杭州电子科技大学信息工程学院学生考试卷(A) 卷

课程名称	线性代数	考试日期	2017年 6	月	成绩
考生姓名		任课教师姓	名		
学号 (8位)		班级		专业	

- 一. 填空题 (每小题 3 分, 共 18 分)
- 设 $A = \begin{bmatrix} 0 & 5 & -3 \end{bmatrix}$,则 $M_{31} + M_{32} + M_{33} =$
- 2. 设三阶方阵 A 的行列式 |A|=2 ,则 $|3A^{-1}-A^*|=$
- 3. 设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_
- 4. 设A是 4×3 矩阵,且R(A) = 2,而B = 0 2 1,则R(AB) = 00 0 3
- 5. 设向量组 $\alpha_1 = \begin{pmatrix} 1 & 1 & 3 \end{pmatrix}^T$, $\alpha_2 = \begin{pmatrix} 2 & 4 & 5 \end{pmatrix}^T$, $\alpha_3 = \begin{pmatrix} 1 & -1 & 0 \end{pmatrix}^T$, $\alpha_4 = \begin{pmatrix} 2 & 2 & 6 \end{pmatrix}^T$,

则此向量组的秩为

$$\int x_1 + ax_2 + x_3 = 1$$

- 6. 设方程组 $\{x_1 + x_2 + ax_3 = -2$ 有无穷多解,则 a =_____ $ax_1 + x_2 + x_3 = 1$
- 二. 单项选择题 (每小题 3 分, 共 24 分)
- 1. n 阶行列式D 的元素 a_{ij} 的余子式 M_{ij} 与 a_{ij} 的代数余子式 A_{ij} 的关系是().
 - a b c
 - (A) $A_{ij} = M_{ij}$ (B) $M_{ij} = (-1)^{i+j} A_{ij}$ (C) $A_{ij} = a_{ij} M_{ij}$ (D) $M_{ij} = -A_{ij}$.

- 2. 三阶行列式 $a^2 b^2 c^2 = ($
 - $\text{(A)} \quad \textbf{0} \qquad \text{(B)} \quad abc(a-b)(a-c)(b-c) \quad \text{(C)} \quad abc(b-a)(c-a)(c-b) \quad \text{(D)} \quad abc(a-b)(c-a)(c-b) \,.$
- 3. 设矩阵 $C = (c_y)_{max}$, 矩阵A, B满足AC = CB, 则A 与 B分别()阶矩阵.
 - (A) $n \times m$, $m \times n$ (B) $m \times n$, $n \times m$ (C) $n \times n$, $m \times m$ (D) $m \times m$, $n \times n$.
- 4. 设A、B均为n阶方阵,以下等式成立的是().

```
(B) AB = BA (C) |BA| = |AB| (D) (A+B)^{-1} = A^{-1} + B^{-1}
   (A) |A+B| = |A| + |B|
           2 λ 1 , 为使矩阵 A 的秩有最小值, 则 λ 应为 (
\dot{\alpha}_{6} 已知\alpha_{1} = [1, 1, 2, 1]^{T}, \alpha_{2} = [1, 0, 0, 2]^{T}, \alpha_{3} = [-1, -4, -8, \lambda]^{T}, 则<math>\lambda = (0, 0) 時,
    向量组\alpha_1, \alpha_2, \alpha_3线性相关
   (A) 3 (B) 2 (C) -2 (D) -3
\gamma 如果向量\beta可以由向量\alpha_1,\alpha_2,\cdots,\alpha_m线性表示,则有()
  \text{(A)} \ R([\alpha_1,\alpha_2,\cdots,\alpha_m]) = R([\alpha_1,\alpha_2,\cdots,\alpha_m,\beta]) \\ \text{(B)} \ R([\alpha_1,\alpha_2,\cdots,\alpha_m]) < R([\alpha_1,\alpha_2,\cdots,\alpha_m,\beta])
   (C) R([\alpha_1, \alpha_2, \dots, \alpha_m]) > R([\alpha_1, \alpha_2, \dots, \alpha_m, \beta] (D) 无法判断
8. 设\alpha_1,\alpha_2,\alpha_3是四元非齐次方程组Ax=b的三个解向量,且R(A)=3,\alpha_1=\begin{pmatrix}0&1&2&3\end{pmatrix}^T,
   \alpha_{2} + \alpha_{3} = (1 \ 2 \ 3 \ 4)^{T}, \ Max = b \text{ 的通解为}  ( )
  (A) \alpha_1 + k(2 \ 3 \ 4 \ 5) (B) \alpha_1 + k(1 \ 3 \ 5 \ 7)
  (C) \alpha_1 + k(1 \ 1 \ 1 \ 1) (D) \alpha_1 + k(-1 \ 0 \ 1 \ 2)
二. 判断题 (对的打√,错的打×,每小题1分,共7分)
1. n 阶行列式 D 中元素均为非零元素,则 D \neq 0.
2. \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 + ka_1 & b_2 + kb_1 & c_2 + kc_1 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}
    \begin{vmatrix} a_1 + a_3 & b_1 + b_3 & c_1 + c_3 \end{vmatrix} \begin{vmatrix} a_3 & b_3 & c_3 \end{vmatrix}
4. 若 A+B 是可逆矩阵,则(A+B)^{-1}=A^{-1}+B^{-1}
5. 若矩阵 A 满足 |AA^T| \neq 0 ,则 A 可逆
6. n个n+1维向量构成的向量组必线性相关
7. 若 \xi_1, \xi_2, \xi_3 是 AX = 0 的一个基础解系,则 \xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_1 也是该方程组的基础解系( )
```

