Evolutionary Multi-Objective Optimization

Yiming Chen, Linh Vu Tu

16 février 2025

Résumé

This is the abstract of the report.

1 Introduction

This is the introduction section. This is where we cite a paper [2].

2 Methodology

This is the methodology section. Another reference [1] is cited here. Lorem ipsum

2.1 Task 2

The Pareto set of LOTZ is defined by all of the individuals of the form 1^k0^{n-k} where $k \in [0..n]$. Indeed, given $\alpha \in \{0,1\}^*$ and $p,q \in \mathbb{N}$, $1^p0\alpha 0^q \prec 1^{p+1}\alpha 0^q$ and $1^p\alpha 10^q \prec 1^p\alpha 0^{q+1}$ with respect to LOTZ. Thus, the Pareto front of LOTZ is $\{(k,n-k)|kin[0..n]\}$. Both of these sets have cardinality n+1.

These results easily generalize to the mLOTZ objective function. Indeed, mLOTZ simply computes LOTZ on **disjoint** chunks of an individual. In other words, Pareto-optimal values are also optimal on the m individual chunks of size n'. It follows that the Pareto set of mLOTZ is simply the set of m-concatenations of individuals of size n' in the Pareto set of LOTZ. Formally, we can write the Pareto set as $1^{k_1}0^{n'-k_1}1^{k_2}0^{n'-k_2}\cdots 1^{k_m}0^{n'-k_m}$ with $k_1, \dots, k_m \in [0..n']$. The Pareto front is written as

$$\{(k_1, n'-k_1, k_2, n'-k_2, \cdots, k_m, n'-k_m) | (k_1, \cdots, k_m) in[0..n']^m \}$$

Both of these sets have cardinality $(n'+1)^{m/2}$.

2.2 Task 3

Our algorithm for non-dominated sorting builds the directed acyclic graph (DAG) corresponding to the partial order defined by the multi-objective function. Since we use adjacency lists, the time complexity is $\mathcal{O}(N^2)$.

Iterating on the fronts (Graph::pop_and_get_fronts) is a flood-fill algorithm. Since we use a queue, this behaves like breadth-first search as every vertex and every edge is visited only once. The complexity of BFS is $\mathcal{O}(N+M) = \mathcal{O}(N^2)$.

Finally, the algorithm terminates and runs in $\mathcal{O}(N^2)$ time.

Proving the correctness of our algorithm requires one extra step. When iterating on a front i, we decrement the in-degree of all of the neighbors for each outgoing edge from i. We can prove by induction over the fronts that the vertices ending up with in-degree zero are exactly those in front i + 1, which concludes the correctness of the algorithm.

2.3 Task 4

The crowding distance of an individual is the sum of its crowding distance relative to each objective. Since there are m objectives, the time complexity of the function has a $\mathcal{O}(m)$ multiplicative factor due to the outermost loop.

Sorting the individuals in a population is performed in $\mathcal{O}(NlogN)$ time, and computing the crowding distance of a single individual has $\mathcal{O}(1)$ runtime since evaluating f is done in constant time.

Finally, the time complexity of computing the crowding distance of a population is $\mathcal{O}(mNlogN)$.

2.4 Task 6

In our batched experiments, we find out that the Pareto front is systematically covered after a few epochs when the population is small $(N \le 1024)$. We choose m and m so that n > m. Since we choose $N = 4M = 4\left(\frac{2n}{m} + 1\right)^{m/2}$, N grows exponentially with m, we had to constrain m and n to relatively small values.

3 Results

This is the results section.

4 Conclusion

This is the conclusion section.

Références

- [1] Another Author. Sample Book Title. Publisher Name, City, Country, 2024.
- [2] Author Name. Example paper title. Journal Name, 10(2):123–145, 2025.