ANÁLISE MATEMÁTICA I (LEIC-Tagus, LERCI, LEGI e LEE) 1° Sem. 2004/05

3ª Ficha de Exercícios

I. Sucessões Reais

- 1) Seja (u_n) uma sucessão de números reais. Indique, justificando, quais das seguintes proposições são verdadeiras.
 - (a) Se $u_{2n} \to a$ e $u_{2n+1} \to a$, com $a \in \mathbb{R}$, então $u_n \to a$.
 - (b) Se $u_{2n} \to a$ e $u_{2n+1} \to b$, com $a, b \in \mathbb{R}$, então a e b são os únicos sublimites de (u_n) .
 - (c) Se as três sucessões u_{2n} , u_{2n+1} e u_{3n} são convergentes, então u_n é convergente.
- 2) Considere uma sucessão real (y_n) tal que

$$y_{2n-1} < 0$$
 e $y_{2n} > 0$, $\forall n \in \mathbb{N}$.

Mostre que se (y_n) é convergente então o seu limite é igual a zero.

- 3) Dê um exemplo de uma sucessão convergente (u_n) , tal que a sucessão $v_n = n \cdot u_n$ possui dois sublimites distintos.
- 4) Considere a sucessão (x_n) definida por

$$x_1 = 1$$
 e $x_{n+1} = \frac{2x_n + 3}{4}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 3/2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- 5) Considere a sucessão (x_n) definida por

$$x_1 = 3$$
 e $x_{n+1} = \sqrt{2x_n + 1}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente decrescente e que $x_n > 2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- **6)** Considere a sucessão (x_n) definida por

$$x_1 = 2$$
 e $x_{n+1} = \sqrt{2x_n + 1}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 3$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.

7) Considere a sucessão (x_n) definida por

$$x_1 = 1$$
 e $x_{n+1} = \sqrt{\frac{3 + x_n^2}{2}}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- 8) Considere a sucessão (x_n) definida por

$$x_1 = 2$$
 e $x_{n+1} = 3 - \frac{1}{x_n}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente crescente e que $x_n < 3$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- 9) Considere a sucessão (x_n) definida por

$$x_1 = 3$$
 e $x_{n+1} = 3 - \frac{1}{x_n}$ para todo o $n \in \mathbb{N}$.

- (a) Prove que (x_n) é estritamente decrescente e que $x_n > 2$ para todo o $n \in \mathbb{N}$.
- (b) Mostre que (x_n) é convergente e calcule o seu limite.
- 10) Considere as expressões

$$x_1 = 1$$
 e $x_{n+1} = \frac{x_n}{2} + \frac{2}{x_n}$ para todo o $n \in \mathbb{N}$.

- (a) Verifique que definem, por recorrência, uma sucessão (x_n) , i.e. verifique que $x_n > 0$ para todo o $n \in \mathbb{N}$, por forma a que a segunda expressão faça sentido.
- (b) Prove que $x_n \geq 2$ e $x_{n+1} \leq x_n$, para todo o $n \in \mathbb{N}$ com $n \geq 2$.
- (c) Mostre que (x_n) é convergente e calcule o seu limite.
- 11) Mostre que as expressões

$$x_1 = 1$$
 e $x_{n+1} = \frac{2x_n}{1 + 2x_n}$ para todo o $n \in \mathbb{N}$

definem por recorrência uma sucessão (x_n) que é convergente. Calcule o seu limite.

12) Determine, se existirem, os limites das seguintes sucessões.

(a)
$$x_n = \left(1 + \frac{1}{n}\right)^{n+7}$$
 (b) $x_n = \left(1 + \frac{2}{n}\right)^{3n}$ (c) $x_n = \left(1 + \frac{1}{n^2}\right)^{n^3}$ (d) $x_n = \left(1 + \frac{1}{n^3}\right)^{n^2}$ (e) $x_n = \left(1 - \frac{1}{n!}\right)^{n!}$ (f) $x_n = \left(\frac{n-2}{n+2}\right)^{2n+3}$ (g) $x_n = \left(\frac{n-1}{n+2}\right)^{1-n}$ (h) $x_n = \left(\frac{3n+2}{3n-1}\right)^{n/2}$ (i) $x_n = \left(\frac{n-1}{n+3}\right)^{n^2}$ (j) $x_n = \left(\frac{2n}{2n+1}\right)^{2n-1}$ (k) $x_n = \left(\frac{2n}{n+1} - 1\right)^n$ (l) $x_n = \left(\frac{n^2-1}{n^2+1}\right)^{n^2+6}$ (m) $x_n = \left(1 + \sqrt{n+2} - \sqrt{n}\right)^{\sqrt{n+1}}$

13) Determine, se existirem, os limites das seguintes sucessões.

