1 Ćwiczenia

- 1. Udowodnij w systemie dedukcji naturalnej używając termów logiki intuicjonistycznej. Potaraj się, aby powstały dowód był znormalizowany.
 - (a) $\perp \rightarrow p$
 - (b) $p \rightarrow \neg \neg p$
 - (c) $\neg \neg \neg p \rightarrow \neg p$
 - (d) $(p \to q) \to (\neg q \to \neg p)$
 - (e) $(\neg p \lor \neg q) \to \neg (q \land p)$
 - (f) $((p \land q) \rightarrow r) \rightarrow (p \rightarrow (q \rightarrow r))$
- 2. Znajdź lambda termy odpowiadające tym dowodom.
- 3. Udowodnij, że $a \le b \Leftrightarrow a \cup b = b$ zdefiniowana na algebrze boolowskiej jest porządkiem częściowym oraz:
 - (a) $a \cap b \leq a$
 - (b) $a \leq b$ wtw $a \cap b = a$
 - (c) \cap, \cup to odpowiednio infimum i supremum względem porządku \leq
 - (d) 0 i 1 to odpowiednio najmiejszy i największy element w tym porządku.
- 4. Udowodnij izomorfizm Currego Howarda dla cześci implikacyjnej logiki intuicjonistycznej i typowanego rachunku lambda.
- 5. Udowodnij (korzystając z odpowiednego modelu Kripkego), że $p \vee \neg p$ nie jest tautologią logiki intuicjonistycznej. (Podpowiedź : istnieje model o |C|=2, dla którego ta formuła nie jest prawdziwa)