228 Continuité, dérivabilité des fonctions réelles d'une variable réelle. Exemples et applications.

Soient *I* un intervalle de \mathbb{R} non réduit à un point et $f: I \to \mathbb{R}$ une fonction.

I - Continuité et dérivabilité

1. Continuité

Définition 1. — f est continue au point $a \in I$ si

$$\forall \epsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| < \eta \implies |f(x) - f(a)| < \epsilon$$

— f est **continue sur** I si f est continue en tout point de I.

Exemple 2. Pour tout entier $n, x \mapsto x^n$ est continue sur \mathbb{R} .

- **Théorème 3** (Caractérisations séquentielle et topologique de la continuité). (i) f est continue en $a \in I$ si et seulement si toute suite de points de I qui converge vers a est transformée par f en une suite convergente vers f(a).
 - (ii) f est continue en $a \in I$ si et seulement si l'image réciproque par f de tout ouvert (resp. fermé) de \mathbb{R} est un ouvert (resp. fermé) de I.

Exemple 4. La fonction $x \mapsto \cos(\frac{1}{x})$ définie sur \mathbb{R}_* n'est pas continue en 0.

Proposition 5. Si f et g sont deux fonctions définies sur I à valeurs réelles et continues en $a \in I$, alors |f|, f + g, fg, $\min(f,g)$ et $\max(f,g)$ sont continues en a.

2. Uniforme continuité

Définition 6. f est uniformément continue sur I si

$$\forall \epsilon > 0, \exists \eta > 0, \forall x, y \in I, |x - y| < \eta \implies |f(x) - f(y)| < \epsilon$$

Remarque 7. En particulier, une fonction uniformément continue sur un intervalle est continue sur ce même intervalle.

[**GOU20**] p. 12

[ROM19-

Exemple 8. Une fonction lipschitzienne sur I est uniformément continue sur I.

Contre-exemple 9. La fonction $x \mapsto \frac{1}{x}$ définie sur]0,1] est continue mais n'est pas uniformément continue.

Proposition 10. On se place dans le cas où $I = \mathbb{R}^+$ et on suppose f uniformément continue sur \mathbb{R}^+ . Alors,

$$\exists \alpha, \beta \in \mathbb{R}^+$$
 tels que $\forall x \in \mathbb{R}^+, |f(x)| \leq \alpha x + \beta$

Théorème 11 (Prolongement des applications uniformément continues). Soit $J \subseteq I$ dense dans I et soit $g: J \to \mathbb{R}$ uniformément continue sur J. Alors,

 $\exists ! h : I \to \mathbb{R}$ uniformément continue et telle que $h_{|I} = g$

3. Dérivabilité

Définition 12. On dit que f est **dérivable en** $a \in I$ si

$$\lim_{\substack{t \to a \\ t \neq a}} \frac{f(t) - f(a)}{t - a}$$

existe. Lorsque cette limite existe, elle est notée f'(a).

Remarque 13. — De même, f est **dérivable à gauche (resp. à droite) en** $a \in I$ si $\lim_{\substack{t \to a \\ t \in I}} \frac{f(t) - f(a)}{t - a}$ existe (resp. $\lim_{\substack{t \to a \\ t \in I}} \frac{f(t) - f(a)}{t - a}$ existe). On la note alors $f'_g(a)$ (resp. $f'_d(a)$).

- f est dérivable en $a \in I$ si et seulement si f est dérivable à gauche, à droite et $f'_g(a) = f'_d(a)$.
- f est dérivable en $a \in I$ si et seulement si, quand x tend vers a,

$$\exists \ell \in \mathbb{R}, f(x) = f(a) + (x - a)\ell + o(x - a)$$

Proposition 14. Si f est dérivable en $a \in I$, alors f est continue en a.

Contre-exemple 15. On note Δ la fonction définie sur \mathbb{R} 1-périodique et telle que la restriction à $\left[-\frac{1}{2},\frac{1}{2}\right]$ vérifie $\Delta(x)=|x|$. Alors,

$$f: x \mapsto \sum_{p=0}^{+\infty} \frac{1}{2^p} \Delta(2^p x)$$

p. 18

p. 24

p. 71

est bien définie, continue sur \mathbb{R} , mais dérivable en aucun point de \mathbb{R} .

Remarque 16. La fonction dérivée $f': x \mapsto f'(x)$ n'est pas forcément continue là où elle est définie.

p. 72

Exemple 17. La fonction $x \mapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$ définie sur \mathbb{R} est dérivable, de dérivée $x \mapsto \begin{cases} 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$ définie sur \mathbb{R} mais non continue en 0.

$$x \mapsto \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$
 définie sur \mathbb{R} mais non continue en 0.

