A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 6EN

Bookmark

Show all steps: ON

Problem

Let G be a finite group, and K a p-Sylow subgroup of G. Let X be the set of all the conjugates of K. See Exercise M2. If C_1 , $C_2 \in X$, let $C_1 \sim C_2$ iff $C_1 = aC_2a^{-l}$ for some $\alpha \in K$

Prove that (N: K) is not a multiple of p. (Use Exercises K and M5.)

Step-by-step solution

Step 1 of 3

Assume that G is a finite group and K a p-Sylow subgroup of G. Consider the set X as the set of all the conjugates of K. Define an equivalence relation as:

If $C_1, C_2 \in X$, let $C_1 \approx C_2$ if and only if $C_1 = aC_2a^{-1}$ for some $a \in K$.

Note that, no non-identity element of N/K has order a power of p.

Objective is to prove that (N:K) is not a multiple of p, where N=N(K).

Comment

Step 2 of 3

	he sake of contradiction, that p divides $(N:K)$. Then, by the Cauchy theorem, ave an element whose order is p . Let $mK \in N / K$ is a coset of order p . That is,
$(mK)^p = e$	$m^p K = e$
So, $m^p \in K$ and also $(m^p)^{p^i} = e$, or equivalently, $m^{p^{i+1}} = e$.	
	at $m \in K$ and order of mK equals 1, not p . This is because N/K does not have those order is a power of p . But this contradicts the implication of Cauchy theorem
Comment	
	Step 3 of 3
Hence, $(N:K)$	() is not a multiple of <i>p</i> .
Comment	