Diagnóstico assistido com ML para detecção e classificação de sopros cardíacos usando fonocardiogramas digitais

Estudante: Adrian Alejandro Chavez Alanes

Introdução

Os sopros cardíacos são indicadores de insuficiência nas válvulas do coração e seu diagnóstico costuma ser subjetivo e variável, dependendo muito da experiência do médico. Por isso, o objetivo deste projeto é desenvolver uma ferramenta que auxilie no diagnóstico.

Fisiologia

- <u>Coração</u>: Órgão vital responsável por bombear o sangue para todo o corpo, composto por duas fases principais: sístole e diástole.
- Sopros cardíacos: São sons anormais produzidos por fluxo turbulento de sangue, associados a problemas nas válvulas cardíacas.
- <u>Fonocardiogramas</u>: São registros digitais não invasivos dos sons cardíacos, sendo uma ferramenta importante para a análise clínica.

Representação do som cardíaco

The CirCor DigiScope Phonocardiogram Dataset

Jorge Oliveira 🐧 , Francesco Renna 🐧 , Paulo Costa 🐧 , Marcelo Nogueira 🐧 , Ana Cristina Oliveira 🐧 , Andoni Elola 🐧 , Carlos Ferreira 🐧 , Alipio Jorge 🐧 , Ali Bahrami Rad 🐧 , Matthew Reyna 🐧 , Reza Sameni 🐧 , Gari Clifford 🐧 , Miguel Coimbra 🐧

Published: May 10, 2022. Version: 1.0.3

- Aquisição dos dados: O dataset CirCor contém sons cardíacos coletados com estetoscópios digitais em ambientes clínicos no Brasil.
- Quantidade: São 5.272 gravações em formato WAV, com duração de 4,8 segundos a 80,4 segundos, provenientes de 1.568 pacientes.
- <u>Múltiplos locais de ausculta:</u> As gravações foram realizadas em diferentes pontos do tórax, permitindo uma análise completa do ciclo cardíaco

Distribuição dos dados

Análise dos Dados

Áudio tamanho Original

Áudio Filtrado Tamanho Original

Janela 5 segundos

Treinamento

Abordagem 1

- Bloque de processamento: Mel Frecuency Energy
- Tamanho de janela: 2400 ms
- Passo entre janela: 200 ms
- Validação: Automático 20%

500

Abordagem 1

- Bloque de processamento: Mel Frecuency Energy
- Tamanho de janela: 2400 ms
- Passo entre janela: 200 ms
- Validação: Automático 20%

Abordagem 2

- Bloque de processamento: Mel Frecuency Energy
- Tamanho de janela: 2400 ms
- Passo entre janela: 200 ms
- Validação: Automático 20%

Acurácia de Treinamento Acurácia de Validação

Resultados

• Comparação de desempenho entre os três modelos.

Modelo	Classes	Acc_Tre (%)	Acc_Val (%)	Lat (ms)	Tamanho (KB)
A1/M1	2	95,6	95,4	1148	80,7
A1/M2	3	98,35	97,5	1110	85,5
A2/M1	4	97,15	96,0	1117	85,7

Testes

- Modelos testados com diferentes áudios.
- Uso de caixa de som para amplificação dos áudios de teste.

normal				sopro			
	NORMAL	SOPRO			NORMAL	SOPRO	
44	1.00	0.00		203	0.00	1.00	
43	1.00	0.00		202	0.00	1.00	
42	1.00	0.00		201	0.00	1.00	
41	1.00	0.00		200	0.24	0.76	
40	0.99	0.01		199	0.00	1.00	
39	0.25	0.75		198	0.00	1.00	
38	0.71	0.29		197	0.00	1.00	
37	0.99	0.01		196	0.00	1.00	
36	1.00	0.00		195	0.00	1.00	
35	1.00	0.00		194	1.00	0.00	
34	1.00	0.00		193	1.00	0.00	
33	1.00	0.00		192	1.00	0.00	

19:43 🛡

Vo 4G | 76 □

Resultados

- Test: 81 (normal) 85 (sopro).
- Test: 31 (earlysys) 30 (holosys)– 32 (midsys).
- Test: 28 (normal) 35 (midsys) –
 28 (holosys) 24 (earlysys).

MATRIZ DE CONFUSÃO NO TESTE — MODELO BINÁRIO

Classes	Normal	Sopro	Uncertain
Normal	93,3%	3,4%	3,2%
Sopro	4,8%	92,0%	3,2%

Matriz de Confusão no Teste — Modelo 2 Abordagem 1

Classes	EarlySys	HoloSys	MidSys	Uncertain
EarlySys	90,4%	6,4%	0,0%	3,0%
HoloSys	0,0%	98,1%	1,9%	0,0%
MidSys	0,0%	1,3%	98,2%	0,4%

Matriz de Confusão no Teste — Modelo Multi-4 Classes

Classes	EarlySys	HoloSys	MidSys	Normal	Uncertain
EarlySys	88,9%	1,6%	1,2%	3,2%	5,2%
HoloSys	0,3%	92,0%	3,4%	0,3%	4,0%
MidSys	0,0%	0,8%	99,0%	0,0%	0,2%
Normal	2,3%	1,1%	0,0%	95,1%	1,5%

Conclusões

- O uso de ML para a detecção e classificação de sopros cardíacos em sinais de áudio é uma solução viável e promissora.
- O processamento digital de sinais é fundamental para compreender e preparar adequadamente os dados.
- Existem diferentes abordagens: desde o uso de features tabulares até representações no domínio tempo-frequência, como os espectrogramas.
- A combinação de múltiplas abordagens pode gerar modelos mais robustos.
- Esse tipo de solução tem potencial para ser aplicada de forma efetiva em ambientes hospitalares reais.

Representações Espectrais

- ✓ Escalograma (Continuous Wavelet Transform CWT)
- ✓ Alta capacidade de manter a informação espectral completa sem compressão

Obrigado

https://github.com/aadlrei/TP___557-Topicos-Avancados-em-loT-e-ML