به نام بگانه معبود بخشنده مهربان

مبانی یادگیری ماشین

Machine Learning Foundations

گروه هوش مصنوعی، دانشکده مهندسی کامپیوتر، دانشگاه اصفهان

ترم اول سال تحصیلی ۲۰-30

ارائه دهنده : پیمان ادیبی

دستهبند نزدیکترین همسایهها Nearest Neighbors Classifier

مدلهای غیر پارامتری

- Non-parametric models
 - distance
 - non-linear decision boundaries

Note: We will mainly use today's method for classification, but it can also be used for regression

مثال: دسته بندي پرتقالها و ليموها

مثال: دسته بندي پرتقالها و ليموها

معنای دسته بند «خطی»

- Classification is intrinsically non-linear
 - It puts non-identical things in the same class, so a difference in the input vector sometimes causes zero change in the answer
- Linear classification means that the part that adapts is linear (just like linear regression)

$$z(x) = \mathbf{w}^T \mathbf{x} + w_0$$

with adaptive \mathbf{w}, w_0

The adaptive part is followed by a non-linearity to make the decision

$$y(x) = f(z(x))$$

• What functions f() have we seen so far in class?

دسته بندی به عنوان استقراء (Induction)

دسته بندی مبتنی بر نمونه (Instance-based)

- Alternative to parametric models are non-parametric models
- These are typically simple methods for approximating discrete-valued or real-valued target functions (they work for classification or regression problems)
- Learning amounts to simply storing training data
- Test instances classified using similar training instances
- Embodies often sensible underlying assumptions:
 - Output varies smoothly with input
 - Data occupies sub-space of high-dimensional input space

نزدیکترین همسایه ها

- Assume training examples correspond to points in d-dim Euclidean space
- Idea: The value of the target function for a new query is estimated from the known value(s) of the nearest training example(s)
- Distance typically defined to be Euclidean:

$$||\mathbf{x}^{(a)} - \mathbf{x}^{(b)}||_2 = \sqrt{\sum_{j=1}^{d} (x_j^{(a)} - x_j^{(b)})^2}$$

Algorithm:

1. Find example (x^*, t^*) (from the stored training set) closest to the test instance x. That is:

$$x^* = \underset{x^{(i)} \in \text{train. set}}{\operatorname{argmin}} \operatorname{distance}(x^{(i)}, x)$$

- 2. Output $y = t^*$
- Note: we don't really need to compute the square root. Why?

نزدیکترین همسایه ها - مرزهای تصمیم

- Nearest neighbor algorithm does not explicitly compute decision boundaries, but these can be inferred
- Decision boundaries: Voronoi diagram visualization
 - show how input space divided into classes
 - each line segment is equidistant between two points of opposite classes

نزدیکترین همسایه ها - مرزهای تصمیم

Example: 2D decision boundary

نزدیکترین همسایه ها - مرزهای تصمیم

Example: 3D decision boundary

(kNN) نزدیکترین همسایه ها k

[Pic by Olga Veksler]

- Nearest neighbors sensitive to mis-labeled data ("class noise"). Solution?
- Smooth by having k nearest neighbors vote

Algorithm (kNN):

- 1. Find k examples $\{x^{(i)}, t^{(i)}\}$ closest to the test instance x
- 2. Classification output is majority class

$$y = arg \max_{t^{(z)}} \sum_{r=1}^{k} \delta(t^{(z)}, t^{(r)})$$

(kNN) نزدیکترین همسایه ها k

How do we choose k?

- Larger k may lead to better performance
- But if we set k too large we may end up looking at samples that are not neighbors (are far away from the query)
- We can use cross-validation to find k
- Rule of thumb is k < sqrt(n), where n is the number of training examples

[Slide credit: O. Veksler]

(kNN) نزدیکترین همسایه ها k

k نزدیکترین همسایه ها - مسایل و راه حلها

- Some attributes have larger ranges, so are treated as more important
 - normalize scale
 - Simple option: Linearly scale the range of each feature to be, eg, in range [0,1]
 - ▶ Linearly scale each dimension to have 0 mean and variance 1 (compute mean μ and variance σ^2 for an attribute x_j and scale: $(x_j m)/\sigma$)
 - be careful: sometimes scale matters
- Irrelevant, correlated attributes add noise to distance measure
 - eliminate some attributes
 - or vary and possibly adapt weight of attributes
- Non-metric attributes (symbols)
 - Hamming distance

نزدیکترین همسایه ها - مسایل و راه حلها k

- Assign the majority class among the k-nearest neighbors
- K=2?
- K=17?
- How do we define x^{train} nearest to x^{test} ?
 - $d(x^{train}, x^{test}) \le d(x, x^{test}), \forall x \in D$
- Obviously... but how do we define the distance function d?

