

Pauta Ayudantía 4 Estructuras Algebraicas

Profesor: Pedro Montero

Ayudante: Sebastián Fuentes

11 de abril de 2023

Problema 1. Sea G grupo finito, $S \subseteq G$ un p- subgrupo de Sylow y $H \leq G$ subgrupo arbitrario. Demuestre que existe $q \in G$ tal que $qSq^{-1} \cap H$ es un p-subgrupo de Sylow.

Demostración. Podemos definir la acción $H \cap X$ donde X := G/S mediante $h \cdot (gS) = (hg)S$. Los estabilizadores vienen dados por

$$H_{qS} = \{h \in H | (hg)S = gS\} = \{h \in H | g^{-1}hg \in S\} = gSg^{-1} \cap H$$

Además, escribiendo $|G| = p^{\alpha}m$, del teorema de Lagrange tenemos que |X| = |G|/|S| = m. La fórmula de clases nos dice que

$$|G/S| = \sum_{qS \in R} [H: H_{gS}]$$

y dado que p no divide a |X| (pues α es maximal) entonces existe $gS \in X$ tal que p no divide a $[H:H_{aS}]$. Ahora, por otro lado tenemos que $H_{gS} = gSg^{-1} \cap H \leq gSg^{-1}$ el cual es un p-grupo y en consecuencia el estabilizador H_{gS} también lo es. Como $[H:H_{gS}]=|H|/|H_{gS}|$ no es divisible por p necesariamente H_{gS} debe ser de orden p-maximal.

Problema 2.

- 1. Suponga que G es un grupo simple y que p es un divisor primo de |G|. Demuestre que |G| divide a $n_p!$ donde n_p denota la cantidad de p-subgrupos de Sylow de G.
- 2. Si G es un grupo de orden |G| = 48 pruebe que G no es simple.
- 3. Demuestre que no existen grupos simples de orden 1000000.

Demostración.

- 1. Sea G un grupo finito tal que p divide a |G| con p primo. Podemos entonces definir el conjunto $X = \{S \leq$ G|S es un p-subgrupo de Sylow de G} y considerar la acción de grupo $G \cap X$ por conjugación $g \cdot S := gSg^{-1}$, la cual gracias al teorema de Sylow sabemos está bien definida puesto todos los p-subgrupos de Sylow son conjugados entre sí. Más aún, este hecho implica que la acción definida es transitiva (posee una única órbita) y por lo tanto el morfismo de grupos asociado $\Phi: G \to \operatorname{Biy}(X)$ es no trivial, es decir, $\ker(\Phi) \neq G$. Ahora, si suponemos que G es un grupo simple, esto es, no posee subgrupos normales no triviales, dado que el kernel de un morfismo de grupos es siempre normal, necesariamente se deberá tener que $\ker(\Phi) = \{e\}$. En otras palabras, tenemos un morfismo inyectivo $\Phi: G \hookrightarrow \operatorname{Biy}(X)$ por lo que G se identifica con un subgrupo de Biy(X) y del teorema de Lagrange se sigue la conclusión pues $|Biy(X)| = n_n!$.
- 2. Considere la descomposición prima $|G| = 48 = 2^4 \cdot 3$. El teorema de Sylow entonces afirma la existencia de 2-subgrupos de Sylow de G, y además nos dice que $n_2|3$, por lo que $n_2=1$ o bien $n_2=3$. Por contradicción, si suponemos que G es un grupo simple, dado que un p-subgrupo de Sylow es normal si y sólo si es único, entonces únicamente es posible que $n_2 = 3$, de modo que G se mantenga libre de subgrupos normales. Sin embargo, el punto anterior implicaría que |G| = 48 es divisor de $n_2! = 6$, lo cual es una clara contradicción.
- 3. Suponer por contradicción que existe G simple de orden |G| = 1000000. Tenemos la descomposición prima $|G| = 2^6 5^6$ y el teorema de Sylow implica que se cumplen las condiciones siguientes:

