2022 年普通高等学校招生全国统一考试

数学

班级_____

姓名_

学号

一、 选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.

- 1. 若集合 $M = \{x \mid \sqrt{x} < 4\}$, $N = \{x \mid 3x \ge 1\}$, 则 $M \cap N =$ A. $\{x \mid 0 \le x < 2\}$ B. $\{x \mid \frac{1}{3} \le x < 2\}$ C. $\{x \mid 3 \le x < 16\}$ D. $\{x \mid \frac{1}{3} \le x < 16\}$
- 2. 若 i(1-z) = 1,则 $z + \bar{z} =$

A. -2 B. -1 C. 1 D. 2

3. 在 $\triangle ABC$ 中,点 D 在边 AB 上,BD = 2DA. 记 $\overrightarrow{CA} = \boldsymbol{m}$, $\overrightarrow{CD} = \boldsymbol{n}$,则 $\overrightarrow{CB} =$

A. 3m - 2n B. -2m + 3n C. 3m + 2n D. 2m + 3n

4. 南水北调工程缓解了北方一些地区水郑源短缺问题,其中一部分水蓄入某水库. 已知该水库水位为海拔 148.5m 时,相应水面的面积为 $140.0km^2$;水位为海拔 157.5m 时,相应水面的面积为 $180.0km^2$.将该水库在这两个水位间的形状看作一棱台,则该水库水位从海拔 148.5m 上升到海拔 157.5m 时增加的水量为($\sqrt{7} \approx 2.65$)

A. $1.0 \times 10^9 m^3$ B. $1.2 \times 10^9 m^3$ C. $1.4 \times 10^9 m^3$ D. $1.6 \times 10^9 m^3$

5. 从 2 至 8 的 7 个整数中随机取 2 个不同的数,则这 2 个数互质的概率为

A. $\frac{1}{6}$ B. $\frac{1}{3}$ C. $\frac{1}{2}$ D. $\frac{2}{3}$

6. 记函数 $f(x)=\sin\left(\omega x+\frac{\pi}{4}\right)+b\left(\omega>0\right)$ 的最小正周期为 T. 若 $\frac{2\pi}{3}< T<\pi$,且 y=f(x) 的图像关于点 $\left(\frac{3\pi}{2},2\right)$ 中心对称,则 $f\left(\frac{\pi}{2}\right)=$

A. 1 B. $\frac{3}{2}$ C. $\frac{5}{2}$ D. 3

7. 设 $a = 0.1e^{0.1}$, $b = \frac{1}{9}$, $c = -\ln 0.9$, 则

A. a < b < c B. c < b < a C. c < a < b D. a < c < b

8. 已知正四棱锥的侧枝长为 l, 其各顶点都在同一球面上. 若该球的体积为 36π , 且 $3 \le l \le 3\sqrt{3}$, 则该正四棱锥体积取值范围是

A. $\left[8, \frac{81}{4}\right]$ B. $\left[\frac{27}{4}, \frac{81}{4}\right]$ C. $\left[\frac{27}{4}, \frac{64}{3}\right]$ D. [18, 27]

二、 选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,部分选对的得 2 分,有选错的得 0 分.

- 9. 已知正方体 *ABCD A₁B₁C₁D₁*,则
 - A. 直线 BC₁ 与 DA₁ 所成的角为 90°
 - B. 直线 BC₁ 与 CA₁ 所成的角为 90°
 - C. 直线 BC_1 与平面 BB_1D_1D 所成的角为 45°
 - D. 直线 BC_1 与平面 ABCD 所成的角为 45°

10. 已知函数 $f(x) = x^3 - x + 1$,则

- A. f(x) 有两个极值点
- B. (x) 有三个零点
- C. 点 (0,1) 是曲线 y = f(x) 的对中心
- D. 直线 y = 2x 是曲线 y = f(x) 的切线

11. 已知 O 为坐标原点,点 A(1,1) 在抛物线 C: $x^2 = 2py (p > 0)$ 上,过点 B(0,-1) 的直线交 C 于 P, Q 两点,则

- A. C 的准线为 y=-1
- B. 直线 AB 与 C 相切
- C. $|OP| \cdot |OQ| > |OA|^2$
- D. $|BP| \cdot |BQ| > |BA|^2$

12. 已知函数 f(x) 及其导函数 f'(x) 的定义域均为 \mathbf{R} ,记 g(x) = f'(x). 若 $f\left(\frac{3}{2}-2x\right)$,g(2+x) 均为偶函数,则

- A. f(0) = 0
- B. $g\left(-\frac{1}{2}\right) = 0$
- C. f(-1) = f(4)
- D. g(-1) = g(2)

三、 填空题:本题共4小题,每小题5分,共20分.

