Universidad del Valle de Guatemala Profesor: Hugo Oliveros

Química General – Sección 51 Auxiliar: Dulce Sosa

Laboratorio Lourdes Mancilla

Marcela Ordoñez | 24994 Fecha: 26/02/2024

### Práctica No.2

# SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA POR CROMATOGRAFÍA: EL EFECTO ARCOÍRIS

#### **Objetivos:**

- 1. Descubrir por qué el marcador negro separa más colores que otros.
- 2. Entender cómo el color primario afecta el desplazamiento de un color.
- 3. Investigar la ruta de cada color y las razones detrás.
- 4. Comprender por qué se usa agua en lugar de alcohol como fase móvil.

#### Resultados:

## Cuadro No.1 Resultados del papel filtro después de la cromatografía

| Color    | Pigmentos | $T_R$                          | $\mathcal{C}_R$ |
|----------|-----------|--------------------------------|-----------------|
| Amarillo | Amarillo  | 9.8 * 10 <sup>-2</sup> cm/ min | 0.7             |
| Negro    | Celeste   | 1.3 * 10 <sup>-1</sup> cm/ min | 0.9             |
|          | Morado    | 1.3 * 10 <sup>-1</sup> cm/ min | 0.9             |
|          | Rosado    | 1.2 * 10 <sup>-1</sup> cm/ min | 0.9             |
|          | Rojo      | 1.3 * 10 <sup>-1</sup> cm/ min | 0.9             |
|          | Amarillo  | 9.8 * 10 <sup>-2</sup> cm/ min | 0.7             |
| Verde    | Azul      | 1.3 * 10 <sup>-1</sup> cm/ min | 0.9             |
|          | Amarillo  | 1.3 * 10 <sup>-1</sup> cm/ min | 0.9             |
| Rojo     | Rojo      | 1.2 * 10 <sup>-1</sup> cm/ min | 0.9             |
|          | Amarillo  | 8.4 * 10 <sup>-2</sup> cm/ min | 0.7             |

#### Discusión de Resultados:

Se observó que el marcador negro logró separar un mayor número de colores en comparación con los otros, esto se debe a que el color negro en los marcadores no es un color único, sino una mezcla de varios pigmentos de diferentes colores. Esto representa las propiedades distintivas en el marcador negro que facilitan la separación (Ar, 2020). El color primario, se notó que permitió el corrimiento de un solo color. Esto sugiere que la manera en que está hecho el color primario puede afectar mucho cómo se mezcla con la solución salina y el papel filtro.

Cómo pusimos los colores en el papel también afectó cómo se movieron. Al ponerlos a la misma distancia pero en direcciones diferentes, cambiaron su posición, probablemente por cómo interactuaron con el papel y la solución salina. La elección de utilizar agua en lugar de alcohol como fase móvil también influyó en los resultados de la cromatografía. Las propiedades específicas del agua parecen desempeñar un papel clave en la separación de los colores (de Laboratorio, 2022a).

Los objetivos planteados indican que las propiedades químicas de los marcadores son esenciales porque afectan cómo se separan y se mueven en la cromatografía.

#### Conclusión:

- 1. En resumen, los objetivos planteados en el experimento proporcionaron información valiosa sobre la cromatografía con marcadores. Se observó que el marcador negro destacó por la separación de colores, mientras que el color primario demostró la capacidad de desplazar solo un color, indicando la importancia de su estructura molecular.
- 2. La disposición de los colores en el papel también afectó su movimiento durante la cromatografía, resaltando la importancia de la interacción entre los marcadores y la solución salina. La decisión de utilizar agua en lugar de alcohol se mostró crucial debido a las propiedades específicas del agua, que resultan beneficiosas para la separación de colores.
- 3. En resumen, se puede decir que las características químicas particulares de los marcadores y la fase móvil son muy importantes para que la cromatografía funcione bien. Esto nos ayuda a entender mejor qué cosas afectan a este proceso.

