

Pulp Hardware Reference Manual

Version 1.0.0

This document is preliminary and subject to change

Micrel Lab and Multitherman Lab, University of Bologna, Italy Integrated Systems Lab, ETH Zürich, Switzerland

Table of Contents

Table of Contents	2
Features	12
Introduction to the PULP IoT application architecture	13
System on Chip	14
Cores	14
Memory areas	14
Debug architecture	15
Events and interrupts model	15
Exceptions model	15
Data types supported	15
Event Units	15
DMA (direct memory access)	15
Micro DMA	15
SPI master (serial peripheral interface)	16
UART (universal asynchronous receiver-transmitter)	16
I2C (inter-integrated circuit)	16
I2S (digital microphone interface) RX	16
CPI (camera parallel interface)	16
GPIOs (general purpose inputs/outputs)	16
SPI slave	16
Basic timers	16
Advanced PWM Timers	17
RTC	17
Performance counters	17
Memory map	18
Aliased memory map	19
FC aliased address map	19
Cluster aliased address map	19
Device components description	20
RISC-V cores	20
Complex number operations	20
Complex multiplication operations	20
Subtraction of 2 complexes with post rotation by -j	21
Complex conjugate operation	21
Extensions to existing RI5CY vector operations.	21
Addition of vector of half words with post right shift	21
Subtraction of vectors of half words with post right shift	22
Viterbi specific instructions	22
Enhanced shuffling	23
Cluster Subsystem	23
Cluster Subsystem Events	24
Cluster control unit	24
Cluster control unit registers	25
Cluster control unit registers details	25
End Of Computation status register. (EOC)	25
Cluster cores fetch enable configuration register. (FETCH_EN)	25
Cluster clock gate configuration register. (CLOCK_GATE)	27
Cluster cores debug resume register. (DBG_RESUME)	27
Cluster cores debug halt status register. (DBG_HALT_STATUS)	28
Cluster cores debug halt mask configuration register. (DBG_HALT_MASK)	29
Cluster core 0 boot address configuration register. (BOOT_ADDR0)	30
TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)	30
TCDM arbitration policy ch1 for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)	30
Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)	31
Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)	31
Cluster timer	31

Cluster timer registers	32
Cluster timer registers details	32
Timer Low Configuration register. (CFG_LO)	32
Timer High Configuration register. (CFG_HI)	33
Timer Low counter value register. (CNT_LO)	34
Timer High counter value register. (CNT_HI)	34
Timer Low comparator value register. (CMP_LO)	34
Timer High comparator value register. (CMP_HI)	35
Start Timer Low counting register. (START_LO)	35
Start Timer High counting register. (START_HI)	35
Reset Timer Low counter register. (RESET_LO)	35
Reset Timer High counter register. (RESET_HI)	36
Cluster event unit	36
Cluster event unit registers	36
Cluster event unit registers details	43
Input event mask configuration register. (EVT_MASK)	43
Hardware task dispatcher push command register. (HW_DISPATCH_PUSH_TASK)	43
Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)	44
Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)	44
Hardware mutex 0 blocking get command register. (HW_MUTEX_0_MSG_GET)	44
Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)	44
Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)	44
Cluster Software event 0 trigger, wait and clear command register. (SW_EVENT_0_TRIG_WAIT_CLEAR)	45
Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)	45
Cluster hardware barrier 0 trigger mask configuration register. (HW_BARRIER_0_TRIG_MASK)	45
Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)	46
Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONFIG)	46
Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)	46
Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET)	46
Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)	47
Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT)	47
Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)	47
Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)	47
Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)	48
Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)	48
Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)	48
Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)	48
Cluster hardware barrier summary status register. (HW_BARRIER_0_STATUS_SUM)	49
Interrupt request mask configuration register. (IRQ_MASK)	49
Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)	49
Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT)	50
Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT) Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)	50
Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)	50
Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)	50
Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)	51
Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)	51
Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)	51
Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)	51
Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)	52
Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)	52
Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)	52
Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)	52
Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)	53
Cluster cores clock status register. (CLOCK_STATUS)	53
Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)	53
Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)	53
Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR)	54
Cluster hardware barrier 0 trigger and wait command register. (HW_BARRIER_0_TRIG_WAIT)	54
Pending input events status register. (EVENT_BUFFER)	54

Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)	55
Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)	55
Cluster Software event 7 trigger, wait and clear command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)	55
Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLEAR)	55
Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)	56
Cluster hardware barrier 1 trigger mask configuration register. (HW BARRIER 1 TRIG MASK)	56
Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)	56
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	56
Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)	
Pending input events status clear command register. (EVENT_BUFFER_CLEAR)	57
Cluster hardware barrier summary status register. (HW_BARRIER_1_STATUS_SUM)	57
Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)	57
Cluster hardware barrier 1 target mask configuration register. (HW_BARRIER_1_TARGET_MASK)	57
Software events cluster cores destination mask update command register with bitwise AND operation.  (SW_EVENT_MASK_AND)	58
Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)	58
	56
Software events cluster cores destination mask update command register with bitwise OR operation.	ΕO
(SW_EVENT_MASK_OR)	58
Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG)	58
Input event wait command register. (EVENT_WAIT)	59
Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)	59
Input event wait and clear command register. (EVENT_WAIT_CLEAR)	59
Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)	59
Cluster hardware barrier 2 trigger mask configuration register. (HW_BARRIER_2_TRIG_MASK)	60
Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)	60
Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)	60
Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)	60
Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)	61
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)	61
Cluster hardware barrier 2 trigger and wait command register. (HW_BARRIER_2_TRIG_WAIT)	61
Cluster hardware barrier 2 trigger, wait and clear command register. (HW_BARRIER_2_TRIG_WAIT_CLEAR)	61
Cluster hardware barrier 3 trigger mask configuration register. (HW_BARRIER_3_TRIG_MASK)	62
Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)	62
Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)	62
Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)	62
Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)	63
Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)	63
Cluster hardware barrier 3 trigger and wait command register. (HW_BARRIER_3_TRIG_WAIT)	63
Cluster hardware barrier 3 trigger, wait and clear command register. (HW_BARRIER_3_TRIG_WAIT_CLEAR)	63
Cluster hardware barrier 4 trigger mask configuration register. (HW_BARRIER_4_TRIG_MASK)	64
Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)	64
Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)	64
Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)	64
Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)	65
Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)	65
Cluster hardware barrier 4 trigger and wait command register. (HW_BARRIER_4_TRIG_WAIT)	65
Cluster hardware barrier 4 trigger, wait and clear command register. (HW BARRIER 4 TRIG WAIT CLEAR)	65
Cluster hardware barrier 5 trigger mask configuration register. (HW_BARRIER_5_TRIG_MASK)	66
Cluster hardware barrier 5 status register. (HW_BARRIER_5_STATUS)	66
Cluster hardware barrier summary status register. (HW_BARRIER_5_STATUS_SUM)	66
Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)	66
	
Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)	67
Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)	67
Cluster hardware barrier 5 trigger and wait command register. (HW_BARRIER_5_TRIG_WAIT)	67
Cluster hardware barrier 5 trigger, wait and clear command register. (HW_BARRIER_5_TRIG_WAIT_CLEAR)	67
Cluster hardware barrier 6 trigger mask configuration register. (HW_BARRIER_6_TRIG_MASK)	68
Cluster hardware barrier 6 status register. (HW_BARRIER_6_STATUS)	68
Cluster hardware barrier summary status register. (HW_BARRIER_6_STATUS_SUM)	68
Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)	68
Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)	69

Cluster hardware barrier 6 self trigger command register. (HW_BARRIER_6_SELF_TRIG)	69
Cluster hardware barrier 6 trigger and wait command register. (HW_BARRIER_6_TRIG_WAIT)	69
Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)	69
Cluster hardware barrier 7 trigger mask configuration register. (HW_BARRIER_7_TRIG_MASK)	70
Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)	70
Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)	70
Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)	70
Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)	71
Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)	71
Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT)	71
Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER 7 TRIG_WAIT CLEAR)	71
Cluster instruction cache control unit	72
Cluster instruction cache control unit registers	72
Cluster instruction cache control unit registers details	72
Cluster instruction cache unit enable configuration register. (ENABLE)	72
Cluster instruction cache unit flush command register. (FLUSH)	72
Cluster instruction cache unit rush command register. (FEUSH) Cluster instruction cache unit selective flush command register. (SEL_FLUSH)	72
DMAs	73
DMA registers	73
DMA registers	73
DMA registers details	73
Cluster DMA configuration register. (CMD)	73
Cluster DMA status register. (STATUS)	73
DMA states	74
DMA state command formats	74
Cluster DMA transfer free command format. (STATUS)	75
Cluster DMA L1 base address configuration format. (TCDM)	75
Cluster DMA transfer status format. (FREE_TID)	75
Cluster DMA transfer identifier format. (GET_TID)	75
Cluster DMA transfer configuration format. (CMD)	76
Cluster DMA L2 base address configuration format. (EXT_L2)	76
Cluster DMA 2D transfer configuration format. (2D)	77
Cluster RISCY cores	77
Cluster Core 0 (Debug Unit) registers	77
Cluster Core 1 (Debug Unit) registers	79
Cluster Core 2 (Debug Unit) registers	80
Cluster Core 3 (Debug Unit) registers	82
Cluster Core 4 (Debug Unit) registers	83
Cluster Core 5 (Debug Unit) registers	85
Cluster Core 6 (Debug Unit) registers	86
Cluster Core 7 (Debug Unit) registers	88
Cluster RISCY core registers details	89
Debug control configuration register. (CTRL)	89
Debug hit status register. (HIT)	90
Debug exception trap enable configuration register. (IE)	90
Debug trap cause status register. (CAUSE)	91
Core general purpose register 0 value register. (GPR0)	92
Core general purpose register 1 value register. (GPR1)	92
Core general purpose register 2 value register. (GPR2)	92
Core general purpose register 3 value register. (GPR3)	92
Core general purpose register 4 value register. (GPR4)	93
Core general purpose register 5 value register. (GPR5)	93
Core general purpose register 6 value register. (GPR6)	93
Core general purpose register 7 value register. (GPR7)	93
Core general purpose register 8 value register. (GPR8)	94
Core general purpose register 9 value register. (GPR9)	94
Core general purpose register 10 value register. (GPR10)	94
Core general purpose register 11 value register. (GPR11)	94
Core general purpose register 12 value register. (GPR12)	95

Core general purpose register 13 value register. (GPR13)	95
Core general purpose register 14 value register. (GPR14)	95
Core general purpose register 15 value register. (GPR15)	95
Core general purpose register 16 value register. (GPR16)	95
Core general purpose register 17 value register. (GPR17)	96
Core general purpose register 18 value register. (GPR18)	96
Core general purpose register 19 value register. (GPR19)	96
Core general purpose register 20 value register. (GPR20)	96
Core general purpose register 21 value register. (GPR21)	97
Core general purpose register 21 value register. (GPR22)	97
***************************************	97
Core general purpose register 23 value register. (GPR23)	
Core general purpose register 24 value register. (GPR24)	97
Core general purpose register 25 value register. (GPR25)	98
Core general purpose register 26 value register. (GPR26)	98
Core general purpose register 27 value register. (GPR27)	98
Core general purpose register 28 value register. (GPR28)	98
Core general purpose register 29 value register. (GPR29)	99
Core general purpose register 30 value register. (GPR30)	99
Core general purpose register 31 value register. (GPR31)	99
Debug next program counter value register. (NPC)	99
Debug previous program counter value register. (PPC)	99
Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)	100
Core CSR machine status value register. (CSR_MSTATUS)	100
Core CSR machine vector-trap base address value register. (CSR_MTVEC)	100
Core CSR machine exception program counter value register. (CSR_MEPC)	101
Core CSR machine trap cause value register. (CSR_MCAUSE)	101
Core CSR performance counter counter register. (CSR_PCCR)	101
Core CSR performance counter enable configuration register. (CSR_PCER)	102
Core CSR performance counter mode configuration register. (CSR_PCMR)	102
Core CSR hardware loop 0 start configuration register. (CSR_HWLP0S)	102
Core CSR hardware loop 0 start configuration register. (CSR_HWLP0E)	102
Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)	103
Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)	103
Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)	103
Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)	104
Cose CSR privilege level status register. (CSR_PRIVLV)	104
Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)	104
SoC Peripherals Subsystem	104
SoC Peripherals Subsystem Events	104
FLL	105
SoC FLL registers	106
FLL registers details	106
FLL status register. (STATUS)	106
FLL configuration 1 register. (CFG1)	106
FLL configuration 2 register. (CFG2)	107
FLL integrator configuration register. (INTEG)	107
GPIO	108
Apb GPIO registers	108
GPIO registers details	108
GPIO pad direction configuration register. (PADDIR)	108
GPIO pad input value register. (PADIN)	109
GPIO pad output value register. (PADOUT)	109
GPIO pad interrupt enable configuration register. (INTEN)	109
GPIO pad interrupt type bit 0 configuration register. (INTTYPE0)	109
GPIO pad interrupt type bit 1 configuration register. (INTTYPE1)	110
GPIO pad interrupt status register. (INTSTATUS)	110
GPIO pad enable configuration register. (GPIOEN)	110
GPIO pad pin 0 to 3 configuration register. (PADCFG0)	111
GPIO pad pin 0 to 3 configuration register. (PADCFG0) GPIO pad pin 4 to 7 configuration register. (PADCFG1)	112
ai io pau piii t io / comiguration register. (1 ADOI GT)	114

GPIO pad pin 8 to 11 configuration register. (PADCFG2)	113
GPIO pad pin 12 to 15 configuration register. (PADCFG3)	114
GPIO pad pin 16 to 19 configuration register. (PADCFG4)	115
GPIO pad pin 20 to 23 configuration register. (PADCFG5)	116
GPIO pad pin 24 to 27 configuration register. (PADCFG6)	117
GPIO pad pin 28 to 31 configuration register. (PADCFG7)	119
SoC control unit	120
SoC Control registers	120
SoC control unit registers details	121
Core information register (INFO)	121
Isolate cluster register (CL_ISOLATE)	121
Cluster busy register (CL_BUSY)	121
PMU bypass configuration register (CL_BYPASS)	122
JTAG external register (JTAGREG)	123
L2 sleep configuration register (L2_SLEEP)	123
Alias for SAFE_PMU_SLEEPCTRL (SLEEP_CTRL)	124
EOC and chip status register (CORESTATUS)	124
EOC and chip status register read mirror (CORESTATUS RO)	125
DC/DC configuration register (SAFE_PMU_RAR)	125 125
Sleep modes configuration register (SAFE_PMU_SLEEPCTRL)	
L2 rententive state configuration (SAFE_PMU_FORCE)	128
Mux config register (pad 0–15) (SAFE_PADFUN0)	129
Mux config register (pad 16–31) (SAFE_PADFUN1)	133
Mux config register (pad 32–47) (SAFE_PADFUN2)	136
Sleep config register (pad 0–15) (SAFE_SLEEPPADCFG0)	139
Mux config register (pad 16–31) (SAFE_SLEEPPADCFG1)	143
Mux config register (pad 32–47) (SAFE_SLEEPPADCFG2)	147
Enable Sleep mode for pads (SAFE_PADSLEEP)	151
Function register (pad 0 to 3) (SAFE_PADCFG0) Function register (pad 4 to 7) (SAFE_PADCFG1)	152
	153
Function register (pad 8 to 11) (SAFE_PADCFG2) Function register (pad 12 to 15) (SAFE_PADCFG3)	154 155
Function register (pad 16 to 19) (SAFE_PADCFG3) Function register (pad 16 to 19) (SAFE_PADCFG4)	156
Function register (pad 10 to 19) (SAFE_FADOFG4) Function register (pad 20 to 23) (SAFE_PADOFG5)	157
Function register (pad 24 to 27) (SAFE_PADCFG6)	158
Function register (pad 28 to 31) (SAFE_PADCFG7)	160
Function register (pad 32 to 35) (SAFE_FADOFG/) Function register (pad 32 to 35) (SAFE_PADOFG8)	
	161
Function register (pad 36 to 39) (SAFE_PADCFG9) Function register (pad 40 to 43) (SAFE_PADCFG10)	162 163
Function register (pad 44 to 47) (SAFE_PADCFG10) Function register (pad 44 to 47) (SAFE_PADCFG11)	
	164 165
GPIO power domain pad input isolation register (REG_GPIO_ISO) CAM power domain pad input isolation register (REG_CAM_ISO)	165
LVDS power domain pad input isolation register (REG_LVDS_ISO)	166
Advanced timer	166
Advanced timers registers	166
Advanced timer registers details	167
ADV_TIMER0 command register. (T0_CMD)	167
ADV_TIMER0 configuration register. (T0_CONFIG)	168
ADV_TIMER0 threshold configuration register. (T0_THRESHOLD)	169
ADV_TIMER0 channel 0 threshold configuration register. (T0_TH_CHANNEL0)	169
ADV_TIMER0 channel 1 threshold configuration register. (T0_TH_CHANNEL1)	169
ADV_TIMER0 channel 2 threshold configuration register. (T0_TH_CHANNEL2)	170
ADV_TIMER0 channel 3 threshold configuration register. (T0_TH_CHANNEL3)	170
ADV_TIMER1 command register. (T1_CMD)	171
ADV_TIMER1 configuration register. (T1_CONFIG)	171
ADV_TIMER1 threshold configuration register. (T1_THRESHOLD)	172
ADV_TIMER1 channel 0 threshold configuration register. (T1_TH_CHANNEL0)	172
ADV_TIMER1 channel 1 threshold configuration register. (T1_TH_CHANNEL1)	173
ADV_TIMER1 channel 2 threshold configuration register. (T1_TH_CHANNEL2)	173

	174
ADV_TIMER2 command register. (T2_CMD)	174
ADV_TIMER2 configuration register. (T2_CONFIG)	175
ADV_TIMER2 threshold configuration register. (T2_THRESHOLD)	176
ADV_TIMER2 channel 0 threshold configuration register. (T2_TH_CHANNEL0)	176
ADV_TIMER2 channel 1 threshold configuration register. (T2_TH_CHANNEL1)	177
ADV_TIMER2 channel 2 threshold configuration register. (T2_TH_CHANNEL2)	177
ADV_TIMER2 channel 3 threshold configuration register. (T2_TH_CHANNEL3)	178
ADV_TIMER3 command register. (T3_CMD)	178
ADV_TIMER3 configuration register. (T3_CONFIG)	179
ADV_TIMER3 threshold configuration register. (T3_THRESHOLD)	180
ADV_TIMER3 channel 0 threshold configuration register. (T3_TH_CHANNEL0)	180
ADV_TIMER3 channel 1 threshold configuration register. (T3_TH_CHANNEL1)	180
ADV_TIMER3 channel 2 threshold configuration register. (T3_TH_CHANNEL2)	181
ADV_TIMER3 channel 3 threshold configuration register. (T3_TH_CHANNEL3)	181
ADV_TIMERS events configuration register. (EVENT_CFG)	182
ADV_TIMERS channels clock gating configuration register. (CG)	184
SoC event generator	184
SoC Event Generator registers	185
SoC event generator registers details	185
SoC software events trigger command register. (SW_EVENT)	185
MSB FC event unit event dispatch mask configuration register. (FC_MASK_MSB)	185
LSB FC event unit event dispatch mask configuration register. (FC_MASK_LSB)	185
MSB Cluster event dispatch mask configuration register. (CL_MASK_MSB)	186
LSB Cluster event dispatch mask configuration register. (CL_MASK_LSB)	186
MSB uDMA event dispatch mask configuration register. (PR_MASK_MSB)	186
LSB uDMA event dispatch mask configuration register. (PR_MASK_LSB)	187
MSB event queue overflow status register. (ERR_MSB)	187
LSB event queue overflow status register. (ERR_LSB)	187
FC High Timer source event configuration register. (TIMER_SEL_HI)	187
FC Low Timer source event configuration register. (TIMER_SEL_LO)	187
APB_TIMER_UNIT	188
APB_TIMER_UNIT FC timer registers	188 188
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details	188
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO)	188 188 188 188
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI)	188 188 188
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO)	188 188 188 188
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI)	188 188 188 188 189 190
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO)	188 188 188 188 189 190 191
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI)	188 188 188 188 189 190
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_LO) Start Timer Low counting register. (START_LO)	188 188 188 189 190 191 191 191
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_LO) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI)	188 188 188 188 189 190 191 191
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO)	188 188 188 189 190 191 191 191 191 191
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI)	188 188 188 189 190 191 191 191 191 191 192
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CNT_LO) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI)	188 188 188 189 190 191 191 191 191 191
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers	188 188 188 189 190 191 191 191 191 192 192 192
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details	188 188 188 188 189 190 191 191 191 192 192 192 192 194
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details Debug control configuration register. (CTRL)	188 188 188 189 190 191 191 191 191 192 192 192
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT)	188 188 188 189 190 191 191 191 192 192 192 194 194 194
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE)	188 188 188 189 190 191 191 191 192 192 192 194 194 194 195
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Debug trap cause status register. (CAUSE)	188 188 188 189 190 191 191 191 192 192 192 192 194 194 194 195
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Debug trap cause status register. (CAUSE) Core general purpose register 0 value register. (GPR0)	188 188 188 189 190 191 191 191 192 192 192 194 194 194 195
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Debug trap cause status register. (CAUSE)	188 188 188 189 190 191 191 191 192 192 192 192 194 194 194 195
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Core general purpose register 1 value register. (GPR1) Core general purpose register 2 value register. (GPR2)	188 188 188 188 189 190 191 191 191 192 192 192 192 192 194 194 195 196 196 196
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CNT_LO) Timer Low counter value register. (CNT_LO) Timer Low counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High counter value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_HI) Reset Timer Low counting register. (START_HI) Reset Timer High counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Debug trap cause status register. (CAUSE) Core general purpose register 1 value register. (GPR0) Core general purpose register 2 value register. (GPR2) Core general purpose register 2 value register. (GPR3)	188 188 188 188 189 190 191 191 191 192 192 192 192 192 194 194 194 195 196 196
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CFG_HI) Timer Low counter value register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Core general purpose register 1 value register. (GPR1) Core general purpose register 2 value register. (GPR2)	188 188 188 188 189 190 191 191 191 192 192 192 192 192 194 194 195 196 196 196
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High counter value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer High counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Debug trap cause status register (CAUSE) Core general purpose register 0 value register. (GPR0) Core general purpose register 1 value register. (GPR2) Core general purpose register 3 value register. (GPR3) Core general purpose register 4 value register. (GPR4) Core general purpose register 5 value register. (GPR4) Core general purpose register 5 value register. (GPR5)	188 188 188 188 189 190 191 191 191 192 192 192 192 194 194 194 195 196 196 196 197
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CNT_LO) Timer Low counter value register. (CNT_LO) Timer Low counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High counter value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_HO) Start Timer High counting register. (START_HI) Reset Timer Low counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Debug trap cause status register. (CAUSE) Core general purpose register 1 value register. (GPR0) Core general purpose register 2 value register. (GPR2) Core general purpose register 3 value register. (GPR3) Core general purpose register 4 value register. (GPR4)	188 188 188 188 189 190 191 191 191 192 192 192 192 194 194 194 195 196 196 197 197
APB_TIMER_UNIT FC timer registers APB_TIMER_UNIT registers details Timer Low Configuration register. (CFG_LO) Timer High Configuration register. (CNT_LO) Timer High counter value register. (CNT_HI) Timer Low comparator value register. (CMP_LO) Timer High counter value register. (CMP_LO) Timer High comparator value register. (CMP_HI) Start Timer Low counting register. (START_LO) Start Timer High counting register. (START_HI) Reset Timer High counter register. (RESET_LO) Reset Timer High counter register. (RESET_HI) DEBUG FC Debug registers DEBUG registers DEBUG registers details Debug control configuration register. (CTRL) Debug hit status register. (HIT) Debug exception trap enable configuration register. (IE) Debug trap cause status register (CAUSE) Core general purpose register 0 value register. (GPR0) Core general purpose register 1 value register. (GPR2) Core general purpose register 3 value register. (GPR3) Core general purpose register 4 value register. (GPR4) Core general purpose register 5 value register. (GPR4) Core general purpose register 5 value register. (GPR5)	188 188 188 188 189 190 191 191 191 192 192 192 192 194 194 194 195 196 196 197 197

Core general purpose register 8 value register. (GPR8)	198
Core general purpose register 9 value register. (GPR9)	198
Core general purpose register 10 value register. (GPR10)	198
Core general purpose register 11 value register. (GPR11)	199
Core general purpose register 12 value register. (GPR12)	199
Core general purpose register 13 value register. (GPR13)	199
Core general purpose register 14 value register. (GPR14)	199
Core general purpose register 15 value register. (GPR15)	200
Core general purpose register 16 value register. (GPR16)	200
Core general purpose register 17 value register. (GPR17)	200
Core general purpose register 18 value register. (GPR18)	200
Core general purpose register 19 value register. (GPR19)	201
Core general purpose register 20 value register. (GPR20)	201
Core general purpose register 21 value register. (GPR21)	201
Core general purpose register 22 value register. (GPR22)	201
Core general purpose register 23 value register. (GPR23)	202
Core general purpose register 24 value register. (GPR24)	202
Core general purpose register 25 value register. (GPR25)	202
Core general purpose register 26 value register. (GPR26)	202
Core general purpose register 27 value register. (GPR27)	202
Core general purpose register 28 value register. (GPR28)	203
Core general purpose register 29 value register. (GPR29)	203
Core general purpose register 30 value register. (GPR30)	203
Core general purpose register 31 value register. (GPR31)	203
Debug next program counter value register. (NPC)	204
Debug previous program counter value register. (PPC)	204
Core CSR user status value register. (CSR_USTATUS)	204
Core CSR user vector-trap base address value register. (CSR_UTVEC)	204
Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)	205
Core CSR user exception program counter value register. (CSR_UEPC)	205
Core CSR user trap cause value register. (CSR_UCAUSE)	205
Core CSR machine status value register. (CSR_MSTATUS)	206
Core CSR machine vector-trap base address value register. (CSR_MTVEC)	206
Core CSR machine exception program counter value register. (CSR_MEPC)	207
Core CSR machine trap cause value register. (CSR_MCAUSE)	207
Core CSR performance counter counter register. (CSR_PCCR)	207
Core CSR performance counter enable configuration register. (CSR_PCER)	208
Core CSR performance counter mode configuration register. (CSR_PCMR)	208
Core CSR hardware loop 0 start configuration register. (CSR_HWLP0S)	208
Core CSR hardware loop 0 end configuration register. (CSR_HWLP0E)	209
Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)	209
Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)	209
Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)	209
Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)	209
Core CSR current privilege level status register. (CSR_PRIVLV)	210
Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)	210
MicroDMA Subsystem	210
uDMA UART interface	210
UART Channel registers	211
uDMA UART interface registers details	211
uDMA RX UART buffer base address configuration register. (RX_SADDR)	211
uDMA RX UART buffer size configuration register. (RX_SIZE)	211
uDMA RX UART stream configuration register. (RX_CFG)	211
uDMA TX UART buffer base address configuration register. (TX_SADDR)	212
uDMA TX UART buffer size configuration register. (TX_SIZE)	212
uDMA TX UART stream configuration register. (TX_CFG)	213
uDMA UART status register. (STATUS)	213
UDMA UART configuration register. (SETUP)	214
uDMA SPI master interface	215

SPI Master Channel 0 registers	215
uDMA SPI master interface registers details	215
uDMA RX SPIM buffer base address configuration register. (RX_SADDR)	215
uDMA RX SPIM buffer size configuration register. (RX_SIZE)	216
uDMA RX SPIM stream configuration register. (RX_CFG)	216
uDMA TX SPIM buffer base address configuration register. (TX_SADDR)	217
uDMA TX SPIM buffer size configuration register. (TX_SIZE)	217
uDMA TX SPIM stream configuration register. (TX_CFG)	218
uDMA SPI master interface commands	218
uDMA SPI master interface commands details	219
SPIM configuration command. (SPI_CMD_CFG)	219
SPIM Start of Transfer command. (SPI_CMD_SOT)	219
SPIM send command command. (SPI CMD SEND CMD)	220
SPIM send address command. (SPI_CMD_SEND_ADDR)	220
SPIM dummy RX command. (SPI_CMD_DUMMY)	221
SPIM wait uDMA external event command. (SPI_CMD_WAIT)	221
SPIM send data command (max 64kbits). (SPI_CMD_TX_DATA)	221
SPIM receive data command (max 64kbits). (SPI CMD RX DATA)	222
SPIM repeat next transfer command. (SPI_CMD_RPT)	222
SPIM End of Transfer command. (SPI_CMD_EOT)	223
SPIM end of repeat command. (SPI_CMD_RPT_END)	223
SPIM RX check data command. (SPI_CMD_RX_CHECK)	223
SPIM full duplex mode command. (SPI_CMD_FULL_DUPL)	224
uDMA I2C interfaces	224
	225
I2C Channel 1 registers	
I2C Channel 1 registers	225
uDMA I2C interface registers details	225
uDMA RX I2C buffer base address configuration register. (RX_SADDR)	225
uDMA RX I2C buffer size configuration register. (RX_SIZE)	226
uDMA RX I2C stream configuration register. (RX_CFG)	226
uDMA TX I2C buffer base address configuration register. (TX_SADDR)	226
uDMA TX I2C buffer size configuration register. (TX_SIZE)	227
uDMA TX I2C stream configuration register. (TX_CFG)	227
uDMA I2C Status register. (STATUS)	228
uDMA I2C Configuration register. (SETUP)	228
uDMA I2C interface commands	228
uDMA I2C interface commands details	229
I2C Start of Transfer command. (I2C_CMD_START)	229
I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)	229
I2C End of Transfer command. (I2C_CMD_STOP)	229
I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)	229
I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)	230
I2C send data and wait acknowledge command. (I2C_CMD_WR)	230
I2C wait dummy cycles command. (I2C_CMD_WAIT)	230
I2C next command repeat command. (I2C_CMD_RPT)	230
I2C configuration command. (I2C_CMD_CFG)	231
uDMA I2S interface	231
I2S Channel 0 registers	231
uDMA I2S interface registers details	231
uDMA RX I2S channel 0 buffer base address configuration register. (RX_SADDR_CH0)	232
uDMA RX I2S channel 0 buffer size configuration register. (RX_SIZE_CH0)	232
uDMA RX I2S channel 0 stream configuration register. (RX_CFG_CH0)	232
uDMA RX I2S channel 1 buffer base address configuration register. (RX_SADDR_CH1)	233
***************************************	233
uDMA RX I2S channel 1 buffer size configuration register. (RX_SIZE_CH1)	
uDMA RX I2S channel 1 stream configuration register. (RX_CFG_CH1)	234
I2S external clock configuration register. (CFG_EXT)	235
I2S clock and WS generator 0 configuration register. (CFG_CLKGEN0)	235
I2S clock and WS generator 1 configuration register. (CFG_CLKGEN1)	235
12S channels made configuration register (CHMODE)	236

I2S channel 0 filtering configuration register. (FILT_CH0)	237
I2S channel 1 filtering configuration register. (FILT_CH1)	238
CAM	238
CAM channel registers	238
CAM registers details	238
uDMA RX CPI buffer base address configuration register. (RX_SADDR)	238
uDMA RX CPI buffer size configuration register. (RX_SIZE)	239
uDMA RX CPI stream configuration register. (RX_CFG)	239
uDMA CPI Global configuration register. (CFG_GLOB)	240
uDMA CPI Lower Left corner configuration register. (CFG_LL)	241
uDMA CPI Upper Right corner configuration register. (CFG_UR)	241
uDMA CPI Horizontal Resolution configuration register. (CFG_SIZE)	241
uDMA CPI RGB coefficients configuration register. (CFG_FILTER)	242
uDMA control unit	242
UDMA control registers	242
uDMA control unit registers details	242
uDMA interfaces clock gate configuration register. (CFG_CG)	242
uDMA interfaces trigger events configuration register. (CFG_EVENT)	244
UDMA specific stream pre-processing protocol for SPIM and I2C interfaces	244
SPI Master stream pre-processing protocol	244
I2C stream pre-processing protocol	245

1 Features

- 1 + 8 high-performance cores: extended RISC-V ISA
 - o 1 high performance micro-controller referred to as Fabric Controller or FC (150 MHz @ 1.0V; 250MHz @ 1.2V)
 - 8 cores that execute in parallel for compute intensive tasks referred to as Cluster (87 MHz @ 1.0V; 170MHz @ 1.2V)
 - o Ultra low Power: maximum 25mA @ 1.0V
- Memories:
 - o A level 2 Memory (512KB) for all the cores
 - o A level 1 Memory (64 KB) shared by all the cores in Cluster (0 wait state memory access)
 - o A level 1 memory (8 KB) owned by FC (0 wait state memory access)
 - o Memory Protection Unit
 - o HyperBus Interface to connect external HyperFlash or HyperRAM
- Clock, reset and supply management
 - o 1.6V to 3.6V power supply and I/Os
 - o Programmable (0.9V to 1.3V, 50mV steps) Internal Regulator
 - $\circ~$ 2 independent FLLs, 1 for FC and 1 for Cluster
 - o 1 x 32.768kHz RTC
 - o Single 32.768kHz crystal for RTC and FLLs
- Low power
 - o Sleep, Deep Sleep, Retentive states
- Debug Mode
 - o JTAG interface
- DMA
 - o A multi-channel 1D/2D cluster-DMA controls the transactions between the L2 Memory and L1 Memory
 - o A smart, lightweight and completely autonomous DMA (micro-DMA) capable of handling complex I/O scheme
- I2S: Standard I2S interface for connecting digital audio devices
 - Up to 4 digital microphones (PDM or PCM)
- CPI: Parallel interface for connecting a camera
 - o 8 bits interface
 - HSYNC, VSYNC, PCLK
- Up to 5 timers
 - o 4 x 32 bit timers each with up to 4 PWM outputs
 - o 1 32 bit SysTick timer
- Communication Interfaces
 - Up to 2 I2C
 - o 1 x SPI master
 - o 1 x SPI slave
 - o 1 x UART
- Up to 32 fast I/O ports
 - o Different Voltage I/O banks
 - Interrupt on Change

2 Introduction to the PULP IoT application architecture

PULP (Parallel Ultra-Low-Power Processing Platform) is an <u>open-source</u> platform which itself implements an extended version of the open-source <u>RISC-V</u> instruction set. PULP enables cost-effective development, deployment and autonomous operation of intelligent devices that capture, analyze, classify and act on the fusion of rich data sources such as images, sounds or vibrations. In particular, PULP is uniquely optimized to execute a large spectrum of image and audio algorithms. This allows industrial and consumer product manufacturers to integrate artificial intelligence and advanced classification into new classes of wireless edge devices for IoT applications including image recognition, counting people and objects, machine health monitoring, home security, speech recognition, consumer robotics and smart toys.

3 System on Chip

The following figure describes the main functional blocks of PULP:

Figure 1. PULP Overview

PULP's hierarchical, demand-driven architecture enables ultra-low-power operation by combining:

- A fabric controller (FC) core for control, communications and security functions. This can be viewed like a classic MCU.
- A cluster of 8 cores with an architecture optimized for the execution of vectorized and parallelized algorithms.