$$n_5 \equiv 1 \pmod{5}$$
 y $n_5|2^6$

donde n_5 denota el número de p-subgrupos de Sylow. Por verificación directa se puede ver que los únicos números que cumplen ambas condiciones son 1,16, pues como $n_5|2^6$ solo se puede tener $n_5 \in \{1,2,4,8,16,32,64\}$ y la primera condición descarta el resto de valores. Dado que G es simple necesariamente se debe tener $n_5 = 16$ pues de lo contrario habría un único 5—Sylow y sería normal. Además, sabemos que entonces |G| divide a $n_p!$ lo cual supone una contradicción (16! no posee suficientes factores de 5).

Problema 3. Sea G un grupo finito de orden |G|=231. Demuestre que $|Z(G)|\geq 11$.

Demostración. Podemos hacer la descomposición $|G| = 3 \cdot 7 \cdot 11$. Si n_{11} denota el número de 11-Sylow de G entonces el teorema de Sylow afirma que $n_{11} \equiv 1 \pmod{11}$ y además $n_{11}|3 \cdot 7 = 21$ y directamente se puede notar que la única posibilidad es $n_{11} = 1$. Así, G posee un único 11-Sylow H el cual es normal. Probaremos que $H \subseteq Z(G)$. Por contradicción suponer que existe $h \in H \setminus Z(G)$, es decir, existe $g \in G$ tal que $gh \neq hg$. Multiplicando tenemos $h \neq ghg^{-1}$, y H es normal así que $ghg^{-1} \in H$. Por otro lado, |H| = 11 por lo tanto es ciclico (ver Ayudantía 2) y, más aún, cualquier elemento distinto de la identidad es un generador, en particular $H = \langle h \rangle$. Así, existe $n \in \{2, \dots, 10\}$ tal que $ghg^{-1} = h^n$. Similarmente tenemos $gh^mg^{-1} = h^{mn}$ y conjugando repetidas veces $g^khg^{-k} = h^{n^k}$ para $k \in \mathbb{N}$. Tomando k = |g| como el orden de $g \in G$ tenemos

$$h^{n^{|g|}} = g^{|g|}hg^{-|g|} = h$$

y como h es un elemento de orden 11 (pues |H|=11) entonces $n^{|g|}\equiv 1\pmod{11}$. Viendo n como un elemento del grupo $(\mathbb{Z}/11\mathbb{Z})^{\times}$, lo anterior implica que su orden en $(\mathbb{Z}/11\mathbb{Z})^{\times}$ divide a |g|, y como este último es de orden 10 (ver Ayudantía 2) tenemos por teorema de Lagrange que n es de orden 2,5 o bien 10. De esta manera llegamos a una contradicción pues ninguno de estos números puede dividir al orden de un elemento de G.

Problema 4. Determinar todos los grupos abelianos de orden 360.

Demostración. Notar que $360 = 2^3 \cdot 3^2 \cdot 5$. Dado que estamos buscando grupos abelianos finitos, por el teorema de estructura de grupos abelianos finitamente generados, se tendrá que

$$G \cong \prod_{i=1}^{s} \mathbb{Z}/d_i \mathbb{Z}$$

donde los enteros d_1, \ldots, d_n son tales que $1 < d_1 | \cdots | d_s$. Por ende, los grupos abelianos de orden 360 son aquellos que vienen determinados por las secuencias $1 < d_1 | \cdots | d_s$ de tal forma que $d_1 \cdots d_s = 360$. Entonces tenemos los siguientes casos

- $s = 1: d_1 = 360.$
- s = 2: Tenemos las posibilidades $d_1 = 2, d_2 = 180; d_1 = 3, d_2 = 120; d_1 = 6, d_2 = 60.$
- s = 3: Son posibles $d_1 = 2, d_2 = 2, d_3 = 90$ y $d_1 = 2, d_2 = 6, d_3 = 30$.

