# Treatment of open quantum systems Quantum Engineering II

4th of June 2021



# System-Reservoir Interaction

**Atom**,  $|g\rangle$ ,  $|e\rangle$ 

Quantized field,  $|\{n_{\lambda}\}\rangle$ 

Inital state, t = 0, no photons

$$|\Psi_0\rangle=a_0|g\rangle+b_0|e\rangle$$

**Evolves** 

$$egin{aligned} |\Psi(t)
angle &= a_0 |g
angle \otimes |0
angle + b(t)e^{-i{ extsf{E}}_{\!A}t/\hbar}|e
angle \otimes |0
angle \ &+ \sum_{\lambda} b_{\lambda}(t)e^{-i{ extsf{E}}_{\!A}t/\hbar}|g
angle \otimes |1_{\lambda}
angle \end{aligned}$$





### Time A Evolution of Density Matrix

Two Level system coupled to a large reservoir.

$$rac{\mathsf{d}
ho}{\mathsf{d}t} = rac{1}{i\hbar}[H,
ho] + \mathcal{L}_{\mathsf{relax}}[
ho]$$

where

$$\mathcal{L}_{\mathsf{relax}}[\rho] = -\frac{\Gamma}{2} (|e\rangle\langle e|\rho + \rho|e\rangle\langle e|) + \Gamma|g\rangle\langle e|\rho|e\rangle\langle g| \tag{1}$$

in the usual Lindblad form that ensures that  $\text{Tr}(\rho(t))=1$  and postive expectation  $\langle \psi | \rho | \psi \rangle > 0$ .



# Time A Evolution of Density Matrix

Notice we get this form ensures that we get the usual terms of the optical Bloch equation

$$\dot{
ho}_{ ext{ee}} = \langle e | rac{d}{dt} 
ho | e 
angle = -\Gamma 
ho_{ ext{ee}} \ \dot{
ho}_{ ext{gg}} = \langle g | rac{d}{dt} 
ho | g 
angle = \Gamma 
ho_{ ext{ee}}$$

$$\dot{
ho}_{ extsf{gg}} = \langle g | rac{d}{dt} 
ho | g 
angle = \Gamma 
ho_{ extsf{ee}}$$

# Bloch Sphere with Damping



Figure:  $\Omega \ll \Gamma \neq 0$ ,  $(s \ll 1)$ 



Figure:  $\Omega \gg \Gamma \neq 0$ ,  $(s \gg 1)$ 

#### Stochastic Wave functions

Two Level System

$$|\Psi\rangle = \alpha(t)|g\rangle + \beta(t)|e\rangle$$

Quantum Jumps:

$$\begin{split} \Delta P &= \Gamma \langle \Psi | \sigma_{-}^{\dagger} \sigma_{-} | \Psi \rangle \Delta t, \quad \sigma_{-} &= | g \rangle \langle e | \\ &= \Gamma |\beta|^{2} \Delta t \end{split}$$

Obtain random number  $r \in (0,1)$ .

$$r < \Delta P$$
: Jump

$$r > \Delta P$$
: No Jump



Figure: Single Two Level System

#### Stochastic Wave functions

#### **Evolution**

$$\begin{split} \mathsf{Jump:}|\Psi\rangle &\to \frac{\sigma_-|\Psi\rangle}{\sqrt{\langle\Psi|\sigma_-^\dagger\sigma_-|\Psi\rangle}} = |g\rangle \\ \mathsf{No} \ \mathsf{Jump:}|\Psi\rangle &\to \frac{e^{-i\Delta t \hat{H}_{\mathsf{eff}}}}{\sqrt{N}}|\Psi\rangle \\ \hat{H}_{\mathsf{eff}} &= \hat{H} - i\hbar(\gamma/2)\sigma_-^\dagger\sigma_- \quad \text{(non hermitian)} \end{split}$$

Repeat and Average over trajectories



Figure: Single Two Level System

#### Stochastic Wavefunction



Figure: Average over  $n=1,\ n=10$  and n=100 and denisty matrix for  $\Omega \ll \Gamma$ 



#### Stochastic Wavefunction



Figure: Average over n=1, n=10 and n=100 and denisty matrix for  $\Omega\gg\Gamma$