INT 437 WIRELESS AND MOBILE NETWORKS

Lecture 7

RECAP

- Wireless transmission
- Medium Access Control

MOBILE COMMUNICATIONS CHAPTER 5: SATELLITE SYSTEMS

History

- Basics
- Localization

HISTORY OF SATELLITE COMMUNICATION

1945	Arthur C. Clarke publishes an essay about "Extra Terrestrial Relays"
1957	first satellite SPUTNIK
o 1960	first reflecting communication satellite ECHO
1963	first geostationary satellite SYNCOM
1965	first commercial geostationary satellite, Early Bird" (INTELSAT I): 240 duplex telephone channels or 1 TV channel, 1.5 years lifetime
o 1976	three MARISAT satellites for maritime communication
o 1982	first mobile satellite telephone system INMARSAT-A
o 1988	first satellite system for mobile phones and data communication INMARSAT-C
1993	first digital satellite telephone system
1998	global satellite systems for small mobile phones

APPLICATIONS

- Traditionally
 - weather satellites
 - radio and TV broadcast satellites
 - military satellites
 - satellites for navigation and localization (e.g., GPS)
- Telecommunication
 - global telephone connections
 - backbone for global networks
 - connections for communication in remote places or underdeveloped areas
 - global mobile communication
 - satellite systems to extend cellular phone systems (e.g., GSM or AMPS)

CLASSICAL SATELLITE SYSTEMS

BASICS

- Satellites in circular orbits
 - Attractive force $F_g = m g (R/r)^2$
 - Centrifugal force $F_c = m r \omega^2$

Where:

- m: mass of the satellite
- R: radius of the earth (R = 6370 km)
- r: distance to the center of the earth
- g: acceleration of gravity $(g = 9.81 \text{ m/s}^2)$
- ω : angular velocity ($\omega = 2 \pi f$, f: rotation frequency)
- Stable orbit

$$F_{g} = F_{c} \qquad r = 3 \sqrt{\frac{gR^{2}}{(2\pi f)^{2}}}$$

SATELLITE PERIOD AND ORBITS

BASICS

- elliptical or circular orbits
- complete rotation time depends on distance satellite-earth
- □ inclination: angle between orbit and equator
- elevation: angle between satellite and horizon
- □ LOS (Line of Sight) to the satellite necessary for connection
 - → high elevation needed, less absorption due to e.g. buildings
- Uplink: connection base station satellite
- Downlink: connection satellite base station
- typically separated frequencies for uplink and downlink
 - transponder used for sending/receiving and shifting of frequencies
 - transparent transponder: only shift of frequencies
 - regenerative transponder: additionally signal regeneration

INCLINATION

ELEVATION

Elevation:

angle ε between center of satellite beam and surface

minimal elevation:

elevation needed at least to communicate with the satellite footprint

LINK BUDGET OF SATELLITES

- Parameters like attenuation or received power determined by four parameters:
 - sending power
 - gain of sending antenna
 - distance between sender and receiver
 - gain of receiving antenna

Problems

- varying strength of received signal due to multipath propagation
- interruptions due to shadowing of signal (no LOS)
- Possible solutions
 - Link Margin to eliminate variations in signal strength
 - satellite diversity (usage of several visible satellites at the same time) helps to use less sending power

L: Loss

f: carrier frequency

r: distance

c: speed of light

$$L = \left(\frac{4\pi rf}{c}\right)^2$$

ATMOSPHERIC ATTENUATION

ORBITS

- Four different types of satellite orbits can be identified depending on the shape and diameter of the orbit:
 - GEO: geostationary orbit, ca. 36000 km above earth surface
 - LEO (Low Earth Orbit): ca. 500 1500 km
 - MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit): ca. 6000 20000 km
 - HEO (Highly Elliptical Orbit) elliptical orbits