Compitino di MDAL 31 maggio 2017

Cognome e nome:
Numero di matricola:
IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis.
Parte I, con esercizi a risposta secca. Nelle risposte del tipo SI/NO, le risposte errate contano -1
1. (a) (Punti 1) Si calcoli il seguente prodotto fra matrici:
$\left(\begin{array}{ccc}1&0\\2&2\\3&2\end{array}\right)\left(\begin{array}{ccc}1&0&1\\0&1&1\end{array}\right)$
(b) (Punti 1) Si consideri l'applicazione lineare $T:\mathbb{R}^3\to\mathbb{R}^3$ la cui matrice, rispetto alla base standard, è la matrice calcolata al punto precedente. Trovare una base di $Ker\ T$ e di $Imm\ T$.
2. (Punti 2) Determinare il resto della divisione per 4 di $\sum_{i=0}^{9} {9 \choose i} 2^{9-i} 3^i$.
3. Si consideri \mathbb{R}^4 con il prodotto scalare standard. Siano $v_1 = (1, -1, 2, -2), v_2 = (1, 0, 1, 0)$ vettori di \mathbb{R}^4 (scritti in riga per motivi di spazio).
(a) (Punti 1) Trovare una base di $(Span\ (v_1,v_2))^{\perp}$.
(b) (Punti 1) È vero che, comunque si prendano due vettori v_3, v_4 linearmente indipendenti in $(Span\ (v_1, v_2))^{\perp}$, possiamo concludere che v_1, v_2, v_3, v_4 sono linearmente indipendenti ?

- 4. Si consideri una applicazione lineare $L: \mathbb{R}^2 \to \mathbb{R}^2$ tale che dim $Ker\ L=1$. Le seguenti affermazioni sono vere o false?
 - (a) (Punti 1) Se L ha traccia uguale a 0 allora non è diagonalizzabile.
 - (b) (Punti 1) Se L ha traccia 2 allora è diagonalizzabile.
 - (c) (Punti 1) Se $L^2 \neq \{O\}$ allora L non è diagonalizzabile.
- 5. (Punti 2) Calcolare il massimo comune divisore dei polinomi a coefficienti razionali $f(x) = x^3 1$ e $g(x) = x^3 x^2 + x 1$.
- 6. Sia X un insieme con 10 elementi.
 - (a) (Punti 1) Determinare il numero di coppie ordinate (A,B) di sottoinsiemi di X.
 - (b) (Punti 2) Determinare il numero di coppie ordinate (A,B) di sottoinsiemi di X tali che $A\cup B$ ha esattamente 3 elementi.

Cognome e nome:							
Numero di matricola:							
Esercizi con risposta da motivare dettagliatamente							
Esercizio 1 (Punti 10).	1. Calcolate $\phi(21)$ dove ϕ è la funzione di Eulero.						

- 2. Stabilite se esiste $a \in \mathbb{Z}, \, a \not\equiv 1 \mod 21,$ tale che $a^7 \equiv 1 \mod 21.$
- 3. Trovare tutte le soluzioni intere della congruenza $19^x \equiv 1 \mod 21.$
- 4. Trovate tutte le soluzioni intere della congruenza $19^x \equiv 4 \mod 21$.

Esercizio 2 (Punti 10). Sia $L: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare che, rispetto alle basi standard, ha matrice :

$$\left(\begin{array}{cccc}
-1 & 2 & -2 \\
2 & -4 & 4 \\
-2 & 4 & -4
\end{array}\right)$$

- 1. Stabilite se 0 è un autovalore,
- 2. Trovate tutti gli autovalori.
- 3. Trovate una base di autovettori.
- 4. Trovate una base ortonormale di autovettori.