanadates, and arsenates, combined with haloids	124
XXXVII.	Antimonites and antimonates	125
XXXVIII.	Columbates and tantalates	
XXXIX.	Carbonates	
	1st. Simple carbonates	
	2d. Double carbonates	
	8d. Basic carbonates	
XL.	Silicates	
	1st. Silicates containing but one metal	
	2d. Silicates containing more than one metal	
	8d. Boro-, fluo-, and other mixed silicates	
XLI.	Titanates and stannates	
XLII.	Cyanogen compounds	
2222	1st. General division	
	2d. Cyanides, cyanates, and sulphocyanates	
XLIII.	Miscellaneous inorganic compounds	
XLIV.	Alloys	14
XLV.	Hydrocarbons	
	1st. Paraffins	
	2d. Olefines	
	8d. Acetylene series	
	4th. Benzene series	
	5th. Miscellaneous aromatic hydrocarbons	
	6th. Terpenes	<i>i</i>
	7th. Unclassified	
XLVI.		
AUVI.	Compounds containing C, H, and O	
	1st. Alcohols of the paraffin series	
	8d. The fatty soids	

		rage.
	5th. Ethers of the series C _n H _{2n} O ₂	205
	6th. Aldehydes of the acetic series	
	7th. Ketones of the paraffin series	
	8th. Oxides, alcohols, and ethers of the olefines	222
	9th. Ethers of carbonic acid	225
	10th. Acids and ethers of the oxalic series	226
•	11th. Acids and ethers of the glycollic series	
	12th. Acids and ethers of the pyruvic series	282
	18th. Acids and ethers of the acrylic series	284
	14th. Derivatives of the acrylic series	285
	15th. Acids and ethers, malic-tartaric group	286
	16th. Acids and ethers, citric acid group	
	17th. Glycerin and its derivatives	289
	18th. The allyl group	
	19th. Erythrite, mannite, and the carbohydrates	
	20th. Miscellaneous non-aromatic compounds	245
	21st. Phenols	
	22d. Aromatic alcohols	251
	28d. Aromatic oxides	252
	24th. Aromatic acids and their paraffin ethers	
	25th. Ethers of aromatic radicles	
	26th Aromatic aldehydes	261
	27th. Aromatic ketones	262
	28th. Camphors, essential oils, etc.	262
	29th. Miscellaneous compounds	
XLVII.	Compounds containing C, H, and N	268
	1st. Cyanides and carbamines of the paraffin series	268
	2d. Amines of the paraffin series	269
	8d. The aniline series	271
	4th. The pyridine series	
	5th. Miscellaneous compounds	278
XLVIII.	Compounds containing C, H, N, and O	
	1st. Nitrites and nitrates of the paraffin series	
	2d. Nitro-derivatives of the paraffin series	282
	8d. Aromatic nitro-compounds	288
	4th. Miscellaneous nitrates, nitrites, and nitro-compounds	
	5th. Miscellaneous amido-compounds	287
	6th. Miscellaneous cyanogen compounds	
•	7th. Miscellaneous compounds	290
XLIX.	Chlorides, bromides, and iodides of carbon	
L.	Compounds containing U, Cl, and O	
LI.	Compounds containing C, H, and Cl	
	1st. Chlorides of the paraffin series	
	2d. Chlorides of the series C _n H _{2n} Cl ₂	
	8d. Miscellaneous non-aromatic chlorides	
	4th. Aromatic compounds	801
LII.	Compounds containing C, H, O, and Cl	805
LIII.	Compounds containing C, Cl, N, or C, H, Cl, N	
LIV.	Compounds containing C. Cl. N. O. or C. H. Cl. N. O	815

TABLE OF CONTENTS.

		Page.
LV.	Compounds containing C, H, and Br	816
	1st. Bromides of the paraffin series	816
	2d. Bromides of the series C _n H _{2n} Br ₂	818
	8d. Miscellaneous non-aromatic bromides	821
	4th. Aromatic compounds	824
L∇I.	Compounds containing C, H, O, and Br	825
LVII.	Bromine compounds containing nitrogen	828
LVIII.	Compounds containing C, H, and I	829
	1st. Iodides of the paraffin series	829
	2d. Miscellaneous compounds	384
LIX.	Compounds containing C, H, I, O, or C, H, I, N	885
LX.	Compounds containing two or more halogens	886
LXI.	Organic compounds of fluorine	
LXII.	Organic compounds of sulphur	839
	1st. Compounds containing C, H, and S	889
	2d. Compounds containing C, H, S, and O	842
	8d. Sulphur compounds containing nitrogen	
•	4th. Sulphur compounds containing halogens	846
LXIII.	Organic compounds of boron	. 8 4 7
XLIV.	Organic compounds of phosphorus	. 84 8
LXV.	Organic compounds of vanadium, arsenic, antimony, and bismuth.	. 850
LXVI.	Organic compounds of silicon	. 851
LXVII.	Organic compounds of tin	. 8 58
LXVIII.	Organic compounds of aluminum	. 854
LXIX.	Organic compounds of zinc, mercury, thallium, and lead	. 85€
LXX.	Metallic salts of organic acids	
LXXI.	Salts of organic bases with inorganic acids	
LXXII.	Miscellaneous organic compounds	. 866
PPENDIX.	Note on the specific gravity of woods	861
IDEX		. 86!

INTRODUCTION.

Early in 1872 I submitted to the Secretary of the Smithsonian Institution, the late Joseph Henry, a manuscript entitled "A Table of Specific Gravities, Boiling Points, and Melting Points for Solids and Liquids." It was accepted for publication, and in February, 1874, the printed copies were ready for distribution. For years previously Professor Henry had had in mind the publication of a series of similar tables somewhat upon the plan long before suggested by Babbage, and accordingly my modest work was given the somewhat ambitious title of "The Constants of Nature" and made the first part of the proposed undertaking. Subsequently Parts II, III, and V were furnished by myself and Part IV by Professor G. F. Becker, and in 1876 I also published a supplement to Part I.

The following tables form, in effect, a new edition of Part I, completely revised, rearranged, and brought down as nearly as possible to the date of printing. They are, however, modified by the omission of boiling and melting points, except when such data seemed essential to the proper identification of a compound, on the ground that the magnificent tables of Professor Carnelley already supply that want. I have limited myself to specific gravity alone, following in the main the plan of arrangement adopted in my earlier work, with such changes as were made necessary by the later developements of chemical thought. Constitutional formulæ have been used, not according to any fixed rule, but according to convenience, and their adoption has been governed, to some extent, by the limitations of the octavo page. All other details have been subject to the same limitations, and it is hoped that their absence will be compensated for by the almost uniformly full references to literature. Some data could not be traced back to their original sources, at least not without unwarrantable labor, and most of these formed part of an early table prepared nearly twenty years ago for my own private use. A few determinations are accredited to standard works of reference, such as Watts' Dictionary, Dana's Mineralogy, and the like, and many have been drawn from the Jahresbericht. Absolute completeness cannot, of course, be claimed, and in some directions it has not

even been attempted. Among minerals, only those having approximately definite formulæ are given, and indefinite substances have been excluded altogether. The tables aim at reasonable completeness only as regards artificial substances of definite constitution, and all else is gratuitous. A good many determinations of specific gravity have been unearthed from doctoral dissertations, school programmes, and similar foes of the bibliographer, and doubtless other data so printed have escaped my notice altogether. There is a weakness of human nature which, masquerading as patriotism, some times leads men of science to bury valuable researches in obscure local publications, and a compiler may never flatter himself that no such paper has eluded his vigilance. I shall be glad to receive notice of all omissions, and will try to rectify such or other errors in future supplements or appendices

A word in conclusion as to the extent of the table. They contain the specific gravities of 5,227 distinct substances and 14,465 separate determinations. The original edition gave only 2,263 substances, to which nearly 700 were added in the supplement. The increase is a noteworthy indication of existing chemical activity.

F. W. CLARKE.

WASHINGTON, June 20, 1888.

EXPLANATORY NOTES.

In references to literature the following abbreviations have been used. In each case, as far as practicable, series, volume, and page are indicated, the page reference signifying, according to circumstances, either the first page of the paper cited, or else the actual page upon which the determination is given. The former rule applies to pages containing many data; the latter to cases in which the specific gravity datum is merely incidental.

A. C. J.—American Chemical Journal.

A. C. P.—Annalen der Chemie und Pharmacie.

A. J. S.—American Journal of Science.

Am. Chem.-American Chemist.

Am. J. P .- American Journal of Pharmacy.

Am. Phil. Soc.—American Philosophical Society.

Ann.—Annales de Chimie et de Physique.

Ann. Phil.—Annals of Philosophy.

Arch. Pharm.—Archiv für Pharmacie.

B. D. Z.—Die Beziehungen zwischen Dichte und Zusammensetzung bei festen und liquiden Stoffen. Leipzig, 1860.

Bei.-Beiblätter zu den Annalen der Physik und Chemie.

Ber.-Berichte der Deutschen Chemischen Gesellschaft.

B. H. Ztg.—Berg-und hüttenmännische Zeitung.

B. J.-Berzelius' Jahresbericht.

Böttger.—Tabellarische Uebersicht der specifischen Gewichte der Körper. Frankfort, 1887.

B. S. C.—Bulletin de la Société Chimique.

B. S. M.—Bulletin de la Société Française de Mineralogie.

Bull. Acad. Belg.—Bulletins, Academie Royale de Belgique.

Bull. Geol.—Bulletin de la Société Géologique.

Bull. Heb.—Bulletin Hebdomadaire de l'Association Scientifique de France.

Bull. U. S. G. S .- Bulletin of the U. S. Geological Survey.

C. C.—Chemisches Centralblatt.

C. G.—Chemical Gazette.

C. N.—Chemical News.

C. R.—Comptes Rendus.

D. J.—Dingler's Polytechnisches Journal.

Dm.—Schröder's "Dichtigkeitsmessungen." Heidelberg, 1878.

Erd. J.—Erdmann's Journal.

- F. W. C.—This abbreviation indicates the work of students under the direction of F. W. Clarke.
- G. C. I.—Gazzetta Chimica Italiana.
- Geol. Mag.—Geological Magazine.
- G. F. F.—Geologiska Föreningar Förhandlingar.
- Gilb. Ann.—Gilbert's Annalen.
- Gm. H .- Gmelin's Handbook of Chemistry. Cavendish Society edition.
- In. Diss. or Inaug. Diss.—Inaugural or Doctoral Dissertation. Always prefixed by the name of the university from which the dissertation was published.
- J.-Jahresbericht über die Fortschritte der Chemie.
- J. A. C.-Journal of Analytical Chemistry.
- J. C. S.—Journal of the Chemical Society.
- J. P. C.-Journal für Praktische Chemie.
- J. Ph. Ch.-Journal de Pharmacie et de Chimie.
- J. R. C.—Jahresbericht über die Fortschritte * * * der reinen Chemie.
- M. C.-Monatshefte für Chemie.
- M. C. S.-Memoirs of the Chemical Society.
- Mem. Acad. Belg.-Mémoires, Academie Royale de Belgique.
- Min. Mag.—Mineralogical Magazine.
- M. P. M.—Mineralogische Petrographische Mittheilungen.
- M. St. P. Sav. Et.-Mémoires de Savants Etrangers, St. Petersburg Academy.
- N. J.—Neues Jahrbuch für Mineralogie, etc.
- Nich. J.-Nicholson's Journal.
- Öf. Ak. St.-Öfversigt af K. Vet. Akad. Förhandlingar, Stockholm.
- P. A.—Poggendorff's Annalen. For convenience, the second series under Wiecemann is covered by the same abbreviation.
- P. des C.—Pesanteur Spécifique des Corps. Brisson, Paris, 1787. A German etion by Blumhof appeared at Leipzig in 1795.
- P. M.—Philosophical Magazine. London, Edinburgh, and Dublin.
- Proc. Amer. Acad.—Proceedings of the American Academy, Boston.
- Proc. Amer. Asso.—Proceedings of the American Association for the Advan ment of Science.
- P. R. S.—Proceedings of the Royal Society. London.
- P. R. S. E.—Proceedings of the Royal Society. Edinburgh.
- P. R. S. G.—Proceedings of the Royal Society. Glasgow.
- P. T.—Philosophical Transactions.
- Q. J. S .- Quarterly Journal of Science.
- R. T. C.—Recueil des Travaux Chimiques.
- Schw. J.—Schweigger's Journal.

S. W. A.—Sitzungsberichte der K. K. Akademie der Wissenschaften. Wien.

Thurston's Report.—Report of the Board on Testing Iron, Steel, and other Metals.

Washington, 1881.

U. N. A.—Upsala, Nova Acta.

V. H. V.—Verhandlungen des naturhistorisches Vereines. Bonn.

Watts' Dict.—Watts' Dictionary of Chemistry.

- Z. A. C.—Zeitschrift für analytische Chemie.
- Z. C.—Zeitschrift für Chemie.
- Z. G. S.—Zeitschrift der Deutschen Geologischen Gesellschaft.
- Z. K. M.—Zeitschrift für Krystallographie und Mineralogie.

A TABLE OF SPECIFIC GRAVITIES

FOR

SOLIDS AND LIQUIDS.

I. THE ELEMENTS.

Name.	Specific Gravity.	AUTHORITY.
Hydrogen. Liquefled	.025 } 0°	Cailletet and Hautefeuille. C. R.
	.032 .082 } —28°	92, 1086.
" (Occluded by palladium.)	.620 to .628	Dewar. P. M. (4), 47, 334.
Lithium	.578 }	Bunsen. J. 8, 824.
Sodium	.9848 .97228, 15°	Davy. P. T. 1808, 21. Gay Lussac and Thénard. See
"	.985	Böttger. Schröder. J. 12, 12.
	.97	Troost and Hautefeuille. C. R. 78, 970.
"	.9748, 10°	Baumhauer. Ber. 6, 655.
"	.972	Quincke. P. A. 185, 642. Ramsay. Ber. 18, 2145.
44	.9686, 16°.9, m. of 8 .9287, 97°.6, fused	Hagen. P. A. (2), 19, 436.
Potassium	.865, 15°	Gay Lussac and Thénard. Ann. 66, 205.
"	.874 .8427, fused	Sementini. See Böttger. Playfair and Joule. M. C. S. 8, 76.
"	.8750, 18° .8766, 18°	Baumhauer. Ber. 6, 655.
"	.8642, 0° .8298, 62°.1, fused }	Hagen. P. A. (2), 19, 486.
RubidiumCæeium	1.52 1.872 1.884 } 15°	Bunsen. J. 16, 185.
Glucinum	1.886	Setterberg. A. C. P. 211, 215. Debray. J. 7, 386. [384.]
"		
Magnesium	2.24, m. of 2 1.7430, 5°	Playfair and Joule. M. C. S. 8, 78. Bunsen. J. 5, 868.
16	1.69	Kopp.
66	1.75	Deville and Caron. J. 10, 148. H. Wurtz. Am. Chem., Mar. 1876.

Name.	Specific Gravity.	AUTHORITY.
Zinc	6.861	Brisson. P. des C.
"	6.862	Berzelius. See Böttger.
"	6.9154	Karsten. Schw. J. 65, 894.
	6.939, m. of 8 7.08 to 7.20	Playfair and Joule. M.C.S. 3, 6
"	0.000	Bolley. J. 8, 887.
"	6.975 120	Schiff. A. C. P. 107, 59.
"	7.21	Daniell.
"	7.146	Wertheim.
"	6.895	Mallet. D. J. 85, 878. [81
"	7.2	Roberts and Wrightson. Bei.
" Ordinary" Crystalline	7.1812 \ 0°	Kalischer. Ber. 14, 2750.
" Crystalline	7.1841 5	[
" "	6.512, m. of 8	Playfair and Joule. M. C.S. 3, 7 Roberts and Wrightson. Ann. (
66 66	0.48 Two methods	80, 181.
" "	6.900	
" Solid	7.119, 0° }	Quincke. P. A. 185, 642.
" Not pressed	7.142, 16°)	
"Once "	7.158, 16° }	Spring. Ber. 16, 2724.
"Twice "	7.150, 16°)	
Cadmium. Cast	8.6040 }	Stromeyer. Schw. J. 22, 865.
" Hammered	8.6944 \$ 8.670	Children. See Böttger.
44	8.650	Herapath. P. M. 64 (1824), 3
"	8.6855	Karsten. Schw. J. 65, 894.
" Wire	8.6689	Baudrimont. J. P. C. 7, 278.
" Pure	8.540)	•
"	8.566 }	Schröder. P. A. 107, 118.
" "	8.667	Definition 1. 11. 10., 110.
" Commercial	8.648	36-4411 T 10 110
"	8.655, 11°	Matthiessen. J. 18, 112.
" Fused	8.627, 0° }	Quincke. P. A. 185, 642.
" Not pressed	8.642, 17%	
" Once "	8.667, 16° }	Spring. Ber. 16, 2724.
" Twice "	8.667, 16°)	
"	8.6681, 0°)	
66	8.3665, 318°, solid }	Vicentini and Omodei. Bei.
	7.989, 318°, molten	769.
Mercury. Solid	14.891	Schulze.
	14.888,—40° }	Hällström. Gilb. Ann. 20, 40
"	14.485, —60°	Biddle. P. M. 80, 153.
"	14.0, about	Kupffer and Cavallo.
"	15.19	Joule. J. 16, 288.
" " ————	14.1982	Mallet. J. C. S. 84, 275.
" Liquid	18.5681	Brisson. P. des C.
" " ————	18.575	Fahrenheit. See Böttger.
" "	18.550	Muschenbroek. " Crichton. P. M. 16, 48.
	18.568, 15°.5 18.613, 10°	Biddle. P. M. 80, 152.
44 44	18.6078, 0°	
" "	12.810, boiling	Hällström. Gilb. Ann. 20, 8
" "	18.586	Scholz. See Böttger.
66 64	18.567	Kummer. " "
" "	18.5886, 4° \	Kupffer. Ann. (2), 40, 285.
" "	18.585, 26° }	11 mp. 11 11 11 11 11 11 11 11 11 11 11 11 11

	Name.		SPECIFIC GRAVITY.	AUTHORITY.
Mercury.	Liquid		18.588597	Biot and Arago. Biot's "Traité de Physique."
"	44		18.5592	Karsten. Schw. J. 65, 894.
ш	"			
"			18.570, 10°—15° }	Regnault. P. A. 62, 50.
**			20.000, 20 20)	_
"	_		18.59599	T) 1/ A (0) 14 000
دد دد			18.59602 00	Regnault. Ann. (8), 14, 236.
"	"		18.59578 J 18.595, 0°	Корр. J. 1, 445.
u			18.573, 15°	Holzmann. J. 18, 112.
66	"		18.608, 12°	Schiff.
**	"		13.584, 16°.6	Stewart. P. T. 1868, 480.
**	"		18.5958, 0°	Volkmann. Ber. 14, 1708.
Calcium _			1.566)	•
u			1.584 }	Matthiessen. J. 8, 324,
"			1.584)	[126.
"			1.55	Liés-Bodart and Jobin. J. 11,
			1.6 to 1.8	Caron. J. 18, 119.
Strontium			$\{2.504 \\ 2.580 \}$	Matthiessen. J. 8, 824.
"			2.4	Franz. J. P. C. 107, 258.
Barium			4.00, about	Clarke. Gilb. Ann. 55, 28.
44			3.75	Kern. C. N. 31, 243. [52, 68.
Boron.*	Cryst		2.68	Wöhler and Deville. Ann. (8),
"	Al B,		2.5345, 17°.2, m. of 2)	
46	C,Al,B	,	2.618, 18°	Hampe. A. C. P. 188, 85 and 96.
			2.611, 20°	
Aluminur			2.50	Wöhler. J. 7, 327.
"	nam	mered	2.67 \\ 2.583, 4° \	Mallet. P. T. 1880, 1025.
"			2.688	Barlow. J. C. S. April, 1888.
64	Com	l wire	2.8067	
**		foil	2.8075	A. P. Corbit. Communicated W. Bishop. by R. B. Warder.
Gallium .			5.935, 28°	
" -			5.956, 24°.45 }	Boisbaudran. C. R. 83, 611.
Indium.	In grain	ns	7.110 20°.4}	
**	- " · · · · · · · · · · · · · · · · · ·			Reich and Richter. J. 17, 241.
"		8	7.277) 7.862, 15°	Winkler. J. 18, 283.
"			7.421, 16°.8	Winkler. J. 18, 283. " J. 20, 262.
Lanthanu			6.049)	Hillebrand and Norton. P. A.
"			6.168 }	156, 478.
Cerium			6.628)	Hillebrand and Norton. P. A.
	fter fusio		6.728 }{	156, 471.
Didymiur	n		6.544	Hillebrand and Norton. P. A.
				156, 474.
Thallium			11.862	Lamy. J. 15, 180.
"			11.808 } 110	De la Rive. J. 16, 248,
44			11.858 }	
"				Werther. J. 17, 247.
44				
				1
"			11.88 }	Crookes. J. C. S. 1864, 112.

^{*} According to Hampe, the so-called " crystallized boron " is never pure. Its composition is shown in the formulæ given above.

	NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Carbon.		8.550	
"	"	8.492	
"	"	8.520	
44		7.834 8.5	
**	"	8.55	
**	"	8.5295	
44	"	8.58	Schafarik. P. A. 189, 188.
	"	8.51482, 18°.1	Schrötter. J. 24, 257.
"	44	8.5148	Schrauf. J. 24, 257.
16	"	8.529, 15°	
**		8.51885, m. of 5	Baumhauer. J. C. S. 82, 849.
"	Graphite		Breithaupt. See Böttger.
"	"	2.229	Kenngott. S. W. A. 18, 469.
"	44	2.278 2.14	Regnault. Gm. H. Fuchs. J. P. C. 7, 358.
66	"	2.5	Berzelius. A. C. P. 49, 247.
**	"	2.8285	Karsten. Schw. J. 65, 894.
"	"	2.8162	Poggendorff. P. A. Erganz. B 1848, 868.
. "	"	2.25 Purified 2.105)	,
41	"	2.26 } Purified	Brodie. J. 12, 68.
**			Mené.* J. 20, 972.
"	"	2.585 }	
16 16	"	1.802 20°, purified	Löwe. J. 8, 297.
"	Oce combon	0.05	Conhum
"		2.85	Graham. Baudrimont.
66		1.885	Mené. J. 20, 972.
**	"	1.723, 1.821, 1.982)	From different parts of the reta
46	"	$1.723, 1.821, 1.982 $ $2.056, 2556, 18°$ $-$ {	Meyn. J. P. C. 26, 482.
f i	Sugar charcoal	1.81)	•
**	"	1.81	Monier. Bull. Heb. 14, 18.
44	Charcoal	1.76	Colquhoun.
"	"	2.10 from alcohol	Scholz. See Böttger.
"		1.84	Griffith. " " [4, 2
"		1.80	Playfair. Proc. Roy. Soc. Ed
"	Lamp-black	1.78 korosone	Baudrimont.
"		1.728 from kerosene 1.780 from coal-tar	-
		naphtha	Hallock. Bull. 42, U. S. G.
44	u	1.752 from natural gas	Zunouk. Dun. 12, C. D. G.
66		1.778 from dead oil	
Silicon.	Graphitoidal	2.40, 10°	Wöhler. J. 9, 847.
64	"	2.498	Harmening. P. A. 97, 487.
"	"	2.004 2.194	· ·
"	"	2.194 }	Winkler. J. 17, 208, 209.
"		2.197)	
	"	2.887	Miller. Proc. Roy. Soc. E 4, 241.
	1	2.48, m. of 6	Playfair. Proc. Roy. Soc. K 4, 241.
		5.469, 20°.4	Winkler. J. P. C. (2), 84,
		4.15	Troost. J. 18, 188.
Tin		7.291	Brisson. P. des C. Muschenbroek. See Böttge
		1.439	muscuentroek. See Dottge

The extremes of 29 determinations made on specimens from different localities.

Name.	SPECIFIC GRAVITY.	AUTHORITY.
Tin	7.2914	Guyton. Nich. J. (1), 1, 110.
"	7.278, 15°.5 7.2911, 17°	Crichton. P. M. 16, 48. Kupffer. Ann. (2), 40, 285.
"	7.285 }	Herapath. P. M. 64, 821.
"	7.5565) 7.2905	Karsten. Schw. J. 65, 894.
" Wire	7.8895	Baudrimont. J. P. C. 7, 278.
" Crystallized	7.806, m. of 4 7.178)	Playfair and Joule. M. C. S. 8, 68.
" Cast	7.298 }	W. H. Miller. P. M. (3), 22, 268. Kopp. A. C. P. 98, 129.
" Cooled slowly	7.878 }	St. Claire Deville. P. M. (4), 11,
" " quickly	7.289 }\ 7.294, 18°\	144. Matthiessen. J. 18, 112.
" Reduced by H. from)	7.291	Mallet. D. J. 85, 878.
Sn Cl ₂ .	{ 7.148 } { 7.166 } 7.195 }	Rammelsberg. Ber. 8, 725.
" Remelted	7.810	[817.
"	7.5	Roberts and Wrightson. Bei. 5, Quincke. P. A. 185, 642.
"	7.25 5.809, 5.781, 19° i)	E. Wiedemann. P. A. (2), 20, 282.
" Allotropic{	5.802, 19.5	
" Allotropic convert-) ed by heating.	$\left\{ \begin{array}{ll} 7.280, \ 15^{\circ} \\ 7.304, \ 19^{\circ} \end{array} \right\} \left[$	Two lots. Schertel. J. P. C. (2),
" Allotropic	6.020, 6.002, 19°]	19, 822.
" Allotropic after re-	7.24 —7.27	
" Rhombic cryst	6.52	Trechmann. Z. K. M. 5, 625.
" Ordinary	6.56 }	Richards. Tr. Amer. Inst. Min.
" Allotropic	6.175 / \ 7.286. 10°)	Eng. 11, 285.
" Once "	7.286, 10° 7.292, 10°.25 7.296, 11°	Spring. Ber. 16, 2724.
"	7.8006, 0° ັງ	
"	7.1885, 226°, solid 6.988, 226°, molten	Vicentini and Omodei. Bei. 11, 769.
" Fused	6.984, m. of 8	Playfair and Joule. M. C. S. 8, 75. Roberts and Wrightson. Ann.
"	$7.025' \\ 6.974$ Two methods $\{$	(5), 80, 181.
Lead	11.445	Quincke. P. A. 135, 642. Muschenbroek. See Böttger.
"	11.852	Brisson. P. des C. Böckmann. See Böttger.
"	11.1608 11.8808	Guyton. Ann. 21, 8.
"	11.346, 15°.5	Kupffer. Ann. (2), 40, 292. Crichton. P. M. 16, 48.
***************************************	11.8775	Herapath. P. M. 64, 821.
tt	11.8888 11.231, m. of 4	Karsten. Schw. J. 65, 894. Playfair and Joule. M. C. S. 8, 68.
"	11.870, 0° 11.8525, 18° }	Reich. J. P. C. 78, 828.
"	11.895, 4°	Streng. J. 18, 187.

Name.	SPECIFIC GRAVITY.	AUTHORITY.
Lead	. 11.361, 70°	Mallet. A. J. S. (3), 8, 212.
" Cooled slowly from fusion.	11.254	
" Cooled quickly from fusion.	}	St. Claire Deville. P. M. (4), 11,
" Electrolytic, fused		144.
and cooled quickly	11.876, 14°	Holzmann. J. 18, 112.
66	11.844, 4° \ Krtrames	Schweitzer. Am. Chem. 7, 174.
"	11.0(1) 4-)	l
"	11.885, 0°	Quincke. P. A. 97, 396. [817.] Roberts and Wrightson. Bei. 5,
" Not pressed	11.850, 14°	S B 16 9594
" Once "	11.501, 14° }	Spring. Ber. 16, 2724.
"	11.859, 0°	
"	11.005, 325°, solid	Vicentini and Omodei. Bei. 11,769.
" Molten	10.645, 825°, molten) 10.509, m. of 8	Playfair and Joule. M. C. S. 3, 74
44	11.07	Mailet. A. J. S. (3), 8, 212.
	10.37 \ Two methods {	Roberts and Wrightson. Ann
"	1 20.00)	(5), 80, 181.
" " Thorium#	10.952 7.657)	Quincke. P. A. 135, 642.
ii morium"	7.795	Chydenius. J. 16, 194.
" Crystallized	11.230	Nilson. Ber. 16, 160. Compar
" Non-crystallized. Nitrogen. Liquefied	. 10.968 \ .41 to .44,—23° \	earlier paper, Ber. 15, 2544. Cailletet and Hautefeuille. C. R
" " " "	.87 to .88, 0° }	92, 1086.
" "		
" "	.4552, —146°.6 .5842, —158°.7	Wroblevsky. C. R. 102, 1010.
" " …	.83, —198° .866, —202°	(10510 152y
" "	859)	
"	.886 -194°.4, boiling	Olszewski. P. A. (2), 81, 78.
"		(,, , , , , , , , , , , , , , , , , ,
	. 905 J	5 N 0 5 N
Phosphorus. Common	2.09	Berzelius. See Böttger. Böttger. Watts' Dict.
" "	1.800	Playfair and Joule. M. C. S. 8, 6
"	1.826 } 10°	
" "	1	Schrötter. J. 1, 336.
" "	1.8262	Kopp. A. C. P. 93, 129.
" "	. 1.8265 / 1.823, 35°	Gladstone and Dale. J. 12, 78
" "	1 00070 00 3	-
et tt	1.82321, 20° }	Pisati and De Franchis. Ber. 8,
" "	1.80681, 44° J	S. b. 744 T. 1 000
" Red	. 1.964, 10°	Schrötter. J. 1, 886.
	$\left\{\begin{array}{c} 2.089 \\ 2.106 \end{array}\right\}$ 17°	Schrötter. J. 3, 262.
" Cryst	2.14	Two propertions Readis [3
" "	. 2.23 }	Two preparations. Brodie. J.
	. 2.84, 15°.5	Hittorf. J. 18, 130.

^{*} Nilson's determinations are the only ones having any present value. Chydenius' work is merely historical interest.

	Name.	SPECIFIC GRAVITY.	AUTHOBITY.
Phosp	hogus. Red. Cryst	2.84, 0°	
"	"	2.148,0°, prep. at 265°	Troost and Hautefeuille. Ber. 7.
"	"	2.19, 00 " 8600	482.
"	Molten	2.293, 0° " 500° J 1.744	Playfair and Joule. M. C. S. 8, 76
**	11	1.88, 45°	Schrötter. J. 1, 836.
44	44	1.768	Gladstone and Dale. J. 12, 78.
44	"	1.74924, 40°)	1
66	"	1.6949, 100° [Boils at 278°.8. Pisati and De
44	"	1.6027, 200°	Franchis. Ber. 8, 70.
16	· · · · · · · · · · · · · · · · · · ·	1.52867, 280° J	1
44	"	1.4850, at boiling point.	Ramsay and Masson. Ber 18, 2147
	ium	1.888	Quincke. P. A. 185, 642.
A STISE	ium	5.5, 15° 5.866) 150	Roscoe. P. T. 1869, 679.
	*	5.875 } 15°	Setterberg. Of. Ak. St. 1882, 10,13
Arseni		5.7683	Brisson. P. des C.
14		5.766	Mohs. See Böttger.
**		5.7688	Stromeyer. " "
"		5.884	Turner.
**		5.700 լ	Guibourt. B. J. 7, 128.
**		5.959 }	·
"		5.672	Herapath. P. M. 64, 821.
"	N	5.6281	Karsten. Schw. J. 65, 894.
46	Native	5.736	Breithaupt. J. P. C. 16, 475.
"	"	5.722	Breithaupt. J. P. C. 11, 151.
"		5.784 5	Playfair and Joule. M. C.S. 8,72.
44		5.395, 12°.5	Ludwig. J. 12, 188.
44		5 798 Y	
46		5.728 } 14	Bettendorff. J. 20, 258.
"	After fusion	5.709, 190	Mallet. B. S. C. 18, 488.
"	Allotropic	4.710 140	Bettendorff. J. 20, 258.
44	"	4.716	·
"	" ;	4.6 to 4.7	Engel. C. R. 96, 498.
"	Compressed	4.91	Spring. Ber. 16, 826.
	Allotropic	8.7002 to 8.7100, 15°	Rückoldt. A. C. P. 240, 215.
Antimo	ony	6.702	Brisson. P. des C. Hatchett. See Böttger.
11		6.788	Böckmann. " "
66		6.852	Muschenbroek."
44		6.860	Bergmann. " "
**		6.646	Mohs. " "
66		6.6101	Breithaupt. " "
"		6.7006	Karsten. Schw. J. 65, 394.
"		6.715	Marchand and Scheerer. J. P. C.
64		6.705, 8°.75, m. of 8)	[27, 198.
"		6.6987 \ Extremes \-	Dexter. P. A. 100, 567.
"		6.7102)	Masshiessen I 10 110
44		6.718, 14°	Matthiessen. J. 13, 112.
"		6.697	Schröder. P. A. 107, 113.
"		R 8057)	Cooke. Proc. Amer. Acad. 1877
**		6.7070 Extremes]	
"		6.620, 0°	Quincke. P. A. 185, 642.
4.6	Not pressed	6.675, 15°.5)	y - 22 y
44		6.753, 15° }	Spring. Ber. 16, 2724.
44		6.740, 16°	- "

NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Antimony. Amorphous	5.74 }	Gore. J. 18, 172.
" Molten	6.646 \	Playfair and Joule. M. C. S. 3, 77.
· · · · · · · · · · · · · · · · · · ·	6.529 }	
Bismuth	6.528 9.67	Quincke. P. A. 185, 642.
44	9.822	Muschenbroek. See Böttger. Brisson. P. des C.
"	9.800	Leonhard. See Böttger.
"	9.8827	Thénard. " "
"	9.8827	Berzelius.
"	9.831	Herapath. P. M. 64, 821.
" Pure	9.6542	Karsten. Schw. J. 65, 894.
" Commercial	9.799, 19° 9.788	Marchand and Scheerer. J. P. C.
" Compressed	9.556	27, 198.
" Crystallized	9.935)	
" Quickly cooled	9.677 }	C. St. Claire Deville. J. 8, 15.
from fusion.	0000	77.
	9.828, 12° 9.713, m. of 8	Holzmann. J. 18, 112.
"	9.82	Schröder. P. A. 107, 113. Roberts and Wrightson. Bei. 5,
	0.02	817.
"	9.819, 0°	Quincke. P. A. 185, 642.
" Not pressed	9.804, 18°.5)	
" Once "	9.856, 15° }	Spring. Ber. 16, 2724.
" Twice "	9.863, 15°	
"	9.787, 0°. 9.678, 270°.9 s. }	Vicentini and Omodei. Bei. 11,
"	10.004, 270°.9 1.	769.
" Molten	9.798	Playfair and Joule. M. C. S. 8,
** **	10.089)	Roberts and Wrightson. By two
"	10.055 }{	methods. Nature, 22, 448.
" " " — — — — — — — — — — — — — — — — —	9.709	Quincke. P. A. 185, 642.
Columbium. (Niobium)		Marignac. J. 21, 214.
Tantalum	7.06, 15°.5 10.08 to 10.78	Roscoe. C. N. 87, 26. Rose. J. 9, 866.
Oxygen. Liquified	l.9787)	By two methods. Pictet. Ann.
" "	.9888, m. of 4}	(5), 13, 198.
" "	.8402 լ	Pictet, recalculated by Offret.
tt tt	.8655 (70.00	Ann. (5), 19, 271.
41 41	.58, .65, .70, 0°	Cailletet and Hautefeuille. C. R.
16 11	895	92, 1086. Wroblevsky. C. R. 97, 166.
"	.899 —130°, m. of 12	Wroblevsky. P. A. (2), 20, 867.
" "	.7555 —129°.57)	
" " ————	.806 —134°.48 }	Olszewski. Ber. 17, ref. 198.
" "	.877 —189°.3	
" "{	$\begin{pmatrix} 1.110 \\ to \\ 1.187 \end{pmatrix}$ -181°.4,boil- ing point.	Olszewski. P. A. (2), 31, 78.
" "	1.6, —118° 1.24 —200°	Wroblevsky. C. R. 102, 1010.
Sulphur. Roll		Brisson. P. des C.

[•] Probablý the hydride, Cb H.

	Name.	Specific Gravity.	AUTHOBITY.
Sulphur.	Roll	1,868	Böckmann.
- Par	Flowers	2.086	Gehler.
44	Cryst	1.898	Fontenelle.
46	From solution	1.927	Rischof Quoted by
44	Cryst.	1.989	Breithaunt Marchand
"	Roll	1.9777)	and ocheerer
66	"	2.0000 }	Thomson. J. P. C. 24,
66	Prismatic	2.072	Mohs. 129.
44	Native	2.086	Dumas and Roget.
16	Soft	2.027	Osann.
66	Native	2.05001 }	Kamton Sahr I 05 904
**	From fusion	1.9889 }	Karsten. Schw. J. 65, 894.
44	Prismatic	ו 1.982	
"	Native	2.066	Manakandand Sahasan T. D. G
"	From solution	2.0518	Marchand and Scheerer. J. P. C
"	Soft	1.957	24, 129.
86	Native	2.069	Kopp. A. C. P. 93, 129.
66	Soft	1.919 ๅ	••
"	"	1.928	
66	Prismatic	1.958 }	C. St. Claire Deville. J. 1, 365
"	Native	2.070	·
"	From solution	2.068 j	
61	Crystallized	2.010)	
44	Flowers	1.918 }	Playfair and Joule. M. C. S. 3,79
u	Waxy	1.921)	,
e t	Native, cryst	2.0757	D
61	Soft	1.87 to 1.9819 }	Brame. C. R. 35, 748.
**	Amorphous.	1.87	
	Yellow.	l	Müller. J. 19, 118.
**	Amorphous.	1.91 —1.98 [Müller. J. 19, 118.
	Brown.	J	_
66	Crystallized	2.0748, 0°	Pisati. Ber. 7, 361.
44	Insoluble	1.9556, 0°]	
16	"	1.9496, 20°	}
u	"	1.9041, 40°	Spring. Bei. 5, 853.
"	"	1.9438, 60°	opting. Det. 0, 500.
41	46	1.9559, 80°	
66		1.9648, 100° J	
46	Cryst. from CS ₂ .		
44	46 16	2.0370, 20°	1
44	" "	2.0288, 40°	
"	" "	2.0182, 60°	l
"	" "	2.0014, 80°	
"	_ ""	1.9756, 100° J	Spring. Bei. 5, 854. From Bul
41	From Sicily	2.0788, 0°	letin de l'Acad. Roy. de Belg
**	41	2.0688, 20°	(3), 2, 83–110, 1881.
11	"	2.0588, 40° [(0), 2, 00–110, 1001.
66	"	2.0479, 60°	
44	"	2.0878, 80°	
66	_ "	2.0220, 100° j	
44	Lamellæ	2.041 —2.049	Maquenne. Ber. 17, ref. 199.
	Sicilian	2.06665, 16°.75	Schrauf. Z. K. M. 12, 825.
"	36-14	1.801 \ Extremes of 5 \	Playfair and Joule. M. C. S. 8,76
66	Molten		
41	"	1.815 determinatins \int	I lay latt tille boule. Mr. O. B. S, 10
66	"	1.815 determinations $\begin{cases} 1.4794, m. of 5 \end{cases}$	
41	"	1.815 determinatins \int	At the boiling point, 446°. Ram say. J. C. S. 85, 471.

	NAME.	SPECIFIC GRAVITY.	Authority.
Selenium		4.810	Boullay. See Böttger.
"	Cryst. fr. fusion_	4.808, 15°	Hittorf, J. 4, 819.
"	(i (i	4.796 }	
"	Amorphous	4.276 } 200	Schaffgotsch. J. 6, 329.
"	_ "	4.286	
"	Precip. Red	4.245	
"	Precip. after f	4.275 4.250	Schaffgotsch. J. 6, 829.
	heat'g to 50°.	4.297	,
"	Crystallized	4.460)	
"	"	4.509 }	
"	"	4.700)	Mitscherlich. J. 8, 814.
••	" from so-	4.760	
46	" "	4.788	
44	Crystallized	4.406, 21°	Neumann. P. A. 126, 138.
"	Black	4.80	2, 22, 120, 150.
"	_ "	4.81 } [Rathira I P C 100 nor
"	Precip. Red	4.26	Rathke. J. P. C. 108, 235.
"	Gray	4.28 \\ 4.495 \)	
41	" Granular .	4.514	
"	Laminated, (4.77	
	from alkaline {	4.79	
"	selenides.	4.86	•
"	Cryst. from CS ₂ .		Rammelsberg. P. A. 152, 154.
"		4.54	g. = 1 = 1 = 100, 101.
"	Amorphous	4.27	
	٠.٠-	4.84	
"	Melted	4.29	
"	Compressed	4.86	
44	Compressed	4.7994, 0°	
"	"	4.7869, 20° 4.7699, 40°	
"	"	4.7526, 60°	
"	"	4.7851, 80°	
"	#	4.7167, 100° j	Spring. Bei. 5, 854. From. Bull.
"	Uncompressed _	4.7312, 00	de l'Acad. Roy. de Belg. (8),
46	"	4.7176, 20° 4.7010, 40°	2, 88–110, 1881.
66	"	4.6826, 600	
ĸ	"	4.6623, 80°	
"	II	4.6896, 100° j	l
	Fused	4.2	Quincke. P. A. 185, 642.
46		6.115	Klaproth. Ann. 25, 278.
44		6.2445, m. of 5	Magnus. See Böttger. Berzelius. P. A. 28, 392.
"		6.180	Löwe. J. P. C. 60, 168.
"		6.848	Reichenstein. See Böttger.
"	Compressed	6.2549, 0°	ľ
"		6.2419, 20°	
"	"	6.2294, 40° {	Spring. Bei. 5, 854. From Bull.
44	"	6.2030, 80°	de l'Acad. Roy. de Belg. (8),
	44	6.1891, 100°	2, 88–110, 1881.

NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Tellurium. Uncompressed.	6.2322, 0°	
" "	6.2194, 20°	
	6.2052, 40°	Spring. Bei. 5, 854. From Bull.
16 16	6.1500, 600	de l'Acad. Roy. de Belg. (3),
	6.1366, 80°	2, 88–110, 1881.
"	6.1640, 100° J 6.204)	
	6.215 }	Klein and Morel. Ann. (6), 5, 61.
Chromium	7.8	Bunsen. Watts' Dict.
" Crystallized	6.81, 25°	Wöhler. J. 12, 169.
" Red. by K Cy_	6.20	Loughlin. J. 21, 220.
Molybdenum	8.490)	, ,
	8.615 }	Bucholz. Nich. J. 20, 121.
"	8.686)	
"	8.60	Debray. J. 11, 157.
" Red. by K Cy_	8.56	Loughlin. J. 21, 220.
Tungsten	17.60 17.22	D'Elhuyart. See Böttger.
(6	17.4	Allan and Aiken. " "
	16.54)	Bucholz. Schw. J. 3, 1.
46	17.50 }	Uslar. J. 8, 372.
"	18.26	0.0,012.
" Reduced by H	17.1 to 17.8	D
" " C	17.9 to 18.12 }	Bernoulli. J. 18, 152.
46	16.6	
"	17.2	Prepared by three methods. Zett-
"	18.447, 17°)	now. J. 20, 218.
"	19.261, 12°	Roscoe. C. N. 25, 61.
	18.25	Waddell. A. C. J. 8, 287.
Uranium	18.77 §	
"	18.33	Peligot. J. 9, 880. Peligot. A. C. P. 149, 128.
11	18.685, 4°, m. of 8	Zimmermann. Ber. 15, 851.
Chlorine. Liquefled	1.33, 15°.5	Faraday. P. T. 1823, 164.
Bromine	2.966	Balard. Ann. (2), 82, 887.
"	2.98 \ 150	
	4.00)	
"	8.18718, 0°	Pierre. Ann. (3), 20, 5.
	3.18828, 0°	Thorpe. J. C. S. 37, 172.
"	2.98218, 59°.27 }	200 00 00 00 00 00 00 00 00 00 00 00 00
"	2.9488, m. of 4	Taken at the boiling point. Ram-
"	2.9471 2.9503 Extremes }	say. Ber. 18, 2146.
"	8.1875, 0°	Van der Plaats. J. C. S. 50,
	37.070, 0 11.111	849.
Iodine	4.948	Gay Lussac. Ann. 91, 5.
" Solid	4.9178, 40°.8 ገ	,
" "	4.886, 60°	
" "	4.857, 79°.6	
" "	4.841, 89°.8	
11 11	4.825, 1079	Dillat T O 40
" Molten	4.004, 107° } }	Billet. J. 8, 46.
" "	8.944, 1240.8	
	8.918, 188°.5	
46 46	8.866, 151°	
46 44	8.796, 1700	[4, 241.
	5.080	Playfair. Proc. Roy. Soc. Edin.

NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Manganese	6.861 \	Bergmann.
"	7.10 }	•
"	8.08 8.018	Bachmann. See Böttger.
**	7.188)	John. P. M. 2, 176.
"	7.138 7.206	Brunner. J. 10, 202.
Iron	7.788	Brisson. P. des C.
" Wrought	7.790	Karsten. Schw. J. 65, 894.
[]	7.6805	
" Wire in several dif-	7.6000	Bandain and I B C 7 000
ferent conditions.	7.7169 \	Baudrimont. J. P. C. 7, 268.
" Hammered	7.7488	
" Bar	7.4889	Bröling. See Percy's Metallurgy.
"	7.8707)	
"	7.865 }	Berzelius. " " "
" Reduced by zinc	7.50	Poumaréde. J. 2, 281.
vapor. (7.84	·
Treatment by C	7.180	Playfair and Joule. M. C. S. 8,72.
" Electrolytic" " Fused in H., not	8.1398, 15°.5 7.880, 16°]	Smith. See Percy's Metallurgy.
forged.	7.000, 10	
" Fused in H., forged_	7.868, 16°	
" Fused in H., wire	7.847, 160	Caron. C. R. 70, 1268.
" Fused in crucible	7.888, 16°	
" Good commercial	7.852, 16° J	
" Reduced by H	7.998 8.007} 10°	Schiff.
"	8.007 }	
" Molten	6.08 6.88	Stahlschmidt. J. 18, 255.
Moiten	0.00	Roberts and Wrightson. Bei. 5, 817. [6, 145.
" Molten steel	8.05	Petruschewsky and Alexejeff. Bei.
Nickel	7.807	Brisson. P. des C.
"	8.279, cast	Richter. Ann. 53, 164.
"	8.666, forged }	Michief. Ann. 55, 102.
" Cast	8.880 8.820 } 12°.5	Tupputi. Ann. 78, 188.
" Forged		l ••
"	8.982, 12°.5 8.477 \	Tourte. Ann. 71, 108.
44	8.718 }	Baumgartner. See Böttger.
"	8.687	Brunner. " "
"	9.000	Bergmann. " "
" Reduced by H	7.861 7.803	Playfair and Joule. M. C.S. 8, 71.
"	7.808	
" Wire	8.88, 40	Arndtsen.
" Reduced by H	$\left\{ egin{array}{l} 8.975 \\ 9.261 \end{array} \right\}$	Rammelsberg. J. 2, 282.
"	8.900	Schröder. P. A. 107, 118.
Cobalt	8.710	Lampadius. Erd. J. (1), 5, 390.
"	8.485	Brunner. See Böttger.
"	9.152	Gehler. " "
"	8.500	Mitscherlich. "
	8.5181	Berzelius. " "
£1	8.5384	Hauy and Tassacrt. See Böttger.
	8.558	T. H. Henry. M. C. S. 8, 59.
10024004 DJ	8.260	Playfair and Joule. M. C.S. 8, 71.
	8.957, m. of 5	Rammelsberg. J. 2, 282.

	Name.	SPECIFIC GRAVITY.	AUTHORITY.
Coppe	r	8.895	Hatchett. P. T. 1803, 88.
	Rolled	8.878)	1
44	Cast	8.788 }	Brisson. P. des C.
**	"	8.88	1
**	Drawn	8.9468 }	Berzelius. See Böttger.
"	Hammered	8.9587)	
"		8.78	Kupffer. Ann. (2), 25, 856.
"		8.900	Herapath. P. M. 64, 821.
"		8.721	Karsten. Schw. J. 65. 394.
44	Wire in several	8.6225	
-	different con-	8.8912	
	ditions.	8.7059	Baudrimont. J. P. C. 7, 287.
44	W	8.8787	1
"	Hammered	8.8898	
"	Cast, slowly cooled		i
"	Crystallized	8.940 8.921	
	Cast	8.939	
44	Various sorts of	8.949	F97 100
	wire.	8.980	Marchand and Scheerer. J. P. C.
	wite.	8.951	Marchand and beneerer. J. 1. O.
46	Sheet	8.952	
46	Pressed	8.981	
64	Electrolytic	,	
**		8.567	Mallet. D. J. 85, 878.
44	Finely divided	8.428	210100,0101
**	"	8.483	
66	"	8.360	73. 41. 37. 36.45.
**	Electrolytic	l S	Playfair and Joule. M. C. S. 3, 57.
**	"	8.941	
66	"	8.934	
46	Finely divided	8.867 } 40	Dlaufair and Toule T C S 1 101
44	" "	8.41618)	Playfair and Joule. J.C.S.1,121.
16	Hammered	8.855]	
**		8.878	
**	Rolled	8.879	O'Neill. Memoirs Manchester
"	. "	8.898	Philosophical Society, (3), 1,
"	Annealed	8.884	248.
"	"	8.896 J	
46	Y-4:	8.902, 120	Schiff.
"	Native		Whitney. J. 12, 769.
"		8,958	Schröder. P. A. 107, 118.
"	Electrolatic cost	8.916)	•
16	Electrolytic, cast _ "	8.958	
"	" wire_		Dick. P. M. (4), 11, 409.
14	" " " —	8.788	• • •
64	Plate		Quincke. P. A. 97, 896.
"	1 1400	8.902, 0°	
46		8.9585, 17°	Hampe. C. C. 6, 879.
**		8.8	Roberts and Wrightson. Bei. 5,
**	Allotropic	8.0 to 8.2	Schutzenberger. J. Ph. Ch. (4),
			28, 866.
"	Molten	7.272	Playfair and Joule. M. C. S. 8,77.
	"	8.217	Roberts and Wrightson. Bei. 5,
			817.
Silver		10.472	Brisson. P. des C.
44		10,862, 10°	Biddle. P. M. 80, 152.

	NAME.	SPECIFIC GRAVITY.	AUTHORITY.
Silver		10.43 }	Lengsdorf.
"		10.71	Karsten. Schw. J. 65, 894.
"	Cast, slowly cooled		Lanten. Denw. J. 00, 051.
44			
68	Hammered	10.4476	
66	Same mass, rolled_ Hammered Brittle	9.8463	Baudrimont. J. P. C. 7, 287.
66	Granulated	9.6828	
"	Cryst. in lamine		
46	Wire	10.434	Breithaupt. J. P. C. 11, 151.
46		10.482	Karmarsch. J. P. C. 43, 193.
44		10 599)	l
44			Playfair and Joule. M. C. S. 3, 66.
"	Cast		
	Pressed		
44	Precip. powdery	10.5582 10.6191	G Pose P A 79 1
"			G. Rose. P. A. 78, 1.
"			
46			
"		10.468, 13°	Holzmann. J. 13, 112.
"		10.575	Christomanos. J. 21, 272.
"	After heating in vacuo.	10.512	Dumas. C. N. 37, 82.
**		10.412, 4°	Zimmermann. Ber. 15, 850.
46		10.57	
"	M - 14	10.621, 0°	Quincke. P. A. 135, 642.
	Molten	$\left\{ egin{array}{l} 9.131 \ 9.281 \end{array} ight\}$	Playfair and Joule. M. C. S. 3, 78.
**	"	9.4612	Roberts. C. N. 31, 143.
**	"	0.51.)	Roberts and Wrightson. Ann.
46	"	9.40 Two methods.	(5), 30, 181.
- "	44	10.002	Quincke. P. A. 185, 642. Brisson. P. des C.
Gold .	T	19.258	Brisson. P. des C.
	Hammered	19.207	Elliot. Quoted by Rose.
	Pressed	19.3 to 19.4 19.3336, 17°.5	Dewis.
	Ppt. by oxalic acid	19.2981, 17°.5	11
	Cast and pressed,)	19.2881, 17°.5,m.of87	G. Rose. P. A. 78, 1.
	16 samples differ- }	19.2689, 17°.5 \ Ex-	11
	ently prepared.	19.3296, 17°.5 \temes.	12 7 7 7 700
"	Ppt. by oxalic acid	19.4941	G. Rose. P. A. 75, 403.
	Before rolling	19.265, 18°	Holzmann. J. 18, 112.
	Once rolled	19.2982 } {	Roberts and Rigg. J. C. S. (2), 12, 208.
	Molten	17.099	Quincke. P. A. 185, 642.
Ruthe	nium	11.0	1.
"		.[11.4 }	Deville and Debray. J. 12, 234.
- "			Deville and Debray. C. R. 83,928.
Rhodi	ium	11.0+	Wollaston. P. T. 1804, 426.
"	~~~~~~~~~~	11.2	Cloud. Schw. J. 43, 816.
"		12.1	Hare. A. J. S. (2), 2, 865. Deville and Debray. J. 12, 240.
Pallad	dium	11.8)	l
"		. 11.8 }	Wollaston. See Böttger.
"		12.148	Lowry. " "
"		. 11.852	_ Lampadius. Watts' Dict.

	Name.	Specific Gravity.	AUTHORITY.
Palladiu	m	11.8	Vauquelin. Ann. 88, 167.
"		11.041, 18°	Cloud. Schw. J. 1, 862.
46		10.928	Breithaupt. See Böttger.
"		11.628	Benneke and Reinecker. See Böttger.
**		11.80	Cock. M. C. S. 1, 161.
46 64	Hammered	11.80 }	·
44		11.752	Breithaupt. J. P. C. 11, 151.
		11.4, 22°.5 12.0	Deville and Debray. J. 12, 287
		12.V	Troost and Hautefeuille. C. R. 78, 970.
"		12.104	Lisenko. Ber. 5, 29.
**	Molten	10.8	Quincke. P. A. 135, 642.
Osmium		21.40	Deville and Debray. J. 12, 282. Deville and Debray. C. R. 82,
44		22.477	Deville and Debray. C. R. 82, 1076.
Iridium.	Porous globule.	18.680	Children. See Böttger.
"		21.78	Eckfeldt and Boyé, for Hare. A.
44		21.88 } {	J. S. (2), 865.
66 66	Black	18.6088	G. Rose. P. A. 75, 403.
"		21.15 22.421, 17°.5	Deville and Debray. J. 12, 242.
			Deville and Debray. P. M. (4), 50, 561.
- 48 -		22.88	Matthey. C. N. 40, 240.
	a	20.85 20.98	D 1 0 4 1 1 25 4 3
"		20.98 }	Borda. Quoted by Marchand.
	Cast	19.5)	J. P. C. 83, 885.
	Hammered	20.8 }	Brisson. P. des C.
"	Wire	21.0	2.400 0.
**	"	21.7	Klaproth. Quoted by Marchand.
**		21.061	Sickingen. " " "
"		21.45	Berzelius. " " "
"		21.47	Berthier. " " "
"		21.58 }	
44	Cast	17.7	11001101.
"	Hammered	21.8 20.9	Faraday. """"" E. D. Clarke. """"
	Spongy	21.47	Thomson. " " "
44	opongy	21.848	Scholz. See Böttger.
**		21.859	Meissner. " "
44	Wire	21.16	•
44	"	21.40	Wolleston D A 10 150
. "	"	21.58	Wollaston. P. A. 16, 158.
66	Hammered	21.25]	
**	Spongy	17.572	
"	"	15.780 }	Liebig. P. A. 17, 101.
£6 £6		16.819)	Sabala Saa Ditt
"	Black	17.894	Scholz. See Böttger.
"		21.2668 21.8092	Marchand. J. P. C. 88, 885.
	Hammered	21.81)	•
"	((21.16 }	Hare. A. J. S. (2), 2, 865.
"	"	21.23	
**	Spongy	16.684	
44	Precip. black	20.9815	D 1 22 400
**	" "	20.7782 22.8926	Rose. P. A. 75, 408.

Name.	SPECIFIC GRAVITY.	AUTHORITY.	
Platinum. Precip. black "Black "Spongy " " " " " " " " " " " " " " " Wery pure " " Molten	22.0845 26.1418, 15°.7 ? } 17.766 21.169 21.243 21.15 21.15 21.504, 17°.6 18.915	Rose. P. A. 75, 408. Playfair and Joule. M. C. S. 8, 57. Deville and Caron. J. 10, 259. Deville and Debray. J. 12, 240. Deville and Debray. P. M. (4), 50, 560. Quincke. P. A. 135, 642.	

II. INORGANIC FLUORIDES.

Name.	Formula.	SP. GRAVITY.	· AUTHORITY.
Hydrogen fluoride or hydrofluoric acid, liquid.			Davy. P. T. 1818, 263.
11 11	44	.9879, 12°.7 .9885, 18°.6	Gore. P. T. 1869, 173.
Lithium fluoride	Li F	2.582	Schröder. Dm. 1878.
и и	"	2.295, 21°.5	Clarke. A. J. S. (8), 18, 292.
Sodium fluoride	"	2.601 Ex- }	Schröder. Dm.1873.
Potassium fluoride	K F	2.454, 12°	18, 292.
4 44	66	2.476 } 2.507	Schröder. Dm. 1873.
" "	"	1	Clarke. A. J. S. (3), 13, 292. Schröder. Ber. 11,
Rubidium fluoride	Rb F	1	2018.
Ammonium hydrogen flu- oride.	1 -	1 '	Bödeker. B. D. Z.
oride. Silver fluoride Magnesium fluoride " " Sellaite.	Mg F,	2.472 2.856, 12° 2.972	Straver. Dana's
Zinc fluoride	Zn F., 4 H. O	4.612, 12° 4,556, 17° 2.567, 10° 2.585, 12°	Min., 2d App. Clarke. A. J. S. (8), 18, 291.

			
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Cadmium fluoride	Cd F ₂	5.994, 22°, m. of 7.	Kebler. A. C. J. 5, 241.
Calcium fluoride	Ca F ₂	8.188, m. of 60 8.150	Kenngott. J. 6, 858. Smith. J. 8, 976.
	16	8.188	Schiff. A. C. P. 108, 21.
" " Precin	"	8.162	Luca. J. 18, 98.
" " Precip " Ignited	16	3.086 }	Schröder. Dm. 1878.
Strontium fluoride	Sr F	4.202 (., .,
ii ii	"	4.286 }	
" "	"	4.210	Schröder. P. A. 6 Erganz. Bd. 622.
Barium fluoride		4.58, 18°	Bödeker. B. D. Z.
11 11	4	4.824	Schröder. Dm. 1878.
Lead fluoride	Pb F	4.833 } 8.241	
Nickel fluoride	Ni F	2.855, 14°)	Clarke. A. J. S. (8),
" " …	Ni F 3 H. O	9 014 100 7	18, 291.
Aluminum fluoride	Al F	3.065 3.18 \ 12°	Bödeker. B. D. Z.
Arsenic trifluoride, l	As F	2.78	Unverdorben, P.A.
	"	2.66	7, 816. MacIvor. C. N. 80,
	"	2.6659, 0°	169. Thorpe. J. C. S.
	"	2.4497, 60°.4	37, 872. [874.
" "	"	2.784	Moissan. C. R. 99,
Bismuth fluoride	Bi F ₈	5.82, 20° }	Gott and Muir. J.
" oxyfluoride Cryolite. Greenland	Bi O F Na ₃ Al F ₆	7.5, 20° } 2.9—8.077	C. S. 58, 187. Dana's Mineralogy.
" Siberia	Mag At Pe	2.95	Durnew. J. 4, 820.
" Colorado	"	2.972, 24°	Hillebrand and
	 –		Cross. A. J. S(8), 26, 271
Chiolite	Na ₅ Al ₈ F ₁₄	2.72	Hermann. J. P. C. 37, 188.
"	"	2.90	Kokscharow. J. 4, 820.
"	"	2.842-2.898	Rammelsberg. P. A.
Chodneffite	Na, Al F	8.008)	74, 814. Rammelsberg. P.A.
"	"	8.077 } }	74, 814.
"	"	2.62—2.77	Worth. Dana's
Pachnolite.* Colorado	Na Ca Al F ₆ . H ₂ O	2.965, 17°, m.)	Mineralogy. Hillebrand and Cross. A. J. S.
_ " "	"	2 962 220	(8), 26, 271.
Prosopite. Altenberg	Ca Al. (F. O H)	2.890)	Scheerer. Dana's
" "	**	2.898	Mineralogy.
" Colorado	**	2.880, 28°	Hillebrand and Cross. A. J. S.
		}	(8), 26, 271.
Ralstonite	Na Mg Al ₄ F ₁₅ . 8 H ₂ O.	2.4	Brush. A. J. S. (3),
ı		ı	2, 80.

^{*}According to Brandl, pachnolite and thomsenolite are distinct species, but Hillebrand and Cross show them to be identical.

² s G

Name.	Specific Gravity.	AUTHORITY.	
Platinum. Precip. black	22.0845 26.1418, 15°.7 ? } 17.766 21.169 21.248 21.15 21.15 21.504, 17°.6	Rose. P. A. 75, 408. Playfair and Joule. M. C. S. 8, 57. Deville and Caron. J. 10, 259. Deville and Debray. J. 12, 240. Deville and Debray. P. M. (4), 50, 560. Quincke. P. A. 185, 642.	

II. INORGANIC FLUORIDES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen fluoride or hydrofluoric scid, liquid.	н ғ		Davy. P. T. 1813, 268.
u u	44	.9879, 12°.7 .9885, 13°.6 1.036, 15°.5	Gore. P. T. 1869, 178.
Lithium fluoride	Li F	$\left. \begin{array}{c} 2.608 \\ 2.612 \end{array} \right\}$	Schröder. Dm. 1878.
" " Sodium fluoride	" Na F	•	Clarke. A. J. S. (8), 18, 292.
	44	2.601 Ex- }	Schröder. Dm. 1878.
Potassium fluoride		•	18, 292.
11 11 11 11 12 11	"	2.476 }	Schröder. Dm. 1878.
11 11	"	2.096, 21°.5	13, 292.
Rubidium fluoride	Rb F		2018.
Ammonium hydrogen flu-	Am H F,	1.211, 12°	18, 298. Bödeker. B. D. Z.
Silver fluoride Magnesium fluoride	Ag F	5.852, 15°.5 2.472 2.856 129	Gore. C. N. 21, 28. Schröder. Dm. 1873.
" Sellaite.	"	2.972	Straver. Dana's Min., 2d App.
Zinc fluoride	"	4.612, 12° 4,556, 17° 2.567, 10° 2.585, 12°	Clarke. A. J. S. (8), 18, 291.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cadmium fluoride	Cd F ₂	5.994, 22°, m. of 7.	Kebler. A. C. J. 5,
Calcium fluoride		8.188, m. of 60	Kenngott. J. 6, 858.
" "	46	3.150 3.188	Smith. J. 8, 976. Schiff. A. C. P. 108, 21.
	"	8.162	Luca. J. 18, 98.
" Precip	"	8.086	Schröder. Dm. 1878.
" " Ignited Strontium fluoride		4.202)	
ii ii	(4.286	" "
" "		4.210	Schröder. P. A. 6 Erganz. Bd. 622.
Barium fluoride			Bödeker. B. D. Z.
	1 44	4 000 >	Schröder. Dm. 1878.
Lead fluoride	Pb F	8.241	u u
Nickel fluoride	Ni Fi	2.855, 14° }	Clarke. A. J. S. (8),
Lead fluoride	Ni F ₂ . 8 H ₂ O	2.014, 19° }	18, 291.
Aluminum muoride	41 Fg	$\left[\begin{array}{c} 3.065 \\ 3.13 \end{array} \right] \ 12^{\circ}$	Bödeker. B. D. Z.
Arsenic trifluoride, l	As F ₈	2.78	Unverdorben. P.A. 7, 816.
" "	"	2.66	MacIvor. C. N. 80, 169.
11 11	"	2.6659, 0° ≀	Thorpe. J. C. S.
" "	tt	2.4497, 60°.4 }	87, 872. [874.
Pierryth Averide		2.784	Moissan. C. R. 99, Gott and Muir. J.
Bismuth fluoride " oxyfluoride Cryolite. Greenland	Bi O F	5.82, 20° }	C. S. 58, 187.
Cryolite. Greenland	Na Al F	2.9—8.077	Dana's Mineralogy.
Dibelik		2.95	Durnew. J. 4, 820.
" Colorado	"	2.972, 24°	Hillebrand and Cross. A. J. S.
Chiolite	No. Al Tr	9 79	(8), 26, 271. Hermann. J. P. C.
			37, 188.
"	"	2.90	Kokscharow. J. 4, 820.
"		2.842-2.898	Rammelsberg. P. A. 74, 814.
Chodneffite	Nag Al F	8.008 \	Rammelsberg. P. A.
"	"	8.077 } \ 2.62—2.77	74, 814.
		2.02-2.11	Wörth. Dana's Mineralogy.
Pachnolite.* Colorado	Na Ca Al F ₆ . H ₂ O	2.965, 17°, m. }	Hillebrand and Cross. A. J. S.
" "	"	0.000.000	(8), 26, 271.
Prosopite. Altenberg	Call (FOH).	2.890)	Scheerer. Dana's
		2.000)	Mineralogy.
" Colorado		2.880, 23°	Hillebrand and Cross. A. J. S.
Ralstonite	NaMg Al ₄ F ₁₆ . 8H ₂ O.	2.4	(8), 26, 271. Brush. A. J. S. (8),
1	ı	ı	2, 80.

 $^{^{\}circ}$ According to Brandl, pachnolite and thomsenolite are distinct species, but Hillebrand and Cross show them to be identical.

² s G

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ralstonite		1	mala Min Od A
"	$(MgNa_2)Al_3(F,OH)_{11} \ 2 H_2 O.$	2.560	na's Min., 3d App. Penfield and Har- per. A. J. S. (3),
Fluocerite	-		Mineralogy.
Tysonite			Allen and Comstock. A. J.S.(8), 19,891.
Yttrocerite			Berzelius. Dana's
Potassium borofluoride '' Lithium silicofluoride	K B F ₄	$\left\{ egin{array}{lll} 2.5 \\ 2.6 \end{array} \right\}$ $\left. \right\}$	Stolba. B. S. C. 18, 809.
Lithium silicofluoride	Li, Si F ₆ , 2 H, O	2.33	Stolba. J. 17, 213. Topsoë. C. C. 4, 76.
Sodium silicofluoride			Stolba. J. P. C. 97, 503.
tt tt tt tt	46	$\left\{egin{array}{ll} 2.680, \mathrm{m.\ of\ 4} \ 2.671 \ \mathrm{Ex.} \ 2.691 \end{array}\right\}$	Schröder. Dm. 1873.
Potassium silicofluoride	K ₂ Si F ₆	2.6655 2.6649 } 17°.5	Stolba. J. P. C. 97, 508.
et	"	$\left\{ \begin{array}{c} 2.655 \\ 2.698 \end{array} \right\}$	Schröder. Dm. 1873.
Rubidium silicofluoride	Rb, Si F	2.704) 8.8888, 20°	Stolba. J. 20, 186.
Bubidium silicofluoride Cseium silicofluoride Ammonium silicofluoride_ ""	Am, Si F	1.970 2.056, m. of 5	Topsoë. U. C. 4, 76.
" "	"	2.085 Ex. 2.071 tremer	Schröder. Dm. 1873.
Calcium silicofluoride	Ca Si F ₆ . ?	$\left[\begin{array}{c} 2.649 \\ 2.675 \end{array} \right]$ 17°.5 _	Stolba. J. 33, 239.
Strontium silicofluoride	Ca Si F ₆ . 2 H ₁ O	2.254	Topsoë. C. C. 4, 76.
" "	" "	2.999 }	Stolba. J. 34, 285.
Barium silicofluoride	Ba Si F ₆	4.2794, 21° 4.2880, 22°	Schweitzer. Univ.
			of Missouri, special pub. 1876.
Magnesium silicofluoride_ Zinc silicofluoride			Topsoë. C. C. 4, 76.
" "	" " "	2.121 } 170.5	Stolba. J. R. C. 5, 72.
Zinc silicofluoride " " " Manganese silicofluoride Iron silicofluoride*	Mn Si F ₆ . 6 H ₂ O Fe Si F ₆ . 6 H ₂ O	1.858 1.96115, 17°.5_	Topsoë. C. C. 4, 76.
			155. Topsoë. C. C. 4, 76.
Nickel silicofluoride Cobalt silicofluoride * " "	Co Si F ₆ . 6 H ₂ O	2.067 \ 2.1211 \ 190	Stolba. B. S. C.
Copper silicofluoride*	Cu Si F _a . 4 H _a O	2.1135 / 10 2.535	26, 155. Topsoë. C. C. 4. 76.
"	Cu Si F. 6 H. O	2.1576, 19°	Stolba. J. 20, 299.
" "		2.182	Topsoë and Christ- iansen.

^{*}According to Stolba, these salts contain 6½ molecules of water.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Potassium titanofluoride Copper titanofluoride Potassium zircofluoride Zinc zircofluoride Nickel zircofluoride Nickel zircofluoride Potassium stannifluoride Ammonium stannifluoride Cobalt stannifluoride Potassium columboxyfluoride. Copper columboxyfluoride. Copper columboxyfluoride. Potassium tantalofluoride. Potassium uranoxyfluoride """ Ammonium uranoxyfluoride.	K, Ti F, H, O Cu Ti F, 4 H, O K, Zr F, 6 H, O Ni Zr F, 6 H, O K, Sn F, H, O Mn Sn F, 6 H, O Mn Sn F, 6 H, O Co Sn F, 6 H, O K, Cb O F, H, O Cu Cb O F, H, O S K F. 2 U O, F, 8 K F. 2 U O, F, 2 H, O.	2.0797, 12°	Topsoë. C. C. 4, 76	

III. INORGANIC CHLORIDES.

1st. Simple Chlorides.

NAME. Hydrogen chloride or hydrochloric acid, liquef'd		•	Formula.	Sp. Gravity908, 0°878, 7°.5	AUTHORITY.	
		l, liquef 'd	H Cl			
11 11 11	 		11	.885, 15°.8 .808, 22°.7 .748, 88°	Ansdell. C. N. 41, 76. Critical tem- perature, 51°.25.	
Lithium	chlorid	le	Li Cl	.619, 47°.8	Kremers. J. 10, 67. Schröder. P. A. 107, 113.	
44	44	Fused	"	1.515		
Sodium c	hloride)	Na Cl	2.2001		
44	66		"	2.15	Leslie. See Böttger.	
66	**		"	2.26	Mohs.	
44	4.6		"		Karsten. Schw. J. 65, 894.	
66	66		"	2.080	Unger. See Böttger.	
66	"		"	2.150	Kopp. A.C. P. 86, 1.	
"	"		"	2.011, m. of 3_	Playfair and Joule. M. C. S. 2, 401.	
46	"		"	2.24		

Name.		FORMULA.		Sp. Gravity.	AUTHORITY.	
Sodium (chlorid	e		C1	2.155, 15°.5	Holker. P. M. (8) 27, 218.
44	"	Cryst After fu-			2.195 }	Deville. J. 8, 15.
44	66	sion.	"		0.1403	1
"	"		"		$\left\{ egin{array}{ll} 2.142 \ 2.207 \end{array} ight\}$	Grassi. J. 1, 89.
"	"	Halite	"		2.185	Hunt. J. 8, 976.
"	"		"		2.148	Schiff. A. C. F 108, 21.
44	**		"		2.153)	Schröder. P. A. 106
46					2.161}	226.
**	**		"		2.145	Buignet. J. 15, 14
"	"		"		2.1629, 15°	Stolba. J. P. C. 97 503.
"	"				2.1548	Hangen. P. A. 181
"	"		"		2.06—2.08	Page and Keightley J. C. S. (2), 10, 566
44	"		**		2.145	Stas.
"	"	Natural	"		2.187	Rüdorff. Ber. 12 251.
"	"		"		2.1641, 15° -1.	Bedson and Wil liams. Ber. 14 2552.
"	"	Cryst. at	"		2.16171	
"	"	Cryst. at	"		2.15494	Nicol. P. M. (5) 15, 94.
"	"		"	·	1.612, at the melting point.	Braun. J. C. S. (2)
"	44		"		2.23	Brügelmann. Ber
44	44		• "		. 2.1654, 10°)	[17, 2859
"	"		"		2.1615, 200	
**	44		"		. 2.1594, 80° }	Andreae. J. P. C
"	"		66		. 2.15665, 40°	(2), 80, 815.
44	"				. 2.15435, 50° J	71 1 D 4 (0)
"			"		$\left\{ \begin{array}{ccc} 2.1881 & \dots & \\ 2.1887 & \dots & \\ \end{array} \right\}$	Zehnder. P. A. (2
"	"		"		2.092, 0° }	29, 259.
	"	Fused	"		2.04}	Quincke. P. A. 186
otassiu	m chlo	ride		yl	1.9867	Hassenfratz. An
u	4	'	"		1.886	28, 3. Kirwan. See Böt
"	•	'	"		1.9158	ger. Karsten. Schw. J
**		•	"		1.945	65, 894. Kopp. A.C. P. 36,
t t	•		"		1.900	Playfair and Joul. M. C. S. 2, 401.
"	٤	·	"		1.97756, 4°	Playfair and Joule J. C. S. 1, 137.
i i	•		"		1.994	Filhol. Ann. (8, 21, 415.
"	•	·	"		1.995	Schiff. A. C. I
41	ı		**		1.918, 15°.5	Holker. P. M. (8 27, 218.

					,	
	Name			FORMULA.	SP. GRAVITY.	AUTHORITY.
Potassi	um chlor	ide	K C		1.995	Schröder. P.A. 106, 226.
"	"		11		1.986 1.94526, 15°	Buignet. J. 14, 15. Stolba. J. P. C. 97,
".	44		"		1.90—1.91	503. Page and Keightley. J. C. S. (2), 10, 566.
44	"		"		1.612, at the melting p't.	
66	"	Not pressed.	"		1.980, 22	15, 51.
66	66	Once pressed.	"		2.071, 20° }	Spring. Ber. 16, 2724.
41		Twice pressed.	"		2.068, 21°	
41	"	prosse.	"		1.98	Brügelmann. Ber. 17, 2859.
44	**		"		1.982, 0° }	Quincke. P. A. 185,
"	ш	Fused	-"		1.870}	642.
	um chlor			1	2.807	Setterberg. Of. Ak. St. 1882, 6, 28.
	chloride		Cs C		8.992	. " "
Ammo	nium chi	oride	Am	Öl	1.450	Wattson. See Bött-
"	"		41		1.54425	ger. Hassenfratz. Ann. 28, 8.
44	"		"		1.528	Mohs. See Böttger.
"	"		"		1.578, m. of 8.	Playfair and Joule. M. C. S. 2, 401.
"	"		**		1.5388, 4°	Playfair and Joule.
"	"		"		1.52, 15°.5	J. C. S. 1, 187. Holker. P. M. (8), 27, 214.
66	"		66		1.500	Kopp. A.C.P.86,1.
"	"		"		1.522	Schiff. A. C. P. 108, 21.
**	"		"		1.550	Buignet. J. 14, 15.
"	"		"		1.5088	GL-11. T. D. G. OF
"	"		"		1.5209	Stolba. J. P. C. 97, 508.
"	"		41		1.456	W. C. Smith. Am. J. P. 58, 145.
Silver	hloride _	Jnfused	Ag C	1	5.4548 5.501)	Proust. 145.
"		Black'd			5.5671 }	Karsten. Schw. J.
"		After fu-	"		5.4582	65, 894.
"	" -		"		5.129	Herapath. P. M. 64, 321.
41	" -		ш		5.548	Boullay. Ann. (2), 48, 266.
44	"		"		5.55	Gmelin.
"		lative	"		5.81}	Domeyko. Dana's
"	"	"	"		5.43 }	Min.
**	" -		"		5.517	Schiff. A. C. P. 108, 21. [226.
4.	"		"		5.5948	Schröder. P. A. 106,

Name.	FORMULA.	Sp. Gravity.	Authority.
Silver chloride	Ag Cl	5.505, 0° } 4.919, 451° _ }	Rodwell. P.T. 1882, 1125.
" " " "	"	5.5	Quincke. P. A. 135, 642.
	"	5.8	Quincke. P. A. 138, 141.
Thallium chloride	Tl Cl	7.00 7.02	Willm. Lamy. J. 15, 184.
Thallium trichloride Magnesium chloride	Tl ₂ Cl ₃ Mg Cl ₂	5.9	Playfair and Joule.
66 66	Mg Cl ₂ 6 H ₂ O	1.562, m. of 4_	M. C. S. 2, 401.
" Bischofite.	"	1.65	Filhol. Ann. (3), 21, 415. Ochsenius. B. S. M.
Zinc chloride	Zn Cl.		1, 128. Bödeker. B. D. Z.
Cadmium chloride	Cd Cl ₂	8.6254, 12° 8.655, 16°.9	P. Knight. F.W.C.
Mercurous chloride	Cd Cl ₂ . 2 H ₂ O Hg Cl	8,324, m. of 8_ 7.1758	W.Knight. F.W.C. Hassenfratz. Ann.
	"	7.14	28, 8. Boullay. Ann. (2),
" "	"	6.9925	43, 266. Karsten. Schw. J. 65, 894.
" "	"	6.7107	Herapath. P. M. 64, 821.
" Native.		6.482	Haidinger. Dana's Min.
" "	44	7.178	Playfair and Joule. M. C. S. 2, 401.
" ""	"	6.56	Schiff. A. C. P. 108, 21.
Mercuric chloride	Hg Cl ₂	5.14	Hassenfratz. Ann. 28, 3. Gmelin.
	"	5.42	Boullay. Ann. (2), 43, 266.
" "	"	5.4032	Karsten. Schw. J. 65, 394.
	"	6.223	Playfair and Joule. M. C. S. 2, 401.
" "	"	5.448, m. of 8_ 2.214}	Schröder. P. A. 107, 118.
Catelum enoride	Ca Cig	2.269}	Boullay. Ann. (2), 43, 266.
	"	2.0401	Karsten. Schw. J. 65, 894.
	"	2.480	Playfair and Joule. M. C. S. 2, 401.
" "	"	2.240	Filhol. Ann. (3), 21, 415. [21.
" "		2.205 2.160, 27°	Schiff. A. C. P. 108, Favre and Valson.
" " Fused	"	2.219, 0° }	C. R. 77, 579. Quincke. P. A. 135, 642.

	Name	•	FORMULA.	Sp. Gravity.	AUTHORITY.
Calcium	chlorid	e. Fused _	Ca Cl ₂	2.120	Quincke. P. A. 188,
"	"		Ca Cl ₃ . 6 H ₃ O	1.680, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"		"	1.685	Filhol. Ann. (3), 21, 415.
44 44	66 66		er	1.612, 10° 1.701, 17°.1	Kopp. J. 8, 44. Favre and Valson.
"	"		"	1.654, m. of 4	C. R. 77, 579.
"	"		"	1.642 Ex-	Schröder. Dm. 1878.
		ide	Sr Cl ₂	1.671 tremes 2.8088	Karsten. Schw. J. 65, 394.
"			"	2.960	Filhol. Ann. (8), 21, 415.
46	**		"	8.085, 17°.2	
**	"		"	8.054	Schröder. A. C. P. 174, 249.
16	"		66	2.770, at the melting point.	Braun. J. C. S. (2), 18, 81.
"	41	Fused	"	2.770	Quincke. P. A. 188, 141.
	"		Sr Cl ₂ . 6 H ₂ O	2.015, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
**	**		"	1.608	Filhol. Ann. (3), 21, 415.
•6	"		"	1.921 1.982, 17°.2	Buignet. J. 14, 15.
"	"		"	1.954	C. R. 77, 579. Schröder. Dm. 1878.
64	"		"	1.964, 16°.7	Mühlberg. F.W.C.
		e 	Ba Cl ₂	. 3.860	Boullay. Ann. (2),
1'	"		"	. 4.156	43, 266.
"	"		"	8.8	Richter. Watts' Dict. Karsten. Schw. J.
"	44		"	8.750	65, 894. Filhol. Ann. (8), 21,
44	44		"	8.820	415. Schiff. A. C. P. 108, 21.
"	44		"	3.872)	Schröder. P. A. 107,
46	**		"	8.886}	118.
" •	. "		"	8.7, 17°.5	
16	"		"	- 8.844, 16°.8	
44	"		"	8.92	Brügelmann. Ber. 17, 2859.
"	66	Molten .	"	8.700	Quincke. P. A. 188, 141.
"	"		Ba Cl ₃ . 2 H ₂ O	8.144, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
"	44		"	2.664	Filhol. Ann. (8), 21, 415.
"	"			_ 8,05485, 4°	Playfair and Joule. J. C. S. 1, 187.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Barium chloride	Ba Cl ₂ . 2 H ₂ O	8.052	Schiff. A. C. P. 108, 21.
ee ee	"	8.081 8.054, 15°.5	Buignet. J. 14, 15. Favre and Valson.
" " Lead chloride		8.045 5.29	C. R. 77, 579. Schröder. Dm. 1878. Monro.
" " Native" " " Unfused " " After fusion	" "	5.238 5.8022 } 5.6824 }	Dana's Min. Karsten. Schw. J. 65, 894.
" " Cryst	44	5.802 5.78	Schabus. J. 3. 822. Schiff. J. 11, 11.
« « <u></u>	"	5.80534, 15° 5.88	Stolba. J. P. C. 97, 503. Brügelmann. Ber.
Chromous chloride			17, 2859. Grabfield. F. W. C. Schafarik. J. P. C.
Chromic chloride		3.08, 17° 2.757, 15°, m.	90, 12.
Manganous chloride		of 13.	Schröder. A. C. P.
ec ec	Mn Cl ₂ . 4 H ₂ O	1.898 }	174, 249. Schröder. Dm. 1873.
" " " Ferrous chloride	''	1.928)	
	" Fe Cl ₂ . 4 H ₂ O	1	1 415.
			l 415.
" " Ferric chloride Nickel chloride	Fe ₂ Cl ₆ Ni Cl ₂	2.804, 10°.8 2.56	Schabus. J. 3, 327. Grabfield. F. W. C. Schiff. A. C. P. 108, 21.
Cobalt chloride	1	1	Playfair and Joule. M. C. S. 2, 401.
Cuprous chloride	Cu Cl		Bödeker and Ehlers. B. D. Z. Karsten. Schw. J.
	ł	4	65, 894
-	"	1	Breithaupte J. 25,
Cupric chloride	1 -		M C S 2 401
" "	B Cl ₈	2.47, 18° 1.85	Bödeker. B. D. Z. Wöhler and Deville.
Gallium chloride. Molten	1		44, 166,
Cerium chloride	Ce Cl ₈	3.88, 15°.5	Robinson. C. N. 50, 251.
Didymium chloride	Di Ois. O Es O	2.287 } 15°.8 _	Cleve. U. N. A. 1885.

٠	· Name.]	FORMULA.		Sp. Gravity.	AUTHORITY.
Samari	um chloride		Sm C	8.6 H ₂ O		$2.375 \atop 2.392$ 15°	Cleve. U. N. A. 1885.
	chloride.* tetrachlorid	le	Si Cl ₄			1.52871, 0°	Pierre. Ann. (8), 20, 26.
"	64					1.5083, 5°-10°) 20.
"	44		"			1.4983, 100-150	Regnault. P. A.
"	44					1.4884, 150-200	
41	"		4.6			1.4878, 20°	Haugen. P. A. 181, 117.
4.5	6.		**			1.49276	Mendelejeff. C. R.
44		****	"			1.522, 0°	Friedel and Crafts. A. J. S. (2), 48, 162.
61			66			1.52408,00	Thorpe. J. C. S.
	"		"			1.40294.57°.57	87, 872.
Silicon	hexchloride)	Si ₂ Cl	8		1.58, 0°	Troost and Haute- feuille. Z. C. 14,
Titaniu	ım tetrachlo	ride	Ti Cl			1.76088, 0°	881. Pierre. Ann. (8), 20, 21.
66	**		"			1.7487, 50-100) '
"	41		"			1.7403, 10°-15°	Regnault. P. A.
"	66 66					1.7822, 15°-20°	
"	44		"			1.76041, 00	Thorpe. J. C. S.
	nium tetrack	loride.		•		1.52228,186°.41 1.887, 18°	Winkler. Ber. 19,
Tin die	hloride		Sn Cl	2 H ₂ O		2.759	ref. 655. Playfair and Joule.
"	44		"	"		2.71, 15°.5, s	M. C. S. 2, 401. Penny. J. C. S. 4,
"	"		"	"		2.5876, 87°.7, 1	
"	"		"	и	[2.684, 240	Bishop. F. W. C.
Tin tet	rachloride		Sn Cl			2.26712, 0°	Pierre. Ann. (8), 20, 19.
**			44			2.2618, 5°-10°	`
11	"		"			2.2492, 10°-15°	Regnault. P. A.
"	"		"			2.2868, 15°-20°) 62, 50.
61	"		"			2.284, 15° 2.2828, 20°	Haagen. P. A. 131,
**	"		"		l	0.05055 00	117.
44			"			2.27875, 0° 1.97818,113°.89	Thorpe. J. C. S. 87, 872.
	en trichlorid	le		. ?		1.658	Watts' Dictionary.
	horus trichle		P Cl.			1.45	Davy. Watts' Dict.
ā	"		"			1.61616, 0°	Pierre. Ann. (3), 20, 9.
**	"		46			1.6091, 50-100)
**	"		66			1.6001, 100150	
"	44		"			1.5911, 15°-20°	62, 50.
-						1.6119, 0°, m. of 2.	Buff. A. C. P. 4 Supp. Bd. 129.
"	"		**			1.59708, 10° 1.47124, 76°	Boiling point, 76°.
							1/

 $^{^{\}bullet}$ The chlorides, bromides, and iodides of carbon are assigned to a special division among organic compounds.

	NAM	Z.		FORMULA.	Sp. Gravity.	AUTHORITY.
	rus tri	chloride		l ₈		Haagen. P. A. 181,
"		"	"		1.61275, 0°	Thorpe. J. C. S.
	m dich	loride		l .	1.46845, 75°.95 3.28, 18°, s	∫ 87, 872. Roscoe. P. T. 1869,
			l	•		679.
		hloride chloride	VC	8	. 8.00, 18°, s	11 11
V MIIMUIU	in rem	ecutoride	1 44		1.8584, 0° }	
			"	,	. 1.8159, 82° ₋)	[15.
Arsenic	trichlo:	ride	A8 (;l _s	2.20495, 0° 2.1766	Pierre. Ann. (3), 20, Penny and Wallace.
						J. 5, 382.
"	"		"		2.1668, 20°	Haagen. P. A. 181, 117.
"	"		68		2.20500, 0°	Thorpe. J. C. S.
		loride		l,	1.91813,180°.21 8.064, 26°, s	\$7,872.
	•			•		Acad. 1877.
"	"		66		2.6766 liquid 2.6758 at	Kopp. A. C. P. 95,
**	"		"		2.6750 78°.2	348.
Antimon	y pent	achloride _	Sb C	l ₅	2.8461, 200	Haagen. P. A. 181.
Bismuth	trichle	oride		l s	4.56, 110	Bödeker. B. D. Z.
Sulphur	chlorid	le	S ₂ C	2	1.687	Dumas. Ann. (2),
"	"		"		1.686	49, 204. Marchand. J. P. C. 22, 507.
"	**		"		1.6970, 5°-10° 1.6882, 10°-15°) 22, 001.
"	"		- 66		1.6882, 100-150	Regnault. P. A.
"	"		"		1.6793, 15°-20° 1.7055, 0°) 62, 50. Kopp. A. C. P. 95,
**	"		"		1.6802, 16°.7	855.
66	"		"		1.6828, 20°	Haagen. P. A. 181,
"	"		"		1.4848, 188°	117. Ramsay. J.C. S. 35, 463.
"	"		"		1.70941, 0°	Thorpe. J. C. S.
& Selenium	// 1-1	٠	9. (1.49201,138°.12 2.906, 17°.5	
Selenium	Chiori		136g C	l _g	2.900, 175	Divers and Shimose. Ber. 17, 866.
		oride			8.263, 0°]	
"	"		"		3.222, 16°.5_	
"	"		"		8.206, 18°.2_ 8.180, 30°	
44	46		"		8.176, 82°	
"	"		"		8.182, 45°	
"	"		"		3.127, 48° [
"	"		"		8.084, 60° 8.032, 72°	Hannay. J. C. S.(2),
"	"		"		8.032, 72	11,818. Melts at 24°.7. Boils at
:"	44		"		2.988, 86°	100°.5 to 101°.5.
"	"				2.984, 90°	
"	"		"		2.964, 95°	
"	"		"		2.958, 98°]	Thoma T C C
"	"		"		2.88196.1019.8	Thorpe. J. C. S. 37, 871.
		1				, 01, 014

Name.	FORMULA.	Sp. Gravity.	Authority.
Iodine trichloride	I Cl ₃	8.1107	Christomanos. Ber.
Platinum dichloride Platinum tetrachloride	Pt Cl ₂ Pt Cl ₄ 8 H ₂ O	5.8696, 11° 2.481, 15°	Bödeker. B. D. Z.

2d. Double Chlorides.

			,				
Na	ME.		Formula	•	SP. GRAVITY.	AUTHORITY.	
Ammonium chloride.	mag	nesium	Am, Mg Cl4. 6	Н, О.	1.456, 10°	Bödeker. B. D.	z.
Potassium zi	ne ch	loride	K ₂ Zn Cl ₄		2.297	Schiff. A. C. 112, 88.	Ρ.
Ammonium	zinc c	hloride_	Am, Zn Cl,		1.879	11 11	
"	"	"	64		$\begin{bmatrix} 1.72 \\ 1.77 \end{bmatrix}$ 10° $\left\{ \begin{bmatrix} 1.72 \\ 1.77 \end{bmatrix} \right\}$	Bödeker and Ehle B. D. Z.	
"	"	"	66		1.77	Romanis. C. N. e 273.	
	_		Ba ₂ Zn Cl ₆ . 4 E	-		Warner. C. N. 2 271.	27,
Potassium ca	dmiu	m chlo-	K ₂ Cd Cl ₄		2.500	Schröder. Dm. 18	78.
	dmiu	m chlo-	.Sr Cd ₂ Cl ₆ . 7 H	[, 0	2.708, 24°, m. of 3.	W. Knight. F.W.	.C.
Barium cadm	ium c	hloride	Ba Cd Cl. 4 H	[₂ O	2,968	Topsõe. C. C. 4,	76.
46 6	4	"	"		2.966, 25°.2	W. Knight. F.W.	
	-		Na Hg Cl ₃ . 2 H			Playfair and Jou M. C. S. 2, 401.	le. ·
Potassium m ride.	ercur	y chlo-	K Hg Cl ₃ . H ₂			u ú	
Ammonium chloride.	m e	rcury		7		46 68	
_ "	_	."	Am, Hg Cl. H	, 0	2.938	" " Schabus. J. 8, 82	
Potassium ir	on ch	loride	K, Fe Cl. 2 H.	0	2.162	Schabus. J. 8, 82	27.
Potassium co	pperc	eniomae	K, Cu Cl ₄ . 2 H	, 0	2.426	Playfair and Jou	
44	"	"	"		2.400	M. C. S. 2, 401. Schiff. A. C. P. 11 88.	12,
"	**	"	, "		2.359	Kopp. J. 11, 10.	
i e	"	"	и		2.410	Tschermak. S. V A. 45, 608.	W.
66	4.6	"	"			,	
16	"	"	u		2.892 }	Schröder. Dm. 187	78.
	"	."			2.425)	TTT 1 m =	_
Rubidium co		ļ		-		Wyrouboff. B. M. 10, 127.	
Ammonium ride.	coppe		Am, Cu Cl ₄ . 2	- 1		Playfair and Jou M. C. S. 2, 401.	
11		"	"		1.968	Schiff. A. C. P. 11 88.	12,
44	"	"	"		1.977	Kopp. J. 11, 10.	
46,	"	"	"		2.066	Tschermak. S. V	V.
		i		1		A. 45, 608.	

Name.		For	MULA.	SP. GRAVITY.	Aut	HOBITY.
Ammonium copper cl	hlo-	Am, Cu C	Cl ₄ . 2 H ₂ O ₋	1.984, 24°	Evans.	F. W. C.
ride. Potassium palladioc ride.	hlo-	K, Pd Cl		2.806	Topsoë.	C. C. 4, 76.
Ammonium palladioc	hlo-	Am, Pd ()1 ₆	2.418	"	"
Magnesium palladioci	hlo-	Mg Pd C	6. 6 H ₂ O	2.124	"	**
Zinc palladiochloride		Zn Pd Cl	6 Н, О	2.859		"
Nickel palladiochlorid	le	Ni Pd Cl	. 6 H, O	2.858	n-11	"
Potassium iridichlorid		K, Ir Cl		3.546, 15°	Rodeker	B. D. Z.
Ammonium iridichlor Potassium platosochlor		Am, Ir C	l ₆	2.856, 15° 8.8056, 20°.8 }	Clarke.	A. J. S.
" Classium piatosocnio	ride	E I CI		3.2909, 21° }		3, 20 6.
Ammonium platosoci	hlo-	Am, Pt C	14	2.84		s. C. N. 49,
Sodium platinchloride		Na, Pt Cl	6. 6 H ₂ O	2.500	Topsoë. 76.	C. C. 4,
Potassium platinchlor	ride_	K ₂ Pt Cl ₂		8.586, 15° 8.694		
					A. 45	
** **		44		8.8, 170 \	Petterss	
" "		"		8.82, 17°.2	A. 18	
70-1:3:1-4:1:	;;	n n o		8.844		r. Dm. 1873.
Rubidium platinchlor	ide_	Rb ₂ Pt Cl		8.96, 170.4}		on. U. N.
Ammonium platinel	hlo-	Am Pt C	l ₆	8.94, 17°.5 } 2.955 } _{P50}	A. 18	
ride. "		*****	4	8.009 } 15°	Bödeker	. B. D. Z.
u u		44		2.960	Tscherm A. 45.	ak. S. W.
		**		8.0, 17°.2		on. U. N.
u u		"		2.936		r. Dm. 1878.
66 66		"		8.065	Topsoë.	C. C. 4, 76.
Thallium platinchloric	- 1			5.76, 17°	A. 18	
Magnesium platinel ride.	hlo-		6. 6 H ₂ O			C. C. 4, 76.
		Mg Pt Cl	. 12 H, O	2.060	"	**
Cadmium platinchlorid	de	Cd Pt Cl	6 H, O	2.882	**	"
Barium platinchloride Lead platinchloride		Dh Pt Cl	4 H, O 8 H, O	2.868	ł	44
Manganese platinchlor	ride	Mn Pt Ci	6 H. O	2.692	1	41
Tribundo pinorio		Mn Pt Cl	. 6 H, О. . 12 H, О.	2.112	"	66
Iron platinchloride		Fe Pt Cla	. 6 Н. О	2.714	"	"
Copper platinchloride.		Cu Pt Cl.	6 H.O	2.784	"	4.6
Didymium platinchlor	ride	Di Pt Cl7.	10 } H, O	2.688 2.696 21° 2 -	Cleve. U	.N.A. 1885.
Samarium platinchlor		1	10} H, O _	2.709 2.714 21°.8 -	"	"
Didymium aurichlorid			. 10 H, O	$\begin{bmatrix} 2.662 \\ 2.664 \end{bmatrix}$ 18°	"	66
Samarium aurichlorid		,	5. 10 H ₂ O	2.744		"
Potassium stannochlor	- 1		`		M. C.	and Joule. S. 2, 401.
Ammonium stannocl	hlo-	Am ₂ Sn C	014. 8 H2 O-	2.104	"	"

Na	ME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Potassium st	nnichloride_	K ₂ Sn Cl ₆	2.686 } 2.688 } 2.700 2.948	Schröder. Dm. 1873. Joergensen. Romanis. C. N. 49,
Cæsium stanı	nichloride	Cs ₂ Sn Cl ₆	8.8808, 20°.5	278. Stolba. D. J. 198, 225.
Ammonium ride. "	stannichlo-	Am _g Sn Cl _e	2.387, m. of 4 2.381 Ex- 2.396 tremes. 2.511	Schröder. Dm. 1878. Romanis. C. N. 49,
Magnesium ride. Potassium an ride.		Mg Sn Cl ₆ . 6 H ₂ O K ₃ Sb Cl ₆ . 2 H ₂ O	2.080	273. Topsoë and Christ- iansen. Romanis. C. N. 49, 273.

3d. Oxy- and Sulpho-Chlorides.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Matlockite Mendipite Atacamite	Pb ₂ O Cl ₂	7.21 7.0—7.1 3.898	Greg. J. 4, 821. Dana's Mineralogy. Zepharovich. J. 24, 1186.
	"	8.757	
"	"	8.7688	Zepharovich. J. 26, 1201.
Botallackite	Cu ₄ Cl ₂ (O H) ₆ . 8 H ₂ O	8.6	
Tallingite	Cu ₅ Cl ₂ (O H) ₈	8.5	
Mercuric oxychloride	Hg ₃ O ₂ Cl ₂	8.63	
Didymium oxychloride " " " " Samarium oxychloride	Di O Cl	5.798, 21°,5	Cleve. U. N. A. 1885.
Nitroxyl chloride	N O ₂ Cl	1.8677, 8°	Baudrimont. J. P. C. 81, 478.
	"	1.82, 14°	Müller. A. C P.
Phosphorus oxychloride	PO Cla	1.678, 14°	122, 1. Cahours. J. P. C. 45, 129,
16 66	66	1.70, 12° 1.662, 19°.5	Wurtz. J. 1, 865. Mendelejeff. J. 18, 7.
4 44	"	1.69371, 10°	menuerejen. v. 10, /.
(1 (1	"	1.68626, 15°	Buff. A. C. P. 4
" "		1.64945, 51° 1.509116, 110°	Supp. Bd., 129.

149. Thorpe. J. Thorpe. J	ľ¥.	AUTHORITY	Sp. Gravity.	FORMULA.		Name.	
" " " 1.71163, 0° 37, 387, 37. " "	J. 20,	Wichelhaus. J	1.66) Cl ₃	hloride	us oxye	Phosphor
" " " 1.50967,107-23 37, 387. Schall. Ber. 17 1.58, 7° 1.58, 18° 1.764, 20 1.68, 231. 1.764, 20 1.68, 231. 1.764, 20 1.68, 231. 1.764, 20 1.68, 231. 1.764, 20 1.68, 231. 1.764, 20 1.68, 231. 1.764, 20 1.68, 231. 1.764, 20 1.68, 20 1.88, 17° 1.89, 21°	C. S.		1.71163, 0°			**	**
""" """ 1.5142, 106°.7 Gehall. Ber. 17 Gentler and chaelis. B. 16, 231. Gehall. Ber. 17 Gehall. Ber. 17 <td></td> <td>87. 887.</td> <td>1 50967,107° 23</td> <td>46</td> <td></td> <td></td> <td></td>		87. 887.	1 50967,107° 23	46			
Vanadyl dichloride	7,2204.	Schall. Ber. 17,	1.5142, 106°.7	"			_ "
Vanadyl dichloride V O Cl ₃ 2.88, 18°, s Roscoe. P.T. I. Schafarik. J. 76, 142. """"""""""""""""""""""""""""""""""""		chaelis. B.	1.58, 7°	0 ₃ Cl ₄	hloride	phorice	Pyrophos
" " " 1.841, 14°.5 Roscoe. P.T.1: " " 1.828, 24° Thorpe. J. 37, 348. Antimony oxychloride	1868.1.		2.88, 13°, s	O Cl	de	dichlori	Vanadyl
" " 1.836, 17°.5 Roscoe. P.T. 1: " " 1.828, 24° Thorpe. J. 37, 348. " " 1.854, 18° L'Hôte. C. F. 1151. Cooke. Proc. Acad. 1877. Bismuth oxychloride Sb. O. Cl. 5.014, s. Cooke. Proc. Acad. 1877. Bismuth oxychloride Si O. Cl. 1.656, 0° Cooke. Proc. Acad. 1877. Bismuth oxychloride Soc. Cl. 1.666, 0° Cooke. Proc. Acad. 1877. Bismuth oxychloride Soc. Cl. 1.666, 0° Cooke. Proc. Acad. 1877. Bismuth oxychloride Soc. Cl. 1.666, 0° Cooke. Proc. Acad. 1877. Bismuth oxychloride Soc. Cl. 1.666, 0° Cooke. Proc. Acad. 1877. Bismuth oxychloride Soc. Cl. 1.666, 0° Cooke. Proc. Acad. 1877. Bismuth oxychloride Soc. Cl. 1.665, 0° Cooke. Proc. Acad. 1877. Muir, Hoffm and Robbs. Soc. Soc. Soc. Soc. Soc. Soc. Soc. Soc.		Schafarik. J.			ide		
" " 1.828, 24° 1.86534, 0° 37, 348. L'Hôte. C. F. 1151. Cooke. Proc. Acad. 1877. Muir, Hoffm and Robbs. S. 39, 37. Disulphuryl chloride So. Cl. So. Cl. 1.675, 0° Wurtz. J. 1.801, 180. So. Cl. 1.666, 12° Thorpe. J. 37, 358. L'Hôte. C. F. 1151. Cooke. Proc. Acad. 1877. Muir, Hoffm and Robbs. S. 39, 37. So. Cl. 1.675, 0° Wurtz. J. 1.99, 255. Thorpe. J. 37, 354. L'Hôte. C. F. 1151. Cooke. Proc. Acad. 1877. Muir, Hoffm and Robbs. S. 39, 37. Ogier. Ber. 18 1.676, 0° Wurtz. J. 1.99, 255. Thorpe. J. 39, 255. Thorpe. J. 37, 354. Nasin. Bei. So. Cl. 1.666, 12° Behrends. J. 38 1.70814, 0° 1.70814, 0° 1.70814, 0° 1.70814, 0° 1.70814, 0° 1.818, 16° H. Rose. P. 291. Nasin. Bei. So. Chlorosulphonic acid So. O. Cl. 1.78474, 10° 1.819, 18			1.841, 14°.5				
" " 1.86534, 0° Thorpe. J. 37, 348. 37, 348. 1.854, 18°	1868,1.	Roscoe. P.T.18	1.836, 17°.5				
" " 1.63073,1270.19	0.6	ı Mana T					
## ## ## ## ## ## ## ## ## ## ## ## ##	. C. S.	Inorpe. J.	1.00004, 0				
Antimony oxychloride	R 101	L'HAta C R	1.05075,727 .15				
Bismuth oxychloride	•	1151.	·		lorido	- a-vah	A ntimon
Daubreite	•	Acad 1877.			1		
Sulphur oxychloride	J. С. Г922.	and Robbs. S. 89, 87.					
" " " 1.67673, 0° 1.52143, 78°.8 1.6554, 10°.4 Nasini. Bei. 99, 255. Thorpe. J. 1.65243, 78°.8 1.6554, 10°.4 Nasini. Bei. 90, 255. Sulphuryl chloride	. R. 82,	Domeyko. C.	6.4—6.5	O ₆ Cl ₃)	Daubreite
" " 1.67673, 0° 37, 354. Nasini. Bei. Sulphuryl chloride S O ₂ Cl ₂ 1.661, 21° Behrends. J. 8 Thorpe. J. 1.70814, 0° 1.56025, 69°.95 Thorpe. J. 1.660, 21° S O ₅ Cl ₂ 1.818, 16° H. Rose. P. 291. Rosenstiehl. H.		Wurtz. J. I	1.656, 0° 1.675, 0°	O Cl ₄ O Cl ₂	ride	oxychlo: chloride	Sulphur of Thionyl of
" " 1.52143, 78°.8 37, 354. Nasini. Bei. 9 Solphuryl chloride	C S		1 67678 00	"		"	**
" " 1.6554, 10°.4 Nasini. Bei. 5 Solubhuryl chloride Solub		87. 354.	1.52143, 78°.8			66	4.6
Sulphuryl chloride	9, 324.	Nasini. Bei. 9	1.6554, 10°.4				
" " 1.70814, 0° 37, 359.	80, 210.	Behrends. J. 80	1.661, 21°	. Cl.	le	l chloric	Sulphury
1.818, 16° 1.818, 16° 291. 29	. C. S.	Thorpe. J.	1.70814, 0°	7		"	"
1.818, 16° 1.818, 16° 291. 29				"			
" " " 1.819, 18°	[121.	291.	•	J ₆ Cl ₂	1	•	-
" " " " " " " " " " " " " " " " " " "	J. 14,						
""" 1.60310,189°.59 37, 360. Chlorosulphonic acid SO2. O H. Cl 1.78474, 0° Thorpe. J. """ 1.54874, 155°.8 37, 358. 1.7633, 14° Nasini. Bei. Selenyl chloride 2.44 Weber. J. 15 """ 2.443, 18° Michaelis. Z. 460. Thomson. In 1827, 159. """ 1.71, 21° Walter. Annotes """ 66, 387.	~ ~		1.819, 180				
Chlorosulphonic acid S O ₂ . O H. Cl 1.78474, 0° } Thorpe. J. 1.54874, 155° 8 37, 358. Nasini. Bei. Selenyl chloride Se O Cl 2.44 Weber. J. 1.24 Weber. J. 1.243, 13° Michaelis. Z. 460. Chromyl dichloride Cr O ₂ Cl 1.9184, 10° Homson. I 1827, 159. Walter. Ann 66, 387.	. C. S.		1.85846, 0				
" " " " " " " " " " " " " " " " " " "	C 9) 01, 000.	1.00010,189*.09			nhania	Chlorogui
Chromyl dichloride Cr O ₂ Cl ₂	, C. G.	27 858	1.70474, 0	g. (/ II. ()	4614L	phonic	4.
Chromyl dichloride Cr O ₂ Cl ₂	9, 824.	Nasini. Bei.	1.7688. 140	"	"		"
Chromyl dichloride Cr O ₂ Cl ₂	2, 91.	Weber. J. 12	2.44	0 Cl		hloride .	Selenyl cl
" " 1827, 159. Walter. Ann 66. 387.	ź. C. 18,	Michaelis. Z.	2.443, 185				••
1 66, 387.	Р. Т.	Thomson. P 1827, 159.			ide	dichlor	Chromyl
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	•	Walter. Ann 66, 387.	1.71, 21°				
" " 1.92, 25° Thorpe. J. 21	1, 226.	Thorpe. J. 21 Ramsay. J. C.	1.92, 25°	"		"	u
463.). S. 85,			"			
		Thorpe. J.					
" " 1.75780, 115°.9 } 87, 872.	[116.	87, 872.	1.75780, 115°.9				
Phosphorus sulphochloride P S Cl ₃ 1.631, 22° Baudrimont.	J. 14,	87, 872. Baudrimont.		5 Ulg	ochioride	us suipi	Phosphor
" " 1.66820, 0° } Thorpe. J. 1.6599,125°.12 } Thorpe. J. 1.45599,125°.12	. U. B.	(Inorpe. J.				"	"

IV. INORGANIC BROMIDES.

1st. Simple Bromides.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Lithium bromide	Li Br	8.102, 17°	Clarke. A. J. S. (8),
Sodium bromide	Na Br	2.952	18, 298. Schiff. A. C. P. 108,
tt tt	ec	8.079, 17°.5 8.011	Z1. Kremers. J. 10, 67. Tschermak. S. W.
e e	"	3.198, 17°.8	A. 45, 608. Favre and Valson. C. R. 77, 579.
" Fused	"	2.448	Quincke. P. A. 188, 141.
u u	Na Br. 4 H ₂ O	2.84	Playfair and Joule. M. C. S. 2, 401.
16 16	. "	2.165, 16°.8	Favre and Valson. C. R. 77, 579.
Potassium bromide	l	2.415	Karsten. Schw. J. 65, 894.
tt 4t	"	2.672	Playfair and Joule. M. C. S. 2, 401.
66 66	"	2.690, m. of 6_	226.
" Fused	"	2.712, 12°.7 2.199	Beamer. F. W. C. Quincke. P. A. 188, 141.
" " Not pressed	"	2.505 2.704 } 18°	Spring. Ber. 16,2724.
" "Twice " Rubidium bromide	Rb Br	2.700) 3.858	Setterberg. Of. Ak. St. 1882, 6, 23.
Czeium bromideAmmonium bromide	Cs BrAm Br	4.468 2.879	" " " " " " Schröder. P. A. 106,
11 11			226. Bödeker. B. D. Z.
" " Cryst " Sublimed	"		Eder. Ber. 14, 511.
Silver bromide		6.8584	Stas. Mem. Acad. Belg. 48, 1. Karsten. Schw. J.
ii ii	"	6.425, m. of 7	65, 894.
44 44	· .	6.215, 17°	226. Clarke. A. J. S. (3),
	"	6.245, 0° }	18, 294. Rodwell. P. T. 1882,
" " Molten		5.595, 427° _ } 6.2	1125. Quincke. P. A. 188, 141.
Thallium bromide. Precip " After fusion.	"	7.540, 21°.7 7.557, 17°.8	Keck. F. W. C.
Zinc bromideCadmium bromide	Zn Br ₂	8.643, 10° 4.712 4.910 } 14° {	Bödeker. B. D. Z. Bödeker and Gie- secke. B. D. Z.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Cadmium bromide Mercurous bromide	Cd Br ₂ Hg Br	4.794, 19°.9 7.807	Knight. F. W. C. Karsten. Schw. J.
			65, 894 .
Mercuric bromide	Hg Br	5.9202 5.7298, 16° _ }	ti tt
"	44	5.7461. 189 . (Beamer. F. W. C.
Calcium bromide	Ca Br ₂	3.82, 110	Bödeker. B. D. Z.
Strontium bromide	Sr Br ₂	8.962, 12° 3.985, 20°.5	Favre and Valson.
" "		·	C. R. 77, 579.
Barium bromide	Sr Br ₂ . 6 H ₂ O Ba Br ₂	4.28	Schiff. A. C. P. 108,
., ,,	Ra Br. 2 H. O	8.690	21.
" Cryst	Ba Br ₂ 2 H ₂ O	8.710	Schnäden Des 1079
" Pulv	"	8.588 }	Schröder. Dm. 1878.
Lead bromide		8.679, 24°.3 6.6302	Harper. F. W. C. Karsten, Schw. J.
Lead bromide			65, 394.
" " T		6.611, 17°.5	Kremers. J. 5, 397. Keck. F. W. C.
" " Ppt Cuprous bromide		6.572, 19°.2 4.72, 12°	Reck. F. W. C. Bödeker. B. D. Z.
Boron tribromide	B Br ₈	2.69, 1	Wöhler and Deville.
Aluminum bromide	_	l	J. 10, 94. Deville and Troost. J. 12, 26.
Didymium bromide	Di Br ₃ . 6 H ₂ O	$\left\{ \begin{array}{c} 2.803 \\ 2.817 \end{array} \right\}$ 20°.7_	Cleve. U. N. A. 1885.
Samarium bromide	Sn Br ₃ . 6 H ₂ O	2.969 2.978 21°.8 _	
Silicon tetrabromide			Pierre. Ann. (8),
Titanium tetrabromide	Ti Br.	2.6	20, 28. Duppa. J. 9, 365.
Tin dibromide	Ti Br ₄	5.117, 17°	Raymann and Preis. A. C. P. 228, 328.
Tin tetrabromide	Sn Br4	3.322, 89°, 1	Bödeker. B. D. Z.
" "		8.349, 85°	Raymann and Preis. A. C. P. 223, 323.
Phosphorus tribromide		2.92489, 00	Pierre. Ann. (3), 20, 11.
"	"	2.92311, 0°	Thorpe. J. C. S.
" "	l "	2.49541, 1720.9	
Arsenic tribromide Antimony tribromide	Sb Br.	8.66, 100	Bodeker. B. D. Z. Kopp. A. C. P. 95,
	ľ		1 852.
	1	3.473, 96°, 1	29, 179.
	1	4.148, 28°, s	Cooke. Proc. Am. Acad. 1877.
Bismuth tribromide	Bi Br.	5.6041	Bödeker. B. D. Z.
	"	5.4, 200	Muir, Hoffmeister, and Robbs. J. C.
Sulphur bromide	S, Br,	2.628, 40	S. 89, 87. Hannay. J. C. S.
Selenium bromide	Se ₂ Br ₂	8.604, 15°	
			128, 827.

2d. Double, Oxy-, and Sulpho-Bromides.

١

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Ammonium zinc bromide Barium cadmium bromide	Ba Cd Br ₄ . 4 H ₂ O	2.625, 18° 8.687 8.665, 24°	Bödeker. B. D. Z. Topsoë. C. C. 4, 76. Harper. F. W. C.
Hydrogen_mercury bro- mide. Potassium mercury bro-	H Hg Br ₃ . 4 H ₂ O K Hg Br ₃	8.17, fused 4.410, m. of 8_	Thomsen. J. P. C. (2), 11, 288. Beamer. F. W. C.
mide.	K Hg Br ₂ . H ₂ O	3.865, 22°	46 46
Potassium stannibromide_ Ammonium stannibro- mide.	K, Sn Br. Am, Sn Br.	8.788 8.505	Topsoë. C. C. 4, 76.
Sodium platinbromide Potassium platinbromide_ 	Na, Pt Br. 6 H, O K, Pt Br.	8.828 4.68, 14° 4.541	" Bödeker. B. D. Z. Topsoë. C. C. 4, 76.
Ammonium platinbromide Magnesium platinbromide	Am, Pt Br ₆ Mg Pt Br ₆ . 12 H ₂ O.	4.200 2.802	:
Zinc platinbromide Strontium platinbromide_ Barium platinbromide		2.877 2.928 8.718	
Lead platinbromide Manganese platinbromide Nickel platinbromide	Pb Pt Br ₆ Mn Pt Br ₆ , 12 H ₆ O ₋	6.025 2.759 8.715	it it it it
Cobalt platinbromide	Co Pt Br _g . 12 H ₂ O	2.762 }	Two samples. Top- soë. C. C. 4, 76
Didymium auribromide '' Samarium auribromide	"	8.811 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Cleve. U.N.A.1885.
" "	"	8.898 } = 1 12 =	
Nitrosyl tribromide Phosphoryl tribromide Vanadyl tribromide	N O Br _s P O Br _s	2.628, 22° .6 2.822	Landolt. J. 13, 104. Ritter. J. 8, 301.
Bismuth oxybromide	"	2.9825, 14°.5	Roscoe. A. C. P. 8 Supp. Bd. 95. Muir, Hoffmeister,
-			and Robbs. J. C. S. 89, 87.
Phosphorus sulphobro- mide.	PS Br ₃	2.85, 17°	Michaelis. A. C. P. 164, 9. Mac Ivor. C. N. 29,
	P S Br ₃ . H ₂ O		116. Michaelis. A. C. P.
" " " Arsenic sulphobromide	P. S. Br.	2.2621, 17°	164, 9. " Hannay. J. C. S. 88,
and supposite and			291.

V. INORGANIC IODIDES.

1st. Simple Iodides.

	1		
NAME.	Formula.	Sp. GRAVITY.	AUTHORITY.
Lithium iodide	Li I	8.485, 28°	Clarke. A. J. S. (3), 18, 293.
Sodium iodide	Na I	8.450	Filhol. Ann. (8), 21, 415.
" "	"	8.654, 18°.2	Favre and Valson. C. R. 77, 579.
Potassium iodide	K I		Boullay. Ann. (2),
" " <u></u>	66	3.104 <i>§</i> 2.9084 <i>§</i>	43, 266. Karsten. Schw. J.
"	66	8.059	65, 894.
	66	8.056	M. C. S. 2, 401. Filhol. Ann. (8),
£\$ 66			21, 415.
		2.850	Schiff. A. C. P. 108, 21.
(("	2.970 8.081)	Buignet. J. 14, 15. Schröder. P. A. 106,
"	"	8.077}	226.
" "	"	2.497 at the	Braun. J. C. S. (2),
" " Fused	"	melting p't. 2.497	18, 81. Quincke. P. A. 188, 141.
" Not press'd	"	8.012, 20°)	
" "Once "	"	8.110, 220 }	Spring. Ber. 16,
" "Twice" Potassium triiodide	" K I ₃	8.112, 20°) 8.498	2724. Johnson. C. N. 84,
D1.31 1413.	Rb I		25 6.
Rubidium iodide			Setterberg. Of. Ak. St. 1882, 6, 28.
Cesium iodide	Cs I	4.587	" "
Ammonium iodide	Am I	2.498, 110	Bödeker. B. D. Z. Schröder. Dm. 1878.
Ammonium triiodide	Am I ₃	8.749	Johnson. C. N. 37,
Iodammonium iodide	N H ₈ I ₂	2.46, 15°	246. Seamon. C. N. 44, 189.
Silver iodide	Ag I	5.614	Boullay. Ann. (2), 43, 266.
" "	"	5.0262	Karsten. Schw. J.
	"	5.500	65, 894. Filhol. Ann. (8), 21.
" "	"	5.85	415. Schiff. A. C. P. 108,
66 66	"	5.650 }	21. Schröder. P. A. 106,
" "	"	5.718}	226.
" " Oryst	"	5.669, 14°	Damour. Quoted, C. R. 64, 814.

Name.				FORMULA.	Sp. Gravity.	AUTHOBITY.		
Silver i	iodid	e. C	ryst.		Ag	[5.470 5.544 } 0° }	H.St. Claire Deville.
	44	Aftı	er fu	sion	"		5.687	P. A. 182, 807. C.
46	"	Pre	cipit	ated	66		5.807, 0° }	R. 64, 825.
66	44	Ppt o	eom p	ressed.	"		5.569	Fizeau.
**	"	Afte	r rep.	fusion.	"		5.675, 0°]	
"	"			fusion.	"		5.660, 0°	
.6 66	"			in H I.	"		5.812, 0°	D 1 11 D 65 1000
11	"			fusion.	"		5.681, 0° }	Rodwell. P. T. 1882,
"	"			ensity.	"		5.771, 163° -	1120.
"	"			ensity.	"		5.678, 5.522, 527° _	
14	"				46		5.64—5.67	Breithaupt. Dana's
	44		•		**			Min.
"	•		66				5.504	Domeyko. Dana's Min.
"	66		"		"		5.707	Damour. J. 7, 870.
46	"		"		"		5.866	J. L. Smith. J.7,870.
**	"		**		"		5.677, 14°	Damour. Quoted, C. R. 64, 814.
Thalliu	m ic	dide		ecip st			7.072, 15°.5 7.0975, 14°.7	Twitchell. F. W. C.
Zinc io	dide					9	4.696, 109	Bödeker and Gie-
"	**				64		4 000 140 0	secke. B. D. Z. Kebler. F. W. C.
Cadmit		aid.					4.666, 14°.2 5.548, m. of 8)	Kebler. A. C. J. 5.
CRGTIL	ши	uiae	3. U V	ariety.	Ou i		5.622, m. of 8	285. Six samples,
		41		"	"		5.660, m. of 7	prepared by differ-
44		"		"	"			ent methods. Tem-
**		"		"	"		5.610, m. of 8	peratures of weigh-
**		"		"	"		5.675, m. of 4	ing, 10°.5 to 20°.4.
46		"		"	"		5.701, m. of 4.	Twitchell. A. C. J. 5, 235.
"		46	β₹	ariety.	"		4.576, 10°	Bödeker. B. D. Z.
11		44		"	"		4.612, m. of 7	Kebler. A. C. J. 5, 285. Two lots,
"		"		"	"		4.596, m. of 7 }	14° to 15°.4.
"		**		"	"		4.688, m. of 5_	Twitchell. A. C. J. 5, 285.
Mercu	rous	iodio	le		Hg	I	7.75	Boullay. Ann. (2), 48, 266.
44		"			"		7.6445	Karsten. Schw. J. 65, 894.
Mercu	ric ic	dide			Hg	I ₂	6.82	Boullay. Ann. (2),
44		46			"		6.2009	43, 266. Karsten. Schw. J.
44		"			"		6.250	65, 894. Filhol. Ann. (8),
"		"			"		5.91	21, 415. Schiff. A. C. P. 108,
46		"			"		6.27	21. Tschermak. S. W.
"		46	Red	1	"		6.281, m. of 7	A. 45, 603. Owens. F. W. C.
44			11		"			
66		"	"		"		6.8004	Dadmall and Plan
46		66	"		**		6.276, 126°	Rodwell and Elder. P. T. 1882, 1143.
44			Ye	llow	- "		6.225, 1260	1 . 1 . 1002, 1140.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Mercuric iodide. Solid	Hg I ₂	6.179, 200° }	Rodwell and Elder.
" Molten -	Sr I,	5.286, 200°)	P. T. 1882, 1143.
Strontium iodide Barium iodide	Ba I,	4.917	Bödeker. B. D. Z. Filhol. Ann. (3), 21, 415.
"	Ba I, 7 H, 0	2.678, 200.8	Leonard. F. W. C.
Lead iodide	Pb 1,	6.11	Boullay. Ann. (2), 43, 266.
" "	14	6.0212	Karsten. Schw. J. 65, 894.
(4 (4	"	6.884	Filhol. Ann. (8), 21, 415.
" "	"	6.07	Schiff. A. C. P. 108, 21.
" "	"	6.207	Schröder. P. A. 107, 118.
" "	"		Rodwell. P. T. 1882.
" " Molten		5.6247, 388° \$	1144.
Iron iodide	Fe I ₂ . 4 H ₂ O	2.873, 12°	Bödeker. B. D. Z.
Cuprous iodide	Cu 1	4.410	Schiff. A. C. P. 108, 21.
	"	5.6986	
Aluminum iodide	Al I ₈	2.68	Deville and Troost. J. 12, 26.
Tin tetriodide	Sn I,	4.696, 110	Bödeker. B. D. Z.
Arsenic triiodide	As I.	4.39, 180	
" "	." <u> </u>	4.374	
Arsenic pentiodide	Ţ	8.98, approx	194.
Antimony trilodide		5.01, 10°	Bödeker. B. D. Z.
" " Warranal	"	4.676	Schröder. Dm. 1873.
"Hexagonal	"	4.848, 24°, m. of 5.	
" Monoclinic	"	4.768, 22°, m. of 2.	Cooke. Proc. Am. Acad. 1877.
Bismuth triiodide	Bi I	5.652, 100	Bödeker. B. D. Z.
"	"	5.544, 18°.4	Kebler. A. C. J. 5, 235.
u u	"	5.64 5.65 20° {	Gott and Muir. J. C. S. 53, 137.

2d. Double and Oxy-Iodides.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Potassium cadmium iodide Potassium mercury iodide "" Silver mercury iodide	K, Cd I,. 2 H, O K, Hg, I, 8 H, O 2 Ag I. Hg I,	4 954 999	Leonard. F. W. C. Owens. F. W. C. Bellati and Roman-
Copper mercury iodide	.	5.9802, 0° 6.0956, 0°	ese. Bei. 5, 179. "" "" "Heighway. F. W. C.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Silver copper iodide	•	5.7802	1160.
	2 Cu I. 2 Ag I		
" "	2 Cu I. 8 Ag I		"
" " " …	2 Cu I. 4 Ag I	5.7064	
	2 Cu I. 12 Ag I	5.6950	
Silver lead iodide		5.928, 0°	
Sodium platiniodide	Na, Pt I. 6 H, O	8.707	Topsoë. C. C. 4, 76.
Potassium platiniodide	K ₂ Pt I ₆	5.154 5.198 } 12°	Bödeker. B. D. Z.
" "	46	5.031	Topsoë. C. C. 4, 76.
Ammonium platiniodide	Am ₂ Pt I ₆	4.610	
Magnesium platiniodide	Mg Pt I. 9 H. U	8.458	** **
Zinc platiniodide	Zn Pt I., 9 H. O	8.689	44 44
Manganese platiniodide	Mn Pt I. 9 H. O	3.604	" "
Iron platiniodide	Fe Pt I. 9 H. O	8.455	
Nickel platiniodide	Ni Pt I. 6 H. O		"
" "	Ni Pt I. 9 H. O	3.549	"
Cobalt platiniodide	Co Pt I. 9 H. O	8.618	"
" "	Co Pt I. 12 H. O	8.048	tt te
Schwartzembergite	Pb, I, O,	6.8	Liebe. J. 20, 1008.
"	"""	5.7	Schwartzem berg.
j			Dana's Min.
Lead oxyiodide	Pb ₁₁ I ₄ O ₁₀	7.81	Cross and Sugiura. J. C. S. 88, 406.

VI. CHLOROBROMIDES, CHLORIODIDES, AND BROMIODIDES.

Name.	Formula.	Sp. Gravity.	Authority.
Embolite	Ag (Cl Br)	5.81—5.48	Domeyko. Dana's Min.
		5.806	
" (Cl ₃ Br ₂)	"	5.58	Yorke. J. C. S. 4, 150.
Lead chlorobromide Silicon chlorobromide	Pb Cl Br Si Cl Br.	5.741 2.482	Iles. A. C. J. 8, 52. Reynolds. C. N. 55,
Tin chlorobromide	Sn Cl Br.		228. Reis and Raymann.
Phosphorus oxychlorobro-	P O Cl ₂ Br	2.059, 0°	J. C. S. 44, 424. Menschutkin. J. P.
mide. . " "	44	2.12065, 0° 1.88844, 187°.6	C. 98, 485. Thorpe. J. C. S.
Silver chlorobromiodide *-	Ag I. 2Ag Br. 2Ag Cl	6.152, 0° } 5.5118, 388° }	Rodwell. P.T. 1882, 1140.
" (Iodobromite)			Lasaulx. J. C. S. 86, 866.
" "	Ag I. Ag Br. Ag Cl_	6.1197, 0° } 5.5678, 881° }	Rodwell. P. T. 1882,

^{*}Rodwell's chlorobromiodides may be regarded as alloys. For each of these the higher temperature is the melting point.

Name.		Name. Formula.		Sp. Gravity.	AUTHORITY.	
Silver el	alorobrom "	niodide	2 Ag I. Ag Br. Ag Cl	6.508, 0° } 5.6971, 826 - }	Rodwell. 1140.	P. T. 1882,
"	"		8 Ag I. Ag Br. Ag C	5.9717, 0° }	"	"
11 11	"		4 Ag I. Ag Br. Ag Cl	5.907, 0° } 5.680, 880° _ }	"	"

VII. AMMONIO-CHLORIDES, AMMONIO-BROMIDES, AMMONIO-IODIDES.

Name.	Formula.	Sp. Gravity.	Authority.
Cadmammonium chloride	N, H, Cd. Cl.	2.682	Topsoë. C. C. 4, 76.
Cadmammonium bromide Dimercurosammonium chloride.	N. H. Cd. Br. N. H. Hg'. Cl		Playfair and Joule. M. C. S. 2, 401.
Dimercurammonium chlo- ride.	N ₂ H ₄ Hg" ₂ . Cl ₂	5.700	
Tetramercurammonium chloride.	N ₂ Hg'' ₄ Cl ₂ . 2 H ₂ O	7.176, m. of 2_	16 16
Cuprammonium chloride.		2.194	
Copper ammonio-chloride		1.672	
Nickel ammonio-bromide	Ni Br. 6 N H	1.887	Topsoë. C. C. 4, 76.
Nickel ammonio-iodide Purpureo-cobalt hexchlo- ride.	Ni I ₃ . 6 N H ₃ Co ₂ (N H ₃) ₁₀ . Cl ₆	2.101 1.802, 28°	Gibbs and Genth. A. J. S. (2), 28, 234.
1140.	"	1.802 } 150 {	Jörgensen. J. P. C.
	"		(2), 19, 49.
Purpureo-cobalt hexbro- mide.	Co ₂ (N H ₃); Br ₆	2.488, 17°.8	`
Purpureo-cobalt chloro- bromide.	Co ₂ (N H ₃) ₁₀ . Cl ₄ Br ₂		
Purpureo-cobalt bromo- chloride. " "	Co ₂ (N H ₃) ₁₀ . Cl ₂ Br ₄	2.161 2.165 17°	44 44
Luteo-cobalt hexchloride.	Co ₂ (N H ₃) ₁₂ . Cl ₆	1.7016, 200	Gibbs and Genth. A. J. S. (2), 23, 819.
Purpureo-chromium hex- chloride.	Cr ₂ (N H ₃) ₁₀ . Cl ₆	1.687, 15°.5	Jörgensen. J. P. C. (2), 20, 105.
Purpureo-chromium chlo- robromide.	Cr ₂ (N H ₃) ₁₀ . Cl ₂ Br ₄ -	2.075, 18°.8	(1)
Purpureo-rhodium hex-	Rh ₂ (N H ₃) ₁₀ . Cl ₄		Jörgensen. J. P. C. (2), 27, 442.
	Rh ₂ (N H ₃) ₁₀ . Br ₆	$\left[\begin{array}{c} 2.648 \\ 2.650 \end{array} \right] 17^{\circ}.5$	Jörgensen. J. P. C. (2), 27, 464.
Purpureo-rhodium hexio-dide. "	Rh ₂ (N H ₃) ₁₀ . I ₆	8.110, 14°.8 8.120, 16°.2	Jörgensen. J. P. C. (2), 27, 471.

VIII. INORGANIC OXIDES.

1st. Simple Oxides.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.	
Water*	н, о	1.0000, 4°.07	Standard of comparison.	
11	"	.999889, 0°	H. O at 8°.78=1.0. Muncke. Mém.	
"	"	.988488, 50° .958787, 100° _	Acad. St. Peters- burg, 1881.	
"	"	.999887, 0° }	Stampfer. H. O at 8°.75=1.0°. P.	
11	"	.992247, 40° } .999862, 0°	A. 21, 75. Despretz. Ann. (2)	
44	"	.99988, 0°	70, 5.	
"	"	.95908, 95°.8 -		
	16	.98078, 180°.8 .98128, 181°	Mendelejeff. A. C.	
"	66	.98085, 181°.1 .90788 90811 } 156°.7	11	
16	"	.90715, 157°]	
"	"	.95892, 100°	Buff. H ₂ Oat 0°=1.0 A. C. P. 4th Supp	
"	"	.999866, 0°	129.	
"	11	1.000000, 4°.07	Rossetti. Ann. (4)	
14		.99826. 20° .99575, 80°	given for every	
"	"	.99238, 40°	to 50°.	
"	"	98885, 50° 99881, 20°	Bedson and Wil liams. Ber. 14	
"		0540 1000 1	2550.	
"	"	9543, 100°.1	Schiff. Ber. 14, 2768 Schiff. Ber. 14, 2766	
Ice	"	9587 } 100 .5 91812, — 1°	Brunner. H. O a	
11		.91912, —10° .92025, —20°	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
"	66	.9184, m. of 2		
11	44	.9175	Dufour. P. M. (4) 5, 20.	
"		.918}		
"		.91674	Bunsen. Ann. (4) 28, 65.	

^{*} For water and ice the table makes no pretense at completeness. Only a few important values are given out of a vast number.
† See Playfair and Joule for older values.

	\sim				,	
1	IMAR	.		FORMULA.	Sp. Gravity.	Аптновіту.
Ice			H ₂ ()	.91686, 0°	Petterson. "Properties of water and ice."
Hydrogen	dioxi	de	Н, (0,	1.452	Thénard. Watts' Dict.
Lithium o	xide		Li,	0	2.102, 15°	Brauner and Watts. P. M. (5), 11, 60.
Sodium ox	cide _		Na ₂	0	2.805	Karsten. Schw. J. 65, 894.
Potassium Silver mor	oxid noxid	e e	K, (Ag,	O	2.656 7.148, 16°.6	Herapath. P. M. 64, 821.
"	"		16		7.250	Boullay. Ann. (2), 43, 266.
••	44		££		8.2558	Karsten. Schw. J. 65, 894.
"	"		"	*	7.147	Playfair and Joule. M. C. S. 8, 84.
"	"		"		7.521, m. of 2_	Schröder. Ber. 9, 1888.
Silver dior Glucinum)	Ag. Gi C	O,	5.474 (impure) 2.967	Mahla. J. 5, 424. Ekeberg. P. M. (1),
"	"		"		8.02 8.06 cryst	14, 846. Ebelmen. J. 4, 15.
"	"		"		3.083, powder	,
"	"		**		8.09 "	
46	66		46		8.096, 12°, ppt.	H. Rose. P. A.
"	""		"		3.027, 10°, ig- nited.	74, 433.
44	**		66		3.021,9°, cryst.	j
44	"		**		8.016	Nilson and Pettersson. C. R. 91, 232.
66	"		"		3.18, 14°, cryst.	Grandeau. Ann. (6), 8, 198.
	m oxi	de	Mg	0	8.674, periclase	Damour. J. 2, 782.
- 44	•		"		8.750 "	Scacchi. J. P. C. 28, 486.
"	60		"		8.642, 120 "	Cossa. Ber. 10, 1747.
41					3.200	Karsten. Schw. J. 65, 894.
41	60		"		8.644}	H. Rose. P. A. 74,
46 66	£ ("		8.650	487.
"	6		;;		3.686, cryst 3.42, amor-	Ebelmen. J. 4, 15, Brügelmann. Ber.
"			"		phous.	18, 1741.
					8.1932,0°, cal- cined at 850°	
44	61		"		8.2014, 0°, cal- cined at 440°	
"	61		"		8.2482, 0°, calcined at low redness.	Ditte. J. C. S. (2), 9, 870.
"	6	·	"		8.5699,0°, cal. at bright redness.	
u	•		"		2.74)	From three different
66	C		"		8.066 }	sources. Beckurts.
44	•		"		8.69)	Ber. 14, 2068.

Name.				FORMULA.		SP. GRAVITY.	AUTHORITY.
Zinc	oxid			Zn O		5.482	Mohs. See Böttger.
							Boullay. Ann. (2), 48, 266.
"	"			"		5.7844	Karsten. Schw. J. 65, 894.
£ £	"			"		5.6067 }	Brooks. P. A. 74,
"	**			"		5.6570 } 5.5298, cryst	439. W. and T. J. Hera-
						0.0200, 0.3.00. 2	path. J. C. S. 1, 42.
"	"			44		5.612	Filhol. Ann. (8), 21, 415.
u	"			"		5.782,15°, cryst	
"	66			"		5.47, amor- phous.	Brügelmann. Ber. 18, 1741.
"	"		ite	"		5.684	Blake. J. 18, 752.
"	. "		f. cryst	"		5.55.6	Gorgeu. B. S. C. 47, 146.
•	ium		3			8.188, 16°.5	Herapath. P. M. 64, 821.
"		"		"		6.9502	Karsten. Schw. J. 65, 894.
"		"	Cryst	" "		8.1108	Werther. J. 5, 890.
Mercu	irous		.6)	10.69, 16°.5	Herapath. P. M. 64, 821.
"		"		"		8.9508	Karsten. Schw. J. 65, 394.
Mercu	ıric (oxide		Hg O		11.074, 17°.5	Herapath. P. M. 64,
"		"		;;		11.085, 18°.8 \\ 11.0 \	821. Boullay. Ann. (2),
44		"				11.1909	48, 266. Karsten. Schw. J.
"		61		, ,		11.29	65, 894.
		"		"	•••••		Leroyer and Dumas. See Böttger.
						11.344	Playfair and Joule. M. C. S. 8, 84.
"				"		11.136	Playfair and Joule. J. C. S. 1, 137.
		xide.	Lime	Ca O		3.179	Boullay. Ann. (2), 48, 266.
"		46	"	"		3.16105	Karsten. Schw. J. 65, 894.
"		"	"	"		3.180	Filhol. Ann. (8), 21, 415.
**		"	"	"		8.251, cryst	Brügelmann. P. A. (2), 4, 282.
"		44	"	"		8.82 "	Levallois and Meu- nier. C. R. 90,
Stron	tium	oxid	le	Sr O		8.9321	1566. Karsten. Schw. J.
60		46		"		4.611	65, 894. Filhol. Ann. (8), 21,
4	ı	"		"		4.750, cryst	415. Brügelmann. P. A.
41	ı	46		"		4.51, amor- phous.	(2), 4, 282. Brügelmann. Ber. 18, 1741.

					:		
	NAM	CE.	FORMULA.		Sp. GRAVITY.	Authority.	
Barium	oxide		Ba C)	4.0	Fourcroy. See Bött- ger.	
"	44		"		4.2588	Tünnermann. See Böttger.	
"	"		"		4.7822	Karsten. Schw. J. 65, 894.	
"	"		"		4.829}	Playfair and Joule. M. C. S. 8, 84.	
"	44		"		5.456	Filhol. Ann. (8), 21, 415.	
"	"		"		5.722, cryst	Brügelmann. P. A. (2), 4, 282.	
"	"		"		5.82 "	Brügelmann. Ber. 18, 1741.	
Barium	dioxid	le	l	9	4.958	Playfair and Joule. M. C. S. 8, 84.	
Boron t		e	B, O	,	1.803	Davy. See Böttger.	
"	"		"		1.88	Berzelius. " Breithaupt. "	
"	ш		"		1.825, 21°.6	Favre and Valson. C. R. 77, 579.	
44	"		"		1.8766, 0°	0. 25. 77, 070.	
46	"		44		1.8476, 120	Ditte. C. N. 36, 287.	
11	**		"		1.6988, 80°)		
"	"		"		1.848, 14°.4 }	Bedson and Williams. Ber. 14,	
**	"	Fused	"		1.75	Quincke. P. A. 185,	
Alumin	um tri	oxide	A1, 0) ₃	4.152, 4°	642. Royer and Dumas. Quoted by Rose, P. A. 47, 429.	
"					8.944)	(Mohs and Breit-	
"	-		"		4.004	haupt. Quoted	
"	•		**		4.154	by Rose. Filhol. Ann. (8),	
"			"		8.928, cryst	21, 415. Ebelmen. J. 414.	
**	4	("		8.870) Artifi-)	
"	4	٠	"		8.899 cial.		
"		("		8.750 (Heated		
**	4	١	"		9 705 (in wind	H. Rose. P. A.	
"	•	٠	"		8.999, ignited in porcelain	74, 429.	
16	ı	•	44		furnace. 4.0067, 14°,	{	
					powdered.	Caba@aataal B A	
"	4		46		8.989 \ 13°.5,	Schaffgotsch P. A. 74, 429.	
"	•	'	"		4.008 after ignit'n	17, 760.	
"	4	·	"		8.990	Nilson and Pettersson. C. R. 91, 282.	
44	•	' Artificial cryst.	46		8.98, 14°	Grandeau. Ann.(6), 8, 198.	
**		'Ruby	Al ₂ () <u>, </u>	8.5811	Brisson. P. des C.	
• "	4	'''	ū		8.994, m. of 9_	Schaffgotsch. P. A. 74, 429.	
			,		•	14, 740.	

			7	1
:	Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Aluminun	trioxide. Rub	y Al, O,	3.95, natural)	Williams. C. N. 28,
44	" Sapphir		8.7, artificial \$ 8.562	101. Muschenbroek. See
"			8.9998)	Böttger.
"	11 11	"		Schaffgotsch. P. A. 74, 429.
66		- "	3.98	Williams. C. N. 28,
"		- "	8.990	Nilson and Petters- son. C. R. 91, 282.
16	" Corundu		8.899, 15°.5_)	,
"		- "	8.929 }	Schaffgotsch. P. A.
44	46 66	- "	8.974)	74, 429.
"	" "		4.022 } 3.992, after }	Deville. J. 8, 15.
			ignition	
"	" "	- "	8.979 4.08 15°.5	Church. Geol. Mag.
Scandium	trioxide	-		(2), 2, 820. Cleve. C. R. 89, 420.
"	"	Sc ₂ O ₃	8.864	Nilson. U. R. 91,
Yttrium t	rioxide	Yt, O,	4.842	118. Ekeberg. P. M. 14, 846.
14	"		5.028, 22°	Cleveand Hoeglund. 1878.
44	"	. "	5.046	Nilson and Pettersson. C. R. 91, 282.
Indium tri	oxide	In, O,	7.179	44 44
Lanthanu	m trioxide	In ₂ O ₃ La ₂ O ₃	5.94	
		İ	1	197.
64	"	"		Cleve. B. S. C. 21, 196.
46	. "	"	6.480	Nilson and Petters- son. C. R. 91, 282.
Didymiun "	trioxide	Di ₂ O ₈	6.64 5.825, 14°	Hermann. J. 14, 195.
"	"	"	6.852	Cleve. J. C. S. (2), 18, 840.
"	"	- "	6.950	Nilson and Petters- son. C. R. 91, 282
£6	"		$\left\{\begin{array}{c} 7.177 \\ 7.182 \end{array}\right\}$ 18°.5 _	Cleve. U. N. A. 1885.
Didymiun	pentoxide		5.868, 15°	Brauner. Ber. 15, 113.
Samarium "	trioxide		- 8.883, 15° (Cleve. U. N. A. 1885
Erbium ti	ioxide	Er ₂ O ₈	8.8}	Cleveand Hoeglund
	"	"	8.640	B. S. C. 18, 195. Nilson and Pettersson. C. R. 91, 282.
Ytte-biun	trioxide	Yb, O,	9.175	11 11
Carbon di	oxide. L	C 0,	.9, —20°)	
16	" "	c d,	_ .88, 0° }	Thilorier. Ann. (2)
44	"	"	_1 .6, +80°)	60, 427.

	Name	•		Formula.	SP. GRAVITY.	AUTHORITY.
Carbon	dioxide.	L	co,		.93, 0°]	
66	"	"	1 "		.8825, 6°.4 (Mitchell. B. J. 22,
**	"	"	"		.853, 10°.6	77.
44	"	"	66		.7885, 20°.3_ J	•••
"	44	"	1		.9952, —10°]	
"		"	"		.9710, —5° _ .9471, 0°	
	44	"			.9222, +5° -	
"	61	"	1 "		.8948, 10° }	D'Andreéff. Ann.
"	44	"	ıi		.8635, 15°	(8), 58, 817.
46	46	"			.8267, 20°	
46	44	"	"		.7881, 25°]	
"	66	"	46		1.057, -34°)	
"	"	"	"		1 016259	
41	"	"	"		.966, —11°.5	
"	"	"	"		.910,10.6-	
**	44	"	"		.907, +1°.8 ₋ }	Cailletet and Ma-
"	"	;;	"		.868, 60.8	thias. C. R. 102,
"	"		1		.840, 110	1202.
"	"	"	111		.788, 15°.9 .726, 22°.2	
"	"	Solid	1		1.188	
"	**	66			1.199	Landolt. Ber 17, 811.
"	"	"	"		1.58—1.6	Dewar. Read at Am. Assoc. in 1884.
Silicon	monoxid	e	Si O		2.893, 4°	Mabery. A. C. J. 9,
Silicon	dioxide.	Artif	Si O	;	2.20, 12°.5, m. of 9.	15. Schaffgotsch. P. A. 68, 147.
44	"		1 "		2.822)	Ullik. Ber. 11, 2125. From ge-
"	"		"		2.824	latinous silica
	**	Quartz			2.658, cryst	ignited. Scheerer.
"	44	Qual tz	"		2.659, ameth'st	
"	66	"	"		2.744 "	[]
44	44	"	"		2.651, smoky	11
46	"	"			2.658 "	D
"	44	"	. "		2.651, rose	Breithaupt. Schw.
44	46	"	. "		2.653 "	J. 68, 411.
"	"	"	- "		2.658 "	1 1
"	"	"	- "		2.618, milky	Beudant. P.A.14.
44	44	" _	- "		2.6354)	474. Extremes
"	"	"	"		2.6541}	of eleven experi- ments.
"	£6	"	- "		2.61	Neumann. P. A. 28, 1.
"	et	" -	- "		2.653, 13°, m. of 5.	Schaffgotsch.* P. A. 68, 147.
46	**	"	_		2.656, cryst	13
"	"		- "	***************************************	2.22, after fu- sion.	Deville. J. 8, 14.
"	"	" _	- "		2.65259, 18°	Miller. P. M. (4), 8, 194.

^{*}See the same paper for many determinations of the specific gravity of opaline minerals.

	Nam	€.	FORMULA.	Sp. Gravity.	AUTHORITY.
Silicon é	lioxida	. Quartz	Si 0,	2.6507, 0°	Dibbits. (Rock crystal.) Bei. 5
11	11	"	"	2.6502, 5°	from sp. g. de
"	"	"	"	2.6498, 10°	terminations b
**		"	44	2.6493, 15°	Steinheil, dat
44	"	"	"	2.6488, 20°	for expansion o
44	"	"	44	2.6484, 2504	water by Reg
44	"	"	"	2.6479, 80°	nault and Kopp
46	66	"	66	2.6460, 50°	and the expan
"	44	"	44	2.6409, 100°	sion of quartz a
					determined by
					Pfaffand Fizeau
"	"	Tridymite	Si O.	2.295)	
**	46		"	$\left\{ \begin{array}{c} 2.295 \\ 2.826 \end{array} \right\}$ 15°–16°	Vom Rath. J. 21
44	66	"	"	2.282, 18°.5	1001.
44	66	"	"	2.811)	, 1001.
"	"	"	"	2.817 Artif.	G. Rose. Ber. 2, 888
"	44	"		2.878	a. 2.000. 201. 2, 000
46	"	"	44	2.80, 16°, "	Hautefeuille. P. M
					(5) 6 78
"	" 1	Asma nnite_	"	2.247	v. Rath. A. J. S. (3) 7, 149.
<u> Pitaniny</u>	n dio v i	de	Ti O,	4.18	Klaproth.
	11 41021	W	46	8.9311, artif	Karsten. Schw. J
"	"		"	4.258, powder	65, 894.
**	46		"	4.255, ignited	Rose.
"	44	Rutile	44	4.249	Mohs. See Böttger
	66	1144110	44	4.244-4.245	Scheerer. P. A. 65
				1.211-1.210	296.
"	**	44	16	4.250)	
**	44	"	"	4.291	Breithaupt.
64	**	"	"	4.420, 00	Kopp.
14	44	"	44	4.56	Müller. J. 5, 847.
46	44	"	66	4.26, artificial.	Ebelmen. J. 4, 16
46	66	"		4.288 "	and J. 12, 14.
"	**	"	"	4.8 "	Hautefeuille. J. 16
					212.
**	66	"	16	4.178-4.278	Lasaulx. J. 86, 1840
66	61	Brookite_	"	4.128)	
44	6.6	"	66	4.181	** **
11		"	"	4.165	H. Rose.
46	44	"	"	4.166	
44	46	"	"	3.952, arkan-	Breithaupt. J. 2,780
4		66	46	site.	Rammalahara T C
	"	,,	"	3.892}	Rammelsberg. J. 2
"	"		"	8.949 }	780.
	"	::		4.03, arkansite 4.083 "	Damour. J. 2, 781
"	"	,,	"	4.085 "	1 <i>)</i>
"	"	,,	"	4.22	Whitney. J. 2, 781
44	"		11	4.20	Frödmann. J. 8, 704
"	"				Beck. J. 8, 704.
	••	**		_ 4.1, artificial	Hautefeuille. J. 17
и		A mata	"	2 957	Vananslin
"	"	Anatase_	"	3.857 8.826	Vauquelin. Mohs. See Böttge

]	Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tita			Ti Ö,	8.82	Kobell.
	"	" "	"	3.890 }	H. Rose.
	"		"	8.912 \ 4.06	Damour I 10 881
	66		"	8.7, artificial)	Damour. J. 10, 661. Hautofeuille. J. 17,
	**	" "	"	8.9	215.
Ger	maniu	m dioxide	Ge U3	4.708, 18°	Winkler. Ber. 19,
Zire	onium	dioxide	Zr O ₃	4.80	ref. 654. Klaproth. See Bött- ger.
	"	"	"	5.5	Siögren. J. 6, 349.
	"	"	"	4.9	Berlin. J. 6, 850.
	"	"	"	5.49	Hermann. J. 19, 191.
	"	"	"	5.742)	Nordenskiöld, P.A.
	"	•	"	5.710 \ 15°_ \	114, 626.
	"		"	5.624)	l <u></u>
	"	"	"	5.42, cryst	Knop. A. C. P. 159, 52.
	"	"	"	5.52, noria	Knop. A. C. P. 159, 58.
	"	"	"	5.850	Nilson and Peters- son. C. R. 91, 282.
Tin	mono	ride	Sn O	6.666, 16°.5	Herapath. P. M. 64, 821.
"	"		"	5.9797,0°,olive	1
**	"		"	6.1088,0°, dark	l I
				green.	Ditte. Ann. (5), 27, 169. All crystal-
"	**		4	6.600, 0°, black	line. Prepared by
"	"		"	6.8254,0°, dark	different meth-
"	"		"	violet. 6.4465,0°, ditto	ods.
		i	g., 0	heated to 800°.	Je s G Bru
Tin	dioxid	le	Sn O ₂	6.96 6.689, 16°.5	Mohs. See Büttger. Herapath. P. M. 64,
u	. "		44	6.90	821. Boullay. Ann. (2), 48, 266.
"	"		"	6.892)	•
"	**		"	7.180 }	Breithaupt.
"	66		"	6.952	Neumann. P. A. 28, 1.
"	"		u	6.831, 00	Kopp.
"	"	Artif. cryst	"	6.72	Daubrée. J. 12, 11.
"	"	221 U.L. C. J 30	"	6.849)	•
46	"		"	6.978 }	H. Rose.
"	"		"	6.7122, 40	Playfair and Joule.
					J. C. S. 1, 137.
"	"		" •	6.758	Mallet. J. 8, 705.
"	66		"	6.862	Bergemann. J. 10,
	"		l	6 8489 (150.5,	h
••					
"	"		11	0.8489 less.	
66	"		"	6.704, 15°.5, yellow.	Cassiterite from Bolivia. Forbes.
61	"		دد	6.7021, 15°.5, black.	P. M. (4), 80,189.
44	"	Artif. cryst	"	6.019	Leeds.

	NAI	(E.	Formula.	Sp. Gravity.	AUTHORITY.
Tin di	oxide.	Artif. cryst	Sn O ₂	6.70	Levy and Bourgeois.
Lead h	n emi oxi	de	Pb ₂ O	9.772	Bei. 6, 581. Playfair and Joule.
Lead n	nonoxi	de	Рь О	9.277, 17°.5	M. C. S. 3, 83. Herapath. P. M. 64,
"	44		"	9.500	321. Boullay. See Bött-
"	"			9.2092	ger. Karsten. Schw. J.
"	"		••	9.250	65, 394. Playfair and Joule.
"	**		4	9.861	M. C. S. 8, 84. Filhol. Ann. (8), 21, 415.
**	"		"	9.8684, 4°	Playfair and Joule. J. C. S. 1, 187.
"	"		"	8.02, cryst	Grailich. J. 11, 186.
44	"		"	9.1699, green- ish yellow.]
"	46		"	9.2089, yellow	Ditte. C. R. 94,
"	"		"	9.8835, brown- ish yellow.	1810. Samples differently pre-
46	"		"	9.5605, green- ish gray.	pared by boiling Pb (O H), with
"	"		61	9.4228, dark green.	KOH.
44	"		"	9.8757	11
"	44		"	9.29, 15°, yel-	ľ
"	**		"	low cryst. 9.126,15°, red	
"	"		"	9.125, 14°, red cryst.	Geuther. A. C. P.
44	"		£¢	9.09, 15°, red pulv.	219, 60–61.
44	44		"	8.74, 14°, red, very pure.	
Lead d	lioxide.		Pb O ₂	8.902, 16°.5	Herapath. P. M. 64, 821.
"	" .		"	8.988	Karsten. Schw. J. 65, 894.
"	".		"	8.756 }	Playfair and Joule.
44	"		"	8.897}	M. C. S. 8, 84.
**	" .		"	9.045	Wernicke. J. C. S. (2), 9, 806.
	m		Pb ₈ O ₄		Muschenbroek. Watts' Dict.
**			44	9.096, 15°	Herapath. P. M. 64, 821.
**			"	9.190	Boullay. Ann. (2), 48, 266.
"			44	8.62	Karsten. Schw. J. 65, 894.
Ceriur	n dioxi	de	Co O	5.6059	" "
"	"		"	6.00	Hermann. J. P. C. 92, 113.
	44		"	6.93 } 150.5 {	Nordenskiöld. J. 14,

			 	
1	NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cerium di	oxide	Ce O,	7.09, 14°.5, cryst.	Nordenskiöld. J.14, 184.
"	"		6.789	Nilson and Peters- son. C. R. 91,
Thorium d	lioxide*	Th O ₂	9.402	282. Berzelius. P. A. 16,
11	"		9.21	385. Nordenskiöld and Chydenius. J. 18, 184.
"				Chydenius. J. 16,
46 46	"	"	9.200 }	194. Nilson and Petters-
				son. C. R. 91, 282.
"			10.2199 } 170-	Nilson. Ber. 15,2586.
"	"	"	10.2206 \ 1 9.876, 15°	Troost and Ouvrard.
			9.070, 10	C. R. 102, 1422.
Nitrogen 1	monoxide. L	N ₂ O	.9756, -5° -]	
"	"	. "	1.9870, 00	
"	#		.9177, +5° - .8964, 10°	T) A = 3 = - (40° A = -
"	"	"	.8704, 15°	D'Andreéff. Ann. (8), 56, 817.
"			.8865, 20°]	(0), 00, 011.
68	"	"	.9004, 0°	Will. C. N. 28, 170.
"	"		.9484	Wroblevsky. C. B. 97, 166.
"	"		1.002, —20°.6_ .952, —11°.6	ነ
64	"	"	.952, —11°.6	
44	44		.980, —5°.5 .912, —2°.2	
"			1.849, +6°.6	Cailletet and Ma-
44	"		.810, 11°.7	thias. C. R. 102,
66	"	"		1202.
44	"	"	.698, 28°.7	
Nitrogen t	tetroxide. L	1 .	1.451	Dulong. Schw. J. 18, 177.
"		"	1.42	Mitscherlich. Schw. J. 68, 109.
"	"	"	1.4908, 0° 1.48958, 21°.64	Thorpe. J. C. S. 37, 224.
Phosphoru	s pentoxide	P. O	2.887	Brisson. P. des C.
Vanadium	dioxide	V ₂ O ₂	8.64, 20°	Schafarik. J. P. C. 76, 142.
		V ₂ O ₃	4.72, 16°, m. of 8.	Schafarik. J. P. C. 90, 12.
Vanadium	pentoxide	V ₂ O ₈	8.472 8.510 20° {	Schafarik. J. P. C. 76, 142.
"	"	"	8.85	J. J. Watts. Roscoe and Schorlem-
	ioxide	As ₂ O ₃	8.698	mer's Treatise. LeRoyerand Dumas. Gm. H. 1, 69.
41	"	"	8.690 }	Leonhard.
"	"	"	8.710 }	Alcoimaid.

[•] For this sub-tance Nilson's determination is the only one of value.

נ	MAN	E.	1	ORMULA.	SP. GRAVITY.	AUTHORITY.
Arsenic tri	ioxid	le	As ₂ O		8.695, octahe- dral. 8.7885, amor-	Guibourt. B. J. 7,
44	"		"		· phous. 8.729, 17°.2	Herapath. P. M. 64,
"	"		"		8.7026 }	821. Karsten. Schw. J. 65, 894.
**	"		"		8.798	Taylor, Gm. H.
"	44		"		8.884	Filhol. Ann. (3), 21, 415.
" Arsenic pe	" ntox	ide	As. O.		8.85, native 8.7842	
	"		"		8.985	65, 894. Playfair and Joule.
**	"		ÉE		4.023}	M. C. S. 8, 88.
66	44		"		4.250	Filhol. Ann. (3), 21, 415.
Antimony	trio	ride	Sb, O,		5.566	Mohs. See Bottger.
48	••		"			Boullay. Ann. (2), 48, 266.
	••				6.6952	Karsten. Schw. J. 65, 894.
41	"		"		5.251	Playfair and Joule. M. C. S. 8, 88.
66 86	"		"		5.11, octahedral. 3.72, prismatic.	Terreil. J. P. C. 98,
Valentinite					5.566	Dana's Mineralogy.
Senarmont	ite		"			" Included.
Antimony	tetro	xide	Sb, O,		4.074	Playfair and Joule. M. C. S. 8, 88.
Cervantite Antimony	pent	oxide	8b ₂ O ₅		4.084 6.525	Dana's Mineralogy. Boullay. Ann. (2), 43, 266.
"	4	٠	"		8.779	Playfair and Joule.
Bismuth tr	ioxi	de	Bi ₂ O ₃		8.211, 18°.3	M. C. S. 8, 83. Herapath. P. M. 64, 821.
"	**		**		8.449	Le Royer and Du- mas. See Böttger.
44	4.6		"		8.1785	Karsten. Schw. J. 65, 894.
**	"		"		8.079	Playfair and Joule. M. C. S. 8, 82.
11 11	"		"		8.855 }	Schröder. Dm. 1878.
Bismuth te	trox	ide	Bi ₂ O ₄ .			Muir, Hoffmeister, and Robbs. J. C. S. 39, 32.
Bismuth pe	ento	ride	Bi ₂ O ₅ .		5.917 5.919} 15° {	Brauner and Watts.
"	"		"		(P. M. (5), 11, 60.
**					5.1, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 89, 82.
Columbiun	n per	ntoxide	Cb ₃ O ₅		4.58 Extremes of several determinations.	H. Rose. J. 1, 405.

	Name.]	FORMULA.	Sp. Gravity.	AUTHORITY.
Columbiu	m pentoz	ride	Cb, O	6	6.140 From fusion 6.146 with	11
44	66		"		K,S,O 6.48, ditto, ig-	7
46	"		"		nited. 5.88, more strongly ig-	
"	41		"		nited.	11
"	u		"		5.90 J	H. Rose. J. 12, 158.
"	"		"		5.98 From	Forfull details as
"	**				5.706 Cb Cl	to modes of prep-
"	"		"		6.289 J	I aretion churen-
••	••				6.725, ditto, ig	ter of samples,
66	"		"		nited. 5.79, more strongly ignited.	etc., see the orig-
66			"		5.51	11
46	"		"		5.52	11.
44	"				(Extreme	1 13
			"		4.00) of severa	H Rose J 18 148
"	44		"		6.54 determi-	1 221 20000 0 20, 120
44	44		**		5.20 \ nations.	Nordenskiöld. J. 14,
46	44		"		5.48 cryst.	
				(4871	li 200.
"	"		"	{	4.46 Prep.	Marignac. J. 18,
"	"		"	{	$\begin{bmatrix} 4.51 \\ 4.58 \end{bmatrix}$ methods	198.
"	66		"		5.00	Hermann. J. 18, 209.
46	"		"		4.81	Knop. A. C. P. 159, 86.
Tantalum	pentoxid	le	Ta, O		7.03 Extreme	
	- (1		i.		8.26 determinations.	(11. 1608C. U. 1, 202.
**	66		"		7.055 fusion	l i
"	64		66		7.065 with	11
44	44		"		K,S,O 7.986, ditto, ig	
"	"				nited.	11
"	"				7.028) From	11
"	"				7.280 \ Ta Cl	
••	••		••		7.284, ditto,	H. Rose. J. 10, 178.
"	"		٠, ،،		crystalline. 7.994, ditto,	For full details
6-					ignited.	nanar
"	"		"		7.652, ditto, more strong	11
££	44		"		ly. 8.257, ditto, in porcelain fur	
44	66				nace. 7.00	Harmann J 19 900
44	"		11		7.35, from Ta	Hermann. J. 18, 209.
"	"				Cl _s , ignited.	Marianac J P C
••	**		. "	*******	8.01, from NH salt.	99, 88.

					·	
	Name.			FORMULA.	SP. GRAVITY.	AUTHORITY.
Tantalum	pentox	ide	Ta,	O ₈	7.60 From K	Marignac. J.P.C.
"	46		"		7.64 salt.	99, 88.
"	"		"		7.234 }	Oesten. P. A. 100, 842.
Sulphur d	ioxide.	L	s o,		1.42	Faraday. P. T. 1823, 189.
66	**		"		1.45	Bussy. P. A. 1, 287.
44	**		"		1.4911, -20°.5	
44	6.		"		1.4609, —9°.9	i
46 44	66 66		"		1.4884, —2°.08 1.4818, —0°.25	
"	41		;;		1.4818, -00.25	1
"	"		"		1.4252, +2°.8 1.4205, 4°.51	
"			46		1.4102, 8°.27	
66	"		"		1.4017, 11°.5	1
44	**		".	*************	1.8887, 16°.48	D'Andreéff. Ann.
**	46		"		1.8769, 20°.68	(8), 56, 817.
46	"		"		1.8678, 28°.91	
44	66		"		1.8587, 26°.9	l l
"	"		"		1.8518. 29°.57	
"	"		"		1.8415, 82°.96 1.8850, 85.°29	
44	**		44		1.8258, 88°.65	
".	"		"		1.4888, 0°	3
44	"		"		1.8757, 21°.7	•
44	"		46		1.8874, 85°.2	
"	"		"		1.2872, 52°	
"	44		"		1.2523, 62°	1
"	"		;;		1.1845, 82°.4	
44	46		16		1.1041, 102°.4 1.0166, 120°.45	Cailletet and Ma-
66	**				.9560, 180°.8	thias. C.R. 104,
46	66		"		.8690, 140°.8	1568. 156° is the
66	"		"		.8065, 146°.6	critical tempera-
44	44		ч		.7817, 151°.75	ture.
"	"		"		.6706, 154°.8	
"	"		;;		.6370, 155°.05	1
Sulphur t		8	1		.52, 156° 1.9546, 18°	Morveau. Watts'
46	"	"	۱.,		1.975	Dict.
46	"	L	"		1.97, 20°	Baumgartner. Bussy. Ann. (2),
46	"	8	"		1.92118)	26, 411.
44	44	"	"		1.90915 } 250	า
44	66	"	"		1.90814	D. W. A. G. D. A.
"	"	L	"		1.81958)	Buff. A.C. P.4th
"	66	"	"		1.8105 } 47°	Supp., 129.
66 66	"	"	"		1.8101	
	• • • • • • • • • • • • • • • • • • • •	8	"		1.940, 16°	Weber. P. A. 159, 318.
() () -11		"	ر" (1.9365, 20°	Nasini. Ber. 15, 2885.
Selenium				9,	8.9588	Clausnizer. A. C. P. 196, 265.
		le	Te (0,	5.98, 20°	Schafarik. J. P. C. 90, 12.
"	"		"		5.7559, 120.5	F. W. Clarke. A. J.
44	"		"		5.7841, 140_}	S. (8), 14, 285.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Tellurium dioxide. Octa- hedral. " "	Te O,	5.65 5.67 5.68	
" " Ortho- rhombic. " " "		5.88 5.90 0°	Klein and Morel. C. R. 100, 1140.
" " Calcined	"	5.91 J 5.68, 0°	1
Tellurium trioxide	Te O ₃	5.0704, 140.5	F. W. Clarke. A. J.
" "	"	5.0794, 11° 5.1118, 11°	S. (8), 14, 286.
Chromic oxide	Cr ₂ O ₃	5.21, cryst	Wöhler. See Bött- ger.
" "	"	4.909	Playfair and Joule. M. C. S. 3, 82.
" "	"	6.2, cryst 5.010	Schiff. J. 11, 161. Schröder. P. A. 106, 226.
Chromic chromate Chromium trioxide	Cr ₅ O ₉ Cr O ₃	4.0, 10° 2.676, m. of 2_	Geuther. J. 14, 242. Playfair and Joule. M. C. S. 2, 448.
" "	"	2.737, 14°, cryst	lau na
" "		2.629, 14°, after fusion.	,
	"	2.819, 20°	Schafarik. J. P. C. 90, 12.
tt tt	"	2.775 Ex- 2.804 tremes {	Zettnow. P. A. 143, 474.
Molybdenum dioxide		5.67	Bucholz. N. J. 20, 121.
	l .	6.44, 16°	Mauro and Panebi- anco. Ber. 15, 527.
Molybdenum trioxide	Mo O ₃	8.460	Thomson. See Bött- ger.
11 11	11	8.49	Berzelius. " " (Weisbach. Dana's
11 11	"	4.50 \ native.	Min.
" "	"	4.89, 21°,cryst.	Schafarik. J. P. C. 90, 12.
Tungsten dioxide	1	1	Karsten. Schw. J. 65, 894:
Tungsten trioxide	W.O ₈	6.12 5.274, 16°.5	D'Elhuyart. Gm. H. Hempath. P. M. 64, 821.
££ ££	"	7.1896	Karsten. Schw. J. 65, 894.
	46	6.802 6.884 cryst.	Nordenskiöld. J. 14, 214.
" "	"	7.16, amor-)	l` '
" "		phous. 7.282, 17°, cryst.	Zettnow. J. 20, 216.
Uranous oxide	U O2	10.15	Rbelmen. J. P. C. 27, 885.
Uranoso-uranic oxide	U ₈ O ₈	7.1982	Karsten. Schw. J. 65, 894.
16 16 16	. "	7.81	Ebelmen. J. P. C. 27, 885.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Uranic oxide	ΰο,	5.02 } two { 5.26 } lots. {	Brauner and Watts. P. M. (5), 11, 60.
Chlorine trioxide. L	1 11	$\begin{bmatrix} 1.3298 \\ 1.887 \end{bmatrix}$ 0° $\left\{ \begin{bmatrix} 1.3298 \\ 1.887 \end{bmatrix} \right\}$	Brandau. Z. C. 13,
Iodine pentoxide	I ₂ O ₆	4.250	Filhol. Ann. (8), 21, 415.
" "	"	4.7987, 9°	Kammerer. P. A. 188, 401.
" " ————		4.487, 00	Ditte. Z. C. 13, 308.
" "	"	5.087, 0°}	Ditte. Ann. (4), 21, 10.
Manganous oxide	Mn O	4.7264, 17°	Herapath. P. M. 64, 321.
	. "	5.88	Playfair and Joule. M. C. S. 3, 80.
" " …	- "	5.091	Rammelsberg. J. 18, 878.
" " Mangan- osite.		5.18	Blomstrand. J. 28, 1209.
" "	"	5.010, 4°	Veley. J.C.S.1882, 65.
Manganoso-manganic oxide. "	Mn ₃ O ₄	4.746 }	Playfair and Joule. M. C. S. 8, 80.
	"	4.825	Playfair and Joule. J. C. S. 1, 187.
	"	4.718, artif.	Rammelsberg, J. 18,
16 66 66	££	4.856, native	878.
		4.80, artificial	Gorgeu. C. R. 96, 1146.
Manganic oxide	Mn ₂ O ₃	4.82, braunite_	Haidinger. Gm. H. (Playfairand Joule.
"	(1	4.568 4.619 artif.	M. C. S. 3, 80.
"	"	4.325, artif	Rammelsberg. J.
" "		4.752, braun- , ite.	18, 878.
Manganese dioxide	Mn O ₂	4.819,pyrolusite 5.026 "	Turner. See Böttger. Rammelsberg. J. 18, 878.
" "		4.888 " }	Breithaupt. Dana's
" "		4.880 " }	Min.
			Pisani. Dana's Min.) Dana and Penfield.
11 11	"	4.965 poli- 5.040 anite.	A. J. S. (8), 85, 246.
Ferroso-ferric oxide		5.094	Mohs. See Böttger.
66 66 66		4.960	Gerolt. " " Leonhard. See Bött-
	"	5.200}	ger.
	. "	5.800, 16°.5	Herapath. P. M. 64, 821.
" " "		5.400}	Boullay. Ann. (2),
" " "	"	5.480 \$	43, 266.
" " "	"	5.168 cryst 5.180 mag-	Kenngott. Dana's Min.
	"	netite. 5.458	Playfair and Joule. M. C. S. 8, 81.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ferroso-ferric oxide	Fe ₃ O ₄	5.12, 0°, mag-	Kopp.
	"	netite. 5,106)	
16 16 16	"	5.148 \ "	Rammelsberg.
	"	5.185	B.
	"	4.86 two al-)
" " "	14	5.00 \ latropic	Moissan. Ann. (5),
	"	5.09 \(\text{varieties} \)) 21, 223.
	44	5.21 artif. { 5.25 cryst. {	Gorgeu. C. R. 104,
		5.25 cryst. \	1176.
Ferric oxide	Fe ₂ O ₃	5.251	Mohs. See Böttger.
" "	46	5.261 5.959, 16°.5,	Breithaupt. Herapath. P. M. 64,
	- -	ppt. 5.225	821.
" "	**	5.225	Boullay. Ann. (2), 48, 266.
" "	"	5.079, native _	Neumann. P. A. 28, 1.
"	"	5.121, 120.5	Kopp.
" "	"	4.679	Playfair and Joule.
	"	5.185,ignit'd }	M. C. S. 8, 80.
		5.241 5.283 native_	Rammelsberg.
	"	5.288) 5.191)	
" "	"	5.214	G. Rose.
	"	5.230	G. Nose.
"	"	5.169, ppt) H. Rose. P. A. 74,
(4 (4	"	5.087, ignited_	440.
	"	8.95, yellow	Tommasi. Les Mon-
Nickelous oxide		5.597	des, 1879. Playfair and Joule. M. C. S. 8, 81.
	"	5.745, furnace product.	Genth. J. 1, 444.
"	"	6.605, cryst	Gentin. 5. 1, 1112.
"	"	6.398	Bergemann. J. 11,
" "	"	6.661	Rammelsberg. J.2, 282.
" " …	11	6.8, cryst	Ebelmen. J. 4, 16.
Nickelic oxide	Ni ₂ O ₃	4.846, 16°.5	Herapath. P.M.64, 821.
" "	"	4.814	Playfair and Joule. M. C. S. 8, 81.
Cobaltous oxide	Co O :		11 " "
~ " " · · · · · · · · · · · · · · · · ·	_ "	5.750, ignited.	
Cobaltoso-cobaltic oxide	Co ₃ O ₄	5.833}	Rammelsberg. J. 2,
Cobaltic oxide	Co ₂ O ₃	6.296}	282.
	1	5.822, 16°.5	Herapath. P. M. 64, 321.
	"	5.600	Boullay. Gm. H. 1, 69.
" "	"	4.814	Playfair and Joule. M. C. S. 8, 81.
Cuprous oxide		$\left\{ egin{array}{c} 6.052 \\ 6.098 \end{array} \right\}$ 16°.5 $\left\{ \right.$	Hernpath. P. M. 64,
" "			321.
	"	5.751	Karsten. Schw. J.
	1	•	65, 394.

N	ame.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cuprous oxi	de	Cu, O	5.75	Leroyer and Dumas. See Böttger.
11 11		16	5.746	Playfeir and Joule. M. C. S. 8, 82.
46 66			5.800	
11 11		"	5.342	Persoz. J. P. C. 47,
46 46		"	5.875	84.
Cupric oxid	e	Cu O	6.401, 16°.5	Herapath. P. M. 64, 821.
" "		"	6.130	Boullay. Ann. (2), 43, 266.
		"	6.4804	Karsten. Schw. J. 65, 894.
46 46		"	5.90	Playfair and Joule.
44 44		66		M. C. S. 8, 82.
14 44		"	6.322	Filhol. Ann. (8), 21, 415.
46 46	•	"	6.180)	2-,
14 15		44	6.225}	Persoz. J. P. C. 47,
11 14		"	6.400	84.
it (t		"	6.451, furnace product.	Jenzsch. J. 12, 214.
"		"	6.400	Hampe. Z. C. 18,
" "		"	6.25, melaco- nite.	Whitney. J. 2, 728.
" "		"	5.952 "	Rammelsberg. P. A. 80, 287.
Ruthenium	dioxide	Ru O ₂	7.2	Deville and Debray. J. 12, 286.

2d. Double and Triple Oxides.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Sodium uranium oxide	Na ₂ U ₃ O ₁₀	6.912	Drenkmann. J. 14 , 257.
Delafossite	Cu', Fe''', O,	5.07, 25°	
Spinel		8.52 "	
Gahnite	"	4.817	Ebelmen. J. 4, 13.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Gahnite	Zn Al ₂ O ₄	4.576	Genth and Keller. J. 36, 1843.
" Furnace product.		4.49—4.52	Schulze and Stelz- ner. Z. K. M. 7,
Hercynite	Fe'' Al, O4	8.91 }	Zippe. Dana's Min.
HercyniteChrysoberyl	"	8.597 } 8.689 }	Ebelmen. J. 4, 18. Rose. Dana's Min. From three local-
" Alexandrite_	11	8.784) 8.885) 8.644 (ities. Kokscharof. J. 14, 976, and J. 15, 715.
	"	8.784	Nilson and Pettersson. C.R. 91,232. (Church. Geol.
Calcium iron oxide	"	3.860	Mag. (2), 2, 320. Percy. P. M. (4), 45, 455.
Magnesioferrite		Z.VII	Rammelsberg. J. 12,
Hetaerolite	Zn Mn, O,	4.938	Moore. J. C. S. 36,
Zinc iron oxide	Zn Fe''', O4	5.182 cryst 5.88 "	
Zinc chromium oxide Manganese chromium oxide.	Zn Cr, O, Mn Cr, O,	5.309 " 4.87 "	Ebelmen. J. 4, 18.
Chromite	Fe" Cr ₂ O ₄	4.821	Thomson. Dana's Min.
"	66	4.498 }	Dana's Mineralogy.
Jacobsite	Mg Fe''', O ₄ . 2 Mn	4.75, 16°	Damour. C. R. 69, 168.
Chrompicotite	2 Fe'' Al. O4. 8 Mg Cr. O4.	4.115, 20°	Petersen. J. P. C. 106, 137.

IX. INORGANIC SULPHIDES.

1st. Simple Sulphides.

Name.	Formula.	Sp. Gravity.	Authority.
Hydrogen monosulphide	H ₂ S	a .9, l	Faraday. Gm. H. 2,
u u <u></u>	"	.91, 18°.5	Bleekrode. P. R. S.
Hydrogen persulphide	H, S, or H, S, ?	1.7842	87, 855. Ramsay. J. C. S. 27, 860.
Sodium sulphide	Na, S	2.471	Filhol. Ann. (8),
	l		21, 415.
Potassium sulphide	K.S.	2.180	11 11

	NA		Formula.	Sp. Gravity.	AUTHORITY.
			T OMAGEN.		
	_	le	Ag, S		Karsten. Schw. J. 65, 894.
"	"	Argentite_	"	7.269 }	Dauber. J. 13, 748.
"	66	Acanthite.	"	7.31)	
"	**	44	(f .	7.36 }	Kenngott. J. 8, 908.
££	**	"	44		Dauber. J. 13, 748.
44	66	Daleminzite	"	7.326 } tremes.))
					Breithaupt. J. 15, 709.
		ohide	Tl ₂ S Ca S. (Impure)	8.00	Lamy. J. 15, 185.
				1	Maskelyne. P. T. 1870, 196.
Zinc su	lphide		Zn S	3.9285	Karsten. Schw. J. 65, 894.
46	44	Blende	"	4.060	Neumann. P. A. 23, 1.
46	44	"	"	4.068	Henry. J. 4, 756.
**	**	"	"	4.07	Kuhlmann. J. 9, 832.
44	66	"	"	4.05	Tschermak. S. W. A. 45, 608.
"	"	"	"	4.088	Genth. Am. Phil. Soc. 1882.
Cadmiu	m sul	phide	Cd S	4.5, artificial	Schüler. J. 6, 367.
"		,	"	4.5 "	Sochting. Dana's
"	61	Greenockite	"	4.605	Karsten. Schw. J. 65, 394.
44	44	"		4.908	Breithaupt. Watts'
"	"		"	4.80	Brooke. P. A. 51, 274.
Mercur	ic sulp	hide	Hg S	8.124	Boullay. Ann. (2), 43, 266.
"	44		"	8.0602	Karsten. Schw. J. 65, 894.
"	**		"	8.090, cinna- bar.	
**	"		"	7.701 \ natural, 7.748 \} amor-	Moore. J. P. C.
"	"		"	7.748 ∫ amor- phous.	(2), 2, 819.
61	41		"	7.552, artif.]
"	44		"	7.81, metacin- nabar.	Penfield. A. J. S.
Carbon	mono	sulphide	c s	1.66, s	(3), 29, 458. Sidot. C. R. 81, 88.
Carbon	disulp	hide	C S ₂	1.272	Berzelius and Mar-
					cet. Schw. J. 9, 284.
46	61		"	1.268	Cluzel. Gm. H.
"			"	1 2698, 15°.1	Gay Lussac.
••	44		"	1.265	Couërbe. Ann. (2), 61, 282.
66	66		"	1.2828, 5°-10°	1)
"	61		"	. 1.2750, 10°–15°	Regnault. P. A.
44	61		"	. 1.2676, 15°-20° . 1.29812, 0°) 62, 50. Pierre. C. R. 27,
				1.20012, 0	218.

1.2176, 48° 1.80, 592 1.							
" " " 1.27004, 10°		NAM	æ.		FORMULA.	Sp. Gravity.	AUTHORITY.
" " " 1.27004, 10°	Carbon d	isuln	hide	CS.		1.29858. 0°	1
"				""			
	"	"		44			} H. L. Buff. A. C.
" " 1.2661, 20° Haagen. P. A. 131, 117. " " 1.2665, 16°.06. " " 1.2176, 48° Ramsay. J. C. S. 85, 463. " " 1.2231, 0° Ramsay. J. C. S. 85, 463. " " 1.2234, 46°.04 37, 363. " " 1.2234, 46°.04 37, 363. " " 1.2234, 46°.04 37, 363. " " 1.2666, 15°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. " " 1.2666, 16°.2 Friedburg. C. N. A. 15, 52. Friedburg. C. N. A. 17, 52. Also values for other te's. Dreck. er. P. A. (2), 20, 870. Early and a control of the rest. of the re's. Dreck. er. P. A. (2), 20, 870. Karsten. Schw. J. 65, 894. " " 4.973 Schiff. Ber. 19, 560. Karsten. Schw. J. 65, 894. " " 4.973 Schiff. Ber. 19, 560. Karsten. Schw. J. 65, 894. " " 4.600 Karsten. Schw. J. 65, 894. " " 4.600 Karsten. Schw. J. 65, 894. " " 4.600 Karsten. Schw. J. 65, 894. " " 5.608, 994. " " 6.9238, 4°, pulv. Freithaupt. J. P. C. 11, 151. Physfair and Joule. J. C. S. 1, 187. T. 568 Friedburg. D. P. C. 12, 291. Physfair and Joule. J. C. S. 1, 187. T. 568 Friedburg. C. R. 100, 1460. Phosphorus hexsulphide. N. S. 2.22, 15° Berthelot and Vieille. Ber. 14, 1568. Phosphorus hexsulphide. P. S. 2.02 " " Schembert. C. R. 96. Phosphorus hexsulphide. P. S. 2.02 " " Schembert. C. R. 96.							P. 4th Supp., 129.
" " " 1.2665, 16°.06 117. Winkelmann. P. A. 160, 592 Ramsay. J. C. S. 35, 463. 1.22242, 46°.04 37, 363. Thorpe. J. C. S. 36, 463. 1.22242, 46°.04 37, 363. Thorpe. J. C. S. 37, 36	••						
" " 1.2665, 16°.06 Winkelmann. P. A. 160, 592. Ramsay. J. C. S. 35, 463. 1.29215, 0° 1.29215	••	•••				1.2001, 20	
" " " 1.29215, 0°	••					,	Winkelmann. P. A.
" " " 1.2242, 46.04 37, 363. 37, 363. 38,						1.2176, 48°	
	•••					1.29215, 0°	Thorpe. J. C. S.
" " 1.2234 47°- Schiff. Ber. 14, 2767.	"			66			
" " 1,2834, 20° Nasini, Ber. 15, 2883, Friedburg. C. N. 47, 52. Also values for other 1°s. Dreck-er. P. A. (2), 20° Schiff. Ber. 19, 560, 394. Schiff.	4.6	44	,	66			· ·
" " 1,2834, 20° Nasini, Ber. 15, 2883, Friedburg. C. N. 47, 52. Also values for other 1°s. Dreck-er. P. A. (2), 20° Schiff. Ber. 19, 560, 394. Schiff.	"	44		"		1 9934 } 470	Schiff. Ber. 14, 2767.
" " 1.266, 15° 2.	"			44			Marini Dan 15 9000
" " 1.26569, 17°.866 Also values for other t°s. Dreck	"	"		**			Friedburg. C. N.
" " 1.26446, 18°.58 other t°s. Dreck. " " 1.25031, 28°.21 er. P. A. (2), 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	"	46		"		1 26560 170 86	
""""""""""""""""""""""""""""""""""""	44	"					other to Drock
" " 1.23888, 36°.96 870. Tin monosulphide				۱.,			
" " 1.2333, 46°.5 Schiff. Ber. 19, 560. Tin monosulphide							
Tin monosulphide	••						
""""""""""""""""""""""""""""""""""""	"	"		ł		1.2233, 46°.5	Schiff. Ber. 19, 560.
## ## ## ## ## ## ## ## ## ## ## ## ##		•	hide				65, 894.
""" 5.0802, 0° Ditte. C. R. 96, 1791. """" 4.415 Boullay. Ann. (2), 43, 266. """" 4.600 Karsten. Schw. J. 65, 894. """" 7.5052, artif """ """" 6.9288, 4°, pulv Breithaupt. J. P. C. 11, 151. """" 7.568 Neumann. P. A. 28, 1. """" 7.51 Tschermak. S. W. A. 45, 608. Schneider. J. P. C. (2), 2, 91. Pb. Sa. 6.335 Playfair and Joule. M. C. S. 8, 89. """ Thorium sulphide Didier. C. R. 100. 1461. Chydenius. J. 16. 195. Ps. 195. N S 2.22, 15° Bother and Vieille. Ber. 14, 1558. Michaelis. Z. C. 13, 460. Dupré. J. P. C. 21, 253. Phosphorus monosulphide P S. 2.02 """ """ Isambert. C. R. 96.				"		1	43, 266.
""" 5.0802, 0° Ditte. C. R. 96, 1791. """" 4.415 Boullay. Ann. (2), 43, 266. """" 4.600 Karsten. Schw. J. 65, 894. """" 7.5052, artif """ """" 6.9288, 4°, pulv Breithaupt. J. P. C. 11, 151. """" 7.568 Neumann. P. A. 28, 1. """" 7.51 Tschermak. S. W. A. 45, 608. Schneider. J. P. C. (2), 2, 91. Pb. Sa. 6.335 Playfair and Joule. M. C. S. 8, 89. """ Thorium sulphide Didier. C. R. 100. 1461. Chydenius. J. 16. 195. Ps. 195. N S 2.22, 15° Bother and Vieille. Ber. 14, 1558. Michaelis. Z. C. 13, 460. Dupré. J. P. C. 21, 253. Phosphorus monosulphide P S. 2.02 """ """ Isambert. C. R. 96.				1			Schneider. J. 8, 896.
Tin disulphide	66	"		"		5.0802, 0°	Ditte. C. R. 96, 1791.
""" 4.600 Karsten. Schw. J. 65, 894. """ Galena """ 7.5052, artif	Tin disul	phid	B	Sn S	5,		Boullay. Ann. (2),
Lead sulphide	"	"		"		4.600	Karsten. Schw. J.
" Galena " 589 Breithaupt. J. P. C. 11, 151. " Galena " 568 Playfair and Joule. J. C. S. 1, 187. " Galena 7.568 Neumann. P. A. 23, 1. " " " 551 Tschermak. S. W. A. 45, 608. " " 57, artificial Schneider. J. P. C. (2), 2, 91. Lead sesquisulphide Pb, S, 5.1 Breithaupt. J. P. C. 11, 151. " " 568 N. S. 1, 187. Notermak. S. W. A. 45, 608. Schneider. J. P. C. (2), 2, 91. Playfair and Joule. M. C. S. 8, 89. Dider. C. R. 100. M. C. S. 8, 89. Dider. C. R. 100. 1461. Chydenius. J. 16. 195. Berthelot and Vicille. Ber. 14, 1558. Michaelis. Z. C. 13. 460. P S. 2.1166, 15° P S. 2.02 " " Sambert. C. R. 96.	Lead sul	nhide		Ph	3	7.5052, artif.	11
""" 6.9288, 4°, pulv Playfair and Joule J. C. S. 1, 187. """ 7.568 Neumann. P. A. 28, 1. """ 7.51 Tschermak. S. W. A. 45, 608. Schneider. J. P. C. (2), 2, 91. Pb. Ss. 6.77, artificial. Cerium sulphide Ce. Ss. 5.1 Didier. C. R. 100. Thorium sulphide NS 8.29 Didier. C. R. 100. NS 2.22, 15° Berthelot and Vieille. Ber.14,1558. Michaelis. Z. C. 13, 460. Ps. 1.8 Dupré. J. P. C. 21, 253. Phosphorus hexsulphide Tetraphosphorus Ps. 2.02 """ """ Isambert. C. R. 96,	"						Breithaupt. J. P. C.
""" """ 7.568 Neumann. P. A. 28, 1. """ """ 5.1 Tschermak. S. W. A. 45, 608. """ 6.335 Schneider. J. P. C. (2), 2, 91. Playfair and Joule. M. C. S. 8, 89. Didier. C. R. 100, 1461. Thorium sulphide NS 8.29 Chydenius. J. 16, 195. NS 2.22, 15° Berthelot and Vicille. Ber. 14, 1558. Wichaelis. Z. C. 13, 460. P. S. 2.02 Phosphorus hexsulphide P. S. 2.02 Tetraphosphorus trisul- 2.00, 11° Isambert. C. R. 96, 15°	44	"		"		6.9288, 4°, pulv	Playfair and Joule.
" " " " " " " " " " " " " " " " " " "	"	"	Galena	"		7.568	Neumann. P. A.
""""""""""""""""""""""""""""""""""""	"	"	"	41		7.51	Tschermak. S. W.
Lead sesquisulphide Pb, S ₂ 6.335 Playfair and Joule M. C. S. 8, 89. Cerium sulphide Ce, S ₃ 5.1 Didier. C. R. 100, 1461. Thorium sulphide Th S ₂ 8.29 Chydenius. J. 16, 195. N S 2.22, 15° Berthelot and Vicille. Ber. 14, 1558. Michaelis. Z. C. 13, 460. P S 1.8 Dupré. J. P. C. 21, 253. Phosphorus hexsulphide P S 2.02 " " Tetraphosphorus trisul- 2.00, 11° Isambert. C. R. 96,				i		1 '	Schneider. J. P. C.
Cerium sulphide Ce, S, 5.1 Didier. C. R. 100 1461. Thorium sulphide Th S, 8.29 Chydenius. J. 16 195. N S 2.22, 15° Berthelot and Vieille. Ber.14,1558. Michaelis. Z. C. 18, 460. Michaelis. Z. C. 18, 460. Phosphorus monosulphide P S, 2.02 Phosphorus hexsulphide P S, 2.02 Tetraphosphorus trisul- 2.00, 11° Isambert. C. R. 96,	Lead ses	quisu	lphide	1		i	Playfair and Joule.
Nitrogen sulphide N S 2.22, 15° Berthelot and Vieille. Ber.14,1558. " " 2.1166, 15° Michaelis. Z. C. 13, 460. Phosphorus monosulphide P S 1.8 Dupré. J. P. C. 21, 253. Phosphorus hexsulphide P S 2.02 " " Isambert. C. R. 96, 96, 96, 96, 96, 96, 96, 96, 96, 96,	Cerium s	ulph	ide	Ce,	S ₈	5.1	Didier. C. R. 100,
" " 2.1166, 15° — eille. Ber. 14, 1558. Michaelis. Z. C. 13, 460. Phosphorus monosulphide P S 1.8 — Dupré. J. P. C. 21, 253. Phosphorus hexsulphide P S 2.00, 11° — Isambert. C. R. 96,		•		İ	-	1	
Phosphorus monosulphide P S	_	_		l			Berthelot and Vieille. Ber.14,1558.
Phosphorus hexsulphide PS 2.02 2.02	"		"				Michaelis. Z. C. 13,
Tetraphosphorus trisul- P4 S3 2.00, 11° Isambert. C. R. 96,	_			1			253 .
Tetraphosphorus trisul- P ₄ S ₃ 2.00, 11° Isambert. C. R. 96,	Phospho	rus h	exsulphide	. P S	k		·I "
			rus trisul-				

-			
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Vanadium disulphide Vanadium trisulphide Vanadium tetrasulphide	V ₂ S ₂ V ₄ S ₃	4.2, scaly 4.4, powder 8.7, scaly	Kay. J. C. S. 37, 728.
Vanadium tetrasulphide	v, s,	4.0, powder } 4.70, 21°	Schafarik. J. P. C.
Vanadium pentasulphide_ Arsenic disulphide	V, S,	3.0 3.5 444	90, 12. Kay. J.C.S.87,728. Karsten. Schw. J.
	44	3.240, realgar_	
Arsenic trisulphide	As ₂ S ₃	3.556 3.459	28, 1. Mohs. See Böttger. Karsten. Schw. J. 65, 894.
	"	8.48	Haidinger. Dana's Min.
" "	"	8.448.45	Guibourt. See Bött-
" "Dimorphite Antimony trisulphide	Sb ₂ S ₃	3.58 4.7520	Scacchi. J. 5, 842. Karsten. Schw. J. 65, 894.
., .,	11	4.15, amor- phous.	Fuchs. Watts' Dict.
16 11	. "	4.614, black	1
46 46	46	4.641, 16° "	H. Rose. J. 6, 861.
" "	((4.280, red 4.421, ppt	
" "	·	4.226,26°.7,red	[
	"}	4.228, 28°, gray 4.289, 27	Cooke. Proc. Am. Acad. 1877.
" "	"		Ditte. C. R. 102, 212.
" Stibnite.	"	5.012 } 4.608	Neumann. P. A.
	11	4.516	28, 1. Hauy. Dana's Min.
Bismuth disulphide		4.62 7.29, m. of 5	Mohs. " " Werther. J. P. C.
Bismuth trisulphide	Bi ₂ S ₃	7.591, 14°.5	27, 65. Herapath. P. A. 64, 321.
" "	"	7.0001	Karsten. Schw. J. 65, 894.
" "	и	7.16, native	
Selenium sulphide		8.056, 0° }	Ditte. Z. C. 14, 386.
Molybdenite	Mo S	4.591	Mohs. See Böttger.
Tungsten disulphide	w, s,	4.444 6.26, 20°	Seibert. " Schafarik. J. P. C.
Chromic sulphide	Cr ₂ S ₃	4.092	90, 12. Playfair and Joule. M. C. S. 8, 89.
· · · · · · · · · · · · · · · · · · ·	"	2.79,10° } two	Schafarik. J. P. C. 90, 12.
Manganese monosulphide. Alabandite.		preparations. 8.95—4.01	Leonhard. See Bött- ger.

Right Righ				
Alabsindite. Mn S2	Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Hauerite				Bergemann. N. J. 1857, 894.
Iron hemisulphide		Mn S ₂	3.463	Von Hauer. J. I,
Iron monosulphide. Artif. Fe S.	Iron hemisulphide	Fe ₂ S	5.80	Playfair and Joule.
" " Troilite." 4.787 Rammelsberg. J. 1 1806. " " " " 4.817 Rammelsberg. J. 17 904. " " " " 5.000 " 5.028 " 5.000 " 5.028 " 5.000 " 5.028 " 5.000 " 5.028 " 5.028 " 5.042 " 5.186 " 5.042 " 5.186 " 5.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.042 " 6.043 " 6.042 " 6.043 " 6.044 " 6.043 " 6.044 " 6.043 " 6.044 " 6				Rammelsberg. J.15,
## ## ## ## ## ## ## ## ## ## ## ## ##	" Troilite_	"	4.787	Rammelsberg. J. 1,
Tron disulphide. Pyrite		"	4.817	Rammelsberg. J. 17,
" " " " " 5.028 Sepharovich. S. W. A. 12, 289. " " " " " 4.882 " " Dana's Mineralogy. Ferric sulphide Fe, S, 4.246 M. C. S. 3, 88. " " " " 4.584 M. C. S. 3, 88. Complex sulphide of iron Fe, S, 4.584 M. C. S. 3, 88. Ferric sulphide M. C. S. 3, 88. " " 4.584 M. C. S. 3, 88. " " 4.584 M. C. S. 3, 88. Rammelsberg. J. 15 262. Rammelsberg. J. 15 195. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Playfair and Joule M. C. S. 3, 88. Rammelsberg. J. 15 195. Rammelsberg. J. 15 195. Rammelsberg. J. 15 195. Rammelsberg. Dana's Mineralogy. Playfair and Joule M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Playfair and Joule M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Polydymite Ni, S, 4.601 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread. A. 4.816 M. C. S. 3, 88. Renngott. S. W. A. 9, 575. Rammelsberg. Dana's Mineralogy. Lapspread.		"	4.75	Smith. J. 8, 1025.
" " " " " " " " " " " " " " " " " " "		Fe S	5.000 }	•
		"		
"""" Marcasite """" 4.882 """" """" """" """" """" """" """" ""		"		Zepharovich. S.W. A. 12, 289.
""""""""""""""""""""""""""""""""""""				Neumann. P. A. 23, 1.
	" Marcasite		4.882	" "
Ferric sulphide				Dana's Minaralogy
""""""""""""""""""""""""""""""""""""				
""""""""""""""""""""""""""""""""""""	Ferric sulphide	Fe ₂ S ₃	4.246	
Complex sulphide of iron Fe ₈ S ₉		"	4.41	Rammelsberg. J. 15,
""""""""""""""""""""""""""""""""""""	Complex sulphide of iron_	Fe ₈ S ₉	4.494	Rammelsberg. J. 15,
	•	1		Kenngott. S. W. A. 9, 575.
""""""""""""""""""""""""""""""""""""			4.564)	
Nickel hemisulphide Ni ₂ S 6.05 Playfair and Joule M. C. S. 3, 88. Millerite Ni S 4.601 M. C. S. 3, 88. """" 5.65 Rammelsberg. Da na's Mineralogy. Polydymite Ni ₄ S ₅ 4.808 18°.7 { (2), 14, 397. Laapeyres. J. P. C (2), 14, 397. Beyrichite Ni ₅ S ₇ 4.7 Liebe. N. J. 1871 840. Cobalt disulphide Co S ₂ 4.269 Playfair and Joule M. C. S. 3, 88. Cobaltic sulphide Co ₂ S ₃ 4.8 Hoffmann's Tables. Copper hemisulphide Cu ₂ S 4.8 Hoffmann's Tables. Copper hemisulphide 5.9775 Karsten. Schw. J. 65, 394. Kopp. J. 16, 5. """ 5.7022 Thomson. Dana's Min. """ 5.521—5.795 Scheerer. P. A. 65 292.			4.580 }	
Millerite Ni S 4.601 M. C. S. 3, 88. Kenngott. S. W. A 9, 575. """"""""""""""""""""""""""""""""""""				
Millerite Ni S 4.601 Kenngott. S. W. A 9, 575. " 5.65 Rammelsberg. Da na's Mineralogy. Polydymite Ni ₄ S ₅ 4.808 18°.7 { 4.816 } 18°.7 { (2), 14, 397. Beyrichite Ni ₅ S ₇ 4.7 Liebe. N. J. 1871 840. Cobalt disulphide Co S ₂ 4.269 Playfair and Joule M. C. S. 3, 88. Copper hemisulphide Cu ₂ S 4.8 Hoffmann's Tables. Copper hemisulphide Cu ₂ S 5.792, 17.7 Herapath. P. M. 64 821. """" 5.9775 Karsten. Schw. J 65, 394. """" 5.7022 Thomson. Dana's Min. """" 5.521—5.795 Scheerer. P. A. 65 292.	Nickel hemisulphide	Ni ₂ S	6.05	Playfair and Joule. M. C. S. S. 88
""" 5.65 Rammelsberg. Da na's Mineralogy. Polydymite Ni ₄ S ₅ 4.808	Millerite	Ni 8	4.601	Kenngott. S. W. A.
Polydymite Ni. S5 4.808	"		i	Rammelsberg. Da-
Cobalt disulphide			$\left\{ \begin{array}{c} 4.808 \\ 4.816 \end{array} \right\}$ 18°.7 $\left\{ \begin{array}{c} \end{array} \right.$	Laspeyres, J. P. C. (2), 14, 897.
Cobalt disulphide Co S2 4.269 Playfair and Joule M. C. S. 3, 88. Cobaltic sulphide Co2 S3 4.8 Hoffmann's Tables. Copper hemisulphide 5.792, 17.7 Rerapath. P. M. 64 321. 821. Karsten. Schw. J. 65, 394. 65, 394. Kopp. J. 16, 5. Thomson. Dana Min. 65, 394. Min. Scheerer. P. A. 65 292. 292.		Ni ₅ S ₇	4.7	Liebe. N. J. 1871,
Cobaltic sulphide Co ₃ S ₃ 4.8 Hoffmann's Tables. Copper hemisulphide Cu ₃ S 5.792, 17.7 Herapath. P. M. 64	Cobalt disulphide	i -	4.269	Playfair and Joule.
" " 5.9775		Co ₂ S ₃	4.8 5.792, 17.7	Hoffmann's Tables. Herapath. P. M. 64,
" " 5.71 Kopp. J. 16, 5. Thomson. Dana Min. " " 5.521—5.795_ Scheerer. P. A. 65		"	5.9775	Karsten. Schw. J.
" " 5.7022 Thomson. Dana Min. Scheerer. P. A. 65 292.	44	<i>u</i>	5.71	
" " 5.521—5.795 Scheerer. P. A. 65				Thomson. Dana's
	u u	"	5.521—5.795	Scheerer. P. A. 65,
" "Artif. cryst. " 5.79 Doelter. Z. K. M " "two methods " 5.809 11, 29.	" "Artif. cryst. " two methods	"	5.79}	Doelter. Z. K. M.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Copper monosulphide	Cu S	4.1634	Karsten. Schw. J. 65, 894.
" Covellite_	"	4.636	Zepharovich. J. 7, 810.
Palladium hemisulphide _	Pd, S	7.308, 15°	Schneider. P. A. 141, 532.
Platinum monosulphide	Pt S	8.847, 16°.25	Böttger. J. P. C. 8, 267.
Platinum disulphide	Pt S	7.224, 18°.75 5.27	Schneider. P. A.
Platinum sesquisulphide .		5.52	188, 604.

2d. Sulpho-Salts of Arsenic, Antimony, and Bismuth.

Name.	FORMULA.	Sp. Gravity.	Authority.
Proustite	Aga As Sa	5.524	Mohs.
"		5.58-5.59	Breithaupt. See Böttger.
11		5.552, 13°	G.Rose. P.A.15,472.
Xanthoconite	Ag ₉ As ₈ S ₁₀	4.112—4.159	Breithaupt. J. P. C. 20, 67.
Guitermannite	Pb ₈ As ₂ S ₆	5.94	Hillebrand. Bull. No. 20., U. S. G. S., 106.
Sartorite	Pb As ₂ S ₄	5.405)	5., 100.
"	"	. 5.393 }	Waltershausen. J.
Dufrenovsite		5.409)	8, 914. Landolt. P. A. 122,
Dullenoysive	I U2 Alog 05	0.0010	878.
"	"	5.549	Damour. Ann. (8), 14, 379.
"		5.561	v. Rath. J. 17, 827.
Enargite	Cu' ₃ As S ₄	4.362	Kenngott. Dana's
11		4.480 }	
16	""	4.445}	702.
		4.87	
"	44	4.84	Root. J. 21, 998. Burton. J. 21, 998.
" Guayacanite			Field. J. 12, 771.
" Clarite		4.46	Sandberger. N. J. 1875, 882.
" Luzonite	"	4.42	Weisbach. M. P. M. 1874, 257.
Julianite	Cu ₄ As S ₄	5.12	Websky. Z. G. S. 1871, 486.
Binnite	Cu. As. S.	4.477	Dana's Mineralogy.
Tennantite	Cu ₆ As ₄ S ₂	4.875	Phillips. See Bott-
46	"	4.580	ger. Scheerer. P. A. 65, 298.
"	"	4.622	Harrington. J. 87, 1911.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium sulphantimonate	Na, Sb S4. 9 H2 O	1.804)	Schröder. Dm. 1873.
Pyrargyrite		1.807 }	Mohs.
"	Ag ₃ Sb 8 ₃	5.78—5.84	Breithaupt. See Böttger.
Miargyrite	Ag Sb S ₂	5.214 } 5.242 }	Weisbach. J.18, 869.
"	46	5.0725 5.0828 } 20° {	Rumpf. Z. K. M.
" Artificial	"	5.28	7, 518. Doelter. Z. K. M. 11, 29.
Stephanite	Ag ₅ Sb S ₄	6.269	Mohs. P. A. 15,
"	"	6.275, 21°	H. Rose.
n.1-h/4.	Ag ₉ Sb S ₆	6.28, 18°	Frenzel. J. 27, 1289.
Polybasite	Ag ₉ 50 5 ₆	6.214	Dana's Mineralogy. Genth. Am. Phil. Soc., 1885.
Polyargyrite	Ag ₂₄ Sb ₂ S ₁₅	$\left\{ \begin{array}{c} 6.988 \\ 7.014 \end{array} \right\} \ 18^{\circ}.2$ _	Petersen. J. 22,1197.
Livingstonite	Hg Sb ₂ S ₄	4.81	Barcena. A. J. S. (3), 8, 146.
"Artificial Jamesonite	Pb, Sb, S,	4.928, 82° 5.616, 19°	Baker. C. N. 42, 196. Schaffgotsch. P. A. 38, 408.
" Massive	et	5.601 5.6788	Löwe. Dana's Min. Rammelsberg. P. A.
" Artificial		5.5	77, 240. Doelter. Z. K. M. 11, 29.
Zinkenite	Pb Sb ₂ S ₄	$\begin{bmatrix} 5.808 \\ 5.810 \end{bmatrix}$ 12°.5 _	G. Rose. P. A. 7, 91.
"	"	5.810 } 12 .0 - 5.21, 18°	Hillebrand. Bull.
Boulangerite	Pb, Sb, S	5.688—5.941	20, U. S. G. S. Hausmann. P. A.
			4 6, 282 .
" Massive	"	5.809—5.877 } 5.69—6.086 }	Zepharovich. S. W. A. 56, (1), 80.
Meneghinite	Pb, Sb, S,	6.889)	, , , ,
	"	6.445 }	v. Rath. J. 20, 974.
"		6.88	Harrington. J. 87, 1911.
Geocronite	Pb ₅ Sb ₂ S ₅	6.407 6.48, 15°	Apjohn. Dana's Min. Sauvage. Ann. des
11	"	6.45—6.47, 15°	Mines, (3), 17, 525. Kerndt. P. A. 65,
Plagionite	Pb4 Sb6 S18	5.40	802. Rammelsberg. P. A.
Epiboulangerite	Pbe Sb4 S15	6,809	47, 495. Websky, J. 22, 1198.
Semseyite	Pb, Sb, S1,	5.9518	Websky. J. 22, 1198. Sipöcz. Ber. 19, 95.
Freieslebenite	Pb ₂ Ag ₃ Sb ₃ S ₈	6.194	Hausmann. Dana's Min.
(("	6.280	v. Payr. J. 13, 746.
***************************************		6.85	Vrba. S. W. A. 63, 143.
" Diaphorite_	"	5.902	Zepharovich. S.W. A. 63, 143.
	•		

			
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Brongniardite	Pb Ag ₂ Sb ₂ S ₅	5.950, 18°	Damour. Ann. d Mines, (4), 16, 227
Chalcostibite	Cu Sb S ₂	4.748	H. Rose. Dana's
	"	5.015	Breithaupt. Dana's
Famatinite	Cu ₃ Sb S ₄	4.57	Stelzner. M. P. M. 1873, 242.
Guejarite	Cu, Sb, S,		Cumenge. B. S. M. 2, 201.
Tetrahedrite	Cu ₈ Sb ₂ S ₇	4.780	Wittstein. J. 8, 912 Sandmann. A. C. P.
66		4.90	89, 868. Kuhlemann. J. 9,
	"		884. Genth. Am. Phil.
Bournonite	Cu' Pb Sb S ₈		Soc. 1885. Zincken. J. 2, 724.
"	"	5.726—5.855 5.726—5.868	Bromeis. J. 2, 724. Rammelsberg. J. 2,
"	"	5.80	724. Field. J. 14, 874.
"	"	5.826 5.787—5.86	Wait. J. 26, 1147. Hidegh. J. 37, 1911.
	"	5.7659	Sipöcz. Ber. 19, 95.
" Artificial		5.719	Doelter. Z. K. M. 11, 29.
Berthierite	Fe Sb ₂ S ₄	4.048	Pettko. J. 1, 1159.
Silver bismuth glance*	Ag Bi S ₂	6.92	M. 8, 101.
Galenobismutite	Pb Bi ₂ S ₄	6.88	Sjögren. G. F. F. 4, 109.
Cosalite	Pb, Bi, S,	6.22-6.88	Frenzel. J. 27, 1288.
Beegerite	Pb ₆ Bi ₂ S ₂	7.278	König. J. 84, 1855.
Rezbanyite	Pb ₆ Bi ₂ S ₉	6.88	Frenzel. J. 86, 1885.
Chiviatite	Pb, Bi, S,	6.920	Rammelsberg. P.A. 88, 320.
Emplectite	Cu Bi S		Weisbach. J.19, 916.
Wittichenite	Cu, Bi S,	4.8	Hilger. J. 18, 870.
Klaprotholite	Cu ₆ Bi ₄ S ₉		Petersen. N. J. 1868, 415.
Aikinite	Cu' Pb Bi S ₃	6.757	Frick. P. A. 81, 580.
" T 1 111.	T) Di ci c	6.1	Chapman. J. 1, 1158.
Kobellite	Pb ₈ Bi Sb S ₆	6.29}	Satterherg. P. A. 55,
"	"	6.82	685.
		V. 140	Rammelsberg. J. P. C. 86, 840.

^{*} Alaskaite, a lead silver salt similar to this, has a sp. gr. 6.878. Koenig, Z. K. M. 6, 42.

3d. Miscellaneous Double and Oxy-Sulphides.

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Thallium potassium sulphide.	K Ti 8,	4.268	Schneider. P. A. 189, 661.
Iron potassium sulphide_ Sodium platinum sulphide	K Fe''' S ₂	2.568 6.27, 15°	Preis. J.P.C.107,10 Schneider. P. A
Potassium platinum sulphide.	K Pt ₂ S ₈	6.44, 15°	188, 604.
Stromeyerite	Ag Cu' S	6.26 6.255	Kopp. J. 16, 5. Stromeyer. Schw. J
Jalpaite	Ag ₃ Cu' S ₄	6.877 }	19, 825. Breithaupt. J. 11 682.
Sternbergite Silver gold su!phide	Ag Fe. S	4.215	Dana's Mineralogy Muir. B.S.C.18, 222
Argyrodite	Ag ₁₀ Au ₄ S ₁₁		Richter. Quoted by Winkler.
"	"	6.111 (12)	Winkler. J. P. C (2), 34, 187.
Christophite Guadalcazarite	Zn ₂ Fe S ₃		Breithaupt. B. H Ztg. 22, 27.
Bornite	Zn Hg ₆ S ₇ Fe Cu ₃ S ₂	5.030	Rammelsberg. Z. G S. 18, 19.
"	££		Forbes. J. 4, 758. Katzer. M. P. M
Iron copper sulphide. Artif.	Fe ₄ Cu ₉ S ₁₀	4.85	9, 404. Doelter. Z. K. M
Barnhardtite Chalcopyrite	Fe ₂ Cu ₄ S ₅ Fe Cu S ₄	4.521	11, 29. Genth. J. 8, 910. Forbes. J. 4, 759.
" Artificial		4.1-4.3	Dana's Mineralogy Doelter. Z. K. M
Iron copper sulphide. Artif.	Fe ₄ Cu ₄ S ₇	4.999 :	11, 29.
Furnace product. Cryst.	Fe ₅ Cu ₄ S ₉	i	Brögger. Z. K. M 3, 495.
Cubanite	Fe, Cu S,	4.042 }	Breithaupt. P. A 59, 325. Smith. J. 7, 810.
Chalcopyrrhotite	Fe, Cu S,	4.28	Blomstrand. Dana' Min., 2d Append
Carrollite	Co Cu S	4.58	Faber. J. 5, 840. Smith and Brush
Pentlandite	Fe Ni ₂ S ₃	4.6	J. 6, 782. Scheerer. P. A. 58
Horbachite	Fe ₈ Ni ₂ S ₁₅	4.48	816. Knop. N. J. 1878 528.
DaubreeliteBismuth nickel sulphide _	Fe Cr, S,	5.01 9.15	Smith. J.C.S.86,88
Voltzite Kermesite	4 Zn S. Zn O 2 Sb, S ₃ . Sb, O ₃	3.5-3.8	Vogl. J. 6, 786.

Castillite, Grünauite, and Stannite are omitted as having too indefinite composition

X. SELENIDES.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Naumannite	Ag ₂ Se	8.0	G. Rose. P. A. 14,
Zinc selenide	Zn Se	5.40, 15°	Margottet. J. C. S. 82, 570.
Cadmium selenide	Cd Se	8.789	Little. J. 12, 94.
44 44	"	5.80	Margottet. J. C. S. 82, 570.
Mercurous selenide Tiemannite	Hg. Se	8.877	Little. J. 12, 95.
Tiemannite	Hg Se	7.274	Dana's Mineralogy.
٠	"	7.1—7.87	l Kerl. J. 5. 837.
"	**	8.187	Penfield. A. J. S.
**	" ————————————————————————————————————	8.188 }	(3), 29, 449,
Lead selenide. Artificial	Pb Se	8.154	Little. J. 12, 95.
" " Clausthalite		6.8	Zinken. P. A. 8, 274.
Ferric selenide	Fe Se	A 22	
Nickel selenide	Ni Se	8 462	4: U. 12, 04.
Nickel selenide Cobalt selenide	Co Se	7.647	
Berzelianite	Cu' ₂ Se	6.71	Nordenskiöld. J. 20, 977.
Copper selenide	Cu Se	R 855	
Amenia trisalanida	Ae So	4 759	11 11 12 80.
Arsenic triselenide Bismuth triselenide	Ri So	6 89	Schneider. J. 8, 886.
ii ii	16	7 406	Little. J. 12, 95.
" Frenzelite	ii •	7.406 6.25, 21°	Frenzel. N. J. 1874, 679.
" Guanajua- tite.		6.62	Fernandez. Dana's Min., 8d App.
Tin monoselenide			Schneider. J. P. C.
	"	6.179, 0°	Ditte. C. R. 96, 1792.
Tin diselenide	Sn Se ₂	5.138	Little. J. 12, 95.
11 11	"	4.85	Schneider. J. P. C. 98, 286.
Eucairite	Cu' Ag Se	7.487.51	Nordenskiöld. J. 20, 977.
Crookesite	(Cu Ag Tl), Se	6.90	
Crookesite	(Pb Hg) Se	7.804—7.876	Dana's Mineralogy
Zorgite	(Pb Cu) Se	6.88	Pisani. J. 82, 1188.
	(Pb Cu), Se,	0.00	11 0000

XI. TELLURIDES.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Hossite		8.412 8.565 }	G. Rose. P.A. 18,64
66	"	8.178	Genth. J. 27, 1283 Becke. Z. K. M. 6 205.
Zinc telluride			Margottet. J. C. S 82, 570.
Cadmium telluride Coloradoite	Cd Te	6.20, 15°	ti t
Tin telluride	Sn Te	6.478, 0°	Ditte. O. R. 96, 1798
Altaite	Pb Te	8.159	G. Rose. P. A. 18, 64
Antimony telluride	Sb ₂ Te ₃	6.47 \ 180	Bödeker and Gie
Joseite Wehrlite	Bi ₂ Te	7.9247.986	Dana's Mineralogy Wehrle. Dana'
Tetradymite		7.237	Min. Genth. J. 5, 888. Jackson. J. 12, 770
"	"	7.941	Genth. J. 18, 744. Balch. J. 16, 794.
Calaverite	Au Te	9.048	Genth. Z. K. M. 2, 6
Sylvanite Petzite	Au Ag Te	7.948	Genth. J. 27, 1233
Tapalpite	Ag ₂ Bi ₂ S Te ₂	7.803	Rammelsberg. Z. G S. 21, 81.

XII. PHOSPHIDES.

NAME.	Formula.	Sp. Gravity.	Аптновиту.
Silver phosphide	Ag, P,	4.68	Schrötter. S.W.A. 1849, 301.
Zinc phosphide	Zn, P,	4.76	46 66
		4.72	Hayer. J. C. S. 32, 113.
Tin monophosphide	Sn P	6.56	Schrötter. S.W.A. 1849, 301.
tt tt	"	6.798	Natanson and Vort- mann. Ber. 10, 1460.
Tin diphosphide	Sn P ₂	4.91, 12°	Emmerling. Ber. 12, 155.
Chromium phosphide	Cr P	4.68	Martius. J. 11, 160.
Manganese phosphide	Mn, P,		Wöhler. J. 6, 359.
	Mn ₃ P	4.94	

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Iron phosphide	Fe, P	6.28	Hvoslef. J. 9, 285.
Nickel phosphide	Ni ₅ P	7.288	Freese. J. 20, 284. Jannetaz. J. C. S. 44, 651.
	Ni ₃ P ₃	i	Schrötter. S.W.A. 1849, 301.
Cobalt phosphide Tricopper phosphide	Cu, P	6.75	46 66
Copper monophosphide	41	6.850	Sidot. J. R. C. 5, 75.
Molybdenum monophos-			158.
phide. Tungsten hemiphosphide	w, P	5.207	168. Wöhler. J. 4, 847.
Palladium diphosphide	1 -		1849, 801.
Platinum diphosphide Iridium hemiphosphide *_	Îr, P	18.768	Clarke. A. C. J. 5, 281.
Gold phosphide	Au, P,	6.67	Schrötter. S. W. A. 1849, 801.
		i	

XIII. ARSENIDES.

Name.	Formula.	Sp. Gravity.	Authority.
Silver arsenide	Ag As	8.51	Descamps. J. Ph. C. (4), 27, 424.
Trisilver diarsenide	Ag ₃ As ₃	9.01	' ii ' u
Trisilver arsenide		7.47	Wurtz. Dana's Min., 8d App.
Tricopper diarsenide	Cu ₈ As ₂	6.94	Descamps. J. Ph. C. (4), 27, 424.
Dicopper arsenide	Cu. As	7.76	" "
" "Domeykite	"	7.75	Genth. J. 15, 708.
"	(t		88, 192.
Whitneyite	Cu ₉ As	8.408	Genth. J. 12, 771.
" Tricadmium arsenide	"	8.471 } 21	•
	"	1	Descamps. J. Ph. C. (4). 27, 424. Bödeker. B. D. Z.
Tin hemiarsenide Tin diarsenide	Sn As	6.56	Descamps. J. Ph. C.
Lead arsenide Trilead tetrarsenide	Pb As	9.55	(4), 27, 424.

^{*}Commercial "cast iridium." Contains several per cent. of the phosphides of rhodium and ruthenium, with possibly a little phosphide of osmium.

Name.	FORMULA.	Sp. Gravity.	Authority.
Trilead diarsenide	Ph ₃ As ₂	9.76	Descamps. J. Ph. C. (4), 27, 424.
Kaneite			Kane. Dana's Min.
Leucopyrite	Fe, As,	6.659 }	Breithaupt. P. A. 9,
T -31		6.848 }	115.
Lölingite	Fe As	6.246, in mass.	Behncke. J. 9, 881.
"		7.400	Hillebrand, A. J. S.
	********	1.400	(3), 27, 858.
Trinickel arsenide	Ni ₈ As	7.71	Descamps. J. Ph. C.
	_		(4), 27, 42 4 .
Niccolite	Ni As	7.663	Scheerer. P. A. 65,
46	ļ <i>"</i>	7 00 100	292.
"	"	1.89, 100	Ebelmen. Ann. d. Mines (4), 11, 55.
44		7 814	Genth. J. 86, 1829.
Rammelsbergite	Ni As	7.099—7.188	Breithaupt. Dana's
	•		Min.
"	"	6.9	McCay. J. 37, 1905.
Smaltite	Co As	6.84	Rose. J. 5, 836.
Skutterudite	Co As ₃	6.78	Scheerer. P. A. 42,
Antimony hemiarsenide	Qh An	R AR	553. Descamps. J. Ph. C.
Antimony beimarsemide-	50g A8	0.40	(4), 27, 424.
Allemontite	Sb As	6.18	Thomson. Dana's
	Ţ		Min.
"	"	6.208	Rammelsberg.
5.	.	0.45	Dana's Min.
Bismuth arsenide	ы ₈ чя ⁴	8.45	Descamps. J. Ph. C.
Gold arsenide	Au, As,	16 20	(4), 27, 424.
O'Rilevite	Cu. Fe. As.	7.848—7.428	Waldie. J. 24, 1133.
0 101103100 111111111111111111111111111			,, 5.21, 1100.
		!	

XIV. ANTIMONIDES.*

NAME.	Formula.	Sp. Gravity.	Authority.
Dyscrasite. Stibiotriargentite. " Dyscrasite. Stibiohexargentite.	"	9.611 } 9.77 } 10.027	Petersen. P. A. 187, 877.
Zinc antimonide	Zn SbZn ₃ Sb ₂	6.383	Cooke. P. M. (4), 19, 413.
Trizinc diantimonide Breithauptite Tin antimonide	Ni Sb	7.541	Breithaupt. Dana's Min. Bödeker. B. D. Z.

^{*} Compare also the table of alloys.

XV. SULPHIDES WITH ARSENIDES OR ANTIMONIDES.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Arsenopyrite	Fe S As	6.269	Kenngott, S. W. A. 9, 584.
"	"	6.21	Vogel. J. 8, 907.
"	"		Potyka. J. 12, 772.
"	66		Forbes. J. 18, 871.
"	"		Zepharovich. S. W.
			A. 56 (1), 42.
(("	6.05-6.07	A. 56 (1), 42. McCay. J. 87, 1905.
Pacite	Fe. S. As.	6.297)	Breithaupt and
11	Fe ₅ S ₂ As ₈	6.808 } }	Weisbach. B. H.
Glaucopyrite		, ,	Ztz. 25, 167.
Giadoopyrice	Fe ₁₃ S ₃ As ₂₄	1.101	Sandberger. J. P. C. (2), 1, 230.
Glaucodot	(Co Fe) S As	5.975—6.008	Breithaupt. P. A. 67, 127.
"	"	5.905-6.011	Schrauf and Dana.
Cobaltite	Co S As	80 88	S. W. A. 69, 153. Dana's Mineralogy.
Gersdorffite			0.0
66	4.4		Forbes. J. 21, 997.
46	"	6.1977	Sipöcz. Ber. 19, 95.
Ullmannite	Ni S Sb	6.506, 20°	Rammelsberg. P. A. 64, 189.
44	"	6.808 }	Jannasch. J. 36,
"	"	6.883 }	1832.
Corynite	,	5.994	Zepharovich. J. 18, 872.
Wolfachite	"	6.372	Sandberger. J. 22, 1193.
Alloclasite	Co ₈ S ₄ Bi ₄ As ₆	6.6	Tschermak. J. 19, 919.
"	"	6.23-6.5	Frenzel. J. 36, 1881.

XVI. HYDRIDES, BORIDES, CARBIDES, SILICIDES, NITRIDES, ETC.

Name	Formula.	Sp. Gravity.	AUTHORITY.
Sodium hydride	Na ₂ H	0.959	Troost and Haute- feuille. C. R. 78, 970.
Palladium hydride	Pd, H,	10.8088	Dewar. P. M. (4), 47, 884.
11 11 <u></u>	Pd, H	11.06	Troost and Haute- feuille. C. R. 78, 970.
Columbium hydride	Сь н	6.0 to 6.6 6.15 to 7.37	Marignac. J. 21, 214. Supposed to be metal.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Platinum boride Iron silico-carbide Titanium carbide Iron silicide Platinum silicide " Aluminum titanide Aluminum zirconide (?) Ammonia. Liquefled	Ti C, impure	5.10 6.611 14.1 18.97 3.11, 16° 3.629 .781, 15°.5	988. Shimer. J. A. C. 1, 4. Hahn. J. 17, 264. Colson. Ber. 15, 724. Memminger. A.C. J. 7, 172. Levy. C.R. 106, 66. Melliss. Göttingen Doct. Diss., 1870.
" "	" " " " " " " " " " " " " " " " " " "	.6492, —10° .6429, —5° .6864, 0° .6294, 5° .6280, 10° .6160, 15° .6089, 20° 5.28, 18°	D'Andreéff. Ann. (3), 56, 317 Friedel and Guérin. C. R. 82, 974. Stlvestri. Ber. 8, 1856.

XVII. HYDROXIDES.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Sodium hydroxide	Na O H	2.180	Filhol. Ann. (3), 21, 415.
" " ————	"	1.728	W. C. Smith. Am. J. P. 53, 145.
" "	2 Na O H. 7 H, O	1.405	
Potassium hydroxide	K O H	2.100	Dalton.
		2.044	Filhol. Ann. (8), 21, 415.
" "	46	1.958	W. C. Smith. Am. J. P. 58, 145.
Brucite	Mg (O H) ₂	2,86	Hermann. J. 14, 979.
"	46	2.876	Beck. J. 15, 718.
" Artif. cryst	"		Schulten. C. R. 101,
Zinc hydroxide	Zn (O H)	2.677	
" "		8.058	Filhol. Ann. (3), 21, 415.
Cadmium hydroxide. Cryst.	Cd (O H)3	4.79, 15°	Schulten. C. R. 101, 72.

			
Name.	Formula.	SP. GRAVITY.	Authority.
Calcium hydroxide			Filhol. Ann. (8), 21, 415.
Strontium hydroxide	Sr (O H) ₂ 8 H ₂ O	3.625 1.896 1.911, 16°	" " Filhol. J. P. C. 36,
Barium hydroxide	Ва (О Н) ₂	4.495	87. Filhol. Ann. (8), 21, 415.
11 11	Ba (O H) ₃ . 8 H ₂ O	1.656 2.188, 16°	" " " Filhol. J. P. U. 86,
Lead hydroxide	Pb (O H) ₂ . 2 Pb O	7.592, 0°	87. Ditte. J. C. S. 42, 928.
Lead oxyhydroxide	Pb (O H) ₂ O	6.267	Wernicke. J. P. C. (2), 2, 419.
Manganese hydroxide. Cryst.	Mn (O H) ₂	ļ	Schulten. C. R. 105, 1266.
Manganese oxyhydroxide_		2.596 {	Wernicke. J. P. C. (2), 2, 419.
Manganese hydroxide	Mn ₂ (O H) ₂ O ₃ Mn ₁₂ H ₂ O ₂₄	4 570 >	Rammelsberg. J.18, 878. Veley. J. C. S. 41,
" " "	Mn ₃₄ H ₁₆ O ₅₃	4.800 { }	65.
" " Turgite			Hermann. Dana's
"	"	4.681	Min. Bergemann. J. 12, 771.
"	" ,	4.14	Brush. A. J. S. (2), 44, 219.
Ferric oxyhydroxide	46	2.92 }	Brunck and Graebe. Ber. 13, 725.
" " Göthite_	66	4.11 }	Yorke. P. M. (8),
Limonite	Fe ₄ (O ₄ H) ₆ O ₈	4.24 3.6—4.0 8.908	27, 265–267. Dana's Mineralogy. Bergemann. Dana's
Ferric hydroxide	Fe ₂ (O H) ₆		Min. Yorke. P. M. (8),
" " Limnite_	"	2.69	27, 269. Church. J. 18, 879.
Nickelic oxyhydroxide	1 - 1 - 1		Wernicke. J. P. C. (2), 2, 419.
Cobaltic oxyhydroxide Heterogenite	Co ₅ O ₇ . 6 H ₂ O	ì	Frenzel. J. P. C. (2), 5, 404.
Copper hydroxide Disspore	Cu (O H),	8.868 8.89	Schröder. Dm. 1878. Jackson. A. J. S.
46	"	8.848	(2), 42, 108. Shepard. A. J. S.
Gibbsite	Al (O H)8	2.887	(2), 50, 96. Hermann. J. 1, 1164.
"		2.889	Silliman, Jr. J. 2, 889.
Stibiconite	Sb ₂ (O H) ₂ O ₃	5.28	Blum and Delffs. J. P. C. 40, 818.

Name.	FORMULA.	Sp. Gravity.	Authority.
Antimonic hydroxide	8b (O H) ₅	6.6	Boullay. Dana's Min.
Bismuth oxyhydroxide	Bi (O H), O	5.571	Wernicke. J. P. C. (2), 2, 419.
tt tt	٠	5.8, 20°	Muir, Hoffmeister, and Robbs. J. C. S. 89, 82.
Metabismuthic hydroxide	Bi (O H) O ₁	5.75, 20°	" " "
Uranyl hydroxide	U (O H) ₂ O ₂	5.926, 15°	Malaguti. J. P. C. 29, 233.
Eliasite	U (O H), O	4.087-4.237	Zepharovich. Da- na's Min.
Gummite	U (O H) ₆	3.9—4.20	Breithaupt. Dana's Min.
Chalcophanite	Zn Mn ₂ O ₅ . 2 H ₂ O	3.907	Moore. J. C. S. 36,
Namaqualite Hydrotalcite	Cu, Al (OH), 2H,O	2.49	Church, J. C. S.28.1.
Hydromicite	WINES (OIL) 9. 9 H	46UX	Mermann. J. 1,1100.

XVIII. CHLORATES AND PERCHLORATES.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen chlorate, or chloric acid.		·	Kammerer.* P.A. 138, 390.
Sodium chlorate	Na Cl Os	2.467	Berthelot.
Potassium chlorate	к сі о	2.289 2.82643, 4°	Bödeker. B. D. Z. Playfair and Joule. J. C. S. 1, 187.
" "	"	2.850, 17°.5	Kremers, J. 10, 67.
" "	"	2.825	Buignet, J. 14, 15.
" "	"	2.323	Holker. P. M. (3), 27, 213.
41 41	"	2.825, m. of 5)	•
46 46	"	2.246) Ex. }	Schröder. Dm. 1873.
" "		2.864 tremes	
" "		2.167	T P 53 145
Silver chlorate	Ag Cl O ₃	4.430	Schröder. J. 12, 12.
" "	"	4.4 39	Topsoë. B. S. C. 19, 246.
Thallium chlorate	TI CI O,	5.5047, 90	Muir. C. N. 38, 156
Strontium chlorate	66	8 154 (Schröder. Dm. 1872
Barium chlorate	Ba Cl, O, H, O	2.988, 15°	Bödeker. B. D. Z.
"		8.188	Schröder. Dm. 1873.
Lead chlorate	Pb Cl ₂ O ₆ . H ₂ O	4.018	
" "	"	4.063	1

^{*}Kammerer also gives figures for other hydrates of chloric acid.

Name.	FORMULA.	Sp. Gravity.	Аптновіту.
Lead chlorate Mercurous chlorate Mercuric chlorate	1	1	246.
Basic mercuric chlorate	Hg, Cl, O ₇ . H, O	5.151	Topsoë. B. S. C. 19, 246.
Hydrogen perchlorate, or perchloric acid.	H Cl O ₄ . H ₂ O		
Lithium perchlorate	Li Cl O ₄	1.841	Wyrouboff. B. S. M. 6, 53.
Potassium perchlorate	K Ci O.	2.528 }	Kopp. J. 16, 4.
11 11	66	2.520, m. of 6 2.510, Ex. 2.587, tremes	Schröder. Dm. 1878.
Ammonium perchlorate Thallium perchlorate	Am Cl O ₄	1.885, 25°	Stephan. F. W. C. Rosece. C. N. 14, 217.

XIX. BROMATES.

NAME.	Formula.	Sp. Gravity.	Authority.
Sodium bromatePotassium bromate	Na Br O ₃ K Br O ₈	8.271, 17°.5	Kremers. J. 10, 67.
Silver bromate	"	5.1988, 16° 5.2158, 18°	246. Storer. F. W. C Topsoë. B. S. C. 19,
Zinc bromateCadmium bromate	Cd Br ₂ O ₆ . 2 H ₂ O	2.566 8.758 5.815	246. Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246.
Basic mercuric bromate Calcium bromate Strontium bromate	Ca Br. O. H. O Sr Br. O. H. O	3.329 3.778	Topsoë. C. C. 4, 76.
Barium bromate	Ba Br. O. H. O	4.0395, 17° 8.9918, 18° 8.820 4.950	Storer. F. W. C. Topsoë. C. C. 4, 76.
Nickel bromate Copper bromate	Ni Br. O. 6 H. O	2.575 2.588	66 66 66 66

XX	PATEGOI	AND	PERIODATES.

Name.	FORMULA.	Sp. Gravity.	Authority.
Hydrogen iodate, * or iodic acid. " Sodium iodate	H I O ₈	4.869, 0° } 4.816, 50°.8_ }	Ditte. Ann. (4), 21, 22.
Potassium iodate	K I O	8.979, 17°.5	Kremers. J. 10, 67.
" "	"	2.601	Ditte. Ann. (4), 21,
			Clarke.
Ammonium iodate	Am 1 O ₃	3.3372, 12°.5 } 3.3085, 21°	Fullerton. F. W. C.
Silver iodate. Precip " Cryst. from ammonia.	Ag I O ₃		
Magnesium iodate	Mg I, O, 4 H, O	3.283, 18°.5	Bishop. F. W. C.
Barium iodate Lead iodate	Ba I ₂ O ₆	5.2299, 18° 6.209)	Fullerton. F. W. C.
11 11 11 11 11 11 11 11 11 11 11 11 11	"	6.248 }	Schröder. Dm. 1873.
		6.155, 200	Fullerton. F. W. C.
Nickel iodate			44 44
Cobalt iodate	Co I, O ₆ . H, O Co I, O ₆ . 6 H, O	5.008, 18° 3.6659, 18°.5	• • • • • • • • • • • • • • • • • • • •
Didymium periodate	Di I O ₅ . 4 H ₂ O	8.755 3.761 21°.2	Cleve. U. N. A. 1885.
Samarium periodate	Sm I O ₅ . 4 H, O	8.798, 21°.2	11 11

XXI. THIOSULPHATES,† SULPHITES, DITHIONATES.

Name.			FORMULA.		Sp. Gravity.	Aur	HORITY.
Sodium t	hiosulpha " "	te	Na ₂ S ₂ O ₃ . 5 H		1.672 1.786, 10° 1.784 1.723	Kopp. Schiff.	J. 14, 15. J. 8, 45. J. 12, 41. mith. Am.
Magnesiu Calcium	m thiosul thiosulphs	phate _ ite	K ₂ S ₂ O ₃ 6 H Ca S ₂ O ₃ 6 H ₂	0 0	2.590 1.818, 24° 1.8715, 18°.5 } 1.8728, 16° }	Oliver.	53, 148. J. 14, 15. F. W. C. son. F.W.C.
Barium t	n thiosulpl hiosulpha iosulphate	te	Sr S ₂ O ₃ . 6 H ₂ Ba S ₂ O ₃ . H ₂ O Co S ₂ O ₃ . 6 H ₂		2.1778, 17° 8.4461, 16° 8.4486, 18° 1.985, 25°	" Oliver.	" F. W. C.
Hydroger phurou		or sul-	H ₂ S O ₃ . 6 H ₂ (0	1.147, 15°, cryst.	Geuther 224, 2	. A. C. P.

^{*} For various hydrates of iodic acid see Kaemmerer, P. A. 138, 390.

[†] Commonly called hyposulphites.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium sulphite Cuprous sulphite. Red " White.	Na ₂ S O ₃ . 10 H ₂ O Cu ₂ S O ₃ . H ₂ O	1.561 4.46 3.83, 15°	Buignet. J. 14, 15. Etard. Ber. 15, 2288.
Hydrogen dithionate, or dithionic acid.	H ₂ S ₂ O ₆ + aq	1.847	Gay Lussac. Gm. H. 2, 175.
Lithium dithionate	Li, S, O ₆ . 2 H, O Na, S, O ₆ . 2 H, O	2.158 2.189	Topsoë. C. C. 4, 76. Topsoë. B. S. C. 19, 246.
Potassium dithionate	K ₂ S ₃ O ₆	2.175, 11° 2.277	Baker. C. N. 86, 208. Topsoë. B. S. C. 19, 246.
Ammonium dithionate Silver dithionate Magnesium dithionate	Am ₂ S ₂ O ₆	1.704 3.605 1.666	Topsoë. C. C. 4, 76.
Zinc dithionate Cadmium dithionate Calcium dithionate	Zn S ₂ O ₆ . 6 H ₂ O Cd S ₂ O ₆ . 6 H ₂ O	1.915 2.272	246. Topsoë. C. C. 4, 76.
46 46		2.176, 11°	Topsoë. B. S. C. 19, 246. Baker. C. N. 86, 208.
Strontium dithionate Barium dithionate	Ba S, O, 2 H, O	2.878 4.586, 18°.5 8.142	Topsoë. C. C. 4, 76. Baker. C. N. 36, 203. Topsoë. C. C. 4, 76.
Lead dithionate	"	3.055, 24°.5 3.245 3.259, 11°	Stephan. F. W. C. Topsoë. C. C. 4, 76. Baker. C. N. 36, 203.
Manganese dithionate Iron dithionate Nickel dithionate	Fe S, O ₆ . 7 H, O Ni S, O ₆ . 6 H, O	1.757 1.875 1.908	Topsoë. C. C. 4, 76.
Cobalt dithionate	Co S ₂ O ₆ . 8 H ₂ O	1.815	

XXII. SULPHATES.

1st. Simple Sulphates.

Name.			Fo	RMULA.	SP. GRAVITY.	AUTHORITY.	
Hydrogen sulphuric		or	H ₂ S O ₄		1.857	Bincau. Ann. (8), 24, 387.	
16	"		66		1.8485	Ure. Schw. J. 35, 444.	
66	"		"		1.854, 0°)		
16	"		"		1.842, 120 }	Marignac. J. 6, 325.	
"	"		"		1.834, 24°)		
"	"		"		1.857, 0°	Kolb. Z. A. C. 12, 888.	
44	"		66		1.85289, 0°	Marignac. Ann. (4), 22, 420.	
"	44		"		1.8854, 18°	Kohlrausch. P. A. 159, 248.	
ıi	44		46		1.82780, 28°	Nasini. Ber.15,2885.	

:	Name.		F	RMULA.	SP. GRAVITY.	AUTHOBITY.
Hydrogen sulphu	sulphate	, or	H, SO	4	1.854, 0°	Schertel. Ber. 15, 2784.
er.	"		"		1.8384, 15°	Lunge and Naef. Ber. 16, 953.
"	"		"		1.88295, 19°.0	Mendelejeff. Ber. 17, ref. 304.
"	"		"		1.8528, 0°	Mendelejeff. Ber. 19, 380.
**	"		"		. 1.83904, 15°)	1
" -	"		"		_ 1.83562, 20°	Perkin. J.C.S. 49,
"	66		"		1.83265, 25°	777.
"	"		H, S O	. Н, О	1.784, 80	Wackenroder. J. 2, 249.
"	"				1.7948, 0°	
66	"		"		1.77806, 15°)	
66	66		•		1.77423, 20°	Perkin. J. C. S. 49
"	"		"		1.77071. 250	777.
"	"		H, S O	. 2 H, O	1.62	Watts' Dictionary.
**	"		'		1.6655, 0°	Mendelejeff. Ber. 19, 380.
"	66		•		1.65084, 15°)	
66	"		"		_ 1.64754, 20°	Perkin. J. C. S. 49
"	"		_ "		_ 1.64467, 25°)	777.
ш	ш		H; SO	4. 8 H ₂ O	_ 1.55064, 15°)	/ " "
44	"				_ 1.54754, 20°	
	",,		TT 0 "		1.54493, 25°	TT TS:
Hydrogen Hydrogen	tetrasulph	ate	H, S, O	+ 8 S O ₃	1.9	Watts' Dictionary. Weber. P. A. 159, 825.
Lithium s	ulphate	-	Li, SO	4	2.210 2.21, 15°	Kremers. J. 10, 67. Brauner. P. M. (5)
"	**		1:00		43.00	11, 67.
"			Tu' 2 0	₄ . н ₃ О	2.02	Troost. J. 10, 141.
"			1		2.052, 210]	Data TI N
"	"				2.066, 20° }	Pettersson. U. N.
					2.462	
"	"		114250	=	i	Schröder.
••	"		"		2.67	Breithaupt. Quoted by Schröder.
"	"		"		2.78	Cordier. Quoted by Schröder.
"	"		"		2.640	Thomson. Ann. Phil. (2), 10, 435.
"	"		"		2.6318	Karsten. Schw. J.
**	44		"		2.597	65, 894. Playfair and Joule.
"	"		"		2.629	M. C. S. 2, 401. Filhol. Ann. (8), 21, 415.
"	44		"		2.654 }	Kremers. J. 5, 15.
"	"		u			Crystallized at dif-
66	"		"			ferent tempera-
66	"		"		2.684	tures.
66	"		66		2.698, m. of 8	
	,					226.

NAME.		F	ORMULA.	Sp. GRAVITY.	AUTHORITY.	
Sodium sulphate		Na ₂ S O ₄		2.681, 20°.7	Favre and Valson. C. R. 77, 579.	
66	44		"		2.677) 150 (Pettersson. U. N.
66	**		"		2.687 17° {	A. 1874.
44	66				2.66180, cryst.	Α. 1014.
44	44		"		at 40°. 2.66372, cryst. at 110°	Nicol. P. M. (5), 15, 94.
44	"		"		2.104, at the	Braun. J. C. S. (2),
44	"		Na, S	O4. 10 H ₂ O	melting p't. 1.4457	13, 31. Hassenfratz. Ann.
**	"			"	1.350	28, 8. Thomson. Ann. Phil. (2), 10, 435.
"	**				1.469, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"	•••••			1.520	Filhol. Ann. (8), 21, 415.
44	"			"		Schiff.
"	"			"		Buignet. J. 14, 15. Stolba. J. P. C. 97,
"	"			"	1.4608 }	Stolba. J. P. C. 97,
**	""				1.4595}	508.
"	**			"	1.455, 26°.5	Favre and Valson. C. R. 77, 579.
14	"		•	"	1.485, 19° }	Pettersson. U. N.
44	46			"	1.492, 200 }	A. 1874.
Potassium	a sulph	ate	K.SC) ₄	2.686	Wattson.
44			-3 ""		2.4078	Hassenfratz, Ann.
			•			28, 8.
"	"		"		2.880	Thomson. Ann. Phil. (2), 10, 485.
"	44		"		2.6282	Karsten. Schw. J. 65, 894.
· · ·	44		"		2.400	82, 234.
ti.	**		"		2.662	Kopp. A. C. P. 86, 1.
	"		"			Playfair and Joule. M. C. S. 2, 401.
11	"				2.65606, 4°	J. C. S. 1, 182.
"	"		"		2.625	Filhol. Ann. (8), 21, 415.
		Cryst	"		2.644 }	Penny. J. 8, 888.
**	**	After fu-	"		2.657 }	= ====, = = = = = = = = = = = = = = =
44	44	sion.	"		2.676	Holker. P. M. (8),
"	"		"		2.658	27, 213. Schiff. A. C. P. 107, 64.
44	"		"		2.658	Schröder. P. A. 106, 226.
"	66		"		2.572	Buignet. J. 14, 15.
64	46				2.645	Stolba. J. P. C. 97, 508.
et	. 46		"		2.648	Topsoë and Christ- iansen.

	Name.	,	. F	ORMULA.	Sp. Gravity.	AUTHOBITY.
Potassium	sulphat	e	K, S 0	4	2.660, 17°.1	
"	- "		"		2.667, 18°.2	Pettersson. U. N. A.
"	46		"		2.669, 18°.2	1874.
44	**		".		2.635, 18°.5	Richardson. F. W.C.
"	46		46		2.658. 14°	Wise. F. W. C.
"	"		"		2.715	W. C. Smith. Am
"	"		"		2.1, fused	J. P. 45, 148. Quincke. P.A. 188
66	**		"		9 0051 00	141.
66	44		"		2.6651, 0°	
66			44		2.6627, 10°	
66	"		"		2.6603, 20°	1
44	61		"		2.6577, 80°	
"	"		"		2.6551, 40°	
"	"		"		2.6522, 50° }	Spring. Ber. 15
"	"				2.6492, 60°	1940. Details in
"					2.6456, 70°	Bull. Acad. Bel
	"		"		2.6420, 80°	gique IV., No. 8
"	"		"		2.6866, 900	1882.
"	"		"		2.6811, 100° j	
"	Not	pressed_	66		2.653, 210)	
1 66	Once		• "		2.651, 220 }	Spring. Ber. 16
iı	Twic	e "	` 16		2.656, 220)	2724.
Potassium	••	-		7	2.277	Jacquelain. A. C P. 32, 284.
Rubidium	sulphat	e	Rb, S (),	8.639, 16°.8	Pettersson. U. N. A
"	- 66		16		3.641, 16°.8	1874.
"	46		"		8.6438, 00	10.2
66	"		44		8.6402, 10°	
	"		"		8.6367, 200	
66	44		"	•	3.6888, 80°	
**	"		"		3.6299, 40°	
"	44		"		8.6256, 500	Spring Dec 15
**	66		**		3.6220, 60°	Spring. Ber. 18
"	44		"		3.6181, 70°	1940. Details i
**	**		"			Bull. Acad. Bel
"	"		"		3.6142, 80°	gique IV., No. 8
44	**		"		3.6089, 90°	1882.
Casium su					8.6036, 100° J	
	•			0,	4.105, 19°.2 1.7676	Pettersson, U. N A. 1874. Hassenfratz. Ann
	F					
	66		16		1.76)	28, 8.
44	44		**		1.78	Kopp. J. 11, 10.
66	. "		44		1.750	
44	66		"		1.76147, 4°	Playfair and Joule M. C. S. 2, 401.
u	**	3	44		1.628	Playfuir and Joule J. C. S. 1, 188.
					1.020	Schiff. A. C. P. 107
64	"		"		1.771, m. of 2_	Schröder. P. A. 106 226.
**	ш		"	~~~~~	1.750	Buignet. J. 14, 15.
66	"		"		1.770, m. of 4_)
66	66		"		1.766 extremes	Pettersson. U. N
**	"		44		1.775 17°.9-18°.6	A 10-4
"	66		46		1.7) A. 1874. W. C. Smith. Am

Ammonium sulphate			Fo	BMULA.	Sp. Gravity.	AUTHORITY.
			Am, S	D ₄	1.765, 20°.5 1.778	Wilson. F. W. C Schröder. Ber. 11
**	"		"		1.7763, 0°	2211.
**	**				1.7748, 10°	
46	46		"			
66	16		44			
"	46		"			
££	"		" "			Spring. Ber. 15,
"					1.7667, 60° 1.7641, 70°	1940. Details in Bull. Acad. Bel
44	**		46			gique. IV., No. 8,
44	**		"		1.7598, 90°	1882.
"	**		**		1.7598, 90° 1.7567, 100°	
**		pressed_	. "		1.778, 20°)	
"	Onc		44		1.750, 220 }	Spring. Ber. 16,
" **		се "			1.760, 220)	2724.
	ite lphate		Am, S	O ₄ . H ₂ O	1.72—1.78 5.341	Dana's Mineralogy. Karsten. Schw. J.
"	риасс		11g ₂ 5 0	4	5.322	65, 894. Playfair and Joule.
	"		٠.		5.410	M. C. S. 2, 401. Filhol. Ann. (3),
"	"		"		5.425	21, 415. Schröder. P. A. 106,
16	"		"		5.49 } 110 {	226. Pettersson. U.N.A.
"	"		"		5.54	1874.
Thallium	ı sulphat	θ	T1, 8 O,		6.77	Lamy. J. 15, 186.
	"		- " -	·	6.603	Lamy and Des Cloi- zenux. Nature 1, 116.
66	46		" -		6.79, 17°.8 6.81, 17°.2 }	
a	44				6.81, 17°.2 }	Pettersson. U.N.A.
" Glucinur	" n sulpha	te	G1 8 0,		6.83, 17°) 2.448	1874. Nilson and Petters-
"	66		G1 S O4.	4 Н, О	1.725	son. C. R. 91, 232. Topsoë. C. C. 4, 76.
**	66		"		1.6748, 220	H. Stallo. F.W. C.
"	"		44		1.718	Nilson and Petters- son. C.R. 91, 232.
Magnesit	ım sulph	ate	Mg S O		2.6066	Karsten. Schw. J. 65, 894.
**	"		**		2.706, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
44	"		"		2.628	Filhol. Ann. (8), 21, 415.
"	"		"			Pape. P.A.120,367.
"	46 46		"		2.770, 13°.8	Pettersson. U.N.A.
"	"		"		2.790, 14	1876. Sehröden I P.C.
".	"		"		2.400	Schröder. J. P. C. (2), 19, 266. Two
**	"		"		2.829	modifications.
"	"		"		2.709, 15°	Thorpe and Watts. J. C. S. 87, 102.
"	"		Mg S O	. Н. О	2.517, native	Bischof. Dana's Min.

