SCHOOL ALLOCATION PROBLEM WITH OBSERVABLE CHARACTERISTICS

YOUNG WU

1. Model

1.1. **Allocations.** There are finite number of schools $l \in L = \{1, 2, ..., \bar{L}\}$ and finite number of groups of students divided by characteristics $k \in K = \{1, 2, ..., \bar{K}\}$. Let c_l be the measure of seats in school l and μ_k be the measure of students in group k.

Definition 1. A profile of orderings is a full support distribution $\mu \in \Delta(K \times \mathcal{P}(L))$, where $\mathcal{P}(L)$ is the set of all permutations (strict orderings) of L, and μ satisfies,

$$\sum_{p \in \mathcal{P}(L)} \mu(k, p) = \mu_{k.}$$

We implicitly assume that all preferences are strict, and use the notation $\mu(k, p)$ to denote the fraction of students in group k who have preference ordering p. We call these students' type (k, p).

We also assume full support

$$\mu(k,p) > 0 \ \forall \ (k,p) \in (K,\mathcal{P}(L)).$$

Definition 2. Let the set of students be \mathcal{I} . An allocation is a function $q: \mathcal{I} \to \Delta(L)$, where q(l;i) is the probability that a student $i \in \mathcal{I}$ is assigned to school l.

In the case where every student with the same type gets the same allocation, we will use the notation q(l; k, p) to denote the probability that a student with type (k, p) is assigned to school l. We call this condition group symmetric. Then the amount of students with type

(k, p) who are assigned to school l satisfies

$$\mu(k, p) \cdot q(l; k, p) = \int_{i \in \mathcal{I}: \text{ type } (i) = (k, p)} q(l; i) d\mu,$$

where $\mu(k, p)$ is the mass of students with type (k, p) and

$$\mu(k,p) = \int_{i \in \mathcal{I}: \text{ type } (i) = (k,p)} d\mu.$$

We also impose feasibility assumption that no student will be left unassigned

$$\sum_{l \in L} c_l \ge \sum_{k \in K} \sum_{p \in \mathcal{P}(L)} \mu(k, p)$$

$$= \sum_{k \in K} \mu_k$$

$$= 1.$$

Definition 3. An allocation q is feasible given a profile μ if

$$\int_{i\in\mathcal{I}} q(l;i) \, d\mu \le c_l.$$

In the group symmetric case, the condition becomes

$$\sum_{k \in K} \sum_{p \in \mathcal{P}(L)} \mu(k, p) q(l; k, p) \le c_l.$$

Definition 4. A mechanism is function $q: \mathcal{I} \to Q$, where Q is the set of all feasible allocations.

1.2. **Ordinal Efficiency.** We first define ordinal efficiency using first order stochastic domination of the allocation distribution:

Definition 5. An allocation q is dominated by q' for a student with type (k, p) where $p = l_1 \succ l_2 \succ l_3 ... \succ l_L$ if

$$\sum_{s=1}^{t} q(l_s; k, p) \le \sum_{s=1}^{t} q'(l_s; k, p) \ \forall \ t \in L.$$

The main desirable properties of a ordinal mechanism in this model are:

Definition 6. Group Symmetry: q(i) = q(j) for any $i, j \in \mathcal{I}$ such that type (i) = type (j).

Definition 7. Envy-free: q(i) is not dominated by any q(j) for any $i, j \in \mathcal{I}$ such that group (i) = group (j).

Definition 8. Efficiency: q(i) is not dominated by any q'(i) for any $i \in \mathcal{I}$.

Group symmetry states that students with the same characteristics are assigned the same probabilistic allocation. Given this assumption, we can use the notation q(l; k, p) to denote the probability of a student with type (k, p) getting allocated the school l. Envy-free states that any a student (k, p) will not prefer the allocation of another student (k, p') for any $p' \neq p$. It is weaker condition of strategy-proof, but it guarantees that no student has incentive to misreport her preference p. We will show that a mechanism satisfying all three properties Definition 6, Definition 7, Definition 8 must be the modified Probabilistic Serial mechanism (PS) defined in the following section.

2. Modified Probabilistic Serial

2.1. **Algorithm.** We define the probabilistic serial mechanism as a simultaneous eating mechanism with equal constant eating speed over all groups.

