Applied Regression

Multiple Linear Regression Model (MLR Model)

Model Building - Part-2

Module 6 Lecture - 6-2

In the last lecture, we have evaluated all possible models and picked one out of that. But when number of variables is large then evaluating all possible regressions can be burdensome computationally, various methods have been developed for evaluating only a small number of subset regression models by either adding or deleting regressors one at a time. These methods are generally referred to as selection-type procedures. They can be classified into three broad categories: (1) forward selection, (2) backward elimination, and (3) stepwise regression.

Forward Selection:

This procedure begins with the assumption that there is no regressors in the model other than the intercept. At each step one variable is selected and added to the model if the criterion is met. To perform the forward selection we need to choose a significance level which will be used by the process to test the significance of the variable. Lets say that value is α .

Step-1: The first X_i selected to enter the model is the one that has the largest simple correlation with the response variable y. Suppose that this regressor is x_1 . This is also the regressor that will produce the largest value of r^2 and hence the F statistic for testing significance of regression (which is same as testing the variable). But this regressor is entered if the corresponding

p-value is smaller than the α .

Step-2: The second X_i chosen for entry is the one that now has the largest correlation with y after adjusting for the effect of the first regressor (X_1) on y which has already entered the model. This type of correlations is called partial correlations. "Partial Correlations" are the simple correlations between the residuals from two separate regressions.

(1) Model:
$$Y = \beta_0 + \beta_1 X_1 + e \implies \hat{e}_i = y_i - \hat{\beta}_0 + \hat{\beta}_1 X_{1i}$$

(2) Model:
$$X_2 = \theta_0 + \theta_1 X_1 + e \implies \hat{e}_i = x_{2i} - \hat{\theta}_0 + \hat{\theta}_1 X_{1i}$$

There is another way to look at the same situation. At this step that X_j is chosen which has the highest t-stat value in the parameter estimate table from the model with two regressors $(X_1 \& X_j)$. But also the p-value for X_j has to be less than the α to enter the model. Else the selection procedure will stop.

Step-i - In general, at each step it picks one from the remaining candidates (say X_k) and fit a model and take a look at the t-stat and pick the one with highest t-stat but must have p-value less than the chosen α . If there is none with p-value less than the chosen α then the selection procedure stops and declare the last step model as the final one.

Remark: Note that once a variable is picked, it never leaves the model even if its p-value may have increased beyond α after addition of the next variable. So we may end up with a model where few of the variables are insignificant at level α .

Example: Lets look at the previous example (Data B21) using Forward Selection.

Forward Selection - Example

scepwise Regre	ssion: y ve	rsus XI, X2	, X3, X4
Forward select	ion. Alpha-	to-enter: 0	.25
Response is y	on 4 predic	tors, with 1	N = 13
Step	1	2	3
Constant	117.57	103.10	71.65
x4	-0.738	-0.614	-0.237
T- Value	-4.77	-12.62	-1.37
P-Value	0.001	0.000	0.205
x1		1.44	1.45
T-value		10.40	12.41
P-Value		0.000	0.000
x2		02	0.42
T-Value			2.24
R-Value			0.052
S	8.96	2.73	2.31
R-Sq	67.45	97.25	98.23
R-Sq(adj)	64.50	96.70	97.64
Mallows C-p	138.7	5.5	3.0

In this example,

Step-1 - X_4 is selected as it has the highest correlation with Y which also means that this X_4 has the g=highest correlation among the 4 SLR models.

Step - 2 AT this step 3 models are compared namely, (X_4, X_1) , (X_4, X_2) , and (X_4, X_3) , and for each of these models we look at line corresponding to $X_1, X_2, \& X_3$ in the parameter estimates tables. It seems X_1 has the highest t-stat value.

Step - 3 Now $(X_4\&X_1)$ are both in the model so two new models are compared namely models with (X_4,X_1,X_2) and (X_4,X_1,X_3) . Again By looking at the t-tables X_2 is added to the model.

Step - 4 Finally there is only one remaining to be added and so the model with all four is looked at but X_3 is not significant and hence the process stopped and final model is

$$Y = \beta_0 + \beta_1 \cdot X_4 + \beta_2 \cdot X_1 + \beta_3 \cdot X_2 + \epsilon$$

Backward Elimination

Forward selection begins with no regressors in the model and attempts to insert variables until a suitable model is obtained. Backward elimination attempts to find a good model by working in the opposite direction.