Name.		For	MULA.	Sp. Gravity.	AUTHORITY.		
Magnesium sulphate			Mg S O ₄ . H ₂ O		2.281, 16°	Pape. P. A. 120,	
"	"		"		2.389, 14°)	869. Pettersson. U. N. A.	
44	44		"		2.840, 16°.5	1876.	
"	"		46		2.885	Schröder. J. P. C. (2), 19, 266.	
46	"		"		2.478, m. of 2_	Playfair. J. C. S. 87, 102.	
"	46		"		2.445, 15°	Thorpe and Watts. J. C. S. 87, 102.	
"	"		Mg SO4.	_	2.279	Playfair. J. C. S.	
u	"		"		2.873, 15°	Thorpe and Watts. J. C. S. 87, 102.	
"	14		MgSO4.	5 H ₂ O	1.869, m. of 2_	Playfair. J. C. S. 87, 102.	
"	**		Mg 8 0	6 H. O	1.751	(1 (1	
"	"				1.751 1.784, 15°	Thorpe and Watts. J. C. S. 87, 102.	
"	T	wo modi-	61		1.6151)	Schulze. P. A. (2),	
"		fications.	"		1.6151 }	81, 229.	
"	44		Mg S O4.	7 H ₂ O	1.6603	Hassenfratz. Ann. 28, 3.	
"	44		**		1.751	Mohs. See Böttger.	
"	46		"		1.674	Kopp. A. C. P. 86, 1.	
. "	46		"		1.660	Playfair and Joule. M. C. S. 2, 401.	
"	"		"		1.6829, 4°	Playfair and Joule. J. C. S. 1, 188.	
"	46		"		1.751	Filhol. Ann. (8),21, 415.	
"	44		"		1	Schiff. A. C. P. 107, 64.	
"	"		"		1.675	Buignet. J. 14, 15.	
"	"		"		1.686, 15°.5	Forbes. P. M. 82, 185.	
"	44		"		1.665, 15°.5	Holker. P. M. (3), 27, 213.	
44	"		"	·	1.701, 16°	878.	
**	66		"		1.684, 15°.4 1.691, 15°.5	Pettersson. U. N. A.	
**	"		"		1.691, 15°.5	1876.	
"	"		"		1.680	Schröder. Dm. 1878.	
44	"		"		1.675	Schröder. J. P. C. (2), 19, 266. W. C. Smith. Am.	
44	"		"		1.682	J. P. 53, 148.	
"	"		"		1.678, 15°	J. C. S. 87, 102.	
	-		_		8.681, m. of 2_	Playfair and Joule. M. C. S. 2, 401.	
"	"		-		3.400	65, 894.	
**	"	·	" ·		8.400	21, 415.	
"	"	·	- "		8.485, 16°	Pape. P. A. 120, 867.	

Name.			Form	ULA.	Sp. Gravity.	AUTHORITY.
			Zn S O		8.520)	
46	- 11		"		8.552 }	Schröder. J. P. C.
44	44		"		3.580)	(2), 19, 266.
46	44		"		3.6285, 15°	Thorpe and Watts. J. C. S. 37, 102.
"	44		Zn S O ₄ . H	I, O	8.215, 16°	Pape. P. A. 120, 869.
"	44				8.076	Schröder. J. P. C. (2), 19, 266.
"	. 44		"		8.259	Playfair. J. C. S. 37, 102.
44	"		tt.		8.2845, 15°	Thorpe and Watts. J. C. S. 37, 102.
**	44		Zn S O. 2	н. О	2.958, 15°	"
46	**		Zn 8 0. 5	Н. О	2.206, 15°	11 11
1.5	"		Zn S O. 6	H, O	2.056	Playfair. J. C. S.
"	"		**		2.072, 15°	87, 102. Thorpe and Watts. J. C. S. 87, 102.
"	"		Zn S O ₄ . 7	H, O	1.912	Hassenfratz. Ann. 28, 8.
44	"		"		2.036	Mohs. See Böttger.
44	44		"		1.931, m. of 4_	Playfair and Joule. M. C. S. 2, 401.
44	14		64		2.086	Filhol. Ann. (8), 21, 415.
"	"		66		1.958	Schiff. A. C. P. 107, 64.
44	"		"		1.957	Buignet. J. 14, 15.
u	"		"		1.9584	Stolba. J. P. C. 97,
u	"		"		1.976, 15°.5	508. Holker. P. M. (8), 27, 218.
"	**		"		1.901, 16°	Pape. P. A. 120, 374.
44	46		"	_	2.015	Schröder. Dm. 1878.
44	"		44		1.958}	Schröder. J. P. C.
**	46		"		1.955}	(2), 19, 266.
16	44		"		1.961	W. C. Smith. Am.
e.	**		"		1.974, 15°	J. P. 58, 148. Thorpe and Watts. J. C. S. 87, 102.
Cadm	ium sul	phate	Cd S O4		4.447	Schroder. J. P. C. (2), 19, 266.
"		"	Caso. I	I. O	2.989	Buignet. J. 14, 15.
		"	8 Cd S O.	8 H. O.	8.05, 120	
Merci	urous su	lphate	Hg, S O.		7.560	Playfair and Joule.
¥		. b a .	TT- 60		0.400	M. C. S. 2, 401.
Calcin	uric sulj um suln	hate hate	Hg S O ₄		6.466 2.9271	Karsten. Schw. J.
Calch	•	nave	- "			65, 89 4 .
		"			2.955	Neumann. P. A. 23, 1.
					8.102	Filhol. Ann. (8), 21, 415.
41		" Artificial cryst.	"		2.969	Manross. J. 5, 9.
40	•	" Anhydrite	l "		2.988	Schrauf. J. 15, 756.
	6 s	G				

	NAMI	£.	F	ORMULA.	SP GRAVITY	A
drite.	เป็กโกล		FORMULA.		Sp. Gravity.	AUTHORITY.
					· ·	Fuchs. J. 15, 755.
	"		"		$\left\{ \begin{array}{c} 2.736 \\ 2.759 \end{array} \right\} \; \; \right\}$	
"	"				2.759 } }	Two lots. Schröder
"	"	4				Dm. 1878.
		Artificial cryst.			2.98	Gorgeu. Ann. (6) 4, 515.
"	"		2 Ca S	O4. H2 O	2.757	Johnston. P. M (2), 13, 825.
46	"		Ca S	O4. 2 H, O	2.322	Leroyer and Dumas
66	"				2.810	Mohs.
"	44				2.807	Breithaupt. Schw. J 68, 291.
. 44	**				2.881	Filhol. Ann. (3) 21, 415.
"	"	Gypsum_		"	2.817, m. of 15.	Kenngott, J. 6, 844
"	46			"	2.8057	Stolba. J. P. C. 97
44	"	Powder		"		508.
**	66	104461			2.2745, 19°.4	
**	"	Splinters _			2.8228, 18°.2	Pettersson. U. N. A
44		opinion -			2.8086, 18°	1874.
Strontium sulphate. Celes-			8-80		2.8223, 18°) 8.978	Profitherest D.
tite.	u.	"	bi 0 0			Breithaupt. Dana'
"	"				8.9598	Beudant. Dana' Min.
"	"	"	66		3.96	Hunt. Dana's Min
44	"	"	"		8.86	Mohs.
"	"				8.962, 15°	Kopp.
••	••	"	••		8.955	Neumann. P. A
"	**	Artificial cryst.	46		3.927	28, 1. Manross. J. 5, 9.
46	"	Cryst.	"		8.949	G-11 D
"						Schröder. P.A.E. ganz. Bd. 6, 622
	"	Ppt	46		8.5888	Karsten. Schw. J 65, 894.
"	"	۰ ۲۰	46		8.770	Filhol. Ann. (8), 21 415.
44	"	"	"		3.707	Schröder. P. A. 106 226.
"	"	Ppt. ig-)	"		8.6679) 100	
"	"	nited.	66		8.6949 18°	
"	"	unignited.	44		8.7888	Schweitzer. Proc
"	"	"	"		3.9502 2.0514 18°	Amer. Asso. 1877
46	"	"	"		0.9014	201.
44	"	"	"		8.9702 }	
44	"	Artif. cryst	"		8.9	Gorgeu. Ann. (6)
Barium sulphate			Ba S C),	4.42	4, 515. Breithaupt.
44	71		"		4.446	Mohs. See Böttger
"	"		"		4.2008	Karsten. Schw. J
44	"		**		4.4695, 00	65, 894.
"	"	Barite	"		4.429	Neumann. P. A
44	"	44	66		4.4778) . ex-	28, 1.
46	"	"	46		4.4872 tremes of 7.	G. Rose. P. A. 75

Name.			For	MULA.		Sp. GRAVITY.	AUTHORITY.	
Barium	sulph	ate. Barite) Ba S	0, .			4.4794 \	
**	-66	powder.	} "				4.4864 }	G. Rose. P. A. 75,
66		Precip.	"				4.5271	3 409.
46	46	44	"				4.5258 }	11
"	Le	Artif. cry	t. "				4.179	Manross. J. 5, 9.
**	44		111				4.022)	Precipitates in dif-
44	44		"			1	4.065	ferent conditions.
46	64					1	4.512	Schröder. P. A.
"		D	1 "			1	· · · (106, 226.
	"	Ppt. ignite	4.1				4.2942	0.1 77 .
**	41	Ppt. drie	1 "				4.2688	Schweitzer. Univer-
"	66	at 95°.	ii			I	18°	sity of Missouri.
"	"	Ppt	- ::				4.4591	Special pub.,1876.
"	41	"	·-l ::				4.4881 J	
"			·-` ;;				4.8958 } 14°.9	1)
"	"	"	- "				4.8969 \$ 14.0	E. Wiedemann. P.
"	"		- "				4.8962 \ 14°.5	M. (5), 15, 871.
"	"		·-I				4.0901)	1
••	••	Artif. cry	t. ··				4.44-4.50	Gorgeu. Ann. (6),
Taad an	Inhat	_	DLQ	Λ			6.298	4, 515. Mohs.
Tesm an	Thurs	e	- 105	4-			6.1691	Karsten. Schw. J.
••	••		-				0.1091	65, 894.
"	"		- "				6.80	Filhol. Ann. (8), 21, 415.
66	46		14			- 1	6.85	Smith. J. 8, 969.
44	66		46				6.20	Field. J. 14, 1022.
11	61	Native	- "				6.829)	Schröder. P. A. Er-
46		Precip					6.212	ganz. Bd. 6, 622.
46	66		[] "				5.96, 17°.1)	Pettersson. U. N.
66	66		- "				5.97, 16°.8 }	A. 1874.
**	41	Artıf. crys	t. "				6.16	Gorgeu. Ann. (6),
		•						4, 515.
Mangan	ese su	lphate	_ Mn S	0,			8.1, 14°	Bödeker. B. D. Z.
ដ		14	_	•			8.192, 16°	Pape. P. A. 120,
							•	ā68.
"			_ "		·		2.954	Schröder. Dm. 1878.
"		46	_				2.975	Schröder. J. P. C.
								(2), 19, 266.
"			- "				8.235, 14°.6	Pettersson. U. N.
"		"	"				8.260, 14°	A. 1876.
**		"	"				3.886	Playfoir. J. C. S.
						_	3. 2 82, 15°	87, 102. Thorpe and Watts.
			1					J. C. S. 87, 102.
"			_ MLnS	O ₄ .	H, O		2.870, 14°.2	
46				"			2.908, 15°.4	Pettersson. U. N.
"		"		"			2.905, 14°.9	A. 1876.
16			-	it			8.210	Playfair. J. C. S. 87, 102.
**		"	-	"			2.845, 15°	Thorpe and Watts. J. C. S. 87, 102.
44		" Szmiki	.e	"			8.15	Schröckinger. J. 30, 1296.
41		"	_ Mn S	O ₄ .	2 H ₂ O		2.526, 15°	Thorpe and Watts. J. C. S. 87, 102.
**		16	Mng	Ω	8 H O].	2.856, 15°	" "
66			Mng	ŏ"	4 H, O		2 261	Topsoë. C. C. 4, 76
				-4·	- AL O	'	~.~~.	20pa00. 0.0.2,10

			1		 	
	Name.		Formula	١.	Sp. Gravity.	AUTHORITY.
Mangane	se sulph	nate	Mn SO ₄ . 5 H,	0	1.884	Gmelin.
**	16		• "		2.087 }	Kopp. A. C. P.
46 46	"		"		2.095	86, 1.
"					2.059, 16°	Pape. P. A. 120, 872.
"	"		46		2.099, 16°.2	T) - 44
"	"		"		2.103, 17°.6 2.107, 15°.2	Petterssen. U. N. A.
"					2.107, 10°.2)	1876.
					2.108, 15°	Thorpe and Watts. J. C. S. 87, 102.
		'	1		2.841	21. 415.
66	"		•		8.188	M. C. S. 2, 401.
46	"		"		8.48	Playfair. J. C. S. 37, 102.
66	"		"		8.846, 15°	Thorpe and Watts. J. C. S. 87, 102.
46	"		Fe S O ₄ . H ₂ O		8.047	Playfair. J. C. S. 87, 102.
"	"		. "		2.994, 15°	Thorpe and Watts. J. C. S. 87, 102.
66	66		Fe S O. 2 H.	0	2.778, 150	" "
44	"		Fe S O4. 3 H2	0	2.778, 15° 2.268, 16°	Pape. P. A. 120, 871.
"	"		Fe S O ₄ . 4 H,	0	2.227, 15°	Thorpe and Watts. J. C. S. 87, 102.
"	"	*****	Fe S O4. 7 H2	0	1.8399	Hassenfratz. Ann. 28, 8:
44	44				1.857, m. of 8_	Playfair and Joule. M. C. S. 2, 401.
66	44		"		1.8889, 4°	Playfair and Joule. J. C. S. 1, 188.
44	"		44		1.904	Filhol. Ann. (8), 21, 415.
44	"		"		1.884	Schiff. A. C. P. 107, 64.
44	**		"		1.902	Buignet. J. 14, 15.
44	"		46		1.851, 15°.5	Holker. P. M. (3), 27, 214.
"	"		66		1.9854, 16°	Pape. P. A. 120, 872.
**	44		u		1.881	Schröder. Dm. 1878
46	66		"		1.897	Schröder. J. P. C.
u	"		"		1.896	(2), 19, 266. W. C. Smith. Am. J. P. 58, 145.
Ferric su	lphate_		Fe. (8 O.)		8.097, 18°)	3. 2. 35, 226.
- 44	11		Fe ₂ (8 O ₄) ₃		8.098, 18°.5	Pettersson. U. N.
"	"		"		8.108, 18°.2	A. 1874.
Coquimb	ite		Fe ₂ (S O ₄) ₂ . 9	H, O	2.0—2.1	Dana's Mineralogy.
* "			1 11		8.098, 18°.5 8.108, 18°.2 2.0—2.1 2.092	Breithaupt. See Z.
						K. M. 8, 520. Schrauf. N. J. 1877,
Nickel st	lphate		Ni S O4		8.648, 16°	252. Pape. P. A. 120, 869.
"	и		"		8.652}	Schröder. J. P. C.
"	ш		l "		8.696}	(2), 19, 266.

	NAI	ue.	Form	ULA.	Sp. Gravity.	AUTHORITY.
Nickel s	ulpha	te	-		8.526	Playfair. J. C. S. 87, 102.
"	"				1	Thorpe and Watts. J. C. S. 37, 102.
66 66	"		Ni S O ₄ 6	H ₂ O	2.042 }	Topsoë. C. C. 4, 76.
"	"		"		2.031, 15°	Thorpe and Watts. J. C. S. 87, 102.
LE	"		Ni S O., 7	н. о	2.037	Kopp. A.C.P.86,1.
"	"		14		1.981	Schiff. A. C. P. 107, 64.
**	"	Morenosite_			2.004	Fulda. J. 17, 859.
"	"		"		2.004 1.877, 16°	878.
"	"		. * *		1.955, 14°	1876.
46	"		66		1.949, 15°	J. C. S. 87, 102.
	_	te	_		3.531	Playfair and Joule M. C. S. 2, 401. Pettersson. U. N. A
**	44					Pettersson. U.N.A
66	**					Playfair. J. C. S
44	. "		"		8.472, 15°	37, 102. Thorpe and Watts
41	44		Co S O. T	ī. O	8.125, 150	J. C. S. 87, 102.
44	"		Co S O4. 2	Н, О	3.125, 15° 2.712	Playfair. J. C. S 87, 102.
44	"		. "			Thorpe and Watts
66	"		Co S O4. 4	H, O	2.827, 15°	44 44
46	"		CoSO.	Н, О	2.134, 15° 2.019, 15° 1.924	_
46	"		Co S O4.	Н, О	- 2.019, 15°	
44	"		i		1	64.
46 66	"		. "		1.958, 15°.6 1.964, 15°.5	Pettersson. U. N
46	"		· ::		-1.964, 15°.5 J	A. 1876.
44					1.958 1.918, 15°	Schröder. J. P. ((2), 19, 266.
]			J. C. S. 87, 102.
copper	earp.		_		8.572	M. C. S. 2, 401.
11	46				1	65, 394.
"	"					415.
46	"] -		8.707, 19°	868.
44	"		7		8.82, 17°.1	C. R. 77, 579.
"	"		_ " _	. 	_ 8.83, 18°	[A. 1874.
16	41				3.651, 11°	Hampe. Z. C. 1 867.
44	"		- " -		8.88	Schröder. J. P. (2), 19, 266.

	Nam	E.	Formu	LA.	SP. GRAVITY.	AUTHORITY.
Copper	sulphat	ie	Cu S O4		8.606, 15°	Thorpe and Watts.
"	"		Cu S O ₄ . H ₂	0	8.125, 16°	J. U. S. 87, 102. Pape. P. A. 120, 870.
66	"		44		3.235, 17°.2	070.
44	44		**		8.239, 18°.1	Pettersson. U. N.
**	"		"		8.246, 18°	A. 1874.
"	**		**		8.038	Schröder. J. P. C.
"	"		"		8.206	(2), 19, 266. Playfair. J. C. S. 37, 102.
"	46		44		8.289, 15°	Thorpe and Watts.
66	44		Cu S O ₄ . 2 H ₂	o	2.808, 16°	J. C. S. 87, 102. Pape. P. A. 120, 871.
**	**		"		2.878 }	Playfair. J. C. S.
44	66		"		2.891	37, 102.
"	"		44		2.953, 15°	Thorpe and Watts. J. C. S. 87, 102.
16	"		Cu S O. 8 E	I. O	2.663, 15°	" "
14	"		2 Cu S O ₄ . 7	Ĥ, O	2.648, 15°	44 1.
"	"		Cu S O ₄ . 5 E	I, O	2.648, 15° 2.1948	Hassenfratz. Ann. 28, 8.
44	46		· · ·		2.2	
44	"	Native	44		2.297	Breithaupt. J. P. C.
"	46		44		2,274	11, 151. Kopp. A. C. P. 86, 1.
**	"		"		2,254	Playfuir and Joule. M. C. S. 2, 401.
"	"		"		2.286	Filhol. Ann. (3), 21, 415.
44	4.6		"		2.2422)	Playfair and Joule.
16	44		**		2.2781 } 4° {	J. C. S. 1, 188.
"	"		44		2.2901)	· .
"	"		"		2.302	Buignet. J. 14, 15. Stolba. J. P. C. 97,
•••	-					508.
"	"		"		2.268, 16°	Pape. P. A. 120, 371.
**	"		"		2.248, 18°.9	Favre and Valson. C. R. 77, 579.
14	**		"		2.286, 19°.4	Pettersson. U. N.
"	**		"		2.292, 20°	A. 1874.
44	ш		"		2.277	Schröder. Dm. 1873.
"	"		"		2.263}	Schröder. J. P. C.
"	"		"		2.296 }	(2), 19, 266.
					2.830	Rüdorff. Ber. 12, 251.
. "	"		"		2.212	W. C. Smith. Am. J. P. 53, 145.
"	"		"		2.284, 15°	Thorpe and Watts. J. C. S. 87, 102.
Chromi	c sulph	ate	Cr ₂ (S O ₄) ₃ -		2.748, 17°.2	Favre and Valson. C. R. 77, 579.
"	e (" -		8.012	
. "	4		Cr ₂ (S O ₄) ₃ .	15 H ₂ O -	1.696, 220	Schrötter. P. A. 58,
			I		ı	518.

Name.			Formula.	Sp. Gravity.	AUTHORITY.	
Chromic s	ulphat	0	Cr ₂ (S O ₄) ₃ . 15 H ₂ O	1.867, 17°.2	Favre and Valson	
Aluminu	n sulph	ate	Al ₂ (S O ₄) ₈	2.7400	C. R. 77, 579. Karsten. Schw. J. 65, 894.	
44	"		"	2.171	Playfair and Joule.	
**	40]	M. C. S. 2, 401. Favre and Valson. C. R. 77, 579.	
"			44	2.710 } 170 {	Pettersson. U.N.A.	
"	60		Al ₂ (S O ₄) ₈ . 18 H ₂ O		1874. Playfair and Joule.	
44	66		1	1.569	M. C. S. 2, 401.	
			 -		Filhol. Ann. (3) 21, 415.	
44	41			1.767, 22°.1	Favre and Valson C. R. 77, 579. Nilson and Petters	
	_		In ₂ (S O ₄) ₃	1	son. C. R. 91, 282	
Scandium	sulphs	te	Sc ₂ (S O ₄) ₃	2.579		
I urium	mibuar	8	1 2 (S U ₄)3	2.615, 15°	Pettersson, U.N.A	
16	46		"	2.626, 19°.3	1876.	
**	"		" ·	2.612	Nilson and Petters	
46	"		Y ₂ (S O ₄) ₂ . 8 H ₂ O _	2.52	son. C. R. 91, 282 Cleve and Hoeglund	
44	44		"	2.58	B. S. C. 18, 200. Topsoë. Quoted by	
44	**		ļ " <u></u> -	2.581, 19°.6	Pettersson.	
46	**		"	_ 2.587, 19°.4 }	Pettersson. U.N.A	
**	"			_ 2.552, 15°)	1876.	
**	"		"		Nilson and Petters son. C. R. 91,282	
Erbium s			Er ₂ (8 O ₄) ₈	- 8.518, 14°.5 }	Pettersson. U. N	
46	"		" ,	- 8.524, 14°.2) - 8.678	A. 1876. Nilson and Petters	
"	64		Er, (S O4), 8 H, O.	8.17	son. C. R. 91, 282 Cleve and Hoeglund	
			1	i	B. S. C. 18, 200.	
44	"			- 3.230, 16°.4		
"	"			- 8.242, 16°.6 3.248, 17°.1	Pettersson. U. N	
"	11		"	3.180	A. 1876. Nilson and Petters	
Ytterbiur	n sulph	nate	Yb, (S O,),	3.798	son. C. R. 91, 282	
44	ı î		Yb, (SO,), 8H, O.	8.286		
Lanthant	ım sulp	hate	La ₂ (S O ₄) ₃	8.58, 13°.6 }	Pettersson. U. N	
"		"	"	- 8.67, 15°.4 § - 8.600	A. 1876. Nilson and Petters	
44		44	"	3 544)	son. C. R. 91, 282	
"		"	"	3.544 8.545 15° {	Brauner. S. W. A. June, 1882.	
44			La ₂ (S O ₄) ₃ . 9 H ₂ O.	2.827	Topsoë. Quoted b	
и		"	_	2.848, 17°.2	Pettersson. U. N	
44		"		2.864, 170.4	A. 1876.	
44		44	1 66	2.853		

	Name.		Form	ULA.	Sp. Grav	ZITY.	Auti	IORIT	T.	
Cerium s	ulphate.		Ce ₂ (S O ₄) ₃		8.916, 12	P.5	Pettersso A. 187		σ.	N.
"	" -		"		3.912		Nilson a	nd P		
"	" _		Ce ₂ (S O ₄) ₃ ,	5 H, O	3.214, 14°	2.2	Pettersso			
"	" _		,		3.232, 14	• (1876.			
**	" _		"		8.220		Nilson an			
Didymiu	m sulph:	te	Di ₂ (S O ₄) ₃		8.722, 149	.6 }	Pettersso	n. U.	Ń	. A.
"	44		"		8.756, 159	'.6 ∫∣	1876.			
"			"		3.735		Nilson at son. C			
66	**		"		2 662)		Cleve.	17	'n.	Δ.
"	41		٤.		$\left[egin{array}{c} 3.662 \\ 3.672 \end{array} ight] 1$	8°.8	1885.	0.		Д.
"	"		Di ₂ (S O ₄) ₃ .	8 H ₂ O	2.82		Cleveand	Hoe	zlu	nd.
"	**		"		0 077 100	ادی	B. S. C			
"	"		66		2.877, 16° 2.886, 14°	: 🛊 🔢	Pettersso	n. U.	14.	. д.
	"		66		2.000, 14	.0)	1876.	1 7		
••	••		••		2.878		Nilson an son. C.			
"	"		"		2.827, 14° 2.828, 16° 2.831, 16°	ור 8.			•	
66	44		"		2.828, 169	.2	Cleve. U.	N.A.	.18	85.
44	44		46		2.831, 169	·- {				
Samariun	n sulpha	te	Sm ₂ (S O ₄) ₅		3.898, 180	8	46		66	
"	***		Sm. (S O.)	. 8 H. O.	2.928)	20.0	44		44	
66	"		Sm. (S O.)		2.932 $^{-1}$	80.8 -			••	
Thorium	sulphate		Th (S O ₄) ₂ -		4.058, 22°	.8	Clarke. 2, 175.	A. (C.	J.
"	t t		" -		4.2252, 17	°	Krüss ar			on.
"	"		2 Th (S O4)	2. 9 H ₂ O.	3.898 , 24 °		Ber. 20 Clarke.			J.
"			Th (S O4)2.	9 H, O	2.767		2, 175. Topsoë.		3.	C.
Uranyl s	ulph at e_		U O2. S O4.	8 H ₂ O	3.280, 16°	.5	21, 120 H. Schmid		W	.C.

2d. Double and Triple Sulphates.*

]	Name.			RMULA.	SP. GRAVITY.	AUTHORITY.		
Sodium hy	drogen s	ul phat e	Na H S	O ₄	2.742	Playfair and Joule. M. C. S. 2, 401.		
		n sul-	KHS	0,	2.112	Thomson. Ann.		
phate.	"	"	"		2.163	Phil. (2), 10, 435. Jacquelain. A. C.		
"	"	"	**		2.475, m. of 2_	P. 32, 234. Playfair and Joule.		
**	"	"	"		2.47767, 4°	M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 138.		

^{*} Exclusive of basic or partly basic double sulphates.

ME.		For	MULA.	Sp. Gravity.	AUTHORITY.
vd rocen	an1_	KHSO		2 805 annet	
Agrogen	66	K 11,5 0,		2.854) cryst	
**	"	"	· · · · · · · · · · · · · · · · · · ·	2.855 mess	Schröder. Dm.
66	"	"			
				sion.	[]
**	"	46		2.245, cryst	Wyrouboff. B. S. M. 7, 7.
hydroge	n sul-	Am HS) ₄	1.761, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	"			1.787	Schiff. A. C. P. 107, 64.
assium	sul-	Na ₂ S O ₄ .	8 K ₂ S O ₄	2.668 }	Two lots. Penny. J. 8, 833.
monium	sul-	Am Li S	0,		
	sul-	Am NaS	O4. 2 H, O.	1.68	Schiff. A. C. P. 114, 68.
amoniur	n sul-			2.280	Schiff. A. C. P. 107, 64.
		Am ₂ K ₇ B	(S O ₄) ₆ .	2.38 }	Wibel. Ber. 7, 898.
		Na ₂ Ca (S	O ₄) ₂	2.767	Breithaupt. Schw. J. 68, 291.
		K ₂ Ca (S	O ₄) ₂ . H ₂ O ₋	2.64 2.603, 17°.5	Ulex. J. 2, 776. Zepharovich. J.25, 1148.
		•	·	2.252	Rumpf. Dana's Min., 2d Supp.
		Ca S O ₄ . K ₂ Ca ₂ M	[g (S O ₄) ₄ .	3.2—8.4 2.7689	Dana's Mineralogy.
		K ₂ Ca ₄ M	Ler (S. O.)	2.801	Precht. Ber. 14, 2138.
		Na ₂ Mg(S	$O_4)_2$. AH_2O .	2.244	Tschermak. J. 22, 1241.
		Na ₄ Mg ₂ (S	O ₄) ₄ . 5H ₂ O.	2.876	Haidinger. J. 1, 1220.
		Na ₂ Cu(SC	O ₄) ₂ . 2H ₂ O.	2.5	Domeyko. Dana's Min., 8d Supp.
agnesiur		K, Mg (S	O ₄) ₂	2.676	Playfair and Joule. M. C. S. 2, 401.
66	"	46		2.785 }	Schröder. Ber. 7,
44	"			2.750}	1117.
"			O ₄) ₂ . 6H ₂ O.	2.076, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
μι				,	Playfair and Joule. J. C. S. 1, 138.
"				1.995	Schiff. A. C. P. 107, 64.
"	"	46		2.024	Topsoë and Christ- iansen.
66	"	"		2.034	Schröder. Dm. 1878.
66	"	44		2.036 }	Schröder. J. P. C.
66	"		•	2.048	(2), 19, 266.
magne	sium	Am ₂ Mg	(S O ₄) ₂	2.080	
	hydroge "tassium "monium nmonium nmonium agnesium " " " " " " " " " " " " " " " " " " "	agnesium sul- agnesium sul- agnesium sul- agnesium sul- agnesium sul- agnesium sul- agnesium sul- agnesium sul- agnesium sul- agnesium sul- agnesium sul-	Lassium sul- Lass		

" " " " 1.919)				i		
Am, Mg(SO ₄), 6H,O 1.696	NA	AME.		Formula.	Sp. Gravity.	AUTHORITY.
## ## ## ## ## ## ## ## ## ## ## ## ##			sium	Am, Mg (8 O4),	2.095}	
	ii			Am. Ma(SO) AHO	1 808	(2), 19, 266.
" " " " " " " " " " " " " " " " " " "	"	44		"" " " " " " " " " " " " " " " " " " "	1.721	Playfair and Toule
" " " " " " " " " " " " " " " " " " "	"	"		"		M. C. S. 2, 401.
## ## ## ## ## ## ## ## ## ## ## ## ##	46	"		"		J. C. S. 1, 188.
						64.
1.728 1.728 1.728 1.727 1.72						
" " " " " " " " " " " " " " " " " " "					1.720	
Potassium zinc sulphate— """	"	"			1.728	
R 2 Zn (S O 4)2	"	44				
		•	ate		2.816	Playfair and Joule.
## ## ## ## ## ## ## ## ## ## ## ## ##						
" " " " " " " " " " " " " " " " " " "						
" " " " " " " " " " " " " " " " " " "						
	46 4					
" " " " " " " " " " " " " " " " " " "	"	16 46		K. Zn (SO.) 6 H. O	2.760)	
## ## ## ## ## ## ## ## ## ## ## ## ##	66 6	16 66			2.245	Playfair and Joule.
C. P. 107, 64. Schröder. Dm. 1878. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Schröder.	"			"	2.24084, 4°	Playfair and Joule.
" " " " " " " " " " " " " " " " " " "	"			"	2.153	Schiff. A. C. P. 107,
Ammonium zinc sulphate """"					2.249	
Ammonium zinc sulphate Am ₂ Zn (SO ₄) Am ₂ Zn (SO ₄) Am ₃ Zn (SO ₄) Am ₂ Zn (SO ₄) Am ₃ Zn (SO ₄) Am ₃ Zn (SO ₄) Am ₄ Zn (SO ₄) Am ₅ Zn (SO ₄) Am ₅ Zn (SO ₄) Am ₅ Zn (SO ₄) Am ₆ Zn (SO ₄) Am ₇ An ₇ Zn (SO ₄) Am ₇ Zn (SO ₄)						Schröder. J. P. C.
M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Playfair and Joule. M. C. S. 2, 401. Schröder. J. P. C. (2), 19, 266. Schröder. J. P. C. (3), 19, 266. Schröder. J. P. C. (4), 19, 266. Schröder. J. P. C. (2), 19, 266. Schröder. J. P. C. (3), 19, 266. Schröder. J. P. C. (4), 19, 266. Schröder. J. P. C. (2), 19, 266. Schröder. J. P. C. (3), 19, 266. Schröder. J. P. C. (4), 19, 266. Schröder. J. P. C. (2), 19, 266. Schröder. J. P. C. (3), 19, 266. Schröder. J. P. C. (4), 19, 266. Schröder. J. P. C. (2), 19, 266. Schröder. J. P. C. (3), 19, 266. Schröder. J. P. C. (4), 19, 266. Schröder. J. P. C. (2), 19, 266. Schröder. J. P. C. (3), 19, 266. Schröder. J. P. C. (4), 19, 266. Schr			-2-4-			(2), 19, 266.
" " " " " " " " " " " " " " " " " " "						M. C. S. 2, 401.
** ** ** ** ** ** ** ** ** ** ** ** **					2.208	Schröder. J. P. C.
1.910 Schiff. A. C. P. 107, 64.	"	"	٠	Am ₂ Zn (SO ₄) ₂ . 6H ₂ O	1.897, m. of 2	Playfair and Joule.
" " " " " " " " " " " " " " " " " " "	"		'	"	1.910	Schiff. A. C. P. 107,
" " " " " " " " " " " " " " " " " " "		"	٠ا		1.919	UZ.
Potassium cadmium sulphate. Ammonium cadmium sulphate. Potassium manganese sulphate. """""""""""""""""""""""""""""""""""		•			1.921 }	Schröder. J. P. C.
phate. Ammonium cadmium sulphate. Potassium manganese sulphate. """""""""""""""""""""""""""""""""""					1.925)	(2), 19, 266.
Potassium manganese sulphate. """""""""""""""""""""""""""""""""""	phate.			1		64.
manganese M. C. S. 2, 401. Schröder. Ber. 7, 1118. Schröder. J. P. C. (2), 19, 266. C. (2), 19, 266. C. (2), 19, 266. C. (2), 19, 266. C. (2), 19, 266. C. (2), 19, 266. C. (3), 19, 266. C. (4), 19, 266. C. (5), 19, 266. C. (6), 19, 266. C. (7), 19, 266. C. (8), 19, 266. C. (1), 19, 266. C. (1), 19, 266. C. (2), 19, 266. C. (3), 19, 266. C. (4), 19, 266. C. (5), 19, 266. C. (6), 19, 266. C. (7), 19, 266. C. (8), 19, 266. C. (9), 19, 266. C. (1), 19, 266. C. (1), 19, 266. C. (2), 19, 266. C. (3), 19, 266. C. (4), 19, 266. C. (5), 19, 266. C. (6), 19, 266. C. (7), 19, 266. C. (8), 19, 266. C. (1), 19, 266. C. (1), 19, 266. C. (2), 19, 266. C. (3), 19, 266. C. (4), 19, 266. C. (5), 19, 266. C. (6), 19, 266. C. (7), 19, 266. C. (8), 19, 266. C. (1), 19, 266. C. (1), 19, 266. C. (1), 19, 266. C. (2), 19, 266.	phate.				1	••
** ** ** ** ** ** ** ** ** ** ** ** **	phate.					M. C. S. 2, 401.
## ## ## ## ## ## ## ## ## ## ## ## ##						Schröder. Ber. 7, 1118.
Ammonium sulphate. """						(2), 19, 266.
sulphate. " " - 1.823 Schröder. J. P. C. " " 1.827 (2) 10 256			nese	$\mathbf{Am} \mathbf{Mn}(\mathbf{SO}_{\ell})_{g}. \mathbf{4H}_{g}\mathbf{U}_{g}$	2.818	
" " " 1.020 Schroder. J. P. C.		_				1, 71.
Potassium iron sulphate K_a Fe (S O_a)	44	64	"	"		
	Potassium ir	on sulph	ate	K, Fe (S O ₄)	8.042	(4), 10, 200.

						1
N.	AME.		FORMULA.		Sp. Gravity.	AUTHORITY.
Potassium in	on sulp	hate	K ₂ Fe (SO ₄) ₂ . 61	I,O.	2.202	Playfair and Joule. M. C. S. 2, 401.
"		٠	44		2.189	Schiff. A. C. P. 107,
Ammonium	iron sul	phate	Am ₂ Fe (SO ₄) ₂ . 6	H,0	1.848, m. of 2	
66	"	"	44		1.813	Schiff. A. C. P. 107, 64.
"	"	"	44		1.886	Schröder. J. P. C. (2), 19, 266.
Potassium n	ickel su	lphate	K, Ni (S O,)2		2.897, m. of 2	Playfair and Joule. M. C. S. 2, 401.
46	"	"	"		3.086	Schröder. Ber. 7, 1117.
46	44	"	K, Ni (SO4)2. 6	H, 0	2.111}	Kopp. A. C. P. 36, 1.
44	"	"			2.186 } 1.921 }	Schröder. J. P. C.
"	44	::	"		1.922}	(2), 19, 266.
Ammonium			Am, Ni (SO4)2. 6	H.0	1.788	(-), 10, 200.
phate.	46	"	""		1.915 }	Kopp. A. C. P. 86, 1.
* 11	**	"	" K ₂ Co (S O ₄) ₂		1.921	
		-		- 1		1118.
11	"		K ₂ Co(SO ₄) ₂ . 6H	,O		Schiff. A. C. P. 107,
"	11	"	"		2.205, 16°.8 2.214, 16°.6	Pettersson. U. N. A. 1876.
Ammonium phate.	cobalt	sul-	Am ₃ Co (SO ₄) ₂ . 6	H,O	1.878	Schiff. A. C. P. 107, 64.
phace.	**	"	ុររ		1.902, 18° \	Pettersson. U. N.
46	44	"	46		1.907, 16°.6	A. 1876.
**	"	"	"	- 1	1.893	Schröder. J. P. C. (2), 19, 266.
Thallium col	balt sul	phate	Tl ₂ Co (SO ₄) ₂ . 61	-0,E	8.729, 16°.2	D.M. TT N
••	16 18	"			8.769, 16° 3.808, 16°.4	Pettersson. U. N. A. 1876.
		phate.	K, Cu (S O,),		2.797, m. of 2.	
"	"	"	"		2.784, 20°.5	Favre and Valson. C. R. 77, 579.
"	**	"	"		2.754)	
44	44	"	"		2.754 }	Schröder. Dm. 1878.
**	46	"	"		2.789)	
44	11		K, Cu (S O,), 6	B, O	2.244, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
"	**	"	44	1		Playfair and Joule. J. C. S. 1, 138.
"	"	"	"	- 1	2.187	64.
"	16	"	lí	1		Favre and Valson. C. R. 77, 579.
**	t t	"	4.6		2.224	Schröder. Dm. 1870. Pettersson. U. N. A.
44	14	"	44			1 (X76.
Ammonium phate.	copper	sul-		- 1		Playfair and Joule. M. C. S. 2, 401.
, , , , , , , , , , , , , , , , , , ,	"	"			2.848	Schröder. J. P. C. (2), 19, 266.

N	AME.		Formula	•	Sp. Gravity.	AUTHORITY.
Ammonium	n copper	sul-	Am ₂ Cu (SO ₄) ₂ .	6H,0		Kopp. A. C. P.
phate.	"	"	41		1.757 { 1.891, m. of 2_	36, 1. Playfair and Joule.
46	"	"	44		1.89378, 4°	
44	41	"	"		1.931	J. C. S. 1, 188. Schiff. A. C. P.
"	"	"	u		1.925, 15°.2	107, 64. Pettersson. U.N.A.
66	66 66	"	٤٤ ٤٤		1.931, 15°.8	1876.
" Magnesium			 MgZn(SO ₄) ₂ . 1	4H ₂ O	1.870, 22° 1.817	Evans. F.W.C. Schiff. A. C. P.
Magnesium	cadmium	sul-	Mg Cd(SO ₄) ₂ . 1	4H,0	1.988	107, 64.
phate.	inon aulu	hata	Mar Fo(SO) 1	44.0	1.788	" "
Magnesium Magnesium phate.			$\mathbf{Mg} \mathbf{Fe}(\mathbf{SO}_4)_2$. 1 $\mathbf{Mg} \mathbf{Cu} (\mathbf{SO}_4)_2$. 1	4, Ĥ O	1.813	" "
Fauserite			$\mathbf{MgMn_2(SO_4)_3}$.	15 H₂ O	1.88	Breithaupt. J. 18, 901.
Zinc iron r phate.		sul-	Zn Fe Mn ₅ (S	O,),. H, O.	2.1627	Iles. A. C. J. 8, 420.
Wandanita			No 41/80) 1	100	1 00	
Mendozite			Ma AI (504)2. 1	11,0	1.88	Thomson. Dana's Min.
Sodium alu		um	Na Al (SO4)2. 1	2H, O	1.641 1.567	Schiff. A.C.P. 107,64. Buignet. J. 14, 15.
"			66		1.686, 18°	g,
46		"	"		1.693, 18° }	Pettersson. U. N.
"			"		1.694, 18°.2	A. 1874.
_ ".			"			Soret. J.C.S. 50, 596.
Potassium	alumii	num	K Al (8 O ₄) ₂ -		2.228, m. of 2_	Playfair and Joule.
alum.*	"	i	u		2.6846) 150 (M. C. S. 2, 401.
"	u		"		2.6905 } 15° }	Pettersson. U. N. A. 1876.
"	**		K Al (SO ₄) ₂ . 1	2 H, O	1.7109	Hassenfratz. Ann.
66	**		"		1.758	28, 8. Dufrenoy.
"	"		44		1.724	Kopp. A. C.P. 86, 1.
" .	"		"		1.726, m. of 4_	Playfair and Joule.
"	"		"		1.75125, 4°	M. C. S. 2, 401. Playfair and Joule.
. "	"		44	i	1.711	J. C. S. 1, 188. Schröder. Dm. 1878.
"	u		46		1.749, 21°	Duited. Dil. 1010.
44			46		1.758, 210	Pettersson. U. N.
"	"		**		1.755, 20°.5	A. 1874.
"	"		44		1.758	W. C. Smith. Am. J. P. 58, 145.
"	"		44		1.722	Schiff. A. C. P. 107, 64.
"	u		"		1.757	Buignet. J. 14, 15.
66	"		66		1.7505	Stolba. J. P. C.
						97, 508.

^{*} The dehydrated alums are included here for convenience.

N	AME.			Formula.		Sp. Gravity.	AUTHORITY.
Potassium	alun	ninu	m	K Al (S O ₄) ₂ . 12 H ₂ C)	1.7546, 0°)	•
alum		"		"""		1.7542, 10°	
**		44		44 _		1.7588, 20°	
44		46		44		1.7532, 80°	
44		"				1.7526, 40°	
44		44		44		1.7521, 50°	Spring. Ber. 15,
44		44				1.7501, 60°	1254, and Bei. 6,
"		46				1.7474, 70°	648. Also a series
4.6		44		**	_	1.7252, 80°	in Ber. 17, 408.
**		"		11	_	1.7067, 90°	
44		66				1.758, 21°, not)
				_	_	pressed.	1
14		44		44		1.756, 16°.5,	
				_	1	once pressed.	Spring. Ber. 16,
16		"		46	-1	1.750, 16°.5,	2724.
				-		twice pressed	
46		**		46	- 1	1.785	Soret. C. R. 99, 867.
Rahidiam e	lumin		m	Rb Al (SO ₄) ₂	1	2.7832, 140.8	Pettersson. U. N. A.
ii	"	4111 61		HD HI (O O))2		2.7910, 15°	1876.
"	44	•	٠	Rb Al (SO ₄) ₂ . 12H ₂ C	5	1.874	Redtenbacher. S.W. A. 51, 248.
66	**		.	"		1.800.)	Pettersson. U. N. A.
44	44			-		$1.890 \atop 1.891$ 20° $\left\{ \right.$	1874.
44	46	ι		,,		1.8667, 0°	1012.
44						1.8648 100	
44	**					1.8648, 10° 1.8639, 20°	
64					- 1	1.8685, 80°	•
44						1.8631, 40°	
66	46			-		1.8624, 50°	Spring. Ber. 15,
44	44				- 1	1.8619, 60°	
66	46			11		1.8611, 70°	1254, and Bei. 6, 648. Also a series
44	"				- 1	1.8596, 80°	
66	"	4		· · · · · · · · · · · · · · · · · · ·		1.8578, 90°	in Ber. 17, 408.
46	"			,,		1.8554, 100°	
44	44	•		- 4		1.888)	Sattarbara Dan 15
44	44			"		$1.883 \atop 1.886$ 20.°6 $\left\{$	Setterberg. Ber. 15, 1740.
44	"					1.852	Soret. C. R. 99, 867.
Cæsium alu	minun			Cs Al (SO ₄) ₂ . 12H ₂ O	5-		Redtenbacher. S.W.
**	"	"		"	١	1.994, 180.1	A. 51, 248. Pettersson. U. N.
16	44	"		"	_	2.000, 200	A. 1874.
44	**	66		**	-	2.0215, 0°	22. 1014.
44	46	"		**	- 1	2.0210, 10°	
11	"	"		11		2.0205, 20°	
60	"	"				2.0200, 80°	
u ·	**	66	1			3.0194, 40°	
46	44	66		.,,	- 1	2.0189, 50°	Spring. Ber. 15,
46	**	"		,,		2.0186, 60°	1254, and Bei. 6,
t t	"	"			- 1	2.0178, 70°	648. Also a series
44	44	66		1.1		2.0153, 80°	in Ber. 17, 408.
44		64		**	-	2.0107, 90°	
44	"	"				2.0061, 100°	
44	44	**		10		1.988, 18°, not	1
44	"	"		" _		pressed. 2.000, 20°,	Spring. Ber. 16,
14	86	"		46	- 1	once pressed. 2.005, 20°,	2724.

<u></u>		-		-			
Name.			FORMULA.		SP. GRAVITY.	AUTHORITY.	
Casium alum Ammonium	inum aluı alumin		Cs Al (SO ₄) ₂ . 12H ₂ C Am Al (SO ₄) ₂	0.	1.911 2.089	Playfair and Joule.	
alum.	"		Am Al (SO4)2. 12H2	0	1.602	M. C. S. 2. 401. Breithaupt. J. P. C.	
"	**		и		1.625)	11, 151.	
"	ti		u		1.626	Kopp. A.C. P. 36, 1.	
4.6	"		44		1.625	Playfair and Joule. M. C. S. 2, 401.	
"	"		"		1.621	Schiff. A. C. P. 107, 64.	
44	"		"		1.658	Buignet. J. 14, 15.	
"	"		"		1.642, m. of 4_)	
e e	"		"		1.688) extremes	Pettersson. U. N.	
44	ш				1.647) 180.2.190.5) A. 1874.	
"	"		**		1.661	W. C. Smith. Am. J. P. 53, 147.	
"	"		££		1.6857, 0°)		
11	"		. "		1.6351, 10°		
**	"				1.6846, 20°		
(1	"				1.6845, 80°		
"	61 61				1.6840, 40°	0	
"	"		41		1.6886, 50° }	Spring. Ber. 15,	
"	"		**		1.6832, 60° 1.6828, 70°	1254, and Bei. 6, 648. Also a series	
" .	"		,,		1.6328, 80°	in Ber. 17, 408.	
"	44		**		1.6299, 90°	Del. 11, 400.	
66	46		47		1.6275, 100°		
66	"		**		1.641, 18°, not pressed.	1	
66	"		**		1.629, 16°.5, once pressed.	Spring. Ber. 16,	
t t	"		(f		1.684, 18°,	2724.	
"	"		"		twice pressed	Samet C R 00 987	
Methylamine	alumin	ıım	(NH,CH,)Al(SO,)	١	1.568	Soret. C. R. 99, 867.	
alum.	, wi		12 H.	3.		•	
Thallium alu	minum al	um	12 H; (Tl Al (8 O,), 2 H,	0_	8.645, 17°	Pettersson. U.N.A. 1874.	
"		·	Tl Al (SO ₄) ₂ . 12H ₂	0	2.848, 15°.8		
**		"			2.866, 21°	46 66	
**		"	• 44		2.368, 20°.6		
"		"	"		2.884, 17°		
"		"			2.820, 22°, not pressed.		
"	"	"	**		2.814, 16°.5, once pressed.	Spring. Ber. 16,	
"	44	"	46		2.814, 18°, twice pressed	2724.	
	"	"	"		2.8226, 0°	ין	
64	66	"	"		2.8213, 10°		
44	"	"	"		2.8200, 20°	Spring Por 17	
"		"	tt.		2.8189, 80°	Spring. Ber. 17,	
ш		"	"		2.8184, 40°	408.	
"		"	"		2.8181, 50° J		
U Determinant el	_	"	# C- (9 O)		2.257	Soret. C. R. 99,867.	
Potassium el		m "'	K Cr (8 O ₄),		2.1583, 14°.1 2.1618, 14°.4	Pettersson. U.N.A. 1876.	
					•		

			-		g_ Q	
	Name.		FORMULA.		Sp. Gravity.	А итновиту.
Potassium	chrome	alum	K Cr (S O ₄) ₂ . 12	H,0	1.848	Kopp. A. C. P. 86, 1.
**	"	"	££		1.826	Playfair and Joule. M. C. S. 2, 401.
"	"	"	٤.		1.85609, 4°	Playfair and Joule. J. C. S. 1, 188.
44	"	"	44		1.845, 12°	Schiff. A. C. P. 107, 64.
tt	44	и	"		1.839, 21°)	101, 02.
44	**	"	"		1.840, 21°	D.44
44	46	"	"		1.841, 20°.2	Pettersson. U. N. A.
44	"	"	"		1 040 040	1874.
**	16	"	"		1.807)	
4.6	"	34	44		1.808 }	Schröder. Dm. 1878.
44	46	46	"		1.8278, 0°	
**	66	"	"		1.8278, 10°	
"	66	"	"		1.8269, 20°	
44	44	"	"		1.8265, 80°	
**	44	"	"		1.8260, 40°	Spring. Ber. 15,
44	64	"	"		1.8255, 50°	1254, and Bei. 6,
"	**	"	"		1.8228, 60°	648. Also a series
66	"	"	44		1.8044, 70°	in Ber. 17, 408.
"	"		"		1.7456, 80°	1 2011 21, 2001
**	66	"	44		1.828, 20°, not	า
66	"	"			pressed. 1.828, 16°.5,	Spring. Ber. 16,
					once pressed.	2724.
**	**	"	"		1.817	Soret. C. R. 99,867.
Rubidium			RbCr(SO ₄) ₂ . 12	H,0	1.967 } 16°.8 {	Pettersson. U. N.
44	"	"	"		1.969 }	A. 1874.
**	44	"		=-	1.946	Soret. C. R. 99, 867.
Cæsium ch			Cs Cr (S O ₄) ₂ . 12	H ³ O	2.043	
Ammoniu			Am Cr (S O ₄) ₂ _			Pettersson. U. N. A. 1876.
"	"	"	$Am \operatorname{Cr}(SO_4)_2. 1$	2H,0		518.
**	"	"	ti		1.728, 20°	Pettersson. U. N. A. 1874.
66	6.	"	**		1.719	Soret. C. R. 99, 867.
Thallium		alum	$TlCr(SO_4)_2$. 12	H,0	2.892, 15° }	Pettersson. U. N.
"	44	"	"		2.402, 18° }	A. 1874.
_ "		"		_ =-	2.286	Soret. C. R. 99, 867.
Potassium			$K Fe(SO_4)_2$. 121	H*O-	1.881	Topsoë. C. C. 4, 76.
44		·	**		4.040, 40 .0	
"		·	44		1.822, 170.5	Pettersson. U. N.
"		·	"		1.881, 17°	A. 1874.
				,,, -,:	1.806	Soret. C. R. 99, 857.
Rubidium		ım	Rb Fe (SO ₄) ₂ . 12 Cs Fe (SO ₄) ₂ . 12 Am Fe (SO ₄) ₂	유	1.910	16 61
Cæsium ir			OFFE (DU ₄) ₃ . 12	n, U	0.54 120 0	
Ammoniu	m iron a	lum	Am Fe (5 U4)2-		2.54, 16°.8	Pettersson. U. N.
"	44	"	$AmFe(SO_4)_2$. 12	H,O	1.712	A. 1874. Kopp. A. C. P.
"	66	"	££		1.718	86, 1. Playfair and Joule.
"	46	"	66		1.719	M. C. S. 2, 401. Topsoë. C. C. 4,
44	"	"	44		1.700	Schröder. Dm. 1878.

Name.	Formula.	Sp. Gravity.	Authority.
Ammonium iron alum	AmFe(SO ₄) ₂ . 12H ₂ O	1.720, 18°.2 1.728, 18°	Pettersson. U.N.A.
	"	1.725, 17°) 1.718	1874.
Thallium iron alum	Ti Fe (SO4)2. 12H2O	2.851, 15	Soret. C. R. 99, 867. Pettersson. U. N. A. 1874.
	"	2.885	Soret. C. R. 99, 867.
Potassium gallium alum			156.
Rubidium gallium alum Ammonium gallium alum " " "	RbGa(SO,), 12H,O.	1.962	
Ammonium gallium alum	$AmGa(SO_4)_2$. $12H_2O$	1.745	Soret. C. R. 99, 867.
		1.119	Soret. C. R. 101, 156.
Rubidium indium alum Cæsium indium alum Ammonium indium alum	RbIn(SO ₄) ₂ . 12H ₂ O	2.065	
Cæsium indium alum	Cs In (SO ₄) ₂ . 12H ₂ O ₋	2.241	
Ammonium indium alum	AmIn(SO ₄) ₂ . 12H ₂ O	2.011	Soret. C. R. 99,867.
Sonomaite	Mg ₃ Al ₂ (SO ₄) ₆ . 88H ₂ O	1.604	Goldsmith. J. 80, 1297.
Roemerite. (Ferroso-fer- ric sulphate.)		i '	Grailich. J. 11,730.
Uranyl potassium sulphate	UO,K,(SO,),. 2H,O	8.868, 19°.1	Schmidt. F. W. C.
Uranyl ammonium sul-	110.Am.(SO.). 2H.O	8 0181, 210.5	66 66
phate. Didymium ammonium sulphate. Samarium ammoniumsulphate. """ """ """"	Am Di $(S O_4)_2$	8.075 } 150	Cleve. U. N.A.1885.
sulphate. "	A D: (SO) 4H O	3.086)	" "
Samerium ammonium aul-	AmSin (SO4)2, $Am2O-1$	2.070, 10	" "
nhate. "	AmSm(SQ.) 4H.Q	2.674)	· · · · · · · · · · · · · · · · · · ·
u u u	(1	2.677 \ 18°.4	"
		,	

3d. Basic and Ammonio-Sulphates,

Name.	Formula.	Sp. Gravity.	Authority.
Tetrabasic zinc sulphate	Zn ₄ S O ₇ . 4 H ₂ O	3.122	Playfair and Joule. M. C. S. 2, 401.
Mercuric orthosulphate, or turpeth mineral.	-	8.819	
Tetrabasic copper sulphate	Cu ₄ S O., 4 H ₂ O	3.082, m. of 2_	" Maskelyne. J. 18,
Langite.	"	8.50	901.
Herrengrundite	Cu ₅ S ₂ O ₁₁ . 7 H ₂ O	8.132	Winkler. Dana's
75 7 144.25	0.00.00	0.70 0.07	Min., 8d App.
Brochantite*	Cu, S, O ₁₈ , 5 H, O	8.78—3.87	Magnus. P. A. 14, 141.
"	"	3.9069	G. Rose. Dana's Min.
" Warringtonite_	"	3.89—3.47	Maskelyne. J. 18, 902.

[•] Composition uncertain, because of variations in the analyses.

Name.	Formula.	Sp. Gravity.	AUTHOBITY.
Lanarkite	Pb, S O,	6.3-6.4	Thomson.
Linarite	Pb Cu S O ₅ . H ₂ O		Brooke. Ann. Phil. (2), 4, 117.
Alumian	Al ₂ S ₂ O ₇	2.702}	Breithaupt, J. 11, 730.
Werthemanite	Ai ₂ S O ₆ . 8 H ₂ O	2.80	Raimondi. Dona's Min., 8d App.
Aluminite	Al, S O6. 9 H, O	1.66	Dana's Mineralogy.
FelsobanyiteAlunite	Al, S O, 10 H, O K, Al, S, O, 6 H, O.	2.481	Haidinger. J. 7, 868. Gautier-Lacroze. J.
Lowigite			16, 833. Römer. J. 9, 877.
Zincaluminite	$\mathbf{K_{2}} \mathbf{Al_{6}} \mathbf{S_{4}} \mathbf{O_{22}}. \ 9 \mathbf{H_{2}} \mathbf{O_{2}} \mathbf{O_{21}}. \ 18 \mathbf{H_{2}} \mathbf{O_{2}}$	2.26	Bertrand and Da- mour. Z. K. M. 6, 298.
Ettringite	Ca ₆ Al ₂ S ₃ O ₁₈ . 32 H ₂ O	1.7504	Lehmann. N. J. 1874, 278.
Amarantite	Fe ₂ S ₂ O ₉ . 7 H ₂ O	2.11	Frenzel. M. P. M. 9, 898.
Raimondite	Fe ₄ S ₈ O ₁₅ . 7 H ₂ O	8.190}	Breithaupt. J. 19, 952.
Hohmannite	Fe ₄ S ₈ O ₁₅ . 13 H ₂ O	2.24	Frenzel. M. P. M.
Copiapite	Fe ₄ S ₅ O ₂₁ . 12 H ₂ O	2.14	9, 397. Borcher. Dana's Min.
Fibsoferrite	Fe ₄ S ₅ O ₂₁ . 27 H ₂ O		Smith. A. J. S. (2),
Carphosiderite	Fe ₆ S ₄ O ₂₁ . 10 H ₂ O	2.728 2.496—2.501	-18, 375. Pisani. Dana's Min. Breithaupt. Schw. J. 50, 314.
	"	8.09	Lacroix. C. R. 108, 1087.
Jarosite	K ₂ Fe ₈ S ₅ O ₂₈ . 9 H ₂ O	8.256	Breithaupt. J. 6, 845.
UrusiteSideronatrite	Na, Fe, S, O ₁₇ . 8 H, O	2.22 2.158	Frenzel J. 82, 1195. Dana's Min., 8d App.
Silver ammonio-sulphate	$ \text{Na}_{2} \text{ Fe}_{2} \text{ S}_{3} \text{ O}_{13} = 6 \text{ H}_{2} \text{ O} \\ \text{Ag}_{2} \text{ S O}_{4} = 4 \text{ N H}_{3} $	2.918, m. of 2_	Playfair and Joule.
Zincammonium sulphate _	Zn N ₂ H ₆ . S O ₄	2.479	M. C. S. 2, 401.
Tetramercurammonium sulphate.	Hg, N, SO, 2H, O.		
Cuprammonium sulphate	Cu N, H ₆ . S O, Cu N, H ₆ . S O ₄ . 3 H, O	2.476 1.950	66 66 66 66
Copper ammonio-sulphate	Cu S O4. 4 N H3. H3O	1.790)	"
		1.809 } 2.133, 24°.8	Evans. F. W. C.
Roseocobalt iodosulphate_	$\text{Co}_2 (\text{N H}_3)_{10} (\text{S O}_4)_2 \text{I}_2$	2.189 20°.5 -	Wilson. F. W. C.

Note.—Botryogen, clinophæite, johannite, lamprophenite, pissophanite, plagiocitrite, and wattevillite, being of uncertain composition, are omitted. See Dana's Mineralogy and appendixes.

XXIII. SELENITES AND SELENATES.

Name.	FORMULA.	Sp. Gravity.	Аптновіту.
Hydrogen selenite, or selenious acid.			!
" " "	"	8.0066	Clausnizer. A. C. P. 196, 265.
Chalcomenite	Cu Se O ₃ . 2 H ₂ O	3.76	Des Cloizeaux and Damour. B.S.M.
Mercurous selenite	3 Hg, O. 4 Se O,	7.85, 18°.5	4, 51. Köhler. P. A. 89, 149.
Hydrogen selenate, or se-	H ₂ Se O ₄	2.524	Mitscherlich. P. A.
lenic acid. " "			9, 629. Fabian. J. 14, 130.
Lithium selenate	Li, Se O ₄ . H, O	2.439	Topsoë. C. C. 4, 76.
" "	"	2.564, 18°	Pettersson. U. N. A.
Sodium selenate	Na ₂ Se O ₄	2.565, 19°.5 } 8.098	1874. Topsoë. B. S. C. 19,
	"	8.209, 17°.2	246. Pettersson. U. N. A.
" "		8.217.179.6	1874.
u u	Ne, Se O4. 10 H, O	1.584	Topsoë. C. C. 4, 76.
" " …		1.012, 11. 01 0-	
"		1.621 170.9-190	A. 1874.
Potassium selenate	K, Se O4	3.050	Topsoë. C. C. 4, 76.
" "			Distances IT N A
	"		Pettersson. U. N. A 1874.
Sodium potassium selenate		8.095	Topsoë. C. C. 4, 76
Rubidium selenate	Rb, Se O,	8. 923, m. of 5.	1)
" "		orogo (axtlemen	Pettersson. U.N
Cæsium selenate			Pettersson. U. N. A.
" "	"	. 4.84 , 15°.5 {	1876.
Ammonium selenate	Am ₂ Se O ₄	2.162	Topsoë. B. S. C. 19 246.
" "		2.197, 18°	Pettersson. U.N.A
" "	. "	2.198, 18°.8	1874.
Ammonium hydrogen se- lenate.	1	1	Topsoē. C. C. 4, 76
Silver selenate	Ag ₂ Se O ₄	. 5.92, 17°.2	Pettersson. U. N. A 1874.
Silver ammonio-selenate	Ag. Se O. 4 N H.	2.854	Topsoë. C. C. 4, 76
Thallium selenate	Ti, Se O	7.019, 180	Pettersson. U. N. A
"		7.067, 18°.2	1874.
Glucinum selenate	. (#1 80 U., 4 H. U	2.029	Topsoë. C. C. 4, 76
Magnesium selenate	Mg Se O. 6 H, O	1.955, 15°.2	
	-,	1.960, 15°.8	1876.
Zinc selenate	Zn Se O., 5 H. O	2.591	Topsoë. C. C. 4, 76
Cadmium selenate	Zn Se O. 6 H. 0	2.825	- " "
Cadmium selenate	. Ca Se U4. 2 H2 U	_ 8.682	_i

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Calcium selenate. Cryst	Ca Se O ₄	2.98	Michel. C. R. 106, 878.
" " Strontium selenate. Cryst.	Ca Se O ₄ . 2 H ₂ O Sr So O ₄	2.676 4.28	Topsoë. C. C. 4, 76. Michel. C. R. 106, 878.
Barium selenate	Ba Se O ₄	4.67, 22°	Schafarik. J. P. C. 90, 12.
" Cryst	"	4.75	Michel. C. R. 106, 878.
Lead selenate			Schafarik. J. P. C. 90, 12.
" "	£	6.22, 18° } 6.23, 18°.2 }	Pettersson. U.N.A. 1874.
			Topsoë. B. S. C. 19, 246.
« « <u></u>	"	8.001, 15°.8 8.012, 16°.6	Pettersson. U. N. A. 1876.
£¢	Mn Se O_4 . 5 H_2 $O_{}$	2.834	Topsoë. B. S. C. 19, 246.
" " " " Iron selenate	"	$2.386 \atop 2.389$ 16° {	Pettersson. U. N. A. 1876.
Iron selenate	Fe Se O ₄ . 7 H ₂ O	2.078	Topsoë. B. S. C. 19, 246.
Nickel selenate	Ni Se O ₄ . 6 H ₂ O	2.814 2.832, 14°.1)	"
Nickel selenate	"	2.835, 13°.8 2.839, 13°.8	Pettersson. U. N. A. 1876.
Cobalt selenate	Co Se O ₄	4.087, 14°.2	" " " Topsoë. C. C. 4, 76.
" "	Co Se O4. 6 H, O	2.179	100000. 0.0.4,10.
" " ————	i	2.247, 14°.6	Dattaman II N A
"	u	2.248, 17° }	Pettersson. U.N.A. 1876.
"	Co Se O4. 7 H, O	2.185	Topsoë. C. C. 4, 76.
Copper selenate	Cu Se O4. 5 H2 O	2.559	44 44
Copper selenate	"	2.561, 190.2	Pettersson. U. N. A. 1874.
Yttrium selenate	Y ₂ (Se O ₄) ₃ . 9 H ₂ O -	2.6770, 18°	Cleveand Hoeglund. B. S. C. 18, 289.
	"	2.780	Topsoë. Quoted by Pettersson.
" "	"	2.661, 12°.8	Pettersson. U.N.A. 1876.
Erbium selenate	Er ₂ (Se O ₄) ₃ . 8 H ₂ O ₋	3.516	Topsoë. Quoted by Pettersson.
" " …	"	8.501, 18°.8	
66 66	"	3.510, 14° }	Pettersson. U. N. A.
	Er ₂ (Se O ₄) ₃ . 9 H ₂ O ₋	8.529, 13°.4) 3.171	1876. Topsoë. Quoted by
Lanthanum selenate	La ₂ (Se O ₄) ₃ . 6 H ₂ O ₋	8.48, 14°.4	Pettersson. Pettersson. U.N.A. 1876.
Didymium selenate	Di ₂ (Se O ₄) ₈	4.416 \ 120 5	
11 11	""	4.480 { 12.5	Cleve. U. N. A.
		4.460 } 180	1885.
	Di ₂ (Se O ₄) ₃ . 5 H ₂ O	8.710. 189.8	Pettersson. U.N.A. 1876.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Didymium selenate	Di (Sc O) E H O	9 077 150		
"	Di ₂ (Se O ₄) ₃ . 5 H ₂ O ₋	3.677, 15° 3.685, 18°.8	Cleve. U. N. A.1885.	
Samarium selenate	Sm ₂ (Se O ₄) ₃	4.077, 10°	16 66	
" "	Sm_2 (Se O_4) ₃ , $8 H_2 O$	3.326 } 189	** **	
	Sm ₂ (Se O ₄) ₃ . 12 H ₂ O	3.829 { 10 3.009 } 100		
"	: : : : : : : : : : : : : : : : : : :	3.009 10°	" "	
Thorium selenate	Th (Se O ₄) ₂ . 9 H ₂ O -	3.026	Topsoë. B. S. C. 21, 121.	
Magnesium potassium se-	Mg K ₂ (SeO ₄) ₂ . 6H ₂ O ₋	2,886	Topsoë. C. C. 4, 76.	
lenate. Magnesium ammonium	MgAm ₂ (SeO ₄) ₂ . 6H ₂ O	2.085	Topsoë. B. S. C. 19,	
selenate.			24 6.	
Zinc potassium selenate	$Zn K_{1}(Se O_{4})_{2}$. $2H_{2}O_{-}$ $Zn K_{2}(Se O_{4})_{3}$. $6H_{2}O_{-}$	3.210 2.538	Topsoë. C. C. 4, 76.	
Zinc ammonium selenate.	ZnAm ₂ (Se().)6H.O	2.200	46 66	
Cadmium potassium sele- nate.	$ZnAin_2(SeO_4)_2$. $6H_2O$ $Cd K_2(SeO_4)_2$. $2H_2O_2$	3.876	" "	
Cadmium ammonium se- lenate.	$CdAm_2(SeO_4)_2$. $2H_2O$	2.897		
16 16 16	CdAm ₂ (SeO ₄) ₂ . 6H ₂ O	2.307	" "	
Manganese potassium se- lenate.	Mn K ₁ (SeO ₄) ₂ . 2H ₂ O	3.070	Topsoë. B. S. C. 19, 246.	
Manganese ammonium se- lenate.	$\mathbf{MnAm_2(SeO_4)_2.6H_2O}$	2.093	Topsoë. C. C. 4, 76.	
Iron ammonium selenate. Nickel potassium selenate	$FeAm_2(SeO_4)_2$. $6H_2O$ Ni $K_2(SeO_4)_2$. $6H_2O$	2.160 2.539	• " "	
" " " "	11112(0004)3. 01130	2.580, m. of 5.		
	"		Pettersson. U. N.	
. " "	"	2.578 extremes 2.587 16°.4-17°.3	A. 1876.	
Nickel ammonium sele-	$NiAm_2(SeO_4)_2$. $6H_2O$	2.228	Topsoë. C. C. 4, 76.	
" "	" "	2.274, 15°.8	Pettersson. U. N. A.	
Nickel thallium selenate		2.279, 16° 5	1876.	
Cobalt potassium selenate	$Ni Tl_2(SeO_4)_2$. $6H_2O_2$ Co K_2 (Se O_4) ₂ . $6H_2O_2$	4.066, 13°.8 2.514	Tongo C C 4 70	
" " " "	""	2.581, 18°.8	Topsoë. C. C. 4, 76. Pettersson, U. N. A.	
	"	2.543, 17°.4	1876.	
Cobalt rubidium selenate	$\operatorname{Co} \operatorname{Rb}_2(\operatorname{Se} \operatorname{O}_4)_2$. $6\operatorname{H}_2\operatorname{O}$	2.837, 18°.8		
" "	"	2.838, 15°.6		
Cobalt cæsium selenate	Co Cs ₂ (Se O ₄) ₂ . 6 H ₂ O	2.844, 18°.6) 3.050, 18°.5)		
" " " " "	00 002 (00 04)2.0 222 0	8.061, 16°.7		
" "	"	3.073, 18°.8		
Cobalt ammonium selenate	$CoAm_2(SeO_4)_2.6H_2O$	2.212	Topsoë. C. C. 4, 76.	
	"	2.225, 18°.8	D-44 77 37 4	
	"	2.229, 17° 2.248, 15°,8	Pettersson. U. N. A. 1876.	
Cobalt thallium selenate	Co Tl, (Se O,), 6 H, O	4.047, 13°.5	1610.	
a" "	"	4.059, 16°,5		
Copper potassium selenate	Cu K, (Se O,), 6 H, O	2.527	Topsoë. C. C. 4, 76.	
		2.556, 17° 2.557, 16°.4	Pettersson. U.N.A. 1876.	
Copperammoniumselenate	CuAm.(SeO.). 6H.O	2.221	Topsoë. C. C. 4, 76.	
" " " <u>"</u>	= 4(-354)4	2.284, 17°.2	Pettersson. U. N.A. 1876.	

Name.	Formula.	Sp. Gravity.	AUTHORITY.	
Sodium aluminum alum_	NaAl(SeO ₄) ₂ . 12H ₂ O	2.061, 21°)		
" "		2.069, 20°.8	Pettersson. U. N. A.	
_ " . " . "		2.071, 20°.8	1874.	
Potassium aluminum alum	KAl (SeO ₄) ₂ . 12H ₂ O	1.971	Weber. J. 12, 91.	
		1.998, 21°) 2.004, 20°.1	Pettersson. U.N.A.	
Ammonium aluminum alum.		2.8676, 20°.4	Pettersson. U.N.A.	
	$AmAl(SeO_4)_3. 12H_2O$	1.892, m. of 4_)	
16 66		1.889) extremes	Pettersson. U.N.	
		1.895 170-200.5) A. 1874.	
Rubidium aluminum alum	$ RbAl(SeO_4)_2$. $12H_2O$	2.132, 17°.2	• •	
" "	- "	2.184, 21° }	" "	
_ " . " . " .	·	2.185, 17°.2		
Casium aluminum alum	$Cs Al(Se O_4)_2$. $12 H_2O$	2.228, 18°.8	11 11	
Mallina aluminum alum	TI A1/8-0 \ 10H 0	2.225, 20°		
Thallium aluminum alum	Tl Al (SeO ₄) ₂ . 12H ₂ O	2.492, 17°.5 2.514, 17°	u u	
Potassium chromium alun	K Cr (Se O ₄) ₂		Pettersson. U. N. A. 1876.	
	KCr (SeO ₄) ₂ . 12H ₂ O	2.076, 17°.6		
			Pettersson. U. N. A.	
	- "	2.081, 17°.2	187 4 .	
Ammonium chromium alum.	\ •	2.8585, 15°.5	Pettersson. U.N.A. 1876.	
" "	$AmCr(SeO_4)_2. 12H_2O$	1.980 } 20° {	Pettersson. U.N.A.	
· · · · · · · · · · · · · · · · · · ·	BLG (6.0) 197.0	11.904	1874.	
Rubidium chromium alun	RbCr(SeO ₄) ₂ . 12H ₂ O	2.214, 18°.8		
Thallium chromium alum	Tl Cr(SeO ₄) ₂ . 12 H ₂ O	2.223, 17° } 2:630, 20		
Didymium potassium se- lenate.	Di K (Se O ₄) ₂	8.839, 18°	Cleve. U. N. A.1885.	
11 11 11	Di K (SeO ₄) ₂ . 5 H ₂ O	3.174 3.178 } 18°	66 66	
Didymium ammonium selenate. "	DiAm(SeO ₄) ₂ . 5H ₂ O ₋			
Samarium potassium sele- nate. "		4.129	u u	
	$\operatorname{Sm} K (\operatorname{Se} O_4)_2.8 \operatorname{H}_2 O_{-}$	8.566, 10° } 8.540, 18° }		
Samarium ammonium se- lenate.	Sm Am (Se O ₄) ₂	8.805, 14°	cc cc	
44 44 44	$SmAm_1SeO_4)_2$. $8H_2O$	8.277, 140		
		8.268, 15°	£1 £1	
Potassium selenate with nickel sulphate.	K ₂ SeO ₄ . NiSO ₄ . 6H ₂ O	8.260, 18°.6) 2.84	Gerichten. B. S. C 20, 80.	

Note.—For the sp. gr. of some mixtures of sulphates and selenates see Pettersson, Ber. 9, 1676.

XXIV. TELLURATES.

NAME.			FORMULA.		Sp. Gravity.	AUTHORITY.	
Hydrogen i		"	H, Te O, H, Te O, . 2 H		8.425, 18°.8 8.440, 19°.2 8.458, 19°.1 2.340	(8), 16,	A. J. S. 206. m. J. 10,
Ammonius	" n tellura	" "	Am ₂ Te O ₄		8.012, 25°	213. Clarke. (3), 16,	A. J. S. 206.
Thallium t	tellurate		Tl, Te O ₄ 2 Tl, Te O ₄ . I Ba Te O ₄	i, O		" Clarke. (8), 14,	" A. J. S.

XXV. CHROMATES.

Name.			Formula.		Sp. Gravity.	Authority.
Sodium chromate					2.7858, 12° (Abbot. F. W. C.
"	." -		Na, Cr	O4. 10 H, O	1.4828, 200	"
Sodium di	chromat	e	Na ₂ Cr ₂	O ₇ . 2 H ₂ O	2.5246, 18°	Stanley. C. N. 54, 195.
Potassium	chroma	te	K, Cr (),	2.612	
"	"		- "		2.6402	Karsten. Schw. J. 65, 894.
44	"		"		2.705	Kopp. A. C. P. 36, 1.
46	"		"	***********	2.682, m. of 10	
66	44		"		2.711	Playfair and Joule.
"	46		66		2.72309, 4°	J. C. S. 1, 187.
"	"		"		2.678, 15°.5	Holker. P. M. (3),
"	"		"		2.691	27, 218. Schiff. A. C. P. 107, 64.
"	"		"		2.7848	Stolba. J. P. C. 97, 503.
"	"		"		2.719)	1
"	**		"		2.722	Schröder. Dm. 1878.
44	44		"		2.7403, 0°	
"	46		"		2.7374, 10°	
	**		"		2.7345, 20°	Spring. Ber. 15,
66	"		"		2.7817, 80°	1940.
"	44		"		2.7288. 40°	

					;	
NAME.			For	RMULA.	Sp. Gravity.	AUTHORITY.
Potassium	chromate		K, Cr O		2.7258, 50°	
44	"		- 11		2.7227, 60°	I
44	"		44		2.7169, 70°	Spring Bon 15
44	"		"		2.7110, 80°	Spring. Ber. 15, 1940.
4.6	"		"		2.7102, 90°	1340.
44	"		**		2.7095, 100° J	
Potassium	dichromate.		K, Cr, C	7	2.6027	Karsten. Schw. J. 65, 894.
"	" -		"		2.624	Playfair and Joule.
"	" -		"		2.692, 4°	M. C. S. 2, 401. Playfair and Joule. J. C. S. 1, 187.
"	"		"		2.689	Schabus, J. 3, 812
41	"		"		2.721	Schabus. J. 3, 812. Schiff. A. C. P. 107,
	-					. 64.
**	"		44		2.6616) (Stolba. J. P. C. 97,
"	"		44		$\left\{ \begin{array}{c} 2.6616 \\ 2.6806 \end{array} \right\} \ 15^{\circ} \left\{ \begin{array}{c} \end{array} \right.$	508.
**	" Pn	lv.	"		2.702	555.
66	" After		11		2.677	Schröder. Ber. 11,
66	" fusion	١,	"		2.751 } }	2019.
• 6	"		"		2.694	W. C. Smith. Am. J. P. 58, 145.
Potassium	trichromate		K, Cr, 0	10	2.665, m. of 8_	Playfair and Joule. M. C. S. 2, 401.
66	64		44		8.618	Bothe. J. 2, 272.
"	"		"		2.676)	Schröder. A. C. P.
46	66		"		2.702}	17 4 , 249.
mate.		- 1		18. H ₂ O	l	Tommasi. B. S. C. (2), 17, 396.
Ammonium	n chromate.		Am, Cr	0,	1.9188 } 120	'.'
46	" _		ũ		1.9208 } 125	Abbot. F. W. C.
**	• • • -		••		1.860 /	Sohuadon Dm 1070
44	" _		**		1.871 (Schröder. Dm. 1878.
Ammoniur	n dichromat	te	Am, Cr,	O ₇	2.867	Schiff. A. C. P. 107, 64.
44	"		"		2.152)	
"	46		"		2.153 }	Schröder. Dm. 1878.
**	"		46		2.1228, 160	411 / 72 777 6
**	"		46		2.1805, 170	Abbot. F. W. C.
Silver chro	mate		Ag ₂ Cr (),	5.770	Playfair and Joule. M. C. S. 2, 401.
"	٠		"		5.586	Rettig. A. C. P. 178,
44 6			l t		5.468)	•
44 4	٠		"		5.588 }	Schröder. Dm. 1873.
Silver dich:	romate		Ag, Cr.	0,	4.662	
66 60	·		• • •		4.676 }	1
Silver amm	onio-chrom	ate	Ag ₂ Cr (4. 4 N H ₈	8.068, m. of 3_	Playfair and Joule. M. C. S. 2, 401.
	44 _		•		2.717	
Magnesium	chromate_		Mg Cr O	. H, O	2.2301)	Alle Ta Tity C
"	"		,		2.717 2.2301 } 17°	Abbot. F. W. C.
"	" _		Mg Cr O	. 7 H ₂ O	1.66, 15°	Kopp. A. C. P. 42, 97.
44	"				1.75, 120	Bödeker. B. D. Z.
44	"				1 7613 160	Abbot FWC
Trimercuri	c chromate_		Hg. Cr C		7.171, 18°.6	H. Stallo. F.W.C. Schröder. Dm. 1878.
Strontium	chromate		Sr Cr O.		8.858	Schröder, Dm. 1878.
		,	0. 01			202.0001. DM.1010.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Barium chromate	"	4.49, 23°	secke. B. D. Z. Schafarik. J. P. C. 90 12
			Schweitzer. University of Missouri. Special pub.,1876.
" " Cryst	"	4.804 }	Schröder. Dm. 1878. Bourgeois. C. N. 39, 128.
Lead chromate	46	6.004 5.951 5.658	Mohs. See Böttger. Breithaupt. Playfair and Joule.
" " Artif. cryst" "	"	6.29	47 884
" "Native Diplumbic chromate	Pb ₂ Cr O ₅	6.266	Mr C Q O AOI
Phonicochroite Potassium ammonium chromate. "	Pb ₈ Cr ₂ O ₉ K Am Cr O ₄	5.75 2.278 } 2.290 }	Dana's Mineralogy. Schröder. Dm. 1873.
chromate. " Potassium calcium chromate. " " " " " " " " " " " " " " " " "	11304(0104)8. 21130-	2.802 }	
Magnesium potassium chromate.	K ₂ Mg(CrO ₄) ₂ . H ₂ O ₋	2.592 }	" " Abbot. F. W. C.
Magnesium ammonium chromate. " Vauquelinite Potassium chlorochromate	Am, Mg(CrO ₄) ₂ .6H,0	1.8278, 16° 1.8293, 17° 1.8595, 16°	16 66
	Pb, Cu Cr, O, K Cr O, Cl	5.5—5.78 2.466	Dana's Mineralogy. Playfair and Joule. M. C. S. 2, 401.
Sodium chromiodate		i	Playfair and Joule. J. C.S. 1, 187. Berg. C. R. 104, 1514.
Potassium chromiodateAmmonium chromiodate_	K Cr I O ₆ Am Cr I O ₆	3.66 3.50	1014. 11 11

XXVI. MANGANITES, MANGANATES, AND PERMANGANATES.

Name.	FORMULA.	SP. GRAVITY.	Authority.
_	Ba Mn O ₄	5.85 4.85, 23° 2.709 }	Rousseau and Saglier. C. R. 98, 141. Schafarik. J. P. C. 90, 12. Kopp. J. 16, 4.

XXVII. MOLYBDATES.

	I .	 	
Name.	FORMULA.	SP. GRAVITY. AUTHORITY	
Ammonium molybdate	Am ₂ Mo O ₄	2.238 2.261 2.270 2.286	Various samples. Schröder. Ber. 11, 2212. Baerwald. J. C. S. 50, 17. F. O. Marsh. F. W. C. """
" " Wulfenite." "	Ce ₂ (Mo O ₄) ₃	4.56, cryst. } 4.82, ppt.	Haidinger. Smith. J. 8, 963. Cossa. G. C. I. 16, 324. " Cleve. B. S. C. 43, 162. Cleve. U. N. A. 1885.

XXVIII. TUNGSTATES.

Name.	Formula.	Sp. Gravity.	Authority.
Sodium tungstate	***	4 1888 189 5 (J. L. Davis. F.W. C.
(1 (1	Na, W O4. 2 H, O	8.2814, 19°) 8.2588, 17°.5	44 44
Sodium metatungstate	Na ₂ W ₄ O ₁₈ . 10 H ₂ O ₋	3.8467, 18°	Scheibler. J. 14, 219.
Sodium polytungstate	Na ₆ W, O ₂₄	5.4983	Scheibler. J. 14, 216.
" " <u></u> -	Na ₆ W, O ₂₄ . 16 H ₂ O ₋ Na ₂ W ₃ O ₉ *	8.987, 14°	11 11
state.			Wright. J. 4, 348,
	Na ₂ W ₄ O ₁₁	7.288	Scheibler. J. 14, 223.
Potassium tungstoso-tung-	K, W, O,,*	7.085 7.095	Two preparations.
11 11 11	46	7 185	Knorre. J. P. C. (2), 27, 62.
	K. W. O.	7.6	Zettnow. J.20,224.
	K ₂ W ₅ O ₁₂ K ₂ W ₈ O ₂₅	6.53	Knorre. J. P. C. (2), 27, 92.
Sodium potassium tung- stoso-tungstate. " Calcium tungstate	5 K, W, O12, 2 Na,	7.112}	Knorre. J. P. C.
stoso-tungstate. "	W ₅ U ₁₅ .)	7.121	(2), 27, 62. Manross. J. 5, 11.
" Scheelite	("	6.04	Karsten. Schw. J. 65, 894.
	"	6.08	Rammelsberg. J. 8, 752.
	"	6.02	Bernoulli. J. 18, 788.
Barium tungstate	Ba W O4	5.0085, 18°.5) 5.0422, 15°	J. L. Davis. F. W. C.
Barium metatungstate Lead tungstate	Ba W. O. 9 H. O.	4.298, 14°	Scheibler. J. 14, 220.
Lead tungstate	Pb W O		Manross. J. 5, 11.
"	44	8.1082 (Kerndt. J. P. C.
11 11		8.1275 (42, 118.
Manganese tungstate	_	·	Geuther and Fors- berg. J. 14, 224.
" Hübner- ite.	"	7.14	Breithaupt. Dana's Min.
" "	"	7.177, 24°	Hillebrand. A. J. S. (3), 27, 857.
Iron tungstate	Fe W O4	7.1, artif	Geuther and Fors-
" Ferberite _	"	7.169	berg. J. 14, 224. Rammelsberg. J. 17, 855.
	"	6.801	Breithaupt. Dana's
" Reinite		6.640	Min. Lüdecke. J.32,1196.
Iron manganese tungstate_		7.0, artif	Geuther and Fors-
		l '	berg. J. 14, 224.

^{*}Philipp (Ber. 15, 506) finds the specific gravity of all the "tungsten bronzes" to vary between 7.2 and 7.3, at 10°—18°.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Wolfram* "Feg: Mn Nickel tungstate "Cerium tungstate Didymium tungstate Samarium tungstate ""	(Mn Fe) W O ₄	7.155	Mohs. See Böttger. Gehlen. " " Sipöcz. Ber. 19, 95. J. L. Davis. F. W. C. Cossa and Zechini. Ber. 13, 1861. Cossa. Ber. 14, 107. { Cleve. U. N. A. 1885.

XXIX. BORATES.

Name.		For	MULA.	Sp. Gravity.	AUTHORITY.	
Hydroge	n bora	te, or boric	H ₃ B O ₃ -		1.479	Kirwan.
"	46	"	"		1.4847, 15°	Stolba. J. 16, 667.
"	64	"	" -		1.498, 20°.5	Favre and Valson. C. R. 77, 579.
14		. "	" _		1.5468, 0°	
66	**	16	11		1.5172, 12°	D
44	**	"			1.4165, 60°	Ditte. Bei. 2, 67.
4.6	44	"			1.3828, 80°	
Sodium d	liborat	θ	Na, B, O	7	2.867	Filhol. Ann. (8), 21, 415.
"	"		"		2.871, 20°	Favre and Valson. C. R. 77, 579.
16	46		"		2.868, 16°)	Bedson and Wil-
44	**		"		2.370, 14°.2	liams. Ber. 14,
44	44		"		2.878, 18°.5	2558.
16	44		"		2.5, fused	Quincke. P. A. 185, 642.
66	"		Na ₂ B ₄ O	7. 5 H ₂ O	1.815	Payen. Q. J. S. 1828 (1), 483.
**	"		Na. B. O.	10 H. O	1.757	Wattson.
**	"				1.728	Hassenfratz. Ann.
44	"				1 710	28, 8.
"	"		"		1.716	
••	••		••		1.74	Payen. Q. J. S. 1828 (1), 483.
"	"		"	. - -	1.730, m. of 2_	Playfuir and Joule. M. C. S. 2, 401.
"	"		"		1.692	Filhol. Ann. (8), 21, 415.
"	46		41	_	1.692	Buignet. J. 14, 15.
46	44		44		1.7156	Stolba. J. P. C. 97, 508.
"	"		**		1.711, 20°	Favre and Valson. C. R. 77, 579.
**	66		"		1.786	W. C. Smith. Am. J. P. 58, 148.

^{*}See Dana's Mineralogy for many other determinations.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium borate Pinnoite Magnesium borate Szaibelyite Colemanite Priceite " Pandermite	K ₂ B ₄ O ₇	1.740 2.27 2.987 3.0 2.428} 2.262} 2.298}	Staute. Ber. 17, 1584. Ebelmen. J. 4, 13. Peters. J. 16, 836. Evans. J. 37, 1927. Silliman. A. J. S. (3), 6, 128. v. Rath. Dana's
Lead borate Lead hydrogen borate Jeremerewite	Al B O3	8.28	Min., 3d App. Herapath. J. 2, 227. "" Damour. J. C. S. 44, 719.
Didymium orthoborate '' Didymium borate	Di B O ₃	5.680 5.721 } 15° 5.825, 14°	Cleve. U.N.A.1885. Nordenskiöld. J. 14,
Samarium orthoborate "	Sm B O ₃	$\begin{pmatrix} 6.045 \\ 6.052 \end{pmatrix}$ 16°.4_	197. Cleve. U. N. A. 1885. How. A. J. S. (2),
Franklandite	Na Ca B ₁₂ O ₂₃ 15	1.65	24, 284. Reynolds. J. 80, 1288.
Hydroboracite Sussexite	Mg ₃ Ca ₅ B ₁₆ O ₃₀ 18 H, O. Mg Mn B ₂ O ₅ . H ₂ O	8.42	
Magnesium chromium borate.	2.0 0 1.		
Magnesium iron borate Ludwigite Rhodizite Boracite	Mg ₆ Fe''' ₄ Fe'' ₂ H ₂ } B ₃ O ₂₀ . } Al ₂ K B ₃ O ₈	8.85 3.907 4.016 3.38 2.9184 2.974	Tschermak. J. 27, 1278. Damour. J. 87, 1927. Karsten. J. 1, 1227.

XXX. NITRATES.

1st. Simple Nitrates.

	Name.		FORMULA.	Sp. GRAVITY.	AUTHORITY.
Hydrogen acid.	nitrate,	or nitric	H N O,	1.5548, 15°.5	Kirwan. Gilb. Ann. 9, 266.
66	"	"		1.522, 12°.5	Mitscherlich. P. A. 18, 152.
66	41	"		1.503	A. Smith. J. 1, 886.
**	""	"		1.552, 15°	Millon. J. P. C. 29, 837.
66	44	"	H N O., H. O	1.486	A. Smith. J. 1, 386.
44	**	"	H N O ₃ . H ₂ O	1.424	"
Nitric sul	ohydrate		2 H N O ₃ . N ₂ O ₅	1.642, 18°	Weber. J. P. C. (2), 6, 857.

Name.		F	ORMULA.	SP. GRAVITY.	AUTHORITY.	
Lithium	nitr	ate	Li N	D ₃		Kremers. J. 10, 67. Troost. J. 10, 141.
Sodium	nitr	ate	Na N	O ₈	2.0964	Hassenfratz. Ann.
44	44		"		2.096	28, 3. Klaproth.
"	"		"		2.1880 2.2256	Marx. See Böttger. Karsten. Schw. J.
"	44		۱		}	65, 394.
"	"		"		2.200 2.182, m. of 4_	
"	"		"		2.2606, 4°	M. C. S. 2, 401. Playfair and Joule.
"	"		"		2.26	J. C. S. 1, 137. Filhol. Ann. (3), 21,
"	"		"		2.256	415. Schröder. P. A. 106, 226.
"	**		"		2.265	Buignet. J. 14, 15. Kopp. J. 16, 4.
66 66	16 16		"	• • • • • • • • • • • • • • • • • • • •	2.236 2.246, 15°.5	Kopp. J. 16, 4. Holker. P. M. (8),
**	"	*	"		1	27, 213.
	**				2.24}	Page and Keightley. J. C. S. (2), 10, 566.
"	"		44		2.148	W. C. Smith. Am. J. P. 58, 148.
16	"	Native	"		2.18, 15°.5	Forbes. P. M. (4), 32, 185.
**	"	"	"		2.290	Hayes.
16	**		"		1.878, at the melting p't.	Melts 814°. Braun. P. A. 154, 190.
"	- "	***********	"		2.24	Brügelmann. Ber. 17, 2859.
**	"		Na N	O ₃ . 7 H ₂ O	1.857, 0°, 1	Ditte. B. S. C. 24, 866.
Potassiu	m ni	trate		3	1.9869	Hassenfratz. Ann. 28, 3.
"		"	"		1.983 2.1006	Wattson.
						Karsten. Schw. J. 65, 894.
"		"			2.058	Kopp. A. C. P. 36, 1.
"		"	44		2.070, m. of 8_	Playfair and Joule. M. C. S. 2, 401.
44		"	"		2.1078 2.10657 4° {	Playfuir and Joule.
"			"		2.09584	J. C. S. 1, 137.
"		" Large	u		2.109]	
u		crystals. "Small	"		2.148	Grassi. J. 1, 39.
"		crystals.	**		2.182	
"		fusion. ",	"		2.100	Schiff. A. C. P. 112, 88.
"		"	"		2.086	Schröder. P. A. 106, 226.
44		"	"		2.126	
66		"	66		2.105	Buignet. J. 14, 15. Kopp. J. 16, 4.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
41 a.18 a.	TOBACIA.	DI. ORAVIII.	Actioniti.
Potassium nitrate	_	2.074, 15°.5	Holker. P. M. (8), 27, 218.
66 46	"	2.0845 }	Stolba. J. P. C. 97,
" "	"	2.0904 }	508. Quincke. P. A. 135,
"	"	! ·	642.
*******		2.06	Page and Keightley. J. C.S. (2), 10, 566.
" "	"	2.10855, cryst. at 20°.	Nicol. P. M. (5),
46 46	. "	2.09916, cryst. at 110°.	15, 94.
	"	1.702, at the melting p't.	Braun. (Melts at 842°.) P. A. 154, 190.
Ammonium nitrate	Am N O ₃		Hassenfratz. Ann. 28, 8.
" "	"	1.707	Kopp. A.C. P. 86, 1.
" " ———		1.635, m. of 8_	Playfair and Joule. M. C. S. 2, 401.
" "	"	1.737, m. of 2_	Schröder. P. A. 106, 226.
" "	"	1.709	Schiff. A. C. P. 112, 88.
" "	"	1.723	Buignet. J. 14, 15.
" " ———	"	1.6915	Stolba. J. P. C. 97, 508.
Silver nitrate	Ag N O ₃	4.8554	Karsten. Schw. J. 65, 894.
" "		4.836	Playfair and Joule. M. C. S. 2, 401.
u		4.288	·
	"	4.258	Schröder. P. A. 107,
" "	"	4.328	113.
Thallium nitrute	TI N O.	5.8	Lamy. J. 15, 186.
: (()	"	5.55	Lamy and Des Cloizeaux. Nature 1, 116.
Magnesium nitrate	•		Playfair and Joule. M. C. S. 2, 401.
Zinc nitrate	Zn (N O ₃) ₂ . 6 H ₂ O	2.068, 13° }	Laws. F. W. C.
Cadmium nitrate	Cd (N O ₃) ₂ . 4 H ₂ O	2.450, 14°)	"
Mercurous nitrate	Hg N O ₃ . H, O		Playfair and Joule.
Calcium nitrate	Ca (N O ₃) ₂	2.240	M. C. S. 2, 401. Filhol. Ann. (3), 21, 415.
" "	"	2.472	Kremers. J. 10, 67.
" "	"	2.504, 17°.9	Favre and Valson.
« « <u></u>	Ca (N O ₃) ₂ . 4 H ₂ O	1.78	C. R. 77, 579. Filhol. Ann. (8), 21, 415.
"	"	1.90, 15°.5, s. }	
"	"	1.79.15°.5, l.	Ordway. J. 12, 115.
" "	" ,	1.878, 18°	Favre and Valson. C. R. 77, 579.
	•	•	

	NA	ME.	1	ORMULA.	Sp. Gravity.	AUTHORITY.
Stronti	um ni	trate	Sr (N	O ₃) ₂	8.0061	Hassenfratz. Ann 28, 3.
44	. 44		"		2.8901	Karsten. Schw. J 65, 394.
"	"		"		2.704	Playfair and Joule
**	44		"	*****	2.857	M. C. S. 2, 401. Filhol. Ann. (8), 21 415.
u	**		"		2.952, m. of 4_	
44	"		ш		2.805	Buignet. J. 14, 15
"	"		"		2.980, 16°.8	Favre and Valson C. R. 77, 579.
"	"		Sr (N	O ₃) ₂ . 4 H ₂ O	2.118	C. R. 77, 579. Filhol. Ann. (8), 21 415.
**	**			"	2.249, 15°.5	Favre and Valson
Barium	nitra	te	Ba (N	O ₃) ₂	2.9149	Hassenfratz. Ann. 28, 3.
**	41		"		8.1848	Karsten. Schw. J. 65, 894.
"	**		"		8.284, m. of 5_	Playfair and Joule. M. C. S. 2, 401.
	46		"		8.16052, 4°	Playfair and JouleJ. C. S. 1, 187.
44	66		"		8.200	Filhol. Ann. (8), 21, 415.
46	£6		"		3.222 }]	Crystallized at differ-
"	44		"		8.228 3.240	ent temperatures.
**	. "		"		3.242	Kremers. J. 5, 15.
66	"		٤.		8.208	Schröder, P. A. 106
"	"		"		8.241}	226 .
"	"				8.404	Buignet. J. 14, 15.
"	64		"		3.22	Brügelmann. Ber. 17, 2859.
	trate .			O ₃) ₂	4.068	Hassenfratz. Ann. 28, 3.
"	" -		46		4.769	Breithaupt. Schw. J. 68, 291.
"	" -		"		4.8993	Karsten. Schw. J. 65, 894.
66	" _		"		4.840	Kopp.
44	" -		"		4.816, m. of 8_	Playfair and Joule. M. C. S. 2, 401.
"	" -		"		,	Playfair and Joule. J. C. S. 1, 137.
"	" -		46 ,		4.581	Filhol. Ann. (8). 21, 415.
"	" -	·	"		4.41, 15°.5	Holker. P. M. (8), 27, 214.
"	" _		66		4.423)	
44	" _		"		4.429	Schröder. P. A. 106,
££	"		**		4.509	226.
**	" _		**			Buignet. J. 14, 15.
"	" _		"		4.8, 0°	Ditte. Ber. 15, 1438.
Mangan	ese ni	trate	Mn (N	O.) 6 H. O.		Ordway. J. 12,
					1.8104, 21°, 1.	

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Nickel nitrate	Ni (N O ₂) ₂ , 6 H ₂ O Co (N O ₃) ₂ , 6 H ₂ O Cu (N O ₃) ₂ , 8 H ₂ O	2.065, 14° 5 1.83, 14°	Laws. F. W. C. Bödeker. B. D. Z. Hassenfratz. Ann.
u u			28, 3. Playfair and Joule. M. C. S. 2, 401.
Didymium nitrate	Di (N O ₃) ₃ . 6 H ₂ O	$\left\{ \begin{array}{c} 2.245 \\ 2.258 \end{array} \right\} \ 19^{\circ}$	Cleve. U. N. A.1885.
Samarium nitrate	Sm (N O.). 6 H. O.	2.370	
Ferric nitrate	**	1.671 2 . l. l	1 114.
Bismuth nitrate	Bi (N O ₃) ₈ . 5 H ₂ O	2.786, m. of 2_	Playfair and Joule. M. C. S. 2, 401.
" " Uranyl nitrate	UO ₂ (NO ₃) ₂ . 6 H ₂ O	2.828, 18° 2.807, 18°	Laws. F. W. C. Bödeker. B. D. Z.
Gold hydrogen nitrate	Au H (NO ₂) ₄ . 3 H ₂ O 	2.82 2.87 } 19°	Gumpach. Soe Schottlander, Wurzburg In. Diss. 1884.

2d. Basic and Ammonio-Nitrates.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dimercuric nitrate	Hg, N, O, 2 H, O	4.242	Playfair and Joule. M. C. S. 2, 401.
Mercurous subnitrate	Hg ₆ (NO ₃), O. 8 H ₂ O	5.967	
Lead hydroxynitrate	Ph N O O H	5.98, 0°	Ditte. Ber. 15, 1438.
Diplumbic nitrate	Pb, N, O,	5.645	Playfair and Joule. M. C. S. 2, 401.
Tricupric nitrate		2.765, m. of 8_	" "
Tetracupric nitrate	Cu, N, O ₉ . 8 H, O		
" " <u></u>	";	3.871}	Wells and Penfield.
Gerhardtite	D: N O T O	8.426)	A. J. S. (8), 80, 50.
Bismuth subnitrate	Bi, N, O8. H, O	4.551	Playfair and Joule. M. C. S. 2, 401.
Bismuth hydroxynitrate	Bi (O H), N O,	5.260, m. of 2_	
Mercury ammonionitrate	Hg, N, O, 2 N H,	5.970	44 44
Copper ammonionitrate	Cu (N O ₃) ₂ . 4 N H ₃ .	1.874, m. of 8_	16 68
"" ""		1.905, 21°.5	Evans. F. W. C.
Purpureocobalt chloroni- trate.	$\operatorname{Co_2(NH_3)_{10}Cl_2(NO_8)_4}$		Jörgensen. J. P. C. (2), 20, 105.
Purpureocobalt bromoni- trate.	Co ₂ (NH ₃) ₁₀ Br ₂ (NO ₃) ₄	1.956, 17°.1	Jörgensen. J. P. C. (2), 19, 49.
Purpureochromium chloronitrate.	$\operatorname{Cr_2(NH_3)_{10}\operatorname{Cl_2(NO_3)_4}}$	1.569, 17°.2	Jörgensen. J. P. C. (2), 20, 105.

XXXI. HYPOPHOSPHITES AND PHOSPHITES.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen hypophosphite, or hypophosphorous acid Barium hypophosphorous acid. """""""""""""""""""""""""""""""""""	Ba H ₄ P ₂ O ₄ . H ₂ O " " " " " " " " " " " Mg H ₄ P ₂ O ₄ . 6 H ₂ O " " Ni H ₄ P ₃ O ₄ . 6 H ₂ O " Co H ₄ P ₃ O ₄ . 6 H ₂ O " "	2.8971, 17° { 2.889	Thomsen. J. P. C. (2), 2, 160. Mohr. F. W. C. Schröder. Ber. 11, 2130. Nye. F. W. C. Mohr. F. W. C. """ "" Thomsen. J. P. C. (2), 2, 160.

XXXII. HYPOPHOSPHATES.

NAI	ME.	FORMULA.	Sp. Gravity.	AUTE	IOBITY.
Tetrasedium phate.	hypophos-	Na ₄ P ₂ O ₆ . 10 H ₂ O	1.882	1828. Dufet.	C. R. 102, B. S. M. 10,
Trisodium hyp Disodium hyp "	oophosphate ophosphate_ '''	Na, H P, O, 9 H, O. Na, H, P, O, 6 H, O	1.7427 1.8491 1.840	77. " Dufet. 1828.	

XXXIII. PHOSPHATEŞ.

1st. Normal Orthophosphates.

				
NA	ME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydrogen phosphoric	osphate, or	H ₃ P O ₄	i	Schiff. J. 12, 41.
. "	"	"	1.884, 18°.2	Thomsen. J. P. C.
Trisodium ph	osphate	Na, PO.	2.5111, 12° 2.5362, 17°.5	(2), 2, 160. C. A. Mohr. F. W.
"	"	Na, PO4. 12 H, O	1.622	Playfuir and Joule. M. C. S. 2, 401.
"	"	"	1.618	Schiff. A. C. P. 112,
46	"	"	1.6645	88. Dufet. B. S. M. 10,
Disodium hye	drogen phos-	Na ₂ H P O ₄ . 8 H ₂ O	1.848	77. Dufet. C. R. 102, 1828.
. "	" "	Na, H P O4. 7 H, O	1.6789	
66	" "	Na ₂ H P O ₄ . 12 H ₂ O	1.5189	Tünnermann. See
"	" "	. "	1.525, m. of 3_	Böttger. Playfair and Joule. M. C. S. 2, 401.
66	" "	. "	1.586, 80	Kopp. J. 8, 45.
46	" "			Schiff. A. C. P. 112, 88.
66	" "		1.550	Buignet. J. 14. 15.
66	" "	- "	·	97, 503,
46	" "	- "	1.585	W. C. Smith. Am. J. P. 53, 148.
44	" "	. "	1.5318	
Sodium dihye	drogen phos-	Na H, P O4. H, O	2.040	Schiff. A. C. P. 112, 88.
""	" "	- "	2.0547	
"	" "	Na H, PO, 2 H, O	1.915	Joly and Dufet. C. R. 102, 1393.
"	" "	- "	1.9096	Dufet. B. S. M. 10,
phosphate.	• -	K H ₂ P O ₄		Schiff. A. C. P. 112, 88.
""	" "	- "	2.403	Buignet. J. 14, 15.
"	" " -		8.821	
"				Schröder. Dm. 1878.
"		"	2.020	
	n hydrogen	Am, H P O4	1.619	Schiff. A. C. P. 112, 88.
r-ii-p-moo.	" "	"	1.678	Buignet. J. 14, 15.
Ammonium phosphate.	• -	Am H, P O,	. 1.758	Schiff. A. C. P. 112. 88.
-	" -		.i 1.700	Schröder. Dm. 1878.

		,	· · · · · · · · · · · · · · · · · · ·
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ammonium dihydrogen phosphate.	Am H ₂ P O ₄	1.779	Schröder. Ber. 7,
Sodium potassium hydro- gen phosphate.	NaKHPO4. 7H,0	1.671	Schiff. A. C. P. 112, 88.
Sodium ammonium hy- drogen phosphate.	Na Am HPO4. 4H2O		11 11
Trisilver phosphate	Ag ₃ P O ₄	7.821	Stromeyer. See Böttger.
Thallium dihydrogen phosphate.	Tl H, P O,		Lamy and Des Cloizeaux. Nature 1, 116.
Trithallium phosphate Bobierrite	Tl ₃ P O ₄ Mg ₃ (P O ₄) ₂ . 8 H ₂ O ₋	6.89, 10° 2.41	Lamy. J. 18, 247. Lacroix. C. R. 106, 632.
Magnesium hydrogen phosphate.	Mg H P O4. H2 O	2.826, 15°	Schulten. C. R. 100, 877.
Struvite	Am Mg PO ₄ , 6 H ₂ O	1.65	Teschemacher. P. M. (8), 28, 548. v. Rath. B. S. M.
Hannayite	Am, Mg, H, (PO4)4.	1.898	2, 80.
Hopeite Brushite	8 H, 0. Zn ₅ (P O ₁) ₂ . 4 H, O ₂ Ca H P O ₄ . 2 H, O ₃	2.76—2.85	Dana's Mineralogy. Moore. A. J. S. (2), 89, 48.
Metabrushite	2 Ca H P O ₄ . 8 H ₂ O ₋	$\left. \begin{array}{c} 2.288 \\ 2.356 \\ 2.362 \end{array} \right\} 15^{\circ}.5 \left\{ \begin{array}{c} \\ \end{array} \right.$	Julien. A. J. S. (2), 40, 871.
Martinite	Ca ₁₀ H ₄ (P O ₄) ₈ . H ₂ O	2.892—2.896	Kloos: J. C. S. 54, 288.
Reddingite	Mn ₈ (P O ₄) ₂ . 3 H ₂ O ₋	8.102	Brush and Dana. A. J. S. (8), 16, 120.
Vivianite	Fe ₃ (P O ₄) ₂ . 8 H ₂ O		Rammelsberg. P. A. 64, 411.
"	"	2.680	Rammelsberg. J. P. C. 86, 844.
Lithiophilite	Mn Li P O		Brush and Dans. A. J. S. (8), 18, 45. Fuchs. B.J.15,211.
Triphylite	Fe Li P O4	3.6 3.534—8.589	Penfield. A. J. S. (8), 17, 226.
Hureaulite	Mn ₁₀ Fe ₂ H ₃ (P O ₄) ₅ . 5 H ₂ O.	8.185—8.198	Des Cloizeaux. Ann. (8), 58, 300.
Fairfieldite	MnCa ₂ (PO ₄) ₂ . 2H ₂ O ₋	8.15	Brush and Dana. A. J. S. (8), 17, 859.
Dickinsonite	$ \mathbf{NaCaFeMn}_{2}(\mathbf{PO}_{4})_{3}. \\ \mathbf{H}_{2}\mathbf{O}. $	8.888 }	Brush and Dana. A. J. S. (8), 16, 114.
Fillowite	$\begin{array}{c} H_1 O. \\ \text{Na_1CaFeMn}_6(PO_4)_6. \\ H_1 O. \end{array}$	3.48	Brush and Dana. A. J. S. (8), 17, 863.
Strengite	Fe''' P O4. 2 H2 O	2.87 2.74	J. S. (8), 17, 868. Nies. Z. K. M. 1, 94. Schulten. Z. K. M. 12, 640.
Koninckite	Fe''' P O4. 3 H2 O	2.8	Cesaro. A. J. S. (8), 29, 842.
Aluminum phosphate.	- 1		Schulten. C. R. 98, 1584.
Berlinite	4 Al P O4. H, O		Blomstrand. Dana's Min.
Callainite. (Variscite?)	2 Al P O. 5 H, O	2.50}	Damour. C. R. 59, 986.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Variscite	Al PO4. 2 H, O	2.408, 18°	Petersen. N. J. 1871, 857.
Zepharovichite Xenotime	Y P O4	4.54	Boricky, J. 22, 1285. Smith. J. 7, 867.
(1	"	4.45	Zchau. J. 8, 966. Damour. J. 10, 686. Grandeau. Ann. (6)
Cerium phosphate	Ce P O	4.89 5.22, 14°	Damour. J. 10, 686. Grandeau. Ann. (6), 8, 198.
Cryptolite	44	4.6	Wöhler. P. A. 67, 424.
Rhabdophane (Scovillite)	2 (La Di Y Er) P O ₄ . H ₂ O.	4.78 8.9—4.01	Watts. J. 2, 778. Brush and Penfield. A. J. S. (8), 25, 459.
Monazite	(Ce La Di) P O4	5.208 5.174	Genth. Dana's Min. Rammelsberg. J. 80, 1298.
	٠	5.106—5.110	
"	٠٠	5.174	Rammelsberg. Z. G. S. 29, 79.
Didymium phosphate	Di P O4	5.84, 15°	Grandeau. Ann. (6), 8, 198.
Samarium phosphate	Sm P O ₄	5.826 5.880 } 17°.5 {	Cleve. U. N. A. 1885.
Autunite	Ca $(U O_2)_2 (P O_4)_2$.	8.05—8.19	Dana's Mineralogy.
Torbernite	Cu (U O ₂) ₂ (P O ₄) ₃ . 8 H ₂ O.	8.4—8.6	
Uranocircito	Ba (U O ₂) ₂ (P O ₄) ₃ . 8 H, O.	8.58	Weisbach. J. 30, 1808.
Sodium zirconium phos-	Na ₈ Zr (P O ₄) ₄	2.48, 14°	Troost and Ouvrard. C. R. 105, 80.
- ((Na ₁₂ Zr ₂ (P O ₄) ₈ Na Zr ₂ (P O ₄) ₈	2.88, 14°	" "
Totalium sinaanium	Na Zr ₂ (P O ₄) ₃	8.10, 120	" " " " " " " " " " " " " " " " " " "
phosphate.	\mathbf{A}_{2} Zr $(\mathbf{P} \ \mathbf{O}_{4})_{2}$	8.076, 7°	Troost and Ouvrard. C. R. 102, 1422.
Sodium thorium phosphate.		8.18, 12° 8.848, 7°	Troost and Ouvrard. C. R. 105, 80.
Potassium thorium phos-	Na Th ₂ (P O ₄) ₃ K ₁₅ Th ₃ (P O ₄) ₈	5.62, 16° 8.95, 12°	" " Troost and Ouvrard.
phate.			C. R. 102, 1422.
" " "	K ₂ Th (P O ₄) ₂ K Th ₂ (P O ₄) ₃	4.688, 7° 5.75, 12°	44 44
	2 (6/6	.,	

2d. Basic Orthophosphates.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Isoclasito	Ca ₂ (OH)PO ₄ . 2H ₂ O_	2 02	Sandharran I D
Libethenite	Cu ₂ (O H) P O ₄	ł	Sandberger. J. P. C. (2), 2, 125. Hermann. J. P. C.
Tagilite	Cu ₂ (O H) P O ₄ . H ₂ O.	.	87, 175. Hermann. J. P. C.
"	"		87, 184.
Veszelyite			Ztg. 24, 309. Schrauf. Z. K. M.
Pseudomalachite		1	4, 81. Schrauf. Z. K. M.
Khlite	•		4, 14. Schrauf. Z. K. M.
Dihydrite		ı	4. 18.
Triploidite		!	4, 12. Brush and Dana. A.
Ludlamite	Fe, (O H), (P O4)4.	8.12	J. S. (3), 16, 42. Maskelyne and
Picite	8 H, O. Fe ₁₄ (O H) ₁₈ (P O ₄) ₈ .	2.83	Field. J. 80, 1800. Streng. J. 84, 1877.
Dufrenite	27 H, O. Fe''' ₃ (O H) ₃ P O ₄	3.227	Dufrenoy. Dana's Min.
"		8.882	Campbell. A. J. S.
££	دد دد	8.454 8.298	
Cacoxenite	Fe''', (O H), (P O,), 9 H, O.	3.38	Boricky. S. W. A. 56 (1), 7. Dana's Mineralogy.
Calcioferrite	Fe''' ₅ Ca ₅ (O H) ₅ (P O ₄) ₄ . 8 H, O. Fe''' ₅ Ca (O H) ₁₁ (P O ₄) ₅ . 3 H, O.	2.528 }	Reissig. Dana's Min.
Borickite	Fe''', Ca (O H) ₁₁ (P	2.696—2.707	Boricky. J. 20, 1002.
Chalcosiderite	Fe''', Cu (O H), (P O ₄), 4 H, O.	8.108	Maskelyne. J.C.S. 28, 586.
Andrewsite	Fe''', Cu Fe'', (PO,), (O H),	8.475	11 11
Evansite	Al ₃ (OH), PO, 6H ₂ O	1.989	Forbes. P. M. (4), 28, 341.
Trolleite	Al ₄ (O H) ₈ (P O ₄) ₃	8.10	Blomstrand. Dana's Min.
Augelite	Al ₄ (O H) ₆ (P O ₄) ₂	2.77	" "
Turquois	H.O.	2.621	Hermann. J. P. C. 88, 282.
Peganite	Al ₄ (O H) ₆ (P O ₄) ₂ .	2.426—2.651 2.492—2.496	Blake. J. 11, 722. Breithaupt. Schw.
Fischerite	Al ₄ (O H) ₆ (P O ₄) ₂ .	2.46	J. 60, 808. Hermann. J. P. C.
Cæruleolactite	5 H, O. Al ₆ (O H) ₆ (P O ₄) ₄ . 7 H, O.	2.552, 19° } 2.593, 18° }	88, 286. Petersen. N. J. 1871, 858.

NAME.	Formula.	SP. GRAVITY.	Authority.
Wavellite	Al ₆ (O H) ₆ (P O ₆) ₄ . 9 H, O.	2.387	Haidinger. Dana's Min.
"	"	2.816	Richardson. Dana's Min.
Planerite	Al ₆ (O H) ₆ (P O ₄) ₄ . 12 H ₂ O.	2.65	Hermann. J. 15, 764.
Sphærite	Al ₁₀ (O H) ₁₈ (P O ₄) ₄ . 7 H ₂ O.	2.586	Zepharovich. S. W. A. 56, 24.
Lazulite		8.122	Smith and Brush. J. 6, 840.
46	"	8.106—3.128	Rammelsberg. P. A. 64, 261.
"	· · ·	8.108	Chapman. J. 14,
Cirrolite	$Al_2Ca_3(OH)_8(PO_4)_8$	8.08	Blomstrand. Dana's Min.
Plumbogummite	Al ₄ Pb (O H) ₈ (PO ₄) ₃ . 5 H ₂ O.	4.88, 15°.6	Dufrenoy. Ann. (2), 59, 440.
" Hitchcockite_	"	4.014, 20°	Genth. A. J. S. (2), 28, 424.
Eosphorite	Al Mn (OH), PO4. }	3.124 } 8.184 }	Brush and Dana.
66	")	8.145)	A. J. S. (8), 16, 85.
Childrenite	Al Fe (O H), P O ₄ . H, O.	8.22	Church. J. C. S. 26, 104.
Barrandite	Al Fe''' (P O ₄) ₂ . 4 H ₂ O.	2.576	Zepharovich. J. 20, 1000.

3d. Meta- and Pyrophosphates.

	 		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium metaphosphate	"	2.4769, 18° { 2.508, 20°	Mohr. F.W.C. Bedson and Williams. Ber. 14, 2555.
Potassium metaphosphate	(2.2009)	Mohr. F.W.C.
Didymium metaphosphate	Di P ₅ O ₁₄	3.833 8.858 18°.4 -	Cleve. U.N.A.1885.
Samarium metaphosphate	Sm P ₅ O ₁₄	3.485 3.489 28°.8 _	" "
Thorium metaphosphate	Th P4 O13		Troost. C. R. 101, 210.
Sodium pyrophosphate	Na ₄ P ₂ O ₇	$\left\{ \begin{array}{c} 2.8618 \\ 2.8851 \end{array} \right\} \ 17^{\circ}_{}$	Mohr. F.W.C.
u u	1		M. C. S. 2, 401. Mohr. F.W.C.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium pyrophosphate	Na, P, O, 10 H, O.	1.824	Dufet. C. R. 102, 1828.
		1.8151	
Sodium hydrogen pyro- phosphate.	Na, H, P, O, 6 H, O	1.8616	" "
Potassium pyrophosphate_		ļ.	17. 2859.
Silver pyrophosphate	Ag, P, O,	5.806	Stromeyer. See Bött- ger.
" "	"	5.2596	Tünnermann. See Böttger.
Thallium pyrophosphate	Tl ₄ P ₂ O ₇	6.786	Lamy and Des Cloi- zeaux. Nature 1, 116.
Magnesium pyrophosphate	Mg ₂ , P ₂ O ₇	2.220	Schröder. Dm. 1878.
		2.559, 18°) 2.598, 22° }	Lewis. F.W.C.
Zinc pyrophosphate	Zn, P, O,	8.7588 8.7574 23°	**
Manganese pyrophosphate	Mn ₂ P ₂ O ₇	8.5742,26° }	
Nickel pyrophosphate	Ni ₂ P ₂ O ₇	8.9064,270	u u
Cobalt pyrophosphate	Co., P. O	8.710, 25° 8.746, 28°}	66 66
Barium pyrophosphate	Ba ₂ P ₂ O ₇ . H ₂ O	8.574 8.582 }	Schröder. Dm. 1878.
Silicon pyrophosphate	Si P, O,	8.590) 8.1, 14°	Hautefeuille and
			Margottet. C. R. 96, 1058.
Zirconium pyrophosphate	Zr P ₂ O ₇	8.12}	Knop. A. C. P. 159,
Tin pyrophosphate	Sn P, O,	8.61	Knop. A.C.P.159,
Basic tin pyrophosphate	Sn ₂ (P ₂ O ₇) O ₂	3.87 3.98	u u
Basic titanium pyrophos- phate.	**	(0.70)	Knop. A.C.P.157, 865.

XXXIV. VANADATES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium octovanadate			(2), 11, 828.
Silver octovanadate	Ag ₁₂ ∇_8 O ₂₆	5.67, 18°	
Silver octovanadate Thallium metavanadate Thallium pyrovanadate	Tl ₄ V ₂ O ₇	8.21, 18°.5, ppt. }	
" "		8.812, 18°.5,	
Thallium orthovanadate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8.6, 170	
Thallium octovanadate	Tl ₁₂ V ₈ O ₂₆	8.59, 17°.5	" "
Thallium decavanadate	Tl ₁₂ V ₁₀ O ₃₁	7.86, 17°	**
Magnesium vanadate.	$ { m Mg_{3} V_{10} O_{28}}. 28 { m H_{2} O_{-1}}$	2.199)	
Brown.			
1104	Bi V O4	2.167)	J. C. S. 85, 716.
Pucherite	Bi V O4	5.91	Frenzel. J. P. C. (2), 4, 227.
Dechenite	$Pb_3 \nabla_2 O_6$. $Zn_3 \nabla_2 O_8$.	5.81	Bergemann. J. 8
(1	"	5.88	Tschermak. J. 14 1021.
" Eusynchite	44	5.596	Rammelsberg.
" Eusynchite Descloizite	Pb Zn (O H) V O	5.889	Damour. J. 7, 855
		ſ	(From two samples
"		5.915}	Rammelsberg. J
"	••	6.080 }	83, 1428.
"			Penfield.* A. J. S
"		1 ((3), 26, 361.
" Light		6.105—6.108	Genth. Am. Phil
" Dark		5.8145.882	Soc. 1885.
Mottramitet	Ph Cu (O H) V U ₁	0.894	Roscoe. J. 29, 1259
Volborthite‡	R ₃ (OH) ₃ VO ₄ . 6H ₂ O ₋	8.55	Credner. Dana's Min.
Didymium vanadate '' '' Didymium metavanadate. ''' '''	Di V O.	4.959 4.968 21°.2_	Cleve. U.N.A.1885
Didymium metavanadate.	Di V ₅ O ₁₄ . 14 H ₂ O	$\left[\begin{array}{c} 2.492 \\ 2.497 \end{array} \right]$ 18°.5 _	
Samarium metavanadate _	Sm V ₅ O ₁₄ . 12 H ₂ O	2.628, 170.5	
"	9m V O 14 H O	2.620, 170.8	i
	Sm V ₅ O ₁₄ . 14 H ₂ O	2.526, 170.8	
Sodium vanadium vanadate.	2Na,O. 2V,O,. V,O,.	1.889, 15°	Brierly. J. C. S 49, 80.
" " "	2Na,0. 2V,0, . V,0,.	1.827, 15°	10.
Potossium vanadium va-	5K-0. 2V-0 4V-0	1.213, 15°	
nadate. Ammonium vanadium va- nadate.	8Am ₂ O.2V ₂ O ₄ .4V ₂ O ₅ . 6 H ₂ O.	1.835, 15°	66 61

^{*}Penfield's mineral contained some copper and arsenic. Frenzel's tritochorite (G. 6.25) is similar. † Formula somewhat doubtful. ‡ R in this formula — $\frac{1}{2}$ Cu and $\frac{1}{2}$ Ca + Ba.

XXXV. ARSENITES AND ARSENATES.

1st. Normal Orthoarsenates.

					<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	NAME.		Formu	LA.	Sp. Gravity.	AUTHOBITY.
Sodium o	dihydroge	n arse-	Na H, As O,	. н, о	2.585	Schiff. A. C. P. 112, 88.
"	44	"	. "		2.6700	Dufet. B. S. M. 10,
44	64	"	Na H ₂ As O ₄ .	2 H, O.	2.320	Joly and Dufet. C.
"	44	"	"		2.3093	R. 102, 1898. Dufet. B. S. M. 10,
Disodium	a hydroge	n arse-	Na ₂ H As O ₄ .	7 H ₂ O-	1.871	
uave.	"	"	"		1.8825	Dufet. B. S. M. 10,
44	"	"	Na ₂ H As O ₄ .	12 H ₂ O-	1.759	Thomson. See Bött-
"	"	"	"		1.786	ger. Playfair and Joule. M. C. S. 2, 401.
44	46	"	"		1.670	Schiff. A. C. P. 112, 88.
"	**	"	"		1.6675	Dufet. B. S. M. 10,
Trisodiur	m arsenate	·	Na ₃ As O ₄		2.8128 2.8577 } 21°	Stallo. F. W. C.
"	"		No. As O. 1	2 H, O _	1.804	Playfair and Joule. M. C. S. 2, 401.
"	44		"		1.762	Schiff. A. C. P. 112, 88.
44	44		"		1.7598	Dufet. B. S. M. 10,
Potassiur senate.		gen ar-	K H, As O,		2.638	Thomson. See Bött- ger.
44	44	**	" -		2.882	Schiff. A. C. P. 112, 88.
"	"	66 66	- "		2.844	Schröder. Dm. 1878.
66 66	66 66	66 66	" -		2.855 } 2.862	Topsoë. B. S. C. 19,
Ammoni	um diby	drocen	Am H, As O			246. Schiff. A. C. P. 112,
arsenat	e.	urogen u	"		2.299)	88.
44		"	66		2.809	Schröder. Dm. 1878.
"		"	"		2.312	
**		"	"		2.808	Topsoë. C. C. 4, 76.
Diammor arsenat	nium hyd 10.	drogen	Am, H As O	1		Schiff. A. C. P. 112, 88.
	n sodium i	hydro-	K Na H As O.	7H,0	1.884	Schiff. A. U. P. 112,
	um sodiui	m hy-	Am Na H		1.838	88. " "
Hoernesit	arsenate. te		Mg ₃ (As O ₄) ₂ .	H, O. 8 H, O	2.474	Huidinger. J. 18, 784.

			
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Magnesium hydrogen ar- senate.		8.165, 15°	Schulten. C. R. 100, 877.
Köttigite	$Zn_2 (As O_4)_2$. $8 H_2 O_3$	8.1	Kõttig. J. 2, 771.
Köttigite Native nickel arsenate		4.982	Bergemann. J. 11, 728.
Erythrite	Co ₂ (As O ₄) ₂ . 8 H ₂ O	2.948	Dana's Mineralogy.
ErythriteCabrerite	$(Ni \overset{\circ}{\text{Co}} \overset{\bullet}{\text{Mg}})_{s} (As O_{s})_{2}.$ 8 H, U.	2.96	Ferber. B. H. Ztg. 22, 806.
Roselite	$(Ca Co Mg)_3 (As O_4)_2$.	8.5—8.6	Schrauf. N. J. 1874, 870.
"	"	8.46, 3°	Weisbach. N. J. 1874, 871.
Caryinite	(Pb Mn Ca) ₈ (As O ₄) ₂	4.25	Lundström. Dana's
Berzeliite	Mg, Ca, (As O4),	2.52	Dana's Mineralogy.
Haidingerite	H Ca As O. H. O	2.848	Turner. Dana's Min.
Pharmacolite	2 H Ca As O ₄ . 5 H, O	2.64-2.78	Dana's Mineralogy.
Berzeliite	H (Ca Mg) As O ₄ . 7 H ₂ O.	2.48	Frenzel. Dana's Min., 2d App.
Forbesite	2 H .(Co Ni) As O 7 H. O.	8.086	Forbes. P. M. (4), 25, 103.
Scorodite		8.11} 8.18}	
" Artificial		8.28	
AIVING 22200		0.20	geois. C. R. 90, 224.
Carminite	Pb. Fe'', (As O.).	4.105	
Trögerite	(U O ₂) ₃ (As O ₄) ₂ . 12 H ₂ O.	3.28	Weisbach. N. J.
Uranospinite	(U O ₂), Ca (As O ₄),	8.45	" "
Uranospinite Zeunerite	(U O ₂) ₂ Cu (As O ₄) ₂ . 8 H ₂ O.	8.58	
	1	1	

2d. Basic Orthogramates.

Name.	Formula.	Sp. Gravity.	Authority.
Adamite	Zn ₂ (O H) As O ₄	4.888, 18°	Friedel. C. R. 62,
Native nickel arsenate	Ni ₅ O ₂ (As O ₄) ₂	4.888	Bergemann. J. 11,
Olivenite	Cu ₂ (O H) As O ₄	4.878	728. Damour. Ann. (8), 18, 404.
"		4.185	Hermann. J. P. C 88, 291.
Clinoclasite	Cu ₂ (O H) ₃ As O ₄	4.19-4.86	Dana's Mineralogy.
"		4.812	Damour. Ann. (8), 18, 404.
"	"	4.88, 19°	Hillebrand. Private communication.
EuchroiteErinite	Cu ₃ (OH) ₃ AsO ₄ .6H ₂ O Cu ₅ (O H) ₄ (As O ₄) ₃ .	8.889 4.048	Dana's Mineralogy.

Name.	Formula.	Sp. Gravity.	AUTHORITY.	
Cornwallite		4.160	Dana's Mineralogy.	
Tyrolite	H ₂ Ü. Cu ₅ (O H) ₄ (As Ü ₄) ₃ . 7 H ₂ Ö.	8.02-8.098	46 66	
16	"	8.162	Church. J.C.S.26, 108.	
"		8.27, 20°.5	Hillebrand. Private communication.	
Chalcophyllite	Cu ₈ (O H) ₁₀ (As O ₄) ₂ . 7 H ₂ O.	2.659	Damour. Ann. (8), 18, 404.	
"	"	2.485	Hermann. J. P. C. 88, 294.	
ConichalciteBayldonite	Cu Ca (O H) As O_4 . Cu ₂ Pb(OH) ₂ (AsO ₄) ₂ .	4.128 5.85	Fritzsche. J. 2,772. Church. J. C. S. 18,	
Liroconite	H. O.	2.926	265. Haidinger. Dana's	
	Cu, Al (O H), As O. 4 H, O.		Min.	
"		2.964	Damour. Ann. (8), 18, 404.	
		2.985	Hermann. J. P. C. 83, 296.	
Chenevixite	Cu ₃ Fe''' ₂ (O H) ₆ (As O ₄) ₂ .	8.98	Pisani. C. R. 62, 690.	
Pharmacosiderite Arseniosiderite	$Fe'''_4(OH)_3(AsO_4)_3$ $Fe'''_4Ca_3(OH)_9$	2.9—8.0 8.520	Dana's Mineralogy. Dufrency.	
"	(Ås O ₄) ₃ .	8.88	Rammelsberg.	
"	"	8.86	Church. J.C. S. 26, 102.	
Allaktite		3.88—8.85	Sjögren. A. J. S. (3), 27, 494.	
Rhagite	Bi ₅ (O H) ₉ (As O ₄) ₂	6.82, 22°	Weisbach. N. J. 1874, 802.	
Mixite	BiCu ₁₀ (OH) ₈ (A5O ₄) ₅ . 7 H ₂ O.	2.66	Schrauf. Z. K. M. 4, 277.	
"	"	8.79, 28°.5	Hillebrand. Private communication.	
Walpurgite	(U O ₂) ₃ Bi ₁₀ (As O ₄) ₄ (O H) ₂₄ .	5.64	Weisbach. N. J. 1878, 816.	

3d. Pyroarsenates and Arsenites.

Name.	Formula.	Sp. Gravity.	AUTHORITY.		
Magnesium pyroarsenate Zinc pyroarsenate "" Manganese pyroarsenate "" Lead arsenite	Mg ₂ As ₃ O ₇	8.7805, 15° 8.7649, 18° 4.6989 4.7084 21° 8.6925, 25° 8.6832 8.6927 5.85, 28°	Stallo. F. W. C. """ Schafarik. J. P. C. 90, 12.		

XXXVI. PHOSPHATES, VÁNADATES, AND ARSENATES, COMBINED WITH HALOIDS.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Sodium fluo-phosphate*Sodium fluo-arsenate*	Na ₄ (PO ₄) F. 12H ₂ O ₋ Na ₄ (AsO ₄) F. 12H ₂ O	9 840	Briegleb. J. 8, 338. Briegleb. J. 8, 339.
Wagnerite	$Mg_1 (PO_1) F$	2.985 } 15° }	Rammelsberg. P. A.
"	44	8.068 } 18 ³ { 8.12	64, 251. Pisani. Z. K. M. 8, 645.
Artificial vanadium wag- nerite.			Hautefeuille. J. C. S. (2), 12, 181.
Herderite	Ca Gl (P O4) F	8.00	Hidden and Mack- intosh. A. J. S. (8), 27, 135.
"	66	3.006 } 3.012 }	Penfield and Harper.
Triplite		i .	1 79.414.
Amblygonite	Al Li (PO4) F	8.83—8.90 8.118	Siewert. J. 26, 1185. Breithaupt. J. P. C.
	"	3.088	16, 476. Penfield. A. J. S. (3), 18, 295.
"		3.046	Brush. A. J. S. (2), 84, 243.
Durangite	1	1	Brush. A. J. S. (8)
Fluorapatite			185.
"	1	3.091—3.216 3.25	768.
	1	l .	Church. J. C. S 26, 101. Manross. J. 5, 10.
Chlorapatite			synthétiques ''
Pyromorphite		i .	Manross. J. 5, 10. G. Rose. P. A. 9 209.
Vanadinite	Pb ₅ (V O ₄) ₅ Cl	7.36	Fuchs. J. 20, 1001 Roscoe. Z. C. 13 857.
"		6.886	Rammelsberg. J.9 872.
Mimetite	Pb ₅ (As O ₄) ₃ Cl	6.863 7.218	Strupa I 19 905
" Artificial	"	7.82 7.12	Smith. J. 8, 965. Michel. B. S. M
Ekdemite	Pb ₅ (As O ₄) ₂ Cl ₄	7.14	10, 185. Nordenskiöld. Z. K M. 2, 806.
Endlichite	Pb ₅ (As O ₄), Cl, + Pb ₅ (VO ₄), Cl.	6.864	Genth. Am. Phil Soc., 1885.

^{*}Baker (J. C. S., May, 1885) assigns more complex formulæ to these salts.

XXXVII. ANTIMONITES AND ANTIMONATES.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Sodium antimonite	Na Sb O ₂ . 8 H ₂ O	2.864	Terreil. Ann. (4), 7, 850.	
Sodium hydrogen anti- monite.	Na H ₂ (Sb O ₂) ₈	5.05	"	
Romeite	Ca (Sb O ₂) (Sb O ₈) ?	4.675 } 4.714 }	Damour. J. 6, 887.	
Atopite	Ca, Sb, O,	5.03	Nordenskiöld. Da- na's Min., 8d App.	
Barcenite	Ca Hg (Sb O ₃) ₄	5.353, 20°	Mallet. A. J. S. (3), 16, 806.	
Monimolite	Pb ₄ (Sb O ₄) ₂ O	5.94	Igelström. Dana's Min.	
Bindheimite	Pb ₃ (Sb O ₄) ₂ . 4H ₂ O ₋	4.60—4.76	Hermann. J. P. C. 84, 179.	
"	"	5.01, 19°	Hillebrand. Bull. 20, U.S.G.S.	
Nadorite	Pb (Sb O ₂) Cl	7.02	Flajolot. J. 23, 1280.	
Stibioferrite	4 Fe''' Sb'O4. 8 H2 O	8.598	Goldsmith. Dana's	
Thrombolite	Cu ₁₀ Sb ₆ O ₁₉ . 19 H ₂ O	3.668	Min., 2d App. Schrauf. Z. K. M. 4, 28.	

XXXVIII. COLUMBATES AND TANTALATES.*

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Magnesium columbate Manganese columbate Columbite	Fe Cb ₂ O ₆	4.94 5.469—5. 4 95	Joly. B. S. C. 25, 67. Schlieper. Dana's Min.	
"	"	5.447 5.482—5.452	Oesten. Dana's Min. Breithaupt. J. 11, 720.	
Manganese columbite	Mn (Cb O ₃) (Ta O ₃)	5.40— 5.43 6.59	Müller. J. 11, 721. Comstock. A. J. S. (8), 19, 131.	
Tantalite	Fe Ta ₂ O ₆	7.264	Nordenskiöld. P. A. 26, 488.	
"	"	7.986	Berzelius. Dana's Min.	
"		7.708	Min.	
16	"	7.277—7.414	Smith. A. J. S. (8), 14, 828.	
Mangantantalite	Mn Ta ₂ O ₆	7.87	Arzruni. J. C. S. 54, 284.	
Sipylite	Er Cb O ₄	4.888, 16°	Mallet. Z. K. M. 6, 518.	

^{*}For samarskite, microlite, forgusonite, and other natural columbotantalates see Dana's Mineralogy. The formulæ here assigned to columbite, tantalite, and sipylite are only approximative, representing the typical compounds.

XXXIX. CARBONATES.

1st. Simple Carbonates.

NAME. Lithium carbonate Sodium carbonate		Fo	RMULA.	Sp. GRAVITY	Authority.	
		Li, C O,		2.111 1.787, fused	Kremers. J. 10, 67. Quincke. P. A. 138, 141.	
		æ	Na, C) ₈	2.4659	Karsten. Schw. J. 65, 894.
"	**		٠ ،،		2.480	Playfair and Joule.
"	"				2.509	
"	"		"		2.407, 20°.5	
"	u		u			C. R. 77, 579. Schröder. Dm. 1878.
"	"		"			
"	"		44		2.041, 960°	18, 81,
"	44		"		2.45, fused	Quincke. P. A. 185, 642.
".	"		Na ₂ C () ₈ . 8 H ₂ O	1.51	Thomson. Ann. Phil. (2), 10, 442.
44	"	*	Na ₂ C C), 10H ₂ O	1.428	Haidinger. See Bött-
**	"			"	1.454, m. of 4_	Playfair and Joule. M. C. S. 2, 401.
66	"		1	"	1.475	Schiff.
44	"		l		1.468	
"	"		1			
					1.455, 15°.5	27, 214.
"	**			"	1.4402	503.
. "	"			"	1.456, 19°	Favre and Valson. C. R. 77, 579.
		nate	Na, C (),. H, O	1.5—1.6	Dana's Mineralogy.
££	"		"		2.108	Playfair and Joule.
"	**		"		2.267	
"	46		"		2.105	
"	"		"		2.00, 1150°	
Silver carbonate		Ag ₂ U	O ₃	6.0766		
**	"				6.0, 170.5	
Thallium		nate	TI, CO	 	7.06	48. Lamy. J. 15, 186.
"	"		"		7.164	Lamy and Des Cloizeaux. Nature 1, 116.
Magnesiu	m carl	onate	MgCC)8	8.087	Neumann. P. A. 28, 1.

Name.		F	ORMULA.	Sp. Gravity.	AUTHORITY.	
Magnesi			MgC	O ₈	8.056	
- (1			- "		3.065	Scheerer.
41			- "		8.017	Breithaupt.
46			- 1		8.088	Hauer.
66	•		- "		8.017	Marchand and Scheerer. J. 8, 760.
44			- "		8.007)	
44			. ".		8.076 }	Jenzsch. J. 6, 848.
44	1		- "		8.088	Zepharovich. J. 8, 975.
44			- "		8.015	Zepharovich. J. 18 906.
			1 -	-	1.875	42, 14.
Zinc carl			. Zn C ()8	4.889	
"	"		- "		4.442	Mohs. See Böttger.
t i	"		- "		4.8765	Karsten. Schw. J. 65, 894.
44	"		- "		4.45	
	"		- "			Haidinger.
		ate	İ)8	4.42, 17°	Herapath. P. M. 64 821.
66	"		- "	*******	4.4988	Karsten. Schw. J. 65, 894.
	. "				4.258	Schröder. Dm. 1878.
	carbona)8	2.7000 }	Karsten. Schw. J.
"	" C	halk	- "		2.6946 }	65, 894.
**	" A	ragonite	- "		2.981	Haidinger.
. "	44	"	- "		2.927	Biot.
66	**	"	- "		2.945 }	Beudant.
"	"	"	- "		2.947 }	
"		"	- "		2.981	Mohs.
**	46		- "		2.988 }	Breithaupt.
44	44	"	- "		2.995 }	•
"			- "		2.926	Neumann. P. A. 28, 1.
"	"	"	-		2.988, 0°	Kopp.
44		"	- "		2.98	Nendtwich.
• 46	"	"	-1		2.92	Riegel. J. 4, 819.
44	44	"	- "			Stieren. J. 9, 882.
14	" "		- "		2.982	Luca. J. 11, 732.
66		llcite	-1		2.7064 }	Karsten. Schw. J.
66	"	"	- "		2.6987 }	65, 89 4 .
44	ш	"	- "		2.7218 2.7284 }	Beudant.
"	44	"	- "		2.7284 \$	
"	"	"			2.750	Neumann. P. A. 28, 1.
44	44	"			2.702	Hochstetter. J. 1 1222.
66	66	"	- "		2.72	Kopp. J. 16, 5.
и	"	"	- "	Artificial	2.71	Bourgeois. Ann. (5), 29, 498.
"	"		_ Ca C C)4. 5 H, O	1.788	Pelouze.
66	**		<u>-</u> -	· · · · · · · · · · · · · · · · · · ·	1.75	Salm-Horstmar. P.
_	m ees hoo	noto	1 -		8.605	A. 85, 515. Mohs. See Böttger.
Strontiu	u caruo					

	Nam	E.	F	ORMULA.	Sp. Gravity.	AUTHORITY.
Strontiu	m carb	onate	Sr C O		8.6245	Karsten. Schw. J. 65, 894.
"	6	'	"	*	8.618	v. der Marck. J. 8, 759.
46	6	T 100. P	11		8.548 }	Schröder. P. A. 106, 226.
Barium o	carbone	to	Ba C C) ₄	4.24	Breithaupt.
66	"		"		4.301	Mohs.
**	"		44		4.85	Kirwan.
"	"		"		4.8019	Karsten. Schw. J. 65, 894.
46	"		66		4.565	Filhol. Ann. (8), 21, 415.
48	44	Precip	"		4.216)	
44	46	"	11		4.235}	Schröder. P. A. 106,
**	44	"	"		4.872	226.
46	"	Ppt. hot.	"		4.1721 j	Saharaitana Gan
44	66	* "	66			Schweitzer. Con- trib. Lab. Univ. of
**	44	Ppt. cold_	"		4.1609	Missouri, 1876.
44	46	· "	"		4.2811	1
Lead car	bonate		Pb C C),	6.465	Mohs. See Böttger.
**	"		**		6.5	John.
"	"		"		6.47	Breithaupt.
"	46		**		6.4277	Karsten. See Bött-
						ger.
44	4 6 64		"		6.60	Smith. J. 8, 972.
"	"					Schröder. P. A.
				^ -	6.517 }	Ergănz, Bd. 6,622.
mangan	986 Car	bonate	Min	O ₈	8.592	Mohs. See Böttger. Kersten. J. P. C.
						37, 168.
"			44		8 6608	Kranz.
"		" Pnt	"			Grüner. J. 8, 767.
"		" Ppt.	"		8.122}	Schröder. P. A.
	Lamat-				8.129 }	106, 226.
Iron car	Donate		Fe C C),	. 8.829 8.815	Mohs. See Böttger. Dufrenov.
"	"		"		8.872	Neumann. P. A.
"	"		"		8.698	28, 1. Breithaupt. J. P.C.
					1	14, 44 5.
"	ш		- "		. 8.796, 0°	Kopp.
Lanthan	ite		La ₂ (C	O ₃) ₈ . 8 H ₂ O.	2.605, 20°	Genth. A. J. S. (2), 28, 425.
"				"	2.666	Blake. J. 6, 850.
Didymiu	ım carl	bonate	Di, (C	O ₃) ₈ . 8 H ₂ O.	2.850, } 15° {	Cleve. U. N. A.
· "		"		· · ·	2.872, }	1885.
			I		1	I

2d. Double Carbonates.

						
	Name.		Fo	RMULA.	Sp. Gravity.	AUTHOBITY.
Hydrogen ate.	sodium o	arbon-	Na H C	O ₃	2.192, m. of 2.	Playfair and Joule. M. C. S. 2, 401.
66	46	"	"		2.168	Buignet. J. 14, 15.
"	"	"	44		2.2208, 15°	Stolba. J. P. C. 97, 508.
"	"	"	"		2.207 }	Schröder. Dm. 1878.
44 44	"	"	"		2.205)	
					2.159	W. C. Smith. Am. J. P. 58, 148.
Urao			• •		2.1478, 21°	communication.
bonate.	•			0,	2.012	
44	"	"	"			Playfair and Joule. M. C. S. 2, 401.
"	44	"	"		2.180	Buignet. J. 14, 15.
66	"	"	66 66		2.140 } 2.167 }	Schröder. Dm. 1878.
"	"	"	46		2.078	W. C. Smith. Am.
Hydrogen	ammoniu	- 1	Am H (0	1.586	J. P. 58, 145. Playfair and Joule.
bonate.				-		M. C. S. 2, 401.
Sodium po	tassium c	arbon-	K Na C	O ₃	2.5289 } 2.5633 }	Stolba. J. 18, 166.
44	66 66	66 1		O ₃ . 12 H ₂ O ₋	1.6088	" "
Silver pot	ussium c	arbon-	Ag K C	O ₈	8.769	Schulten. C. R. 105, 818.
Gavlussite			Na. Ca (CO.) 5 H.O	1.928 }	Boussingault. Ann.
"					1.950}	(2), 81, 270.
Dolomite .			Ca Mg (C O ₃) ₂	2.914 } 2.918 }	Neumann. P. A. 23, 1.
"			46		2.89	Ott. J. 1, 1223.
. " -			44		2.924	Tschermak. J. 10, 695.
" -					2.85	Senft. J. 14, 1027.
•	mite					Rammelsberg. Da- na's Min.
"					2.83	47. 18.
Bromlite			Ca Ba (C	O ₃),	8.718 8.76, 15°.5	Thomson. Johnston. P. M.
			"			(8), 6, 1,
Barytocalc		- 1			8.66	Children. Ann. Phil. (2), 8, 114.
_			_		8.087	Breithaupt. P. A. 69, 429.
Pistomesit			Mg Fe (C O ₃) ₂	8.412 }	Breithaupt. P. A. 70, 146.
Mesitite			Mg, Fe	(C O.)	8.849) !	Breithaupt. P. A.
"			"		8.868}	11, 170.

NAME.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Ankerite	Ca (Mg Fe) (C O ₃) ₂ .	8.01	Luboldt. Dana's
44	"	8.008	Ettling. Dana's Min.
"	"	3.072	Boricky. J. 22, 1245.
Dawsonite	Al Na (CO ₈) (O H) ₂ -	2.40	Harrington. Dana's Min., 2d App.

3d. Basic Carbonates.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Hydromagnesite	Mg ₄ (C O ₃) ₃ (O H) ₃ .	2.145}	Smith and Brush, J.
Hydrogiobertite	Mg ₄ (C O ₃) ₃ (O H) ₃ . 8 H ₂ O. Mg ₂ C O ₄ . 8 H ₂ O.	2.180 }	6, 851. Scacchi. See Z. K.
Hydrozincite			M. 12, 202.
•			A. C. P. 108, 48
Zaratite Malachite	Cu. (C O.) (O H).	2.698}	1, 1225. Breithaupt. Schw.
66		8.898	J. 68, 291.
44	86	4.06	16, 475. Smith J. 8 975
Azurite	Cu ₃ (C O ₃) ₂ (O H) ₂ Bi ₂ C O ₅	3.88 3.5—3.831	n " " Dana's Mineralogy.
Bismutosphærite			Weisbach. J. C. S. 84, 117.
	"		Wells. A. J. S. (3), 84, 271.
Bismutite	Bi ₂ H ₂ C O ₆	6.86	Louis. J. C. S. 54, 88.

XL. SILICATES.*

1st. Silicates Containing But One Metal.

Name.	FORMULA.	Sp. Gravity.	Аптновіту.
Sodium metasilicate Phenakite	Na ₂ Si O ₃ . 8 H ₂ O Gl ₂ Si O ₄	1.666, 18° 2.966}	F. W. Clarke. Kokscharow. J. 10, 664.
"	"	2.967, 28°	Hillebrand. Bull. 20, U. S. G. S.
"		2.95	Hatch. N. J. 1888, 171.
Bertrandite		ĺ	Bertrand. B. S. M. 8. 96.
		2.586	6. 252
		2.55	14. 41.
Enstatite			Damour. Dana's Min.
"	"		Kenngott. J. 8, 928. Bröggerand v. Rath. Z. K. M. 1, 22.
" Artificial	"	8.11	Hautefeuille. J. 17, 212.
Forsterite			Rammelsberg. J. 18,
" Boltonite		8.008	742
" "	Mg ₈ H ₂ Si ₄ O ₁₂	8.208 } 8.328 }	Smith. J. 7, 821.
Talc	Mg ₈ H ₂ Si ₄ O ₁₂	2.48—2.80 2.682	Scheerer. J. 4, 798. Senft. Z. G. S. 14, 167.
Serpentine			Rammelsberg. J. 1,
"	"	2.644 2.57	Delesse. J. 1, 1195. Hermann. J. 2, 764. Gilm. J. 10, 678.
	"	2.564—2.598 2.597—2.622	Gilm. J. 10, 678. Hunt. J. 11, 715.

^{*} For sp. gr. of silicates before and after fusion see v. Kobell, Bei. 6, 314.

Note.—As regards the natural silicates this table is far from complete. Only those compounds are included which admit of fairly definite chemical formulation, and only a few typical determinations of specific gravity are given in each case. Furthermore, the arrangement is absolutely chemical, and is in no sense dependent upon mineralogical considerations. Thus, for example, all the magnesium silicates are brought together; and so also are the numerous double silicates of aluminum and calcium, quite regardless of their classification as mineral species. Many micas, chlorites, scapolites, etc., are omitted altogether; but the omissions are not serious, for all the important data have been many times collected in the larger treatises on mineralogy, and are, therefore, easily accessible.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Willemite	Zn, Si O4	4.18	Levy. B. J. 25, 351.
"	"	4.02	Hermann. J. 2, 743.
"	"	4.11	Mixter. J. 21, 1006.
" Artificial	"	4.16 }	Gorgeu. B. S. C. 47,
Calamine	Zn ₂ Si O ₄ . H ₂ O	8.485	146. Hermann. J. P. C. 83, 98.
"	"	8.48—8.49 8.42	Monheim. J. 1, 1187. Schnabel. J. 11, 710.
"		8.86	Wieser. J. 24, 1156.
"	"	8.888, 21°	McIrby. J. 26, 1175.
Wollastonite	Ca Si O ₃	2.884	Seibert. See Bött-
"		2.858	ger. v. Rath. J. 24, 1145.
46	**	2.799	Piquet. J. 25, 1104,
" Artificial	"	2.7	Bourgeois. Ann. (5), 29, 441.
" "	"	2.88	Gorgeu. Ann. (6),
Xonaltite	4 Ca Si O, H, O	2.710—2.718	4, 515. Rammelsberg. J. 19, 982.
Okenite	Ca Si ₂ O ₅ . 2 H ₂ O	2.824	Schmidt. J. 18, 889. Kobell. Dana's Min.
"		2.862	Connel. Dana's Min.
Rhodonite	Mn Si Os		Hermann. J. 2, 738.
16		8.68	Igelström. J. 4, 768.
"	"		Fino. J. 86, 1891.
" Artificial	"	8.68	Gorgeu. Ann. (6), 4, 515.
Hydrorhodonite	Mn Si Og. H, O	2.70	Eng-tröm.
Penwithite	Mn Si O ₃ . 2 H, O	2.49	Collins. Z. K. M. 5, 628.
Tephroite	Mn, Si O,	4.1	Brush. J. 17, 887.
- "	"	4.0	Mixter. S. 21, 1006.
" Artificial		Ì	Gorgeu. C. R. 98, 920.
" "	"	4.08	Gorgeu. Ann. (6), 4, 515.
Friedelite	Mn ₄ H ₄ Si ₈ O ₁₃	8.07	Bertrand. C. R. 82, 1167.
Grunerite	Fe Si O ₈	8.718	Gruner. C. R. 24, 794.
Fayalite	Fe ₂ Si O ₄	4.188	Gmelin. B.J.21,200.
" Artificial	"	4.006	Delesse. J. 7, 821. Gorgeu. Ann. (6),
(Thurse culls	Cu Si O ₃ . 2 H ₂ O	0.000	4, 515.
Chrysocolla Dioptase	Cu H, Si O,	2.0—2.238 8.314)	Dana's Mineralogy.
<i>ii</i>	46	8.848 (Kenngott. J. 8, 732.
Kyanite	Al, O, Si O,	8.48 8.661	Igelström. J.7,819. Erdmann. B.J.24,
"	"	8.678	311. Jacobson. P. A. 68,
Andalusite	Al, (Si O4), (Al O),	8.070	416. Rowney. J. 14, 982.
44		8.154	Erdmann. B.J.24, 811.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Andalusite	Al ₃ (Si O ₄) ₈ (Al O) ₈ -	8.152	Kersten. J. P. C.
	· "	8.160	87, 168. Damour. Ann. d.
"	u	8.07—8.12	
Fibrolite	46	8.18-8.21	
"	. "	8.289	Erdmann. B. J. 24, 811.
"	• 66	8.288 8.282	Dana. Dana's Min. Brush. ""
Dumortierite	Al ₂ (Si O ₄) ₈ (Al O) ₆ -	8.86	Damour. Z. K. M. 6, 289.
Xenolite	Al ₄ (Si O ₄) ₃	3.58	
Kaolinite	Al ₂ O H ₍₍ Si O ₄) ₂ H ₃ .	2.6 2.4—2.68	Clark. J. 4, 786.
"	"	2.611	Hillebrand. Bull. 20, U. S. G. S.
Pyrophyllite	Al H (Si O ₈) ₂	2.78—2.79 2.81	Siagran I 9 757
"		2.804	
"	e:	2.82	
Allophane	" Al, Si O ₆ . 6 H, O	2.812 2.02	Genth. J. 86, 1908.
	Right Og. on Di	1.85—1.89	Schnabel. J. 2, 766. Dana's Mineralogy.
Szaboite Nontronite. Chloropal	Fe'', (Si O ₃), 5 H, O	8.505 1.727—1.870	Koch. Z.K.M.8,808. Dana's Mineralogy.
	l		Min.
Zireon	Zr Si O	4.047 4.595	Damour. J. 1, 1171. Wetherill. J. 6,796.
"	"	$\left\{ \begin{array}{l} 4.602 \\ 4.625 \end{array} \right\}$	Hunt. J. 4, 768.
4	"	4.395 before 4.515 heating.	Church I 17 994
"	"	4.488 after 4.868 heating	Church. J.17,884.
"	"	4.709, 21°	Cross and Hille- brand. J. 36,1839.
Cerium orthosilicate	Ce_4 (Si O_4) ₈	4.9 5.56, 25°	Didier. C. R.19, 882. Troost and Ouvrard.
Thorium orthosilicate	`	·	C. R. 105, 255.
Thorite. (Orangite)	Th Si O ₄ . 8 H, O?.	6.82, 16° 5.897	Bergemann. P. A.
" "	"	5.84	82, 562. Krantz. P. A. 82, 586.
"	"	5.19	Damour. Ann. d.
« « <u></u>	"	4.888—5.205	Mines (5), 1, 587. Chydenius. P. A.
" (Ordinary)	n: (9; O)	4.844-4.897	119, 48.
Eulytite	Bi ₄ (Si O ₄) ₈	5.912—6.006 6.106, 17°	Dana's Mineralogy. v. Rath. J. 22, 1209.

2d. Silicates Containing More Than One Metal.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Pectolite	H Na Ca ₂ (Si O ₃) ₃	2.784 2.778—2.881	
"	"	2.878	8, 952. Clarke. Bull. 9, U. S. G. S.
Malacolite	Ca Mg (Si O ₃) ₂	8.87	Bonsdorff. Dana's Min.
"	"	8.285	Haushofer. J. 20, 984.
	"	8.192	Doelter. Z. K. M. 4, 89.
Tremolite	Ca Mg ₃ (Si O ₃) ₄	8.278—8.275 2.930—8.004	Hunt. Dana's Min. Rammelsberg. J. 11, 694.
"	"	2.99	Michaelson. Dana's
"	"	2.996, 220	König. Z. K. M. 1, 50.
Hedenbergite		ł	Wolff. J. P. C. 84, 236.
		8.492	Doelter. Z. K. M. 4, 90.
Monticellite			Rammelsberg. J. 13, 758.
Knebelite	Fe Mn Si O.		Freda. J. 86, 1876. Doebereiner. Schw. J. 21, 49.
"		4.122	Erdmann. Dana's
Kentrolite			v. Rath. Z. K. M. 5, 85.
Melanotekite			Lindström. Z. K. M. 6. 515.
Hynlotekite Petalite	Ca Ba Pb Si ₆ O ₁₅ ? Al Li (Si ₂ O ₅) ₂	3.81 2.447—2.455	Nordenskiöld. Rammelsberg. J. 5, 858.
"		2.412—2.558	
" (Castorite)		2.382—2.401	Breithaupt. P. A. 69, 488.
Spodumene	Al Li (Si O ₃) ₃	8.170 8.1327—8.137	Mohs. See Böttger. Rommelsberg. J. 5, 857.
"	"	3.16	Pisani. Z. K. M. 2, 109.
" Hiddenite	"	8.177	Genth. Z. K. M. 6, 522.
Eucryptite	''	2.007	Brush and Dana. A. J. S. (8), 20, 266.
Aluminum lithium silicate		2.40, 12°	Hautefeuille. C. R. 90, 541.
" " Albite	Al Li Si, O, Al Na Si, O,	2.41, 11° 2.612	Eggertz. Dana's Min.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Albite	Al Na Si, O,	2.609, 12°	Streng. J. 24, 1151. Leeds. J. 26, 1166.
	"	2.59	Leeds. J. 26, 1166.
44	"	2.604	Genth. J. 86, 1896.
		2.010	Baerwald. J. 36, 1897.
	"	2.601	
" Artificial		2.61	Hautefeuille. Z. K. M. 2. 107
Jadeite	Al Na (Si O ₃) ₂	8.26-8.86	Damour. B. S. M. 4, 157.
	"	8.83	
и	t t	8.826—8.855	Hallock. Unpub-
"	"	8.26-8.84	Hawas Justanion
ε(8.85	Taylor. National
Nephelite	Al ₈ Na ₈ Si ₉ O ₃₄	1	Scheerer. P. A. 49, 359.
"	"	2.629	Kimball. J. 18, 762.
"	"	2.600—2.6087_	G. S. 29, 78.
"		2.60—2.68	Lorenzen. J. 86, 1884.
	Al Na H ₂ Si ₂ O ₇		Waltershausen. J.
"	"	2.286	Waltershausen. J. 6, 820.
		2.210	Thomson. Dana's Min.
"	` "		Bamberger. Z. K. M. 6. 83.
EudnophiteParagonite	"	2.27	Weibye. J. 8, 785.
•			Schafhäutl. Dana's Min.
" Pregrattite			Oellacher. Dana's Min.
" Cossaite		2.890—2.896	Min., 2d App.
Hydronephelite Natrolite	8 H ₂ O.	2.263	Diller. A. J. S. (8), 81, 267.
Natrolite	А19 ИЯ9 П4 (21 О4)8	2.207, 11° 2.25 4 —2.258	Gmelin. J. 8, 733.
14	"	2.249	Kenngott. J. 6, 820. Brush. A. J. S. (2), 81, 865.
Orthoclase	Al K Si ₈ O ₈	2.5702	Breithaupt. See Böttger.
		2.578	Rammelsberg. J. 20, 988.
"	"	2.576-2.588	v. Rath. J. 24, 1150.
"	"	2.572—2.595	Genth. J. 86, 1896. Hautefeuille. Z. K.
" Artificial	"	2.55, 16°	M. 2, 514.
Leucite	Al K (Si O ₈) ₃	2.519	Bischof. Dana's Min.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Leucite	Al K (Si O.)	2.48	Rammelsberg. J. 9,
	_		l 852.
" Artificial	"	2.479, 28° 2.47, 18°	Hautefeuille. Z. K.
Muscovite	Al ₃ K H ₂ (Si O ₄) ₃	2.817 2.714—2.796	Kussin. Dana's Min. Grailich. Dana's
"	"	2.830—2.831	
46	"	2.855	M. 3, 127. Scharizer. Z. K. M. 12, 15.
Pollucite	Al ₂ Cs ₂ H ₂ (Si O ₃) ₅	2.868—2.892	Breithaupt. P. A. 69, 489.
" <u></u>	"	2.901 2.898	Pisani. J. 17, 850. Rammelsberg. Z. K.
Grossularite	Al ₂ Ca ₃ (Si O ₄) ₃	8.522—8.536 8.609	Hunt. Dana's Min. Websky, J. 22, 1214.
		2.768	Jannasch. J. 86, 1880. Rose, See Böttger.
Anorthite	ii	2.78	Deville. J. 7, 832.
"		2.7825 2.668	
Idocrase	Ål ₄ Ca ₈ (Si O ₄), ?	2.686 8.8128—8.8905	v. Rath. J. 27, 1255. Karsten. See Bött-
"	"	3.884	ger. Rammelsberg. J. 2, 745.
"	"	8.44	Damour, J. 24, 1153.
"	"	8.2588 8.403—8.472	Korn. J. 36, 1874. Jannasch. J. 36, 1875.
Melilite	Al ₂ Ca ₆ Si ₅ O ₁₉	2.9—8.104 2.95	Dana's Mineralogy. Damour. Ann. (3),
Meionite*		1	10.59.
"	1	2.716, 16°	Neminar. J. 28,
Gehlenite			Dana's Mineralogy. Janovsky. J. 26,
Prehnite			Mohs. See Böttger. Streng. N. J. 1870,
Heulandite	Al ₂ Ca H ₁₀ Si ₆ O ₂₁	8.042 2.195	Genth. J. 36, 1185. Thomson. Dana's Min.
"	"	2.1968	Jeremejew. Z. K. M. 2, 503.
Stilbite	Al, Ca H ₁₂ Si ₆ O ₂₂	2.208	Münster. P. A. 65, 297.

^{*}For other data relative to the scapolite group see Dana's Mineralogy and also Tschermak's memoir in M. C. 4, 884.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stilbite	Al Co H. Si. O	2 184	Waltershausen. Da-
Duitied	04 113 134 041		l na's Min.
Laumontite	Al, Ca H, Si, O,	2.16 2.268	Schmid. J.24, 1158. Breithaupt. See Bottger.
"	"	2.252	Mallet. Dana's Min.
Scolezite	" Al ₂ Ca ₂ H ₆ Si ₃ O ₁₃	2.280-2.810-	Gericke. J. 9, 861. Waltershausen. J.
14		2.28	6, 819. Collier. Dana's
<u></u>	"	2.27	Min. Lüdecke. Z. K. M.
			6, 812.
Chabazite	Al ₂ Ca H ₁₂ Si ₄ O ₁₈	2.094	Breithaupt. See Böttger
11	"	2.08—2.19	Dana's Mineralogy.
66	"	2.138 }	Streng. Z. K. M. 1, 519.
Zoisite	Al ₃ Ca ₂ H Si ₃ O ₁₃		Rammelsberg. J. 9, 849.
6	"	8.226—8.881	Breithaupt. Dana's Min.
Margarite	Al ₄ Ca H ₂ Si ₂ O ₁₂	2.99	Hermann. J. P. C. 58, 16.
Oligoclase	Al_5 Ca N_{n_8} Si ₁₁ O ₃₂	2.66—2.68 2.725	Kerndt. J. 1, 1182. v. Rath. J. 11, 706.
		2.643—2.689	Petersen. J. 25, 1112.
Andesite	Al ₃ Ca Na Si ₅ O ₁₆	2.651—2.786 2.667—2.674	Delesse. J. 1, 1188. Hunt. J. 14, 995.
Labradorite	Al, Ca, Na Si, O,	2.719-2.888	Delesse. J. 1, 1188.
66	"	2.709 2.697	Damour. J. 8, 728. Hunt. J. 4, 782.
Faujasite	Al CaNa H (SiO)	2.72-2.77,15°.5 1.928	Streng. J. 15, 786. Damour. Ann. d.
· ·	Al ₄ CaNa ₂ H ₄ (SiO ₃) ₁₆ . 18 H ₂ U.		Mines (4), 1, 895.
Thomsonite	2 Al ₂ (Ca Na ₂) Si ₂ O ₈ . 5 H ₂ O.	2.35-2.88	Zippe. Dana's Min.
"	"	2.357	Rammelsberg. J. P. C. 59, 848.
" Lintonite	"	2.82—2.37	Peckham and Hall. A. J. S. (3), 19,122.
Gmelinite	Al ₂ (CaNa ₂)H ₁₂ Si ₄ O ₁₈	2.07	Damour. J. 12, 796.
"		2.099—2.169 2.100	Dana's Mineralogy. Liversidge. J. 86,
Milarite	Al ₂ Ca ₂ K H (Si ₂ O ₅) ₆	2.5529	1895. Ludwig. Z. K. M. 2, 681.
Phillipsite	Al ₂ (Ca K ₂) H ₈ Si ₄ O ₁₆	2.201	Waltershausen. Da-
	"	2.218	na's Min. Marignac. B. J. 26, 851.
"	"	2.150, 21° }	W. Fresenius. Z. K.
Strontium oligoclase	Al Sr No Si O	2.160, 20° } 2.619	M. 8, 42. Fouqué and Lévy.
_			C. R. 90, 622.
Strontium labradorite Strontium anorthite	Al, Sr (Si O ₄),	8.048	"

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Barium oligoclase	Al ₅ Ba Na ₅ Si ₁₁ O _{22-L}	2.906	Fouqué and Lévy. C. R. 90, 622.
Barium labradorite	Al, Ba, Na Si, O,	8.888	16 ' 46
Barium anorthite	Al, Ba (Si O ₄),	3,578	44 66
Harmotome	Al, Ba H ₁₀ Si ₅ O ₁₉	2.892	Mohs. See Böttger. Dana's Mineralogy.
"	"	2.44—2.45	Dana's Mineralogy.
"	"	2.447	Damour. Dana's Min.
"	"	2.402, 21°	W. Fresenius. Z. K. M. 8, 42.
Lead oligoclase	Al ₅ Pb Na ₈ Si ₁₁ O ₈₂	8.196	Fouqué and Lévy. C. R. 90, 622.
Lead labradorite	Al, Pb, Na Si, O,	3.609	"
Lead anorthite	Al. Pb (Si O.)	4.098	
Euclase	Al Gl H Si O	8.086	Mallet. J. 6, 800.
"	"	8.097	Des Cloizeaux. Da-
"	ii	8.096—8.103	
"		8.087	na's Min. Guyot. Z. K. M. 5, 250.
Beryl	Al. Gl. (Si O.) or	2.818	
di	Al ₂ Gl ₃ (Si O ₃) ₆ , or Al ₄ Gl ₅ H ₂ Si ₁₁ O ₃₄	2.686	Haughton. J. 15, 720.
"	"	2.650	Petersen. J. 19, 925.
"	"	2.706	Penfield and Har-
"	"	2.681—2.725	per. A. J. S. (8), 32, 111. Kokscharow. Dana's
" Emerald	"	2.614	Min. Boussingault. J. 22,
			_ 1216.
11 14	"	2.710—2.759	Kammerer. Dana's Min.
Iolite	Al ₄ Mg ₂ Si ₅ O ₁₈	l .	Kokscharow. J. 18, 767.
"	"	2.6699, 16°	Schachtel. Z. K. M. 7, 594.
"	"	2.6708, 18°	Jost. Z. K. M. 7, 594.
Ripidolite	Al. Mg. Si. O 4 H. O	2.774	Rose. Dana's Min.
		2.608	Hermann. Dana's Min.
"		2.678	
"		2.714	
Arctolite	Al, Mg Ca H, (Si O4),	8.08	Blomstrand.
Manganese garnet. Artificial.	Al ₂ Mg Ca H ₂ (Si O ₄) ₈ Al ₂ Mn ₃ (Si O ₄) ₈		Gorgeu. C. R. 97, 1303.
Kurpholite	Al ₂ Mn H ₄ Si ₂ O ₁₀	2.935	Breithaupt. Dana's Min.
"		2.876	Koninck. Z. K. M. 4, 222.
Almandite	Al ₂ Fe" ₃ (Si O ₄) ₃	8.90—4.286	Wachtmeister. Da- na's Min.
"	. "	4.196	Mallet. Dana's Min.
"		4.197	Websky. J.21,1013.
"	. "	4.127	Heddle. J. 86, 1881.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Partschinite Venasquite	Al ₂ Fe" Mn ₂ (Si O ₄) ₃ Al ₂ Fe" H ₂ Si ₃ O ₁₁	4.006 3.26	Haidinger. J.7, 826 Damour. Z. K. M 4, 413.
Chloritoid			Smith. J. 8, 741.
"		8.588	Tschermak and Sipöcz. Z. K. M. 8
Ouvarovite		ŀ	Erdmann. B. J. 28 291.
" Acmite	Fe''' Na (Si O ₈) ₂	8.41—8.52 8.586—8.5 4 8	Dana's Mineralogy. Breithaupt. See
"	"	8.580	Böttger. Rammelsberg. J. 11, 695.
46	i	8.520	Doelter. Z. K.M. 4 92.
Andradite	Fe''', Ca, (Si O ₄),	8.85 8.796—8.798	Damour. J. 9, 848 Kokscharow. J. 12 782.
		3.797	Fellenberg. J. 20, 984.
		8.740	Dana. Z. K. M. 2 811.
" Demantoid	"	8.828 8.81, 15°	Rammelsberg. Z. K. M. 3, 103.
Crocidolite	Fe''', Fe'', Na, H,		602.
	(Si O ₈) ₉ .		mann. P. A. 28, 153,
	"	8.2	(3), 84, 108,
Lievrite	Si ₂ O ₂ .	8.711	Ť
44	"	4.05	1879.
Thuringite. (Owenite)	Fe''', Fe'', Si, O ₁₆ . 5 H ₂ O.	8.197, 20°	Genth. A. J. S. (2) 16, 167.
" "	"	3.191 .	Smith. A. J. S. (2), 18, 876.
		3.177	M. 1, 371.
Sphene	(4	8.49—8.51 8.44 8.535	Fuchs. Dana's Min.
" Greenovite	"		Hintze. Z. K. M. 2, 810.
" Artificial		8.45	Hautefeuille. J. 17
Guarinite Zirconium potassium sili- cate.	Zr K ₂ Si ₂ O ₇	2.79	Guiscardi. J. 11, 718 Mellis. Göttinger Doct. Diss., 1870.
Zirconium sodium silicate Calcium tin silicate	Zr ₈ Na ₂ Si O ₁₉ . 11 H ₂ O Ca Sn Si O ₅	8.58 4.84	Bourgeois. C. R. 104, 288.

3d. Boro-, Fluo-, and Other Mixed Silicates.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Danburite	Ca B ₂ Si ₂ O ₈	2.986 }	Brush and Dana. Z.
"		8.021 }	K. M. 5, 185.
"	"	2.986 } 2.988 }	Bodewig. Z. K. M. 7, 297.
Datolite	Ca H B Si Os		Mohs. See Böttger.
66		2.9911	Breithaupt. See Böttger.
44	66	2.983 2.987—3.014	Whitney. J. 12, 801. Tschermak. J. 13, 778.
44	"	2.988	Smith. J. 27, 1270.
Homilite	Ca ₂ Fe B ₂ Si ₂ O ₁₀	8.28	Paikull. Z. K. M.
Howlite	Ca ₂ H ₅ B ₅ Si O ₁₄	2.59	1, 385. Penfield and Sperry. A. J. S. (3), 34, 221.
Axinite	$Al_s (Ca Fe Mn)_4 H_2 B Si_5 O_n.$	8.271	Mohs. See Böttger.
Tourmaline. Colorless	Al B O, (Si O,), R'6.	8.07-8.085	Riggs. A. J. S. (3), 85, 85.
" Red	"	2.998—8.082	Rammelsberg. J. 3,
"		2.9978.028	Riggs. A. J. S. (3), 85, 85.
" Green	"	8.069-8.112	Rammelsberg. J. 3
" Brown	"	8.035-8.068-	"" "
" Black	"	8.2053.248	
"	"	3.083.20	Riggs. A. J. S. (8) 85, 85.
Apophyllite	Cn ₄ K H ₈ (Si O ₃) ₈ F. 4 H ₂ O.	2.885	
16	"	2.805	Jackson. J. 8, 733.
		2.37	Smith. J. 7, 838.
Leucophane	Gl ₄ Ca ₄ Na ₃ Si ₇ O ₂₂ F ₃	2.964	Rammelsberg. J. 9. 867.
"		2.974	Erdmann. B. J. 21 168.
Melinophane	Gl ₃ Ca ₃ Na ₁₂ Si ₄ O ₁₄ F ₁₂	8.00 8.018	Scheerer. J. 5, 883. Rammelsberg. J. 9
Topaz	Al, Si O, F,	3.439-3.547-	
"	"	8.52—3.56	
"	"	8.514-8.568	
"	"	8.583—8.597	
46		3.578, 22°	
Lepidolite	Al, K Li Si, O, F,	2.834-2.8546	20, U. S. G. S. Berwerth. Z. K. M.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lepidolite		l	Scharizer. Z. K. M. 12, 15.
Phlogopite	Al ₂ Mg ₅ HKSi ₅ O ₁₈ F ₂ "	2.78—2.85 2.81	Dana's Mineralogy. Kenngott. J. 15, 742.
"		2.959, 16°	Berwerth. Z. K. M. 2, 521.
"		j	Tschermak. Z. K. M. 8, 127.
Calcium chlorosilicate	Ca ₃ Si O ₄ Cl ₂	1	97. 1510.
Sodulite	AI4 N85 (SI O4)4 CI	2.81	V. Kath. Dana's Min. Lorenzen. J. 86, 1884.
4			Bamberger. Z. K. M. 5, 584.
Marialite	Al ₃ Na ₄ Si ₉ O ₂₄ Cl	2.294—2.814 2.626, 19°	Kimball. J. 18, 775. v. Rath. Z. G. S. 18, 685.
Pyrosmalite	Mn ₅ Fe'' ₅ H ₁₄ (Si O ₄) ₈ Cl ₂ .	8.168—3.174	
44		3.081	Min.
Helvite		l ·	425.
"			Kokscharow. J. 22, 1228.
Danalite			42. 73.
Nosean	(,	2.279—2.899	v. Rath. Z. G. S. 16, 86.
Complex silicate and sulphide.		l	Rammelsberg. J. P.
Thaumasite	Ca ₃ Si O ₃ S O ₄ C O ₅ . 14 H ₂ O.	1.877, 19°	Lindström. J. 88, 1484.
Calcium silicophosphute	Ca ₅ Si O ₄ (P O ₄) ₂	8.042	Carnot and Richard. B. S. M. 6, 241.

XLI. TITANATES AND STANNATES.

•	Name.		FORMULA.	Sp. Gravity	Authority.
Calcium	titanate.	Artifl-	Ca Ti O ₃	4.10	Ebelmen.
"	44	"	46	4.00	Hautefeuille. J. 17, 217.
44	"	Perof- skite.		4.017	Rose. B. J. 20, 210.
64	66	. "	"	4.038	Damour. J. 8, 960.
66	"	"	"	8.974, 200	Brun. Z. K. M. 7, 889.
Strontiu	m titanat	9	Sr ₂ Ti ₃ O ₈	5.1	Bourgeois. C. R. 108, 141.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Barium titanate		į	Bourgeois. C. R. 103, 141.
Magnesium titanate	Mg Ti O ₃	8.91	Hautefeuille. J. 17,
Magnesium orthotitanate_ Ilmenite	Mg, Ti O ₄ Fe Ti O ₈	8.52 4.727	217 Marignac. B. J. 26, 372.
Iron orthotitanate	Fe ₂ Ti O ₄	4.37	Hautefeuille. J. 17,
Zinc titanate	·		217. Levy. C. R. 105, 880.
Potassium stannate	K, Sn O, 8 H, O	8.197	Ordway. J. 18, 240.

XLII. CYANOGEN COMPOUNDS.*

1st. General Division,

" "	ITY.	Authoria	Sp. Gravity.	Formula.	NAME.
" 1.774, 24° 5 feuille. J. 2 Hydrosulphocyanic acid	T. 1845, Ann. A. 47, Haute- 21, 314. Haute- 1. 22, 99. Ber. 13, Haute- 22, 99. T. 1814, F. P. A. Ann. (2), "Zu-	Faraday. P.7 155. Gay Lussac. 95, 136. Trautwein. Cooper. P. 527. Troost and feuille. J. Troost and feuille. J. Chröder. B 1070. Troost and feuille. J. Clasen. Porrett. P.7 548. Meitzendorff. 56, 63. Serulas. An 38, 370. Weitzien's	.866, 17°.2	C ₂ N ₂	Cyanogen. Liquefied Hydrocyanic acid

^{*} Exclusive of organic cyanides, or compounds containing organic radicles.

2d. Cyanides, Cyanates, and Sulphocyanides.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium cyanide	KUNAgUN	1.52, 12° 8.948, 11°	Bödeker. B. D. Z. Giesecke. "Bödeker."
" "	"	4.0086, 14°.2	Clarke. A. J. S. (8), 16, 201.
66 66	"	4.0026, 22°.2	Creighton. F. W. C. Wittmann. "
	"	4.011 (Schröder. Ber. 18, 1070. Clarke. A. J. S.
Mercury oxycyanide	"	4.487, 190.2	(8), 16, 201. Creighton. F. W. C.
Mercury chlorocyanide	l "	4.514, 26° } 4.581, 21°.7	Wittmann. "
Mercury potassium cyanide. " "		2.4470, 21°.2 2.4551, 24° 2.4620, 21°.5	Creighton. "
Potassium chromocyanide	K ₄ Cr (C N) ₆	1.71	Moissan. Ann. (6), 4, 138.
Potassium manganicya- nide.		i	Topsoë. B. S. C. 19, 246.
Sodium ferrocyanide Potassium ferrocyanide		1.83	Watts' Dictionary. Schiff. J. 12, 41.
" " " " " Thallium ferrocyanide	 Tl ₄ Fe (C N) ₆ . 2 H ₂ O	2.052	Buignet. J. 14, 15,
Ammonium ferrocyanide with ammonium chloride.	$\begin{array}{cccc} \mathbf{Am_4} & \mathbf{Fe} & (\mathbf{C} & \mathbf{N})_{\mathbf{g}} \\ 2 & \mathbf{Am} & \mathbf{Cl}. & 3 & \mathbf{H_2} & \mathbf{O}. \end{array}$	1.490	Topsoë. C. C. 4, 76.
Potassium ferricyanide	K, Fe Cy	1.8004 1.845	Schabus. J. 8, 859.
" " ——	"		Wallace. J. 7, 878. Schiff. J. 12, 41.
u u	"	1.817 1.849, 15°.8]	Buignet. J. 14, 15.
61 66 61 66	"	1.854, 15°.8 1.855, 15° 1.861, 15°	Schröder. Dm. 1878.
Silver ammonio-ferricy-	6 N H., H. O. ()	$\begin{pmatrix} 2.42 \\ 2.47 \end{pmatrix}$ 14°.2	Gintl. J. 22, 821.
Sodium nitroprusside	Nu, Fe, (C N),	1.710	Schröder. Dm. 1878.
46 66	(NO)3. 4 H2 O.)	1.710) 1.6869, 25° 1.718) 1.781 }	Dudley. F. W. C. Schröder. Ber. 18, 1070.
Potassium nickel cyanide	K, Ni (C N), H, O.	1.871, 14°.5 1.875, 11	Dudley. F. W. C.
Potassium cobalticyanide	K ₃ Co (C N) ₆	1.906, 11°	Bödeker. B. D. Z. Topsoë. C. C. 4, 76.
Potassium platinocyanide-	•••	2.4548, 16° } 2.5241, 18° }	Dudley. F. W. C.
Barium platinocyanide	BaPt (C N),	8.054	Schabus. J. 8, 860.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Samarium platinocyanide Thorium platinocyanide		[Z. (40)	Cleve. U. N. A. 1885. Topsoë. B. S. C. 21, 118.
Potassium cyanate " " Silver cyanate " "	4	2.056, 4°	Schröder. Ber. 12, 561.
Potassium sulphocyanide. """" Ammonium sulphocyanide. """ Lead sulphocyanide. Phosphorus sulphocyanide Potassium chromium sulphocyanide. "" Potassium platinsulpho-	" Am C N S " " Pb (O N S) ₂ P (C N S) ₃ K ₆ Cr(CNS) ₁₂ . 8H ₂ O	1.903 12 1.891 1.299 1.816 1.816 1.816 1.625, 18° 1.7051, 17°.5 1.7107, 16° 2.842, 18°	Bödeker. B. D. Z. Schröder. Ber. 11, 2215. Dudley. F. W. C. Schröder. Ber. 11, 2215. Schabus. J. 8, 862. Miquel. J. C. S. 32, 872. Dudley. F. W. C.
cyenide. Potassium platinselenio- cyanidė. Titunium nitrocyanide " Samarium sulphocyanide with mercuric cyanide.	K ₂ Pt (C N Se)6	8.877, 10°.2 3.878, 12°.5	" " Wollaston, P. T. 1828, 17. Karsten. Schw. J. 65, 894. Cleve. U. N. A. 1885

XLIII. MISCELLANEOUS INORGANIC COMPOUNDS.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Nitrogen chlorophosphide	P ₈ N ₈ Cl ₈	1.98	Gladstone and Holmes. J. 17, 148.
Mercury sulphide with copper chloride.		!	Raschig. A. C. P. 228, 27.
Mercury chloride with am- monium dichromate.		8.1850, 18° 8.2836, 21°	Heighway. F. W. C.
Mercury cyanide with po-	" 2 Hg Cy ₂ . K ₂ Cr O ₄ -	8.0824, 14° 8.564, 21°.8	Langenbeck, F. W. C. H. Schmidt, F. W.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Pot:ssium nitrato-sul- phate.			Jacquelain. A. C. P. 82, 284.
Potassium phosphato-sul- phate.	K ₂ S O ₄ . H ₃ P O ₄	2.296	"
Hanksite			Hidden. A. J. S. (8), 30, 185.
Phosgenite			Rammelsberg. P.
Leadhillite	Pb ₄ S O ₄ (C O ₃) ₃	6,550 6.526	Gadolin. J. 6, 846. Kokscharow. J. 6, 846.
Bastnāsite (Hamartite)	(Ce La Di) (C O_8) $F_{}$	4.98	
		5.18-5.20	A. J. S. (8), 19,
Parisite	(Ce La Di) ₂ (C O ₃) ₄ . Ca F ₂ .	4.85	Bunsen. Dana's Min.
"	"	4.817	Dufrenoy. Dana's Min.

XLIV. ALLOYS.*

Alloy.	SPECIFIC GRAVITY.	AUTHORITY.
SODIUM AND POTASSIUM.		
Na K	.8998 } 0°, solid }	Hagen. P. A. (2), 19, 486.
ZINC AND CALCIUM.†		
Zn ₁₂ Ca	6.869 6.8726 }	v. Rath. Z. C. 12, 665.
ALLOYS OF MERCURY. AMALGAMS.	•	
Hg Zn	12.615 11.98 12.284, 15°.7 11.979, 15°.9 12.49, 17° 12.815, 15°.5 11.8816	Matthiessen. P. T. 1860, 177. Bauer. J. 24, 817. Matthiessen. P. T. 1860, 177. Kupffer. Ann. (2), 40, 285.
4	11.456, 11°.8	Holzmann. P. T. 1860, 177.

^{*}This table contains only a moderate number of the many determinations which have been made relative to the specific gravity of alloys. Only those alloys have been admitted which allow of relatively simple chemical formulæ. Some of them are doubtless true chemical compounds, but in most cases the formulæ merely represent proportionate composition.

† See also Norton and Twitchell, A. C. J. 10, 70.

¹⁰ s G

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.
ALLOYS OF MERCURY. AMALGAMS—continued.		
Hg Sn	10.8447	Kupffer. Ann. (2), 40, 285. Holzmann. P. T. 1860, 177.
"	10.369, 14°.2	Holzmann. P. T. 1860, 177.
	. 10.255 9.3185	Calvert and Johnson. J. 12, 120.
Hg Sn,	9.862, 9°.9	Kupffer. Ann. (2), 40, 285. Holzmann. P. T. 1860, 177.
"	9.314	Calvert and Johnson. J. 12, 120
Hg Sn ₃	8.8218	Kupffer. Ann. (2), 40, 285.
"	8.805	Calvert and Johnson. J. 12, 120
Hg Sn	8.510	46 66
Hg Sn ₅	8.312	
Hg Sn ₆	8.151	"
Hg Bi	11.208	
Hg Bi,	10.698	1
		Croockewitt. J. 1, 898.
Hg Bi _s Hg Bi ₄		Calvert and Johnson. J. 12, 120
Hg Bi ₅	10.240	
Hg Agn. Native	12.703, 17°	Weiss. J. 86, 1819.
Hg, Au	15.412	Croockewitt. J. 1, 898.
ALLOYS OF ALUMINUM.		
A1.77-	4.582	Himal I 11 100
Al Zn		Hirzel. J. 11, 188.
Als Sn	8.791	
Al Sn		
Ala Sn	4.276	"
Al, Sn	_ 4.744	46 66
Al Sn		" "
Al Sn ₂	6.264	44 44
Al Sn	6.586	•{
Al ₃ Cb	4.45—4.52	Marignac. J. 21, 215.
Al Cr		
Al. W	5.58	
Al ₄ W	8.402	
Al. Ni	8.647	Michel. J. 18, 182.
Al Cu	2.764	Hirzel. J. 11, 188.
Al ₆ Cu	_ 8.206	- 44 - 44
Al Cu	_ 8.316	
Al ₁₁ Cu ₈	_ 8.579 8.724	
Al, Cu		•
Al. Cu	_ 4.148	
Al, Cu	4.855	
Al Cu	_ 5.731	
Al Cu,	6.946	
Al Cu,	7.204	
Al Cu	7.534	66 66
Al Cu	- 7.727 - 7.751	
Al Cu ₆ Al ₂ Cu ₁₈	7.884	•
Al ₂ Ag	6.788	•]
Al Ag	8.744	1112ei. J. 11, 107.
Al Ag.		44 44

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.
TIN AND ZINC.		
Sn, Z n	7.285	Croockewitt. J. 1, 894.
"	7.274	
Sn Zn	7.115	
<u>"</u>	7.262	
Sn Zn,	7.096	
"	7.188	
Sn Zn _s	7.180	-
n Zn4	7.155	-1
Sn Zn ₆	7.140	- " "
Sn Zn ₁₀	7.185	- "
TIN AND CADMIUM.		
Sn ₆ Cd	7.434, 12°.7	Matthiessen. P. T. 1860, 177.
in, Cd	7.489, 150	- "
Sn ₂ Cd	7.690, 120.9	-
Sn Cd	7.904, 18°.2	-!
Sn Cd.	8.139, 110.1	- " "
Sn Cd	8.886, 14°.5	- "
Sn Cd _g	8.482, 15°	- " "
TIN AND LEAD.		
Sn ₁₂ Pb	7.628, 19°.4	
"	7.4849. 181°. a.	
"	7.8518, 212°, 1 7.8209, 218°.7 7.8041, 249°.4	
"	7.3209, 218°.7	
"	7.8041, 249°.4 }	Vicentini and Omodei. Bei. 12
"	7.2726, 275 8	178. Melting point, 181°.
"	7.2490, 804°.2	
"	7.2294, 829°	
"	7.2088, 854°.8 J	m
Sng Pb	7.9210	Kupffer. Ann. (2), 40, 285. Long. P. T. 1860, 177.
, , ,	7.927, 15°.2	Long. P. T. 1860, 177.
Sn ₅ Pb	8.0279	Kupffer. Ann. (2), 40, 285.
	8.093	Calvert and Johnson. J. 12, 120
	8.046	Riche. J. 15, 111.
Sn. Pb	8.1780	
	7.850	Long. P. T. 1860, 177.
	8.188, 16° 8.196	
"	8.2847	Calvert and Johnson. J. 12, 120
"	8.195	Pillichody. J. 14, 279.
((Riche. J. 15, 111.
66	8.177, 16°.7 8.0785, 183°.8, s.	
"	7.8898, 209°, h	
"		
"	7.8090, 240°.4 7.7917, 260°.4	. Vicentini and Omodei. Bei. 12
"	7.7586, 295°.5	178. Melting point, 188°.8.
"		1
"	7.7828, 824°.7 7.7082, 857°.6	
5n, Pb,		Diaha T 15 111
	8.291	Riche. J. 15, 111.
n Dh	Q 0014	17 40 (0) 40
Sn, Pb	8.8914	. Kupffer. Ann. (2), 40, 285.
Sn, Pb	8.549	Kupffer. Ann. (2), 40, 285. Thomson. J. 1, 1040.

ALLOY.	Specific Gravity.	AUTHORITY.
TIN AND LEAD—contin'd.		
Sn ₈ Pb	8.4087	Pillichody. J. 14, 279.
"	8.414	Riche. J. 15, 111.
"	8.400, 17°	•
	8.2949, 182°.9, s. 8.0821, 182°.9, l.	
"	8.0821, 1820.9, 1.	
"	8.0755, 189°.7	
"	8.0481, 222°.9 8.0150, 250° }	Vicentini and Omodei. Bei. 12
**	7.9896, 275°.9	178. Melting point, 182°.9.
"	7.9695, 296°.8	
"	7.9446, 828°.9	
"	7.9212, 849°.5 J	
Sn ₈ Pb ₂	8.565	Riche. J. 15, 111.
Sn ₂ Pb'	8.7454	Kupffer. Ann. (2), 40, 285.
ii	8.777, 13°.8	Regnault. P. A. 53, 67. Thomson. J. 1, 1040.
"	8.688 8.779, 17°.2	Long. P. T. 1860, 177.
"	8.774	Calvert and Johnson. J. 12, 120
"	8.7257	Pillichody. J. 14, 279.
"	8.766	Riche. J. 15, 111.
"	8.745, 15°.2]	,
"	8.6298, 182°.8, s.	
"	8.4509, 182°.8, 1.	
"	8.4881, 189° 8.4088, 207°	
"	8.4088, 201	Vicentini and Omodei. Bei. 12
16	8.8582, 242°.5 { 8.8204, 272°.9	178. Melting point, 182°.8.
"		
46		
"	8.2448, 851°.5	
Sn ₂ Pb ₂	9.0377	Pillichody. J. 14, 279.
	9.046	Riche. J. 15, 111.
Sn, Pb,	9.2778, 15°	Pohl. J. 8, 824.
Sn'Pb	9.4268	Kupffer. Ann. (2), 40, 285.
"	9.387, 18°.8	Regnault. P. A. 53, 67. Thomson. J. 1, 1040.
"	9.894	Croockewitt J 1 204
44	9.460, 15°.5	Croockewitt. J. 1, 894. Long. P. T. 1860, 177.
"	9.458	Calvert and Johnson. J. 12, 120
11	9.4380	Pillichody. J. 14, 279.
"	9.451	Pillichody. J. 14, 279. Riche. J. 15, 111.
. "	9.422, 20°	
"	9.2809, 181°.8, s.	
"	9.180, 181°.8, 1.	
((9.1848, 201°.6	
"	9.0958, 216°.7 9.0488, 288°	991
"	8.9864, 248°.8 (Vicentini and Omodei. Bei. 12
"	8.9648, 262°.8	178. Melting point, 181°.8.
"	8.9276, 298°	
"	8.8989, 817°	
"	8.8771, 887°	
"	8.8590, 856°]	
Sn ₈ Pb ₄ Sn ₂ Pb ₃	9.6899, 15°	Pohl. J. 8, 828. Pillichody. J. 14, 279.

ALLOY.	Specific Gravity.	AUTHORITY.
TIN AND LEAD—contin'd.		
Sn Pb	9.966	Croockewitt. J. 1, 894.
"	10.080, 14°.8	Long. P. T. 1860, 177.
"	10.105	Calvert and Johnson. J. 12, 120.
"	10.0520	Pillichody. J. 14, 279.
"	10.110	Riche. J. 15, 111.
Sn Pb _a	10.8868	
(1	10.421	Calvert and Johnson. J. 12, 120.
	10.8811	Pillichody. J. 14, 279.
	10.419	
Sn Pb4	10.5551	Kupffer, Ann. (2), 40 285.
"	10.590, 14°.8	Kupffer. Ann. (2), 40 285. Long. P. T. 1860, 177.
"	10.587	Calvert and Johnson. J. 12, 120.
"	10.5957	Pillichody. J. 14, 279.
Sn Pb.	10.751	Calvert and Johnson. J. 12, 120.
Sn Pb ₆	10.815, 15°.6	Long. P. T. 1860, 177.
0 1 08 2222222	101010, 10 10111111111	
LEAD AND CADMIUM.		
Cd ₆ Pb	9.160, 18°.7	Holzmann. P. T. 1860, 177.
Cd, Ph	9.358, 120	1. 2. 2000, 177.
Cd, Pb	9 755, 149 7	66 66
Cd Pb	10 246 119 7	44 44
Cd Pb,	10.656 130 4	
Cd Pb.	10.050, 99.9	44
Cd Pb	11.044, 14°.8	1 11
ANTIMONY AND TIN.		
8b ₁₂ Sn	6.739, 16°.2	Long. P. T. 1860, 177.
Sh. Sn	6.747. 18.°4	"
Sb ₄ Sn	6.781, 18°.5	1 44 44
Sb, Sn	6.844, 13°.8	•
8b Sn	6.929, 15°.8	•
Sb Sn ₂	7.023, 150.8	44 44
Sb Sn ₃	7.100, 100.6	46 66
Sb Sn ₅	7.140, 190	11 11
Sb Sn ₁₀	7.208, 180.5	44 44
Sb Sn ₂₀	7.276, 195.4	44 44
Sb Sn ₅₀	7.279, 20	44 44
Sb Sn ₁₀₀	7.284, 20°.2	
ANTIMONY AND LEAD.		
Sb. Pb	7.214	Riche. J. 15, 111.
Sb ₆ Pb	7.361	111 11 11 11 11 11 11 11 11 11 11 11 11
CL DL	7 429	Calvert and Johnson. J. 12, 120.
Sb ₄ Pb	7.525	11 11 11 11 11 11 11
"	7.622	Riche. J. 15, 111.
Sb, Pb	7.830	Calvert and Johnson. J. 12, 120.
Sb, Pb	8.330	ii 5.12, 120.
50g I 0	8.201, 18°.7	Matthiessen. P. T. 1860, 177.
	8.233	Riche. J. 15, 111.
Sb Pb	8.953	
((8.989, 11°.7	Matthiessen. P. T. 1860, 177.
"	8.999	Riche. J. 15, 111.
Sb. Pb.	9,502	11 11 11

ALLOY.	Specific Gravity.	AUTHORITY.
ANTIMONY AND LEAD—continued.		
Sb Pb2	9.728	Calvert and Johnson. J. 12, 120.
"	9.811, 14°.8	Matthiessen. P. T. 1860, 177.
"	9.817	Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.
Sb ₂ Pb ₅	10.040	, "
Sb Pb	10.186	Calvert and Johnson. J. 12, 120.
"	10.144, 15°.4 10.211	Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.
	10.844	(1 (1
Sb, Pb,	10.887	Calvert and Johnson. J. 12, 120.
"	10.455	Riche. J. 15, 111.
Sb ₂ Pb ₉	10.541	
Sb Pb,	10.556	Calvert and Johnson. J. 12, 120.
"	10.586, 19°.3	Matthiessen. P. T. 1860, 177. Riche. J. 15, 111.
Sb, Pb,11	10.678	41 41 41
Sb Pb		
Sb. Pb.	10.764	" "
Sb ₂ Pb ₁₈	10.802	" "
Sb Pb ₁₀	10.930, 19°.9	Matthiessen. P. T. 1860, 177.
Sb Pb ₂₅	11.194, 200.5	" "
BISMUTH AND ZINC.		•
Bi Zn	9.046	Calvert and Johnson. J. 12, 120
BISMUTH AND CADMIUM.		
Bi ₁₃ Cd	9.766, 15°.4	Matthiessen. P. T. 1860, 177.
Bia Cd	9.787, 140.7	" "
Bi, Cd	9.669, 14°.8	££ ££
Bi ₂ Cd	9.554, 13°.4	46 66
Bi CdBi Cd,	9.888, 15° 9.195, 15°.5	" "
Bi Cd ₂	9.079, 18°.1	16 66
-		
BISMUTH AND TIN.		•
Bi ₄₀₀ Sn	9.815, 18°.1	Carty. P. T. 1860, 177.
Ri Sn	9.814, 19°.5	16 16
Bi ₁₂₀ Sn	9.811, 19° 9.803, 22°.8	ii ii
Bi ₈₈ SnBi ₈₀ Sn	9.774, 28°	"
Bigo Sn	9.787, 19°.8	44 44
Bi ₁₂ Sn	9.675. 150.2	
Ri. Sn	9.614, 12°.7	"
Bi Sn	9.435, 15°	" "
"	9.484	Riche. J. 15, 112.
Bi ₂ Sn	9.178, 15°.9 9.145	Carty. P. T. 1860, 177. Riche. J. 15, 111.
Bi Sn	8.759	Riche. J. 15, 111. Regnault. P. A. 58, 67.
"	8.772, 12°.6	Carty. P. T. 1860, 177.
"	8.754	Riche. J. 15, 112.
Bi, Sn,	8.506	_ "
Bi Sn,	8.085	Regnault. P. A. 58, 67.
"	8.889, 18°.9	Carty. P. T. 1860, 177.

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.
BISMUTH AND TIN— continued.		
D' C	0.007	T
Bi Sn ₂	_ 8.327 _ 8.199	Riche. J. 15, 112.
Bi ₂ Sn ₅		1
(i		Riche. J. 15, 112.
Bi, Sn,		"
Bi Sn.		Carty. P. T. 1860, 177.
Bi Sn ₂₂	_ 7.488, 19°.9	"
BISMUTH AND LEAD.		
Ri Ph	9.844, 21°.7	Carty. P. T. 1860, 177.
Bi _{so} Pb Bi _{so} Pb	9.845, 21°.6	(i ii iii iii
Ri. Ph	19.850, 219.8	44 44
Bi _M Pb	9.887, 20°.6	46 66
Bin Pb	_ 9.898, 19°.5	
Bi ₁₆ Pb	. 9.984, 21°.1	16 16
Bi. Pb	9.973. 150	£€ £€
Big Pb	10.048, 10°.7	
·	. 8.6	E. Wiedemann. P. A. (2), 20, 240.
Bi ₄ Pb	10.285, 12°.5	Carty. P. T. 1860, 177.
ä	. 10.282	Riche. J. 15, 111.
_ "		E. Wiedemann. P. A. (2), 20,239.
Bi ₂ Pb	10.538, 14°	Carty. P. T. 1860, 177.
	10.519	Riche. J. 15, 111.
"		E. Wiedemann. P. A. (2), 20, 289.
Bi Pb		Carty. P. T. 1860, 177. Riche. J. 15, 111.
		Riche. J. 15, 111.
Bi ₄ Pb ₅	11.08	E. Wiedemann. P. A. (2), 20, 287. Riche. J. 15, 111.
Bi ₂ Pb ₃		1 11 11 11 11 11 11 11 11 11 11 11 11 1
Bi Pb,	11.166	
Bi Pb,	11.141. 120.7	Carty. P. T. 1860, 177.
"	. 11.141, 12°.7 11.194	Riche. J. 15, 111.
46		E. Wiedemann. P. A. (2), 20, 286.
Bi. Pb.	11.209	Riche. J. 15, 111.
Bi Pb	11.161, 14°.8	Riche. J. 15, 111. Carty. P. T. 1860, 177.
"	. 11.225	Riche. J. 15, 111.
Bi ₂ Pb ₇	11.285	"
Bi Pb	11.188, 20°.8	Carty. P. T. 1860, 177.
Bi Pb	11.196, 20°.2 11.280, 22°.5	" "
Bi Pbu	. 11.280, 22°.5	" "
Bi Pb,	11.881, 28°	44
BISMUTH AND ANTIMONY		
Bi, Sb	9.485, 90.4	Holzmann. P. T. 1860, 177.
Bi. Sb	9.869	Calvert and Johnson. J. 12, 120.
Bi. Sb	9.276	"
"		Holzmann. P. T. 1860, 177.
Bi. Sh	9.095	Calvert and Johnson. J. 12, 120.
Bi, Sb	8.859	"
		Holzmann. P. T. 1860, 177.
Bi Sb	8.864	Calvert and Johnson. J. 12, 120.
14	8.892, 110	Holzmann. P. T. 1860, 177.
Bi Sb,	7.829	Calvert and Johnson. J. 12, 120.

ALLOY.	Specific Gravity.	AUTHORITY.
BISMUTH AND ANTIMONY —continued.		
Bi Sb ₂ Bi Sb ₄ Bi Sb ₄	7.561 7.870	Holzmann. P. T. 1860, 177. Calvert and Johnson. J. 12, 120.
IRON AND TIN.	7.271	
Fe Sn ₅ . Cryst. furnace product.		Rammelsberg.
Fe Sn Fe ₃ Sn	7.446 8.788	Noellner. J. 18, 188. Lassaigne.
IRON AND NICKEL.		
Awaruite. Ni ₂ Fe	8.1	Ulrich. N. J. 1888, 209.
COPPER AND ZINC.*		
Cu ₁₀ Zn Cu ₇ Zn	8.605	Mallet. D. J. 85, 878.
Cu, Zn	8.607	"
Cu ₈ Zn	8.688	66 66
Cu. Zn	8.087	" "
Cu ₆ Zn	0.091	1 **
Cu ₅ Zn	0.410	Colmon and Tabassas T 10 100
Cu ₄ Zn	0.010	Calvert and Johnson. J. 12, 120.
Cu ₄ Zn	8.650	Mallet. D. J. 85, 878. Calvert and Johnson. J. 12, 120.
Cu _s Zn	8 807	Calvert and Johnson. J. 12, 120. Mallet. D. J. 85, 378.
(i	8.576	Calvert and Johnson. J. 12, 120.
Cu, Zn		
(1	8.892	Croockewitt. J. 1, 894.
	8.488	
Cu ₂ Zn ₂	8.224	Croockewitt. J. 1, 894.
Cu Zn	8.280	Mallet. D. J. 85, 378.
"	7.808	Calvert and Johnson. J. 12, 120.
Cu ₃ Zn ₅	7.939	Croockewitt. J. 1, 894.
Cu Zn	8.288	Mallet. D. J. 85, 878.
~ " <u> </u>	7.859	Calvert and Johnson. J. 12, 120.
Cu ₈ Zn ₁₇	7.721	Mallet. D. J. 85, 878.
Cu ₈ Zn ₁₈	0.000	· · · · · · · · · · · · · · · · · · ·
Cu ₈ Zn ₁₉	7 409	
Cu ₈ Zn ₂₀	0.050	
Cu ₈ Zn ₂₁	7 999	1 " "
Cu ₈ Zn ₂₃	7 448	· · · · · · · · · · · · · · · · · · ·
Cu Zn ₂	7.449	1 " "
ou ziig	7.786	Calvert and Johnson. J. 12, 120.
Cu Zn4	7.871	Mallet. D. J. 85, 878.
"	7 445	Calvert and Johnson. J. 12, 120.
Cu Zn.	6.605	Mallet. D. J. 85, 878.
	J # 440	Calvert and Johnson. J. 12, 120.

^{*}See also the Report of the (U. S.) Board on Testing Iron, Steel, and other Metals. Washington, Government Printing Office, 1881.

ALLOY.	Specific Gravity.	AUTHORITY.
COPPER AND TIN.	,	
Cu Sn	8.564	Thurston's Report, 295.
Cu., Sn	8.649	
Cu ₂₅ Sn	. 8.820	Calvert and Johnson. J. 12, 120
Cu., Sn	8.694	Thurston's Report, 295.
Cu. Sn	8.798	Calvert and Johnson. J. 12, 120
Cu ₁₅ Sn	8.825	" "
"	8.84	Riche. J. 21, 270.
- "	. 8.80	Riche. J. 23, 1100.
Cu ₁₂ Sn	. 8.681	Thurston's Report, 295.
Cu ₁₀ Sn	8.561	Mallet. D. J. 85, 878.
"	8.832	Calvert and Johnson. J. 12, 120
	. 8.87	Riche. J. 21, 270
	. 8.88	Riche. J. 28, 1100.
Cu _o Sn	8.462	Mallet. D. J. 85, 378.
Cu _s Sn	8.459	1
	. 8.84	Riche. J. 21, 270.
_"	8.86	Riche. J. 28, 1100.
Cu, Sn	. 8.728	Mallet. D. J. 85, 878.
	. 8.72	Riche. J. 21, 270.
_ "	. 8.90	Riche. J. 23, 1100.
Cu ₆ Sn	. 8.750	Mallet. D. J. 85, 878. Riche. J. 21, 270.
"	. 8.65	Riche. J. 21, 270.
"	8.91	Riche. J. 23, 1100.
_ "	. 8.565	Thurston's Report, 295.
Cu ₅ Sn	8.575 8.965	Mallet. D. J. 85, 878.
11	8.62	Calvert and Johnson. J. 12, 120
11		Riche. J. 21, 270. Riche. J. 23, 1100.
	8.87 8.400	Riche. J. 23, 1100.
Cu ₄ Sn	8.948	Mallet. D. J. 85, 878.
"	8.77	Calvert and Johnson. J. 12, 120 Riche. J. 21, 270.
"	8.80	
44	8.988	Riche. J. 23, 1100. Thurston's Report, 295.
Cu, Sn	8.589	Mallet. D. J. 85, 878.
"	8.954	Calvert and Johnson. J. 12, 120
"	8.91	Riche. J. 21, 270.
"	8.96	Riche. J. 23, 1100.
11	8.970	Thurston's Report, 295.
Cu ₂ Sn ₅	8.682	" " " "
Cu, Sn	8.416	Mallet. D. J. 85, 878.
ii	8.512	Croockewitt. J. 1, 894.
"	8.533	Calvert and Johnson. J. 12, 120
61	8.15	Riche. J. 21, 270.
44	8.57	Riche. J. 23, 1100.
"	8.560	Thurston's Report, 295.
Cu ₁₂ Sn,	8.442	-4 44 44
Cu ₃ Sn ₂	8.06	Riche. J. 21, 270.
11	8.30	Riche. J. 23, 1100.
"	8.312	Thurston's Report, 295.
Cu, Sn,		" " " "
Cu ₆ Sn ₅	8.182	16 1. 11
Cu Sn	8.056	Mallet. D. J. 85, 878.
"	8.072	Croockewitt. J. 1, 894.
44	7.992	Calvert and Johnson. J. 12, 120.
"	7.90	Riche. J. 21, 270.
44	8.12	Riche. J. 23, 1100
	,	,

ALLOY.	Specific Gravity.	AUTHORITY.
copper and tin-continued.		
Cu Sn	8.013	Thurston's Report, 295.
Cu. Sn.	7.948	
Cu _s Sn ₅	7.885	
Cu Sn,	7.887	Mallet. D. J. 85, 878.
" Cryst	7.53 7.788	Miller. P. A. 120, 55. Calvert and Johnson. J. 12, 120.
"		Riche. J. 21, 270.
"	7.74	Riche. J. 28, 1100.
"	7.770	Thurston's Report, 295.
Cu ₃ Sn ₇ . Furnace product.	6.994	Rammelsberg. P. A. 120, 54. Croockewitt. J. 1,394.
Cu ₂ Sn ₆	7.652	Croockewitt. J. 1,394.
Cu Sn ₈	7.447 7.606	Mallet. D. J. 85, 878.
"	7.44	Calvert and Johnson. J. 12, 120. Riche. J. 21, 270.
"	7.58	Riche. J. 23, 1100.
66	7.657	Thurston's Report, 295.
Cu Sn ₄	7.472	Mallet. D. J. 85, 378.
11	7.558	Calvert and Johnson. J. 12, 120.
(1	7.81	Riche. J. 21, 270. Riche. J. 23, 1100.
	7.552	Thurston's Report, 295.
Cu Sn ₅	7.442	Mallet. D. J. 85, 878.
6 44	7.517	Calvert and Johnson. J. 12, 120.
"	7.28	Riche. J. 21, 270.
"	7.52	Riche. J. 28, 1100.
Cu Sn ₁₂	7.487	Thurston's Report, 295.
Cu Sn ₄₈	7.805	
Cu Sn ₉₆	7.299	46 46 46
- 20		
COPPER AND LEAD.		
Cu Pb	10 275	Croockewitt. J. 1, 894.
Cu. Pb.	10.753	11 11 11 11
COPPER AND ANTIMONY.		
O., Ch	9 990)	
Cu ₁₁ Sb ₂ Horsfordite	8.829)	Laist and Norton. A. C. J. 10, 60.
Cu. Sb.	8.871	Kamenski.* P. M. (5), 17, 274.
Cu, Sb	8.889	" " " " " " " " " " " " " " " " " " " "
Cu Sb	7.990	Calvert and Johnson. J. 12, 120.
		•
COPPER AND BISMUTH.		
Cu Bi	9.634	Calvert and Johnson. J. 12, 120.
SILVER AND TIN.		
A or Sn	0 059 140 8	Holzmann. P. T. 1860, 177.
Ag. Sn	9.507. 120.9	16 66
Ag Sn	8.828, 13°.8	"
Ag Sn ₂	8.223, 16°.8	44 44

^{*} Kamenski gives data for seventeen other Cu Sb alloys.

ALLOY.	SPECIFIC GRAVITY.	AUTHORITY.	
silver AND TIN-cortinued.	1-		
Ag Sn ₂	7.986, 19°.8	Holzmann.	P. T. 1860, 177.
Ag 50	' 7.551, 185.8	, "	"
lg Sn ₆	7.665, 18°.4 7.421, 18°.6	"	16
lg Sn ₁₈	7.421, 180.6	"	46
SILVER AND LEAD.			
lg, Pb	10.800, 18°.5	Matthiessen.	P. T. 1860, 177
or Ph	10 925 189 8	44	"
lg Pb	10.054, 12°,5	"	"
g rb,	10.054, 12°.5. 11.144, 18°.2. 11.196, 21° 11.285, 22°.2.	"	66 66
ground	11.190, 21	1 ::	66
g Ph	11.286, 22°.2 11.884, 20°.6	"	"
ro ₂₅	11.004, 20°.0	"	••
SILVER AND COPPER.	*		
g. Cu	9.9045	Levol. J. 5	, 768.
" Solid	9.9045 9.9045 9.0554.}	Roberts. C.	
GOLD AND TIN.	,		
lu, Sn	16.367, 15°.4	Holzmann.	P. T. 1860, 177.
Lu, Sn		46	1. 1. 1000, 111.
u Sn	11.838, 14°.6	46	46
u. Sn	11.838, 14°.6 10.794, 23°.6	46	"
u Sn	; 10.168, 28°.7	16	"
.u ₂ Sn ₅	9.715, 22°.4	"	44
u Sn ₃	9.405, 28°.7	"	"
.u Sn ₄	8.931, 25°.6	"	"
	8.470, 28°.1	"	66 66
.u Sn ₉	8.118, 22°.4	"	"
u Sn ₁₅	7.801, 22°.8 7.441, 22°.9	"	"
••	1.411, 429	••	
GOLD AND LEAD.			•
lu. Pb		Matthiessen.	P. T. 1860, 177.
.u. Pb		"	"
.u Pb	14.466, 14°.8	44	44
u Pb,		66 66	"
u Pb	12.787, 21°.8	"	د، دد
u Pb.		44	"
.u Pb ₅	12.274, 19°.4 11.841, 23°.8	46	46
GOLD AND BISMUTH.			
Lu ₂ Bi	14.844, 16°		
.u Bi		"	46
.u Bi,	12.067, 16	"	"
u Bi,	11.025, 23°	66	"

^{*} See Karmarech, Beiblätter 2, 194, for sixteen Ag Cu alloys.

ALLOY.	Specific Gravity.	AUTHORITY.
GOLD AND BISMUTH— continued.		
Au Big	10.452, 21°.4	Holzmann. P. T. 1860, 177.
Au Bi ₂₀	10.076, 18°.7	
Au Bi ₄₀	9.942, 21°.2	. "
Au Bi ₉₀	9.872, 21°	
GOLD AND COPPER.		
Au Cu	17.9840	Roberts. Bei. 2, 827.
Au Cu	17.1658	" "
Au, Cu	16.4832	41 41
GOLD AND SILVER.		
Au ₆ Ag	18.041, 13°.1	Matthiessen. P. T. 1860, 177.
Au, Ag	17.540, 12°.8	
Au, Ag	16.854, 18° 14.870, 18°	
Au Ag	14.870, 18°	
Au Ag	18.482, 14°.8	" "
Au Ag,	12.257, 14°.7	
Au Ag	11.760, 18°.1	" "
PALLADIUM AND LEAD.		
Pd ₃ Pb	11.225	Bauer. J. 24, 817.
PLATINUM AND LEAD.		
Pt Pb	15.77	Bauer. Z. C. 14, 48.
IRIDIUM AND OSMIUM.		
Ir Os. Newjanskite Ir Os ₄ . Sisserskite	19.886—19.471 21.118	Berzelius. Dana's Min.
TRIPLE ALLOYS.*		
Cd Pb, Bi,	10.568 10.782	1
Cd ₂ Pb ₇ Bi ₈	9.194, 11° 9.253, 20° 9.5125, 4° 9.6401, 4° 7.888, 20°	Regnault. P. A. 58, 67.
Pb Sn ₂ Bi ₂	9.5125, 4°	Spring. Ann. (5), 7, 196.
Fo ₈ Sn ₁₀ Bi ₁₃ . Darcet's "	9.6401, 40	
Sn ₂ Sb Bi Cu ₃ Ni Sb ₃ . Furnace prod- uct.	7.888, 20° 8.004	Regnault. P. A. 53, 67. Sandberger. J. 11, 202.
QUADRUPLE ALLOYS.	0 200	
Cd Sn Pb Bi,	9.765	v. Hauer. J. 18, 236.
Cd Sn. Pb. Bi. Wood's	9.784	" "
Ca, Sn, Pb Bi4. Wood's	9.1106, 4°	Spring. Ann. (5), 7, 196.
alloy.		
Cd ₃ Sn ₄ Pb ₄ Bi ₈	9.725	v. Hauer. J. 18, 286.
Cd. Sn. Ph. Bi	9.685 9.7244, 4°	
Cd Sn Pb Bin. Lipo- witz alloy.	9.7244, 4°	Spring. Ann. (5), 7, 196.

^{*} For the triple alloys of Cu Sn Zn see Thurston's Report. For many amalgams see Joule, J. C. S., vol. 16, 1863. For alloys of platinum and gold see Prinsop, P. T. 1828.

XLV. HYDROCARBONS.

lst. Paraffins. C_n H_{2n+2}.

				,	 	
:	Name	•	F	ORMULA.	Sp. Gravity.	AUTHORITY.
	•	efled	•			Wroblevsky. C. R. 99, 186.
44 44	•	i	"		\begin{align*} .414 \\ .415 \\ .416 \end{align*}164° _	Olszewski. P. A. (2), 81, 78.
Propune _			С. Н.		.613. —25°	Lefebvre. J. 21, 829.
Butane			C4 H10		.600, 0°	Pelouze and Ca-
44					.600, 0°	hours. J. 16, 524.
••			44		.624, —1°	Ronalds. J. 18, 507. Lefebvre. J. 21, 329.
Normal pe	ntane.	(B. 89°).	C, H,		.686, 170	Schorlemmer. J. 15,
"	46		"		.6268, 17°	886. Schorlemmer. J. 19,
44	**		"		000 140	527.
"					.626, 140	Cahours and Demar- cay. C. R. 80,1569.
••	"				.6267, 14°	Lachowicz. A.C. P. 220, 191.
44	46		"		.624, 11°.5	Gladstone. Bei. 9, 249.
"	"		64		.6828, 17°	Norton and Andrews. A. C. J. 8, 7.
Isopentano	e. (B.	80°)	ш		.6418, 110.2	Frankland. J. 8,
* "			46		.6885, 14°.2	481.
"					.628, 18°	Pelouze and Ca-
66			**		.6875, 13°	hours. J. 16, 527. Just. A. C. P. 220, 158.
"			"		.6282, 13°.7	Schiff. G. C. I, 18,
44			44		.6132, 80°.5	177.
"			"		.6402, 0° }	Bartolli and Strac-
		(B. 69°)_	C. H14		.6111, 30°	ciati. Bei. 9, 697. Williams. J. 10, 418.
Morman III	Mile.	(D. 08)-	C6 11 14		.669, 16°	Pelouze and Ca-
					1000, 10 11111	hours. J. 15, 410.
"	"		44		.678, 15°.5	Schorlemmer. J. 15, 886.
44	"		"		.6617, 170.5	Dale. J. 17, 881.
44	"		"		.6645, 16°.5	Wanklyn and Er- lenmeyer. J. 16, 521.
u	"		"		.6680, 17°	Schorlemmer. A. C. P. 161, 268.
**	"		44		.689, 0°	Warren. J. 21, 830.
"	"		"		.6641, 180 }	Thorpe and Young.
"	**		- 11		.6620, 19°.5	A. C. P. 165, 1.
- 46	16		"		.667, 18°	Cahours and Demar-
"	"		"		.6199, 60°.8	cay. C. R. 80, 1570. Ramsay. J. C. S. 85, 468.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Normal hexane	C ₆ H ₁₆	.6758, 0° \	Zander. A. C. P.
11 11	"	.6129, 69° } .6985, 14°	214, 181. Lachowicz. A. C.
u u	"	.6681, 10°.8	P. 220, 192.
" "	"	$\begin{bmatrix} .6142 \\ .6148 \end{bmatrix}$ 68°.6	Schiff. G. C. I. 13,
ii ii	66	.6148 500 .00	177.
" "	"	.6603, 200	Brühl. A. C. P. 200, 183.
" "	"	.6950, 0° }	Bartoli and Strac-
" "	66	.6348, 68° }	ciati. Bei. 9, 697.
	"	.6745, 18°	Norton and Andrews. A. C. J. 8, 7.
Isohexane. (B. 62°)	"	.7011, 00	Wurtz. J. 8, 576
" D 100 100	"	.676, 0°	Warren. J. 21, 330.
Hexane. B. 48°—62°	"	.6317, 25°.5	Gladstone. Bei. 9. 249.
" B. 58°—60°	"	.6418, 250	" "
Methyl-diethyl-methane. (B. 64°.)		.6765, 20°.5	Wislicenus. A. C. P. 219, 815.
Tetramethyl-ethane, or	"	.6769, 10° .6701, 17°.5	Schorlemmer. J. 20,
diisopropyl. (B. 58°.)	"	.6569, 290	566.
	66	.668, 0°	Riche. Ann. (8), 59, 426.
" "	"		Zander. A. C. P.
Hexane from suberic acid.	"	.6286, 58° } .671, 26°	214, 181. Riche. Ann. (8), 59,
В. 78°.		· .	426.
Normal heptane. (B.98°.4) From coal oil.	C ₇ H ₁₆	.709, 175.5	Schorlemmer. J.15, 386.
" "petroleum_	66	.7122, 16°	Schorlemmer. J.16, 532.
" "azelnicacid	"		Dale. J. 17, 881.
	"	.6840, 20°.5	Schorlemmer and Dale. A. C. P. 186, 266.
"	"	.7085, 0°	Warren and Storer. J. 21, 881.
11 11	"	.69 3, 120	Cahours and Demar- cay. C. R. 80, 1570.
" "From petro- leum.			Beilstein and Kur- batow. Ber. 18, 2028.
" "	"	.6915, 180 }	Thorpe and Young.
" (Abietone)	"	.6910, 19° }	A. C. P. 165, 1. Wenzell. C. N. 89,
	"	.70048, 0°	182. Thorpe. J. C. S.
	"	.61386, 98°.48_	37, 871.
46 46	"	.7176, 20°	Lachowicz. A. C. P. 220, 198.
" "	"	.7291, 20°	Lachowicz. A. C. P. 220, 208.
" "	46	.7028, 14°	Lachowicz. A. C. P. 220, 204.

	Name.			Formula.	Sp. Gravity.	Authority.
	ethy	thyl-amyl, l-butyl-me- 0°.8.	C, H	8	.7069, 0°	Wurtz. J. 8, 576.
tnane.	11	0 .0.	66		.6819, 170.5	Schorlemmer. A. C.
	"		16			P. 186, 259.
	44		"		.6789, 19°	Schorlemmer. A. C. P. 186, 264.
	"		"		.7259, 0°	Schorlemmer. A. C.
	"		61		.7148, 15°	P. 186, 269. From
	"		;;		. 6999, 82° [petroleum.
	"		"		.6867, 48°] .6833, 18°.4	Grimshaw. A. C. P.
	"		"		.69692, 00	166, 168.
	"		"		61606, 90°.8	
	"		"		. 6060, 91°	Ramsay. J. C. S. 35,
Methyl-et		propyl-me- 91°.)	"		.6895, 20°	Just. A. C. P. 220, 155.
		ane. (B.96°)	"		.689, 27°	Ladenburg. B. S. C. 18, 548.
		ethyl-me- 36°—87°.) }	"		.7111, 0° .6958, 20°.5	Friedel and Laden- burg. J. P. C.
_		petroleum_	"		.709, 16°	(101, 815. Schorlemmer. A. C. P. 166, 172.
Wantona 6	fun m	petroleum_	"		. 7328, 00	1. 100, 112.
перипе і		. 92°—94°) _	١ , ,		.6478, 920-940	
**	(2		"		. 7303, 0°	Bartoli and Strac-
61		"	"		.6462, 920-940	ciati. Bei. 9, 697.
		. (B. 125°.5)		8	.6945, 18°	Williams. J. 10 418.
16	"		"		. 7088, 12°.5	Schorlemmer.
"			"		7082, 17°	Schorlemmer. A. C P. 161, 268.
"	"				$\left\{ \begin{array}{c} .728, 0^{\circ} \\ .721, 10^{\circ} \end{array} \right\}$	Riche. J. 18, 248.
"	"		"			Schorlemmer. J.15
"	"		"		.726, 15°	Pelouze and Ca- hours. J. 16, 524
"	**		"		. 728, 0°	Wurtz. J. 16, 509
"	"		"		.7207, 15°.5	Thorpeand Young Two lots. A. C
"	"		"		. 7165, 15°.6	(P. 165, 1.
"	"				.728, 13°	Cahours and Demar- cay. C. R. 80, 1571
4	"		"		71888, 0°	Thorpe. J. C. S.
"	"	T3	"		. 61077, 125°.46	
"	**	From co-	l ''		.712, 11°	Hofmann. Ber. 18
nicein. Tetramethyl-butane, or					. 6940, 18°	Kolbe. J. 1, 559.
		utane, or B. 108°.58.)			10000, 20	
unac ou	υ <u>ν.</u> (2.100.00.)	"		7057, 0°	Wurtz. J. 8, 576.
	"		"		.7135, 0°	Ropp. A. C. P. 95
			44		. 7001, 16°.4	807.

^{*}For a mixture of heptane and isoheptane from petroleum, B. 92°—94°, Pelouse and Cahours give a sp. g. of .699, 16°.

	Name	!		FORMULA.	Sp. Gravity.	AUTHORITY.
Tetramethyl-butane, or			C, H,	8	.7091, 0°)	
diisobu	tyl. (B	. 108°.53.)	**		.7085, 0°	
	44		44		.7015, 100	
	16		"		.6981, 200 [Williams. J. C. S.
	46		44		.686, 80° [85, 125.
	16		**		.677, 40°	00, 120.
	"		"		.669, 50°	
	"		"		.626, 100° J	Sahaalamaaa T M
	44		44		.698, 16°.5 }	Schorlemmer. J. 20,
	"				.7111, 00	567. Thorpe. J. C. S.
	"		46		.61549, 108°.58	
	**		"		.7001, 12°.1	1
	**				8166)	Schiff. G. C. I. 18,
	66		44		.6167 } 107°.8	177.
Octane fr	om pe	troleum.	44		.732, 120	Lemoine. B. S. C.
	F	(B. 121°.)			,	41, 161.
		(B. 116°—	"		.7468, 00) Bartoli and Strac-
44		` 118°)	**		.6586,116°-116°	ciati. Bei. 9, 697.
Normal n	onane.	(B.149°)	С, Н,	0	.741	Pelouze and Ca-
				-		hours.* J. 16, 524.
44	"		"		.744, 18°	Cahours and Demar-
						cay.* C. R. 80,
						1571.
44	"		"		.7279, 18°.5	Thorpe and Young.
44	"		"		7990 00 3	A. C. P. 165, 1.
"			"		.7380, 00)	
"	"				.7228, 13°.5 .7217, 15° }	Krafft. Ber. 15, 1687.
44	66				.7177, 200	Krant. Der. 10, 1001.
44	"		46		.6541, 99°.1	
44	LL		"		.7124, 21°	Lachowicz. A. C.
					,	P. 220, 194.
44	"	(B. 186°)	"		.742, 120	Lemoine.* B. S. C
		(,	41, 161.
**	"	(B. 180°)	44		.748, 00	,
44	**	` "	66		.784, 12°.7	
44	"	"	"		.781, 16° [
	"	"	"		.725, 24°]	
. "	"	(B. 186°	"		.7623, 0°	Bartoli and Strac-
_ "	"	—188°.)	**		.6492, 136–138°	∫ ciati.* Bei. 9,697.
		entane, or	44		.7247, 0°	Wurtz. J. 8, 570.
		(B. 182.)	~ TT		#004 100 F	<i>(</i> 7)
Normai d	ecane.	(B. 167°) ₋	C ₁₀ H	23	.7894, 13°.5	Thorpe and Young.
"	44	/TR 1700\			7569 160 1	A. C. P. 165, 1.
"	. 4 6	(B. 170°) ₋	"		.7562, 15° } .7516, 22° }	Jacobson. A.C.P.
40	66	(B. 178°)_	"		.7456, 0°)	184, 202.
44	"	(20. 110)-	"		7450 00	
"	44		**		.7842, 15° }	Krafft. Ber. 15, 1687.
**	"		44		.7804, 20°	,,, 1001.
"	"		44		.6690, 99°.8	
"	"				.78097, 18°	Lachowicz. A.C. P.
					. ,	220, 180.
						220, 100.

^{*} Preparations from petroleum, boiling at 130° to 140°, and doubtless containing admixed isomers

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Diisoamyl. (B. 158°)	C ₁₀ H ₂₃	.7418, 0° .7282, 20° }	Wurtz. J. 8, 573.
" (B. 159°)	"	.7865, 18°	Williams. J.10, 418.
" (B. 156°) " (B. 159°.4)	"	758, 0° 7858, 9°.8	Wurtz. J. 16, 510.
(B. 109 .4)	44	.6126, 159°.4	Schiff. G. C. I. 18,
" (B. 160°)	'4	.7468, 220	Just. A. C. P. 220,
" (B. 157°.1)	"	.72156, 22°	156. Lachowicz. A. C. P. 220, 172.
Decane. (B. 160°)	"	.757, 16°	Pelouze and Ca- hours.* J. 16, 524.
" (B. 159°)	"	.758, 14°	Cuhours and Demar- cay.* C. R. 80,1571.
" (B. 155°—160°)		.760	Cloez.† C. R. 85, 1008.
" (B. 162°—163°)		.7324, 20° }	Lachowicz. + A. C.
" (B. 152°—158°)	16	.7187, 21° } .764, 0° }	P. 220, 195.
16	"	.758, 15°.6	
46	"	.751, 170 }	Lemoine.* B. S. C.
	"	.789, 88°.5 j	41, 161.
"	46	.7711, 0°	Bartoli and Strac-
Undecane. (B. 181°)		.6475, 158-162°	ciati.* Bei.9,697.
Undecane. (B. 1811)	O ₁₁ H ₂₄	,700	Pelouze and Ca- hours.* J. 16, 524.
" (B. 177°)	"	.770, 14°	Cahours and Demar-
" (B. 179°)	"	.769	cay. * C. R. 80,1571. Cloez. † C. R. 85, 1008.
" (B. 180°–182°)_	"	.7816, 00) Bartoli and Strac-
	"	.6448,180-1820	ciati.* Bei.9,697.
Normal undecane.	. "	.7560, 0°]	
" (B. 194°.5.)	"	7557 00	
11 11	"	.7557, 0° .7448, 15°	Krafft. Ber. 15, 1687.
46	"	.7411, 200	Melts at -26°.5.
" "	"	.6816, 990]	
Dodecane. (B. 202°)	C ₁₂ H ₂₆	.7574, 00	Wurtz. J. 8, 576.
" (B. 198°)	11	.7568, 18° .778, 20°	Williams. J. 10, 418. Pelouze and Ca-
" (B. 200°)	"	.784, 14°	hours.* J. 16, 524. Cahours and Demar-
(2. 200) 11111		'	çay.*C, R. 80,1571.
(2. 200 .0) 222		.782	Cloez.† C. R. 85, 1008.
(2.201)		.7788, 17°	Schorlemmer. A. C. P. 161, 263.
" (B. 198°-200°)	"	.7915, 0° .6442,198–200°	Bartoli and Strac-
Normal dodecane.	"	.7655, 0°)	ciati.* Bei.9,697.
" " (B. 214°.5)	"		77 M D 44 444
" "	11,	.7511, 200 }	Krafft. Ber. 15, 1687.
11 11	14		

^{*} From petroleum. Doubtless a mixture of i-omers.

[†] From hydrogen evolved from cast iron. Constitution undetermined. † Two isomers from Galician petroleum. Constitution undetermined.

¹¹ s G

Name.		FORMULA.	Sp. Gravity.	AUTHORITY.
Tridecane.	(B. 219°)	C ₁₅ H ₂₉	.796, 17°	Polouze and Ca-
"	(B. 217°.5)	"	.798	hours.* J. 16, 524. Cloez.† C. R. 85, 1008.
"	(B. 218°-220°)	۱٤	.8016, 0° .6469, 218-220°) Bartoli and Strac-
Normal tri	decane.(B.234°)	"	.7716, 0° .7718, 0°	j ciam. Bon.0,001.
66 66	44 44	16	·7608, 15° ⊱	Kraft. Ber.15,1687.
" Tetradeca	" ne. (B. 288°)	C ₁₄ H ₂₀	.7571, 20° .7008, 99° .809, 20°	Pelouze and Ca-
66	(B. 236°)	"	.812	hours.* J. 16, 524. Cloez.† C. R. 85,
44	(B. 286°-240°)	"	.8129, 0°	1008.) Bartoli and Strac-
Normal te		11	.6412,286-240° .7758, 4°.5)	} ciati.* Bei.9,697.
"	" (B. 252°.5)	44	.7750, 5° .7715, 10°	Krafft. Ber. 15, 1687.
"	"	"	.7681, 15° { .7645, 20° }	Melts at 4°.5.
"	(f)	"	.7087, 99°.2 J	Krafft. Ber. 19, 2218.
Pentadeca	ne. (B. 260°)	C ₁₅ H ₈₂	.825, 19°	Pelouze and Ca- hours.* J. 16, 524.
"	(B. 258°)	"	.880	hours.* J. 16, 524. Cloez.† C. R. 85, 1008.
44	(B. 258°–262°)	"	.8224, 0° .6385, 258-262°	Bartoli and Strac- ciati.* Bei.9,697.
Normal pe	entadecane.	"	.7757, 10° }	
"	" (B. 270°.5)	"	.7759, 10° }	Krafft. Ber. 15, 1687.
44	"	"	.7689, 20°	Melts at 10°.
44	"	"	.7136, 99°.8	
	e, dioctyl, or di- (B. 278.)	C ₁₆ H ₈₄	.850	Cloez.† C. R. 85,
110001	(2. 2.0.)	"	.7438, 15°	Eichler. Ber. 12, 1882.
, "	(B. 268°.5)	66	.8022, 0°	Alechin. Ber. 16, 1225.
	(B. 264°)	"	.80011, 18°	Lachowicz. A. C. P. 220, 187.
46	(B. 278°—282°)	"	.8287, 0° .6896, 278–282°	Bartoli and Strac- ciati.* Bei. 9, 697.
Normal he		"	.7754, 18°]	
"	" (B. 287°.5)_	66	.7742, 20° }	Krafft. Ber. 15, 1687.
и	"	"		Melts at 18°.
" Heptadeca	ne. (B. 808°)	C ₁₇ H ₈₆	.7754, 14°.2	Krafft. Ber. 19, 2218.
Tehmanecs	ne. (D. 909.)	C ₁₇ , 11 ₈₆	.7767, 22°.5	
"		"		Krafft.† Ber. 15,
44				1687. Melts at
44		"	.7245, 990	22°.5.

From petroleum. Probably a mixture of isomers.
 † From hydrogen evolved from cast iron. Constitution undetermined.
 ‡ All of Krafft's paraffins are said to belong to the normal series.

Name.	Formula.	MULA. Sp. GRAVITY. AT	
O. J. J. (D. 9150)	C F	.7768, 28°)	
Octadecane. (B. 817°)	C ₁₈ H ₈₈	.7754, 80°	
11	"	.7719, 85° }	Krafft. Ber. 15, 1687.
44	"	.7685, 40°	Melts at 28°.
11	"	.7288, 99°	Krafft. Ber. 19, 2218.
Nondecane. (B. 830°)	C ₁₉ H ₄₀	.7774, 82°]	Kiant. Del. 10, 2210.
" (B. 350)	019 1140	.7754, 85°	V 47 Don 15 1697
14	"	.7720, 40°	Krafft. Ber. 15, 1687. Melts at 82°.
"	" <u> </u>	.7828, 99°.8 J	110100 00 02 .
Eicosane. (M. 36°.7)	C ₂₀ H ₄₅	7779, 86°.7 7487, 80°.2	Krafft. Ber. 15, 1711.
11		.7363, 99°.2	Kinne. Del. 10, 1111.
"	"	.7776, 86°.7	Krafft. Ber. 19, 2218.
Heneicosane. (M. 40°.4)	C21 H4	.7783, 40°.4	
44		.7557, 74°.7	Krafft. Ber. 15, 1711.
	, " <u> </u>	.7400, 98°.9	
Docosane. (M. 44°.4)	C22 H46	.7782, 44°.4 .7549, 79°.6	
11	"	.7422, 99°.2	
Tricosane. (M. 47°.7)	C ₂₃ H ₄₈	.7785, 47°.7	
"		.7570, 80°.8	u u
44	"	.7456, 98°.8	•
Tetracosane. (M. 51°.1)	C ₂₄ H ₅₀	7786, 510.1	
"		.7628, 76°	
Heptacosane. (M. 59°.5)		.7796, 59°.5	
reptacosane. (ar. 00 .0)==	27, 66	.7659, 80°.8	
**	"	.7545, 99°)	
Hentriacontane. (M.68°.1)	C ₃₁ H ₆₄	.7808, 68°.1	" "
"	"	\[.7730, 80°.8 \	
Dotriacontane. (M. 70°)	C ₂₂ H ₆₆	.7810, 70°	Krafft. Bor. 19, 2218.
Pentatriacontane.	C ₃₅ H ₇₂	.7816, 740.7	
" (M. 74°.7)	-39 13	.7775, 80°.8	Krafft. Ber. 15, 1711.
	"	.7664, 99°.2	
Paraffin.* M. 56°	$C_n H_{2n} +_2$.913	İ
" M. 61° " M. 67°		.927	
" M. 72°	14	.984	From ozokerite.
" M. 76°		.940	Sauerlandt. J. 1879, 1147.
" M. 82°	. "	.948	10,0, 1111.
" M. 38°		.872, 17° }	j
" "		.879, 55° { .883, 17° }	
" M. 43°		.788, 55°	
66 66	. "	.889, 17° }	
"		.785, 55°]	
" M. 46°		.887, 173 }	Albrecht. D. J.
" " …	'	.781, 60°–65° {	218, 280.
" M. 47°		.900, 17° }	i I
" M. 51°	"	.908, 17°	
" "	((.775, 600-650	l i
" M. 56°	. "	.912, 17° }	
11 11	"	.777, 60°–65° ∫	J

^{*}No attempt has been made to secure completeness concerning the specific gravity of common parafin. The data given are included only to facilitate comparison.

NAME.		For	RMULA.	Sp. Gravity.	AUTHORITY.
Paraffin.	M. 38°	C _n H _{2n} +		.874, 21°, s	From shale oil. Beilby. J.C.S., Sept., 1883, 888. Data given for sp. g. of paraffin in solution.

2d. Olefines. C_n H_{2n}.

Name.	Formula.	Sp. Gravity	AUTHORITY.
Ethylene. Liquefled	C ₂ H ₄ \	.414, —21° .342, —7°.8 .858, —3°.7 .382, +4°.8 .806, +6°.2 .739, 0° .635, —18°.5 .6517, 16°.5 .6633, 0° .66277, 0° .64450, 17° .62884, 88° .62684, 85°.5 .62684, 85°.5 .679, 0° .6819, 35° .6617, 9°.9 .	Cailletet and Mathies. C. R. 102, 1202. Chapman. J. 20,581. Puchot. Ann. (5), 28, 207 Mendelejeff. J. 13,7. Bauer. J. 14, 660. Buff. A. C. P.,4 Supp. Bd., 129. Buff. J. 21, 334. Ramsay. J. C. S. 85, 468.
::	44 44	.6840, 85°.6 .6856, 86°.8 .6508, 21°	Schiff. G. C. I. 18, 187. Gladstone. Bei. 9,
Trimethyl ethyleneβ. Ethyl methyl ethylene.	"	.6788, 0°	249. Le Bel. B. S. C. 25, 547. 'Le Bel. B. S. C. 25,
Isopropyl ethylene	"	.648, 0°	546. Flawitzky. Ber. 11, 992.
Hexylene	C ₆ H ₁₂	.709, 12°	Pelouze and Ca- hours. J. 16,526.
11	44	.6987 } 0° { .6986 } .702, 0°	Wurtz. J. 17, 512. Geibel and Buff. J.
Tetramethyl ethylene	"	.6996 .6997 } 0° { .712	21, 886. Hecht. A. C. P. 165, 146. Pawlow. A. C. P. 196, 122.

		,	
NAMB.	FORMULA.	Sp. Gravity.	AUTHORITY.
a. Ethyl dimethyl ethylene. "	C ₆ H ₁₉	.712, 0° } .698, 19° } .702, 0° }	Jawein. Ber. 11, 1258.
_ lene. "	"	.687, 19° {	66 46
Heptylene	C ₇ H ₁₄	.718, 18° .7060, 12°.5	Williams. J. 11, 438. Schorlemmer. A. C. P. 186, 257.
44	"	.7026, 19°.5 .7060, 16°	Grimshaw. A.C.P.
	"	.742, 20°	166, 168. Renard. Ber. 15, 2868.
"	"	.71812, 20°	Sokolow. Ber. 21, ref. 56.
Dimethyl isopropyl ethylene.	"	.6985, 14°	Markownikow. Z. C. 14, 268.
" "	"	.7144, 0°	Pawlow. A. C. P. 178, 194.
Octylene	C ₈ H ₁₆	.708, 16°	Cahours. C. R. 81, 148.
(66	.728, 170	Bouis. J. 7, 582.
"	"	.787, 20° .7896, 0°	Fittig. J. 18, 820. Warren and Storer.
"	"	.7217, 17°	J. 21, 881. Möslinger. Ber. 9, 1000.
11	"	.7294, 9°.9 }	Schiff. G. C. I. 18,
16	"	.6806, 123°.4 }	177. Lachowicz. A. C.
"	"	.7197, 20°	P. 220, 185. Brühl. A. C. P. 285, 1.
"	"	.78645, 20°	Sokolow. Ber. 21, ref. 56.
Diisopropyl ethylene	"	.7526, 16°	Williams. Ber. 10, 908.
Methyl ethyl propyl eth- ylene.	"	.73188, 20°	Sokolow. Ber. 21, ref. 56.
Diisobutylene	٠٬	.784, 0°	Butlerow. J. C. S. 84, 122.
	"	.787, 0°	Lermontoff. A. C. P. 196, 116.
Nonylene. B. 145° B. 153°	C ₉ H ₁₈	.757, 20°.5 .7618, 0°	Fittig. J. 18, 821. Warren and Storer.
" B. 184 [®]		.858, 18°.4	J. 21, 881. Lemoine. B. S. C.
	"	.74888, 20°	41, 161. Sokolow. Ber. 21,
Diamylene. B. 165°	C ₁₀ H ₂₀	.7777, 0° .8416, 0° }	ref. 56. Bauer. J. 14, 660.
." B. 151°	"	.8416, 0° }	Schneider. A. C. P. 157, 208.
" B. 174°.6	"	.7912, 0°	Warren and Storer.
" B. 175°.8	"	.828, 0°	J. 21, 882. Warren and Storer. J. 21, 881.
"	"	.7789, 10°	Schiff. G. C. I. 18, 177.

				la a	<u> </u>
Name.			FORMULA.	SP. GRAVITY.	AUTHORITY.
Diamylene.	B. 156°	C ₁₀ H	20	.6611 } 156° {	Schiff. G. C. I. 13,
ı.				1.0010)	177.
"		"		.77753, 15°.2	Nasini and Bern-
					heimer. G. C. I. 15, 50.
"	B. 165°	"		.855, 14°	Lemoine. B. S. C. 41, 161.
. "	B. 164°	"		.7887, 20°	Lachowicz. A. C. P. 220, 177.
Endecylene		C11, H	***************************************	.782, 00	Warren. J. 21, 330.
"				.8398, 0° }	Warren and Storer.
**		44		.791, 0° {	J. 21, 332.
Dodecylene.		C ₁₂ H	24	.791, 00	Warren. J. 21, 330.
"	B. 212°.6	"		.8361)	TT 10:
46	B. 208°-219°.			$\begin{bmatrix} .8543 \\ .8654 \end{bmatrix}$ 0° $\}$	Warren and Storer.
"				.7954, —31°]	J. 21, 832.
44		44		7790)	
44		"		.7782 \ 0° \	Krafft. Ber. 16, 8018.
"		11		.7620, 150	II.uuu Doi.10,0010.
**				.7511, 800	
Dihexylene.	B. 196°-199°.	44		.796, 0°) j	B
"		44		.786, 19° }	From two sources.
		14		.809, 0° } {	Jawein. Ber. 11, 1258.
**		4.6		.798, 19° }	
Triisobutyle	ne. B. 178°	"		.774, 00 1	Butlerow. Mem.
"		"		.746, 50° }	Acad. St. Pe-
44					tersb., 1879.
16		"		.773 \ .774 \ 0° \	Lermontoff. A. C. P. 196, 116.
"	B. 180°	44		.782, 00)	ו 1. 180, 110.
44	2. 200 22	"		.7485, 510.6	11
4.6		"		.707, 99°.5	
**		"		.785, 00)	li
"		46		.751, 44°.9 }	
44		"		.783, 0°)	Five different lots
46 44		44		.788, 60°.5 }	Puchot. Ann
"		"		.707, 100°.2	(5), 28, 525.
11		16		.780, 0°}	
**				.768, 14° }	
Tridecylene		C ₁₈ H	26	.8445, 0°	Warren and Storer
Tetradecyler	ne	C,4 H		.7986, —12°]	J. 21,882.
"		J14, L1	28	.7852, 0°	TR M T
"		**		.7745, 15°	Krafft Ber. 16, 8018
"		"		.7638, 80°	
Triamylene		C ₁₅ H	80	.8189	Bauer. J. 14, 660.
Cetene. B. 2	75°	C ₁₆ H	82	.7898, 15°.2	Mendelejeff. J. 13,7
"		""		.7915, 40)	[]
"		**		.7889, 15° }	
"		"		.7686, 879.1	Two samples
		"		.7917, 4° }	Krafft. Ber. 16
"		11		.7689, 879.1	3018.
Dioctylene.	B. 250°	"		.814, 15°	Bouis. Watts' Dict.
Etherol. B.	280°	46		.9174	Dumas and Boullay.
					See Serullas.

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Etherol	C ₁₆ H ₃₂	.921	Serullas. Ann. (2), 89, 178.
Octodecylene	C ₁₈ H ₃₆	.7910, 18° }	Krafft. Ber. 16, 8018.
TetramyleneCerotene	C ₂₀ H ₄₀	.7790, 85°.6) .8710, 0° .861, 15°	Bauer. J. 14, 660. Weltzien's "Zusam-
Melene	C ₃₀ H ₆₀	.89	menstellung." Watts' Dictionary.

3d. Acetylene Series and Derivatives.

	~		
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Acotylene. Liquefied		.460, —7°456, —8°451, 0°451, 0°441, 4°.4482, 9°420, 16°.4413, 20°.6404, 26°.25 .897, 80°881, 84°864, 85°.869999, 0°	Ansdell. C. N. 40, 186. Critical to., 87°,05.
" " Isopropyl acetylene	11 11 11 11 11 11 11 11 11 11 11 11 11	.687886, 17° .65719, 41° .65082, 42° .652, 11°	Buff. A. C. P., 4 Supp. Bd., 129. Bruylants. Ber. 8, 407.
" B. 28°-29° Isoprene. B. 87°-88°	16	.6854, 0° .6823, 20° .6709, 18°	Flawitzky and Kri- loff. Ber. 11, 1989. Williams. J. 18, 495. Gladstone. J. C. S.
" Pentine Hexoylene. B. 80°—88°	"	.6766, 18° .710, 18°	49, 628. " Rebouland Truchot. J. 20, 587.
"	44	.7494, 0° .7877, 18° } .684, 14°	Hecht. Ber. 11, 1051. Berthelot and Luca. J. 1, 590.
16 14 16 16 16 16	44	.68724, 17° .64682, 59°.5 .64564, 58° .7074, 0° .6508, 59°.5 .6988, 11°.9 .6508, 59°.8	Buff. A. C. P., 4th Supp. Bd., 129. Zander. A. C. P. 214, 181. Schiff. G. C. I. 18, 177.
Diallylene	C ₆ H ₈	.6880, 20° .8579, 18°.2	Brahl. Bei. 4, 780. L. Henry. C. N. 88, 101.

