

Instituto Superior de Engenharia de Lisboa

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores Redes de Internet (LEIC/LEETC/LEIM)

Nome:	Nº de aluno:

1ª Ficha de Avaliação - Setembro 2019

- A resposta à ficha é individual.
- A bibliografia a consultar é a recomendada para a disciplina. Pode e deve procurar mais informação em outras fontes (ex: os livros da biblioteca, as normas e a Internet).
- A ficha é composta por perguntas de escolha múltipla e perguntas de desenvolvimento.
- As perguntas de escolha múltipla podem ter uma ou mais respostas certas. Deve assinalar todas as respostas certas.
- Deve justificar convenientemente todas as suas respostas quer das perguntas de desenvolvimento quer das perguntas de escolha

	múltipla.
	Recorra ao seu professor para esclarecer as dúvidas.
Ĺ	A resposta à ficha deve ser via Moodle até: Ver Moodle
1)	Um switch:
	 ☐ É um equipamento de nível 2 e 3 do modelo OSI ☐ Utiliza o algoritmo de spanning tree para popular a forwarding database ☐ Envia sempre uma trama recebida por todas as portas, exceto por aquela por onde foi recebida ☐ Preenche a forwarding database (FDB) a partir dos endereços de origem das tramas que por ele passam #
2)	Um switch que implemente o modo de comutação cut-though reenvia as tramas assim que:
	□ O primeiro bit é recebido □ Completa a receção de 512 bits □ Completa a receção do endereço de origem □ Completa a receção do endereço de destino #
3)	Para uma rede com suporte de VLAN considere:
	 □ As VLAN nos switches configuram-se através de mensagens DHCP □ O algoritmo Spanning Tree não pode funcionar numa rede que possua várias VLAN □ As tramas de broadcast apenas são enviadas para as portas dos switches pertencentes à mesma VLAN por onde entram # □ Numa ligação trunk nunca circulam tramas marcadas (802.1Q Tagged) em conjunto com tramas não marcadas
4)	Considere as VLAN:
	 □ O número máximo de VLAN é de 4096 □ Dividir uma rede em várias VLAN aumenta o número de domínios de broadcast # □ A comutação de tráfego entre as VLAN só ocorre em equipamentos que implementem a camada 3 do modelo OSI # □ Uma trama com um endereço de broadcast como endereço de destino é difundida por todas as portas de todas as VLAN

É verdade. Os switches separam domínios de broadcast. Um broadcast L2 não passa de um lado para o outro de um router mas passa num switch, mas não entre as VLAN.

01:80:c2:00:00:00? Os BPDU são transportados pelo LLC em cima de MAC. Usam o endereço MAC de multicast 01:80:c2:00:00:00 e usam um valor no campo de DSAP no LLC que indica que transportam os BPDU do STP. IEEE 802.3 Ethernet (MAC) Destination: 01:80:c2:00:00 (multicast STP) Source: 00:00:00:00:02:01 Length: 7 Logical-Link Control (LLC) DSAP: Spanning Tree BPDU (0x42) IG Bit: Individual SSAP: Spanning Tree BPDU (0x42) CR Bit: Command Control field: U, func = UI (0x03) 00.. = Unnumbered Information11 = Unnumbered frame **Spanning Tree Protocol** Protocol Identifier: 0x0000 (Spanning Tree) Protocol Version Identifier: 0 BPDU Type: ... 6) Em quais os estados do protocolo STP uma porta de um switch recebe e não processa tramas com o BPDU? ☐ Disable # □ Blocking ☐ Listening ☐ *Learning* ☐ *Forwarding* 7) Quais das seguintes afirmações são verdadeiras no que se refere ao STP (ignore as VLAN)? ☐ Uma porta root port está no estado forwarding # ☐ Podem existir várias designated port por cada switch # ☐ O DPC (Designated Path Cost) pode ter o valor 0 em qualquer switch ☐ O hello time é negociado por todas as bridges que participam no STP 8) Indique as camadas do modelo OSI, orientadas à rede, executadas nos seguintes equipamentos: Repetidor: (1, controverso dado alguns autores assumirem que é de nível 2 pois repete bits mas tem de ter a noção de trama, nomeadamente quando pretende proteger a rede de tramas demasiado longas.) Switch:1 e 2 Router: 1, 2 e 3 Multilayer Switch: 1, 2 e 3; Equipamento que se pode comportar com switch ou como router; Muito rápido a realizar routing mas não implementa todos os protocolos ______ 9) Considere a rede: 126.23.41.128/25: a) A sub rede 126.23.42.0/24 é válida dentro dessa gama F