Definition 9. subcapacity c_l^k of school l for students in group k, are functions $\mu \to [0, c_l]$ satisfying

$$\sum_{k \in K} c_l^k \left(\mu \right) \le c_l \ \forall \ l \in L.$$

Algorithm 1. A simultaneous eating mechanism (PSKT) with eating speed $\omega = \{\omega_1, \omega_2, ..., \omega_{\bar{K}}\}$, where $\omega_k : [0,1] \to \mathbb{R}_+$ satisfying $\int_0^1 \omega_k(t) dt = 1$, and subcapacities $\{c_l^k\}_{l \in L, k \in K}$, is given by Initialize: $L_k^0 = L, y_k^0 = 0$ for each $k \in K$ and $q^0(l; k, p) = 0$ for each $l \in L, k \in K, p \in \mathcal{P}(L)$,

Iteration: assume $L_k^{s-1}, y_k^{s-1}, q_k^{s-1}$ are defined for each k, set:

$$M\left(l,A\right)=\left\{ p\in\mathcal{P}\left(L\right):l\succ l^{\prime}\;\forall\;l^{\prime}\in A\setminus\left\{ l\right\} \right\} ,$$

$$y_{k}^{s}(l) = \arg\min_{y} \left\{ \sum_{p \in M\left(l, L_{k}^{s-1}\right)} \int_{y_{k}^{s-1}}^{y} \mu\left(k, p\right) \omega_{k}\left(t\right) dt + \sum_{p \in \mathcal{P}(L)} \mu\left(k, p\right) q^{s-1}\left(l; k, p\right) = c_{l}^{k}\left(\mu\right) \right\},\,$$

$$F_{k}^{s} = \arg\min_{l} y_{k}^{s}\left(l\right),$$

$$y_k^s = \min_l y_k^s(l) ,$$

$$L_k^s = L_k^{s-1} \setminus F_k^s,$$

$$t_l^k = y_{s_k}, \text{ for } l \in F_k^s,$$

$$q^{s}\left(l;k,p\right)=q^{s-1}\left(l;k,p\right)+\mathbb{I}_{p\in M\left(l,L_{k}^{s-1}\right)}\int_{y^{s-1}}^{y^{s}}\omega_{k}\left(t\right)dt.$$

Here, in step s,

M(l, A) is the set of students where will be consuming school l if the remaining set of available schools is A,

 $y_k^s(l)$ is the smallest amount of time needed for students in group k to finish consuming school l,

 y_k^s is the smallest amount of time needed for students in group k to finish consuming any school,

 F_k^s is the set of schools that are completely consumed by students in group k,

 t_l^k is the time school l is completely consumed by students in group k,

 L_k^s is the remaining set of available schools for students in group k,

 $q^{s}(l; k, p)$ is the temporary allocation of school l for students with type (k, p).

Algorithm 2. A probabilistic serial mechanism (PS) is a simultaneous eating algorithm with $\omega_k(t) = \omega = 1 \ \forall \ k \in K, t \in [0, 1].$

2.2. Ordinal Properties. For a full support profile, Bogomolnaia and Moulin showed that an allocation is efficient if and only if it is generated by a simultaneous eating algorithm,

and Liu and Pycia showed that an allocation is efficient and envy-free if and only if it is generated by probabilistic serial. The result can be extended to the problem with multiple groups with a similar proof to Theorem 1 in Liu and Pycia.

Proposition 1. An allocation q is group symmetric, envy-free and efficient for full support profile μ if and only if it is generated by Algorithm 2 (PS) with subcapacities,

$$c_l^k(\mu) = \sum_{p \in \mathcal{P}(L)} \mu(k, p) q(l; k, p).$$

2.3. Cardinal Efficiency. We also define cardinal utility functions that induce the preference relations in the following way.

Definition 10. A utility distribution that is consistent with a preference profile μ is one density function $f_k : \mathbb{R}^L \to \mathbb{R}$ for each k such that:

$$\int_{p(u)=p} f_k(u) du = \frac{\mu(k, p)}{\mu_k} \, \forall \, p \in \mathcal{P}(L).$$

where p(u) is the preference relation induced by the utility ranking u.

Definition 11. Efficiency: the allocation q^* is cardinally efficient if it maximizes the following expected welfare:

$$q^{\star} = \arg\max_{q} \sum_{k=1}^{K} \int u \cdot q(l; k, p(u)) \cdot f_{k}(u) du.$$

2.4. Cardinal Extension. Since PS is ordinally efficient, the cardinally efficient allocation must be obtained by PS for some subcapacities. We will rewrite the welfare maximization problem Definition 11 as a maximization problem by choosing the subcapacities c_l^k .