Name. Formula. Sp. Gravity. Authority.
" .82
"
Ethyl propyl acetylene
Tetramethyl allylene "
Methyl propyl allylene "
Heptidene
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
From allyl diethyl carbinol. ""
" " " .75622, 18° C. (2), 80, 217. From allyl dipropyl carbinol. " .7880 .7855 .7855 .7855 .7726 .7726 .7738 T. Reformatsky. J. P.
nol. " "7880 0°
" " {7825 }7825 }
" " " .7726 .7705 .7705 .7738 Reformatsky. J. P.
(.7738) Reformatsky. J. P.
"
" "
7001 200
" "
From allyl dimethyl carbinol. " C ₁₃ H ₃₀ 8580, 0° } Nikolsky and Saytz-eff. J. P. C. (2), 27, 383.
" "
"
Dodecylidene C ₁₂ H ₂₂ 8080, 0°)
" .7788, 32°.5) Tetradecylidene
"
" (.7892, 80°)
Benylene C ₁₅ H ₂₈
Trivalervlene C ₁₈ H ₄₄
Hexadecylidene C ₁₆ H ₃₀ 8039, 20° } Krafft. Ber. 17, 1871.
Octadecylidene
Eikosylene

Name.			FORMULA.	Sp. Gravity.	Authority.
)	C ₆ H	6	.85, 15°.5 }	Faraday. P.T. 182
"		- 61		.956, —18°,s. }	440.
"		"		.85	Mitscherlich. A. (P. 9, 48.
"		£ (.85	Mansfield. J. 1,71
44		**		.89911, 0°)	
44		•6		.88372, 150.2	Kopp. P. A. 72, 24
"		"		.88854, 15°.8	,
**		41		.8931, 5°—10°) Parrault D
и		"		.8827, 10°—15°	Regnault. P. A
46		"		.8838, 15°-20°	∫ 62, 50.
46		"		.8841, 15°	Mendelejeff. J. 18,
44		"		.8667	Church. J. 17, 58
44		"		.8957, 0° }	Warren. J. 18, 51
"		"		.8820, 15°.5	
46		"		.895, 3° }	Jungfleisch. C. I
"				.812, 80°.5	64 , 911.
66		"		.8995, 0°]	T
u		"		.8890, 10° .8784, 20°	Louguinine. And
"		"		.8568, 40°	(4), 11, 458. Other
"		66		.8349, 60°	values given fo intermediate tos.
"		"		.8126, 80°	intermediate ta.
44		"		.90028, 0° }	
**		44		.89502, 5°	
14		64		.88982, 10°	
64		66		.88462, 15°	
46		66		.87940, 200	
44		"		.87417, 25°	
**		66		.86891, 80°	
44				.86862, 85°	
44		66		.85829, 40°	Adrieenz. Ber.
££		64		.85291, 45°	442.
"		"		.84748, 50°	
**		86		.84198, 55°	
44	*************	44		.88642, 600	
"		"		.83078, 65°	
44		**		.82505, 70°	
"		**		.81928, 75°	
44		"		.81881, 80° J	
"		**		.899 4 87, 0°]	
"		46		.883578, 150	
**		",		.872627, 25° }	Pisati and Paterno
et et	*******	"		.846170, 50°	J. C. S. (2), 12
44		££		.818721, 75° J	686.
"		"		.88029 .8778, 20°	Landolt. Ber. 9, 907 Naumann. Ber. 10
44	***************************************	"		.8142, 80°	1422. Ramsay. J. C. 8
"		"		.8858, 15°	85, 468. Thorpe and Watta
u		44	*******	.8111, 80°	J. C. S. 87, 102. Schiff. Ber. 14, 2769

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Benzene	C. H.	.9000, 0° }	Dieff. J. P. C. (2)
"		.8818, 20° }	27, 368.
"		.8889, 14°.2	Schiff. G. C. I. 18
"		.8111, 80°.1	177.
"		.8799, 200	Brühl. Bei. 4, 780
"		.87901, 200	Flink. Bei. 8, 262
"		.8719, 25°.7	I
"		.8845, 18°.8	Schall. Ber. 17, 255
"		.8881, 7°5 j	·
"		.8901 \ 10° }	Gladstone. Bei.
"	"	.8908)	24 9.
"	"	.8801, 20°	Knops. V. H. V 1887, 17.
"	"	.85716, 40°.1	7 2001, 11.
"	"	.85498, 41°.8	
"	"	.84324, 58°.2	Taken at differer
"	"	.84006, 54°.7	pressures, eac
"	"	.83101, 64°.1	to, being the boi
"	"	.88081, 64°.2	ing point at th
"	44	.82099, 72°.9	pressure of
"		.82079, 78°.4	served. Net
"	"	.81887 } 790.2	beck. Z. P. (
"	44	.81892 ('8 .2	1, 654.
"	"	.81297, 79°.9	
"	"	.81297, 79°.9 .87907, 20°	Weegmann. Z. P. (
oluene	C, H,	.86	2, 218. Pelletier and Wa
	1		ter. Gm. H.
"	"	.821	Couerbe. Gm. H.
"	"	.864, 28°	Glénard and Bou
	1		dault. Gm. H.
"	"	.87, 18°	Deville. Gm. H.
"	"	.8650	Church. J. 17, 581
"	"	.8824, 0° }	Warren. J. 18, 51
	"	.8720, 15° }	_ :_ '
"	"	.881, 5°	Tollens and Fittig A. C. P. 181, 803
"	"	.8841, 0°).	•
"	"	.8657, 200	Louguinine. And
"		.8375, 50° }	(4), 11, 458. Other
"	"	.8086, 80°	values given fo
"	"	.7889, 1000	intermediate tos.
44	"	.866, 200	Post and Mehrten
"	"	.8657, 20°	Ber. 8, 1551. Naumann. Ber. 10 1425.
"	"	.7650, 111°	Ramsay. J. C. 8 85, 468.
"	"	.8822, 0°	η ···, ····
"	"	.8797, 20.77	
"		.8722, 10°.89_ <u>:</u>	
"	"	.8692, 14°.18	1
"		.8658, 18°.48	Ĭ
"	"	.8556, 28°.74	Naccari and Pag
18	"	.8480, 42°.24	liani. Bei. 6, 86
"	"	.8258, 60°.04	Several other in
()	"	.8186, 72°.46	termediate val
"	"	.7874, 99°.01	ues are given.
44		.7811, 105°.17	11

	T	1	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Toluene	С, Н,	.8708, 18°.1)
44		.7780)	GALIAR CO.T.
((.77807 \ 109°.2	Schiff. G. C. I
**	"	.7781	18, 177.
44	"	.8656, 200	Brühl. Bei. 4, 780.
"	16	.7801, 109°	Schall. Ber. 17, 2204.
"	"	.8617, 26° }	Schall. Ber. 17
"	1	.85098, 84°.5 §	2555.
		.8704, 7°.5	Gladstone. Bei. 9, 249.
"	"	.8648 } 14° {	Gladstone and Tribe.
"	"	1.8081	J. C. S. 47, 448.
	"	.82664, 61°.2)
"	"	.82441, 62°.8	
"	"	.82485, 68°.5	
		.80656, 81°.2	
"	44	.80687, 81°.5	i
	"	.79470 } 98°.4	Taken at different
11	"	.78576, 102°.6	
44	"	.78515, 108°	pressures, each to. being the boiling
"	**	77014)	point at the press-
14	"	.77788 } 110°.1	ure observed.
"	"	.77741, 110°.7	Neubeck. Z. P.
"	"	.77694, 1100.8	J C. 1, 656.
Xylene *	C ₆ H ₄ (C H ₃) ₂	.8809, 15°	Mendelejeff. J. 18, 7.
"	"	.8668, 21°	Beilstein. A. C. P.
u	"	0770 00	188, 87.
"		.8770, 00	Louguinine. Ann.
"	"	.8600, 20°	(4), 11, 458. Val-
"	"	.8340, 50° } .8078, 80°	ues given for other
"	"	.7892, 100	intermediate tos.
"		.8616, 200	Naumann. Ber. 10,
_		,	1426.
44	"	.7885, 182-1840	Ramsay. J. C. S.
	l i		85, 468.
"	"	.8619, 20°	Brühl. A. C. P.
			285, 1.
Orthoxylene	" 1.2	.7559, 141°.1	Schiff. Ber. 15, 2974.
"		.8682, 18°	Gladstone. Bei. 9,
"	"	.876, 24°.5	249.
		.010, 240	Colson. Ann. (6), 6, 86.
44	44	.81449, 90°.4), ou.
"	"	.81422, 90°.6	1
"	` "	.79497, 1120.7	Taken at different
"	"	.79485, 1120.9	pressures, each to.
"	"	.78204 } 1280.8	being the boiling
	"	.10100)	point at the press-
46		.77898 } 1880.9	ure observed.
"	"	.//418)	Neubeck. Z. P.
"		.76684 } 141°.1	C. 1, 656.
		./0001)	1
"		.76569, 142°.5	Dinatta A.C.D.
"		.8982, 0° } .7684, 141°.9 }	Pinette. A. C. P. 248, 50.
			= ±0, 00.

^{*}Exact character not specified. For sp. gr. of several mixed xylenes see Lewinstein, Ber. 17, 446.

NAME.		FORMULA.		Sp. Gravity.	AUTHORITY.	
Metaxylene		C ₆ H ₄ (C H ₃) ₂	1.8	.878, 0° .866, 15° }	Warren. J. 18, 515.	
66		"		.8715, 12°.3	,	
"		"		.7567, 189°		
"		16		7571 1	} Schiff. G. C. I.	
44		66		.7572 \ 189°.2	13, 177.	
"		"		.8726, 15°.5	Gladstone. Bei. 9	
"		"		.861, 24°.5	249. Colson. Ann. (6)	
66		44		.8655, 20°	6, 86. Brühl. A. C. P 235, 1.	
66		"		.80588, 88°.8	200, 1.	
"		44		.80522, 89°.8		
44		"		.78722, 108°.8		
**		"		.78667, 108°.7	Taken at differen	
**		44		.77488, 120°.5	pressures, each to	
44		"		.77427, 1210.8	being the boilin	
66		16		78880)	} point at the pres	
**		"		.76647 129°.2	ure observed	
46		44		75700 1	Neubeck. Z. I	
**		**		.75795 { 138°.1	C. 1, 656.	
"		66				
**		"		$0.75658 \ 189^{\circ}.1$		
**		"		.8812, 0°)	Pinette. A. C. I	
"		46		.7567, 188°.9	248, 50.	
Paraxylene		44	1.4	.8621, 19°.5	Glinzer and Fittig A. C. P. 186, 80	
<u>"</u>		"		$\begin{bmatrix} .7548 \\ .7545 \end{bmatrix}$ 136°.5	Schiff. Ber. 14, 2769	
ic		"		.7545 } 130 .5		
"		"		.8488, 16°	Gladstone. Bei. 249.	
4.6		"	•	.854, 24°.5	Colson. Ann. (6 6, 86.	
44		"		$\begin{bmatrix} .80215 \\ .80189 \end{bmatrix}$ 86°.9	η .	
44		"			Taken at differen	
"		"		.78341, 106°.9	pressures, eac	
44		"		.78310, 107°.1	to. being th	
44		44		.77292, 119°.2	boiling point	
"		"		.75968 .75983 } 129°.6	the pressure of	
"		"			served. Neu	
"		",		.75429 187°.1	beck. Z. P. (
"		"		.(0421)	1, 656.	
"				75306 } 1880.4	11 -7	
"				.75808)	J	
"		1		.8801, 0°}	Pinette. A. C. I	
	ne	C. H. C. H.		.7558, 138° .8664, 22°.5	243, 50. Fittig and König	
64		"		.8760, 9°.9	A. C. P. 144, 27	
"		" -		7011)	Schiff. G. C.	
46				.7612 \ 185°.8	13, 177.	
"				.88316, 0°)	Weger. A. C. I	
"				.7612, 136°.5	221, 61.	
16		" _		.8678, 20°	Brühl. A. C. I	
Trimethylb	enzene. Me- sitylene.	C ₆ H ₃ (C H ₃) ₈ .	1.8.5_	.868, 18°	285, 1. Schwanert.	

NAX	NAME.		MULA.	Sp. GRAVITY.	AUTHORITY.
Trimethylben	zene. Me- sitylene.			.8648, 0° .8530, 15° }	Warren. J. 18, 515.
44		"		.8694, 9°.8 } .7872, 164°.5 }	Schiff. G. C. I. 18,
44		- 44		.7872, 164°.5	177.
4.6		"		.8558, 200	Brühl. Bei. 4, 781.
"		44		.8682, 19°	
" Ps	eudocumene	"	1.8.4	.8901, 0°	Konowalow. Ber.
Orthomethyle	thylbenzene	C ₆ H ₄ . CH	s. C ₂ H ₅ . 1.2_	.8781, 16°	20, ref. 570. Claus and Mann. Ber. 18, 1122.
Metamethylet	hylbenzene_	"	1.8_	.869, 20°	
Paramethyletl	hylbenzene .	66	1.4_	.8694, 11°.8 .7898 .7894 .7894	1. 102, 190.
* 44		46		.7898) 1000 }	Schiff. G. C. I. 18,
4.6		44		.7894 \ 1020	177.
16		**		.804, 20	Anschütz. A. C. P. 285, 814.
Propylbenzen	e	C ₆ H ₅ . C ₈	H ₇	.881, 0°	Paterno and Spica. Ber. 10, 294.
44		"		.88009, 0°	Spica. J.C.S. 86,681.
44		"		.8692, 17°	Wispek and Zuber. A. C. P. 218, 880.
44				.8702, 9°.8 }	Schiff. G. C. I. 18,
44		44		.7899, 158°.5	177.
Lopropylbenz	ene. Cu-	46		.87	Pelletier and Wal-
	mene.				ter. Ann. (2), 67,
"	46	66		.8792, 0° }	269.
**	"	44		.8675, 15° }	Warren. J. 18, 515.
44	u	66		.87976, 007	
66	"	44		.85870, 25°	
66	"	66		.83756, 50°	Pisati and Paterno.
44	"	66		.81585, 75°	J. C. S. (2), 12, 686.
44	"	44		.79824, 1000	0.0.0.(2),12,000
46	"	44		.86576, 17°.5	Liebmann. Ber. 18,
44	"	"		.8776, 0° }	
66	"	**		.8577, 25° }	Two preparations.
66	"	64		.87798, 0° {	Silva. B. S. C.
16	"	44		.85766, 25°	48, 817.
"	٠ "	"		.8432, 120	Gladstone. Bei. 9, 249.
Tetramethylbe	nzene	C ₆ H ₂ (C 1	H ₃),	.8816, 9°	Knublauch. Tübin- gen Inaug. Diss.,
Dimethylethyl	benzene	C ₆ H ₈ (C	H ₈) ₂ C ₂ H ₅ .	.8788, 20°	1872. Ernst and Fittig. A. C. P. 189, 192.
u '		"	1.8.5	.8644, 20°	Jacobsen. B. S. C.
"		"	"	.861, 20°	24, 78. Wroblevsky. A.C.
44		"	1.8.4	.8686, 20°	P. 192, 217. Anschütz. A.C. P.
Diethylbenzen	ie	C ₆ H ₄ (C ₂	H ₅) ₂ . 1.4	.8707, 15°.5	285, 824. Fittig and König.
35-4413		0.17. 017	077 10	000 100	A. C. P. 144, 285.
Metamethyl pr zene.	opyioen-	U ₆ III ₄ . UII ₈	. ∪ ₃ ⊞ ₇ . 1.8.	.000, 10"	Claus and Stuesser. Ber. 18, 899.

NAME.		FORMULA.		Sp. Gravity.	AUTHORITY.	
Metamethylprop	ylben-	C ₆ H ₄ . CH ₃ . C ₃ H ₇ .	1.8_	1		
"		44	"	.864.9°.8 \	Schiff. G. C. I. 13,	
"	·	"	"	.7248, 175°.4	177.	
Paramethylprop zene. Cymene.	ylben-	"	1.4_	.860, 14°	Gerhardt and Ca- hours. A.C.P. 38,	
"		66	"	.857, 16°	845. Nord. A.C.P. 63, 281.	
44		"	"	.8778, 00 }	Kopp. A. C. P. 94,	
"		"	"	.8678, 12°.6	257.	
"		"	"	.8660, 15° .8664, 20°	Mendelejeff. J. 13,7.	
"		"	"	.8664, 20°	Williams. J. C. S. 15, 120.	
• "		"	66	.8697, 0°)	From cummin oil.	
u		66	66	.8724, 00 }	Warren. Mem.	
"		"	"	.8592, 14°)	Amer. Acad. 9, 154.	
"		"	"	.8705, 00]	From cummin oil.	
"		_ "	"	.8544, 20° .8802, 50°	Louguinine. Ann. { (4), 11, 453. Other	
66 66		"	"	.8802, 50° [values given for	
			"	.7893, 100°	intermediate tos. From camphor.	
 		"	"	.8732, 0°]	Louguinine. Ann.	
"			"	.8574, 20° .8338, 50°	(4), 11, 453. Other	
**		ű	"	.7919, 100°	values given for intermediate tos.	
"		"	46	.8708, 00	From two sources.	
46		u	"	.8572, 20°.2	Beilstein and	
"		"	"	.8782, 0° }	Kupffer. J. C. S. (2), 12, 152.	
"		64	"	.8707, 0°	Beilstein and Kup- ffer. A. C. P. 170, 295.	
"			"	.86	Gladstone. J. C. S. (2), 11, 699.	
"		"	"	.8424)	Ext. of 8, from dif- ferent sources.	
"		44	"	.8438}	Gladstone. J. C. S. (2), 11, 970.	
4		66	"	.858, 16°	Orlowsky. B. S. C. 21, 821.	
"		46	"	.87446, 0°]	•	
"		"	"	.85457, 25°	From cummin oil. Pisati and Pater-	
"		66	"	.82352, 50°	no. J. C. S. (2),	
66 66		"	66	.81409, 750	12, 686.	
"		i	46	.79807, 100° .87227, 0°	,	
•1		"	٠,	.85258, 25°	From cymyl alcohol.	
"		"	61	.82352, 50°	Pisati and Puter-	
. "		"	"	.81209, 75°	no. J. C. S. (2),	
"		"	"	.79129, 100°	12, 686.	
"		" .	"	.97224, 0°]	From camphor. Pi-	
#6 #6		"	"	.85237, 250	sati and Paterno.	
"		"	"	83251, 50°	J. C. S. (2), 12,	
"		"	"	.81230, 75° .79122, 100°	686.	

NAM	E.	Formt	ILA.	Sp. Gravity.	AUTHORITY.
Paramethyl pr	opylben- ne.	C ₆ H ₄ , CH ₅ , (C ₈ H ₇ , 1.4_	.86542, 0° }	From thyme oil Pisati and Pa terno. J. C. S
66		44	**	.8598, 15°)	(2), 12, 686. From two sources
"		44	66	.8782, 0° }	Kraut. A. C. P
"		44	44	.8595, 15°	192, 224.
16		16	"	.8718, 00 }	Jacobsen. Ber. 11
66 66		"	"	.86085, 10° }	1060.
"		46	"	.873, 0° .8720, 20°	Febve. Ber.14, 1720 Kanonnikoff. Bei
Ā				.0.20, 20	7, 542.
""		"	66	.7248, 176°.2	
44		"	44	.8569	Brühl. A.C.P. 235,1
"		**	44	.8551, 21°	Gladstone. J. C. S 49, 623.
Methylisoprop	ylbenzene _	"		.86948, 0° }	Silva. B. S. C. 48
"		"		.86211, 25° } .8702, 0°	317. Jacobsen. Ber. 12
Butylbenzene		C ₆ H ₅ . C ₄ H	9	.8622, 16°	431. Radziszewski. Ber
"		"		975 00	9, 260.
		"		.875, 0° }	Balbiano. Ber. 10
• •		44		.794, 99°.3)	296.
Isobutylbenzer	ne	44		.8577, 16°	Riess. Z. C. 14, 8
4.6	a	"		.89, 15° }	Radziszewski. Ber
Methyldiethyl	β benzene	C ₆ H ₃ . C H ₃	(C, H,)2.	.8726, 16°	9, 260. Jacobsen. B. S. C
Dimethylpropy	vibenzene	C ₆ H ₈ (C H ₈) ₂ C ₃ H ₇	.887, 10°	24, 74. Fittig, Köbrich, and
Metaethylprop	Laurene. ylbenzene -	C6H4.C2H5.0	C ₈ H ₇ . 1.8_	.8588, 19°	Jilke. J. 20, 701 Renard. Ann. (6) 1, 228.
Amylbenzene		C ₆ H ₅ . C H	(C ₂ H ₅) ₂ -	.8751, 0°	Lippmann and Lou guinine. J.20,667
46		"		.8781, 21°	Dafert. M. C. 4, 617
"		C,H, C(CH	(a) C.H.	.8728, 0°	Essner. Ber. 14, 2582
"		C ₆ H ₅ (C H ₂)4 (C H)3-	.8602, 22°	Schramm. A. C. P 218, 889.
-			(C H.)	.859, 12°	Tollens and Fittig A. C. P. 181, 308
Orthoisoamyln zenc.	nethylben-	C ⁶ H ⁴ ·CH ³ ·C	ьН ₁₁ . 1.2.	.8945	Pabst. B. S. C. 25
Paraisoamylmozene.	ethylben-	44	1.4_	.8648, 9°	
zene.	l			.8713, 0°	Paterno and Spica Ber. 10, 1746.
Isohexylbenze				.8568, 16°	Schramm. A. C. P 218, 891.
Amyldimethyl	benzene	C ₆ H ₃ (C H ₃)	₃ . C ₅ H ₁₁ -	.8951, 9°	Bigot and Fittig. J 20, 667.
Normal octylb	enzene	C ₆ H ₅ . C ₈ H		.849, 15°	Schweinitz. Ber. 19 642.
61 6	·	"		.852, 14°	Ahrens. Ber. 19 2718.
Diisoamylbenz	ene	C 4 H 4 (C H	11)3	.8868, 0°	A. Austin. B. S. C 82, 18.

5th. Miscellaneous Aromatic Hydrocarbons.

Name.	FORMULA.	Sp. Gravity.	Avanopymy
NAME.	FORMULA.	GF. GRAVIII.	AUTHORITY.
Allylbenzene	C ₆ H ₅ . C ₃ H ₅	.9180, 15°	Perkin. C. N. 36, 211.
Isopropylvinylbenzene	C. II. C. H. C. H.	.8902, 15°	" "
Isopropylallylbenzene	C ₆ H ₄ , C ₈ H ₇ , C ₈ H ₅	.890, 15°	" "
Isopropylbutenylbenzene Phenylucetylene	C ₆ H ₄ , C ₈ H ₇ , C ₄ H ₇ -	.8875, 15°	" "
Frienylucetylene	C ₂ H. (6 H ₅	.94658, 0° .80832, 141°.6	Weger. A. C. P.
44	: 6	.9295, 20°	\{ \ 221, 61. Brühl. A. C. P.
	1		285, 1.
Ethylphenylacetylene	C ₂ . C ₂ H ₅ . C ₆ H ₅	.928, 21°	Morgan. J.C.S. (8), 1, 163.
Cinnamene. (Styrolene)		.928, 15°	E. Kopp. J. P. C. 87, 288.
	"	.924	Blythand Hofmann.
" "		.876 } 16° {	A. C. P. 53, 294. Scharling. A. C. P.
			97, 186.
<i>u u</i>	. "	.912, 15°	Perkin. J. C. S. 32, 660.
" " _		ן 911.	
" "	. "	.912	From different
" " -	. "	.915 } 00 }	eources. Krakau.
			Ber. 11, 1260.
		.920 J	Salies O O T 10
	1	.7926, 148°	Schiff. G. C. I. 18, 177.
" "		.9251, 0° }	Weger. A. C. P.
" "		.7914, 146°.2	221, 61.
" -	. "	.90595, 17°	Nasini and Bern-
			heimer. G. C. I. 15, 50.
" -	. "	.9084}	Gladstone. J. C. S.
" " -	. "	.9409, 11°}	45, 241.
" " -	- "	.9074, 20°	Brühl. A. C. P. 285, 1.
Metacinnamene	(C ₈ H ₈) _n	1.054, 18°	Scharling. A. C. P. 97, 186.
Dicinnamene		1.027, 0° }	Erdmann. A. C. P.
70	, " ₁	1.016, 150)	216, 189.
Phenylbutylene		i	Aronheim. B. S. C. 19, 258.
"	C ₅ H ₉ . C ₆ H ₅	.8864, 120.1	Nasini. Bei. 9, 881.
Phenylpentylene	C_{δ} H_{9} . C_{δ} H_{δ}	.8458, 23°	Dufert. M. C. 4, 625.
Phenylisopentylene	- "	.878, 16°	Schramm. A. C. P. 218, 894.
Tetraphenylethane	C ₂ H ₂ (C ₆ H ₅) ₄	1.179}	Schröder. Ber. 14,
Phenyltolylethane	C, H, C, H, C, H,	1.184 }	
Ditolylethane			C. 28, 79. Anschütz. A. C. P.
		I	285, 815.
Dixylylethane	$C_3 H_4 (C_8 H_9)_2 - \cdots$		Anschütz. A. C. P. 285, 826.

	:		
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Diphenylpropane	C ₅ H ₆ (C ₆ H ₅) ₂	.9956,00	Silva. Ber. 12, 2270.
Tetrahydrotoluene	C, H,	.797, 18°	Renard. Ann. (6),
Tetrahydroxylene	C ₈ H ₁₄	.814, 00	1, 223. Wreden. A. C. P.
"	"	.8158	163, 387. Renard. Ann. (6), 1, 223.
Hexhydrobenzene	C ₆ H ₁₂	.76, 00	Wreden. J. R. C.
Hexhydrotoluene	C ₇ H ₁₆	.772, 0° }	5, 350. Wreden. Ber. 10, 718.
14	"	.742, 200	Renard. Ann. (6), 1, 228.
	"	.7741, 0° }	Lossen and Zander.
44	"	.6896, 96°.5	A. C. P. 225, 109.
Hexhydroxylene. (B. 187°.6.)	C ₈ H ₁₆	.7956, 4	Schiff. Ber. 18, 1407.
" (B. 121°.5)′_	"	.764, 19°	Renard. Ann. (6), 1, 223.
Hexhydroisoxylene.	"	.781, 00 }	Wreden. Ber. 10,
" (B. 118°)_	"	.765, 200 }	712.
		.777, 0°	Wreden. J. C. S. (2), 12, 258.
"	"	.7814, 00)	F
	"	.7665, 19°.8 .6781, 118°	Lossen and Zander. A. C. P. 225, 109.
Hexhydrocumene	C ₉ H ₁₈	.787, 200	Renard. Ann. (6),
Hexhydropseudocumene	66	.7812, 0° }	1, 228. Konowaloff. Ber.
Hexhydrocymene	C ₁₀ H ₂₀	.7667, 20° } .8116, 17°	20, ref. 571. Renard. Ann. (6),
β. Benzylene	C ₇ H ₆	1.106, 85°	1, 228. Gladstone and Tribe.
_			J. C. S. 47, 448.
Diphenyl	C ₁₂ ,H ₁₀	1.160 }	Schröder. Ber. 14,
"	44	1.169 } .9961, 70°.5	2516. Schiff. A. C. P. 228, 247.
Triphenylbenzene	C ₆ H ₈ (C ₆ H ₅) ₈	1.205}	Schröder. Ber. 14, 2516.
Phenyltoluene	C ₆ H ₄ . CH ₃ . C ₆ H ₅ . 1.4	1.015, 27°	Carnelley. J. C. S. (2), 14, 18.
Benzylethylbenzene Metabenzyltoluene		.985, 18°.9 .997, 17°.5	Walker. Ber. 5, 686. Senff. A. C. P. 220,
Parabenzyltoluene	" 1.4	.995, 17°.5	228. Zincke. A. C. P.
Dibenzyltoluene		1.049	161, 98. Weber and Zincke.
Phenylxylene		1.01, 0°	J. C. S. (2), 13, 155. Barbier. J. C. S.
Benzylcymene		.987, 0°	(2), 18, 62. Mazzara. Ber. 12,
Dipentenylbenzene		.9601, 28°	884.
Benzylidenetolylene?	C ₁₄ H ₁₅	1.0082, 18°	Dafert. M. C. 4, 625. Lippmann. Ber. 19, ref. 744.
10	•	•	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ditolyl	C ₁₆ H ₁₆	.9172, 121°	Schiff. A. C. P
Dibenzyl	"	1.002, 14°	228, 247. Limpricht. J. 19
"	"	.9945, 10°.5	593. Fittig. A. C. F
"	46	1.0428, 52°.8	189, 178. Schiff. A. C. F
Dixylylene	C ₁₆ H ₁₆	.9984, 22°	228, 247. Lippmann. Ber. 19 ref. 744.
Naphthalene. l	C ₁₀ H ₈	.9774, 79°.2	Kopp. A. C. P. 98
" " <u> </u>	"		Alluard. J. 12, 472
2		1.15178, 19°	Vohl.
		1.158, 18°	Watts' Dictionary.
" "		1.048	Ure. Gm. H.
" "	"	1.321 } 40 {	Schröder. Ber. 12
"		1.011	_ 1611.
" 1	"	.8779, 218°	Ramsay. J. C. 8 39, 65.
"	"	.9777, 79°.2	Schiff. A. C. I 223, 247.
" "	"	.982, 79° }	Lossen and Zande
" "	"	.8674, 217°.1	A. C. P. 225, 10
" "	**	.96208, 98°.4	Nasini and Bern heimer. G. C. 15, 50.
Methylnaphthalene	C ₁₀ H ₇ . C H ₈	1.0287, 11°.5	Fittig and Remser A. C. P. 155, 11
	"	1.0042, 22°	Reingruber. A. (P. 206, 376.
Dimethylnaphthalene	C ₁₀ H ₆ (C H ₈) ₂	1.0176, 20°	Giovanozzi. J.C. 8 42, 858.
44	46	1.0283, 00 }	(Cannizzaro an
"	"	1.10199, 12°	Carnelutti. J. (S. 44, 80.
- "		1.01803, 16°.4_	Nasini and Ber
"	"	1.01058, 27°.7_	heimer. G.C.
"		.97411, 77°.7	15, 50.
Ethylnaphthalene		1.0184, 10°	Fittig and Remser
denymaphenatene	010 117. 02 116	1.0101, 10	A. C. P. 155, 11
44	"	1.0204, 0° }	Carnelutti. Ber. 1
"	"	1.0204, 0 (1076
Isopropylnaphthalene	**	1.0123, 11°.9 } .990, 0°	1672. Roux. Ann. (6), 1
Amylnaphthalene	C ₁₀ H ₇ . C ₅ H ₁₁	.978, 0°	819. Roux. Ann. (6), 1
Naphthalene tetrahydride	C ₁₀ H ₈ . H ₄	.981, 12°	821. Graebe B. S. C. 18
" "	"	.995, 0°	Wreden and Znate
Naphthalene hexhydride	C ₁₀ H _{8′} H ₆	.952, 0°	wicz. Ber. 9, 1607
" "	"	.9419, 0° }	Lossen and Zander A. C. P. 225, 109
" "	66	.94887, 16°.4 }	Nasini and Bern heimer. Tw
		. # TOO , LU '. # (.	samples. G.C.I

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Naphthalene octohydride_	C ₁₀ H ₈ . H ₈	.910, 0°	Wreden and Znato- wicz. Ber. 9, 1607.
Naphthalene decahydride Naphthalene dodecahy- dride.		.857, 0° .802, 0°	" "
Dimethylnaphthalene hexhydride.	C ₁₂ H ₁₂ . H ₆	.92194, 19°.8	Nasini and Bern- heimer. G. C. I. 15, 50.
a. Benzylnaphthalene			Miquel. Ber. 9, 1084. Vincent and Roux.
β. Benzylnaphthalene Acenaphtene	C ₁₀ H ₆ . C ₂ H ₄	1.176, 0° 1.0800, 108°	Schiff. A.C.P. 223,
Anthracene	C ₁₄ H ₁₀	1.147	Reichenbach. Watts' Dict.
Phenanthrene			Schiff. A. C. P. 228, 247.
dride.	C ₁₄ H ₁₀ . H ₄		Graebe. J. C. S. (2), 14, 70.
Stilbene	C ₁₄ H ₁₃	.9707, 119°.2	Schiff. A. C. P. 228, 247.
Retene. Solid	C ₁₈ H ₁₈	1.132 16° 1.152 1.162 1.162 1.068 1.067 1.074 1.077 1.087 1	Ekstrand. A. C. P. 185, 78.

6th. Terpenes.

	Nam	e.	J	Formula.	Sp. Gi	RAVITY	Autnori	TY.
Oil of	turpenti	ne	C10 H	16	.8902,	0°	Frankenheim	. J. 1,
66	**		"		.8555	ا م	73 1:40	
"	**		**		.8600	000	Four differen	
"	"		66		.8614	} 20° }	ples. Gla	astone.
46	46		"		.8644		J. C. S. 17,	1.
"	44	B. 168°.2	"		.7283,	1680.2	Schiff. Bei.	9, 559,
From I	A bies Reg	ginæ-Ama-	"		.868		Buchner and J. 17, 536.	
From :	Pinus ab	ies	"		.856, 2	o°4	Wöhler. Gr	n. H .
"	61 61	'	"		.880, 1	5°	Blanchet and Gm. H.	d Sell.
From 1	Pinus ma	ritima	"		.864. 1	60	Berthelot. J.	6, 519,
4.		B. 179°.8	"			0° 1	Flawitzky. I	
44	46 6		"			200 }	2857.	,
From ?	Pinus pic	ea	"				Flückiger. J.	8,643.

Name.	FORMULA.	Sp. Gravity.	Authority.
From Pinus pumilio From Pinus sylvestris. B. 171°.	C ₁₀ , H ₁₆	.875, 17° .86529, 15°	Buchner. J. 18, 479 Tilden. J. C. S. 88, 80.
" " B. 156°.	"	.8746, 0°)	
11 11 11 11 11	"	.8621, 16° }	Flawitzky. Ber. 11 1846.
	"	.8547, 24°.5 .8764, 0° }	Flawitzky. Ber. 20
	"	.8600, 20° }	1956.
Terpene ?	"	.7421) 1889 1	Schiff. G. C. I. 18
" "	"	.7422 } 100 .1 .8587, 20°	} 177. Kanonnikoff. Bei
" ?		.0001, 20	7, 592.
"	fe	.8711, 10°.2	Gladstone. J. C. S 49, 623.
Isoterpene	**	.8448, 20°	Kanonnikoff. Bei.
(1	"	.8627, 0° }	Flawitzky. Ber. 20
	"	.8480, 20° }	1961.
Thuja terpene. B. 160°	"	.852, 15° .8522, 15°	Jahns. Ber. 16, 2930 Lunge and Stein
From Sequoia. B. 155°		.0022, 10	kauler. Ber. 14 2204.
Terebilene. B. 184°	"	.843	Watts' Dictionary.
Australene. B. 157°	"	.8681, 16°	Atterberg. Ber. 10 1208.
Terebenthene. B. 157°	"	.871, 17°.5	Atterberg. Ber. 14 2581.
	"	ر ۔۔۔ ۶767, 0°	
"	"	.8601, 20°	
44	"	.8486, 40° .8270, 60°	Riban. B. S. C. 21
"	"	.8105, 80°	178.
"	"	.7989, 100° J	
"	"	.8812, 00)	Paulian C D 00
"	"	.8815, 0° } .8724, 12° }	Barbier. C. R. 96 1066.
" From camphor oil.	"	.8641, 15°	Yoshida. J. C. S 47, 779.
Terebene	44	.8718	Pierre. J. 4, 52.
reserve	"	.8645, 50-100)
"	"	.8605, 100-150-	Regnault. P. A
" B. 160°	"	.8564, 15°-20°- .8588, 20°) 62, 50. Gladstone. J. C. S
"	"	.8767, 0° 1	17, 1.
(("	.8767, 0° .8600, 20°	
"	"	.8438, 40° {	Riban. B. S. C. 21
"	"	.8267, 60° (.8100, 80° (178.
"	"	.7988, 1000	
" B. 156°	"	.8264, 15°	Orlowsky. B. S. C
Isoterebenthene. B. 175°.	n	.8482, 220	21, 821. Berthelot. J. 6, 523
11	12	.8586, 0° .8427, 20°.28	
44	i i	.8427, 20°.28 .8278, 40°.19 }	Riban. C. R. 79, 814
	4	.8131, 58°.82	
144	14	7964, 79°.24	

	,		
NAME.	FORMULA.	Sp. Gravity.	Authority.
Isoterebenthene Terpilene. Laevorotatory_	C ₁₀ , H ₁₆	.7798, 100° .8672, 0°	Riban. C. R. 79, 814. Bouchardat and La- font. C. R. 102, 50.
Terpinylene. B. 177° Terpinene. B. 178	"	.8526, 15° .98, 0°	Tilden. C. N. 37,166. Walitzky. Ber. 15, 1086.
11	"	.855	Wallach. A. C. P. 280, 260.
Sylvestrene. B. 175°	"	.8612, 16°	Atterberg. Ber. 10, 1206.
	"	.8598, 17°.5	Atterberg. Ber. 14, 2581.
	"	.8658, 14°	Gladstone. Bei. 9, 249.
Austrapyrolene. B. 1770	"	.847	Watts' Dictionary.
From oil of neroli. B. 178°.	"	.8466, 200	Gladstone. J. C. S. 17, 1.
From oil of orange	"	.885	Soubeiran and Capi- taine.
" " B.174°	"	.8460 } 20° {	Gladstone. J. C. S. 17, 1.
From oil of petit grain	"	.8470, 20°	
From Citrus lumia		.853, 180	Luca. J. 13, 479.
From Citrus bigaradia	"	.8520, 10° }	*
	"	.8517, 120 }	Luca. C. R. 45, 904.
From Citrus medica	**	.8514, 15°	Berthelot. J. 6, 521.
" " "	"	.8466, 20°	Gladstone. J. C. S.
			17, 1.
Oil of citron	"	.8597, 5°—10°	1)
		.8558, 10°—15°	Regnault. P. A.
		.8518,15°—20°) 62, 50.
Citron terpene	"	.8593 } 9°.9 }	
"	"	.7279	Schiff. Ber. 19, 560.
11 11		.7285 \ 1680	Bellin. Del. 18, 000.
	"	.7286	
From oil of lemon		.84)	# 11 TT 1751 .
" " "	"	.84 }	Zeller. Watts' Dict.
" " "	"	.8880) 00 (Frankenheim. Two
te tt tt	"	(10001)	samples. J. 1, 68.
" " B. 173°	"	.8468, 20°	Gladstone. J. C.S.
Citrene. B. 165°	"	.8569	17, 1. Blanchet and Sell. Gm. H.
From oil of bergamot	"	.856	Ohme. A. C. P. 31, 316.
	"	.8464) 200 (Gladstone. J. C. S.
	"	.8466 20°	17, 1.
Hesperidene	"	.8488	Gladstone. Bei. 9,
From oil of angelica		.8487	249. Müller. Ber. 14,
" " B. 175°	"	.888, 0°	2488. Naudin. Ber. 15,
		,	254.
" " B. 158°	"	.8609) (Beilstein and Wie-
" " <u>B. 178°</u>	"	.8504 \ 16°.5 \	gand. Ber. 15,
46 6 W B. 176°	"	.8481) (17 4 1.
	ļ		ı

Name.	Formula.	Sp. Gravity.	AUTHORITY.
β Terebangeline. B. 166	C ₁₀ H ₁₆	.870, 0°	Naudin. C. R. 96, 1158.
From oil of anise	"	.8580, 20°	Gladstone. J. C. S. 17, 1.
From oil of bay	"	.908, 15° .8508, 20°	Blas. J. 18, 569. Gladstone. J. C. S.
From oil of birch tar	"	.870, 20°	17, 1. Sobrero. Watts' Dict.
From oil of calamus		.879 8, 0°	Kurbatow. A. C. P.
From oil of camphor	"	.8788, 20°	173, 1. Yoshida. J. C. S.
From oil of caraway	"	.8466, 20°	47, 779. Gladstone. J. C. S.
Carvene	46	.861, 15° .8530 } 20° {	17, 1. Völckel. J. 6, 512. Gladstone. J. C. S.
44	"		17, 1.
"	16	.8530, 9°.8]
16		.7127 .7182 186°.5	Schiff. G. C. I. 18,
"	"	.7188	177.
	"	.8529, 20°	Kanonnikoff. Bei. 7, 592.
"	"	.849, 15°	Flückiger. Ber. 17, ref. 858.
From oil of cascarilla	"	.8467, 20°	Gladstone. J. C. S. 17, 1.
From oil of copal	"	.951, 100	Schibler. J. 12, 516.
From oil of cummin	"	.8772. 0°)	Warren. J. 18, 515.
	"	.8657, 150 }	1
From oil of dill	"	.8467, 20°	Gladstone. J. C. S. 17, 1.
From oil of elder		.8468, 20°	D
From elemi	"	.849, 11° .852, 24°	Deville. J. 2, 448. Stenhouse. A. C. P.
		.002, 24	85, 804.
From oil of erechthidis		.8380, 18°.5	Beilstein and Wiegand. Ber. 15, 2854.
From oil of Erigeron canadense.	"	.8464, 18°	" "
From Eucalyptus amyg- dalina.	"	.8642, 20°	Gladstone. J. C. S. 17, 1.
From oil galbanum From Illicium religiosum_	"	.8842, 9° .855	Mössmer. J. 14, 687. Eykmann. Ber. 14,
From kauri gum	"	.868, 18°	1721. Rennie. Ber. 14,
From laurel turpentine	"	.8618, 20°	Gladstone. J. C. S.
From oil of marjoram	"	.8468, 18°.5	20, 1. Beilstein and Wiegand. Ber. 15, 2854.
From oil of mint	"	.8600, 20°	Gladstone. J.C.S.
" "	"	. 8646, 17°.8	17, 1. Gladstone. J. C. S. 49, 623.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
From oil of peppermint	C ₁₀ H ₁₆	.8602, 20°	Gladstone. J. C. S.
From menthol, B. 168.°6.	ш	.8254, 0°)	17, 1.
" " "	"	.8178, 10°	
"	"	.8111, 200 }	Atkinson and Yo-
44 44	"	.8001, 40°	shida. J. C. S. 41,
44 •4	"	1.7924. 60° 1	49.
From oil of myrtle	"	.8690, 20°	Gladstone. J. U. S. 17, 1.
From oil of nutmeg	"	.8518 } 20°	"
" " B.167°_	"		" "
" " B.164°_	"	.8454, 25° } .8480, 27° }	Gladstone. Bei. 9,
" " B.178°_	• "	.8480, 27° }	249.
From oil of parsley	"	.8782, 200	Gladstone. J. C. S. 17, 1.
From oil of parsnip	"	.865, 12°	Gerichten. Ber. 9, 259.
From Ptychotis ajowan	"	.854, 120	Stenhouse. J 9,624.
From oil of rosemary	"	.8805, 20°	Gladstone. J. C. S. 17, 1.
From oil of sage. B. 155°.	"	.8685*)	Three isomers. Sigi-
" " B. 167°.	"	.8866 } 15° }	ura and Muir. J.
" " B. 165°_	44	.8658	C. S. 88, 292.
" " B. 170°_	"	.8658 } 15° {	Muir. J. C. S. 87,
	"	(10001)	682.
" "	"	.8632, 24°.5	Gladstone. J. C. S. 49, 628.
From Satureja hortensis	"	.855, 150	Jahns. Ber. 15, 819.
From oil of thyme	"	.8685, 200	Gladstone. J. C. S.
Thymene	"	.868, 20°	17, 1. Lallemand. J. 9,
"	"	.8685, 20°	616. Kanonnikoff. Bei.
From oil of wormwood	"	.8565, 20°	7, 592. Gladstone. J. C. S.
Colombana D 1850	"	.850, 15°	17, 1.
Cajeputene. B. 165° Isocajeputene. B. 177°	"	.857, 16°	Schmidl. J. 18, 481.
Camphene	"	.8481, 47°.7	Schmidl. J. 18, 482.
4	"	.8387, 58°.9	5.1
44	"	.8211, 79°.7	Riban. B. S. C.
"	"	.8062, 97°.7	24, 9.
"	"	.8845, 99°.84	Spitzer. Ber. 11, 1815.
Camphilene	"	.87	Watts' Dictionary.
Caoutchin	"	.855, 0° }	Bouchardat. B. S.
"	"	.842, 20° }	C. 24, 109.
"	"	.842, 200	Williams. J. 18, 495.
Cicutene	"	.87088, 18°	Van Ankum. J. 21, 794.
Cinaëbene	"	.878	Hirzel. J. 7, 592.
Cynene. B. 174°.5	"	.825, 16°	Völckel. A. C. P. 89, 858.
16	"	.8500, 150)	30, 000.
"	"	.8288, 500 }	Hell and Stürcke.
"	"		Ber. 17, 1972.

^{*} Misprinted 0.8435. Corrected in later paper.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Cynene. B. 182°	C ₁₀ H ₁₆	.85384, 16°	Wallach and Brass. A. C. P. 225, 291.
From cyneol. B. 179°	66	.85652) .85959 }	" "
Fellandrene	"	.8558, 10°	Pesci. G. C. I. 16,
Gaultherilene		.8510, 20°	225. Gladstone. J. C. S.
Geraniene	"	.842 .843 } 20• {	17, 1. Jacobsen. Z. C. 14,
Licurene	"·	.835, 180	171. Morin. J. C. S. 42,
Macene	"	.8529, 17°.5	787. Schacht. J. 15, 461.
Olibene		.863, 12°	Kurbatow. Z. C. 14, 201.
Safrene		.8345, 0°	Grimaux and Ru- otte. J. 22, 783.
Tolene	"	.858, 10° }	E. Kopp. J. 1, 737. Bouchardat. Ber. 8,
Polymer of valerylene	66	.854, 21° }	904.
From oil of calamus	C ₁₅ ,H ₂₄	.9180 } 20° {	Gladstone. J. C. S. 17, 1.
" " "	44.	.942, 0°	Kurbatow. A. C. P.
From oil of cascarilla	"	.9212, 20 °	173, 1. Gladstone. J. C. S.
From oil of cedar	"	.9231, 18°	17, 1. Gladstone. Bei. 9,
From oil of cloves	"	.918, 18°	
	"	.9016, 14° .9041, 20°	Dict. Williams. J. 11, 442.
	***************************************	·	Gladstone. J. C. S.
		.905, 15°	Church. J. C. S. (2), 18, 115.
From oil of copaiva	"	.91	Posselt. J. 2, 455. Soubeiran and Cap-
٠٤١ ١١ ١١	"	.895 \$.8978, 24°	itaine. Gm. H. Levy. Ber. 18, 8206.
From oil of cubebs	i(Schmidt.
" " "	"	.938) .9062, 20°	Gladstone. J. C. S.
"""	"	.9289, 0°	17, 1. Oglialore. Ber. 8,
Cedrene	"	.984, 14°.5	1857. Walter. Ann. (3),
"	"	.915, 15°	1, 501. Muir. J. C. S. 87, 13.
"	"	.9281, 18°	Gladstone. J. C. S. (2), 10, 1.
From Drybalanops cam- phora. " "	"	.900 .921 } 20° {	Lallemand. J. 12, 508.
From gurgun balsam From oil of hemp	"	.9044, 15° .9292, 0°	Werner. J. 15, 461. Valente. J. C. S. 40,
From Laurus nobilis		•	284. Blos. J. 18, 569.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
From Ledum palustre	C ₁₅ H ₂₄	.9849, 0° }	Rizza. Ber. 20, ref.
41 41 44		.0201, 10)	562.
From maracaibo balsam	"		Strauss. J. 21, 795.
Metatemplene			Flückiger. J. 8, 646.
From Myrtus pimenta			Oeser. J. 17, 584.
From oil of patchouli		.9211	Gladstone. J. C. S.
" " "	"		17, 1.
	"		Montgolfier. Ber.
	"	.987, 13°.5 }	10, 284.
From oil of rosewood	(1		Gladstone. J. C. S.
11011 011 01 1010 # 004 1111		, 20	17, 1.
From oil of sage	"	.9198, 00)	,
" "	"		Visions and Made
" "	"	.9072, 240 }	Sigiura and Muir. J. C. S. 88, 297.
" "	"		· ·
From oil of sandal wood _	"	.9190	Gladstone. J. C. S.
0	 "	001 100	(2), 10, 1.
Sesquiterpene		.921, 16°	Wallach. A. C. P. 238, 85.
From oil of vitivert	"	.9882	Gladstone. J. C. S.
From on or vieword			(2), 10, 1.
From copaiva oil	C ₂₀ ,H ₂₂	.892, 170	Brix. Ber. 14, 2267.
From minjak-lagam oil	2011	.928, 15°	Haussner. Ber. 16,
• 5	İ	•	1887.
From oil of poplar	"	.9002	Piccard. C. C. (8),
_	. <u>-</u>		6, 4.
From tar-cumene	" ?	.8850, 22°	
ma		١.,	184, 203.
Diterebene			Watts' Dictionary.
Metaterebenthene			Berthelot. J. 6, 524.
Colophene		.9391, 20°	Gladstone. J. C. S. 17, 1.
"	"	.94, 9°	Deville. P. A. 51,
		.01, 0	489.
Difellandrene	"	.9528, 100	Pesci. G. U. I. 16,
	l		225.
Heveéne	"	.921, 21°	Bouchardat. A. C.
			P. 37, 80.
Tetraterebenthene	C40 H64 ?	.977, 0°	Riban. C. R. 79,
			891.

7th. Unclassified Hydrocarbons.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Heptanaphtene*	C ₇ H ₁₄	.7778, 0° }	Milkowsky. Ber. 18,
Octonaphtene	C ₈ H ₁₆	.7624, 17°.5 .7649, 0° { .7508, 18° }	ref. 186. Markownikoff. Ber. 18, ref. 186.
Isooctonaphtene	"	.7765)	·
46	"		Putochin. Ber. 18,
Nononaphtene		.7687, 17°.5) .7808, 0°	ref. 186. Markownikoff and
Zionomphicao	~ ~ 18	11000,0 22222	Ogloblin. Ber. 16, 1877.
	"	.7808, 0° }	Konowaloff. Ber.
Debonantion.		.7652, 26° }	18, ref. 186.
Dekanaphtene	C ₁₀ H ₂₀	.795, 0°	Markownikoff and Ogloblin. Ber. 16, 1877.
Endekanaphtene	C ₁₁ H ₂₂	.8119, 0°	u u
Dodekanaphtene	C ₁₂ H ₂₄	.8055, 14°	"
Tetradekanaphtene	C ₁₄ H ₂₈	.8890, 0°	46 46
Pentadekanaphtene Nononaphtylene		.8294, 17° .8068, 0°	Konowaloff. Ber.
Menthene	1	1 '	18, ref. 186. Walter. A. C. P.
MCHONCHOLDER	01018	1	82, 288.
"	"	.814, 15°	Moriya. J. C. S., March, 1881.
	"	.8226, 0°]	·
"		.8145, 100	A 4 hr
"	"	.8078, 20° }	Atkinson and Yo- shida. J. C. S.
	14	.7761, 60°	41, 49.
From oil of calamus	16	.8798, 0°	Kurbatow. J. C. S. (2), 12, 259.
From turpentine chlorhy- drate.	"	.852, 19°	Montgolfier. Ber. 12, 876.
Cymhydrene	1		Gladstone. J. C. S. 49, 616.
Terpilene hydride			Montgolfier. C. R.
Ethyl camphene			89, 108. Spitzer. Ber. 11,
Isobutyl camphene	C ₁₀ H ₁₅ . C ₄ H ₉	.8614, 200	1817. Spitzer. Ber. 11,
Camphin	C ₁₈ H ₃₂	.827, 25°	1818. Claus. J. P. C. 25, 269.
Diterebenthyl	C ₂₀ H ₃₀	.9688, 18°	Renard. C. R. 105, 866.
Diterebenthylene	C ₂₀ H ₂₈	.9821, 12°	Renard. C. R. 106, 856.
Dicamphene hydride	C ₂₀ H ₈₄	.9574, 19°	Montgolfier. C. R. 87, 840.

^{*}According to Konowaloff, the "naphtenes" are identical with the hexhydrides of the bensene series.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Didecene	C ₂₀ H ₂₆	.9862, 12°	Renard. C. R. 106, 1086.
Caoutchene	C ₄ H ₈	.65, —2°	Bouchardat. A. C. P. 87, 80.
Tropilidene	C ₇ H ₈	.9129, 0°	Ladenburg. A. C,
From copper camphorate.	C ₈ H ₁₄	.798	P. 217, 188. Moitessier. J. 19,
From decomposition of phenol.	C ₁₀ H ₁₂	1.012, 17°.5, s.	410. Roscoe. J. C. S. 47, 669.
EucalypteneAnthemene	C ₁₂ H ₁₈	.886, 120	Cloëz. J. 28, 588.
Paranicene			492
Lekene	?	.98917	gand. Ber. 16,
Könlite	(C ₆ H ₆) _a	.88	1548. Trommsdorf. A. C.
Hartite	(C ₃ H ₅) _n	1.046	P. 21, 126. Haidinger. P. A.
From petroleum	(C, H ₄) _n	1.096, 15°	54, 261. Prunier. Ann. (5),
Carbopetrocene	(C ₁₀ H ₂) _n or (C ₁₂ H ₂) _n -	1.285, 10°	17, 5.

XLVI. COMPOUNDS CONTAINING C, H, AND O.

1st. Alcohols of the Paraffin Series.

NAME. Methyl alcohol			F	ormula.	Sp. Gravity. Authori	
			C H4 C)	.798, 20°	Dumas and Peligot. Ann. (2), 58, 5.
64	44				.807, 9°	Deville.
44	"		"		.818′	Regnault.
44	"		"	·	.82704, 0°	Pierre. Ann. (8), 15, 825.
**	44		ee		.7988, 25°	Kopp. A. C. P. 55,
"	"		"		.81796, 00)	
"	"		**		.80807, 160.9	Kopp. P. A. 72, 58.
44	"	••••	66		.8065, 15°	Mendelejeff. J. 18, 7.
44	66		"		.8052, 9°.5	Delffs. J. 7, 26.
ш	**		"		.8142, 0°)	Kopp. A. C. P. 94,
66	44				.7997, 16°.4	257.
44			66		.7978, 16°	Graham.
"	"		16			
••	••				.7995, 15°	Duclaux. Ann. (5), 18, 86.
44	"		"		.8574, 21°	Linnemann. J. 21, 681.
u	44		64		.81571, 10°	Dupré. P. A. 148, 286.
66	"		ш		.7964, 20°	Landolt.

NAME. Methyl alcohol				Formula.	Sp. Gravity.	AUTHORITY.
			C H ₄ O		.7997, 15°	mer. Z. A. C. 14
"	44		"		.7984, 15°	108. Krämer and Grod zki. Ber. 9, 1929
"	"		"		.8098, 0°	Vincentand Delach anal. J. 1880, 896
66	".		64		.8014, 140	De Heen. Bei. 5, 105
**	"		46		.7475 61°.8_	Schiff. G. C. I. 18
"	"		16		1 ,	177.
"	"		"		.7953, 20°	Brühl. Bei. 4, 781
**	"		"		.8111, 0° }	Zander. A. C. I
4.6	"		"		.7488, 66°.2	224, 88.
44	**		"		.810, 15°	Regnault and Ville jean. C. R. 99, 82
"	"		"		.7961, 18°	Gladstone. Bei. 9 249.
"	"		"		.7928, 20°	Winkelmann. P. A _ (2), 26, 105.
"	"		"		.7981, 20°	Traube. Ber. 19,879
"	44		"		.8612, 0°	Pagliani and Battelli. Bei. 10, 22
46	"		46		.78909, 22°.94	Values given fo
44	66		"		.7185, 1000	every 10° from 80
44	"		**		.6494, 1500	to 288°.5. Ramsa
"	**		"		.5525, 2000	and Young. P.7
"	"		"		.8642, 288°.5	J 178, 818.
Ethyl a	lcohol	t	C.H.	o	.7924, 170.9	Gay Lussac.
ű	"		""		.7915, 18°	Dumas and Boulla P. A. 12, 98.
4.	"		"		.8095, 00	Darling.
**	"		"		.7996, 15°	Kopp. A. C. P. 5
66	46		"		.8150, 5°—10°	15
66	"		"		.8113, 100-150	Regnault. P. A. 62, 50.
"	"		"		.8072, 15°-20°	62, 50.
44	"		"		.81087 } 00 }	, -=,,
"	"		"		.8095	T TO A TO A
".	44		1 44		.79821, 140	Kopp. P. A. 72, 6
44	"		"	***********	.7990, 14°.8	
44	"		"		.8151, 0°	Pierre. Ann. (8 15, 825.
44	66		"		.7938, 15°.5	Fownes. P. T. 184 249.
66	44		"		.7897 } 210 {	Wackenroder. J.
66	66		"		.7905 } 210 }	682.
44	"		"	************	.79381, 15°.6	Drinkwater. J. 682.
"	66		"		.809, 50	Delffs. J. 7, 26.
"	"	**********	44		.8194, 190	Wetherill. J. P. 60, 202.
46	"				.7947, 150	Pouillet. J. 12, 48
14	"		11		.7958, 15°	Mendelejeff. J. 18,
44	**				.8083, 0°)	Mendelejeff. J. 1
"	"	~				

^{*} For this compound there are so many determinations of specific gravity that absolute completeness with regard to them has not been attempted by the compiler.

NAME.			FORMULA.		Sp. G	RAVITY.	AUTHORITY.	
F'hyl :	alcohol		C2 H6	0	.6796	, 180°.9	Mendelejeff.	J. 14,
14	11				.7946	} 15° {	Baumhauer.	J. 18,
16	"		"		. 7947	} 10 {	898.	
14	44		"		. 8062	5, 0° ĵ		
14	64		"		. .8020'	7, 5°	1	
16	**		"		. 7978			
16	"		"		.7986		Mendelejeff.	J. 18,
**	"		"		. 7894		469.	
46	44		**		.7852		1	
11	44		"		.7809		T .	T 01
44	"				8086,	, 19°	Linnemann.	J. 21,
"	"		"			, 17°	Linnemann. 160, 195.	A.C.P.
41	"		"		.822,	20°	Pierre and Ann. (4), 2	
"	"		"		1	1, 11°	Erlenmèver. 162, 874.	A.C.P.
**	**					0° 5° }	Pierre. C. N	r. 27. 98.
**	44		"		.80214		1	
(;	"		"		1	, 16°.03	Winkelmun 150, 592.	
"	"		"		.7389	, 78°	Ramsey. J. 463.	C. S. 85,
44	44		"		.8120	, 0°	Vincent and chanal. 896.	l Dela- J. 1880,
44	"		"		1	, 14°	De Heen. Be (Bedson an	i. 5, 105.
66	16		"		.8019			Ber. 14,
"	**		"		.7976	, 25° }	2550.	
44	"		"		.7381	} 78°.2_	1	
"	"		**		.7382)	Schiff. G.	C. T. 18.
"	44		"		. 7402		177.	O. 2. 20,
"	**		"		.7405)	1"	~ T 10
"	**		"		7968,	200	Nasini. G. (C. I. 18,
**	6.6		44		1 '	20°	Brühl. Bei	. 4, 781.
14	61					3,17°.86}	values. I	
46	. 44		"		. .77616	3,40°.90	P.A. (2)	
	44		"		.7882	25°.3	·	
14	44		1 44		.7899	23°.4	Schull. Ber. 1	17,2006.
44	44		"		.7932	6, 15°	Squibb. C. N	7. 51, 88.
"	**		1 "			20°	Winkelman	
			ĺ				(2), 26, 10	5.
11	**		"		.7917	5, 0°	Pugliani an telli. Bei.	d Bat- 10, 222.
44	"				.7060	6, 110°)	Intermedia	
66	46		11		. 5570	200° }	ues given	
44	"		٠،		.8109	242°.9	say and	100 iig.
Propyl	alcoho	1	C ₃ H ₈	0	.8198	,0°)	P.T. 188	U, 148.
44	**		"			90.6 }	Pierre and	Puchot.
4.5	*6		"			,50°.1	Ann. (4),	
	4.4		۱ ،،		1 74OA	, 84° J	\-/)	_,

Name.			F	FORMULA. Sp. Gravity		AUTHORITY.	
• •	alcoho	1)	.818, 18°	Chancel. A. C. P. 151, 802.	
44	"		"		.812, 16°	Chapman and Smith. J. C. S.	
"	"		"		.823, 0°	22, 194. Saytzeff. Z. C. 18, 107.	
"	44		"		.8205, 0°	Rossi. A. C. P. 159,	
"	"		66		.8066, 15°	Linnemann. A. C. P. 161, 26.	
**	**		"		.8198, 0°		
"	"		"		.80825, 15° }	Pierre. C. N. 27, 93.	
**	**		44		.8044, 20°	Brühl. Ber. 13, 1529.	
**	"		"		.8091, 14°	De Heen. Bei. 5, 105.	
**	**		"		ر ۔۔۔ ۲ .8203, 0°	•	
"	44		46		.8127, 9°.71	Naccari and Pag-	
"	"		"		.8001, 25°.46	liani. Bei. 6, 88.	
"	44		"		.7898, 88°.18	Values given at	
"	"				.7778, 58°.10	several interme-	
"	"		"		.7646, 670.46	diate tos.	
			"		.7550, 77°.69		
44	"		"		.7385, 94°.40 J	7	
"	"		"		.8177, 0° } .7369, 97°.4	Zander. A. C. P.	
14	"		11		.8190, 20°	214, 181.	
46	"		66		.7865)	Pagliani. Bei. 7, 450.	
44	46		"		.7866 } 970.1 {	Schiff. G. C. I. 18,	
**	**		64		.7867	177.	
"	"		66		.8049, 200	Winkelmann. P. A. (2), 26, 105.	
"	**		"		.8051, 20°	Traube. Ber. 19, 881.	
Isoprop	yl alco	hol	"		.791, 15°	Linnemann. J. 18, 488.	
u	•		"		.7915, 16°.5	Siersch. A. C. P. 144, 141.	
"	•		"		.7876, 16°	Linnemann. A. C. P. 161, 18.	
"			"		.7887, 20°	Brühl. A. C. P. 203, 1.	
"			"		.797, 15°	Duclaux. Ann. (5), 13, 89.	
"			"		.7996, 0° }	Zander. A. C. P.	
"			"		.7231, 82°.8	214, 181.	
			"		.7413 810.3	Schiff. G. C. I. 13,	
"	· ·				.7414 501 .5	177.	
Hydrate of isopropyl alcohol.			(C ₈ H ₈	O)8. H ₂ O	.8076, 20° .800, 15°	Traube. Ber. 19, 882. Linnemann. A. C. P. 186, 40.	
Butyl		B. 117°.5	(C ₃ H ₈ C ₄ H ₁₀	O) ₈ . 2 H, O	.882, 15°	Saytzeff. Z. C. 18,	
44	**		61		.8239, 0°)	108.	
44	**		61		.8105, 20°		
**	"		"		.7994, 400	Lieben and Rossi.	
66	**		"			A. C. P. 158, 187.	
44	44		66		.7785, 98°.9		

Butyl alcol	hol		C4 H10 O		0110 110	(Two samples. Lin-
16 66 18 18 11 68					.8112, 15° .8185, 22°	$\{$ nemann. Ann.
12			"		.8152, 14°	' ((4), 27, 268. - De Heen. Bei. 5, 105.
11 11		1			.806. 15°	Pierre. C. N. 27, 93.
" "			"		.8099, 20°	Two lots. Bruhl.
			44		.8096, 20°	A. C. P. 203, 1.
"			"		.8096, 20° .8233, 0°	Zander. A.C. P. 224,
			"		.7247, 117°.5	
11 11			66		$\begin{bmatrix} .7269 \\ .7270 \end{bmatrix}$ 116°.	$7 \mid \begin{cases} \text{Schiff.} & G. C. I. 18, \\ 177 \end{cases}$
Isobutyl a		B. 108°-	"		.8082, 18°.5	177. Wurtz. A. C. P. 93, 107.
44	44		"		.817, 0°	107.
44	64		46		.809, 110	
44	**		"		.774, 55°	Pierre and Puchot.
64	**		"		.732, 1000	J. 21, 434.
tt.	"		"		.8055, 10°.8	J. C. S. 22, 161.
"	"		66		.8003, 18°	Linnemann. A.C.P. 160, 195.
"	c 6		66		.8025, 19°	Linnemann. Ann. (4), 27, 268.
"	44		"		.8167 } 00	Menschutkin. A. C.
44	"		"		.8168)	P. 195, 851.
"	"				.8020 } 200	Brühl. Ber. 13, 1520.
"	"		"		.8062 (20 .8162, 0°	,
11	44		"		.8052, 14°.50	Naccari and Pagli-
"	"		"		.7927, 80°.71.	ani. Bei. 6, 89.
**	"		44		.7800, 46°.56.	
"	**		"		.7608, 68°.97.	
"	"		"		.7497, 80°.86.	
66 66	"		"		.7295, 101°.97	
"	"				·	13, 90.
	"		"		.7265, 106°.6.	177.
u	"		и		.79888, 26°.18	Landolt. Bei. 7,846.
11	"		"		.77844, 520.2.	
"	"		"		.8024, 20°.5	
"	"		"		.8031, 20°	
ll.	**		"		.8029, 200	Traube. Ber. 19,883.
Methyleth	ylcarbi	nol. B. 99°.	"		.85, 0°	De Luynes. Ann. (4), 2, 424.
	"		"		.827, 0°	Lieben. A. C. P.
			"		.810, 220	
Trimethyl	carbino	ol.	"		2055 20	
	"	B. 82°.5_	"		.8075, 0°	
	"		"	**********	.7788, 80° .7792, 87°	1 273.
						Linnemann. Ann. (4), 27, 268.
	"		"		.7864, 20°7828, 24°	Brühl. A. C. P.
	u		"		.7818, 25°	208, 1.

Name.		F	ORMULA.	Sp. Gravity.	Atthority.		
Trimethylcarbinol. B. 82°.5.			C ₄ H ₁₀ O		.7802, 26°	Brühl. A. C. P. 203, 1.	
Hydrate of trimethy lcurbi- nol.			(C ₄ H ₁₀	O)2. H2 O	.8276, 0°	Butlerow. Z. C. 14, 278.	
	amvl	alcohol.	C. II	0	.8296, 0°]	2.0.	
**	4.	· B. 137_	- 5 13		.8168, 200	Tisks and D.	
4.	44	44	16		.8065, 40° }	Lieben and Rossi.	
**	"	"	"		.7835, 99°.15	A. C. P. 159, 70.	
"	4.6	"	44		.8282, 0°	Zander. A. C. P.	
••	46	"	44		.7117, 187°.85	∫ 224, 88.	
14	4.6	"			.8299, 0°	Gartenmeister. A.	
Amyl a	lcohol	.* B. 181°.5_	٠.		.8184, 15°	C. P. 283, 249, Cahours. A. C. P. 30, 288.	
"	**		"		.8187, 15°	Kopp. A. C. P. 55	
"	66		"		.8271, 00	Pierre. J. 1. 62.	
**	"		11		.8185, 15°	Rieckher. J. 1, 698.	
"	**		"		.8253, 0°)	•	
"			"		.8144, 15°.9	Kopp. P. A. 72	
"	"		"		.8127 \ 16°.4	227.	
"	"		**				
"	16				.818, 14° .8248, 0° }	Delffs. J. 7, 26.	
46	"				.8113, 180.7	Kopp. A. C. P. 94 257.	
11	44		4.6		.819, 18°	Schiff.	
44	46		"		.8142, 150	Mendelejeff. J. 18,7	
44	"		"		0140)	(From two sources	
"	"		"		.8199 14°	Schorlemmer. J	
					, ,	(19, 527.	
"			"		.826, 0°	Pierre and Puchot Ann. (4), 22, 886	
44	"		"		.8204, 150	Graham.	
					.8148, 15°	Duclaux. Ann. (5)	
"	44		"		.8135, 200	Landolt.	
"	41		44		.8244, 00)	1	
44	"		"		.8144, 150 }	Two products. Er	
44	+4		"		.8102, 21°.5	lenmeyer and	
44	46				.8263, 0° }	Hell. A. C. P	
**	**		"		.8123, 19°.7	160, 257.	
"	**		"		.8253, 0° }	Pierre. C. N. 27	
"	"		44		.8146, 15° }	98.	
11	44		"		.8255, 0°	Pierre and Puchot	
44	44	Ordinary	16		.817)	B. S. C. 20, 370.	
"	"	Less active.	1 .		.816, 15° }	Ley. Ber. 6, 1362.	
46	**	More "			.808, 15°		
**	"		"		.8123, 20°	Brühl. Bei. 4, 781	
**	"		. "		.8075, 14°	De Heen. Bei. 5, 105	
"	"		. "		.8238, 0°	Balbiano. Ber. 9	
44	"		. "		.8104, 20° }	Two lots. Bruhl	
44	**		. "		. 8103, 20° {	A. C. P. 203, 1.	
"	"		. "		. 8256, 0° }	Flawitzky. Ber. 15	
44	"		14		. .808 5, 28° }	111.	

Ordinary, inactive, and unspecified.

	Na	ME.	F	ORMULA.	Sp. Gravity.	AUTHORITY.
Amyl s	lcoho	l	C ₅ H ₁₂	o	.7221 .7228 } 128°.2	Schiff. Ber. 14, 2768,
"	"		"		.7154, 180°.5	Schiff. G. C. I. 18
"	44 14		"		.8068, 26°.1	177. Schall. Ber. 17
"	"		ü		.7729, 66° } .8114, 20°	2555. Winkelmann P. A.
	**		"		.8121, 200	(2), 26, 105. Traube. Ber. 19
**	46		44		.8252, 0°	888. Pagliani and Bat-
Methyl	propy	learbinol.	"		.8249 .8260 } 0° {	telli. Bei. 10, 222. Wurtz. Z. C. 11
	"	B. 119°_	ü		.888, 0°	490. Le Bel. Z. C. 14,
	"				.8239, 00 }	471. Bielohoubek. Ber.
	"		"		.8102, 200 }	9, 925.
	"	:	66	***********	.827, 0° }	Wagnerand Saytz- eff. A. C. P. 179,
Methy!	isopro	pylcarbinol.	66 66		.8808, 0° }	Winogradow. A. C.
	46	B. 112°_	"		.8219, 19° } .838, 0° }	P. 191, 125. Wischnegradsky. A.
	**		66		.819, 19° }	C. P. 190, 840.
Diethy:	lcarbir	nol. B. 116°.5	"		.882, 00 }	Wagner and Saytz- eff. A.C.P. 175,
-	44		46		.819, 16° }	(368
	"		"		.881, 0° }	Wagnerand Saytz- eff. A. C. P. 179,
	"		46		.816, 18° }	(820.
Dimeth	ylethy	lcarbinol. B. 102°.5.	64		.829, 0°	Wurtz. A. C. P. 125, 114.
	"		"		.828, 0°	Ermolaien. Z. C. 14, 275.
	"		66		.8258, 0° }	Flawitzky. A. C.
	"		"		.827, 00	P. 179, 849. Wischnegradsky.A.
	44		"		.812. 190 }	C. P. 190, 884.
	"		66		.827, 170	Münde. Ber. 7, 1870.
	••		••		.7241, 101°.6	Schiff. G. C. I. 18, 177.
Norma	l hexy	l alcohol. B.157°.	C ₆ H ₁₄	0	.820, 17°	Pelouze and Ca-
44	44	"	"		.818, 00	hours. J. 16, 527. Buff. J. 21, 886.
44	"	"	16		.819	Franchimont and Zincke. C. N. 24, 268.
"	44	"	"		.8888, 0°)	
44	46	"	46		.8204, 20° }	Lieben and Janecek.
"	"	"	"		.8107, 40°) .818, 17°	J. R. C. 5, 156. Frentzel. Ber. 16,
"	16	"	"		.8312 } 00	745.
44	"	"	"		.8827	Zander. A. C. P.
"	"	"	66 66		.6958 157°	224, 88.
••	••		••		.0804)	•

=====							
	Name			Гов	RMULA.	Sp. Gravity.	AUTHORITY.
Normal h	exyl a	lcohol		C ₆ H ₁₄ O		.8849, 0°	Gartenmeister. A.C. P. 288, 249.
Methyldie	ethylco	rbinol -		"		.8237, 20°]	•
	"	-		66		.8194, 25°	Reformatsky. J. P.
	"	-		"		.8148, 80° [C. (2), 36, 340.
Methylpr	opvica	rbvlcar-	. 1	44		.8104, 85° }] m 7:1
binol.			- }	"		.8244, 23°.7	Two lots. Lieben and Zeisel. M.C.
	46			"		.8375, 0° }	4, 82.
30.4111	-	L:a\		66		.8257, 17°.6	J -, .
Methylbu		oinoi, oi yl alco-				.8327, 0° }	Wanklyn and Erlen-
hol. B.		yı aico-	۲,	46		7489 000 II	meyer. J. 16, 521.
200.	"			"		.8266) 00 (Twosamples, Hecht.
	"			"			A. C. P. 165, 146.
	"					.8807, 18°	Wislicenus. A.C. P. 219, 810.
Methyliso	butyle	arbinol		44			Kuwschinow. Ber.
77(1) 1	11	L2		"		.8188, 170 }	20, ref. 629.
Ethylpro	pyrcar	B. 184	40	"		.8385, 0° }	Völker. Ber. 8, 1019.
	4	25. 10.	. -	"		.83433.00 }	Oechaner de Co-
	6			"		.81825, 20°)	ninck. C. R. 82, 93.
Isohexyl	or car	royl alc	:0-	"		.838, 0° }	Faget. J. 6, 504.
hol. B	3. 150°	. "		"		.754, 1000 }	
**	••	••				.8295, 15°	Köbig. A. C. P. 195, 102.
Dimethyl nol. E	isoproj	pylcarb	i-	"		.8864, 0°	Prianichnikow. Z. C. 14, 275.
	16			"		.8387, 0° }	Pawlow. A. C. P.
	"			"		.8282, 19° }	196, 122.
Methylet hol.			_			.829, 15°	Romburgh. J. C. S. 52, 228.
Trimethy carbino	lcarby l, or R	lmeth y pinacol 120°.5.	l- yl	"		.8347, 0°	Friedel and Silva. J. C.S. (2), 11, 488.
Normal l	1eptyl	alcohol. B. 175°.		C, H, O		.792, 16°.5	Wills. J. 6, 508.
"	66	64		"		.819, 28°	Städeler. J. 10, 361.
66 66	"	"		٠,,			O 7 0 9 00
66	"	46		"		824 270	Cross. J. C. S. 32, 128.
"	44	66		"		.824, 27° } .8842, 0° }	Zander. A. C. P.
"	"	"		"		.6876, 175°.8	224, 88.
"	"	"		"		.8856, 0°	Gartenmeister. A. C. P. 288, 249.
Isoheptyl alcohol.?				"			Four products from
"	" B.	163°-16		"		.795, 15° \	different sources.
"	"			"		.8479, 16° .8286, 19°.5	Schorlemmer. A.
Dipropyl		ol. B. 15	0°.	1			C. P. 136, 257. Kurtz. A. C. P. 161, 205.
				"		.81882, 20°)	Ustinoff and Saytz-
	16			"			eff. J. P. C. (2),
•	4			"		80677, 850	84, 470.
Diisoprop	oylcarl	inol.	~	"		.8828, 17°	Münde. Ber.7, 1370.
	В. 1	81°—18	z٠.			l	ł

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethylisobutylcarbinol.	С, Н, О	.827, 0°	E. Wagner. B. S.
B. 147°.5. Methylamylcarbinol.	"	.8185, 17•.5	
B. 149°. Triethylcarbinol. B. 141°_	"	.8598, 0°	190, 810. Nahapetian. Z. C. 14, 274.
44 44	"	.88892, 20° .82992, 30°	Barataeff and Sayt- zeff. J. P. C.
Methylethylpropylcarbi-	"	.8288, 200	((2), 84, 465. Sokolow. Ber. 21,
nol. Normal octyl alcohol.	C ₈ H ₁₈ O	.880, 16°	ref. 56. Zincke. Z. C. 12,
B. 196°.5.	"	.8875, 0° }	55. Zander. A. C. P.
	"	.8869, 00	224, 88. Gartenmeister. A.C. P. 288, 249.
Methylhexylcarbinol, or capryl alcohol.	"	.823, 17°	Bouis. J. 7, 581.
capi y i acconor.	"	.826, 16°	Pelouze and Ca- hours. J. 16, 529.
"	"	.828, 16°	Neison. J. C. S. (2), 18, 207.
"	"	.6589, 181°	
"	"	.8193, 20°	Brühl. A. C. P. 208, 1.
ii	"	.6781 .6782 } 179°	Schiff. G. C. I. 18,
"Octylene hydrate"	"	.817)	Duclaux. Ann. (5), 18, 92.
Primary isooctyl alcohol.	"		Clermont. A. C. P. 149, 88.
" " B. 179°.5_	"	.888, 12° .828, 20°	
u u u u	"	.821, 30° } .814, 40° }	Williams. J. C. S. 85, 125.
	"	.807, 50° .867, 100°	,
Secondary isooctyl alcohol. "B. 161°.5_	"	.820, 15°) .811, 30°)	ec 44
	"	.801, 40° }	
Methyldipropylcarbinol	"	.82357, 20° .81506, 30°	Gortaloff and Saytz- eff. J. P. C. (2),
Diethylpropylcarbinol	"	.81080, 85°) .83794, 20°	83, 202. Sokolow. Ber. 21,
Isodibutol. B. 147°	"	.8417, 0°	ref. 56. Butlerow. J. C. S. 84, 122.
Nonyl alcohol. B. 1870	* -*	[Lemoine. B. S. C. 41, 161.
Normal nonyl alcohol	"	.8415, 0° }	Krafft. Ber. 19, 2221.
Ethyldipropylcarbinol	"	.8279, 20°) .88868, 20°)	Tschebotareff and
"	"	.82583, 80° .82190, 85°	Saytzeff. J. P. C. (2), 88, 193.

Name.	Formula.	Sp. Gravity.	Authority.
Ethylhexylcarbinol. "B. 195°-	C ₉ H ₂₀ O	.825. 20° (Wagner. Ber. 17, ref. 816.
Normal decyl alcohol	C ₁₀ H ₂₂ O	.8889, 7°) .8297, 20° } .7734, 98°.7	Krafft. Ber. 16, 1714.
Decyl alcohol. B. 200°		.858, 18°.5	Lemoine. B. S. C. 41, 161.
Isodecyl alcohol. B. 208° Propylhexylcarbinol. B. 210°.		.8569, 0°	Borodin. J. 17, 888.
Methylnonylcarbinol. B. 228°.	C ₁₁ H ₂₄ O		Giesecke. Z. C. 13,
Normal dodecyl alcohol	C ₁₉ H ₃₆ O	.8201 , 40° }	Krafft, Ber. 16, 1714.
Normal tetradecyl alco- hol. "	C ₁₄ H ₃₀ O	.8286, 88° } .8153, 50° }	66 66
Isomer of myristic alcohol. B. 270°—275°.	66	.7818, 98°.9 .8868, 15° .8301, 80°	Perkin, Jr. J. C.
Normal hexdecyl alcohol	C ₁₆ H ₂₄ O	.8176, 49°.5	S. 43, 77.
11 11 11 11	"		Krafft. Ber. 16, 1714.
Cetyl alcohol_ Normal octodecyl alcohol_ " " "		.8048, 70° }	46 46

2d. Oxides of the Paraffin Series.*

Name.			For	MULA.	Sp. Gravity.	AUTHORITY.	
Methyl ethyl oxide "" Ethyl oxide, or ether				"		.7252, 0° .7127, 10°.8 .7119, 24°.8	Dobriner. A. C. P. 248, 1. Gav Lussac.
Estity i	"	1 001161		(U2 11 5/2		.718, 200	Dumas and Boullay.
"	"	44		"		.788, 12°.5	Ann. (2), 86, 294. Muncke. M. St. P. Sav. Et. 1, 1881, 249.
66	66	66		"		.78568, 00)	Kopp. P. A. 72,
44	46	"		46		.72895, 60.9	281.
	46	46		46		.7297, 50—106	1)
14	66	"		"			Regnault, P. A.
64	46	64		"		.7185, 15°-20°	
"	66			"			Pierre. C. R. 27,
"	66	"		"		.728, 7°	218. Delffs: J. 7, 26.

^{*} All of Dobriner's ethers represent normal paraffins.

Name.				For	RMULA.	Sp. Gravity.	AUTHOBITY.
Ethyl	oxide, o	r ether	r	(C, H ₅),	0	.78644, 0°	Intermediate val-
"				1		.68987, 78°.3	
"	"	44		46		.60896, 99°.9	ues given. Men-
**	"	"		"		.55958, 181°.6	delejeff. A. C. P. 119, 1.
"	"	66		"		.51785, 1570]] F. 119, 1.
44	**	"		"		.7271, 10°.2 }	Matthiessen and
64	"	66		"		.7204, 150.8	Hockin.
46	"	"		"		.6956, 84°.5	Ramsay. J. C. S. 35, 463.
46	66	66		**		.7157, 200	Brühl. Ber. 18, 1580.
44	"	"		" .		.7197, 15°	Buchan. C. N. 51, 94.
44	66	46		66		.78128, 40)	
"	46	"		"		.71888, 150	Squibb. C. N. 51, 67 and 76.
46	66	"		44		.78590, 0° 1	o, and ,o.
44	"	66		44		.7804, 50	
46	u	44		44		.7248, 10°	
44		66		44		.7192, 15°	1
44	"	"		66		.7185, 200	Oudemans. Ber. 19,
"	"	"		66		.7077, 25°	ref. 2.
46		66		44		.7019, 80°	
"	"	16		44		.6960, 85°	l
"	"	"		66		.6704, 50°]	Also values for every
"	"	"		66		.6105, 100°	
"	"			46		.5179, 150°	5° from 0° to 198°.
46	44	"		"			Ramsay and Young.
46	"	16		66		.8080, 198°	P. T. 178, 85.
••	••	•••		• •		.2468, at crit- ical to.	Ramsay and Young.
Methy	l propyl	oxide		C H ₈ . C ₈	н, О	.7471, 00)	P. M. 1887, 458. Dobriner. A. C. P.
	••	•••	1	•••		1.70410.884.91	248, 1.
Ethyl	propyl o	xide _		C ₂ H ₅ . C ₃	Н ₇ . О	.7886, 20°	Brūhl. Bei. 4, 779.
		" -		"			Dobriner. A. C. P.
"		. "		"		.6871, 68°.6	248, 1.
	isopropy)	"		.7447, 0°	Markownikoff. A. C. P. 188, 374.
Methy	l butyl c	xide		CH ₂ . C ₄ 1	Hg. O	.7635, 0° }	Dobriner. A. C. P.
				- "		.6901, 70°.8 .7688, 0° .6748, 90°.7	248, 1.
Propy	l oxide			$(C_3 H_7)_2$	0	.7688, 0° }	Zander. A. C. P.
ii.	"			"		.6748, 90°.7	214, 181.
Lopro	pyl oxide	B					
	••			"		.6715, 69° }	
Ethyl	butyl ox	ide		C ₂ H ₅ . C ₄	H ₉ . O	.7694, 00)	
ű	"	"		- (1		.7435, 0° } .6715, 69° } .7694, 0° } .7522, 20° }	Lieben and Rossi.
						.,, 20)	A. C. P. 158, 187.
44		"		"		.761, 0°	Saytzeff.
**		"		"		.7680, 0° }	Dobriner. A. C. P.
46	£6	"		"		.6785, 91°.4	248 , 1.
Ethyl	isobutyl	oxide.				.7507, 0°	Wurtz. J. 7, 574.
Methy	l amyl o	xide		CH ₃ . C ₅	H ₁₁ . O	.6785, 91°.4 ; .7507, 0° 6871, 91° 8086, 14°.7 764, 18°	Schiff. Bei. 9, 559.
Ethyl	isoamyl -	oxide .		C ₂ H ₅ . C ₅	H ₁₁ . O	.8086, 14°.7	Mendelejeff. J. 18, 7.
u T	"	"		" -		.764, 18°	Rebouland Truchot.
							J. 20, 582.
Tertian	ry ethyl a	myl oz	kide_	44		.759, 21°	" "
44	""	"	" _	•6		.7785, 00)	Kondakoff. Ber. 20,
46	"	t t	" _	" "		.751, 180 }	ref. 549.
Propyl	butyl o	xide]	C, H, C,	H ₂ . O	.7785, 0° } .751, 18° } .7773, 0° } .6638, 117°.1 }	Dobriner. A. C. P.
4.	"	"				.6638, 1170.1	248, 1.
					Ì		• • • •

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Butyl oxide	"	.784, 0° .7685, 20° .7555, 40° .7865, 0° .6575, 140°.9 .7697, 0°	Lieben and Rossi. A. C. P. 105, 109. Dobriner. A. C. P. 248, 1.
" " " " " " " " " " " " " " " " " " "	"	.7294, 46°.4 .7040, 74°.8 .766, 0° .724, 48°.75 .770, 0° .784, 42° .7678, 0°	Puchot. Ann. (5), 28, 521-528. Four samples.
Secondary butyl oxide Ethyl hexyl oxide	" С. Н., С. Н., О	.756, 21°	Kessler. A. C. P. 175, 55.
11 11 11 11 11 11 11 11 11	"	.7844, 68° } .776, 13°	Schorlemmer. J. C. S. 19, 357. Reboul and Truchot. J. 20, 582.
Diethyl-ethyl oxide		.7865, 0° } .7702, 20° } .7574, 40° } .7958, 0° }	Lieben. A. C. P. 178, 14. Dobriner. A. C. P.
Ethyl heptyl oxide	C ₂ H ₅ . C ₇ H ₁₅ . O	.7949, 0°	248, 1. ' " Cross. J. C. S. 81,
Methyl capryl oxide	C H ₈ . C ₈ H ₁₇ . C	.790 } 16° { .791 } 16° { .8014,.0° } .65386, 173° } .830, 16°.5	128. Dobriner. A. C. P. 248, 1. Wills. J. 6, 510.
Methyl capryl oxide		.779	Rieckher. J. 1, 698. Wurtz. J. 9, 654. Dobriner. A. C. P. 248, 1.
			Möslinger. Ber. 9, 1008.
Ethyl capryl oxide Butyl heptyl oxide	C4 H9. C7 H18. O	.0827, 2000.7	Dobriner. A. C. P. 248, 1. Wills. J. 6, 510. Dobriner. A. C. P. 248, 1.
Propyl octyl oxide "" Butyl octyl oxide	C ₈ H ₇ , C ₈ H ₁₇ . O	.8039, 0° } .6300, 207° } .8069, 0° }	44 44
Amyl capryl oxide Normal heptyl oxide	C ₈ H ₁₁ . C ₈ H ₁₇ . O (C ₇ H ₁₈) ₂ O	.6277, 225°.7 } .608, 20° } .8152, 0° }	Wills. J. 6, 510. Dobriner. A. C. P. 243, 1.
Heptyl octyl oxide Normal octyl oxide	C ₇ H ₁₅ . C ₈ H ₁₇ . O	.8182, 0° \\ .6038, 278°.8 \\ .8035 \\	Möslinger. Ber. 9,
" " " "	(1)	.8050, 17° { .82035, 0° { .5983, 291°.7 }	1001. Dobrincr. A. C. P. 248, 1.

3d. The Patty Acids.

	Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
				-	
Formi	c acid	C H ₂ O ₂	1.2858	Liebig. Gm. H.	
46	"	"	1.2227, 0° }	Kopp. P. A. 72, 248.	
	"	"	1.2067, 18°.7 \ 1.2211, 20°		
			1 '	Landolt. P. A. 117, 853.	
11	"	"	1.2211 200 {	Semenoff. Ann. (4),	
"		"	(1.2100)	6, 115.	
••			1.24482, 0°	Petterson. U. N. A. 1879.	
"	"	"	1.2188, 20°	Brühl. Bei. 4, 781.	
"	"		1.2415, 0°	Zander. A. C. P.	
"	"	"	1.1175, 100°.8	∫ 224, 88.	
			1.2191, 20°	Winkelmann. P. A. (2), 26, 105.	
"	"	"	1.2182, 22°	Lüdeking. P. A. (2), 27, 72.	
44	"	"	1.1170, 100°.3	Schiff. Ber. 19, 560.	
**	"	"	1.2190, 200	Traube. Ber. 19, 884.	
"	"	"	1.22784, 15°	Perkin. J. C. S. 49,	
Acetic	acid	C ₂ H ₄ O ₂	1.0680, 16°	Mollerat. Ann. (1), 68, 88.	
44	"	"	1.0622	Sebille-Auger. Watts' Dict.	
"		"	1.0685, 15°	Mohr. A. C. P. 81, 277.	
	14 /	"	1.100, 8°.5, s.) Persoz. Watts'	
44	14	"	1.0650, 180, 1.	Dict.	
44	"	"	1.0647, 50-100	1	
"	"	"	1.0591, 10°-15°	Regnault. P. A.	
**	"	"	1.0535, 15°-20°) 62, 50.	
"		"	1.08005, 0°	Kopp. P. A. 72, 258.	
"	"		1.06195, 17° }	- 	
"	"		1.0685, 10°	Delffs. A. C. P. 92, 277.	
44	"	"	1.0607, 15°	Mendelejeff. J. 18, 7.	
**	"	"	1.0563 } 15°.5	Roscoe. J. C. S. 15,	
44	"	"		≥ 270.	
••	``		1.0514, 20°	Landolt. P. A. 117, 853.	
"	"		1.05538, 15°	Oudemans. Z.C. 1866, 750.	
"	"	"	1.0626, 20°	Linnemann. A. C. P. 160, 216.	
16	"	"	1.0502	Landolt. Ber. 9, 907.	
"	"	"	1.0490, 18°	Kohlrausch. P. A. 159, 240.	
"	"	"	.9825, 118°	Ramsay. J. C. S. 85, 468.	
"	"	"	1.0635, 15°	Duclaux. Ann. (5), 13, 95.	
"	"	"	1.1149, 0°, s	ነ '''	
**	"	"	1.0576, 120.79	Petterson, U.N.A.	
16	"	"	1.0543, 15°.97	1879.	
".	"	"	1.0508, 19°.08	J 2010.	

Name.			F	ORMULA.	Sp. Gravity.	AUTHORITY.
Acetic acid			C, H, O),	1.0559, 20°	Bedson and Williams. Ber. 14, 2550.
			"		1.0495, 20°	Brühl. Bei. 4, 781.
"			"		1.0701, 0° } .9872, 118°.1 }	Zander. A.C.P. 224,
"			"		.9872, 118°.1) 1.0582, 20°	88. Winkelmann. P. A.
"					·	(2), 26, 105,
					1.0465, 22°	Lüdeking. P. A. (2), 27, 72.
"	···		"		1.05704, 15°	Perkin. J. C. S. 49, 777.
Propion	ic acid	l	C, H, C),	1.0161, 0° }	Kopp. A. C. P. 95,
""	"		"		.9911, 25°.2	807.
					.9963, 20°	Landolt. P. A. 117, 853.
"	"		"		.992, 18°	Linnemann. J. 21, 488.
"	"		"		.9961, 19°	Linnemann. A.C.P. 160, 195.
"	66		"		1.0148, 0°)	,
"	"		"		.9607, 49°.6	Pierre and Puchot.
66 66	"		"		.9062, 99°.8	B. S. C. 18, 453.
	"		;;		.9946, 20°	Brühl. Ber. 13, 1530. Zander. A.C. P. 214,
"	"		"		1.0199, 0° } .8657, 140°.7 }	Zander. A.C. F. 214, 181.
66	66		"		1.0188, 0°	101.
66	66		46			Zander. A. C. P.
44	"		"		.8589 .8599 } 140°.5) 224, 88.
"	"		"		.9989, 200	Winkelmann. P. A. (2), 26, 105.
"	"		"		.9902, 25°	Lüdeking. P. A. (2), 27, 72.
"	**		44		.9956, 20° \ 1.0089, 0° \	Traube. Ber. 19, 885.
"	"		"		1.0089, 0° }	Renard. C. R. 108,
"	"				.9904, 18° }	158.
		D 1000			.99888, 15°	Perkin. J. C. S. 49,
Butyric	acia.	B. 1680	C'H'C),	.9675, 25°	Chevreul.
••	••				.968, 15°	Pelouze and Gélis. P. A. 59, 625.
"	"		"		.98165, 0°	Pierre. C. R. 27, 213.
"	"		"		.9678, 15° .9610, 20°	Mendelejeff. J. 13,7. Landolt. P. A. 117,
"	"		"		.9850, 18°.5	
44	"		"		.9580, 14°	62. Linnemann. A. C.
"	"		"		.9601, 14°	P. 160, 195. Linnemann. Ann.
"	44		"		.974, 15°	(4), 27, 268. Graham. A. C. P. 123, 99.
"	"		"		.9587, 20°	Brühl. A. C. P. 203, 1.
44	"				.9594, 200	Landolt. Bei.7, 845.
44	"		"		.8141, 161°.5	Schiff. G. C. I. 13,
						····

NAME. Butyric acid			FORMULA.		Sp. Gravity	AUTHORITY.	
					.9746) 00		
Dail	"		0,	4	.9781 \ 0°	1)	
"	"		"		RAGO S	Zander. A. C. P.	
u	"		"		.8120 \ 162°.5	<i>)</i> 224, 88.	
"	"		"		.9608, 20°	Winkelmann. P.A.	
u	"		и.		.9549, 25°	(2), 26, 105. Lüdeking. P.A.(2), 27, 72.	
tt	"		- 46		.9809, 0°	Gartenmeister. A.C. P. 288, 249.	
44	"		"		.9624, 200	Traube. Ber. 19,885.	
Isobuty	ric acid.	B. 154°	"		.98862, 0°)	•	
u	"		"		.9739, 150	Kopp. P. A.72, 258:	
"	"		44	*****	.978, 70	Delffs. A. C. P. 92, 277.	
ш	41		"		.9598, 0°)		
41	"		"		.9208, 50° }	Markownikoff. A.C.	
46	66		66		.8965, 100°	P. 188, 868.	
ü	"		46		.9508, 20°	Linnemann. Ann. (4), 27, 268.	
"	"		46		.9697, 00]	(±), 21, 200.	
44	66		66		.9160, 52°.6		
"	"		66		.8665, 99°.8	Pierre and Puchot.	
66	"		46		.8220, 189°.8	B. S. C. 19, 72.	
"	66				.9490, 200	Brühl. Ber. 18, 1529.	
и	"		` "		.9515, 20°	Brühl. A. C. P. 200,	
ш	"		"		.8087, 158°	180. Schiff. G. C. I. 18, 177.	
"	44		44		.9651, 00 }	Zander. A. C. P.	
**	66		**		.8054, 154°	224, 88.	
44	66		41		.9519, 20°	Traube. Ber. 19, 886.	
Normal	valeric a	cid.	C5 H10 C).	.9577, 0°)	114400. Del. 10,000.	
"	"	" B. 185°	08 == 100	3	.9415, 200		
**		"	"		.9284, 40° }	Lieben and Rossi.	
44	"	"	66		.9084, 99°.8	A. C. P. 159, 58.	
"	"	**			.945, 17°.5	Cahours and Demar-	
44	44	"	"		.7569, 195°	cey. C. R. 89, 881. Ramsay. J. C. S. 35,	
"	u		44		·	4 68.	
"	"				.9608, 0° }	Kehrer and Tollens.	
"	"	"			.9448, 20° {	A. O. P. 206, 289.	
"	"		"		.9562, 00)	Zander. A. C. P. 224,	
"	"		"		.7828, 185°.4 } .9568, 0°	88. Gartenmeister. A.C.	
		D				P. 288, 249.	
Isovale	ric acid.*	B. 175°	"		.941, 140	Chevreul.	
					.982, 28° }		
"	16		66		.944, 10°	Trommsdorf. A. C. P. 6, 176.	
"	44		"		.930, 12.°5	Trautwein. Gm. H.	
"	44		6.6		.987, 16°.5	Dumas and Stas. J. P. C. 21, 267.	
**	44		**		.9403, 150	Personne. J. 7, 658.	
**	**		"		.9555, 0°]	Kopp. A. C. P. 95,	
44	44		66		.9378, 199.6	807.	
						301.	

^{*} Including ordinary and unspecified valerianic acid.

Name.		F	ORMULA.	Sp. Gravity.	AUTHORITY.	
			ļ			
				O ₁	.985, 15°	Delffs. A. C. P. 92, 277.
"	"		"		.9558, 150	Mendelejeff. J. 18,7.
"	"		**		.9818, 200	Landolt. P. A. 117,
44	"		**		.95857, 0°	858. Frankland and Dup- pa. J. 20, 896.
44	"		"		.9470, 00]	pa. 0. 20, 000.
"	"		"		.8972, 540.65	Diame and Durker
"	"		"		.8542, 990.9	Pierre and Puchot.
**	**		"		.8095, 147°.5	B. S. C. 19, 72.
44	"		"		.9465, 00)	1
44	"		"		.9285, 200.2	From different
"	4:		"		.9468, 0°	
66	**					sources. Erlen-
44	"		"		.9295, 19°.7	meyer and Hell.
46	**		"		.9462, 0° }	A. C. P. 160, 257.
"	"				.9299, 18°.8	1/
			ı		.917, 15°	Ley. Ber. 6, 1862.
"	44		"		.98087, 17°.4	Schmidt and Sacht- leben.
"	"		"		.9845, 15°	Poetsch. A. C. P. 218, 56.
"	44		ę,		.9297, 20°	Winkelmann. P. A. (2), 26, 105.
"	44		"		.941, 16°	Renord. Ann. (6), 1, 228.
# Tthulma	" athulaa	etic acid,)	**		.9318, 20°	Traube. Ber. 19,886.
			("		.9505, 00 }	(Erlenmeyer and
		eric acid. }	1 "		.9881, 19°.5	
B. 172	2°.8.	·	"		.938, 24°	(160, 257. Saur. A. C. P. 188,
			1			275.
"	66		"		.917, 15° .941, 21°	Ley. Ber. 6, 1862. Pagenstecher. A. C.
"	44	"	"		.948, 14°.5	
"	"	"	"		.9405, 17°	
Trimeth	yl acet	ic acid			.944, 0°)	257. Butlerow. Ber. 7,
"		"	"		.905, 500 }	728.
Normal	caproid	e acid.	C. H,2)	.922, 260	Chevreul.
"	• • •	В. 205°-	-6-12		.981, 15°	Fehling. A. C. P.
**	ħ	44	- 66		0440 00	58, 406.
"	16	,,	"		.9449, 00	
"	"	.,	;;		.9294, 20°	Lieben and Rossi.
"	"	,, - -			.9172, 40°	A. C. P. 159, 70.
			"		.8947, 99°.1 J	12. 0. 1. 100, 10.
"	"	"	"		.9488, 0°)	
66	**	"	"		.928, 20° }	Lieben. A. C. P. 170,
"	46	"	"		.9164, 400)	89.
"	"	"	"		.988, 28°	Cahours and Demar- cay. C. R. 89, 381.
46	"	44	"		.9446, 00)	Zander. A.C. P. 224,
66	"	"	"		.7589, 205°	88.
46	66	"	"		0440) (Gartenmeister, A.C.
"	44	"	"		.9453 \ 0° \	P. 283, 249.
					,	1,

		1	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Isocaproic acid. B. 1990	C ₆ H ₁₂ O ₂	.9252, 20°	Landolt. P. A. 117, 858.
	"	.9287, 20°	Brühl. Bei. 4, 781.
Diethylacetic acid. B. 190°	"	.925, 27°	Sticht. J. 21, 522.
" "	"	.945	Schnapp. Ber. 10, 1954.
" "	((.9855, 00 }	Saytzeff. Ber. 11,
" "	"	.9196, 18 }	512.
Methylpropylacetic acid. "B. 193°	"	.9414, 00	u u
" D.196"	"	.9279, 18° } .9281, 25°	Liebermann and
•		.0201, 20	Scheibler. Ber. 16, 1828.
"	" (.9286, 15°	Kleemann. Ber.
Methylisopropylacetic acid	"	.928, 15°	17, 918. Romburgh. J. C. S. 52, 282.
Methylethylpropionic acid		.980, 15°	Romburgh. J. C. S. 52, 228.
Denanthic acid. B. 2230	C, H, O,	.9167, 24°	Städeler. J. 10, 860.
<i>ii ii</i>	44	.9179, 18°	Landolt. P. A. 117, 858.
11 11	"	.9212, 240	Franchimont. A. C. P. 165, 287.
££ ££	"	.9345, 00]	Grimshaw and
46 46	"	.9278, 8°.5	Schorlemmer. A.
u u	"	.9208, 16° } .9110, 28° }	U. P. 170, 187.
44 44	"	.9359, 0°)	·
11 11	"	.9848, 90	u u
11 11	"	.9285, 28°)	
" "	"	.916, 21°	Mehlis. A.C. P. 185, 862.
4 4	"	.985, 00 }	T
66 66	"	.9198, 20°	Lieben and Janecek. J. R. C. 5, 156.
44 44	"	.924, 210	Cahours and Demar-
	İ	,	çay. C. R. 89, 381.
" "	"	.9160, 200	Brühl. Bei. 4, 781.
u u	"	9818, 00 }	Zander. A.C. P. 224,
	"	.7429, 228°.2 } .9838, 0°	88. Gartenmeister. A.C. P. 288, 249.
Isoheptylic acid. B. 211°.5	"	.9805, 0°)	
si (t	"	.9138, 21° }	Hecht. A. C. P. 209,
" "	66	.8496, 100°)	815.
Isoamylacetic acid. B. 217°	"	.9260, 15°	Poetsch. A. C. P.
Caprylic acid. B. 286°.5	C ₈ H ₁₆ O ₂	.911, 20°	218, 56. Fehling. A. C. P. 58, 401.
"	"	.905, 21°	Perrot. J. 10, 853.
" "	"	.901, 18°	Fischer. A. C. P. 118, 307.
" "	"	.928, 17°	Cahours and Demar- cay. C. R. 89, 881.
" "	"	.9270, 0°	Zander. A.C. P. 224, 88.

Name.	FORMULA.	Sp. Gravity.	Authority.	
Caprylic scid	C ₈ H ₁₆ O ₂	.9288, 0°	Gartenmeister. A.C. P. 238, 249.	
Isočetylic acid. B. 219°	41 41 41 41 41	.911, 20° .908, 80° .898, 40° .885, 50° .846, 100° .9215, 0°	Williams. J. C. 8. 85, 125. Burton. A. C. J. 8, 889. Perrot. J. 10, 358.	
Pelargonic acid. B. 268°	(1) H ₁₈ U ₂	.9065, 17°	Perrot. J. 10, 358. Franchimont and Zincke. C. N. 25, 57.	
61 61	«	.90656	From six different sources. Berg- mann. Arch. Pharm. 22, 831.	
11 11	" "	1 - 1 - 1 - 1 - 1 - 1 - 1	Krafft. Ber. 15, 1687.	
Isononylic acid. B. 245°	"	.90825, 18°	C. P. 233, 249. Kullhem. A. C. P. 173, 319. Fischer. A. C. P.	
Rutylic acid	C ₁₀ H ₂₀ O ₂		118, 807. Görgey. A. C. P	
Stearic acid	C ₁₈ H ₃₆ O ₂	a1.00, 9°	66, 806. Saussure. Watta Dict. Kopp. J. 8, 43. Schiff. A. C. P. 223, 247.	

4th. Anhydrides of the Fatty Acids.

Name.	Formula.	Sp. Gravity.	AUTHORITY.	
Acetic anhydride		1.0969, 0° } 1.0799, 15°.2 } 1.075, 15° 1.0798, 15°	Gerhardt. J. 5, 451. Kopp. A. C. P. 94, 257. Schlagdenhauffen. Mendelejeff. J. 18,7. Nasini. Ber. 14,	
Propionic anhydride	C ₆ H ₁₀ O ₃	1.0816, 20° 1.01, 18°	1518. Brühl. Bei. 4, 782. Linnemann. J. 21, 483. Perkin. J. C. S. (2), 18, 11.	
Butyric anhydride	C ₈ H ₁₄ O ₈	.978, 12°.5	Gerhardt. J. 5, 452.	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.	
•	C ₈ H ₁₆ O ₃	.984, 15°	Toennies and Staub. Ber. 17, 851. Watts' Dictionary. Malerba. J. 7, 444. Mehlis. A. C. P. 185, 871.	

5th. Ethers of the Series C_n H_{2n} O_2 .

NAME. Methyl formate			Form	ULA.	Sp. Grav	ITY.	AUTI	HORITY.
			C H, C H	I O	.9984, 0°)		
"	"		- "		.9776, 150	.8 }	Kopp. P	. A. 72, 261
"			"			۱١	j	
"	"				.9928, 0°		Volhard, 176, 18	. A. C. P. 35.
"	"		11		.9797, 15°		Kraemer	and Grodz- er. 9, 1928.
**	"		66		.9482, 88°			J. C. S. 85
"	44		"		.9767, 140	,		Bei. 5, 105.
и	"		1 66		.9566, 820		Schiff.	G. C. I. 18,
**	"		"		.99889, 00	.)	Elsässer.	A. C. P.
44	**		"		.95196, 82	0.8	218, 80	
Ethyl	formate	9	C ₂ H ₅ . C H	[O _•	.9157, 180			See Böttger.
ű	44		- ""		.912			Quoted by
"	**		"		.94474, 00	1		A 770 000
44	**		- "		.92546, 15		Kopp. P	. A. 72, 266.
4.6	11		66			1	66	"
"	16		44		.9188, 170			
ш	"		"		.98565, 0°			. R. 27, 218.
	"		"		.917			J. 14, 599.
11	"		"		.8649, 55°		Kamsay. 468.	J. C. S. 85,
**	"		"		.9064, 20°		Brühl. B	er. 18, 1580.
16	"		44				De Heen.	Bei. 5, 105.
"	66		"		.9367, 0°)		
**	"		"				Several in	termediate
"	"		"		.9122, 200			iven. Nac-
"	"		"					Pagliani.
"	"				.8865, 40°	.02	Bei. 6,	
"	**		"		.8740, 49°.	(6	•	
"	ш		"		.8707, 51°. .8780)	1	(Schiff.	G. C. I. 18,
"	"		44			3°.4 _	177.	G. C. 1. 10,
86	**		44		.98757, 00	١,		A. C. P.
44	"		44		.86667, 54		218, 80	
"	66		"		.9194 } 20	1		ann. P.A.
48	**		**		.9152 } 20	ا} ۳	(2), 26,	
66	"		"		.9445, 0° -	`		eister. A.C.
					-, -		P. 288,	

					+ <u></u>	
Name.			FORM	ULA.	Sp. Gravity.	AUTHORITY.
Propy	l forma	.to	C, H, C H	I O,	.9197, 0°)	
ů.	"				1.877,88°.5 }	Pierre and Puchot.
"	"		"		.886, 72°.5)	Z. C. 12, 660.
66	"		. "		.9188,00)	1
"	"		44		I.8761.889.5 \	Pierre and Puchot.
"	**				.885, 720.5 }	Ann. (4), 22, 288.
"	"		"		.9026, 14°	De Heen. Bei. 5,
"	"		- "		.91888, 00)	Elsässer. A. C. P.
44	"		44		.82146.810	218, 802.
66	"				.9028 } 20° {	Winkelmann. P.A.
"	"		1 "		.9125 \ 20° \	(2), 26, 105.
**	"		1 "			
"	"				.9250, 00 }	Gartenmeister. A.C.
			i		.8270, 81° {	P. 238, 249.
Butyl	formate		C ₄ H _{9.} C H	U ₂	.9108, 0° }	££ ££
			"		.7972, 106°.9	i
Laobut	yl form	ate	1		.8845, 0°]	
"	"		"		.850, 84° [Pierre and Puchot.
46	"		"		.8224, 59°.8 [
46	**		"		.7962, 83°.4	Ann. (4), 22, 819.
"	"		"		.8650, 14°	De Heen. Bei. 5, 105.
"	"		"		.7784, 98°	Schiff. G. C. I. 18, 177.
"	46		"		.88548, 0° }	Elsässer. A. C. P.
"	46		"		.78287, 97°.9	218, 802.
Norma	l amvl	formate	C ₅ H ₁₁ . C H	0	.9018, 00 }	Gartenmeister, A.C.
"	"	"	""		.7692, 180°.4	P. 233, 249.
Isoamy	l form	ate	"		.884, 15°	Delffs. J. 7, 26.
"	"		44		.8945, 0° }	
44	"		66		.8748, 210 }	Kopp. A. C. P. 96.
"	"		66		.8809, 15°	Mendelejeff. J. 18,7.
"	66		44		.8816, 14°	
66	"		"		.7554, 123°.5	De Heen. Bei. 5, 105.
••					.1001, 1200	Schiff. G. C. I. 18,
46			44		0000 000	177.
"	"		"		.8802, 20°	Brühl. Bei. 4, 782.
"	"		"		.894378, 0°	Elsässer. A. C. P.
					.77027, 128°.8_	218, 802.
	•	formate		O ₂	.8495, 17°	Frentzel. Ber. 16, 745.
**	"	"	**		.8977, 0° }	Gartenmeister. A.C.
"	"	"	"		.7484, 153°.6 [P. 288, 249.
Normal	l hepty	formate	C, H, C H	0,	.8937, 00 {	"
"	ù T	"	44		.7808, 176°.7	••
Normal	l octyl :	formate	C ₆ H _{17.} C H	O ₂	.8929, 0° } .7156, 198°.1 }	66 66
Methyl	acetate		C H _s . C ₂ H ₃		.919, 220	Dumas and Peligot.
"	66		66	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	P. A. 86, 117.
	-		44		.9828, 0° }	Kopp. A. C. P. 96.
**	"		"		.9085, 21° }	
"	"				.9562, 0° }	Kopp. P. A. 72,271.
46	"		44		.98785, 15°.6	
"	**		44		.86684, 0°	Pierre. C. R. 27, 213.
"	46		44		.940	Grodzki and Krae-
						mer. Z. A. C. 14, 108.
44	66	i i	66	[.9089, 200	Brühl. Ber. 18, 1580.
46	66		66		.9819, 14°	Do Hoon Po: 5 105
			==		.0010, 17	De Heen. Bei. 5, 105.

NAME.			FORMULA.		Sp. Gravity.	AUTHORITY.
Methyl acetate			С Н., С. Н.	. 0.	.8825) (Schiff. G. C. I. 13,
""	"		-1.03		.8826 55°	177.
44	**		46		.95774, 00 }	Elsässer. A. C. P.
"	"		"		.88086, 57°.5	218, 802.
44	44		"		.9424, 00	Winkelmann. P.A.
"	"		44		.9288, 19°.2	(2), 26, 105. Henry. C. R. 101, 250.
"	44		"		.9648, 00 }	Gartenmeister. Bei.
				^	.8878, 57°.8	9, 766.
Ethyl:	acetau	Ð	C ₂ H ₅ . C ₂ H	0,	.866, 7° .89, 15°	Thénard. Gm. H.
"	66		"		.9051, 0°	Liebig. Frankenheim. P. A.
44	44				01040 00 >	72, 427.
"	66				.91046, 0° }	V D 4 50 6-6
"	"				009211, 10"./ }	Kopp. P. A. 72, 276.
4.	44		"		.8926, 15°.9	P: C P 07
				• • • • • • • • • • • • • • • • • • • •	.90691, 0°	Pierre. C. R. 27, 218.
"	"		"		.906, 17°.5	Marsson. J. 4, 514.
66	"		"		.908, 170	Becker. J. 5, 568.
"	"		**		.932, 20°	Goessmann. J. 5, 568.
"	44				.9055, 17°.5	
44	"		"		.8922, 15°	Delffs. J. 7, 26.
**	46		66		.8981, 15°	Mendelejeff. J. 18, 7.
**	66		"			Pierre and Puchot.
66	"		"		.868, 24°	Ann. (4), 22, 261.
						10, 198.
"	"		"		.9068, 15°	Linnemann. A. C. P. 160, 195.
2.6	"		"		.9007, 20°	Brühl. Ber. 18, 1580.
"	**		"		.9026, 14°	De Heen. Bei. 5, 105.
"	**		"		.8220, 74°.8	Schiff. Ber. 14, 2766.
"	"		"		.9227, 0°]	
"	44		"		.9076, 12°.80	Several intermedi-
**	46				.8914, 26°.24	ate values given.
"	"		1 ::		.8780, 41°.18	Naccari and Pag-
"	"		;;		.8594, 510,75	liani. Bei. 6, 89.
**	"		;;		.8466, 61°.87	,
"	"				.8809, 78°.74 J	W T Clark Par
"	"		"		.9012	W. I. Clark. Ber.
44	```					16, 1227.
46	"		"		$\begin{bmatrix} .8306 \\ .8294 \end{bmatrix}$ 75°.5	Schiff. G. C. I. 18,
"	66		"		.92888, 0° {	Elsässer. A. C. P.
44	"		"		.82678, 77°.1	218, 802.
**	66		"		00071 (Winkelmann. P. A.
41	"		"		.9047 { 20° }	(2), 26, 105.
41	"		"		.9258, 0°	Gartenmeister. Bei.
Propyl acetate			C. H., C. H.	.0	.910, 0°)	9, 766.
	1 4000		64		.8635, 42°.5	Pierre and Puchot.
46	66		44		.8137, 84°.6	Z. C. 12, 660.
44	44		"		.910, 0°)	
**	"		"		.8627, 42°.5	Pierre and Puchot.
44	46		64		.8128, 84°.6	Ann. (4), 22, 289.

Name.		Formu	LA.	Sp. Gravity.	Authority.		
Propyl acetate			C, H, C, H,	C ₃ H ₇ . C ₃ H ₃ O ₂			
"	и		"		.8992, 15°	79. Linnemann. A. (P. 161, 80.	
"	"				.8856, 200	Brühl. Ber. 18, 1580	
66	64		"		.8871, 140	De Heen. Bei. 5, 10	
"	"		"		.7916 } 101°.8	Schiff. G.C.I.1	
"	46		"		(919)	177.	
"	"		"		.909092, 0°	Elsässer. A.C.I	
"	"		:		.794888, 100°.8	218, 802.	
••	••		"		.9098, 0°	Gartenmeister. A. (P. 238, 249.	
Butvl	acetate		C. H. C. H.	0,	.9000, 0°)	1. 200, 220.	
.,	"				.8817, 200 }	Lieben and Ross	
**	"		"		.8659, 40°)	A. C. P. 158, 13	
"	"		'"		.8768, 28°	Linnemann. An	
"			"			(4), 27, 268.	
"	"		"		.9016, 0° }	Gartenmeister. A.	
		ate			.7688, 124°.5	P. 288, 249. Wurtz. J. 7, 575	
LBOOUL		MB 10	"		.892, 0°	Lieben. J. 21, 44	
"					.89096. 00)	Diocen. 6. 21, 12	
**		14	"		.89096, 0°) .8747, 16° }	ChapmanandSmit	
"			"		.88148, 50°	J. C. S. 22, 160.	
"			"		.9052, 0°)	· ·	
"			"		.8668, 87°.1		
"			"		.8828, 68°.9	Pierre and Puche	
"		ie	"		.8096, 89°.4	Ann. (4), 22, 82	
"			"		.7972, 99°.75 .7589, 112°.7	Schiff. G. C. I. 1	
					1.1000, 112 .1	177.	
44		14	.6		.892100, 00	Elsässer. A. C.	
61			"		.77080, 116°.8_	218, 802.	
		l acetate	C ₅ H ₁₁ . C ₂ H	I, O,	.8968, 0°)		
"	"	"	"		.8792, 20° } .8645, 40° } .8948, 0° }	Lieben and Ros	
	"	"	"		.8645, 40°)	A. C. P. 159, 70	
16	. "	"	"		.8948, 0°	Gartenmeister. A.	
		lcarbyl ac	;		.9222, 0°	P. 288, 249. Wurtz. Z. C. 11,49	
tate		icaroyi ac	<u> </u>			17 47 42. 2. 0. 11, 11	
_		.)	. "		000 00	(Wagnerand Sayt	
Diethy	((arb)	l acetate	"		.909, 0° }	eff. A.C.P.17	
						866.	
Amyl			"		.8572, 21° }	Kopp. A. C. P. 9	
44	"		"		.8765, 0° }	297.	
"	"		;;		.8887, 0°	Kopp. A. C. P. 9 257.	
"	"				.868, 10°	Delffs. J. 7, 26.	
"	"				.8762, 15°	Mendelejeff. J. 18,	
44	"		"		00000	Schorlemmer. J. 1	
66	"		"		1.8752 } 10	527.	
41	"	Inactive	"		.8888, 0°	Balbiano. Ber. 1487.	
"	"				.8561, 14°	De Heen. Bei. 5, 10	
**	"				.8561, 20°	Brühl. Bei. 4, 78	
			"		- 400'	/ C 1 . M C C T 4	
"	"		"		·7429 } 188°.5	(Schiff. G. C. I. 1	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Certiary amyl acetate	C ₅ H ₁₁ . C ₂ H ₅ O ₂	.8909, 0° }	Flawitzky. A. C. I
" "	**	1.0/00, 190 1	179, 849.
formal hexyl acetate	C ₄ ,H ₁₃ , C ₂ H ₃ O ₂	.8890, 17°	Franchimont an Zincke. C. N. 24
	44	.8902, 0° }	268. Gartenmeister. A
11 11	"	.7267, 169°.2	C. P. 288, 249.
econdary hexyl acetate		.8778, 0° }	(Wanklyn and E
" " " "		.8810, 500	lenmeyer. J. 1
lethyldiethylcarbyl ace-	44	.8824, 20°]	(522.
tate. "		.8772, 25°	Defermental T
	"	.8785, 80° {	Reformatsky. J. J C. (2), 86, 840.
		•8679, 85° J	
Sthylpropylcarbyl ace- tate.	**	.8525, 0°	Buff. J. 21, 886.
Methylisobutylcarbylace- tate.	"	.8805, 0°	Kuwschinow. Ber 20, ref. 629.
Methylpropylethol ace- tate.		.8717, 25°	Lieben and Zeise M. C. 4, 88.
Normal heptyl acetate			Cross. J. C. S. 8: 123.
	46	.8891, 0° }	Gartenmeister. A
	"	.7184, 191.°8 } .8605, 16° }	C. P. 288, 249.
soheptyl acetate		.8707, 16°.5	Three products Schorlemmer.
11 41	и	.8868, 19°)	C. P. 186, 271.
Dipropylcarbyl acetate	44	.8742, 0° }	Ustinoffand Sayt:
Methylisoamylcarbyl ace-		.8595, 28°	(84, 470. Rohn. A. C. P. 19
tate. Normal octyl acetate	C. H., C. H. O.	.8717. 160	812. Zincke. J. 22, 87
11 11 11	08 -11. (1 -8 01	.8847, 00)	Gartenmeister.
44 44	· "	.6981, 2100	C. P. 288, 249.
Methyldipropylcarbylace- tate. "	"	.8788, 0° }	Gortaloff an Saytzeff. J.]
Octylene acetate ''		.822, 0° .808, 26° }	C. (2), 88, 702.
Ethyldipropylcarbyl ace- tate. "	C ₉ H ₁₉ , C ₂ H ₃ O ₃	.8795, 0° }	Tschebotareff an Saytzeff. J.]
	0 H 0	1 '	(C. (2), 88, 198.
Isomer of myristic acetate_	C ₁₆ H ₃₂ O ₂	8476 800	Perkin, Jr. J. C.
	"	.8448, 85° }	48, 77.
Cetyl scetate Methyl propionate	C ₁₆ H ₃₅ . C ₂ H ₃ O ₂ C H ₃ . C ₃ H ₅ O ₂	.858, 200	Dollfus. J. 17, 51 Kahlbaum. Ber. 1
		l	844.
11 11		.8954, 14°	De Heen. Bei. 5, 10 (Schiff. G. C. I. 1
., .,	"	$\begin{bmatrix} .8422 \\ .8428 \end{bmatrix}$ 78°.5 _	177.
	"	.98725, 0°	Elsässer. A. C. 1
"	"	.886798, 79°. 9_	218, 302.
		.922, 15°	Israel. A. C. P. 28 197.
"	46	.9408, 00	Gartenmeister. Be

	Nam	E.	Formu	LA.	Sp. Gravity.	AUTHORITY.
Ethyl		te	C, H, C, H,	O ₂	.9281, 0° }	Kopp. A. C. P. 95,
"	"				.8949, 26°.8	807.
"	"		"		.9139, 0° }	Pierre and Puchot.
66	**		"		.816, 88° }	Ann. (4), 22, 851.
**	**		**		.8964, 16° }	Linnemann. A.C.P.
"	"		66		.8945, 17° }	160, 195.
"	44		"		.9175, 140	De Heen. Bei. 5, 105.
"	"		44		.7961 \ 98°.8 _	Schiff. G. C. I. 18,
44	"		. "		.1800)	177.
"	**		66		.9109, 0°]	
"	"		46		.8968, 12°.60	
"	"		"		.8832, 24°.57	Several intermediate
"	. 46		66		.8687, 41°.54	values given. Nac-
"	"		"		.8514, 52°.05	cari and Pagliani.
"	"		"		.8365, 64°.46 .8247, 74°.46	Bei. 6, 89.
"	"		"		.8020, 920.96	
"	"		66		.91238, 0° }	Elsässer. A. C. P.
"	"		**		.79868, 98°.3	218, 802.
"	46		44	,	.91224. 0°	Weger. Ber. 16, 2912.
66	"		66		.886	Three samples. Is-
. "	"		44		.00101	rael. A. C. P. 281,
64	"		"		.8900, 19°)	197.
Propyl	propion	ate	C ₃ H ₇ . C ₃ H ₅	0,	.9022, 0°	1
"	"		46		.8498, 51°.27	Pierre and Puchot.
"	"		"		.7944, 100°.6	Ann. (4), 22, 298.
"	"		"		.7889, 108°.34) · · ·
••	••				.8885, 13°	Linnemann. A. C. P. 161, 32.
"	**		"		.8821, 14°	De Heen. Bei. 5, 105.
"	44		"		maaa'\ .	Schiff. G. C. I. 18,
"	64		46		.7680 121°	177.
"	"		**		.90192, 00	Elsässer. A. C. P.
"	"		"		.772008, 122°.2	218, 802.
"	"		**		.9028, 0°	Gartenmeister. A. C. P. 288, 249.
	propiona	te		0,	.8828, 15°	Linnemann. Ann. (4), 27, 268.
"	66		"		.8958, 0° }	Gartenmeister. A.
- "	. "		66		.7489, 145°.4	C. P. 283, 249.
Isobut	yl propic	națe	"		.8926, 0°]
66	"		66		.8437, 49°.2	Pierre and Puchot.
44	"		"		.7896, 100°.15 .7698, 116°.5	Ann. (4), 22, 324.
"	u		16		.887595, 0°	Elsässer. A. C. P.
44	"		"		.74424, 186°.8	218, 302.
Amvl	propiona	te	C, H, C, H	[. O	.8700, 14°	De Heen. Bei. 5, 105.
			05 11. 05		.7295, 160°	Schiff. G. C. I. 18 177.
"	"		"		.887672, 0°) Elsässer. A. C. P.
**			66		.73646, 160°.2	218, 802.
Norma	l heptyl	propionate	C, H ₁₅ , C, H	[. 0	.8846.0°)	Gartenmeister. A
Norma	ıl octyl p	ropionate -	C, H, C, E	[₅ O ₂	.6946, 208° .8833, 0° .6860, 226°.4	C. P. 238, 249.
Mass.	" 1 hart	_ "	011 011	^	.0860, 226~.4	
wremy.	l butyrat		C H ₃ . C ₄ H ₇		.9045, 15°.5	Kopp. P. A. 72, 280

NAME. Methyl butyrate			Form	ULA.	Sp. Gravity.	AUTHORITY.	
			C H ₈ . C ₄ H	, O ₂	1.02928, 0°	Pierre. C. R. 27, 213.	
"	**		"		.9091, 00 }	Kopp. A. C. P. 95,	
"	"		66		.8793, 80°.3	807.	
**	••		! "		.9475, 40	Kahlbaum. Ber. 12, 344.	
44	44		. "		.8962, 200	Brühl. Ber. 18. 1580	
"	"		"		.91989, 0°	Elsässer. A. C. P.	
16	"		"		.80261, 102°.8	∫ 218, 302.	
					.9194, 0°	Gartenmeister. A. C. P. 288, 249.	
	isobut	yrate	66		.9056, 00)	D. 15	
16 16	66		""		.8625, 38°.65	Pierre and Puchot.	
"			"	*	.815, 78°.6 .911181, 0°	B. S. C. 19, 72. Elsässer. A. C. P.	
44	46		"		.80897, 92°.8	218, 802.	
Ethyl b	utyrate		C2 H5. C4 H.	0,	.9008, 18° } .8990, 17° }	Linnemann. A. C.	
ü	"		"		.8990, 17° }	P. 160, 195.	
"	"		"		.8892, 200	Brühl. Ber. 14, 2800.	
"	"		66		$\begin{bmatrix} .7708 \\ .7705 \end{bmatrix}$ 119°.8	Schiff. G. C. I. 18,	
44	44		. "		.90198, 00	Pierre. C. R. 27, 218.	
"	4.6		"		.8894, 150	Mendelejeff. J. 18, 7.	
"	"		"		.8942, 0°	Frankland and Dup-	
4.			66		90057 00	pa. J. 18, 806.	
"	"		"		.89957, 0° .76940, 119°.9	Elsässer. A. C. P. 218, 802.	
"			"		.9004, 00	Gartenmeister. A.	
	_				·	C. P. 233, 249.	
Ethyl is	obutyr	ate	"		.90412, 0° }	Корр. Р. А. 72, 287.	
"	"		"		.89065, 18° }		
. 11	46		**		.871, 18°.8		
et.	44		"		.881.55°.8 (Pierre and Puchot.	
"	"		"		.7794, 100°.1	B. S. C. 19, 72.	
44	44		"		.7681, 110°.1	Schiff. G. C. I. 18, 177.	
**	66		**		.890367. 0°	Elsässer. A. C. P.	
	"			<u></u>	.77725, 110°.1	{ 218, 302.	
Propyl	butyra	te	C ₃ H ₇ . C ₄ H ₇	O ₂	.8789, 15°	Linnemann. A.C.P. 161, 38.	
ıı	"		"		.89299, 0°	Elsässer. A. C. P.	
n 1			66 66		.745694, 142°.7	§ 218, 802.	
Propyl	iso buty	rate	"		.8872, 0°		
6.	16		•			Pierre and Puchot.	
66	"		44		.7842, 100°.25_ .7525, 128°.75_	Ann. (4), 22, 295.	
**			44		.884317, 00	Elsässer. A. C. P.	
14			"		.74647, 188°.9_	§ 218, 802.	
1-obtob	yı outy	rate	16		.8787, 0° }	Silva. Z. C. 12, 508.	
Butyl b	utvrate		C, H, C, H,	O	.8885. 0°)		
	46		**		.8717, 20° }	Lieben and Rossi.	
••	"		"		.8579, 40°)	A. C. P. 158, 187.	
	**		"		.8760, 120	Linnemann. Ann. (4), 27, 268.	
-1	"		"		.8878, 0° }	Gartenmeister. A.C.	
	"		"		.7264, 165°.7	P. 288, 249.	

Tilago, 1650-9 218, 302. 302. 303.	Name.		Formu	TLA.	Sp. Gravity.	AUTHORITY.
1.			C4 H . C4 H	,O ₂	.881778, 0° .71680, 156°.9	Elsässer. A. C. P. 218, 302.
	" "				.8798, 00)	,
18obutyl isobutyrate	11 11				.86685, 160	Grunzweig. B.S.C.
	" "					18, 125.
		e				
" " " " " " " " " " " " " " " " " " "						Pierre and Puchot.
## ## ## ## ## ## ## ## ## ## ## ## ##					7420 1989 2	Ann. (4), 22, 826.
	••				.874957. (cº	
" " " " " " " " " " " " " " " " " " "	••		"			
	11 11		**			, 210, 332.
Normal amyl butyrate	44 44		66		.86064, 15°	Grunzweig. B.S.C.
Amyl butyrate					.81192, 98°.4	18, 125.
Amyl butyrate	Normal amyl buty	rate	C ² H ^{11, C} C ⁴ H	I, O,	.8882, 0° } .7092, 184°.8	Gartenmeister. A.C. P. 288, 249.
## ## ## ## ## ## ## ## ## ## ## ## ##	Amyl butyrate				.8688, 15°	Mendelejeff. J. 13,7.
## ## ## ## ## ## ## ## ## ## ## ## ##					.852, 15°	Delffs. J. 7, 26.
## ## ## ## ## ## ## ## ## ## ## ## ##						
Amyl isobutyrate						
## ## ## ## ## ## ## ## ## ## ## ## ##					9780 00	De Heen. Bei. 10,818.
" " " " " " " " " " " " " " " " " " "					9984 550 A	
## ## ## ## ## ## ## ## ## ## ## ## ##					7889 1000 2	Pierre and Puchot.
						Ann. (4), 22, 848.
Normal hexyl butyrate			"			Elsässer. A. C. P.
Normal hexyl butyrate			"			
Normal heptyl butyrate	Normal hexyl buty	rate	C. H13. C. H	I, O,	.8825, 0°)	Gartenmeister. A.C.
Normal octyl butyrate C ₈ H ₁₇ C ₄ H ₇ O ₂ 8794, 0° }		' <u>,</u>	a # a i	T ^		· ·
Normal octyl butyrate C ₄ H ₇ O ₂ 8794, 0°	Normal heptyl but	yrate	U7 H15. U4 I	1, U2		u u
Cetyl butyrate C ₁₆ H ₈₃ . C ₄ H ₇ O ₂ 856, 20° B56, 20° C ₄ H ₈ . C ₅ H ₉ O ₂ 856, 20° B56, 20° B56, 20° C ₄ H ₈ . C ₅ H ₉ O ₂ 895, 17° B96, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 895, 17° B96, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 896, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 8860, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 8860, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 8860, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 8860, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 8860, 10° C ₄ H ₈ . C ₄ H ₇ O ₂ 88662, 15° Bollifus. J. 17, Cahours and Decay C. R. 89 Gartenmeister. 9, 766. Kopp. A. C. F. (a) Gartenmeister. 9, 766. Kopp. A. C. F. (b) Gartenmeister. 9, 766. Kopp. A. C. F. (a) Gartenmeister. 9, 766. Kopp.	Manual actual hutus		CH CI	T. ().		
Cetyl butyrate C ₁₆ H ₃₀ . C ₄ H ₇ , O ₂ 895, 17° B95, 17° B95, 17° B95, 17° B95, 17° B95, 17° B95, 17° B95, 17° B96, 0° B96, 0° B96, 0° B96, 0° B96, 0° B96, 0° B96, 16° B866, 16° B866, 16° B8667, 15° B8667, 15° B8662, 15° 8 B8662, 15° 8 B8662, 15° 8 B8662, 15° 8	11 11 11		**		.6751, 242°.2	" "
" " " " " " " " " " " " " " " " " " "	Cetyl butyrate		C14 H C4 1	H, O		Dollfus. J. 17, 518.
" " " " " " " " " " " " " " " " " " "	Methyl valerate		CH, C, H,	0,		Cahours and Demar-
"				_		çay. C. R. 89,831.
Methyl isovalerate					.9097, 0° }	Gartenmeister. Bei.
Methyl isovalerate						9, 766.
" " " " " " " " " " " " " " " " " " "						Kopp. A. C. P. 96.
" " " " " " " " " " " " " " " " " " "						
" "						Konn P A 72 291
" "			"		.88662, 15°.8	
" "			"			
" "	11 11		66			Diama and Duahat
" "						
" "						
"	"		"		.8908, 16°	
"	u u .		* "		.885465, 17°	Schmidt and Sacht-
" "					0705 000	86, 189.
"	• •				00085 00	
Ethyl valerate	••				77518 1169 7	
Emy vicinit				0-	.894. 00	J 210, 002.
" \0(D), ZU" > Lieben and R	Ethyl valerate		V2 118. (V8 119	~ 9	.8765, 200 }	Lieben and Rossi.
" .8616, 40°] A. C. P. 165,			"		.8616, 40°	A. C. P. 165, 109.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Ethyl valerate	C ₂ H ₅ . C ₅ H ₉ O ₂	.878, 18°.5	Cahours and Demar- cay. C. R. 89, 831.
"	"	.8989, 00 }	Gartenmeister. Bei.
"	"	.7448, 1440.7	9, 766.
Ethyl isovalerate	"	.894, 180	Otto. A. C. P. 25,
u u	"	.869, 14°	62. Berthelot. J.7,441.
ec 66	"	.8829, 0°)	· ·
" "	"	.8659, 18° }	Kopp. A. C. P. 96.
(1 11	"	.886, 00	
(1 (6		.882, 55°.7	Pierre and Puchot.
11 11	"	.7848, 99°.68 { .7582, 122°.5 }	Ann. (4), 22, 858.
16 66	"	.8661, 20°	Brühl. Bei. 4, 782.
" "	"	.88514, 0°	Elsässer. A.C.P.
16 16	"	.74764, 184°.3_	218, 802.
" "	"	.8748, 16°	Renard. Ann. (6),
u u	"	.8882, 0° }	1, 228.
"	"	.87166, 18°	Frankland and Dup- pa. J. 20, 896.
Ethyl trimethylacetate	"	.8778, 0° {	Friedeland Silva. J.
	"	.8585, 25° }	C. S. (2), 11, 1127.
"	"	.875, 0°	Butlerow. B. S. C.
Ethyl methylethylacetate	"	.877, 15°	28, 27. Israel. A. C. P. 281,
Propyl valerate	C ₃ H ₇ . C ₅ H ₉ O ₂	.8888. 00)	197. Gartenmeister. Bei.
" "	"	.7264, 167.05	9, 766.
Propyl isovalerate	"	.8862, 0°) ່
" "	"	.8387, 50°.8	Pierre and Puchot.
66 66	"	.7906, 100°.15_	Ann. (4), 22, 297.
" "	"	.7755, 118°.7	, , , ,
" "	"	.880915, 0° .727405, 155°.9	Elsässer. A.C. P. 218, 802.
Isopropyl isovalerate.	"	.8702, 0°)	
11 1	"	.8588, 170 }	Silva. Z. C. 12, 508.
Butyl valerate	C4 H9. C5 H9 O2	.8847, 00 }	Gartenmeister. Bei.
ŭ " <u></u>	"	.7095, 185°.8	9, 766.
Isobutyl isovalerate	"	.8884, 0°)	
" "	"	.8488, 49°.7	Pierre and Puchot.
" "	"	.7966, 1000	Ann. (4), 22, 830.
11 21		.7428, 155°.8 J .878599, 0°	Elsässer. A. C. P.
	44	.70549, 168°.7	218, 802.
Normal amyl valerate	C5 H11. C5 H9 O2	.8812, 0° }	Gartenmeister. Bei.
	"	.6982, 208°.7	9, 766.
Amyl isovalerate		.8798, 0° {	Kopp. A. C. P. 94,
ú "	"	.8645, 17°.7	257.
11 11	"	.8596, 15°	Mendelejeff. J. 18, 7.
16 46	"	.874, 00	
" "		.832, 50°.67	Pierre and Puchot.
		.787, 100° [.740, 149°.5	Ann. (4), 22, 846.
" " Inactive_	"	.8700, 0°	Balbiano. Ber. 9,
			1 4 87.
" "	"	.8633, 16°	Renard. Ann. (6), 1, 223.

	and the second second		
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Amyl isovalerate	C. H C. H.O.	.8658. 200	Brühl. Bei. 4, 782.
Amyl isovalerate	,	.868, 10°	De Heen. Bei. 11, 818.
Normal hexyl valerate	C ₆ H ₁₈ . C ₅ H ₉ O ₂	.8797, 00 }	Gartenmeister. Bei.
Normal nextyl valerate Normal heptyl valerate Normal octyl valerate Octyl isovalerate	C, H, C, H, O,	.8786, 00	9, 766.
Normal octyl valerate	C ₈ H ₁₇ , C ₅ H ₉ O ₂	.8784, 0° }	
Octyl isovalerate	"	.6618, 260°.2 } .8624, 16°	Zincke. J. 22, 871.
Cetyl isovalerate Methyl caproate	C ₁₆ H _{ss} . C ₅ H _s O ₂	.852, 20° .8977, 18°	Dollfus. J. 17, 518.
ii ii	(1)		58, 899.
		.889, 19°	Cahours and Demar- cay. C. R. 89, 831.
" "	"	.9039, 0° } .7586, 149°.6 }	Gartenmeister. Bei. 9, 766.
Ethyl caproate	C ₂ H ₅ .·C ₆ H ₁₁ O ₂	.882, 18°	Lerch. A. C. P. 49, 212.
" " <u></u>		.8765, 17°.5	Franchimont and Zincke. A. C. P.
" "	"	.8898, 0° }	168, 198.
u u	"	.8782, 20° }	Lieben and Rossi. A. C. P. 165, 118.
11 11	"	.8594, 40° } .8898, 0° } .8728, 20° }	11. 0. 1. 100, 110.
11 11	"	.8728, 20° }	Lieben. A. C. P. 170, 89.
" " ————	"	.8596, 40°) .878, 19°	Cabours and Demar-
"	"	.8888, 0° }	çay. C. R. 89, 831. Gartenmeister. Bei.
784 -1 :	"	.7269, 166°.6 ∫	9, 766.
Ethyl isocaproate	"	.887, 0° }	Lieben and Rossi.
	"	.8566, 40°)	A. C. P. 165, 118.
Ethyl diethylacetate		.8822, 0°	Frankland and Dup- pa. J. 18, 308.
11 11	"	.8826, 0° }	Saytzeff. Ber. 11, 512.
Ethyl methylpropylacetate	"	.8816, 0° .8670, 18°}	11 11
" " —	"	.8670, 18° / .8841, 0°	Lieben and Zeisel.
Pronul canroate			M. C. 4, 26. Gartenmeister. Bei.
Propyl caproate	CH CH C	.7097, 185°.5	9, 766.
Dutyl caproate	04 Hg. 06 H ₁₁ 03	.6978, 204°.8	11 11
Hexyl caproate	C ₆ H ₁₃ . C ₆ H ₁₁ O ₃	.865	Franchimont and Zincke. C. N. 24, 268.
Methylethylpropyl me- thylethylpropionate.		.867, 15°	Romburgh. J. C. S. 52, 228.
Normal heptyl caproate Normal octyl caproate	C ₇ H ₁₅ . C ₀ H ₁₁ O ₂	.8769, 0° }	Gartenmeister. Bei. 9, 766.
Normal octyl caproate	C ₈ H ₁₇ . C ₆ H ₁₁ O ₃	.8748, 0° } .6509, 275°.2 }	" "
Methyl oenanthate			Cahours and Demar- çay. C. R. 89, 881.

Methyl isoöenanthate				——————————————————————————————————————
Methyl isoöenanthate	Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl isoöenanthate	Methyl oenanthate	C H ₈ . C ₇ H ₁₈ O ₂	.8981, 0° }	Gartenmeister. Be
## ## ## ## ## ## ## ## ## ## ## ## ##	Methyl isoöenanthate	"	.8840, 15°	Poetsch. A. C. I
Ethyl cenanthate		"	.8790, 15°	Hecht. A. C. H
" " " " " " " " " " " " " " " " " " "	Ethyl oenanthate	C ₂ H ₅ . C ₇ H ₁₅ O ₂	.874, 240	Franchimont. A. C
" " " " " " " " " " " " " " " " " " "	tt tt	"	.8785, 16°	Grimshaw an
" "	11 tt	"	.871, 21°	C. P. 170, 187. Meblis. A. C. I
" " " " " " " " " " " " " " " " " " "	11 11	46	.877, 16°.5	Cahours and Demai
" " " " " " " " " " " " " " " " " " "		"	.8879, 00,)	
" " " " " " " " " " " " " " " " " " "		"	.8716, 200 }	
" " " " " " " " " " " " " " " " " " "			87168)	J. K. U. 5, 156.
" " " " " " " " " " " " " " " " " " "		}	.87199 } 15°)
" " " " " " " " " " " " " " " " " " "		"	.86477	Perkin. J. P. (
" " " " " " " " " " " " " " " " " " "		14	.86487 } 250) (2), 82, 528.
## ## ## ## ## ## ## ## ## ## ## ## ##			! . 8861. 0° ነ	Gartenmeister. Bo
Second color Seco			.7105, 187°.1	
" " " " " " " " " " " " " " " " " " "	Ethyl isoöenanthate	"	.8720, 15°	Poetsch. A. C.
Sepropyl isoöenanthate		"	.8685, 15° }	Hecht. A.C.P.20
Recht. A. C. P. 2 324 325 325 326 32	D 1 4 4 4 4 4	а п а п о	.8570, 27	
Sepropyl isoöenanthate	rropyi oenantnate	0 ₈ H ₇ . 0 ₇ H ₁₈ O ₂	8085 2089 4	
Section Sect	Propyl isoöenanthate	"	.8685, 19°	Hecht. A. C. P. 20
Butyl cenanthate	Isopropyl isoõenanthate	"	.859, 19°	Hecht. A. C. P. 20
Normal heptyl cenanthate """""""""""""""""""""""""""""""""""	Butyl oenanthate	C4 H9. C7 H18 O2	.8807, 0° }	Gartenmeister. Be
" " " " " " " " " " " " " " " " " " "	Normal heptyl oenanthate	C7 H15. C7 H13 O2	.870, 16°	Cross. J. C. S. 8
" " " " " " " " " " " " " " " " " " "			.86522, 15°)	
" " " " " " " " " " " " " " " " " " "	u u u <u> </u>	"	1 .85988. 25° (
" " " " " " " " " " " " " " " " " " "		1 44	1.8807.0°)	Gartenmeister. Be
Methyl caprylate C H ₈ . C ₈ H ₁₅ O ₂ .882 Fehling. A. C. 53, 399. """"""""""""""""""""""""""""""""""""		"	.6889, 225°.1	9, 766.
Wethyl caprylate C H ₈ . C ₈ H ₁₅ O ₂ .882 Fehling. A. C. 53, 399. """"""""""""""""""""""""""""""""""""	Normal octyl oenanthate _	C ₈ H ₁₇ . C ₇ H ₁₈ O ₃	.8757, 0° }	
" "	" " Methyl caprylate	C H ₈ . C ₈ H ₁₅ O ₂	.6419, 290°.4 §	Fehling. A. C.
" "	u u	"	.887, 18°	Cahours and Dema
Ethyl caprylate C ₃ H ₅ . C ₅ H ₁₅ O ₅ 8738, 15° Fehling. A. C. P. 899. " "8728, 16° Zincke. J. 22, 8 Cahours and Dem cay. C. R. 89, 8 Gartenmeister. 1			.8942, 0° }	Gartenmeister. Be
" " 8728, 16° Zincke. J. 22, 8 Cahours and Dem cay. C. R. 89, 8 Gartenmeister. 1		G # G # 0	.7168, 192°.9 \$	
" "8728, 16° Zincke. J. 22, 8 Cahours and Dem cay. C. R. 89, 8 Gartenmeister. 1	Ethyl caprylate	C ₂ H ₅ . C ₈ H ₁₅ O ₂	.8788, 15°	
" "878, 17° Cahours and Dem cay. C. R. 89, 8			.8728, 160	
" " Gartenmeister. 1	" "		.878, 17°	Cahours and Dema cay. C. R. 89, 88
" " GORD 2050 8 Q 788	" "	"	.8842, 00)	Gartenmeister. Be
	11 11	"	.6980, 205°.8 }	9, 766.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Propyl caprylate	C ₈ H ₇ . C ₈ ·H ₁₅ O ₃	.8805, 0° } .6867, 224°.7 }	Gartenmeister. Bei. 9, 766.
Butyl caprylate	C ₄ H ₉ . C ₈ H ₁₅ O ₂	.8797, 0° } .6745, 240°.5 }	66 66
Normal heptyl caprylate	C. H C. H O.	.8754, 0° } .6405, 289°.8 }	" "
Normal octyl caprylate	C. H., C. H., O.	.8625, 16°	Zincke. J. 22, 871.
11 11 11 <u></u>	""	.8755, 0° }	Gartenmeister. Bei. 9, 766.
" " " " Methyl pelargonate	C H ₃ . C ₉ H ₁₇ O ₂	.8765, 17°.5	Zinckeand Franchi- mont. A.C.P. 164, 888.
Ethyl pelargonate	C, H, C, H, O,	.86	Cahours. J. 8, 401.
	"	.8725, 15°.5	Delffs. J. 7, 26.
		.8655, 17°.5	Zincke and Franchi- mont. A.C.P. 164, 838.
" "		.8ყ807 ე	
" "		.86281	With acid from six
" "	"	.86503	sources. Berg-
" "		.86402	mann. Arch.
" "		.86376	Pharm. 22, 831.
" "		.86209	
" "		.87033, 15°	Perkin. J. P. C.
16 11		.86407, 25°	(2), 32, 523.
Ethyl isononylate		.86406, 17°	Kullhem. A. C. P. 178, 319.
Ethyl rutylate	C, H, C, H, O,	.862	Rowney. J. 4, 443.
Ethyl laurate	C. H. C. H. O.	.86, 20°	Görgey. J. 1, 561.
		1.0011,10	Delffs. J. 7, 26.
Ethyl myristate	C ₂ H ₅ . C ₁₄ H ₂₇ O ₂	.864	

6th. Aldehydes of the Acetic Series.

NAME.			Fo	RMULA.	Sp. Gr	AVITY.	AUTHORITY.			
Acetic	aldehyde.	B. 20°.8_	C, H, O)	.7900,	18°	Liebig.	A. (D. P.	14,
"	44		14		.79442.	5°.1)				
**	66		"		.79388		Kopp.	P.	A	72
"	"		"		.80092		235.			٠-,
"	"		"				Pierre. 218.	C.	R.	27,
46	46		"		.796, 1	5°	Guckell 848.	erge	r.	J. 1,
"	44		14		.8217.	5°—10°	١ ٠٠٠٠			
"	"		۱ (۱				Regna	13 l£	P	A
"	**		"				62,			**
44	66		"				Ramsay		C	S.
					•••••		85. 46			٠.
"	"		"		.807. 0	·				
16	**				7982.	10°	Landolt			
"	"							Bei	. 4,	782.

1	Name.		F	ORMULA.	Sp. Gravity.	AUTHORITY.
Acetic ald	ehyde		C, H,	0	.79509, 10°)	
66	"		_ "		.79188, 18° }	Perkin. J. P. C
**	"		"		.78761, 16°)	(2), 82, 528.
46	"		"		.81812, —5°)	1
44	"		"		.80561, 0°	1
"	"		"		.80058, 4° }	Perkin. J. C. S. 51
"	E¢.		"		.79520, 8°	808.
	"		"		.78826, 18°	l
Paraldehyde. B. 124°				0)3	.998, 15°	Kekulé and Zincke Z. C. 18, 560.
"			"		.9948 } 20° {	Two lots. Brühl
и			"		.9971)	A. C. P. 208, 1.
"			"		.8787 } 124°.8	Schiff. G. U. I. 18
11			4.6		1.0100)	177.
"			"		.9909, 19°	Gladstone. Bei. 9 249.
"			44		.9982	Louguinine. Ber. 19, ref. 2.
"			"		.99925, 150	Perkin. J. P. C.
46			"	•	.99008, 25°	(2), 82, 528.
Isomerofa	ldehyd	le. B. 110°	(C, H,	0) <u>a</u>	1.038, 0°	Bauer. J. 13, 436
Propionic	aldehy	de. B. 49°.5.	C, H,	0	.790, 15°	Guckelberger. J. 1 848.
**	**		"		.8284, 0°	
11	**		"		.804, 17°	Rossi. A. C. P. 159, 79.
44	66		66		.832, 00)	100, 10.
44	44		"		.8192, 90.7 }	Pierre and Puchot
46	44		"		.7898, 82°.6	Ann. (4), 22, 298
44	"		"		.8074, 21°	Linnemann. A.C.P.
66	44		44		.8066, 200	161, 28. Brühl. Ber. 18, 1527.
**	**		"		.80648, 15°)	Perkin. J. P. C.
"	44		**		.79664, 25°	(2), 82, 528.
Butyric al	dehyde	в. В. 75° ₋	C4 H8	0	.821, 220	Chancel. C. R. 19, 1440.
"	**		"		.8841, 00	Michaelson. J. 17, 886.
"	"		"		.8170, 20°	Brühl. A. C. P. 208, 1.
"	"		"		.80, 15°	Guckelberger. J. 1.
Isobutyricaldehyde. B.68°		66		.8226, 0°)		
" "		44		.7919, 270.75	Pierre and Puchot.	
14	**		46		.7638, 500.4	Z. C. 18, 255.
"	"		44		.7950, 20°	Urech. Ber. 12, 1744.
"	"		"		.808, 20°	Linnemann. Ann. (4), 27, 268.
**	LE.		**		.7988, 200	Brahl. A.C.P. 208,1.
**	**		"		.8057, 0° }	•
"	"		"		.7898, 200	Fossek. M. C. 4, 662.
**	46		**		.79722, 150	Perkin. J. P. C.
"	"		**		.78787, 26°	(2), 82, 528.
Polymer of isobutyric al-			(C ₄ H ₈	O),	.969, 24°	Urech: Ber. 12, 1744.
dehyde. Isovaleric aldehyde. B. 92°.5.			C ₅ H ₁₀	0	.818	Trautwein.

## ## ## ## ## ## ## ## ## ## ## ## ##	N	AME.		For	BMULA.	Sp. Gravity.	AUTHORITY.
" " " 8209, 20°	Isovaleric al	dehyd	B	C ₅ H ₁₀ C)	.820, 22°	Chancel. J. P. C. 36,
" " "	44	"		"		.8009, 20°	Personne. J. 7, 654.
" " " " " " " " " " " " " " " " " " "	**	"		"		.8224, 0°)	Kopp. A. C. P. 94,
" " " " " " " " " " " " " " " " " " "	16			"		.8057, 17°.4	257.
" " " " " " " " " " " " " " " " " " "	"					.8209, 0°)	
" " " " " " " " " " " " " " " " " " "						.778, 48°.4 }	Pierre and Puchot.
" " "							Ann. (4), 22, 340
" " "	"	u		"		.768, 12°.5	A. Schröder. Z. C 14, 510.
" " "	"	"				.7984, 200	Brühl. Bei. 4, 782
" " " " " " " " " " " " " " " " " " "	"	"		"		.8061, 25°	Gladstone. Bei. 9, 249.
" " " " " " " " " " " " " " " " " " "	"	"		"		.7998, 20°	Landolt. P. A. 122, 556.
Polymer of valeral. B. 215° (C ₆ H ₁₀ O) _a	"	**		44		.80405, 15°)	Perkin. J. P. C.
Isomer of capraidehyde	66	"				.79607, 25°	(2), 82, 528.
Isomer of capraidehyde	Polymer of v	aleral.	B. 215°	(C, H,	0),	.90	Wanklyn. J. 22, 530
Oenanthic aldehyde, or cenanthol. B. 154°. C, H ₁₄ O .8271, 7° Bussy. J. P. 92. """"""""""""""""""""""""""""""""""""				C. H. C		.842, 15°	Fittig. J. 18, 319.
" " "	Oenanthic :	aldehy	de, or	C, H ₁₄ C		.8271, 7°	
" " "				"		.827, 17°	Williamson. J. 1
" "	"	"		"		.828, 16°	Cross. J. C. S. 82
" "	££	и		"		.8495, 20°	Brühl. A. C. P.
" " "	4.6	"		**		.8281, 15°)	·
" " 82264, 15°							Perkin, Jr. Ber. 15
"							
Isomer of oenanthol. B. 161° — 164° . Caprylic aldehyde. B. 178° " "							Perkin. J. P. C.
B. 161° — 164° . Caprylic aldehyde. B. 178° "							
Euodyl aldehyde. B. 218. C ₁₁ H ₂₂ O						·	Fittig. J. 18, 819.
Euodyl aldebyde. B. 218. C ₁₁ H ₂₂ O	Caprylic ald	ehyde. ''	B.178°	C ₈ H ₁₆ C		.818, 19° .820	Bouis. J. 8, 524. Limpricht. A. C. P
Derivative of the forego- C, H, O	Enodel alda	hvda	R 918	CHO	·	8497 150	
Derivative of the forego- C, H, O				~ ## ·	<u> </u>	8274 800	
Derivative of the forego- C, H, O				14 14 28		8258 850	
ing compound. " - " " 8665, 80° Perkin Jr. J							10, 11.
	ing compo	und.	"	- 91 40 V		.8665, 80° }	Perkin, Jr. J. C. S.
" " "	5 po	"	"	44			

7th. Ketones of the Paraffin Series.

	-Name		Form	ULA.	Sp. Gravity.	AUTHORITY.
	l keton B. 56°.5	e, or ace-	C H ₈ . C O.	С Н ₈	.7921, 18°	Liebig. Gm. H.
11	44	."	"		.8144, 00 }	Kopp. P. A. 72
4.6	"	"	"		.79945, 180.9	289.
"	"	"	"		.790, 15°	Linnemann. A. C P. 148, 349.
**	**	"	"		.8008, 15°	Mendelejeff. J. 18,7
16	"	"			.7938, 18° }	Linnemann. A. C
66	"	"			.7975, 15° }	P. 161, 18.
"	".	"	"		.7998, 15°	Grodzki and Krä mer. Z. A. O
46	46	46	"		91959 NO	14, 103.
	"			The state of the s	.81858, 00	Thorpe. J. C. S
"	"		"		.75369, 56°.58	} 87, 871. Brith Bor 19 1597
"	46		"		.7920, 200	Bruhl. Ber. 13, 1527
"	"		;;		.8125, 0° }	Zander. A. C. P
"	"				.7489, 56°.8	214, 181.
					.7506, 56°	Schiff. G. C. I. 18
**	"	"	"		.79652, 15° }	Perkin. J. P. C
	"	"			.78669, 25° §	(2), 82, 528.
		etone, or e. B. 78°.	CH ₃ . CO.	C ₂ H ₅	.838, 19°	Fittig. J. 12, 841.
•			"		.8125, 18°	Frankland and Dup pa. J. 18, 309.
66	"	14	44		.824, 00	Popoff. J. 20, 899
44	"	"	"		.8063, 15°.8	Grimm. Z. C. 14 174.
"	"	"	46		.8045, 19°.8	Schramm. Ber. 16 1581.
Diethyl pione.	ketone, B. 104°		C ₂ H ₅ . C O.	C ₂ H ₅	.811, 11°.5	Genther. J. 20, 455
* "	**	"	44		.8145, 0° }	Chapman and Smith
46	"	"	44		.8015, 15° }	J. 20, 453.
. "	64	"	"		.813, 20°	Smith. B. S. C. 18 321.
44	"	"	"		.829, 00)	(Wagnerand Saytz
u	44	"	"		.811, 190 }	eff. A. C. P 179, 823.
"	"	"	44		.8835, 0°	Chancel. C. R. 99 1055.
Methyl 1	propyl k	etone. B. 103°.	CH ₃ . CO.	C ₃ H ₇	.8078, 18°.5	Grimm. Z. C. 14 174.
"	"	"	"		.827, 0°	Friedel. J. 11, 298
44	"	44	66		.842, 190	Fittig. J. 12, 341.
44	"	"	"		.8132, 18° }	Frankland and Dup
66	"	"	44		.8040, 220 }	pa. J. 18, 307.
"	"	"	"		.815, 17°.5	Popoff. A. C. P 161, 285.
					000 00	(Wagnerand Saytz
"	16	"	"		.828, 0° }	eff. A. C. P. 179
					· •	823.
66	46	"	"		.8264, 0°	Chancel. C. R. 99

Name	•	FORMULA.		Sp. Gravity.	AUTHORITY.
Methyl propyl l	setone	CH ₈ . CO. C ₈ H ₇ .		.81288) 150	
" "	"	"		.81283 } 100	D. II. T. D. G.
44 44	"			204473	Perkin. J. P. C.
	66	"		.80428 } 25°)	(2), 32, 523.
Methyl isopropy	l ketone.	"		.8099, 18°	Frankland and Dup-
memj. mopropj	B. 95°.	•		,	pa. J. 18, 309.
• 11	B. 60 .	" -		.815, 15°	Münch. A. C. P. 180, 887.
44 44	44	**		.822, 0°)	Wischnegradsky. A.
"	"			804 190	C. P. 190, 841.
16 16	"	"		.804, 19° }	Winogradow. A.C.
11 11	"	• •		.8051, 19° }	P. 191, 125.
				0001, 10 1	
Ketone from am mide. B. 76°-	_81°.	C ₆ H ₁₀ O		.882, 0°	Bouchardat. Ber. 14, 2261.
Ethyl propyl ke	B . 128°.	C ₂ H ₅ . C O. C ₃ H	`		Popoff. A.C.P.161, 285.
	"		ı	.888, 21°.8	Oechsner de Co- ninck. C. R. 82, 98.
Methyl butyl ke	tone.	C H ₃ . C O. C ₄ H ₉ .		.8298, 0° ነ	Wanklynand Erlen-
	" B. 128°-	"		.7846, 50° }	meyer. J. 16, 522.
44 44	"	"		.838, 0°	Friedel. J. 11, 295.
Methyl isobutyl	ketone. B. 114°.			.7846, 50° } .838, 0° .81892, 0°	Frankland and Duppa. J. 20, 895.
Methyl seconda ketone. B. 1	ry butyl	"		.811, 0°	G. Wagner. Ber. 18, ref. 180.
"	"	44		.8181, 14°.5	
Methyl tertiary tone, or pinace 106°.		CH ₈ . CO. C (CE	I ₃) ₃₋	.7999, 16°	Fittig. J. 12, 847.
100				990 00	
		"		701 500	Two preparations.
"	"	"		.791, 500]	Butlerow. A.C.
"	"			.828, 0° }	
				.787, 500)	P. 174, 127. Schiff. Bei. 9, 559.
_ " _ "	" "	"		.7217, 105	Schiff. Bei. 9, 559.
Ketone from he	B. 125°.	C ₆ H ₁₂ O			L. Henry. C. R. 97, 260.
Dipropyl keton		C ₃ H ₇ . C O. C ₃ H ₇		.830	
tyrone. B. 1	440.				12, 146.
" "	44	"		.819, 20°	E. Schmidt. Ber. 5,
u u	"	u ·		.82, 20°	
		l		00040 40	207.
16 16	"	"		.88048, 4°)	
44 44	"			.82165, 15°	Perkin. J. C. S. 49,
	"			.81452, 25°)	823.
Diisopropyl ket	one. B. 125°.			.8254, 17°	881.
Methyl amyl ke B. 1	etone. 55°—156°.	C H ₈ . C O. C ₅ H ₁₁		ł	597.
	и В. 182°.5	ł.		.898, 12°	Geuther. J.P.C. (2), 6, 160.
Methyl isoamyl		"		.828 }	1 -
" "	" B. 144.	44		.829 }	Popoff. J. 18, 814.
16 66	"	. "		.8747, 17°	Grimshaw. A. C. P. 166, 163.
" "	" •	"		.8175, 17°.2	Rohn. A. C. P. 190

ì	NAME.		For	RMULA.	Sp. Gravity.	AUTHORITY.
Isovaleric :	uldehyde		C ₅ H ₁₀ O		.820, 22°	Chancel. J. P. C. 86,
46	41		"		.8009, 20°	Personne. J. 7, 654.
46	44		"		.8224, 00)	Kopp. A. C. P. 94,
4.6	"		"		.8057, 17°.4	257.
46	"		44		.8209, 00)	
**	**		"		.778, 4 3°. 4 }	Pierre and Puchot.
"	**		**		.7485, 71°.9	Ann. (4), 22, 840.
"	"		44		.768, 12°.5	A. Schröder. Z. C. 14, 510.
66	44		"		.7984, 20°	Brühl. Bei. 4, 782.
"	"		"		.8061, 25°	Gladstone. Bei. 9, 249.
44	"		"		.7998, 20°	Landolt. P. A. 122, 556.
**	44		44		.80405, 15°)	Perkin. J. P. C.
44	44		**		.79607. 25°	(2), 82, 528,
Polymer of	valeral.	B. 215°	(C. H.,	0)	.90	Wanklyn. J. 22, 530.
Isomer of c		yde.	C. H12 O		.90 .842, 15°	Fittig. J. 18, 319.
Oenanthic			C. H., O		.8271, 7°	Bussy. J. P. C. 87,
oenantho			1 14		,	92.
44	"		"		.827, 17°	Williamson. J. 1, 565.
"	u		"		.828, 16°	
"	"		"		.8495, 20°	Brühl. A. C. P. 208, 1.
66	44		• 6		.8281, 15°)	200, 1.
	"		"		.8128, 80° }	Perkin, Jr. Ber. 15,
:6	44		"		.8099, 85° }	2802.
**	46		66		.82264, 15°	Perkin. J. P. C.
44	"		66			
Isomer of c	enanthol B. 161°-		"		.81578, 25° } .885, 14°	Fittig. J. 18, 819.
Caprylical	dehvde	B.178°	C. H., O		.818, 190	Bouis. J. 8, 524.
	"		-8 -16		.820	Limpricht. A.C.P. 98, 242.
Euodyl ald	lehyde. F	3. 218	C., H., C)	.8497, 15°	Williams. J. 11, 443.
Isomer of hvde.	myristic	alde-)	.8497, 15° .8274, 80° } .8258, 85° }	Perkin, Jr. J. C. S.
nyae. Derivative					.8744, 15°)	48, 71.
ing comp		orego.	U21 1140	/	.8665, 80° }	Perkin, Jr. J.C.S.
ing comp	,,, ,,	"	"		.8687, 85° }	48, 72.

7th. Ketones of the Paraffin Series.

	-Name	•		FORMULA	۱.	Sp. Gravity.	AUTHORITY.
	l ketone B. 56°.5		ace-	C H ₈ . C O. C	Н ₈	.7921, 18°	Liebig. Gm. H.
44	44		"	"		.8144, 00)	Kopp. P. A. 72
"	44		"	"		.79945, 180.9	289.
"	44		"	44		.790, 15°	Linnemann. A. C. P. 148, 849.
44	44		"	44		.8008, 15°	Mendelejeff. J. 18,7,
46	"		"	**		.7988, 18° }	Linnemann. A. C.
44	44		"	46		.7975, 15° }	P. 161, 18.
"			"	44		.7998, 15°	Grodzki and Krä- mer. Z. A. C. 14, 103.
66	"			44		.81858, 00	Thorpe. J. C. S.
16	**		"	"		.75369, 56°.58	87, 871.
44	66		"	44		.7920. 200	Bruhl. Ber. 13, 1527.
26	46		"	"		.8125, 0° }	Zander. A. C. P.
44	**		"	"		.7489, 56°.8	214, 181,
44	44		"	"		.7506, 56°	Schiff. G. C. I. 18, 177.
44	"		"	"		.79652, 15°)	Perkin. J. P. C.
14	66		"	"		.78669, 25°	(2), 82, 523.
	ethyl k			C H ₃ . C O. C ₃	H ₅	.888, 19°	Fittig. J. 12, 841.
"	11	"		44		.8125, 18°	Frankland and Dup- pa. J. 18, 809.
44	"	"		64		.824, 0°	Popoff. J. 20, 899.
44	"	"		"		.8063, 15°.8	Grimm. Z. C. 14, 174.
44	"	44		"		.8045, 19°.8	
pione.	ketone, B. 104°	•	pro-		H ₅	.811, 11°.5	Genther. J. 20, 455.
- 46	"	**		"		.8145, 0° }	Chapman and Smith.
"	"	"		"		.8015, 15° }	J. 20, 453.
. "	••	••		••		.818, 20°	Smith. B. S. C. 18, 821.
"	"	46		44		.829, 0° }	(Wagnerand Saytz-
"	"	"		"		.811, 19° }	eff. A. C. P. 179, 823.
"	"	"		44		.8885, 0°	Chancel. C. R. 99, 1055.
Methyl 1	propyl k		e. 108°.	CH ₃ . CO. C ₃	H ₇	.8078, 18°.5	Grimm. Z. C. 14, 174.
**	**	"		"		.827, 0°	Friedel. J. 11, 295.
44	**	44		"		.842, 190	Fittig. J. 12, 841.
14	**	"		44		.8132, 180 }	Frankland and Dup-
"	"	"		"		.8040, 22° }	pa. J. 18, 807.
"	"	"		"		.815, 17°.5	Popoff. A. C. P. 161, 285.
"	"	**	i	66		999 00	(Wagner and Saytz-
"	"	"				.828, 0° }	eff. A. C. P. 179, 823.
и	44	66	- 1	"		.8264, 0°	Chancel. C. R. 99,

			 			
	NAME	.	FORMULA.		Sp. Gravity.	Authority.
Methyl p	ropyl l	ketone	C H ₂ . C O. C ₂ H ₇ .		.81288 \ 150 \	
•••	••		-1		.01200) (Perkin. J. P. C.
"	"	"	- " .		.80447 \ 25° \	(2), 82, 523.
"	"	"			.80428)	
Methyl is	юргору	yl ketone B. 95°			.8099, 18°	Frankland and Dup- pa. J. 18, 309.
	"	D			.815, 15°	Münch. A. C. P. 180, 887.
44	"	"	_ " .	[.822, 0° j	Wischnegradsky. A.
"	66	" .	- '' .		.804, 19° } .8128, 0° } .8051, 19° }	C. P. 190, 841.
44	"	" .	_ " .		.8123, 0°	Winogradow. A.C.
"	"	" .			.8051, 19° <i>}</i>	P. 191, 125.
Ketone fr mide.	om am B. 76°-	ylene bro 81°.	C ₅ H ₁₀ O		.882, 0°	Bouchardat. Ber. 14, 2261.
Ethyl pro	opyl ke	tone. B. 128	C ₂ H ₅ . C O. C ₃ H	7	.818, 17°.5	Popoff. A.C.P. 161, 285.
"	**	"	- "	- 1	.883, 21°.8	Oechaner de Co- ninck. C. R. 82, 93.
Methyl b			C H ₈ . C O. C ₄ H ₉ .		.8298, 0° }	Wanklynand Erlen-
"	"	" B. 128	- " .		.7846, 50° }	meyer. J. 16, 522.
"	44	"	_ " .		.883, 0°	Friedel. J. 11, 295.
Methyl is	sobuty	ketone. B. 114°	" .		.81892, 0°	Frankland and Duppa. J. 20, 895.
Methyl ketone.		ary buty	i " .		.811, 0°	G. Wagner. Ber. 18, ref. 180.
11	. 2		- "		.8181, 14°.5	
Methyl tone, o	ertiary r pina	butyl ke colin. E	C H ₈ . CO. C (C H	I ₃) ₃₋	.7999, 16°	Fittig. J. 12, 847.
100 .	"	"	"		.880, 0° }	h
"	44	46 66	"		.791, 500 }	Two preparations.
44	"	44 44			.823, 0°	Butlerow. A.C.
"	66	16 46	"		.787, 50° }	P. 174, 127.
	**	16 16	· ·		.7217, 1050	Schiff. Bei. 9, 559.
Ketone f	rom he	xylene. B. 125	C ₆ H ₁₂ O		.8343, 11°	L. Henry. C. R. 97, 260.
Dipropyl tyrone.	keton B. 1	e, or bu			.830	
""	"	41	46		.819, 20°	
"	"	"	66 -		.82, 20°	Kurtz. A. C. P. 161, 207.
44	"	"	46		.83048, 4°)	
44	**	**	44		.82165, 15° }	Perkin. J. C. S. 49,
"	"	"	"		.81452, 250	823.
Diisopro	pyl ket	one. B. 125			.8254, 170	Münch. A.C.P. 180, 881.
Methyl a			C H ₂ . C O. C ₅ H ₁₁		.813, 20°	
44	""	"	" ?	`	.898, 12°	Geuther. J.P.C. (2),
36 (1)		B. 182°.	5 46		000)	6, 160.
		ketone.	1		.828 }	Popoff. J. 18, 814.
"	"	" B. 14	L- "		.829 }	
	••	•			.8747, 17°	166, 163.
"	44	"	"		.8175, 17°.2	Rohn. A. C. P. 190,
			•		•	•

Name.	FORMULA.	Sp. Gravity.	Authority.
Methylisopropyl acetone .	С H ₅ . СО. С ₅ H ₁₁	.815, 20°	Romburgh. J. C. S. 52, 282.
Methyldiethylcarbyl ketone, or diethyl acetone. B. 138°.	"	.8171, 22°	Frankland and Duppa. J. 18, 806.
Methyl amyl pinacolin. " " B. 182°_	"	.842, 0° }	Wischnegradsky. A. C. P. 178, 103.
Ethyl butyl pinacolin. "B. 126°	C ₃ H ₅ . CO. C(CH ₃) ₃ -	.881, 0° .810, 21° }	., .,
Methyl hexyl ketone. B. 171°_	CH ₂ . CO. C ₄ H ₁₂	.817, 28° .8185, 20°	Städeler. J. 10, 361. Brühl. A. C. P.
u u u	"	.6843 } 172°.8	208, 1. ∫ Schiff. G. C. 1. 18,
" " B. 209°_	"	.6844 } 112 .6 .8480, 15°	Poetsch. A.C.P.218,
		.8851, 0°	84
Methyl butyrone. B. 180°-	C ₈ H ₁₆ O	.827, 16°	Limpricht. J. 11,
Isopropyl isobutyl ketone. B. 160°.	C ₈ H ₇ . C O. C ₄ H ₉	.865, 14°	296. Williams. C. N. 89, 41.
Ethyl amyl pinacolin. " " B. 151°	C ₂ H ₅ . C ₁ O. C ₅ H ₁₁	.845, 0° }	Wischnegradsky, A.
Diisobutyl ketone, or valerone. B. 181°.	C, H, C O. C, H,	.883, 20°	E. Schmidt. Ber. 5, 597.
Methyl octyl ketone. R. 211°.	C H ₃ . C O. C ₈ H ₁₇		Jourdan. Ber. 18,
" " " "	"	.8379, 8°.5	Krafft. Ber.15, 1687.
" " " " " " " " " " " " " " " " " " "	C ₅ H ₁₁ . C O. C ₅ H ₁₁	.822, 20°	E. Schmidt. Ber. 5, 597.
		.828, 20°	296.
Methyl nonyl ketone, or methyl caprinol. B. 224°.	C H ₈ . C O. C ₉ H ₁₉	.8295, 17°.5 .8281, 18°.7	Gorup-Besanez and Grimm. Z. C. 18, 290.
	"	.8268, 20°.5	Giesecke. Z. C. 18, 428.
Dihexyl ketone, or oenan- thone. B. 264°.	C ₆ H ₁₈ . C O. C ₆ H ₁₈	.825, 80°	
" " ?	"	.8870, 15°	Poetsch. A. C. P. 218, 56.
Methyl diheptylcarbyl ketone. B. 302°.		i	Jourdan. Ber. 18,
Laurone. M. 69°	C ₁₁ H ₂₃ . C O. C ₁₁ H ₂₃ -	.8086, 69° } .8024, 70°.7 }	Krafft. Ber. 15, 1711.
Warishan M. 700.0	G H "00 G H	.7888, 90°.9	
Myristone. M. 76°.8	,	/MAD AND A \	
Palmitone, M 82º 8	C., H., C O. C., H.	7922, 90°.9)	
(I	015 H31. 0 0. 015 H31-	.7947, 900.9	" "
Palmitone. M. 82°.8	C ₁₇ H ₈₆ . C O. C ₁₇ H ₈₁ .	.7979, 88°.4 .7982, 95° }	
	'	!	<u>'</u>

8th. Oxides, Alcohols, and Ethers of the Olefines.

Name.	Formula.	Sp. Gravity.	AUTHOBITY.
Ethylene oxide	C. H., O	.8945, 0°	Wurtz. J. 16, 486.
Propylene oxide	C. H. O	.859, 0°	Oser. J. 18, 448.
Butylene oxide. B. 56°.5.	C ₂ H ₄ . O C ₃ H ₆ . O	.8844, 0°	Eltekow. J. C. S. 44, 566.
Isobutylene oxide. B. 51°.5.		· ·	Eltekow. Ber. 16,
Amylene oxide. B. 95°	C, H, O	.824, 00	Bauer. J. 18, 451.
Trimethylethylene oxide. B. 75°.5.	С ₅ Н ₁₀ . О		897.
Methylpropylethyleneoxide. B. 110°.	C ₆ H ₁₅ . O		29, 553.
d. Hexylene oxide. B. 103°—104°.			Lipp. Ber. 18, 3284.
Octylene oxide. B. 145°	C ₈ H ₁₆ . O		18, 411,
Diamylene oxide. B. 185°.	C ₁₀ H ₂₀ . O		Schneider. A. C. P.
Diethylene dioxide. B. 102°.	C4 H8 O2	1.0482, 0°	Wurtz. J. 15, 428.
Ethylene ethylidene dioxide. B. 82°.5.	44	1.0002, 0°	Wurtz. J. 14, 656.
Ozide. D. 02 .0.	,		
Ethylene glycol. B. 197°.	C ₂ H ₄ . (O H) ₂	1.125, 0°	Wurtz. Ann. (3), 55, 410.
"	"	.9444, 195°	Ramsay. J. C. S.
	66	1.11678, 159	85, 468. Perkin. J. P. C.
44 44	"	1.11678, 15° } 1.11208, 25° }	(2), 82, 528.
44	1 46	1.1072.209	Brühl. Bei. 4, 782.
Trimethylene glycol. B. 216°.	C ₃ H ₆ . (O H) ₂	1.058, 19°	Reboul. C. R. 79, 169.
	"	1.0536, 18°	
"	"	1.0625, 0° }	Zander. A. C. P.
" "	64	.9028, 2140	214, 181.
Propylene glycol. B. 188°	"	1.051, 0°	Wurtz. J.10, 464.
" "	"	1.038, 23° } 1.054, 0°	Belohoubek. Ber.
" "	"	1.047, 19°	
" "	66		J. C. S. 42, 877. Zander. A. C. P.
" " " " " " " " " " " " " " " " " " "	G TT "(O TT)	.8899, 188°.5 ∫	214, 181.
Butylene glycol. B.188°.5	Of H ⁸ . (O H) ³	. 1.048, 0	Wurtz. J. 12, 499.
Dimethylethyleneglycol. B. 207°.5.	66	1.0259, 0°	Wurtz. C. R. 97, 478.
That all all all all all all all all all a	1 ,,	1 0100 00	(Grabowsky and
Ethylethylene glycol. "B. 191°.5.	"	1.0189, 0° }	Snytzeff. A. C. P. 179, 333.
Isobutylene glycol. B.177	"	1.0129, 0° }	Nevolé. C. R. 83,
"		1.0008, 20°	67.

		 		
N.	AME. ·	FORMULA.	Sp. Gravity	Authority.
Amylene gl	ycol. B. 177°_	C ₆ H ₁₀ . (O H) ₂	.987, 0°	Wurtz. J. 11, 424.
Ethylmeth y	lethylene } 187°.5.	"	.9945, 0° } .9800, 19° }	Wagner and Sayt- zeff. A. C. P. 179, 809,
Isopropyleth col. B. 20	nylene gly- }	44	.9987, 0° }	Flavitsky. A.C.P. 179, 853.
Methylprop	ylethylene	C ₆ H ₁₃ . (O H) ₃	.9669, 0°	Wurtz. J. 17, 516.
Dimethylbu	tyleneglycol. "B. 220°_	"	.9759, 0° } .9604, 24° }	Sorokin. B. S. C. 81, 72.
61	lene glycol	"	.9638, 0°	Wurtz. J. 17, 518.
d. Hexylene Pinakone. l	glycol 3. 177°	"	.9809, 0° .96, 15°	Lipp. Ber. 18, 8283. Linnemann. J. 18,
"		16	.96718, 15° }	815. Perkin. J. P. C. (2), 82, 523.
Octylene gly	col. B. 285°-240°	C ₈ H ₁₆ . (O H) ₂	.932, 0°	De Clermont. J. 17, 517.
	nakone		.87, 20°	Kurtz. A. C. P. 161, 205.
Diethylene a Triethylene	alcohol alcohol	C ₄ H ₁₀ O ₃ C ₆ H ₁₄ O ₄	1.182, 0°	Wurtz. J. 16, 489.
Methylened or methyle	imethylether,	C H ₂ . (O C H ₃) ₂	.8551	Malaguti. Ann. (2), 70, 894.
or moun,y r		٠	.8604, 20°	Brühl. A. C. P. 203, 1.
66	" "		.854, 20°	
Methylene d		C H ₃ . (O C ₂ H ₅) ₃	i e	Greene. J. Am. C. S. 1, 523.
14	" "	ľ	.8275, 16°.5	101, 599.
**	" "	†	1	Arnhold. A. C. P. 240, 192.
Methylen	ipropyl ether_ e diisopropyl	C H ₂ (O C ₃ H ₇) ₂	.8345, 20° .831, 20°	tt 11
ether. Methyler ether.	e diisobutyl	C H ₂ (O C ₄ H ₉) ₂	.825, 20°	" "
Methylened	isoamyl ether	$\begin{array}{c} C \ H_2 \ (O \ C_5 \ H_{11})_2 \\ C \ H_2 \ (O \ C_8 \ H_{17})_2 \\ C_2 \ H_4 \cdot O \ H \cdot O \ C_2 \ H_5 \end{array}$.835, 200	" "
	lioctyl ether onethyl ether_	C H OH OC H	996 189	Damola Bar 9 746
	ethyl ether	C_2 H_4 . (O C_2 H_5) ₂	.7998, 0°	Demole. Ber. 9, 746. Wurtz. J. 11, 423.
Ethidene dimethyl ether, or dimethyl acetal.		' ' ' ' '	ŀ	Wurtz. J. 9, 597.
"	" "	"	.8674, 10	Alsberg. J. 17, 485.
66 66	" "	,	.8787, 0°] .8590, 14°]	
"			.8508, 220	Dancer. J. 17, 484.
"	" "	"	.8508, 22° } .8497, 28° }	
"	"	"	.8476, 25°]	7
"	"	"	.8554, 15°	Kraemer and Grodz- ki. Ber. 9, 1980.

•	Name	•		F	OBMU	LA.	Sp. Gravit	Y.	Aut	HORITY.
Ethidene or dime			er,	C, H,	(O C	H ₈) ₂	.8655, 22°		Bachma 218, 4	nn. A.C.P.
"	""	•	'		"		.8018, 62°.7.			G. C. I. 13,
"	"		·		"		.85789, 150	3	Perkin.	J. P. C.
Ethidene	methyl	ethyl	oth-	C3H4.((OC,H ₅)	.84764, 25° .8585, 0°		(2), 85 Wurtz.	J. 9, 597.
er, or m	"	и			££		.8433, 22°			nn. A.C.P.
, 44	"	"		:	"		.8655, 22°			nn. A.C.P.
Ethidene acetal.	diethy	l ether	, or	C, H,	(O C ₂	H ₆) ₂	.842, 21°		218, 5 Döberei	
acetai.	"				"		.828, 20°	- 1	Linkin	A (7 D 5 95
44	"	"			"		201 200 4		Dienig.	A.C. P.5, 25.
"	44	"			"		.821, 22°.4 .8814, 20°		Brühl.	. 1, 697. A. C. P.
44	"	"			"		.829, 18°			and Girard. 90, 692.
"	66	66			"	•	7863)		(Schiff	G. C. I. 18,
46	"	"			66		.7863 .7865 1089	•.2	177.	u. o. 1. 10,
44	"	"			"		.826, 14°		Laatsch. 218, 2	
**	"	"			"		.8210, 22°		Bachma	nn. A.C.P.
"	"	**			**		.88187, 150		218, 4 Perkin.	J. P. C.
**	44	**			"		1 .82884. 25°	- }]	(2), 82	2, 528.
Ethidene				C, H,	(O C ⁸	H ₇) ₂	.825, 22°.5		Girard.	Ber.18, 2282.
or propy Ethidene or isobu	diisobu	ıtyl etl	ıer,	C, H4.	(O C ₄	H ₉) ₂	.816, 22°		"	"
Ethidene				С. Н.	(O.C.	Ħ).	.8847, 150		Alshere	J. 17, 485.
diamyl			, 01	0, 24	(% 08		.8847, 15° .8012, 22°		Bachma 218, 4	nn. A.C.P.
Propiden	e dipro	pyl et	her_	C ₃ H ₆ .	(O C ₃	H ₇) ₃	.8495, 0°		Schudel 1288.	J. C. S. 46,
Butidene or isobu			ner,		• -	•	.9957, 120.4.	i	Oeconon	nides. Ber.
Dimethyl				C. H.	. (O C	H.)	.852, 10°	1	Alsberg	J. 17. 486.
Diethyl v	aleral_			C. H.	. (o c	. H.j	.885, 120		"	ii
Diamyl v				C, H	. (O C	H,,),	.849, 70		Alsberg	J. 17, 485.
Ethidene							.852, 10° .835, 12° .849, 7° .853, 12°.5.		Laatsch 218, 1	. A. C. P. 8.
Ethidene	oxyeth	ylate.		C, H.	0 (0 (C, H,),	.891, 14°		11	· "
Ethidene				C, H,	0 (0 (C, H,),	.895, 14°		"	**
Ethidene				C, H,	0 (0 (C, H,),	.895, 14° .879, 11°		"	"
Ethidene				C, H	0 (0 ($ \begin{array}{cccccccccccccccccccccccccccccccccccc$.874, 11°		**	"
								<u> </u>		
Tthulana	dinant			~ =	(C 19	. 0.1	1 199 00	- 1	Wurtz.	J. 12, 485.
Tarily 10116	a inceu			V3 114.	(,,,	8 2/2	1 1581 200		Brühl.	Bei. 4, 782.
44	"				"		1 11078 150	-5-	Perkin.	J. P. C.
44	"				"		1 10188 950	. []		
Ethylene	diprop	ionate		C, H,	(C, H	5 O ₂) ₂	1.128, 0° 1.1561, 20° 1.11076, 15° 1.10183, 25° 1.05440, 15°		(2), 8.	2, 528.
		-		1			1 1.01000, 40	, ,	Wurtz.	J. 12, 486.
Propylen	e diace	tate		C, H	(Č, H	$(\frac{1}{8}, \widetilde{O}_{2})_{2}^{2}$	1.024, 0° 1.109, 0°		Wurtz.	J. 10, 464.

Name.	FORMULA.	Sp. Gravity.	А Т ПО ТР Т
Propylene diacetate	C ₈ H ₆ . (C ₂ H ₈ O ₂) ₂	1.070, 19°	Reboul. C. R. 79, 169.
Propylene divalerate	C ₃ H ₆ . (C ₅ H ₉ O ₂) ₂	.98, 12°	Reboul. J. C. S. 86, 127.
β. Butylene monacetate	C_4H_8 . OH. $(C_2H_8O_2)$	1.055, 0°	Wurtz. C. R. 97, 478.
Hexylene diacetate Pseudobexylene diacetate	C ₅ H ₄ . (C ₂ H ₈ O ₂) ₂ C ₂ H ₄ . (C ₂ H ₈ O ₂) ₂	1.014, 0° 1.009, 0°	Wurtz. J. 17, 516. Wurtz. J. 17, 518.
Ethidene diacetate	C_2 H_4 . $(C_2$ H_8 $O_2)_{2}$	1.060, 120	Schiff. Ber. 9, 806. Franchimont. J.C. S. 44, 452.
tt tt	"	1.078, 15°	Rübencamp. A. C. P. 225, 267.
" "	"	1.07, 10°	Geuther. J. 17, 829.
Ethidene acetate propio- nate. "——	$ \begin{bmatrix} C_2 & H_4, & (C_3 & H_3 & O_2) \\ (C_3 & H_5 & O_2) \end{bmatrix} $	1.046 1.042 } 15°	Two preparations. Rübencamp. A. C. P. 225, 267.
Ethidene dipropionate			Rübencamp. A. C. P. 225, 267.
Ethidene acetate butyrate_	$\left. \begin{array}{cccc} C_2 & H_4 \cdot & (C_2 & H_3 & O_2) \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array} \right\}$	1.016, 15° }	Two preparations. Rübencamp. A. C. P. 225, 267.
Ethidene dibutyrate	C ₂ H ₄ . (C ₄ H ₇ O ₂) ₂	.9855, 15°	Rübencamp. A.C. P. 225, 267.
Ethidene acetate valerate.	$(C_2 H_4. (C_2 H_3 O_2) (C_5 H_9 O_2))$.991, 15°	
Ethidene divalerate Ethidene oxyformate	$C_2 H_4$. $(C_5 H_9 O_2)_{2}$.947, 15° 1.184, 21°	Geuther. A. C. P.
Ethidene oxya etate	С8 Н14 О5	1.071, 16°	226, 228.
Ethidene oxypropionate Ethidene oxybutyrate	C ₁₉ H ₂₉ O ₅	.994, 20°	

9th. Ethers of Carbonic Acid.

	Nam	E.	Form	ULA.	Sp. Gr	AVITY.	Аυтно	BITY.
Methyl	carbon	ate	(C H ₃) ₂ . C	O ₃	1.069, 2	2°	Councler. 1698.	Ber. 13,
**	"		"		1.065, 1	7°	B. Röse. 2418.	Ber. 18,
"	"		"		1.060		Schreiner. 2080.	Ber. 18,
Methyl	ethyl o	earbonate. B. 104°.	C H ₃ . C ₂ H	I ₅ . C O ₃	1.0872 .		"	"
"	**	" B. 115°.	44		1.0016 .			44
Ethyl c	arbona	te	$(C_2 H_5)_2$. C	O ₈	.975, 19	°	Ettling. 19, 17.	A. C. P.
**	**		"		.9998, 0	°)	Kopp. A	. C. P. 95.
"	"		"		.9780, 2		807.	•
"	"		"		.9762, 2	0°	Brühl. 203, 1.	A. C. P.
"	"		"		.9785		Schreiner. 2080.	Ber. 18,

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl propyl carbonate	C ₂ H ₅ . C ₅ H ₇ . C O ₅	.9516, 200	Pawlewski. Ber. 17, 1607.
Propyl carbonate	(C ₈ H ₇) ₂ . C O ₈	.968, 22°	Cahours. C. R. 77, 746.
Butyl carbonate	(C ₄ H ₉) ₃ . C O ₈	.949, 17°)	Rose. Ber. 18, 2418.
11 11	"	.9244, 20°	Lieben and Rossi. A. C. P. 165, 109.
Isobutyl carbonate Isoamyl carbonate	(C ₅ H ₁₁) ₂ . C O ₅	.919, 15° .9144	Röse. Ber. 18, 2418 Medlock. J. 2, 480
11 11	"	.9065, 15°.5 .912, 15°	Bruce. J. 5, 605. Röse. Ber. 18, 2418
Ethyl orthocarbonate Propyl orthocarbonate	(C ₂ H ₇). C O ₄	.911, 8°	
Isobutyl orthocarbonate	(C ₄ H ₉) ₄ , C O ₄	.900, 8°	"

10th. Acids and Ethers of the Oxalic Series.

NAME.	FORMULA.	Sp. Gravity.	Authority.
Oxalic acid	С, Н, О,	2.00, 9°	Husemann. B. D. Z.
" "	C, H, O, 2 H, O	1.507	Richter.
<i>u u</i>		1.622	M. C. S. 2, 401.
	"	1,629	Buignet. J. 14, 15.
"	"	1.68, 9°	Husemann. B. D. Z.
(1 (1			Schröder. Ber. 10, 851.
	1	1	Rüdorff. Ber. 12, 251.
"	"	1.57	W. C. Smith. Am. J. P. 58, 145.
u u		1.658, 18°.5	Wilson. F. W. C.
Succinic acid	C, H, O,	1.55	Richter.
" "	""	1.529, 9°, sub- limed.)
"	"		
"	"	1.567	
Ethyl oxalic acid	"	1.2175, 20°	
Pyrotartaric acid	C. H. O.	1.408	Schröder. Ber. 18,
- ,	"	1.418	1070.
Methylisopropylmalonic acid.	C ₇ H ₁₂ O ₄	.990, 15°	
Sebacic acid	C ₁₀ H ₁₈ O ₄	1.1317, fused _	Carlet. J. 6, 429.
Methyl oxalate	C4 H6 O4	1.1566, 50°	Kopp. A. C. P. 95,
46 66	"	1.1479, 540	
44 44	"	1.0089, 1680.8	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl ethyl oxalate	C ₅ H ₈ O ₄	1.27, 12°	Chancel. J. 8, 470.
		1.15565, 0° .94698, 178°.7	Wiens. Königs- berg Inaug. Diss. 1887.
Ethyl oxalate	C ₆ H ₁₀ O ₄	1.0929, 7°.5	Dumas and Boullay. P. A. 12, 480.
46 66		1.086, 12° 1.1010, 5°—10°	Delffs. J. 7, 26.
11 11	"	1.0958, 10°–15°	Regnault. P. A.62,
" "		. 1.0898, 15°-20° 1.1016, 0° }) 50. Kopp. A. C. P. 94,
"	(1	1.0815, 18°.2	257.
" "		1.0824, 15°	Mendelejeff. J. 18, 7.
" "	"	1.0798, 20°	Brühl. A. C. P. 208, 1.
" "		1.1028	Weger. A. C. P. 221,
" "	"	1.1029 \ 0° \ \ 1.1080 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	61.
"		1.08568, 15°	Perkin. J. P. C.
11 11	"	1.07609, 25°	(2), 82, 528.
Propyl oxalate	C ₈ H ₁₄ O ₄	1.018, 22°	Cahours. Les Mon- des, 82, 280.
	"	1.0884, 00 }	Wiens. Königs- berg Inaug. Diss.
	"	.80601,218°.5	(1887.
Butyl oxalate	C ₁₀ H ₁₈ O ₄	1.002, 14°	Cahours. C. C. 5, 20.
11 11	"	1.0099, 0° }	Wiens. Königs- berg Inaug. Diss.
Ethyl heptyl oxalate		.99542, 00	1887.
Emyl neptyl Oxamo	C ₁₁ H ₂₀ O ₄	.75498, 268°.71	} " "
Amyl oxalate	C ₁₂ H ₂₂ O ₄	.968, 110	Delffs. J. 7, 26.
Propyl heptyl oxalate		.981485, 00)	Wiens. Königs-
ii ii	"	.72669, 284°.4}	berg Inaug. Diss. 1887.
Propyl octyl oxalate	C ₁₈ H ₂₄ O ₄	.97245, 00	} " "
Methyl malonate		.71512, 291°.1_ 1.185, 22°	Osterland. J. C. S.
•	1 2 2	1	(2), 18, 142.
u u	"	1.16028, 15°	Perkin. J. P. C.
		1.15110, 25°	(2), 82, 523. (Wiens. Königs-
" "	"	1.1758, 00 }	berg Inaug. Diss.
		.95686,180°.7\$	(1887.
Ethyl malonate	C ₇ H ₁₂ O ₄	1.068, 18°	Conrad and Bischoff. A. C. P. 204, 127.
11 11	66	1.06104, 15°	Perkin. J. P. C.
		1.05248, 25° }	(2), 82, 528. (Wiens. Königs-
" " ————	"	1.07607, 0° } .86227, 198°.4}	berg Inaug. Diss.
Ethyl propyl malonate.	C ₈ H ₁₄ O ₄	1.04977, 0° }	" "
Propyl malonate	C ₉ H ₁₆ O ₄	1.02705, 00	} " "
Butyl malonate	"	.79966, 228°.8_ 1.0049, 0°	}
((C ₁₁ H ₂₀ O ₄	.800078, 261°.5	} " "
		, 11	•

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
II AM E.	TORRUDA.	GF. GERVIII.	AUTHORITI.
Methyl succinate	C ₆ H ₁₀ O ₄	1.1179, 20°	Fehling. A.C. P. 49, 195.
" "	"	1.1162, 18°	Weger. A. C. P.
u u	44	.91200, 195°.2_ 1.12611, 15°)	221, 61.
44 44	"	1.11718, 25°	Perkin. J. P. C. (2), 82, 528.
Methyl ethyl succinate	C, H ₁₂ O ₄	1.0925, 00	Weger. A. C. P.
Ethyl succinate	C ₈ H ₁₄ O ₄	.86482, 208°.2_ 1.036	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		1.0718, 0° }	58, 291.
	"	1.0475. 250.5	Kopp. A. C. P. 95, 807.
"	"	1.0592)
" "	"	1 1.0000 1	Weger. A. C. P.
tt tt	"	.82726, 215°.4	221, 61.
"	"	1.04645, 15°) 1.03832, 25° }	Perkin. J. P. C. (2), 82, 528.
Tthul manul sussinate	CHO.	1.08866, 0°)	(Wiens. Königs-
Ethyl propyl succinate	Og 11 ₁₆ O ₄	.81476,281°.1}	berg Inaug. Diss.
Propyl succinate	C ₁₀ H ₁₈ O ₄	1.0189, 0°	} " "
Isopropyl succinate	"	.78188, 247°.1 1.009, 0°))
" . "	"	.997, 18°.5 }	Silva. C. R. 69, 416.
Ethyl butyl succinate	" ·	1.02178, 0° }	Wiens. Königs- berg Inaug. Diss.
Propyl butyl succinate	C ₁₁ H ₂₀ O ₄	1.0106, 0°	1887.
		.77587, 258°.7	}
Isobutyl succinate	C ₁₂ H ₂₂ O ₄	.97874, 15° } .96670, 25°	Perkin. J. P. C. (2), 82, 528.
Tthul hontal sussinate	C H O	.98503, 0° }	(Wiens. Konigs-
Ethyl heptyl succinate		.78184,291°.4	berg Inaug. Diss.
Isoamyl succinate	C ₁₄ H ₂₆ O ₄	.9612, 18°	Guareschi and Del Zanna. Ber. 12, 1699.
Heptyl succinate	C ₁₉ H ₃₄ O ₄	.951846, 0° } .68174, 850°.1}	Wiens. Königs- berg Inaug. Diss. 1887.
Ethyl methylmalonate	C ₈ H ₁₄ O ₄	1.021, 220	Conrad and Bischoff.
		1.02132, 15° }	A. C. P. 204, 202. Perkin. J. P. C.
	"	1.01295, 25°	(2), 82, 528.
Methyl dimethyl succinate	"	1.0568, 16°	Barnstein. A. C. P.
Methyl ethylsuccinate		1.051, 84°	242, 126. Polko. A. C. P. 242, 113.
Ethyl pyrotartrate	C ₉ H ₁₆ O ₄	1.025, 21°	Reboul. Ber. 9. 1129.
" "	"	1.01885, 15°	Perkin. J. P. C.
Ethyl ethylmalonate		1.01126, 25° } 1.008, 18°	(2), 32, 523. Conrad and Bischoff.
• • • • • • • • • • • • • • • • • • • •		·	A. C. P. 204, 135.
	"	1.01285, 15°	Perkin. J. P. C.
Ethyl dimethylmalonate	"	1.00441, 25° { .9965, 15°	(2), 82, 528. Thorne. Ber. 14,
Layi amomymatonate -		.0000, 10	1644.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl dimethylmalonate	C. H. O.	1.00153, 15°)	Perkin. J. P. C.
Ethyl adipate	C ₁₀ H ₁₈ O ₄	.99856, 25° } 1.001, 20°.5	(2), 32, 523. Malaguti. A. C. P.
Ethyl methylethylmalo-		.994, 15°	56, 806. Conrad and Bischoff.
nate. Ethyl propylmalonate	"	.99309, 15° }	Ber. 18, 595. Perkin. J. P. C.
" " "	"	.98541, 25°	(2), 82, 528.
Ethyl isopropylmalonate_	"	.997, 20°	Conrad and Bischoff. Ber. 18, 595.
" "	"	.99271, 15°	Perkin J P C
" " " " " " " " " " " " " " " " " " "	"	.98521, 25° }	(2), 82, 523.
Ethyl dimethylsuccinate		.9976, 17°	Levy and Englander. A. C. P. 242, 201.
ee ee	"	1.0134, 17°	Barnstein. A. C. P. 242, 126.
Ethyl ethylsuccinato	"	1.080, 21°	Polko. A. C. P. 242, 113.
Ethyl diethylmalonate		.990, 16°	Conrad and Bischoff. A. C. P. 204, 139.
	"	1.0041,00 }	Shukowski. Ber. 21,
11 41	"	.9901, 150 {	ref. 57.
	"	.99167, 15° .98441, 25°	Perkin. J. P. C. (2), 32, 523.
Ethyl isobutylmalonate	"	.988, 15°	Conrad and Bischoff. Ber. 13, 595.
Ethyl secondary-butyl- malonate.		.988, 15°	
Ethyl methylisopropyl- malonate.		.990, 15°	ref. 469.
Methyl subcrate	C ₁₀ H ₁₈ O ₄	1.014, 18°	Laurent. Ann. (2), 66, 162.
Ethyl suberate		1.008, 18°	Leurent. Ann. (2), 166, 160.
" "			Hell. B.S.C. 19,865.
u u	"	.98519, 150	Perkin. J. P. C.
Ethyl tetramethylsucci-	"	.97826, 25° { 1.012, 0° }	(2), 82, 523. Hell and Wittekind.
nate.	"	1.0015, 18°.5	Ber. 7, 819.
Methyl sebate	"	.985, 60°, 1	Neison. J. C. S. (8), 1, 816.
Ethyl sebate		.965, 16°	Neison. J. C. S. (8), 1, 818.
11 11	"	.96824, 15° }	Perkin. J. P. C. (2), 82, 528.
Butyl sebate	C ₁₈ H ₃₄ O ₄	.9417, 0° }	Gehring. C. R. 104, 1289.
Amyl sebate	C ₂₀ H ₃₈ O ₄	.951, 18°	Neison. C. N. 82, 298.
Ethyl dioctylmalonate	C ₂₃ H ₄₄ O ₄	.896, 18°	Conrad and Bischoff. Ber. 18, 595.
Ethyl acetomalonate	C ₉ H ₁₄ O ₅	1.080, 28°	Ehrlich. B. S. C. 28, 78.
Ethyl acetosuccinate		1.079, 21°	Conrad. B. S. C. 28, 78.
" " <u> </u>	"	1.08809, 15° 1.08049, 25°	Perkin. J. P. C. (2), 82, 528.

. Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl acetoglutarate	C ₁₁ H ₁₈ O ₅	1.0505, 14°.1	Wislicenus and Lim- pach. A.C.P. 192, 130.
Ethyl β methylacetosuccinnte.		1.061, 27°	Hardtmuth. A.C. P. 192, 142.
Ethyl a methylacetogluturate.	C ₁₃ H ₂₀ O ₅	1.048, 20°	Wislicenus and Lim- pach. A. C. P. 192, 133.
Ethyl dimethylacetosuc- cinate.		1.057, 27°	Hardtmuth. A.C. P. 192, 142.
Ethyl β ethylacetosuccinute.	"	1.064, 16°	Thorne. J. C. S. 89, 887.
Ethyl lactosuccinate	C ₁₁ H ₁₈ O ₆	1.119, 0°	Wurtz and Friedel. J. 14, 878.
Ethyl succinosuccinate	C ₁₂ H ₁₆ O ₆	1.4057, 18°	Hermann. J. C. S. 42, 712.
Ethyl ethidenemalonate	C ₉ H ₁₄ O ₄	1.0485, 15°	Komnenos. A.C.P. 218, 158.

11th. Acids and Ethers of the Glycollic Series.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Glycollic acid Lactic acid	C ₂ H ₄ O ₃ C ₃ H ₆ O ₃	1.197, 18° 1.215, 10°	Cloëz. J. 5, 497. Gay Lussac and Pelouze. P. A. 29, 111.
Methyl glycollic acid	C ₆ H ₁₃ O ₃	1.2408, 20° 1.180 1.0211. 0°)	Mendelejeff. J. 13.7.
Methyl glycollate	C ₃ H ₆ O ₃	1.1862	Schreiner. Bei. 8,
Ethyl glycollate	C4 H8 O3	1.1074 1.0888	Fahlberg. J. P. C.
Propyl glycollate	C ₅ H ₁₀ O ₈	į	850.
Methyl methylglycollate		1.0845	11 (1 11
Ethyl methylglycollate Propyl methylglycollate		1.0740	1
Methyl ethylglycollate	C ₅ H ₁₀ O ₅	1.0105	
Ethyl ethylglycollate	C ₆ H ₁₂ O ₈	.978	Schreiber. Z. C. 18, 168.
" "	"	.9960	Schreiner. Bei. 8, 850.
Propyl ethylglycollate	C, H, O,	.9896	

		 	
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl propylglycollate	C ₆ H ₁₂ O ₃	.9845	Schreiner. Bei. 8, 850.
Ethyl propylglycollate	C, H ₁₄ O ₈	.9758	44 44
Propyl propylglycollate Methyl lactate	C ₈ H ₁₆ O ₈	. 9678	"
Ethyl lactate	C ₅ H ₁₀ O ₃	1.1176 1.0542, 0° }	Wurtz and Friedel.
" "	OB 2210 OB	1.042, 18° }	J. 14, 878.
" "	"	1.0540	Schreiner. Bei. 8, 850.
Ethyl methyllactate	C. H., O.	1.0030	" "
Ethyl ethyllactate	C ₇ H ₁₄ O ₈	.9208, 0°	Wurtz. J. 12, 294.
" "		.9540	Schreiner. Bei. 8, 850.
Ethyl oxyisobutyrate	C ₆ H ₁₂ O ₃		pa. P.T. 1866, 809.
" "	"	1.0750	Schreiner. Bei. 8, 850.
Ethyl methyloxybutyrate	C ₇ H ₁₄ O ₃	.9768, 18°	Frankland and Dup- pa. J. 18, 381.
16 66	"	1.0100	Schreiner. Bei. 8, 850.
Ethyl ethyloxybutyrate	C ₈ H ₁₆ O ₈	.980, 19°	
	"	.9540	Schreiner. Bei. 8,
Methyl diethyloxyacetate_	C ₇ H ₁₄ O ₈	.9896, 16°.5	Frankland and Dup- pa. P.T. 1866, 809.
Ethyl diethyloxyacetate	C ₈ H ₁₆ O ₈	.9618, 18°.7	L. Henry. B. S. C. 19, 212.
Amyl diethyloxyacetate	C ₁₁ H ₂₂ O ₃	.98227, 18°	Frankland and Dup- pa. P.T. 1866, 809.
Ethyl amylhydroxalate	C ₉ H ₁₈ O ₈	.9449, 18°	Frankland and Dup- pa. J. 18, 882.
Ethyl ethylamylhydroxa-	C ₁₁ H ₂₂ O ₃	.9899, 13°	Frankland and Dup- pa. P.T. 1866, 809.
Ethyl diamyloxalate	C ₁₄ H ₂₈ O ₃	.9187, 18°	Frankland and Dup- pa. J. 18, 888.
			pa. 0. 10, 606.
Ethyl acetoglycollate	C ₆ H ₁₀ O ₄ C ₇ H ₁₂ O ₄	1.0098, 17°	Heintz. J. 15, 292.
Ethyl acetolactate		1.0458, 17°	Wislicenus. J. 15, 800.
Ethyl propionoglycollate_	~ " · · · · · · · · · · · · · · · · · ·	1.0052, 22°	Senf. Ber. 14, 2416.
Ethyl butyroglycollate	C ₈ H ₁₄ O ₄	1.0288, 220	"
Ethyl isobutyroglycollate Ethyl butyrolactate	С Н О	1.0240, 22°.5 1.024, 0°	Wurtz. J. 12, 295.
" " "	C ₉ H ₁₆ O ₄	1.028, 00	Wurtz. J. 18, 278.
Lactyl ethyl lactate	C ₈ H ₁₄ O ₅	1.184, 0°	Wurtz. J. 18, 278. Wurtz and Friedel. J. 14, 877.
Ethyl diethylglyoxylate	C ₈ H ₁₆ O ₄	.994, 18°	Schreiber. Z. C. 18, 168.
Oxybutyric lactone	C ₄ H ₆ O ₂	1.1441, 0° }	Saytzeff Ber. 14, 2688.
" "	"	1.1802, 20°	Frühling. Ber. 15, 2622.
u u	"	1.1295, 10°	Henry. C. R. 101, 1158.

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Ethylbutyric lactone	C ₆ H ₁₀ O ₂	1.0348, 16°	Chanlaroff. A.C.P. 226, 339.
Heptolactone	C7 H13 O3	.9818, 4°	226, 389. Amthor. Ber. 14,
"	"	.992, 16°	1718. Young. A. C. P. 216, 41.

12th. Acids and Ethers of the Pyruvic Series.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
Pyruvic, pyroracemic, or acetyl-formic acid.	' ' '	,	Völckel. J. 6, 426.
"	"	1.2792	Berzelius.
		1.2408}	Claisen and Shad-
	"	1.2600 }	well. Ber.11, 1567.
		1.2410	Claisen and Shad- well. Ber. 11, 621.
Propionyl-formic acid	C ₄ H ₆ O ₃	1.2000, 17°.5	Claisen and Moritz. Ber. 13, 2122.
β. Acetyl-propionic, or luevulinic acid.	C ₅ H ₈ O ₈	1.185, 15°	Conred. Ber. 11, 2178.
Methyl pyruvate	C4 H6 O3	1.154, 0°	Oppenheim. B.S.C.
			19, 254.
Methyl acetacetate Ethyl acetacetate	C ₅ H ₈ O ₈	1.087, 90	Brandes. J. 19, 306.
Etnyl acetacetate	C ₆ H ₁₀ O ₈	1.0256, 20°	Geuther. J. 18, 303. Brühl. A. C. P.
		1.0200, 20	Brühl. A. C. P. 208, 1.
"	"	1.030, 15°	Elion. Ber. 17, ref. 568.
" "	"	1.0465, 0°]	0001
" "	"	.9880, 55°.8	
" "	"	.9644, 79°.2	Schiff. Ber. 19, 560.
" "	"	.9029, 135°.5	
" "	"	.8458, 180°	
" " ————	"	1.03174, 15°) 1.02353, 25° }	Perkin. J. P. C. (2), 32, 523.
Isobutyl acetacetate	C ₈ H ₁₄ O ₈	.979, 0° }	Emmerling and Oppenheim. Ber.
Amyl acetacetate			(9, 1097. Conrad. A.C. P. 186,
Methyl methylacetacetate Ethyl methylacetacetate	C ₆ H ₁₀ O ₃ C ₇ H ₁₀ O ₃	1.020, 9° .995, 14°	231. Brandes. J. 19, 306.
Methyl laevulinate	C ₆ H ₁₀ O ₃		Grote, Kehrer, and Tollens. A. C. P. 206, 221.
Ethyl laevulinate	C ₇ H ₁₂ O ₃	1.0325, 0° }	" "
Propyl leggylingto	С # О	1.0156, 20° {	
Propyl laevulinate	U ₈ 114 U ₈	.9987, 20° }	"

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl ethylacetacetate Ethyl ethylacetacetate	C ₇ H ₁₂ O ₈ C ₈ H ₁₄ O ₈	1.009, 6° .998, 12° .981, 16°	James. A. C. P. 226,
u u	"	.9884, 16°	
Propyl ethylacetacetate	C ₉ H ₁₆ O ₈	.981, 0°	Duppa. Burton. A. C. J. 8, 885.
Amyl ethylacetacetate	C ₁₁ H ₂₀ O ₃	.987, 26°	Conrad. A.C.P. 186, 282.
Ethyl dimethylacetacetate	C ₈ H ₁₄ O ₃	.9918, 16°	Frankland and Duppa. J. 18, 809.
Ethyl propionyl propionate	66	.9948, 0° }	Hellon and Op- penheim. Ber. 10,701 and 861.
	"	.9870, 15°	Israel. A. C. P. 231, 197.
Ethyl methylethylacetace-	C ₉ H ₁₆ O ₃	.974, 22°	Saur. A. C. P. 188, 275.
Ethyl isopropylacetacetate		98046, 0°	Frankland and Duppa. J. 20, 895.
Ethyl methylpropylacet- acetate.	C ₁₀ H ₁₈ O ₃	1	Jones. A. C. P. 226, 288.
Ethyl isobutylacetacetate_		.951, 17°.5	Rohn. A. C. P. 190, 807.
Ethyl ethylpropionylpro- pionate.		.966, 15°	Israel. A. C. P. 281, 197.
Ethyl dipropylacetacetate	·	l .	Burton. A. C. J. 8, 886.
Ethyl heptylacetacetate	C ₁₃ H ₂₄ O ₃	i	Jourdan. Ber. 18, 484.
Ethyl octylacetacetate	C ₁₄ H ₂₆ O ₃		Guthzeit. A. C. P. 204, 8.
Bthyl diisobuty lacetace-		.947, 10°	Mixter. Ber. 7, 501.
Ethyl diheptylacetacetate	C ₂₀ H ₈₈ O ₃	ł	Jourdan. J. C. S. 88, 314.
Ethyl acetopyruvate	C ₇ H ₁₀ O ₄		Claisen and Stylos. Ber. 20, 2189.
Ethyl diacotylacetate	C ₈ H ₁₃ O ₄	1.044, 15° 1.1, 15°	Elion. Ber. 16, 1869. Elion. Ber. 16, 2762.
		1	James. A. C. P. 226, 202.
Ethyl carbacetacetate		l	Duisberg. Ber. 15, 1387.
Ethyl ethylideneacetace- tate.	C ₈ H ₁₂ O ₃	1.0225, 15°	Claisen and Mat- thews. A. C. P. 218, 178.
Ethyl amylideneacetace-			Matthews. Ber. 16, 1872.
Ethyl ethoxylmethylacet- acetate.	C ₉ H ₁₆ O ₄	1	Isbert. A. C. P. 284, 195.
Ethyl ethoxylethylacetacetate.	C ₁₀ H ₁₈ O ₄	.957, 22°	Isbert. A. C. P. 284, 194.

.

13th. Acids and Ethers of the Acrylic Series.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Methylacrylic acid β. Crotonic, or quartenylic acid.			1 R 449
Pyroterebic acid	C ₆ H ₁₀ O ₂	1.01	Rabourdin. A. C. P.
" " …	"	1.006, 26°	52, 895. Mielck. A.C.P. 180, 52.
Methylethylacrylic acid	"	.9812, 25°	Lieben and Zeisel.
Hydrosorbic acid	"	.969, 19°	M. C. 4, 71. Barringer and Fit-
Amyldecatoic acid Moringic acid	C ₁₀ H ₁₈ O ₂	.9096, 0° .908, 12°.5	tig. Z. C. 18, 425. Borodin. ? Walter. C. R. 22, 1148.
Oleic acid	C ₁₈ H ₃₄ O ₂	.808, 19°	Chevreul.
Methyl acrylate. B. 80°.8.	C, H, O,	.977, 0° }	Kahlbaum. Ber. 18, 2849.
66 66	"		Weger. A.C.P. 221, 61.
Liquid polymer of methyl acrylate. "	(C ₄ H ₄ O ₂) _n	1.140, 0° } 1.125, 18° }	Kahlbaum. Ber. 18, 2849.
Solid polymer of methyl acrylate. ""	"	1.2228, 15°.6	" "
Ethyl acrylate. B. 98°.5	C, H, O,	1.2222, 18°.2 { .9252, 0° }	Caspary and Tollens.
11 11	"	.93928, 0° {	B. S. C. 20, 868. Weger. A. C. P. 221,
Propyl acrylate. B. 122°.9		.91996, 0° {	61.
Methyl crotonate	C ₅ H ₂ O ₅	.7847, 122°.9	Kahlbaum. Ber. 12,
Ethyl crotonate	1		844.
" " <u></u>			Brühl. A.C.P. 285,1.
11 11	"	.92680, 15° .91846, 25° }	Perkin. J. P. C. (2), 82, 528.
Ethyl β crotonate	46	.927, 19°	Geuther. J. P. C. (2), 8, 444.
Ethyl angelate	C ₇ H ₁₂ O ₂	.9847, 0°	Beilstein and Wiegand. Ber. 17, 2261.
Ethyl tiglate	"	.926, 21°	Geuther and Froh-
"	"	.9425, 0°	lich. Z. C. 18, 549. Beilstein and Wiogand. Ber. 17, 2261.
Ethyl ethylcrotonate		I .	Frankland and Dup-
Methyl oleate	C ₁₉ H ₃₆ O ₂	.879, 18°	Laurent. Ann. (2), 65, 294.
Ethyl olevte	C ₃₀ H ₃₆ O ₃	871, 18°	11 11 11

Name.	FORMULA.	Sp. Gravity.	Authority.
Ethyl oleate " " " " Methyl elaidate Ethyl elaidate	C ₂₀ H ₂₈ O ₂	.87589 15° .87525 .87041 25° .86991 .872, 18°	Perkin. J. P. C. (2), 32, 528. Laurent. Ann. (2), 65, 294.

14th. Derivatives of the Acrylic Series.

Name.	Formula.	Sp. Gravity.	Authority.
Acrolein, or acrylaldehyde MetacroleinAcropinacone	(Č, H, O),	1.08, 8°	Brühl. Bei. 4, 780. Geuther. J. 17, 884. Linnemann. J. 18, 817.
Acrolein ethylate	C ₅ H ₁₀ O ₂	.986, 4°	Taubert. J. C. S. 31,
Acrolein diacetate	C7 H10 O4	1.076, 22°	296. Hübner and Geu- ther. J. 18, 807.
Crotonaldehyde	C4 H6 O	1.083, 0°	Roscoe and Schor- lemmer's Treatise.
Diacetate from crotonalde- hyde.	C ₈ H ₁₂ O ₄	1.05, 14°	Lagermark and El- tekoff. Ber. 12, 694.
Tiglic aldehyde, or guajol. β . Angelical actone	C ₅ H ₈ O	.871, 15° 1.1 0 84, 0°	Völckel. J. 7, 611. Wolff. A. C. P. 229, 257.
Methylethylacrolein	C ₆ H ₁₀ O	.8577, 20°	Lieben and Zeisel. M. C. 4, 18.
Amyldecaldehyde	C ₁₀ H ₁₈ O	1.848. 200 1	Borodin. Ber. 5, 480.
" Hexylpentylacrylic alde-	" 	.861, 0° }	Gäss and Hell. Ber. 8, 872.
hyde. " "	"	.8416, 80° }	Perkin, Jr. Ber. 15, 2804.
" "	"	.8504, 15°	Perkin, Jr. J. C. S. 44, 81.
Hexylpentylacrylic alcohol, "	"	.8444, 80° } .8418, 85° }	Perkin, Jr. Ber. 15, 2810.
Hexylpentylacrylic ace-	C ₁₆ H ₃₀ O ₂	.8680, 15° .8597, 80° .8568, 85°}	Perkin, Jr. Ber. 15, 2809.

15th. Acids and Ethers, Malie-Tartaric Group.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Malic acid	C ₄ H ₆ O ₅	1.559, 4°	Schröder. Ber. 12, 1611.
Tartaric acid	C ₄ H ₆ O ₆	1.75	Richter.
" "	"	1.764	Schiff. J. 12, 41.
" "	"		Buignet. J. 14, 15.
"	"	1.754	Schröder. Ber. 10, 851.
" "	"	1.77	W. C. Smith. Am. J. P. 58, 145.
46 66	"	1.7617 }	(Wiedemann and
" Amorphous	"	1.6321}	Lüdeking. P. A. (2), 25, 151.
" "	"	1.7594, 7°	Perkin. J. C. S. 51, 866.
Racemic acid	C, H, O,	1.7782, 7°	" "
Racemic acid	C, H, O, H, O	1.75	Pasteur. J. 2, 809.
			Buignet. J. 14, 15.
" "	"	1.6878, 7°	Buignet. J. 14, 15. Perkin. J. C. S. 51, 866.
Laevotartaric acid	"	1.7496	Pasteur. Ann. (8), 28, 72.
Methyl maleate	C ₆ H ₈ O ₄	1.1529, 14°	Anschütz. Ber. 12, 2283.
££ ££	"	1.16029, 11°.8	<u> </u>
" "	"	1.15582, 16°.6.	.[]
" " …	"	1.15172, 20°	11
11 11		1.15060, 21°	Knops. V. H. V.
" "		1.14562, 26°	. 1887, 17.
			-
			·
Ethyl maleste	C ₈ H ₁ , O ₄	1.06917, 20°	- [
Propyl maleateEthyl fumarate	C ₈ H ₁₈ O ₄	1.02899, 20° 1.106, 11°	Henry. A. C. P. 156,
" "		1.0522, 17°.5	
		1.05199, 20°	
Daniel france (f)		1 00000 140 1	1887, 17.
Propyl fumarate	C ₁₀ H ₁₆ O ₄	1.02732, 14°.8.	
" "	- "	1.02447, 17°.4.	-
		1.02208, 20°	- " "
11 11	- "		-1 C
" "		1.01691, 25°.5. 1.01852, 29°.1.	
		1.00978, 38°	
Methyl tartrate		1.3408, 15°	Anschütz and Pic-
Ethyl tartrate	C ₈ H ₁₄ O ₆	1.1989	tet. Ber. 18, 1177. Landolt. Ber. 9, 910. Anschütz and Picter Ber. 19, 1177
	"	1.2097, 15°	tet. Ber. 13, 1177. Perkin. J. C. S. 51,
"		1.2019, 25°	868.

Name.	Formula.	Sp. Gravity	Authority.
Ethyl racemate Propyl tartrate Isopropyl tartrate	C ₈ H ₃₄ O ₆	1.2098, 15° 1.2019, 25° 1.1892, 17° 1.1800, 20°	Perkin. J. C. S. 51, 363. Anschütz and Pic- tet. Ber. 13, 1177. Pictet. Ber. 15, 2242.

16th. Acids and Ethers, Citric Acid Group.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Citric acid	C ₆ H ₈ O ₇	1.617	Richter.
"	"	1.542	
" "	"	1.558	Buignet. J. 14, 15.
	"	1.557	
Itaconic acid	Ca Ha Oa	1 578	J. P. 58, 145. Schröder. Ber. 18,
	"	1.682	1070.
Citraconic acid	11	1.616 }	46 46
11 . 11	"	1.618 }	
Citraconic anhydride	C ₅ H ₄ O ₈	1.247	Watts' Dictionary.
" "		1.25860, 12°.4)
" " ———		1.24894, 16°.6	
" "		1.24518, 20°	Knops. V. H. V.
11 11		1.24405, 21° 1.28920, 25°.4	1887, 17.
11 11		1.23501, 29°.2	1001, 11.
"		1.28078, 83°	
		1.20010,00	,
Triethyl citrate	C ₁₂ H ₂₀ O ₇	1.142, 21°	Malaguti. A. C. P.
		[21, 267.
_ " "	_ "	1.1869, 200	Conen. Ber. 12, 1653.
Tetrethyl citrate	C ₁₄ H ₂₄ O ₇	1.1022, 20°	· " " "
Tetrethyl citrate Ethyl aconitate	C ₁₂ H ₁₈ O ₆	1.074, 14	Watta' Dictionary.
Ethyl isaconitate	113 118 06	1.1004	Conen. Ber. 12, 1653. Conrad and Guth-
Emyl isaconitate		1.0000, 10	zeit. A. C. P. 222, 255.
Methyl itaconate	C ₇ H ₁₀ O ₄	1.1899, 14°.7	
46 . 46	"	1.13195, 12°	1
46 46	"	1.12410, 18°	
"	"	1.12182, 20°	7 77 77
	"	1.11882, 22°.5	FIXIOUS. V. II. V.
" "	"	1.11421, 270.1	1887, 17.
" "	"	1.10847, 32°.4	J
Polymer of methyl itaco- nate.	i	1.8126, 20°	
Ethyl itaconate	C ₉ H ₁₄ O ₄	1.051, 15°	Anschütz. Ber. 14, 2787.
u u		1.04618, 20°	
Polymer of ethyl itaconate	(C ₉ H ₁₄ O ₄) _n	1.2549, 20°	" "

Name.		FORMULA.		SP. GRAVITY.	AUTHOBITY.	
Methyl (citracon	ate	C, H,	0,	1.1168, 15°	Perkin. Ber. 14,
"	44		16		1.1050, 80°	2541.
č.	"		"		1.1172, 180.8	O. Strecker. Ber. 14, 2785.
44	"		"		1.1164, 15°.5_	
"	"		"		1.11048, 20° _	Knops. V. H. V.
Ethyl ci	tracona	te	C, H,	04	1.1050, 150	1887, 17. Perkin. Ber. 14,
ü	"		"		. 1.038, 80°	2548.
"	**		66			
"	"		66			. Petri. Ber. 14, 2785.
46	"		"		1.048, 16°.5	Gladstone. Bei. 9, 249.
"	"		"	******	1.06241, 20° _	
Methyl :	messeor	nate	C. H.,	0,	1.1254, 150	Perkin. Ber. 14,
"	11		O410		1.1188, 80°	2548.
"	"		"		1.1293, 110.8	O. Strecker. Ber. 14,
ï	46		"		1.1246, 16°	2785. Gladstone. Bei. 9, 249.
66	46	_	46		1.12966, 110.9	1)
"	61		"		1.12462, 16°.4	11
u	"		"		1.12097, 20°	_11
44	"		"		1.12011, 200.8	Knops. V. H. V.
14	66		44		1.11648, 240.8	1887, 17.
11	"		"			1001, 211
16	46		**		1.10702, 88° _	_1 i
Ethyl m	esscons	te	C. H.,	04	1.048, 200	
,-	44		"		1.051, 15°)	
"	"		"		1.089, 80°	
66	"		46		l a a	
"	"		**		1'	Gladstone. Bei. 9,
"	44		"		1.04674, 20° _	249. Knops. V. H. V. 1887, 17.
Methyl crotaconate		nate	C, H,	04	1.14, 15°	Claus. A. C. P. 191, 78.
Ethyl acetocitrate		te	C14 H22	O ₈	1.1459, 15°	Ruhemann. Ber. 20, 802.
Ethyl terebate		C, H,	04	1.111, 16°	Roser. A. C. P. 220, 255.	

17th. Glycerin and its Derivatives.

Name.	Formula.	SP. GRAVITY.	AUTHORITY.
Glycerin, or glycerol	C ₃ H ₅ (O H) ₃	1.27, 10° 1.28, 15°	Chevreul. Pelouze. Ann. (2), 68, 19.
tt tt	44	1,260, 15°.5 1.115, 12°.5	Watts' Dictionary. Sokoloff. A. C. P. 106, 95.
66 66	· 66	1.2686, 15° 1.26949, 6°.7 1.26244, 16°.6_	Mendelejeff. J. 18,7. Mendelejeff. A. C. P. 114, 165.
u u Cryst.	"	1.2609	Godeffroy. C. C. (8), 6, 84. Roos. C. N. 88, 89.
u u	"	1.2688, 0° 1.2590, 20°	Emo. Bei. 6, 668. Brühl. Bei. 4, 782.
u • u		1.2658, 15°	ref. 206. Gerlach. Ber. 17, ref. 522.
" " Hexyl glycerin	" " C ₆ H ₁₁ (O H) ₈	1.26241, 15° 1.25881, 25° 1.0986, 0°	Perkin. J. P. C. (2), 82, 528. Orloff. A. C. P. 288,
Triethyl diglycerin		, i	859. Reboul and Louren- co. J. 14, 675.
Glycerin ether			Gegerfeldt. J. 24, 401.
"	"	1.1458, 0°	87. Silva. J. C. S. 40, 1122.
GlycideEthyl glycide	1	1.165, 0°	
" "		.94, 12°	Henry. B. S. C. 18, 232. Reboul. J. 18, 468.
Amyl glycide Aceto-glyceral	C ₅ H ₁₆ O ₅	1.081, 0°	Harnitzky and Menschutkin. J. 18, 506.
Valero-glyceral Trimethylin Diethylin	C ₈ H ₁₆ O ₃ C ₆ H ₁₄ O ₃ C ₇ H ₁₆ O ₈	1.027, 0° .9488, 0° .92	Alsberg. J. 17, 495. Berthelot. J. 7, 450.
Triethylin Triglycerin tetrethylin	C ₁₇ H ₂₆ O ₃	.8955, 15° 1.022, 14°	Alsberg. J. 17, 495.
Ethylamylin	C ₁₀ H ₂₂ O ₃	.92 .98, 20° .907, 9°	Reboul. J. 18, 465. Reboul. J. 18, 464. Reboul. J. 18, 465.
Monoallylin	C ₁ H ₁₈ O ₅ C ₁ H ₂₈ O ₅ C ₄ H ₁₂ O ₅ C ₅ H ₈ O ₅	1.1160, 0° } 1.1018, 25° } 1.304, 15°	Tollens. A. C. P. 156, 149. Van Romburgh.
Monacetin		1.20	Ber. 14, 2827. Berthelot. J. 6, 455.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Diacetin	C ₇ H ₁₂ O ₅	1.184	Berthelot. J. 6, 455.
Trincetin	C ₉ H ₁₄ O ₆	1.174	Laufer. J. 1876, 243 Berthelot. J. 7, 449.
Epiacetin	C ₅ H ₈ O ₈	1.129, 20°	Breslauer. J. P. C.
- F	-5 6 - 8	,	(2), 20, 188.
Polymer of epiacetin	(C ₅ _H ₈ O ₈) _n	1.204, 20°	` û ' u
Monobutyrin	C, H ₁ , O,	1.088	Berthelot. J. 6, 455.
Dibutyrin	C ₁₁ H ₂₀ O ₅	1.081	
Tributyrin	C ₁₅ H ₂₆ O ₆	1.056	Berthelot. J. 7, 449.
Monovalerin	C. H. O.	1.100	Berthelot. J. 6, 454.
Divalerin	C ₁₈ H ₂₄ O ₅	1.059	
Cocinin	C ₄₂ H ₁₀ O ₆	.92, 8°, s	Brandes.
Tristearin	C ₅₇ H ₁₁₀ O ₆	.987, 10°	Kopp. A. C. P. 98, 194.
44	"	.9872)	1
"	"	.9877 } 15°	
16	"		
66		.9600, 51°.5 } 1.0101, 15°	
11	"	1.0150	Three modifica-
"	"		tions. Duffy. J.
"	"	1.009, 51°.5	5, 510.
"	"	.9981, 65°.5	
" Liquid	"	.9746, 68°.2 J	
" Liquid	C ₂₁ H ₄₀ O ₄	.9245, 65°.5 .947	Portholot T C 454
Diolein	C. H. O.	.921, 21°	Berthelot. J. 6, 454.
Ethyl glycerate	C ₅₀ H ₁₂ O ₅	1.198, 6°	Henry. Ber. 4, 701.
Benzoiein	U ₁₀ H ₁₂ O ₄	1.228	Berthelot, J. 6, 455.
Glycerin salicylate	C ₁₀ H ₁₂ O ₅	1.8655	Göttig. Ber. 10, 1818.
Glycerin cinnamate		1.2704 }	Kahlbaum. Ber. 16,
** **		1.2708 }	1491.

18th. The Allyl Group.

	N.	AME.	For	MULA.	Sp. GRAVITY.	AUTHORITY.
Allyl	alcoho	01	C ₈ H ₅ . O	н	.8581, 0° .8478, 27° .8709, 0° .81832, 62° .7846, 97° .8569, 15°.5	Toliens and Henninger. A.C.P. 156, 184. Additional values aregiven. Tollens. A.C.P. 158, 104. Dittmar and Steuart.
66 66 66	66 66 66		46 66 66		.86990, 0° .77998, 96°.6 .8724, 0° .7830, 96°.5 .7809, 94°.4	P. R. S. G. 10, 64. Thorpe. J. C. S. 87, 871. Zander. A. C. P. 214, 181. Schiff. G. C. I. 18, 177.

Name,	FORMULA.	Sp. Gravity.	Avanonyay
NARS.	FORMULA.	SP. GRAVITI.	AUTHORITY.
Allyl alcohol	C ₃ H ₅ . O H	.8540, 200	Brühl. A.C.P. 200, 189.
u u	"	.8568, 28°	Gladstone. Bei. 9, 249.
u u	16	.85778, 15° .85067, 25°	Perkin. J. P. C. (2), 82, 528.
Ethylvinyl alcohol	C4 H; O H	.884, 0° }	Nevolé. J. C. S. 82, 868.
" "	"	.827, 0°}	Lieben. J. C. S. 82, 868.
Ethylvinylcarbinol	C ₅ H ₁₀ O	.856, 0°	E. Wagner. B.S.C. 42, 880.
Methyl isocrotyl alcohol	C ₆ H ₁₉ O	.8604 .8625 } 0°	Wurtz. J. 17, 515.
11 11 11 7	66	.842, 16°.2 .891, 10°	Crow. C. N. 86, 264.
• -		·	Destrem. Ann. (5), 27, 50. Saytzeff. A. C. P.
Allyldimethylcarbinol	"	.8488, 0° }	185. 151.
Diallyl monohydrate Allyldiethylcarbinol		.8867, 0° }	Wurtz. J. 17, 515. (Schirokoff and
Allyldiethylcarbinol		.8711, 20° }	Saytzeff. A. C. P. 196, 114.
Allylmethylpropylcar bi- nol. "	"	.8486, 0° } .8845, 20° }	Semljanizin. Ber. 12, 2875.
Isopropylallyldimethyl carbinol.		.829, 17°.8	Dieff. J. P. C. (2), 27, 869.
Allyldipropylcarbinol	C ₁₀ H ₂₀ O	.8602, 0° } .8427, 24° }	P. and A. Saytzeff. Ber. 11, 1989.
Allyldiisopropylearbinol _	"	.8671, 0°	Lebedinsky. J. P. C. (2), 28, 28.
Propargyl alcohol		.9628, 21°	Henry. B. S. C. 18, 286.
Diallylearbinol	C, H, O	.9715, 20°)	Brühl. Bei. 4, 780.
11	"	.8644, 12° }	M. Saytzeff. A. C. P. 185, 129.
Diallylmethylcarbinol	C ₈ H ₁₄ O	.8478, 82°) .8638, 0° } .8528, 13° }	Sorokin. A. C. P. 185, 169.
Diallylethylcarbinol	C ₉ H ₁₆ O	1 .8776, 0° } .	Smirensky. Ber. 14, 2688.
Diallylpropylcarbinol		.8687, 17° } .8707, 0° } .8564, 20° }	P. and A. Saytzeff. Ber. 11, 1259.
Dially lisopropy learbinol _	"	.8647, 0° } .8512, 20° }	Rjabinin and Saytz- eff. Ber. 12, 689.
Vinyl ethyl oxide	C ₂ H ₃ . C ₂ H ₅ . O	.7625, 17°.5	Wislicenus. A.C.P. 192, 109.
Methyl allyl oxide		l .	Henry. B. S. C. 18, 282.
Ethyl allyl oxideAllyl oxide Methyl propargyl oxide	C ₂ H ₅ , C ₃ H ₅ , O	.7651, 20°	Brühl. Bei. 4, 780. Zander. A.C.P. 214,
Methyl proparoval oxide	C H., C. H. O	.7217, 94°.8 }	181. Henry. B. S. C. 18,
Ethyl propargyl oxide			282. Bruhl. Bei. 4, 780.
broburght owing	√2 115. √8 118. V	20	. D. u.i. Dei. 2, 100.

		 	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Amyl propargyl oxide	C, H, C, H, O	.84, 12°	Honry. B. S. C. 18,
Diallylcarbyl methyl oxide. " "	C7 H11. C H2. O	.8258, 0° }	252. Rjabinin. Ber. 12, 2874.
Diallylcarbyl ethyl oxide_	C, H11. C, H5. 6	.8028, 20° }	16 66
Isopropylallyldimethyl- carbyl methyl oxide.	C, H ₁₇ . C H ₃ . O	.8027, 4°	Kononowitsch. Ber. 18, ref. 105.
Allyl formate	C ₄ H ₆ O ₂	.9822, 17°.5	Tollens, Weber, and Kempf. J. 21, 450.
Allyl acetate	, , ,	.8220, 108°	Schiff. G. C. I. 18, 177.
tt tt	"	.9276, 20° .9258, 24°.5	Brühl. Bei. 4, 780. Gladstone. Bei. 9, 249.
Ethylvinyl acetate	C ₆ H ₁₀ O ₂	.896, 0°	Nevolé. J. C. S. 82, 868.
" " …	"	.892, 0°	Lieben. J. C. S. 82, 868.
Methylisocrotyl acetate Allyldimethylcarbyl ace-	C ₈ H ₁₄ O ₂	.912 }	Wurtz. J. 17, 514. M. and A. Savtzeff.
tate. "Allyldipropylcarbyl ace-	C12 H 23 O3	.8882, 18°.5 .8908, 0° {	A. C. P. 185, 151. Saytzeff. Ber. 11,
tate. "" Propargyl acetate	C ₅ H ₈ O ₃	.8783, 21° } 1.0081, 12°	1989. Henry. J. C. S. (2),
" Diallylcarbyl acetate	C ₉ H ₁₄ O ₂	1.0052, 20° .9167, 0° }	11, 1128. Brühl. Bei. 4, 780. M.Saytzeff. A.C.P.
Diallylmethylcarbyl ace-	"	.8997, 17°.5 .8997, 0°	185, 129. Sorokin. A. C. P.
tate. " " Allylacetic acid	C ₁₀ H ₁₆ O ₂	.8788, 21° } .98656, 12° }	185, 169.
66 66	"	.98416, 15° .97670, 25°	Perkin. J. C. S. 49, 205.
Ethyl allylacetate Allyloctylic acid	C, H, O,	.9222, 0° .91020, 25°)	Wurtz. J. 21, 446. Perkin. J. C. S. 49.
Ethyl allyloctylate	C ₁₃ H ₂₄ O ₂	.89980, 45° .88271, 15°	205.
Diallylacetic acid	C ₈ H ₁₃ O ₃	.87658, 25° } .9495, 25° .9578, 18°	Wolff. Ber. 10, 1957. Reboul. J. C. S. 82,
66 66		.95756, 12°	594.
11 11	"	.95547, 15° .94918, 25°	Perkin. J. C. S. 49, 205.
Ethyl methoxyldiallylace- tate.		.96066, 20°	Barataeff. J. P. C. (2), 35, 2.
Allyl acetacetate	C ₇ H ₁₀ O ₈	.99272, 15° .98542, 25°	Perkin. J. P. C. (2), 82, 528.
	C ₉ H ₁₄ O ₃	.9988, 18°.5	Gladstone. Bei. 9, 249.
	66	.982, 20°	Zeidler. B. S. C. 23, 78.
Ethyl diallylacetacetate Ethyl diallyloxyacetate	C ₁₈ H ₁₈ O ₈	.948, 25° .9878, 0° }	Wolff. Ber. 10, 1956. Saytzeff. Ber. 9, 77.
" "	"	.9718, 18° }	Dujumu. 101. 0, 11.

Name.	FORMULA.	SP. GRAVITY.	Authority.
Allyl oxalate	C ₈ H ₁₀ O ₄	1.055, 15°.5	Hofmann and Ca- hours. J. 9, 585.
Ethyl allylmalonate	C ₁₀ H ₁₆ O ₄	1.018, 16°	Conrad and Bischoff. Ber. 18, 595.
· · · · · · · · · · · · · · · · · · ·	"	1.01475, 14°	Gladstone. Bei. 9, 249.
11 11	"	1.01897, 15° 1.00620, 25°	Perkin. J. P. C. (2), 32, 523.
Ethyl diallylmalonate	C ₁₃ H ₂₀ O ₄	.996, 140	Conrad and Bischoff. Ber. 13, 595.
" "		.99828, 20°	Matwejeff. Ber. 21, 181.
" "	"	1.00620, 6°.5	.
" "	"	.99940, 150	Perkin. J. C. S. 49,
		.99252, 25°	205.
Butallylmethylcarbin oxide.	• = -	1.0099, 21°	Kablukow. Ber. 21, ref. 54.
Butallylmethyl pinakone_	C ₁₂ H ₂₃ O ₂	.9682, 0° }	Kablukow. Ber. 21, ref. 55.
Derivative of tetrabrom- diallylcarbin acetate.	C ₁₃ H ₂₀ O ₇	1.18018, 0°	Dieff. J. P. C. (2), 35, 20.

19th. Erythrite, Mannite, and the Carbohydrates.

	Name.		For	MULA.	Sp. Gravity.	AUTHORITY.	
Anhy	d ride o	f erythro	1	C ₄ H ₆ O ₂		1.590	Lamy. J. 5, 676. Schröder. Ber. 12, 1561. Przybytek. Ber. 17, 1091.
Mann	ite or 1	nannitol		C ₆ H ₈ (O	H) ₆	1.521	Prunier. Ann. (5), 15, 22.
66 66		• " "		66 66			Schröder. Ber. 12, 1561.
Sorbit	e	nlcitol 		(C ₆ H ₁₆ C) ₆) ₃ . H ₂ O	3 400 150	Eichler. J. 9, 665. Pelouze. J. 5, 655. Berthelot. J. 8, 675. Prunier. Bei. 2, 68.
Onerc	ita			06 1112 0		1.5845	Prunier. Bei. 2, 68.
Cane	sugar,	or sacchs	Brose_	C ₁₂ H ₂₂ O	11	1.606	Brisson. P. des C. Schübler and Renz.
"	"	۱۱ ۱۱		"			Filhol. Playfair and Joule.
••	••	••				1	M. C. S. 2, 401.
£6 £6	"	46 66		"		1.5578	Brix. J. 7, 618.
46	"	"		"		1.68 1.5951, 15°	Dubrunfaut. Maumené. B. S. C.
"	. "	u		44		1.588, 4°	22, 88.
te	44	"		"		1.589	W. C. Smith. Am. J. P. 58, 148.

			
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Cane sugar, or saccharose " " Fused, vitreous.	C13 H2 O11	1.58046, 17°.5. 1.996, 14°.5	Gerlach. Morin. J. Ph. C. (4),
" " Molten	"	1.6	28, 84. Quincke. P. A. 188, 141.
" " Barley sugar.	"	1.5984 }	Wiedemann and Lüdeking. P. A. (2), 25, 151.
	"	1.5928	Zehnder. P. A. (2), 29, 260.
Milk sugar, or lactose	"	1.584 1.58898, 4°	Filhol. Playfair and Joule. J. C. S. 1, 188.
" " "	"	1.525, 4°	Schröder. Ber. 12, 561.
	"	1.588	W. C. Smith. Am.
Melezitose	C ₁₂ H ₂₃ O ₁₁ . H ₃ O	l .	J. P. 58, 148. Alekhine. J.C.S.50, 684.
Glucose	C ₆ H ₁₂ O ₆ . H ₂ O	1.081	Payen and Persoz.
"	"	1.54 1.57 11°	Bödeker. B. D. Z.
" Fused	"	1.8	Quincke. P. A. 188, 141.
Inosite. Anhydrous	C ₆ H ₁₃ O ₆	1.752	Tanret and Villiers. Ann. (5), 28, 892.
"	C ₆ H ₁₂ O ₈ . 2 H ₂ O	1.1154, 5°	Vohl. J. 11, 489.
"		1.524, 15°	Tanret and Villiers. C. R. 86, 486.
Bergenite	C ₈ H ₁₀ O ₅ . H ₂ O	1.5445	Morelli. Ber. 14, 2694.
Starch	(C ₆ H ₁₀ O ₅) _n	1.505	Payen.
		1.56	Dietrich. Z. A. C. 5, 51.
		•	Kopp. A. C. P. 85, 88.
" Arrowroot	"	1.5045, air dried	ma-Line 77 C
" Potato	"	1.5029, " 1.6880, dried at	Flückiger. Z. C. 10, 445.
		100°.	7 20, 220.
Dextrin	"	1.08848	O'Sullivan. J. 27, 880.
Inulin		1.470	Dragendorff. J. 22, 748.
"		1.462	Dubrunfaut.
"	"	1.8491	Kiliani. A. C. P.
Cellulose	"	1.525	205, 151. Weltzien's "Zusam-
Gum	"	. 1.487, air dried	menstellung.'' } Flückiger. Z. C.
11	"	1.525, dried at	
" Gum-arabic		1.855	
" tragacanth		. 1.884 [Guérin-Varry. P.A.
" Senegal	. "	1.486 [29, 50.
" Bassora		. 1.859]	1,

FORMULA.	Sp. Gravity.	AUTHORITY.
		Ekstrand and Johanson. Ber. 21, 594. Demole. Ber. 12, 1936.
	C ₈ H ₁₀ O ₅ . H ₂ O 2H ₁₄ (C ₂ H ₂ O ₂) ₈ O ₁₁	C ₈ H ₁₀ O ₈ . H ₂ O 1.522, 12° } ₂ H ₁₄ (C ₂ H ₂ O ₃) ₈ O ₁₁ - 1.27, 16°

20th. Miscellaneous Non-Aromatic Compounds.

	г		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Acetopropyl alcohol	C, H, O,	1.00514, 15°)	
û		1.00197, 20° .99896, 25°	Perkin, Jr. J. C. S. 51, 830.
Acetobutyl alcohol		1.0148, 0°	Lipp. Ber. 18, 8281.
" "	"	.99771, 4° }	Perkin, Jr. J. C. S.
Methyl orthoformate	C, H, O,	.98270, 25°) .974, 28°	51, 719. Deutsch. Ber. 12,
Ethyl orthoformate	C. H. O.	.8964	115. Williamson
Propyl orthoformate	C' H 23 Q2	.879, 28°	Deutsch. Ber. 12, 115.
Isobutyl orthoformate Isoamyl orthoformate	C ₁₈ H ₂₈ O ₈ C ₁₆ H ₃₄ O ₈	.861 .864	" "
Diethoxyl ether	C ₈ H ₁₈ O ₃	.8924, 21°	Lieben. J. 20, 546. Oeconomides. Ber.
Derivative of isobutylal- dehyde.	ĺ		Oeconomides. Ber. 14, 2581.
Derivative of valeral	C ₁₀ H ₂₀ O ₂ C ₁₀ H ₁₈ O	.9415, 0° .9027, 17°	" " "Borodin. J. 17, 889.
16 46	C ₂₀ H ₃₈ O ₃	.895 }	Borodin. Ber. 5, 480.
Derivative of oenanthol	C. H. O.	.8881, 150)	70 11 10 45
	" •	.8751, 80° }	Perkin. Ber. 15, 2805.
"Acetyl valeryl"	C ₇ H ₁₂ O ₂	.8804, 15°.5	Olewinsky. J. 14, 468.
Diacetone alcohol	C ₆ H ₁₂ O ₂	.9806, 25°	Heintz. A. C. P. 178, 849.
Methoxylmethyl ethyl acetone.	C7 H14 O2	.855, 20°	James. J. C. S. 49, 50.
Dimethoxyl diethyl ace-	C ₉ H ₁₈ O ₃	.886, 15°	" "
From diethylacetone	C ₂₀ H ₃₄ O ₂	.984, 12°	Geuther. J.P.C. (2), 6, 160.
Ethyl diacetone carbonate	C ₁₀ H ₁₈ O ₃	.9788, 20°	Frankland and Dup- pa. J. 18, 806.
Mesityl oxide	C ₆ H ₁₀ O	.848, 28°	Fittig. J. 12, 844.
		.0020, 18	Gladstone. Bei. 9, 249.
" "	"	.8578, 20°	Brühl. A. C. P. 285, 1.
Homologue of mesityl oxide.	C ₈ H ₁₄ O	.8547, 15°.4	Schramm. Ber. 16, 1581.