All cores and peripherals are power switchable and voltage and frequency adjustable on demand. DC/DC regulators and clock generators with ultra-fast reconfiguration times are integrated. This allows PULP to adapt extremely quickly to the processing/energy requirements of a running application. All elements share access to an L2 memory area. The cluster cores share access to an L1 (TCDM) memory area and instruction cache. Multiple DMA units allow autonomous, fast, low power transfers between cluster L1 and L2 memory and between L2 memory and external peripherals.

3.1 Cores

All 8 cores of the cluster share the RV32IMFCXpulp instruction set architecture, while the fabric controller can be configured as either RV32IMC or RV32IMFCXpulp. The I (integer), C (compressed instruction), M (Multiplication and division) and a portion of the supervisor ISA subsets are supported. These standard instruction sets are extended with specific instructions to optimize the performance of signal processing and machine learning algorithms. These extensions include zero-overhead hardware loops, pointer post/pre-modified memory accesses, instructions mixing control flow with computation (min, max, etc), multiply/subtract and accumulate, vector operations, fixed-point operations, bit manipulation and dot product. All of these instruction extensions are optimized by the compiler or can be used 'by hand' (more details in [RI5CY User Manual] https://PULP-platform.org//wp-content/uploads/2017/11/ri5cy_user_manual.pdf).

3.2 Memory areas

There are 2 different levels of memory internal to PULP. A larger level 2 area of 512kB which is accessible by all processors and DMA units a smaller (Tightly Coupled Device Memory - TCDM) level 1 area shared by all the cluster cores (128kB). The cluster level 1 memory is banked and connected to the cluster cores via a logarithmic interface that is sized to provide single cycle access in 98% of cases.

L2 memory is divided into 4 128kB blocks.

Cluster L1 memory supports test-an-set functionality. The test-and-set is an atomic instruction used to write to a memory location and return its old value as a single atomic (i.e. non-interruptible) operation. If multiple processes access the same memory area and if a process is currently performing a test-and-set, no other process may begin another test-and-set until the first process is done.

The instruction caches of the FC (1kB) and cluster (4kB) will automatically cache instructions as needed. The cluster instruction cache is shared between all the cores in the cluster. Generally, the cluster cores will be executing the same area of code on different data hence the shared cluster instruction cache exploits this to reduce memory accesses for loading instructions.

The combination of a high speed shared data and instruction memory in the cluster provides an ideal memory architecture for the execution of code implementing parallelized algorithms.

PULP can also access external memory areas over the HyperBus (Flash or RAM) or quad-SPI (Flash) interfaces. We refer to RAM accessed over the HyperBus or quad-SPI interfaces as level 3 memory. Since the energy and performance cost of accessing external RAM over external buses is very high compared to the internal memory, generally this should be avoided as much as possible. In consequence, program code is loaded from external flash at boot into the L2 memory area.

3.3 Debug architecture

PULP contains debug functionalities to help the developer observing/controlling application code execution.

Debug functionalities are accessible through JTAG or SPI Slave interfaces using a GDB server. They permit access to the FC RISCY core debug unit and Cluster RISCY cores debug units to break program execution. A direct connection from JTAG or SPI Slave to PULP bus architecture also allows access to all the memory mapped registers of the chip.

3.4 Events and interrupts model

To be completed

3.5 Exceptions model

To be completed

3.6 Data types supported

The memories are byte addressable so every single data type whose size is a multiple of bytes can be supported either natively if the number of bytes is less or equal than 4 or through software emulation if it is larger.

3.7 Event Units

Two event units (EU) are available in PULP. One for the FC and one for the cluster.

The EU allows the RI5CY cores to be put into sleep mode when waiting for an event to occur. In the EUs, the way of treating incoming events can be controlled. The EU can be instructed to react instantly by jumping to an interrupt routine or to delegate the treatment of the event to a software event task controller.

3.8 DMA (direct memory access)

The DMA unit allows the transfer of data between L2 and cluster L1 memory areas. 8 channels can be programmed. Channels can be 1D/2D on the L2 memory and 1D on the cluster L1 side.

3.9 Micro DMA

The micro DMA (UDMA) provides direct transfer of data between L2 memory and the different interfaces provided in PULP connected to UDMA. It helps in relaxing the execution load of FC RISCY core. Up to 11 channels can be managed by the UDMA:

- Camera to L2
- I2S0 to L2
- I2S1 to L2
- I2C0 from/to L2
- I2C1 from/to L2
- UART from/to L2
- SPIM0 from/to L2

The width of transfers can be selected between 8, 16 or 32 bits. Up to 128kB can be transferred during a single transaction (8kB for SPIM). In the general case, transactions can be bidirectional but depending on the interface, in some cases only one direction is available.

3.9.1 SPI master (serial peripheral interface)

Up to 2 SPI master interfaces are available:

- One Single/Quad SPI (Master) which is able to communicate at speeds up to 50Mbits/s.
- One Single SPI (Master) which is able to communicate at speeds up to 50Mbits/s.

3.9.2 <u>UART (universal asynchronous receiver-transmitter)</u>

One UART interface is available with up to 1Mbits/s baud rate. No dedicated synchronization (CTS/RTS/DTR/DSR/DCD) signals are provided.

3.9.3 I2C (inter-integrated circuit)

Up to 2 l^2 C (Inter-Integrated Circuit) are provided in PULP. They support multi-master, multi-slave, single-ended modes. l^2 C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors.

3.9.4 I2S (digital microphone interface) RX

Up to 2 RX pS are available for connecting digital audio devices to PULP chip. Up to 4 digital microphones (either PCM or PDM format) can be directly connected to PULP. These are able to communicate at speeds of up to 10Mbits/s.

Figure 1. Standard I2S Transfer

The protocol uses 3 wires SCK(clock), WS(word select) and SD(data). Data is always sampled on the rising edge of the clock. WS indicates which channel the following data is part of. While SD is always in a master to slave direction, SCK and WS can be generated by both the master or slave. The PULP I²S interface supports both modes as well as 2 other non standard transfer modes including a DDR (dual data-rate) mode.

Figure 2. DDR Transfer

More details can be found in the section below.

3.9.5 CPI (camera parallel interface)

The CPI interface is 8 bits wide and can communicate at speeds up to 50MHz. VSYNC, HSYNC and PCLK are provided by the camera.

3.10 GPIOs (general purpose inputs/outputs)

Up to 32 digital general purpose I/Os are available. Each I/O can be configured either as an input or output. Interrupts on event can be generated on the rising or the falling or both edges for all I/Os. I/Os can also be configured to act as an external wake up signal.

3.11 SPI slave

One SPI slave interface directly connected to PULP bus architecture is available. It is able to access all memory mapped registers and L2 memory. It can communicate at speeds up to 50Mbits/s.

3.12 Basic timers

2 basic timers are available, one connected to the <u>FC</u> and the other to the <u>cluster</u>. They can be configured either as 2 x 32-bit timers or as a single 64-bit timer. The basic timers can either run continuously or trigger just once. Events can be generated using a compare match.

Clock sources of these timers can be the:

- FLL
- FLL with pre-scaler
- 32.768kHz reference clock

3.13 Advanced PWM Timers

4 advanced PWM timers are available in the SOC domain. Each of them provides 4 output signal channels that can be used for PWM signal generation with multiple configuration possibilities.

3.14 RTC

A real-time clock is available. It provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function. It provides also alarm and a periodic interrupt features. It is clocked by the 32.768 kHz external crystal.

3.15 Performance counters

Each RISCY cores of the FC and the cluster provide a performance counter. These 32-bit counters can be configured to count the:

- Total number of cycles (also includes the cycles where the core is sleeping)
- Number of cycles the core was active (not sleeping)
- Number of instructions executed
- Number of load data hazards
- Number of jump register data hazards
- Number of cycles waiting for instruction fetches, i.e. number of instructions wasted due to non-ideal caching
- Number of data memory loads executed. Misaligned accesses are counted twice
- Number of data memory stores executed. Misaligned accesses are counted twice
- Number of unconditional jumps (j, jal, jr, jalr)
- Number of both taken and not taken branches
- Number of taken branches
- Number of compressed instructions executed
- Number of memory loads to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external (cluster only)
- Number of memory stores to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external (cluster only)
- Number of cycles used for memory loads to EXT. Every non-L1 access is considered external (cluster only)
- Number of cycles used for memory stores to EXT. Every non-L1 access is considered external (cluster only)
- Number of cycles wasted due to L1/log-interconnect contention (cluster only)
- Number of cycles wasted due to CSR access

4 Memory map

The following table describes PULP's memory map. All areas in this map are addressable from any RI5CY cores. The aliased area at the start of the memory map has a different meaning when addressed from FC or Cluster RI5CY cores. See the section on aliasing below.

Address range

Aliased Memory Area			0x00000000 - 0x003FFFFF
Aliased memory map area			0x00000000 - 0x003FFFFF
	ALIASED_L2_PRI_CH0_SCM		0x00006000 - 0x00007FFF
Cluster Subsystem		0x10000000 - 0x103FFFFF	
	Cluster L1 RAM (128kB)		0x10000000 - 0x1001FFFF
	Cluster L1 memory test and	set unit	0x10100000 - 0x101FFFFF
	Cluster control unit		0x10200000 - 0x102003FF
	Cluster timer		0x10200400 - 0x102007FF
	Cluster event unit		0x10200800 - 0x10200FFF
	Cluster instruction cache cont	rol unit	0x10201400 - 0x102017FF
	DMA		0x10201C00 - 0x10201FFF
	DMA		0x10204400 - 0x102047FF
	CL_EU_CORE		0x10204000 - 0x102043FF
	Cluster Core 0 (Debug Unit)		0x10300000 - 0x10307FFF
	Cluster Core 1 (Debug Unit)		0x10308000 - 0x1030FFFF
	Cluster Core 2 (Debug Unit)		0x10310000 - 0x10317FFF
	Cluster Core 3 (Debug Unit)		0x10318000 - 0x1031FFFF
	Cluster Core 4 (Debug Unit)		0x10320000 - 0x10327FFF
	Cluster Core 5 (Debug Unit)		0x10328000 - 0x1032FFFF
	Cluster Core 6 (Debug Unit)		0x10330000 - 0x10337FFF
	Cluster Core 7 (Debug Unit)		0x10338000 - 0x1033FFFF
ROM Memory			0x1A000000 - 0x1A0FFFFF
	ROM (8kB)		0x1A000000 - 0x1A003FFF
SoC Peripherals Subsyste	em		0x1A100000 - 0x1A10FFFF
	SoC FLL		0x1A100000 - 0x1A1007FF
	Apb GPIO		0x1A101000 - 0x1A101FFF
	Micro DMA		0x1A102000 - 0x1A103FFF
	SoC Control		0x1A104000 - 0x1A104FFF
	Advanced timers		0x1A105000 - 0x1A105FFF
	SoC Event Generator		0x1A106000 - 0x1A106FFF
	SoC Event Unit		0x1A109000 - 0x1A10AFFF
	FC timer		0x1A10B000 - 0x1A10BFFF
	Hw processing element		0x1A10C000 - 0x1A10CFFF
	Stdout		0x1A10F000 - 0x1A10FFFF
	FC Debug		0x1A110000 - 0x1A110FFF
	MicroDMA Subsystem		0x1A102000 - 0x1A102FFF
		<u>UART Channel</u>	0x1A102000 - 0x1A10207F
		SPI Master Channel 0	0x1A102080 - 0x1A1020FF
		STDIO Channel	0x1A102100 - 0x1A10217F
		I2C Channel 0	0x1A102180 - 0x1A1021FF
		I2C Channel 1	0x1A102200 - 0x1A10227F
		I2S Channel 0	0x1A102280 - 0x1A10237F

Address range

		CAM channel	0x1A102380 - 0x1A1023FF
		<u>UDMA control</u>	0x1A102780 - 0x1A1027FF
L2 Memory			0x1C000000 - 0x1FFFFFFF
	L2 RAM (512kB)		0x1C000000 - 0x1C7FFFFF
	L2 RAM PRIVATE CH 0		0x1C000000 - 0x1C007FFF
	L2 RAM PRIVATE CH 0 (SCI	M)	0x1C006000 - 0x1C007FFF
	L2 RAM PRIVATE CH 1		0x1C008000 - 0x1C00FFFF
	L2 RAM INTERLEAVED (TC	DM)	0x1C010000 - 0x1C091FFF

Table 1. Pulp memory map table

4.1 Aliased memory map

A reserved section of addresses in the overall memory map have specific meaning when addressed from the FC or Cluster RI5CY cores. These are called aliased addresses. They should be preferred over standard addresses since the access will be faster (1 or 2 clock cycles).

4.2 FC aliased address map

{{fcalias.txt}}

4.3 Cluster aliased address map

Functional unit Aliased address range

Aliasea address range
0x00000000 - 0x0001FFFF
0x00100000 - 0x001FFFFF
0x00200000 - 0x002003FF
0x00200400 - 0x002007FF
0x00201400 - 0x002017FF
0x00201C00 - 0x00201FFF
0x00300000 - 0x00307FFF
0x00308000 - 0x0030FFFF
0x00310000 - 0x00317FFF
0x00318000 - 0x0031FFFF
0x00320000 - 0x00327FFF
0x00328000 - 0x0032FFFF
0x00330000 - 0x00337FFF
0x00338000 - 0x0033FFFF

Table 2. Cluster Subsystem aliased memory map table

5 Device components description

5.1 RISC-V cores

The FC and cluster cores in PULP are based on the PULP RI5CY core.

RI5CY supports the following instructions:

- Full support for RV32I Base Integer Instruction Set
- Full support for RV32C Standard Extension for Compressed Instructions
- Partial support for RV32M Standard Extension for Integer Multiplication and Division. Multiplication only.
- The Fabric Controller core supports a subset of the draft RISC-V privileged architecture supporting M and U modes.

The RISCY core design has been extended with the instructions in the sections below. The RISCY core itself implements extensions to the RISC-V instruction set. The datasheet for the RISCY core can be found at https://PULP-platform.org/wp-content/uploads/2017/11/ri5cy_user_manual.pdf. Please note that the RISCY cores in PULP do not contain a floating point unit. For further explanation of the RISC-V instruction format please refer to the RISC-V standards documents.

5.1.1 Complex number operations

Complex number representation for multiply and subtract operations

C = {Re, Im} represented as a vector of 2 16bits signed numbers. Using gcc vector notation C[0] is the real part, C[1] is the imaginary part.

Position in register in little endian:

Re: bits[15:0]Im: bits[31:16]

5.1.1.1 Complex multiplication operations

Mnemonic	Description
winemonic	Description

pv.cplxmul.s rD, rA, rB	Vector by Vector rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>15 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>15
pv.cplxmul.s.div2 rD, rA, rB	Vector by Vector, Div2 rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>16 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>16
pv.cplxmul.s.div4 rD, rA, rB	Vector by Vector, Div4 rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>17 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>17
pv.cplxmul.s.sc rD, rA, rB	Vector by Scalar rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[15:0])>>15 rD[31:16] = (rA[15:0]*rB[15:0] + rA[31:16]*rB[15:0])>>15
pv.cplxmul.s.sci	Vector by I6 Scalar rD[15:0] = (rA[15:0]*ExtS(I6) - rA[31:16]*ExtS(I6))>>15 rD[31:16] = (rA[15:0]*ExtS(I6) + rA[31:16]*ExtS(I6))>>15

Table 3. Complex multiplication operations summary table

35	3	1 26	25	24 2	20 19 1	5 14 12	17 7	6 0
	funct5	F	S	rs2	rs1	funct3	rD	opcode
	01010	1	0	src2	src1	000	dest	1010111
	01010	1	0	src2	src1	010	dest	1010111
	01010	1	1	src2	src1	010	dest	1010111
	01010	1	0	src2	src1	100	dest	1010111
	01010	1	In	nm6[5:0]s	src1	110	dest	1010111

Table 4. Complex multiplication operations format table

5.1.1.2 Subtraction of 2 complexes with post rotation by -j

R = subrotmj(X, Y), R, X, Y complexes.

R.Re = X.Im - Y.Im R.Im = Y.Re - X.Re

It can be viewed as (XY) rotated by 90 degrees (multiplied by j).

Mnemonic Description

pv.subrotmj.h rD, rA, rB	rD[15:0] = rA[31:16] - rB[31:16] rD[31:16] = rB[15:0] rA[15:0]
pv.subrotmj.h.div2 rD, rA, rB	rD[15:0] = (rA[31:16] - rB[31:16]) >> 1 rD[31:16] = (rB[15:0] - rA[15:0]) >> 1
pv.subrotmj.h.div4 rD, rA, rB	rD[15:0] = (rA[31:16] - rB[31:16]) >> 2 rD[31:16] = (rB[15:0] - rA[15:0]) >> 2

Table 5. Subtraction of 2 complexes with post rotation by -j summary table

35		31	26	25	24	20 19 1	5 14	12 17 7	6 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	01101		1	0	src2	src1	000	dest	1010111
	01101		1	0	src2	src1	010	dest	1010111
	01101		1	1	src2	src1	010	dest	1010111

Table 6. Subtraction of 2 complexes with post rotation by -j format table

5.1.1.3 Complex conjugate operation

Minemonic	Description
l ny cnixconi h rl)rA	rD[15:0] = rA[15:0] rD[31:16] = -rA[31:16]

Table 7. Complex conjugate operation summary table

35	31	26	25	24	20 19 15	5 14	12 17 7	6	0
funct5		F	S	rs2	rs1	funct3	rD	opcode	
01011		1		000000	src1	000	dest	1010111	

Table 8. Complex conjugate operation format table

5.1.2 Extensions to existing RI5CY vector operations.

5.1.2.1 Addition of vector of half words with post right shift

Extends the existing pv.add instruction.

Mnemonic	Description
pv.add.h.div2 rD, rA, rB	rD[15:0] = (rA[15:0] + rB[15:0]) >> 1 rD[31:16] = (rA[31:16] + rB[31:16]) >> 1
pv.add.b.div2 rD, rA, rB	rD[7:0] = (rA[7:0] + rB[7:0]) >> 1 rD[15:8] = (rA[15:8] + rB[15:8]) >> 1 rD[23:16] = (rA[23:16] + rB[23:16]) >> 1 rD[31:24] = (rA[31:24] + rB[31:24]) >> 1
pv.add.h.div4 rD, rA, rB	rD[15:0] = (rA[15:0] + rB[15:0]) >> 2 rD[31:16] = (rA[31:16] + rB[31:16]) >> 2

Mnemonic Description

pv.add.b.div4 rD, rA, rB	rD[7:0] = (rA[7:0] + rB[7:0]) >> 2 rD[15:8] = (rA[15:8] + rB[15:8]) >> 2 rD[23:16] = (rA[23:16] + rB[23:16]) >> 2 rD[31:24] = (rA[31:24] + rB[31:24]) >> 2
--------------------------	--

Table 9. Addition of vector of half words with post right shift summary table

35		31	26	25	24	20 19	15 14	12 17	76	0
	funct5		F	S	rs2	rs1	funct3	rD	opcode	
	00000		0	0	src2	src1	010	dest	1010111	
	00000		0	0	src2	src1	011	dest	1010111	
	00000		0	1	src2	src1	010	dest	1010111	
	00000		0	1	src2	src1	011	dest	1010111	

Table 10. Addition of vector of half words with post right shift format table

5.1.2.2 Subtraction of vectors of half words with post right shift

Extends the existing pv.sub instruction

Mnemonic	Description
pv.sub.h.div2 rD, rA, rB	rD[15:0] = (rA[15:0] - rB[15:0]) >> 1 rD[31:16] = (rA[31:16] - rB[31:16]) >> 1
pv.sub.b.div2 rD, rA, rB	rD[7:0] = (rA[7:0] - rB[7:0]) >> 1 rD[15:8] = (rA[15:8] - rB[15:8]) >> 1 rD[23:16] = (rA[23:16] - rB[23:16]) >> 1 rD[31:24] = (rA[31:24] - rB[31:24]) >> 1
pv.sub.h.div4 rD, rA, rB	rD[15:0] = (rA[15:0] - rB[15:0]) >> 2 rD[31:16] = (rA[31:16] - rB[31:16]) >> 2
pv.sub.b.div4 rD, rA, rB	rD[7:0] = (rA[7:0] - rB[7:0]) >> 2 rD[15:8] = (rA[15:8] - rB[15:8]) >> 2 rD[23:16] = (rA[23:16] - rB[23:16]) >> 2 rD[31:24] = (rA[31:24] - rB[31:24]) >> 2

Table 11. Subtraction of vectors of half words with post right shift summary table

35		31	26	25	24	20 19	15 14	12 17	76 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	00001		0	0	src2	src1	010	dest	1010111
	00001		0	0	src2	src1	011	dest	1010111
	00001		0	1	src2	src1	010	dest	1010111
	00001		0	1	src2	src1	011	dest	1010111

Table 12. Subtraction of vectors of half words with post right shift format table

5.1.3 Viterbi specific instructions

Selection of the survivor path relies on which branch the vector max2 has taken for each of its vector sub elements. The usual approach here is to have a variant of max setting 2 hardware flags to keep trace of which input operand has been selected for the elaboration of the max2. These 2 flags are then used by a selection operation taking 2 input vectors and the 2 flags and produce as an output a vector that is a selection of shifted by 1 to the left inputs with bit0 set according to flags.

|--|

Mnemonic Description

pv.vitop.max rD, rA, rB	rD[31:16] = max(rA[31:16], rB[31:16]) rD[15:0] = max(rA[15:0], rB[15:0]) \$VF0 = (rA[31:16] <= rB[31:16]) \$VF1 = (rA[15:0] <= rB[15:0])
pv.vitop.sel rD, rA, rB	rD[31:16] = ((rA[31:16]<<1)&!\$VF0) (rB[31:16]<<1 \$VF0) rD[15:0] = ((rA[15:0]<<1)&!\$VF1) (rB[15:0]<<1 \$VF1)

Table 13. Viterbi specific instructions summary table

35		31	26	25	24 2	0 19 1	5 14	12 17 7	76 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	01100		1	0	src2	src1	001	dest	1010111
	01100		1	0	src2	src1	000	dest	1010111

Table 14. Viterbi specific instructions format table

5.1.4 Enhanced shuffling

Extension to RI5CY pv.pack.h rD, rA, rB operation

Mnemonic Description

	•
I ny nack h h rl) rA rB	rD[31:16] = rA[31:16] rD[15:0] = rB[31:16]
L DV.Dack.Ln rD. rA. rB	rD[31:16] = rA[15:0] rD[15:0] = rB[15:0]

Table 15. Enhanced shuffling summary table

35	31	26	25	24 2	20 19 15	14 1	2 17 7	6	0
funct5		F	S	rs2	rs1	funct3	rD	opcode	
11010		0	0	src2	src1	110	dest	1010111	
11010		0	0	src2	src1	100	dest	1010111	

Table 16. Enhanced shuffling format table

5.2 Cluster Subsystem

5.2.1 Cluster Subsystem Events

Event number	Event name	IP instance name	Direction	Description
0	SW_EVT_0	Cluster RISCY cores	Input	Software event 0 from one of the CL_COREs
1	SW_EVT_1	Cluster RISCY cores	Input	Software event 1 from one of the CL_COREs
2	SW_EVT_2	Cluster RISCY cores	Input	Software event 2 from one of the CL_COREs
3	SW_EVT_3	Cluster RISCY cores	Input	Software event 3 from one of the CL_COREs
4	SW_EVT_4	Cluster RISCY cores	Input	Software event 4 from one of the CL_COREs
5	SW_EVT_5	Cluster RISCY cores	Input	Software event 5 from one of the CL_COREs
6	SW_EVT_6	Cluster RISCY cores	Input	Software event 6 from one of the CL_COREs
7	SW_EVT_7	Cluster RISCY cores	Input	Software event 7 from one of the CL_COREs
8	DMA_EVT_0	<u>DMA</u>	Input	DMA event 0
9	DMA_EVT_1	<u>DMA</u>	Input	DMA event 1
10	CL_TIMER_LO_EVT	CL_TIMER_UNIT	Input	Cluster basic timer low event
11	CL_TIMER_HI_EVT	CL_TIMER_UNIT	Input	Cluster basic timer high event
12	Reserved		Input	Reserved
13	Reserved		Input	Reserved
14	Reserved			Reserved
15	Reserved			Reserved
16	BARRIER_EVT	CL_EVENT_UNIT	Input	Barrier event
17	MUTEX_EVT	CL_EVENT_UNIT	Input	Mutex event
18	DISPATCHER_EVT	CL_EVENT_UNIT	Input	Dispatcher event
19	Reserved			Reserved
20	Reserved			Reserved
21	Reserved			Reserved
22	Reserved			Reserved
23	Reserved			Reserved
24	Reserved			Reserved
25	Reserved			Reserved
26	Reserved			Reserved
27	SOC_PERIPH_EVT	SOC_EVENT_GENERATOR	Input	SoC peripheral event
28	Reserved			Reserved
29	Reserved			Reserved
30	Reserved			Reserved
31	Reserved			Reserved

Table 17. Cluster Subsystem Events table

5.2.2 Cluster control unit

CL_CTRL_UNIT component manages the following features:

- End of Computation status flag
- Configurable fetch activation for all cores of the Cluster
- Configurable core 0 boot address to define where to fetch first instruction in CL_CORE_0 after releasing the reset
- Configurable full cluster clock gating
- Configurable Cluster L1 memory arbitration policy
- Cluster cores resume command control

- Cluster cores halt status flags
- Configurable cluster cores debug halt command group mask policy

None

5.2.2.1 Cluster control unit registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
EOC	0x10200000	0x00200000	32	Status	R/W	0x0000	End Of Computation status register.
FETCH_EN	0x10200008	0x00200008	32	Config	R/W	0x0000	Cluster cores fetch enable configuration register.
CLOCK_GATE	0x10200020	0x00200020	32	Config	R/W	0x0000	Cluster clock gate configuration register.
DBG_RESUME	0x10200028	0x00200028	32	Config	W	0x0000	Cluster cores debug resume register.
DBG_HALT_STATUS	0x10200028	0x00200028	32	Config	R	0x0000	Cluster cores debug halt status register.
DBG_HALT_MASK	0x10200038	0x00200038	32	Config	R/W	0x0000	Cluster cores debug halt mask configuration register.
BOOT_ADDR0	0x10200040	0x00200040	32	Config	R/W	0x0000	Cluster core 0 boot address configuration register.
TCDM_ARB_POLICY_CH0	0x10200080	0x00200080	32	Config	R/W	0x0000	TCDM arbitration policy ch0 for cluster cores configuration register.
TCDM_ARB_POLICY_CH1	0x10200088	0x00200088	32	Config	R/W	0x0000	TCDM arbitration policy ch1 for DMA/HWCE configuration register.
TCDM ARB POLICY CHO REP	0x102000C0	0x002000C0	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH0 register
TCDM_ARB_POLICY_CH1_REP	0x102000C8	0x002000C8	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH1 register

Table 18. Cluster control unit registers table

5.2.2.2 Cluster control unit registers details

5.2.2.2.1 End Of Computation status register. (EOC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EOC** (R/W)

End of computation status flag bitfield:

- *0b0*: program execution under going
- *0b1*: end of computation reached

5.2.2.2.2 Cluster cores fetch enable configuration register. (FETCH_EN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved						-	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (R/W)

Core 7 fetch enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 6 - **CORE6** (R/W)

Core 6 fetch enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

Bit 5 - **CORE5** (R/W)

Core 5 fetch enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 4 - **CORE4** (R/W)

Core 4 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 3 - **CORE3** (R/W)

Core 3 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 2 - **CORE2** (R/W)

Core 2 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 1 - **CORE1** (R/W)

Core 1 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 0 - **COREO** (R/W)

Core 0 fetch enable configuration bitfield:

• *0b0*: disabled

• 0b1: enabled

5.2.2.2.3 Cluster clock gate configuration register. (CLOCK_GATE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (R/W)

Cluster clock gate configuration bitfield:

• *0b0*: disabled

• *0b1*: enabled

5.2.2.2.4 Cluster cores debug resume register. (DBG_RESUME)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (W)

Core 7 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 7

Bit 6 - **CORE6** (W)

Core 6 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 6

Bit 5 - **CORE5** (W)

Core 5 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 5

Bit 4 - **CORE4** (W)

Core 4 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 4

Bit 3 - **CORE3** (W)

Core 3 debug resume configuration bitfield:

- 0b0: stay halted
- *0b1*: resume core 3

Bit 2 - **CORE2** (W)

Core 2 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 2

Bit 1 - **CORE1** (W)

Core 1 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 1

Bit 0 - **COREO** (W)

Core 0 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 0

5.2.2.2.5 Cluster cores debug halt status register. (DBG_HALT_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **CORE7** (R)

Core 7 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 6 - **CORE6** (R)

Core 6 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 5 - **CORE5** (R)

Core 5 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 4 - **CORE4** (R)

Core 4 debug halt status flag bitfield:

- 0b0: running
- *0b1*: halted

Bit 3 - **CORE3** (R)

Core 3 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

Bit 2 - **CORE2** (R)

Core 2 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

Bit 1 - **CORE1** (R)

Core 1 debug halt status flag bitfield:

- *0b0*: running
- 0b1: halted

Bit 0 - **COREO** (R)

Core 0 debug halt status flag bitfield:

- *0b0*: running
- 0b1: halted

5.2.2.2.6 Cluster cores debug halt mask configuration register. (DBG_HALT_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - CORE7 (R/W)

Core 7 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 6 - **CORE6** (R/W)

Core 6 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 5 - **CORE5** (R/W)

Core 5 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 4 - CORE4 (R/W)

Core 4 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 3 - **CORE3** (R/W)

Core 3 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 2 - **CORE2** (R/W)

Core 2 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 1 - **CORE1** (R/W)

Core 1 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

Bit 0 - COREO (R/W)

Core 0 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

5.2.2.2.7 Cluster core 0 boot address configuration register. (BOOT_ADDR0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							В	A							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - BA (R/W)

Cluster core 0 boot address configuration bitfield.

5.2.2.2.8 TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								POL

Bit 0 - **POL** (R/W)

TCDM arbitration policy for cluster cores configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

5.2.2.2.9 TCDM arbitration policy ch1 for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

5.2.2.2.10 Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for cluster cores configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

5.2.2.2.11 Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- *0b0*: fair round robin
- *0b1*: fixed order

5.2.3 Cluster timer

BASIC TIMER component manages the following features:

- 2 general purpose 32bits up counter timers
- Input trigger sources:
 - o FLL clock
 - o FLL clock + Prescaler
 - o Reference clock at 32kHz
 - External event
- 8bit programmable prescaler to FLL clock
- Counting modes:
 - o One shot mode: timer is stopped after first comparison match
 - o Continuous mode: timer continues counting after comparison match
 - o Cycle mode: timer resets to 0 after comparison match and continues counting

- o 64 bit cascaded mode
- Interrupt request generation on comparison match

None

5.2.3.1 Cluster timer registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CFG_LO	0x10200400	0x00200400	32	Config	R/W	0x0000	Timer Low Configuration register.
CFG_HI	0x10200404	0x00200404	32	Config	R/W	0x0000	Timer High Configuration register.
CNT_LO	0x10200408	0x00200408	32	Data	R/W	0x0000	Timer Low counter value register.
CNT_HI	0x1020040C	0x0020040C	32	Data	R/W	0x0000	Timer High counter value register.
CMP_LO	0x10200410	0x00200410	32	Config	R/W	0x0000	Timer Low comparator value register.
CMP_HI	0x10200414	0x00200414	32	Config	R/W	0x0000	Timer High comparator value register.
START_LO	0x10200418	0x00200418	32	Config	R/W	0x0000	Start Timer Low counting register.
START_HI	0x1020041C	0x0020041C	32	Config	R/W	0x0000	Start Timer High counting register.
RESET_LO	0x10200420	0x00200420	32	Config	R/W	0x0000	Reset Timer Low counter register.
RESET_HI	0x10200424	0x00200424	32	Config	R/W	0x0000	Reset Timer High counter register.

Table 19. Cluster timer registers table

5.2.3.2 Cluster timer registers details

5.2.3.2.1 Timer Low Configuration register. (CFG_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CASC								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PV	'AL				CCFG	PEN	ONE_S	MODE	Reserve d	IRQEN	RESET	ENABLE

Bit 31 - **CASC** (R/W)

Timer low + Timer high 64bit cascaded mode configuration bitfield.

Bits 15:8 - **PVAL** (R/W)

Timer low prescaler value bitfield. Ftimer = Fclk / (1 + PRESC_VAL)

Bit 7 - **CCFG** (R/W)

Timer low clock source configuration bitfield:

- *0b0*: FLL or FLL+Prescaler
- *0b1*: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer low prescaler enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 5 - **ONE_S** (R/W)

Timer low one shot configuration bitfield:

- *0b0*: let Timer low enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer low when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer low continuous mode configuration bitfield:

- *0b0*. Continue mode continue incrementing Timer low counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer low counter when compare match with CMP_LO occurs.

Bit 2 - IRQEN (R/W)

Timer low compare match interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 1 - RESET (R/W)

Timer low counter reset command bitfield. Cleared after Timer Low reset execution.

Bit 0 - ENABLE (R/W)

Timer low enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

5.2.3.2.2 Timer High Configuration register. (CFG_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved				CLKCFG	PEN	ONE_S	MODE	Reserve d	IRQEN	RESET	ENABLE

Bit 7 - CLKCFG (R/W)

Timer high clock source configuration bitfield:

- *0b0*: FLL or FLL+Prescaler
- *0b1*: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer high prescaler enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 5 - **ONE_S** (R/W)

Timer high one shot configuration bitfield:

- *0b0*: let Timer high enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer high when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer high continuous mode configuration bitfield:

- *0b0*. Continue mode continue incrementing Timer high counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer high counter when compare match with CMP_LO occurs.

Bit 2 - IRQEN (R/W)

Timer high compare match interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 1 - RESET (W)

Timer high counter reset command bitfield. Cleared after Timer high reset execution.

Bit 0 - ENABLE (R/W)

Timer high enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

5.2.3.2.3 Timer Low counter value register. (CNT_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT_LO (R/W)

Timer Low counter value bitfield.

5.2.3.2.4 Timer High counter value register. (CNT HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	Г_НІ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT_HI (R/W)

Timer High counter value bitfield.

5.2.3.2.5 Timer Low comparator value register. (CMP_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMP	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CMP_LO														

Bits 31:0 - CMP_LO (R/W)

Timer Low comparator value bitfield.

5.2.3.2.6 Timer High comparator value register. (CMP_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	P_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **CMP_HI** (R/W)

Timer High comparator value bitfield.

5.2.3.2.7 Start Timer Low counting register. (START_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1												0		
	Reserved														STRT_L O

Bit 0 - STRT_LO (W)

Timer Low start command bitfield. When executed, CFG_LO.ENABLE is set.

5.2.3.2.8 Start Timer High counting register. (START_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved													STRT_H	

Bit 0 - STRT_HI (W)

 $Timer\ High\ start\ command\ bitfield.\ When\ executed,\ CFG_HI.ENABLE\ is\ set.$

5.2.3.2.9 Reset Timer Low counter register. (RESET_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												RST LO		

Bit 0 - **RST_LO** (W)

 $\ \, \hbox{Timer Low counter reset command bit field. When executed, CFG_LO.RESET is set. } \\$

5.2.3.2.10 Reset Timer High counter register. (RESET_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **RST_HI** (W)

Timer High counter reset command bitfield. When executed, CFG_HI.RESET is set.