Definition 12. The welfare function $W_k : \mathbb{R}^k \to \mathbb{R}$ for group k is defined as the following,

$$W_{k}\left(c^{k}\right) = \int u \cdot q\left(l; k, p\left(u\right)\right) \cdot f_{k}\left(u\right) du.$$

The welfare maximization problem becomes:

$$\max_{\left\{c^{k}\right\}_{k \in K}} \sum_{k \in K} W_{k}\left(c^{k}\right)$$
such that $\mu_{k} = \sum_{l} c_{l}^{k} \ \forall \ k \in K$
and $c_{l} = \sum_{k} c_{l}^{k} \ \forall \ l \in L$

Proposition 2. The function $W_k(c^k)$ is non-decreasing and concave in c^k .

Conjecture 1. The function $W_k(c^k)$ is piecewise linear in each subcapacity c_l^k

The above two properties of the welfare function guarantee that the problem can be solved by linear programming, although formulating the problem into a simple linear program is difficult.

3. Equivalence between PS and DA

3.1. **Two-school example.** Optimal PS and DA are equivalent if there are two characteristics and two schools. Suppose students live in two districts (k = 1, 2) and there is one school in each district (l = 1, 2).

Fix k, let,

$$\mu_{1} = \int_{\{u_{1} > u_{2}\}} f(u) du$$

$$\mu_{2} = \int_{\{u_{1} < u_{2}\}} f(u) du$$

Then,

$$\mu = \mu_1 + \mu_2$$

The PS allocations are:

If
$$c_1 \leq c_2 \cdot \frac{\mu_1}{\mu_2}$$
,

$$q(k, 1 \succ 2) = 1 \frac{c_1}{\mu_1} 2^{1 - \frac{c_1}{\mu_1}}$$
$$q(k, 2 \succ 1) = 1^0 2^1$$

If
$$c_1 \geq c_2 \cdot \frac{\mu_1}{\mu_2}$$
,

$$q(k, 1 \succ 2) = 1^{1}2^{0}$$

$$q(k, 2 \succ 1) = 1^{1 - \frac{c_2}{\mu_2}} \frac{c_2}{2^{\mu_2}}$$

The value function is:

$$W\left(c\right) = \begin{cases} \int_{\{u_{1} > u_{2}\}} \left(\frac{c_{1}}{\mu_{1}}\right) \cdot u_{1} + \left(1 - \frac{c_{1}}{\mu_{1}}\right) \cdot u_{2}du + \int_{\{u_{1} < u_{2}\}} 0 \cdot u_{1} + 1 \cdot u_{2}du & \text{if } c_{1} \leq c_{2} \cdot \frac{\mu_{1}}{\mu_{2}}, \\ \int_{\{u_{1} > u_{2}\}} 1 \cdot u_{1} + 0 \cdot u_{2}du + \int_{\{u_{1} < u_{2}\}} \left(1 - \frac{c_{2}}{\mu_{2}}\right) \cdot u_{1} + \left(\frac{c_{2}}{\mu_{2}}\right) \cdot u_{2}du & \text{otherwise} . \end{cases}$$

Or

$$W\left(c\right) = \begin{cases} \mu_{1} \cdot \left(\frac{c_{1}}{\mu_{1}} \cdot \mathbb{E}\left[u_{1}|u_{1} > u_{2}\right] + \left(1 - \frac{c_{1}}{\mu_{1}}\right) \cdot \mathbb{E}\left[u_{2}|u_{1} > u_{2}\right]\right) + \mu_{2} \cdot \mathbb{E}\left[u_{2}|u_{1} < u_{2}\right] & \text{if } c_{1} \leq c_{2} \cdot \frac{\mu_{1}}{\mu_{2}} \\ \mu_{1} \cdot \mathbb{E}\left[u_{1}|u_{1} > u_{2}\right] + \mu_{2} \cdot \left(\left(1 - \frac{c_{2}}{\mu_{2}}\right) \cdot \mathbb{E}\left[u_{1}|u_{1} < u_{2}\right] + \left(\frac{c_{2}}{\mu_{2}}\right) \cdot \mathbb{E}\left[u_{2}|u_{1} < u_{2}\right]\right) & \text{otherwise} . \end{cases}$$

The derivative with respect to c_1 for fixed c_2 is

$$\frac{\partial W}{\partial c_1}(c) = \begin{cases} \mathbb{E}\left[u_1 - u_2 \middle| u_1 > u_2\right] > 0 & \text{if } c_1 \le c_2 \cdot \frac{\mu_1}{\mu_2} \\ 0 & \text{otherwise} \end{cases}$$

and for $c_2 = \mu - c_1$ is

$$\frac{\partial W}{\partial c_1}(c) = \begin{cases} \mathbb{E}\left[u_1 - u_2 | u_1 > u_2\right] > 0 & \text{if } c_1 \leq \mu_1 \\ \mathbb{E}\left[u_1 - u_2 | u_1 < u_2\right] < 0 & \text{otherwise } . \end{cases}$$

Therefore resulting allocation is cardinally efficient and it is identical to the one obtained from the differed acceptance algorithm.