#### **Fuentes:**

de Laboratorio, A. (2022a, September 24). ¿Qué es la fase móvil en HPLC? Ciencia y Datos. <a href="https://cienciaydatos.org/cromatografia/liquida/que-es-la-fase-movil-en-hplc/">https://cienciaydatos.org/cromatografia/liquida/que-es-la-fase-movil-en-hplc/</a>

Ar, E. (2020). Cromatografía con marcadores. Educ.ar. <a href="https://www.educ.ar/recursos/153662">https://www.educ.ar/recursos/153662</a>

Getty, B. (2013, February 13). Proyecto de ciencia para separar los pigmentos en un marcador. Geniolandia. <a href="https://www.geniolandia.com/13155665/proyecto-de-ciencia-para-separar-los-pigmentos-en-un-marcador">https://www.geniolandia.com/13155665/proyecto-de-ciencia-para-separar-los-pigmentos-en-un-marcador</a>

# Anexos:





# noun of esultados

| COLOR    | PIGMENTOS | TR                            | CR                |
|----------|-----------|-------------------------------|-------------------|
| Ollirema | amarillo  | 9.8 × 10-2 cm [min            | 0.7               |
|          | one The   | 15 de America                 | 07 3              |
| Negro    | celeste   | 1.3×10 <sup>-1</sup> cm/min   | 0.9               |
|          | morado    | 1.3×10-1cm/min                | 1×0 0.901×0 = p   |
|          | rosado    | 1.2 × 10-1 cm/min             | 0.9               |
|          | 1070      | 1.3×10-1 cm/min               | . 0.9             |
|          | amarillo  | 9.8×10-2 cm1min               | 0.7               |
| verde    | 95NI      | 1.3 × 10 <sup>-1</sup> cm/min | 0.9               |
|          | amarillo  | 1.3 × 10-1 cm/min             | 0 = H 0.9 OWNERWA |
| ROjO     | ROJO -    | 1.2 × 10-1 cm/min             | 0-10.93 ores      |
| R        | amarillo  | 8.4×10 <sup>-2</sup> cm/min   | 0.7               |

| A . avi W                                                     | 2::                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                         |  |
|---------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|--|
| Amarillo                                                      | =0 000-0 0                            | ×10 <sup>-2</sup> cmln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                         |  |
| $\frac{2.8}{28.57} = 0.098 = 9.8 \times 10^{-2} \text{ cm/m}$ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F ROID: 1.3×10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                  |                                         |  |
| 2001                                                          |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | amarill0: 9.8×10-2 cm/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                         |  |
| Negro: $3.7 = 0.1295 \cdot 1.3 \times 10^{-1} \text{ cm/min}$ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | celeste: 1.3×10-1 cm/min                                         |                                         |  |
|                                                               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | moradi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |                                         |  |
| 28.57                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rosado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rosado 1.2×101 cm/min                                            |                                         |  |
| 28.57                                                         |                                       | o-1 cm/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                         |  |
| 28.57                                                         | 50                                    | malma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11)28                                                            | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |
| 28.57                                                         | F.0                                   | amain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11155                                                            |                                         |  |
| 28.57<br>ROID:<br>3.4 = (                                     | 20<br>0.1194( 1.2×1(                  | olimino*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01×210<br>*4.8 =011in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1052<br>10 <sup>-2</sup> cm/mih                                  | OVESM                                   |  |
| 28.57<br>80i0:<br>3.4 = (<br>28.57                            | 0.1194(1.2×10                         | Olimino <sup>2</sup> Olimino <sup>2</sup> Olimino <sup>2</sup> Olimino  Oli | ~ P.8 = 011in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 <sup>-2</sup> cm/mih<br>0-2201                                | OVESM                                   |  |
| 28.57<br>ROID:<br>3.4 = (<br>28.57                            | 20<br>0.1194(1.2×10<br>20<br>20<br>20 | nimimo*  Nimimo*  Outsilinio  Outsilinio  Outsilinio  Outsilinio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 2 × 40 × 40 × 40 × 40 × 40 × 40 × 40 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to <sup>-2</sup> cm/min<br>Obsession                             | OVESH                                   |  |
| 28.57  ROID:  3.4 = (  28.57 $Cr = \Delta x$ $\Delta x$       | P FO                                  | nimima*  nim                            | 1.5×40<br>× 4.8 =011/1<br>× 4.0 = 1.9 × 10 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1.0 = 1 | 1058<br>seesign<br>10 <sup>-2</sup> cm/min<br>Oberson<br>Oursmin | OVERN                                   |  |
| 28.57  80:0: 3.4 = (28.57 $C_{r} = \Delta x$                  | D.1194 1.2×10 P FO SOL ED 0: 2.8/4=0. | nimima*  nim                            | rill0= 8.4×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 <sup>-2</sup> cm/mih                                          | OVESH                                   |  |