5.2.4 Cluster event unit

Cluster event unit component manages the following features:

- Cluster software events generation
- Cluster cores clock gate control
- Wait for event functionality
- Input event mask configuration
- Cluster cores IRQ generation
- 2 hardware mutex
- 8 hardware barriers
- 1 message dispatcher

Events managed by Cluster event unit are:

- 1 SoC peripheral event: when this event occurs, the SoC peripheral events fifo must be read to get the SoC event ID.
- 1 message dispatcher event
- 1 barrier event
- up to 4 hardware accelerator events
- 2 Cluster timer events
- 2 DMA events
- 8 software events that can come from cluster cores directly or external triggering.

None

5.2.4.1 Cluster event unit registers

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_CORE0	0x10200800	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE0	0x10200804	32	Config	8	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE0	0x10200808	32	Config	8	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE0	0x1020080C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE0	0x10200810	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.

Name	Address	Size	Туре	Access	Default	Description
IRQ_MASK_OR_CORE0	0x10200814	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE0	0x10200818	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE0	0x1020081C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE0	0x10200820	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE0	0x10200824	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_COREO	0x10200828	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE0	0x1020082C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE0	0x10200830	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE0	0x10200834	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE1	0x10200840	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE1	0x10200844	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE1	0x10200848	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE1	0x1020084C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE1	0x10200850	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE1	0x10200854	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE1	0x10200858	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE1	0x1020085C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE1	0x10200860	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE1	0x10200864	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE1	0x10200868	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE1	0x1020086C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE1	0x10200870	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE1	0x10200874	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE2	0x10200880	32	Config	R/W	0x0000	Input event mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_AND_CORE2	0x10200884	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE2	0x10200888	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE2	0x1020088C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ MASK AND CORE2	0x10200890	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ MASK OR CORE2	0x10200894	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE2	0x10200898	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE2	0x1020089C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE2	0x102008A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE2	0x102008A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE2	0x102008A8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE2	0x102008AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW EVENT MASK AND CORE2	0x102008B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW EVENT MASK OR CORE2	0x102008B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE3	0x102008C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE3	0x102008C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE3	0x102008C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE3	0x102008CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE3	0x102008D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE3	0x102008D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE3	0x102008D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE3	0x102008DC	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE3	0x102008E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE3	0x102008E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE3	0x102008E8	32	Config	W	0x0000	Pending input events status clear command register.
SW EVENT MASK CORE3	0x102008EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_MASK_AND_CORE3	0x102008F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE3	0x102008F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE4	0x10200900	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE4	0x10200904	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE4	0x10200908	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE4	0x1020090C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE4	0x10200910	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE4	0x10200914	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE4	0x10200918	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE4	0x1020091C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE4	0x10200920	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE4	0x10200924	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE4	0x10200928	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE4	0x1020092C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE4	0x10200930	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE4	0x10200934	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE5	0x10200940	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE5	0x10200944	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE5	0x10200948	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE5	0x1020094C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ MASK AND CORE5	0x10200950	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ MASK OR CORE5	0x10200954	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE5	0x10200958	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE5	0x1020095C	32	Config	R	0x0000	Pending input events status register.

Name	Address	Size	Туре	Access	Default	Description
EVENT_BUFFER_MASKED_CORE5	0x10200960	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE5	0x10200964	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE5	0x10200968	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE5	0x1020096C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE5	0x10200970	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE5	0x10200974	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE6	0x10200980	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE6	0x10200984	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE6	0x10200988	32	Config	8	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE6	0x1020098C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE6	0x10200990	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE6	0x10200994	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE6	0x10200998	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE6	0x1020099C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE6	0x102009A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE6	0x102009A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE6	0x102009A8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE6	0x102009AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE6	0x102009B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW EVENT MASK OR CORE6	0x102009B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE7	0x102009C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE7	0x102009C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE7	0x102009C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE7	0x102009CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
IRQ_MASK_AND_CORE7	0x102009D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE7	0x102009D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE7	0x102009D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE7	0x102009DC	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE7	0x102009E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE7	0x102009E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE7	0x102009E8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE7	0x102009EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE7	0x102009F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE7	0x102009F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
HW_BARRIER_0_TRIG_MASK	0x10200C00	32	Config	R/W	0x0000	Cluster hardware barrier 0 trigger mask configuration register.
HW_BARRIER_0_STATUS	0x10200C04	32	Status	R	0x0000	Cluster hardware barrier 0 status register.
HW_BARRIER_0_STATUS_SUM	0x10200C08	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_0_TARGET_MASK	0x10200C0C	32	Config	R/W	0x0000	Cluster hardware barrier 0 target mask configuration register.
HW_BARRIER_0_TRIG	0x10200C10	32	Config	W	0x0000	Cluster hardware barrier 0 trigger command register.
HW_BARRIER_1_TRIG_MASK	0x10200C20	32	Config	R/W	0x0000	Cluster hardware barrier 1 trigger mask configuration register.
HW_BARRIER_1_STATUS	0x10200C24	32	Status	R	0x0000	Cluster hardware barrier 1 status register.
HW_BARRIER_1_STATUS_SUM	0x10200C28	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_1_TARGET_MASK	0x10200C2C	32	Config	R/W	0x0000	Cluster hardware barrier 1 target mask configuration register.
HW_BARRIER_1_TRIG	0x10200C30	32	Config	W	0x0000	Cluster hardware barrier 1 trigger command register.
HW_BARRIER_2_TRIG_MASK	0x10200C40	32	Config	R/W	0x0000	Cluster hardware barrier 2 trigger mask configuration register.
HW_BARRIER_2_STATUS	0x10200C44	32	Status	R	0x0000	Cluster hardware barrier 2 status register.
HW_BARRIER_2_STATUS_SUM	0x10200C48	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_2_TARGET_MASK	0x10200C4C	32	Config	R/W	0x0000	Cluster hardware barrier 2 target mask configuration register.
HW_BARRIER_2_TRIG	0x10200C50	32	Config	W	0x0000	Cluster hardware barrier 2 trigger command register.

Name	Address	Size	Туре	Access	Default	Description
HW_BARRIER_3_TRIG_MASK	0x10200C60	32	Config	R/W	0x0000	Cluster hardware barrier 3 trigger mask configuration register.
HW_BARRIER_3_STATUS	0x10200C64	32	Status	R	0x0000	Cluster hardware barrier 3 status register.
HW BARRIER 3 STATUS SUM	0x10200C68	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_3_TARGET_MASK	0x10200C6C	32	Config	R/W	0x0000	Cluster hardware barrier 3 target mask configuration register.
HW_BARRIER_3_TRIG	0x10200C70	32	Config	W	0x0000	Cluster hardware barrier 3 trigger command register.
HW_BARRIER_4_TRIG_MASK	0x10200C80	32	Config	R/W	0x0000	Cluster hardware barrier 4 trigger mask configuration register.
HW_BARRIER_4_STATUS	0x10200C84	32	Status	R	0x0000	Cluster hardware barrier 4 status register.
HW_BARRIER_4_STATUS_SUM	0x10200C88	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_4_TARGET_MASK	0x10200C8C	32	Config	R/W	0x0000	Cluster hardware barrier 4 target mask configuration register.
HW_BARRIER_4_TRIG	0x10200C90	32	Config	W	0x0000	Cluster hardware barrier 4 trigger command register.
HW_BARRIER_5_TRIG_MASK	0x10200CA0	32	Config	R/W	0x0000	Cluster hardware barrier 5 trigger mask configuration register.
HW_BARRIER_5_STATUS	0x10200CA4	32	Status	R	0x0000	Cluster hardware barrier 5 status register.
HW_BARRIER_5_STATUS_SUM	0x10200CA8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_5_TARGET_MASK	0x10200CAC	32	Config	R/W	0x0000	Cluster hardware barrier 5 target mask configuration register.
HW_BARRIER_5_TRIG	0x10200CB0	32	Config	W	0x0000	Cluster hardware barrier 5 trigger command register.
HW_BARRIER_6_TRIG_MASK	0x10200CC0	32	Config	R/W	0x0000	Cluster hardware barrier 6 trigger mask configuration register.
HW_BARRIER_6_STATUS	0x10200CC4	32	Status	R	0x0000	Cluster hardware barrier 6 status register.
HW_BARRIER_6_STATUS_SUM	0x10200CC8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_6_TARGET_MASK	0x10200CCC	32	Config	R/W	0x0000	Cluster hardware barrier 6 target mask configuration register.
HW_BARRIER_6_TRIG	0x10200CD0	32	Config	W	0x0000	Cluster hardware barrier 6 trigger command register.
HW_BARRIER_7_TRIG_MASK	0x10200CE0	32	Config	R/W	0x0000	Cluster hardware barrier 7 trigger mask configuration register.
HW_BARRIER_7_STATUS	0x10200CE4	32	Status	R	0x0000	Cluster hardware barrier 7 status register.
HW_BARRIER_7_STATUS_SUM	0x10200CE8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_7_TARGET_MASK	0x10200CEC	32	Config	R/W	0x0000	Cluster hardware barrier 7 target mask configuration register.
HW_BARRIER_7_TRIG	0x10200CF0	32	Config	W	0x0000	Cluster hardware barrier 7 trigger command register.
SW_EVENT_0_TRIG	0x10200E00	32	Config	W	0x0000	Cluster Software event 0 trigger command register.
SW_EVENT_1_TRIG	0x10200E04	32	Config	W	0x0000	Cluster Software event 1 trigger command register.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_2_TRIG	0x10200E08	32	Config	W	0x0000	Cluster Software event 2 trigger command register.
SW_EVENT_3_TRIG	0x10200E0C	32	Config	W	0x0000	Cluster Software event 3 trigger command register.
SW_EVENT_4_TRIG	0x10200E10	32	Config	W	0x0000	Cluster Software event 4 trigger command register.
SW_EVENT_5_TRIG	0x10200E14	32	Config	W	0x0000	Cluster Software event 5 trigger command register.
SW_EVENT_6_TRIG	0x10200E18	32	Config	W	0x0000	Cluster Software event 6 trigger command register.
SW_EVENT_7_TRIG	0x10200E1C	32	Config	W	0x0000	Cluster Software event 7 trigger command register.
SOC_PERIPH_EVENT_ID	0x10200F00	32	Status	R	0x0000	Cluster SoC peripheral event ID status register.

Table 20. Cluster event unit registers table

5.2.4.2 Cluster event unit registers details

5.2.4.2.1 Input event mask configuration register. (EVT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EMSOC	Reserve d							EM	ICL						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EM	ICL							

Bit 31 - **EMSOC** (R/W)

Soc peripheral input event mask configuration bitfield:

- EMSOC[i]=0b0: Input event request i is masked
- EMSOC[i]=0b1: Input event request i is not masked

Bits 29:0 - EMCL (R/W)

Cluster internal input event mask configuration bitfield:

- EMCL[i]=0b0: Input event request i is masked
- EMCL[i]=0b1: Input event request i is not masked

5.2.4.2.2 Hardware task dispatcher push command register. (HW_DISPATCH_PUSH_TASK)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message to dispatch to all cluster cores selected in HW_DISPATCH_PUSH_TEAM_CONFIG.CT configuration bitfield.

5.2.4.2.3 Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message dispatched using HW_DISPATCH_PUSH_TASK command and popped by cluster core who issued HW_DISPATCH_POP_TASK command.

5.2.4.2.4 Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message pushed when releasing hardware mutex 0 configuration bitfiled. It is a non-blocking access.

5.2.4.2.5 Hardware mutex 0 blocking get command register. (HW_MUTEX_0_MSG_GET)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 0 data bitfiled. It is a blocking access.

5.2.4.2.6 Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWOT** (W)

Triggers software event 0 for cluster core i if SW0T[i]=0b1.

5.2.4.2.7 Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.8 Cluster Software event 0 trigger, wait and clear command register. (SW_EVENT_0_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
				44		_	_	_	_	_		_	_	_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.9 Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VALID								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	nuad							- 1				

Bit 31 - **VALID** (R)

Bits 7:0 - ID (R)

Oldest SoC peripheral event ID status bitfield.

5.2.4.2.10 Cluster hardware barrier 0 trigger mask configuration register. (HW_BARRIER_0_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							HB	MTM			

Trigger mask for hardware barrier 0 bitfield. Hardware barrier 0 will be triggered only if for all HB0TM[i] = 0b1, HW_BARRIER_0_STATUS.HB0S[i]=0b1. HB0TM=0 means that hardware barrier 0 is disabled.

5.2.4.2.11 Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ЛΑ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMA (W)

Input event mask configuration bitfield update with bitwise AND operation. It allows clearing EMCL[i], EMINTCL[i] or EMSOC[i] if EMA[i]=0b1.

5.2.4.2.12 Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONFIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - CT (R/W)

Cluster cores team selection configuration bitfield. It allows to transmit HW_DISPATCH_PUSH_TASK.MSG to cluster core i if CT[i]=0b1.

5.2.4.2.13 Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
				11			_	_	_	_		_	_	_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message pushed when releasing hardware mutex 1 configuration bitfiled. It is a non-blocking access.

5.2.4.2.14 Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	45	12	11	40	a		_	_	_					_
13	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 1 data bitfiled. It is a blocking access.

5.2.4.2.15 Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW1T** (W)

Triggers software event 1 for cluster core i if SW1T[i]=0b1.

5.2.4.2.16 Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.17 Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.18 Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	42	42	44	40	0			_	_		_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 0 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 0. It is cleared when HBS matches HW_BARRIER_0_TRIG_MASK.HB0TM.

5.2.4.2.19 Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EM	10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMO (W)

Input event mask configuration bitfield update with bitwise OR operation. It allows setting EMCL[i], EMINTCL[i] or EMSOC[i] if EMO[i]=0b1.

5.2.4.2.20 Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW2T** (W)

Triggers software event 2 for cluster core i if SW2T[i]=0b1.

5.2.4.2.21 Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	RM							

Bits 31:0 - **EBM** (R)

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.22 Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	1.4							

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.23 Cluster hardware barrier summary status register. (HW BARRIER 0 STATUS SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 0. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.24 Interrupt request mask configuration register. (IRQ_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IMSOC	IMINTCL							IM	CL						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - **IMSOC** (R/W)

Soc peripheral interrupt request mask configuration bitfield:

- bit[i]=0b0. Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

Bit 30 - IMINTCL (R/W)

Inter-cluster interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

Bits 29:0 - **IMCL** (R/W)

Cluster internal interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

5.2.4.2.25 Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							SW	/3T			

Bits 7:0 - SW3T (W)

Triggers software event 3 for cluster core i if SW3T[i]=0b1.

5.2.4.2.26 Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.27 Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
45	14	13	12	11	10	0	0	-	_	E	4	2	2	- 1	_
15	14	13	12	11	10	9	۰	,	ь	5	4	3			U

Bits 31:0 - EBM (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.28 Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 0 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 0 event when HW_BARRIER_0_STATUS will match HW_BARRIER_0_TRIG_MASK.

5.2.4.2.29 Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IN	1A							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMA (W)

Interrupt request mask configuration bitfield update with bitwise AND operation. It allows clearing IMCL[i], IMINTCL[i] or IMSOC[i] if IMA[i]=0b1.

5.2.4.2.30 Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SW4T (W)

Triggers software event 4 for cluster core i if SW4T[i]=0b1.

5.2.4.2.31 Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
45	14	13	12	11	10	0	0	-	_	E	4	2	2	- 1	_
15	14	13	12	11	10	9	۰	,	ь	5	4	3			U

Bits 31:0 - EBM (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.32 Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	BM							

Bits 31:0 - **EBM** (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.33 Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_0_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.34 Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IM	0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMO (W)

Interrupt request mask configuration bitfield update with bitwise OR operation. It allows setting IMCL[i], IMINTCL[i] or IMSOC[i] if IMO[i]=0b1.

5.2.4.2.35 Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							SW	/5T			

Bits 7:0 - **SW5T** (W)

Triggers software event 5 for cluster core i if SW5T[i]=0b1.

5.2.4.2.36 Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.37 Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
		40	12	11	40			_	_			_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3		1	U

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.38 Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								r							

Bits 31:0 - **T** (R)

Sets HW_BARRIER_0_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.39 Cluster cores clock status register. (CLOCK_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								CS

Bit 0 - **CS** (R)

Cluster core clock status bitfield:

- *0b0*: Cluster core clocked is gated
- 0b1: Cluster core clocked is running

5.2.4.2.40 Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							SW				

Bits 7:0 - **SW6T** (W)

Triggers software event 6 for cluster core i if SW6T[i]=0b1.

5.2.4.2.41 Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.42 Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.43 Cluster hardware barrier 0 trigger and wait command register. (HW_BARRIER_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	RM							

Bits 31:0 - EBM (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.44 Pending input events status register. (EVENT_BUFFER)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Е	В							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EB** (R)

Pending input events status bitfield.

EB[i]=0b1: one or more input event i request are pending.

5.2.4.2.45 Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - SW7T (W)

Triggers software event 7 for cluster core i if SW7T[i]=0b1.

5.2.4.2.46 Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.47 Cluster Software event 7 trigger, wait and clear command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.48 Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.49 Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	ВМ							
						0	_	_				_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Pending input events status bitfield with EVT_MASK applied.

EBM[i]=0b1: one or more input event i request are pending.

5.2.4.2.50 Cluster hardware barrier 1 trigger mask configuration register. (HW_BARRIER_1_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB1TM** (R/W)

Trigger mask for hardware barrier 1 bitfield. Hardware barrier 1 will be triggered only if for all HB1TM[i] = 0b1, HW_BARRIER_1_STATUS.HB1S[i]=0b1. HB1TM=0 means that hardware barrier 1 is disabled.

5.2.4.2.51 Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IBM (R)

Pending input events status bitfield with IRQ_MASK applied.

IBM[i]=0b1: one or more input events i are pending.

5.2.4.2.52 Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 1 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 1. It is cleared when HBS matches HW_BARRIER_1_TRIG_MASK.HB1TM.

5.2.4.2.53 Pending input events status clear command register. (EVENT_BUFFER_CLEAR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BC .							
15	14	13	12	44	10			_	_	-		-			_
13	14	13	12	11	10	9	8	7	6	5	4	3	2	1	U

Bits 31:0 - EBC (W)

Pending input events status clear command bitfield. It allows clearing EB[i] if EBC[i]=0b1.

${\bf 5.2.4.2.54\ Cluster\ hardware\ barrier\ summary\ status\ register.\ (HW_BARRIER_1_STATUS_SUM)}$

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 1. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.55 Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWEM** (R/W)

Software events mask configuration bitfield:

- bit[i]=0b0: software events are masked for CL_CORE[i]
- bit[i]=0b1: software events are not masked for CL_CORE[i]

5.2.4.2.56 Cluster hardware barrier 1 target mask configuration register. (HW_BARRIER_1_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 1 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 1 event when HW_BARRIER_1_STATUS will match HW_BARRIER_1_TRIG_MASK.

5.2.4.2.57 Software events cluster cores destination mask update command register with bitwise AND operation. (SW_EVENT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWEMA** (W)

Software event mask configuration bitfield update with bitwise AND operation. It allows clearing SWEM[i] if SWEMA[i]=0b1.

5.2.4.2.58 Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **T** (W)

Sets HW_BARRIER_1_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.59 Software events cluster cores destination mask update command register with bitwise OR operation. (SW_EVENT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							SWE	EMO			

Bits 7:0 - **SWEMO** (W)

Software event mask configuration bitfield update with bitwise OR operation. It allows setting SWEM[i] if SWEMO[i]=0b1.

5.2.4.2.60 Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							٦	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_1_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.61 Input event wait command register. (EVENT_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register will gate the Cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.62 Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	3M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.63 Input event wait and clear command register. (EVENT_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	•		•	•	•	EE	NA	•	•		•	•	•	

Bits 31:0 - **EBM** (R)

Reading this register has the same effect as reading EVENT_WAIT.EBM. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.64 Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
						٥		_	_	_	_	_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.65 Cluster hardware barrier 2 trigger mask configuration register. (HW BARRIER 2 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HB2TM (R/W)

Trigger mask for hardware barrier 2 bitfield. Hardware barrier 2 will be triggered only if for all HB2TM[i] = 0b1, HW_BARRIER_2_STATUS.HB2S[i]=0b1. HB2TM=0 means that hardware barrier 2 is disabled.

5.2.4.2.66 Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 2 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 2. It is cleared when HBS matches HW_BARRIER_2_TRIG_MASK.HB2TM.

5.2.4.2.67 Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 2. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.68 Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 2 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 2 event when HW_BARRIER_2_STATUS will match HW_BARRIER_2_TRIG_MASK.

5.2.4.2.69 Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_2_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.70 Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Γ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_2_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.71 Cluster hardware barrier 2 trigger and wait command register. (HW_BARRIER_2_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
	44	43	12	- 44	40	•		-	_	-	4	-	-	4	^
15	14	13	12	11	10	9	ŏ	,	6	5	4	3	2	1	U

Bits 31:0 - EBM (R)

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.72 Cluster hardware barrier 2 trigger, wait and clear command register. (HW_BARRIER_2_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.73 Cluster hardware barrier 3 trigger mask configuration register. (HW BARRIER 3 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB3TM** (R/W)

Trigger mask for hardware barrier 3 bitfield. Hardware barrier 3 will be triggered only if for all HB3TM[i] = 0b1, HW_BARRIER_3_STATUS.HB3S[i]=0b1. HB3TM=0 means that hardware barrier 3 is disabled.

5.2.4.2.74 Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 3 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 3. It is cleared when HBS matches HW_BARRIER_3_TRIG_MASK.HB3TM.

5.2.4.2.75 Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 3. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.76 Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 3 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 3 event when HW_BARRIER_3_STATUS will match HW_BARRIER_3_TRIG_MASK.

5.2.4.2.77 Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_3_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.78 Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_3_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.79 Cluster hardware barrier 3 trigger and wait command register. (HW_BARRIER_3_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						_	•	-	•			-	_	-	_

Bits 31:0 - EBM (R)

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.80 Cluster hardware barrier 3 trigger, wait and clear command register. (HW_BARRIER_3_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.81 Cluster hardware barrier 4 trigger mask configuration register. (HW BARRIER 4 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HB4TM (R/W)

Trigger mask for hardware barrier 4 bitfield. Hardware barrier 4 will be triggered only if for all HB4TM[i] = 0b1, HW_BARRIER_4_STATUS.HB4S[i]=0b1. HB4TM=0 means that hardware barrier 4 is disabled.

5.2.4.2.82 Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 4 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 4. It is cleared when HBS matches HW_BARRIER_4_TRIG_MASK.HB4TM.

5.2.4.2.83 Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 4. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.84 Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 4 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 4 event when HW_BARRIER_4_STATUS will match HW_BARRIER_4_TRIG_MASK.

5.2.4.2.85 Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_4_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.86 Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_4_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.87 Cluster hardware barrier 4 trigger and wait command register. (HW_BARRIER_4_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.88 Cluster hardware barrier 4 trigger, wait and clear command register. (HW_BARRIER_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.89 Cluster hardware barrier 5 trigger mask configuration register. (HW BARRIER 5 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB5TM** (R/W)

Trigger mask for hardware barrier 5 bitfield. Hardware barrier 5 will be triggered only if for all HB5TM[i] = 0b1, HW_BARRIER_5_STATUS.HB5S[i]=0b1. HB5TM=0 means that hardware barrier 5 is disabled.

5.2.4.2.90 Cluster hardware barrier 5 status register. (HW_BARRIER_5_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 5 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 5. It is cleared when HBS matches HW_BARRIER_5_TRIG_MASK.HB5TM.

5.2.4.2.91 Cluster hardware barrier summary status register. (HW_BARRIER_5_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBSS** (R)

Current status of hardware barrier 5. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.92 Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 5 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 5 event when HW_BARRIER_5_STATUS will match HW_BARRIER_5_TRIG_MASK.

5.2.4.2.93 Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_5_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.94 Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_5_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.95 Cluster hardware barrier 5 trigger and wait command register. (HW_BARRIER_5_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						_	•	-	•			_	_	-	_

Bits 31:0 - EBM (R)

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.96 Cluster hardware barrier 5 trigger, wait and clear command register. (HW_BARRIER_5_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.97 Cluster hardware barrier 6 trigger mask configuration register. (HW BARRIER 6 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB6TM** (R/W)

Trigger mask for hardware barrier 6 bitfield. Hardware barrier 6 will be triggered only if for all HB6TM[i] = 0b1, HW_BARRIER_6_STATUS.HB6S[i]=0b1. HB6TM=0 means that hardware barrier 6 is disabled.

5.2.4.2.98 Cluster hardware barrier 6 status register. (HW_BARRIER_6_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 6 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 6. It is cleared when HBS matches HW_BARRIER_6_TRIG_MASK.HB6TM.

5.2.4.2.99 Cluster hardware barrier summary status register. (HW_BARRIER_6_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 6. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.100 Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 6 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 6 event when HW_BARRIER_6_STATUS will match HW_BARRIER_6_TRIG_MASK.

5.2.4.2.101 Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	١ ،		-	_	-		-			_
1.5	1.7	13	12		10	9	ŏ	,	6	5	4	3	2	1	U

Bits 7:0 - T (W)

Sets HW_BARRIER_6_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

$5.2.4.2.102\ Cluster\ hardware\ barrier\ 6\ self\ trigger\ command\ register.\ (HW_BARRIER_6_SELF_TRIG)$

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Т							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_6_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.103 Cluster hardware barrier 6 trigger and wait command register. (HW_BARRIER_6_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.104 Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.105 Cluster hardware barrier 7 trigger mask configuration register. (HW BARRIER 7 TRIG MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HB7TM** (R/W)

Trigger mask for hardware barrier 7 bitfield. Hardware barrier 7 will be triggered only if for all HB7TM[i] = 0b1, HW_BARRIER_7_STATUS.HB7S[i]=0b1. HB7TM=0 means that hardware barrier 7 is disabled.

5.2.4.2.106 Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 7 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 7. It is cleared when HBS matches HW_BARRIER_7_TRIG_MASK.HB7TM.

5.2.4.2.107 Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			31 30 29 28 2/ 26 25 24 23 22 Reserved												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBSS (R)

Current status of hardware barrier 7. HBSS[i] represents a summary of the barrier status for core i.

5.2.4.2.108 Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Cluster hardware barrier 7 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 7 event when HW_BARRIER_7_STATUS will match HW_BARRIER_7_TRIG_MASK.

5.2.4.2.109 Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_7_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

5.2.4.2.110 Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - T (R)

Sets HW_BARRIER_7_STATUS.HBS[i] to *0b1* when issued by cluster core i.

5.2.4.2.111 Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						_	•	-	•			_	_	-	_

Bits 31:0 - EBM (R)

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.4.2.112 Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

5.2.5 Cluster instruction cache control unit

CL_ICACHE_CTRL component manages the following features:

- Bypassable Cluster instruction cache controller
- Flush and selective flush commands

None

5.2.5.1 Cluster instruction cache control unit registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
ENABLE	0x10201400	0x00201400	32	Config	W	0x0000	Cluster instruction cache unit enable configuration register.
<u>FLUSH</u>	0x10201404	0x00201404	32	Config	W	0x0000	Cluster instruction cache unit flush command register.
SEL_FLUSH	0x1020140C	0x0020140C	32	Config	W	0x0000	Cluster instruction cache unit selective flush command register.

Table 21. Cluster instruction cache control unit registers table

5.2.5.2 Cluster instruction cache control unit registers details

5.2.5.2.1 Cluster instruction cache unit enable configuration register. (ENABLE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
45	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15	14	1.5	12	• • •		-	•	•	•	_	-		_	-	

Bit 0 - **EN** (W)

Cluster instruction cache enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

5.2.5.2.2 Cluster instruction cache unit flush command register. (FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved													FL	

Bit 0 - **FL** (W)

Cluster instruction cache full flush command.

5.2.5.2.3 Cluster instruction cache unit selective flush command register. (SEL_FLUSH)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - ADDR (W)

Cluster instruction cache selective flush address configuration bitfield.

5.2.6 DMAs

Cluster DMA component manages the following features:

- 8 RX/TX full-duplex channels
- Up to 16 outstanding transfers between L1 and L2 memories
- Linear or 2D transfers modes

None

5.2.6.1 DMA registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
------	---------	-----------------	------	------	--------	---------	-------------

Table 22. DMA registers table

5.2.6.2 DMA registers

Name	Address	Size	Туре	Access	Default	Description
						= 1

Table 23. DMA registers table

5.2.6.3 DMA registers details

5.2.6.3.1 Cluster DMA configuration register. (CMD)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CN	ИD							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						-	_	-	-	-	-				

Bits 31:0 - CMD (R/W)

Format is operation dependent. See below.

5.2.6.3.2 Cluster DMA status register. (STATUS)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **STATUS** (R/W)

Format is operation dependent. See below.

5.2.6.4 DMA states

Figure 3. Queue transaction with ID

Figure 4. Queue transaction without ID

Figure 5. Get DMA status

Figure 6. Free DMA transfer

5.2.6.5 DMA state command formats

Format Name	Register	Size	Access type	Description
<u>STATUS</u>	STATUS	32	R	Cluster DMA transfer free command format.

Format Name	Register	Size	Access type	Description
TCDM	CMD	32	W	Cluster DMA L1 base address configuration format.
FREE_TID	STATUS	32	W	Cluster DMA transfer status format.
GET_TID	CMD	32	R	Cluster DMA transfer identifier format.
<u>CMD</u>	CMD	32	W	Cluster DMA transfer configuration format.
EXT_L2	CMD	32	W	Cluster DMA L2 base address configuration format.
<u>2D</u>	CMD	32	W	Cluster DMA 2D transfer configuration format.

Table 24. DMA command format table

5.2.6.5.1 Cluster DMA transfer free command format. (STATUS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TID_A	LLOC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TID								

Bits 31:16 - TID_ALLOC (R)

Transfer status bitfield:

- TID_TR[i]=0b0 means that transfer allocator with TID i-16 is free.
- TID_TR[i]=0b1 means that transfer allocator with TID i-16 is reserved.

Bits 15:0 - **TID_TR** (R)

Transfer status bitfield:

TID_TR[i]=0b1 means that transfer with TID i is active.

5.2.6.5.2 Cluster DMA L1 base address configuration format. (TCDM)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13		1.5	12		10	_	•	•	•	-	-	-	_		

Bits 31:0 - **ADDR** (W)

Transfer L1 base address configuration bitfield.

5.2.6.5.3 Cluster DMA transfer status format. (FREE_TID)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TID_F	REE							

Bits 15:0 - TID_FREE (W)

 $Transfer\ canceller\ configuration\ bitfield.\ Writing\ a\ \textit{Ob1}\ in\ TID_FREE[i]\ will\ free\ transfer\ with\ TID\ i.$

${\bf 5.2.6.5.4~Cluster~DMA~transfer~identifier~format.~(GET_TID)}$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Rese	erved							Т	ID	

Bits 3:0 - TID (R)

Transfer identifier value bitfield.

5.2.6.5.5 Cluster DMA transfer configuration format. (CMD)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				Rese	erved					BLE	ILE	ELE	2D	INC	TYPE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 21 - **BLE** (W)

Transfer event or interrupt broadcast configuration bitfield:

- *0b0*: event or interrupt is routed to the cluster core who initiated the transfer
- *0b1*: event or interrupt are broadcasted to all cluster cores

Bit 20 - ILE (W)

Transfer interrupt generation configuration bitfield:

- *0b0*: disabled
- 0b1: enabled

Bit 19 - **ELE** (W)

Transfer event generation configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 18 - **2D** (W)

Transfer type configuration bitfield:

- *0b0*: linear transfer
- *0b1*: 2D transfer

Bit 17 - **INC** (W)

Transfer incremental configuration bitfield:

- *0b0*: non incremental
- *0b1*: incremental

Bit 16 - **TYPE** (W)

Transfer direction configuration bitfield:

- *0b0*: L1 to L2
- *0b1*: L2 to L1

Bits 15:0 - **LEN** (W)

Transfer length in bytes configuration bitfield.

5.2.6.5.6 Cluster DMA L2 base address configuration format. (EXT_L2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - ADDR (W)

Transfer L2 base address configuration bitfield.

5.2.6.5.7 Cluster DMA 2D transfer configuration format. (2D)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	STRIDE														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LEN														

Bits 31:16 - **STRIDE** (W)

2D transfer stride value configuration bitfield.

Bits 15:0 - **LEN** (W)

2D transfer length value configuration bitfield.

