Particle spectrograph

Wave operator and propagator

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	$\frac{1}{k^2 r_3}$	0	0	0
$-\frac{i\sqrt{2}}{kr_3+k^3r_3}$	$\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	$\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$	0	0	0	0
$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$	$-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	0	0	0	0
$\frac{1}{k^2 r_3}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{i\sqrt{2}}{kr_3+k^3r_3}$	0	0	0	0
$\sigma_1^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{eta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{lpha}$	$\tau_{1}^{\#2} +^{\alpha}$
	$\frac{1}{k^2 r_3}$ $\left -\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} \right -\frac{i\sqrt{2}}{k r_3 + k^3 r_3}$ 0 0 0	$\frac{1}{k^2 r_3} - \frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} - \frac{i\sqrt{2}}{k r_3 + k^3 r_3} = 0 0 0$ $\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} \frac{3k^2 r_3 + 2t_2}{(k+k^3)^2 r_3 t_2} \frac{i(3k^2 r_3 + 2t_2)}{k(1+k^2)^2 r_3 t_2} 0 0$	$\frac{1}{k^2 r_3} - \frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} - \frac{i \sqrt{2}}{k r_3 + k^3 r_3} = 0 0 0$ $\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} \frac{3k^2 r_3 + 2t_2}{(k + k^3)^2 r_3 t_2} \frac{i(3k^2 r_3 + 2t_2)}{k(1 + k^2)^2 r_3 t_2} 0 0$ $\frac{i \sqrt{2}}{k r_3 + k^3 r_3} - \frac{i(3k^2 r_3 + 2t_2)}{k(1 + k^2)^2 r_3 t_2} \frac{3k^2 r_3 + 2t_2}{(1 + k^2)^2 r_3 t_2} 0 0$	$\frac{1}{k^2 r_3} - \frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} - \frac{i\sqrt{2}}{kr_3 + k^3 r_3} = 0 0 0$ $\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} \frac{3k^2 r_3 + 2t_2}{(k+k^3)^2 r_3 t_2} \frac{i(3k^2 r_3 + 2t_2)}{k(1+k^2)^2 r_3 t_2} 0 0 0$ $\frac{i\sqrt{2}}{kr_3 + k^3 r_3} - \frac{i(3k^2 r_3 + 2t_2)}{k(1+k^2)^2 r_3 t_2} \frac{3k^2 r_3 + 2t_2}{(1+k^2)^2 r_3 t_2} 0 0 0$	$\frac{1}{k^2 r_3} - \frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} - \frac{i\sqrt{2}}{k r_3 + k^3 r_3} = 0 0 0 0$ $\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} - \frac{i(3k^2 r_3 + 2t_2)}{(k+k^3)^2 r_3 t_2} = 0 0 0$ $\frac{i\sqrt{2}}{k r_3 + k^3 r_3} - \frac{i(3k^2 r_3 + 2t_2)}{(k+k^3)^2 r_3 t_2} - \frac{i(3k^2 r_3 + 2t_2)}{(1+k^2)^2 r_3 t_2} = 0 0 0$ $0 0 0 0 0 0 0$	$\frac{1}{k^2 r_3} - \frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} - \frac{i\sqrt{2}}{k^2 r_3 + k^3 r_3} - \frac{i\sqrt{2}}{k^2 r_3 + k^3 r_3} = 0 0 0 0$ $\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3} - \frac{3k^2 r_3 + 2t_2}{(k+k^3)^2 r_3 t_2} + \frac{i(3k^2 r_3 + 2t_2)}{k(1+k^2)^2 r_3 t_2} = 0 0 0 0$ $\frac{i\sqrt{2}}{k r_3 + k^3 r_3} - \frac{i(3k^2 r_3 + 2t_2)}{(k+k^3)^2 r_3 t_2} + \frac{i(3k^2 r_3 + 2t_2)}{(1+k^2)^2 r_3 t_2} = 0 0 0 0$ $0 0 0 0 0 0 0 0 0$ $0 0 0 0 0 0 0$ $0 0 0 0 0 0 0$

$f_{1^-}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_3$	0	0	0
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$\left -\frac{1}{3} ikt_2 \right $	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_3 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{#1} + \alpha \beta$	$\omega_1^{\#2} + \alpha \beta$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} \dagger^{lpha}$	$\omega_{1}^{\#2} \dag^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

$\omega_{2^{-}}^{\#1}$	0	0	0	,
$f_2^{\#1}_{\alpha\beta}$	0	0	0	#
$\omega_{2}^{\#1}_{\alpha\beta} f_{2}^{\#1}_{\alpha\beta} \omega_{2}^{\#1}_{\alpha}$	0	0	0	#1
	$\omega_{2}^{\#1} +^{\alpha \beta}$	$f_2^{#1} + ^{\alpha\beta}$	$\omega_2^{\#1} +^{lphaeta\chi}$	

Source constraints/gauge generators

 $^{\circ}$

 $\sigma_{1}^{\#2}\alpha == 0$

 \sim

 $t_{1+}^{\#1}\alpha\beta + ik \ O_{1+}^{\#2}\alpha\beta == 0$

 $\sigma_{2}^{\#1}\alpha\beta\chi==0$

0 ==

 $t_2^{\#1}\alpha\beta$.

3

 $\tau_{1}^{\#1\alpha} == 0$

 \sim

 $\tau_{1}^{\#2}\alpha == 0$

 $\tau_{0}^{\#2} == 0$

 $\tau_{0}^{\#1} == 0$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2 +$	
$f_{0}^{\#2}$	0	0	0	0	
$f_{0}^{\#1}$	0	0	0	0	
$\omega_{0^+}^{\#1}$	$6 k^2 r_3$	0	0	0	
·	$\omega_{0}^{\#1}\dagger$	$f_0^{#1}$ †	$f_0^{\#2} +$	$\omega_{0^-}^{\#1} \dagger$	

$oldsymbol{O}_{0}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
, 0	0	0	0	0
, 0	0	0	0	0
+ ₀	$\frac{1}{6k^2r_3}$	0	0	0
•	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1} \uparrow$	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}\dagger$

Total constraints:

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$