Thermodynamique de l'ingénieur

Table des matières

1 N	Notions fondamentales	9
1.1	Démarche	11
1.2	Notion d'énergie	12
1.3	L'énergie mécanique	17
1.4	Le travail	19
1.5	La chaleur	22
1.6	Le chaud et le froid	26
1.7	Un peu d'histoire : mesurer le degré de chaleur	28
1.8	Exercices	30
2 I	Les systèmes fermés	37
2.1	Pourquoi utiliser un système fermé?	39
2.2	Conventions de comptabilité	41
2.3	Le premier principe dans un système fermé	43
2.4	Quantifier le travail avec un système fermé	44
2.5	Quantifier la chaleur avec un système fermé	58
2.6	Un peu d'histoire : le moteur compound	59
2.7	Exercices	61
3 L	Les systèmes ouverts	67
3.1	Pourquoi utiliser un système ouvert?	69
3.2	Conventions de comptabilité	70
3.3	Le premier principe dans un système ouvert	72
3.4	Quantifier le travail avec un système ouvert	77
3.5	Quantifier la chaleur avec un système ouvert	84
3.6	Exercices	85
4 L	Le gaz parfait	91
4.1	Définition	93
4.2	Propriétés des gaz parfaits	98
4.3	Énergie et température	101
4.4	Transformations élémentaires réversibles	105
4.5	Exercices	118
5 L	Liquides et vapeurs	125
5.1	Ébullition et liquéfaction	127
5.2	Description qualitative des propriétés de l'eau	132
5.3	Quantification des propriétés de l'eau	139

5.4	Transformations élémentaires réversibles	147
5.5	Un peu d'histoire : le cheval-vapeur	157
5.6	Exercices	159
6 C	cycles thermodynamiques	167
6.1	Conventions de signe	169
6.2	Transformer chaleur et travail	171
6.3	Rendement des cycles	179
6.4	Exercices	184
7 L	e second principe	195
7.1	Le second principe	197
7.2	Le second principe et les machines thermiques	199
7.3	Le cycle de Carnot	204
7.4	L'échelle de température thermodynamique	215
7.5	Efficacité maximale des machines	220
7.6	Exercices	223
8 L	'entropie	229
8.1	Le concept de l'entropie	231
8.2	Définition	233
8.3	Les variations d'entropie	236
8.4	Prédire le sens des transformations	248
8.5	L'entropie, le temps, et l'univers	255
8.6	Exercices	258
9 C	cycles moteurs à vapeur	263
9.1	Pourquoi utiliser un moteur à vapeur ?	265
9.2	Critères d'évaluation des moteurs	266
9.3	Composants des installations à vapeur	268
9.4	Cycles moteurs à vapeur	277
9.5	Exercices	288
10 C	cycles moteurs à gaz	291
10.1	Pourquoi utiliser un moteur à gaz?	293
	Critères d'évaluation des moteurs à gaz	294
	Moteurs alternatifs	298
10.4	Composants des turbomachines	304
10.5	Les configurations des turbomachines	311
10.6	Modification des cycles des turbomachines	319
10.7	Exercices	326

Annexes		331
A1	Abaques de vapeur	332
A2	Pression indiquée et pression réelle	341
A3	Conventions de notation	342
A4	Construction de ce livre	343
A5	Réutilisation de ce livre	344
Bibliographie		

Objectifs

Donner à l'étudiant/e les moyens de décrire et de quantifier :

- le comportement des fluides lors des transferts de chaleur et de travail;
- le principe de fonctionnement des moteurs et réfrigérateurs ;
- les principales caractéristiques des moteurs de l'industrie.

Le livre est abordable avec un niveau Baccalauréat, et peut servir d'appui pour aborder ensuite un cours de mécanique des fluides ou de conception motorisation. Il n'est pas destiné à la préparation d'un concours *prépa*, mais il peut servir pour consolider ou re-visiter les notions qui y sont abordées.

Ce document est placé sous licence Creative Commons CC-BY-SA. Les conditions de sa ré-utilisation sont détaillées en annexe A5.