5.2.7 Cluster RISCY cores

Cluster RI5CY Debug component manages the following features:

- controls break and single step RI5CY core execution modes
- configurable execution behavior on RI5CY core exception occurrence
- access to PC, GPR and CSR RI5CY core registers
- no HW breakpoint are provided

None

5.2.7.1 Cluster Core 0 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CTRL	0x10300000	0x00300000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10300004	0x00300004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10300008	0x00300008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1030000C	0x0030000C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10300400	0x00300400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10300404	0x00300404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10300408	0x00300408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1030040C	0x0030040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10300410	0x00300410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10300414	0x00300414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10300418	0x00300418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1030041C	0x0030041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10300420	0x00300420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10300424	0x00300424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10300428	0x00300428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1030042C	0x0030042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR12	0x10300430	0x00300430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10300434	0x00300434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10300438	0x00300438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1030043C	0x0030043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10300440	0x00300440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10300444	0x00300444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10300448	0x00300448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1030044C	0x0030044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10300450	0x00300450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10300454	0x00300454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10300458	0x00300458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1030045C	0x0030045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10300460	0x00300460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10300464	0x00300464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10300468	0x00300468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1030046C	0x0030046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10300470	0x00300470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10300474	0x00300474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10300478	0x00300478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1030047C	0x0030047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x10302000	0x00302000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x10302004	0x00302004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x10304050	0x00304050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x10304C00	0x00304C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x10304C14	0x00304C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x10304D04	0x00304D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x10304D08	0x00304D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x10305E00	0x00305E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x10305E80	0x00305E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x10305E84	0x00305E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x10305EC0	0x00305EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x10305EC4	0x00305EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x10305EC8	0x00305EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x10305ED0	0x00305ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x10305ED4	0x00305ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x10305ED8	0x00305ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x10307040	0x00307040	32	Config	R	0x0000	Cose CSR privilege level status register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_MHARTID	0x10307C50	0x00307C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 25. Cluster Core 0 (Debug Unit) registers table

5.2.7.2 Cluster Core 1 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CTRL	0x10308000	0x00308000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10308004	0x00308004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10308008	0x00308008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1030800C	0x0030800C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10308400	0x00308400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10308404	0x00308404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10308408	0x00308408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1030840C	0x0030840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10308410	0x00308410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10308414	0x00308414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10308418	0x00308418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1030841C	0x0030841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10308420	0x00308420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10308424	0x00308424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10308428	0x00308428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1030842C	0x0030842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10308430	0x00308430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10308434	0x00308434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10308438	0x00308438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1030843C	0x0030843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10308440	0x00308440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10308444	0x00308444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10308448	0x00308448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1030844C	0x0030844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10308450	0x00308450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10308454	0x00308454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10308458	0x00308458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1030845C	0x0030845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10308460	0x00308460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10308464	0x00308464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10308468	0x00308468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1030846C	0x0030846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10308470	0x00308470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10308474	0x00308474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10308478	0x00308478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1030847C	0x0030847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x1030A000	0x0030A000	32	Config	R/W	0x0000	Debug next program counter value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
PPC	0x1030A004	0x0030A004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x1030C050	0x0030C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x1030CC00	0x0030CC00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1030CC14	0x0030CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1030CD04	0x0030CD04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1030CD08	0x0030CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1030DE00	0x0030DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x1030DE80	0x0030DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1030DE84	0x0030DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x1030DEC0	0x0030DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1030DEC4	0x0030DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1030DEC8	0x0030DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x1030DED0	0x0030DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1030DED4	0x0030DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1030DED8	0x0030DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x1030F040	0x0030F040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x1030FC50	0x0030FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 26. Cluster Core 1 (Debug Unit) registers table

5.2.7.3 Cluster Core 2 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x10310000	0x00310000	32	Config	R/W	0x0000	Debug control configuration register.
<u>HIT</u>	0x10310004	0x00310004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10310008	0x00310008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1031000C	0x0031000C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10310400	0x00310400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10310404	0x00310404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10310408	0x00310408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1031040C	0x0031040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10310410	0x00310410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10310414	0x00310414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10310418	0x00310418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1031041C	0x0031041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR8	0x10310420	0x00310420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10310424	0x00310424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10310428	0x00310428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
<u>GPR11</u>	0x1031042C	0x0031042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10310430	0x00310430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10310434	0x00310434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10310438	0x00310438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1031043C	0x0031043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10310440	0x00310440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10310444	0x00310444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10310448	0x00310448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1031044C	0x0031044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10310450	0x00310450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10310454	0x00310454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10310458	0x00310458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1031045C	0x0031045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10310460	0x00310460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10310464	0x00310464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10310468	0x00310468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1031046C	0x0031046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10310470	0x00310470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10310474	0x00310474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10310478	0x00310478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1031047C	0x0031047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x10312000	0x00312000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x10312004	0x00312004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x10314050	0x00314050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x10314C00	0x00314C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x10314C14	0x00314C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x10314D04	0x00314D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x10314D08	0x00314D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x10315E00	0x00315E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x10315E80	0x00315E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x10315E84	0x00315E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x10315EC0	0x00315EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x10315EC4	0x00315EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x10315EC8	0x00315EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x10315ED0	0x00315ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_HWLP1E	0x10315ED4	0x00315ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x10315ED8	0x00315ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x10317040	0x00317040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x10317C50	0x00317C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 27. Cluster Core 2 (Debug Unit) registers table

5.2.7.4 Cluster Core 3 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CTRL	0x10318000	0x00318000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10318004	0x00318004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10318008	0x00318008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1031800C	0x0031800C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10318400	0x00318400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10318404	0x00318404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10318408	0x00318408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1031840C	0x0031840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10318410	0x00318410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10318414	0x00318414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10318418	0x00318418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1031841C	0x0031841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10318420	0x00318420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10318424	0x00318424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10318428	0x00318428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
<u>GPR11</u>	0x1031842C	0x0031842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10318430	0x00318430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10318434	0x00318434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10318438	0x00318438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1031843C	0x0031843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10318440	0x00318440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10318444	0x00318444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10318448	0x00318448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1031844C	0x0031844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10318450	0x00318450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10318454	0x00318454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10318458	0x00318458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1031845C	0x0031845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10318460	0x00318460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10318464	0x00318464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10318468	0x00318468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1031846C	0x0031846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10318470	0x00318470	32	Config	R/W	0x0000	Core general purpose register 28 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR29	0x10318474	0x00318474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10318478	0x00318478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1031847C	0x0031847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x1031A000	0x0031A000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x1031A004	0x0031A004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x1031C050	0x0031C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x1031CC00	0x0031CC00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1031CC14	0x0031CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1031CD04	0x0031CD04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1031CD08	0x0031CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1031DE00	0x0031DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x1031DE80	0x0031DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1031DE84	0x0031DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x1031DEC0	0x0031DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1031DEC4	0x0031DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1031DEC8	0x0031DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x1031DED0	0x0031DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1031DED4	0x0031DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1031DED8	0x0031DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x1031F040	0x0031F040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x1031FC50	0x0031FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 28. Cluster Core 3 (Debug Unit) registers table

5.2.7.5 Cluster Core 4 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description			
CTRL	0x10320000	0x00320000	32	Config	R/W	0x0000	Debug control configuration register.			
<u>HIT</u>	0x10320004	0x00320004	32	Config	R/W	0x0000	Debug hit status register.			
<u>IE</u>	0x10320008	0x00320008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.			
CAUSE	0x1032000C	0x0032000C	32	Config	R	0x0000	Debug trap cause status register.			
GPR0	0x10320400	0x00320400	32	Config	R/W	0x0000	Core general purpose register 0 value register.			
GPR1	0x10320404	0x00320404	32	Config	R/W	0x0000	Core general purpose register 1 value register.			
GPR2	0x10320408	0x00320408	32	Config	R/W	0x0000	Core general purpose register 2 value register.			
GPR3	0x1032040C	0x0032040C	32	Config	R/W	0x0000	Core general purpose register 3 value register			

Name	Address	Aliased address	Size	Туре	Access	Default	Description			
GPR4	0x10320410	0x00320410	32	Config	R/W	0x0000	Core general purpose register 4 value register.			
GPR5	0x10320414	0x00320414	32	Config	R/W	0x0000	Core general purpose register 5 value register.			
GPR6	0x10320418	0x00320418	32	Config	R/W	0x0000	Core general purpose register 6 value register.			
GPR7	0x1032041C	0x0032041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.			
GPR8	0x10320420	0x00320420	32	Config	R/W	0x0000	Core general purpose register 8 value register.			
GPR9	0x10320424	0x00320424	32	Config	R/W	0x0000	Core general purpose register 9 value register.			
GPR10	0x10320428	0x00320428	32	Config	R/W	0x0000	Core general purpose register 10 value register.			
<u>GPR11</u>	0x1032042C	0x0032042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.			
GPR12	0x10320430	0x00320430	32	Config	R/W	0x0000	Core general purpose register 12 value register.			
GPR13	0x10320434	0x00320434	32	Config	R/W	0x0000	Core general purpose register 13 value register.			
GPR14	0x10320438	0x00320438	32	Config	R/W	0x0000	Core general purpose register 14 value register.			
GPR15	0x1032043C	0x0032043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.			
GPR16	0x10320440	0x00320440	32	Config	R/W	0x0000	Core general purpose register 16 value register.			
GPR17	0x10320444	0x00320444	32	Config	R/W	0x0000	Core general purpose register 17 value register.			
GPR18	0x10320448	0x00320448	32	Config	R/W	0x0000	Core general purpose register 18 value register.			
GPR19	0x1032044C	0x0032044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.			
GPR20	0x10320450	0x00320450	32	Config	R/W	0x0000	Core general purpose register 20 value register.			
GPR21	0x10320454	0x00320454	32	Config	R/W	0x0000	Core general purpose register 21 value register.			
GPR22	0x10320458	0x00320458	32	Config	R/W	0x0000	Core general purpose register 22 value register.			
GPR23	0x1032045C	0x0032045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.			
GPR24	0x10320460	0x00320460	32	Config	R/W	0x0000	Core general purpose register 24 value register.			
GPR25	0x10320464	0x00320464	32	Config	R/W	0x0000	Core general purpose register 25 value register.			
GPR26	0x10320468	0x00320468	32	Config	R/W	0x0000	Core general purpose register 26 value register.			
GPR27	0x1032046C	0x0032046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.			
GPR28	0x10320470	0x00320470	32	Config	R/W	0x0000	Core general purpose register 28 value register.			
GPR29	0x10320474	0x00320474	32	Config	R/W	0x0000	Core general purpose register 29 value register.			
GPR30	0x10320478	0x00320478	32	Config	R/W	0x0000	Core general purpose register 30 value register.			
GPR31	0x1032047C	0x0032047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.			
NPC	0x10322000	0x00322000	32	Config	R/W	0x0000	Debug next program counter value register.			
PPC	0x10322004	0x00322004	32	Config	R	0x0000	Debug previous program counter value register.			
CSR_UHARTID	0x10324050	0x00324050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.			
CSR_MSTATUS	0x10324C00	0x00324C00	32	Config	R/W	0x0000	Core CSR machine status value register.			
CSR_MTVEC	0x10324C14	0x00324C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.			
CSR_MEPC	0x10324D04	0x00324D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.			
CSR_MCAUSE	0x10324D08	0x00324D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.			
CSR_PCCR	0x10325E00	0x00325E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.			
CSR_PCER	0x10325E80	0x00325E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.			
CSR_PCMR	0x10325E84	0x00325E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.			
CSR_HWLP0S	0x10325EC0	0x00325EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.			
CSR_HWLP0E	0x10325EC4	0x00325EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.			

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_HWLP0C	0x10325EC8	0x00325EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x10325ED0	0x00325ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x10325ED4	0x00325ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x10325ED8	0x00325ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x10327040	0x00327040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x10327C50	0x00327C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 29. Cluster Core 4 (Debug Unit) registers table

5.2.7.6 Cluster Core 5 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x10328000	0x00328000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10328004	0x00328004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10328008	0x00328008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1032800C	0x0032800C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10328400	0x00328400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10328404	0x00328404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10328408	0x00328408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1032840C	0x0032840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10328410	0x00328410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10328414	0x00328414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10328418	0x00328418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1032841C	0x0032841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10328420	0x00328420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10328424	0x00328424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10328428	0x00328428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1032842C	0x0032842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10328430	0x00328430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10328434	0x00328434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10328438	0x00328438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
<u>GPR15</u>	0x1032843C	0x0032843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10328440	0x00328440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10328444	0x00328444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10328448	0x00328448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1032844C	0x0032844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10328450	0x00328450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10328454	0x00328454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10328458	0x00328458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1032845C	0x0032845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10328460	0x00328460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10328464	0x00328464	32	Config	R/W	0x0000	Core general purpose register 25 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description				
GPR26	0x10328468	0x00328468	32	Config	R/W	0x0000	Core general purpose register 26 value register.				
GPR27	0x1032846C	0x0032846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.				
GPR28	0x10328470	0x00328470	32	Config	R/W	0x0000	Core general purpose register 28 value register.				
GPR29	0x10328474	0x00328474	32	Config	R/W	0x0000	Core general purpose register 29 value register.				
GPR30	0x10328478	0x00328478	32	Config	R/W	0x0000	Core general purpose register 30 value register.				
GPR31	0x1032847C	0x0032847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.				
<u>NPC</u>	0x1032A000	0x0032A000	32	Config	R/W	0x0000	Debug next program counter value register.				
PPC	0x1032A004	0x0032A004	32	Config	R	0x0000	Debug previous program counter value register.				
CSR_UHARTID	0x1032C050	0x0032C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thre ID status register.				
CSR_MSTATUS	0x1032CC00	0x0032CC00	32	Config	R/W	0x0000	Core CSR machine status value register.				
CSR_MTVEC	0x1032CC14	0x0032CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.				
CSR_MEPC	0x1032CD04	0x0032CD04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.				
CSR_MCAUSE	0x1032CD08	0x0032CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.				
CSR_PCCR	0x1032DE00	0x0032DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.				
CSR_PCER	0x1032DE80	0x0032DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.				
CSR_PCMR	0x1032DE84	0x0032DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.				
CSR_HWLP0S	0x1032DEC0	0x0032DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.				
CSR_HWLP0E	0x1032DEC4	0x0032DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.				
CSR_HWLP0C	0x1032DEC8	0x0032DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.				
CSR_HWLP1S	0x1032DED0	0x0032DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.				
CSR_HWLP1E	0x1032DED4	0x0032DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.				
CSR_HWLP1C	0x1032DED8	0x0032DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.				
CSR_PRIVLV	0x1032F040	0x0032F040	32	Config	R	0x0000	Cose CSR privilege level status register.				
CSR_MHARTID	0x1032FC50	0x0032FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.				

Table 30. Cluster Core 5 (Debug Unit) registers table

5.2.7.7 Cluster Core 6 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description			
CTRL	0x10330000	0x00330000	32	Config	R/W	0x0000	Debug control configuration register.			
<u>HIT</u>	0x10330004	0x00330004	32	Config	R/W	0x0000	Debug hit status register.			
<u>IE</u>	0x10330008	0x00330008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.			
CAUSE	0x1033000C	0x0033000C	32	Config	R	0x0000	Debug trap cause status register.			
GPR0	0x10330400	0x00330400	32	Config	R/W	0x0000	Core general purpose register 0 value register.			

Name	Address	Aliased address	Size	Туре	Access	Default	Description			
GPR1	0x10330404	0x00330404	32	Config	R/W	0x0000	Core general purpose register 1 value register.			
GPR2	0x10330408	0x00330408	32	Config	R/W	0x0000	Core general purpose register 2 value register.			
GPR3	0x1033040C	0x0033040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.			
GPR4	0x10330410	0x00330410	32	Config	R/W	0x0000	Core general purpose register 4 value register.			
GPR5	0x10330414	0x00330414	32	Config	R/W	0x0000	Core general purpose register 5 value register.			
GPR6	0x10330418	0x00330418	32	Config	R/W	0x0000	Core general purpose register 6 value register.			
GPR7	0x1033041C	0x0033041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.			
GPR8	0x10330420	0x00330420	32	Config	R/W	0x0000	Core general purpose register 8 value register.			
GPR9	0x10330424	0x00330424	32	Config	R/W	0x0000	Core general purpose register 9 value register.			
GPR10	0x10330428	0x00330428	32	Config	R/W	0x0000	Core general purpose register 10 value register.			
GPR11	0x1033042C	0x0033042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.			
GPR12	0x10330430	0x00330430	32	Config	R/W	0x0000	Core general purpose register 12 value register.			
GPR13	0x10330434	0x00330434	32	Config	R/W	0x0000	Core general purpose register 13 value register.			
GPR14	0x10330438	0x00330438	32	Config	R/W	0x0000	Core general purpose register 14 value register.			
GPR15	0x1033043C	0x0033043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.			
GPR16	0x10330440	0x00330440	32	Config	R/W	0x0000	Core general purpose register 16 value register.			
<u>GPR17</u>	0x10330444	0x00330444	32	Config	R/W	0x0000	Core general purpose register 17 value register.			
GPR18	0x10330448	0x00330448	32	Config	R/W	0x0000	Core general purpose register 18 value register.			
GPR19	0x1033044C	0x0033044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.			
GPR20	0x10330450	0x00330450	32	Config	R/W	0x0000	Core general purpose register 20 value register.			
GPR21	0x10330454	0x00330454	32	Config	R/W	0x0000	Core general purpose register 21 value register.			
GPR22	0x10330458	0x00330458	32	Config	R/W	0x0000	Core general purpose register 22 value register.			
GPR23	0x1033045C	0x0033045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.			
GPR24	0x10330460	0x00330460	32	Config	R/W	0x0000	Core general purpose register 24 value register.			
GPR25	0x10330464	0x00330464	32	Config	R/W	0x0000	Core general purpose register 25 value register.			
GPR26	0x10330468	0x00330468	32	Config	R/W	0x0000	Core general purpose register 26 value register.			
GPR27	0x1033046C	0x0033046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.			
GPR28	0x10330470	0x00330470	32	Config	R/W	0x0000	Core general purpose register 28 value register.			
GPR29	0x10330474	0x00330474	32	Config	R/W	0x0000	Core general purpose register 29 value register.			
GPR30	0x10330478	0x00330478	32	Config	R/W	0x0000	Core general purpose register 30 value register.			
GPR31	0x1033047C	0x0033047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.			
<u>NPC</u>	0x10332000	0x00332000	32	Config	R/W	0x0000	Debug next program counter value register.			
<u>PPC</u>	0x10332004	0x00332004	32	Config	R	0x0000	Debug previous program counter value register.			
CSR_UHARTID	0x10334050	0x00334050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.			
CSR_MSTATUS	0x10334C00	0x00334C00	32	Config	R/W	0x0000	Core CSR machine status value register.			
CSR_MTVEC	0x10334C14	0x00334C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.			
CSR_MEPC	0x10334D04	0x00334D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.			
CSR_MCAUSE	0x10334D08	0x00334D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.			
CSR_PCCR	0x10335E00	0x00335E00	32	Config	R/W	0x0000	Core CSR performance counter register.			
CSR_PCER	0x10335E80	0x00335E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.			
CSR_PCMR	0x10335E84	0x00335E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.			

Name	Address	Aliased address	Size	Туре	Access	Default	Description		
CSR_HWLP0S	0x10335EC0	0x00335EC0	32	Config	R/W	Ox0000 Core CSR hardware loop 0 start configur register.			
CSR_HWLP0E	0x10335EC4	0x00335EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.		
CSR_HWLP0C	0x10335EC8	0x00335EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.		
CSR_HWLP1S	0x10335ED0	0x00335ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.		
CSR_HWLP1E	0x10335ED4	0x00335ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.		
CSR_HWLP1C	0x10335ED8	0x00335ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.		
CSR_PRIVLV	0x10337040	0x00337040	32	Config	R	0x0000	Cose CSR privilege level status register.		
CSR_MHARTID	0x10337C50	0x00337C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.		

Table 31. Cluster Core 6 (Debug Unit) registers table

5.2.7.8 Cluster Core 7 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CTRL	0x10338000	0x00338000	32	Config	R/W	0x0000	Debug control configuration register.
<u>HIT</u>	0x10338004	0x00338004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10338008	0x00338008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1033800C	0x0033800C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10338400	0x00338400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10338404	0x00338404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10338408	0x00338408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1033840C	0x0033840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10338410	0x00338410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10338414	0x00338414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10338418	0x00338418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1033841C	0x0033841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10338420	0x00338420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10338424	0x00338424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10338428	0x00338428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1033842C	0x0033842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10338430	0x00338430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10338434	0x00338434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10338438	0x00338438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
<u>GPR15</u>	0x1033843C	0x0033843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10338440	0x00338440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10338444	0x00338444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10338448	0x00338448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1033844C	0x0033844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10338450	0x00338450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10338454	0x00338454	32	Config	R/W	0x0000	Core general purpose register 21 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description			
GPR22	0x10338458	0x00338458	32	Config	R/W	0x0000	Core general purpose register 22 value register.			
GPR23	0x1033845C	0x0033845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.			
GPR24	0x10338460	0x00338460	32	Config	R/W	0x0000	Core general purpose register 24 value register.			
GPR25	0x10338464	0x00338464	32	Config	R/W	0x0000	Core general purpose register 25 value register.			
GPR26	0x10338468	0x00338468	32	Config	R/W	0x0000	Core general purpose register 26 value register.			
GPR27	0x1033846C	0x0033846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.			
GPR28	0x10338470	0x00338470	32	Config	R/W	0x0000	Core general purpose register 28 value register.			
GPR29	0x10338474	0x00338474	32	Config	R/W	0x0000	Core general purpose register 29 value register.			
GPR30	0x10338478	0x00338478	32	Config	R/W	0x0000	Core general purpose register 30 value register.			
GPR31	0x1033847C	0x0033847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.			
NPC	0x1033A000	0x0033A000	32	Config	R/W	0x0000	Debug next program counter value register.			
PPC	0x1033A004	0x0033A004	32	Config	R	0x0000	Debug previous program counter value register.			
CSR_UHARTID	0x1033C050	0x0033C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.			
CSR_MSTATUS	0x1033CC00	0x0033CC00	32	Config	R/W	0x0000	Core CSR machine status value register.			
CSR_MTVEC	0x1033CC14	0x0033CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.			
CSR_MEPC	0x1033CD04	0x0033CD04	32	Config	R/W	0x0000	Core CSR machine exception program count value register.			
CSR_MCAUSE	0x1033CD08	0x0033CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.			
CSR_PCCR	0x1033DE00	0x0033DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.			
CSR_PCER	0x1033DE80	0x0033DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.			
CSR_PCMR	0x1033DE84	0x0033DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.			
CSR_HWLP0S	0x1033DEC0	0x0033DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.			
CSR_HWLP0E	0x1033DEC4	0x0033DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.			
CSR_HWLP0C	0x1033DEC8	0x0033DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.			
CSR_HWLP1S	0x1033DED0	0x0033DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.			
CSR_HWLP1E	0x1033DED4	0x0033DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.			
CSR_HWLP1C	0x1033DED8	0x0033DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.			
CSR_PRIVLV	0x1033F040	0x0033F040	32	Config	R	0x0000	Cose CSR privilege level status register.			
CSR_MHARTID	0x1033FC50	0x0033FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.			

Table 32. Cluster Core 7 (Debug Unit) registers table

5.2.7.9 Cluster RISCY core registers details

5.2.7.9.1 Debug control configuration register. (CTRL)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
												HALT/H ALT_ST ATUS			
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1												0		
Reserved											SSTE				

Bit 16 - **HALT** (W)

Debug mode configuration bitfield:

- 0b0: exits debug mode
- 0b1: enters debug mode breaking code execution

Bit 16 - HALT_STATUS (R)

Debug mode status bitfield:

- *0b0*: running mode
- 0b1: debug mode

Bit 0 - **SSTE** (R/W)

Single step mode configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

5.2.7.9.2 Debug hit status register. (HIT)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved													SLEEP	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved												SSTH		

Bit 16 - **SLEEP** (R)

Sleep mode status bitfield:

- *0b0*: running core is in running state
- *0b1*: sleeping core is in sleeping state and waits for en event to wake up

Bit 0 - **SSTH** (R/W)

Single step hit status bitfield:

- *0b0*: disabled single step mode disabled
- *0b1*: enabled single step mode enabled

Sticky bit that must be cleared by external debugger.

5.2.7.9.3 Debug exception trap enable configuration register. (IE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		ECALL		Reserved		ELSU_D UP	Reserve d	ELSU	Reserve d	EBRK	EILL	Rese	erved

Bit 11 - **ECALL** (R/W)

Environment call trap configuration bitfield:

- 0b0: normal normal exception behavior mode
- 0b1: cause trap exception causes trap and core switch into debug mode

Bit 7 - ELSU_DUP (R/W)

Load/store access fault trap configuration bitfield:

- 0b0: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

This bitfield is duplicates the ELSU bitfield.

Bit 5 - **ELSU** (R/W)

Load/store access fault trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

Bit 3 - **EBRK** (R/W)

Environment break trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

Bit 2 - **EILL** (R/W)

Illegal instruction trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

5.2.7.9.4 Debug trap cause status register. (CAUSE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - IRQ (R)

Core in debug mode due to interrupt trap status bitfield:

- *0b0*: false
- *0b1*: true

Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- Ox3: sigtrap breakpoint
- OxB: sigecall eCall user mode
- OxB sigecall eCall machine mode
- *0x1F* sigstop core was halted by an external signal

5.2.7.9.5 Core general purpose register 0 value register. (GPR0)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR0** (R/W)

General purpose register 0 value bitfield.

5.2.7.9.6 Core general purpose register 1 value register. (GPR1)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR1** (R/W)

General purpose register 1 value bitfield.

5.2.7.9.7 Core general purpose register 2 value register. (GPR2)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R2							
						_	_	_				_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR2** (R/W)

General purpose register 2 value bitfield.

5.2.7.9.8 Core general purpose register 3 value register. (GPR3)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R3							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR3 (R/W)

General purpose register 3 value bitfield.

5.2.7.9.9 Core general purpose register 4 value register. (GPR4)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R4							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR4 (R/W)

General purpose register 4 value bitfield.

5.2.7.9.10 Core general purpose register 5 value register. (GPR5)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R5							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR5 (R/W)

General purpose register 5 value bitfield.

5.2.7.9.11 Core general purpose register 6 value register. (GPR6)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R6							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR6** (R/W)

General purpose register 6 value bitfield.

5.2.7.9.12 Core general purpose register 7 value register. (GPR7)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R7							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR7** (R/W)

General purpose register 7 value bitfield.

5.2.7.9.13 Core general purpose register 8 value register. (GPR8)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R8							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR8** (R/W)

General purpose register 8 value bitfield.

5.2.7.9.14 Core general purpose register 9 value register. (GPR9)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R9							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR9** (R/W)

General purpose register 9 value bitfield.

5.2.7.9.15 Core general purpose register 10 value register. (GPR10)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR10** (R/W)

General purpose register 10 value bitfield.

5.2.7.9.16 Core general purpose register 11 value register. (GPR11)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R11							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR11** (R/W)

General purpose register 11 value bitfield.

5.2.7.9.17 Core general purpose register 12 value register. (GPR12)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R12							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR12** (R/W)

General purpose register 12 value bitfield.

5.2.7.9.18 Core general purpose register 13 value register. (GPR13)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R13							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CDI								

Bits 31:0 - **GPR13** (R/W)

General purpose register 13 value bitfield.

5.2.7.9.19 Core general purpose register 14 value register. (GPR14)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R14							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR14** (R/W)

General purpose register 14 value bitfield.

5.2.7.9.20 Core general purpose register 15 value register. (GPR15)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R15							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GPI								

Bits 31:0 - **GPR15** (R/W)

General purpose register 15 value bitfield.

5.2.7.9.21 Core general purpose register 16 value register. (GPR16)

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	R16							
15	14	13	12	11	10	•		_	_	-		-			_
15	14	13	12	- 11	10	9	8	,	6	5	4	3	2	1	U

Bits 31:0 - **GPR16** (R/W)

General purpose register 16 value bitfield.

5.2.7.9.22 Core general purpose register 17 value register. (GPR17)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R17							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR17** (R/W)

General purpose register 17 value bitfield.

5.2.7.9.23 Core general purpose register 18 value register. (GPR18)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R18							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR18** (R/W)

General purpose register 18 value bitfield.

5.2.7.9.24 Core general purpose register 19 value register. (GPR19)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R19							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR19** (R/W)

General purpose register 19 value bitfield.

5.2.7.9.25 Core general purpose register 20 value register. (GPR20)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R20							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR20 (R/W)

General purpose register 20 value bitfield.

5.2.7.9.26 Core general purpose register 21 value register. (GPR21)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R21							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR21 (R/W)

General purpose register 21 value bitfield.

5.2.7.9.27 Core general purpose register 22 value register. (GPR22)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R22							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR22 (R/W)

General purpose register 22 value bitfield.

5.2.7.9.28 Core general purpose register 23 value register. (GPR23)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R23							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-							

Bits 31:0 - **GPR23** (R/W)

General purpose register 23 value bitfield.

5.2.7.9.29 Core general purpose register 24 value register. (GPR24)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R24							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR24 (R/W)

General purpose register 24 value bitfield.

5.2.7.9.30 Core general purpose register 25 value register. (GPR25)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R25							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR25** (R/W)

General purpose register 25 value bitfield.

5.2.7.9.31 Core general purpose register 26 value register. (GPR26)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R26							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR26** (R/W)

General purpose register 26 value bitfield.

5.2.7.9.32 Core general purpose register 27 value register. (GPR27)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R27							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR27** (R/W)

General purpose register 27 value bitfield.

5.2.7.9.33 Core general purpose register 28 value register. (GPR28)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R28							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR28** (R/W)

General purpose register 28 value bitfield.

5.2.7.9.34 Core general purpose register 29 value register. (GPR29)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R29							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR29** (R/W)

General purpose register 29 value bitfield.

5.2.7.9.35 Core general purpose register 30 value register. (GPR30)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R30							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR30** (R/W)

General purpose register 30 value bitfield.

5.2.7.9.36 Core general purpose register 31 value register. (GPR31)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R31							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR31** (R/W)

General purpose register 31 value bitfield.

5.2.7.9.37 Debug next program counter value register. (NPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NF	C							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							NF	20							

Bits 31:0 - NPC (R/W)

Next program counter value bitfield.

5.2.7.9.38 Debug previous program counter value register. (PPC)

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PF	PC .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - PPC (R)

Previous program counter value bitfield.

5.2.7.9.39 Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved					CLUST	ER_ID			Reserve d		COR	E_ID	

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RI5CY core ID value bitfield.

5.2.7.9.40 Core CSR machine status value register. (CSR_MSTATUS)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		MI	PP		Reserved		MPIE		Reserved		MIE		Reserved	

Bits 12:11 - MPP (R/W)

Hardwired to *0b11*.

Bit 7 - MPIE (R/W)

Machine privilege mode previous interrupt enable value bitfield. When an interrupis encountered, MPIE will store the value existing in MIE. When mret instruction is executed, the value of MPIE is restored into MIE.

Bit 3 - MIE (R/W)

Machine privilege mode interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

5.2.7.9.41 Core CSR machine vector-trap base address value register. (CSR_MTVEC)

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MT\	/EC							
15	14	13	42	44	40			_	_			-	_		
13	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:8 - MTVEC (R/W)

Machine trap-vector base address value bitfield.

5.2.7.9.42 Core CSR machine exception program counter value register. (CSR_MEPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ME	PC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MEPC (R/W)

Machine exception program counter value bitfield. When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception address. When an mret instruction is executed, the value from MEPC is restored to the current program counter.

5.2.7.9.43 Core CSR machine trap cause value register. (CSR_MCAUSE)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
	I								_	_		_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - **IRQ** (R)

Core triggered an exception due to interrupt status bitfield:

- *0b0*: false
- *0b1*: true

Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- 0x3: sigtrap breakpoint
- *0xB*: sigecall eCall user mode
- OxB sigecall eCall machine mode
- *0x1F* sigstop core was halted by an external signal

5.2.7.9.44 Core CSR performance counter counter register. (CSR_PCCR)

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PC	CR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - PCCR (R/W)

Program counter counter value bitfield.

5.2.7.9.45 Core CSR performance counter enable configuration register. (CSR_PCER)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved								PCER		
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 20:0 - PCER (R/W)

See documentation on RISCY core for details.

5.2.7.9.46 Core CSR performance counter mode configuration register. (CSR_PCMR)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 1 - **GE** (R/W)

Performance counter activation configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 0 - **SAT** (R/W)

Performance counter saturation mode configuration bitfield:

- *0b0*: wrap around wrap-around mode
- *0b1*: saturation saturation mode

5.2.7.9.47 Core CSR hardware loop 0 start configuration register. (CSR_HWLP0S)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	ART							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

5.2.7.9.48 Core CSR hardware loop 0 end configuration register. (CSR_HWLP0E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ND							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - END (R/W)

Hardware loop end address configuration bitfield.

5.2.7.9.49 Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CI	NT							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

5.2.7.9.50 Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	ART							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

5.2.7.9.51 Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ND.							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **END** (R/W)

Hardware loop end address configuration bitfield.

5.2.7.9.52 Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CI	NT							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

5.2.7.9.53 Cose CSR privilege level status register. (CSR_PRIVLV)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 1:0 - **PLEV** (R)

Hardwired to *0b11*.

5.2.7.9.54 Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved					CLUST	ER_ID			Reserve d		COR	E_ID	

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RI5CY core ID value bitfield.

5.3 SoC Peripherals Subsystem

5.3.1 SoC Peripherals Subsystem Events

Event number	Event name	IP instance name	Direction	Description
0	UART_RX_EVT	<u>UART</u>	Input	uDMA UART RX channel transfer done event
1	UART_TX_EVT	<u>UART</u>	Input	uDMA UART TX channel transfer done event
2	SPIM0_RX_EVT	SPIM0	Input	uDMA SPIM1 RX channel transfer done event
3	SPIM0_TX_EVT	SPIM0	Input	uDMA SPIM1 TX channel transfer done event
4	STDIO_RX_EVT	STDIO	Input	uDMA SDIO TX channel transfer done event
5	STDIO_TX_EVT	STDIO	Input	uDMA SDIO RX channel transfer done event

Event number	Event name	IP instance name	Direction	Description
6	I2C0_RX_EVT	<u>12C0</u>	Input	uDMA I2C0 RX channel transfer done event
7	I2C0_TX_EVT	<u>I2C0</u>	Input	uDMA I2C0 TX channel transfer done event
8	I2C1_RX_EVT	<u>I2C1</u>	Input	uDMA I2C1 RX channel transfer done event
9	I2C1_TX_EVT	<u>I2C1</u>	Input	uDMA I2C1 TX channel transfer done event
10	Reserved			Reserved
11	Reserved			Reserved
12	CPI_RX_EVT	CAM	Input	uDMA CPI RX channel transfer done event
13	CPI_EVT	CAM	Input	uDMA CPI channel event
14	Reserved			Reserved
15	Reserved			Reserved
16	Reserved			Reserved
17	Reserved			Reserved
18	Reserved			Reserved
19	Reserved			Reserved
20	I2S_EVT	<u>I2S</u>	Input	uDMA I2S channel event
21	I2S_CH1_RX_EVT	<u>I2S</u>	Input	uDMA I2S TX channel transfer done event
22	UART_EVT	<u>UART</u>	Input	uDMA SPIM0 End of Transaction event
23	SPIM0_EOT_EVT	SPIM0	Input	uDMA SPIM0 End of Transaction event
24	Reserved			Reserved
25	I2C0_EVT	<u>I2C0</u>	Input	uDMA I2C0 channel event
26	I2C1_EVT	<u>I2C0</u>	Input	uDMA I2C1 channel event
27	I2S_CH0_RX_EVT	<u>12S</u>	Input	uDMA I2S RX channel transfer done event
28	Reserved			Reserved
29	Reserved			Reserved
30	Reserved			Reserved
31	Reserved			Reserved
32	Reserved			Reserved
33	Reserved			Reserved
34	Reserved			Reserved
35	Reserved			Reserved
36	Reserved			Reserved
37	Reserved			Reserved
38	ADV_TIMER_EVT_0	APB_ADV_TIMER	Input	ADV_TIMER event 0
39	ADV_TIMER_EVT_1	APB_ADV_TIMER	Input	ADV_TIMER event 1
40	ADV_TIMER_EVT_2	APB_ADV_TIMER	Input	ADV_TIMER event 2
41	ADV_TIMER_EVT_3	APB_ADV_TIMER	Input	ADV_TIMER event 3
42	GPIO_EVT	APB_GPIO	Input	GPIO event
43	Reserved			Reserved
44	Reserved			Reserved
45	Reserved			Reserved
46	HWPE_EVT_0	FC_HWPE_UNIT	Input	Hwpe event 0
47	HWPE_EVT_1	FC_HWPE_UNIT	Input	Hwpe event 1

Table 33. SoC Peripherals Subsystem Events table

5.3.2 FLL

FLL component manages the following features:

- generation of a clock signal that is locked to a frequency requested
- 2 configurable modes: normal and standalone
- output clock can be gated when unlocked

None

5.3.2.1 SoC FLL registers

Name	Address	Size	Туре	Access	Default	Description
STATUS	0x1A100000	32	Config	R/W	0x0000	FLL status register.
CFG1	0x1A100004	32	Config	R/W	0x0000	FLL configuration 1 register.
CFG2	0x1A100008	32	Config	R/W	0x0000	FLL configuration 2 register.
INTEG	0x1A10000C	32	Config	R/W	0x0000	FLL integrator configuration register.

