Lecture 10.2: hypothesis testing for beta

EXAMPLE 1 (HYPERTENSION, PEDIATRICS)

Newborn <u>blood pressure</u> (y) is thought to be affected by <u>weight</u> (x_1) and <u>age</u> (x_2) when both blood pressure and weight are measured.

$$y = 53.45019 + 0.12558x_1 + 5.88772x_2$$

Table 1: Sample data for infant birth weight, age and blood pressure for 16 infants.

	Weight	Age	SBP
i	$(\mathbf{oz})\ (x_1)$	(days) (x_2)	(mm HG) (y)
1	135	3	89
2	120	4	90
3	100	3	83
4	105	2	77
5	130	4	92
6	125	5	98
7	125	2	82
8	105	3	85
9	120	5	96
10	90	4	95
11	120	2	80
12	95	3	79
13	120	3	86
14	150	4	97
15	160	3	92
16	125	3	88

1. FTEST FOR JOINT HYPOTHESIS

We would like to test the overall hypothesis that the predictors when considered together have significant impact on the outcome.

$$H_0$$
: $\beta_1 = \dots = \beta_k = 0$ versus H_a : least one $\beta_i \neq 0$.

This is the overall hypothesis that at least some of the β_j 's are different from zero, but without specifying which one is different.

Similar to the F test for SLR

 Estimate the regression parameters using the method of least squares, and compute Reg SS and Res SS

Res SS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Reg SS = Total SS - Res SS
Total SS = $\sum_{i=1}^{n} (y_i - \bar{y})^2$
 $\hat{y}_i = a + \sum_{j=1}^{k} b_j x_{ij}$

 $x_{ij} = j$ th independent variable for the *i*th subject, j = 1,..., k; i = 1,..., n

Fstatistic (Table 1):

$$F = \frac{(\text{RegSS})/k}{(\text{ResSS})/(n-k-1)} = \frac{\text{RegMS}}{\text{ResMS}}.$$

- *Null distribution:*Let $e \sim N(0, \sigma^2)$. If H_0 is true, then $F \sim F_{k,n-k-1}$, the centralized F distribution with (k,n-k-1) degrees of freedom.
- The <u>exact p-value</u> of the observed F value is given by $p = \Pr(F_{k,n-k-1} > F)$.
- <u>Decision rule</u>: Reject the H_0 at nominal level $\alpha \in (0,1)$ if $F > F_{k,n-k-1,1-\alpha}$ (equivalently, $p < \alpha$), where the critical value $F_{k,n-k-1,1-\alpha}$, is the $1-\alpha$ percentile of $F_{k,n-k-1}$.

Table 2: Analysis of variance (ANOVA)				
Source	DF	Sum of	Mean Squares	F
		Squares		
Regression	k	RegSS	$RegMS = \frac{RegSS}{k}$	$F = \frac{\text{RegMS}}{\text{ResMS}}.$
Residual	n-k -1	ResSS	$ \frac{\text{ResMS}}{\text{ResSS}} = \frac{n-k-1}{n-k-1} $	
Total	n-1	TotSS	The p value of a realized F is:	
			$p = \Pr(F \sim F_{k,n-k-1} > F).$	

Solve the following problems using the data from Example 1.

- (1) Compute the Least Squares Fit and R^2 .
- (2) Perform F test (at level $\alpha = 0.05$.) on H_0 : $\beta_1 = \beta_2 = 0$ versus H_a : $\beta_1^2 + \beta_2^2 > 0$ (at least one of the β 's is not zero).
- (1) Multiple Linear Regression Least Squares Fit:

$$y = 53.45019 + 0.12558x_1 + 5.88772x_2$$
.

(2) F TEST

$$H_0: \beta_1 = \beta_2 = 0 \text{ versus } H_a: \beta_1^2 + \beta_2^2 > 0.$$

F = 48.08.

Since n=16, k=2 and $\alpha=0.05$, we have $F_{k,n-k-1,1-\alpha}=F_{2,13,0.95}=3.805565$.

