Mathematical Writing and Typesetting in LATEX

Hao Zhu

Department of Computer Science University of Freiburg

July 11, 2025

About this talk

- guidelines for mathematical writing and typesetting in LATEX
- useful in general for writing papers; can be very useful if math statements and proofs are included
- list some geneal rules that I am trying to follow, specific to optimization field
- accompanied with a note which is more formal than the slides
- covers both the LATEX source as well as the output, *i.e.*, the PDF, which is intended to be read alongside its own source
- all material available at https://github.com/nrgrp/math_latex_slides

 the material was originally developed by Boyd et al. [BRP14] as guidelines for a course report

Outline

General rules for mathematical typesetting

Mathematical notation and jargon

Some useful references

some famous guidelines for mathematical writing:

- [Hal70]: Halmos, How to write mathematics
- [KLR89]: Knuth et al., Mathematical Writing

many respectable books follow similar rules, like

- [BV04]: Boyd and Vandenberghe, Convex Optimization
- [CT91]: Cover and Thomas, *Elements of Information Theory*
- [HTF01]: Hastie et al., The Elements of Statistical Learning
- [Sip01]: Sipser, Introduction to the Theory of Computation
- [CSRL01]: Cormen et al., Introduction to Algorithms
- [Rud76]: Rudin, Principles of Mathematical Analysis
- [Eva10]: Evans, Partial Differential Equations
- [Knu73]: Knuth, The Art of Computer Programming, Volume I: Fundamental Algorithms

Precision of mathmatical statements

the sentence

"Let x^* be the solution to the optimization problem." implicitly asserts that the solution is unique

• if the solution is not unique or need not be unique, write "Let x^* be a solution to the optimization problem."

- similarly, do not refer to "solving" an expression, as this is meaningless
- we can solve an equation or set of equations, evaluate an expression or function, or check that an equation or inequality holds

Punctuation in equations

- an equation is part of a sentence, so we may need to include a comma or a period at the end of an equation, whether or not inline or display math style is used
- an example for using a comma:

We next discuss how to solve the problem

minimize
$$(1/2)||Ax - b||_2^2$$
,

where $x \in \mathbf{R}^n$ is the optimization variable.

• an example for using a period:

The objective function $f: \mathbf{R}^n \to \mathbf{R}$ is given by

$$f(x) = (1/2)||Ax - b||_2^2, \quad x \in \mathbf{R}^n.$$

• an example where no punctuation is needed:

The set

$$E = \{ q \in \mathbf{R} \mid q > 0, \ q^2 < 2 \}$$

has a supremum in \mathbf{R} .

Symbols in sentences

don't start a sentence with a symbol since this hurts readability:

Bad: f is smooth.

Good: The function f is smooth.

Bad: $x^n - a$ has n distinct zeros.

Good: The polynomial $x^n - a$ has n distinct zeros.

• use words to separate symbols in different formulas if it might confuse the reader visually or in the actual meaning of the sentence:

Bad: The sequences $x_1, x_2, \ldots, y_1, y_2, \ldots$ are Cauchy.

OK: The sequences x_1, x_2, \ldots , and y_1, y_2, \ldots , are Cauchy.

Good: The sequences (x_i) and (y_i) are Cauchy.

OK: The image of S under f, $f(S) = \{x \mid x \in S\}$, is convex.

Good: The image of S under f, given by $f(S) = \{x \mid x \in S\}$, is convex.

• do not insert superfluous words if the meaning is clear:

Good: Consider the function f + g + h, where $f: \mathbf{R}^n \to \mathbf{R}$, $g: \mathbf{R}^m \to \mathbf{R}$, and $h: \mathbf{R}^p \to \mathbf{S}^n$ are closed proper convex.

English in math mode

- mathematical symbols should be typeset in math mode: write Ax = b, not Ax = b
- subscripts or superscripts that derive from English (or any human language) should not be italicized, for example, write $f_{\rm best}$, not f_{best}
- the exception is subscripts based on a single letter: refer to a point that is the center of some set as x_c , not x_c
- similarly, use commands for special functions: use $\sin(x)$, $\log(x)$, and $\exp(x)$, not $\sin(x)$, $\log(x)$, or $\exp(x)$

- a really heinous example would be the following:
 - Consider the problem

$$minimize \quad f(Ax-b)$$

where x is the optimization variable and A and b are problem data.