	<u> </u>	T	
Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Phorone	C ₉ H ₁₄ O	.982 } 120	Fittig. J. 12, 844.
"		.989 } 12	
(6	44	.9645, 15°	Schwanert. J. 15,464. Schulze. Ber. 15,64.
"	"	.885, 200)	ochube. Der. 10, 04.
"	"	.8798, 27°	D-all AOD
(. "	.8785, 28°	Brühl. A. C. P. 235, 1.
		.8776, 29° J	270, 1.
Aldol	. C ₄ H ₈ O ₂	1.1208, 0°)	W D G C 10
44	(4	1.1094, 16° 1.0819, 49°.6	Wurtz. B. S. C. 18, 486.
Derivative of aldol		1.0941	
" "	"	1.0951 \ 0° \	Wurtz. C. R. 97, 1526.
. "		1.0953)	·
Discetate from the above compound.		1.095, 0°	" "
Derivative of laevulinic ether.	'	1.097, 15°	Conrad and Guth- zeit. Ber. 17, 2286.
Diethyl glycollic ether		1.01, 19°	Geuther. J. 20, 455.
Propidene acetic acid	1	;	Komnenos. A.C.P. 218, 167.
Acetyl trimethylene	. C ₅ H ₈ U	.90471, 15° .90088, 20°	Perkin, Jr. J. C. S.
	"	.89706, 25°	51, 882.
Ethyl acetyltrimethylene-	C. H. O.	1.08486, 4°	,
carboxylate. " _	"	1.08256, 6°.5	Perkin, Jr. J. C. S.
		1.02549, 15°	47, 801.
" "	,,	1.01884, 25° J 1.0425, 25°.2	Gladstone. Ber. 19,
		· ·	2568.
	1	1.05174 1.05152 } 15°	J
	.,	1.05152	Toma manamatiana
	"	1.04810, 20° [1.04390, 25°	Two preparations. Perkin, Jr. J. C.
		1.04708 } 150	S. 51, 826.
" "	. "	1.031001	
"	· _ <u>"</u>	1.08980, 25°	<u> </u>
Ethyl trimethylenedicar- boxylate.	ì	1 ,0708, 7°	Gladstone. J. C. S. 51, 852.
		1.06455, 15°	Perkin. J. C. S. 51,
	66	1.05657, 25° { 1.06468, 15° }	852. Perkin, Jr. J. C. S.
	"		47, 801.
Ethyl trimethylenetricar- boxylate.	C ₁₂ H ₁₈ O ₆	1.127, 15°	Conrad and Guth- zeit. Ber. 17, 1186.
Tetramethylenemonocar-	C ₆ H ₈ O ₂	1.05480, 15°)	,
boxylic acid. "			Perkin. J.C.S. 51,1.
Piles (sinematheles - 3)	-	1.04761, 25°	Oladetana Bai o
Ethyl tetramethylenedi- carboxylate.			Gladstone. Bei. 9, 249.
" " -	- "		Perkin. J.C.S. 51,1.
	"	1.04051, 25°	Tarkin. G.O.D. 01,1.
Ethyl acetyltetramethy- lenecarboxylate.	C, H, O,	1.0668, 18°	Gladstone. Bei. 9, 249.
Methylpentamethylene-	C ₇ H ₁₂ O ₂	1.02054, 15°)	Two lots. Perkin.
monocarboxylic acid.		1.01789, 20°	J. C. S 58, 195
"	. "	1.01488, 25°)	and 199.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Wetherlandschulene)	CHO	1 0058 40	
Methylpentamethylene-	C, H, O,	1.0256, 4°] 1.0208, 10°	
monocarboxylic acid.	"	1.0172, 15°	Two lots. Perkin.
	"	1.0189, 20°	J. C. S. 58, 195
**	"	1.0109, 25°	and 199.
Methylpentamethylene }	C ₈ H ₁₄ O	.9222, 4° }	and 100.
methyl ketone.	-14	.9174, 10°	
	"	.9186, 15° }	Perkin. J. C. S. 58,
"	"	.9100, 20° []	200.
	"	.9070, 25°]	
Methylhexamethylene-	Ca H ₁₄ O ₂	1.0079, 40 5	
monocarboxylic acid.	"	1.0088, 100	
"	"	.99982, 150	Perkin. J. C. S. 58,
"	"	.9966, 20°	209.
	"	.9940, 25° J	
Methyldehydrohexone	U ₀ H ₁₀ O	.92272, 40)	
	"	.91278, 15°	Perkin. J. C. S. 51,
		.90502, 25°	719.
Rthyl methyldehydro-	C ₉ H ₁₄ O ₈	1.06457, 15°	1]
hexonecarboxylate.		1.05840, 25°	
	"	1.06840, 15°	
		1.06470, 20°	m
		1.06187, 25°	Three lots. Perkin.
	"	1.0744, 9°]	J. C. S. 51, 711
" "	"	1.0660, 20°	and 718.
" "	"	1.0626, 25°	
Ethyl methenyltricarbox- ylate.	C ₁₀ H ₁₆ O ₆	1.10, 19°	Conrad. Ber. 12, 1286.
Ethyl ethenyltricarboxy-	C ₁₁ H ₁₈ O ₆	1.089, 17°	Bischoff. A. C. P.
late. Methyl diethyl-β-methylethenyltricarboxylate.	"	1.079, 15°	214, 89. Bischoff. A. C. P. 214, 56.
Ethyl β -methylethenyl-tricarboxylate.	C ₁₂ H ₂₀ O ₆	1.092, 16°	Bischoff. Ber. 18, 2165.
Ethyl α β -dimethylethenyltricarboxylate.	C ₁₃ H ₂₃ O ₆	1.0745, 15°	Bischoff and Rach. A. C. P. 284, 54.
Ethyl butenyltricarboxy- late.	"	1.065, 17°	Polko. A. C. P. 242, 118.
Ethyl isobutenyltricar- boxylate.	•	1.064, 17°	Barnstein. A. C. P. 242, 126.
" " <u>-</u> -	"	,	Levy and Englander. A. C. P. 242,
Ethyl propylethenyltri- carboxylate.	C ₁₄ H ₂₄ O ₈		Waltz. A.C. P. 214,
Ethyl dicarboxylgluta- conate.	C ₁₅ H ₂₂ O ₈	1	zeit. Ber. 15, 2842.
Ethyl isoallylenetetra- carboxylate.	C ₁₅ H ₂₄ O ₈		1 2164.
Ethyl dimethylacetylene-	C ₁₆ H ₂₆ O ₈	P	1 A C 10 994 54
Methylisopropenylcarbi- nol. " Pyruvic acetate	C ₅ H ₁₀ O	.8571, 0° } .8419, 20°.5	Kondakoff. Ber. 18, ref. 660.
Pyruvic acetate	1	I .	1 211
Ethyl pyruvyl ether	C ₅ H ₁₀ O ₂	.92, 18°	Henry. Ber. 14, 2272.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Parasorbic acid	C. H. O.	1.068, 15°	Hofmann. J. C. S.
Derivative of mannite	· · ·		12, 322. Fauconnier. J.C.S.
Methyl mucate	C ₈ H ₁₄ O ₈	1.48 1.50 } 20° {	48, 748. Malaguti. Ann. (2), 68, 86.
Ethyl mucate	C ₁₀ H ₁₈ O ₈	$\left[\begin{array}{c} 1.17 \\ 1.32 \end{array} \right]$ 20°	" "
Valerylene diacetate	C ₉ H ₁₆ O ₄	.968	Guthrie and Kolbe. J. 12, 865.
Conylene diacetate	C ₁₂ H ₂₀ O ₄	.988, 18°.2	Wertheim. J. 16, 438.
Amenyl valerone	C ₁₄ H ₂₆ O	.836, 7°	Geuther, Fröhlich, and Loos. Ber. 18, 1856.
Linoleic acid	C ₁₈ H ₃₂ O ₂	.9206, 14° .940, 15°	Schüler. J. 10, 859. Saalmüller. J. 1, 562.
" "		.9502, 15°	Norton and Richardson. A. C. J. 10, 57.
Distillate from linoleic	C ₂₀ H ₃₆ O ₂	.9108, 15°	" "
acid. Distillate from ricinoleic acid.	"	.912	
Furfurane	C ₄ H ₄ O	.9644, 0° } .9444, 15° }	Henninger. Ann. (6), 7, 209.
Dihydrofurfurane	C ₄ H ₆ O	$\begin{bmatrix} .9668 \\ .9684 \end{bmatrix}$ 0° $\}$	" "
Erythrol. (Crotonylene	C4 H8 O2	.9508, 15°) 1.06165, 0° }	" "
" glycol). Furfurol	C, H, O,	1.04658, 20° } 1.1648, 15°.6	Stenhouse. J. 1, 732.
"	"	1.1686, 18°.5 1.168, 15°.5	Stenhouse. J. 8, 518. Fownes. P. T. 1845, 258.
· "		1.184 } 15°	Völckel. J. 5, 652.
(1	"	1.1006, 27°	Stenhouse. P. M. (8), 18, 124.
ft	"	.9810, 162°	Ramsay. J. C. S. 85, 468.
		1.0025 \ 1.0026 \ bp.	Schiff. G. C. I.
"	"	1.1844, 19°	18, 177. Gladstone. Bei. 9, 249.
"		1.1594, 200	Brühl. A. C. P.
Ethylfurfurcarbinol	. C, H,10 O2	1.066, 0° }	285, 1. Pawlinoff and Wag- ner. Ber. 17, 1967.
Furfurbutylene	C ₈ H ₁₀ O	.9509, 14°.5	Toennies and Staub. Ber. 17, 852.
FucusolEthyl pyromucate	C ₅ H ₄ O ₂	1.150, 18°.5 1.297, 20°	Stenhouse. J. 3, 518. Malaguti. J. P. C. 41, 224.
Triethylpropylphycite	C, H, O,	.976, 0°	Wolff. A. C. P. 150, 56.

Name.	Formula.	Sp. Gravity.	AUTHOBITY.
Acid from petroleum """ Ethyl ether of the above """ acid. From epichlorhydrin and chlorocarbonic ether.	C ₁₃ H ₁₄ O ₂	.982, 0° } .969, 28° } .989, 0° } .919, 27° .919, 27° .9981, 21°.5	Hell and Medinger. Ber. 7, 1218. " Kelly. Ber. 11, 2226.

21st, Phenols.

NAME. Phenol		· F	FORMULA. Sp. GRAVITY. AUT		AUTHOBITY.
		Ca Ha.	O H	1.062, 20°	Runge. P.A.32, 808.
46		""		1.065, 18°	maniene vinn (o)
44		"		1.0627	8, 195. Scrugham. J. C. S. 7, 287.
"				1.0808, 0°, 1. }	Kopp. A. C. P. 95,
"		"		1.0597, 820.9	807.
44		44		1.0554	Duclos. A.C.P. 109, 185.
£1.		"		1.068	Church. J. C. S. 16, 76.
44		**		1.0667, 88°	
44		"			Zotta. A. C. P. 174,
"		66		1.066, cryst	87. Hamberg. Ber. 4, 751.
66	·	"		1.05488, 40°	101.
66		44		1.04668, 50°	1
66		**			
44		"		1.02890, 70°	Adrieenz. Ber. 6.
44		44		1.01950, 80°	448.
44		"		1.01015, 90°	1
46		"		1.00116, 100°	!]
44		"		1.0558, 46°)	ាំ
"		"		1.0468, 560	1
**		"			From four differ-
		"		1.0470, 56°	ent sources. La-
"		46		1.0560, 46°	denburg. Ber. 7,
**		".		1.0467, 56° }	1687.
"		41		1.0559, 46°	1
44		46		1.0476, 56°	J
**		"		.8789, 186°	Ramsay. J. C. S. 85, 468.
					Bedson and Wil-
46		"		1.0591, 40° }	liams. Ber. 14,
"		**		1.0545, 45°	2551.
"		**		1.0722, 20°	Landolt. P. A. 122, 558.
46		"		1.0702, 20°	Brühl. Bei. 4, 782.
"		66		1.05810, 4°	Flink. Bei. 8, 262.
66		"			Gladstone. Bei. 9,
				1.0000, 21	249.

			
Nawr.	· Formula.	Sp. Gravity.	AUTHORITY.
Phenol	C ₆ H ₅ . O H	1.0906, 0°, 1. 1.0887, 15°.5	Pinette. A. C. P.
Diphenol. Pyrocatechin	C ₆ H ₄ (O H) ₂ . 1.2	.9217, 182°.9	243, 82. Schröder. Ber. 12,
" Resorcin	" 1.8	1.848 } 2 } 1.2728, 0° }	561. Calderon. J. R. C. 5
66 66	"	1.2717, 15°	818.
# # ##	"	$\left\{ egin{array}{ll} 1.276 \\ 1.289 \end{array} \right\} m{4^{\circ}}_{} \left\{ $	Schröder. Ber. 12, 561.
44 44	"	1.1795, 100°.2_	Schiff. A. C. P. 228, 247.
" Hydroquinone_	"	1.828 } 4 {	Schröder. Ber. 12, 561.
Triphenol. Pyrogallol	C ₆ H _{8'.} (O H) ₈	1.448	
Orthokresol	С, Н, С Н, О Н	1.468 } =	Gladstone. Bei. 9, 249.
"	"	1.0578, 0°, 1.	220.
اد دد		1.0058, 65°.6 }	Pinette. A. C. P.
Metakresol		.8867, 190°.8) 1.0880, 19°	248, 32. Gladstone. Bei. 9,
		•	249.
tt	66	1.0498, 0° } .8744, 202°.8 }	Pinette. A. C. P.
Parakresol. ?	"	1.088, 28°	248, 82. v. Rad. J. 22, 448.
"	"	1.0522, 0°, 1.)	
:: ·	"	.9962, 65°.6	Pinette. A. C. P.
	C, H, C, H, OH	.8728, 201°.8)	248, 82. Auer. Ber. 17, 669.
Orthopropylphenol	C. H. C. H. OH	[1.015, 0° }	
"		.9870, 100° J	Spics. Ber. 12, 295.
Parapropylphenol	"	1.0091, 0°	"
Orthoisopropylphenol	"	1.01248,00	Fileti. G. C. I. 16,
"	от от от <u>о</u> п	.92765, 100° }	118.
Xylenol. 1.8.4	CaHa. CHa. CHa. OH	1.086, 0° .9700, 81° }	Wurtz. J. 21, 460.
"	. "	1.0862, 0°	Jacobsen. Ber. 11,
· ?	"	1.0288, 28°	24. Wroblevsky. J. 21,
" ?	"	.9709, 81°	459. Wurtz. J. 21, 460.
" 1.8. ?	"	1.0866, 0°]	17 21 32.
"	ee	1.0242, 15°.5	
"		1.0129, 80° 1.0020, 45°	Lako. J. 1876, 454.
"	"	.9908, 59°	
	"	.9678, 100° J	
Phloretol Isopropylkresol	C ₈ H ₁₀ O	1.0874, 12° 1.00122, 0° \	Hlasiwetz. J. 10, 829. Spica. J. C. S. 44,
180propyrkresor	C ₆ H ₈ .C ₈ H ₇ .CH ₈ .OH	.91971, 100°	460.
Propylkresol. Carvacrol _	"	.98558, 15°	Jacobsen. Ber. 11, 1060.
" " ——	"	.981, 150	Jahns. Ber. 15, 817.
" Thymol	در در	1.0285, s 1.01068, 0°	Stenhouse. J. 9,624.) Two preparations.
" "	"	1.009186, 0°)	Pisati and Pater-
" "	"	.92424, 1000 }) no. Ber. 8, 71.

Nai	CB.	Formula.	Sp. Gravity	AUTHORITY.
Propylkresol.	" "		1,0101, 4°	Haines. J. 9, 623. Febve. Ber. 14, 1720. Schröder. Ber. 14, 2516. Nasini and Bernhei- mer. G. C. I. 15, 50. Schiff. A. C. P. 228, 247. Pinette. A. C. P. 248, 32. Perkin. C. N. 39, 39. Hlasiwetz. A. C. P. 106, 366. Sobrero. Völckel. J. 7, 610. Gorup-Besanez.

22d. Aromatic Alcohols.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Benzyl alcohol	C ₈ H ₈ . C H ₂ O H	1.059	Cannizzaro. J. 7, 585.
" " <u></u>	"	1.0628, 0° } 1.0507, 15°.4 }	
		1.0465, 19°	
11 66		1.0429, 20° 1.0412, 22°	Brühl. Bei. 4, 781.
Benzylcarbinol	C ₆ H ₅ . CH ₂ . CH ₂ O H	1.0387, 21°	249. Radziszewski. Ber. 9, 373.
Phenylpropyl alcohol	C ₆ H ₅ . C H ₂ . C H ₃ .	1.008, 18°	Rügheimer. A. C. P. 172, 126.
Orthoxylyl alcohol		1.08, 8}	Brühl. Bei. 4, 781. Colson. Ann. (6),
Metaxylyl alcohol	·l "	1.028, 40°, 1. § .9157, 17°	Radziszewski and Wispek. Ber. 15,
	. "	1.086, 0°	1747. Colson. Ann. (6), 6, 86.
Ethylphenylcarbinol	C ₆ H ₄ . CHOH. CH ₂ CH ₃	1.016, 0° }	Wagner. Ber. 17, ref. 817.
Cymyl alcohol. 1.4			Kraut. A. C. P. 192, 224.

Yaki.	3 18887	is Marini	LIBRETT
be gain	4 2, (2 (2))	1951.55	Beimen und Such senn. 3 14 745
Body in Spirit 12	्रम्, श्रम्, प्रमृत्य	The same	Lateral and Lateral and Lateral Latera
Edine secures 14	* -	_ 1300 50 _ 1360 306	
L orenjikoskova mosvist	(4 E, %,	_ 1.114	Immering and In
CHARLES BOTHOL	C, E, 0	45 4	Jun. b. III
		_ 1 .44	Yes and Berry
*	•	-:15-4	11. ML
* *	*	_ 1.14.14.18"	Graditane. Bei. 1
b b		. 1441 SP	
h. a.		. 1 地區 打造 . 1 地區 提達	Defini A C 1
**		I Wille Ett	# :
tery promywoney one mi	C* H* 0	165i. i.f	Morgan. J. C. S.
lomanaz man Kiyok	C, H, C H, O H,	_ Lim TP	Crisen. Arr. (5)
Marina Bidi	. " -	_ 1.151 18°.mm-	
1 44		- 1.125 529	; = -
Paraky inan Kiyusi	<i>.</i> .	1.994. 1352	´
Manity and grown and a	. С _е н _е сн _е сн _е он,	1.23, 15	Robinet and Colors C. R. 95, 1962.

23d. Aromatic Oxides.

Name.		FORMU	LA.	Sp. Gravity.	ATTHORITY.		
Phenyl	ether			C. H. O. C.	Н,	1.0204	Gladstone and Tribe
66 66	"		 .	"		1.0744, 24°) 1.0712, 25°	J. C. S. 41, 6. Gladstone. Bei. 9, 249.
Phenyl	methy	loxide.	Ani-	C, H, O, C	н,	.991, 15°	Cahours. J. 2, 403
46	66	46	"	46		.8607)	(Schiff. G. C. I. 13
66	66	66	66	46		.8608 155°	177.
"	"	46	"	66		.98784, 21°.8	Nasini and Bern- heimer. G. C. I 15, 50.
66	66	66	44	"		1.0110, 00 }	Pinette. A.C.P. 248
"	"	66	"	"		8604 1540 R	89
	ethyl e	oxide. P	hene-	C. H. O. C.	H ₅	.8196) 1710 5	Schiff. G. C. I. 18
tol.	"	"	44	"		.8198 } .978, 15°	Remsen and Orn
						,	dorff. A. C. J. 9, 898.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Phenylethyloxide. Phene-	C ₆ H ₅ . O. C ₂ H ₅	.9822, 0° }	Pinette. A.C.P. 248,
tol. " " " " Phenyl propyl oxide	•••	1 AIDM 1717 A 1	82. Cahours. Les Mon-
		.9689, 0° }	des, 82, 280. Pinette. A.C.P. 243,
Phenyl isopropyl oxide			82.
Phenyl butyl oxide	C. H., O. C. H.	.947, 12°.5 } .9500, 0°)	Silva. Z. C. 18, 250. Pinette. A.C.P. 248,
Phenyl isobutyl oxide	"	.7664, 210°.8 } .9388, 16°	82. Riess. J. C. S. 24,
		,	221. Pinette. A.C.P. 248,
Phenyl n. heptyl oxide	C H C C H	.7075, 266°.8	82.
Phenyl n. octyl oxide " " " Benzyl ether	C ₆ H ₅ . O. C ₈ H ₁₇	.6941, 282°.8	
		1	Lowe. J. C. S. 51, 701.
Kresyl ether		1.0852, 16°	Gladstone. Bei. 9, 249.
Orthokresyl methyl oxide.	C ₇ H ₇ . O. C H ₈	.9957, 0° } .8881, 171°.8 }	Pinette. A. C. P. 248, 82.
Metakresyl methyl oxide.	"	.9891, 0° } .8255, 177°.2 }	
Parakresyl methyl oxide_	44	.8286, 175°.5	Schiff. Bei. 9, 559. Pinette. A. C. P.
Orthodoreal other oxide	" " T O C H	.8241, 1750	248, 82.
Orthokresyl ethyl oxide	"	.7941, 1840.8	" " Staedel. Ber. 14, 898.
" " " "	"	.9650, 0° }	Pinette. A. C. P.
Parakresyl ethyl oxide	"	.7888, 192° 5	248, 82. Fuchs. J. 22, 457.
" " "	"	.9662, 0°	Pinette. A. C. P. 248, 82.
Orthokresyl propyl oxide _	C, H, O. C, H,	.9517, 0° } .7675, 204°.1 }	
Metakresyl propyl oxide	"	.9484, 0° } .7628, 210°.6 }	
Parakresyl propyl oxide	"	.9497.00)	
Orthokresyl butyl oxide	C, H, O. C, H,	.9487, 0° }	" "
Metakresyl butyl oxide	"	.9407, 0° {	
Parakresyl butyl oxide	"	.7422, 229°.2 { .9419, 0° }	
Orthokresyln. heptyloxide	C. H., O. C. H.,	.7410, 229°.5 } .9248, 0° }	
Metakresyln. heptyloxide	"	.7016, 277°.5 } .9202, 0° }	
Parakresyl n. heptyl oxide	"	.6927, 288°.2 { .9228, 0° }	
Orthokresyl n. octyl oxide	C. H., O. C. H.,	.6905, 288°.8 } .9281, 0° }	"
Metakresyl n. octyl oxide	"	.6905, 292°.9 .9194, 0°	
(1)	"	.6818, 298°.9	

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Parakresyl n. octyl oxide	C, H, O. C, H,	.9199, 0° } .6808, 298° }	Pinette. A. C. P. 248, 82.
Ethyl phenetolPhloryl ethyl oxide	C ₆ H ₄ . C ₂ H ₅ . O. C ₂ H ₅ C ₆ H ₉ . O. C ₂ H ₅	.986, 14° .9828, 18°	Auer. Ber. 17, 669. Sigel. A.C. P. 170,
Styrolyl ethyl oxide Orthopropylphenyl me- }	ш	.981, 21°.9 .9694, 0° }	845. Thorpe. J. 22, 412. Spica. Ber. 12, 295.
thyl oxide. Parapropylphenyl methyl oxide. "	"	.9168, 100° { .9686, 0° } .9125, 100° }	11 11 11 ·
Isopropylphenyl methyl oxide.	"	.962, 0°	Paterno and Spica. Ber. 10, 84.
Isopropylphenyl ethyl oxide. " " Orthoisopropylphenyl eth-	"	.86869, 100° } .94488, 0° }	Spica. J. C. S. 88, 167. Fileti. G. C. I. 16,
yl oxide. " " " Butyl anisol	"	.85918, 1000	113. Studer. Ber. 14, 2187.
Methyl thymol			Engelhardtand Lat- schinoff. J. 22, 466.
66 66	"	.953898,0° } .869281,100° } .954814,0° }	Two samples. Pisati and Paterno.
66 66	"	.870459, 100° } .9531, 0° } .7685, 216°.2 }	Ber. 8, 71. Pinette. A. C. P.
Ethyl thymol	C ₁₀ H ₁₃ . O. C ₂ H ₅	.98866, 0° }	248, 82. Spica. J. C. S. 44, 460.
" " Propyl thymol		.9884, 0° } .7400, 226°.9 } .9276, 0° }	Pinette. A. C. P. 248, 82.
Butyl thymol	C ₁₀ H ₁₈ . O. C ₄ H ₉	.7215, 248° { .9280, 0° }	
Normal heptyl thymol	**	1.6712,8065.7	"
Normal octyl thymol "" Metaxylyl ethyl oxide		.9026, 0°	" " Radziszewski and
	C ₂ H ₈ .		Wispek. Ber. 15, 1746.
Paraxylyl ethyl oxide		.9804, 17°	Radziszewski and Wispek. Ber. 15, 1745.
Diphenylcarbyl ethyl oxide. Benzyl anisol			Linnemann. Paterno. B. S. C.
Phenylvinyl ethyl oxide	"	.998, 100° [18, 77. Erlenmeyer. Ber.
Orthovinylanisöil	''	1.000, 80° \	14, 1868. Perkin. J. C. S. 33, 211.
Paravinylanisõil Orthoallylanisõil	" "	1 000 150 1	et et
orthographsoll	U ₆ H ₄ , U ₅ H ₅ , U, U H ₅	.9972, 15° .9884, 80° .9798, 45°	.
i		l .	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Anethol. 1.4	C ₆ H ₄ . C ₃ H ₅ . O. CH ₃ .	.984, 20°	Landolph. C. R. 82, 227.
" Natural		.9858, 80°)	
" Artificial		.9852, 80° }	Perkin.
" "		.9761, 45° (
"		.9887, 21°.8	Schiff. A. C. P. 228, 247.
"		.99182, 14°.9	Nasini and Bern-
"		.98556, 21°.6	heimer. G.C.I. 15
(i		.97595, 84°.4	50.
"		.94041, 77°.8	Gladstone. J.C.S. 49
" A wificial	44	.9869, 21° }	628.
Orthobutenylanisõil	С. Н. С. Н. О СН.	9817. 159	Perkin. J. C. S. 88,
"	0, 11, 0, 0, 0 1, 1	.9740, 80° }	211.
Parabutenylanisŏil	"	.9788, 80°	" "
Parabutenylanisöil Phenyl allyl oxide	C_a H_a . O. C_a H_a	.9825, 17°.6	Nasini. Bei. 9, 831.
Kresyl aliyi oxide. 1.4	C_7 H_7 . C_8 H_{8}	.9869, 10	_
Phenyl propargyl oxide	C ₆ H ₅ . O. C ₃ H ₃	1.246, 0°	Henry. Ber. 16, 1878.
Veratrol. 1.2 Dimethylresorcin. 1.3	C ₆ H ₄ (O C H ₈) ₉	1.086, 15° 1.075, 0°	Merck. J. 11, 256. Coninck. Ber. 18,
-			1992.
"	"	1.0808, 0°]	
66		1.0817, 55°.8	Schiff. Ber. 19, 560.
		1.0104, 79°.2 \ .9566, 185°.5	Бени. Бег. 19, 000.
	"	8752 2150	
Methylene diphenate	C H ₂ (O C ₈ H ₅) ₂	1.1186, 18°	Henry. Ann. (5), 80, 269.
" "	"	1.092, 20°	
Methylene diorthokresy- late.	C H ₂ (O C ₇ H ₇) ₂	1.019, 50°, l	" "
Methylene dimetakresy- late.	"	1.052, 50°, l	" "
Methylene diparakresylate	u	1.084, 50°, 1	u u
Methylene dibenzylate	"	1.053, 20°	"
Methylene dithymylate	C H, (O C ₁₀ H ₁₈),	.979, 500, 1	u u
Ethylene diphenate	= =#/15 TW =#/#	1 4 4 4 4 4 4 4	Henry. Ber. 16, 1878.

24th. Aromatic Acids and their Paraffin Ethers.

	1		
NAME.	Formula.	Sp. Gravity.	Authority.
Benzoic acid	C. H. COOH	1.29. cryst.	Корр.
	. "	1.201, 21°, s)
" "	. "	1.206, 25°.8, l	Mendelejeff. J. 11,
" "		1.227, 27°, i) 274.
11 11		1.0888, 121°.4_	Kopp. J. 8, 85.
66 66		1.887, sublimed	Rüdorff. Ber. 12, 251.
"		$\begin{bmatrix} 1.288 \\ 1.291 \end{bmatrix}$ 4° $\{$	Schröder. Ber. 12,
"	"		561.
"	"	1.0800, 1210.4_	Schiff. A. C. P. 228,
Mathal barrasts	0.17.0	•	247.
Methyl benzoate			Dumas and Peligot. Ann. (2), 58, 50.
" " …	. "	1.1026, 0° }	Ann. (2), 58, 50. Kopp. A. C. P. 94,
" "	. "	1.0876, 16°.8 }	257.
44 46		1.0921, 12°.8	Mendelejeff. J. 18,7.
"		1.0862, 20°	Brühl. Bei. 4, 782.
		1.100, 10°	De Heen. Bei. 10,
"	. "	1.108, 15°	818. Stohmann, Rodatz, and Herzberg. J.
Ethyl benzoate	C ₉ H ₁₀ O ₂	1.0589, 10°.5	P. C. (2), 86, 1. Dumas and Boullay.
" "		1.06, 18°	P. A. 12, 480. Deville. Ann. (8), 8, 188.
" "		1.049, 140	Delffs. J. 7, 26.
(1 11	"		Kopp. A. C. P. 94,
14 14	"	1.0556, 100.5	257.
" "		1.0517, 140.1	Mendelejeff. J. 18, 7.
" "		1.048, 20°	Naumann. Ber. 10, 2016.
" "	. "	1.0478, 200	Brühl. Bei. 4, 782.
"	. "	1.0502, 16°	Linnemann. A. C. P. 160, 195.
" "	. "	1.160, 10°	De Heen. Bei. 10, 818.
" "		1.050, 15°	Stohmann, Rodatz, and Herzberg. J. P. C. (2), 86, 1.
Propyl benzoate	C ₁₀ H ₁₃ O ₃	1.0816, 16°	Linnemann. A. C. P. 161, 29.
<i>u u</i>		1.0248, 15°	Stohmann, Rodatz, and Herzberg. J. P. C. (2), 86, 1.
Isopropyl benzoate		1.054, 0° 1.013, 25° }	Silva. Z. C. 12, 687.
Butyl benzoate	C ₁₁ H ₁₄ O ₂	1.000, 200	Linnemann. Ann.
£¢ £\$		1.002, 10°	(4), 27, 268. De Heen. Bei. 10, 818.
Isobutyl benzoate	. "	1.0018, 15°	

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Amyl benzoate	C ₁₂ H ₁₆ O ₂	1.0089, 0° }	Корр. А. С. Р. 94
u u	"	.9925, 14°.4 } 1.002, 10°	257. De Heen. Bei. 10
		.9916, 15°	818. Stohmann, Rodatz
Hexyl benzonte	C ₁₈ H ₁₈ O ₂	.99846, 17°	and Herzberg. J P. C. (2), 86, 1. Frentzel. Ber. 16 745.
Salicylic acid	С _в Н ₄ . ОН. СООН. 1.2	1.443	Rüdorff. Ber. 12, 251
" " …		1.482) 40 (Schröder. Ber. 12
" "i	" <u> </u>	1.485 } 4 {	1611.
Metaoxybenzoic acid Paraoxybenzoic acid	1.0	1.478, 4°	
araby benzoic acidilizing	"	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	"
Methyl salicylate, oil of Betula lenta.	C ₈ H ₈ O ₃	1.180, 15°	Pettigrew. Am. J P. 55, 885.
Propyl salicylate	C ₁₀ H ₁₂ O ₃	1.021, 21°	Cuhours. Les Mon des, 32, 280.
Methylsalicylic acid. 1.2			Cahours. Ann. (8) 10, 827.
11 11	"	1.1845, 15°	Mendelejeff. J. 18, 7
		1.1969, 0° }	Kopp. A. C. P. 94
		1.1801, 20°	257. Landolt. Bei. 7, 847
Anisic acid. 1.4	"	1.864)	•
" "	44	1.864 1.876 4° {	Schröder. Ber. 12 1611.
_ ", " ,	"	1.885)	
Ethylsalicylic acid. 1.2	C ₆ H ₄ . O C ₂ H ₅ . C O O H	1.097	Baly. J. C. S. 2, 28
Sthyl ethylsalicylate	C., H., O.	1.1843, 10° 1.1005	Delffs. J. 7, 26. Göttig. Ber. 9, 1478
Ethyl ethylmetaoxyben-	C ₁₁ H ₁₄ O ₃	1.0875, 0° }	Heintz, A.C.P. 158
zoute. "	"	[1.0725, 20°]	882.
Methyl isopropylsulicylate	" " " " " " " " " " " " " " " " " " "	1 1 100% 2019	Kraut. J. 22, 566
Protocatechuic acid	C ₆ H ₃ (O H) ₂ . CO OH	1 549 ()	Schröder. Ber. 12 1611.
Fallic acid	(' ₆ H ₂ (O H) ₈ . COO H	1.000 40	
Phenylacetic, or alpha-	C6 H5. CH2. COOH	1.3, solid)	
toluic acid. "		1.0778, 83° }	Möller and Strecke
ii		1.0884, 1859	J. 12, 299.
" "		$\left\{ \begin{array}{c} 1.220 \\ 1.236 \end{array} \right\}$ 4° $\left\{ \begin{array}{c} \end{array} \right.$	Schröder. Ber. 12
" "			1611. Schiff. A. C. P. 228 247.
Methyl phenylacetate			Radziszewski. Z. C 12. 358.
Ethyl phenylacetate	$C_{10} \stackrel{H_{12}}{C_{11}} \stackrel{O_2}{H_{14}} \stackrel{\dots}{O_2} \dots$	1.031	Hodekinson I (
	-		S. 37, 483.
Phenylpropionic, or hydrociunamic acid.	••	.8780. 279°.8	Weger A. C. F 221, 61. Erlenmeyer. J. 19
Methyl phenylpropionate	010 1112 02	1.018. 49°	366.
	"	1.0473, 0° .83824, 236°.6_	Weger. A. C. I
44 44	66		

X.M.		For	MULA.	SP. GRAVITY.	AUTHORITY.	
Ethyl pl	ber ;	rpionate	C ₁₁ H ₁₄ C	9	1.0348, 0° }	Erlenmeyer. J. 19,
••	-	•	1 "		1.0348, 0° }	
44	•		"		1.0147, 20	Brühl. Bei. 4, 781.
"	-				1.0348, 0°	Weger. A. C. P.
Properl r	heav'r	monionate	C. H. O	1	.80182, 248°.1. 1.0152, 0°	13 '
Tropyr			012 116 0	*	.77886, 2620.1	·
Amyl ph	envipe	opionate	C ₁₄ H ₂₀ O	•	.9807, 0° }	Erlenmeyer. J. 19.
					.9520, 49° }	867.
Methyl o	xibpe	ylacetate_	C, H, O,		1.15, 17°.5	Fritzsche. Ber. 12, 2178.
Ethvl ox	yphen	rlacetate	C, H, O	1	1.104, 170.5	
Ethyl o	xypher	ylpropio-	Cn Hi O	s	1.104, 17°.5 1.860, 17°.5	Saarbach. J. P. C.
nate.						(2), 21, 156.
Phthalic	acid		C ₆ H ₄ . (C	оон),	1.585 }	Schröder. Ber. 13.
	 		•		1.090	1070.
wero'zı b	entnaia.	te	C ₁₀ H ₁₀ O	4	1.2001 1.2022 } 18°.5.	The see
••	44		"		1.2101	Three prepara- tions. Schmal-
44	11		46		1.1958	zigaug. Inaug
46	44		66		1.1974 } 16°	Diss. Erlangen
44	66		"		1.2058)	1883. See also
44	44		"		1.1958)	Graebe, Ber. 16
44	"		"		1.1938 } 18°	. J 861.
" 10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					1.2081)	\ m
Prukt bu	fiirirre		C12 H14 C	4	1.1821 120.5.	Two preparations
.4	"		44			Schmalzigaug Inaug. Diss. Er
44	"		64		$\left\{ \begin{array}{c} 1.1294 \\ 1.1295 \end{array} \right\}$ 15°.5.	langen, 1883.
Orthophe	nylene	glyoxylic	C ₆ H ₄ . CC	H. COOH	1.404	Colson and Gautier
acid.				~~~		C. R. 102, 689.
Cinnamic	, or	phenylac-	C ₆ H ₅ .CH	.сн.соон	1.245	E. Kopp. J. P. C
rylic ac	eia.	"		·	1.195	87, 280.
"		"			1.246 } 40 {	Schabus. J. 8, 392 Schröder. Ber. 12
46		- 16	6		1.249 40	1611.
"		"	6		1.0565, 188°	Weger. A. C. P
"		"			.9097 4, 800° {	221, 61.
Methy l ci	inname	te	C ₁₀ H ₁₀ O	2	1.106	E. Kopp. C. R. 21 1376.
66	66		"		1.0415, 86°	Weger. A. C. P
16	**		44		.85888, 259°,6	221, 61.
Ethyl cin	namat	8	C ₁₁ H ₁₂ O	g	1.126, 0°	E. Kopp. C. R. 21
46	"		"		1.18	Marchand. A. C. P 82, 269.
41	66		"		1.0656, 0° }	H. Kopp. A. C. P
46	"		"		1.0498, 20°.2	95, 807.
44	44		66		1.0653)	, ,
46	"		"		1.0658 > 00	Weger. A.C.P. 221
44	"		"		1.0662)	61.
44	"		"		.82148, 271° J	
Propel of		te		,	1.0490, 20°	Brühl. A.C. P. 235,1 Kahlbaum. Ber. 16
· rob) · oı			-13 -14 C	,		1491.
41	"				1.0435, 00)	Weger. A.C.P. 221
	".					
44	•• .				. .7917, 2 85°.1 {	61.

Name.	FORMULA.	Sp. Gravity.	Authority.
Methyl a methylorthox- yphenylacrylate.	C ₁₁ H ₁₁ O ₃	1.1404, 15° } 1.1277, 20° } 1.1465, 8°.5	Perkin. J. C. S. 89 409. Gladstone. Bei. 9
Methyl β methylorthox- yphenylacrylate.	"	1.1486, 15° 1.1362, 80° 1.1556, 9°.5	249. Perkin. J. C. S. 89 409. Gladstone. Bei. 9
Ethyl α ethylorthoxy- phenylacrylate. Ethyl β ethylorthoxy- phenylacrylate.	C ₁₃ H ₁₆ O ₃	1.084, 15° } 1.074, 30° } 1.090, 15° 1.090, 10°	249. Perkin. J. C. S. 89, 409. "Gladstone. Bei. 9,
Methyl a methylorthox- } yphenylcrotonate. Methyl \(\beta\) methylorthox- } yphenylcrotonate.	C ₁₂ H ₁₄ O ₃	1.1112, 15° 1.1061, 80° 1.1279, 15° 1.1136, 80°	249. Perkin. J. C. S. 89, 409.
Methyl'a methylorthox- } yphenylangelate. } Methyl β methylorthox- } yphenylangelate. } Mandelic acid	C ₁₃ H ₁₆ O ₃	1.1044, 15° 1.0882, 80° 1.1100, 15° 1.1008, 80° 1.355 \ 4°	" " Schröder. Ber. 12.
Cuminic acid	C ₆ H ₄ . C ₈ H ₇ . COOH.	1.867 { } 1.156 } 1.169 { 4°	1611.
Quinic acid Ethyl verutrate		1.637, 8°.5 1.141, 18°	Watts' Dictionary. Will. A. C. P. 87, 198.
Ethyl phenylglyoxylate Ethyl phenylacetacetate	C ₁₀ H ₁₀ O ₃ C ₁₂ H ₁₄ O ₈	1.121, 17°.5 1.0861, 16°	Claisen. Ber. 12, 629. Hodgkinson. J. C. S. 87, 481.
Ethyl benzylacetacetate	C ₁₃ H ₁₆ O ₃		Conrad. Ber. 11, 1056.
Ethyl methylbenzylacet- acetate.	C ₁₄ H ₁₈ O ₃	1.046, 28°	(f
Ethyl benzylmalonate Ethyl benzylmethylmalo-	C ₁₄ H ₁₈ O ₄	1.077, 15°	Conrad and Bischoff. A. C. P. 204, 208. Conrad and Bischoff.
nate. Ethyl benzylidenemalo-	C ₁₄ H ₁₆ O ₄		Ber. 18, 595. Claisen and Crismer.
nate. Ethyl benzylacetosucci-	C ₁₇ H ₂₈ O ₅		A. C. P. 218, 182. Conrad. Ber. 11, 1058.
Monomethyl propylpy	C ₁₀ H ₁₄ O ₃	1.10	Reichenbach. Pastrovich. M.C.4, 183.

25th. Ethers of Aromatic Radioles.

		1	1
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Phenyl acetate	C ₈ H ₈ O ₂	1.074	Boughton. J. 18, 580.
Kresyl acetate	C ₉ H ₁₀ O ₂	1.0499, 28°	Gladstone. Bei. 9, 249.
Benzyl acetate		1.057, 16°.5	Conrad and Hodg- kinson. A. C. P.
11 11	ee	1.0400, 21° 1.03814, 22°.5_	198, 812. Gladstone. Bei. 9, 249.
Paraxylyl acetate		1.0264, 15°	Jacobsen. Ber. 11, 28.
Ethylphenyl acetate	"	1.0286	Radziszewski. Ber.
	"	1.0507, 22°.5	9, 873. Gladstone. Bei. 9, 249.
Methylphenylcarbyl ace-	"	1.05, 17°	Radziszewski. C.C. 5, 261.
Parapropylphenyl acetate_	C ₁₁ H ₁₄ O ₂	1.029, 0° }	Spica. Ber. 12, 295.
Orthoisopropylphenyl ace-		1.02714, 0° .93818, 100°	Fileti. G. C. I. 16,
Paraisopropylphenyl ace- tate.	"	1.026, 0°	Paterno and Spica. Ber. 10, 84.
Mesityl acetate	"	1.0908, 16°.5	Wispek. Ber. 16, 1577.
Thymyl acetate	C ₁₂ H ₁₆ O ₂	1.009, 0° - } }	Two preparations. Paterno. J. C. S.
££ ££	**	1.010.00 1	(2), 18, 688.
Butylphenyl acetate		.999, 24°	Studer. Ber. 14, 2187.
Diphenylcarbyl acetate			Linnemann. A. C. P. 183, 20.
Benzyl propionate			Conrad and Hodg- kinson. A. C. P.
Benzyl butyrate	C ₁₁ H ₁₄ O ₂	1.016, 16°	44 44
Benzyl butyrateBenzyl isobutyrate			P. 193, 320.
" "	"	1.0058, 28°	Gladstone. Bei. 9, 249.
Isomer of benzyl isobuty-		1.0228, 22°	" "
Benzyl phenylacetate			18, 59.
Benzyl benzylacetate	C ₁₆ H ₁₆ O ₂	1.074, 21°	Conrad and Hodg- kinson. A. C. P. 193, 812.
Benzyl benzylpropionate.	C ₁₇ H ₁₈ O ₂	1.046, 16°.5	
Benzyl benzylbutyrate	C ₁₈ H ₂₀ O ₂	1,027, 17°.5	u u
Benzyl benzylisobutyrate_			" "
Benzyl dimethylbenzyl- acetate.	"	1.0285, 18°	Hodgkinson. J. C.S. 83, 495.
Benzyl benzoate	C ₁₄ H ₁₂ O ₂	1.114, 18°.5	Kraut. A. C. P. 152, 159.
		1.1224, 19°, 1	Claisen. Ber. 20, 646.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Benzyl cinnamate	C ₁₆ H ₁₆ O ₃	1.098, 14° 1.1145, 16° .9416, 22° 1.12, 20° 1.117, 0°	Scharling. J. 9, 630. Busse. Ber. 9, 831. Gladstone. Bei. 9, 249. Robinet and Colson. C. R. 96, 1868. Fatianoff. J. 17, 477.
		1.1184, 0°	Pawlewski. Ber. 17, 1205.

26th. Aromatic Aldehydes.

Name.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Benzaldehyde. Almond oil.	C ₆ H ₅ . C O H	1.075	Chardin-Hardan- court.
"	"	1.088, 15°	
"	"	1.048	Wöhler and Liebig.
46		1.0686, 0° }	
"	"	1.0499. 14°.6	94, 257.
"	"	1.0504	Mendelejeff. J. 18, 7.
		1.067	Lippmann and Hawliczek. Ber. 9, 1461.
"	"	1.0471 } 200	Landolt.
"	"	1.0471 1.0474 } 20°	
	"	1.0455, 20°	Brühl. Bei. 4, 782.
Toluic aldehyde	C ₆ H ₄ C H ₃ . C O H	1.037, 0° }	Gundelach. B.S.C.
		1.024, 22° }	26, 45.
Phenylacetic aldehyde	"	1.085	Radziszewski. Ber. 9, 872.
Cuminic aldehyde. Cumi-	Ca Ha. Ca Hr. COH	.9882, 00)	Kopp. A. C. P. 94,
" nol.	"	.9727, 180.4	
et (t	"	.9751, 15°	Mendelejeff. J. 18, 7.
" "	"	.9775, 20°	Gladstone. Bei. 9, 249.
Paratolylpropyl aldehyde	C ₅ H ₄ . CH ₅ . CH ₇ . CH ₇ . C O H	.9941, 18°	v. Richter and Schüchner. Ber. 17, 1981.
Salicylic aldebyde, or sali- cylol.	C ₆ H ₄ . O H. C O H	1.1781, 18°.8	
11 11	££.	1.1671. 200	Landolt. Bei. 7, 847.
Anisic aldehyde	C ₆ H ₄ . O C H ₈ . C O H	1.09, 20°	
"	"	1.1228, 18°	Rossel. Z. C. 12, 561.
Cinnamic aldehyde	C. H. O	1.0497. 200	Brühl. A. C. P.
	-y 8		285, 1.
		l	ł

27th. Aromatic Ketones.

Name.	FORMULA.	Sp. Gravity.	Authority.
Methyl phenyl ketone Methyl benzyl ketone	C, H, CO. CH,	1.032, 15° 1.010, 18°	Friedel. J. 10, 270. Radziszewski. Ber. 8, 199.
Methyl tolyl ketone	"	.9891, 22°	Essner and Gossin.
Propyl phenyl ketone	C ₈ H ₅ . C O. C ₈ H ₇	·	Ber. 17, ref. 429. Schmidt and Fie- berg. J. C. S. (2), 12, 75.
" " "	"	.992, 15° .9949, 15°	Popoff. Ber. 6, 560. Einhorn. In. Diss. Tübingen, 1880.
Isopropyl phenyl ketone	"	.994, 12° .972, 30° .984, 60°	" "
Methyl xylyl ketone	C ₈ H ₉ . C O. C H ₈		Claus and Wollner. Ber. 18, 1856.
Isobutyl phenyl ketone	C ₆ H ₅ . C O. C ₄ H ₉	.998, 17°.5	Popoff. A.C.P. 162
Tolyl phenyl ketone	C ₆ H ₅ . C O. C ₇ H ₇	1.088, 17°.5	Senff. A. C. P. 220 252.
Acetocinnamone	C ₈ H ₇ , C O, U H ₈	1.008	Engler and Leist B. S. C. 20, 204.
Propionylacetophenone Butyrylacetophenone	C ₁₁ H ₁₂ O ₂	1.081, 15° 1.061, 15°	

28th. Camphors, Essential Oils, Etc.

Name.	Formula.	Sp. Gravity.	Аптновіту.
Laurel camphor	C ₁₀ H ₁₆ O	.986) .996 } .9466, 20°	Watts' Dictionary. Gladstone. J. C. S.
Absinthol		.978, 24°	(2), 10, 1. Leblanc. A. C. P. 56, 357. Gladstone. J. C. S.
"		.9128, 22°	(2), 10, 1. Gladstone. Bei. 9 249.
Citronellol	"	.875	Two samples Gladstone. J. C S. (2), 10, 1.
From oil of coriander Ericinol	"	.8970	Grosser. Ber. 14 2505. Frohde. J. P. C. 82 186.
Oil of Mentha pulegium	"	.9271 }	Watts' Dictionary.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Oil of Pulegium micran-	C ₁₀ H ₁₆ O	.982, 17°	Butlerow. J. 7, 595.
thum. From oil of tansy	44	.918, 4°	Bruylants. Ber. 11,
Thujol Cajeputol	C ₁₀ H ₁₈ O	.924, 15°	Jahns. Ber. 16, 2930. Gladstone. J. C. S.
"	"	.8900. 21°.5	(2), 10, 1.
Cajeputene hydrate	61	.908, 17° .9160, 20°	Schmidl. J. 13, 480. Kanonnikoff. Bei. 7,
Oil of coriander		.871, 14° .8719, 15°	592. Kawalier. J. 5, 624.
Cyneol		.92067, 16°	Grosser. Ber. 14, 2486. Wallach and Brass.
"		.9267, 20°	A. C. P. 225, 291. Wallach. A. C. P.
Oil of eucalyptus oleosa		.9075, 20°	245, 195. Gladstone. J. C. S.
Geraniol		.8851, 15° }	(2), 10, 1. Jacobsen. Z. C. 14,
Oil of Licari kanali	"		171. Morin. J. C. S. 40, 788.
Oil of Melaleuca ericifolia	"		Gladstone. J. C. S. (2), 10, 1.
Oil of Melaleuca linarifolia From menthol	16	.8985, 20° .9082	Moriya. C. N. 42,
Menthone	::	.9126, 0°] .9048, 10°]	268.
	"	.8972, 20°	Atkinson and Yoshi-
46		.8665, 60° .8511, 80°	da. J. C. S. 41, 295.
Ngai camphor	"	.8855, 100° 1.02	Plowman. J. C. S.
From Osmitopeis asteris-	"	.921	(2), 12, 582. Gorup-Besanez. J.
coides. Salviol	"	.984, 15°	7, 596. Sigiura and Muir. J. C. S. 38, 295.
Terpane	"	.988, 15°	Muir. J. C. S. 87, 18. Bouchardat and
			Voiry. C. R. 106,
Terpilenol	"	.961, 0° }	Bouchardat and Lafont. B.S. C.
"	1	.9583, 0°	Lafont. B.S.C. 49, 828.
Terpinol*		.952, 0°	Bouchardat and Voiry. B.S.C. 47,
"	"	.9296, 10°	870. Gladstone. J. C. S. 49, 628.

^{*}List's terpinol (J. 1, 726) is now known to be a mixture.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Terpinol	C ₁₀ H ₁₈ O	.9357, 20°	Wallach. A. C. P.
Turpentine hydrate	u	.9274, 16°	245, 196. Tilden. C. N. 37, 166.
" " "	"	.9889, 0° }	Flawitzky. Ber. 12,
"	"	.9201, 18° {	2855.
" "	"	.9511, 100	Renard. Ber. 18, 932.
" "	"	.9188′	Kanonnikoff. Bei. 7, 592.
" " ———	ti	.9335, 0° }	Flawitzky. Ber. 20,
Th		.9189, 19°.5	1959.
From wormseed oil	"	9270, 10	Hall and Stüreles
,	"	.9275, 16°) .8981, 50° } .8558, 100°	Hell and Stürcke. Ber. 17, 1970.
•			(Twosamples. Glad-
Menthol	C ₁₀ H ₂₀ O	.9894 .9515 } 20°	stone. J. C.S. (2), 10, 1.
"	"	.89, 15°	Moriva. C. N. 42,
	"	.8786, 20°	268. Kanonnikoff. Bei. 7, 592.
Ethyl camphor	C ₁₂ H ₂₀ O	.946, 220	Baubigny. J. 19,624.
Eucalyptol		.905, 8°	Cloëz. Z. C. 12, 411.
"	"	.9178, 15°	Poehl. J. R. C. 5, 538.
From wormseed oil		.919, 20°	Völckel. J. 6, 513.
Amyl camphor	C ₁₅ H ₂₆ O	.919, 15°	Baubigny.
Acetyl camphor	C ₁₂ H ₁₈ O ₂	.986, 20°	Baubigny. J. 19,624.
Methyl borneol	C ₁₅ H ₂₆ O	.988, 15°	Baubigny.
From Achillea ageratum	"	.916, 23° .849, 20°	De Luca. J. C. S.
From Angostura bark	C H O	.984	81, 826. Harrog I 11 444
Patchouli camphor	C ₁₈ H ₂₄ O C ₁₅ H ₂₈ O	1.051, 40.5	Herzog. J. 11, 444. Gal. Z. C. 12, 220.
Oil of ginger	C. H. O. (?)	.893	Papousek. J. 5, 624.
Camphorogenol	C ₈₀ H ₁₈ O ₅ . (?)	.9794, 20°	Yoshida. J. C. S. 47, 779.
Terpilene formate	С. н. о.	.9986, 0° }	(Two samples. La-
ii ii		.9989	font. B. S. C. 49, 328.
Terpilene acetate	C ₁₂ H ₂₀ O ₂	.9827, 0°	Bouchardat and La- font. C.R. 102, 818.
Terebenthene acetate			u u
Terebene acetate	46	.977, 0°	Bouchardat and La-
Camphene acetate	"	1.002, 0°	font. C. R. 102,171. Lafont. C. R. 104,
Camphoric acid	C ₁₀ H ₁₆ O ₄	1.191}	1718. Schröder. Ber. 13,
Ethylcamphoric acid	C ₁₆ H ₂₀ O ₄	1.195 \ \ 1.095, 20°.5	1070. Malaguti. Ann. (2),
Ethyl camphorate	1		64, 164. Malaguti. A. C. P.
		1.072, 22° }	22, 48. Dehmel. J. R. C. 4,
_ " _ "		. 1.070, 25° {	321.
Propyl camphorate	- C ₁₆ H ₂₈ O ₄	1.058, 24°	(1 (1
Ethyl paracamphorate	. C,, H,, O,	. 1.08, 15°	Chautard. J. 16, 395.
Camphoric anhydride	- O ₁₀ H ₁₄ O ₈	. 1.194, 20°.5	Malaguti. Ann. (2), 64, 160.

Name.	Formula.	Sp. Gravity.	Authority.
Ethyl camphocarbonate	C ₁₃ H ₂₀ O ₃		Roser. Ber. 18, 8112.
Camphrene	C ₃ H ₁₉ O ₇		Chautard. J. 10, 483.
Diethylcamphresic acid	C ₉ H ₂₂ O ₇		Schwanert. J. 16,
Ethyl camphresate	C ₁₆ H ₃₆ O ₇		897.

29th. Miscellaneous Compounds.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Quinone	C. H. O.	1 807	Schröder. Ber. 18,
"	06 24 02	1.318	1070.
Phlorol	C ₈ H ₁₀ O	1.015, 12°	Sigel. A. C. P. 170, 845.
Carvol	C ₁₀ H ₁₄ O	.958, 15°	Völckel.
			Gladstone. J. C. S. (2), 10, 1.
"	"	.9562, 20°	1 " " "
"		.959	l
"		.9598 } 20	Beyer. Ber. 16, 1387.
"	: "	.9598)	
	"	.960, 18°.5	Flückiger.
"		.7866, 228°	Schiff. Ber. 19, 560.
		.9667, 11°	Gladstone. J. C. S. 49, 628.
Eugenol	i •		Stenhouse. A. C. P. 95, 106.
"	İ	1.0684, 14°	Williams. A. C. P. 107, 240.
::	"	1.066, 15°	Church. J. C. S. (2), 13, 113.
"	"	1.0778, 0°)	Wassermann. J. C.
"	"	1.063, 18°.5	S. (2), 1, 706.
"	"	1.0703, 14°	Tiemann and Krauz. Ber. 15, 2066.
"	"	1.066, 17°.5	Gladstone. Bei. 9, 249.
Isoeugenol	"	1.080, 16°	Tiemann and Kraaz. Ber. 15, 2066.
Methyl eugenol?	C ₁₁ H ₁₄ O ₂	1.046, 15°	Church. J.C.S. (2), 18, 115.
" "	"	1.055, 15°	Petersen. Ber. 21, 1060.
Ethyl augenol	CHO	1.096.00	Wassermann. A. C.
Ethyl eugenol	012 116 02	1.0117, 18°.5	P. 179, 876.
Propyl eugenol		1.0024, 16°	Wassermann. Ber. 10, 287.
Isobutyl eugenol	сно	985 150	10, 201.
Amyl eugenol		.976, 16°	Wassermann. Ber.
Allyl eugenol	CHO	1.018, 15°	10, 238.
Coumarin	C ₉ H ₆ O ₂	.9207	Gladstone. Bei. 9,
Overeit	og 26 03		249.

Name	Popular	Sp. Co. www	A
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Safrol	C ₁₀ H ₁₀ O ₂	1.1141, 0°	Grimauxand Ruotte.
"		1.0956, 18°	Z. C. 12, 411. J. Schiff. Ber. 17, 1985.
Coerulignol	C ₁₀ H ₁₄ O ₂	1.05645, 15°	Pastrovich. M. C. 4, 189.
Phthalic anhydride	C ₈ H ₄ O ₈	1.527 1.580 4° {	Schröder. Ber. 12, 1611.
Benzoic anhydride	C ₁₄ H ₁₀ O ₃	1.281	66 66
Benzo-oenanthic anhy-			Malerba. J. 7, 444.
dride. Benzo-cinnamic anhy- dride.	C ₁₆ H ₁₂ O ₈	1.184, 28°	Gerhardt. J. 5, 449.
Benzo-cuminic anhydride Pyruvyl benzoate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.115, 28° 1.148, 25°, s	Gerhardt. J. 5,448. Romburgh. J. C. S.
Tannic acid	C ₁₄ H ₁₀ O ₉	1.097	44, 68. W. C. Smith. Am. J. P. 53, 145.
Benzoyl glycollic ether Propylene ethylphenylke- tate.	C ₁₁ H ₁₂ O ₄ C ₁₂ H ₁₆ O ₂	1.1509, 20°.4 .988, 22°	Andrieff. J. 18, 844. Morley and Green. Ber. 17, 8016.
Isomer of benzil	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.104, 10° 1.1161, 25°	Alexeyeff. J. 17, 385. Beilstein and Seel-
Isobenzpinacone	C ₂₆ H ₂₂ O ₂	1.10, 19°	heim. J. 14, 765. Linnemann. J. 18, 556.
Derivative of propyl phenylacetate.	C ₂₄ H ₂₀ O ₃		Hodgkinson. J. C. S. 37, 482.
Derivative of ethyl phenylocetacetate.	C ₁₈ H ₂₀ O ₃	1.0628, 20°	
a Naphtol	C ₁₀ H ₈ O	1.224, 4°	Schröder. Ber. 12, 1611.
"	"	1.09589, 98°.7	Nasini and Bern- heimer. G.C.I. 15,
β Naphtol		1.217, 4°	50. Schröder. Ber. 12, 1611.
"		1.28	Brügelmann. Ber. 17, 2859.
Naphtol	"	.9048, at boil- ing point.	Ramsay. J. C. S. 39, 65.
Methyl a naphtol	C ₁₁ H ₁₀ O	1.09686, 18°.9 1.07981,84°.5 1.04661,77°.7	Nasini and Bern- heimer. G. C. I.
Propyl a naphtol	C ₁₅ H ₁₄ O C ₁₀ H ₇ O. C H ₃ C ₁₀ H ₇ , C O. C H ₃	1.04471, 18°.4 1.0974, 15° 1.124, 0°	15, 50. "" Staedel. Ber. 14, 898. Roux. Ann. (6), 12,
Anthraquinone	C ₁₆ H ₈ O ₂	1.488	886.
" "	"	1.426 1.425	Schröder. Ber. 18, 1070.
Phenanthrenequinone	"	1.419 J 1.404 } 1.405 }	41 66

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Asarone	C ₁₂ H ₁₆ O ₃	1.165, 18°)	
"	"	1.0743, 60° }	Butlerow and Rizza. B. S. C. 43, 114.
Salicin. Natural	C ₁₅ H ₁₈ O ₇	1.4388, 26° 1.4257	Piria. Ann. (3), 44, 868.
Santonin	C ₁₅ H ₁₈ O ₈	1.247, 2 0°.5	Trommsdorf. A. C. P. 11, 190.
"	"	1.1866	Carnelutti and Nasini. Ber. 13, 2210.
Metasantonin. M. 136° " 160°.5_	"	1.1649 }	
Santonid	"	1.1967	66 16
Metasantonid	"	1.046	"
Parasantonid	"	1.1957	"
"	"	1.2015, 20°	Nasini. Ber. 14.1518.
Santonic acid	C ₁₅ H ₂₀ O ₄	1.251	Carnelutti and Na- sini. Ber. 18, 2210.
Parasautonic acid	C ₁₆ H ₂₇ O ₄	1.2684	" "
Methyl santonate	C ₁₆ H ₂₂ O ₄	1.1667	"
Methyl parasantonate	a "	1.1777	" "
Ethyl santonate	C ₁₇ H ₂₄ O ₄	1.1481	" "
Ethyl parasantonate	C H 0	1.108	" "
Propyl santonate	C ₁₈ H ₂₆ O ₄	1.1100	
		1.120, 20	Nasini. G. C. I. 18,
Propyl parasantonate		1.153	165. Carnelutti and Na-
Isobutyl santonate	CHO	1 1181	sini. Ber. 18,2210.
Allyl santonate	C., H., O.	1 1484	
Styracin	C ₁₈ H ₂₈ O ₄ C ₁₈ H ₂₄ O ₄ C ₁₈ H ₁₆ O ₂	1.154)	Schröder. Ber. 18,
"	18 (16 2	1.159	1070.
Pimaric acid	C ₂₀ H ₃₀ O,	1.047, 18°	Siewert. J. 12, 510.
Sylvic acid	20,000	1.1611, 180	11 11
Tropilene	C ₂₀ H ₃₀ O ₂	1.01, 0°	Ladenburg. Ber. 14, 2130.
"	"	1.0091, 0°	Ladenburg. A. C. P. 217, 139.
Cinacrol	C ₁₀ H ₁₈ O ₅	1.05}	P. 217, 139. Hirzel. Watts' Dic- tionary.
Colophonone	С., Н., О	.84	Schiel. J. 18, 489.
Apiol	C ₁₁ H ₁₈ O C ₁₂ H ₁₄ O ₄	1.015	Lindenborn. Ber. 9, 1478.
Calophyllum resin	C., H., O.	1.12. cryst.	Levy. C. R. 18, 244.
Antiar resin	C ₁₄ H ₁₈ O ₄ C ₁₆ H ₂₄ O	1.082	Mulder. A. C. P. 28, 807.
Tannin from Persea lingue	C., H., O.	1,852, 109	Arata. Ber. 14, 2251.
Tannin from Persea lingue From Sequoia gigantea	C ₁₈ H ₂₀ O ₃	1.045	Lunge and Stein- kauler. Ber. 14.
Turmerol	C ₁₉ H ₂₈ O	.9016, 17°	2205. Jackson and Menke.
	l		A. C. J. 4. 871.
Guyaquillite Hartin	C ₂₀ H ₂₆ O ₈	1.115, 19°	Dana's Mineralogy. Schrötter. P. A. 59,
Resin from rosewood	C ₂₁ H ₂₁ O ₆	1.2662, 15°	45. Terreil and Wolff.
Cardol	C21 H31 O2	.978, 28°	J. C. S. 38, 559. Städeler. J. 1, 577.

Name.	Formula.	Sp. Gravity.	Authority.
Ivaol	C ₂₆ H ₄₀ O	.9346, 15°	Planta-Reichenau. Z. C. 18, 618.
Cholesterin	C ₂₆ H ₄₄ O	1.03, melted	Hlasiwetz. A.C.P.
11	"	1.046 1.047 20° {	Mehu. J. C. S. (2), 18, 247.
Waldivine	C ₃₆ H ₄₈ O ₂₀ . 5 H ₂ O	1.46	Tanret. J. Ph. C. (5), 3, 61.
Cochlearin	C ₆ H ₇ O ₂ . ?	1.248	Maurach. Watts' Dictionary.
Aloïsol	C ₆ H ₈ O ₈ . ?	.877, 15°	Rebiquet. Watts'
XanthilPicrolichenin	C ₄ H ₁₀ O ₈ . ?	.894	Couerbe.
Phycic acid	?	.896	Lamy. J. 5, 675.

XLVII. COMPOUNDS CONTAINING C, H, AND N.

1st. Cyanides and Carbamines of the Paraffin Series.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl cyanide, or aceto- nitril. " "	44	.8191. 16° (867.
nitril. " "	"	.8052, 0°	Vincent and Dela- chanal. C. R. 90, 747.
Methyl carbamine	44	.7155, 81°.2 .7557, 14°	Schiff. Bei. 9, 559. Gautier. Roscoeand Schorlemmer's
Ethyl cyanide, or propio- nitril.		.7017, 97°	Treatise.
14 11 11	16	.80101, 0° .70098, 97°.08_	Thorpe. J. C. S. 87, 871. Gladstone. Bei. 9,
	"	.7015, 97°	249. Schiff. Bei. 9, 559.
Ethyl carbamine	"	.787, 15°	Pelouze. Watts' Dictionary. Frankland and
Propyl cyanide, or buty- ronitril.			Kolbe. J. 1, 552.
Isopropyl carbamine			Gautier. B.S.C.11, 224.
Butyl cyanide, or valero- nitril.			A. C. P. 158, 187.
lsobutyl cyanide, or isovaleronitril.			Schlieper. A. C. P. 59, 15. Guckelberger. J. 1, 852.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Isobutyl cyanide, or isovaleronitril.	"	.8226, 0° .8146, 10° .8060, 20° .6921, 129°.3 .8010, 18°	Schiff. Bei. 9, 559.
Isobutyl carbamine	"	.7878, 4°	Gautier. Z. C. 12,
Isoamyl cyanide, or capro- nitril.	C ₅ H ₁₁ . C N	.8061, 20°	
		•	Gladstone. Bei. 9,
Oenanthonitril	i e		Schiff. Bei. 9, 559. Mehlis. A.C.P. 185, 868.
Heptyl cyanide Octyl cyanide			l 1888.
Isooctyl cyanide Lauronitril	C., H., C N	.8187, 14°	Felletár. J. 21, 684.
16	"	.8278, 15° }	Krafft and Stauffer. Ber. 15, 1728.
Myristonitril	C ₁₃ H ₂₇ . C N	.8281, 190)	" "
Palmitonitril	C ₁₅ H ₅₁ . C N	.8224, 81° } .8186, 40° }	
Stearonitril	''	.81 4 9. 4 5° }	
"	"	.7790, 99°.2)	

2d. Amines of the Paraffin Series.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Trimethylamine	N. (C H ₃) ₃	.678, 0°	Blennard. Roscoe and Schorlem- mer's Treatise.
Ethylamine Diethylamine	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6964, 8° .7262, 0°)	Wurtz. J. 8, 446.
"	" " "	.7159, 10° .7055, 20° .6949, 80° .6844, 40°	Oudemans. Bei. 6, 353. Values given for every 5°.
"	"	.6785, 50° .6680, 55° .7092, 19°	Gladstone. Bei. 9, 249.
"	16	$\begin{bmatrix} .6684 \\ .6686 \end{bmatrix}$ 56°	Schiff. Ber. 19, 560.
Triethylamine	N. (C ₂ H ₅) ₈	.7277, 20°	Brühl. Bei. 4, 779. Gladstone. Bei. 9, 249.

VIE.	FORMULA.	Sp. Gravity.	AUTHORITT.
- mile	N. (C ₂ H ₅) ₃	.6621.89°	Schiff. Ber. 19, 560.
	N H, C, H,	.7283, 0° }	Silva. Z. C. 12, 638.
		.7134, 21° 5	Linnemann. A. C.
	u		P. 161, 18.
		.6883, 49°.5 .690, 18°	Schiff. Ber. 19, 560. Siersch. J. 21, 682.
m::e		.756, 0°	Vincent. Ber. 19, ref. 680.
amine	N H. (C, H ₇),	.722, 22°	Siersch. J. 21, 682.
imine	N. (C ₃ H ₇) ₃	.7699, 0° } .6426, 156°.5 }	Zander. A. C. P.
	44	.771, 0°	214, 181. Vincent. Ber. 19,
			ref. 680.
	N H ₂ , C ₄ H ₉	.7333, 26°	A. C. P. 98, 124.
	"	.7401, 20°	Linnemann and Zotta. Ann. (4),
:mine	"	.7357, 15°	27, 275. Linnemann. Ann.
	"	.6865, 679,7	(4), 27, 288. Schiff. Ber. 19, 560.
- 2- 2"arbinolamine _	."	6987, 15° !	Linnemann. Ann. (4), 27, 268.
	"	.7137, 0°) .7054, 8° }	D. 3 - 40 D - 10
: ·	"	6931, 15° }	Rudneff. Ber. 12, 1023.
	**	.7155, 0°)	1020.
··		.7078, 7°.8 }	Brauner. A. C. P.
· · · · · · · · · · · · · · · · · · ·	N. (C, H ₉) ₃	791 0°)	192, 72.
	**	.7782, 20° }	Lieben and Rossi.
·	"	7677. 40°)	A. C. P. 165, 109.
tylamine	· ·	.785, 21°	Sachtleben. Ber. 11, 784.
amine	N H ₂ C ₅ H ₁₁	.7503, 18°	Wurtz. J. 3, 451.
	4.	.7517, 220.5	Wurtz. J. 19, 425. Plimpton. J. C. S.
	j	1	89, 83.
" Active		7725 00{	Plimpton. J. C. S.
·· Inactive		.7678 ; 0 } .6848, 94°.8	89, 331. Schiff. Bei. 9, 559.
nethylethylearbinol-		.755, 00	
"	"	.7611, 00)	Rudneff. J. C. S. 38,
	N H. (C ₅ H ₁₁) ₂	.7475, 15° 7935 00	545. Silma 7 C 10 157
'nenviamine	N H. (C ₅ H ₁₁) ₂	.; .7878, 0°)	Silva. Z. C. 10, 157. Plimpton, J. C. S.
" Inactive	"	. 7776, 14° }	89, 881.
Inactive Inactive Inactive Inactive	N. (C ₅ H ₁₁) ₃	1.7964, 180 }	
Heavlamine	N H ₂ . C ₆ H ₁₃	., ., ., ., ., ., ., ., ., ., ., ., ., .	Pelouze and Ca-
andary hexylamine	İ	.7638	hours. J. 16, 527. Uppenkamp. Ber.
mine	N H ₂ . C ₈ H ₁₇	700	8, 57.

3d. The Aniline Series.

NA	ME.	Formula.	Sp. Gravity.	AUTHORITY.
		C ₆ H ₅ . H ₂ N		Hofmann. A. C. P. 47, 50.
££	"	"	1.028	Fritzche. J. P. C. 20, 458.
**	"	"	1.0361, 0° }	Kopp. A. C. P. 98,
"	"	"	1.0251, 18°.7	867.
46	"	1	1.018, 15°.5	Städeler and Arndt. J. 17, 425.
	"	"	1.024, 17°.5	Lucius.
"	"	"	1.026, 15°	Kern. Ber. 10, 199.
"	"	"	.8527, 188°	Ramsay. J. C. S. 85, 468.
"	"	"	1.0379, 0°	Thorpe. J. C. S.
"	"	"	.87274, 188°.7_	∫ 87, 871.
44	"	"	1.02478, 16°.8_	Johst. P. A. (2), 20, 56.
"	"	"	1.0216, 20°	Brühl.
66 66	"	. "	1.0181, 25°.7	Schall. Ber.17,2555.
"	"		.9484, 100°.9 {	· .
"			1.016, 13° }	Gladstone. Bei. 9,
"	"	"	1.0822, 7°.5 } .8751, 188°.1	249. Schiff. Bei. 9, 559.
• "	"	"	.92256, 130°.9	Schiff. Bei. 9, 559.
44	"	"	.91858, 185°.1	† {
"	"	66	.90708, 147°.2	Taken at different
44	"	"	.90632, 148°	pressures, each
"	"		.89272, 1620	to. being the boil-
44	"	"	89288 1629 6	ing point at the
"	46	"	.88077 } 178°.9	pressure ob-
"	"	"	1.0000.	served. Neu-
66	"	"	.87443, 181°.6	beck. Z. P. C. 1,
66 66	,,		.87424, 181°.8_	655.
"	,,	"	.87884 87856 } 183°.1	1
"	"	"	1.0216, 20°	Knops. V. H. V.
			•	1887, 17.
66			1.02204, 20°	Weegmann. Z. P. C. 2, 218.
•		C ₆ H ₅ . C H ₃ . H N		Hofmann. Ber. 7, 526.
Benzylamine		C ₆ H ₅ . C H ₃ H ₂ N	.990, 14°	Limpricht. J. 20, 510.
Orthotoluidir	10	C ₆ H ₄ . C H ₃ . H ₃ N	1.0002, 16°.8	
"		44	1 000 000 0	Three prepara-
"			1.008, 20°.2	tions. Beilstein
"			1.002, 22° }	and Kuhlberg.
		1		Z. C. 12, 528.
"		"	1.046	Rüdorff. Ber. 12, 251.
"		"	.8302, 197°	Ramsay. J. C. S. 85,
44	j	"	.9986, 20°	468. Brūhl. Bei. 4, 780.
"		"	1.0038, 15°	Hirsch. Ber. 18,
				1511.
	,	•		

====					
N	AME.	FORMULA		Sp. Gravity.	Authority.
Orthotoluid	ine	С, Н, С Н, Н	N	.89397, 1420.7_	1
"		46		.89292, 148°.2_	Taken at different
**		"		.87527, 163°.2_	
		44		.87456 1689 9	pressures, each
46		11		000443	to being the boil-
46		"		.86078 } 1780.4	ing point at the
46		"		85914 i	pressure_ob-
44		44		.85185 \ 186°.9	served. Neu-
44		"	1	.84453, 198°	beck. Z. P. C. 1,
46		41		84848)	657.
"				.84320 1990-	1 {
Metatoluidi	ne	**		.998, 25°	Lorenz. C. N. 80,
		"		00500	166.
44				.88528 } 1490_	11
44		"		.00001	
44		44		.86525, 169°	Taken at different
"		"		.86283, 171°	pressures, each
44		46		.85281, 18 4°	t°. being the boil-
"		44		.85121, 185°	ing point at the
**		"		.84369, 191°	pressure ob-
"		**		.84293, 1930	served. Neu-
"		44		·83523 201°-	beck. Z. P. C. 1,
44		46		.88587 } 2010_	i 658.
44		4.6		92395 i	• 1
46		"		.83351 208°-	li
Paratoluidi	ne	44		00010 1400	l í
11		"		.88269, 148°.2_	11
44		44		86181)	Taken at different
44		٠		.86130 } 168°-	pressures, each
44		66	[95095 1780 A	to. being the boil-
46		4.4		.85025, 178°.4_	ing point at the
		46		.84858, 181°	pressure ob-
44		"		.88814	served. Neu-
"				.88850 }	beck. Z. P. C. 1,
				.83171 } 2000 -	658.
				101105.	
"				.82995, 201°.5.	<u> </u>
Dimethylan	illine	C ₆ H ₅ . (C H ₈) ₂ .			Hofmann. C. N. 27, 1.
44		"		.9645, 15°	Kern. Ber. 10, 199.
"		• "		.7941, 1900	Ramsay. J. C. S.
44		**		.9575, 20°	35, 468. Brühl. A. C. P.
				,	235, 1.
Ethylanilin	e	С. Н., С. Н. Н	N	.954, 180	Hofmann. J. 2, 398.
Ethylamide	benzene. 1.2	$ \begin{bmatrix} C_6 & H_5 & C_2 & H_5 & H \\ C_6 & H_4 & C_2 & H_5 & H \end{bmatrix} $	I. N	.983, 220	Beilstein and Kuhl-
13011 J IRILII CO	Componer 1.2 -	06 224. 03 226. 2	-, -, -	,	berg. A.C.P. 156,
		1			206.
4.6	1 4	"		.975, 220	
Mathyltolog	idina 19	C ₆ H ₄ . C H ₃ . C H	L H N	978 150	Monnet, Reverdin,
aremy iwiu	W.HC. 1.4	O6 114. O 115. O 1	.8 .4 14	.010, 10	and Nölting. Ber.
Xylidine. 1	.2.4	C ₆ H ₃ (C H ₃), I	H, N -	.9942, 200	11, 2278. Wroblevsky. Ber.
				1.0755, 17°.5	12, 1227. Jacobsen. Ber. 17,
44					160.
••				.991, 15°	Nölting and Forel. Ber. 18, 2671.
)			l '

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Xylidine. 1.8.4	C ₆ H ₃ (C H ₃) ₂ H ₂ N .	.985, 18°.5	Tawildarow. Z. C. 18, 418.
" "	"	.9184, 25°	Hofmann. Ber. 9.
11 11	"	.86651 .86687 } 159°.5	
11 11	- "	.84874, 1820	pressures, each
44 44		.88478, 197°	to. being the
11 11	"	.82874, 205°	boiling point at
" "	"	.81638 .81597 } 215°.5	the pressure ob-
"	"	.81597 } 210 .0	served. Neubeck
11 11	· - 1	.81454 } 218°	Z. P. C. 1, 662.
" 1.8.5	"	.81486 } 218° .9985, 0°	Washlamsha Ban
1.0.0	-	.9900, 0	Wroblevsky. Ber. 10, 1249.
" "	"	.972, 15°	Nölting and Forel. Ber. 18, 2678.
1.4.2	1	.980, 15°	Nölting and Forel. Ber. 18, 2680.
"		.9867, 19°	Gladstone. Bei. 9, 249.
Dimethyltoluidine. 1.2.		.9824	Hofmann. C. N. 27, 1.
" 1.3	"	.9368	ii ii
" 1.4. Propylaniline	C. H., C. H. H N	.988	'' Pictetand Crépieux.
	ì		Ber. 21, 1106.
Ethyltoluidine. 1.3	C ₆ H ₄ . CH ₃ . C ₂ H ₅ H N	.869, 200	Wroblevsky. J. C. S. (2), 13, 455.
" 1.4	1	.9391, 15°.5	Morley and Abel. J. 4, 497.
CumidinePseudocumidine. 1.8.5.6.	C, H, C, H, H, N	.8526	Nicholson. J. 1, 664
	i	1	27, 1.
Diethylaniline	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.989, 18° .9262, 15°	Hofmann. J. 2, 899. Giannetti. Ber. 14.
		.940, 18°	
Dimethylxylidine	C ₆ H ₃ (CH ₃) ₂ (CH ₃) ₂ N	.9298	
Tetramethylaniline	C ₆ H (C H ₃) ₄ H ₂ N	.978, 24°	27, 1. Hofmann. Ber. 17, 1912.
Isoamylaniline	C ₆ H ₅ . C ₆ H ₁₁ H N	.928, 15°	Pictet and Crépieux. Ber. 21, 1106.
Diethyltoluidine. 1.4	C ₆ H ₄ . C H ₈ (C ₂ H ₅) ₂ N	.9242, 15°.5	Morley and Abel. J. 7, 498.
Dimethylmesidine. 1.8.5.		į	Hofmann. C. N. 27, 1.
Methylamylaniline			Claus and Rauten- berg. Ber. 14, 622.
Diisopropylaniline Diisopropylaniline	C ₆ H ₅ (C ₃ H ₇) ₂ N	.9240, 0° }	Zander. A. C. P. 214, 181.
**	1 11	7.0014 221	
Trimethyldiethylaniline	$\begin{bmatrix} \mathbf{C_{6} \cdot (CH_{3})_{3}(C_{2}H_{5})_{2}H_{2}N} \end{bmatrix}$.971	Ruttan. Ber. 19, 2384.
Allylaniline	_ C ₆ H ₅ . C ₈ H ₆ H N	.982, 25°	Schiff. J. 17, 415.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Diallylaniline	C ₆ H ₅ (C ₃ H ₅) ₂ N	.9680, 0° }	Zander. A.C.P. 214, 181.
Diphenylamine	N H. (C ₆ H ₈) ₂	1.156 1.161 1.8298, 810°	Schröder. Ber. 12, 561. Ramsay. J. C. S. 35,
Methyldiphenylamine	N. (C ₆ H ₅) ₂ C H ₃	1.0476, 20°	468. Brühl. A. C. P. 235, 1.
Dibenzylamine	N H. (C, H,)2	1.083, 14°	Limpricht. J. 20, 510.
Amidobenzylamine	C ₇ H ₁₀ N ₂	1.08, 20°	Amsel and Hof- mann. Ber. 19, 1288.
Metamidodimethylaniline	C ₈ H ₁₂ N ₂	.995, 25°	Groll. Ber. 19, 200.

4th. The Pyridine Series.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Pyridine	C ₅ H ₅ N	.9858, 0°	Anderson. J. 10, 897.
"	66	.924, 22° .8617, 117°	Thenius. J. 14, 502. Ramsay. J. C. S. 35, 463.
"		.9802, 0°	Richard. Ber. 13, 198.
14	"	.8823 .8826 } 115°	Schiff. Ber. 19, 560.
"	66	1.0033, 0°	289.
a Picoline	C ₆ H ₇ N	1	60. 98.
"	"	.9618, 0°	Anderson. J. 10,897.
"	66	.8197, 184°	Anderson. J. 10, 897. Thenius. J. 14, 502. Ramsay. J. C. S. 35, 468.
"	"	.9560, 0°	Richard. Ber. 18, 198.
"		.96161, 00	Thorpe. J. C. S.
"	"	.88258, 123°.5 .94093, 23°.5	} 87, 871. Gladstone. Bei. 9,
		.94090, 200	249.
"	"	.96559, 0°	Lange. Ber. 18, 8436.
"	"	.96477, 4°	Dürkopf and Schlaugk. Ber. 20, 1660.
"	"	.9656, 0°	Ladenburg. C. R. 103, 692.
β Picoline	"	.97712, 0° }	Hesekiel. Ber. 18,
11		.94965, 80°	8091.
"	"	.9771, 0°	Ladenburg. C. R. 108, 692.

Name.]]	FORMULA.	Sp. Gravity.	Authority.
γ Picoline	C ₆ H ₇	N	.9708, 0° .9708, 0°	Lange. Ber. 18, 8436.
			.9708, 0°	Ladenburg. C. R. 108, 692.
	"		.9742, 0°	Ladenburg. Ber. 21, 287.
a Lutidine	C, H,	N	.928	Williams. J. 7, 494.
"			.9467, 00	Anderson. J. 10, 897.
"	::		.945, 22° .9467, 0°	Thenius. J. 14, 502.
44			7016 1549	Williams. J. 17, 487.
"			.7916, 154°	Ramsay. J. C. S. 35, 468.
"	"		.9877, 0°	198.
46	"		.9545, 0°	Ladenburg and Roth. Ber. 18, 52.
" α—γ	"		.9508, 0°	Ladenburg and Roth. Ber. 18, 918.
" a—a	"		.9424, 0°	Ladenburg. C. R. 108, 692.
β Lutidine	"		.9555, 0° .9598, 0°	Williams. J. 17, 437. Coninck. C. R. 91,
a Ethylpyridine			0405) (296. Ladenburg. Ber. 20,
a Ethylpyridine	44		.9495 .9498 } 0° {	1658.
7 Ethylpyridine			.9522, 0° }	Ladenburg. Ber. 18,
/ Menyipyriamo	"		.9858, 200 }	2968.
a Collidine		N	.921	Anderson. J. 7, 490.
"			.9439, 00	Anderson. J. 10, 897.
"			.958, 220	Thenius. J. 14, 502.
			.948	Wurtz. Ber.12,1710.
"	"		.7889, 178°	Ramsay. J. C. S. 85, 468.
. "	"		.9291, 0°	Richard. Ber. 18, 198.
			.917, 15°	Hantzsch. Ber. 15, 2914.
	"		.9286, 16°.8	Weidel and Pick. S.W. A. 90, 972.
	"		.9224, 15°	Mohler. Ber. 21, 1014.
β Collidine	"		.9656, 0°	Coninck. C. R. 91, 296.
Aldehyde collidine	"	/	.9889, 4°	Dürkopf. Ber. 18, 920.
a Isopropylpyridine	l			Ladenburg. C. R. 103, 692.
7 Isopropylpyridine	"		.9408, 0°	Ladenburg and Schrader. Ber. 17, 1121.
	"		.9489, 0°	Ladenburg. C. R. 103, 692.
γ Propylpyridine	"		.9893, 0°)	
a Propylpyridine			.9411, 0° }	Two lots. Laden-
"	"	37	.9306, 10° })	burg. Ber. 17,772.
Purvoline	C ₉ H ₁₁	, N	.966, 220	Thenius. J. 14, 502.
"	· · "		.916, 14°	Engelmann. J.C.S.
				50, 259.

Name:	FORMULA.	Sp. Gravity.	AUTHOBITY.
Parvoline	""	, ,	Dürkopf and Schlaugk. Ber. 21,882.
Coridine Rubidine	C ₁₀ H ₁₅ N	1.017, 22° 1.024, 22°	Thenius. J. 14, 502.
ViridineAllyl pyridine	C ₈ H ₉ N	.9595, 0°	Ladenburg. Ber. 19, 2578.
Piperidine. From piperine "Synthetic		.881 4, 4° }	Ladenburg and Roth. Ber. 17,513.
11	"	.7791 .7801 } 105°	Schiff. Ber. 19, 560.
a Methylpiperidine	C ₆ H ₁₃ N	.7810) .8601, 0°	
"	"	.860, 0°	Roth. Ber. 18, 47. Ladenburg. C. R. 103, 747.
β Methylpiperidine	"	.8686, 4°	Hesekiel. Ber. 18,
	"	.8684, 0°	910. Ladenburg, C. R. 108, 747.
a—a Dimethylpiperidine	C ₇ H ₁₅ N	.8492, 4°	Ladenburg and Roth. Ber. 18, 54.
a-γ Dimethylpiperidine.	"	.8615, 0°	Ladenburg. C. R. 108, 747.
a Ethylpiperidine		.8674, 0°	Ladenburg. Ber. 18, 2968
γ Ethylpiperidine		1	Ladenburg. Ber. 18, 2964
Methyl-a-ethylpiperidine		ŀ	Ladenburg. C. R. 103, 747.
a Propylpiperidine. Coniin	"	.89 .878	Geiger.
		.846, 12°.5	Blyth. J. 2, 388. Petit. B. S. C. 27, 387.
"		.886	Schorm. Ber. 14, 1767.
44 44	"	.918, 0° }	
" "	"	.842, 90°	Two preparations.
"	"	.886, 00) }	Schiff. A. C. P. 166, 88.
" "	"		100, 00.
" "	"		Ladenburg. Ber. 17,
		.875, 0°	774.
"		.8626, 0°	772. Ladenburg. Ber. 19,
γ Propylpiperidine	"	.870, 0°	
a Isopropylpiperidine	"	.8660, 0°	772. Ladenburg. Ber. 17,
	"	.8676, 0°	1676. Ladenburg. C. R. 108, 747.

Name.	Formula.	Sp. GRAVITY.	AUTHORITY.
Methyl - α γ - isopropylpi- peridine.	C, H, N		Ladenburg. C. R. 108, 747.
Copellidine	C ₈ H ₁₇ N	.8658, 0° }	Dürkopf. Ber. 18, 920.
Methylcopellidine	C ₉ H ₁₉ N	.8519, 0°)	11 11
"	. ""	.8440, 18° }	
Dimethylcopellidine a Pipecoleine	C ₁₀ H ₂₁ N	.8801, 0°	Ladenburg. Ber. 20,
γ Pipecoline	C ₆ H ₁₈ N	.8674, 0°	Ladenburg. Ber. 21, 288.
a Isopropylpiperideine		1	Ladenburg. Ber. 20, 1647.
Hydrolutidine. a-7	1		Ladenburg and Roth. Ber. 18, 919.
Hydrotropidine	C ₈ H ₁₅ N	.9866, 0° }	Ladenburg. Ber. 16,
a Coniceine		.9259, 15°) .893, 15°	1409. Hofmunn. Ber. 18,
Paradiconiine			10. Schiff. A. C. P. 166,
	10 11	,	88.
Quinoline or chinoline	C, H, N	1.081, 10°	Hofmann. A. C. P. 47, 79.
16 66	"	1.1081, 0°)	•
" "	46	1.0947, 20°	Skraup. Ber. 14,
" "	"	1.0699, 50°) 1.1055, 0° }	1002. Coninck. J. C. S. 44,
	"	1.0965, 11°.5	89.
	"	1.096 1.1021 } 10° {	Gladstone. Bei. 9, 249.
	"	.9211, 284°	Schiff. Ber. 19, 560.
Lepidine	C ₁₀ H ₉ N	1.072, 15°	Williams. J. 9, 586.
Orthomethylquinoline	"	1.0852, 0° }	Skraup. Ber. 14,
"	(+	1.0586, 50°	1002.
Metamethylquinoline	66	1.0889, 00)	C) 70 44
"	44	1.0722, 20° }	Skraup. Ber. 15, 2255.
Paramethylquinoline	"	1.0815, 00)	2200.
	6.	1.0671, 20°	Skraup. Ber. 14,
Dimethylquinoline		1.0560, 50°) 1.0752, 4°	1002. Berend. Ber. 18, 8165.
" α—γ	"	1.0611, 15°	Beyer. J. P. C. (2), 88, 402.
Metadipyridyl	C ₁₀ H ₈ N ₂	1.1757, 0°)	Skraup and Vort-
ű		1.1635, 20°	mann. M. C. 4,
" Isodipyridine	C ₁₀ H ₁₀ N ₂	1.1498, 50°) 1.08	598. Ramsay. P. M. (5),
	"	1.1245, 18°	6, 29. Cahours and Etard. Ber. 18, 777.
Dipicoline	C ₁₃ H ₁₄ N ₂	1.12	Ber. 18, 777. Ramsay. P. M. (5), 6, 31.
"	"	1.077	Anderson.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Nicotine	C ₁₀ H ₁₄ N ₂	1.027, 15° 1.018, 80° 1.0006, 50° .9424, 101°.5 1.01837, 10°.2_	Barral. J. 1, 614. Landolt. A. C. P. 189, 241. Skalweit. Ber. 14,
Hydronicotine	C ₁₀ H ₁₆ N ₂	.993, 17°	1809. Etard. C. R. 97, 1218.
Dipiperidyl	C ₁₀ H ₂₀ N ₂	.9561, 4°	Liebrecht. Ber. 19, 2591.
a Stilbazoline	C ₁₃ H ₁₉ N	.9874, 0°	Baurath. Ber. 21, 818.
Dihydro-a-stilbazol	C ₁₈ H ₁₈ N	1.0465, 0°	" "

5th. Miscellaneous Compounds.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Dimethyl hydrazin	C ₂ H ₈ N ₂	.801, 11°	Renouf. Ber. 18, 2171.
Ethylene diamine	C ₂ H ₄ (N H ₂) ₂	.902	Rhoussopolos and Meyer. J. C. S. 42, 940.
Propylene diamine	C ₃ H ₆ (N H ₂) ₂	.878, 15°	Hofmann. Ber. 6, 810.
Pentamethylene diamine	C ₅ H ₁₀ (N H ₂) ₂	.9174, 00	
β Methyltetramethylene diamine.		.8886, 20°	Oldach. Ber. 20, 1655.
Ethylene cyanide	C ₂ H ₄ (C N) ₂ C ₃ H ₆ (C N) ₂	1.028, 45° .9961, 11°	Simpson. J. 14,654. Henry. Ber. 18, ref. 380.
Crotonitril		.8889, 12° }	Will and Körner.
Allyl carbamine	C ₃ H ₅ . C N	.812, 0° }	A. C. P. 159, 105. Lieke. A. C. P. 112, 819.
Allylamine	C ₈ H ₅ . H ₂ N	.864, 15° .7754, 10°.5	Oeser. J. 18, 506.
"	"	.7775, 11° .7693, 17°.5 .7684, 19°	Foursamples. Glad- stone. Bei. 9, 249.
Triallylamine	(C, H.). N	.7261, 56°)	Schiff. Bei. 9, 559. Zander. A. C. P.
Propylallylamine		.0020, 1000 1	214, 181. Liebermann and Paal. Ber. 16, 528.
Isoamylallylamine	C ₅ H ₁₁ . C ₅ H ₅ . H N	.7777, 18°	" " "

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
n ,		1 075	
Pyrrol	, ,	į.	899.
"		.7276, 188°	85, 468,
**	16	.9752, 12°.5	Weidel and Ciami- cian. Ber. 18, 71.
"	"	.9606	Gludstone. Bei. 9, 249.
MethylpyrrolEthylpyrrol	C ₅ H ₇ N	.9208, 10°	Bell. Ber. 10, 1866. Bell. Ber. 9, 936.
66	1 66	1 141149 1719	Bell. Ber. 10, 1862.
AmylpyrrolPyrrolidin	C, H ₁₅ N C, H ₉ N	.8786, 10°	Bell. Ber. 10, 866.
ryrrondin	C ₄ H ₉ N	871 100	Petersen. Ber. 21, 290.
Methylpyrrolidin	C ₅ H ₁₁ N	.871, 10° } .8654, 0°	Oldach. Ber. 20, 1155.
Methylphenylpyrazol	C, H, N,	1.085) 150	Claisen and Stylos.
		1.081 } 155 {	Ber. 21, 1143 and 1147.
Ethylphenylpyrazol			Rer 21 1148
Propylphenylpyrazol a Glucosine	C ₁₉ H ₁₄ N ₂	1.0485, 15°	
β Glucosine	C, H ₁₀ N,	1.012, 0° .9826, 12°	" Morin. Ber. 21, ref.
Methylglyoxalin	C4 H6 N2	1.0863	Schulze. Ber. 14,
"	"	1.0859, 28°	424. Goldschmidt. Ber. 14, 1846.
Ethylglyoxalin			Wallach. Ber. 16,
Oxalmethylethylin	"	1.0051, 11°	Radziszewski. Ber. 16, 487.
Propylglyoxalin			Walfach. Ber. 15, 650.
Oxalethylethylin	"	.9820	Wallach and Strick- er. Ber. 18, 512.
	"	.980	Radziszewski. Ber. 16, 487.
Oxalethylpropylin	C, H,12 N2,	.9818	<i>(i (</i>
OxalpropylethylinOxalpropylpropylin	C ₈ H ₁₄ N ₂	.9520	Wallach and Schulze. Ber. 14, 424.
··	"	.951	
Amylglyoxalin	"	.940, 18°	Wallach. Ber. 15, 651.
Oxalethylisoamylin			Radziszewski and Szul. Ber. 17, 1291
Oxalpropylisoamylin	C, H, N,	.9149, 180	1201.
Oxalpropylisoamylin Oxalisobutylisoamylin Oxalisoamylisoamylin	Cu H, N,	.9048, 16°.1	"
Uxalisoamylisoamylin	C ₁₂ H ₂₂ N ₂	.9029, 19°	"

F			
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Oxalmethyloenanthylin	" " -		Karcz. Ber. 20, ref.
OxalethyloenanthylinOxalpropyloenanthylin	C ₁₁ H ₂₀ N ₂	.9210, 16°.5 .9192, 17°	
Benzonitril	C ₆ H ₈ . C N	1.0073, 15°	Fehling. A. C. P. 49, 91.
"	66	1.0230, 0° }	Kopp. A. C. P. 98,
"	"	1.0084, 169.8	867.
"		1.0084, 16°.8 } .8330, 192°	Ramsay. J. C. S. 35,
"		1.0052, 18°	1 24 9.
Benzyl cyanide, or a tol- uic nitril.		i '	l R 198
	"	i	519.
Phenylpropionitril	i	i .	Hofmann. Ber. 7, 520.
Orthoxylyl cyanide		1.0156, 22°	Radziszewski and Wispek. Ber. 18, 1279.
Metaxylyl cyanide	"	1.0022, 220	
			46 66
Cumonitril	C. H.,. C N	.765, 140	Hofmann. J. 1, 595.
Azobenzene	C., H., N.	l 1.180 ነ	·
"	· "	1.196	Schröder. Ber. 12,
14	"	1.202	561,
"	"	1,228	
44	"	.8256, 293°	Ramsay. J. C. S. 35,
Phenyl hydrazin		ł	Fischer. A. C. P. 190, 82.
" "		1.097, 22°.7	Fischer. A. C. P. 286, 198.
Chinaldin	C. H. N.	1.0646, 200	Küsel. Ber. 19, 2249.
ChinaldinPiperyl hydrazin	C ₅ H ₁₂ N ₂	.9288, 14°.6	Knorr. A.C.P. 221, 801.
Diethylaniline azylin	C ₂₀ H ₂₈ N ₄	1.107, 15°, s	Lippmann and Fleissner. Ber. 16, 1417.
Methyl indol	CHN	1 0707 00	Lipp. Ber. 17, 2511.
Methyl indolCyanoconicine	C ₉ H ₁₄ N ₂	.98	E. v. Meyer. B.SC. 89, 124.
Ptomaine	C ₈ H ₁₁ N	.9865, 0°	Coninck. C. R. 106, 859.
"Acetylamine. ?"	C ₂ H ₅ N. ?	.975, 15°	Natanson. J. 9, 527.
		!	'

XLVIII. COMPOUNDS CONTAINING C, H, N, AND O. 1st. Nitrites and Nitrates of the Paradin Series.

NAME.	FORMULA.	Sp. GRAVITY.	AUTHORITY.
Methyl nitriteEthyl nitrite	C H ₅ . N O ₂	.991 .886, 4°	
	"	.947, 15°	Ann. (2), 87, 19. Liebig. A.C. P. 80, 148.
" "	"	.900, 15°.5	Mohr. J. 7, 561. Brown. J. 9, 575.
Isopropyl nitrite	1 66	.856, 0° .844, 24°}	l
Isobutyl nitrite	C ₄ H ₉ . N O ₂	.89445, 0° .8771, 16° .82568, 50°	Chapman and Smith. J. C. S. 22, 153.
Trimethylcarbyl nitrite	"	.8915, 0°	Bortoni. Ber. 19, ref.
Amyl nitrite	"	.9020}	Rieckher. J: 1, 699. Hilger. Am. Ch. 5, 281.
<i>u u</i>	ł	.8784, 21°	Gladstone. Bei. 9, 249.
Dimethylethylearbyl ni- trite.		.9038, 0°	512.
Octyl nitrite			l 1887.
Methylhexylcarbyl nitrite	(i	.881, 0°	Bertoni. G.C. I. 16, 512.
Methyl nitrate	C H ₃ . N O ₈	1.182, 20°	Dumas and Peligot. Ann. (2), 58, 89.
Ethyl nitrate	C ₂ H ₅ . N O ₈	1.112, 17°	Millon. Ann. (8), 8, 236.
11 11	"	1.1822, 0° } 1.1128, 15°:5 }	Kopp. A. C. P. 98, 367.
tt tt	"	1.0948, 17° .9991, 87°	Wittstein. J.18, 470. Ramsay. J. C. S. 85,
" "		1.1067, 25°	468. Gladstone. Bei. 9, 249.
Isopropyl nitrate	C ₃ H ₇ . N O ₃	1.054, 0° 1.086, 19° }	Silva. Z. C. 12, 637.
Isobutyl nitrate	C ₄ H ₉ . N O ₈	1.0384, 0° }	Chapman and Smith. J. C. S. 22, 153.
Amyl nitrate	C ₅ H ₁₁ . N O ₃	.902, 22°	Rieckher. J. 1, 699. Hofmann. J. 1, 699. Chapman and Smith.
" " Cetyl nitrate	"	.8698, 147°	J. 20, 550. Schiff. Bei. 9, 559.
Cetyl nitrate	C ₁₆ H ₃₅ . N O ₈	.91	Champion. C. R. 78, 571.

2d. Nitro-Derivatives of the Paraffin Series.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Nitromethane	C H, N O, C, H, N O,	1.0236, 101°.5. 1.0582, 13°	Schiff. Bei. 9, 559 Meyer and Stuber Ann. (4), 28, 138
u	"	.9329, 114°.5 1.0550, 18°	Schiff. Bei. 9, 559.
Nitroheptane			Beilstein and Kur- batow. Ber. 18 2029.
Dinitroethane Dinitropropane Dinitrobutane	C ₂ H ₄ (N O ₂) ₂ C ₃ H ₆ (N O ₂) ₂ C ₄ H ₈ (N O ₂) ₂	1.8508, 28°.5 1.258, 22°.5 1.205, 15°	Meer. Ber. 8, 1080 Meer. Ber. 8, 1087 Chancel. Ber. 16 1495.
Dinitrohexane	" " "	1.1284, 10° 1.1284, 10° 1.1235, 15° 1.1185, 20° 1.1135, 25° 1.1085, 80° 1.1084, 85°	Chancel. C. B. 100, 601.
Ethyl nitroncetate	1	l	Forerand. O. R. 88, 975.
Nitrocaprylic acid	i	1	289.
Ethyl nitrocaprylate			Wirz. A. C. P. 104, 290.
Nitrosodiethyline Nitrosodipropylamine	C ₆ H ₁₆ N ₂ O	.951, 17°.5 .924, 14° .981, 0°	Geuther. J. 16, 409. Siersch. J. 20, 537. Vincent. Ber. 19, ref. 680.
Derivative of nitroethane.			Götting. A. C. P.
" " <u></u>	C ₆ H ₉ N O	.9750, 15° 1.0	Ssokolow. Ber. 19, ref. 540.

3d. Aromatic Nitro-Compounds.

N	AME.	Formu	LA.	Sp. Gravity.	AUTHORITY.
Nitrobenze	ne	C ₆ H ₅ . N O ₂		1.209, 15°	Mitscherlich. P.A.
44		66		1.2002, 0° }	Kopp. A. C. P. 98,
46		"		1.1866, 14°.4	867.
. "		"	·	1.2159, 5°-10°_)
"		"		1.2107, 100-150	Regnault. P. A.
"		"		1.2504, 15°-20°	62, 50.
44		"		1.206, 20°	Naumann. Ber. 10, 2015.
"		**		1.0210, 220°	Ramsay. J. C. S. 85, 468.
44		44		1.2089, 20°	Brühl. Bei. 4, 780.
46		**		1.1740, 25°.5	Schall. Ber. 17,
44		"		1.0851, 116°.2	2555.
**		16		1.2121, 70.5	Gladstone. Bei. 9,
44		64		1.07134, 150°.7	249.
44		"		1.07088, 158°.8	
64		"		1.06276, 158°.4	
44		"		1.04807, 178°.2	i pressures, each
"		"		1.04477, 186°.6	t. being the
ti.		"		1.08246, 189°.4	I Coming bound at
44		"		1.08059, 189°.4	the pressure ob-
		46		1.01794, 2000.1	served. Neu-
		44		1.00846, 207°.8	
66				1.00722, 208°.2	
"		44		1.00718, 208°.2	
Dinitroben	zene	C. H. (N O.	,),,	1.8690, 98°.1	Schiff. A. C. P. 228
Nitrotolue	ne	C ₆ H ₄ . CH ₃ .	N O2	1.18, 16°.5	Deville. Ann. (8)
"		í.		1.1281, 54°	8, 175. Schiff. A.C.P. 228 247.
44				1.1649, 15°.5	Gludstone. Bei. 9 249.
Orthonitro	toluene	"		1.162, 28°)	Beilstein and
"		"		1.168, 28°.5	Kuhiberg. A.C P. 155, 17.
66		"		1.159	Leeds. Ber. 14, 488
64		"		1.02509 } 160°	l 1
**		44		1.02488	l i
44		4.6		.99814, 186°.1	Taken at differen
16		"		.99679, 187°.1	pressures, each
44		"		.98408 } 1970.7	l to being the
"		"		1.98388 (*** **	boiling point a
44		44		.97149, 208°.7	the pressure ob
"		"		.97087, 209°.2	served. Neu-
**		16		.96192) 2180	beck. Z. P. C. 1
44		**		1 aaamm > 410°	655.
"		"		l oenes i	
"		, "		.96032 \ 219°.8	11
Metanitrot	oluene	"		1.168, 220	Beilstein and Kuhl
				,,	

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Metanitrotoluene	C4H4. CH2. NO	1.01158 } 171°	1
"	"	1.01128	i
"	"	98775 } 1940.1	Taken at different
"	"	.98787 } 134 .1	pressures, each
"	"	.97227 } 207°.8	to. being the
"	"	1.8(108)	boiling point at
		96027 2180.8	the pressure ob-
"		1.00000	served. Neu-
"		.95099 } 2270	beck. Z. P. C.1,
"		.900 04)	655.
"		.94984, 227°.5	j
"		94988 2280.5	
Paranitrotoluene		1.00668, 177°.5	₹
Laranitiomidene	"		Taken at different
"		00070 1	pressures, each
"	1 "	.98364 201°	to being the
		.96812, 218°	boiling point at
14	"	.95455, 225°	the pressure ob-
"	"	1 04591)	served. Neu-
"	"	.94518 \ 257.0	beck. Z. P. C. 1,
"		.94842, 2890	655.
Dinitrotoluene	$C_6 H_3$. $C H_3 (N O_3)_2$	1.8208, 70°.5	Schiff. A. C. P. 228, 247.
Nitroörthoxylene	C ₆ H ₃ (C H ₃) ₂ N O ₂ -	1.189, 20°	Jacobsen. Ber. 17, 160.
"	. " -	1.147, 15°	
Nitrometaxylene. 1.8.2	. " -	1.126, 17°.5	Ts.wildarow. Z. C. 18, 418
" "		1.126, 24°.5	Beilstein and Kuhl-
"	. " -	1.112, 15°	berg. Grevingk. Ber. 17, 2480.
" 1.8.4 _	. " -	1.124, 25°	Beilstein and Kuhl- berg.
"	- " -	1.185, 15°	
	_	.98667, 176°	1)
	- " -	.98254, 179°.5	11
" "	- " -	98057, 182°	Taken at different
" -	- " -	.97535, 186°	pressures, each
" " -	- • " -	95681 \ 2060	to. being the
	- " -	90042)	boiling point at
" - " -	- " -		the pressure ob-
" " -	- " -	92964 } 2880	served. Neu-
	- " -	_[.92945]	beck. Z. P. C. 1
	- ,,	91794 } 2430	655.
" " -	- "	_ .91828	11
Nitroparaxylene		1.182, 15°	Noelting and Forel
Nitrocymene	C ₁₀ H ₁₃ . N O ₂	1.0885, 18°	Ber. 18, 2680. Landolph. C. C. 4 596.
Dinitrocymene	C ₁₀ H ₁₂ (N O ₂) ₂	1.206, 18°.5 1.204, 21°	" "
Nitronaphthelene	C ₁₀ H ₇ . N O ₂	1.821 1.841 } 4° {	Schröder. Ber. 12

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Nitronaphthalene	C ₁₀ H ₇ . N O ₂	1.2226, 61°.5	Schiff. A. C. P. 223, 247.
Orthonitrophenol	"	1.451 } }	Schröder. Ber. 12, 561.
"	"	1.2945, 45°.2	Schiff. A. C. P. 228, 247.
Paranitrophenol	"	1.467 1.469 } 4° {	Schröder. Ber. 12, 561.
"		1.2809, 114°	Schiff. A. C. P. 223, 247.
Trinitrophenol, or picric acid.	, , , , , ,		Rüdorff. Ber. 12, 251.
"		$\left\{ \begin{array}{c} 1.750 \\ 1.777 \end{array} \right\} 4^{\circ} \left\{ \begin{array}{c} \end{array} \right.$	Schröder. Ber. 12, 561.
Methyl orthonitrophenate			Post and Mehrtens. Ber. 8, 1552.
Methyl paranitrophenate	CH OCH (NO.	1.288, 20°	11 11
Methyl α dinitrophenate Methyl β dinitrophenate	C ₆ H ₈ . OCH ₈ . (NO ₂) ₂	1.819, 20°	
Methyl trinitrophenate Orthonitrobenzoic acid	$ \begin{bmatrix} C_6 H_4 \cdot O C H_3 \cdot (NO_3)_3 \\ C_6 H_4 \cdot C O O H \cdot N O_2 \end{bmatrix} $	1.408, 20° 1.5588	Post and Frerichs.
		1.574 } 4° {	Ber. 8, 1549. Schröder. Ber. 12, 1611.
Metanitrobenzoic acid		1.4721	Post and Frerichs. Ber. 8, 1549.
" "	"	1.492 } 40 {	Schröder. Ber. 12; 1611.
Paranitrobenzoic acid	"	1.496 } \	Post and Frerichs.
Nitroanisol	C, H, OCH, NO.	1.249, 26°	Ber. 8, 1549. Brunck. J. 20, 619.
Orthonitroisobutylanisol _ Paranitroisobutylanisol		1.1861, 20°	Riess. Z. C. 14, 39.
Metanitraniline	C ₆ H ₄ . H ₂ N. N O ₂	1.480, 4°	Schröder. Ber. 12, 561.
Paranitraniline	"	1.415 } 4°	" "

4th. Miscellaneous Nitrates, Nitrites, and Nitro-Compounds.

NAME.	Formula.	Sp. GRAVITY.	AUTHORITY.
Allyl nitrite	1		Bertoni. G. C. I. 15, 868.
Allyl nitrate	C ₃ H ₅ . N O ₃	1.09, 10°	Henry. B. S. C. 18, 232.
Ethylene nitrosonitrate Ethylene mononitrate	C ₂ H ₄ . N O ₂ . N O ₃ C ₂ H ₄ . O H. N O ₃	1.472	Kekulé. Ber. 2, 329. Henry. Ann. (4), 27. 243.
Ethylene dinitrate	C ₂ H ₄ (N O ₃) ₂	1.4887, 8°	Champion. Z. C. 14
a Propylene dinitrite	C ₃ H ₆ (N O ₂) ₂	1.144, 0°	
Propylene dinitrate	C ₃ H ₆ (N O ₃) ₂	1.335, 50,	512. Henry. Ann. (4), 27, 243.
Ethylene acetonitrate Glyceryl trinitrite	C, H, C, H, O, NO,	1.29, 18° 1.291, 15°.5	Masson. Ber. 16.
			1699.
	C ₃ H ₅ N O ₅	1.35, 12°.8	Henry. Ann. (4), 28, 415.
Ethyl nitroglycollate Ethyl nitrolactate	C, H, N O ₅	1.2112, 15°.2 1.1584, 18°	16 66 66
Ethyl nitromalonate	C ₅ H ₀ N O ₅	1.149, 15°	Conrad and Bischoff. Ber. 18, 599.
Ethyl nitrotartronate	C, H ₁₁ N O,	1.2778, 16°	Henry. Ann. (4), 28,
Ethyl nitromalate	C ₈ H ₁₃ N O ₇ C ₃ H ₅ N ₈ O ₉	1.2094, 16°	46 46
Nitroglycerine		1.600 }	De Vrij. J. 8, 626.
"		1.5958	Liebe. J. 13, 453.
"	"	1.60	Sobrero. J. 13, 458. Champion. Z. C. 14, 850.
66 66	66 66	1.6, 15°	Kern. C. N. 31, 153.
"	"	1.735, s	Beckerhinns. J. R. C. 4, 148.
		1.601, 14°.5	Hay and Masson. J. C. S. 48, 742.
Nitromannite	C ₆ H ₈ N ₆ O ₁₈	1.604,0°, cryst.)
	"	1.446)	Sokoloff. Ber. 12,
"	"	1.503 fused 1.537	698.
Trinitrolactose	C ₁₂ H ₁₉ N ₃ O ₁₇	1.479, 00	Gé. Ber. 15, 2289.
PentanitrolactoseAcetonitrose	C ₁₂ H ₁₉ N ₅ O ₁₇ C ₁₂ H ₁₇ N ₅ O ₂₁ C ₁₄ H ₁₉ N O ₁₂	1.684, 0° 1.3487, 18°	Colley. B. S. C. 19,
Acetoethyl nitrate Derivative of menthol	C ₀ H ₁₄ N ₂ O ₇ C ₁₀ H ₁₉ N O ₂	1.0451, 19° 1.061, 15°	Nadler. J. 13, 403. Moriya. J. C. S. 39, 77.

5th. Miscellaneous Amido-Compounds.

Namė.	Formula.	SP. GRAVITY.	AUTHORITY.
Ethylhydroxylamine Ethylenediemine hydrate_	N H. O H. C, H ₅ (N H ₂), C, H ₄ . H ₂ O	.8827, 7°.5 .970, 15°	Gürke. Ber. 14, 258. Rhoussopolos and Meyer. J. C. S. 42, 940.
Oxypropylpropylamine	NH.C ₃ H ₇ .C ₃ H ₆ OH	.9018, 18°	Liebermann and Paal. Ber. 16, 528.
Oxyisoamylamine			Radziszewski and Schramm. Ber.
Dioxyisoamylamine Trioxyamylamine	N H. (C ₅ H ₁₁ O) ₂ N (C ₅ H ₁₁ O) ₃	.9500, 14° .879, 22°	J. Erdmann. J. 17,
Formamide	N H ₂ . C O H	1.1462, 19°	Gladstone. Bei. 9, 249.
Methylformamide	N H. C H ₈ . C O H	1.011, 19°	Linnemann. J. 22, 601.
Ethylformamide	N H. C ₂ H ₅ . C O H	.967, 2° .952, 21°	Wurtz. J. 7, 567. Linnemann. J. 22, 602.
DiethylformamideAcetumide	N (C, H ₅) ₃ . C O H	.908, 19°	<i>u u</i>
44	*"**	1.18 } 14° 1.159, 4°	Mendius. B. D. Z. Schröder. Ber. 12, 561.
EthylacetamideEthyldiacetamide	N H. C, H, C, H, O. N. C, H, (C, H, O),	.942, 4°.5 1.0092, 20°	Wurtz. J. 7, 566. Wurtz. Ann. (2),
Dimethylacetamide	N (C H ₈) ₂ . C ₂ H ₈ O _	.9405, 20°	42, 55. Franchimont. R. T. C. 2, 829.
Diethylacetamide			Wallach and Ka- mensky. A. C. P. 214, 285.
Propionamide	N H ₂ . C ₃ H ₅ O	1.030 } 4° {	Schröder. Ber. 12, 561.
Amidoacetic acid, or gly- cocoll.	C ₂ H ₅ N O ₂	1.1607	Curtius. B. S. C. 89, 169.
Ethyl diethylglycocollate_	1 *		Kraut. J. R. C. 4, 198.
Amidocaproic acid, or leu- cine.			Engel and Vilmain. B. S. C. 24, 279.
	"		Lippmann. Ber. 17, 2837.
Uxamide	C ₂ H ₄ N ₂ O ₄	1.627 1.657 1.687	Schröder. Ber. 12, 561.
Oxamide Dimethyloxamide Diethyloxamide Asparagine	C ₄ H ₈ N ₂ O ₂	1.281 1.307 4° {	Schröder. Ber. 12, 1611.
Diethyloxamide	C ₆ H ₁₃ N ₂ O ₃	1.164 1.178 4°	
Asparagine	C ₄ H ₈ N ₂ O ₈ . H ₂ O	1.519, 14° 1.552	Watts' Dictionary. Rüdorff. Ber. 12, 252.
Amidosuccinic, or aspartic	C, H, N O,	1.6613, active_ 1.6682, inactive	Pasteur. J. 4,889.

Name.	FORMULA.	Sp. Gravity.	Authority.
Allylsuccinimide	C ₇ H ₉ N O ₂	1.1432, 12° 1.1112, 50°	Moinė. J. C. S. 52, 489.
Ethyl amidoacetacetate	C ₆ H ₁₁ N O ₂	1.0677, 100° J 1.014, 80°	Duisberg. Ber. 15, 1886.
Ethylamidopropiopropionate.	C ₈ H ₁₅ N O ₂	.9774, 15°	
Mucamide	C ₆ H ₁₂ N ₂ O ₆	1.589, 13°.5	Mulaguti. C. R. 22, 854.
Benzamide	N H ₂ . C ₇ H ₅ O	1.844 (=)	Schröder. Ber. 12, 1611.
Amidobenzoic acid	N H ₂ . C ₇ H ₅ O ₂	1 1.43143 1	ii 61
Amidomethylphenol Dimethylanisidine	C, H, N O	1.108, 26° 1.016, 23°	Brunck. J. 20, 620. Mühlhäuser. A. C. P. 207, 249.
Ethyl orthoamidophenetol	C ₁₀ H ₁₅ N O	1.021, 18°.8	Förster. J. P. C. (2), 21, 847.
Methylformanilide	C ₈ H ₉ N O	1.097, 18°	
Ethylformanilide	C, H ₁₁ N O	1.068, 16°	
Propylformanilide	C ₁₀ H ₁₈ N O	1.044, 160	
Isoamylformanilide	C ₁₂ H ₁₇ N O	1.004, 16°	l
Acetanilide	C ₈ H ₉ N O	1.099, 10°.5 1.205 } 4° }	Williams. J. 17, 424. Schröder. Ber. 12,
"	"	1.205 } 4° {	1611.
Benzanilide	C ₁₈ H ₁₁ N O	1.806 1.321 4°	46 46
Oxethenaniline	C ₈ H ₁₁ N O	1.11, 0°	Demole. J. C. S. (2), 12, 77.
a Ethylbenzhydroxamic acid.	C ₉ H ₁₁ N O ₂	1.209	Gürke. Ber. 14, 258.
β Ethylbenzhydroxamic acid.	"	1.185	Gürke. Ber. 14, 259.
Ethyl ethylbenzhydroxa- mate.	C ₁₁ H ₁₅ N O ₂		
Ethyl a dibenzhydroxa- mate.	C ₁₆ H ₁₅ N O ₈	1.2433, 18°.4	Gürke. Ber. 14, 258.
Ethyl β dibenzhydroxamate.		1.2895, 18°.4	
TyrosineCerbamide, or urea	C, H ₁₁ N O ₃	1.456	
Cerbamide, or urea	C H, N, O	1.85	Proust.
" " ———		1.80, 12°	Bödeker. B. D. Z.
· · · · · · · · · · · · · · · · · · ·	"	1.85	Schabus. Schröder. Ber. 12,
11 11	"	1.328 1.388 } 4°{	561.
Ethyl carbamide	C ₃ H ₈ N ₂ O	1.209 }	Two samples. Leuckart. J. P.
Diethyl carbamide	C ₅ H ₁₁ N, O	1.218, 18° }	C. (2), 21, 11. Schröder. Ber. 13,
Benzyl phenyl carbamide	C ₁₄ H ₁₆ N ₂ O	1.048 } .9168, 18°	Gladstone. Bei. 9,
Ethyl carbamate, or ure-thane.	C ₈ H ₇ N O ₂	.9862, 21°	249. Wurtz. J. 7, 565.

6th. Miscellaneous Cyanogen Compounds.

Name.	FORMULA.	Sp. Gravity.	Authority.
Ethyl cyanate Tertiary butyl cyanate	C ₂ H ₅ . C N O C ₄ H ₉ . C N O	1.1271, 15° .8676, 0°	Cloez. J. 10, 886. Brauner. Ber. 12,
Cyanaldehyde	C2 H3 O C N	.881, 15°	1875. Chautard. C. R. 106, 1168.
Ethyl cyanformate	C ₄ H ₅ N O ₂	1.0189, 18°.5	Henry. C. R. 102,
Ethyl cyanacetate Diisobutyryl dicyanide	C ₅ H ₇ N O ₂ C ₁₀ H ₁₄ N ₂ O ₂	1.0664, 18°.5 .96	768. " Moritz. J. C. S. 40,
Ethylene cyanhydrin	C ₂ H ₄ . O H. C N	1.0588, 0°	18. Erlenmeyer. A. C.
Ethyl acetylcyanacetate	C ₇ H ₉ N O ₈	1.102, 19°	P. 191, 276. Haller and Held. Ber. 15, 2868.
Ethyl methylacetylcyan- acetate.	C ₈ H ₁₁ N O ₃	.996, 20°	Held. B. S. C. 41, 880.
Ethyl ethylacetylcyanac-	C ₉ H ₁₈ N O ₈	.976, 20°	
etate. Ethoxyacetonitril	C ₄ H ₇ N O	.918, 6°	
"	и	.9098, 20°	
Phenoxyacetonitril	C ₈ H ₇ N O	1.09, 17°.5	niak. Fritzsche. Ber. 12,
Mandelic nitril	"	1.124	
Hydroxisovaleronitril	C ₅ H ₉ N O	.95612, 0°	444. Lipp. A.C. P. 205,
Hydroxycaprylonitril	C ₈ H ₁₅ N O	.9048, 17°	Sigel. A. C. P.
Triethoxyacetonitril	C ₈ H ₁₅ N O ₃	1.0030, 15°.5	177, 107. Bauer. A.C.P. 229, 163.
Valeracetonitril	C ₁₃ H ₂₄ N ₂ O ₃	.79	Schlieper. A. C. P.
Acetoxyacetonitril	C4 H5 N O2	1.1008, 18°.5	49, 19. Henry. C. R. 102,
Acetoxypropionitril Cyanōil	C ₅ H ₇ N O ₃ C ₆ H ₁₁ N O	1.077, 18°.5 1.009	768. " Rossignon. A. C. P. 44, 301.

7th. Miscellaneous Compounds.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Ethyl carbimidePhenyl carbimide	C ₃ H ₅ N O C ₇ H ₅ N O	.8981 1.092, 50°	Wurtz. J. 7, 564. Hofmann. P. R. S. 19, 108.
Ethylmethyl acetoxim Trimethylene diethylalkin Tetrethylallylalkin	C. H. NO	.9199, 4° .9002, 4°	Janny. Ber. 15, 2779. Berend. Ber. 17, 510.
Methylphenylethylalkin _ Piperpropylalkin Hydroxypicoline	C ₁₁ H ₃₆ N ₃ O	1.08065, 0° .9456, 0° 1.008, 18°	Laun. Ber. 17, 676. Laun. Ber. 17, 680. Etard. J. C. S. 40, 1046.
Collidine monocarbonic ether.		1.0815, 15°	R. Michael. A. C. P. 225, 121.
Collidine dicarbonic ether	C ₁₄ H ₁₉ N O ₄		Hantzsch. Ber. 15, 2918.
Nitroxylpiperidine	C ₅ H ₁₀ N ₂ O	1.0659, 15°.5	Wertheim. J. 16, 440.
Acetpiperidid	C ₇ H ₁₃ N O	1.01106, 9°	Wallach and Ka- mensky. A. C. P. 214, 288.
Acetylcopellidine	C ₁₀ H ₁₉ N O	.9787, 0° } .9660, 21° } 1.1665, 0° }	Dürkopf. Ber. 18, 924.
Parachinanisol	C ₁₀ H ₉ N O	1.1665, 0°)	Skraup. Ber. 18,
Base from ethylamine camphorute.	C ₁₄ H ₂₄ N ₂ O	1.1402, 50°) 1.0177, 15°	ref. 681. Wallach and Ka- mensky. A. C. P. 214, 245.
Uric acid	C ₅ H ₄ N ₄ O ₈	1.855	Schröder. Ber. 13, 1070.
Hippuric acid Ethyl hippurate	C, H, N O, C, H, N O,	1.308, s 1.043, 28°, s	Schabus. J. 8, 410. Stenhouse. A. C. P. 81, 148.
Ethyl glycocholete	C ₂₈ H ₄₇ N O ₆	.901	Springer. A. C. J. 1, 181.
Indigotine	C ₁₈ H ₁₀ N ₂ O ₂		Weltzien's "Zu- sammenstellung."
Creatine hydrate	C ₄ H ₉ N ₃ O ₂ . H ₂ O	1.80 1	Watts' Dictionary.
Cuffeine Piperine	C ₈ H ₁₀ N ₄ O ₂ . H ₂ O C ₁₇ H ₁₉ N O ₃	1.23, 19° 1.1931, 18°	Pfaff. Watts' Dict. Wackenroder. Watts' Dict.
Strychnine	C ₂₁ H ₂₂ N ₂ O ₂	1.859, 18° 1.18	F. W. Clarke. Blunt. J. C. S. 50, 1047.
Morphine	C ₁₇ H ₁₉ N O ₃ . H ₂ O	1.817}	Schröder. Ber. 18, 1070.
Morphine butyrate		1.215, 18°	Decharme. J. 16, 445.
Morphine oxalate Morphine lactate Codeine	C ₃₆ H ₃₆ N, O ₉ . 2 H ₂ O C ₂₀ H ₂₅ N O ₆ C ₁₈ H ₂₁ N O ₈ . N ₂ O ₋	1.286, 15° 1.3574 1.300	" " " " " " " " " " " " " " " " " " " "
66	••	1.811}	Schröder. Ber. 13,

Name.	Formula.	FORMULA. Sp. GRAVITY.	
Thebaine	C ₁₉ H ₂₁ N O ₃	1.282 }	Schröder. Ber. 18, 1070.
Laudanine	C ₂₀ H ₂₅ N O ₄	1.255 }	" "
Papaverine	C ₂₁ H ₂₁ N O ₄	1.808 1.817 1.887	66 66
Cryptopine	C ₂₁ H ₂₃ N O ₅	1.851	£6 £ £
Nurcotine	C ₂₂ H ₂₈ N O ₇	1.891	" "
Pelletierine	C ₈ H ₁₅ N O	.988, 0°	Tanret. Ber. 18, 1031.
Paraffinic acid	C ₁₃ H ₂₆ N O ₅	1.14, 15°	Champion and Pellet. B.S.C. 18, 247.

XLIX. CHLORIDES, BROMIDES, AND IODIDES OF CARBON.

1	NAME.	FORMULA.	Sp. Gravity.	Authority.	
Carbon tet	rachloride	C Cl4	1.599	Regnault. Ann. (2), 71, 888.	
"	"	"	1.56	Kolbe. A. C. P. 54, 146.	
"	"	"	1.62983, 0°	Pierre. Ann. (8), 88, 210.	
66	"	44	1.567, 120	Riche.	
"	"	"	1.5947, 20°	Haagen. P.A. 181,	
46	"	44	1.4658, at the boiling p't.	468. ´	
44	"	"	1.63195, 00	Thorpe. J. C. S.	
**	"	"	1.47999, 76°.74	87, 199.	
44	"	"	1.6084, 9°.5	Schiff. G. C. I. 18,	
44	"	"	1.4802, 75°.6	177.	
46	"	"	1.60500, 15°	Perkin. J. P. C. (2),	
"				82, 528.	
			1.58878, 25° }		
Tetrachlore	ethylene	C ₂ Cl ₄	1.619, 20°	Regnault. Ann. (2), 71, 353.	
**		44	1.6490, 0°	Pierre. Ann. (3), 38, 280.	
"		"	1.612, 10°	Geuther. A. C. P. 107, 212.	
"	•	"	1.6595, 0°	Bourgoin. Ber. 8, 548.	
"		66	1.6190, 20°	Brühl. Bei. 4, 780.	
**		"	1.6812, 9°.4)	
44		"	1 4404')	Schiff. G. C. I. 18,	
44		"	1.4484 120°_	177.	
Hexchloret	hana	C, Cl	1.619	Regnault. Ann. (2),	
	Mano	- •		71, 874.	
"		"	2.011	Schröder. Ber. 18, 1070.	

NAME	FORMULA.	Sp. GRAVITY.	AUTHORITY.	
Thicarbonyl chloride Carbon tetrabromide Carbon sulphobromide Brome-trichlormethane """ """ """ """ """ """ """	C S Cl2	1.585, 228°	Ber. 21, 102. Bolas and Groves. J. C. S. 24, 780. Hell and Urech. Ber. 16, 1148. Paterno. J. P.C. (2), 5, 99. Thorpe. J. C. S. 37,	
Dibrom-tetrachlorethane Dibrom-hexchlorpropane Carbon tetriodide			Malaguti. Ann. (3), 16, 24. Cahours. Gustavson. C. R. 78, 1126.	

L. COMPOUNDS CONTAINING C, CL, AND O.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Carbonyl chloride	C O Cl ₂	1.432, 0° }	Emmerling and Lengyel. Z. C. 13, 189.	
Trichloracetyl chloride	C ₂ Cl ₄ O	1.603, 18°	Malaguti. Ann. (8), 16, 9.	
4 4		1.6564, 0° 1.44517, 118° -	Thorpe. J. C. S. 37, 371.	
Trichloracetic anhydride		1.6908, 20°	Anthoine. J. Ph. Ch. (5), 8, 417.	
Tetrachlormethyl formate	C ₂ Cl ₄ O ₂	1.724, 12° 1.6525, 14°	Cahours. J. 1, 676.	
Hexchlorethyl formate	C ₃ Cl ₆ O ₂	1.705, 18°	Cloez. Ann. (3), 17, 299.	
Hexchlormethyl acetate.		1.691, 18°	Cloëz. Ann. (3), 17, 312.	
Perchlorethyl acetate	C ₄ Cl ₈ O ₂	1.79, 25°	Léblanc. Ann. (3), 10, 202.	
"		1.78, 22°	Léblanc. Ann. (8), 10, 208.	

NAME.	Formula.	Sp. Gravity.	AUTHOBITY.	
Hexchlormethyl oxide	C ₂ Cl ₆ O	1.594	Regnault. Ann. (2), 71, 403.	
Perchlorethyl oxide	C ₄ Cl ₁₀ O	1.9, 14°.5	Malaguti. Ann. (8), 16, 14.	
Hexchloracetone	C ₃ Cl ₆ O	1.75, 10° 1.744, 12°	Plantamour. Cloëz. Ann. (6), 9, 145.	
Chloroxethose	C ₄ Cl ₆ O	1.654, 21°	Malaguti. Ann. (8), 16, 20.	
Derivative of sodium cit-	C ₅ Cl ₁₀ O ₂	1.66	Watts' Dictionary.	
By action of P Cl ₈ on succinyl chloride.	C4 Cl8 O	1.684	Kauder. J. P. C. (2), 28, 191.	

LI. COMPOUNDS CONTAINING C, H, AND CL.

1st. Chlorides of the Paraffin Series.

Name.		FORMULA.		Sp. Gravity.	Authority.	
Methyl	chloric	le	CH, C	1	.99145, 25°.7)
"	"		"			11
**	"		66		.92880, 18°.4	.]
"	"		66		.91969, 17°.9	Vincent and Dela-
"	"		66		.90875, 28°.8	l chanal. Bei. 8,
66	"		"		.89638, 80°.2	. 882.
**	"		"		.97886, 39°	.l j
Ethvl cl	aloride		C, H, (01	.874, 50	Thénard.
ű	66		-"		.92138, 00	Pierre. C. R. 27, 218.
64	"		"		.9253, 0°	Darling. J. 21, 328.
44	46		"		.9176, 8°	Linnemann. A.C.P. 160, 195.
41	"		"		.8510, 12°	Ramsay. J. C. S. 85,
46	"		"	******	.92295, 15° `)	Perkin. J. P. C. (2)
			1	~	.91708, 25°	81, 481.
Propyr	CDIGTIC	le	C8 117 (C1	.9156, 00)	Diame and Ducket
46	44		۱		.8918, 19°.75	Pierre and Puchot.
	"		"		.8671, 89°)	Ann. (4), 22, 281.
41			;;	F	.9160, 18°)	Linnemann. A.C.P.
44	"		1		.8959, 19° }	161, 88 and 89.
44	"		1			De Heen. Bei. 5, 105.
44	"		"			Zander. A.C.P. 214
44	**					181.
46		·	"		.8561, 46°	Schiff. G. C. I. 13, 177.
66	"		"		.8898, 200	Brühl. Bei. 4, 778.
**	"		"		.89296, 15°)	Perkin. J. P. C. (2)
"	**		"		.88125, 25°	81, 481.
Isoprop	vl chl	oride	16		1 0 - 4 - 20 - 2	Linnemann.
200 pr op	,	"	"		.8722, 140	Linnemann. A. C.
			1		1	P. 161, 18.

NAME.		Formula.		Sp. Gravity.	Authority.	
Isoprop		ride	C, H,	01	.8825, 0°)	Zander. A.C.P. 214,
"		"	"		.8826, 86°.5 .86884, 15°	181. Perkin. J. P. C. (2),
D . 1		"	a II	~	.85750, 25°	81, 481.
Butyl	nioma	e	C, H,	C1	.880 .9074, 0°)	Gerhard. J. 15, 409. Lieben and Rossi.
44			"		.8874, 20°	A. C. P. 158, 137.
"	"		"		.8972, 14°	Linnemann. Ann.
"	"		u`		.8094, bp	(4), 27, 268. Ramsay. J. C. S. 35, 463.
44	"		"		.8794, 140	De Heen. Bei. 5, 105.
		ide	"		.8958, 00 `	·1_
"	"		"		.8651, 27°.8	Pierre and Puchot.
"	"		"		.8281, 59° ·8798, 15°	Ann. (4), 22, 810. Linnemann. A. C.
			ļ		3,00,10	P. 162, 1.
"	"		"		.8626, 19°	Gladstone. Bei. 9, 249.
"	"		"		·8078, 68°	- Schiff. Bei. 9, 559.
"			::		.88856, 150	Perkin. J. P. C.
		yl chloride.	"		.87898, 25° .8658, 0°	(2), 81, 481. - Puchot. Ann. (5), 28, 549.
	"		"		.84712, 15°	Perkin. J. P. C.
37	11 1 4	" .1 ablamida	C 15	(1)	.83683, 25°	(2), 81, 481.
Norma	penty	l chloride	U5 H11	Cl	.9018, 0° '.8834, 20°	Lieben and Rossi.
"	44	"	**		.8680, 40°	
**	"	"	"		.8782, 20°	- Lachowicz. A. C. P.
Amyle	hloride		"		8859, 0°	220, 191. Kopp. A. C. P. 95,
ű	44		44		.8625, 25°.1	∫ 807.
**	"		"		.89584, 0°	
"	**		"		.8750 } 20°	Two products. Schorlemmer. J.
4.6	44		"		.8177)	19, 527.
**	"		. "		.7801, bp	Ramsay. J. S. C. 35, 463.
**	16				.8716, 14°	De Heen. Bei. 5, 105.
"					8708, 20°	Lachowicz. A. C. P.
"	"		"		.7908, 99°.5	220, 190. Schiff. Ber. 19, 560.
44	44		"		88006, 15°	Perkin. J. P. C.
44	ш		. "		.87164, 25°	(2), 81, 481.
**	44	Active	. "	••	.886	Le Bel. B. S. C. 25, 546.
"	u	Inactive	. "		8928, 0°	Balbiano. Ber. 9, 1487.
Methv	lpropy	lcarbyl chlo-	"		.912, 00	Wagnerand Saytz-
ride.	"		44		.891, 21°	eff. A. C. P. 179, 321.
Diethy	lcarby	l chloride	- "		.916, 00 }	
Dimost	u hwlath	rloonbul oblo	- "		895, 21° } -	W T 10 #10
ride.		vlcarbyl chlo	1		888, 0°	Wurtz. J. 16, 516. (Wischnegradsky.
1140.	"	"	"	,	889, 0°	A.C.P. 190, 884-
	••	••	ı "		_ .870, 19°	886.

NAME.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Dimethylethylcarbyl chlo-	C. H. Cl	87086 15°)	Perkin. J. P. C. (2)
Dimethylethylcarbyl chlo- ride. "			81, 481.
Hexyl chloride	C. H., Cl	.86219, 25° } .892, 16°	Pelouze and Cu-
		.892, 23°	hours. J. 16, 525
16 . 16	"	.895, 18°	21, 886. Cahours and Demar-
Secondary hexyl chloride_			cay. C. R. 80, 1570. Domac. Ber. 14
Chloride from tetrame-	"	.8948, 14°)	1712.
thylethane. "	"	1.8874, 22° }	Schorlemmer. J. 20
	"	.8759, 84°)	567.
Dimethylisopropylcarbyl	"	.8966, 0° {	Pawlow. A. C. P.
· · · · · · · · · · · · · · · · · · ·		.8784, 19° }	196, 122.
Pinacolyl chloride	"	.8991, 0°	Friedel and Silva. J. C. S. (2), 11, 488.
Heptyl chloride	C H Cl	.9988, 15°	
" " "	O7 1115 OI	.890, 200	Petersen. J. 14, 618. Pelouze and Ca-
		.000, 20	1 7 4F 000
" "	"	.8787, 18°.5	Two preparations.
" "	"	.8725, 20° }	Schorlemmer. A.
44 44	"	.8965, 190	C. P. 186, 257.
"	**	.891, 190	Schorlemmer.
	46	.881, 16°	Cross. J. C. S. 82, 123.
Isoheptyl chloride	"	.8814, 16°.5	
" "	"	.8780, 18°.5	Schorlemmer. A. C.
" "	"	.8757. 220)	P. 186, 257.
Octyl chloride		.892, 18°	Schorlemmer. J. 15, 886.
ıı ıı	"	, ,	Pelouze and Ca- hours. J. 16, 528.
" "		.8802, 16°	
" "	"	.850	Cahours and Demar- cay. C. R. 80, 1571.
"	"	.87857, 15°)	Perkin. J. P. C.
" "	"	.87192, 25°	(2), 31, 481.
Isooctyl chloride	"	.8834, 10°.5	Schorlemmer. J. 20,
" "	"	.8617, 36° }	567.
Methylhexylcarbyl chlo-	"	.87075, 15°	Perkin. J. P. C.
ride. " "		.86388, 25° }	(2), 81, 481.
Nonyl chloride. B. 1960		.899, 16°	Pelouze and Ca- hours. J. 16, 529.
	"	.8962, 14°	Thorpe and Young. A. C. P. 165, 1.
" " B. 182°	"	.911, 28° }	Lemoine. B. S. C.
_""		.908, 25°.8 (41, 161.
Decatyl chloride	C ₁₀ H ₂₁ Cl	.908, 19°	
Dodecatyl chloride	C ₁₂ H ₂₅ Cl	.983, 220	Pelouze and Ca-
Cetyl chloride			hours. J.16,530. Tüttscheff. J. 13, 406.

2d. Chlorides of the Series C_n H_{in} Cl_i .

	Name.		F	ORMULA.	Sp. Gravity.	AUTHORITY.
Methylene	e chlorid	le	С Н, С	Öl ₂	1.844, 18°	Regnault. Ann. (2), 71, 878.
"	44		"		1.360, 0°	Butlerow. J. 22, 348.
4.6	4.6		**		1.377765, 00	Thorpe. J. C. S.
	44		"		1.30098, 41°.6	87, 871.
4.6	46		"		1.83771, 15°)	Perkin. J. P. C. (2).
	"		"		1.32197, 25°	32, 523.
Ethylene	chloride		C, H,	Cl ₃	1.256, 120	Regnault. Ann. (2),
44	"		٠,		1.247, 18°	58, 307. Liebig. A.C.P. 214.
"	**		"		1.28034, 0°	Pierre. C. R. 27, 213.
44	44		"		1.2562, 20°	Haagen. P. A. 131,
••					1	117.
44	"		"		1.26, 14°	Maumené. J. 22, 346.
"	"		**		1.272, 14°	Gladstone and Tribe.
"	46		**		1.1356, 8 4°	C. N. 29, 212. Ramsay. J. C. S. 35,
					1	463.
66	"		"		1.28082, 0°) Thorpe. J. C. S. 37,
66	"		66		1.15685, 88°.5	371.
"	44		"		1.2521, 20°	Brühl. A. C. P. 208, 1.
66	44		"		1.1576, 83°.2	Schiff. Ber. 15, 2973.
46	44		11		1.2656, 9°.8	Schiff. G. C. I. 13,
66	44				1.1576, 83°.3	177.
44	"		"		1.272, 14°	Gladstone. Bei. 9,
66	61		۱ ،،		1.25991, 15° \	249. Perkin. J. P. C. (2),
"	44					90 509
66					1.25014, 20°	32, 523. Weegmann. Z. P. C.
	,, .	,	"		,	2, 218.
Ethylider		de			1.174, 17°	Regnault. Ann. (2), 71, 357.
44	"		44		1.24074, 0°	Pierre. C. R. 27, 213.
"	"		"		1.189, 4°.8	
"	"		**		1.198, 6°.5	Darling. J. 21, 329.
"	"		"		1.201, 18°	Gladstone and Tribe. C. N. 29, 212.
"	44		"		1.1743, 20°	Brühl. A. C. P.
44	"		"		1.1070, 56°	203, 1. Ramsay. J. C. S. 35,
"	66		"		1.20894, 0°	468. Two samples.
"	"		;;			Thomas for
"					1.10928, 59°.9	
"	"				1.2049, 0°	37,188 and 371.
"	"		"		1.1895, 9°.8	Cobier C C T 10
"	"				1.11425, 569.7	Schiff. G. C. I. 13,
"	"				1.11555, 56°.5) 177. Porkin I B (1/2)
"	"		"		1.18450, 15°	Perkin. J. P. C. (2),
"	"		"		1.17120, 25°	32, 523.
			-		1.17508, 20°	Weegmann. Z. P. C. 2, 218.
Propylen	e chlorie	de	C ₃ H ₆	Cl ₂	1.151	Cahours. J. 8, 496.

Name.		FORMULA.	Sp. Gravity.	AUTHORITY.
Propylene chloride		C ₈ H ₆ Cl ₂	1.1656, 14°	Linnemann. A. C.
££ .£		44	1.184,00	P. 161, 18.
44 41			1.155, 25°	
		(4	1.182, 0°	Friedel and Silva.
44 44		"	1.158, 25°	Z. C. 14, 489.
46 61		66	1.0470, 970.5	Schiff. Bei. 9, 559.
Trimethylene chlor	ide	"	1.201, 15°	Reboul. J. C. S. 36,
"		((1.1896, 17°.6	
Dimethylmethylen ride. Methylchlo	e chlo-	"	1.117, 0°	Friedel.
11de. Methylchio	"		1.06, 16°	Linnemann. A. C. P. 138, 125.
46	"	"	1.0827, 16°	
"	"	"	1.1058, 0°)	1, 101, 10.
44	"	"		11
"	"	"		Friedel and Silva
66	"	"		Z. C. 14, 489.
66	"	(1	11.000000	lΚ
"	"	"	1 10	11
"	"	"	1	Perkin. J. P. C
44	"	"	1.08480 25° 1.08476 25°	(2), 32, 523.
Propylidene chlori	de	"	1.148, 100	Reboul. C. R. 82 878.
Isobutylene chloric	a۴	C. H. CI	1.112, 18°	Kolbe. J. 2, 888.
" "		C4 H8 Clg	1.0958, 0° }	Kopp. A. C. P. 95
u u		"		807.
Isobutylidene chlo	ride	"		
Amylene chloride.		C. H., Cl.	1.058.99	Guthrie. J. 14, 665
" "		C ₅ H ₁₀ Cl ₂	1.2219.00	Bauer. J. 19, 581
Isoamylidene chlor	ide	"	1.05, 24°	Ebersbach. J. 11 297.
Chloramyl chloride	.	и	1.194.00	Buff. J. 21, 883.
		C ₆ H ₁₂ Cl ₂	1.087, 200	Pelouze and Ca hours. J. 16, 525
"	B. 168°	"	1.0527, 110	Henry. C. R. 97, 260
Heptylene chloride			1.0295, 100	Husemann. B. D. Z
Tebraiene entoure	,	07 14 U12	1.0200, 10	I II GOULAND. D. D. Z

3d. Miscellaneous Non-Aromatic Chlorides.

Name.		FORMULA.		Sp. Gravity.	Authority.
Chloroform		C H Cl		1.48, 18°	
44		"		1.491, 17°	199. Regnault. Ann. (2), 71, 881.
**		"		1.493)	, ,
"		"		1.497	Swan. J. 1, 681.
4.6		"		1.418 }	Soubeiran and
66		"		1.496, 12° }	Mialhe. J. 2, 408.
66		"		1.500, 15°.5	Gregory. J. 8, 454.
"		"		1.52528, 0°	Pierre. C. R. 27, 218.
"		"		1.512, 12°	Schiff. A. C. P. 107, 68.
44		"		1.49	Flückiger.
"		"		1.472, 16°.5	Geuther.
44		"		1.507, 17°	Flückiger. Z. A. C.
44		"		1.502	5, 302. Rump. C. C. (8), 6,
66		"		1.500, 15°	84. Remys. J. C. S. (2),
"				1.8954, 68°	18, 489.
"					468.
"		. "		1.52657, 0°	Thorpe. J.C.S. 37,
"		""		1.40877, 61°.2	\$ 871.
"		1		1.4018 680	Schiff. Ber. 14,
"		1		1.40014	2768–2766.
"				1.4081, 60°.6	Schiff. Ber. 15, 2972.
"		· ''		1.49089, 29°	Nasini. G. C. I. 18, 185.
46		. "		1.5089, 11°.8	Schiff. G. C. I. 18,
44		. "	,	1.4081, 60°.9 §	177.
				1.48978, 180.5	With intermediate
44		"		1.45695, 85°.80	
44		. "		1.50027 } 150	
"		. "		1.50085	Perkin. J. P. C.
44		. "		1.48482 } 25°	$\int_{0}^{2} (2), 82, 528.$
46				1.48492)	
Trichloreth	ane	CH ₃ .	C Cl _a	1.372, 16°	Regnault. Ann. (2), 71, 864.
44		. "		1.34651, 0°	Pierre. C. R. 27, 218.
"		- "		1.82466, 150	Perkin. J. P. C. (2),
"		- "		1.81144, 25°	82, 528.
Chlorethyl	ene dichloride	O H, C	ol. C H Cl ₂	1.422, 17°	
44		_	"	1.42234, 00	Pierre. C. R. 27, 218.
"	" _		"		-11
44	" _	_	"	1.2948)	Bobier O O T 10
"	" _	_	"	1.2946 } 118°.	Schiff. G.C.I.13,
"	" _	_	"	1 4 00 4 5 1	177.
"	" -	-	"		Delacre. Bull. Acad. Belg. (8), 18, 250.
"	"	_1	"	1.45527, 150	Perkin. J. P. C.
	" -	-,		1.44303, 25°	(2), 82, 528.

			i
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetrachlorethane. B. 102°	C H ₂ Cl. C Cl ₂	1.580, 17°	Regnault. Ann. (2), 71, 366.
" В. 135°	"	1.576, 19°	Regnault. Ann. (2), 68, 162.
	1	1.61158, 0°	Pierre. C. R. 27, 218.
Acetylene tetrachloride	CHCl2CHCl2	1.614, 00 }	Paterno and Pisati.
61 41	"	1.522, 100°.1	Z. C. 14, 885.
Pentachlorethane	C H Cl ₂ . C Cl ₃	1.644	Regnault. Ann. (2), 71, 868.
. "	1	1.66257, 0°	Pierre. C. R. 27, 213.
	46	1.71, 0° }	Paterno. Z. C. 12,
"	"	1.69, 18° }	245.
"		1.70898, 0° 1.46052, 159°.1	Thorpe. J. C. S. 87, 371.
Dichlorethylene	C ₂ H ₂ Cl ₂	1.250, 15°	Regnault. Ann (2), 69, 155.
Trichlorpropane Trichlorhydrin	C ₃ H ₅ Cl ₃	1.847	Cahours. J. 3, 496.
Trichlorhydrin	CH ₂ CI. CHCI. CH ₂ CI	1.41,00)	Three separate prod-
"			ucts. Linnemann. A. C. P. 136, 51.
4	"	1.41, 0°	Oppenheim. J. 19, 521.
"	" ·	1.89805 } 150-	
"	"	1.89886	Perkin. J. P. C.
	 	1.38758 } 250	(2), 32, 528.
Isotrichlorhydrin	CH ₂ Cl. CH ₂ . CHCl ₂ .	1.38783 } ^{28°} - 1.362, 15°	Romburgh. Ber. 14, 1400.
Allylene tetrachloride	C ₃ H ₄ Cl ₄	1.47, 18°	Borsche and Fittig. J. 18, 818.
" "	"	1.482 }	Ganswindt. Jena
Tetrachlorglycide	16	1.485 } 1.496, 17°	Inaug. Diss. 1873. Pfeffer and Fittig.
		·	J. 18, 504.
Allylidene tetrachloride		1.508, 17°.5	C. (2), 7, 295.
" "		1.522, 15°	Romburgh. Ber. 14, 1400.
Tetrachlorpropane		1.548	Cahours. J. 3, 496.
Herechlorpropens	С. Н. С!	1.55, s.	Berthelot. Cahours. J. 8, 496.
Heptachlorpropane	C. H Ci.	1.781	Canours. J. 8, 490.
Hexachlorpropane	C ₈ H ₆ Cl	.918, 9°	Linnemann. J. 19, 808.
		.9807, 0°	521.
		.981, 0°	339.
Allyl chloride		.934, 0°	521.
			Tollens. A. C. P. 156, 155.
" "	"	.9610, 0° }	Zander. A. C. P. 214, 181.
	1		

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Allyl chloride	C ₈ H ₅ Cl	.9055 .9058 } 44°.8 _	Schiff. G.C.I.18,
ti ti	"	.9379, 20° .94866, 15° }	Brühl. Bei. 4, 780. Perkin. J. P. C.
Allylidene dichloride	C ₈ H ₄ Cl ₂	.98228, 25°	(2), 82, 528. Hübner and Geu-
a Dichlorpropylene. Epi- dichlorhydrin.		1.21	125.
β Dichlorpropylene. Epi- dichlorhydrin.		1.22, 8° 1.21, 20°	
".		1.238, 17°.5	Hartenstein. J. P. C. (2), 7, 295.
′ " "	"	1.226, 15°	Romburgh. Ber. 15, 245.
" "	"	1.25, 15° } 1.218, 25° }	Friedel and Silva. Quoted by Romburgh.
a Trichlorpropylene	C ₃ H ₃ Cl ₃	1.387, 14°	Borsche and Fittig. J. 18, 313.
β Trichlorpropylene	"	1.414, 20°	Pfeffer and Fittig. J. 18, 504.
Propargyl chloride Crotonylene dichloride Chlorisobutylene	C ₄ H ₅ Cl C ₄ H ₆ Cl ₂ C ₄ H ₇ Cl	1.0454, 5° 1.181 .9785, 12°	Henry. Ber. 8, 398. Kekulé. J. 22, 507. Oeconomides. Ber.
Trichlorpentane	C ₅ H ₉ Cl ₃	1.33, 18° 2.4292 .9992, 0°	14, 1201. Buff. J. 21, 884. Bauer. J. 19, 581.
Chloramylene	C ₅ H ₉ Cl	.872, 5°.1	Bruylants. Ber. 8,
Isoprene hydrochlorate		.868, 16°	
Isoprene dichloride Trichlorhexano	C ₆ H ₁₁ Cl ₃	1.065, 16° 1.198, 21°	ii <u>ii</u>
Hexachlorhexane Chlorhexylene	C H C C	1.598, 20° .9686, 11°	" " " " " Henry. C. R. 97, 260.
Chlordianlyl	C ₆ H ₉ Cl	.9197, 18°.2 1.1638, 0°	Henry. J.C.S. 86, 84. Bauer. J. 20, 588.
Eikosylene chloride	C ₂₀ H ₃₈ Cl ₂	1.013, 24°	Lippmann and Hawliczek. Ber. 12, 78.
Isovinyl chloride	, , , , , , , , , , , , , , , , , , , ,	1.406	Baumsnn. A.C.P. 168, 808.
Chloronicene	C ₅ H ₅ Cl	1.141, 10°	St. Evre. J. 1, 580.

4th. Aromatic Compounds.

Name.		FORMULA.		SP. GRAVITY	AUTHORITY.
Monochlorbenzen	16	Ca Ha (01	1.1499, 0°]	
"		"		1.1847, 10°	Warm hannes &
"		"		1.1258, 20°	From benzene. So
"		"			koloff. J. 18, 517
"		11		1.1199, 0° 7	1
16				1.1085, 10°	From phenol. So
"		66		1.099, 20°	koloff. J. 18, 517
"		"		1.092, 80° J	· ·
"		•••		1.118	Jungfleisch. J. 19 551.
44		"		1.77, —40°)	Jungfleisch. J. 20
u		"		.980. 138° }	86.
44		"		1.1298, 0°	Jungfleisch. J. 21 848.
"	•	"		1.12855, 0°	From benzana
44		"		1.11807, 9°.79.	Advisor Do
"		"		1.10467, 220.48	6 448
"				1.04428, 77°.2	ارار) در این
44		"		1.12818, 0°	From phenol
"		"		1.11421, 9°.79	- L Adriana Ros
"		"		1.10577, 220.48	1 8 442
"		"		1.04299, 77°.27	(I) ·
"		"		.9817 .9818 } 182° {	Schiff. G. C. I. 18
44		46		1.1066, 20°	Brühl. Bei. 4, 780
"		**		1.1046, 25°.2)	Schall. Ber. 17
"		4.6		1.0703, 52°.8	2564.
"		"		1.106, 150	Wallach and Heus-
				,	ler. A. C. P. 243 226.
Orthodichlorbenz	cne	C ₆ H ₄ C	1,	1.8278, 0°	
u		**		1.3254, 0°	Friedel and Crafts Ann. (6), 10, 416
Metadichlorbenze	ne	**		1.8148	
"		"		1.807, 0°	Beilstein and Kurbatow. J. C. S. (2), 18, 450.
Paradichlorbenze	ne	"		1.459, s	Jungfleisch. J. 19, 551.
"		**		1.250, 58° }	Jungfleisch. J. 20,
"		16		1.123, 1710	86.
11		"		1.4581, 20°.5 j	1
"		16		1.241, 63° [Jungfleisch. J. 21.
u		"		1.2062, 93°	847.
"				1.1866, 166°	
"		u		1.467, 4°	Schröder. Ber. 12 561.
"		"		1.2499, 55°.1	

NAI	Œ.	For	MULA.	Sp. Gravity.	AUTHORITY.
Trichlorbenze	ne	C. H. Cl.		1.457, 7°	Mitscherlich. P.A. 85, 872.
"	1.8.4	"		1.575	Jungfleisch. J. 19, 551.
("			1.457, 17°, s. } 1.227, 206°	Jungfleisch. J. 20,
"	"	"		1.574, 10°, s.)	00.
"	"			1.4658, 10°,l.	
41 61	"			1.4460, 26°	Jungfleisch. J. 21,
"				1.4111, 56° 1.2427, 196°	850.
66	"	"		1.4554, 12°, 1	Beilstein and Kur- batow. A. C. P.
Tetrachlorben	zene. 1.2.4.5	C. H. Cl.		1.748	192, 230. Jungfleisch. J. 19, 551.
"	"	"		1.448, 1390	Jungfleisch. J. 20,
66	"			1.815, 240° }	86.
66 66	"	"		1.7844, 10°, s]
. "	"			1.4889, 149° 1.8958, 179°	Jungfleisch. J. 21,
	"			1.8281, 280°	852.
Pentachlorber	nzene			1.625, 74° }	Jungfleisch. J. 20,
41				1.870, 270°	36.
"		1		1.8422, 10° j	
44		44		1.8842, 16°.5	
"		"		1.6091, 84° }	Jungfleisch. J. 21,
46		"		1.5782, 1149	858.
Monochlortol	uene		H ₈ . Cl		Limpricht. J. 19, 591.
"	1.4	"		1.0785, 27°.2	Aronheim and Dietrich. Ber. 8, 1402.
"	"			.9851, 159°.8	Schiff. G. C. I. 18, 177.
"		46		1.072, 24°.44	
. "		"		1.061, 85°.48	
"				1.049, 48°.71	Cattaneo. Bei.7, 584.
"		"		1.029, 67°.80	·
66		"		?.796, 99°.81	
"		"		1.0761, 19°	Gladstone. Bei. 9, 249.
Benzyl chlori	de	C H C	H, Cl	1.1131 }	Cannizzaro. J. 8,
		"		1.1110)	621.
		"		1.107, 11°	Limpricht. J. 19, 592.
" "		"		$\begin{bmatrix} .9452 \\ .9453 \end{bmatrix}$ 175° $\left\{ \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \right\}$	Schiff. G. C. I. 18, 177.
		"			h ****
"		"		1.082, 44°.37	
46				1.066, 59°	Cattaneo. Bei. 7,
"		"		1.047, 75° 1.016, 100°.08	584.
" "		"		1.016, 100°.08]
44 44		"		1.099, 7°	Gladstone. Bei. 9, 249.
		"	*****	.9453, 178°	Schiff. G. C. I. 13, 177.

				 	,
NAME	i.	Formu	LA.	SP. GRAVITY.	AUTHORITY.
Dichlortoluene.	1.2.4	O ₆ H ₃ . C H ₃ .	Cl ₂	1.24597, 20°	Lellmann and Klotz. A. C. P. 281, 308.
"	1.2.5			1.2585, 200	"
44	1.8.4	"		1.2518, 16°)	Aronheim and Die-
44	"	66		1.2596, 18°.4	trich. Ber. 8, 1403.
"	"	66		1.2512, 20°	Lelimann and Klotz. A. C. P. 231, 808.
" .	B. 202°	"		1.256, 18°	Beilstein. J. 13, 412.
44	В. 207°	"		1.2557, 14°	Limpricht. J. 19, 598.
Benzylidene dic	hloride	C. H., C H (21	1.245, 16°	Cahours. J. 1, 711.
"	"			1.295, 16°	Hübner and Bente. Ber. 6, 804.
"	"			1.2699, 0°	
	··			1.2122, 56°.8	0 1:00 D. 10 F00
"				1.1877, 79°.2	Schiff. Ber. 19, 568.
"	"			1.1257, 185°.5	[
			01	1.0407, 208°.5	J Y 50 500
Trichlortoluene		C ₆ H ₂ . C H ₃ .		1.418, 9° 1.4093, 19°.5	Henry. J. 22, 508. Aronheim and Die- trich. Ber. 8, 1405.
Dichlorbenzyl c Benzyl trichlor	hloride ide	$\begin{array}{c} C_6 \ H_3 \ Cl_2. \ C\\ C_6 \ H_6. \ C \ Cl_3 \end{array}$	H, Cl	1.44, 0° 1.61, 18°	Naquet. J. 15, 419. Limpricht. J. 18, 538.
" "		"		1.380, 14°	Limpricht. J. 19,
Tetrachlortolue	ne	Ca H Cla. Cl	Н,	1.495, 14°	594. Limpricht. J. 19,
Trichlorbenzyl	chloride	C ₆ H ₂ Cl ₃ . C	H, Cl	1.547, 28°	595. Beilstein and Kuhl-
Orthodichlorben chloride.	zylene di-	C ₆ H ₃ Cl ₂ . C	H Cl ₂	1.518, 22°	berg. J. 21, 861.
Chlorbenzo-tric	hloride.1.8	C ₆ H ₄ Cl. C	Cl ₃	1.74 1.76 } 18° {	Limpricht. A. C. P. 184, 58.
44	" 1.2	16		1.51	Kolbe and Laute- mann. A. C. P. 115, 196.
Dichlorbenzo-tr	ichloride _	C ₆ H ₃ Cl ₂ . C	Cl ₃	1.587, 21°	Beilstein and Kuhl- berg. Z. C. 21, 868.
"		"		1.5829, 16°	
Trichlorbenzyle ride.	ne dichlo-			1.607, 22°	Beilstein and Kuhl- berg. Z. C. 21, 362.
Tetrachlorbenzy Tetrachlorbenzy chloride.		C ₀ H Cl ₄ . C	H, Cl H Cl	1.634, 25° 1.704, 25°	Beilstein and Kuhl- berg. Z. C. 21, 864.
Chlororthoxyler	ie	C ₆ H ₃ . C H ₃ .	C H ₃ . C1	1.0863, 19°	Claus and Kautz. Ber. 18, 1867.
"	1.2.4	"	<u></u>	1.0692, 15°	
Chlormetaxylen	e. 1.8.4	44	- -	1.0598, 20°	
Isotolyl chloride		C. H. C.H.	C H, Cl-	1.079, 0° }	Gundelach. B. S. C. 25, 385.
Chlorethylbenze	ne	C ₆ H ₄ . C ₂ H ₅ .	. C1	1.075, 0°	Istrati. B. S. C. 42, 115.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Chlorethylbenzene			Istrati. Ber. 18, ref. 704.
Dichlororthoxylene	"	1.888, s 1.150, 70°, l.	Colson. Ann. (6), 6,
"	"	1.250, 20°, 1.) 1.0980	86. Kautz. Freiburg In.
Dichlormetaxylene		1.302, 20°, s. } 1.202, 40°, l. }	Diss. 1885. Colson. Ann. (6), 6, 86.
Dichlorparaxylene	"	1.848, s	"
Orthoxylene dichloride	C ₆ H ₄ (C H ₂ Cl) ₂		Colson. C. R. 104, 429.
Metaxylene dichloride Paraxylene dichloride	"	1.370	66 66 66
Orthoxylene tetrachloride_	C ₆ H ₄ (C H Cl ₂) ₂	1.601	
Metaxylene tetrachloride.	"	1.586	Colson and Gautier. C. R. 102, 689.
Paraxylene tetrachloride _ Chlorcymene. 1.4.6	C ₆ H ₃ .OH ₃ .C ₅ H ₇ .Cl.	1.606	Gerichten. Ber. 10,
Diethylmonochlorbenzene		1.036	1249.
Triethylmonochlorben-	C ₆ H ₂ . Cl. (C ₂ H ₅) ₃	1.028	70 4 .
zene. Tetrethylmonochlor ben -	C ₅ H. Cl. (C ₂ H ₅) ₄		
zene. Pentethylmonochlorben-			
zene. β Chlorstyrolene	C ₈ H ₇ Cl		Glaser. A.C.P.154,
β Benzene hexchloride			166. Meunier. Ann. (6),
By action of ethylene on monochlorbenzene.	C ₉ H ₉ Cl	1.179	10, 223. Istrati. Ber. 18, ref. 704.
a Chlornaphthalene	C ₁₀ H, Cl	1.2052, 6°.2	Laurent. Quoted by
		1.2028, 6°.4	Carius.
	"	1.2025, 15°	146. Koninck and Mar-
β Chlornaphthalene		1.2656, 16°	quart. C. N. 25, 57. Rimarenko. Ber. 9,
Naphthalene dichloride	C ₁₀ H ₈ Cl ₂	1.287, 12°.5	664. Gladstone. Bei. 9,
Trichloracenaphtene	C ₁₂ H ₇ Cl ₈	1.2648, 18° } 1.43, 17°	249. Kebler and Norton.
Camphryl chloride	C ₉ H ₁₃ Cl	1.038, 14°	A. C. J. 10, 218. Schwanert. J. 15, 465.
Geraniol hydrochlorate	C ₁₀ H ₁₇ Cl	1.020, 20°	Jacobsen. A. C. P. 157, 286.
Caoutchin hydrochlorate _ From terpene of Pinus pu- milio.	"		Watts' Dictionary. Buchner. J. 13, 479.
Terebenthene hydrochlo- rate. "	"	1.016 1.017 } 0° {	Two isomers. Barbier. C. R. 96, 1066.
	,	•	

Name.	Formula.	Sp. Gravity.	Authority.	
Isoterebenthene hydro- chlorate. From terpene of Muscat nut oil.		1	Riban. C. R. 79, 225. Cloez. J. 17, 586.	

LII. COMPOUNDS CONTAINING C, H, O, AND CL.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Dichlorethyl alcohol	C ₂ H ₄ Cl ₂ O	1.145, 15°	Delacre. Bull. Acad.
Trichlorethyl alcohol	C ₂ H ₃ Cl ₃ O	1.55, 28°.8	lackh. Ber. 14,
Dichlorhexyl alcohol	C ₆ H ₁₂ Cl ₂ O	1.4, 12°	2826. Destrem. Ann. (5), 27, 50.
Dichlormethyl oxide			Regnault. Ann. (2),
Tetrachlormethyl oxide			Regnault. Ann. (2),
Tetrachlormethylethyl oxide.			Magnanini. G. C. I. 16, 330.
Chlorethyl oxide	_ •		Henry. C. R. 100,
Dichlorethyl oxide Tetrachlorethyl oxide	C ₄ H ₈ Cl ₂ O C ₄ H ₆ Cl ₄ O	1.174, 28° 1.5008	Lieben. J. 12, 446. Malaguti. Ann. (2), 70, 841.
	"	1.4379, 0°)	70, 041.
	"	1.4379, 0° }	Paterno and Pisati.
		1.3055, 99°.9) 1.4211, 15°	
Pentachlorethyl oxide	C ₄ H ₅ Cl ₅ O	1.645	lemmer's Treatise. Jacobsen. Z. C. 14, 444.
" Chloracetic acid	C ₂ H ₃ Cl O ₂	1.577, 8° 1.866, 73°	Henry. Ber. 7, 763. R. Hofmann. J. 10, 848.
Dichloracetic acid	C ₂ H ₂ Cl ₂ O ₂	1.5216, 15°	
Trichloracetic acid	C ₂ H Cl ₃ O ₂	1.617, 46°	Dumas. A. C. P. 82, 109.
Chlorpropionic acid	C ₃ H ₅ Cl O ₂	1.28, 0°	Clermont. Z. C. 14, 849.
Chlorbutyric acid	C ₄ H ₇ Cl O ₂	1.072, 0°	Balbiano. Ber. 10, 1749.
" " γ	"	1.2498, 10°	Henry. C. R. 101,
" ?	1	l	Haubst. J. C. S.
Chlorisobutyric acid	"	1.062, 0°	Balbiano. · Ber. 11, 1693.
Methyl chlorocarbonate 20 s G	C ₂ H ₃ Cl O ₂	1.236, 15°	Röse. Ber. 18, 2417.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Ethyl chlorocarbonate	C ₃ H ₅ Cl O ₂	1.188, 15°	Dumas. Ann. (2), 54, 230.
Propyl chlorocarbonate Isopropyl chlorocarbonate	C ₄ H ₇ Cl O ₂	1.094, 15° 1.144, 4°	Röse. Ber. 18, 2417. Spica. J. C. S. 52,
Isobutyl chlorocarbonate_ Isoamyl chlorocarbonate_		1.058, 15° 1.082, 15°	1028. Röse. Ber. 18, 2417.
	1	4	I 70 270
Pentachloramyl formate	1	ł	000
Methyl monochloracetate_	i i	i :	448.
		1.2852, 19°.2	Henry. C. R. 101, 250.
Methyl dichloracetate Dichlormethyl acetate			Malaguti. Ann. (2),
Methyl trichloracetate	C ₂ H ₃ Cl ₂ O ₂	1.4969, 14°)	70, 881. Bauer. A. C. P. 229, 163.
" " ——	44	1.4892, 19°.2	Henry. C. R. 101, 250.
Ethyl monochloracetate			Brühl. A. C. P.
		.9925, 1 44 °.5	Schiff. G. C. I. 18,
" "		1.1722, 8°	Henry. C. R. 104,
Ethyl dichloracetate			70, 868.
" "		1.29	Forscher and Geu-
" "		1.2821, 20°	Brühl. A. C. P.
" "		1.0918 1.0915 } 157°.7	Schiff. G. C. I. 18,
Dichlorethyl acetate	"	1.8217, 10°.6	Henry. C. R. 97,
" "	"	1.104, 15°	
Ethyl trichloracetate	C ₄ H ₅ Cl ₃ O ₂	1.8826, 20°	Belg. (8), 18, 255. Brühl. A. C. P. 208, 1.
" "	"	1.1650)	Schiff. G. C. I. 18,
" "	"	$\left\{ \begin{array}{c} 1.1650 \\ 1.1651 \end{array} \right\}$ 167°.1	177.
Monochlorethyl dichloracetate.		1.200, 15°	Delacre. Ber. 21, ref. 183.
Dichlorethyl monochlor- acetate.		1.216, 15°	"
Trichlorethyl acetate			Léblanc. Ann. (8), 10, 207.
" "			Malaguti. Ann. (8),
" "	•	1.8907, 28°.8	Garzarolli-Thurn- lackh. Ber. 14, 2826.
" " <u></u>	"	1.187, 15°	
	•	•	ı.

Name.	Formula.	Sp. Gravity.	Authority.
Tetrachlorethyl acetate	C4 H4 C14 O2	1.485, 25°	Léblanc. Ann. (3).
Monochlorethyl trichlor- acetate.	"	1.251, 15°	Delacre. Ber. 21, ref. 188.
Dichlorethyl dichlorace- tate.	"	1.25, 15°	11 11
Trichlorethyl monochlor- acetate.	"	1.25	
Trichlorethyl dichlorace- tate.	C4 H8 Cl5 O3	1.267	
Hexchlorethyl acetate	C ₄ H ₂ Cl ₆ O ₂	1.698, 28°.5	Léblanc. Ann. (3), 10, 215.
Heptachlorethyl acetate	C4 H Cl7 O2	1.692, 24°.5	Léblanc. Ann. (8), 10, 208.
Propyl monochloracetate_	C ₅ H ₉ Cl O ₂	1.1096, 8°	Henry. C. R. 100,
Butyl monochloracetate	·	1.081.15	Gehring. C. R. 102, 1400.
Trichlorbutyl acetate		1.3440, 8°.5	Garzarolli-Thurn- lackh. Ber. 15, 2619.
Amyl monochloracetate	C, H ₁₈ Cl O ₂	1.063, 0°	Hougounenq. B.S. C. 45, 828.
Methyl a chlorpropionate	C, H, Cl O,	1.075, 4°	Kahlbaum. Ber. 12, 844.
Ethyl a chloropropionate.	C ₅ H ₉ Cl O ₂	1.0869, 20°	Brühl. A. C. P. 203, 1.
Ethyl β chloropropionate.	"	1.1160, 8°	Henry. C. R. 100,
Ethyl dichlorpropionate	C ₅ H ₈ Cl ₂ O ₂	1.2461, 20°	Brühl. A. C. P. 208, 1.
	"	1.2498, 0°	
Dichlorethyl propionate		1.282, 8°	Henry. C. R. 100,
Methyl chlorbutyrate	C ₅ H ₉ Cl O ₂	1.1894, 10°	Henry. C. R. 101, 1158.
Methyl $a \beta$ dichlorbuty-rate. " "	"	1.2614, 18°.8	Zeisel. Ber. 19, ref. 749.
Ethyl chlorbutyrate	C ₆ H ₁₁ Cl O ₂	1.0517, 20°	Brühl. A. C. P. 203, 1.
" "	"	1.1221, 10°	Henry. C. R. 101, 1158.
	**	1.063, 17°.5	Markownikoff. A.C. P. 153, 243.
Methyl trichlorpropylcar- bylacetate.	C ₇ H ₁₁ Cl ₃ O ₃	1.8048, 11°.5	Garzarolli-Thurn- lackh. A. C. P. 223, 149.
Chloroenanthic ether	C ₉ H ₁₇ Cl O ₂ . ?	1.2912, 16°.5	Malaguti. Ann. (2), 70, 868.
Derivative of chlorinated methyl formate.		1	Guthzeit. Quoted by Hentschel.
" "		1.4741, 27°	Hentschel. J.P.C. (2), 86, 99.
Derivative of chlorinated ether.	C ₅ H ₁₁ Cl O	1.5191 .9482, 0°	Lieben and Bauer. J. 15, 494.

=======================================			
Name.	Formula.	Sp. Gravity.	AUTHORITY.
Derivative of chlorinated ether.	C ₆ H ₁₈ Cl O	.9785, 0°	Lieben and Bauer. J. 15, 898.
Chloracetic anhydride	C ₄ H ₅ Cl O ₈	1.201, 21°	Anthoine. J. Ph. Ch. (5), 8, 417.
Trichloracetic anhydride - Tetrachloracetic anhy- dride.	C ₄ H ₃ Cl ₃ O ₃ C ₄ H ₂ Cl ₄ O ₃	1.530, 20° 1.574, 24°	" "
Acetyl chloride	C ₂ H ₈ O. Cl	1.125, 11° }	Gerhardt. J. 5, 444. Kopp. A. C. P. 95,
11 11	"	1.1072, 16° } 1.18778, 0° 1.05698, 50°.78	307. } Thorpe. J. C. S. 87, 371.
	"	1.1051, 20°	Brühl. A. C. P. 208, 1.
Chloracetyl chloride Propionyl chloride	C ₂ H ₂ Cl O. Cl C ₃ H ₅ O. Ul		Wurtz. J. 10, 346. Brühl. A. C. P. 208, 1.
a Chloropropionyl chloride	, ,	· ·	Henry. C. R. 100, 114.
βChloropropionylchloride Butyryl chloride	C ₄ H ₇ O. Cl	1.8807, 18° 1.0277, 20°	" " " " Brühl. A. C. P. 208, 1.
Isobutyryl chloride Chlorobutyryl chloride	C ₄ H ₆ Cl O. Cl	1.0174, 20° 1.257, 17°	Markownikoff. A. C. P. 153, 241.
"	"	1.2679, 10°	Henry. C. R. 101, 1158.
Valeryl chloride	C ₅ H ₉ O. Cl	1.005, 6° .9887, 20°	Béchamp. J. 9, 429. Brühl. A. C. P. 208, 1.
Chloracetone	C ₃ H ₅ Cl O	1.19 1.14, 14°	Linnemann. Riche. J. 12, 839.
"	"	1.162, 16°	Linnemann. J. 18, 812.
"	"	1.18, 16°	Linnemann. J. 19, 808.
"	"	1.17	Henry. B. S. C. 19, 219.
"	"	1.158, 18°	Cloez. Ann. (6), 9,
Dichloracetone	C ₃ H ₄ Cl ₂ O	1.881 1.236, 21°	Kane. Fittig. J. 12, 845.
"		1.826, 0°	Theegarten. C. C. 4, 580.
"	"	1.284, 15°	Cloez. Ann. (6), 9,
Tetrachloracetone Pentachloracetone	C ₃ H ₂ Cl ₄ O C ₈ H Cl ₅ O	1.482, 17°	
"	08 11 016 0	1.7 }	Städeler. J. 6, 898.
"	"	1.617, 8° } 1.576, 14° }	Two isomers. Cloez. B. S. C. 39,688 and 640.
Chloraldehyde Paradichloraldehyde Chloral	C, H, Cl O	1.28 1.69, s	Riche. J. 12, 435. Jacobsen. Ber. 8, 88.
Chloral	C, H Cl, O	1.502, 18°	Liebig. A. C. P. 1, 195.
"	"	1.5183, 0° } 1.4903, 22°.2 }	Kopp. A. C. P. 95,

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.	
Chloral	C ₂ H Cl ₃ O		Thorpe. J. C. S. 87,	
"	"	1.3821, 97°.2 } 1.5121, 20°	871. Brühl. A. C. P. 208, 1.	
"	"	1.54179 } 4°	Passavant. C. N.	
44	"		42, 288.	
££	"	1.5197, 15° 1.5060, 25°	Perkin. J. C. S. 51, 808.	
Parachloralide Chloral hydrate	(C ₂ H Cl ₃ O) _n C ₂ H ₃ Cl ₃ O ₂	1.5765, 14° 1.901	Clöez. J. 12, 484. Rūdorff. Ber. 12, 252.	
11 11	"	1.818, 4°, pulv. 1.848, 4°, cryst.	Schröder. Ber. 12, 561.	
66 66	"	1.6415, 49°.9 1.6274, 58°.4	Perkin. J. C. S. 51,	
££	"	1.6136, 66°.9)	808. Jungfleisch, Le-	
66 66	"	1.5704) 1.5719 } 66°, 1.	baigne, and Rou- cher. J. Ph. C.	
Chloral ethylate	" C ₄ H ₇ Cl ₃ O ₂	1.5771) 1.148, 40°, 1	(4), 11, 208. Martins and Men-	
		,,	delssohn-Bar- tholdy. Z. C. 13,	
		•	650. Jungfleisch, Le-	
ee ee	"	1.8286 1.3439 66°, l.	baigne, and Rou- cher. J. Ph. C.	
Chloral amylate	C, H, Cl, O,	1.234, 2 5°	(4), 11, 208. Martins and Men-	
-			delssohn-Bar- tholdy. Z. C. 18,	
Chloracetyl chloral	C ₄ H ₄ Cl ₄ O ₂	1.4761, 17°	650. Meyer and Dulk.	
Diacetylchloral hydrate	C ₆ H ₇ Cl ₃ O ₄	1.422, 110	A. C. P. 171, 65.	
Derivative of chloral	Ca Ha Cla O	1.78, 17	Henry. Ber. 7, 764	
Butyl chloral	$C_4 H_5 Cl_3 O$	1.42, 11° 1.8956, 20°	Brühl. A. C. P.	
	"	1.4111, 7°	203, 1. Gladstone. Bei. 9	
Butyl chloral hydrate	C4 H7 Cl8 O2	1.698 1.695 } 4° {	249. Schröder. Ber. 12.	
Derivative of chloralide			561. Anschutz and Has- lam. A. C. P. 239.	
Chlorovaleral	C. H. Cl O	1.108, 14°	300. A. Schröder. Z. C.	
Derivative of valeral	-	ŀ	14, 510.	
Dichlorvinyl methyloxide	C, H, Cl, O	1.272, 14° 1.897, 14° 1.2984, 0° }	Denaro. G. C. I	
Monochlorvinyl ethyl ox-	C, H, Cl O	1.1574, 100° } 1.0861, 19°	14, 117. Godefroy. C. R. 102	
100.	C4 H5 C18 O	ľ	869. Paterno and Pisati	

NAME.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Trichlorvinyl ethyl oxide	C ₄ H ₅ Cl ₅ O	1.3322, 19°	Godefroy. C. R. 102, 869.
${\bf Methylene~aceto-chloride}_{-}$	C ₈ H ₅ Cl O ₂	1.19 58, 14°.2	Henry. B. S. C. 20,
Ethylene aceto-chloride "		1.1788, 0° 1.114, 15°	Simpson. J. 12, 487. Franchimont. J. C. S. 44, 452.
Ethylene butyro-chloride	C ₄ H ₁₁ Cl O ₂ C ₄ H ₈ Cl ₂ O	1.0854, 0° 1.1876, 12° 1.186, 14°.5	Simpson. J. 12, 489. Lieben. J. 11, 291. Lantsch. A. C. P.
Ethylidene aceto-chloride.			218, 13. Rübencamp. A. C.
Ethylidene propio-chlo-	C ₅ H ₉ Cl O ₂	1.071, 15°	P. 225, 267.
ride. Ethylidene butyro-chlo-	C ₆ H ₁₁ Cl O ₂		
ride. Ethylidene valero-chloride Aldehydemethyl chloride	C ₇ H ₁₈ Cl O ₂ C ₃ H ₇ Cl O C ₄ H ₇ Cl ₃ O ₂	.997, 15° .996, 17°	46 46
Trichlordimethyl acetal	C4 H7 Cl8 O2	1.28	Magnanini. G. C. I. 16, 380.
Trichlormethylethyl acetal.	C ₅ H ₉ Cl ₃ O ₂	1.82	" "
Chloracetal	C ₆ H ₁₈ Cl O ₂	1.0195 1.0418, 0°)	Lieben. J. 10, 487. Paterno and Mazza-
11	"	1.0416.269.8 \	ra. J. C. S. (2), 11, 1217.
"			Klien. J. C. S. 81, 291.
Dichloracetal	C ₆ H ₁₂ Cl ₃ O ₃ C ₆ H ₁₁ Cl ₃ O ₂	1 1.2818. 0	Lieben. J. 10, 486. (Paternoand Pisati.
16	"	1.2655, 22°.2 1.1617, 99°.96_	
"	"	1.288	Byasson. C. N. 38, 46.
Trimethylene chlorhydrin			Reboul. C. R. 79,
Propylene chlorhydrin	"	1.1302, 0° 1.247	Oeser. J. 13, 448. Oppenheim. J. 21, 840.
Chlorbutylene chlorhydrin	1	1	Oeconomides. Ber. 14, 1568.
Hexylene chlorhydrin			Henry. C. R. 97, 260.
Hexylene aceto-chloride Heptylene chlorhydrin	C ₆ H ₁₅ Cl O ₂	1.04, 6° }	Clermont. Z.C.18,
Hexylene aceto-chloride Heptylene chlorhydrin Octylene chlorhydrin	C ₈ H ₁₇ Cl O	1.001, 14° }	411.
Octylene aceto-chloride	C ₁₀ H ₁₉ Cl O ₂	1.026, 00	
Dichlorethoxyethylene	C ₄ H ₆ Cl ₂ O	1.01, 180	Geuther and Brock- hoff. J. P. C. (2), 7, 114.
Pentachlorpropylene oxide.	1	1	Cloez. Ann. (6), 9, 145.
Ethyl-glycollic chloride_ Chlorolactic ether	C ₅ H ₉ Cl O ₂	1.145, 1° 1.097, 0°	Henry. J. 22, 581. Wurtz. J. 11, 254.

~	-		
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl chloromaionate	C7 H11 C1 O4	1.185, 20°	Conrad and Bisch- off. A. C. P. 209, 221.
Ethyl ethylchloromalo- nate.	C ₉ H ₁₅ Cl O ₄	1.110, 17°	Guthzeit. A. C. P. 209, 288.
Ethyl chlorisobutylmalo- nate.	U ₁₁ H ₁₉ Cl O ₄	1.094, 15°	Conrad and Bisch- off. Ber 13, 600.
		1.091, 15°	Guthzeit. A. C. P. 209. 287
Succinyl chloride	C ₄ H ₄ Cl ₂ O ₂	1.89	Gerhardt and Chiozza. C. R. 86, 1052.
Chloromaleic ether	C ₈ H ₁₁ Cl O ₄	1.15, 11°	Henry. A.C.P. 156, 179.
" " Tehri chlomostocotete	C H (1) 0	1.178, 20°	Frank Don 10 000
Ethyl chloracetacetate Ethyl dichloracetacetate	C ₆ H ₈ Cl ₂ O ₃	1.298, 16°	Conrad. A. C. P.
Ethyl chloracetopropio- nate.	C7 H11 Cl O3	1.196, 21°	186, 234. Conrad and Guth- zeit. Ber. 17, 2287.
Ethyl monochlormethylacetacetate.	C, H, Cl O,	1.098, 15°	Isbert. A. C. P. 284, 160.
Ethyl dichlormethylacet- acetate.	C ₇ H ₁₀ Cl ₂ O ₃ :	1.2250, 17°	Isbert. Jena Inaug. Diss. 1866.
Ethyl monochlorethyl- acetacetate.	C ₈ H ₁₈ Cl O ₃	1.0528, 15°	Isbert. A. C. P. 284, 160.
Ethyl dichlorethylacetace- tate.			
Ethyldiethylchloracetace- tate.	10 11		l 50.
Ethyl diethyldichloracet- acetate.	C ₁₀ H ₁₆ Cl ₂ O ₃		
Acetotrichlorethylidene acetic ether.			I 48 908
Monochlorhydrin	C ₈ H ₇ Cl O ₂	1.81 1.4, 18°	Berthelot. J. 6, 456. Henry. J. C. S. (2), 18, 846.
$\beta_{}$ Dichlorhydrin	C ₃ H ₆ Cl ₂ O	1.828, 0° 1.87	Hanrict. Ber. 10,727. Berthelot. J. 7, 449.
ii	03 Mg 012 0	1.8699, 9°	
	"	1.855, 17°.5	
11	££	1.883, 00 }	Markownikoff. J. C.
	"	1.867, 19° } 1.8799, 0° }	S. (2), 12, 241. Tollens. A.C.P. 156,
Epichlorhydrin	C ₈ H ₅ Cl O	1.8681, 11°.5 } 1.204, 0°	164. Darmstaedter. J. 21,
"	"	1.194, 11°	454. Reboul. J. 18, 456.
"	"	1.20318, 0°	Thorpe. J. C. S. 87, 871.
16	"	1.05667,116°.55	
	"	$egin{array}{c} 1.0588 \ 1.0598 \ \end{array} \}$ 115°:8	2768.
16	"	1.194, Í1°	Clöez. Ann. (6), 9, 145.
Ethyl monochlorhydrin	C ₅ H ₁₁ Cl O ₃	1.117, 11°	

NAME.	Formula.	SP. GRAVITY.	AUTHORITY.
Diethyl monochlorhydrin	C ₇ H ₁₅ Cl O ₂	1.08, 10°.5 1.005, 17°	Alsberg. J. 17, 496. Reboul and Louren-
Amyl monochlorhydrin Aceto-chlorhydrin	C ₅ H ₁₇ Cl O ₂ C ₅ H ₉ Cl O ₃	1.00, 20° 1.27, 9°	Co. J. 14, 674. Reboul. J. 13, 464. Henry. J. C. S. (2), 13, 346.
Aceto-dichlorhydrin	"	1.283, 11° 1.274, 8°	Truchot. J. 18, 503. Henry. Ber. 4, 701.
Diaceto-chlorhydrin Butyro-dichlorhydrin Valero-dichlorhydrin Butenyl monochlorhydrin	C, H, Cl, O,	1.194, 11°	Truchot. J. 18, 503.
Butenyl dichlorhydrin		l	438.
Butenyl epichlorhydrin Diallyl dichlorhydrin a Chlorallyl alcohol	C ₆ H ₁₂ Cl ₂ O ₂	1.098, 15° 1.4, 7° 1.164, 19°	" " " " " " " " " " " " " " " " " " "
β Chlorullyl alcohol		1.162, 15°	8085. Romburgh. Ber. 15,
Methylchlorullylcarbinol_	C ₈ H ₉ Cl O	1.08821, 14°.1_	245. Garzarolli - Thurn lackh. A.C.P. 223, 149.
Chlorerotyl alcohol		1	Garzarolli-Thurn- lackh. Ber. 15, 2619.
Methyl chlorerotonate	C ₅ H ₇ Cl O ₂	1.148, 15° 1.0983, 4°	Fröhlich. J. 22, 547. Kahlbaum. Ber. 12,
Ethyl chlorerotonate			844. Fröhlich. J.22,547. Claus. A. C. P. 191,
Chlorethylacetylene tetra- carbonic ether.		1	64. Bischoff and Rach. Ber. 17, 2786.
Citraconyl chloride		1.40, 15°	Gerhardt and Chioz- za. J. 6, 894. O. Strecker. Ber. 15,
Propylphycite trichlor-		· ·	1640. Wolff. Z. C. 12,
hydrin. Dichloroleic acid Derivative of isobutyl al-			465. Lefort. J. 6, 451.
cohol.			Boquillon. J.C.S.
Derivative of isohexic acid		İ	Demarçay. Ber. 12, 880.
Chlorphenol			Petersen and Bachr- Predari. A.C.P. 157, 125.
Chlormethylphenol		İ	Henry. Z. C. 13, 247.
Chlorparakresol		1.2106, 25°	Schall and Dralle. Ber. 17, 2529.
Chlormethylparakresol Chlorethylphenol	C ₈ H ₉ Cl O	1.1498, 25° 1.106, 9°	Henry. Z. C. 13,
Methylchlorphenetol. a_{-1} β_{-2}	C, H, Cl O	1.127, 19°.5 1.181, 18° }	247. Wroblevsky. Z. C. 18, 164.

Name.	FORMULA.	Sp. GRAVITY.	Authority.
Chlorenethol	C ₁₀ H ₁₁ Cl O	1.1154, 0°	Ladenburg. Z. C.
"	"	1.191, 20°	12, 575. Landolph. C. R. 82, 227.
Metachlorsalicylol Metachlorbenzoic acid	C, H ₆ Cl O ₂	1.29	Henry. J. 22, 509. St. Evre. J. 1, 529.
Ethyl metachlorbenzoate. Ethyl orthodichlorbenzo-	C ₉ H ₁₀ Cl O ₂ C ₉ H ₈ Cl ₂ O ₂	.981, 10° 1.3278, 0°	" Beilstein. Ber. 8.
ate. Chlorisopropyl benzoate	C ₁₀ H ₁₁ Cl O ₂	1.172, 19° } 1.149, 45° }	485. Morley and Green.
Derivative of benzoice ther	C ₁₈ H ₁₆ Cl ₆ O ₃	1.149, 45° } 1.846, 10°.8	J. C. S. 47, 185. Malaguti. Ann. (2),
Benzyl monochloracetate_	C, H, Cl O,	1.2223, 4°	70, 875. Seubert. Ber. 21, 281.
Benzyl dichloracetate Benzyl trichloracetate	C ₉ H ₈ Cl ₂ O ₂ C ₉ H ₇ Cl ₃ O ₂ C ₇ H ₅ Cl O	1.8180, 4° 1.8887, 4° 1.196	16 66 16 66
Benzoyl chloride			Wöhler and Liebig. A. C. P. 8, 262.
66 66	te	1.2324, 0°)	Cahours. J. 1, 532. Kopp. A. C. P. 95,
66 66	"	1.2142, 19° } .9857, 198°	807. Ramsay. J. C. S.
et 11	"	1.2122, 20°	85, 468. Brühl. A. C. P. 285, 1.
Chlorodracylic chloride			Emmerling. Ber. 8, 881.
Toluyl chloride Phenylacetic chloride	C ₈ H ₇ Cl O	1.16817, 20°	Cahours. J. 11, 265. Anschützand Berns. Ber. 20, 1890.
Cumyl chlorideAnisyl chloride	C_{10} H_{11} Cl O	1.261, 15°	Cahours. J. 1, 534. Cahours. J. 1, 538.
Cinnamyl chloride Phthalyl chloride	C ₉ H ₇ Cl O	1.207, 16° 1.0489, 20°	Cahours. J. 1, 535. Brühl. A. C. P. 285, 1.
Dichloracetophenone	C ₈ H ₆ Cl ₂ O	1.888, 15°	Gautier. Ber. 20, ref. 12.
Trichloracetophenone Chlorobenzyl ethylate	C ₈ H ₅ Cl ₅ O	1.427, 15° 1.121, 14°	" Naquet. J. 15, 420.
Ethyl benzylchlormalo- nate.	C ₁₄ H ₁₇ Cl O ₄	1.150, 19°	Conrad. Ber. 18, 2159.
Benzodichlorhydrin Trichlorphenomalic acid	C ₁₀ H ₁₀ Cl ₂ O ₂ C ₇ H ₇ Cl ₃ O ₅ C ₁₄ H ₂₀ Cl ₄ O ₄	1.441, 8°	Truchot. J. 18, 508. Carius. J. 1866, 561.
Tetrachlorethyl camphor- ate.	C ₁₄ H ₂₀ Cl ₄ O ₄	1.886, 14°	70, 360.
Santonyl chloride	6.0 H \ 0 H C	1.1644	ni Ber. 18, 2210.
Derivative of bergamot oil	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.896	Ohme. A. C. P. 81, 318.

LIII. COMPOUNDS CONTAINING C, CL, N, OR C, H, CL, N.

Name.	Formula.	Sp. GRAVITY.	Authority.
Chloracetonitrile	C, H, Cl N	1.204, 11°.2	Bisschopinck. B. S. C. 20, 450.
Dichloracetonitrile	C, H Cl, N	1.198, 20° 1.874, 11°.4	Engler. Ber. 6, 1003. Bisschopinck. B. S. C. 20, 450.
Trichloracetonitrile	C ₂ Cl ₃ N	1.444 1.489, 12°.2	Dumas. J. 1, 593. Bisschopinck. B. S.
Dichlorpropionitrile γ Chlorobutyronitrile	C ₃ H ₅ Cl ₅ N C ₄ H ₆ Cl N	1.481, 15° 1.1620, 10°	C. 20, 450. Otto. J. 13, 400. Henry. C. R. 101,
Dichlorethylamine Chloroxalmethylin	C, H ₅ , Cl, N	1.2897, 5° } 1.2800, 15° }	1158. Tscherniak. Ber. 9, 147.
			Wallach and Schulze. Ber. 14, 424.
Chloroxalethylin	C ₆ H ₉ Cl N ₂	1.1420, 15° 1.142	Wallach. Ber. 7,328. Wallach and Strick- er. Ber. 18, 512.
Chloroxalpropylin	C ₈ H ₁₃ Cl N ₃	1.0900	Wallach and Schulze. Ber. 14, 424.
Orthochloraniline	-	!	Beilstein and Kurba- tow. Ber. 7, 487.
Metachloraniline		1.2482, 0°	Beilstein and Kurba- tow. A. C. P. 176, 45.
Chlorotoluidine. B. 222°		ł	Wroblevsky. Z. C. 12, 822-544.
•			Wroblevsky. Z. C. 12, 684.
" B. 237°—242°- " B. 236°-	"	1.208, 19° 1.175, 18°	Henry and Radziszewski. Z. C. 12, 542.
Chlorpicoline		i e	
Orthochlorchinoline Parachlorchinoline	C ₉ H ₅ Cl N	1.2752, 16°.2) 1.2754, 16°.6	Bodewig. Tübingen In. Diss. 1885.
Parachlorchinoline	"	1.8768, 14°.6 1.8766, 15°	
Chloride from methylura- cil.	C ₅ H ₃ N ₂ Cl ₈	1.6278, 21°.8	Behrend. A. C. P. 229, 26.

LIV. COMPOUNDS CONTAINING C, CL, N, O, OR C, H, CL, N, O.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Chloronitromethane	C H ₂ Cl N O ₂	1.466, 15°	Tscherniak. Ber. 8,
Dichlordinitromethane	C Cl ₂ N ₂ O ₄	1.685, 15°	Marignac. Watts'
Chlorpierin	"	1 48444 1110 Q	Stenhouse. J. 1, 540. Thorpe. J. C. S. 87,
Dichloramyl nitrite Trichloracetyl cyanide	C ₅ H ₉ Cl ₂ N O ₂ C ₃ Cl ₃ N O	1.283, 12° 1.559, 15°	Guthrie. J. 11, 404. Hofferichter. J. P.
Trichloracetic dimethylamide.	C ₄ H ₆ Cl ₈ N O	1.441, 15°	C. (2), 20, 195. Franchimont and Klobbie. Ber. 20, ref. 690.
Ethylene chloronitrin			Henry. Ann. (4), 27,
Propylene chloronitrin Dichlormethoxylacetoni- tril.	C ₃ H ₆ Cl N O ₃ C ₃ H ₃ Cl ₂ N O		Bauer. A. C. P. 229, 163.
Dichlorethoxylacetonitril_ Dichlorpropoxylacetoni- tril.	C ₄ H ₅ Cl ₂ N O C ₅ H ₇ Cl ₂ N O	1.8894, 15°.5 1.2882, 15°.5	" "
Dichlorisobutoxylecetoni- tril.	C ₆ H ₉ Cl ₂ N O	1.1226, 15°.5	66 66
Monochlordinitrin	l		168.
DichlormononitrinChlorazol	$\begin{bmatrix} C_3 & H_5 & Cl_2 & N & O_3 & \dots \\ C_4 & H_3 & Cl_3 & N_2 & O_4 & \dots \end{bmatrix}$	1.465, 10° 1.555	Mühlhaüser. J. 7,
Dichlornitrophenol	C ₆ H ₃ Cl ₂ N O ₃	1.59	671. Fischer. A. C. P.,
Chlornitrobenzene	Ce He Cl N Oz	1.877, 0°	7th Supp., 185. Sokoloff. J. 19, 552.
"	"	1.868, 22°	Jungfleisch. J. 21, 845.
" Meta		1.584	Schröder. Ber. 13, 1070.
" Para	· ·	1.880, 22°	848.
Chlordinitrobenzene		1	845.
"	l .		Jungfleisch. J. 21, 846.
"	i	·	Engelhardt and Lutschinoff. Z.C. 13, 232.
Dichlornitrobenzene	1	ł	Jungfleisch. J. 21, 848.
Trichlornitrobenzene	1	1	Jungfleisch. J. 21, 851.
Dichlordinitrobenzene	ì	Į.	Jungfleisch. J. 21, 348.
Trichlordinitrobenzene	C ₆ H Cl ₃ N ₂ O ₄	1.850, 25°	Jungfleisch. J. 21, 852.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Tetrachlornitrobenzene	C ₆ H Cl ₄ N O ₂	1.744, 25°	Jungfleisch. J. 21, 858.
Pentachlornitrobenzene	C ₆ Cl ₅ N O ₂	1.718, 25°	Jungfleisch. J. 21, 854.
Chlornitrotoluene	C, H, Cl NO2	1.307, 18°	
"		1.3259, 18° 1.800, 20°	
Parachlormetanitrotolu- ene.	··	1.297, 22°	7, 1062. Gattermann and Kaiser. Ber. 18, 2600.
Dichlornitrotoluene	C ₇ H ₅ Cl ₂ N O ₂	1.455, 17°	
Derivative of acetanilide_ Derivative of protein	C ₈ H ₈ Cl ₃ N O ₂ C ₁₂ H ₁₂ Cl ₃ N O ₂	1.3898, 20° 1.628	Witt. Ber. 8, 1227.
	C ₁₂ H ₁₂ Cl ₃ N O ₄	1.360	

LV. COMPOUNDS CONTAINING C, H, AND BR. .

1st. Bromides of the Paraffin Series.

Name.		F	PRMULA.	Sp. Gravity.	Authority.	
Methy	l bromie	de	C H ₃ B		$\left\{ \begin{array}{c} 1.732 \\ 1.7116 \end{array} \right\}$ 0° $\left\{ \begin{array}{c} \end{array} \right.$	Pierre. C. R. 27, 218. Two lots. Merrill. J. P. C. (2), 18, 293. Perkin. J. P. C. (2), 81, 481.
" " " Ethyl	" " " bromid	e	C ₂ H ₅ B		1.45554, 20° 1.45849, 21° 1.44783, 24°	Weegmann. Z. P. C. 2, 218. Löwig. A. C. P. 8,
"	"		"		1.47829, 0° 1.4600, 20°	
"	"		"		1.4621, 9°	
"	"		",		1.4685, 18°.5	
"	"		"		1.4189, 15° 1.4775, 5°-10°	Mendelejeff. J. 13, 7.
"	"		"		1.4679, 100-150	Regnault. P. A.
41	"		"		1.4582, 15°-20° 1.47, 15°) 62, 50. Gladstone and Tribe. J. C. S. (2), 12, 410.

Name.		F	ORMULA.	Sp. Gravity.	AUTHORITY.	
Ethyl	bromid	8	C ₂ H ₅ I	Br	1.4069, 20°	Naumann. Ber. 10 2016.
**	44		"		1.4579, 14°	De Heen. Bei. 5, 105
4.0	44		"		1.4184, 88°.4	Schiff. Ber. 19, 560.
4.6	44		"		1.44988, 15°)	Perkin. J. P. C. (2)
64	**		"		1.44988, 15° 1.48250, 25°	81, 481.
Propyl	bromi	ie	C ₃ H ₇ I	Br	1.858, 16°	Chapman and Smith J. 22, 360.
"	"		"		1.388, 0°	Rossi. A. C. P. 159
66	44		"		1.8497, 0°)	10.
"	**		"		1.801, 80°.15	Pierre and Puchot
44	44		**		1.2589, 54°.2	Ann. (4), 22, 284
86	44		16		1.3577, 16°	Linnemann. A. C.
	44		"			P. 161, 40.
44	4.6				1.8520 } 200 {	Brühl. A. C. P.
	46				1.8529 } 20 {	208, 1.
	"				1.3617, 14°	De Heen. Bei. 5, 115.
"	"				1.3835, 0° }	Zander. A. C. P. 214,
	46			·	1.2689, 71°	181.
16			"		1.86110, 15°	Perkin. J. P. C. (2),
_ "	11		1		1.34789, 25° }	81, 481.
isopro		mide	"		1.820, 13°	Linnemann. J. 18, 489.
"			"		1.88, 21°	Linnemann.
"	(**		1.248, 20°	Linnemann. A. C. P. 161, 18.
66	4		"		1.2997)	_ ·
			"		1.2997 1.3097 } 20° {	Three lots. Brühl.
44			"		1.3117	A. C. P. 203, 1.
"			"		1.8897, 0° }	Zander. A. C. P.
44			"		1.2368, 60°	214, 181.
**			"		1.31978, 150	Perkin. J. P. C. (2),
"			"		1.30522, 25°	31, 481.
Butvi	bromid	8	C.H.I	3r	1.305, 0°)	,
ű	"				1.2792, 20°	Lieben and Rossi.
66	**		14		1.2571, 40°	A. C. P. 158, 137.
**	"		**		1.2990, 20°	Linnemann. Ann.
"	"		"		1.2605, 14°	(4), 27, 268. De Heen. Bei. 5, 105.
		:4.	"			
TROORE	AT OLOH	ide	"		1.274, 16°	Wurtz. J. 7, 572.
					1.2702, 16°	Chapman and Smith. J. C. S. 22, 158.
**	"		"		1.249, 0°)	
"	"		**		1.191.40°.2 }	Pierre and Puchot.
"	"		4.6		1.1408, 78°.5	Ann. (4), 22, 814.
"	"		"		1.2038, 16°	Linnemann. A. C. P. 162, 1.
**	46		**		1.1456, 90°.5	Schiff. Bei. 9, 559.
**	**		"		1.27221, 15°)	Perkin. J. P. C. (2),
**	"		**		1.25984, 250	31, 4 81.
Trimet	hylcarl	yl bromide_	"		1.215, 20°	Roozeboom. Ber. 14, 2896.
"		"			1.20200, 15°)	Perkin. J. P. C. (2),
"		"	44		1.18922, 25°	31, 481.
Norma	l penty	l bromide	C. H	Br	1.246, 0°)	,
11	Poney	11	~ ~ ~ 11		1.2284, 200	Lieben and Rossi.
44	66	"	44		1.2044, 40°	Lieben and Rossi. A. C. P. 159, 70.
•) l	22. 0. 2. 100, 10.

Name.	FORMULA.	Sp. Gravity.	Authority.
Amyl bromide	C ₅ H ₁₁ Br	1.16576, 0° 1.217, 16°	Pierre. C. R. 27, 213. Chapman and
« « <u></u>	"	1.2045, 20°	Smith. J. 22, 367. Hangen. P. A. 131, 117.
16 16	ts	1.2059, 15°.7 1.0502, 120°	Mendelejeff. J. 13,7. Ramsay. J. C. S.
u u	"	1.2002, 14°	85, 468. De Heen. Bei. 5, 105.
66 66	"	1.0127 } 1175.1	Schiff. Ber. 14, 2766.
« « <u></u>	"	1.2058, 22°	Lachowicz. A.C.P. 220, 171.
" Active		1.0881, 118°.5_ 1.225, 15°	Schiff. Ber. 19, 560. Le Bel. B. S. C. 25, 546.
" Inactive	"	1.2358, 0°	Balbiano. Ber. 9, 1487.
ee ee	11	1.21927, 15° }	Perkin. J. P. C. (2), 81, 481.
Normal hexyl bromide		1.1725, 200	Lieben and Janecek.
Normal heptyl bromide		1.1561, 40°) 1.133, 16°	J. R. C. 5, 156. Cross. J. C. S. 82, 123.
Secondary heptyl bromide	"	1.422, 17°.5	Venable. Ber. 13, 1650.
Normal octyl bromide	44	1.116, 16° 1.11798, 15° }	Zincke. J. 22, 871. Perkin. J. P. C.
Secondary octyl bromide		1.10993, 25° } 1.0989, 22°	(2), 81, 481. Lachowicz. A. C. P. 220, 185.
		1	

2d. Bromides of the Series C_n H_{2n} Br₂.

]	NAME.		Formula.		Sp. Gravity.	AUTHORITY.
Methylene	bromid	le	C H ₂ Br ₂		2.0844, 11°.5 2.4930, 0°	Steiner. Ber. 7, 507. Henry. Ann. (5), 30, 266.
" " " Ethylene l	" " io bromide		" " C H ₂ Br. C H ₂	Br	2.49850 2.490922 2.47849 2.47745 2.164, 21°	Perkin. J. P. C. (2), 82, 528. Regnault. Ann. (2),
"	ú		44		2.128, 18°	59, 358. D'Arcet. J. P. C. 5, 28.
66 66	66 66		66 66		2.16292, 20°.1_ 2.170 2.1827, 20°	Pierre. C. R. 27, 218. Butlerow. J. 14, 652. Haagen. P. A. 181, 117.

66 66 66 66 66 66 66	66 66 66 66 66		C H ₂ Br. C I		2.1785, 20° } 2.1767, 21°.5 } 1.9246, 180°.8 2.18895, 15°	200. Thorpe. J. C. S
## ## ## ## ## ## ## ## ## ## ## ## ##	tt (1	e	C H ₅ . C H B	 	1.98124,181°.45 2.1785, 20° 2.1767, 21°.5 1.9246, 180°.8 2.18895, 15°	Thorpe. J. C. S 37, 871 Anschütz. A. C. P 221, 183. Schiff. Ber. 19, 560 Perkin. J. P. C (2), 32, 523. Weegmann. Z. P C. 2, 218. Caventou. J. 14, 608 Reboul. Z. C. 18 200.
## ## ## ## ## ## ## ## ## ## ## ## ##	tt (1	e	C H ₅ . C H B	 	1.98124,181°.45 2.1785, 20° 2.1767, 21°.5 1.9246, 180°.8 2.18895, 15°	\$7,871. Anschütz. A. C. P. 221, 183. Schiff. Ber. 19, 560 Perkin. J. P. C. (2), 82, 523. Weegmann. Z. P. C. 2, 218. Caventou. J. 14,608 Reboul. Z. C. 18 200.
Ethylidene	" " " " " " " " " " " " " " " " " " "	e	CH ₅ . CH B	 	2.1785, 20° 2.1767, 21°.5 1.9246, 130°.8 2.18895, 15° 2.17271 2.17197 2.17681, 20° 2.185, 0° 2.129 2.132 10° {	Anschütz. A. C. P 221, 183. Schiff. Ber. 19, 560 Perkin. J. P. C (2), 32, 523. Weegmann. Z. P C. 2, 218. Caventou. J. 14, 608 Reboul. Z. C. 18 200.
Ethylidene	tt	e	C H _s . C H B	 	2.1767, 21°.5 } 1.9246, 130°.8 2.18895, 15° 2.17271 } 2.17197 } 2.17681, 20° 2.185, 0° 2.129 } 10° {	221, 188. Schiff. Ber. 19, 560 Perkin. J. P. C (2), 82, 523. Weegmann. Z. P C. 2, 218. Caventou. J. 14, 608 Reboul. Z. C. 18 200.
" " " " " " " " " " " " " " " " " " "	ti ti ti bromid ti ti ti	e	C H ₃ , C H B		1.9246, 130°.8 2.18895, 15° 2.17271 2.17271 2.17197 2.17681, 20° 2.185, 0° 2.129 2.132 } 10°.	Schiff. Ber. 19, 560 Perkin. J. P. C. (2), 32, 523. Weegmann. Z. P. C. 2, 218. Caventou. J. 14, 608 Reboul. Z. C. 18 200.
" " " " " " " " " " " " " " " " " " "	tt (t (t (t (t (t (t (t (t (t (t (t (t (e	C H ₃ , C H B		2.18895, 15° 2.17271	Perkin. J. P. C. (2), 82, 523. Weegmann. Z. P. C. 2, 218. Caventou. J. 14, 608 Reboul. Z. C. 18 200.
Ethylidene	bromid	e	CH _s . CHB	, 	2.17271 } 25° 2.17197 } 25° 2.17681, 20° 2.185, 0° 2.129 } 10° {	(2), 32, 523. Weegmann. Z. P C. 2, 218. Caventou. J. 14, 608 Reboul. Z. C. 18 200.
Ethylidene	bromid	e	CH _s . CHB		2.17197 } 2.0° 2.17681, 20° 2.185, 0° 2.129 } 10° {	(2), 32, 523. Weegmann. Z. P C. 2, 218. Caventou. J. 14, 608 Reboul. Z. C. 18 200.
Ethylidene	bromid	e	CH ₈ . CHB		2.17681, 20° 2.185, 0° 2.129 2.182 } 10° {	Weegmann. Z. P C. 2, 218. Caventou. J. 14,608 Reboul. Z. C. 18 200.
 	ec ec ec	e	. " " " " " " " " " " " " " " " " " " "	r ₂	$\left\{ \begin{array}{c} 2.129 \\ 2.132 \end{array} \right\}$ 10° $\left\{ \begin{array}{c} \end{array} \right.$	Caventou. J. 14,608 Reboul. Z. C. 18 200.
e: e: e:	et et et		"		2.182 } 100 {	200.
66 66 66	66 66 66		"		2.102)	
66 66	££				2.0822, 21°.5	Anschütz. A. C. P
66 66	"		##			221, 188.
44	ti.		••		2.10006, 17°.5	Angelbis Frei
44			" .		2.08905, 20°.5	burg Inaug Diss. 1884.
			"		2.10297, 15° \	Perkin. J. P. C
64	••		4.6		2.08540, 25°	(2), 32, 528.
	"				2.05545, 20°	Weegmann. Z. P C. 2, 218.
Trimethyle	ne brom	ide	CH ₂ Br.CH ₂ .	CH ₂ Br	2.0177, 0°	Geromont. A. C. P 158, 870.
"	"		66		1.98 3 9, 18°.5	Reboul. J. C. S. 86
**	"		"		1.9228	Freund. Ber. 14 2270.
44	4.6		46		2.0060, 0°)	Zander. A.C.P. 214
"	"		**		1.7101, 165°	181.
14	.6				1.98236, 15°	Perkin. J. P. C. (2)
"	"		"		1.96836, 250	82, 528.
Propylene b	bromide		CH _a . CH Br.	CH,Br		Reynolds. J.3,495
-66	66		"		1.974	Cahours. J. 3, 496
. "	u		4.6		1.955, 9°	Reboul. Z. C. 18 200.
44	"		"	·	1.954, 15° }	Linnemann. A. C
"	66		44		1.950, 16° {	P. 136, 53.
"	"		44		1.948, 17°	Linnemann. A. C P. 188, 123.
**	"		66		1.972, 0° }	Erlenmeyer. A. C
**	"		"		1.946, 17° }	P. 139, 226.
46	"		"		1.9586, 0° {	Two products
"	"		ш		1.9256, 20° }	Friedel and La
"	"		**		1.9710, 0° }	denburg. B. S
**	"		"		1.9388, 20°	C. 8, 146.
"	"				1.9468, 17°	Linnemann. A. C
**	"		. "		1.9465, 15° 5	P. 161, 42.
"	"				1.9617, 0°	Zander. A. C. P
"	•		"		1.6944, 1410.7_	214, 181.
"	"		"		1.8893, 18° }	Gladstone. Bei. 9
"	"				1.910, 21° 5	249.
"	"		66		1.94426 } 150-)
"	"		44		1.944/4)	Perkin. J. P. C
44	"		61		1.98004 1.98030 25°-	(2), 82, 528.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Dimethylmethylene bromide. Methyl-bromacetol.	{ CH ₈ . CBr ₂ . CH ₈	1.8149, 0° } 1.7825, 20° }	Friedel and Laden- burg. B. S. C. 8, 150.
"		1.895, 9°	Reboul. Z. C. 18, 200.
		1.875, 10°	Reboul.
" "	" "	1.84761, 15°	Perkin. J. P. C. (2),
a Butylene bromide		1.84761, 15° 1.88140, 25° 1.876, 0°	32, 523. Wurtz. J. 22, 365.
	"	1.8503, 0° }	Grabowsky and
		1.8204, 20°	Saytzeff. A. C. P. 179, 332.
β Butylene bromide	CH ₃ . (CH Br) ₂ . CH ₃	1,8299 } 00	Wurtz. J. 20, 573.
		1.0119)	, ,, druz. 0. 20, 0,0.
		1.8053, 0° }	Duchet Ann (5)
		1.6378, 100°	Puchot. Ann. (5), 28, 543.
"		1 74949)	20, 010.
"		1.75586 150_)
		1.73083 250-	Perkin. J. P. C.
" "	"	1.74294) (2), 32, 523.
Isobutylene bromide	C, H, Br,	1.798, 140)	Two samples. Lin-
" " ———	""	1.809, 17° }	nemann. A. C. P. 162, 1.
" "	. "	1.808, 24°	Studer. Ber. 14,
			2188. (Wagner and Saytz-
Ethylmethylethylene bro- mide. "	C_2H_5 . $(C_1HBr)_2$. CH_3	1.7087, 0° } 1.6868, 14° }	eff. A. C. P. 179,
Isoamylene bromide	C ₅ H ₁₀ Br ₂	1	Helbing. A. C. P.
		1.656, 21°	172, 281. Gladstone. Bei. 9,
"	"	1.63699) 150	249.
	"	1.64000 15°-):
	"	1.62595	Perkin. J. P. C.
"	"	1.62921)) (2), 82, 523.
Hexylene bromide	C ₆ H ₁₂ Br ₂	1.582, 19°	Pelouze and Ca- hours. J. 16, 526.
"	"	1.5975, 18°	Thorpe and Young.
"	"	1.5967, 20°	A. C. P. 165, 1.
" "	"	1.6058, 0°)	Hecht and Strauss.
" " ————	""	1.5809, 19° J	A. C. P. 172, 62.
" "	"	1.6497, 0°	Helbing. A. C. P. 172, 281.
Heptylene bromide	C ₇ H ₁₄ Br ₂	1.5146, 18°.5	Thorpe and Young A. C. P. 165, 1.

3d. Miscellaneous Non-Aromatic Bromides.

NAM	в.	FORMULA.	Sp. Gravity.	AUTHORITY.
Bromoform		C H Br ₈	2.18	Löwig. A. C. P. 8, 296.
46		"	2.9, 12° 2.775, 14°.5	Cahours. J. 1, 501. Schmidt. Ber. 10, 194.
"		16	2.81185, 8°.56_ 2.48611, 151°.2	} Thorpe. J. C. S. 87,
16		66	2.90246 } 15° - 2.88258 } 25° -	Perkin. J. P. C. (2), 82, 528.
Bromethylene	"	C H ₂ Br. C H Br ₂	2.620, 28° 2.668, 0°	Wurtz. J. 10, 461. Simpson. J. 10, 461.
44	"	"	2.659, 0° 2.624, 16°	Caventou. J. 14, 608. Tawildarow. A. C. P. 176, 21.
66 66 46	"	"	2.6189, 17°.5	Demole. Ber. 9, 49. Anschütz. A. C. P. 221, 61.
Tetrabromethan	"	" O H, Br. C Br	2.57896, 20°	Weegmann. Z. P. C. 2, 218. Reboul. Z.C. 18, 200.
46			2.98	Bourgoin. J. C. S. 82, 448. Anschütz. A. C. P.
46 66 66		"	2.9216, 21°.5 } 2.88249, 16°.6_	221, 188.
66		"	2.87482, 20° 2.87214, 21°.2_	Weegmann. Z. P.
66 66		66	2.85189, 80°.2.	C. 2, 218.
Acetylene tetra	.bromide	CH Br ₂ . CH Br ₂	2 0480)	Sabanejeff. A. C. P. 178, 114. Anschütz. Ber. 12,
66 66	"			2075. Anschütz. A.C. P.
11	"	"	2.9629, 21°.5 2.92011, 17°.5_) 221, 188. Eltzbacher. Bonn
	"		2.96725, 20°	Inaug. Diss. 1884. Weegmann. Z. P. C. 2, 218.
bromide.	"	C ₂ H ₃ Br	1.5286, 11°	Watts' Dictionary. Anschütz. A. C. P.
44 61	"	"	1.5167, 14° } 1.52504, 9°.6	221, 188. Perkin. J. P. C. (2), 82, 528.
Dibromethylene		C ₂ H ₂ Br ₃	8.088, 10° } 8.053, 14°.5 } 2.1780, 20°.6	Sawitsch. J.18,431. Anschütz. A. C. P.
21 s	G			221, 188.

		,			
1	NAME.	FORMULA	•	Sp. Gravity.	AUTHORITY.
Acetylene	dibromide	C ₂ H ₂ Br ₂		2.120, 17°	Tawildarow. A. C. P. 176, 23.
"	4	"		2.2023, 22°.7	Sabanejeff. B. S. C. 27, 871.
64	"	"		2.268, 0°	Plimpton. Ber. 14, 1812.
66 66	"	"		2.271, 0° }	Sabanejeff. Ber. 16, 1220.
"	"	"		2.223, 19° { 2.2714, 17°.5	Anschütz. A. C. P.
66 66	"	"		2.2988, 0°	221, 188. Weger. A. C. P.
44	"	"		2.0852, 110°.5_ 2.22889, 20°	221, 61. Weegmann. Z. P.C.
	hylene			2.68762, 20°	2, 218.
Tribrompi	opane	OH" ORE O	H, Br.	2.336	Cahours. J. 8, 496.
"		1 "		2.892, 28° 2.89, 10°	Wurtz. J. 10, 462. Linnemann. J. 18,
"				·	490.
			 	2.88, 120	Reboul. J. C. S. 86,
"		CH ₃ . CHBr. C	-	2.856, 18°	Reboul. C. R. 79,
Tribromhy	drin	CH ₂ Br. CHBr.	CH'RL		Wurtz. J. 10, 468.
"		1 "		2.966, 0° 2.407, 10°	Perrot. J. 11, 895. Henry. A. C. P.
		"		·	154, 870.
		"		2.41844, 15° } 2.89856, 25° }	Perkin. J. P. C. (2), 82, 528.
Tetrabrom Allylene t	propane etrabromide	C, H, Br, C H, C Br, C	H Br.	2.469 2.94, 0°	Cahours. J. 8, 496. Oppenheim. J. 17,
	glycide		CH,Br	2.64	498. Reboul. J. 18, 462.
Pentabron	npropane	C, H, Br,		2.601	Cahours. J. 8, 496.
a Brompro	opylene	C ₂ H ₅ Br		1.864, 19°.5	Reboul. C. R. 79, 817.
46		"		1.89, 9°	Reboul. J. C. S. 86, 127.
46		"		1.42077, 15°	Perkin. J. P. C. (2),
"				1.40527, 25° {	82, 528.
β Brompr	opylene	"		1.400, 18° }	Linnemann. A. C.
	******	"		1.410, 14° } 1.408, 19°	P. 186, 55. Linnemann. J. 19,
. "		"		1.4110, 15°	808. Linnemann. A. C.
44		"	·•	1.428, 19°.5	P. 161, 18. Reboul. C. R. 79,
Allyl brox	nide			1.472	817. Cahours. J. 8, 496.
"		. "		1.451, 00)	
"				1.4885, 15° }	Tollens. J. P.C. 107,
44 4		. "		1.8609, 62°	185.
66 69		"		1.4507, 0°	Tollens and Hennin- ger. Z. C. 12, 88
66 6	(1.461, 00 }	Tollens. A. C. P.
"		. a		1.486, 15° }	156, 158.
4 6		. "		1.4598, 0° }	Zander. A. C. P.
44 4	******	· "		1.8888, 70°.5	214, 181.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Allyl bromide	44"	1.896, 20°.5 1.8867, 24°.5	Gladstone. Bei. 9, 249.
41 41	"	1.8980, 20°	Brühl. A. C. P. 285, 1.
66 66	"	1.41057.250	Perkin. J. P. C. (2), 82, 528.
Epidibromhydrin	C. H. Br.	2.06, 11°	Reboul. J. 18, 461.
Allylene bromide	"	1.950 2.05, 0°	Cahours. J. 8, 496. Oppenheim. J. 17, 498.
££ ££		2.00, 15°	Borsche and Fittig. J. 18, 814.
66 66		1.98, 15°	Linnemann. J. 18, 490.
Propargyl tribromide Propargyl bromide	'		Henry. Ber. 7, 761. Henry. B. S. C. 20, 452.
Propargyl pentabromide _ Tribromisobutane	C ₃ H ₃ Br ₅	1.59, 11° 8.01, 10°	Henry. Ber. 7, 761.
Tribromisonume	O ₄ H ₇ Br ₈	2.101, 11	Norton and Williams. A. C. J. 9, 88.
Bromamylene			
Isoprene bromide	"		Bouchardat. J.C.S. 88, 828.
Isoprene dibromide Bromhexylene. B. 99°-100°.	C ₅ H ₈ Br ₂	1.601, 15° 1.85, 12°	Destrem. Ann. (5), 27, 50.
" B. 188°		1.17, 15°	Reboul and Truchot. J. 20, 587.
" B. 140°	"	1.2025, 15°	Hecht and Strauss. A. C. P. 172, 62.
Hexine dibromide		1.5548, 100° (Hecht. Ber. 11, 1054.
Hexine tetrabromide Dibromdiallyl	$egin{array}{cccc} \mathbf{C_6} & \mathbf{H_{10}} & \mathbf{Br_4} & & & \\ \mathbf{C_6} & \mathbf{H_8} & \mathbf{Br_2} & & & & \\ \end{array}$	2.1625, 0° 1.656	" Henry. J. C. S. (2),
Dipropargyl tetrabromide Conylene bromide	C ₆ H ₆ Br ₄ C ₈ H ₁₄ Br ₂	2.464, 19° 1.5679, 16°.25_	11, 1215. Henry. Ber. 7, 761. Wertheim. J. 15, 867.
Bromdecylene	C ₁₀ H ₁₉ Br	1.109, 15°	Rebouland Truchot. J. 28, 588.
Isovinyl bromide	(C ₂ H ₃ Br) _a	2.075	Baumann. A. C. P. 168, 808.
Erythrene hexbromide	C ₄ H ₄ Br ₆	2.9, 15°, l } 8.4, solid }	Colson. B.S. C. 48, 52. Two modifications.

4th. Aromatic Compounds.

Paradibrombenzene				
1.522 3 - 1 1.686. 1.69286, 119.46 1.69286, 119.46 1.4914, 200 1.4914, 201 1.4914, 2	Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
1.522 3 - 7 1685. 1.50286, 119.46 1.50286, 119.46 1.40286, 119.46 1.40287, 20°.96 1.41168, 77°.76 1.41168, 77°.76 1.41168, 77°.76 1.4914, 20° 1.49	Brombenzene	C. H. Br	1.519) (Ladenburg, Ber. 7.
" 1.60286, 11°.48		11	1.522	1685.
			1.51768, 0°)
## 1.41168, 77°.76 ## 1.4914, 20° Weger. A. C. P. 1.4914, 20° Weger. A. C. P. 1.4923, 20° Weger. A. C. P. 1.4928, 16° 221, 61. Gladstone. Bei. 9, 249. Schiff. Bei. 9, 560. Schiff. Bei. 19,			1.60286, 11°.46	Adrieens. Ber. 6.
			1.40977, 200.90	
" 1.5203, 0° 1.8080, 155° 6. 221, 61.				Brühl Rei 4 780
" 1.8080, 155° 6, 221, 61. Gladstone. Bei. 9, 1.49225, 28° 1.8090, 156° 229, 30° 3	"			
" 1.49225, 28° 249. Schiff. Bei. 9, 559. Schiff. Ber. 19, 560. Schiff. A. C. P. 223. Schiff. Ber. 12, Schiff. Ber.				
" 1.3080, 155° Schiff. Bei. 9, 559. " 1.3090, 156° Schiff. Bei. 9, 559. Schiff. Ber. 19, 560. Schiff. Ber. 12, 561. Schiff. A. C. P. 223, 247. Schiff. A. C. P. 223, 247. Schiff. A. C. P. 223, 247. Schiff. Ber. 12, 561. Schiff. A. C. P. 223, 247. Schiff. Ber. 19, 560. Schiff. Ber. 19, 560. Schiff. Ber. 19, 560. Schiff. Ber. 19, 560. Schiff. Ber. 19, 560. Schiff. Ber. 19, 561. Schiff. A. C. P. 223, 247. Schiff. A. C. P. 223, 247. Schiff. A. C. P. 223, 247. Schiff. A. C. P. 223, 247. Schiff. Ber. 19, 560. Schiff. Ber. 19, 560. Schiff. Ber. 19, 561. Schiff. A. C. P. 223, 247. Schiff. A. C. P. 223, 247. Schiff. Ber. 19, 560. Schiff. Ber. 19, 561. Schiff. A. C. P. 223, 247. Schiff. Ber. 19, 560. Schiff. Ber. 19, 561. Schiff. A. C. P. 223, 247. Schiff. A. C. P. 223, 247. Schiff. Ber. 19, 561. Schiff. A. C. P. 223, 247. Schiff. Ber. 19, 561. Schiff. Ber. 19, 561. Schiff. A. C. P. 223, 247. Schiff. Ber. 19, 561. Schiff. Ber. 19				
Orthodibrombenzene				249.
Orthodibrombenzene C ₆ H ₄ Br ₂ 2.003, 0° Körner. J. C. S. (8), 1, 214. 1, 858, 99° 1, 218, 1, 214. 1, 218, 1, 214. 1, 218, 1, 214. 1, 218, 1, 214. 1, 218, 1, 214. 1, 218, 1, 214. 1, 214. 1, 218, 1, 218. 1, 218, 1, 218. 1, 218, 229. 1, 218, 248° 1, 218, 248° 1, 218, 248° 1, 218, 588. </td <td></td> <td></td> <td>1.8080, 1889</td> <td>Schiff Rev 10 560</td>			1.8080, 1889	Schiff Rev 10 560
Metadibrombenzene				
Metadibrombenzene """"	"	"		
Paradibrombenzene	Metadibrombenzene		1.955 18° 8	
" " " 1.8408, 89°.8	Paradibrombenzene		2.218)	
Benzyl bromide			2.222	
Ca Ha. C Ha. Br			1.0400, 89.8	
"	Benzyl bromide	C. H., C.H., Br	1.488. 220	Kakulá J 20 662
"	Orthobromtoluene	C. H. UH. Br	1.4092, 21°.5	Glinzer and Fittig.
"				J. 18, 588.
" " " " " " " " " " " " " " " " " " "		"	1.4109, 22°	Kekulé. J. 20, 668.
""""""""""""""""""""""""""""""""""""	"	"	1.401, 18°	Wroblevsky. A. C.
Parabromtoluene	**		1 9091 1999 8	P. 168, 147.
Parabromtoluene	Metahromtoluene	16	1.4009. 210	Wmhlevsky Z. C.
Parabromtoluene	200001011011011011111111111111111111111			18, 289.
Dibromtoluene. B. 236° "B. 238°-239° "B. 246° "C ₆ H ₄ . C ₂ H ₅ . Br "Bromxylene "Wroblevsky. Z. C. 14, 232. "Wroblevsky. Z. C. 14, 272. Fittig and Koenig. J. 20, 609. Beilstein. J. 17, 530. Jacobsen. Ber. 17, 2878. Wroblevsky. A. C. P. 192, 215. Radziszewski and Wispek. Ber. 15, 1747. Jacobsen. Ber. 15, 1747. Jacobsen. Ber. 17, 2877.	Parabromtoluene	"	1.8999, 80°	Hübner and Terry.
" B. 238°-239°- " B. 246°- " B. 246°- " L.812, 19°- " L.812, 22°- " Wroblevsky. Z. C. 14, 272. Ethylbrombenzene. 1.4 — C ₆ H ₄ . C ₂ H ₅ . Br — 1.34, 18°.5— Fittig and Koenig. J. 20, 609. Bromxylene — C ₆ H ₃ . C H ₃ . C H ₃ . Br — 1.3693, 15° — Beilstein. J. 17, 580. Jacobsen. Ber. 17, 2878. " L.812, 22° — Wroblevsky. A. C. 14, 272. Bilstein. J. 17, 580. Jacobsen. Ber. 17, 2878. Wroblevsky. A. C. P. 192, 215. Radziszewski and Wispek. Ber. 15, 1745. Orthoxylyl bromide — C ₆ H ₄ . C H ₃ . Br ₂ — 1.7842, 15° — Jacobsen. Ber. 17, 29277.				Z. C. 14, 282.
" B. 238°-239°	Dibromtoluene. B. 286°	C ₆ H ₈ . C H ₃ . Br ₃	1.8127, 190	
Ethylbrombenzene. 1.4 — C ₆ H ₄ . C ₂ H ₅ . Br — 1.34, 18°.5 — Fittig and Koenig. J. 20, 609. Bromxylene — C ₆ H ₃ . C H ₃ . Br — 1.385, 21° — J. 20, 609. " 1.2.4 — J. 2878. " 1.8.5 — Wroblevsky. A. C. P. 192, 215. Metaxylyl bromide — C ₆ H ₄ . C H ₂ . C H ₂ Br — 1.3811, 28° — Radziszewski and Wispek. Ber. 15, 1745. Dibromorthoxylene — C ₆ H ₂ . (C H ₃) ₂ Br ₂ — 1.7842, 15° — Jacobsen. Ber. 17, 2977.	" B 9280 9200		1 919 100	18, 289.
Ethylbrombenzene. 1.4 C ₆ H ₄ . C ₂ H ₅ . Br 1.34, 18°.5 Fittig and Koenig. J. 20, 609. Bromxylene C ₆ H ₃ . C H ₃ . Br 1.385, 21° Jacobsen. Ber. 17, 2878. " 1.8.5 " 1.862, 20° Mroblevsky. A. C. P. 192, 215. Metaxylyl bromide C ₆ H ₄ . C H ₂ . C H ₂ Br 1.3811, 28° Radziszewski and Wispek. Ber. 15, 1745. Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17, 2977.			1 812 920	Wroblevsky Z.C.
Bromxylene 1.2.4 C ₆ H ₃ . C H ₃ . C H ₃ . Br 1.385, 21° Fittig and Koenig. J. 20, 609. Beilstein. J. 17, 580. Jacobsen. Ber. 17, 2878. Beilstein. J. 17, 580. Jacobsen. Ber. 17, 2878. Wroblevsky. A. C. P. 192, 215. Radziszewski and Wispek. Ber. 15, 1746. Wispek. Ber. 15, 1746. Radziszewski snd Wispek. Ber. 15, 1747. Dibromorthoxylene 1.7842, 15° Jacobsen. Ber. 17, 28° Jacobsen. Ber. 17, 28° Jacobsen. Ber. 17, 2878. Wroblevsky. A. C. P. 192, 215. Radziszewski and Wispek. Ber. 15, 1746. Radziszewski snd Wispek. Ber. 15, 1747. Jacobsen. Ber. 17, 28°		i e	i e	14, 272.
Bromxylene C ₆ H ₃ . C H ₃ . C H ₃ . Br 1.385, 21° Belistein. J. 17, 530. Jacobsen. Ber. 17, 2878. Wroblevsky. A. C. P. 192, 215. Radziszewski and Wispek. Ber. 15, 1745. C ₆ H ₃ . C H ₃ . C H ₃ . Br ₂ 1.3811, 28° Radziszewski and Wispek. Ber. 15, 1747. Dibromorthoxylene C ₆ H ₃ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17, 2877.	Ethylbrombenzene. 1.4	C, H, C, H, Br	1.84, 180.5	Fittig and Koenig.
" 1.8.5 " 1.862, 20° Wroblevsky. A. C. P. 192, 215. Metaxylyl bromide C ₆ H ₄ . C H ₂ . C H ₂ Br 1.3711, 28° Radziszewski and Wispek. Ber. 15, 1745. Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17, 28° 77.			l.	I T 90 800
" 1.8.5 " 1.862, 20° Wroblevsky. A. C. P. 192, 215. Metaxylyl bromide C ₆ H ₄ . C H ₂ . C H ₂ Br 1.3711, 28° Radziszewski and Wispek. Ber. 15, 1745. Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17, 28° 77.	Bromxylene	C ₆ H ₃ . C H ₃ . C H ₃ . Br	1.885, 21°	Beilstein. J. 17, 580.
" 1.8.5	" 1.2.4		1.8698, 150	Jacobsen. Ber. 17,
Metaxylyl bromide C ₆ H ₄ . C H ₂ . C H ₂ Br 1.8711, 28° P. 192, 215. Orthoxylyl bromide " 1.3811, 28° Radziszewski and Wispek. Ber. 15, 1745. Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17, 28° 77	" 185		1 889 900	Wroblevsky A C
Metaxylyl bromide C ₆ H ₄ . C H ₂ . C H ₂ Br 1.8711, 28° Radziszewski and Wispek. Ber. 15, 1745. Orthoxylyl bromide " 1.8811, 28° Radziszewski and Wispek. Ber. 15, 1747. Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17, 2077				P. 192, 215.
Orthoxylyl bromide " 1.3811, 28° Wispek. Ber. 15, 1745. Radziszewski s nd Wispek. Ber. 15, 180	Metaxylyl bromide	C. H. C H. C H. Br	1.8711, 28°	Radziszewski and
Orthoxylyl bromide " 1.3811, 23° Radziszewski s n d Wispek. Ber. 15, 1747. Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17,	<i>.</i>		1	Wispek. Ber. 15,
Wispek. Ber. 15, 1747. Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17, 2077	0.4 111 11			1745.
Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ 1.7842, 15° Jacobsen. Ber. 17,	Orthoxylyl bromide	·	1.8811, 280	
Dibromorthoxylene C ₆ H ₂ . (C H ₃) ₂ Br ₂ _ 1.7842, 15° _ Jacobsen. Ber. 17,			1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dibromorthoxylene	C. H., (C H.), Br.	1.7842.150	Jacobsen, Ber 17
Orthoxylylene bromide C ₆ H ₄ (C H ₂ Br) ₂ 1.984, 0°, s. Colson. Ann. (6), 6, 6.				1 9977
" 1.680, 95°, 1. 86.	Orthoxylylene bromide	C ₆ H ₄ (C H ₂ Br) ₂	1.984, 0°, s.)	Colson. Ann. (6), 6,
	" "		1.680, 95°, l. }	86.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Orthoxylylene bromide	C ₆ H ₄ (C H ₂ Br) ₂	1.988	Colson. C. R. 104,
Metaxylylene bromide	44	1.784, 0°, s. 1.615, 80°, l. 1.959	Colson. Ann. (6), 6, 86.
			Colson. C. R. 104, 429.
Paraxylylene bromide	"	2.010, s	Colson. Ann. (6), 6, 86.
" "		2.012	Colson. C. R. 104, 429.
Brommesitylene. 1.8.5.6	l	t	i J. 20. 704.
Isopropylbrombenzene. 1.4.	C ₆ H ₄ . C ₈ H ₇ . Br	İ	
" "		1.8014, 15°	480.
Dibromcymene	l	1	l Ber. 18, 908.
β Bromamylbenzene Benzene hexbromide		[Dafert. M. C. 4, 621. Meunier. Ann. (6), 10, 228
Bromdibenzyl Bromnaphthalene	C ₁₆ H ₁₈ Br	1.818, 9° 1.555 1.508, 12°	Stelling and Fittig. Glaser. J. 18, 562. Wahlforss. J. 18, 564.
46	"	1.48875, 16°.5. 1.47496, 28°.1. 1.42572, 77°.6.	
tt	"	1.5678, 16°.5) 1.5403, 17° }	Gladstone. Bei. 9,
ι <u>σ</u>		1.5408, 18°) 1.605, 0°	249. Roux. B. S. C. 45, 514.
a Tetrabrom hydrocam- phene.			Boyère. Ber. 19, ref. 488.
β Tetrabromh y drocam- phene.	"	1.98711	44 44

LVI. COMPOUNDS CONTAINING C, H, O, AND BR.

NAME.	Formula.	Sp. Gravity.	AUTHORITY.
αβ Dibrompropyl alcohol.	C ₃ H ₆ Br ₂ O	2.1682, 0° } 1.7585, 219° }	Weger. A. C. P. 221, 61.
Monobromtrimethy lear- binol.	C ₄ H ₉ Br O	1.429, 0°	Guareschi and Garzino. J. C. S. 54, 487.
Dibromhexyl alcohol	C ₆ H ₁₂ Br ₂ O	1.99, 15°	Destrem. Ann. (5), 27, 50.
Bromethyl oxide	C ₄ H ₉ Br O	1.8704, 0°	Henry. C. R. 100, 1007.
Bromacetyl bromide	C ₂ H ₂ Br ₂ O	2.817, 21°.5	Naumann. J. 17, 822.
Propionyl bromide	C, H, O. Br	1.465, 14°	Sestini. J. 22, 528.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Dibromacetic acid	C, H, Br, O,	2.25	Perkin and Duppa. J. 11, 285.
Bromobutyric acid	C ₄ H ₇ Br O ₃	1.54, 15°	Schneider. J. 14, 457.
Bromisobutyric acid	"	1.5225, 60° 1.500, 100°	Helland Waldbauer. Ber. 10, 448.
Dibromobutyric acid	C4 H6 Br, O2	1.97	Schneider. J. 14, 458.
Bromosteoric acid	C ₁₈ H ₈₅ Br O ₃	1.0658, 20°	Oudemans. J. P. C. 89, 197.
Ethyl bromacetate	C4 H7 Br O3	1.5250, 18°	Gladstone. Bei. 9, 249.
Dibromethyl acetate	C4 H6 Br2 O2	1.962, 17°	Kessel. Ber. 10, 1996.
Ethyl brompropionate	C ₅ H ₉ Br O ₃	1.896, 11°	Henry. A. C. P. 156, 176.
Methyl dibrompropionate. a.	"	1.9048, 0° } 1.8978, 12° }	Philippi. Göttingen Inaug. Diss. 1878.
· · · · · · · · · · · · · · · · · · ·	"	1.9777, 0° 1.6140, 205°.8_	Weger. A. C. P. 221, 61.
Ethyl dibrompropionate. a	C ₅ H ₈ Br ₂ O ₂	1.7728, 0° }	Philippi. Gött. In- aug. Diss. 1878.
" " β	"	1.796, 0° }	Munder and Tollens. A. C. P. 167, 222.
· · · · · · · · · · · · · · · · · · ·	"	$\left\{ \begin{array}{c} 1.8284 \\ 1.8279 \end{array} \right\} 0^{\circ}$	Weger. A. C. P.
		1.4554, 214°.6) 221, 61.
Propyl dibrompropionate.	C ₆ H ₁₀ Br ₂ O ₂	1.6842, 0° }	Philippi. Gött. In- aug. Diss. 1878.
" " " " "	"	1.7014, 0° } 1.8891, 288° }	Weger. A. C. P. 221, 61.
Butyldibrompropionate. a		1.6008, 0° } 1.5778, 12°	Philippi. Gött. In- aug. Diss. 1878.
Methyl brombutyrate. $\gamma_{}$	C ₅ H ₉ Br O ₂	1.450, 5°	Henry. C. R. 102, 368.
Ethyl brombutyrate	C ₆ H ₁₁ Br O ₂	1.88, 15° 1.845, 12°	Schneider. J. 14, 458. Cahours. J. 15, 248.
" " γ	"	1.868, 50	Henry. C. R. 102, 868.
Ethyl bromisobutyrate	"	1.828, 0° }	Hell and Wittekind.
Ethyl bromvalerate. a Ethyl bromethylmethyl-	C, H, Br O,	1.800, 19°.5 } 1.226, 18°	Ber. 7, 819. Juslin. Ber. 17, 2504.
Ethyl bromethylmethylacetate. a.	"	1.2275, 18°	Böcking. A. C. P. 204, 24.
Bromal	C ₂ H Br ₃ O	8.84	Löwig. A. C. P. 8, 805.
Parabromalide Bromacetone	C ₈ H ₅ Br O	8.107 1.99	Cloez. J. 12, 488. Sokolowsky. B. S. C. 27, 871.
Dibromacetone Hexbromethylmethyl ke-	C ₃ H ₄ Br ₂ O C ₄ H ₂ Br ₆ O	2.5 2.88, 0°	Demole. Ber. 11,
tone. Ethylene bromhydrin	C ₂ H ₄ . Br. O H	1.66, 8°	1712. Henry. Ann. (4), 27,
Bromethylene bromhydrin	C, H, Br. Br. O H	2.85, 0°	248. Demole. Ber. 9, 50.
Bromethylene bromacetin Ethylidene bromethylate		1.98, 0° 1.0682, 12°	Demole. Ber. 9, 51. Henry. C. R. 100, 1007.
	•	•	. 1001.

NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Trimethylene bromhydrin	C ₈ H ₆ . Br. O H	1.5874, 20°	Frühling. Ber. 15, 2622.
Ethoxybromamylene	C ₅ H ₆ Br. O C ₂ H ₅	1.28, 19°	Reboul. J. 17, 507.
Hexylene bromhydrin	C. H. Br. O H	1.2959, 110	Henry. C. R. 97, 260.
Ethyl bromacetacetate	C ₆ H ₉ Br O ₃	1.511, 22°	Duisberg. Ber. 15, 1878.
Ethyl dibromacetacetate	C. H. Br. O.	1.884, 25°	" "
Ethyl tribromacetacetate.	C. H. Br. O.	2.144, 22°	46 46
Ethyl tetrabromacetace-	C ₆ H ₇ Br ₃ O ₃ C ₆ H ₆ Br ₄ O ₃	2.401, 17°	" "
Dibromide of dibromacet- acetic ether.	C ₆ H ₈ Br ₄ O ₈ . ?	2.820, 21°	Conrad. A. C. P. 186, 288. Compare
Ethyl bromethylacetace-	C ₈ H ₁₈ Br O ₈	1.854	Ber. 15, 2188. Wedel. A. C. P. 219, 102.
Ethyl dibromethylacet- acetate.	C ₈ H ₁₂ Br ₂ O ₃	1.635	Wedel. A. C. P. 219, 108.
Ethyl tribromethylacet- acetate.	C ₈ H ₁₁ Br ₈ O ₈	1.860	" "
Ethyl β bromacetopropionate.	C ₇ H ₁₁ Br O ₈	1.489, 15°	Conrad and Guth- zeit. Ber. 17, 2286.
Ethyl brompropiopro- pionate.	C ₈ H ₁₈ Br O ₃	1.887, 15°	Israel. A. C. P. 281, 197.
Ethyl dibrompropiopro- pionate.	C ₈ H ₁₂ Br ₂ O ₈	1.611, 15°	66 66
Bromallyl alcohol	C ₃ H ₅ Br O	1.6, 15°	Henry. B. S. C. 18, 282.
Bromallyl acetate	C. H. Br O.	1.57, 120	" "
Bromally acetateAllyl dibrompropionate. β _	C ₆ H ₇ Br O ₂ C ₆ H ₈ Br ₂ O ₂	1.57, 12° }	Münderand Tollens.
		1.818, 20° }	_ A. C. P. 167, 222.
Dibromallyl oxide			Henry. B. S. C. 20, 452.
Brommethylallyl oxide			Henry. B. S. C. 18, 232.
Bromethylallyl oxide	C ₅ H ₉ Br O	1.27, 12°	Henry. Ber. 5, 186. Veley. C. N. 47, 89.
Monobromhydrin	C ₃ H ₅ . Br (O H) ₂ C ₃ H ₅ . Br ₂ O H	1.717, 4°	Veley. C. N. 47, 89.
Dibromhydrin	C ₃ H ₆ . Br ₂ O H	2.11, 10°	Berthelot and De Luca. J. 8, 627.
"	"	2.11, 18°	Berthelot and De Luca. J. 9, 601.
"		2.02, 18°.5	Zotta. A. C. P. 174, 87.
Epibromhydlin	C ₈ H ₅ Br O	1.615, 14°	Berthelot and De
Bromdiethylin	C, H, Br (O C, H,).	1.258, 8°	Luca. J. 9, 600. Henry. Ber. 4, 701.
Diethyl brommaleate	C ₃ H ₅ . Br (O C ₂ H ₅) ₂ - C ₈ H ₁₁ Br O ₄		Anschütz and Asch- man. Ber. 12, 2284.
Dibromoleic acid Bromeitropyrotartaric an- hydride.	C ₁₈ H ₂₈ Br ₂ O ₂ O ₅ H ₃ Br O ₃	1.272, 7°.5 1.985, 28°	Lefort. J. 6, 451. Bourgoin. J. Ph. C. 26, 284.
Ethyl o brompyromucate.	C ₇ H ₇ Br O ₃	1.528, 0°	Hill and Sanger. A. C. P. 282, 52.
Orthomonobromphenol Paramonobromphenol	C ₆ H ₅ Br O	1.6606, 80° 1.840, 15°	Körner. J. 19, 574. Hand. A. C. P. 284, 183.

Name.	FORMULA.	Sp. Gravity.	Authority.	
Brommethylphenol	C, H, Br O	1.494, 9°	Henry. Z. C. 18, 247.	
Bromparakresol	"	1.5468, 24°.5	Schall and Dralle. Ber. 17, 2581.	
Brommethylparakresol	Ca H, Br O	1.4182, 24°.5	"	
Bromisopropylphenol	C, H ₁₁ Br O	1.981, 0° } 1.957, 12°.5	Silva. B.S.C., Jan., 1870.	
Bromallylphenol ether	C, H, Br O	1.4028, 11°	Henry. Ber. 16, 1878.	
Brommethyleugenol	C ₁₁ H ₁₈ Br O ₂	1.8959, 0°	Wassermann. C. R. 88, 1207.	
Benzoyl bromide	C ₇ H ₆ O. Br	1.5700, 15°	Claisen. Ber. 14, 2478.	
Monobromcamphor	C ₁₀ H ₁₅ Br O	1.487 }		
Santonyl bromide		1.4646		

LVII. BROMINE COMPOUNDS CONTAINING NITROGEN.

Name.	FORMULA.	Sp. Gravity.	Authority.
Brompierin	C Br ₂ N O ₂	2.811, 12°.5	Bolas and Groves. Z. C. 18, 414.
"	"	2.816, 18°	
Tetranitroethylene bro- mide.	C ₂ (N O ₂) ₄ Br ₃	1.25, 14°	
Bromonitric glycol	C ₂ H ₄ Br N O ₃	1.785, 8°	
Bromallyl nitrate	C ₃ H ₄ Br N O ₃	1.5, 18°	Henry. B. S. C. 18, 232.
Nitrobromtoluene. B. 269°	C, H, Br N O,	1.612, 20°	Wroblevsky. Z. C.
и В. 256°	"	1.681, 18°	18, 240. Wroblevsky. Z. C.
Bromtoluidine. B. 240°	C, H, Br N	1.510, 20°	13, 166. Wroblevsky. A. C.
" B. 255°-260°	"	1.1442, 19°	
Brompyridine	C ₅ H ₄ Br N	1.645, 0°	P. 192, 208. Ciamician and Dennstedt. Ber.
"	"	1.646, 0°	15, 1174.
((1.682, 10°	

LVIII. COMPOUNDS CONTAINING C, H, AND I.

1st. Iodides of the Paraffin Series.