18

k نزدیکترین همسایه ها - مسأله فاصلهها

Minkowski distance

$$d(x, x') = (\sum_{i} |x_{i} - x'_{i}|^{p})^{\frac{1}{p}}$$

- □ p is a model (K-NN) parameter
- $p = 1 \rightarrow (Manhattan distance)... why Manhattan?$
- $p = 2 \rightarrow (Euclidian distance)$
- $p = \infty \to \max_{i} |x_i x_i'|$
- $p = -\infty \to \min_i |x_i x_i'|$

Manhattan

Euclidean

نزدیکترین همسایه ها - مسأله فاصلهها k

- Which blue circle is closest to the red x?
- $d(x, x') = (\sum_{i} |x_i x_i'|^p)^{\frac{1}{p}}$
- p = 1
- p = 2
- $p = \infty$
- $p = -\infty$

k نزدیکترین همسایه ها - مسایل و راه حلها

- Expensive at test time: To find one nearest neighbor of a query point x, we must compute the distance to all N training examples. Complexity: O(kdN) for kNN
 - Use subset of dimensions
 - Pre-sort training examples into fast data structures (kd-trees)
 - Compute only an approximate distance (LSH)
 - Remove redundant data (condensing)
- Storage Requirements: Must store all training data
 - Remove redundant data (condensing)
 - Pre-sorting often increases the storage requirements
- High Dimensional Data: "Curse of Dimensionality"
 - Required amount of training data increases exponentially with dimension
 - Computational cost also increases dramatically

√380 [Slide credit: David Claus]

k نزدیکترین همسایه ها - حذف افزونگی

• If all Voronoi neighbors have the same class, a sample is useless, remove it

[Slide credit: O. Veksler]

k نزدیکترین همسایه ها - تعداد داده لازم

- Assume a 1-dimension feature vector from [0,1]
- Accurate predictions require k neighbors within l distance
- Add n samples (uniform distribution)
- Interval of size l covers $\frac{l}{1}$ of the state space and should include $\frac{k}{n}$ of the (uniform) samples on expectancy
- $\frac{l}{1} = \frac{k}{n} \text{ and so } n = \frac{k}{l} \text{ e.g., } k = 10, l = 0.01$ requires 1000 samples

نزدیکترین همسایه ها - تعداد داده لازم k

- Now consider a 2D feature vector: \mathbb{R}^2
- A square of size l^2 covers $\frac{l^2}{1^2}$ of the state space and should include $\frac{k}{n}$ of the (uniform)

samples on expectancy
$$\rightarrow n = \frac{k}{l^2}$$

Now consider a 3D feature vector: [0,1]³

$$\rightarrow n = \frac{k}{l^3}$$

For the general case (d dimensions)

$$\square$$
 $n = \frac{k}{l^d}$

معضل بعد (Cures of Dimensionality)

$$n = \frac{k}{l^d}$$

$$k = 10$$

$$l = 0.1$$

معضل بعد (Cures of Dimensionality)

Frequency of pairwise Euclidian distances between randomly distributed points within d-dimensional unit squares

• K-NN is meaningless for $d \ge 10$

معضل بعد (Cures of Dimensionality)

- How many features are in a 1.3MP RGB image
 - □ ~4M dimensions
- We would need $\frac{10}{0.1^{4000000}}$ samples
 - Not enough atoms in the universe
- Say we could get all these samples, what is the computation complexity for inference?
 - \bigcirc O(nd)

مثال: شناسایی ارقام دستنویس

Decent performance when lots of data

0123456789

- Yann LeCunn MNIST Digit Recognition
 - Handwritten digits
 - 28x28 pixel images: d = 784
 - 60,000 training samples
 - 10,000 test samples
- Nearest neighbour is competitive

lest Error Rate (%)	
Linear classifier (1-layer NN)	12.0
K-nearest-neighbors, Euclidean	5.0
K-nearest-neighbors, Euclidean, deskewed	2.4
K-NN, Tangent Distance, 16x16	1.1
K-NN, shape context matching	0.67
1000 RBF + linear classifier	3.6
SVM deg 4 polynomial	1.1
2-layer NN, 300 hidden units	4.7
2-layer NN, 300 HU, [deskewing]	1.6
LeNet-5, [distortions]	8.0
Boosted LeNet-4, [distortions]	0.7

مثال: این تصویر کجای کره زمین گرفته شده؟

- Problem: Where (eg, which country or GPS location) was this picture taken?
 - Get 6M images from Flickr with gps info (dense sampling across world)
 - Represent each image with meaningful features
 - Do kNN (large k better, they use k = 120)!

[Paper: James Hays, Alexei A. Efros. im2gps: estimating geographic information from a single \$\sqrt{526}\$image. CVPR'08. Project page: http://graphics.cs.cmu.edu/projects/im2gps/]

- Naturally forms complex decision boundaries; adapts to data density
- If we have lots of samples, kNN typically works well
- Problems:
 - Sensitive to class noise.
 - Sensitive to scales of attributes.
 - Distances are less meaningful in high dimensions
 - Scales linearly with number of examples