Proposition 18. Si f et g sont deux fonctions définies sur I à valeurs réelles et dérivables en $a \in I$. Alors:

- (i) $\forall \lambda, \mu \in \mathbb{R}, \lambda f + \mu g$ est dérivable en a et $(\lambda f + \mu g)'(a) = \lambda f'(a) + \mu g'(a)$.
- (ii) fg est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a).
- (iii) Si $g(a) \neq 0$, alors $\frac{f}{g}$ est dérivable en a et $\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g'(a)^2}$.

Définition 19. On dit que f est **de classe** \mathscr{C}^n **sur** I si $\forall k \in [0, n]$, $f^{(k)}$ (la dérivée k-ième de f) existe et continue.

Proposition 20 (Formule de Leibniz). Soit $a \in I$. Si f et g sont deux fonctions définies sur Ià valeurs réelles et qui admettent une dérivée n-ième en a,

$$(fg)^{(n)}(a) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(a)g^{(n-k)}(a)$$

Proposition 21. Soit *J* un intervalle de \mathbb{R} . Si $f:I\to\mathbb{R}$ et $g:J\to I$ sont deux fonctions, alors, en supposant f dérivable en a et g dérivable en f(a), $(f \circ g)$ est dérivable en a et,

$$(f\circ g)'(a)=g'(a)(f'\circ g)(a)$$

Corollaire 22. Soient *J* un intervalle de \mathbb{R} et $h:I\to J$ une bijection dérivable en $a\in I$. Alors, h^{-1} est dérivable en b = h(a) si et seulement si $h'(a) \neq 0$, et on a,

$$(h^{-1})'(b) = \frac{1}{h'(a)} = \frac{1}{h'(h^{-1}(b))}$$

Corollaire 23. La composée de deux applications de classe \mathscr{C}^n est de classe \mathscr{C}^n .

II - Fonctions particulières qui sont dérivables ou continues

1. Fonctions convexes

Définition 24. f est **convexe** si

[ROM19-1] p. 225

$$\forall x, y \in I, \forall t \in [0, 1], f((1 - t)x + ty) \le (1 - t)f(x) + tf(y)$$

Exemple 25. $-x \mapsto |x|$ est convexe sur \mathbb{R} .

— exp est convexe sur \mathbb{R} .

Proposition 26. Si f est convexe, elle possède en tout point de \mathring{I} une dérivée à droite et une dérivée à gauche. Elle est donc continue sur \mathring{I} . De plus les applications dérivées à gauche f'_g et à droite f'_d sont croissantes avec $f'_g(x) \le f'_d(x)$ pour tout $x \in \mathring{I}$.

[**GOU20**] p. 96

[ROU]

p. 152

Proposition 27. On suppose f deux fois dérivable. Alors, f est convexe si et seulement si $f''(x) \ge 0$ pour tout $x \in I$.

[DEV]

Application 28 (Méthode de Newton). Soit $g:[c,d]\to\mathbb{R}$ une fonction de classe \mathscr{C}^2 strictement croissante sur [c,d]. On considère la fonction

$$\varphi: \begin{bmatrix} [c,d] & \to & \mathbb{R} \\ x & \mapsto & x - \frac{g(x)}{g'(x)} \end{bmatrix}$$

(qui est bien définie car g' > 0). Alors :

- (i) $\exists ! a \in [c, d]$ tel que g(a) = 0.
- (ii) $\exists \alpha > 0$ tel que $I = [a \alpha, a + \alpha]$ est stable par φ .
- (iii) La suite (x_n) des itérés (définie par récurrence par $x_{n+1} = \varphi(x_n)$ pour tout $n \ge 0$) converge quadratiquement vers a pour tout $x_0 \in I$.

Corollaire 29. En reprenant les hypothèses et notations du théorème précédent, et en supposant de plus g strictement convexe sur [c,d], le résultat du théorème est vrai sur I=[a,d]. De plus :

- (i) (x_n) est strictement décroissante (ou constante).
- (ii) $x_{n+1} a \sim \frac{f''(a)}{2f'(a)} (x_n a)^2$ pour $x_0 > a$.

- **Exemple 30.** On fixe y > 0. En itérant la fonction $F : x \mapsto \frac{1}{2}(x + \frac{y}{x})$ pour un nombre de départ compris entre c et d où 0 < c < d et $c^2 < 0 < d^2$, on peut obtenir une approximation du nombre \sqrt{y} .
 - En itérant la fonction $F: x \mapsto \frac{x^2+1}{2x-1}$ pour un nombre de départ supérieur à 2, on peut obtenir une approximation du nombre d'or $\varphi = \frac{1+\sqrt{5}}{2}$.

2. Fonction monotones

Définition 31. — On dit que f est **croissante** si $\forall x, y \in I$, $x \le y \implies f(x) \le f(y)$.

