Анализ цен на недвижимость города Темиртау(Казахстан)

по предмету «Статистическое оценивание и планирование наблюдений».

Преподаватель: Булгакова Мария Александровна

Выполнил: Янн Александр, группа 19.Б02-ПУ

Пункт 1.

В этой работе проанализированы цены на недвижимость в городе Темиртау (Казахстан). В качестве объясняющих переменных были выбраны такие параметры:

- 1.Количество комнат(1,2,3,4)
- 2.Площадь квартиры (м^2)
- 3.Район (в черте города или загородом) (0,1)
- 4.Год постройки(гггг)
- 5.Площадь кухни(м^2)
- 6.Этаж(n)
- 7. Санузел (совмещенный или раздельный) (0,1) Объясняемая переменная **цена**

Количество наблюдений 50. Взятые с сайта krisha.kz Данные параметры являются основными и влияют на ценообразование квартир, так как от них зависит комфортность условий проживания.

Переменная **Район** является фиктивной и была обработана, как **1** центре города, **0** на окраине. Переменная **Санузел**, также является фиктивной и была обработана, как **0** совмещенный, **1** раздельный. Пример первых десяти данных:

1	Комнат(х1)	Площадь(х2)	Район(х3)	Год постройки(х4)	Площадь кухни(х5)	Этаж(х6)	Санузел(х7)	Цена(у)
2	1	31,3	0	1970	6	5	1	570000
3	3	55,3	0	1977	5,9	8	1	1000000
4	2	50	1	1967	6	4	0	1300000
5	4	80	1	1974	12	9	1	1950000
6	2	41	1	1970	5	2	1	1200000
7	3	47	0	1966	6	2	1	1020000
8	4	80	1	1980	10	1	1	2500000
9	1	31	0	1980	6	5	0	750000
10	3	64,2	1	1991	8,9	5	1	2050000

Пункт 2.

Проверка на мультиколлинеарность.

Составим корреляционную матрицу Q.

	Комнат(х1)	Площадь(х2)	Район(х3)	Год постройки(х4)	Площадь кухни(х5)	Этаж(х6)	Санузел(х7)	Цена(у)
Комнат(х1)	1	0,823046628	0,480944531	0,028406358	0,199385978	0,021414929	0,233663824	0,617236074
Площадь(х2)	0,823046628	1	0,522578294	0,357884879	0,580966399	0,047937767	0,314181148	0,842782473
Район(х3)	0,480944531	0,522578294	1	0,354182055	0,291690352	0,119996	0,21821789	0,68957134
Год постройки(:	0,028406358	0,357884879	0,354182055	1	0,610554526	0,064203078	0,330290321	0,452253706
Площадь кухни	0,199385978	0,580966399	0,291690352	0,610554526	1	-0,015978389	0,131137605	0,637265637
Этаж(х6)	0,021414929	0,047937767	0,119996	0,064203078	-0,015978389	1	0,237122203	0,021545598
Санузел(х7)	0,233663824	0,314181148	0,21821789	0,330290321	0,131137605	0,237122203	1	0,266808979
Цена(у)	0,617236074	0,842782473	0,68957134	0,452253706	0,637265637	0,021545598	0,266808979	1

Определитель матрицы Q = 0.038045414. Стремится к нулю, дополнительно, проведем следующий тест.

Вычислим $Det(X^TX)=0$. Из проведенных тестов, мы можем утверждать о мультиколлинеарностьи. Пункт 3.

Из модели уберем те факторы которые имеют большую корреляцию друг с другом(≥ 0.7). В нашем случае это Площадь и количество Комнат. Удалим количество Комнат.

Составим новую корреляционную матрицу Q.

	Площадь(х2)	Район(х3)	Год постройки(х4)	Площадь кухни(х5)	Этаж(х6)	Санузел(х7)	Цена(у)
Площадь(х2	1	0,52257829	0,357884879	0,580966399	0,047937767	0,314181148	0,842782473
Район(х3)	0,52257829	1	0,354182055	0,291690352	0,119996	0,21821789	0,68957134
Год построй	0,35788488	0,35418205	1	0,610554526	0,064203078	0,330290321	0,452253706
Площадь ку	0,5809664	0,29169035	0,610554526	1	-0,015978389	0,131137605	0,637265637
Этаж(х6)	0,04793777	0,119996	0,064203078	-0,015978389	1	0,237122203	0,021545598
Санузел(х7)	0,31418115	0,21821789	0,330290321	0,131137605	0,237122203	1	0,266808979
Цена(у)	0,84278247	0,68957134	0,452253706	0,637265637	0,021545598	0,266808979	1

Определитель матрицы Q = 0.209666424; Не стремится к нулю, проверим дальше.