-			,		<u> </u>	1
NAME. Methyl iodide			FORMULA.		Sp. Gravity. 2.227, 22°	AUTHORITY. Dumas and Peligot. Ann. (2), 58, 80.
cc	"		" .		2.269, 25°	Linnemann. Z. C
44	"		"		2.2905, 16°	11, 285. Sigel. A. C. P. 170 845.
86	"		"		2.1905, 42°	Ramsay. J. C. S. 85 468.
46 66	et 41		"		2.28517, 15° } 2.25288, 25° }	Perkin. J. P. C. (2), 81, 481.
66	"		"		2.8846, 0° }	Dobriner. A. C. P.
66	66		"			
					2.2146, 42°.8	248, 28.
Ethyl i	100106		U ₂ H ₅	I	1.9206, 28°.8	Gay Lussac. Ann. (1), 91, 91. Marchand. J. P. C.
6 1	"		۱.,			88, 188.
66	66		a		1.97546, 0°	Pierre. C. R. 27, 218.
46			;;		1.9567, 50-100	Barrania B A
"	66		1		1.9457, 100-140	
44	**		1		1.9848, 15°-20°) 62, 50.
"	"		1		1.9464, 16°	Frankland. J. 2, 412.
"	"		"		1.9809, 15°	Mendelejeff. J. 18, 7.
"	"				1.98, 4°	Berthelot. A. C. P. 115, 114.
"	"		"		1.927, 20°	Linnemann. A. C. P. 144, 188.
"	"		"		1.9265, 19°	Linnemann. A. C. P. 148, 251.
"	"		"		1.985 } 20° {	Haagen. P. A. 181,
"	"		"		1.000)	117.
"	"				1.979; 0° }	Pierre and Puchot
"	"		"		1.907, 80°.4 5 1.9444, 14°.5	Ann. (4), 22, 261. Linnemann. A. C.
"	"		46		1.944, 15°	P. 160, 195.
"	"		"		1.9813, 14°	Crismer. Ber. 17,652. Gladstone. Bei. 9, 249.
"	44		"		1.8111, 720.2	Schiff. Ber. 19, 560.
44	"		"		1.96527, 4°	Don. 10, 000.
46	"		**		1.94332, 15°	Perkin. J. P. C. (2)
66	44		"		1.92481, 25°	81, 481.
44	66		**		1.9795, 0°)	Dobriner. A. C. P.
41	"		66		1.8156, 72°.5	
Propyl		e	C, H,	I	1.789, 16°	248, 28. Berthelot and De Luca. J. 7, 452.
46	"			***************************************	1.7012, 21°	Luca. J. 7, 452. Linnemann. J. 21, 438.

Name.			FORMULA.		Sp. Gravity.	AUTHORITY.
Propyl	iodide		C, H, 1		1.7848, 16°	Chapman and Smith J. U. S. 22, 195.
u	44		"		1.782, 0°	Rossi. A. C. P. 159
44	"		46		1.7472, 16°	
"	44		"		1.7377, 28°	Linnemann. A. C P. 161, 25.
"	"		16		1.7610, 16°	
"	"		"		1.78685, 0°	ار ۱۰ ۱۵۲, ۵۳
**	66		"	************		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
"	46		16		1.74772, 200.7	Drown. J. C. 6. 62 مرام
66	"		"		1.74628, 20°.9	
**	"		"		1.7427, 20°	Brühl. A. C. P. 208, 1.
"	66		"		1.7488, 14°	De Heen. Bei. 5, 105
u	44		44		1.5867, 1020.5	_ Zander. A. C. P.
"	"		"		1.7888, 0°	
"	u		"		1.7508, 16°	648. Gladstone. Bei. 9, 249.
44	44		"		_ 1.7842, 0°)	220.
"	"		"			Ĭ
			"		1.7674, 99.1	Pierre and Puchot.
"	"		"		1.6848, 52°.6 1.6878, 75°.8	Ann. (4), 22, 286.
"	44				1.0070, 700.0]	1 ','
	"		"		_ 1.76782, 10°	Perkin. J. P. C. (2),
"	"				_ 1.75858, 15° (81, 481.
"	"		1 "		1.7829, 00 \	Dobriner. A. C. P.
Isopro		ide	;;		_ 1.585, 102°.5	
• •	•		Ì			489.
44		'	"		_ 1.714, 16°	P. 126, 809.
14	•		"		_ 1.78, 0°	Simpson. A. C. P. 129, 128.
"	•		"		1.725, 0°	- Wurtz. See A. C. P. 186, 48.
"	4		"		_ 1.69, 15°	
"	(-"		1.71, 15°	Linnemann. A. C. P., 8d Supp., 267.
"			"		_ 1.785, 0° 7	Erlenmeyer. A. C.
**			1 44		_ 1.711, 17°	P. 189, 229.
"			"		_ 1.71782, 17° _] H.L.Buff. A.C.P.,
"			"		1.562442, 98°	4th Supp., 129.
"	•		"		1.70, 18°	Linnemann. A. C.
**	i		"		_ 1.715, 15°.5	P. 140, 178. Siersch. A. C. P. 140, 142.
**			"		_ 1.7109, 15°	
"		"	"		1.744, 0°	-ln
46		14	"		. 1.70526, 19°.8	P T 0 0 00
46		14	"		_ 1.70506, 20°.1	A P Drown. J. C. D. U.
**		"	"		_ 1.70457, 21°.0	887.
			1		1 ' '	1-

Isoprop			FORMULA.		SP. GRAVITY.	AUTHOBITY.
	yl iodi	le	C, H,	r	1.7088, 20°	Brühl. A. C. P. 203, 1.
"	"		"		1.5650, 89°	Zander. A. C. P. 214, 181.
"	"		"		1.7157, 14°	Gladstone. Bei. 9, 249.
"	"		"		1.71680, 15°) 1.70049, 25° }	Perkin. J. P. C. (2), 81, 481.
Butyl i	abiboi		C. H.	[1.648, 0°)	01, 201.
247	"		"		1.6186, 20° }	Lieben and Rossi.
**	"		"		1.5894, 40°	A. C. P. 158, 187.
**	" -		"		1.5804, 18°	Linnemann. Ann. (4), 27, 268.
"	" -		"		1.6166, 20°	Bruhl. A. C. P. 208, 1.
44	"		"		1.6172, 14°	De Heen. Bei. 5, 105.
£	" -		"	*	1.6476, 0°	Dobriner. A. C. P.
		-1 iodido	1		1.4808, 129°.9	∫ 248 , 28.
eecon()	ary but	yl iodide	"		1.682, 0° }	De Luynes. J. 17,
Le	60		11		1.584, 80°	499.
44	44	"	"		1.6268, 0°)	'
"	60		"		1.6111, 100	Lieben. J. 21, 489.
46	40		. "		1.5952, 20°	11100011. 0. 21, 200.
"	61		" "		1.6787, 80° J	3V A G D 150
46	•	"	· "		1.684, 0°	Wurtz. A.C.P. 152, 28.
Tachuti	hiboi Is	e	"		1.604, 190	Wurtz. J. 7, 578.
11	,		"		1.648, 0°	Wurtz. J. 20, 578.
**	"		. "		1.6801.00)	Chapman and
46	**		. "		1.6082, 16°	Smith. J. C. S.
44	46 46		. "		1.54816, 50°)	22, 156.
66 61	"	~	1 "		1.6845, 00]	
	"		"		1.6214, 8°.8 1.6887, 56°.4	Pierre and Puchot.
66	44		"		1.464, 98°.8	Ann. (4), 22, 817.
"	44		. "		1.6081, 19°.5	Linnemann. A. C. P. 160, 195.
"	"		. "		1.592, 22°	Linnemann. Ann. (4), 27, 268.
44	44		. "		1.6488, 00)	Erlenmeyer and
**	"		. "		1.6278, 100	Hell. A. C. P.
**	"		. "		1.6114, 200	160, 257.
"	"		. "		1.6401, 0° }	Brauner. A. C. P.
44	66 66		- "		1.6050, 20° }	192, 69.
-			"		1.6056, 20°	Brühl. A. C. P. 208, 1.
"	"		1	40 page - 4 = 00a	1.5982	Gladstone. Bei. 9,
"	"		- "		1.4885, 114°.5	Schiff. Ber. 19, 560.
"	46 46		- "		1.61885, 15°	Perkin. J. P. C.
		yl iodide. ?	•		1.60066, 25° { 1.587, 0° }	(2), 81, 481.
TIIMGE	(i	11	"		1.501, 500.1	1
	"	" _	"		1.571, 0° }	Two lots. Puchot.
	**	"	- "		1.479, 58° }	Ann. (5), 28, 546.
Norms		l iodide	. C, H,	I	1.5485, 0°)	Lieben and Rossi.
44	· "	" :	-1 "		l 1.5174, 20° }	A. C. P. 159, 70.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Normal pentyl iodide	C ₅ H ₁₁ I	1.4961, 40°	Lieben and Rossi. A. C. P. 159, 70.
	"	1.5444, 00	Dobriner. A. C.
" " "	61	1.8128, 151°.7_	P. 248, 20.
Amyl iodide	"	1.51118, 11°.5 ₋	Frankland. J.8, 478.
" "	"	1.5277, 0°	Frankland.
" "	"	1.4936, 200	Grimm. J. 7, 548.
" "	"	1.4676, 00 }	Kopp. A. C. P. 95,
"	"	1.4887, 22°.8	807.
" "		1.5087, 15°.8 1.4734, 20°	Mendelejeff. J. 18, 7.
	"	1.2102, 20	Haagen. P. A. 181, 117.
(6 (6	"	1.5005, 14°	De Heen. Bei. 5,
46 66	и	1.5418,00 }	Flawitzky. Ber. 15,
"	"	1.5084, 280	11.
44 44	"	1.5048, 14°	Gladstone. Bei. 9,
			249 .
"	"	1.8098, 148°	Schiff. Ber. 19, 560.
66 66	"	1.5100, 15° }	Perkin. J. P. C. (2),
." "	"	1.49811, 25° }	81, 481.
" Active	"	1.54, 15°	Le Bel. B. S. C. 25,
	"	1.5425, 16°	Just. A. C. P. 220, 150.
Methylpropylcarbyliodide	"	1.587, 00 }	
" "	"	1.5219, 11°	Wurtz. J. 21, 446.
	"		(Wagnerand Saytz-
		1.539, 0° } 1.510, 20° }	eff. A. C. P. 179,
		,	(818.
" . " <u></u>	"	1.499, 15°	Romburgh. Ber. 16, 892.
Diethylcarbyl iodide	"	1.528, 00)	Wagner and Saytz-
" " …	"	1.505, 16°	eff. A. C. P. 175,
" "	"	1.4792	(865. Gladstone. Bei. 9, 249.
	l		(Wagnerand Saytz-
" "	"	1.528, 0° }	eff. A. C. P. 179,
"	'	1.501, 20° }	818.
Dimethylethylcarbyl io-	"	1.5207, 0° }	Flawitzky. A.C. P.
dide. " "	"	1.4954, 19° }	179, 848.
	"	1.524, 0° }	Wischnegradsky. A.
"	"	1.497, 19° {	C. P. 190, 884.
ii ii	"	1.522, 0° }	Winogradow. A. C.
		1.498, 18° 5	P. 191, 125.
Hexyl iodide	C ₆ H ₁₃ I	1.481, 19°	Pelouze and Ca- hours. J. 16, 526.
	"	1.4115	Franchimont and Zincke. C. N. 24,
دد دد		1 4807 00	263.
"	(1	. 1.4607, 0°	Lieben and Janecek.
"	11	1.4178, 40°	J. R. C. 5, 156.
16 16	(6	1.4661, 0°	Dobriner. A. C. P.
	"	1.2165, 177°.1.	248, 28.
Secondary hexyl iodide		1.489	. Wanklyn and Erlen-

	Name	i.		F	ORMULA.	Sp. Gravity.	AUTHORITY.
Secondar	y hexy	l iodid	e	Ca H ₁₂	I	1.4447, 0° }	Wanklyn and Erlen-
"	"	66		. "		. 1.8812, 50° }	meyer. J. 16, 518.
"	"	"		44		1.4526, 0°	Hecht. A. C. P. 165
"	**	44		"		1.4589, 0° }	1
44	44	46		"		1.8988, 50°	11
66	44	"		"		1.4477, 0° {	Krusemann. Ber
64	44	46		"			
44	46	66		"		1.4487, 0° }	9, 1468.
44	44	66		"]]
44	"	"		44		1.4198	Gladstone. Bei. 9, 249.
4.6	44	"		"		1.42694, 150	Perkin. J. P. C. (2),
"	66	44		"			81, 481.
Dimethy	isonro	nvlcar	hvl	"		1.8989, 0° }	Pawlow. A. C. P.
iodide.	ii pro	PJ	- J -	"			196, 122.
Pinacolic	iodide			64		1.4789, 00	Friedel and Silva.
							J. C. S. (2), 11,488.
Normal h	eptyl i	iodide		C, H ₁₅	I	1.846, 16°	Cross. J. C. S. 82, 128.
64	44	44		"		1.4008, 00	Dobriner. A.C.P.
44	44	46		"		1.1344, 2080.8_	243, 23.
Dipropyle	arhvl	iodide		44			Kurtz. A. C. P.
p.opj						1.20, 20 2222	161, 205.
Normal o	ctvl io	dide _		C. H	I	1.888, 160	Zincke. J. 22, 871.
44		"		-8 -17			1
46	44	" _		11			Krafft. Ber. 19, 2218.
66	44	" _		66		1 4 4 4 4 4 4 4 4 4 4 4	Perkin. J. P. C. (2),
66	44	" _		66		1.88168, 25°	81, 481.
66	44	" _		**		1.8588, 0°)	Dobriner. A. C. P.
44	"	" _		44		1.075, 225°.5	248, 28.
Methylhe	xylcar	byl iod	lide	44			Bouis. J. 8, 526.
٠,	"	•	"	".			De Clermont. J. 21,
	ı		"	"		1.814, 21° }	449.
Normal n	onyl i	odide		C, H,	I	1.8052, 0° } 1.2874, 16°	Krafft. Ber. 19, 2218.
	leavel ic			CH	Ī	1.2768, 0°	
MOLIUMI O	14	~ 11 11		V10 11 21	A	1.2599, 16°	" "
		-				1 2000, 10	l

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Normal pentyl iodide	C ₅ H ₁₁ I	1.4961, 40°	Lieben and Rossi.
44 44	46	1.5444, 0°	A. C. P. 159, 70. Dobriner. A. C.
11 11 11	(1	1.8128, 151°.7_	P. 248, 20.
Amyl iodide	"	1.51118, 11°.5_	Frankland. J.8, 478.
"	"	1.5277, 0°	Frankland.
"	"	1.4936, 200	Grimm. J. 7, 548.
"	"	1.4676, 0° {	Kopp. A. C. P. 95,
46 44	"	1.4887, 22°.8	307.
"	"	1.5087, 155.8	Mendelejeff. J. 18, 7.
"	**	1.4784, 20°	Haagen. P. A. 181, 117.
11 11	"	1.5005, 14°	De Heen. Bei. 5, 105.
44 44	"	1.5418, 00 }	Flawitzky. Ber. 15,
16 66.	44	1.5084, 28°	11.
"	"	1.5048, 14°	Gladstone. Bei. 9.
		•	249.
" "	"	1.8098, 1 4 8°	Schiff. Ber. 19, 560.
" "	16	1.5100, 15°	Perkin. J. P. C. (2),
, ii ii Antino	46	1.49811, 25° }	81, 481.
. Active	"	1.54, 15°	Le Bel. B. S. C. 25, 545.
		1.5425, 16°	Just. A. C. P. 220, 150.
Methylpropylcarbyliodide	"	1.587, 0° }	Wurtz. J. 21, 446.
		1.5219, 11° }	· ·
u u	"	1.589, 0° }	Wagnerand Saytz- eff. A. C. P. 179, 818.
"	"	1.499, 15°	Romburgh. Ber. 16, 892.
Diethylcarbyl iodide	44	1.528, 0°)	(Wagner and Saytz-
" "	"	1.505, 16° }	eff. A. C. P. 175,
	"	1	(865.
"		1.4792	Gladstone. Bei. 9, 249.
" "		1.528, 0° }	Wagner and Saytz-
W	"	1.501, 20° }	eff. A. C. P. 179, 818.
Dimethylethylcarbyl io- dide. "		1.5207, 0° }	Flawitzky. A.C. P. 179, 848.
(i (i		1.4954, 19° { 1.524, 0° {	Wischnegradsky. A.
" "	"	1.497, 19° }	C. P. 190, 834.
44 44	"	1.522, 00 }	Winogradow. A. C.
"	44	1.498, 18° }	P. 191, 125.
Hexyl iodide	. C ₆ H ₁₃ I	1.481, 19°	Pelouze and Ca- hours. J. 16, 526.
		1.4115	Franchimont and Zincke. C. N. 24, 268.
" "		1.4607, 0°)	
" "	- "	1.4868, 200	Lieben and Janecek.
" "	"	1.4178, 40°)	J. R. C. 5, 156.
" "		1.4661, 0°	. Dobriner. A. C. P.
Carandam barriliadida		. 1.2165, 177°.1.	248, 28.
Secondary hexyl iodide	- "	1.489	Wanklyn and Erlen-
	ı	'	meyer. J. 14, 782.

Name.		F	ORMULA.	SP. GRAVITY.	AUTHORITY.
Secondary hexyl	iodide	C. H.,	I	1.4447, 0°)	Wanklyn and Erlen-
14 11	"	- · · · · · · · · · · · · · · · · · · ·		1.8812, 50°	meyer. J. 16, 518.
46 46	"	46		1.4526, 00	Hecht. A. C. P. 165, 146.
66 66	"	"		1.4589, 00)	1)
46 46	"	"		1.8988, 50°	11
44 44	"	"		1.4477, 00 {	Krusemann. Ber.
44 44	"	16	********		
	"	"		1.4487, 00 }	9, 1468.
41 (1	"	"		1.8889, 50°	[]
44 44	"	"		1.4198	Gladstone. Bei. 9, 249.
16 66	"	44		1.42694, 150	Perkin. J. P. C. (2),
"	"	66			81, 481.
Dimethylisoprop	vlcarb v l	**			Pawlow. A. C. P.
iodide. "		"		1.8725, 190	196, 122.
Pinacolic iodide		"		1.4789, 0°	Friedel and Silva.
Normal heptyl i	odide	C, H ₁₆	I	1.846, 16°	J. C. S. (2), 11,488. Cross. J. C. S. 82, 128.
46 46	"	"		1.4008, 0°	Dobriner. A.C.P.
		44		1.1344, 208°.8_	248, 28.
Dipropylcarbyl i				1.20, 20°	Kurtz. A. C. P. 161, 205.
Normal octyl iod	lide	Ca H17	I	1.888, 16°	Zincke. J. 22, 871.
	·	"		1.855, 0° }	Krafft. Ber. 19, 2218.
44 44 4		44		1.84069, 150	Perkin. J. P. C. (2),
		"		1.88168, 25°	81, 481.
		**		1.8588, 00 }	Dobriner. A. C. P.
	,	44		1.075, 225°.5	248, 28.
Methylhexylcari	vl iodide	44		1.810, 16°	Bouis. J. 8, 526.
(1	"	".		1.830, 0° }	De Clermont. J. 21,
"	"	66		1.814, 21° }	449.
Normal nonyl io	dide	C, H,	I	1.8052, 0° {	Krafft. Ber. 19, 2218.
		Λ Β		1.2874, 16°	
Normal decyl io	44	U ₁₀ H 21	1	1.2768, 0° } 1.2599, 16°	" "
				1.2000, 10	·

LX. COMPOUNDS CONTAINING TWO OR MORE HALOGENS.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Chlorobrommethane			599
Bromochloroform			meister. Ber. 15,
"			Arnhold. A. C. P. 240, 192
Chlorobromoform			Jacobsen and Neu- meister. Ber. 15,
		·	Dyson. J. C. S. 48, 86.
Ethylene chlorobromide			15
" "			Montgolfier and Giraud. C. R. 88, 654.
Ethylidene chlorobromide			Reboul. A. C. P. 155, 215.
" "		1	Denzel. Ber. 11, 1789.
Chlorodibromethane	CH, CBr, Cl	2.184, 16°	" "
Chlorodibromethane Dichlorbromethane	CH, Br. CH Br Cl.	2.268, 169	" " "
			1740.
	C H, Cl. C H Br Cl.		Lescoeur. J. C. S. 84, 718.
(("	1.86850, 15°	Perkin. J. P. C. (2),
44	C H Cl ₂ . O H ₂ Br	1.85420, 25° } 1.238, 15°. ?	82, 528. Delacre. Bull. Acad.
Brommethylchloroform	C Cla. C Ha Branne	1.8889.00	Belg. (8), 13, 251. Henry. C. R. 98, 871.
BrommethylchloroformChlortribromethane	1	1	l 1789.
Dichlordibromethane	1	1	i 1740.
	O H Cl ₂ . O H Br ₂		1 1991
Trichlordibromethane	C ₂ H Cl ₂ Br ₂	2.817, 0°)	D.4
		2.295, 190.5	Paterno. J. P. C. (2), 5, 98.
Trichlordibromethane	C H Br ₃ . C Br ₂ Cl	8.866, 16°	Denzel. Ber. 11, 1740.
Chlordibromethylene	1 -	I .	Denzel. Ber. 11,
Dichlorbromethylene Acetylene chlorobromide.	C ₂ H Cl ₂ Br	1.906, 16° 1.8157, 0°	Plimpton. J. C. S. 41, 891.
Propylene chlorobromide.	"	1.7787, 0° }	Sabanejeff. Ber. 16, 1221.
	1	1	1 155 216
u u	OH, OHCL CH, Br	1.585, 0° }	Friedeland Silva. B. S. C. (2), 17, 532.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Propylene chlorobromide	CH. CHBr. CH.Cl	1.60, 20° 1.474, 21° 1.68, 8° 2.064, 0°	11 11 11 11
Dibromchlorpropylene Chlorodibromhydrin	C ₅ H ₅ Cl Br ₂	2.064, 0° 2.085, 9° 2.088	Reboul. J. 18, 461. Oppenheim. J. 21, 841.
44	"	,	Darnstaedter. J. 22, 875.
Chlorobromhydroglycide _ Derivative of chlorobrom- hydroglycide.	C ₈ H ₄ Cl Br ₈		
Derivative of epidichlor- hydrin.	.		
Bromallyl chloride			Henry. B. S. C. 18, 282. Wilde J. 17, 820
Chloracetyl bromide Bromacetyl chloride Trichloracetyl bromide	C, H, Br O. Cl C, Cl, O. Br	1.908, 9° 1.900, 15°	Wilde. J. 17, 819. Hofferichter. J. P. C. (2), 20, 195.
Hexchlortetrabromethyl oxide.	C ₄ Cl ₆ Br ₄ O	2.5, 18°	Malaguti. Ann. (8), 16, 25.
Chlorobromethyl acetate_			Henry. C. R. 97, 1808.
Dichlordibromethyl acet- acetate.			zeit. Ber. 16, 1551.
Tribromchloracetone Bromochloral			145.
			meister. Ber. 15,
Chlorobromhydrin			" Reboul. J. 18, 458. Henry. Z. C. 18,
Phycite bromodichlorhy-drin. "	C ₈ H ₅ Cl ₂ Br O	2.1719, 0° } 2.1426, 17°.5 }	Wolff. A. C. P. 150, 82.
Chlorodibremnitrome- thane.			610.
Chlorobromnitrin	C ₃ H ₅ Cl Br N O ₃	1.7904, 9°	Henry. Ber. 4, 701.
Chloriodomethane	_		Sakurai. J. C. S. 41, 862.
" Ohloriodoform	C H Cl ₂ I	2.447, 11° } 2.444, 14°.5 } 1.96	Sakurai. J. C. S. 47, 198. Bouchardat. A. C.
"	4	2.454.09	P. 22, 280. Borodine. J. 15, 891.
Ethylene chloriodide		2.00, 20	845.
" "	"	2.16489, 0° 1.87915, 140°.1	Thorpe. J. C. S. 87, 871.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
ChloriodethyleneAcetylene chloriodide	O, H, Ol I	2.1431, 0° 2.2298	Henry. C. R. 98, 742. Plimpton. J. C. S. 41, 891.
ee ee	"	2.154, 0° }	Sabanejeff. Ber. 16, 1221.
Propylene chloriodide	C _s H _s Cl I	1.982, 0° 1.824	Simpson. J. 16, 494. Oppenheim. J. 20, 571.
β Chlorallyl iodidea Chlorallyl iodide			Romburgh. Ber. 16,
Dichloriodhydrin Orthochloriodobenzene			898. Henry. Ber. 4, 701. Beilstein and Kur-
	•		batow. A. C. P. 176, 48.
Chloriodotoluene			Beilstein and Kuhlberg. A. C. P. 156, 82.
"		1.716, 17°	Wroblevsky. Z.C. 18, 164.
Chloriodethyl acetate	G # GI T G	1.770, 19°.5	" " " " " " " " " " " " " " " " " " "
Iodochlorhydrin	l		1 1808
Bromiodomethane	_	l	Henry. C. R. 101, 599.
Ethylene bromiodide		1	Reboul. A. C. P. 155, 214.
" "	1 .	2.516, 29°	Simpson. C. N. 29,
" "		2.514, 80°	
" "		2.705, 18°, s	Lagermarck. Ber. 7, 907.
Ethylidene bromiodide	1	1	Reboul. A. C. P. 155, 218.
" "	"	1	Lagermarck. Ber. 7, 907.
Dibromiodethane	1	1	Simpson. C. N. 29, 58.
Bromiodethylene		۱	Henry. C. R. 98, 742.
Acetylene bromiodide Propylene bromiodide	"	2.750, 0°, s. 2.6272, 17°.5	Plimpton. J. C. S. 41, 391.
	I .		Reboul. A. C. P. 155, 214.
Paraiodorthobromtoluene	I .	1	Wroblevsky. Z. C. 18, 165.
Metaiodorthobromtoluene	i	l .	Wroblevsky. Z.C.
Chlorobromiodethane	1	1	Henry. C. R. 98, 680.
Chlorobromiodhydrin	C ₂ H ₅ Cl Br I	2.825, 9°	Henry. Ber. 4, 701.

LXI. ORGANIC COMPOUNDS OF FLUORINE.*

Name.	FORMULA.	Sp. Gravity.	Authority.
Fluobenzene	C. H. F	1.024, 20°	Wallach. A. C. P. 285, 255.
	"	1.0286, 20°	Wallach and Heus- ler. A. C. P. 248, 221.
Paradifluobenzene	C ₆ H ₄ F ₂	1.11	Wallach and Heus- ler. A. C. P. 248, 219.
Parafluotoluene	C, H, F	.992, 25°	Wallach. A. C. P. 285, 255.
Parafluochlorobenzene	C ₆ H ₄ Cl F	1.226, 15°	Wallach and Heus- ler. A. C. P. 248, 219.
Parafluobrombenzene Parafluoanilin	C ₆ H ₄ Br F C ₆ H ₆ N F	1.598, 15° 1.158, 25°	Wallach. A. C. P.
Parafluonitrobenzone	C ₆ H ₄ N O ₂ F	1.826, 1	285, 255. " " "

LXII. ORGANIC COMPOUNDS OF SULPHUR.

1st. Compounds Containing C, H, and S.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Methyl sulphide	(C H ₂) ₂ S	.845, 21°	Regnault. Ann. (2), 71, 891.
Ethyl sulphide	(C ₂ H ₅) ₂ S	.825, 20°	Regnault. Ann. (2), 71, 888.
11 11	"	.88672, 0° .88676, 20	
Propyl sulphide	(C _s H ₇), S	.814, 17°	
Ethyl amyl sulphide Butyl sulphide "'	(C ₂ H ₅) (C ₅ H ₁₁) S (C ₄ H ₉) ₂ S	.852, 0° .849, 0° .8886, 16°	Saytzeff. J. 19, 529. Saytzeff. J. 19, 528.
" "	"	.8817, 28°	Reymann. J. C. S. (2), 18, 141.
Isobutyl sulphide	"	.8868, 10°	Beckman. J. P. C.
Isoamyl sulphide	(C ₅ H ₁₁) ₂ S	.84814, 20°	(2), 17, 446. Nasini. Ber. 15, 2888.
Octyl sulphide	(C ₈ H ₁₇) ₂ S	.8419, 17°	Möslinger. Ber. 9, 1004.

[•] See also under organic compounds of boron.

	 		
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Methyl disulphide	C, H, S,	1.046, 18°	Cahours. Ann. (8), 18, 258.
Ethyl disulphide	C ₄ H ₁₀ S ₂	1.06858, 0° About 1.00 .99267, 20°	Pierre. C. R. 27, 218. Morin. P. A. 48, 484. Nasini. Ber. 15, 2882.
Amyl disulphide Methyl trisulphide	C ₈ H ₉ S ₉	.918, 18° 1.2162, 0° 1.2059, 10° 1.199, 17°}	O. Henry. J. 1, 700. Klason. Ber. 20, 8415.
Ethyl mercaptan	C, H, 8 H	.842, 15° .885, 21°	Zeise. P.A. 31, 889. Liebig. A. C. P. 11, 15.
" " "	44	.8456,5°—10°_ .8406,10°—15° .8856,15°—20° .88907,20°) ·
Butyl mercaptan	C4 H 8 H	.858, 0° } .848, 16° } .848, 11°.5	Grabowsky and Saytzeff. A. C. P. 175, 851.
" "	"	.8299, 17°	Humann. J. 8, 613. Reymann. J. C. S. (2), 18, 141. Nasini. Ber. 15,
Amyl mercaptan	C ₅ H ₁₁ . S H	.885, 21°	2882. Krutzsch. J. P. C.
11 11	tt	.8548, 0° } .8405, 16°.9 .88475, 20°	81, 2. Kopp. A. C. P. 95, 807. Nasini. Ber. 15, 2883.
Hexyl mercaptan	C ₆ H ₁₈ . S H	.8856, 0°	Wanklyn and Erlen- meyer. J. 17, 509.
Carbon tetramereaptide	C (S C ₂ H ₆) ₄	1.01	Claesson. J. 1877, 520.
Ethylene mercaptan Methylene dithioethylate.		1.128, 28°.5 .987, 20°	Werner. J. 15, 424. Classon. J. P. C. 128, 176.
Ethylene dithioethylate	C ₂ H ₄ . (S C ₂ H ₅) ₂	.98705, 15°.5	V. Meyer. Ber. 19, 8266.
Ethylene thiovinylethy-	C, H, SC, H, SC, H,	. 1.0167, 19° –2 0°	} "
Derivative of dithioglycol	1	i	Mansfeld. Ber. 19, 2662.
Amylene sulphide Vinyl sulphide	C, H ₁₀ S	.907, 18° 1.015, 18°	Guthrie. J. 14, 665. Semmler. A. C. P. 241, 93.
Allyl sulphide	(C ₃ H ₅) ₂ S	.8544, 11°	Gladstone. Bei. 9, 249.
" "		.88765, 4°	Nasini and Scala. Bei. 10, 696.
Allyl trisulphide Fusyl sulphide	C ₅ H ₁₀ S ₃	. 1.012, 15° . .880, 18°	Löwig. J. 13, 399. Guthrie. J. 12, 484.

Name.	FORMULA.	Sp. Gravity.	AUTHOBITY.
Trisulphhydrin	C ₈ H ₈ S ₈	1.891, 14°.4	Carius. J. 15, 455.
Methyl trisulphocarbonate	C, H, S,	1.159, 18°	Cahours. Ann. (8), 19, 162.
Rthyl trisulphocarbonate_	C ₅ H ₁₀ S ₅	1.152	Salomon. J. P. C.
Amyl trisulphocarbonate.	C ₁₁ H ₂₂ S ₃	.877	(2), 6, 488. Hüsemann. J. 15, 410.
Ethylene trisulphocarbon- ate.	C ₈ H ₄ S ₈	1.4768	Hüsemann. A.C.P. 128, 87
Propylene trisulphocar- bonate.	C4 H6 S	1.81, 20°	Hüseman. J. 15, 484.
Butylene trisulphocarbon- ate.	C ₅ H ₈ S ₈	1.26, 20°	46 66
Amylene trisulphocarbon- ate.	C ₆ H ₁₀ S ₃	1.078	66 66
Allyl trisulphocarbonate	C ₇ H ₁₀ S ₃	.948	Hüsemann. J. 15, 410.
Phenyl sulphide	1	1	582.
Phenyl tetrasulphide	(C ₆ H ₅) ₂ S ₄	1.297, 14°.5	Otto. J. P. C. (2), 87, 209.
Phenyl ethyl sulphide	(C ₆ H ₅) (C ₂ H ₅) S	1.0815, 10°	Beckmann. J. C. S. 86, 87.
Ethyl paratolyl sulphide	(C ₇ H ₇) (C ₂ H ₆) S	1.0016, 17°.5	Gäbler. Ber. 18, 1277.
Phenyl mercaptan		1.078, 14°	Vogt. J. 14, 680.
Benzyl mercaptan	C. H. S.H	1.058, 20° 1.086, 18°	Märcker. J. 18, 548.
Mesitylene mercaptan	C, H ₁₁ . S H	1.0192	Schepper. J. 18,558. Holtmeyer. J. 20, 708.
Cymyl mercaptan	C ₁₀ H ₁₃ . S H	.9975, 17°.5 .989	Flesch. C.C.4,519. Fittica. A. C. P.
" " …	"	.995	
Methylcymyl mercaptan	C ₁₁ H ₁₆ . S H	.986	aug. Diss. 1878.
Naphtyl mercaptan	C ₁₀ H ₇ . S H	1.146, 28	Schertel. J. 17, 588.
Thiophene	C, H, S	1.082, 23°	V. Meyer. Ber. 16, 1471.
"		1.08844, 0°	
"			
46	"		
"	"	1.0418, 40°	G.14# D 10 ****
"		1.0291, 50°	Schiff. Ber. 18, 1605.
"	"	1.0169, 60°	
"	"	1.0045, 70°	
"		.99 20, 80° .98 741, 84°	
11	((1.05928, 40	Nasini and Scala
	1	1	Bei. 10, 696.

Name.	Formula.	Sp. Gravitt.	AUTHORITY.
Thiophene	C, H, S	1. 07387, 11°.8.	1
4	" ""	1.06835, 16°.5.	i
4	44	1.06466, 199.7.	
44	"	1.06482, 20°	F VHV
"	"	1.06045, 23°.4.	Knops. V. H. V. 1887, 17.
"	"	1.056¢2, 26°.6.	1001, 11.
44	4	1.05332, 29°.2.	11
"	"	1.0534, 82°	J
Thiotolene	C, H, S	1.0194, 18°	Meyer and Kreis. Ber. 17, 788.
Orthothioxene	C ₆ H ₈ S	.9777, 210	Demuth. Ber. 19, 1858.
"	"	.9988, 21°	Grünewald. Ber. 20, 2586.
Metathioxene	"	.9755, 17°.5	Messinger. Ber. 18, 1637.
"	u	.9956, 20°	Zelinsky. Ber. 20, 2017.
Ethylthiophene	"	.990, 24°	Meyer and Kreis. Ber. 17, 1558.
Normal propylthiophene.	C, H, S	.974, 160	" "
Isopropy thiophene	44	.9695, 16°	Schleicher. Ber. 19, 678.
Normal butylthiophene	C ₅ H ₁₂ S	.957,.19°	Meyer and Kreis. Ber. 17, 1558.
Diethylthiophene	"	.962, 14°	Muhlert. Ber. 19, 684.
Octylthiophene	C ₁₂ H ₂₀ S	.8118, 200.5	Schweinitz. Ber. 19,
β Methylpenthiophene	C ₆ H ₈ S	.9988, 19°	Krekeler. Ber. 19, 8271.

2d. Compounds Containing C, H, S, and O.

						
	NAME.		Form	ULA.	Sp. Gravity.	AUTHORITY.
Methyl sulphite			(C H ₂) ₂ S O ₂ (C H ₂) (C ₂ H ₃) S O ₃ .		1.0456, 16°.2 1.0675, 18°	Carius. J. 12, 86. Carius. A. C. P. 111, 108.
Ethyl	Ethyl sulphite		(C ₃ H ₆) ₂ S O ₃		1.085, 16°	Ebelmen and Bou quet. Ann. (8) 17, 67.
44	44		"		1.10684, 00	Pierre. C. R. 27, 213.
"	**		"			Carius. J. P. C. (2),
"	44		"		1.0926, 120.7	
"	66		44		1.0982, 110	
Methy	l sulph	ate	(C H ₃) ₂ S (D ₄	1.824, 22°	Dumas and Peligot. Ann. (2), 58, 33.
"	**		"		1.885, 18°	Bödeker. B. D. Z.
4.6	"		"		1.827, 18°	Claesson. J. P. C. (2), 19, 244.
44	66		"		1.88844, 150	1 (-,,,
46	"		44		1.82757, 20°	Perkin. J. C. S. 49,
66	46				1.32886, 25°	777.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl sulphate	(C ₂ H ₅) ₂ S O ₄	1.120 1.1887, 19°	Wetherill. J. 1, 692. Claesson. J. P. C. (2), 19, 258.
48 (4	"	1.167	Stempnevsky. Ber. 15, 947.
Ethyl sulphurous acid	1	1	Kopp. A. C. P. 85, 848.
Ethyl sulphuric scid		•	Vogel. Gmelin's Handbuch.
	"	1.815 160 {	Marchand. Gme- lin's Handbuch.
" " "	"	1.215	Duflos. Gmelin's Handbuch.
Ethyl ethylsulphonate	"	1.1508, 20°.4 §	Carius. J. P. C. (2), 2, 269.
	"	1.14517, 22°	Nasini. Ber. 15, 2884.
Isoamyl ethyl sulphone			Beckmann. J.C.S. 86, 88.
Diisobutyl sulphone Methyl methylxanthate	CH, O. CS. CH, S.	1.148, 15°	Cahours. Ann. (8),
	"	1.176, 18°	19, 160. Salomon. J. P. C.
Ethyl methylxanthate	CH ₃ O. CS. C ₃ H ₅ S.	1.12, 18° 1.128, 11°	(2), 8, 114. " Chancel. J. 8, 470.
Methyl ethylxanthate	C, H, O. CS. CH, S.	1.129, 18°	Chancel. J. 8, 470. Salomon. J. P. C. (2), 8, 114.
" "	"	1.11892, 4°	Nasini and Scala. Bei. 10, 696.
Ethyl ethylxanthate	C ₂ H ₅ O. CS. C ₂ H ₅ S ₋	1.0708, 18°	Zeise. A. C. P. 55, 810.
" "	"	1.07	Debus. A. C. P. 75, 125.
" "		1.085, 19°	Salomon. J. P. C. (2), 6, 488.
Methyl propylxanthate		1.08409, 4°	Nasini and Scala. Bei. 10, 696.
Ethyl propylxanthate Ethyl butylxanthate	C ₂ H ₂ O. CS. C ₂ H ₃ S ₋ C ₄ H ₂ O. CS. C ₂ H ₃ S ₋	1.05054, 4° 1.008, 17°	Mylius. B. S. C. 19,
Butyl butylxanthate	C,H,O. CS. C,H,S.	1.009, 12°	221.
Ethyl dithioxycarbonate _	C, H, S. C O. C, H, S.	1.084, 200	Schmidt and Glutz. J. 21, 575.
		1.085, 190	Salomon. J. P. C. (2), 6, 488.
Ethyl thioxycarbonate Ethyl dioxythiocarbonate	C ₂ H ₅ O. CO. C ₂ H ₅ S. C ₂ H ₅ O. CS. C ₂ H ₅ O.	1.0285, 18° 1.082, 1° 1.081, 19°	Debus. J. 8, 465. Salemon. J. P. C.
Féhal huéaléhia anasah	0 4 8 00 0 4 0		(2), 6, 488.
Ethyl butyl thioxycarbon-	C ₂ H ₅ S. CO. C ₄ H ₉ O ₋	.9989, 10°	Mylius. Ber. 6, 812.
Ethyl dioxysulphocarbon-	C ₆ H ₁₀ S ₄ O ₂	1.26048, 4°	Nasini and Scala. Bei. 10, 696.
Propyl dioxysulphocar- bonate. ?	C ₈ H ₁₄ S ₄ O ₂	1.19661, 4°	11 11
	i	1	

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Xanthurin	C ₄ H ₈ 8 O ₂	1.012	Couerbe. A. C. P. 40, 297.
Thiacetic acidEthyl ethylthioglycollate_	C ₃ H ₄ S O C ₆ H ₁₂ S O ₂	1.074, 10° 1.0469, 4°	Ulrich. J. 12, 855. Claesson. B. S. C.
Ethyl amylthioglycollate_	-	.9797, 4°	28, 445. Claesson. B. S. C. 28, 446.
Ethyl phenylthioglycol- late. "	C ₁₀ H ₁₉ S O ₂	1.1269, 15°)	Claesson. B. S. C. 28, 448.
Disulphamylene oxide Disulphamylene hydrate _	C ₁₀ H ₂₀ S ₂ O C ₁₀ H ₂₂ S ₂ O ₂ C ₂ H ₄ O + C ₂ H ₄ S	1.054, 18° 1.049, 8° 1.184	Guthrie. J. 12, 488.
Aldehyde with sulphalde- hyde.* Diheptylene sulphoxide	(C, H ₁₄), S O		Weidenbusch. J. 1, 550. Schiff. J. 21, 724.
Monosulphhydrin Disulphhydrin	C, H, S O,	1.295, 14°.4 1.842, 14°.4	Carius. J. 15, 458. Carius. J. 15, 454.
Ethyl thioxalate Oxysulphobenzid	C ₈ H ₁₀ S O ₈	1.1446, 0° 1.8668, 15°	Morley and Saint. J. C. S. 48, 400. Annaheim. Ber. 9,
Oxyphenyl mercaptan		1.2878, 0° }	1149. Haitinger. M.C.4,
Thiophene aldehyde	C, H, S O	1.1889, 100° } 1.215, 21°	171. Biedermann. Ber.
AcetothienoneAcetoethylthienone		1.167, 24° 1.0959, 20°	19, 1858. Peter. Ber. 17, 2644. Schleicher. Ber. 19.
Acetylthioxene	"	1.0910, 17°	660. Messinger. Ber. 18, 2302.
•			2002.

3d. Sulphur Compounds Containing Nitrogen.

Name.			Formu	LA.	Sp. Gravity.	AUTHORITY.
Methyl	thiocyan	ate	N C. S C H.		1.115, 16°	Cahours. Ann. (8), 18, 261.
66	66		46		1.08794, 00	Pierre. C. B. 27, 218.
"	"		44		1.06985, 4°	Nasini and Scala. Bei. 10, 696.
Ethyl th	hiocyanat	æ	N C. S C ₂ H	8	1.020, 16°	Cahours. Ann. (8), 18, 265.
44	"		"		a1.00	Lowig. P. A. 67, 101.
66	46		66		1.083, 0°	l)
44	66		46		1.01261, 190	1 (
"	66		"		1.00238, 22°	Buff. Ber. 1, 206.
44	66		46		.870185) 1460	11
"	44				.869867	1]
44	"		"		1.00715, 4°	Nasini and Scala. Bei. 10, 696.

^{*}Pinner's formula. Weidenbusch calls it "sulphhydrate of acetyl mercaptan," and writes the formula C_{12} H_{36} S_7 .

	1	ī	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Isopropyl thiocyanate	N C. S C, H,	.989, 0°	Gerlich. Ber. 8, 651.
	"	.974, 15° } .968, 20°	L. Henry. J. 22, 861.
Amyl thiocyanate	N C. S C ₅ H ₁₁ N C. S C ₆ H ₁₈	.905, 20° .922, 12°	O. Henry. J. 1, 700. Pelouze and Ca- hours. J. 16, 526.
Allyl thiocyanate	. "	1.071, 0° 1.056, 15° }	Gerlich. Ber. 8, 658.
Methyl thiocarbimide	1	1.06912, 4°	Nasini and Scala. Bei. 10, 696.
Ethyl thiocarbimide		1.01925, 0° .997525, 21	
11 11	"	.997235, 22°	Buff. Ber. 1, 206.
" "	"	.87909 .878518}188°.2 1.0080, 18°	 Gladstone. Bei. 9,
"	"	.99525, 4°	249. Nasini and Scala.
Tertiary butyl thiocarbi-	C S. N C. H.	.9187, 15° }	Bei. 10, 696. Rudneff. Ber. 12,
mide. " " Amyl thiocarbimide	OS. NO Hu	.9008, 84° {	1028.
" " ———	"	.94189, 17° .78749, 182°	Buff. Ber. 1, 206.
Hexyl thiocarbimide		.9258	Uppenkamp. Ber. 8, 56.
Allyl thiocarbimide		·	Dumas and Pelouze. Ann. (2), 58, 182.
11 11	"	1.009 1.010 } 15°	Will. A. C. P. 52, 4.
(1 (1	"	1.0282, 0° } 1.0173, 10°.1 }	Kopp. A. C. P. 98, 867.
11 11	"	.8789 .8741 } 150°.1	Schiff. Ber. 14, 2767.
11 11	"	.8740, 151°.8 1.00572, 4°	Schiff. Ber. 19, 560. Nasini and Scala.
Phenyl thiocarbimide	CS NC. H.	·	Bei. 10, 696. Hofmann. J. 11,
(((("	1.155, 17°.5	849. Billeter. C. C. (8),
	"	.9898, 219°.8	6, 101. Schiff. Bei. 9, 559.
	"	1.12891, 4°	Nasini and Scala. Bei. 10, 696.
"	"	1.85	Madan. C. N. 56, 257.
Sulpho-urea	O H, N, S	1.406, 4°	Schröder. Ber. 12, 561.
"	1	1.450	Schröder. Ber. 18, 1070.
Thialdin	C ₆ H ₁₃ N S ₂		Wöhler and Liebig. A. C. P. 61, 4.
Oenanthothialdin Diamylene dithiocyanate Diamylene tetrathiocyanate.	C ₁₀ H ₄₀ N S ₂ C ₁₀ H ₂₀ (C N) ₂ S ₂ C ₁₀ H ₂₀ (C N) ₂ S ₄	.896, 24° 1.07, 18° 1.16, 18°	Schiff. J. 21, 724. Guthrie. J. 14, 665.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Sulphocarbanilide Thiocyanacetone Acetyl thiocyanate		1.811	Schröder. Ber. 12, 1611. Tcherniak and Hel- lon. Ber. 16, 850. Miquel. C. R. 81.
Benzoyl thiocyanate	N C. S C, H, O	1.197, 16°	1209. Miquel. C. R. 81, 1210.
Ethyl thiocyanacetate " Cystic oxide	C, H, N S O,		Heintz. J. 18, 847, Claesson. Ber. 10, 1849. Venables. Watta'
			Dict.

4th. Sulphur Compounds Containing Halogens.

Name.	Fo	FORMULA.		RAVITY.	Аптн	ORITY.	
Tetrachlor-methyl captan.	mer-	OS OI4		1	12°.8	Rathke. 167, 19	A. C. P.
- 4	66	**		_ 1.722,		,	•
"	"	"		1.7049			Ber. 20,
	- "	"		_ 1.6958	3, 17°.5)	2878.	
Dichlorethyl sulphi	de	(C, H, ((l ₂) ₂ S	_ 1.547,	120	Riche.	J. 7, 556.
Tetrachlorethyl sul	phide _	(C, H C	(1 ₄), S	- 1.678,	24°	Regnault 71, 406	. Ann. (2),
Ethyl chlorperthiocate.	arbon-	C, H, S	, Ol,	1.1406	3, 16°	Klason. 2885.	Ber. 20,
Ethylene thiodichlo	ride	C, H, 8	Cl ₂	_ 1.408,	180	Guthrie.	J. 12, 482.
Ethylene dithiodich	loride	(C, H,),	S, Cl,	_ 1.846,	190	Guthrie.	J. 18, 485.
Chlorethylene dit chloride.	hiodi-	(C ₂ H ₃	01), 8, 01,	1.599,	11°	Guthrie.	J. 18, 488.
Dichlorethylene t	hiodi- ''		Cl ₂), S Cl ₂	_ 1.219		Guthrie.	J . 18, 484.
Amylene thiodichle	ride	C, H, 8	3 Cl ₂	_ 1.188,	140	Guthrie.	J. 12, 481.
Amylene dithiodich	loride	(C, H,	, S, Cl,	_ 1.149,	12°	Guthrie.	J. 12, 480.
Trichloramylene t	hiodi-	(C ₅ H ₇	(l ₃) ₂ S (l ₂	_ 1.406,	16°	Guthrie. 18, 44.	J. C. S.
Methylsulphonic ch	loride	CH ₈ C	ISO ₂	_ 1.51 _			n. J. P.C.
Dichlormethylsulph	onic	C H CI	8 O ₂	1.71			280. n. Leipzig s. 1884.
Ethylsulphonic chl	o ride	C, H, C	1 S O ₂	_ i.857,	22°.5	Gerhardt	and Chan- . 5, 435.
Phenylsulphonic cl	loride	C ₆ H ₅ C	1 S O ₂	1.878	, 28°	Gerhardt	and Chan- . 5, 434.
Trichlormethyl am	yl sul-	C Cla.	C ₅ H ₁₁ . S O ₃ .	1.104			A. C. P.
Ethyl chlorosulpho	nate	C, H,), S O ₂ , Cl	1.879 1.855	, 0° }	1	J. 21, 416.
"		1	"	1.824		- angola.	0. 21, 210.

Name.	FORMULA.	Sp. Gravity.	Authority.
Ethyl chlorosulphonate	" " " " " " " " " " " " " " " " " " "	1.8866, 0° } 1.8589, 27° } 1.874, 0° } 1.8541, 27° } 1.184, 16° 1.078, 17°.5 1.27, 12° 1.28, 15° 2.8775, 17° 2.7966, 19° 1.652, 28° 2.147, 28° 1.2614, 20°	Two preparations. Claesson. J. P. C. (2), 21, 377. Salomon. J. P. C. (2), 7, 254. Schöne. J. P. C. (2), 82, 241. L. Henry. Ber. 5, 186. James. J. C. S. 48, 88. Annaheim. Ber. 9, 1150. " " V. Meyer. Ber. 16, 1470. " Schweinitz. Ber. 19, 644.

LXIII. ORGANIC COMPOUNDS OF BORON.

Name.	Formula.	Sp. Gravity.	Authority.
Boron triethyl	B (C ₂ H ₅) ₃	.6961, 28°	Frankland and Dup- pa. J. 18, 886.
Trimethyl borate	(C H ₃) ₈ B O ₃	.9551, 0°	Ebelmen and Bouquet. J. P. C. 38,
" "		.940, 0° } .915, 20° } .8849	Schiff. A. C. P., 5th Supp., 184. Ebelmen and Bou- quet. J. P. C. 38,
44		.871	215. Bowman. P. M. (8), 29, 548.
Methyl diethyl borate	C H ₂ (C ₂ H ₅) ₂ B O ₃	.887, 0° } .861, 26°.5 } .904, 0° } .888, 20° }	Schiff. A. C. P., 5th Supp., 161. Schiff. A. C. P., 5th Supp., 197.
Tripropyl borate	(C ₅ H ₁) ₅ B O ₅	.867, 16°	Cahours. C.C. 4, 482. Ebelmen and Bouquet. J. P. C., 88, 219.
(.872, 0° .852, 24° .840 } 28° .855 } 28°	Schiff. A. C. P., 5th Supp., 189

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl diamyl borate Diethyl amyl borate Amyl metaborate "" Tetraphenyl borate "" "" Ethylene fluoborate	C ₂ H ₅ (C ₅ H ₁₁) ₂ B O ₂ - (C ₂ H ₅) ₂ C ₅ H ₁₁ B O ₃ - C ₅ H ₁₁ B O ₂ - (C ₆ H ₅) ₄ B ₃ O ₅ - " C ₂ H ₅ B F O ₂ -	.852, 28° [Schiff. A. C. P., 5th Supp., 198. " Schiff. A. C. P., 5th Supp., 189. Schiff and Bechi. J. 19, 498. Schiff. A. C. P., 5th Supp., 208. Landolph. Ber. 12, 1586.

LXIV. ORGANIC COMPOUNDS OF PHOSPHORUS.

NAME.	Formula.	SP. GRAVITY.	AUTHOBITY.
Triethylphosphin	P (C ₃ H ₅) ₃	.812, 15°.5	Hofmann and Ca- hours. J. 10, 872.
Monoctylphosphin	P H ₂ (C ₆ H ₁₇)	.8209, 17°	Möslinger. Ber. 9,
Phenylphosphin	P H ₂ (C ₆ H ₅)	1.001, 15°	
Diphenylphosphin	P H (C ₆ H ₅) ₂	1.07, 16°	Dörken. Ber. 21, 1508.
Triphenylphosphin	P (C ₆ H ₅) ₈	1.194	Michaelis and So- den. A.C. P. 229, 802.
	"	1.186	
${\bf Dimethyl phenyl phosphin}$	P (C H ₃) ₃ C ₆ H ₅	.9768, 11°	
${\bf Diphenyl methyl phosphin}$	P C H ₃ (C ₆ H ₅) ₂	1.0784, 15°	Michaelis and Link.
Diethylphenylphosphin	P (C ₃ H ₅) ₂ C ₆ H ₅	.9571, 18°	A. C P. 207, 209. Michaelis. Ber. 8, 494.
Ethyl phosphite	(C ₂ H ₅) ₈ P O ₃	1.075	Williamson. J. 7,
Methyl hypophosphate	(O H ₂) ₄ P ₂ O ₆	1.109, 15°	
Ethyl hypophosphate	(C ₂ H ₅) ₄ P ₂ O ₆	1.1170, 15°	
Propyl hypophosphate	. (C, H,), P, O,	. 1.18 4 , 15°] " "
Isobutyl hypophosphate	. (C, H,), P, O,	. 1.125; 15°	
Methyl orthophosphate	(C H ₂) ₃ P O ₄	1.2878, 0°	Weger. A. C. P.
Dimethyl ethyl orthophos	(C H ₃), U, H ₆ . P O ₄ .	1.0019, 197°.2_ 1.1752, 0°	11 u u
phate. " Libyl orthophosphate	(C ₂ H ₅) ₃ P ₁ O ₄	95188, 208°.8. 1.072, 12°	Limpricht. J. 18,
Ethyl pyrophosphate	(C ₃ H ₅), P ₅ O ₇ (C ₅ H ₁₁), H P O ₃	1.172, 17° .967, 19°.5	471. Clermont. J. 7, 562. Wurtz. A. C. P. 58

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Diamylphosphoric acid Triphenyl phosphite	(C ₅ H ₁₁) ₂ H P O ₄ (C ₆ H ₅) ₈ P O ₃	1.025, 20° 1.184, 18°	Fehling. Noack. A. C. P. 218, 99.
Phosphenyl ether	C ₆ H ₅ P O ₂ (C ₂ H ₅) ₂	1.082, 16°	
Phenylphosphinic acid	C ₆ H ₅ . H ₂ P O ₈	l	Schröder. Ber. 12, 561.
Diphenylphosphinic acid.	(C ₆ H ₅) ₂ H P O ₂	1.881 40	16 11
Phenoxyldiphenylphos- phin.	C ₆ H ₅ O (C ₆ H ₈) ₂ P	1.140, 24°	Michaelis and La Coste. Ber. 18, 2111.
Triphenylphosphin oxide.			Michaelis and La Coste. Ber. 18, 2120.
Naphtylphosphinic acid Naphtylphosphorous acid	C ₁₀ H ₇ , H ₂ P O ₃	1.485 1.445 } · 4° {	Schröder. Ber. 12, 561.
Naphtylphosphorous acid "	C ₁₀ H ₇ . H ₂ P O ₂	1.877, 4° 1.441, 4°, after fusion.	} " "
Complex ether?	C ₁₄ H ₈₆ P ₂ O ₈	.960, 14°	Geuther. A. C. P. 224, 278.
Amylnitrophosphorous acid. "	(C ₅ H ₁₁) ₅ H P N O ₄ -	1.02, 20° }	Guthrie. J. 11, 404.
Ethylphosphorouschloride	C, H, P O Cl,	1.816, 0°	Menschutkin. A. C. P. 189, 844.
" " —	"	1.805265, 0° 1.18989, 117°.5	Thorpe. J. C. S.
Butylphosphorous chloride.	C ₄ H ₉ P O Cl ₂	1.191, 00	Menschutkin. J.19, 487.
Amylphosphorous chloride.		l i	u u
Diacetone phosphoroso- chloride.	C ₆ H ₁₀ P O ₂ Cl	1.209, 17°.5	900.
Phenylphosphorous chlo- ride.	C ₆ H ₅ P O Cl ₂	1.8549	Hölzer. Quoted by Noack.
	"	1.848, 18°	Noack. A. C. P. 218, 91.
"	"	1.8548, 20°	Anschütz and Emery. A.C.P. 289, 810.
Diphenylphosphorous chloride.	(C ₆ H ₅) ₂ P O ₂ Cl		Hölzer. Quoted by Noack.
		1.221, 18°	218, 92.
Phosphenyl chloride	U ₆ H ₅ P Ul ₂	·	548.
" " …	"	1.8428, 0° 1.10415, 224°.6	
Phosphenyl oxychloride			Michaelis. C. C. 4, 548.
Diphenyl phosphochloride	(U ₆ H ₅) ₂ P Cl	1.2298, 15°	Michaelis and Link. A. C. P. 207, 209.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Metachlorocarbonylphe- nylorthophosphoric chloride.	C, H, P O, Cl	1.54844, 20°	Anschütz and Moore. A. C. P. 289, 885.
Parachlorocarbony lphe- nylorthophosphoric chloride.	44	1.54219, 20°	Anschütz and Moore. A. C. P. 289, 844.
By action of P Cl ₅ on- salicylic acid.	C ₇ H ₄ P O ₂ Cl ₅	1.62019, 20°	Anschütz and Moore. A. C. P. 289, 820.
Paraxylylphosphochlo- ride.	C ₈ H ₉ P Cl ₂	1.25, 18°	Weller. Ber. 21, 1494.
Paraxylylphosphoroxy- chloride.	C ₈ H ₉ P O Cl ₂	1.81, 18°	u u
Sulphophosphorous ether-	(C ₂ H ₅) ₃ P S ₃	1.24, 12°	Michaelis. C. N. 25, 57.
Ethyl pyrosulphophos- phate.	(C ₃ H ₅) ₄ P ₂ S ₃ O ₄	1.1892, 17°	
Amyl sulphophosphate Ethylsulphophosphorous chloride.	(C ₅ H ₁₁) ₃ P S O ₃ C ₂ H ₅ P S Cl ₂	.849, 12° 1.80, 12°	Chevrier. J. 22, 844.
Triethoxylpyrophosphor- sulphobromide.	(C ₂ H ₅) ₃ Br P ₂ S ₃ O ₃ -	1.8567, 19°	Michaelis. A. C. P. 164, 9.
Phosphenyl sulphochlo- ride.	C ₆ H ₅ P Cl ₂ S	1.876, 18°	Köhler and Michael- is. Ber. 9, 1058.
Triphenyltrisulphophos- phamide.	(C ₆ H ₅) ₃ H ₃ N ₅ P S	1.84	Chevrier. J. 21, 784.

LXV. ORGANIC COMPOUNDS OF VANADIUM, ARSENIC, ANTIMONY, AND BISMUTH.

			
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl orthovanadate	(C ₂ H ₅) ₈ V O ₄	1.167, 17°.5	Hall. J. C. S. 51, 752.
Dimethylarsine oxide	(As C ₂ H ₆) ₂ O	1.462, 15°	Bunsen. P. A. 40,
Triethylarsine Methyl arsenite	As (C, H ₅) ₃ (C H ₃) ₃ As O ₃	1.151, 16°.7 1.428, 9°.6	Landolt. J. 6, 492. Crafts. Z. C. 14,
Ethyl arsenite	(C ₂ H ₅) ₈ As O ₃ (C ₅ H ₁₁) ₈ As O ₃	1.224, 0° 1.0525, 0°	824. Crafts. J. 20, 552. Crafts.
Methyl arsenate	(C H ₃) ₃ As O ₄	1.5591, 14°.5	Crafts. Z. C. 14, 824.
Ethyl arsenate	11	1.8161.8°.8 (Crafts. J. 20, 551.
Phenylarsenic acid	C ₆ H ₇ As O ₃	1.760 1.808 1.805 4° {	Schröder. Ber. 12, 561.
Diphenylarsenic acid			u u

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Diphenylarsine chloride	As (C ₆ H ₅) ₂ Cl	1.42281, 15°	La Coste and Mi- chaelis. Ber. 11, 1885.
Phenylarsine bromide	As (C ₆ H ₅) Br ₂	2.0988, 15°	
Ethyl thioarsenite	As (S C ₂ H ₆) ₈	1.8141, 16°	Claesson. Lund Ars- skrift, 1884–'5.
Trimethylstibine	Sb (C H ₂) ₂ Sb (C ₂ H ₅) ₃	1.528, 15° 1.8244, 16°	Landolt. J. 14, 569. Löwig and Schweit-
Triamylstibine	Sb (C ₅ H ₁₁) ₃	1.1888, 17°	zer. J. 8, 471. Berlé. J. 8, 586.
Triethylstibine chloride	8b (C ₂ H ₅) ₈ Cl ₂	1.0587	Cramer. J. 8, 590. Löwig and Schweit- zer. J. 8, 476.
Triethylstibine bromide Triphenylstibine	Sb (C ₂ H ₅) ₃ Br ₂ Sb (C ₄ H ₅) ₃	1.958, 17° 1.4998, 12°	Michaelis and Reese.
Metatritolylstibine		1	A. C. P. 288, 46.
Paratritolylstibine	· · · · · · · · · · · · · · · · · · ·	1.85448, 15°.6_	
Bismuth trimethyl	Bi (C H ₈) ₈	2.80, 18°	Marquandt. Ber. 20, 1517.
Bismuth triethyl	Bi (C ₂ H ₅) ₈ Bi (C ₆ H ₅) ₃	1.82 1.5851, 20°	Breed. J. 5, 602.

LXVI. ORGANIC COMPOUNDS OF SILICON.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Silicon tetrethyl	Si (C ₂ H ₅) ₄	.7657, 22°.7	Friedel and Crafts. A. J. S. (2), 49,
	"	.8841, 0°	811. Ladenburg. B. S. C. 18, 240.
Silicon hexethyl	Si ₂ (C ₂ H ₈) ₆	.8510, 0° .8408, 20° }	Friedel and Ladenburg. A. C. P. 208, 251.
Silicon tetrapropyl	Si (C ₂ H ₇) ₄	.7979, 0° .7888, 15° }	Pape. Ber. 14, 1872.
Silicoheptane	Si C ₆ H ₁₆	.7510, 0°	Ladenburg. A. C. P. 164, 800.
Silicodecane	Si C ₉ H ₂₂	.7728, 0° .7621, 15° }	Pape. Ber. 14, 1872.
Silicon trietLyl phenyl	Si (C ₂ H ₅) ₈ C ₆ H ₅	.9042, 0°	Ladenburg. C. C. 5, 812.

			
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Silicon tetraphenyl Psra-silicon tetratolyl	Si (C ₆ H ₅) ₄ Si (C ₇ H ₇) ₄	1.078, 20° 1.0798, 20°	Polis. Ber. 19, 1012.
Meta-silicon tetratolyl Silicon tetrabenzyl	"	1.1188, 20° 1.0776, 20°	"
Ethyl metasilicate	(C ₂ H ₅) ₂ Si O ₃	1.079, 24°	Ebelmen. A. C. P. 57, 839.
Methyl orthosilicate	(C H ₃) ₄ Si O ₄	1.0589, 0°	Friedel and Crafts. J. 18, 465.
Trimethyl ethyl orthosilicate.	(C H ₈) ₈ C ₂ H ₅ Si O ₄	1.028	Friedel and Crafts. J. 19, 491.
Dimethyl diethyl ortho- silicate.	(O H ₂) ₂ (C ₂ H ₅) ₂ Si O ₄	1.004, 0°	" "
Methyl triethyl orthosili- cate.	C H ₈ (C ₂ H ₈) ₈ Si O ₄ -	.989, 0°	66 66
Ethyl orthosilicate	(C ₂ H ₅) ₄ Si O ₄	.982	Ebelmen. A. C. P. 52, 824.
" "	"	.988, 200	Ebelmen. A. C. P.
" "	"	.9676, 0°	57, 884. Friedel and Crafts.
" "	"	.9880, 22°.5	A. J.S. (2), 48, 158. Mendelejeff. J. 18, 7.
Propyl orthosilicate	((C, H,), Si O,	1.910, 18"	Cahours. C.C. 4, 482.
Butyl orthosilicate	(C4 H9)4 Si O4	.958, 15°	Cahours. C. C. 5, 20.
Butyl orthosilicate Triethyl amyl orthosilicate	$(C_2 H_6)_3 C_6 H_{11} Si O_4$.926, 0°	Friedel and Crafts. A. J. S. (2), 43, 168.
Diethyl diamyl orthosili- cate.	$(C_3H_5)_2(C_5H_{11})_3SiO_4$.915, 0°	Friedel and Crafts. J. 19, 489.
Ethyl triamyl orthosilicate	CH (CH) SiO	.918, 0°	1 "10, 200. "
Amyl orthosilicate		.868, 200	Ebelmen. A. C. P.
Hexmethyl disilicate	(C H ₃) ₆ Si ₃ O ₇	1.1441, 0°	57, 844. Friedel and Crafts.
Hexethyl disilicate	(C ₂ H ₅) ₆ Si ₂ O ₇	1.0196, 0° } 1.0019, 19°.2 }	J. 18, 465. Friedel and Crafts. J. 19, 489.
Octethyl tetrasilicate	C ₁₆ H ₄₀ Si ₄ O ₁₂	1.071, 0° }	Troost and Haute- feuille. B. S. C. 19, 255.
Ethyl silicoacetate	C ₇ H ₁₈ Si O ₈	.9288, 0°	Ladenburg. J. C. S. (2), 12, 40.
Methyl silicopropionate	C ₅ H ₁₄ Si O ₃	.9747, 0°	Ladenburg. A. C. P.
Ethyl silicopropionate	C ₆ H ₂₀ Si O ₃	.9207, 0°	178, 148. Friedel and Laden- burg. A. C. P. 159, 259.
Ethyl silicobenzoate	C ₁₂ H ₂₀ Si O ₃	1.0188, 0° }	Ladenburg. J. C. S. (2), 11, 1026.
Silicon diethyl diethylate.	1	. .8752, 0°	Ladenburg. A. C. P. 164, 300.
Triethylsilicol Silicoheptyl oxide	Si C, H ₁₆ . O H	.8709, 0° .8881, 0°	Ladenburg. Ber. 4,
" "	(4	.8590, 0°	730. Ladenburg. A. C. P.
		'	164, 800.
Silicoheptyl acetate Silicoheptyl ethylate	$\begin{array}{c} & \text{Si } \mathbf{C_6} \mathbf{H_{16}} \cdot \mathbf{C_2} \mathbf{H_3} \mathbf{O_2} - \\ & \text{Si } \mathbf{C_6} \mathbf{H_{16}} \cdot \mathbf{C_2} \mathbf{H_5} \mathbf{O_{}} \end{array}$. .9089, 0° . .8408, 0°	66 66

Name.	FORMULA.	Sp. Gravity.	AUTHORITY"
Silicoheptyl chloride	Si C ₆ H ₁₅ Cl	.9249, 0°	Ladenburg. A. C. P. 164, 800.
Methylsilicic monochlor- hydrin.	Si C ₃ H ₉ Cl O ₃	1.1954, 0°	Friedel and Crafts. J. 19, 490.
Methylsilicic dichlorhy- drin.		1.2595	"
Ethylsilicic monochlorhy- drin.	Si C ₆ H ₁₅ Cl O ₃	1.0483, 0°	Friedel and Crafts. A. J. S. (2), 48,
Ethylsilicic dichlorhydrin	Si C ₄ H ₁₀ Cl ₂ O ₂	1.144, 0°	
Ethylsilicic trichlorhydrin		1.241, 0°	Friedel and Crafts. J. 19, 489.
Propylsilicic monochlor- hydrin.	, 11	.980	Cahours. C. C. 4, 482.
Propylsilicic dichlorhy- drin.	Si C ₆ H ₁₄ Cl ₂ O ₂	1.028	" " ,
Derivative of silicon tri- ethylphenyl.	Si C ₁₉ H ₁₉ Cl	1.1085, 0°	Ladenburg. A. C. P. 178, 148.
Silicon iodoform	Si H I,	8.862, 0° } 8.814, 20° }	Friedel. A. C. P. 149, 96.

LXVII. ORGANIC COMPOUNDS OF TIN.

	 		
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stanntetramethyl	Sn (C H ₂) ₄	1.8188, 0°	Ladenburg. Z. C. 13, 605.
Stanndiethyl	Sn ₂ (C ₂ H ₅) ₄	1.558, 15° 1.192	Löwig. J. 5, 584. Buckton. J. 11, 892.
"Ethylene stannethyl" Stanntriethyl	Sn ₂ (C ₂ H ₅) ₆	1.410 1.4115, 0°	Lowig. J. 5, 585.
Stanntetrethyl	_	l	18, 604. Frankland. J. 12,
Stannethyltrimethyl Stanndiethyldimethyl	Sn C, H ₅ (C H ₃) ₃ Sn (C, H ₅) ₂ (C H ₂) ₃ -	1.248 1.2819, 19°	411. Cahours. J. 14, 551. Frankland. J. 12,
"	, , , , , , , , , , , , , , , , , , , ,	1.2509, 0°)	412.
Stanntetrapropyl		1.2608, 0° } 1.179, 14°	noff. Z. C. 10, 870. Cahours. B. S. C.
Stanntriethylphenyl	Sn (C ₂ H ₅) ₈ C ₆ H ₅	1.2689, 0°	20, 190. Ladenburg. A. C. P. 159, 251.
Stanntriethyl ethylate	Sn (C ₂ H ₅) ₃ C ₂ H ₅ O.	1.2634, 0°	Ladenburg. A. C. P., 8th Supp., 60.
Stanndimethyl iodide Stanntrimethyl iodide	Sn (C H.). 1	2.155, 18°	Cahours. J. 12, 427. Cahours. J. 12, 429.
" "	"	2.1482, 0° } 2.1096, 18°	18, 605.
Stanndiethyl iodide	Sn (U ₂ H ₅) ₂ I ₂	2.0329, 15°	Cahours. J. 12, 424. Frankland. J. 12, 418.
00	1	!	A10.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Stanntriethyl chloride " Stanntriethyl bromide	Sn (C ₂ H ₅) ₈ Cl Sn (C ₂ H ₅) ₈ Br	1.428, 8° 1.820 1.680	Cahours. J. 12, 425. Löwig. J. 5, 588.
Stanntriethyl iodide " Stanntripropyl iodide	Sn (C ₂ H ₅) ₈ I	1.850 1.888, 22° 1.692, 16°	Cahours. J. 12, 424. Cahours. B.S.C. 19, 801.
Stanntributyl iodide "Ethstannethyl chloride" "Ethstannethyl bromide" "Ethstannethyl iodide"	Sn (C ₄ H ₉) ₃ I Sn ₂ C ₁₀ H ₈₅ Cl Sn ₂ C ₁₀ H ₈₅ Br Sn ₃ C ₁₀ H ₂₅ I	1.540, 15° 1.80 1.48 1.724	Cahours. C. C. 5, 20. Lowig. J. 5, 588.

LXVIII. ORGANIC COMPOUNDS OF ALUMINUM.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Aluminum ethylate	Al (C ₁ H ₅ O) ₂ Al (C ₁ H ₅ O) ₂ Al (C ₁ H ₅ O) ₂ Al (C ₁ H ₆ O) ₃ Al Cl ₃ 3 C ₆ H ₆ Al Cl ₂ 8 C ₇ H ₈ 2 Al Cl ₂ 8 C ₁₀ H ₁₆ Al Br ₃ 8 C ₆ H ₆ Al Br ₄ 8 C ₇ H ₈	1.147, 4°	Gladstone and Tribe. C. N. 42, 8. """""""""""""""""""""""""""""""""""

LXIX. ORGANIC COMPOUNDS OF ZINC, MERCURY, THAL-LIUM, AND LEAD.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Zinc methyl	Zn (C H ₃) ₃	1.886, 10°.5	Frankland and Duppa. J. 16, 478.
Zinc ethylZinc propyl	$ Z_{n} (C_{2} H_{5})_{2} \dots Z_{n} (C_{3} H_{7})_{2} \dots $	1.182, 18° 1.098, 15°	Frankland. J. 8, 577. Gladstone and
Zinc amyl	Zn (C ₅ H ₁₁) ₃	1.022, 0°	Tribe. J. S. C. (2), 11, 968. Frankland and Duppa. J. 16,478.
Management had	Hg (C H ₁),	8.069	
Mercurmethyl		2.444	Buckton. J. 11, 888. Buckton. J. 11, 890.
Mercurethyl	Hg (C ₂ H ₆),		
Mercurpropyl	Hg (C ₃ H ₇) ₃	2.124, 16°	Cahours. B. S. C. 19, 801.
Mercurbutyl	Hg (C, Ha)	1.7469, 00 }	Chapman and
"	Hg (C ₄ H ₉) ₂	1.7192, 16° §	Smith. J. C. S. 22, 164.
46	"	1.885, 15°	Cahours. C. C. 5, 20.
Mercuramyl	Hg (C ₅ H ₁₁) ₂	1.6668, 0°	Frankland and Duppa.
Mercuroctyl	Hg (C ₈ H ₁₇) ₂	1.842, 17°	Eichler. Ber. 12, 1880.
Mercurdiphenyl	Hg (C ₆ H ₅) ₂	2.290)	G-1-13 D 10
		2.290 2.824 4° {	Schröder. Ber. 12, 561.
	- "	2.840)	
Mercurdinaphtyl	Hg (C ₁₀ H ₇) ₂	1.918)	" "
"		1.920 > 4	" "
	" "	1.944)	" "
Mercurmethyl chloride	Hg O H, OI	4.068, 4°	" "
Mercurethyl chloride	Hg C H, Cl Hg C, H, Cl	8.461 } 4°	44 44
Mercury β hexyl mercaptide.	Hg (C ₆ H ₁₂ S) ₂	1.6502, 0°	Wanklyn and Erlenmeyer. J. 17, 510.
Thallium ethylate	TIC H.O	8.480 }	Lamy. Ann. (4), 8,
thannum emyrate	Tl C ₂ , H ₅ O	8.685	878.
Thallium amylate	Ti C ₅ H ₁₁ O	2.465 } 2.518 }	Lamy. J. 17, 466
T and totrometh-1	Ph (C H)	2.084, 0°	Rutlanow T 10 470
Lead tetramethylLead diethyl	Pb (C H ₂), Pb (C ₂ H ₅),	1.55	Butlerow. J. 16, 476. Buckton. J. 11, 891.
" "	- U (U2 ALB)2	1.62	Buckton. J. 12, 409.
Lead triethyl	Ph. (C. H.).	1.471, 10°	Klippel. J. 18, 881.
Lead tetraphenyl	$\begin{array}{c} \operatorname{Pb}_{2}\left(\mathrm{C}_{2}\;\mathrm{H}_{5}\right)_{6}\\ \operatorname{Pb}\left(\mathrm{C}_{6}\;\mathrm{H}_{5}\right)_{4}\end{array}$	1.5298, 20°	Polis. Ber. 20, 716.
Para lead tetratolyl	Pb (C, H,),	1.4829, 20°	10118. Del. 20, 110.
	(-1 -1/4		

LXX. METALLIC SALTS OF ORGANIC ACIDS.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lithium formate	Li C H O ₃ . H ₃ O	1.435 } 1.479 }	Schröder. Ber. 14, 21.
Sodium formate	Na C H O,	1.907	" "
Potassium formate	КСНО,	1.896 }	
Ammonium formate	Am C H O,	1.264	££ ££
Zinc formate	Zn O ₂ H ₂ O ₄	2.868	Schröder. Ber. 14, 28.
" "	Zn C, H, O, 2 H, O.	2.889	Schröder. Ber. 8, 199.
44 44		2.205	Schröder. Ber. 14, 28.
Cadmium formate	Cd C, H, O, 2 H, O.	2.1575, 21°.8 2.429, 20°.2	Breen. F. W. C.
	"	2.477	Schröder. Ber. 14, 22.
Calcium formate	Ca C, H, O,	2.021	Schröder. Ber. 8, 199.
" "	"	2.009}	Schröder. Ber. 14, 22.
Strontium formate	Sr C, H, O, 2 H, O	2.667	" " Schröder. Ber. 8,
"	51 0g 11g 0g. 2 11g 0 -	2.266, pulv.	199.
16 16	"	2.244, m. of 8_	Schröder. Ber. 14, 22.
Barium formate	Ba C ₂ H ₂ O ₄	8.198, cryst. } 8.219, pulv. }	Schröder. Ber. 8,
tt tt	"	8.208	Two lots. Schröder. Ber. 11, 2129.
Lead formate	Pb C ₂ H ₂ O ₄	4.56, 11°	Bödeker and Gie- secke. B. D. Z.
11 11	"		Schröder. Dm. 1878.
" "		4.610, cryst. } 4.621, pulv. }	Schröder. Ber. 8, 199.
Manganese formate	Mn C, H, O4	2.205	Schröder. Ber. 14, 28.
	Mn C, H, O, 2 H, O	1.00% }	66 66
Nickel formate	Ni C, H, O, 2 H, O	1.959	H. Stallo. F.W.C.
Nickel formate Cobalt formate	Co C, H, O, 2 H, O.	2.1080, 20°.2 } 2.1286, 22°	
Copper formate	Cu C ₂ H ₂ O ₄ . 4 H ₂ O	1.815, 20°	Gehlen. Ann. 88, 218.
11 11	"	1.811, pulv.) 1.795, cryst. }	Schröder. Ber. 8, 199.
"	"	1.881 "	Schröder. Ber. 14, 28.
Strontium copper formate	Sr ₂ Cu (C H O ₂) ₆	2.612	Schröder. Ber. 14, 24.

		,	
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Strontium copper formate "" Barium copper formate	Ba,Cu(CHO,),. 4H,0	2.188 } 2.747	Schröder. Ber. 14, 24.
Didymium formate	Di (C H O2)2	\begin{align*} 8.427 \ 8.488 \end{align*} 20° \begin{align*}	Cleve. U. N. A. 1885.
Samarium formate	Sm (C H O ₂) ₈	8.780 8.782 20°	" "
44 44	££	8.787)	
Sodium acetate	Na C ₂ H ₄ O ₂	1.421, 14° 1.524)	Bodeker. B. D. Z. Schröder. Ber. 14,
"	"	1.529	Schröder. Ber. 14, 1608.
"		1.58	Brügelmann. Ber. 17, 2859.
"	Na C ₂ H ₂ O ₂ . 8 H ₂ O ₋	1.420	Buignet. J. 14, 15.
" "		1.40, 12°	Bödeker. B. D. Z. Schröder. Ber. 14,
"	"	1.456}	1608.
Sodium triacetate	Na C ₆ H ₁₁ O ₆	1.47	Lescoeur. C. R. 78, 1046.
Potassium triacetate Silver acetate	K C, H, O,	1.84 8.1281, 15°	" Liebig and Redten-
Silver actuate	Ag C, H, O,	0.1201, 10	bacher. P. M. (8), 19, 227.
66 66	"	8.222 } 8.259 }	Schröder. Ber. 9, 1888.
Magnesium acetate	Mg (C ₃ H ₃ O ₃) ₃	1.419	Schröder. Ber. 14, 1610.
11 11	Mg (C ₂ H ₃ O ₃) ₂ . 4 H ₂ O	1.458)	
"	"	1.455 }	Kubel. Ber. 19, ref. 288.
Zinc acetate	Zn (C ₂ H ₃ O ₂) ₂	1.810 }	Schröder. Ber. 14, 1610.
44 44	Zn (C, H, O,), 2 H, O Zn (C, H, O,), 8 H, O	1.785	
Cadmium acetate	$Cd (C_2 H_1 O_2)_2 . 8 H_2 O$ $Cd (C_2 H_2 O_2)_2$	1.7175, 12° } 2.829 }	Bödeker. B. D. Z. Schröder. Ber. 14,
"	"	2.852}	1611.
11 11	Cd (C, H, O,), 2 H, O	1.998 }	46 46
Mercuric acetate	Hg (C, H, O,),	8.2544, 22° 8.2861, 28°	Hagemann. F.W.C.
Strontium acetate	Sr (C ₂ H ₃ O ₂) ₂	2.099	Schröder. Ber. 14, 1608.
" "	$2 \text{Sr} \left(C_2 \underbrace{H_0}_{ii} O_2 \right)_2 . 8 \underbrace{H_2}_{i} O$	1.981 } 2.018 }	"
Barium acetate	Ba (C ₂ H ₃ O ₂) ₂	2.440 }	Schröder. Ber. 11, 2129.
"	"	2.816 {	Two lots. Schröder.
66 66	"	2.440 \$ 2.480	Ber. 12, 561. Schröder. Ber. 14,
u u	Ba (C, H, O,), H, O	2.19, 18°	1608. Bödeker. B. D. Z.
" "	Ba (C, H, O,), 8 H, O	2.014 }	Schröder. Ber. 14, 1608.
Lead scetate	Pb (C ₂ H ₂ O ₂) _{2,}	8.288 8.264	Schröder. Ber. 14, 1609.
		·) (

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lead acetate	Pb (C ₂ H ₈ O ₂) ₂ . 8 H ₂ O	2.569, 180	Buignet. J. 14, 15. Schröder. Dm. 1878.
"	"	2.540}	Schröder. Ber. 14,
" "	"	2.560 { 2.460 }	1609. W. C. Smith. Am.
		2.200	J. P. 58, 145.
Manganese acetate	Mn (C ₂ H ₃ O ₂) ₂	1.100 1	Schröder. Ber. 14, 1610.
" "	Mn (C, H, O,), 4H, O	1.588 }	"
16 66	"	1.590	
Nickel acetate	Ni (C ₂ H ₃ O ₂) ₂	1.797	
" "	Ni (O, H, O,), 4 H, O	1.7346, 17°.2)	
" "	(-1-1)	1.7448, 100.7	H. Stallo. F. W. C.
" "	"	1.784 }	Schröder. Ber. 14,
_ "	~ . -	1.758 }	1610.
Cobalt acetate	Co (C, H, O,), 4 H, O	1.7081, 150.7	H. Stallo, F. W.C.
Copper acetate	Cn (C H. O)	1.7048, 18°.7 { 1.920 }	Schröder. Ber. 14,
" "	Cu (C ₂ H ₃ O ₂) ₂	1.989	1609.
	Cu (C, H, O,). H, O	1.914, 200	Gehlen. Ann. (1),
	"	1 00064	88, 218.
		1.880, m. of 4. 1.875) extreme-	Schröder. Dm.
11 11		1.885 11°.	1878.
"	"	1.875)	Schröder. Ber. 14,
44 41	"	1.890}	1609.
Didymium acetate	Di (C ₂ H ₂ O ₂) ₃	2.125, 18°.5	Cleve. U. N. A.
" "	**	2.190.165.6	1885.
	Di (C ₂ H ₃ O ₂) ₃ . H ₂ O ₋	2.280 20°	"
" "	Di (C, H, O,), 4 H, O	1.881) 100 5	
_ "	**	1.884 1	
Samarium acetate	Sm $(C_2 H_3 O_2)_3$ Sm $(C_2 H_3 O_2)_3$. 4 $H_2 O$	2.208, 18°.8	"
	$Sm(U_2H_3U_2)_3$. 4 H_2U	1.942, 14°.5 1.988, 15°.5	"
	CaCu(C.H.O.), 8H.O	1.4206	Schabus. J. 8, 898.
Calcium copper acetate Lithium uranyl acetate	Li U O, (C, H, O,). 8 H, O	2.280, 15°	Wyrouboff. B. S. M. 8, 118.
Sodium uranyl acetate		2.55, 12°	Bōdeker and Gie- secke. B. D. Z.
Sodium uranyl monochlor- acetate.	Na U O ₂ (C ₂ H ₂ ClO ₂), 2 H ₂ O	2.748, 14°	Clarke. A. C. J. 2, 881.
Silver propionate		i .	Schröder. Ber. 10, 1872.
Barium propionate	Ba (C ₃ H ₅ O ₃) ₃	2.067, 22°.8 1.970	Stern. F. W. C. Schröder. Ber. 11,
Didymium propionate	Di (C ₃ H ₅ O ₂) ₈		2129. Cleve. U. N. A.
	Di (C ₃ H ₅ O ₃) ₃ . 8 H ₂ O	1.741, 120.5	1885.
"		11749 129 (
Samarium propionate	Sm (C ₃ H ₅ O ₂) ₃ Sm (C ₃ H ₅ O ₂) ₃ . 8 H ₂ O	1.894, 14° 1.784)	. "
"	((2/3/ - 2/3/	1.786 } 18°.2	

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Silver butyrate	Ag C4 H, O2	2.858, 4°	Schröder. Ber. 10, 848.
Barium butyrate	Ba (C ₄ H ₇ O ₂) ₂	1.779 [Stern. F. W. C. Schröder. Ber. 11,
Silver isovalerate. Ppt Cryst	Ag C ₅ H ₉ O ₂	1.800 } 2.110 } 2.118 } 4° {	2130. Schröder. Ber. 10, 848.
Silver caproate	Ag C ₀ H ₁₁ O ₂	2.029, ppt. 2.052, cryst.	From two caproic acids, probably
66 66	"	1.866, "	Schröder. Ber. 10, 1872.
Silver caprylate	Ag C ₈ H ₁₅ O ₂	1.740, ppt. 1.771, cryst.	Schröder. Ber. 10, 1878.
Potassium methylsulphate	K C H ₈ S O ₄	2.057	Schröder. Ber. 11, 2020.
Barium methylsulphate	Ba (CH ₃ SO ₄) ₂ , 2H ₂ O	2.258 }	Geppert. F. W. C. Schröder. Ber. 11,
Potassium ethylsulphate	``	2.275 } 1.792 } 1.809	2180. Schröder. Ber. 11, 2020.
Barium ethylsulphate	Ba (C ₂ H ₅ SO ₄) ₂ . 2H ₂ O	2.0714, 22°.6 } 2.080, 21°.7 } 2.055	Geppert. F. W. C. Schröder. Ber. 11.
Didymium ethylsulphate.	Di (C, H, SO ₄) ₃ . 9 H, O	1.860, 17°.8	Schröder. Ber. 11, 2180. Cleve. U. N. A.
Samarium ethylsulphate	Sm(C,H,SO,),9H,O	1.874	1885.
Potassium propylsulphate	K C ₃ H ₇ S O ₄		Schröder. Ber. 11, 2020.
Barium propylsulphate	Ba (C ₃ H ₇ SO ₄) ₂ . 2H ₂ O	$\begin{bmatrix} 1.889 \\ 1.844 \end{bmatrix}$ 20°.5 -	Geppert. F. W. C.
" Potessium isobutylsul-	" КС. Н. S.O.	1.472	Schröder. Ber. 11, 2180. Schröder. Ber. 11,
Potassium isobutylsul- phate. " Barium isobutylsulphate	Ba (C, H, SO,), 2H,0	1.714, 22°	2020. Whetstone. F.W.C.
" " "	"	1.748, 24°.8 1.778, 21°.2 1.727	Schuermann. F.W. C. Schröder. Ber. 11,
Potassium amylsulphate	44	1.788	2130. Schröder. Ber. 11,
Barium amylsulphate	64	1.418 } 1.628, 21°.2 1.682, 22° }	2020. Whetstone. F.W.C.
16 16	دد	1.688	Schröder. Ber. 11, 2180.
Potassium methylxanthate	"	1.6754, 15°.2 \ 1.7002	Bishop. F.W.C.
Potassium ethylxanthate	"	1.5564, 18°.2	Geppert. F. W. C. H. Stallo. F. W. C.
Potassium isobutylxan- thate. "	K C, H, C O S	1.8718, 15° 1.8882, 14°.5	u u

			·
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Lithium oxalate	Li, C, O, Na H C, O, H, O K, C, O, H, O	2.1218, 17°.5	Stolba. J. 1880, 288.
Sodium hydrogen oxalate	Na H C. O. H. O	2.815	Buignet, J. 14, 15.
Potussium oxalate	K, C, O, H, O	2.104, m. of 2_	Playfair and Joule.
	1	i	M. C. S. 2, 401.
46	K H C ₂ O ₄	2.08	Schiff. J. 12, 16.
Potassium hydrogen oxa-	KHC ₂ O ₄	1.965, m. of 2.	Playfair and Joule.
late.		1	M. C. S. 2, 401.
44 66 66 66 66	"	2.030	Schiff. J. 12, 16.
		2.088	Buignet. J. 14, 15.
Potassium quadroxalate	K H ₂ (C ₂ O ₄) ₂ . 2 H ₂ O	1.817	Playfair and Joule.
	1 4	1 705	M. C. S. 2, 401. Schiff. J. 12, 16.
		1.700	Buin. J. 12, 16.
Dubidium anadaanalata	Pher (CO) and	0 1046 100	Duignet. J. 14, 10.
" Rubidium quadroxalate Ammonium oxalate	Am () H ()	1 461 m of 9	Dlawfair and Ioula
Ammonium Ozbiace	Am ₂ O ₂ O ₄ . M ₃ O	1.401, 111. 01 2-	M. C. S. 2, 401.
"		1.475	Schiff. J. 12, 16.
		1.470	Buignet. J. 14, 15.
"	"	1.470	
"		1.502	Schröder. Dm. 1878.
Ammonium hydrogen ox-	Am H C. O., H. O.	1.568, m. of 8.	Playfair and Joule.
alate.		1.000, 02	M. C. S. 2, 401.
11 11 11		1.556	Schiff. J. 12. 16.
Ammonium quadroxalate	Am H. (C. O.) H. O	1.589, m. of 2_	Schiff. J. 12, 16. Playfair and Joule.
-		1	
" "		1.607	Schiff. J. 12, 16. Husemann. B. D. Z.
Silver oxalate	Ag. C. O	4.96, 100	Husemann, B. D. Z.
"		5.005, 4°, ppt.) Schröder. Ber. 10.
"		5.029, 4°, cryst.	849.
Silver oxalate " " Thallium oxalate	Tl, C, O4	6.81	Lamy and Des Cloi-
	1	l	zeaux. Nature, 1,
			442.
Thallium hydrogen ox-	TI H C, O4. H, O	8.971	"
alate.	7 00	0.545 400 0 3	
Zinc oxalate	Zn C, O,	2.547, 180.8	777
44 44	Zn C ₂ O ₄	2.562, 240.5	Wilson. F. W. C.
Cadmium oxalate		2.582, 17°.5) 8.810, 17° }	1
	"	8 890 180	Freeman. F.W.C.
Calcium oxalate	Co C O	2.106	Schröder. Dm. 1878.
" "	02 01	2 181)	
44 44		2 182 40	Schröder. Ber. 12,
11 11			561.
Barium oxalate	Ba C. O.	2.6578	Schweitzer. Univer-
			sity of Missouri,
			special pub.; 1876.
Lend oxalate	Pb C. O	5.018)	
Lend oxalate	Mn C, O,	. 5.085 }	Schröder. Dm. 1873.
Manganese oxalate	Mn C, O,	2.422, 210.8	1
ü	. " "	2.458, 200.7	Freeman. F. W. C.
	-1		
Humboldtine	. 2 Fe C. O., 8 H. O.,	. 2.13)	Dana's Mineralogy.
	·		Lana a mineratogy.
Nickel oxalate	Ni C. O	. 2.218. 19°)	_
" "	("	2.2285, 19°.5	Freeman. F.W.C.
" "	- "	2.235, 189.5	1
Cobalt oxalate	. Co C, O,	. 2.296, 20°.5	11 11
"	-l "	. 2.325, 19° }	I

		,	
Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Stannous oxalate	Sn C, O,		Wilson. F.W.C.
Thorium oxalate	Th (C, O4),	8.584, 28°.5) 4.687, 16°	Clarke. A. C. J. 2, 175.
Uranyl oxalate	U O ₂ . C ₂ O ₄ . 8 H ₂ O ₋		Ebelmen. J. P. C. 27, 891.
Potassium copper oxalate.	- `	1	Playfair and Joule. M. C. S. 2, 401.
Ammonium copper oxa- late.	Am ₂ Cu(C ₂ O ₄) ₂ . 2H ₂ O		
Potassium chromoxalate	6 -	2.1464.24	Bishop. F.W. C.
Strontium chromoxalate Strontium potassium chro- moxalate.		2.148, 8°.8 2.155, 12°.8	Kebler. F.W.C.
Barium chromoxalate	Ba ₃ (Cr C ₆ O ₁₂),	2.570, 6°.8	44 44
" "	Ba ₂ (CrC ₆ O ₁₂) ₂ . 6 H ₂ O	2.445, 18°.9	66 66 66 66
Sodium ferroxalate	Ba ₂ (Cr C ₆ O ₁₂) ₂ Ba ₂ (Cr C ₆ O ₁₂) ₂ . 6 H ₄ O Ba ₂ (Cr C ₆ O ₁₂) ₂ . 12 H ₂ O 2 Na ₂ (Fe C ₆ O ₁₂). 11 H ₂ O Am ₄ (FeC ₄ O ₁₂), 8 H ₄ O	2.872, 27° 1.9781, 17°.5	Eder and Valenta. Ber. 14, 1106.
Ammonium ferroxalate			и и,
Platosoxalic acid	Pt H ₂ (C ₂ O ₄) ₂ . H ₂ O ₋	2.94, 14°	Sõderbaum. Upsala Diss. 1888.
Sodium platosoxalate	$Na_2 Pt(C_2 O_4)_2.4 H_2 O$ $Na_2 Pt(C_2 O_4)_2.5 H_2 O$	2.89, 17°.2 2.92, 17°.2	66 66 66 66
Potassium platosoxalate.	Na, Pt(C, O,), 5H,O K, Pt (C, O,), 2H,O	8.087. 110.6	44 44
" Light. " Dark.		8.086, 12° } 8.012, 12°	u u
Ammonium platosoxalate. Light.	Am, Pt(C,O,),. 2H,0	2.614, 11°.7	44 44
" Dark. Platodiamine platosoxa-	Pt(NH ₃), Pt(C ₂ O ₄),	2.58, 11°.5 8.51, 18°.5	66 66
late. Light. " Dark.	44	8.48, 18°.5	44 44
Didymium nitratoöxalate.	Di H ₂ (N O ₂) ₂ (C ₂ O ₄) ₃ . 11 H ₂ O	2.424) 190 9	Cleve. U. N. A.
"	11 H ₂ O	2.425 }	1885.
Ammonium succinate Silver succinate	Am ₂ C ₄ H ₄ O ₄ Ag ₃ C ₄ H ₄ O ₄	1.867, 10° 8.518, 10°	Zachariae. B. D. Z. Husemann. B. D. Z.
" "		8.807 } 40 {	Schröder. Ber. 10,
Barium succinate	Ba C ₄ H ₄ O ₄	8.838 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	849. Schröder. Ber. 11,
" " …	• • •	2.699 {	2129.
Lead succinute	Pb C ₄ H ₄ O ₄	8.800, 10°	Husemann. B. D. Z.
Ammonium malate	Am, C, H, O,	1.509	Wyrouboff. Bei. 8,
Ammonium hydrogen ma-			24. Pasteur. J. 4, 892.
late.			_
Silver malate	Ag ₂ C ₄ H ₄ O ₅	4.0016	Liebig and Redten- bacher. A. C. P. 88, 189.

		·	
NAME.	FORMULA.	Sp. Gravity.	AUTHORITY.
Sodium tartrate	Na, C, H, O, 4 H, O K, C, H, O, H, O K, C, H, O, H, O K H C, H, O	1.794	Buignet. J. 14, 15. Schiff. J. 12, 16. Buignet. J. 14, 15.
Potassium hydrogen tar- trate.	K'H'C, H, O,	1.948	Schabus. J. 8, 878.
ti 11 11	"	1.978	Schiff. J. 12, 16.
	. "	1.956	Buignet, J. 14, 15.
Ammonium tartrate	Am, C, H, O,	1.566	Schiff. J. 12, 16.
" "	"	1.601	Buignet. J. 14, 15. Wyrouboff. Bei. 8, 24.
Ammonium hydrogen tar- trate.	Am H C ₄ H ₄ O ₆	1.680	
Sodium potassium tartrate	Na K C, H, O, 4H, O	1.74	Mitscherlich.
		1.767	Schiff. J. 12, 16.
66 66 66 <u></u>		1.790	Buignet. J. 14, 15.
			W. C. Smith. Am. J. P. 53, 145.
Sodium ammonium tar- trate.	Ma Am U ₄ H ₄ U ₆ .4H ₃ U	1.08	Mitscherlich.
11 11 11	"	1.576	Pasteur. J. 2, 809.
	"	1.587	Schiff. J. 12, 16.
Potassium ammonium tar- trate.		1	" "
Rubidium tartrate		ł	24.
" " <u>"</u>	Rb ₂ C ₄ H ₄ O ₆ . H ₂ O _		Wyrouboff. B. S. M. 6, 811.
Rubidium hydrogen tar- trate.	Rb H C ₄ H ₄ O ₆ . ½ H ₃ O	2.899	"
Rubidium lithium tartrate	Rb Li C, H, O, H, O	2.281	Wyrouboff. B. S. M. 6, 58.
Rubidium sodium tartrate	Rb Na C ₄ H ₄ O ₆ .2½H ₂ O	2.200	Wyrouboff. Ann. (6), 9, 221.
Silver tartrate	Ag, C, H, O,	8.4821	Liebig and Redten- bacher. A. C. P.
Thallium tartrate	Tl ₂ C ₄ H ₄ O ₆	5.110	88, 189. Wyrouboff. B. S. M. 6, 811.
" "	Tl ₂ C ₄ H ₄ O ₆ . ½ H ₂ O ₋	4.658	Lamy and Des Cloi- zeaux. Nature,
u u	"	4.740	
Thallium hydrogen tartrate.	TI H C4 H4 O6	8.496	M. 9, 102. Lamy and Des Cloi- zeaux. Nature, 1,
	T1 H C4 H4 O6. 1 H2 O	3.899	142. Wyrouboff. B.S.M. 6, 811.
Thallium lithium tartrate	Tl Li C ₄ H ₄ O ₆ . H ₂ O	8.856	Wyrouboff. B.S.M. 6, 58.
Thallium sodium tartrate	Ti Na C ₄ H ₄ O ₆ .2½ H ₂ O	8.120	Wyrouboff. Ann. (6), 9, 221.
Strontium tartrate	Sr C, H, O,	2.575, 170.8	(0), 0, 221.
11 11	Sr C ₄ H ₄ O ₆		Joslin. F. W. C.
" "		2.598, 17°.4	
16 16	Sr C ₄ H ₄ O ₆ . 4 H ₂ O	1.961, 19° }	46 46
		•	

	i	1	1
Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Strontium tartrateBarium tartrate	Sr C, H, O, 4 H, O Ba C, H, O	1.972, 18°.1 2.965, 21°.5 2.974, 21°.9	Joslin. F.W.C.
Lead tartrate	Pb C ₄ "H ₄ O ₆	2.980, 20°.8 } 8.998, 16°.5 } 4.001, 17°.5 }	
Potassium tartrantimo- nite, or tartar-emetic	2 K O, H, Sb O, H, O	4.087, 17°.7) 2.5569	Pasteur. Ann. (8), 28, 86.
		2.607	Schiff. J. 12, 16.
" "		2.588 2.597	Buignet. J. 14, 15. Topsoë and Christ- iansen.
Ammonium tartrantimo- nite.	2Am C,H,SbO,H,O	2.824	Topsoë. C. C. 4, 76.
Silver tartrantimonite Thallium tartrantimonite_		3.4805, 18°.2 8.99	Evans. F. W. C. Lamy and Des Cloi- zeaux. Nature, 1, 142.
Barium tartrantimonite	Ba (C ₄ H ₄ Sb O ₇) ₃ . 2 H ₄ O	8.112, 19°	Joslin. F. W. C.
Potassium borotartrate	K C, H, B O,	1.882	Buignet. J. 14, 15.
Potassium racemate Potassium hydrogen race- mate.	K, C, H, O, 2 H, O, K H C, H, O,	1.58 1.954	Mitscherlich. Wyrouboff. B.S.M. 6, 811.
Potassium lithium race- mate.	K Li C ₄ H ₄ O ₆	1.610	Wyrouboff. B.S.M. 6, 58.
Potassium sodium race- mate.	K Na C, H, O, 8 H, O		Wyrouboff. B. S. C. 45, 52.
Rubidium racemate	Rb ₂ C ₄ H ₄ O ₆		Wyrouboff. Bei. 8, 24.
Rubidium hydrogen race- mate.	Rb H C ₄ H ₄ O ₆		Wyrouboff. B.S. M. 6, 811.
Rubidium lithium race- mate.	Rb Li C ₄ H ₄ O ₆		Wyrouboff. Bei. 8, 24.
Ammonium racemate	Am ₂ C ₄ H ₄ O ₆		Wyrouboff. B.S. M. 9, 102.
Ammonium hydrogen racemate.	Am H C ₄ H ₄ O ₆		Wyrouboff. B.S. M. 6, 811.
Ammonium sodium race- mate.	Am Na C ₄ H ₄ O ₆ . H ₂ O		Wyrouboff. Ann. (6), 9, 221.
Silver racemate	Ag ₂ C ₄ H ₄ O ₆		Liebig and Redten- bacher. A. C. P. 88, 189.
Thallium racemate	Tl ₂ C ₄ H ₄ O ₆		Two varieties. Wy- rouboff. B.S.M. 9, 102.
" "	2 Tl ₂ C ₄ H ₄ O ₆ . H ₂ O ₋	4.659	Lamy and Des Cloi- zeaux. Nature, 1, 142.
Thallium hydrogen race- mate.	T1 H C4 H4 O4	8.494	Wyrouboff. B.S. M. 6, 811.
Thellium lithium race- mate.	Tl LiC ₄ H ₄ O ₆ . 2H ₂ O	8.144	Wyrouboff. Ann. (6), 9, 221.
Thallium sodium racemate	Tl Na C4 H4 O6. 2 H2 O	8.289	a, a

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Potassium racemantimonite.	2 K C ₄ H ₄ Sb O ₇ . H ₂ O	2.4768	Pasteur. Ann. (8), 28, 86.
Potassium citrate*	K ₂ C ₆ H ₅ O ₇ . H ₂ O	1.98	W. C. Smith. Am. J. P. 53, 145.
Trisodium citrate	2 Na ₃ C ₆ H ₅ O ₇ . 11 H ₂ O	1.857, 23°.5	Blakemore, F.W.C.
Dismmonium citrate	Am ₂ C ₆ H ₆ O ₇	1.859, 24° } 1.479, 22°	
Uranyl oleate	Ü O ₂ (C ₁₈ H ₃₃ O ₂) ₂	1.13	Gibbons. Ber. 16,
Caleium hippurate Potassium orthonitrophe- nate.	2CaC ₁₈ H ₁₆ N ₂ O ₆ . 3H ₂ O K C ₆ H ₄ N O ₃ . H ₂ O ₋		964. Schabus. J. 8, 411. Post and Mehrtens. Ber. 8, 1552.
Silver orthonitrophenate	Ag C, H, N O, Ba (C, H, N O,), Pb, O(C, H, NO,),	2.661, 20°	" "
Barium orthonitrophenate	Ba (C, H, N O ₃) ₂	2.8801, 20°	"
Lead orthonitrophenate Potassium metanitrophe-	K C, H, NO, 2H,O	2.712, 20° 1.691, 20°	44 44
nate. Barium metanitrophenate	Re(CHNO) 9HO	2.343, 200	" "
Lead metanitrophenate	Ba(C ₆ H ₄ NO ₃), 2H ₂ O ₋ Pb O (C ₆ H ₄ N O ₃)	2.694, 200	
Potassium paranitrophe- nato.	K C, H, NO, 2H,O	1.652, 20°	£6 66
Silver paranitrophenate	Ag C6 H4 NO3.2 H,O.	2.652, 20°	. "
Barium paranitrophenate.	Ba(C, H, NO,). 8H, О. PbO(C, H, NO,). 2H, О	2.822, 200	66 66
Lead paranitrophenate	PbO(C ₆ H ₄ NO ₃).2H ₂ O	2.682, 20°	"
Potassium a dinitrophenate	K C, H, N, O, H, O, Ag C, H, N, O, H, O, Ba (C, H, N, O,), 4H, O	1.778, 20°	
Silver a dinitrophenate	AgC ₆ H ₃ N ₂ O ₅ . H ₂ O ₂	2.755, 20°	
Barium a dinitrophenate	Ba(C,H,N,O,),.4H,O	2.489, 200	" "
Lead a dinitrophenate	Ba(C ₆ H ₁ N ₂ O ₅), 4H ₂ O PbOH(C ₆ H ₃ N ₂ O ₅). 2 H ₂ O	2.817, 20°	" "
Potassium β dinitrophenate	K C ₆ H ₈ N ₂ O ₅ Ag C ₆ H ₉ N ₂ O ₅ Ba(C ₆ H ₂ N ₂ O ₆) ₂ H ₂ O ₂ Pb O (C ₆ H ₈ N ₂ O ₆) ₂ .	1.757, 200	
Silver β dinitrophenate	Ag C, H, N, O,	2.788, 200	" "
Barium β dinitrophenate	$Ba(C_6H_3N_2O_5)_3$. H_2O_2	2.406, 20°	" "
Lead β dinitrophenate	Pb O (C ₆ H ₈ N ₉ O ₈) ₂₋	2.807, 20°	
Lithium picrate	Li C, H, N, O,	1.716, 19°	D 19 107 (1
"		1.724, 20°	Beamer. F. W. C.
Potassium picrate	K C, H, N, O,	1.852, 20°	Post and Mehrtens. Ber. 8, 1552.
Silver picrate	Ag C, H, N, O,	2.816, 200	" "
Thallium picrate	Ag C ₆ H ₂ N ₃ O ₇ Tì C ₆ H ₂ N ₃ O ₇	8.089	Lamy and Des Cloi- zeaux. Nature, 1,
Barium picrate	$\mathrm{Ba}(\mathrm{C_6H_2N_3O_7})_2.4\mathrm{H_2O}$	2.518, 20°	Post and Mehrtens. Ber. 8, 1552.
Lead picrate	Pb (C ₆ H ₂ N ₃ O ₇) ₂ . H ₂ O	2.831, 200	11 11
Samarium picrate	$\operatorname{Sm}(C_6H_2N_3O_7)_3.8H_2O$	1.954, 18°.5	Cleve: U. N. A. 1885.
Ammonium benzoate	Am C ₇ , H ₅ O ₂	1.260 } 4° {	Schröder. Ber. 12, 1611.

^{*}Smith gives this salt under the name "potassii citras," and assigns no formula.

Name.	FORMULA.	SP. GRAVITY.	AUTHORITY.
Silver benzoate	J , J .	2.258	Schröder. Ber. 9, 1889.
Calcium benzoate	$Ca (C_7H_5O_2)_2$. $8H_2O$ $Ba (C_7H_5O_2)_2$. $8H_2\overline{O}$	1.485 } 40 {	Schröder. Ber. 12, 1611.
Barium benzoate	Ba (C ₇ H ₆ O ₂) ₂ . 8H ₂ O	1.792 \ 1.808 \ 4° }	Schröder. Ber. 12, 561.
Mellite	Ag C, H, O, Al, C, O, 18 H, O.		Kenngott.
		,	

LXXI. SALTS OF ORGANIC BASES WITH INORGANIC ACIDS.*

Name.	FORMULA.	Sp. Gravity.	Authority.
Tetramethylam monium iodide. "	14	1.881, 19°.5. { 1.888 } 4° { 1.844 } 1.556 }	Owens. F. W. C. Schröder. Ber. 12, 561.
dide. " " Tetramethylam monium	"	1.559	
mercury iodide. '' '' Ethylamine platinchloride	" " (NCH HCI) P(CI	8.971, 24° 8.976, 28°.5 4.008, 28°.2	Owens. F. W. C. Clarke. A. C. J. 2,
Ethylamine aurochloride	NC, H, HCl. AuCl,	2.255 } 10 }	175. Topsoë. S. W. A. 73, 97.
Diethylamine aurochlo- ride. Triethylamine aurochlo- ride.		ļ	ec ee
Guanidine carbonate '' Aniline chlorhydrate	C. H. N. H Cl	1.251 }	Schröder. Ber. 18, 1070. Schröder. Ber. 12,
Aniline iodate		1.216 } 40 {	1611. Beamer. F. W. C.
Aniline sulphate	66	1 3 860 ()	Schröder. Ber. 12, 1611. "" Evans. F. W. C.
Rosaniline chlorhydrate Diazobenzene nitrate			252. Berthelot and
Berberine chlorhydrate			Vieille. Bei.5,578. Clarke. A. C. J. 2, 174.
Berberine platinchloride	Pt Cl ₄	1.100, 10	·

^{*}Aniline tartrantimonite is included in this table for reasons of convenience.

Name.	Formula.	Sp. Gravity.	AUTHORITY.
Strychnine platinchloride	(C ₂₁ H ₂₂ N ₂ O ₂ . HCl) ₂ . Pt Cl	1.779, 18°.5	Clarke. A. C. J. 2,
Cinchonine chlorhydrate. Picolinic acid platinchlo- ride.	C., H., N. O. H Cl.,	1.284 2.0672, 21°.8	Hesse. J. 15, 871.
Nicotinic acid platinchlo- ride.	(C ₈ H ₈ N O ₂ . H Cl), Pt Cl., 2 H ₈ O	2.1297, 21°.8	46 46
Triethylphosphin plato- sochloride.	Pt Cl ₂ . (C ₆ H ₁₅ P) ₂	1.5, 10°	Cahours and Gal. Z. C. 18, 487.

LXXII. MISCELLANEOUS ORGANIC COMPOUNDS.

Name.	FORMULA.	Sp. Gravity.	AUTHORITY.
Ethyl selenite		1	Michaelis. A. C. P. 241, 159.
Glucose with sodium chloride. ""	"	1.59 (Bödeker. B. D. Z.
Cane sugar with sodium iodide.	2 C ₁₁ H ₂₂ O ₁₁ . 8 Na I. 8 H ₂ O	1.854	Gill. J. C. S. 24,
Ferrous sucrocarbonate	8 C ₁₅ H ₂₅ O ₅ . 2 Fe CO ₅ .	1.85	Tanret. J. C. S. 40, 157.
Salt from lead acetate and potassium triodide.	Pb K C St H St O 28 I 17-	8.084	Johnson. C. N. 87, 110.
Chloraurotrieth y l p h o s- phorous ether.	Au Cl P (O C ₂ H ₅) ₃	2.025	Lindet. C. R. 108, 1014.

APPENDIX.

NOTE ON THE SPECIFIC GRAVITY OF WOOD.

Although wood is a substance which does not come within the scope of these tables, the following references to literature are given as a matter of convenience.

ASCHAUEB.-Dove's Repertorium, 1, 142.

BRISSON.—Pesanteur Spécifique des Corps.

ESTRADA.—Cuban woods. Van Nostrand's Magazine, 29, 417. 1888.

Hon.-Beiblätter (Wiedemann's), 2, 584.

IHLSENG.—Amer. Journ. Sci. (8), 17, 125.

KARMARSCH.-Dove's Repertorium, 1, 141.

KOPP.—Dove's Repertorium, 7, 171; also Ann. Chim. Phys. (3), 6, 880.

MENDENHALL.—Ohio Agricultural and Mechanical College, Report for 1878.

OSBORNE.—"Report on Class III," Melbourne Exhibition of 1861. Many data for Australian woods and essential oils.

SHARPLES.—Vol. IX, Reports of Tenth U. S. Census. Complete as to woods of the United States.

SMITH.—Journ. Chem. Soc., June, 1880, p. 417.

WILEY.—Purdue University (Indiana) Report, No. 2, 1876:

Many figures are also given in Böttger's "Tabellarische Uebersicht."

(367)

A.	-	!	PA	LGH.
PA	GE.	Acid,	Alphatoluic	
Ables Reginae-Amaliae, oil from	179	"	Amidoacetic	
Abietene	-	•	Amidobensoic	
Absinthol		-	Amidocaproie	
Acanthile		4	Amidosuccinic	
Acenaphtene		44	Amyldecatoic	
Acetal		*	Amylgiycollic	
Acetsmide		4	Amylnitrophosphorous	
Acetanilide		64	Anisic	
" Derivative of		-	Arsenic	49
Acetic aldehyde		46	Arsenious	_
Acetic anhydride		4	Aspartic	
Acetobutyl alcohol		44	Benzoic	
Acetochlorhydrin	- '	64	Borie	
Acetocinnamone		44	Bromisobutyrie	
Acetodichlorhydrin		•	Bromobutyric	
Aceto-ethyl nitrate		44	Bromostearle	
Acetoethylthienone		44	Butyric	
Acetoglyceral			Camphoric	
Acetone		#	Caproio	
Acetonitril		4	Caprylic	
Acetonitrose		"	Chloracetic	
Acetophenone alcohol		" "	Chlorie	
Acetopropyl alcohol		:	Chlorisobutyric	
Acetothienone		"	Chlorobutyric	
Acetotrichlorethylidene acetic ether			Chloropropionic	
Acetoxyscetonitril			Chlorosulphonic	
Acetoxypropionitril			Chromic	
Acetpiperidid		<u>"</u>	Citraconic	
Acetyl, Chloride			Citric	
* Thiocyanate			Columbic	
Ace tylamine			Crotonic	
Acetyl camphor			Cuminic	
Acetylchloral ethylate			Cyanic	
Acetylcopellidine			Cyanuric	
Acetylene		"	Diallylacetic	
" Bromiodide			Diamylphosphoric	
" Chloriodide			Dibromacetic	
" Chlorobromide		-	Dibromoleic	
" Dibromide			Dichloracetic	305
" Iodide			Dichloroleic	312
" Tetrabromide			Diethylacetic	203
" Tetrachloride	299	"	Diethylcamphresic	265
Acetylthioxene	344	4	Diphenylarsenic	350
Acetyltrimethylene		- 4	Diphenylphosphinic	349
Acetyl valeryl	245	4	Dipropylacetic	204
Achillea ageratum, oil of	264	4	Dithionic	75
Acid, Acetic		"	Ethylbenzhydroxamic	288
" Acetylformic	232	"	Ethyleam phoric	
" Acetylpropionic	232	*	Ethylmothylacetic	
" Allylacetic		**	Ethyloxalic	
" Allyloctylic	242	4	Ethyloxyisobutyric	230
24 s G			(869)	

				_	
		AGE.	4-44		AGE.
cia,	Ethylsalicylic		Acia,	Perchlorie	
-	Ethylsulphuric			Phenylacetic	
•	Ethylsulphurous			Phenylacrylic	
-	Formic	199	•	Phenylarsinic	
-	Gallic	257	**	Phenylphosphinic	349
•	Glycollie	230	*	Phenylpropionic	257
•	Hippuric		64	Phosphoric	114
	Hydrochloric		44	Phosphorous	
•	Hydrocinnamic		64	Phthalic	
•	Hydrocyenie		=	Phycic	
_			84	Picolinic, chloroplatinate of	
_	Hydrofluorie		-		
-	Hydrosorbic		-	Pierie	
84	Hydrosulphocyanic		-	Pimario	
-	Hypophosphorous	113	64	Platosoxalic	
66	Iodic	74	•	Propionic	200
#	Isoamylacetic	203	4	Propionylformic	232
64	Isobutyric		66	Protocatechuic	
44	Isocaproie		#	Pyroracemic	
-	Isoheptylic		66	Pyrosulphuric	
-			44		
_	Isohexic, derivative of		-	Pyrotartaric	
	Isononylic			Pyroterebic	
44	Isočetylie	204	•	Pyruvie	
44	Isovaleric	201	*	Quartenylic	234
44	Itaconic	237	-	Quinic	259
4	Lactic	230	44	Racemic	236
44	Laevotartaric		•	Ricinoleic	
44	Laevulinic		*	Rutylic	
44	Lauric		-	Salicylic	
44			es		
	Linoleic		44	Santonic	
	Malic			Sebacic	
44	Mandelic		61	Selenic	
4	Metachlorbenzoic	313	64	Selenious	98
65	Methylacrylic	234	"	Stearic	204
44	Methylethylacrylic	234	44	Succinfo	226
64	Methylethylpropionic		44	Sulphhydric	
84	Methylglycollic		•	Sulphuric	
44	Methylhexamethylenemonocarboxy-		44	Sulphurous 51	
		047	••		
	lie		**	Sylvic	201
	Methylisopropylacetic			Tannie	
	Methylisopropylmalonic	226	4	Tantalic	
44	Methylpentamethylenemonocarboxy-	1	64	Tartaric	236
	lie	246	•	Telluric	
64	Methylpropylacetic	203	*	Tetramethylenemonocarboxylic	946
*	Methylsalicylic		"	Thiscetic	344
44	Molybdic		и	Trichloracetic	
4	Moringie		**	Trichlorphenomalic	
44	Naphtylphosphinic		66	Trimethylacetic	
4	Naphtylphosphorous		4	Tungstie	
4			44	Uric	
44 .	Nicotinic, chloroplatinate of				
	Nitrie			Valeric	
4	Nitrobenzoic			te	
4	Nitrocaprylie			ein	
4	Nitrolactic	286	44	Diacetate	
66	Oenanthic		**	Ethylate	
64	Olelo		Acros	oinacone	
44	Orthophenyleneglyoxylic			aldehyde	
64	Oxalic			lite	
				ite	
44	Oxybenzoic			ndite	
	Paraffinic				
_	Parasantonic		Alask	aite	- 63
-	Parasorbie		Albite	9	184
66	Pelargonic	204	Aldel	yde	216

. P.	AGE.	PAGE
Aldehyde with suiphaldehyde	344	Aluminum, Ammonium sulphate 94
Aldehyde collidine	274	Amylate 856
Aldehyde methyl chloride		" Barium silicate 138
Aldol		" Borate 100
Alexandrite		* Bromide 39
Algodonite		" with aromatic hydrocar-
Allaktite		bons 854
Allemontite		
Allociasite		Cassium selenate 161
Allophane		# # silicate
Allyl, Acetacetate		authuste
4 Alcohol		Calcium phosphate
" Bromide.		* * * * * * * * * * * * * * * * * * *
44 Carbamine		" Chloride, with aromatic hydro-
66 Chloride		carbons 354
Dibrompropionate		" Copper arsenate 12
4 Formate		" Cresolate 35
44 lodide	334	* Ethylate 35
4 Nitrate	286	* Fluorides 1
* Nitrite	286	" Fluosificate 140
** Oxalate	243	" Glucinum silicate 13
** Oxide	241	" Hydroxides 7
4 Santonate		" Iodide 8
4 Sulphides		4 Iron silicates 138, 13
" Thiocarbimide		Lead phosphate11
1 1110Cyanaro		BIIICB00 100
1 i Bui phocas conase		minimi naophosphaos 12
Allylamine		" silicates 13- " Magnesium phosphate, 11:
Allylanisöil		" silicate
Allylbensene		" sulphate 9
Allyldiethylcarbinol	241	" Manganese phosphate 11
" Derivative of	168	" silicate13
Allyldiisopropylcarbinol		" Mellitate 36
Allyldimethylcarbinol		" Methylamine sulphate 9
" Acetate	242	4 Oxide 4
" Derivative of		* Phenolate 35
Allyldipropylcarbinol		* Phosphates 115, 116, 117, 11
" Acetate		Potassium borate 10
" Derivative of		Belenate 10
Allylene, Bromide		8111CRU88 130, 13
Dihydriodate		* sulphates
" Iodide		" Rubidium selenate 10
" Tetrabromide		* sulphate 9
* Tetrachloride		" Silicates 132, 13
Allyleugenol		8 Sodium carbonate 13
Allylidene, Chlorides 299,		" fluoarsenate 12
Allylmethylpropylcarbinol		* selenate 10
Allylpyridine	274	silicates 184, 13
Allylsuccinimide		* sulphate 9
Almandite		Strontium silicate
Almond oil		Sulphates
Alòisol		I manifulli selenave 10
Alumian		" sulphate 9 " Thymolate 35
Alumina		Titanide 7
Aluminite		4 Zinc sulphate 9
Aluminum		" Zirconide 7
* Alloys of		Alums 92, 93, 94, 95, 96, 10
" Ammonium selenate		Alunite 9

				•	
		AGE.	1		LGE.
Amalgams		145	Ammonium.	Molybdates	
Amarantite .		97	"	Nickel selenate	
Amblygonite	B	124	4	" sulphate	
Amenyl vale	rone	248	•	Nitrate	
Amidohense	ne	271	"	Oxalate	
	lamine		"	Palladiochloride	
	hylaniline		"	Perchlorate	
Amidomethy	plphenoi	288	" .	Phosphates	
			"	Platinbromide	
Ammonium.	Aluminum selenate		44	Platinchioride	
44	" . sulphate		44	Platiniodide	
44	Arsenates		"	Platosochloride	
44	Benzoate	364	44	Platoxalate	
**	Bromide	31	"	Potassium chromate	
66	Cadmium selenate	100	44	" sulphates	
44	" sulphate	90	66	" tartrate	362
44	Chloride	21	61	Quadroxalate	360
46	Chromate	108	44	Racemate	363
44	Chromiodate	104	*	Samarium sulphate	96
44	Chromium selenate	101	44	Selenate	98
48	" sulphate		44	Silicofluoride	
44	Citrate		46	Sodium arsenate	
44	Cobalt selenate		64	4 phosphate	
4	" sulphate		44	" racemate	
•	Copper chloride		и	" sulphate	
44	* oxalate		44	" tartrate	
44	* selenate		44	Stannibromide	
4	POIGHAGO		44	Stannichloride	
4	ani hirera ilinimi		44	Stannifluoride	
	Dichromate	103			
••	" with mercuric chlo-			Stannochloride	
	ride			Succinate	
4	Didymium sulphate			Sulphate	
"	Dithionate	75		Sulphocyanide	
44	Ferrocyanide with ammonium			Tartrantimonite	
	chloride			Tartrate	
"	Ferroxalate			Tellurate	
44	Formate			Uranoxyfluoride	
4	Gallium sulphate			Uranyl sulphate	
44	Hydrogen carbonate		44	Vanadium vanadate	
44	" fluoride		44	Zine bromide	
4	" malate		"	" chloride	
44	" oxalate		46	" selenate	
44	" racemate	363	68	" sulphate	
44	" selenate	98		cetate	
*	" sulphate	80		e 208,	
44	" tartrate	862	" Alcoho	ols 192,	193
14	Indium sulphate	96	" Amylı	hosphito	348
44	Iodate	74		lte	
44	Iodides	34	" Benzo	ale	257
44	Iridichloride	28		9	
4	Iron selenate	100	" Bromi	de	318
**	" sulphates 91				
44	Lithium sulphate			l oxide	
"	Magnesium chloride		" Chlori	de	294
66	" chromate			loxyacetate	
44	" phosphate			hide	
44	" selenate			scetacetate	
"	" sulphate			Me	
44	Malate			·····	
44	Manganese selenate			yrate	
44	" sulphate			erate	
4	Mercury chloride			Dian	

