### 高性能服务器架构设计和调优

千石

# Agenda

Tuning

Troubleshooting

Design

Device

### Device



### **CPU**

Intel Core -2



#### Intel Sandybridge



### **CPU Cache**



#### **CPU Cache line**

L1 Cache - 32KB, 8-way set associative, 64-byte cache lines
1. Pick cache set (row) by index

36-bit memory location as interpreted by the L1 cache:



### **Memory Controler**



### UMA/NUMA



#### Mix architectures



#### The Linux I/O Stack Diagram

version 1.0, 2012-06-20 outlines the Linux I/O stack as of Kernel version 3.3



### Block I/O Layer (simplified)



# 硬盘到SSD





#### Writing data to a solid-state drive

#### 1. Initial configuration

Block 1000 (data)

| PPN | data |  |
|-----|------|--|
| 0   | х    |  |
| 1   | у    |  |
| 2   | z    |  |
| 3   |      |  |

Block 2000 (free)

| PPN | data |
|-----|------|
| 0   |      |
| 1   |      |
| 2   |      |
| 3   |      |

 Initially, block 2000 is free and block 1000 has three used pages at PPN = 0, 1, and 2 (Physical Page Number), and one free page at PPN = 3.

#### 2. Writing a page

Block 1000 (data)

| PPN | data |
|-----|------|
| 0   | х    |
| 1   | у    |
| 2   | z    |
| 3   | x'   |

Block 2000 (free)

| $\overline{}$ |      |
|---------------|------|
| PPN           | data |
| 0             |      |
| 1             |      |
| 2             |      |
| 3             |      |

- The data in block 1000 at PPN = 0 gets updated and becomes x'.
- Since pages cannot be overwritten, the page that contains x becomes stale (PPN = 0), and the new version of the data is stored in a free page, at PPN = 3.

#### 3. Erasing a block (garbage collection)

Block 1000 (free)

| PPN | data |
|-----|------|
| 0   |      |
| 1   |      |
| 2   |      |
| 3   |      |

Block 2000 (data)

| PPN | data |
|-----|------|
|     |      |
| 1   | у    |
| 2   | z    |
| 3   | x'   |

- The garbage collection process copies all the valid pages from the data block 1000 into the free block 2000, leaving behind the stale pages.
- Block 1000 is erased, which makes it ready to receive new write operations. Blocks can only be erased a limited number of times (P/E cycles) until they wear off and become unusable.

# 网卡收包



## 网卡多队列



# 网卡多队列绑定CPU



### Design



### 软件性能设计原则:不能成为硬件瓶颈

• 均衡使用CPU多核处理能力

• 高效合理地使用和控制内存

• 最大化磁盘IOPS和吞吐,异步化处理

• 小包跑满万兆网卡,中断平衡

### CDN Cache系统模型

• Net模块: 支持大并发,跑满万兆网卡

• ACL模块: 高效匹配,减少CPU消耗

• Store模块: 提高命中率,高效利用磁盘IOPS

• 回源模块: L7-check, 长连接保持



Swift -- High Performance Web Cache Arichitecture



### Net 模块

- I/O模型
  - epoll + O\_NONBLOCK
- TCP选项
  - TCP\_DEFER\_ACCEPT / TCP\_SYNCNT
  - TCP\_CORK / TCP\_NODELAY / TCP\_QUICKACK
- 收发包的方式
  - RSS, SMP\_AFFNITY
  - SO\_REUSEPORT

### SO\_REUSEPORT

• listen单个fd存在 accept竞争问题



• SO\_REUSEPORT listen多个fd



## ACL优化

• squid根据 http\_access配置 的顺序依次比较



• Swift将ACL按 domain建立一棵 Trie树



# 完美hash处理http header

- 完美hash ( Perfect Hash Function )
  - Hash table: key = value
  - PHF将key集合没有冲突地映射到一组整数
  - 查找key操作转换为索引整数表
- PHF场景&作用
  - 适合在key集合确定或不经常更新的情况
  - 主要作用是提高hash查找的速度

## Store模块

- DIRECT IO写裸盘、绕过FS、不使用page cache
- 顺序写/随机读,stripe 8MB/block 512B
- mem\_buf 在内存做写合并
- 省去open和close系统调用



# 多线程任务交互模型



## TCmalloc管理内存

- thread free list
- central free list
- central heap







## Hash Trie替换Hash table



# 无锁LRU链表

Lock-free Queue (CAS) Fixed Array Χ Max Heap lockfree\_pop lockfree\_push Х Cache line Aligned Х LRU n - 2 n -1