Include an example of 3 school case when PS and DA are not equivalent?

4. Proofs

Proofs still have a lot of inconsistent notations.

4.1. Proof of Proposition 1.

Proof. The equivalence can be obtained from the following three lemmas.

Lemma 1. (Modified from Liu and Pycia Theorem 1) If an allocation q is group symmetric, envy-free and efficient for profile $\mu >> 0$, then it is generated by PS with constraints $c_l^k(\mu) = \sum_p \mu(k,p) q(l;k,p)$.

Proof. Consider any allocation q' and the allocation obtained by PS q^1 . Let q^t be the partial allocation at time $t \in [0, 1]$ for PS.

Need to show that for any (k, p), l and at any time $t \in [0, 1]$:

$$\sum_{l' \succ_{k,p} l} q'\left(l'; k, p\right) \ge \sum_{l' \succ_{k,p} l} q^{t}\left(l'; k, p\right)$$

Assume for a contradiction, there is $\tau \in [0, 1]$ such that:

$$\tau = \inf \left\{ t : \sum_{l' \succ_{k,p} l} q'\left(l'; k, p\right) < \sum_{l' \succ_{k,p} l} q^t\left(l'; k, p\right) \text{ for some } (k, p) \in \left(K \times \mathcal{P}\left(L\right) l \in L\right) \right\}$$

Note that the original inequality are satisfied for all $t \in [0, \tau]$ and (k, p) must be eating l at τ , which implies.

$$\sum_{l' \succ_{k,p} l} q'\left(l'; k, p\right) \geq \sum_{l' \succ_{k,p} l} q^{\tau}\left(l'; k, p\right) = \tau$$

By continuity of q^t in t:

$$\sum_{l'\succ_{k,p}l}q'\left(l';k,p\right)=\sum_{l'\succ_{k,p}l}q^{\tau}\left(l';k,p\right)=\tau$$

If assumed full support condition, l is favorite object of some agent (k, p'), then:

$$q(l; k, p') \ge q^{\tau}(l; k, p') = \tau$$

Envy-free assumption implies (k, p) does not prefer the allocation of (k, p'):

$$q(l; k, p') \le \tau$$

Therefore,

$$q(l; k, p') = \tau$$

Since l is not exhausted at τ :

$$q^{1}\left(l;k,p'\right) > \tau$$

Therefore, (k, p') gets less l in q than q^1 , efficiency assumption implies that there is another student (k, \hat{p}) who gets:

$$q\left(l;k,\hat{p}\right) > q^{1}\left(l;k,\hat{p}\right)$$

And there is some $\hat{l} \neq l$ that student (k, \hat{p}) prefers just more than l:

$$\sum_{l'\succ_{k,\hat{p}}\hat{l}}q'\left(l';k,\hat{p}\right) \geq \sum_{l'\succ_{k,\hat{p}}\hat{l}}q^{\tau}\left(l';k,\hat{p}\right) = \tau - q^{\tau}\left(l;k,\hat{p}\right) \geq \tau - q^{1}\left(l;k,\hat{p}\right)$$

$$\Rightarrow \sum_{l'\succ_{k,\hat{p}}l}q'\left(l';k,\hat{p}\right) > \tau$$

Comparing students (k, p') and (k, \hat{p}) , envy-free assumption leads to a contradiction.

Lemma 2. (Bogomolnaia and Moulin Proposition 1) PS is envy-free.

Proof. For $y_k^{s-1} \le t \le y_k^s$, define:

$$N\left(l,t\right)=M\left(l,L^{s-1}\right) \text{ if } l\in L^{s-1} \text{ and } \emptyset \text{ otherwise}$$

$$n\left(l,t\right)=\sum_{p,k}\mu\left(k,p\right)\mathbb{I}_{\left(k,p\right)\in M\left(l,L^{s-1}\right)}$$

$$t\left(l\right)=\sup\left\{t|n\left(l,t\right)\geq c_{l}^{k}\left(\mu\right)\right\}$$

Consider a student (k, p), let q be the allocation if she reports p and q' be the allocation if she reports p'.