	课程名称	线性代数		学生考试卷(#
	考生姓名		任课教师姓名			
	兴县 (8位)		班级	专业		
	439形式: 闭卷	阿				
	考试说明;试卷和台	题纸分开上交, 请在	左上角写上座位	过号号码!		
1	題号第一是	第二题	第三是	第四题	第五题	2. 求解矩阵方程 $\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 2 & 2 & 3 \end{pmatrix} X = \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}$.
得分	一	题(毎小题3分,	本题共 18 分)		解:
1						
4	5.		6			
1 2	3	(每题 3 分,共 - 4 5.		7 8		$(1\ 1\ 0)$ $(1\ 2\ 2)$
外分	三. 判断题	(每题1分,共7	7分)			3. 设 $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, 并且 $C = A [(A^{-1})^2 + A^*BA^{-1}]A$,化简 C 后计算 C 的行列
2	3	_ 4 5	6	7.		解:
		每题 6 分, 共 36				
	PI FF-REE (^{球题 0} 分,共 36	分)			
四阶行列式	1 1 1 1 2 -1 3 -2 4 1 9 4					

得分

五. 解答题及证明题 (第一小题 10 分, 第二小题 5 分, 共 15 分)

1. 判断非齐次线性方程组

(注: 请用特解和导出组的基础解系的形式表示通解)

解:

5. 己知 $\alpha = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$, $\beta = \begin{bmatrix} 1 & \frac{1}{2} & 0 \end{bmatrix}^T$; $A = \alpha \beta^T$, 求 A^3 .

解:

6. 设 $\alpha_1 = \begin{pmatrix} 1 & 0 & 2 \end{pmatrix}^r$, $\alpha_2 = \begin{pmatrix} 3 & 1 & 4 \end{pmatrix}^r$, $\alpha_3 = \begin{pmatrix} 2 & 1 & 2 \end{pmatrix}^r$, $\alpha_4 = \begin{pmatrix} 1 & -1 & 4 \end{pmatrix}^r$, 求该向量组的一个极大无关组线性表出.

