

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

39. 585.

•

•

THE

ENGINEER'S COMMON-PLACE BOOK

OF

PRACTICAL REFERENCE.

. • .

THE

ENGINEER'S COMMON-PLACE BOOK

OF

PRACTICAL REFERENCE.

39. 585.

THE

ENGINEER'S COMMON-PLACE BOOK

0F

PRACTICAL REFERENCE.

JUST PUBLISHED.

THE MILLWRIGHT AND ENGINEER'S

POCKET COMPANION.

BY WM. TEMPLETON.

Author of "The Engineer's Common-place Book of Practical Reference."

FIFTH EDITION.

TESTIMONIALS OF THE ABOVE WORK.

"Nearly all the authors I have consulted dress up their rules in the garb of algebraical formula, which, to the majority of plain practical men, is perfectly unintelligible, and Mr. Templeton, by avoiding that system, has made a book more useful to thousands than a whole library of more learned works."—Extract from a Letter of an eminent Practical Engineer to the Publishers.

"Templeton's Engineer's Companion will be found most useful to all persons connected with machinery. Mr. T. is, we understand, an operative mechanic; and his work has been considerably enlarged by the addition of much valuable matter."—Literary Gazette.

ENGINEER'S COMMON-PLACE BOOK

OF

PRACTICAL REFERENCE,

CONSISTING OF

PRACTICAL RULES AND TABLES

ADAPTED TO

LAND, MARINE,

ANI

LOCOMOTIVE STEAM-ENGINES.

TO WHICH IS ADDED.

SQUARE AND CUBE ROOTS OF NUMBERS; AREAS AND CIRCUM-FERENCES OF CIRCLES; SUPERFICIES AND SOLIDITIES OF SPHERES, &c. &c. &c.

BY WILLIAM TEMPLETON,

Author of "The Millwright and Engineer's Pocket Companion."

WITH LITHOGRAPHIC ILLUSTRATIONS,

LONDON:

PUBLISHED BY SIMPKIN, MARSHALL, AND CO., STATIONERS'-HALL-COURT; SOLD ALSO BY G. HEBERT, 88, CHEAFSIDE, LONDON; EGERTON SMITH AND CO., LIVERPOOL; J. AND J. THOMSON; MANCHESTER; W. CURRY, JUN., AND CO., DUBLIN; BLACK AND CO., EDINBURGH; AND BY ALL BOOKSELLERS.

1839

~8.~.

ENTERED AT STATIONERS'-HALL.

ADVERTISEMENT.

Popular works upon the steam-engine have become so numerous of late, that it might be supposed any attempt at farther illustration would only be an unnecessary repetition of former matter; and that, if possessed of any one work upon the subject, another is not required. Such, however, is not the case, for as improvements advance so must corresponding calculations follow, deduced from those improvements, which cannot otherwise be so effectually obtained, because any rule to be made practically useful must be divested as much as possible of theory, and the more explicit a rule is the more generally useful it will prove to the practical engineer.

Having, in the course of my own practical employment, been frequently in want of ready practical rules connected with the steam-engine, and as often disappointed, after referring to works in which the required information might be expected, I was, in consequence, compelled to form rules from those engines which I found doing the greatest amount of duty at the least possible expense: hence, the following pages will be found chiefly to consist of those practical rules connected with the steam-engine in most of its various departments of application, and entirely divested of all speculative matter, by which the work might have been

very considerably increased in bulk, but, in proportion, its value as greatly diminished.

I also found, in practice, that rules were much easier obtained and remembered when in the algebraic than in the arithmetical form; and knowing that it is now becoming more familiar as a science of numbers, I have been induced to give the greater part of the rules in the one form, and the examples in the other, so that the work might be rendered, not only a book of daily reference upon the steam-engine, but also the means of acquiring mathematical knowledge, as applicable to any other subject in which demonstration is required.

In the locomotive department I have been rather explicit, as it is the latest application of the steamengine, and also my present practical employment, but I trust the work will be found generally useful, and particularly to those connected with either stationary, marine, or locomotive steam engines.

Leeds and Selby Railway, Leeds, April, 1839.

INDEX.

DEFINITIONS, EXPLANATIONS,	Page
RULES, &c.	Velocities of locomotive engines 38
Page	Paddle wheels
Of WATER	Amount of traction 30
Elements of water 14	Resistance and friction
Pure water 14	Locomotives affected by inclined
Decomposition of water 14	planes
Natural waters	The cylinder of an engine 44
Mineral waters 15	Proportion one cylinder bears to
Tests for mineral waters 16	another 44
Sea water	Apertures to the cylinder 60
Properties of water	General rule for estimating the
Condensed water	power of an engine 47 Nominal rules for estimating the
Boiling points of water 81	power of an engine 50
Of STRAM	To ascertain the power of an en-
Of STEAM	gine by the slide rule 53
Effects of steam	Efficiency of a locomotive engine 56
Sudden formation of steam 25	Power of locomotive engines 56
Uniform force of steam 34	
Advantage of high-pressure steam 44	PARTS OF AN ENGINE.
Effects of heat in producing steam 45	The nozzles, slide valves, &c 60
Expansive force of steam 46	The lead of the valve
Common working pressure of	Effects of the lead
steam 50	Lap, or cover of the valve 62
Effective force of steam 51	The eccentric
Of D	To construct an eccentric 63
Of Boilers	To construct a camb
Boilers to which coal is applied. 28	The condenser
Effective heating surface in a	Capacity of condenser65
Area of fire grate	Cold water pump
Proportions for boilers 29	Air pump
Depth of water in a boiler 29	Parallel motion 67
Boilers for locomotive engines. 30	To construct a parallel motion 68
The blast pipe 30	The beam 71
The tubes	Versed sine of a beam
The fire box	Fly wheel
The chimney 31	Suitable weight for fly wheels 73
A	Shafts 75
APPENDAGES TO BOILERS.	Governor, or regulator 76
The safety valve	Motion of governors 77
The steam gauge	TABLES.
The float. 24 Gauge cocks, &c. 25	
Feed pipe and feed pump 26	Table of the common algebraic signs 9
Suction and delivering pipes 27	Imperial Standard Measures.
and address process 27	Measure of length
THE STEAM-ENGINE 33	Special measures of length 10 Common fractional parts of an inch 10
Useful effect of an engine 33	Measure of surface
Maximum velocity of an engine, 34	Special measures of surface
Nominal velocities of engines 36	Measure of solidity
Velocities of steam-packet en-	Imperial gallon measure 11
gines 38	Measure of capacity for coals &c. 19

Page	. Dage
Avoirdupois weight	Page Weight of cast-iron pipes 99
Cubic feet in a ton of various bodies 12	Weight of cast-iron balls100
Specific gravities	Square and cube roots of numbers105
Weights of various measures of	Circumferences, squares, cubes, and
water	areas of circles, advancing by a
Various properties of steam 20	tenth 123 Circumferences of circles, advancing by an eighth 143
Weight of metal plates 32	Circumferences of circles, advancing
Properties of metals	by an eighth143
Hyperbolic logarithms34	Circumterences and areas of circles,
Velocities of engines	advancing by an inch154
Velocities of locomotive engines 41	Superficies and solidities of spheres,
Resistance of trains	advancing by a tenth160
Elastic force of steam	Squares, cubes, superficies, and solid
Expansive steam	content of spheres, advancing by an eighth162
Difference of pressure on a square and circular inch	Dries of motels and the motels
	Price of metals, or other materials,
Diameters of cylinders for	by the ton, cwt., qrtr., or lb164
Land engines	Calculation of interest165
Marine engines	Discount per cent166
Non-condensing engines 55	
Locomotive engines	,
Parallel motions69 and 70	MISCELLANIES.
Versed sines	Proportionate nower for steem
Experiments on the Grand Junction	Proportionate power for steam- packets
Railway	Steam-packets with increased velo-
Experiments on the London and	city 79
Birmingham Railway 83	Paddle wheels
Railway gradients 85	Paddle shafts80
Effects of gradients 86	Piston rods80
Curves on railways 86	Air pump rods80
True and apparent level 88	Length of stroke for engines 80
Force and velocity of the wind 88	Injection cocks
Corresponding degrees of tempera-	Chimneys 80
ture 69	Fuel 80
Properties of metals 90	Consumption of fuel in engines 81
Friction of metals on metals 91	Qualities of fuel
Properties of the circle, sphere, &c. 91	Effect of experiments on the Liver-
French measures92	pool and Manchester Railway 84
Weight of square bar iron 95	Distribution of weight in locomotive
Weight of round bar iron 96	engines
Weight of flat bar iron 97	engines
Weight of solid cylinders of cast-	Principles of leveling 87
iron	Divisions of thermometers 89

By mistake, the tables at the end of the work have been erreneously paged; but the error is immaterial as the tables themselves are consecutively numbered, except Table IX, which is numbered Table II.

THE PRACTICAL

ENGINEER'S COMMON-PLACE BOOK, &c.

ALGEBRAIC SIGNS,

AS APPLIED IN MECHANICAL CALCULATIONS.

= Sign of Equality, and signifies equal to as 3 added to $4 = 7$.					
+	Addition	plus, or more $5+3=8$.			
		ninus, or less $8 - 3 = 5$.			
		nultiplied by $8 \times 3 = 24$.			
×					
÷		livided by $24 \div 4 = 6$, or $4 = 6$.			
÷ : :: :	Proportion t				
•/	Square Root \ Evol	ution, or the extraction of roots,			
* /	Cube Root 5 th	18, $\sqrt{64} = 8$, and $\sqrt{64} = 4$.			
42		lution, or the raising of powers,			
43	to be cubed th				
-		•			
$3+5\times$	4 = 32tha	t 3 plus 5 multiplied by $4 = 32$.			
1/52 - 1	$\frac{1}{3^2} = 4$ 5 squared minus	3 squared, the square root of the			
V	remainder = 4				
³√20 ×	12 0 00	12, and divided by 30, the cube			
30	= 220 multiplied by	12, and divided by 30, the cube			
	root of the qu	otient = 2 .			
$\overline{24 \times 6} +$	$\overline{12 \times 3} \times 4$	plied by 6, and 12 multiplied by			
	= 6024 mult	iplied by 6, and 12 multiplied by			
,	2 3, ad	ded together, multiplied by 4 and			
	divid	led by 12, the quotient = 60.			
AVQ.					
	= dthat A, V, and Q, m	ultiplied together, and divided by			
76 6	n multiplied by l	the quotient $= d$.			
P					
$\frac{1-p}{\lambda}$	= DP minus p multip	lied by d , and divided by $W = D$			
W .	• •	• ,			
~ V [$(aM + F)D + nd^2I$ a	multiplied by M, plus F, and multiplied by D, plus p, multi-			
8=	- D D	multiplied by D plus a multi-			
	m r D	minupact of 10, plus p, multi-			
		plied by d squared, and by l, the			
		whole sum multiplied by V, and			
		divided by the product of mPD,			
		the quotient $= 8$.			
		· · · · · · · · · · · · · · · · · ·			

IMPERIAL STANDARD MEASURES.

1. MEASURE OF LENGTH.

Inches. 12	1 foot.					
36	3	l yard.				
198	161	$5\frac{1}{2}$	1	pole o	or perch.	
7920	660	220	40		1 furlong	
63360	5280	1760	3 20		8 ī	mile.
The French r	netre or sta	ndard meas	ure	of len	gth = 39	.371 in.

SPECIAL MEASURES OF LENGTH

Nautical Measure.	Land Measure.
1 nautical mile = 6082.66 ft.	7.92 inches $= 1$ link.
3 miles = 1 league.	100 links = 1 chain.
20 leagues = 1 degree.	80 chains = 1 mile.
360 degrees = earth's cir.	69.121 miles = 1 geo. deg.

6 feet = 1 fathom, used in measuring ropes, chains, &c.

A Table of the common fractional parts of an inch and a foot, with their corresponding decimals.

Fractions of Decimals.	Fractions of Decimals.	Fractions of a foot or inches.	Decimals.			
of an inch. 1 & 1/1 = .96875 2 & 1/4 = .9375 3 & 1/2 = .90625 3 = .875 4 & 1/4 = .8125 3 & 1/4 = .78125 3 & 1/4 = .78125 3 & 1/4 = .78125 3 & 1/4 = .78125 3 & 1/4 = .78125 3 & 1/4 = .6875 3 & 1/4 = .68625 3 & 1/4 = .65625 3 & 1/4 = .56	of an inch.	of a foot or inches. 11 = 10 = 9 = 6 = 6 = 4 = 2 = 1 =	.9166 .8333 .75 .6666 .5833 .5 .4166 .3333 .25 .1666 .0833 .07291 .0625			
$\begin{array}{ccc} \frac{1}{3} & & \frac{1}{32} & = .53125 \\ \frac{1}{3} & & = .5 \end{array}$	$- \frac{1}{32} = .03125$.03125			

2. MEASURE OF SURFACE.

Inches. 144	 1 squa	re foot.		
1296	 9	l squar	re yard.	
39204	 272 1	301	1 square t	oole.
1568160	 10890	1210	40 1	rood. 🍃
			160 4	

SPECIAL MEASURES OF SURFACE.

Land Measure.

62.7264 square inches = 1 square link, 10000 , = 1 , chain, and 10 square chains = 1 acre.

3. MEASURES OF CAPACITY.

General Measure of Solidity.

1728 cubic inches = 1 cubic foot.
27 cubic feet = 1 cubic yard.
42 cubic feet = 1 ton of shipping.

4. IMPERIAL GALLON MEASURE FOR LIQUIDS, CORN, &c.

	Water lbs. av.	
8.665	5	1 gill.
34.659	l ii	4 1 pint.
69.318	2 <u>7</u>	8 2 1 quart.
277.274	lõ	32 8 4 l gallon.
554.548	20	64 16 8 2 1 peck.
2218.19	80	256 64 32 8 4 1 bushel.
17745.5	640	2048 512 256 64 32 8 1 qrtr.

The peck, bushel, and quarter, are used for dry goods only.

The old ale gallon contained 282 cubic inches; and The old wine gallon 231.

The French litre, or standard measure of capacity for liquids, contains 61.028 cubic inches, or about .453 of imperial gallon.

5. IMPERIAL MEASURE OF CAPACITY FOR COALS, CULM, LIME, FRUIT, &c.

351.9375 cubic inches 703.875 2815.5 4.888 cubic feet 58.656	1 gallon. 2 1 peck. 8 4 1 bushel. 24 12 3 1 sack. 288 144 36 12 1 chaldron
--	--

In and about London coals are sold by the cwt., ton, &c. but in Yorkshire, and many other places, they are sold by the bag, and estimated as follows:—

1 bag = 2 bushels, and weighs about 140lbs. 16 bags = 1 ton, and 24 bags = 1 chaldron, or 30 cwt.

A keel of coals at Newcastle is 21 tons 4 cwt., and a chaldron 53 cwt. A chaldron of coals in London is 28½ cwt.

6. AVOIRDUPOIS WEIGHT.

ī	Troy Grains.					
ľ	27.34375	1 dr	am.			
1	437.5	16	1 ou	nce.		
ı	7000	256	16	1 lb.	•	
١	98000	3584	224	14	l stone.	
١	196060	7168	448	28	2 1 quarter.	
1	784000				8 4 1 cwt.	
١		573440	35840	2240	160 80201 top	3

The French gramme, or standard measure of weight, equal 15.434 troy grains, and the kilogramme 2.20486 lbs. avoir.

About 426 cubic inches of cast iron = 1 cwt.

8520	22	or		
nearly 5	cubic feet		=1	ton.
13	"	of stone	=1	ton.
23	,,	sand	=1	ton.
29	"	coal	=1	ton.
38	"	tallow	=1	ton.
39	22	oil	=1	ton.
40	22	timber	== 1	ton.
3 6	20	com. water	=1	ton.
35	••	sea water	=1	ton.

Table of Specific Gravities.

NAMES OF BODIES.	Weight of a cubic foot in lbs.	Weight of a cubic in. in ounces.	Number of cubic inches in a lb.	Weight of a cubic inch in lbs.
Copper, cast Copper, sheet Brass, cast Iron, cast Iron, bar Lead Steel, soft Steel, hard Zinc, cast Tin, cast Bismuth Gun metal Sand Coal Brick Stone, paving Marble Glass Tallow Cork Ook Pine, pitch Ash Spirits, proof	549.25 557.18 524.75 454.43 476.93 709.00 489.56 488.50	5.086 5.159 4.852 4.203 4.410 6.456 4.527 4.517 4.156 4.215 5.710 878 7.722 1.156 1.396 1.396 1.585 1.664 5.546 .382 .440	3.146 3.103 3.223 3.802 3.628 3.628 3.530 3.530 3.537 3.845 3.790 2.789 3.147 18,190 22,124 11,443 10,083 9.600 29,258 115,200 41,890 36,370 36,370 39,670	.3178 .3225 .3037 .263 .276 .4103 .2833 .2827 .26 .2636 .3585 .0452 .0723 .0873 .0971 .1042 .0087 .0342 .0087 .0342
Mercury	848.00	7.851	2.037	.4908

A Table of the specific gravity of water at different temperatures, that at 62 being taken as unity.

.99913	52°F.	1.00076
.99936	50	1.00087
.99958	48	1.00095
.99980	46	1.00102
1.	44	1.00107
1.00035	42	1.00111
1.00050	40	1.00113
1.00064	38	1.00115
	.99936 .99958 .99980 1. 1.00035	.99936 50 .99958 48 .99980 46 1. 44 1.00035 42 1.00050 40

Note. The difference of temperatures between 63° and 43°, where water attains its greatest density, will vary the bulk of a gallon rather less than the third of a cubic inch.

WATER.

Water in an aëriform state constitutes the moving power in a steam-engine; consequently, a knowledge of its *chemical* and *mechanical* properties is of decided importance to the practical engineer.

WATER AND ITS ELEMENTS.

Water, or oxide of hydrogen, is so slightly compressible that it may be said to be an *incompressible fluid body*, composed of two elementary bodies, oxygen and hydrogen, in the following proportions:—

	WEIGHT.	BULK.
Ogygen	8	1
Hydrogen		2
Equivalents	9	3
Or one cubic inch consists	of	
	GRAINS.	CUBIC INCHES.
Oxygen	.224.46	$\boldsymbol{662}$
Hydrogen		1325
	252 52	1987

Water, when pure, is transparent, colourless, tasteless, inodorous, and not liable to spontaneous change; liquid at the common temperature of our atmosphere; assuming a solid form at 32° Faht., and a gaseous state at 212°, but returning unaltered to its liquid state on resuming any degree of heat between these points; dissolves numerous vegetable, animal, and mineral substances; is decomposed in many cases of chemical action, affording oxygen or hydrogen to the substances which affect it.

Clean iron and zinc at a red heat possess the property of decomposing water when in the state of highly-rarefied steam;—the oxygen uniting with the metal, a solid metallic crust is formed on the surface, and the hydrogen set at liberty; one volume of oxygen, or from five to six of atmospheric air, combined with two of hydrogen, render the mixture inflammable, and on the approach of a flame, red-hot iron, or the electric spark, the whole is kindled at the same instant, a flash of light passes through the mixture, followed by a violent explosion, the result of which is steam at 212° Faht., and ultimately pure water.

But water, as it exists in nature, contains various saline or earthy matters, as sulphate of soda, muriate of lime, muriate of magnesia, carbonate of lime, oxide of iron, &c., which it may have accumulated in flowing through the different strata of rocks and minerals,—constituting mineral or hard water, and rendering it very unsuitable for the purposes of a steam-engine. Rain and snow waters are the purest natural waters we possess, and are generally employed as the standard of comparison for the densities of other bodies.

Specific gravity of pure rain water = 1, or one cubic foot at a mean temperature of the atmosphere = 1000 ounces.

Ten pounds of rain or distilled water, at 62° Faht., equal the standard gallon, or measure of capacity.

And one cubic inch, at 62°Faht. = 252.458 grains.

Mineral waters of every description are more or less injurious to a boiler; and, unless very frequently changed, become in a state of saturated solution, in consequence of which earthy matters are deposited, and an incrustation formed on the surface of the iron, preventing the free passage of caloric; hence, the plates get red hot, and render the boiler in danger of being destroyed.

Mineral waters are generally divided into four classes, namely, the acidulous, the sulphureous, chalybeate, and saline.

Acidulous waters contain carbonic acid in its free state, or in combination in excess with a base; also, very frequently muriate of soda, and some of the earthy carbonates; however, it is the free carbonic acid that imparts to them their particular properties. These waters are easily distinguished by their slightly acid taste, and sparkling appearance when poured from one vessel to another, both of which properties they lose by boiling, or standing exposed to the air for any short length of time.

Sulphureous waters contain sulphuretted hydrogen, also alkaline, earthy sulphates, and muriates; they are very readily distinguished by their odour, and by causing a piece of silver, when immersed in them, to acquire

a dark colour.

Chalybeate waters are those which have iron as an ingredient; they are known by their peculiar taste, and by their becoming black when mixed with an infusion of nutgalls: but they are of different kinds; sometimes the iron is combined with sulphuric acid,—more frequently it is in union with carbonic acid.

Saline waters are those which contain the saline ingredients generally found in mineral waters, but which have not carbonic acid in excess, and are free from sulphuretted hydrogen and iron, or contain them in very trifling quantities. Saline waters may be subdivided into four kinds, namely,—alkaline waters, or those which contain alkali in its free state, or combined with carbonic acid, and which render the vegetable blues green; hard waters, or those which contain carbonate or sulphate of lime; salt waters, or those in which muriate of soda abounds; purgative waters, or those which contain principally sulphate of magnesia.

To acquire at once a general knowledge of the properties of any water, the following experiments may be tried:

1. Evaporate a drop on a flat slip of glass, holding it before the fire, or above a small lamp or candle. Small rings only appear where the water rested, if it contained only a minute quantity of foreign matter; but a crust is seen if it be loaded with saline or earthy matter, and the crust has an ochry tint if iron be present.

2. Pour some of the water into a wine glass, and add a solution of litmus; it will be reddened if any acid matter be present.

3. Mix another portion with a little soap; a curdy

matter appears if it abound with earthy matter.

Sea water contains of saline and earthy matter in every 100 parts,

Common sala	2.66
Sulphate of soda	.466
Muriate of lime	
Muriate of magnesia	.991

4.316 parts of

saline and earthy matter. Average specific gravity 1028. Hence the necessity of frequently renewing the water in marine engine boilers at sea, by the usual process of blowing out; that is, by a little extra feed the boilers are allowed to fill, say, from four to six inches above the regular height, and the overcharged water blown out by the force of the steam, through a cock in the bottom of the boiler, about once every two hours.

I may here be allowed to observe, that Hall's Patent Condensers must be of considerable benefit to marine boilers on long voyages, not only from the saving of the boilers, but from the saving of fuel, if the distilling apparatus can be kept in proper condition, so as to supply sufficiently the unavoidable waste, and the tubes in the condenser kept tight, so as to prevent the sea water mingling with the condensed vapour, for fresh water boils at 212° Faht., and water saturated with salt at 224°.

MECHANICAL PROPERTIES OF WATER.

1. Fluid bodies in general exert an equal force or pressure in every direction, namely, upwards, downwards, sideways, and oblique, and fluids always tend to a level; hence, any quantity of water, however small, may be made to balance and support any quantity, however large.

- 2. The weight of water, or any other fluid body, is as the quantity; but the pressure is as the perpendicular height.
- 3. The pressure on the sides of any vessel containing a fluid is equal to the length of the side multiplied by half the square of the depth.
- 4. The centre of pressure, and also the centre of percussion, in a fluid, is two-thirds of the depth from the surface.
- 5. The quantity of water discharged through an orifice in equal times, but under different heads, are nearly as the corresponding heights of the different heads of water; hence,

The square root of the depth in feet x by the falling surface in inches

Area of the orifice \times 3.7

the time required in seconds.

The content of any vessel in cubic feet \times by 6.232 Or , , inches \times by .003607 = imperial gallons. Any number of imperial gallons
Any two dimensions of a cistern in feet \times by 6.232 = the third dimension in feet.

Any number of imperial gallons

Any two dimensions of a cistern in inches × by .003607

=the third dimension in inches.

The length of a cylinder in feet × by the square of the diameter in feet, and by 4.895..

The length of a cylinder in feet × by the square of the diameter in inches and by .034

The length of a cylinder in inches × by the sqr. of the diameter in inches and by .002832

any number of gallons a cylinder is required to contain × by 354

by the length in inches

the diameter of the cylinder in inches.

any number of gallons a cylinder is required to contain × by 354

by the square of the diameter in inches

the length of the cylinder in inches.

The cube of the diameter of a sphere in inches \times by .001888 = imperial gallons.

The velocity of water in feet per minute \times by the square of a pump's diameter in inches, and by .034 = imperial gallons discharged per minute.

The velocity of water in feet per minute × by the square of a pump's diameter in inches, and by .0005454 = cubic feet discharged per minute.

STEAM.

Steam, or water in the state of vapour, is an elastic gaseous body, composed of water combined with caloric, or the matter of heat; transparent and colourless until it comes in contact with the atmosphere, it then assumes a dense white mass, and ultimately pure water.

Steam ascends from water at 212° Faht. equal to 14.7 lbs. avoirdupois per square inch, or the pressure of the atmosphere, generally termed one atmosphere, one cubic inch of water producing about one cubic foot of steam; but any additional pressure requires an elevation of temperature, and an increase of water, as in the following table:—

Atmospheres.	Lbs. per square inch above the Atmosphere.	Temperature in degrees of Faht,	Volume of Steam, Water being 1.	Cubic Inches of Water in a Cubic Foot of Steam.	Elastic Force in Inches of Mercury.	Elastic Force in Feet of Water.
1.19	2.5	220F	1496	1.14	5.15	5.76
1.22	3	222	1453	1.18	6.18	6.91
1.29	4	225	1366	1.25	8.24	9.22
1.36	5	228	1282	1.33	10.3	11.52
1.70	10	240	1044	1.64	20.6	23.05
2.04	15	251	883	1.93	30.9	34.57
2.38	20	260	767	2.23	41.2	46.10
2.72	25	268	678	2.52	51.5	57.62
3.06	30	275	609	2.81	61.8	69.15
3.40	35	282	553	3.09	72.1	80.67
3.74	40	288	506	3.38	82.4	92.20
4.08	45	294	46 8	3.66	92.7	103.72
4.42	50	299	435	3.93	103.0	115.25
4.76	55	304	407	4.20	113.3	126.77
5.10	60	309	382	4.48	123.6	138.30

Steam is produced from water at 212° Faht. as before observed, equal to the pressure of the atmosphere, or about 14.7 lbs. avoirdupois per square inch, and, under such circumstances, cannot attain either a greater force or a higher temperature; but let the water be inclosed from atmospheric pressure, and the boiler made

so tight that steam cannot escape, the fire being still continued, the water will imbibe caloric until the steam becomes so strong as to tear the boiler to pieces; hence the necessity of a

SAFETY VALVE.

A safety valve ought to contain at least one circular inch for every 14 square feet of generating surface contained in the boiler. Or, Multiply the number of square feet of fire or furnace bar by .75, and the square root of the product equal the safety valve's diameter in inches.

The diameter of a valve in inches, multiplied by the diameter in inches, equal the superficial content, or area of the valve, in circular inches, or what is termed the square of the diameter; and the square of the diameter multiplied by .7854 equal the superficial content in square inches, consequently the weight in lbs. on the safety valve, divided by the area in square or circular inches, equal the pressure in lbs. on each square or circular inch of the boiler.

When there is no lever attached to a valve, the weight divided by the area equal the direct pressure; but when a lever is applied, the principle of the lever must be taken into account, and may be estimated thus:

—Ascertain the weight of the valve, and also the action of the lever upon the valve; the action is found sufficiently near by dividing the whole length of the lever by the distance between the fulcrum and the valve, and multiplying the quotient by half its weight.

In the following section of a valve with a lever

Let F denote the fulcrum,—P the whole pressure upon the valve,—D the distance of the weight from F,-d the distance between F and P,—d the distance between F and P,—d the weight upon the lever,—and p the action of the lever upon the valve.

Then 1.
$$\frac{\overline{P-p} \times d}{d \ d} = W$$
. 2. $\frac{\overline{P-p} \times d}{W} = D$.
3. $\frac{W \times d \ d}{d} + p = P$.

EXAMPLE.—Suppose 95 lbs. to be the whole weight or pressure required upon a valve, and the

Weight of the valve = 2 lbs.

Weight of the lever..... = 3 ,,

Distance between F and P = 3 inches.

Distance between P and D = 18 ,,

To find W, or the weight required upon the lever.

 $\frac{18 \text{ inches}}{3 \text{ inches}} \times 1.5 \text{ lbs.} + 2 \text{ lbs.} = 11 \text{ lbs. or the action}$ of the lever and weight of the valve.

Hence,
$$\frac{95 - 11 \times 3}{18} = 14$$
 lbs. or W.
$$\frac{18}{95 - 11 \times 3} = 18$$
 inches, or dd .

$$\frac{14 \times 18}{3} + 11 = 95$$
 lbs. or P, the pressure upon the valve.

When greater accuracy is required, counterpoise the lever by weights at F, making P the centre of motion; hence, the weights at F, plus the weight of the lever, is the real action upon the valve. And the rules are the same throughout, whether a weight or spring balance be applied, observing to take the weight of the spring balance into account.

