Introduction to TTE modeling: Workbook 2

Kaplan-Meier estimates and plots

2023-07-11

Contents

Preliminaries for R examples	1
Estimating the survival function	1

Preliminaries for R examples

```
library(tidyverse)
library(stringr)
library(survival)
library(survminer)
library(texreg)
library(mgcv)
library(flexsurv)
library(muhaz)
library(Hmisc)
```

Estimating the survival function

We'll use the survfit function to estimate the Survival function.

Using our example data from the last class, let's estimate the overall S(t), i.e., not stratifying by any covariates.

The key elements:

0.013258

160

1

- survfit: the function used to obtain the K-M (or Flemming-Harrington) estimate of the survival function
 - stype=1 (the default) gives the K-M estimate
 - stype=2 gives the Fleming-Harrington estimate
- Surv function for defining the outcome
 - For right-censored data, the first argument is the observed event time variable, and the second argument is the even indicator (1 or TRUE for an event; 0 or FALSE for censoring)

Obtaining the estimate and looking at some output:

```
km_est = survfit(Surv(TTE,ae_any)~1, data = dat_use)
print(km_est)
. Call: survfit(formula = Surv(TTE, ae_any) ~ 1, data = dat_use)
         n events median 0.95LCL 0.95UCL
 [1,] 180
                    0.32
                           0.139
              132
                                    0.649
summary(km est)
. Call: survfit(formula = Surv(TTE, ae_any) ~ 1, data = dat_use)
       time n.risk n.event survival std.err lower 95% CI upper 95% CI
  0.000805
               180
                         1
                               0.994 0.00554
                                                    0.984
                                                                  1.000
  0.001935
               179
                         1
                               0.989 0.00781
                                                    0.974
                                                                  1.000
  0.002245
               178
                         1
                              0.983 0.00954
                                                    0.965
                                                                  1.000
  0.002302
               177
                              0.978 0.01099
                                                    0.956
                                                                  1.000
                         1
               176
  0.003077
                         1
                               0.972 0.01225
                                                    0.949
                                                                  0.997
  0.003199
               175
                               0.967 0.01338
                         1
                                                    0.941
                                                                  0.993
  0.004871
               174
                         1
                               0.961 0.01441
                                                    0.933
                                                                  0.990
  0.005289
               173
                               0.956 0.01536
                                                    0.926
                         1
                                                                  0.986
  0.006043
               172
                         1
                               0.950 0.01624
                                                    0.919
                                                                  0.982
  0.006828
               171
                         1
                               0.944 0.01707
                                                    0.912
                                                                  0.979
  0.008177
                               0.939 0.01785
                                                    0.905
               170
                         1
                                                                  0.975
  0.008267
               169
                               0.933 0.01859
                                                    0.898
                         1
                                                                  0.970
  0.008707
               168
                         1
                               0.928 0.01929
                                                    0.891
                                                                  0.966
  0.008826
               167
                         1
                               0.922 0.01996
                                                    0.884
                                                                  0.962
  0.010071
               166
                         1
                               0.917 0.02060
                                                    0.877
                                                                  0.958
  0.010159
               165
                               0.911 0.02121
                         1
                                                    0.870
                                                                  0.954
  0.010784
               164
                         1
                               0.906 0.02180
                                                    0.864
                                                                  0.949
. 0.010916
               163
                         1
                              0.900 0.02236
                                                    0.857
                                                                  0.945
  0.011968
               162
                         1
                              0.894 0.02290
                                                    0.851
                                                                  0.940
  0.012724
               161
                         1
                               0.889 0.02342
                                                    0.844
                                                                  0.936
```

