Algebrauppgift 6 - Basbyte i hexagon

Emma Bastås

November 6, 2022

Betrakta en regelbunden sexhörning med hörn i punkterna A, B, C, D, E och F (i ordning motsols). Vektorerna $\overline{e}_1 = \overline{AB}$ och $\overline{e}_2 = \overline{AD}$ utgör en bas för planet liksom vektorerna $\overline{f}_1 = \overline{AC}$ och $\overline{f}_2 = \overline{AE}$. Det finns två uppgifter

- a) Vektorn \overline{u}_1 har kordinaterna (5,-2) i basen $\overline{e}_1,\overline{e}_2$. Bestämm \overline{u}_2 :s koordinater på avseende på basen $\overline{f}_1,\overline{f}_2$.
- b) Vektorn \overline{u}_2 har kordinaterna (1,6) i basen $\overline{f}_1,\overline{f}_2$. Bestämm \overline{u}_2 :s koordinater på avseende på basen $\overline{e}_1,\overline{e}_2$.

Vi börjar med att tolka detta geometriskt, en regelbunden hexagon består av sex liksidiga trianglar:

Med denna geometriska tolkning ser vi att:

$$\overline{f}_1 = \frac{1}{2}\overline{e}_2 + \overline{e}_1
\overline{f}_2 = \overline{e}_2 - \overline{e}_1.$$
(*)

Uppgift b)

Vi ställer upp \overline{u}_2 som en linjärkombination av \overline{f}_1 och \overline{f}_2 :

$$\overline{u}_2 = \overline{f}_1 + 6\overline{f}_2$$

och skriver om detta som en linjärkombination av \overline{e}_1 och \overline{e}_2 med hjälp av (\star) :

$$\overline{u}_2 = (\frac{1}{2}\overline{e}_2 + \overline{e}_1) + 6(\overline{e}_2 - \overline{e}_1)$$
$$= \frac{13}{2}\overline{e}_2 - 5\overline{e}_1.$$

Uppgift a)

Vi skriver om ekvationerna i (\star) så att \overline{e}_1 och \overline{e}_2 är linjärkombnationer av \overline{f}_1 och \overline{f}_2 :

$$(\star) \iff \begin{array}{c} \overline{e}_1 = \frac{2}{3}\overline{f}_1 - \frac{1}{3}\overline{f}_2 \\ \overline{e}_2 = \frac{2}{3}(\overline{f}_1 + \overline{f}_2) \end{array} \tag{$\star\star$}$$

Vi ställer nu upp \overline{u}_1 som en linjärkombination av \overline{e}_1 och \overline{e}_2 :

$$\overline{u}_1 = 5\overline{e}_1 - 2\overline{e}_2$$

och skriver om detta som en linjärkombination av \overline{f}_1 och \overline{f}_2 med hjälp av $(\star\star)$:

$$\begin{split} \overline{u}_1 &= 5\overline{e}_1 - 2\overline{e}_2 \\ &= 5(\frac{2}{3}\overline{f}_1 - \frac{1}{3}\overline{f}_2) - 2\frac{2}{3}(\overline{f}_1 + \overline{f}_2) \\ &= 2\overline{f}_1 - 3\overline{f}_2. \end{split}$$