ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY

Základy elektrotepelných procesů

Symetrizační zařízení

Vypracoval: Jan Kaska

Ostatní členové měřícího týmu:

Lukáš Knepr

Cvičení

Čt 14:50 - 16:30

Datum měření Datum vypracování

3.11.2016 8.11.2016

Školní rok Semestr Ročník 2016/17 zimní 3.

Úkol měření

Navrhněte symetrizační zařízení pro připojení jednofázové odporové zátěže k trojfázové symetrické síti pro zadanou hodnotu činného odporu. Návrh proveďte pro zapojení: a) do hvězdy b) do trojúhelníka.

Teoretický úvod

V praxi se na síť připojují zátěže různých typů. Jedním spotřebičem, který se k síti připojuje je indukční tavící pec. Předpokládáme, že pec je vyladěna a zatěžuje síť pouze jako ohmický odpor. Jelikož se jedná o jednofázovou zátěž se značným příkonem, je nutno připojit k peci další zařízení, které zajistí symetrické zatížení trojfázové napájecí sítě.

Jedná se o symetrizační indukčnost Ls a kapacitu Cs, které se spolu s pecí zapojují na trojfázovou síť buď do trojúhelníku nebo do hvězdy.

Při rovnoměrném zatížení sítě se požaduje, aby proudy v jednotlivých fázích byly stejné a současně souběžné s příslušnými fázovými napětími. Při obou zapojeních je třeba použít správný sled fází, protože velikost proudů případně napětí je na tomto sledu závislá.

Obrázek 1: Schéma zapojení

$$L_{S} = \frac{\sqrt{3} \cdot R_{Z}}{2\pi \cdot f}$$

$$L_{S'} = \frac{R_{Z}}{\sqrt{3} \cdot 2\pi \cdot f}$$

$$C_{S} = \frac{1}{2\pi \cdot f \cdot \sqrt{3} \cdot R_{Z}}$$

$$C_{S'} = \frac{\sqrt{3}}{2\pi \cdot f \cdot R_{Z}}$$

Postup měření

Obvod zapojte dle schématu do hvězdy či trojúhelníka (podle zadání, R, bude také zadán). Vypočtěte hodnoty indukčnosti a kapacity pro zadané zapojení. Do každé větve zapojte jeden ampérmetr. Napětí na jednotlivých prvcích a na zdroji změřte pomocí voltmetru. Odměřte všechna napětí a proudy při správném sledu fází (symetrický stav) a následně při nesprávném sledu fází (nesymetrický stav).

Použité přístroje

A-metr	Mastech	MY-65
Ω	Metra	3821
V-metr	Finest	703 TRMS Multimetr

Naměřené a vypočítané hodnoty

Tabulka 1: Proudy a napětí pro zapojení Δ

	Symetrie - Δ							
$\mathbf{U}_{\mathbf{x}\mathbf{y}}$	[mV]	192,5	Ix	[mA]	115,0	$\mathbf{U}_{\mathbf{R}}$	[mV]	192,0
$\mathbf{U}_{\mathbf{yz}}$	[mV]	192,0	I _y	[mA]	115,0	$\mathbf{U}_{\mathbf{C}}$	[mV]	192,2
$\mathbf{U}_{\mathbf{x}\mathbf{z}}$	[mV]	192,1	I_z	[mA]	115,0	$\mathbf{U}_{\mathbf{L}}$	[mV]	192,1
	Nesymetrie - Δ							
U _{xy}	[mV]	192,3	Ix	[mA]	290,0	$\mathbf{U}_{\mathbf{R}}$	[mV]	192,1
$\mathbf{U_{yz}}$	[mV]	192,5	I _y	[mA]	300,0	$\mathbf{U}_{\mathbf{C}}$	[mV]	192,0
$\mathbf{U}_{\mathbf{x}\mathbf{z}}$	[mV]	192,1	I_z	[mA]	80,0	$\mathbf{U}_{\mathbf{L}}$	[mV]	190,5

Tabulka 2: Proudy a napětí pro zapojení Y

	Symetrie - Y							
$\mathbf{U}_{\mathbf{x}\mathbf{y}}$	[mV]	192,1	I _x	[mA]	282,0	$\mathbf{U}_{\mathbf{R}}$	[mV]	184,4
$\mathbf{U_{yz}}$	[mV]	192,2	I_y	[mA]	281,0	$\mathbf{U}_{\mathbf{C}}$	[mV]	195,2
$\mathbf{U}_{\mathbf{x}\mathbf{z}}$	[mV]	192,0	I_z	[mA]	230,0	$\mathbf{U}_{\mathbf{L}}$	[mV]	193,0
	Nesymetrie - Y							
$\mathbf{U}_{\mathbf{x}\mathbf{y}}$	[mV]	192,2	Ix	[mA]	700,0	$\mathbf{U}_{\mathbf{R}}$	[mV]	188,7
$\mathbf{U_{yz}}$	[mV]	192,3	I _y	[mA]	655,0	$\mathbf{U}_{\mathbf{C}}$	[mV]	177,6
$\mathbf{U}_{\mathbf{x}\mathbf{z}}$	[mV]	192,0	I_z	[mA]	218,0	\mathbf{U}_{L}	[mV]	177,5

