8005: Qual Problems

1 Classify all groups of order 14.

Let n=14=#G. Noting that $n=2\cdot 7$, we have

So G has a normal sylow 7-subgroup S_7 , which is in fact cyclic since 7 is prime, and thus isomorphic to \mathbb{Z}_7 . Similarly, the sylow 2-subgroup S_2 is isomorphic to \mathbb{Z}_2 .

So we have $S_2, S_7 \leq G$ where

 $G = S_2 S_7$.

- · S7 4 G
- · S2 NS7= {e}
- $S_2 \cdot S_7 = G$

and so $G \cong S_2 \times_{\gamma} S_7$, where $S_2 \cap S_7$ a $\mapsto \gamma_a \in Aut(S_7)$,

I.e., $G \cong \mathbb{Z}_2 \rtimes_{\gamma} \mathbb{Z}_7$ for some $\gamma \in \text{Aut}(\mathbb{Z}_7)$, and since the map $\mathbb{Z}_2 \longrightarrow \text{Aut}(\mathbb{Z}_7)$ a $\mapsto \gamma_a$

must be a homomorphism, of must be order 2.

We have $\text{Aut}(\mathbb{Z}_7) = \{ \times \mapsto n \times | 1 \le n \le 6 \}$, Since any automorphism will map a generator to another generator, and any $n \ne 0$ in \mathbb{Z}_7 is a generator.

Then $\{ \forall \in Aut(\mathbb{Z}_7) | \text{ order}(\forall) = 2 \} = \{ \times \mapsto \times, \times \mapsto 6x \}$. We have $G \cong \langle a,b | a^2 = b^2 = e, aba^1 = \forall a(b) \rangle$, so we obtain two groups:

- 1) $G \cong \langle a, b | a^2 = b^2 = e, aba^{-1} = b \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_7 \cong \mathbb{Z}_{14},$
- 2) $G \cong \langle a,b | a^2 = b^2 = e$, $aba' = b^6 \rangle \cong D_7$, the dihedral group.

2 Show that $\#G=p^3 \Rightarrow G$ is abelian or |Z(G)|=p.

Since $Z(G) \leq G$, we must have $|Z(G)| \in \{1, p, p^2, p^3\}$.

- · If $|Z(G)| = p^3$, then G is abelian and we're done.
- $|Z(G)| \neq 1$ because p-groups have nontrivial centers. *
- If |Z(G)| = p, we're again done.
- If $|Z(G)| = p^2$, then $|G/Z(G)| = p^3/p^2 = p$, so G/Z(G) is cyclic and (by a

previous theorem) G must be abelian.

Proof of *:

If
$$\#G = p^n$$
 and $Z(G) \notin G$ is proper, then by the class equation $|G| = |Z(G)| + \sum_{\substack{\text{One } g_i \text{ in each} \\ \text{conjugacy class}}} [G: C_G(g_i)]$

where $g_i \notin Z(G)$. But each $C_G(g_i) \notin G$ is then proper, so $|C_G(g_i)| = p^k$ for some $K \le n-1$. So p divides $[G:C_G(g_i)]$, and p divides [G], so p must divide |Z(G)| as well.

3 Let pig be distinct primes & k be the <u>smallest</u> positive integer such that $p|q^k-1$, and Suppose $\#G=pq_k^k$. Then

$$n_{P} \mid q^{k} \Rightarrow n_{P} \in \{1, q, q^{2}, \cdots, q^{k}\}.$$

If np=1, G is not simple, so suppose $np=q^2$ for some $1 \le l \le k$. Then $np=1 \mod p \Rightarrow q^2-1=0 \mod p \Rightarrow p|q^2-1 \Rightarrow \underline{l=k}$ by assumption.

So let $S_{p,i} \in Syl(p,G)$ be a sylow p-subgroup of G. Then $|S_{p,i}| = p$, so it is cyclic.

Since Spii O Spij & Spii for example, these groups either coincide or intersect trivially. Thus

$$\left| \bigcup_{i=1}^{np} S_{p,i} \right| = n_p(p-1) = \left| \frac{k}{q} p - q^k \right|.$$

Now consider Syl(q,G). If $n_q=1$, G is not simple, and since $n_q \mid p$, the only other possibility is $n_q=p$. Let $S_{q,i} \in Syl(q,G)$, so $|S_{q,i}|=q^k$. But since $n_q>1$, we have

However, we've shown

$$|\bigcup_{i=1}^{n_{t}} S_{q,i}| > q^{k}$$

$$\Rightarrow |\bigcup_{i=1}^{n_{t}} S_{q,i}| + |\bigcup_{j=1}^{n_{t}} S_{p,j}| > q^{k} + q^{k}(p-1) = p q^{k},$$

$$|\bigcup_{j=1}^{n_{t}} S_{p,j}| > q^{k}(p-1)$$

a contradiction. So we must have np=1, and G is not simple.

4) Show that St is solvable and nonabelian.

A group G is solvable iff G has a composition series in which each successive quotient is simple and abelian, so we can take

where
$$H_1 = \langle (12), (34) \rangle \leq A_4 \leq S_4$$

 $H_2 = \langle (34) \rangle \leq A_4 \leq S_4$.