When a spring balance is applied to the lever of a safety valve, the distance between F and P = the diameter of the valve in inches, and the distance between F and the spring balance, or the end of the lever = as many times the diameter of the valve as there are square inches in its area.

THE STEAM GAUGE

Is an indicator of constant reference in ascertaining the elastic force or pressure of the steam in a boiler, and which is very important to be known, for, according to the state of the fire, the steam may get so low as to allow a vacuum to be formed in the boiler, or it might be considerably too high, although escaping partly by the safety valve; hence, the steam gauge is a general test for regulating the fire; or if by any means the valve get fastened, and the steam still accumulating, the mercury will be driven out of the tube, and then become partially a safety valve.

The common construction of a steam gauge is an inverted syphon, or bent tube of wrought iron, containing a sufficiency of mercury to resist the required pressure of steam in the boiler, one end being fixed to the boiler, and the other open to the atmosphere; but the action of the column of mercury will appear more plain by means of the following section:—

The steam depresses the mercury in the short tube, consequently causes it to rise in the longer one; 2 inches of mercury is a counterpoise to 1 lb. pressure of steam, therefore a rise of 1 inch in the long tube indicates a force equal to 1 lb. per square inch in the boiler.

A FLOAT

Is as requisite for ascertaining the height of the water in a boiler as a gauge is for the height of the steam, but can only be properly applied in a land or fixed engine boiler, and may consist of either stone, iron, copper, or any other body that will not be destroyed by the heat of the water or force of the steam; hence, a float may be made so heavy as to sink in the water, consequently a counterpoise is required; or it may be made so buoyant that it will neither be steady in the boiler, sink to the depth required, nor will it fall by its own gravity when the water is getting low, therefore additional weight must be attached, and in either case the float immersed about add of its thickness or depth.

Rule 1.—When too heavy, subtract the weight of the water displaced from the weight of the float; the remainder is the counterpoise required.

RULE 2.—When too buoyant, subtract the weight of the float from the weight of the water displaced; and the remainder is the weight that must be added to the float.

Nors.—The weight must either be inside the float, or otherwise attached, clear of the surface of the water.

EXAMPLE 1.—Required the weight necessary to counterpoise a float of paving stone, 14 inches diameter, 2½ inches thick, and immersed two-thirds of its thickness in fresh water;

say, the weight of stone and rod attached = 301 lbs.

then,
$$\frac{14^2 \times .7854 \times 2.25 \times 2}{3}$$
 = 230.9 inches of water

displaced.

1 inch of water = .03617 lbs. avoirdupois; hence, $230.9 \times .03617 = 8.35$ lbs. of water displaced, and 30.5 - 8.35 = 22.15 lbs. required for a counterpoise.

EXAMPLE 2.—Suppose a float to consist of a concave copper ball, 12 inches diameter outside, and weigh with rod attached 7½ lbs; required the weight that must be

added inside, so that the ball may remain immersed half its depth in fresh water.

$$\frac{12^3 \times .5236 \times .03617}{2} = 16.36 \text{ lbs. of water displaced,}$$

and 16.36 - 7.25 = 9.11 lbs. that must be added to the float.

GAUGE COCKS AND GLASS TUBES

Are intended to show the height of water in a boiler where a float cannot properly be applied, as in marine and locomotive engines; they are also becoming common in land boilers, and are very necessary appendages, but require particularly strict attention under the following circumstances; -namely, all new boilers, boilers immediately after being cleaned, and marine boilers in passing from fresh to salt water, or from salt to fresh, more especially water holding earthy and other matters in solution; but in either case the water becomes frequently in a state of complete fermentation, the boiler appears to contain more than a sufficient quantity of water, when in reality there may not be solid water, as it is termed, at the first cock, which ought not to be less than from three to four inches above the top of the highest flue. Putting a few pounds of tallow in a marine boiler, previous to getting up steam, or firing light when fermentation, or priming, as it is frequently called, is likely to occur, are the usual modes of prevention; but the same applied to locomotive boilers, in many instances increase the fermentation in place of lessening it, and nothing but a boiler free from any earthy substance will thoroughly prevent it, which must be obtained by blowing out, and thoroughly changing the water.

It may not be amiss here to impress upon the mind the very great necessity of a constant sufficiency of water in the boiler, for a volume of steam suddenly formed is attended with considerably greater danger than an excess of steam regularly accumulated, as the safety valve will allow part to escape during its formation, and also give warning of its progression, but the valve cannot act so instantly and efficiently as is required if steam be suddenly generated, which, I have no doubt, is the case where some of the plates of a boiler are red hot when the engine is started, and if not the cause of an *explosion*, may be the means of materially injuring the boiler.

THE FEED PIPE AND FEED PUMP.

Boilers are supplied with water in two ways, namely, by the gravity of the water alone, and by means of a

force pump applied to the engine.

When a boiler is supplied by the gravity of the water, the pipe attached to the top of the boiler, containing the column of water, is designated the feed pipe, the one from the pump being only for the purpose of conveying the water to the top of the feed pipe, the height of which requires to be at least $2\frac{1}{2}$ feet above the surface of the water in the boiler for every pound pressure on a square inch of the safety valve.

To ascertain the capacity of the feed pump,—

Let A represent the area of the piston in feet,

V 3ths of its velocity in feet per minute,

Q the quantity of water in cubic inches contained in a cubic foot of steam, at the elastic force required,

s the number of revolutions of the engine per minute,

1 the length of stroke of the pump in inches.

d.... the diameter of the pump also in inches.

1728 cubic inches = 1 cubic foot,

And 277.274 = 1 imperial gallon;

Then $\frac{A \quad V \quad Q}{1728}$ = cubic feet $\frac{A \quad V \quad Q}{277.274}$ = imperial gallons of water required to be evaporated per minute.

Or
$$\sqrt{\frac{\text{A V Q 5}}{\text{a } l}} = d$$
. Also $\frac{\text{A V Q 5}}{\text{a } d^2} = l$.

Thus, suppose a cylinder of 27 inches diameter, or about 4 feet area, length of stroke 5 feet, number per minute 22, or 220 feet velocity, steam 5 lbs. per square inch, and stroke of the pump 15 inches; required its diameter.

Number of cubic inches of water in a cubic foot of steam at 5 lbs. per square inch = 1.33—(see Table, page 20.) And $\frac{5}{4}$ ths of 220 = 165.

Hence A = 4, V = 165, Q = 1.33, n = 22, and l = 15.

$$\sqrt{\frac{4 \times 165 \times 1.33 \times 5}{22 \times 15}} = 3.7 \text{ inches diameter.}$$

Or,
$$\frac{4 \times 165 \times 1.33 \times 5}{22 \times 3.7^2}$$
 = 15 inches; length of stroke.

Norm.—The suction and delivering pipes to any pump ought not to be less than two-thirds of the pump's diameter; and in the delivering pipe to the boiler, in high-pressure engines, particularly locomotives, a small cock should be inserted, so as to allow the steam and air which accumulates in the pipes to escape, otherwise the boiler is frequently prevented from being regularly supplied.

THE BOILER.

The boiler is a vessel of either wrought iron, east iron, or copper, and contains water to which heat is applied, and steam generated. Boilers are not confined to any one particular form, having for their general principle strength, compactness, and durability, and containing the greatest superficial heating surface under the least cubical content; hence, their forms are so exceedingly various, that any attempt here to introduce either plans or specifications would be quite inconsistent with the design of this work, and of comparatively little value in point of daily reference; but, there are several rules and proportions, deduced from experiment and practice, that are of particular advantage, and ought to be attended to.

1.—Boilers to which coal is applied in the usual form.

In such boilers it is ascertained that about 500 square feet of effective heating surface, having about 60 square or superficial feet of fire properly applied, will evaporate one cubic foot of water per minute; hence, when the quantity of steam required is known, the quantity of heating surface and extent of fire-grate is easily obtained, and this depends considerably upon the eccentric and slide valve.

From the nature of an eccentric, although a valve has neither lap nor lead, the steam admitted into the cylinder is only about $\frac{3}{4}$ ths the capacity of the cylinder, consequently $\frac{3}{4}$ ths the piston's velocity, and when the steam is sooner cut off, as it generally is, an additional saving is obtained, but on account of the waste of steam in the apertures, imperfections, &c. it is not prudent to calculate a boiler for less. Hence, to determine the effective heating surface in a boiler.

Let A denote the area of the cylinder in feet.

P \(\frac{3}{4}\)ths of the piston's velocity in feet per min. 500 the effective heating surface to evaporate 1 cubic foot of water per minute.

V the volume of steam from 1 of water.

And S the effective heating surface required in square feet.

Then,
$$\frac{A P 500}{V} = S$$
.

Ex.—Suppose A = 3 feet.

P = 165, or say the velocity of the piston = 220 feet per minute.

4 lbs. per sqr. inch the pressure required. To find S, or the heating surface in the boiler.

The volume of steam at 4 lbs. per square inch, produced from one of water, = 1366—(see Table, page 20.)

Then
$$\frac{3 \times 165 \times 500}{1366} = 181.2$$
 square feet.

And $181.2 \times .12 = 21.75$ square feet of fire-grate.

The proportions for waggon-shaped boilers are as follow:—

Half the effective heating surface = the bottom surface.

Twice the square root of the bottom surface in feet = the length.

Half the square root in feet = the width. And One-third the length = the height.

Note.—All horizontal surfaces over fire, flame, or heated air, are effective; but vertical or side surfaces require about 1.75 feet to be equally effective to one of horizontal surface.

Example.—Let the effective heating surface of a boiler = 120 feet; then 60 = the bottom surface, and

 $\sqrt{60} \times 2 = 15.48$ feet, the length. $\sqrt{60 \div 2} = 3.87$ width.

 $15.48 \div 3 = 5.16$,, height. About twice the length and width of the boiler = the length of the flue, And $60 \times 1.75 = 105$ feet of side surface, then $15.48 \times 2 + 3.87 = 34.8$; hence $\frac{105}{34.8} = 3$ feet, the depth of the side surface.

Again,—In cylindrical boilers 3rd must be added to the effective heating surface, so as to make the curve surface = to horizontal surface; hence, suppose 60 feet = the effective surface,

 $\sqrt{60 + 20} = 8.94$ feet, or half the circumference of the boiler,

And 8.94 \times 2 = 17.88 feet the length.

Boilers are frequently made with internal flues, with a view to increase the quantity of heating surface, and reduce the cubical capacity of the boiler: when such is the case, let the effective heating surface gained be taken from the length of the boiler, and not from the width, as the heat will be sufficiently given out by the extra length of flue inserted.

The depth, or body of water contained in a boiler, ought to be about 3rds of the whole height of the boiler, for when there is a considerable body of water in a boiler the steam is less liable to fluctuation.

2.—Boilers for locomotives where coke is used, and a blast pipe applied.

In boilers of this description the evaporating power depends, in a great measure, upon certain proportions existing between the tubes, the chimney, and the orifice

of the blast pipe.

The blast pipe in a locomotive is a copper or other metal tube, for the purpose of conducting the steam from the cylinders to the bottom of the chimney, so that it may there be emitted at a certain velocity, to expel the air in the chimney, and cause a current of heated air to pass from the fire through the tubes at each half stroke of the engines; consequently, the more the heated air is diffused in the boiler by a number of tubes or pipes, the less is the current required to be, and the larger the orifice of the blast pipe, for the following reason:—A tube twice the diameter contains only twice the circumference or heating surface, but four times the area; hence, in large tubes the velocity must be considerably increased, so as to compensate for the loss of heated air passing through the body of the tube. But,

Although a greater quantity of tubes would diffuse a greater quantity of heat through the water, other circumstances interfere, as the quality of the coke, &c., therefore practice has dictated a certain size as the most beneficial to be used, and I believe it is generally found that brass tubes, 2 inches diameter outside, and about

No. 14 wire gauge, are the most advantageous.

Again, the diameter of the chimney materially affects the blast pipe, for the wider the chimney the greater is the column of air to displace,—hence, the smaller the orifice of the blast pipe; but, indeed, they are so linked together that nothing but several trials with the engine can decide the exact proportions, so that the one part may accommodate the other.

However, in practice we find that a boiler, containing about 90 two-inch tubes, having a 12-inch chimney, and a 2\frac{2}{2}-inch blast pipe, will generate a sufficiency of steam,

from 50 to 60 lbs. per square inch above the pressure of the atmosphere, to supply two cylinders 12 inches diameter each.

Norz.—The chimney is generally the same diameter as the cylinder, and about 6 feet long.

It is also ascertained from practice, that about three square feet of heating surface in the fire-box, or nine square feet in the tubes, will evaporate one cubic foot of water per hour in a boiler as already described, and kept under like circumstances, from which we deduce the following rule:—

Let V = the velocity of the engine in feet per hour,

= ,, length of the stroke in feet,

p = ... area of the piston in feet,

3 = ,, effective evaporating surface in the boiler to each cubic foot of water,

d =, diameter of the wheels in feet,

r =,, ratio, or volume of steam from one of water.

And S = ,, effective generating surface of the boiler in square feet;

Then
$$\frac{V \ l \ p \ 3}{r \ d} = S$$
.

EXAMPLE.—Suppose a locomotive with two cylinders of 11 inches, or .917 feet diameter each, stroke 1.33 feet, wheels 5 feet diameter, velocity 20 miles per hour, force of steam 50 lbs. above the pressure of the atmosphere; required the effective heating surface in the boiler.

 $.917^{\circ} \times .7854 = .66$ feet, area of the piston. $5280 \times 20 = 105600$ feet, velocity of the engine per hour.

435 = the volume of steam to one of water—(see Table, page 20.)

Hence $\frac{105600 \times 1.33 \times .66 \times 3}{435 \times 5} = 128$ square feet.

And $\frac{1}{3}$ of 128 = 43 square feet in the fire-box. The tube surface, or communicative heat, requires to

be multiplied by 3, as before stated, to equal the surface in the fire-box, or radiating caloric; therefore $128 - 43 = 85 \times 3 = 255$ square feet of surface in the tubes.

And, Suppose the tubes 7 feet in length, $\frac{255}{7} = 36.43$ feet for the whole circumference of the tubes.

Again, Suppose each tube 1½ inches inside, or nearly 5.5 circumference,

$$\frac{36.43 \times 12}{5.5} = 80 \text{ tubes contained in the boiler.}$$

A Table of the weight of a superficial foot of various metals in lbs. avoirdupois.

		THICKNESS IN PARTS OF AN INCH.									
names.	1,8	ħ	18	14	18	8_	18	1 6	1 2	7	l in
	2.5	5		10		15			5 30		40
Copper in lbs	2.9	5.8	8.7	11.6	14.5	17.4	0.32	3.2 28	.9 34.7	40.4	46.2
Brass in lbs	2.7	5.5	8.2	10.9	13.6	16.3	19 2	1.8 27	.1 32.	37.9	43.3
Lead in lbs	3.7	7.4	11.1	14.8	18.5	22.2	25.9 2	9.6 3	7 44.4	57.8	59.2
	TI	HC	KNE	88 B	TH	B BIR	MING	MAH	WIRE	GAU	GE.
NAMES.	1	Ī	2	3	4 -	5	6	7	8	9	10
Iron in lbs	12.	5 -	12	11	10	8.74	8.12	7.5	6.86	6.24	5.62
Copper in lbs	14.	5 7	13.9	12.75	11.6	10.1	9.4	8.7	7.9	7.2	6.5
Brass in lbs	13.7	5]	13.2	12.1	11	9.61	8.98	8.25	7.54	6.86	6.18
			<i>m</i>	******	1700	DV 0	TT 70 33	7110 10 4	3AUG1	,	
		_									
names.	11	-1	12	13_	14	15	16	17	18	19	20
Iron in lbs	5					2.82			1	_	1.54
Copper in lbs	5.8			4.34					2.15		
Brass in lbs	5.5	4	.81	4.12	3.43	3.1	2.7	2.4	2.04	1.87	1.69
	THICKNESS BY THE WIRE GAUGE.										
		т.									
NAMES.	21	_1 -	22	23	24	25	26	27	28	29	30
Iron in lbs	1.4	1	.25	1.12	1	.9	.8	.72	.64	.56	.5
Copper in lbs					1.16	1.04		.835	.74	.649	.58
Brass in lbs	1.54	1 1	.37	1.23	1.1	.99	.88	.79	.7	.616	.55

PROPERTIES OF VARIOUS METALS.

Welding heat of iron 12780° Ft1 foot in length contracts in cooling .137 of an inch.
Power of conducting heat to another body 37.41.
Copper melts at 4587° Ftcontracts in cooling .193.
Conducting heat89.82.
Brass melts at 3807° Ft contracts in cooling .210.
Conducting heat about the same as copper.
Lead melts at 594° Ft contracts in cooling .319.
Conducting heat17.96.
Tin melts at 442° Ft contracts in cooling .278.
Conducting heat30.38.
Water expands in heating from 32° to 212°, about 0.0434. of its bulk.

THE STEAM-ENGINE.

Steam-engine is the general term applied to any machine having for its moving power the elastic force of steam; hence, the usual names, low pressure, high pressure, rotatory, and locomotive steam-engines; and although differing in plan and application, still remain the same in principle—namely, steam is the moving power. And, the moving power or elastic force of the steam, multiplied into the velocity of the engine, constitutes the amount of useful effect in giving motion to machinery, propelling vessels, locomotives, &c.

It is well known that the moving power in the greater portion of engines consists of an alternate rectilinear or reciprocating motion, communicated to a crank, whereby a continued circular motion is obtained and rendered uniform by a fly-wheel, or otherwise—as, when employed in propelling vessels, the motion is transferred to the vessel itself by the resistance of the paddles in the water, the velocity of which cause a similar uniformity in the engine; and the same takes place in a locomotive, by the adhesion of the wheels to the rails; hence,

the alternate motion of the piston governs the velocity of the engine, and is not at all confined, for the greater the force the greater the velocity, and the greater the velocity the greater the power, providing there be a constant sufficiency of steam to continue the motion and overcome the resistance to which the engine is applied. But,

There is a maximum velocity for an engine, or that velocity whereby the greatest effect is produced from the pressure of steam applied; and, to ascertain this point, the uniform force of the steam throughout the stroke must first be obtained by the following rule:—

Divide the length of the stroke in inches by the distance the piston has moved before the steam is cut off, and divide the whole pressure on a square inch of the piston in lbs. by the quotient. Add 1 to the hyperbolic logarithm of the number of times the steam is expanded, and multiply the logarithm by the number of lbs. to which the steam is expanded, and the product is the uniform force of the steam.

Table of Hyperbolic Logarithms.

			<u> </u>				
No.	Log.	No.	Log.	No.	Leg.	No.	Log.
11	.2231435	53	1.7491998	15	2.7080502	33	3.4965075
15	.4054651	6	1.7917594	16	2.7725887	34	3.5263605
13	.5596157	61	1.8325814	17	2.8332133	35	3.5553480
2^{-}	.6931472	61	1.8718021	18	2.8903717	36	3.5835189
21	.8109302	6	1.9095425	19	2.9444389	37	3.6109179
$\bar{2}_{2}^{7}$.9162907	7	1.9459101	20	2.9957322	38	3.6375861
$2\frac{3}{4}$	1.0116008	73	1.9810014	$\bar{2}$ i	3.0445224	39	3.6635616
3	1.0986123	71	2.0149030	22	3.0910424	40	3.6888794
31	1.1186549	74	2.0476928	23	3.2354942	41	3.7135720
31	1.2527629	8	2.0794415	24	3.1780538	42	3.7376696
33	1.3217558	81	2.1400661	25	3.2188758	43	3.7612001
4	1,3862943	9	2.1972245	26	3.2580965	44	3.7841896
44	1.4469189	91	2.2512917	27	3.2958368	45	3.8066624
41	1.5040774	10	2.3025851	28	3.3322045	46	3,8286414
43	1.5581446	111	2.3978952	29	3,3672958	47	3.8501476
5	1.6094379	12	2.4849066	30	3.4011973	48	3.8712010
51	1.6582280	13	2.5649493	31	3.4339872	49	3.8918203
5.	1.7047481	14	2.6390573	32	3.4657359	50	3.9120230
1	1	l ~ ~			1	1	1

To find the maximum velocity of an engine,—
Let S represent the uniform force of the steam in lbs. on each square foot of the piston, atmospheric pressure included,
Q the quantity of steam in cubic feet that enters the cylinder per minute,
c area of the cylinder in square feet,
1152 lbs pressure on each square foot of the piston, as required to overcome the
friction of the engine, change the mo-
tion from a reciprocating to a cir-
cular, &c,
r resistance on each square foot of the
piston in a condensing engine, on account of imperfect vacuum. In
account or imperiect vacuum. In
non-condensing engines the resistance is the pressure of the atmosphere, or
2117 lbs. per square foot,
n number of horses' power, or so many
times 150 lbs.,
$l \dots l$ length of the stroke in feet,
and V velocity of the engine in feet per min.
$\frac{\text{then } \frac{\text{S Q } c}{1152 + r c + \overline{n} l} = \text{V.}$
1159 mail m /
~
Example.—Suppose an engine and boiler under the following circumstances:—
Effective generating surface in the boiler 181 sqr. ft. Force of steam above the pressure of
the atmosphere on a square inch 4 lbs.
Atmospheric pressure included 19
Diameter of cylinder 2 feet.
Length of stroke 5 ,,
Steam cut off when the piston has moved 40 inches.
Resistance to be overcome 3000 lbs., or, in effect, 20 horses' power.
Average vacuum, 26 inches of mercury; required the
velocity in feet per minute.

500 square feet of heating surface will evaporate 1 cubic foot of water per minute, and 1 cubic foot of water evaporated equal 1366 cubic feet of steam at 4 lbs. per square inch above the pressure of the atmosphere,—(see Table, page 20,)—hence,

 $\frac{1366 \times 181}{500} = 494$ cubic feet of steam per minute, of which, suppose about 486 feet enter the cylinder.

Again, $60 \div 40 = 1.5$, and $19 \div 1.5 = 12.66$. Also, $1 + .4054651 \times 12.66 = 18$ lbs. of uniform pressure per square inch; consequently,

S = 144 × 18, or 2592 lbs. per square foot, Q = 486, or the quantity of steam in cubic feet per minute,

c = 2² × .7854, or about 3 square feet, area of cylinder,

r=2 lbs. per square inch, or 288 lbs. per square foot,

 $n = 150 \times 20$, or 3000,

And l=5 feet.

$$\frac{2592 \times 486 \times 3}{1152 + 288 \times 3 + 3000 \times 5} = 195 \text{ feet velocity per minute.}$$

But there are various nominal velocities to which engines are frequently regulated, varying with the opinions of different engineers, the most popular of which are the following:—

- 1. That all engines, without exception, ought to be regulated at a constant velocity of 220 feet per minute, having neither respect to the force of the steam nor length of the stroke. And,
- 2. That 100 times the square root of the length of the stroke in feet equal the velocity in feet per minute.

٠.	The	following	Table of	Velocities	is the	result of prac-
tic	e an	d observat	ion :			

La	Land Engines. High Pressure Engines.					Marine Engines.				
Length of stroke in L. & in.	Number per minute.	Velocity in feet per minute.	str	oke		Velocity in feet per minute.	str	gth oke n in.	Number per minute.	Velocity in feet per minute.
1 6 2 0 2 6 3 0 3 6 4 0 4 6 5 0 5 6 6 0 7 0	50 43 38 34 30 27 24½ 22 20¼ 19 17⅓ 16	150 172 190 204 210 216 218½ 220 224¾ 228 245 256	1 1 2 2 2 3 3 4 4 5 5 6	0 6 0 6 9 0 6 0 6 0 6 0	80 62 50 421 391 37 33 291 27 243 23 22	160 186 200 2121 2171 222 231 236 243 2471 253 264	222233445567	0 3 6 9 0 6 0 6 0 6 0	42 394 36 33 31 27 24 214 20 19 18 153	168 1773 180 181 186 189 192 1934 200 209 216 2203

These are to be considered as the velocities of engines having the application of their power in the usual form. Sometimes the motion is communicated by a lever or half beam, and having the power transmitted from somewhere between the fulcrum and the piston, or end of the lever, in which case the velocity of the engine must be increased in the following proportion:—

RULE.—Multiply the velocities in the table by the length of the lever in feet between fulcrum and piston, and divide the product by the distance between the fulcrum and connecting rod, the quotient is the velocity in feet per minute.

Example.—Suppose a marine engine of this description with a 3 feet 6 in. stroke, length of lever 11 feet, and the connecting rod attached $2\frac{1}{2}$ feet from the piston; required the piston's velocity.

By the table, a 3 feet 6 stroke = 189 feet per minute, and $\frac{189 \times 11}{9 \times 11}$ = 244.5 feet. In the velocities of marine engines, the vessels are supposed in their average sailing trim, in moderate weather, and the dimensions of the paddle boards determined according to the following approximate:—

RULE.—Multiply the area of the cylinder in inches by nine times the force of the steam in lbs. on a square inch of the boiler above the pressure of the atmosphere, divide the product by the diameter of the wheels in feet multiplied by the velocity of the piston in feet per minute, and the quotient is the area of each paddle board in square feet for vessels with two engines, and half the quotient for vessels with one engine only.

EXAMPLE.—Suppose a vessel containing two engines, with cylinders of 50 inches diameter each, stroke 4½ feet, wheels 20 feet diameter, and steam at 4 lbs. per square inch above the pressure of the atmosphere; required the area of each paddle board in square feet.

 $50^2 \times .7854 = 1963.5$ inches, area of cylinder; $9 \times 4 = 36$; and by the table a $4\frac{1}{2}$ feet stroke = $193\frac{1}{2}$ feet velocity.

Hence, $\frac{1963.5 \times 36}{193.5 \times 20} = 18.2$ feet; and suppose each

8 feet in length, $18.2 \div 8 = 2.28$, or 2 feet 3 inches broad nearly.

NOTE.—In the preceding table of velocities the pressure of the steam for land engines is taken at an average of 3 lbs., high pressure engines 30 lbs., and marine engines 4 lbs. per square inch above the pressure of the atmosphere.

Velocity of locomotive engines.

In order to ascertain what load a locomotive engine is able to draw at a given velocity, or what velocity it will acquire with a given load, the following require to be taken into account, namely,—

The force of the steam: the pressure of the atmosphere; the dimensions of the cylinders; the diameter of the wheels; the weight of the load; the force of traction per ton; and the friction of the engine. It is already decided by experiment and practice, that about

9 lbs. per ton is the amount of the force of traction upon a level, when the line of rails and waggon axles are kept in proper condition, the bearings of the axles being from 4 to $4\frac{1}{2}$ inches in length by $2\frac{1}{3}$ in diameter, and wheels about 3 feet diameter; and also the amount of resistance and friction of the engine per ton equal about 15 lbs. (The quantity of water that a boiler will evaporate in a given time is given under the section on boilers, see page 31.) Hence, in both cases,

Let P denote the total pressure of steam in the boiler per square foot (atmospheric pressure included,)

the ratio of the volume of steam, water being
 1, or the volume of steam to the volume
 of water that produces it,

S the quantity of water evaporated per hour in cubic feet,

D.... the diameter of the wheels in feet,

9 lbs. the resistance of the load per ton,

W.... the gross weight of the load in tons, tender, water, &c. included,

15 lbs. the resistance and friction of the engine per ton.

2117 lbs. the atmospheric pressure per square foot,

d the diameter of the cylinders in feet, or parts of a foot.

the length of the stroke also in feet,And V the velocity in feet per hour. Then,

 To ascertain the load that a given engine will draw with a fixed pressure and a determined velocity.

$$\frac{\overline{P r S D} - \overline{2117 d^2 l V}}{V 9 D} - \frac{15 per ton}{9} = W$$

2. To ascertain the velocity to which an engine will acquire with a fixed pressure and a determined load.

$$\frac{P r S D}{(9W + 15)D + 2117 d^2 l} = V$$

EXAMPLE.—Suppose an engine of the following dimensions, namely,

Diameter of cylinders 11 inches, or .917 feet. Stroke of the piston 16 ,, or 1.33 ,,

Diameter of wheels 5

Effective pressure 50 lbs. per square inch, or 65 lbs. atmospheric pressure included,

38.74 cubic ft. of water evaporated per hour,

Weight of the engine 8 tons,

Load, gross weight, tender included, 100 tons; Required the velocity in miles per hour.

 $144 \times 65 = 9360$ lbs. pressure of steam per square foot, or P,

435 = the volume of steam to 1 of water,—(see Table, page 20.)

 $100 \times 9 = 900$ lbs. resistance of the load,

 $15 \times 8 = 120$ lbs. resistance and friction of the engine,

And 5280 feet = 1 mile. Then,

$$\frac{9360 \times 435 \times 38.74 \times 5}{900 + 120 \times 5 + 2117 \times .9172 \times 1.33} = 105612 \text{ ft.}$$
and
$$\frac{105612}{5280} = 20 \text{ miles per hour.}$$

Again, Suppose the engine as before, but with a fixed velocity of 20 miles per hour; required the load it will take in gross tons, tender included.

$$\frac{9360 \times 435 \times 38.74 \times 5 = 2117 \times .917^{2} \times 1.33 \times 105600}{105600 \times 9 \times 5}$$

$$\frac{113.13 - \frac{120}{9} = 100 \text{ tons.}$$

A Table containing the Velocities of Engines, with their given loads.