0.838

0.931

0.883 0.02393

	0.014633	159	1	0.878 0.02441	0.831	0.927
•	0.014033	158	1	0.872 0.02481	0.825	0.927
•						
•	0.023699	157	1	0.867 0.02534	0.818	0.918
•	0.023706	156	1	0.861 0.02578	0.812	0.913
•	0.026148	155	1	0.856 0.02620	0.806	0.908
•	0.026399	154	1	0.850 0.02661	0.799	0.904
	0.026941	153	1	0.844 0.02701	0.793	0.899
	0.027425	152	1	0.839 0.02740	0.787	0.894
	0.028619	151	1	0.833 0.02778	0.781	0.890
	0.032233	150	1	0.828 0.02814	0.774	0.885
	0.032706	149	1	0.822 0.02850	0.768	0.880
	0.032818	148	1	0.817 0.02884	0.762	0.875
	0.033797	147	1	0.811 0.02917	0.756	0.870
	0.034673	146	1	0.806 0.02950	0.750	0.865
•	0.035457	145	1	0.800 0.02981	0.744	0.861
•	0.035762	144	1	0.794 0.03012	0.738	0.856
•	0.036722		1	0.789 0.03042	0.731	0.851
•		143				
•	0.039233	142	1	0.783 0.03071	0.725	0.846
•	0.039720	141	1	0.778 0.03099	0.719	0.841
•	0.040568	140	1	0.772 0.03126	0.713	0.836
•	0.041805	139	1	0.767 0.03153	0.707	0.831
	0.042022	138	1	0.761 0.03178	0.701	0.826
	0.045127	137	1	0.756 0.03203	0.695	0.821
	0.055222	136	1	0.750 0.03227	0.689	0.816
	0.055578	135	1	0.744 0.03251	0.683	0.811
	0.057453	134	1	0.739 0.03274	0.677	0.806
	0.057879	133	1	0.733 0.03296	0.671	0.801
	0.061409	132	1	0.728 0.03318	0.666	0.796
	0.061810	131	1	0.722 0.03338	0.660	0.791
	0.063174	130	1	0.717 0.03359	0.654	0.786
•	0.065723	129	1	0.711 0.03378	0.648	0.781
•	0.065771	128	1	0.706 0.03397	0.642	0.775
•	0.066141	127	1	0.700 0.03337	0.636	0.770
•	0.066437		1			0.765
•		126		0.694 0.03433	0.630	
•	0.066679	125	1	0.689 0.03451	0.624	0.760
•	0.070688	124	1	0.683 0.03467	0.619	0.755
•	0.072054	123	1	0.678 0.03483	0.613	0.750
•	0.075189	122	1	0.672 0.03499	0.607	0.744
•	0.084249	121	1	0.667 0.03514	0.601	0.739
•	0.084579	120	1	0.661 0.03528	0.595	0.734
	0.084672	119	1	0.656 0.03542	0.590	0.729
	0.086239	118	1	0.650 0.03555	0.584	0.724
	0.086305	117	1	0.644 0.03568	0.578	0.718
	0.101183	116	1	0.639 0.03580	0.572	0.713
	0.104850	115	1	0.633 0.03592	0.567	0.708
	0.106140	114	1	0.628 0.03603	0.561	0.703
	0.109378	113	1	0.622 0.03614	0.555	0.697
-	0.115346	112	1	0.617 0.03624	0.550	0.692
•	0.117250	111	1	0.611 0.03634	0.544	0.687
•	0.117230	110	1	0.606 0.03643	0.538	0.681
•	0.117528	109	1	0.600 0.03651		
•					0.533	0.676
•	0.127254	108	1	0.594 0.03660	0.527	0.671
•	0.127997	107	1	0.589 0.03667	0.521	0.665
•	0.133053	106	1	0.583 0.03675	0.516	0.660