Вычислим $Det(X^TX) = 6,25426E+15$. Не стремится к нулю. Проведем vif-test:

•						
x2=y	r^2(1)	0,5242275	vif1	2,1018448	мультико	ллинеарности нет
x3=y	r^2(2)	0,3285022	vif2	1,4892081	vif<5	
x4=y	r^2(3)	0,4771901	vif3	1,9127411		
x5=y	r^2(4)	0,5619261	vif4	2,2827197		
x6=y	r^2(5)	0,0676449	vif5	1,0725528		
	r^2(6)	0,2393556	vif6	1,3146748		

Итог: мультиколлинеарности нет.

Пункт 4.

	Коэффициенты	ндартная оши	t-статистика	Р-Значение	Нижние 95%	Верхние 95%	Нижние 95,0%	Верхние 95,0%
Ү-пересечение	-2324004,456	62708429,87	-0,03706048	0,9706083	-128787605,8	124139596,9	-128787605,8	124139596,9
Переменная Х 1	160818,5359	27558,11256	5,835615031	6,338E-07	105242,3052	216394,7665	105242,3052	216394,7665
Переменная Х 2	3069876,967	666427,0171	4,606471359	3,631E-05	1725898,8	4413855,134	1725898,8	4413855,134
Переменная Х 3	1109,168368	32036,3532	0,034622179	0,9725412	-63498,29523	65716,63197	-63498,29523	65716,63197
Переменная Х 4	431555,7414	181182,4762	2,381884554	0,0217195	66166,45504	796945,0278	66166,45504	796945,0278
Переменная Х 5	-76007,4883	113109,6752	-0,67198043	0,5051908	-304114,8879	152099,9113	-304114,8879	152099,9113
Переменная Х 6	38135,7089	683194,6079	0,055819687	0,955744	-1339657,527	1415928,945	-1339657,527	1415928,945

Можно обратить внимание, что при фиксации всех остальных параметров, кроме X5(площадь кухни), чем больше будет площадь кухни, а следовательно жилая площадь будет меньше, цена на квартиру будет меньше.

Пункт 5.

Проверим значимость регрессии в целом. Вычислим значение F-статистики и ее критическую точку.

F	35,55095773
Грасп обр	2,318498031

Можем сделать вывод о том, что регрессия в целом значима. Рассчитаем значение t-статистики для каждого коэффициента.

1	5,835615031
2	4,606471359
3	0,034622179
4	2,381884554
5	-0,671980431
6	0,055819687
t	2,016692199

Значимыми переменными являются Площадь, Район, Площадь кухни.

Пункт 6.

Удалим такие переменные: **Этаж, год постройки, санузел.** Построим регрессионную модель.

	Коэффициенты
Ү-пересечение	-432099,0194
Площадь Х 1	160867,1329
Район X 2	3029464,481
Площадь кухни Х 3	439812,0182

Пункт 7.

Добавим фактор площадь.

Нормиров

анный R- 0,7042 квадрат 4651 Добавим в модель.

К фактору площади добавим район.

Нормиров

анный R- 0,7869 квадрат 8534

Порог в 0,1 не преодолен -> не добавляем в модель.

К фактору **площади** добавим фактор **год постройки** Нормирова 0,72508

нный R-

квадрат 526

Порог в 0,1 не преодолен -> не добавляем в модель.

К фактору площади добавим фактор площадь кухни.

Нормирова

нный R- 0,7322 квадрат 5586

Порог в 0,1 не преодолен -> не добавляем в модель.

К фактору площади добавим фактор этаж

Нормирова

нный R- 0,6983 квадрат 254

Порог в 0,1 не преодолен -> не добавляем в модель.

К фактору площади добавим фактор сануезл

Нормирова

нный R- 0,6979 квадрат 5862

Порог в 0,1 не преодолен -> не добавляем в модель.

