

planetmath.org

Math for the people, by the people.

proof of convergence of a sequence with finite upcrossings

 ${\bf Canonical\ name} \quad {\bf ProofOf Convergence Of A Sequence With Finite Upcrossings}$

Date of creation 2013-03-22 18:49:39 Last modified on 2013-03-22 18:49:39

Owner gel (22282) Last modified by gel (22282)

Numerical id 4

Author gel (22282)

Entry type Proof

Classification msc 40A05 Classification msc 60G17 We show that a sequence x_1, x_2, \ldots of real numbers converges to a limit in the extended real numbers if and only if the number of upcrossings U[a, b] is finite for all a < b.

Denoting the infimum limit and supremum limit by

$$l = \liminf_{n \to \infty} x_n, \ u = \limsup_{n \to \infty} x_n,$$

then $l \leq u$ and the sequence converges to a limit if and only if l = u.

We first show that if the sequence converges then U[a, b] is finite for a < b. If l > a then there is an N such that $x_n > a$ for all $n \ge N$. So, all upcrossings of [a, b] must start before time N, and we may conclude that $U[a, b] \le N$ is finite. On the other hand, if $l \le a$ then u = l < b and we can infer that $x_n < b$ for all $n \ge N$ and some N. Again, this gives $U[a, b] \le N$.

Conversely, suppose that the sequence does not converge, so that u > l. Then choose a < b in the interval (l, u). For any integer n, there is then an m > n such that $x_m > b$ and an m > n with $x_m < a$. This allows us to define infinite sequences s_k, t_k by $t_0 = 0$ and

$$s_k = \inf \{ m \ge t_{k-1} \colon X_m < a \},$$

 $t_k = \inf \{ m \ge s_k \colon X_m > b \},$

for $k \ge 1$. Clearly, $s_1 < t_1 < s_2 < \cdots$ and $x_{s_k} < a < b < x_{t_k}$ for all $k \ge 1$, so $U[a,b] = \infty$.