Analytics Methodology

- 1. Data Collection
- 2. Data Transformation/Exploration
 - Time Trend Analysis
 - Normality Analysis
 - Variable Correlations
- 3. Model building Econometric Model
 - ARIMA
 - SARIMAX
- 4. Model building Machine Learning Model
 - Regression
 - Random Forest

Data Collection

- Natural Gas Consumption and Prices
 - Source https://www.eia.gov/
 - Method: API
 - Range: daily value for 15 years from 01/01/2001 01/07/2019
- S&P Information:
 - Source: https://finance.yahoo.com
 - Method: API call using module fix_yahoo_finance
 - Range: daily value for 15 years from 01/01/2001 01/07/2019.
 - Data include: Ticker, Date, Close, and Volume.
- Economics Stats:
 - Source: Federal Reserve Economic Data https://fred.stlouisfed.org/
 - Method: direct download.
 - Range: quarterly value for 20 years from 01/03/2004 01/07/2019.
 - Data include: CPI, GDP, GDP_Change, and Household income

Data Exploration – Time Trend Analysis

Consumption has been increasing over the years

Drastic intra-year consumption variations

Data Exploration – Normality Analysis

Normality Test: Shapiro Test $p = 9.4 \times 10^{-5}$

Data Exploration – Correlation Matrix

Econometric Model – ARIMA

Autoregressive Formula:

$$Y_{t} = \alpha + \epsilon_{t} + \phi_{1}\epsilon_{t-1} + \phi_{2}\epsilon_{t-2} + \dots + \phi_{q}\epsilon_{t-q}$$

2500 - 20

Moving Average Formula:

$$Y_t = \alpha + \beta_1 Y_{t-1} + \beta_2 Y_{t-2}$$

+..+\beta_p Y_{t-p} + \epsilon_1

Machine Learning Model – Linear Regression

Train RMSE: 0.25 Test RMSE: 0.42 **Train R2:** 0.93

Test R2: 0.81

Machine Learning Model – Random Forest

Train RMSE: 0.10 Test RMSE: 0.47 Train R2: 0.99 Test R2: 0.77