		AUE.	1	
Amyl.	Monochloracetate	. 307	Antimony Bismuth alloys	161
44	Nitrate		* Bromide	
64	Nitrite		4 Chlorides	
24	Oxalate			
			copper anoya	
-	Oxide		nyuroziue	
-	Phenylpropionate	. 258	100100	
44	Propargyl oxide		" Lead alloys 149,	150
•	Propionate	210	" Organic compounds	351
**	Sebate		oxides	40
44	Silicate		" Oxychloride	
44	Sulphophosphate		4 Oxysulphide	
-	Thiocarbimide		roussium chiorne	
•	Thiocyanate		- Sulphides	
	Trisulphocarbonate	341	" Tartrates 363,	365
•4	Valerate	213	" Telluride	66
Amvla	mine	270	" Tin alloys	140
	enzene		Apatite	
	camphor		Apiol	
	lecaldehyde		Apophyllite	
	limethylbensene		Aragonite	
Amyle			Arctolite	138
"	Chloride	297	Argentite	57
*	Dithiodichloride	346	Argyrodite	64
4	Glycol	223	Arkansite	
4	Oxide		Arsenic	
	Sulphide		- Dromide	
••	Thiodichloride		- Chioride	
"	Trisulphocarbonate		" Fluoride	17
Amyl (eugenol	265	4 Iodides	36
Amyl	glycide	239	" Organic compounds 350,	351
	glyoxalin		* Oxides 48	
	monochlorhydrin		" Selenide	•
Amyın	apthalene	TIA	" Sulphides	DY
		~~~		
	yrrol	279	4 Sulphobromide	33
Amylp	hosphorous chloride	279 349	Arseniceiderite	33 123
Amylp Analci	hosphorous chloride te	279 349 135	Outpitotion:::::::::::::::::::::::::::::::::	33 123
Amylp Analci	hosphorous chloride	279 349 135	Arseniceiderite	33 123 69
Amylp Analci Anatas	hosphorous chloride te	279 349 135 45	Arseniosiderite	33 123 69 267
Amylp Analci Anatas Andalc	hosphorous chloride	279 349 135 45 132	Arseniosiderite	33 123 69 267 45
Amylp Anaici Anatas Andaic Andes	hosphorous chloride	279 349 135 45 132 137	Arseniosiderite	33 123 69 267 45 287
Amylp Analci Anatas Andas Andesi Andras	hosphorous chloride	279 349 135 45 132 137 139	Arseniosiderite	33 123 69 267 45 287 29
Amylp Anaici Anatas Andaic Andes Andre	hosphorous chloride	279 349 135 45 132 137 139 117	Arseniosiderite	33 123 69 267 45 287 29 125
Amylp Analci Anatas Andalc Andra Andra Andra	hosphorous chloride	279 349 135 45 132 137 139 117 255	Arseniosiderite Arsenopyrite Assarone Asmannite Asparagine Atacamite Atopite Augelite	33 123 69 267 45 287 29 125 117
Amylp Analci Anatas Andalc Andra Andra Andra	hosphorous chloride	279 349 135 45 132 137 139 117 255	Arseniosiderite Arsenopyrite Assarone Asmannite Asparagine Atacamite Atopite Augelite Auribromides	33 123 69 267 45 287 29 125 117 33
Amylp Analci Anatas Andas Andra Andra Andra Andra Andra	hosphorous chloride	279 349 135 45 132 137 139 117 255 235	Arseniosiderite Arsenopyrite Assarone Asmannite Asparagine Atacamite Atopite Augelite	33 123 69 267 45 287 29 125 117 33
Amylp Analci Anatas Andas Andra Andra Andra Andra Angeli Angeli	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181	Arseniosiderite Arsenopyrite Assarone Asmannite Asparagine Atacamite Atopite Augelite Auribromides	33 123 69 267 45 287 29 125 117 33 366
Amylp Analci Anatas Andas Andra Andra Andra Anetho Angeli Angeli Angles	hosphorous chloride	279 349 135 45 132 137 139 117 255 236 181 83	Arseniosiderite	33 123 69 287 45 287 29 125 117 33 365 180
Amylp Analei Anatas Andas Andra Andre Aneth Angeli Angles Angos	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 865 180 181
Amylp Analci Anatas Andas Andra Andra Angeli Angeli Angeli Angos Anhyd	hosphorous chloride	279 349 135 45 132 137 139 117 255 236 181 83 264 81	Arseniosiderite	33 123 69 287 45 287 29 125 117 33 865 180 181
Amylp Analci Anatas Andra Andra Andra Angeli Angeli Angeli Angos Anhyd	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 365 180 181 116
Amylp Analci Anatas Andra Andra Andra Aneth Angeli Angeli Angos Anhyd Anilin	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 865 180 181 116 152 140
Amylp Analci Anatas Andra Andra Andra Angeli Angeli Angos Anhyd Anilin	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 365 180 181 116 152 140 280
Amylp Analci Anatas Andra Andra Andra Angeli Angeli Angos Anhyd Anilin	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 365 180 181 116 152 140 280
Amylp Analci Anatas Andas Andre Aneth Angeli Angles Angos Anhyd Anilin	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182 252	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 365 180 181 116 152 140 280
Amylp Analci Anatas Andas Andra Andree Aneth Angeli Angles Angos Anhyd Anise, Anise	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182 252 261	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 365 180 181 116 152 140 280
Amylp Analci Anatas Andas Andre Andre Angeli Angeli Angeli Angos Anhyd Aniline " Anise, Anise, Aniso	hosphorous chloride	279 349 135 45 132 137 139 117 255 181 83 264 81 271 365 182 252 261 262	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 365 180 181 116 152 140 280
Amylp Analci Anatas Andas Andra Andra Angeli Angeli Angeli Angeli Angos Anhyd Anise, Anise Anise Anise Anise	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 871 365 182 259 261 252 313	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 365 180 181 116 152 140 280
Amylp Analci Anatas Andas Andra Andra Andra Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli Angeli	hosphorous chloride	279 349 135 45 132 137 117 255 235 181 83 264 81 271 365 252 252 313 130	Arseniosiderite	33 69 267 45 287 29 125 117 33 865 180 181 116 152 140 280 130
Amylp Analci Analci Andali Andre Andre Aneth Angeli Angeli Angeli Angeli Anje Anise, Anise, Anise Anise Anise Anise	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182 252 313 130 136	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 865 180 116 152 140 280 130
Amylp Analci Analci Andra Andra Andra Aneth Angeli Angeli Angle Anlyd Anllin " Anise, Anise, Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel Anisel	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182 252 261 252 313 136 177	Arseniosiderite	33 123 69 287 45 287 29 125 117 33 865 180 181 116 152 140 280 130
Amylp Analci Anatas Andra Andra Andra Aneth Angeli Angeli Angeli Angeli Angeli Aniso Aniso Aniso Aniso Aniso Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Aniso	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182 252 261 252 313 136 177 179	Arseniosiderite	33 123 69 287 45 287 29 125 117 33 865 180 181 116 280 130
Amylp Analci Anatas Andra Andra Andra Aneth Angeli Angeli Angeli Angeli Angeli Aniso Aniso Aniso Aniso Aniso Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Aniso	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 181 83 264 81 271 365 182 252 261 252 313 136 177 179	Arseniosiderite	33 123 69 267 46 287 29 125 117 33 865 180 116 152 280 130
Amylp Analci Anatas Andas Andra Andra Andra Angeli Angeli Angeli Angos Anisic " Anise, Anisic " Anisol Anisic " Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol An	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 281 83 264 81 271 365 252 281 252 313 130 136 177 179 266	Arseniosiderite	33 123 69 267 46 287 29 125 117 33 865 180 116 152 280 130
Amylp Analci Analci Andalci Andrea Andrea Anethi Angeli Angeli Angeli Angeli Angeli Anjeol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol An	hosphorous chloride	279 349 135 45 132 137 139 117 255 235 281 83 264 81 271 365 252 281 252 313 130 136 177 179 266	Arseniosiderite	33 123 69 267 46 287 29 125 117 33 865 180 152 140 280 130
Amylp Analci Analci Andalci Andrea Andrea Anethi Angeli Angeli Angeli Angeli Angeli Anjeol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol Anisol An	hosphorous chloride  te	279 349 135 45 132 137 139 117 255 181 83 264 81 82 251 252 261 252 261 271 179 266 7	Arseniosiderite	33 123 69 267 45 287 29 125 117 33 865 180 181 116 152 140 280 130

		AGE.	1	2	AGE
Amalgama		145	Ammonium.	Molybdates	. 100
				Nickel selenate	. 100
	·····		4	" sulphate	
	rone			Nitrate	
	Be		4	Oxalate	360
	lamine			Palladiochloride	
	hyianiline			Perchlorate	
	riphenoi			Phosphates	
	/ipneuoi			Platinbromide	
	Aluminum selenate			Platinchioride	
Ammonium.			"		
•			"	Platiniodide	
-	Arsenates		1	Platosochloride	
_	Bensoate			Platoxalate	
•	Bromide		•	Potassium chromate	
•	Cadmium selenate		*	" sulphates	
•	" sulphate	90	**	" tartrate	369
•	Chloride	21	*	Quadroxalate	360
-	Chromate	103	•	Racemate	363
•4	Chromiodate	104	*	Samarium sulphate	
•	Chromium selenate		4	Selenate	
•	u sulphate		**	Bilicofluoride	
•	Citrate			Sodium arsenate	
	Cobalt selenate		٠	" phosphate	
-					
_	sulphate		"	1 mc a man	303
	Copper chloride		"	Bui himmon	89
	" oxalate			" tartrate	
4	" selenate		"	Stannibromide	
*	" sulphate	91	*	Stannichloride	
*	Dichromate		-	Stannifluoride	
44	" with mercuric chlo-		"	Stannochioride	28
	ride	144	<b>  "</b>	Succinate	361
44	Didymium sulphate	96	"	Sulphate	
64	Dithionate			Sulphocyanide	144
44	Ferrocyanide with ammonium		"	Tartrantimonite	363
	chloride	143		Tartrate	
*	Ferroxalate			Tellurate	
44	Formate		•	Uranoxyfluoride	
e4	Gallium sulphate			Uranyl sulphate	
	Hydrogen carbonate		4	Vanadium vanadate	100
	" fluoride		۱	Zine bromide	
	HUOI JUG			" chloride	
4	III#I#A				
••	O_MISSO		"	BOIGHTSRO ************************************	
u	racemate		1 "	" sulphate	
44	selenate			etate	
	" sulphate			e 206,	
•	" tartrate	362		ols 192,	
46	Indium sulphate	96		hosphito	
4	Iodate	74	" Arsen	ite	350
**	Iodides	34	" Benso	ste	257
44	Iridichloride	28		)	
64	Iron selenate		" Bromi	de	318
64	" sulphates 91			Me	
	Lithium sulphate			oxide	
44	Magnesium chloride			de	
14	chromate		CEIOII	loxyacetate	
			Diemi		
44	buoghrage		וישפוע	hide	340
44	2010 II 200		" Ethyli	cetacetate	233
	901 buses				
4	Malate				
"	Manganese selenate			yrate	
44	" sulphate			erate	
4	Mercury chloride	27	" Merca	ptan	340

P	AGE.	PA	AGE.
Amyl, Monochloracetate	307	Antimony Bismuth alloys	151
66 Nitrate	281	" Bromide	89
4 Nitrite		Chlorides	
44 Oxalate		" Copper alloys	
≪ Oxide		" Hydroxide	
* Phenylpropionate		4 Iodide	
		" Lead alloys 149,	
Propargyl oxide			
4 Propionate		Organie compounds	
* Sebate		UX1466	
Silicate		" Oxychloride	
** Sulphophosphate	350	" Oxysulphide	64
* Thiocarbimide	846	" Potassium chloride	29
* Thiocyanate	345	Sulphides	59
4 Trisulphocarbonate	341	" Tartrates 363,	365
Walerate		" Telluride	
Amylamine		" Tin alloys	
Amylbenzene	175	Apatite	
Amyl camphor		Apiol	
Amyldecaldehyde	230	Apophylite	
Amyldimethylbensene		Aragonite	
Amylene		Arctolite	
" Chloride		Argentite	
" Dithiodichloride		Argyrodite	64
4 Glycol	223	Arkansite	45
" Oxide	222	Arsenic	7
4 Sulphide		" Bromide	82
* Thiodichloride		" Chloride	
" Trisulphocarbonate		" Fluoride	
Amyl eugenol		* Iodides	
Amyl glycide		Other combounds	
Amyl glyoxalin		VA1405 20	
Amyl monochlorhydrin		" Selenide	
Amylnapthalene		* Sulphides	
Amylpyrrol		* Sulphobromide	
Amylphosphorous chloride		Arseniosiderite	123
Analcite		Arsenopyrite	69
Anatase	45	Asarone	267
Andalusite	132	Asmannite	45
Andesite	137	Asparagine	287
Andradite		Atacamite	
Andrewsite		Atopite	
Anethol	988	Augelite	
Angelica lactone		Auribromides	
		Aurichlorides 28,	
Angelica, oil of			
Anglesite		Australene	
Angostura, oil of		Austrapyrolene	
Anhydrite		Autunite	
Aniline		Awaruite	
" Salts of	365	Axinite	
Anise, oil of	182	Asobenzene	280
Anisia alcohol	252	Asurite	130
" aldehyde			
Anisol	252	В,	
AnisolAnisyl chloride	252 313	В.	
Anisyl chloride	252 313 130		104
Anisol	252 313 130 136	Barcenise	125
Anisol	252 313 130 136 177	Barceniie	82
Anisol	252 313 130 136 177 179	Barten Barium	82 3
Anisol	252 313 130 136 177 179 266	Barite Barium Acetate	82 3 357
Anisol	252 313 130 136 177 179 266 267	Barte	82 3 857 138
Anisol	252 313 130 136 177 179 266 267 7	Barite Barium Acetate	82 3 357 138 859

		AGE,	l		L
Buty!	Caprylate		Cadmiun	n. Arsenide	
-	Carbonate	226	"	Barium bromide	
94	Chloride	294`	"	" chloride	27
•	Cyanate	280	66	Bismuth alloys	150
4	Cyanide		44	Bromate	
	Dibrom propionate		44	Bromide	
	Formate		46	Carbonate	
	Heptyl oxide		1	Chloride	
			64		
	Iodide		"	Dithionate	
	Malonate			Fluoride	
4	Mercaptan			Formate	
44	Monochloracetate	807	"	Hydroxide	70
4	Octyl oxide	198	**	Iodide	35
•	Oenanthate	215	46	Lead alloys	149
•	Oxalate	227	- "	Magnesium sulphate	92
•	Oxide	198	"	Nitrate	
	Propionate		"	Oxalate	
4	Sebate			Oxide	
44				Pistinchloride	
4	Silicate			Potassium chloride	
	Sulphide		1 "		
	Thiocarbimide			10d1de	
	Valerate			selenate	
Butyla	mine	270	"	" sulphate	
Butyl-	amyl	160	"	Selenate	98
Butyla	misol	254	"	Selenide	65
Butylt	onzen^	175	"	Strontium chloride	27
Butylo	phloral	309	"	Sulphate	81
	Hydrate	309	"	Sulphide	57
Butyle	ed		44	Telluride	
44	Bromide		4	Tin alloys	
44	Glycol		Casium.	***************************************	
4	Iodide			Aluminum selenate	
**	Monacetate		. "	." silicate	
44	Oxide		ш	" sulphate	
44	Trisulphocarbonate			Bromide	
Dankarla	henyl acetate			Chloride	
				Chromium sulphate	
	phosphorous chloride				
	hiophene		' " '	Cobalt selenate	
	hymol			Indium sulphate	
Butyri	e aldehyde			Iodide	
••	anhydride		1	Iron sulphate	
	-diehlorhydrin		1	Selenate	
	one			Bilicofluoride	
	one pinakone			Stannichloride	
	nitril			Sulphate	
Butyry	ylacetophenone	262	Caffeine.	w	290
Butyr	yl chloride	308	Cajepute	ne	183
			"	Hydrate	263
			Caleputo	l	263
	C.			·	
				, oil of 182, 184,	
Cabre	rite	122		ð	
	enite			Tite	
	mmonium bromide				
COMMINIE	" chloride				
Ca.4					
Cadmi	um		" '	Aluminum phosphate	
"	Acetate			#111Carob 190 ₉	
	Amalgam		"	sulphate	
"	Ammdniobromide			Antimonate	
	Ammoniochloride			Arsenates	
66	Ammonium selenate			Harium carbonate	
64	" sulphate		66	" sulphate	0

	PAGE.	P	AGE.
bleinm.	Benzoate 365	Camphor, oil from 180,	
"	Borates 108	Camphoric anhydride	
"			
	Borosilicates 140	Camphorogenol	
44	Bromate 73	Camphrene	
	Bromide 32	Camphryl chloride	304
44	Carbonate 127	Cane sugar	243
ш	Chloride 23	" with sodium iodide	288
**	Chlorophosphate 124	Caoutchene	
**	Chlorosilicate 141		
44	Chlorovanadate 124	Caoutchin	
44		" Hydrochlorate	
	Chromium silicate 139	Capraldehyde	218
44	Copper &cetate 358	Caprone	
44	" arsenate 123	Capronitril	
66	Dithionate 75	•	
44	Fluophosphate 124	Caproyl alcohol	
44		Capryl alcohol	
	Fluoride 17	Caraway, oil of	182
66	Formate 356	Carbamide	288
и	Glucinum fluophosphate 124	Carbon	
46	Hippurate		_
**	Hydroxide71	Drumae	
44		OHIO1146	
	Iron armenate 123	" Dioxide	43
64	" oxide 56	" Iodide	202
44	44 phosphate 115	" Oxychlorides	
66	" silicates 134, 139		
66	Magnesium borate 108	outpillage	
"		anthiontoinide	
	Car Donare 129	" Tetramercaptide	840
"	" PHICATON 134	Carbonyl. Chloride	292
44	Manganese carbonate 129	" Thioamyl chloride	
64	" phosphate 115		
**	" silicate 134	I moemyr cmoride	
44		Carbopetrocene	
"	Mercury antimonate 125	Cardol	267
	Nitrate 110	Carminite	122
46	Oxalate 360	Carphosiderite	
44	Oxide 41	Carrollite	
44	Phosphates 115, 116, 117	Carrollico	0%
66	Potassium chromate 104	Carvacrol	
44		Carvene	182
44	authure	Carvol	265
	Selenate 99	Carvinite	122
44	Silicates 132	Cascarilla, oil of 182,	
66	Silicofluoride 18	Cassiterite	
66	Silicophosphate 141		
**	Sodium borate 108	Castorite	
ш		Cedar, oil of	184
"	Caroonave 129	Cedrene	184
	9111CBV0 1 192	Celestite	
66	" sulphate 89	Cellulose	
u	Sulphate 81	Cerargyrite	
	Sulphide		
44	Thiosulphate	Cerium	
44		" Chloride	
	Tin silicate 139	" Dioxide	47
**	Titanate 141	"Fluocarbonates	145
44	Titanio-silicate 139	" Molybdate	
44	Tung tate 106	" Phosphate	
44		E Hophrate	
	Uranyl arsenate 122	4 Silicate	
44	" phosphate 116	" Sulphate	
**	Zine alloy 145	" Sulphide	58
allainite	115	Tungstate	
	um resin 267	Cerotene	
ampha-	6 183		
ampnen		Cervantite	
	Acetate 264	Cetene	
	ne 183	Cetyl. Acetate	209
amphin.		" Alcohol	196
	262, 263	" Butyrate	
•			

	AGE.		AGE
Cetyl. Chloride		Chloriodoform	
" Isovalerate		Chloriodomethane	
" Nitrate	281	Chloriodotoluene	338
Chabasite	187	Chlorisobutylene	300
Chalcomenite	98	Chlorisopropyl bensoate	813
Chalcophanite	72	Chloritoid	135
Chalcophyllite	128	Chlorkresol	312
Chalcopyrite	64	Chlormethylphenol	31:
Chalcopyrrhotite	64	Chlornaphthalene	304
Chalcosiderite	117	Chlornitrobensene	
Chalcostibite	68	Chlornitromethane	318
Chalk		Chlornitrotoluene	310
Chenevixite		Chlorobensylethylate	
Childrenite		Chiorobromai	33
Chinaldin		Chlorobromethyl acetate	837
Chinoline		Chlorobromhydrin	337
Chiolite		Chlorobromhydroglycide	
Chiviatite		Chlorobromiodethane	
Chloracetal		Chlerobromiodhydrin	
Chloracetic anhydride		Chlorobrommethane	
Chloracetone		Chlorobromnitrin	
Chloracetonitrii		Chlorobromoform	
Chloracetyl bromide		Chlorocarbonylphenylorthophosphoric chlo-	
" chloride		ride	
Chloracetyl chloral		Chlorodibromethane	
Chloral		Chlorodibromethylene	
		Chlorodibromhydrin	
TALLARCIA OF """"		Chlorodibromnitromethane	
Chloraldehyde	308	Chlorodracylic chloride	
Chloralide, derivative of		Chloroenanthic ether	
Chlorallyi. Alcohol		Chloroform	
100100		Chloronicene	
A 111000L ULMING		Chloropal	
Chloramyl chloride	297	Chloropropionyl chloride	
Chloramylene		Chlorotetrabromethane	
Chlorantinas		Chlorotoluidines	
Chloranilines		Chlorotribromethane	
Chlorapatite		Chlorovaleral	
		Chloroxalethylin	
Chlorasol		Chloroxalmethylin	
Chlorbensotrichloride		Chloroxalpropylin	
Chlorbutulone obleached-in	303	Chloroxethose	
Chlorbutylene chlorhydrin		Chlorphenol	
Chlorbutyronitril		Chlorpicoline	
Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Chlorater Management of the Ch			
Chlorehinolines		Chlorpieria	
Chlorerotyl alcohol		Chlorpropylene	
Chlored Man		Chloretyrolene	
Chlordiallyl			
Chlordiamylene chloride		Chloredone	
Chlordinitrobenzene	815	Chlorxylene	
Chlorethylacetylenetetra arbonic ether	312	Cholosterius	
Chlorethylbenzene	303	Cholesterine	
Chlorethylene dichloride		Christophite	
dithiodichloride		Chrome alums	
Chlorethyl oxide		Chromite	
Chlorethylphenol		Chromium	
Chlorhexylene		Aluminum Mioy	
Chlorine		Ammoniochioride	
" Trioxide	58	with the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	
Chloriod ethyl acetate	838	Ammonium seienste	
Chloriodethylene	338	suipasse	
Chloriodobensene	338	4 Cæsium sulphate	95

Chromiam Calcium silicate. 138  " Chloridaes 24"  " Chromate. 52"  " Magneseum borate. 108  " Manganee oxide 50"  " Oxyhyhoride. 301  " Oxdators 321  " Oxydahoride. 301  " Potassium selenate. 110  " Prosphide. 301  " Prosphide. 301  " Prosphide. 301  " Prophaghate. 110  " Prophaghate. 110  " Selenate. 110  " Selenate. 110  " Selenate. 110  " Selenate. 110  " Selenate. 110  " Sulphate. 114  " Sulphate. 114  " Sulphate. 114  " Sulphate. 114  " Sulphate. 115  " Sulphate. 116  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Sulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Thiosulphate. 110  " Sulphate. 110  " Sulphate. 110  " Thiosulphate. 110  " Sulphate. 110  " T	72	AGE,		AGI
Chromate		139	Cobalt. Oxides	. 5
Magnesim borate	" Chlorides	24	"Oxyhydroxide	. 7
## Manganese oxide   56	" Chromate	52	rnospinae	. 6
	" Magnesium borate	108	" Platinbromide	. 3
Ozides	" Manganese oxide	56	" Platiniodide	. 3
Oxyohloride	" Oxalates	361	" Potassium selenate	. 10
# Prosphide   30   # Pryrophosphate   11   # Prosphide   30   # Prophosphate   11   # Protection of the prosphide   30   # Prophosphate   11   # Protection of the prosphide   30   # Prophosphate   31   # Prophosphate   31   # Prophosphate   32   # Prophosphate   33   # Prophosphate   34   # Prophosphate   34   # Prophosphate   35   # Prophosphate   35   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   36   # Prophosphate   3	4 Oxides	52	44 44 aulphate	. 9
" Phosphide				
# Potassium chromate. 103 # selenate. 101 # suphate. 94 # " suphate. 94 # " suphate. 94 # " suphate. 94 # " suphate. 95 # Balphate. 95 # Balphate. 96 # Bulphide. 96 # Bulphide. 96 # Thallium selenate. 101 # " suphate 95 # Bulphide. 96 # Thallium selenate. 101 # " suphate 95 # Bulphide. 96 # Thallium selenate. 101 # " suphate 95 # " suphate 95 # " suphate 95 # " suphate 95 # " Thallium selenate. 101 # " suphate 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 95 # " Thoroxide 96 # " Thoroxide 96 # " Thoroxide			" Rubidium selenate	10
" selenate				
" sulphocyanide				
## sulphocyanide				
## Rubidium selenate.   101				_
## Sulphate				
# Sulphate				
## Sulphide	Buibuses		oarburaes	
## Thallium selenate	Daibiime		Transfer polonsko	
## ## ## ## ## ## ## ## ## ## ## ## ##	- outhurde		sulphate	
# Zinc oxide	THERITAIN BOLODERO		THIOPHIPHO	
Chrompleotite	earbrane			
Chromyl dichloride	ZING VAIGE			
Chrysocolia				
Chrysocolla				
Cloutene				
Clinacrol   267	Chrysocolla	182	Coerulignol	20
Clinacrol   267	. Cicutene	183	Colemanite	10
Cinchonine chlorhydrate	Cinacrol	267		
Cinnabar         57         Colophonone         26           Cinnamene         176         Coloradoite         6           Cinnamic acetate         261         Columbite         12           " alochol         252         Columbite         12           " aldehyde         261         " Aluminum alloy         14           Cinnamyl chloride         313         " Hydride         6           Citraconic anhydride         237         Columboxyfluorides         1           Citraconyl chloride         312         Coniceine         27           Citrene         181         Coniceine         27           Citron, oil of         181         Coniceine         27           Citron, oil of         181         Coniceine         27           Citron, oil of         181         " Bromide         32           Citron, oil of         181         " Diacetate         32           Citron, oil of         181         " Diacetate         32           Citron, oil of         181         " Diacetate         32           Citrus, oils from         181         " Diacetate         32           Citrus, oils from         181         " Copai, oil of         184	Cinaëbene	183	44 Carbonic ethers	29
Cinnamene         176         Coloradoite         6           Cinnamic acetate         261         Columbite         12           "alochol         262         Columbite         12           "aldehyde         261         "Aluminum alloy         14           Cinnamyl chloride         313         "Hydride         6           Citraconic anhydride         237         Columboxyfluorides         1           Citraconic anhydride         312         Conicelee         22           Citraconic anhydride         312         Conicelee         22           Citraconic anhydride         312         Conicelee         22           Citraconic anhydride         312         Columboxyfluorides         1           Citraconic anhydride         312         Columboxyfluorides         1           Citraconic anhydride         312         Conicelee         22           Citron coli of.         181         Conicelee         22           Citron coli of.         181         Conicelee         22           Citron coli of.         181         "Bromide         33           Citron coli of.         181         "Bromide         32           Citron coli of.         181         "Co	Cinchonine chlorhydrate	866	Colophene	18
Cinnamene         176         Coloradoite         6           Cinnamic acetate         261         Columbite         12           " alcohol         262         Columbite         12           " aldehyde         261         " Aluminum alloy         14           Cinnamyl chloride         313         " Hydride         6           Citraconic anhydride         237         Columboxyfluorides         1           Citraconyl chloride         312         Coniceine         27           Citrene         181         Coniceine         27           Citron, oil of         181         Coniceine         27           Citronellol         262         Conylene         16           Citron terpene         181         " Bromide         32           Citrus, oils from         181         " Bromide         32           Citrus, oils from         181         " Diacetate         24           Clarite         61         Copalya, oil of         184, 18           Clarite         65         Copal, oil of         184, 18           Claves, oil of         184         Copialitie         27           Cloves, oil of         184         Copialitie         27	Cinnabar	57	Colophonone	261
Columbite   12	Cinnamene	176		
" alcohol       252       Columbium         " aldehyde       261       " Aluminum alloy       14         Cinnamyl chloride       231       " Hydride       6         Citraconic anhydride       237       Columboxyfluorides       1         Citraconyl chloride       312       Conicelne       27         Citronelo       181       Conicelne       27         Citron, oil of       181       Conicelne       27         Citronellol       262       Conjelne       27         Citron, oil of       181       Conjelne       27         Citron, oil of       181       " Bromide       39         Citron, oil of       181       " Discelate       29         Citron, oil of       181       " Discelate       29         Citron, oil of       181       " Discelate       29         Citron, oil of       181       " Discelate       29         Citron, oil of       181       " Copal, oil of       184         Ciausthalite       65       Copal, oil of       184         Cincelatie       122       Copellidine       27         Cioves, oil of       184       Copier       18         Coper			Columbite	12
"aldehyde				
Cinnamyl chloride         313         " Gydde         6           Citraconic anhydride         237         Columboxyfluorides         1           Citraconyl chloride         312         Coniceine         27           Citraconyl chloride         312         Coniceine         27           Citrone         181         Coniceine         27           Citron, cil of         181         Coniceine         27           Citronello         292         Conylene         16           Citros, cil of         181         " Diacetate         24           Citros, cil of         181         " Diacetate         24           Citros, cil of         181         " Copalya, cil of         184, 18           Ciansthalite         65         Copal, cil of         18           Cincea, cil of         184         18         Copalidine         27           Cloves, cil of         184         18         Copalidine         27           Cloves, cil of         184         18         Copalidine         27           Cloves, cil of         184         18         Copalidine         29           "Ammoniochloridee         38         " Aluminum alloys         14				
Citrolite				
Citraconic anhydride         237         Columboxyfluorides         1           Citraconyl chloride         312         Coniceine         27           Citrone         181         Conichalcite         12           Citron, oli of         181         Conichalcite         22           Citron, oli of         181         Conichalcite         22           Citron terpene         181         " Bromide         33           Citron, oli of from         181         " Diacetate         24           Clarite         61         Coplay, oli of         184, 18           Clarite         65         Copal, oli of         184, 18           Clinoclasite         122         Coplay, oli of         184           Cloves, oli of         184         Coplay, oli of         18           Coplay         12         Copellidine         27           Coplay         1         2         Copellidine         27           Coplay         1         2         Copellidine         27           Coplay         1         2         Acetate         35           "Acetate         35         "Acetate         35           "Ammoniobromide         38         "Aluminum al				
Citraconyl chloride				
Citrene         181         Coniohalcite         12           Citron, oil of         181         Conline         27           Citronellol         263         Conylene         12           Citron terpene         181         "Bromide         38           Citrus, oils from         181         "Diacetate         24           Clarite         61         Copal, oil of         184, 18           Clausthalite         65         Copal, oil of         184           Clinoclasite         122         Copellidine         27           Cloves, oil of         184         Coplant         20           Cobalt         12         Coplant         20           "Ammoniochlorides         38         "Aluminum alloys         14           "Ammoniobromide         38         "Ammoniochlorides         3           "Ammoniorum selenate         100         "Ammoniochlorides         3           "Arsenates         122         "Ammonioum chloride         9           "Arsenates         122         "Ammonioum chloride         9           "Arsenates         100         "Ammonioum chloride         36           "Chloride         24         "ammonioum chloride         36				
Citron, oil of				
Citronellol         262         Conylene         16           Citrus, oils from         181         "Bromide         32           Clarite         61         Copal, oil of         184, 18           Clausthalite         65         Copal, oil of         184, 18           Cloves, oil of         184         Copal, oil of         18           Cobalt         184         Copialidine         27           Cobalt         12         Copialidine         27           Cobalt         184         Copialidine         27           Copellidine         27         Copellidine         27           Copal, oil of         18         Copialidine         27           Copal, oil of         18         Copal, oil of         18           Copal, oil of         18         Copal, oil of         18           Copal, oil of         27         Copellidine         27         27           Copal, oil of         20         20         Copellidine         27         27         20           "Actate         358         "Actate         35         "Actate         35         "Actate         35         "Actate         35         "Actate         35         "Actate				
Citron terpene         181         " Diacetate         32           Citrus, oils from         181         " Diacetate         24           Clarite         61         Copaly, oil of         184, 18           Cincolasite         122         Copal, oil of         184, 18           Cincolasite         122         Copal, oil of         184           Copal, oil of         184         Copal, oil of         184           Copal, oil of         184         Copal, oil of         184           Copal, oil of         184         Copal, oil of         184           Copal, oil of         184         Copal, oil of         184           Copal, oil of         184         Copal, oil of         184           Copal, oil of         184         Copal, oil of         184           Copal, oil of         184         Copal, oil of         184         Copal, oil of         184         Copal, oil of         184         Copal, oil of         184         Copal, oil of         184         Copal, oil of         184         Copal, oil of         184         Acetate         36         Acetate         35         44         Acetate         35         44         Acetate         36         44         Acetate				
Citrus, oils from         181         " Diacetate         24           Clarite         61         Copaiva, oil of         184, 18           Ciansthalite         65         Copal, oil of         184, 18           Cincolasite         122         Copellidine         27           Cloves, oil of         12         Copiapite         9           Cobalt         12         Copellidine         36           "Acetate         358         "Acetate         35           "Ammoniochlorides         38         "Aluminum alloys         14           "Ammoniobromide         38         "Aluminum alloys         14           "Ammoniochlorides         38         "Ammoniochlorides         3           "Ammoniobromide         38         "Ammoniochlorides         3           "Ammoniochlorides         3         "Ammoniochlorides         3           "Ammoniochlorides         3         "Ammoniochlorides         3           "Ammoniochlorides         3         "Ammoniochlorides         3           "Arsenides         68         "Ammoniochlorides         3           "Arsenides         68         "Ammoniochlorides         3           "Copiapite         9         "Ammoniochlorid				
Clarits			DI Omideaminiminiminiminiminiminiminiminiminimin	
Clausthalite			D18001810	
Cilores   192   Copellidine   27				
Cloves, oil of			Copal, 011 01	102
Cobalt         12         Copper         1           "Acetate         358         "Acetate         358           "Ammonichlorides         38         "Aluminum alloys         15           "Ammoniomororide         38         "Arsenate         12           "Ammoniomium selenate         100         "Ammoniochlorides         3           "Arsenates         91         "Ammoniochlorides         3           "Arsenides         68         "Ammonioculphate         9           "Arsenides         68         "Ammoniochloride         2           "Cssium selenate         100         "Ammonioculphate         9           "Chloride         24         "and oralize         36           "Chloride         24         "and oralize         36           "Dithionate         75         "and oralize         9           "Formate         356         Antimonate         12           "Hypophosphite         113         Antimony alloys         12           "Nitrate         112         Arsenides         66				
"Acetate         358           "Ammoniochlorides         38           "Ammoniobromide         38           "Ammoniobromide         38           "Ammoniobromide         38           "Ammoniochlorides         14           "Ammoniochlorides         3           "Ammoniochlorides         3           "Ammoniochlorides         3           "Arsenides         122           "Ammonioculphate         9           "Ammonioculphate         9           "Ammonioculphate         9           "Choride         24           "Chloride         24           "Dithionate         75           "Formate         356           "Hypophosphite         113           "Idade         74           "Arsenides         122, 12           "Nitrate         112           "Arsenides         6			Copiapise	9
"Ammoniochlorides       38         "Ammoniobromide       38         "Ammoniobromide       38         "Ammoniomale       100         "Ammoniomale       91         "Arsenates       91         "Arsenides       68         "Cassium selenate       100         "Chloride       24         "Dithionate       75         "Formate       366         "Hypophosphite       113         "Idate       74         "Nitrate       112         "Aluminum alloys       14         "arsenate       12         Ammoniosulphate       9         "Ammoniosulphate				
"Ammoniobromide.       38       " arsenate       12         "Ammonium selenate.       100       " Ammoniochlorides				
"Ammonitorordium selenate	211110110011011001100111111111111111111		AIGHIGH MIVJOHHHHHHHHHHHHHHHHHHH	
" " sulphate   91	- Vmmonioniomine		#190TPAQ ##***********************************	
"Arsenates       122       "Ammoniosulphate       9         "Arsenides       68       "Ammonium chloride       2         "Cesium selenate       100       "Casium selenate       36         "Chloride       24       "selenate       10         "Dithionate       75       "sulphate       9         "Formate       366       "Antimonate       12         "Hypophosphite       113       "Antimony alloys       15         "Iodate       74       "Arsenates       122, 12         "Nitrate       112       "Arsenides       66	Ammonium soloussollillillillillillillillillillillillilli		AMMONIOCHIO! MOSamoni	
"Arsenides       68       "Ammonium chloride       28         "Cassing selenate       100       "Oxalate       36         "Chloride       24       "selenate       10         "Dithionate       75       "sulphate       9         "Formate       356       "Antimonate       12         "Hypophosphite       113       "Antimony alloys       12         "Idate       74       "Arsenates       122, 12         "Nitrate       112       "Arsenides       6	ou punto		AMMUNIOMISTA	115
"Cessium selenate	V7 EGITOSAB ***********************************		" Ammoniosulphate	97
"Chloride       24       " selenate       10         "Dithionate       75       " sulphate       9         "Formate       356       " Antimonate       12         "Hypophosphite       113       " Antimony alloys       12         "Idate       74       " Arsenates       122, 12         "Nitrate       112       " Arsenides       6	AISCHIGO		46 Ammonium chloride	27
"Dithionate       75       " sulphate       9         "Formate       356       " Antimonate       12         "Hypophosphite       113       " Antimonate       12         "Iodate       74       " Arsenates       122, 12         "Nitrate       112       " Arsenides       6	Contra bottleromministici		" oxalste	361
"Formate       356       "Antimonse       12         "Hypophosphite       113       "Antimony alloys       15         "Iodate       74       "Arsenates       122, 12         "Nitrate       112       "Arsenides       6	O2101140		" selenate	100
"Hypophosphite       113       "Antimony alloys       15         "Iodate       74       "Arsenates       122, 12         "Nitrate       112       "Arsenides       6	Diriionase		ani humaa	
" Iodate	LOLINA			
" Iodate	" Hypophosphite	113	Autimony anoya	
** Nitrate				
			44 Arsenides	67

Copper.	Bismuth alloys	154	Covellite	
44	arsenate	123	Creatine hydrate	
44	Bromate	73	Crocidolite	
44	Bromide		Crockesite	
44	44 arsenate		Crotonaldehyde	
44	Camphorate, hydrocarbon from	187	Crotonitril	
44	Carbonates		Crotonylene dichloride	
64	Chlorides	24	" glycol	
44	Chloride, with mercuric sulphide		Cryolite	
46	Columboxyfluoride	19	Cryptolite	11
44	Formate		Cryptopine	
44	Gold alloys		Cubanite	
44	Hydroxide		Cubebs, oil of	
44	Iodide		Cumene	
44	Iron arsenate		Cumidine	
44	" phosphate		Cuminol	
44	Lead alloys		Cummin, oil of	
44	4 arsenate		Cumonitrii	
44	44 chromate		Cumyl chloride	
44	" sulphate		Cuprammonium chloride	
44	" vanadate		" sulphate	9
44	Magnesium sulphate	92	Cuprite	
46	Mercury iodide		Cyamelide	
u	Nitrates		Cyanaldehyde	
44	Oxides 54		Cyanoconicine	
	Oxychloride		Cyanogen	
44	Phosphates		" Chloride	
•	Phosphides		104146	
	Platinehloride		Cyanoil	
44	Potassium chloride		Cymene	
44	4 oxalate		Cymhydrene	
44	44 sulphate		Cymyl alcohol	
66	Rubidium chloride		Cynene	
	Seienste		Cyneol	
	Selenide		Cystic oxide	
	Selenite		-,	
	Silicates			
	Silicofluoride		D.	
44	Silver alloys:	155		
44	" iodide	87	Daleminzite	57
	Sodium sulphate	89	Danalite	141
	Strontium formate	356	Danburite	
	Sulphates 85,		Darcet's alloy	
	Sulphides 60,		Datolite	
	Sulphite		Daubreelite	
	Tin alloys 158, 1		Daubreite	
	Titanofluoride	- 1	Dawsonite	
"	Uranyl arsenate		Decane	
	Zine alloys		Decyl. Alcohols	
	bi e		" Chloride	
	er, oil of 202,		" Iodide	
	ber, oil oi 202, :		Dekanaphtene	
	lite		Delafossite	
	IM		Demantold	
	D		Descloizite	
			Dextrin	944
	w	42 I	DOXWID	
		135	Diacetin	240
		135		24

	AGE.		LGE.
Diacetone alcohol	245	Dichlorbromethylene	
Discetonephosphorose-chloride	848	Dichlordibromethane	836
Discetylchloral hydrate	309	Dichlordibrom-ethyl acetate	337
Diallyl		Dichlordinitrobensene	815
" Diehlorhydrin		Dichlordinitromethane	
" Dihydriodate		Dichlorethoxyethylene	
" Hydriodate		Dichlorethoxylacetonitrii	
" Monohydrate	241	Dichlorethyl. Acetate	
Diallylaniline	274	4 Alcohol	
Diallylearbinol	241	Dictioracetare	
Diallylcarbyl. Acetate	242	L Al IMBACTION OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE OFFICE O	300
" Ethyl oxide		Monochloracetate Oxide	904
Mentili orige	252		
Diallylene	101	" Propionate	944
Diallylethylcarbinol	241	Dichlorethylamine	914
Diallylisopropylearbinol	2/11 2/11	Dichlorethylene	000
Diallyimethylcarbinol	949	"Thiodichloride	244
Diallylmethylcarbyl acetate	941	Dichlorhexyl alcohol	
Diallylpropylcarbinol	994	Dichlorhydrin	911
Diamylamine	970	Dichloriodhydrin	338
Diamylene 165,	166	Dichlorisobutoxylacetonitrii	
4 Oxide	2./2	Dichlormethoxylacetonitril	
"Thiocyanates		Dichlormethyl acetate	806
Diamylin	289	4 oxide	305
Diamyl ketone	221	Dichlormethylsulphuric chloride	
Diamyi valerai	224	Dichlormononitrin	
Disphorite	62	Dichlornitrobenzene	818
Diaspore		Dichlornitrophenol	
Diasobenzene nitrate	365	Dichlornitrotoluene	316
Dibensyl	178	Dichlorpropionitrii	314
Dibenzylamine	274	Dichlorpropoxylacetonitril	315
Dibensyltoluene	177	Dichlorpropylene	300
Dibromacetone	826	Dichlortoluene	303
Dibromallyl oxide		Dichlor-vinyl methyl oxide	309
Dibrombenzene	324	Dichlorzylenes	304
Dibromchlorpropylene	337	Dicinnamene	
Dibromcymene	325	Dickinsonite	118
Dibromdiallyl	323	Didecene	
Dibrom-ethyl acetate	326	Didymium	
Dibromethylene		44 Acetate	
Dibromhexchlorpropane		" Ammonium selenate	101
Dibromhexyl alcohol	825	" sulphate	
Dibromhydrln	827	"Borates	108
Dibromiodethane		Bromide	
Dibrompropyl alcohol		CBIOULBO	
Dibromtetrachlorethane		OHIOLIGO STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES	24
Dibromthiophene	347	Estra is a la la la la la la la la la la la la l	208
Dibromtoluene	324	Formate	901
Dibromxylene	824	" ohloride	
Dibutyrin		44 Metaphosphate	
Dicamphene hydride		Molybdate	105
Dichloracetal		Molybuste	
Dichloracetone		16 Nitroxalate	
Dichloracetophenone		66 Oxides	
		"Oxychloride	
Dichloramyl nitrite	801	"Periodate	
Dichlorbenzo-trichloride		" Phosphates	
Dichlorbensyl chloride		" Platinchloride	
Dichlorbensylene dichloride		Potassium selenate	
Dichlorbensylene dichlorade		" Propionate	
DICHIOIDI UHITAMBUT	550		

	AGE. 1	•	AGE.
Didymium. Selenate		Dimethyl acetal	
a Bulphate		Dimethylacetamide	
"Tungstate		Dimethylaniline	
" Vanadates		Dimethylanisidine	
Diethoxyl ether	245	Dimethylarsine oxide	350
Diethyl acetamide	257	Dimethylbutylene glycol	
Diethyl acetone	221	Dimethylbutylmethane	159
Diethylamine	260	Dimethylcopellidine	277
" Aurochloride	365	Dimethyldiethylmethane	150
Diethyl amyl borate	348	Dimethyl diethyl silicate	352
Diethylanfline		Dimethylethylbenzene	
Diethylaniline asylln		Dimethylethylcarbinol	
Diethylbensene		Dimethylethylcarbinolamine	
Disthylbrommaleate		Dimethylethylcarbyl chloride	
Diethyl carbamide		4 iodide	
Diethylcarbinol		micrice	
Diethylearbyl acetate		Dimethyl ethyl phosphate	
" chloride		Dimethylethylene glycol	
100100 ********************************		Dimethylhydrazin	278
Diethyl diamyl silicate		Dimethylisopropylearbinol	
Diethyl ethyl oxide		Dimethylisopropylcarbyl chloride	
dioxide		" iodide Dimethylisopropylethylene	
Diethylformamide		Dimethyl ketone	
Diethylglycollic ether		Dimethylmesidine	
Diethylin		Dimethylmethylene bromide	
Diethyl ketone		" chloride	
Diethylmonochlorbensene		Dimethylnaphthalene	
Diethylmonochlorhydrin		Dimethyloxamide	
Diethyloxamide		Dimethylphenylphosphin	
Diethylphenylphosphin		Dimethylpiperidine	
Diethylpropylcarbinol		Dimethylpropylbensene	
Diethylthiophene		Dimethylquinoline	
Diethyltoluidine		Dimethylresorein	
Diethyl valeral		Dimethyltoluidine	
Difellandrene		Dimethyl valeral	224
Diffuobensene	339	Dimethylxylidine	. 273
Diformin	239	Dimorphite	. 59
Diheptylene sulphoxide	344	Dinitrobenzene	
Dihexyl ketone		Dinitrobutane	
Dihexylene		Dinitrocymene	
Dihydrite		Dinitroethane	
Dihydrofurfurane		Dinitrohexane	
Dihydrostilbasol		Dinitropropane	
Diiodhydrin		Dinitrotoluene	
Diisoamyl		Dioctyl	
Disobutyl		Dioctylene	
Disobutylene		Dioptase	
Dilsobutyl ketone		Dioxyisoamylamine	
Disobutyi sulphone	,	Dipentenyibenzene	
Diisobutyryi dicyanide		Diphenois	
Disopropyl		Diphenyl	
Disopropylamine		Diphenylamine	
Disopropylaniline		Diphenylarsine chloride	
Diisopropylearbinol		Diphenylcarbyl acetate	260
Disopropylethylene		46 ethyl uxide	
Diisopropyi ketone		Diphenylmethylphosphin	
Dill, oil of		Diphenylphosphin	
Dimercurammonium chloride		Diphenyl phosphochloride	
Dimercurosammonium "	38	Diphenyiphosphorous chloride	349
Dimethoxyldiethyl acetone	245	Diphenylpropene	177

2	AGE.	PA PA	GE.
Dipicoline	277	Eosphorite	114
Dipiperidyl		Epiacetin	
Dipropargyl	168	Epiboulangerite	
" Bromide		Epibromhydrin	
Dipropylamine		Epichlorhydrin	
Dipropylaniline		Epidibromhydrin	
Dipropylcarbinol		Epidiehlorhydrin	
Dipropylcarbyl acetate		" Derivative of	
" iodide		Epilodhydrin	
Dipropyl ketone		Erbium, Columbate	
Dipyridyl	277	" Oxide	
Disulphamylene hydrate	344	66 Selenate	99
" oxide	344	44 Sulphate	87
Disulphhydrin	344	Erechthidis, oil of	189
Disulphuryl chloride		Ericinol	
Diterebene		Erigeron, oil of	100
Diterebenthyl			
		Erioite	~~
Diterebenthylene		Erythrene hexbromide	
Dithioglycol, derivative of		Erythrite 122, 1	
Ditolyl		Erythrol	
Ditolylethane	176	Ether 1	
Divalerin	240	Etherol	166
Dixylylene	178	Ethidene ethers 223, 224, 5	225
Dixylylethane	176	Ethoxyacetonitril	289
Docosane		Ethoxybromamylene	
Dodecane		Ethstannethyl compounds	
Dodecyl alcohol		Ethyl. Acetacetate	000
CHIOFIGO		4 Acetate	
Dodecylene		Acetocitiste	
Dodecylidene		" Acetoglutarate	
Dodekanaphtene	186	" Acetoglycollate 2	
Dolomite	129	" Acetolactate 2	231
Domeykite	67	44 Acetomalonate	229
Dotriacontane		" Acetopyruvate	233
Dreelite	89	" Acetosuccinate	220
Drybalanope camphora, oil of		" Acetylcyanacetate	
Dufrenite		44 Acetyltetramethylenecarboxylate 2	
Dufrenoysite		" Acetyltrimethylenecarboxylate	
Dulcite		4 Aconitate	
DumortierIte		ACI y lace 2	
Durangite		Author	
Dyscrasite	68	" Alcohol	
		" Allylacetacetate 2	242
		" Allylacetate 2	249
e.		" Allylmalonate 9	243
		" Allyloctylate 2	
Ehlite	117	" Aliyl oxide 2	
Eicosane		" Amidoacetacetate	
Eikosylene		" Amidopropiopropionate 2	
"Chloride			
		Amymydrozaiave 2	
Ekdemite		Amyndenesceusceuste 2	
Elder, oil of			
Elemi, oil of		" " sulphide 3	
Eliasite	72	" Amylthioglycollate 3	144
Embolite	87	" Angelate 2	234
Emerald	138	4 Arsenate 3	350
Emplectite		" Arsenite 3	
Enargite		Bensoate 2	
Endecylene		" Derivative of 3	
Endekanaphtene		4 Bensylacetacetate 2	
Endlichite		Don's lacetace 2	
		Demay inceson decinate	
Enstatite	IRI	Bensylchlormalonate 3	113

	Z.	AUB.		Z.	AGE.
Ethyl.	Bensylidenemalonate	259		Diamyloxalate	231
u	Benzylmalonate	259	"	Dibensylhydroxamate	
44	Bensylmethylmalonate	259	. "	Dibromacetacetate	327
44	Borate	347	- 44	Dibromethylacetacetate	327
44	Bromacetaeetate		1 66	Dibrompropionate	326
66	Bromacetate	326	"	Dibrompropiopropionate	827
44	Bromacetopropionate		64	Dicarboxylgiutaconate	247
**	Brombutyrate		u	Dichloracetacetate	
**	Bromethylacetacetate		66	Dichloracetate	
44	Bromethylmethylacetate		44	Dichlorbenzoate	
"	Bromide		"	Dichlorethylacetacetate	
44	Bromisobutyrate		"	Dichlormethylacetacetate	
"	Brompropionate		"	Dichlorpropionate	
66	Brompropiopropionate		44	Diethylacetate	
44	Brompyromucate			Diethylchloracetacetate	
44	Bromvalerate		44		
44	Butenyltricarboxylate		44	Diethyldichloracetacetate	
44				Diethylglycocollate	
"	Butylmalonate			Diethylglyoxylate	
"	Butyl oxide		46	Diethylmalonate	
	Butylsuccinate		66	Diethyloxyacetate	
	Butylthioxycarbonate			Diheptylacetacetate	
64	Butylxanthate		"	Diisobutylacetacetate	
14	Butyrate		"	Dimethylacetacetate	
44	Butyroglycollate		46	Dimethylacetosuccinate	
"	Butyrolactate			Dimethylacetylenetetracarboxylate	247
46	Camphocarbonate	265	"	Dimethylethenyltricarboxylate	247
**	Camphorate	264	44	Dimethylmalonate	228
66	Camphresate	265	u	Dimethylsuccinate	229
66	Caproste	214	46	Dioctylacetacetate	233
66	Caprylate	215	44	Dioctylmalonate	220
64	Capryl oxide		u	Dioxysulphocarbonate	
44	Carbacetacetate		44	Dioxythiocarbonate	
44	Carbamate	288	66	Dipropylacetacetate	
64	Carbonates 225,	226	44	Disulphide	
44	Chloracetacetate	811	"	Dithioxycarbonate	
44	Chloracetate	806	66	Elaidate	
64	Chloracetopropionate		44	Ethenyltricarboxylate	
44	Chlorbutyrate	807	66	Ethidenemalonate	
44	Chlorerotonate		14	Ethoxylethylacetacetate	
44	Chloride		44	Ethoxylmethylacetacetate	
**	Chlorisobutylmalonate		44	Ethylacetacetate	
44	Chlorocarbonate		**	Ethylacetosuccinate	
44	Chloroenanthate		44	Ethylacetylcyanacetate	
**	Chlorolactate		"	Ethylamylhydroxalate	
66	Chloromaleate.		66	Ethylbenzhydroxamate	
	Chloromalonate		44	Ethylchloromalonate	
64	Chioropropionate		**	Ethylerotonate	
44	Chlorosulphonate				
44	Chlorperthiocarbonate		**	Ethylglycollate Ethylideneacetacetate	
44	Cinnamate		46		
44			44	Ethyllactate	
44	Citraconate		66	Ethylmalonate	
"	Citrates		44	Ethylmethylacetate	
"	Crotonate		44	Ethyloxybenzoate	
	Cyanacetate		46	Ethyloxybutyrate	
"	Cyanate			Ethylpropiopropionate	
44	Cyanformate			Ethylsalicylate	
**	Cyanide		λ	Ethylsuccinate	
**	Diacetylacetate		46	Ethylsulphonate	
46	Diallylacetacetate		"	Ethylthioglycollate	
44	Diallylmalonate		66	Ethylxanthate	
44	Diallyloxyacetate		44	Formate	
46	Diamvi borate	348	66	Fumarate	236

		AVE.		P.	LGE
Ethyl.	Glycerate	240	Ethyl.	. Myristate	210
44	Glycocholate	290	"	Nitrate	
44	Glycollate	230	44	Nitrite	281
66	Reptylacetacetate		"	Nitroacetate	285
44	Heptyl oxalate		- 44	Nitrocaprylate	
46	" oxide		"	Nitroglycollate	
44	Heptylsuccinate			Nitrolactate	
44	Hexyl oxide			Nitromalate	
66			"		
	Hippurate			Nitromalonate	
44	Hypophosphate		1	Nitrotartronate	
"	Iodide			Octylacetacetate	
44	Iodpropionate	335	44	Octyl oxide	198
44	Isaconitate	237	"	Oenanthate	218
64	Isoallylenetetracarboxylate	247	- "	Oleste	234
44	Isoamyl oxide	197	"	Orthocarbonate	226
44	Isobutenyltricarboxylate		14	Orthoformate	24
46	Isobutylacetacetate		4	Oxalate	
44	Isobutylmalonate		u	Oxide	
44	Isobutyl oxide			Oxyisobutyrate	
44			66		
44	Isobutyrate		44	Oxyphenylacetate	
"	Isobutyroglycollate		44	Oxyphenylarrylate	
	Isocaproate		1	Oxyphenylpropionate	
**	Isononylate		"	Paracamphorate	
**	Isočenanthate	215	44	Parasantonate	
64	Isopropylacetacetate	233	- 4	Pelargonate	
**	Isopropylmalonate	229	44	Phenylacetacetate	250
44	Isopropyl oxide		- 44	" Derivative of	
44	Isovalerate		"	Phenylacetate	257
64	Itaconate		14	Phenyl carbonate	
44	Lactate		- "	Phenylglyoxylate	980
u	Lactosuccinate		46	Phenylpropionate	
**	Laevulinate		**		
44				Phenylthioglycollate	
44	Laurate			Phosphate	348
	Maleate		1	Phosphite	
44	Malonate		"	Phthalate	
44	Mercaptan		**	Propargyl oxide	
44	Mesaconate		44	Propionate	
44	Metachlorbenzoate	313	"	Propionylglycollate	
**	Metasilicate	352	**	Propionylpropionate	233
64	Methenyltricarboxylate	247	"	Propyl carbonate	
44	Methoxyldia'lylacetate		и	" malonate	
44	Methylacetacetate		"	" oxide	
44	Methylacetoglutarate		"	" succinate	
	Methylacetosuccinate		"	Propylethenyltricarboxylate	
	Methylacetylcyanacetate			Propylgiycollate	201
	Methylbenzylacetacetate			Propylmalonate	229
	Methyldehydrohexonecarboxylate		"	Propylxanthate	
	Methylethenyltricarboxylate			Pyromucate	
"	Methylethylacetacetate		"	Pyrophosphate	348
44	Methylethylmaionate	229	- 66	Pyrosulphophosphate	350
	Methylglycollate		"	Pyrotartrate	
44	Methylisopropylmalonate	229	"	Racemate	
	Methyllactate		"	Rutylate	
	Methylmalonate		"	Santonate	
	Methyloxybutyrate		"	Sebate	
	Methylpropylacetacetate		"	Selenite	
	Methylpropylacetate		"	Silicate	
			"	Silicoacetate	
	Methylxanthate		"	Silicobenzoate	
	Monochloracetate		"	· · · · · · · · · · · · · · · · · · ·	
	Monochlorethylacetacetate		l	Silicopropionate	
	Monochlormethylacetacetate		44	Suberate	
"	Mucate	248	4	Succinate	228
	0=				

Ethyl. Succincenceinate		Ethylene. Chloride 2	296
44 Sulphate	843	" Chloriodide 3	337
41 Sulphide	339	" Chlorobromide 3	336
" Sulphite	342	" Chloronitriu 8	315
" Sulphophosphite	350	" Chlorothiocyanate 8	347
" Tartrate	236	" Cyanhydrin 2	
" Terebate		" Cyanide	
44 Tetrabromacetacetate		44 Diamine	
" Tetramethylenedicarboxylate		44 44 Hydrate	
4 Tetramethylsuccinate		" Diethyl ether 2	
4 Thioarsenite		" Dinitrate	
4 Thiocarbimide			
1 11100M UIII 140		Dibitemes	
THIOO THE CAME COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION TO THE COMMISSION THE COM			
I HIOCY MIMPO		Dimioemaine	
" Thioxalate		Estrylidene dioxide	
" Thioxycarbonate		F IUODOFACO	
" Tiglate		4 Glycol	
" Triamyl silicate		" Iodide	334
" Tribromacetacetate	327	44 Mercaptan 5	340
" Tribromethylacetacetate	327	" Monethyl ether	223
"Trichloracetate	306	" Mononitrate	
" Trimethylacetate	213	" Nitrosonitrate	286
" Trimethylenedicarboxylate		44 Oxide	
" Trimethylenetricarboxylate		44 Propionate	
4 Trisulphocarbonate		"Thiodichloride	
" Valerate		4 Thiovinylethylate	
Vanadate			
A #1197400 11111111111111111111111111111111111		Trisulphocarbonate	
A G1 Wp1 @ AG-************************************		Ethylene stannethyl	
Ethylacetamide		Ethylethylene glycol	
Ethylamidobensene		Ethyleugenol	
Ethylamine		Ethylformamide	
" Aurochloride		Ethylformanilide	
" Camphorate, base from	290	Ethylfurfurcarbinol	248
" Platinchloride	365	Ethyl glycide	239
Ethyl amyl	159	Ethylglycollic chloride	310
Ethyl amylin	239	Ethylglyoxalin	279
		Wahalla amala ankin al	196
Ethyl amyl pinacolin	221	Emyinexy:cardinol	
		Ethylhexylcarbinol	
Ethylaniline	272		287
Ethylaniline	272 172	Ethylhydroxylamine	<b>267</b> 810
EthylanilineEthylbenzeneEthylbenzene	272 172 264	Ethylhydroxylamine	<b>287</b> 810 819
Ethylaniline	272 172 264 324	Ethylhydroxylamine	287 810 819 826
Ethylbensene Ethylbensene Ethylborneol Ethylbrombensene Ethyl butyl pinaoolin	272 172 264 324 221	Ethylhydroxylamine	287 810 819 826 338
Ethylbensene	272 172 264 324 221 232	Ethylhydroxylamine	287 810 819 326 338 310
Ethylaniline	272 172 264 324 221 232 186	Ethylhydroxylamine	287 810 819 826 338 310 296
Ethylaniline	272 172 264 324 221 232 186 264	Ethylhydroxylamine	287 810 819 826 338 310 296 336
Ethylbensene	272 172 264 324 221 232 186 264	Ethylhydroxylamine	287 810 819 826 338 310 296 336 334
Ethylaniline Ethylbensene Ethylborneol Ethylbrombensene Ethyl butyl pinacolin Ethylbutyric lactone Ethylcamphene Ethylcamphor Ethyl carbamide Ethyl carbamine	272 172 264 324 221 232 186 264 288 248	Ethylhydroxylamine	287 810 819 326 338 310 296 336 334 810
Ethylaniline  Ethylbensene  Ethylborneol.  Ethylborneol.  Ethylbrombensene  Ethyl butyl pinacolin  Ethylcamphene  Ethylcamphene  Ethyl carbamide  Ethyl carbamide  Ethyl carbamide	272 172 264 324 221 232 186 264 288 248	Ethylhydroxylamine	287 810 819 826 338 310 296 336 334 810 810
Ethylaniline  Ethylborneol  Ethylborneol  Ethylborneol  Ethylborneolin  Ethylbutyric lactone  Ethylcamphor  Ethyl carbamide  Ethyl carbamide  Ethyl carbinide  Ethyldacetamide	272 172 264 221 232 186 264 288 248 290 287	Ethylhydroxylamine	287 810 819 826 338 310 296 336 334 810 310
Ethylaniline Ethylbensene Ethylbensene Ethylbrombensene Ethylbutyrio lactone Ethylcamphene Ethylcamphene Ethyl carbamide Ethyl carbamide Ethyl carbamide Ethyl carbamide Ethyl carbamide Ethyl carbamide Ethyl carbamide	272 172 264 221 232 186 264 288 248 290 287 245	Ethylhydroxylamine	287 810 819 326 338 310 296 336 334 310 310 310
Ethylaniline Ethylbensene Ethylbenneol Ethylbrombensene Ethyl butyl pinacolin Ethylbutyric lactone Ethylcamphene Ethylcamphene Ethylcarbamide Ethyl carbamide Ethyl carbamide Ethyl dactomide Ethyldiacetamide Ethyldiacetone carbonate Ethyldimethylethylene	272 172 264 221 282 186 264 288 248 290 287 245 165	Ethylhydroxylamine	287 810 819 326 338 310 296 336 334 310 310 195 290
Ethylaniline  Ethylbensene  Ethylborneol  Ethylborneol  Ethylbrombensene  Ethyl butyi pinacolin  Ethylcamphene  Ethylcamphere  Ethyl carbamide  Ethyl carbamide  Ethyl carbinide  Ethyl diacetamide  Ethyldiacetanide  Ethyldiacetone carbonate  Ethyldimethylethylene  Ethyldipropylcarbinol	272 172 264 324 221 186 264 288 298 298 296 295 165 195	Ethylhydroxylamine	287 810 819 326 338 310 296 336 310 310 310 195 290 164
Ethylaniline Ethylbensene Ethylbenneol Ethylbrombensene Ethyl butyl pinacolin Ethylbutyric lactone Ethylcamphene Ethylcamphene Ethylcarbamide Ethyl carbamide Ethyl carbamide Ethyl dactomide Ethyldiacetamide Ethyldiacetone carbonate Ethyldimethylethylene	272 172 264 324 221 186 264 288 298 298 296 295 165 195	Ethylhydroxylamine	287 810 819 326 338 310 296 336 310 310 310 195 290 164
Ethylaniline  Ethylbensene  Ethylborneol  Ethylborneol  Ethylbrombensene  Ethyl butyi pinacolin  Ethylcamphene  Ethylcamphere  Ethyl carbamide  Ethyl carbamide  Ethyl carbinide  Ethyl diacetamide  Ethyldiacetanide  Ethyldiacetone carbonate  Ethyldimethylethylene  Ethyldipropylcarbinol	272 172 264 324 232 186 264 288 298 298 296 165 195 209	Ethylhydroxylamine	287 810 819 326 338 310 296 336 310 310 195 290 164 320
Ethylaniline	272 172 204 324 232 186 264 288 290 287 245 195 195 209 164	Ethylhydroxylamine	287 810 819 326 338 310 296 334 310 310 310 195 290 164 320 223
Ethylaniline  Ethylbensene  Ethylborneol  Ethylbrombensene  Ethyl butyl pinacolin  Ethylcamphene  Ethylcamphor  Ethyl carbamide  Ethyl carbamide  Ethyl carbinide  Ethyldiacetone carbonate  Ethyldimethylethylene  Ethyldipropylcarbyl acetate  Ethylene	272 172 204 224 232 186 264 288 288 289 290 267 165 195 105 1064 204	Ethylhydroxylamine	287 810 819 926 338 310 296 336 330 310 195 290 164 320 223 310
Ethylaniline Ethylbensene Ethylbenneol Ethylbrombensene Ethyl butyl pinacolin Ethylbutyric lactone Ethylcamphene Ethylcamphene Ethylcarbamide Ethyl carbamide Ethyl carbamide Ethyl darbimide Ethyl diacetamide Ethyldiacetamide Ethyldiacetone carbonate Ethyldipropylcarbinol Ethyldipropylcarbyl acetate Ethyldipene	272 172 204 224 232 186 264 288 248 290 297 245 165 195 109 109 109 109	Ethylhydroxylamine	287 810 819 826 338 810 296 336 331 810 810 195 290 164 320 223 810 178
Ethylaniline Ethylbensene Ethylborneol Ethylborneol Ethylborneol Ethylbrombensene Ethyl butyi pinacolin Ethylcamphene Ethylcamphene Ethyl carbamide Ethyl carbamide Ethyl carbamide Ethyl diacetamide Ethyldiacetamide Ethyldiacetone carbonate Ethyldimethylethylene Ethyldipropylcarbinol Ethyldipropylcarbinol Ethylene  "Acetochloride "Acetonitrate	272 172 264 324 221 232 186 264 290 297 165 195 209 164 226	Ethylhydroxylamine	287 810 819 326 338 310 296 336 334 310 310 195 290 164 390 223 310 178 228
Ethylaniline  Ethylbensene Ethylborneol.  Ethylborneol.  Ethylbrombensene Ethyl butyl pinacolin  Ethylcamphene Ethylcamphene Ethyl carbamide  Ethyl carbamide  Ethyl carbinide  Ethyl diacetamide  Ethyldiacetamide  Ethyldiacetamide  Ethyldipropylcarbinol  Ethyldipropylcarbinol  Ethyldipropylcarbinol  Ethylene  "Acetochloride  "Acetochloride  "Acetochloride  "Acetonitrate  Bromhydrin	272 172 204 221 232 186 264 248 290 297 245 195 195 209 164 224 236 236 326	Ethylhydroxylamine	287 810 819 326 338 310 296 336 331 310 310 195 290 164 320 223 310 178 228 341
Ethylaniline Ethylbensene Ethylbensene Ethylborneol Ethylbrombensene Ethyl butyl pinacolin Ethylcamphene Ethylcamphene Ethylcamphene Ethylcarbamide Ethyl carbamide Ethyl carbamide Ethyl diacetamide Ethyldiacetamide Ethyldiacetamide Ethyldiacetone carbonate Ethyldipropylcarbinol Ethyldipropylcarbyl acetate Ethyldipropylcarbyl acetate  " Acetate  " Acetate  " Acetate  " Bromhydrin  " Bromide.	272 172 264 221 284 288 288 290 285 245 165 195 104 224 310 286 318	Ethylhydroxylamine	287 810 819 326 338 310 296 336 330 310 195 290 164 320 223 310 178 288 341 254
Ethylaniline Ethylbensene Ethylbensene Ethylborneol Ethylbrombensene Ethyl butyl pinacolin Ethylbutyric lactone Ethylcamphene Ethylcamphene Ethylcarbamide Ethyl carbamide Ethyl carbamide Ethyl dacetamide Ethyldiacetamide Ethyldiacetone carbonate Ethyldiapetone carbonate Ethyldipropylcarbinol Ethyldipropylcarbyl acetate  "Acetate "Acetate "Acetochloride "Acetochloride "Bromhydrin "Bromide "Bromide "Bromide "Bromide	272 172 201 324 221 232 186 288 248 290 287 165 195 195 209 164 310 286 318 338	Ethylhydroxylamine	287 810 819 826 338 810 296 836 331 810 810 195 290 164 322 310 178 223 310 178 288 341 254 250
Ethylaniline Ethylbensene Ethylbensene Ethylborneol Ethylbrombensene Ethyl butyl pinacolin Ethylbutyric lactone Ethylcamphene Ethylcamphene Ethylcarbamide Ethyl carbamide Ethyl carbamide Ethyl dacetamide Ethyldiacetamide Ethyldiacetone carbonate Ethyldiapetone carbonate Ethyldipropylcarbinol Ethyldipropylcarbyl acetate  "Acetate "Acetate "Acetochloride "Acetochloride "Bromhydrin "Bromide "Bromide "Bromide "Bromide	272 172 204 324 221 288 290 287 165 195 299 164 310 286 326 318 338 324	Ethylhydroxylamine	287 810 819 826 338 810 296 834 810 810 810 810 810 810 810 810 810 810

P	AGE.	) P	AGE
Ethylphenylacetylene alcohol	252	Forbesite	125
Ethylphenylcarbinol	251	Formamide	287
Ethylphenylpyrasol	279	Forsterite	131
Ethylphosphorous chloride	349	Franklandite	108
Ethylpiperidine	276	Freieslebenite	69
Ethylpropylacetylene		Frenselite	. 68
Ethylpropylbenzene	175	Friedelite	182
Ethylpropyicarbinol		Fuchsine	368
Ethylpropylcarbyl acetate		Fucusol	245
Ethyl propyl ketone		Furfurane	
Ethylpyridine		Furfurbutylene	248
Ethyl pyruvyl ether		Furfurol	
Ethyl pyrrol.		Fusyl sulphide	
Ethylsilicie chlorhydrins			
Ethylsuiphonic chloride			
Ethylsulphophosphorous chloride		G.	
Ethylthiophene		0-2-4-	
Ethylthymol		Gahnite	
Ethyltoluidine		Galbanum, oil of	
Ethylvinyl acetate		Galena	
" alcohol		Galenobismutite	•
Ethylvinylcarbinol		Gallium	-
		4 Alums	
Ettringite		" Chloride	
Eucairite		Gaultherilene	
Eucalyptene		Gaylussite	
Eucalyptol	204	Gehlenite	136
Eucalyptus amygdalina, oil of	192	Geocronite	62
U10000	263	Geraniene	184
Euchroite	122	Geraniol	263
Euclase		4 Hydrochlorate	304
Eucryptite		Gerhardtite	119
Eudnophite		Germanium	4
Eugenol		" Chloride	25
Eulytite		" Oxide	46
Euodyl aldehyde		Gersdorffite	69
Eusynchite		Gibbsite	71
Evansite	117	Ginger, oil of	
		Glauberite	
F.		Glaucodot	
<b></b>		Glaucopyrite	
Fairfieldite	115	Glucinum	
Famatinite		44 Aluminum silicates	
Faujasite	137	" Calcium fluophosphate	
Fauserite		4 Oxide	
Fayalite		" Selenate	
Fellandrene		4 Silicates	
Felsobanyite		" Sulphate	
Perberite		Glucose	
Pibroferrite		" With sodium chloride	
Fibrolite		Glucosine	
Fillowite		Glycerin	
Pischerite		"Cinnamate	
Flucaniline		" Solicylate	
Fluobenzene		Glycerin ether	
Fluobrombensene		Glyceryi trinitrite	
Fluoretite		Glycide	
Pluochlorbenzene		Glycocoll	
Fluoritrobensene		Gmelinite	
Fluorapatite		l · · · · · · · · · · · · · · · · · · ·	
Fluorite		Gold	
Fluor spar		4 Arsenide	
Fluotoluene	839	" Bismuth alloys 155,	106

P.	AGE.	P.	AGR
Gold. Copper alloys	156	Heptolactone	235
" Didymium bromide	83	Heptyl. Acetate	206
" chloride	28	" Alcohols 194,	10/
" Diethylamine "	365	4 Bromide	916
" Ethylamine "	365	" Butyrate	
" Hydrogen nitrate			
" Lead alloys		Caproste	214
" Phosphide		" Caprylate	
" Samarium bromide		Chioride	
		Cysulde	260
CHIOFIGS		rormate	200
Dillet elloje		" Iodide	
		" Octyl oxide	196
"Telluride		" Oenanthate	21/
" Tin alloys		44 Oxide	198
" Triethylamine chloride	365	" Propionate	
Göthite	71	" Succinate	996
Graminin	245	Valerate	
Grape sugar	244	Heptylene	
Greenockite		" Bromide	
Greenovite		" Chlorhydrin	330
Grossularite			
Gruperite		OHIO1146	
Guadalcazarite		Heptylthymol	
		Hercynite	56
Guaiscol		Herderite	124
Guajol		Herrengrundite	96
Guanajuatile		Hesperidene	181
Guanidine carbonate		Hessite	e.
Guanovulite		Hetserolite	56
Guarinite	139	Heterogenite	71
Guayacanite	61	Heulandite	188
Guejarite	63	Heveéne	100
Guitermannite	61	Hexadecylidene	180
Gum	244	Hexane 156,	108
Gummite		Washeem other mather between 106,	158
Gurgun balsam		Hexbrom-ethyl methyl ketone	320
Guyaquillite		Hexchloracetone	293
Gypaum		Hexchlorbensene	292
OJP448	04	Hexchlorethane	
•		Hexchlor-ethyl acetate	307
H.		Hexchlor-ethyl formate	29:
		Hexchlorhexane	300
Haidingerite	122	Hexchlor-methyl scetate	291
Halite	20	Hexchlor-methyl oxide	293
Hamartite	145	Hexchlorpropane	200
Hanksite	145	Hexchlortetrabrom ethyl oxide	997
Hannayite	115	Hexdecane	
Harmotome		Hezdecyl alcohols 193,	
Hartin		Hexethyl silicate	193
Hartite		Harbudahanaana	302
Hauerite		Hexhydrobenzene	177
Hedenbergite		Hexhydrocumene	177
Helvite		Hexhydrocymene	177
		Hexhydrotoluene	177
Hematite		Hexhydroxylenes	177
Hemp, oil of		Hexine bromides	323
Heneicosane		Hexmethyl silicate	352
Hentriacontane		Hexoylene	167
Heptachlor-ethyl acetate	307	Hexyl. Acetates	200
Heptachlorpropane	290	" Alcohols 193,	194
Heptocosane	163 -	" Benzoate	287
Heptadecane		Bromide	910
Heptane 158,		4 Butyrate	910
Heptanaphtene		" Caproate	212
Heptidene		" Chloride	214
	100	V441V4.44.0	230

		AGE.	)			PAGE
Hexyl. For	mate	206	Indi	um. Am	monium sulphate	90
	de		4		ium "	
	captan		-	Oxi	de	
	carbimide		64		idium sulphate	
	cymate		64		hate	
	rale		Inne		· · · · · · · · · · · · · · · · · · ·	
	B		ľ		**************************************	
					***************************************	
	cetochloride				)	
	Bromhydrin		loda	ulylene.		334
	Bromide				ım lodide	
	hlorhydrin				*************************************	
	?hloride		Iodì	romtolu	ene	336
	)iacetate	225	Inde	hinolin	<b>3.</b>	338
" G	lycol	223	Iode	hlorhyd	rin	338
	xide				***********************************	
Hexyl glyce	orin	239			de	
	iscrylic compounds					
					lycide	
	······		1041		ides	
	<del>0</del>		l	Lenw	xide	
			ı			
					••••••••••••••••	
	*** ****** *** * * * * * * * * * * * * *				• ••••••••••••••••••••••••••••••••••	
	***************************************		Irid	ichlorid	98	26
Hübnerite		106	Irid	lum		16
Hantilite		67	- "	Phos	phide	67
Hureaulite.		115	Irid			
	lte				um phosphate	
	nite		4	44	silicates 18	
				A	ium oxalate	
	bloride			ABBIIIOI	seiensteseienste	
			"			
	'luoride			••	sulphate	
	xides 39				nate	
	ulphides				es 19	
	rtite		"		les	
	no		"		sulphate	
Hydromagn	esite	130	"		arsenste	129
Hydronepho	elite	135	"	66	borosilicate	140
Hydronicot	ne	278	"	44	oxide	
Hydroguino	D6	250	"	66	phosphate	117
	onite		**	64	silicates 13	
•	8		"	Carbon	ate	
	line		64		es	
	orylonitril		4		ate	
			**		arsonato	
	valeronitril		"			
	oline		"	"	phosphate	
Hydrozincit	O	130			sulphides	
			44		ate	
	ı.		44		ides	
			**			
Ice	•••••••••••••••••••••	39	46	Lead si	licate	134
Idocrase		136	46	Lithian	phosphate	115
			44		ium borates	
			"	"	carbonate	
	giosum, oil of		**	**	sulphate	
			**	Mangan	ese phosphates 11	
			44	Mangar		
		290 8	4	44	silicates tungstate 10	

	PAGE.	) PA	
Iron.	. Niekel alloy 152	Isobutyl. Nitrate	28
66	Nitrate 112	" Nitrite	
44	Nitride 70	44 Orthocarbonate	
44	Oxides 58, 54	" Orthoformate	
4			
	Phosphates 115, 116	VAIGE	
44	Phosphides 67	Propionate	
"	Platinchloride 28	Santonate	26
44	Platiniodide 87	" Succinate	22
46	Potassium chloride 27	" Sulphide	33
44	" sulphate 90, 95, 97	Isobutyl acetal	
**	46 sulphide 64	Isobutyl aldehyde, derivative of	
44	parhiira		
		Isobutylamine	
66	Selepate99	Isobutylaniline	
**	Selenide 65	Isobutylbenzene	
"	Silicates 182, 183, 139	Isobutylcamphene	18
64	Silicide 70	Isobutyl carbamine	26
44	Silico-carbide 70	Isobutylene. Bromide	32
46	Silicofluoride 18	" Chloride	
66	Sodium oxalate 861	" Glycol	
64	· 46 silicates		
44	5111C#109************************************	Oxide	
	barpitatoo	Isobutyleugenol	
46	Sucrocarbonate 366	Isobutylidene chloride	
46	Sulphates 84, 96, 97	Isobutyl phenyl ketone	
44	Sulphides 60	Isobutyric aldehyde	21
44	Tantalate 125	" anhydride	20
44	Tin alloy 152	Isobutyryl chloride	
44	Titanates 142	Isocajeputene	
46	Tungstate	Isoclasite	
"		Inodecyl alcohol	
	Zinc oxide 56		
	myl. Acetate 208	Isodibutol	
	OFF CORPORATION TO SECURE	Isodipyridine	
•	CHIOICCAL DONALGEMENT CO.	Isoeugenol	
•	Cyanico	Isoheptane	16
4	Formate 206	Isoheptyl. Acetate	20
	Orthoformate 245	" Alcohol	19
4	4 Succinate 228	" Chloride	20
	6 Sulphide	Isohexane	
Tool	mylallylamine	Isohexyl alcohol	
	mylaniline 273	Isohexylbensene	11
	mylbensene 175	Isooctonaphtene	
	mylene bromide 320	Isooctyl. Alcohol	
Isos	myi ethyi sulphone 343	" Chloride	
Isoa	mylformanilide 288	" Cyanide	28
Isoa	mylidene chloride 297	Isoprene	16
Isob	enspinakone 266	" Bromides	
	utyl. Acetacetate 232	" Dichloride	
	^ Acetate 208	" Hydrochlorate	
		44 Polymer of	
		Isopropyl, Aicohol	
	- Deliania or 215	Benzoste	
_	DOUBURG 200		
	Bromide 317	DIVINIUO	
•	Dutylaw	" Butyrate	
4	* UNIDUIBUE	" Chloride	
	Chloride 294	44 Chlorocarbonate	
		" Iodide	330
		" Isoöenanthate	
	Formate 206	46 Isovalerate	
		Nitrate	
	Typopiiospiiao:		
-	. 10d1dt	1111100	
	4 Isobutyrate 212	" Uxide	97
	4 Isovalerate 213	DUECIDALE	2
•	Mercaptan 840	" Tartrate	Ø,

	PAGE.	P.	AGE.
Isopropyl. Thiocyanate	345	Kresol	250
Isopropylacetylene		Kresyl. Acetate	260
Isopropylallylbensene		" Allyl oxide	255
Isopropylallyldimethylcarbinol		" Butyl "	253
Isopropylamine		" Ethyl "	
Isopropylbenzene		" Heptyl "	
Isopropylbrombensene		" Methyl "	
		4 Octyl 4	
Isopropylbutenylbenzene			
Isopropyl carbamine	208	VAIUC	
Isopropylethylene		1 topy t oate on	
" Glycol		Krönnkite	
Isopropyl isobutyl ketone		Krugite	
Isopropylkresol		Kyanite	132
Isopropylnaphthalene			
Isopropylphenol	250	L.	
Isopropylphenyl. Acetate	260		
" Ethyl oxide	254	Labradorite 187,	138
" Methyl "	254	Lactose	244
Isopropyl phenyl ketone	262	Lactyl ethyl lactate	231
Isopropylpiperideine		Lanarkite	
Isopropylpiperidine		Langite	
Isopropylpyridine		Lanthanite	
Isopropylthiophene		Lanthanum	
Isopropylvinylbenzene		4 Carbonate	
Isoterebenthene	190	44 Oxide	
44 Hydrochlorate		46 Selenate	
Isoterpene		Dulpuse	
Isotolyl chloride		Laudanine	
Isotrichlorhydrin		Leumontite	
Isovaleric aldehyde		Laurel camphor	
Isovaleronitril		4 turpentine	
Isovinyl bromide		Laurene	
" chloride		Laurone	
Ivaol	268	Lauronitril	
		Laurus nobilis, oil of	
J.	1	Lasulite	
•		Lead	5
Jacobsite	56	# Acetate	357
Jadeite		4 Aluminum phosphate	118
		44 silicates	188
Jalpaite		4 Amalgam	145
Jamesonite		" Antimonates	
Jarosite		44 Antimony alloys 149,	
Jeremejewite		4 Arsenides 67	
Joseite		4 Arsenite	
Julianite		"Bismuth alloys	
		4 Borates	
<b>K.</b>		4 Bromate	
<b>A.</b>		4 Bromide	
Vanalta	68	4 Cadmium alloys	
Kaneite			
Kaolinite			
Karpholite		VIIIVIBNO	
Kauri gum, oil from	182	4 Chloride	
		46 Chloroarsenate	124
Kentrolite			
Kermesite	64	" Chlorobromide	37
KermesiteKlaprotholite	64 63	" Chlorobromide	37 145
Klaprotholite		4 Chlorobromide	37 145 124
Kermesite		Chlorobromide	37 145 124 124
Klaprotholite		4 Chlorobromide	37 145 124 124
Kermesite		Chlorobromide	37 145 124 124 104 154
Kermesite		Chlorobromide	37 145 124 124 104 154
Kermesite		# Chlorobromide	37 145 124 124 104 154 123

		AGE.	PAC	GE.
	Copper sulphate			71
44	" vanadate		Linarite	97
44	Dinitrophenates	364	Lintonite	L37
64	Dithionate	75	Lipowitz' alloy	156
44	Feldspars	138	Liroconite	L23
"	Fluoride	17	Litharge	47
64	Formate	356	Lithiophilite	
44	Gold alloys	155	Lithium	1
44	Hydroxides		" Aluminum fluophosphate 1	124
44	Iodate		" silicates	
44	Iodide		" Ammonium sulphate	
**	Iron arsenate		" Bromide	
44	" silicate		" Carbonate	
66	Manganese silicate		" Chloride	
44	Molybdate		" Dithionate	
"	Nitrates 111,		" Fluoride	16
44	Nitrophenates		" Formate	
46	Oxalate		" Iodide	
44	Oxides	47	44 Iron phosphate	
66	Oxychloride	20	44 Manganese phosphate	
44	Oxylodide		" Nitrate	
46	Palladium alloy		" Oxalate	
44	Picrate		" Oxide	
4	Platinbromide		" Perchlorate	
44	Platinchloride		" Picrate	
	Platinum alloy		" Potassium racemate	
"	Selenate			
			1401414III	
	Scientide		" Selenate	
"				
"	104144	01	Dilleondolide	
	Succinate		" Sulphate " Thallium racemate	
	Sulphatocarbonate		" tartrate	
	Sulphides		"Uranyl acetate	
	Sulphocyanide		Livingstonite	
44	Tartrate		Loewite	
"	Telluride		Lölingite	
и	Tin alloys 147, 148,		Lowigite	
44	Tungstate		Ludlamite	
44	Zinc vanadates		Ludwigite	
	diethyl		Luteocobalt chloride	
	illite		Lutidine	
	tetramethyl		Lusonite	
	tetraphenyl			01
	tetratolyl			
	triethyl		x.	
	m palustre, oil of		Macené	104
Lakel	achite	AS.	Magnesioferrite	
	10			1
	n, oll of		44 Acetate	-
	ine		44 Aluminum phosphates	
	olite		" silicates	
	ne		44 44 sulphate	
-	te		" Ammonium chioride	
	phane		" chromate	
	>pyrite		44 44 phosphates	
	henite		44 44 selenate	
	ene		44 44 sulphate	
	i kanali, oil of		" Arsenates 121, 1	
	ite		" Borates	
			Bromate	
	Ite		" Cadmium sulphate	

		LGE.	1		PAGE
	a. Calcium arsenate			Dithionate	
<b>u</b>	4 borate		" "	Garnet	
4	Caroonave		"	Hydroxides	
"	** B111CB.00		"	Iron fluophosphate	
"	Carbonate 126,		"	huoshumos 110	
· 4	Chloride		" "	01110000	
44	Chromium borate		""	(411 Dames 1 100	
44	Columbate			Lead silicate	
u	Copper sulphate		4	Lithium phosphate	
4	Dithionate			Magnesium borate	
44	Fluophosphate		- 44	Nitrate	
44	Fluoride			Oxalate	
"	Hydroxide		"	Oxides	
*	Hypophosphite		4	Phosphide	
44	Iodate		44	Platinbromide	
"	Iron borate	106	44	Platinchloride	. 28
44	" carbonate	129	"	Platiniodide	. 37
44	44 sulphate	92	"	Potassium selenate	. 100
u	Manganese borste	108	"	" sulphate	. 90
44	" sulphate	92	"	Pyroarsenate	. 123
44	Nitrate		"	Pyrophosphate	
44	Oxide		4	Selenate	
4	Palladichloride		4	Silicates	
"	Phosphates		"	Silicofluoride	
u	Platinbromide		"	Stannifluoride	
44	Platinchloride		1 ::	Sulphate	
"	Platiniodide			Sulphides 59	
	Potassium chromate			Tantalate	
44	selenate		i .	Tungstate	
4	Pyroarsenate			ci <b>te</b>	
44	Pyrophosphate			alite	
**	Selenate				
66	Silicates			rivative of	
44	Silicofluoride	18	Maracaibo b	alsam	. 185
44	Sodium sulphate	89		************************************	
44	Stannichloride				
44	Sulphate				
"	Thiosulphate			il of	
"	Titanates				
4	VanadatesZinc sulphate				
Mognetite	Bille Burphine			······································	
	••••••••••••••••••••••••••••••••••••••				
				il of	
	itril			8	
	ımbite				
Manganese	***************************************	12	Melezitose	00 020 040000 0040 100 170 404 140 600 170 477 477 477 477 477 477 477 477 477 4	244
64	Acetate	358	Melilite	••••••	136
u	Aluminum alloy				
44	" phosphate			***************************************	
"	8111CBVe				
44	Ammonium selenate				
	sulphate			gium, oil of	
	Arsenate				
•••	Arsenide Calcium phosphate 1			ivatives of 183. 283.	
	Carbonate			100g 200g	
	Chloride				
	Chromium oxide				
	Columbates 1			ate	

		AUB.	l	-	AIL.
Mercury.	Ammoniochlorides	. 88	Methyl.	Bromide	. 316
44	Ammonionitrate	112	"	Butyloxide	197
46	Ammoniosulphate		"	Butyrate	210
44	Ammonium chloride		4	Caproste	
66	Bromate		44	Caprylate	
44	Bromides		64	Capryl oxide	
46	Calcium antimonite		44	Carbonate	
44	Chlorates		44	Chlorbutyrate	
44	Chlorides		44	Chlorerotonate	
"	Chloride with ammonium dichro-		44		
••				Chloride	
	mate		- u	Chlorocarbonate	
**	Chlorocyanide			Chlorpropionate	
44	Chromate			Cinnamate	
"	Cyanide 143,	144	"	Citraconate	
"	Hexyl mercaptide	355	66	Crotaconate	238
44	Hydrogen bromide	33	44	Crotonate	234
46	Iodides	35	64	Cyanide,	268
44	Nitrates 110,	112	46	Dibrom propionate	. 326
44	Organic compounds		66	Dichloracetate	. 306
44	Oxides		46	Dichlorbutyrate	
44	Oxychloride		44	Diethyl borate	
46	Oxycyanide			Diethylmethylethenyltricarb o x y	
44	Potassium bromide			late	
"	" chloride			Diethyloxyacetate	
"			44	Dimethylsuccinate	
•••	() 64140		44	•	
"	100100			Dinitrophenate	
44	Selenide		"	Elaidate	
44	Selenate			Ethylacetacetate	
44	Silver iodide		"	Ethyl carbonate	
	Sodium chloride		4	Ethylglycollate	
46	Bulphates 81	, 96	4	Ethyl oxalste	. 227
44	Sulphide	57	66	Ethyl oxide	196
44	" with copper chloride	144	44	44 succinate	. 228
44	Telluride	66	64	Ethylsuccinate	. 228
Mesitite		129	44	Ethyl sulphite	342
	Acetate		44	Ethylxanthate	
	Oxide		и	Formate	
	16		44	Glyooliste	
44	Acetate		44	Heptyl oxide	
46	Glycol		44	Hypophosphate	
44	Men:aptan		44	Iodbutyrate	
30 - 4 - b	hite				
			u	Iodide	
	amene		4	Iodpropionate	
	ola			Isobutyrate	
	onid		"	Isoōenanthate	
	onine		"	Isopropyisalicylate	
	olene		"	Isovalerate	
	enthene		44	Itaconate	
Metaxyle	ne	172		Lactate	. 231
			46	Laevulinate	. 233
Methoxyl	methyl ethyl acetone	245	и	Maleate	. 236
Methyl.	Acetacetate	232	44	Malonate	. 227
	Acetate		и	Mesaconate	
	Acrylate		44	Methylacetacetate	
	Alcohol		4	Methylglycollate	
	Allyl oxide		66	Methyloxyphenylacrylate	
	Amyl 4		4		
	Arsenate		" "	Methyloxyphenylangelate	
				Methyloxyphenylcrotonate	
	Arsenite			Methylpropylpyrogallate	
	Benzoate			Methylxanthate	
	Borate		"	Monochloracetate	
. 1	Brombutyrate	826	44	Mucate	. 248

	P.	AGE.	P	AGE
Methyl.	Naphtyl oxide	266	Methyldiethylbenzene	178
44	Nitrate		Methyldiethylcarbinol	194
44	Nitrite	281	Methyldiethylcarbyl acetate	209
44	Nitrophenate	285	Methyldiethylcarbyl ketone	221
44	Oenanthate	214	Methyldiethylmethane	158
44	Oleate		Methyldiheptylcarbyl ketone	22
66	Orthoformate		Methyldipropylcarbinol	
44	Oxalate		Methyldipropylcarbyl acetate	
44	Oxyphenylacetate		Methyldiphenylamine	
44	Parasantonate		Methylene. Acetochloride	
66	Pelargonate		" Bromide	
66	Phenylacetate		" Chloride	
46	Phenylpropionate		" Dithioethylate	
44	Phosphate		" Ethers of 223,	
44	Phthalate		44 Iodide	
•	Propargyl oxide		Methylethyl scetal	
44	Propionate		Methylethylbensene	
44	Propylglycollate		Methylethylcarbinol	
44	Propyl oxide		Methyl ethyl ketone	
46	Propylxanthate		Methylethylpiperidine	
44	Pyruvate		Methylethylpropyl alcohol	
44	Salicylate	957	Methylethylpropylbenzene.	
44	Santonate		Methylethylpropylcarbinol	
66	Sebate		Methylethylpropylethylene	
66	Silicate		Methylethylpropylmethane	
"	Silicopropionate		Methylethylpropyl methylethylpropionate	
16	Suberate		Methyleugenol	
. 66	Succinate		Methylformamide	99
	Sulphate		Methylformanilide	
66	Sulphides 339,		Methylglyoxalin	
44	Sulphite		Methylhexylcarbinol	
66	Tartrate		Methylhexylcarbyl chloride	
44	Thiocarbimide		" iodide	
46	Thiocyanate	844	" nitrite	28
44	Trichloracetate	306	Methyl hexyl ketone,	22
44	Trichlorpropylcarbylacetate	807	Methylindol	
"	Triethyl silicate	852	Methylisoamylbenzene	
64	Trinitrophenate	285	Methylisoamylcarbyl acetate	200
**	Trisulphocarbonate	841	Methyl isosmyl ketone	220
**	Valerate	212	Methylisobutylcarbinol	
Methyla	cetone	219	Methylisobutylcarbyl acetate	
Methyla	l	223	Methyl isobutyl ketone	
Methyla	mine alum	94	Methylisocrotyl acetate	24
	mylaniline		" alcohol	
	mylcarbinol		Methylisopropenylcarbinol	
	amyl ketone		Methylisopropylacetone	
	myl pinacolin		Methylisopropylbenzene	
	niline		Methylisopropylcarbinol	
	benzyl ketone		Methyl isopropyl ketone	220
	orneol		Methylisopropylpiperidine	27
	romacetol		Methylnaphthalene	
	utylcarbinol		Methyl naphtol	
	butyl ketone		Methyl naphtyl ketone	260
	outyrone		Methylnonylcarbinol	
	arbamine		Methyl nonyl ketone	22
	caprinol		Methyl octyl ketone	22
	hloracetolhlorallylcerhinol		Methylpentamethylene methyl ketone	
	hlorallylcarbinol		Methylpenthiophene	027
	hlorphenetol		Methylphenylcarbyl acetate  Methylphenylethylalkin	200
	opellidineymyl mercaptan		Methyl phenyl ketone	980
	ehydrohexone		Methyl phenyl ketone  Methylphenylpyrasol	970
-rominia	~ v • • • • • • • • • • • • • • •		aromi thman i hi mannii	-11

	-	AGE.	•		LGE.
	dine			hine. Salts of	
Methylpropy	lallylene	168	Mottr	amite	120
Methylpropy	lbensene 173,	174		mide	
Methylpropy	learbinol	193	Musc	at nut oil, derivative of	305
Methylpropy	icarbyl acetate	208		ovite	
**	chloride	294	Myris	tic acetate, isomer of	
4	iodide	332	- 44	alcohol, "	196
Methylpropy	lcarbylcarbinol	194	- 44	aldehyde, "	218
Methylpropy	lethylene glycol	223	Myris	ticol	262
ш	oxide	222	Myris	tone	221
Methylpropy	lethol acetate	209	Myris	tonitril	269
Methyl propy	rl ketone	219	Myrtl	e, oil of	183
			Myrtt	as pimenta, oil of	185
Methylpyrrol	idine	279			
Methylquino	line	277		N.	
Methylsalige	nin	252			
	chlorhydrins		Nado	die	125
	onic chloride		Nama	qualite	72
	nethylene diamine			quite	
	· · · · · · · · · · · · · · · · · · ·			halene	
	ine			" Dichloride	
	ketone			" Hydrides 178.	
	, chloride from		Naph	kol	
	ketone			yl mercaptan	
				tine	
	***************************************			lite	
	1			annite	
	·········			elite	
				i, oil of	
				nskite	
	***************************************			camphor	
	······································			lite	
				1	
	•••••••••••••••••••••••••••••••••••••••		MICKO	Acetate	
	***************************************		"	Aluminum alloy	
	***************************************		44	Ammonio-bromide	
atory busingin	Oxides		44	Ammonio-chloride	
44	Phosphide			Ammonium selenate	
44	Sulphide		44	" sulphate	
Monagetin	oniburae		44	Arsenates	
			"	Arsenides	
-			"		
	•••••••••••••••••••••••••••••••••••••••		"	Bromate	
	······································			Bismuth sulphide	
				Chloride	
	mphor			Dithionate	•
	drin			Fluoride	
	iophene			Formate	
	••••••			Hydrocarbonete	
Monochiorde	nzene			Hypophosphlte	
	Derivative of		44	Iodate	
	nitrin		"	Iron alloy	
Monochloreti	hyl dichloracetate		"	Nitrate	
	trichloracetate			Oxalate	
	drin		**	Oxides	
	uene		44	Oxyhydroxide	
	nyl ethyl oxide		**	Palladiochloride	
			44	Phosphide.	
	drin		44	Platinbromide	
	***************************************		44	Platiniodide	_
	***************************************			Potessium selenate	
	***************************************		"	sulphate	
Morphine	***************************************	290	44	Pyrophosphate	119

	P	AGE.	ì	PA	GE.
Nickel.	Selenate	99	Octyl,	Alcohols	195
44	Selenide	65	u	Bromide	318
u	Silicofluoride		44	Butyrate	
44	Sulphate			Caproste	
44	with polassium selenate				
"			46	Caprylate	
	Sulphide			Chloride	
**	Thailium selenate		**	Cyanide	
64	Tungstate	107	"	Formate	206
66	Zircofluoride	19	**	Iodide	333
Nicotin	e	278	"	Isovalerate	214
Niobiur	m. see columbium	8	"	Nitrite	
	lines			Oenanthate	
	isol			Oxide	
	nzene		۱ "	Propionate	
	omtoluene		"	Sulphide	
	mene			Valerate	
	hane			amine	
	n			ene	
**	Chloride		. "	Acetate	
46	Chlorophosphide	144	- "	Acetochloride	310
44	Oxides	48	u	Chlorhydrin	310
66	Oxybromide	83	"	Glycol	
**	Oxychloride		- "	Hydrate	
44	Sulphide			Oxide	
	yceria	000	0	phoephin	
	ptane			thiophene	
	obutylanısol			thymol	
	annite			othic aldehyde	
Nitrom	ethane	282		aunyurue	
	aphthalene			athol	218
Nitroph	nenols	285	- "	Derivative of	245
	diethylin		Oenar	thone	221
Nitroso	dipropylamine	282	Oenai	nthonitril	260
Nitrosy	d bromide	33	Oenai	nthothialdin	348
Nitroto	luenes 283,	284	Oken	ite	189
	oxide			mite	
Nitrox	yl chloride	. 29	Olibe	ne	184
	ylenes		Oligo	cla×e 137,	188
	ylpiperidine			nite	
	3			ge, oil of	
	cane			ite	
	aphtene				
	aphtylene			eyite	
	nite			nent	
	Alcohoi 195,			clase	
	Chloride			ridium	
	lodide			topsis, oil of	
				um	
Monyie	De	141		rovite	
	· · · · · · · · · · · · · · · · · · ·		1		
Nutme	gs, oil of	. 183		ite	
				ethylethylin	
	<b>O.</b>			sthylisoamylin	
				ethyloenauthylin	
Octace	to-diglucose	. 245		thylpropylin	
Octace	to-saccharose	. 245		soamylisoamylin	
Octade	cane	. 163		sobutylisoamylin	
Octane	159	160	Oxalı	methylethylin	27
	lorpropane			methyloenanthylin	
Octode	cylene	. 167		propylethylin	
Octode	cylidene	. 168		propylisoamylin	
Ontone	phtene	. 186		propyloenenthylin	
	Acetate			propylpropylin	
Octyl.	ALV WIT	_00	, OAMI	L- L L L L	_,,

P	AGE.	2	AGE
Oxamide		Peppermint, oil of	18
Oxethenaniline	288	Perchlor-ethyl acetate	29:
Oxybutyric lactone	231	Perchlor-ethyl oxide	203
Oxygen	8	Periclase	
Oxyisoamylamine	287	Persea lingue, tannin from	961
Oxyphenyl mercaptan		Petalite	19/
Oxypropylpropylamine		Petit grain, oil of	101
Oxysulphobonsid			
O & J Sui pho Domaiu	JII	Petzite	66
_		Pharmacolite	123
P.		Pharmacosiderite	123
		Phenakite	
Pachnolite		Phenanthrene	
Pacite		" Hydride	179
Palladiochlorides		Phenanthrene quinone	286
Palladium		Phenetol	255
" Lead alloy	156	Phenol	
" Phosphide	67	Phenoxyscetonitril	990
" Sulphide	61	Phenoxyldiphenylphosphin	240
Palmitone		Phenyl. Acetate	076
Palmitonitril			
Pandermite		" Allyl oxide	
		DUTATE	
Papaverine		Dutyl oxide	
Parabromalide		44 Carbimide	
Parachinanisoi		" Ethyl oxide	255
Parachioralide		"	841
Paradichloraldehyde	308	" Heptyl oxide	
Paradiconiine		" Isobutyl "	
Paraffin 163,	164	" Isopropyl "	
Paragonite		" Mercaptan	
Paraldehyde			
Paranicene		memyi oxide	
Parasantonid		Obiyi	
Parisite		· Oxide	
		L 110Bh110g	
Parsley, oil of		From Kyl Oxide	250
Parsnip, oil of		" Propyl "	258
Partschinite		" Sulphides	341
Parvoline		"Thiocarbimide	344
Patchouli camphor		Phenylacetic aldehyde	261
Patchouli, oil of	185	" chloride	
Pectolite	134	Phenylacetylene	
Peganite	117	Phenylarsine bromide	951
Pelletierine		Phenylbutylene	
Pentabrompropane		Phenylcymene	110
Pentachloracetone		Dhonul hudaada	177
Pentachlor-amyl formate		Phenyl hydrazin	2200
Pentachiorbensene		Phenylpentylenes	170
		Phenylphosphin	
Pentachlorethane	299	Phenylphosphorous chloride	349
Pentachlor-ethyl oxide		Phenylpropionitril	
Pentachiornitrobenzene		Phenylpropyl alcohol	251
Pentachlor-propylene oxide		Phenylsulphonic chloride	346
Pentadecane		Phenyltoluene	177
Pentadekanaphtene	186	Phenyltolylethane	
Pentamethylene diamine	278	Phenylvinyl ethyl oxide	254
Pentane		Phillipsite	
Pentanitrolactose.	286	Phlein	
Pentatriacontane	163	Phlogopite	
Pentethylmonochlorbensene	904	Phloretol	
Pentlandite	202		
Pentyl. Bromide		Phlorol	
" Chloride		Phloryl ethyl oxide	
UII/UI		Phoenicochroite	
104146		Phorone	
Penwithite	132	Phosgenite	146

	P	AGE.	1	PA	GE.
<b>Phos</b> pheny	71 chloride	349	Potassium		1
44	ether	349	"	Aluminum borate	108
44	oxychloride	349	"	" selenate	
44	sulphochloride	350	44	" silicates 135, 136, 1	137
<b>Phos</b> phoru	B	. 6	44	" sulphates 92,	97
-44	Bromide	. 32	"	Ammonium chromate	104
44	Chlorides	25	"	" sulphate	89
44	Oxybromide	. 33	44	" tartrate	362
44	Oxychloride 2	, 30	44	Amylsulphate	359
46	Oxychlorobromide		44	Antimony chloride	
44	Pentoxide	. 48	66	Arsenate	122
"	Sulphides		44	Borate	108
46	Sulphobromide	. 33	44	Borofluoride	18
"	Sulphochloride		- 66	Borotartrate	363
44	Sulphocyanide		66	Bromate	73
Phthalic at	nhydride		66	Bromide	81
	hloride		**	Cadmium chloride	
	omodichlorhydrin		**	" iodide	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		14	selenate	
			u	44 sulphate	
	274.		"	Calcium chromate	
	nin		44		89
	hloride		"	Carbonates 126,	
	odide		**	Chlorate	
_	***********************		44	Chloride	
	lcobol		4	Chlorochromate	
			44	Chromates 102,	
			44	Chromate with mercuric cyanide.	144
			44	Chromiodate	
	from 179, 180,		44	Chromium selenate	
	B		"	" sulphate	94
			44	" sulphocyanide	
	******* * ****************************		"	Chromocyanide	
	0011101		u	Chromoxalate	
	lalkin		•	Citrate	
	drasin		"	Cobalt selenate	
Pistomesit	8	129	"	" sulphate	
			4	Cobalticyanide	
			44	Columboxyfluoride	
	ıides		44	Copper chloride	
Platinchlor	rides 28, 365,	366	"	" oxalate	
Platiniodid	les	37	"	44 selenate	100
Platinum		15	"	" sulphate	91
	oride		"	Cyanate	
" C	hioride	27	44	Cyanide	
" H	[ydride	69	44	Dinitrophenates	364
	ead alloy		44	Dithionate	
	hosphide		44	Ethylsulphate	
	otassium sulphide		**	Ethylxanthate	
" g	ilicide	70	44	Ferricyanide	
" g	odium sulphide	64	44	Ferrocyanide	143
	ulphides		64	Fluoride	
	ne platosoxalates		"	Formate	
	orides		ee	Gallium sulphate	
Piumbogun	nmite,	118	44	Hydrogen oxalate	360
Polianite	·	53	66	" racemate	363
	• • • • • • • • • • • • • • • • • • • •		"	44 sulphate	88
Polyargyrit	be	62	4	" tartrate 3	362
			**	Hydroxide	70
Polydymite		60	44	Iodate	74
Polyhalite .		89			84
Poplar, oil c	DE	185	44	Iridichloride	28

	PA.	GE. ]		P.	AGE.
Potassium.	Iron chloride	27		Stannifluoride	
44	" sulphates 90, 95,	<b>97</b>	44	Stannochloride	
44	" sulphide		44	Strontium chromoxalate	
44	Isobutylsulphate		44	Sulphate	
"	Isobutylxanthate		44	Sulphide	
"	Lithium racemate		44	Sulphocyanide	
"	Magnesium chromate			Tantalofiuoride	
"	" selenate		44 44	Tartrantimonite	
"	" sulphate		"	Tartrale	
"	Manganese selenate			Thallium sulphide	
44	" sulphate			Thiosulphate	
"	Manganicyanide		44	Thorium phosphate	
"	Mercury bromide		44	Titanofluoride	
44	00101146		44	Triacetate	
44	" cyanide		44	Tungstates	
44	Metaphosphate		44	Uranyl sulphate	
44	Methylsulphate		44	Vanadium vanadate	190
44	Methylxanthate		44	Zinc chloride	
66	Nickel cyanide		**	4 selenate	
66	" selenate		44	" sulphate	
44	" sulphate		46	Zircofluoride	
44	Nitrate		44	Zirconium phosphates	
44	Nitrato-sulphate		46	" silicate	
• "	Nitrophenates		Prograttite	······	
44	Oxalate				
44	Oxide			***************************************	
66	Palladiochloride	28	Propane	·····	167
44	Perchlorate	73		Acetate	242
44	Permanganate	105	44	Alcohol	241
46	Phosphate		44	Bromides	
44	Phosphato-sulphate		"	Chloride	
44	Picrate		"	Iodide	
44	Platinbromide			scetic scid	
44	Platinchloride			dipropyl ether	
44	Platiniodide			ide	
"	Platinum seleniocyanide			aldehyde	
"	" sulphide			anhydride	
44	" sulphocyanide			il	
44	Platosochloride			cetophenone	
**	Piatoxalate			bromide	
46	Propylsulphate			chloride	
44	Pyrophosphate			etate	
44	Pyrosulphate			rylate	
44	Quadroxalate			cohol	
44	Racemate	363	" Be	nsoate	. 256
44	Racemantimonite	364	" Bo	rate	. 347
44	Selenate	98	" Br	omide	. 317
44	Silicofluoride	18		ıtyl oxide	
44	Silver carbonate		"	succinate	
"	Sodium alloy			ıtyrate	
**	" carbonate			mphorate	
"	tt phosphate		· \	proate	
44			1 0	prylate	
"	" sulphate		·· 0#	rbonateloride	
"	tartrate		[ · · · · · · · · · · · · · · · · · · ·	llorocarbonate	
4	" vanadate		, 0.	nnamate	
44	Stannate			anide	
44	Stannibromide			brompropionate	
44	Stannichloride			oxysuiphocarbonate	

	=	AGE.		AGI
Propyl.	Ethylacetacetate	233	Propylglyoxalin	27
44	Ethylglycollate	230	Propylhexylcarbinol	19
44	Formate		Propylidene chloride	29
44	Fumarate	236	Propylisopropylbenzene	
.4	Glycollate		Propylkresol	
44	Heptyl oxalate		Propylnaphtol	
44	44 oxide		Propylphenol	
**	Hypophosphate		Propylphenyl acetate	
	Iodacetate			
44			Propyl phenyl ketone	
44	Iodide		Propylphenyl methyl oxide	
	Isobutyrate		Propylphenylpyrazol	
66	Isoōenanthate		Propylphycite trichlorhydrin	
44	Isovalerate	213	Propylpiperidine	27
44	Laevuiinate	232	Propylpyridine	27
66	Maleate	236	Propylsilicie chlorhydrins	35
44	Malonate	227	Propylthiophene	34
84	Methylglycollate		Propylthymol	
66	Monochloracetate		Prosopite	
44	Nitrite		Proteine, derivatives of	
44	Octyl oxalate		Proustite	
44				
"	UA146		Pseudocumene	
	Oenanthate		Pseudohexylene acetate	
44	Orthocarbonate		" glycol	
44	Orthoformate	245	Pseudomalachite	
66	Oxalate	227	Ptomaine	28
64	Oxide	197	Ptychotis ajowan, oil of	18
44	Parasantonate	267	Pucherite	12
44	Phenylacetate	257	Pulegium micranthum, oil of	
46	Derivative of		Purpureochromium. Chloride	
44	Phenylpropionate		" Chlorobromide	
44				
44	Propionate		Omoromerate	
	Propylglycollate		Purpureocobalt. Bromide	
	Salicylate		PLOTIONITA AND	
**	Santonate		" Chloride	
44	Silicate	352	" Chlorobromide	
"	Succinate	228	" Chloronitrate	11:
**	Sulphide	339	Purpureorhodium. Bromide	8
66	Tartrate	237	" Chloride	3
44	Valerate	213	" Iodide	3
Propyla	cetal		Pyrargyrite	
	llylamine		Pyridine	
	mine		Pyrite	
			Pyrocatechin	
	niline			
	enzene		Pyrogallol	
Propyle	ne. Acetate		Pyrolusite	
"	Bromide	-	Pyromorphite	
	Bromiodide		Pyrophosphoric chloride	
44	Chlorhydrin	310	Pyrophyllite	
44	Chloride	296	Pyrosmalite	
44	Chloriodide	338	Pyrrhotite	60
"	Chlorobromide	336	Pyrrol	27
44	Diamine		Pyrrolidine	
64	Dinitrate		Pyrotartronitril	
44	Dinitrite		Pyruvic acetate	
44	Ethylphenylketate		_ y 1 1 1 1 0 000 000 000 000 000 000 000	
"			_	
	Glycol		Q.	
	Iodide			
44	Oxide		Quartz	44
44	Trisulphocarbonate	341	Quercite	243
**	Valerate	225	Quinoline	27
Propyle	ugenol	265	Quinone	266
• •	00		•	

Kalmonalte	91
Raistonite	17
Rammelsbergite	68
Realgar	59
	115
Reinite	106
Resorcin	
Retene	
Resbanyite	63
Rhabdophane	116
Rhagite	
Rhodium	14
Ammoniopiomide	38
" Ammoniochloride	38
44 Ammonioiodide	38
Rhodizite	108
Rhodonite	
Ripidolite	
Roemerite	96
Romeite	125
Rosaniline chlorhydrate	365
Roselite	122
Rosemary, oil of	183
Roseocobalt iodosulphate	97
Rose's alloy	
20000 11 0000, 011 011111111111111111111	185
" resin from	267
Rubidine	276
Rubidium	1
" Aluminum selenate	100
Virmitiam setenwee	
But but wor	93
" Bromide	31
" Chloride	21
" Chromium selenate	100
" sulphate	95
" Cobalt selenate	100
COOLIT PETOLERO	27
Copper culoride	
" Fluoriae	16
" Gallium sulphate	96
" Hydrogen racemate	363
" tartrate	362
" Indium sulphate	96
	34
100100	
1100 But prieso	95
" Lithium racemate	
" tartrate	362
" Platinchloride	28
" Quadroxalate	360
" Racemate	
Defenitio "	98
" Bilicofluoride	18
46 Sodium tartrate	362
" Sulphate	73
" Tartrate	
	42
Ruthenium	14
" Dioxide	55
Rutile	45

#### 8.

	LGE.
Saccharose	
Safrene	
Bafrol	
Bage, oil of 183,	185
Balicin	
Saligenin	
Salicylol	
Saliretin	266
Salt	
Balviol	
Samarium. Acetate	358
44 Ammonium selenate	101
" sulphate	
. 46 Borate	
"Bromide	
" Chloride	25
"Ethylsulphate	359
46 Formate	
" Gold bromide	
" chloride	
" Metaphosphate	
Metavanadate	
Molybdate	
MICING	
• • • • • • • • • • • • • • • • • • •	
Oxycnioriae	29
reriodate	74
r noapnate	
ricrase	
" Platinchloride	
" Platinocyanide	
"Potassium selenate	
" Propionate	
44 Selenate	100
" Sodium melybdate	105
" Sulphate	88
" Sulphocyanate with mercuric	
cyanide	144
"Tungstate	107
Sandal wood, oil of	185
Santonid	267
Bantonine	267
Santonyl. Bromide	
" Chloride	
4 Iodide	333
Sapphire	
Sartorite	
Satureja, oil of	
Scandium. Oxide	43
" Sulphate	
Scheelite	
Schwartzembergite	
Scolezite	
Scorodite	
Scovillite	
Selenium	9
Dromide	
CHIOLIGe	
Oxychioride	
DIOXIGE	51
" Sulphide	59

74	GE.	PAG
Sellaite	16	Silver. Phosphide
Semseyita		⁴⁴ Picrate
		4 Potassium carbonate
Senarmontite		FUGASSIUM CAPOURAGE 12
Sequoia, oil of 180,		1 10p1011800 00
Serpentine	181	" Pyrophosphate 11
Sesquiterpene	185	Racemate
Sideronatrite	97	" Selenate
Silica		" Selenide
Silicofluorides		" Succinate 36
Silicoheptyl compounds 351,	352	outpusse
Silicon	4	" Sulphide
" Bromide	32	" Tartrantimonite 36
" Chlorides	25	" Tartrate 36
" Chlorobromide	87	" Telluride
" Organic compounds of 351, 852,		" Tin alloys
Organic compounds of sor, sor,		
" UXIU88		Valuation
4 Pyrophosphate		Simonyite
Bilver		Sipylite 19
" Acetate	357	Sisserskite 15
" Aluminum alloys		Skutterudite
" Amaigam		Smaltite
umarkam		
Ammomo-chi omave		Sodalite 14
" Ammonio-ferricyanide	143	Sodium
" Ammonio-selenate	98	" Acetate 35
44 Ammonio-sulphate	97	" Aluminum carbonate 13
4 Antimonides		" selenate 10
" Arsenides		" silicates 134, 135, 13
Denson		Pulphave
" Bismuth glance		Ammonium arsenave
Bromate	81	" phosphate 17
" Bromide	73	" racemate 30
"Butyrate	250	" sulphate
" Caproste		" tartrate
Capt Casc		" Antimonites 1
Capi Jiaco		Australia and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
· OLI DOLLADO		Alsonson
" Chlorate	72	" Borates 10
" Chloride	21	"Bromate
" Chlorobromide	37	". Bromide
" Chlorobromiodide 37		" Calcium borates 10
" Chromates		" carbonate 1
CHIOM #46 9		Car Donave 1
" Cinnamate		BIIICAVO Li
4 Copper alloys		" sulphate
" iodide	37	" Carbonates 126, 1
" Cyanate	144	" Chlorate
" Cyanide		" Chloride
46 Dinitrophenate		44 Chromates
Dining obnessession and the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment of the comment		Chiomages
Divilonave		OHIOHIOMACO
" Fluoride		· · · · · · · · · · · · · · · · · · ·
" Gold alloys	156	" Derivative of 2
" sulphide	64	44 Copper sulphate
" Iodate		" Dithionate
" Iodide		" Ferrocyanide 1
104146		" Ferroxalate
IIOn ammonio-cyanide		FOITOZAIANO
" Isovalerate		" Fluoarsenate 1
" Lead iodide	37	" Fluophosphate 1
" Malate	361	" Fluoride
" Mercury iodide		" Formate 3
Witrate		"Hydride
~111 @A		11 y 41 140
1110 pti 0 2110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		HAGIOREH OFFINADOMINIONIONIONIONIONIONIONIONIONIONIONIONIO
" Oxalate		adibinato
« Oxides	40	" Hydroxide
46 Phosphate	115	# Hypophosphates 1
		•

	PA	GE.	PAG	E.
Sediam.	. Iodate	74	Stearonitrii 2	69
#	Iodide	34	Stephanite	
=	Iron sulphates		Sternbergite	
-	Magnesium sulphates		Stibiconite	
44	Manganese phosphate		Stibloferrite, 19	
			Stibiohexargentite	
-	Mercury chloride			
	Metaphosphate		Stibiotriargentite	
4	Metasilicate		Stibnite	
	Nitrate		Stilbasoline 2	
44	Nitroprusside	143	Stilbene 1	79
44	Oxide	40	Stilbite 13	36
4	Phosphates	114	Stolsite 10	06
44	Platinbromide		Strengite 1	15
4 .	Platinchloride	28	Stromeyerite	64
44	Platiniodide		Strontianite	
44	Platinum sulphide			3
44	Platoxalate		" Acetate	_
4	Potassium alloy		44 Aluminum silicates 1:	
	44 arsenate		Bromate	
-	Strongson			
	· Car Donard		Drumae	
u	Pnospnate		Cadmium enfortes	
44	racemate		OBTOOLENG 1	
65	44 selenate	98	" Chlorate	
64	" sulphate	89	" Chloride	23
64	tartrate	362	44 Chromate 1	03
44	tungstate	106	44 Chromoxalate 3	61
64	Pyrophesphates 118,	119	" Copper formate 3	
44	Rubidium tartrate		" Dithionate	
*	Samarium molybdate		4 Feldspers 1	
44	Selenate		" Fluoride	
66	Silicofluoride		" Formate 3	
44	Sulphantimonate		" Hydroxide	
44	•		" Iodide	90
44	Sulphate 76,			
**	Sulphite		Mory business I	
••	Sulphide			
44	Tartrate		OAIGO	
44	Thallium racemate		Figure	
44	tarirate		" Potassium chromoxalate S	
46	Thiosulphate		" Selenate	
44	Thorium phosphatos	116	" Silicofluoride	
44	Triacetate	357	" Sulphate	
46	Tungstates	106	" Tartrate	362
86	Uranium oxide	55	" Thiosulphate	
44	Uranyl acetate		" Titanate	
66	" monochloracetate		Struvite	
44	Vanadates		Strychnine	
44	Zirconium phosphates		Styracin	
44	silicate		Styrolene	
 	ite		Styrolene	110
			Styrolyl ethyl oxide	201
	······································		Succinyl chloride	
	e		" Derivative of	
	••••••••••••••••		Sulphocarbanilide	
			Sulpho-urea	
	epe		Sulphur	
	romides		" Bromide	32
Stannic	hlorides	29	chloride	26
Stannifi	uorides	19	66 Oxides	51
Stannoc	hlorides	28	"Oxychloride	80
	ganic compounds 353,		Sulphuryl chloride	
			Sussexite	
	***************************************		Sylvanite	
	O		Sylvestrene	

PAGE	PAGE	
Syngenite		
8zaboite 133		
Szaibelyite		
Szmikite83		
Valuar 1 W	Tetradecyl alcohol 19	
T.	Tetradecylene 16	
<b></b>	Tetradecylidene 16	
Tagilite 117		
Talc 131		
Tallingite 29	Tetrahydroxylene 17	7
Tannin 267	Tetralod-methyl oxide 33	5
Tansy, oil of 263	Tetraiodoxysulphobenzid	7
Tantalite 125	Tetramercurammonium chloride 3	8
Tantalofluorides 19		
Tantalum 8		
" Aluminum alloy 146		
" Pentoxide 50		
Tapalpite		
Tellurium		
" Oxides 51, 52	1	
Tennantite 61		
Tephroite 132		
Terebangeline 182		
Terebene 180		ī
" Acetate 264	Tetranitroethylene bromide 82	3
Terebenthene 180	Tetraphenylethane 170	3
" A cetate 264	Tetraterebenthene 18	5
" Hydrochlorate 304		
Terpane 263		
Terpene 180, 181		
Terpilene 181		
" Acetate		
" Fermate 264		_
" Hydride 186		
Terpilenol 263		
Terpinene		
Terpinol 263		
Terpinylene		
Tetrabromethane	Uniorides	
Tetrabromglycide	Chromium selenate 10	
Tetrabromhydrocamphene 325		
Tetrabromoxysulphobenzid847	Consit setanste 10	
Tetrabrompropane 822		
Tetrachloracetone 806		
Tetrachloracetic anhydride 308		
Tetrachlorbenzene 302		
Tetrachlorbenzyl chloride 303		3
Tetrachlorbenzylene dichloride 303		2
Tetrachlorethane 299	" Iodide 3	5
Tetrachlor-ethyl scetate 307	" Iron sulphate 9	8
Tetrachlor-ethyl camphorate 313	Lithium racemate 36	3
Tetrachlorethylene 291	" tartrate	2
Tetrachlor-ethyl oxide 305	" Nickel selenate 10	0
Tetrachlor-ethyl sulphide	Nitrate 110	o
Tetrachlorglycide 299		
Tetrachlor-methyl ethyl oxide 305		-
Tetrachlor-methyl formate 292		
Tetrachlor-methyl mercaptan		
Tetrachlor-methyl oxide		
Tetrachlornitrobensene	FIRMIDUIOTING	
Tetrachloroxysulphobenzid		
Tetrachiorpentane 300		
1 en schlof pentane 300	Kacemate 88	3

PAG	m. 1	DA	GEL.
Thallium. Selenate 9		Tin. Oxalate	
Sodium racemate 86		4 Oxides	
" tartrate		" Phosphides	
" Sulphate 7		" Potassium chlorides 28,	
" Sulphide		" Pyrophosphate	
" Tartrantimonite		44 Selenides	
Tartrate		4 Silver alloys	154
Tellurate 10		46 Sulphides	50
" Vanadates		" Telluride	
Thaumasite	- 1	" Zinc alloys	
Thebaine		Titanofluorides	19
Thermonatrite 12		Titanium. Bromide	
Thisldin		" Calcium silicate	
Thiocarbonyl chioride		" Carbide	
Thiocyanacetone		" Chloride	
Thionyl chloride		" Dioxide	
Thiophene		" Nitride	
⁴⁴ Aldehyde		" Nitrocyanide	
Thiotolene		ninochanine	
Thioxene		r Arobnoshumes	
Thomsonite		Tolene	
		Toluene	
Thorite	ا يم	Toluic aldehyde	
" Metaphosphate	,	M141 11	
		Toluidines	
Ozbiato		Toluyl chloride	
VAIUU		Tolyl phenyl ketone	
Findinocyanice		Tolylpropyl aldehyde	
Formestorn brookhustes		Topas	
Deletiese		Torbernite	
DIIICAVES		Tourmaline	
" Sodium phosphates 1		Tremolite	
onibused		Triacetin	
" Sulphide		Triallylamine	
Thrombolite 19		Triamylamine	
Thuja terpene 10		Triamylene	
Thujol 2		Triamylstibine	
Thuringite 1		Tribromehloracetone	
Thymene 1		Tribromethylene	
Thyme, oil of 1		Tribromhydrin	
Thymol 2		Tribromisobutane	
Thymyl acetate 2		Tribrompropane	
Tiemannite		Tributylamine	
Tiglic aldehyde 2	235	Tributyrin	
Tin	4	Trichloracenaphtene	
" Aluminum alloys 1		Trichloracetal	
" Amalgams 145, 1		Trichloracetic anhydride	
" Ammonium chlorides 28,		Trichlor-acetic anhydride	
" Antimonides 68, 1		Trichloracetic dimethylamide	
" Arsenides		Trichloracetonitril	
" Bismuth alloys 1		Trichloracetophenone	
" Bromide		Trichloracetyl bromide	
" Cadmium alloys 1		" chloride	
" Calcium silicate 1		" cyanide	
" Chlorides		Trichloramylene thiodichloride	
" Chlorobromide		Trichlorbenzene	
" Copper alloys 158, 1		Trichlorbensyl chloride	
" Fluorides		Trichlorbenzylene dichloride	
" Gold alloys 1		Trichlorbutyl acetate	
" Iodide		Trichlordibromethane	
" Iron alloys 1		Trichlordimethyl acetal	310
" Lead " 147, 148, 1		Trichlordinitrobenzene	315
" Organic compounds of 353, 3		Trichlorethane	298

P	AGE.	PA	LGE.
Trichlor-ethyl acetate	306	Trinitrolactose	
Trichlor-ethyl alcohol	305	Trinitrophenol	285
Trichlorethyl chloracetates	307	Triphenois	250
Trichlorhexane	300	Triphenylbenzene	177
Trichlorhyddin		Triphenylphosphin	848
Trichlor-methyl amyl sulphite	346	" Oxide	349
Trichlormethylethyl acetal		Triphenyltrisulphophosphamide	350
Trichlornitrobenzene		Triphenylstibine	351
Trichlorpentane	300	Triphylite	115
Trichlorpropane		Triplite	
Trichlorpropylene		Triploidite	
Trichlortoluene	803	Tripropylamine	270
Trichtorvinyl ethyl oxide	300	Tristearin	240
Tricosane	163	Trisulphhydrin	341
Tridecane	162	Tritolylstibine	351
Tridecylene	166	Trivalerylene	168
Tridymite	45	Trögerite	122
Triethoxyacetonitril	289	Troilite	60
Triethoxylpyrophosphorsulphobromide	350	Trolleite	117
Triethylamine	209	Tropilene	267
" Aurochloride	365	Tropilidene	187
Triethyl amyl orthosilicate	352	Tungeten	11
Triethylarsine	350	" Aluminum alloy	146
Triethylcarbinol	195	" Oxides	52
Triethyl citrate	237	" Phosphide	67
Triethyl diglycerin	239	" Sulphide	59
Triethylene alcohol	223	Turgite	71
Triethylin	2:39	Turmerol	267
Triethylmethane	159	Turpentine	179
Triethylmonochlorbenzene		" Hydrate	264
Triethylphosphin		Turpeth mineral	96
" Piatosochloride		Turquoise	117
Triethylpropylphycite	248	Tyrolite	123
Triethylsilicol	352	Tyrosine	
Triethylstibine		Tysonite	18
" Bromide			
" Chloride			
Triglycerin tetrethylin		<b>v.</b>	
Triisobutylamine			
Triisobutylene		Ulexite	
Trimethylamine		Ullmannite	
Trimethylbenzene		Undecane	
Trimethylcarbinol		Uranium	
Trimethylcarbinolamine		Albonavo	
Trimethylcarbyl. Bromide		" Barium phosphate " Bismuth arsenate	
CHIOFIGE		Inclined as somete	
204140		" Calcium "	
NIIII		phosphikos	
Trimethylcarbylmethylcarbinol		Copper arbeitate	110
Trimethyldiethylaniline		phosphare	
Trimethylene. Bromhydrin		" Hydroxides	
Dromide		" Nitrate	
· · · · · · · · · · · · · · · · · · ·		" Oleate	
" Chioride		" Oxalate	
0.5001		" Oxides	
10ulue		" Sodium acetate	
Trimethylenediethylalkin  Trimethylethylene		" " monochloracetate	
1 rimetnyletnylene		" oxide	
Trimethyl ethyl orthosilicate		" Sulphate	
		Uranocircite	
Trimethylin		Uranospinite	
1 1 111 Colly 12 (1 U110	201	ATBEA2511100	



	P	AGE.	P	LG1
Zinc.	Copper alloys	152	Zinc. Silicofluoride	1
**	Dithionate	75	4 Sulphate 80	, 9
"	Fluoride	16	" Sulphide	5
66	Formate	356	" Telluride	6
"	Hydroxide	70	" Tin alloy	14
66	Hypophosphite	113	" Titanate	14
"	Iodide	35	" Zircofluoride	1
46	Iron oxide	56	Zincaluminite	9
64	Lead vanadates	120	Zine amyl	35
"	Magnesium sulphate	92	Zine ethyl	
"	Nitrate	110	Zincite	4
46	Oxalate	360	Zino methyl	35
46	Oxide	41	Zine propyl	35
44	Oxysulphide	64	Zinkenite	6
44	Palladiochloride	28	Zircofluorides	1
"	Phosphate	115	Zireon	13
"	Pho-phide	66	Zirconium	
44	Platinbromide	33	" Oxide	4
**	Platiniodide	87	" Potassium phosphates	11
44	Pota-sium chloride	27	" silicate	18
46	" selenate	100	" Pyrophosphate	11
66	" sulphate	90	" Silicate	18
44	Pyroarsenate	123	" Sodium phosphates	11
**	Pyrophosphate	119	" " silicate	13
	Selenate		Zoisite	13
44	Selenide	65	Zorgite	6
66	Silicates	132		







## SMITHSONIAN MISCELLANEOUS COLLECTIONS.

----- 658 -----

# INDEX

TO THE

# LITERATURE

OF THE

# SPECTROSCOPE.

ALFRED TUCKERMAN, Ph. D.



WASHINGTON:
PUBLISHED BY THE SMITHSONIAN INSTITUTION.
1888.

PRINTED AND STEREOTYPED BY
JUDD & DETWEILER,
AT WASHINGTON, D. Q.

### ADVERTISEMENT.

With the rapid accumulation of scientific memoirs and discussions, published from year to year in numerous journals and society proceedings, a constantly larger expenditure of time and labor is required by both the investigator and the student, to learn the sources of information and the condition of discovery in any given field. Hence is felt the growing need of classified indexes to the work done in the various fields of research, and hence the corresponding tendency of the age to supply such demand.

The present work aims at a general survey of Spectroscopic Literature, with references to authorities in its more special subdivisions, and it has been prepared for the Institution by Mr. Tuckerman, without other remuneration than the expectation of serving the interests of scientific inquirers.

It has been brought down to the middle of the year 1887.

S. P. LANGLEY, Secretary Smithsonian Institution.

WASHINGTON, February, 1888.



### PREFACE.

This work is intended to be a list of all the books and smaller treatises, especially contributions to scientific periodicals, on the spectroscope and spectrum analysis from the beginning of our knowledge upon the subject until July, 1887; an Index or Bibliography of the Spectroscope and Spectrum Analysis.

It was begun at the suggestion of Dr. Wolcott Gibbs, whose work in connection with the subject is well known.

The object is to enable a chemist to find out at a glance all that has been published in any branch of his subject where the spectroscope is used, and what every writer has published.

The method pursued has been as follows: 1, to examine the bibliographies, booksellers' catalogues, and books on spectrum analysis for books; 2, to examine the scientific periodicals for the shorter treatises, the first and original contributions to the subject, and this was done volume by volume wherever there was no index to a series of years—as in the Comptes Rendus and the later volumes of the Annales de Chemie et de Physique and of (Poggendorff's, now Wiedemann's) Annalen der Physik und Chemie, as well as others. Use was made of the bibliography at the end of Roscoe's Spectrum Analysis, and in the reports of the British Association for 1881 and 1884, for such books and articles as the author could not find elsewhere. Credit is also due to the Astor Library and its managers for the means it afforded the author of making this Index.

After the greater part of the material was collected it was divided into such subjects as the titles indicated, in alphabetical order, easy finding being constantly kept in view. Titles have often been repeated more than once so as to make sure of their being found. Finally, at the suggestion of the Smithsonian Institution, the List of Authors was added.

The author hopes that his two objects, fullness and ready access of all the titles, will prove to have been gained.

NEW YORK, 1887.

		•		
	•			•
	•		٠	·

# TABLE OF CONTENTS.

	Pages.	1	Pages.
History		Astronomical—Continued.	
Books	8–10	Heat in the solar spectrum.	<b>112</b> –118
Apparatus		Hydrogen in the solar spec-	
Analysis in general	40-49	trum	118
Qualitative Analysis	49	Intensity of the solar spec-	
Quantitative Analysis	49-51	trum	118
Absorption Spectra	<b>52–60</b>	Iron lines in the solar spec-	
Alkalies and Alkaloids	61	trum	114
Aluminium	62-68	Magnesium in the solar spec-	
Antimony	64	trum	114
Arsenic	65	Maps of the solar spectrum_	114-115
Astronomical, in general	66-70	Oscillation-frequencies	115
Comets in general.	70-71	Oxygen in the solar spec-	
Comets in particular	71-79	trum	115
Displacement of stellar spec-		Photography of	115-117
tra	79-80	Pressure	117-118
Fixed Stars	80-82	Protuberances	118-122
Measurements	82	Radiation	122-128
Meteors	88	Red end	128-124
Nebulæ	84-85	Rotation	124
Photography	85-86	Storms and cyclones on the	
Planets	86-88	Sun	124
Solar spectrum in general	88-99	Sun-spots	125-129
Solar absorption	99-100	Telluric Rays	129
Solar atmosphere	100-101	Ultra-Violet	129-180
B lines in the solar spec-		Water in the solar spectrum.	181
trum	101	Wave-lengths	181-182
Bright lines in the solar		White lines	182
spectrum	101-102	Twinkling of stars	182
Chemical effects of solar		Atmospheric and Telluric Spec-	
spectrum	102	tra	188-185
Chromosphere and corona	102-105	Aurora and the Zodiacal Light.	
D lines in the solar spec-		Austrium	148
trum	105	Barium	148-144
Dark lines in the solar spec-		Beryllium or Glucinum	144
trum	105-106	Bismuth	145
Displacement of the solar		Blue Grotto	145
spectrum	106	Borax	145-146
Eclipses of the Sun		Bromine	147-148
Elements in the Sun	111	Cadmium	149
Solar eruptions	111-112	Cæsium	150
Gas spectra in the Sun		Calcium	151-152
•	•	(vii)	
		` ,	

	Pages.		Pages.
Carbon	158-154	Carbon Compounds—Continued.	
Carbon Compounds, general	154-160	Special:	
Special:		Curcumin	169
Acetic Acid	160	Cyanogen	
Acetylene	160-161	Cymene	170
Acid Brown	161	Decay	170
Agarythrine	161	Diamond	170
Albumen	161	Diazo	170
Alcohol	161	Diphenyl	170
Alizarine	161-162	Dipyridene	170
Alkanna	162	Drossera Whittakeri	170
Allyldipropylcarbinol	· 162	Ebonite	171
Alum	162	Eosin	171
Amido-azo-a-naphthalene	162	Ether Vapour	171
Amido-azo-β-naphthalene _	162	Excrements	171
Aniline	162-168	Fast Red	171
Anthracen	168	Fish	171
Anthrapurpurin	168	Flour and Grain	172
Anthrarufin	168	Flowers	172
Aphides	168	Fuchsin	172
Aurin	164	Fungi	172
An Australian Lake	164	Gall	178
Azo-Colors	164	Gelatine	178
Beets	164	Gun-Cotton	173
Benzene	164	H S O ₂ , etc.	178
Biebrich Scarlet	164	Helianthin	178
Bile	164-165	Hematine	178-174
Birds	165	Hemoglobine	174
Bismarck Brown	165	Hoffmann's Violet	174
Blood	165-167	Hydrocarbons	174-175
Bonellia Viridis	167	Hydrobilirubin	175
Brucine	167	Hydrochinon	175
Butter	167	Hydroxyanthraquinone	175
Carbohydrates	167		176
Carmine	167	Iodine Green	176
Caryophyllaces	167	Lamp Black	176
Chinizarin	168	Leaves	
Chinolin	168	Luteïne	176
Chinon	168		
Chotelin	168		
Chromogene	168		
Chrysoidine	168	Methacryl	177
Citracon			177
Coal			
Colein			
Croceine Scarlet			
Croton Acid	169	1 -	
Crystalloids			
Cumana	160		170

### TABLE OF CONTENTS.

	Pages.		Pages.
Carbon Compounds—Continued.		Didymium	209-210
Special:		Diffraction	211
Carbonic Acid	179-180	Discontinuous Spectra	212
Paratoluidine	181	Dispersion Spectra	212-216
Paraxyline	181	Dissociation	216
Pentacrinus	181	Distribution	217
Phenols	181	Double Spectra	217
Picolene	181	Dysprosium	218
Piperidine	181	Electric Spectra	218-225
Plants	181	Emission Spectra	226
Purpurin	181-182	Energy in the Spectrum	227
Pyridine	182	Erbium	228-229
Quinoline	182	Exchanges	230
Raspberry	182	Explosions	230
Rosaniline	182	Flame and Gas Spectra	281-240
Ruberine	182	Fluorescence	
Safranin	188	Fluorine	246
Carbonate of Soda	188	Gadolinite	247
Spongilla Fluviatilis	183	Gallium	248
Sulphide of Carbon	183	Germanium	248
Terebinthine	188	Glass	249
Terpends	184	Gold	250
Tetrahydroquinoline	184	Heat Spectra	
Tourmeline	184	Helium	255
Triphenylmenthane	184	High Altitudes	
Tropsolin	184	Holmium	256
Tropsolin 0 0 0	184	Homologous Spectra	256
Turpentine	184	Hydrogen	
Ultramarine	184	Indigo	261
Urine	185	Indium	
Wine	185	Interference	262
Wood	185	Inversion	
Xantophyll	186	Iodine	
Cerium	186	Iridium	267
Chlorine	187	Iron	268-269
Chlorine Compounds	187-191	Jargonium	270
Chlorophyll	192-194	Lanthanum	270
Chromium	195	Lead	271
Cobalt	196	Light	
Colour	197-199	Lightning. (See Electricity.)	212-210
Cone Spectrum	199	Limits of the Spectrum	278
Constants	200	Lines of the Spectrum	
Copper	201-202	Liquids	
Crystals	201-202	Lithium	276–278 279–280
	208	Longitudinal Rays	219-280
Dark Lines	204-206	, ,	
	206-206	Luminous Spectra	
Davyum	206	Magnesium	
Decipium	207_208	Mane	200~200 287_988

	Pages.		Pages.
Mercury	289	Samarskite	380
Metals	290-294	Scandium	381
Meteorological	295-296	Secondary Spectrum	281
Microscopic Spectra	296	Selenium	• 382
Mineral Waters	297	Silicium	888
Minium	297	Silver	884-386
Molybdenum	298	Sodium	887-379
Mosandrum	298	Strontium	840
Multiple Spectra	298	Sulphur	341-342
Nickel	299	Tellurium	848
Niobium	299	Terbium	343
Nitrogen	800-804	Thallium	3 <b>44</b>
Nomenclature	805	Thulium	345
Optics	306	Tin	845
Osmium	807	Titanium	846
Oxygen	308-810	Uranium	847
Palladium	811	Vanadium	847
Paragenic Spectra	311	Violet and Ultra-Violet	848-850
Philippium		Volcanoes	850
Phosphorescence	312-314	Water Spectra	851-862
Phosphorus		Wave-Lengths	858-857
Platinum	317	Yellow Bodies	857
Polarized Light	818	Ytterbium.	858
Potassium	319~820	Yttrium	359
Pressure	820	Zinc	860
Radiation	321	Zirconium	861
Red End of the Spectrum	322		
Refraction		LIST OF AUTHORS	863
Rhabdophane	326	(With the pages of the preceding	ng Index
Rhodium		on which the titles of their w	_
Rubidium	827	given.)	
Ruthenium		B ,	
Salt (Common)		Number of titles 8	3,829
Samarium		Number of authors	799

### LITERATURE OF THE SPECTROSCOPE.

#### HISTORY.

Arago (Domenique François Jean), 1786-1853. Œuvres complètes, avec Tables, publiées d'après son ordre sous la direction de J. A. Barral. Paris et Leipzig, 1854-'62, 17 vols., ill., 8°.

(Interesting here only in connection with polarized light.)

Barlocci.

(Wrote on the influence of white light.)

Beccaria, 1716-81.

(Wrote on the refraction of rock crystal, about 1750; see Ency. Brit., eighth edition I, 758.)

- Becker (G. F.). Contribution to the History of Spectrum Analysis.

  Amer. Jour. Sci., (8) 16, 892.
- Bérard. Mem. de la Soc. d'Arcueil, 3 (1817); and Biot's Traité de Physique, 4, 600-18, 673-4.

(A full account of Bérard's experiments on the calorific rays of the spectrum.)

- Berthold (G.). Zur Geschichte der Fluorescenz.
  Ann. Phys., u. Chem., 158, 628.
- Biot (J. B.). Traité de Physique expérimentale et mathématique. Paris, 1816, 4 vols., 8°.

- Blair (Dr. Robert), 1787-1829. Edinburgh Transactions, III, 3.

  (He discovered the uses of muriatic acid mixed with antimony in correcting secondary spectra in telescopes.)

  (1 T)

Boscovich (Roger Joseph). Opuscula. Bassano, 1784, 5 vols., 4°. Opera pertinentia ad Opticam et Astronomiam (Astor Library).

Ency. Brit., eighth edition, I, 721-2, 758.

(He made a delicate micrometer with double refraction, about 1777, and observed the so-called Secondary Spectrum, consisting of purple and green light.)

Bouguer (Pierre), 1698-1758. Essai d'Optique, sur la Gradation de la Lumière. Paris, 1729, 8°; ed. La Caille, Paris, 1760, 4°.

Ency. Brit., eighth edition, I, 758-4.

(He published a number of treatises on the gradation of light.)

Brewster (Sir David), 1781-1868. Treatise on Optics. Edinburgh, 1831.

New Analysis of Solar Light, indicating three primary colours, forming coincident spectra of equal length. Edinburgh, 1834.

(See Life of B. by Mrs. Gordon.)

Buffon.

In his "Epoques de la Nature" he describes light and heat as known in his times.)

Delaunay. Notice sur la Constitution de l'Universe. Première Partie: Analyse Spectrale, Annuaire du Bureau des Longitudes, 1869, Paris, 8°.

(A masterly treatise on the subject at that time.)

- Desains (P.), Recherches expérimentales sur les anneaux colorés de Newton. Comptes Rendus, 78, 219-21; Phil. Mag. (4) 47, 236-7.
- Dolland (John), 1706-61. See Proc. Royal Soc., 50 (1757) 733, and Ency. Brit., eighth edition, I, 749-51.

(He discovered that dispersion depends not on the mean refraction but on the constitution of the diaphanous medium.)

- Draper (Henry). Obituary by G. F. Barker in Amer. Jour. Sci. (3) 25, 89.
- Draper (J. W.). Early Contributions to Spectrum Photography. Nature, 10, 243-4.
- Dutirou (l'abbé). Memoire sur la détermination des indices de réfraction des sept raies de Fraunhofer dans une série nombreuse de verres.

Annales de Chimie et de Physique, (8) 28 (1850) 176.

Exner (K.). Die Fraunhofer 'schen Ringe, die Quetelet 'schen Streifen und verwandte Erscheinungen.

Sitzungsber. de. Wiener Akad. 76, II, 522.

Faye. Note sur l'Association nouvellement fondée en Italie sous le titre de "Societa dei Spettroscopisti Italiani." Comptes Rendus, 74, 913-18, 1240-3.

(See Tacchini, Comptes Rendus, 74, 1287.)

- Forbes (James D.). On the Refraction and Polarization of Heat. Edinburgh Trans., 13 (1836), 131-68, 446-72.

- Fraunhofer (Joseph von), 1787–1826. "Bestimmung des Brechungsund Farbenzerstreuungs-Vermögens verschiedener Glasarten in Bezug auf die Vervollkommung achromatischer Fernröhre. Von Jos. Fraunhofer in Benedictbaiern." Denkschriften der k. Akad. der Wissenshaften zu München für die Jahre 1814 and 1815. Band V, 193–226, mit drey Kupfertafeln, München, 1817, 4°. (Fraunhofer's announcement of his discovery of the dark lines of the spectrum of sunlight.)
  - J. von Utschneider, Kurtzer Umriss der Lebensgeschichte des Herrn Dr. J. von Fraunhofer, Munich, 1826.
  - Merz, Das Leben und Wirken Fraunhofer, Landshut, 1865. See Works of Sir David Brewster.
- — . Neue Modificationen des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben, München (no date).

Edinburgh Jour. Science, No. 13, 109, 15, 7, new series No. 13, 101.

- Gerding (Th.). Geschichte der Chemie. Leipzig, 1867, 8°.
- Herschel (A. S.). Progress of Spectrum Analysis. Chem. News, 19, 157; Jour. Franklin Inst., 88, 49, 136.
- Herschel (Sir John Frederick William), 1792-1871. On the Absorption of Light by coloured Media, and on the Colours of the prismatic Spectrum exhibited by certain Flames; with an Account of a ready Mode of determining the absolute dispersive Power of any Medium, by direct experiment. Edinburgh Trans., 9 (1823), 445.

- Herschel (Sir John Frederick William). Homogeneous yellow and orange Spaces in the Spectrum. Phil. Trans., 90 (1800), 255.

- Hoppe-Seyler (F.). Die Spectralanalyse. Ein Vortrag. Berlin, 1869, 8°.
- Hunt (T. Sterry). Chemistry of the heavenly Bodies since the Time of Newton. Proc. Cambridge Philosoph. Soc., 4, 129-139; Amer. Jour. Sci., (3) 23, 123-138; Ann. Chim. et Phys., (5) 28, 105.
- Huyghens (Christian), 1629-95. Opera Varia, Leyden, 1724, 2 vols., 4°. Opera reliqua, Amsterdam, 1728, 2 vols., 4°.
- Jahresbericht der Chemie (Liebig's), Jahre 1863, 113; 1866, 78.
- Johnson (A.). On Newton, Wollaston, and Fraunhofer's Lines. Nature, 26, 572; Beiblätter, 7, 65 (Abs.).
- Kirchhoff (G.). Geschichtliches über Spectralanalyse. Ann. Physik u. Chemie, 118, 94, 102; Phil. Mag., (4) 25, 250.
  - Kopp (H.). Entwickelung der Chemie in der neueren Zeit. München, 1871-3, 8°.
  - Ladd (William). On the Results of Spectrum Analysis as applied to the heavenly bodies. A Lecture delivered before the British Association at the Nottingham Meeting, August 24, 1866. London, 1866, 8°, with photographs of the stellar spectra.

    Chem. News; 14, 178, 199, 209, 235.
  - Lamansky (S.). Geschichtliches über das Wärmespectrum der Sonne. Ann. Phys. u. Chem., **146**, 200, 207, 209.

- Lambert (Johann Heinrich), 1728-77. Photometria. Augsburg, 1760, 8°
- Liveing (G. D.) and Dewar (J.). Note on the History of the Carbon Spectrum. Proc. Royal Soc., 30, 490-4; Beiblätter, 5, 118-22; Nature, 23, 265-6, 338.
- Lloyd (Prof.). Report on Physical Optics. Fourth Rept. British Assoc., 1834, pp. 295-414.
- Malus (E. L.), Paris, 1775–1812. Théorie de la double Réfraction de la Lumière dans les Substances cristallisés, Paris, 1810, 4°. (See Ency. Brit., 8th ed., I, 754, for an account of him.)
- Marie (L'abbé). Nouvelle découverte sur la lumière, pour en mesurer et compter les degrés. Paris, 1700, 8°.

  (Gave the first ideas about photometry.)
- Maskelyne. Account of a new Instrument for measuring small Angles, called the Prismatic Micrometer. Phil. Trans., 47 (1777), 799.
- Mayer (A. M.). The History of Young's Discovery of his Theory of Colour. Phil. Mag., (5) 1, 111-127.
- Meldola (R.). Contributions to the chemical History of the aromatic Derivatives of Methane. Jour. Chem. Soc., 41, 187-201.
- Melloni (Macédoine). See Annales de Chimie et de Physique, **53** (1833), 5-72; do., **48**, 198, Recherches sur plusieurs phénomènes entreprises au moyen du thermomultiplicateur; do., **48**, 385; do., **55**, 337; do., **60**, 402, 410-18; do., **61**, 411; do., **65**, 5; do., **68**, 107; do., **70**, 435; do., **72**, 40, 334; do., **74**, 18, 331; do., **75**, 337.

(Melloni was famous chiefly for his thermomultiplier.)

- Miller (William Allen). Recent Spectrum Discoveries, 1863. Jour. Franklin Inst., 76, 29; Chem. News, 1863.
- Morichini (Domenico Pino), 1773-1830. Sopra la forza magnetizzatrice del lembo estremo del colore violetto. Milano, 1802.

  (A collection of his works was published by Pirotta of Milan in 1836.)
- Mousson (A.). Resumé de nos connaissances actuelles sur le spectre. Archives de Genève (1861).
- Newton (Sir Isaac). Collected Works. Optics, Chap. II, sections 1-3; vol. 3 of Latin edition, London, 1779-85, 5 vols., 4°.
- Nobili, worked with Melloni, above.

- Poggendorff (J. C.). Handwörterbuch der exacten Wissenschaften. Leipzig, 1858-63, 2 vols., lex. 8°.
- Powell (Rev. Baden). Report on Radiant Heat. British Association Repts., 1, 295.
- Priestley (Dr. Joseph). An Account of all the prismatic Colours, made by electrical Explosions on the Surface of Pieces of Metal. Phil. Trans., 58 (1768), 68.
- Ritter.
- (In 1801 he exposed muriate of silver in various parts of the spectrum and found that the action was least of all in the red, greater in the yellow, and greatest beyond the visible violet rays. Forbes, in Ency-Brit., 8 ed., 16, 594.)
- Robison (John). A System of mechanical Philosophy, with notes by David Brewster. London, 1822, 4 vols., 8°. See chapter on the telescope, III, 403-522.
- Rood (O. N.). Newton's Use of the Term Indigo with Reference to a Color of the Spectrum. Amer. Jour. Sci., (3) 19, 135-7; Beiblätter, 4, 460 (Abs.).
- Rowland (H. A.). On recent Progress in photographing the solar Spectrum. Rept. British Assoc. (1884), 635.
- Rudberg (Fr.). Dispersion de la lumière. Ann. de Chimie et de Physique, 36, 439.
- Ruprecht (Rudolph). Bibliotheca chemica et pharmaceutica. Leipzig, 1858-70, 8°.
- Rutherfurd (L. M.). Construction of the Spectroscope. Amer. Jour. Sci., (3) 39, (1869), 129. Note by Ditscheiner in Sitzungsber. d. Wiener Akad., 52 II, 542, 563-8.
- Schwerd (F. M.). Die Beugungserscheinungen aus dem Fundamentalgesetz der Undulationstheorie analytisch entwickelt und in Bildern dargestellt. Mannheim, 1835, 8°.
- Secchi (A.). Le Soleil. Exposé des principales Découvertes modernes sur la Structure de cet Astre. Paris, Gauthier-Villars, 1870. (See Nature, 13, 188.)

#### LITERATURE OF THE SPECTROSCOPE.

- Seebeck (T. J.). Berlin, 1770–1831.

  Abhandlungen der Berliner Akad., 1818–19, 306; Edinburgh Jour. Scl.,

  1 (1824), 358.
- Stewart (B.). Some Points in the History of Spectrum Analysis. Nature, 21, 35.
- Stieren (E.). Die ersten Beobachtungen über Spectralanalyse veröffentlichte Alter. Ann. Phys. u. Chem., 132, 469.
- Stokes (G. G.). Early History of Spectrum Analysis. Nature, 13, 188-9.

(His discovery of fluorescence.)

- Swan (W.). On the Prismatic Spectra of the Flames of Compounds of Carbon and Hydrogen. Edinburgh Trans., 21 (1857), 411-29; Ann. Phys. u. Chem., 100, 306.
- Tarry (H.). Report on the Researches and Experiments made by the Spectroscopic Association of Italy. (From Les Mondes of March 21, 1872.) Chem. News, 25 (1872), 179.
- Thalén (Robert). Om Spektralanalys, med en Spektralkarte. Upsala Universitets Aarpkrift. Upsala, 1866, 8°.
- Wollaston (Dr.), 1766-1828. A Method of examining refractive and dispersive powers by prismatic Reflection. Phil. Trans. (1802), 365-380.
  - (His own account of his discovery of five fixed lines of the solar spectrum, which he said he could not explain.)
- Wünsch (Christian Ernst), 1730-1810. Untersuchungen über die verschiedenen Farben des Lichtes. Leipzig, 1792, 8°, with plates.
- Wurtz (A.). Histoire des Doctrines chimiques depuis Lavoisier jusqu'à nos jours. Paris, 1869, 8°.

Young (Dr. Thomas). Elements of Natural Philosophy, Vol. 1, 786, plate 29.

(Gives a small colored drawing of the spectrum as seen by Dr. Wollaston and himself, with the yellow line.)

Life by Dr. G. Peacock, London, 1855, 8°.

Zantedeschi. Ricerche sulla Luce, Venezia, 1846, 8°; Chap. III. (See Edinburgh Jour. Sci., n. s., 5 (1830), 76, repeating experiments of Barlocci and similar to those of Morichini.)

#### BOOKS.

- Agnello (A.). Eclisse totale del 22 dic. 1870. Palermo, 1870.
- Angström (A. J.). Recherches sur le Spectre normal du Soleil. Upsala, W. Schultz, 1868. Avec Atlas et 6 planches.
- Becquerel (Edm.). La Lumière, ses Causes et ses Effets. 2 vols., 8°, Paris, 1867-1868, 16 fr.
- Blaserna (P.). Sulla polarizzazione della Corona solare. Palermo, 1871, 8°.
- Capron (J. R.). Photographed Spectra. 136 photographs of spectra. London, Spon, 1877, 8°.

  (See review of, in Chem. News, 37 (1878), 118.)
- Champion (P.), Pellet (H.), et Grenier. De la Spectrométrie, Spectromètre. Paris, 1873, 8°.
- Draper (Henry). On diffraction Spectrum Photography. New Haven, 1873, 8°.
- Grandeau (L. N.). Instruction pratique sur l'analyse spectrale. Paris, 1863, 8°, 3 fr.
- Hirn (G. A.). Flamme en combustion et Température du Soleil. Paris, 1873, 8°.
- Hoppe-Seyler (F.). Handbuch der physiologisch-chemischen Analyse. 3. Auflage, Berlin, 1870, 8°.

- Hough (G. W.). The total Solar Eclipse of Aug. 7, 1869. Albany, N. Y., J. Munsell, 1870, 8°.
- Kirchhoff (G.). The Solar Spectrum and Spectra of the Chemical Elements. London, Macmillan, 1861-2, with plates.

(Translations of the original communications to the Academy of Sciences of Berlin.)

- Lecoq de Boisbaudran (F.). Spectres Lumineux. Paris, 1874, 8°, avec atlas.
- Lielegg (A.). Die Spectralanalyse. Weimar, Voigt, 1867.
- Lockyer (J. N.). The Spectroscope and its Applications. London, Macmillan, 1873, 8°.
- Lommel (E.). The Nature of Light. New York, Appleton, 1876, 8°.
- Lorscheid (J.). Die Spectralanalyse. Münster, 1870, 8°.
- Mac Munn (C. A.). The Spectroscope. London, Churchill, 1880.
- Proctor (R. A.). The Spectroscope. London, 1877, 8°.
- Radau (R.). Le Spectre solaire. Paris, 1862, 18°.
- Respighi (L.). Osservazioni spettroscopiche del Bordo e della Protuberanze Solari. Roma, 1871, 8° (with a plate).
- Rood (O. N.). Modern Chromatics, with 130 illustrations. New York, Appleton, 1879.
- Roscoe (H. E.). Spectrum Analysis. London, Macmillan, Fourth Edition, 1886, 8°.
  - (With a short bibliography of the principal works relating to the spectroscope. One of the best text-books, if not the best, on the subject.)
- Ruprecht (R.). Bibliotheca chemica et pharmaceutica. Leipzig 1858-70, 8°.
- Sands (B. F.) and others. United States Naval Observatory Reports on the total Eclipse of the Sun, Aug. 7, 1869. Government Printing Office, Washington, D. C., 1869.
- Schellen (H.). Die Spectralanalyse. 2 Auflage, Braunschweig, 1871, 8°. (Translated by J. and C. Lassell, London, 1872; reviewed by Roscoe in Nature, 1, 503, and by others in Chem. News, 22, 284; 25, 80.)

- Secchi (A.). Sulle ultime scoperte spettroscopiche nel Sole. Roma, Type delle Belle Arti, 1869.
- Simmler (R. Th.). Beiträge zur chemischen Analyse durch Spectralbeobachtungen. Chur, 1861, 8°.
- Smyth (C. Piazzi). Madeira Spectroscopic. Edinburgh, W. and K. Johnston, 1881, 8°. (Spectroscopic observations made at Madeira.)
  - Stein (Th.). Das Licht im Diensie der wissenchaftlichen Forschung. Leipzig, 1877, 8°.
  - Stokes (G. G.). Mathematical and physical Papers, reprinted from the original Journals and Transactions, with additional Notes by the Author. Cambridge, University Press, 1880–1883, 2 vols., 8°.
  - Thalén (R.). Om Spektralanalys, exposé, med en Spektralkarte. Upsala Universitets Årsskrift, 1866, 8°.
  - Valentin (G.). Der Gebrauch des Spectroskops zu physiologischen und ärztlichen Zwecken. Leipzig und Heidelberg, Winter 'sche Buchhandlung, 1863, 8°.
  - Vierordt (K.). Anwendung des Spectralapparates. Tübingen, 1871, 8°.
  - Vogel (H. W.). Practische Spectral-Analyse irdischer Stoffe. Nordlingen, 1877, 12°.
  - Watts (W. M.). Index of Spectra. London, Gillman, 1872, 8°.
  - Wrottesley (Lord). Applications of Spectrum Analysis. London, 1865, 8°,
  - Young (C. A.). The Sun. New York, 1881, 8°.

#### APPARATUS.

#### ABSORPTION SPECTROSCOPE.

Sur un nouveau spectroscope d'absorption.

Thierry (Maurice de). Comptes Rendus, 101 (1885), 811-818; Jour. Chem. Soc., 50 (1886), 118 (Abs.).

#### ACTINIC BALANCE.

(See Spectro-bolometer.)

#### ALKALOID REACTIONS.

Alcaloidreactionen im Spectralapparate.

Hock (K.). Arch. f. Pharm., 19, 858; Ber. chem. Ges., 14, 2844 (Abs.).

#### ASTRONOMICAL SPECTROSCOPES,

(See Spectro-telescopes.)

#### AUTOMATIC SPECTROSCOPES.

A new automatic motion for the spectroscope.

Baily (W.). Phil. Mag., (5) 4, 100-104.

An automatic spectroscope.

Browning (J.). Chem. News, 20 (1870), 222; 21 (1870), 201.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 47-48.

Automatic spectroscope.

Proctor (R. A.). Monthly Notices Astron. Soc., 31 (1871), 205-208.

Automatic spectroscope for Dr. Huggins's sun observations.

Grubb (H.). Monthly Notices Astron. Soc., 31 (1871), 86.

Automatic spectroscope.

* Reynolds (J. E.). Chem. News, 23 (1871), 118.

Universal automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 32 (1872), 218.

Large automatic spectroscope.

Browning (J.). Monthly Notices Astron. Soc., 33 (1873), 410.

Ueber Spectralapparat mit automatischer Einstellung.

Krüss (H.). Z. Instrumentenkunde, 5 (1885), 181-191, 232-244; Beiblätter, 9 (1885), 628 (Abs.).

#### BESSEMER-FLAME SPECTROSCOPES.

Examination of the Bessemer flame with the spectroscope.

Silliman (J. M.). Amer. Jour. Sci. (2), 50, 297-307; Phil. Mag., 41, 1-12; Jour. Chem. Soc. (2), 9, 97-98 (Abs.).

Examination of the Bessemer flame with coloured glasses and with the spectroscope.

Parker (J. S.). Chem. News, 23 (1871), 25-26; Jour. Chem. Soc. (2), 9, 98 (Abs.).

Spectroscope pour les hauts-fourneaux et pour le procédé Bessemer.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1005; Jour. Chem. Soc., 50 (1886), 190 (Abs.).

#### USE OF THE BLOWPIPE.

Emploi du chalumeau à chlorhydrogène pour l'étude des spectres. Diacon. Comptes Rendus, 56, 658.

#### BOLOMETER.

(See Spectro-bolometer.)

#### BÖRSCH-APPARATUS.

Der Spectralapparat von Börsch zugleich Reflexions-Goniometer. Börsch. Ann. Phys. u. Chem., 129, 384.

#### COLLIMATORS.

Sur un nouveau collimateur.

Thollon (L.). Comptes Rendus, 96, 642-643; Nature, 27, 476 (Abs.); z. Instrumentenkunde, 3, 180-181 (Abs.); Beiblätter, 7, 285 (Abs.).

An easy method of adjusting the collimator of a spectroscope.

Schuster (A.). Proc. Physical Soc., 3, 14-17; Phil. Mag., (5) 7, 95-98; Beiblätter, 354 (Abs.).

Use of a collimating eye-piece in spectroscopy.

Liveing (G. D.) and Dewar (J.). Proc. Cambridge Phil. Soc., 4, 886; Beiblätter, 7, 892 (Abs.).

#### COMPENSATING EYE-PIECE.

Construction of a compensating eye-piece.

Proc. Royal Soc., 21, 426-442.

#### CYLINDRICAL LENSES.

Zweckmässigkeit cylindrischer Linsen bei Spectralapparaten.

Schönn (L.). Ann. Phys. u. Chem., 144, 884.

#### DENSIMETER.

Optical densimeter for ocean water.

Hilgard (J. E.). United States Coast Survey Rep't (1877), 108-113; Z. Instrumentenkunde, 1, 206-207 (Abs.); Beiblätter, 5, 658 (Abs.).

#### DEVIATION IN SPECTROSCOPES.

Spectroskop mit constanter Ablenkung.

Goltzsch (H.). Carl's Repert., 18, 188-190; z. analyt. Chem., 21, 556 (Abs.).

Ueber ein einfaches Mittel die Ablenkung oder Zerstreuung eines Lichtstrahles zu vergrößern.

Kohlrausch (F.). Ann. Phys. u. Chem., 143, 147-149.

Die kleinste Ablenkung im Prisma.

Lommel (E.). Ann. Phys. u. Chem., 159, 829.

Die kleinste Ablenkung im Prisma.

Berg (F. W.). Ann. Phys. u. Chem., 158, 651.

Démonstration élémentaire des conditions du minimum de déviation d'un rayon par le prisme.

Hesehus (N.). Jour. soc. phys. chim. russe, 12, 226-231; Jour. de Phys., 10, 419-420 (Abs.); Beiblätter, 6, 227 (Abs.).

Nouvelles démonstrations des conditions du minimum de déviation d'un rayon dans le prisme.

Kraiewitch (K.). Jour. soc. phys. chim. russe, 16, 8-18. Notes sur cet article, par Wolkoff, 16, 174.

Ueber die Schwankungen in der chemischen Wirkung des Sonnenspectrums und über einen Apparat zur Messung derselben.

Vogel (H.). Ber. chem. Ges., 7, 88-92; Jour. Chem. Soc., (2) 12, 424 (Abs.); Amer. Jour. Sci., (3) 7, 414-415.

Das Minimum der Ablenkung eines Lichtstrahls durch ein Prisma.

Kessler (F.). Ann. Phys. u. Chem., n. F. 15, 838-884.

#### DIFFRACTION SPECTROSCOPES.

(See "Gratings.")

#### DIRECT-VISION SPECTROSCOPES.

Nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, **86**, 329-331; Beiblätter, **2**, 253-254 (Abs.).

Théorie du nouveau spectroscope à vision directe.

Thollon (L.). Comptes Rendus, 86, 595; Beiblätter, 2, 258.

Nouveau prisme composé, pour spectroscope à vision directe, de très grande pouvoir dispersif.

Thollon (L.). Comptes Rendus, 88, 80-82; Beiblätter, 3, 855.

- Sur l'emploi de prismes à liquide dans le spectroscope à vision directe. Zenger (C. V.). Comptes Rendus, 92, 1508-1504.
- Le spectroscope à vision directe appliqué à l'astronomie physique.

  Zenger (C. V.). Comptes Rendus, 93, 429-482; Beiblätter, 5, 793
  (Abs.).
- Le spectroscope à vision directe, à spath calcaire.

Zenger (C. V.). Comptes Rendus, 93, 720-722; Beiblätter, 6, 21 (Abs.); Z. Instrumentenkunde, 1, 268-266.

Les observations spectroscopiques à la lumière monochromatique.

Zenger (C. V.). Comptes Rendus, 94, 155-156; Chem. News, 45, 86-87 (Abs.); Jour. Chem. Soc., 42, 677 (Abs.); Amer. Jour. Sci., (3) 23, 322-323 (Abs.); Beiblätter, 6, 878; Z. Instrumentenkunde, 2, 114 (Abs.).

Spectroscope à vision directe très puissant.

Zenger (U. V.). Comptes Rendus, 96, 1089-1041; Nature, 27, 596
 (Abs.); Chem. News, 47, 213 (Abs.); Beiblätter, 7, 458-457 (Abs.);
 Amer. Jour. Sci., (3) 25, 469; Z. analyt. Chem., 22, 540-541 (Abs.).

- Spectroscope à vision directe pour observation des rayons ultra-violettes. Zenger (C. V.). Comptes Rendus, 98, 494.
- Neues geradsichtiges Taschenspectroskop.

Hilger (A.). Beiblätter, 1, 124-125.

Spectroscopes à vision directe et à grande dispersion.

Thollon (L.). Jour. de Physique, 8, 78-77.

Note on a direct-vision spectroscope on Thollon's plan, adapted to laboratory use and capable of giving exact measurements.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 482-488; Beiblätter, 3, 709 (Abs.).

Ein Spectroskop à vision directe mit nur einem Prisma.

Emsmann (H.). Ann. Phys. u. Chem., 150, 686.

A direct-vision compound prism by Merz; with dispersion almost double that of flint glass.

Gassiot. Proc. Royal Soc., 24, 33.

Combinazioni spettroscopiche a visione diretta.

Riccó (A.). Mem. Spettr. ital., 8, 21-34.

Ueber ein verbessertes Prisma à vision directe.

Braun (C.). Ber. aus Ungarn, 1, 197-200.

Note on a new form of direct-vision spectroscope.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 41 (1886), 449–452.

#### DISPERSION APPARATUS.

Das Dispersionsparallelopiped und seine Anwendung in der Astrophysik.

Zenger (K. W.). Sitzungsber d. Böhm. Ges. (1881), 416-429; Beiblätter, 6, 286 (Abs.).

Sur un spectroskope à grande dispersion.

Cornu (A.). Jour. de Phys., 12 (1883), 58-57; Amer. Jour. Sci., (3) 25, 469.

Sur un spectroscope à grande dispersion.

Cornu (A.). Séances de la Soc. franç. de Phys., 1882, 165-170; Beiblätter, 7, 285 (Abs.); 8, 33 (Abs.).

Bemerkungen über die Einrichtung eines Dispersiometers.

Mousson (A.). Ann. Phys. u. Chem., 151, 187-145.

#### ECLIPSE APPARATUS.

(See "Solar and Stellar App.")

#### EFFICIENCY OF SPECTROSCOPES.

Efficiency of different forms of the spectroscope.

Pickering (E. C.). Amer. Jour. Sci., 95, 801, and (8) 22, 897.

#### ELECTRIC APPARATUS.

Tube spectro-électrique destiné à l'observation des spectres des solutions métalliques.

Delachanal (B.) et Mermet (A.). Comptes Rendus, 79, 800; 81, 726.

An arrangement of the electric arc for the study of the radiation of vapours, together with preliminary results.

> Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 119-122; Nature, 26, 218-214 (Abs.); Beiblätter, 6, 984-986 (Abs.); Jour. Chem. Soc., 44, 262-268 (Abs.).

On the use of most electrodes.

Hartley (W. N.). Chem. News, 49, 149; Beiblätter, 8, 581.

Apparat zur leichten Darstellung des langen electrischen Spectrums. Müller (J.). Ann. Phys. u. Chem., 130, 187.

#### ERYTHROSCOP.

Erythroscop und Melanoskop.

Lommel (E.). Ann. Phys. u. Chem., 143, 483-490.

#### EUTHYOPTIC.

Das einfache euthyoptische Spectroskop.

Kessler (F.). Ann. Phys. u. Chem., 151, 507.

#### FINDER.

A reliable finder for a spectro-telescope.

Winlock (Prof.). Jour. Franklin Inst., (8) 60, 295.

#### FIXATOR.

Der Fixator, ein Ergänzungsapparat des Spectrometers. Carl's Repert., 17, 645-651; Jour. de Phys., (2) 1, 198-199 (Abs.).

### FLAME APPARATUS.

Spectralapparat un den wärmeren oder kälteren Theile der Flammen beobachten zu können. (For Bessemer flame apparatus look above under Bessemer.)

Salet (G.). Ber. chem. Ges., 3 (1870), 246.

#### FLUORESCENT EYE-PIECES.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Jour. de Phys., 3 (1874), 258.

Une spectroscope pour étudier les phénomènes de la fluorescence.

Lamansky (S.). Jour. de Phys., 8 (1879), 411.

Some modifications of Soret's fluorescent eye-piece.

Liveing and Dewar. Proc. Cambridge Phil. Soc., 4, 342-348.

Spectroscope à oculaire fluorescent.

Manet. Ann. Chim. et Phys., (5) 11, 72.

Spectralapparat mit fluorescirendem Okular für den ultravioletten Theil des Spectrums J.

Reye (Th.). Ann. Phys. u. Chem., 149, 407.

Spectroscope à oculaire fluorescent.

Soret (J. L.). Archives de Genève, (2) 49, 838-348; Ann. Phys. u. Chem., 152, 167-171; Jubelband, 407-411; Amer. Jour. Sci., (8) 8, 64-65.

Spectroscope à oculaire fluorescent; seconde note.

Soret (J. L.). Arch. de Genève, (2) 57, 819-883; Ann. Chim. et Phys., (5) 11, 72-86; Amer. Jour. Sci., (3) 14, 415-416 (Abs.); Beiblätter, 1, 190-192 (Abs.).

#### FULGATOR MODIFIÉ.

Nouveau tube spectro-électrique (fulgator modifié).

Delachanal et Mermet. Comptes Rendus, 81, 726.

#### GELATINE LEAVES.

Gefärbte Gelatinblättchen als Objecte für das Spectroscop.

Lommel (E.). Ann. Phys. u. Chem., 143, 656.

#### GRATINGS.

Preliminary notice of the results accomplished in the manufacture and theory of gratings for optical purposes.

Rowland (H. A.). Johns Hopkins Univ. Circular (1882), 248-249;
Phil. Mag., (5) 13, 469-474;
Nature, 26, 211-213;
Amer. Jour. Sci., (3) 24, 63 (Abs.);
Observatory (1882), 224-228;
Z. Instrumentenkunde, 2, 304 (Abs.).

2 т

Or states precings for option purposes.

Lowend Z. A., Amer Jone Sch. F. 28 F.-W. Phil. May. T. 16 17-101 Belliamen 7 80-802 Aug. Z. Instrumentalismine. 4 15-151 Aug. Jone to Phys. 2 2 154 Aug.

# Correi difference gradings.

Gameroux 2. 7., Proc. Prysical Soc. 5 561-528. Phil. Mag. 7. 15 414-429. Amer. Jone Soc. 7 26 C. Alm. Bellikhur. 8, 14 "Ann.," Jone to Phys., 2 2 155-154. Alm. ..

Remerks on the above by Bowland H. A., Arme, June, Sci., I. 26 216; Pall, Mag., 15 16 215; Bellidsten, S. 26 [Aim. : June, de Pays. [2] 3, 186-185. Aim.;

Concert gratings for giving a diffraction spectrum.

Boward H. A. Sature 27. Vis.

The spectra formed by curved diffractive gratings.

Belly W., Proc. Physical Soc., 5, 181-185; Phil. Mag., 5, 15, 181-197;
 Berthitter, 7, 465-89, 'Ale., ; Jour. de Phys., 2, 2, 182-154;
 Chem. News, 47 (1883), 54.

Notes on diffraction gratings.

Biake 'J. M. j. Amer. Jour. Sci., (2) 8, 23-29.

Optische Experimentaluntersuchungen über Beugungsgitter.

Quincke (G.). Ann. Phys. u. Chem., 146, 1-65.

Note on the use of a diffraction grating as a substitute for the train of prisms in a solar spectroscope.

Young (C. A.). Amer. Jour. Sci., (3) 5, 472-473; Phil. Mag., (4) 46, 87-88; Ann. Phys. u. Chem., 152, 368 (Abs.).

Preliminary note on the reproduction of diffraction gratings by means of photography.

Strutt (J. W.). Proc. Royal Soc., 20, 414-417; Phil. Mag., (4) 44,
 392-394; Amer. Jour. Sci., (3) 5, 216 (Abs.); Ann. Phys. u. Chem.,
 152, 175-176 (Abs.).

On the manufacture and theory of diffraction gratings.

Rayleigh (Lord). Phil. Mag., (4) 47, 81-93, 193-205.

On copying diffraction gratings.

Bayleigh (Lord). Phil. Mag., (5) 11, 196-205.

On the determination of the coefficient of expansion of a diffraction grating by means of the spectrum.

Medenhall (T. C.). Amer. Jour. Sci. (8) 21, 280-282.

Use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-108.

Sur les réseaux métalliques de M. Rowland.

Mascart. Soc. franç. de Phys. (1882), 282-288; Jour. de Phys., (2) 2, 5-11; Beiblätter, 7, 466-468 (Abs.).

Sur la théorie des réseaux courbes.

Sokoloff (A.). Jour. soc. phys. chim. russe, 15, 298-805.

On a theorem relating to curved diffraction gratings.

Baily (W.). Phil. Mag., (5) 22 (1886), 47-49.

#### HAND-SPECTROSCOPE.

# Handspectroskop.

Simmler. Jour. prackt. chem., 90, 299; Ann. Phys. u. Chem., 120, 623.

#### HELPS.

Ein neuer Hülfsapparat zur Spectralanalyse.

Schultz (H.). Pfluger's Arch. f. Physiol., 28, 197-199; Ber. chem. Ges., 15, 2754 b (Abs.); Beiblätter, 6, 674 (Abs.).

Ueber einige physikalische Versuche und Hülfseinrichtungen.

Z. Instrumentenkunde, 3, 888-892; Beiblätter, 8, 220 (Abs.).

## INDEX.

Selbstleuchtender Index im Spectroskop.

Sundell (A. F.). Astronom. Nachr., 102, 90; Beiblätter, 6, 876-877 (Abs.); Z. Instrumenten., 2, 422 (Abs.).

## INTERFERENCE APPARATUS.

Sur les phénomènes d'interférence produits par les réseaux parallèles, interférence-spectromètre.

> Crova (A.). Comptes Rendus, 72, 855-858, 74, 982-986; Ann. Chim. et Phys., (5) 1, 407-482.

Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Mascart. Jour. de Phys., 1 (1872), 177.

#### KOLORIMETER.

Dr. von Konkoly's Spectralapparat in Verbindung mit einem Kolorimeter.

Gothard (E. von). Centralzeitung für Optik und Mechanik, 4, 241-248.

#### LAMPS.

Ueber Lampen für monochromatisches Licht.

Laspeyres (H.). Z. Instrumenten., 2, 96-99; Beiblätter, 6, 480.

Un illuminateur spectral.

Le Roux (F. P.). Comptes Rendus, 76, 960, 998-1000; Chem. News, 27 (1873), 233.

Illumination des corps opaques.

Lallemand (A.). Comptes Rendus, 69, 192; 78, 1272.

Spectralilluminator.

Jahresber. d. Chem. (1873), 147.

Illumination of spectroscope micrometers.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250.

End-on in place of transverse illumination in private spectroscopy.

Smyth (Piazzi). Chem. News, 39 (1879), 145, 166, 188; Nature, 19, 400 (Abs.).

Des minima produits, dans une spectre calorifique, par l'appareil réfringent et la lampe qui servent à la formation de ce spectre.

Aymonnet et Maquenne. Comptes Rendus, 87, 494.

Spectre calorifique du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

On an improvement of the Bunsen burner for spectrum analysis.

Kingdon (F.). Chem. News, 30, 259.

Sar l'emploi de la lumière Drummond.

Debray (H.). Ann. Chim. et Phys., (8) 65, 381.

Note on the Littrow form of spectroscope.

Brackett (C. F.). Amer. Jour. Sci., (8) 24, 60-61; Beiblätter, 6, 875-876 (Abs.).

The monochromatic lamp.

Brewster (Sir D.). Trans. Edinburgh Royal Soc., 1822.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-98.

Relation between radiant energy and radiation in the spectrum of incandescence lamps.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 37 (1884), 157-173.

Ein einfacher Brenner für monochromatisches Licht.

Noack. Z. zur Förderung des physischen Unterrichts, 2, 67-69; Beiblätter, 9 (1885), 739 (Abs.).

Natriumlampe für Polarizationsapparate.

Landolt (H.). Z. Instrumentenkunde, 4 (1884), 890; Beiblätter, 8, 839 (Abs.).

FOR MAGNETIC SPECTRA.

Fixing and exhibiting magnetic spectra.

Mayer (A. M.). Jour. Franklin Inst., 91, 855.

## MEASURING APPARATUS.

Eine vergleichbare Spectralscale.

Weinhold (A.). Ann. Phys. u. Chem., 138, 417, 434; Jahresber. d. Chemie (1869), 175.

Glass reading-scale for direct-vision spectroscopes.

Proctor (H. R.). Chem. News, 27 (1878), 149; Nature, 6, 473.

Measurement of faint spectra.

Proctor (H. R.). Nature, 6, 534.

Spectroscopic scale.

Capron's Photographed Spectra. London, 1877, p. 17.

Measuring scales for pocket spectroscopes.

Herschel (A. S.). Nature, 18, 300-301; Beiblätter, 2, 560-561 (Abs.).

New form of measuring apparatus for a laboratory spectroscope.

Reynolds (J. E.). Scientific Proc. Dublin Soc., new ser., 1, 5-9; Phil. Mag., (5) 5, 106-110; Chem. News, 37 (1878), 115-116.

Messung des Brechungesexponenten während des Unterrichtes.

Kurz (A.). Carl's Repert., 18, 190-192.

Mesure des indices de réfraction des liquides à l'aide des lentilles formées des mêmes.

Piltchikoff. Jour. soc. phys. chim. russe, 13, 890-410; Beiblätter, 7, 189-190 (Abs.); Jour. de Phys. (2) 1, 578-579 (Abs.).

Eine Interferenz-Scala für das Spectroskop.

Müller (J.). Dingler's Jour., 199, 188-145.

Combination der Interferenz-Scala mit der photographischen Spectral-Scala.

Müller (J.). Dingler's Jour., 199, 268-271.

#### FOR METALLIC SPECTRA.

Apparat zur Objectivdarstellung der Metallspectren.

Edelmann (Th.). Ann. Phys. u. Chem., 149, 119-122; Chem. Cental-blatt (1872), 691; Jour. Chem. Soc., (2) 11, 461 (Abs.).

## METEOROLOGICAL. '

A meteorological spectroscope.

Donelly (Col. J. F.). Nature, 26, 501; Beiblätter, 7, 25 (Abs.); Jour. de Phys., (2) 3, 44, (Abs.).

(See Rain-Band Spectroscope, below.)

#### SPECTRO-MICROMETERS.

Illumination of spectroscope micrometers.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250.

A convenient eye-piece micrometer for the spectroscope.

Rood (O. N.). Amer. Jour. Sci., (8) 6, 44-45; Phil. Mag., (4) 46, 176.

Direct-vision micrometer for pocket spectroscopes.

Proctor (H. R.). Chem. News, 27 (1878), 150.

A new form of micrometer for use in spectroscopic analysis.

Watts (W. M.). Proc. Physical Soc., 1, 160-164; Phil. Mag., (4) 50, 81-85; Ann. Phys. u. Chem., 156, 318-318; Chem. News, 32 (1875), 14.

MICRO-SPECTROSCOPES. (SPECTRUM-MICROSCOPES.)

Some technical applications of the spectrum-microscope.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 9 (1869), 358-383; Dingler's Jour., 198, 243-254, 334-348.

A new and improved microscope spectrum apparatus.

Sorby (H. C.). Monthly Microscop. Jour., 13, 198-208.

A new micro-spectroscope, and on a new method of printing a description of the spectra seen with the spectrum microscope.

Sorby (H. C.). Chem. News, 15, 220.

Use of the micro-spectroscope in the discovery of blood-stains. Herepath (W. Bird). Chem. News, 17, 118, 128.

Spectrum analysis as applied to microscopic observation. Suffolk (W. T.). Chem. News, 29 (1874), 195.

Binoculares Spectrum-Mikroscop.

Jahresber. d. Chemie, (1869), 175.

New arrangement of a binocular spectrum-microscope.

Crookes (W.). Proc. Royal Soc., 17, 448.

Ueber ein Polari-Spectrum-Mikroscrop, mit Bemerkungen über das Spectrumocular.

Rôllett (A.). Z. Instrumentenkunde, 1, 866-872; Beiblätter, 6, 229-280 (Abs.); Z. analyt. Chemie, 21, 554-555 (Abs.).

Mikrochemische Reactionsmethoden im Dienste der technischen Microscopic.

Tschirch (A.). Generalversammlung d. deutsch. Apotheker Ver. 1888; Archiv f. Pharm., (8) 20, 801-812; Jour. Chem. Soc., 44, 876-878 (Abs.).

#### MINERALOGICAL SPECTROSCOPE.

The spectroscope applied to mint-assaying.

Outerbridge (A. E.). Jour. Franklin Inst., 98, 276; Jahresber. d. Chemie, (1868), 180.

## MIRRORS.

Sur la transparence actinique de quelques milieux et en particulier sur la transparence actinique des miroirs de Foucault et leur application en photographie.

Chardonnet (de). Jour. de Phys., (2) 1, 305-312; Comptes Rendus, 94, 1171.

Miroir tremblant pour la recomposition des couleurs du spectre. Luvini (J.). Les Mondes, 43, 427-429; Beiblätter, 1, 556 (Abs.).

Miroir tournant pour la recomposition de la lumière spectrale. Lestrade (Lavaut de). Les Mondes, 44, 416-417.

Neues Spiegelprisma mit konstanten Ablenkungswinkeln. Absteck ganzer und halber rechter Winkel mit den Wollaston'schen Spiegelprisma

Bauernfeind (C. M.). Ann. Phys. u. Chem., 134, 169-172.

## NEW SPECTROSCOPE.

Un nouveau spectroscope.

Govi (S. G.). Chem. News, 52 (1885), 201 (Abs.); Comptes Rendus, 101 (1885).

Ueber ein neues Spectroskop.

Gothard (E. von). Ber. aus. Ungarn, 2 (1884), 263-265; Beiblätter, 11 (1887), 87 (Abs.).

#### OPTOMETER.

Sur un optomètre spectroscopique.

Zenger (C. V.). Comptes Rendus, 101 (1885), 1003; Amer. Jour. Sci., (3) 31, 60.

## OVERLAPPING SPECTROSCOPE.

An overlapping spectroscope.

Love (J.). British Assoc. Rept. (1881), 564; Beiblätter, S.

## OXYHYDROGEN APPARATUS.

Production of spectra by the oxyhydrogen flame.

Marvin (T. H.). Phil. Mag., (5) 1, 67-68; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

# PHOSPHORESCENT EYE-PIECE.

Spectroscop mit phosphorescirendem Ocular.

Lommel (E.). Ann. Phys. u. Chem., n. F. 20, 847.

## PHOSPHOROGRAPHIES.

Sur les phosphorographies du spectre solaire.

Becquerel (E.). Jour. de Phys., 11 (1882), 189.

Phosphorographies du spectre solaire infra-rouge.

Becquerel (H.). Comptes Rendus, 96 (1888); Amer. Jour. Sci., (3) 25, 230.

Phosphorograph of the spectrum.

Draper. Amer. Jour. Sci., (8) 21, 171.

Phosphorographie, angewandt auf die Photographie des Unsichtbaren.

Zenger (K. V.). Comtes Rendus, 103 (1886), 454-456; Beiblätter, 11 (1887), 94 (Abs.).

## PHOTOGRAPHIC SPECTROSCOPY.

Notice imprimée sur les effects chimiques des radiations et sur l'emploi qu'en a fait M. Daguerre pour fixer les images de la chambre noire.

Biot. Comptes Rendus, 9, 200.

Application aux opérations photographiques des propriétés reconnus par M. Ed. Becquerel dans ce qu'il nomme les rayons continuateurs.

Gaudin. Comptes Rendus, 12, 862.

Action des rayons rouges sur les placques daguerriennes.

Foucault et Fizeau. Comptes Rendus, 23, 679.

Observations sur les expériences de M. M. Foucault et Fizeau.

Becquerel (Ed.). Comptes Rendus, 23, 800.

Remarques. Foucault (L.). Do., 856.

Des actions que les diverses radiations solaires exercent sur les couches d'iodure, de chlorure ou de bromure d'argent.

Claudet. Comptes Rendus, 25, 554.

Note sur ce Mémoire. Becquerel (Ed.). Do., 594.

Note sur les transformations successives de l'image photographique par la prolongation de l'action lumineuse.

Janssen (J.). Comptes Rendus, 91, 199.

Beschreibung eines höchst einfachen Apparatus um das Spectrum zu photographiren.

Vogel (H. W.). Ann. Phys. u. Chem., 154, 806.

Ueber die Hülfsmittel, photographische Schichten für grüne, gelbe und rothe Strahlen empfindlich zu machen.

Vogel (H. W.). Ber. chem. Ges., 17, 1196-1208; Jour. Chem. Soc., 46, 1081 (Abs.); Beiblätter, 8, 583-585 (Abs.).

Early contributions to spectrum-photography and photo-chemistry.

Draper (J. W.). Nature, 10, 243-244.

Spectrum photography.

Lockyer (J. N.). Nature, 10, 109, 254.

Photographie du spectre chimique.

Prazmowski. Comptes Rendus, 79, 108.

Theory of absorption-bands in the spectrum, and its bearing in photography.

Amory (Dr. Rob't). Proc. Amer. Acad., 13, 216.

Dunkle Linien in dem photographirten Spectrum weit über dem sichtbaren Theil hinaus.

Müller (J.). Ann. Phys. u. Chem., 97, 135.

Physics in photography.

Abney (W. de W.). Nature, 18, 489-491, 528-581, 548-546.

Method of fixing, photographing, and exhibiting the magnetic spectra.

Mayer (A. M.). Chem. News, 23 (1871), 266.

Reversal of the metallic lines as seen in over-exposed photographs of spectra.

Hartley (W. N.). Proc. Royal Sec., 34, 84.

Reversal of the developed photographic image.

Abney (W. de W.). Phil. Mag., (5) 10, 200-208.

Photographische Spectral-Beobachtungen im rothen und indischen Meere. Vogel (H. W.). Ann. Phys. u. Chem., 156, 819-825.

Delicacy of spectrum photography.

Hartley (W. N.). Proc. Royal Soc., **36** (1885), 421-422; Jour. Chem. Soc., **48** (1885), 466 (Abs.).

Ueber neue Fortschritte in dem farbenempfindlichen photographischen Verfahren.

Vogel (H. W.). Sitzungsber. preuss. Akad., 51 (1886), 1205-1208;
Photogr. Mitt., 22, 295; Beiblätter, 11 (1887), 255.

Ueber einige geeignete praktische Methoden zur Photographie des Spectrums in seinen verschiedenen Bezirken mit sensibilisirten Bromsilberplatten.

Eder (J. M.). Monatschr. f. Chemie, 7 (1886), 429-454; Beiblätter, 11 (1887), 39 (Abs.); Jour. Chem. Soc., 52 (1887), 93 (Abs.).

## PHOTOMETERS.

Ein neues Photometer.

Glan (P.). Ann. Phys. u. Chem., n. F. 1, 851.

Photometrische Untersuchungen.

Ketteler (E.) und Pulfrich (C.). Ann. Phys. u. Chem., n. F. 15, 887-878; Amer. Jour. Sci., (8) 23, 486-487 (Abs.).

Études photométriques.

Cornu (A.). Jour. de Phys., 10, 189-198; Beiblätter, 6, 229 (Abs.).

Ein Photometer zu schulhygienischen Zwecken.

Petruschewski (Th.). Jour. soc. phys. chim. russe, 16, (2) 295-303, 1884; Beiblätter, 9 (1885), 248 (Abs.).

#### POLARIZATION SPECTROSCOPES.

A rotary polarization spectroscope of great dispersion.

Tait (P. G.). Nature, 22, 860-861; Beiblätter, 4, 725 (Abs.).

Ein Polarizationsapparat aus Magnesiumplatincyanur.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13, 847.

### PRISMS.

Absorption of light by prisms.

Robinson (T. R.). Observatory (1882), 58-54; Beiblätter, 6, 589 (Abs.).

Projection du foyer du prisme.

Crovs (A.). Jour. de Phys., (2) 1, 84-86.

Étude des aberrations des prismes et de leur influence sur les observations spectroscopiques.

Crova (A.). Ann. Chim. et Phys., (5) 22, 518-548.

Bemerkungen über Prismen.

Radau (R.). Ann. Phys. u. Chem., 118, 452.

Déplacement des raies du spectre sous l'action de la température du prisme.

Blaserna (P.). Arch. de Genève, (2) 41, 429-480; Ann. Phys. u. Chem., 143, 655-656; Jour. Chem. Soc., (2) 10, 118 (Abs.); Phil. Mag., (4) 43, 289-240.

A direct-vision compound prism by Merz, with dispersion almost double that of ordinary flint glass.

Mr. Gassiot. Proc. Royal Soc., 24, 88.

Note on the use of compound prisms.

Browning (J.). Monthly Notices Astronom. Soc., 31, 208-205.

Auflösung scheinbar einfacher Linien durch Vermehrung der Prismen. Merz (Sigismund). Ann. Phys. u. Chem., 117, 655. The best form of compound prism for the spectrum microscope.

Sorby (H. C.). Nature, 4, 511-512.

Ueber ein verbessertes Prisma à vision directe.

Braun (C.). Ber. aus Ungarn, 1, 197-200.

Ein Spectroscop à vision directe mit nur einem Prisma.

Emsmann (H.). Ann. Phys. u. Chem., 150, 686.

Geradsichtiges Prisma.

Fuchs (F.). Z. Instrumentenkunde, 1, 849-858; Z. analyt. Chemie., 21, 555.

Nouveau modèle de prisme pour spectroscope à vision directe.

Hofmann (J. G.). Comptes Rendus, 79, 581.

Geradsichtige Prismen.

Riccó (A.). Z. Instrumentenkunde, 2, 105; Z. analyt. Chem., 21, 555 (Abs.); Beiblätter, 6, 794 (Abs.).

Minimum du pouvoir de resolution d'un prisme.

Thollon (L.). Comptes Rendus, 92, 128-130.

The magnifying power of the half-prism as a means of obtaining great dispersion, and on the general theory of the half-prism spectroscope.

Christie (W. H. M.). Proc. Royal Soc., 26, 8-40; Beiblätter, 1, 556-561 (Abs.).

New form of spectroscope with half-prisms.

Chem. News, 35 (1875), 161.

Use of prisms of flint glass.

Rood (O. N.). Amer. Jour. Sci., 85, 856.

Ueber die anomale Dispersion spitzer Prismen.

Lang (V. von). Ann. Phys. u. Chem., 143, 269.

Nicht alle Quarzprismen verlängern das Spectrum am ultra-violetten Ende.

Salm-Horst (Der Fürst). Ann. Phys. u. Chem., 109, 158.

Use of carbon bisulphide in prisms.

Draper (H.). Amer. Jour. Sci., (8) 29, 269-277, 1885; Jour. Chem. Soc., 48, 858 (Abs.), 1885; Jour. de Phys., (2) 5, 182 (Abs.), 1886.

Ueber die Anwendung von Schwefelkohlenstoffprismen zu spectroscopischen Beobachtungen von hoher Präcision.

Hasselberg (B.). Ann. Phys. u. Chem., (2) 27 (1886), 415-486.

Neues Flüssigkeitsprisma für Spectralapparate.

Wernicke (W.). Z. Instrumentenkunde, 1, 858-857; Beiblätter, 6, 94-95 (Abs.); Z. analyt. Chemie, 21, 555.

#### PROJECTION OF THE SPECTRUM.

Projection du foyer du prisme.

Crova (A.). Jour. de Phys., 11 (1882), 84.

Projection of the Fraunhofer lines of diffraction and prismatic spectra on a screen.

Draper (J. C.). Amer. Jour. Sci., (3) 9, 22-24; Phil. Mag., (4) 49, 142-4.

Nouvelle méthode pour projecter les spectres.

Moigno. Les Mondes, 43, 554-5; Beiblätter, 1, 555.

## PROTUBERANCE SPECTROSCOPE.

Protuberanz Spectroscop mit excentrischer bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumentenkunde, 1, 281-282; Beiblätter, 6, 280 (Abs.).

## QUANTITATIVE APPARATUS.

Quantitative Analyse durch Spectralbeobachtung, Apparat.

Hennig (R.). Ann. Phys. u. Chem., 149, 350.

Zur quantitativen Spectralanalyse.

Krūss (H.). Carl's Repert., 2, 17-22.

## RAIN-BAND SPECTROSCOPE.

Rain-band Spectroscope.

Bell (L.). Amer. Jour. Sci., (8) 30, 847.

## REFLECTOR.

Anwendung eines Reflectors bei Spectraluntersuchungen.

Fleck. Jour. prackt. Chemie, n. F. 3 (1870), 852; Jour. Chem. Soc., (2) 9, 857 (Abs.).

#### REFRACTOMETERS.

Sur un réfractomètre destiné à la mesure des indices et de la dispersion des corps solides.

Soret (C.). Comptes Rendus, 95, 517-520; Beiblätter, 6, 870-872
 (Abs.); Z. Instrumenten., 2, 414-415 (Abs.).

Sur l'emploi d'un verre biréfringent dans certaines observations d'analyse spectrale.

Cruls. Comptes Rendus, 96, 1298-1294; Nature, 28, 48 (Abs.); Beiblätter, 7, 529 (Abs.).

Interference phenomena in a new form of refractometer.

Michelson (A. A.). Amer. Jour. Sci., (3) 23, 395-400; Phil. Mag., (5) 13, 236-242; Beiblätter, 7, 534-585 (Abs.).

Appareils refringents en sel gemme.

Desains (P.). Comptes Rendus, 97, 689, 732; Beiblätter, 7, 858 (Abs.).

A new refractometer for measuring the mean refractive index of plates of glass and lenses by the employment of Newton's rings.

Royston-Pigott (G. W.). Proc. Royal Soc., 24, 893-399.

## REGISTERING SPECTROSCOPE.

A registering spectroscope.

Huggings (W.). Proc. Royal Soc., 19, 317-318; Phil. Mag., (4) 41, 544-546; Ann. Chim. et Phys., (4) 26, 275-276; Chem. News, 23 (1871), 98.

## REVERSION SPECTROSCOPES.

Ein neues Reversionsspectroscop.

Zöllner (F.). Ber. d. Sächs. Ges. d. Wiss., 23, 300-806; Ann. Phys.
u. Chem., 144, 449-456; Phil. Mag., (4) 43, 47-52; Jahresber. d.
Chemie (1869), 175.

Ein neuer Reversionsspectralapparat.

Konkoly (N. von). Centralzeitung f. Optik u. Mechanik, 4, 122-124;. Beiblätter, 7, 595; Ber. aus Ungarn, 1, 128-138.

Reversion spectroscope.

Langley (S. P.). Comptes Rendus (1884), 1145-1147.

On a method of estimating the thickness of Young's Reversing Layer. Pulsifer (W. H.). Amer. Jour. Sci., (3) 17, 303.

A new form of reversible spectroscope.

Stevens (W. L.). Amer. Jour. Sci., (8) 23, 226-229.

## RIGID SPECTROSCOPES.

Description of a rigid spectroscope; constructed to ascertain whether the position of the known and well-defined lines of a spectrum is constant while the coefficient of terrestrial gravity under which the observations are taken is made to vary.

Gassiot (J. P.). Proc. Royal Soc., 14, 820.

On the observations made with a rigid spectroscope by Captain Mayne and Mr. Connor.

Gassiot (J. P.). Proc. Royal Soc., 16, 6.

## ROTARY SPECTROSCOPE.

Ueber einen rotirenden Spectralapparat.

Lohse (O.). Z. Instrumentenkunde, 1, 22-25; Beiblätter, 5, 278.

#### SCALES.

(See "Measuring Apparatus.")

#### SCREENS.

Die Beugungserscheinungen geradlinig begrenzter Schirme.

Lommel (E.). Abhandl. d. bayr. Akad., (2) 15, 529-664, 1886; Beiblätter, 11 (1887), 42-46 (Abs.).

## APPARATUS FOR SECONDARY SPECTRA.

On a secondary spectrum of very large size, with a construction for secondary spectra.

Rood (O. N.). Amer. Jour. Sci., (8) 6, 172-180.

Du spectre secondaire et de son influence sur la vision dans les instruments d'optique.

Foucault (Léon). Ann. Chim. et Phys., (5) 15, 288.

## SELENACTINOMETER.

Un Selénactinomètre.

Morize (H.). Comptes Rendus, 100, 271-272; Beiblätter, 9, 256.

SLITS FOR SPECTROSCOPES.

Sur un spectroscope à fente inclinée.

Garbe (G.). Comptes Rendus, 96, 886; Jour. de Phys., 12 (1888), 818.

Die Anwendung des Vierordt'schen Doppelspaltes in der Spectralanalyse. Dietrich (W.). Beiblätter, 5, 488-441.

Protuberanzspectroscop mit excentrischer, bogenförmiger Spaltvorrichtung.

Brunn (J.). Z. Instrumenten., 1, 281; Beiblätter, 6, 280.

Spectralspalt mit symmetrischer Bewegung der Schneiden.

Krüss (H.). Carl's Repert., 18, 217-228; Z. analyt. Chemie, 21, 182-191; Beiblätter, 6, 286 (Abs.); Jour. Chem. Soc., 42, 1229 (Abs.);
Z. Instrumenten., 3, 62-63.

Spectroscope with slide, approved by Tyndall and others. Hofmann. Chem. News, 26 (1872), 180.

Slit for the spectroscope.

Tucker (Alex. E.). Chem. News, 41 (1880), 79.

### SPECTRO-BOLOMETER.

Use of the spectro-bolometer.

Langley (S. P.). Amer. Jour. Sci., (8) 21, 187; 24, 395; 25, 170; 27, 169; 30, 477.

#### SPECTROGRAPH.

Beschreibung eines Spectrographen mit Flüssigkeitsprisma.

Lohse (O.). Z. Instrumenten., 5 (1884), 11-13; Beiblätter, 9 (1885), 167 (Abs.).

#### SPECTROMETERS.

Description d'un spectromètre.

Zantedeschi. Comptes Rendus, 54, 208.

Description d'un nouveau spectromètre à vision directe rendu plus simple et moins dispendieux.

Valz. Comptes Rendus, 57, 69, 141, 298.

On a spectrometer and universal goniometer, adapted to the ordinary wants of a laboratory.

Liveing (G. D.). Proc. Cambridge Phil. Soc., 4, 848.

On a new form of spectrometer.

Draper (J. W.). Amer. Jour. Sci., (3) 18, 30-34; Phil. Mag., (5) 7, 318-316; Beiblätter, 3, 621.

Interferenzspectrometer.

Fuchs (F.). Z. Instrumenten., 1, 826-829; Beiblätter, 6, 228.

Das Lang'sche Spectrometer.

Miller (F.). Carl's Repert., 16, 250-251.

Der Fixator, ein Ergänzungsapparat des Spectrometers.

Ketteler (E.). Carl's Repert., 17, 645-651.

A Spectrometer.

Browning (J.). Monthly Notices Astronom. Soc., 33, 411.

De la spectrométrie, spectromètre.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, 76, 707-711; Jour. Chem. Soc., (2) 11, 984 (Abs.).

#### SPECTROPHOTOMETERS.

Ueber ein Spectrophotometer.

Zahn (von). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

Ein Spectrophotometer.

Fuchs (F.). Z. Instrumenten., 1, 349-353; Beiblätter, 6, 228.

Ein neues Spectrophotometer.

Hüfner (G.). J. prackt. Chemie, n. F. 16 (1877), 290; Chem. News, 37 (1878), 31; Carl's Repert., 15, 116-118.

On a spectrophotometer.

Glazebrook (R. T.). Proc. Cambridge Phil. Soc., 4, 304-308; Beiblätter, 8, 211-212 (Abs.).

Étude sur les spectrophotomètres.

Crova (A.). Comptes Rendus, 92, 86-87; Phil. Mag., (5) 11, 155-156.

Description d'un spectrophotomètre.

Crova (A.). Ann. Chim. et Phys., (5) 29, 556-573.

Das neue Spectrophotometer von Crova, verglichen mit dem von Glan, nebst einem Vorschlag zur weiteren Verbesserung beider Apparate. Zenker (W.). Z. Instrumenten., 4, 88-87; Beiblätter, 8, 499.

Ueber die Unwandlung meines Photometers in ein Spectrophotometer.

Wild (H.). Ann. Phys. u. Chem., n. F. 20, 452-468; Nature, 29, 258 (Abs.); Jour. de Phys., (2) 3, 142-143 (Abs.).

Ein Spectrophotometer.

Wild (H.). Dingler's Jour., 252, 462-465.

## SPECTROPOLARISCOPE.

A spectropolariscope for sugar analysis.

Levison (W. G.). Amer. Jour. Sci., 124, 469.

3 т

SPECTROSCOPES (MISCELLANEOUS).

Construction of the spectroscope.

Rutherfurd (L. M.). Amer. Jour. Sci., (3) 39 (1869), 129. Note by Ditscheiner in Sitzungsber. Wiener Akad., 52 II, 542, 568-568.

Construction of the spectroscope.

Cooke (J. P., Jr.). Amer. Jour. Sci., 90, 805.

Description of a large spectroscope.

Gibbs (Wolcott). Amer. Jour. Sci., (2) 25, 110.

Spectral-Apparat.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 162;
Jour. prakt. Chem., 85, 65, 74.

Spectral-Apparat.

Mousson (A.). Ann. Phys. u. Chem., 112, 428.

Ursache der mangelnden Proportionalität in den Abständen bestimmter Streifen bei verschiedenen Apparaten.

Gottschalk (F.). Ann. Phys. u. Chem., 121, 64-96.

Notiz zur Theorie der Spectralapparate.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 886.

Convenient form of spectroscope for use in a laboratory.

Browning (J.). Chem. News, 22 (1870), 229.

Improvement of the spectroscope.

Grubb (T.). Chem. News, 29 (1874), 222.

On a quartz and Iceland spar spectroscope corrected for chromatic aberration.

Stone (W. H.). Chem. News, 41, 91.

Note accompagnant le présentation de trois nouveaux spectroscopes. Janssen (J.). Comptes Rendus, 55, 576.

Un appareil destiné à réproduire les expériences d'optique, relatives à la réflexion de la lumière polarisée, à la mesure des indices et à la spectroscopie.

Lutz. Comptes Rendus, 84, 201.

Eine Verbesserung an Spectralapparaten.

Miller (F.). Z. Instrumenten., 2, 29-30; Beiblätter, 6, 281.

Ein sehr einfacher und wirksamer Spectralapparat.

Konkoly (N. von). Centralzeitung f. Optik u. Mechanik, 4, 76-77; Beiblätter, 7, 456 (Abs.); Z. Instrumenten., 3, 824 (Abs.); Ber. aus Ungarn, 1, 184.

Vorschlag zur Construction eines neuen Spectralapparates.

Lippich (F.). Z. Instrumenten., 4, 1-8; Beiblätter, 8, 800-802 (Abs.).

Neuere Apparate für die Wollaston'sche Methode zur Bestimmung von Lichtbrechungsverhältnissen.

Liebich (T.). Z. Instrumentenkunde, 4, 185-189.

Nouveau spectroscope.

Thollon (L.). Jour. de Phys., 7, 141-148.

Spectroscop-Apparate.

Jahresber. d. Chemie, (1861) 41, (1862) 27, (1863) 114, (1864) 115, (1865) 94, (1866) 78, (1867) 105, (1868) 130, 132, (1869) 175, (1870) 1062, (1872) 948, (1873) 146, 147, (1874) 152, (1876) 142.

Spectralapparat.

Mitscherlich. Jour. prakt. Chem., 86, 18.

Arcobaleno in mare e modificazione allo spettroscopio descritto nel Vol. V. Riccò (A.). Mem. spettr. ital., 8, 87.

Nouveau spectroscope.

Stoney. Moniteur scientifique (8) 6, 657.

Apparate zur Untersuchung der Farbenempfindungen.

Glan (P.). Archiv. f. Physiol., 24, 807-808; Beiblätter, 5, 445 (Abs.).

A new spectroscope.

Zenger (C. V.). Phil. Mag., (4) 46, 489-445.

An improvement in the construction of the spectroscope.

Madan (H. G.). Phil. Mag., (4) 48, 118.

A home-made spectroscope.

Furniss (J. J.). Pop. Sci. Monthly, 15, 808.

Description of a large spectroscope.

Gassiot (J. P.). Proc. Royal Soc., 12 (1863), 536.

The improvement of the spectroscope.

Grubb (T.). Proc. Royal Soc., 22, 308-809; Phil. Mag., (4) 48, 532-534; Chem. News, 29, 222-223; note by G. G. Stokes, Proc. Royal Soc., 22, 309-310, and Phil. Mag., (4) 48, 534.

Neue Einrichtung des Spectroscops.

Littrow (Otto von). Sitzungsber. Wiener Akad., 46 II, 521; 48 II, 26-32; note by Prof. C. F. Brackett in Amer. Jour. Sci., 124, 60.

#### SPECTRO-TELESCOPES.

Ein Spectrotelescop.

Glan (P.). Ann. Phys. u. Chem., n. F. 9, 492.

Description of a hand spectrum-telescope.

Huggings (W.). Proc. Royal Soc., 16, 241; Ann. Phys. u. Chem., 136, 167.

Spectrum-telescop.

Jahresber. d. Chemie (1868), 188.

A reliable finder for a spectro-telescope.

Winlock (J.). Jour. Franklin Inst., (8) 60, 295.

Ueber das spectroscopische Reversionsfernrohr.

Zöllner (F.). Ber. Sächs. Acad. Wiss., 24, 129-184; Phil. Mag., (4)
43, 47; 44, 417-421; Ann. Phys. u. Chem., 147, 617-628; Comptes Rendus, 69, 421.

A tele-spectroscope for solar observations.

Browning (J.). Monthly Notices Astronom. Soc., 32, 214-215.

Appareil destiné à observer les raies noires du spectre solaire.

Dujardin (F.). Comptes Rendus, 8, 258.

Improvements in a solar spectroscope made by Mr. Grubb for Prof. Young.

Erck (W.). Monthly Notices Astronom. Soc., 38, 881-382.

Spectroscopes furnished by the Royal Society to Mr. Hennessey for observing the solar eclipse of 1868 at Mussoorie, in India.

Proc. Royal Soc., 16, 169.

An eclipse spectroscope.

Lockyer [J. N.). Nature, 18, 224.

Neue Methode die Sonne spectroscopisch zu beobachten.

Secchi (A.). Ann. Phys u. Chem., 143, 154; Amer. Jour. Sci., (3) 1, 468-464.

Sur un nouveau moyen d'observer les éclipses et les passages de Vénus.

Secchi (A.). Comptes Rendus, 73, 984-985; Monthly Notices Astronom. Soc., 31, 202.

Sur l'emploi de la lunette horizontale pour les observations de la spectroscopie solaire.

Thollon (L.). Comptes Rendus, 96, 1200-1202; Nature, 28, 24; Beiblätter, 7, 456 (Abs.).

Apparatus for recording the position of lines in the spectrum, especially adapted to solar eclipses.

Winlock (J.). Proc. Amer. Acad., 8, 299.

Ein Spectroscop für Cometen-und Fixstern-Beobachtungen.

Gothardt (E. von). Centralzeitung für Optik u. Mechanik, 4, 121; Beiblätter, 7, 595 (Abs.).

A star spectroscope.

Gould (B. A.). Proc. Amer. Acad., 8, 499.

A small universal stellar spectroscope.

Merz (S.). Phil. Mag., (4) 41, 129-182.

The spectroscope and the transit of Venus.

Nature, 11, 171.

Spectroscopie stellaire.

Secchi (A.). Comptes Rendus, 65, 889.

Secchi met sous les yeux de l'Académie l'appareil dont il s'est servi pour ses recherches.

Comptes Rendus, 64, 788.

Un nouveau spectroscope stellaire.

Thollon (L.). Comptes Rendus, 89, 749-752; Beiblätter, 4, 360-861 (Abs.).

Ueber ein neues Spectroscop, nebst Beiträgen zur Spectralanalyse der Gestirne

Zöllner (F.). Ann. Phys. u. Chem., 138, 32, 35; Phil. Mag., (4) 38, 860; Amer. Jour. Sci., 99, 58.

Nouveau spectroscope et recherches spectroscopiques de M. Zöllner; rapport verbal sur ces publications.

Faye. Comptes Rendus, 69, 689.

Ein einfaches Ocularspectroscop für Sterne.

Zöllner (F.). Ann. Phys. u. Chem., 152, 503; Phil. Mag., (4) 48, 156-157.

Nouveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

#### TUBES.

Sur les tubes lumineux à électrodes extérieures.

Alvergniat. Comptes Bendus, 73, 561; Jour. Chem. Soc., (2) 9, 1141 (Abs.).

Tube spectro-électrique destiné à l'observation des spectres de solutions métalliques.

Delachanal (B.) et Mermet (A.). Comptes Rendus, 79, 800; Ann. Chim. et Phys., (5) 3, 485.

Nouveau tube spectro-électrique (fulgator modifié).

Delachanal et Mermet. Comptes Rendus, 81, 726; Bull. Soc. chim., (2) 25, 194-197; Jour. Chem. Soc., 2 (1876), 85 (Abs.).

Ein einfaches Stativ für Geissler'sche Spectralröhren.

Gothardt (E. von). Z. Instrumenten., 3, 820-321; Centralzeitung f. Optik u. Mechanik, 4, 146-147; Beiblätter, 8, 216.

End-on gas vacuum-tubes in spectroscopy.

Smyth (C. Piazzi). Nature, 19, 458; Beiblätter, 3, 604 (Abs.).

End-on tubes brought to bear upon the carbon and carbo-hydrogen question.

Smyth (C. Piazzi). Nature, 20, 75-76.

Tube for observing the spectra of solutions.

Nature, 13, 75.

Spectralröhren mit longitudinaler Durchsicht.

Zahn (W. von). Ann. Phys. u. Chem., n. F. 8, 675.

#### ULTRA-VIOLET APPARATUS.

Spectroscope pour la partie ultra-violette du spectre.

Cornu (A.). Les Mondes, 49, 16-17; Beiblätter, 3, 501.

Spectroscope destiné à l'observation des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 8, 185-193; Beiblätter, 4, 84 (Abs.).

## UNIVERSAL-SPECTROSCOPES.

Ein neues Universalstativ für die Benützung des Taschenspectroskopes.

Lepel (F. von). Ber. chem. Ges., 12, 263-266.

Ein Universalstativ für die Benützung des Taschenspectroskopes.

Vogel (H. W.). Ber. chem. Ges., 10, 1428-1432; Jour. Chem. Soc., 2 (1877), 915 (Abs.).

Neues Universalspectroskop für quantitative und qualitative chemische Analyse.

Krüss (G.). Ber. chem. Ges., 19 (1885), 2789-2745; Jour. Chem. Soc.,
52, 179 (Abs.), 1887; Amer. Jour. Sci., (8) 33 (1887).

#### WIDTH IN APPARATUS.

Bei der kleinsten Breite des Spectrums haben die Linien die geringste Krummung in dem Spectralapparat.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 887.

## ADDENDA.

On liquids of high dispersive powers for prisms.

Gibbs (Wolcott). Amer. Jour. Sci., vol. 4, 1870.

Appareil destiné à l'étude des intensités lumineuses et chromatiques des couleurs spectrales et de leurs mélanges.

Parinaud et Duboseq. Jour. de Phys., (2) 4 (1885), 271-8.

Sur un nouvel appareil dit "hema-spectroscope."

Thierry (M. de). Comptes Rendus, 100 (1885), 1244.

Sur un nouveau spectroscope d'absorption.

Thierry (M. de). Comptes Rendus, 101, (1885), 811.

Vermischte Mittheilungen, betreffend Spectralapparate.

Vogel (H. C.). Z. Instrumentenkunde, 1, 19-22; Beiblätter, 5, 279 (Abs.).

Sur un neuveau spectroscope stellaire.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 616.

Sur un optomètre spectroscopique.

Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1008.

Spectroscope pour les hautes fourneaux et le procédé Bessemer. Zenger (Ch. V.). Comptes Rendus, 101 (1885), 1005.

# SPECTRUM ANALYSIS.

#### G, GENERAL.

On the production of coloured spectra by light.

Abney (W. de W.). Proc. Royal Soc., 29 (1879), 190; Chem. News. 39 (1879), 282.

The production of monochromatic light, or a mixture of colours on a screen.

Abney (W. de W.). Phil. Mag., (5) 20 (1885), 172-174.

Mathematische Theorie der Spectralerscheinungen.

Akin (C. H.). Sitzungsber. Wiener Akad., 53 I, 892; 53 II, 574.

Welchen Stoffen die Fraunhofer'schen Linien angehören.

Angström (A. J.). Ann. Phys. u. Chem., 117, 296-802; Proc. Royal Soc., 19, 120.

Spectra of non-metallic bodies.

Angström and Thalèn. Chem. News, 36 (1877), 111.

Spectres de quelques corps composés dans les mélanges gazeux en équilibre.

Berthelot et Richard. Ann. Chim. et Phys., (4) 18, 191; Bull. Soc. chim. Paris, 13, 109.

Nouvelles remarques sur la nature des éléments chimiques.

Berthelot. Comptes Rendus, 77, 1847-52, 1857, 1899-1408.

Certain spectral images produced by a rotating vacuum-tube.

Bidwell (Shelford). Nature, 32 (1885), 80.

Photochemical researches.

Bunsen (R.) and Roscoe (H. E.). Rept. British Assoc. (1856), I, 62.

Spectralanalytische Untersuchungen.

Bunsen (R.). Ann. Phys. u. Chem., 155, 280-252, 866-884; Phil. Mag., (4) 50, 417-480, 527-589.

Spectrum Analysis.

Carpenter (J.). Once a Week, 8, 708.

Untersuchungen über die optischen Eigenschaften von fein vertheilten Körpern.

Christiansen (C.). Ann. Phys. u. Chem., (2) 24 (1885), 439-446.

Spectren der chemischen Elemente und ihrer Verbindungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 76 II, 499; Ber. chem. Ges., 14, 1101a.

Spectroskopische Untersuchungen.

Ciamician (G. L.). Sitzungsber. Wiener Akad., 79 II, 8; Amer. Jour. Sci., 1, 301; Chem. News, 40, 285; 43, 211, 270.

The spectroscope and evolution.

Clarke (F. W.). Pop. Sci. Monthly, 2, 820.

Lecture experiments in chemical analysis.

Clemenshaw (E.). Nature, **31** (1885), 329; Phil. Mag., (5) **19** (1886), 365-368; Jour. Chem. Soc., **48**, 1085 (Abs.); note on the above, Chem. News, **51**, 57, 189.

Sur les raies spectrales spontanément renversables et l'analogie de leurs lois de répartition et d'intensité avec celles des raies de l'hydrogène.

Cornu (A.). Jour. de Phys., (2) 5 (1888), 98-100.

Distinction between spectral lines of solar and terrestrial origin.

Cornu (A.). Phil. Mag., (5) 22 (1887), 458-468; Jour. Chem. Soc., 52, 313 (Abs.).

Radiant matter spectroscopy and residual glow.

Crookes (W.). Chem. News, **53** (1885), 75, 188; **54** (1886), 28, 40, 54, 68, 75; **55** (1887), 107, 119, 131; Ber. chem. Ges., **16**, R. 1689a; note par Damien (B. C.), Jour. de Phys., (2) **4** (1885), 333.

Genesis of the elements.

Crookes (W.). Chem. News, 55 (1887), 88, 99.

Production normale des trois systèmes de franges des rayons rectilignes. Croullebois. Comptes Rendus, 92, 1009.

Notice sur la constitution de l'univers. Première Partie, Analyse spectrale.

Delaunay. Ann. des Longitudes, 1869.

Sur quelques procédés de spectroscopie pratique.

Demarçay (Eug.). Comptes Rendus, 99 (1885), 1022, 1069-71.

Loi de répartition des raies et des bandes; analogie avec la loi de succession de sons d'un corps solide.

Deslandres. Comptes Rendus, 103 (1887), 972-976; Chem. News, 55 (1887), 204 (Abs.).

De spectral analyse. Academisch Proefschrift.

Dibbits (H. C.), Rotterdam, 1863, with plates.

Over spectroscopische vergelikingen, betrekking hebbende tot de samenstelling van verschillende lichtbronnen en hoofdzalijk tot den licht en kleurenzin.

Donders. Proc. Verb. Akad. Wetensch., Amsterdam, 1882-3, No. 10, 4-6.

The spectroscope and its revelations.

Draper (H.). Galaxy, 1, 813.

Essai d'analyse spectrale.

Dubrunfaut. Bull. Soc. chim. Paris, n. s. 13, 412; Comptes Rendus, 70, 448.

Chemical Changes produced by Sunlight.

Duclaux (E.). Comptes Rendus, 103 (1887), 881-2.

Comparative Actions of Heat and Solar Radiation.

Duclaux (E.). Comptes Rendus, 104 (1887), 294-7.

Recherches spectrographiques de la scource normale de lumière et de son emploi à la mesure photochimique de la sensibilité lumineuse.

Eder (J. M.). Wiener, Anzeigen (1885), 93; note par Gripon (E.), Jour. de Phys., (2) 5 (1886), 241, and note by Abney (W. de W.), Chem. News, 49, 57. [Chiefly interesting to photographers.]

Position du foyer des rayons de lumière monochromatique qui, issus d'un même point, ont traversé un prisme à vision directe.

Exner (K.). Wiener Anzeigen (1885); Jour. de Phys., (2) 5 (1886), 287.

Les vibrations de la matière et les ondes de l'éther dans les combinaisons photochimiques.

Favé. Comptes Rendus, 86, 560-565.

Influence du magnétisme sur les caractères des lignes spectrales.

Fievez (Ch.). Mém. Acad. Bruxelles, 9 (1885), No. 8; Chem. News, 52 (1885), 802.

Bestimmung des Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten.

Fraunhofer (Jos.). Denkschr. d. k. Akad. d. Wiss., München, V (1814-15), 198-226, mit drey Kupfertafeln, München, 1817, 4°.

Mischung von Spectralfarben.

Frey (M. von) und Krics (J. von). Archiv f. Physiol. (1881), 836–358;
Jour. de Phys., (2) 1, 518–514 (Abs.).

Spectrum analysis.

Gassiot (J. P.). Proc. Royal Soc., 12, 586.

Spectre rotatoire.

Govi (G.). Comptes Rendus, 91, 517.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (H.). Jour. Franklin Inst., 75, 88-43; 105, 88; Les Mondes, 45, 517-522; Beiblätter, 2, 561.

On the methods and recent progress of spectrum analysis.

Herschel (A. S.). Chem. News, 19, 157.

Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne.

Heusser (J. C.). Ann. Phys. u. Chem., 91, 319.

Der Gang der Lichtstrahlen durch ein Spectroskop. Hoorweg (J. L.). Ann. Phys. u. Chem., 154, 423.

On the spectra of some of the chemical elements, with maps.

Huggins (W.). Phil. Trans. (1884), 189; Proc. Royal Soc., 13, 48.

Le prix Lalande decerné à M. Huggins. Comptes Rendus, 75, 1805.

On some recent spectroscopic researches.

Huggins (W.). Quar. Jour. Sci., April, 1869.

Chemische Wirkung der verschiedenen Theile des Spectrums.

Jahresber. d. Chemie. 1, 197, 221; 2, 156; 3, 154; 4, 152, 201; 4, 152, 201; 5, 124, 125, 126, 131, 211; 6, 167; 7, 137; 8, 123; 12, 643; 13, 598; 14, 27; (1870), 930; (1872), 146; (1878), 152; (1874), 152, 958.

Leçons sur l'analyse spectrale.

Jamin. Jour. de Pharm., (8) 42, 9.

Chemische Analyse durch Spectralbeobachtungen.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 161-187; 113, 337-879; Phil. Mag., (4) 20, 89.

Spectroscopic method for determining chemical action in solutions containing two or more colored salts.

Krilss (G.). Nature, 26, 568.

Analyse spectrale simplifiée.

Laborde (l'abbé). Comptes Rendus, 60, 53.

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92.

Nouvelle méthode spectroscopique.

Langley (S. P.). Comptes Rendus, 84, 1145-47; Beiblätter, 1, 471-2.

Recomposition de la lumière spectrale.

Lavaut de Lastrade. Les Mondes, 43, 828-880.

Spectroscopic Notes.

Leach (J. H.). Nature, 6, 125; J. Franklin Inst., 93, 418.

Remarques sur quelques particularités observées dans des recherches d'analyse spectrale.

Lecoq de Boisbaudran (F.). Comptes Rendus, 69, 1189; 76, 1268–1265; Jour. Chem. Soc., (2) 11, 1257–1258 (Abs.).

Théorie des spectres.

Lecoq de Boisbaudran (F.). Comptes Rendus, 82, 1264-1266; Jour. Chem. Soc., 2 (1876), 470 (Abs.).

Note on "Spectroscopic Papers."

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 166-168; Beiblätter, 4, 38 (Abs.).

On the identity of the spectral lines of different elements.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 32, 225; Beiblätter, 5, 741.

Studies in Spectrum Analysis.

Liveing (G. D.) and Dewar (J.). Proc. Cambridge Phil. Soc., 3, 208-209; Nature, 19, 163-164.

Preliminary note on the compound nature of the line spectra of elementary bodies.

Lockyer (J. N.). Proc. Royal Soc., 24, 352-354; Phil. Mag., (5) 2, 229-231; Ann. Chim. et Phys., (5) 25, 190; Jahresber. d. Chemie, 14, 45.

The spectroscope and its applications.

Lockyer (J. N.). Nature, 7, 125-466; 8, 10, 89, 104.

Some recent methods in spectroscopy.

Lockyer (J. N.). Chem. News, 33, 29.

On a new method of spectrum observation.

Lockyer (J. N.). Proc. Royal Soc., 30, 22-31; Chem. News, 41, 84-87; Amer. Jour. Sci., (3) 19, 303-311; Beiblätter, 4, 361 (Abs.); Ber. chem. Ges., 13, 938-9 (Abs.).

On the necessity for a new departure in spectrum analysis.

Lockyer (J. N.). Nature, 21, 5-8; Beiblätter, 4, 368 (Abs.).

Recomposition of the component colours of white light.

Loudon (J.). Phil. Mag., (5) 1, 170-171.

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665.

Recomposition de la lumière spectrale.

Luvini (J.). Les Mondes, 44, 97-99.

Recherches sur la comparaison photométrique des scources diversement colorées, et en particulier sur la comparaison des divers parties d'une même spectre.

Macé de Lépinay (J.) et Nicati (W.). Bull. soc. franç. de Phys. (1883), 11-23; Jour. de Phys., (2) 2, 64-76; Ann. Phys. u. Chem., n. F. 22 (1884), 567.

Applications des spectres cannelées de Fizeau et Foucault.

Macé de Lépinay (J.). Jour. de Phys., (2) 4 (1885), 261-271.

The logical spectrum.

Macfarlane (A.). Phil. Mag. (5) 19, 286.

Spectre chimique rendu visible avec ses raies cannelées.

Matthiesen. Comptes Rendus, 16, 1281.

Lectures on spectrum analysis, 1862.

Miller (W. A.). Pharmaceutical Jour., (2) 3, 899; Chem. News, 5, 201.

Recent spectrum discoveries, 1863.

Miller (W. A.). Jour. Franklin Inst., 76, 29.

Exeter Lecture, 1869.

Miller (W. A.). Popular Sci. Rev., Oct., 1869.

Beitrag zur Spectralanalyse.

Mitscherlich (Alex.). Ann. Phys. u. Chem., 116, 499-504; Ann. Chim. et Phys., (3) 69, 169; Phil. Mag., (4) 28, 169.

Sur l'analyse spectrale.

Moigno (Fr.). Cosmos, 22, 28, 52, 75.

Spectrum Analysis.

Morton (H.). Jour. Franklin Inst., (8) 58, 56, 186.

Die Spectren der chemischen Verbindungen.

Moser (J.). Ann. Phys. u. Chem., 160, 177-199; Phil. Mag., (5) 4, 444-449 (Abs.); Nature, 16, 198-194 (Abs.).

Résumé de nos connaissances actuelles sur le spectre.

Mousson (A.). Archives de Genève (1861).

Sur le mélange des couleurs.

Moutier (J.). Bull. Soc. Philom., (7) 7, 19-21; Carl's Repert., 19, 672-674.

On certain spectral images produced by a rotating vacuum-tube.

Muirhead (Dr. Henry). Nature, 32 (1885), 55.

Present state of spectrum analysis.

Nature, 22, 528.

Upon an optical method for the measurement of high temperatures. Nichols (E. L.).. Amer. Jour. Sci., (3) 19, 42-49.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblätter, 4, 278 (Abs.)

Die Spectren der chemischen Verbindungen.

Plücker. Ann. Phys. u. Chem., 105, 78.

Spectrum Analysis.

Pritchard (C.). Contemporary Review, 11, 481

Lettre relative à l'analyse spectrale.

Regimbeau. Comptes Rendus, 54, 921.

Die Méthode des Spectrophors.

Reinke (J.). Ann. Phys. u. Chem., (2) 27 (1886), 444-448.

Preliminary Report of the Committee appointed to construct and print Catalogues of Spectral Rays arranged upon a Scale of Wavenumbers.

Rept. British Assoc., 1872; later Reports of same Committee, Repts. British Assoc., 1873 and 1874.

Report of the Committee consisting of Professor Dewar, Dr. Williamson, Dr. Marshall Watts, Captain Abney, Mr. Stoney, Prof. W. N. Hartley, Prof. McLeod, Prof. Carey Foster, Prof. A. K. Huntington, Prof. Emerson Reynolds, Prof. Reinold, Prof. Liveing, Lord Rayleigh, Dr. Arthur Schuster, and Mr. W. Chandler Roberts (Secretary), appointed for the purpose of reporting upon the Present State of our Knowledge of Spectrum Analysis.

Reports of the British Association (1881), 817-422; (1884), 295-350.

Report of the Committee consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (Secretary), appointed for the purpose of preparing a new series of Wave-length Tables of the Spectra of the Elements. (Gives the wave-lengths of the elements and of certain compounds, "so far as they are known to the committee or have proved accessible.")

Report of the British Association, (1884) 851-446, (1885) 288-822, (1886) 167-204.

Sur quelques phénomènes spectroscopiques singuliers.

Riccò (A.). Comptes Rendus, 102 (1886), 851-858.

Secondary Spectra.

Rood (O. N.). Amer. Jour. Sci., 106, 172.

Spectrum Analysis.

Roscoe (H. E.). Cornhill Mag., 6, 109.

Lectures on Spectrum Analysis, delivered at the Royal Institution of Great Britain, 1861, 1862.

Roscoe (H. E.). Chem. News, 4, 118; 5, 218, 261, 287.

Six Lectures on Spectrum Analysis, delivered in 1868, before the Society of Apothecaries of London.

Roscoe (H. E.). London, 1869 (published in book form by Macmillan).

Address to the Chemical Section of the British Association; Remarks on the Spectroscope and Spectrum Analysis.

Roscoe (Prof. Sir H. E.). Rept. British Assoc. (1884), 664.

Principles of spectrum analysis.

Rowney (T.). Jour. Franklin Inst., 75, 81.

Recherches spectroscopiques.

Salet (G.). Bull. Soc. chim. Paris, n. s. 16, 195.

Teachings of modern spectroscopy.

Schuster (A.). Popular Science Monthly, 19, 468.

Résumé des résultats de l'analyse spectrale.

Secchi (A.). N. Arch. Phil. Nat., 23, 145.

Beitrag zur chemischen Analyse durch Spectralbeobachtungen.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 242, 425.

Madeira spectroscopic.

Smyth (C. Piazzi), Edinburgh, 1881-1882 (book).

Vorschläge zur Herstellung übereinstimmender Angaben. Steinheil. Ann. Phys. u. Chem., 122, 167.

The Janssen-Lockyer Method of Spectrum Analysis.

Stewart (B.). Nature, 7, 301-302, 381-382.

Spectrum Analysis.

Stewart (B.). Nature, 21, 85.

On a simple mode of eliminating errors of adjustment in delicate observations of compared spectra.

Stokes (G. G.). Proc. Royal Soc., 31, 470-478; Beiblätter, 5, 860-861 (Abs.).

On a remarkable phenomenon of crystalline reflection.

Stokes (G. G.). Nature, 31 (1885), 565-568.

On a method of destroying the effects of slight errors of adjustment in experiments of change of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 881.

Sur la récomposition de la lumière blanche avec l'aide des couleurs du spectre.

Stroumbo. Comptes Rendus, 103 (1886), 737-8.

Prismatic Spectra.

Talbot (H. Fox). Phil. Mag., 9 (1836), 8.

Notices spectroscopiques.

Thenard (P.). Comptes Rendus, 91, 887; Beiblätter, 5, 44 (Abs.).

Eine neue Methode für spectralanalytische Untersuchungen.

Timiriasef. Soc. phys. chim. russe, Mar. 27, 1872; Ber. chem. Ges., 5, 828-829 (Abs.); Jour. Chem. Soc., (2) 10, 1113 (Abs.).

Eine Lichteinheit.

Trowbridge (J.). Proc. Amer. Acad. (1885), 494-499; Beiblätter, 9 (1885), 789 (Abs.).

Effect of resistance in modifying spectra.

Tyndall (J.). Nature, 7, 884.

Ueber die Beziehungen zwischen Lichtabsorption und Chemismus.

Vogel (H. V.). Monatsber. Berliner Akad. (1875), 80-83; Pharmaceutical Jour. Trans., (8) 6, 464-465; Scientific American, 1876.

Ueber einige Farbenwahrnehmungen und über Photographie in natürlichen Färben.

Vogel (H. W.). Ann. Phys. u. Chem., (2) 28 (1886), 180-185; Jour. Chem. Soc., 50 (1886), 749 (Abs.).

General methods of observing and mapping spectra.

Watts (W. Marshall). Rept. British Ass. (1881), 817.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Phil. Mag., (5) 10, 128-125; Proc. Phys. Soc., 4, 81-84.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wüllner (A.). Ann. Phys. u. Chem., 135, 174.

Spectroscopic Notes.

Young (C. A.). Nature, 2, 338; 3, 110; 5, 85-88; Phil. Mag., (5) 16, 460-463; Beiblätter, 8, 221 (Abs.); Amer. Jour. Sci., (3) 26, 833-836; Jour. Frankfin Inst., 60, 381-340; 88, 416; 90, 64, 881; 92, 348; 94, 849; Chem. News, 22, 218.

Ueber eine neue spectrometrische Methode.

Zenger (K. W.). Sitzungsber. Prager Ges. (1877), 20-40; Beiblätter, 3, 187-188 (Abs.).

## b, QUALITATIVE ANALYSIS.

On the use of the prism in qualitative analysis.

Gladstone (J. H.). Jour. Chem. Soc., 10 (1858), 79.

On a definite method of qualitative analysis of animal and vegetable colouring-matters by means of the spectrum microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 488.

# c, QUANTITATIVE ANALYSIS.

Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

Ballmann (H.). Z. analyt. Chem., 14, 297-801; Jour. Chem. Soc., 2
(1876), 550 (Abs.).

De la spectrométrie.

Champion (P.), Pellet (H.), et Grenier (M.). Comptes Rendus, 76, 707-711; Jour. Chem. Soc., (2) 11, 984 (Abs.).

Note par M. J. Janssen. Comptes Rendus, 76, 711-718; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Use of the spectroscope in quantitative analysis.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401, 417.

4 т

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, 85, 1046-1049, 1100-1103; Phil. Mag.,
(5) 5, 78-80; Jour. Chem. Soc., 34, 190-191 (Abs.); Beiblätter, 2, 342-348 (Abs.).

Researches on spectrum photography in relation to new methods of quantitative chemical analysis.

Hartley (W. N.). Proc. Royal Soc., 34, 81-84; Ber. chem. Ges., 15, 2924-5 (Abs.); Jour. Chem. Soc., 44, 263-4 (Abs.); Beiblätter, 7, 109-110 (Abs.); Z. analyt. Chem., 22, 589-540 (Abs.); Phil. Trans., 175 (1884), 49-62.

The same, continued. Proc. Royal Soc., 36, 421-2; Chem. News, 49, 128 (Abs.); Beiblätter, 3, 705 (Abs.).

Ueber quantitative Analyse durch Spectralbeobachtung.

Hennig (R.). Ann. Phys. u. Chem., 149, 349-358; Jour. Chem. Soc., (2) 12, 495 (Abs.).

Ueber quantitative Spectralbeobachtung.

Hufner (G.). Jour. prakt. Chem., (2) 16, 290.

Quantitative Spectralanalyse.

Jahresber. d. Chemie, (1872) 878, (1873) 147, 178, (1875) 901.

Analyse spectrale quantitative.

Janssen (J.). Comptes Rendus, 71, 626.

Zur quantitativen Spectralanalyse.

Krüss (H.). Carl's Repert. analyt. Chem., 2, 17-22.

Quantitative Spectralanalyse.

Krüss (H.). Ber. chem. Ges., 18, 988-6; Jour. Chem. Soc., 48 (1885), 885 (Abs.).

Quantitative spectroscopic experiments.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 482-489; Beiblätter, 4, 367 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. N.). Proc. Royal Soc., 21, 507-8; Phil. Trans., 164 (1874), 495-499; Phil. Mag., (4) 47, 811-812 (Abs.); Ber. chem Ges., 6, 1426 (Abs.); Jour. Chem. Soc., (2) 12, 495 (Abs.).

Quantitative Spectralanalyse, insbesondere zu derjenigen des Blutes.

Noorden (C. v.). Ber. chem. Ges., 13 (1880), 489; Z. physiolog. Chem., 4, 9-85.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat. Preyer (W.). Ber. chem. Ges., 4, 404. Analyse quantitative de la lumière blanche.

Rood (O. N.). Les Mondes, 48, 610-611.

Emploi du spectroscope pour la détermination quantitative des matières colorantes.

Schiff (H.). Bull. Soc. chim. Paris, n. s. 16, 97.

Beiträge zur quantitativen Spectralanalyse.

Settegast (H.). Ann. Phys. u. Chem., n. F. 7, 242-271; Jour. Chem. Soc., 36, 828-9 (Abs.).

- Quantitative Bestimmung von Farbstoffen durch den Spectralapparat. Vierordt (K.). Ber. chem. Ges., 4, 327, 457, 519.
- Zur quantitativen Spectralanalyse.

Vierordt (K.). Ber. chem. Ges., 5, 84-88; Ann. Phys. u. Chem., n. F. 3, 857.

Die Anwendung des Spectralapparates zur Photometrie der Absorptionsspectren und zur quantitativen chemischen Analyse.

Vierordt (Dr. Karl). Tübingen, 1878, 8°.

Die Anwendung der quantitativen Spectralanalyse bei den Titrirmethoden.

Vierordt (K.). Ann. Phys. u. Chem., 177, 81-45; Amer. Jour. Sci., (3) 10, 216-7 (Abs.).

Beschreibung einiger quantitativen Spectralanalyse.

Wolff (C. H.). Ber. chem. Ges., 12, 128; Z. analyt. Chem., 18, 38-49.

Anwendung eines Spectrophotometers zur quantitativen Spectralanalyse.
(Von Lahn). Ber. d. naturforsch. Ges. in Leipzig, 5, 1-4.

## ABSORPTION SPECTRA.

On the photographic method of registering absorption spectra, and its application to solar physics.

Abney (W. de W.). Proc. Phys. Soc., 3, 43-46; Phil. Mag., (5) 7, 313-316; Beiblätter, 3, 621.

Photographic records of absorption spectra.

Abney (W. de W.). Chem. News, 39 (1879), 182.

Absorption spectra of organic bodies.

Abney (Capt.) and Festing (Col.). Chem. News, 43 (1881), 126.

Absorption-spectra thermograms.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 38, 77-88; Jour. Chem. Soc., 48 (1885), 1175 (Abs.).

Transverse absorption of light.

Ackroyd (W.). Chem. News, 36, 159-161.

Selective absorption of light.

Ackroyd (W.). Proc. Physical Soc., 2, 110-118; Phil. Mag., (5) 2, 423-480; Beiblätter, 1, 850-2 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 637; Beiblätter, 7, 372 (Abs.).

Theory of absorption bands in the spectrum, and its bearing in photography and chemistry.

Amory (Dr. Robert). Proc. Amer. Acad., 13, 216.

- Pouvoirs absorbants des corps pour la chaleur; analyse spectroscopique.

  Aymonnet. Comptes Rendus, 83, 971.
- Sur les variations des spectres d'absorption, et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102 (1886), 106-110.

Sur les lois de l'absorption de la lumière dans les cristaux et sur une méthode nouvelle permettant de distinguer dans un cristal certaines bands d'absorption appartenant à des corps différents.

Becquerel (H.). Comptes Rendus, 103 (1887), 165-169.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 32-34; Jour. Chem. Soc., 48 (1885), 949 (Abs.).

A new form of absorption cell.

Bostwick. Amer. Jour. Sci., (3) 30, 452.

Ueber das Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) 8 (1877), 189-143; Jour. Chem. Soc., 34, 242-243 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prakt. Chem., (2) 12, 209-215; Amer. Jour. Sci., (3) 11, 142 (Abs.).

Sur les spectres d'absorption de l'ozone et de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, 94, 946-948; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 483 (Abs.); Amer. Jour. Sci., (3) 24, 58-59 (Abs.).

Ueber die Veränderlichkeit der Lage der Absorptionsstreifen.

Claes (F.). Ann. Phys. u. Chem., n. F. 3, 389-414.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère; les radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'évaleur les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Soc. franç. de Phys. (1882), 241-247; Jour. de Phys., (2)2, 58-63; Z. Instrumenten., 3, 290 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-1207.

Effect of various dyes on the behavior of silver bromide towards the solar spectrum; connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatsschr. f. Chemie, 6, 927-953; Jour. Chem. Soc., 50, 405 (Abs.).

Connection between absorption and photographic sensitiveness.

Eder (J. M.). Monatschr. f. Chemie, 7, 381-350; Jour. Chem. Soc., 50 (1886), 958 (Abs.).

Salpetersaure Nickellösung als Absorptionspäparat.

Emsmann (H.). Ann. Phys. u. Chem., Ergänzungsband 6 (1874), 834-5; Phil. Mag., (4) 46, 829-330; Jour. Chem. Soc., (2) 12, 118.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques, hypochloriques et chloreux.

Gernez (D.). Comptes Rendus, 74, 465-468; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218 (Abs.).

Note sur le prétendu spectre d'absorption special de l'acide azoteux.

Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de bromure de tellure, protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-1192; Jour. Chem. Soc., (2) 10, 665 (Abs.); Phil. Mag., (4) 43, 478-475; Amer. Jour. Sci., (3) 4, 59-60.

Sur les spectres d'absorption de quelques matières colorantes.

Girard (Ch.) et Pabsf. Comptes Rendus, 101 (1885), 157-160; Jour. Chem. Soc., 48, 1098 (Abs.).

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.). Ann. Phys. u. Chem., n. F. 3, 54-82.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1038-4; Beiblätter, 4, 869-870 (Abs.).

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 872-373 (Abs.); Ber. chem. Ges., 8, 765 (Abs.); Phil. Mag., (5) 1, 244-245.

On the absorption spectrum of ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 57 60; Ber. chem. Ges., 14, 672 (Abs.); Beiblätter, 5, 505-506 (Abs.).

On the absorption of solar rays by atmospheric ozone. Part I.

Hartley (W. H.). Jour. Chem. Soc., 39, 111-128; Ber. chem. Ges., 14, 1890 (Abs.).

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. chem. Soc., 39, 153-168; 41, 45-49; 47, 685-757; 51, 152-202; Beiblätter, 6, 375-6 (Abs.); Nature, 32 (1885), 98-4.

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (G. F.). Archiv. f. Physiol., 4, 497-547;
Jour. Chem. Soc., (2) 10, 807-808 (Abs.).

Absorptionsspectra.

Jahresber. d. Chemie (1875), 124.

Photometrie des Absorptionsspectrums der Blutkörperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-272; Ber. chem. Ges., 15, 952 (Abs.).

On the absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jour. Sci., (8) 28, 190-198; Nature, 31, 46.

Zusammenhang zwischen Absorption und Dispersion.

Ketteler (E.). Ann. Phys. u. Chem., 160, 478.

Notiz, betreffend die Dispersionscurve der Mittel mit mehr als einem Absorptionsstreifen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 1, 340-351.

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

Kirchhoff (G.). Monatsber. d. Berliner Akad., 27 Oct., 1859; Phil. Mag., (4) 19, 163.

(This contains the statement of the Law of Exchanges, and the first announcement of the discovery of the cause of Fraunhofer's lines.—

Roscos.)

Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 275, 299; Phil. Mag., (4) 20, 1.

(This paper contains a discussion of the Mathematical Theory of the Law of Exchanges, and is followed by a postscript on the history of the subject.—Roscoe.)

Beziehungen zwischen der Zusammensetzung und den Absorptionsspectren organischer Verbindungen.

Krüss (J.) und Oecomenides (S.). Ber. chem. Ges., 16, 2051-56; 18, 1426-38; Jour. Chem. Soc., 44, 1041-2 (Abs.); 48, 949; Beiblätter, 7, 897-9 (Abs.).

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-159; Jour. Chem. Soc., (2) 9, 185 (Abs.); Z. analyt. Chem., (2) 7, 64 (Abs.). Ueber einige Bezeihungen zwischen der Dispersion und Absorption des Lichtes.

Kundt (A.). Ann. Phys. u. Chem., Jubelband, 615-624.

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirenden Medien.

Kundt (A.). Sitzungsber. d. Münchener Akad. 1877, 234-262; Ann. 'Phys. u. Chem., n. F. 4, 34-54.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff, Flintglass und Steinsalz entsprechend.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213-215.

Zur Kenntniss der Absorptionsspectra.

Landauer (J.). Ber. chem. Ges., 11, 1772-1775; 14, 391-394; Jour.
Chem. Soc., 36, 101 (Abs.); 40, 591 (Abs.); Beiblätter, 3, 195-6 (Abs.); 5, 441 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (3) 25, 169-196; Ann. Phys u. Chem., n. F. 19, 226-244, 384-400; Phil. Mag., (5) 15, 153-183; Ann. Chim. et Phys., (5) 29, 497-542; Z. Instrumentenkunde, 4, 27-82 (Abs.); Jour. de Phys., (2) 2, 371-374 (Abs.); Jour. Franklin Inst., 88, 157-8 (Abs.).

Note on the above by Koyl (C. H.). Johns Hopkins Univ. Cir., 2, 145-6; Phil. Mag., (5) 16, 317-318; Beiblätter, 7, 899.

On the amount of atmospheric absorption.

Langley (S. P.). Amer. Jour. Sci., (3) 28 (1885), 163, 242; Phil. Mag., (5) 18, 289-307; Jour. Chem. Soc., 28 (1885), 319 (Abs.).

Absorption dunkler Wärmestrahlen durch Gasen und Dämpfen.

Lecher und Pernter. Sitzungsber. d. Wiener Akad., 82 II, 265; Phil. Mag., Jan., 1881; Amer. Jour. Sci., (8) 21, 286.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensäure unserer Atmosphäre.

Lecher (E.). Sitzungber. d. Wiener Akad., 82 II, 851-863.

Ueber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber. d. Wiener Akad., 85 II, 441-490; Ann. Phys. u. Chem., n. F. 17, 477-518 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farbstoffe in verschiedenen Lösungsmitteln.

Lepel (F. von). Ber. chem. Ges., 11, 1146-1151; Jour. Chem. Soc., 34 925 (Abs.); Beiblätter, 3, 860.

On the absorption of great thicknesses of metallic and metalloidal vapours.

Note 1, of Spectroscopic Notes.

Lockyer (J. N.). Proc. Royal Soc., 22, 871.

On a new class of absorption phenomena.

Lockyer (J. N.). Proc. Royal Soc., 22, 878.

On the absorption spectra of metals volatilized by the oxyhydrogen flame. Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 844-849; Phil. Mag., (5) 1, 234-239; Jour. Chem. Soc., 2 (1876), 156 (Abs.).

Emploi de la gélatine pour montrer l'absorption dans le spectre.

Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 251-288.

Sur la théorie de l'absorption atmosphérique de la radiation solaire.

Maurer (J.). Archives de Genève, (8) 9, 874-891.

Absorption des Lichtes durch gefärbten Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Absorption spectra of brucine, morphine, strychnine, veratrine and santonine in concentrated acids.

Meyer (A.). Archives Pharmaceutical Soc., (8) 13, 418-416; Jour. Chem. Soc., 36, 269.

Absorption spectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 488.

New way of observing absorption spectra.

Phipson (T. L.). Chem. News, 31 (1875), 255.

M. Chautard's classification of the absorption band of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (8) 4, 61-68.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-659.

Photometrische Untersuchungen über die Absorption des Lichtes in isotropen und anisotropen Medien.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 14, 177-218; Amer. Jour.
Soi., (8) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285-286.

On the absorption bands in the visible spectrum produced by certain colourless liquids.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., 39 (1881), 168–178; Nature, 22, 868–70; Beiblätter, 5, 44–45; Amer. Jour. Sci., (8) 21, 500–501 (Abs.).

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-866; Jour. Chem. Soc., (2) 10, 882 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Ueber die Absorptionsstreifen des Blattgrüns.

Schönn (L.). Ann. Phys. u. Chem., 145, 166-167; Arch. de Genève, (2) 43, 282-288.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-270.

Ueber die Absorption des Lichtes durch Wasser, Steinöl, Ammoniak, Alcohol und Glycerin.

Schönn (J. L.). Ann. Phys. u. Chem., Erganzungsband 8 (1878), 670-5; Jour. Chem. Soc., 34, 698.

Ueber die Lichtempfindlichkeit der Silberhaloidsalze und den Zusammenhang von optischer und chemischer Lichtabsorption.

Schulz-Sellack (C.). Ann. Phys. u. Chem., 143, 161-171; Ber. chem. Ges., 4, 210-211 (Abs.); Jour. Chem. Soc., (2) 9, 802-803 (Abs.); Phil. Mag., (4) 41, 549-550 (Abs.).

Sur les spectres d'absorption ultra-violets des différents liquides.

Soret (J. L.). Arch. de Genève, (2) 60, 298-300; Beiblätter, 2, 30-31 (Abs.), 410-411 (Abs.).

Recherches sur l'absorption des rayons ultra-violets par diverses substances; spectres d'absorption des terres de la gadolinite et du didyme.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-1064; Beiblätter, 3, 196-197 (Abs.).

Sur les spectres d'absorption du didyme et de quelques autres substances extraits de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-424.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terreaux.

Soret (J. L.). Arch. de Genève, (8) 4, 261-292; Beiblätter, 5, 124-125 (Abs.).

Absorption des rayons ultra-violets.

Soret (J. L.). Arch. de Genève, (3) 4, 377-380; remarques par M. A. Rilliet, do., 380-1.

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J. L.). Arch. de Genève, (8) 10, 429-494.

- Spectre d'absorption du sang dans la partie violette et ultra-violette.
  - Soret (J. L.). Comptes Rendus, 97, 1269-70; Jour. Chem. Soc., 46, 881.
- Absorption der unsichtbaren Strahlen durch Alkalien, Glukoside, u. s. w. Stokes (G. G.). Ann. Phys. u. Chem., 123, 48.
- Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gefärbte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165-6; Beiblätter, 7, 895-6; Chem. News, 49, 201.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom. Soc., 39, 874.

Die graphische Darstellung der Absorptionsspectren.

Vierordt (K.). Ann. Phys. u. Chem., 151, 119-124.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel (H. C.). Ber. d. Sächs. Ges. d. Wiss., 24, 185-141; Ann. Phys. u. Chem., 148, 161-168; Phil. Mag., (4) 45, 845-350; Jour. Chem. Soc., (2) 11, 712 (Abs.).

Note on this by A. Schuster in Phil. Mag., (4) 45, 850.

Ueber die Beziehung zwischen chemischer Wirkung des Sonnenspektrums, der Absorption und anomalen Dispersion.

Vogel (H.). Ber. chem. Ges., 7, 976-979; Jour. Chem. Soc., (2) 12, 1121-1122.

- Ueber die Beziehungen zwischen Lichtabsorption und Chemismus. Vogel (H.). Monatsber. d. Berliner Akad. (1875), 82–88.
- Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Absorptionsspectrum des Granats und Rubins.

Vogel (H. W.). Ber. chem. Ges., 10 (1877), 878.

Untersuchungen über Absorptionsspectra.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1878), 409-481.

Ueber Verschiedenheit der Absorptionsspectra eines und desselben Stoffs.

Vogel (H. W.). Ber. chem. Ges., 11, 913-920, 1868-71; Jour. Chem. Soc., 36, 189 (Abs.); Beiblätter, 2, 699-702 (Abs.); note on the above by J. Moser. Ber. chem. Ges., 11, 1416 and 1562; Bull. Soc. chim. Paris, n. ser., 32 (1879), 52.

Ueber den Zusammenhang zwischen dem Absorptionsspectrum und der sensibilisirenden Wirkung von Farbstoffen.

Vogel (H. W.). Ann. Phys. u. Chem., (2) 26, 527-80.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

Wernicke (W.). Monatsber. d. Berliner Akad. (1874), 728-737; Ann. Phys. u. Chem., 155, 87-95.

Untersuchungen über die bei der Beugung des Lichtes auftretenden Absorptionserscheinungen.

Wien (Willy). Ann. Phys. u. Chem., (2) 28 (1886), 117-180.

Einige neuen Absorptionsspectren.

Wolff (O. H.). Carl's Repert., 2, 55-56; Z. analyt. Chem., 22, 96-7; Chem. News, 47, 178 (Abs.).

Ueber die Absorptionsspectren verschiedener Ultramarinsorten.

Wunder (J.). Ber. chem. Ges., 9, 295-299; Jour. Chem. Soc., 1 (1878), 864-5.

Bemerkungen, von R. Hoffmann. Ber. chem. Ges., 9, 494-5.

(For the absorption spectra of particular substances look under those substances.)

#### ALCALIES AND ALCALOIDS.

Nachweis der Spectralanalyse der Alcalien.

Belohoubek. Jour. prackt. Chem., 99, 285.

Absorption spectra of the alcaloids.

Hartley (W. N.). Chem. News, 51 (1885), 135; Phil. Trans. (1885), Part II, 9; Proc. Royal Soc., 38, 1-4 and 191-193; Jour. Chem. Soc., 48 (1885), 1174 (Abs.).

Spectralreactionen der Alcaloïde.

Hock (C.). Ber. chem. Ges., 14 (1881), 2844b (Abs.); Arch. f. Pharm.,
19, 358-9; Comptes Rendus, 93, 849-51; Jour. Chem. Soc., 42, 349 (Abs.); Beiblätter, 6, 282 (Abs.).

Spectra der Alkalien.

Kirchhoff und Bunsen. Jour. prakt. Chem., 80, 449.

Zur Lehre von den Fäulnissalkaloïden.

Poehl (A.). Ber. chem. Ges., 16, 1975-1988.

Absorptionsspectra der Alkalichromate und der Chromsäure.

Sabatier (P.). Beiblätter, 11 (1887), 228.

Absorption der unsichtbaren Strahlen durch Alkaloïde, Glukoside, u. s. w. Stokes (G. G.). Ann. Phys. u. Chem., 123, 48.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze unter alkalischer Entwickelung.

Vogel (H.). Ber. chem. Ges., 6, 88-92.

Spectra der Alkalien.

Wolf und Diacon. Jour. prakt. Chem., 88, 67.

### ALUMINIUM.

Phosphorescence de l'alumine.

Becquerel (E.). Comptes Rendus, 103 (1886), 1224; 104 (1887), 834-5;
Amer. Jour. Sci., (3) 33, 808 (Abs.); Jour. Chem. Soc., 52, 409 (Abs.); Chem. News, 55 (1887), 99.

Aluminium spark spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 19, 40, 47.

Renversement des raies spectrales de l'aluminium.

Cornu (A.). Comptes Rendus, 73, 882.

Détermination des longueurs d'onde des radiations très-réfrangibles de l'aluminium, etc.

Cornu (A.). Jour. de Phys., 10, 425-481; Arch. de Genève, (8) 2, 119-126; Beiblätter, 4, 84-85 (Abs.).

Crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., 42 (1887), 25-30; Nature, 35 (1887), 810; Amer. Jour. Sci., (3) 33, 304 (Abs.); Chem. News, 55 (1887), 25.

Action des fluorures sur l'alumine.

Frémy et Verneuil. Comptes Rendus, 103 (1887), 788-40.

Specific refraction and dispersion of the alums.

Gladstone (J. H.). Phil. Mag., (5) 20, 162-168; Jour. Chem. Soc., 50 (1886), 298 (Abs.).

Spectre continu de l'alumine.

Gouy. Comptes Rendus, 86, 878.

Distribution of heat in the spectra of various scources of radiation; white oxide of aluminium, etc.

Jacques (W. W.). Proc. Amer. Acad., 14, 142.

Spectrum von Aluminium.

Jahresber. d. Chemie (1872), 145.

Aluminium métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 102, planche XV.

Sur la fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 478-482, 554-556, 1107; 104, 330-334; Jour. Chem. Soc., 52 (1887), 191, 409 (Abs.). Remarques par M. Edm. Becquerel. Comptes Rendus, 104, 334-36 et 824-26.

Phosphorescence de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 1224-1227;
Jour. Chem. Soc., 52 (1887), 191 (Abs.).

Indice du quartz pour les raies de l'alumine.

Sarasin (Ed.). Comptes Rendus, 85, 1280.

Spectre de l'aluminium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 178.

Indices de réfraction des aluns.

Soret (C.). Comptes Rendus, 101, 156-157; Jour. Chem. Soc., 48 (1885), 1097 (Abs.).

Réaction très-sensible de l'alumine.

Vogel (H. W.). Bull. Soc. chim. Paris, n. sér. 28, 475-8.

ering that earlies

### ANTIMONY.

Antimony Spark Spectrum.

Capron's Photographed Spectra, London, 1877, p. 19, 84.

L'antimoine n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 882.

Protochlorure d'antimoine, en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 150, planche 28.

Spectrum of antimony at elevated temperatures.

Lockyer (J. N.). Chemical News, 30, 98.

### ARSENIC.

Arsenic spark spectrum, photographed.

Capron's Photographed Spectra, Lendon, 1877, p. 18.

Spectrum of arsenic.

Huntington (O. W.). Proc. Amer. Akad., (2) 9, 35-88; Amer. Jour. Sci., (8) 22, 214-217; Beiblätter, 5, 868 (Abs.).

The spectrum of arsenic at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-468; Jour. Chem. Soc., 44, 802 (Abs.).

#### ASTRONOMICAL.

#### a, GENERAL.

Spectroscopic Researches.

D'Arrest. Nature, 17, 811.

Notes on some recent astronomical experiments at high elevations on the Andes.

Copeland (R.). Nature, 28, 606; Beiblätter, 8, 220-221 (Abs.).

Spectroscopic observations made at the Earl of Crawford's observatory, Dun Echt.

Copeland (R.). Monthly Notices Astronom. Soc., 45, 90.

Recherches spectroscopiques sur quelques étoiles non encore étudieés. Cruls (L.). Comptes Rendus, 91, 486-7; Beiblätter, 5, 180-1.

Intorno alle strie degli stellari.

Donati. Il nuovo Cimento, 15, 292.

Rapport sur un mémoire et plusieurs notes de M. Janssen concernant l'analyse prismatique de la lumière solaire et de celle de quelques étoiles.

Fizeau. Comptes Rendus, 58, 795.

Recherches sur les spectres des gaz dans leur rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Astrophysical observations made during the year 1882 at the Herény Observatory, Hungary.

Gothard (E. von). Monthly Notices Astronomical Soc., 43, 420-424; Math.-naturwiss. Ber. aus Ungarn, 1, 207-9.

Spectroscopic observations at the Royal Observatory, Greenwich.
Christie (W. H. M.). Nature, 28, 186-9; 30, 147-8.

Ditto.

Airy (G. B.). Monthly Notices Astronom. Soc., 36, 27-87; 37, 22-86; Beiblätter, 11, 95 (Abs.).

Beiträge zur Untersuchung der Sternbewegungen und der Lichtbewegung durch Spectral-Messungen.

Homann (Hans). Inaugural.-Diss., Berlin, 1885; Beiblätter, 11 (1887), 146.

Spectrum analysis applied to the heavenly bodies.

Huggins (W.). Rept. British Assoc., 1866; do., 1868; Chem. News, 19, 187.

Spectra of some of the fixed stars. [The first complete and accurate investigation of the stellar spectra.—Roscoe.]

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil. Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Lecture on the physical and chemical constitution of the fixed stars and

Huggins (W.). Chem. News, 11, 270.

Further observations of the Sun and of some of the stars and nebulæ; with an attempt to discover therefrom whether these bodies are moving towards or from the earth.

Huggins (W.). Proc. Royal Soc., 16, 382.

Note on the heat of the stars.

Huggins (W.). Proc. Royal Soc., 17, 809.

Spectren von Gestirne.

Jahresber. d. Chemie, (1856) 140, (1862) 26 u. 27, (1863) 107, 108 u. 110, (1864) 115, (1865) 92, (1866) 78, (1867) 107, (1870) 176.

Remarques sur la note du père Secchi relative aux spectres prismatiques des corps célestes.

Janssen. Comptes Rendus, 57, 215.

Nouvelle lettre annoncante la présence de la vapeur d'eau dans les planètes et les étoiles.

Janssen. Comptes Rendus, 68, 876.

Sur quelques spectres stellaires remarquables par les caractères optiques de la vapeur d'eau.

Janssen. Comptes Rendus, 68, 1545.

Les méthodes en astronomie physique.

Janssen. Ann. du Bureau des Longitudes (1888), 779-812; Beiblätter, 7, 323-4 (Abs.).

Note sur divers points de physique céleste.

Janssen. Comptes Rendus, 96, 527-529; Nature, 475 (Abs.).

Testimony of the spectroscope to the nebular hypothesis.

Kirkwood (D.). Amer. Jour. Sci., (8) 2, 155; Phil. Mag., (4) 42, 899.

Astrophysiche Beobachtungen.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 126-127.

Untersuchungen über das Spectrum der Fixsterne.

Lamont. Jahrb. d. Sternwarte bei München (1868), 90.

The Mt. Whitney Expedition.

Langley (S. P.). Nature, 26, 814-817.

Note on the bright lines in the spectra of stars. Lockyer (J. N.). Proc. Royal Soc., 27, 50.

Spectrum der Fixsterne.

Merz (S.). Ann. Phys. u. Chem., 117, 654.

A course of four lectures on spectrum analysis, with its applications to astronomy; delivered at the Royal Institution of Great Britain in May and June, 1867.

Miller (W. A.). Chem. News, 15, 259, 276; 16, 8, 20, 47, 71.

Spectrum analysis of the Sun and other heavenly bodies.

Miller (W. A.). Pop. Sci. Monthly, 8, 885.

Stars with peculiar spectra, discovered at the astronomical observatory of Harvard College.

Pickering (E. C.). Astronom. Nachr., 101, 78-74; Beiblätter, 6, 106 (Abs.).

The spectroscope in astronomical observation.

Proctor (R. A.). Pop. Sci. Rev., 8, 141.

The measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sci., (8) 35, 71.

Sur les spectres prismatiques des corps célestes.

Secchi (A.). Comptes Rendus, 57, 71. Remarques par M. Janssen, do., 215.

Analyse spectrale de la lumière de quelques étoiles. Secchi (A.). Comptes Rendus, 63, 824, 864.

Nouvelles recherches sur l'analyse de la lumière spectrale des étoiles. Secchi (A.). Comptes Rendus, 63, 621.

Sur les spectres de quelques étoiles.

Secchi (A.). Comptes Rendus, 64, 845.

Nouvelle note sur les spectres stellaires. Secchi (A.). Comptes Rendus, 64, 774. Note accompagnant la présentation d'un exemplaire de son mémoire "Sur les Spectres stellaires" imprimé dans les publications de la Societé des Quarante de Modène.

Secchi (A.). Comptes Rendus, 65, 562.

Note sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 67, 878.

Étude spectrale des divers rayons du Soleil et rapprochements entre les spectres obtenus et ceux de certaines étoiles.

Secchi (A.). Comptes Rendus, 68, 959.

Note sur l'intervention probable des gaz composés dans les caractères spectroscopiques de la lumière de certaines étoiles ou de diverses régions du Soleil.

Secchi (A.). Comptes Rendus, 68, 1086.

Nouvelles remarques sur les spectres fournis par divers types d'étoiles.

Secchi (A.). Comptes Rendus, 71, 252; Ann. Phys. u. Chem., 131, 156.

Les spectres stellaires.

Secchi (A.). Comptes Rendus, 75, 655.

Spettri prismatici delle Stelle fisse.

Secchi (A.). Atti della Soc. Ital., Roma, 1868.

Stellar Spectrometry.

Secchi (A.). Chemical News, 18, 168.

Bright lines in stellar spectra.

Sherman. Amer. Jour. Sci., (8) 30, 878, 475; note by Maunder (E. W.), Monthly Notices, 46 (1885), 282-4; reply to note, do., 47 (1886), 14.

Colour in practical astronomy, spectroscopically examined.

Smyth (Piazzi). Trans. Royal Soc. Edinburgh, 28, 779-848; Beiblätter, 4, 548.

Physical constitution of the Sun and stars.

Stoney (G. J.). Proc. Royal Soc., 16, 25; 17, 1.

Spectroscopic observations with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Spectroscopic observations of various stars.

Sueur (A. Le. Proc. Royal Soc., 19, 18.

Ueber die Spectra der weissen Fixsterne.

Vogel (H. V.). Monatsber. Berliner Akad. (1880), 192-198; Beiblätter, 4, 786 (Abs.); Photographic News, Feb. 20, 1880; Nature, 21, 410.

Einige spectralanalytische Untersuchungen an Sternen, ausgeführt mit dem grossen Refractor der Wiener Sternwarte.

Vogel (H. W.). Sitzungsber. d. Wiener Akad., 88 II, 791-815; Beiblätter, 8, 508-511 (Abs.).

Spectroscopie stellaire.

Wolf et Rayet. Comptes Rendus, 65, 292.

Analyse spectrale de la lumière de quelques étoiles.

Wolf. Comptes Rendus, 68, 1470.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 878.

#### b, comets.

# 1, Spectra of Comets in general.

La matière radiante et les comètes.

Begouen. Revue scientifique, 30, 297.

Remarques sur la lumière propre des comètes.

Berthelot. Ann. Chim. et Phys., (5) 27, 282-3; Jour. Chem. Soc., 44, 261 (Abs.).

Comets; their composition, purpose and effect upon the earth.

Boss (L.). Observatory (1882), 215-221.

Sur l'analyse spectrale appliquée aux comètes.

Fave. Comptes Rendus, 93, 861.

Sur les queues des comètes.

Flammarion. Comptes Rendus, 93, 186.

On Comets.

Huggins (W.). Proc. Royal Institution, 10, 1-11; Ann. Chim. et Phys., (5) 27, 408-425.

Ueber die chemische Constitution der Cometen, verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 185-189.

Observations sur la réfraction cométaire.

Meyer (W.). Arch. de Genève, (8) 8, 526-585; Beiblätter, 7, 141-142 (Abs.); Jour. de Phys., (2) 2, 387-8.

Sur la polarization de la lumière des comètes.

Prazmowski. Comptes Rendus, 93, 262.

Sur la lumière des comètes.

Respighi. Comptes Rendus, 93, 489-440; Phil. Mag., (5) 12, 300-307; Beiblätter, 5, 745 (Abs.).

Observations sur le spectre des comètes.

Secchi (A.). Comptes Rendus, 78, 1467.

Cometary Theory.

Tyndall (J.). Phil. Mag., (4) 37, 241.

Ueber die Spectra der Cometen.

Vogel (H.). Astronom. Nachr., 80, 188-188; Ann. Phys. u. Chem., 149, 400-408; Nature, 9, 198.

### 2, Particular Comets.

(In the order of their last known dates.)

Comet c, 1859 (Donati's).

c, 1859, Donati's Comet. Comparaison du spectre produit par la lumière de la comète de Donati et par celle d'Arcturus.

Porro. Comptes Rendus, 47, 878.

Comet a, 1866.

Spectrum of Comet a, 1866.

Huggins (W.). Proc. Royal Soc., 15, 5.

Comet b, 1867.

Spectrum of Comet b, 1867.

Huggins (W.). Monthly Notices Astronom. Soc., 17, 288.

Comet b, 1868.

Spectrum of Comet b, 1868.

Huggins (W.). Proc. Royal Soc., 16, 481.

Comet a, 1871.

Spectrum of Comet a, 1871.

Huggins (W.). Chem. News, 23, 265.

Comet c, 1873.

Spectre de la comète c, 1873.

Wolf (C.) et Rayet (G.). Comptes Rendus, 77, 529.

Comet d, 1873.

Spectre de la comète d, 1873.

Rayet (G.) et André. Comptes Rendus, 77, 564.

Comet c, 1874 (Coggia's).

Observations spectroscopiques de la queue de la comète de Coggia.

Barthélemy (A.). Comptes Rendus, 79, 818, 578.

Spectrum of Coggia's Comet.

Huggins (W.). Proc. Royal Soc., 23, 154-159.

Coggia's Comet, its physical condition and structure. Physical theory of comets.

Norton (W. A.). Amer. Jour. Sci., (8) 15, 161-77.

Note sur le spectre de la comète de Coggia (c, 1874).

Rayet (G.). Comptes Rendus, 78, 1650-2; Amer. Jour. Sci., (8) 8, 156 (Abs.).

Spectre de la comète de Coggia.

Secchi (A.). Comptes Rendus, 79, 20, 284.

Observations spectroscopiques sur la comète de Coggia.

Wolf et Rayet. Comptes Rendus, 79, 870-1.

Comet b, 1877 (Winnecke's).

On the spectrum of Comet b, 1877 (Winnecke's).

Airy (G. B.). Monthly Notices Astronom. Soc., 37, 469, 470.

The spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom. Soc., 37, 480.

Spectre de la comète de Winnecke.

Secchi (A.). Comptes Rendus, 66, 1299, 1886.

Lumière de la comète de Winnecke.

Wolf et Rayet. Comptes Rendus, 71, 49.

Comet c, 1877 (Swift-Borelly).

On the spectra of comets b and c, 1877.

Lindsay (Lord). Monthly Notices Astronom. Soc., 37, 430.

#### LITERATURE OF THE SPECTROSCOPE.

Observations du spectre de la comète Borelly.

Secchi (A.). Comptes Rendus, 84, 427, 1289.

Ueber das Spectrum des von Borelly am 20, August entdeckten Cometen, sowie über das des hellen von Henry am 23 August aufgefundenen Cometen.

Vogel (H.). Astronom. Nachr. 82, 217-20; Amer. Jour. Sci., (8) 6, 893 (Abs.).

Observations des comètes b (Winnecke) et c (Swift-Borelly), 1877. Wolf. Comptes Rendus, 84, 929-81, 1289-92.

Comet a, 1878 (Brorsen's).

Spectrum of Brorsen's Comet, observed at Greenwich.

Airy (G. B.). Monthly Notices Astronomical Soc., 39, 428-80.

Spectrum of Brorsen's Comet.

Backhouse (T. W.). Nature, 20, 28.

Spectrum des Brorsen'schen Cometen.

Brédischin (T.). Astronom. Nachr., 95, 15-16.

Spectrum of Brorsen's Comet.

Christie (W. H. M.). Nature, 20, 5, 75; Amer. Jour. Sci., (8) 17 496-7.

Spectrum of Brorsen's Comet.

Huggins (W.). Proc. Royal Soc., 16, 886; Nature, 19, 579.

Vorläufige Anzeige über das Spectrum des Brorsen'schen Cometen. Konkoly (N. von). Astronom. Nachr., 94, 885-6; 95, 193-6.

Observations of Brorsen's Comet.

Lindsay (Lord). Monthly Notices Astronom. Soc., 39, 480.

Spectre de la comète de Brorsen.

Secchi (A.). Comptes Rendus, 66, 881.

Spectrum of Brorsen's Comet.

Watts (W. M.). Nature, 20, 27-8, 94.

Spectrum of Brorsen's Comet.

Young (C. A.). Amer. Jour. Sci., (8) 17, 373-5; Nature, 19, 559; Phil. Mag., (5) 8, 178-9.

Comet d, 1879 (Palisa's).

Spectroscopische Beobachtung des Cometen Palisa.

Konkoly (N. von). Astronom. Nachr., 96, 39-42.

:77

Observations of the spectrum of comet d, 1879.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 23-5.

Comet d, 1880 (Hartwig's). Spectrum of.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 41, 52-8; Nature, 22, 557; Beiblätter, 5, 129.

### Comet b, 1881.

Observations of comet b, 1881.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 413-21.

Spectra of comets b and c, 1881.

Capron (J. R.). Nature, 24, 480-1.

Spectra of comets b and c, 1881.

Greenwich Observatory Reports, Monthly Notices Astronom. Soc., 42, 14-19.

Note on the observations of comet b, 1881, made at the United States
Naval Observatory.

Harkness (W.). Amer. Jour. Sci., (8) 22, 187-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417-25.

Preliminary notes on the photographic spectrum of comet b, 1881.

Huggins (W.). Proc. Royal Soc., 33, 1; Chem. News, 44, 188; Rept. British Assoc. (1881), 820; Comptes Rendus, 92, 1483; 93, 26.

Note sur la photographie de la comète b, 1881, obtenu à l'observatoire de Meudon.

Janssen (J.). Jour. de Phys., (2) 1, 441-9.

Spectroscopische Beobachtungen der Cometen b und c, 1881, angestellt in O'Gyalla, Ungarn.

Konkoly (N. von). Naturforscher, 14, 321, 323, 331.

Physical observations of comet b, 1881, made at Forrest Lodge, Maresfield.

Noble (W.). Monthly Notices Astronom. Soc., 42, 47-49.

Spectrum of comet b, 1881.

Seabroke (G. M.). Nature, 24, 201, 481.

Observations spectroscopiques sur la comète b, 1881.

Thollon (L.). Comptes Rendus, 93, 87, 259, 883; Nature, 24, 224.

Ueber die Spectra der Cometen b und c, 1881.

Vogel (H. C.). Astronom. Nach., 100, 801-4; Beiblätter, 5, 867 (Abs.).

Observations de la comète b, 1881.

Wolf (C.). Comptes Rendus, 93, 86.

Spectroscopic observations upon the comet b, 1881.

Young (C. A.). Amer. J. Sci., (3) 22, 185-7; Beiblätter, 5, 668-4 (Abs.).

Comet c, 1881.

Note on the spectrum of comet c, 1881, as seen with a Browning's miniature spectroscope on the 4½ telescope.

Backhouse (T. W.). Monthly Notices Astronom. Soc., 42, 43.

Note on photographs of the spectrum of the comet of June, 1881.

Draper (H.). Amer. Jour. Sci., (8) 22, 184-5; Chem. News, 44, 75-6;
 Mem. Spettr. ital., 10, 150-1; Jour. de Phys., (2) 1, 153 (Abs.).

Spectra of comets b and c, 1881.

Greenwich Observatory, Monthly Notices Astronom. Soc., 42, 14-19.

Spectroscopische Beobachtungen der Cometen b und c, 1881.

Hasselberg (B.). Bull. Acad. St. Petersburg, 27, 417-25.

Spectroscopische Beobachtungen der Cometen b und c, 1881, angestellt am astrophysikalischen Observatorium in O'Gyalla (Ungarn).

Konkoly (N. von). Naturforscher, 14, 821, 823, 881.

Études spectroscopiques sur les comètes b et c, 1881.

Thollon (L.). Comptes Rendus, 93, 883.

Ueber die Spectra der Cometen b und c, 1881.

Vogel (H. C.). Astronomische Nachr., 100, 301-4; Beiblätter, 5, 867.

Spectrum of Schaeberle's Comet.

Capron (J. R.). Nature, 24, 480-1. (See also Tacchini, in Comptes Rendus, 93, 261.)

Telbutt's Comet, origination of its proper light.

Smyth (C. Piazzi). Nature, 24, 480.

Comet a, 1882 (Wells's).

Spectrum of comet a, 1882 (Wells's).

Backhouse (T. W.). Nature, 26, 56; Beiblätter, 6, 678.

Les vapeurs du sodium dans la comète de Wells.

Bredichin (T.). Astronom. Nachr., 102, 207; Beiblätter, 6, 678 (Abs.).

Ueber das Spectrum des Cometen Wells.

Dunér (N. C.). Astronom. Nachr., 102, 159, 169; Monthly Notices Astronom. Soc., 42, 412-18; Beiblätter, 6, 678 (Abs.).

Spectroscopic observations of comet a, 1882 (Wells).

Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 42, 251, 410-12.

Ueber das Spectrum des Cometen a, 1882 (Wells).

Hasselberg (B.). Astronom. Nachr., 102, 259-64; Beiblätter, 6, 744 (Abs.); Nature, 26, 844 (Abs.).

On the photographic spectrum of comet a, 1882 (Wells).

Huggins (W.). Proc. Royal Soc., 34, 148-150; Nature, 26, 179 (Abs.); Beiblätter, 6, 679 (Abs.); Amer. Jour. Sci., (3) 24, 402-3; Comptes Rendus, 94, 1689-91.

Spectroscopische Beobachtungen des Cometen Wells, angestellt am astrophysikalischen Observatorium in O'Gyalla (Ungarn).

Konkoly (N. von). Naturforscher, 15, 245; Beiblätter, 6, 678 (Abs.).

On the spectrum of comet a, 1882 (Wells), observed at the Royal Observatory of Greenwich.

Maunder. Monthly Notices Astronom. Soc., 42, 251, 410-12; Mem. Spettr. ital., 11, 79.

Spettro della Cometa Wells osservato à Palermo.

Riccò (A.). Mem. Spettr. ital., 11, 76.

Cometa Wells, Spettro osservato all'Equatore Merz del R. Osservatorio del Collegio romano.

Tacchini (R.). Mem. Spettr. ital., 11, 77-8; Comptes Rendus, 94, 1081-8.

Ueber das Spectrum des Cometen Wells.

Vogel (H. C.). Astronom. Nachr., 102, 159, 199-202; Beiblätter, 6, 678 (Abs.).

Su di una particolaritá luminosa rimarcata a Palermo nella coda della cometa (Wells).

Zona (T.). Mem. Spettr. ital., 11, 76-7; Beiblätter, 6, 679 (Abs.).

Comet b, 1882 (Cruls).

Analyse spectrale de la grande comète australe.

Cruls. Comptes Rendus, 95, 825.

Beobachtungen des grossen September Cometen, 1882, am astrophysicalischen Observatorium zu Herény, Ungarn.

Gothard (E. von). Astronom. Nachr., 103, 877-80; Beiblätter, 7, 116 (Abs.).

- Spectroscopische Beobachtungen des grossen September Cometen, 1882 II.
  Gothard (E. von). Astronom. Nachr., 105, 811-14.
- Sur le déplacement des raies du sodium observé dans le spectre de la grande comète de 1882.

Gouy et Thollon. Comptes Rendus, 96, 371-2; Nature, 27, 380 (Abs.); Amer. Jour. Sci., (3) 25, 309; Beiblätter, 7, 298 (Abs.).

Zur Spectroscopie des grossen September Cometen, 1882.

Hasselberg (B.). Astronom. Nachr., 104, 18-16; Beiblätter, 7, 293 (Abs.).

Beobachtung des grossen September Cometen auf der Sternwarte in O'Gyalla (Ungarn).

Konkoly (N. von). Astronom. Nachr., 104, 45-8; Monthly Notices Astronom. Soc., 43, 56-7; Beiblätter, 7, 298.

- Osservazioni astrofisiche della grande cometa di settembre, 1882.
  - Riccò (A.). Astronom. Nachr., 103, 281-4; Beiblätter, 7, 28 (Abs.).
- Osservazioni spettroscopiche della cometa Cruls fatte collo spettroscopio di Clean applicato al refrattore di Om. 25 nell'Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 11, Sept. 15-17.

- Observations of the great comet b, 1882, made at Sydney Observatory.

  Russell (H. C.). Monthly Notices Astronom. Soc., 43, 31.
- Sur une comète observée à Nice.

Thollon et Gouy. Comptes Rendus, 95, 555-7; Beiblätter, 7, 116 (Abs.).

Observations spectroscopiques sur la grande comète (Cruls).

Thollon et Gouy. Comptes Rendus, 95, 712-14; Nature, 27, 24 (Abs.); Beiblätter, 7, 28-9 (Abs.).

Sur le déplacement des raies du sodium observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 871.

Beobachtungen des grossen September Cometen, 1882.

Vogel (H. C.). Astronom. Nachr., 103, 279-282; Beiblätter, 7, 28 (Abs.).

(See also Tacchini, in Comptes Rendus, 93, 261.)

Comet a, 1883 (Brooks-Swift). Beobachtung des Cometen a, 1883 (Brooks-Swift).

Gothard (E. von). Astronom. Nachr., 105, 135-6.

- Spectroscopic Observations of Comet a, 1883 (Brooks-Swift).

  Konkoly (N. von). Monthly Notices Astronom. Soc., 43, 828-9.
- Finlay's Comet. Sulla spettro della cometa Finlay, Settembre, 1883.

  Husselberg (B.). Mem. Spettr. ital., 11, no. 11, 1-3; Beiblätter, 7, 298 (Abs.).

Comet a, 1884 (Pons-Brooks).

- Aspect de la comète Pons-Brooks, le 13 Janvier, 1884. Cruls (L.). Comptes Rendus, 98, 898.
- Spectroscopische Beobachtungen des Cometen a, 1884 (Pons-Brooks).
  Gothard (E. von). Astronom. Nachr., 109, 99-106.
- Spectrum of Comet b, 1883 (Pons-Brooks).

  Greenwich Observatory Rept., Monthly Notices Astronom. Soc., 44, 62-8.
- Spectroscopische Beobachtungen des Cometen Pons-Brooks. Hasselberg (B.). Astronom. Nachr., 108, 55-56.
- Vorläufige spectroscopische Beobachtung des Cometen Pons-Brooks.

  Konkoly (N. von). Astronom. Nachr., 107, 41-2; Observatory, 6, 338-4; Amer. Jour. Sci., (8) 27, 78-7; Beiblätter, 8, 88 (Abs.); Monthly Notices Astronom. Soc., 44, 251-3.
- Spectroscopische Beobachtungen des Cometen Pons-Brooks. Kövesligethy (R. v.). Astronom. Nachr., 108, 169-174.
- Observations spectroscopiques sur la comète Pons-Brooks.
  Perrotin. Comptes Rendus, 98, 844.
- Spectre de la comète Pons-Brooks, à l'observatoire de Bordeaux.
  Rayet (G.). Comptes Rendus, 97, 1352; 98, 848.
- Sullo spettro della cometa Pons-Brooks.

  Riccò (A.). Mem. Spettr. ital., 13, 39-40.
- Observations spectroscopiques faites à Nice sur la comète Pons-Brooks.

  Thollon (L.). Comptes Rendus, 98, 88; Beiblätter, 8, 221.
- Étude spectroscopique de la comète Pons-Brooks, faite au réflecteur de Om. 50 de l'Observatoire d'Alger.

Trépied (C.). Comptes Rendus, 97, 1540-1; Nature, 19, 255 (Abs.).

Sur le spectre de la comète Pons-Brooks.

Trépied (C.). Comptes Rendus, 98, 82-8.

Variation singulière de la comète Pons-Brooks.

Trépied (C.). Comptes Rendus, 98, 614.

Einige Beobschtungen über den Cometen Pons-Brooks, insbesondere über das Spectrum desselben.

Vogel (H. C.). Astronom. Nachr., 108, 21-6.

Observations of Comet Pons-Brooks.

Young (C. A.). Astronom. Nachr., 108, 205-8.

### Encke's Comet.

Note on the spectrum of Encke's Comet.

Huggins (W.). Proc. Royal Soc., 20, 45; Comptes Rendus, 73, 1297– 1801.

Sur le spectre de la comète Encke.

Tacchini (P.). Comptes Rendus, 93, 949; Beiblätter, 6, 106.

Spectre de la comète de Tempel.

Secchi (A.). Comptes Rendus, 62, 210.

Spectrum of comet c, 1886.

Sherman. Amer. Jour. Sci., (3) 32, 1

c, DISPLACEMENT OF STELLAR SPECTRA.

Effect of a star's rotation on its spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 37, 278.

Spectroscopic results for the motions of stars in the line of sight, obtained at the Royal Observatory, Greenwich.

Airy (G. B.). Monthly Notices Astronom. Soc., 36, 218; 38, 493; 41, 109; 42, 230; 43, 80; 44, 89; 45, 830; 46, 126; 47, 101.

Note on the displacement of lines in the spectra of stars.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 36, 813-817.

Remarques sur le déplacement des raies du spectre par le mouvement du corps lumineux ou de l'observateur.

Fizeau. Comptes Rendus, 69, 748; 70, 1062.

Sur un travail de M. l'abbé Spée concernant le déplacement des raies des spectres d'étoiles.

Houzeau et Montigny. Bull. de l'Acad. de Belgique, 47, 318-324.

Sur le déplacement des raies dans les spectres des étoiles produits par leur mouvement dans l'épace.

Huggins (W.). Comptes Rendus, **82**, 1291-1298; Phil. Mag., (5) **2**, 72-74.

On a method of finding the parallax of double stars, and on the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom. Soc., 34, 839-847.

Spectroscopic observations of the motions of stars in the line of sight, made at the Temple Observatory, Rugby.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 39, 450-453; 47 (1887), 93.

Sur le déplacement des raies dans les spectres des étoiles produit par leurs mouvements dans l'épace.

Secchi (A.). Comptes Rendus, 82, 761, 812.

Nouvelles remarques sur question du déplacement des raies spectrales, dû au mouvement propre des astres.

Secchi (A.). Comptes Rendus, 83, 117.

# d, FIXED STARS.

# 1, In general.

Lecture on the physical and chemical constitution of the fixed stars and nebulæ.

Huggins (W.). Chem. News, 11, 270.

Spectra of some of the fixed stars.

Huggins (W.) and Miller (W. A.). Phil. Trans. (1864), 413; Phil. Mag., June, 1866; Proc. Royal Soc., 12, 444; 13, 242.

Untersuchungen über das Spectrum der Fixsterne.

Lamont. Jahrbuch d. Sternwarte bei München (1868), 90.

Spectrum der Fixsterne.

Merz (S.). Ann. Phys. u. Chem., 117, 654.

Spettri prismatici delle stelle fisse.

Secchi (A.). Atti della Soc. Ital., Roma, 1868.

### 2, Particular fixed stars.

Spectrum of Novæ Andromedæ.

Sherman. Amer. Jour. Sci., (8) 30, 878.

Observations of the spectrum of a new star in Andromeda at Greenwich^a
Maunder (E. W.). Monthly Notices Astronom. Soc., 46 (1885), 19-21.

Outburst in Andromeda.

Perry (S. J.). Monthly Notices Astronom. Soc., 46 (1885-6), 22.

Note sur le spectre d'Antarès.

Secchi (A.). Comptes Rendus, 69, 163.

Spectrum of 7 Argo with bright lines.

Sueur (A. Le). Nature, 1, 517.

Spectroscopische Beobachtung von y Cassiopeiæ.

Konkoly (N. von). Astronom. Nachr., 107, 61-2; Beiblätter, 8, 221.

Beobachtungen der hellen Linien in dem Spectrum von γ Cassiopeiæ.

Gothard (E. von). Astronom. Nachr., 106, 298; 108, 238; Beiblätter,
7, 862 (Abs.).

Spectrum of a new star in Corona Borealis.

Huggins (W.) and Miller (W. A.). Proc. Royal Soc., 15, 146.

On the spectrum of the new star in Cygnus.

Backhouse (J. W.). Monthly Notices Astronom. Soc., 39, 84-87; Nature, 15, 295-6.

The new star in Cygnus.

Becquerel (E.). Monthly Notices Astronom. Soc., 37, 200-202; Amer. Jour. Sci., (8) 13, 395-97.

The new star in Cygnus.

Copeland (R.). Astronom. Nachr., 89, 87-40, 68; 90, 851-2; Nature, 15, 815-16; Amer. Jour. Sci., (8) 15, 76-77.

Sur le spectre de l'étoile nouvelle de la constellation du Cygne.

Cornu (A.). Comptes Rendus, 83, 1172-1174; Nature, 15, 158.

Spectrum of Nova Cygni.

Nature, 16, 400-408.

Étude spectroscopique de la nouvelle étoile signalée par M. Schmidt. Secchi (A.). Comptes Rendus, 84, 107, 290.

Der neue Stern in Cygnus.

Vogel (H.). Astronom. Nachr., 89, 87-40, 68; 90, 851; Nature, 15, 815; Amer. Jour. Sci., (8) 15, 76.

Spectrum of the star Ll 13412.

Pickering (E. C.). Nature, 23, 604; Beiblätter, 5, 511 (Abs.). 6 T

Photographs of the spectra of a Lyra and of Venus.

Draper (H.). Amer. Jour. Sci., (3) 13, 95; Nature, 15, 218; Phil. Mag., (5) 3, 238.

Beobachtungen der hallen Linien in dem Spectrum von  $\beta$  Lyræ. Gothard (E. von). Astronom. Nachr., 108, 288.

Lettre accompagnant l'envoi d'une figure du spectre d'a d'Orion.

Secchi (A.). Comptes Rendus, 62, 591; Monthly Notices Astronom. Soc., 26, 214.

Spectrum of the variable star a Orionis.

Huggins (W.) and Miller (W. A.). Monthly Notices Astronom. Soc., 26. 215.

Sur le spectre de l'étoile a d'Orion.

Janssen (J.). Comptes Rendus, 57, 1008.

Spectrum of a new star in Orion.

Copeland (R.). Monthly Notices, **46**, 109-114. Note by Maunder, do., 284-6.

Observations on the spectrum of Nova Orionis at Greenwich.

Maunder (E. W.). Monthly Notices Astronom. Soc., 46 (1885-6), 114-115.

Disappearance of a Piscium at its occultation of Jan. 4, 1865, with conclusions as to the non-existence of a lunar atmosphere.

Huggins (W.). Monthly Notices, 25, 60; Chem. News, 11, 175.

Sur le spectre de Sirius.

Janssen (J.). Comptes Rendus, 57, 1008.

Note sur les spectres des trois étoiles de Wolf.

Secchi (A.). Comptes Rendus, 69, 89, 168, 1058.

Sur trois petites étoiles.

Wolf et Rayet. Comptes Rendus, August, 1867.

### e, MEASUREMENTS OF STELLAR SPECTRA.

Measurements of stellar lines.

Airy (G. B.). Monthly Notices Astronom. Soc., 23, 190.

Stellar spectrometry.

Report of the British Assoc., 1868.

Measurement of stellar spectra.

Rutherfurd (L. M.). Amer. Jour. Sci., 35, 71.

Measurement of a few stellar lines.

Secchi (A.). Astronom. Nachr., 3. März, 1863.

f, spectra of meteors.

Spectra of the meteors of November 13-14, 1866.

Browning (J.). Phil. Mag., (4) 33, 284.

Presence of lithium in meteorites.

Bunsen. Phil. Mag., (4) 23, 474.

Meteoric Arc Spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 82, 88.

Spectra of shooting stars.

Herschel (A. S.). Nature, 9, 142-8.

Progress of meteor spectroscopy.

Herschel (A. S.). Nature, 24, 507-8; Beiblätter, 5, 871.

Spectroscopische Beobachtungen der Meteorite.

Konkoly (N. von). Astronom. Nachr., 95, 288-6; Monthly Notices Astronom. Soc., 33, 575-6; Nature, 20, 521-2 (Abs.).

Ueber die chemische Constitution der Planeten verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 185-9.

A catalogue of observations of luminous meteors,

by Baden Powell from 1848 till 1859, by Glaisher till 1867, and by others till 1882; all in the Reports of the British Assoc. for those years.

Note sur les spectres stellaires, et sur les étoiles filantes.

Secchi (A.). Comptes Rendus, 65, 979; 75, 606-618.

Sur les diverses circonstances de l'apparition d'un bolide aux environs de Rome et sur les spectres stellaires.

Secchi (A.). Comptes Rendus, 75, 655-9.

L'existence d'essaines d'étoiles filantes à proximité du globe terrestre. Silbermann (J.). Comptes Rendus, 74, 558-7, 688-642.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (8) 9, 294-802; Jour. Chem. Soc. (1876), 1, 27-8 (Abs.).

Preliminary note on an examination of gases of the meteorite of Feb. 12, 1875.

Wright (A. W.). Amer. Jour. Sci., (3) 9, 459-60; Jour. Chem. Soc. (1876), 1, 852 (Abs.).

#### g. NEBULÆ.

### 1, In general.

Recherches sur l'intensité relative des raies spectrales des nébuleuses.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 49, 107-118; Phil. Mag., (5) 9, 809-812; Beiblätter, 4, 461-2.

Recherches sur les spectres des gaz dans leurs rapports avec la constitution du Soleil, des étoiles et des nébuleuses.

Franckland et Lockyer. Comptes Rendus, 68, 1519.

Spectra of the nebulæ.

Huggins (W.). Phil. Trans. (1864), 487.

Further observations on the spectra of some of the nebulæ.

Huggins (W.). Phil. Trans. (1866), 381-387; Proc. Royal Soc., 15, 17.

On the motions of some of the nebulæ towards or from the Earth.

Huggins (W.). Proc. Royal Soc., 22, 251-4; Amer. Jour. Sci., (8) &, 75-77; Phil. Mag., (4) 48, 471-4.

Note on the bright lines in the spectra of stars and nebulæ.

Lockyer (J. N.). Proc. Royal Soc., 27, 50.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) 20, 808-305; Beiblätter, 5, 180 (Abs.).

Spettro di alcune nebulose.

Secchi (A.). Naturforscher (Berliner), 1, 279; 2, 279, 856; Mem. Spettr. ital., 1, 88.

### 2, Spectra of particular nebulæ.

Nebula of Argo.

Le Sueur. Proc. Royal Soc., 18, 245.

The nebula in Cygnus.

Winnecke. Monthly Notices Astronom. Soc., 40, 92.

On the inferences to be drawn from the appearance of bright lines in the spectra of irresolvable nebulæ.

Huggins (W.). Proc. Royal Soc., 26, 179-181.

On a cause for the appearance of bright lines in the spectra of irresolvable star-clusters.

> Stone (E. J.). Proc. Royal Soc., 26, 156-7, 517-19; Monthly Notices Astronom. Soc., 38, 106-8.

On photographs of the nebula in Orion and of its spectrum.

Draper (H.). Amer. Jour. Sci., (8) 23, 839; Monthly Notices Astronom. Soc., 42, 867-8; Nature, 26, 38; Comptes Rendus, 94, 1243.

Spectrum of the Great Nebula in the Sword-Handle of Orion.

Huggins (W.). Proc. Royal Soc., 14, 39.

On the spectrum of the Great Nebula in Orion, and on the motions of some stars towards or from the earth.

Huggins (W.). Proc. Royal Soc., 20, 379-394; Phil. Mag., (4) 45, 188-147; Nature, 6, 281-285; Amer. Jour. Sci., (8) 5, 75-78; Monthly Notices Astronom. Soc., 32, 859-862; Comptes Rendus, 94, 685.

Photographic spectrum of the Great Nebula in Orion.

Huggins (W.). Nature, 25, 489; Ann. Chim. et Phys., (5) 28, 282;
Proc. Royal Soc., 33, 425; Amer. Jour. Sci., (3) 23, 335-6.

Lumière spectrale de la nébuleuse d'Orion.

Secchi (A.). Comptes Rendus, 60, 548.

Observations of the Nebula of Orion, made with the great Melbourne Telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

New planetary nebulæ.

Pickering (E. C.). Amer. Jour. Sci., (3) 20, 308-5; Beiblätter, 5, 130 (Abs.).

Neue Linien im Spectrum planetischer Nebel.

Zöllner (F.). Ann. Phys. u. Chem., 144, 451.

Spectra of southern nebulæ.

Herschel (Lieut. John). Proc. Royal Soc., 16, 416, 417, 451; 17, 58 61, 308.

Note on the Rev. T. W. Webb's new nebula.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 91; Beiblätter, 4, 614 (Abs.).

Ueber das Spectrum des von Webb entdeckten Nebels im Schwan.

Vogel (H. C.). Astronom. Nachr., 96, 287; Beiblätter, 4, 468 (Abs.); Monthly Notices Astronom. Soc., 40, 294.

h, PHOTOGRAPHY OF STELLAR SPECTRA.

Researches upon the photography of stellar and planetary spectra.

Draper (H.). Proc. Amer. Acad., n. s. 11, 281-261; Amer. Jour. Sei., (3) 18, 419-425; Nature, 21, 88-85; Beiblätter, 4, 874.

Note on the photographic spectra of stars.

Huggins (W.). Proc. Royal Soc., 25, 445; 30, 20; Nature, 21, 269-270; Phil. Trans., 171, 669-690; Beiblätter, 467-468 (Abs.).

Note préliminaire sur les photographies des spectres stellaires.

Huggins (W.). Comptes Rendus, 83, 1229.

Sur les spectres photographiques des étoiles.

Huggins (W.). Comptes Bendus, 90, 70-78; Amer. Jour. Sci., (3) 19, 817.

Investigations in stellar photography.

Pickering (E. C.). Memoirs Amer. Acad., 11 (1886), 179-226; Beiblätter, 11 (1887), 115 (Abs.).

Report on the present state of celestial photography in England.

Rue (Warren de la). Rep'ts British Assoc. for 1859 and 1861.

Études astrophotographiques.

Zenger (C. V.). Comptes Rendus, 97, 552-555; Beiblätter, 7, 860-862 (Abs.).

# i, SPECTRA OF PLANETS.

### 1, In general.

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) 4, 379-385; Jour. Chem. Soc., 34, 189 (Abs.).

Ueber die chemische Constitution der Planeten verglichen mit der der Meteore.

Konkoly (N. von). Math.-naturwiss. Ber. aus Ungarn, 1, 185-189.

On the displacement of the lines of the spectrum of a planet.

Niven (C.). Monthly Notices Astronom. Soc., 34, 889-347.

Sur les raies atmosphériques des planètes.

Secchi (A.). Comptes Rendus, 59, 182.

Untersuchungen über die Spectra der Planeten.

Vogel (H. C.). Ann. Phys. u. Chem., 158, 461-472.

# 2, Spectra of particular planets.

On a photograph of Jupiter's spectrum showing evidence of intrinsic light from that planet.

Draper (H.). Monthly Notices Astronom. Soc., 40, 438-435; Amer. Jour. Sci., (3) 20, 118-120. Note on the spectrum of the red spot on Jupiter.

Lindsay (Lord). Monthly Notices Astronom. Soc., 40, 87-88; Beiblätter, 4, 614 (Abs.).

Observation du spectre de Jupiter.

Secchi (A.). Comptes Rendus, 59, 309.

Spectroscopic observations of Jupiter, made with the great Melbourne telescope.

Sueur (A. Le). Proc. Royal Soc., 18, 242.

Physical observations of Mars.

Airy (G. B.). Monthly Notices Astronom. Soc., 38, 84-88.

Spectrum of Mars.

Huggins (W.). Monthly Notices Astronom. Soc., 27, 178; Jour. Franklin Inst., 84, 261.

Note on the spectrum of the eclipsed Moon.

Noble (W.). Monthly Notices Astronom. Soc., 38, 84.

Sur l'application de l'analyse spectrale à la question de l'atmosphère lunaire.

Janssen (J.). Comptes Rendus, 56, 962.

Lettre sur le spectre de la planète Neptune et sur quelques faits d'analyse spectrale.

Secchi (A.). Comptes Rendus, 69, 1050.

Raies du spectre du planète Saturne.

Secchi (A.). Comptes Rendus, 60, 1167; Phil. Mag., (4) 30, 78.

Spectrum of Uranus.

Huggins (W.). Chem. News, 23, 265; Proc. Royal Soc., 19, 488-491; Phil. Mag., (4) 42, 228-226; Nature, 4, 88; Amer. Jour. Sci., (8) 2, 188.

Résultats fournis par l'analyse spectrale de la lumière d'Uranus. Secchi (A.). Comptes Rendus, 68, 761.

The Transit of Venus.

Cacciatore. Nature, 27, 180.

Osservazioni del passagio di Venere sul disco solare fatte in Italia nel 6 Dicembre 1882.

Crova (A.). Mem. Spettr. ital., 11, Dic. 1-28; Beiblätter, 7, 875 (Abs.).

Photographs of the spectrum of Venus, Dec., 1876.

Draper (H.). Nature, 15, 218; Amer. Jour. Sci., (3) 13, 95; Phil. Mag., (5) 3, 238.

Observations of the transit of Venus, Jec. 6, 1882, made at Mells, ten miles south of Bath.

Horner (Maurer). Mon. Not. Astronom. Soc., 43, 276.

- Note sur l'observation du passage de la planète Vénus sur le Soleil. Janssen (J.). Comptes Rendus, 96, 288-92; Beiblätter, 7, 375.
- Observation of the transit of Venus, Dec. 6, 1882, made at the Allegheny Observatory.

Langley (S. P.). Mon. Not. Astronom. Soc., 41, 71.

- The spectroscope and the transit of Venus.

  Nature, 11, 171; 27, 156-157.
- Nouveau moyen d'observer les éclipses et les passages de Vénus. Secchi (A.). Comptes Rendus, 73, 984.
- Essai pendant une éclipse solaire, de la nouvelle méthode spectroscopique proposée pour le prochain passage de Vénus.

  Secchi (A.). Comptes Rendus, 76, 1827.
- Observations du passage de Vénus à l'Observatoire royal du Collège romain.

Tacchini (P.). Comptes Rendus, 95, 1209-1211.

- Observation du passage de Vénus, à Avila, Espagne. Thollon (L.). Comptes Rendus, 95, 1840-42.
- Observations of the transit of Venus, Dec. 6, 1882, made at Princeton, N. J., and South Hadley, Mass.

Young (C. A.). Amer. Jour. Sci., (3) 25, 321-29.

### j, solar spectrum.

# 1, Solar spectrum in general.

Influence of water in the atmosphere on the solar spectrum.

Abney and Festing. Proc. Royal Soc., 35, 828-341; Beiblätter, 8, 507 (Abs.).

Lecture on solar physics.

Abney (W. de W.). Nature, 25, 162-166, 187-191, 252-257.

Sunlight and skylight at high altitudes.

Abney (W. de W.). Nature, 26, 586; Beiblätter, 7, 28 (Abs.); Jour. de Phys., (2) 3, 47-48 (Abs.).

The solar spectrum, from  $\lambda$  7150 to  $\lambda$  10000.

Abney (W. de W.). Phil. Trans. (1886), Part II, XIII.

Remarques sur quelques raies du spectre solaire.

Angström (A. J. Comptes Rendus, 63, 647; Phil. Mag., (4) 23, 76; 24, 1.

Remarques de M. Janssen. Comptes Rendus, 63, 728.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum.

Angström (A. J.). Ann. Phys. u. Chem., 117, 290.

Mémoire sur la constitution du spectre solaire.

Becquerel (E.). Comptes Rendus, 14, 901-8.

Des effets produits sur les corps par les rayons solaires.

Becquerel (E.). Comptes Rendus, 17, 882.

Constitution physique du Soleil.

Boillot (A.). Comptes Rendus, 72, 728.

Mémoire sur le spectre solaire.

Brenta. Comptes Rendus, 11, 766.

On the lines of the solar spectrum, and on those produced by the Earth's atmosphere, and by the action of nitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) 8, 384; Proc. Royal Soc., 10, 389 (Abs.); Comptes Rendus, 30, 578.

On the lines of the solar spectrum, with a map of the solar spectrum, giving the absorption lines of the Earth's atmosphere.

Brewster and Gladstone. Phil. Trans. (1860), 149.

Catalogue of the oscillation-frequencies of solar rays.

British Association Rep't for 1878.

Ueber die Fraunhofer'schen Linien im Sonnenspectrum, wie sie sich dem unbewaffneten Auge zeigen.

Broch (O. J.). Ann. Phys. u. Chem., Ergänzungsband, 3, 311.

Constitution physique du Soleil.

Chacornac. Comptes Rendus, 60, 170.

Sur la distribution de l'intensité lumineuse et de l'intensité visuelle dans le spectre solaire.

Charpentier (Aug.). Comptes Rendus, 101 (1885), 182-188.

Spectral estimates of the Sun's distance.

Chase (P. E.). Proc. Amer. Philosoph. Soc., 18, 227.

Sur le spectre normal du Soleil.

Cornu (A.). Ann. de l'Ecole normale, (2) 3, 421-484; Arch. de Genève, (2) 52, 62-8 (Abs.).

Constitution du Soleil; reponse à M. Janssen.

Cornu (A.). Comptes Rendus, 73, 545.

Sur quelques conséquences de la constitution du spectre solaire.

Cornu (A.). Comptes Rendus, 86, 580.

Considération sur les couleurs du spectre solaire.

Dalet. Comptes Rendus, 28, 278.

Action du spectre solaire sur les sels haloïdes d'argent, accroissement de leur sensibilité dans certaines parties du spectre par l'adjonction de matières colorantes et autres.

Eder (J. M.). Jour. de Phys., (2) 4 (1885), 185.

Constitution physique du Soleil.

Faye. Comptes Rendus, 60, 89, 188, 168.

Résultats concernant la constitution physique du Soleil, obtenus soit par l'analyse spectrale, soit par l'étude mécanique de la rotation.

Faye. Comptes Rendus. 68, 1189.

Analyse spectrale du Soleil.

Faye. Comptes Rendus, 74, 921.

Sur la théorie physique du Soleil proposée par M. Vicaire.

Faye. Comptes Rendus, 77, 298-801.

Sur la constitution physique et mécanique du Soleil.

Faye. Comptes Rendus, 96, 855-861.

Sur une objection de M. Tacchini relative à la théorie du Soleil dans les "Memorie dei Spettroscopisti italiana."

Faye. Comptes Rendus, 96, 811-816.

Réponse à une note de M. Thollon sur l'interprétation d'une phénomène de spectroscopie solaire.

Faye. Comptes Rendus, 97, 779-782.

Studien über den Ursprung der Fraunhofer'schen Linien in ihrer Beziehung zur Constitution der Sonne.

Fievez (Ch.). Bull. de l'Acad. de Belgique, (8) 12 (1886), 25-32; Beiblätter, 11 (1887), 94 (Abs.).

Rapport sur un Mémoire et plusieurs Notes de M. Janssen concernant l'analyse prismatique de la lumière solaire.

Fizeau. Comptes Rendus, 58, 795.

Spectroscopische Beobachtungen der Sonne.

Franckland u. Lockyer. Ber. chem. Ges., 2, 742.

On some points connected with the chemical constituents of the solar system.

Gladstone (J. H.). Phil. Mag., (5) 4, 379-385; Jour. Chem. Soc., 34, 189 (Abs.).

Solar Chemistry.

H. (G.). Nature, 24, 581-2.

Spectrum of the Sun; spectra of the limb and centre of the Sun.

Hastings (C. S.). Amer. Jour. Sci., 105, 869; Nature, 8, 77.

A theory of the constitution of the sun, founded upon spectroscopic obvations, original and other.

Hastings (C. S.). Amer. Jour. Sci., (3) 21, 88-44; Phil. Mag., (5) 11, 91-103; Beiblätter, 5, 588-592 (Abs.).

The Solar Spectrum.

Herschel (J.). Nature, 6, 454-455.

Action comparative des rayons solaires sous différentes latitudes.

Herschel (J.). Comptes Rendus, 3, 506.

Observations on the spectra of the Sun.

Huggins (W.). Phil. Trans. (1868), 529.

Ueber die Längstreifen im Sonnenspectrum.

Jahresber. d. Chemie, 1, 198; 4, 151; 5, 125; 6, 167.

Spectrum der Sonne.

Jahresber. d. Chemie, 14, 41, 43.

Fraunhofer Linien bei tiefem Stand der Sonne.

Jahresber. d. Chemie, 15, 26.

Constitution der Sonne.

Jahresber. d. Chemie, 17, 84.

Zusammenhang der Distanz der Spectrallinien mit den Dimensionem des Atome.

Jahresber. d. Chemie, 19, 78.

Sonnenspectrum.

Jahresber. d. Chemie, 25, 147.

Objective Darstellung des Sonnenspectrums.

Jahresber. d. Chemie, 29, 158.

Lettre à M. Dumas sur les résultats des observations spectroscopiques concernant la constitution du Soleil.

Janssen (J.). Comptes Rendus, 68, 312.

Constitution du Soleil.

Janssen (J.). Comptes Rendus, 73, 432-6.

Sur ce qu'ont jusqu'à ce jour d'incomplet les résultats fournis par l'analyse spectrale pour nous faire connaître la constitution du Soleil.

Janssen (J.). Comptes Rendus, 73, 798.

Réponse à la note de M. Tacchini inserée au dernier "Comptes Rendus," séance du 14 Mai 1877.

Janssen (J.). Comptes Rendus, 84, 1182.

Notice sur les progrès récents de la physique solaire.

Janssen (J.). Ann. du Bureau des Longitudes (1879), 628-685; Beiblätter, 4, 277 (Abs.).

Die Chemie des Himmels.

Janssen (J.). Archiv. f. Pharmacie (1875), 51.

Reply to Angström's observations on the solar lines.

Janssen (J.). Phil. Mag., (4) 23, 78.

Objective Darstellung des Sonnenspectrums.

Kessler (F.). Ber. chem. Ges., 9, 577.

Sur la loi de Stokes.

Lamansky (S.). Comptes Rendus, 88, 1192.

In feuchter Luft sind die Streifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 208-221.

The solar atmosphere, an introduction to an account of researches made at the Alleghany Observatory.

Langley (S. P.). Amer. Jour. Sci., (3) 10, 489-497.

A proposed new method in solar spectrum analysis.

Langley (S. P.). Amer. Jour. Sci., (3) 14, 140-146; Beiblätter, 1, 621 (Abs.).

Solar spectrum at high altitudes.

Langley (S. P.). Amer. Jour. Sci., (3) 24, 893.

Observations du spectre solaire.

Langley (S. P.). Comptes Rendus, 95, 482-487; Jour. Chem. Soc., 44, 137 (Abs.).

Procédé pour obtenir la récomposition de la lumière du spectre solaire.

Lavaud de Lestrade. Comptes Rendus, 86, 61.

On recent discoveries in solar physics made by means of the spectroscope. Lockyer (J. N.). Phil. Mag., (4) 38, 142.

Spectroscopic Observations of the Sun.

Lockyer (J. N.). Proc. Royal Soc., 15, 256; 17, 91, 128, 181, 350, 415, 506; 18, 74; Ber. chem. Ges., 2, 742; 3, 578; Nature, 3, 34.

Researches in spectrum analysis in connection with the spectrum of the sun, No. I.'

Lockyer (J. N.). Proc. Royal Soc., 21, 88; Phil. Trans., 163, 253-275; Amer. Jour. Sci., (3) 5, 286-7 (Abs.).

Ditto, No. II.

Lockyer (J. N.). Proc. Royal Soc., 21, 285; Phil. Trans., 163, 639–658; Jour. Chem. Soc., (2) 11, 994–995 (Abs.); Phil. Mag., (4) 46, 407–410 (Abs.); Ber. chem. Ges., 6, 978 (Abs.).

Ditto, No. III.

Lockyer (J. N.). Proc. Royal Soc., 21, 508-514 (Abs.); Phil. Trans., 164, 479-494; Phil. Mag., (4) 47, 384-390.

Ditto, No. IV.

Lockyer (J. N.). Proc. Royal Soc., 22, 891; Phil. Trans., 164, 805-813; Phil. Mag., (4) 49, 826.

Ditto, No. V.

Lockyer (J. N.). Proc. Royal Soc., 25, 546.

Ditto, No. VI.

Lockyer (J. N.). Proc. Royal Soc., 27, 49, 279, 409.

Ditto, No. VII.

Lockyer (J. N.). Proc. Royal Soc., 28, 157-180; Amer. Jour. Sci.,
(8) 17, 93-116; Beiblätter, 3, 88-113; Nature, 19, 197-201, 225-230;
Ann. Chim. et Phys., (5) 16, 107-144; Chem. News, 39, 1-5, 11-16.

Note on a recent communication of Messrs. Liveing and Dewar.

Lockyer (J. N.). Proc. Royal Soc., 29, 45-7; Beiblätter, 3, 710-711 (Abs.).

Recent researches in solar chemistry.

Lockyer (J. N.). Proc. Physical Soc., 2, 308-325; Phil. Mag., (5) 6, 161-176; Beiblätter, 3, 358-354 (Abs.).

Spectroscopic observations of the Sun.

Lockyer (J. N.) and Seabroke (G. M.). Phil. Trans., 165, 577-586.

Lectures on solar physics; the chemistry of the Sun.

Lockyer (J. N:). Nature, 24, 267-274, 296-301, 315-324, 365-370, 891-399.

Constitution physique du Soleil.

Lockyer (J. N.). Comptes Rendus, 69, 121.

Réponse au Père Secchi.

Lockyer (J. N.). Comptes Rendus, 69, 452.

Observations spectroscopiques du Soleil.

Lockyer (J. N.). Comptes Rendus, 70, 1268.

Recherches expérimentales sur le spectre solaire.

Lockyer (J. N.). Comptes Rendus, 75, 1816-19.

Recherches d'analyse spectrale au sujet du spectre solaire.

Lockyer (J. N.). Comptes Rendus, 76, 1899.

Recherches sur les rapports d'analyse spectrale avec le spectre du Soleil.

Lockyer (J. N.). Comptes Rendus, 88, 148-154; Jour. Chem. Soc., 36, 575-6 (Abs.).

Recherches sur l'analyse spectrale dans ses rapports avec le spectre solaire.

Lockyer (J. N.). Ann. Chim. et Phys., (4) 29, 480.

On a new method of spectrum observation.

Lockyer (J. N.). Amer. Jour. Sci., (3) 19, 303-311.

Solar spectroscopic observations.

Maclear (J. P.). Nature, 6, 514.

Considérations sur le spectre solaire.

Matthiessen. Comptes Rendus, 16, 917.

Spectrum of the Sun.

Mellone (M.). Amer. Jour. Sci., 55, 1.

Spectrum analysis of the Sun.

Miller (W. A.). Pop. Sci. Monthly, 8, 885.

Spectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165.

On the physical constitution of the Sun.

Norton (W. A.). Amer. Jour. Sci., (8) 1, 895-407; Phil. Mag., (4) 42, 55-67.

Spectrum of the Sun.

Olmstead (D.). Amer. Jour. Sci., (2) 48, 187.

Les raies du spectre solaire.

Peslin. Comptes Rendus, 74, 825.

Researches in circular solar spectra.

Pigott (G. West Royston). Proc. Royal Soc., 21, 426.

Spectroscopic discoveries concerning the Sun.

Proctor (R. A.). Temple Bar, 25, 281.

Réponse à une Note précédente du P. Secchi sur quelques particularités de la constitution du Soleil.

Respighi (L.). Comptes Rendus, 74, 1387-90.

Réponse aux critiques présentées par le Père Secchi, à propos des observations faites sur quelques particularités de la constitution du Soleil. Respighi (L.). Comptes Rendus, 75, 184-188.

Sur la grandeur et les variations du diamètre solaire.

Respighi (L.). Comptes Rendus, 77, 715-720, 774-778.

Sulla constituzione fisica del Sole.

Respighi (L.). R. Accad. dei Lincei, 10 April, 1871.

Osservazioni solari dirette et spettroscopiche esequite nel R. osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 9, 25-86, 61-90, 161-189; 10, 146-147.

Recherches sur les raies du spectre solaire et des différents spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Solar spectrum in a hailstorm.

Romanes (C. H.). Nature, 25, 507.

Italian spectroscopy.

Secchi (A.). Nature, 6, 465-6.

Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums. Secchi (A.). Ann. Phys. u. Chem., 126, 485.

Certain spectroscopic observations.

Secchi (A.). Chem. News, 27, 244.

Notes sur les spectres solaires.

Secchi (A.). Comptes Rendus, 66, 124, 898.

Existence d'une couche donnant un spectre continu entre la couche rose et le bord solaire.

Secchi (A.). Comptes Rendus, 68, 580.

Étude spectrale des taches solaires; documents que peut fournir cette étude sur la constitution du Soleil.

Secchi (A.). Comptes Rendus, 68, 1082.

Remarques sur la lettre de M. Lockyer, du 2 Août. Secchi (A.). Comptes Rendus, 69, 315.

Replique à la Note de M. Lockyer, du 16 Août. Secchi (A.). Comptes Rendus, 69, 549.

Résultats de quelques observations spectrales du Soleil. Secchi (A.). Comptes Rendus, 70, 903.

Note contenant une rectification numérique à sa dernière communication. Secchi (A.). Comptes Rendus, 70, 1062.

Déplacement des raies observées dans le spectre solaire. Secchi (A.). Comptes Rendus, 70, 1218.

Nouveaux observations concernant la constitution physique du Soleil. Secchi (A.). Comptes Rendus, 72, 362.

Quelques nouveaux résultats d'analyse spectrale. Secchi (A.). Comptes Rendus, 74, 593.

Sur quelques particularités de la constitution du Soleil. Secchi (A.). Comptes Rendus, 74, 1087-91.

Réponse aux observations presentées par M. Respighi sur quelques particularités de la constitution du Soleil.

Secchi (A.). Comptes Rendus, 74, 1501-7.

Observations des variations des diamètres solaires. Secchi (A.). Comptes Rendus, 75, 606-618.

Recherches spectroscopiques solaires.

Secchi (A.). Comptes Rendus, 75, 749.

Sur quelques observations spectroscopiques particulières.

Secchi (A.). Comptes Rendus, 76, 1052-56.

Nouvelles recherches sur la diamètre solaire.

Secchi (A.). Comptes Rendus, 77, 253-260.

Réponse à M. Respighi.

Secchi (A.). Comptes Rendus, 77, 904.

Note on a possible ultra-solar spectroscopic phenomenon.

Smyth (C. Piazzi). Proc. Royal Soc., 20, 136.

The visual, grating and glass-lens, solar spectrum, in 1884.

Smyth (C. Piazzi). Trans. Roy. Soc. of Edinburgh, 32, part III, 519-544, with plates; Monthly Notices Astronom. Soc., 47 (1887), 191-2.

On the Sun as a variable star.

Stewart (B.). Lecture at the Royal Institution, April 12, 1867.

On the change of refrangibility of light; with a drawing of the fixed lines in the solar spectrum in the extreme violet, and in the invisible region beyond.

Stokes (G. G.). Phil. Trans., 1852 II, 468.

Lecture on solar physics.

Stokes (G. G.). Nature, 24, 595-8, 613-18.

On the bearing of recent observations upon solar physics.

Stoney. Phil. Mag., (4) 36, 441.

Osservazioni solari dirette e spettroscopiche fatte a Palermo nel 1 trimestre del 1879, nel secondo trimestre del 1879, nel terzo e quarto trimestre del 1879, nel 1 trimestre del 1880, nel secondo trimestre del 1880, nel 3 trimestre del 1880, nel 4 trimestre del 1880, riassunto delle osservazioni, 1880,

Tacchini (P.). Mem. Spettr. ital., **8**, 37-40, 52-54, 98-97, 102-104; **9**, 49-58, 105-110, 194-203; **10**, 5-11, 12; Comptes Rendus, **88**, 1181; **89**, 519.

Sull'andamento dell'attivitá solare del 1871 al 1878.

Tacchini (P.). Mem. Spettr. ital., 8, 65-72.

Nouvelles observations spectrales.

Tacchini (P.). Comptes Rendus, 77, 195-198.

Sur le magnésium dans le spectre solaire.

Tacchini (P.). Comptes Rendus, 84, 1450.

Résultats des observations solaires pendant le deuxième trimestre de 1878, et des observations pendant le troisième trimestre de 1878.

Tacchini (P.). Comptes Rendus, 87, 259, 1081.

Sur la cause des spectres fugitifs observés par M. Trouvelot sur la limbe solaire.

Tacchini (P.). Comptes Rendus, 91, 156-8.

7 т

Observations solaires faites à l'observatoire royal du Collège romain pendant le troisième, 1880.

Tacchini (P.). Comptes Rendus, 91, 1058-4.

Observations solaires faites à l'Observatoire royal du Collège romain pendant le premier, le deuxième et le troisième trimestres de 1881. Tacchini (P.). Comptes Rendus, 93, 880; 94, 830.

Comparaison entre le spectre normal du Soleil et celui de réfraction suivant l'échelle de Kirchhoff.

Thalén (R.). Ann. Chim. et Phys., (4) 18, 211.

- Déplacement des raies spectrales, dû au mouvement de rotation du Soleil.

  Thollon (L.). Comptes Rendus, 88, 169-171; Beiblätter, 3, 855-6
  (Abs.); Jour. Chem., Soc., 36, 574.
- Observation faite sur un groupe de raies dans le spectre solaire.

Thollon (L.). Comptes Rendus, 91, 368-70; Beiblätter, 4, 790 (Abs.); Amer. Jour. Sci., (8) 20, 480; Jour. Chem. Soc., 40, 333.

Quelques phénomènes solaires observés à Nice.

Thollon (L.). Comptes Rendus, 91, 487-92.

- Études spectroscopiques faites sur le Soleil à l'Observatoire de Paris.

  Thollon (L.). Comptes Rendus, 91, 656-60.
- Sur l'interprétation de quelques phénomènes de spectroscopie solaire.

  Thollon (L.). Comptes Rendus, 97, 747.
- Études faites au sommet du Pic du Midi, en vue de l'établissement d'une station astronomique permanente.

Thollon et Trépied. Comptes Rendus, 97, 884-886; Nature, 29, 7-8; Beiblätter, 8, 824 (Abs.).

Observations relatives à la réponse de M. Faye concernant divers phénomènes de spectroscopie solaire.

Thollon (L.). Comptes Rendus, 97, 900.

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes des végétaux.

Timiriasef (C.). Ann. Chim. et Phys., (5) 12, 355.

Spectres fugatifs observés près du limbe solaire.

Trouvelot (L.). Ann. Chim. et Phys., (5) 19, 488-449; Beiblätter, 4, 727 (Abs.).

Note par M. Tacchini. Comptes Rendus, 91, 156-8.

Sur la constitution physique du Soleil; réponse aux critiques de M. Faye. Vicaire (E.). Comptes Rendus, 75, 527-81; 77, 1491-95. Vermehrung und Verdickung der Fraunhofer'schen Linien bei Sonnenuntergang.

Weiss (A.). Ann. Phys. u. Chem., 116, 191; Phil. Mag., (4) 24, 407.

Remarks on spectroscopic observations of the Sun, made at the Temple Observatory, Rugby School, in 1871-2-3.

Wilson (J. M.) and Seabroke (G. M.). Monthly Notices Astronom. Soc., 34, 26-29.

Application of the spectroscope to observations of the Sun.

Winlock (J.). Proc. Amer. Acad., 8, 330.

Note on the duplicity of the "1474" line in the solar spectrum.

Young (C. A.). Amer. Jour. Sci., (3) 11, 429-431.

Spectroscopic observations of the Sun.

Young (C. A.). Nature, 3, 34.

Spectroscopic Notes.

Young (C. A.). Amer. Jour. Sci, (3) 20, 353-8; (3) 26, 333; Nature, 23, 281; Chem. News, 20, 271; Beiblätter, 5, 287.

Anologia delle vibrazioni luminose e delle spettro solare, con 1 tav. Zantedeschi (F.). Sitzungsber. Wiener Akad., 25, 145-165.

De mutationibus quae contingunt in spectro solari fixo elucabratio. Zantedeschi (F.). Münchener Abhandlungen, 8, 99.

Ueber die Temperatur und die physische Beschaffenheit der Sonne.

Zöllner (F.). Der Naturforscher, 3, 93, 189, 233, 311; Ber. Sächs. Ges.

Wiss., 25, 158-194; Phil. Mag., (4) 46, 290-304, 343-56.

# 2, Solar Absorption.

Sur la loi de répartition suivant l'altitude de la substance absorbant dans l'atmosphère.

Cornu (A.). Comptes Rendus, 90, 940-946; Beiblätter, 4, 727-8 (Abs.).

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

Sur la mesure de l'intensité des raies d'absorption et des raies obscures du spectre solaire.

Gouy. Comptes Rendus, 89, 1038-4; Beiblätter, 4, 869 (Abs.).

Absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-128; Ber. chem. Ges., 14, 1890 (Abs.).

The selective absorption of solar energy.

Langley (S. P.). Amer. Jour. Sci., (8) 25, 169-196; Ann. Phys. u.
Chem., n. F. 19, 226-244, 384-400; Phil. Mag., (5) 15, 153-183;
Ann. Chim. et Phys., (5) 29, 497-542.

Observations of absorbing vapours upon the Sun.

Trouvelot (E. L.). Monthly Notices Astronom. Soc., 39, 374-379.

Spectral-photometrische Untersuchungen insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Ueber die Absorption der chemisch wirksamen Strahlen in der Atmosphäre der Sonne.

Vogel (H. C.). Ber. Sächs. Ges. Wiss., 24, 135-141; Ann. Phys. u. Chem., 148, 161-168; Phil. Mag., (4) 45, 345-350.
Note by Schuster (A.). Phil. Mag., (4) 45, 350.

## 3, Solar Atmosphere.

On hydrocarbons in the solar atmosphere.

Abney (W. de W.). Rept. British Assoc. (1881), 524.

Mémoire sur l'atmosphère solaire.

Angelot. Comptes Rendus, 68, 245.

Atmospheric lines of the solar spectrum, with a map.

Hennessey (J. B. N.). Phil. Trans., 165, 157-160; Amer. Jour. Sci., (3) 9, 307.

Ursache der Spectren und Folgerungen über die Zustände der Sonnenatmosphäre.

Jahresber. d. Chemie, 15, 82.

Sur une atmosphère incandescente qui entoure la photosphère solaire.

Janssen (J.). Comptes Rendus, 68, 181.

Remarques à propos des résultats obtenus par M. Janssen et des connaissances précédemment acquises au sujet de l'atmosphère solaire. Leverrier. Comptes Rendus, 68, 314.

Atmosphère du Soleil.

Littrow. Comptes Rendus, 68, 485.

Réfrangibilité de la raie jaune brilliante de l'atmosphère solaire. Rayet. Comptes Rendus, 68, 820; Chem News, 19, 158.

Spectre de l'atmosphère solaire.

Rayet. Comptes Rendus, 68, 1821; 71, 301; 77, 529; Ann. Chim. et Phys., (4) 24, 5-80; Archiv. f. Pharmacie, 4, 325-7. Nouvelles observations sur l'atmosphère et les protubérances solaires. Secchi (A.). Comptes Rendus, 68, 1248.

Sur l'état actuel de l'atmosphère solaire.

Secchi (A.). Comptes Rendus, 84, 1430-84.

Ueber den Einfluss der Atmosphäre auf die Linien des Spectrums. Secchi (A.). Ann. Phys. u. Chem., 126, 485.

Résultats des opérations faites en 1877 au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

Observation of absorbing vapours on the Sun.

Trouvelot. Monthly Notices Astronom. Soc., 39, 874.

Spectral-photometrische Untersuchungen, insbesondere zur Bestimmung der Absorption der die Sonne umgebenden Gashülle.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1877), 104-142.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

## 4, B lines in the solar spectrum.

Measures of the Great B line in the spectrum of a high sun.

Smyth (C. Piazzi). Monthly Notices Astronom. Soc., 39, 38-43.

Note on the Little b group of lines in the solar spectrum.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 32, 37-44; Nature, 28, 287 (Abs.); Amer. Jour. Sci., (3) 21, 323.

Résultats des opérations faites en 1877, au bord du Soleil sur les raies b et 1474 k.

Tacchini. Comptes Rendus, 86, 756.

Constitution et origine du groupe B du spectre solaire.

Thollon (L.). Jour. de Phys., 13, 421; Nature, 30, 520.

Mémoire sur la constitution et l'origine du groupe B du spectre solaire.

Thollon (L.). Bull. astronomique, 1883-4.

Note by Smyth (C. Piazzi). Nature, 30, 535.

#### 5, Bright lines in the solar spectrum.

On the existence of bright lines in the solar spectrum.

Christie (W. H. M.). Monthly Notices Astronom. Soc., 38, 478-4.

On the coincidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (H.). Amer. Jour. Sci., (8) 18, 262-76; Monthly Notices Astronom. Soc., 39, 440-47; Beiblätter, 4, 275 (Abs.).

Report to the Committee on Solar Physics on the basic lines common to Spots and Prominences.

Lockyer (J. N.). Proc. Royal Soc., 29, 247-65; Beiblätter, 4, 45 (Abs.).

On a cause for the appearance of bright lines in the solar spectrum.

Meldola (R.). Phil. Mag., (5) 6, 50-61; Jour. Chem. Soc., 36, 574;
 Amer. Jour. Sci., (8) 16, 290-300; Beiblätter, 2, 561-2 (Abs.).

Letter to the Superintendent of the U.S. Coast Survey, containing a catalogue of bright lines in the spectrum of the solar atmosphere.

Young (C. A.). Amer. Jour. Sci., (3) 4, 856-62; Nature, 7, 17-20.

6, Chemical effects of the solar spectrum.

Sur l'action chimique des différents rayons du spectre solaire.

Claudet. Comptes Rendus, 25, 938.

On the chemical efficiency of sunlight.

Dewar (J.). Phil. Mag., 44, 807-311.

Wirkung der chemischen Strahlen verscniedener Theile der Sonnenscheibe.

Jahresber. d. Chemie, 16, 101.

Rayons violets qui renferment le maximum d'action chimique de toutes les couleurs du spectre solaire.

Poey (A.). Comptes Rendus, 73, 1288.

Expériences sur la transmission des rayons chimiques du spectre solaire à travers différents milieux.

Somerville (Mrs.). Comptes Rendus, 3, 478.

Beziehungen zwischen der chemischen Wirkung des Sonnenspectrums, der Absorption und anomalen Dispersion des Sonnenspectrums.

Vogel (H.). Ber. chem. Ges., 7, 976.

# 7, Chromosphere and Corona.

Spectre de la couronne.

Blaserna (P.). Comptes Rendus, 74, 879.

The comparative aggregate strength of the light from the red hydrogen stratum, and of that of the rest of the chromosphere.

Hammond (B. E.). Nature, 3, 487.

On the solar corona.

Harkness (W.). Bull. Philosoph. Soc. Washington, 3, 116-119; Be-blätter, 5, 128.

· Photographing the spectrum of the corona.

Huggins (W.). Nature, 27, 199.

The coronal atmosphere of the Sun.

Janssen (J.). Nature, 8, 127-9, 149-50.

Sur la photographie de la chromosphère.

Janssen (J.). Comptes Rendus, 91, 12; Beiblätter, 4, 615.

L'analyse spectrale de la lumière zodiacale et sur la couronne des éclipses.

Liais (E.). Comptes Rendus, 74, 262-4; Amer. Jour. Sci., (8) 3, 890-91.

Note on the unknown chromospheric substance of Young.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 28, 475-7; Beiblätter, 3, 709 (Abs.).

A new method of viewing the chromosphere.

Lockyer (J. N.) and Seabroke (G. M.). Proc. Royal Soc., 21, 105-107;
Amer. Jour. Sci., (8) 5, 819 (Abs.); Comptes Rendus, 76, 368-5;
Phil. Mag., (4) 45, 222-4.

Note on the existence of carbon in the coronal atmosphere of the Sun.

Lockyer (J. N.). Proc. Royal Soc., 27, 308; Jour. Chem. Soc., 38, 429 (Abs.).

Preliminary note on the substances which produce the chromospheric lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 288-4; Nature, 19, 202; Amer. Jour. Sci., (3) 17, 250; (8) 18, 158; Beiblätter, 3, 420-422.

Discussion of "Young's List of Chromospheric Lines."

Lockyer (J. N.). Proc. Royal Soc., 28, 482-444; Beiblätter, 3, 420 (Abs.).

Photographie der Corona.

Lohse (O.). Astronom. Nachr., 104, 209-212; Beiblätter, 7, 291 (Abs.).

On the corona seen in total eclipses of the Sun.

Norton (W. A.). Amer. Jour. Sci., (8) 1, 5-15; Phil. Mag., (4) 41, 225-286.

Note on the chromosphere.

Perry (S. J.). Monthly Notices Astronom. Soc., 43, 426-7; Nature, 3, 67.

Osservazioni spettroscopiche del Bordo e delle Protuberanze Solari. Respighi (L.). Roma, 1871.

La corona solare l'eclisse, 22 Dic. 1870.

Ricca (V. S.). Palermo, 1871.

Osservazioni delle inversioni della coronale 1474 k, e delle b del magnesio fatte nel Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 10, 148-51.

Professor Young and the presence of ruthenium in the chromosphere.

Roscoe (H. E.). Nature, 9, 5.

On the spectrum of the corona.

Sampson (W. T.). Amer. Jour. Sci., (3) 16, 343-5; Beiblätter, 3, 277 (Abs.).

Résultats de quelques observations spectroscopiques des bords du Soleil.

Secchi (A.). Comptes Rendus, 67, 1018.

Note sur les spectres des trois étoiles de Wolf et sur l'analyse comparative de la lumière du bord solaire et des taches.

Secchi (A.). Comptes Rendus, 69, 39.

Note sur la constitution de l'auréole solaire et sur quelques particularités du tube de Geissler.

Secchi (A.). Comptes Rendus, 70, 27, 82.

Sur les relations qui existent, dans le Soleil, entre les facules, les protubérances et la couronne.

Secchi (A.). Comptes Rendus, 72, 829-832; 73, 242-246, 593-599.

Hydrogène et la raie D, dans le spectre de la chromosphère solaire. Secchi (A.). Comptes Rendus, 73, 1300.

Spectre de la chromosphère.

Secchi (A.). Comptes Rendus, 74, 305.

Observations de la chromosphère.

Secchi (A.). Comptes Rendus, 75, 606-613.

Magnésium dans la chromosphère du Soleil.

Tacchini. Comptes Rendus, 75, 23, 430; Phil. Mag., (4) 44, 159-160, 479-80.

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini. Comptes Rendus, 76, 1577; 77, 606-9; 82, 1385-7.

Observations on the Corona seen during the eclipse of Dec. 11 and 12, 1871.

Winter (G. K.). Phil. Mag., (4) 43, 191-4.

On the solar corona.

Young (C. A.). Amer. Jour. Sci., (3) 1, 311-873.

Note on the spectrum of the corona.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53-55; Chem. News, 24, 198-9.

Preliminary catalogue of the bright lines in the spectrum of the chromosphere.

Young (C. A.). Amer. Jour. Sci., 3 2, 332-335; Phil. Mag., (4) 42, 377-380; Nature, 5, 312-313.

Spectrum of the corona of the Sun.

Young (C. A.). Amer. Jour. Sci., (3) 2, 53; Chem. News, 24, 198.

Note on the chromosphere lines.

Young (C. A.). Nature, 3, 266-7.

Spectrum of the chromosphere.

Young (C. A.). Nature, 5, 812.

The corona line.

Young (C. A.). Nature, 7, 28.

Beobachtungen der Corona.

Zöllner (F.). Der Naturforscher (Berlin), 2, 167, 253, 379, 895; 3, 91, 892;
Les Mondes (Paris), 21, 345, 602; 22, 142;
Nature, 1, 15, 189, 146, 583, 548;
2, 114, 164, 277;
3, 163, 175, 262, 263, 278;
Phil. Mag., (4) 38, 281;
39, 17;
Monthly Notices Astronom Soc., 30, 193.

8, The D group of lines in the solar spectrum.

Monographie du groupe D dans le spectre solaire.

Thollon. Jour. de Phys., (2) 3, 5-11; Beiblätter, 8, 647.

9, Dark lines in the solar spectrum.

Sur les raies sombres du spectre solaire et la constitution du Soleil.

Cornu (A.). Comptes Rendus, 86, 315.

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 433.

On the presence of dark lines in the solar spectrum which correspond closely to the lines of the spectrum of oxygen.

Draper (J. C.). Amer. Jour. Sci., (8) 16, 256-65; Nature, 18, 654-7; Beiblätter, 3, 188 (Abs.); Jour. Chem. Soc., 36, 997.

Mesure de l'intensité de quelques raies obscures du spectre solaire.

Gouy. Comptes Rendus, 91, 883; Jour. Chem. Soc., 40, 333 (Abs.); Beiblätter, 5, 46 (Abs.).

Dunkle Linien des Sonnenspectrums.

Jahresber. d. Chemie, 16, 107, 110.

A method of examining refractive and dispersive powers by prismatic reflection.

Wollaston (W. H.). Phil. Trans. (1802), 865.

Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 878.

10, Displacement of the solar spectrum.

Note on the displacement of the solar spectrum.

Hennessey (J. H. N.). Proc. Royal Soc., 22, 219.

Observations on the displacement of lines in the solar spectrum caused by the Sun's rotation.

Young (C. A.). Amer. Jour. Sci., (3) 12, 821-8.

# 11, Eclipse Spectra.

On the solar eclipse of Dec. 22, 1870, observed at Xeres, in Spain.

Abbay (R.). Monthly Notices Astronom. Soc., 31, 60-62.

Observations on the total eclipse of the Sun of 1869.

Abbe (C.). Amer. Jour. Sci., (3) 3, 264-267.

On the total solar eclipse of May 17, 1882.

Abney (W. de W.) and Shuster (A.). Phil. Trans., 175, 258-271; Proc. Royal Soc., 35, 151 (Abs.); Beiblätter, 7, 896 (Abs.); Nature, 26, 465.

Eclisse totale del 22 Dic. 1870.

Agnello (A.). Palermo, 1870.

On the results of the spectroscopic observations of the solar eclipse of July 29, 1878.

Barker (G. F.). Amer. Jour. Sci., (8) 17, 121-5.

Observations sur un artifice semblable auquel ont songé en même temps M. Janssen dans l'Inde et M. Zantedeschi en Italie.

Beaumont (Élie de). Comptes Rendus, 68, 314

The solar eclipse of July 29, 1878.

Draper (H.). Amer. Jour. Sci., (3) 16, 227-30; Phil. Mag., (5) 6, 318-320.

The Eclipse.

Draper (H.). Nature, 18, 462-4.

Account of the expedition of the Jesuits from Manilla, eclipse of Aug. 18, 1868.

Faura (F.). Bull. meteorol. dell. Osservatorio del Collegio Romano, 7, no. 12.

Suggestion relative à l'observation de l'éclipse de Soleil du 31 décembre 1861.

Faye. Comptes Rendus, 53, 679.

Observations relatives à la coïncidence des méthodes employées séparément par M. Lockyer et par M. Janssen.

Faye. Comptes Rendus, 67, 840.

Note sur une télégramme et sur une lettre de M. Janssen.

Faye. Comptes Rendus, 68, 112.

Rapport au Bureau des Longitudes sur la prochaine éclipse du 6 mai 1883.

Fizeau, Cloué, Lewy et Janssen. Comptes Rendus, 95, 881-885; Ann. du Bureau des Longitudes (1888), 818-820; Nature, 27, 119-112.

Account of spectroscopic observations of the eclipse of the Sun, Aug. 18, 1868.

Haig (C. T.). Proc. Royal Soc., 17, 74.

On the total eclipse of the Sun of Aug. 18, 1868.

Herschel (Alex.). Proc. Royal Institution, 1868-9.

The total eclipse of Aug. 7, 1869.

Hough (G. W.). Albany (J. Munsell), 1870.

Indication de quelques-uns des résultats obtenus à Cocanada pendant l'éclipse du mois d'août dernier, et à la suite de cette éclipse.

Janssen (J.). Comptes Rendus, 67, 888.

Lettre sur l'éclipse du 18 août.

Janssen (J.). Comptes Rendus, 67, 839.

Resumé des notions acquises sur la constitution du Soleil.

Janssen (J.). Comptes Rendus, 68, 312.

Observations spectrales prises pendant l'éclipse du 18 août 1868.

Janssen (J.). Comptes Rendus, 68, 367.

Sur l'éclipse totale du 22 décembre prochain, 1870.

Janssen (J.). Comptes Rendus, 71, 581.

Lettre sur les résultats du voyage pour observer en Algérie l'éclipse du Soleil du 22 Déc. 1870.

Janssen (J.). Comptes Rendus, 72, 220.

Remarques sur une dernière note de M. Cornu.

Janssen (J.). Comptes Rendus, 73, 793-794.

Télégrammes addressés à l'Académie sur les observations faites pendant l'éclipse du Soleil du 11 Déc. 1871, sur la côte de Malabar.

Janssen (J.). Comptes Rendus, 73, 1437.

Lettre sur l'éclipse du 12 Déc. 1871.

Janssen (J.). Comptes Rendus, 74, 111.

Les conséquences principales qu'il peut tirer de ses observations sur l'éclipse du 12 Déc. 1871.

Janssen (J.). Comptes Rendus, 74, 175, 514, 725; Monthly Notices
Astronom. Soc., 32, 69-70; Proc. Royal Soc., 20, 138-9; Amer.
Jour. Sci., (8) 3, 226; Jour. Chem. Soc., (2) 10, 590 (Abs.).

Sur l'éclipse solaire.

Janssen (J.). Comptes Rendus, 96, 1745; Nature, 28, 216.

Rapport à l'Académie sur la mission en Océanie pour l'observation de l'éclipse totale de Soleil du 6 mai 1883.

Janssen (J.). Comptes Rendus, 97, 586-602; Mem. Spettr. ital., 12, 201-216.

Rapport à l'Académie relatif à l'observation de l'éclipse du 12 Déc. 1871, observée à Schoolor (Indoustan).

Janssen (J.). Ann. Chim. et Phys., (4) 28, 474-99.

Applications utiles de la méthode graphique à la prédiction des éclipses de Soleil.

Laussedat. Comptes Rendus, 70, 240.

Report of observations, etc., of the total eclipse of the Sun taken at "Le Maria Louisa" Vineyard, Cadiz, Dec. 21-22, 1870.

Lindsay (Lord). Monthly Notices Astronom. Soc., 31, 49-60.

Remarks on the recent eclipse of the Sun as observed in the United States.

Lockyer (J. N.). Proc. Royal Soc., 18, 179; Comptes Rendus, 70, 1890; Nature, 1, 14.

Note on the recent and coming total solar eclipses.

Lockyer (J. N.). Proc. Royal Soc., 34, 291-300; Nature, 27, 185-9; Beiblätter, 7, 193 (Abs.).

The Mediterranean eclipse, 1870.

Lockyer (J. N.). Nature, 3, 221-24, 321-2; Amer. Jour. Sci., (3) 3, 226-30.

The solar eclipse.

Lockyer (J. N.). Nature, 5, 217-19; Amer. Jour. Sci., (3) 3, 226-30.

The Eclipse.

Lockyer (J. N.). Nature, 18, 457-62.

Eclipse notes on the solar spectrum.

Lockyer (J. N.). Nature, 25, 573-8; 26, 100-101.

Spectrum of solar eclipses.

Lockyer (J. N.). Nature, 27, 185.

Report on the total solar eclipse of April 6, 1875.

Lockyer (J. N.). Phil. Trans., 169, 189-154.

The solar eclipse.

Lockyer (J. N.)., Maclear (J. P.). Nature, 5, 219-21; Amer. Jour. Sci., (3) 3, 810-12.

The total eclipse of the Sun of Aug. 7, 1869.

Morton (Henry). Jour. Franklin Inst., (3) 58, 129, 150, 200.

The solar eclipse of Dec. 22, 1870, observed at San Antonio, near Puerto de Sta. Maria.

Perry (S. J.). Monthly Notices Astronom. Soc., 31, 62-3, 149, 151.

Sur l'éclipse du 17 mai 1882.

Puiseux (A.). Comptes Rendus, 94, 1643.

Analyse spectrale des protubérances observées à la presqu'île de Malacca pendant l'éclipse totale du Soleil du 18 août.

Rayet. Comptes Rendus, 67, 757; Rept. Astronom. Soc., 1868-9, p. 152.

The solar eclipse.

Respighi (L.). Nature, 5, 237-8; Amer. Jour. Sci., (8) 3, 312-14.

Spectralbeobachtungen während der totalen Sonnenfinsterniss des Jahres
1868 zu Aden.

Rîha (J.). Sitzungsber. d. Wiener Akad., 58, II, 655, 721-4.

- Some remarks on the total solar eclipse of July 29, 1878.

  Schuster (A.). Monthly Notices Astronom. Soc., 39, 44-7.
- Essai, pendant une éclipse solaire, de la nouvelle méthode spectroscopique proposée pour le prochain passage de Vénus.

Secchi (A.). Comptes Rendus, 76, 1327-31; Chem. News, 27, 320.

- Observations de l'éclipse solaire du 10 octobre 1874, avec le spectroscope. Secchi (A.). Comptes Rendus, 79, 885.
- L'observation des protubérances solaires faites hors du moment d'une éclipse par M. Janssen et par M. Lockyer. Stewart (B.). Comptes Rendus, 67, 904.
- Sull'eclisse totale di sole del 17 maggio 1882, osservato à Sohage in Egitto.

  Tacchini (P.). Mem. Spettr. ital., 11, Sept. 1-14; Comptes Rendus,
  95, 896.
- The total solar eclipse of Dec. 12, 1871.

  Tennant (J. F.). Monthly Notices Astronom. Soc., 32, 70-2; Nature,
- Report of the Indian Eclipse, Aug. 18, 1868.

  Tennant (J. F.). Royal Astronom. Soc. Memoirs, Vol. 7; Nature, 1, 536; Naturforscher (Berlin), 1, 311, 319, 327, 351, 369, 398; 2, 59; Les Mondes, 18, 130, 168, 272, 296, 362, 413.
- Eclipse totale de Soleil, observée à Souhage (haute Égypte) le 17 mai (temps civil) 1882.

Thollon (L.). Comptes Rendus, 94, 1680-85; Beiblätter, 6, 878-80.

- Observation de l'éclipse totale du 17 mai 1882. Trépied. Comptes Rendus, 94, 1688.
- Reports on the total eclipse of the Sun, Aug. 7, 1869.

  United States Naval Observatory (Commodore B. F. Sands and others).

  Washington, 1869.
- On the results of the eclipse observations, Aug. 7, 1869.

  Young (C. A.). Amer. Jour. Sci., (8) 3, 814; Nature, 1, 14, 170, 203, 836, 552; Les Mondes, 21, 238, 600; Naturforscher, 2, 258, 879, 533; 3, 16, 53, 142, 163, 175.
- Spectroscopic observations of the American eclipse party in Spain. Young (C. A.). Nature, 3, 261.

The Sherman astronomical expedition.

Young (C. A.). Nature, 7, 107-109.

Observations upon the solar eclipse of July 29, 1878, by the Princeton Eclipse Expedition.

Young (C. A.). Amer. Jour. Sci., (8) 16, 279-90.

Total solar eclipse of August 28-29, 1886.

By various persons. Abstract in Monthly Notices Astronom. Soc., 47 (1887), 175.

12, Spectra of the elements in the Sun.

On sun-spots and terrestrial elements in the Sun.

Liveing and Dewar. Phil. Mag., (5) 16, 401-408; Beiblätter, 8, 804-5 (Abs.); Jour. de Phys., 13, 418.

Note préliminaire sur les éléments existant dans le Soleil.

Lockyer (J. N.). Comptes Rendus, 77, 1847-52; Ber. d. chem. Ges., 6, 1554-5 (Abs.).

Les éléments présents dans la couche du Soleil qui produit le renversement des raies spectrales.

Lockyer (J. N.) Comptes Rendus, 86, 817.

Sur la composition élémentaire du spectre solaire.

Matthiessen. Comptes Rendus, 19, 112.

# 13, Spectra of solar eruptions.

Eruzione solare metallica dal 31 luglio, 1880, osservata a Palermo.

Riccò (A.). Mem. Spettr. ital., 9, 96-100.

Sur l'éruption solaire observée le 7 juilliet.

Secchi (A.). Comptes Rendus, 75, 814-822.

Sur les éruptions métalliques solaires observées à Palermo depuis 1871 jusqu'en avril 1877.

Tacchini (P.). Comptes Rendus, 84, 1448-50.

Disegni delle eruzioni etc. del Sole fatti à Roma dal giugno a dicembre 1879.

Tacchini (P.). Mem. Spettr. ital., 4, 5-7.

Sulle eruzioni solari metalliche osservate a Roma nel 1881.

Tacchini (P.). Mem. Spettr. ital., 11, 58-8; Comptes Rendus, 94, 1081-8; 95, 878-8; Beiblätter, 6, 486 (Abs.).

An explosion on the Sun (Sept. 13, 1871).

Young (C. A.) Boston Jour. Chemistry, 1871; Amer. Jour. Sci., (3) 2, 468-70; Nature, 4, 488-9; Phil. Mag., (4) 43, 76-79.

## 14, Gas spectra in the Sun.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun.

Franckland and Lockyer. Proc. Royal Soc., 17, 288; Comptes Rendus, 68, 420; 69, 264.

# 15, Heat in the solar spectrum.

Sur la distribution de la chaleur dans les régions obscures des spectres solaires.

Desains (P.). Comptes Rendus, 95, 433.

Lage des Wärmemaximums im Sonnenspectrum.

Knoblauch (H.). Ann. Phys. u. Chem., 120, 198.

Geschichtliches über das Wärmespectrum der Sonne.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200, 207, 209.

Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Allegheny Observatory, Pa.

Langley (S. P.). Amer. Jour. Sci., (3) 31 (1886), 1-12; 32 (1886), 83-106; Phil. Mag., (5) 21 (1886), 394-409; 22 (1886), 149-173; Ann. Chim. et Phys., (6) 9 (1886), 433-506; Jour. de Phys., (2) 5, 377-880 (Abs.); Beiblätter, 11 (1877), 245 (Abs.).

Influence des différentes heures de la journée sur la position du maximum de température dans la partie obscure du spectre solaire.

Melloni. Comptes Rendus, 11, 141.

Spectre calorifique normal du Soleil.

Mouton. Comptes Rendus, 89, 295. Remarques par M. Thénard. Comptes Rendus, 89, 298.

Untersuchungen über die thermischen Wirkungen des Sonnenspectrums. Müller (J.). Ann. Phys. u. Chem., 105, 337.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 105, 543; Berichtigung dazu, do., 116, 644.

Sur les propriétés échauffantes des rayons solaires par de grandes et de faibles latitudes.

Pentland. Comptes Rendus, 8, 810.

The solar spectrum in 1877-8, with some practical idea of its probable temperature of origination.

Smyth (C. Piazzi). Trans. Royal Soc. Edinburgh, 29, 285-342; Beiblätter, 4, 276 (Abs.).

Sur la température du Soleil.

Soret (J. L.). Archives de Genève, (2) 52, 89-95; Phil. Mag., (4) 50, 155-8.

16, Hydrogen in the solar spectrum.

La circulation de l'hydrogène solaire.

Faye. Comptes Rendus, 76, 597-601.

The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere.

Hammond (B. E.). Nature, 3, 487.

Dépèche télégraphique addressé de Simla au sujet des lignes de l'hydrogène dans le spectre des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 245.

17, Intensity of light in the solar spectrum.

- On the variation in the intensity of the fixed lines of the solar spectrum.

  Draper (W.). Phil. Mag., (4) 25, 342.
- The comparative aggregate strength of the light from the red hydrogenstratum, and of that from the rest of the Chromosphere.

Hammond (B. E.). Nature, 3, 487.

Distribution de l'énergie dans le spectre solaire normal.

Langley (S. P.). Comptes Rendus, 92, 701.

Confronto fra la radiazione e l'intensità chimica della luce del sole.

Macagno (J.). Mem. Spettr. ital., 8, App. 13-18.

Étude de la distribution de la lumière dans le spectre solaire.

Macé (J.) et Nicati (W.). Comptes Rendus, 91, 623, 1078; Beiblätter, 5, 301 (Abs.).

Ueber die Vertheilung der chemischen Lichtintensität im Sonnenspectrum.

Monckhoven. Photographische Mittheilungen, 16, 145-6; Beiblätter,
4, 49 (Abs.).

Untersuchungen über die Helligkeitsänderungen in verschiedenen Theilen des Sonnenspectrums bei abnehmender Höhe der Sonne über dem Horizont.

Müller (G.). Astronom. Nachr., 103, 241-252; Beiblätter, 7, 111 (Abs.).

8 т

## 18, Iron lines in the solar spectrum.

On the iron lines widened in solar spots.

Lockyer (J. N.). Proc. Royal Soc., 31, 848-9; Beiblätter, 5, 288 (Abs.); Comptes Rendus, 92, 904-910; Jour. Chem. Soc., 40, 669 (Abs.).

## 19, Magnesium in the solar spectrum.

Spectre du magnésium en rapport avec la constitution du Soleil. Fievez (Ch.). Ann. Chim. et Phys., (5) 23, 866.

# 20, Maps of the solar spectrum.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750). Bakerian Lecture.

Abney (W. de W.). Phil. Trans., 171, 637-667; Comptes Rendus, 90, 182-3; Beiblätter, 4, 375 (Abs.).

Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieur, (2) 9, (1880). Avec deux planches. (Maps drawn by wave-lengths.)

Etude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., tome IV. Avec une planche. (Wave-lengths, lines 6899 to 4522.)

Étude de la région rouge (A-C) du spectre solaire.

Fievez (Ch.). F. Hayez, Bruxelles, 1888, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., tome V. Avec deux planches. (Wave-lengths, lines 7500 to 6500.)

Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchhoff (G.). Berlin, Dümmber, 1866–1875, 2 Theile, 4°. Mit vier Tafeln. Besondere Abdrück aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. (He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion.

Mascart (E.). Extrait des Annales scientifiques de l'École normale supérieure, tome I (1864). Paris, Gauthier-Villars, 1864, 4°. Avec un planche.

[A photographic map of the solar spectrum is being made by Prof. Rowland, and some thirty parts of it have been distributed privately. At the end of the year 1887 it extended from wave-length 0.0003675 to wave-length 0.0005796.]

Large Maps of the Solar Spectrum,

[by Thollon, in the Annals of the Academy of Nice, Tome I. Not yet published, but about to be so; and Tome II. is to contain another, smaller, map.]

21, Oscillation-frequencies.

Catalogue of the oscillation-frequencies of solar rays.

Rept. British Assoc. for 1878.

22, Oxygen in the solar spectrum.

Discovery of oxygen in the Sun by photography, and a new theory of the solar spectrum.

Draper (H.). Amer. Jour. Sci., (8) 14, 89-96; Nature, 16, 864; 17, 339; Comptes Rendus, 35, 613; Beiblätter, 2, 86-90.

On a photograph of the solar spectrum showing the dark lines of oxygen.

Draper (J. C.). Monthly Notices Astronom. Soc., 40, 14-17; Amer. Jour. Sci., (3) 17, 448-452; Jour. Chem. Soc., 38, 201 (Abs.); Beiblätter, 3, 872.

Telluric oxygen lines in the solar spectrum.

Egoroff. Amer. Jour. Sci., 126, 477; Comptes Rendus, Aug. 27, 1883.

On the presence of oxygen in the Sun.

Schuster (A.). Nature, 17, 148-9; Beiblätter, 2, 90-91.

23, Photography of the solar spectrum.

Preliminary note on photographing the least refracted portion of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 36, 276-7; Phil. Msg., (5) 1, 414-415.

Photography at the least refrangible end of the solar spectrum.

Abney (W. de W.). Monthly Notices Astronom. Soc., 38, 348-51; Phil. Mag., (5) 6, 154-7.

On the photographic method of mapping the least refrangible end of the solar spectrum (with a map of the spectrum from 7600 to 10750). Bakerian Lecture.

Abney (W. de W.). Phil. Trans., 171, 658-67; Proc. Royal Soc., 30, 67 (Abs.); Beiblätter, 4, 875 (Abs.); 5, 507-9; Comptes Rendus, 90, 182-3; Jour. Chem. Soc., 38, 429.

Use of the spectroscopic camera during the total solar eclipse of May 17, 1882.

Abney and Schuster. Proc. Royal Soc., 35, 152.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 811.

Photographs of the solar spectrum.

Amory (R.). Proc. Amer. Acad., 11, 70, 279, with plates.

Image photographique colorée du spectre solaire.

Becquerel (Éd.). Comptes Rendus, 26, 181.

De l'image photochromatique du spectre solaire, et des images obtenus dans la chambre obscure.

Becquerel (Éd.). Comptes Rendus, 27, 488. Rapport sur ce mémoire, par M. Regnault, do., 28, 200.

Sur les phosphorographies du spectre solaire.

Becquerel (Éd.). Jour. de Phys., (2) 1, 189.

Observations sur un mémoire de M. E. Marchand relatif à la mesure de la force chimique contenu dans la lumière du Soleil.

Becquerel (Éd.). Ann. Chim. et Phys., (4) 30, 572-8; Jour. Chem. Soc., (2) 12, 942 (Abs.).

Janssen's new method of solar photography.

Blanford (H. F.). Nature, 18, 648-645.

Ueber directe Photographirung der Sonnenprotuberanzen.

Braun (C.). Astronom. Nachr., **80**, 84-42; Ann. Phys. u. Chem., **148**, 475-488.

The solar spectrum.

Capron (J. R.). Nature, 6, 492.

Sur la photographie du spectre solaire.

Conche (E.). Comptes Rendus, 90, 689-90.

On the phosphorograph of a solar spectrum, and on the lines of its infra-red region.

Draper (J. W.). Amer. Jour. Sci., (8) 21, 171-182; Phil. Mug., (5) 11, 157-169; Beiblätter, 5, 509-510.

On a method of photographing the solar corona without an eclipse.

Huggins (W.). Proc. Royal Soc., 34, 409-414; Nature, 27, 199-201;
Amer. Jour. Sci., (8) 25, 126-180; 27, 27-32; Ann. Chim. et Phy...
(6) 3, 540-550; Beiblätter, 7, 194 (Abs.); Astronom. Nachr.. 104.
113-118; Jour. de Phys., (2) 2, 178 (Abs.); Comptes Rendus, 96.
51-53.

Photographische Darstellung des Sonnenspectrums.

Jahresber. d. Chemie, 16, 101; 17, 116.

Objective Darstellung des Sonnenspectrums; Vorlesungsversuch.

Kessler (F.). Ber. chem. Ges., 9, 577-8; Jour. Chem. Soc., 2, 266.

On the use of the reflecting grating in eclipse photography.

Lockyer (J. N.). Proc. Royal Soc., 27, 107-8.

Rutherfurd's Photographie des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 126, 485.

Photographie de l'image du spectre solaire.

Niepce de Saint Victor. Comptes Rendus, 45, 814; 46, 451, 490.

Photography of the infra-red region of the solar spectrum.

Pickering (H. W.). Proc. Amer. Acad., 20, 478.

On recent progress in photographing the solar spectrum.

Rowland (H. A.). Rept. British Assoc. (1884), 685.

On photographs of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 31, 319.

Étude photographique du Soleil à l'observatoire impérial de Paris. Sourel. Comptes Rendus, 71, 225.

Le fotografie del Sole fatte all'osservatorio di Meudon dal Professor

Janssen.

Tacchini (P.). Mem. Spettr. ital., 9, 1-5.

Photographie der weniger brechbaren Theile des Sonnenspectrums.

Vogel (H. C.) und Lohse (O.). Ann. Phys. u. Chem., 159, 297; 160, 292.

On reversed photographs of the solar spectrum beyond the red, obtained on a collodion plate.

Waterhouse (Capt. J.). Proc. Royal Soc., 24, 186-9.

Ueber den Einfluss des Eosins auf die photographische Wirkung des Sonnenspectrums auf das Silberbromid und Silberbromjodid.

Waterhouse (Capt. J.). Ann. Phys. u. Chem., 159, 616-622; Proc. Royal Soc. Bengal for 1876.

Photographie directe des protubérances solaires sans l'emploi du spectroscope.

Zenger (C. W.). Comptes Rendus, 88, 874.

#### 24, Pressure on the Sun.

On a method of determining the pressure on the solar surface.

Wiedemann (E.). Monthly Notices Astronom. Soc., 40, 627-8.

On a means to determine the pressure at the surface of the Sun and stars, and some spectroscopic remarks.

Wiedemann (E.). Proc. Physical Soc., 4, 31-34; Phil. Mag., (5) 10, 123-5; Beiblätter, 4, 613 (Abs.).

25, Spectra of solar protuberances.

Quadri statistici delle protuberanze e macchie solari osservati all' Collegio Romano nel 1 semestre, 1879.

Barbieri (E.). Mem. Spettr. ital., 8, 75-80.

Constitution des protubérances solaires.

Bianchi. Comptes Rendus, 68, 276.

La découverte du moyen qui permet d'observer en tout temps les protubérances solaires.

Delaunay. Comptes Rendus, 67, 867.

Travaux de M. Respighi pour l'observatiou spectrale des protubérances solaires.

Faye. Comptes Rendus, 70, 886.

Sur les taches et protubérances solaires observées à l'équatorial du Collège romain.

Ferrari. Comptes Rendus, 87, 971-8.

Spectroscopic observations of the solar prominences.

Herschel (Capt.). Proc. Royal Soc., 18, 62, 119, 855.

Note on a method of viewing the solar prominences without an eclipse. Huggins (W.). Proc. Royal Soc., 17, 802.

Note on the wide-slit method of viewing the solar prominences.

Huggins (W.). Proc. Royal Soc., 21, 127.

Étude spectrale des protubérances solaires.

Janssen (J.). Comptes Rendus, 68, 98.

Méthode qui permet de constater la matière protubérantielle sur tout le contour du disque solaire.

Janssen (J.). Comptes Rendus, 68, 718.

On the solar protuberances.

Janssen (J.). Proc. Royal Soc., 17, 276.

Notice of an observation of the spectrum of a solar prominence.

Lockyer (J. N.). Proc. Royal Soc., 17, 91, 104, 128.

Report to the Committee on Solar Physics on the Basic Lines common to Spots and Prominences.

Lockyer (J. N.). Proc. Royal Soc., 29, 247-265; Beiblätter, 4, 45 (Abs.).

Protubérances solaires.

Lockyer (J. N.). Comptes Rendus, 67, 949.

Analyse spectrale des protubérances observées à la presqu'île de malacca pendant l'éclipse totale du Soleil du 18 août 1868.

Rayet. Comptes Rendus, 67, 757.

Sur le spectre des protubérances solaires.

Rayet. Comptes Rendus, 68, 62; Ann. Chim. et Phys., (4) 24, 56.

Renversement de deux lignes du sodium dans le spectre de la lumière d'une protubérance.

Rayet. Comptes Rendus, 70, 1388.

Osservazioni spettroscopiche del Bordo e delle Protuberanze Solari [with lithographic plate of the prominences].

Respighi (L.), Roma, 1871.

Sulle protuberanze solari.

Respighi (L.). Bull. meteorol. dell'osservat. del Coll. Rom., 9, 89-91; Amer. Jour. Sci., (3) 1, 283-287.

Spectre des protubérances solaires.

Respighi (L.). Comptes Rendus, 77, 716, 774.

Noch einmal meine Bedenken gegen die Zöllner'sche Erklärung der Sonnenflecke und Protuberanzen.

Reye (T.). Ann. Phys. u. Chem., 151, 166-178.

Quelques particularités du spectre des protubérances solaires.

Secchi (A.). Comptes Rendus, 67, 1128.

Remarques sur la rélation entre les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 68, 287-8.

Sur les relations qui existent, dans le Soleil, entre les facules, les protubérances et la couronne.

Secchi (A.). Comptes Rendus, 72, 829-82; 73, 242-6, 598-9.

Sur les divers aspects des protubérances.

Secchi (A.). Comptes Rendus, 73, 826-86, 979-88.

Sur un nouveau moyen de mesurer les hauteurs des protubérances solaires. Secchi (A.). Comptes Bendus, 74, 218-224.

Spectre des protubérances solaires.

Secchi (A.). Comptes Rendus, 74, 218-24.

Resumé des observations des protubérances solaires du 1 janvier au 29 avril.

Secchi (A.). Comptes Rendus, 74, 1815-20; Monthly Notices Astronom. Soc., 32, 818-20 (Abs.).

Sur les protubérances et les taches solaires.

Secchi (A.). Comptes Rendus, 76, 251.

Quelques observations spectroscopiques particulières.

Secchi (A.). Comptes Rendus, 76, 1052.

Nouvelle série d'observations sur les protubérances solaires; spectre du sodium, de l'hydrogène, du fer, du magnésium, peutêtre des oxydes.

Secchi (A.). Comptes Rendus, 76, 1522-26.

· Protubérances solaires.

Secchi (A.). Comptes Rendus, 77, 977.

Observations spectrales des protubérances solaires pendant le dernier trimestre de l'année 1873.

Secchi (A.). Comptes Rendus, 78, 606.

Tableaux des observations des protubérances solaires, du 26 décembre 1873 au 2 août 1874.

Secchi (A.). Comptes Rendus, 79, 885-9.

Études des taches et des protubérances solaires de 1871 à 1875. Secchi (A.). Comptes Rendus, **80**, 1278-8.

Résultats des observations des protubérances et des taches solaires du 23 avril au 28 juin 1875.

Secchi (A.). Comptes Rendus, 81, 563, 605.

Suite des observations spectroscopiques des protubérances solaires, 1875.

Secchi (A.). Comptes Rendus, 82, 717.

Nouvelle série d'observations sur les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 83, 26-7.

Observations des protubérances solaires pendant le second trimestre de

Secchi (A.). Comptes Rendus, 84, 423.

Observations des protubérances solaires, pendant le premier semestre de l'année 1877.

Secchi (A.). Comptes Rendus, 86, 98.

Ueber eine ausgezeichnete Protuberanz.

Spörer. Ann. Phys. u. Chem., 148, 171-2.

L'observation des protubérances solaires faites du moment une éclipse par M. Janssen et M. Lockyer.

Stewart (Balfour). Comptes Rendus, 67, 904.

Observations des taches et des protubérances solaires, pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Rendus, 86, 1008.

Observations des taches et protubérances solaires pendant les troisième et quatrième trimestres de 1879.

Tacchini (P.). Comptes Rendus, 90, 858-60.

Observations des protubérances, des facules et des taches solaires pendant le premier semestre de l'année 1880.

Tacchini (P.). Comptes Rendus, 91, 466-7.

Observations des taches, des facules et des protubérances solaires, faites à l'observatoire du Collège romain pendant le dernier trimestre, 1880.

Tacchini (P.). Comptes Rendus, 92, 502-4.

- Protuberanze solari osservate a Palermo nel quarto trimestre del 1878.

  Tacchini (P.). Mem. Spettr. ital., 8, 10-11.
- Riassunto delle protuberanze e delle macchie solari osservate alla specola del Collegio Romano nel mese di Settembre, Ottobre e Dicembre.

  Tacchini (P.). Mem. Spettr. ital., 8, 18-16.
- Sulla distribuzione delle macchie, facole e protuberanze solari sulla superficie del Sole, durante l'anno 1880.

Tacchini (P.). Mem. Spettr. ital., 10, 122-3.

Observations des protubérances, des facules et des taches solaires faites à l'observatoire royal du Collège romain pendant le premier semestre 1882.

Tacchini (P.). Comptes Rendus, 95, 276-8.

Observations des protubérances, facules et taches solaires faites à l'Observatoire royal du Collège romain pendant le troisième et le quatrième trimestre de 1882.

Tacchini (P.). Comptes Rendus, 96, 1290-1; Nature, 28, 48 (Abs.).

Forms of solar protuberances.

Tacchini (P.). Nature, 6, 298.

Taches et protubérances solaires observées avec un spectroscope à grande dispersion.

Thollon (L.). Comptes Rendus, 89, 855.

Observation spectroscopique d'une protubérance solaire le 30 août 1880. Thollon (L.). Comptes Rendus, 91, 432.

Perturbations solaires nouvellement observées.

Thollon (L.). Comptes Rendus, 97, 144.

Taches et protubérances solaires observées avec un spectroscope à très grande dispersion.

Thollon (L.). Jour. de Phys., 9, 118.

Sudden extinction of the light of a solar protuberance.

Trouvelot (E.). Amer. Jour. Sci., (8) 15, 85-8.

Observations of the solar prominences.

Tupman (Capt.). Monthly Notices Astronom. Soc., 33, 105-115;
Amer. Jour. Sci., (3) 5, 319.

Sur une méthode employée par M. Lockyer pour observer en temps ordinaire les spectres des protubérances signalées dans les éclipses de Soleil.

Warren de la Rue. Comptes Rendus, 67, 886.

Beobachtung der Sonnenprotuberanzen in monochromatischem Lichte. Zenker (W.). Ann. Phys. u. Chem., 142, 172-176.

Einrichtung des Spectroskops zur Wahrnehmung der Protuberanzen. Zöllner (F.). Ann. Phys. u. Chem., 138, 42.

Beobachtungen von Protuberanzen der Sonne.

Zöllner (F.). Der Naturforscher, 1, 417; 2, 9, 38, 51, 74, 91, 116, 138, 218, 245, 388; 3, 89, 175, 189, 205, 262, 263, 278; Les Mondes, 18, 862, 418; 19, 218, 215, 232, 498; Nature, 1, 172, 195, 607; 2, 181.

#### 26, Radiation and the solar spectrum.

Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques.

Becquerel (Éd.). Comptes Rendus, 9, 145. Remarques sur cette note, par M. Biot, do., 169. Réponse, do., 172-8. Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 815.

Sur la répartition de la radiation solaire à Montpellier pendant l'année 1875.

Crova (A.). Comptes Rendus, 82, 375-7.

On the present state of our knowledge of solar radiations.

Hunt (R.). Rep'ts British Assoc. for 1850, 1852, 1853.

Étude des radiations superficielles du Soleil.

Langley (S. P.). Comptes Rendus, 81, 436-9.

27, Red end of the solar spectrum.

Photography of the ultra-red portions of the solar spectrum.

Abney (W. de W.). Chem. News, 40, 311.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15-18; Jour. de Phys., (2) 3, 48; Beiblätter, 7, 695 (Abs.).

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Nature, 28, 45; Proc. Royal Soc., 35, 80.

On the fixed lines in the ultra-red region of the spectrum.

Abney (W. de W.). Phil. Mag., (5) 3, 222; Beiblätter, 1, 289.

On lines in the infra-red region of the solar spectrum.

Abney (W. de W.). Phil. Mag., (5) 11, 800; Beiblätter, 5, 509.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de phosphorescence.

Becquerel (Éd.). Comptes Rendus, 83, 249-255; Archives de Genève, (2) 57, 806-818; Amer. Jour Sci., (3) 13, 879-80 (Abs.); Ann. Chim. et Phys., (5) 10, 5-18.

La détermination des longueurs d'onde des rayons de la partie infra-rouge du spectre au moyen des effets de phosphorescence.

Becquerel (fdm.). Comptes Rendus, 77, 302; Amer. Jour. Sci., (8) 28, 391, 459.

On the fixed lines in the ultra-red invisible region of the spectrum.

Draper (J. W.). Phil. Mag., (5) 3, 86-89; Beiblätter, 1, 239-40 (Abs.).

Optical spectroscopy of the red end of the solar spectrum.

Hennessey (J B. N.). Nature, 17, 28.

Der infra-rothe Theile des Sonnenspectrums.

Lang (V. von). Carl's Repert, 19, 107-9; Beiblätter, 7, 274 (Abs. .

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92-105; Beiblätter, 4, 208.

Photography of the infra-red region of the solar spectrum.

Pickering (W. H.). Proc. Amer. Acad., 20, 478.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32; Amer. Jour. Sci., (3) 25, 230.

Optical spectroscopy of the red end of the solar spectrum.

Smyth (C. Piazzi). Nature, 16, 264.

28, Spectroscopic effect of rotation.

Sur la loi de rotation du Soleil; réponse à une réclamation du P. Secchi et à un mémoire du Dr. Zöllner.

Faye. Comptes Rendus, 73, 1122-31.

Ueber die spectroscopische Beobachtung der Rotation der Sonne, und ein neues Reversionspectroscop.

Zöllner (F.). Ann. Phys. u. Chem., 144, 449.

29, Storms and cyclones on the Sun.

Sur la nouvelle hypothèse du P. Secchi.

Faye. Comptes Rendus, 76, 598-7.

Note sur quelques points de la théorie des cyclones solaires, en réponse à une critique par M. Vicaire.

Faye. Comptes Rendus, 76, 783-41.

Réponse au P. Secchi et à M. Vicaire.

Faye. Comptes Rendus, 76, 919-923, 977-982.

Note sur les cyclones solaires, avec une réponse de M. Respighi à M. M. Vicaire et Secchi.

Faye. Comptes Rendus, 76, 1229-82.

Sur les cyclones du Soleil comparés à ceux de notre atmosphère.

Tarry (H.). Comptes Rendus, 77, 44-8.

Spectre d'une cyclone solaire.

Thollon (L.). Comptes Rendus, 90, 87-9.

Observations sur la théorie des cyclones solaires.

Vicaire (E.). Comptes Rendus, 76, 708-6, 948-52.

### 30, Sun-spots.

On the spectrum of a solar spot observed at the Royal Observatory, Greenwich.

Airy (G.B.). Monthly Notices Astronom. Soc., 38, 82-8.

On the spectrum of a sun-spot observed at the Royal Observatory, Greenwich, 1880.

Airy (G. B.). Monthly Notices Astronom. Soc., 41, 68-4.

Dessin des taches solaires observées le 23 mai à 7 heures du soir. Baudin. Comptes Rendus, 70, 1193.

On a periodicity of cyclones and rainfalls in connection with sun-spot periodicity.

British Assoc. Rep'ts for 1878-8.

- Bands observed in the spectra of sun-spots at Stonyhurst Observatory.

  Cortie (A.). Monthly Notices Astronom. Soc., 47 (1886), 19.
- Complément de la théorie physique du Soleil; explication des taches.

  Faye. Comptes Rendus, 75, 1684-72, 1793-6; 76, 301-10, 389-97 (réponse aux critiques de M. M. Secchi et Tacchini).
- Réponse à de nouvelle objections de M. Tacchini. Faye. Comptes Rendus, 77, 381-8, 621-7.
- Théorie des scories solaires selon M. Zöllner. Faye. Comptes Rendus, 77, 501-9.
- Sur l'explication des taches solaires proposée par M. le Dr. Raye. Faye. Comptes Rendus, 77, 855-61.
- Réponse aux remarques de M. Tarry sur la théorie des taches solaires. Faye. Comptes Rendus, 77, 1122-80.
  - Théories solaires; réponse à quelques critiques récentes. Fave. Comptes Rendus, 78, 1663-70.
  - Observations au sujet de la dernière note M. Tacchini, et du récent mémoire de M. Langley.

Faye. Comptes Rendus, 79, 74-82.

Double série de dessins répresentant les trombes terrestres et les taches solaires executée par M. Faye.

Faye. Comptes Rendus, 79, 265-73.

Sur le dernier numéro des "Memorie dei Spettroscopisti italiani."

Faye. Comptes Rendus, 80, 935-6.

Spectrum of the great sun-spot of 1882, Nov. 12-25.

Greenwich Observatory, Monthly Notices Astronom. Soc., 43, 77.

On sun-spots and terrestrial elements in the Sun.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 16, 401-8; Beiblätter,
8, 304 (Abs.); Jour. de Phys., 13, 418.

Temperature of sun-spots.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 17, 302-4; Beiblätter, 8, 768 (Abs.).

On a sun-spot observed Aug. 31, 1880.

Lockyer (J. N.). Proc. Royal Soc., 31, 72; Beiblätter, 5, 129 (Abs.).

Note on the reduction of the observations of the Spectra of 100 sun-spots observed at Kensington.

Lockyer (J. N.). Proc. Royal Soc., 32, 208-6.

Preliminary Report to the Solar Physics Committee on the Sun-spot Observations made at Kensington.

Lockyer (J. N.). Proc. Royal Soc., 33, 154; Chem. News, 44, 297-8; Beiblätter, 6, 281-2 (Abs.).

On the most widened lines in sun-spot spectra; first and second series, from November 12, 1879, to October 15, 1881.

Lockyer (J. N.). Proc. Royal Soc., 36, 448-6; 42 (1887), 37-46.

Observations of sun-spot spectra in 1883.

Perry (S. J.). Monthly Notices Astronom. Soc., 44, 244-8.

On the sun-spot spectrum from D to B.

Perry (S. J.). Rept. British Assoc. (1884), 635.

Analyse spectrale d'une tache solaire.

Rayet. Comptes Rendus, 70, 846.

Réponse à M. Faye concernant les taches solaires.

Reye (T.). Comptes Rendus, 77, 1178-81.

Les minima des taches du Soleil en 1881.

Riccò (A.). Comptes Rendus, 94, 1169-71.

Sulla diversa attività dei due emisferi solari nel 1881.

Riccò (A.). Astronom. Nachr., 103, 155-6.

Remarques sur la relation entre les protubérances et les taches solaires. Secchi (A.). Comptes Rendus, 68, 287.

Présence de la vapeur d'eau dans le voisinage des taches solaires. Secchi (A.). Comptes Rendus, 68, 858. L'analyse comparative de la lumière du bord solaire et des taches. Secchi (A.). Comptes Rendus, 69, 89.

Note sur les taches solaires.

Secchi (A.). Comptes Rendus, 69, 163, 589, 652.

Sur les taches et le diamètre solaires.

Secchi (A.). Comptes Rendus, 75, 1581-4.

Taches solaires.

Secchi (A.). Comptes Rendus, 76, 519-27.

La théorie des taches solaires, réponse à M. Faye.

Secchi (A.). Comptes Rendus, 76, 911-19.

Études des taches et des protubérances solaires.

Secchi (A.). Comptes Rendus, 80, 1278-78; 83, 26-7.

Note sur les taches du Soleil.

Sonrel. Comptes Rendus, 70, 1088.

Report to the Solar Physics Committee on a Comparison between apparent Inequalities of Short-period in Sun-spot Areas, and in Diurnal Temperature-ranges at Toronto and at Keno.

Stewart (B.) and Carpenter (W. L.). Proc. Royal Soc., 37, 22, 290.

Macchie solari e facole osservate a Palermo nei mesi di gennaio, febbraio, e marzo 1879 (e durante l'anni 1879 e 1880).

Tacchini (P.). Mem. Spettr. ital., 8, 85-6, 50-1, 55-6, 90-2, 97-101; 9, 45-8, 91-2, 190-2; 10, 1-4, 122-123.

Sur la théorie des taches solaires; réponse à deux notes précédentes de M. Faye.

Tacchini (P.). Comptes Rendus, 76, 688-5.

Sur la théorie émise par M. Faye des taches solaires.

Tacchini (P.). Comptes Rendus, 76, 826-80.

Nouvelles observations spectrales, en désaccord avec quelques-unes des théories émises sur le taches solaires,

Tacchini (P.). Comptes Rendus, 77, 195-8.

Observations spectroscopiques sur les taches solaires; réponse à M. Faye.

Tacchini (P.). Comptes Rendus, 79, 39.

Sur les taches solaires.

Tacchini (P.). Comptes Rendus, 84, 1079-81.

Spectre d'une tache solaire observée pendant le mois de juin 1877.

Tacchini (P.). Comptes Rendus, 84, 1500.

Observations des taches et des protubérances solaires pendant le 1 trimestre de 1878.

Tacchini (P.). Comptes Bendus, 86, 1008.

Observations des taches et des protubérances solaires (pendant les années 1879, 1880, 1881, et 1882).

Tacchini (P.). Comptes Readus, **90**, 358-60; **91**, 316-7, 466-7; **93**, 382; **95**, 276-8; **96**, 1290.

Sur la grande tache solaire de novembre 1882, et sur les perturbations magnétiques qui en ont accompagné l'apparition.

Tacchini (P.). Comptes Rendus, 95, 1212-14.

Macchie solari e facole omervate in Roma all'equatoriale di Cauchoix nel terzo trimestre, e nel ultimo trimestre 1879.

Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 8, 73-4, 88-9.

Macchie solari e facole osservate a Roma nel mese di gennaio, 1880.

Tacchini (P.) e Millosevich (E.). Mem. Spettr. ital., 9, 8.

Observations des taches du Soleil, faites à l'Observatoire de Toulouse en 1874 et 1875.

Tisserand (F.). Comptes Rendus, 82, 765-7.

Sur deux taches solaires actuellement visibles à l'œil nu.

Tremeschini. Comptes Bendus, 70, 340.

On the veiled solar spots.

Trouvelot (L.). Proc. Amer. Acad., 11, 62-69; Amer. Jour. Sci., (8) 11, 169-176.

Sur la théorie des taches et sur le noyau obscur du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1896-9.

Sur la constitution du Soleil, et la théorie des taches.

Vicaire (E.). Comptes Rendus, 76, 1540-4; 77, 40-4.

Note on the temperature of sun-spots.

Wiedemann (E.). Phil. Mag., (5) 17, 247-8; Beiblätter, 8, 768 (Abs.).

Études sur la fréquence des taches du Soleil et sa relation avec la variation de la déclinaison magnétique.

Wolf. Comptes Rendus, 70, 741.

Spectroscopic Notes; Spot-spectra.

Young (C. A.). Jour. Franklin Inst., 60, 881-40; Nature, 3, 110-113.

Ueber die Periodicität und heliographische Verbreitung der Sonnenflecken.

Zöllner (F.). Ber. Sächs. Ges. d. Wiss., 22, 888-850; Ann. Phys. u. Chem., 142, 524-589.

Ueber den Aggregatzustand der Sonnenflecken.

Zöllner (F.). Ann. Phys. u. Chem., 152, 291-810.

31, Tellurio (terrestrial) rays of the solar spectrum.

Étude spectrale du groupe de raies telluriques nommé a (Alpha) par Angström.

Cornu (A.). Comptes Rendus, 95, 801; 98, 169-76; Nature, 29, 351; Beiblätter, 8, 305-7 (Abs.); Jour. de Phys., (2) 3, 102-117.

Les bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 885, 788; Chem. News, 44, 256 (Abs.); Beiblätter, 5, 871-2 (Abs.); 6, 100-101 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555-7; Beiblätter, 7, 859-60 (Abs.); Amer. Jour. Sci., (3) 26, 477 (Abs.).

Tellurische Linien der Sonne und der Gestirne.

Jahresber. d. Chemie, 18, 92; 19, 77.

Sur les raies telluriques du spectre solaire.

Janssen (J.). Comptes Rendus, 54, 1280; 56, 189, 588; 57, 1008;
60, 213; 95, 885; Ann. Chim. et Phys., (4) 23, 274-299; Ann. Phys. u. Chem., 126, 480; Phil. Mag., (4) 30, 78.

In feuchter Luft sind die Wärmestreifen des Sonnenspectrums breiter.

Lamansky (S.). Ann. Phys. u. Chem., 146, 217.

Étude sur les raies telluriques du spectre solaire.

Thollon (L.). Comptes Rendus, 91, 520-522; Beiblätter, 4,891 (Abs.).

32, Ultra-violet part of the solar spectrum.

Étude du spectre solaire ultra-violet.

Cornu (A.). Comptes Rendus, 86, 101; Jour. de Phys., 7, 285.

Deux planches relatives au spectre solaire.

Cornu (A.). Comptes Rendus, 86, 983.

9т

Sur l'absorption atmosphériques des radiations ultra-violettes.

Cornu (A.). Jour. de Phys., 10, 5.

Sur la limite ultra-violette du spectre solaire.

Cornu (A.). Comptes Rendus, 88, 1101-8; Proc. Royal Soc., 29, 47-55; Jour. Chem. Soc., 36, 861 (Abs.); Beiblätter, 4, 39-40 (Abs.).

Observation de la limite ultra-violette du spectre solaire à diverses altitudes.

Cornu (A.). Comptes Rendus, 89, 808-814; Jour. Chem. Soc., 38, 201 (Abs.); Amer. Jour. Sci., (3) 19, 406.

Loi de repartition, suivant l'altitude, de la substance absorbant dans l'atmosphère des radiations solaires ultra-violettes.

Cornu (A.). Comptes Rendus, 90, 940.

Sur le spectre normal du Soleil; partie ultra-violette.

Cornu (A.). Ann. de l'École Normale, (2) 9, 21-106; Beiblätter, 4, 871-4 (Abs.).

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

Influence des rayons ultra-violets du spectre solaire sur la matière verte des végétaux et sur la flexion des tiges.

Guillemin. Comptes Rendus, 45, 62, 548.

Ultra-violette Strahlen des Sonnenspectrums.

Jahresber. d. Chemie (1872), 134.

Sur les raies du spectre solaire ultra-violet.

Mascart. Comptes Rendus, 57, 789; Phil. Mag., (4) 27, 159.

Sur l'absorption du nouveau violet extrême par diverses matières.

Matthiessen. Comptes Rendus, 19, 112.

Rayons violets qui renferment le maximum d'action chimique de toutes les couleurs du spectre solaire.

Poey (A.). Comptes Rendus, 73, 1288.

Nouvelles expériences tendant à démontrer qu'il existe une force magnétisante dans l'extrémité violette du spectre solaire.

Ridolfi (C.). Ann. Chim. et Phys., (5) 3, 828-4.

# 33, Water in the solar spectrum.

The influence of water in the atmosphere on the solar spectrum and solar temperature.

Abney (W. de W.) and Festing (R.). Proc. Royal Soc., 35, 328-41; Jour. Chem. Soc., 46, 241; Beiblätter, 8, 507 (Abs.).

Aqueous lines in the spectrum of the Sun.

Cooke (J. P., Jr.). Amer. Jour. Sci., 91, 178; Phil. Mag., (4) 31, 887.

Influence de la vapeur aqueuse visible dans l'atmosphère, et de la pluie sur le spectre solaire.

Zantedeschi. Comptes Rendus, 63, 644.

34, Wave-lengths of the solar spectrum.

Wave-lengths of A, a, and of prominent lines in the infra-red of the solar spectrum.

Abney (W. de W.). Proc. Royal Soc., 36, 187.

Détermination des longueurs d'onde des raies et bandes principales du spectre solaire infra-rouge.

Becquerel (H.). Comptes Rendus, 99, 417; Amer. Jour. Sci., 128, 891, 459.

Détermination des longueurs d'onde des raies du spectre solaire au moyen des bandes d'interférence.

Bernard (F.). Comptes Rendus, 58, 1158; 59, 82.

Sur la photométrie solaire.

Crova (A.). Comptes Rendus, 94, 1271; 95, 1271-3; 96, 126; Beiblätter, 7, 113 (Abs.).

Bestimmung der Wellenlängen der Fraunhofer'schen Linien des Sonnenspectrums, mit 2 Tafeln.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 50 II, 286, 296-341.

Sur les longueurs d'onde et les caractères des raies violettes et ultraviolettes du Soleil, données par une photographie faite au moyen d'un réseau.

Draper (H.). Comptes Rendus, 78, 682-6.

On the normal solar spectrum (giving wave-lengths of the principal lines of the solar spectrum).

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

Mesures spectrophotométriques en divers points du disque solaire.

Gouy et Thollon. Comptes Rendus, 95, 884-6; Beiblätter, 7, 118-114 (Abs.).

Wellenlänge und Brechungsexponent der äussersten dunklen Wärigestrahlen des Sonnenspectrums.

Mäller (J.). Ann. Phys. u. Chem., 115, 543. Berichtigung dazu, 116, 644.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 32; Nature, 23, 72

Relative wave-length of the lines of the solar spectrum.

Rowland (H. A.). Amer. Jour. Sci., (3) 38 (1887), 182-190; Phil. Mag., (5) 23 (1887), 257-65.

Note on Sir David Brewster's Line Y in the infra-red of the solar spectrum.

Smyth (C. Piazzi). Edinburgh Transactions, 32 II, 223-238.

Spectralphotometrische Untersuchungen.

Vogel (H. C.). Monatsber. d. Berliner Akad., (1877) 104-142.

35, White lines in the solar spectrum.

White lines in the solar spectrum.

Hennessey (J. H. N.). Proc. Royal Soc., 22, 221; Phil. Mag., (4) 48, 308-6; 53, 259 (appendix to the preceding note).

### k, TWINKLING OF STARS.

Ueber das Funkeln der Sterne und die Scintillation überhaupt.

Exner (K.). Sitzungsber. d. Wiener Akad., 84 II, 1038-81; Ann. Phys. u. Chem., n. F. 17, 305-22; Jour. de Phys., (2) 1, 373 (Abs.).

Analyse prismatique de la lumière des étoiles scintillantes.

Montigny (Ch.). Bull. de l'Acad. de Belgique, (2) 37, 165-90; Comptes Rendus, 66, 910; Ann. Phys. u. Chem., 153, 277-98.

Nouvelles recherches sur la fréquence de la scintillation des étoiles dans ses rapports avec la constitution de leur lumière d'après l'analyse spectrale.

Montigny (Ch.). Bull. de l'Acad. roy. de Belgique, (2) 38, 300-320; Ann. Phys. u. Chem., Ergänzungsband, 7, 605-624.

### ATMOSPHERIC SPECTRA.

Atmospheric transmission of visual and photographically active light.

Abney (W. de W.). Monthly Notices Astronom. Soc., 47 (1887), 260-5.

Spectre de l'air atmosphérique.

Becquerel (H.). Comptes Rendus, 90, 1407.

La radiation atmosphérique comme agent chimique.

Biot. Comptes Rendus, 8, 598.

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere.

Brewster (Sir D.). Phil. Mag., (8) 8, 884.

On the aqueous lines of the solar spectrum.

Cooke (J. P.). Amer. Jour. Sci., (2) 41, 178; Phil. Mag., (4) 31, 387.

Sur l'absorption par l'atmosphère des radiations ultra-violettes.

Cornu (A.). Comptes Rendus, 88, 1285; Jour. de Phys., 10, 5.

Sur l'observation comparative des raies telluriques et métalliques comme moyen d'observer les pouvoirs absorbants de l'atmosphère.

Cornu (A.). Comptes Rendus, 95, 801-6; Jour. de Phys., (2) 2, 58;
Beiblätter, 7, 110 (Abs.); Amer. Jour. Sci., (3) 25, 78;
Bull. Soc. franç. de Phys. (1882), 241-7.

Étude spectrale du groupe de raies telluriques nommé, a (alpha) par Angström.

Cornu (A.). Comptes Rendus, 98, 169; Ann. Chim. et Phys., (6) 7 (1886), 5-102; Phil. Mag., (5) 22 (1886), 458-63; Amer. Jour. Sci., (8) 33 (1887), 70 (Abs.); Beiblätter, 11 (1887), 87 (Abs.).

s bandes telluriques du spectre solaire.

Crova (A.). Comptes Rendus, 87, 107.

Recherches sur les raies telluriques du spectre solaire.

Egoroff (N.). Comptes Rendus, 93, 885, 788.

Recherches sur le spectre d'absorption de l'atmosphère terrestre.

Egoroff (N.). Comptes Rendus, 95, 447; Beiblätter, 6, 987; Jour. Chem. Soc., 44, 187.

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire, par une couche d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555.

Note on the atmospheric lines of the solar spectrum and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 305.

Bandenspectrum der Luft.

Goldstein. Sitzungsber. d. Wiener Akad., 84 II, 698; Ann. Phys. u. Chem., n. F. 15, 280.

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1890 (Abs.).

Atmospheric lines of the solar spectrum.

Hennessey (J. H.). Proc. Royal Soc., 19, 1; 23, 201.

Zustand der Atmosphäre.

Juhresber. d. Chemie, 13, 607; 14, 45; 16, 108; 19, 77.

Spectres telluriques.

Janssen (J.). Comptes Rendus, 101 (1885), 111.

Analyse spectrale des éléments de l'atmosphère terrestre.

Janssen (J.). Comptes Rendus, 101 (1885), 649.

In feuchter Luft sind die Wärmestreifen des Sonnenspectrums breiter. Lamansky (S.). Ann. Phys. u. Chem., 146, 217.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur.

Lang (V. von). Ann. Phys. u. Chem., 153, 448-65; Sitzungsber. Wiener Akad., 69 II, 451-68.

Amount of atmospheric absorption.

Langley (S. P.). Phil. Mag., (5) 18, 289-807; Jour. Chem. Soc., 23, 819; Amer. Jour. Sci., (8) 28 (1885), 163, 242.

Ueber die Absorption der Sonnenstrahlung durch die Kohlensäure unserer Atmosphäre.

Lecher (E.). Sitzungsber. Wiener Akad., 82 II, 851-868.

On the spectrum of the atmosphere.

Maclear (J. P.). Nature, 5, 841.

Sur la théorie de l'absorption atmosphérique.

Maurer (J.). Archives de Genève, (8) 9, 874-91.

Opalescence of the atmosphere for the chemically active rays.

Roscoe (H. E.). Chem. News, 14, 28.

On the atmospheric lines between the D lines.

Russell (H. C.). Monthly Notices Astronom. Soc., 38, 80-82.

- Spectrum des electrischen Glimmlichts in atmosphärischer Luft. Schimkow (A.). Ann. Phys. u. Chem., 129, 518.
- Sur l'influence de l'atmosphère sur les raies du spectre. Secchi (A.). Comptes Rendus, **60**, 879.
- Spectrum von atmosphärischer Luft.

  Vogel (H. C.). Ann. Phys. u. Chem., 146, 580.

# AURORA AND ZODIACAL LIGHT.

The aurora and its spectrum.

Abercromby (R.). Nature, 27, 178; Beiblätter, 7, 198.

Magnetic disturbances, auroras and earth-currents.

Adams (W. G.). Nature, 25, 66-71.

Spectrum of aurora borealis.

Angström (A. J.). Nature, 10, 210; Ann. Phys. u. Chem., Jubelband, 424-9; Arch. de Genève, (2) 50, 204 (Abs.); Jour. de Phys., 3, 210.

Observations of the zodiacal light at Cadiz.

Arcimis (A. T.). Monthly Notices Astronom. Soc., 36, 48-51.

Spectrum of the Aurora.

Backhouse (T. W.). Nature, 4, 66; 7, 182, 463; 28, 209.

A line in the green between b and F; a line in the yellow-green between D and E (principal auroral line); a line in the green-blue at or near F, assumed to be 485 of Alvan Clarke, Jr.; a line in the red between C and D, almost equidistant between C and D; a line in the green at or near b, at 517.

Barker (G. F.). Nature, 7, 182.

Spectrum of the Aurora.

Barker (G. F.). Amer. Jour. Sci., (8) 2, 465-8; 5, 81-84; Jour. Chem. Soc., (2) 10, 119 (Abs.); Chem. News, 24, 270.

On the spectrum of the aurora borealis.

Browning (J.). Monthly Notices Astronom. Soc., 31, 17; Phil. Mag., (4) 41, 79; Amer. Jour. Sci., (8) 1, 215.

Comparison of some tube and other spectra with the spectrum of the aurora.

Capron (J. R.). Phil. Mag., (4) 49, 249-66.

Spectrum of aurora.

Capron (J. R.). Nature, 3, 28; Phil. Mag., (4) 49, 481.

The aurora borealis of Feb. 4, 1872.

Capron (J. R.). Nature, 5, 284-5. (See below under Cornu, Key, Maclear, Murphy, Perry, Prazmowski, Respighi, Secchi, Smyth, Stone, Tacchini, Twining, and Watts.) Spectrum of the aurora and of the zodiscal light (with a list of authorities on the subject, included here).

Capron (J. R.). Nature, 7, 182-186.

The aurora spectrum.

Capron (J. R.). Nature, 7, 201.

The aurora and its spectrum.

Capron (J. R.). Nature, 25, 58; Jour. de Phys., (2) 2, 97 (Abs.).

The aurora.

Capron (J. R.). Nature, 27, 83-4, 139, 198.

Magnetic storm, aurora and sun-spot.

Christie (W. H. M.). Nature, 27, 88.

Spectrum of the Aurora.

Church (A. H.). Chem. News, 22, 225.

A line in the green-blue at or near F; at 485; assumed to be 486 F hydrogen.

Clark (Alvan, Jr.). Nature, 7, 182.

A line in the green near E (corona line?); at 532; assumed to be 531.6 (corona line).

Clark (Alvan; Jr.). Nature, 7, 182.

A line in the yellow-green between D and E (principal auroral line).

Clark (Alvan, Jr.). Nature, 7, 182.

Line in the indigo at or near G; at 435; supposed to be G hydrogen. Clark (Alvan, Jr.). Nature, 7, 188.

Observations of the aurors on Aug. 12 and 13, 1880.
Copeland (R.). Nature, 22, 510.

Spectre de l'aurore boréale du 4 février.

Cornu (A.). Comptes Rendus, 74, 890.

Sur l'intensité calorifique de la radiation solaire et son absorption par l'atmosphère terrestre.

Crova (A.). Comptes Rendus, 81, 1205-7.

The aurora.

Eiger (T. G.). Nature, 3, 6-7; 7, 182; 27, 85-6.

Spectrum of the aurora.

Ellery (R. J.). Nature, 4, 280.

Spectrum of the aurora.

F. (T.). Nature, 3, 6.

Sur les aurores boréales.

Faye. Comptes Rendus, 77, 546.

The continuous spectrum; faint green reaching from the aurora line to F. Flögel. Nature, 7, 188.

Spectroscopic examination of the aurora, April 10, 1872.

Frazer (P.). Proc. Amer. Philosoph. Soc., 12, 579.

On the spectrum of the aurora.

Herschel (A. S.). Phil. Mag., (4) 49, 65-71; Nature, 3, 486.

Line in the yellow-green between D and E (principal auroral line). Herschel (A. S.). Nature, 7, 182.

Spectrum of the aurora.

Holden (E. S.). Amer. Jour. Sci., (8) 4, 428; Phil. Mag., (4) 44, 478.

Spectrum of the aurora.

Hyatt. Nature, 3, 105.

Das Nordlichtspectrum.

Jahresber. d. Chemie, (1868) 128, (1869) 180, (1872) 148, (1878) 151, (1875) 123.

Spectrum des Zodiacal-Lichtes.

Jahresber. d. Chemie, (1872) 148.

The aurora borealis of Feb. 4, 1872.

Key (H. Cooper). Nature, 5, 802.

Spectrum of the aurora.

Kirk (E. B.). Observatory, (1882) 271, (1886) 311.

Spectrum of the aurora.

Kirkwood (D.). Nature, 3, 126.

Sur la décharge électrique dans l'aurore boréale, et le spectre du même phénomène.

Lemström (S.). Archives de Genève, (2) 50, 225-42, 855-86; Nature,
 28, 60-8, 107-9, 128-30; Jour. de Phys., (2) 2, 815-17 (Abs.).
 (See Tresca in Comptes Rendus, 96, 1885.)

L'analyse spectrale de la lumière zodiscale et sur la couronne des éclipses. Liais (É.). Comptes Rendus, 74, 262. Spectrum of the aurora.

Lindsay (Lord). Nature, 4, 347, 866; 7, 182.

The aurora borealis of Feb. 4, 1872.

Maclear (J. P.). Nature, 5, 288.

Spectrum of aurora.

Maclear (J. P.). Nature, 6, 329

Spectrum of aurora australis.

Maclear (J. P.). Nature, 17, 11.

Swan lamp spectrum and the aurora.

Munro (J.). Nature, 27, 178; Beiblätter, 7, 198.

The aurora borealis of Feb. 4, 1872.

Murphy (J. J.). Nature, 5, 288.

Spectrum of the aurora.

Newlands (J. A. R.). Chem. News, 23, 218.

Das Nordlichtspectrum.

Oettigen (A. J.). Ann. Phys. u. Chem., 146, 284-7; Ann. Chim. et Phys., (4) 26, 269-73.

The aurora borealis of Feb. 4, 1872.

Perry (S. J.). Nature, 5, 808.

Spectrum of the aurora.

Pickering (E. C.). Nature, 3, 104.

Étude spectrale de la lumière de l'aurore boréale du 4 février.

Prazmowski. Comptes Rendus, 74, 891.

Spectrum of the aurora.

Pringle (G. H.). Nature, 6, 260.

Spectra of the aurora and corona.

Proctor (H. R.). Nature, 3, 6, 68, 846, 869, 468; 6, 161, 220; 7, 242.

Spectrum of the aurora.

Proctor (H. R.). Nature, 7, 102.

Sur le spectre de l'aurore boréale.

Rayet (G.). Jour. de Phys., 1, 868.

L'analyse spectrale de la lumière zodiacale.

Respighi (L.). Comptes Rendus, 74, 514.

Le spectre de la lumière zodiacale et le spectre de l'aurore boréale sont identicales.

Respighi (L.). Comptes Rendus, 74, 748.

Observations of the aurora borealis of Feb. 4 and 5, 1872.

Respighi (L.). Nature, 5, 511; Gazz. Ufficiale d. Regno d'Italia, Feb. 5, 1872.

The aurora.

Robinson (H.). Nature, 27, 85.

The aurora.

Romanes (C. H.). Nature, 27, 86.

On the auroral spectrum.

Rowland (H. A.). Amer. Jour. Sci., 5, 820.

Spectre de l'aurore boréale.

Salet (G.). Bull. Soc. chim. Paris, 1 Mars 1872; Ber. chem. Ges., 5, 222.

Spectrum of the aurora.

Schmidt. Nature, 7, 182-3.

The aurora borealis of Feb. 4, 1872.

Seabroke (G. M.). Nature, 5, 288.

Sur l'aurore boréale du 4 février observée à Rome, et sur quelques nouveaux résultats d'analyse spectrale.

Secchi (A.). Comptes Rendus, 74, 583-8.

Aurore boréale observée à Rome le 10 août à 10 heures du matin. Secchi (A.). Comptes Rendus, 75, 606-613.

La luce zodiacale confronto tra le osservazioni del P. Dechevrens e quelle di G. Jones.

Serpieri (A.). Mem. Spettr. ital., 9, 138-42.

Mémoire sur des faits dont on peut déduire: 1. une théorie des aurores boréales et australes, fondée sur l'existence de marées atmosphériques; 2. l'indication, à l'aide des aurores, de l'existence d'essaims d'étoiles filantes à proximité du globe terrestre.

Silbermann (J.). Comptes Rendus, 74, 553-7, 688-42.

Spectra of aurora, corona and zodiacal light.

Smyth (C. Piazzi). Nature, 3, 509-10.

Spectroscopic observations of the zodiacal light in April, 1872, at the Royal Observatory, Palermo.

Smyth (C. Piazzi). Monthly Notices Astronom. Soc., 32, 277-288; Amer. Jour. Sci., (8) 4, 245 (Abs.). The aurora borealis of Feb. 4, 1872.

Smyth (C. Piazzi). Nature, 5, 282-8.

Spectrum of the aurora.

Smyth (C. Piazzi). Nature, 7, 182.

The aurora of Feb. 4, 1872.

Stone (E. J.). Nature, 5, 443; Amer. Jour. Sci., (8) 3, 891-2.

Beobachtung eines Nordlichtspectrum (Aurora Borealis).

Struve (Otto von). Bull. de l'Acad. de St. Pétersbourg, 3, 49.

Observations of the aurora.

Sueur (A. Le). Proc. Boyal Soc., 19, 19.

Spectrum of the aurora.

T. (F.). Nature, 7, 182-3.

Sur l'aurore boréale du 4 février 1872,

Tacchini (P.). Comptes Rendus, 74, 540-2.

Sur l'origine des aurores polaires.

Tarry (H.). Comptes Rendus, 74, 549-58.

Sur les observations de M. Lemström en Laponie.

Tresca. Comptes Rendus, 96, 1885-6.

The aurora of Feb. 4, 1872.

Twining (A. C.). Amer. Jour. Sci., (8) 3, 278-81.

Untersuchungen über das Spectrum des Nordlichtes.

Vogel (H. C.). Ber. Sächs. Ges. d. Wiss., 23, 285-99; Ann. Phys. u.
Chem., 146, 569-85; Jour. Chem. Soc., (2) 10, 1061 (Abs.); Amer.
Jour. Sci., (3) 4, 487 (Abs.).

Spectrum des Nordlichtes.

Vogel (H. C.). Astronom. Nachr., 78, 247-8.

Spectrum of the aurora.

Watts (W. M.). Phil. Mag., (4) 49, 410-11.

The aurora borealis of Feb. 4, 1872.

Watts (W. M.). Nature, 5, 808.

Observations sur le spectre de l'aurore boréale.

Wijkander (A.). Arch. de Genève, (2) 51, 25-80.

Line in the green near E (corona line).

Winlock. Nature, 7, 182.

# On the spectrum of the zodiacal light.

Wright (A. W.). Amer. Jour. Sci., (3) 8, 39-46; Ann. Phys. u. Chem., 154, 619-29.

# Ueber das Spectrum des Nordlichtes.

Zollner (F.). Ber. Sächs. Ges. Wiss., 22, 254-260; Ann. Phys. u. Chem., 141, 574-581; Phil. Mag., (4) 41, 122-127; Amer. Jour. Sci., (8) 1, 372-8 (Abs.).

# Spectrum of the aurora.

Zöllner (F.). Nature, 7, 182-3.

#### AUSTRIUM.

# Spectrum of austrium.

Linnemann (E.). Monatschr., 7, 121-8; Jour. Chem. Soc., 50 (1886), 773 (Abs.).

# BARIUM.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum.

Arzruni (A.). Zeitschr. Krystallogr. u. Mineralog., 1, 165-192; Jahrb. f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Barium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 21.

Spectre de chlorure de baryum.

Gouy. Comptes Bendus, 84, 281.

Sur les caractères des flammes chargées du chlorure de baryum.

Gouy. Comptes Rendus, 85, 489.

Spectre continu du baryum.

Gouy. Comptes Rendus, 86, 878.

Spectrum von Baryum.

Jahresber. d. Chemie (1870), 174.

Chemische Analyse durch Spectralbeobachtungen, Baryum.

Kirchhoff und Bunsen. Ann. Phys. u. Chem., 110, 182

Chlorure de Baryum (ou Ba O) dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 57, 62, planche VII.