Confidently, we reject H_0 since the realized $F = 48.08 > F_{2,13,0.95}$ (the *p*-value $< 0.0001 < \alpha$).

$$R^2 = \frac{\text{SSReg}}{\text{SS total}} = \frac{591.03564}{670.93750} = 0.8809$$

That is, 88.097% of the total variation in the SBP is accounted for by the linear combination of weight and age.

Table 2.1: ANOVA					
Source	DF	SS	MS	F	P-value
$Reg(x_1, x_2)$	2	591.03564	295.51782	48.08	<.0001
Residual	13	79.90186	6.14630		
Total	15	670.93750			

2. TESTS FOR A PARTIAL HYPOTHESIS

Often, we want to know whether an *individual predictor* x_j has a significant effect on outcome y after <u>controlling for the other</u> <u>predictors</u>. The partial hypothesis on β_i is

$$H_{0j}$$
: $\beta_j = 0$ versus H_{aj} : $\beta_j \neq 0$.

we assume other β is making a contribution under either hypothesis

(1) PARTIAL TTEST

• The *t* statistic:

$$t(x_j|\text{other }x's) = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)}.$$

- Null distribution: Let $e \sim N(0, \sigma^2)$. If H_{0j} : $\beta_j = 0$ is true, then $t(x_j | \text{other } x's) \sim t_{n-k-1}$, the centralized t distribution with n-k-1 degrees of freedom.
- The exact two-tailed p value is $p = 2 \times \Pr(t_{n-k-1} > |t(x_i|\text{other }x's)|)$.
- Decision rule: Reject H_{0j} at nominal level $\alpha \in (0,1)$ if $|t(x_j|\text{other }x's)| > t_{n-k-1,1-\alpha/2}$ (equivalently, $p < \alpha$).

EXAMPLE 1 (HYPERTENSION, PEDIATRICS): PARTIAL TTESTS

Perform tests for the partial contributions of weight and age in predicting SBP in infants (using SAS or R output).

Solution: From the output of lm(.) in R, I obtain **Table 3**. The output Pr(>|t|) of the lm(.) module is double-tailed p value.

Table 3: Partial t tests					
predictor	\hat{eta}_j	$se(\hat{eta}_j)$	<i>t</i> value	<i>p</i> value	
x_1 =weight(oz)	0.1256	0.0343	$3.6575 > t_{13,0.975}$	2.90e-3 < 0.05	
x_2 =age (day)	5.8877	0.6802	$8.6558 > t_{13,0.975}$	9.34e-7 < 0.05	

Since n=16, k=2 and $\alpha=0.05$, we have $t_{n-k-1,1-\alpha/2}=t_{13,0.975}=2.1604$.

All the realized t values surpass the critical value and their p values are surpassed by α , <u>suggesting</u> that both weight and age have <u>highly significant associations</u> with SBP, <u>even</u> <u>after controlling for</u> the other variable.

(2) PARTIAL FTEST

- Aforesaid partial t test for the effect of one particular predictor adjusts for contribution of the other predictor.
- To better understand this point, let us *'develop' partial F test* for

$$H_{02}: \beta_2 = 0 \text{ vs. } H_{a2}: \beta_2 \neq 0$$

in full model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$$

after adjusting for the contribution of x_1 .

- If H_{02} is false, then we have the *full model* and RegSS(x_1, x_2).
- If H_{02} is true, then we have the reduced model y = $\beta_0 + \beta_1 x_1 + e$ and RegSS (x_1) .
- The extra sum of squares due to x_2 after *adjusting* for x_1 is

$$RegSS(x_2|x_1) = RegSS(x_1,x_2) - RegSS(x_1).$$

Hence,

RegMS
$$(x_2|x_1) = \frac{\text{RegSS}(x_2|x_1)}{1} = \text{RegSS}(x_2|x_1).$$

• The *F* test statistic is

$$F(x_2|x_1) = \frac{\text{Reg MS}(x_2|x_1)}{\text{Res MS}(x_1, x_2)}.$$

- Null distribution: Let $e \sim N(0, \sigma^2)$. If H_{02} is true, then $F(x_2|x_1) \sim F_{1,n-3}$.
- The exact p value of a realized $F(x_2|x_1)$ is given by $p = Pr(F_{1,n-3} > F(x_2|x_1))$.
- Decision rule: Reject H_{02} when the realized $F(x_2|x_1) > F_{1,n-3,1-\alpha}$ (equivalently, $p < \alpha$).