Пункт 8.

Проанализируем полученные модели по коэффициенту нормаированному R-квадрату

В первой модели от 6 переменных значение нормированного R-квадрата = 0.808822077978169.

Рассмотрим моедель полученную в Пункте 6 от трех переменных. Нормированный R-квадрат =

0,819378119718831. Значение выросло, из этого следует, что некоторые факторы превносили «шумы» в модель.

Рассмотрим моедель полученную в Пункте 7 из одной переменной. Нормированный R-квадрат =

0,704246511036873. Значение упало на ~ 0,1. Если необходима «простая» оценка можно использовать только общую площадь.

Пункт 9. График цен(сортированных) от n

Пункт 10.

		Доверительный интервал дл	ія параметра
	Левая граница		Правая граница
Площадь	105242,3052		216394,7665
Район	1725898,8		4413855,134
Площадь кухни	66166,45504		796945,0278

Пункт 11.

, , y , , , , , , , , , , , , , , , , ,			
	bi(стандартизированные)		
Площадь	0,528614421		
Район	0,346506823		
Площадь кухни	0,229085723		

Чем больше стандартизированный коэффициент, тем больший вклад вносит в итоговую цену квартиры данный параметр. В нашем примере, самым значимым явлется площадь.

Пункт 12.

Коэффициент детерминации показывает долю объясненности дисперсии зависимой переменной дисперсиями рассматриваемых в модели факторов.

R-квадрат	0,830436602
Нормированный R-	
квадрат	0,81937812

Значение 0,8 явеляется хорошим результатом. Средняя ошибка аппроксимации данной модели равна $\sim 10\%$, а среднее абсолютное отклонение равняется MAD = 1288977,0.

Первое значение показывает, на сколько процентов в среднем модель ошибается относительно известных значений, а второе показывает, на сколько в среднем модельная цена отличается от реальной.

Заметим, что в конце присутствует несколько выбросов, в общем и целом дисперсия кажется постоянной. Есть основания ожидать автокорреляцию. Можно ожидать нулевое мат. ожидание.

Тест на нулевое мат. ожидание

Статистика -5,91415Е-16

Значение крит. точки -1,96.

В критическую область не попадает, из этого следует принятие нулевой гипотезы о равенстве математического ожидания нулю.

Тест на гомоскедастичность

Goldfeld-Quandt test

```
data: m2 GQ = 4.7479, df1 = 16, df2 = 16, p-value = 0.001682 alternative hypothesis: variance increases from segment 1 to 2
```

Воспользовавшись тестом Гольфельда-Квандта принимается альтернативная гипотеза, о том что гомоскедастичность отсутствует.

Возможная причина этого – выбросы, которые можно увидеть на графике.

Тест на автокорреляцию

```
Durbin-Watson test
```

```
data: model
DW = 1.7938, p-value = 0.2294
alternative hypothesis: true autocorrelation is greater than 0
```

Автокорреляции первого порядка не обнаружена. Проверим на k>2

Автокорреляции высших порядков также не обнаружено.

Тест на нормальное распределение.

Тест Шапиро-Уилка

Shapiro-Wilk normality test

p-value>0,05 из этого следует, что нет оснований отрицать что остатки распределены нормально.

Пункт 15.

Прогноз для значений.

Площад		Площа	эдь	
Ь	Район	кухни		Прогнозируемая цена
77,9346	0		10,3849	16672420,46
77,9346	1		10,3849	19701884,94

Пункт 16.

Доверительный интер	овал для точечного прогноза Оего н	вартала
s oct	1838788,747	
m1y^p	2021127,709	
tкp	2,012895599	
12604101,39	ур	20740739,53
Доверительный интер	рвал для точечного прогноза 1его к	вартала
s oct	1838788,747	
m2y^p	1915541,298	
15846100,29	ур	23557669,59
Доверительный инте	рвал для мат ожидния прогноза Ое	го квартала
s oct	1838788,747	
mMx(y) 14983730,42	838935,7304	18361110,5
	рвал для мат ожидния прогноза 1е	го квартала
S OCT	1838788,747	
mMx(y)	536800,1562	20702427
18621362,27		20782407,61