Tabulka 3: Prvky pro zapojení Δ

Hodnoty prvků R L C - Δ					
$\mathbf{R}_{\mathbf{Z}}$	[Ω]	190			
L_{S}	[H]	1,05			
$\mathbf{C_s}$	[μF]	9,67			
L_{zvol}	[H]	0,94			
Czvol	[μF]	9,14			

Tabulka 4: Prvky pro zapojení Y

Hodnoty prvků R L C - Y				
Troundty pr	THUILD I			
R_Z $[\Omega]$	190			
Ls' [H]	0,35			
C_{S}' [μF]	29,02			
L _{zvol} ' [H]	0,37			
C _{zvol} ' [µF]	27,60			

Výpočty hodnot prvků R L C:

$$L_{S} = \frac{\sqrt{3} \cdot R_{Z}}{2\pi \cdot f} = \frac{\sqrt{3} \cdot 190}{2\pi \cdot 50} = 1,05 \text{ H}$$

$$L'_{S} = \frac{R_{Z}}{\sqrt{3} \cdot 2\pi \cdot f} = \frac{190}{\sqrt{3} \cdot 2\pi \cdot 50} = 0,35 \text{ H}$$

$$C_{S} = \frac{1}{2\pi \cdot f \cdot \sqrt{3} \cdot R_{Z}} = \frac{1}{2\pi \cdot 50 \cdot \sqrt{3} \cdot 190} = 9,67 \text{ }\mu\text{F}$$

$$C'_{S} = \frac{\sqrt{3}}{2\pi \cdot f \cdot R_{Z}} = \frac{\sqrt{3}}{2\pi \cdot 50 \cdot 190} = 27,6 \text{ }\mu\text{F}$$

Závěr

Nejprve byl zvolen odpor R_Z reprezentující ohmickou zátěž indukční pece. Následně byly spočteny symetrizační indukčnosti a kapacity a to jak pro zapojení do trojúhelníka, tak pro zapojení do hvězdy. K těmto hodnotám byly nalezeny nejbližší hodnoty L a C na dekádách.

Z měření je očividné, že proudy jednotlivými fázemi jsou při symetrickém stavu téměř totožné. V zapojení do hvězdy se mírně liší, je to dáno nejspíše větším rozdílem mezi vypočítanými a nastavenými hodnotami L a C. Nesymetrický stav byl vyvolán přehozením dvou libovolných fází. V tomto stavu jsou hodnoty proudů v jednotlivých fází rozdílné až o 100 mA a síť tak není rovnoměrně zatížena.

	Uxn = 192,5 mV		I+-0, 104 A
\triangle	Vyn = 192,0 mV	1/1/1	In = 0,115 A
SYM	V+ 92 = 192, 1 m/	1418	In = 0,115

$$U_{R} = 192_{mV}$$
 $V_{C} = 192_{j}z_{nV}$
 $U_{L} = 192_{j}1_{mV}$

$$\Delta \quad U_{+} g = 192,3 \, \text{mV} \qquad \boxed{F_{+}} = 0,290 \, A$$

$$V_{+} g = 192,5 \, \text{mV} \qquad \boxed{F_{7}} = 0,08 \, A \leq 0$$

$$U_{+} g = 192,5 \, \text{mV} \qquad \boxed{F_{9}} = 0,08 \, A \leq 0$$

$$U_{+} g = 192,5 \, \text{mV} \qquad \boxed{F_{9}} = 0,08 \, A \leq 0$$

$$U_{R} = 192, 1 \text{ mV}$$
 $V_{c} = 192 \text{ mV}$
 $U_{L} = 190, 5 \text{ mV}$

AND STATE

0- 100		27-114 127711 121
 RZ=190		62 116 42541 419
	Lg=9, 14 G	L=0,371 HT3N SL
	Cs=0,9422	12NC=2761F23117 M-1
	210	LENO

June

BETP/CV

1 7 = 0, 10 × 15	(1:0 = 192.5 ml	
SYA 0, 7 = 192, 1 mV	T4 = 0,282 A	\triangle
Vyn = 192,2 MV	In=0,281 4	1415
V+9 = 192 mV	In = 0, 23 A	
	Up = 192mV	
UR = 184,4 MV	Vc = 193,21/	
Uc = 195,2 mV	UL = 192/1/1	
UL = 193,0 MV		
FF = 0,290 £	V47 = 192,3 and	1
K = 4.80,0= pT	VA12 = 1425 EMI	2311
NE9 Uty = 192,2mU	74=0,74	
Vyg = 192,3mV	In =0,688A	
Ux 2 = 192	In -0, 219 A	
	Ve = 142 mV	
UR = 188,7mV	Var = 1017 = 10	
V c = 177,6mV		
U c = 777, 5 ml		
A-M MASTECH MY-69	OFFE	23
J METRA 3829	2 4/2 /P = 21	
	11 1	

01/31015

FINEST 703 - TRMS Mullimeter

V-M