13. $\left(1 - \frac{y}{x}\right)(x+y)^8$ 的展开式中 x^2y^6 的系数为_______ (用数字 作答).

14. 写出与圆 $x^2 + y^2 = 1$ 和 $(x - 3)^2 + (y - 4)^2 = 16$ 都相切的条直线的方程

15. 若曲线 $y = (x + a)e^x$ 有两条过坐标原点的切线,则 a 的取值范围 是______.

16. 已知椭圆 C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$,C 的上项点为 A,两个焦点为 F_1 , F_2 ,离心率为 $\frac{1}{2}$.过 F_1 且垂直于 AF_2 的直线与 C 交于 D,E 两点,|DE|=6,则 $\triangle ADE$ 的周长是______.

四、 解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.

17. (10 分) 记 S_n 为数列 $\{a_n\}$ 的前 n 项和,已知 $a_1 = 1$, $\left\{\frac{S_n}{a_n}\right\}$ 是公差为 $\frac{1}{3}$ 的等差数列.

(1) 求 $\{a_n\}$ 的通项公式;

(2) 证明: $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < 2$.

18. $(12 \, \mathcal{H})$ 记 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\frac{\cos A}{1+\sin A} = \frac{\sin 2B}{1+\cos 2B}.$

(1) 若 $C = \frac{2\pi}{3}$, 求 B;

(2) 求 $\frac{a^2 + b^2}{c^2}$ 的最小值.

19.	(12 分) 如图,直三棱柱 $ABC-A_1B_1C_1$ 的体积为 4, $\triangle A_1BC$ 的面积为 $2\sqrt{2}$.
	(1) 求 A 到平面 A_1BC 的距离;
	(2) 设 D 为 A_1C 的中点, $AA_1 = AB$,平面 $A_1BC \perp$ 平面 ABB_1A_1 ,求二面角 $A - BD - C$ 的正弦值.
20.	(12 分) 一医疗为研究某地的一种地方性疾病与当地居民的卫生习惯 卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随 机调查了 100 例(称为病例组),同时在未患该疾病的人群中随机调查

了 100 人 (称为对照组),得到如下数据:

		7 64 2 47	Pr 1-7	
	± r₁/п	不够良好	良好	
	病例组	40	60	
	对照组	10	90	
(1) 能否有 99% 的 惯有差异?	把握认为息	悬该疾病群体	5 与未患	该疾病群体的卫生习
· /				的人卫生习惯不够良
好", B 表示事	件"选到的	的人患有该疾	疾", -	$\frac{P(A B)}{P(\bar{A} B)} = \frac{P(B A)}{P(\bar{B} \bar{A})}$
				程度的一项度量指标,
(i) 证明: R =	$=\frac{P(A B)}{P(\bar{A} B)}$	$\cdot \frac{P(\bar{A} \bar{B})}{P(A \bar{B})};$		
	(1)	(1)	P(A I)	Ē) 的估计值,并利用
(i) 的结果结			(1	,
附: $K^2 = \frac{\pi}{(a+b)(a+b)}$	$a(ad-bc)^{2}$	2		
pig: $K = \frac{(a+b)(a+b)}{(a+b)}$	(a+d)(a+d)	$\overline{c)(b+d)}$,		
_	(9	l		
<u> </u>	$\frac{(K^2 \geqslant k)}{\cdot}$	0.050 0.01 3.841 6.63	10 0.0	001
	k	3.841 6.63	35 10.	828
		0.012		
		0.011		
	• • • • • • • • • • • • • • • • • • • •			

22. (12 分) 已知函数 $f(x) = e^x - ax$ 和 $g(x) = ax - \ln x$ 有相同的最小值.

(1) 求 a;

(2) 证明:存在直线 y = b,其与两条曲线 y = f(x) 和 y = g(x) 共有三个不同的交点,且从左到右的三个交点的横坐标成等差数列.

(2) 若 $\tan \angle PAQ = 2\sqrt{2}$,求 $\triangle PAQ$ 的面积.