解:

2. 设n阶方阵 A, B满足 A+B=AB, 证明: AB=BA. (提示: 先证明 A-E 可逆,并求出其逆矩阵)

第3页,共3页

课程名	称 线性	代数	考试日期 2017年6月 日 成绩				
考生姓	名	fi fi	任课教师姓名				
学号 (8	(立)		班级	专业	专业		
考试形式:	闭卷 试卷和答题纸分	エレカ 油カナ	L备它 L应位号号	52.1			
考试说明:	瓜苍和台越 纸万	开工义,明任在_	L用与工任区うつ				
题号	第一题	第二题	第三题	第四题	第五题		
得分							
/	一. 填空题	(每小题3分,	本题共18分)				
分							
	2	0.5	3	0			
	2 5.	2	6	2			
	<u> </u>	3					
分	二. 选择题	(每题3分,共	(24分)				
B 2.		4 <u>C</u> 5.	_A 6. B	7. <u>A</u> 8.	D		
分	三. 判断题	(每题1分,)	 (7分)				
)]							
	3×	_ 4 _×_ 5	4 _ 6 >	7			
分							
	四 斗筲岛	(每题6分,)	₹36分)				

解:方法 : 利用並德蒙行列式结果可得 原式=(-1-2)(3-2)(-2-2)(-1-2)(3-1)(-2-1)(-2-3):240

方法二、原式
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 2 & -3 & 1 & 4 \\ 4 & -3 & 5 & 0 \\ 8 & -9 & 19 & -16 \end{vmatrix} = \begin{vmatrix} -3 & 1 & 4 \\ -3 & 5 & 0 \\ -9 & 19 & -16 \end{vmatrix}$$

$$= (-3) \begin{vmatrix} 1 & 1 & 4 \\ 1 & 5 & 0 \\ 3 & 19 & -16 \end{vmatrix} = (-3) \begin{vmatrix} 1 & 0 & 0 \\ 1 & 4 & 4 \\ 3 & 16 & -4 \end{vmatrix} = (-3) \begin{vmatrix} 4 & 4 \\ 16 & -4 \end{vmatrix} = 240$$

2 求解矩阵方程
$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 2 & 2 & 3 \end{pmatrix}$$
 $X = \begin{pmatrix} 1 & -1 \\ 0 & 2 \\ 1 & 1 \end{pmatrix}$

$$M: \begin{bmatrix} A|B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & |1 & -1| \\ -1 & 0 & -1 & |0 & 2| \\ 2 & 2 & 3 & |1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & |1 & -1| \\ 0 & 1 & 0 & |1 & 1| \\ 0 & 0 & 1 & |-1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & |1 & -5| \\ 0 & 1 & 0 & |1 & 1| \\ 0 & 0 & 1 & |-1 & 3 \end{bmatrix}$$

$$\text{FFUL, } X = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & -1 \\ 2 & 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -5 \\ 1 & 1 \\ -1 & 3 \end{bmatrix}$$

3. 设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, 并且 $C = A \left[(A^{-1})^2 + A^*BA^{-1} \right] A$. 化简C后计算C的行列式

解: 先化简, $C = A(A^{-1})^2 A + AA^*BA^{-1}A = E + |A|B$

$$||1| + |A| = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 1, \text{ MED. } C = E + |A|B = \begin{bmatrix} 2 & 2 & 3 \\ 4 & 6 & 6 \\ 7 & 8 & 10 \end{bmatrix}$$

$$|C| = \begin{vmatrix} 2 & 2 & 3 \\ 4 & 6 & 6 \\ 7 & 8 & 10 \end{vmatrix} = -2$$

$$\begin{cases} \alpha+2\beta=\gamma,\\ 2\alpha+\beta=\gamma, \end{cases} \qquad \text{iff } f_1^2(\Omega) \text{ or } f_3^2 \\ \beta=\frac{1}{3}(2\gamma,-\gamma,)\\ \beta=\frac{1}{3}(2\gamma,-\gamma,-\gamma) \end{cases}$$

$$\beta_1^{\text{FDA}}, \quad \alpha = \frac{1}{3}(2\gamma_2 - \gamma_1) = \frac{1}{3}\begin{pmatrix} -4\\4\\10\\2 \end{pmatrix} - \begin{pmatrix} 2\\1\\1\\2 \end{pmatrix} = \begin{pmatrix} -2\\1\\3\\0 \end{pmatrix}, \quad \beta = \frac{1}{3}(2\gamma_1 - \gamma_2) = \begin{pmatrix} 2\\0\\-1\\1 \end{pmatrix}$$

