(If) 1. Halarossa meg as alablos hatvannysorok Konvergeneiasvyaret és Konvergeneiahelmaset a valos szemok halmasan! a) $\sum_{n=0}^{\infty} \frac{3^n + (-2)^n}{n+1} x^n$ A hatvahysornal $dn = \frac{3^n + (-2)^n}{n+1}$ (nEN), és a=0. A Cauchy-Hadamond-Litel Benint $\sqrt{|dn|} = \sqrt{\frac{3^{n} + (-2)^{n}}{n+1}} = \sqrt{\frac{3^{n} + (-2)^{n}}{n}} = \sqrt{\frac{3^{n} + (-2$ $\frac{3}{1} \cdot \frac{1}{1} = 3 := A.$ Eller a hatrangler l'onvergencias jera: $R = \frac{1}{A} = \frac{1}{3}$. Exert $\left(-\frac{1}{3},\frac{1}{3}\right) = \left(a-P,a+P\right) \leq KH\left(\sum_{n=0}^{3}\frac{1+(-1)^n}{n+1}\right) \leq \left[a-P,a+P\right] = \left[-\frac{1}{3},\frac{1}{3}\right]$ A haterpontok vizsgalata.

- Ha $x = \frac{1}{3}$, aktor a $\sum_{n=0}^{3^n+(-2)^n} \left(\frac{1}{3}\right)^n$ sort Kapjuk, ani divergens, hipsen, $\frac{3^{n}+(-2)^{n}}{n+1}\left(\frac{1}{3}\right)^{n} = \frac{1+\left(-\frac{2}{3}\right)^{n}}{n+1} > \left(\left(-\frac{2}{3}\right)^{n} > -\frac{2}{3} \cdot |a| + \frac{2}{3} \cdot |a|}{n+1} > \frac{1-\frac{2}{3}}{n+1} = \frac{1/3}{n+1}$ $\frac{1}{6}$ $\frac{1}{2}$ $\frac{1}{3}$ = $\frac{1}{3}$ $\frac{1}{1}$ = $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ = $\frac{1}{3}$ (+ ∞) = \frac estert a minorains knit. sperint a sor dirergens. - Ha $x=-\frac{1}{3}$, allor a $\sum_{n=0}^{\frac{3^n+(-2)^n}{n+1}} \left(-\frac{1}{3}\right)^n$ sort lapjvk, ami konvergens, Withen $\frac{1}{2} = \frac{3^{n} + (-2)^{n}}{n+1} \left(-\frac{1}{3}\right)^{n} = \frac{1}{2} = \frac{(-1)^{n} + (\frac{2}{3})^{n}}{n+1} = \frac{1}{2} = \frac{(-1)^{n}}{n+1} + \frac{1}{2} = \frac{(2/3)^{n}}{n+1}$ ahol $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ Leibniz-bor Konverges, of $\frac{2}{3}$ (2/3) (Convergens (GyōKKinterium prenint $\sqrt{\frac{2}{3}}$) $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ (1)

b)
$$\sum_{n=2}^{\infty} \frac{2^{n}+1}{n^{2}-1} (x-2)^{n}$$

A hartingsornal do=0, d1=0, $dn=\frac{2^{n}+1}{n^{2}-1} (n \ge 2)$, $e^{\frac{1}{2}} = \frac{2}{2}$.

He is 72, without $\frac{1}{2^{n}+1} = \frac{2^{n}+1}{2^{n}+1} = \frac{2^$

(Hf) 2. As alæbbi f Eggvengeret (vary egg alkalmas len ülkideriket) állisse els mila Köséppondi hatranyser Tissegellent! a) $f(x) = \frac{x+3}{5x^2+9x-2}$ (xeR\\\(\frac{6-2}{5}\)\) $f(x) = \frac{x+3}{5x^2+ax-2} = \frac{x+3}{(x+2)(5x-1)}$ (xeR) \(\frac{6-2}{5}\frac{2}{3}\) Alakibark et a Ligreingt! Parcialis tortelle bondonk: $\frac{\chi+3}{(\kappa+2)(5\chi-1)} = \frac{A}{\chi+2} + \frac{B}{5\chi-1} = \frac{A(5\chi-1)+B(\chi+2)}{(\chi+2)(5\chi-1)}$ $f(x) = \frac{16}{11(5x-1)} - \frac{1}{11(x+2)} = \frac{16}{11} \cdot \frac{1}{1-5x} - \frac{1}{11} \cdot \frac{1}{2(1+\frac{x}{2})} = \frac{1}{11}$ = 11 1-5x 22 $1-(-\frac{x}{2})$ 100 $=\frac{16}{11} \cdot \frac{1}{1-5x} - \frac{1}{22} \cdot \frac{1}{1-(-\frac{x}{2})}$ $\frac{1}{1-(-\frac{x}{2})} = \sum_{N=0}^{+\infty} (-\frac{x}{2})^{N} \left(-14 - \frac{x}{2} < 1\right) = \sum_{N=0}^{+\infty} (-\frac{1}{2})^{N} \times^{N} \left(-24 \times 42\right).$ Tehat $f(x) = \frac{1}{11} \frac{1}{1-5x} - \frac{1}{22} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \int_{-\frac{x}{22}}^{+\infty} \frac{1}{120} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \int_{-\frac{x}{22}}^{+\infty} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \int_{-\frac{x}{22}}^{+\infty} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \int_{-\frac{x}{22}}^{+\infty} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \int_{-\frac{x}{22}}^{+\infty} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \int_{-\frac{x}{22}}^{+\infty} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \int_{-\frac{x}{22}}^{+\infty} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{5}{120} \frac{1}{1-(\frac{x}{2})} = -\frac{16}{11} \frac{1}{1-(\frac{x$ $=\sum_{n=0}^{+\infty}\left[\frac{16\cdot 5^{n}-10\cdot 10^{n}}{10\cdot 10^{n}}\times^{n}\left(-\frac{1}{5}\times\times\times\frac{1}{5}\right)\right].$ b) f(x) = sfn 2x. cos 2x (xen2) Alakitank at a typneryt: fex) = \frac{1}{2} (2. \sin2x. \osc2x) = \frac{1}{2} \sin 4x (\tex). A minusa typièny aitelmesèse sterant sinx = \frac{100}{2000} (2000)!. (XEIR). Tehal $f(x) = \frac{1}{2} \sin 4x = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-1)^n (4x)^{2nH}}{(2nH)!} = \frac{1}{2} \frac{(-1)^n \cdot 4^{2nH}}{(2nH)!} = \frac{1}{2} \frac{(-1)^n \cdot 4^{2nH}$