	Load in	Velocit	y on a l	evel, in
	gross	miles p	er hour,	with an
DESCRIPTION OF THE ENGINE.	tons,	effection	ve press	ure of
I	tender		in the b	
	in-		5 lbs. an	
	cluded.	per	square i	ncn.
l 	Tons.	50 lbs.	55 lbs.	60 lbs.
Engine with cylinders 11 in. diam.		Miles.	Miles.	Miles.
Stroke of the piston 16 in.	25	40.07	40.38	40.60
Diameter of the wheels 5 feet.	50	31.34	31.58	31.76
Weight of the engine 9 tons.	75	25.74	25.93	26.06
Effective heating surface 140	100	21.83	22.00	22.12
square feet.	125	18.96	19.10	19.21
Water evaporated per hour	150	16.75	16.88	16.97
42 cubic feet.	175	10.,0	15.12	15.21
42 Cubic lect.	200	::::::	10.12	13.60
	200	<u> </u>	<u> </u>	10.00
Busine with enlished 10 in 11	25	34.45	34.71	34.91
Engine with cylinders 12 in. diam.	50	27.80	28.01	28.16
Stroke of the piston 16 in.	75	23.29	23.47	23.60
Diameter of wheels 5 feet.	100	20.05	20.21	20.32
Weight of the engine 11 tons.	125	17.60	17.73	17.83
Effective heating surface 140	150	15.68	15.80	15.89
square feet.				
Water evaporated per hour 42	175	14.14	14.25	14.33
cubic feet.	200		12.98	13.05
	250		•	10.75
	50	29.03	29.25	29.42
Engine with cylinders 13 in. diam.	75	24.68	24.86	25.00
Stroke of the piston 16 in.	100	21.46	21.62	21.74
Diameter of wheels 5 feet.	125	18.98		
Weight of the engine 12 tons.			19.13	19.23
Effective heating surface 160	150	17.02	17.15	17.24
square feet.	175	15.42	15.54	15.63
Water evaporated per hour 48	200	14.10	14.21	14.29
cubic feet.	225	12.99	13.09	13.16
cubic lees.	250		11.80	11.72
77	1 20	1 00 15	100.00	100 ==
Engine with cylinders 12 in. diam.	50	26.16	26.36	26.51
Stroke of the piston 18 in.	75	22.57	22.74	22.87
Diameter of wheels 5 feet.	100	19.85	20.00	20.11
Weight of the engine 12 tons.	125	17.71	17.85	17.95
Effective heating surface 160	150	15.99	16.11	16.20
square feet.	175	14.57	14.68	14.77
Water evaporated per hour 48		13.39	13.49	13.56
cubic feet.	270	10.00	10.20	11.05
04020 2000	2,0			11.00

This table supposes the resistance of the air to be nothing more than what is created by the train or load; a fresh breeze makes a very considerable difference; for

in the first case the resistance is only about 17 or 18 lbs. on a waggon of moderate height; but, if the velocity of the wind be about 20 feet per second, the resistance is equal to .915 lbs. per square foot,—or otherwise, a surface of one square foot, cutting the air with a velocity of 20 feet per second, meets with a resistance of .915 lbs.; hence, a surface of 30 square feet must meet with a resistance of .915 \times 30 = 27.45, or nearly $27\frac{1}{9}$ lbs.

Any rise or inclined plane upon a railway materially diminishes the velocity, or lessens the quantity of load an engine can take upon a level, on account of the resistance upon the plane approaching to the total weight of the load, for, according to the laws of inclined planes, the resistance or weight increases as the perpendicular height of the plane is to its length; hence, divide the weight of the load in lbs., including engine and tender, by any portion or length of the plane multiplied by 8, or the traction of the load per ton minus the friction of the engine, and the quotient, plus the weight of the load in tons, multiplied by 8, equal the total resistance of the load in lbs. upon the plane.

Example.—Suppose a train or load of 100 tons, engine, tender, &c. 12 tons, which, upon a level, offers a resistance of $112 \times 8 = 896$ lbs.; required the increase of resistance upon an incline of 1 in 135.

2240 lbs. = 1 ton; and
$$\frac{2240 \times 100 + 12}{135 \times 8} = 232 + 100 = 332$$
 tons, $\times 8 = 2656$ lbs.

And the velocity acquired by a carriage or train descending a plain, although inversely, increases in an equal ratio; hence, the necessity for individuals intrusted with the care or management of locomotive engines being particularly acquainted with the various effects of a train or load upon an incline, as well for their own as public safety, so that, by a competent knowledge, and proper attention, the engine may be regulated to a constant or uniform velocity, whereby general safety in a great measure is secured.

A Table containing the Resistance of Trains upon inclined planes.

Weight of the Engines.	eight of the train in gross tons, tender included.	Load in gross tons, which on a level would offer the same resistance, the inclination of the plane being							
	Weig ten te	300	400	300	250	200	150	100	
Engine weighing 8 tons.	25 50 75 100 125 150	44 83 122 161 2200 239	48 91 133 176 218 261	56 105 153 201 249 298	62 115 148 221 274 327	71 131 191 251 311 371	87 158 230 302 373 445	117 212 307 402 497 592	
Engine weighing 10 tons.	25 50 75 100 125 150 175 200	45 84 123 162 201 240 279 318	50 93 135 178 220 263 305 348	58 107 155 203 251 300 348 396	64 117 170 223 276 329 382 435	74 134 194 254 314 374 434 494	91 162 234 306 377 449 521 592	123 218 313 408 503 598 693 788	
Engine weighing 12 tons.	25 50 75 100 125 150 175 200 225 250	46 85 124 163 202 241 280 319 358 397	51 94 136 179 221 264 306 349 392 434	60 109 157 205 253 302 350 398 446 494	67 120 173 226 278 332 385 438 491 544	77 137 197 257 317 377 437 497 557 617	95 166 238 310 381 453 525 596 668 740	129 224 319 414 509 604 699 794 889 984	

THE CYLINDER

Is the source from which the motion of an engine is derived, and also the bounds or extent by which the power is determined; hence, some of its various properties require observation and recollection.

- 1. In diameter it is the most capacious of all plain figures, or contains the greatest area within the same perimeter or outline.
- 2. The ratio of the diameter is to its circumference as 1 to 3.1416; twice the diameter contains twice the circumference; hence, the piston of a large engine has less rubbing surface, or less friction, according to its power, than a small one.
- 3. The areas of circles are to each other as the squares of their diameters, or as .7854 to 1: a circle twice the diameter contains four times the area.

EXAMPLE 1.—Required the circumference and area of a circle, or end of a cylinder, 20 inches diameter.

```
20 \times 3.1416 = 62.832 inches circumference. 20^2 \times .7854 = 314.16 , area.
```

EXAMPLE 2.—What is the circumference and area of a circle or piston 40 inches diameter?

```
40 \times 3.1416 = 125.664 inches, or twice 62.832. 40^2 \times .7854 = 1256.64 , or four times 314.16.
```

The whole capacity of a cylinder is equal to the area of the end multiplied by the perpendicular height.

Connected with the preceding remarks on the cylinder, and of equal importance, are the following on steam, in ascertaining the power or effect of an engine:—

In the steam-engine highly rarified steam is of considerably more advantage than steam of a more moderate elastic force. And,

1. On account of the very great increase of force obtained, from a comparatively small increase of heat, as exhibited in the following table:—

Elastic force in atmos- pheres.	Elastic force in lbs. per sqr. inch.	Degrees of heat.	Difference of temperature	Volume in cubic feet, water being 1.	Velocity into a vacuum in feet per sec.
1	14.7	212° F		. 1711	1566
2 3	29.4	250.52	38.52° F	905	1610
3	44.1	275.18	24.66	623	1638
	58.8	293.72	18.54	479	1658
4 5	73.5	308.84	15.12	394	1674
6	88.2	320.36	11.52	331	1688
7	102.9	331.70	11.34	288	1700
8	117.6	341.96	10.26	255	1710
9	132.3	350.78	8.82	229	1720
10	147.0	358.88	8.10	209	1729
12	176.4	374.00	15.12	190	1742
15	180.5	392.86	18.86	135	1765
20	294.0	418.45	25.59	111	1786
30	441.0	457.16	38.71	77	1823
50	735.0	510.60	53.44	42	1873

Hence it follows, as a matter of consequence, that, as such small accessions of heat produce so rapid an increase of expansive force, small abstractions of heat from highly elastic steam will also reduce its elasticity in an equal degree, so that high pressed steam is more readily diminished in bulk by the application of cold than weaker steam; that is, it can be more readily reduced in its pressure to any certain proportion of the pressure it had before.

2. By admitting but a small portion of steam to enter the cylinder, and by its expansive force continue the motion of the piston to the end of the stroke.

When an engine is about to be set in motion, the steam has to overcome the friction and inertia of the whole mass; but, when once set in motion, the impetus it has acquired continues it in that state for a time, independently of the action of the steam, friction being only now to be overcome; hence, if the steam continue to act as forcibly as at first, it will communicate addi-

tional motion to the piston, and will, therefore, perform its stroke with accelerated velocity; but if the supply of steam is cut off at any part of the stroke, the remainder requires to be effected partly by the impetus the piston has already acquired, and partly by the expansion of the steam, its force from this source becoming less just in proportion as the space it occupies increases, thus the motion is in a great measure equalized,—the action of the steam in full strength sets it in motion, and the small and decreasing force requisite to continue the motion at a uniform rate is furnished by the expansion of that steam; the advantage gained by thus economizing the steam increases in proportion as the steam is sooner cut off to the extent indicated in the following table:—

	e steam is stopped the stroke,	The effect of the quantity of steam admitted is multiplied by 1.7
1		2.1
į	***************************************	2.4
ī		2.6
		2.8
•		3.0
,		3.2

Thus,—Suppose only one-fourth of the steam necessary to fill the cylinder is employed, the effect produced is more than one-half of the effect which would have been produced in filling the whole cylinder full of steam. Hence, the ratio between the force of the steam giving the first impulse to the piston, and the force of the steam at the termination of the stroke, constitutes the uniform elastic force throughout the whole stroke. (For a rule to obtain the uniform force of the steam see page 34.)

In calculating the power of an engine, the area of the piston multiplied by the uniform force of the steam, minus the resistance and friction of the engine, equal the effective moving power; and the effective moving power multiplied by its velocity per minute equal the momentum, or useful effect of the engine; and also, the

momentum divided by 150 lbs. × 220 feet, or 33,000 lbs., equal the standard of reference, or number of horses' power.

In high-pressure, or non-condensing engines, the resistance and friction remain nearly a constant number, namely, 18 lbs. per square inch, including the resistance of the atmosphere. Condensing engines vary with the state of the engine or extent of the vacuum, the mercury in the barometer attached to the condenser frequently ranging between 24 and 281, or at an average of 261 inches; hence, the pressure of the atmosphere being on an average 14.7 lbs. per square inch, and equal to a column of mercury 30 inches in height, 30: 14.7: 26.25 : 12.86 lbs., and 15 - 12.86 = about 2 lbs.resistance to each square inch of the piston's area, besides 8 lbs. required to overcome the friction and inertia of the engine, making the total resistance and friction about 10 lbs. per square inch, or 7.85 lbs. per circular inch of the piston. Hence,

THE GENERAL RULE.

Let D equal the diameter of the cylinder in inches,
F uniform force of the steam in lbs. per
circular inch of the piston, atmospheric pressure included,
r resistance and friction of the engine in
lbs. per circular inch,
V velocity of the piston in feet per minute,
standard of one horse power,
the useful effect of the engine expressed
in horses' power.

Then 1.
$$\frac{D^2 \times \overline{F} - r \times V}{33000} = P.$$

And 2.
$$\frac{33000 \times P}{V \times F - r} = D.$$

EXAMPLE 1.—Suppose it be required to ascertain the

power of a condensing engine, having the following particulars, viz.,

Cylinder 20 inches diameter.

Stroke 4 feet, or 216 feet velocity per minute,

Weight on each circular inch of the safety valve $2\frac{1}{2}$ lbs. or 11.78 + 2.5 = 14.28 lbs. atmospheric pressure included.

Steam cut off from the cylinder when the piston has moved $\frac{2}{3}$ rds of the stroke, or 32 inches.

Resistance and friction 10 lbs. per square inch, or 7.85 lbs. per circular inch; required the useful effect of the engine in horses' power.

$$\frac{48}{32} = 1.5$$
, and $\frac{14.28}{1.5} = 9.52$. The hyperbolic

logarithm of $1.5 + 1 = 1.40546 \times 9.52 = 13.37$ lbs. per circular inch of uniform elastic force, and 13.37 -7.85 = 5.52 lbs. effective force; hence,

$$\frac{20^2 \times 5.52 \times 216}{33000} = \frac{476928}{33000} = 14.4 \text{ horses' power.}$$

EXAMPLE 2.—Required the diameter of the cylinder for a condensing engine of 14.4 horses' power, and also the weight on each circular inch of the safety valve, in order to produce steam of 13.37 lbs. uniform elastic force, the steam to be cut off from the cylinder when the piston has moved 32 inches of its stroke—velocity of the piston 216 feet per minute—resistance and friction 7.85 lbs. per circular inch; 13.37 — 7.85 = 5.52 lbs. effective power of the steam per circular inch; hence,

$$\sqrt{\frac{33000 \times 14.4}{216 \times 5.52}} = \frac{475200}{1192} = \sqrt{400} = 20 \text{ in. dia.}$$

Again, 4 feet = 48 inches, and $\frac{48}{32}$ = 1.5; the hyperbolic logarithm of 1.5 plus 1 = 1.4054; hence, $\frac{13.37 \times 1.5}{1.4054}$ = 14.28 lbs. total force of steam in the

boiler per circular inch; and 14.28 — 11.78, or the pressure of the atmosphere = 2.5 lbs. effective elastic force or weight upon each circular inch of the safety valve.

EXAMPLE 3.—What is the power of a non-condensing engine, having a cylinder of 9 inches diameter, a stroke of 2 feet, or 200 feet velocity per minute, and a pressure of steam in the boiler of 40 lbs. per square inch, atmospheric pressure included, the steam to be stopped off from the piston at half stroke, and the resistance, friction, &c. 18 lbs. per square inch, or 14.1 lbs. per circular inch on the piston's area?

40 lbs. per square inch = 31.4 lbs. per circular inch, $\frac{24}{12}$ = 2, and $\frac{31.4}{2}$ = 15.7, The hyperbolic logarithm of 2 plus 1 = 1.693 × 15.7 = 26.6 lbs. uniform force of the steam per circular inch, and 26.6 — 14.1 = 12.5 lbs. effective force on each circular inch of the piston;

hence,
$$\frac{9^2 \times 12.5 \times 200}{33000} = 6.1$$
 horses' power.

EXAMPLE 4.—Let it be required to construct a non-condensing engine of 6.1 horses' power, the uniform elastic force of steam to be 26.6 lbs. per circular inch in the cylinder, when cut off—at half stroke, piston's velocity 200 feet per minute, resistance and friction 14.1 lbs. per circular inch; required the cylinder's diameter in inches, and also the pressure of the steam on each circular inch of the boiler above the pressure of the atmosphere.

26.6 lbs. elastic force, minus 14.1 resistance and friction, = 12.5 lbs. effective pressure per circular inch; hence,

$$\sqrt{\frac{33000 \times 6.1}{200 \times 12.5}} = 9 \text{ inches diameter.}$$

Again,
$$\frac{24}{12} = 2$$
, The hyperbolic logarithm of 2 plus $1 =$

1.693, and
$$\frac{26.6 \times 2}{1.693} = 31.4 - 11.78 = 19.62$$

lbs. per circular inch, or 25 lbs. per square inch in the boiler above the pressure of the atmosphere.

The preceding may be taken as the real effect of an engine, expressed in the usual term, horses' power; but, there exist various nominal and approximate rules, whereby the diameter of a cylinder, or power of an engine, is determined, but governed in a great measure by competition,—one maker endeavouring to excel another, by increasing the effect of the engine and retaining the same nominal power, which is not unfrequently supposed the result of superior mechanism, or some very essential interior intricacy, although, generally, at the expense of a larger cylinder, or an increased force of steam.

However, the following are selected as those most commonly used, and what custom has rendered almost a general standard, the more so, no doubt, on account of being considered to have originated from the celebrated firm of Boulton and Watt.

In this rule the steam in the boiler is supposed at a constant pressure of about 3.18 lbs. per square inch, or 2.5 per circular inch; the piston at a constant or uniform velocity of 220 feet per minute; and the effective force on the piston about 7.5 lbs. per square inch, or 5.89 lbs. per circular inch; and under such circumstances 30 circular inches are considered an equivalent to one horse power, when the beam for communicating the motion from the piston is about 3, and the connecting rod not less than 2.5 times the length of stroke.

But marine engines are generally confined, the connecting rods being seldom more than from 1.75 to twice the length of stroke, and, as a compensation for this disadvantage, the area of the piston is augmented to 31.5 circular inches to each horse power.

• į .

Again, small packets for rivers, &c., are still more confined, being often compelled to have the connecting rods not more than from 1.25 to 1.5 times the length of stroke, causing a very acute angle with the crank; in such, not fewer than 34 circular inches is considered

equal to one horse power.

In high-pressure, or non-condensing engines, onethird the force of the steam is deducted for resistance of the atmosphere, friction, &c.; hence, as in condensing engines, $30 \times 5.89 = 176.7$ lbs. effective pressure equal the amount of one horse power; consequently, steam at 25 lbs. per square inch, or 19.63 lbs. per circular inch, minus $\frac{1}{3}$ rd, $=\frac{19.63 \times 2}{2} = 13.08$ lbs. effec-

tive pressure on each circular inch of the piston's area, and $176.7 \div 13.08 = 13.6$ circular inches to each horse power.

Steam at 30 lbs. per square inch = 23.56 lbs. per circular inch, and $\frac{2\hat{3.56} \times 2}{3}$ = 15.7 lbs. effective pres-

sure; hence, $176.7 \div 15.7 = 11.3$ circular inches to each horse power.

Steam at 40 lbs. per square inch = 31.41 lbs. per circular inch, and $\frac{31.41 \times 2}{3}$ = 20.94 lbs. effective

pressure; hence, 176.7 ÷ 20.94 = 8.5 circular inches to each horse power.

Steam at 50 lbs. per square inch = 39.27 lbs. per circular inch, and $\frac{39.27 \times 2}{3}$ = 26.18 lbs. effective

pressure; hence, $176.7 \div 26.18 = 6.8$ circular inches to each horse power;—and the same at any other pressure that might be required.

EXAMPLE 1.- Required the diameter of a cylinder for a land condensing engine of 36 horses' power.

$$\sqrt{36 \times 30} = 32.86$$
 inches diameter.

EXAMPLE 2.—What is the nominal power of an engine, the cylinder of which is 32.86 inches diameter?

$$32.86^2 \div 30 = 36$$
 horses' power.

EXAMPLE 3.—Required the diameter of the cylinder for a marine engine of 65 horses' power.

$$\sqrt{65 \times 31.5} = 45.25$$
 inches diameter.

EXAMPLE 4.—The diameter of the cylinder of a marine engine is 45.25 inches diameter; required the nominal power of the engine.

$$45.25^2 \div 31.5 = 65$$
 horses' power.

EXAMPLE 5.—The force of the steam in a boiler is 30 lbs. per square inch above the pressure of the atmosphere; if it were applied to a non-condensing engine, so as to produce a power equal to 6 horses, what must be the cylinder's diameter?

$$\sqrt{11.3 \times 6} = 8.25$$
 inches diameter.

EXAMPLE 6.—The diameter of the cylinder of a noncondensing engine is 8.25 inches, and the steam at 30 lbs. per square inch, required the engine's power.

$$8.25^{\circ} \div 11.3 = 6$$
 horses' power.

A Table containing the difference between a certain elastic force of steam on a square and circular inch.

The preceding questions are very conveniently obtained by the sliding rule.

1. By the engineer's improved sliding rule.—Set 1 upon B to the number of circular inches allowed to a horse power upon A, and against the number of horses' power upon C is the cylinder's diameter in inches upon D; or, against the cylinder's diameter in inches upon D is the number of horses' power upon C.

Thus, set 1 upon B to 30 upon A, and against any number of horses' power upon C is the diameter in inches upon D, for common condensing engines.

2. By the common sliding rule.—Set 1 upon C to the diameter of a cylinder equal to 1 horse power upon D, and against any diameter upon D is the number of horses' power upon C; or, against any number of horses' power upon C is the diam. of the cylinder in in. upon D.

Note.—The square root of any number of circular inches to a horse power equal the diameter;—thus $\sqrt{30}=5.47$ inches,— $\sqrt{31}=5.6$ inches,— $\sqrt{34}=5.8$ inches, being the diameters of cylinders of 1 horse power, for land and marine condensing engines; And $\sqrt{13.6}=3.7$ inches,— $\sqrt{11.3}=3.4$ inches,— $\sqrt{8.5}=2.9$ inches,—and $\sqrt{6.8}=2.6$ inches, or the diameter of cylinders for non-condensing engines of 1 horse power, with steam above the pressure of the atmosphere equal to 25, 30, 40, and 50 lbs. per square inch.

EXAMPLE 1.—What diameter must a cylinder be for a condensing engine to equal 20 horses' power?

Set 1 upon B to 30 upon A, and against 20 upon C is $24\frac{1}{2}$ upon D.

When the rule is thus set, C is a line of horses' power, and D a line of diameters for cylinders corresponding to that power.

EXAMPLE 2.—What number of horses' power will a high pressure engine be equal to when the cylinder is 12 inches diameter, and steam 30 lbs. per square inch? Set 1 on B to 11.3 upon A, and against 12 upon D is 12.7 horses' power upon C.

Suppose the same to be required upon the common slide rule.

- 1.—Set 1 upon C to 5.47 upon D, and against 20 upon C is $24\frac{1}{2}$ upon D.
- 2.—Set 1 upon C to 3.4 upon D, and against 12 upon D is 12.7 upon C.

The following tables exhibit various proportions for engines, estimated according to their nominal power.

Area of apertures to the cylinder in inches. Diameter of cold water pumpin inch. at | stroke. Cubic feet of water per hour for condensation. Lbs. of good coal required per hour. Number of horses' power Diameter of feed pump in inches at ‡ stroke. Diameter of cylinder Proportionate length stroke in feet and inches for fixed engine Proportionate length stroke in feet and in. for portable engin Number of strokes minute. of air inches 4 5 6 8 10 12 14 16 18 90 92 92 93 35 40 60 0in 6 -n. 55 44 37 37 32 28 25 22 22 22 22 20 19 19 17 16 16 56 75 90 113 158 187 226 264 302 380 420 450 450 560 712 940 1120 56 65 74 90 102 120 128 144 158 170 186 190 200 212 229 236 268 292 346 408 12 134 144 164 19 19 21 22 23 24 26 27 28 29 30 32 42 42 42 42 5 6 7 9 11 13 15 17 19 21 22 25 26 28 30 50 60 8 84 94 104 12 13 14 15 164 174 18 184 194 22 25 25 28 344445 546 6467 7777 8 848 849 10 114 12 1222222233333444444555 3 0 ō 606 844 6 0 0 5 6 6 5 0 6 0 6 6 7 0

Table 1.—Land Condensing Engines.

Noze.—When the fly wheel shaft is of cast iron, the diameter of the bearings is the same as the diameter of the cold water pump.

Table 2.—Marine Engines.

RODS ARI	WHOSE COL NOT LESS ELENGTHO	THAN 12 FSTROKE.	RODS ARE	WHOSE COL LESS THAN ENGTH OF S	I 14 TIMES
Number of horses' power.	Diameter of cylinder in inches.	Diameter of air pump in inches.	Number of horses power.	Diameter of cylinder in inches.	Diameter of air pump in inches.
25 30 35 40 45 50 55 60 65 70 75 80 85 90 110 120 120 200	28 374 334 354 374 433 434 47 484 501 514 564 564 564 579 679	16 17# 19# 20 21 22 24 25 26 27 28 29 29 29 29 31 31 32 34 35 37 38 37 38 37 38 38 38 38 38 38 38 38	10 12 14 15 16 18 28 25 30 33 40 45 59	184 9-1-22 224 234 244 25 294 39 34 37 39 414	12 134 144 144 154 164 17 194 294 294 257

Table 3.—Non-condensing or High-pressure Engines.

Number of horses' power.	Diameter of cylinder in inches,—steam at 25 lbs. persquare inch.	Diameter of cylinder in inches,—steam at 30 lbs. per square inch.	Diameter of cylinder in inches,—steam at 40 lbs. per square inch.	Diameter of cylinder in inches,—steam at 50 lbs. per square inch.	
1 2 3 4 6 8 10 11 14 16 18 20 25 30	34 54 61 71 9 101 13 14 15 154 184 204	34 42 6 62 84 92 11 12 122 132 144 154 174	3 44 5 6 74 84 94 10 11 12 12 12 13 15 16	21 32 41 64 64 71 94 10 104 114 113 144	
Quantity of water in gallons per minute to each horse power, .45 .5 .61 .73					

To ascertain the power or effect of a locomotive engine.

The efficiency of a locomotive engine depends upon the force of the steam, the area of the cylinders, and the ratio existing between the length of the stroke and the diameter of the wheels; also, the resistance of the atmosphere, and friction of the engine, which is on an average 15 lbs. per ton;—hence, by the following simple formula, the various effective proportions may be determined, and also the amount of useful effect produced from a certain given force of steam.

Let W represent the weight of the load in gross tons, tender included,

9 resistance of the load per ton,	9
F or 15resistance and friction of the en-	F
gine per ton,	
Ddiameter of the wheels in feet,	D
ddiameter of the cylinders in feet,	d
or parts of a foot,	
llength of stroke, also in feet or	l
parts of a foot,	
Ptotal pressure of steam in the	P
boiler per square foot, atmos-	
pheric pressure included,	
p atmospheric pressure per sqr. foot,	p
or 2117 lbs.: hence, $P - p =$	•
the effective pressure,	
Squantity of water evaporated per	S
hour in cubic feet,	
rratio of the volume of steam, water	r
being 1, or the volume of steam	

produced it,

And Vvelocity of the engine in feet per
hour.

to the volume of water that

1.
$$\frac{P r S D - p d^2 l V}{V 9 D} - \frac{F}{9} = W, \text{ or the load in}$$

gross tons, tender included, that a given engine will draw, with a known pressure and a determined velocity.

2.
$$\frac{(P-p) d^2 l}{9 D} - \frac{F}{9} = W$$
, or the maximum weight that an engine is able to draw at a determined pressure, in gross tons, tender included.

3.
$$\sqrt{\frac{D(9W + F)}{(P - p)l}} = d$$
, or the cylinder's diameter in feet or parts of a foot, in order that, if necessary, it may draw a certain maximum load.

4.
$$\frac{D(9 \text{ W} + \text{F})}{(P-p) d^2} = l$$
, or the length of stroke in feet, so that a proper ratio may exist between the stroke and the wheels, to enable the engine to produce the same effect of maximum load.

5.
$$\frac{(P-p) d^2 l}{9 W + F} = D$$
, or the diameter of the wheels that an engine must have in order to render it able to draw a fixed or maximum load.

To illustrate the preceding formula by example,—Suppose an engine of the following proportions:—

Diameter of cylinders 11 inches, or .917 feet, Length of stroke 16 inches, or 1.33 feet, Diameter of wheels 5 feet,

Weight of engine 8 tons,

Quantity of water evaporated per hour, 38.74 cubic feet,

And Effective pressure 50 lbs. per square inch; what are the various effects and proportions, as might be required?

In the present case,

P = 144 × 65 = 9360 lbs., or the pressure of steam per square foot, atmospheric pressure included.

p = 2117 lbs., or the pressure of the atmosphere per square foot, and

P - p = 7243 lbs. effective pressure per square foot,

 $F = 15 \times 8 = 120$, or the resistance and friction of the engine, and

r = 435 (see Table, page 20.) Hence,

Ex. 1. Required the load an engine of this description will take upon a level, at the rate of 20 miles per hour.

$$20 \text{ miles} = 105600 \text{ feet, then}$$

$$\frac{144 \times 65 \times 435 \times 38.74 \times 5 - 2117^{9} \times .917 \times 1.33 \times 105699}{105690 \times 9 \times 5}$$

113.13 $-\frac{120}{9}$ = 100 tons gross weight, tender included.

Ex. 2. What is the maximum load for an engine of the preceding proportions, and steam at 50 lbs. per square inch, effective pressure?

$$\frac{9360 - 2117 \times .917^2 \times 1.33}{9 \times 5} = 180 - \frac{120}{9} = 166.7$$

tons gross weight.

Ex. 3. What must be the diameter of the cylinders for a locomotive engine as above, so that it may be enabled to draw a load of 166.7 tons?

$$\sqrt{\frac{166.7 \times 9 + 120 \times 5}{9360 - 2117 \times 1.33}} = .917 \text{ of a foot, or } 11$$

inches diameter.

Ex. 4. Required the length of stroke, so as to render

this engine capable of drawing 166.7 tons, with wheels of 5 feet diameter.

$$\frac{166.7 \times 9 + 120 \times 5}{9360 - 2117 \times .917^2} = 1.33 \text{ feet, or } 16 \text{ inches, length}$$
 of stroke.

