Design Through Verilog HDL

IEEE Press

445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board

Stamatios V. Kartalopoulos, Editor in Chief

M. Akay	M. E. El-Hawary	M. Padgett
J. B. Anderson	R. J. Herrick	W. D. Reeve
R. J. Baker	D. Kirk	S. Tewksbury
J. E. Brewer	R. Leonardi	G. Zobrist
	M. S. Newman	

Kenneth Moore, *Director of IEEE Press*Catherine Faduska, *Senior Acquisitions Editor*Christina Kuhnen, *Associate Acquisitions Editor*

Technical Reviewers

Robert S. Hanmer, Lucent Technologies, Naperville, IL Zhou Feng, Fudan University, China

Design Through Verilog HDL

T. R. Padmanabhan B. Bala Tripura Sundari

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Padmanabhan, T. R.

Design through Verilog HDL / T. R. Padmanabhan, B. Bala Tripura Sundari.

p. cm.

Includes bibliographical references and index.

ISBN 0-471-44148-1 (cloth)

1. Verilog (Computer hardware description language) I. Tripura Sundari, B. Bala. II. Title.

TK7885.7.P37 2003 621.39'2-dc22

2003057671

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To my parents

B. Bala Tripura Sundari

To Ravi and Chandra

T.R. Padmanabhan

CONTENTS

PREFACE	xi
ACKNOWLEDGEMENTS	xiii
1 INTRODUCTION TO VLSI DESIGN	1
1.1 INTRODUCTION TO VESI DESIGN 1.1 INTRODUCTION	_
1.2 CONVENTIONAL APPROACH TO DIGITAL DESIGN	
1.3 VLSI DESIGN	
1.4 ASIC DESIGN	3
1.5 ROLE OF HDL	
2 INTRODUCTION TO VERILOG	11
2.1 VERILOG AS AN HDL	
2.1 VERILOG AS AN HDL 2.2 LEVELS OF DESIGN DESCRIPTION	
2.3 CONCURRENCY	
2.4 SIMULATION AND SYNTHESIS	13
2.5 FUNCTIONAL VERIFICATION	
2.6 SYSTEM TASKS	
2.7 PROGRAMMING LANGUAGE INTERFACE (PLI)	
2.8 MODULE	
2.9 SIMULATION AND SYNTHESIS TOOLS	
2.10 TEST BENCHES	
2.10 TEST BENCHES	27
3 LANGUAGE CONSTRUCTS AND CONVENTIONS IN VERILOG	31
3.1 INTRODUCTION	31
3.2 KEYWORDS	31
3.3 IDENTIFIERS	32
3.4 WHITE SPACE CHARACTERS	33
3.5 COMMENTS	33
3.6 NUMBERS	34
3.7 STRINGS	
3.8 LOGIC VALUES	38
3.9 STRENGTHS	39
3.10 DATA TYPES	
3.11 SCALARS AND VECTORS	41
3 12 PARAMETERS	42

viii CONTENTS

3.13 MEMORY	43
3.14 OPERATORS	43
3.15 SYSTEM TASKS	
3.16 EXERCISES	46
4 GATE LEVEL MODELING – 1	47
4.1 INTRODUCTION	47
4.2 AND GATE PRIMITIVE	
4.3 MODULE STRUCTURE	
4.4 OTHER GATE PRIMITIVES	51
4.5 ILLUSTRATIVE EXAMPLES	51
4.6 TRI-STATE GATES	64
4.7 ARRAY OF INSTANCES OF PRIMITIVES	66
4.8 ADDITIONAL EXAMPLES	
4.9 EXERCISES	79
5 GATE LEVEL MODELING – 2	81
5.1 INTRODUCTION	
5.2 DESIGN OF FLIP-FLOPS WITH GATE PRIMITIVES	81
5.3 DELAYS	
5.4 STRENGTHS AND CONTENTION RESOLUTION	
5.5 NET TYPES	109
5.6 DESIGN OF BASIC CIRCUITS	115
5.7 EXERCISES	
6 MODELING AT DATA FLOW LEVEL	127
6.1 INTRODUCTION	
6.2 CONTINUOUS ASSIGNMENT STRUCTURES	127
6.3 DELAYS AND CONTINUOUS ASSIGNMENTS	133
6.4 ASSIGNMENT TO VECTORS	
6.5 OPERATORS	
6.6 ADDITIONAL EXAMPLES	
6.7 EXERCISES	157
7 BEHAVIORAL MODELING — 1	159
7.1 INTRODUCTION	
7.2 OPERATIONS AND ASSIGNMENTS	
7.3 FUNCTIONAL BIFURCATION	
7.4 INITIAL CONSTRUCT	
7.5 ALWAYS CONSTRUCT	168
7.6 EXAMPLES	170
7.7 ASSIGNMENTS WITH DELAYS	
7.8 wait CONSTRUCT	
7.9 MULTIPLE ALWAYS BLOCKS	195

