Math 525, Spring 2018. Homework 7 Due: Thursday, March 15, 2018

- (1) Given chain complexes A_{\bullet} and B_{\bullet} , let $\operatorname{Hom}(A_{\bullet}, B_{\bullet})$ be the set of chain maps between them. Show that 'chain homotopy' is an equivalence relation on this set.
- (2) Verify that homotopic maps induce the same homomorphism between reduced homology groups.
- (3) For an exact sequence $A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$ show that C=0 if and only if the map $A \longrightarrow B$ is surjective and the map $D \longrightarrow E$ is injective. Hence for a pair of spaces (X,A), the inclusion $A \hookrightarrow X$ induces isomorphisms on all homology groups iff $H_n(X,A)=0$ for all n.
- (4) Show that if the short exact $0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$ splits, that is, there is a homomorphism $\gamma: B \longrightarrow A$ such that $\gamma \circ \alpha = \mathrm{id}_A$, then the map

$$B \xrightarrow{\phi} A \oplus C$$
$$b \longmapsto (\gamma(b), \beta(b))$$

is an isomorphism.

- (5) Show that if a subspace $A \subseteq X$ is the image of a retraction $r: X \longrightarrow A$ then, for every $n, H_n(X) \cong H_n(A) \oplus H_n(X, A)$. (Hint: show that the long exact sequence of the pair (X, A) breaks up into the short exact sequences $0 \longrightarrow H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X, A) \longrightarrow 0$, and that these sequences split.)
- (6) Prove the 'Snake Lemma': Given a commuting diagram of Abelian groups and homomorphisms,

in which the rows are short exact sequences, there are induced maps and a connecting homomorphism making the sequence

 $0 \longrightarrow \ker \alpha \longrightarrow \ker \beta \longrightarrow \ker \gamma \longrightarrow \operatorname{coker} \alpha \longrightarrow \operatorname{coker} \beta \longrightarrow \operatorname{coker} \gamma \longrightarrow 0$ exact. (Recall that the cokernel of a homomorphism $R \stackrel{f}{\longrightarrow} S$, is the group S/f(R).)