Notar que los anteriores son los únicos casos posibles, pues en otro caso no se cumple la condición de divisibilidad. De esta forma existen solo 6 grupos abelianos de orden 360, los cuales corresponde, salvo isomorfismo, a

$$\mathbb{Z}/360\mathbb{Z}$$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/180\mathbb{Z}$$

$$\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/120\mathbb{Z}$$

$$\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}$$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$$

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$$

El teorema que se presenta a continuación es una generalización del Pequeño Teorema de Fermat el cual es válido en $\mathbb{Z}/n\mathbb{Z}$ incluso cuando n no es primo. Su demostración es análoga a la del Pequeño Teorema de Fermat (Ayudantía 2) y por lo tanto queda como ejercicio.

Teorema 1 (Teorema de Euler). Sea $n \in \mathbb{N} \geq 1$ entero positivo. Definimos la función φ de Euler como $\varphi(n) = |\{m \in \mathbb{N} | m \leq n, \operatorname{mcd}(m, n) = 1\}$. Si $a, n \in \mathbb{Z}$ son enteros primos relativos con $n \geq 1$, entonces

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Problema 5. Utilice el Teorema chino del resto y el Teorema de Euler para calcular los dos últimos dígitos de $17^{17^{17}}$.

Solución. Calcular los últimos dos dígitos equivale a calcular módulo 100, es decir, buscamos calcular $17^{17^{17}}$ (mód 100). Dado que $100 = 2^2 \cdot 5^2$, el Teorema chino del resto nos da la existencia de un isomorfismo $\mathbb{Z}/100\mathbb{Z} \cong (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/25\mathbb{Z})$, así que calcularemos $17^{17^{17}}$ módulo 4 y 25, y finalmente uniremos estos resultados mediante el isomorfismo.

En primer lugar, notamos que $17 \equiv 1 \pmod{4}$, así que $17^{17^{17}} \equiv 1 \pmod{4}$. Calculamos ahora $17^{17^{17}} \pmod{25}$. Notemos ahora que $\varphi(25) = 20$, así que por el Teorema de Euler tenemos que $17^{20} = 17^{\varphi(25)} \equiv 1 \pmod{25}$. Calculemos entonces $17^{17} \pmod{20}$. Para ello notamos

$$17^{17} \equiv 17 \cdot 289^8 \equiv 17 \cdot 9^8 \equiv 17 \cdot 81^4 \equiv 17 \pmod{20}$$

Por lo tanto, tenemos que $17^{17}=20k+17$ para cierto $k\in\mathbb{Z},$ así que

$$17^{17^{17}} \equiv 17^{20k+17} \equiv (17^k)^{20} \cdot 17^{17}$$

$$\equiv 17^{17} \equiv 17 \cdot 289^8$$

$$\equiv 17 \cdot 14^8 \equiv 17 \cdot (196)^4$$

$$\equiv 17 \cdot 21^4 \equiv 17 \cdot 441^2$$

$$\equiv 17 \cdot 16^2 \equiv 17 \cdot 256$$

$$\equiv 17 \cdot 6 \equiv 2 \qquad (\text{m\'od } 25)$$

Así, tenemos un elemento $(1,2) \in ((\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/25\mathbb{Z}))$ y vemos que en este anillo (1,2) = (77,77) y por lo tanto el Teorema chino del resto nos da que $17^{17^{17}} \equiv 77 \pmod{100}$

Problema 6. Sea G un grupo y considere el grupo de raíces coplejas de la unidad, denotado por \mathbb{T}^1 . Se define el **grupo dual** de G, denotado \widehat{G} , como

$$\widehat{G} := \{ \chi : G \to \mathbb{T} \mid \chi \text{ morfismo de grupos} \}$$

Como su nombre lo indica, este conjunto es un grupo abeliano, cuya ley de composición corresponde al producto puntual de funciones, es decir,

$$(\chi\psi)(g) = \chi(g)\psi(g) \qquad \forall g \in G$$

Demuestre que si G es un grupo abeliano finito, entonces $\widehat{G}\cong G$.