CONTENTS ix

7.10 DESIGNS AT BEHAVIORAL LEVEL	197
7.11 BLOCKING AND NONBLOCKING ASSIGNMENTS	
7.12 THE case STATEMENT	
7.13 SIMULATION FLOW	
7.14 EXERCISES	
8 BEHAVIORAL MODELING II	219
8.1 INTRODUCTION	219
8.2 if AND if–else CONSTRUCTS	219
8.3 assign–deassign CONSTRUCT	
8.4 repeat CONSTRUCT	
8.5 for LOOP	238
8.6 THE disable CONSTRUCT	244
8.7 while LOOP	249
8.8 forever LOOP	254
8.9 PARALLEL BLOCKS	
8.10 force–release CONSTRUCT	261
8.11 EVENT	266
8.12 EXERCISES	268
9 FUNCTIONS, TASKS, AND USER-DEFINED PRIMITIVES	273
9.1 INTRODUCTIUON	273
9.2 FUNCTION	273
9.3 TASKS	
9.4 USER-DEFINED PRIMITIVES (UDP)	292
9.5 EXERCISES	302
10 SWITCH LEVEL MODELING	305
10.1 INTRODUCTION	
10.2 BASIC TRANSISTOR SWITCHES	305
10.3 CMOS SWITCH	318
10.4 BIDIRECTIONAL GATES	328
10.5 TIME DELAYS WITH SWITCH PRIMITIVES	
10.6 INSTANTIATIONS WITH STRENGTHS AND DELAYS	
10.7 STRENGTH CONTENTION WITH TRIREG NETS	
10.8 EXERCISES	337
11 SYSTEM TASKS, FUNCTIONS, AND COMPILER DIRECTIVES	339
11.1 INTRODUCTION	339
11.2 PARAMETERS	
11.3 PATH DELAYS	
11.4 MODULE PARAMETERS	
11.5 SYSTEM TASKS AND FUNCTIONS	
11.6 FILE-BASED TASKS AND FUNCTIONS	383

x CONTENTS

11.7 COMPILER DIRECTIVES	385
11.8 HIERARCHICAL ACCESS	
11.9 GENERAL OBSERVATIONS	404
11.10 EXERCISES	405
12 QUEUES, PLAS, AND FSMS	407
12.1 INTRODUCTION	407
12.2 QUEUES	407
12.3 PROGRAMMABLE LOGIC DEVICES (PLDs)	414
12.4 DESIGN OF FINITE STATE MACHINES	
12.5 EXERCISES	
APPENDIX A (Keywords and Their Significance)	443
APPENDIX B (Truth Tables of Gates and Switches)	447
REFERENCES	
INDEX	

PREFACE

Verilog has rapidly become a widely accepted language for VLSI design. The language is well-structured and defined to cater to the steady increase in the size of ICs to be designed without sacrificing the advantages associated with design at the "grass roots" level. A designer aspiring to master the language in its versatility should become familiar with the various constructs in it, practice their use in real applications, and use them in combinations to be successful.