5) Como é que um switch reage ao receber uma trama Ethernet com endereço MAC destino

- b) A sub-rede 126.23.41.197/29 é válida dentro dessa gama F
- c) Quando agregada com a rede 126.23.41.0/25, pode ser sumarizada por: 126.23.41.0/24 V
- d) Sumariza a agregação das seguintes sub-redes: 126.23.41.128/26, 126.23.41.192/27, 126.23.41.240/28 F
- 10) Num segmento de rede a comunicação entre um dispositivo dessa rede e do *default gateway* é realizado sempre numa entrega direta?

Sim, se os dispositivos estão no mesmo segmento de rede o dispositivo, obtém o endereço MAC do default gateway via protocolo de ARP e realiza a entrega direta.

- 11) Em que situação o administrador de um *switch* pode configurar uma porta em modo FastSwitching? O que acontece a essa porta e que dispositivos podem ser ligados? O Administrador pode configura a porta em modo *FastSwitching* se o equipamento a ligar nessa porta não criar loops na rede (router /PC). Estas portas passam logo para o estado de *forwarding* não executando o protocolo de STP
- 12) Numa topologia que utilize várias VLAN e use várias árvores, como é que os BPDU são diferenciados entre VLAN distintas? Campo de Bridge Id

```
5. Root ID: 8 bytes (CIST Root ID in MST/SPT BPDU)
bits : usage
   1-4 : Root Bridge Priority
   5-16 : Root Bridge System ID Extension
   17-64 : Root Bridge MAC Address
```

	17-64 : Root Bridge MAC Address
•	nsidere as redes virtuais IEEE802.1Q. Quando um <i>switch</i> transfere uma trama <i>Ethernet</i> entre uma rta de acesso (não <i>tagged</i>) e uma <i>tagged</i> IEEE802.1Q (<i>trunk</i>):
	Os trunks só podem ser ligados entre switches As tramas de gestão do IEEE802.1Q têm todas o VLAN ID = 0 Jma VLAN pode existir num switch sem que nenhuma porta esteja configurada em modo de acesso # Juma porta configurada em modo de acesso o switch envia sempre as tramas para o dispositivo sem ag mas o dispositivo pode enviar tramas para o switch com ou sem a tag
14) Em	RSTP (IEEE802.1W) uma porta <i>backup</i> pertence ao <i>switch</i> que está ligado a um segmento em que:
□ T □ T □ T	root do segmento Tenha root ports no mesmo segmento Tem todas as outras portas em discarding Tenha uma porta designated para o mesmo segmento Só se for designated, se for root port não é V erdade
15) Cor	nsidere o protocolo <i>RSTP</i> :
	Jma porta bloqueada interrompe a receção dos BPDU D processo de reiniciar uma nova topologia pode ser despoletado por falta de C-BPDU # A forma de recuperar de uma situação de falha na topologia é semelhante no STP e no RSTP D processo de reiniciar uma nova topologia pode ser despoletado por deteção de anomalia numa gação #
	Desligar um <i>switch</i> numa extremidade da rede (nenhum <i>switch</i> recebe <i>BPDU</i> deste), desencadeia a execução do protocolo <i>RSTP</i> em toda a rede

16) RSTP:

- □ A bridge de root é eleita da mesma forma que no STP #
 □ Uma bridge/switch que suporte RSTP é compatível com STP #
 □ As portas alternate e backup estão num estado semelhante ao de blocking #
 □ Uma porta configurada em FastSwitch não executa o protocolo STP até receber um BPDU #
 □ As tramas com endereço destino de broadcast transitam sempre para as restantes portas mesmo se a porta que recebe a trama está em modo backup
- 17) Considere a seguinte topologia de rede assumindo que o SW1 tem a maior prioridade e os restantes switches têm prioridades iguais e endereços MAC crescentes de acordo com a numeração dos switches. As ligações entre os switches são todas em modo de acesso e todos os switches utilizam Spanning Tree. Assuma que usou o comando "spanning-tree pathcost method short" [https://www.cisco.com/c/m/en_us/techdoc/dc/reference/cli/nxos/commands/l2/spanning-tree-cost.html]

