Lecture 2 Propositional Logic & SAT

Zvonimir Rakamarić University of Utah

Announcements

- Homework 1 will be posted soon
- Propositional logic: Chapter 1 of our textbook
 - You can download it for free as a PDF

Syntax of Propositional Logic (PL)

```
truth_symbol ::= \top (true), \bot (false)
variable ::= p, q, r,...
atom ::= truth_symbol | variable
literal ::= atom | ¬atom
formula ::= literal |
             ¬formula |
             formula \( \) formula |
             formula \tag{ formula |
             formula \rightarrow formula |
             formula ↔ formula
```

Examples of PL Formulae

```
F: ⊤
```

$$F:(p \land q) \rightarrow (p \lor \neg q)$$

$$F: (p \vee \neg q \vee r) \wedge (q \vee \neg r)$$

$$F: (\neg p \lor q) \leftrightarrow (p \rightarrow q)$$

$$F: p \leftrightarrow (q \rightarrow r)$$

Semantics

- Semantics provides meaning to a formula
 - Defines mechanism for evaluating a formula
 - Formula evaluates to truth values true/1 and false/0
- Formula F evaluated in two steps
 - Interpretation *I* assigns truth values to propositional variables
 I: {p → false, q → true...}
 - 2) Compute truth value of *F* based on *I* using e.g. truth table
- ▶ formula F + interpretation I = truth value

Notation

- Let F be a formula and I an interpretation...
- I [F] denotes evaluation of F under I
- If I [F] = true then we say that
 - F is true in I
 - ▶ I satisfies F
 - I is a model of F and write I ⊨ F
- If / [F] = false we write / ₱ F

Example

F:
$$(p \land q) \to (p \lor \neg q)$$

I: $\{p \mapsto 1, q \mapsto 0\}$
(i.e., $I[p] = 1, I[q] = 0$)

p	q	$\neg q$	$p \wedge q$	$p \lor \neg q$	F
1	0	1	0	1	1

F evaluates to *true* under *I* or I[F] = true or $I \models F...$

Satisfiability and Validity

- F is <u>satisfiable</u> iff (if and only if) there exists I such that I ⊨ F
 - Otherwise, F is unsatisfiable
- ▶ F is valid iff for all I, $I \models F$
 - Otherwise, F is invalid
- We write ⊨ F if F is valid
- Duality between satisfiablity and validity:
 F is valid iff ¬F is unsatisfiable

Note: only holds if logic is closed under negation

Equivalence

Two formulae F_1 and F_2 are <u>equivalent</u>, denoted by $F_1 \Leftrightarrow F_2$, iff they have the same models

Decision Procedure for Satisfiability

- Algorithm that in some finite amount of computation decides if given PL formula F is satisfiable
 - NP-complete problem
- Modern decision procedures for PL formulae are called SAT solvers
- Naïve approach
 - Enumerate truth table
- Modern SAT solvers
 - DPLL algorithm
 - Davis-Putnam-Logemann-Loveland
 - Operates on Conjunctive Normal Form (CNF)

Normal Forms

- Negation Normal Form (NNF)
 - ▶ Only allows ¬, ∧, ∨
 - Negation only in literals
- Disjunctive Normal Form (DNF)
 - Disjunction of conjunction of literals:

$$I_{i;j}$$

- Conjunctive Normal Form (CNF)
 - Conjunction of disjunction of literals:

Negation Normal Form

To transform F into F' in NNF recursively apply the following equivalences:

$$\neg \neg F_1 \Leftrightarrow F_1
\neg \top \Leftrightarrow \bot
\neg \bot \Leftrightarrow \top
\neg (F_1 \land F_2) \Leftrightarrow \neg F_1 \lor \neg F_2
\neg (F_1 \lor F_2) \Leftrightarrow \neg F_1 \land \neg F_2
F_1 \to F_2 \Leftrightarrow \neg F_1 \lor F_2
F_1 \leftrightarrow F_2 \Leftrightarrow (F_1 \to F_2) \land (F_2 \to F_1)$$

Example

 $F: p \leftrightarrow (q \rightarrow r)$

Conjunctive Normal Form

To transform F into F' in CNF first transform F into NNF and then recursively apply the following equivalences:

$$(F_1 \wedge F_2) \vee F_3 \Leftrightarrow (F_1 \vee F_3) \wedge (F_2 \vee F_3)$$

 $F_1 \vee (F_2 \wedge F_3) \Leftrightarrow (F_1 \vee F_2) \wedge (F_1 \vee F_3)$

(Note: a disjunction of literals is called a clause.)