Step-1 We begin with a model that includes all K candidate regressors i.e the Full Model. We look at the parameter estimate table and select the variable with highest p-value (alternatively lowest value of |t - stat|) say X_j . If p-value corresponding to X_j is smaller than the α then the process stops as it assures that all the variables are significant at level α . But if highest p-value is greater than α then that variables is dropped and we rerun the model after dropping.

Step-i In general, it runs the model with current set of variables and variable with highest p-value is dropped if it is bigger than α . Else process stops as no variable to drop.

Remark: Backward elimination is often a very good variable selection procedure. It is particularly favored by analysts who like to see the effect of including all the candidate regressors, just so that nothing obvious will be missed. Also it guaranties that all the variables are significant once process

stops.

Example: Hald Cement Data - B21. Here Backward selection is applied with $\alpha=0.10$

Backward Elimination - Example

Stepwise	Regression: y	versus x1	, x2, x3, x4
Backward	elimination.	Alpha-to-I	Remove: 0.1
Response	is y on 4 pre	dictors, w	ith $N=13$
Step	1	2	3
Constant	62.41	71.65	52.58
×1	1.55	1.45	1.47
T- Value	2.08	12.41	12.10
P-Value	0.071	0.000	0.000
×2	0.510	0.416	0.662
T-Value	0.70	2.24	14.44
P-Value	0.501	0.052	0.000
x 3	0.10		
T-Value	0.14		
P-Value	0.896		
x4	-0.14	-0.24	
T- Value	-0.20		
P- Value	0.844		
_			
S	2.45		
R-Sq	98.24		
R-Sq(adj	97.36	97.64	97.44
Mallows C	C-p 5.0	3.0	2.7

Step-1 When full model has been run, it shows that highest p-value = 0.896 (the smallest t value is 0.14), and it is associated with x_3 and it is also bigger than $\alpha = 0.10$. Thus, x_3 is removed from the model.

Step-2 We see the results of fitting the three-variable model involving (x_1, x_2, x_4) . The highest p-value which is associated with x_4 is greater than 0.10. Hence it is dropped from the model.

Step-3, We see the results of fitting the two-variable model involving (x_1, x_2) . All the p-values are smaller than 0.10, hence no further regressors can be removed from the model. Therefore, backward elimination terminates, yielding the final model as

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_1 \cdot X_2 + \epsilon$$

Stepwise Regression:

One of the most popular process among these is the stepwise regression algorithm. It is a combination of Forward and Backward. It starts like forward selection method and as soon as it adds a variable it takes a look at the model like Backward does and tries to drop any of the variables in the whole set. In general, a regressor added at an earlier step may now be redundant because of the relationships between it and regressors now in the equation. As a result one step of Forward is followed by a step like Backward. When there is no variable to drop and no variable to add it stops.

Stepwise regression requires two cutoff values, one for entering variables (like Forward) and one for dropping them (like Backward).

Previous table presents the results of using stepwise regression algorithm on the same data. Significance level (α) for entry and stay is specified 0.15.

Step-1: Like Forward selection, the procedure begins with no variables in the model and adds x_4 as it has the highest correlation.

Step-2: Because Backward elimination will not drop anything, x_1 is added to the model as before.

Stepwise Selection - Example

Stepwise Regre	ssion: y ve	rsus x1, x2	, x3, x4	
Alpha-to-Enter	c: 0.15 Alp	ha-to-Remo	ve: 0.15	
Response is y	on 4 predic	tors, with	N = 13	
Step	1	2	3	4
Constant	117.57	103.10	71.65	52.58
x4	-0.738	-0.614	-0.237	
T- Value	-4.77	-12.62	-1.37	
P-Value	0.001	0.000	0.205	
x1		1.44	1.45	1.47
T- Value		10.40	12.41	12.10
P- Value		0.000	0.000	0.000
x2			0.416	0.662
T- Value			2.24	14.44
P- Value			0.052	0.000
S	8.96	2.73	2.31	2.41
R-Sq	67.45	97.25	98.23	97.87
R-Sq(adj)	64.50	96.70	97.64	97.44
Mallows C-p	138.7	5.5	3.0	2.7

Step-3: Checking with Backward elimination shows that both the variables are significant and hence nothing is dropped.

Step-4 Again application of forward step adds X_2 to the model as its

p-value is smaller than 0.15.

Step-5 Now looking at the parameter estimates table and using Backward elimination rule shows p-value for $X_4 = 0.205 > 0.15 = \alpha$. Hence X_4 is dropped.

At this point the only remaining candidate regressor is x_3 , which cannot be added because its p-value is not small enough. Therefore, stepwise regression terminates with the model This is the same equation identified by the all-possible-regressions and backward elimination procedures.

