	Andrew	Yuan		EID378	5	PS	51			
1) Sec	attached c	ode								
	the connection						+\$6000			
initial m	argin: SD o	go instial	=) \$60				(60000ved)			
	untain at 1 = \$18000		of licobility	in equiti	, ,	x= total	new shams	value		
	-\$18000->									
	- \$18000									
×	= \$14400	⇒> X=	=300·(Nau	J share valu	re> =\$1	4,400	new	Share value	ι = \$4°	
C) Stock pric	e = \$35	⇒ liabi	lities = 30	00 . \$35					(0500 = \$750	פ
Leverage zer	= Eq	liab111ties wty	\$ 6000	2						
Leverage Aftu	Total l	iabilities uty	\$ 10500	= ,	ı. ų					
$R0\varepsilon = \frac{\varepsilon}{Ini}$	ornings Hal Equity	\$ 6000	= 0	.25						
Maroin Rat	so = Liabili	<u>\$750</u>	0 = 0.	714						
3) R = a, +	b, Rn + E,	, R ₂ = (02 + b2 Rr	1 + E2						
Rtot =	w(R, + W2	R2 = W1	a, tb, Rnt	- E') L /	42 (az +	62 Rm +	(₂)			
= (Rn(b, W, +	b2W2) +	w, (a, + e,) + V2(Q2	+ (2)					
BM, E, , 12 U	awralated =	> var(krox)	= var (Rm(b, W, + b	2W2))+	vac (w, (λ, + E,))+ VO	r(V2(G2 +	€ ₂))	
=> vor(R+	ot) = (pin'	+62W2)201	2 + Wi	0, 2 + W	$_{1}^{2}\sigma_{2}^{2}$					

```
Mtst = M (RM (b, w, + b2 W2)) + M(W, (a, + E, )) + M(W2 (a2 + E2))
                         = b1W1Mm+ b2W2Mm + W1Q1+ V1M, + W2Q2+ W2M2
 P(R_{\text{TOF}} \downarrow O) = P(\frac{R_{\text{TOF}} - M_{\text{PSF}}}{\sigma_{\text{FM}}} \neq \frac{O - M_{\text{PSF}}}{\sigma_{\text{FM}}}) = \phi(\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}})
=) A = O , B = (\frac{O - M_{\text{PSF}}}{\sigma_{\text{FM}}}) = (\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}}) = \phi(\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}})
=(\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}}) = (\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}}) = \phi(\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}})
=(\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}}) = (\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}}) = (\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}}) = (\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}})
=(\frac{O - M_{\text{PSF}}}{\sigma_{\text{FOF}}}) = (\frac{O - M_{\text{PSF}}}{\sigma_{\text{FO
 4) LOAN A: $120,000 - 0.92 = $110400 so percent annual rare 13 $110400 = 8.70 %
   Loan B: $110,000 · U. 94 = $103400 so percent annual rate is $1600 = 6.38 4.
   Loen C:$130,000 · 0.935 = $121550 so percent annual rate 1> \frac{\dagger{4} 8450}{4121550} = 6.95 \frac{1}{6}
     Never take loom I as the interest pake is much higher than the other two loans, especially
    considering law C provides more cush and a smaller rate. Between loan B and C, one might
    consider B if they do not ush to voice as much cash for a charger loan, or one might choose c
    fil the extra-cash at a slightly higher cost
 5) S_n = S N S_{n-1} w prob pa
                                                                                                                      ano orbitrage since deceeu
Initial Portfolio Ot t=0: Xo = DoSo + Yo
Of t=1: x = 4, S, + 4, e' => x = A, (us,) + 4, e'
                                                                                                         \chi_1 = \Delta_1(dS_0) + \Psi_0 e^{\Gamma}
at t-2: x_2 = \Delta_2 S_2 + \Psi_2 e^r = X_2 = \Delta_2 (u^2 S_0) + \Psi_1 (u S_0) e^r
                                                                                                           X_2 = A_2 (udS_0) + \Psi_1(uS_0)e^{\Gamma} prok one since X_2 = V_2(S_2) is
                                                                                                                                                                                                                       path independent
                                                                                                          X_2 = \Lambda_2(dus_0) + \Psi_1(ds_0) e^{-\epsilon}
                                                                                                       \chi_2 = \Delta_2(\lambda^2 S_0) + \Psi_1(\lambda S_0) e^{\epsilon}
.. 6 equations w/ variables dependent on each other so we have a system
b) No pa or pu in these constraints
c) 6 equations w/: 6 unknowns (So, Ao, Yo, Y, (uso), Y(uso), 1, (uso), 1, (uso))
```

l) I4	•				•													
egunt: for									_						, M	ars	it is	plawib
) IF du		_					•					<u> </u>						
Which							± Δ ₂ Mure						wH	しいいり	, anı	L (As	suminy	
ا. دنداده													,				unig	
nitula	. S Y	ice (LOE TFi	**************************************	INWH	11×	v A	U (prycr	59	ive	(Thu	Vlot	<i>(</i> /\	vertible	i).		