8 Support Vector Machine - Hard Margin Classification

Exercise 8.1

Consider the following training data:

Class	x_1	x_2
+1	1	1
+1	2	2
+1	2	0
-1	0	0
-1	1	0
-1	0	1

- 1. Plot these six training points. Are the classes $\{+1, -1\}$ linearly separable?
- 2. Infer the separating line which maximizes the margin and identify the support vectors.
- 3. If you remove one of the support vectors, does the size of the optimal margin decrease, stay the same, or increase?
- 4. Is your previous answer also true for any dataset? Provide a counterexample or give a short proof.

Exercise 8.2

Construct a support vector machine that computes the XOR function denoted \oplus . Use values of +1 and -1 (instead of 1 and 0) for both inputs and outputs, so that an example looks like the couple $([x_1, x_2], x_1 \oplus x_2)$ with $x_1, x_2 \in \{-1, 1\}$.

- 1. Map the input $[x_1, x_2]$ into a space consisting of x_1 and x_1x_2 . Draw the four input points in this space, and the maximal margin separator.
- 2. What is the margin?
- 3. Draw the separating line back in the original Euclidian input space.

Exercise 8.3

Let us recall that the equation of a circle in the 2-dimensional plane is

$$(x_1 - a)^2 + (x_2 - b)^2 - r^2 = 0.$$

Show that every circular region is linearly separable from the rest of the 2-dimensional plane when we consider the feature space (x_1, x_2, x_1^2, x_2^2) .