Ex. 5.—What must be the diameter of the wheels for a locomotive engine, in order that it may be able to draw. a given maximum load, the other proportions being the same as above?

$$\frac{9360 - 2117 \times .917^{2} \times 1.33}{166.7 \times 9 + 8 \times 15} = 5 \text{ feet diameter.}$$

The following table contains the diameters of cylinders, with a given pressure of steam, to draw certain maximum loads:—

Particulars of the Engine.	Load in gross tons tender included.	in inche 501bs. 50	ter of Cy s, with s libs. & 60 in the	team at lbs. per
Wheels 5 feet. Stroke 16 inches, or 1.33 feet. Weight 8 to 10 tons.	100 125 150 175 200 225 250	9 in. 93 101 112 12 123 131	84in 91 10 11 11 12 12 12	8 in. 9 9 10 11 11 12 12
Wheels 5 feet. Stroke 16 inches, or 1.33 feet. Weight 10 to 12 tons.	200 225 250 275 300 325 350	121 13 131 141 143 151 16	115 124 13 134 14 14 145 15	111 12 121 131 131 14 141
Wheels 5 feet. Stroke 18 inches, or 1.5 feet. Weight 11 to 13 tons.	200 225 250 275 300 325 350	111 121 123 123 131 14 141 15	11 111 121 123 134 134 144	10½ 11 115 124 125 134 134

THE NOZZLES, FRONT PIPES, OR SLIDE VALVES,

Are for the purpose of alternate admission of steam to and from the cylinder of a steam-engine, and consist of either conical valves, slide valves, or cocks, the motion of which is derived from the engine by various means. as tappets, eccentrics, cambs, &c., and by such means various effects are produced; however, practice has sufficiently decided the superiority to tappets, or hand gear, as the means by which the most effective power of an engine can be obtained,—but their unpleasant noise and greater liability of derangement prevent their more frequent application; hence, to render the eccentric more effective, the apertures or steam openings to the cylinder are of a certain proportion, and made as long as the cylinder's diameter will properly admit, so that by a smaller movement of the valve a greater opening may be gained. In condensing engines the area of each opening or steam way equal 30th, and non-condensing or high-pressure engines 16th of the square of the cvlinder's diameter.

And, as a farther means of enabling the eccentric to approximate hand gear, the valve or valves are placed at a certain distance in advance of the piston, and termed by engineers the lead of the valve, so that at each return of stroke the steam in the cylinder may sooner approach an equal density to the steam in the boiler; but an excess of lead is only advantageous to engines lightly loaded, and an increased velocity required. When such is the case, a proper impulse of steam at the commencement of the stroke, and again sooner cut off, is of considerably more advantage than steam gradually applied, and in a similar way continued to the end of the stroke; hence, the propriety of lead for the valves of engines on board steam-packets for carrying passengers; and also the valves of locomotive engines for running

passenger trains, &c., for the velocity is increased in nearly the following proportion:—

When the lead of the valve is	
	$\frac{1}{4}$ inch = 1.016.
	a = 1.048.

But by such means the maximum effect of an engine may be considerably lessened, for it is the pressure and quantity of steam which constitute the power, and in proportion as the lead of the valve is increased so is the length of stroke, or quantity of steam diminished by being sooner cut off,—consequently, the power of the engine reduced; for which reason, other means are frequently resorted to, whereby to effect a greater advantage of the steam during the stroke, otherwise than by the lead of the valve. Among the most practical for that purpose is the camb or tumbler, a modification of which has been recently and successfully applied to a locomotive engine on the Leeds and Selby Railway, by Mr. Hope, engineer for that department; and by this arrangement not only is a greater extent of power obtained, but on a railway accidents may in a great measure be prevented, by a sudden application of the steam for reversing the motion of the engine, even at its greatest velocity, and without the smallest uncertainty or liability to derangement by a complication of machinery.

In order further to illustrate the advantage and disadvantage to an engine by the lead of the valve, the following table is annexed, as the result of experiments on the Liverpool and Manchester Railway, by C. de Pambour, and which I find in practice nearly to coincide:—

Particulars of the Engine.	Load in gross tone	Velocity lead	y in mile i of the	es per ho valve be	ur, the
	tender included	0	l in.	§ in.	∄ in.
Diameter of cylinders 11 in. Stroke 16 inches. Wheels 5 feet. Effective pressure 50 lbs. per square inch.	tons. 50 100 141 155 163 165	miles. 31.02 21.68 17.39 16.28 15.72 15.58	22.02 17.66 16.54	22.72 18.22	miles. 34.23 23.92 19.18 0. 0.
Diameter of cylinders 12 in. Stroke 16 inches. Wheels 5 feet. Effective pressure 50 lbs. per square inch.	50 100 150 168 183 193 196	27.80 20.05 15.68 14.56 13.72 13.22 13.11	20.37 15.93 14.79 13.94	21.01 16.43 15.25 14.38	22.12 17.30
Diameter of cylinders 12 in. Stroke 18 inches. Wheels 5 feet. Effective pressure 50 lbs. per square inch.	50 100 150 188 207 217 221	26.16 19.85 15.99 13.93 13.09 12.69 12.53	20.16 16.24 14.15 13.30	20.80 16.75 14.60	21.90 17.64

Again, the lap or cover of the valve is a certain additional breadth of its face on the steam side, more than the width of the aperture to the cylinder, for the purpose of cutting off the steam at any determined part of the stroke, and which is of considerable advantage in condensing engines when steam of greater elastic force is employed than is necessary to be continued throughout the whole stroke. In our present practice, the lap for land engines is from 1 inch to 5, with steam of 31 to 4 lbs. per square inch above the pressure of the atmosphere. But the lap for marine engines varies from \ to 1\frac{1}{4} inches. according to the elastic force of the steam, ranging from 4 to 10 lbs. per square inch,—for the calculated advantage of which see page 45. Locomotive engines and noncondensing engines, in general, with short strokes, require no more lap than just perceptibly covers the apertures to the cylinder when the valve is at the middle of the stroke.

ECCENTRICS, CAMBS, &c.

An eccentric is a contrivance by which continued circular motion is converted into alternate rectilinear motion; and, in like manner, by the camb, is uniform rotatory motion converted to a varied rectilinear motion; hence, their frequent application in the steam-engine for giving motion to the valves, whereby the direction of the steam is alternately changed, and also the quantity regularly proportioned.

1. To construct an eccentric of the usual form for a steam-engine.

Upon a straight line with the radius of the shaft describe the circle or eye of the eccentric, a b; describe, also, the circle e c, or necessary thickness of metal around the shaft, for the boss; make c to d equal the travel of the valve or required throw of the eccentric; bi

required throw of the eccentric; bisect e d in n, and form n as a centre, with the radious n e or n d, describe the diameter of the eccentric as required.

2. To construct a camb as applicable to the steam-engine.

Describe the circle a b equal to the diameter of the shaft on which it is to be fixed; also, the circle e c, or thickness of metal round the shaft by which it is to be fixed; make c d equal to the travel of the valve or required throw of the camb; draw the line p r at right

angles with the line c d, and distant from d three-fourths of the radius e n or n c; bisect e d, and with the same distance from where the lines intersect each other set off s p and s r; on the line p r, with one-fourth of the radius e n or n c, set off p 1 and r 1; draw the lines 2 2

Particulars .

Diameter of Stroke 16 in Wheels 5 fo Effective proper square

Diameter of Stroke 16 in Wheels 5 fo Effective pr per square

Diameter of Stroke 18 i. Wheels 5 the Effective proper squar

Again, t tional brea the width of cutting stroke, and densing er employed t the whole s engines is per square But the la according : 4 to 10 lbs. of which condensing no more la to the cyl stroke.

. . • • .

and 3 3; from 1, with the radius 1 r, describe r 2 and p 3; also, from 1, with the distance 1 3, describe 3 r and 2 p, and from n, with the distance n d, describe 2 d3, which constitute the camb required.

But the throw of the eccentric in a steam engine is not particularly required to equal the travel of the valve, for the direction of the motion generally requires to be changed by levers, which may be made unequal lengths at pleasure.

Hence, let t represent the travel of the valve,

L the length of the lever to which the eccentric rod is attached.

E the throw of the eccentric,

And l the length of the lever for giving motion to the valve :

Then, 1.
$$t\frac{L}{l} = E$$
. 2. $t\frac{L}{E} = l$. 3. $\frac{E}{t} = L$. 4. $\frac{E}{L} = t$.

Example.—Suppose t=8 inches.

L = 6

E = 4 l = 12

- 1. $\frac{8 \times 6}{12}$ = 4 inches, throw of eccentric.
- 2. $\frac{8 \times 6}{4}$ = 12 inches, length of lever for giving motion to the valve.
- 3. $\frac{4 \times 12}{8} = 6$ inches, length of lever at the end of eccentric rod.
- 4. $\frac{4 \times 12}{6} = 8$ inches, or the travel of the valve.

•

THE CONDENSER, COLD WATER PUMP, AND AIR PUMP.

When steam is exposed to any degree of cold its heat is abstracted,—its elastic force diminished; and, in proportion to the intensity or quantity of cold, is sooner or later condensed, and re-assumes the state of water, by which its bulk is reduced nearly 2000 times. Hence the principal property in the condensing engine.

Various means have been employed whereby condensation might sooner be effected in the steam-engine, and a more perfect vacuum obtained, but nothing as yet have superseded a jet of cold water, hence the necessity of a condenser and air pump in marine engines, and also the necessity for a condenser, cold water pump, and an air pump in land engines generally.

The capacity of the condenser ought to be as large as circumstances will conveniently admit, and not less than one-eighth the capacity of the cylinder; but, in marine engines, where the bottom of the condenser and bottom of the cylinder are on nearly the same line, care must be taken in making the passage between the valves and condenser large enough to contain the condensing water required for one stroke of the piston, besides leaving a proper communication, otherwise the connexion between the cylinder and air pump will be cut off by water of nearly 100° of heat, on account of the cylinder being twice filled with steam for each effective stroke of the air pump.

To produce the greatest effect in an engine the condensed water ought never to exceed 100° Ft., and to obtain this point requires about 30 cubic inches of water at a mean temperature of the atmosphere for every cubic foot of steam at 220°, to which point it is generally reduced or expanded; but, in calculating for the capacity of the cold water pump, an additional quantity must be annexed for imperfections, uncertainty of tem-

perature, &c.; hence, not less than 35 cubic inches, or 45 circular inches, is considered sufficient; and as the pump makes only one effective stroke while the piston makes two, twice the length of stroke multiplied by the area is taken for the cylinder's capacity.

Then suppose

A = the area of the cylinder in feet,

S = twice the length of stroke also in feet,

45 circular inches the quantity of water to each cubic foot of steam.

l = the stroke of the pump in inches, And d = the diameter of the pump in inches,

Then
$$\sqrt{\frac{\overline{\text{A S}}}{l}} = d$$
. and $\frac{\overline{\text{A S}}}{d^2} = l$.

Example.—What diameter of pump is necessary for an engine with a cylinder 30 inches, or $2\frac{1}{3}$ feet diameter, stroke 6 feet, and the stroke of the pump to equal half the stroke of the engine, or 36 inches? Area of cylinder = 4.9 feet. Stroke \times 2 = 12 feet.

$$\sqrt{\frac{4.9 \times 12 \times 45}{36}} = 8.25 \text{ inches diameter.}$$

And
$$\frac{4.9 \times 12 \times 45}{8.55}$$
 = 36 inches length of stroke.

Again, the air pump is for the purpose of extracting or emptying the condenser of water, uncondensed steam, air, &c., which accumulate in the act of condensation. Its capacity in land engines is about 1th the capacity of the cylinder, and in marine engines 1th. Hence, suppose the cylinder of a land engine equal 20 inches diameter, stroke 4 feet, or 48 inches; required the air pump's diameter at half stroke.

$$\frac{20^2 \times 48}{4 \times 24} = \sqrt{200} = 14.14 \text{ inches diameter.}$$

Or, required the diameter of air pump for a marine engine with a cylinder 36 inches diameter, stroke $3\frac{1}{2}$ feet, and the studs by which the pump bucket is to be worked placed 36 inches from the ends of the levers, the radius, or half length of the levers, being 5 feet.

Radius of beams or levers 60 inches, stroke 42 inches, Radius of pump studs 24 inches,

Then, as
$$60 : 42 : 24 : 16.8$$
 inches, or stroke of the pump. And $\frac{36^2 \times 42}{5 \times 16.8} = \sqrt{648} = 25.48$ inches diameter.

THE PARALLEL MOTION, BEAM, &c.

In a beam engine the parallel motion is the link or connexion between the top of the piston rod and end of the beam, and also the means by which the piston rod is made to move in a direct line; hence, according as the beam is differently situated in the engine, so must the motion be differently modified to suit—(see Table of Parallel Motions)—but in whatever situation the beam or levers may be placed the principle of the motion remains the same, and its correctness depends entirely upon the radius rods being of a proper length, which may be obtained by the following general rule:—

Let R = the radius of the beam,

$$l =$$
 ,, length of parallel bars,
And $r =$,, length of radius rods,
Then $\frac{R - l^2}{l} = r$

EXAMPLE.—Suppose the radius of a beam equal 6½ feet, or 78 inches, and the length of the parallel bars 34 inches; required the length of radius rods.

$$78 - 34 = 44$$
, and $\frac{44^2}{34} = 56.35$ inches.

But in marine engines, or engines on the marine principle, the side rods constitute the front links of the motion, having the parallel bars frequently attached at some distance below the end of the cross head—(see Figure 3, Table of Motions,)—by which different angles are formed, and the preceding rule rendered incorrect. Other suitable rules might be applied, but being, in general, much more tedious, it is better to lay it down in the following geometrical form:—

See Fig. 3.—Upon the line A m, with the radius of the beam, describe the arc b m t; from m, with half the length of stroke, cut the arc in b and t, draw the line b t and r m equal the versed sine described by the beam; bisect r m in n, and erect a perpendicular line for the centre of the cylinder. Again, from b m t, with the length of the side rods, cut the perpendicular line; at the bottom, middle, and top stroke of the cross-head draw the lines b b, m m, and t t: from the end of the cross-head, or top of the side rods, with any convenient distance, set off the pin or stud in the side rod for the end of the parallel bar 1, 2, 3, from which, with the distance s t, describe arcs at d D d; draw the lines d1, D2, &c.; also, with the distance m2, from SSS, cut the former arcs in dDd, and the radius of the circle, or length of the radius rod, D k, is found by the following problem :---

Through any three points out of a right line to describe the circumference of a circle.

From the middle point as a centre, with any convenient distance, describe the circle, or arcs of a circle, as A and B, and from the other points, with the same distance, describe arcs cutting the circle in C D and E F; draw lines through C D and E F, and where

they intersect each other at o is the centre of the circle required.

A Table containing the length of radius rods for motions with beams and parallel bars of various lengths.

Radius of beam in Ft. & In	Length of parallel bars in Ft. & In.	Length of radius rods in Ft. & In.	Radius of beam in Ft. & In.	Length of parallel bars in Ft. & In.	Length of radius rods in Ft. & In.
4 0	1 6 1 9 2 0 2 3 2 6 2 9 3 0	4 2 2 103 2 0 1 43 0 104 0 64 0 4	6 6	2 9 3 0 3 3 3 6 3 9 4 0 4 3 4 6	5 13 4 14 3 3 3 2 64 2 04 1 64 1 24 0 104
4 6	1 6 1 9 2 0 2 3 2 6 2 9 3 0	6 0 4 3½ 3 1½ 2 3 1 7½ 1 1½ 0 9 0 5½	7 0 	22222333344445	12 6 10 04 8 14 6 7 5 4 4 4 3 24 2 3 1 9 1 04 0 94
5 0 	1 9 0 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 2 6 0½ 4 6 3 4½ 2 6 1 10½ 1 4 0 11½ 0 7½	7 6	4 9 5 0	
5 6	3 6 1 9 2 0 2 3 2 6 2 9 3 3 3 6 3 9	0 7½ 10 8 8 0½ 6 1½ 4 8½ 3 7½ 2 9 2 1 1 6½ 1 1½ 0 9½		03690369936903	15 11 3 10 10 8 22 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 2 6 6 6 2 6
6 0	2 0 2 3 2 9 3 0 3 3 3 6 9 9 4 3	8 0 6 3 4 104 3 10 3 0 2 34 1 94 1 44 1 0	8 0	2 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 3 6 9 0 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	12 1½ 10 0½ 8 4 6 11½ 5 9½ 4 9½ 4 90 3 3½ 2 8½ 1 9½ 1 5½ 1 1½
6 6	2 0 2 3 2 6	10 1½ 8 0 6 4¾	··· ··	4 9 5 0 5 3 5 6	1 94 1 54 1 14

A Table containing the length of radius rods for motions with beams and parallel bars of various lengths.

(CONTINUED.)

Radius ef beam in Ft. & In.	Length of parallel bars in Ft. & In.	Length of radius rods in Ft. & In.	Radius of beam in Ft. & In.	Length of parallel bars in Ft. & In.	Length of radius rods in Ft. & In.
8 6	3 3 3 3 3 3 3 3 4 4 3 5 4 4 5 5 5 5 6 6 9	10 1 8 52 7 12 6 04 5 64 3 64 3 52 112 2 04 1 72 1 1 34 1 04	10 6	4 9 4 4 5 5 5 5 5 6 6 6 6 6 7 0	10 64 9 24 8 0 0 6 11 1 5 5 3 4 6 1 1 3 3 3 1 2 10 1 2 5 1 1 1 9
9 0	3 3 3 6 9 0 3 5 5 5 6 9 0 3 5 5 5 5 6 6 6 6	19 0 10 2 10 5 7 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	11 0	4 4 5 5 5 5 6 6 6 6 7 7 3 6 6 6 6 7 7 3	9 44 8 22 6 34 6 4 92 3 77 8 2 24 10 10 9 5 10 10 10 10 10 10 10 10 10 10 10 10 10
10 0	4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 9 0 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	12 0 · · · · · · · · · · · · · · · · · ·	5 0 3 5 5 5 9 0 6 6 6 6 6 6 7 7 7 7 8 9 0	9 94 8 84 7 84 6 84 6 94 1 3 3 14 2 84 2 0

The beam of an engine during its motion describes a curve more or less, varying with the radius of the beam and length of the stroke, the deviation from the straight line being the versed sine of the arc described by the beam; and in erecting an engine, the centre of the cylinder must be placed directly in a line, or exactly under half the versed sine, so that the angles of the links in the motion may be rendered equal. The versed sine is always equal to the difference of the base and hypotenuse of a triangle, whose hypotenuse equal the radius of the beam and perpendicular half the length of stroke; hence, Add together the radius of the beam and half the length of stroke, multiply the sum by their difference, extract the square root of the product, and the radius of the beam minus the square root equal the versed sine.

Example.—Let the radius of a beam equal $7\frac{1}{2}$ feet, or 90 inches, length of stroke 5 feet, or 60 inches; required the versed sine.

$$90 + 30 = 120$$
 and $90 - 30 = 60$, then $\sqrt{120 \times 60} = 84.87$ and $90 - 84.87 = 5.13$ inches, or versed sine.

Or, as an approximate,—Divide the square of half the length of the stroke in inches by twice the radius of the beam, also in inches, and the quotient is the versed sine; thus,

$$\frac{30^2}{90 \times 2} = \frac{900}{180} = 5 \text{ inches.}$$

Table of versed sines for beams and strokes of various lengths.

Radius of beam in Ft. & In.	Length of stroke in Ft. & In.	Versed sine in inches.	of t	dius eam n & In.	i	troke	Versed sine in inches.
4 0 	2 0 2 3 2 6 2 9	11 2 23 21	7		5	6 0	42 58
:: ::	2 3 2 6 2 9 3 0	91 39	7	6	3 4 4	6	2 <u>1</u> 32 42
4 6	2 0 2 3	13 13	::	::	5	6 0 6	5 64
:: ::	2 0 2 3 2 6 2 9 3 0 3 6	21 21 3 41	8	0	4 4 5 5	0 6 0 6	3 34 41 54
5 0 	2 6 2 9 3 0 3 6 3 9	11 21 22 31 41	8	6 	4 4 5 5	6 6 6	21 34 41 53
5 6	2 6 2 9 3 0 3 6 4 0	18 2 21 38 48	9	0	4 5 5 6	6 6 0	30 43 53 6
6 0	3 0 3 6 4 0 4 6	2 1 3	9	6 ' ::	5 5 6	0 6 0	4 44 54
6 6		4 5 24	10	 	5 5 6	0 6 U	38 44 54
:: ::	3 0 3 6 4 0 4 6 5 0	21 21 31 41 51)11 ::	0 ::	5 6 6	6 0 6	44 5 54
7 0 	3 6 4 0	24 34	12	0 ::	6 6 7	0 6 0	44 64 64

THE FLY WHEEL.

Fly wheels, in general, are for the purpose of equalizing motion; but in a steam-engine the fly wheel is also the means by which uniform circular motion is obtained from alternate rectilinear motion; and, to produce a proper effect, require a certain momentum, or a certain weight in motion, at a certain velocity; hence the following rule, deduced from practice, gives the weight of the wheel in all ordinary cases:—

RULE.—Divide 1400 times the number of horses' power the engine is equal to by the diameter of the wheel in feet, multiplied by the number of revolutions per minute, and the quotient is the weight of the ring or rim of the wheel, in cwts.

EXAMPLE.—Required the necessary weight for the ring or rim of a fly wheel for a thirty horse engine, making 18 revolutions per minute, the wheel to be 25 feet diameter.

$$\frac{1400 \times 30}{25 \times 18} = 93.3 \text{ cwts.}$$

To determine the dimensions of the ring, suitable to a given weight in cast iron.

Rule 1.—Make the breadth in inches about equal to the square root of the weight in cwts.

2.—Add together the inside and outside diameters of the ring in inches, multiply the sum by their difference, and by .2065 for a divisor, by which divide the required weight in lbs., and the quotient is the thickness of the ring in inches. Thus,—Suppose the weight and diameter of the wheel, as above; required the breadth and thickness.

$$\sqrt{93.3} = 9.7$$
 inches, breadth of ring, or say $9\frac{1}{2}$, Then, $25 \times 12 = 300$ inches, and $93.3 \times 112 = 10449.6$ lbs. $300 - 19 = 281$, or inside diameter, $300 + 281 \times 19 \times .2065 = 2279.6$, And, $10449.6 = 4.5$ inches in thickness.

Or, if the ring be required of a cylindrical form, multiply the square root of the cross sectional area by 1.12837, and the product is the diameter. Hence,

$$\sqrt{9.5 \times 4.5} \times 1.12837 = 7.38$$
 inches diameter

When a fly wheel of a known weight, at a given velocity, is required, to find the weight required at any other velocity,—or, the velocity required at any given weight.

Rule.—Multiply the weight required by its given velocity, and divide by the proposed velocity, the quotient is the weight required. Or, divide by the weight and the quotient equal the velocity.

EXAMPLE 1.—Suppose the required weight of a fly wheel for an engine be 65 cwt., at 20 revolutions per minute, what weight will it require to be when the velocity is increased to 30 revolutions per minute?

$$\frac{65 \times 20}{30}$$
 = 43.3 cwt. for the weight of the ring.

2.—Let the weight of a fly wheel be 43.3 cwt., with a velocity of 20 revolutions per minute, required the increased velocity, so that the momentum may equal 65 cwt.

$$\frac{65 \times 20}{43.3} = 30 \text{ revolutions per minute.}$$

FLY WHEEL SHAFT, PADDLE SHAFTS, &c.

In speaking of shafts, it is the journals, or bearings of the shaft that must be understood; and according to the different materials of which they are formed, or the different purposes to which they are applied, so do they require to be of different dimensions; hence the following proportions are the result of our present practice:

Multipliers

450 for cast-iron shafts in land or stationary engines,
356 for wrought-iron paddle shafts for seagoing vessels,
194 for wrought-iron paddle shafts for small river packets, &c.

GENERAL RULE.—Multiply the number of horses' power by the multiplier opposite the purpose to which it is to be employed, divide the product by the number of revolutions per minute, and the cube root of the quotient is the shaft's diameter in inches.

Example. - Required the diameter of a wrought-iron paddle shaft for an engine of 40 horse power, making 25 revolutions per minute.

$$\sqrt{\frac{356 \times 40}{25}}$$
 = 8.28 inches diameter.

Locomotive crank axles for 12 inch cylinders have bearings about 5 inches diameter, and fore axles $4\frac{1}{4}$ in. diameter; hence, $5^3 \div 12^2 = .86$, and $4.25^3 \div 12^2$ = .53, by which the diameters of other axles may be found in the same proportion, when the diameter of the cylinders are given.

RULE.-Multiply the square of the cylinder's dia-

meter in inches by .86 for crank axles, or .53 for fore axles, and the cube root of the product equal the diameter in inches.

EXAMPLE.—Let the diameter of the cylinders of a locomotive engine equal 14 inches; required the diameters of the bearings for the crank and fore axles.

 $\sqrt[3]{14^2 \times .86} = 5.52$ inches, diameter of the crank axle,

And $\sqrt[3]{14^2 \times .53} = 4.69$ inches, diameter of the fore axle.

THE GOVERNOR, OR REGULATOR,

Is a necessary appendage attached to land or stationary engines, for the purpose of regulating the quantity of steam according to the quantity of work, and thereby causing a uniformity of motion, which otherwise would not be the case.

Governors are variously constructed, to suit the different situations in which they require to be placed, but their general principle is the same, and consists of a double pendulum attached to, and made to revolve round on a spindle by the power of the engine; consequently, the pendulums ought to be of a certain length to correspond to a given velocity,—or, the velocity made to correspond with pendulums of a given length. Hence, according to the nature of a pendulum, the square root of its length multiplied by the number of vibrations in a given time equal a number by which the length and number of vibrations of other pendulums are regulated; thus, a pendulum that will vibrate seconds, or 60 in the latitude of London, is 39.1393 inches long; and $\sqrt{39.1393} \times 60 = 375.36$, or, for the purposes of a governor, 375; and hence,

Rule 1.—Divide 375 by the square root of the pendulum's length, and the quotient equal the vibrations per minute, or half the quotient equal the number of revolutions in the same time.

2.—Divide 375 by twice the number of revolutions per minute, and the square of the quotient equal the pendulum's length in inches.

EXAMPLE 1.—Required the number of revolutions per minute for a governor with pendulums 30 inches in length.

$$\frac{375}{\sqrt{30}} = 68.5 \div 2 = 34.25 \text{ revolutions per minute.}$$

Ex. 2.—Required the length of pendulums for a governor to make 47 revolutions per minute.

$$\frac{375}{47 \times 2} = 3.99^2 = 15.92$$
 inches in length.

The motion of a governor is generally derived from the fly wheel shaft of an engine, and communicated by means of pulleys, wheels, &c.; therefore, to find the diameter of a pulley, or number of teeth in a wheel to produce any required velocity, observe the following

Rule.—Multiply the diameter of the pulley, or number of teeth in the wheel on the governor spindle, by the velocity of the governor, or number of revolutions per minute, and divide by the velocity or number of revolutions of the engine in the same time; the quotient is the pulley's diameter, or number of teeth in the wheel on the fly wheel shaft. Or, Multiply the velocity of the engine per minute by the diameter of the pulley, or number of teeth in the wheel on the fly wheel shaft, and divide by the required velocity of the governor; the quotient is the pulley's diameter, or number of teeth in the wheel on the governor spindle.

EXAMPLE 1.—Required the diameter of a pulley for

the spindle of a governor, so that it may perform 36 revolutions per minute; velocity of the engine 22, and the pulley on the fly wheel shaft 18 inches diameter.

$$\frac{22 \times 18}{36} = 11 \text{ inches diameter.}$$

Ex. 2.—Suppose an engine and governor situated as follow:—

Velocity of the engine 34 revolutions per minute, Velocity of the governor 52 revolutions per minute, Diameter of pulley on fly wheel shaft 16 inches, Diameter of pulley on intermediate shaft 12 inches, Wheel on governor spindle 40 teeth;

Required the number of teeth in the wheel on the intermediate shaft.

$$\frac{52 \times 40 \times 12}{34 \times 16} = 46 \text{ teeth.}$$

Ex. 3.—Again, suppose the engine and governor situated as above; required the diameter of the pulley on the intermediate spindle.

$$\frac{34 \times 16 \times 46}{52 \times 40} = 12 \text{ inches diameter.}$$

Norz.—The weight of the balls in lbs. ought to be about 1½ times the length of the pendulums in inches, and the levers to the throttle valve ought to be so adjusted that the greatest angle of the pendulums with the spindle may not exceed about 45 degrees.

A SUMMARY OF MISCELLANEOUS REMARKS, TABLES, AND PROPORTIONS.

Proportionate power for steam-packets.—The power of an engine or engines for a steam-packet on a river, lake, &c. ought to be equal to 1 horse for every 2 tons, builders' measurement. Coasting packets, having an average run of 250 to 300 miles, 1 horse power to every $2\frac{1}{2}$ tons. And sea-going packets, whose average runs are from 700 to 1000 miles, 1 horse power to every $3\frac{1}{2}$ tons.

Power for steam-packets with increased velocity.—The power requisite to propel a packet or vessel of any description, at a given increase of velocity, is as the cube of the one velocity is to the cube of the other. Hence, suppose a power of 50 horses is required to propel a vessel at the rate of 8 miles per hour, what must be the power so as to propel the same at the rate of 10 miles per hour?

$$\frac{10^3 \times 50}{8^3} = \frac{50000}{512} = 97.6 \text{ horses' power.}$$

Paddle wheels.—The proportionate diameter of padwheels is, for river packets, &c. about $7\frac{1}{2}$ times the length of the crank. For coasting and sea-going vessels 8 to $8\frac{1}{2}$ times the length of the crank; and in either case the surface of the paddle boards calculated according to the rule given at page 38. Distance between each board at the extreme diameter of the wheel about $3\frac{1}{4}$ feet.