Table 34. SoC FLL registers table

5.3.2.2 FLL registers details

5.3.2.2.1 FLL status register. (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - MF (R)

Current DCO multiplication factor value bitfield.

5.3.2.2.2 FLL configuration 1 register. (CFG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CKM	CKG		CK	DIV						IC	S				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - **CKM** (R/W)

FLL operation mode configuration bitfield:

- *0b0*: standalone
- 0b1: normal

Bit 30 - **CKG** (R/W)

FLL output gated by LOCK signal configuration bitfield:

- *0b0*: not gated
- *0b1*: gated

Bits 29:26 - **CKDIV** (R/W)

FLL output clock divider configuration bitfield.

Bits 25:16 - ICS (R/W)

DCO input code in standalone mode bitfield.

Bits 15:0 - MFN (R/W)

Target clock multiplication factor in normal mode bitfield.

5.3.2.2.3 FLL configuration 2 register. (CFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DITH	OL	CKSEL	Reserve d						Ľ	Т					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		SC	KL				<u> </u>	UC	KL		<u> </u>		L	G	

Bit 31 - **DITH** (R/W)

Dithering activation bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 30 - **OL** (R/W)

Open loop when locked activation bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 29 - CKSEL (R/W)

Configuration clock selection in standalone mode bitfield:

- 0b0: DCO clock
- *0b1*: Reference clock

Bits 27:16 - LT (R/W)

Lock tolerance configuration bitfield. It is the margin around multiplication factor within which the output clock is considered stable.

Bits 15:10 - **SCKL** (R/W)

Number of stable REFCLK cycles until LOCK assert in normal mode. Upper 6-bit of LOCK assert counter target in standalone mode.

Bits 9:4 - **UCKL** (R/W)

Number of unstable REFCLK cycles until LOCK de-assert in normal mode. Lower 6-bit of LOCK assert counter target in standalone mode.

Bits 3:0 - **LG** (R/W)

FLL loop gain setting bitfield.

5.3.2.2.4 FLL integrator configuration register. (INTEG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved									INT	EG				
15	14	13	12	11	10	٥		7	-	E			-	1	0
			12		10	,		,	0	5	4	3			U

Bits 25:16 - **INTEG** (R/W)

integer part of integrator state bitfield. It corresponds to DCO unit bits.

Bits 15:6 - **FRAC** (R/W)

Fractional part of integrator state bitfield. It corresponds to dither unit input.

5.3.3 GPIO

GPIO component manages the following features:

- 32 general purpose input/ouput pads
- configurable pull and drive strength on each GPIOs
- configurable event trigger on GPIO event

None

5.3.3.1 Apb GPIO registers

Name	Address	Size	Туре	Access	Default	Description
<u>PADDIR</u>	0x1A101000	32	Config	R/W	0x0000	GPIO pad direction configuration register.
<u>PADIN</u>	0x1A101004	32	Config	R	0x0000	GPIO pad input value register.
PADOUT	0x1A101008	32	Config	R/W	0x0000	GPIO pad output value register.
<u>INTEN</u>	0x1A10100C	32	Config	R/W	0x0000	GPIO pad interrupt enable configuration register.
INTTYPE0	0x1A101010	32	Config	R/W	0x0000	GPIO pad interrupt type bit 0 configuration register.
INTTYPE1	0x1A101014	32	Config	R/W	0x0000	GPIO pad interrupt type bit 1 configuration register.
<u>INTSTATUS</u>	0x1A101018	32	Status	R	0x0000	GPIO pad interrupt status register.
GPIOEN	0x1A10101C	32	Config	R/W	0x0000	GPIO pad enable configuration register.
PADCFG0	0x1A101020	32	Config	R/W	0x0000	GPIO pad pin 0 to 3 configuration register.
PADCFG1	0x1A101024	32	Config	R/W	0x0000	GPIO pad pin 4 to 7 configuration register.
PADCFG2	0x1A101028	32	Config	R/W	0x0000	GPIO pad pin 8 to 11 configuration register.
PADCFG3	0x1A10102C	32	Config	R/W	0x0000	GPIO pad pin 12 to 15 configuration register.
PADCFG4	0x1A101030	32	Config	R/W	0x0000	GPIO pad pin 16 to 19 configuration register.
PADCFG5	0x1A101034	32	Config	R/W	0x0000	GPIO pad pin 20 to 23 configuration register.
PADCFG6	0x1A101038	32	Config	R/W	0x0000	GPIO pad pin 24 to 27 configuration register.
PADCFG7	0x1A10103C	32	Config	R/W	0x0000	GPIO pad pin 28 to 31 configuration register.

Table 35. Apb GPIO registers table

5.3.3.2 GPIO registers details

5.3.3.2.1 GPIO pad direction configuration register. (PADDIR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DIR															
				11	40			-	_	-		-	-		_
15	14	13	12	11	10	9	ŏ	,	6	5	4	3	2	1	U

Bits 31:0 - **DIR** (R/W)

GPIO direction configuration bitfield:

- bit[i]=0b0: Input mode for GPIO[i]
- bit[i]=0b1: Output mode for GPIO[i]

5.3.3.2.2 GPIO pad input value register. (PADIN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DAT	A_IN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **DATA_IN** (R)

GPIO input data read bitfield. DATA_IN[i] corresponds to input data of GPIO[i].

5.3.3.2.3 GPIO pad output value register. (PADOUT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DATA	_OUT							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **DATA_OUT** (R/W)

GPIO output data read bitfield. DATA_OUT[i] corresponds to output data set on GPIO[i].

5.3.3.2.4 GPIO pad interrupt enable configuration register. (INTEN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INT	EN							
45	4.4		12	11		_	_	_	_	_		_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	U

Bits 31:0 - **INTEN** (R/W)

GPIO interrupt enable configuration bitfield:

- bit[i]=0b0: disable interrupt for GPIO[i]
- bit[i]=0b1: enable interrupt for GPIO[i]

5.3.3.2.5 GPIO pad interrupt type bit 0 configuration register. (INTTYPE0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INTT	YPE0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **INTTYPE0** (R/W)

GPIO[15:0] interrupt type configuration bitfield:

- bit[2*i*+1:2*i*]=0b00: interrupt on falling edge for GPIO[i]
- bit[2*i+1:2*i]=0b01: interrupt on rising edge for GPIO[i]
- bit[2*i*+1:2*i*]=0b10. interrupt on rising and falling edge for GPIO[i]
- bit[2*i+1:2*i]=*0b11*: RFU

5.3.3.2.6 GPIO pad interrupt type bit 1 configuration register. (INTTYPE1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INTT	YPE1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **INTTYPE1** (R/W)

GPIO[31:16] interrupt type configuration bitfield:

- bit[2*i+1:2*i]=0b00: interrupt on falling edge for GPIO[16+i]
- bit[2*i+1:2*i]=0b01: interrupt on rising edge for GPIO[16+i]
- bit[2*i*+1:2*i*]=0b10: interrupt on rising and falling edge for GPIO[16+i]
- bit[2*i+1:2*i]=0b11: RFU

5.3.3.2.7 GPIO pad interrupt status register. (INTSTATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INTST	ATUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - INTSTATUS (R)

GPIO Interrupt status flags bitfield. INTSTATUS[i]=1 when interrupt received on GPIO[i]. INTSTATUS is cleared when it is red. GPIO interrupt line is also cleared when INTSTATUS register is red.

5.3.3.2.8 GPIO pad enable configuration register. (GPIOEN)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	OEN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPIOEN** (R/W)

GPIO clock enable configuration bitfield:

- bit[i]=0b0: disable clock for GPIO[i]
- bit[i]=0b1: enable clock for GPIO[i]

GPIOs are gathered by groups of 4. The clock gating of one group is done only if all 4 GPIOs are disabled.

Clock must be enabled for a GPIO if it's direction is configured in input mode.

5.3.3.2.9 GPIO pad pin 0 to 3 configuration register. (PADCFG0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					GPIO3_ DS	GPIO3_ PE			Rese	erved			GPIO2_ DS	GPIO2_ PE
15						9	8	7	6	5	4	3	2	1	0

Bit 25 - **GPIO3_DS** (R/W)

GPIO[3] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 24 - **GPIO3_PE** (R/W)

GPIO[3] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 17 - **GPIO2_DS** (R/W)

GPIO[2] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 16 - **GPIO2_PE** (R/W)

GPIO[2] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 9 - **GPIO1_DS** (R/W)

GPIO[1] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 8 - **GPIO1_PE** (R/W)

GPIO[1] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

Bit 1 - **GPIO0_DS** (R/W)

GPIO[0] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - GPIOO_PE (R/W)

GPIO[0] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

5.3.3.2.10 GPIO pad pin 4 to 7 configuration register. (PADCFG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					GPIO7_ DS	GPIO7_ PE			Rese	erved			GPIO6_ DS	GPIO6_ PE
	Reserved 14 13 12 11 10								_	_		_	_		_
15						9	8	7	6	5	4	3	2	1	0

Bit 25 - **GPIO7_DS** (R/W)

GPIO[7] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 24 - **GPIO7_PE** (R/W)

GPIO[7] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 17 - **GPIO6_DS** (R/W)

GPIO[6] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 16 - **GPIO6_PE** (R/W)

GPIO[6] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 9 - **GPIO5_DS** (R/W)

GPIO[5] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 8 - **GPIO5_PE** (R/W)

GPIO[5] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **GPIO4_DS** (R/W)

GPIO[4] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **GPIO4_PE** (R/W)

GPIO[4] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

5.3.3.2.11 GPIO pad pin 8 to 11 configuration register. (PADCFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO11 _DS	GPIO11 _PE			Res	erved			GPIO10 _DS	GPIO10 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			GPIO9_ DS	GPIO9_ PE			Res	erved			GPIO8_ DS	GPIO8_ PE

Bit 25 - **GPIO11_DS** (R/W)

GPIO[11] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 24 - **GPIO11_PE** (R/W)

GPIO[11] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 17 - **GPIO10_DS** (R/W)

GPIO[10] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 16 - **GPIO10_PE** (R/W)

GPIO[10] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

Bit 9 - **GPIO9_DS** (R/W)

GPIO[9] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 8 - **GPIO9_PE** (R/W)

GPIO[9] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

Bit 1 - **GPIO8_DS** (R/W)

GPIO[8] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 0 - **GPIO8_PE** (R/W)

GPIO[8] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.3.2.12 GPIO pad pin 12 to 15 configuration register. (PADCFG3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					GPIO15 _DS	GPIO15 _PE			Res	erved			GPIO14 _DS	GPIO14 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			GPIO13 DS	GPIO13 PE			Res	erved			GPIO12 DS	GPIO12 PE

Bit 25 - **GPIO15_DS** (R/W)

GPIO[15] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 24 - **GPIO15_PE** (R/W)

GPIO[15] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 17 - GPIO14_DS (R/W)

GPIO[14] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 16 - **GPIO14_PE** (R/W)

GPIO[14] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 9 - **GPIO13_DS** (R/W)

GPIO[13] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 8 - **GPIO13_PE** (R/W)

GPIO[13] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **GPIO12_DS** (R/W)

GPIO[12] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **GPIO12_PE** (R/W)

GPIO[12] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.3.2.13 GPIO pad pin 16 to 19 configuration register. (PADCFG4)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					GPIO19 _DS	GPIO19 _PE			Rese	erved			GPIO18 _DS	GPIO18 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			GPIO17 _DS	GPIO17 _PE			Rese	erved			GPIO16 _DS	GPIO16 _PE

Bit 25 - **GPIO19_DS** (R/W)

GPIO[19] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 24 - **GPIO19_PE** (R/W)

GPIO[19] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

Bit 17 - **GPIO18_DS** (R/W)

GPIO[18] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 16 - **GPIO18_PE** (R/W)

GPIO[18] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

Bit 9 - **GPIO17_DS** (R/W)

GPIO[17] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 8 - **GPIO17_PE** (R/W)

GPIO[17] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **GPIO16_DS** (R/W)

GPIO[16] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **GPIO16_PE** (R/W)

GPIO[16] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.3.2.14 GPIO pad pin 20 to 23 configuration register. (PADCFG5)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO23 _DS	GPIO23 _PE			Rese	erved			GPIO22 _DS	GPIO22 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 25 - GPIO23_DS (R/W)

GPIO[23] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 24 - **GPIO23_PE** (R/W)

GPIO[23] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 17 - **GPIO22_DS** (R/W)

GPIO[22] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 16 - **GPIO22_PE** (R/W)

GPIO[22] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

Bit 9 - **GPIO21_DS** (R/W)

GPIO[21] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 8 - **GPIO21_PE** (R/W)

GPIO[21] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **GPIO20_DS** (R/W)

GPIO[20] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **GPIO20_PE** (R/W)

GPIO[20] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

5.3.3.2.15 GPIO pad pin 24 to 27 configuration register. (PADCFG6)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO27 _DS	GPIO27 _PE			Rese	erved			GPIO26 _DS	GPIO26 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15	14		12 erved	11	10	9 GPIO25	8 GPIO25	7	6	5	4 erved	3	2	1 GPIO24	0 GPIO24

Bit 25 - **GPIO27_DS** (R/W)

GPIO[27] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 24 - **GPIO27_PE** (R/W)

GPIO[27] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

Bit 17 - **GPIO26_DS** (R/W)

GPIO[26] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 16 - **GPIO26_PE** (R/W)

GPIO[26] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

Bit 9 - **GPIO25_DS** (R/W)

GPIO[25] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 8 - **GPIO25_PE** (R/W)

GPIO[25] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 1 - **GPIO24_DS** (R/W)

GPIO[24] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 0 - **GPIO24_PE** (R/W)

GPIO[24] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

5.3.3.2.16 GPIO pad pin 28 to 31 configuration register. (PADCFG7)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO31 _DS	GPIO31 _PE			Rese	erved			GPIO30 _DS	GPIO30 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 25 - GPIO31_DS (R/W)

GPIO[31] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 24 - **GPIO31_PE** (R/W)

GPIO[31] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

Bit 17 - **GPIO30_DS** (R/W)

GPIO[30] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 16 - **GPIO30_PE** (R/W)

GPIO[30] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 9 - **GPIO29_DS** (R/W)

GPIO[29] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 8 - **GPIO29_PE** (R/W)

GPIO[29] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **GPIO28_DS** (R/W)

GPIO[28] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **GPIO28_PE** (R/W)

GPIO[28] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.4 SoC control unit

The APB SoC Controller allows control of various SoC features such as:

- PAD mux configuration
- JTAG boot mode
- Sleep modes
- L2 retentive state configuration
- DC/DC voltage regulator configuration in bypass mode

None

5.3.4.1 SoC Control registers

Name	Address	Size	Туре	Access	Default	Description
INFO	0x1A104000	32	Status	R	0x0018	Core information register
<u>CL_ISOLATE</u>	0x1A10400C	32	Config	R/W	0x0001	Isolate cluster register
<u>CL_BUSY</u>	0x1A10406C	32	Status	R	0x0000	Cluster busy register
CL_BYPASS	0x1A104070	32	Config	R/W	0x0400	PMU bypass configuration register
<u>JTAGREG</u>	0x1A104074	32	Config	R/W	0x0000	JTAG external register
L2_SLEEP	0x1A104078	32	Config	R/W	0x0001	L2 sleep configuration register
SLEEP_CTRL	0x1A10407C	32	Status	R	0x0000	Alias for SAFE_PMU_SLEEPCTRL
CORESTATUS	0x1A1040A0	32	Status	R/W	0x0000	EOC and chip status register
CORESTATUS_RO	0x1A1040C0	32	Status	R	0x0000	EOC and chip status register read mirror
SAFE_PMU_RAR	0x1A104100	32	Config	R/W	0x2A52D	DC/DC configuration register
SAFE_PMU_SLEEPCTRL	0x1A104104	32	Config	R/W	0x0000	Sleep modes configuration register
SAFE_PMU_FORCE	0x1A104108	32	Config	R/W	0x0000	L2 rententive state configuration
SAFE_PADFUN0	0x1A104140	32	Config	R/W	0x0000	Mux config register (pad 0–15)
SAFE_PADFUN1	0x1A104144	32	Config	R/W	0x0000	Mux config register (pad 16–31)
SAFE_PADFUN2	0x1A104148	32	Config	R/W	0x0000	Mux config register (pad 32–47)
SAFE_SLEEPPADCFG0	0x1A104150	32	Config	R/W	0x0000	Sleep config register (pad 0–15)
SAFE_SLEEPPADCFG1	0x1A104154	32	Config	R/W	0x0000	Mux config register (pad 16–31)
SAFE_SLEEPPADCFG2	0x1A104158	32	Config	R/W	0x0000	Mux config register (pad 32–47)
SAFE_PADSLEEP	0x1A104160	32	Config	R/W	0x0000	Enable Sleep mode for pads
SAFE_PADCFG0	0x1A104180	32	Config	R/W	0x0000	Function register (pad 0 to 3)
SAFE_PADCFG1	0x1A104184	32	Config	R/W	0x0000	Function register (pad 4 to 7)
SAFE_PADCFG2	0x1A104188	32	Config	R/W	0x0000	Function register (pad 8 to 11)
SAFE_PADCFG3	0x1A10418C	32	Config	R/W	0x0000	Function register (pad 12 to 15)

Name	Address	Size	Туре	Access	Default	Description
SAFE_PADCFG4	0x1A104190	32	Config	R/W	0x0000	Function register (pad 16 to 19)
SAFE_PADCFG5	0x1A104194	32	Config	R/W	0x0000	Function register (pad 20 to 23)
SAFE_PADCFG6	0x1A104198	32	Config	R/W	0x0000	Function register (pad 24 to 27)
SAFE_PADCFG7	0x1A10419C	32	Config	R/W	0x0000	Function register (pad 28 to 31)
SAFE_PADCFG8	0x1A1041A0	32	Config	R/W	0x0000	Function register (pad 32 to 35)
SAFE_PADCFG9	0x1A1041A4	32	Config	R/W	0x0000	Function register (pad 36 to 39)
SAFE_PADCFG10	0x1A1041A8	32	Config	R/W	0x0000	Function register (pad 40 to 43)
SAFE_PADCFG11	0x1A1041AC	32	Config	R/W	0x0000	Function register (pad 44 to 47)
REG_GPIO_ISO	0x1A1041C0	32	Config	R/W	0x0000	GPIO power domain pad input isolation register
REG_CAM_ISO	0x1A1041C4	32	Config	R/W	0x0000	CAM power domain pad input isolation register
REG_LVDS_ISO	0x1A1041C8	32	Config	R/W	0x0000	LVDS power domain pad input isolation register

Table 36. SoC Control registers table

5.3.4.2 SoC control unit registers details

5.3.4.2.1 Core information register (INFO)

Reset value: 0x0018

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NB_C	ORES							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **NB_CORES** (R)

Reset value: 0x00

Number of cores

Bits 15:0 - NB_CL (R)

Reset value: 0x18

Number of clusters

5.3.4.2.2 Isolate cluster register (CL_ISOLATE)

Reset value: 0x0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (R/W)

Reset value: 0b1

Isolate cluster. Inhibits AXI transactions from cluster to SoC:

- *0b0*: Disable
- *0b1*: Enable

5.3.4.2.3 Cluster busy register (CL_BUSY)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **BUSY** (R)

Cluster busy flag (i.e. It's 1 if there is at least 1 active block in the cluster)

5.3.4.2.4 PMU bypass configuration register (CL_BYPASS)

Reset value: 0x0400

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved							PMUPO WDOWN	TRCPO WOK
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 17 - PMUPOWDOWN (R/W)

Reset value: 0b0

Cluster power down from Maestro PMU status bitfield.

Bit 16 - TRCPOWOK (R/W)

Reset value: 0b0

Cluster power ok from cluster TRC status bitfield

Bit 13 - **RST** (R/W)

Reset value: 0b0

Cluster reset configuration bitfield:

- 1'b0: nothing
- 1'b1: reset the cluster

Bit 12 - FLL_RET (R/W)

Reset value: 0b0

Cluster FLL retentive configuration bitfield:

- 1'b0: FLL on
- 1'b1: FLL retentive mode

Bit 11 - **FLL_PWD** (R/W)

Reset value: 0b0

Cluster FLL shutdown configuration bitfield:

- 1'b0: FLL on
- 1'b1: FLL shutdown mode

Bit 10 - **CG** (R/W)

Reset value: 0b1

Cluster clock gate configuration bitfield:

- 1'b0: disabled
- 1'b1: enabled

It should always be used before switching cluster FLL to shutdown or retentive mode.

Bit 9 - BYP_CLK (R/W)

Reset value: 0b0

Bypass cluster clock and reset control by Maestro PMU configuration bitfield:

- 1'b0: disabled
- 1'b1: enabled

Bits 8:7 - PROG_DEL (R/W)

Reset value: 0b00

Number of REFCLK 32kHz after cluster power ok has arised to release TR isolation configuration bitfield.

Bits 6:4 - CURRSET (R/W)

Reset value: 0b000

Max current allowed on cluster TRC configuration bitfield.

Bit 3 - CL_STATE (R/W)

Reset value: 0b0

Cluster state configuration and status bitfield:

- 1'b0: off
- 1'b1: on

Status information is correct only when bypass mode is enabled.

Bit 1 - BYP_CFG (R/W)

Reset value: 0b0

Bypass Maestro PMU configuration selection configuration bitfield:

- 1'b0: use default
- 1'b1: use user configuration (bitfields from bits 3 to 15 of CL_BYPASS register)

Bit 0 - **BYP_POW** (R/W)

Reset value: 0b0

Bypass Maestro PMU controller configuration bitfield:

- 1'b0: disabled
- 1'b1: enabled

5.3.4.2.5 JTAG external register (JTAGREG)

Reset value: 0x0000

This register is used for synchronisation and boot mode configuration from an external debugger.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		E	EXT_BT_M)	EXT_SY NC		Rese	erved			INT_BT_MD)	INT_SY NC

Bits 11:9 - **EXT_BT_MD** (R)

JTAG external register used for selecting boot mode configuration from external debugger

Bit 8 - EXT_SYNC (R)

JTAG external register used for synchronisation from external debugger

Bits 3:1 - INT_BT_MD (R/W)

JTAG internal register used for selecting boot mode configuration from external debugger

Bit 0 - INT_SYNC (R/W)

JTAG internal register used for synchronisation from external debugger

5.3.4.2.6 L2 sleep configuration register (L2_SLEEP)

Reset value: 0x0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								L2_SLE EP

Bit 0 - **L2_SLEEP** (R/W)

Reset value: 0b1

L2 memory sleep configuration

5.3.4.2.7 Alias for SAFE_PMU_SLEEPCTRL (SLEEP_CTRL)

Reset value: 0x0000

This register will be accessible in 1 clock cycle

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SLEEP	_CTRL							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SLEEP	CTRL							

Bits 31:0 - SLEEP_CTRL (R)

Alias for SAFE_PMU_SLEEPCTRL(i.e. will be accessible in 1 clock cycle)

5.3.4.2.8 EOC and chip status register (CORESTATUS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **STATUS** (R/W)

EOC and chip status register

5.3.4.2.9 EOC and chip status register read mirror (CORESTATUS_RO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **STATUS** (R)

EOC and chip status register

5.3.4.2.10 DC/DC configuration register (SAFE_PMU_RAR)

Reset value: 0x2A52D

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved				RV_VOLT				Reserved				LV_VOLT		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 28:24 - **RV_VOLT** (R/W)

Reset value: 0x0

DC/DC Retentive Voltage setting

Bits 20:16 - **LV_VOLT** (R/W)

Reset value: 0x2

DC/DC Low Voltage setting

Bits 12:8 - MV_VOLT (R/W)

Reset value: 0x5

DC/DC Medium Voltage setting (not used)

Bits 4:0 - **NV_VOLT** (R/W)

Reset value: 0xD

DC/DC Nominal Voltage setting

5.3.4.2.11 Sleep modes configuration register (SAFE_PMU_SLEEPCTRL)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved						CL_WAK E	ВТТ	YPE	EXTINT	BTDEV
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 20 - **CL_WAKE** (R/W)

Cluster state to restore after warm boot:

- 1'b0: off
- 1'b1: on

Bits 19:18 - **BTTYPE** (R/W)

Select boot type:

- 0b00: cold boot
- *0b01*: deep sleep
- *0b10*: retentive deep sleep

Bit 17 - **EXTINT** (R)

External wake-up interrupt status (automatically resetted after read)

- *0b0*: wake-up triggered by RTC
- *0b1*: wake-up triggered by external event

Bit 16 - **BTDEV** (R/W)

Warm bootmode:

- 0b0: Boot from ROM
- *0b1*: Boot from L2

Bit 14 - WAKESTATE (R/W)

Power state to restore after warm boot

- *0b0*: SoC_LV
- *0b1*: SoC_HV

Bit 13 - EXTWAKE_EN (R/W)

Enable external wake-up;

- *0b0*; external wake-up disabled
- *0b1*: external wake-up enabled

Bits 12:11 - EXTWAKE_TYPE (R/W)

Select external wake-up mode:

- *0b00*: rise event
- 0b01: fall event
- *0b10*: high level
- *0b11*: low level

Bits 10:6 - EXTWAKE_SRC (R/W)

Select external wake-up source (GPIO ID):

- 0b00000: GPIO 0
- *0b00001*: GPIO 1
- 0b00010: GPIO 2
- *0b00011*: GPIO 3
- 0b00100: GPIO 4
- *0b00101*: GPIO 5
- *0b00110*: GPIO 6
- *0b00111*: GPIO 7
- 0b01000: GPIO 8
- 0b01001: GPIO 9
- *0b01010*: GPIO 10
- 0b01011: GPIO 11
- *0b01100*: GPIO 12
- *0b01101*: GPIO 13
- *0b01110*: GPIO 14
- *0b01111*: GPIO 15
- *0b10000*: GPIO 16
- *0b10001*: GPIO 17
- *0b10010*: GPIO 18
- *0b10011*: GPIO 19
- *0b10100*: GPIO 20
- *0b10101*: GPIO 21
- *0b10110*: GPIO 22
- *0b10111*: GPIO 23
- *0b11000*: GPIO 24 *0b11001*: GPIO 25
- *0b11010*: GPIO 26
- *0b11011*: GPIO 27
- *0b11100*: GPIO 28
- *0b11101*: GPIO 29
- *0b11110*: GPIO 30
- 0b11111: GPIO 31

Bit 5 - CL_FLL (R/W)

Configure retention mode for cluster FLL:

- *0b0*: Non retentive
- *0b1*: Retentive

Bit 4 - SOC_FLL (R/W)

Configure retention mode for SoC FLL:

- *0b0*: Non retentive
- *0b1*: Retentive

Bit 3 - **L2_R3** (R/W)

Configure retention mode for region 3 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

Bit 2 - **L2_R2** (R/W)

Configure retention mode for region 2 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

Bit 1 - **L2_R1** (R/W)

Configure retention mode for region 1 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

Bit 0 - **L2_R0** (R/W)

Configure retention mode for region 0 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

5.3.4.2.12 L2 rententive state configuration (SAFE_PMU_FORCE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 7 - **PD_L2_R3** (R/W)

Force power down on region 3 of L2 memory:

0b0: power up

0b1: power down

Bit 6 - PD_L2_R2 (R/W)

Force power down on region 2 of L2 memory:

0b0: power up

0b1: power down

Bit 5 - **PD_L2_R1** (R/W)

Force power down on region 1 of L2 memory:

0b0: power up

0b1: power down

Bit 4 - **PD_L2_R0** (R/W)

Force power down on region 0 of L2 memory:

0b0: power up

0b1: power down

Bit 3 - **RET_L2_R3** (R/W)

Force retentive state on region 3 of L2 memory:

0b0: not state retentive

0b1: state retentive

Bit 2 - **RET_L2_R2** (R/W)

Force retentive state on region 2 of L2 memory:

0b0: not state retentive

0b1: state retentive

Bit 1 - **RET_L2_R1** (*R/W*)

Force retentive state on region 1 of L2 memory:

0b0: not state retentive

0b1: state retentive

Bit 0 - **RET_L2_R0** (*R/W*)

Force retentive state on region 0 of L2 memory:

0b0: not state retentive

0b1: state retentive

5.3.4.2.13 Mux config register (pad 0-15) (SAFE_PADFUN0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	41	В	38	A	42	B	39	A	37	A	43	B	40	A	44
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	R1	Α	2	В	32	А	.3	В	4	Α	5	В	3	А	١4

Bits 31:30 - A41 (R/W)

Configure A41 functionality:

- 0b00: Alternate 0 CAM_DATA3 (default)
- *0b01*: Alternate 1 GPIOA9
- 0b10: Alternate 2 TIMER2_CH1
- *0b11*: Alternate 3 -

Bits 29:28 - **B38** (R/W)

Configure **B38** functionality:

- 0b00: Alternate 0 CAM_DATA2 (default)
- *0b01*: Alternate 1 GPIOA8
- 0b10: Alternate 2 TIMER2_CH0
- *0b11*: Alternate 3 -

Bits 27:26 - **A42** (R/W)

Configure A42 functionality:

- *0b00*: Alternate 0 CAM_DATA1 (default)
- *0b01*: Alternate 1 GPIOA7
- 0b10: Alternate 2 TIMER1_CH3
- *0b11*: Alternate 3 -

Bits 25:24 - **B39** (R/W)

Configure **B39** functionality:

- *0b00*: Alternate 0 CAM_DATA0 (default)
- 0b01: Alternate 1 GPIOA6
- *0b10*: Alternate 2 TIMER1_CH2
- *0b11*: Alternate 3 -

Bits 23:22 - **A37** (R/W)

Configure A37 functionality:

- *0b00*: Alternate 0 CAM_HSYNC (default)
- *0b01*: Alternate 1 GPIOA5
- *0b10*: Alternate 2 TIMER1_CH1
- *0b11*: Alternate 3 -

Bits 21:20 - A43 (R/W)

Configure A43 functionality:

- *0b00*: Alternate 0 CAM_PCLK (default)
- *0b01*: Alternate 1 GPIOA4
- 0b10: Alternate 2 TIMER1_CH0
- *0b11*: Alternate 3 -

Bits 19:18 - **B40** (R/W)

Configure <u>B40</u> functionality:

- 0b00: Alternate 0 ORCA_RXQ (default)
- *0b01*: Alternate 1 GPIOA5
- 0b10: Alternate 2 SPIS0_SDIO1
- *0b11*: Alternate 3 SPIS0_SDIO3

Bits 17:16 - **A44** (R/W)

Configure <u>A44</u> functionality:

- *0b00*: Alternate 0 ORCA_RXI (default)
- *0b01*: Alternate 1 GPIOA4
- *0b10*: Alternate 2 SPIS0_SDIO0
- *0b11*: Alternate 3 SPIS0_SDIO2

Bits 15:14 - **B1** (R/W)

Configure **B1** functionality:

- *0b00*: Alternate 0 ORCA_TXQ (default)
- 0b01: Alternate 1 GPIOA3
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 13:12 - **A2** (R/W)

Configure A2 functionality:

- 0b00: Alternate 0 ORCA_TXI (default)
- *0b01*: Alternate 1 GPIOA2
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 11:10 - **B2** (R/W)

Configure <u>B2</u> functionality:

- *0b00*: Alternate 0 ORCA_RXSYNC (default)
- *0b01*: Alternate 1 GPIOA1
- 0b10: Alternate 2 SPIM1_CS1
- *0b11*: Alternate 3 -

Bits 9:8 - **A3** (R/W)

Configure A3 functionality:

- 0b00: Alternate 0 ORCA_TXSYNC (default)
- *0b01*: Alternate 1 GPIOA0
- 0b10: Alternate 2 SPIM1_CS0
- *0b11*: Alternate 3 -

Bits 7:6 - **B4** (R/W)

Configure **B4** functionality:

- *0b00*: Alternate 0 SPIM1_SCK (default)
- *0b01*: Alternate 1 GPIOA3
- 0b10: Alternate 2 I2C1 SCL
- *0b11*: Alternate 3 -

Bits 5:4 - **A5** (R/W)

Configure A5 functionality:

- *0b00*: Alternate 0 SPIM1_CS0 (default)
- 0b01: Alternate 1 GPIOA2
- *0b10*: Alternate 2 I2C1_SDA
- *0b11*: Alternate 3 -

Bits 3:2 - **B3** (R/W)

Configure **B3** functionality:

- 0b00: Alternate 0 SPIM1_MOSI (default)
- 0b01: Alternate 1 GPIOA1
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 1:0 - **A4** (R/W)

Configure <u>A4</u> functionality:

- 0b00: Alternate 0 SPIM1_MISO (default)
- *0b01*: Alternate 1 GPIOA0
- 0b10: Alternate 2 -
- *0b11*: Alternate 3 -

5.3.4.2.14 Mux config register (pad 16-31) (SAFE_PADFUN1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	۸7	В	6	В	14	Α	15	B	13	A.	14	В	12	A1	13
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
В	11	С)1	В	34	A	36	A:	38	B:	36	A.	40	В3	37

Bits 31:30 - **A7** (R/W)

Configure A7 functionality:

- 0b00: Alternate 0 UART_TX (default)
- *0b01*: Alternate 1 GPIOA25
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 29:28 - **B6** (R/W)

Configure **B6** functionality:

- 0b00: Alternate 0 UART_RX (default)
- 0b01: Alternate 1 GPIOA24
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 27:26 - **B14** (R/W)

Configure $\underline{\mathsf{B14}}$ functionality:

- 0b00: Alternate 0 I2S1_SDI (default)
- *0b01*: Alternate 1 GPIOA23
- *0b10*: Alternate 2 SPIS0_SDIO2
- *0b11*: Alternate 3 HYPER_CK

Bits 25:24 - A15 (R/W)

Configure <u>A15</u> functionality:

- 0b00: Alternate 0 I2S1_WS (default)
- *0b01*: Alternate 1 GPIOA22
- 0b10: Alternate 2 SPIS0_CS
- *0b11*: Alternate 3 HYPER_CKN

Bits 23:22 - **B13** (R/W)

Configure <u>B13</u> functionality:

- *0b00*: Alternate 0 I2S1_SCK (default)
- *0b01*: Alternate 1 GPIOA21
- *0b10*: Alternate 2 SPIS0_SCK
- *0b11*: Alternate 3 I2S1_SDI

Bits 21:20 - **A14** (R/W)

Configure A14 functionality:

- 0b00: Alternate 0 TIMERO_CH3 (default)
- *0b01*: Alternate 1 GPIOA20
- 0b10: Alternate 2 TIMER3_CH0
- *0b11*: Alternate 3 -

Bits 19:18 - **B12** (R/W)

Configure <u>B12</u> functionality:

- *0b00*: Alternate 0 TIMER0_CH2 (default)
- *0b01*: Alternate 1 GPIOA19
- *0b10*: Alternate 2 TIMER2_CH0
- *0b11*: Alternate 3 -

Bits 17:16 - **A13** (R/W)

Configure A13 functionality:

- 0b00: Alternate 0 TIMER0_CH1 (default)
- *0b01*: Alternate 1 GPIOA18
- *0b10*: Alternate 2 TIMER1_CH0
- *0b11*: Alternate 3 -