•	0.133380	105	1	0.578 0.03		
•	0.136157	104	1	0.572 0.03		
•	0.139387	103	1	0.567 0.03		
•	0.141296	102	1	0.561 0.03		
•	0.149190	101	1	0.556 0.03		0.633
	0.150323	100	1	0.550 0.03	708 0.48	2 0.628
	0.153820	99	1	0.544 0.03	712 0.47	6 0.622
	0.155550	98	1	0.539 0.03	715 0.47	1 0.617
	0.165857	97	1	0.533 0.03	718 0.46	5 0.611
	0.179546	96	1	0.528 0.03	721 0.46	0.606
	0.207173	95	1	0.522 0.03	723 0.45	4 0.601
	0.272220	94	1	0.517 0.03	725 0.44	9 0.595
	0.273933	93	1	0.511 0.03	726 0.44	3 0.590
	0.312540	92	1	0.506 0.03	727 0.43	0.584
	0.314848	91	1	0.500 0.03	727 0.43	2 0.579
	0.325156	90	1	0.494 0.03	727 0.42	7 0.573
	0.327124	89	1	0.489 0.03	726 0.42	1 0.568
	0.353456	88	1	0.483 0.03	725 0.41	6 0.562
	0.389702	87	1	0.478 0.03		
	0.393778	86	1	0.472 0.03		
	0.416938	85	1	0.467 0.03	718 0.39	9 0.546
	0.423652	84	1	0.461 0.03	715 0.39	4 0.540
	0.462944	83	1	0.456 0.03		
	0.481351	82	1	0.450 0.03		
	0.495438	81	1	0.444 0.03		
	0.553784	80	1	0.439 0.03		
	0.591294	79	1	0.433 0.03		
	0.609558	78	1	0.428 0.03		
	0.643238	77	1	0.422 0.03		
	0.649290	76	1	0.417 0.03		
	0.660878	75	1	0.411 0.03		
	0.734580	74	1	0.406 0.03		
	0.754551	73	1	0.400 0.03		
	0.761845	72	1	0.394 0.03		
•	0.762268	71	1	0.389 0.03		
•	0.878613	70	1	0.383 0.03		
•	0.886580	69	1	0.378 0.03		
•	0.902642	68	1	0.372 0.03		
•	1.071367	67	1	0.367 0.03		
•	1.169048	66	1	0.361 0.03		
•	1.283269	65	1	0.356 0.03		
•	1.529470	64	1	0.350 0.03		
•	1.900000	63	4	0.328 0.03		
•	2.014711	37	1	0.319 0.03		
•	2.047774	36	1	0.310 0.03		
•	2.192981	35	1	0.310 0.03		
•	2.376302	34	1	0.301 0.03		
•		33	1	0.292 0.03		
•	2.414482					
•	2.937613	32 31	1	0.275 0.03		
•	3.316241	31	1	0.266 0.03		
•	4.071150 5.900000	30 29	1 3	0.257 0.03 0.230 0.03		
•	5.300000	23	J	0.230 0.03	480 0.17	1 0.310

Plotting the estimate using ggsurvplot:

Often it's helpful to add the number of subjects at risk to the bottom of the plot (a risk table).

Exercise:

1. Obtain the Kaplan-Meier estimates for time to any AE by exposure quartile. Hint: the right hand side of the formula will be " \sim Quartile"

```
km_est_css = survfit(Surv(TTE,ae_any)~Quartile, data = dat_use)
```

2. Plot the estimates using ggsurvplot. Do you see any evidence of an exposure-response relationship? ggsurvplot(km_est_css, risk.table = TRUE)

3. Repeat steps 1 and 2 for time to a severe AE (event time variable is TTE_SEVERE, and the event indicator variable is AE01). Do you see any evidence of an exposure-response relationship?

km_est_severe_css = survfit(Surv(TTE_SEVERE, AE01)~Quartile, data = dat_use)
ggsurvplot(km_est_severe_css)

3. Extra: Plot the K-M estimates by patient type, faceted by exposure quartile. Hint: Fit model Surv(TTE,AY_any)~PTTYPE and use the facet.by argument to ggsurvplot

```
fit <- survfit(Surv(TTE_SEVERE, AEO1)~PTTYPE, data=dat_use)
ggsurvplot(fit, facet.by = 'Quartile', data=dat_use)</pre>
```