Example 4.1 (Revisit) Consider the National Football League data.

a. Use the forward selection algorithm to select a subset regression model. Solution:

Forward Selection - Example 4.1 ($\alpha = 0.10$)

Step	Variable	Estimate	StdErr	FValue	ProbF
1	Intercept	21.78825	2.69623	65.3	< .0001
1	x8	-0.00703	0.00126	31.1	<.0001
2	Intercept	14.71267	2.61753	31.59	<.0001
2	x2	0.00311	0.00070745	19.34	0.0002
2	x8	-0.00681	0.00096584	49.69	<.0001
3	Intercept	-1.80837	7.90086	0.05	0.8209
3	x2	0.0036	0.000695	26.8	<.0001
3	x7	0.19396	0.08823	4.83	0.0378
3	x8	-0.00482	0.00128	14.22	0.0009

As we see in the above output that x_8 has entered first and then X_2 and then x_7 . No other variables had small enough p-value (less than 0.10) to enter the model.

Summary of the step along with the partial r-square is given below.

Step	Entry	k	Partial RSq	Rsquare	Ср	FValue	ProbF
1	x8	1	0.5447	0.5447	20.4444	31.1	< .0001
2	x2	2	0.1986	0.7433	3.059	19.34	0.0002
3	x7	3	0.043	0.7863	0.8591	4.83	0.0378

b. Use the backward elimination algorithm to select a subset regression model.

Solution: The Backward elimination process went through the following steps. The significance level used was also 0.10.

Backward Elimination - Example 4.1 ($\alpha = 0.10$)

Step	Var Removed	Number In	Partial RSquare	Model Rsquare	Ср	FValue
1	x5	8	0	0.8156	8	0
2	x1	7	0.0017	0.8139	6.165	0.17
3	x6	6	0.0021	0.8118	4.3711	0.23
4	x3	5	0.0053	0.8065	2.8862	0.59
5	x4	4	0.0053	0.8012	1.4065	0.61
6	x9	3	0.0149	0.7863	0.8591	1.72

It is easy to follow the reasoning behind backward elimination procedure as it runs the current set of regressors and look at the parameter estimates table. If you look at its output (in the last slide), it is very clear that why x_5 is dropped first and then followed by x_1 and on. The only thing look at the p-values of the variables and drop the variable with the highest p-value if it is above 0.10.

c. Use stepwise regression to select a subset regression model.

Solution: Stepwise only added exactly like forward and did not drop (like Backward) at any stage. So output is same as Forward.

d. Comment on the final model chosen by these three procedures.

In this problem, all three process ended up in the same model.

$$Y = \beta_0 + \beta_8.X_8 + \beta_2.X_2 + \beta_7.X_7 + e$$

Remark: But it is not necessary that all three process will provide the same answer. Then it is necessary to take a look at the model using other criterion like AIC, BIC, PRESS etc.

Example 4.1. Consider the National Football League data.

Restricting your attention to regressors x_1 (rushing yards), x_2 (passing yards), x_4 (field goal percentage), x_7 (percent rushing), x_8 (opponents rushing yards), and x_9 (opponents passing yards), apply the all-possible-regressions procedure.

Evaluate R_p^2 , C_p , and MSE for each model. Which subset of regressors do you recommend?

Solution: The possible models were run and sorted according to the $AdjR^2$, from highest to Lowest and then top 15 are presented in next slide.

It seems that the there are two models which are the two finalists. MDL-1 and MDL-4. These two are close in almost every respect. MDL-1 mainly beats MDL-4 in $Adj - R^2$ (and hence MSE) and marginally in AIC. The C_p value is lower for MDL-4 but MDL-1 is closer to p=4. While MDL-4 has lower BIC and marginally lower in PRESS. But one thing is important that x_9 was not significant in the parameter estimates table and MDL-4 has smaller number of variables which is always preferred. Also if correlations are calculated then it shows that x_9 has a significant positive correlation with x_8 ($r_{89} = 0.4174$, p-value = 0.0271). Hence by looking at all things it looks like MDL-4 should

be recommended.