Let p be the preference $l_1 \succ_{k,p} l_2 \succ_{k,p} l_3 \succ_{k,p} \dots$

If
$$q(l_1; p, k) \le q'(l_1; p, k)$$
, then $t(l_1) \le t'(l_1)$.

We want to show that $N(l,t) = N'(l,t) \ \forall \ t \in (0,t(l))$, which implies $q(l_1;p,k) = q'(l_1;p,k)$

Repeat this process for $l_2, l_3 \dots$

Lemma 3. (Bogomolnaia and Moulin Theorem 1) PS is efficient.

Proof. Suppose, for a contradiction that q is obtained by PS and it is not efficient, and q is dominated by q'.

Define binary relation $\tau: l\tau l' \Leftrightarrow \{\exists (k, p) \in (K \times \mathcal{P}(L)) : l \succ_{k, p} l' \text{ and } q(l; k, p) > 0\}.$

Let (k_1, p_1) be the student such that $q(k_1, p_1) \neq q'(k_1, p_1)$, then there are l_0, l_1 such that

$$l_1 \succ_{p_1} l_0, q(l_1; k_1, p_1) > q'(l_1; k_1, p_1), q(l_0; k_1, p_1) < q'(l_0; k_1, p_1)$$

Then $l_0\tau l_1$. Similarly, there is $l_1\tau l_2$ and since L is finite, there \exists a cycle in the relation τ :

$$l_0\tau l_1,...,l_R\tau l_0$$

Let (k_r, p_r) be the student such that $l_{r-1} \succ_{p_r} l_r$ and $q(l_r; k_r, p_r) > 0$.

Define $s_r = \min_s \{s : p^s(l_r; k_r, p_r)\}$, and note that $l_{r-1} \notin A^{s_r-1}$, meaning $s_{r-1} < s_r$.

This implies $s_0 < s_1 < ... < s_{R-1} < s_0$, contradiction.

4.2. **Proof of.** The concavity of the welfare functions can be obtained using the following lemmas:

Lemma 4. Convex combination of envy free allocations are envy free.

Proof. Consider arbitrary pair of students (k, p) and (k, p') under two different allocations q_1 and q_2 .

Let $p = l_1 > l_2 > l_3 ... > l_L$ be the preference ranking of the first student, and define the following,

$$t_{1}^{i} = \min_{t} \left\{ \sum_{s=1}^{t} q_{1}(l_{s}; k, p) < \sum_{s=1}^{t} q_{1}(l_{s}; k, p') \right\}$$

$$t_{1}^{a} = \max_{t} \left\{ \sum_{s=1}^{t} q_{1}(l_{s}; k, p) \leq \sum_{s=1}^{t} q_{1}(l_{s}; k, p') \right\}$$

$$t_{2}^{i} = \min_{t} \left\{ \sum_{s=1}^{t} q_{2}(l_{s}; k, p) < \sum_{s=1}^{t} q_{2}(l_{s}; k, p') \right\}$$

$$t_{2}^{a} = \max_{t} \left\{ \sum_{s=1}^{t} q_{2}(l_{s}; k, p) \leq \sum_{s=1}^{t} q_{2}(l_{s}; k, p') \right\}$$

By envy-freeness, $t_1^i \neq t_1^a$ and $t_2^i \neq t_{2,}^a$

Consider a convex combination $q_0 = (\alpha) q_1 + (1 - \alpha) q_2$ for $\alpha \in [0, 1]$,

For $t \leq \min\left\{t_1^i, t_2^i\right\}$,

$$\sum_{s=1}^{t} q_0(l_s; k, p) = \sum_{s=1}^{t} (\alpha) q_1(l_s; k, p) + (1 - \alpha) q_2(l_s; k, p)$$

$$< \sum_{s=1}^{t} (\alpha) q_1(l_s; k, p') + (1 - \alpha) q_2(l_s; k, p')$$

$$= \sum_{s=1}^{t} q_0(l_s; k, p')$$

And for $t \ge \max\{t_1^a, t_2^a\}$,

$$\sum_{s=1}^{t} q_0(l_s; k, p) = \sum_{s=1}^{t} (\alpha) q_1(l_s; k, p) + (1 - \alpha) q_2(l_s; k, p)$$

$$> \sum_{s=1}^{t} (\alpha) q_1(l_s; k, p') + (1 - \alpha) q_2(l_s; k, p')$$

$$= \sum_{s=1}^{t} q_0(l_s; k, p')$$

Therefore, under q_0 , no student strictly prefer the alloaction of another student, q_0 is envy-free.