Bits 15:14 - **B11** (R/W)

Configure <u>B11</u> functionality:

- 0b00: Alternate 0 TIMER0_CH0 (default)
- 0b01: Alternate 1 GPIOA17
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 13:12 - **D1** (R/W)

Configure <u>D1</u> functionality:

- *0b00*: Alternate 0 I2C1_SCL (default)
- *0b01*: Alternate 1 GPIOA16
- 0b10: Alternate 2 ORCA_CLK
- *0b11*: Alternate 3 -

Bits 11:10 - **B34** (R/W)

Configure **B34** functionality:

- 0b00: Alternate 0 I2C1_SDA (default)
- *0b01*: Alternate 1 GPIOA15
- 0b10: Alternate 2 TIMER3_CH3
- *0b11*: Alternate 3 -

Bits 9:8 - **A36** (R/W)

Configure A36 functionality:

- *0b00*: Alternate 0 CAM_VSYNC (default)
- 0b01: Alternate 1 GPIOA14
- *0b10*: Alternate 2 TIMER3_CH2
- *0b11*: Alternate 3 -

Bits 7:6 - **A38** (R/W)

Configure A38 functionality:

- 0b00: Alternate 0 CAM_DATA7 (default)
- *0b01*: Alternate 1 GPIOA13
- *0b10*: Alternate 2 TIMER3_CH1
- *0b11*: Alternate 3 -

Bits 5:4 - **B36** (R/W)

Configure **B36** functionality:

- 0b00: Alternate 0 CAM_DATA6 (default)
- *0b01*: Alternate 1 GPIOA12
- *0b10*: Alternate 2 TIMER3_CH0
- *0b11*: Alternate 3 -

Bits 3:2 - A40 (R/W)

Configure A40 functionality:

- 0b00: Alternate 0 CAM_DATA5 (default)
- *0b01*: Alternate 1 GPIOA11
- 0b10: Alternate 2 TIMER2_CH3
- *0b11*: Alternate 3 -

Bits 1:0 - **B37** (R/W)

Configure <u>B37</u> functionality:

- 0b00: Alternate 0 CAM_DATA4 (default)
- *0b01*: Alternate 1 GPIOA10
- 0b10: Alternate 2 TIMER2_CH2
- *0b11*: Alternate 3 -

5.3.4.2.15 Mux config register (pad 32–47) (SAFE_PADFUN2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
B	23	A	26	А	24	A	25	B2	22	В	9	A.	16	B.	15
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:30 - **B23** (R/W)

Configure **B23** functionality:

- 0b00: Alternate 0 I2S0_SDI (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 29:28 - **A26** (R/W)

Configure $\underline{\mathsf{A26}}$ functionality:

- 0b00: Alternate 0 I2S0_WS (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 27:26 - A24 (R/W)

Configure <u>A24</u> functionality:

- ObOO: Alternate 0 I2SO_SCK (default)
- *0b01*: Alternate 1 -
- 0b10: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 25:24 - **A25** (R/W)

Configure A25 functionality:

- 0b00: Alternate 0 I2C0_SCL (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 23:22 - **B22** (R/W)

Configure <u>B22</u> functionality:

- 0b00: Alternate 0 I2C0_SDA (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

Bits 21:20 - **B9** (R/W)

Configure **B9** functionality:

- *0b00*: Alternate 0 SPIS0_SCK (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 HYPER_RWDS

Bits 19:18 - **A16** (R/W)

Configure A16 functionality:

- *0b00*: Alternate 0 SPIS0_SDIO1 (default)
- *0b01*: Alternate 1 GPIOA31
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 HYPER_CSN1

Bits 17:16 - **B15** (R/W)

Configure <u>B15</u> functionality:

- *0b00*: Alternate 0 SPIS0_SDIO0 (default)
- *0b01*: Alternate 1 GPIOA30
- *0b10*: Alternate 2 SPIM1_CS1
- 0b11: Alternate 3 HYPER_CSN0

Bits 15:14 - A9 (R/W)

Configure A9 functionality:

- *0b00*: Alternate 0 SPIS0_CS (default)
- *0b01*: Alternate 1 GPIOA29
- 0b10: Alternate 2 SPIM1_CS0
- *0b11*: Alternate 3 HYPER_DQ[7]

Bits 13:12 - **B7** (R/W)

Configure <u>B7</u> functionality:

- 0b00: Alternate 0 SPIM0_SCK (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 HYPER_DQ[6]

Bits 11:10 - **A8** (R/W)

Configure A8 functionality:

- *0b00*: Alternate 0 SPIM0_CS1 (default)
- *0b01*: Alternate 1 GPIOA28
- 0b10: Alternate 2 SPIS0_SDIO3
- *0b11*: Alternate 3 HYPER_DQ[5]

Bits 9:8 - **B8** (R/W)

Configure **B8** functionality:

- *0b00*: Alternate 0 SPIM0_CS0 (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 HYPER_DQ[4]

Bits 7:6 - **A10** (R/W)

Configure A10 functionality:

- *0b00*: Alternate 0 SPIM0_SDIO3 (default)
- 0b01: Alternate 1 GPIOA27
- *0b10*: Alternate 2 I2C1_SCL
- *0b11*: Alternate 3 HYPER_DQ[3]

Bits 5:4 - **B10** (R/W)

Configure <u>B10</u> functionality:

- 0b00: Alternate 0 SPIM0_SDIO2 (default)
- *0b01*: Alternate 1 GPIOA26
- 0b10: Alternate 2 I2C1_SDA
- *0b11*: Alternate 3 HYPER_DQ[2]

Bits 3:2 - **A11** (R/W)

Configure A11 functionality:

- 0b00: Alternate 0 SPIM0_SDIO1 (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 HYPER_DQ[1]

Bits 1:0 - **D2** (R/W)

Configure <u>D2</u> functionality:

- 0b00: Alternate 0 SPIM0_SDIO0 (default)
- 0b01: Alternate 1 -
- 0b10: Alternate 2 -
- *0b11*: Alternate 3 HYPER_DQ[0]

5.3.4.2.16 Sleep config register (pad 0-15) (SAFE_SLEEPPADCFG0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VAL_A4 1	DIR_A41	VAL_B3 8	DIR_B38	VAL_A4 2	DIR_A42	VAL_B3 9	DIR_B39	VAL_A3 7	DIR_A37	VAL_A4 3	DIR_A43	VAL_B4 0	DIR_B40	VAL_A4 4	DIR_A4 4
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - **VAL_A41** (R/W)

Select A41 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 30 - **DIR_A41** (R/W)

Select A41 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 29 - VAL_B38 (R/W)

Select **B38** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 28 - **DIR_B38** (R/W)

Select **B38** sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 27 - **VAL_A42** (R/W)

Select A42 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 26 - **DIR_A42** (R/W)

Select A42 sleep direction

- *0b0*: Input
- 0b1: Output

Bit 25 - VAL_B39 (R/W)

Select <u>B39</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 24 - **DIR_B39** (R/W)

Select <u>B39</u> sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 23 - **VAL_A37** (R/W)

Select A37 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 22 - **DIR_A37** (R/W)

Select A37 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 21 - VAL_A43 (R/W)

Select A43 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 20 - **DIR_A43** (R/W)

Select A43 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 19 - **VAL_B40** (R/W)

Select **B40** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 18 - **DIR_B40** (R/W)

Select **B40** sleep direction

- *0b0*: Input
- 0b1: Output

Bit 17 - VAL_A44 (R/W)

Select A44 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 16 - **DIR_A44** (R/W)

Select A44 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 15 - **VAL_B1** (R/W)

Select <u>B1</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 14 - **DIR_B1** (R/W)

Select **B1** sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 13 - VAL_A2 (R/W)

Select A2 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 12 - **DIR_A2** (R/W)

Select A2 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 11 - **VAL_B2** (R/W)

Select **B2** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 10 - **DIR_B2** (R/W)

Select **B2** sleep direction

- *0b0*: Input
- 0b1: Output

Bit 9 - **VAL_A3** (R/W)

Select A3 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 8 - **DIR_A3** (R/W)

Select A3 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 7 - **VAL_B4** (R/W)

Select **B4** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 6 - **DIR_B4** (R/W)

Select **B4** sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 5 - **VAL_A5** (R/W)

Select A5 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 4 - **DIR_A5** (R/W)

Select A5 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 3 - **VAL_B3** (R/W)

Select **B3** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 2 - **DIR_B3** (R/W)

Select **B3** sleep direction

- *0b0*: Input
- 0b1: Output

Bit 1 - **VAL_A4** (R/W)

Select A4 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 0 - **DIR_A4** (R/W)

Select A4 sleep direction

- *0b0*: Input
- *0b1*: Output

5.3.4.2.17 Mux config register (pad 16–31) (SAFE_SLEEPPADCFG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VAL_A7	DIR_A7	VAL_B6	DIR_B6	VAL_B1 4	DIR_B14	VAL_A1 5	DIR_A15	VAL_B1 3	DIR_B13	VAL_A1 4	DIR_A14	VAL_B1 2	DIR_B12	VAL_A1 3	DIR_A1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - **VAL_A7** (R/W)

Select A7 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 30 - **DIR_A7** (R/W)

Select A7 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 29 - **VAL_B6** (R/W)

Select **B6** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 28 - **DIR_B6** (R/W)

Select **B6** sleep direction

- *0b0*: Input
- 0b1: Output

Bit 27 - **VAL_B14** (R/W)

Select <u>B14</u> sleep state

- *0b0*: Input or output low
- 0b1: Input or output high

Bit 26 - **DIR_B14** (R/W)

Select <u>B14</u> sleep direction

- *0b0*: Input
- 0b1: Output

Bit 25 - **VAL_A15** (R/W)

Select A15 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 24 - **DIR_A15** (R/W)

Select A15 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 23 - **VAL_B13** (R/W)

Select <u>B13</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 22 - **DIR_B13** (R/W)

Select <u>B13</u> sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 21 - **VAL_A14** (R/W)

Select A14 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 20 - **DIR_A14** (R/W)

Select A14 sleep direction

- *0b0*: Input
- 0b1: Output

Bit 19 - **VAL_B12** (R/W)

Select <u>B12</u> sleep state

- *0b0*: Input or output low
- 0b1: Input or output high

Bit 18 - DIR_B12 (R/W)

Select <u>B12</u> sleep direction

- *0b0*: Input
- 0b1: Output

Bit 17 - **VAL_A13** (R/W)

Select A13 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 16 - **DIR_A13** (R/W)

Select A13 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 15 - **VAL_B11** (R/W)

Select <u>B11</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 14 - **DIR_B11** (R/W)

Select <u>B11</u> sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 13 - **VAL_D1** (R/W)

Select D1 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 12 - **DIR_D1** (R/W)

Select <u>D1</u> sleep direction

- *0b0*: Input
- 0b1: Output

Bit 11 - **VAL_B34** (R/W)

Select <u>B34</u> sleep state

- *0b0*: Input or output low
- 0b1: Input or output high

Bit 10 - DIR_B34 (R/W)

Select <u>B34</u> sleep direction

- *0b0*: Input
- 0b1: Output

Bit 9 - **VAL_A36** (R/W)

Select A36 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 8 - **DIR_A36** (R/W)

Select A36 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 7 - **VAL_A38** (R/W)

Select A38 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 6 - DIR_A38 (R/W)

Select A38 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 5 - **VAL_B36** (R/W)

Select **B36** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 4 - **DIR_B36** (R/W)

Select **B36** sleep direction

- *0b0*: Input
- 0b1: Output

Bit 3 - **VAL_A40** (R/W)

Select A40 sleep state

- *0b0*: Input or output low
- 0b1: Input or output high

Bit 2 - **DIR_A40** (R/W)

Select A40 sleep direction

- *0b0*: Input
- 0b1: Output

Bit 1 - **VAL_B37** (R/W)

Select <u>B37</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 0 - **DIR_B37** (R/W)

Select <u>B37</u> sleep direction

- *0b0*: Input
- *0b1*: Output

5.3.4.2.18 Mux config register (pad 32-47) (SAFE_SLEEPPADCFG2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VAL_B2	DIR_B23	VAL_A2 6	DIR_A26	VAL_A2 4	DIR_A24	VAL_A2 5	DIR_A25	VAL_B2 2	DIR_B22	VAL_B9	DIR_B9	VAL_A1 6	DIR_A16	VAL_B1 5	DIR_B1 5
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - VAL_B23 (R/W)

Select **B23** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 30 - **DIR_B23** (R/W)

Select **B23** sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 29 - **VAL_A26** (R/W)

Select A26 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 28 - **DIR_A26** (R/W)

Select A26 sleep direction

- *0b0*: Input
- 0b1: Output

Bit 27 - VAL_A24 (R/W)

Select A24 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 26 - **DIR_A24** (R/W)

Select A24 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 25 - **VAL_A25** (R/W)

Select A25 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 24 - **DIR_A25** (R/W)

Select A25 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 23 - VAL_B22 (R/W)

Select **B22** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 22 - **DIR_B22** (R/W)

Select **B22** sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 21 - **VAL_B9** (R/W)

Select **B9** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 20 - **DIR_B9** (R/W)

Select <u>B9</u> sleep direction

- *0b0*: Input
- 0b1: Output

Bit 19 - VAL_A16 (R/W)

Select A16 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 18 - **DIR_A16** (R/W)

Select A16 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 17 - **VAL_B15** (R/W)

Select <u>B15</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 16 - **DIR_B15** (R/W)

Select <u>B15</u> sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 15 - VAL_A9 (R/W)

Select A9 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 14 - **DIR_A9** (R/W)

Select A9 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 13 - **VAL_B7** (R/W)

Select **B7** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 12 - **DIR_B7** (R/W)

Select <u>B7</u> sleep direction

- *0b0*: Input
- 0b1: Output

Bit 11 - **VAL_A8** (R/W)

Select A8 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 10 - **DIR_A8** (R/W)

Select A8 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 9 - **VAL_B8** (R/W)

Select **B8** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 8 - **DIR_B8** (R/W)

Select **B8** sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 7 - VAL_A10 (R/W)

Select A10 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 6 - **DIR_A10** (R/W)

Select A10 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 5 - **VAL_B10** (R/W)

Select <u>B10</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 4 - **DIR_B10** (R/W)

Select <u>B10</u> sleep direction

- *0b0*: Input
- 0b1: Output

Bit 3 - VAL_A11 (R/W)

Select A11 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 2 - **DIR_A11** (R/W)

Select A11 sleep direction

- *0b0*: Input
- *0b1*: Output

Bit 1 - **VAL_D2** (R/W)

Select **D2** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

Bit 0 - **DIR_D2** (R/W)

Select **D2** sleep direction

- *0b0*: Input
- *0b1*: Output

5.3.4.2.19 Enable Sleep mode for pads (SAFE_PADSLEEP)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															EN

Bit 0 - **EN** (R/W)

Enable pad sleep mode:

0b0: disable

0b1: enable

5.3.4.2.20 Function register (pad 0 to 3) (SAFE_PADCFG0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						DR_B4	PULL_B 4	Rese	erved						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PULL_A												

Bit 19 - **DR_B4** (R/W)

Select **B4** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 18 - **PULL_B4** (R/W)

Select **B4** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 13 - **DR_A5** (R/W)

Select A5 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 12 - **PULL_A5** (R/W)

Select A5 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - **DR_B3** (R/W)

Select **B3** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 6 - **PULL_B3** (R/W)

Select **B3** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **DR_A4** (R/W)

Select A4 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_A4** (R/W)

Select A4 pull activation

- 0b0: pull disabled
- 0b1: pull enabled

5.3.4.2.21 Function register (pad 4 to 7) (SAFE_PADCFG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved												PULL_B 1	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_A2	PULL_A 2		Rese	erved		DR_B2	PULL_B 2		Res	erved		DR_A3	PULL_A

Bit 19 - **DR_B1** (R/W)

Select B1 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 18 - **PULL_B1** (R/W)

Select **B1** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 13 - **DR_A2** (R/W)

Select A2 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - **PULL_A2** (R/W)

Select A2 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - DR_B2 (R/W)

Select **B2** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_B2** (R/W)

Select B2 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **DR_A3** (R/W)

Select A3 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_A3** (R/W)

Select A3 pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

5.3.4.2.22 Function register (pad 8 to 11) (SAFE_PADCFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved												PULL_A 37	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_A43	PULL_A 43		Rese	erved		DR_B40	PULL_B 40		Res	erved		DR_A44	PULL_A 44

Bit 19 - **DR_A37** (R/W)

Select A37 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 18 - **PULL_A37** (R/W)

Select A37 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 13 - **DR_A43** (R/W)

Select A43 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - PULL_A43 (R/W)

Select A43 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - **DR_B40** (R/W)

Select **B40** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_B40** (R/W)

Select **B40** pull activation

- 0b0: pull disabled
- 0b1: pull enabled

Bit 1 - **DR_A44** (R/W)

Select A44 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 0 - **PULL_A44** (R/W)

Select A44 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.4.2.23 Function register (pad 12 to 15) (SAFE_PADCFG3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						DR_A41	PULL_A 41	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_B38	PULL_B 38		Rese	erved		DR_A42	PULL_A 42		Res	erved		DR_B39	PULL_B 39

Bit 19 - **DR_A41** (R/W)

Select A41 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 18 - **PULL_A41** (R/W)

Select A41 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 13 - **DR_B38** (R/W)

Select **B38** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - **PULL_B38** (R/W)

Select **B38** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - **DR_A42** (R/W)

Select A42 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_A42** (R/W)

Select A42 pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 1 - **DR_B39** (R/W)

Select **B39** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_B39** (R/W)

Select **B39** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.4.2.24 Function register (pad 16 to 19) (SAFE_PADCFG4)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved DR_A:												PULL_A 38	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_B36	PULL_B 36		Rese	erved		DR_A40	PULL_A 40		Res	erved		DR_B37	PULL_B 37

Bit 19 - **DR_A38** (R/W)

Select A38 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 18 - PULL_A38 (R/W)

Select A38 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 13 - **DR_B36** (R/W)

Select **B36** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - PULL_B36 (R/W)

Select **B36** pull activation

- 0b0: pull disabled
- 0b1: pull enabled

Bit 7 - **DR_A40** (R/W)

Select A40 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 6 - **PULL_A40** (R/W)

Select A40 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **DR_B37** (R/W)

Select **B37** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_B37** (R/W)

Select **B37** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

5.3.4.2.25 Function register (pad 20 to 23) (SAFE_PADCFG5)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						DR_B11	PULL_B 11	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 19 - **DR_B11** (R/W)

Select **B11** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 18 - **PULL_B11** (R/W)

Select **B11** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 13 - **DR_D1** (R/W)

Select D1 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - **PULL_D1** (R/W)

Select **D1** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 7 - **DR_B34** (R/W)

Select **B34** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_B34** (R/W)

Select **B34** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **DR_A36** (R/W)

Select A36 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_A36** (R/W)

Select A36 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

5.3.4.2.26 Function register (pad 24 to 27) (SAFE_PADCFG6)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						DR_B13	PULL_B 13	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_A14	PULL_A 14		Rese	erved		DR_B12	PULL_B 12		Res	erved		DR_A13	PULL_A 13

Bit 19 - **DR_B13** (R/W)

Select <u>B13</u> drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 18 - **PULL_B13** (R/W)

Select **B13** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 13 - **DR_A14** (R/W)

Select A14 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - **PULL_A14** (R/W)

Select A14 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - **DR_B12** (R/W)

Select <u>B12</u> drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_B12** (R/W)

Select **B12** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 1 - **DR_A13** (R/W)

Select A13 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 0 - **PULL_A13** (R/W)

Select A13 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.4.2.27 Function register (pad 28 to 31) (SAFE_PADCFG7)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese				DR_A7	PULL_A 7	Rese	erved			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 19 - **DR_A7** (R/W)

Select A7 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 18 - **PULL_A7** (R/W)

Select A7 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

Bit 13 - **DR_B6** (R/W)

Select **B6** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 12 - **PULL_B6** (R/W)

Select **B6** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 7 - **DR_B14** (R/W)

Select <u>B14</u> drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_B14** (R/W)

Select **B14** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **DR_A15** (R/W)

Select A15 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_A15** (R/W)

Select A15 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.4.2.28 Function register (pad 32 to 35) (SAFE_PADCFG8)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved												PULL_A 10	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 19 - **DR_A10** (R/W)

Select A10 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 18 - **PULL_A10** (R/W)

Select A10 pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 13 - **DR_B10** (R/W)

Select <u>B10</u> drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 12 - **PULL_B10** (R/W)

Select <u>B10</u> pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - **DR_A11** (R/W)

Select A11 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_A11** (R/W)

Select A11 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **DR_D2** (R/W)

Select D2 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_D2** (R/W)

Select **D2** pull activation

- 0b0: pull disabled
- 0b1: pull enabled

5.3.4.2.29 Function register (pad 36 to 39) (SAFE_PADCFG9)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved												PULL_A 9	Rese	rved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_B7	PULL_B 7		Rese	erved		DR_A8	PULL_A 8		Res	erved		DR_B8	PULL_B 8

Bit 19 - **DR_A9** (R/W)

Select A9 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 18 - **PULL_A9** (R/W)

Select A9 pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 13 - **DR_B7** (R/W)

Select **B7** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - **PULL_B7** (R/W)

Select **B7** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - DR_A8 (R/W)

Select A8 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_A8** (R/W)

Select A8 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 1 - **DR_B8** (R/W)

Select **B8** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_B8** (R/W)

Select **B8** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

5.3.4.2.30 Function register (pad 40 to 43) (SAFE_PADCFG10)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						DR_B22	PULL_B 22	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_B9	PULL_B 9		Rese	erved		DR_A16	PULL_A 16		Res	erved		DR_B15	PULL_B 15

Bit 19 - **DR_B22** (R/W)

Select **B22** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 18 - **PULL_B22** (R/W)

Select **B22** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 13 - **DR_B9** (R/W)

Select **B9** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - **PULL_B9** (R/W)

Select **B9** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - **DR_A16** (R/W)

Select A16 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_A16** (R/W)

Select A16 pull activation

- 0b0: pull disabled
- 0b1: pull enabled

Bit 1 - **DR_B15** (R/W)

Select **B15** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

Bit 0 - **PULL_B15** (R/W)

Select **B15** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.4.2.31 Function register (pad 44 to 47) (SAFE_PADCFG11)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved						DR_B23	PULL_B 23	Rese	erved
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	DR_A26	PULL_A 26		Rese	erved		DR_A24	PULL_A 24		Rese	erved		DR_A25	PULL_A 25

Bit 19 - **DR_B23** (R/W)

Select **B23** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 18 - PULL_B23 (R/W)

Select **B23** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 13 - DR_A26 (R/W)

Select A26 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 12 - **PULL_A26** (R/W)

Select A26 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

Bit 7 - **DR_A24** (R/W)

Select A24 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 6 - **PULL_A24** (R/W)

Select A24 pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

Bit 1 - DR_A25 (R/W)

Select A25 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

Bit 0 - **PULL_A25** (R/W)

Select A25 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

5.3.4.2.32 GPIO power domain pad input isolation register (REG_GPIO_ISO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								ISO

Bit 0 - **ISO** (R/W)

Configuration of GPIO domain pads isolation:

- *0b0*: not isolated
- *0b1*: isolated

5.3.4.2.33 CAM power domain pad input isolation register (REG_CAM_ISO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **ISO** (R/W)

Configuration of CAM domain pads isolation:

- 0b0: not isolated
- 0b1: isolated

5.3.4.2.34 LVDS power domain pad input isolation register (REG_LVDS_ISO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **ISO** (R/W)

Configuration of LVDS domain pads isolation:

- *0b0*: not isolated
- 0b1: isolated

5.3.5 Advanced timer

ADV_ TIMER component manages the following features:

- 4 advanced timers with 4 output signal channels each. Provides PWM generation functionality
- multiple trigger input sources:
 - o utput signal channels of all timers
 - o 32 GPIOs
 - o reference clock at 32kHz
 - SoC FLL clock
- configurable input trigger modes
- configurable prescaler for each timer
- configurable counting mode for each timer
- configurable channel threshold action for each timer
- 4 configurable output events
- configurable clock gating of each timer

None

5.3.5.1 Advanced timers registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A105000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A105004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.

Name	Address	Size	Туре	Access	Default	Description
T0_THRESHOLD	0x1A105008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A10500C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A105010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A105014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A105018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A10502C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A105040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A105044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A105048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A10504C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A105050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A105054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A105058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A10506C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A105080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A105084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A105088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A10508C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A105090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A105094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A105098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A1050AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A1050C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A1050C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A1050C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A1050CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A1050D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A1050D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A1050D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A1050EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A105100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
<u>CG</u>	0x1A105104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 37. Advanced timers registers table

5.3.5.2 Advanced timer registers details

5.3.5.2.1 ADV_TIMER0 command register. (T0_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 4 - **ARM** (R/W)

ADV_TIMER0 arm command bitfield.

Bit 3 - RESET (R/W)

ADV_TIMER0 reset command bitfield.

Bit 2 - UPDATE (R/W)

ADV_TIMER0 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER0 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER0 start command bitfield.

5.3.5.2.2 ADV_TIMER0 configuration register. (T0_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRE	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - **PRESC** (R/W)

ADV_TIMER0 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER0 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

Bit 11 - **CLKSEL** (R/W)

ADV_TIMER0 clock source configuration bitfield:

- 0b0: FLL
- *0b1*: reference clock at 32kHz

Bits 10:8 - **MODE** (R/W)

ADV_TIMER0 trigger mode configuration bitfield:

- *0b000*. trigger event at each clock cycle.
- *0b001*: trigger event if input source is 0
- *0b010*: trigger event if input source is 1
- *0b011*: trigger event on input source rising edge
- *0b100*: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- *0b110*: trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

Bits 7:0 - INSEL (R/W)

ADV_TIMER0 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

5.3.5.2.3 ADV_TIMER0 threshold configuration register. (T0_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - TH_HI (R/W)

ADV_TIMER0 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - TH_LO (R/W)

ADV_TIMER0 threshold low part configuration bitfield. It defines start counter value.

5.3.5.2.4 ADV_TIMER0 channel 0 threshold configuration register. (T0_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER0 channel 0 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER0 channel 0 threshold configuration bitfield.

5.3.5.2.5 ADV_TIMER0 channel 1 threshold configuration register. (T0_TH_CHANNEL1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMERO channel 1 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- *0b101*: toggle then next threshold match action is set.
- 0b110. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMERO channel 1 threshold configuration bitfield.

5.3.5.2.6 ADV_TIMER0 channel 2 threshold configuration register. (T0_TH_CHANNEL2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMERO channel 2 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- 0b011: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER0 channel 2 threshold configuration bitfield.

5.3.5.2.7 ADV_TIMER0 channel 3 threshold configuration register. (T0_TH_CHANNEL3)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMERO channel 3 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER0 channel 3 threshold configuration bitfield.

5.3.5.2.8 ADV_TIMER1 command register. (T1_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 4 - **ARM** (R/W)

ADV_TIMER1 arm command bitfield.

Bit 3 - RESET (R/W)

ADV_TIMER1 reset command bitfield.

Bit 2 - **UPDATE** (R/W)

ADV_TIMER1 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER1 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER1 start command bitfield.

5.3.5.2.9 ADV_TIMER1 configuration register. (T1_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - PRESC (R/W)

ADV_TIMER1 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER1 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

Bit 11 - **CLKSEL** (R/W)

ADV_TIMER1 clock source configuration bitfield:

- 0b0: FLL
- *0b1*: reference clock at 32kHz

Bits 10:8 - **MODE** (R/W)

ADV_TIMER1 trigger mode configuration bitfield:

- *0b000*: trigger event at each clock cycle.
- 0b001: trigger event if input source is 0
- 0b010. trigger event if input source is 1
- 0b011: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- 0b110. trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

Bits 7:0 - **INSEL** (R/W)

ADV_TIMER1 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44–47: Channel 0 to 3 of ADV_TIMER3

5.3.5.2.10 ADV_TIMER1 threshold configuration register. (T1_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH	HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - TH_HI (R/W)

ADV_TIMER1 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - **TH_LO** (R/W)

ADV_TIMER1 threshold low part configuration bitfield. It defines start counter value.

5.3.5.2.11 ADV_TIMER1 channel 0 threshold configuration register. (T1_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 0 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER1 channel 0 threshold configuration bitfield.

5.3.5.2.12 ADV_TIMER1 channel 1 threshold configuration register. (T1_TH_CHANNEL1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER1 channel 1 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER1 channel 1 threshold configuration bitfield.

5.3.5.2.13 ADV_TIMER1 channel 2 threshold configuration register. (T1_TH_CHANNEL2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 2 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER1 channel 2 threshold configuration bitfield.

5.3.5.2.14 ADV_TIMER1 channel 3 threshold configuration register. (T1_TH_CHANNEL3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 3 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- 0b011: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER1 channel 3 threshold configuration bitfield.

5.3.5.2.15 ADV_TIMER2 command register. (T2_CMD)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											ARM	RESET	UPDATE	STOP	START

Bit 4 - **ARM** (R/W)

ADV_TIMER2 arm command bitfield.

Bit 3 - **RESET** (R/W)

ADV_TIMER2 reset command bitfield.

Bit 2 - UPDATE (R/W)

ADV_TIMER2 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER2 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER2 start command bitfield.

5.3.5.2.16 ADV_TIMER2 configuration register. (T2_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - **PRESC** (R/W)

ADV_TIMER2 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER2 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

Bit 11 - **CLKSEL** (R/W)

ADV_TIMER2 clock source configuration bitfield:

- 0b0: FLL
- *0b1*: reference clock at 32kHz

Bits 10:8 - MODE (R/W)

ADV_TIMER2 trigger mode configuration bitfield:

- *0b000*: trigger event at each clock cycle.
- *0b001*: trigger event if input source is 0
- 0b010: trigger event if input source is 1
- *0b011*: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- *0b110*: trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

Bits 7:0 - INSEL (R/W)

ADV_TIMER2 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

5.3.5.2.17 ADV_TIMER2 threshold configuration register. (T2_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH	HI							
				11	40	0	•	_	_	_		-	_		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	, 0

Bits 31:16 - **TH_HI** (R/W)

ADV_TIMER2 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - **TH_LO** (R/W)

ADV_TIMER2 threshold low part configuration bitfield. It defines start counter value.

5.3.5.2.18 ADV_TIMER2 channel 0 threshold configuration register. (T2_TH_CHANNEL0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TI	Н							

Bits 18:16 - MODE (R/W)

ADV_TIMER2 channel 0 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100. clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER2 channel 0 threshold configuration bitfield.

5.3.5.2.19 ADV_TIMER2 channel 1 threshold configuration register. (T2_TH_CHANNEL1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER2 channel 1 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

 ${\sf ADV_TIMER2}\ channel\ 1\ threshold\ configuration\ bit field.$

5.3.5.2.20 ADV_TIMER2 channel 2 threshold configuration register. (T2_TH_CHANNEL2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER2 channel 2 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- 0b010: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100. clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER2 channel 2 threshold configuration bitfield.

5.3.5.2.21 ADV_TIMER2 channel 3 threshold configuration register. (T2_TH_CHANNEL3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER2 channel 3 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

 ${\sf ADV_TIMER2}\ channel\ 3\ threshold\ configuration\ bit field.$

5.3.5.2.22 ADV_TIMER3 command register. (T3_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	42	12	44	10	_		_	_	-		-			_
1 13	14	13	12	, ,,	10	9	8	,	6	5	4	3	2	1	U

Bit 4 - **ARM** (R/W)

ADV_TIMER3 arm command bitfield.

Bit 3 - RESET (R/W)

ADV_TIMER3 reset command bitfield.

Bit 2 - UPDATE (R/W)

ADV_TIMER3 update command bitfield.

Bit 1 - **STOP** (R/W)

ADV_TIMER3 stop command bitfield.

Bit 0 - START (R/W)

ADV_TIMER3 start command bitfield.

5.3.5.2.23 ADV_TIMER3 configuration register. (T3_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

Bits 23:16 - **PRESC** (R/W)

ADV_TIMER3 prescaler value configuration bitfield.

Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER3 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

Bit 11 - **CLKSEL** (R/W)

ADV_TIMER3 clock source configuration bitfield:

- 0b0: FLL
- *0b1*: reference clock at 32kHz

Bits 10:8 - **MODE** (R/W)

ADV_TIMER3 trigger mode configuration bitfield:

- *0b000*. trigger event at each clock cycle.
- *0b001*: trigger event if input source is 0
- *0b010*: trigger event if input source is 1
- *0b011*: trigger event on input source rising edge
- *0b100*: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- *0b110*: trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

Bits 7:0 - INSEL (R/W)

ADV_TIMER3 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

5.3.5.2.24 ADV_TIMER3 threshold configuration register. (T3_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1.5						-	·	•	•	-	-	-	_	-	

Bits 31:16 - TH_HI (R/W)

ADV_TIMER3 threshold high part configuration bitfield. It defines end counter value.

Bits 15:0 - TH_LO (R/W)

ADV_TIMER3 threshold low part configuration bitfield. It defines start counter value.

5.3.5.2.25 ADV_TIMER3 channel 0 threshold configuration register. (T3_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **MODE** (R/W)

ADV_TIMER3 channel 0 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*. set then next threshold match action is clear.
- 0b011: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 0 threshold configuration bitfield.

5.3.5.2.26 ADV_TIMER3 channel 1 threshold configuration register. (T3_TH_CHANNEL1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- *0b101*: toggle then next threshold match action is set.
- 0b110. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER3 channel 1 threshold configuration bitfield.

5.3.5.2.27 ADV_TIMER3 channel 2 threshold configuration register. (T3_TH_CHANNEL2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 2 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- 0b011: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110.* clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 2 threshold configuration bitfield.

5.3.5.2.28 ADV_TIMER3 channel 3 threshold configuration register. (T3_TH_CHANNEL3)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									_	_		,			_

Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 3 threshold configuration bitfield.

5.3.5.2.29 ADV_TIMERS events configuration register. (EVENT_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Rese	erved							EN	NΑ	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 19:16 - ENA (R/W)

ADV_TIMER output event enable configuration bitfield. ENA[i]=1 enables output event i generation.

Bits 15:12 - **SEL3** (R/W)

ADV_TIMER output event 3 source configuration bitfiled:

- *0b0000*: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- *0b0010*: ADV_TIMER0 channel 2.
- *0b0011*: ADV_TIMER0 channel 3.
- *0b0100*: ADV_TIMER1 channel 0.
- *0b0101*: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- *0b0111*: ADV_TIMER1 channel 3.
- 0b1000: ADV_TIMER2 channel 0.
- 0b1001: ADV_TIMER2 channel 1.
- *0b1010*: ADV_TIMER2 channel 2.
- *0b1011*: ADV_TIMER2 channel 3.
- 0b1100: ADV_TIMER3 channel 0.
- *0b1101*: ADV_TIMER3 channel 1.
- *0b1110*: ADV_TIMER3 channel 2.
- *0b1111*: ADV_TIMER3 channel 3.

