Natural Language Processing

Jim Martin -- Lecture 2 CSCI 5832

Shocking

NYTIMES.COM

Electric Eels Hunt in Packs, Shocking Prey and Scientists

The behavior, used by wolves and orcas to run down fast prey, is rarely seen i...

Today

- Words
- Corpora
- Vocabularies
- Text normalization
- Subword units

Complex Morphology

Many languages require complex morphological segmentation/analysis

- Turkish
- Uygarlastiramadiklarimizdanmissinizcasina
- `(behaving) as if you are among those whom we could not civilize'
- Uygar `civilized' + las `become'
 - + tir `cause' + ama `not able'
 - + dik `past' + lar 'plural'
 - + imiz 'p1pl' + dan 'abl'
 - + mis 'past' + siniz '2pl' + casina 'as if'

Complex Morphology

- Morphological analysis takes a surface form and returns the stem with a set of morphological features.
 - Cats → Cat+PL Ate → eat+PAST
- Generation goes in the other direction.
- Capturing the underlying morphology of a language is very very hard. Typically, involving a combination of finite state transducers and probabilities
- For many languages, like English and Chinese, you can get away with simpler approaches.

HW 1 Part 1: 50 Points

- How many words do you know in your native language?
 - Due Monday 8/30 by 11:59PM
 - Submit via Canvas
 - Your answer and a writeup explaining your answer.
 - No longer than necessary. 2-3 pages should suffice.
 - Long enough to say something interesting
 - PDF; follow the naming convention specified on the Canvas assignment page

HW 1 Part 1

- How many words do you know in your native language?
 - In your answer clearly address
 - "how many"
 - "words"
 - "know"

Corpora and Vocabularies

Vocabulary

- What is a vocabulary (or lexicon)?
 - All the words in a language?
 - All the words in a comprehensive dictionary?
 - Or some subset?
 - The words needed for a particular application?
 - How many?
 - How do we determine the right list?
 - Is it fixed or will we be adding new words?

Corpora

- Words don't appear out of nowhere.
- We typically generate vocabularies from collections of representative text for a possible domain or application.
- <u>But</u> texts are produced by specific writer(s), at a specific times, in a variety of a specific languages, for specific functions. All of which combine combinatorially.

Dimensions of Corpora

- Language
 - 7097 languages in the world (not all have written forms)
- Language variety
 - Dialects, creoles, pidgins, etc.
- Code switching
 - Mixing language in the same utterance

S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)

[For the first time I get to see @username actually being hateful! it was beautiful:)]

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe

["he was and will remain a friend ... don't worry ... but have faith"]

Genre

- newswire, fiction, non-fiction, scientific articles, Wikipedia
- Demographics
 - writer's age, gender, race, socioeconomic status, etc.
- Medium
 - Spoken, written, captioned, w/ video

Corpora Metrics

N = number of instances or tokens in a corpus

V = vocabulary = set of unique types

| V | is the size of the vocabulary

	Tokens = N	Types = V
Switchboard corpus (phone conversations)	2.4 million	20 thousand
Shakespeare	884,000	31 thousand
Google N-grams	1 trillion	13 million

Heaps' Law

- Heaps Law says that the size of the vocabulary grows somewhat faster than the square root of the corpus size $|V|=kN^{\beta}$
- Where k and β are free variables. Usually k is between 10 and 100 and β is between .6 and .7
- Which really means that the rate of growth of the vocabulary tails off as the corpus grows but never completely flattens out.

Heaps' Law

Building a Vocabulary

- Let's say we're handed some large text collection representative of some application domain.
 - Like building a Shakespeare generator
- How do we pull the words out from the text to form a vocabulary?

Simple Tokenization in UNIX

- Given a text file, output all the word types and their associated frequencies in a given text corpus
 - Inspired by Ken Church's UNIX for Poets.
- Unix has many commands to deal with basic text processing operations
 - Original Unix designers <u>cared a lot</u> about text processing

Notebook

Issues in Tokenization

Of course, it is never really that easy. There are lots of complications.

```
    Finland's capital → Finland Finlands Finland's
    what're, I'm, isn't → What are, I am, is not
    Hewlett-Packard → Hewlett Packard
    state-of-the-art → state of the art
    Lowercase → lower-case lowercase lower case
    San Francisco → one token or two?
```

 \rightarrow 3.5

m.p.g., PhD.

Tokenization: Language Issues

- French
 - ◆ L'ensemble → one token or two?
 - L?L'?Le?
- German noun compounds
 - Plastikwasserflaschenhalter
 - 'plastic water bottle holder'

Tokenization: language issues

- Chinese has no spaces between words
 - ◆ 莎拉波娃现在居住在美国东南部的佛罗里达。
 - ◆ 莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达
 - Sharapova now lives in US southeastern Florida
- Japanese allows intermingled alphabets

Case Study: Word Segmentation in Chinese

- Chinese words are composed of characters
 - Characters are generally 1 syllable and 1 morpheme
 - Average word length is 2.4 characters

姚明进入总决赛

Option 1

Syntax/Semantics driven segmentation

姚明进入总决赛

姚明 进入 总决赛 YaoMing reaches finals

Option 2

More fine-grained segmentation

姚明进入总决赛

姚 明 进入 总 决赛 Yao Ming reaches overall finals

Option 3

Since all the characters have meanings just use them.