[**R-R**] p. 31

- On dit que f est **décroissante** si $\forall x, y \in I, x \le y \implies f(x) \ge f(y)$.
- On dit que *f* est **monotone** si *f* est croissante ou décroissante.

Définition 32. Si $a \in \mathring{I}$, et si f est discontinue en a avec des limites à gauche et à droite en ce point, on dit que f a une **discontinuité de première espèce** en a.

[ROM19-1] p. 163

Proposition 33. Une fonction monotone de I dans \mathbb{R} ne peut avoir que des discontinuités de première espèce.

Théorème 34. On suppose que I est un intervalle ouvert. Si f est une fonction monotone, alors l'ensemble des points de discontinuités de f est dénombrable.

Exemple 35. La fonction f définie sur [0,1] par f(0)=0 et $f(x)=\frac{1}{\lfloor \frac{1}{x} \rfloor}$ est croissante avec une infinité de points de discontinuité.

p. 175

Proposition 36. Si f est une fonction monotone telle que f(I) est un intervalle, elle est alors continue sur I.

Théorème 37 (Bijection). Si f est une application continue et strictement monotone sur I, alors :

- (i) f(I) est un intervalle.
- (ii) f^{-1} est continue.
- (iii) f^{-1} est strictement monotone de même sens de variation que f.

Exemple 38. La fonction $\exp : x \mapsto e^x$ est une bijection de \mathbb{R} dans \mathbb{R}^+_* qui admet donc une bijection réciproque ln qui est strictement croissante.

Théorème 39 (Lebesgue). Une application monotone est dérivable presque partout.

[D-L] p. 405

III - Propriétés importantes

1. Théorème des valeurs intermédiaires

Théorème 40 (Des valeurs intermédiaires). On suppose f continue sur I. Alors f(I) est un intervalle.

[**GOU20**] p. 41

Remarque 41. Une autre manière d'écrire ce résultat est la suivante. Si $f(a) \le f(b)$ (resp. $f(a) \ge f(b)$) avec a < b, alors pour tout $f(a) \le \gamma \le f(b)$ (resp. $f(b) \le \gamma \le f(a)$), il existe $c \in [a,b]$ tel que $f(c) = \gamma$.

Corollaire 42. L'image d'un segment de \mathbb{R} par f est un segment de \mathbb{R} .

2. Théorème de Rolle

Dans cette partie, I désigne un segment [a, b] de \mathbb{R} non réduit à un point.

Théorème 43 (Rolle). On suppose f continue sur [a,b], dérivable sur [a,b] et telle que f(a) = f(b). Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Théorème 44 (Des accroissements finis). On suppose f continue sur [a, b] et dérivable sur [a, b]. Alors,

$$\exists c \in]a, b[$$
 tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$

Corollaire 45. On suppose f continue sur [a, b] et dérivable sur [a, b]. Alors, f est croissante si et seulement si $f'(x) \ge 0$ pour tout $x \in]a, b[$, avec égalité si et seulement si f est constante.

Corollaire 46. On suppose f continue sur [a,b[et dérivable sur]a,b[et telle que $\ell = \lim_{\substack{t \to a \\ t > a}} f'(t)$ existe. Alors, f est dérivable en a et $f'(a) = \ell$.

Théorème 47 (Darboux). On suppose f dérivable sur I. Alors f'(I) est un intervalle.

3. Formules de Taylor

Dans cette partie, I désigne encore un segment [a, b] de \mathbb{R} non réduit à un point.

p. 75

Théorème 48 (Formule de Taylor-Lagrange). On suppose f de classe \mathscr{C}^n sur [a,b] telle que $f^{(n+1)}$ existe sur [a,b]. Alors,

$$\exists c \in]a, b[\text{ tel que } f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$$

4. Continuité sur un compact

Théorème 50 (des bornes). Une fonction continue sur un compact est bornée et atteint ses bornes.

p. 31

Théorème 51 (Heine). Une fonction continue sur un compact y est uniformément continue.

p. 242

Théorème 52 (Bernstein). On suppose I = [0, 1] et f continue sur [0, 1]. On note

$$B_n(f): x \mapsto \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Alors,

$$||B_n(f) - f||_{\infty} \longrightarrow_{n \to +\infty} 0$$

[DEV]

Théorème 53 (Weierstrass). Toute fonction continue sur un compact est limite uniforme de fonctions polynômiales.

IV - Régularité des fonctions limites

1. Suites et séries de fonctions

Proposition 54. Si une suite de fonctions est continue en un point a et converge uniformément vers une fonction limite, alors celle-ci est continue en a.

p. 233

Contre-exemple 55. La suite de fonctions (g_n) définie pour tout $n \in \mathbb{N}$ et pour tout $x \in [0, 1]$ par $g_n(x) = x^n$ converge vers une fonction non continue.

