1. Sequence, Series, and Power Series

Definition. A sequence $\{a_n\}$ has the limit L and we write

$$\lim_{n \to \infty} a_n = L \text{ or } a_n \to L \text{ as } n \to \infty$$

If $\lim_{n\to\infty} a_n$ exists, we say the sequence converges. Otherwise, we say the sequence diverges (or is divergent).

<u>Definition.</u> A sequence $\{a_n\}$ has the limit L if for every $\epsilon > 0$ there is a corresponding integer N such that if n > N then $|a_n - L| < \epsilon$

Definition. The notation $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M there is an integer N such that if n > N then $a_n > M$

Theorem. If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n\to\infty} a_n = L$

Limit Low

not now

Theorem. If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$

Theorem. If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then $\lim_{n\to\infty} f(a_n) = f(L)$

<u>Definition.</u> A sequence $\{a_n\}$ is called

- (1) increasing if $a_n \leq a_{n+1}$ for all $n \geq 1$,
- (2) decreasing if $a_n \ge a_{n+1}$ for all $n \ge 1$,
- (3) monotonic of it is either increasing or decreasing

<u>Definition.</u> A sequence $\{a_n\}$ is bounded above if there is a number $M \ni a_n \le M$ for all $n \ge 1$, and is bounded below if $m \le a_n$ for all n > 1.

If a sequence is bounded above and below, then it is called a bounded sequence.

Theorem (Monotonic Sequence Theorem). Every bounded, monotonic sequence is convergent. In particular, a sequence that is increasing and bounded above converges, and a sequence that is decreasing and bounded below converges.

<u>Definition.</u> If the sequence $\{S_n\}$ is convergent and $\lim_{n\to\infty} S_n = S$ exists as a real number, then the series $\sum a_n$ is called "convergent" If the sequence $\{S_n\}$ is divergent, then the series is called divergent.

<u>Definition</u> (Geometric Series).

$$ries S_n = \frac{a(1-r^n)}{1-r}$$

• If
$$|r| < 1$$
 on its sum is $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$

Theorem. If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$

Properties. If $\sum a_n$ and $\sum b_n$ are convergent series, then so are the series $\sum ca_n$ (where c is a constant), $\sum (a_n + b_n)$, and $\sum (a_n - b_n)$, and

$$(roman*) \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

$$(roman*) \sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

$$(roman*) \sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{b_n}^{\infty} a_n$$

1.1. Integral Test & Estimates of Sum. Integral Test. Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent \Leftrightarrow improper integral $\int_{1}^{\infty} f(x)dx$ is convergent

Remark. The p series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$

Estimate Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$ and $\sum a_n$ is convergent. If $R_n = S - S_n$, then $\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_n^{\infty} f(x)dx \implies S_n + \int_{n+1}^{\infty} f(x)dx \le S \le S_n + \int_n^{\infty} f(x)dx$

Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms

(1) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also.

(2) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also

The Limit Comparison Test. Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$, where c is a finite number and c > 0, then either **both** series converge or diverge.

Alternating Series Test. If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 + \dots + (b_n > 0)$$

satisfies the conditions

(i) $b_{n+1} \leq b_n$ for all n

(ii) $\lim_{n\to\infty} b_n = 0$ then the series is convergent.

Alternating Series Estimation Theorem. If $S = \sum_{n=0}^{\infty} (-1)^{n-1}$, where $b_n > 0$, is the sum of an alternating series that satisfies

(i) $b_{n+1} \leq b_n$ and (ii) $\lim_{n \to \infty} b_n = 0$ then

$$|R_n| = |S - S_n| \le b_{n+1}$$

<u>Definition.</u> A series $\sum a_n$ is called absolutely convergent if the series of absolute values $\sum |a_n|$ is convergent.

<u>Definition.</u> A series $\sum a_n$ is called conditionally convergent if it is convergent but not absolutely convergent; that is, if $\sum a_n$ converges but $\sum |a_n|$ diverges.

Theorem. If a series $\sum a_n$ is absolutely convergent, then it is convergent.

Ration Test

(i) If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent

(ii) If
$$\lim_{n\to\infty \mid \frac{a_{n+1}}{a_n}\mid} = L > 1$$
 or $\lim_{n\to\infty} |\frac{a_{n+1}}{n}| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent

(iii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the ration test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_n$. The Root Test

- (i) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent
- (ii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- (iii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

1.2. Power Series.

Definition. A power series is a series of the form

$$\sum_{n=1}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \cdots$$

and a series of the form

$$\sum_{n=1}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \cdots$$

Theorem. For a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, there are only three possibilities:

- (i) The series converges only when x = a
- (ii) The series converges for all x
- (iii) There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R and the number R in case (iii) is called the radius of convergence of the power series.

Theorem. If the power series $\sum c_n(x-a)^n$ has radius of convergence R > 0, then the function f defined By

$$f(x) = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots = \sum_{n=0}^{\infty} c_n(x - a)^n$$

is differentiable on the interval (a - R, a + R) and

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \dots = \sum_{n=1}^{\infty} c_n(x-a)^{n-1}$$

(ii)
$$\int f(x)dx = C + x_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \dots = C + \sum_{n=1}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$

1.3. Taylor & Maclaurin Series.

<u>Definition</u>. If f has a power series representation (expansion) at a, that is, if

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n |x-a| < R$$

then its coefficients are given by the formula

$$c_n = \frac{f^{(n)(a)}}{n!}$$

$$\implies f(x) = \sum_{n=1}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

and it's called Taylor series of the function f at a. If a = 0 it's called Maclaurin series and $T_n(x) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i$ called the nth-degree

Taylor polynomial of f at a and $R_n(x) = f(x) - T_n(x)$, so that $f(x) = T_n(x) + R_n(x)$, then $R_n(x)$ is called the remainder of the Taylor series.

Theorem. If $f(x) = T_n(x) + R_n(x)$, where T_n is the nth-degree Taylor polynomial of f at a, and if

$$\lim_{n\to\infty} R_n(x) = 0$$

for |x-a| < R, then f is equal to the sum of its Taylor series on the interval |x-a| < R.

Taylor's Inequality. If $|f^{n+1}(x)| \leq M$ for $|x-a| \leq d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality $|R_n(x)| \leq \frac{M}{(n+1)!}|x-a|^{n+1}$ for $|x-a| \leq d$