Перестановки: чётность

Листок №49

Определение 1. Беспорядок или инверсия в перестановке α — это такая пара (i, j), что i < j и $\alpha(i) > \alpha(j)$. Перестановка называется $y = m + n \delta u$, если число инверсий в ней чётно, и $y = m + n \delta u$ в противном случае. Говорят также, что знак чётной перестановки равен 1, а знак нечётной перестановки равен -1.

Задача 1°. **а)** Какие перестановки в S_3 чётные? **б)** Сколько инверсий у перестановки $\begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ n & n-1 & \dots & 2 & 1 \end{pmatrix}$?

Задача 2. (Правило ниточек) Чтобы увидеть число инверсий геометрически, на картинке, можно поступить двумя способами. Первый: в таблице, отвечающей перестановке α , соединим нитями одинаковые элементы (картинка слева). Второй: нарисуем таблицу с двумя одинаковыми верхними строками $-1, 2, \ldots, n, -1$ и каждый элемент i верхней строки соединим нитью с элементом $\alpha(i)$ во второй строке (картинка справа).

- а) Как увидеть количество инверсий на этой картинке (можно дать ответ для одного способа)?
- **б)** Сделайте это для $(2\ 3\ 4)$ и (14)(23) из S_4 .
- в) Изменится ли чётность числа инверсий, если в нижней строке таблицы поменять два элемента местами?

Задача 3 $^{\varnothing}$. Найдите число инверсий перестановки α^{-1} , зная число инверсий перестановки α .

Задача 4^{\varnothing}. а) Докажите, что любая транспозиция — нечётная перестановка;

- б) Докажите, что умножение на транспозицию (справа) меняет чётность перестановки;
- **в)** Докажите, что произведение двух перестановок одной чётности чётная перестановка, а произведение двух перестановок разной чётности — нечётная (знаки перемножаются!).

Задача 5 $^{\varnothing}$. Пусть α — произвольная перестановка. Как связаны наименьшее число транспозиций в разложении α на элементарные транспозиции и число инверсий у α ?

Задача 6^{\varnothing}. Докажите, что чётность цикла зависит только от его длины. Как?

Задача 7^{\varnothing} . Сколько всего чётных перестановок в S_n ? (Их множество обозначается A_n .)

Задача 8*. В игре Сэма Лойда «пятнашки» поменяли квадраты с числами 14 и 15 местами. Можно ли из этой позиции по правилам игры получить исходную?

Задача 9*. Для прохождения теста тысячу мудрецов выстраивают в колонну. Из колпаков с номерами от 1 до 1001 один прячут, а остальные в случайном порядке надевают на мудрецов. Каждый видит только номера на колпаках всех впереди стоящих. Далее мудрецы по порядку от заднего к переднему называют вслух целые числа. Каждое число должно быть от 1 до 1001, причем нельзя называть то, что уже было сказано. Результат теста — число мудрецов, назвавших номер своего колпака. Мудрецы заранее знали условия теста и могли договориться, как действовать. Могут ли они гарантировать результат а) более 500; б) не менее 999?

Задача 10 $^{\varnothing}$. Пусть $n\geqslant 3$. Докажите, что A_n — это в точности множество перестановок из S_n , которые можно разложить в произведение циклов длины 3 (повторения разрешаются).

Задача 11 $^{\varnothing}$. Постройте такое соответствие между элементами A_4 и вращениями пространства, переводящими правильный тетраэдр в себя, что композиции перестановок соответствует композиция соответствующих вращений.

Задача 12*. Пусть s_l – количество перестановок с числом инверсий l. Покажите, что $1 + s_1 x + s_2 x^2 + s_3 x^3 + \dots = (1+x)(1+x+x^2)\dots(1+x+\dots+x^{n-1}).$

1 a	1 6	2 a	2 6	2 B	3	4 a	4 6	4 B	5	6	7	8	9 a	9 6	10	11	12