Paddle shafts.—A common rule for the diameters of the bearings of wrought iron paddle shafts is,—

For river packets—inside bearings \$\frac{1}{6}\$, outside bearings, \$\frac{1}{8}\$.

And other packets

of the cylinder's diameter.

Piston rods.—Diameter of piston rods for land engines with long strokes, and marine engines for sea-going vessels, $\frac{1}{10}$ th of the cylinder's diameter. For land engines with short strokes, and river packet engines, $\frac{1}{12}$ th. Locomotive engines, $\frac{1}{1}$ th.

Air pump rods.—Diameter of air pump rods, $\frac{1}{10}$ th of the pump's diameter; if copper, $\frac{1}{8}$ th.

Length of stroke.—Proportionate length of stroke for condensing engines, twice the cylinder's diameter; non-condensing, three times.

Injection cocks.—Area of injection cock about .4 of an inch to each horse power. Or, make the diameter of the cock $\frac{1}{15}$ th of the cylinder's diameter.

Chimneys.—Diameter of steam-packet and locomotive chimneys equal the diameter of the cylinder. In vessels with only one engine, $\frac{2}{3}$ ds the cylinder's diameter.

Fuel.—In the consumption of fuel in steam-engines much depends upon the quality of the fuel, as regards the quantity expended, and effect produced. Coal varies from 8 to 13 lbs. in evaporating one cubic foot of water, but a greater body of fire will evaporate a greater quantity of water with a less proportion of fuel; hence, large engines require less fuel in proportion to their power than small ones.

Proportionate consumption of fuel.—It is ascertained from practice that steam at 3 lbs. per square inch, and produced from water of an average quality, requires to be maintained with about $13\frac{1}{3}$ lbs. of good coal per hour for each horse power, when the lap or cover of the valve is $\frac{1}{2}$ th the width of the opening to the cylinder.

Steam at 4½ lbs. per square inch requires 11 lbs. of coal, when the cover of the valve is ½d; and, Steam at 6lbs. requires 8 lbs. of coal, when the cover of the valve

is \ the width of the opening to the cylinder.

Comparative consumption of fuel.—To convert 1 cubic foot of water, of an average quality, at 52° Ft., to steam at 220°, requires

Of Newcastle or caking coal, about	8.4 lbs.	avd.
Splint coal	8.4	,,
Staffordshire cherry coal	11.2	"
Pine wood		••
Charcoal	10.6	"
Coke	7.7	,,

Boiling points of water.—Boiling point of pure water under common atmospheric pressure212° Ft.

Saturated water , $\frac{63}{12}$, 219

The following is a summary of experiments on the Grand Junction Railway, for the purpose of ascertaining the foundity of coke consumed to the quantity of load transported.	ıg is a sum th	mmary of experiments on the Grand Junction Railway, for the pu the quantity of coke consumed to the quantity of load transported	experity of	iments coke c	on the	Gran I to t	rd Iu he qu	nctio	n Rail y of lo	way, j ad tro	or the inspor	pur ted.	pose of	ascert	aining
		I	LOAD.		BATE	F TRA	RATE OF TRAVELLING.	6	COKI	COKE CONSUMED.	OMED		WATER	WATER EVAPORATED.	ATED.
Names of engines.	Date of experiment,	Carriage, Engine	Engine	Gross load.	Total distance	Time.		Mean rate.	Total quantity	Per mile.	Per ten per raile.	ber .	During the trip.	Cubio feet.	Lbs. of coke.
	8	Ė	tender.		run.		¥	Miles	a ;			Gross load.	Imperial	Per	Per
		TODIS	Tone	Tong	Manes.	Hr.	THE STATE OF		108	2	right.	Ę.	gamons.		Carpio in
Phalaris	May 30 June 1 July 6 June 1 July 6 June 1 J	39.2	8	59.2	778	33 46		23.05	28812	37.03	36.	29.	17230	81.9	10.43
Prometheus	_	36.7	8	29.7	8/1/	2 2		22.53	26715	34.3	.93	9.	17610	81.7	9.39
Prometheus		32.8	8	52.8	583.5	8		22.38	24493	41.9	1.28	67:	12740	78.2	11.97
Phalaria	$\left\{\begin{array}{l} \text{June } 14\\ \\ \\ 16\\ \end{array}\right\}$	42.6	8	62.6	583.5	36	88	22.08	22488	38.5	8.	.61	11450	9.29	12.24
Prometheus	_	41.1	8	61.1	778	8	- 23	21.49	98998	47.1	1.14	.77	19050	84.6	11.98
Phalaris	$\begin{Bmatrix} \operatorname{July} & 2 \\ \vdots & 3 \\ \vdots & 4 \end{Bmatrix}$	34.46	8	54.46	583.5 24	24	42 23	23.62	20652	35.4	1.03	.65	12360	80.3	10.49

[Railway Times.]

Table of experiments on the London and Birmingham Railway.

		LOAD.		A	VELOCITY.		COKE	CONSUMED.	MED.	WATER		EVAPORATED.
Description of the engines.	Carriages, Passen- gers, &c.	Engine and tender.	Gross load in	Rate at full speed in miles per hour.	Pressure of steam per square inch.	Mean rate of speed in miles per hour.	During the trip.	Per ton per mile.	Per mile. Gross	During the trip.	Cubic feet per hour.	Pounds of cokes to cub.
12 inch cylin- ders, and b feet wheels	Tone. 32.65 53.45 64.36	Tons. 17.5 17.5 17.5	Tons. 50.15 70.95 81.61	Miles. 32.88 32.4 25.53	53 53 54 53 53 54	Miles. 30.51 28.53 21.85	Lb. 434 601 391	Goods. .891b .59	Load. 471b .4 .35	Galla. 300 506 317	Feet. 83.81 105.9 70.66	Lbs. 8.85 7.59 7.62
12 inch cylin- ders, and 5 feet wheels	34.45 53.91 67.2	16.32 15.85 16.33	50.77 69.76 83.53	32.41 32.04 23.81	53.53 5.53 5.53 5.53	31.29 29.82 19.42	606 590 1220	1.01 .58 .96	광 48	420 405 935	91. 94.42 56.81	8.9 8.13 8.11

Experiments on the Liverpool and Manchester Railway.—Similar experiments were also made upon the Liverpool and Manchester Railway, by which it was ascertained that an engine having 12 inch cylinders. 16 inch stroke, and 5 feet wheels; surface exposed to the action of the fire, or radiating caloric, 57 square feet, and tube surface, or communicative caloric, 218 square feet, average evaporating power per hour 45 cubic feet, with an average effective pressure of 54lbs. per square inch, and drawing a load of 190 tons; consumed, of good coke, during the trip of 291 miles. 1596 lbs., or 28 lbs. per ton per mile on a level; And also the same engine, running the same distance with 25 tons, under as favourable circumstances, consumed 720 lbs., or .82 lbs. per ton per mile. Hence it appears, that the nearer the load approaches to the calculated power of the engine, the less the quantity of fuel expended in proportion to the weight of the load.

Again, the first trip was performed in 3 hours and 2 minutes, and the second in 1 hour and 26 minutes, therefore, about *eight* times the load required only about *twice* the quantity of coke, and the journey performed

in little more than twice the time.

Distribution of weight in locomotive engines.—The weight of a locomotive engine ought to be so distributed that about \$\frac{2}{3}\$ds of the whole weight may rest upon the crank axle. When so proportioned with coupled wheels, and the rails dry and clean, the force of adhesion equals at least 45 times the weight upon the crank axle. Thus, suppose an engine of 8 tons,

$$\frac{8 \times 2}{3} = 5.33$$
 tons upon the crank axle;

And $5.33 \times 45 = 239.85$ tons, or the force of adhesion upon the rails.

Table of railway gradients, or inclined planes.

1 ft. per mile =	in <i>528</i> 0	or .15	of an inch per chain.
§ =]	1 2640		
3 = : 4 =	1 1 76 0 1 1320		
5 =	1 1056		
6	1 890		
	1 754		
8 = :	1 660	.0 1.20	
	1 <i>5</i> 96 1 <i>5</i> 28		
11 =	1 480	.0 1.60	
	1 440		
13 =	1 406		
14 =	1 377		
15 =	1352 1336		
16 ····· = 17 ···· =	1 330		
18 =	1 293	.3 2.70	
19 =	1 277	.9 2.88	
20 =	1 264	.0 3.06	
21 =	1 251 1 240		•••••
23	1 229		
	1 220		
25 =	ĭ 911	.2 3.78	
96 =	1 203	l.1 3.90	
27	1 195		
28 = 29 =	1 189		
30	r :: 176	.1 4.30 3.0 4.50	
31 =	i i70	.3 4.6	
32 =	1 168		
33 =	1 169		
34 = 35 =	1 150		
36=	1 146		
36 = 37 = 38 =	1 145	.7 5.50	5
38 =	1 136		
39 ≃	1 13/		
40 = 41 =	1 135		
41 =	1 12		
43	i 123		
44 =	1 12	0.0 6.0	0
45 =	1 113		
46	1 114		
47 = 48 =	1 11/		5 θ
49 =	i :: 10	7.7 7.3	8
50 =	1 10	5.6 7.5	U
51 =	1 100	2 K 7 R	K :
52 =		1.5 7.8	<u>0</u>
53 = 54 =		9.6 7.9 7.8 8.1	
55		6.0 8.2	
56	1 9	4.3 8.4	0
57		2.6 8.5	
58=		1.0 8.7	
59 = 60 =	1 8	9.5 8.8 8.0 9.0	
•• ····· =	0	o.v 9.0	

NOTE.—The following exhibits in some measure the effect or power of an engine in ascending or descending inclined planes:—

Suppose the power 1 in ascending a plane of 10 feet per mile, the following is the result or effect;—the force of traction taken at 10 lbs. per ton.

GRADIENTS.	COMPARATIVE EL	FECTIVE POWER Descending.
Level	1.56	1.56
4 feet per mile		
10		
16		5.56
20		7.26

Curves on railways.—The following table contains the rise or elevation that must be given to the outer rail of a curve upon a railway, for waggons with wheels of 3 feet diameter,—width between the rails 4 feet 81 inches,—play of the wheels between the rails 1 inch, and the conicleness or inclination of the tire equal 1 of the breadth from the flange.

Radius of the	Elevation rage velo	in inches, city per ho	the ave- ur being
curve in iest.	10 miles.	20 miles.	30 miles.
250	1.14 in.	5.60 in.	12.99 in.
500	.57	2.83	6.56
1000	.29	1.43	3.30
2000	.15	.71	1.65
3000	.10	.47	1.10
4090	.07	.36	.83
5000	.06	.28	.66

The elevation for any other arrangement may be ascertained by the following practical formula:-

Let D = the diameter of the wheels in feet,

r = the radius of the curve in feet,

e = half the width of the way in feet, V = the average velocity in feet per second; thus, 20 miles per hour = 29.3 feet per second.

the accelerating force of gravitation, or 32

feet per second,

a = 7, or the inclination of the tire,

y = the rise, or elevation of the outward rail over the inward rail, expressed also in feet.

Then
$$y = \frac{e V^2}{g r} \left\{ 2 - \frac{a D}{2(r+e)} \right\} - \frac{e D}{r+e}$$

To find the radius of any curve, or portion of a circle.

Rule.—Take any length of a chord or straight line in the curve, and, to the square of half its length, add the square of the versed sine, divide the sum by twice the versed sine, and the quotient is the radius. Thus,

Suppose the length of the chord in a curve equal 1 chain, or 66 feet, and versed sine $1\frac{1}{2}$ feet; required the radius.

$$\frac{33^2 + 1.5^2}{1.5 \times 2} = 363.75 \text{ feet.}$$

Leveling.—In leveling railways, canals, &c., the level obtained by means of an instrument, or level, is only what is called apparent level, or a tangent to the earth's circumference. The earth being a sphere, or nearly so, the true level is a curve line equally distant from its centre; hence, to obtain the difference between true and apparent level,

Divide the square of any distance on the earth's circumference by the earth's diameter, and the quotient is the difference, in terms of the same denomination.

For example,—The earth's mean diameter equal 7912 miles, or 501,304,320 inches; consequently, the difference of true and apparent level at the distance of 1 mile, or 63,360 inches, will be

$$\frac{63360^2}{501304320} = 7.962$$
, or very nearly eight inches.

But although this be the exact difference between true and apparent level on the earth's circumference, in leveling to any distance, the point of sight is depressed about one-seventh of the true difference, by the curvature—refraction of the rays of light; consequently, the difference will be $\frac{7.962}{7} = 1.137$ and 7.962 - 1.137

= 6.825, or what may be termed the *practical* difference between true and apparent level.

A Table of difference between true and apparent level.

Distance in yards.	True dif- ference of level in inches.		Distance in miles.		fference in inches.
100 200 300 400 500 600 700 900 1100 1200 1300 1400 1500 1600 1700	.026 .103 .231 .411 .643 .925 1.260 1.645 2.081 2.570 3.110 3.701 4.344 5.038 5.784 6.580 7.425	.023 .088 .198 .353 .551 .793 1.08 2.20 2.66 3.17 3.72 4.32 4.96 5.64 6.76	12 8 4 5 6 7 8 9 10 11 12 18 14	0 0 0 2 6 10 16 23 32 42 53 66 80 95 112	01 41 8 8 0 7 7 11 6 6 9 4 8 7 2 1

A Table of the force and velocity of the wind.

VELO	Force in lbs.		
In miles per hour.	In feet per second.	avoirdupois per square foot.	
1 2 3 4 5 10 10 20 25 30 35 40 45 60 60 100	1.47 2.93 4.40 5.87 7.33 14.67 22.00 29.34 36.67 44.01 51.34 58.68 66.01 73.35 88.02 117.36 146.70	.005 .020 .044 .079 .123 .492 1.107 1.968 8.075 4.429 6.027 7.873 9.963 12.300 17.715 31.490 49.200	

Divisions of different Thermometers.—Degrees of heat vary in different countries, according to the different thermometers made us of. Thus, in Britain, Fahrenheit's thermometer is the standard of estimation,—in France, Celsius, or Centigrade,—in Germany, Reaumur—and in Russia, that of De Lisle; the boiling and freezing points of which differ as follows:—

PAHRENHEIT.	CENTIG.	RRAUM.	DE LISLE.
Boiling point212°	100°	80°	00
Freezing point 32	o \	0	150
Thus, 90 =	5 =	: 4 :	= 7 1

A Table of corresponding degrees of temperature of Fahrenheit, Reaumur, and the Centigrade Scale.

Faht.	Reaum.	Centig.	Faht.	Reaum.	Centig.
214°	80.9°	101.1°	240°	92.4	115.5
216	81.8	102.2	242	93.3	116.6
218	82.7	103.3	244	94.2	117.7
220	83.6	104.4	246	95.1	118.8
222	84.4	105.6	248	96.0	120.0
224	85.3	106.7	250	96.9	121.1
226	86.2	107.8	260	101.3	126.6
228	87.1	108.9	270	105.8	132.2
230	88.0	110.0	280	110.2	137.8
232	88.9	111.1	290	114.7	143.3
234	89.8	~112.2	300	119.1	148.9
236	90.7	113.3	320	128.0	160.0
238	91.6	114.4	350	141.3	176.7

NOTE.

Water at 32°	Faht.	00	Reaum.	19	Cent.	- in volume 1.000109.
42	•••••	5.5		4.4	•••••	- 1.
212		80	• • • • • • • • • • • • • • • • • • • •	100		
Water at 212	saturai	ed w	ith salt			 1.05198.
Air 32	Faht.	. 0	Reaum.	. 1	Cent.	– 1.
212	•••••	¹ 8 0		100		— 1.3750.
392	•••••	160		200		— 1.7389.
	• • • • • •	240		300		- 2,0976.

Properties of various metals.

ducters of electricity.	801 :440pr ::
-treo as otaci	07:70000::
Power of con- ducting heat.	10.0 9.7 8.9 1.8 8.0 8.0 8.0
adī ni sased exampa a no tronditw doni noiteretis yns	15300 17800 10000 1500 2880 5700
Cohesive power of an inch square rad	16600 10600 10600 10600 10600 10600 10600 10600
Natio of hardness.	1.8 4.7 7.7 1.0 1.0 1.0 1.0 1.0
Boale of malleability.	
Boale of ductility.	
Melting point, Faht.	5237° 4717 17977 17977 4587 594 442 700 476
weight of a linear i toot lasmi factor.	10.40.00.00.00.00.00.00.00.00.00.00.00.00
Weight of a lineal foot I senit inoh square.	154. 9.3.124. 9.3.124. 9.3.84. 9.3.05. 4.26. 1.26.
Specific fravity.	19.35 19.35 7.27 7.63 8.90 7.29 7.20 9.88 6.70
Colour.	Pure yellow White Blue gray. Red Blue White Bluish white: Yellowish white Bluish white:
Names.	Gold Silver Iron, cast. Iron, cast. Iron, wrought, Copper Iron Zinc Zinc Bismuth Antimony

Norz.—Water is decomposed by iron, tin, or zinc, at a red heat, but any of the other metals will not decompese water at any temperature.

Table of the friction of metals on metals.

Friction or resistance of	Brass on wrought iren Cast iron on cast iron Soft steel on wrought iron Brass on steel Brass on brass Cast iron en wrought iron Cast iron en wrought iron Cast iron on soft steel Cin on tin Soft steel en soft steel Cast iron on hard brass Wrought iron on wrought iron Brass on cast iron Tin on wrought iron Tin on cast iron	unguents	-940-40-40-40-40-40-40-40-40-40-40-40-40	of the whole weight or pressure on the surface.	
---------------------------	--	----------	--	--	--

Note.—From 13 cwt. to upwards of 6 cwt. per square inch the resistance increases in a very considerable ratio, being the greatest with steel on cast iron, and the least with brass on wrought iron.

Properties of the circle, sphere, &c.

The diameter of a circle being	ς 1. ·
The Circumference	$\ldots = 3.1416$
" Area	$\dots = .7854$
" Side of equal square	$\dots = .8862$
" Radius being 1, the area	$a \dots = 3.1416$
" Circumference being 1,	the side of equal
square	= .2821
The diameter of a sphere bein	g 1.
The superficies	
	$\dots = .5236$
" Side of an equal cube	= .806
" Length of an equal cylin	
diameter	

Any circle twice the diameter of another contains twice the circumference of the other, and four times the area. Hence, the circumferences of circles are as their diameters, and their areas as the squares of their diameters. Any sphere or globe, twice the diameter of another, contains four times the superficies of the other, and eight times the solid content. Hence, the superficies of spheres are as the squares, and the solidity as the cubes of their diameters.

Various French measures of frequent reference.

A point is equal to	.0148025	English inches.
A line	.088815	2)
A millemetre	.039371	39
A centimetre	.39371	,
An inch or pouce	1.06578	,,
A decimetre	3.9371	,,
A foot	12.78933	,,
A metre	39.371	" or 3.2809 English ft.
A toise, or fathom	6.394 En	glish feet.
A league 144	591.1	" or 4863.7 English yards.
A square inch	1.13582 I	English square inches.
A cubic inch	1.21063	" cubic "
A cubic metre	35,316	" cubic feet.

TABLES

OF

THE WEIGHT OF METALS;

SQUARE AND CUBE ROOTS OF NUMBERS;

CIRCUMFERENCES AND AREAS OF CIRCLES;

SUPERFICIES AND SOLIDITIES OF SPHERES

åro. åro. åro.

TABLE I,

Containing the weight of square bar iron, from 1 to 10 feet in length, and from \(\frac{1}{4}\) of an inch to 6 inches square.

ற வ	LENGTH OF THE BARS IN FEET.											
Inches square.	1 foot.	2 feet.	3 feet.	4 feet.	5 feet.	6 feet.	7 feet.	8 feet	9 feet.	10 feet		
II.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.		
Zi-la-jcozzosca-zista-hi-	0.2 0.5 0.8 1.3 1.9 2.6	1.0 1.7 2.6 3.8	0.6 1.4 2.5 4.0 5.7 7.8	5.3 7.6	1,1 2,4 4,2 6,6 9,5 12,9	1.3 2.9 5.1 7.9 11.4 15.5	3.3 5.9 9.2	3.8 6.8 10.6	4.3 7.6 11.9 17.1	2.1 4.8 8.8 13.2 19.0 25.9		
1 in. 1181 1181 1181 1181 1181 1181 1181	3.4 4.3 5.3 6.4 7.6 8.9 10.4 11.9	8.6 10.6 12.8 15.2 17.9	12.8	21.1 25.6	16.9 21.4 26.4 32.0 38.0 44.6 51.8 59.4	31.7 38.3 45.6 53.6	23.7 29.9 37.0 44.7 53.2 62.5 72.5 83.2	27.0 34.2 42.2 51.1 60.8 71.4 82.8 95.1	38.5 47.5 57.5 68.4 80.3 93.2	33.8 42.8 52.8 63.9 76.0 89.3 103.5 118.8		
2 in. 218 218 218 218 218 218 218 218 218 218	13,5 15.3 17.1 19.1 21.1 23.3 25.6 27.9	27.0 30.5 34.2 38.1 42.2 46.6 51.1 55.9		68.4 76.3 84.5	95.3 105.6 116.5 127.8	102.7 114.4 126.7 139.8 153.4	106.8 119.8 133.5 147.8 163.0 178.9	136.9 152.5 169.0 186.3	137.4 154.0 171.6 190.1 209.6	135.2 152.6 171.1 190.7 211.2 232.9 255.6 279.4		
3 in. 3 in.	30.4 33.0 35.7 38.5 41.4 44.4 47.5 50.8	77.0 82.8 88.8	99.0 107.1 115.5 124.2 133.3 142,6	121.7 132.0 142.8 154.0 165.6 177.7 190.1 203.0	165.1 178.5 192.5 207.0 222.1 237.7	198.1 214.2 231.0 248.4 266.5 285.2	231.1 249.9 269.5 289.8 310.9 332.7	264.1 285.6 308.0 331.3 355.3 380.3	297.1 321.3 346.5 372.7 399.8 427.8	304.2 330.1 357.0 385.0 414.1 444.2 475.3 507.6		
4 in.	57.5 61.1 64.7 68.4 72.3 76.3	108.2 115.0 122.1 129.4 136.9 144.6 152.5 160.7	172.6 183.2 194.1 205.3 216.9 228.8	230.1 244.2 258.8 273.8 289.2 305.1	287.6 305.3 323.5 342.2 361.5 381.3	345.1 366.3 388.2 410.7 433.8 457.6	402.6 427.4 452.9 479.1 506.1 533.8	460,1 488,4 517,6 547,6 578,4 610,1	486.8 517.7 549.5 582.3 616.0 650.7 686.4 723.0	540.8 575.2 610.6 647.0 684.5 723.1 762.6 803.3		
	$93.2 \\ 102.2$	169.0 186.3 204.5 223,5	279.5 306.7	$372.7 \\ 409.0$	$\frac{465.8}{511.2}$	559.0 613.4	652.2 715.7	745.3 817.9	760.3 838.5 920.2 1005.8	844.8 931.7 1022.4 1117.6		
6 in.	121.7	243.3	365.0	486.7	608.3	730.0	841.6	973.3	1009.5	1216.6		

TABLE II,

Containing the weight of round bar iron, from 1 to 10 feet in length, and from 1 of an inch to 6 inches diameter.

g .			LENG	TH O	FTH	E BA	RS IN	FEE	T.	
Inches diam.	I foot.	2 feet.	3 feet.	4 feet.	5 feet.	6 feet.	7 feet.	8 feet.	9 feet.	10 feet
d-a	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs,	Lbs.	Lbs.
1	0,2	0.3		0.7	0.8	1.0	1,2	1.3	1.5	1.7
38	0.4		1.1	1.5	1.9	2.2	2.6	3.0	3.4	3.7
4	0.7			2.7	3.3	4.0	4.6	5.3		6.6
a de	1.0			6.0	5.2 7.5	6.3 9.0				10.4
ON SPECIAL CHICAGO	2.0			8.1	10.2				18.3	20.3
l in.	2.7	5.3	8.0	10.6	13.3	15.9	18.6	21.2	23.9	26.
118	3.4	6.7	10.1							33.
14	4.2			16.7	20.9					41.7
18	5.0				25.1			40.2		50.5
15	7.0							47.8 56.1		59.1 70.
130	8.1									81.
17	9.									93.
2 in										106.
24	12.0								107.9	
222222	13.4								121.0	
21	15.0								150.2	
28	18.								164.6	
200	20.			80.3	100.4	120.5	140.5	160.6	180.7	200.
$2\frac{7}{9}$	21.	9 43.5	9 65.8	87.8	109.7	131.7	153.6	175.6	197.5	Contract of
3 in				95.6			167.2			238.
31 31	25.								233.3 253.4	
35	28,								272.2	
31	32.		0 97.	130.0	162.6	195.1	227.6	260.1	292.6	325.
35	34.		8 104.	7 139.	174.	1 209.3	3 244.2	279.1	314.0	348.
33	37.						261.3			
$3\frac{7}{8}$	39.	2 1 2 2			1	7.5	-	Part of the	358.8	1000
4 87	1. 42.		9 127.							
竹	45.		3 135. 9 143.						431.6	
44			6 152.							
41			5 161.							
45			6 170.							
44			8 179.							
42	1000		.2 189.	10000	1			1	1 2 2 2 2	1000
5.1	n. 66	.8 133	5 200.	3 267.	0 333.	8 400.	5 467.	534.0	600.8	667.
5	73	2 146	.3 219. .6 240.	0 292.	305.	5 481	0 562	642	799 7	731. 803.
5 Å	87	8 175	.6 263.	3 351	1 438	9 526	7 614	1 702	790.0	877.
6 i		A Marie	.1 286.	1000	1000	The second	34 000 000	11-00	V - 100	7000

TABLE III,

Containing the weight of flat bar iron, 1 foot in length, of various

breadths and thicknesses.

ā		T	HICKI	VESS	IN PA	RTS	OF A	N IN	CH.	
Breadth i	ł	A 18	à	78	j	18	8	3 .	2	l inch.
F. B.	Lbs.	Lbs.	Lbs.	Lbs.						
1 to	0.83 0.93 1.04 1.14 1.25 1.35 1.45 1.56	1.04 1.17 1.30 1.43 1.56 1.69 1.82 1.95	1.25 1.40 1.56 1.71 1.87 2.03 2.18 2.34	1.45 1.64 1.82 2.00 2.18 2.36 2.55 2.73	1.66 1.87 2.08 2.29 2.50 2.70 2.91 3.12	1.87 2.00 2.34 2.57 2.81 3.04 3.28 3.51	2.08 2.34 2.60 2.86 3.12 3.38 3.64 3.90	4.06 4.37	2.91 3.28 3.64 4.01 4.37 4.73 5.10 5.46	3.33 3.75 4.16 4.58 5.00 5.41 5.83 6.25
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.66 1.77 1.87 1.97 2.08 2.18 2.29 2.39	2.08 2.21 2.34 2.47 2.60 2.73 2.86 2.99	2.50 2.65 2.81 2.96 3.12 3.28 3.43 3.59	2.91 3.09 3.28 3.46 3.64 3.82 4.01 4.19	3.33 3.54 3.75 3.95 4.16 4.37 4.58 4.79	3.75 3.98 4.21 4.45 4.68 4.92 5.15 5.39	4.16 4.42 4.68 4.94 5.20 5.46 5.72 5.98	5.93 6.25 6.56 6.87	5.83 6.19 6.56 6.92 7.29 7.65 8.02 8.38	6.66 7.98 7.50 7.91 8.33 8.75 9.16 9.58
3 in. 31 33 34	2.50 2.70 2.91 3.12	3.12 3.38 3.64 3.90	3.75 4.06 4.37 4.68	4.37 4.73 5.10 5.46	5.00 5.41 5.83 6.25	5.62 6.09 6.56 7.03	6.25 6.77 7.29 7.81		8.75 9.47 10.20 10.93	10.00 10.83 11.66 12.50
4 in. 41 45 47	3.33 3.54 3.75 3.95	4.16 4.42 4.68 4.94	5.00 5.31 5.62 5.93	5.83 6.19 6.56 6.92	6.66 7.08 7.50 7.91	7.50 7.96 8.43 8.90	8.85 9.37	10.00 10.62 11.25 11.87	12.39 13.12	13.33 14.16 15.00 15.83
5 in. 51 55 53	4.17 4.37 4.58 4.79	5.20 5.46 5.72 5.98	6.25 6.56 6.87 7.18	7.29 7.65 8.02 8.38	8.33 8.75 9.16 9.58		10.93 11.45	13.12 13.75	16.04	16.66 17.50 18.33 19.16
6 in.	5.00	6.26	7.50	8.75	10.00	11.25	12,50	15.00	17.50	20.00

Note.—The weight of wrought iron being 1.

The weight of cast iron = .96
Steel = 1.03
Copper = 1.17
Brass = 1.1
Lead = 1.48

TABLE IV.

Containing the weight of solid cylinders of cast iron, one foot in length, and from $\frac{\pi}{4}$ of an inch to 12 inches diameter.