5.
$$\pm 3\pi \alpha = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^t$$
, $\beta = \begin{bmatrix} 1 & \frac{1}{2} & 0 \end{bmatrix}^t$; $A = \alpha \beta^T$, $\Re A^T$

$$\mathbf{M}; \ \boldsymbol{\beta}^{T} \boldsymbol{\alpha} = \begin{bmatrix} 1, & \frac{1}{2}, & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = 2, \quad \mathbb{M}$$

 $A^{\dagger} = (\alpha \beta^{\dagger})(\alpha \beta^{\prime})(\alpha \beta^{\prime}) = \alpha(\beta^{\prime} \alpha)(\beta^{\prime} \alpha)\beta^{\prime} = 4\alpha \beta^{\prime}$

$$= 4 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & 0 \end{pmatrix} = \begin{pmatrix} 4 & 2 & 0 \\ 8 & 4 & 0 \\ 4 & 2 & 0 \end{pmatrix}$$

6. 设 $\alpha_i = \begin{pmatrix} 1 & 0 & 2 \end{pmatrix}^i$, $\alpha_2 = \begin{pmatrix} 3 & 1 & 4 \end{pmatrix}^i$, $\alpha_4 = \begin{pmatrix} 2 & 1 & 2 \end{pmatrix}^i$, $\alpha_4 = \begin{pmatrix} 1 & -1 & 4 \end{pmatrix}^i$, 来该向量组的一个极大毛

关组,将其余向量用该极大无关组线性表出。

$$\mathbf{M}_{1} \begin{bmatrix} \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 1 & -1 \\ 2 & 4 & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 2 & 1 \\ 0 & 1 & 1 & -1 \\ 0 & -2 & -2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 4 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

所以, α_i , α_i 构成了向量组 α_i α_i α_i α_i 的一个极大线性无关组。(不唯一!

$$\alpha_1 = -\alpha_1 + \alpha_2$$
, $\alpha_4 = 4\alpha_1 - \alpha_2$

本次代件 万福组 $\begin{cases} x_i-2x_2+x_4+x_5+4x_5=5\\ x_1-2x_2-x_4+3x_4-2x_5=-1 是 否有解。 如果有解語等別共画解 \\ 2x_1-4x_2+x_4+3x_4+5x_5=7 \end{cases}$

 $3x_1 - 6x_2 + x_3 + 5x_4 + 6x_5 = 9$

注:请用特解和导出组的基础解系的形式表示通解

解: 对系数矩阵 A 的增广矩阵做初等行变换得

由于矩阵 A 的铁满足 $R(A) = R(\overline{A}) = 2 < 5$, 所以方程组有无穷多解

原方程组的同解方程组
$$\begin{cases} x_{i}=2+2x_{2}\text{-}2x_{4}\text{-}x_{5}\\ x_{5}=2+x_{4}\text{-}3x_{5} \end{cases}$$

令 $x_2 = x_4 = x_5 = 0$. 得到原方程组的一个特解为 $X_0 = \begin{bmatrix} 2 & 0 & 3 & 0 & 0 \end{bmatrix}^T$

导出组的同解方程组为 $\begin{cases} x_i = 2x_2 \cdot 2x_1 \cdot x_s & \phi_{X_2}, x_4, x_5 \oplus -\phi_{D_1},$ 其余全为 0。得到方程组的一基础编

$$\xi_1 = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \end{bmatrix}^T$$
, $\xi_2 = \begin{bmatrix} -2 & 0 & 1 & 1 & 0 \end{bmatrix}^T$, $\xi_3 = \begin{bmatrix} -1 & 0 & -3 & 0 & 1 \end{bmatrix}^T$

则原方程组的通解为 $X_0+k_1\xi_1+k_2\xi_2+k_3\xi_3$ (其中 $k_1,\ k_2,\ k_3$ 为任意常数)

2 设n阶方阵A,B满足A+B=AB,证明:AB=BA.(提示: 先证明A-E可逆,

证明: 容易算出
$$(A-E)(B-E) = AB-A-B+E$$

由于A,B满足A+B=AB. 所以(A-E)(B-E)=E.则A-E可逆.且

$$(A-E)^{-1}=B-E$$

故 E = (B - E)(A - E) = BA - A - B + E, 则有 BA = A + B = AB

第2页, 共3页