Bits 11:8 - SEL2 (R/W)

ADV_TIMER output event 2 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- *0b0001*: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- *0b0011*: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- *0b1000*: ADV_TIMER2 channel 0.
- *0b1001*: ADV_TIMER2 channel 1.
- *0b1010*: ADV_TIMER2 channel 2.
- 0b1011: ADV_TIMER2 channel 3.
- *0b1100*: ADV_TIMER3 channel 0.
- *0b1101*: ADV_TIMER3 channel 1.
- *0b1110*: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

Bits 7:4 - **SEL1** (R/W)

ADV_TIMER output event 1 source configuration bitfiled:

- *0b0000*: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- *0b0010*: ADV_TIMER0 channel 2.
- 0b0011: ADV_TIMER0 channel 3.
- *0b0100*: ADV_TIMER1 channel 0.
- *0b0101*: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- *0b0111*: ADV_TIMER1 channel 3.
- *0b1000*: ADV_TIMER2 channel 0.
- *0b1001*: ADV_TIMER2 channel 1.
- *0b1010*: ADV_TIMER2 channel 2.
- *0b1011*: ADV_TIMER2 channel 3.
- *0b1100*: ADV_TIMER3 channel 0.
- *0b1101*: ADV_TIMER3 channel 1. *0b1110*: ADV_TIMER3 channel 2.
- *0b1111*: ADV_TIMER3 channel 3.

Bits 3:0 - SELO (R/W)

ADV_TIMER output event 0 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- *0b0001*: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- *0b0011*: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- 0b1000: ADV_TIMER2 channel 0.
- *0b1001*: ADV_TIMER2 channel 1.
- 0b1010: ADV_TIMER2 channel 2.
- *0b1011*: ADV_TIMER2 channel 3.
- *0b1100*: ADV_TIMER3 channel 0.
- *0b1101*: ADV_TIMER3 channel 1.
- *0b1110*: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

5.3.5.2.30 ADV_TIMERS channels clock gating configuration register. (CG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - **ENA** (R/W)

ADV_TIMER clock gating configuration bitfield.

- ENA[i]=0: clock gate ADV_TIMERi.
- ENA[i]=1: enable ADV_TIMERi.

5.3.6 SoC event generator

 $\ensuremath{\mathsf{SoC}}$ event generator component manages the following features:

- Soc events dispatching to FC event unit, Cluster event unit and uDMA
- FC High and Low timers input trigger events configuration
- SoC software event generation
- Event queue of width 2 for each event line with overflow error event generation
- 2 high priority events generation

Input events managed by SoC event generator are:

• 32kHz reference clock

- 48 SoC peripherals events inciming from uDMA interfaces, PMU, Advanced timers, GPIOs and RTC
- 8 software events

None

5.3.6.1 SoC Event Generator registers

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT	0x1A106000	32	Config	W	0x0000	SoC software events trigger command register.
FC_MASK_MSB	0x1A106004	32	Config	R/W	0xFFFFFFF	MSB FC event unit event dispatch mask configuration register.
FC_MASK_LSB	0x1A106008	32	Config	R/W	0xFFFFFFF	LSB FC event unit event dispatch mask configuration register.
CL_MASK_MSB	0x1A10600C	32	Config	R/W	0xFFFFFFF	MSB Cluster event dispatch mask configuration register.
CL_MASK_LSB	0x1A106010	32	Config	R/W	0xFFFFFFF	LSB Cluster event dispatch mask configuration register.
PR_MASK_MSB	0x1A106014	32	Config	R/W	0xFFFFFFF	MSB uDMA event dispatch mask configuration register.
PR_MASK_LSB	0x1A106018	32	Config	R/W	0xFFFFFFF	LSB uDMA event dispatch mask configuration register.
ERR_MSB	0x1A10601C	32	Status	R	0x0000	MSB event queue overflow status register.
ERR_LSB	0x1A106020	32	Status	R	0x0000	LSB event queue overflow status register.
TIMER_SEL_HI	0x1A106024	32	Config	R/W	0x0000	FC High Timer source event configuration register.
TIMER_SEL_LO	0x1A106028	32	Config	R/W	0x0000	FC Low Timer source event configuration register.

Table 38. SoC Event Generator registers table

5.3.6.2 SoC event generator registers details

5.3.6.2.1 SoC software events trigger command register. (SW_EVENT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **EVENT** (W)

Writing a one-hot value into EVENT bitfield triggers SoC software event i. 8 software events are provided.

5.3.6.2.2 MSB FC event unit event dispatch mask configuration register. (FC_MASK_MSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FC_MAS	SK_MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•	•					FC_MAS								

Bits 31:0 - FC_MASK_MSB (R/W)

 $\ensuremath{\mathsf{MSB}}$ event mask to enable/disable event dispatch to FC event unit.

- Setting bit[i] to *0b1* disable dispatching event[32+i] to FC event unit.
- Setting bit[i] to *0b0* enable dispatching event[32+i] to FC event unit.

$5.3.6.2.3\ LSB\ FC\ event\ unit\ event\ dispatch\ mask\ configuration\ register.\ (FC_MASK_LSB)$

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FC_MAS	SK_LSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - FC_MASK_LSB (R/W)

LSB event mask to enable/disable event dispatch to FC event unit.

- Setting bit[i] to *0b1* disable dispatching event[i] to FC event unit.
- Setting bit[i] to *0b0* enable dispatching event[i] to FC event unit.

5.3.6.2.4 MSB Cluster event dispatch mask configuration register. (CL_MASK_MSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CL_MAS	SK_MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CL_MASK_MSB (R/W)

MSB event mask to enable/disable event dispatch to Cluster event unit.

- Setting bit[i] to *0b1* disable dispatching event[32+i] to Cluster event unit.
- Setting bit[i] to *0b0* enable dispatching event[32+i] to Cluster event unit.

5.3.6.2.5 LSB Cluster event dispatch mask configuration register. (CL_MASK_LSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CL_MAS	SK_LSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CL_MASK_LSB (R/W)

LSB event mask to enable/disable event dispatch to Cluster event unit.

- Setting bit[i] to *0b1* disable dispatching event[i] to Cluster event unit.
- Setting bit[i] to *0b0* enable dispatching event[i] to Cluster event unit.

5.3.6.2.6 MSB uDMA event dispatch mask configuration register. (PR_MASK_MSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PR_MAS	SK_MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - PR_MASK_MSB (R/W)

MSB event mask to enable/disable event dispatch to UDMA peripherals.

- Setting bit[i] to *0b1* disable dispatching event[32+i] to uDMA.
- Setting bit[i] to *0b0* enable dispatching event[32+i] to uDMA.

5.3.6.2.7 LSB uDMA event dispatch mask configuration register. (PR_MASK_LSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PR_MAS	SK_LSB							
						_	_	_	_	_	_	_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - PR_MASK_LSB (R/W)

LSB event mask to enable/disable event dispatch to UDMA peripherals.

- Setting bit[i] to *0b1* disable dispatching event[i] to uDMA.
- Setting bit[i] to *0b0* enable dispatching event[i] to uDMA.

5.3.6.2.8 MSB event queue overflow status register. (ERR_MSB)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ERR_	MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - ERR_MSB (R)

Report MSB event queue overflows. Cleared after read.

Reading a *0b1* at ERR_MSB[i] means that an overflow occurred for SoC event[32+i] FIFO queue.

5.3.6.2.9 LSB event queue overflow status register. (ERR_LSB)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ERR_	LSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **ERR_LSB** (R)

Report LSB event queue overflows. Cleared after read.

Reading a *0b1* at ERR_LSB[i] means that an overflow occurred for SoC event[i] FIFO queue.

${\bf 5.3.6.2.10~FC~High~Timer~source~event~configuration~register.~(TIMER_SEL_HI)}$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved							TIMER_	SEL_HI		

Bits 5:0 - TIMER_SEL_HI (R/W)

Configure which SoC event generator input event is propagated to FC Timer High input trigger event.

5.3.6.2.11 FC Low Timer source event configuration register. (TIMER_SEL_LO)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved							TIMER_	SEL_LO		

Bits 5:0 - TIMER_SEL_LO (R/W)

Configure which SoC event generator input event is propagated to FC Timer Low input trigger event.

5.3.7 APB_TIMER_UNIT

BASIC TIMER component manages the following features:

- 2 general purpose 32bits up counter timers
- Input trigger sources:
 - o FLL clock
 - o FLL clock + Prescaler
 - o Reference clock at 32kHz
 - External event
- 8bit programmable prescaler to FLL clock
- Counting modes:
 - o One shot mode: timer is stopped after first comparison match
 - $\circ \;\;$ Continuous mode: timer continues counting after comparison match
 - o Cycle mode: timer resets to 0 after comparison match and continues counting
 - o 64 bit cascaded mode
- Interrupt request generation on comparison match

None

5.3.7.1 FC timer registers

Name	Address	Size	Туре	Access	Default	Description
CFG_LO	0x1A10B000	32	Config	R/W	0x0000	Timer Low Configuration register.
CFG_HI	0x1A10B004	32	Config	R/W	0x0000	Timer High Configuration register.
CNT_LO	0x1A10B008	32	Data	R/W	0x0000	Timer Low counter value register.
CNT_HI	0x1A10B00C	32	Data	R/W	0x0000	Timer High counter value register.
CMP_LO	0x1A10B010	32	Config	R/W	0x0000	Timer Low comparator value register.
CMP_HI	0x1A10B014	32	Config	R/W	0x0000	Timer High comparator value register.
START_LO	0x1A10B018	32	Config	R/W	0x0000	Start Timer Low counting register.
START_HI	0x1A10B01C	32	Config	R/W	0x0000	Start Timer High counting register.
RESET_LO	0x1A10B020	32	Config	R/W	0x0000	Reset Timer Low counter register.
RESET_HI	0x1A10B024	32	Config	R/W	0x0000	Reset Timer High counter register.

Table 39. FC timer registers table

5.3.7.2 APB_TIMER_UNIT registers details

5.3.7.2.1 Timer Low Configuration register. (CFG_LO)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CASC								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PV	'AL				CCFG	PEN	ONE_S	MODE	Reserve d	IRQEN	RESET	ENABLE

Bit 31 - **CASC** (R/W)

Timer low + Timer high 64bit cascaded mode configuration bitfield.

Bits 15:8 - PVAL (R/W)

Timer low prescaler value bitfield. Ftimer = Fclk / (1 + PRESC_VAL)

Bit 7 - **CCFG** (R/W)

Timer low clock source configuration bitfield:

- 0b0: FLL or FLL+Prescaler
- 0b1: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer low prescaler enable configuration bitfield:

- *0b0*: disabled
- 0b1: enabled

Bit 5 - **ONE_S** (R/W)

Timer low one shot configuration bitfield:

- *0b0*: let Timer low enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer low when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer low continuous mode configuration bitfield:

- 0b0. Continue mode continue incrementing Timer low counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer low counter when compare match with CMP_LO occurs.

Bit 2 - IRQEN (R/W)

Timer low compare match interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 1 - RESET (R/W)

 $\label{thm:counter} \mbox{Timer low counter reset command bit field. Cleared after Timer Low reset execution.}$

Bit 0 - ENABLE (R/W)

Timer low enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

5.3.7.2.2 Timer High Configuration register. (CFG HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved				CLKCFG	PEN	ONE_S	MODE	Reserve d	IRQEN	RESET	ENABLE

Bit 7 - CLKCFG (R/W)

Timer high clock source configuration bitfield:

- *0b0*: FLL or FLL+Prescaler
- 0b1: Reference clock at 32kHz

Bit 6 - **PEN** (R/W)

Timer high prescaler enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 5 - **ONE_S** (R/W)

Timer high one shot configuration bitfield:

- *0b0*: let Timer high enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer high when compare match with CMP_LO occurs.

Bit 4 - **MODE** (R/W)

Timer high continuous mode configuration bitfield:

- *0b0*: Continue mode continue incrementing Timer high counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer high counter when compare match with CMP_LO occurs.

Bit 2 - IRQEN (R/W)

Timer high compare match interrupt enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 1 - **RESET** (W)

Timer high counter reset command bitfield. Cleared after Timer high reset execution.

Bit 0 - **ENABLE** (R/W)

Timer high enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

5.3.7.2.3 Timer Low counter value register. (CNT_LO)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					-	-		-	_	_					

Bits 31:0 - CNT_LO (R/W)

Timer Low counter value bitfield.

5.3.7.2.4 Timer High counter value register. (CNT_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT_HI (R/W)

Timer High counter value bitfield.

5.3.7.2.5 Timer Low comparator value register. (CMP_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	LO_r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CMP_LO (R/W)

Timer Low comparator value bitfield.

5.3.7.2.6 Timer High comparator value register. (CMP_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	P_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CMP_HI (R/W)

Timer High comparator value bitfield.

5.3.7.2.7 Start Timer Low counting register. (START_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								STRT_L O

Bit 0 - STRT_LO (W)

Timer Low start command bitfield. When executed, CFG_LO.ENABLE is set.

5.3.7.2.8 Start Timer High counting register. (START_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								STRT_H

Bit 0 - STRT_HI (W)

Timer High start command bitfield. When executed, CFG_HI.ENABLE is set.

5.3.7.2.9 Reset Timer Low counter register. (RESET_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								RST LO

Bit 0 - **RST_LO** (W)

Timer Low counter reset command bitfield. When executed, CFG_LO.RESET is set.

5.3.7.2.10 Reset Timer High counter register. (RESET_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								RST HI

Bit 0 - **RST_HI** (W)

Timer High counter reset command bitfield. When executed, CFG_HI.RESET is set.

5.3.8 **DEBUG**

RI5CY Debug component manages the following features:

- controls break and single step RI5CY core execution modes
- configurable execution behavior on RI5CY core exception occurrence
- access to PC, GPR and CSR RI5CY core registers
- no HW breakpoint are provided

None

5.3.8.1 FC Debug registers

Name	Address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x1A110000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x1A110004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x1A110008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1A11000C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x1A110400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x1A110404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x1A110408	32	Config	R/W	0x0000	Core general purpose register 2 value register.

Name	Address	Size	Туре	Access	Default	Description
GPR3	0x1A11040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x1A110410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x1A110414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x1A110418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1A11041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x1A110420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x1A110424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x1A110428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1A11042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x1A110430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x1A110434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x1A110438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1A11043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x1A110440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x1A110444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x1A110448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1A11044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x1A110450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x1A110454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x1A110458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1A11045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x1A110460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x1A110464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x1A110468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1A11046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x1A110470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x1A110474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x1A110478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1A11047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x1A112000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x1A112004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_USTATUS	0x1A114000	32	Config	R/W	0x0000	Core CSR user status value register.
CSR_UTVEC	0x1A114014	32	Config	R/W	0x0000	Core CSR user vector-trap base address value register.
CSR_UHARTID	0x1A114050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_UEPC	0x1A114104	32	Config	R/W	0x0000	Core CSR user exception program counter value register.
CSR_UCAUSE	0x1A114108	32	Config	R/W	0x0000	Core CSR user trap cause value register.
CSR_MSTATUS	0x1A114C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1A114C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1A114D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1A114D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1A115E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x1A115E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1A115E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x1A115EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1A115EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1A115EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.

Name	Address	Size	Туре	Access	Default	Description
CSR_HWLP1S	0x1A115ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1A115ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1A115ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x1A117040	32	Config	R	0x0000	Core CSR current privilege level status register.
CSR_MHARTID	0x1A117C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 40. FC Debug registers table

5.3.8.2 DEBUG registers details

5.3.8.2.1 Debug control configuration register. (CTRL)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								HALT/H ALT_ST ATUS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								SSTE

Bit 16 - **HALT** (W)

Debug mode configuration bitfield:

- *0b0*: exit debug exits debug mode
- *0b1*: enter debug enters debug mode breaking code execution

Bit 16 - HALT_STATUS (R)

Debug mode status bitfield:

- *0b0*: running mode
- 0b1: debug mode

Bit 0 - **SSTE** (R/W)

Single step mode configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

5.3.8.2.2 Debug hit status register. (HIT)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								SLEEP
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 16 - **SLEEP** (R)

Sleep mode status bitfield:

- 0b0: running core is in running state
- 0b1: sleeping core is in sleeping state and waits for en event to wake up

Bit 0 - **SSTH** (R/W)

Single step hit status bitfield:

- 0b0: disabled single step mode disabled
- *0b1*: enabled single step mode enabled

Sticky bit that must be cleared by external debugger.

5.3.8.2.3 Debug exception trap enable configuration register. (IE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		ECALL		Reserved		ELSU_D UP	Reserve d	ELSU	Reserve d	EBRK	EILL	Rese	erved

Bit 11 - **ECALL** (R/W)

Environment call trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

Bit 7 - ELSU_DUP (R/W)

Load/store access fault trap configuration bitfield:

- 0b0: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

This bitfield is duplicates the ELSU bitfield.

Bit 5 - **ELSU** (R/W)

Load/store access fault trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

Bit 3 - **EBRK** (R/W)

Environment break trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

Bit 2 - **EILL** (R/W)

Illegal instruction trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

5.3.8.2.4 Debug trap cause status register. (CAUSE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - IRQ (R)

Core in debug mode due to interrupt trap status bitfield:

- *0b0*: false
- *0b1*: true

Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- 0x3: sigtrap breakpoint
- *0xB*: sigecall eCall user mode
- *0xB* sigecall eCall machine mode
- *0x1F* sigstop core was halted by an external signal

5.3.8.2.5 Core general purpose register 0 value register. (GPR0)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPRO (R/W)

General purpose register 0 value bitfield.

5.3.8.2.6 Core general purpose register 1 value register. (GPR1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR1** (R/W)

General purpose register 1 value bitfield.

5.3.8.2.7 Core general purpose register 2 value register. (GPR2)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R2							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR2** (R/W)

General purpose register 2 value bitfield.

5.3.8.2.8 Core general purpose register 3 value register. (GPR3)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R3							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR3** (R/W)

General purpose register 3 value bitfield.

5.3.8.2.9 Core general purpose register 4 value register. (GPR4)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R4							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR4** (R/W)

General purpose register 4 value bitfield.

5.3.8.2.10 Core general purpose register 5 value register. (GPR5)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R5							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR5** (R/W)

General purpose register 5 value bitfield.

5.3.8.2.11 Core general purpose register 6 value register. (GPR6)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R6							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR6** (R/W)

General purpose register 6 value bitfield.

5.3.8.2.12 Core general purpose register 7 value register. (GPR7)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R7							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR7** (R/W)

General purpose register 7 value bitfield.

5.3.8.2.13 Core general purpose register 8 value register. (GPR8)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R8							
			43			_		_			_	_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR8** (R/W)

General purpose register 8 value bitfield.

5.3.8.2.14 Core general purpose register 9 value register. (GPR9)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R9							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR9** (R/W)

General purpose register 9 value bitfield.

5.3.8.2.15 Core general purpose register 10 value register. (GPR10)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR10** (R/W)

General purpose register 10 value bitfield.

5.3.8.2.16 Core general purpose register 11 value register. (GPR11)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R11							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR11** (R/W)

General purpose register 11 value bitfield.

5.3.8.2.17 Core general purpose register 12 value register. (GPR12)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R12							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR12** (R/W)

General purpose register 12 value bitfield.

5.3.8.2.18 Core general purpose register 13 value register. (GPR13)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R13							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR13** (R/W)

General purpose register 13 value bitfield.

5.3.8.2.19 Core general purpose register 14 value register. (GPR14)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R14							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR14 (R/W)

General purpose register 14 value bitfield.

5.3.8.2.20 Core general purpose register 15 value register. (GPR15)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R15							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR15 (R/W)

General purpose register 15 value bitfield.

5.3.8.2.21 Core general purpose register 16 value register. (GPR16)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R16							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GPI								

Bits 31:0 - GPR16 (R/W)

General purpose register 16 value bitfield.

5.3.8.2.22 Core general purpose register 17 value register. (GPR17)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R17							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR17** (R/W)

General purpose register 17 value bitfield.

5.3.8.2.23 Core general purpose register 18 value register. (GPR18)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R18							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR18 (R/W)

General purpose register 18 value bitfield.

5.3.8.2.24 Core general purpose register 19 value register. (GPR19)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R19							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR19** (R/W)

General purpose register 19 value bitfield.

5.3.8.2.25 Core general purpose register 20 value register. (GPR20)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R20							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR20** (R/W)

General purpose register 20 value bitfield.

5.3.8.2.26 Core general purpose register 21 value register. (GPR21)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R21							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR21** (R/W)

General purpose register 21 value bitfield.

5.3.8.2.27 Core general purpose register 22 value register. (GPR22)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R22							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR22** (R/W)

General purpose register 22 value bitfield.

5.3.8.2.28 Core general purpose register 23 value register. (GPR23)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R23							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR23** (R/W)

General purpose register 23 value bitfield.

5.3.8.2.29 Core general purpose register 24 value register. (GPR24)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R24							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR24** (R/W)

General purpose register 24 value bitfield.

5.3.8.2.30 Core general purpose register 25 value register. (GPR25)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R25							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR25** (R/W)

General purpose register 25 value bitfield.

5.3.8.2.31 Core general purpose register 26 value register. (GPR26)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R26							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR26** (R/W)

General purpose register 26 value bitfield.

5.3.8.2.32 Core general purpose register 27 value register. (GPR27)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R27							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR27** (R/W)

General purpose register 27 value bitfield.

5.3.8.2.33 Core general purpose register 28 value register. (GPR28)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R28							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR28 (R/W)

General purpose register 28 value bitfield.

5.3.8.2.34 Core general purpose register 29 value register. (GPR29)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R29							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR29** (R/W)

General purpose register 29 value bitfield.

5.3.8.2.35 Core general purpose register 30 value register. (GPR30)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R30							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR30** (R/W)

General purpose register 30 value bitfield.

5.3.8.2.36 Core general purpose register 31 value register. (GPR31)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	R31							
15	14	13	12	11	10	a		_	_	_		_	-		_
13	14	15	12	11	10	9	8	7	6	5	4	3		1	U

Bits 31:0 - GPR31 (R/W)

General purpose register 31 value bitfield.

5.3.8.2.37 Debug next program counter value register. (NPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NF	C							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - NPC (R/W)

Next program counter value bitfield.

5.3.8.2.38 Debug previous program counter value register. (PPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PF	PC .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						•	•	•	•	•	•	•	-	-	

Bits 31:0 - PPC (R)

Previous program counter value bitfield.

5.3.8.2.39 Core CSR user status value register. (CSR_USTATUS)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reserved												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 4 - **UPIE** (R/W)

User privilege mode previous interrupt enable value bitfield. When an interrupis encountered, UPIE will store the value existing in UIE. When uret instruction is executed, the value of UPIE is restored into UIE.

Bit 0 - **UIE** (R/W)

User privilege mode interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

5.3.8.2.40 Core CSR user vector-trap base address value register. (CSR_UTVEC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							UTV	/EC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:8 - **UTVEC** (R/W)

Machine trap-vector base address value bitfield. When an exception is encountered, the core jumps to the corresponding handler using the content of the MTVEC as base address.

5.3.8.2.41 Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved					CLUST	TER_ID			Reserve d		COR	E_ID	

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RI5CY core ID value bitfield.

5.3.8.2.42 Core CSR user exception program counter value register. (CSR_UEPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							UE	PC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **UEPC** (R/W)

Machine exception program counter value bitfield. When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception address. When an mret instruction is executed, the value from MEPC is restored to the current program counter.

5.3.8.2.43 Core CSR user trap cause value register. (CSR_UCAUSE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
			42	44		_	_		_	_	_	_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - IRQ (R)

Core triggered an exception due to interrupt status bitfield:

- *0b0*: false
- *0b1*: true

Bits 4:0 - **CAUSE** (R)

Exception ID bitfield.

5.3.8.2.44 Core CSR machine status value register. (CSR_MSTATUS)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 12:11 - MPP (R/W)

Machine privilege mode previous privilege mode value bitfield:

- 0b00: User mode
- *0b11*: Machine mode

Bit 7 - MPIE (R/W)

Machine privilege mode previous interrupt enable value bitfield. When an interrupis encountered, MPIE will store the value existing in MIE. When mret instruction is executed, the value of MPIE is restored into MIE.

Bit 4 - **UPIE** (R/W)

User privilege mode previous interrupt enable value bitfield. When an interrupis encountered, UPIE will store the value existing in UIE. When uret instruction is executed, the value of UPIE is restored into UIE.

Bit 3 - MIE (R/W)

Machine privilege mode interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 0 - **UIE** (R/W)

User privilege mode interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

${\bf 5.3.8.2.45~Core~CSR~machine~vector-trap~base~address~value~register.~(CSR_MTVEC)}$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MT\	/EC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				/FC							Rese				

Bits 31:8 - MTVEC (R/W)

Machine trap-vector base address value bitfield. When an exception is encountered, the core jumps to the corresponding handler using the content of the MTVEC as base address.

5.3.8.2.46 Core CSR machine exception program counter value register. (CSR_MEPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ME	PC							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MEPC (R/W)

Machine exception program counter value bitfield. When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception address. When an mret instruction is executed, the value from MEPC is restored to the current program counter.

5.3.8.2.47 Core CSR machine trap cause value register. (CSR_MCAUSE)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - **IRQ** (R)

Core triggered an exception due to interrupt status bitfield:

- *0b0*: false
- *0b1*: true

Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- 0x3: sigtrap breakpoint
- OxB: sigecall eCall user mode
- OxB sigecall eCall machine mode
- *0x1F* sigstop core was halted by an external signal

5.3.8.2.48 Core CSR performance counter counter register. (CSR_PCCR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PC	CR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - PCCR (R/W)

Program counter counter value bitfield.

5.3.8.2.49 Core CSR performance counter enable configuration register. (CSR_PCER)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved								PCER		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 20:0 - PCER (R/W)

See documentation on RISCY core for details.

5.3.8.2.50 Core CSR performance counter mode configuration register. (CSR_PCMR)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 1 - **GE** (R/W)

Performance counter activation configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 0 - **SAT** (R/W)

Performance counter saturation mode configuration bitfield:

- *0b0*: wrap around wrap-around mode
- *0b1*: saturation saturation mode

${\bf 5.3.8.2.51~Core~CSR~hardware~loop~0~start~configuration~register.~(CSR_HWLP0S)}$

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	ART							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

5.3.8.2.52 Core CSR hardware loop 0 end configuration register. (CSR_HWLP0E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	1D							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - END (R/W)

Hardware loop end address configuration bitfield.

5.3.8.2.53 Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CI	NT							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

5.3.8.2.54 Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	ART							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							STA	ART							

Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

5.3.8.2.55 Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	1D							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - END (R/W)

Hardware loop end address configuration bitfield.

5.3.8.2.56 Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CN	١T							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

5.3.8.2.57 Core CSR current privilege level status register. (CSR_PRIVLV)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 1:0 - **PLEV** (R)

Current privilege level status bitfield:

- 0b00: User mode
- *0b11*: Machine mode

5.3.8.2.58 Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved					CLUST	ER ID			Reserve d		COR	E_ID	

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RISCY core ID value bitfield.

5.3.9 MicroDMA Subsystem

5.3.9.1 uDMA UART interface

UART component manages the following features:

- Standard full-duplex UART interface
- Configurable baudrate related to SoC domain clock frequency
- Configurable parity bit generation and check
- Configurable stop bit length

• Configurable character length

None

5.3.9.1.1 UART Channel registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102000	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A102004	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A102008	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A102010	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A102014	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.
TX_CFG	0x1A102018	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
STATUS	0x1A102020	32	Status	R	0x0000	uDMA UART status register.
SETUP	0x1A102024	32	Config	R/W	0x0000	UDMA UART configuration register.

Table 41. UART Channel registers table

5.3.9.1.2 uDMA UART interface registers details

5.3.9.1.2.1 uDMA RX UART buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - RX_SADDR (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

5.3.9.1.2.2 uDMA RX UART buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.1.2.3 uDMA RX UART stream configuration register. (RX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

Bit 5 - CLR (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.1.2.4 uDMA TX UART buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
			12	44		_	_		_	_		_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - **TX_SADDR** (R/W)

TX buffer base address bitfield:

- $\bullet\,\,$ Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

5.3.9.1.2.5 uDMA TX UART buffer size configuration register. (TX_SIZE)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 16:0 - TX_SIZE (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.1.2.6 uDMA TX UART stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

Bit 5 - CLR (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- *0b1*: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - **CONTINOUS** (R/W)

TX channel continuous mode bitfield:

- 0b0: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.1.2.7 uDMA UART status register. (STATUS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserved							RX_PE	RX_BUS	TX_BUS

Bit 2 - **RX_PE** (R)

RX parity error status flag:

- *0b0*: no error
- *0b1*: RX parity error occurred

Bit 1 - RX_BUSY (R)

RX busy status flag:

- *0b0*: no RX transfer on-going
- *0b1*: RX transfer on-going

Bit 0 - TX_BUSY (R)

TX busy status flag:

- 0b0: no TX transfer on-going
- *0b1*: TX transfer on-going

5.3.9.1.2.8 UDMA UART configuration register. (SETUP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CLKDIV															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved						TX_ENA	Reserved				STOP_B ITS	BIT_LE	NGTH	PARITY _ENA

Bits 31:16 - **CLKDIV** (R/W)

UART Clock divider configuration bitfield. The baudrate is equal to SOC_FREQ/CLKDIV.

Bit 9 - **RX_ENA** (R/W)

RX transceiver configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 8 - **TX_ENA** (R/W)

 ${\sf TX}$ transceiver configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 3 - STOP_BITS (R/W)

Stop bits length bitfield:

- *0b0*: 1 stop bit
- *0b1*: 2 stop bits

Bits 2:1 - BIT_LENGTH (R/W)

Character length bitfield:

- 0b00: 5 bits
- *0b01*: 6 bits
- 0b10: 7 bits
- 0b11: 8 bits

Bit 0 - PARITY_ENA (R/W)

Parity bit generation and check configuration bitfield:

- 0b0: disabled
- 0b1: enabled

5.3.9.2 uDMA SPI master interface

SPIM component manages the following features:

- Controls all SPI master bus specific sequencing, protocol, arbitration and timing.
- Standard or Quad half-duplex and full-duplex SPI master interface modes.
- Configurable CPOL and CPHA parameters.
- Configurable SPIM clock frequencey related to SoC clock frequency.

SPIM interface uses a <u>stream pre-processing protocol</u> to ease the construction of SPIM transfers combining commands and data stream. A list of the available commands and their encoding is shown in the <u>table below</u>.

None

5.3.9.2.1 SPI Master Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102080	32	Config	R/W	0x0000	uDMA RX SPIM buffer base address configuration register.
RX_SIZE	0x1A102084	32	Config	R/W	0x0000	uDMA RX SPIM buffer size configuration register.
RX_CFG	0x1A102088	32	Config	R/W	0x0000	uDMA RX SPIM stream configuration register.
TX_SADDR	0x1A102090	32	Config	R/W	0x0000	uDMA TX SPIM buffer base address configuration register.
TX_SIZE	0x1A102094	32	Config	R/W	0x0000	uDMA TX SPIM buffer size configuration register.
TX_CFG	0x1A102098	32	Config	R/W	0x0000	uDMA TX SPIM stream configuration register.

Table 42. SPI Master Channel 0 registers table

5.3.9.2.2 uDMA SPI master interface registers details

5.3.9.2.2.1 uDMA RX SPIM buffer base address configuration register. (RX_SADDR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - RX_SADDR (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

5.3.9.2.2.2 uDMA RX SPIM buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RX_SIZE														

Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.2.2.3 uDMA RX SPIM stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									CLR/PE		Reserve			CONTIN	

Bit 5 - CLR (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

Bit 4 - EN (R/W)

RX channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

RX channel transfer size used to increment uDMA SPIM RX buffer address pointer:

- *0b00*: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- 0b10: plus 4 +4 (32 bits)
- *0b11*: plus 0 +0

Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.2.2.4 uDMA TX SPIM buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TX_S/	ADDR							

Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

5.3.9.2.2.5 uDMA TX SPIM buffer size configuration register. (TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
															1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 16:0 - **TX_SIZE** (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.2.2.6 uDMA TX SPIM stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		•	Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN

Bit 5 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- *0b0*: disabled
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - **CONTINOUS** (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.2.3 uDMA SPI master interface commands

Name	Command number	Size	Description
SPI_CMD_CFG	0	32	SPIM configuration command.
SPI_CMD_SOT	1	32	SPIM Start of Transfer command.
SPI_CMD_SEND_CMD	2	32	SPIM send command.
SPI_CMD_SEND_ADDR	3	32	SPIM send address command.
SPI_CMD_DUMMY	4	32	SPIM dummy RX command.
SPI_CMD_WAIT	5	32	SPIM wait uDMA external event command.
SPI_CMD_TX_DATA	6	32	SPIM send data command (max 64kbits).
SPI_CMD_RX_DATA	7	32	SPIM receive data command (max 64kbits).
SPI_CMD_RPT	8	32	SPIM repeat next transfer command.
SPI_CMD_EOT	9	32	SPIM End of Transfer command.
SPI_CMD_RPT_END	10	32	SPIM end of repeat command.
SPI_CMD_RX_CHECK	11	32	SPIM RX check data command.

Name	Command number	Size	Description
SPI CMD FULL DUPL	12	32	SPIM full duplex mode command.

Table 43. uDMA SPI master interface commands table

5.3.9.2.4 uDMA SPI master interface commands details

5.3.9.2.4.1 SPIM configuration command. (SPI_CMD_CFG)

Command number: 0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (0)							Rese	erved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:28 - SPI_CMD

SPIM command to be processed is "CFG" in this case.

Bit 9 - CPOL

SPIM clock polarity bitfield:

- *0b0*: leading edge is rising edge
- 0b1: leading edge is falling edge

Bit 8 - CPHA

SPIM clock phase bitfield:

- *ObO*: the "out" side changes the data on the trailing edge of the preceding clock cycle, while the "in" side captures the data on the leading edge of the clock cycle.
- *0b1*: the "out" side changes the data on the leading edge of the current clock cycle, while the "in" side captures the data on the trailing edge of the clock cycle.

Bits 7:0 - CLKDIV

SPIM clock divider bitfield.

5.3.9.2.4.2 SPIM Start of Transfer command. (SPI_CMD_SOT)

Command number: 1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (1)							Rese	erved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							С	S

Bits 31:28 - SPI_CMD

SPIM command to be processed is "SOT" in this case.

Bits 1:0 - CS

SPIM Chip Select (CS) bitfield:

- 0b00: select csn0
- *0b01*: select csn1
- 0b10: select csn2
- 0b11: select csn3

5.3.9.2.4.3 SPIM send command. (SPI_CMD_SEND_CMD)

Command number: 2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (2)		QPI			Rese	erved					CMD_SIZE		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CMD_\	/ALUE							

Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "SEND_CMD" in this case.

Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

Bits 20:16 - CMD_SIZE

SPIM command to send size in bits bitfield. The value is (num bits – 1).

Bits 15:0 - CMD_VALUE

SPIM command to send bitfield. MSB of the command must be left aligned if command size is lower than 16.