All Possible Models - Top 15 by $Adj - R^2$ - Problem 10.1

MDL	k	Adjrsq	RSquare	Ср	AIC	BIC	MSE	SSE	Var	Press
1	4	0.767	0.801	4.04	33.58	38.14	2.83	65.00	x2 x7 x8 x9	87.66
2	5	0.763	0.807	5.41	34.77	40.27	2.87	63.14	x1 x2 x7 x8 x9	
3	5	0.763	0.807	5.45	34.82	40.30	2.88	63.26	x2 x4 x7 x8 x9	
4	3	0.760	0.786	3.69	33.60	36.99	2.91	69.87	x2 x7 x8	87.46
5	4	0.759	0.795	4.73	34.45	38.66	2.91	67.04	x1 x2 x8 x9	101.61
6	6	0.756	0.811	7.00	36.23	42.68	2.95	61.94	x1 x2 x4 x7 x8 x9	
7	4	0.753	0.789	5.36	35.21	39.12	3.00	68.89	x2 x4 x7 x8	94.50
8	4	0.752	0.789	5.38	35.24	39.14	3.00	68.97	x1 x2 x7 x8	
9	3	0.750	0.778	4.66	34.73	37.78	3.03	72.75	x1 x2 x8	100.00
10	5	0.749	0.796	6.66	36.36	41.08	3.04	66.84	x1 x2 x4 x8 x9	
11	5	0.744	0.791	7.16	36.97	41.39	3.10	68.30	x1 x2 x4 x7 x8	
12	4	0.739	0.778	6.65	36.72	40.04	3.16	72.70	x1 x2 x4 x8	
13	2	0.723	0.743	6.46	36.74	38.64	3.36	83.94	x2 x8	
14	3	0.718	0.750	7.77	38.06	40.12	3.41	81.91	x2 x8 x9	
15	3	0.711	0.743	8.45	38.74	40.61	3.50	83.92	x2 x4 x8	

Backward Elimination - Ex 10.1

Step	Variable	Estimate	StdErr	FValue	ProbF
0	Intercept	-7.2919	12.8128	0.32	0.5763
0	x1	0.00081	0.00201	0.16	0.6903
0	x2	0.00363	0.00084	18.64	0.0004
0	x3	0.12217	0.25895	0.22	0.6427
0	x4	0.03189	0.0416	0.59	0.4533
0	x5	1.5E-05	0.04684	0	0.9997
0	x6	0.00159	0.00325	0.24	0.6303
0	x7	0.15435	0.15207	1.03	0.3235
0	x8	-0.0039	0.00205	3.6	0.0738
0	x9	-0.0018	0.00142	1.6	0.2225
1	Intercept	-7.2937	11.3361	0.41	0.5277
1	x1	0.00081	0.00195	0.17	0.6811
1	x2	0.00363	0.00079	21.11	0.0002
1	x3	0.12218	0.25137	0.24	0.6325
1	x4	0.03189	0.03965	0.65	0.4311
1	x6	0.00159	0.00313	0.26	0.6176
1	x7	0.15437	0.13999	1.22	0.2839
1	x8	-0.0039	0.002	3.81	0.0659
1	x9	-0.0018	0.00138	1.69	0.2096
2	Intercept	-9.1299	10.2296	0.8	0.3827
2	x2	0.00363	0.00077	22.03	0.0001
2	x3	0.16705	0.22247	0.56	0.4615
2	x4	0.03699	0.03694	1	0.3286
2	х6	0.00145	0.00305	0.23	0.639
2	x7	0.18912	0.11019	2.95	0.1016
2	x8	-0.0042	0.0018	5.46	0.03
2	х9	-0.0017	0.00132	1.59	0.2212

Step	Variable	Estimate	StdErr	FValue	ProbF
3	Intercept	-7.6949	9.59419	0.64	0.4315
3	x2	0.00358	0.00075	22.68	0.0001
3	x3	0.16754	0.21833	0.59	0.4514
3	x4	0.035	0.03602	0.94	0.3423
3	x7	0.19305	0.10784	3.2	0.0879
3	x8	-0.0044	0.00174	6.25	0.0208
3	x9	-0.0017	0.00129	1.65	0.2131
4	Intercept	-4.6269	8.63964	0.29	0.5976
4	x2	0.00371	0.00072	26.29	<.0001
4	x4	0.02639	0.03391	0.61	0.4446
4	x7	0.23469	0.09232	6.46	0.0186
4	x8	-0.0037	0.00148	6.16	0.0212
4	x9	-0.0018	0.00127	1.96	0.1757
5	Intercept	-1.8217	7.78471	0.05	0.817
5	x2	0.00382	0.00071	29.33	<.0001
5	x7	0.21689	0.08868	5.98	0.0225
5	x8	-0.004	0.0014	8.24	0.0086
5	x9	-0.0016	0.00125	1.72	0.2024
6	Intercept	-1.8084	7.90086	0.05	0.8209
6	x2	0.0036	0.0007	26.8	<.0001
6	x7	0.19396	0.08823	4.83	0.0378
6	x8	-0.0048	0.00128	14.22	0.0009