ЛАБОРАТОРНАЯ РАБОТА № 2 РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ С ПОМОЩЬЮ ТЕОРЕМ ОБ ЭКВИВАЛЕНТНОМ ИСТОЧНИКЕ

Цель задания

Получение практических навыков использования методов для расчета электрических цепей, опирающихся на теоремы об эквивалентном источнике.

Постановка задачи

Для заданной электрической цепи определить значение тока в ветви.

Содержание отчета

- 1) Постановка задачи.
- 2) Схема исследования электрической цепи.
- 3) Измеренные и вычисленные значения электрических величин.
- 4) Выводы.

Методические указания

Для схемы (рис.1) определим ток, проходящий через сопротивление R_2 .

Рис.1. Исходная схема

1) Схема исследования электрической цепи показана на рис.2.

Рис.2. Схема исследования электрической цепи

Сопротивление R_2 из цепи исключено. Для измерения напряжения холостого хода (U_{xx}) , тока короткого замыкания $(I_{\kappa.3.})$ и сопротивления R_{ab} используется мультиметр. В электрическую цепь включены три пере-

ключателя (P1, P2, P3), которые используются для отключения источников постоянного напряжения при измерении R_{ab} . Переключение осуществляется нажатием клавиши «1».

В результате измерений получаем следующие значения:

$$U_{xx} = 15B$$
; $I_{x.3.} = 2A$; $R_{aB} = 7.5 \text{ Om}$.

По формулам определим значение тока І2:

$$I_2 = \frac{U_{xx}}{R_{ab} + R_2} = \frac{15}{7.5 + 30} = 0.4 (A);$$

$$I_{2.} = I_{\text{\tiny K.3.}} \frac{R_{\text{ab}}}{R_{\text{ab}} + R_{2}} = 2 \cdot \frac{7,5}{7,5 + 30} = 0,4 \text{ (A)}.$$

2) Произведем расчет для схемы (рис.1). Сопротивление R_{aB} определим из схемы, в которой источники постоянного напряжения отключены (рис.3).

Рис.3. Схема для расчета R_{aB}

$$R_{ab} = \frac{R_1 R_3}{R_1 + R_3} = \frac{30*10}{30+10} = 7.5$$
 (OM).

Напряжения холостого хода U_{xx} найдем из схемы на рис.4.

Рис.4. Схема для расчета U_{xx}

 $U_{_{xx}}=IR_{_{1}}-E_{_{1}};$ где I- ток в контуре E_{1} R_{1} R_{3} E_{2} , который определяется

по формуле:
$$I = \frac{E_1 - E_2}{R_1 + R_3} = \frac{-20}{40} = -0.5$$
 (A).

$$U_{xx} = -0.5 * 10 - 10 = -15$$
 (B).

Искомый ток через сопротивление R_2 рассчитывается по формуле:

$$I_2 = \frac{U_{xx}}{R_{ab} + R_2} = \frac{-15}{7,5 + 30} = -0,4$$
 (A).

Согласно теореме об эквивалентном источнике тока, ток I_2 можно определить через ток короткого замыкания $I_{\kappa,3}$ по формуле:

$$I_{2.} = I_{\kappa.3.} \frac{R_{ab}}{R_{ab} + R_{2}}$$

Варианты