Ce document est édité par un groupe de travail Framabook en vue de sa publication sous forme de livre début 2015. Un wiki de travail est mis à disposition à l'adresse dokuwiki.framabook.org/doku.php?id=framabookthermodynamique, sur lequel vous pouvez participer à son amélioration. Vous pouvez également envoyer vos retours d'expérience, signalements, critiques et autres, toujours très vivement appréciés, directement à Olivier Cleynen à l'adresse olivier.cleynen@ariadacapo.net. De nombreuses personnes, en corrigeant des erreurs ou proposant des améliorations, ont réduit l'entropie de ce document, parmi lesquelles : Antoine L., Hamassala David Dicko, Kévin R., Florianne B., Julien D., Anthony Jouny, Thomas N., Amazigh.L.H, Victor D., Daniel C.-N., Pierrick Degardin, Arthur A., Ulrick M., Solène J., Florian Paupert, Gatien Bovyn, Mehdi Z., Jean-Bernard Marcon, Luc Benoit, Christophe Masutti, Thibault Mattera, Mireille Bernex, Nicolas Horny, Arnaud Gallant. L'auteur leur adresse beaucoup de gratitude! Toutes les erreurs restantes dans le présent document sont le fait d'Olivier Cleynen.

Introduction

*

La thermodynamique est l'étude de la conversion de l'énergie entre deux formes, chaleur et travail. Pourtant, ses débuts remontent bien avant que ces trois concepts ne soient établis : pendant longtemps il ne s'agissait que de se pencher sur *la nature de la chaleur*. Autrement dit, que veut dire « chaud » exactement ? Peuton le mesurer ?

Les premières réflexions sur la nature de la matière et celle du feu datent de la Grèce antique et donnent déjà naissance à la théorie atomique. Mais il ne s'agit alors que de constructions philosophiques, plus fondées sur une vision spirituelle organisée du monde que sur de réels travaux d'observation.

Il faudra attendre le xVII^e siècle pour que débutent de sérieux travaux de recherche sur ce sujet. C'est la température, dont on se fait plus facilement une idée que de la chaleur, qui est d'abord le centre d'intérêt. La conception du thermomètre soulève en effet de nombreux problèmes d'ingénierie et de physique : comment lier cette idée de « température » à un phénomène observable directement, de façon prévisible et reproductible?

Pendant ces années et jusqu'en 1850, la thermodynamique reste à l'échelle macroscopique – il n'est pas encore question d'atome ou de molécule. Elle suscite beaucoup d'intérêt parce qu'elle aborde directement les phénomènes de frottement et de transfert de chaleur, qui ne se produisent jamais que dans un seul sens, et auxquels une vision mécanique newtonienne de l'univers ne peut fournir d'explication.

Le grand essor des machines thermiques, au début du XIX^e siècle, prend la science de court. Les premiers moteurs pompent l'eau hors des mines, mais la thermodynamique – qui ne porte alors même pas son nom – ne sait pas expliquer comment. Il faudra une trentaine d'années avant que la théorie ne rattrape la

pratique et que l'on établisse une vision cohérente de la thermodynamique permettant, par exemple, de prévoir le rendement d'un moteur.

En 1865, le physicien allemand Rudolf Clausius clôture près d'un siècle de tâtonnements en explicitant les grandes bases de ce que l'on commence à appeler « thermodynamique » : c'est ce que nous connaissons aujourd'hui sous le nom des deux principes. Il généralise, ce faisant, ses observations sur un ballon de gaz à l'univers tout entier. De leur côté, l'écossais James Clerk Maxwell et l'autrichien Ludwig Boltzmann réconcilieront la thermodynamique avec la physique des particules en travaillant au niveau microscopique. Au fur et à mesure du xxe siècle, le concept d'incertitude se fait accepter et la thermodynamique devient affaire de probabilités et de quantification du désordre ; elle sert même à poser les bases de la théorie de l'information.

Entre temps, la révolution industrielle a eu lieu. Délaissant la pompe à eau, le moteur thermique est passé à la propulsion des locomotives, puis des navires, automobiles, génératrices de courant et aéronefs. Notre mode de vie, dans lequel la force physiologique humaine n'a plus la moindre importance, montre à quel point nous sommes devenus dépendants de la puissance et de la précision que ce moteur permet. En somme, il est la raison pour laquelle notre environnement diffère tant de celui de nos ancêtres, et de celui que connaîtront nos descendants. La thermodynamique permet de comprendre le fonctionnement déroutant de cet engin à la fois banal et effroyable.

Au cours de cette série de dix chapitres sur la *thermodynamique de l'ingénieur*, nous passerons du comportement élémentaire des fluides à la théorie des moteurs – l'objectif étant de fournir à l'étudiant/e une bonne compréhension du fonctionnement des machines à chaleur et une base solide pour pouvoir aborder la conception moteur et la mécanique des fluides.