FOUNDATIONS OF OPTIMIZATION: IE6001 Shadow Prices

Napat Rujeerapaiboon Semester I. AY2022/2023

Assume that p_1 , the availability of X, is not precisely known.

$$\begin{array}{lll} \text{max} & x_1+x_2 & \text{objective function} \\ \text{s.t.} & 2x_1+x_2 \leq \textcolor{red}{p_1} & \text{constraint on availability of X} \\ & x_1+3x_2 \leq 18 & \text{constraint on availability of Y} \\ & x_1 \leq 4 & \text{constraint on demand of A} \\ & x_1,x_2 \geq 0 & \text{non-negativity constraints} \end{array}$$

-min
$$-x_1 - x_2$$

s.t. $2x_1 + x_2 + x_3 = p_1$
 $x_1 + 3x_2 + x_4 = 18$
 $x_1 + x_5 = 4$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

The value function $v(p_1)$ expresses the optimal value of the LP as a function of the unknown availability parameter p_1 .

$$v(p_1) = \min -x_1 - x_2$$

s.t. $2x_1 + x_2 + x_3 = p_1$
 $x_1 + 3x_2 + x_4 = 18$
 $x_1 + x_5 = 4$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Note: $v(p_1)$ is non-increasing, convex and piecewise linear.

Perturbation

Let $p \in \mathbb{R}^m$ denote a general RHS and define the value function $v(p) : \mathbb{R}^m \to \mathbb{R}$ by:

$$v(p) = \min \left\{ c^T x \mid A | x = p; x \ge 0 \right\}$$

Solving the original LP (the reference problem)

$$\min \left\{ x_0 = c^T x \mid A \mid x = b, x \geq 0 \right\}$$

thus computes $v(b)$.

Shadow Prices

Suppose we have solved the reference problem

$$\min\left\{x_0=c^Tx\mid Ax=b, x\geq 0\right\}$$

and found an optimal basis matrix B satisfying

$$x_B = B^{-1}b \ge 0$$
 (Feasibility)

and

$$r = c_N - N^T (B^{-1})^T c_B \ge 0$$
 (Optimality).

Shadow Prices (cont)

Definition: The vector of shadow prices $\Pi \in \mathbb{R}^m$ is defined as

$$\Pi = (B^{-1})^T c_B,$$

where B = B(I) is an optimal basis.

Note that there can be more than one optimal basis ⇒ The shadow prices need not be unique.

The shadow Prices give information about the sensitivity of the value function v(p) at p = b.

Local Behaviour of Value Function

Theorem:
$$v(p) = v(b) + \Pi^T(p - b)$$
 for all $p \in \mathbb{R}^m$ with $B^{-1}p \ge 0$.

Proof:

• If $B^{-1}p > 0$, then B remains the optimal basis for

$$\min\{c^Tx: Ax = p, x \ge 0\}$$

since r is not affected by changing b to p.

Thus, we find

$$v(p) = c_B^T B^{-1} p$$

= $c_B^T B^{-1} b + c_B^T B^{-1} (p - b)$
= $v(b) + \Pi^T (p - b)$

Global Behaviour of Value Function

Theorem: $v(p) \ge v(b) + \Pi^T(p-b)$ for all $p \in \mathbb{R}^m$.

Proof:

$$v(p) = \min_{x \ge 0; Ax = p} \left\{ c^T x \right\}$$

$$= \min_{x \ge 0; Ax = p} \left\{ c^T x - \Pi^T (Ax - p) \right\}$$

$$\ge \min_{x \ge 0} \left\{ c^T x - \Pi^T (Ax - p) \right\}$$

$$= \min_{x \ge 0} \left\{ (c^T - \Pi^T A)x + \Pi^T p \right\}$$

$$= \Pi^T p + \underbrace{\min_{x \ge 0} \left\{ (c^T - \Pi^T A)x \right\}}_{>0 \text{ see next slide!}}$$