Diameter in Inches.	Weight in Lbs.	Diameter in Inches.	Weight in Lbs.
1 in.	1.39 1.88 2.47 3.13	5 in. 5 in. 5 in. 5 in.	61.96 64.66 68.31 71.00
	3.87 4.68 5.57 6.54 7.59	55555555555555555555555555555555555555	74.98 78.65 81.95 85.81
2 in.	8.71 9.91 11.19 12.54	6 in. 61 63 63	89.23 96.82 104.72 112.93
201 201 202 202 202 202 202 202 202 202	13.98 15.49 17.08 18.74	7 in. 71 7 i 7 i 7 i	121.45 130.28 139.42 148.87
2 { 3 in. 3 { 3 {	20.48 22.35 24.20 26.18	8 in. 81 82 83	158.63 168.15 179.08 189.00
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	28.23 30.36 32.57 34.85 37.21	9 in. 91 92 93	200.77 211.12 223.70 235.31
4 in.	39.66 41.80 44.77	10 in. 10]	247.87 273.27
40 4 40 44 44 44 44 44 44 44 44 44 44 44	47.00 50.19 52.71 55.92 58.72	11 in. 11 in. 12 in. 13	299.92 327.81 356.93 418.90 485.83

Note.—The area of a circle in inches, multiplied by the length in inches, and by .263 = the weight in lbs. avoirdupois of cast iron.

TABLE V,

Containing the weight of cast iron pipes, 1 foot in length.

Diam.		THICKNESS IN INCHES.											
of bore in inches.	3	1	4	ž	7 8	l in.	11	11					
mones	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.					
2 in.	8.8	12.3	16.1	20.3									
2 1	10.6	14.7	19.2	23.9									
3	12.4	17.2	22.2	27.6	33.3	39.3	45.6						
31	14.2	19.6	25.3	31.3	37.6	44.2	51.1	 					
4	16.1	22.1	28.4	35.0	41.9	49.1	56.6	64.4					
41	18.0	24.5		38.7	46.2	54.0	62.1	70.6					
5	19.8	27.0	34.5	42.3	50.5	58.9	67.6	76.7					
54	21.6	29.5	37.6	46.0	54.8	63.8	73.2	82.8					
6	23.5		40.7	49.7	59.1	68.7	78.7	88.8					
6 <u>1</u>	25,3	34.4	43.7	53.4	63.4	73.4	84.2	95.1					
7	27.2	36.8	46.8	56.8	67.7	78.5	89.7	101.2					
74	29.0	39.1	49.9	60.7	72.0	83.5	95.3	107.4					
8	30.8		52.9	64.4	76.2	88.4	100.8	113.5					
81	32.9	44.4	56.2	68.3	80.8	93.5	106.5	119.9					
9	34.5	46.6	59.1	· 71.8	84.8	98.2	111.8	125.8					
91	36.3	49.1	62.1	75.5	89.1	103.1	117.4	131.9					
10"	38.2	51.5	65.2	79.2	93.4	108.0	122.8	138.1					
101		54.0	68.2	82.8	97.7	112.9	128,4	144.2					
11		56.4	71.3	86.5	102.0	117.8	133.9	150.3					
114		58.9	74.3	90.1	106.3	122.7	139.4	156.4					
12		61.3	77.4	93.6	110.6	127.6	145.0	162.6					
13			82.7	101.2	118.2	137.4	154.1	173.5					
14			89.3	108.2	126.5	146.2	165.3	185.2					
15			95.2	115.7	135.3	156.2	176.2	198.1					
16				123.3	143.1	166.1	187.5	211.3					
17				130.2	152.5	178.5	198.2	223.4					
18				137.0	161.2	185.3	209.1	235.6					
19					169.2	195.7	222.3	247.1					
20					178.1	205.2	233.2	259.0					
21					•••••	214.1	243.5	273.2					
22						223.0	254.8	285.4					
23]					233.4	265.5	298.3					
24						245.2	277.5	310.6					
ı			. 1	- 1		l i							
		_											

TABLE VI,

Containing the weight of oast iron balls, from 3 to 12 inches diameter.

Diameter	Weight	Diameter	Weight
in	in	in	in
inches.	Lbs.	inches.	Lbs.
3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 6 7 7 1 4	3.7 4.7 5.8 7.2 8.8 10.5 12.5 14.7 17.1 19.9 22.9 26.1 29.7 33.6 37.8 42.3 47.2 52.4	74 74 8 8 8 8 8 8 9 9 9 9 10 10 10 10 11 11 11 11	58.0 64.0 70.4 77.3 84.5 92.2 100.3 108.9 118.0 127.6 137.7 148.2 159.4 171.0 183.2 209.4 237.9

TABLE VII,

Containing the square and cube roots of all numbers from 1 to 1728.

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
1	1.0000	1.0000	46	6.7823	3.5830
$ar{2}$	1.4142	1.2599	47	6.8556	3.6088
2 3	1.7320	1.4422	48	6.9282	3.6342
ă	2.0000	1.5874	49	7.0000	3.6593
5	2.2360	1.7099	50	7.0710	3.6840
Ğ.	2.4494	1.8171	51	7.1414	3,7084
5 6 7 8	2.6457	1.9129	52	7.2111	3.7325
Ŕ	2.8284	2.0000	53	7.2801	3.7562
ğ	3.0000	2.0800	54	7.3484	3.7797
10	3.1622	2.1544	55	7.4161	3,8029
ii	3.3166	2,2239	56	7,4833	3.8258
$\overline{12}$	3.4641	2.2894	57	7.5498	3.8485
13	3,6055	2.3513	58	7.6157	3.8708
14	3.7416	2.4101	59	7.6811	3.8929
15	3.8729	2.4662	60	7.7459	3.9148
i6	4.0000	2.5198	61	7.8102	3.9364
îř	4.1231	2.5712	62	7.8740	3.9578
18	4,2426	2.6207	63	7.9372	3.9790
1 <u>9</u>	4.3588	2.6684	64	8.0000	4.0000
20	4.4721	2.7144	65	8.0622	4.0207
21	4.5825	2.7589	66	8.1240	4.0412
22	4.6904	2.8020	67	8.1853	4.0615
23	4.7958	2.8438	68	8.2462	- 4.0816
$\widetilde{24}$	4.8989	2.8844	69	8.3066	4.1015
25	5.0000	2.9240	70	8.3666	4.1212
26	5.0990	2.9624	71	8.4261	4.1408
27	5.1961	3.0000	72	8.4852	4.1601
28	5.2915	3.0365	73	8.5440	4.1793
29	5.3851	3,0723	74	8.6023	4.1983
30	5.4772	3.1072	75	8.6602	4.2171
31	5.5677	3.1413	76	8.7177	4.2358
32	5.6568	3.1748	77	8.7749	4.2543
33	5.7445	3.2075	78	8.8317	4.2726
34	5.8309	3.2396	79	8.8881	4.2908
35	5.9160	3.2710	80	8.9442	4.3088
36	6.0000	3.3019	81	9.0000	4.3267
37	6.0827	3.3322	82	9.0553	4.3444
38	6.1644	3.3619	83	9.1104	4.3620
39	6.2449	3.3912	84	9.1651	4.3795
40	6.3245	3.4199	85	9.2195	4.3968
41	6.4031	3.4482	86	9.2736	4.4140
42	6.4807	3.4760	87	9.3273	4.4310
43	6.5574	3.5033	88	9.3808	4.4479
44	6.6332	3.5303	89	9.4339	4.4647
45	6.7082	3.5568	90	9.4868	4.4814
<u> </u>	<u> </u>		L	`	

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
91	9.5393	4.4979	140	11.8321	5.1924
92	9.5916	4.5143	141	11.8743	5.2048
93	9.6436	4.5306	142	11.9163	5.2171
94	9.695 3	4.5468	143	11.9582	5.2293
95	9.7467	4.5629	144	12.0000	5.2414
96	9.7979	4.5788	145	12.0415	5.2535
97 `	9.8488	4.5947	146	12.0830	5.2656
98	9.8994	4.6104	147	12.1243	5.2776
99	9.9498	4.6260	148	12.1655	5.2895
100	10.0000	4.6415	149	12.2065	5.3014
101	10.0498	4.6570	150	12.2474	5.3132
102	10.0995	4.6723	151	12,2882	5.3250
103	10.1488	4.6875	152	12.3288	5.3368
104	10.1980	4.7026	153	12.3693	5.3484
105	10.2469	4.7176	154	12.4096	5.3601
106	10.2956	4.7326	155	12.4498	5.3716
107	10.3440	4.7474	156	12.4899	5.3632
108	10.3923	4.7622	157	12.5299	5.3946
109	10.4403	4.7768	158	12.5698	5.4061
110	10.4880	4.7914	159	12.6095	5.4175
111	10.5356	4.8058	160	12.6491	5.4288
112	10.5830	4.8202	161	12.6885	5.4401
113	10.6301	4.8345	162	12.7279	5.4513
114	10.6770	4.8488	163	12.7671	5.4625
115	10.7238	4.8629	164	12.8062	5.4737
116	10.7703	4.8769	165	12.8452	5.4848
117	10.8166	4.8909	166	12.8840	5.4958
118	10.8627	4.9048	167	12,9228	5.5068
119	10.9087	4.9186	168	12,9614	5.5178
120	10.9544	4.9324	169	13.0000	5.5287
121	11.0000	4.9460	170	13.0384	5.5396
122	11.0453	4.9596	171	13.0766	5.5504
123	11.0905	4.9731	172	13.1148	5.5612
124	11.1355	4.9866	173	13.1529	5.5720
125 126	11.1803 11.2249	5.0000 5.0132	174 175	13.1909 13.2287	5.5827 5.5934
	11.2249	5.0265	176	13.2664	5.6040
127 128	11.2094	5.0396	177	13.3041	5.6146
128	11.3578	5.0527	178	13.3416	5.6252
130	11.3576	5.0657	179	13.3790	5.6357
131	11.4455	5.0787	180	13.4164	5.6462
132	11.4400	5.0916	181	13.4536	5.6566
133	11.5325	5.1044	182	13.4907	5.6670
134	11.5758	5.1172	183	13.5277	5.6774
135	11.6189	5.1299	184	13.5646	5.6877
136	11.6619	5.1425	185	13.6014	5.6980
137	11.7046	5.1551	186	13.6381	5.7082
138	11.7473	5.1676	187	13.6747	5.7184
139	11.7898	5.1801	188	13.7113	5.7286
I	1	0.1001]

A	rumb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
	189	13.7477	5.7387	238	15.4272	6.1971
•	190	13.7840	5.7488	239	15 4596	6.2058
1	191	13.8202	5.7589	240	15.4919	6.2144
1	192	13.8564	5.7689	241	15.5241	6.2230
	193	13.8924	5.7789	242	15.5563	6.2316
	194	13.9283	5.7889	243	15.5884	6.2402
1	195	13.9642	5.7988	244	15.6204	6.2487
	196	14.0000	5.8087	245	15.6524	6.2573
1	197	14.0356	5. 8186	246	15.6843	6.2658
t	198	14.0712	5.8284	247	15.7162	6.2743
1	199	14.1067	5.8382	248	15.7480	6.2827
	200	14.1421	5.8480	249	15.7797	6.2911
1	201	14.1774	5.8577	250	15.8113	6.2996
	202	14.21	5.8674	251	15.8429	6.3079
	203	14.2478	5.8771	252	15.8745	6.3163
	204	14.2828	5.8867	253	15.9059	6.3247
	205	14.3178	5.8963	254	15.93 73	6.3330
	206	14.3527	5.9059	255	15.9687	6.3413
	207	14.3874	5.9154	256	16.0000	6.3496
	208	14.4222	5.9249	257	16.0312	6.3578
	209	14.4568	5.9344	258	16.0623	6.3660
	210	14.4913	5.9439	259	16.0934	6.3743
	211	14.5258	5.9533	260	16.1245	6.3825
	212	14.5602	5.9627	261	16.1554	6.3906
	213	14.5945	5.9720	262 263	16.1864	6.3988
	214	14.6287	5.9814 5.9907	264	16.2172 16.2480	6.4069 6.4150
	215	14.6628	6.0000	265	16.2788	6.4231
	216 217	14.6969 14.7309	6.0092	266	16.3095	6.4312
	217 218	14.7648	6.0184	267	16.3401	6.4392
	210 219	14.7986	6.0276	268	16.3707	6.4473
	218 220	14.8323	6.0368	269	16.4012	6.4553
	$\frac{220}{221}$	14.8660	6.0459	270	16.4316	6.4633
	222	14.8996	6.0550	271	16.4620	6.4712
	223	14.9331	6.0641	272	16.4924	6.4792
	224	14.9666	6.0731	273	16.5227	6.4871
	225	15.0000	6.0822	274	16.5529	6.4950
	226	15.0332	6.0911	275	16.5831	6.5029
	227	15.0665	6.1001	276	16.6132	6.5108
	228	15.0996	6.1091	277	16.6433	6.5186
ı	229	15.1327	6.1180	278	16.6733	6.5265
	230	15.1657	6.1269	279	16.7032	6.5343
	231	15.1986	6.1357	280	16.7332	6.5421
	232	15.2315	6.1446	281	16.7630	6.5499
	233	15,2643	6.1534	282	16.7928	6.5576
I	234	15.2970	6.1622	283	16.8226	6.5654
	235	15.3297	6.1710	284	16.8522	6.5731
	236	15.3622	6.1797	285	16.8819	6.5808
I	237	15.3948	6.1884	286	16.9115	6.5885
L		L		<u> </u>	<u> </u>	<u> </u>

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
287	16.9410	6.5962	336	18.3303	6.9520
288	16.9705	6.6038	337	18,3575	6.9589
289	17.0000	6.6114	333	18.3847	6.9658
290	17.0293	6.6191	839	18.4119	6.9726
291	17.0587	6.6267	340	18.4390	6.9795
292	17.0880	6.6342	341	18.4661	6.9863
293	17.1172	6.6418	342	18.4932	6.9931
294	17.1464	6.6493	343	18.5202	7.0000
295	17.1755	6.6569	344	18.5472	7.0067
296	17.1735				
		6.6644	345	18.5741	7.0135
297	17.2336	6.6719	346	18.6010	7.0203
298	17.2626	6.6794	347	18.6279	7.0271
299	17.2916	6.6868	348	18.6547	7.0338
300	17.3205	6.6943	349	18.6215	7.0405
301	17.3493	6.7017	350	18.7082	7.0472
302	17.3781	6.7091	351	18.7349	7.0540
303	17.4068	6.7165	352	18.7616	7.0606
304	17.4355	6.7239	353	18.7882	7.0673
305	17.4642	6.7313	354	18.8148	7.0740
306	17.4928	6.7386	355	18.8414	7.0806
307	17.5214	6.7459	356	18.8679	7.0873
308	17.5499	6.7533	357	18.8944	7.0939
309	17.5783	6.7606	358	18.9208	7.1005
310	17.6068	6.7678	359	18-9472	7.1071
311	17.6351	6.7751	360	18,9736	7.1137
312	17.6635	6.7824	361	19.0000	7.1203
313	17.6918	6.7896	362	19.0262	7.1269
314	17.7200	6.7968	363	19.0525	7.1334
315	17.7482	6.8040	364	19.0787	7.1400
316	17.7763	6.8112	365	19.1049	7.1465
317	17.8044	6.8184	366	19.1311	7.1530
318	17.8325	6.8256	367	19.1572	7.1595
319	17.8605	6.8327	368	19.1833	7.1660
320	17.8885	6.8399	369	19.2093	7.1725
320 321	17.9164	6.8470	370	19.2353	7.1720
322	17.9443	6.8541	371	19.2613	7.1855
323	17.9722				
323		6.8612	372	19.2873	7.1919
	18.0000	6.8682	373	19.3132	7.1984
325	18.0277	6.8753	374	19.3390	7.2048
326	18.0554	6.8823	375	19.3649	7.2112
327	18.0831	6.8894	376	19.3907	7.2176
328	18.1107	6.8964	377	19.4164	7.2240
329	18.1383	6.9034	378	19.4422	7.2304
330	18.1659	6.9104	379	19.4679	7.2367
331	18.1934	6.9173	380	19.4935	7.2431
332	18.2208	6.9243	381	19.5192	7.2495
333	18.2482	6.9313	382	19.5448	7.2558
334	18.2756	6.9383	383	19.5703	7.2621
335	18.3030	6.9451	384	19.5959	7.2684

Numb.	Square Roots.	Cube Roots.	Numb.	Equare Roots.	Cube Roots.
385	19.6214	7.2747	434	20.8326	7.5711
386	19.6468	7.2810	435	20.8566	7.5769
387	19.6723	7.2873	436	20.8806	7.5827
388	19.6977	7.2936	437	20.9045	7.5885
389	19.7230	7.2998	438	20.9284	7.5943
390	19.7484	7.3061	439	20.9523	7.6001
391	19.7737	7.3123	440	20,9761	7.6059
392	19.7989	7.3186	441	21.0000	7.6116
393	19.8242	7.3248	442	21.0237	7.6174
394	19.8494	7.3310	443	21.0457	7.6231
39 5	19.8746	7.3372	444	21.0713	7.6288
396	19.8997	7.3434	445	21.0950	7.6346
397	19.9248	7.3495	446	21.1187	7.6403
398	19.9499	7.3557	447	21.1423	7.6460
399	19.9749	7.3619	448	21.1660	7.6517
400	20.0000	7.3680	449	21.1896	7.6574
401	20.0249	7.3741	450	21.2132	7.6630
402	20.0499	7.3803	451	21.2367	7.6687
403	20,0748	7.3864	452	21.2602	7.6744
404	20.0997	7.3925	453	21.2837	7.6800
405	20.1246	7.3986	454	21.3072	7.6857
406	20.1494	7.4047	455	21.3307	7.6913
407	20.1742	7.4107	456	21.3541	7.6970
408	20.1990	7.4168	457	21.3775	7.7026
409	20.2237	7.4229	458	21.4009	7.7082
410	20.2484	7.4289	459	21.4242	7.7138
411	20.2731	7.4349	460	21.4476	7.7194
412	20.2977	7.4410	461	21.4709	7.7250
413	20.3224	7.4470	462	21.4941	7.7306
414	20.3469	7.4530	463	21.5174	7.7361
415	20.3715	7.4590	464	21,5406	7.7417
416	20.3960	7.4650	465	21.5638	7.7473
417	20,4205	7.4709	466	21.5870	7.7528
418	20,4450	7.4769	467	21.6101	7.7584
419	20.4694	7.4829	468	21.6333	7.7639
420	20,4939	7,4888	469	21.6564	7.7694
421	20,5182	7.4948	470	21.6794	7.7749
422	20,5426	7.5007	471	21.7025	7.7804
423	20,5669	7,5066	472	21.7255	7.7859
424	20,5912	7.5125	473	21.7485	7.7914
425	20.6155	7.5184	474	21.7715	7.7969
426	20.6397	7.5243	475	21.7944	7.8024
427	20.6639	7.5302	476	21.8174	7.8079
428	20.6881	7.5361	477	21.8403	7.8133
429	20.7123	7.5419	478	21.8632	7.8188
430	20.7364	7.5478	479	21.8860	7.8242
431	20.7605	7.5536	480	21.9089	7.8297
432	20.7846	7.5595	481	21.9317	7.8351
433	20.8086	7.5653	482	21.9544	7.8405

4			1	· · · · · · · · · · · · · · · · · · ·	
Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
483	21.9772	7.8460	532	23.0651	8,1028
484	22,0000	7.8514	533	23.0867	8.1079
485	22.0227	7.8568	584	23,1084	8.1129
486	22.0454	7.8622	535	23,1300	8.1180
487	22.0680	7.8676	536	23.1516	8.1230
488	22.0907	7.8729	537	23,1732	8.1281
489	22.1133	7.8783	538	23.1948	8.1331
490	22,1359	7.8837	539	23.2163	8.1382
491	22.1585	7.8890	540	23.2379	8.1432
492	22.1810	7.8944	541	23.2594	8.1482
493	22,2036	7.8997	542	23,2808	8.1532
494	22.2261	7.9051	543	23,3023	8.1583
495	22.2485	7.9104	544	23,3238	8.1633
496	22.2710	7.9157	545	23.3452	8.1683
497	22.2934	7.9210	546	23.3666	8.1733
498	22.3159	7.9264	547	23.3880	8.1782
499	22.3383	7.9317	548	23.4093	8.1832
500	22.3606	7.9370	549	23.4307	8.1882
501	22.3830	7.9422	550	23,4520	8.1932
502	22.4053	7.9475	551	23,4733	8.1981
503	22.4276	7.9528	552	23,4946	8.2031
504	22.4499	7.9581	553	23.5159	8.2980
505	22.4722	7.9633	554	23.5372	8.2130
506	22,4944	7.9686	555	23.5584	8.2179
507	22.5166	7.9738	556	23.5796	8.2228
508	22.5388	7.9791	557	23.6008	8.2278
509	22.5610	7.9843	558	23.6220	8.2327
510	22.5831	7.9895	559	23.6431	8.2376
511	22,6053	7.9947	560	23.6643	8.2425
512	22.6274	8.0000	561	23.6854	8.2474
513	22.6495	8.0052	562	23.7065	8.2523
514	22.6715	8.0104	563	23.7276	8.2572
515	22.6936	8.0155	564	23.7486	8.2621
516	22.7156	8.0207	565	23.7697	8.2670
517	22.7376	8.0259	566	23.7907	8.2719
518	22.7596	8.0311	567	23.8117	8.2767
519	22.7815	8.0362	568	23.8327	8.2816
520	22.8035	8.0414	569	23.8537	8.2864
521	22.8254	8.0466	570	23.8746	8.2913
522	22.8473	8.0517	571	23.8956	8.2961
523	22.8691	8.0568	572	23.9165	8.3010
524	22.8910	8.0620	573	23.9374	8.3058
525	22.9128	8.0671	574	23.9582	8.3106
526	22.9346	8.0722	575	23.9791	8.3155
527	22.9564	8.0773	576	24.0000	8.3203
528	22.9782	8.0824	577	24.0208	8.3251
529	23.0000	8.0875	578	24.0416	8.3299
530	23.0217	8.0926	579	24.0624	8.3347
531	23.0434	8.0977	580	24.0831	8.3395

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
581	24.1039	8.8443	630	25.0998	8.5726
582	24.1246	8.3491	631	25.1197	8.5771
583	24.1453	8.3539	632	25.1396	8.5816
584	24.1660	8.3586	633	25.1594	8.5862
585	24.1867	8.3634	634	25.1793	8.5907
586	24.2074	8.3682	635	25.1992	8.5952
587	24.2280	8.3729	636	25.2190	8.5997
588	24.2487	8.3777	637	25.2388	8.6042
589	24.2693	8.3824	638	25.2586	8.6087
590	24.2899	8.3872	639	25.2784	8.6132
591	24.3104	8.3919	640	25.2982	8.6177
592	24.3310	8.3966	641	25.3179	8.6222
593	24.3515	8,4013	642	25.3377	8.6267
594	24.3721	8.4061	643	25,3574	8.6311
595	24.3926	8.4108	644	25,3771	8.6356
596	24.4131	8.4155	645	25,3968	8.6401
597	24,4335	8.4202	646	25.4165	8.6445
598	24.4540	8.4249	647	25,4361	8.6490
599	24.4744	8.4296	648	25,4558	8.6534
600	24.4948 •	8.4343	649	25.4754	8.6579
601	24.5153	8.4390	650	25,4950	8.6623
602	24.5356	8.4436	651	25.5147	8.6668
603	24.5560	8.4483	652	25.5342	8.6712
604	24.5764	8.4530	653	25.5538	8.6756
605	24.5967	8.4576	654	25.5734	8.6801
606	24.6170	8.4623	655	25.5929	8.6845
607	24.6373	8.4670	656	25.6124	8.6889
608	24.6576	8.4716	657	25,6320	8.6933
609	24.6779	8.4762	658	25,6515	8.6977
610	24.6981	8.4809	659	25,6709	8.7021
611	24.7184	8.4855	660	25,6904	8.7065
612	24.7386	8,4901	661	25,7099	8.7109
613	24.7588	8.4948	662	25.7293	8.7153
614	24.7790	8.4994	663	25,7487	8.7197
615	24.7991	8.5040	664	25,7681	8.7241
616	24.8193	8,5086	665	25.7875	8.7285
617	24.8394	8.5132	666	25.8069	8.7328
618	24.8596	8.5178	667	25.8263	8.7372
619	24.8797	8.5224	668	25.8456	8.7416
620	24.8997	8,5270	669	25.8650	8.7459
621	24,9198	8.5316	670	25.8843	8.7503
622	24.9399	8.5361	671	25.9036	8.7546
623	24.9599	8,5407	672	25.922 9	8.7590
624	24.9799	8.5453	673	25.9422	8.7633
625	25.0000	8.5498	674	25.9615	8.7677
626	25.0199	8.5544	675	25.9807	8.7720
627	25.0399	8.5589	676	26.0000	8.7763
628	25.0599	8.5635	677	26.0192	8.7807
629	25.0798	8.5680	678	26.0384	8.7850
	20.0,00	0,000	1	1	, 5., 555

112 SQUARE AND CUBE ROOTS OF NUMBERS.

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
679	26.0576	8.7893	728	26.9814	8,9958
680	26.0768	8.7936	729	27.0000	9.0000
681	26.0959	8.7979	730	27.0185	9.0041
682	26.1151	8.8022	731	27.0370	9.0082
683	26.1342	8.8065	732	27.0554	9.0123
684	26.1533	8.8108	733	27.0739	9.0164
685	26.1725	8.8151	734	27.0924	9.0205
686	26.1916	8.8194	735	27.1108	9.0246
687	26.2106	8.8237	736	27.1293	9.0287
688	26.2297	8.8280	737	27.1477	9.0328
689	26.2488	8.8322	738	27.1661	9.0368
690	26.2678	8.8365	739	27.1845	9.0409
691	26.2868	8.8408	740	27.2029	9.0409 9.0450
692	26.3058	8.8450	741	27.2023 27.2213	
693					9.0491
694	26.3248	8.8493	742	27.2396	9.0531
695	26.3438	8.8535	743	27.2580	9.0572
	26.3628	8.8578	744	27.2763	9.0613
696	26.3818	8.8620	745	27.2946	9.0653
697	26.4007	8.8663	746	27.3130	9.0694
698	26.4196	8.8705	747	27.3313	9.0734
699	26.4386	8.8748	748	27.3495	9.0775
700	26.4575	8.8790	749	27.3678	9.0815
701	26.4764	8.8832	750	27.3861	9.0856
702	26.4952	8.8874	751	27.4043	9.0896
703	26.5141	8.8917	752	27.4226	9.0936
704	26.5329	8.8959	753	27.4408	9.0977
705	26.5518	8.9001	754	27.4590	9.1017
706	26.5706	8.9043	755	27.4772	9.1057
707	26.5894	8.9085	756	27.4954	9.1097
708	26.6082	8.9127	757	27.5136	9.1137
709	26.6270	8.9169	758	27.5317	9.1177
710	26.6458	8.9211	759	27.5499	9.1218
711	26.6645	8.9253	760	27.5680	9.1258
712	26.6833	8.9294	761	27.5862	9,1298
713	26.7020	8.9336	762	27.6043	9.1338
714	26.7207	8.9378	763	27.6224	9.1377
715	26.7394	8.9420	764	27.6405	9.1417
716	26.7581	8.9461	765	27.6586	9.1457
717	26.7768	8.9503	766	27,6767	9.1497
718	26.7955	8.9545	767	27.6947	9.1537
719	26.8141	8.9586	768	27.7128	9.1577
720	26.8328	8.9628	769	27.7308	9.1616
721	26.8514	8.9669	770	27.7488	9.1656
722	26.8700	8.9711	771	27.7668	9.1696
723	26,8886	8.9752	772	27.7848	9.1735
724	26,9072	8.9793	773	27.8028	9.1775
725	26,9258	8.9835	774	27.8208	9.1815
726	26,9443	8.9876	775	27.8388	9.1854
727	26.9629	8.9917	776	27.8567	9.1894
		3.002.	!	21.0001	0.1004

Numb. 1	Square Roots. 27.8747	Cube Roots.	Numb.	Square Roots.	Cube Roots.
	27.8747				
779		9.1933	826	28.7402	9.3826
	27.8926	9.1972	827	28.7576	9.3864
779	27.9105	9.2012	828	28.7749	9.3902
780	27.9284	9.2051	829	28.7923	9,3940
781	27.9463	9.2090	830	28.8097	9.3977
782	27.9642	9.2130	831	28.8270	9.4015
783	27.9821	9.2169	832	28.8444	9.4053
784	28.0000	9.2208	833	28.8617	9.4091
785	28.0178	9.2247	834	28.8790	9.4128
786	28.0356	9.2287	835	28.8963	9.4166
787	28.0535	9.2326	836	28.9136	9.4203
788	28.0713	9.2365	837	28.9309	9.4241
789	28.0891	9.2404	838	28.9482	9.4278
790	28,1069	9.2443	839	28.9654	9.4316
791	28.1247	9.2482	840	28.9827	9.4353
792	28.1424	9.2521	841	29.0000	9.4391
793	28.1602	9.2560	842	29.0172	9.4428
794	28.1780	9.2599	843	29.0344	9.4466
795	28.1957	9.2637	844	29.0516	9.4503
796	28.2134	9.2676	845	29.0688	9.4540
797	28.2311	9.2715	846	29.0860	9.4577
798 799	28.2488 28.2665	9.2754 9.2793	847	29.1032 29.1204	9.4615
800	28.2842	9.2831	848 849	29.1204	9,4652 9,4689
801	28.3019	9.2870	850	29.1547	9.4726
802	28.3196	9.2909	851	29.1719	9.4761
803	28.3372	9.2947	852	29.1890	9.4801
804	28.3548	9.2986	853	29.2061	9.4838
805	28.3725	9.3024	854	29.2232	9.4875
806	28,3901	9.3063	855	29.2403	9.4912
807	28,4077	9,3101	856	29.2574	9.4949
808	28,4253	9.3140	857	29.2745	9.4986
809	28,4429	9.3178	858	29,2916	9.5023
810	28,4604	9.3216	859	29.3087	9.5059
811	28,4780	9.3255	860	29.3257	9,5096
812	28,4956	9.3293	861	29.3428	9.5133
813	28,5131	9.3331	862	29.3598	9.5170
814	28,5306	9.3370	863	29.3768	9.5207
815	28.5482	9,3408	864	29.3938	9.5244
816	28,5657	9,3446	865	29.4108	9.5280
817	28,5832	9.3484	866	29,4278	9.5317
818	28,6006	9.3522	867	29,4448	9.5354
819	28,6181	9.3560	868	29.4618	9.5390
820	28,6356	9.3599	869	29.4788	9.5427
821	28,6530	9.3637	870	29.4957	9.5464
822	28,6705	9.3675	871	29.5127	9.5500
823	28.6879	9.3713	872	29,5296	9.5537
824	28.7054	9.3750	873	29.5465	9.5573
825	28.7228	9.3788	874	29,5634	9.5610