Demostración. Si G es un grupo abeliano finito, el Teorema de estructura de grupos abelianos finitamente generados nos dice que existen $d_1, \ldots, d_s \in \mathbb{N}^{>1}$ tales que

$$G \cong \prod_{i=1}^{s} \mathbb{Z}/d_i \mathbb{Z}$$

 $^{^1}$ Geométricamente, este grupo corresponde a la esfera unitaria de $\mathbb C$

Dado que cada factor anterior es cíclico, podemos elegir generadores $x_1 \in \mathbb{Z}/d_i\mathbb{Z}, \ldots, x_s \in \mathbb{Z}/d_s\mathbb{Z}$ y por lo tanto $G \cong \langle x_1 \rangle \times \cdots \times \langle x_s \rangle$. Para cada $i \in \{1, \ldots, s\}$ podemos definir el morfismo de grupos

$$\chi_i: G \to \mathbb{T}, \quad (x_1^{m_1}, \dots, x_i^{m_i}, \dots, x_s^{m_s}) \mapsto e^{2\pi i m_i/d_i}$$

Notemos que

$$\chi_i^{d_i}(g) = (\chi_i(g))^{d_i} = \chi_i(g^{d_i}) = e^{2\pi i m} = 1 \quad \forall g \in G$$

donde (g_1, \ldots, g_s) con $g_i = x_i^m$ para cierto $m \in \mathbb{N}$. Tenemos entonces que el orden $|\chi_i|$ divide a d_i , y por otro lado, notando que

$$\chi_i(g^{|\chi_i|}) = (\chi_i(g))^{|\chi_i|} = 1 \qquad \forall g \in G$$

entonces tomando $g=(1,\ldots,x_i,\ldots,1)$ tenemos que $|x_i|=d_i$ divide a $|\chi_i|$, así que $|\chi_i|=d_i$ y por lo tanto $|\langle x_1\rangle \times \cdots \times \langle x_s\rangle|=|\langle \chi_1\rangle \times \cdots \times \langle \chi_s\rangle|$. Definamos

$$\varphi: \langle x_1 \rangle \times \dots \times \langle x_s \rangle \to \langle \chi_1 \rangle \times \dots \times \langle \chi_s \rangle$$
$$(x_1^{m_1}, \dots, x_s^{m_s}) \mapsto (\chi_1^{m_1}, \dots, \chi_s^{m_s})$$

que es un morfismo de grupos pues

$$\varphi((x_1^{m_1},\ldots,x_s^{m_s})(x_1^{k_1},\ldots,x_s^{k_s})) = (\chi_1^{m_1+k_1},\ldots,\chi_s^{m_s+k_s}) = (\chi_1^{m_1},\ldots,\chi_s^{m_s})(\chi_1^{k_1},\ldots,\chi_s^{k_s}) = \varphi((x_1^{m_1},\ldots,x_s^{m_s})\varphi((x_1^{k_1},\ldots,x_s^{k_s})))$$

Ahora,

$$\ker(\varphi) = \{(x_1^{m_1}, \dots, x_s^{m_s}) : \chi_i^{m_i} = 1 \quad \forall i\} = \{(x_1^{m_1}, \dots, x_s^{m_s}) : d_i | m_i \quad \forall i\} = \{1\}$$

pues x_i y χ_i son del mismo orden. Así, tenemos un morfismo de grupos inyectivo entre dos grupos del mismo orden y por tanto es un isomorfismo. Para concluir basta con probar entonces que $\hat{G} = \langle \chi_1 \rangle \times \cdots \times \langle \chi_s \rangle$. Para realizar esto probaremos el siguiente lema más general:

Lema 2. Sean G, G_1, \ldots, G_n grupos abelianos y denote por Hom(G, H) el conjunto de morfismos de grupo $G \to H$. Demuestre que

$$\operatorname{Hom}\left(\prod_{i=1}^{n} G_{i}, G\right) \cong \prod_{i=1}^{n} \operatorname{Hom}\left(G_{i}, G\right)$$