Proposition 56. On suppose que I est un segment [a,b] de \mathbb{R} non réduit à un point. Soit (f_n) une suite de fonctions de I dans \mathbb{R} . On suppose que :

- (i) Il existe $x_0 \in [a, b]$ tel que $(f_n(x_0))$ converge.
- (ii) La suite (f'_n) converge uniformément sur [a, b] vers une fonction g.

Alors (f_n) converge uniformément vers une fonction f de classe \mathscr{C}^1 sur [a,b] et telle que f'=g.

Exemple 57. La fonction $\zeta: s \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^s}$ est \mathscr{C}^{∞} sur]1, $+\infty$ [.

p. 302

2. Fonctions définies par une intégrale

Soient (X, \mathcal{A}, μ) un espace mesuré et $g : E \times X \to \mathbb{C}$ où (E, d) est un espace métrique. On pose $G : t \mapsto \int_X g(t, x) d\mu(x)$.

[**Z-Q**] p. 312

Théorème 58 (Continuité sous le signe intégral). On suppose :

- (i) $\forall t \in E, x \mapsto g(t, x)$ est mesurable.
- (ii) pp. en $x \in X$, $t \mapsto g(t,x)$ est continue en $t_0 \in E$.
- (iii) $\exists h \in L_1(X)$ positive telle que

$$|g(t,x)| \le h(x) \quad \forall t \in E$$
, pp. en $x \in X$

Alors G est continue en t_0 .

Théorème 59 (Dérivation sous le signe intégral). On suppose :

- (i) $\forall t \in I, x \mapsto g(t, x) \in L_1(X)$.
- (ii) pp. en $x \in X$, $t \mapsto g(t, x)$ est dérivable sur I. On notera $\frac{\partial g}{\partial t}$ cette dérivée définie presque partout.

(iii) $\forall K \subseteq I \text{ compact}, \exists h_K \in L_1(X) \text{ positive telle que}$

$$\left| \frac{\partial g}{\partial t}(x,t) \right| \le h_K(x) \quad \forall t \in I, \text{pp. en } x$$

Alors $\forall t \in I, x \mapsto \frac{\partial g}{\partial t}(x,t) \in L_1(X)$ et G est dérivable sur I avec

$$\forall t \in I, G'(t) = \int_X \frac{\partial g}{\partial t}(x, t) d\mu(x)$$

Application 60 (Intégrale de Dirichlet). On pose $\forall x \ge 0$,

[**G-K**] p. 107

$$F(x) = \int_0^{+\infty} \frac{\sin(t)}{t} e^{-xt} dt$$

alors:

- (i) F est bien définie et est continue sur \mathbb{R}^+ .
- (ii) F est dérivable sur \mathbb{R}^+_* et $\forall x \in \mathbb{R}^+_*$, $F'(x) = -\frac{1}{1+x^2}$.
- (iii) $F(0) = \int_0^{+\infty} \frac{\sin(t)}{t} dt = \frac{\pi}{2}$.

[**GOU20**] p. 73

Annexes

Valeur de $f(x)$	Valeur de $f'(x)$
$x^r (r \in \mathbb{R})$	rx^{r-1}
ln(x)	$\frac{1}{x}$
sin(x)	$\cos(x)$
$\cos(x)$	$-\sin(x)$
tan(x)	$\frac{1}{\cos(x)^2}$
e^x	e^x
arctan(x)	$\frac{1}{1+x^2}$
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$-\frac{1}{\sqrt{1-x^2}}$

FIGURE 1 – Dérivées de fonctions usuelles.

Bibliographie

Leçons pour l'agrégation de mathématiques

[D-L]

Maximilien Dreveton et Joachim Lhabouz. *Leçons pour l'agrégation de mathématiques. Préparation à l'oral.* Ellipses, 28 mai 2019.

https://www.editions-ellipses.fr/accueil/3543-13866-lecons-pour-lagregation-de-mathematiques-preparation-a-loral-9782340030183.html.

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Formulaire de maths [R-R]

Olivier Rodot et Jean-Étienne Rombaldi. *Formulaire de maths. Avec résumés de cours.* De Boeck Supérieur, 30 août 2022.

https://www.deboecksuperieur.com/ouvrage/9782807339880-formulaire-de-maths.

Éléments d'analyse réelle

[ROM19-1]

Jean-Étienne Rombaldi. Éléments d'analyse réelle. 2e éd. EDP Sciences, 6 juin 2019.

https://laboutique.edpsciences.fr/produit/1082/9782759823789/elements-d-analyse-reelle.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4^e éd. Cassini, 27 fév. 2015.

https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5^e éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.