Stochastic Processes Assignment 4 - Questions

Due on April 22, 2023

- 1. A particle moves according to a Markov chain on $\{1, 2, \ldots, c+d\}$, where c and d are positive integers. Starting from any one of the first c states, the particle jumps in one transition to a state chosen uniformly from the last d states; starting from any of the last d states, the particle jumps in one transition to a state chosen uniformly from the first c states.
 - (a) Show that the chain is irreducible.
 - (b) Find the stationary distribution.
- 2. Consider a Markov chain on $\{0, 1, 2, 3, 4\}$ having transition matrix

	0	1	2	3	4
0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$	1/3	2/3	0	$\begin{bmatrix} 0 \\ 3/4 \\ 3/4 \\ 0 \\ 0 \end{bmatrix}$
1	0	0	0	1/4	3/4
2	0	0	0	1/4	3/4
3	1	0	0	0	0
4	L1	0	0	0	0]

- (a) Show that the chain is irreducible.
- (b) Find the stationary distribution.
- 3. Suppose we have two boxes and 2d balls, of which d are black and d are red. Initially, d of the balls are placed in box 1, and the remainder of the balls are placed in box 2. At each trial a ball is chosen at random from each of the boxes, and the two balls are put back in the opposite boxes. Let X_0 denote the number of black balls initially in box 1 and, for $n \ge 1$, let X_n denote the number of black balls in box 1 after the nth trial.
 - (a) Find the transition function of the Markov chain X_n , $n \ge 0$.
 - (b) Find the stationary distribution of the chain. Hint: Use the formula

$$\binom{d}{0}^2 + \dots + \binom{d}{d}^2 = \binom{2d}{d}.$$

- 4. Let $X_n, n \geq 0$, be the Ehrenfest chain on $\{0, 1, \ldots, d\}$.
 - (a) Find the stationary distribution.
 - (b) Find the mean and variance of this distribution.
 - (c) Suppose that initially all of the balls are in the second box. Find the expected amount of time until the system returns to that state.
- 5. Suppose that every man in a certain society has exactly three children, which independently have probability one-half of being a boy and one-half of being a girl. Suppose also that the number of males in the nth generation forms a branching chain.
 - (a) Find the probability that the male line of a given man eventually becomes extinct.
 - (b) If a given man has two boys and one girl, what is the probability that his male line will continue forever?
- 6. Consider a branching chain where each particle gives rise to ξ particles in the next generation, where ξ is a random variable having density $f(x) = p(1-p)^x$, $x \ge 0$, where $0 . Show that <math>\rho = 1$ if $p \ge 1/2$ and that $\rho = p/(1-p)$ if p < 1/2 where ρ is the probability that the descendants of a given particle eventually become extinct i.e. $\rho = \rho_{10} = P_1(T_0 < \infty)$.