Describing a design using Verilog is only half the story: Writing Test benches, testing a design for all its desired functions, and identifying the faults and removing them remain equally challenging tasks. This book is an attempt to address these issues effectively. The constructs in Verilog are discussed through apt illustrative examples. Equal importance is given to design description and test benches. The examples have been tested with popular and commonly used simulation packages and the results reproduced. In many of the cases the tested designs have been synthesized, and the synthesized circuit has also been reproduced. "Seeing is believing": Seeing a design available as a software routine, transformed to a circuit, will add a lot to the confidence level of novices who use the book. flip-flops, counters, registers, coders, decoders, mux, demux *etc.*, have been considered at different levels of design; this should help in clarifying the perspectives regarding levels, need, and significance.

Place and significance of Verilog in VLSI design have been brought out in Chapters 1 and 2. Basics of the language, its conventions, etc., are dealt with in Chapters 2 and 3. Chapters 4 and 5 form an introduction to design through Verilog. It is done at the gate level, which may be the most comfortable for the beginner. Any design, however involved it may be, can be completely realized in terms of the gate primitives of Verilog. We hope that the illustrative examples considered and the exercises at the end of the chapters, impart such a confidence to a designer. Chapter 6 is devoted to design at the data flow level. Continuous assignments using operators linking operands, which allow designs to be described more compactly but still close enough to the circuit level, form the theme of this chapter. Behavioral level design is discussed in Chapters 7 and 8. Mastery at this level – akin to the C language – is essential for a successful designer working at the system level. Functions and tasks, which facilitate structuring of designs and their orderly description, form the theme of Chapter 9. The switch primitives in Verilog constitute the link with actual VLSI implementation although their mastery is not essential to many of the designers with their higher level activities. Chapter 10 is devoted exclusively to switch level design; since it stands out from xii PREFACE

the main text flow so far, its discussion is consciously deferred to this stage. Chapter 11 forms an introduction to the system tasks and functions in Verilog and their use in typical environments. Chapter 12 deals with design using PLDs and FSMs. Though subdued, the treatment is enough to give the necessary lead to more comprehensive designs.

All the chapters have enough exercises at the end. Some help mastery of the material in the chapter, through practice; others are structured to stimulate the users to explore avenues of their own. The step-by-step build-up of a processor in Chapter 12 is of this type.

All simulation results presented in the text as part of illustrative examples, have been obtained using the "Modelsim" software of Mentor Graphics. All synthesis results wherever presented, have been obtained using the "Leonardo Spectrum" software of Mentor Graphics. These have been reproduced by courtesy of Mentor Graphics.

Users' views and suggestions are welcome; for this purpose, the website www.aitec.amrita.edu/publications may be accessed.

T. R. PADMANABHAN B. BALA TRIPURA SUNDARI

July 2003

ACKNOWLEDGEMENTS

Many of our acquaintances and associates have contributed to the fruition of this venture. K.N.C. Eswaran is responsible for all the delicate and subtle touches with Word. Our colleagues — Subha, Sathyapriya, and Rajagopal — have made many useful suggestions. Anand Srinivasan helped with simulation in his own way. Ajai Narendran of the Systems Wing of our Institute has been helpful in many ways. Our families — Krishna Sudarshan, Saketh, Srikanth, Ravi, Chandra, and Uma — have put up with our transient oddities. Brahmachari Abhayamrita Chaitanya — Chief Operating Officer of Amrita Vishwa Vidyapeetham — made the Institute facilities, especially the VLSI laboratory, available for us. Dr. N. Narayana Pillai, Dean (Students), and Prof. R. Sundararajan of our Institute have been of great encouragement to us. Ms Christina Kuhnen, Associate Acquisitions Editor at IEEE Press, has been quite helpful throughout; she has effectively bridged the distance between New York and Coimbatore. painstaking efforts of the Referees to wade through the manuscript, understand the matter and their constructive suggestions have conspicuously contributed to the book in its present form. We give our sincere thanks to all of them.

Our obeisance goes to *Mata Amritanandamayi Devi* for her commitment to societal transformation through quality education; this is a humble attempt to add another brick to the edifice being built by her.