Calculus I : Spring 2016

Final Exam

Instructor:

Name: _____

INSTRUCTIONS: Show all of your work, and give exact answers. No calculators

1. Short answer questions:

(a) Evaluate
$$\lim_{t \to -\infty} \frac{|5+t|}{5+t} =$$
 _____ (2 pts)

(b) Suppose that
$$\frac{\sin(x)}{x} \le f(x) \le 1$$
 for $0 < x < 1$.
What can you say about $\lim_{x \to 0^+} f(x)$? ______(3 pts)

(c) Evaluate
$$\frac{d}{dx}(e^3) =$$
 (2 pts)

(d) Evaluate
$$\frac{d}{dx} \left(\sin^{-1}(3x) \right) =$$
 _____ (3 pts)

(e) Given that
$$f(3) = 5$$
 and $f'(3) = 4$, use differentials to estimate $f(2.8)$ ______(3 pts)

(f) Suppose that
$$f'(x) = -\frac{x+3}{(x+1)(x-3)}$$
 Identify the point $x = -3$ as a minimum, maximum, or neither. _____ (2 pts)

Page 1 Total (15)

(g) Sketch the graph of $f(x) = \frac{1-2x}{(x-3)^2}$ close to x=3 (3 pts)

- (h) If s(t) is the position on the x-axis of a particle at time t, then the quantity $\frac{s(t+h)-s(t)}{h}$ represents _____ (2 pts)
- (i) Evaluate $\int_{6}^{6} (t^3 + t^2) dt =$ ______ (3 pts)

(j) Evaluate $\int \left(\frac{1}{x} + \frac{1}{x^2}\right) dx =$ ______ (3 pts)

- (k) We try the substitution $u = \ln(x)$ to evaluate the integral $\int \frac{(\ln(x))^2}{x} dx$. The differential is du =______(2 pts)
- (l) Given the integral $\int e^x \cos(e^x) dx$, a suitable substitution is _____ (2 pts)

2. Limits

(a) (5 pts) Evaluate
$$\lim_{x\to 2^-} \frac{x^2 - 5x + 6}{2x^2 - x - 6} =$$

(b) (5 pts) Evaluate
$$\lim_{x\to\infty} \frac{3x^2 - 2x + 5}{5x^2 - \sqrt{x^4 + 3x^2}} =$$

(c) (10 pts) Use l'Hopital's Rule to evaluate
$$\lim_{x\to 0} \frac{x^2}{1+2x-e^{2x}} =$$

3. Derivatives

(a) (5 pts) From the Fundamental Theorem of Calculus, we have $\frac{d}{dx} \int_1^x \sin(t^2) dt = \sin(x^2)$. Find $\frac{d}{dx} \int_1^{4x} \sin(t^2) dt =$

(b) (5 pts) Use implicit differentiation to find $\frac{dy}{dx}$, given $x^2y + xy^6 = 2$.

(c) (5 pts) If $f(s) = s \tan^{-1}(s)$, find f'(s)

(d) (5 pts) Find the derivative of $z = \ln(\sec(t) + \tan(t))$

(e) (5 pts) Find the equation of the tangent line to $y = x^3 + x^2 + 2x + 1$ at x = 1

(f) (5 pts) Use logarithmic differentiation to find f'(x), where $f(x) = \frac{e^{x^2}\sqrt{1-3x}}{(x+1)^8}$

Page 5 Total (15)

4. Applications

- (a) (10 pts) Sketch the graph of y = f(x), given the following:
 - f(1) = 0; f(3) = 3; f(4) = 2; f(5) = 1; $\lim_{x \to -\infty} f(x) = 0$; $\lim_{x \to \infty} f(x) = +\infty$; $\lim_{x \to 0^{-}} f(x) = +\infty; \lim_{x \to 0^{+}} f(x) = -\infty$ • $f'(3) = 0; f'(5) = 0; f'(x) > 0 \text{ for } x \in (-\infty, 0) \cup (0, 3) \cup (5, +\infty); f'(x) < 0 \text{ for } x \in (-\infty, 0) \cup (0, 3) \cup (0, 3) \cup (0, 3)$
 - $x \in (3, 5)$
 - f''(4) = 0; f''(x) > 0 for $x \in (-\infty, 0) \cup (4, +\infty)$; f''(x) < 0 for $x \in (0, 4)$

(b) (10 pts) Find the absolute maximum and minimum of $x(x^2 - 12)$ on the interval [0,3].

Page 6 Total (20)

(c)	(10 pts) A farmer wishes to fence a rectangular pasture of area 2800 m^2 . One side of the fence is along a road, and that side costs \$5 per meter. The other 3 sides cost \$2 per meter.
	Find the minimum possible cost.
(1)	
(d)	(10 pts) We are given a rectangle. The height is increasing at 0.1 cm/min, the base is decreasing at 0.2 cm/min
	At what rate is the <i>diagonal</i> changing when the height is 3 cm, and the base is 4 cm?

Page 7 Total (20)

5. Integrals

- (a) (5 pts) Evaluate $\int \frac{x}{x^2 + 3} dx$
- (b) (5 pts) Evaluate $\int_0^1 \frac{1}{x^2 + 3} dx$
- (c) (10 pts) Evaluate $\int \frac{x}{\sqrt{x-2}} dx$

- (d) (5 pts) Evaluate $\int \cos(x) \sin(\sin(x)) dx$
- (e) (5 pts) Evaluate $\int_1^2 (3t^2 + 1) dt$