Lemma 5. Any inefficient envy-free allocation has an envy-free Pareto improvement.

Proof. Consider an allocation q and another allocation q' that (Pareto) dominates q.

For each student (k, p) and pair of schools (i, j), define the flow from school i to j by $\Delta(k, p; i, j)$ satisfying:

$$\sum_{j} \Delta(k, p; i, j) = \max \{0, q(k, p; i) - q'(k, p; i)\};$$
$$\sum_{i} \Delta(k, p; i, j) = \max \{0, q(k, p; j) - q'(k, p; j)\};$$

$$\Delta\left(k,p;i,j\right)\geq0$$

Then define another allocation q^* by:

$$q^{\star}(k, p; i) = q(k, p; i) - \sum_{j} \left(\mathbb{I}_{\Delta(k, p; i, j) > 0 \text{ or } j \succ_{p} i} \cdot \Delta^{\star}(k, p; i, j) + \sum_{j} \mathbb{I}_{\Delta(k, p; j, i) > 0 \text{ or } j \succ_{p} i} \cdot \Delta^{\star}(k, p; j, i) \right)$$

where Δ^{\star} is defined as:

$$\Delta^{\star}\left(k,p;i,j\right) = \frac{\displaystyle\sum_{k',p'} \Delta\left(k',p';j,i\right) \cdot \mu\left(k',p'\right)}{\displaystyle\sum_{k',p':i \succ_{p'} j \text{ and } \Delta\left(k',p';i,j\right) = 0} \mu\left(k',p'\right) + \displaystyle\sum_{k',p'} \Delta\left(k',p';j,i\right) \cdot \mu\left(k',p'\right)}$$

Note that the flows from q to q' and the flows from q to q^* are the same (the previous system for Δ is still satisfied).

Also, q^* still dominates q since:

$$\begin{cases} \Delta^{\star}(k, p; i, j) > 0 & \text{if } i \succ_{p} j \\ \Delta^{\star}(k, p; i, j) < \Delta(k, p; i, j) & \text{if } j \succ_{p} i \end{cases}$$

And q^* is envy-free since:

$$\begin{cases} \Delta^{\star}(k, p; i, j) \geq \Delta^{\star}(k, p'; i, j) \ \forall \ p' & \text{if } i \succ_{p} j \\ \Delta^{\star}(k, p; i, j) \geq 0 & \text{if } j \succ_{p} i \end{cases}$$

Therefore, q^* is an envy-free Pareto improvement to q.

Lemma 6. The set of envy-free allocations are closed.

Proof. Consider any sequence of allocations $\{q_i\}_{i=1}^{\infty}$ and the limit q^{\star} .

Fix any two students (k, p) and (k, p'), since q_i are envy-free for each i:

$$\sum_{s=1}^{t} q_{i}(l_{s}; k, p') \leq \sum_{s=1}^{t} q_{i}(l_{s}; k, p) \ \forall \ t$$

where l_s is the s-th school in the preference ranking of student (k, p).

Then,

$$\lim_{i \to \infty} \sum_{s=1}^{t} q_i \left(l_s; k, p' \right) \le \lim_{i \to \infty} \sum_{s=1}^{t} q_i \left(l_s; k, p \right) \ \forall \ t$$

$$\sum_{s=1}^{t} q^* \left(l_s; k, p' \right) \le \sum_{s=1}^{t} q^* \left(l_s; k, p \right) \ \forall \ t$$

Therefore, q^* is envy-free. The set is closed under limits.

Similarly, the set of Pareto improvements of any allocation is closed. \Box

Proof. Let c, c' be two vector of capacities, and q, q' be the PS allocation with capacities c, c' respectively.

Consider allocation $q_0 = \frac{1}{2}q + \frac{1}{2}q'$ and the welfare of allocation q_0 is $\frac{1}{2}\left(W\left(c\right) + W\left(c'\right)\right)$

If q_0 can be obtained from PS with capacities $\frac{1}{2}(c+c')$, then $\frac{1}{2}(W(c)+W(c'))=W\left(\frac{1}{2}(c+c')\right)$.

Suppose q_0 cannot be obtained from PS, then q_0 is not both envy-free and efficient.

Since q_0 is envy-free from Lemma 6, q_0 is not efficient.

Let V be the set of envy-free allocations that is more efficient than q_0 .

V is bounded since the set of allocations is bounded and the set of all envy-free allocations and the set of allocations that are Pareto improvements to q_0 are closed by Lemma 8. Then, V is an intersection of two compact sets implying that V is compact.

