1/1	Relations	anl	Daltitions	>
(4.	NOUTONS	ω	ravitions	/

Relation on A and B

· Product Set (AXB) > Catesian Productite 3018.

A= {1,2,3} B= {a, b}

 $A \times B = \{(1, \alpha), (1, b), (2, \alpha), \dots (3, b)\}$

B x A = { (a,1), (a,2), (a,3), ... (b,3)}

> AxB ≠ BxA

· Partition (Quotient Set)

a Ai (A; = Ø

@ A, U A, U ... UA, = S

A= {1, 2, 3}

P(A) = { {13, {23, {33}, {1,23, {33}}}

※(1~14) 다음 문장의 내용이 맞으면 ○표, 틀리면 ×표를 답하시오.

- 1. Let $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 5, 6\}$ and $B = \{1, 2, 4\}$. Then sequence 0,1,0,0,1,1 represents f_A and 1,1,0,0,1,0 represents f_B . (f_A, f_B) are characteristic functions)
- 2. Let $A = \{a, b, c\}$. The expression $a^*(b \wedge c)^*bc$ is a regular expression. X
- 3. Let $A = \{ab, bc, ba\}$. All the strings such as abba, babcab, bcabab, bcabab belong to A^* .
- 4. If e is an identity for a binary operation, then e is unique.
- 5. Let $A = \{1,2,3,4\}$ and let $R = \{(1,2),(2,2),(3,4),(4,1)\}$. Then R is antisymmetric.
- 6. When the relation R on the set $A=\mathbb{Z}$ and aRb if and only if |a-b|=2, the relation R is symmetric and transitive.
- 7. The recurrence relation $f_n = f_{n-1} + 2f_{n-2} 1$ is a linear homogeneous relation of degree 2.
- 8. Let aRb if and only if GCD(a,b)=1 for a,b in $A=Z^+$, then R is an equivalence relation.
- 9. The symmetric closure of a relation R is the smallest symmetric relation containing R.
- 10. Let $A = \{1,2,3,4\}$ and let $R = \{(3,3),(1,2),(2,2),(2,1)(3,4),(4,3),(1,1),(4,4)\}$. Then R is an equivalence relation.
- 11. Let R be the relation on $A = \{1, 2, 3, 4\}$ that has the matrix $M_R = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$.

Vertex 3 has in-degree 3 and out-degree 2.

- 12. Let R be a relation from A to B, and let A_1 and A_2 be subsets of A. Then $R(A_1)\cap R(A_2)\subseteq R(A_1\cap A_2)$.
- 13. Let R be a relation on a set A where |A|=4 and |R|=6. If R is reflexive and antisymmetric then $|R \cup R^{-1}|=8$.
- 14. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and R be a relation on A. If $M_R \odot M_R = M_R$ then R is transitive.

$$M_{R^2} = \begin{bmatrix} 100 \\ 001 \end{bmatrix} = R^{\infty}$$

$$2 - 1000$$
 $2^2 - 1000$
 0000
 0000

$$ANB = \begin{bmatrix} 000 \\ 000 \\ 100 \end{bmatrix}$$
 $A = \{0,13\}$
 $(*(10))*0*$

DOCH

[7,1] > [4,1]

[-> 3 -> 5 -> 7:1

1 → 4 → 5 > 7:2

1 72 7677:3

| ラ2 ラ4 ラ5 ラリ:2

1 つ3 つ 4 っ 5 つり:1

7

| 3 5 7: 1

1457:2

12457:2

12657:3 79

※(1~9) 다음 문장의 내용이 맞으면 ○표, 틀리면 ×표를 답하시오. 1. Let X=Y= $\mathbb Z$ and let formula f(x) be defined by f(x)=y and $y^2=x$, for $x\in X,\ y\in Y$. Then f(x) is a function. X ~ \$(1)-1 -1-255, 1-2455. 2. If f is also everywhere defined and bijection, then f is called a one-to- one correspondence between A and B. 📿 3. Let f and g be functions whose domains are subsets of \mathbb{Z}^* , positive integers. If f is O(g), then f grows faster than g dose. \times 4. Let (T, v_0) be a rooted tree. The vertices of same level is called the siblings. 5. Let (T, v_0) be a rooted tree. Then, there are no cycles in T. v_0 is the only root of T. And all vertices of T has in-degree. \mathcal{O} 6. If (T, v_0) is a rooted tree and $v \in T$, then T(v) is also a rooted tree with root v. We will say that T(v) is the subtree of T beginning at v. 7. If a graph G has exactly two vertices of odd degree, there is an Euler circuit in $G. \times - destree > 1$ and the Euler Circuit \times . ot M The graph G is called the connected if there is a path from any vertex to any other vertex in G. QA. The graph is called complete if each vertex of the graph has the same degree as every other vertex. **※(10~16)** 다음 괄호에 알맞은 값이나 용어를 채워 넣으시오.

- 10. Two cycles of a set A are said to be ($\frac{1}{2}$) if no element of A appears in both cycles.
- \mathcal{A} 1. The vertices of the tree that have no offspring are called the $(\mathcal{A}^{\text{tend}})$ of the tree.
- 12. If all vertices of T, other than the leaves, have exactly 2 offsprings, we say that T is a complete (binary three
- 13. Let R be a symmetric relation on a set A. R is connected and (
- 14. If R is a symmetric, connected relation on a set A, we say that a tree T on A is a (for R if T is a tree with exactly the same vertices as R and which can be obtained from R by deleting some edges of R.
- 15. (Weighted) graph is a graph for which each edge is labeled with a numerical value.
- 16. If a graph G is (Connected) and has exactly two vertices of odd degree, there is an Euler path in G.

※(1~5) 다음 문장의 내용이 맞으면 ○표, 틀리면 ×표를 답하시오.					
					$ \nearrow$. The Backus-Naur From (BNF) notation is for type $ \checkmark$ grammars.
	diagram corresponding to a grammar is unique.				
4. In a Finite S	State Machine (FSM), every state must process every input.				
7. There must	be only one acceptance state in a Moore machine.				

