Project: Smart three-sphere swimmer near a wall 3. The computational framework

Luca Berti, L.G., C.P.

18 October 2021

What will be used

Programming language/libraries

- Python (and related libraries)
- Feel++ fluid toolbox (to launch fluid mechanics simulations)

Software

- VSCode (integrated development environment)
- Paraview (to visualise simulations results)

Cluster

CEMOSIS

In this project we will work with Python. We will need its libraries:

- Pytorch (https://pytorch.org) for the ML part
- Feel++ for the fluid simulation part

Both are already available in CEMOSIS.

In this project we will work with Python. We will need its libraries:

- Pytorch (https://pytorch.org) for the ML part
- Feel++ for the fluid simulation part

Both are already available in CEMOSIS.

A tutorial on the use of Pytorch for deep Q-learning is available at https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html.

In this project we will work with Python. We will need its libraries:

- Pytorch (https://pytorch.org) for the ML part
- Feel++ for the fluid simulation part

Both are already available in CEMOSIS.

A tutorial on the use of Pytorch for deep Q-learning is available at https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html.

It shows how to implement the fundamentals of a deep Q-learning (Q-network) algorithm, i.e.

- the neural network
- the training and test processes

Example with Pytorch.

We will use the Feel++ library to solve the fluid problem:

• Finite element library in C++

We will use the Feel++ library to solve the fluid problem:

- Finite element library in C++
- Supports parallel computations

We will use the Feel++ library to solve the fluid problem:

- Finite element library in C++
- Supports parallel computations
- Available on GitHub https://github.com/feelpp/feelpp

We will use the Feel++ library to solve the fluid problem:

- Finite element library in C++
- Supports parallel computations
- Available on GitHub https://github.com/feelpp/feelpp
- Code for the fluid toolbox https://github.com/feelpp/feelpp/ tree/develop/toolboxes/feel/feelmodels/fluid

The toolbox is configured via three files:

.geo file, which specifies the geometry of the problem

We will use the Feel++ library to solve the fluid problem:

- Finite element library in C++
- Supports parallel computations
- Available on GitHub https://github.com/feelpp/feelpp
- Code for the fluid toolbox https://github.com/feelpp/feelpp/ tree/develop/toolboxes/feel/feelmodels/fluid

The toolbox is configured via three files:

- .geo file, which specifies the geometry of the problem
- .json file, which specifies the fluid characteristics, the boundary conditions and the fields and measures to export for visualisation

We will use the Feel++ library to solve the fluid problem:

- Finite element library in C++
- Supports parallel computations
- Available on GitHub https://github.com/feelpp/feelpp
- Code for the fluid toolbox https://github.com/feelpp/feelpp/ tree/develop/toolboxes/feel/feelmodels/fluid

The toolbox is configured via three files:

- .geo file, which specifies the geometry of the problem
- . json file, which specifies the fluid characteristics, the boundary conditions and the fields and measures to export for visualisation
- .cfg file, which collects the information concerning time-stepping, algebraic solution

The three-sphere swimmer configuration files

 $Configuration \ files \ for \ the \ three-sphere \ swimmer.$

VSCode

IDE that can be used to connect to CEMOSIS, copy-paste files easily and use an integrated terminal.

- Download it here https://code.visualstudio.com
- Download the extensions Remote SSH; Python
- Add your CEMOSIS account to the ssh targets
- Connect to CEMOSIS using your credentials

The environment is ready for you to launch your simulations.

Paraview

You can now download the results to your computer via the rsync command and visualise them using Paraview https://www.paraview.org.

To be more specific, you open a terminal where you want to save your results and type

```
rsync -avz YOURNAME@cemosis.feelpp.org:/home/YOURNAME/PATH . --exclude '*log*' --exclude '*expr*' --exclude '*h5'
```

Paraview

You can now download the results to your computer via the rsync command and visualise them using Paraview https://www.paraview.org.

To be more specific, you open a terminal where you want to save your results and type

```
rsync -avz YOURNAME@cemosis.feelpp.org:/home/YOURNAME/PATH . --exclude '*log*' --exclude '*expr*' --exclude '*h5'
```

In Paraview:

- You can visualise the results by opening the fluid.exports/Export.case file to see the fluid velocity and pressure
- fluid.measures.csv to see the trajectory of the body and some of the body's properties.