Bromure de baryum dans le gaz chargé de brome; iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 63, 65, planche VIII.

# BERYLLIUM OR GLUCINUM.

Beryllium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 22.

Spectrum of beryllium.

Hartley (W. N.). Chem. News, 47, 201; Jour. Chem. Soc, 43, 316-19; Ber. chem. Ges., 16, 1859 (Abs.); Amer. Jour. Sci., (3) 26, 316-17.

Remarks on the atomic weight of beryllium.

Hartley (W. N.). Proc. Royal Soc., 36, 462-4; Chem. News, 49, 171-2; Beiblätter, 8, 820 (Abs.).

Spectrum of beryllium.

Nature, 29, 90.

Propriétés principales du glucinum.

Nilson (L. F.) et Petterson (O.). Comptes Rendus, 91, 169.

Note on the atomic weight of beryllium.

Reynolds (J. E.). Proc. Royal Soc., 35, 248-50; Beiblätter, 8, 3-4 (Abs.).

Reply by Humpidge (T. S.). Proc. Royal Soc., 35, 358-9.

# BISMUTH.

Le bismuth n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 882.

Fluorescence des composés de bismuth.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103 (1887), 629-81, 1064-8; Jour. Chem. Soc., 52, 4 (Abs.), 189 (Abs.).

# BLUE GROTTO.

Spectroscopische Untersuchung der blauen Grotte auf Capri.
Vogel (H. W.). Ann. Phys. u. Chem., 156, 325.

# BORAX.

Boron arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 22.

L'acide borique.

Dieulafait (L.). Ann. Chim. et Phys., (5) 12, 818-54; Jour. Chem. Soc., 34, 11 (Abs.).

10 т

Existence de l'acide borique dans les eaux de la Mer Morte.

Dieulafait (L.). Comptes Rendus, 94, 1852-4; Jour. Chem. Soc., 42, 1087 (Abs.); Ann. Chim. et Phys., (5) 25, 145-167.

L'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait (L.). Comptes Rendus, 95, 999-1001; Jour. Chem. Soc.. 44, 801 (Abs.).

Les salpêtres naturels du Chili et du Pérou au point de vue de l'acide borique.

Dieulafait (L.). Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

On line spectra of boron.

Hartley (W. N.). Proc. Royal Soc., 35, 801-4; Chem. News, 48, 1-2; Jour. Chem. Soc., 46, 242 (Abs.); Beiblätter, 8, 120 (Abs.).

Spectra of boric acid and blowpipe beads.

Horner (Charles). Chem. News, 29, 66.

Spectre de l'acide borique dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 191-planche XXVIII.

Spectre de l'acide borique.

Lecoq de Boisbaudran (F.). Comptes Rendus, 76, 833.

Spectrum von Fluorborgas.

Plücker. Ann. Phys. u. Chem., 104, 125.

Propriétés optiques de borax.

Senarmont (H. de). Ann. Chim. et Phys., (8) 41, 836.

Spectra der verschiedenen grünen Flammen, Borax.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Spectre du bore.

Troost et Hautefeuille. Comptes Rendus, 63, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

#### BROMINE.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 80 (Abs.).

Spectre du brome dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 273.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 88, 879-81; Jour. Chem. Soc., 36, 504-5.

Spectre de bromure de cuivre.

Discon (E.). Ann. Chim. et Phys., (4) 6, 1.

Spectre d'absorption de protobromure de tellure et de protobromure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Spectre du brome.

Gouy. Comptes Rendus, 85, 70.

Absorptionsspectrum des Bromtellurs, des Bromselens, und des Bromjods.

Jahresber. d. Chemie (1872), 140.

On the action of the less refrangible rays of light on silver iodide and bromide.

Lea (M. Carey). Amer. Jour. Sci., (3) 9, 269-78; Jour. Chem. Soc., 1 (1876), 28 (Abs.).

Notes on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (8) 11, 459-64.

Réaction spectrale du Brome.

Locoq de Boisbaudran (F.). Comptes Rendus, 91, 902-8; Phil. Mag., (5) 11, 77-8; Beiblätter, 5, 118 (Abs.).

Bromure de baryum dans le gaz chargé de brome.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 68, 65, planche VIII.

Verbindungsspectrum zur Entdeckung von Brom.

Mitscherlich. Jour. prackt. Chem., 97, 218.

Entdeckung sehr geringer Mengen von Brom in Verbindungen.

Mitscherlich. Ann. Phys. u. Chem., 125, 629.

Absorption spectra of bromine.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Ueber die Lichtempfindlichkeit des Bromsilbers.

Vogel (H.). Ber. chem. Ges., 6, 1802-6; Ann. Phys. u. Chem., 150, 453-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci., (3) 7, 140-1; Phil. Mag., (4) 47, 278-7.

Ueber die chemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.

Vogel (H. W.). Ber. chem. Ges., 8, 1685-6; Jour. Chem. Soc., 1 (1876), 510 (Abs.); Amer. Jour. Sci., (8) 11, 215-16 (Abs.).

Neue Betrachtungen über die Lichtempfindlichkeit des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 2 (1876), 265 (Abs.).

Ueber die Empfindlichkeit trockner Bromsilberplatten gegen das Sonnenspectrum.

Vogel (H. W.). Ber. chem. Ges., 14, 1024-8; Beiblätter, 5, 521 (Abs.); Jour. Chem. Soc., 40, 773 (Abs.).

Ueber die verschiedenen Modificationen des Bromsilbers.

Vogel (H. W.). Ber. chem. Ges., 16, 1170-79; Beiblätter, 7, 536 (Abs.).

Sur la sensibilité du bromure d'argent à l'égard des radiations considérées comme chimiquement inactives.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 21, 233.

Ueber die Brechung und Dispersion des Lichtes im Bromsilber.

Wernicke (W.). Ann. Phys. u. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653 (Abs.); Ann. Chim. et Phys., (4) 26, 287.

Uebereinstimmung des Absorptionsspectrums von Brom mit dem Spectrum dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 150.

#### CADMIUM.

Ultra-violet spectrum of cadmium.

Bell (L.). Amer. Jour. Sci., 31 (1886), 426-31; Jour. Chem. Soc., 50, 957 (Abs.).

Cadmium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, 23.

Spectrum of chloride of cadmium.

Chem. News, 35, 107.

Déterminations des longueurs d'onde des radiations très réfrangibles du cadmium.

Cornu (A.). Arch. de Genève, (8) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du cadmium.

Cornu (A.). Comptes Rendus, 73, 882.

Spectre de chlorure de cadmium.

Gouy. Comptes Rendus, 84, 281.

Spectrum von Cadmium.

Jahresber. d. Chemie (1872), 145.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, 189.

Spectrum of cadmium at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Indice du quartz pour les raies du cadmium.

Sarasin (Ed.). Comptes Rendus, 85, 1280.

# CÆSIUM.

Observations on cæsium.

Allen (O. D.). Phil. Mag., 25, 189; Amer. Jour. Sci., (2) 34 (1862), 367.

On the equivalent and spectrum of cæsium.

Allen (O. D.) and Johnson (S. W.). Phil. Mag., 25, 196; Amer. Jour. Sci., (2) 35 (1863), 94.

On cæsium.

Bunsen (R.). Phil. Mag., 26, 241.

Les salpêtres naturels du Chili et du Pérou au point de vue du cæsium. Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Recherches sur la présence du cæsium dans les eaux naturelles.

Grandeau (L.). Ann. Chim. et Phys., (3) 67, 155.

Spectrum von Cæsium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 113, 337, 379; Phil. Mag., (4) 22, 498.

Chlorure de cæsium.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 44, planche III.

On pollux, a silicate of cessium.

Pisani. Comptes Rendus, 58, 714.

# CALCIUM.

Sur la phosphorescence du sulfure de calcium.

Becquerel (Edm.). Comptes Rendus, 103 (1887), 551-8; Chem. News, 55 (1887), 128.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (Edm.). Comptes Rendus, 103 (1886), 1098-1101.

Ueber das Calciumspectrum.

Blochmann (R.). Jour. prackt. Chem., (2) 4, 282-6; Jour. Chem. Soc., (2) 9, 1149-1150 (Abs.).

Calcium (Zinc) spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 28.

Spectre de chlorure de calcium.

Gouy. Comptes Rendus, 84, 281.

Recherches photométriques, spectre du calcium.

Gouy. Comptes Rendus, 85, 70.

Sur les flammes chargées du chlorure de calcium.

Gouy. Comptes Rendus, 85, 489.

Spectre continu du calcium.

Gouy. Comptes Rendus, 85, 878, 1078.

Spectrum von Kalk.

Jahresber. d. Chemie (1870), 174.

Linien von Calcium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 177.

Das Wärmespectrum des Kalklichtes.

Lamansky (S.). Monatsber. d. Berliner Akad. (1871), 682-41; Phil. Mag., (4) 43, 282-9; Ann. Phys. u. Chem., 146, 200-32.

Ueber die Dispersion des Aragonits nach arbiträrer Richtung.

Lang (V. von). Sitzungsber. d. Wiener Akad., 83 II, 671-6.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 96-8; Beiblätter, 4, 611-12 (Abs.).

Sur de nouvelles raies de calcium.

Lockyer (J. N.). Comptes Rendus, 82, 660-2; Ann. Chim. et Phys.,
(5) 7, 569-72; Chem. News, 33, 166-7; Jour. Chem. Soc., 2 (1870),
35 (Abs.); Ber. chem. Ges., 9, 505 (Abs.); Ann. Phys. u. Chem.
158, 327-9 (Abs.); Bull. Soc. chim. Paris, n. s. 26, 267.

Remarques à propos de la dernière communication de M. Lockyer sur de nouvelles raies de calcium, par M. C. Sainte-Claire Deville. Comptes Rendus, 82, 709-10.

Calcium comme corps composé d'après le spectroscope.

Lockyer (J. N.). Comptes Rendus, 87, 678.

Fluorescenz von Kalkspar.

Lommel (E.). Ann. Phys. u. Chem., n. F. 21, 422-7; Jour. Chem. Soc., 46, 649 (Abs.).

Sur l'origine de l'arsénic et de la lithine dans eaux sulfatées calciques.

Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-63; Jour. Chem. Soc., 44, 302 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium.

Verneuil (A.). Comptes Rendus, 103 (1887), 601-4; Beiblätter, 11 (1887), 253; Jour. Chem. Soc., 52, 2.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 33, 597 (Abs.); Beiblätter, 4, 274, 786; Monatsber. d. Berliner Akad. (1880), 192-8; Nature, 21, 410.

Expériences sur divers échantillons de chaux.

Volpicelli (M.). Comptes Rendus, 56, 498; 57, 571.

Coıncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. Mattieu). Nature, 8, 46.

#### CARBON.

#### 1, CARBON IN GENERAL.

Note on the spectrum of carbon.

Attfield (J.). Phil. Mag., (4) 49, 106-8; Phil. Trans. (1862), 221.

Carbon points ruled out.

Capron (J. R.). Photographed Spectra, London, 1877, 23.

Spectroscopic researches in carbon and cyanogen.

Ciamician (G. L.). Chem. News, 44, 216.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 383
 (Abs.); Beiblätter, 5, 43 (Abs.); Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1553 (Abs.).

Carbon and carbon compounds.

Herschel (A. S.). Nature, 22, 820; Beiblätter, 5, 118-122.

Spectrum von Kohlenstoff.

Jahresber. d. Chemie, (1862) 38, (1863) 113, (1864) 109, (1865) 89, (1869) 176, 178, (1875) 122.

Refractionsaquivalente der Elemente C, etc.

Landolt (R.). Versammlung deutscher Aertzte und Naturforscher,
Aug. 12-18, 1872; Ber. chem. Ges., 5, 808; Chem. Centralblatt, (3)
3, 705; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Note on the history of the carbon spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 490-4; Beiblätter, 5, 118-22; Nature, 23, 265-6, 838.

Spectrum of Carbon.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 33, 408-410;
Chem. News, 45, 155 (Abs.); Nature, 25, 545; Jour. Chem. Soc., 44, 1-2 (Abs.); Beiblatter, 6, 675 (Abs.).

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 128-80.

Spectrum of carbon at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Note on the spectrum of carbon.

Lockyer (J. N.). Proc. Royal Soc., 30, 835-43, 461-3; Beiblätter, 5, 118-22 (Abs.).

Sulla questione dei doppi legami tra carbonio e carbonio dal punto di vista della chimica ottica.

Nasini (R.). Gazz. chim. ital., 14, 150-6; Ber. chem. Ges., 17, Referate, 559-61 (Abs.); Atti R. Ac. dei Lincei, 8, 169-73; Beiblätter, 8, 577.

On the spectrum of carbon.

Roscoe (H. E.). Nature, 23, 313-14.

Spectre du carbone.

Salet (G.). Bull. Soc. chim. Paris, 1 Mars 1872; Ber. chem. Ges., 5, 222 (Abs.).

Ueber das Dispersionsäquivalent von Diamant.

Schrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 48, 14 (Abs.).

Note on the identity of the spectra obtained from the different allotropic forms of carbon.

Schuster (A.) and Roscoe (H. E.). Proc. Manchester Philosoph. Soc., 19, 46-49; Beiblätter, 4, 208 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4) 49, 24-83.

Carbon and carbo-hydrogen, spectroscoped and spectrometed.

Smyth (C. Piazzi). Phil. Mag., (5) 8, 107-19; Beiblätter, 4, 86 (Abs.).

Spectre du carbone.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectra of carbon.

Watts (W. M.). Phil. Mag., (4) 38, 249; 41, 12; 48, 869, 456; 49, 104; Nature, 23, 197, 266; Beiblätter, 5, 118; Chem. News, 22, 172; Jour. prackt. Chemie, 104, 422.

# 2, CARBON COMPOUNDS.

# a, In general.

Influence of the molecular grouping in organic bodies on their absorption in the infra-red region of the spectrum.

Abney (W. do W.) and Festing (Lieut. Col.). Proc. Royal Soc., 31, 416; Chem. News, 43, 92, 126; Beiblätter, 5, 506.

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 80 (Abs.).

Sulla relazioni esistenti tra il potere rifrangente e la constituzione chimic. della combinazioni organiche.

Bernheimer e Nasini. Atti della R. Accad. dei Lincei, Transunti, (3) 7, 227-80; Gazz. chim. ital., 13, 317-20; Beiblätter, 7, 528 (Abs.).

Influence des diverses couleurs sur la végétation.

Bert (P.). Comptes Rendus, 73, 1444.

Sur la région du spectre solaire indispensable à la vie végétale.

Bert (P.). Comptes Rendus, 87, 695-7; Jour. Chem. Soc., 36, 836 (Abs.).

Vergleichung von Pigmentfarben mit Spectralfarben.

Bezold (W. von). Ann. Phys. u. Chem., 158, 165, 606.

On the action of various colored bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Die Beziehungen zwischen den physikalischen Eigenshaften organischer Körper und ihrer chemischen Constitution.

Brühl (J. W.). Ber. chem. Ges., 12, 2135-48; 13, 1119-80, 1520-85;
14, 2588-39; Jour. Chem. Soc., 38, 293-5 (Abs.); Beiblätter, 4, 776-86; Amer. Jour. Sci., (8) 23, 284-5 (Abs.).

Die chemische Constitution organischer Körper in Beziehung zu deren Dichte und ihren Vermögen das Licht fortzupflanzen. Drei Theile und Nachtrag.

Brühl (J. W.). Ann. Chem. u. Pharm., 200, 139-231; 203, 1-33, 255-285, 868-868; Jour. Chem. Soc., 38, 295-7 (Abs.); 38, 781-8 (Abs.); Beiblätter, 4, 776-86.

Ueber den Zusammenhang zwischen den optischen und den thermischen Eigenschaften flüssiger organischer Körper.

Brühl (J. W.). Sitzungsber. d. Wiener Akad., 84 II, 817-75;
Monatschr. f. Chemie, 2, 716-74;
Ann. Phys. u. Chem., 211, 121-178;
Jour. Chem. Soc., 42, 268 (Abs.);
Beiblätter, 6, 877 (Abs.).
Berichtigung, Ann. Phys. u. Chem., 211, 871-2.

Untersuchungen über die Molecularrefraction organischer flüssiger Körper von grossen Farbenzerstreuungsvermögen.

Bruhl (J. W.). Ber. chem. Ges., 19 (1886), 2746.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 88, 379-81, Jour. Chem. Soc., 36, 504 (Abs.).

Relation between the chemical constitution of certain organic compounds and their action upon the ultra-violet rays.

Dunstan (W. R.). Pharmaceutical Trans., (3) 11, 54-6.

Note concernant le mémoire de M. Kanonikoff sur le pouvoir réfringent des substances organiques.

Flavitsky (F.). Jour. Soc. phys. chim. russe, 16, 260-7.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333
(Abs.); Beiblätter, 5, 48 (Abs.).

Refraction equivalents of organic compounds.

Gladstone (J. H.). Jour. Chem. Soc., 45, 241-59; Chem. News, 49, 233 (Abs.); Nature, 30, 119 (Abs.); Ber. chem. Ges., 17, Referate, 556 (Abs.).

Spectres des carbonates.

Gouy. Comptes Rendus, 85, 70.

Influence of certain rays of the spectrum on plants growing in an iron manure.

Griffiths (A. B.). Jour. Chem. Soc., 45, 74.

Ueber das Verhalten einiger Farbstoffe im Sonnenspectrum.

Haerlin (J.). Ann. Phys. u. Chem., 118, 70.

Researches on the absorption of the ultra-violet rays of the spectrum by organic substances.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 28, 223;
31, 1; Chem. News, 40, 269; Phil. Trans., 170, 257-74; Beiblätter,
4, 370.

Researches on the relation between the molecular structure of carbon compounds and their absorption spectra.

Hartley (W. N.). Jour. Chem. Soc., 39, 158-68; 41, 45-49; Beiblätter, 6, 875 (Abs.); Amer. Chem. Jour., 3, 878.

Das Auge empfindet alle Strahlen die brechbarer sind als die rothen. Helmholtz (H.). Ann. Phys. u. Chem., 94, 205.

Absorptionsstreifen färbiger Lösungen.

Jahresber. d. Chemie, (1864) 108, (1865) 85, (1867) 825, (1868) 129, (1873) 147.

On the chemical circulation in the body.

Jones (H. Bence). Proc. Royal Institution, May 26, 1865.

Zur Frage über den Einfluss der Structur auf das Lichtbrechungsvermögen organischer Verbindungen.

Kanonnikoff (J.). Jour. russ. phys. chem. Ges. (1881), 268; Der. chem. Ges., 14, 1697-1700.

Sur le pouvoir réfringent des substances organiques dans les dissolutions.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 112-13; Ber. chem. Ges., 16, 950 (Abs.); Jour. prackt. Chemie, n. F. 27, 362-4;
Beiblätter, 7, 598 (Abs.); Jour. Chem. Soc., 44, 1041 (Abs.).

Sur la relation du pouvoir réfringent et la composition des composés organiques.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 15, 484-79; Ber. chem. Ges., 16, 3047-3051 (Abs.); Bull. Soc. chim. Paris, 41, 818 (Abs.); Beiblätter, 8, 875 (Abs.).

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 119-131; Ber. chem. Ges., 17, Referate, 157 (Abs.); Nature, 30, 84 (Abs.); Bull. Soc. chim. Paris, 12, 549.

Réponse à la note de M. Flavitsky.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 448-50; Jour. prackt. Chemie, (2) 31, 321-3 (Abs.).

Spectrum of colour-blind.

König (Dr.). Nature, 29, 168.

Beziehungen zwischen der Zusammensetzung und den Absorptionsspektren organischer Verbindungen.

Krüss (G.) und Oeconomides (S.). Ber. chem. Ges., 16, 2051-6; Jour. Chem. Soc., 44, 1041-2 (Abs.); Beiblätter, 7, 897 (Abs.).

Ueber die Gränzen der Empfindlichkeit des Auges für Spectralfarben. Lamansky (S.). Ann. Phys. u. Chem., 143, 638-43.

Zur Kenntniss der Absorptionsspectra von Verbindungen.

Landauer (J.). Ber. chem. Ges., 14, 891-4; Jour. chem. Soc., 40, 591 (Abs.); Beiblätter, 5, 441.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber. d. Berliner Akad. (1882), 64-21; Ann. Phys. u. Chem., 213, 75-112; Jour. Chem. Soc., 42, 909 (Abs.). On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (3) 14, 96-9; Beiblätter, 1, 563 (Abs.).

Ueber die Aenderung der Absorptionsspectra einiger Farbstoffe in verschiedenen Lösungsmitteln.

Lepel (F. von). Ber. chem. Ges., 11, 1146-51; Jour. Chem. Soc., 34, 925 (Abs.).

Planzenfarbetoffe als Reagentien auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 766-8; Jour. Chem. Soc., 40, 63 (Abs.).

Contributions to our knowledge of the spectra of the flames of gases containing carbon.

Lielegg (A.). Phil. Mag., (4) 37, 208.

General observations on the spectra of carbon and its compounds.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 123-80; Jour. Chem. Soc., 44, 261 (Abs.).

New organic spectra.

MacMunn (Dr. C. A.). Proc. Roy. Physiolog. Soc. (1884), No. 4; Nature, 31 (1885), 326-7.

De la flamme de quelques gaz carburés (avec une planche du spectre du carbone).

Morren (A.). Ann. Chim. et Phys., (4) 4, 805.

Sur les effets de coloration.

Nickles. Comptes Rendus, 62, 93.

Les rapports entre les propriétés spectrales des corps simples avec leurs propriétés physiologiques.

Papillon, Comptes Rendus, 73, 791.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Preyer (W.). Ber. chem. Ges., 4, 404.

Du spectre musculaire.

Ranvier (L.). Comptes Rendus, 78, 1572-5.

Absorptionsspectren verschiedener Farbenlösungen.

Reynolds. Jour. prackt. Chemie, 105, 358.

Versuche über Farbenmischung.

Schelske (R.). Ann. Phys. u. Chem., n. F. 16, 849-58.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Schiff (H.). Ber. chem. Ges., 4, 474; Bull. Soc. chim. Paris, n. s. 16, 97.

On a definite method of qualitative analysis of animal and vegetable colouring matters by means of the spectrum-microscope.

Sorby (H. C.). Proc. Royal Soc., 15, 433.

Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442.

On the colouring matters derived from the decomposition of some minute organisms.

Sorby (H. C.). Monthly Microscop. Jour., 3, 229-31.

On the examination of mixed colouring matters with the spectrummicroscope.

Sorby (H. C.). Monthly Microscop. Jour., 6, 124-84.

Zur Spectralanalyse gefärbter Flüssigkeiten und Gläser.

Stein. Jour. prackt. Chemie, n. F. 9, 383; 10, 868; Jour. Chemical Soc., (2) 13, 412-14 (Abs.).

On the discrimination of organic bodies by their optical properties. Stokes (G. G.). Phil. Mag., (4) 27, 388.

Prismatic spectra of the flames of compounds of carbon and hydrogen.

 Swan (W.). Edinburgh Philosoph. Trans., 21, 411; Ann. Phys. u. Chem., 100, 306.

Longueur d'ondes des bandes spectrales données par les composés du carbone.

Thollon (L.). Comptes Rendus, 93, 260; Ann. Chim. et Phys., (5) 25, 287-8.

Absorptionsspectren verschiedener Farbenlösungen.

Thudichum, Jour. prackt. Chemie, 106, 414-15.

Der Gebrauch des Spectroscops zu physiologischen und ärtztlichen Zwecken.

Valentin (G.). Leipzig, Winter'sche Buchhandlung, 1863.

Quantitative Bestimmung von Farbstoffen durch den Spectralapparat.

Vierordt (K.). Ber. chem. Ges., 4, 327, 457, 519; Phil. Mag., (4) 41, 482-4; Amer. Jour. Sci., (3) 2, 188 (Abs.); Bull. Soc. chim. Paris, v. s. 16, 96.

Ueber die abnorme Wirkung mancher Farbstoffe auf die Lichtempfindlichkeit photographischer Platten.

Vogel (H. W.). Ber. chem. Ges., 8, 95-6.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Ber. chem. Ges., 8, 96-8; Jour. Chem. Soc., (2) 13, 604 (Abs.).

Ueber die Absorptionsspectren verschiedener Farbenstoffe und ihre Anwendung zur Entdeckung von Verfälschungen.

Vogel (H. W.). Ber. chem. Ges., 8, 1246-54; Dingler's Journal, 219, 78-81; Bull. Soc. chim. Paris, n. s. 26, 475.

Ueber die Wandlung der Spectren verschiedener Farbstoffe.

Vogel (H. W.). Ber. chem. Ges., 11, 622-4; Jour. Chem. Soc., 34, 545 (Abs.).

Ueber den Zusammenhang zwischen Absorption der Farbstoffen und deren sensibilisirender Wirkung auf Bromsilber.

Vogel (H. V.). Ann. Phys. u. Chem., (2) 26 (1885), 527-80.

Untersuchungen über die Spectra der Kohlenverbindungen.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 17, 427-67; Jour. Chem. Soc., 44, 761 (Abs.); Monatsber. d. Berliner Akad. (1880), 791-4.

Bemerkungen, Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 863.

#### b, Carbon compounds in particular.

#### ACETIC ACID.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 828-5; Beiblätter, 5, 41-42 (Abs.).

#### ACETYLENE.

Bemerkung zu Herrn Wüllner's Aufsatz; Ueber die Spectra des Wasserstoffs und des Acetylens.

Hasselberg (B.). Ann. Phys. u. Chem., n. F. 15, 45-49.

Spectrum des Acetylens.

Jahresber. d. Chemie (1869), 182.

De la flamme de quelques gaz carburés, et en particulier de celle de l'acetylène.

Morren (A.). Ann. Chim. et Phys., (4) 4, 805; Jour. prackt. Chem., 87, 50.

Spectrum des Acetylens.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 355. Bemerkung, Hasselberg (B.), do., 15, 45-9.

#### ACID BROWN.

Spectrum of acid brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 198.

#### AGARYTHRINE.

Spectrum of agarythrine, an alcaloid contained in agaricus ruber.

Phipson (T. L.). Chem. News, 46, 199-200; Ber. chem. Ges., 16, 244 (Abs.).

#### ALBUMEN.

Farbenreactionen des Albumin.

Adamkiewicz (A.). Pfluger's Arch. f. Physiol., 9, 156-162; Jour. Chem. Soc., (2) 13, 172 (Abs.).

Spectroscopic notes on the carbohydrates and albumenoids from grain.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 58-61.

#### ALCOHOL.

Misura dell'indice di rifrazione dell'alcool anisico e dell'alcool metilsalicilico.

Blaserna (P.). Gazz. chim. ital., 2, 69-75.

Brechungscoefficienten einiger Gemische von Anilin und Alkohol.

Johst (W.). Ann. Phys. u. Chem., n. F. 20, 47-62.

Spectre de l'alcohol.

Masson (A.). Comptes Rendus, 32, 129

Ueber die Absorption des Lichtes durch Alcohol, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8, 670-675; Jour. Chem. Soc., 34, 698 (Abs.).

### ALIZARINE.

Notiz über künstliches Alizarin.

Boettger (R.) und Petersen (T.). Ber. chem. Ges., 4, 778-9.

Spectre d'absorption d'alizarine.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Alizarins.

Jahresber. d. Chemie (1872), 140.

11 т

On artificial alizarine.

Perkin (W. H.). Jour. Chem. Soc., (2) 8, 133-43; Ann. Chem. u. Pharm., 158, 315-19 (Abs.); Ann. Chim. et Phys., (4) 26, 136 (Abs.).

Absorptionsspectrum des Alizarins.

Reynolds. Jour. prackt. Chem., 105, 358.

L'alizarine nitrée.

Rosenstiehl (A.). Ann. Chim. et Phys., (5) 12, 519-529; Jour. Chem. Soc., 34, 231-2.

Sur les spectres d'alizarine et de quelques matières colorantes qui en derivent.

Rosenstiehl (A.). Comptes Rendus, 88, 1194-6; Jour. Chem. Soc., 36, 807 (Abs.); Beiblätter, 3, 793.

Zur Kenntniss der Alizarin-Farbstoffe.

Vogel (H. W.). Ber. chem. Ges., 11, 1371-4; Jour. Chem. Soc., 36, 88-5 (Abs.).

ALKANNA.

Der Alkannafarbstoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 768-6.

ALLYLDIPROPYLCABBINOL.

Untersuchungen über einen aus Allyldipropylcarbinol erhaltenen Kohlenwasserstoff.

Reformatsky (S.). Jour. prackt. Chemie, n. F. 27, 389-407; Beiblätter, 7, 689 (Abs.).

ALUM.

Sur les aluns crystallisés.

Soret (C.). Arch. d. Genève, (3) 10, 800; Beiblätter, 8, 874.

Spectrum of amido-azo-a-naphthalene,  $C_{10}$   $H_1 \cdot N : N \cdot C_{10}$   $H_4 \cdot N$   $H_2$ .

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190.

AMIDO-AZO- $\beta$ -NAPHTHALENE.

Spectrum of amido-azo-β-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 191.

ANILINE.

Die Brechungscoefficienten einiger Gemische von Anilin.

Johst (W.). Ann. Phys. u. Chem., n. F. 20, 47-62.

Lo Spettroscopio applicato alla ricerca dei colori di anilina introdati nei vini rossi per sofisticazione.

Macagno (J.). Mem. Spettr. ital. (1881), 35-40; Ber. chem. Ges., 14, 1584 (Abs.).

Aniline colours in the spectroscope.

Reimann (M.). Chem. News, 33, 260.

Absorptionslinien der Anilinfarbstoffe im Spectralapparat.

Schiff. Jour. prackt. Chemie, 89, 229.

Application of the spectroscope in the manufacture of aniline colours.

Schoop (P.). Chemische Industrie, 9 (1886), No. 3; Chem. News, 53 (1886), 287 (Abs.).

Zur Kenntniss der grünen Anilinfarben.

Vogel (H. W.). Ber. chem. Ges., 11, 1371-4; Jour. Chem. Soc., 36, 83-5 (Abs.).

### ANTERACEN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Antrarufin.

Liebermann (C.) und Boeck (K.). Ber. chem. Gcs., 11, 1613-18;
Jour. Chem. Soc., 36, 257-9.

Ueber die der Chrysazinreihe augehörigen Anthracenverbindungen.

Liebermann (C.). Ber. chem. Ges., 12, 182-8.

Use of the spectroscope in discriminating anthracens.

Nickels (B.). Chem. News, 41, 52, 95, 117; Jour. Chem. Soc., 38, 757 (Abs.); Ber. chem. Ges., 13, 829 (Abs.).

# ANTHRAPURPURIN.

Absorptionsspectrum des Anthrapurpurins.

Jahresber. d. Chemie (1878), 451.

Absorptionspectra of anthrapurpurin.

Perkin (W. H.). Jour. Chem. Soc., (2) 11, 438.

### ANTHRARUFIN.

Ueber Anthracen-disulfosäure und deren Umwandlung in Anthrarufin.

Liebermann (C.) und Boeck (K.). Ber. chem. Ges., 11, 1613-18;
Jour. Chem. Soc., 36, 257-9 (Abs.).

# APHIDES.

On the colouring matter of some aphides.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 352-61.

AURIM.

Spectrum of aurin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 167-8.

### AN AUSTRALIAN LAKE.

Spectrum of a poisonous Australian lake.

Francis (G.). Pharmaceutical Trans., (8) 8, 1047-8; Jour. Chem. Soc., 34, 907 (Abs.).

AZO-COLORS.

Spectrum of azobenzene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 176-8.

Spectrum of amido-azo-α-naphthalene, and of amido-azo-β-naphthalene. Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190-1.

On the spectra of the azo-colours.

Stebbins (J. H.). Jour. Amer. Chem. Soc., 6 (1884), 117-20, 149-59.

#### BEETS.

Spectralanalytische Notiz; rothe Rüben in Weinverfälschungen.

Lepel (F. von). Ber. chem. Ges., 10, 1875-7; Jour. Chem. Soc., 34, 168 (Abs.); Bull. Soc. chim. Paris, n. s. 30, 573.

### BENZENE.

Description and measurements of the spectrum of benzene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 694-6.

Spectrum of benzene-azo-β-naphtholsulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

Misura dell'indice di rifrazione del cimene, della benzina e di alcuni derivati del timol naturale e del timol sintetico.

Pisati (G.) e Paterno (E.). Gazz. chim. ital., 4, 557-64; Ber. chem. Ges., 3, 71 (Abs.).

### BIEBRICH SCARLET.

Spectrum of biebrich scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 194.

BILE.

Le reazioni dei pigmenti biliari.

Capranica (S.). Gazz. chim. ital., 11, 480-1; Ber. chem. Ges., 15, 262-8 (Abs.); Jour. Chem. Soc., 42, 282.

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hæmatin.

MacMunn (C. A.). Proc. Royal Soc., 31, 206-37; Jour. Chem. Soc., 40, 1056-8 (Abs.); Beiblätter, 5, 281.

Observations on the so-called bile of invertebrates.

MacMunn (C. A.). Proc. Royal Soc., 35, 870-408.

Künstliche Umwandlung von Bilirubin in Harnfarbstoff.

Maly (R.). Ann. Chem. u. Pharm., 161, 368-70; 163, 77-95; Jour. Chem. Soc., (2) 10, 514 (Abs.), 835 (Abs.).

A reducible by-product of the oxidation of bile-pigment.

Stockvis (B. J.). Neues Repertorium f. Pharm., 21, 123, 782-7; Jour.
Chem. Soc., (2) 10, 808 (Abs.); 11, 288; Bull. Soc. chim. Paris, n.
5. 18, 265.

Researches on bilirubin and its compounds.

Thudichum (J. L. W.). Jour. Chem. Soc., (2) 13, 389-408.

BIRDS.

Spectres observés au travers d'une plume.

Hugo (L.). Comptes Rendus, 83, 602.

Ueber die Färbungen der Vogeleierschalen.

Liebermann (C.). Ber. chem. Ges., 11, 606-610; Amer. Jour. Sci., (8) 16, 66 (Abs.).

BISMARCK BROWN.

Spectrum of bismarck brown.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 180-1.

BLOOD.

Ueber das Verhalten von Blut und Ozon zu einander.

Binz (C.). Medicinalisches Centralblatt, 20, 721-3; Chemisches Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486 (Abs.).

Dosage de l'hemoglobine dans le sang par les procédés optiques.

Branly (E.). Ann. Chim. et Phys., (5) 27, 238-78; Jour. Chem. Soc., 44, 394 (Abs.); Z. analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys., (2) 2, 480 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chem., 104, 845.

1

On the action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Ber. chem. Ges., 9, 833; Jour. prackt. Chemie, 105, 287.

Absorptionslinien in Blutspectrum.

Hoppe-Seyler (F.). Jahrb. d. gesammt. Medicin, 114, 8.

Ueber das Verhalten des Blutfarbestoffs in Spectrum des Sonnenlichtes. Hoppe-Seyler (F.). Virchow's Annalen, 22, 446; 29, 238; Chem. Centralblatt, 1862, 170.

Untersuchungen zur physicalischen Chemie des Blutes.

Hüfner (G.). Jour. prackt. Chemie, (2) 22, 362-88; Jour. Chem. Soc., 40, 111-18 (Abs.).

Untersuchungen über den Blutfarbestoff und seine Derivate.

Jäderholm. (A.). Zeitschr. f. Biologie, 13, 198-255; Jour. Chem. Soc., 34, 286-7 (Abs.).

Spectren des Blutfarbstoffs.

Jahresber. d. Chemie, 15, 585 (Abs. See Hoppe-Seyler, above.)

Photometrie des Absorptionsspectrums der Blutkörperchen.

Jessen (E.). Zeitschr. f. Biologie, 17, 251-72; Ber. chem. Ges., 15, 952 (Abs.).

Spectrum der Sanguinarlösung.

Naschold. Jour. prackt. Chemie, 106, 407.

Beträge zur Kentniss der Blutfarbstoffe.

Otto (J. G.). Pflüger's Archiv. f. Physiol., 31, 240-44; Ber. chem. Ges., 16, 2688-9.

On some improvements in the spectrum method of detecting blood. Sorby (H. C.). Monthly Microscop. Jour., 6, 9-17.

On some compounds derived from the colouring matter of blood. Sorby (H. C.). Quar. Jour. Microscop. Sci., 10, 400-2.

Application of spectrum analysis to microscopical investigations, and especially to the detection of blood stains.

Sorby (H. C.). Chem. News, 11, 186, 194, 282, 256.

On the blood spectrum.

Sorby (H. C.). Nature, 4, 505; 5, 7.

Spectre d'absorption du sang dans la partie violette et ultra-violette. Soret (J. L.). Comptes Rendus, 97, 1269. Reduction and oxidation of the colouring matter of the blood.

Stokes (G. G.). Proc. Royal Soc., 13, 858.

Ueber das Vorkommen eines neuen, das Absorptionsspectrum des Blutes zeigenden, Körper's im thierischen Organismus.

Struve (H.). Ber. chem. Ges., 9, 623; Bull. Soc. chim. Paris, n. ... 18, 471.

Ueber die spectralanalytische Reaction auf Blut.

Vogel (H. W.). Ber. chem. Ges., 9, 587, 1472; Bull. Soc. chim. Paris, n. s. 27, 88.

#### BONELLIA VIRIDIS.

Der grüne Farbstoff von Bonellia Viridis.

Schenck (L. S.). Sitzungsber. Wiener Akad., 72 II, 581-5.

On the colouring matter of bonellia viridis.

Sorby (H. C.). Quar. Jour. Microscop. Soc., 15, 166.

#### BRUCINE.

Absorption spectrum of brucine, etc.

Moyer (A.). Archives of the Pharmaceutical Soc., (8) 13, 418-16; Jour. Chem. Soc., 36, 269.

#### BUTTER.

Ueber einige Methylester aus der Propionsäure-und Buttersäuregruppe. Kahlbaum (G. W. A.). Ber. chem. Ges., 12, 848-4; Jour. Chem. Soc., 36, 521 (Abs.).

# CARBOHYDRATES.

Spectroscopic notes on the carbohydrates and albuminoids from grain.

Hartley (W. N.). Jour. chem. Soc., 51 (1887), 58-61.

### CARMINE.

Spectrum von ammoniakalischer Carminlösung und von Blut. Campani. Ber. chem. Ges., 5, 287.

Spectre du carmin d'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 88

# CARYOPHYLLACEA.

Colouring matter of the caryophyllacese.

Hilger (A.) and Bischoff (H.). Landwirthschaftl. Versuch-Statistik, 23, 456-61; Jour. Chem. Soc., 36, 780 (Abs.).

CHINIZABIN.

Ueber Chinizarin.

Grimm (F.). Ber. chem. Ges., 6, 506-12.

Absorptionsspectrum des Chinizarins.

Jahresber. d. Chemie (1873), 455 (Abs.). See Grimm.

CHINOLIN.

Ueber einige im Pyridinkern substituirte Chinolinderivate.

Friedländer (P.) und Weinberg (A.). Ber. chem. Ges., 15, 2679-2685.

CHINON.

Ueber den im Ag. atrotomentosus vorkommenden chinonartigen Körper.
Thörner (W.). Ber. chem. Ges., 12, 1680-5.

CHOTELIN.

Ueber Chotelin.

Liebermann (L.). Pfüger's Archiv. f. Physiol., 11, 181-90; Jour. Chem. Soc. (1876), 1, 407-8 (Abs.).

CHROMOGENE.

Ueber einige Chromogene des Harns und deren Derivate.

Plósz (P.). Zeitschr. f. physiolog. Chemie, 8, 85-94; Ber. chem. Ges., 16, 2933 (Abs.).

CHRYSOIDINE.

Das Chrysoidin, eine antiphotogenische Farbe.

Bardy (C.). Chemisches Centralblatt, (8), 9, 109; Jour. Chem. Soc., 34, 618 (Abs.).

Spectrum of chrysoidint.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 178.

CITRACON.

Ueber die Molecularrefraction der Citracon und Mesaconsäureather.

Brühl (J. W.). Ber. chem. Ges., 14, 2786-44; Jour. Chem. Soc., 42, 829-80; Beiblätter, 6, 876.

COAL.

Soda flames in coal fires.

Herschel (J.). Nature, 27, 78, 108.

COLEÎN.

Spectrum of colein.

Church (J. H.). Jour. Chem. Soc., 1877, 1, 260.

### CROCEINE SCARLET.

Spectrum of croceine scarlet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 195.

CROTON ACID.

Ueber die Molecularrefraction der Crotonsäure.

Brühl (J. W.). Bez. chem. Ges., 14, 2797-2801; Jour. Chem. Soc.,42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

CRYSTALLOIDS.

On the rate of passage of crystalloids in and out of the body.

Jones (H. Bence). Proc. Royal Soc., 14, 400.

CUMENE.

Spectrum of cumene-azo-\(\theta\)-naphtholdisulphonic acid.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 187.

CURCUMIN.

Ueber Curcumin, den Farbstoff der Curcumawurzel.

Daube (F. U.). Neues Repert. d. Pharm., 20, 86; Ber. chem. Ges., 3, 609-18; Jour Chem. Soc., (2) 9, 152 (Abs.).

CYANGGEN.

Photographed spectrum of cyanogen.

Capron (J. R.). Photographed Spectra, London, 1877, 71.

Spectroscopic researches in carbon and cyanogen.

Ciamician. Chem. News, 44, 216.

Spectrum von Cyanogen.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 507.

Constitution of cyanuric acid.

Hartley (W. N.). Jour. Chem. Soc., 41, 45-9; Beiblätter, 6, 375 (Abs.).

Note on the reversal of the spectrum of cyanogen.

Liveing (G. D.) and Dewar (J.). Chem. News, 44, 253; Proc. Royal Soc., 33, 8; Ann. Chim. et Phys., (5) 23, 571.

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, 93, 1079-81; Chem. News, 45, 22 (Abs.); Ber. chem. Ges., 15, 248 (Abs.).

De la flamme du cyanogen.

Morren (M. A.). Ann. Chim. et Phys., (4) 4, 805.

Bestimmung der Brechungsquotienten einer Cyaninlösung.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 16, 885.

Cyanogen in small induction sparks in free air.

Smyth (C. Piazzi). Nature, 28, 840.

### CYMENE.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

(Look above under Cumene.)

#### DECAY.

Zur Lehre von den Fäulnissalkaloïden.

Poehl (A.). Ber. chem. Ges., 16, 1975-88.

### DIAMOND.

On the refraction equivalents of the diamond and the carbon compounds.

Gladstone (J. H.). Chem. News, 42, 175; Jour. Chem. Soc., 40, 333

(Abs.); Beiblätter, 5, 48 (Abs.).

### DIAZO.

Spectrum of diazo.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 196.

## DIPHENYL.

Ueber Diphenyldüsoindolazofarbstoffe.

Möhlau (R.). Ber. chem. Ges., 15, 2490-7; Jour. Chem. Soc., 44, 842 (Abs.).

# DIPYBIDENE.

Description and measurement of the spectrum of dipyridene (Dr. Ramsay).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 717.

## DROSSERA WHITTAKERI.

Absorption spectra of the colouring matter of Drossera Whittakeri. Rennie (E. H.). Jour. Chem. Soc., 51 (1887), 877.

#### EBONITE.

On the transmission of radiation of low refrangibility through ebonite.

Abney (W. de W.) and Festing (R.). Proc. Physical Soc., 4, 256-9; Phil. Mag., (5) 11, 466-9; Chem. News, 43, 175 (Abs.); Beiblätter, 5, 506 (Abs.).

Note on the index of refraction of ebonite.

Ayrton (W. E.) and Perry (J.). Proc. Physical Soc., 4, 345-8; Phil. Mag., (5) 12, 196-9; Nature, 23, 519; Beiblätter, 5, 741 (Abs.).

### EOSIN.

Photographic action of eosin.

Waterhouse (J.). Photographic Journal, 16, 185-6; Jour. Chem. Soc., 1876, 2, 282 (Abs.).

### ETHER VAPOUR.

Spectrum or ether vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 74.

### EXCREMENTS.

Swei pathologische Harnfarbstoffe.

Baumstark (F.). Pflüger's Arch. f. Physiol., 9, 568-84; Jour. Chem. Soc., (2) 13, 480 (Abs.).

Ueber das Urorosein, einen neuen Harnfarstoff.

Nencki (M.) und Sieber (N). Jour. prackt. Chemie, 26, 338-6; Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 3087.

Ueber einen neuen krystallinischen farbigen Harnbestantheil.

Plósz (P.). Zeitschr. physiol. Chemie, 6, 504-7; Ber. chem. Ges., 15, 2626-7 (Abs.).

Ueber einige Chromogene des Harns und deren Derivate.

Plósz (P.). Zeitschr. physiol. Chemie, 3, 85-94; Ber. chem. Ges., 16, 2938-4 (Abs.).

### FAST REI

Spectrum of fast red.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 197.

FISH.

Spectrum of fish pigment.

Francis (G.). Nature, 13, 167.

### FLOUR AND GRAIN.

Spectroscopic notes on the carbohydrates and albuminoids from grain.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 58-61.

Matière colorante se forment dans la colle de farine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 94, 562-3; Jour. Chem. Soc., 42, 789 (Abs.).

Ueber den Nachweis von Mutterkorn im Mehle auf spectroscopischem Wege.

Petri (J.). Zeitschr. analyt. Chemie, 18 211-20; Jour. Chem. Soc., 36, 977-9 (Abs.).

#### FLOWERS.

Ueber Blumenblau.

Schönn (L.). Zeitschr. analyt. Chemie, 9, 827-8.

The colouring matter of the petals of Rosa Gallica.

Senier (H.). Pharmaceutical Trans., (3), 7, 650-652; Jour. Chem. Soc., 1877, 2, 502 (Abs.).

### PUCHSIN.

Ueber die Brechungsverhältnisse des Fuchsins.

Christiansen (C.). Oversight k. Danske Vidensk. Selskabs, 1871, 5-17;
Ann. Phys. u. Chem., 143, 250-9; Ann. Chim. ct Phys., (4) 25, 400 (Abs.).

Zur Farbenzerstreuung des Fuchsins.

Christiansen (C.). Ann. Phys. u. Chem., 146, 154-155; Jour. Chem. Soc., (2) 11, 286.

Nachweis von Fuchsin im Weine.

Liebermann (L.). Ber. chem. Ges., 10, 866; Jour. Chem. Soc., 1877, 2, 989 (Abs.).

Ueber die optischen Eigenschaften des festen Fuchsins.

Voigt (W.). Göttinger gelehrten Nachr. (1884), 262.

Ueber den Nachweis von Fuchsin in damit gefärbten Weinen durch Stearin.

Wolff (C. H.). Repert. analyt. Chem., 2, 198-4; Chemisches Centralblatt, (3) 13, 670, (Abs.); Jour. Chem. Soc., 44, 884 (Abs.).

#### FUNGI.

Fluorescence of the pigments of fungi.

Weiss (A.). Chem. Centralblatt, 1886, 670-1; Jour. Chem. Soc., 44, 884-5 (Abs.).

#### GALL.

Die Oxydationsproducte der Gallenfarbstoffe und ihre Absorptionsstreifen.

Heynsius (A.) und Campbell (J. F. F.). Pfüger's Archiv. f. Physiol., 4, 497-547; Jour. Chem. Soc., (2) 10, 307-8 (Abs.).

Absorptionsspectren der Gallenfarbstoffe.

Jaffe. Jour. prackt. Chemie, 104, 401.

Untersuchungen über die Gallenfarbstoffe.

Maly (R.). Wiener Anzeigen, 9, 89-41; Chem. Centralblatt, (8) 3, 180-1; Jour. Chem. Soc., (2) 10, 688 (Abs.); Jour. prackt. Chem., 103, 255; 104, 88.

Untersuchungen über die Gallenfarbstoffe und ihre Erkennung mittelst des Spectroscops.

Stockvis (B. J.). Ber. chem. Ges., 5, 588-5; Jour. Chem. Soc., (2) 11, 78 (Abs.).

#### GELATINE

Emploi de la gélatine pour montrer l'absorption dans le spectre. Lommel (E.). Ann. Chim. et Phys., (4) 26, 279.

#### GUN-COTTON.

Spectrum explodirender Schiessbaumwolle.

Jahresber. d. Chemie (1878), 151.

Spectrum des Lichtes explodirender Schiessbaumwolle.

Lohse (O.). Ann. Phys. u. Chem., 150, 641.

Spectrum des Lichtes explodirender Schiessbaumwolle.

Vogel (H. W.). Ann. Phys., u. Chem., n. F. 3, 615.

Spectrum of H S O₂ · C₈ H₈ · N : N · C₁₀ H₄ (H S O₂)₂ · O H  $\beta$  (Na Salt). Hartley (W. N.). Jour. Chem. Soc., **51** (1887), 188-9.

#### HELIANTHIN.

Spectrum of helianthin.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 192-&

# HEMATINE.

Action de l'hydrosulfite de soude sur l'hématine du sang (hématine reduite).

Cazeneuve (P.). Bull. Soc. chim. Paris, (2) 27, 258-60; Jour. Chem. Soc., 1877, 2, 846 (Abs.).

Ueber Assimilation von Hæmatococcus.

Englemann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 200-8; Proc. Verb. K. Akad. Wetenschappen, Amsterdam, March 25, 1882, 8-6 (Abs.); Beiblätter, 7, 377-8 (Abs.).

Researches into the colouring matters of human urine, with an account of their artificial production from bilirubin and from hematine.

MacMunn (C. A.). Proc. Royal Soc., 31, 206-337; Jour. Chem. Soc., 40, 1056-8 (Abs.); Beiblätter, 5, 281.

On hemine, hematine and a phosphorized substance contained in blood corpuscules.

Thudichum (J. L. W.) and Kingzett (C. T.). Jour. Chem. Soc., 1876, 2, 255-64.

#### HEMOGLOBIN.

Dosage de l'hémoglobine dans le sang par les procédés optiques.

Branly (E.). Ann. Chim. et Phys., (5) 27, 238-273; Jour. Chem. Soc., 44, 394 (Abs.); Zeitschr. analyt. Chem., 22, 629-32 (Abs.); Jour. de Phys., (2), 2, 430 (Abs.).

Ueber die Bestimmung des Hæmoglobin-und Sauerstoff-gehaltnes im Blute.

Hüfner (G.). Zeitschr. physiol. Chem., 3, 1-18; Ber. chem. Ges., 12, 702 (Abs.); Jour. Chem. Soc., 36, 835.

On the evolution of hemoglobine.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 16, 76-85.

Spectralanalytische Bestimmung des Hæmoglobingehaltes des menschlichen Blutes.

Wiskemann (M.). Zeitschr. f. Biologie, 12, 484-47; Jour. Chem. Soc., 1877, 2, 808-9.

# HOFFMANN'S VIOLET.

Spectrum of Hoffmann's violet.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 171-4.

### HYDROCARBONS.

Hydrocarbons in the solar atmosphere.

Abney (W. de W.). Rept. British Assoc., 1881, 524.

Sur le pouvoir réfringent de l'hydrocarbure C₁₂ H₂₀.

Albitsky (A.). Jour. Soc. phys. chim. russe, 15, 524-6.

Spectrum von Kohlenwasserstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 157.

On the spectra of the compounds of carbon with hydrogen and nitrogen.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 494-509; Nature, 22, 620-8.

On the origin of the hydrocarbon flame spectrum.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 418-29; Nature, 27, 257-9; Chem. News, 46, 298-7; Beiblätter, 7, 288-9 (Abs.).

Nuovo metodo spettroscopico per discoprire nei miscugli gassosi e nelle acque le puì piccole quantità d'un idrocarburo gassoso od almeno molto volatile.

Negri (A. e G. de). Gazz. chim. ital., 5, 438; Jour. Chem. Soc., 1876, 2, 659 (Abs.); Chem. News, 33, 76.

Untersuchungen über einen aus Allildipropylcarbinol erhaltenen Kohlenwasserstoff, C₁₀ H₁₈.

Reformatsky (S.). Jour. prackt. Chem., n. F. 27, 389-407; Beiblätter, 7, 689 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Smyth (C. Piazzi). Phil. Mag., (4) 49, 24-38.

Carbon and carbohydrogen, spectroscoped and spectrometed in 1879.

Smyth (C. Piazzi). Phil. Mag., (5) 8, 107-119; Beiblätter, 4, 36 (Abs.).

Hydrocarbons of the formula (C₅ H₈)_n.

Tilden (W. A.). Chem. News, 46, 120-1; Jour. Chem. Soc., 44, 75-6 (Abs.).

Carbon and hydrocarbon in the modern spectroscope.

Watts (W. M.). Phil. Mag., (4) 49, 104-6.

HYDROBILIRUBIN.

Ueber Choletelin und Hydrobilirubin.

Liebermann (L.). Pflüger's Arch. Physiol., 11, 181–90; Jour. Chem. Soc., 1876, 1, 407–8 (Abs.).

HYDROCHINON.

Ueber das Phthaleïn des Hydrochinons.

Grimm (F.). Ber. chem. Ges., 6, 506-12.

# HYDROXYANTHBAQUINONE.

Spectra of the methyl derivatives of hydroxyanthraquinone.

Liebermann (C.) und Kostanecki (S. von). Ber. chem. Ges., 19, 2827-32; Jour. Chem. Soc., 52 (1887), 1 (Abs.).

INDIGO.

Spectre de l'indigo.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion de l'indigo, etc.

Lallamand (A.). Comptes Rendus, 79, 693.

Spectre du carmin de l'indigo.

Vogel (H. W.). Bull. Soc. chim. Paris, n. s. 27, 88.

Spectralanalytische Werthbestimmung verschiedener reiner Indigosorten.
Wolff (C. H.). Zeitschr. analyt. Chem., 22, 29-82.

IODINE GREEN.

Spectrum of iodine green.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 174-6.

LAMP-BLACK.

Spectre du noir de fumée.

Lallemand (A.). Comptes Rendus, 78, 1272.

LEAVES.

Das Grün der Blätter.

Müller (J.). Ann. Phys. u. Chem., 142, 615-16; Jour. Chem. Soc., (2) 9, 654.

Ueber Blattgrün.

Schönn (L.). Zeitschr. analyt. Chemie, 9, 827-8; Ann. Phys. u. Chem., 145, 166-7; Arch. de Genève, (2) 43, 282-8.

On the various tints of autumnal foliage.

Sorby (H. C.). Chem. News, 23, 137-9, 148-50; Jour. Chem. Soc., (2) 9, 184 (Abs.).

On the colour of leaves at different seasons of the year.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 11, 215-284.

Ueber die Lichtwirkung verschieden gefärbter Blätter.

Vogel (H. W.). Sitzungsber. d. Münchener Akad., 1872, 188-7.

## LUTEINE.

Results of researches on luteïne and the spectra of yellow organic substances contained in animals and plants. Researches conducted for the medical department of the Privy Council.

Thudichum (J. L. W.). Proc. Royal Soc., 17, 253; Jour. prackt. Chem., 106, 414.

#### MESACON.

Ueber die Molecularrefraction der Citracon-und Mesacon-säureather.

Brühl (J. W.). Ber. chem. Ges., 14, 2736-44; Jour. chem. Soc., 42, 829-80; Beibätter, 6, 876.

#### METAXYLENE.

Description and measurement of the spectrum of metaxylene (Kahlbaum). Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 700-7.

### METHYLENE BLUE.

On the spectroscopic examination of methylene blue and of South's violet.

Stebbins (J. H., Jr.). Jour. Amer. Chem. Soc., 6 (1884), 304-5.

#### METHACRYL.

Ueber die Molecularrefraction der Methacrylsäure.

Brühl (J. W.). Ber. chem. Ges., 14, 2797-2801; Jour. Chem. Soc., 42, 827 (Abs.); Beiblätter, 6, 477 (Abs.).

#### METHAMOGLOBIN.

Studien über das Methämoglobin.

Otto (J. G.). Pfüger's Arch. f. Physiol., 31, 245-67; Ber. chem. Ges., 16, 2689 (Abs.).

Teber das Methämoglobin.

Saarbach (H.). Pflüger's Arch. f. Physiol., 28, 382-8; Ber. chem. Ges., 15, 2752 (Abs.).

### MORINDON.

Spectrum der Morindonlösungen.

Stein. Jour. prackt. Chemie, 97, 241.

Spectrum der Morindonlösungen.

Stenhouse. Jour. prackt. Chemie, 98, 127.

### MORPHINE.

Absorption spectrum of morphine.

Meyer (A.). Archives of the Pharmaceutical Soc., (8) 13, 418-16; Jour. Chem. Soc., 36, 269.

# NAPHTHALENE.

Description and measurement of the spectrum of naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 691-701.

12 т

Spectrum of amido-azo-a-naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 190.

Spectrum of amido-azo- $\beta$ -naphthalene.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 191.

Absorptionsspectrum von Naphthalin.

Jahresber. d. Chemie (1878), 157.

Spectre de naphthaline pure.

Lallemand (A.). Comptes Rendus, 77, 1218.

Ueber die Fluorescenz des Naphthalinrothes.

Wesendonck (K.). Ann. Phys. u. Chem., (2) 26 (1885), 521-7; Jour. Chem. Soc., 50 (1886), 585; Jour. de Phys., (2) 5 (1886), 517 (Abs.).

OILS.

Olefiant spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 78.

Spectrum analysis of oils.

Doumer and Thibaut. Chem. News, 51 (1885), 229.

The spectroscope applied to the detection of adulterations of fixed oils.

Gilmour (W.). Pharmaceutical Jour. Trans., (3) 6, 981-2; 7, 22-3.

On essential oils.

/Gladstone (J. H.). Jour. Chem. Soc., (2) 10, 1-12; Ber. chem. Ges., 5, 60 (Abs.).

Examination of essential oils.

Hartley (W. N.) and Huntington (A. K.). Proc. Royal Soc., 29, 29%.

Ueber gefärbte ætherische Oele.

Hock (K.). Archiv. f. Pharm., (3) 21, 17-18, 487-8; Zeitschr. analyt. Chemie, 23, 241 (Abs.).

Spectrum fetter Oele.

Jahresber. d. Chemie (1870), 175.

Objective Darstellung des Spectrums der Oele.

Jahresber. d. Chemie (1876), 968.

Reports of the committee for investigating the constitution and optical properties of essential oils.

Reports of the British Assoc., 1872, 1873, and 1874.

### ORTHO-TOLUIDINE.

Description and measurement of the spectrum of ortho-toluidine.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 789.

Ueber einige Derivate der Orthotoluysäure.

Jacobsen (O.) und Weiss (F.). Ber. chem. Ges., 16, 1956-62; Jour. Chem. Soc., 44, 1121 (Abs.).

### ORTHO-XYLENE.

Description and measurement of the spectrum of ortho-xylene (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 702-4.

CARBONIC ACID (CARBON AND OXYGEN).

Spectrum von Kohlensäure.

Angström (A. J.). Ann. Phys. u. Chem., 94, 155.

Spectre de l'acide carbonique.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectrum of carbonic acid.

Capron (J. R.). Photographed Spectra, London, 1877, p. 68.

Action of the spectral rays on the decomposition of carbonic acid in plants.

Crookes (W.). Chem. News, 27, 183.

Spectrum der Flamme von Kohlenoxyd.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 508.

Combustion of carbonic oxide under pressure.

Franckland (E.). Proc. Royal Soc., 16, 419, 421; Jour. prackt. Chemie, 105, 190.

Erkennung der Vergiftung mit Kohlenoxyd.

Hoppe-Seyler (F.). Zeitschr. f. analyt. Chem., 3, 489; Phil. Mag., (4) 30, 456.

Funkenspectrum von kohlensäurem Lithium.

Jahresber. d. Chemie (1878), 152.

Absorption of radiant heat by carbon dioxide.

Keeler (J. E.). Amer. Jour. Sci., (8) 28, 190-198; Nature, 31, 46 (Abs.).

Die Wirkung der Spectralfarben auf die Kohlensäurezersetzung in Pflanzen.

Pfeffer (W.). Versuchs-Stationen Organ, 15, 856-67; Jour. Chem. Soc., (2) 10, 1107 (Abs.); 11, 400 (Abs.); Ann. Phys. u. Chem., 148, 86-99; Chem. News, 27, 138-4.

Spectrum von Kohlensäure.

Plücker. Ann. Phys. u. Chem., 105, 76.

Ueber die Dauer der spectralanalytische Reaction von Kohlenoxyd.

Salfeld (E.). Repert. analyt. Chem. (1888), 35-7; Archiv. d. Pharm., (3) 21, 289 (Abs.); Jour. Chem. Soc., 46, 343 (Abs.).

Propriétés optiques d'acide oxalique.

Sénarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

Die Zerstreuung der CO, durch die Pflanzen im directen Sonnenspectrum.

Timiriaseff (K.). Mém. Acad. St. Pétersbourg, Sept., 1878; Ber. chem. Ges., 6, 1212 (Abs.); Jour. Chem. Soc., (2) 12, 285 (Abs.).

Recherches sur la décomposition de l'acide carbonique dans le spectre solaire par les parties vertes de végétaux (extrait d'un ouvrage "Sur l'assimilation de la lumière par les végétaux," St. Pétersbourg, 1875.)

Timiriaseff (C.). Ann. Chim. et Phys., (5) 12, 355-96; Comptes Rendus, 84, 1286-9; Jour. Chem. Soc. (1877), 2, 685 (Abs.).

Ueber die Nachweisung von Kohlenoxydgas.

Vogel (H. W.). Ber. chem. Ges., 10, 792-5.

Note on the spectrum of carbonic acid.

Wesendonck (C.). Proc. Royal Soc., 32, 880-2; Chem. News, 44, 42-3; Jour. Chem. Soc., 40, 861 (Abs.).

Ueber die Molecularrefraction der geschwefelten Kohlensäureäther, nebst einigen Bemerkungen über Molecularrefraction im Allgemeinen,

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 17, 577-80; Jour. Chem. Soc., 44, 762 (Abs.); Jour. de Phys., (2) 2, 139 (Abs.).

Ueber die Brechungsexponenten der gesehwefelten Substitutionsproducte des Kohlensäureäthers.

Wiedemann (E.). Jour. prackt. Chem., (2) 6, 453-5.

Spectrum von Kohlensäure.

Wüllner (A.). Ann. Phys. u. Chem., 144, 485, 500, 507, 516, 517.

#### PARATOLUIDINE.

Description and measurement of the spectrum of paratoluidine. Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 706.

### PARAXYLINE.

Description and measurement of the spectrum of Paraxyline (Kahlbaum). Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 707-10.

# PENTACRINUS.

Colouring matter of pentacrinus.

Nature, 21, 578.

PHENOLS.

On a new class of colouring matters from the phenols.

Meldola (R.). Jour. Chem. Soc., 39, 87-40

#### PICOLENE.

Description and measurement of the spectrum of picolene (Dr. Ramsay).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 719-21.

#### PIPERIDINE.

Description and measurement of the spectrum of piperidine (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 781.

#### PLANTS.

Zur Theorie des Assimilations-processes in der Pflanzenwelt.

Benkovich (E. von). Ann. Phys. u. Chem., 154, 468-78.

Zur Frage über die Wirkung des farbigen Lichtes auf die Assimilationsthätigheit der Pflanzen.

Lommel (E.). Ann. Phys. u. Chem., 145, 442-55; Jour. Chem. Soc., (2) 11, 292 (Abs.).

Ueber den Einfluss des farbigen Lichtes auf die Assimilation und die damit zusammenhängende Vermehrung der Aschenbestandtheile in Erbsenkeimlingen.

Weber (R.). Landwirthschaftl.-Versuchs-Statistik, 18, 18-48; Jour. Chem. Soc., (2) 13, 1211-15 (Abs.).

## PURPURIN.

Displacement of the absorption bands of purpurin in solutions of alum.

Morton (H.). Chem. News, 42, 207; Jour. Chem. Soc., 40, 488.

Note on the purple of the ancients.

Schunk (E.). Jour. Chem. Soc., 37, 612-17.

Die Purpurin-Thonerde-Magnesiareaction

Vogel (H. W.). Ber. chem. Ges., 10, 157, 873; Bull. Soc. chim. Paris, n. s. 28, 475, 478.

Ueber die Lichtempfindlichkeit des Purpurins.

Vogel (H. W.). Ber. chem. Ges., 10, 692.

### PYRIDINE.

Description and measurement of the spectrum of pyridine (Kahlbaum). Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 711-16.

### QUINOLINE.

Description and measurement of the spectrum of quinoline, specimens I and II.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 721-7, 728-30.

(Look below for Tetrahydroquinoline.)

Spectrum of quinoline-red.

Hoffmann (A. W.). Ber. chem. Ges., 20, 4-20; Jour. Chem. Soc., 52 (1887), 380 (Abs.).

# RASPBERRY.

Ueber die Untersuchungen von Hinbeersaft.

Vogel (H. W.). Ber. chem. Ges., 10, 1428-32; Jour. Chem. Soc., 1877, 915 (Abs.).

## ROSANILINK.

Ueber Rosolsäure.

Gräbe (C.) und Caro (H.). Ann. Phys. u. Chem., 179, 184-208; Jour. Chem. Soc., 1876, 1, 588-91.

Spectrum of rosaniline base.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 164-6.

Spectrum of rosaniline hydrochloride.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 169-171.

# RUBERINE.

On the colouring matter (ruberine), etc., contained in agaricus ruber.

Phipson (T. L.). Chem. News, 46, 199-200; Jour. Chem. Soc., 44, 100 (Abs.); Ber. chem. Ges., 16, 244 (Abs.).

#### SAFRANIN.

# Absorptionsspectrum von safranin.

Landauer (J.). Ber. chem. Ges., 11, 1772-5; Jour. Chem. Soc., 36, 101 (Abs.); Beiblätter, 3, 195-6.

# SODA (CARBONATE).

Propriétés optiques de sous-carbonate de soda.

Senarmont (H. de). Ann. Chim. et Phys., (8) 41, 886.

## SPONGILLA FLUVIATILIS.

Chromatological relations of spongilla fluviatilis.

Sorby (H. C.). Quar. Jour. Microscop. Sci., 15, 47-52.

### CARBON AND SULPHUR.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney (W. de W.) and Festing (Lieut. Col.). Proc. Royal Soc., 34,
480.

Spectre du sulphure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectrum von Schwefelkohlenstoff.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 531.

Schwefelkohlenspectrum.

Jahresber. d. Chemie (1875), 122, 125, 126 (Abs.).
See Vogel (H. W.),
Deutsch. chem. Ges., 1875, 96; Watts (W. M.), Phil. Mag., (4) 48,
369; and Morton (H.), Ann. Phys. u. Chem., 155, 551.

Absorptionsstreifen in Prismen von Schwefelkohlenstoff.

Lamansky (S.). Ann. Phys. u. Chem., 146, 213, 215.

Ueber das Spectrum der Sell'schen Schwefelkohlenstofflampe.

Vogel (H. W.). Fer. chem. Ges., 8, 96-8; Jour. Chem. Soc., (2) 13, 628 (Abs.).

## TEREBINTHENE.

Sur les chlorhydrates liquides de térébinthène.

barbier (P.). Comptes Rendus, 96, 1066-9; Jour. Chem. Soc., 44, 809 (Abs.).

Spectre de l'essence de térébinthène.

Masson (A.). Comptes Rendus, 32, 129.

### TERPENES.

Das moleculare Brechungsvermögen der Terpene.

Flawitsky (F.). Ber. chem. Ges., 15, 15-16.

An examination of terpenes for cymene by means of the ultra-violet spectrum.

Hartley (W. N.). Jour. Chem. Soc., 37, 676-8.

### TETRAHYDROQUINOLINE.

Description and measurement of the spectrum of tetrahydroquinoline.

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 731-4.

Description and measurement of the spectrum of tetrahydroquinoline hydrochloride (Kahlbaum).

Hartley (W. N.). Jour. Chem. Soc., 47 (1885), 785-8.

#### TOURMELINE.

On the nature of the light emitted by heated tourmeline. Stewart (Balfour). Phil. Mag., (4) 21, 391.

#### TRIPHENYLMENTHANE.

Spectrum of triphenylmenthane.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 162-4.

TROPÆOLIN.

Spectrum of tropseolin  $\theta$ .

Hartley (W. N.). Jour. Chem. Soc., 51, 182-8.

Spectrum of tropseolin  $\theta$   $\theta$ .

Hartley (W. N.). Jour. Chem. Soc., 51, 184-7.

# TURPENTINE.

Spectrum of turpentine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 74.

# ULTRAMADINE.

Ueber die Absorptionsspectren verschiedener Ultramarinsorten.

Wunder (J.). Ber. chem. Ges., 9, 295-9; Jour. Chem. Soc. (1876), 1, 864.

Bemerkungen dazu, Hoffmann (R.). Ber. chem. Ges., 9, 494.

#### URINE.

Researches into the colouring matters of human urine, with an account of the separation of urobilin.

MacMunn (C. A.). Proc. Royal Soc., 30, 250-2; 31, 26-36; Ber. chem. Ges., 14, 1212-14 (Abs.).

Observations on the colouring matter of the so-called bile of invertebrates, and on some unusual urine pigments, etc.

> MacMunn (C. A.). Proc. Royal Soc., 35, 870-408; Jour. Chem. Soc., 46, 194-8 (Abs.).

Ueber das Urorosein, einen neuen Harnfarbstoff.

Nencki (M.) und Sieber (N.). Jour. prackt. Chemie, 26, 338-36; Chem. News, 42, 12 (Abs.); Jour. Chem. Soc., 44, 101 (Abs.); Ber. chem. Ges., 15, 3087 (Abs.).

Substances colorantes de l'urine.

Neusser (E.). Les Mondes, (8) 2, 468-9; Jour. Chem. Soc., 46, 98 (Abs.).

#### WINE.

Recherche et détermination des principales matières colorantes employées pour falsifier les vins.

Chancel (G.). Comptes Rendus, 84, 348-51; Jour. Chem. Soc. (1877),2, 871 (Abs.); Ber. chem. Ges., 10, 494.

The detection of foreign colouring matters in wine.

Dupré (A.). Jour. Chem. Soc., 37, 572-5; Ber. chem. Ges., 13, 2004-5 (Abs.).

The detection of the colouring matters of logwood, Brazil-wood, and cochineal in wine.

Dupré (A.). Analyst, 1, 26; Jour. Chem. Soc. (1877), 1, 284 (Abs.).

Zur Weinverfälschung.

Lepel (F. von). Ber. chem. Ges., 9, 1906-11; 11, 1552-6.

### WOOD.

Preliminary notes on a blue colouring matter found in certain wood undergoing decomposition in the forest.

Girdwood (G. P.) and Bemrose (J.). Rept. British Assoc. (1884), 690.

Absorptionsspectrum von Brazilienholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 858.

Absorptionsspectrum von Campecheholtzabkochung.

Reynolds (J. E.). Jour. prackt. Chemie, 105, 859.

#### XANTOPHYLL.

Notiz über die Strahlen des Lichtes welche das Xantophyll der Pflanzen zerlegen.

Wiesner (J.). Ann. Phys. u. Chem., 153, 622-8.

## CERIUM.

Contribution to the chemistry of the cerite metals.

Brauner (B.). Jour. Chem. Soc., 43, 278-89; Chem. News, 47, 175 (Abs.).

Sulla diffusione del Cerio, etc.

Cossa (A.). R. Accad. dei Lincei, (8) 3, 17-34; Beiblätter, 4, 48-44 (Abs.).

Le didyme de la cérite est probablement un mélange de plusieurs corps.

Delafontaine. Comptes Rendus, 87, 684-5; Jour. Chem. Soc., 36, 119
(Abs.); Beiblätter, 3, 197-8 (Abs.).

Sur les terres de la cérite.

Demarçay (Eug.). Comptes Rendus, 103 (1887), 580.

Contribution to the chemistry of cerium compounds.

Hartley (W. N.). Jour. Chem. Soc., 41, 202-9; Chem. News, 45, 40 (Abs.).

Le didyme de la samarskite diffère-t-il de celui de la cérite?

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 822; Beiblätter, 3, 858 (Abs.).

# CHLORINE.

# 1, CHLORINE ALONE.

Spectre du chlore dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Spectres appartenant à la famille du chlore.

Ditte (A.). Comptes Rendus, 73, 788.

Des spectres d'absorption du chlore.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. chem. Ges., 5, 219; Comptes Rendus, 74, 465, 660.

Absorptionsspectrum des Chlors.

Jahresber. d. Chemie (1869), 182 (Abs. See Morren, below).

Réaction spectrale du chlore.

Lecoq de Boisbaudran (F.). Comptes Rendus, 91, 902-3; Phil. Mag., (5) 11, 77-8; Beiblätter, 5, 118 (Abs.).

Verbindungsspectrum zur Entdeckung von Chlor. Mitscherlich. Jour. prackt. Chem., 97, 218.

Absorptionsspectrum des durch Chlor gegangenen Sonnenlichtes.

Morren. Ann. Phys. u. Chem., 137, 165; Comptes Rendus, 68, 876.

# 2, CHLORINE COMPOUNDS.

Effect of the spectrum of silver chloride.

Abney (W. de W.). Rept. British Assoc. (1881), 594.

Sur les chlorhydrates liquides de térébinthène.

Barbier (P.). Comptes Rendus, 96, 1066-9; Jour. Chem. Soc., 44, 809 (Abs.).

Spectre du bichlorure de titane.

Becquerel (H.). Comptes Rendus, 85, 1227.

Tin chloride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseux (Des). Bull. Soc. mineral. de France, 5, 143; Beiblätter, 7, 25 (Abs.).

Spectrum von Kupferchlorid, mit einer Karte.

Discon (E.). Ann. Chim. et Phys., (4) 6, 1.

Spectres des métalloïdes de la famille du chlore.

Ditte (A.). Bull. Soc. chim. Paris, n. s. 16, 229; Comptes Rendus, 73, 788.

Ueber Chlorsäure, ein neues Reagens auf Alkaloïde.

Fraude (G.). Ber. chem. Ges., 12, 1558-60.

Spectrum von Chloroxyd und Unterchlorinsäure.

Gernez (D.). Ber. chem. Ges., 5, 218.

Sur les raies d'absorption produites dans le spectre par les solutions des acides chloreux, etc.

Gernez (D.). Comptes Rendus, 74, 465-8; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218 (Abs.).

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660; Bull. Soc. chim. Paris, n. s. 17, 258.

Spectre d'absorption du vapeur de l'acide hypochloreux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 17, 257; Ber. chem. Ges., 5, 219.

Spectre d'absorption du vapeur de protochlorure de tellure.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 18, 172.

On the violet flame of many chlorides.

Gladstone (J. H.). Phil. Mag., (4) 24, 417.

Spectres de chlorure de baryum, de chlorure de cadmium, de chlorure de calcium, de chlorure de cobalt, de chlorure de cuivre, de chlorure de fer, de chlorure de magnésium, de chlorure de platine, de chlorure de strontium.

Gouy. Comptes Rendus, 84, 281; 85, 439; Chem. News, 35, 107.

Absorptionsspectrum des Mangansuperchlorids.

Jahresber. d. Chemie (1869), 184 (Abs. See Luck, below).

Spectra der Chlormetalle.

Jahresber. d. Chemie (1863), 111 (Abs. See Diacon, above).

Absorptionsspectrum des Chlors und der unterchlorigen Säure.

Jahresber. d. Chemie (1872), 188, 189 (Abs. See Gernez, above).

Absorptionsspectrum des einfachen Chlorjods.

Jahresber. d. Chemie (1872), 139 (Abs. See Gernez, above).

Absorptionsspectrum des Chlorselens.

Jahresber. d. Chemie (1872), 140 (Abs. See Gernez, above).

Absorptionsspectrum des einfachen Chlortellurs.

Jahresber. d. Chemie (1872), 140 (Abs. See Gernez, above).

Spectrum des Phosphorenzlichts von Chlorophan.

Kindt. Ann. Phys. u. Chem., 131, 160.

Spectralanalyse des Chlorberylliums.

Klatzo. Jour. prackt. Chemie, 106, 280.

Protochlorure d'antimoine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 150, planche XXIII.

Chlorure de baryum dans le gaz et en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 57, 62, planche VII; p. 66, planche IX.

Chlorure de bismuth en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 145, planche XXII.

Chlorure de cadmium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, p. 189, planche XX.

Chlorure de calcium dans le gaz chargé de H Cl; et en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 79,
planche XI; p. 81, planche XII.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

Chlorure de cuivre en solution, étincelle; et dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 152, planche XXIV; p. 156, planche XXIV.

Chlorure de didyme en solution concentrée, absorption; et en solution étendue, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 87, planche XIII; p. 90, planche XIII. Chlorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 100, planche XV.

Spectre de chlorure d'or.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152-4; Jour. Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.); Bull. Soc. chim. Paris, n. s. 21, 125.

Chlorure d'or en solution, étincelle; et dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 172. planche XXVI; p. 176, planche XXVI.

Perchlorure de fer en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Chlorure de magnésium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 85, planche XII.

Chlorure de manganèse en solution, dans le gaz, étincelle courte, étincelle moyenne.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 114, 120, planches XVII, XVIII.

Bichlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169, planche XXV.

Chlorure de nickel en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 188, planche XIX.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran, Spectres Lumineux, Paris, 1874, p. 184, planche XXVII.

Chlorure de platine en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181, planche XXVII.

Chlorure de potassium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 47, planche IV.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 46, planche IV.

Chlorure de strontium dans le gaz chargé de H Cl; et en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 72, 75, planche X; p. 69, planche IX.

Bichlorure de l'étain en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 143, planche XXII.

Chlorure de zinc en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 138, planche XX.

Absorptionsspectrum des Mangansuperchlorids.

Luck (E.). Zeitschr. analyt. Chemie, 8, 405.

Verbindungspectrum zur Entdeckung von Chlor.

Mitscherlich (A.). Jour. prackt. Chemie, 97, 218.

Entdeckung sehr geringer Mengen von Chlor in Verbindungen.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Spectroscopic anomalies, especially in chlorides.

Palmieri (L.). Chem. News, 47, 247.

Absorption spectra of bromine and of iodine monochloride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). Chem. News, 51, 259.

Spectren organischer Chlorverbindungen.

Salet (G.). Ber. chem. Ges., 5, 222; Bull. Soc. chim. Paris, 1 mars 1872.

Recent discoveries with the spectroscope, especially in the absorption spectrum of chromochloric anhydride.

Stoney (Johnstone). Chem. News, 23, 104.

Ueber die verschiedenen Modificationen des Chlorsilbers.

Vogel (H. W.). Ber. chem. Ges., 16, 1170-9.

Ueber die Brechung und Dispersion des Lichtes in Chlorsilber.

Wernicke (W.). Ann. Phys. u. Chem., 142, 560-73; Jour. Chem. Soc., (2) 9, 653 (Abs.); Ann. Chim. et Phys., (4) 26, 287 (Abs.).

# CHLOROPHYLL

Propriétés optiques de la chlorophylle.

Ann. Chim. et Phys., (4) 26, 277-9.

Recherches sur les raies de la chlorophylle.

Chautard (J.). Comptes Rendus, 75, 1836.

- Examen spectroscopique de la chlorophylle dans les résidus de la digestion. Chautard (J.). Comptes Rendus, 76, 103-5; Jour. Chem. Soc., (2) 11, 521.
- Observations par M. Millardet. Comptes Rendus, 76, 105-7.
- Modifications du spectre de la chlorophylle sous l'influence des alcalis.

  Chautard (J.). Comptes Rendus, 76, 570; Bull. Soc. chim. Paris, 20, 89; Jour. Chem. Soc., (2) 11, 582 (Abs.).
- Influence des rayons de diverses couleurs sur le spectre de la chlorophylle.

  Chautard (J.). Comptes Rendus, 76, 1081-3; Jour. Chem. Soc., (2)
  11, 718 (Abs.).
- Examen des différences presentées par le spectre de la chlorophylle, selon la nature du dissolvant.

Chautard (J.). Comptes Rendus, 76, 1066-9; Jour. Chem. Soc., (2) 11, 996-7.

Classification des bandes d'absorption de la chlorophylle; raies accidentales.

Chautard (J.). Comptes Rendus, 76, 1278.

(Look below under Pocklington.)

Spectre de la chlorophylle.

Chautard (J.). Comptes Rendus, 77, 596.

Nouvelles bandes surnuméraires produites dans les solutions de chlorophylle sous l'influence des agents sulfurés.

Chautard (J.). Comptes Rendus, 78, 414-16; Jour. Chem. Soc., (2) 12, 643 (Abs.).

Recherchés sur le spectre de la chlorophylle.

Chautard (J.). Ann. Chim. et Phys., (5) 3, 5-56.

Note sur la chlorophylle.

Filhol (E.). Comptes Rendus, 79, 612-14; Jour. Chem. Soc., (2) 13, 271-2 (Abs.).

Recherches sur la chlorophylle et quelques uns de ses dérivés.

Gerland (E.) et Rauwenhoff (W. H.). Arch. Neerlandaises, 6, 97-116.
 Ann. Phys. u. Chem., 143, 231-9; Jour. Chem. Soc., (2) 9, 1201-2 (Abs.).

Ueber die Einwirkung des Lichtes auf das Chlorophyll.

Gerland (J.). Ann. Phys. u. Chem., 143, 585-610; Jour. Chem. Soc., (2) 10, 160 (Abs.).

Ueber die Rolle des Chlorophylls bei der Assimilationsthätigkeit der Planzen und das Spectrum der Blätter.

Gerland (J.). Ann. Phys. u. Chem., 148, 99-115; Jour. Chem. Soc., (2) 11, 401 (Abs.).

Purpurophyll, ein neues (?) Derivat des Chlorophylls.

Hartsen (T. A.). Ann. Phys. u. Chem., 146, 158-60.

Absorptionsspectrum des Chlorophylls.

Jahresber. d. Chemie (1872), 186 (Abs. See Chautard, above).

Spectroscopische Untersuchungen des Chlorophylls.

Jahresber. d. Chemie (1873), 154-7 (Abs. See Chautard, above).

Zur Kenntniss der Chlorophyll-farbstoffe.

Krauss (G.). Archives de Genève, (2) 46, 359 (Abs.).

Untersuchungen über das Chlorophyll, den Blumenfarbstoff und deren Beziehungen zum Blutfarbstoffe.

Liebermann (L.). Sitzungsber. d. Wiener Akad., 72 II, 599-618; Chem. Centralblatt, (3) 7, 615-16; Jour. Chem. Soc., 1877, 2, 208 (Abs.).

Ueber das Verhalten des Chlorophylls zum Licht.

Lommel (E.). Ann. Phys. u. Chem., 143, 568-85; Jour. Chem. Soc., (2) 10, 150-60 (Abs.).

Observations sur l'examen spectroscopique de la chlorophylle par M. Chautard.

Millardet (A.). Comptes Rendus, 76, 105-7; Jour. Chem. Soc., (2) 11, 996 (Abs.).

Spectroscopic study of chlorophyll.

Nature, 26, 686.

M. Chautard's classification of the absorption-bands of chlorophyll.

Pocklington (H.). Pharmaceutical Trans., (3) 4, 61-8.

Ueber die Absorptionsspectra der Chlorophyllfarbstoffe.

Pringsheim. Monatsber. d. Berliner Akad. (1874), 628-59.

13 т

Ueber natürliche Chlorophyllmodificationen und die Farbstoffe der Florideen.

Pringsheim. Monatsber. d. Berliner Akad. (1875), 745-59.

Spectroscopic study of chlorophyll.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., 41, 334-41;
Nature, 26, 686-9; Ber. chem. Ges., 15, 2746 (Abs.); Chem. News, 45, 250.

Ueber die Bedeutung des Chlorophylls.

Sachsse (R.). Sitzungsber. d. Naturforsch. Ges. zu Leipzig, 2, 120-55; Chemisches Centralblatt, (3) 7, 550-2; Jour. Chem. Soc. (1877), 2, 208 (Abs.).

Ueber eine neue Reaction des Chlorophylls.

Sachsse (R.). Chemisches Centralblatt, (3) 9, 121-5; Jour. Chem. Soc., 34, 516 (Abs.).

Die Reindarstellung des Chlorophyllfarbstoffes.

Tschirch (A.). Ber. chem. Ges., 16, 2731-6; Jour. Chem. Soc., 45, 57-62.

Untersuchungen über das Chlorophyll und einige seiner Derivate.

Tschirch (A.). Ann. Phys. u. Chem., n. F. 21, 370-83.

Beziehungen des Lichtes zum Chlorophyll.

Wiesner (J.). Sitzungsber. d. Wiener Akad., 59 I, 827; Ann. Phys. u. Chem., 152, 497; Jour. Chem. Soc., (2) 12, 999 (Abs.).

# CHROMIUM.

On the colour properties and relations of chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-86.

The chromium arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 26

On the optical properties of a new chromic oxalate.

Hartley (W. N.). Proc. Royal Soc., 21, 499-507; Ber. chem. Ges.. 6, 1425 (Abs.).

Distribution of heat in green oxide of chromium.

Jacques (W. W.). Proc. American Acad., 14, 142.

Sesquichlorure de chrome en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Absorptionsspectra der Alkalichromate und der Chromsäure.

Sabatier (P.). Beiblätter, 11, 228.

# COBALT.

On the colour, properties, and relations of cobalt, etc.

Bayley (T.). Jour. Chem. Soc., 37, 828-86.

Cobalt arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27.

Spectre de chlorure de cobalt.

Gouy. Comptes Rendus, 84, 281; Chem. News, 35, 107.

Spectra of some cobalt compounds in blowpipe chemistry.

Horner (C.). Chem. News, 27, 241; Jour. Chem. Soc., (2) 11, 1161-2 (Abs.).

Spectrum von Kobalt.

Jahresber. d. Chemie (1872), 145. (See Lockyer, below.)

Spectrum von Kobaltverbindungen.

Jahresber. d. Chemie (1878), 150. (See Horner, above.)

Spectre des sels de cobalt.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de cobalt en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 129, planche XIX.

On the spectrum of cobalt.

Lockyer (J. N.). Proc. Royal Soc., 17, 289.

Absorption spectra of cobalt salts.

Russell (W. J.). Proc. Royal Soc., 31, 51; 32, 258; Chem. News, 43, 27.

Spectroscopic observations on dissolved cobaltous chloride.

Russell (W. J.). Chem. News, 51, 259.

Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2318-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Methods for the determination of cobalt by spectral analysis.

Wolff. Chem. News, 39, 124.

# COLOUR.

Metachromism, or colour-change.

Ackroyd (W.). Chem. News, 34, 75-7.

Ueber die Aenderung des Farbentones von Spectralfarben bei abnehmender Lichtstärke.

Albert (E.). Ann. Phys. u. Chem., n. F. 16, 129-60; Jour. Chem. Soc., 42, 1153 (Abs.).

Influence de la lumière sur les animaux.

Béclard. Comptes Rendus, 46, 441.

Influence des rayons colorés du spectre sur le développement des animaux.

Séclard. Comptes Rendus, 73, 1487.

Nouvelles recherches sur les impressions colorées produites lors de l'action chimique de la lumière.

Becquerel (Éd.). Comptes Rendus, 39, 65.

Ueber die Entstehung von farbigem Licht durch elective Reflection.

Behrens (H.). Ann. Phys. u. Chem., 150, 803-11.

Action of various coloured bodies on the spectrum.

Brewster (Sir D.). Phil. Mag., (4) 24, 441.

Étude expérimentale de la réflexion des rayons actiniques; influence du poli speculaire.

Chardonnet (E. de). Comptes Rendus, 96, 441; Jour. de Phys., 12, 219.

La perception des couleurs.

Charpentier (Aug.). Comptes Rendus, 96, 859.

Recherches expérimentales sur les anneaux colorés de Newton.

Desains (P.). Comptes Rendus, 78, 219-21; Phil. Mag., (4) 47, 236-7.

Farbe und Assimilation.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 209-83; Beiblätter, 7, 878-80 (Abs.); Centralblatt f. Agriculturchemie (1883), 174-8 (Abs.); Jour. Chem. Soc., 44, 819 (Abs.).

Bacterium photometricum.

Engelmann (T. W.). Onderzoekingen physiol. Lab. Utrecht, (3) 7, 252-90; Pflüger's Arch. f. physiol., 30, 95-124; Proc. Verb. K. Akad. v. Wetenschappen, Amsterdam, Mar. 25, 1882, 8-6 (Abs.); Beiblätter, 7, 881 (Abs.).

Das Verhalten verschiedener Wärmefarben bei der Reflexion polarisirten Strahlen von Metallen.

Knoblauch (H.). Ann. Phys. u. Chem., n. F. 10, 654.

Ueber den neutralen Punckt im Spectrum der Farbenblinden.

König (A.). Verhandl. d. physischen Ges. in Berlin (1883), 20-23.

Influence of colour upon reduction by light.

Lea (M. Carey). Amer. Jour. Sci., (3) 7, 200-207.

Influence of colour upon the refraction of Light.

Lea (M. Carey). Amer. Jour. Sci., (8) 9, 855-7.

Dr. Vogel's colour theory.

Lea (M. Carey). Amer. Jour. Sci., (8) 12, 48-50.

On the development of the colour sense.

Lubbock (Dr. Montague). Rept. British Assoc. (1881), 715.

On the relations of the colours of the spectrum.

Maxwell (J. Clerk). Proc. Royal Soc., 10, 484.

On the duration of colour impressions upon the retina.

Nichols (E. L.). Amer. Jour. Sci., (8) 28, 248-52.

Eine Beziehung zwischen der Farbe gewisser Flammen und den durch das Licht gefärbten heliographischen Bildern.

Niepce de Saint Victor. Ann. Phys. u. Chem., Ergänzungsband, 3 (1853), 442; Ann. Chim. et Phys., (3) 32, 873.

•On the sensitiveness of the eye to slight differences of colour.

Peirce (B. O., Jr.). Amer. Jour. Sci., (8) 26, 299-802; Z. Instrumentenkunde, 4, 67-8 (Abs.); Beiblätter, 8, 120.

· Sur l'achromatisme chimique.

Prazmowski. Comptes Rendus, 79, 107-110; Jour. Chem. Soc., (2) 12, 1125 (Abs.).

Experiments in colour.

Rayleigh (Lord). Nature, 25, 64-6.

Sur l'application de la succession anomale des couleurs dans le spectre de plusieurs substances.

Sellmeier. Jour. de Phys., 1, 104.

Bemerkungen hiezu, A. Levistal. Ann. Phys. u. Chem., 143, 272.

Colour in practical astronomy, spectroscopically examined.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 28, 779-848; Beiblätter, 4, 548 (Abs.).

Comparative vegetable chromatology.

Sorby (H. C.). Proc. Royal Soc., 21, 442-83; Jour. Chem. Soc., (2) 12, 279-85 (Abs.).

Sur la transparence des milieux de l'œil pour les rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 88, 1012-15; Beiblätter, 3, 620 (Abs.).

On combinations of colour by means of polarized light.

Spottiswoode (W.). Proc. Royal Soc., 22, 354-8.

Farbenwahrnehmung.

Weinhold (A.). Ann. Phys. u. Chem., n. F. 2, 681.

De l'influence de différentes couleurs du spectre sur la dévellopement des animaux.

Yung (E.). Comptes Rendus, 87, 998-1000.

## CONE-SPECTRUM.

The blowpipe cone-spectrum and the distribution of the intensity of light in the prismatic and diffraction spectra.

Draper (J. W.). Nature, 20, 801.

## CONSTANTS.

Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Brühl (J. W.). Ber. chem. Ges., 15, 467.

Spectroscopische Untersuchung der Constanten von Lösungen.

Bürger (H.). Ber. chem. Ges., 11, 1876.

On a new optical constant.

Gibbs (Wolcott). Proc. Amer. Acad., 10, 401-16; Ann. Phys. u. Chem., 156, 120-44.

Optische Constanten.

Janowsky (J. V.). Ber. chem. Ges., 13, 2272-77.

Ueber die Refractionsconstante.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 11, 70-108.

Experimentelle Untersuchungen über die Refractionsconstante.

Prytz (K.). K. Dän. Ges. d. Wiss. 1880, 6, 3-22; Ann. Phys. u. Chem., n. F. 11, 104-20.

Ueber einige von den Herrn J. W. Brühl und V. Zenger aufgestellte Beziehungen zwischen physikalischen Constanten chemischer Verbindungen.

Wiedemann. Ber. chem. Ges., 15, 464-70;, Beiblätter, 6, 870 (Abs.), 877 (Abs.).

#### COPPER.

On the colour, properties, and relations of the metals copper, nickel, cobalt, iron, manganese, and chromium.

Bayley (T.). Jour. Chem. Soc., 37, 828-36.

On the colour relations of copper and its salts.

Bayley (T.). Phil. Mag., (5) 5, 222-4.

On the analysis of alloys containing copper.

Bayley (T.). Phil. Mag., (5) 6, 14-19.

On the colour properties and colour relations of the metals of the iron-copper group.

Bayley (T.). Jour. Chem. Soc., 39, 362-70.

Copper spark spectrum; copper arc spectrum; copper and silver arc spectrum; copper, gold, and silver (alloy) arc spectrum; copper and iron spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 27, 81, 48.

Spectrum of nitrate of copper.

Chem News, 35, 107.

Renversement des raies spectrales de cuivre.

Cornu (A.). Comptes Rendus, 73, 882.

Spectre du cuivre.

Debray. Comptes Rendus, 54, 169.

Spectre du bromure de cuivre, et du chlorute de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1

Spectre de l'azotate de cuivre.

Gouy. Comptes Rendus, 84, 281; Chem. News, 35, 107.

Caractères des flammes chargées de l'oxyde de cuivre et de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 439.

Black oxide of copper.

Vacques (W. W.). Proc. Boyal Soc., 14, 159.

Spectrum des Kupfers.

Jahresber. d. Chemie, 15, 80. (See Debray, above.)

Spectre de l'oxyde de cuivre.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure et du phosphure de cuivre obtenus sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 698.

Chlorure de cuivre en solution, étincelle; chlorure de cuivre dans le gaz. Lecoq de Boisbaudran, Paris, 1874, p. 152, 156, planche XXIV.

Erkennung von Chlor, Brom und Iod durch das Spektrum der Kupferverbindung.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Spectrum von Kupfer.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Methods for the determination of copper by spectral analysis.

Wolff. Chem. News, 39, 124.

## CRYSTALS.

- Sur le pouvoir rotatoire du quartz dans le spectre ultra-violet. Croullebois. Comptes Rendus, 81, 666.
- Action rotatoire du quartz sur le plan de polarization des rayons calorifiques obscurs d'un spectre.

Desains (P.). Comptes Rendus, 84, 1056.

- Anwendung des Spectroskops zur optischen Untersuchung der Krystalle.

  Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 58 II, 4, 15-29.
- Indices de réfraction ordinaire et extraordinaire du quartz, pour les rayons de différentes longueurs d'onde jusqu'à l'extrême ultraviolet.
  - Sarasin (E.). Arch. de Genève, (2) 61, 109-19; Comptes Rendus, 85, 1280-2 (Abs.); Beiblätter, 2, 77 (Abs.).
- Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrême ultraviolet.

Sarasin (E.). Comptes Rendus, 95, 680.

Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde, jusqu'à l'extrême ultra-violet.

Sarasin (E.). Comptes Rendus, 97, 850.

Propriétés optiques de quelques cristaux; acide oxalique, hyposulûte de soude, sous-carbonate de soude, borax.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 336.

- Sur la polarization rotatoire du quartz.
  - Soret (J. L.). Arch. de Genève, (3) 8, 5-59, 97-132, 201-28; Jour. de Phys., (2) 2, 281-6 (Abs.).
- Sur la polarization rotatoire du quartz.

Soret (J. L.) et Sarasin (E.). Comptes Rendus, 83, 818; 95, 685.

# D LINE.

- Dark double line D in the spectrum from the electric arc. Foucault. L'Institut (1848), 45.
- Darstellung der dunklen Fraunhofer'schen Linie D. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 148.
- Die Ursache der dunklen Linie D nicht in dem Atmosphäre. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.
- Détermination de la valeur absolue de la longueur d'onde de la raie D.

  Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10 (1887), 170-199.
- Détermination de la longueur d'onde de la raie D₂.

  Macé de Lépinay (J.). Jour. de Phys., (2) 5, 411-16.
- Indice du quartz pour la raie D.

  Sarasin (Ed.). Comptes Rendus, 85, 1280.
- D line spectra.
  Stokes (G. G.). Nature, 13, 247.
- Monographie du groupe D du spectre solaire. Thollon (L.). Jour. de Phys., 13, 5.

## DARK LINES.

Étude des bandes froides des spectres obscurs.

Dessains (P.) et Aymonnet. Comptes Rendus, 81, 428.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum, und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 858.

Dark double line D in the spectrum from the electric arc.

Foucault. L'Institut (1849), 45.

Anwendung der dunklen Linien des Spectrums als Reagens auf Uran und Mangansäure.

Jahresber. d. Chemie, 5, 125. (See Stokes in L'Institut, 1852, p. 892.)

Umwandlung heller Linien in Dunkle.

Jahresber. d. Chemie, 14, 44. (See Kirchhoff, below.)

Dunkle Spectrallinien der Elemente.

Jahresber. d. Chemie, 17, 108. (See Hinrichs (G.) in Amer. Jour. Sci., [2] 38, 81.)

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums, in Dunkle.

Jahresber. d. Chemie, 18, 90. (See Madan (H. G.) in Phil. Mag., [4] 29, 338.)

Die Ursache der dunklen Linie D nicht in dem Atmosphäre. Kirchhoff (G.). Ann. Phys. u. Chem., 109, 297.

Umkehrung der hellen und dunklen Linien.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 187.

Spectrum des Phosphorescenzlichtes von Chlorophan, etc., mit dunklen Linien.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Absorptionsspectren dunkler Wärmestrahlen in Gasen und Dämpfen. Lecher und Pernter. Sitzungsber. d. Wiener Akad., 82 II, 265.

Dunkle Linien in den Spectren einiger Fixsterne. Merz (L.). Ann. Phys. u. Chem., 117, 654. Dunkle Linien in dem photographirten Spectrum weit über dem sichtbaren Theil hinaus.

Müller (J.). Ann. Phys. u. Chem., 97, 135.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 116, 543; Berichtigung dazu, 116, 644.

- A method of examining refractive and dispersive powers by prismatic reflection. (Contains the first discovery of the dark solar lines.)
  Wollaston (W. H.). Phil. Trans. (1802), 865.
- Ursache der ungleichen Intensität der dunklen Linien im Spectrum der Sonne und der Fixsterne.

Zöllner (F.). Ann. Phys. u. Chem., 141, 878.

# DAVYUM.

Spectre du davyum.

Kern (S.). Comptes Rendus, 85, 667; Nature, 17, 245; Chem. News, 36, 114, 155, 164; Beiblätter, 1, 619.

## DECIPIUM.

Sur le décipium, métal nouveau de la samarskite.

Delafontaine. Comptes Rendus, 87, 682-4; Jour. Chem. Soc., 36, 117-8; Amer. Jour. Sci., (8) 17, 61-2 (Abs.); Beiblätter, 3, 197-8 (Abs.).

Remarques sur le décipium et ses principaux composés.

Delafontaine. Comptes Rendus, 90, 221-3; Arch. de Genève, (3) 3, 250-60; Beiblätter, 4, 549 (Abs.).

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

## DENSITY.

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Wiener Anzeigen (1878), 158-60; Chemisches Centralblatt (1878), 689-90; Jour. Chem. Soc., 36, 101 (Abs.).

Ueber den Einfluss der Dichte und der Temperatur auf die Spectren von Dämpfen und Gasen, 1879.

Ciamician (G.). Sitzungsber. d. Wiener Akad., 78 II, 867-90; Chemisches Centralblatt (1879), 507-9, 587-42, 555-7; Nature, 20, 90 (Abs.); Beiblätter, 3, 609-11.

Ueber den Einfluss der Dichtigkeit eines Körpers auf die Menge des von ihm absorbirten Lichtes.

Glan (P.). Ann. Phys. u. Chem., n. F. 3, 54-82.

De l'intensité lumineuse des couleurs spectrales.

Parinaud (H.). Comptes Rendus, 99, 987.

- De l'influence qu'exerce l'intensité de la lumière colorée, etc. Prillieux. Comptes Rendus, 69, 294, 408, 412.
- Ueber die Abhängigkeit der Brechungsexponenten anomal dispergirender Medien von der Concentration der Lösung und der Temperatur.

  Sieben (G.). Ann. Phys. u. Chem., 23, 312.
- Note sur un procédé destiné à mesurer l'intensité relative des éléments constitutifs des différentes scources lumineuses.

Trannin (H.). Comptes Rendus, 77, 1495.

Aenderung der Lage und Breite der Linien in Salpetergas und anderen Substanzen mit der Dicke und Schicht.

Weiss (A.). Ann. Phys. u. Chem., 112, 158.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra glühender Gase.

Zöllner (F.). Ber. Sächs. Ges. d. Wiss., 22, 288-58; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

#### DIDYMIUM.

Sur les variations des spectres d'absorption du didyme.

Becquerel (H.). Comptes Rendus, 103 (1887), 777-80; Chem. News, 55, 148 (Abs.).

Sur le didyme.

Brauner (B.). Comptes Rendus, 94, 1718-19; Chem. News, 46, 16-17; Jour. Chem. Soc., 44, 18 (Abs.); Ber. chem. Ges., 15, 2281 (Abs.).

Das Absorptionsspectrum des Didyms.

Bührig (H.). Jour. prackt. Chemie, (2) 12, 209-15; Amer. Jour. Sci., (8) 11, 142 (Abs.).

Erscheinungen beim Absorptionsspectrum des Didyms; Aenderung bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

On the inversion of the bands in the didymium absorption spectra.

Bunsen (R.). Phil. Mag., (4) 28, 246; 32, 177. (See Roscoe's Spectrum Analysis, Lecture 4, Appendix F, Third Edition.)

Photograph of the didymium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 28.

Note préliminaire sur le didyme.

Clève (P. T.). Comptes Rendus, 94, 1528-80; Chem. News, 45, 273;
 Jour. Chem. Soc., 44, 18 (Abs.); Ber. chem. Ges., 15, 1750 (Abs.);
 Beiblätter, 6, 771-2 (Abs.).

Quelques remarques sur le didyme.

Clève (P. T.). Comptes Rendus, 95, 33; Jour. Chem. Soc., 42, 1165 (Abs.); Beiblätter, 6, 772 (Abs.).

Note on the absorption spectrum of didymium.

Crookes (W.). Chem. News, 54 (1886), 27.

Vergleich der Absorptionsspectra von Didym, etc.

Delafontaine. Ann. Phys. u. Chem., 124, 685.

Sur les spectres du didyme et du samarium.

Demarcay (Eug.). Comptes Rendus, 102 (1886), 1551-2.

Absorptionslinien der Didymlösungen.

Erdmann. Jour. prackt. Chemie, 85, 894; 94, 803.

14 т

On an optical test for didymium.

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 219.

Absorptionsspectrum des Didymnitrats.

Jahresber. d. Chemie (1870), 821.

Chlorure de didyme en solution concentrée, absorption; do. en solution étendue, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 87, 90, XIII.

The didymium absorption spectrum.

Rood (O. N.). Amer. Jour. Sci., (2) 34, 129; Ann. Phys. u. Chem., 118, 850.

Sur le spectre du nitrate de didyme.

Smith (Lawrence) et Lecoq de Boisbaudran (F.). Comptes Bendus, 88, 1167.

Recherches sur l'absorption des rayons ultra-violets par diverses substances; spectre du didyme.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-4; Beiblätter, 2, 410-11; 3, 196-7.

Recherches sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-4.

Om de lysande spectra hos Didym och Samarium (Sur les spectres brilliants du didyme et du samarium).

Thalen (R.). Ofversigt K. Svensk. Vetensk. Akad. Forhandl., 40, No. 7, 8-16; Jour. de Phys., (2) 2, 446-49; Ber. chem. Ges., 16, 2760 (Abs.); Beiblätter, 7, 898 (Abs.).

Om spectra tillhörande didym, yttrium, erbium och lanthan.

Thalen (R.). K. Svensk. Vetenskaps Akad. Förhandlingar, 12, No. 4, 24; Bull. Soc. chim. Paris, (2) 22, 350 (Abs.); Jour. de Phys., 4, 33, avec une planche.

Note on the spectrum of didymium.

Thompson (Claude M.). Chem. News, 55 (1887), 227.

## DIFFRACTION.

Spectrum der brechbarston Strahlen.

Crookes. Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Krümmung der Spectrallinien.

Ditscheiner (L.). Sitzungsber. d. Wiener Akad., 51 11, 841, 868-388.

On diffraction spectrum photography.

Draper (H.). Amer. Jour. Sci., 106, 401-9; Phil. Mag., (4) 46, 417-25; Nature, 9, 224-6; Ann. Phys. u. Chem., 151, 887-50.

Beugungespectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 168.

Albertotypie eines photographirten Diffractionsspectrums.

Jahresber. d. Chemie (1878), 166. (See Draper, above.)

Diffraction bands in the spectrum.

Moreland. Amer. Jour. Sci., (8) 29, 5.

Wärmevertheilung im Diffractionsspectrum.

Müller (J.). Ann. Phys. u. Chem., 105, 855.

Comparison of prismatic and diffraction spectra.

Pickering (E. C.). Proc. Amer. Acad., 11, 278.

On diffraction spectra.

Quincke (G.). Phil. Mag., (4) 45, 865-71.

Beugungserscheinungen im Spectrum.

Rosiky. Sitzungsber. d. Wiener Akad., 71 I, 891.

Reduction for diffraction in spectrum observation.

Rosenberg (E.). Jour. Franklin Inst., 106, 95.

Sur les phénomènes de diffraction produits par les réseaux circulaires.

Soret (J. L.). Archives de Genève, (2) 52, 820-87; Ann. Phys. u. Chem., 156, 99-118; Ann. Chim. et Phys., (5) 7, 409-24.

Einige Bermerkungen über die Diffractionsspectra.

Spée (E.). Bull. de l'Acad. de Belgique, (3) 12, 32-4; Beiblätter, 11 (1887), 99 (Abs.).

Imitation des spectres de diffraction par dispersion.

Zenger (Ch. V.). Comptes Rendus, 96, 521.

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Theorie der normalen und anomalen Dispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 3, 829-56.

Ueber einige zweiconstantige Dispersionsformel.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 628-634.

Ueber das Dispersionsgesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 13, 358-60.

Das Gesetz der Rotationsdispersion.

Lommel (E.). Ann. Phys. u. Chem., n. F. 20, 578.

Theorie der Dispersion.

Lorenz (L.). Ann. Phys. u. Chem., n. F. 10, 1-21.

Einige Versuche über totale Reflexion und anomale Dispersion.

Mach (E.) und Arbes (J.). Ann. Phys. u. Chem., (2) 27, 436-44.

Sur la dispersion des gaz.

Mascart. Comptes Rendus, 78, 679-82; Amer. Jour. Sci., (3) 7, 591-2 (Abs.).

Versuch einer Erklärung der anomalen Farbenzerstreuung.

Meyer (O. E.). Ann. Phys. u. Chem., 145, 80-86; Ann. Chim. et Phys., (4) 43, 321-38.

Quelques phénomènes de décomposition produits par la lumière.

Morren. Comptes Rendus, 69, 899.

Une méthode pour mesurer la dispersion dans les différentes parties du spectre fourni par un prisme ou un spectroscope quelconque.

Mousson. Arch. de Genève, (2) 45, 13; Ann. Phys. u. Chem., 148, 660.

(See Mach in Ann. Phys. u. Chem., 149, 270.)

Sur les lois de la dispersion.

Mouton. Comptes Rendus, 88, 1189-92; Beiblätter, 3, 616 (Abs.): Ann. Chim. et Phys., (5) 18, 145-89.

Dispersion de la lumière.

Ricour (Th.). Comptes Rendus, 69, 1231; 70, 115.

Ueber eine neue Flüssigkeit von hohem specifischen Gewicht, Lonem Brechungsexponenten und grosser Dispersion.

Rohrbach (C.). Ann. Phys. u. Chem., n. F. 1, 169-174; Amer. Jour. Sci., (3) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145 (Abs.).

Recherches concernant la dispersion électromagnétique sur une spectre de grande étendue.

Schaik (W. C. L. von). Arch. Neerlandaises, 17, 878-90; Beiblätter, 7, 919 (Abs.).

Ueber das Dispersionsäquivalent von Diamant.

Schrauf (A.). Ann. Phys. u. Chem., n. F. 22, 424-9; Jour. Chem. Soc., 48, 14 (Abs.).

Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die erstern, besonders zur Erklärung der Dispersion und ihrer Anomalien.

Sellmeier (W.). Ann. Phys. u. Chem., 145, 899-421, 520-49; 147, 386-403, 525-54.

Untersuchungen über die anomale Dispersion des Lichtes.

Sieben (G.). Ann. Phys. u. Chem., n. F. 8, 187-57.

Micrometrical measures of gaseous spectra under high dispersion.

Smyth (C. Piazzi). Trans. Royal. Soc. Edinburgh, 32 III, 415-60, 1884, with plates.

Sur la dispersion anormale de quelques substances.

Soret (J. L.). Arch. de Genève, (2) 40, 280-3; Ann. Phys. u. Chem.,
143, 825-7; Phil. Mag., (4) 44, 895-6; Ann. Chim. et Phys., (4) 25, 412 (Abs.).

Sur la réfraction et la dispersion des aluns crystallisés.

Soret (C.). Arch. de Genève, (3) 10, 300-2; Beiblätter, 8, 874 (Abs.).

On an easy and at the same time accurate method of determining the ratio of the dispersions of glasses intended for objectives.

Stokes (G. G.). Proc. Royal Soc., 27, 485-94; Beiblätter, 3, 185-7 (Abs.).

Minimum de dispersion des prismes; achromatisme de deux lentilles de mêmes substances.

Thollon (L.). Comptes Rendus, 89, 98-6; Beiblätter, 4; 32-4.

Ueber die Beziehung zwischen chemischer Wirkung des Sonnenspectrums und anomaler Dispersion.

Vogel (H.). Ber. chem. Ges., 7, 976-9; Jour. Chem. Soc., (2) 12, 1121-2.

Theorie der Dispersion.

Voigt (W.). Göttinger gelehrten Nachr. (1884), 262.

# Zur Dispersion farblos durchsichtiger Medien.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 17, 580-7; Jour. de Phys., (2) 2, 281 (Abs.).

Ausdehnung der Dispersionstheorie auf die ultra-rothen Strahlen.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 23, 806; Jour. de Ylys., (2) 4, 824 (Abs.).

Sur la dispersion du chromate de soude à 4 H, O.

Wyrouboff (G.). Bull. Soc. mineral. de France, 5, 160-1.

## DISSOCIATION.

Dissociation of the elements.

Crookes (W.). Chem. News, 39, 65-6.

Ueber die neuen Wasserstofflinien und die Dissociation des Calciums.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 33, 597 (Abs.); Boiblätter, 4, 274.

Ueber Lockyer's Dissociationstheorie.

Vogel (H. W.). Sitzungsber. d. Berliner Akad. (1882), 905-7; Nature,
27, 233; Ann. Phys. u. Chem., n. F. 19, 284-287; Phil. Mag., (5)
15, 28-30; Jour. Chem. Soc., 44, 762 (Abs.); Chem. News, 49, 291 (Abs.).

## DISTRIBUTION IN THE SPECTRUM.

The distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Phys. Soc., 3, 106-12; Phil. Mag., (5) 8, 203-9; Beiblätter, 4, 44 (Abs.).

On the distribution of lines in spectra.

Hinrichs. Amer. Jour. Sci., July, 1864.

Vertheilung der chemischen Wirkung im Spectrum.

Jahresber. d. Chemie (1878), 160.

Distribution de l'energie dans le spectre normal.

Langley (S. P.). Ann. de Chim. et de Phys., (5) 25, 211.

Wärmevertheilung im Normalspectrum.

Lundquist (G.). Ann. Phys. u. Chem., 155, 146.

Sur la distribution des bandes dans les spectres primaires.

Salet (G.). Comptes Rendus, 79, 1229-30; Ber. chem. Ges., 7, 1788 (Abs.); Bull. Soc. chim. Paris, 22, 543.

## DOUBLE SPECTRA.

Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sci., 106, 172.

Sur les spectres doubles.

Salet (G.). Jour. de Phys., 4, 225.

On double spectra.

Watts (W. M.). Quar. Jour. Sci., Jan., 1871.

## DYSPROSIUM.

# Spectre du dysprosium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1005-6; Jour. Chem. Soc., 50, 667 (Abs.).

#### ELECTRIC SPECTRA.

Relation between electric energy and radiation in the spectrum of incandescence lamps.

Abney and Festing. Proc. Royal Soc., 37, 157.

Continuirliches Spectrum des electrischen Funkens.

Abt (A.). Ann. Phys. u. Chem., n. F. 7, 159; K. Ungar. Acad. d. Wiss. in Buda-Pest, Dec. 11, 1878; Jour. Chem. Soc., 36, 765; Amer. Jour. Sci., (3) 18, 68-9.

Spectrum des electrischen Lichtes.

Angström (A. J.). Ann. Phys. u. Chem., 94, 145; Phil. Mag., (4) 9, 327.

Pouvoir phosphorescent de la lumière électrique.

Becquerel (E.). Comptes Rendus, 8, 217; 101, 205-10; Jour. Chem. Soc., 48, 1098 (Abs.).

Nouvelles expériences sur les effets électriques produits sous l'influence des rayons solaires.

Becquerel (E.). Comptes Rendus, 9, 561; remarques par M. Biot, 569

Nouvelles expériences sur le même sujet.

Becquerel (E.). Comptes Rendus, 9, 711; nouvelles remarques par M. Biot, 718, 719.

Sur le rayonnement chimique qui accompagne la lumière solaire et la lumière électrique.

Becquerel (E.). Comptes Rendus, 11, 702; rapport de M. Biot à propos de ce mémoire, 12, 101.

Effets électro-chimiques produits sous l'influence de la lumière.

Becquerel (E.). Comptes Rendus, 32, 85.

A new form of absorption-cell.

Bostwick (A. E.). Amer. Jour. Sci., Dec., 1885; Phil. Mag., (5) 21, 80 (Abs.).

- Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gasen. Cailletet. Ber. chem. Ges., 5, 482.
- Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle.

Cappel (E.). Ann. Phys. u. Chem., 139, 681-6.

Wolfram arc spectrum, photographed.

Capron (J. R.). Photographed Spectra, London, 1877, 50.

Sur la photographie du spectre de l'étincelle électrique.

Cazin (A.). Bull. Soc. philom. de Paris, 1877, (7) 1, 6-7; Beiblätter, 1, 287-8 (Abs.).

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 84, 1151-4; Phil. Mag., (5) 4, 158-6;
Beiblätter, 1, 620 (Abs.); Jour. Chem. Soc., 34, 357 (Abs.); Jour. de Phys., 6, 271; Amer. Jour. Sci., (3) 15, 148 (Abs.).

Phénomènes observés dans les spectres produits par la lumière des courants d'induction traversant les gaz raréfiés.

Chautard (J.). Comptes Rendus, 59, 883.

Action exercée par un électro-aimant sur les spectres des gaz raréfiés, traversés par des décharges électriques.

Chautard (J.). Comptes Rendus, 79, 1128-4.

Action des aimants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, 80, 1161-4.

.

Phénomènes magnéto-chimiques produits au sein des gaz raréfiés dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 81, 75-7; 82, 272-274; Jour. Chem. Soc., 1876, 1, 29 (Abs.).

Observations of the spectrum of lightning.

Clark (J. W.). Chem. News, 30, 28; 32, 65; 35, 2; Beiblätter, 1, 192.

Den Einfluss welchen die Natur der electrischen Stromquelle auf das Aussehen von Gasspectren ausübt.

Czechowicz. Versammlung russischer Naturforscher und Aertzte in Warschau, Sept., 1876; Ber. chem. Ges., 9, 1598 (Abs.).

Analyse spectrale de l'étincelle électrique produite dans les liquides et les gaz.

Daniel. Comptes Rendus, 57, 98.

Notice sur la constitution de l'univers. Première partie, analyse spectrale.

Delaunay. Ann. du Bureau des Longitudes, Paris, 1869.

Sur les spectres des étincelles des bobines à gros fil.

Demarcay (E.). Comptes Rendus, 103 (1887), 678.

Spectre du pôle négatif de l'azote.

Deslandes (H.). Comptes Rendus, 103 (1886), 375-9; Jour. Chem. Soc., 50, 957.

Recherches sur l'influence des éléments électro négatifs sur le spectre des métaux.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 5.

Ueber den Unterschied der prismatischen Spectra des am positiven und negativen Pol im luftverdünnten Raume hervortretenden electrischen Lichtes.

Dove (H. W.). Ann. Phys. u. Chem., 104, 184.

Over de zamenstellung von zonlicht, gaslicht en het von Edison's lamp, vergelijkend onderzocht met behulp der bacterien-methode.

Engelmann (T. W.). Proc. verb. k. Akad. v. Wetensch. te Amsterdam, Nov. 25, 1882, No. 5, 4-5; Beiblätter, 7, 380 (Abs.).

Sur les changements de réfrangibilité observés dans les spectres électriques de l'hydrogène et du magnésium.

Fiévez (C.). Bull. Acad. de Belgique, (3), 7, 245-7; Beiblätter, 8, 506 (Abs.).

Spectrum of lightning.

Gibbons (J.). Chem. News, 24, 96; 40, 65.

Spectrum of lightning.

Grandeau (L.). Chem. News, 9, 66.

Note of an experiment on the spectrum of the electric discharge.

Grove (Sir W. R.). Proc. Royal Soc., 28, 181-4; Beiblätter, 3, 360 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 869.

The investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195-6; Nature, 29, 89-90; Jour. Chem. Soc., 46, 187 (Abs.); Beiblätter, 8, 302 (Abs.).

Spectrum of lightning.

Herschel (Lieut. John). Proc. Royal Soc., 16, 418; 17, 61.

Spectra of lightning.

Hoh (Th.). Chem. News, 30, 258; Ann. Phys. u. Chem., 152, 178.

Spectrum of lightning.

Holden (E. S.). Amer. Jour. Sci., (8) 4, 474-5.

Spectrum of the electric light.

Hopkins-Walters (J.). Nature, 25, 108.

Electric spectra in various gases and with electrodes of various substances.

Huggins (W.). Phil. Trans., 1864; Ann. Phys. u. Chem., 124, 275–292. 621.

Photographische Wirkung electrischer Metallspectren.

Jahresber. d. Chemie, (1862) 83, (1863) 104, 106, 107, 113, (1864) 109, 110, 115, (1865) 90, 91, 92, (1868) 126-7, (1872) 148, (1878) 150-2, (1875) 123.

Spectrum des Blitzes.

Jahresber. d. Chemie, (1864) 109, (1868) 126, 127, (1872) 148.

Spectralanalyse mittelst des Inductionsstroms.

Jahresber. d. Chemie, (1865) 91, 92, (1878) 150, 151-2, (1864) 110.

Spectrum of lightning.

Joule (J. P.). Nature, 6, 161.

Spectra of two hundred and fourteen flashes of lightning observed at the astrophysical observatory in Herény, Hungary.

Konkoly (N. von). Observatory (1883), 267-8; Beiblätter, 7, 862 (Abs.).

Wärmevertheilung im Spectrum des Kalklichtes bei Flintglas-und Steinsalz-prismen.

Lamansky (S.). Ann. Phys. u. Chem., 146, 227. .

Sur la loi de Stokes.

Lamansky (S.). Jour. de Phys., 8, 367; Ann. Phys. u. Chem., n. F. 8, 624.

Observations sur quelques points d'analyse spectrale et sur la constitution des étincelles d'induction.

Lecoq de Boisbaudran (F.). Comptes Rendus, 73, 948.

Spectre de l'ammoniaque par renversement du courant induit.

Lecoq de Boisbaudran (F.). Comptes Rendus, 101 (1885), 42-5; Jour. Chem. Soc., 48, 1025 (Abs.).

- Sur un spectre électrique particulier aux terres rares du groupe terbique. Lecoq de Boisbaudran. Comptes Rendus, 102 (1886), 158-5.
- Fluorescence des composés du manganèse, soumis à l'effluve électrique dans le vide.

Lecoq de Boisbaudran. Comptes Rendus, 103 (1886), 468-71, 629-31, 1064-7, 1107; Jour. Chem. Soc., 52 (Abs.); Amer. Jour. Sci. (3; 33, 149-51 (Abs.); Beiblätter, 11, 87, 89 (Abs.).

An arrangement of the electric arc for the study, with the spectroscope, of the radiation of vapours, together with preliminary results.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 34, 119.

Note on some phenomena attending the reversal of lines in the arc produced by a Siemens machine.

Lockyer (J. N.). Proc. Royal Soc., 28, 428.

Ueber die Glüherscheinungen an Metallectroden innerhalb einer Wasserstoffatmosphäre von verschiedenen Drucke.

Lohse (O.). Ann. Phys. u. Chem., n. F. 12, 109-114.

Das Stokes'sche Gesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 244.

Die weitausgedehnten ultravioletten Strahlen im Spectrum des electrischen Funkens mit dem Auge wahrnehmbar.

Mascart. Ann. Phys. u. Chem., 137, 163.

Spectre de la lumière des piles dans l'air.

Masson (A.). Comptes Rendus, 32, 128; Ann. Chim. et Phys., (3) 31, 295.

On the photographic effects of metallic and other spectra obtained by means of the electric spark.

Miller (W. Allen). Proc. Royal Soc., 12, 159; Phil. Trans. (1862), 861.

Spectre de la lumière électrique dans le vide.

Du Moncel. Comptes Rendus, 49, 40.

Spectre fluorescent de l'étincelle électrique.

Müller (J.). Ann. Chim. et Phys., (4) 13, 465.

Report on spark spectra, from the British Association Report on the Present State of our Knowledge of Spectrum Analysis.

Nature, 26, 459. (By A. Schuster.)

Ueber das Sauerstoffspectrum und über die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paalzow. Monatsber. d. Berliner Akad. (1878), 705-9; Phil. Mag.,
(5) 7, 297-300; Ann. Phys. u. Chem., n. F. 7, 180-5; Jour. Chem. Soc., 36, 861.

Photographing spark spectra.

Parry (J.). Chem. News, 36, 140.

Experimentelle Untersuchung über das electrische Lichtspectrum in Beziehung auf die Farben der Doppelsterne.

Petzval (Jos.). Sitzungsber. d. Wiener Akad., 41, 561, 581-9.

Spectra der electrischen Lichtströmungen.

Plücker. Ann. Phys. u. Chem., 104, 122; 105, 67; 107, 497, 505, 506, 518-642; 116, 27.

Spectrum of lightning.

Proctor (H. R.). Nature, 6, 161, 220.

Spectra negativer Electroden und lange gebrauchter Geissler'schen Röhren.

Reitlinger (Edm.) und Kuhn (M.). Sitzungsber. d. Wiener Akad., 51 II, 405, 408-16; Ann. Phys. u. Chem., 141, 135-6.

Electric spectra.

Robinson (Dr.). Phil. Trans. (1868).

Recherches sur les raies du spectre solaire et des différentes spectres électriques.

Robiquet. Comptes Rendus, 49, 606.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft. Schimkow (A.). Ann. Phys. u. Chem., 129, 518. On the spectra of lightning.

Schuster (A.). Phil. Mag., (5) 7, 316-21; Beiblätter, 3, 872 (Abs.).

Sur les spectres de l'étincelle électrique dans les gaz composés et en par ticulier dans le fluorure de silicium.

Seguin (J. M.). Comptes Rendus, 54, 988.

Spectrum des Inductionsfunken.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 268.

Beiträge zur Electricitätsleitung der Gase.

Stenger (F.). Ann. Phys. u. Chem., (2) 25, 31-48; Jour. Chem. Soc., 48, 1028 (Abs.).
(See Phil. Trans., 171, 65.)

On the long spectrum of the electric light.

Stokes (G. G.). Proc. Royal Soc., 12, 166; Phil. Trans. (1862), 599;Ann. Phys. u. Chem., 123, 80, 87, 472.

Effluviography.

Tomassi (D.). Bull. Soc. chim. Paris, 45, 878; Jour. Chem. Soc., 50, 959 (Abs.).

Ueber die Spectra der Blitze.

Vogel (H.). Ann. Phys. u. Chem., 143, 658-4.

Chemische Intensität des magnesium und electrischen Lichtes.

Vogel (H. W.). Photographische Mittheilungen, 16, 187-8; Beiblätter, 4, 49 (Abs.).

Spectrum of the electric (Jablochkoff) light.

Walker (E.). Nature, 18, 884; Beiblätter, 3, 505 (Abs.).

Spectra des electrischen Funkenstroms in verdünnten Gasen.

Waltenhofen (A. von). Dingler's Jour., 177, 88.

Spectrum of the electric light.

Walters (J. Hopkins). Nature, 25, 103.

The prismatic decomposition of the electric, voltaïc, and electro-magnetic sparks.

Wheatstone (C.). Chem. News, 3, 198.

Das Leuchten der Gase durch electrische Entladungen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 6, 298.

Das thermische und optische Verhalten von Gasen unter dem Einflusst electrischer Entladungen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 10, 202.

Das electrische Leuchten der Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Note au sujet d'un mémoire de M. Lagarde.

Wiedemann (E.). Ann. Chim. et Phys., (6) 7, 143; Amer. Jour. Sci., (3) 31, 218 (Abs.).

Das electrische Spectrum.

Willigen (S. M. von der). Ann. Phys. u. Chem., 106, 615, 619, 621, 622, 624, 628; 107, 478.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Wüllner (A.). Comptes Rendus, 85, 280-1; Ann. Chim. et Phys., (5) 12, 148-4; Beiblätter, 1, 620.

Das Linienspectrum gehört dem Funken, das Bandenspectrum gehört der Lichthülle an.

Wüllner (A.). Ann. Phys. u. Chem., 147, 824-48.

## EMISSION SPECTRA.

Sur la variation des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102, 106-10.

Notes on photographs of the ultra-violet emission spectra of certain elements.

Hartley (W. N.). Chem. News, 43, 289; Bor. chem. Ges., 15, 1432a, 2924b.

Das Verhältniss zwischen Emission und Abzorption ist bei allen Körpern dasselbe.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 299.

Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Wärme.

Kirchhoff (G.). Monatsber. d. Berliner Akad., Oct. 27, 1859; Phil. Mag., (4) 19, 168.

## ENERGY IN THE SPECTRUM.

Étude expérimentale de la réflexion des rayons actiniques.

De Chardonnet. Jour. de Phys., 11, 549.

Distribution of chemical force in the spectrum.

Draper (J. W.). Amer. Jour. Sci., 105, 25, 91-8; Phil. Mag., (4) 44, 422-43; Jour. Chem. Soc., (2) 11, 282-5.

Actinometry.

Duclaux (E.). Comptes Rendus, 103, 1010-12; Jour. Chem. Soc., 52, 189 (Abs.).

Einführung des Princips der Erhaltung der Energie in die Theorie der Diffraction.

Fröhlich (J.). Ann. Phys. u. Chem., n. F. 3, 376.

The Bolometer and radiant energy.

Langley (S. P.). Proc. Amer. Acad., 16, 842-58; Zeitschr. Instrumentenkunde, 4, 27-32 (Abs.).

Distribution de l'énergie dans le spectre normal.

Langley (S. P.). Comptes Rendus, 93, 140; Ann. Chim. et Phys., (5) 25, 211.

Distribution of energy in the spectrum.

Rayleigh (Lord). Nature, 27, 559.

La distribution de l'énergie dans le spectre solaire et la chlorophylle.

Timiriaseff. Comptes Rendus, 96, 875.

#### ERBIUM.

Erbinerdelösungen coïncidirend mit den hellen Streifen leuchtender Erbinerde.

Bahr und Bunsen. Jour. prackt. Chemie, 97, 277; Ann. f. Chem. u. Pharm., 137, 1.

Aenderung des Absorptionsspectrums von Erbium bei Anwendung polarisirten Lichtes.

Bunsen (R.). Ann. Phys. u. Chem., 128, 100.

Erbium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 29.

Sur deux nouveaux éléments dans l'erbine.

Clève (P. T.). Comptes Rendus, 89, 478-80; Amer. Jour. Sci., (3) 18, 400-1; Beiblätter, 4, 43 (Abs.).

Spectre de l'erbine.

Clève (P. T.). Comptes Rendus, 89, 708; 91, 881.

Sur les combinaisons de l'yttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, 18, 193-201; 289-97; Jour. Chem. Soc., (2) 11, 186.

Note on the spectra of erbia.

Crookes (W.). Chem. News, **53** (1886), 75, 154, 179; Proc. Royal Soc., **40**, 77-9, Jour. Chem. Soc., **50**, 749 (Abs.); Comptes Rendus, **102**, 506.

Absorptionsspectrum von Erbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 808.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., 124, 685; Chem. News, 11, 253; Ann. Chim. et Phys., 135, 194.

Note on the spectra of erbia and of some other earths.

Huggins (W.). Chem. News, 22, 175.

Spectren der Erbinerde.

Jahresber. d. Chemie (1878), 150.

Phosphate de l'erbine, émission; erbine, émission; chlorure de l'erbium en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche XIV; p. 100, planche XV.

Spectre d'émission de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 76, 1080.

Spectre du nitrate de l'erbium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1167.

Examen spectral de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1842-44; Jour. Chem. Soc., 36, 861 (Abs.); Amer. Jour. Sci., (3) 18, 216-7; Beiblätter, 3, 871 (Abs.).

Spectre de l'erbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 516; Beiblätter, 4, 43 (Abs.); Chem. News, 40, 147.

Remarques à M. P. T. Clève "Sur deux nouveaux éléments dans l'erbine." Smith (L.). Comptés Rendus, 89, 480-1; Beiblätter, 4, 43 (Abs.).

Om spectra tillhörande yttrium, erbium, didym och lanthan.

Thalén (R.). K. Svensk. Vetenskaps. Akad. Forhandlinger, 12, No. 4, 24; Bull. Soc. chim. Paris, (2) 22, 350 (Abs.).

Spectrum of erbium.

Thalén (R.). Chem. News, 42, 184; Comptes Rendus, 91, 326; Jour. de Phys., (2) 4, 33.

Spektralundersökningar rörande skandium, ytterbium, erbium och thulium.

Thalén (R.). Ofversigt af Kongl. Vetensk. Acad. Förhandlingar, 38, No. 6, 13-21; Jour. de Phys., (2) 2, 85-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

## EXCHANGES.

# On the Theory of Exchanges.

Stewart (Balfour). Trans. Royal Soc. Edinburgh (1858), Vol. 22. part I, 1; Rept. British Assoc. (1861), 97.

# EXPLOSIONS.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Chem. News, 49, 227-9; Nature, 29, 614-15; Beiblätter, 8, 644-5 (Abs.).

Spectral lines of the metals developed by exploding gases

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48 (1885), 317 (Abs.).

Spectroscopic studies of explosions.

Liveing (G. D.) and Dewar (J.). Rept. British Assoc. (1884), 672;
Jour. de Phys., (2) 4, 51 (Abs.).

Spectrum des Lichtes explodirender Schiessbaumwolle.

Vogel (H. W.). Ann. Phys. u. Chem., n. F. 3, 615.

#### FLAME AND GAS SPECTRA.

The dichroism of the vapour of iodine.

Andrews (T.). Chem. News, 24, 75; Jour. Chem. Soc., (2) 9, 978 (Abs.).

Spectres des gaz simples.

Angström (A. J.). Comptes Rendus, 73, 869; Bull. Soc. chim. Paris, n. s. 16, 228.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, 97, 71-4; Chem. News, 48, 46 (Abs.); Nature, 28, 287 (Abs.); Beiblätter, 7, 701-2 (Abs.); Amer. Jour. Sci., (3) 26, 321 (Abs.); Ber. chem. Ges., 16, 2487 (Abs.); Jour. Chem. Soc., 46, 1 (Abs.); Zeitschr. analyt. Chem., 23, 49 (Abs.).

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, 99, 374; Amer. Jour. Sci., (3) 28, 459; Phil. Mag., Oct., 1884.

Spectres de quelques corps composés dans les systèmes gazeux en équilibre.

Berthelot et Richard. Comptes Rendus, 68, 1546.

Experimentaluntersuchung zur Bestimmung der Brechungsexponenten verflüssigter Gase.

Bleekrode (L.). Ann. Phys. u. Chem., n. F. 8, 400

Experiments on Flame.

Burch (G. J.). Nature, 31, 272-5; Jour. Chem. Soc., 48, 466 (Abs.).

Einfluss des Drucks auf das Spectrum des electrischen Funkens in Gazen. Cailletet. Ber. chem. Ges., 5, 482.

Spectrum of coal gas.

Capron (J. R.). Photographed Spectra, London, 1877, p. 24, 61, 62, 71, 72.

Relative intensity of the spectral lines of gases.

Capron (J. R.). Phil. Mag., (5) 9, 829-80; Jour. Chem. Soc., 38, 685 (Abs.); Beiblätter, 4, 613-14 (Abs.).

Spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Cazin (A.). Comptes Rendus, 84, 1151-4; Phil. Mag., (5) 4, 153-6.

Action des ainmants sur les gaz raréfiés renfermés dans les tubes capillaires et illuminés par un courant induit.

Chautard (J.). Comptes Rendus, 59, 883; 79, 1123; 80, 1161; 81, 75; Phil. Mag., Nov., 1864.

Ueber den Einfluss des Drucks und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician (G.). Sitzungsber. d. Wiener Akade, 77 II, 829-41; Jour. Chem. Soc., 36, 685 (Abs.); Nature, 23, 160; Beiblätter, 3, 193-4.

Viscosity of gases at high exhaustions.

Crookes (W.). Phil. Trans., 173, 387-434; Chem. News, 43, 85-3 (Abs.); Nature, 23, 421-3, 448-6 (Abs.); Beiblätter, 5, 836-46 (Abs.).

Position of the chemical rays in the spectra of sunlight and gaslight.

Crookes (W.). Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 619; Bull. London Photogr. Soc., 21 Jan., 1856.

Étude des radiations émises par les corps incandescents.

Crova (A.). Ann. Chim. et Phys., (5) 19, 472-550; Beiblätter, 5, 117 (Abs.).

Spectre du pôle négatif de l'azote.

Deslandres (H.). Comptes Rendus, 103, 375-9; Beiblätter, 11, 36.

Spectra zusammengesetzter Gase.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 588.

Essai d'analyse spectrale appliquée à l'examen de gaz simples et de leurs mélanges.

Dubrumfaut. Comptes Rendus, 69, 1245; Ber. chem. Ges., 2, 745.

Flame-spectra.

Fielding (G. F. M.). Chem. News, 54, 212.

Preliminary note of researches on gaseous spectra in relation to the physical constitution of the Sun, fixed stars and nebulæ.

Franckland (E.) and Lockyer (J. N.). Proc. Royal Soc., 17, 293; 18, 79.

Sur les spectres d'absorption des vapeurs de sélénium, de protochlorure et de bromure de sélénium, de tellure, de protochlorure et de protobromure d'iode et d'alizarine.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2) 10, 665 (Abs.); Phil. Mag., (4) 43, 478-5; Amer. Jour. Sci., 4, 59-60.

١

Blue flame from common salt.

Gladstone (J. H.). Proc. Royal Soc., 19, 582.

Note on the atmospheric lines of the solar spectrum, and on certain spectra of gases.

Gladstone (J. H.). Proc. Royal Soc., 11, 805.

Beobachtungen an Gasspektris.

Goldstein (E.). Monatsber. d. Berliner Akad. (1874), 593-610; Ann.
Phys. u. Chem., 154, 128-149; Jour. Chem. Soc., (2) 13, 527 (Abs.);
Phil. Mag., (4) 49, 333-45; Bemerkungen dazu, von A. Wüllner,
Monatsber. d. Berliner Akad. (1874), 755-61; Phil. Mag., (4) 49, 448-53.

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-72; Phil. Mag., (5) 2, 317-19.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 281.

Recherches photométriques sur les flammes colorées; sodium, lithium, strontium, calcium, etc.

Gouy. Comptes Rendus, 85, 70.

Sur le caractères des flammes chargées de calcium, de poussières salines, de chlorure de cuivre, de l'azotate et du chlorure de calcium, du chlorure de strontium, du chlorure de baryum, de l'oxyde de cuivre, de l'acetate de cuivre.

Gouy. Comptes Rendus, 85, 489.

Sur la transparence des flammes colorées, spectres continus du potassium, du sodium, des sels de l'alumine et de magnésie, du strontium, du calcium et du baryum.

Gouy. Comptes Rendus, 86, 878.

Transparence des flammes colorées pour leurs propres radiations; la double raie du sodium, la double raie du potassium; lithium, strontium, rubidium, calcium.

Gouy. Comptes Rendus, 86, 1078.

Du pouvoir émissif des flammes colorées.

Gouy. Comptes Rendus, 88, 418.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (E.). Ann. Phys. u. Chem., n. F. 2, 477.

De la recherche des composés gazeux et de l'étude de quelques-unes de leur propriétés à l'aide du spectroscope.

Hautefeuille (P.) et Chappuis (J.). Comptes Rendus, 92, 80-2; Jour. Chem. Soc., 40, 221-222 (Abs.); Beiblätter, 5, 317 (Abs.).

Bemerkungen zu dem Aufsatze von W. Siemens: Über das Leuchten der Flamme.

Hittorf (W.). Ann. Phys. u. Chem., n. F. 19, 73-7; Jour. Chem. Soc., 44, 697 (Abs.).

Prismatische Zerlegung des Lichtes glühender oder brennender Körper.

Jahresber. d. Chemie, 1, 161; 3, 155.

Verschiedene Spectren desselben Gases.

Jahresber. d. Chemie (1868), 125.

Spectra der Flammen grünfärbender Substanzen.

Jahresber. d. Chemie, 14, 48.

Gas Spectra.

Jahresber. d. Chemie, (1864) 109, (1868) 125, (1869) 176-80, (1870) 176, (1872) 143, (1878) 148, (1875) 122.

Sur le spectre de la vapeur de l'eau.

Janssen (J.). Ann. Chim. et Phys., (4) 24, 215-7; Jour. Chem. Soc., (2) 10, 280 (Abs.).

Flamme bleue du gaz d'éclairage.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 41, planche III.

Spectra kohlenstoffhaltiger Gase.

Lielegg. Jour. prackt. Chemie, 103, 507; Phil. Mag., (4) 37, 208.

Untersuchungen über die Spectra gasförmiger Körper.

Lippich (F.). Sitzungsber. d. Wiener Akad., 82 II, 15-83; Ann. Phys. u. chem., n. F. 12, 380.

Erklärung der Verbreiterung der Spectrallinien in den Gazen. Lippich (F.). Ann. Phys. u. Chem., 139, 465.

Origin of the spectrum of the hydrocarbon flame.

Liveing (G. D.) and Dewar (J.). Nature, 27, 257.

On the reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). No. I in Proc. Royal Soc., 27, 182-6;
No. II in do., 27, 850-4;
No. III in do., 27, 494-6;
No. IV in do., 28, 852-8;
No. V in do., 28, 867-72;
No. VI in do., 28, 471-5;
No. VII in do., 29, 402-6;
Beiblätter, 2, 261-8 (Abs.), 490 (Abs.);
3, 502 (Abs.), 710 (Abs.);
4, 364 (Abs.).

/

Disappearance of some spectral lines and the variation of metallic spectra due to mixed vapours.

Liveing and Dewar. Proc. Royal Soc., 33, 428.

An arrangement of the electric arc for the study, with the spectroscope, of the radiation of vapours, together with preliminary results.

Liveing and Dewar. Proc. Royal Soc., 34, 119.

Spectral lines of metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-73; Jour. Chem. Soc., 48, 317 (Abs.); Jour. de Phys., (2) 4, 51.

Spectroscopic studies on gaseous explosions.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 36, 471-8; Jour. Chem. Soc., 48, 465.

Spectroscopic Notes. Note I, on the absorption of great thicknesses of metallic and metalloidal vapours; Note II, on the evidence of variation in molecular structure; Note III, on the molecular structure of vapours in connection with their densities; Note IV, on a new class of absorption phenomena.

Lockyer (J. N.). Proc. Royal Soc., 22, 371-8.

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., 29, 266-72; Beiblätter, 4, 86 (Abs.).

On the spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9; Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1876, 2, 156 (Abs.).

Sur les spectres des vapeurs, aux températures élévées; hydrogène, nitrogène, potassium, carbone, sodium, zinc, cadmium, antimoine, phosphore, soufre, arsénic, bismuth, iode, mercure, lithium.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 178.

On the indices of refraction of certain compound ethers.

Long (J. H.). Amer. Jour. Sci., (3) 21, 279-86.

Comparaison des spectres des flammes éclairantes et des flammes pâles. Magnus (G.). Ann. Chim. et Phys., (4) 6, 159.

Réfraction des gaz.

Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 153.

Sur la comparaison des gaz et des vapeurs.

Mascart. Comptes Rendus, 86, 321-3; Jour. Chem. Soc., 34, 359 (Abs.).

Sur la réfraction des corps organiques considérées à l'état gazeux.

Mascart. Comptes Rendus, 86, 321-3, 1182-5; Jour. Chem. Soc., 24, 693 (Abs.); Ann. de l'École normale (2) 6, 9-78; Beiblätter, 1, 257-70.

Examination of coloured flames by the prism.

Melvill (T.). Edinburgh Physical and Literary Essays, 2, 12, 1752.

Experiments and observations on some cases of lines in the prismatic spectrum produced by the passage of light through coloured vapours and gases, and from certain coloured flames.

Miller (W. A.). Phil. Mag., (3) 27, 81.

Flame spectra.

Milne (G. A.). Chem. News, 54, 225.

Spectra von Flammen im Allgemeinen.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 487.

Ueber die Beziehung der chemischen Beschaffenheit zu der lichtbrechenden Kraft der Gaze.

Mohr (F.). Ber. chem. Ges., 4, 149-55; Jour. Chem. Soc., (2) 9, 188 (Abs.).

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van). Bull. de l'Acad. de Belgique, (2) 43, 187-92; Beiblätter, 1, 286 (Abs.).

De la flamme de quelques gaz carburés.

Morren (M. A.). Ann. Chim. et Phys., (4) 4, 305; Chem. News, 9, 185.

Das Sauerstoffspectrum .und die electrischen Erscheinungen verdünnter Gase in Röhren mit Flüssigkeitselectroden.

Paalzow (A.). Ann. Phys. u. Chem., n. F. 7, 130.

The spectroscopic examination of the vapours evolved on heating iron, etc., at atmospheric pressure.

Parry (J.). Chem. News, 49, 241-2; 50, 308-4; Ber. chem. Ges., 17, Referate, 337 (Abs.); Jour. Chem. Soc., 46, 801 (Abs.); Beiblätter, 8, 646 (Abs.).

Comparaison des indices de réfraction dans quelques éthers composés isomères.

Pierre (Is.) et Puchat (E.). Comptes Rendus, 76, 1566-8.

Spectrum von Fluorborgas.

Plücker (J.). Ann. Phys. u. Chem., 104, 125.

Spectra der verschiedenen Gase wenn durch dieselben bei starker Verdünnung die electrische Entladung hindurchgeht.

Plücker (J.). Ann. Phys. u. Chem., 105, 67.

- Constitution der electrischen Spectra der verschiedenen Gase und Dämpfe. Plücker (J.). Ann. Phys. u. Chem., 107, 497.
- Zusammengesetzte Gase haben wie die einfachen ihr eigenthümliches Spectrum.

Plücker (J.). Ann. Phys. u. Chem., 113, 276.

Recurrente Ströme und ihre Anwendung zur Darstellung von Gasspectren.

Plücker (J.). Ann. Phys. u. Chem., 116, 27.

On the spectra of ignited gases and vapours, with especial regard to the different spectra of the same elementary gaseous substance.

Plücker (J.) and Hittorf (S. W.). Proc. Royal Soc., 13, 153; Phil. Trans., 1865, p. 1.

De la flamme du soufre et des diverses lumières utilisables en photographie.

Riche (A.) et Bardy (C.). Comptes Rendus, 80, 238-41; Ber. chem. Ges., 8, 182-8.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-6; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 828 (Abs.).

Coloration of the hydrogen flame.

Santini (S.). Gazzetta, XIV, 274-6; Jour. Chem. Soc., 48, 465 (Abs.).

Veränderlichkeit der Spectra glühender Gase.

Schenck (O.). Zeitschr. analyt. Chem., 12, 886-90; Jour. Chem. Soc., (2) 12, 1122-3 (Abs.).

Notiz über das Flammenspectrum der Schiessbaumwolle.

Schöttner (F.). Carl's Repert., 14, 55-6; Beiblätter, 3, 279.

Harmonic ratios in the spectra of gases.

Schuster (A.). Nature, 20, 533; 31, 887-47; Beiblätter, 4, 37; 5, 485-8 (Abs.).

Spectrum des Bunsen'schen Gasflamme, oder Spectrum des inneren Flammenkegels.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 247.

Spectra der verschiedenen grünen Flammen.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 249.

Blue flame from common salt.

Smith (A. P.). Nature, 19, 488; 20, 5; Chem. News, 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

Gaseous spectra in vacuum tubes.

Smyth (C. Piazzi). Proc. Royal Soc. Edinburgh, 10, 711-12 (Abs.); Trans. Royal Soc. Edinburgh, 32, Part III, 415-60, with plates.

Observations sur la note de M. M. Stoney et Reynolds sur les spectres des gaz.

Soret (G. L.). Arch. de Genève, 42, 82-4; Phil. Mag., 42, 464-5; Ann. Chim. et Phys., (4) 26, 269.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

On the effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Royal Soc., 21, 282-3; Jour.
Chem. Soc., (2) 11, 996 (Abs.); Ber. chem. Ges., 6, 973 (Abs.); Phil. Mag., (4) 46, 406-7.

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (2) 13, 412-14 (Abs.).

On the cause of the interrupted spectra of gases.

Stoney (G. J.). Phil. Mag., (4) 41, 291-6; 42, 41-52; Ann. Chim. et Phys., (4) 26, 265-6 (Abs.), 266-8 (Abs.). (Look under Soret, above.)

On the blue lines of the spectrum of the non-luminous gas-flame.

Swan (W.). Edinburgh Philosoph. Trans., 3, 876; 21, 858.

Prismatic spectra of the flames of carbon and hydrogen.

Swan (W.). Edinburgh Philosoph. Trans., 21 (1857), 411-29; Ann. Phys. u. Chem., 100, 306.

Some experiments on coloured flames.

Talbot (H. Fox). Brewster's Jour. Sci., 5, 1826.

Ueber die photographische Aufnahme von Spectren der in Geisslerrohren eingeschlossenen Gase.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1879), 115-19; Beiblätter, 4, 125-30 (Abs.).

Spectroscopische Notizen. Die Wasserstoffflamme in der Spectralanalyse.
Vogel (H. W.). Ber. chem. Ges., 12, 2813-16; Beiblätter, 4, 278
(Abs.); 5, 118 (Abs.).

Gasspectra in Geissler'schen Röhren; bei zunehmender Verdünnung der Gase verschwinden die minder brechbaren Streifen zuerst.

Waltenhofen (A. von). Ann. Phys. u. Chem., 126, 527-87.

On the spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) 45, 81-90; Jour. Chem. Soc., (2) 11, 460 (Abs.).

Untersuchungen über die Natur der Spectra: 1, Theorie; 2, Spectra gemischter Gase.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 5, 500-24; Phil. Mag., (5) 7, 77-95; Amer. Jour. Sci., (8) 17, 250-1.

Das Leuchten der Gase durch electrische Entladungen; Nachtrag zu der Arbeit über die Natur der Spectra.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 6, 298.

Das thermische und optische Verhalten von Gasen unter dem Einfluss electrischer Entladungen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 10, 202.

Ueber die Dissociationswärme des Wasserstoffmoleculs und das electrische Leuchten der Gasen.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (8) 9, 294-302; Jour. Chem. Soc., 1876, 1, 27 (Abs.).

Spectra der Gase unter hohem Druck.

Wüllner (A.). Ann. Phys. u. Chem., 137, 887-56; Phil. Mag., (4) 37, 405; 39, 865.

Ueber die Spectra einiger Gase in Geissler'schen Röhren.

Wüllner (A.). Ann. Phys. u. Chem., 144, 481-525; 147, 321-53; 149, 108-12; Ann. Chim. et Phys., (4) 26, 258-63 (Abs.); Bull. Soc. chim. Paris, n. s. 12, 445.

Ueber die Spectra der Gase.

Wüllner (A.). Verhandl. d. naturwiss. Ges. zu Aachen, Dec., 1874;
Ann. Phys. u. Chem., 154, 149-56; Jour. Chem. Soc., (2) 13, 527
(Abs.).

Reinheit der Spectren von Gasen.

Wüllner (A.). Ber. chem. Ges., 3, 100.

Spectres des Gaz simples.

Wüllner (A.). Comptes Rendus, 70, 125, 890.

Sur le spectre de l'étincelle électrique dans les gaz soumis à une pression croissante.

Wüllner (A.). Comptes Rendus, 85, 280-1; Ann. Chim. et Phys., (5) 12, 143-4; Beiblätter, 1, 620 (Abs.).

Des transformations que subissent les spectres des gaz incandescents avec la pression et la température.

Wüllner (A.). Arch. de Genève, (2) 40, 805-10.

Bemerkungen zu Herrn Goldstein's Beobachtungen an Gasspectris.

Wüllner (A.). Monatsber. d. Berliner Akad., 1874, 755-61; Phil. Mag., (4) 49, 448-53.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra glühender Gase.

Zöllner (F.). Ber. chem. d. k. Sächs. Ges. d. Wiss., 22, 233-53; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

# FLUORESCENCE.

Observations relatives à une note de M. Lamansky ayant pour titre "Sur la loi de Stokes."

Becquerel (E.). Comptes Rendus, 88, 1287-9; Beiblätter, 3, 619; Jour. Chem. Soc., 36, 862 (Abs.). (Look below, under Lamansky.)

Sur la phosphorescence du sulfure de calcium.

Becquerel (E.). Comptes Rendus, 103, 551-8; Chem. News, 55, 123.

Action du manganèse sur le pouvoir de phosphorescence du carbonate de chaux.

Becquerel (E.). Comptes Rendus, 103, 1098-1101.

Zur Geschichte der Fluorescenz.

Berthold (G.). Ann. Phys. u. Chem., 158, 628.

Ueber die Fluorescenz der lebenden Netzhaut.

Bezold (M. von) und Engelhardt (G.). Sitzungsber. d. Münchener Akad., 7, 226-33; Phil. Mag., (5) 4, 397-400.

On the crimson line of phosphorescent alumina.

Crookes (W.). Proc. Royal Soc., 42, 25-80; Chem. News, 55, 25;Nature, 35, 310; Amer. Jour. Sci., (3) 33, 304 (Abs.).

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 168.

Les vibrations de la matière et les ondes de l'éther dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Action des fluorures sur l'alumine.

Frémy et Varneuil. Comptes Rendus, 103 (1887), 788-40.

De la fluorescence.

Gripon (E.). Jour. de Phys., 2, 199, 246.

Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., 146, 65-89, 282-57, 875-405, 508-88;
Jour. Chem. Soc., (2) 10, 1058-61 (Abs.);
Phil. Mag., (4) 45, 57-64 (Abs.);
Chem. News, 26, 173 (Abs.).

Fernere Versuche über Fluorescenz.

Hagenbach (E.). Ann. Phys. u. Chem., Jubelband, 308-18.

Das Aufleuchten, die Phosphorescenz und Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Fluorescenz nach Stokes's Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 18, 45-56; Jour. Chem. Soc., 44, 587-8 (Abs.).

Das Stokes'sche Gesetz.

Hagenbach (E.). Ann. Phys. u. Chem., n. F. 8, 869-400.

Note on the behavior of certain fluorescent bodies in castor oil. Horner (C.). Phil. Mag., (4) 48, 165-6.

Herstellung des Spectrums fluorescirender Substanzen. Jahresber. d. Chemie (1867), 105.

Bemerkungen zu den Arbeiten der Herrn Lommel, Glazebrook und Matthieu.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 15, 613.

Ueber Fluorescenz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 11, 908-12; Jour. Chem. Soc., 40, 214 (Abs.).

Ueber das Stokes'sche Gesetz.

Lamansky (S.). Ann. Phys. u. Chem., n. F. 8, 624-8; Comptes Rendus, 88, 1192-4, 1851; Jour. Chem. Soc., 36, 862 (Abs.); Beiblätter, 3, 619.

(Look above, under Becquerel, and below, under Lubarsch.)

Sur la fluorescence des terres rares.

Lecoq de Boisbaudran. Comptes Rendus, 101 (1885), 552, 588; Jour. Chem. Soc., 48, 1174 (Abs.).

Les fluorescences Z  $\alpha$  et Z  $\beta$  appartiennent-elles à des terres différentes? Lecoq de Boisbaudran. Comptes Rendus, 102, 899-902; Jour. Chem. Soc., 50, 666 (Abs.).

Identité d'origine de la fluorescence Z  $\beta$  par renversement et des bandes obtenus dans le vide par M. Crookes.

Lecoq de Boisbaudran. Comptes Rendus, 103, 118-17; Jour. Chem. Soc., 50, 958.

Fluorescence des composés du manganèse soumis à l'effluve électrique dans le vide.

Lecoq de Boisbaudran. Comptes Rendus, 103, 468-71, 629-81, 1064-7, 1107; Jour. Chem. Soc., 52, 189, 191; Amer. Jour. Sci., (3) 33, 149-51.

Fluorescence rouge de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 104, 830-4; Jour. Chem. Soc., 52, 409 (Abs.).

Ueber die Fluorescenz in der Anthracenreihe.

Liebermann (C.). Ber. chem. Ges., 13, 918-16.

Ueber Fluorescenz.

Lommel (E.). Sitzungsber. d. phys. med. Ges. Erlangen, 1871, 89-60;
Ann. Phys. u. Chem., 143, 26-51;
Ann. Chim. et Phys., (4) 26, 288 (Abs.).

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., 159, 514-36; Jour. Chem. Soc., 1877, 1, 676; Amer. Jour. Sci., (3) 13, 380 (Abs.).

Intensität des Fluorescenzlichtes.

Lommel (E.). Ann. Phys. u. Chem., 160, 75-96.

Fluorescenz.

Lommel (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2282 (Abs.); Ann. Phys. u. Chem., n. F. 3, 118-25; Jour. Chem. Soc., 34, 858 (Abs.).

Theorie der Absorption und Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem?, n. F. 3, 251-83.

Zwei neue fluorescirende Substanzen, Anthracenblau und bisulfobichloranthracenige Säure.

Lommel (E.). Ann. Phys. u. Chem., n. F. 6, 115-118.

Ueber das Stokes'sche Gesetz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 244.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 634; 9, 108.

Ueber Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., n. F. 10, 449-72, 681-54.

Die Fluorescenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 856.

Die Fluorescenz des Kalkspathes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 21, 422; Jour. Chem. Soc., 46, 649 (Abs.).

Beobachtungen über Fluorescenz, Didymglas und Aescorcin.

Lommel (E.). Ann. Phys. u. Chem., (2) 24, 288-92.

Zur Theorie der Fluorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 25, 643-55; Jour. de Phys., (2) 5, 516 (Abs.).

Ueber Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., 153, 420-40; n. F. 6, 248-67; Jour. Chem. Soc., (2) 13, 528 (Abs.).

Das Stokes'sche Gesetz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 9, 665-71.

Neue Experimentaluntersuchungen über Fluorescenz.

Lubarsch (O.). Ann. Phys. u. Chem., n. F. 11, 46-69; Jour. Chem. Soc., 40, 70 (Abs.).

Bemerkungen zu den Arbeiten des Hernn Lamansky über Fluorescenz. Lubarsch (O.). Ann. Phys. u. Chem., n. F. 14, 575-80.

Observations on the colour of fluorescent solutions.

Morton (H.). Chem. News, 24, 77; Jour. Chem. Soc., (2) 9, 992-3 (Abs.); (2) 10, 27; Amer. Jour. Sci., (8) 2, 198, 355.

Fluorescent relations of certain solid hydrocarbons found in coal-tar and petroleum distillates.

Morton (H.). Phil. Mag., (4) 44, 345-9; Ann. Phys. u. Chem., 148, 292-7; Chem. News, 26, 199-201, 272-4; Jour. Chem. Soc., (2) 11, 285 (Abs.).

Fluorescenzverhältnisse gewisser Kohlenwasserstoffverbindungen in den Steinkohlen-und Petroleum-Destillaten.

Morton (H.). Ann. Phys. u. Chem., 155, 551-79.

Fluorescence and the violet end of a projected spectrum.

Morton (H.). Chem. News, 27, 88.

Investigation of the fluorescent and absorption spectra of the uranium salts.

Morton (H.) and Bolton (H. C.). Chem. News, 28, 47-50, 118-16, 164-7, 288-4, 244-6, 257-9, 268-70; Jour. Chem. Soc., (2) 12, 12 (Abs.).

Fluorescent relations of the basic salts of uranic oxide.

Morton (H.). Chem. News, 29, 17-18; Jour. Chem. Soc., (2) 12, 642 (Abs.).

Fluorescent relations of chrysene and pyrene.

Morton (H.). Chem. News, 31, 35-6, 45-7.

On the connection between fluorescence and absorption.

Sorby (H. C.). Monthly Microscop. Jour., 13, 161-4.

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, **38**, 1077-8; Jour. Chem. Soc., **36**, 862 (Abs.); Beiblätter, **3**, 620 (Abs.).

Zur Kenntniss der Fluorescenzerscheinungen.

Stenger (Fr.). Ann. Phys. u. Chem., (2) 28, 201-30; Berichtigung dazu, do., 368.

On the change of refrangibility of light.

Stokes (G. G.). Phil. Trans. (1852), 463–562. (His discovery of what has since been known as fluorescence.)

Sur la fluorescence de la matière colorante des champignons.

Weiss (A.). Acad. de Vienne, Wiener Anzeiger (1886), 111; Jour. de Phys., (2) 5, 240; Chem. Centralblatt (1886), 670-1; Jour. Chem. Soc., 52, 314.

Fluorescence des Naphthalinrothes.

Wesendonck (K.). Ann. Phys., (2) 26, 521-7; Jour. Chem. Soc., 50, 585; Jour. de Phys., (2) 5, 517.

Berichtigung zu einer Notiz des Herrn Lommel betreffend die Theorie der Fluorescenz.

Wüllner (A.). Ann. Phys. u. Chem., Ergänzungsband, 1878, 8, 474-8.

#### FLUORINE.

Silicic fluoride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Spectre du fluorure de silicium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Das Aufleuchten, die Phosphorescenz und die Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Spectrum des Fluors.

Jahresber. d. Chemie, 15 (1862), 88.

Spectrum des Phosphorescenzlichtes von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Note on the spectra of calcium fluoride.

Liveing (G. D.). Proc. Cambridge Philosoph. Soc., 3, 96-8; Beiblätter, 4, 611 (Abs.).

Spectrum von Fluorborgas.

Plücker. Ann. Phys. u. Chem., 104, 125.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (8) 10, 808-4.

Spectre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 998.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-87; Jour. Chem. Soc., 46, 649 (Abs.).

#### LITERATURE OF THE SPECTROSCOPE.



#### GADOLINITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., 40, 502-9; Jour. Chem. Soc., 52, 884.

Remarques sur la gadolinite.

Delafontaine. Comptes Rendus, 90, 221.

Gadolinium, le Ya de Marignac.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 902; Jour. Chem. Soc., 50, 667 (Abs.).

Sur les terres de la gadolinite.

Marignac (C.). Ann. Chim. et Phys., (5) 14, 247-258; Jour. Chem. Soc., 36, 113 (Abs.).

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignac (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (8)17, 62-8 (Abs.); Jour. Chem. Soc., 36, 118-19 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 189-48.

Recherches sur l'absorption des rayons ultra-violets par diverses substances. II, Sur les spectres d'absorption des terres de la gadolinite.

Soret (J. L.). Arch. de Genève, (2) 63, 89-112; Comptes Rendus, 86, 1062-4; Beiblätter, 3, 196 (Abs.); 2, 410-11; Jour. Chem. Soc., 2, 410 (Abs.).

Ueber die Erden des Gadolinits von Ytterby.

Welsbach (C. Auer von). Sitzungsber. d. Wiener Akad., 88 II, 382-44, 1287-51; Zeitschr. analyt. Ghem., 23, 520 (Abs.); Chem. News 51, 25 (Abs.).

#### GALLIUM.

Caractères chimiques et spectroscopiques d'un nouveau métal, le gallium, découvert dans une blende de la mine de Pierrefitte, vallée d'Argelès (Pyrénnées).

Lecoq de Boisbaudran (F.). Comptes Rendus, 81, 492-5; 82, 168, 1086, 1098; Bull. Soc. chim. Paris, n. s. 24, 370; Jour. Chem. Soc., 1876, 1, 190 (Abs.); Amer. Jour. Sci., (8) 11, 820 (Abs.); Ann. Chim. et Phys., (5) 10, 117; Ann. Phys. u. Chem., 159, 650; Chem. News, 32, 159, 294.

Remarques à propos de la découverte du gallium.

Mendelejef (D.). Comptes Rendus, 81, 969.

### GERMANIUM.

Ueber das Spectrum des Germaniums.

Kobb (G.). Ann. Phys. u. Chem., (2) 29 (1886), 670-2; Jour. Chem. Soc., 52, 818 (Abs.); Amer. Jour. Sci., (8) 33, 151 (Abs.).

Spectre du germanium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1291-5; Jour. Chem. Soc., 50, 768 (Abs.).

### GLASS.

Prüfung des gelben Glases für Dunkelzimmer der Photographen.

Foster (Le Neve). Dingler's Journal, 207, 427; Jour. Chem. Soc., (2) 11, 948 (Abs.).

Phasenveränderung des Lichtes bei Reflexion an Glas.

Glan (P.). Ann. Phys. u. Chem., 155, 14.

On the influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sci., (8) 15, 269-75; Beiblätter, 2, 388 (Abs.).

Refractive indices of glass.

Hopkinson (J.). Proc. Royal Soc., 26, 290-7; Beiblätter, 1, 680 (Abs.).

Vertheilung der Wärme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 207, 209.

The yellow glass of commerce lets through portions of nearly the whole spectrum.

Lea (M. Carey). Amer. Jour. Sci., (8) 33, 868.

On the refractive and dispersive powers of various samples of glass.

Lohse (J. G.). Monthly Notices Astronom. Soc., 40, 568-4; Beiblätter, 4, 891 (Abs.).

Spectra produced in glass by scratching.

Love (E. J. J.). Nature, 32, 270.

Spectrale Untersuchung eines longitudinaltönenden Glasstabes.

Mach (E.). Ann. Phys. u. Chem., 146, 316-17.

Ueber die Dispersionsverhältnisse optischer Gläser.

Merz (S.). Zeitschr. f. Instrumentenkunde, 2, 176-80; Beiblätter, 6, 678 (Abs.).

Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe.

Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (8) 13, 412 (Abs.).

Methoden zur Bestimmung der Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 875-86.

# GOLD.

Gold arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 80.

L'or n'a donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 382.

Spectrum des Goldchlorids.

Jahresber. d. Chemie (1878), 152.

Chlorure d'or en solution, étincelle; chlorure d'or dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 172, 176, planche XXVI.

Spectre de chlorure d'or.

Lecoq de Boisbaudran (F.). Bull. Soc. chim. Paris, n. s. 21, 125.

Sur quelques spectres métalliques, chlorure d'or.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152-4; Jour. Chem. Soc., (2) 12, 217 (Abs.); Ber. chem. Ges., 6, 1418 (Abs.).

#### HEAT SPECTRA.

Measurement of the so-called thermospectrum.

Abney (W. de W.). Chem. News, 40, 21.

Sur un moyen d'isoler les radiations calorifiques des radiations lumineuses et chimiques.

Assche (F. von). Comptes Rendus, 97, 888.

Spectres calorifiques.

Aymonnet. Comptes Rendus, 82, 1158.

Pouvoirs absorbants des corps pour la chaleur.

Aymonnet. Comptes Rendus, 83, 971.

Nouvelle méthode pour étudier les spectres calorifiques.

Aymonnet. Comptes Rendus, 83, 1102.

Ein einfacher Versuch zur Versinnlichung des Zusammenhanges zwischen der Temperatur eines glühenden Drahtes und der Zusammensetzung des von ihm ausgehenden Lichtes.

Bezold (W. von). Ann. Phys. u. Chem., n. F. 21, 175-8.

Verschiebung der Spectrallinien unter Wirkung der Temperatur des Prismas.

Blaserna (P.). Ann. Phys. u. Chem., 143, 655.

- Einfluss der Temperatur auf die Empfindlichkeit der Spectralreaction. Cappel (E.). Ann. Phys. u. Chem., 139, 628.
- Einfluss des Druckes und der Temperatur auf die Spectren von Dämpfen und Gasen.

Ciamician. Sitzungsber. d. Wiener Akad., 77 II, 889; 78 II, 867.

Distribution of heat in the visible spectrum.

Conroy (Sir J.). Proc. Royal Soc., 3, 106-12; Phil. Mag., (5) 8, 208-9; Beiblätter, 4, 44 (Abs.).

Étude des radiations émises par les corps incandescents. Mesure optique des hautes températures.

Crova (A.). Ann. Chim. et Phys., (5) 19, 472-550; Beiblätter, 5, 117-18 (Abs.).

Mesure spectrométrique des hautes températures.

Crova (A.). Comptes Rendus, 87, 979; 90, 252; Jour. de Phys., 8, 196-8.

Recherches sur les spectres calorifiques obscurs.

Desains (P.). Comptes Rendus, 67, 296-7, 1097; 70, 986; 84, 285; 88, 1047; 89, 189; 94, 1144; 95, 488; Jour. Chem. Soc., 36, 864 (Abs.); Beiblätter, 3, 869 (Abs.).

Détermination des longueurs d'onde des rayons calorifiques à basse température dans le spectre.

Desains (P.) et Curie (P.). Comptes Rendus, 90, 1506.

Measurement of high temperatures.

Dewar (J.). Chem. News, 28, 174.

Distribution of heat in the spectrum.

Draper (J. W.). Amer. Jour. Sci., (3) 4, 161-75; Phil. Mag., (4) 44, 104-17; Jour. Chem. Soc., (2) 10, 968 (Abs.).

Absorption of light at different temperatures.

Feussner. Phil. Mag., (4) 29, 471; Monatsber. d. Berliner Akad., März, 1865.

De l'influence de la température sur les caractères des raies spectrales.

Fiévez (C.). Bull. de l'Acad. de Belgique, (8) 7, 848-55; Beiblätter, 8, 645 (Abs.); Les Mondes, (8) 8, 481-8; Chem. News, 50, 128 (Abs.).

Influence of temperature on the optical constants of glass.

Hastings (C. S.). Amer. Jour. Sci., (8) 15, 269-75; Beiblätter, 2, 388 (Abs.).

Distribution of heat in the spectra of various sources of radiation.

Jacques (W. W.). Dissertations of the Johns Hopkins University, 1879; Proc. Amer. Acad., 14, 142-61; Beiblätter, 3, 865 (Abs.).

Einfluss der Temperatur der Flamme auf das Spectrum.

Jahresber. d. Chemie, **15** (1862), 29; **21** (1868), 80; **23** (1870), 148, 175; **26** (1878), 54.

Durchgang der strahlenden Wärme durch polirtes und berüsstes Steinsalz; Diffusion der Wärmestrahlen; Lage des Wärmemaximums im Sonnenspectrum.

Knoblauch (H.). Ann. Phys. u. Chem., 120, 177.

Einfluss der Temperatur auf spectroscopische Beobachtungen.

Krüss (G.). Ber. chem. Ges., 17, 2782b; Jour. Chem. Soc., 48, 209 (Abs.).

Geschichtliches über das Wärmespectrum der Sonne; Vertheilung der Warme im Flintglasspectrum.

Lamansky (S.). Ann. Phys. u. Chem., 146, 200-30.

- Abhängigkeit des Brechungsquotienten der Luft von der Temperatur. Lang (V. von). Ann. Phys. u. Chem., 153, 450.
- Observations on invisible heat-spectra and the recognition of hitherto unmeasured wave-lengths, made at the Alleghany Observatory, Alleghany, Pa.

Langley (S. P.). Amer. Jour. Sci., (8) 31 (1886), 1-12; 32, 88-106; Phil. Mag., (5) 21, 894-409: 22, 149-178; Jour. de Phys., (2) 5, 377-80; Ann. Chim. et Phys., (6) 9, 488-506; Beiblätter, 11, 245.

Ueber die spectrale Vertheilung der strahlenden Wärme.

Lecher (E.). Wiener Anzeigen (1881), 198-4.

Spectra of vapours at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Nothwendigkeit bei spectroscopische Messungen die Temperatur zu berücksichtigen.

Lommel (E.). Ann. Phys. u. Chem., 143, 656.

Om Värmefördelningen i Normalspektrum (Ueber die Wärmevertheilung im Normalspectrum).

Lundquist (G.). Oefversigt af K. Vetensk. Acad. Hand., 1874, 31, X, 19-27; Ann. Phys. u. Chem., 155, 146-55.

Maximum de température.

Magnus (G.). Ann. Chim. et Phys., (4) 6, 155.

- Sur l'identité des diverses radiations lumineuses, calorifiques et chimiques.

  Melloni. Comptes Rendus, 15, 454.
- Température des différentes parties du spectre solaire.

Melloni. Comptes Rendus, 18, 39.

Recherches sur la réflexion métallique des rayons calorifiques obscurs et polarisés.

Mouton. Comptes Rendus, 84, 650.

Spectre calorifique normal du Soleil et de la lampe à platine incandescent Bourbouze.

Mouton. Comptes Rendus, 89, 295.

Wärmevertheilung im Spectrum eines Glas-und Steinsalzprismas.

Müller (J.). Ann. Phys. u. Chem., 105, 847.

- Wärmevertheilung im Diffractionsspectrum.
  - Müller (J.). Ann. Phys. u. Chem., 105, 355.
- Untersuchungen über die thermischen Wirkungen des Sonnenspectrums. Müller (J.). Ann. Phys. u. Chem., 115, 887.
- Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543; Berichtigung dazu, 116, 644.

Effect of increased temperature upon the nature of the light emitted by the vapour of certain metals or metallic compounds.

Roscoe and Clifton. Chem. News, 5, 283.

- On spectral lines of low temperature.
  - Salisbury (The Marquis of). Phil. Mag., (4) 45, 241-5; Jour. Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (8) 6, 141 (Abs.).
- Stickstoff gibt je nach der Temperatur drei Spectra.
  Schimkow (A.). Ann. Phys. u. Chem., 129, 518.
- Ueber die Abhängigkeit der Brechungsexponenten anomal dispergirender Medien von Concentration der Lösung und der Temperatur. Sieben (G.). Ann. Phys. u. Chem., n. F. 23, 312.
- Einfluss der Temperatur auf das optische Drehvermögen des Quartzes und des chlorsauren Natrons.

Sohnke (L.). Ann. Phys. u. Chem., n. F. 3, 516.

Rapport sur un travail de M. Fiévez concernant l'influence de la température sur les caractères des raies spectrales.

Stas. Bull. de l'Acad. de Belgique, (3) 7, 290-4.

Ueber den Einfluss der Wärme auf die Brechung des Lichtes in festen Körpern.

Stefan (J.). Sitzungsber. d. Wiener Akad., 63 II, 228-45.

Ueber den Einfluss der Dichtigkeit und Temperatur auf die Spectra glühender Gase.

Zöllner (F.). Ber. d. k. Sächs. Ges. d. Wiss, 22, 238-58; Ann. Phys. u. Chem., 142, 88-111; Phil. Mag., (4) 41, 190-205.

#### **HELIUM.**

Sur la raie dite de l'hélium.

Spée (E.). Bull. de l'Acad. de Belgique, (8) 49, 879-96; Beiblätter, 4, 614 (Abs.).

# SPECTRA AT HIGH ALTITUDES.

Notes on some recent astronomical experiments at high altitudes on the Andes.

Copeland (R.). Nature, 28, 606; Beiblätter, 8, 220 (Abs.).

Ascension scientifique à grande hauteur, exécutée le 22 mars 1874.

Crocé-Spinelli (J.) et Sivel. Comptes Rendus, 78, 946-50; Amer Jour. Sci., (3) 8, 36 (Abs.).
(Look below under Janssen and Pecchi.)

- Note sur des observations spectroscopiques, faites dans l'ascension du 24 Spet. 1874, pour étudier les variations des couleurs du spectre.

  Fonvielle (W. de). Comptes Rendus, 89, 816-17.
- Die Fraunhofer'schen Linien auf grossen Höhen dieselben wie in der Ebne. Heusser (J. C.). Ann. Phys. u. Chem., **90**, 819.
- Remarques sur le spectre d'eau à l'occasion du voyage aérostatique de M. M. Crocé-Spinelli et Sivel.

Janssen (J.). Comptes Rendus, 78, 995-8.

Sunlight and skylight at high altitudes.

Langley (S. P.). Nature, 26, 586-9; Amer. Jour. Sci., (3) 24, 393-8;
Beiblätter, 7, 28 (Abs.); Jour. de Phys., (2) 3, 47 (Abs.).

Observations relatives à une communication de M. Crocé-Spinelli sur les bandes de la vapeur d'eau dans le spectre solaire.

Secchi (A.). Comptes Rendus, 78, 1080-81.

### HOLMIUM.

Spectre de holmium.

Clève (P. T.). Comptes Rendus, 89, 478.

Remarques sur le holmium ou philippine.

Delafontaine. Comptes Rendus, 90, 221.

Holmium, ou l'x de M. Soret.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 1003-4; Jour. Chem. Soc., 50, 667 (Abs.).

# HOMOLOGOUS SPECTRA.

# On homologous spectra.

Hartley (W. N.). Jour. Chem. Soc., 43, 890-400; Nature, 27, 522
(Abs.); Chem. News, 47, 188 (Abs.); Amer. Jour. Sci., (3) 26, 401
(Abs.); Ber. chem. Ges., 16, 2859 (Abs.); Beiblätter, 8, 217 (Abs.).

#### HYDROGEN.

# Spectrum von Wasserstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 157.

Wasserstoff hat nur ein Spectrum; die vielfachen Spectren rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 802, 804.

Spectres des gaz simples; l'hydrogène, etc.

Angström (A. J.). Comptes Rendus, 73, 869.

Notiz über die Spectrallinien des Wasserstoffs.

Balmer (J. J.). Ann. Phys. u. Chem., (2) 25, 80-7; Jour. Chem. Soc., 48, 1025 (Abs.); Jour. de Phys., (2) 5, 515 (Abs.).

Absorptionsspectrum des durch Wasserstoffsuperoxyd gebräunten blausäurehaltigen Blutes.

Buchner. Jour. prackt. Chemie, 105, 845.

Hydrogen tube spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 61, 62, 68.

Sur le spectre ultra-violet de l'hydrogène.

Cornu (J.). Jour. de Phys., (2) 5, 841-54.

Continuous spectra of hydrogen observed by combustion of hydrogen in oxygen and chlorine.

Dibbits. Ann. Phys. u. Chem., 122, 497.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 49, 107-113; Phil.
Mag., (5) 9, 809-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys.,
(5) 20, 179-85; Jour. Chem. Soc., 40, 69 (Abs.).

Sur l'élargissement des raies de l'hydrogène.

Fiévez (C.). Comptes Rendus, 92, 521-2; Beiblätter, 5, 281 (Abs.); Jour. Chem. Soc., 40, 955 (Abs.).

Combustion of hydrogen and carbonic oxide under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

17 T

The refraction equivalents of carbon, hydrogen, nitrogen, and oxygen in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 327-30; Ber. chem. Ges., 14, 1558 (Abs.).

Untersuchungen über das zweite Spectrum des Wasserstoffes.

Hasselberg (B.). Mem. Acad. imp. St. Pétersbourg, 30, No. 7, 24;
.31, No. 14, 30; Beiblätter, 8, 381-4 (Abs.); Mem. Spettr. ital., 13, 97 (Abs.); Phil. Mag., (5) 17, 329-52; Jour. Chem. Soc., 48, 317 (Abs.); Jour. de Phys., (2) 4, 241 (Abs.).

Bemerkungen zu Hrn. Wüllner's Aufsatz; "Ueber die Spectra des Wasserstoffs und des Acetylens."

Hasselberg (B.). Ann. Phys. u. Chem., n. F. 15, 45-9.

Zusatz zu meinen Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). Mélanges phys. et chim. tirés du Bull. de l'Acad. de St. Pétersbourg, 12, 208-14; Beiblätter, 9, 519 (Abs.).

Die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks. Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-5.

On the spectrum of the flame of hydrogen.

Huggins (W.). Proc. Royal Soc., **80**, 576; Amer. Jour. Sci., (3) **20**, 121-8; Beiblätter, **4**, 658 (Abs.).

L'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Huggins (W.). Bull. de l'Acad. de Belgique, (2) 49, 266-7; Beiblätter, 4, 658 (Abs.).

Spectrum des Wasserstoffs.

Jahresber. d. Chemie, 16 (1868), 111.

Absorptionsspectrum des Phosphorwasserstoffs.

Jahresber. d. Chemie, 25 (1872), 142.

Absorptionsspectra von Kohlenwasserstoffen.

Jahresber. d. Chemie, 28 (1875), 126.

Absorptionsspectrum des Wasserstoffs.

Jahresber. d. Chemie, 25 (1872), 141, 148-6.

Recherches photométriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-369, avec 1 planche;
Jour. de Phys., (2) 5, 186 (Abs.); note par Wiedemann (E.), Ann.
Chim. et Phys., (6) 7, 143-4.

Spectre de l'hydrogène phosphoré.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 187, planche XXVII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 1, 510 (Abs.).

Spectra of compounds of carbon with hydrogen.

Liveing (G. D.) and Dewar (J.). Nature, 22, 620.

Note on the reversal of hydrogen lines, and on the outburst of hydrogen lines when water is dropped into the arc.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 74-6; Chem.
News, 47, 122; Nature, 28, 21 (Abs.); Beiblätter, 7, 371 (Abs.);
Jour. de Phys., (2) 4, 51.

Note on the spectrum of hydrogen.

Lockyer (J. N.). Proc. Royal Soc., 30, 81-2; Beiblätter, 4, 868 (Abs.).

Sur les spectres des vapeurs aux températures élévées; hydrogène.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Chem. News, 30, 98. (Original in French.)

De l'élargissement des raies spectrales de l'hydrogène.

Monckhoven (D. von). Comptes Rendus, 95, 878.

Spectrum von Wasserstoff in der Geissler'schen Röhre.

Plücker. Ann. Phys. u, Chem., 104, 122; 105, 76.

Spectrum von Wasserstoff.

Plücker. Ann. Phys. u. Chem., 105, 81.

Spectra am negativen Pol in Stickstoff-und Wasserstoff-röhren; Modification beider Röhren nach langer Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 185-6.

Coloration of the hydrogen flame.

Santini (S.). Gazzetta chim. ital., 14, 142-6; Jour. Chem. Soc., 48, 209 (Abs.); Beiblätter, 9, 32 (Abs.).

On the spectrum of hydrogen at low pressure.

Seabroke (G. M.). Monthly Notices Astronom. Soc., 32, 68-4; Phil. Mag., (4) 43, 155-7; Chem. News, 25, 111; Ann. Chim. et Phys., (4) 26, 264 (Abs.).

Remarques sur la relation entre les protubérances et les taches solaires; intérêt qu'auraient les expériences sur la lumière spectrale de l'hydrogène brûlant sous une très forte pression.

Seechi (A.). Comptes Rendus, 68, 287-8.

Hydrogène et la raie D_s dans le spectre de la chromosphère solaire. Secchi (A.). Comptes Rendus, **73**, 1800.

Prismatic spectra of the flames of compounds of carbon and hydrogen.

Swan. Phil. Trans. Edinburgh, 21, 411; Ann. Phys. u. Chem., 100, 306.

Spectres de l'hydrogène, etc., sur la surface du Soleil. Vicaire (E.). Comptes Rendus, 76, 1540.

Spectrum von Wasserstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Ueber die Spectra des Wasserstoffs.

Vogel (H. C.). Monatsber. d. Burliner Akad. (1879), 586-604; Beiblätter, 4, 125-30; Amer. Jour. Sci., (8) 19, 406 (Abs.).

Die Wasserstoffflamme in der Spectralanalyse.

Vogel (H. W.). Ber. chem. Ges., 12, 2313; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Ueber die neuen Wasserstofflinien.

Vogel (H. W.). Ber. chem. Ges., 13, 274-6; Jour. Chem. Soc., 38, 597-8 (Abs.); Beiblätter, 4, 274 (Abs.).

Die Photographie des Wasserstoffspectrums.

Vogel (H. W.). Photographische Mittheilungen, 16, 276-8.

Ueber die Spectra des Fluorsiliciums und des Siliciumwasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

Ueber die Dissociationswärme des Wasserstoffmoleculs.

Wiedemann (E.). Ann. Phys. u. Chem., n. F. 18, 509-10.

Electrische Spectra in Wasserstoff.

Willigen (S. M. van der). Ann. Phys. u. Chem., 106, 622.

Drei Spectra bei Wasserstoff.

Wüllner (A.). Ann. Phys. u. Chem., 135, 499.

Spectra der Gase unter hohem Druck; Wasserstoff gibt dabei ein continuirliches Spectrum; vier Spectra beim Wasserstoff.

Wüllner (A.). Ann. Phys. u. Chem., 137, 387-47.

Spectra des Wasserstoffs.

Wüllner (A.). Ann. Phys. u. Chem., n. F. 14, 855. (Look above, under Hasselberg.)

# INDIGO (THE).

The indigo color in the spectrum.

Rood (O. N.). Amer. Jour. Sci., (8) 19, 185

#### INDIUM.

# Indium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 80, 45.

### Spectra of indium.

Clayden (A. W.) and Heycock (C. T.). Phil. Mag., (5) 2, 887-9; Amer. Jour. Sci., (3) 13, 57 (Abs.); Beiblätter, 1, 90-2.

Sels d'indium en solution, étincelle.

Lecoq de Boisbaudran. Spectres Lumineux, Paris, 1874, p. 142, planche XXI.

Vorläufige Notiz über ein neues Metall (Indium).

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 89, 441.

Ueber das Indium.

Reich (F.) und Richter (Th.). Jour. prackt. Chemie, 90, 172; Phil. Mag., (4) 26, 488.

Spectrum des Indiums.

Schrötter. Jour. prackt. Chemie, 95, 446.

Spectrum des Indiums.

Winkler. Jour. prackt. Chemie, 94, 1.

Zur spectralanalytische Ermittelung des Indiums.

Wleugel (S.). Correspondenzblatt d. Vereins analytischer Chemiker, 3, 39; Beiblätter, 5, 281 (Abs.); Zeitschr. analyt. Chemie, 20, 115 (Abs.).

#### INTERFERENCE.

Beobachtungen dunkler Interferenzstreifen im Spectrum des weissen Lichtes.

Abt (A.). Math. naturwiss. Ber. aus Ungarn, 1, 852-4.

Interferenzstreifen im Spectrum.

Arons (L.). Ann. Phys. u. Chem., (2) 24, 669-71.

- Sur les phénomènes d'interférence produits par les réseaux parallèles. Crova (A.). Comptes Rendus, 72, 855-8; 74, 982-36.
- Ueber Interferenzstreifen welche durch zwei getrübte Flächen erzeugt werden.

Exner (K.). Sitzungsber. d. Wiener Akad., 72 II, 675.

- Sur les conditions d'achromatisme dans les phénomènes d'interférence. Hurion (A.). Comptes Rendus, 94, 1845; 95, 75.
- Projection der Interferenz der Flüssigkeitswellen.

  Lommel (L.). Ann. Phys. u. Chem., (2) 26, 156.
- Sur l'application du spectroscope à l'observation des phénomènes d'interférence.

Mascart. Jour. de Phys., 1, 17; 3, 810.

- Bedeutung von Newton's Construction der Farbenordnungen dünner Blättchen für die Spectraluntersuchung der Interferenzfarben.
  Rollett (Alex.). Sitzungsber. d. Wiener Akad., 75 III, 17c.
- Graphische Darstellung der Spectren der Interferenzfarben för einen Gypskeil.

Rollett (Alex.). Sitzungsber. d. Wiener Akad., 77 III, 177.

Ueber die an bestaubten und unreinen Spiegeln sichtbare Interferenzerscheinung.

Sekulic. Ann. Phys. u. Chem., 154, 808.

- Prismatisches und Beugungsspectrum, Interferenzerscheinungen in demselben.
  - Stefan (J.). Sitzungsber. d. Wiener Akad., **50** II, 127, 138-42; Ann. Phys. u. Chem., **123**, 509.
- Interferenzstreifen im prismatischen und im Beugungsspectrum.
  Weinberg (M.). Carl's Repertorium, 18, 600-608.

#### INVERSION.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 882.

Sur les raies spontanément renversables.

Cornu (A.). Comptes Rendus, 100, 1181-1188; Jour. Chem. Soc., 48, 853 (Abs.), 1885.

Sur le renversement des raies du spectre.

Duhem. Jour. de Phys., (2), 4, 221-4.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv darzustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums in dunkle.

Jahresber. d. Chemie (1865), 90.

Umkehrung der Spectra.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 275, 295; 110, 187; Jour. praekt. Chemie, 80, 480-3.

Wandlung der Spectren.

Lepel (F. von). Ber. chem. Ges., 11, 1146.

Reversal of the lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). Nature, 24, 206; 26, 466.

Note on some phenomena attending the reversal of lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 428-32; Beiblätter, 3, 608 (Abs.).

Wandlung der Spectren.

Moser (J.). Ber. chem. Ges., 11, 1416.

Umkehrung der Spectra.

Tyndall. Jour. prackt. Chemie, 85, 261.

Wandlung der Spectren.

Vogel (H. W.). Ber. chem. Ges., 11, 622, 913, 1863, 1562.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 821.

Re-reversal of sodium lines.

Young (C. A.). Nature, 21, 274-5; Beiblätter, 4, 870.

#### IODINE.

Note on the absorption spectrum of iodine in solution in carbon disulphide.

Abney and Festing. Proc. Royal Soc., 34, 480.

The dichroism of the vapour of iodine.

Andrews (T.). Chem. News, 24, 75; Jour. Chem. Soc., (2) 9, 998 (Abs.).

Action des rayons différemment réfrangible sur l'iodure et le bromure d'argent.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 30 (Abs.).

Iodine vapour; spark in iodine vapour.

Capron (J. R.). Photographed Spectra, London, 1877, p. 76.

Spectre de l'iode dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Absorption spectra of iodine.

Conroy (Sir John). Proc. Royal Soc., 25, 46.

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Comptes Rendus, 74, 660.

Spectre d'absorption des vapeurs de protobromure d'iode, etc.

Gernez (D.). Comptes Rendus, 74, 1190-92; Jour. Chem. Soc., (2) 10, 665 (Abs.); Phil. Mag., (4) 43, 478-5; Amer. Jour. Sci., (8) 4, 59-60.

Spectre d'absorption du chlorure d'iode.

Gernez (D.). Bull. Soc. chim. Paris, n. s. 17, 258; Ber. chem. Ges., 5, 219.

Iodure.

Gouy. Comptes Rendus, 85, 70.

Spectrum des Iods.

Jahresber. d. Chemie, 16, 109.

Absorptionsspectrum des Ioddampfer

Jahresber. d. Chemie, 23, 174.

Absorptionsspectrum des einfachen Chlorjods.

Jahresber. d. Chemie, 25, 139.

Absorptionsspectrum des Bromjods.

Jahresber. d. Chemie, 25, 140.

Absorptionsspectrum des Iods.

Jahresber. d. Chemie, 25, 141.

On the action of the less refrangible rays of light on silver iodide.

Lea (M. Caray). Amer. Jour. Sci., (8) 9, 269-78; Jour. Chem. Soc. 1876, 1, 28 (Abs.).

Iodure de baryum dans le gaz chargé d'iode.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 62. 65, planche VIII.

Action de la lumière sur l'acide iodhydrique.

Lemoine (G.). Comptes Rendus, 85, 144-7; Beiblätter, 510 (Abs.).

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Sur les spectres des vapeurs aux températures elévees; iode.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chem. News, 30, 98.

Die Fluorescenz des Ioddampfes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 19, 856.

Verbindungsspectren zur Entdeckung von Iod.

Mitscherlich (A.). Jour. prackt. Chemie, 97, 218.

Entdeckung sehr geringer Mengen von Chlor, Brown und Iod in Verbindungen.

Mitscherlich (A.). Ann. Phys. u. Chem., 125, 629.

Lo spettro di assorbimento del vapore di jodio.

Morghen (A.). Mem. Spettr. ital., 13, 127-81; Beiblätter, 8, 822 (Abs.); Atti R. Accad. Lincei, Transunti, (3) 8, 327-80.

Absorption-spectra of bromine and of iodine-monochleride.

Roscoe (H. E.) and Thorpe (T. E.). Proc. Royal Soc., 25, 4.

Sur la lumière émise par la vapeur d'iode.

Salet (G.). Comptes Rendus, 74, 1249.

Le spectre primaire de l'iode.

Salet (G.). Comptes Rendus, 75, 76; Bull. Soc. chim. Paris, n. s. 18, 216.

Absorptionsspectrum des Ioddampfes.

Thalén (R.). Ann. Phys. u. Chem., 139, 508.

Ueber die Brechung und Dispersion des Lichtes in Iod-Silber.

Wernicke (W.). Ann. Phys. u. Chem., 142, 560-78; Jour. Chem. Soc., (2) 9, 658 (Abs.); Ann. Chim. et Phys., (4) 26, 287 (Abs.).

Uebereinstimmung des Absorptionsspectrums und des ersten Iodspectrums mit dem Spectrum dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 159, 161.

# IRIDIUM.

Iridium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 80.

#### IRON.

On the estimation of small quantities of phosphorus in iron and steel by spectrum analysis.

Alleyne (Sir J. G. N.). Jour. Iron and Steel Inst. (1875), 62-72.

Iron spark spectrum, and iron arc spectrum; iron meteoric spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 81-8.

Le fer n'à donné aucune apparence de renversement.

Cornu (A.). Comptes Rendus, 73, 882.

Spectre du chlorure de fer.

Gouy. Comptes Rendus, 84, 281; Chem. News, 35, 107.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 38-41; Jour. Chem. Soc., 1876, 1, 454 (Abs.).

Distribution of heat in the various scources of radiation; black oxide of iron, etc.

Jacques (W. W.). Proc. Amer. Acad., 14, 161.

Spectrum der Bessemerflamme.

Jahresber. d. Chemie, (1867) 105, (1878) 150.

Perchlorure de fer en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 122, planche XVIII.

Spectrum der Bessemerflamme.

Lielegg (A.). Sitzungsber. d. Wiener Akad., 55 II, 150, 153-81; 56 II, 8, 24-80; Jour. prackt. Chemie, 100, 888; Phil. Mag., (4) 34, 302.

On the iron lines widened in solar spots.

Lockyer (J. N.). Proc. Royal Soc., 31, 848.

On the examination of the Bessemer flame with colored glasses and with the spectroscope.

Parker (J. Spear). Chem. News, 23, 25.

The spectroscopic examination of the vapours evolved on heating iron at atmospheric pressure.

Parry (J.). Chem. Soc., 49, 241-2; 50, 808; Ber. chem. Ges., 17,
 Referate, 887 (Abs.); Jour. Chem. Soc., 46, 801 (Abs.); Beiblätter,
 8, 646 (Abs.).

The spectroscope applied to the Bessemer Process.

Roscoe (H. E.). Chem. News, 22, 44; 23, 174; Phil. Mag., (4) 25, 318.

Employment of spectrum analysis in the Bessemer Process.

Roscoe (H. E.). Jour. Iron and Steel Inst., 1871, 2, 38-62; Ber. chem. Ges., 4, 419-21 (Abs.).

Spectre du fer dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 178.

Examination of the Bessemer Flame with colored glasses and with the spectroscope.

Silliman (J. M.). Chem. News, 22, 218; 23, 5.

Ueber das Eisenspectrum, erhalten mit dem Flammenbogen.

Thalén (Rob.). Nova Acta. Roy. Soc. Upsala, (3) 1884; Beiblätter, 9 (1885), 520 (Abs.).

Spectre du fer sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber die Absorptionsspectren einiger Salze der Eisengruppe.

Vogel (H. W.). Ber. chem. Ges., 8, 1583-40.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Erkennung von Thonerde neben Eisensalzen.

Vogel (H. W.). Ber. chem. Ges., 10, 378; Jour. Chem. Soc., 1877, 2, 269 (Abs.).

Ueber die Erkennung des Kobalts, neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2818-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

Spectrum of the Bessemer flame.

Watts (W. M.). Phil. Mag., (4) 34, 437; 45, 81; Chem. News, 23, 49; Jour. prackt. Chemie, 104, 420.

Coïncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. M.). Nature, 8, 46.

Methods for the determination of metallic iron by spectral analysis.

Wolff. Chem. News, 39, 124.

Spectroscopic examination of gases from meteoric iron.

Wright (A. W.). Amer. Jour. Sci., (8) 9, 294-302; Jour. Chem. Soc., 1876, 1, 27 (Abs.).

# JARGONIUM.

Jargonium, a new element accompanying zirconium.

Sorby (H. C.). Chem. News, 19, 121; Proc. Royal Soc., 17, 511.

# LANTHANUM.

Sur le poids atomique du lanthane.

Clève (P. T.). Bull. Soc. chim. Paris, 39, 151-5; Chem. News, 47, 154-5; Amer. Jour. Sci., (3) 25, 381 (Abs.).

Spectre du lanthane, avec une planche.

Thalén (Rob.). Jour. de Phys., 4, 88.

#### LEAD.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der natürlichen Sulfate des Baryum, Strontium und Blei.

Arzruni (A.). Zeitschr. f. Krystallogr. u. Mineral., 1, 165-92; Jahrb. f. Mineral. (1877), 526 (Abs.); Jour. Chem. Soc., 34, 189 (Abs.).

Lead arc spectrum, lead and antimony spark spectrum, lead and magnesium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 84, 85.

Renversement des raies spectrales du plomb.

Cornu (A.). Comptes Rendus, 73, 882.

Spectre de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 231; Chem. News, 35, 707.

Spectren zwischen Bleielectroden.

Jahresber. d. Chemie (1873), 152.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Spectre du plomb.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Chem. News, 24, 10.

Plomb métallique, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 147, planche XXIII.

#### LIGHT.

Vitesse de la lumière fait que les bords du spectre sont diffus.

Arago. Comptes Rendus, 36, 48.

Sur la rayonnement chimique qui accompagne la lumière, et sur les effets électriques en résultent.

Becquerel (Ed.). Comptes Rendus, 13, 198.

Note accompagnant la presentation du II. volume de son ouvrage intitulé "Lumière, ses Causes et ses Effets."

Becquerel (Ed.). Comptes Rendus, 67, 8.

Étude sur la part de la lumière dans les actions chimiques.

Chastaing (P.). Ann. Chim. et Phys., (5) 11, 145-228; Jour. Chem.
Soc., 1877, 2, 818 (Abs.); Beiblätter, 1, 515-20 (Abs.).
(Look below, under Vogel.)

Lage der chemischen Strahlen im Spectrum des Sonnen-und Gas-Lichts. Crookes (W.). Ann. Phys. u. Chem., 97, 619; Cosmos, 8, 90; Bull.

Lond. Photographical Soc., 21 Jan., 1856.

Sur l'emploi de la lumière monochromatique, produite par les sels de soude.

Henry (L. d'). Comptes Rendus, **76**, 222-4 (Abs.); Ann. Chem. u. Pharm., **169**, 272; Dingler's Jour., **207**, 405-7.

Constanz der Lichtspectren.

Jahresber. d. Chemie (1869), 174.

Sur le spectre anormal de la lumière.

Klercker (de). Comptes Rendus, 89, 784; Phil. Mag., (5) 8, 571-2; Beiblätter, 4, 278-4.

Lichtspectren.

Lecoq de Boisbaudran (F.). Ber. chem. Ges., 3, 140, 508, 572.

Zur Theorie des Lichtes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 16, 427-41.

Emploi du spectroscope pour distinguer une lumière plus faible dans une plus forte.

Seguin. Comptes Rendus, 68, 1822.

Chastaing's neue Theorie der chemischen Wirkung des Lichtes.

Vogel (H. W.). Ber. chem. Ges., 10, 1638-44; Beiblätter, 1, 681 (Abs.).

Les observations spectroscopiques à la lumière monochromatique.

Zenger (Ch. V.). Comptes Rendus, 94, 155; Amer. Jour. Sci., (8) 23, 822.

#### LIGHTNING.

(Look under Electricity.)

## LIMITS.

Limites des couleurs dans le spectre.

Listing. Ann. Chim. et Phys., (4) 13, 460.

Limites des couleurs dans le spectre.

Thalén (Rob.). Ann. Chim. et Phys., (4) 18, 218.

#### LINES OF THE SPECTRUM.

- Welchen Stoffen die Fraunhofer'schen Linien angehören.
  Angström (A. J.). Ann. Phys. u. Chem., 117, 296-802.
- Die Fraunhofer'schen Ringe, die Quetelet'schen Streifen und verwandte Erscheinungen.

Exner (K.). Sitzungsber. d. Wiener Akad., 76 II, 522.

Bestimmung des Brechungs-und Farbenzerstreuungs-Vermögens verschiedener Glasarten.

Fraunhofer (Jos.). Denkschr. d. k. Akad. d. Wiss. zu München, Band V (1814–15), 198–226, mit drey Kupfertafeln, München, 1817, 4°.

Note on the theoretical explanation of Fraunhofer's lines.

Hartshorne (H.). Jour. Franklin Inst., 75, 38-43; 105, 38; Les Mondes, 45, 517-22; Beiblätter, 2, 561.

Die Zusammensetzung des Spectrums.

Jahresber. d. Chemie, 1, 197; 5, 126, 181; 8, 123.

Ueber die Fraunhofer'schen Linien.

Jahresber. d. Chemie, 3, 154; 4, 152; 5, 124; 6, 167; 7, 187.

Anwendung der Fraunhofer'schen Linien als chemisches Reagens.

Jahresber. d. Chemie, 5, 125.

Künstliches Spectrum einer Fraunhofer'schen Linie. Jahresber. d. Chemie (1868), 124.

Newton, Wollaston, and Fraunhofer's lines.

Johnson (A.). Nature, 26, 572; Beiblätter, 7, 65-6 (Abs.).

On certain remarkable groups in the lower spectrum.

Langley (S. P.). Proc. Amer. Acad., 14, 92.

Erklärung der Linien und Streifen in den Lichtspectren. Lecoq de Boisbaudran (F.). Ber. chem. Ges., 2, 614.

Mutual attraction of spectral lines.

Peirce (C. S.). Nature, 21, 108; Beiblätter, 4, 278 (Abs.).

On spectral lines of low temperature.

Salisbury (The Marquis of). Phil. Mag., (4) 45, 241-5; Jour. Chem. Soc., (2) 11, 711 (Abs.); Amer. Jour. Sci., (3) 6, 141-2.

The relation between spectral lines and atomic weights.

Vogel (E.). Pharmaceutical Jour. Trans., (8) 6, 464-5.

Darstellung eines Spectrums mit einer Fraunhofer'schen Linie. Wällner (A.). Ann. Phys. u. Chem., 135, 174.

## LIQUIDS.

- Pouvoirs absorbants des corps pour la chaleur; solutions dans l'eau, etc.

  Aymonnet. Comptes Rendus, 83, 971.
- Ueber eine einfache Methode zur approximativen Bestimmung der Brechungsexponenten flüssiger Körper.

Bodynski (J.). Carl's Repertorium, 18, 502-4; Beiblätter, 6, 932 (Abs.).

Molecular-Refraction flüssiger organischer Verbindungen von hohem Dispersifvermögen.

Brühl (J. W.). Ann. Phys. u. Chem., 235, 1-106; Ber. chem. Ges., 19, 2746 (Abs.); Jour. Chem. Soc., 52, 191 (Abs.).

Spectroscopische Untersuchung der Constanten von Lösungen.

Burger (H.). Ber. chem. Ges., 11, 1876.

Methoder til at maale Brydningsforholdet for farvede Vaedsker (Ueber die Messung des Brechungsverhältnisses gefärbter Flüssigkeiten).

Christiansen (C.). Oversigt kgl. Danske Vidensk. Selsk. Forh. (1882), 217-50; Ann. Phys. u. Chem., n. F. 19, 257-67; Nature, 28, 308 (Abs.).

- Nouvelle méthode de détermination des indices de réfraction des liquides. Croullebois (M.). Ann. Chim. et Phys., (4) 22, 189-50.
- Recherches sur le pouvoir réfringent des liquides.

Damien (B. C.). Ann. de l'École normale, (2) 10, 238-804; Beiblätter, 5, 579-84 (Abs.); Jour. de Phys., 10, 394-401, 431-34 (Abs.).

On the specific refraction and dispersion of light by liquids.

Gladstone (J. H.). Rept. British Assoc. (1881), 591; Nature, 24, 468 (Abs.); Beiblätter, 6, 21 (Abs.).

Ueber Regenbogen, gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.

Hammerl (H.). Sitzungsber. d. Wiener Akad., 86 II, 206-15; Beiblätter, 7, 388-5 (Abs.).

Preliminary notice of experiments concerning the chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 22, 241-3; Chem. News, 29, 148.

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 872-3; Phil. Mag., (5) 1, 244-5; Ber. chem. Ges., 8, 765 (Abs.).

Application des franges de Talbot à la détermination des indices de réfraction des liquides.

Hurion. Comptes Rendus, 92, 452-8.

Spectren gefärbter Lösungen.

Jahresber. d. Chemie, 15, 84.

Ueber die Constitution von Lösungen.

Krüss (G.). Ber. ehom. Ges., 10, 1248-9; Jour. Chem. Soc., 42, 1018
(Abs.); Nature, 26, 568; Beiblätter, 6, 677 (Λbs.); Amer. Jour. Sci.,
(3) 24, 141 (Abs.).

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Ueber den Einfluss des Lösungsmittels auf die Absorptionsspectra gelöster absorbirender Mittel.

Kundt (A.). Sitzungsber. d. Münchener Akad. (1877), 284-62; Ann. Phys. u. Chem., n. F. 4, 84-54.

Recherches sur l'illumination des liquides, etc.

Lallemand. Comptes Rendus, 69, 182.

Ueber die Molecularrefraction flüssiger organischer Verbindungen.

Landolt (H.). Sitzungsber. d. Wiener Akad. (1882), 62-91; Ann. Phys. u. Chem., 213, 75-112; Beiblätter, 7, 843; Ber. chem. Ges., 15, 1081-40; Jour. Chem. Soc., 42, 909 (Abs.).

Absorption des Lichtes durch gefärbte Flüssigkeiten.

Melde (F.). Ann. Phys. u. Chem., 124, 91; 126, 264.

Observations on the colour of fluorescent solutions.

Morton (H.). Amer. Jour. Sci., (8) 2, 198-9, 855-7; Jour. Chem. Soc., (2) 9, 992 (Abs.); 10, 27 (Abs.); Chem. News, 24, 77.

Ueber die Aenderung des Volumens und des Brechungsexponenten von Flüssigkeiten durch hydrostatischen Druck.

Quincke (G.). Ann. Phys. u. Chem., n. F. 19, 401-85; Sitzungsber. d. Berliner Akad. (1883), 409 (Abs.); Nature, 28, 308 (Abs.).

- Ueber eine neue Flüssigkeit von hohem specifischen Gewicht, hohem Brechungsexponenten und grosser Dispersion.
  - . Rohrbach (C.). Ann. Phys. u. Chem., n. F. 1, 169-74; Amer. Jour. Sci., (8) 26, 406 (Abs.); Jour. Chem. Soc., 46, 145 (Abs.).
- On the absorption bands in the visible spectrum produced by certain colourless liquids.

Russell (W. J.) and Lapraik (W.). Jour. Chem. Soc., 39, 168-73: Amer. Jour. Sci., (8) 21, 500 (Abs.); Nature, 22, 868-70; Beiblätter, **5**, 44-5.

Ueber die Absorption des Lichtes durch Flüssigkeiten.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 6, 267-70.

Untersuchungen über die Abhängigkeit der Molecularrefraction flüssiger Verbindungen von ihrer chemischen Constitution.

> Schröder (H.). Ber. chem. Ges., 15, 994-8; Jour. Chem. Soc., 42, 910 (Abs.).

- Fernere Untersuchungen über die Abhängigkeit der Molecularrefraction flüssiger Verbindungen von ihrer chemischen Zusammensetzung. Schröder (H.). Sitzungsber. d. Münchener Akad. (1882), 57-104;
  - Ann. Phys. u. Chem., n. F. 15, 636-75; 18, 148-75; Jour. Chem. Soc., 42, 1158 (Abs.); 44, 588 (Abs.).
- Sur les spectres d'absorption ultra-violets des différents liquides. Soret (J. L.). Arch. de Genève, (2) 60, 298-300; Beiblätter, 2, 30 (Abs.).
- Zur Spectralanalyse gefärbter Flüssigkeiten, Gläser und Dämpfe. Stein (W.). Jour. prackt. Chemie, 10, 368-84; Jour. Chem. Soc., (2) 13, 412 (Abs.).
- Méthode nouvelle pour déterminer l'indice de réfraction des liquides. Terquem et Trannin. Comptes Rendus, 78, 1843-5; Dingler's Jour. 212, 552-4; Jour. de Phys., 4, 232-8; Ann. Phys. u. Chem., 157, 802-9.
- Ueber eine Methode zur Untersuchung der Absorption des Lichtes durch gefärbte Lösungen.

Tumlirz (O.). Wiener Anzeigen (1882), 165 (Abs.); Beiblätter, 7, 895 (Abs.); Chem. News, 49, 201 (Abs.).

Absorption spectra of certain organic liquids. Wolff (C. H.). Chem. News, 47, 178.

#### LITHIUM.

- Ueber quantitative Bestimmung des Lithiums mit dem Spectral-Apparat.

  Ballmann (H.). Zeitschr. analyt. Chemie, 14, 297-801; Jour. Chem. Soc., 1876, 2, 550 (Abs.).
- On the presence of lithium in meteorites. Bunsen. Phil. Mag., (4) 23, 474.
- Existence de la lithine et de l'acide borique dans les eaux de la mer Morte.

  Dieulafait. Comptes Rendus, 94, 1352-54; Jour. Chem. Soc., 42, 1037

  (Abs.); Ann. Chim. et Phys., (5) 25, 145-67.
- La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 301 (Abs.).

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium, du cæsium, du lithium et de l'acide borique.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

On the blue band in the lithium spectrum.

Franckland. Phil. Mag., (4) 22, 472.

Recherches photométriques sur le lithium.

Gouy. Comptes Rendus, 83, 269; 85, 70.

Transparence des flammes colorées pour leur propres radiations; lithium, etc.

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Lithiums in der Wasserstofflamme.

Jahresber. d. Chemie, 15, 80.

Funkenspectrum von kohlensäuren Lithium.

Jahresber. d. Chemie (1878), 152.

Sels de lithine en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 56. planche VI.

Spectre du lithium.

Lecoq de Boisbaudran. Co nptes Rendus, 77, 1152; Bull. Soc. chim. Paris, n. s. 21, 125.

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 98-9; Beiblätter, 4, 366 (Abs.).

Note on the order of reversibility of the lithium lines.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 76; Chem. News, 47, 188.

Sur les spectres des vapeurs aux températures élévées, lithium.

Lockyer (J. N.). Comptes Rendus, **78**, 1790; Nature, **30**, 78; Chem. News, **30**, 98.

Sur l'origine de l'arsénic et de la lithine dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-68; Jour. Chem. Soc., 44, 802 (Abs.).

On the flame of lithia.

Talbot (H. Fox). Phil. Mag., (8) 4, 11.

De la présence de la lithine dans le sol de la Limagne et des eaux minérales de l'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, 78, 1022-4; Ber. chem. Ges., 7, 653 (Abs.).

The blue band in the lithium spectrum.

Tyndall and Franckland. Phil. Mag., (4) 22, 151, 472.

### LONGITUDINAL RAYS.

Note sur les raies longitudinales observées dans le spectre prismatique par M. Zantedeschi.

Babinet. Comptes Rendus, 35, 418. (Look below.)

Raies longitudinales du spectre.

Porro. Comptes Rendus, 35, 479.

Sur les lignes longitudinales du spectre.

Wartmann (E.). Arch. des Sciences phys. et nat., 7, 83; 10, 802; Phil. Mag., 32, 499.

Sur les causes des lignes longitudinales du spectre.

Zantedeschi (F.). Archives des Sciences phys. et nat., 12, 43; Corresp. scient. di Roma, No. 9, 69.

#### LUMINOUS SPECTRA.

Observations sur le rayonnement des corps lumineux.

Baudrimont. Comptes Rendus, 33, 496.

Divers effets lumineux qui résultent de l'action de la lumière sur les corps.

Becquerel (E.). Comptes Rendus, 45, 817.

Constitution du spectre lumineux.

Lecoq de Boisbaudran (F.). Comptes Rendus, 69, 445, 806, 657, 694; 73, 658.

Recherches d'analyse spectrale.

Volpicelli. Comptes Rendus, 57, 571.

Sur les causes des effets lumineux, etc.

Volpicelli. Comptes Rendus, 69, 780.

## MAGNESIUM.

Lead and magnesium spark spectrum, magnesium spark spectrum, magnesium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 84, 85, 36.

Détermination des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

Cornu (A.). Archives de Genève, (3) 2, 119-126; Beiblätter, 4, 34 (Abs.); Jour. de Phys., 10, 425-31.

Renversement des raies spectrales du magnésium.

Cornu (A.). Comptes Rendus, 73, 882.

Recherches sur le spectre du magnésium en rapport avec la constitution du Soleil.

Fiévez (C.). Bull. de l'Acad. de Belgique, (2) 50, 91-8; Beiblätter, 4, 789 (Abs.); Ann. Chim. et Phys., (5) 23, 366-72.

Spectre de chlorure de magnésium.

Gouy. Comptes Rendus, 84, 281.

Spectre continu des sels de magnésie.

Gouy. Comptes Rendus, 84, 878.

Spectrum des Magnesiumlichtes.

Jahresber. d. Chemie, 18, 96; 23, 174; 25, 145.

Chlorure de magnésium en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 85, planche XII.

Permanganate de potasse en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 106, planche XVI.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde und Magnesia.

Lepel (F. von). Ber. chem. Ges., 9, 1641.

Ueber den Nachweis der Magnesia mit Hülfe des Spectroskops.

Lepel (F. von). Ber. chem. Ges., 9, 1845; 10, 159; Bull. Soc. chim. Paris, n. s. 28, 478; Jour. Chem. Soc., 1877, 1, 676; Beiblätter, 1, 240 (Abs.). Der Alkannafarbstoff, ein neues Reagens auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 768-6.

Pflanzenfarbstoffe als Reagentien auf Magnesiumsalze.

Lepel (F. von). Ber. chem. Ges., 13, 766-8; Jour. Chem. Soc., 40, 68 (Abs.).

On the spectra of magnesium and lithium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 98-9; Beiblätter, 4, 866 (Abs.).

Investigations on the spectrum of magnesium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 32, 189-208; Nature, 24, 118.

Die dichroïtische Fluorescenz des Magnesiumplatincyanürs.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 684; 9, 108; 13, 247.

Osservazioni delle inversioni della coronale 1474 k, e delle b del magnesio fatte nel Osservatorio di Palermo.

Riccò (A.). Mem. Spettr. ital., 10, 148-51.

Spectre du magnésium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 178.

Spectre du magnésium.

Secchi (As). Comptes Rendus, 82, 275.

Magnésium dans la chromosphère du Soleil.

Tacchini (P.). Comptes Rendus, 75, 23, 480; Phil. Mag., (4) 44, 159-60.

Présence du spectre du magnésium sur le bord entière du Soleil.

Tacchini (P.). Comptes Rendus, 76, 1577.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil, et réponse à quelques points de la théorie émise par M. Faye.

Tacchini (P.). Comptes Rendus, 77, 606-9.

Nouvelles observations relatives à la présence du magnésium sur le bord du Soleil.

Tacchini (P.). Comptes Rendus, 82, 1885-7.

Spectre du magnésium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Ueber eine empfindliche Spectralreaction auf Magnesium.

Vogel (H. W.). Ber. chem. Ges., 9, 1641; Jour. Chem. Soc., 1877, 1, 742 (Abs.); Beiblätter, 1, 240 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 475.

Die Purpurin-Thonerde-Magnesia-Reaction.

....

Vogel (H. W.). Ber. chem. Ges., 10, 157, 878.

#### MANGANESE.

Sur l'effet du manganèse sur la phosphorescence du calcium carbonate.

Becquerel (E.). Comptes Rendus, 103, 1098-1101; Jour. Chem. Soc., 52, 190 (Abs.).

Ueber das Absorptionsspectrum des übermangansauren Kalis, und seine Benutzung bei chemisch-analytischen Arbeiten.

Brücke (E.). Chemisches Centralblatt, (3) 8, 139-148; Jour. Chem. Soc., 34, 242 (Abs.).

Manganese arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 36,

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Royal Soc., 2, 340-4; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Spectre de l'azotate de manganèse.

Gouy. Comptes Rendus, 84, 281; Chem. News, 35, 107.

Absorptionslinien der Manganlösungen.

Hoppe-Seyler. Jour. prackt. Chemie, 90, 808.

Spectra of manganese in blowpipe beads.

Horner (Charles). Chem. News, 25, 189.

Anwendung der dunklen Linien des Spectrums als Reagens auf Mangansäure.

Jahresber. d. Chemie, 5, 125.

Absorptionsspectrum des Mangansuperchlorids.

Jahresber. d. Chemie (1869), 184.

Chlorure de manganèse en solution, étincelle courte; do., étincelle moyenne; do., dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 110, 114, 120, planches XVII, XVIII.

Fluorescence des composés de manganèse dans la vide sous l'influence de l'arc voltaïque.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 468-471; Jour. Chem. Soc., 52, 3 (Abs.); Beiblätter, 11, 87.

Das Absorption der Mangansäure nicht die Umkehrung einer dürch Manganchlorür gefärbten Flamme.

Müller (J.). Ann. Phys. u. Chem., 128, 835.

Spectrum von Mangan.

Simmler (R. Th.). Ann. Phys. u. Chem., 115, 425.

Das von übermangansaurem Kali reflectirte Licht.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 625.

#### MAPS.

#### Recherches sur les spectres des métalloïdes.

Angström (A. J.) et Thalén (T. R.). Upsal., E. Berling, 1875, 4°.
Extrait des Nova Acta Reg. Soc. Sc. Upsal., Ser. III, Vol. IX.
Avec deux planches.

(Wave-lengths. Spectra of carburetted hydrogen; of carbonic oxide; bioxide of nitrogen; of light at the negative pole; of oxygen; of carbon; of hydrogen; some isolated rays of carburetted hydrogen, and of carbonic oxide.)

## Sur le spectre normal du Soleil, partie ultra-violette.

Cornu (A.). Paris, Gauthier-Villars, 1881, 4°. Extrait des Annales de l'École normale supérieure, (2) 9 (1880). Avec deux planches. (Wave-lengths.)

## Étude du spectre solaire.

Fievez (Ch.). Bruxelles, F. Hayez, 1882, 4°. (Wave-lengths. Lines 6399 to 4522.) Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. IV.

## Étude de la région rouge (A-C.) du spectre solaire.

Fievez (Ch.). F. Hayez, Bruxelles, 1883, 4°. Extrait des Annales de l'Observatoire royal de Bruxelles, n. sér., t. V. Avec deux planches. (Wave-lengths. Lines 7500 tc 6500.)

#### Studien auf dem Gebiete der Absorptionsspectralanalyse.

Hasselberg (B.). St. Pétersbourg, et à Leipzig (L. Voss), 1878, 4°.
Mit vier Karten. Mém. Acad. imp. des Sci. de St. Pétersbourg, (7)
26, No. 4.

(Wave-lengths. Absorptionspectra of hypernitric acid at different densities, and absorptionspectrum of bromine.)

# Ueber die Spectra der Cometen, und ihre Beziehung zu denjenigen gewisser Kohlenverbindungen.

Hasselberg (B.). St. Pétersbourg, 1880, Leipzig (G. Haessel), 4°. Mit einem Tafel. Mém. de l'Acad. imp. St. Pétersbourg, (7) 28, No. 2.

## Untersuchungen über das zweite Spectrum des Wasserstoffs.

Hasselberg (B.). St. Pétersbourg, 1882, Leipzig (G. Haessel), 4°. Mém. de l'Acad. imp. St. Pétersbourg, (7) 30, No. 7. Mit einem Tafel. (Wave-lengths.) Untersuchungen über das Sonnenspectrum und die Spectren der chemischen Elemente.

Kirchhoff (G.). Besondere Abdrücke aus den Abhandlungen der Berliner Akademie der Wissenschaften, 1861 und 1862. I. Theil, Dümmler, Berlin, 1864, 4°. II. Theil, Dümmler, Berlin, 1875, 4°. Mit vier Tafeln.

(He used an arbitrary scale.)

Recherches sur le spectre solaire ultra-violet, et sur la détermination des longueurs d'onde, suivies d'une note sur les formules de dispersion.

Mascart (E.). Extrait des Annales scientifiques de l'École normale supérieure, t. I (1864), Paris, Gauthier-Villars, 1864, 4°.

Recherches sur la détermination des longueurs d'onde.

Mascart (E.). Paris, Gauthier-Villars, 1866, 4°. Extrait des Annales de l'École normale supérieure, t. IV. Avec un planche.

[A photographic map of the solar spectrum is being prepared by Prof. Rowland, and some parts of it have been distributed, viz: wave-lengths. 0.0003675 to 0.0005796.]

Mémoire sur la détermination des longueurs d'onde des raies métalliques.

Thalén (Rob.). Upsal., W. Schultz, 1868, 4°. Mit zwei Tafeln. Extrait des Nova Acta Reg. Soc. Sci. Upsal., Ser. III, Vol. VI.

(Gives the wave-lengths of the bright rays of the metals.)

Le spectre d'absorption de la vapeur d'iode.

Thalén (Rob.). Upsal., Ed. Berling, 1869, 4°. Avec trois planches.

[Thollon's map of the solar spectrum is in Vol. I of the Annales de l'Observatoire de Nice, which is about to appear. Vol. II will contain a smaller map or sheets of the group B.]

#### MERCURY.

Mercury spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 87.

Spectre du cinabre, de l'oxide de mercure, de l'iodure de mercure.

Lallemand (A.). Comptes Rendus, 78, 1272.

Bichlorure de mercure en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 169, planche XIV.

On the dispersion of a solution of mercuric iodide.

Liveing (G. D.). Proc. Philosoph. Soc. Cambridge, 3, 258-60; Beiblätter, 4, 610 (Abs.).

Spectrum of mercury at elevated temperatures.

Lockyer (J. N.). Chem. News, **30**, 98; Nature, **30**, 78; Comptes Rendus, **78**, 178.

Emissionsspectra der Haloïdverbindungen des Quecksilbers.

Peirce (B. O.). Ann. Phys. u. Chem., n. F. 6, 597.

Ueber die Spectren des Wasserstoffs, Quecksilbers, und Stickstoffs.

Vogel (H. W.). Monatsber. d. Berliner Akad. (1879), 586-604; Beiblätter, 4, 125-80; Amer. Jour. Sci., (8) 19, 406 (Abs.).

#### METALS.

Researches on the spectra of the metalloids.

Angström (A. J.) and Thalén (Rob.). Acta Soc. Upsala, (3) 9; Nature, 15, 401 (Abs.); Beiblätter, 1, 85-47; Bull. Soc. chim. Paris, n. s. 25, 183.

Spectres d'émission infra-rouges des vapeurs métalliques.

Becquerel (H.). Comptes Rendus, 97, 71-4; 99, 874; Chem. News, 48, 46 (Abs.); Nature, 28, 287 (Abs.); Beiblätter, 7, 701 (Abs.); Amer. Jour. Sci., (3) 26, 821 (Abs.); 28, 459 (Abs.); Ber. chem. Ges., 16, 2487 (Abs.); Jour. Chem. Soc., 46, 1 (Abs.); Zeitschr. £ analyt. Chemie, 23, 49 (Abs.); Phil. Mag., Oct., 1884.

Procédé pour obtenir en projection les raies des métaux et leur renversement.

Boudréaux. Jour. de Phys., 3, 806.

Ueber die electrische Spectra der Metallen.

Brassack. Zeitschr. f. d. Gesellsch. f. Naturwiss, 9, 185.

Dissociation of the metalloid elements.

Brodie (B. C.). Nature, 21, 491-2.

Discoveries of the new alcaline metals.

Bunsen (R.). Ber. d. Berliner Akad., 10 Mai, 1860; Chem. News, 3, 182.

Kleinste im Inductionsfunken durch die Spectralanalyse noch erkennbare Gewichtsmenge verschiedener Metalle; do., im Bunsen'schen Gasflamme; Vergleich beider.

Cappel (E.). Ann. Phys. u. Chem., 139, 681.

Some experiments on metallic reflection with the spectroscope.

Conroy (Sir J.). Proc. Royal Soc., 28, 244.

On the projection of the spectra of the metals.

Cooke (J. P.). Amer. Jour. Sci., (2) 40, 248.

Renversement des raies spectrales des vapeurs métalliques.

Cornu (A.). Comptes Rendus, 73, 332; Bull. Soc. chim. Paris, n. s. 15, 5.

On the means of increasing the intensity of metallic spectra.

Crookes (W.). Chem. News, 5, 284.

Analyse des spectres colorés par les métaux.

Debray (M. H.). Comptes Rendus, 54, 169.

Sur l'emploi de la lumière Drummond et sur la projection des raies brilliants des flammes colorées par les métaux.

Debray (M. H.). Ann. Chim. et Phys., (8) 65, 831.

Remarques sur les métaux nouveaux de la gadolinite, et de la samarskite; holmium ou philippine, thulium, samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur l'influence des éléments électronégatifs sur le spectre des métaux, avec planches des spectres de chloride de cuivre et de bromide de cuivre.

Diacon (E.). Ann. Chim. et Phys., (4) 6, 1.

Sur les spectres des métaux alcalins.

Diacon et Wolf. Mém. de l'Acad. de Montpellier, 1863; Comptes Rendus, 55, 384.

Spectres des métalloïdes des familles du soufre, du chlore et de l'azote.

Ditte. Bull. Soc. chim. Paris, n. s. 16, 229.

On the use of the prism in qualitative analysis. (Gives the absorption spectra of many coloured metallic salts.)

Gladstone (J. H.). Jour. Chem. Soc. (1858), 10, 79.

Recherches sur les spectres des métaux à la base des flammes.

Gouy. Comptes Rendus, 84, 231-4; Phil. Mag., (5) 3, 238-40; Chem. News, 35, 107-8; Beiblätter, 1, 238 (Abs.); Bull. Soc. chim. Paris, n. s. 28, 352.

Das electrische Verhalten der im Wasser oder in Salzlösungen getauchten Metalle bei Bestrahlung durch Sonnen-oder Lampen-Licht.

Hankel (W.). Ann. Phys. u. Chem., n. F. 1, 410.

Investigation by means of photography of the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195.

Beiträge zur Spectroscopie der Metalloïde.

Hasselberg (B.). Bull. Acad. St. Pétersbourg, 27, 405-17.

Auflösung heller Streifen in Metallspectren.

Jahresber. d. Chemie., 15, 29.

Unterschiede in den Spectren bei Anwendung der Metalle oder der Chlormetalle.

Jahresber. d. Chemie, 15, 81, 82.

Constanz der Metallspectren.

Jahresber. d. Chemie, 15, 82.

Electrische Metallspectren.

Jahresber. d. Chemie, 15, 38; 16, 104, 106, 107, 118; 17, 115; 18, 90, 91.

Einfluss nichtmetallischer Elemente auf die Spectra der Metalle.

Jahresber. d. Chemie, 18, 87.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums in dunkle.

Jahresber. d. Chemie, 18, 90.

Objectivdarstellung der Metallspectren.

Jahresber. d. Chemie, 26, 147.

Spectren der Metalloïden.

Jahresber. d. Chemie, 26, 149.

Metallspectra.

Jahresber. d. Chemie, 28, 122.

Absorptionspectra von Metalldämpfen.

Jahresber. d. Chemie, 28, 124, 125.

Quelques spectres métalliques; plomb, chlorure d'or, thallium, lithium. Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. Soc. chim. Paris, n. s. 21, 125-6.

Sur un nouveau ordre des spectres métalliques.

Lecoq de Boisbaudran (F.). Comptes Rendus, 100, 1487-40; Jour. Chem. Soc., 48, 949 (Abs.).

Spectra of metallic compounds.

Leeds (A. R.). Jour. Franklin Inst., 90, 194.

Reversal lines of metallic vapours.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., (No. I) 27, 182-6; (No. II) 27, 350-4; (No. III) 27, 494-6; (No. IV) 28, 352-8; (No. V) 28, 367-72; (No. VI) 28, 471-5; (No. VII) 29, 402-6. Beiblätter, 2, 261 (Abs.), 490 (Abs.); 3, 710 (Abs.); 4, 864 (Abs.).

On the disappearance of some spectral lines and the variations of metallic spectra due to mixed vapours.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 33, 428-84; Jour. Chem. Soc., 44, 2-3 (Abs.); Beiblätter, 6, 676 (Abs.).

Spectral lines of the metals developed by exploding gases.

Liveing (G. D.) and Dewar (J.). Phil. Mag., (5) 18, 161-78.

On the circumstances producing the reversal of the spectral lines of metals.

Liveing (G. D.) and Dewar (J.). Proc. Philosoph. Soc. Cambridge, 4, 256-65; Beiblätter, 7, 530 (Abs.).

Quantitative analysis of certain alloys by means of the spectroscope.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 21, 507-8;
Phil. Trans., 164, 495-9;
Phil. Mag., (4) 47, 311 (Abs.);
Jour. Chem. Soc., (2) 12, 495 (Abs.);
Ber. chem. Ges., 6, 1426 (Abs.).

On the absorption spectra of metals volatilized by the oxyhydrogen flame.

Lockyer (J. N.) and Roberts (W. C.). Proc. Royal Soc., 23, 344-9; Phil. Mag., (5) 1, 234-9; Jour. Chem. Soc., 1872, 2, 156 (Abs.).

On a new method of studying metallic vapours.

Lockyer (J. N.). Proc. Royal Soc., 22, 371-8; 29, 266-72; Beiblätter, 4, 36 (Abs.).

Notice sur les nouveaux métaux obtenus du gadolinite.

Mendelejeff. Jour. Soc. phys. chim. russe, 13, 517-20; Bull. Soc. chim. Paris, 38, 189-43.

Spectra der Haloïdsalze.

Mitscherlich (A.). Ann. Phys. u. Chem., 121, 474.

De l'influence de la température sur les spectres des métalloïdes.

Monckhoven (D. von). Comptes Rendus, 95, 520.

Sur le spectre des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314; Phil.
Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 868 (Abs.); Ann.
Phys. u. Chem., 158, 329-334.

Sur les spectres des métalloïdes.

Salet (G.). Ann. Chim. et Phys., (4) 28, 5-71; Chem. News, 27, 59, 178 (Abs.).

On the spectra of the metalloids.

Schuster (A.). Phil. Trans. (1879), 170, 37-54; Proc. Royal Soc.,
27, 383-8 (Abs.); Beiblätter, 1, 289; 2, 492 (Abs.); 3, 749 (Abs.);
Jour. Chem. Soc., 38, 430 (Abs.); Nature, 15, 447-8.

- Les spectres du fer et de quelques autres métaux dans l'arc voltaïque. Secchi (A.). Comptes Rendus, 77, 173; Chem. News, 28, 82.
- Recherches sur l'absorption des rayons ultra-violets par diverses substances; nouvelle étude des spectres d'absorption des métaux terreux.

Soret (J. L.). Arch. de Genève, (3) 4, 261-92; Beiblätter, 5, 124 (Abs.).

Sur la fluorescence des sels des métaux terreux.

Soret (J. L.). Comptes Rendus, 88, 1077-8; Jour. Chem. Soc., 36, 862 (Abs.); Beiblätter, 3, 620 (Abs.).

Mémoire sur la détermination des longueurs d'onde des raies métalliques; spectres des métaux dessinés d'après leurs longueurs d'onde.

Thalén (R.). Ann. Chim. et Phys., (4) 18, 202.

Optische Eigenschaften dünner metallischen Schichten.

Voigt (W.). Ann. Phys. u. Chem., (2) 25, 95-114.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 321.

Ueber die Absorption und Brechung des Lichtes in metallisch undurchsichtigen Körpern.

Wernicke (W.). Monatsber. d. Berliner Akad. (1874), 728-37; Ann. Phys. u. Chem., 155, 87-95.

Electrische Spectra der Metalle.

Willigen (S. M. von der). Ann. Phys. u. Chem., 106, 619.

#### METEOROLOGICAL.

The spectroscope and weather forecasting.

Abercromby (R.). Nature, 26, 572-8.

Rain-band Spectroscopy.

Bell (L.). Amer. Jour. Sci., (3) 30, 847.

A plea for the rain-band.

Capron (J. R.). Observatory (1882), 42-7, 71-7; Beiblätter, 6, 485 (Abs.).

The spectroscope as an aid to forecasting the weather.

Cory (F. W.). Quar. Jour. Meteorolog. Soc., 9, 284-9.

Ueber Regenbogen gebildet durch Flüssigkeiten von verschiedenen Brechungsexponenten.

Hammerl (H.). Sitzungsber. d. Wiener Akad., 86 II, 206-15; Beiblätter, 7, 383 (Abs.).

Spectroscopic observation of the red-coloured sky at sunset, 1884, Jan. 9, 5 h. 20 min.

Konkoly (N. von). Monthly Notices Astronom. Soc., 44, 250-1.

Observations, à propos d'une note récente de M. Reye sur les analogies qui existent entre les taches solaires et les tourbillons de notre atmosphère.

Marié-Davy. Comptes Rendus, 77, 1227-9.

The green Sun.

Manley (W. R.). Nature, 28, 611-12.

Observations on the rain-band from June, 1882, to Jan., 1883.

Mill (H. R.). Proc. Royal Soc. Edinburgh, 12, 47-56.

Note sur les cyclones terrestres et les cyclones solaires.

Parville (H. de). Comptes Rendus, 77, 1280-8.

The solar spectrum in a hail-storm.

Romanes (C. H.). Nature, 25, 507; Beiblätter, 6, 486 (Abs.).

The spectroscope and the weather.

Smith (C. Mitchie). Nature, 12, 866.

The green Sun.

Smith (C. Mitchie). Nature, 29, 28.

The remarkable sunsets.

Smith (C. Mitchie). Nature, 29, 381-2.

Spectroscopic prevision of rain with a high barometer.

Smith (C. Piazzi). Nature, 12, 231-2, 252-3; Ann. Phys. u. Chem., 157, 175 (Abs.).

The warm rain-band in the daylight spectrum.

Smyth (C. Piazzi). Nature, 14, 9.

Three years' experimenting in spectrum analysis.

Smith (C. Piazzi). Nature, 22, 193.

Spectroscopic weather discussions.

Smyth (C. Piazzi). Nature, 26, 551-4; Beiblätter, 6, 877 (Abs.).

Rain-band spectroscopy attacked again.

Smyth (C. Piazzi). Nature, 29, 525; Zeitschr. d. oesserreicher Ges. f. Meteorol., 14, 151-2.

Precédé pour déterminer la direction et la force du vent; suppression des girouettes; application aux cyclones.

Tarry (H.). Comptes Rendus, 77, 1117-20.

The use of the spectroscope in meteorological observations.

Upton (Winslow). U. S. Signal Service Notes (1882), No. 4; Mem. Spettr. ital., 13, 118-18.

#### MICROSCOPIC SPECTRA

Prismatic examination of microscopic objects.

Huggins (William). Trans. Roy. Microscopical Soc. (1865): Quar. Jour. Microscopical Sci., July, 1865.

Anwendung der Spectralanalyse auf mikroscopische Untersuchungen. Jahresber. d. Chemie (1867), 105.

#### MINERAL WATERS.

La lithine, la strontiane et l'acide borique dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 801 (Abs.).

Existence de l'acide borique en quantité notable dans les lacs salés de la période moderne et dans les eaux salines naturélles, qu'elles soient ou non en relation avec des produits éruptifs.

Dieulafait. Ann. Chim. et Phys., (5) 25, 145-67.

- Untersuchung einiger Mineralwässer und Soole mittelst Spectralanalyse.

  Redtenbacher (Jos.). Sitzungsber. d. Wiener Akad., 44 II, 187, 151,
  153-4.
- Sur l'origine de la lithine et de l'arsénic dans les eaux sulfatées calciques. Schlagdenhauffen. Jour. de Pharm., (5) 6, 457-68; Jour. Chem. Soc., 44, 802 (Abs.).
- Spectral-reactionen bündnerischen Gesteine und Mineralwässer. Simmler (R. Th.). Ann. Phys. u. Chem., 115, 484-48.
- De la présence de la lithine dans le sol de la Limagne et dans les eaux minérales d'Auvergne. Dosage de cet alcali au moyen du spectroscope.

Truchot (P.). Comptes Rendus, 78, 1022-4 Ber. chem. Ges., 7, 658.

#### MINIUM.

Spectre du minium.

Lallemand (A.). Comptee Rendus, 78, 1272.

## MOLYBDENUM.

## Molybdenum arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 87.

#### MOSANDRUM.

Le mosandrum, un nouvel élément.

Smith (J. Lawrence). Comptes Rendus, 87, 148-51; note par M. Delafontaine, Comptes Rendus, 87, 600-2, and Jour. Chem. Soc., 36, 117 (Abs.).

## MULTIPLE SPECTRA.

# Multiple Spectra.

Lockyer (J. N.). Nature, 22, 4-7, 809-12, 562-5; Beiblätter, 5, 118-22 (Abs.).

#### NICKEL.

Nickel arc spectrum; nickel spark spectrum; bismuth and nickel spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 38.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H.). Ann. Phys. u. Chem., Erganzungsband, 1874, 6, 884; Phil. Mag., (4) 46, 829; Jour. Chem. Soc., (2) 12, 113.

Spectrum von Nickel.

Jahresber. d. Chemie, (1872) 145, (1873) 154.

Chlorure de nickel en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 183, planche XIX.

Ueber die Erkennung des Kobalts neben Eisen und Nickel.

Vogel (H. W.). Ber. chem. Ges., 12, 2318-16; Beiblätter, 4, 278 (Abs.); 5, 118 (Abs.).

#### NIOBIUM.

Niobium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 88.

#### NITROGEN.

Spectrum von Stickoxyd, und von Stickstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 156-7.

Spectre de l'acide azotique fumant.

Becquerel (H.). Comptes Rendus, 85, 1227.

Spectre de l'azote.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectre du protoxyde de l'azote.

Becquerel (H.). Comptes Rendus, 90, 1407.

Absorption spectrum of nitrogen peroxide.

Bell (L.). Amer. Chem. Jour., 7, 82-4; Jour. Chem. Soc., 48, 949 (Abs.).

Observations of the lines of the solar spectrum, and on those produced by the Earth's atmosphere and by the action of uitrous acid gas.

Brewster (Sir D.). Phil. Mag., (3) 8, 884.

Carattere spettroscopico della soluzione ammoniacale di carminio, di cocciniglia e di altre sostanze.

Campani (G.). Gazz. chim. ital., 1, 471-2; Jour. Chem. Soc., (2) 9, 1096 (Abs.); Ber. chem. Ges., 5, 287.

Nitrogen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 55.

Sur le spectre d'absorption de l'acide pernitrique.

Chappuis (J.). Comptes Rendus, 94, 946-8; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 483 (Abs.); Amer. Jour. Sci., (8) 24, 58 (Abs.); Jour. de Phys., (2) 3, 48.

Spectre des bandes de l'azote, son origine.

Deslandres (H.). Comptes Rendus, **101** (1885), 1256-60; Jour. Chem. Soc., **50**, 189 (Abs.).

Spectre de l'azote.

Deslandres (H.). Comptes Rendus, 103, 375-9; Jour. Chem. Soc., 50, 957 (Abs.); Beiblätter, 11, 36 (Abs.).

Spectrum von Ammoniak und von Schwefelammon.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 518, 584.

Les lacs salpêtres naturels du Chili et du Pérou.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectres appartenant aux familles de l'azote et du chlore.

Ditte (A.). Comptes Rendus, 73, 788; Bull. Soc. chim. Paris, n. s. 16, 229.

Salpetersaure Nickellösung.

Emsmann (H.). Ann. Phys. u. Chem., Ergānzungsband, 6 (1878), 334; Jahresber. d. Chemie (1878), 154.

Recherches sur l'intensité relative des raies spectrales de l'hydrogène et de l'azote en rapport avec la constitution des nébuleuses.

Fiévez (C.). Bull. Acad. Belgique, (2) 49, 107-113; Phil. Mag., (5)
9, 309-12; Beiblätter, 4, 461 (Abs.); Ann. Chim. et Phys., (5) 20, 179-85; Jour. Chem. Soc., 40, 69-70.

Action of nitrates on the blood.

Gamge (A.). Phil. Trans. (1868), 589; Jour. prackt. Chemie, 105, 287; Ber. chem. Ges., 9, 883.

Sur les raies d'absorption produites dans le spectre par les solutions des acides hypoazotiques.

Gernez (D.). Comptes Rendus, 74, 465-8; Jour. Chem. Soc., (2) 10, 280 (Abs.); Ber. chem. Ges., 5, 218; Bull. Soc. chim. Paris, n. s. 17, 257.

Note sur le prétendu spectre d'absorption spécial de l'acide azoteux. Gernez (D.). Bull. Soc. Philom., (7) 5, 42.

The refraction equivalents of nitrogen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 827-330; Ber. chem. Ges., 14, 1558 (Abs.).

Spectres de l'azotate de cuivre, de l'azotate de manganèse, de l'azotate de plomb.

Gouy. Comptes Rendus, 84, 281; Chem. News, 35, 107.

Spectre de l'azotate d'argent.

Gouy. Comptes Rendus, 84, 281.

Azotate.

Gouy. Comptes Rendus, 85, 70.

Zur Spectroscopie des Stickstoffs.

Hasselberg (B.). Mém. de l'Acad. de St. Pétersbourg, (7) 32, 50 pp. sep.; Beiblätter, 9, 578 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 840 (Abs.).

Spectrum des Stickstoffs.

Jahresber. d. Chemie, 16 (1863), 110; 25 (1872), 142, 144, 145.

Absorptionsspectrum des Dampfs der salpetrigen-und untersalpeter-Saure.

Jahresber. d. Chemie, 22 (1869), 188.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersalpetersäure.

Jahresber. d. Chemie, 23 (1870), 172; 25 (1872), 137.

Absorptionsspectrum des Didymnitrats.

Jahresber. d. Chemie, 23 (1870), 321.

Absorptionsspectrum der Ammoniakslamme.

Jahresber. d. Chemie, 25 (1872), 142, 143.

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 142, 157-9; Zeitschr. f. analyt. Chem., (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

Azotate d'argent en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 167. planche XXV.

Constitution des spectres lumineux.

Lecoq de Boisbaudran (F.). Comptes Rendus, 70, 144, 974, 1090.

Spectre du nitrate de didyme.

Lecoq de Boisbaudran (F.) et Smith (Lawrence). Comptes Rendus, 88, 1167.

Spectre du nitrate de décipium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre du nitrate de samarium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212.

Spectre de l'ammoniaque par renversement du courant induit. Lecoq de Boisbaudran (F.). Comptes Rendus, 101, 42-5.

Spectres des vapeurs aux températures élévées, nitrogène.

Lockyer (J. N.). Comptes Rendus, 78, 1790; Chem. News, 30, 98.

Sur les spectres de l'acide azoteaux et du peroxyde d'azote. Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498. Absorption bands of nitrous acid gas.

Miller (W. Hallows). Phil. Mag., (3) 2, 881.

Benützung des Ammoniaks zur Spectralanalyse.

Mitscherlich. Jour. prackt. Chemie, 86, 14.

Die Spectren der salpetrigen und der untersalpetrigen Säure.

Moser (J.). Ann. Phys. u. Chem., n. F. 2, 139-40.

Spectrum von Stickgas, und von Stickoxydul.

Plücker. Ann. Phys. u. Chem., 105, 76, 81.

Spectra am negativen Pol im Stickstoff und Wasserstoffröhren; Modification beider Röhren nach langem Gebrauch.

Reitlinger (E.). Ann. Phys. u. Chem., 141, 135.

Spectrum einer Lösung von salpetersauren Didymoxyd.

Rood (O. N.). Ann. Phys. u. Chem., 117, 350.

Sur le spectre de l'azote et sur celui des métaux alcalins dans les tubes de Geissler.

Salet (G.). Comptes Rendus, 82, 223-6, 274-5; Nature, 13, 314;
Phil. Mag., (5) 1, 331-3; Jour. Chem. Soc., 1876, 1, 863-4 (Abs.);
Ann. Phys. u. Chem., 158, 329-34.

Spectrum des electrischen Glimmlichts in atmosphärischer Luft; Stickstoff gibt je nach der Temperatur drei Spectra.

Schimkow (A.). Ann. Phys. u. Chem., 129, 513-16.

Ueber die Absorption des Lichts durch Ammoniak, etc.

Schönn (J. L.). Ann. Phys. u. Chem., Ergänzungsband, 8 (1878), 670-5; Jour. Chem. Soc., 34, 698 (Abs.).

On the spectrum of nitrogen.

Schuster (A.). Proc. Royal Soc., 20, 484-7; Phil. Mag., (4) 44, 537-41; Ann. Phys. u. Chem., 147, 106-12; Amer. Jour. Sci., (3) 5, 181 (Abs.); Jour. Chem. Soc., (2) 11, 840 (Abs.).

Bestimmung der Salpetersäure auf spectralanalytischem Wege.

Settegast (H.). Zeitschr. f. analyt. Chemie, 20, 116-117.

Spectres d'absorption ultra-violets des éthers azotiques et azoteux.

Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.

Spectrum of nitrogen.

Stearn (C. H.). Nature, 7, 468.

Spectrum von Stickstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 578.

Ueber allmähliche Ueberführung des Bandenspectrums des Stickstoffs in ein Linienspectrum.

Vogel (H. C.). Sitzungsber. d. Münchener Akad. (1879), 171-207; Ann. Phys. u. Chem., n. F. S, 590-623.

On the changes produced in the position of the fixed lines in the spectrum of hyponitric acid by changes in density.

Weiss (A.). Phil. Mag., (4) 22, 80.

Ueberinstimmung der Absorptionsspectra von Untersalpetersäure mit den Spectren dessen Dampfes.

Wüllner (A.). Ann. Phys. u. Chem., 120, 159.

Die beiden Stickstoffspectra nicht durch Unterschiede der Temperatur, sondern der Entladungsart erklärbar.

Wüllner (A.). Ann. Phys. u. Chem., 135, 526.

Spectra des Stickstoffs unter hohem Druck.

Wüllner (A.). Ann. Phys. u. Chem., 137, 356.

Das Spectrum des Stickstoffs ist vielfach; Antwort auf Angström. Wüllner (A.). Ann. Phys. n. Chem., 144, 520.

## NOMENCLATURE.

Spectroscopic Nomenclature.

Herschel (J.). Nature, 5, 499-500; 6, 488-4.

Spectroscopic Nomenclature.

Young (C. A.). Nature, 6, 101.

#### OPTICS.

(With special reference to the spectroscope.)

Optische Untersuchungen.

Angström (A. J.). Ann. Phys. u. Chem., 94, 141; Phil. Mag., (4) 9, 827

Zwei optische Beobachtungsmethoden.

Christianson (C.). Ann. Phys. u. Chem., 141, 470.

Optische Untersuchungen einiger Reihen isomorpher Substanzen.

Christiansen (C.) und Topsoē (Haldor). Ann. Phys. u. Chem., Ergänzungsband, 6 (1874), 499.

Die optischen Eigenschaften von fein vertheilten Körpern.

Christiansen (C.). Ann. Phys. u. Chem., n. F. 23, 298.

Ueber einen optischen Versuch.

Ditscheiner (L.). Ann. Phys. u. Chem., 129, 840.

Optical Notes.

Gibbs (Wolcott). Proc. Amer. Acad., vol. 10; Ann. Phys. u. Chem., 156, 120.

Optische Controversen.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 18, 887-421, 631-63.

Elementare Behandlung einiger optischen Probleme.

Lommel (E.). Ann. Phys. u. Chem., 156, 578-90.

Die Newton'schen Staubringe.

Lommel (E.). Ann. Phys. u. Chem., n. F. 8, 194.

Zur Theorie des Lichtes.

Lommel (E.). Ann. Phys. u. Chem., n. F. 16, 427.

Optische Experimental-Untersuchungen. Ueber das Verhalten des polarisirten Lichtes bei der Beugung.

Quincke (G.). Ann. Phys. u. Chem., 149, 273-324.

Investigations in optics, with special reference to the spectroscope.

Rayleigh (Lord). Phil. Mag., (5) 8, 261-274, 408-11, 477-86; 9, 40-55; Beiblätter, 4, 360.

# OSMIUM.

On the spectrum of osmium.

Fraser (W.). Chem. News, 8, 84.

Spectrum des Osmiums.

Jahresber. d. Chemie, 16 (1868), 112.

#### OXYGEN.

The acceleration of exidation caused by the least refrangible end of the spectrum.

Abney (W. de W.). Proc. Boyal Soc., 27, 291, 451.

Spectres des gaz simples; l'oxygène.

Angström (A. J.). Comptes Rendus, 73, 869.

Spectrum von Sauerstoff.

Angström (A. J.). Ann. Phys. u. Chem., 94, 155.

Sauerstoff hat nur ein Spectrum; die vielfachen rühren bei Bemengungen her.

Angström (A. J.). Ann. Phys. u. Chem., 144, 802, 804.

Recherches expérimentales sur la polarization rotatoire magnétique dans les gaz; oxygène.

Becquerel (H.). Comptes Rendus, 90, 1407.

Ueber das Verhalten von Blut und Ozon zu einander.

Rinz (C.). Medicinalisches Centralblatt, 20, 721-5; Chem. Centralblatt (1882), 810-11; Jour. Chem. Soc., 44, 486-7 (Abs.).

Oxygen spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 65-7.

Spectre d'absorption de l'ozone.

Chappuis (J.). Comptes Rendus, 91, 985; 94, 858-60; Chem. News,
45, 168 (Abs.); Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 482 (Abs.); Amer. Jour. Sci., (8) 24, 56 (Abs.).

Étude spectroscopique sur l'ozone.

Chappuis (J.). Ann. de l'École normale, (2) 11, 137-87; Beiblätter, 7, 458 (Abs.).

Étude sur la part de la lumière dans les actions chimiques et en particulier dans les oxydations.

Chastaing (P.). Ann. Chim. et Phys., (5) 11, 145-228; Jour. Chem. Soc., 1877, 2, 818 (Abs.); Beiblätter, 1, 517-20 (Abs.).

On the coincidence of the bright lines of the oxygen spectrum with bright lines in the solar spectrum.

Draper (H.). Monthly Notices Astronom. Soc., 39, 440-7; Amer. Jour. Sci., (8) 18, 262-76; Beiblätter, 4, 275 (Abs.); Comptes Rendus, 88, 1382 (Abs.). Dark lines of oxygen in the spectrum of the Sun.

Draper (J. C.). Amer. Jour. Sci., (8) 16, 256; (3) 17, 448; Nature,
18, 654; note by Barker (G. F.), Amer. Jour. Sci., (8) 17, 162-6;
Nature, 19, 352-8; Beiblätter, 3, 188 (Abs.).

Sur la production des groupes telluriques fondamentaux A et B du spectre solaire par une couche absorbante d'oxygène.

Egoroff (N.). Comptes Rendus, 97, 555; Amer. Jour. Sci., (3) 26, 477.

Spectre d'absorption de l'oxygène.

Egoroff (N.). Comptes Bendus, 101, 1148-45; Jour. Chem. Soc., 50, 189 (Abs.).

Sauerstoffausscheidung von Pflanzenzellen im Mikrospectrum.

Engelmann (T. W.). Pflüger's Archiv. f. Physiologie, 27, 485-90;
Chem. News, 47, 11 (Abs.); Beiblätter, 7, 377 (Abs.).

On the combustion of hydrogen and carbonic oxide in oxygen under great pressure.

Franckland. Proc. Royal Soc., 16, 419.

The refraction equivalents of oxygen, etc., in organic compounds.

Gladstone (J. H.). Proc. Royal Soc., 31, 827-80; Ber. chem. Ges., 14, 1558 (Abs.).

The absorption spectrum of ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 57-60; Ber. chem. Ges., 14, 672 (Abs.); Beiblätter, 5, 505 (Abs.).

On the absorption of solar rays by atmospheric ozone.

Hartley (W. N.). Jour. Chem. Soc., 39, 111-28; Ber. chem. Ges., 14, 1340 (Abs.); Beiblätter, 5, 505 (Abs.).

Einfacher Versuch zur Demonstration der Sauerstoffausscheidung durch Pflanzen im Sonnenlichte.

Hoppe-Seyler (F.). Zeitschr. f. physiol. Chemie, 2, 425-6; Ber. chem. Ges., 12, 701 (Abs.); Jour. Chem. Soc., 36, 819 (Abs.).

Sur les spectres d'absorption de l'oxygène.

Janssen (J.). Comptes Rendus, 102, 1852-8; Jour. Chem. Soc., 50, 749 (Abs.); Beiblatter, 11, 98.

Spectre de l'oxyde de cuivre.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur les spectres de l'acide azoteux et du peroxyde de l'azote.

Luck (E.). Bull. Soc. chim. Paris, n. s. 13, 498.

Oxygen in the Sun.

Meldola (R.). Nature, 17, 161-2; Beiblätter, 2, 91.

Das Sauerstoffspectrum und die electrischen Lichterscheinungen verdünnter Gaze in Röhren mit Flüssigkeitselectroden.

Paalzow (A.). Ann. Phys. u. Chem., n. F. 7, 130.

Ueber das Sauerstoffspectrum.

Paalzow (A.) und Vogel (H. W.). Ann. Phys. u. Chem., n. F. 13, 336-8.

Spectrum von Sauerstoff.

Plücker. Ann. Phys. u. Chem., 104, 126; 105, 78.

Spectrum of Oxygen.

Schuster (A.). Phil. Trans., 170 (1879), 37-54; Proc. Royal Soc., 27, 388-8 (Abs.); Beiblätter, 2, 492 (Abs.); 3, 749 (Abs.); Jour. Chem. Soc., 38, 480.

Spectre d'acide oxalique.

Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 886.

Constitution of the lines forming the low temperature spectrum of Oxygen.

Smyth (C. Piazzi). Trans. Roy. Soc. Edinburgh, 30, 419-25; Phil.

Mag., (5) 13, 880-87; Nature, 25, 403 (Abs.); Jour. de Phys., (2)
2, 289 (Abs.).

Spectrum von Sauerstoff.

Vogel (H. C.). Ann. Phys. u. Chem., 146, 576.

Photographische Beobachtungen des Sauersfoffspectrums.

Vogel (H. C.). Ber. chem. Ges., 12, 882; Amer. Chem. Jour., 1, 71.

Drei Spectra bei Sauerstoff.

Wüllner (A.). Ann. Phys. u. Chem., 135, 515.

Spectra des Wasserstoffs.

Wüllner (A.). Ann. Phys. u. Chem., 137, 850; n. F. 8, 258.

# PALLADIUM.

Palladium arc spectrum; palladium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 89.

Chlorure de palladium en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 184, planche XXVII.

# PARAGENIC SPECTRA.

Sur la paragénie.

Babinet. Cosmos, 25, 898.

On paragenic spectra.

Brewster (Sir D.). Phil. Mag., January, 1866.

# PHILIPPIUM.

On philippium.

Brown (W. G.). Chem. News, 38, 267-8; Jour. Chem. Soc., 36, 204 (Abs.).

Sur un nouveau métal, le philippium.

Delafontaine. Comptes Rendus, 87, 559-61; Amer. Jour. Sci., (3) 17, 61 (Abs.); Jour. Chem. Soc., 36, 116-17 (Abs.); Beiblätter, 3, 197 (Abs.).

#### PHOSPHORESCENCE.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 85-8; Nature, 35, 855 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblätter, 6, 383 (Abs.); Jour. de Phys., (2) 2, 287-8.

- Propriétés de la lumière des pyrophores, examen spectroscopique.

  Aubert et Dubois. Comptes Reudus, 99, 477.
- Pouvoir phosphorescent de la lumière électrique.

  Becquerel (E.). Comptes Rendus, 8, 217.
- Réfringibilité des rayons qui excitent la phosphorescence dans les corm.

  Becquerel (E.). Comptes Rendus, 69, 994.
- Analyse de la lumière émise par les composés d'uranium phosphorescents.

  Becquerel (E.). Ann. Chim. et Phys., (4) 27, 539-79; Comptes Rendus, 75, 296-308; Jour. Chem. Soc., (2) 11, 25 (Abs.); Amer. Jour. Sci., (3) 4, 486 (Abs.).
- Sur l'observation de la partie infra-rouge du spectre solaire, au moyen des effets de phosphorescence.

Becquerel (E.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., (5) 10, 5-18; Jour. de Phys., 6, 187.

Les spectres des corps phosphorescents.

Becquerel (E.). La Lumière, tome I, 207.

Étude spectrale des corps rendus phosphorescents par l'action de la lamière ou par les décharges électriques.

Becquerel (E.). Comptes Rendus, 101, 205-210.

- Effets du manganèse sur la phosphorescence du calcium carbonate.

  Becquerel (É.). Comptes Rendus, 103, 1098.
- Phosphorescence de l'alumine.
  - Becquerel (E.). Comptes Rendus, 103, 1224; Amer. Jour. Sci., (3) 33, 803 (Abs.); Jour. Chem. Soc., 52, 409 (Abs.); Chem. News, 55, 99 (Abs.).
- Étude des radiations infra-rouges au moyen des phénomènes de prosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Ann. Chim. et Phys., (5) 30, 5-68; Beiblätter, 8, 120 (Abs.).

Maxima et minima d'extinction de la phosphorescence sous l'influence des radiations infra-rouges.

Becquerel (H.). Comptes Rendus, 96, 1858.

Résultats de ses recherches sur les effets de phosphorescence.

Becquerel (H.). Bull. Soc. franç. de Physique (1888), 24-5.

Sur les variations des spectres d'absorption et des spectres d'émission par phosphorescence d'un même corps.

Becquerel (H.). Comptes Rendus, 102, 106-10.

Sur de nouveaux procédés pour étudier la radiation solaire, tant directe que diffuse, dans ses rapports avec la phosphorescence.

Biot. Comptes Rendus, 8, 259, 815.

Spectrum of the light emitted by the glow-worm.

Conroy (Sir J.). Nature, 26, 319; Beiblätter, 6, 880 (Abs.).

De la lumière verte et phosphorescente du choc moléculaire.

Crookes (W.). Comptes Rendus, 88, 288-4.

Discontinuous phosphorescent spectra in high vacua.

Crookes (W.). Proc. Royal Soc., 32, 206-18; Chem. News, 43, 237-9;
Nature, 24, 89; Comptes Rendus, 92, 1281-8; Beiblätter, 5, 511-18;
Ann. Chim. et Phys., (5) 23, 555.

Les vibrations de la matière et les ondes de l'ether dans la phosphorescence et la fluorescence.

Favé. Comptes Rendus, 86, 289-94.

Wirkung der verschiedenen Theile des Spectrums auf phosphorescirende Substanzen.

Jahresber. d. Chemie, 1 (1847), 164.

Spectren des Lichts phosphorescirender Thiere.

Jahresber. d. Chemie, 17 (1864), 115.

Spectrum des Phosphorenzlichts von Chlorophan, Phosphorit und Flusspath.

Kindt. Ann. Phys. u. Chem., 131, 160; Phil. Mag., Dec., 1867.

Phosphorescence de l'alumine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 103, 1224-7; Jour. Chem. Soc., 52, 191 (Abs.).

Sichtbare Darstellung des Brennpuncktes der ultrarothen Strahlen durch Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 26, 157-9; Phil. Mag., (5) 20, 547.

Beobachtungen über Phosphorescenz.

Lommel (E.). Ann. Phys. u. Chem., (2) 30, 478-87; Jour. Chem. Soc., 52, 410 (Abs.).

(Gives the phosphorescent spectra of 16 substances prepared by Dr. Schuchardt and with Balmain's paint.)

Lumière phosphorescent des cucuyos.

Pasteur. Comptes Rendus, 59, 509; Ann. Phys. u. Chem., 124, 192; Jour. prackt. Chemie, 93, 881.

Ueber die Phosphorescenz der organischen und organisirten Körper.

Radziszewski (B.). Ann. Chem. u. Pharm., 203, 805-36; Beiblätter, 4, 620 (Abs.).

Spectrum of the light of the glow-worm.

Spiller (J.). Nature, 26, 848; Beiblätter, 6, 880.

On the causes of a light border frequently noticed in photographs just outside the outline of a dark body seen against the sky; with some introductory remarks on phosphorescence.

Stokes (G. G.). Proc. Royal Soc., 34, 68-68; Nature, 26, 142-8; Beiblätter, 6, 682 (Abs.).

Sur les causes déterminantes de la phosphorescence du sulfure de calcium. Verneuil (A.). Comptes Rendus, 103, 501-4; Beiblätter, 11, 258.

Un composé de calcium sulphide ayant une phosphorescence violette.

Verneuil (A.). Comptes Rendus, 103, 600-8; Jour. Chem. Soc., 52, 2 (Abs.).

#### PHOSPHORUS.

Coloration de la flamme et de ses composés, spectre du phosphore.

Christofie (P.) et Beilstein (F.). Comptes Rendus, 56, 399; Ann. Chim. et Phys., (4) 3, 281.

Spectre du phosphate.

Gouy. Comptes Rendus, 85, 70.

Ueber phosphorhaltigen Stahl.

Greiner (A.). Dingler's Jour., 217, 38-41; Jour. Chem. Soc., 1876, 1, 454-7 (Abs.).

Ueber die Spectralerscheinungen des Phosphorwasserstoffs und des Ammoniaks.

Hofmann (K. B.). Ann. Phys. u. Chem., 147, 92-101; Jour. Chem. Soc., (2) 11, 840 (Abs.).

Spectra of phosphoric acid blowpipe beads.

Horner (C.). Chem. News, 29, 66.

Spectrum des Phosphors.

Jahresber. d. Chemie, 16 (1868), 111; 17 (1864), 109; 23 (1870), 178.

Absorptionsspectrum des Phosphorwasserstoffs.

Jahresber. d. Chemie, 25 (1872), 142.

Spectrum des Phosphorescenzlichts von Phosphorit.

Kindt. Ann. Phys. u. Chem., 131, 160.

Sur la diffusion lumineuse du phosphore de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 698.

Phosphate d'erbine, émission.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 92, 97, planche.XIV.

Sur les spectres des vapeurs aux températures élévées; phosphore.

Lockyer (J. N.). Comptes Rendus, 78, 178, 1790; Nature, 30, 98.

Expériences spectrales tendant à démontrer la nature composé du phosphore.

Lockyer (J. N.). Comptes Rendus, 89, 514-15; Beiblätter, 4, 182 (Abs.).

Spectrum des Phosphors, etc.

Mulder. Jour. prackt. Chemie, 91, 111.

Recherche du soufre et du phosphore par le spectroscope.

Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Spectres du phosphore et des composés de silicium.

Salet (G.). Comptes Rendus, 73, 1056-59.

Sur les spectres du phosphore et du soufre.

Seguin (J. M.). Comptes Rendus, 53, 1272; Phil. Mag., (4) 23, 416.

#### PLATINUM.

Platinum arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 89.

Spectre de chlorure de platine.

Gouy (J. R.). Comptes Rendus, 84, 281; Chem. News, 35, 107.

Distribution of heat in the spectra of various scources of radiation; platinum.

Jacques (W. W.). Proc. Amer. Acad., 14, 156.

Die optische Eigenshaften der Platincyanüre.

König (W.). Ann. Phys. u. Chem., n. F. 19, 491.

Spectre du noir de platine.

Lallemand (A.). Comptes Rendus, 78, 1272.

Chlorure de platine en solution, étincelle.

I-ecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 181, planche XXVII.

Spectre du platine incandescent.

Masson (A.). Comptes Rendus, 32, 127.

On the character and intensity of the rays emitted by glowing platinum. Nichols (E. L.). Amer. Jour. Sci., (8) 18, 446-68.

Radiation du platine incandescent, spectre du platine.

Violle (J.). Comptes Rendus, 88, 171.

Intensités lumineuses des radiations émises par le platine inçandescent.

Violle (J.). Comptes Rendus, 92, 866-8, 1204-6; Beiblätter, 5, 508 (Abs.).

#### POLARIZED LIGHT.

Die Phasenveränderung des parallel zur Einfallsebene polarisirten Lichts durch Reflexion.

Glan (P.). Ann. Phys. u. Chem., 156, 248.

Polarizationswinkel des Fuchsins.

Glan (P.). Ann. Phys. u. Chem., n. F. 7, 821.

Absorption und Emission des polarisirten Lichtes.

Kirchhoff (G.). Ann. Phys. u. Chem., 109, 295.

Sur l'illumination des corps transparents par la lumière polarisée.

Lallemand (A.). Comptes Rendus, 69, 917.

Sur la polarization rotatoire du quartz.

Soret (J. L.). Arch. de Genève, (8) 8, 5-59, 97-182, 201-28; Jour. de Phys., (2) 2, 381-6 (Abs.).

Elliptische Polarization des Lichtes und ihre Beziehung zu den Oberflächenfarben der Körper.

Wiedemann (E.). Ann. Phys. u. Chem., 151, 1.

Ueber die elliptische Polarization des von durchsichtigen Körpern reflectirten Lichtes.

Wernicke (W.). Ann. Phys. u. Chem., (2) 30 (1887), 452-69.

#### POTASSIUM.

Absorptionsspectrum des übermangansauren Kalis und seine Benützung bei chemisch analytischen Arbeiten.

Brücke (E.). Sitzungsber. d. Wiener Akad., 74 III, 428; Chem. Centralblatt, (8) 9, 189-48; Jour. Chem. Soc., 34, 242 (Abs.).

On the light reflected by potassium permanganate.

Conroy (Sir J.). Proc. Physical Soc., 2, 340-44; Phil. Mag., (5) 6, 454-8; Jour. Chem. Soc., 36, 425 (Abs.).

Transparence des flammes colorées pour leurs propres radiations; la double raie du potassium.

Gouy. Comptes Rendus, 86, 1078.

Spectrum des Kaliums.

Jahresber. d. Chemie, 16 (1868), 112.

Linien von Kalium.

Kirchhoff (G.). Ann. Phys. u. Chem., 110, 178.

Permanganate de Potasse en solution, absorption.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 108, planche XVI.

Sulfate de potasse fondu, étincelle; chlorure de potassium dans le gas.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 48, planche V.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 398-402; Beiblätter, 4, 868 (Abs.).

Sur le chromocyanure de potassium.

Moissan (H.). Comptes Rendus, 93, 1079-81; Chem. News, 45, 22 (Abs.); Ber. chem. Ges., 15, 243 (Abs.).

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Royal Soc., 22, 862.

Modifications of the spectrum of potassium which are effected by the presence of phosphoric acid.

Thudichum (J. L. W.). Proc. Royal Soc., 30, 278-86.

Ueber das von übermangansaurem Kali reflectirten Licht.

Wiedemann (E.). Ber. d. k. sächs. Ges. d. Wiss. zu Leipzig, 25, 867-70;
Ann. Phys. u. Chem., 151, 625-28;
Phil. Mag., (4) 48, 231-38;
Jour. Chem. Soc., (2) 13, 120 (Abs.).

# PRESSURE.

De l'influence de la pression sur les raies du spectre.

Cailletet (L.). Bull. Soc. chim. Paris, n. s. 18, 218; Ber. chem. Ges., 5, 482; Comptes Rendus, 74, 1282.

Gasspectren bei steigendem Druck.

Jahresber. d. Chemie, 22 (1869), 178.

Einfluss des Drucks auf das Spectrum.

Jahresber. d. Chemie, 25 (1872), 142.

Effect of pressure on the character of the spectra of gases.

Stearn (C. H.) and Lee (G. H.). Proc. Royal Soc., 21, 282.

#### RADIATION.

Réflexions à l'occasion d'une experience de M. Dumas relative à la formation d'un acide nouveau sous l'influence de la radiation solaire.

Biot. Comptes Rendus, 8, 622.

Sur les radiations chimiques de la lumière.

Biot. Comptes Rendus, 12, 170.

Radiant Matter Spectroscopy; the Bakerian lecture.

Crookes (W.). Proc. Royal Soc., 35, 262; Chem. News, 47, 261; 49, 159, 169, 181, 194, 205; 51, 301.

Détermination du pouvoir éclairant des radiations simples.

Crova (A.) et Lagarde. Comptes Rendus, 93, 959; Jour. de Phys., (2) 1, 162-9.

De la loi d'absorption des radiations de toute espèce à travers les corps, et de son emploi dans l'analyse spectrale quantitative.

Govi (G.). Comptes Rendus, **85**, 1046-9, 1100-8; Phil. Mag., (5) **5**, 78-80; Jour. Chem. Soc., **34**, 190 (Abs.); Beiblätter, **2**, 842 (Abs.).

On the relation between the radiating and absorbing powers of different bodies for light and heat.

Kirchhoff (G.). Phil. Mag., (4) 20, 1.

Ueber Ausstrahlung und Absorption.

Lecher (E.). Sitzungsber. d. Wiener Akad., 85 II, 441-90; Ann. Phys. u. Chem., n. F. 17, 477-518.

The dynamical theory of radiation.

Schuster (A.). Phil. Mag., (5) 12, 261-6; Beiblätter, 5, 798.

# RED END OF THE SPECTRUM.

Photography of the red end of the spectrum.

Abney (W. de W.). Nature, 13, 482; Chem. News, 40, 811.

Work in the infra-red of the spectrum.

Abney (W. de W.). Nature, 27, 15.

Atmospheric absorption in the infra-red of the solar spectrum.

Abney (W. de W.) and Festing (Lieut. Col.). Nature, 28, 45.

Wave-lengths of A, a and other prominent lines in the red and infra red of the visible spectrum.

Abney (W. de W.). Chem. News, 48, 288.

Sur l'observation de la partie infra-rouge du spectre solaire au moyen des effets de la phosphorescence.

Becquerel (E.). Comptes Rendus, 83, 249.

Étude de la région infra-rouge du spectre.

Becquerel (H.). Comptes Rendus, 96, 121.

Étude des radiations infra-rouges, au moyen des phénomènes de phosphorescence.

Becquerel (H.). Comptes Rendus, 96, 1215; Nature, 29, 227; Amer. Jour. Sci., (8) 26, 821; Ann. Chim. et Phys., (5) 30, 5.

Maxima et minima d'extinction de la phosphorescence sous l'influence de radiations infra-rouges.

Becquerel (H.). Comptes Rendus, 96, 1858.

Sichtbare Darstellung der ultrarothen Strahlen.

Lommel (E.). Ann. Phys. u. Chem., (2) 26 (1885), 157.

Eine Wellenlängenmessung im ultrarothen Sonnenspectrum.

Pringsheim (E.). Ann. Phys. u. Chem., n. F. 18, 82.

Visible representation of the ultra-red rays.

Tyndall. Phil. Mag., (5) 20 (1885), 547; Amer. Jour. Sci., (3) 31, 150.

# REFRACTION.

Ueber die Bestimmung des specifischen Brechungsvermögens fester Korper in ihren Lösungen.

Bedson (P. P.) and Williams (W. C.). Ber. chem. Ges., 14, 2549-56;
Jour. Chem. Soc., 42, 351 (Abs.); Beiblätter, 6, 91-8 (Abs.); Jour. de Phys., (2) 1, 377 (Abs.).

- Réfrangibilité des rayons qui excitent la phosphorescence dans les corps.

  Becquerel (Ed.). Comptes Rendus, 69, 994.
- Spectrum der Brechbaren Strahlen.

Crookes (W.). Cosmos, 8, 90; Ann. Phys. u. Chem., 97, 621.

Sur la double réfraction circulaire et la production normale des trois systèmes de franges des rayons circulaires.

Croullebois. Comptes Rendus, 92, 520.

Sur la variation des indices de réfraction dans les mélanges de sels isomorphes.

Dufet (H.). Comptes Rendus, 86, 881-4; Jour. Chem. Soc., 34, 681-2.

Variation des indices de réfraction du quartz sous l'influence de la température.

> Dufet (H.). Comptes Rendus, 98, 1265; Jour. de Phys., 10, 518-19; Bull. Soc. minéral., 4, 191-6; 6, 76-80, 287.

Die brechbarsten oder unsichtbaren Lichtstrahlen im Beugungsspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 358.

Beugungsspectrum auf fluorescirenden Substanzen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 168.

Ueber die Aenderung der Brechungsexponenten isomorpher Mischungen, mit deren chemischer Zusammensetzung.

Fock (A.). Zeitschr. Krystallogr. u. Mineralog., 4, 588-608; Beiblätter, 4, 662-4 (Abs.).

- Experimentaluntersuchungen über die Intensität des gebeugten Lichtes. Fröhlich (J.). Ann. Phys. u. Chem., n. F. 15, 575-618; Jour. de Phys., (2) 1, 559 (Abs.).
- Recherches sur le réfraction de la lumière.

Gouy. Ann. Chim. et Phys., (6) 8 (1886), 145-92; Beiblätter, 11 (1887), 95 (Abs.).

Das Auge empfindet alle Strahlen die brechbarer sind als die Rothen.
Helmholtz (H.). Ann. Phys. u. Chem., 94, 205.

The refractive index and specific inductive capacity of transparent insulating media.

Hopkinson (J.). Proc. Royal Soc., 5, 88-40.

- Aenderung des Moleculargewichtes und Molecularrefractionsvermögen.

  Janowsky (J. V.). Sitzungsber. d. Wiener Akad., 81 II, 589-53; 82
  II, 147-58.
- Sur la relation du pouvoir réfringent et la composition des composés organiques.

Kanonnikoff (J.). Ber. chem. Ges., 16, 8047-51 (Abs.); Jour. Soc. phys. chim. russe, 15, 484-79; Bull. Soc. chim. Paris, 41, 318 (Abs.); Beiblätter, 8, 875 (Abs.).

Sur les relations entre la composition et le pouvoir réfringent des composés chimiques. Second mémoire.

Kanonnikoff (J.). Jour. Soc. phys. chim. russe, 16, 119-31; Ber. chem. Ges., 17, Referate, 157-9 (Abs.); Nature, 30, 84 (Abs.); Beiblätter, 8, 498-6 (Abs.); Bull. Soc. chim. Paris, 41, 549 (Abs.); Jour. Chem. Soc., 48, 1-2 (Abs.).

Experimentaluntersuchung über den Zusammenhang zwischen Refraction und Absorption des Lichtes.

Ketteler (E.). Ann. Phys. u. Chem., n. F. 12, 481-519.

Constanz des Refractionsvermögens.

Ketteler (E.). Ann. Phys. u. Chem., (2) 30 (1887), 285-99.

Ueber Prismenbeobachtungen mit streifend einfallendem Licht, und über eine Abänderung der Wollaston'schen Bestimmungsmethode für Lichtbrechungsverhältnisse.

Kohlrausch (F.). Ann. Phys. u. Chem., n. F. 16, 603.

Abhängigkeit des Brechungsquotienten der Luft von der Temperatur. Lang (V. von). Ann. Phys. u. Chem., 153, 450.

Theorie der Doppelbrechung.

Lommel (E.). Ann. Phys. u. Chem., n. F. 4, 55. (Look below, under Voigt.)

Sur la réfraction des gaz.

Mascart. Comptes Rendus, 78, 417; Ann. Phys. u. Chem., 153, 152.

Wellenlänge und Brechungsexponent der äussersten dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 548; Berichtigung dazu, 116, 644.

Bei zunehmender Verdünnung der Gaze erlöschen zuerst die minder brechbaren Strahlen.

Plücker. Ann. Phys. u. Chem., 116, 27.

Report of the committee, consisting of Dr. J. H. Gladstone, Dr. W. R. E. Hodgkinson, Mr. Carleton Williams, and Dr. P. P. Bedson (Secretary), appointed for the purpose of investigating the Method of Determining the Specific Refraction of Solids from their solutions.

Report of the British Association, 1881, 155.

Indices de réfraction ordinaire et extraordinaire du quartz pour les rayons de différentes longueurs d'onde jusqu'à l'extrème ultra-violet.

Sarasin (E.). Archives de Genève, (2) 61, 109-19; Comptes Rendus,85, 1230-2 (Abs.); Beiblätter, 2, 77-8 (Abs.).

Indices de réfraction de spath d'Islande.

Sarasin (E.). Arch. de Genève, (8) 8, 892-4; Jour. de Phys., (2) 2, 869-71.

Indices de réfraction ordinaire et extraordinaire du spath d'Islande pour les rayons de diverses longueurs d'onde jusqu'à l'extrème ultraviolet.

Sarasin (E.). Comptes Rendus, 95, 680.

Indices de réfraction du spath-fluor pour les rayons de différentes longueurs d'onde.

Sarasin (E.). Comptes Rendus, 97, 850.

Untersuchungen über die Abhängigkeit der Molecularrefraction von der chemischen Constitution der Verbindungen.

Schroder (H.). Ber. chem. Ges., 14, 2518-16; Jour. Chem. Soc., 42, 851 (Abs.).

Indices de réfraction des aluns cristallisés.

Soret (Ch.). Comptes Rendus, 99, 867.

On a method of destroying the effects of slight errors of adjustment in experiments of changes of refrangibility due to relative motions in the line of sight.

Stone (E. J.). Proc. Royal Soc., 31, 881.

Indices de réfraction des liquides.

Terquem et Trannin. Jour. de Phys., 4, 222; Ann. Phys. u. Chem., 157, 302.

Brechungsvermögen und Verbrennungswärme.

Thomsen (J.). Ber. chem. Ges., 15, 66-69; Jour. Chem. Soc., 42, 567 (Abs.); Beiblätter, 6, 877 (Abs.).

Bemerkungen zu Hrn. Lommel's Theorie der Doppelbrechung.

Voigt (W.). Ann. Phys. u. Chem., n. F. 17, 468.

Methode zur Bestimmung des Brechungsexponenten von Flüssigkeiten und Glasplatten.

Wiedemann (E.). Ann. Phys. u. Chem., 158, 375.

# RHABDOPHANE.

Analysis of rhabdophane, a new British mineral.

Hartley (W. N.). Jour. Chem. Soc., 41, 210-20; Chem. News, 45, 40 (Abs.).

Analysis of rhabdophane, a new British mineral.

Liveing (G. D.) and Dewar (J.). Jour. Chem. Soc., 41, 210-220; Chem. News, 45, 40 (Abs.).

# RHODIUM.

Rhodium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

#### RUBIDIUM.

Observations on casium and rubidium.

Allen (O. D.). Amer. Jour. Sci., Nov., 1862; Phil. Mag., (4) 25, 189.

Les salpêtres naturels du Chili et du Pérou au point de vue du rubidium. Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Spectre du rubidium.

Gouy. Comptes Rendus, 86, 1078.

Beschreibung der Metallen Cæsium und Rubidium.

Kirchhoff und Bunsen. Ann. Phys. u. Chem., 113, 837; Phil. Mag., (4) 22, 498; 24, 46.

Chlorure de rubidium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 46, planche IV.

# RUTHENIUM.

Ruthenium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 40.

Professor Young and the presence of ruthenium in the chromosphere.

Roscoe (H. E.). Nature, 9, 5.

### SALT.

Blue flame from common salt.

Gladstone (J. H.). Nature, 19, 582.

Sur les caractères des flammes chargées de poussières salines.

Gouy. Comptes Rendus, 85, 489.

Preliminary notice of experiments concerning the chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 22, 241-8; Chem. News, 29, 148.

On the action of heat on the absorption spectra and chemical constitution of saline solutions.

Hartley (W. N.). Proc. Royal Soc., 23, 872-3; Ber. chem. Ges., 8, 765 (Abs.); Phil. Mag., (5) 1, 244-5.

Ausschluss des Kochsalzes.

Jahresber. d. Chemie, 16 (1868), 114.

Absorptionsspectren von Salzlösungen.

Jahresber. d. Chemie, 27 (1874), 96.

On the optical properties of rock salt.

Langley (S. P.). Amer. Jour. Sci., 26 (1885), 477; Jour. de Phys., (2) 5, 188 (Abs.).

Blue flame from common salt.

Smith (A. P.). Nature, 19, 488; 20, 5; Chem. News, 39, 141; Jour. Chem. Soc., 36, 497 (Abs.).

Propriétés modulaires des pouvoirs réfringents dans les solutions salines. Valson (C. A.). Comptes Rendus, 76, 224-6; Jour. Chem. Soc., (2) 11, 460 (Abs.).

# SAMARIUM.

#### Om Samarium.

Clève (P. T.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 17-26;
Beiblätter, 8, 264 (Abs.);
Jour. Chem. Soc., 43, 862-70;
Chem. News, 48, 74-6;
Ber. chem. Ges., 16, 2498 (Abs.);
Comptes Rendus, 97, 94.

Mutual extinction of the spectra of yttrium and samarium.

Crookes (W.). Comptes Rendus, 100, 1495-7; Jour. Chem. Soc., 48, 1025 (Abs.).

Remarques sur les métaux nouveaux de la gadolinite et de la samarskite; holmium ou philippium, thulium, Samarium, décipium.

Delafontaine. Comptes Rendus, 90, 221.

Recherches sur le samarium, radical d'une terre nouvelle extraite de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, 89, 212-14; Ber. chem. Ges., 12, 2160 (Abs.); Beiblätter, 3, 872 (Abs.).

Om de lysande spectra hos Didym och Samarium.

Thalén (R.). Ofversigt. k. Vetensk. Akad. Förhandl., 40, No. 7, 8-16; Jour. de Phys., (2) 2, 446-9; Ber. chem. Ges., 16, 2760 (Abs.); Beiblätter, 7, 898-5 (Abs.).

# SAMARSKITE.

New elements in gadolinite and samarskite.

Crookes (W.). Proc. Royal Soc., 40, 502-9; Jour. Chem. Soc., 52, 884 (Abs.).

Remarques sur la samarskite.

Delafontaine. Comptes Rendus, 90, 221.

Nouvelles raies spectrales observées dans des substances extraites de la samarskite.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 822.

Sur les terres de la samarskite.

Marignac (C.). Comptes Rendus, 90, 899-908.

Sur les spectres d'absorption du didyme et de quelques autres substances extraites de la samarskite.

Soret (J. L.). Comptes Rendus, 88, 422-4.

#### SCANDIUM.

Scandium ne donne pas de spectre.

Clève (P. T.). Comptes Rendus, 89, 420.

Sur le scandium, élément nouveau.

Nilson (L. F.). Comptes Rendus, 88, 645-8; Amer. Jour. Sci., (3) 17, 478 (Abs.); Beiblätter, 3, 359 (Abs.).

- On Scandium, en ny jordmetall. (Ueber Scandium, ein neues Erdmetall.)
  Nilson (L. F.). Oefversigt af k. Vetensk. Akad. Förhand., 36 III,
  45-51; Ber. chem. Ges., 12, 554-7; Jour. Chem. Soc., 36, 601 (Abs.);
  Beiblätter, 4, 42 (Abs.).
- Sur quelques sels caractéristiques du scandium, et sur leurs spectres.

  Nilson (L. F.). Comptes Rendus, 91, 118.
- Raies brilliantes spectrales du métal scandium.

Thalén (R.). Comptes Rendus, 91, 45-8; Jour. Chem. Soc., 38, 685 (Abs.).

Spektralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Akad. Förhand., 38, No. 6, 18-21; Jour. de Phys., (2) 2, 85-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

Spectraluntersuchungen über Scandium.

Thalén (R.). Oefversigt k. Vetensk. Akad. Förhand. (Stockholm), 1881, No. 6; Beiblätter, 11, 249.

# SECONDARY SPECTRUM.

# Secondary Spectrum.

Rood (O. N.). Amer. Jour. Sci., (8) 6, 172.

# SELENIUM:

Effect of light upon selenium.

Adams (W. Ga). Proc. Royal Soc., 23, 535; Ann. Phys. u. Chem., 159, 625.

Nouvelle note sur la propriété spécifique du sélénium à l'égard des radiations thermiques.

Assche (F. van). Comptes Rendus, 97, 945.

Selenium and tellurium spark spectrum; selenium and iron spark spectrum; selenium and aluminium spark spectrum; iron meteoric arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 82, 33, 40.

Spectre du sélénium.

Ditte. Comptes Rendus, 73, 623.

Spectre d'absorption du vapeur de l'acide sélénieux.

Gernez (D.). Comptes Rendus, 74, 803; Bull. Soc. chim. Paris, n. s. 18, 172.

Absorptionsspectrum des Bromselens und des Chlorselens.

Jahresber. d. Chemie, 17 (1864), 109; 25 (1872), 189, 140.

Spectrum des Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Spectrum von Selenwasserstoff.

Plücker. Ann. Phys. u. Chem., 113, 276, 278.

Spectres du sélénium et du tellure.

Salet (G.). Comptes Rendus, 73, 742, 743.

Ueber die Refraction und Dispersion des Selens.

Sirks (J. L.). Ann. Phys. u. Chem., 143, 429-39; Ann. Chim. et Phys., (4) 26, 286 (Abs.).

#### SILICIUM.

Silicic fluoride spectrum; silicic quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 75, 76.

Spectre du fluorure de silicium dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Das Aufleuchten, die Phosphorescenz und Fluorescenz des Flussspaths.

Hagenbach (E.). Naturforscherversammlung in München, 1877; Ber. chem. Ges., 10, 2232 (Abs.).

Line spectra of boron and silicon.

Hartley (W. N.). Proc. Royal Soc., 35, 301-4; Chem. News, 48, 1-2; Jour. Chem. Soc., 46, 242 (Abs.); Beiblätter, 8, 120.

Spectrum des Phosphorescenzlichts von Flussspath.

Kindt. Ann. Phys. u. Chem., 131, 160.

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Lepel (F. von). Ber. chem. Ges., 9, 1641.

Spectres des composés de silicium.

Salet. Comptes Rendus, 73, 1056-9.

Indices de réfraction du spath fluor.

Sarasin (E.). Arch. de Genève, (8) 10, 803-4.

Spectre du fluorure de silicium.

Séguin (J. M.). Comptes Rendus, 54, 993.

Spectre du silicium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectre du silicium sur la surface du Soleil.

Vicaire (E.). Comptes Rendus, 76, 1540.

Absorptionsspectrum des Granats und Rubins; Erkennung von Thonerde neben Eisensalzen.

Vogel (H. W.). Ber. chem. Ges., 10, 373-5; Jour. Chem. Soc., 1877, 2, 269 (Abs.); Beiblätter, 1, 242 (Abs.).

Ueber eine empfindliche spectralanalytische Reaction auf Thonerde.

Vogel (H. W.). Ber. chem. Ges., 9, 1641.

Spectra des Fluorsiliciums und des Silicium wasserstoffs.

Wesendonck (K.). Ann. Phys. u. Chem., n. F. 21, 427-37; Jour. Chem. Soc., 46, 649 (Abs.).

#### SILVER.

Effect of the spectrum on silver chloride.

Abney (W. de W.). Rept. British Assoc., 1881, 594; Chem. News, 44 (1881), 184.

Effect of the spectrum on the haloid salts of silver and on mixtures of the

Abney (W. de W.). Proc. Royal Soc., 33, 164-86; Jour. Chem. Soc., 42, 565 (Abs.); Chem. News, 44 (1881), 297.

Comparative effect of different parts of the spectrum on silver salts.

Abney (W. de W.). Proc. Royal Soc., 40, 261-2; Jour. Chem. Soc., 50, 749 (Abs.); see preceding reference.

Action des rayons différemment réfrangibles sur l'iodure et le bromure d'argent; influence des matières colorantes.

Becquerel (E.). Comptes Rendus, 79, 185-90; Jour. Chem. Soc., (2) 13, 80 (Abs.).

Silver spark spectrum; silver arc spectrum; silver and copper (alloy) arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 42, 48.

Sur l'indice de réfraction du chlorure d'argent naturel.

Cloiseaux (Des). Bull. Soc. minéral. de France, 5, 25.

Renversement des raies spectrales de l'argent.

Cornu (A.). Comptes Rendus, 73, 882.

De l'action des différentes lumières colorées sur une couche de bromure d'argent impregnée de diverses matières colorantes organiques.

Cros (Ch.). Comptes Rendus, 38, 379-81; Jour. Chem. Soc., 36, 504 (Abs.).

Les salpêtres naturels du Chili et du Pérou.

Dieulafait. Comptes Rendus, 98, 1545-8; Chem. News, 50, 45 (Abs.).

Wellenlänge der auf Iodsilber chemisch wirkenden Strahlen.

Eisenlohr (W.). Ann. Phys. u. Chem., 99, 162.

Salpetersaure Nickellösung als Absorptionspräparat.

Emsmann (H.). Ann. Phys. u. Chem., Erganzungsband, 6 (1874), 884-5; Phil. Mag., (4) 46, 829-80; Jour. Chem. Soc., (2) 12, 113.

Spectre de l'azotate de l'argent.

Gouy. Comptes Rendus, 84, 231; Chem News, 35, 107.

Spectroscopische Untersuchung der Absorptionsspectren der flüssigen Untersalpetersäure.

Jahresber. d. Chemie, 23 (1870), 172.

Ueber das Absorptionsspectrum der flüssigen Untersalpetersäure.

Kundt (A.). Ann. Phys. u. Chem., 141, 157-9; Zeitsch. analyt. Chemie, (2) 7, 64 (Abs.); Jour. Chem. Soc., (2) 9, 185 (Abs.).

On the action of the less refrangible rays of light on silver iodide and silver bromide.

Lea (M. Carey). Amer. Jour. Sci., (8) 9, 269-78; Jour. Chem. Soc., 1876, 1, 28 (Abs.).

Note on the sensitiveness of silver bromide to the green rays as modified by the presence of other substances.

Lea (M. Carey). Amer. Jour. Sci., (3) 11, 459-64.

On the sensitiveness to light of various salts of silver.

Lea (M. Carey). Amer. Jour. Sci., (3) 13, 869-71; Jour. Chem. Soc., 1877, 2, 690 (Abs.); Beiblätter, 1, 405 (Abs.).

On the theory of the action of certain organic substances in increasing the sensitiveness of silver haloids.

Lea (M. Carey). Amer. Jour. Sci., (3) 14, 96-9; Beiblätter, 1, 563 (Abs.).

Azotate de l'argent en solution, étincelle.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 167, planche XXV.

Ueber die Lichtempfindlichkeit der Silberhaloïdsalze und den Zusammenhang von optischer und chemischer Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 161-71; Ber. chem.
Ges., 4, 210 (Abs.); Jour. Chem. Soc., (2) 9, 302 (Abs.); Phil. Mag.,
(4) 41, 549 (Abs.); Ann. Chim. et Phys., (4) 26, 280 (Abs.).

Chemische und mechanische Veränderung der Silberhaloïdsalze durch das Licht.

Schultz-Selback (C.). Ann. Phys. u. Chem., 143, 489-49; Ber. chem. Ges., 4, 848-5; Phil. Mag., (4) 41, 550-2.

Bestimmung der Salpetersäure und Phosphorsäure auf spectralanalytischem Wege.

Settegast (H.). Zeitschr. analyt. Chemie, 20, 116-17.

- Azione dei raggi solari sui composti aloidi d'argento.
  - Tommasi (D.). Rend. del R. Ist. Lomb., 11, 652-8; Beiblätter, 3 621-2 (Abs.).
- Sur la radiation de l'argent au moment de sa solidification.
  - Violle (J.). Comptes Rendus, 96, 1038-5; Chem. News, 47, 213 (Abs.); Beiblatter, 7, 457 (Abs.).
- Ueber die Lichtempfindlichkeit des Bromsilbers für die sogenannten chemisch unwirksamen Farben.
  - Vogel (H. W.). Ber. chem. Ges., 6, 1802-6; Ann. Phys. u. Chem. 150, 458-9; Jour. Chem. Soc., (2) 12, 217 (Abs.); Amer. Jour. Sci., (8) 7, 140-1; Phil. Mag., (4) 47, 278-77; Bull. Soc. chim. Paris, n s. 21, 288.
- Ueber die chemische Wirkung des Lichtes auf reines und gefärbtes Bromsilber.
  - Vogel (H. W.). Ber. chem. Ges., 8, 1635-6; Jour. Chem. Soc., 1876, 1, 510 (Abs.); Amer. Jour. Sci., (3) 11, 215-16 (Abs.).
- Neue Beobachtungen über die Lichtempfindlichkeit des Bromsilbers.
  - Vogel (H. W.). Ber. chem. Ges., 9, 667-70; Jour. Chem. Soc., 1876, 2, 265 (Abs.).
- Ueber die Empfindlichkeit trockner Bromsilberplatten gegen das Sonnenspectrum.
  - Vogel (H. W.). Ber. chem. Ges., 14, 1024-8; Jour. Chem. Soc., 40, 773 (Abs.); Beiblätter, 5, 521 (Abs.).
- Ueber die verschiedenen Modificationen des Bromsilbers und Chlorsilbers. Vogel (H. W.). Ber. chem. Ges., 16, 1170-9; Beiblätter, 7, 536 (Abs.).
- Ueber die chemische Wirkung des Sonnenspectrums auf Silberhaloïdsalze. Vogel (H. W.). Ann. Phys. u. Chem., 153, 218-50; Jour. Chem. Soc., (2) 13, 826 (Abs.).
- Ueber die Brechung und Dispersion des Lichtes in Iod-, Brom-und Chlor-Silber.
  - Wernicke (W.). Ann. Phys. u. Chem., 142, 560-78; Jour. Chem. Soc., (2) 9, 653-4 (Abs.); Ann. Chim. et Phys., (4) 26, 287 (Abs.).

#### SODIUM.

Spectrum of sodium.

Abney (W. de W.). Chem. News, 44, 8.

Note on the spectrum of sodium.

Abney (W. de W.). Proc. Royal Soc., 32, 448.

Reversal of the sodium lines.

Ackroyd (W.). Chem. News, 36, 164-5.

Lumière jaune de la flamme de sodium.

Becquerel (H.). Comptes Rendus, 90, 1407.

Spectronatromètre.

Champion (P.), Pellet (H.) et Grenier (M.). Comptes Rendus, 76, 707-11; Jour. Chem. Soc., (2) 11, 984-5 (Abs.). (Look below, under Janssen.)

Spectre de la soude dans les tubes de Geissler.

Chautard (J.). Comptes Rendus, 82, 278.

Renversement des raies spectrales du sodium.

Cornu (A.). Comptes Rendus, 73, 882; Jour. de Phys., 1, 206.

Ueber die Opacität der gelben Natronflamme für Licht von ihrer eignen Farbe.

Crookes (W.). Ann. Phys. u. Chem., 112, 844.

Indices de réfraction des dissolutions aqueuses d'acide acétique et d'hyposulfite de soude.

Damien. Comptes Rendus, 91, 828-5; Beiblätter, 5, 41.

Das Verhältniss der Intensitäten der beiden Natriumlinien.

Dietrich (W.). Ann. Phys. u. Chem., n. F. 12, 519.

Spectre de sodium.

Fizeau (H.). Comptes Rendus, 54, 498; Ann. Phys. u. Chem., 116, 492.

Recherches photométriques sur le sodium.

Gouy. Comptes Rendus, 83, 269; 85, 70; 86, 878, 1078.

Ueber ein einfaches Verfahren die Umkehrung der farbigen Linien der Flammenspectra, insbesondere der Natriumlinie, subjectiv dazustellen.

Günther (C.). Ann. Phys. u. Chem., n. F. 2, 477. 22 T

Sur l'emploi de la lumière monochromatique, produite par les sels de soude, pour apprécier les changements de couleur de la teinture de tournesol, dans les essais alkalimétriques.

Henry (L. d'). Comptes Bendus, 76, 222-4; Ann. Chem. u. Pharm., 169, 272; Dingler's Jour., 207, 405-7.

Soda flames in coal fires.

Herschel (J.). Nature, 27, 78, 103.

Spectrum des Natriums.

Jahresber. d. Chemie, 15 (1862), 29, 80.

Umkehrung der hellen Spectrallinien der Metalle, insbesondere des Natriums, in dunkle.

Jahresber. d. Chemie, 18 (1865), 90.

Note sur l'analyse spectrale quantitative, à propos de la communication précédente de M. M. Champion, Pellet et Grenier.

Janssen (J.). Comptes Rendus, 76, 711-13; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Chemische Analyse durch Spectralbeobachtungen; Linien von Natrium. Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 161-87.

Ueber anomale Dispersion im glühenden Natriumdamp.

Kundt (A.). Ann. Phys. u. Chem., n. F. 10, 821-5; Phil. Mag., (5) 10, 58-7.

Sulfate de soude fondu, étincelle; sels de soude dans le gaz; sels de soude et de lithine dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 54, 55, planche V, VI.

Reversal of the lines of the metallic vapours, sodium.

Liveing and Dewar. Nature, 24, 206; 26, 466.

On the spectra of sodium and potassium.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 29, 398-402; Beiblätter, 4, 868 (Abs.).

Note on some phenomena attending the reversal of lines.

Lockyer (J. N.). Proc. Royal Soc., 28, 428-82; Beiblätter, 3, 608 (Abs.).

Note on the spectrum of sodium.

Lockyer (J. N.). Proc. Royal Soc., 29, 140; Chem. News, 39, 248.

Spectrum of sodium at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98.

Sur les raies de la vapeur de sodium.

Lockyer (J. N.). Comptes Rendus, 88, 1124.

Die Natriumline gehört dem Metall an.

Mitscherlich (A.). Ann. Phys. u. Chem., 116, 505.

Absorption spectra of sodium and potassium at low temperatures.

Roscoe (H. E.) and Schuster (A.). Proc. Boyal Soc., 22, 862.

Noscos (II. 12.) and behaver (A.). I foc. noyar box

Indice du quartz pour les raies du sodium.

Sarasin (Ed.). Comptes Rendus, 85, 1280.

Et spectres du fer et quelques autres métaux dans l'arc voltaïque; sodium. Secchi (A.). Comptes Rendus, 77, 178; Chem. News, 28, 82.

Spectre du sodium.

Secchi (A.). Comptes Rendus, 82, 275.

Propriétés optiques de sous carbonate de soude et de hyposulfite de soude. Senarmont (H. de). Ann. Chim. et Phys., (3) 41, 836.

Sur le déplacement des raies du sodium, observé dans le spectre de la grande comète de 1882.

Thollon et Gouy. Comptes Rendus, 96, 871.

Leichte Umkehrung der Natriumlinie.

Weinhold (A.). Ann. Phys. u. Chem., 142, 321; Phil. Mag., (4) 41, 404.

(See Soret. Arch. de Genève, (2) 41, 64-5.)

Sur la dispersion du chromate de soude à 4 H, O.

Wyrouboff (G.). Bull. Soc. minéral. de France, 5, 160-1.

Re-reversal of sodium lines.

Young (C. A.). Nature, 21, 274-5; Beiblätter, 4, 870.

#### STRONTIUM.

Ueber den Einfluss der Temperatur auf die Brechungsexponenten der naturlichen Sulfate des Baryum, Strontium und Blei.

Arzruni (A.). Zeitschr. Krystallogr. u. Mineral., 1, 165-192; Jahrb. f. Mineral., 1877, 526 (Abs.); Jour. Chem. Soc., 36, 189 (Abs.).

Strontium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 44.

La strontiane dans les eaux minérales de Contrexeville et Schinznach (Suisse).

Dieulafait. Comptes Rendus, 95, 999-1001; Jour. Chem. Soc., 44, 801 (Abs.).

Recherches photométriques sur le strontium.

Gouy. Comptes Rendus, 83, 269.

Spectre de chlorure de strontium.

Gouy. Comptes Rendus, 84, 281.

Recherches photométriques; spectre du strontium.

Gouy. Comptes Rendus, 85, 70.

Sur les caractères des flammes chargées du chlorure de strontium.

Gouy. Comptes Rendus, 85, 489.

Spectre continu du strontium.

Gouy. Comptes Rendus, 86, 878, 1078.

Spectrum von Strontium.

Jahresber. d. Chemie, 23 (1870), 174.

Chlorure de strontium en solution, étincelle; dans le gaz; dans le gaz chargé de H Cl.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 69, planche IX; p. 72 et 75, planche X.

Linien von Strontium.

Kirchhoff (G.) und Bunsen (R.). Ann. Phys. u. Chem., 110, 174.

#### SULPHUR.

On the violet phosphorescence in calcium sulphide.

Abney (W. de W.). Proc. Physical Soc., 5, 85-8; Nature, 35, 855 (Abs.); Phil. Mag., (5) 13, 212-14; Jour. Chem. Soc., 42, 677 (Abs.); Beiblätter, 6, 888 (Abs.); Jour. de Phys., (2) 2, 287 (Abs.).

Spectres des gaz simples; soufre.

Angström (A. J.). Comptes Rendus, 73, 369; Ann. Phys. u. Chem., 94, 159.

Spectre du sulfure de carbone.

Becquerel (H.). Comptes Rendus, 85, 1227.

Sulphur spectrum, sulphuric acid spectrum, sulphur quartz spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 68, 74, 75.

Spectrum von Schwefel.

Dibbits (H. C.). Ann. Phys. u. Chem., 122, 527-84.

Spectre du soufre.

Ditte (A.). Comptes Rendus, 73, 622-4; Bull. Soc. chim. Paris, n. s. 16, 229.

Spectres d'absorption des vapeurs de soufre.

Gernez (D.). Comptes Rendus, 74, 808; Bull. Soc. chim. Paris, n. s. 17, 259.

Spectre de sulfate de thallium.

Gouy. Comptes Rendus, 84, 881.

Sulfate acide.

Gouy. Comptes Rendus, 85, 70.

Spectrum of murexide.

Hartley (W. N.). Jour. Chem. Soc., 51 (1887), 199-200.

Spectrum des Schwefels.

Jahresber. d. Chemie, 16 (1868), 110; 17 (1864), 109; 22 (1869), 181; 23 (1870), 178; 25 (1872), 189, 141; 28 (1875), 122.

Spectre du sulfure de plomb.

Lallemand (A.). Comptes Rendus, 78, 1272.

Sur la diffusion lumineuse du sulfure de cuivre obtenu sans précipitation.

Lallemand (A.). Comptes Rendus, 79, 698.

Die Absorptionsstreifen in Prismen von Schwefelkohlenstoff. Lamansky (S.). Ann. Phys. u. Chem., 146, 213, 215.

Sur les spectres des vapeurs aux températures élévées; spectre du soufre. Lockyer (J. N.). Comptes Rendus, 78, 1790; Nature, 30, 78; Chemical News, 30, 98.

Spectrum des Schwefels, Schwefelkohlenstoffs, Schwefelwasserstoffs und Selens.

Mulder. Jour. prackt. Chemie, 91, 111.

Sulla refrazione atomica dello zolfo.

Nasini (R.). Gazz. chim. ital., 13, 296-311; Jour. Chem. Soc., 46, 149-51 (Abs.); Ber. chem. Ges., 15, 2878-92; Beiblätter, 7, 281 (Abs.).

Dampf des wasserfreien Schwefelsäure.

Plücker. Ann. Phys. u. Chem., 113, 276, 278.

Spectrum des Muroxids.

Reynolds. Jour. prackt. Chemie, 105, 859.

De la flamme du soufre, et des diverses lumières utilisables en photographie.

Riche (A.) et Brady (C.). Comptes Rendus, **30**, 288-41; Ber. chem. Ges., **8**, 182 (Abs.).

Recherche du soufre par le spectroscope.

Salet (G.). Comptes Rendus, 68, 404; Bull. Soc. chim. Paris, n. s. 11, 802; Ann. Phys. u. Chem., 137, 171.

Spectre du soufre.

Salet (G.). Comptes Rendus, 73, 559.

Recherche du soufre et du phosphore par le spectroscope.

Salet (G.). Bull. Soc. chim. Paris, n. s. 13, 289.

Sur la réaction spectroscopique du soufre et sur la flamme de l'hydrogène. Salet (G.). Bull. Soc. chim. Paris, n. s. 14, 182.

Sur le spectre d'absorption de la vapeur du soufre.

Salet (G.). Comptes Rendus, 74, 865-6; Jour. Chem. Soc., (2) 10, 382 (Abs.); Ber. chem. Ges., 5, 323 (Abs.).

Sur les spectres du phosphore et du soufre.

Séguin (J. M.). Comptes Rendus, 53, 1272.

Propriétés optiques d'hyposulfite de soude.

Sénarmont (H. de). Ann. Phys. u. Chem., (8) 41, 886.

# TELLURIUM.

Tellurium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 20, 40, 45.

Spectre du tellure.

Ditte (A.). Comptes Rendus, 73, 622-24,

Sur les spectres d'absorption de tellure, de protochlorure et de protobromure de tellure.

Gernez (D.). Comptes Rendus, 74, 1190-2; Jour. Chem. Soc., (2)
10, 665 (Abs.); Phil. Mag., (4) 43, 478-5; Amer. Jour. Sci., (8) 4,
59 (Abs.); Bull. Soc. chim. Paris, n. s. 18, 172.

Spectrum des Tellurs.

Jahresber. d. Chemie, 25 (1872), 140.

Spectre du tellure.

Salet (G.). Comptes Rendus, 73, 744.

# TERBIUM.

Absorptionsspectrum von Terbiumlösungen.

Delafontaine. Jour. prackt. Chemie, 94, 808.

Vergleich der Absorptionsspectra von Didym, Erbium und Terbium.

Delafontaine. Ann. Phys. u. Chem., 124, 685; Chem. News, 11, 253; Ann. Chim. et Phys., 135, 194.

Sur un spectre électrique particulier aux terres rares du groupe terbique.

Lecoq de Boisbaudran (F.). Comptes Rendus, 102, 158-55; Jour. Chem. Soc., 50, 298 (Abs.).

### THALLIUM.

Thallium and indium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 45, 47.

Renversement des raies pectrales du thallium.

Cornu (A.). Comptes Rendus, 73, 882.

Discovery of thallium.

Crookes (W.). Chem. News, 3, 198.

Thallium and its compounds.

Crookes (W.). Jour. Chem. Soc., 17, 112.

Recherches photométriques sur le thallium.

Gouy. Comptes Rendus, 83, 269.

Spectre de sulfate de thallium.

Gouy. Comptes Rendus, 84, 231.

Spectrum des Thalliums und der Thalliumsalzen.

Jahresber. d. Chemie, 16 (1863), 112; 26 (1878), 152, 158.

Sur le thallium, nouveau métal dont l'analyse spectrale a fait connaître l'existence.

Lamy (A.). Comptes Rendus, 54, 1255; Ann. Chim. et Phys., (3) 67 385; Ann. Phys. u. Chem., 116, 495.

Moyen de constater une empoisonnement par le thallium.

Lamy (A.). Comptes Rendus, 57, 442.

Sels de thallium dans le gaz.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 141, planche XXI.

Spectre de thallium.

Lecoq de Boisbaudran (F.). Comptes Rendus, 77, 1152; Bull. Sor chim. de Paris, n. s. 21, 125.

Note on the spectrum of thallium.

Miller (W. A.). Proc. Royal Soc., 12, 407.

Sur la raie spectrale du thallium.

Nicklés. Comptes Rendus, 58, 182; Ann. Phys. u. Chem., 121, 836.

Spectre du thallium dans l'arc voltaïque.

Secchi (A.). Comptes Rendus, 77, 178.

### THULIUM.

Spectre de thulium.

Clève (P. T.). Comptes Rendus, 89, 478; 91, 828.

Remarques sur le thulium.

Delafontaine. Comptes Rendus, 90, 221.

Examen spectral du thulium.

Thalén (R.). Comptes Rendus, **91**, 876-8; Jour. Chem. Soc., **40**, 849-50 (Abs.); Beiblätter, **4**, 789 (Abs.).

Spectralundersökningar rörande Skandium, Ytterbium, Erbium och Thulium.

Thalén (R.). Oefversigt af k. Vetensk. Acad. Förhand., 38, No. 6, 18-21; Jour. de Phys., (2) 2, 35-40; Chem. News, 47, 217 (Abs.); Jour. Chem. Soc., 44, 954 (Abs.).

#### TIN.

Tin arc spectrum; tin and zinc spark spectrum; tin chloride spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 49, 76.

Bichlorure d'étain en solution, étincelle.

Lecoq de Boisbaudran (F.), Paris, 1874, p. 148, planche XXII.

Spectres d'étain et ses composés.

Salet (G.). Comptes Rendus, 73, 862-3; Jour. Chem. Soc., (2) 9, 1147-9 (Abs.).

# TITANIUM.

Spectre du bichlorure de titanium.

Becquerel (H.). Comptes Rendus, 85, 1227.

Titanium spark spectrum; titanium, aluminium, and palladium spark spectrum; titanium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 47.

Spectre du titanium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim. Paris, n. s. 16, 229.

Coïncidence of the spectrum lines of iron, calcium, and titanium.

Williams (W. Matthieu). Nature, 8, 46.

#### URANIUM.

- Analyse de la lumière émise par les composés d'uranium phosphorescents.

  Becquerel (E.). Comptes Rendus, 75, 296-308; Jour. Chem. Soc., (2)
  11, 25 (Abs.); Amer. Jour. Sci., (8) 4, 486 (Abs.).
- . Relation entre l'absorption et la phosphorescence des composés d'uranium.

  Becquerel (H.). Comptes Rendus, 101, 1252-6; Jour. Chem. Soc.,
  50, 189 (Abs.).
- ·Uranium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 50.

- Anwendung der dunklen Linien des Spectrums als Reagens auf Uransäure.

  Jahresber. d. Chemie, 5 (1862), 125.
- Absorptionsspectren der Uransalzen.

Jahresber. d. Chemie, 26 (1878), 158.

- Investigation of the fluorescent and absorption spectra of the uranium salts.

  Morton (H.) and Bolton (H. C.). Chem. News, 28, 47-50, 118-16, 164-7, 238-4, 244-6, 257-9, 268-70; 29, 17-19; Jour. Chem. Soc., (2) 12, 12-18 (Abs.), 642 (Abs.).
- On some remarkable spectra of compounds of zirconia and of the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

Spectra der Uranlösungen.

Thudichum. Jour. prackt. Chemie, 106, 415.

Absorption spectrum of uranine.

Wiley (H. W.). Amer. Chem. Jour., 1, 211.

Untersuchungen über das Uran.

Zimmermann (C.). Ann. Phys. u. Chem., 213, 285-829; Chem. News, 46, 172 (Abs.); Zeitschr. analyt. Chemie, 23, 220 (Abs.).

# VANADIUM.

Vanadium arc spectrum.

Capron (J..). Photographed Spectra, London, 1877, p. 50.

# VIOLET AND ULTRA-VIOLET.

Sur l'absorption des rayons ultra-violets par quelques milieux.

Chardonnet (E. de). Comptes Rendus, 93, 406.

Vision des radiations ultra-violettes.

Chardonnet (E. de). Comptes Rendus, 96, 509-71; Jour. de Phys., 12, 219.

Sur l'absorption atmosphérique des radiations ultra-violettes. Cornu (A.). Jour. de Phys., 10, 5-16.

Erklärung der ultra-violetten Strahlen des Spectrums. Eisenlohr (W.). Ann. Phys. u. Chem., 93, 628.

Note upon certain photographs of the ultra-violet spectra of elementary bodies.

Hartley (W. N.). Jour. Chem. Soc., 41, 84-90; Chem. News, 43, 289 (Abs.); Beiblätter, 5, 659 (Abs.); 6, 789 (Abs.).

Investigation by means of photography of the ultra violet spark spectra emitted by metallic elements and their combinations under varying conditions.

Hartley (W. N.). Chem. News, 48, 195; note on the above by Wiedemann (E.), Chem. News, 49, 117; Jour. Chem. Soc., 46, 801 (Abs.); Beiblätter, 8, 581 (Abs.).

Visibility of the ultra-violet rays of the spectrum.

Herschel (A. S.). Nature, 16, 22-8.

On the ultra-violet spectra of the elements.

Liveing (G. D.) and Dewar (J.). Phil. Trans., 174, 187-222; Proc. Royal Soc., 34, 122 (Abs.); Beiblätter, 6, 934 (Abs.); 7, 598, 849-56 (Abs.); Jour. Chem. Soc., 44, 262 (Abs.); Proc. Royal Institution, 10, 245-52.

Notes on the absorption of ultra-violet rays by various substances. Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 35, 71.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Mascart. Comptes Rendus, 58, 1111.

Visibilité des rayons ultra-violets.

Mascart. Comptes Rendus, 68, 402; Ann. Phys. u. Chem., 137, 163.

Spectres ultra-violets.

Mascart. Comptes Rendus, 69, 387.

Sur les moyens propres à la réproduction photographique des spectres ultra-violets des gaz.

Monckhoven (van). Bull. Acad. Belgique, (2) 43, 187-92; Beiblätter, 1, 286 (Abs.).

Fluorescence and the violet end of a projected spectrum.

Morton (Henry). Chem. News, 27, 38.

Photographie des durch ein Quarzprisma erhaltenen ultra-violetten Theils des Spectrums.

Müller (J.). Ann. Phys. u. Chem., 109, 151.

A comparison of the maps of the ultra-violet spectrum.

Pickering (E. C.). Amer. Jour. Sci., (8) 32, 223-6; Belblätter, 11 (1887), 145 (Abs.).

On the lower limit of the prismatic spectrum, with especial reference to some observations of Sir J. Herschel.

Rayleigh (Lord). Phil. Mag., (5) 4, 348-53; Beiblätter, 1, 682 (Abs.).

Report on the ultra-violet spark spectra emitted by metallic elements.

Report of the British Association, 1882, p. 143, presented by Prof. Hartley; Nature, 26, 458.

Nicht alle Quarzprismen verlängern das Spectrum am ultravioletten Ende.

Salm-Horst (Der Fürst zu). Ann. Phys. u. Chem., 109, 158.

Experimente über die Sichtbarkeit ultra-violetter Strahlen.

Sauer (L.). Ann. Phys. u. Chem., 155, 602.

Ueber ultra-violette Strahlen.

Schönn (J. L.). Ann. Phys. u. Chem., n. F. 9, 483-92; 10, 148-8.

Der ultra-violette Theil des Spectrums lässt sich unmittelbar sichtbar machen.

Seculic (M.). Ann. Phys. u. Chem., 146, 157.

Recherches sur l'absorption des rayons ultra-violets par diverses substances.

Soret (J.). Comptes Rendus, 86, 708, 1062-4; Arch. de Genève, (2)
63, 89-112; (3) 4, 261-92, 377-81; 10, 429-94; Beiblätter, 2, 410
(Abs.); 3, 196 (Abs.); 5, 124 (Abs.); Jahresber. d. Chemie (1873), 154.

- Sur la transparence des milieux de l'œil pour les rayons ultra-violets. Soret (J. L.). Comptes Rendus, 88, 1012.
- Spectres d'absorption ultra-violets des éthers azotiques et azoteux. Soret (J. L.) et Rilliet (Alb. A.). Comptes Rendus, 89, 747.
- Sur la visibilité des rayons ultra-violets.

Soret (J. L.). Comptes Rendus, 97, 814.

Sur l'absorption des rayons ultra-violets par les milieux de l'œil et par quelques autres substances.

Soret (J. L.). Comptes Rendus, 97, 572, 642.

The Change of Refrangibility of Light. (Gives a drawing of the fixed lines in the solar spectrum in the extreme violet and in the invisible region beyond.)

Stokes (G. G.). Phil. Trans. for 1852, part II, 463.

Visibilité des rayons ultra-violets, à l'aide du parallelipipède de dispersion.

Zenger (Ch. V.). Comptes Rendus, 98, 1017.

### VOLCANOES.

Observations on Mt. Etna.

Langley (S. P.). Amer. Jour. Sci., (8) 20, 38-4; Beiblätter, 4, 790 (Abs.).

Recherches spectroscopiques sur les fumerolles de l'éruption du Vesuve en avril 1872.

Palmieri (L.). Comptes Rendus, 76, 1427-8.

#### WATER SPECTRA.

Colour of the Mediterranean and other waters.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 472-83; Jour. Chem. Soc., 42, 1017 (Abs.); Beiblätter, 6, 879 (Abs.).

Note on the absorption of sea-water.

Aitken (J.). Proc. Royal Soc. Edinburgh, 11, 687; Beiblätter, 7, 872 (Abs.).

Évaporation de l'eau sous l'influence de la radiation solaire ayant traversé des verres colorés.

Baudrimont (A.). Comptes Rendus, 89, 41-8.

Spectre de l'eau.

Becquerel (H.). Comptes Rendus, 85, 1227.

The spectroscope in water analysis.

Church (A. H.). Chem. News, 22, 322.

Indices de réfraction de l'eau en surfusion.

Damien (B. C.). Jour. de Phys., 10, 198-202.

Untersuchungen einiger Wässer.

Dibbits. Jour. prackt. Chemie, 92, 88, 50.

Spectre lumineux de l'eau.

Huggins (W.). Comptes Rendus, 90, 1455.

Spectres d'absorption de la vapeur d'eau.

Janssen (J.). Comptes Rendus, 56, 538; 60, 218; 63, 289; 78, 995;
95, 885; Phil. Mag., (4) 32, 815; Ann. Chim. et Phys., (4) 24, 215–17; Jour. Chem. Soc., (2) 10, 280 (Abs.); Jahresber. d. Chemie (1866), 76.

Spectre de la vapeur d'eau.

Lecoq de Boisbaudran (F.). Comptes Rendus, 74, 1050.

Spectrum of water.

Liveing (G. D.) and Dewar (J.). Proc. Royal Soc., 30, 580; 33.
274-6; Jour. Chem. Soc., 44, 140 (Abs.); Beiblätter, 6, 481 (Abs.).

Sur la réfraction de l'eau comprimée.

Mascart. Comptes Rendus, 78, 801-5; Amer. Jour. Sci., (8) 7, 593;
Ann. Phys. u. Chem., 153, 154-8.

Die brechbarston oder unsichtbaren Lichtstrahlen im Beugungspectrum und ihre Wellenlänge.

Eisenlohr (W.). Ann. Phys. u. Chem., 98, 858; 99, 159-62.

Eine Wellenmessung im Spectrum jenseits des Violetts.

Esselbach (E.). Ann. Phys. u. Chem., 98, 518.

Les vibrations de la matière et les ondes de l'éther dans les combinations photochimiques.

Favé. Comptes Rendus, 86, 560-5.

On the normal solar spectrum. (Gives the wave-lengths of the principal lines of the solar spectrum.)

Gibbs (Wolcott). Amer. Jour. Sci., 93, 1.

On the measurement of wave-lengths by means of indices of refraction.

Gibbs (Wolcott). Amer. Jour. Sci., March, 1869; Phil. Mag., (4) 50, 177. [See also Rep'ts British Association for 1881 and 1884.]

Recherches photométriques sur les flammes colorées.

Gouy. Comptes Rendus, 83, 269-272; 85, 70, 439; 86, 878, 1078;Ann. Chim. et Phys., (5) 18, 5-101.

Measurements of the wave-lengths of lines of high refrangibility in the spectra of elementary substances.

Hartley (W. N.) and Adeney (W. E.). Phil. Trans., 175, 68-137;
Proc. Royal Soc., 35, 148 (Abs.); Chem. News, 47, 198 (Abs.); Beiblätter, 7, 599 (Abs.).

Zur Reduction der Kirchhoff'schen Spectralbeobachtungen auf Wellenlängen.

Hasselberg (B.). Bull. Acad. St. Pétersbourg, 25, 131-46; Beiblätter, 3, 79.

Note sur l'analyse spectrale.

Janssen (J.). Comptes Rendus, 76, 711-18; Jour. Chem. Soc., (2) 11, 1258 (Abs.).

Photometrische Untersuchungen.

Ketteler (E.) und Pulfrich (C.). Ann. Phys. u. Chem., n. F. 15, 387-378; Amer. Jour. Sci., (8) 23, 486 (Abs.); Monatsber. d. Berliner Acad. (1864), 632.

Ueber die Empfindlichkeit des normalen Auges für Wellenlängenunterschiede des Lichtes.

König (A.) und Dieterici (C.). Ann. Phys. u. Chem, n. F. 22, 579-89; Jour. de Phys., (2) 4, 823 (Abs.).

Mesure de l'intensité photométrique des raies spectrales.

Lagarde (H.). Comptes Rendus, 95, 1850.

Recherches photométriques sur le spectre de l'hydrogène.

Lagarde (H.). Ann. Chim. et Phys., (6) 4, 248-869, planche.

Wave-lengths in the invisible spectrum.

Langley (S. P.). Trans. National Acad. Sci. (1883); Amer. Jour. Sci.,
(3) 27, 169; (3) 30, 480; Ann. Chim. et Phys., (6) 2, 145; Ann.
Phys. u. Chem., n. F. 22, 598.

On hitherto unrecognized wave-lengths.

Langley (S. P.). Amer. Jour. Sci., (3) 32, 83; Phil. Mag., (5) 22 (1886), 149.

Courbe représentant le rapport des longueurs d'ondes aux divisions de mon micromètre.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 194, planche XXIX.

Comparaison photométrique des diverses parties du même spectre.

Macé de Lépinay (J.). Ann. Chim. et Phys., (5) 24, 289; 30, 145; Jour. de Phys., 12, 64.

Sur une méthode pratique pour la comparaison spectroscopique des scources usuelles diversement colorées.

Macé de Lépinay (J.). Comptes Rendus, 97, 1428.

Méthode pour mesurer, en longueurs d'onde, de petites épaisseurs.

Macé de Lépinay (J.). Ann. Chim. et Phys., (6) 10, 68-84; Jour. de Phys., (2) 5, 405-11.

Détermination de la longueur d'onde de la raie A du spectre.

Mascart. Comptes Rendus, 56, 188.

Détermination des longueurs d'onde des rayons lumineux et des rayons ultra-violets.

Mascart. Comptes Rendus, 58, 1111.

Longueurs d'onde de quelques métaux.

Mascart. Ann. de l'École normale, 4 (1866).

Spectralphotometrische Untersuchungen einiger photographischer Sensibilisatoren.

Messerschmidt (J. B.). Ann. Phys. u. Chem., (2) 25, 655-74; Jour. Chem. Soc., 48, 1097 (Abs.); Jour. de Phys., (2) 5, 518.

Sur la détermination des longueurs d'onde calorifiques.

Mouton. Comptes Rendus, 88, 1078-82; Beiblätter, 3, 616-18 (Abs.)

Wellenlänge und Brechungsexponent der äusserstern dunklen Wärmestrahlen des Sonnenspectrums.

Müller (J.). Ann. Phys. u. Chem., 115, 543, Berichtigung dazu, 116, 644; Phil. Mag., (4) 26, 259; 30, 76; Jahresber. d. Chemie, 16 (1863), 191; 18 (1865), 229.

Note on the progress of experiments for comparing a wave-length with a metre.

Peirce (C. S.). Amer. Jour. Sci., (8) 18, 51; Beiblätter, 3, 711 (Abs.).

The ghosts in Rutherford's diffraction spectrum.

Peirce (C. S.). Amer. Jour. Mathematics, 2, 880-47; Nature, 20, 99 (Abs.); Beiblätter, 5, 48-50 (Abs.).

Photometric Researches.

Pickering (W. H.). Proc. Amer. Acad., 15, 286-50; Beiblätter, 4, 728 (Abs.).

Photometrische Untersuchungen.

Pulfrich (C.). Ann. Phys. u. Chem., n. F. 14, 177-218; Amer. Jour.
Sci., (8) 23, 50 (Abs.); Jour. de Phys., (2) 1, 285 (Abs.).

Tableau de conversion de l'échelle spectrale en longueurs d'onde. Salet (G.). Bull. Soc. chim. Paris, n. s. 27, 482.

On the relative wave-lengths of the lines of the solar spectrum. Rowland (Henry A.). Phil. Mag., (6) 23 (1887), 257.

Three years' experimenting in mensurational spectroscopy Smyth (Piazzi). Nature, 22, 198-5, 222-5.

Mémoire sur la détermination des longueurs d'onde des raies métalliques, spectres des métaux dessinés d'après leurs longueurs d'onde. (With a plate giving the lines and wave-lengths of forty-five metals.)

Thalén (Rob.). Ann. Chim. et Phys., (4) 18, 202; Nova Acta Reg. Soc. Sci. Upsala, (3) 6.

Longueur d'onde des bandes spectrales donnees par les composé du carbone.

Thollon (L.). Comptes Rendus, 93, 260; Ann. Chim. et Phys., (5)
25, 287.

Mesures photométriques dans les différentes régions du spectre. Trannin (H.). Jour. de Phys., 5, 297, 849.

Photometrie der Fraunhofer Linien.

Vierordt (K.). Ann. Phys. u. Chem., n. F. 13, 888-46.

Resultate spectralphotometrischer Untersuchungen.

Vogel (H. C.). Monatsber. d. Berliner Akad. (1880), 801-11; Beiblätter, 5, 286 (Abs.).

Messung der Wellenlängen des Lichtes mittels Interferenzstreifen im Beugungsstreifen.

Weinberg (M.). Carl's Repertorium, 19, 148-54; Beiblätter, 7, 299 (Abs.).

Note au sujet d'un mémoire de M. Lagarde.

Wiedemann (E.). Ann. Chim. et Phys., (6) 7, 143-4.

# YELLOW BODIES.

Spectrum gelber Körper.

Thudichum. Ber. chem. Ges., 2, 68.

### YTTERBIUM.

Examen spectrale de l'ytterbine.

Lecoq de Boisbaudran (F.). Comptes Rendus, 88, 1842.

Sur l'ytterbine, nouvelle terre contenue dans la gadolinite.

Marignac (C.). Comptes Rendus, 87, 578-81; Amer. Jour. Sci., (3) 17, 63 (Abs.); Jour. Chem. Soc., 36, 118 (Abs.).

Sur l'ytterbine, terre nouvelle de M. Marignac.

Nilson (L. F.). Comptes Rendus, **88**, 642-5; Amer. Jour. Sci., (3) **17**, 478 (Abs.); Ber. chem. Ges., **12**, 550-3; Jour. Chem. Soc, **36**, 601 (Abs.).

Sur quelques caractéristiques de l'ytterbium et sur leurs spectres.

Nilson (L. F.). Comptes Rendus, 91, 56.

Recherches spectrales de l'ytterbium.

Thalén (R.). Jour. de Phys., 12, 85.

Spectres de l'ytterbium et de l'erbium.

Thalén (R.). Comptes Rendus, 91, 326; Beiblätter, 5, 122; Chemical News, 42, 184.

#### YTTRIUM.

Yttrium arc spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 51.

Sur les combinaisons de l'yttrium et de l'erbium.

Clève (P. T.) et Hoegland (O.). Bull. Soc. chim. Paris, 18, 198-201, 289-97; Jour. Chem. Soc., (2) 11, 186-9.

Sur les poids atomiques de l'yttrium.

Clève (P. T.). Bull. Soc. chim. Paris, 39, 120-2; Amer. Jour. Sci., (3) 25, 381 (Abs.).

On radiant matter spectroscopy. The detection and wide distribution of yttrium.

Crookes (W.). Phil. Trans., 174, 891-918; Proc. Royal Soc., 35, 262 (Abs.); Chem. News, 47, 261 (Abs.); Ber. chem. Ges., 16, 1689 (Abs.); Jour. Franklin Inst., 36, 118-128; Beiblätter, 7, 599 (Abs.); Jour. Chem. Soc., 46, 241 (Abs.); Chem. News, 49, 159-60, 169-71, 181-2, 194-6, 205-8; Ann. Chim. et Phys., (6) 3, 145-87.

Spectre des terres faisant partie du groupe de l'yttria et de la cérite; holmium, philippium, samarium, décipium.

Soret (J. L.). Comptes Rendus, 89, 521-8; 91, 878; Ber. chem. Ges.,
 12, 2267-8; Jour. Chem. Soc., 38, 7 (Abs.); Chem. News, 40, 147.

Spectre de l'yttrium. Avec une planche.

Thalén (R.). Jour. de Phys., 4, 88.

### ZINC.

Ueber die optischen Eigenschaften der Zincblende von Santander. (See under Voigt, below.)

Calderon (L.). Zeitschr. Krystallogr. u. Mineralog., 4, 504-17, Beiblätter, 5, 861 (Abs.).

Zinc spectra.

Capron (J. R.). Photographed Spectra, London, 1877, p. 23, 49, 51, 52.

Déterminations des longueurs d'onde des radiations très réfrangibles du magnésium, du cadmium, du zinc et de l'aluminium.

Cornu (A.). Archives de Genève, (8) 2, 119-126; Beiblätter, 4, 34
 (Abs.); Jour. de Phys., 10, 425-81; Comptes Rendus, 73, 882.

Spectre du chlorure de zinc.

Gouy. Comptes Rendus, 84, 281; Chem. News, 35, 107.

Chlorure de zinc en solution.

Lecoq de Boisbaudran (F.). Spectres Lumineux, Paris, 1874, p. 138, planche XX.

Spectrum of zinc at elevated temperatures.

Lockyer (J. N.). Chem. News, 30, 98; Proc. Royal Soc., 17, 289; 18, 79; 21, 83; Jahresber. d. Chemie (1872), 145.

Indice du quartz pour les raies du zinc.

Sarasin (E.). Comptes Rendus, 85, 1280.

Ueber den Einflüss einer Krümmung der Prismenflächen auf die Messungen von Brechungsindices, und über die Beobachtungen des Herrn Calderon an der Zincblende.

Voigt (W.). Zeitschr. f. Krystallogr. u. Mineral., 5, 113-130; Beiblätter, 5, 361-2 (Abs.).

### ZIRCONIUM.

Zirconium arc spectrum; zirconium and palladium spark spectrum; zirconium spark spectrum.

Capron (J. R.). Photographed Spectra, London, 1877, p. 58.

### On zirconia.

Hannay (J. B.). Jour. Chem. Soc., (2) 11, 703-10; Ber. chem. Ges., 6, 571 (Abs.).

# Absorption spectra of zircons.

Linnemann (E.). Monatsber. f. Chemie, 6, 581-6; Jour. Chem. Soc., 48, 1178 (Abs.).

On some remarkable spectra of compounds of zirconia and the oxides of uranium.

Sorby (H. C.). Proc. Royal Soc., 18, 197; Ber. chem. Ges., 3, 146.

# Spectre du zirconium.

Troost et Hautefeuille. Comptes Rendus, 73, 620; Bull. Soc. chim Paris, n. s. 16, 229.



# INDEX OF AUTHORS.

(The names indicate the subjects, and the numbers indicate the pages on which the titles of the authors' works are given.)

ABBAY (R.). Eclipse Spectra, 106.

ABBÉ (C.). Eclipse Spectra, 106.

ABERCROMBIE (R.). Aurora, 136; Meteorological, 295.

Abney (W. de W.), alone. Analysis, 40, 47; Absorption, 52; Solar in general, 88; Solar Atmosphere, 100; Maps of Solar Sp., 114; Photographs of Solar Sp., 115; Red End, 123; Wave-Lengths of Solar Sp., 131; Atmospheric Sp., 133; Chlorine, 187; Heat, 251; Oxygen, 308; Phosphorescence, 312; Red End, 322; Silver, 334; Sodium, 337; Sulphur, 341; Wave-Lengths, 353.

Abney (W. de W.) and Festing (R.). Apparatus, 21, 26; Absorption, 52; Displacement of Stellar Sp., 79; Solar in general, 88; Red End, 123; Water in the Solar Sp., 131; Carbon Compounds in general, 154; Ebonite, 171; Carbon Disulphide, 183; Electric, 218; Iodine, 265.

ABNEY (W. de W.) and SCHUSTER (A.). Eclipse Sp., 106; Photographs of Solar Sp., 115.

ABT (A.). Electric, 218; Interference, 262.

ACKROYD (W.). Absorption, 52; Color, 197; Inversion, 263; Sodium, 337.

ADAMKIEWICZ (A.). Albumin, 161.

ADAMS (W. H.). Aurora, 136; Selenium, 332.

AGNELLO (A.). Book (Eclipse of 1870), 8.

AIRY (G. B.). Astronomical in general, 66; Comets, 72, 73; Displacement of Stellar Sp., 79; Measurement of Stellar Sp., 82; Sp. of Planets, 87; Sun-Spots, 125; Wave-Lengths, 353.

AITKEN (J.). Absorption, 52; Water, 351.

AKIN (C. H.). Analysis, 40.

Albert (E.). Color, 197.

ALBITZKY (A.). Hydrocarbon, 174.

ALLEN (O. D.). Cæsium, 150; Rubidium, 327.

(868)

ALLEYNE (Sir J. Y. N.). Iron, 268.

ALVERGNIAT. Apparatus, 38.

AMORY (R.). Apparatus, 26; Absorption, 52; Photographs of Solar Sp., 116.

ANDRÉ. Comets, 72.

Andrews (T.). Flame, 231; Iodine, 265.

ANGELOT. Solar Atmosphere, 100.

ANGSTRÖM (A. J.), alone. Book, 8; Analysis in general, 40; Solar, 89; Aurora, 136; Hydrocarbon, 174; Carbonic Acid, 179; Electric, 218; Maps, 287; Metals, 290; Nitrogen, 300; Optical, 306; Oxygen, 308.

Angström (A. J.) and Thalén (R.). Maps, 287.

ARAGO. History, 1; Light, 272.

ARCIMIS (A. T.). Aurora, 136.

Arons (L.). Interference, 262.

ARZRUNI (A.). Barium, 143; Lead, 271; Strontium, 340.

ASSCHE (F. van). Heat, 251; Selenium, 332.

ATTFIELD (J.). Carbon, 153.

AUBERT and DUBOIS. Phosphorescence, 312.

AYMONNET, alone. Absorption, 52; Heat, 251; Liquids, 276.

AYMONNET et DESAINS. Dark Lines, 205.

AYMONNET et MAQUENNE. Apparatus, 20.

AYRTON (W. C.) and PERRY (J.). Ebonite, 171.

BABINET. Longitudinal, 281; Paragenic, 311.

BACKHOUSE (T. W.). Comets, 73, 74, 75; Fixed Stars, 81; Aurora, 136.

BAHR and BUNSEN. Erbium, 228.

BAILY (W.). Apparatus, 11, 18, 19.

BALLMANN (H.). Quantitative Analysis, 49; Lithium, 279.

BALMER (J. J.). Hydrogen, 257.

BARBIER (P.). Terebinthene, 183; Chlorine, 187.

BARBIERI (E.). Protuberances, 118.

BARDY (C.). Chrysoïdine, 168; (RICHE et B.), Flame, 237.

BARKER (G. F.). Eclipses, 106; Aurora, 136.

BARLOCCI. History, 1.

BARTHÉLEMY (A.). Comets, 72.

BAUDIN. Sun-Spots, 125.

BAUDRIMONT. Luminous Sp., 281; Water, 351.

BAUERNFEIND (C. M.). Apparatus, 23.

BAYLEY (T.). Chromium, 195; Cobalt, 196.

BECCARIA. History, 1.

BECKER (G. F.). History, 1.

BÉCLARD. Color, 197.

BECQUEREL (Edm.). Book, 8; Apparatus, 24; Aluminium, 62; Fixed Stars, 81; Solar in general, 89; Photography of Solar Sp., 116; Radiation of Solar Sp., 122; Red End of Solar Sp., 123; Bromine, 147; Calcium, 151; Coloring Matters, 155; Color, 197; Electric, 218, 219; Fluorescent, 241; Iodine, 265; Light, 272; Luminous Sp., 281; Manganese, 285; Phosphorescent, 312, 313; Refraction, 323; Silver, 334; Uranium, 347; Wave-Lengths, 353.

BECQUEREL (H.). Apparatus, 24; Absorption, 52; Solar Wave-Lengths, 131; Atmospheric, 133; Carbonic Acid, 179; Sulphide of Carbon, 183; Chlorine, 187; Didymium, 209; Emission, 226; Flame, 231; Metals, 290; Nitrogen, 300; Oxygen, 308; Red End, 322; Sodium, 337; Sulphur, 341; Titanium, 347; Water, 351; Wave-Lengths, 353.

BEDSON (P. P.) and WILLIAMS (W. C.). Refraction, 323.

PEGOUEN. Comets, 70.

Behrens (H.). Color, 197.

Bell (L). Apparatus, 29; Absorption, 53; Cadmium, 149; Meteorological, 295; Nitrogen, 300; Wave-Lengths, 353.

Belohoubek. Alkalies, 61.

Benkovich (E. von). Plants, 181.

BÉRARD. History, 1.

Berg (F. W.). Apparatus, 13.

BERNARD (F.). Solar Wave-Lengths, 131.

BERNHEIMER e NASINI. Carbon Compounds in general, 155.

BERT (P.). Carbon Compounds in general, 155.

BERTHELOT, alone. Comets, 70.

BERTHELOT et RICHARD. Analysis, 40; Flame, 231.

Berthold (G.). History, 1; Fluorescent, 241.

BEZOLD (W. von). Carbon Compounds in general, 155; Fluorescent, 241; Heat, 251.

Bianchi. Astronomical, 118.

BIDWELL (Shellford). Analysis, 40.

BINZ (C.). Blood, 165; Oxygen, 308.

Biot (J. B.). History, 1; Apparatus, 25; Solar Radiation, 122, 123; Twinkling of Stars, 132; Phosphorescent, 313; Radiation, 321.

BLAIR (R.). History, 1.

BLAKE (J. M.). Apparatus, 18.

BLANFORD (H. F.). Solar Photography, 116.

BLASERNA (P.). Book, 8; Apparatus, 27; Chromosphere, 102; Alcohol, 161; Heat, 251.

BLEEKRODE (L.). Flame, 231.

BLOCHMAN (R.). Calcium, 151.

BODYNSKI (J.). Liquids, 276.

BOECK (H.). Anthracen, 163.

Börsch. Apparatus, 12.

BOETTGER (R.). Alizarine, 161.

BOHN (C.). Wave-Lengths, 353.

Boillot. Solar in general, 89.

Boscovich (R. J.). History, 2.

Boss (L.). Comets, 70.

BOSTWICK. Absorption, 53; Electric, 219.

BOUDRÉAUX. Metals, 290.

BOUGUER (P.). History, 2.

BRACKETT (C. F.). Apparatus, 20, 36.

Branly (E.). Blood, 165; Hemoglobine, 174.

Brassack. Metals, 290.

Braun (C.). Apparatus, 15, 28; Photography of Solar Sp., 116.

BRAUNER (B.). Cerium, 186; Didymium, 209.

Brédischin (T.). Comets, 73, 76.

BRENTA. Solar in general, 89.

Brewster (Sir D.), alone. History, 2; Apparatus, 20; Solar in general, 89; Atmospheric, 133; Carbon Compounds in general, 155; Nitrogen, 300; Paragenic Sp., 311.

Brewster (Sir D.) and Gladstone (J. H.). Solar in general, 89.

Brock (O. J.). Solar in general, 89.

Brodie (B. C.). Metals, 290.

Brown (W. G.). Philippium, 311.

Browning (J.). Apparatus, 11, 27, 33, 34, 36; Meteors, 83; Aurora, 136.

BRÜCKE (E.). Absorption, 53; Manganese, 285; Potassium, 319.

Brühl (J. W.). Carbon Compounds in general, 155; Citracon, 168; Mesacon, 177; Methacryll, 177; Constants, 200; Dispersion, 212; Liquids, 276.

Brunn (J.). Apparatus, 29, 32.

Buchner. Blood, 165; Hydrogen, 257.

BUFFON. History, 2.

BÜHRIG (H.). Absorption, 53; Didymium, 209.

Bunsen (R.). Analysis, 40; Meteors, 83; Cæsium, 150; Didymium, 209; Erbium, 228; Lithium, 279; Metals, 290.

BURCH (G. J.). Flame, 231.

BURGER (H.). Constants, 200; Liquids, 276.

CACCIATORE. Transit of Venus, 87.

CAILLETET. Electric, 219; Flame, 231; Pressure, 320.

CALDERON (L.). Zinc, 360.

CAMPANI (G.). Carmine, 167; Nitrogen, 300.

CAPPEL (E.). Electric, 219; Heat, 251; Metals, 290.

CAPRANICA (S.). Bile, 164.

CAPRON (J. R.). Book, 8; Apparatus, 21; Aluminium, 62; Antimony, 64; Arsenic, 65; Comets, 74, 75; Meteors, 83; Solar Photography, 116; Aurora, 137; Barium, 143; Beryllium, 144; Borax, 145; Cadmium, 149; Calcium, 151; Carbon in general, 153; Cyanogen, 169; Ether, 171; Oils, 178; Turpentine, 184; Chlorine, 187; Chromium, 195; Cobalt, 196; Copper, 201; Didymium, 209; Electric, 219; Flame, 231; Fluorine, 246; Gold, 250; Hydrogen, 257; Indium, 261; Iodine, 265; Iridium, 267; Iron, 268; Lead, 271; Magnesium, 282; Manganese, 285; Mercury, 289; Meteorological, 295; Molybdenum, 298; Niobium, 299; Nitrogen, 300; Oxygen, 308; Palladium, 311; Platinum, 317; Rhodium, 326; Ruthenium, 327; Selenium, 332; Silicium, 333; Silver, 334; Strontium, 340; Sulphur, 341; Tellurium, 343; Thallium, 344; Tin, 345; Titanium, 346; Uranium, 347; Vanadium, 347; Yttrium, 359; Zinc, 360; Zirconium, 361.

CARPENTER (J.). Analysis, 40.

CAZENEUVE (P.). Hematine, 173.

CAZIN (A.). Electric, 219; Flame, 232.

CHACORNAC. Solar in general, 89.

CHAMPION. Book, 8; Apparatus, 33; Quantitative Analysis, 49; Sodium, 337.

CHANCEL (G.). Wine, 185.

CHAPPUIS (J.). Absorption, 53; Nitrogen, 300; Oxygen, 308.

CHARDONNET. Apparatus, 23; Color, 197; Energy, 227; Ultra-Violet, 348.

CHARPENTIER (Aug.). Solar in general, 89; Color, 197.

CHASE (P. E.). Solar in general, 90.

CHASTAING (P.). Light, 272; Oxygen, 308.

CHAUTARD (J.). Bromine, 147; Chlorine, 187; Chlorophyll, 192; Electric, 219; Flame, 232; Fluorine, 246; Iodine, 265; Silicium, 333; Sodium, 337.

CHRISTIANSEN (C.). Analysis, 40; Fuchsin, 172; Liquids, 276; Optical, 306.

CHRISTIE (W. H.). Apparatus, 28; Astronomical in general, 66; Comets, 73, 74, 79; Bright Lines in the Solar Sp., 101; Aurora, 137; Dispersion, 212.

CHRISTOFLE (P.). Phosphorus, 315.

Church (A. H.). Aurora, 137; Colein, 168; Water, 351.

CIAMICIAN (G. L.). Analysis, 41; Carbon in general, 153; Density, 207; Flame, 232; Heat, 251.

CLAES (F.). Absorption, 53.

CLARK (Alvah, Jr.). Aurora, 137.

CLARKE (F. W.). Analysis, 41.

CLARKE (J. W.). Electric, 220.

CLAUDET. Apparatus, 25; Chemical Effects of Solar Sp., 102.

CLEMENSHAW (E.). Analysis, 41.

CLÈVE (P. T.). Didymium, 209; Erbium, 228; Holmium, 256; Lanthanum, 270; Samarium, 329; Scandium, 331; Thulium, 345; Yttrium, 359.

CLIFTON (Roscoe and). Heat, 254.

CLOISEAUX (Des). Chlorine, 187; Silver, 334.

CLOUÉ. Eclipse Sp., 107.

CONCHE (E.). Solar Photography, 116.

CONROY (Sir J.). Distribution, 217; Heat, 251; Iodine, 265; Manganese, 285; Metals, 290; Phosphorescent, 313; Potassium, 319.

COOKE (J. P., Jr.). Apparatus, 34; Water in the Solar Sp., 131; Metals, 290.

COPELAND (R.). Astronomical in general, 66; Fixed Stars, 81, 82; Aurora, 137; High Altitudes, 255.

CORNU (A.). Apparatus, 15, 27. 38; Analysis, 41; Absorption, 53;

Aluminium, 62; Antimony, 64; Fixed Stars, 81; Solar in general, 90; Solar Absorption Sp., 99; Dark Lines in the Solar Sp., 105; Telluric Rays in the Solar Sp., 129; Ultra-Violet Rays of the Solar Sp., 129, 130; Atmospheric, 133; Aurora, 137; Bismuth, 145; Cadmium, 149; Copper, 201; Gold, 250; Hydrogen, 257; Inversion, 263; Iron, 268; Lead, 271; Magnesium, 282; Maps, 287; Metals, 290; Silver, 334; Sodium, 337; Thallium, 344; Ultra-Violet, 348; Wave-Lengths, 353; Zinc, 360.

CORTIE (A.). Sun-Spots, 125.

CORY (F. W.). Meteorological, 295.

Cossa (A.). Cerium, 186.

CROCÉ-SPINELLI (J.) et SIVEL. High Altitudes, 255.

CROOKES (W.). Apparatus, 23; Analysis, 41; Aluminium, 62; Carbonic Acid, 179; Didymium, 209; Diffraction, 211; Discontinuous, 212; Erbium, 228; Flame, 232; Fluorescent, 241; Gadolinite, 247; Light, 272; Metals, 290; Phosphorescent, 313; Radiation, 321; Refraction, 323; Samarium, 329; Samarskite, 330; Sodium, 337; Thallium, 344; Yttrium, 359.

CROS (Ch.). Carbon Compounds in general, 156; Silver, 334.

CROULLEBOIS. Analysis, 41; Crystals, 203; Liquids, 276; Refraction, 323.

CROVA (A.). Apparatus, 19, 27, 29, 33; Absorption Sp., 53; Solar Absorption, 99; Solar Radiation, 123; Telluric Rays of the Solar Sp., 129; Solar Wave-Lengths, 131; Atmospheric, 133; Aurora, 137; Flame, 232; Heat, 251; Radiation, 321; Wave-Lengths, 353.

CRULS (L.). Apparatus, 30; Astronomical in general, 66; Comets, 76, 77.

Czechowicz. Electric, 220.

DALET. Solar in general, 90.

Damien. Acetic Acid, 160; Liquids, 276; Sodium, 337; Water, 351.

DANIEL. Electric, 220.

DAUBE (F. U.). Curcumin, 169.

DAUMER et THIBAUT. Oils, 178.

DEBRAY (H.). Apparatus, 20; Metals, 291.

DELACHANAL (B.). Apparatus, 17, 18, 38.

Delafontaine. Cerium, 186; Decipium, 207; Didymium, 209; Erbium, 228; Gadolinite, 247; Holmium, 256; Metals, 291; Philippium, 311; Samarium, 329; Samarskite, 330; Terbium, 343; Thulium, 345.

24 т

- DELAUNAY. History, 2; Analysis, 41; Solar Protuberances, 118; Electric, 220.
- Demarçay (Eug.). Analysis, 41; Cerium, 186; Didymium, 209; Electric, 220.
- DESAINES (P.). History, 2; Apparatus, 30; Dark Lines in the Solar Sp., 105; Heat in the Solar Sp., 112; Color, 197; Crystals, 203; Dark Lines, 205; Heat, 252; Wave-Lengths, 353.
- DESLANDRES (H.). Analysis, 41; Electric, 220; Flame, 232; Nitrogen, 300.
- Dewar (J.). Analysis, 47; Chemical Effects of the Solar Sp., 102; Heat, 252.
- DIACON. Apparatus, 12; Alkalies, 61; Bromine, 147; Chlorine, 188; Copper, 201; Electric, 220; Metals, 291.
- DIBBITS (H. C.). Cyanogen, 169; Carbonic Acid, 179; Sulphide of Carbon, 183; Flame, 232; Hydrogen, 257; Nitrogen, 300; Sulphur, 341; Water, 351.
- DIETRICH (W.). Apparatus, 32; Sodium, 337.
- DIEULAFAIT. Borax, 145, 146; Cassium, 150; Lithium, 279; Mineral Waters, 297; Nitrogen, 301; Rubidium, 327; Silver, 334; Strontium, 340.
- DITSCHEINER (L.). Apparatus, 34, 39; Solar Wave-Lengths, 131; Crysstals, 203; Diffraction, 211; Optical, 306; Wave-Lengths, 353.
- DITTE (A.). Chlorine, 188; Metals, 291; Nitrogen, 301; Selenium, 332; Sulphur, 341; Tellurium, 843.
- DOLLAND (J.). History, 2.
- DONATI. Comets, 71.
- Donders. Analysis, 42.
- DONELLY (J. F.). Apparatus, 22.
- DOVE (H. W.). Electric, 220.
- DRAPER (H.). History, 2; Books, 8; Apparatus, 24, 28; Analysis, 42; Comets, 75; Fixed Stars, 82; Nebulæ, 85; Photography of Stellar Sp., 85; Jupiter, 86; Venus, 88; Bright Lines in the Solar Sp., 102; Eclipses, 107; Oxygen in the Solar Sp., 115; Ultra-Violet Solar Sp., 130; Solar Wave-Lengths, 131; Diffraction, 211; Oxygen, 308.
- DRAPER (J. C.). Apparatus, 29; Dark Lines in the Solar Sp., 106; Solar Eclipses, 107; Oxygen in the Solar Sp., 115; Oxygen, 309.
- DRAPER (J. W.). History, 2; Apparatus, 25, 32; Solar Photography, 116; Red End of the Solar Sp., 123; Cone Sp., 199; Energy in the Sp., 227; Heat, 252.

DRAPER (W.). Intensity of the Solar Sp., 113.

DUBRUNFAUT. Analysis, 42; Flame, 232.

Duclaux (E.). Analysis, 42; Energy in the Sp., 227.

DUFET (H.). Refraction, 323.

DUHEM. Inversion, 263.

DUJARDIN (F.). Apparatus, 36.

Dunér (N. C.). Comets, 76.

DUNSTAN (W. R.). Carbon Compounds in general, 156.

Dupré (A.). Wine, 185.

DUTIROU (L'Abbé). History, 2.

EDELMANN (Th.). Apparatus, 22.

EDER (J. M.). Apparatus, 26; Analysis, 42; Absorption, 53; Solar in general, 90.

EGOROFF (N.). Oxygen in the Solar Sp., 115; Telluric Rays in the Solar Sp., 129; Oxygen, 309.

EIGER (T. G.). Aurora, 137.

EISENLOHR (W.). Dark Lines, 205; Diffraction, 211; Fluorescent, 241; Iodine, 265; Refraction, 323; Silver, 334; Ultra-Violet, 348; Wave-Lengths, 354.

ELLERY (R. J.). Aurora, 137.

EMSMANN (H.). Apparatus, 15, 28; Absorption, 54; Nickel, 299; Nitrogen, 301; Silver, 334.

Engelhart (G.) and Bezold. Fluorescent, 241.

Engelmann (T. W.). Hematine, 174; Color, 197; Electric, 220; Oxygen, 309.

ERCK (W.). Apparatus, 36; Didymium, 209.

ERDMANN. Didymium, 209.

ESSELBACH (E.). Wave-Lengths, 354.

EXNER (K.). History, 2; Analysis, 42; Twinkling of Stars, 132; Interference, 262; Lines of the Sp., 274.

FAURA (F.). Eclipses, 107.

FAVÉ. Analysis, 42; Fluorescent, 241; Phosphorescent, 313; Wave-Lengths, 354.

FAYE. History, 3; Apparatus, 37; Comets, 70; Solar Sp. in general, 90; Solar Eclipses, 107; Hydrogen in the Sun, 113; Solar Protuberances, 118; Solar Rotation, 124; Solar Storms, 124; Sun-Spots, 125; Aurora, 138.

FERRARI. Solar Protuberances, 118.

FEUSENER. Heat, 252.

FIELDING (G. F. M.). Flame, 232.

FIEVEZ (Ch.). Analysis, 42; Nebulæ, 84; Solar in general, 90; Mag nesium in the Sun, 114; Electric, 220; Heat, 252; Hydrogen, 257; Magnesium, 282; Map, 114, 287; Nitrogen, 301.

FILHOL (E.). Chlorophyll, 192.

FIZEAU. Astronomical in general, 66; Displacement of Stellar Sp., 79 Solar in general, 91; Solar Eclipses, 107; Sodium, 337.

FLAMMARION. Comets, 70.

FLAVITSKY (F.). Carbon Compounds in general, 156; Terpenes, 184.

FLECK. Apparatus, 29.

Flögel. Aurora, 138.

FOCK (A.). Refraction, 323.

FONVIELLE (W. de). High Altitudes, 255.

FORBES (J. D.). History, 3.

FOSTER (Le Neve). Glass, 249.

FOUCAULT (L.). Apparatus, 31; Dark Lines, 205.

FOUCAULT et FIZEAU. Apparatus, 25.

FRANCIS (G.). Australian Lake, 164; Fish Pigment, 171.

Franckland (E.). Carbonic Acid, 179; Hydrogen, 257; Lithium 279; Oxygen, 309.

FRANCKLAND and LOCKYER. Astronomy in general, 66; Nebulæ, 84 Solar in general, 91; Gas in the Solar Sp., 112; Flame, 232.

FRASER (W.). Osmium, 307.

FRAUDE (G.). Chlorine, 188.

FRAUNHOFER (J. von). History, 3; Lines of the Sp., 274.

FRAZER (P.). Aurora, 138.

FREMY. Aluminium, 62.

FREY (M. von). Analysis, 42.

FRIEDLÄNDER (P.). Chinolin, 168.

FRÖHLICH (J.). Energy, 227; Refraction, 323.

Fuchs (F.). Apparatus, 28, 32, 33.

Furniss (J. J.). Apparatus, 35.

GAMGE (A.). Blood, 166; Nitrogen, 301.

GARBE (G.). Apparatus, 31.

Gassior. Apparatus, 15, 27, 31, 35; Analysis, 42.

GAUDIN. Apparatus, 25.

GERDING (Th.). History, 3.

GERLAND (E.). Chlorophyll, 193.

GERLAND (J.). Chlorophyll, 193.

GERNEZ (D.). Absorption, 54; Bromine, 147; Alizarine, 161; Chlorine, 188; Flame, 232; Iodine, 265; Nitrogen, 301; Selenium, 332; Sulphur, 341; Tellurium, 343.

GIBBONS (J.). Electric, 220.

Gibbs (Wolcott). Apparatus, 34; Analysis, 47; Quantitative Analysis, 49; Solar Wave-Lengths, 131; Constants, 200; Optical, 306; Wave-Lengths, 354.

GILMOUR (W.). Oils, 178.

GIRARD (H.) et BABST. Absorption, 54.

GIRDWOOD (G. P.). Wood, 185.

GLADSTONE (J. H.). Qualitative Analysis, 49; Aluminium, 62; Planets, 86; Solar in general, 91; Atmospheric, 134; Carbon, 153; Carbon Compounds, 156; Diamond, 170; Oils, 178; Chlorine, 188; Didymium, 210; Dispersion, 213; Flame, 233; Hydrogen, 258; Liquids, 276; Metals, 291; Nitrogen, 301; Oxygen, 309; Salt, 328.

GLAN (P.). Apparatus, 26, 35, 36; Absorption, 54; Density, 207; Glass, 249; Polarized Light, 318.

GLAZEBROOK (R. T.). Apparatus, 18, 33.

GOLDSTEIN. Atmospheric, 134; Flame, 233.

GOLTZSCH (H.). Apparatus, 13.

GOTHARD (E. von). Apparatus, 20, 24, 38: Astronomical in general, 66: Comets, 77, 78; Fixed Stars, 81, 82.

GOTTSCHALK (F.). Apparatus, 34.

Gould (B. A.). Apparatus, 37.

Gouy. Absorption, 54; Aluminium, 62; Solar Absorption, 99; Dark Lines in the Solar Sp., 106; Barium, 143: Bromine, 147; Cadmium, 149; Calcium. 151; Carbonates, 156; Chlorine, 188; Cobalt, 196; Copper, 201; Flame, 233; Iodine, 265; Iron, 268; Lead, 271; Lithium, 279; Magnesium, 282; Manganese, 285; Metals, 291; Nitrogén, 301; Phosphorus, 315; Platinum, 317; Potassium, 319; Refraction, 323; Rubidium, 327; Salt, 328; Silver, 335; Sodium, 337; Strontium, 340; Sulphur, 341; Thallium, 344; Wave-Lengths, 354; Zinc, 360.

GOUY et THOLLON. Comets, 77; Solar Wave-Lengths, 131.

Govi (S. G.). Apparatus, 24; Analysis, 43; Quantitative Analysis, 50.

GOVI (S. G.) et LAGARDE. Radiation, 321.

GRABE (C.) und CARO (H.). Rosaniline, 182.

GRANDEAU (L. N.). Book. 8; Cæsium, 150; Electric, 220.

GREINER (A.). Iron, 268; Phosphorus, 315.

GRIFFITHS (A. B.). Plants, 181.

GRIMM (F.). Chinizarin, 168; Hydrochinon, 175.

GRIPON (E.). Fluorescent, 241.

GROVE (Sir W. R.). Electric, 221.

GRUBB (H.). Apparatus, 11.

GRUBB (T.). Apparatus, 34, 35.

Guillemin. Ultra-Violet Solar, 130.

GÜNTHER (C.). Flame, 233; Inversion, 263; Sodium, 337.

HAGENBACH (E.). Electric, 221; Fluorescent, 242; Fluorine, 246; Silicium, 333.

HAIG (C. T.). Eclipses, 107.

HAMMERL (H.). Liquids, 276; Meteorological, 295.

HAMMOND (B. E.). Corona, 103; Hydrogen in the Solar Sp., 113; Intensity of the Solar Sp., 113.

HAERLIN (J.). Carbon Compounds in general, 156.

HANKEL (W.). Metals, 291.

HANNAY (J. B.). Zirconium, 361.

HARKNESS (W.). Comets, 74; Chromosphere, 103.

Hartley (W. N.). Apparatus, 16, 26; Analysis, 47; Quantitative Analysis, 50; Absorption, 54; Alkalies, 61; Solar Absorption, 99; Atmospheric, 134; Beryllium, 144; Borax, 146; Carbon Compounds, 156; Acid Brown, 161; Amido Azo, etc., 162; Aurin, 164; Benzene, 164; Azo, 164; Bismarck Brown, 165; Carbohydrates, 167; Chrysoïdine, 168; Croceïne Scarlet, 169; Cymene, 170; Dipyridene, 170; Fast Red, 171; Flour and Grain, 172; Helianthin, etc., 173; Iodine Green, 176; Metaxylene, 177; Naphthalene, 177, 178; Oils, 178; Orthotoluidine, 179; Paratoluidine, 181; Picolene, 181; Pyridine, 182; Rosaniline Base, 182; Terpenes, 184; Tetrahydroquinoline, etc., 184; Tropæolin, 184; Cerium, 186; Chromium, 195; Electric, 221; Emission, 226; Homologous Spectra, 256; Liquids, 276; Metals, 291; Oxygen, 309; Rhabdophane, 326; Salt, 328; Silicium, 333; Sulphur, 341; Violet, 348; Wave-Lengths, 354.

HARTSEN (T. A.). Chlorophyll, 193.

HARTSHORNE (H.). Analysis, 43; Lines of the Sp., 274.

HASSELBERG (B.). Apparatus, 29; Comets, 74, 78; Acetylene, 160; Hydrogen, 258; Maps, 287; Metals, 291; Nitrogen, 301; Wave-Lengths, 354.

HASTINGS (C. S.). Solar in general, 91; Glass, 249; Heat, 252.

HAUTEFEUILLE (P.) et CHAPPUIS (J.). Flame, 234.

HEINRICHS. Distribution, 217.

Helmholtz (H.). Carbon Compounds, 156; Dispersion, 212; Refraction, 324.

Hennessey (J. B. N.). Solar Atmosphere, 100; Displacement in the Solar Sp., 106; Red End of the Solar Sp., 123; White Lines in the Solar Sp., 132; Atmospheric Sp., 134.

HENNIG (R.). Apparatus, 29; Quantitative Analysis, 50.

HENRY (L. d'). Light, 272; Sodium, 338.

HEREPATH (W. B.). Apparatus, 23.

Herschel (A. S.). History, 3; Apparatus, 21; Analysis, 43; Meteors, 83; Eclipses, 107; Aurora, 138; Carbon, 153; Nomenclature, 305; Violet, 348.

HERSCHEL (Lieut. John). Nebulæ, 85; Solar Protuberances, 118; Electric, 221.

HERSCHEL (Sir John). 'History, 3, 4; Solar in general, 91; Coal, 168; Soda, 338.

HESEHUS (N.). Apparatus, 13.

HESSE (O.). Dispersion, 212.

HEUSSER (J. C.). Analysis, 43; High Altitudes, 255.

HEYNSIUS (A.) and CAMPBELL (J. F. F.). Absorption, 55; Gall, 173.

HILGARD (J. E.). Apparatus, 13.

HILGER (A.). Apparatus, 14; Caryophyllacese, 167.

HIRN (G. A.). Book, 8.

HITTORF (W.). Flame, 234, 237.

HOCK (K.). Apparatus, 11; Alkalies, 61; Oils, 178.

HOFFMANN (A. W.). Quinoline-Red, 182.

HOFMAN (J. G.). Apparatus, 28, 32; Hydrogen, 258; Nitrogen, 302; Phosphorus, 315.

Hoн (Th.). Electric, 221.

HOLDEN (E. S.). Aurora, 138; Electric, 221.

HOMANN (H.). Astronomical in general, 66.

HOORWEG (J. L.). Analysis, 43.

HOPKINSON (J.). Glass, 249; Refraction, 324.

HOPPE-SEYLER (F.). History, 4; Book, 8; Blood, 166; Carbonic Acid, 179; Manganese, 285; Oxygen, 309.

HORNER (M. C.). Venus, 88; Borax, 146; Cobalt, 196; Fluorescence, 242; Manganese, 285; Phosphorus, 315.

HOUGH (G. W.). Book, 9.

HOUZEAU et MONTIGNY. Displacement of Stellar Sp., 79.

HÜFNER (G.). Apparatus, 33; Quantitative Analysis, 50.

Huggins (W.). Apparatus, 30, 36; Analysis, 43; Astronomical in general, 67; Comets, 70, 79; Displacement of the Stellar Sp., 79; Fixed Stars, 80, 82; Nebulæ, 85; Photography of Stellar Sp., 86; Sp. of Planets, 86; Solar in general, 91; Chromosphere, 103; Photography of Solar Sp., 116; Solar Protuberances, 118; Electric, 221; Erbium, 228; Hydrogen, 258; Microscopic, 296; Water, 351.

HUGGINS (W.) and MILLER (W. A.). Fixed Stars, 80.

Hugo (L.). Birds, 165.

HUNT (T. Sterry). History, 4.

Huntington (O. W.). Arsenic, 65.

HURION. Dispersion, 213; Interference, 262; Liquids, 277.

HUYGHENS (C.). History, 4.

HYATT. Aurora, 138.

JACQUES (W. W.). Aluminium, 62; Chromium, 195; Copper, 201; Heat, 252; Iron, 268; Platinum, 317.

JAFFE. Gall, 173.

Jamin. Analysis, 43.

Janowski (J. V.). Refraction, 324.

Janssen (J.). Apparatus, 25, 34; Quantitative Analysis, 50; Astronomical in general, 67; Comet, 74; Fixed Stars, 82; the Moon, 87; Venus, 88; Solar in general, 89, 92; Solar Atmosphere, 100; Corona, 103; Eclipses, 107, 108; Hydrogen in the Solar Sp., 113; Solar Protuberances, 118; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Flame, 234; High Altitudes, 255; Sodium, 338; Water, 351.

JESSEN (E.). Absorption, 55.

JOBST (W.). Alcohol, 161; Aniline, 162.

JOHNSON (A.). History, 4; Lines of the Sp., 274.

JONES (H. Bence). Carbon Compounds, 157; Crystalloids, 169.

JOULE (J. P.). Electric, 221.

KAHLBAUM (G. W. A.). Butter, 167.

KANONNIKOFF (J.). Carbon Compounds, 157; Refraction, 324.

Kreler (J. E.). Absorption, 55; Carbonic Acid, 180.

KERN (J.). Davyum, 206.

KESSLER (F.). Apparatus, 13, 16; Solar in general, 92; Solar Photography, 116.

KETTELER (E.). Apparatus, 26, 33; Absorption, 55; Dispersion, 213; Fluorescence, 242; Optics, 306; Refraction, 324.

KETTELER und PULFRICH. Wave-Lengths, 354.

KEY (H. Cooper). Aurora, 138.

KINDT. Chlorine, 189; Dark Lines, 205; Fluorine, 246; Phosphorescence, 313; Phosphorus, 315; Silicium, 333.

KINGDON (F.). Apparatus, 20.

Kirchhoff (G.). History, 4; Book, 9; Apparatus, 34; Analysis, 43; Absorption, 55; Barium, 143; Cæsium, 150; Calcium, 151; D Lines, 204; Dark Lines, 205; Emission Sp., 226; Inversion, 263; Maps, 288; Polarized Light, 318; Potassium, 319; Radiation, 321; Sodium, 338; Strontium, 340.

KIRCHHOFF und BUNSEN. Alkalies, 61; Rubidium, 327.

KIRK (E. B.). Aurora, 138.

Kirkwood (D.). Astronomical in general, 67; Aurora, 138.

KLATZO. Chlorine, 189.

KLERCKER (C. E. de). Dispersion, 213; Light, 272.

KNOBLAUCH (H.). Heat in the Solar Sp., 112; Color, 198; Heat, 252.

Kobb (G.). Germanium, 248.

Kohlrauch (F.). Apparatus, 13; Refraction, 324.

König (A.). Color-blind, 157; Color, 198; Platinum, 317.

König und Dieterici. Wave-Lengths, 354.

KONKOLY (N. von). Apparatus, 20, 22, 30, 35; Astronomical in general, 67; Comets, 70, 73, 78; Fixed Stars, 81; Meteors, 83; Planets, 86; Electric, 221; Meteorological, 295.

KOPP (H.). History, 4.

KÖVESLIGETHY. Comets, 78.

Kraiewitsch (K.). Apparatus, 13.

KRAUSS (G.). Chlorophyll, 193.

Krüss (G.). Apparatus, 39; Heat, 252; Liquids, 277.

Krüss und Oeconomides. Carbon Compounds, 157.

Krūss (H.). Apparatus, 12, 29, 32; Analysis, 43; Quantitative Analysis, 50.

Kröss (J.). Absorption, 55.

Kundt (A.). Absorption, 55; Dispersion, 213; Liquids, 277; Nitrogen, 302; Silver, 335; Sodium, 338.

Kurz (A.). Apparatus, 21.

LABORDE (L'Abbé). Analysis, 43.

LADD (W.). History, 4.

LAGARDE (H.). Hydrogen, 258; Wave-Lengths, 355.

LALLEMAND (A.). Apparatus, 20; Indigo, 176; Lamp-Black, 176; Naphthalene, 177; Cobalt, 196; Copper, 202; Lead, 271; Liquids, 277; Mercury, 289; Minium, 297; Oxygen, 309; Phophorus, 315; Platinum, 317; Polarized Light, 318; Sulphur, 341.

LAMANSKY (S.). History, 4; Apparatus, 17; Absorption, 56; Solar in general, 92; Heat in the Solar Sp., 112; Telluric Rays in the Solar Sp., 129; Atmospheric Sp., 134; Calcium, 151; Carbon Compounds, 157; Sulphide of Carbon, 183; Electric, 222; Fluorescence, 242; Glass, 249; Heat, 253; Sulphur, 342.

LAMONT. Astronomical in general, 68; Fixed Stars, 80.

LAMY (A.). Thallium, 344.

LANDAUER (J.). Absorption, 56; Carbon Compounds, 157; Safranin, 183.

LANDOLT (H.). Apparatus, 21; Carbon, 153; Carbon Compounds, 157; Liquids, 277.

LANG (V. von). Apparatus, 28; Red End of the Solar Sp., 124; Atmospheric Sp., 134; Calcium, 151; Dispersion, 213; Heat, 353; Refraction, 324.

LANGLEY (S. P.). Apparatus, 30, 32; Analysis, 43, 44; Absorption, 56; Astronomical in general, 68; Venus, 88; Solar in general, 92, 93; Solar Absorption, 100; Solar Heat, 112; Intensity of the Solar Sp., 113; Radiation of the Solar Sp., 122; Red End of the Solar Sp., 124; Atmospheric, 134; Energy, 227; Heat, 253; High Altitudes, 255; Lines of the Sp., 274; Salt, 328; Volcanoes, 350; Wave-Lengths, 355.

LASPEYRES (H.). Apparatus, 20.

LAUSSEDAT. Eclipses, 108.

LAVAUD DE LASTRADE. Apparatus, 23; Solar in general, 93.

LEA (M. Carey). Bromine, 147; Carbon Compounds, 158; Color, 198; Glass, 249; Silver, 335.

LEACH (J. H.). Analysis, 44.

LECHER (E.). Absorption, 56; Atmospheric, 134; Hent, 253; Radiation, 321.

LECHER und PERNTER. Absorption, 56; Dark Lines, 205.

Lecoq de Boisbaudran (F.). Book, 9; Analysis, 44; Aluminium, 62. 63; Antimony, 64; Barium, 144; Bismuth, 145; Borax, 146; Bromine, 147; Cadmium, 149; Cæsium, 150; Flour and Grain, 172; Cerium, 186; Chlorine, 187, 189-191; Chromium, 195; Cobalt, 196; Copper, 202; Decipium, 207; Didymium, 210; Dysprosium, 218; Electric, 222; Erbium, 229; Flame, 234; Fluorescence, 242, 243; Gadolinite, 247; Gallium, 248; Germanium, 248; Gold, 250; Holmium, 256; Hydrogen, 259; Indium, 261; Iodine, 266; Iron, 268; Lead, 271; Light, 272; Lines of the Spectrum, 274; Lithium, 279; Luminous Sp., 281; Magnesium, 282; Manganese, 285; Mercury, 289; Metals, 292; Nickel, 299; Nitrogen, 302; Palladium, 311; Phosphorescence, 313; Phosphorus, 315; Platinum, 317; Potassium, 319; Rubidium, 327; Samarium, 329; Samarskite, 330; Silver, 335; Sodium, 338; Strontium, 340; Terbium, 343; Thallium, 344; Tin, 345; Water, 351; Wave-Lengths, 355; Ytterbium, 358; Zinc, 360.

LEEDS (A. R.). Metals, 292.

LEMOINE (G.). Hydrogen, 259; Iodine, 266.

LEMSTRÖM (S.). Aurora, 138.

LEPEL (F. von). Apparatus, 38; Absorption, 56; Carbon Compounds, 158; Alkanna, 162; Beets, 164; Wine, 185; Inversion, 263; Magnesium, 282; Silicium, 333.

LE ROUX (F. P.). Apparatus, 20.

LEVERRIER. Solar Atmosphere, 100.

Levison (W. G.). Apparatus, 33.

LEWY. Eclipses, 107.

LIAIS (E.). Corona, 103; Aurora, 138.

LIEBERMANN (C.). Anthracen, 163; Anthrarufin, 163; Egg-Shells, 165; Chotelin, 168; Hydroxyanthraquinone, 175.

LIEBERMANN (L.). Fuchsin, 172; Hydrobilirubin, 175; Chlorophyll, 193; Fluorescence, 243.

LIEBICH (T.). Apparatus, 35.

Lielegg (A.). Book, 9; Carbon Compounds in general, 158; Flame, 234; Iron, 268.

LINDSAY (Lord). Comets, 72, 73; Nebulæ, 85; Jupiter, 87; Eclipses, 108; Aurora, 139.

LINNEMANN (E.). Austrium, 143; Zirconium, 361.

LIPPICH (F.). Apparatus, 35; Flame, 234.

LISTING. Limits of the Sp., 273.

LITTROW (Otto von). Apparatus, 36; Solar Atmosphere, 100.

LIVEING (G. D.). Apparatus, 17; Analysis, 46; Calcium, 151; Dispersion, 214; Fluorine, 246; Iodine, 266; Mercury, 289.

LIVEING (G. D.) and DEWAR (J.). History, 5; Apparatus, 12, 15, 16, 17; Analysis, 44; Quantitative Analysis, 50; Corona, 103; Elements in the Sun, 111; Sun-Spots, 126; Carbon, 153; Carbon Compounds, 158; Cyanogen, 169; Hydrocarbons, 175; Electric, 222; Explosions, 230; Flame, 234, 235; Hydrogen, 259; Inversion, 263; Lithium, 280; Magnesium, 283; Metals, 292, 293; Potassium, 319; Rhabdophane, 326; Sodium, 338; Violet, 348; Water, 351.

LLOYD. History, 5.

LOCKYER (J. N.). Book, 9; Apparatus, 19, 25, 36; Analysis, 44, 47; Quantitative Analysis, 50; Absorption, 57; Antimony, 64; Arsenic, 65; Astronomy in general, 66, 68; Nebulæ, 84; Solar in general, 93, 94; Bright Lines in the Solar Sp., 102; Chromosphere, 103; Carbon, 153, 154; Electric, 222; Flame, 235; Heat, 253; Hydrogen, 259; Inversion, 263; Iodine, 266; Iron, 268; Lithium, 280; Mercury, 289; Multiple Sp., 298; Nitrogen, 302; Phosphorus, 315; Sodium, 338; Sulphur, 342; Zinc, 360.

LOCKYER and SEABROKE. Corona, 103.

Lohse (O.). Apparatus, 31, 32; Corona, 103; Gun-Cotton, 173; Electric, 222; Glass, 249.

LOMMEL (E.). Book, 9; Apparatus, 13, 16, 17, 24, 27, 31; Absorption, 57; Chlorophyll, 193; Dispersion, 214; Electric, 222; Fluorescence, 243, 244; Heat, 253; Interference, 262; Iodine, 266; Light, 272; Optics, 306; Phosphorescence, 313, 314; Red End of the Sp., 322; Refraction, 324.

Long (J. H.). Flame, 235.

LORENZ (L.). Constants, 200; Dispersion, 214.

LORSCHEID (J.). Book, 9.

Loudon (J.). Analysis, 45.

LOVE (E. J.). Apparatus, 24; Glass, 249.

LUBARSCH (O.). Analysis, 45; Fluorescence, 244.

LUBBOCK (Dr. M.). Color, 198.

Luck (E.). Nitrogen, 302; Oxygen, 309.

LUNDQUIST. Distribution, 217; Heat, 253.

Lutz. Apparatus, 34.

LUVINI. Apparatus, 23; Analysis, 45.

MACAGNO (J.). Intensity in the Solar Sp., 113; Aniline, 163.

MACÉ DE LÉPINAY (J.). Analysis, 45; D Lines, 204; Wave-Lengths, 355.

MACÉ (J.) et NICATI (W.). Intensity in the Solar Sp., 113.

MACFARLANE (A.). Analysis, 45.

Mach (E.). Dispersion, 214; Glass, 249.

MACLEAR. Solar in general, 94; Atmospheric Sp., 134; Aurora, 139.

MACMUNN (C. A.). Book, 9; Carbon Compounds, 158; Bile, 165; Hematine, 174; Urine, 185.

MADAN (H. G.). Apparatus, 35.

Magnus (G.). Flame, 235; Heat, 253.

MALUS (E. L.). History, 5.

MALY (R.). Bile, 165; Gall, 173.

MANET. Apparatus, 17.

Manly (W. R.). Meteorological, 295.

MARIÉ-DAVY. Meteorological, 295.

MARIGNAC (C.). Gadolinite, 247; Samarskite, 330; Ytterbium, 358.

MARVIN (T. H.). Apparatus, 24.

MASCART. Apparatus, 19; Ultra-Violet Solar Sp., 130; Dispersion, 214; Electric, 222; Flame, 235; Interference, 262; Maps, 288; Refraction, 324; Ultra-Violet, 348; Water, 351; Wave-Lengths, 355.

MASKELEYNE. History, 5.

Masson (A.). Alcohol, 161; Terebinthene, 183; Electric, 222; Platinum, 317.

MATTHIESSEN. Analysis, 45; Solar in general, 94; Solar elements, 111; Ultra-Violet Solar Sp., 130.

MAUNDER (E. W.). Comets, 76; Fixed Stars, 81, 82.

MAURER (J.). Absorption, 57; Atmospheric, 134.

MAXWELL (J. C.). Color, 198.

MAYER (A. M.). History, 5; Apparatus, 21, 26.

MELDE (F.). Absorption, 57; Liquids, 277.

Meldola (R.). History, 5; Bright Lines in the Solar Sp., 102; Phenols, 181; Oxygen, 310.

MELLONI. History, 5; Solar in general, 94; Heat, 253.

MELVILL (T.). Flame, 236.

MENDELEJEFF (D.). Gadolinite, 247; Gallium, 248; Metals, 293.

MENDENHALL (T. C.). Apparatus, 18.

MERMET. Apparatus, 17.

MERZ (S.). Apparatus, 27, 37; Astronomical in general, 68; Fixed Stars, 80; Dark Lines, 205; Glass, 249.

MESSERSCHMIDT (J. B.). Wave-Lengths, 355.

MEYER (A.). Absorption, 57; Morphine, 177.

MEYER (O. E.). Dispersion, 214.

MEYER (W.). Comets, 70; Brucine, 167.

MICHELSON (A.). Apparatus, 30.

MILL (H. R.). Meteorological, 295.

MILLARDET (A.). Chlorophyll, 193.

MILLER (F.). Apparatus, 33, 34.

MILLER (W. A.). History, 5; Analysis, 45; Astronomical in general, 67, 68; Solar in general, 94; Electric, 223; Flame, 236; Thallium, 344.

MILLER (H. Hallows). Nitrogen, 303.

MILNE (G. A.). Flame, 236.

MITSCHERLICH. Apparatus, 35; Analysis, 45; Bromine, 148; Chlorine, 191; Flame, 236; Iodine, 266; Metals, 293; Nitrogen, 303; Sodium, 339.

Möhlau (R.). Diphenyl, 170.

MOHR (F.). Flame, 236.

Moigno (F.). Apparatus, 29; Analysis, 45.

Moissan (H.). Cyanogen, 169; Potassium, 319.

Moncel (Du). Electric, 223.

Monckhoven. Intensity of the Solar Sp., 106; Flame, 236; Hydrogen, 259; Metals, 293; Ultra-Violet, 349.

MONTIGNY. Displacement of Stellar Sp., 79; Twinkling of Stars, 132.

Moreland. Diffraction, 211.

MORGHEN (A.). Iodine, 266.

MORICHINI (D. P.). History, 5.

MORIZE (H.). Apparatus, 31.

MORREN (A.). Solar in general, 94; Carbon Compounds, 158; Acetylene, 160; Cyanogen, 170; Chlorine, 187; Dispersion, 214; Flame, 236.

MORTON (H.). Analysis, 45; Eclipses, 109; Purpurin, 181; Fluorescent, 244; Liquids, 277; Uranium, 347; Ultra-Violet, 349.

MOSER (J.). Analysis, 45; Inversion, 263; Nitrogen, 303.

Mousson (A.). History, 5; Apparatus, 15, 34; Analysis, 46; Dispersion, 214.

MOUTIER (J.). Analysis, 46.

MOUTON. Apparatus, 20; Heat in the Solar Sp., 112; Dispersion, 214; Heat, 253; Wave-Lengths, 355.

Muirhead (H.). Analysis, 46.

MULDER. Phosphorus, 316; Selenium, 332; Sulphur, 342.

MÜLLER (G.). Intensity of the Solar Sp., 113.

MÜLLER (J.). Apparatus, 16, 22, 26; Heat in the Solar Sp., 112; Photography of the Solar Sp., 117; Solar Wave-Lengths, 132; Dark Lines, 205; Diffraction, 211; Electric, 223; Heat, 253, 254; Manganese, 286; Refraction, 325; Ultra-Violet, 349; Wave-Lengths, 355.

MUNRO (J.). Aurora, 139.

MURPHY (J. J.). Aurora, 139.

NASCHOLD. Blood, 166.

NASINI (R.). Carbon, 154; Carbon Compounds, 155 (BERNHEIMER et N.).

NEGRI (A. e G. de). Hydrocarbon, 175.

NENCKI und LIEBER. Excrements, 171; Urine, 185.

NEUSSER (E.). Urine, 185.

NEWLANDS (J. A. R.). Aurora, 139.

NEWTON (Sir Isaac). History, 5.

NICATI (W.). Intensity of the Solar Sp., 113.

NICHOLS (E. L.). Analysis, 46; Color, 198, Platinum, 317.

NICKLES. Carbon Compounds, 158; Thallium, 344.

NIEPCE DE SAINT VICTOR. Photography of Solar Sp., 117; Color, 198.

NILSON (L. F.). Scandium, 331; Ytterbium, 358.

NILSON (L. F.) and Peterson (E.). Beryllium, 144.

NIVEN (C.). Displacement of Stellar Sp., 80; Planets, 86.

NOACK. Apparatus, 21.

Noble (W.). Comets, 74; Moon, 87.

NOORDEN (C. von). Quantitative Analysis, 50.

NORTON (W. A.). Comets, 72; Solar in general, 94; Corona, 103.

OETTIGEN (A. J.). Aurora, 139.

OLMSTEAD (D.). Solar in general, 94.

OTTO (J. G.). Blood, 166; Methamoglobin, 177.

OUTERBRIDGE (A.). Apparatus, 23.

PAALZOW. Electric, 223; Flame, 236; Oxygen, 310.

PALMIERI (L.). Chlorine, 191; Volcanoes, 350.

Papillon. Carbon Compounds, 158.

PARINAUD et DUBOSCQ. Apparatus, 39; Density, 207.

PARKER (J. Spear). Apparatus, 12; Iron, 268.

PARRY (J.). Electric, 223; Flame, 236; Iron, 268.

Parville (H. de). Meteorological, 295.

PASTEUR. Phosphorescence, 314.

Petrce (B. O. J.). Color, 198; Mercury, 289.

PEIRCE (C. S.). Analysis, 46; Lines of the Sp., 274; Wave-Lengths, 356.

Pentland. Heat of the Solar Sp., 112.

PERKIN (W. H.). Absorption, 57; Alizarine, 162; Anthrapurpurine, 163.

PERNTER, LECHER und. Absorption, 56.

Perrotin. Comets, 78.

PERRY (S. J.). Fixed Stars, 81; Chromosphere, 104; Eclipses, 109; Sun-Spots, 126; Aurora, 139; Ebonite, 171.

Peslin. Solar Sp. in general, 95.

Petri (J.). Flour and Grain, 172.

Petruschewski (Th.). Apparatus, 27.

Petzval (Jos.). Electric, 223.

PFEFFER (W.). Carbonic Acid, 180.

Phipson (T. L.). Absorption, 57; Ruberine, 182.

Pickering (E.C.). Apparatus, 15; Astronomical in general, 68; Fixel Stars, 81; Nebulæ, 84, 85; Photography of Stellar Sp., 117; Red End of Solar Sp., 124; Aurora, 139; Diffraction, 211; Ultra-Violet, 349; Wave-Lengths, 356.

PIERRE (Is.) et PUCHAT (E.). Flame, 236.

Pigorr (G. W. Royston). Apparatus, 30; Solar in general, 95.

PILTSCHIKOFF. Apparatus, 21.

PISANI. Cæsium, 150.

PISATI (G.) e PATERNO. Benzene, 164.

Plosz (P.). Chromogene, 168; Excrements, 171.

PLÜCKER. Analysis, 46; Borax, 146; Carbonic Acid, 180; Electric,

223; Flame, 236, 237; Fluorine, 246; Hydrogen, 259; Nitrogen,

303; Oxygen, 310; Refraction, 325; Selenium, 332; Sulphur, 342.

Pocklington (H.). Absorption, 57; Chlorophyll, 193.

POEHL (A.). Alkalies, 61.

POEY (A.). Chemical Effects of the Solar Sp., 102; Ultra-Violet Solar Sp., 130.

POGGENDORFF (J. C.). History, 6.

Porro. Comets, 71; Longitudinal Rays, 281.

POWELL (J. Baden). History, 6.

Prazmowski. Apparatus, 25; Comets, 71; Aurora, 139; Color, 198.

PREYER (W.). Quantitative Analysis, 50; Carbon Compounds, 158.

PRIESTLEY (Dr. J.). History, 6.

PRILLIEUX. Density, 208.

PRINGLE (G. H.): Aurora, 139.

PRINGSHEIM. Absorption, 57; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Chlorophyll, 193, 194; Red End of the Spectrum, 322.

PRITCHARD (C.). Analysis, 46.

PROCTOR (H. R.). Apparatus, 21, 22; Electric, 223.

PROCTOR (R. A.). Book, 9; Apparatus, 11; Astronomical in general, 68; Solar in general, 95; Aurora, 139.

PRYTZ (K.). Constants, 200.

Puiseux (A.). Eclipses, 109.

Pulfrich (C.). Absorption, 57; Wave-Lengths, 356.

Pulsifer (W. H.). Apparatus, 30.

QUINCKE (G.). Apparatus, 18; Diffraction, 211; Liquids, 277; Optics, 306.

RADAU (R.). Book, 9; Apparatus, 27.

RADZIZEWSKI (B.). Phosphorescent, 314.

RANVIER (L.). Carbon Compounds, 158.

RAYET (G.). Astronomical in general, 70; Comets, 72, 78; Solar Atmosphere, 100; Solar Eclipses, 109; Solar Protuberances, 119; Sun-Spots, 126; Aurora, 139.

RAYET et ANDRÉ. Comets, 72.

RAYLEIGH (Lord). Apparatus, 18; Analysis, 46; Color, 198; Energy, 227; Optics, 306; Ultra-Violet, 349.

REDTENBACHER (J.). Mineral Waters, 297.

REFORMATSKY (S.). Hydrocarbon, 175.

RÉGIMBEAU. Analysis, 46.

REICH (F.) und RICHTER (Th.). Indium, 261.

REIMANN (M.). Aniline, 163.

REINKE (J.). Analysis, 46.

25 т

REINOLD. Analysis, 46.

Restlinger (Edm.). Electric, 223; Hydrogen, 259; Nitrogen, 303.

RENNIE (E. H.). Drossera Whittakeri, 170.

RESPIGHI (L.). Book, 9; Comets, 71; Solar Sp. in general, 95; Corona, 104; Eclipses, 109; Solar Protuberances, 119; Aurora, 140.

REYE (Th.). Apparatus, 17; Solar Protuberances, 119; Sun-Spots, 126.

REYNOLDS (J. E.). Apparatus, 11, 21; Analysis, 46; Beryllium, 144; Carbon Compounds, 158; Alizarine, 162; Brazil-wood, 185; Sulphur, 342.

RICCA (V. S.). Corona, 104.

Riccò (A.). Apparatus, 15, 28, 35; Analysis, 47; Comets, 76, 77, 78; Solar in general, 95; Corona, 104; Solar Eruptions, 111; Sun-Spots, 126; Magnesium, 283; Water, 352.

RICHARD et BERTHELOT. Analysis, 40; Flame, 231.

RICHE et BARDY. Flame, 237; Sulphur, 342.

RICOUR (Th.). Dispersion, 214.

RIDOLFI (C.). Water in the Solar Sp., 130.

Rîhe (J.). Eclipse, 110.

RITTER. History, 6.

ROBERTS (W. C.). Analysis, 46.

ROBIQUET. Solar Sp. in general, 95; Electric, 223.

Robinson (H.). Aurora, 140.

ROBINSON (T. B.). Apparatus, 27.

Robinson (J.). History, 6.

ROHRBACH (C.). Dispersion, 214; Liquids, 278.

ROLLETT (A.). Apparatus, 23; Interference, 262.

ROMANES (C. H.). Solar Sp. in general, 95; Aurora, 140; Meteorological, 295.

Roop (O. N.). History, 6; Books, 9; Apparatus, 22, 28, 31; Analysis, 47; Quantitative Analysis, 51; Didymium, 210; Double Spectra, 217; Indigo, 261; Nitrogen, 303; Secondary Spectra, 331.

ROSCOE (H. E.). Books, 9; Analysis, 47; Corons, 104; Atmospheric, 134; Bromine, 148; Carbon, 154; Chlorine, 191; Heat, 254; Iodine, 266; Iron, 269; Potassium, 319; Ruthenium, 327; Sodium, 339.

ROSENBERG (E.). Diffraction, 211.

ROSENSTIEHL (A.). Alizarine, 162. •

Rosiky. Diffraction, 211.

ROWLAND (H. A.). History, 6; Apparatus, 17, 18; Maps, 114; Solar Photography, 117; Solar Wave-Lengths, 132; Aurora, 140; Wave-Lengths, 356.

ROWNEY (T.). Analysis, 47.

RUDBERG (Fr.). History, 6.

Rue (Warren de la). Photography of Stellar Sp., 86; Solar Protuberances, 122.

RUPRECHT (R.). History, 6; Book, 9.

Russell (H. C.). Comet, 77; Atmospheric, 134.

Russell (W. J.). Absorption, 57; Chlorine, 191; Chlorophyll, 194; Cobalt, 196; Liquids, 278.

RUTHERFURD (L. M.). History, 6; Astronomical in general, 68; Measurement of Stellar Sp., 82.

SAARBACH (H.). Methamoglobin, 177.

SABATIER (P.). Alkalies, 61; Chromium, 195.

SACHSSE (R.). Chlorophyll, 194.

SAINTE-CLAIRE DEVILLE. Calcium, 152.

SALET (G.). Apparatus, 16; Analysis, 47; Absorption, 58; Aurora, 140; Carbon, 154; Chlorine, 191; Distribution, 217; Double Sp., 217; Flame, 237; Iodine, 266; Metals, 293, Nitrogen, 303; Phosphorus, 316; Selenium, 332; Silicium, 333; Sulphur, 342; Tellurium, 343; Tin, 345; Wave-Lengths, 356.

SALIBBURY (The Marquis of). Heat, 254; Lines of the Sp., 274.

SALM-HORST (Der Fürst zu). Apparatus, 28; Ultra-Violet, 349.

Sampson (W. T.). Corona, 104.

SANDS (B. F.). Book, 9; Eclipse, 110.

Santini (S.). Flame, 237; Hydrogen, 259.

SARASIN (Ed.). Aluminium, 63; Cadmium, 149; Crystals, 203; D Lines, 204; Fluorine, 246; Refraction, 325; Silicium, 833; Zinc, 360.

SAUER (L.). Ultra-Violet, 349.

SCHAICK (W. C. von). Dispersion, 215.

SCHELLEN (H.). Book, 9.

SCHELSKE (R.). Carbon Compounds, 158.

SCHENCK (L. S.). Bonellia Viridis, 167; Flame, 237.

Schimkow (A.). Atmospheric, 135; Electric, 223; Heat, 254; Nitrogen, 303.

Schiff (H.). Quantitative Analysis, 51; Carbon Compounds, 159; Aniline, 163.

SCHMIDT. Aurora, 140.

Schönn (L.). Apparatus, 13; Absorption, 58; Alcohol, 161; Flowers, 172; Leaves, 176; Liquids, 278; Nitrogen, 303; Ultra-Violet, 309; Water Sp., 352.

Schoop (P.). Aniline, 163.

SCHOTTNER (F.). Flame, 237.

SCHRAUF (A.). Carbon, 154; Dispersion, 215.

SCHRÖDER (H.). Liquids, 278; Refraction, 325.

Schrötter. Indium, 261.

SCHULTZ (H.). Apparatus, 19.

SCHULZ-SELLAC (C.). Absorption, 58; Silver, 335.

SCHUNCK (E.). Purple, 182.

Schuster (A.). Apparatus, 12; Analysis, 47; Eclipses, 110; Oxygen in the Solar Sp., 115; Carbon, 154; Electric, 223; Flame, 237; Metals, 293; Nitrogen, 303; Oxygen, 310; Radiation, 321.

SCHWERD (F. M.). History, 6.

SEABROKE (G. M.). Comet, 74; Displacement of Stellar Sp., 80; Solar in general, 99; Aurora, 140; Hydrogen, 259.

SECCHI (A.). History, 6; Books, 10; Apparatus, 36, 37; Analysis, 47; Aluminium, 63; Astronomical in general, 68, 69; Comets, 71, 72, 73, 79; Displacement of Stellar Sp., 80; Fixed Stars, 80, 81, 82; Measurement of Stellar Sp., 82; Meteors, 83; Nebulæ, 84; Planets, 86, 87, 88; Solar in general, 95, 96; Solar Atmosphere, 101; Solar Corona, 104; Eclipses, 110; Solar Eruptions, 111; Solar Protuberances, 119, 120, 121; Solar Storms, 124; Sun-Spots, 127; Atmospheric, 135; Aurora, 140; High Altitudes, 255; Hydrogen, 259, 260; Iron, 269; Magnesium, 283; Metals, 294; Sodium, 339; Thallium, 344; Water Sp., 352.

SEEBECK (T. J.). History, 7.

SEGUIN (J. M.). Electric, 224; Fluorine, 246; Light, 272; Phosphorus, 316; Silicium, 333; Sulphur, 342.

SEKULIC. Interference, 262; Ultra-Violet, 349.

SELLMEIER (W.). Color, 198; Dispersion, 215.

SÉNARMONT (H. de). Borax, 146; Carbonic Acid, 180; Carbonate of Soda, 183; Crystals, 203; Oxygen, 310; Sodium, 339; Sulphur, 342.

SENIER (H.). Flowers, 172.

SERPIERI (A.). Aurora, 140.

SETTEGAST (H.). Quantitative Analysis, 51; Nitrogen, 303; Silver, 335.

SHERMAN. Astronomical, 69; Comets, 79; Fixed Stars, 80.

SIEBEN. Density, 208; Dispersion, 215; Heat, 254.

SILBERMANN (J.). Meteors, 83; Aurora, 140.

SILLIMAN (J. M.). Apparatus, 12; Iron, 269.

SIMMLER (R. Th.). Book, 10; Apparatus, 19; Analysis, 47; Borax, 146; Copper, 202; Electric, 224; Flame, 237; Mineral Waters, 297.

SIRKS (J. L.). Selenium, 332.

SMITH (A. P.). Flame, 238; Salt, 328.

SMITH (Lawrence). Didymium, 210; Erbium, 229; Mosandrum, 298.

SMITH (C. Mitchie). Meteorological, 295, 296.

SMYTH (C. Piazzi). Book, 10; Apparatus, 20, 38; Analysis, 47; Astronomical in general, 69; Solar in general, 97; B Lines in the Solar Sp., 101; Heat in the Solar Sp., 113; Red End of the Solar Sp., 124; Solar Wave-Lengths, 132; Aurora, 140; Carbon, 154; Cyanogen, 170; Hydrocarbon, 175; Color, 198; Dispersion, 215; Flame, 238; Meteorological, 296; Oxygen, 310; Wave-Lenghts, 356.

SOHNKE (L.). Heat, 254.

SOKOLOFF (A.). Apparatus, 19.

Somerville (Mrs.). Chemical Effects of the Solar Sp., 102.

SONREL. Photography of the Solar Sp., 117; Sun-Spots, 127.

SORBY (H. C.). Apparatus, 22, 28; Qualitative Analysis, 49; Carbon Compounds, 159; Aphides, 163; Blood, 166; Bonellia Viridis, 167; Hemoglobin, 174; Leaves, 176; Spongilla Fluviatilis, 183; Color, 199; Fluorescence, 244; Jargonium, 270; Uranium, 347; Zirconium, 361.

Soret (C.). Apparatus, 30; Aluminium, 63; Alum, 162; Dispersion, 215; Fluorescence, 245.

SORET (J. L.). Apparatus, 17; Absorption, 58, 59; Heat in the Solar Sp., 113; Blood, 166; Color, 199; Crystals, 203; Didymium, 210; Diffraction, 211; Dispersion, 215; Flame, 238; Gadolinite, 247; Liquids, 278; Metals, 296; Nitrogen, 303; Polarized Light, 318; Samarskite, 330; Ultra-Violet, 349, 350; Water Sp., 352; Yttrium, 359.

SPÉE. Diffraction, 211; Helium, 255.

SPILLER (J.). Phosphorescence, 314.

SPÖRER. Solar Protuberances, 121.

SPOTTISWOODE (W.). Color, 199.

STAS. Heat, 254.

STEARN (C. H.) and LEE (G. H.). Flame, 238; Nitrogen, 303; Pressure, 320.

STEBBIN (J. H.). Azo Colors, 164; Lamp-Black, 176.

STEFEN (J.). Heat, 254; Interference, 262.

STEIN (W.). Carbon Compounds, 159; Morindon, 117; Flame, 238; Glass, 249; Liquids, 278.

STEINHEIL. Analysis, 48.

STENGER (F.). Electric, 224; Fluorescent, 245.

STENHOUSE. Morindon, 117.

STEVENS (W. L.). Apparatus, 30.

STEWART (B.). History, 7; Analysis, 48; Solar in general, 97; Eclipses, 110; Solar Protuberances, 121; Sun-Spots, 127; Tourmeline, 184; Exchanges, 230.

STIEREN (E.). History, 7.

STOCKVIS (B. J.). Bile, 165; Gall, 173.

STOKES (G. G.). History, 7; Book, 10; Analysis, 48; Alcalies, 61; Solar in general, 97; Carbon Compounds, 159; Blood, 166; D Lines, 204; Dispersion, 215; Electric, 224; Phosphorescent, 314; Ultra-Violet, 350.

STONE (E.). Analysis, 48; Nebulæ, 84; Aurora, 141.

STONE (W. H.). Apparatus, 34.

STONEY (Johnstone). Apparatus, 35; Astronomical in general, 69; Solar in general, 97; Chlorine, 191; Flame, 238.

STROUMBO. Analysis, 48.

STRUTT (J. W.). Apparatus, 18.

STRUVE (O. von). Aurora, 141.

Sueur (A. Le). Astronomical in general, 69; Fixed Stars, 81; Nebula, 84, 85; Planets, 87; Aurora, 141.

SUFFOLK (W. T.). Apparatus, 23.

SUNDELL (A. F.). Apparatus, 19.

SWAN (W.). History, 7; Carbon Compounds, 159; Flame, 238; Hydrogen, 260.

TACCHINI (P.). Comets, 76, 79; Venus, 88; Solar in general, 97, 98; Solar Atmosphere, 101; B Lines in the Solar Sp., 101; Solar Chromosphere, 104; Eclipses, 110; Solar Eruptions, 111; Photography of Solar Sp., 117; Solar Protuberances, 121, 122; Sun-Spots, 127, 128; Aurora, 141; Magnesium, 283.

TAIT (P. G.). Apparatus, 27.

Talbot (H. Fox). Analysis, 48; Flame, 238; Lithium, 280.

TARRY (H.). History, 7; Solar Storms, 124; Aurora, 141; Meteorological, 296.

TENNANT (J. F.). Eclipses, 110.

TERQUEM et TRANNIN. Liquids, 278; Refraction, 326.

THALÉN (Rob.). History, 7; Book, 10; Analysis, 84; Solar in general, 98; Didymium, 210; Erbium, 229; Iodine, 267; Iron, 269; Lanthanum, 270; Limits of the Sp., 273; Maps, 288; Metals, 294; Samarium, 329; Scandium, 331; Thulium, 345; Wave-Lengths, 356; Ytterbium, 358; Yttrium, 359.

THENARD (P.). Analysis, 48; Heat in the Solar Sp., 112.

THIERRY (M. de). Apparatus, 11, 39.

THOLLON (L.). Apparatus, 12, 14, 28, 35, 37; Comets, 74, 77, 78; Venus, 88; Solar in general, 98; B Lines in the Solar Sp., 101; D Lines in the Solar Sp., 105; Eclipses, 110; Solar Protuberances, 122; Solar Storms, 124; Telluric Solar Sp., 129; Carbon Compounds, 159; D Lines, 204; Dispersion, 215; Maps, 288; Sodium, 339; Wave-Lengths, 356.

Thompson (C. M.). Didymium, 210.

THÖRNER (W.). Chinon, 168.

Thudichum (J. L. W.). Bile, 165; Hematine, 174; Lutherine, 176; Potassium, 319; Uranium, 347.

TILDEN (W. A.). Hydrocarbon, 175.

TIMIRIASEF. Analysis, 48; Solar in general, 98; Carbonic Acid, 180; Energy in the Sp., 227.

TISSERAND (F.). Sun-Spots, 128.

TOMMASI (D.). Electric, 224; Silver, 336.

TRANNIN (H.). Density, 208; Wave-Lengths, 356.

TREMESCHINI. Sun-Spots, 128.

TRÉPIED (C.). Comets, 79; Eclipses, 110.

TRESCA. Aurora, 141.

TROOST and HAUTEFEUILLE. Borax, 146; Carbon, 154; Silicium, 333; Titanium, 346; Zirconium, 361.

TROUVELOT (E. L.). Absorption, 59; Solar in general, 98; Solar Absorption, 100; Solar Atmosphere, 101; Protuberances, 122; Sun-Spots, 128.

TROWBRIDGE (J.). Analysis, 48.

TRUCHOT (P.). Lithium, 280; Mineral Waters, 297.

TSCHIRCH (A.). Apparatus, 23; Chlorophyll, 194.

Tucker (A. E.). Apparatus, 32.

TUMLIRZ (O.). Absorption, 59; Liquids, 278.

TUPMAN (Capt.). Protuberances, 122.

Twining (A. C.). Aurora, 141.

TYNDALL (J.). Analysis, 48; Comets, 71; Inversion, 263; Lithium, 280; Red End of the Sp., 322.

UPTON (Winslow). Meteorological, 296.

VALENTINE (G.). Book, 10; Carbon Compounds, 159.

Valson (C. A.). Salt, 328.

VALZ. Apparatus, 32.

VERNEUIL (A.). Aluminium, 62; Calcium, 152; Phosphorescent, 314.

VICAIRE (E.). Solar in general, 98; Solar Storms, 124; Sun-Spots, 128; Hydrogen, 260; Iron, 269; Magnesium, 283; Silicium, 333.

VIERORDT (K.). Book, 10; Apparatus, 39; Quantitative Analysis, 51; Absorption, 59; Carbon Compounds, 159; Wave-Lengths, 356.

VIOLLE (J.). Platinum, 317; Silver, 336.

Vogel (E.). Lines of the Sp., 275.

Vogel (H.). Absorption, 59; Comets, 70, 71, 75; Chemical Effect of the Solar Sp., 102; Bromine, 148; Dispersion, 215; Electric, 224.

Vogel (H. C.). Apparatus, 13, 21, 25, 26, 39; Absorption, 59; Comets, 75, 76, 77, 79; Fixed Stars, 81; Nebulæ, 85; Planets, 86; Solar Absorption, 100; Solar Atmosphere, 101; Photography of Solar Sp., 117; Solar Wave-Lengths, 132; Atmospheric, 135; Aurora, 141; Hydrogen, 260; Nitrogen, 303, 304; Oxygen, 310; Wave-Lengths, 357.

Vogel (H. V.). Analysis, 48; Astronomical in general, 70

Vogel (H. W.). History, 7; Analysis, 49; Absorption, 59, 60; Astronomical in general, 70; Dissociation, 216; Electric, 224; Flame, 238; Iron, 269; Light, 273; Magnesium, 284; Mercury, 289; Nickel, 299; Silicium, 333; Silver, 336; Water, 352.

Voigt (W.). Fuchsin, 172; Dispersion, 215; Metals, 294; Refraction, 326; Zinc, 360.

Volpicelli. Calcium, 152; Luminous Sp., 281.

WALKER (E.). Electric, 224.

WALTENHOFEN (A. von). Electric, 224; Flame, 239

Walters (J. Hopkins). Electric, 224.

WARREN DE LA RUE. [Above under Rue.]

WARTMANN (E.). Longitudinal Rays, 281.

WATERHOUSE (J.). Photography of the Solar Sp., 117; Eosin, 171.

WATTS (W. M.). Books, 10; Apparatus, 22; Analysis, 47, 49; Comets, 73; Aurora, 141; Carbon, 154; Hydrocarbon, 175; Double Sp., 217; Flame, 239; Iron, 269.

WEBER (R.). Plants, 181.

Weinberg (M.). Interference, 262; Wave-Lengths, 357.

Weinhold (A.). Apparatus, 21; Color, 199; Inversion, 264; Metals, 294; Sodium, 339.

WEISS (A.). Solar in general, 99; Fungi, 172; Density, 208; Fluorescent, 245; Nitrogen, 304.

WELSBACH (C. A.). Gadolinite, 247.

WERNICKE (W.). Apparatus, 29; Absorption, 60; Bromine, 148; Chlorine, 191; Iodine, 267; Metals, 294; Polarized Light, 318; Silver, 336.

WESENDONCK (K.). Carbon Compounds, 160; Napthalin-Red, 178; Carbonic Acid, 180; Fluorescent, 245; Fluorine, 246; Hydrogen, 260; Silicium, 333.

WHEATSTONE (C.). Electric, 224.

WIEDEMANN (E.). Analysis, 49; Pressure on the Sun, 117; Sun-Spots, 128; Carbonic Acid, 180; Constants, 200; Electric, 224, 225; Flame, 239; Glass, 249; Hydrogen, 260; Manganese, 286; Polarized Light, 318; Potassium, 320; Refraction, 326; Wave-Lengths, 357.

WIEN (Wille). Absorption, 60.

WIESNER (J.). Xantophyll, 186; Chlorophyll, 194.

WIJKANDER. Aurora, 141.

WILD (H.). Apparatus, 33.

WILEY (H. W.). Uranium, 347.

WILLIAMS (W. M.). Calcium, 152; Iron, 269; Titanium, 346.

WILLIGEN (S. M. van der). Electric, 225; Hydrogen, 260; Metals, 294.

WILSON (J. M.) and SEABROKE. Solar in general, 99.

WINKLER. Indium, 261.

Winlock (Prof.). Apparatus, 16, 36, 37; Solar in general, 99; Aurora, 141.

WINNECKE. Nebulæ, 84.

WINTER (G. K.). Corona, 105.

WISKEMANN (M.). Hemoglobine, 174.

WLEUGEL (S.). Indium, 261.

Wolff (C. H.). Quantitative Analysis, 51; Absorption, 60; Alkalies, 61; Astronomical in general, 70; Comets, 72, 73, 75; Fixed Stars, 82; Sun-Spots, 128; Fuchsin, 172; Indigo, 176; Cobalt, 196; Copper, 202; Iron, 269; Liquids, 278.

Wollaston (Dr.). History, 7; Dark Lines in the Solar Sp., 106; Dark Lines, 206.

WRIGHT (A. W.). Meteors, 83; Aurora, 142; Flame, 239; Iron, 269. WROTTESLEY (Lord). Books, 10.

WÜLLNER (A.). Analysis, 49; Bromine, 148; Acetylene, 161; Carbonic Acid, 180; Dispersion, 216; Electric, 225; Flame, 239, 246; Fluorescent, 245; Hydrogen, 260; Iodine, 267; Lines of the Spectrum, 275; Nitrogen, 304; Oxygen, 310.

WUNDER (J.). Absorption Sp., 60; Ultra-Marine, 184.

Wünsch (C. E.). History, 7.

WURTZ (A.). History, 7.

WYROUBOFF (G.). Dispersion, 216; Sodium, 339.

Young (C. A.). Books, 10; Apparatus, 18; Analysis, 49; Comets, 73, 75, 79; Planets, 88; Solar in general, 99; Bright Lines in the Solar Sp., 102; Corona, 105; Displacement of Solar Sp., 106; Eclipses, 110, 111; Sun-Spots, 128; Inversion, 264; Nomenclature, 305; Sodium, 339.

Young (T.). History, 8.

Yung (E.). Color, 199.

ZAHN. Apparatus, 33, 38; Quantitative Analysis, 51.

Zantedeschi. History, 8; Apparatus, 32; Solar in general, 99; Longitudinal, 281.

ZENGER (C. V.). Apparatus, 12, 14, 15, 24, 35, 37, 39; Diffraction, 211; Light, 273; Ultra-Violet, 350.

ZENGER (K. W.). Analysis, 49; Photography of Solar Sp., 117.

ZENKER (W.). Apparatus, 33; Solar Protuberances, 122.

ZIMMERMANN (C.). Uranium, 347.

ZÖLLNER (F.). Apparatus, 30, 36, 37; Astronomical in general, 70; Nebulæ, 85; Solar in general, 99; Corona, 105; Dark Lines in the Solar Sp., 106; Solar Protuberances, 122; Solar Rotation, 124; Sun-Spots, 129; Aurora, 142; Dark Lines, 206; Density, 208; Flame, 240; Heat, 254.

Zona. Comet, 76.

## SUPPLEMENT.

As the omission of the authors' names in connection with references to the Jahresberichte der Chamie has been pointed out as a serious defect in the Index, these names are now supplied below.