姚明进入总决赛

姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game

Large Vocabularies

- How do we make sure we're dealing with all the high frequency words that Zipf's law predicts
- While still providing a way to deal with outof-vocabulary (OOV) terms
- And still keep the vocabulary size reasonable?

Subword Tokenization

- Use subword tokenization to find words and common subwords empirically
 - Let the data tell us what the words are
- Can include common morphemes like -est or er.
 - (A morpheme is the smallest meaning-bearing unit of a language; unlikeliest has morphemes un-, likely, and -est.)

Subword Tokenization

- Three common algorithms:
 - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
 - Unigram language modeling tokenization (Kudo, 2018)
 - WordPieces (Schuster and Nakajima, 2012)
- All have 2 parts:
 - A token learner that takes a raw training corpus and induces a vocabulary.
 - A token segmenter that takes an input and tokenizes it according to a vocabulary.
 - Words present the vocabulary are left alone (unsegmented)
 - OOV words are broken into optimal sequences of words and subwords.

Byte Pair Encoding (BPE)

Let initial vocabulary be the set of all individual characters

```
= \{A, B, C, D,...,a, b, c, d..., 0-9, etc.\}
```

- Repeat:
 - choose the two symbols that are most frequently adjacent in training corpus (say 'A', 'B'),
 - add a new merged symbol 'AB' to the vocabulary
 - replace every adjacent 'A' 'B' in corpus with 'AB'.
- Until k merges have been done.

BPE Token Learner Algorithm

```
function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V \leftarrow all unique characters in C # initial set of tokens is characters

for i = 1 to k do # merge tokens til k times

t_L, t_R \leftarrow Most frequent pair of adjacent tokens in C

t_{NEW} \leftarrow t_L + t_R # make new token by concatenating

V \leftarrow V + t_{NEW} # update the vocabulary

Replace each occurrence of t_L, t_R in C with t_{NEW} # and update the corpus

return V
```

Byte Pair Encoding (BPE)

- Most subword algorithms are run with initial white-space separated tokens.
- So first add a special end-of-word symbol '___'
 before whitespace in training corpus
- Next, separate tokens into letters

BPE Token Learner

Original "corpus"

low low low low lowest lowest newer newer newer newer newer wider wider wider new new

Add end-of-word tokens and segment:

BPE Token Learner Original "corpus"

```
low_
lowest_
lowest
newer
newer
newer
wider
```

BPE Token Learner Original "corpus"

```
10W
lowest
lowest
newer
newer_
newer
wider
```

BPE token learner

```
vocabulary
```

_, d, e, i, l, n, o, r, s, t, w

BPE token learner

Merge e r to er

vocabulary

_, d, e, i, l, n, o, r, s, t, w, er

```
vocabulary
  corpus
     1 \circ w \perp
                     _, d, e, i, l, n, o, r, s, t, w, er
  2 lowest_
  6 newer_
  3 wider \_
  2 new_
Merge er _ to er
                     vocabulary
  corpus
  5 low_
                     \_, d, e, i, 1, n, o, r, s, t, w, er, er\_
  2 lowest_
  6 newer_
```

3 wider_

new_

```
vocabulary
   corpus
      1 \circ w \perp
                      \_, d, e, i, l, n, o, r, s, t, w, er, er\_
   2 lowest_
   6 newer_
   3 wider_
   2 new_
Merge n e to ne
                      vocabulary
  corpus
     1 o w _
                      \_, d, e, i, l, n, o, r, s, t, w, er, er\_, ne
      lowest_
    ne w er_
  3 wider_
      ne w _
```

Continuning the next merges are:

BPE token segmentation algorithm

- On test data
 - White-space separate
 - If character sequence is in the vocab just leave it alone
 - If its OOV
 - Run each merge learned from the training data:
 - Greedily
 - In the order we learned them
- So: merge every e r to er, then merge er to er, etc.
- Result:
 - Test set "n e w e r _" would be tokenized as a full word
 - Test set "I o w e r " would be two tokens: "low er "

With BPE (and other subword approaches)
there are no out of vocabulary words. Every
word can be decomposed into a sequence of
known vocabulary items (sequences of words
and subwords, or worst case, characters).

BERT Vocabulary

- All modern language models (BERT, GPT, T5 and their variants) and MT systems make use of relatively small vocabularies derived using one of the popular subword unit algorithms.
- Typically reported at around 30k entries. This is largely chosen for computational efficiency reasons.
- The original BERT vocabulary was generated from the "Books" corpus and an English Wikipedia dump.

HW 1 Part 2

- In this part of the HW you'll explore a generic BERT vocabulary, with a particular focus on that 30k size. We're interested in how many words does BERT really know?
- How does BERT's vocabulary stack up against the kind of considerations we've been discussing for people?

Notebook

HW 1 Part 2: 50 Points

- How many words does BERT really know?
 - Due Wednesday 9/1 by 11:59PM
 - Submit via Canvas
 - Your answer and a writeup explaining your answer.
 - No longer than necessary. 2-3 pages should suffice.
 - Long enough to say something interesting
 - PDF; follow the naming convention specified on the Canvas assignment page

Next Time

Chapter 3. N-Gram language modeling