### Troubleshooting





# CPU分析工具

| Linux        | Solaris | Description                          |
|--------------|---------|--------------------------------------|
| uptime       | uptime  | load averages                        |
| vmstat       | vmstat  | includes system-wide CPU averages    |
| mpstat       | mpstat  | per-CPU statistics                   |
| sar          | sar     | historical statistics                |
| ps           | ps      | process status                       |
| top          | prstat  | monitor per-process/thread CPU usage |
| pidstat      | prstat  | per-process/thread CPU breakdowns    |
| time         | ptime   | time a command, with CPU breakdowns  |
| DTrace, perf | DTrace  | CPU profiling and tracing            |
| perf         | cpustat | CPU performance counter analysis     |

# 用/proc/\$pid定位问题

- # top –cbp \$pid
- # strace -cp \$pid
- # ps -flp \$pid
- # pstack \$pid
- # cat /proc/\$pid/wchan
- # cat /proc/\$pid/status
- # cat /proc/\$pid/sched
- # cat /proc/\$pid/schedstat
- # cat /proc/\$pid/syscall
- # cat /proc/\$pid/stack

# Mem分析工具

| Linux   | Solaris   | Description                            |
|---------|-----------|----------------------------------------|
| vmstat  | vmstat    | virtual and physical memory statistics |
| sar     | sar       | historical statistics                  |
| slabtop | ::kmastat | kernel slab allocator statistics       |
| ps      | ps        | process status                         |
| top     | prstat    | monitor per-process memory usage       |
| pmap    | pmap      | process address space statistics       |
| DTrace  | DTrace    | allocation tracing                     |

# /proc/meminfo 项的关系

- MemTotal = LowTotal + HighTotal
- MemFree = LowFree + HighFree
- Slab = SReclaimable + SUnreclaimable
- Active = Active(anon) + Active(file)
- Inactive = Inactive(anon) + Inactive(file)
- AnonPages + ?X? = Active(anon) + Inactive(anon)
- Buffers + Cached = Active(file) + Inactive(file) + ?X?
- AnonPages + Buffers + Cached = Active + Inactive
- SwapTotal = SwapFree + SwapCached

## 内存问题定位

- 内存泄露
  - # env HEAPPROFILE=/home/qianshi/dev/ swift.hprof ./swift -f swift.conf
  - # pprof --pdf --base=swift.hprof.0001.heap . /swift swift.hprof.0002.heap > 1-2.pdf
- 内存写乱
  - # clang -O1 -g -fsanitize=address -fno-omit-framepointer example\_UseAfterFree.cc

# Disk分析工具

| Linux          | Solaris  | Description                       |
|----------------|----------|-----------------------------------|
| iostat         | iostat   | various per-disk statistics       |
| sar            | sar      | historical disk statistics        |
| pidstat, iotop | iotop    | disk I/O usage by process         |
| blktrace       | iosnoop  | disk I/O event tracing            |
| DTrace         | DTrace   | custom static and dynamic tracing |
| MegaCli        | MegaCli  | LSI controller statistics         |
| smartctl       | smartctl | disk controller statistics        |

# Network分析工具

| Linux        | Solaris       | Description                                                |
|--------------|---------------|------------------------------------------------------------|
| netstat      | netstat       | various network stack and interface statistics             |
| sar          | _             | historical statistics                                      |
| ifconfig     | ifconfig      | interface configuration                                    |
| ip           | dladm         | network interface statistics                               |
| nicstat      | nicstat       | network interface throughput and utilization               |
| ping         | ping          | test network connectivity                                  |
| traceroute   | traceroute    | test network routes                                        |
| pathchar     | pathchar      | determine network path characteristics                     |
| tcpdump      | snoop/tcpdump | network packet sniffer                                     |
| Wireshark    | Wireshark     | graphical network packet inspection                        |
| DTrace, perf | DTrace        | TCP/IP stack tracing: connections, packets, drops, latency |

## Tuning



### **CPU** tuning

- CPU亲和性
  - 提高cache命中率
  - 降低访问内存延迟
  - taskset –c –p \$pid
- 避免false sharing
  - -编译器强制对齐
  - 填充结构体保证 cache line对齐
  - 使用线程局部数据



# Memory tuning

- 关掉SWAP
  - /proc/sys/vm/swappiness
  - swapoff –a
- OOM处理
  - /proc/\$pid/oom\_adj
  - /proc/sys/vm/overcommit\_memory
  - /proc/sys/vm/overcommit\_ratio

### Disk tuning

- Scheduler algorithm
  - echo deadline > /sys/block/<dev>/queue/ scheduler
- IO request queue
  - echo 1024 > /sys/block/<dev>/queue/nr\_requests