Spacing

- a blank line ends a paragraph, so we shouldn't leave a blank line between an equation and the following text unless intending the equation to end the paragraph
- for example, in the LATEX source, write:

```
The image of SS under f, \[
f(S) = \{ f(x) \mid x \mid S \}, \}
is convex.
```

inserting extra blank lines before \[or after \] will result in bad typesetting

• the following is fine, since a new paragraph is called for:

```
The image of SS under f is defined as [f(S) = \{ f(x) \mid x \mid S \}.
```

We now turn to a different topic.

Use the right commands

there are certain special commands in LATEX for notation that you otherwise might attempt to write in an ad-hoc manner, *e.g.*,

• norms:

Bad:
$$|x| | (\Rightarrow |x|)$$

Good: $|x| | (\Rightarrow |x|)$

set-builder and conditional probability notation:

Bad:
$$| (\implies \{x \in \mathbf{R} | x \ge 0 \})$$

Good: $\| (\implies \{x \in \mathbf{R} | x \ge 0 \}) \|$

• functions:

Bad:
$$: (\Longrightarrow f : \mathbf{R}^n \to \mathbf{R})$$

Good: $colon (\Longrightarrow f : \mathbf{R}^n \to \mathbf{R})$

 use \ldots (lower dots, ...) when the dots are surrounded by commas and \cdots (center dots, ...) when surrounded by other objects that have full height, as in

$$x_1, x_2, \dots, x_n$$
 and $x_1 + x_2 + \dots + x_n$

Outline

General rules for mathematical typesetting

Mathematical notation and jargon

General guidelines

Symbols for some specific sets

Writing optimization problems

Outline

General rules for mathematical typesetting

Mathematical notation and jargon

Miscellaneous comments

Sentence-ending periods

- LATEX assumes all periods followed by a space are sentence-ending periods
- tell it otherwise when that is not the case
- for example:

```
Bad:
```

```
Let x_1,x_2,\ldots,x_n be i.i.d. normal random variables. \implies Let x_1,x_2,\ldots,x_n be i.i.d. normal random variables.
```

Good:

Let \$x_1,x_2,\ldots ,x_n\$ be i.i.d.\ normal random variables.

 \implies Let x_1, x_2, \ldots, x_n be i.i.d. normal random variables.

Commas

know when commas should appear inside or outside math environments:

Bad: Note that \$a,b,\$ and \$c\$ are nonnegative.

 \implies Note that a, b, and c are nonnegative.

Good: Note that \$a\$, \$b\$, and \$c\$ are nonnegative.

 \implies Note that a, b, and c are nonnegative.

Bad: We conclude that x_1 , x_2 , \dots, x_n are decreasing.

 \implies We conclude that x_1, x_2, \ldots, x_n are decreasing.

Good: We conclude that x_1, x_2, \ldots, x_n is decreasing.

 \implies We conclude that x_1, x_2, \ldots, x_n is decreasing.

Dialects

- be aware when writing in mathematical dialect, e.g., in statistics, machine learning, signal processing, control, vision, information theory, and so on
- unless the intended audience is only from this one field, try to avoid using dialect
- try to write in such a way that a general reader with a good understanding of basic mathematics can understand what we are saying

- ullet use standard variable notation unless otherwise needed: x for variables, A for matrices, and so on
- a bad example would be to use

$$\Xi \beta = \chi$$

for a system of linear equations, unless it is really needed

No rule is absolute

• break any of these rules rather than write anything nasty

Reference I

- [BRP14] S. Boyd, E. K. Ryu, and N. Parikh. LaTeX style guide for EE 364B. https://web.stanford.edu/class/ee364b/latex_templates/template_notes.pdf, 2014.
- [BV04] S. Boyd and L. Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.
- [CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. *Introduction to Algorithms*. McGraw-Hill Higher Education, 2nd edition, 2001.
- [CT91] T. M. Cover and J. A. Thomas. *Elements of Information Theory*. Wiley-Interscience, 1991.
- [Eva10] L. C. Evans. *Partial Differential Equations*. American Mathematical Society, 2010.
- [Hal70] P. R. Halmos. How to write mathematics. L'Enseignement Mathématique, 16:123–152, 1970.
- [HTF01] T. Hastie, R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*. Springer, 2001.

Reference II

- [KLR89] D. E. Knuth, T. Larrabee, and P. M. Roberts. Mathematical Writing, volume 14 of MAA notes. Mathematical Association of America, 1989.
- [Knu73] D. E. Knuth. *The Art of Computer Programming, Volume I: Fundamental Algorithms.* Addison-Wesley, 2nd edition, 1973.
- [Rud76] W. Rudin. Principles of Mathematical Analysis. McGraw-Hill Book Co., third edition, 1976.
- [Sip01] M. Sipser. *Introduction to the Theory of Computation*. Thomson Course Technology, 2001.