Global Behaviour of Value Function

$$\begin{bmatrix} c^{T} - \Pi^{T} A \end{bmatrix} x = (\begin{bmatrix} c_{B}^{T} \mid c_{N}^{T} \end{bmatrix} - c_{B}^{T} B^{-1} \quad [B \mid N]) \begin{bmatrix} x_{B} \\ x_{N} \end{bmatrix}$$

$$= \begin{bmatrix} c_{B}^{T} \mid c_{N}^{T} \end{bmatrix} \begin{bmatrix} x_{B} \\ x_{N} \end{bmatrix} - c_{B}^{T} \begin{bmatrix} I \mid B^{-1} N \end{bmatrix} \begin{bmatrix} x_{B} \\ x_{N} \end{bmatrix}$$

$$= c_{B}^{T} x_{B} - c_{B}^{T} x_{B} + (c_{N}^{T} - c_{B}^{T} B^{-1} N) x_{N}$$

$$= r^{T} x_{N}$$

$$\geq 0 \qquad (as r \geq 0, and x_{N} \geq 0)$$

Global Behaviour of Value Function

Thus, we find

$$v(p) \geq \Pi^{T} p + \min_{x \geq 0} \left\{ (c^{T} - \Pi^{T} A) x \right\}$$

$$\geq \Pi^{T} p$$

$$= \Pi^{T} b + \Pi^{T} (p - b)$$

$$= c_{B}^{T} B^{-1} b + \Pi^{T} (p - b)$$

$$= v(b) + \Pi^{T} (p - b)$$

Shadow Prices in Example 1

Note: Π_1 is the shadow price for the budget of ingredient X.

At $p_1 = b_1 = 11$, the optimal costs change by $\Pi_1 = -\frac{2}{5}$ if the availability of X increases by 1.

Interpretation

- Assume the company can buy a "small" additional amount of ingredient X, at price μ₁ per unit.
- Is it worthwhile to buy additional units of X?
 - Yes if $\mu_1 + \Pi_1 < 0$ (overall cost decreases);
 - No if $\mu_1 + \Pi_1 > 0$ (overall cost increases).
- ⇒ Therefore, $-\Pi_1$ is the maximum price one should pay for one additional unit of X!

Evaluation of Shadow Prices

Sometimes shadow prices can be read off the final tableau.

Lemma: Suppose row t is initially a " \leq -constraint" and a slack variable x_s had been added. Then, $\Pi_t = \beta_s$, where β_s is the objective coefficient of x_s in the final (optimal) tableau.

Proof:

• If x_s is nonbasic in the final tableau, then

$$\beta_s = -r_s = -(c_N - N^T B^{-T} c_B)^T e_s$$

= $-c_s + \Pi^T N e_s = 0 + \Pi^T e_t = \Pi_t.$

If x_s is basic in the final tableau, then

$$\beta_s = 0 = c_s = e_s^T c_B = e_s^T B^T \Pi = e_t^T \Pi = \Pi_t.$$

Evaluation of Shadow Prices (cont)

Sometimes shadow prices can be read off the final tableau.

Lemma: Suppose row t is initially a " \geq -constraint" and a surplus variable x_s had been added. Then, $\Pi_t = -\beta_s$, where β_s is the objective coefficient of x_s in the final tableau.

Example 1 (revisited)

The final tableau for Example 1 is:

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	RHS
<i>x</i> ₀	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	-8
<i>X</i> ₂	0	0	1	$-\frac{1}{5}$	<u>2</u> 5	0	5
<i>X</i> ₅	0	0	0	$-\frac{3}{5}$	<u>1</u> 5	1	1
<i>x</i> ₁	0	1	0	<u>3</u> 5	$-\frac{1}{5}$	0	3

- The constraint on the availability of X was standardised by introducing the slack variable x₃.
- The shadow price Π_1 for that constraint thus coincides with the coefficient of x_3 in the objective row of the above tableau $\Rightarrow \Pi_1 = -\frac{2}{5}$.