Example

 $F: p \leftrightarrow (q \rightarrow r)$

Exponential Blow-Up

- Such a naïve transformation can blow-up exponentially (in formula size) for some formulae
 - For example: transforming from DNF into CNF

Tseitin Transformation [1968]

- Used in practice
 - No exponential blow-up
 - CNF formula size is linear wrt original formula
- Does not produce an equivalent CNF
- ▶ However, given F, the following holds for the computed CNF F':
 - F' is equisatisfiable to F
 - Every model of F' can be translated (i.e., projected) to a model of F
 - Every model of F can be translated (i.e., completed) to a model of F'
- No model is lost or added in the conversion

Tseitin Transformation – Main Idea

- Introduce a fresh variable e_i for every subformula G_i of F
 - \triangleright e_i represents the truth value of G_i
- Assert that every e_i and G_i pair are equivalent
 - Assertions expressed as CNF
- Conjoin all such assertions in the end

Example

 $F: p \leftrightarrow (q \rightarrow r)$

SAT Solver Input Format

Based around DIMACS

```
c start with comments c p cnf 5 3 1 -5 4 0 -1 5 3 4 0 -3 -4 0
```

Classical DPLL

- Searching for a model M for a given CNF formula F
 - Incrementally try to build a model M
 - Maintain state during search
- ▶ State is a pair M | F
 - F is a set of clauses and it doesn't change during search
 - M is a sequence of literals
 - No literals appear twice and no contradiction
 - Order does matter
 - Decision literals marked with l^d

Abstract Transition System

Contains a set of rules of the form

$$M \mid F \Rightarrow M' \mid F'$$

denoting that search can move from state $M \mid F$ to state $M' \mid F'$

DPLL Rules – Extending M

Propagate

$$M \mid G,C \lor l \Rightarrow M,l \mid G,C \lor l$$

if $M \models \neg C$ and l not in M

Decide

```
M \mid F \Rightarrow M, l^d \mid F

if l or \neg l in F and l not in M
```

DPLL Rules – Adjusting M

Fail

$$M \mid G,C \Rightarrow fail$$

if $M \models \neg C$ and M contains no decision literals

Backtrack

```
M,l^d,N \mid G,C \Rightarrow M,\neg l \mid G,C

if M,l^d,N \models \neg C and N contains no decision literals
```

Propagate

$$M \mid G,C \lor l \Rightarrow M,l \mid G,C \lor l$$

if $M \models \neg C$ and l not in M

Decide

$$M \mid F \Rightarrow M, l^d \mid F$$

if l or $\neg l$ in F and l not in M

Fail

$$M \mid G,C \Rightarrow fail$$

if $M \models \neg C$ and M contains no decision literals

Backtrack

$$M,l^d,N \mid G,C \Rightarrow M,\neg l \mid G,C$$

if $M,l^d,N \models \neg C$ and N contains no decision literals

$$\emptyset$$
 | $\neg p \lor q \lor r$, p , $\neg q \lor r$, $\neg q \lor \neg r$, $q \lor r$, $q \lor \neg r$

$$\emptyset$$
 | $\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q$

$$\emptyset \qquad \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\mathsf{Decide}\ p)$$

$$\emptyset \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } p) \\
p^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q$$

```
\emptyset \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } p) \\
p^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Propagate } q) \\
p^d, q \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q
```

```
\emptyset \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } p) \\
p^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Propagate } q) \\
p^d, q \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } r)
```

```
\emptyset \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } p)
p^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Propagate } q)
p^d, q \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } r)
p^d, q, r^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Propagate } s)
```

```
 \emptyset \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\mathsf{Decide}\ p) 
 p^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\mathsf{Propagate}\ q) 
 p^d, q \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\mathsf{Decide}\ r) 
 p^d, q, r^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\mathsf{Propagate}\ s) 
 p^d, q, r^d, s \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\mathsf{Decide}\ t) 
 p^d, q, r^d, s, t^d \qquad | \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\mathsf{Propagate}\ \neg u)
```

```
\emptyset
                               |\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } p)
                              |\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (Propagate q)
p^d
                              |\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } r)
p^d,q
p^d,q,r^d
                              |\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (Propagate s)
p^d, q, r^d, s
                             |\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } t)
p^d, q, r^d, s, t^d
                           |\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (Propagate \neg u)
p^d, q, r^d, s, t^d, \neg u \mid \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (Backtrack)
p^d,q,r^d,s,\neg t
                           |\neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q \Rightarrow (\text{Decide } u)
p^{d},q,r^{d},s,\neg t,u^{d} \mid \neg p \lor q, \neg r \lor s, \neg t \lor \neg u, u \lor \neg t \lor \neg q
```

Modern SAT Solvers

- DPLL + improvements
 - Backjumping
 - Dynamic variable ordering
 - Learning conflict clauses
 - Random restarts
 - . . .

Next Lecture

First-order logic