```
Jahresber. d. Chemie (1847-'8), 161, analysis, by Draper.
                       (1847-'8), 164, analysis, by Becquerel.
                      (1847-'8), 197, analysis, by Brewster.
                "
                      (1847-'8), 197, analysis, by Airy.
                "
                      (1847-'8), 198, analysis, by Melloni.
                "
                       (1847-'8), 198, analysis, by Brewster.
     ..
                "
                       (1847-'8), 221, chlorine and hydrogen, by Favre
                          and Silbermann.
                "
                      (1849), 164, photography of, by Becquerel.
                "
                      (1850), 154, lines in the sp., by Brewster.
                46
                      (1851), 151, longitudinal lines, by Ragona-Scina.
                "
                      (1851), 134; (1852), 117, interference sp., both by
                          Nobert.
     "
                "
                       (1851), 152, Fraunhofer lines, by Broch.
                "
                      (1851), 152, electric sp., by Masson.
                      (1852), 124, Fraunhofer lines, by Phillips and by
                          Merz.
    "
                46
                      (1852), 125, analysis, by Stokes.
                "
                      (1852), 125, longitudinal lines, by Zantedeschi.
     "
                "
                      (1852), 126, measurements of the sp., by Porro.
    "
                "
                      (1852), 126, 131, analysis, by Helmholtz.
                "
                      (1853), 167, Fraunhofer lines, by Kuhn.
                "
                       (1853), 167, Longitudinal lines, by Salm-Horstmar.
                "
                      (1853), 178, colors, by Grassmann.
                "
     "
                      (1854), 137, Fraunhofer lines, by Heusser.
                "
     "
                      (1854), 197, solar sp. in general, by Becquerel.
                      (1855), 123, analysis, by Helmholtz.
     "
                "
                      (1855), 123, lines of the sp., by Grassmann.
                "
                                                                (895)
```

Jahresber. d	. Chemie	(1859), 643, analysis, by Kirchhoff and Bunsen.
"	"	(1860), 598, analysis, by Kirchhoff and Bunsen.
4.	66	(1860), 608, analysis, by Merz.
**	46	(1861), 41, analysis, by Kirchhoff and Bunsen.
44	"	(1861), 43, electric, by W. A. Miller.
4.	66	(1861), 44, phosphorus and sulphur, by Seguin.
• 6	"	(1861), 44, thallium, by Crookes.
4.6	44	(1861), 44, dark lines, by Kirchhoff.
46	66	(1861), 45, solar atmosphere, by Tyndall and Roscoe.
41	44	(1861), 45, analysis, by Kirchhoff and Bunsen.
46	**	(1862), 26, Fraunhofer lines at sunset, by A. Weiss.
• •	. "	(1862), 26, cause of the dark lines in the solar sp., by Janssen.
"	66	(1862), 26, dark lines in the sp. of stars, by Merz.
46	<b>6</b> 1	(1862), 27, coıncidence of the Fraunhofer lines with those of various metals, by Angström.
66	44	(1862), 27, general treatises on spectrum analysis, by Jamin, W. A. Miller, and Roscoe.
66	"	(1862), 27, various forms of the spectroscope, by Janssen, Kirchhoff and Bunsen, A. Waugh, E. Hauer, and O. N. Rood.
46	44	(1862), 27, 28, methods for obtaining constant spectra, by Mitscherlich, Crookes, Diacon et Wolf, Debray, Roscoe and Clifton, and Plücker.
"	"	(1862), 29, spectrum of soda, by Fizeau.
66	"	(1862), 29, division of bright rays into metallic spectra in good spectroscopes, by J. P. Cooke.
"	41	(1862), 29, influence of the temperature of a flame on the spectrum produced by it, by Kirchhoff and Bunsen, Roscoe and Clifton, and Crookes.
"	66	(1862), 30, constancy of the spectra, both of metals and of their compounds, by Wolf et Diacon.
44	44	(1862), 31, differences between the spectra of various metals and those of their chlorine compounds, especially the influence of salts, by Mitscherlich.
"	66	(1862), 32, cause of spectra and consequences from this in regard to the condition of the solar at- mosphere, by Mitscherlich.

Jahresber. d.	Chemie	(1862), 33, metallic spectra produced by electric sparks, by W. A. Miller, Stokes, and T. R. Robinson.
44	"	(1862), 33, spectra of carbon and of fluorine, by Sequin, Attfield, and Swan.
**	"	(1862), 34, violet coloring given to the flame by various chlorides, by Gladstone.
••	"	(1862), 34, spectra of colored solutions, by Brewster, Gladstone, and by Rood.
44	46	(1862), 29, spectrum of sodium, by Wolf et Diacon.
**	44	(1862), 30, spectrum of lithium in the hydrogen flame, by Wolf et Diacon.
••	"	(1862), 30, spectra of copper and of lead, by Debray.
••	••	(1862), 535, spectrum of blood, by F. Hoppe.
••		(1863), 101, photography of the solar spectrum, by Mascart.
46	"	(1863), 104, 106, 107, photographic effect of electric spectra of metals, by W. A. Miller.
**	.4	(1863), 107, 110, dark lines in the solar spectrum, by Kirchhoff.
••	**	(1863), 108, note, atmospheric or telluric lines of the solar spectrum, by Jasssen.
••	.6	(1863), 108, note, spectra of the stars, by Secchi.
••	• 6	(1863), 109, spectrum of iodine, by A. Wüllner.
	".	(1863), 110, accuracy and comparison of spectroscopes, by Bunsen and Kirchhoff, and by J. P. Cooke.
• 6	**	(1863), 110, spectra of sulphur and of nitrogen, by Plücker and Hittorf.
••	16	(1863), 111, spectra of the chlorine metals, by E. Diacon.
••	44	(1863), 111, spectrum of hydrogen, by Leclance.
	"	(1863), 111, spectra of phosphorus, by Christofle and Beilstein.
46	u	(1863), 112, use of spectrum analysis in the manufacture of steel, by Roscoe.
44	66	(1863), 112, spectra of sodium and potassium, by L. M. Rutherfurd.

Jahresber.	d. Chemie	(1863), 112, spectrum of thallium, by W. A. Miller and by J. P. Gassiot.
"	"	(1863), 112, spectrum of osmium, by W. Fraser.
66	64	(1863), 113, history of spectrum analysis, by G. Kirchhoff and by H. C. Dibbits.
44	•	(1863), 113, spectra of various metals in electricity, by Daniel.
46	•	(1863), 113, spectrum of carbon, by Daniel.
46	44	(1863), 114, apparatus, by Wolcott Gibbs, Littrow, R. Th. Simmler, J. P. Gassiot, H. Osann, B. Valz, and E. Mulder.
44	66	(1864), 108, spectrum analysis of colored solutions, by C. Werner.
44	"	(1864), 108, dark lines of the elements, by R. Bunsen.
66	**	(1864), 109, spectrum of lightning, by L. Grandeau.
	66	(1864), 109, spectrum of the non-luminous carbon flame, by A. Morren.
64	44	(1864), 109, spectra of phosphorus, sulphur, and selenium, by E. Mulder.
e.	61	(1864), 109, spectra of flames, by H. C. Dibbits.
66	4;	(1864), 110, spectra of glowing gases and vapours in electricity, by J. Plücker and S. W. Hittorf.
46	"	(1864), 112, spectra of the elements and of their compounds, by A. Mitscherlich.
66	"	(1864), 115, electric spectra of metals, by W. Huggins.
66	"	(1864), 115, spectrum of the light from phosphorescent animals, by Pasteur.
<b>c</b> 6	"	(1864), 115, note, spectra of the sun, fixed stars, planets, and nebulæ, by Janssen, W. A. Miller, and Huggins.
"	"	(1864), 115, apparatus with 11 sulphide of carbon prisms, by J. P. Gassiot.
ee .	"	(1864), 115, harmonious results given by the spectroscope, by F. Gottschalk.
66	e.	(1865), 85, absorption spectra of colored solutions, by F. Melde.



Jahresber. d. C	hemie	(1867), 107, spectra of the stars, by A. Secchi.
46	"	(1868), 130, spectroscope for testing minerals, by J. E. Reynolds.
. 46	"	(1868), 132, comparison of prisms for spectroscopes, by E. C. Pickering.
66	46	(1868), 80, spectrum of heat, by E. Desaines.
••	• •	(1868), 124, artificial spectrum of a Fraunhofer line, by A. Wüllner.
46	••	(1868), 125, various spectra of the same gas, by A. Wüllner.
44	46	(1868); 126, 127, spectra of lightning, by A. Kundt.
46	•6	(1868), 128, spectrum of the aurora, by O. Struve.
46	46	(1868), 128, flame spectra of gases containing carbon, by A. Lielegg.
66	**	(1868), 129, spectrum of potassium and of barium, by J. H. Freeman.
46	66	(1868), 129, absorption spectra of liquids for dyeing, by Reynolds.
46	46	(1868), 130, application of the spectroscope to the examination of crystals, L. Ditscheiner.
66	"	(1868), 133, spectrum telescope, by W. Huggins.
4.6	"	(1869), 174, history of spectrum analysis, by A. S. Herschel.
66	"	(1869), 174, constitution of spectra of light, by Lecoq de Boisbaudran.
**	46	(1869), 175, spectrum scale, by A. Weinhold.
46	"	(1869), 175, reversion spectroscope, by F. Zöllner.
66	16	(1869), 175, binocular spectrum microscope, by W. Crookes.
46	46	(1869), 175, appearance of opal in the spectroscope, by W. Crookes.
46	"	(1869), 176, spectrum of carbon, by W. M. Watts.
66	"	(1869), 176, 180, spectra of gases, by E. Frankland and J. N. Lockyer.
"	"	(1869), 177, difference of the spectra under various circumstances, by A. Secchi and Lecoq de Boisbaudran.
"	"	(1869), 178, spectra of gases under increasing pressure, by A. Wüllner and by Frankland.

Jahresber. d.	Chemie	(1869), 180, spectrum of the aurora, by Angström.
4.	44	(1869), 181, spectrum of sulphur, by G. Salet.
46	•6	(1869), 182, spectrum of acetylene, by Berthelot and F. Richard.
46	"	(1869), 182, absorption spectrum of chlorine, by Morren.
46	ea	(1869), 183, absorption spectra of steam and of saltpetre, by E. Luck.
66	"	(1869), 184, absorption spectrum of mangansuper- chloride, by E. Luck.
"	44	(1870), 148, spectrum of heat, by Becquerel.
**	66	(1870), 172, spectrum analysis, by A. Kundt.
"	"	(1870), 172, absorption spectra of liquid nitrates, by A. Kundt.
u	46	(1870), 173, spectroscopic examination of sulphur and phosphorus, by Salet.
"	"	(1870), 174, absorption spectrum of iodine vapour, by R. Thalén.
"	**	(1870), 174, spectra of chalk, magnesia, baryta, and strontium, by Huggins.
44	"	(1870), 175, spectrum of fat oils, by J. Müller.
66	"	(1870), 175, influence of temperature on the sensitiveness of spectrum reactions, by E. Cappel.
"	"	(1870), 177, spectra of gases, by A. Secchi.
44	66	(1870), 177, note, spectra of stars, by Leseueur, Hennessey, Secchi, Lockyer, and Young (C. A.).
"	66	(1870), 321, absorption spectrum of nitrates of didymium, by Erk.
66		(1870), 930, spectrum analysis in general, by H. C. Sorby.
66	"	(1871), 120, heat spectra of sunlight and limelight, by S. Lamansky.
46	"	(1871), 144-149, spectra of colored bodies, by W. Stein.
"	"	(1871), 150, use of a reflector behind the spectrum apparatus, by H. Fleck.
**	"	(1871), 150, spectrum of calcium, by R. Blochmann.
44	"	(1871), 151, diffraction and dispersion of selenium, by J. L. Sirks.

Jahresber. d. Chemie	(1871), 151, diffraction and dispersion in iodide, bromide, and chloride of silver, by W. Wernicke.
66 46	(1871), 153, diffractive power of various liquids, by Croullebois.
" "	(1871), 153, diffractive power of gases, by Fr. Mohr.
u u	(1871), 154-160, anomalous dispersion of bodies colored on the surface, by A. Kundt.
	(1871), 160, interference-scale for spectroscopic measurements, by J. Müller and by Sorby.
6.	(1871), 160, variable spectra, by A. J. Angström.
6. 66	(1871), 160-165, spectra of gases, by Angström.
4	(1871), 165, spectrum analysis, by G. Salet.
. "	(1871), 167, spectrum of lightning, by H. Vogel.
44 44	(1871), 168, solar spectrum, by J. Janssen.
46 66	(1871), 169, spectrum of the aurora, by Browning, Zöllner, R. J. Ellery, Lord Lindsay, G. F. Barker, and H. Vogel.
66 64	(1871), 169, comparative investigations of the spectrum, by L. Troost and P. Hautefeuille.
6. 66	(1871), 172, absorption by iodine-vapour, by Andrews.
u u	(1871), 173, inversion of the spectrum lines, by A. Weinhold.
uu	(1871), 175, illumination, absorption, and fluorescence, by A. Lallemand.
66 68	(1871), 179–189, chemical effects of light, by H. E. Roscoe and T. E. Thorpe.
"	(1871), 189, quantitative analysis, by Vierordt.
44 46	(1871), 191, phosphorescence, by A. Forster.
66 66	(1872), 134, ultra-violet rays of the solar spectrum, by Sekulic.
44 44	(1872), 136, absorption spectrum of chlorophyll, by Chautard.
46 44	(1872), 137, absorption spectrum of saltpetre, by D. Gernez.
66 66	(1872), 138, absorption spectrum of chlorine, by Gernez.
64 64	(1872), 139, 141, absorption spectrum of sulphur, by Gernes
	· · · · · · · · · · · · · · · · · · ·

Jahresber.	d. Chemie	and of selenium, by D. Gernes.
"	66	(1872), 140, absorption spectra of chloride of sele- nium, of bromide of selenium, of tellurium, of chloride of tellurium, and of bromide of tellu- rium, and of alizarine, by D. Gernez.
"	64	(1872), 141, spectrum of iodine and of sulphur, by G. Salet.
4	*	(1872), 141, 143, 144, 145, 146, spectrum of hydrogen, by G. M. Seabroke, Lecoq de Boisbaudran, A. Schuster, L. Cailletet, and E. Villari.
46	"	(1872), 142, spectrum of phosphoretted hydrogen, by K. B. Hofmann.
"	æ	(1872), 142, 144, 145, spectrum of nitrogen, by Schuster.
46	"	(1872), 142, spectrum of the flame of ammonia, by K. B. Hofmann.
"	46	(1872), 143, spectrum of ammonia, by A. Schuster
66	46	(1872), 143, spectra of gases, by Schuster and by Angström.
u	u e	(1872), 145, spectra of aluminium, magnesium, zinc, cadmium, cobalt, and nickel, by Lockyer.
66	u	(1872), 145, influence of pressure on the spectrum of the induction spark, by L. Cailletet.
u	66	(1872), 146, spectrum analysis, by C. Horner.
"	"	(1872), 147, solar spectrum, by C. A. Young.
46	"	(1872), 148, spectrum of the aurora, by H. C. Vogel.
66	• .	(1872), 148, spectrum of the zodiacal light, by E. Liais.
"	"	(1872), 148, spectrum of lightning, by E. S. Holden.
66	46	(1872), 873, spectrum analysis, by Vierordt.
"	44	(1872), 948, micro-spectroscope, by Timiriasef.
66	66	(1873), 54, use of the spectrum in measuring high temperatures, by J. Dewar and by Gladstone.
44	44	.(1873), 146, spectroscopes, by Hartley, Emsmann, Zenger, H. R. Proctor, O. N. Rood, C. A. Young, F. P. Le Roux, Th. Edelmann, R. Hennig and M. M. Champion, Pellet et Grenier.

Jahresber.	d. Chemie	(1873), 148, spectra of gases, by A. Wüllner.
"	u	(1873), 149, spectra of the metalloids, by G. Salet.
u	u	(1873), 150, spectrum of the Bessemer flame, by W. M. Watts.
44	44	(1873), 150, spectra of the erbium earths, by Lecoq de Boisbaudran.
u	"	(1873), 150, supposed spectrum-line of iron, by A. Secchi.
66	"	(1873), 150, spectrum of the electro-carbon light, by A. Secchi.
46	"	(1873), 150, spectra of cobalt compounds, by Ch. Horner.
46	44	(1873), 151, spectrum of exploding gun-cotton, by O. Lohse.
46	44	(1873), 151, spectrum of the aurora, by G. F. Barker.
66	**	(1873), 151, spectra obtained by the induction spark, by Lecoq de Boisbaudran.
46	"	(1873), 152, spectra between leaden electrodes, by Lecoq de Boisbaudran.
• "	"	(1873), 152, spectrum of chloride of gold, by Lecoq de Boisbaudran.
66	44	(1873), 152, flame-spectrum of the thallium salts, by Lecoq de Boisbaudran.
66	u	(1873), 152, electric spectrum of carbonate of lithium, by Lecoq de Boisbaudran.
"	46	(1873), 152, dependence of the spectra of chemical compounds on their composition, by J. N. Lockyer.
44		(1873), 153, quantitative spectrum analysis of "Legirungen," by J. N. Lockyer and W. C. Roberts.
46	ee ee	(1878), 154, ultra-violet spectra, by L. Soret.
u	"	(1873), 154, nitrate of nickel used as for absorption, by H. Emsmann.
46	4	(1878), 154-157, spectroscopic investigation of chlorophyll, by G. Kraus, J. Chautard, and H. Pocklington.
"	"	(1873), 157, absorption spectrum of napthaline, by A. Lallemand.

Jahresber. d.	Chemie	(1873), 158, absorption spectrum of thallium, by H. Morton.
"	44	(1873), 158, absorption spectrum of uranium salts, by H. Morton and H. C. Bolton.
46	"	(1873), 160, wave-lengths of the spectrum, by E. Becquerel.
"	64	(1873), 160, distribution of chemical effect in the spectrum, by J. W. Draper.
u	"	(1873), 166, albertotype of a photographed diffraction spectrum, by H. Draper.
"	"	(1873), 451, absorption spectrum of anthrapurpurin, by W. H. Perkin.
	"	(1873), 455, absorption spectrum of chinizarin, by A. Kundt.
"	"	(1874), 96, absorption spectrum of salt solutions, by W. N. Hartley.
cc	"	(1874), 152, 153, 154, 155, 156, 157, spectrum analysis, by Lecoq de Boisbaudran, R. Thalén, Ch. Horner, G. Salet, E. Goldstein, J. Chautard, W. de Fonvielle, Th. Hoh, L. Clark, A. J. Angström, S. Lemström, A. Wijkander, A. W. Wright, and E. Hagenbach.
<b>.</b>	"	(1874), 152, apparatus, by S. C. Tisley, J. G. Hofmann, Th. Grubb, F. Kingdon, B. Delachanal and A. Mernset.
46	"	(1874), 958, spectrum analysis of alloys, by J. N. Lockyer and W. C. Roberts.
46	"	(1874), 156-157, fluorescence and absorption, by O. Lubarsch and J. Chautard.
66	"	(1875), 122, metallic spectra, sulphide of carbon spectrum, gas spectra, by Th. Marvin, H. W. Vogel, and A. Wüllner.
44	66	(1875), 122, 123, spectrum of carbon, by W. M. Watts, Piazzi Smyth, and Swan.
"	u	(1875), 123, spectrum of the aurora, by A. S. Herschel and by J. Rand Capron.
"	"	(1875), 123, spectrum of lightning, by L. Clark.
66	44	(1875), 124, 125, absorption spectra of metallic vapours, by J. N. Lockyer and W. Ch. Roberts.
"	"	(1875), 124, absorption spectra, by T. L. Phipson.

Jahresber. d.	Chemie	(1875), 126, fluorescence and absorption spectra of the carbonates, by H. Morton.
••	"	(1875), 119, indices of refraction of the spectra of fuchsin and of silver, by W. Wernicke.
4.	46	(1875), 120, 121, spectroscopes, by A. K. Eaton W. M. Watts, J. C. Dalton, and by B. Delach anal and A. Mermet.
4	•6	(1875), 121, history, by H. Wartz, who claims for the American, D. Alter, priority over Kirch hoff and Bunsen.
**	"	(1875), 121, relations between atomic weight and wave-lengths, by E. Vogel.
•	••	(1875), 121, relation between magnetism and spectroscopy, by J. Chautard.
"	**	(1875), 121, spectrum of sodium, by Wills.
66	**	(1875), 127, spectrum of chlorophyll, by Pringsheim.
16	• •	(1875), 127, spectrum of bonellia viridis, by S. L. Schenk.
u	•6	(1875), 128, absorption-spectra of real red wine and of its adulterations, by H. W. Vogel.
44	••	(1875), 128, spectrum analysis, by R. Bunsen.
66	44	(1875), 129, spectrum analysis of the carbonates, by A. and G. de Negri.
u	•6	(1875), 901, quantitative spectrum analysis, by K. Vierordt.
66	"	'(1876), 158, projection of the a lar spectrum on a screen, by F. Kessler.
"	16	(1876), 936, spectrum of oils, by W. Gilmour.
•	**	(1876), 142, spectroscopes, by Terquem and Tran- nin, by Wiedemann, and by Stoney.
u	46	(1876), 142, the Talbot lines and interferent constants, by Wolcott Gibbs.
"		('876), 142, comparison of colors for dyeing with colors of the spectrum, by W. von Bezold.
*	46	(1876), 142, spectra of the metalloids, by Thalén and Angström.
	"	(1876), 143, spectrum of nitrogen, by A. Cazin, Angström, Schuster, and Salet.

Jahresber.	d. Chemie	(1876), 143, spectrum of chlorine, by Czechowitz.
"	44	(1876), 143, spectrum of carbonic acid, by Czechowitz.
"	"	(1876), 143, spectrum of fluoride of silicon. by Czechowitz.
46	46	(1876), 144, spectra of gases, by E. Goldstein.
"	46	(1876), 144, spectrum of indium, by A. W. Claydon and C. T. Haycock.
**		(1876), 144, spectrum of gallium, by Lecoq de Boisbaudran.
46	"	(1876), 144, spectrum of calcium, by J. N. Lockyer.
66	. 46	(1876), 145, the D lines of the solar spectrum, by W. A. Ross.
44	44	(1876), 145, the ultra-red spectrum, by E. Becquerel.
46	46	(1876), 145, constants of absorption of light in metallic silver, by W. Wernicke.
	"	(1876), 145, absorption spectra of various kinds of ultra-marine, by J. Wunder.
46	44	(1876), 146, absorption spectra of iodine, by John Conroy and by Schultz-Sellack.
u	u	(1876), 147, absorption spectra of the vapours of bromine and of simple chloride of iodine, by H. E. Roscoe and T. E. Thorpe.
66	66	(1876), 155, photographs of the ultra-red rays of the solar spectrum, by J. Waterhouse.
46	46	(1877), 1031, map of the solar spectrum, by J. N. Lockyer, the first part of his map.
"	46	(1877), 1245, photography of the less refractive part of the solar spectrum, by H. W. Vogel.
46	"	(1877), 1247, rice-grains in the solar spectrum, by Janssen.
66	44	(1877), 185, quantitative spectrum analysis, by G. Govi.
46	. "	(1877), 181, spectroscopes, by W. H. M. Christie, H. W. Vogel, H. Schellen, and G. Hüfner.
66	66	(1877), 181, spectrum of the electric spark in compressed gases, by A. Cazin.
44	44	(1877), 1034, electric spectrum of indium, by Wolfer and Ch. T. Heywon.

Jahresber.	d. Chemie	(1877), 1034, use of chloride of calcium and of chloride of magnesium in spectroscopy, by A. R. Leeda.
44	u	(1877), 102, distribution of heat in the spectrum of the electric light, by P. Desaines.
44	u	(1877), 182, photographs of ultra-violet gas spectra by Van Monckhoven.
44	"	(1877), 182, spectrum of davyum, by S. Kern.
66	66	(1877), 182, spectra of colored flames, by Gouy.
44	66	(1877), 183, spectra of the chemical compounds, by J. Moser.
u	**	(1877), 183, lines of oxygen and nitrogen in the solar spectrum, by H. Draper.
"	u	(1877), 183, spectra of lightning. by J. W. Clark.
"	"	(1877), 184, theory of the dispersion and absorption of light, by E. Ketteler.
"	"	(1877), 184, inversion of the sodium lines, by J. Martenson.
"	"	(1877), 184, absorption spectrum of the garnet and the ruby, by H. W. Vogel.
"	44	(1877), 185, absorption of solutions, by G. Govi.
4	"	(1877), 185, quantitative spectrum analysis, by G. Govi.
"	44	(1877), 195, photography of the infra-red lines of the solar spectrum, by J. W. Draper.
a	**	(1877), 196, dissolution of carbonic acid in plants under the influence of the solar spectrum, by C. Timirjaseff.
"	"	(1877), 1245, photography of the solar spectrum, by H. W. Vogel.
"	44	(1878), 7, comparative spectrum analysis, by N. Lockyer.
44	<b>«</b>	(1878), 67, use of spectrum analysis in determining high temperatures, by A. Crova.
66	44	(1878), 179, apparatus, by Thollon and by A. S. Herschel.
u	u	(1878), 169, conversion of Kirchhoff's scale into wave-lengths, by B. Hasselberg.
æ	æ	(1878), 169, calculation of the distribution of the spectrum lines, by L. Pfaundler.



Jahresber. d.	Chemie	(1878), 180, spectroscopic investigation of solutions, by J. Landauer.
44	u	(1878), 181, spectrum of the light of super-manga- nate of potassium, by J. Conroy.
"	"	(1878), 181, absorption of the ultra-violet rays, by L. Soret.
"	u	(1878), 181, ultra-violet absorption spectra of gado- linite, by J. L. Soret.
sd	66	(1878), 182, inversion of the spectrum lines of metallic vapours, by G. D. Liveing and J. Dewar.
u	"	(1878), 185, spectroscopic observations of the sun, by J. N. Lockyer.
44	4	(1878), 185, oxygen in the solar atmosphere, by J. C. Draper.
æ	66	(1878), 185, map of the ultra-violet part of the solar spectrum, in continuation of Angstrōm's map, by A. Cornu.
a	44	(1878), 187, photography of the red and infra-red spectrum, by Abney.
æ	"	(1878), 188, oxidation hastened by the least refractive end of the spectrum, cause of solarization, by Abney and by Chastaing.
66	4	(1878), 191, flame for spectroscopic observations, by H. Gilm.
u	46	(1879), 10, spectroscopic investigation of the elements, by J. N. Lockyer.
4	46	(1879), 159, nature of spectra, by E. Wiede mann.
44	"	(1879), 160, band and lime spectrum, by A. Wüllner.
"	"	(1871), 163, influence of temperature on the spectra of gases and vapours, by G. Ciamician.
<b>66</b>	44	(1879), 166, limits of the ultra-violet spectrum, by A. Cornu.
44	"	(1879), 161, spectroscopic investigations, by J. N. Lockyer.
"	4	(1879), 1022, quantitative spectrum analysis, by C. H. Wolf.



Jahresber. d.	Chemie	(1880), 207, spectra of the compounds of carbon with hydrogen and nitrogen, especially the sensitiveness of the spectroscopic reactions of carbo-nitrogen compounds, by G. D. Liveing and J. Dewar.
44	44	(1880), 208, the repeated inversion of the sodium lines, by C. A. Young.
44	46	(1880), 208, method for a constant sodium flame, by Fleck.
"	"	(1880), 208, spectra of magnesium and lithium, by G. D. Liveing and J. Dewar.
æ	<b>66</b>	(1880), 209, spectroscopic relations of copper, nickel, cobalt, iron, manganese, and chromium, by Th. Bayley.
66	u	(1880), 209, absorption spectra of the yttrium group, by J. L. Soret.
46	e	(1880), 210, emission spectrum of erbium and ytter- bium, by R. Thalén.
44	"	(1880), 211, spectrum of thulium, by R. Thalén.
44	44	(1880), 212, spectrum of scandium, by R. Thalén.
"	66	(1880), 212, displacement of the absorption lines of purpurin in various solutions, by H. Morton.
• 6	44	(1880), 212, ultra-violet rays, by J. Schönn.
"	66	(1880), 213, limits of the ultra-violet end of the spectrum, by A. Cornu.
44	"	(1880), 213, absorption of the ultra-violet rays by organic bodies, by W. R. Dunstan.
<b>«</b> 6	66	(1880), 214, the ultra-violet absorption spectra of ytterbium, erbium, holmium, philippium, terbium, samarium, decipium, didymium, and zirconium, by J. L. Soret.
u	66	(1880), 219, photography of the spectra of stars, by Huggins.
u	"	(1880), 219, photographs of the spectrum of bromide of silver, by Abney.
44	64	(1880), 219, photochemistry of silver, by J. M. von Eder.
es	"	(1881), 117, spectroscopic measurement of high temperatures, by A. Crova.



Jahresber. d.	Chemie	(1881), 125, absorption of light in various media, by C. Pulfrich.
66	u	(1881), 126, molecular structure of carbon compounds and their absortion spectra, by W. N. Hartley.
4	66	(1881), 127, influence of the molecular arrangement of organic substances on their absorption in the ultra-red part of the spectrum, by Abney and Festing.
66	66	(1881), 127, the absorption spectrum of ozone, by W. N. Hartley.
44	"	(1881), 127, absorption spectra of cobalt salts, by W. J. Russell.
66	66	(1881), 128, absorption bands in the visible spectra of colorless liquids, by W. J. Russell and W. Lapraik.
u	"	(1881), 128, spectra of terpenes and volatile oils, by W. N. Hartley and A. K. Huntington.
44	"	(1881), 129, chrysoidine and the allied azo dyestuffs, by J. Landauer.
u	66	(1881), 129, alkaloid reactions in spectroscopic apparatus, by K. Hock.
æ	"	(1881), 129, absorption of the ultra-violet rays, by De Chardonnet.
46	66	(1881), 129, passage of rays of small refraction through ebonite, by Abney and Festing.
u	44	(1881), 130, spectrum of cyanine, by V. von Lang.
66	"	(1881), 130, 131, 132, discontinuous spectra of phosphorescent bodies, by W. Crookes; E. Becquerel claims priority for a part.
u	"	(1881), 132, phosphorescence of Balmain's illuminating matter, by E. Dreher.
66	44	(1881), 133, the light of phosphorescent substances, by E. Obach.
u	**	(1881), 133, fluorescence, by O. Lubarsch.
"	"	(1881), 133, comparative effects of light and heat in chemical reactions, by G. Lemoine.
• "	"	(1881), 135, sensitiveness of dry plates of bromide
		of silver to the solar spectrum, by H. W. Vogel.

Jahresber. d.	Chemie	(1881), 136, photography in colors, by Ch. Cros and J. Carpenter.
"	**	(1881), 136, effect of the spectrum in radiophony by E. Mercadier.
"	***	(1881), 137, change from vibrations of light to vibrations of sound, by W. H. Preece.
"	44	(1881), 138, an aragonite prism, by V. von Lang
"	**	(1881), 139, double refraction in agitated liquids by A. Kundt and Maxwell.
u	u	(1882), 187, examination of powerful absorbants by C. Pulfrich.
"	"	(1882), 190, the violet phosphorescence of calcium sulphide, by W. de W. Abney.
"	"	(1882), 285, spectra of the cerite metals, by B Brauner.
44	66	(1882), 1349, 1350, apparatus, by H. Schulz, Fr Fuchs, A. Ricco, W. Wernicke, H. Goltzsch G. G. Stokes, and F. Miller.
64	"	(1882), 183, spectrum of sulphur, chlorine, and so dium in spectroscopic tubes, by B. Hasselberg
«	46	(1882), 183, spectrum produced in a Geissler tube changed by long use, by B. Hasselberg.
44	"	(1882), 184, comparison of the spectrum of positive light with that of "kathoden" light, by E Goldstein.
66	"	(1882), 68, absorption spectra of solutions, by G Krüss.
æ	"	(1882), 177, study of the solar spectrum, by Ch Fievez.
4	46	(1882), 177, distribution of energy in the solar spectrum, observed with his bolometer, by S. P. Langley.
	66	(1882), 178, distribution of heat in the dark part of the solar spectrum, by P. Desains.
"		(1882), 178, spectrum of terbium, by H. E. Roscoe and A. Schuster.
46	"	(1882), 179, spectra of the metalloids, by D. von Monckhoven.
"	**	(1882), 179, ultra-violet spectra of the elements

Jahresber.	d. Chemie	(1882), 180, photographs of the ultra-violet spectra of the elements, by W. N. Hartley.
66	66	(1882), 181, inversion of the metallic lines in too long exposed photographs of spectra, by W. N. Hartley.
44		(1882), 181, map of the more refractive part of the spectrum of hydrogen, by G. D. Liveing and J. Dewar.
"	"	(1882), 181, apparatus for the study of glowing vapours, by G. D. Liveing and J. Dewar.
"	44	(1882), 181, displacement of the spectrum lines of hydrogen, by D. von Monckhoven.
46	"	(1882), 182, intensity of the spectrum lines of hydrogen, by H. Lagarde,
"	"	(1882), 183, spectrum of oxygen at low temperatures, by Piazzi Smyth.
"	"	(1882), 184, 185, spectra of carbon and of its compounds, by G. D. Liveing and J. Dewar.
46	"	(1882), 185, spectra of carbon compounds, by K. Wesendonck.
"		(1882), 186, disappearance of spectrum lines and their changes in mixed vapours, by G. D. Liveing and J. Dewar.
"	"	(1882), 186, remarks on Lockyer's theory of disso- ciation, especially in regard to iron lines in sun-spots, by H. W. Vogel.
66	46	(1882), 187, remarks on Von Lang's examination of powerful absorbants, by C. Pulfrich.
"	44	(1882), 187, absorption spectrum of hypernitric acids, by J. Chappuis.
"	"	(1882), 187, absorption spectrum of ozone, by J. Chappuis.
"	u	(1882), 188, absorption spectrum of the atmosphere, by N. Egoroff.
66	"	(1882), 188, relations of carbon compounds to their absorption spectra, by W. N. Hartley.
46	66	(1882), 189, wave-lengths of various carbon compounds, by Thollon.
46	66	(1882), 189, absorption spectrum of chlorophyll, by W. J. Russell and W. Lapraik.

Jahresber. d. Chemi	e (1882), 190, absorption curves of liquids, by E. Ketteler and C. Pulfrich.
46 44	(1882), 190, violet phosphorescence of calcium sulphide, by W. de W. Abney.
66 66	(1882), 190, origin of phosphorescence, by E. Dreher.
46 46	(1882), 199, sensitiveness of bromide and chloride of silver to the solar spectrum, by H. W. Vogel.
66 66	(1882), 201, photography of spectra in connection with new methods of quantitative chemical analysis, by W. N. Hartley.
es es	(1883), 1554, duration of the spectroscopic reaction of carbonic acid in the blood, by E. Salfeld.
46 46	(1883), 1655, apparatus, by H. Schulze, O. Tumlirz, F. Lippich, and W. Ramsay.
" "	(1883), 232, a spectrophotometer, by A. Crova.
44 44	(1883), 240, direct-vision spectroscope, by Ch. V. Zenger.
46 46	(1883), 1397, energy in the solar spectrum, by C. Timiriaseff.
.44	(1883), 240, spectroscopic studies in the ultra-red end, by E. Lommel.
46	(1883), 241, wave-lengths of the extreme warm rays, by E. Pringsheim.
	(1883), 241, phosphorographic studies in the ultra- red part of the solar spectrum, by H. Becquerel.
.6 66	(1883), 242, on the wave-lengths near the lines A and a in Fievez's map, by W. de W. Abney.
44 44	(1883), 242, distribution of heat in the solar spectrum, by P. Desains.
s6 64	(1883), 242, selective absorption of the atmosphere and distribution of energy in the solar spectrum, by S. P. Langley.
"	(1883), 243, spectra of sun-spots, by G. D. Liveing and J. Dewar.
	(1883), 243, spectroscopic observations of sun-spots, by C. A. Young.
	(1883), 243, emission spectra of metallic vapours,

by H. Becquerel.

4

1

Jahresber. d.	Chemie	(1883), 244, ultra-red emission spectra of the metallic vapours, by H. Becquerel.
ec	"	(1883), 244, spectra of didymium and samarium, by R. Thalén.
"	"	(1883), 244, emission spectra of scandium, ytter- bium, erbium, and thulium, by Th. Thalén.
"	66	(1883), 245, ultra-violet spectra of the elements, by W. N. Hartley.
<b>66</b>	66	(1883), 245, method of photographing diffraction spectra, by W. N. Hartley and W. E. Adeney.
46	•6	(1883), 246, ultra-violet emission spectra of the elements and their compounds photographically examined, by W. N. Hartley.
•	"	(1883), 246, spectrum of beryllium, by W. N. Hartley.
"	"	(1883), 246, spectra of boron and silicon, by W. N. Hartley.
"	46	(1883), 246, 247, absorption spectra of various substances, by G. D. Liveing and J. Dewar.
44	44	(1883), 248, inversion of the spectral lines of the metals, by G. D. Liveing and J. Dewar.
<b>.</b>	66	(1883), 248, inversion of the hydrogen lines and of the lithium lines, by G. D. Liveing and J. Dewar.
•	"	(1883), 248, spectrum of phosphorescent light and of yttrium, by W. Crookes.
"	"	(1883), 248, spectrum of hydrogen and of acetylene, by B. Hasselberg.
"	"	(1883), 249, spectrum of hydrogen in the vacuum tube, by Piazzi Smyth.
, 66	"	(1883), 249, spectrum of the hydro-carbon flame, by G. D. Liveing and J. Dewar.
66	"	(1883), 249, absorption and fluorescent spectra of various bodies, by E. Linhardt.
<b>«</b>	"	(1883), 250, absorption spectrum of sea-water, by H. W. Vogel and J. Aitken.
66	es	(1883), 250, absorption spectrum of the solution of iodine in sulphate of carbon, by Abney and Festing.

Jahresber.	d. Chemie	(1883), 250, use of selenium in separating the heat rays from the light and the chemical rays, by F. van Assche.
46		(1883), 251, absorption of the blood, by J. L. Soret.
66	66	(1883), 251, sight of the ultra-violet rays by man and by vertebrates, by De Chardonnet; re- marks by Mascart and by Soret.
46	46	(1883), 252, absorption spectra of organic compounds, by G. Krüss and S. Oeconomides.
	66	(1883), 253, dissociation of phosphorescence under the influence of the ultra-red rays, by H. Bec- querel.
44	66	(1883), 253, phosphorescence of sulphur, by H. Schwarz.
**	66	(1883), 254, phosphorescence of organic bodies, by B. Radzizewski.
	46	(1883), 254, Stokes's Law of Phosphorescence, maintained by Hagenbach against Lommel and Lubarsch.
46	"	(1883), 254, optical characteristics of the cyanides of platinum, by W. König.
<b>66</b>	*	(1883), 258, sensitiveness of the salts of silver to light, by H. W. Vogel.
	"	(1883), 258, electro-chemical energy of light, by F. Griveaux.
46	66	(1884), 289, lines peculiar to solar light, by A. Cornu.
66	u	(1884), 294, displacement and inversion of the lines of the spectrum, by Ch. Fievez.
46	66	(1884), 295, cause of the displacement of the lines of the spectrum, by E. Wiedemann and W. N. Hartley.
	"	(1884), 283, measurement of wave-lengths, by H. Merczyng.
4	64	(1884), 289, 290, wave-lengths and refraction in the invisible part of the spectrum, obtained with the bolometer of his own invention and with a very large Rowland convex grating, by S. P. Langley.

Jahresber. d.	Chemie	(1884), 291, bands in the ultra-red part of the solar spectrum and the ultra-red spectrum of glowing metallic vapours, by H. Becquerel.
"	"	(1884), 292, spectra of metals, by E. Demarçay.
44	"	(1884), 292, spectroscopic studies of exploding gases, by G. D. Liveing and J. Dewar.
"	"	(1884), 292, spectra of vapours, by J. Parry.
66	66	(1884), 293, phosphorescent spectra, by W. Crookes.
"	u	(1884), 293, spectrum of hydrogen, by B. Hasselberg.
и	"	(1884), 293, spectra of fluoride of silicon and of hydrate of silicon, by K. Wesendonck.
a	66	(1884), 293, influence of temperance on spectroscopic observations, by G. Krüss.
"	64	(1884), 293, changes in the refraction of the H and Mg lines, by Ch. Fievez.
u	44	(1884), 294, displacement and inversion of the spectrum lines, by Ch. Fievez.
æ	64	(1884), 295, displacement of the spectrum lines, by E. Wiedemann and W. N. Hartley.
es	66	(1884), 295, spectroscopic studies of dyes, by E. L. Nichols.
и	"	(1884), 296, color of water, by J. L. Soret.
es	"	(1884), 296, absorption spectrum of water, by J. L. Soret and E. Sarasin.
66	"	(1884), 297, absorption spectrum of iodine vapour, by A. Morghen.
u	"	(1884), 297, absorption spectrum of chlorochromic acid, by G. J. Stoney and J. E. Emerson.
66	u	(1884), 297, absorption spectra of esculine solutions, by K. Wesendonck.
66	46	(1884), 298, absorption spectra of the aromatic series, by J. S. Konic.
64	"	(1884), 298, absorption spectra of the alkaloids, by W. N. Hartley.
64	44	(1884), 298, formula for the dispersion of the ultra- red rays, by A. Wüllner.
46	46	(1884), 1429, influence of the spectrum on the production of carbonic acid gas by plants, by J.

Reinke.

Jahresber.	d. Chemie	(1884), 1551, use of photographed spectra in quantitative analysis, by W. N. Hartley.
"	44	(1884), 1620, spectroscopic valuation of various kinds of indigo, by C. H. Wolff.
46	66	(1884), 1848, effects of electric light, of sunlight, and of the light of particular parts of the spectrum on colors printed on cotton, by J. Dépierre and J. Clouet.
u	46	(1885), 317, apparatus, by H. Krüss and by Ch. V. Zenger and De Thierry.
æ	æ	(1885), 316, burning point of the ultra-red rays, by E. Lommel. *
"	46	(1885), 317, temperature of the induction spark, by E. Demarçay.
4.	"	(1885), 317, sulphide of carbon prisms not suited to spectrometric observations, by H. Draper.
	"	(1885), 317, 318, quantitative spectrum analysis, by L. Bell, applied to a solution of lithium.
"	"	(1885), 318, the iron lines, by R. Thalén.
"	66	(1885), 318, spectrum of samarium, by Lecoq de Boisbaudran.
"	66	(1885), 318, spectrum lines which invert them- selves, by A. Cornu.
. "	66	(1885), 319, influence of a strong magnetic field on the spectrum lines, by Ch. Fievez.
<b>66</b>	66	(1885), 319, telluric band in the spectrum of steam, by H. Deslandres.
"	44	(1885), 319, spectrum lines of hydrogen, by J. J. Balmer.
46	66	(1885), 320, the secondary spectrum of hydrogen, by B. Hasselberg.
46	"	(1885), 320, spectrum of hydrogen, by H. Lagarde.
"	"	(1885), 321, band spectrum of nitrogen, by H. Deslandres.
46	"	(1885), 321, spectrum of ammonia, by Lecoq de Boisbaudran.
66	66	(1885), 322, absorption vessel for a poor absorbent solution, by A. E. Bostwick.
44	"	(1885), 322, spectroscopic observations of blue crystals of rock-salt, by C. Ochsenius.

Jahresber. d. C	hcmie	(1885), 322, spectroscopic observations of solutions of chloride of cobalt, by W. J. Russell.
66	"	(1885), 323, absorption spectrum of blue oxalate of potassium, by C. A. Schunk.
**	"	(1885), 323, absorption spectra in the extreme red, by Abney and Festing.
44	"	(1885), 323, 324, absorption spectra of various dyestuffs, by Ch. Girard and Pabst.
44	u	(1885), 324, absorption spectra of the sub-nitrates, by L. Bell.
66	• 66	(1885), 324, absorption spectrum of oxygen, by N. Egordf.
46	44	(1885), 324, 325, absorption of atmospheric air and of hydrogen, by J. Janssen.
46	66	(1885), 325, absorption spectra of the alkaloids, by W. N. Hartley.
64	46	(1885), 326, absorption spectrum of benzol vapour, by J. S. Konic.
4	a	(1885), 327, connection between the absorption spectra and the molecular structure of organic compounds, by G. Krüss and Oeconomides.
66	66	(1885), 328, connection between molecular structure and the absorption of light, by N. von Klobukow.
44	44	(1885), 329, relations between molecular structure and the absorption of carbon compounds, by W. N. Hartley.
	66	(1885), 329, 330, relations between the absorptive power and the emission of phosphorescent rays, by H. Becquerel.
66	u	(1885), 331, spectroscopy of radiant matter, by W. Crookes.
66	"	(1885), 332, spectra of samarium and of yttrium, by W. Crookes.
<b>.</b>	"	(1885), 332, a new kind of metallic spectra and spectra of metallic solutions, by Lecoq de Boisbaudran.
u	60	(1885), 333, theory of fluorescence, by E. Lommel.
"		(1885), 333, 334, fluorescence, especially of didymium, by E. Lommel.

Jahresber. d. Chemie (1885), 335, fluorescence of naphthalin-red, by K. Wesendonck.

Report of the committee, consisting of Professors Olding, Huntington, and Hartley, appointed to investigate by means of photography the ultra-violet spark spectra emitted by metallic elements and their combinations under varying conditions; drawn up by Professor W. M. Hartley (secretary). Report of the British Association for 1885, pp. 276-284.

Report of the committee, consisting of Professor Sir H. E. Roscoe, Mr. J. N. Lockyer, Professors Dewar, Wolcott Gibbs, Liveing, Schuster, and W. N. Hartley, Captain Abney, and Dr. Marshall Watts (secretary), appointed for the purpose of preparing a new series of wavelength tables of the spectra of the elements and compounds. Report of the British Association for 1885, pp. 288-322, and for 1886, pp. 167-204.

On the spectrum of the Stella Nova visible in the great nebula in Andromeda, by William Huggins. Rept. Brit. Assoc. for 1885, p. 932.

On the solar spectroscopy in the infra-red, by Daniel Draper. Rept. Brit. Assoc. for 1885, p. 935.

On the formation of a pure spectrum by Newton, by G. Griffith. Rept. Brit. Assoc. for 1885, p. 940.

On the absorption spectra of uranium salts, by W. J. Russell and W. Lapraik. Rept. Brit. Assoc. for 1886.

Pritchard's Wedge Photometer, by S. P. Langley, C. A. Young, and E. C. Pickering.



. • • -•



7 ·



## THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

## AN INITIAL FINE OF 25 CENTS

WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO SO CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

(637 15 1930)

AT: /

	,
JUN 11 1946	
REC'D LD	
3 <b>_{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\}</b>	
REC'D LD	
	LD 21-100m-7,'89 (402s)

GENERAL LIRRARY - U.C. BERKELEY