5.3.9.2.4.4 SPIM send address command. (SPI_CMD_SEND_ADDR)

Command number: 3

This command is followed by extra parameter bytes that are SPI_CMD_SEND_ADDR.CMD_SIZE bits long. The value following the SPI_CMD_SEND_ADDR command indicates address value.

31	30	29	28	27	26	26 25 24 23 22 21						19	18	17	16
	SPI_C	MD (3)		QPI			Rese	erved					CMD_SIZE		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:28 - SPI_CMD

SPIM command to be processed is "SEND_ADDR" in this case.

Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

Bits 20:16 - CMD_SIZE

SPIM address to send size in bits bitfield. The value is (num bits – 1).

5.3.9.2.4.5 SPIM dummy RX command. (SPI_CMD_DUMMY)

Command number: 4

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (4)					Reserved					DU	JMMY_CYC	LE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "DUMMY" in this case.

Bits 20:16 - DUMMY_CYCLE

SPIM dummy cycles value bitfield.

5.3.9.2.4.6 SPIM wait uDMA external event command. (SPI_CMD_WAIT)

Command number: 5

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (5)							Rese	erved					
					Reserved										
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "WAIT" in this case.

Bits 1:0 - EVENT_ID

SPIM uDMA external event bitfield.

5.3.9.2.4.7 SPIM send data command (max 64kbits). (SPI_CMD_TX_DATA)

Command number: 6

This command is followed by extra parameter bytes that are SPI_CMD_TX_DATA.DATA_SIZE bits long. The value following the SPI_CMD_TX_DATA command indicates data value stream to transmit.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (6)		QPI	BYTE_A LIGN					Rese	erved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	SIZE							

Bits 31:28 - SPI_CMD

SPIM command to be processed is "TX_DATA" in this case.

Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- 0b1: Quad

Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- *0b0*: enable byte alignment
- *0b1*: disable byte alignment

Bits 15:0 - DATA_SIZE

SPIM bits size to send bitfield (max 64kbits). The value is (num bits – 1).

5.3.9.2.4.8 SPIM receive data command (max 64kbits). (SPI_CMD_RX_DATA)

Command number: 7

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (7)		QPI	BYTE_A LIGN					Rese	erved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	SIZE							

Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "RX_DATA" in this case.

Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- *0b0*: enable byte alignment
- *0b1*: disable byte alignment

Bits 15:0 - DATA_SIZE

SPIM bits size to receive bitfield (max 64kbits). The value is (num bits - 1).

${\bf 5.3.9.2.4.9~SPIM~repeat~next~transfer~command.~(SPI_CMD_RPT)}$

Command number: 8

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (8)							Rese	rved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:28 - SPI_CMD

SPIM command to be processed is "RPT" in this case.

Bits 15:0 - RPT_CNT

SPIM transfer repeat count value bitfield (max 64k).

5.3.9.2.4.10 SPIM End of Transfer command. (SPI_CMD_EOT)

Command number: 9

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (9)							Rese	erved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								EVENT_ GEN

Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "EOT" in this case.

Bit 0 - **EVENT_GEN**

SPIM uDMA EOT event generation bitfield:

- *0b0*: disabled
- *0b1*: enabled

5.3.9.2.4.11 SPIM end of repeat command. (SPI_CMD_RPT_END)

Command number: 10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_CI	MD (10)							Rese	erved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Rese								

Bits 31:28 - SPI_CMD

SPIM command to be processed is "RPT_END" in this case.

5.3.9.2.4.12 SPIM RX check data command. (SPI_CMD_RX_CHECK)

Command number: 11

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_CM	MD (11)		QPI	BYTE_A LIGN	CHECK	_TYPE		Rese	erved			STATU	S_SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							COMP	_DATA							

Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "RX_CHECK" in this case.

Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- *0b0*: enable byte alignment
- *0b1*: disable byte alignment

Bits 25:24 - CHECK_TYPE

SPIM check mode bitfield:

- *0b00*: compare bit to bit
- 0b01: compare only ones
- *0b10*: compare ony zeros

Bits 19:16 - STATUS_SIZE

SPIM read data size in bits bitfield. The value is (num bits ${\sf -1}$).

Bits 15:0 - COMP_DATA

SPIM comparison value bitfield (max 16bits).

5.3.9.2.4.13 SPIM full duplex mode command. (SPI_CMD_FULL_DUPL)

Command number: 12

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_CM	MD (12)		Reserve d	BYTE_A LIGN					Rese	erved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	SIZE							

Bits 31:28 - SPI_CMD

SPIM command to be processed is "FULL_DUPLEX" in this case.

Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- 0b0: enable byte alignment
- *0b1*: disable byte alignment

Bits 15:0 - DATA_SIZE

SPIM bits size to send bitfield (max 64kbits). The value is (num bits – 1).

5.3.9.3 uDMA I2C interfaces

I2C component manages the following features:

• Controls all I2C bus specific sequencing, protocol, arbitration and timing.

- Configurable I2C clock frequency related to SoC clock frequency.
- Status flags for busy bus and arbitration lost.

I2C interface uses a <u>stream pre-processing protocol</u> to ease the construction of I2C transfers combining commands and data stream. A list of the available commands and their encoding is shown in the <u>table below</u>.

None

5.3.9.3.1 I2C Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102180	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A102184	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A102188	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A102190	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A102194	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A102198	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
STATUS	0x1A1021A0	32	Status	R/W	0x0000	uDMA I2C Status register.
SETUP	0x1A1021A4	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 44. I2C Channel 0 registers table

5.3.9.3.2 I2C Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102200	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A102204	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A102208	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A102210	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A102214	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A102218	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
<u>STATUS</u>	0x1A102220	32	Status	R/W	0x0000	uDMA I2C Status register.
SETUP	0x1A102224	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 45. I2C Channel 1 registers table

5.3.9.3.3 uDMA I2C interface registers details

5.3.9.3.3.1 uDMA RX I2C buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_S	ADDR							

Bits 15:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- $\bullet\,$ Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

5.3.9.3.3.2 uDMA RX I2C buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_	SIZE							

Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.3.3.3 uDMA RX I2C stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

Bit 5 - CLR (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear the on-going transfer

Bit 5 - PENDING (R)

RX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.3.3.4 uDMA TX I2C buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

5.3.9.3.3.5 uDMA TX I2C buffer size configuration register. (TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved											TX_SIZE			
			42	44			_		_	_					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 16:0 - **TX_SIZE** (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.3.3.6 uDMA TX I2C stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 9 8 7 6 Reserved										EN		Reserved	•	CONTIN

Bit 5 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

Bit 4 - EN (R/W)

TX channel enable and start transfer bitfield:

- *0b0*: disabled
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.3.3.7 uDMA I2C Status register. (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										ARB_LO ST	BUSY			

Bit 1 - ARB_LOST (R/W)

I2C arbitration lost status flag:

- *0b0*: no error
- *0b1*: arbitration lost error

Bit 0 - **BUSY** (R/W)

I2C bus busy status flag:

- *0b0*: no transfer on-going
- *0b1*: transfer on-going

5.3.9.3.3.8 uDMA I2C Configuration register. (SETUP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved														

Bit 0 - **DO_RST** (R/W)

Reset command used to abort the on-going transfer and clear busy and arbitration lost status flags.

5.3.9.3.4 uDMA I2C interface commands

Name Command number	Size	Description
---------------------	------	-------------

Name	Command number	Size	Description
I2C_CMD_START	0	8	I2C Start of Transfer command.
I2C_CMD_WAIT_EV	1	8	I2C wait uDMA external event command.
I2C CMD STOP	2	8	I2C End of Transfer command.
I2C CMD RD ACK	4	8	I2C receive data and acknowledge command.
I2C CMD RD NACK	6	8	I2C receive data and not acknowledge command.
I2C_CMD_WR	8	8	I2C send data and wait acknowledge command.
I2C_CMD_WAIT	10	8	I2C wait dummy cycles command.
I2C_CMD_RPT	12	8	I2C next command repeat command.
I2C_CMD_CFG	14	8	I2C configuration command.

Table 46. uDMA I2C interface commands table

5.3.9.3.5 uDMA I2C interface commands details

5.3.9.3.5.1 I2C Start of Transfer command. (I2C_CMD_START)

Command number: 0

7	6	5	4	3	2	1	0
			I2C_C	MD (0)			

Bits 7:0 - **I2C_CMD**

I2C Start of Transfer command.

5.3.9.3.5.2 I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)

Command number: 1

This command is followed by extra parameter bytes that are 1 byte (bit[1:0] – event_id). long. The value following the I2C_CMD_WAIT_EV command indicates selected uDMA external event ID.

7	6	5	4	3	2	1	0
			120 0	MD (1)			

Bits 7:0 - **I2C_CMD**

I2C wait uDMA external event command.

5.3.9.3.5.3 I2C End of Transfer command. (I2C_CMD_STOP)

Command number: 2

Bits 7:0 - **I2C_CMD**

I2C End of Transfer command.

5.3.9.3.5.4 I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)

Command number: 4

7	6	5	4	3	2	1	0
			I2C_C	MD (4)			

Bits 7:0 - I2C_CMD

I2C receive data and acknowledge command.

5.3.9.3.5.5 I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)

Command number: 6

7	6	5	4	3	2	1	0
			I2C_C	MD (6)			

Bits 7:0 - I2C_CMD

I2C receive data and not acknowledge command.

5.3.9.3.5.6 I2C send data and wait acknowledge command. (I2C_CMD_WR)

Command number: 8

This command is followed by extra parameter bytes that are 1 byte or many bytes if preceded by a I2C_CMD_RPT command. long. The value following the I2C_CMD_WR command indicates byte value to transmit or multiple byte values to transmit if this command is preceded by a I2C_CMD_RPT command.

7	6	5	4	3	2	1	0
			I2C_C	MD (8)			

Bits 7:0 - I2C_CMD

I2C send data and wait acknowledge command.

5.3.9.3.5.7 I2C wait dummy cycles command. (I2C_CMD_WAIT)

Command number: 10

This command is followed by extra parameter bytes that are 1 byte. long. The value following the I2C_CMD_WAIT command indicates I2C dummy clock cycles value.

Bits 7:0 - **I2C_CMD**

I2C wait dummy cycles command.

${\bf 5.3.9.3.5.8~I2C~next~command~repeat~command.~(I2C_CMD_RPT)}$

Command number: 12

This command is followed by extra parameter bytes that are 1 byte. long. The value following the I2C_CMD_RPT command indicates number of times to repeat next command.

7	6	5	4	3	2	1	0
			I2C_CI	MD (12)			

Bits 7:0 - I2C_CMD

I2C next command repeat command.

5.3.9.3.5.9 I2C configuration command. (I2C_CMD_CFG)

Command number: 14

This command is followed by extra parameter bytes that are 2 bytes. long. The value following the I2C_CMD_CFG command indicates I2C clock divider 16bits value related to SoC clock frequency. MSB byte is sent first.

7	6	5	4	3	2	1	0
			I2C_CN	MD (14)			

Bits 7:0 - **I2C_CMD**

12C configuration command.

5.3.9.4 uDMA I2S interface

I2S component manages the following features:

- Controls all I2S bus specific sequencing, protocol, arbitration and timing.
- Configurable I2S clock frequency related to SoC clock frequency.
- Configurable slave and master modes for clock and WS signals management.
- 2 available clock/WS generators.
- Support PCM and PDM formats.
- PDM filtering feature with decimation and normalization functionalities.
- Support DDR mode.

None

5.3.9.4.1 I2S Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR_CH0	0x1A102280	32	Config	R/W	0x0000	uDMA RX I2S channel 0 buffer base address configuration register.
RX_SIZE_CH0	0x1A102284	32	Config	R/W	0x0000	uDMA RX I2S channel 0 buffer size configuration register.
RX_CFG_CH0	0x1A102288	32	Config	R/W	0x0004	uDMA RX I2S channel 0 stream configuration register.
RX_SADDR_CH1	0x1A102290	32	Config	R/W	0x0000	uDMA RX I2S channel 1 buffer base address configuration register.
RX_SIZE_CH1	0x1A102294	32	Config	R/W	0x0000	uDMA RX I2S channel 1 buffer size configuration register.
RX_CFG_CH1	0x1A102298	32	Config	R/W	0x0004	uDMA RX I2S channel 1 stream configuration register.
CFG_EXT	0x1A1022A0	32	Config	R/W	0x0000	I2S external clock configuration register.
CFG_CLKGEN0	0x1A1022A4	32	Config	R/W	0x0000	I2S clock and WS generator 0 configuration register.
CFG_CLKGEN1	0x1A1022A8	32	Config	R/W	0x0000	I2S clock and WS generator 1 configuration register.
<u>CHMODE</u>	0x1A1022AC	32	Config	R/W	0x0000	I2S channels mode configuration register.
FILT_CH0	0x1A1022B0	32	Config	R/W	0x0000	I2S channel 0 filtering configuration register.
FILT_CH1	0x1A1022B4	32	Config	R/W	0x0000	I2S channel 1 filtering configuration register.

Table 47. I2S Channel 0 registers table

5.3.9.4.2 uDMA I2S interface registers details

5.3.9.4.2.1 uDMA RX I2S channel 0 buffer base address configuration register. (RX_SADDR_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX S								

Bits 15:0 - RX_SADDR (R/W)

12S channel 0 RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

5.3.9.4.2.2 uDMA RX I2S channel 0 buffer size configuration register. (RX_SIZE_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_	SIZE							

Bits 16:0 - **RX_SIZE** (R/W)

I2S channel 0 RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.4.2.3 uDMA RX I2S channel 0 stream configuration register. (RX_CFG_CH0)

Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve d	DATA	ASIZE	CONTIN OUS

Bit 5 - **CLR** (W)

Reset value: 0b0

I2S channel 0 RX Channel clear and stop transfer:

- *0b0*: disable
- 0b1: stop and clear stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

Reset value: 0b0

12S channel 0 RX Transfer pending in queue status flag:

- $\bullet \ \textit{ObO}\!.$ no pending no pending transfer in the queue
- *0b1*:pending pending transfer in the queue

Bit 4 - EN (R/W)

Reset value: 0b0

12S channel 0 RX Channel enable and start transfer bitfield:

- *0b0*: disable
- 0b1: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Reset value: 0b10

RX channel transfer size used to increment uDMA I2S channel 0 RX buffer address pointer:

- 0b00: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- 0b10: plus 4 +4 (32 bits)
- *0b11*: plus 0 +0

Bit 0 - CONTINOUS (R/W)

Reset value: 0b0

12S channel 0 RX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

$5.3.9.4.2.4\ uDMA\ RX\ I2S\ channel\ 1\ buffer\ base\ address\ configuration\ register.\ (RX_SADDR_CH1)$

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - TX_SADDR (R/W)

I2S channel 1 RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

5.3.9.4.2.5 uDMA RX I2S channel 1 buffer size configuration register. (RX_SIZE_CH1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 16:0 - TX_SIZE (R/W)

I2S channel 1 RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.4.2.6 uDMA RX I2S channel 1 stream configuration register. (RX_CFG_CH1)

Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•	Rese	erved	•			•	CLR/PE NDING	EN	Reserve d	DATA	ASIZE	CONTIN

Bit 5 - **CLR** (W)

Reset value: 0b0

I2S channel 1 RX Channel clear and stop transfer:

- 0b0: disable
- 0b1: stop and clear stop and clear the on-going transfer

Bit 5 - PENDING (R)

Reset value: 0b0

12S channel 1 RX Transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

Bit 4 - **EN** (R/W)

Reset value: 0b0

12S channel 1 RX Channel enable and start transfer bitfield:

- 0b0: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

Reset value: 0b10

RX channel transfer size used to increment uDMA I2S channel 1 RX buffer address pointer:

- *0b00*: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- 0b10. plus 4 +4 (32 bits)
- 0b11: plus 0 +0

Bit 0 - CONTINOUS (R/W)

Reset value: 0b0

12S channel 1 RX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.4.2.7 I2S external clock configuration register. (CFG_EXT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 4:0 - EXT_BITS_WORD (R/W)

External clock word length in bits bitfield. The value is (num bits - 1).

5.3.9.4.2.8 I2S clock and WS generator 0 configuration register. (CFG_CLKGEN0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CLK	_DIV							
15	44					_	_					_	_	_	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - CLK_DIV (R/W)

Clock generator 0 clock divider related to SoC clock frequency.

Bit 8 - **CLK_EN** (R/W)

Clock generator 0 enable bitfield:

- 0b0: disabled
- *0b1*: enabled enabled. Clock and WS signal are generated.

Bits 4:0 - BITS_WORD (R/W)

Clock generator 0 word length in bits bitfield. The value is (num bits - 1).

5.3.9.4.2.9 I2S clock and WS generator 1 configuration register. (CFG_CLKGEN1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CLK_	_DIV							
4-															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - CLK_DIV (R/W)

Clock generator 1 clock divider related to SoC clock frequency.

Bit 8 - **CLK_EN** (R/W)

Clock generator 1 enable bitfield:

- 0b0: disabled
- *0b1*: enabled enabled. Clock and WS signal are generated.

Bits 4:0 - BITS_WORD (R/W)

Clock generator 1 word length in bits bitfield. The value is (num bits - 1).

5.3.9.4.2.10 I2S channels mode configuration register. (CHMODE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	erved		CH1_	MODE	CH0_l	MODE			Rese	erved			CH1_US EDDR	CH0_US EDDR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	CH1_PD M_EN	CH0_PD M_EN	Rese	erved	CH1_PD M_USEF ILTER	CH0_PD M_USEF ILTER		erved	CH1_LS B_FIRST	CH0_LS B_FIRST		Rese	erved	

Bits 27:26 - CH1_MODE (R/W)

I2S channel 1 clock/WS mode configuration bitfield:

- 0b00: clock gen 0 use clock generator 0 (clock and WS generated by clkgen)
- *0b01*: clock gen 1 use clock generator 1 (clock and WS generated by clkgen)
- *0b10*: ext clock int ws use external clock but internal generated WS by clock generator 0
- *0b11*: ext clock ext ws use external clock and external WS

Bits 25:24 - **CH0_MODE** (R/W)

I2S channel 0 clock/WS mode configuration bitfield:

- 0b00: clock gen 0 use clock generator 0 (clock and WS generated by clkgen)
- *0b01*: clock gen 1 use clock generator 1 (clock and WS generated by clkgen)
- *0b10*: ext clock int ws use external clock but internal generated WS by clock generator 0
- *0b11*: ext clock ext ws use external clock and external WS

Bit 17 - CH1_USEDDR (R/W)

I2S channel 1 DDR mode activation bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 16 - CHO_USEDDR (R/W)

I2S channel 0 DDR mode activation bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 13 - CH1_PDM_EN (R/W)

I2S channel 1 PDM demodulation activation bitfield:

- *0b0*: disabled
- *0b1*: enabled

Bit 12 - CHO_PDM_EN (R/W)

I2S channel 0 PDM demodulation activation bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 9 - CH1_PDM_USEFILTER (R/W)

I2S channel 1 PDM filter activation bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 8 - CHO_PDM_USEFILTER (R/W)

I2S channel 0 PDM filter activation bitfield:

- 0b0: disabled
- *0b1*: enabled

Bit 5 - CH1_LSB_FIRST (R/W)

I2S channel 1 LSB first configuration for word serialization bitfield:

- *0b0*: MSB first
- 0b1: LSB first

Bit 4 - CH0_LSB_FIRST (R/W)

12S channel 0 LSB first configuration for word serialization bitfield:

- *0b0*: MSB first
- 0b1: LSB first

5.3.9.4.2.11 I2S channel 0 filtering configuration register. (FILT_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								SHIFT	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **SHIFT** (R/W)

I2S channel 0 PDM filter normalisation right shift value bitfield.

Bits 9:0 - **DECIMATION** (R/W)

12S channel 0 PDM filter decimation value bitfield.

5.3.9.4.2.12 I2S channel 1 filtering configuration register. (FILT_CH1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								SHIFT	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **SHIFT** (R/W)

I2S channel 1 PDM filter normalisation right shift value bitfield.

Bits 9:0 - **DECIMATION** (R/W)

12S channel 1 PDM filter decimation value bitfield.

5.3.9.5 CAM

CPI component manages the following features:

- Controls all CPI bus specific sequencing, protocol, arbitration and timing.
- Configurable CPI clock frequencey related to SoC clock frequency.
- Frame dropping feature.
- Frame slicing feature.
- RAW, RGB565, RGB555 and RGB444 frame format supported.

None

5.3.9.5.1 CAM channel registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102380	32	Config	R/W	0x0000	uDMA RX CPI buffer base address configuration register.
RX_SIZE	0x1A102384	32	Config	R/W	0x0000	uDMA RX CPI buffer size configuration register.
RX_CFG	0x1A102388	32	Config	R/W	0x0000	uDMA RX CPI stream configuration register.
CFG_GLOB	0x1A1023A0	32	Config	R/W	0x0000	uDMA CPI Global configuration register.
CFG_LL	0x1A1023A4	32	Config	R/W	0x0000	uDMA CPI Lower Left corner configuration register.
CFG_UR	0x1A1023A8	32	Config	R/W	0x0000	uDMA CPI Upper Right corner configuration register.
CFG_SIZE	0x1A1023AC	32	Config	R/W	0x0000	uDMA CPI Horizontal Resolution configuration register.
CFG_FILTER	0x1A1023B0	32	Config	R/W	0x0000	uDMA CPI RGB coefficients configuration register.

Table 48. CAM channel registers table

5.3.9.5.2 CAM registers details

5.3.9.5.2.1 uDMA RX CPI buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX S	ADDR							

Bits 15:0 - RX_SADDR (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

5.3.9.5.2.2 uDMA RX CPI buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX S	SIZE							

Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

5.3.9.5.2.3 uDMA RX CPI stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve	DATA	ASIZE	CONTIN

Bit 5 - **CLR** (W)

RX Channel clear and stop transfer:

- 0b0: disable
- *0b1*: stop and clear stop and clear the on-going transfer

Bit 5 - **PENDING** (R)

RX Transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

Bit 4 - **EN** (R/W)

RX Channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

Bits 2:1 - DATASIZE (R/W)

RX channel transfer size used to increment uDMA CPI RX buffer address pointer:

- 0b00: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- 0b10: plus 4 +4 (32 bits)
- *0b11*: plus 0 +0

Bit 0 - **CONTINOUS** (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

5.3.9.5.2.4 uDMA CPI Global configuration register. (CFG_GLOB)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EN								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserve d		SH	IFT			FORMAT		FRAME SLICE_E N			FRAMED	ROP_VAL			FRAME DROP_ EN

Bit 31 - **EN** (R/W)

CPI interface acquisition enable bitfield:

- 0b0: disabled
- *0b1*: enabled

The enable/disable happens only at the beginning of a frame, meaning when VSYNC pulse occurs.

Bits 14:11 - SHIFT (R/W)

Right shift value for final pixel normalisation bitfield. Not used if CFG_GLOB.FORMAT = BYPASS

Bits 10:8 - **FORMAT** (R/W)

Input frame format bitfield:

- *0b000*: RGB565
- *0b001*: RGB555
- 0b010: RGB444
- 0b100. BYPASS_LITEND
- 3'b101: BYPASS_BIGEND

Bit 7 - FRAMESLICE_EN (R/W)

Input frame slicing bitfield:

• 0b0: disabled

• 0b1: enabled

Bits 6:1 - FRAMEDROP_VAL (R/W)

Frame dropping value bitfield.

Bit 0 - FRAMEDROP_EN (R/W)

Frame dropping bitfield:

• 0b0: disabled

• *0b1*: enabled

5.3.9.5.2.5 uDMA CPI Lower Left corner configuration register. (CFG_LL)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FRAMESI	LICE_LLY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - FRAMESLICE_LLY (R/W)

Y coordinate of lower left corner of slice bitfield. Origin reference of a frame is left up corner.

Bits 15:0 - FRAMESLICE_LLX (R/W)

 $\label{eq:condinate} \textbf{X} \ coordinate \ of \ lower \ left \ corner \ of \ slice \ bit field. \ Origin \ reference \ of \ a \ frame \ is \ left \ up \ corner.$

5.3.9.5.2.6 uDMA CPI Upper Right corner configuration register. (CFG_UR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FRAMESL	ICE_URY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - FRAMESLICE_URY (R/W)

Y coordinate of upper right corner of slice bitfield. Origin reference of a frame is left up corner.

Bits 15:0 - FRAMESLICE_URX (R/W)

X coordinate of upper right corner of slice bitfield. Origin reference of a frame is left up corner.

5.3.9.5.2.7 uDMA CPI Horizontal Resolution configuration register. (CFG_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ROW	/LEN							
4-	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15	14	13	12		10	-	•	•	•	-	-	-	_		

Bits 31:16 - ROWLEN (R/W)

Frame horizontal pixel length bitfield. It is used for slice mode. Value set into the bitfield must be equal to (rowlen - 1).

5.3.9.5.2.8 uDMA CPI RGB coefficients configuration register. (CFG_FILTER)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							R_CC	DEFF			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			G C	OEFF							B CC	DEFF			

Bits 23:16 - **R_COEFF** (R/W)

R component coefficient bitfield. Not used if CFG_GLOB.FORMAT = BYPASS.

Bits 15:8 - **G_COEFF** (R/W)

G component coefficient bitfield.Not used if CFG_GLOB.FORMAT = BYPASS.

Bits 7:0 - **B_COEFF** (R/W)

B component coefficient bitfield. Not used if CFG_GLOB.FORMAT = BYPASS.

5.3.9.6 uDMA control unit

uDMA controller component manages the following features:

- uDMA interfaces clock gating
- uDMA interface trigger events configuration

None

5.3.9.6.1 UDMA control registers

Name	Address	Size	Туре	Access	Default	Description
CFG_CG	0x1A102780	32	Config	R/W	0x0000	uDMA interfaces clock gate configuration register.
CFG_EVENT	0x1A102784	32	Config	R/W	0x0000	uDMA interfaces trigger events configuration register.

Table 49. UDMA control registers table

5.3.9.6.2 uDMA control unit registers details

5.3.9.6.2.1 uDMA interfaces clock gate configuration register. (CFG_CG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 9 - CPI (R/W)

uDMA interfaces clock gate configuration for CPI:

- 0b0: CPI interface clock gate is enabled
- *0b1*: CPI interface clock gate is disabled

Bit 8 - **I2S** (R/W)

uDMA interfaces clock gate configuration for I2S:

- 0b0: I2S interface clock gate is enabled
- *0b1*: I2S interface clock gate is disabled

Bit 7 - **TCDM** (R/W)

uDMA interfaces clock gate configuration for TCDM:

- *0b0*: TCDM interface clock gate is enabled
- 0b1: TCDM interface clock gate is disabled

Bit 6 - **I2C1** (R/W)

uDMA interfaces clock gate configuration for I2C1:

- *0b0*: I2C1 interface clock gate is enabled
- 0b1: I2C1 interface clock gate is disabled

Bit 5 - **I2C0** (R/W)

uDMA interfaces clock gate configuration for I2C0:

- *0b0*: I2C0 interface clock gate is enabled
- 0b1: I2C0 interface clock gate is disabled

Bit 4 - **UART** (R/W)

uDMA interfaces clock gate configuration for UART:

- *0b0*: UART interface clock gate is enabled
- 0b1: UART interface clock gate is disabled

Bit 3 - HYPER (R/W)

uDMA interfaces clock gate configuration for HYPER:

- *0b0*: HYPER interface clock gate is enabled
- 0b1: HYPER interface clock gate is disabled

Bit 2 - **SPIM1** (R/W)

uDMA interfaces clock gate configuration for SPIM1:

- *0b0*: SPIM1 interface clock gate is enabled
- *0b1*: SPIM1 interface clock gate is disabled

Bit 1 - **SPIM0** (R/W)

uDMA interfaces clock gate configuration for SPIM0:

- 0b0: SPIM0 interface clock gate is enabled
- *0b1*: SPIM0 interface clock gate is disabled

Bit 0 - **LVDS** (R/W)

uDMA interfaces clock gate configuration for LVDS:

- 0b0: LVDS interface clock gate is enabled
- 0b1: LVDS interface clock gate is disabled

5.3.9.6.2.2 uDMA interfaces trigger events configuration register. (CFG_EVENT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EVT3						EVT2									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EVT1						EVT0								

Bits 31:24 - EVT3 (R/W)

uDMA interfaces trigger event 3 configuration bitfield. CFG_EVT3 selects which SoC event is propageted to uDMA interface trigger event 3.

Bits 23:16 - EVT2 (R/W)

uDMA interfaces trigger event 2 configuration bitfield. CFG_EVT2 selects which SoC event is propageted to uDMA interface trigger event 2.

Bits 15:8 - **EVT1** (R/W)

uDMA interfaces trigger event 1 configuration bitfield. CFG_EVT1 selects which SoC event is propageted to uDMA interface trigger event 1.

Bits 7:0 - **EVT0** (R/W)

uDMA interfaces trigger event 0 configuration bitfield. CFG_EVT0 selects which SoC event is propageted to uDMA interface trigger event 0.

5.4 UDMA specific stream pre-processing protocol for SPIM and I2C interfaces

5.4.1 SPI Master stream pre-processing protocol

SPI Master defines basic types of streams, each of them begins with a chip-select assertion and ends with chip-select de-assertion.

All SPI Master transfers can be assembled into a coherent buffer of commands and data. With different combinations of available commands, any type of SPI transfer can be generated. PULP's SPI Master interface fetches both commands and data from L2 memory. In this way UDMA stream pre-processing protocol component can create complex SPI transfer fully autonomously and without any intervention of the Fabric Controller RI5CY core. The code below shows an example of 2 SPI transfer buffers that generate a read and a write on a standard SPI flash memory.

```
PULP_L2_DATA unsigned int spi_cmd_readdata[] = {
    SPI_CMD_SOT (SPI_CMD_SOT_CS0),
    SPI_CMD_SEND_CMD (0x13, SPI_CMD_CMD_SIZE(0x8), SPI_CMD_QPI_DIS), // send command read memory 4read
    SPI_CMD_SEND_ADDR(32, SPI_CMD_QPI_DIS),
    (SECTOR_4KB_NUM * SECTOR_4KB_SIZE),
    SPI_CMD_RX_DATA (PAGE_PROGRAM_BUFFER_SIZE*8, SPI_CMD_QPI_DIS, SPI_CMD_BYTE_ALIGN_ENA),
    SPI_CMD_EOT (SPI_CMD_EOT_EVENT_ENA)
```

```
PULP L2 DATA unsigned int spi cmd writedata1[] = {
SPI CMD SOT
                (SPI CMD SOT CS0),
SPI_CMD_SEND_CMD (0x12, SPI_CMD_CMD_SIZE(0x8), SPI_CMD_QPI_DIS), // 4pp page program
SPI_CMD_SEND_ADDR(32, SPI_CMD_QPI_DIS),
(SECTOR_4KB_NUM * SECTOR_4KB_SIZE),
 SPI_CMD_TX_DATA (PAGE_PROGRAM_BUFFER_SIZE*8, SPI_CMD_QPI_DIS, SPI_CMD_BYTE_ALIGN_ENA),
0x83828180, 0x87868584, 0x8b8a8988, 0x8f8e8d8c, 0x93929190, 0x97969594, 0x9b9a9998, 0x9f9e9d9c,
0xa3a2a1a0, 0xa7a6a5a4, 0xabaaa9a8, 0xafaeadac, 0xb3b2b1b0, 0xb7b6b5b4, 0xbbbab9b8, 0xbfbebdbc,
0xc3c2c1c0, 0xc7c6c5c4, 0xcbcac9c8, 0xcfcecdcc, 0xd3d2d1d0, 0xd7d6d5d4, 0xdbdad9d8, 0xdfdedddc,
0xe3e2e1e0, 0xe7e6e5e4, 0xebeae9e8, 0xefeeedec, 0xf3f2f1f0, 0xf7f6f5f4, 0xfbfaf9f8, 0xfffefdfc,
0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c, 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
0x23222120, 0x27262524, 0x2b2a2928, 0x2f2e2d2c, 0x33323130, 0x37363534, 0x3b3a3938, 0x3f3e3d3c,
0x43424140, 0x47464544, 0x4b4a4948, 0x4f4e4d4c, 0x53525150, 0x57565554, 0x5b5a5958, 0x5f5e5d5c,
0x63626160, 0x67666564, 0x6b6a6968, 0x6f6e6d6c, 0x73727170, 0x77767574, 0x7b7a7978, 0x7f7e7d7c,
SPI CMD EOT (SPI CMD EOT EVENT ENA),
```

5.4.2 I2C stream pre-processing protocol

I²C defines basic types of streams, each of which begins with a START and ends with a STOP:

- Single message where a master writes data to a slave;
- Single message where a master reads data from a slave;
- Combined messages, where a master issues at least two reads and/or writes to one or more slaves.

All I^2C transfers can be assembled into a coherent buffer of <u>commands</u> and data. With different combinations of available commands, any type of I^2C transfer can be generated. PULP's I^2C interface fetches both commands and data from L2 memory. In this way UDMA stream pre-processing protocol component can create complex I^2C transfer fully autonomously and without any intervention of the Fabric Controller RI5CY core. The code below shows an example of a I^2C transfer buffer that generates a write on a 24LC1024 EEProm.

```
char i2c cmd buffer[] = {
 I2C CMD START,
 I2C_CMD_WR,0xA4,
 I2C_CMD_WR,0x00,
 I2C_CMD_WR,0x00,
 I2C_CMD_RPT,0x10,
 I2C_CMD_WR,0x00,0x01,0x02,0x03,
       0x04,0x05,0x06,0x07,
       0x08,0x09,0x0A,0x0B,
       0x0C.0x0D.0x0E.0x0F.
 I2C_CMD_STOP,
 I2C_CMD_WAIT,0x10,
 I2C CMD START,
 I2C_CMD_WR,0xA4,
 I2C CMD WR,0x00,
 I2C_CMD_WR,0x00,
 I2C_CMD_START,
 I2C CMD WR,0xA5,
 I2C_CMD_RPT,0x0F,
 I2C_CMD_RD_ACK,
 I2C_CMD_RD_NACK,
 I2C_CMD_STOP
```

The command sequence starts by generating a start bit on the bus followed by a byte write and waiting for the slave acknowledge. The first byte, following the I²C standard sends the 7 bit address with the last bit coding the access type(0 for write 1 for read) so in this case 0x52 is the address and access is a write. The following two writes are the internal address of the EEProm (0x0000). The following instructions tell the I²C IP to repeat the next instructions 16 times. The instruction to be repeated is the write and the data for each write instruction is queued. Here we do write 16 bytes 0x00, 0x01...0x0F. The I2C_CMD_STOP generates the stop bits and ends the transfer. I2C_CMD_WAIT waits some I2C cycles (in this case 16) and the following I2C_CMD_START restart a new I²C transfer. The start is followed by the address of the peripheral and then by the internal address. I2C_CMD_START generates a restart condition needed by the EEPRom and then sends the 7 bit address but this time with a read flag(0xA5). The next command says to read 15 bytes and sends acknowledge at each byte and then read the last byte followed by a not acknowledge to inform the slave that we are

done with the transfer. A stop bit then finalizes the transfer. All the commands are read through the TX port while each read pushes data to the RX channel.