# Network tuning

- Interrupts balance
  - /proc/irq/IRQ/smp\_affinity
- Backlogs
  - net.core.netdev\_max\_backlog
  - net.core.somaxconn
  - net.ipv4.tcp\_max\_syn\_backlog
- Reduce TCP overhead
  - net.ipv4.tcp\_sack
  - net.ipv4.tcp\_fack
- Reduce connection overhead
  - net.ipv4.tcp\_fin\_timeout
  - net.ipv4.tcp\_tw\_reuse
- Enable auto-tuning
  - net.ipv4.tcp\_moderate\_rcvbuf
  - net.ipv4.tcp\_window\_scaling

The tool isn't important – it's important to have a way to measure everything

-- Brendan Gregg



Architects look at thousands of buildings during their training, and study critiques of those buildings written by masters. In contrast, most software developers only ever get to know a handful of large programs well — usually programs they wrote themselves — and never study the great programs of history. As a result, they repeat one another's mistakes rather than building on one another's successes.

-- The Architecture of Open Source Applications

# 推荐两本书





#### reference

- <a href="http://tutorials.jenkov.com/software-architecture/computer-architecture.html">http://tutorials.jenkov.com/software-architecture/computer-architecture.html</a>
- <a href="http://exadat.co.uk/2015/01/29/cpus-memory-storage-and-database-engines-the-shape-of-things-to-come/">http://exadat.co.uk/2015/01/29/cpus-memory-storage-and-database-engines-the-shape-of-things-to-come/</a>
- <a href="http://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html">http://mechanical-sympathy.blogspot.com/2013/02/cpu-cache-flushing-fallacy.html</a>
- http://duartes.org/gustavo/blog/post/what-your-computer-does-while-you-wait/
- https://software.intel.com/en-us/articles/detecting-memory-bandwidthsaturation-in-threaded-applications
- <a href="https://software.intel.com/en-us/articles/optimizing-applications-for-numa">https://software.intel.com/en-us/articles/optimizing-applications-for-numa</a>
- https://www.thomas-krenn.com/en/wiki/Linux Storage Stack Diagram
- <a href="http://www.mimuw.edu.pl/~lichota/09-10/Optymalizacja-open-source/Materialy/10%20-%20Dysk/gelato">http://www.mimuw.edu.pl/~lichota/09-10/Optymalizacja-open-source/Materialy/10%20-%20Dysk/gelato</a> ICE06apr blktrace brunelle hp.pdf
- http://codecapsule.com/2014/02/12/coding-for-ssds-part-2-architecture-of-anssd-and-benchmarking/
- <a href="http://codecapsule.com/2014/02/12/coding-for-ssds-part-3-pages-blocks-and-the-flash-translation-layer/">http://codecapsule.com/2014/02/12/coding-for-ssds-part-3-pages-blocks-and-the-flash-translation-layer/</a>

- http://cd-docdb.fnal.gov/0019/001968/001/Linux-Pkt-Recv-Performance-Analysis-Final.pdf
- http://www.slideshare.net/hisaki/x86-hardware-for-packet-processing
- http://balodeamit.blogspot.com/2013/10/receive-side-scaling-and-receivepacket.html
- https://hpi.de/plattner/research/tools-methods-for-enterprise-systems-designand-engineering.html
- http://sdepl.ucsd.edu/cgi-bin/yman2html?m=tcp&s=7
- http://zh.wikipedia.org/wiki/Trie
- http://en.wikipedia.org/wiki/Perfect hash function
- http://goog-perftools.sourceforge.net/doc/tcmalloc.html
- https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharingamong-threads
- <a href="https://www.certificationkits.com/cisco-certification/cisco-ccnp-tshoot-642-832-exam-study-center/cisco-ccnp-tshoot-troubleshooting-networks/">https://www.certificationkits.com/cisco-certification/cisco-ccnp-tshoot-642-832-exam-study-center/cisco-ccnp-tshoot-troubleshooting-networks/</a>
- http://brendangregg.com/books.html
- <a href="http://blog.tanelpoder.com/2013/02/21/peeking-into-linux-kernel-land-using-proc-filesystem-for-quickndirty-troubleshooting/">http://blog.tanelpoder.com/2013/02/21/peeking-into-linux-kernel-land-using-proc-filesystem-for-quickndirty-troubleshooting/</a>
- http://goog-perftools.sourceforge.net/doc/heap\_profiler.html
- http://clang.llvm.org/docs/AddressSanitizer.html
- http://brendangregg.com/linuxperf.html





淘宝干石

扫描上面的二维码,关注我吧