114 SQUARE AND CUBE ROOTS OF NUMBERS.

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
875	29.5803	9.5646	924	30.3973	9.7399
876	29.5972	9.5682	925	30.4138	9.7434
877	29.6141	9.5719	926	30.4302	9.7469
8 78	29.6310	9.5755	927	30.4466	9.7504
879	29.6479	9.5792	928	30.4630	9.7539
880	29.6647	9.5828	929	30.4795	9.7575
-8 81	29.6816	9.5864	930	30.4959	9.7610
882	29.6984	9.5900	931	30.5122	9.7644
883	29.7153	9.5937	932	30.5286	9.7679
884	29.7321	9.5973	933	30.5450	9.7714
885	29.7489	9.6009	934	30.5614	9.7749
- 886	29.7657	9.6045	935	30.5777	9.7784
887	29.7825	9.6081	936	30.5941	9.7829
888	29.7993	9.6117	937	30.6194	9.7854
889	29.8161	9.6153	938	30.6267	9.7889
890	29.8328	9.6190	939	30.6431	9.7923
891	29.8496	9.6226	940	30.6594	9.7958
892	29.8663	9.6262	941	3 0.6757	9.7993
893	29.8831	9.6297	942	30.6920	9.8028
894	29.8998	9.6333	943	30.7083	9.8062
895	29.9165	9.6369	944	30.7245	9.8097
896	29.9332	9.6405	945	30.7408	9.8131
897	29.9499	9.6441	946	3 0.7571	9.8166
898	29.9666	9.6477	947	30.7733	9.8201
899	29.9833	9.6513	948	30.7896	9.8235
900	30.0000	9.6548	949	30.8058	9.8270
901	30.0166	9.6584	950	30.8220	9.8304
902	30.0333	9.6620	951	30.8382	9.8339
903	30.0499	9.6656	952	30.8544	9.8373
904	30.0665	9.6691	953	30.8706	9.8408
905	30.0832	9.6727	954	30.8868	9.8442
906	30.0998	9.6763	955	30.9030	9.8476
907	30.1164	9.6798	956	30.9192	9.8511
908	30.1330	9.6834	957	30.9354	9.8545
909	30.1496	9.6869	958	30.9515	9.8579
910	30.1662	9.6905	959	30.9677	9.8614
911	30.1827	9.6940	960	30.9838	9.8648
912	30.1993	9.6976	961	31.0000	9.8682
913	30.2158	9.7011	962	31.0161	9,8716
914	30.2324	9.7046	963	31.0322	9.8751
915	30.2489	9.7082	964	31.0483	9.8785
916	30.2654	9.7117	965	31.0644	9.8819
917	30.2820	9.7153	966	31.0805	9.8853
918	30.2985	9.7188	967	31.0966	9.8887
919	30.3150	9.7223	968	31.1126	9.8921
920	30.3315	9.7258	969	31.1287	9.8955
921	30.3479	9.7294	970	31.1448	9.8989
922	30.3644	9.7329	971	31.1608	9.9023
923	30.3809	9.7364	972	31.1769	9.9057
1	1	1	II		, 5.500,

9,3
. 6
į
("19
i i
*1
建石工
6
ù
ñ

			· · · · · ·		
Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
973	31.1929	9,9091	1022	31.9687	10.0728
974	31.2089	9.9125	1023	31.9843	10.0726
975	31.2249	9.9159	1024	32,0000	10.0793
976	31.2409	9.9193	1025	32.0156	10.0795
977	31.2569	9.9227	1026	32,0312	10.0859
978	31.2720	9.9261	1027	32.0468	10.0892
979	31.2889	9.9295	1028	32,0624	10.0924
980	31.3049	9.9328	1029	32.0780	10.0957
981	31.3209	9.9362	1030	32.0936	10.0990
982	31.3368	9.9396	1031	32.1091	10.1022
983	31.3528	9.9430	1032	32,1247	10.1055
984	31.3687	9.9463	1033	32,1403	10.1088
985	31.3847	9.9497	1034	32.1558	10.1120
986	31.4006	9.9531	1035	32.1714	10.1153
987	31.4165	9.9564	1036	32,1869	10.1185
988	31.4324	9.9598	1037	32,2024	10.1218
989	31.4483	9,9631	1038	32,2180	10.1250
990	31.4642	9.9665	1039	32,2335	10.1283
991	31.4801	9.9699	1040	32,2490	10.1315
992	31.4960	9.9732	1041	32.2645	10.1348
993	31.5119	9.9766	1042	32,2800	10.1380
994	31.5277	9.9799	1043	32.2955	10.1413
995	31.5436	9.9833	1044	32.3109	10.1445
996	31.5594	9.9866	1045	32.3264	10.1478
997	31.5753	9.9899	1046	32,3419	10.1510
998	31.5911	9.9933	1047	32.3573	10.1542
1999	31.6069	9.9966	1048	32.3728	10.1575
1000	31.6227	10.0000	1049	32.3882	10.1607
1001	31.6385	10.0033	1050	32.4037	10.1639
1002	31.6543	10.0066	1051	32.4191	10.1671
1003 1004	31.6701	10.0099	1052	32.4345	10.1704
1004	31.6859 31.7017	10.0133	1053	32.4499	10.17 3 6
1006	31.7175	10.0166	1054	32,4653	10.1768
1007	31.7332	10.0199	1055	32.4807	10.1800
1008	31.7490	10.0232	1056	32.4961	10.1832
1009	31.7647	10.0265 10.0299	1057	32.5115	10.1865
1010	31.7804	10.0299	1058	32.5269	10.1897
1011	31.7962	10.0365	1059	32.5422	10.1929
1012	31.8119	10.0398	1060	32.5576	10.1961
1013	31.8276	10.0330	1062	32.5729	10.1993
1014	31.8433	10.0464	1062	32.5883	10.2025
1015	31.8590	10.0497	1064	32.6036	10.2057
1016	31.8747	10.0530	1065	32.6190 32.6343	10.2089
1017	31.8904	10.0563	1066	32.6496	10.2121 10.2153
1018	31.9061	10.0596	1067	32.6649	10.2185
1019	31.9217	10.0629	1068	32.6802	10.2185
1020	31.9374	10.0662	1069	32.6955	10.2217
1021	31.9530	10.0695	1070	32.7108	10.2249
	,		1 20,0	02.1100	10.2200

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
1071	32,7261	10.2312	1120	33,4664	10.3849
1072	32.7414	10.2344	1121	33.4813	10.3880
1073	32.7566	10.2376	1122	33.4962	10.3911
1074	32.7719	10.2408	1123	33.5111	10.3942
1075	32.7871	10.2439	1124	33.5261	10.3973
1076	32.8024	10.2471	1125	33.54 10	10.4004
1077	32.8176	10.2503	1126	33.5559	10.4034
1078	32.8329	10.2535	1127	33.5708	10.4065
1079	32.8481	10.2566	1128	33.5857	10.4096
1080	32.8633	10.2598	1129	33.6005	10.4127
1081	32.8785	10.2630	1130	33.6154	10.4127
	32.8937	10.2661	1131	33.6303	10.4188
1082		10.2693	1132	33.6452	
1083	32.9089	10.2095	1133	33.6600	10.4219
1084	32.9241				10.4250
1085	32,9393	10.2756	1134	33.6749	10.4280
1086	32,9545	10.2788	1135	33.6897	10.4311
1087	32,9696	10.2819	1136	33.7045	10.4342
1088	32.9848	10.2851	1137	33.7194	10.4372
1089	33.0000 .	10.2882	1138	33.7342	10.4403
1090	33.0151	10.2914	1139	33.7490	10.4433
1091	33.0302	10.2945	1140	33.7638	10.4464
1092	33.0454	10.2977	1141	33.7786	10.4494
1093	33.0605	10.3008	1142	33.7934	10.4525
1094	33.0756	10.3039	1143	33.8082	10.4555
1095	33.0907	10.3071	1144	33.8230	10.4586
1096	33.1058	10.3102	1145	33.8378	10.4616
1097	33.1209	10.3134	1146	33.8526	10.4647
1098	33.1360	10.3165	1147	33.8673	10.4677
1099	33.1511	10.3196	1148	33.8821	10.4708
1100	33.1662	10.3228	1149	33.8969	10.4738
1101	33.1813	10.3259	1150	33.9116	10.4768
1102	33.1963	10.3290	1151	33.9263	10.4799
1103	33.2114	10.3321	1152	33.9411	10.4829
1104	33.2264	10.3352	1153	33.9558	10.4859
1105	33.2415	10.3384	1154	33.9705	10.4890
1106	33.2565	10.3415	1155	33.9852	10.4920
1107	33.2716	10.3446	1156	34.0000	10.4950
1108	33.2866	10.3477	1157	34.0147	10.4981
1109	33.3016	10.3508	1158	34.0293	10.5011
1110	33.3166	10.3539	1159	34.0440	10.5041
1111	33.3316	10.3570	1160	34.0587	10.5071
1112	33.3466	10.3602	1161	34.0734	10.5101
1113	33.3616	10.3633	1162	34.0881	10.5132
1114	33.3766	10.3664	1163	34.1027	10.5162
1115	33.3916	10.3695	1164	34.1174	10.5192
1116	33.4065	10.3726	1165	34.1320	10.5222
1117	33.4215	10.3757	1166	34.1467	10.5252
1118	33.4365	10.3788	1167	34.1613	10.5282
1119	33.4514	10.3818	1168	34.1760	10.5312
			1		

a *

	:				
Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
1169	34.1906	10.5342	1218	34 8998	10.6794
1170	34.2052	10.5372	1219	34.9141	10.6823
1171	34.2198	10.5402	1220	34.9284	10.6852
1172	34.2344	10.5432	1221	34.9428	10.6882
1173	34.2490	10.5462	1222	34.9571	10.6911
1174	34.2626	10.5492	1223	34.9714	10.6940
1175	34.2782	10 5522	1224	34.9857	10.6969
1176	34.2928	10.5552	1225	35.0000	10.6998
1177	34.3074	10.5582	1226	35.0142	10.7027
1178	34.3220	10.5612	1227	35.0285	10.7056
1179	34.3365	10.5642	1228	35.0428	10.7086
1180	34.3511	10.5672	1229	35.0570	10.7115
1181	34.3656	10.5702	1230	35.0713	10.7144
1182	34.3802	10.5731	1231	35.0856	10.7173
1183	34.3947	10.5761	1232	35.0998	10.7202
1184	34.4093	10.5791	1233	35.1140	10-7231
1185	34.4238	10.5821	1234	35.1283	10.7260
1186	34.4383	10.5850	1235	35.1425	10.7289
1187	34.4528	10.5880	1236	35.1567	10.7318
1188 1189	34.4673 34.4818	10.5910	1237 1238	35.1710	10.7346
1199	34.4963	10.5940		35.1852	10.7375
1190	34.5108	10.5969 10.5999	1239 1240	35.1994 35.2136	10.7404
1191	34.5253	10.5959	1240	35.2278	10.7433 10.7462
1193	34.5398	10.6058	1242	35.2420	10.7402
1194	34.5543	10.6088	1243	35.2562	10.7520
1195	34.5687	10.6118	1244	35.2703	10.7549
1196	34.5832	10.6147	1245	35.2845	10.7577
1197	34.5976	10.6177	1.46	35.2987	10-7606
1198	34.6121	10.6206	1247	35.3128	10.7635
1199	34.6265	10.6236	1248	35,3270	10 7664
1200	34.6410	10.6265	1249	35.3411	10-7693
1201	34.6554	10.6295	1250	35.3553	10-7721
1202	34.6698	10.6324	1251	35.3694	10.7750
1203	34.6842	10.6354	1252	35.3836	10-7779
1204	34.6987	10.6383	1253	35 3977	10 7807
1205	34.7131	10.6413	1254	35.4118	10,7836
12)6	34.7275	10.6442	1255	35.4259	10.7865
1207	34.7419	10.6472	1256	35.4400	10.7893
1208	34.7562	10.6501	1257	35.4541	10.7922
1209	34.7706	10.6530	1258	35.4682	10.7951
1210	34.7850	10.6560	1259	35.4823	10.7979
1211	34.7994	10.6589	1260	35.4964	10.8008
1212	34.8137	10.6618	1261	35.5105	10,8036
1213	34.8281	10.6648	1262	35 5246	10,8065
1214	34.8425	10.6677	1263	35.5387	10,8093
1215	34.8568	10.6706	1264	35.5527	10.8122
1216	34.8711	10.6736	1265	35.5668	10,8150
1217	34.8855	10.6765	1266	35.5808	10.8179

Numb.	Consens Boots	Cube Roots.	Numb.	Square Roots.	Cube Roots.
Mumo.	Equare Roots.	Cube Roots.	Numo.	square Roots.	
1365	36.9459	11.0928	1414	37.6031	11.2240
1366	36.9594	11.0955	1415	37.6164	11.2267
1367	36,9729	11.0982	1416	37.6297	11.2293
1368	36.9864	11.1009	1417	37.6430	11.2319
1369	37,0000	11.1037	1418	37.6563	11.2346
1370	37.0135	11.1064	1419	37.6696	11.2372
1371	37,0270	11.1091	1420	37.6828	11.2399
1372	37,0405	11.1118	1421	37.6961	11.2425
1373	37,0540	11.1145	1422	37.7094	11.2451
1374	37.0675	11.1172	1423	37.7226	11.2478
1375	37.0809	11.1199	1424	37.7359	11.2504
1376	37.0944	11.1225	1425	37.7491	11.2530
1377	37.1079	11.1252	1426	37.7624	11.2557
1378	37.1214	11.1279	1427	37.7756	11.2583
1379	37.1348	11.1306	1428	37.7888	11.2609
1380	37.1483	11 1333	1429	37.8021	11.2636
1381	37.1618	11.1360	1430	37.8153	11.2662
1382	37.1752	11.1387	1431	37.8285	11.2688
1383	37.1887	11.1414	1432	37.8417	11.2714
1384	37.2021	11.1441	1433	37.8549	11.2741
1385	37.2155	11.1467	14.34	37.8681	11.2767
1386	37.2290	11.1494	1435	37.8813	11.2793
1387	37.2424	11.1521	1436	37. ჩ945	11.2819
1388	37.2558	11.1548	1437	37.9077	11.2845
1389	37.2692	11.1575	1438	37.9209	11.2872 11.2898
1390	37.2827	11.1601	1439 1440	37.9341 37.9473	11.2096
1391	37.2961 37.3095	11.1628 11.1655	1441	37.9605	11.2950
1392 1393	37.3229	11.1682	1442	37.9736	11.2976
1393	37.3363	11.1708	1443	37.9868	11.3002
1394	37.3496	11.1735	1444	38.0000	11.3028
1396	37.3630	11.1762	1445	38.0131	11.3054
1397	37.3764	11.1788	1446	33.0263	11.3080
1398	37.3898	11.1815	1447	38.0394	11.3107
1399	37.4032	11.1842	1448	38.0525	11.3133
1400	37,4165	11.1868	1449	38,0657	11.3159
1401	37,4299	11.1895	1450	38.0788	11.3185
1402	37.4432	11.1922	1451	38.0919	11.3211
1403	37,4566	11,1948	1452	38.1051	11.3237
1404	37,4699	11.1975	1453	38.1182	11.3263
1405	37.4833	11.2001	1454	38.1313	11.3289
1406	37.4966	11.2028	1455	38.1444	11.3315
1407	37.5099	11.2055	1456	38.1575	11.3341
1408	37.5233	11.2081	1457	38.1706	11.3366
1409	37.5366	11.2108	1458	38.1837	11.3392
1410	37.5499	11.2134	1459	38.1968	11.3418
14/1	37.5632	11.2161	1460	38.2099	11.3444
1412	37.5765	11.2187	1461	38.2230	11.3470
1413	37.5898	11.2214	1462	38.2361	11.3496
	<u>' </u>				

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
1463	38.2491	11.3522	1512	38.8844	11.4775
1464	38,2622	11.3548	1513	38.8973	11.4801
1465	38.2753	11.3574	1514	38.9101	11.4826
1466	38.2883	11.3599	1515	38.9230	11.4851
1467	38.3014	11.3625	1516	38.9358	11.4876
1468	38.3144	11.3651	1517	38.9486	11.4902
1469	38.3275	11.3677	1518	38,9615	11:4927
1470	38.3405	11.3703	1519	38.9743	11.4952
1471	38.3536	11.3728	1520	38.9871	11.4977
1472	38.3666	11.3754	1521	39.0000	11.5003
1473	38.3796	11.3780	1522	39.0128	11.5028
1474	38.3927	11.3806	-1523	39.0256	11.5053
1475	38.4057	11.3831	1524	39.0384	11.5078
1476	38.4187	11.3857	1525	39.0512	11.5103
1477	38.4317	11.3883	1526	39.0640	11.5129
1478	38.4447	11.3909	1527	39.0768	11.5154
1479	38.4577	11.3934	1528	39.0896	11.5179
1480	38.4707	11.3960	1529	39.1024	11.5204
1481	38.4837	11.3986	1530	39.1152	11.5229
1482	38.4967	11.4011	1531	39.1279	11.5254
1483	38.5097	11.4037	1532	39.1407	11.5279
1484	38.5227	11.4062	1533	39.1535	11.5304
1485	38.5356	11.4088	1534	39.1663	11.5329
1486	38.5486	11.4114	1535	39.1790	11.5354
1487	38.5616	11.4139	1536	39.1918	11.5379
1488	38.5746	11.4165	1537	39.2045	11.5404
1489	38.5875	11.4190	1538	39.2173	11 5430
1490	38.6005	11.4216	1539	39.2300	11.5455
1491	38.6134	11.4242	1540	39 .2428	11.5480
1492	38.6264	11.4267	1541	39.2555	11.5505
1493	38.6393	11.4293	1542	39.2683	11.5530
1494	38.6522	11.4318	1543	39.2810	11.5554
1495	38.6652	11.4344	1544	39.2937	11.5579
1496	38.6781	11.4369	1545	39.3064	11.5604
1497	38.6910	11.4395	1546	39.3192	11.5629
1498	38.7040	11.4420	1547	39.3319	11.5654
1499	38.7169	11.4445	1548	39.3446	11.5679
1500	38.7298	11.4471	1549	39.3573	11.5704
1501	38.7427	11.4496	1550	39.3700	11.5729
1502	38.7556	11.4522	1551	39.3827	11.5754
1503	38.7685	11.4547	1552	39.3954	11.5779
1504	38.7814	11.4573	1553	39.4081	11.5804
1505	38.7943	11.4598	1554	39.4208	11.5828
1506	38.8072	11.4623	1555	39.4334	11.5853
1507	38.8200	11.4649	1556	39.4461	11.5878
1508	38.8329	11.4674	1557	39.4588	11.5903
1509	38.8458	11.4699	1558	39.4715	11.5928
1510	38.8587 38.8715	11.4725 11.4750	1559 1560	39.4841 39.4968	11.5953 11.5977
1511	90.0/19	11.4/80	1 1900	33.4300	11.38//

Numb.	Square Roots.	Cube Roots.	Numb.	quare Roots.	Cube Roots.
1561	39.5094	11.6002	1610	40.1248	11.7203
1562	39.5221	11.6027	1611	40.1372	11.7228
1563	39.5347	11.6052	1612	40.1497	11.7252
1564	39.5474	11.6076	1613	40.1621	11.7276
1565	39.5 :00	11.6101	1614	40.1746	11.7300
1566	39.5727	11.6126	1615	40.1870	11.7325
1567	39,5853	11.6151	1616	40.1995	11.7349
1568	39.5979	11.6175	1617	40.2119	11.7373
1569	39,6106	11.6200	1618	40.2243	11.7397
1570	39.6232	11.6225	1619	40.2367	11.7421
1571	39.6358	11.6249	1620	40.2492	11.7446
1572	39.6484	11.6274	1621	40.2616	11.7470
1573	39.6610	11.6299	1622	40.2740	11.7494
1574	3 9.6736	11.6323	1623	40.2864	11.7518
1575	39.6862	11.6348	1624	40.2988	11.7542
1576	39.6988	11.6372	1625	40.3112	11.7566
1577	39.7114	11.6397	1626	40.3236	11.7590
1578	39.7240	11,6422	1627	40.3360	11.7614
1579	. 39.7366	11.6446	1628	40.3484	11.7639
1580	39.7492	11.6471	1629	40.3608	11.7663
1581	39.7617	11.6495	1630	40.3732	11.7(87
1582	39.7743	11.6520	1631	40.3856	11.7711
158;	39.7869	11 6544	1632	40.3980	11.7735
1584	3 9.7994	11.6569	1633	40.4103	11.7759
1585	39.8120	11.6594	1634	40.4227	11.7783
1586	39.8246	11 6618	1635	40.4351	11.7807
1587	39.8371	11.6643	1636	40.4474	11.7831
1588	39.8497	11.6667	1637	40.4598	11 7855
1589	39.8622	11.6692	1638	40.4722	11.7879
1590	39.8748	11.6716	1639	40.4845	11.7903
1591	39.8873	11.6740	1640	40.4969	11.7927
1592	39.8998	11.6765	1641	40.5092	11.7951
1593	39.9124	11.6789	1642	40.5215	11.7975
1594	39.9249	11.6814	1643	40.5339	11.7999
1595	39.9374	11.6838	1644	40.5462	11.8023 11.8047
1596	39.9499	11.6863	1645	40.5585	11.8047
1597	39 9624	11.6887	1646	40.5709	11.8071
1598	39.9749	11.6911	1647 1648	40.5832 40.5955	11.8118
1599	39 9874	11.6936	1648	40.6078	11.8142
1600	40.0000	11.6960	1650	40.6201	11.8166
1601	40.0124	11.6985	1651	40.6324	11.8190
1602	40.0249	11.7009 11.7033	1652	40.6448	11.8214
1603	40.0374	11.7058	1653	40 6571	11.8238
1604	40.0499 40.0624	11.7082	1654	40.6693	11.8250
1605 1606	40.0749	11.7106	1655	40.6816	11.8285
1607	40.0749	11.7131	1656	40,6939	11.8309
1608	40.0998	11.7155	1657	40.7062	11.8333
1609	40.1123	11.7179	1658	40.7185	11.8357
1009	20,1120	11.7110	1 1000	1 10., 200	1 11.000

Numb.	Square Roots.	Cube Roots.	Numb.	Square Roots.	Cube Roots.
1659	40.7308	11.8381	1694	41.1582	11.9207
1660	40.7430	11.8404	1695	41.1703	11.9231
1661	40,7553	11.8428	1696	41.1825	11.9254
1662	40.7676	11.8452	1697	41.1946	11.9278
1663	40.7798	11.8476	1698	41.2067	11.9301
1664	40.7921	11.8499	1699	41.2189	11.9324
1665	40. '044	11.8523	1700	41.2310	11.9348
1666	40.8166	11.8547	1701	41.2431	11.9371
1667	40.8289	11.8571	1702	41.2553	11.9395
1668	40.8411	11.8594	1703	41.2674	11.9418
1669	40.8533	11.8618	1704	41.2795	11.9441
1670	40,8656	11.8642	1705	41.2916	11.9465
1671	40.8778	11.8665	1706	41.3037	11.9488
1672	40,8900	11.8689	1707	41.3158	11.9511
1673	40.9023	11.8713	1708	41.3279	11.9535
1674	40.9145	11.8736	1709	41.3400	11.9558
1675	40.9267	11.8760	1710	41.3521	11.9581
1676	40.9389	11.8784	1711	41.3642	11.9605
1677	40.9511	11.8807	1712	41.3763	11.9628
1678	40.9633	11.8831	1713	41.3884	11.9651
1679	40.9756	11.8854	1714	41.4004	11.9675
1680	40.9878	11.8878	1715	41.4125	11.9698
1681	41.0000	11.8902	1716	41.4246	11.9721
1682	41.0121	11.8925	1717	41.4366	11.9744
1683	41.0243	11.8949	1718	41.4487	11.9768
1684	41.0365	11.8972	1719	41.4608	11.9791
1685	41.0487	11.8996	1720	41.4728	11.9814
1686	41.0609	11.9019	1721	41.4849	11.9837
1687	41.0731	11.9043	1722	41.4969	11.9860
1688	41.0852	11.9066	1723	41.5090	11.9884
1689	41.0974	11.9090	1724	41.5210	11.9907
1690	41.1096	11.9113	1725	41.5331	11.9930
1691	41.1217	11.9137	1726	41.5451	11.9953
1692	41.1339	11.9160	1727	41.5571	11.9976
1693	41.1460	11.9184	1728	41.5692	12.0000

TABLE VIII,

Containing the circumferences, squares, cubes, and areas of circles,
from 1 to 100, advancing by a tenth.

