A Good Image Generator Is What You Need for High-Resolution Video Synthesis (ICLR 2021, Spotlight)

Yu Tian¹, Jian Ren², Menglei Chai², Kyle Olszewski², Xi Peng³, Dimitris N. Metaxas¹, Sergey Tulyakov²

¹Rutgers University, ²Snap Inc., ³University of Delaware

<u>link</u>

발표: 정채연

Difficulties in Video Synthesis

- 1. Low resolution, low quality
- 2. High training cost
- 3. Lack of training data

TGANv2 (256 res)

Contributions

- High quality even in high resolution (~1024x1024)
 using pre-trained image generator
- 2. Computationally more efficient (less training time)
- Cross-domain video synthesis: move images using video dataset from different domain via motion/content disentanglement

StyleGAN2 (1024 res)

Overview

Motion Generator

$$\mathbf{h}_{1}, \mathbf{c}_{1} = \text{LSTM}_{\text{enc}}(\mathbf{z}_{1})$$

$$\mathbf{h}_{t}, \mathbf{c}_{t} = \text{LSTM}_{\text{dec}}(\epsilon_{t}, (\mathbf{h}_{t-1}, \mathbf{c}_{t-1})), \quad t = 2, 3, \dots, n,$$

$$\mathbf{z}_t = \mathbf{z}_{t-1} + \lambda \cdot \mathbf{h}_t \cdot \mathbf{V}, \quad t = 2, 3, \dots, n, \quad \mathbf{h}_t \in [-1, 1]$$
(from PCA)

$$G_{\mathrm{M}}(\mathbf{z}_1) = \{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\}$$

$$\tilde{\mathbf{v}} = G_{\mathrm{I}}(G_{\mathrm{M}}(\mathbf{z}_1))$$

Training Losses

$$\min_{G_{\mathrm{M}}}(\max_{D_{\mathrm{V}}}\mathcal{L}_{D_{\mathrm{V}}} + \max_{D_{\mathrm{I}}}\mathcal{L}_{D_{\mathrm{I}}}) + \max_{G_{\mathrm{M}}}(\lambda_{\mathrm{m}}\mathcal{L}_{\mathrm{m}} + \lambda_{\mathrm{f}}\mathcal{L}_{\mathrm{f}}) + \min_{D_{\mathrm{I}}}(\lambda_{\mathrm{contr}}\mathcal{L}_{\mathrm{contr}})$$

- 1. Video discriminator loss
- Image discriminator loss (for quality matching)
- 3. Contrastive loss & feature matching loss (for content matching)
- 4. Mutual information loss (for motion diversity)

Training Losses - Video Discriminator Loss

$$\mathcal{L}_{D_{V}} = \mathbb{E}_{\mathbf{v} \sim p_{v}} \left[\log D_{v}(\mathbf{v}) \right]$$

$$+ \mathbb{E}_{\mathbf{z}_{1} \sim p_{z}} \left[\log(1 - D_{V}(G_{I}(G_{M}(\mathbf{z}_{1})))) \right]$$

 $D_{
m v}$: multi-scale PatchGAN discriminator with 3D Conv

Training Losses - Image Discriminator Loss

$$\mathcal{L}_{D_{\mathrm{I}}} = \mathbb{E}_{\mathbf{z}_{1} \sim p_{z}} \left[\log D_{\mathrm{I}}(G_{\mathrm{I}}(\mathbf{z}_{1})) \right]$$

$$+ \mathbb{E}_{\mathbf{z}_{1} \sim p_{z}, \mathbf{z}_{t} \sim G_{\mathrm{M}}(\mathbf{z}_{1})|t>1} \left[\log(1 - D_{\mathrm{I}}(G_{\mathrm{I}}(\mathbf{z}_{t}))) \right]$$

for quality matching

Training Losses - Contrastive Loss & Feature Matching Loss

$$\mathcal{L}_{\text{contr}} = -\sum_{i=1}^{N} \sum_{\alpha=a}^{b} \log \frac{\exp(\operatorname{sim}(F(\tilde{\mathbf{x}}_{t}^{(ia)}), F(\tilde{\mathbf{x}}_{t}^{(ib)}))/\tau)}{\sum_{j=1}^{N} \sum_{\beta=a}^{b} \mathbb{1}_{[j\neq i]}(\exp(\operatorname{sim}(F(\tilde{\mathbf{x}}_{t}^{(ia)}), F(\tilde{\mathbf{x}}_{t}^{(j\beta)}))/\tau)}$$

