Termin odesłania **21.01.2022 godz. 14.15** na platformie **Ms Teams** (we właściwym zespole **lab** przypisanym dla przedmiotu **Programowanie Matematyczne**). **Opóźnione** przesłanie rozwiązania zadania będzie rozliczane zgodnie z regulaminem przedmiotu.

Rozwiązanie zadania tj. wszystkie źródłowe **m-pliki, raport** (*obowiązkowy, zawierający oświadczenie o samodzielności*) w formacie **zip** o nazwie **pm7c_swojeimie_swojenazwisko.zip**

Raport (plik pdf) powinno być w formacie A4 i powinno obejmować:

Dane studenta (imię, nazwisko, grupa, data)

Treść zadania (postać rozwiązywanego problemu)

Opis kroków przekształcania zadania, krótki opis algorytmu

Ciekawe przykłady obliczeniowe (również dodatkowo wskazane w treści zadania)

Analizę (omówienie) wyników obliczeniowych, testów

Ponadto należy załączyć:

Kody źródłowe wszystkich funkcji/procedur i skryptów (**brak** kompletu jest traktowany jak **brak** przesłania zadania w terminie)

Napisz skrypt, w którym proszę wykonać całe zadanie i wywołać odpowiednie funkcje.

Zaproponuj plik **dane.m**, który utworzy tablicę $P = [p^1, p^2, ..., p^m]$ losowo wygenerowanych m punktów (w R^3), kolejne **kolumny** tablicy zawierają współrzędne wylosowanych punktów (tablica P wymiaru 3xm, przykładowe **losowe dane** mogą zawierać wylosowane punkty o współrzędnych. z [-200, 200], może inne?).

Funkcja zwraca również x0 dla wygenerowanych danych, jest to punkt startowy dla własnego algorytmu IPM.

Problem minimalnej kuli zawierającej punkty P

7P1

Znaleźć parametry optymalnej kuli: promień $r \in R$ oraz środek $s \in R^3$, co można zapisać w postaci zadania:

$$\begin{cases}
\min_{x=(s,r)} r \\
\|p^i - s\| \le r, \quad i = 1, ..., m
\end{cases}$$

ZP2

 $z = r^2$

Problem można zapisać w postaci:

$$\begin{cases} \min_{x=(s,r)} z \\ \left\|p^i-s\right\|^2 \leq z, \quad i=1,\ldots,m \end{cases} \text{czyli} \qquad \begin{cases} \min_{x=(s,r)} z \\ (p^i)^T p^i - 2(p^i)^T s + s^T s \leq z, \quad i=1,\ldots,m \end{cases}$$

ZD

Problem ZP2 można rozwiązać, sprowadzając do rozwiązania ZD (zadania programowania kwadratowego):

$$\max_{\mathbf{y} \in \Omega_{\mathbf{y}}} \left(-\mathbf{y}^T \mathbf{P}^T \mathbf{P} \mathbf{y} + \sum_{i=1}^m \mathbf{p}_i^T \mathbf{p}_i \mathbf{y}_i \right)$$

$$\Omega_{\mathbf{y}} : \begin{cases} \sum_{i=1}^m \mathbf{y}_i = 1 \\ \mathbf{y} \ge \mathbf{0} \end{cases}$$

Dla \overline{y} będącego RO, $s = P\overline{y} = \sum_{i=1}^{m} y_i p_i$, natomiast $r = \sqrt{fval}$, gdzie fval – wartość funkcji \overline{ZD} .

1 pkt

Zdefiniuj odpowiednie macierze dla funkcji celu oraz dla ograniczeń.

Rozwiązać problem ZD za pomocą funkcji quadprog dla różnych plików danych (m=2,3,10,100,200, więcej?)

W optimoptions ustaw:

ConstraintTolerance: 1.0000e-10
OptimalityTolerance: 1.0000e-10

Gdy exitflag jest równe 1, to podaj znaleziony wektor \mathbf{y} , oraz wyznacz środek kuli \mathbf{s} , promień \mathbf{r} .

Wywołaj: rysuj3d(P,s,r)

1 pkt (opis w raporcie)

- Napisz funkcje Lagrange'a $L(s, z, \lambda)$ dla **ZP2** (λ mnożniki Lagrange'a)
- Napisz komplet WKT dla ZP2, zaobserwuj jakie zależności z nich wynikają?
- Jeśli ZP2 odpowiada postaci: min_(s,z) max_{λ≥0} L(s, z, λ), to uzasadnij podaną powyżej postać ZD przekształcając je do max_{λ≥0} min_(s,z) L(s, z, λ). Czym są zmienne y w ZD?
 Uzasadnij dokładnie: skąd otrzymujemy wzór maksymalizowanej funkcji w ZD, skąd otrzymujemy ograniczenia w ZD, skąd wynikają wzory na wyznaczenie s oraz r.

3 pkt

Proszę rozwiązać **problem ZD** (*i porównać z powyższymi wynikami quadprog-a*) za pomocą **własnej funkcji** wykorzystującej **algorytm punktu wewnętrznego** *IPM* dla odpowiedniego **zadania kwadratowego**

W raporcie (*obowiązkowo*) należy podać **opis algorytmu** wykorzystanego w **swojej implementacji** oraz **uzasadnić** wszystkie podejmowane **kroki**.

Uzasadnij, jak wyznacza się **kierunek**, jak wyznacza się **krok** oraz **kluczowe parametry** (np. punkt startowy, warunek stopu, itp).

```
[RO, f_opt, exitflag, it, LL_eqlin, LL_lower]=IPM(parametry);
e=? parametr definiujący dokładność obliczeń (zbieżność, itp.), np. e=1e-6?
x0 - punkt startowy
MAX_IT = ?
M = ?
it - liczba iteracji
LL - obliczone mnożniki Lagrange'a (które zmienne w algorytmie IPM stanowią mnożniki Lagrange'a?)
```

Jeśli istnieje rozwiązanie zadania (**exitflag=1**), to zbadaj skuteczność algorytmu (*może wykres?*): **norm(x-R0)**

Jeśli istnieje rozwiązanie zadania (exitflag=1), to wyświetl mnożniki Lagrange'a oraz porównaj je z uzyskanymi z quadprog.

TESTY

- Należy przeprowadzić **testy algorytmu** dla różnych wartości *m* (*jak duże?*) w celu zbadania liczby iteracji, której wymaga algorytm, by uzyskać rozwiązanie z podaną dokładnością.
- Oczekiwana jest wysoka skuteczność własnej implementacji IPM (dopracuj parametry algorytmu).

Opis testów Wnioski