## Coordenadas Polares

Até agora usamos o sistema de coordenadas cartesianas, para representar pontos no plano.

Usaremos agora um novo sistema de coordenadas, chamado de sistema de coordenadas polares.

A representação de um ponto P do plano, no sistema de coordenadas polares, é determinada por sua posição em relação a um ponto fixo O, chamado polo (ou origem) e a uma semi-reta fixa, chamada de eixo polar.

Seja P um ponto distinto de O. Seja  $\theta$  a medida do ângulo (em graus ou radiano) entre o eixo polar e a semi-reta OP, do eixo polar para OP, considerada positiva no sentido anti-horário e negativa no sentido horário. Seja r a distância de O até P.

Então r e  $\theta$  são as coordenadas polares de P, que representamos por  $(r,\theta)$ .



Observe que  $(r,\theta)$  e  $(r,\theta+2k\pi)$ , onde k é um inteiro qualquer, representam o mesmo ponto. Assim um ponto pode ser representado, em coordenadas polares, de infinitas formas, o que não ocorre no sistema de coordenadas cartesianas, onde um ponto tem uma única representação.

Se r = 0 e  $\theta$  é um número real qualquer, temos  $O = (0, \theta)$ .

Podemos também considerar coordenadas polares com r negativo. Neste caso o ponto  $(r,\theta)$  será o ponto simétrico do ponto  $(|r|,\theta)$ , em relação à origem.



Exemplo: Represente geometricamente os pontos

$$P_{1} = (6, \pi), P_{2} = \left(9, -\frac{\pi}{6}\right), P_{3} = \left(8, \frac{3\pi}{4}\right), P_{4} = \left(-7, \frac{\pi}{3}\right), P_{5} = \left(-8, -\frac{\pi}{6}\right),$$

$$P_{6} = \left(-10, \frac{\pi}{4}\right), P_{7} = \left(-12, \frac{\pi}{2}\right)e P_{8} = (20, 0)$$



Relação entre as Coordenas Polares e as Coordenadas Cartesianas de um ponto.

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} e \begin{cases} r = \pm \sqrt{x^2 + y^2} \\ tg \theta = \frac{y}{x} \end{cases}$$

Exemplos





2) r = 3



3)  $r sen \theta = 3$ 

4)  $r \cos \theta = 3$ 





7) i)  $r = 5 + 9\cos\theta$  (Limaçon com um Iaço)



ii)  $r = 9 + 9\cos\theta$  (Cardióide)



 $iii) r = 9 + 8 \cos \theta$  (Limaçon com um dente)



iv)  $r = 9 + 4\cos\theta$  (Limaçon convexa – sem dente)



## Gráficos em coordenadas polares

1) 
$$\theta = c$$

2) 
$$r = c$$

3) 
$$r sen \theta = b$$

4) 
$$r \cos \theta = a$$

5) 
$$r = 2a \operatorname{sen} \theta$$

6) 
$$r = 2b \cos \theta$$

- 7)  $r = a \pm b \cos \theta$ , com a, b > 0
- i) Se  $0 < \frac{a}{b} < 1$ . Limaçon de um laço
- ii) Se  $\frac{a}{b} = 1$ . Cardióide
- iii) Se  $1 < \frac{a}{b} < 2$ . Limaçon com um dente
- iv) Se  $2 \le \frac{a}{b}$ . Limaçon convexa (sem dente)
- 8)  $r = a \pm b \ sen \ \theta$ , com a, b > 0 (limaçons)
- 9)  $r = a \cos n\theta$  ou  $r = a \sin n\theta$  (Rosáceas de n folhas, se n for ímpar e de 2n folhas, se n for par)

Exemplo:  $r = 4\cos 2\theta$  (rosácea de 4 folhas)



Exemplo:  $r = 4\cos 4\theta$  (rosácea de 8 folhas)



Exemplo:  $r = 4sen2\theta$  (rosácea de 4 folhas)



Exemplo:  $r = 4 \cos 3 \theta$  (rosácea de 3 folhas)



Exemplo:  $r = 4 \sin 3\theta$  (rosácea de 3 folhas)



10)  $r = \theta$  (Espiral)



## Outros Exemplos: Limaçons com 1 dente

$$r = 3 + 2 \cos\theta$$



$$r = 3 - 2 \cos\theta$$





$$r = 3 - 2 \operatorname{sen}\theta$$