Demostración. Para cada coordenada $i=1,\ldots,n$ podemos definir el morfismo de grupos

$$\mu_i: G_i \to G_1 \times \cdots \times G_n, \quad x_i \mapsto (1, \dots, x_i, \dots, 1)$$

y la aplicación

$$\varphi: \operatorname{Hom}\left(\prod_{i=1}^n G_i, G\right) \to \prod_{i=1}^n \operatorname{Hom}\left(G_i, G\right), \quad f \mapsto (f \circ \mu_1, \dots, f \circ \mu_n)$$

para cada $f \in \text{Hom}(G_1 \times \ldots \times G_n, G)$. Demostramos primero que φ es morfismo de grupos. Sean $f, g \in \text{Hom}(G_1 \times \ldots \times G_n, G), x_i \in G_i$. Tenemos

$$(f \circ \mu_i + g \circ \mu_i)(x_i) = f(\mu_i(x_i)) + g(\mu_i(x_i)) = (f + g)(\mu_i(x_i))$$

y luego

$$\varphi(f+g) = ((f+g) \circ \mu_1, \dots, (f+g) \circ \mu_n) = (f \circ \mu_1 + g \circ \mu_1, \dots, f \circ \mu_n + g \circ \mu_n)$$
$$= (f \circ \mu_1, \dots, f \circ \mu_n) + (g \circ \mu_1, \dots, g \circ \mu_n)$$
$$= \varphi(f) + \varphi(g)$$

Probemos ahora que φ es inyectivo. Suponer $\varphi(f) = \varphi(g)$ con $f, g \in \text{Hom}(G_1 \times \ldots \times G_n, G)$. Por definición $f \circ \mu_i = g \circ \mu_i$ para todo $i = 1, \ldots, n$. Luego

$$f(x_1, \dots, x_n) = f(\mu_1(x_1) + \dots + \mu_n(x_n)) = f(\mu_1(x_1)) + \dots + f(\mu_n(x_n))$$

$$= g(\mu_1(x_1)) + \dots + g(\mu_n(x_n))$$

$$= g(\mu_1(x_1) + \dots + \mu_n(x_n))$$

$$= g(x_1, \dots, x_n)$$

así que f = g. Finalmente, vemos que φ es sobreyectivo. Para ello consideramos morfismos $f_i : G_i \to G$ y definimos

$$f(x_1,...,x_n) := f_1(x_1) + \cdots + f_n(x_n)$$

Usando que los f_i son morfismos y que los G_i son abelianos tenemos que $f \in \text{Hom}(G_1, \dots, G_n, G)$ y

$$f \circ \mu_i(x_i) = f(1, \dots, x_i, \dots, 1) = f_1(1) \cdots f_i(x_i) \cdots f_n(1) = f_i(x_i)$$

de donde tenemos que

$$\varphi(f) = (f \circ \mu_1, \dots, f \circ \mu_n) = (f_1, \dots, f_n)$$

El lema anterior nos indica que

$$\widehat{G} \cong \widehat{\langle x_1 \rangle} \times \dots \times \widehat{\langle x_n \rangle}$$

así que basta notar que cada factor cumple $\widehat{\langle x_i \rangle} \cong \langle \chi_i \rangle$. En efecto, note que un elemento $\chi \in \widehat{\mathbb{Z}/d_i\mathbb{Z}}$ corresponde a un morfismo $\chi : \mathbb{Z}/d_i\mathbb{Z} \to \mathbb{T}$, y dado que $\mathbb{Z}/d_i\mathbb{Z}$ es cíclico el morfismo viene determinado por la imagen de un generador, en este caso x_i , y como los morfismos de grupos preservan el orden de los elementos x_i debe ir a parar a una raíz d_i -ésima de la unidad, y como los elementos del grupo dual están definidos con la multiplicación puntual, vemos que $x_i \mapsto e^{2\pi i/d_i}$ es un generador de $\widehat{\langle x_i \rangle}$