$$\mathcal{L}_{f} = sim(F(\widetilde{x}_{0}), F(\widetilde{x}_{t})) (t>0)$$

for content matching

Training Losses – Mutual Information Loss

for motion diversity

$$\mathcal{L}_{\mathrm{m}} = \frac{1}{n-1} \sum_{t=2}^{n} \frac{\text{(2-layer MLP)}}{\sin(H(\mathbf{h}_t), \epsilon_t)}$$

$$\sin(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{v} / \|\mathbf{u}\| \|\mathbf{v}\|$$
 (cosine similarity)

Video Generation

• UCF-101 with 101 sport categories

Table 1: IS and FVD on UCF-101.

Method	IS (↑)	FVD (↓)
VGAN	$8.31 \pm .09$	-
TGAN	$11.85 \pm .07$	-
MoCoGAN	$12.42 \pm .07$	-
ProgressiveVGAN	$14.56 \pm .05$	-
LDVD-GAN	$22.91 \pm .19$	-
TGANv2	$26.60 \pm .47$	1209 ± 28
DVD-GAN	$27.38 \pm .53$	-
Ours	$33.95\pm.25$	700 ± 24

Video Generation

Face Forensics

* ACD: Average Content Distance (diff of average colors between frames)

Table 2: FVD, ACD, and Human Preference on FaceForensics.

	Method	FVD (↓)	ACD (↓)	
	GT	9.02	0.2935	
	TGANv2	58.03	0.4914	
	Ours	53.26	0.3300	
Method Human Preference (%)				
Ours / TGANv2 73.6 / 26.4				

Video Generation

• Sky Time-Lapse

Method	FVD (↓)	PSNR (†)	SSIM (†)
Up-B	-	25.367	0.781
MDGAN	840.95	13.840	0.581
DTVNet	451.14	21.953	0.531
Ours	77.77	22.286	0.688

Cross-Domain Video Generation

220523 Vision Study

14

Cross-Domain Video Generation

(FFHQ, VoxCeleb)

(LSUN-Church, TLVDB)

(AFHQ-Dog, VoxCeleb)

(AnimeFaces, VoxCeleb)

Content/Motion Disentanglement

Figure 5: The first and second row (also the third and fourth row) share the same initial content code but with different motion codes.

Figure 6: The first and second row (also the third and fourth row) share the same motion code but with different content codes.

Ablation Study

Table 4: Ablation study on UCF-101.

Method	IS (†)	FVD (↓)
w/o Eqn. 2	28.20	790.87
w/o $ar{D}_{ m I}$	33.22	796.67
w/o $D_{ m V}$	33.84	867.43
Full-128	32.36	838.09
Full-256	33.95	700.00
	I	

Table 5: Ablation study on (FFHQ, VoxCeleb).

Method	w/o $\mathcal{L}_{\mathrm{co}}$	$_{ m ontr}$	w/o \mathcal{L}_{m}	Full
ACD (↓)	0.5328		0.5158	0.4353
Method H		Hu	uman Preference (%)	
Full vs w/o $\mathcal{L}_{\mathrm{contr}}$		68.3 / 31.7		
Full vs w/	o \mathcal{L}_{m}		64.4 / 35	5.6

Eqn. 2:
$$\mathbf{z}_t = \mathbf{z}_{t-1} + \lambda \cdot \mathbf{h}_t \cdot \mathbf{V}, \quad t = 2, 3, \dots, n$$

w/o Eqn. 2 : $\mathbf{z}_t = \mathbf{h}_t$

Ablation Study

w/o \mathcal{L}_{m} vs. Full

Figure 23: Row 1 and 3: The last frame of the mean-video and per-pixel std of $w/o \mathcal{L}_{\rm m}$ model. Row 2 and 4: The last frame of the mean-video and per-pixel std of the *Full* model. The *Full* model has a more blurry mean-video and higher per-pixel std, which indicates more diverse motion.

Long Sequence Generation

More steps for LSTM decoder

Motion Interpolation