南京大学数学系试卷

共4页 第1页

2005 / 2006 学年第_	二_学期 课	程	名	称_		流形	与几	何		
试卷类型_A卷_考试形式	、开卷_ 使	用	班	级_	硕-	士及†	專士研	开究与	Ł	
命 题 人 梅加	加强 考	试	时	间	2006	年	6	月	20	E

题号	_	=	三 ニ	四	五	六	七	八	九	+	总分	阅卷人
得分												

说明:

- 1. 请将班级、学号、姓名写在试卷左侧装订线外。
- 2. 本试卷共 8题, 满分 100 分, 考试时间 150 分钟。
- 1. 叙述微分流形的定义并举一个非平凡的例子. (10分)

2. 叙述微分流形余切丛的定义并给出其局部平凡化和连接函数. (15分)

森名

冰巾

压级

- 3. 记 $O(2,1) = \{A \in M_{3\times 3} | AI_{2,1}A^T = I_{2,1}\}$, 这里 $M_{3\times 3}$ 是 3 阶实方阵全体, $I_{2,1}$ 是对角矩阵 $\operatorname{diag}\{1,1,-1\}$.
 - (i) 证明 O(2,1) 是 3 维李群; (ii) 证明 O(2,1) 有 4 个连通分支. (20 分)

4. 考虑映射 $\pi:SO(n)\to S^{n-1},\ \pi$ 把正交方阵 A 映为 A 的最后一列. 证明, $(SO(n),S^{n-1},\pi)$ 为纤维丛, 其纤维和结构群均为 SO(n-1). $(15\, \%)$

5. 设M 为紧流形, p,q 为M 上两个不同的点. 分别给定p 处的切向量 X_p 及q 处

切向量 X_q . 证明

- (i) 存在连接 p,q 的光滑曲线 σ , 使得 $\dot{\sigma}(0)=X_p,\ \dot{\sigma}(1)=X_q$;
- (ii) 存在 M 上的光滑向量场 X, 使得 $X(p) = X_p$, $X(q) = X_q$;
- (iii) 存在微分同胚 $\phi: M \to M$, 使得 $\phi(p) = q$. (10 分)

6. 设 A 为 n 阶实方阵, 把它视为如下线性映射: $A: R^n \to R^n, \ x \mapsto A \cdot x$, 这里 $x = (x_1, x_2, \cdots, x_n)^T$ 看成列向量. 证明

$$A^*(dx_1 \wedge dx_2 \wedge \cdots \wedge x_n) = (\det A)dx_1 \wedge dx_2 \wedge \cdots \wedge x_n$$

(10分)

7. 证明任何微分流形上都存在黎曼度量. (10分)

8. 在上半欧氏空间 $H^n = \{(x_1, x_2, ..., x_n) \in R^n : x_n > 0\}$ 上定义黎曼度量为

$$g = \frac{1}{x_n^2} \cdot \sum_{i=1}^n \mathrm{d}x_i \otimes \mathrm{d}x_i$$

试求黎曼流形 (H^n,g) 的截面曲率. (10分)