9 Finite products

Consider now the situation of finitely many σ -finite measure spaces $(\Omega_i, \mathcal{A}_i, \mu_i)$, $i = 1, \ldots, n$.

Theorem 9.1 (Finite product measures). There exists a unique σ -finite measure μ on $A_1 \otimes \cdots \otimes A_n$ such that

$$\mu(A_1 \times \cdots \times A_n) = \mu_1(A_1) \cdots \mu_n(A_n)$$

for $A_i \in \mathcal{A}_i$, i = 1, ..., n. $\bigotimes_{i=1}^n \mu_i := \mu_1 \otimes \cdots \otimes \mu_n := \mu$ is called the **product measure** of the μ_i . If all spaces involved equal $(\Omega_0, \mathcal{A}_0, \mu_0)$, then we write $\mu_0^{\otimes n} := \bigotimes_{i=1}^n \mu_0$.

Proof. Exercise.
$$\Box$$

Example 9.2. Let $(\Omega_i, \mathcal{A}_i, \mathbf{P}_i)$ be probability spaces, i = 1, ..., n. On the space $(\Omega, \mathcal{A}, \mathbf{P}) = (\times_{i=1}^n \Omega_i, \bigotimes_{i=1}^n \mathcal{A}_i, \bigotimes_{i=1}^n \mathbf{P}_i)$, the coordinate maps $X_i : \Omega \to \Omega_i$ are independent with distribution $\mathbf{P}_{X_i} = \mathbf{P}_i$.

Theorem 9.3 (Fubini). Let $(\Omega_i, \mathcal{A}_i, \mu_i)$ be σ -finite measure spaces, i = 1, 2. On the space $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu_1 \otimes \mu_2)$ let $f : (\Omega_1 \times \Omega_2) \to \overline{\mathbb{R}}$ be measurable. If one of the following conditions holds:

- (i) $f \ge 0$
- (ii) $f \in \mathcal{L}^1(\mu_1 \otimes \mu_2)$

then

$$\omega_1 \mapsto \int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(d\omega_2)$$
 is \mathcal{A}_1 -measurable,
 $\omega_2 \mapsto \int_{\Omega_1} f(\omega_1, \omega_2) \mu_1(d\omega_1)$ is \mathcal{A}_2 -measurable,

and

$$\int_{\Omega_1 \times \Omega_2} f d(\mu_1 \otimes \mu_2) = \int_{\Omega_1} \left(\int_{\Omega_2} f(\omega_1, \omega_2) \mu_2(d\omega_2) \right) \mu_1(d\omega_1 = \int_{\Omega_2} \left(\int_{\Omega_1} f(\omega_1, \omega_2) \mu_1(d\omega_1) \right) \mu_2(d\omega_2)$$

Proof. Exercise.