(a)
$$x_n = \sqrt[n]{1 + \frac{1}{n}}$$
 (b) $x_n = \sqrt[n]{\frac{n^2 + n + 1}{n - 3}}$ (c) $x_n = \sqrt[n]{2^n + 1}$ (d) $x_n = \sqrt[n]{(n + 1)! - n!}$ (e) $x_n = \sqrt[n]{3^n + 2^{2n}}$ (f) $x_n = \sqrt[n]{\frac{n^2}{n + 1}}$ (g) $x_n = \left(\frac{n - 1}{2n^2 + 1}\right)^{\frac{2}{n}}$ (h) $x_n = \left(1 - \frac{n}{n + 1}\right)^{\frac{1}{n}}$ (i) $x_n = \left(\frac{2^n}{n + 1}\right)^{\frac{1}{2n}}$ (j) $x_n = \left(\sqrt{n + 2} - \sqrt{n}\right)^{\frac{1}{n}}$

14) Considere a sucessão (x_n) definida por

$$x_1 = 0$$
 e $x_{n+1} = 1 - \frac{x_n^2}{4}$.

(a) Mostre que

$$0 \le x_n \le 1$$
 e $x_{n+2} - x_{n+1} = \frac{(x_n - x_{n+1})(x_n + x_{n+1})}{4}$, $\forall n \ge 1$.

(b) Use o resultado da alínea anterior para provar que (x_n) é convergente, e calcule o seu limite.

15) Considere a sucessão (x_n) definida por

$$x_1 = 1$$
 e $x_{n+1} = 1 + \frac{1}{x_n}$.

(a) Mostre que

$$x_n \ge 1$$
 e $x_{n+2} - x_{n+1} = \frac{x_n - x_{n+1}}{x_n + 1}$, $\forall n \ge 1$.

- (b) Use o resultado da alínea anterior para provar que (x_n) é convergente, e calcule o seu limite.
- **16)** Considere a sucessão (x_n) definida por

$$x_1 = 0$$
 e $x_{n+1} = \frac{1}{x_n + 2}$.

(a) Mostre que

$$x_n \ge 0$$
 e $x_{n+2} - x_{n+1} = \frac{x_n - x_{n+1}}{(x_{n+1} + 2)(x_n + 2)}, \quad \forall n \ge 1.$

- (b) Use o resultado da alínea anterior para provar que (x_n) é convergente, e calcule o seu limite.
- 17) Determine, se existirem, os limites das seguintes sucessões.

(a)
$$x_n = \frac{2^{2n} + 6n}{3^n + 4^{n+2}}$$
 (b) $x_n = \frac{n!}{5^n + (n+1)^2}$ (c) $x_n = \frac{2^n + (n+1)!}{3^n + n!}$

(d)
$$x_n = \frac{(n+1)^n - n!}{7^n - n^n}$$
 (e) $x_n = \sqrt[n]{n! + 2^n}$ (f) $x_n = \sqrt[n]{2^n + n^2}$

II. Séries Numéricas

1) Mostre que cada uma das seguintes séries é convergente com soma igual ao valor indicado.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{2}$$
 (b) $\sum_{n=1}^{\infty} \frac{2}{3^{n-1}} = 3$ (c) $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \frac{3}{4}$

(d)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n} = \frac{3}{2}$$
 (e) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}} = 1$ (f) $\sum_{n=1}^{\infty} \frac{3^{n+1}}{2^{2n}} = 9$

(g)
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} = 1$$
 (h)
$$\sum_{n=0}^{\infty} \frac{2^{n+1}}{5^{n-1}} = \frac{50}{3}$$
 (i)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)(n+3)} = \frac{1}{4}$$

(j)
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{2^n} = \frac{5}{3}$$
 (k) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(2n+1)}{n(n+1)} = 1$ (l) $\sum_{n=1}^{\infty} \frac{2^n + n^2 + n}{2^{n+1}n(n+1)} = 1$

2) Determine a natureza das seguintes séries:

(a)
$$\sum \frac{n-2}{3n+1}$$
 (b) $\sum \frac{\sqrt{n}}{n+1}$ (c) $\sum \frac{\sqrt{n-1}}{n^2+2}$ (d) $\sum \frac{1}{\sqrt{n(n+1)}}$

(e)
$$\sum \frac{n+1}{n^3+1}$$
 (f) $\sum \frac{n}{\sqrt{n^2(n+1)}}$ (g) $\sum \frac{n!}{(n+2)!}$ (h) $\sum \frac{n^2}{n^3+4}$ (i) $\sum \frac{5^n}{4^n+1}$ (j) $\sum \frac{2^n}{3^n+1}$ (k) $\sum \frac{2^{2n}}{3^n+1}$

(l)
$$\sum \left(\sqrt{n+1} - \sqrt{n}\right)^3$$
 (m) $\sum \frac{2^n + n^3}{2^{n+1}(n+1)^3}$

3) Determine o conjunto dos valores de $x \in \mathbb{R}$ para os quais a série

$$\sum_{n=0}^{\infty} \left(\frac{1}{1+|x|} \right)^n$$

5

é convergente e, para cada um desses valores, calcule a sua soma.