- a) Preencha a tabela com a topologia ativa da rede.
- b) Considere foi executado o comando Ping no PC3 com o endereço do PC4. Indique o percurso realizado pelas tramas de ICMP echo request. Relativamente às tramas de ICMP echo reply o percurso é o mesmo ou outro?
 - PC3->SW3->SW1->SW2->SW4->PC4. O caminho de retorno é o mesmo uma vez que depois de estabilizada a topologia não existem caminhos alternativos para evitar loops.
- c) Se falhar a ligação entre o SW1 e SW3, e após estabilização da topologia, indique o percurso realizado pelas tramas que circulam entre o PC3 e o PC1?
 - Apesar do RPC até ao SW3 ser de 35, tanto via o SW5 como por o SW4, a ligação ativa fica via o SW5 por o segmento ter um custo menor. PC3->SW3->SW5->SW6->SW4->SW 2->SW 1->PC1.

Po	ort	PC	RPC	RP	Segm ent	DPC	DP	Block ing	Comments
	Gi0/1		38 (19+19)	Α				х	
SW1	Gi0/2		-	-			х		PC
	Fa0/10								
SW2	Fa0/1		23 (19+4)	В	X				
3002	Gi0/1		19	D	X				
	Fa0/1		38 (19+19)	С			x		
SW3	Fa0/10		-	-			X		PC
3003	Gi0/1		-	D			X		
	Gi0/2		-	Е			x		
	Fa0/1		-	-			x		PC
SW4	FA0/2		42 (19+4+19)	A'			x		DP pq <rpc <port="" e="" id<="" th=""></rpc>
3004	FA0/10		-	-			X		PC
	Gi0/1		42 (19+4+19)	Α''				x	
	Gi0/1		4	Е	X				
SW5	Gi0/2		38 (19+19)	С				x	Porta Gi ligada a porta Fa trabalha a 100Mbps
SW6	Gi0/1								
3000	Gi0/2		42 (19+19+4)	В			x		

d) Como procederia para garantir que o SW3 passe a root?

Aumentaria a sua prioridade no Bridgeld do SW3 e diminuía a prioridade no Bridgeld do Sw1.

- e) Na situação da alínea d) que alterações seriam necessárias realizar por forma a garantir que a arvore resultante após estabilização não tem mais do que 3 *switch* por ramo (RB mais dois switch)?
 - Com o SW3 como RB temos uma arvore com a seguinte estrutura SW2<-SW1<-SW3->SW5->SW6->SW4. Para que nenhum ramo tenha mais que 3 switch é necessário que o SW4 passe a ter o root port no segmento que vai para o SW3. Dado que não existem mais portas de Giga no SW3 a opção passa por aumentar o custo na ligação entre o SW3 e o SW5 de forma a que o RPC na porta Gi0/1 do SW4 seja superior ao da porta Fa0/2 do SW4, o que fará que a RP do SW4 passe a ser a interface Fa0/2
- f) Considere a situação inicial com o SW1 a ser a *root bridge*, os *switches* passam a utilizar o algoritmo RSTP e existe uma segunda ligação entre o SW3//FA0/4 e o SW4//FA0/4. Refaça a tabela da alínea a).

Po	ort	PC	RPC	RP	Segm ent	DPC	DP	Block ing	Comments
	Gi0/1		38 (19+19)	Α				X	
SW1	Gi0/2		-	-			х		PC
	Fa0/10								
SW2	Fa0/1		23 (19+4)	В	X				
3002	Gi0/1		19	D	x				
	Fa0/1		38 (19+19)	С			x		
SW3	Fa0/10		-	-			x		PC
3003	Gi0/1		-	D			x		
	Gi0/2		-	Е			x		
	Fa0/1		-	-			x		PC
SW4	FA0/2		42 (19+4+19)	A'			x		DP pq <rpc <port="" e="" id<="" th=""></rpc>
3004	FA0/10		-	-			x		PC
	Gi0/1		42 (19+4+19)	Α''				x	
	Gi0/1		4	Е	X				
SW5	Gi0/2		38 (19+19)	С				X	Porta Gi ligada a porta Fa trabalha a 100Mbps
SW6	Gi0/1								
SWb	Gi0/2		42 (19+19+4)	В			х		_