EXAMPLE 1: PARTIAL F TESTS

Perform partial *F* tests for the partial contributions of weight and age in predicting SBP in infants (using SAS or R output).

Solution: Let y = SBP, $x_1 = weight$, $x_2 = age$. The full model is $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$.

(1) The hypothesis is H_{02} : $\beta_2 = 0$ versus H_{a2} : $\beta_2 \neq 0$.

If H_{02} is false, then I obtain $\operatorname{RegSS}(x_1, x_2) = 591.03564$ and $\operatorname{ResMS}(x_1, x_2) = 6.14630$ by fitting the full model (**Table 2.1**). If H_{02} is true, then I obtain $\operatorname{RegSS}(x_1) = 130.5375$ by fitting the *reduced modely* $= \beta_0 + \beta_1 x_1 + e$.

The extra sum of squares due to x_2 after adjusting for x_1 is $RegSS(x_2|x_1) = RegSS(x_1,x_2) - RegSS(x_1)$ = 591.0356 - 130.5375 = 460.4981.

Hence, Reg $MS(x_2|x_1) = Reg SS(x_2|x_1) = 460.4981$, and the realized *F test statistic* is

$$F(x_2|x_1) = \frac{\text{Reg MS}(x_2|x_1)}{\text{Res MS}(x_1, x_2)} = \frac{460.4981}{6.14630} = 74.9228.$$

From **Table 3** I see $t(x_2|x_1) = 8.6558$. It follows that $t^2(x_2|x_1) = 74.9229 = F(x_2|x_1)$.

- (2) The hypothesis is H_{01} : $\beta_1 = 0$ versus H_{a1} : $\beta_1 \neq 0$.
- If H_{01} is false, then I obtain RegSS $(x_1, x_2) = 591.03564$ and ResMS $(x_1, x_2) = 6.14630$ by fitting the full model (Table 7.2).
- If H_{01} is true, then I obtain Reg SS (x_2) = 508.81657 by fitting the *reduced model* $y = \beta_0 + \beta_1 x_2 + e$.
- The extra sum of squares due to x_1 after adjusting for x_2 is

Reg SS(
$$x_1|x_2$$
) = Reg SS(x_1, x_2) - Reg SS(x_2) = 591.0356 - 508.81657 = 82.2190.

Hence, Reg MS $(x_1|x_2)$ = Reg SS $(x_1|x_2)$ = 82.2190, and the realized *F test statistic* is

$$F(x_1|x_2) = \frac{\text{Reg MS}(x_1|x_2)}{\text{Res MS}(x_1, x_2)} = \frac{82.2190}{6.14630} = 13.3770.$$

From **Table 3**, I see $t(x_1|x_2) = 3.6575$. It follows that $t^2(x_1|x_2) = 13.3773 = F(x_1|x_2)$.

For $\alpha=0.05$ and n=16, I see critical value: $F_{1,n-3,0.95}=F_{1,13,0.95}=4.67$. Since both $F(x_1|x_2)$ and $F(x_2|x_1)$ are larger than 4.67, I reject both H_{01} and H_{02} .

This analysis suggests that both weight and age have highly significant associations with SBP, even after controlling for the other predictor.

- **Note 1:** Assume linearity, $e \sim N(0, \sigma^2)$, homoscedasticity, and independence. If H_{0j} is true, then $t^2(x_j | \text{other } x's) = F(x_j | \text{other } x's) \sim F_{1,n-k-1}$.
- **Note 2:** As illustrated by the Example, $t^2(x_j|\text{other }x's) = F(x_j|\text{other }x's)$ for arbitrary specific data points (n > k + 1), none of the above assumptions are needed.
- Note 3: $t_{n-k-1,1-\alpha/2}^2 = F_{1,n-k-1,1-\alpha}$ for $\alpha \in (0,1)$.