Modelo de Parcial (Teoría de Juegos) — Resuelto

Juani Elosegui

Diciembre 2024

Parte A: Teoría

Ejercicio 1

- (a) Falso. Jugar primero tiene sus ventajas también, por lo que no es siempre conveniente.
- (b) Falso. El Dilema del Prisionero tiene un solo subjuego, que es el juego completo.
- (c) Verdadero. Ningún jugador racional jugará una estrategia estrictamente dominada.
- (d) Verdadero. Si bien importa que hayan colaborado en el pasado, es clave que tengan todavía períodos por jugar.

Ejercicio 2

Un conjunto de información muestra lo que saben los jugadores acerca de lo que se jugó en los períodos pasados y las posibles acciones a futuro.

Parte B: Ejercicios a Desarrollar

Ejercicio 1

Esto no está del todo correcto, porque depende de cómo sean las interacciones entre los agentes. Si estamos en un contexto de competencia, la ambición individual sólo va a ser al bien común si nos lleva a tomar una estrategia que represente un equilibrio de Nash o un óptimo de Pareto. Además, se están asumiendo condiciones perfectas (por ejemplo, la información perfecta).

Ejercicio 2

(a)

Las estrategias racionalizables son A y B para el jugador 1 y para el jugador 2.

	A	В	$^{\rm C}$
A	0, 0	3, 4	6, 0
В	4, 3	0, 0	0, 0
C	0, 6	0, 0	5, 5

(b)

$$EN = \{(B, A); (A, B)\}.$$

	A	В	
A	0, 0	3, 4	
В	4. 3	0, 0	

	A (q)	B (1-q)
A (p)	0, 0	3, 4
B (1-p)	4, 3	0, 0

Planteo la situación de igualdad:

$$PE_{A,J1} = PE_{B,J1}$$

$$\implies 0(q) + 3(1 - q) = 4(q) + 0(1 - q)$$

$$\implies 3(1 - q) = 4(q)$$

$$\implies 3 - 3q = 4q$$

$$\implies 3 = 7q$$

$$\therefore q = \frac{3}{7}$$

$$PE_{A,J2} = PE_{B,J2}$$

$$PE_{A,J2} = PE_{B,J2}$$

$$\implies 0(p) + 3(1-p) = 4(p) + 0(1-p)$$

$$\implies 3(1-p) = 4p$$

$$\implies 3 - 3p = 4p$$

$$\implies 3 = 7p$$

 $\implies 3 = 7p$ $\implies p = \frac{3}{7}$

El equilibrio en estrategias mixtas es: $\{(p=\frac{3}{7},1-p=\frac{4}{7}); (q=\frac{3}{7},1-q=\frac{4}{7})\}$

(c)

	A	В	С
A	0, 0	3, 4	6, 0
В	4, 3	0, 0	0, 0
C	0, 6	0, 0	5, 5

El J1 coopera si:

El 31 coopera si:
$$VP_{coop} \geq VP_{desv}$$
 $\Rightarrow 5 + 3\delta \geq 6 + (4q)\delta$ $\Rightarrow 5 + 3\delta \geq 6 + (4\frac{3}{7})\delta$ $\Rightarrow 5 + 3\delta \geq 6 + (\frac{12}{7}\delta)\delta$ $\Rightarrow 3\delta - \frac{12}{7}\delta \geq 6 - 5$ $\Rightarrow \frac{21 - 12}{7}\delta \geq 1$ $\Rightarrow \frac{9}{7}\delta \geq 1$ $\Rightarrow 9\delta \geq 7$ $\Rightarrow \delta \geq \frac{7}{9}$ $\therefore \delta \approx 0,778$

El J2 coopera si:

$$VP_{coop} \ge VP_{desv}$$

$$\implies 5 + 4\delta \ge 6 + (4p)\delta$$

$$\implies 5 + 4\delta \ge 6 + (4\frac{3}{7})\delta$$

$$\implies 4\delta - (4\frac{3}{7})\delta \ge 6 - 5$$

$$\implies 4\delta - \frac{12}{7}\delta \ge 1$$

$$\implies \frac{28 - 12}{7}\delta \ge 1$$

$$\implies \frac{16}{7}\delta \ge 1$$

$$\implies 16\delta \ge 7$$

$$\implies \delta \ge \frac{7}{16}$$

$$\therefore \delta \approx 0,438$$

Para que sea sostenible el acuerdo, tomamos el valor de paciencia del más paciente, que es el J1.