Therefore, there is an allocation $q^* \in V$ that maximizes $W\left(\frac{1}{2}(c+c')\right)$.

Note that q^* must be efficient because if not, by Lemma 7, there is a envy-free Pareto improvement of q^* in V which contradicts the definition that q^* maximizes $W\left(\frac{1}{2}\left(c+c'\right)\right)$.

 q^* is envy-free and efficient, implying that q^* is the PS allocation with capacity $\frac{1}{2}(c+c')$.

Therefore,
$$\frac{1}{2}(W(c) + W(c')) \le W\left(\frac{1}{2}(c + c')\right)$$
, W is concave in c.

The function $W_k\left(c\right)$ is strictly increasing in c_l^k for $c_l^k \in \left[0, \sum_{p:l \text{ is the most preferred school}} \mu\left(k,p\right)\right]$, and non-decreasing for c_l^k in $\left[\sum_{p:l \text{ is the most preferred school}} \mu\left(k,p\right), c_l\right]$.

4.3. Proof of Conjecture 1.

Proof. Fix ak, define the set of capacities for which no two schools are finished being eaten at the same time, \mathcal{D} :

$$\mathcal{D} = \{c : y^{s}(l) \neq y^{s}(l') \ \forall \ s \ \forall \ l' \neq l\}$$

Define the set of capacities for which l and l' are finished being eaten at the same time, E_{l} :

$$E_{l,l'} = \{c_l : y^s(l) = y^s(l') \text{ for some } s\}$$

We first show that the value function on this set is linear.

Take $\varepsilon < \min_{s} y^{s}$, consider the change from c_{l} to $c_{l} + \varepsilon$ and $c_{l'}$ to $c_{l'} - \varepsilon$.

Let s be the iteration with $y^{s}(l) = y^{s}$, and s' be the iteration with $y^{s'}(l') = y^{s'}$ Then $W(c_{l})$ will change by

$$\frac{\varepsilon}{\left|M\left(l,L^{s-1}\right)\right|} \cdot \left(\sum_{p \in M\left(l,L^{s-1}\right)} u\left(p,l\right)\right) - \frac{\varepsilon}{\left|M\left(l',L^{s'-1}\right)\right|} \cdot \left(\sum_{p \in M\left(l,L'^{s'-1}\right)} u\left(p,l'\right)\right)$$

where the u(p, l) is the expected utility of students with preference p getting into school l.

The students with preferences in $M(l, L^{s-1})$ will spend $\frac{\varepsilon}{|M(l, L^{s-1})|}$ extra time on eating l, and L^s will stay the same since $\varepsilon < y^s$.

Similarly, the students with preferences in $M\left(l',L^{s'-1}\right)$ will spend $\frac{\varepsilon}{|M\left(l',L^{s'-1}\right)|}$ less time on eating l', and $L^{s'}$ will stay the same since $\varepsilon < y^{s'}$.

Then note that $E_{l,l'}$ contains at most one point, since otherwise, $y^s(l) \neq y^s(l')$ in one of the points in $E_{l,l'}$. Therefore, \mathcal{D}^c is a finite union of $E_{l,l'}$, the value function is linear on all but a finite set of points, i.e. piecewise linear.

Lemma 7. The value function is piecewise linear in the capacities c_l^k

Proof. Fix k, re-index the school according the time it is eaten in the PS_k algorithm. From the definition of PS, if school s_1 and $s_2, s_1 < s_2$ are eaten at the same time, $y_{s_2} = 0$, the school with smaller original index is eaten first, then the school with larger index is eaten in 0 units of time.

Then the time school l is eaten is $t_l = \sum_{s=1}^{l} y_s$.

Define the change in finish time of l:

$$\Delta t_{l} = \frac{1}{\sum_{p \in M(l, L^{l-1})} \mu(p)}$$

and the change in total value due to change in capacity l:

$$\Delta V_l(\varepsilon) = V(c_l + \varepsilon) - V(c_l)$$

Define expected utility from eating l:

$$\Delta u_{l} = \sum_{p \in M(l, L^{l-1})} \mathbb{E} \left[u \left(l; p \right) \mu \left(p \right) \right]$$

Then we have

$$\Delta V_{l}(\varepsilon) = \Delta t_{l} \cdot \varepsilon \cdot \Delta u_{l} + \sum_{i=1}^{L-l} \Delta V_{l+i}(\eta_{l+i}) \text{ for some } \eta_{s} < \varepsilon \ \forall \ s.$$

where
$$\eta_s = -\Delta t_l \cdot \varepsilon \cdot \left(\sum_{p \in M\left(s, L^{l-1}\right)} \mu\left(p\right) \right) \cdot \Delta t_s$$

and
$$\Delta V_L(\varepsilon) = \Delta t_L \cdot \varepsilon \cdot \Delta u_L$$

$$\begin{split} \frac{dV}{dc_{l}} &= \Delta t_{l} \cdot \left(\Delta u_{l} + \sum_{i=1}^{L-l} \left(\sum_{p \in M\left(l+i,L^{l-1}\right)} \mu\left(p\right) \right) \cdot \Delta t_{l+i} \frac{dV}{dc_{l+i}} \right) \\ &= \sum_{i=0}^{L-l} w_{i} \Delta t_{l+i} \cdot \Delta u_{l+i} \text{ for some weights } w_{i} \text{ with } w_{0} = 1, w_{i} < 0 \text{ for } i > 0 \end{split}$$

For $\varepsilon_{l_1}, \varepsilon_{l_2}$ small enough, define the following for $l_1 < l_2$:

$$\Delta V(\varepsilon_{l_1}, \varepsilon_{l_2}) = V(c_{l_1} + \varepsilon_{l_1}, c_{l_2} + \varepsilon_{l_2}) - V(c_{l_1}, c_{l_2})$$

If $t_{l_1} = t_{l_2}$, meaning l_1 and l_2 are eaten at the same time, then:

(1) If $\Delta t_{l_1} \varepsilon_{l_1} > \Delta t_{l_2} \varepsilon_{l_2}$,

 l_2 will be eaten before l_1 after the ε change in capacity:

$$\Delta V\left(\varepsilon_{l_{1}}, \varepsilon_{l_{2}}\right) = \Delta t_{l_{2}} \cdot \varepsilon_{l_{2}} \cdot \left(\Delta u_{l_{1}} + \Delta u_{l_{2}} + \sum_{i=1}^{L-l} \Delta V_{l_{2}+i} \left(\eta_{l+i}\right) + \Delta V_{l_{2}} \left(\varepsilon_{l_{1}} - \frac{\Delta t_{l_{2}} \varepsilon\left(l_{2}\right)}{\Delta t_{l_{1}}}\right)\right)$$

(2) If $\Delta t_{s_1} \varepsilon_1 < \Delta t_{s_2} \varepsilon_{2,}$

 s_1 will be eaten before s_2 after the ε change in capacity:

$$\Delta V\left(\varepsilon_{l_{1}}, \varepsilon_{l_{2}}\right) = \Delta t_{l_{1}} \cdot \varepsilon_{l_{1}} \cdot \left(\Delta u_{l_{1}} + \Delta u_{l_{2}} + \sum_{i=1}^{L-l} \Delta V_{l_{2}+i} \left(\eta_{l+i}\right) + \Delta V_{l_{1}} \left(\varepsilon_{l_{2}} - \frac{\Delta t_{l_{1}} \varepsilon\left(l_{1}\right)}{\Delta t_{l_{2}}}\right)\right)$$

(3) If $\Delta t_{s_1} \varepsilon_1 = \Delta t_{s_2} \varepsilon_2$,

 s_1 and s_2 will remain getting eaten at the same time. Same as the one-dimension case.

The directional derivative in the direction v is:

$$\nabla_{v}V = \sum_{l=1}^{L} w_{l} \Delta t_{l} \cdot \Delta u_{l} \text{ for some weights } w_{l}$$

$$= \sum_{l=1}^{L} w_{l} \frac{\sum_{p \in M(l, L^{l-1})} \mathbb{E}\left[u\left(p, l\right) \cdot \mu\left(p\right)\right]}{\sum_{p \in M(l, L^{l-1})} \mu\left(p\right)} \text{ for some weights } w_{l}$$

Moving in direction v satisfying the following condition will maintain the ordering of the schools:

$$\Delta t_{l_1} v_{l_1} = \Delta t_{l_2} v_{l_2} \ \forall \ l_1, l_2 \text{ such that } t_{l_1} = t_{l_2}$$

$$\frac{v_{l_1}}{\sum_{p \in M\left(l_1, L_1^{l_1 - 1}\right)} \mu\left(p\right)} = \frac{v_{l_2}}{\sum_{p \in M\left(l_2, L_2^{l_2 - 1}\right)} \mu\left(p\right)} \ \forall \ l_1, l_2 \text{ such that } t_{l_1} = t_{l_2}$$

This can be extended to cases where more than two schools are eaten at the same time.