Diam.	Circum.	Square.	Cube.	Area.
-			<u> </u>	
1	3.1416	1	1	.7854
.1	3.4557	1.21	1.331	.9503
.2	3.7699	1.44	1.728	1.1309
.3	4.0840	1.69	2.197	1.3273
.4	4.3982	1.96	2.744	1.5393
.5	4.7124	2.25	3.375	1.7671
.6 .7 .8	5.0265	2.56	4.096	2.0106
.7	5.3407	2.89	4.913	2.2698
-8	5.6548	3.24	5.832	2.5446
_,.9 ∤	5.9690	3.61	6 859	2.8352
.8 2.9	6.2832	4	8	3.1416
.1 .2	6.59 73	4.41	9.261	3. 4636
.2	6 9115	4.84	10.648	3.8013
.3	7.2256	5.29	12.167	4 1547
-4	7.5398	5 76	13 824	4.5239
.5	7.8540	6.25	15 625	4.9087
.6	8.1681	6.76	17.576	5.3093
.7	8.4823	7.29	19.683	5.7255
.8	8.7964	7.84	21.952	6.1575
3.9	9.1106	8.41	24.389	6.6052
3	9.4248	9	27	7.0686
.1	9.7389	9.61	29.791	7.5476
.2	10.0531	10.24	3 2.768	8.042 4
.3	10.3672	10.89	3 5.937	8.5530
.4	10.6814	11.56	39.304	9.0792
.5	10.9956	12.25	4 2. 87 5	9.6211
.6	11.3097	12.96	4 6.6 56	10.1787
.7	11.6239	13.69	<i>5</i> 0.65 3	10.7521
.8	11.9380	14.44	54.872	11.3411
.8 .9 4	12.2522	15.21	59.319	11.9459
4	12.5664	16	64	12.5664
.1 .2	12.8805	16.81	68.921	13.2025
.2	13.1947	17.64	74.088	13.8544
.3	13.5088	18.49	79.507	14.5220
.4	13.8230	19.36	85.184	15.2053
.5	14.1372	20.25	91.125	15,9043
.6	14.4513	21.16	97.336	16.6190
.7	14.7655	22.09	103.823	17.3494
.8	15.0796	23.04	110.592	18.0956
.9	1 <i>5</i> . 3 938	24.01	117.649	18.8574
				

Diam.	Circum.	Square.	Cube.	Area.
5	15.7080	25	125	19.6350
1.1	16.0221	26.01	132.651	20.4282
.2	16.3363	27 04	140.608	21.2372
.3	16.6504	28.09	148.877	22.0618
.4	16.9646	29.16	157.464	22 9022
.5	17.2788	30.25	166.375	23,7583
.6	17.5929	31.36	175.616	24.6301
.7	17.9071	32.49	185.193	25 5176
.8	18.2212	33.64	195.112	26.4208
.9	18.5354	34.81	205.379	27.3397
6	18.8496	36	216	28.2744
.1	19.1637	37.21	226 981	29.2247
.2	19.4779	38.44	238.328	30,1907
.3	19.7920	39.69	250.047	31.1725
.4	20 1063	40 96	262.144	32.1699
.5	20.4204	42.25	274 625	33,1831
.6	20.7345	43.56	287.496	34.2120
.7	21.0487	44.89	300.763	35.2566
.8	21.3628	46.24	314.432	36,3168
.9	21.6770	47.61	328.509	37.3928
7	21.9912	49	343	38.4846
.1	22 3053	50.41	357.911	39 5920
.2	22.6195	51.84	373.248	40.7151
.3	22.9336	53.29	389.017	41.8539
.4	23.2478	54.76	405.224	43.0085
.5	23 5620	56.25	421.875	44.1787
.6	23.8761	57.76	438.976	45.3647
.7	24.190 3	59.29	456.533	46,5663
.8	24.5044	60.84	474 552	47.7837
.9	24.8186	62.41	493.039	49.0168
8	25 1328	64	512	50.2656
.l	25.4469	65.61	531.441	51.5300
.2	25 7611	67.24	551.368	52 8102
.3	26.0752	68.89 70.56	571.787 592.704	54.1062 55.4178
.4	26.3 94 26.7036	70.30	614.125	56 7451
.5	27.0177	73.96	636.056	58,0881
.6 .7	27.3319	75.69	658.503	59.4469
 8.	27.6460	77.44	681.472	60.8213
.0	27.9602	79.21	704.969	62.2115
9.3	28.2744	81	729	63,6174
".l	28 5885	82.81	753.571	65,0389
.2	28 9027	84.64	778.688	66,4762
.3	29.2168	86.49	804.357	67.9292
.4	29.5310	88 36	830 584	69.3979
.5	29.8452	90.25	857.375	70.8823
.6	30.1593	92.16	884.736	7 ≥ .3 ₹24
.6 .7	30,4735	94.09	912.673	73 8982
.8	30 7876	96.04	941.192	75.4298
.9	31.1018	98.01	970.299	76.9770
		l		

Diam.	Circum.	Square.	Cube.	Area.
10	31.4160	100	1000	78.5400
1.1	31.7301	102.01	1030.301	80.1186
.2	32.0443	104.04	1061.208	81.7130
.3	32.3580	106.09	1092.727	83.3230
.4	32.6726	108.16	1124.864	81.9488
.5	32.9868	110.25	1157.625	86.5903
.6	33.3009	112.36	1191.016	88.2475
ž	33.6151	114.49	1225.043	89.9204
.8	33.9292	116.64	1259.712	91,6090
.9	34.2434	118.81	1295.029	93,3133
11	34.5576	121	1331	95.0334
~.1	34.8717	123.21	1367.631	96.7691
.2	35.1859	125.44	1404.928	98.5205
.3	35.5010	127.69	1442.897	100.2877
.4	35.8142	129.96	1481.544	102.0705
.5	36.1284	132.25	1520.875	103.8691
.6	36.4425	134.56	1560.896	105.6834
.7	36.7567	136.89	1601.613	107.5134
.8	37.0708	139.24	1643.032	109.3590
.9	37.3810	141.61	1685.159	111.2204
12	37.6992	144	1728	113.0976
~.1	38.0133	146.41	1771.561	114.9904
$\hat{\mathbf{z}}$	38.3275	148.84	1815.848	116.8989
.3	38.6416	151.29	1860.867	118.8231
.4	38,9558	153.76	1906.624	120.7631
.5	39.2700	156.25	1953,125	122.7187
.6	39.5841	158.76	2000.376	124 6901
.7	39.8983	161.29	2048.383	126.6771
.8	40.2124	163 84	2097.152	128.6799
.9	40.5266	166.41	2146.689	130.6984 .
13	40.8408	169	2197	132.7326
.1	41.1549	171.61	2248.091	134.7824
.2	41.4691	174.24	2299.968	136.480
.3	41.7832	176.89	2352.637	138.9294
.4	42.0974	179.56	2406.104	141.0264
.5	42.4116	182.25	2460.375	143.1391
.6	42.7257	184.96	2515.456	145.2675
.7	43.0399	187.69	2571.353	147.4117
.8	43.3540	190.44	2628.072	149.5715
.9	43.6682	193.21	2685.619	151.7471
14	43.9824	196	2744	153.9384
.1	44.2965	198.81	2803.221	156.1453
.2	44.6107	201.64	2863.288	158.3680
.3	44.9248	204.49	2924.207	160.6064
.4	45.2390	207.36	2985.984	162.8605
.5	45.5532	210.25	3048.625	165.1303
.6	45.8673	213.16	3112.136	167.4158
.7	46.1815	216.09	3176.523	169.7170
.8	46.4956	219.04	3241.792	172.0340
.9	46.8098	222.01	3307.949	174.3666
	1			

Diam.	Circum.	Square.	Cube.	Area.
15	47.1240	225.	3375	176.7150
1.1	47.4381	228.01	3442.951	179 0790
.2	47.7523	231.04	3511.808	181.4588
.3	48.0664	234.09	3581.577	183.8542
.4	48.3806	237.16	3652.264	186.2654
.5	48.6948	240.25	3723.875	188.6923
.6	49.0089	243.36	3796.416	191.1349
.7	49.3231	246.49	3869 893	193.5932
.8	49.6372	249.64	3944 312	196.0672
ĕ.	49.9514	252.81	4019.679	198.5569
16	50.2656	256.	4096.	201.0624
.ı	50.5797	259.21	4173.281	203.5835
.2	50.8939	262.44	4251.528	206,1203
.3	51.2080	265.69	4330 747	203.6729
.4	51.5224	268.96	4410.944	211.2411
.5	51.8364	272.25	4492.125	213 8251
.6	52.1505	275.56	4574.296	216.4248
.7	52.4647	278.89	4657.463	219,0402
.8	52.7788	282.24	4741.632	221,6712
.9	53.0930	285.61	4826.809	224,3180
17	53.4072	289.	4913.	226,9806
1,1	53.7213	292.41	5000.211	229,6588
.2	54.0355	295.84	5088.448	232,3527
.3	54.3496	299.29	5177.717	235,0623
.4	54.6038	302.76	5268.024	237,7877
.5	54.9780	306.25		
.6	55.2921	309.76	5359.375	240,5287 243,2855
.7	55.6063	313.29	5451.776	246,2635 246,0579
. ' 8	55.9204	316.84	5545.233 5639.752	248.8461
	56.2346	320.41		251.6500
18	56.5488	324.	5735.339 5832.	254,4696
10,1	56.8629	327.61	5929.741	257.3048
.2	57.1771	331.24	6028.568	260,1558
.3	57.4912	334.89	6128.487	263,0226
.4	57.8054	338.56	6229.504	265,9050
.5	58.1196	342.25	6331.625	268 8031
.6	58.4337	345.96	6434.856	271,7169
.7	58.7479	349.69	6539.203	274.6465
.8	59.0620	353.44	6644.672	277.5917
.9	59.3762	357.21	6751.269	280.5527
19.9	59.6904	361.	6859.	283.5294
	60.0045	364.81	6967.871	285,5294
.1 .2	60.3187	368.64	7077.888	289,5217 289,5298
.2	60.6328	372.49	7189 057	269,5296 292,5 5 36
.3 .4	60.9470	376.36	7301.384	295,5931 295,5931
.5	61.2612	380.25	7414.875	298.0483
.6	61.5753	384.16	7529.536	3 1.7192
.0 .7	61.8895	388.09	7645.373	304.8060
.7 .8	62.2036	392.04	7762.392	307,9082
.9	62.5178	396.01	7880.599	311.0252
.5	02.0170	990.01	1000.055	011.0202

Diam.	Circum.	Square.	Cube.	Area.
20	62,8320	400	8000	314.1600
20,1	63.1461	404.01	8120.601	317.3094
.2	63.4603	408.04	8242.408	320.4746
.3	63.7744	412.09	8365.427	323.6554
.4	64.0886	416.16	8489.664	326.8520
.5	64.4028	420.25	8615.125	330.0643
.6	64.7161	424.36	8741.816	333.2923
.7	65,0311	428.49	8869.743	336.5360
.8	65.3452	432.64	8998.912	339.7954
.9	65,6594	436.81	9129.329	343.0705
21.3	65,9736	441	9261	346.3614
".l	66,2877	445.21	9393.931	349.6679
.2	66,6019	449.44	9528.128	352.9901
.3	66,9160	453.69	9663.597	356.3281
.4	67.2302	457.96	9800.344	359.6817
.5	67.5444	462.25	9938.375	363.0511
.6	67.8585	466.56	10077.696	366.4362
.7	68.1727	470.89	10218.313	369.8370
Ω	68.4868	475.24	10360.232	373.2534
22.9	68.8010	479.61	10503.459	376.6856
22.3	69.1152	484	10648	380.1336
.1	69.4293	488.41	10793.861	383.5972
.2	69.7435	492.84	10941.048	387.0765
.3	70.0576	497.29	11089.567	390.5751
.4	70.3718	501.76	11239.424	394.0823
.5	70.6860	506.25	11390.625	397.6087
.6	71.0001	510.76	11543.176	401,1509
.7-	71.3143	515.29	11697.083	404.7087
.8	71.6284	519.84	11852.352	408.2823
	71.9426	524.41	12008,989	411.8716
23	72.2568	529	12167	415.4766
~.1	72.5709	533.61	12326.391	419.0972
.2	72.8851	538.24	12487.168	422.7336
.3	73.1992	542.89	12649.337	426.3858
.4	73.5134	547.56	12812,904	430.0536
.5	73.8276	552.25	12977.875	433.7371
.6	74.1417	556.96	13144.256	437.4363
.7	74.4559	561.69	13312.053	441.1511
.8	74.7680	566.44	13481.272	444.8819
.9	75.0882	571.21	13651.919	448.6283
24	75.3984	576	13824	452.3904
.1	75,7125	580.81	13997.521	456.1681
.2	76.0267	585.64	14172.488	459.9616
.3	76.3408	590.49	14348.907	463.7708
.4	76.6523	595.36	14526.784	467.5957
	76.9692	600.25	14706.125	471.4363
.6	77.2833	605.16	14886 .936	475.2926
.7	77.5975	610.09	15069.223	479.1646
.8	77.9116	615.04	15252 .992	483.0524
.9	78.2258	620.01	15438.249	486.9558
<u> </u>		11	l	

Diam	Circum.	Square.	Cube.	Area.
25	78.5400	625	15625	490.8750
.1	78.8541	630.01	15813.251	494.8098
.2	79.1683	635.04	16003.008	498.7604
.3	79.4824	640.09	16194.277	502.7266
.4	79.7966	645.16	16387.064	506.7086
.5	80.8108	650.25	16581.375	510.7063
.6	80.4249	655.36	16777.216	514.7196
.7	80.7391	660.49	16974.593	518.7488
.8	81.0532	665.64	17173.512	522.7936
.9	81.3674	670.81	17373.979	526.8541
26	81.6816	676	17576	530.9304
.1	81.9976	681.21	17779.581	535.0223
.2	82.3099	686.44	17984.728	539.1299
.3	82.6240	691.69	18191 447	543.2533
.4	82.9382	696.96	18399.744	547.3923
.5	83.2524	702.25	18609.625	551.5471
.6	83.5665	707.56	18821.096	555.7176
.7	83.8807	712.89	19034.163	559,9038
.8	84,1948	718.24	19248.832	564.1056
.9	84,5090	723.61	19465.109	568.3232
27	84.8232	729	19683	572.5566
.1	85.1373	734.41	19902.511	576.8056
.2	85 4515	739.84	20123,648	581.0703
.3	85.7656	745.29	20346.417	585.3507
.4	86.0798	750.76	20570.824	589.6469
.5	86.3940	756.25	20796.875	593.9587
.6	86.7081	761.76	21024.576	598.2863
.7	87.0223	767.29	21253.933	602.6295
.8	87.3364	772.84	21484.952	606.9885
.9	87.6506	778.41	21717.639	611.3632
28	87.9648	784	21952	615.7536
1	88,2789	789.61	22188,041	620.1596
.2	88.5931	795.24	22425.768	624,5814
.3	88.9072	800.89	22665.187	629,0190
.4	89.2214	806.56	22906.304	633,4722
.5	89.5356	812.25	23149.125	637.9411
.6	89.8497	817.96	23393.656	642,4257
.7	90.1639	823.69	23639 903	646.9261
.8	90.4780	829.44	23887.872	651,4421
.9	90.7922	835.21	24137.569	655,9739
29	91.1064	841	24389	660.5214
.1	91.4205	846.81	24642.171	665,0845
.2	91 7347	852.64	24897.088	669.6634
.3	92.0488	858.49	25153.757	674.2580
.4	92,3630	864.36	25412 184	678.8683
.5	92.6772	870.25	25672.375	683.4943
.6	92.9913	876.16	25934.336	688.1360
.7	93.3055	882.09	26198.073	692.7934
.8	93.6196	888.04	26463.592	697.4666
.9	93.9338	894.01	26730.899	702.1554
		1 002.01	1 20,00000	, 02.1004

30 94.2480 900 27000 1 94.5621 906.01 27270.901 .2 94.8763 912.04 27543.608 .3 95.1904 918.09 27818.127 .4 95.5046 924.16 28094.464 .5 95.8188 930.25 28372.625 .6 96.1329 936.36 28652.616 .7 96.4471 942.49 28934.443	706.8600 711.5802 716.3162 721.0678 725.8352 730.6183 735.4171 740.2316 745.0618
1 94.5621 906.01 27270.901 .2 94.8763 912.04 27543.608 .3 95.1904 918.09 27818.127 .4 95.5046 924.16 28094.464 .5 95.8188 930.25 28372.625 .6 96.1329 936.36 28652.616 .7 96.4471 942.49 28934.443	711.5802 716.3162 721.0678 725.8352 730.6183 735.4171 740.2316
.2 94.8763 912.04 27543.608 .3 95.1904 918.09 27818.127 .4 95.5046 922.16 28094.464 .5 95.8188 930.25 28372.625 .6 96.1329 936.36 28652.616 .7 96.4471 942.49 28934.443	716.3162 721.0678 725.8352 730.6183 735.4171 740.2316
.3 95.1904 918.09 27818.127 .4 95.5046 924.16 28094.464 .5 95.8188 930.25 28372.625 .6 96.1329 936.36 28652.616 .7 96.4471 942.49 28934 443	721.0678 725.8352 730.6183 735.4171 740.2316
.4 95.5046 924.16 28094.464 .5 95.8188 930.25 28372.625 .6 96.1329 936.36 28652.616 .7 96.4471 942.49 28934 443	725.8352 730.6183 735.4171 740.2316
.5 95.8188 930.25 28372.625 .6 96.1329 936.36 28652.616 .7 96.4471 942.49 28934 443	730.6183 735.4171 740.2316
.6 96.1329 936.36 28652.616 .7 96.4471 942.49 28934.443	735.4171 740.2316
7 96.4471 942.49 28934.443	740.2316
1 1 90.44/1 942.49 28934.443	
9 00 7010 040 04 00010 110	1 /40.0018
.8 96.7612 948.64 29218.112 .9 97.0754 954.81 29503.629	740.0077
	749.9077
	754.7694
	759.6467
	764.5397
3 98.3320 979.69 30664.297 4 98.6452 985.96 30959.144	769.4485 774.3729
.5 98.9604 992.25 31255.875	779.3131
.6 99.2745 998.56 31554.496	784.2689
.7 99.5887 1004.89 31855.013	789.2406
.8 99.9028 1011.24 32157,432	794.2278
.9 100.2170 1017.61 32461.759	799.2308
23 100.2170 1017.01 32401.739	804.2496
.1 100.8453 1030.41 33076.161	809.2840
.2 101.1595 1036.84 33386,248	814.3341
3 101.4736 1043.29 33698,267	819.3999
4 101.7478 1049.76 34012.224	824.4815
.5 102.1020 1056.25 34328.125	829.5787
.6 102.4161 1062.76 34645.976	834.6917
7 102.7303 1069.29 34965.783	839.8203
.8 103.0444 1075.84 35287.552	844.9647
.9 103.3586 1082.41 35611.289	850.1248
33 103.6728 1089 35937	855,3006
.1 103.9869 1095.61 36264.691	860,4920
.2 104.3011 1102.24 36594.368	865,6992
.3 104.6151 1108.89 36926.037	870,9222
.4 104.9294 1115.56 37259.704	876,1608
.5 105.2436 1122.25 37595.375	881.4151
.6 105.5577 1128.96 37933.056	886.6851
.7 105.8719 1135.69 38272.753	891.9709
.8 106.1860 1142.44 38614.472	897.2723
.9 106.5002 1149.21 38958.219	902,5895
34 106.8144 1156 39304	907.9224
.1 107.1285 1162.81 39651.821	913.2709
.2 107.4272 1169.64 40001.688	918.6352
.3 107.7568 1176.49 40353.607	924.0115
.4 108.0710 1183.36 40707.584	929,4109
.5 108.3852 1190.25 41063.625	934,8223
.6 108.6993 1197.16 41421.736	940.2494
.7 109.0352 1204.09 41781.923	945.6922
8 109.3076 1211.04 42144.192	951.1508
.9 109.6418 1218.01 42508.549	956.6250

Diam.	Circum.	Square.	Cube.	Area.
35	109.9560	1225	42875	962.1150
.1	110.2701	1232.01	43243.551	967.6206
.2	110.5843	1239.04	43614.208	973.1420
.3	110.8984	1246.09	43986.977	978.6790
.4	111.2126	1253.16	44361.864	984.2318
.5	111.5268	1260.25	44738.875	989.8003
.6	111.8409	1267.36	45118.016	995.3845
.7	112.1551	1274.49	45499.293	1000.9843
.8	112,4692	1281.64	45882.712	1006.6000
.9	112.7834	1288.81	46268.279	1012.2313
36	113.0976	1296	46656	1017.8784
.ı	113.4117	1303.21	47045.831	1023.5411
.2	113,7259	1310.44	47437.928	1029.2195
.3	114.0400	1317.69	47832.147	1034.9131
.4	114.3542	1324.96	48228.544	1040.6235
.5	114.6684	1332,25	48627.125	1046.3491
	114.9825	1339.56	49027.896	1052.0904
.6 .7	115.2967	1346.89	49430.863	1057.8474
.8	115.6108	1354.24	49836.032	1063.6200
9	115.9250	1361.61	50243.409	1069.408 4
37	116.2392	1369	50653	1075.2126
.1	116.5533	1376.41	51064.811	1081.0324
.2	116.8675	1383.84	51478.848	1086.8679
.3	117.1816	1391.29	51895.117	1092.7191
.4	117.4958	1398.76	52313.624	1098.5862
.5	117.8100	1406.25	52734.375	1104.4687
.6	118.1241	1413.76	53157.376	1110.3671
.7	118.4383	1421.29	53582.633	1116.2811
.8	118.7524	1428.84	54010.152	1122.2109
.9	119.0666	1436.41	54439.939	1128.1564
38	119.3808	1444	54872	1134.1176
.1	119.6949	1451.61	55306.341	1140.0946
.2	120.0091	1459.24	55742.968	1146.0870
.3	120.3232	1466.89	56181.887	1152.0954
.4	120.6374	1474.56	56623.104	1158.1194
.5	120.9516	1482.25	57066.625	1164.1591
.6	121.2657	1489.96	57512.456	1170.2145
.7	121.5799	1497.69	57960.603	1176.2857
.8	121.8940	1505.44	58411.072	1182.3725
.9	122.2082	1513.21	58863.869	1188.4651
39	122.5224	1521	59319	1294.5394
.1	122.8365	1528.81	59776.471	1200.7273
.2	123.1507	1536.64	60236.288	1206.8770
.3	123.4648	1544.49	60698.457	1213.0424
.4	123.7790	1552.36	61162.984	1219.2243
.5	124.0932	1560.25	61629.875	1225.4203
.6	124.4073	1568.16	62099.136	1231.6328
.7	124.7215	1576.09	62570.773	1237.8610
.8	125.0356	1584.04	63044.792	1244.1210
.9	125.3498	1592.01	63521.199	1250.3646

Diam.	Circum.	Square.	Cube.	Area.
40	125.6640	1600	64000	1256.6400
™ .1	125.9781	1608.01	64481.201	1262,9310
.2	126.2923	1616.04	64964.808	1269.2388
.3	126.6064	1624.09	65450.827	1275.5602
.4	126.9206	1632.16	65939.264	1281.8984
.5	127.2348	1640.25	66430.125	1288.2523
.6	127.5489	1648.36	66923.416	1294.6219
.7	127.8631	1656.49	67419.143	1301.0071
.8	128.1772	1664.64	67917.312	1307.4082
.0 .9	128.4914	1672.81	68417.929	1313.8249
41	128.8056	1681	68921	1320.2574
*1.1	129.1197	1689.21	69426.531	1326.7055
.2	129.4323	1697.44	69934.528	1333,1693
.3	129.7480	1705.69	70444.997	1339.6489
.4	130.0622	1713.96	70957.944	1346.1441
.5	130.3764	1722.25	71473.375	1352.6551
.6	130.6905	1730.56	71991.296	1359.1818
.7	131.0047	1738.89	72511.713	1365.7242
.8	131.3188	1747.24	73034,632	1372.2822
.0 .9	131.6320	1755.61	73560,059	1378.8560
42	131.9472	1764	74088	1385,4456
	132.2613	1772.41	74618.461	1392.0508
.1 .2	132.5755	1780.84	75151.448	1398.6717
.3	132.8896	1789.29	75686.967	1405.3083
.4	133.2038	1797.76	76225.024	1411.9607
.5	133.5180	1806.25	76765,625	1418.6287
.6	133.8321	1814.76	77308.776	1425.3125
.7	134.1463	1823.29	77854.483	1432.0119
.8	134,4604	1831.84	78402.752	1438.7271
.9	134.7746	1840.41	78953.589	1445,4580
43	135.0888	1849	79507	1452.2046
**.1	135.4029	1857.61	80062,991	1458.9668
.2	135.7171	1866.24	80621.568	1465.7448
.3	136.0332	1874.89	81182.737	1472.5385
.4	136.3454	1883.56	81746.504	1479.3480
.5	136,6596	1892.25	82312.875	1486.1731
.6	136.9737	1900.96	82881,856	1493.0139
.7	137.2879	1909.69	83453.453	1499.8705
.8	137.6020	1918.44	84027.672	1506.7427
.9	137.9162	1927.21	84604.519	1513.6287
44	138.2304	1936	85184	1520.5344
ı	138.5445	1944.81	85766.121	1527.4537
.2	138.8587	1953.64	86350.888	1534.3888
.3	139.1728	1962.49	86938.307	1541.3396
.4	139.4870	1971.36	87528,384	1548.3061
.5	139.8012	1980.25	88121.125	1555.2883
.6	140.1153	1989.16	88716.536	1562.2862
.7	140.4295	1998.09	89314.623	1569.2998
.8	140.7436	2007.04	89915.392	1576.3292
.9	141.0578	2016.01	90518.849	1583.3742

Diam.	Circum.	Square.	Cube.	Area.
45	141.3720	2025	91125	1590.4350
.1	141.6861	2034.01	91733.851	1597.5114
.2	142.0003	2043.04	92345.408	1604.6 03 6
.3	142.3144	2052.09	92959.677	1611.7114
.4	142.6286	2061.16	93576.664	1618.8350
.5	142.9428	2070.25	94196.375	1625.9743
.6	143.2569	2079.36	94818.816	1633.1293
.7	143.5711	2088.49	95443.993	1640.3020
.8	143.8852	2097.64	96071.912	1647.4864
.9	144.1994	2106.81	96702.579	1654.6885
46	144.5136	2116	97336	1661,9064
.1	144.8277	2125.21	97972.181	1669.1399
.2	145.1419	2134.44	98611.128	1676.3891
.3	145.4560	2143.69	99252.847	1683.6541
.4	145.7702	2152.96	99897.344	1690.9347
.5	146.0844	2162.25	100544.625	1698.2311
.6	146.3985	2171.56	101194.696	1705.5432
.7	146.7127	2180.89	101847.563	1712.8710
.8	147.0268	2190.24	102503.232	1720.2144
.9	147.3410	2199.61	103161.709	1727.5736
47	147.6552	2209	103823	1734.9486
l	147.9693	2218.41	104487.111	1742.3392
.2	148.2835	2227.84	105154.048	1749.7455
.3	148.5976	2237.29	105823.817	1757.1675
.4	148.9118	2246.76	106496.424	1764.6045
.5	149.2260	2256.25	107171.875	1772.0587
.6	149.5361	2265.76	107850.176	1779.5279
.7	49.8543	2275.29	108531.333	1787.0127
.8	150.1684	2284.84	109215.352	1794.5133
.9	150.4826	2294.41	109902.239	1802.0296
48	150.7968	2304	110592	1809.5616
.1	151.1109	2313.61	111284.641	1817.1092
.2	151.4251	2323.24	111980.168	1824.6726
.3	151.7392	2332.89	112678.587	1832.2518
.4	152.0534	2342.56	113379.904	1839.8466
.5	152.3676	2352.25	114084.125	1847.4571
.6	152.6817	2361.96	114791.256	1855.0833
.7	152.9959	2371.69	115501.303	1862.7253
.8	153.3100	2381.44	116214.272	1870.3829
9	153.6242	2391.21	116930.169	1878.0563
49	153.9384	2401	117649	1885.7454
.1	154.2525	2410.81	118370.771	1893.4501
.2	154.5667	2420.64	119095.488	1901.1706
.3	154.8808	2430.49	119823.157	1908,9068
.4	155.1950	2440.36	120553.784	1916.6587
.5	155.5092	2450.25	121287.375	1924.4263
.6	155.8233	2460.16	122023.936	1932.2096
.7	156.1375	2470.09	122763.473	1940.0086
.8	156.4516	2480.04	123505.992	1947.8234
.9	156.7558	2490.01	124251.499	1955.6538

Diam.	Circum.	Square.	Cube.	Area.
50	157.0800	2500	125000	1963.5000
.1	157.3941	2510.01	125751.501	1971.3618
.2	157.7083	2520.04	126506.008	1979.2394
.3	158.0224	2530.09	127263.527	1987.1326
.4	158.3366	2540.16	128024.064	1995.0416
.5	158.6508	2550.25	128787.625	2002.9663
.6	158.9649	2560.36	129554.216	2010.9067
.7	159.2791	2570.49	130323.843	2018.8628
.8	159.59 32	2580.64	131096.512	2026.8346
.9	159.9074	2590 81	131872.229	2034.8770
51	160.2216	2601	132651	2042.8254
.1	160.5357	2611.21	133432.831	2050.8443
.2	160.8499	2621.44	134217.728	2058.8784
.3	161.1640	2631.69	135005.697	2066.9293
.4	161.4782	2641.96	135796.744	2074.9953
.5	161.7924	2652.25	136590.875	2083.0771
.6	162.1065	2662.56	137388.096	2091.1746
.7	162.4207	2 672.89	138188.413	2099.2878
.8	162.7348	2683.24	138991.832	2107.4166
9	163.0490	2693.61	139798.359	2115.5612
52	163.3632	2704	140608	2123.7216
.1	163 6773	2714.41	141420.761	2131.8976
.2	163.9935	2724.84	142236.648	2140.0893
.3	164.3056	2735.29	143055.667	2148.2967
.4	164.6198	2745.76	143877.824	2156.5199
.5	164.9340	2756.25	144703.125	2164.7587
.6	165.2481	2766.76	145531.576	2173.0133
.7	165.5623	2777.29	146363.183	2181.2835
.8	165.8764	$\begin{array}{c} 2787.84 \\ 2798.41 \end{array}$	147197.952 148035.889	2189.5695 2197.8712
53.9	166.1906	2809	148877	2206.1886
	166.5048 166.8189	2819.61	149721.291	2214.5216
.1	167.1331	2830.24	150568.768	2222.8704
.3	167.4472	2840.89	151419.437	2231.2350
.3	167.7614	2851.56	152273.304	2239.6152
.5	168.0756	2862.25	153130.375	2248.0111
.6	168.3897	2872.96	153990.656	2256.4227
.7	168.7049	2883.69	154854.153	2264.8701
.8	169.9180	2894.44	155720.872	2273,2931
9 .9	169.3322	2905.21	156590.819	2281.7519
54	169.6464	2916	157464	2290.2264
1.1	169.9605	2926.81	158340.421	2298.7165
.2	170.2747	2937.64	159220.088	2307.2224
.3	170.5888	2948.49	160103.007	2315.7440
.4	170,9030	2959.36	160989.184	2324.2813
.5	171.2172	2970.25	161878.625	2332.8343
.6	171.5313	2981.16	162771.336	2341.4030
.7	171.8455	2992.09	163667.323	2349.9874
.8	172,1596	3003.04	164566.592	2358.5876
.9	172.4738	3014.01	165469.149	2367.2034

Diam.	Circum.	Square.	Cube.	Area.
55	172,7880	3025	166375	2375.8350
. 1	173.1021	3036.01	167284.151	2384.4822
.2	173.4163	3047.04	168196,608	2393.1452
.3	173.7304	3058.09	169112.377	2401.8238
.4	174.0446	3069.16	170031.464	2410.5182
.5	174.3588	3080.25	170953:875	2419.2283
.6	174.6729	3091.36	171879.616	2427.9541
.7	174.9771	3102.49	172808.693	2436.6956
.8	175.3092	3113.64	173741.112	2445.4528
.9	175.6154	3124.81	174676.879	2454.2257
56	175.9296	3136	175616	2463.0144
1	176.2437	3147.21	176558.481	2471.8187
.2	176.5579	3158.44	177504.328	2480.6387
.2	176.8720	3169.69	178453.547	2489.4745
.4	177.1862	3180.96	179406.144	2498.3259
.5	177.5004	3192.25	180362.125	2507.1931
.6	177.8145	3203.56	181321.496	2516.0760
.7	178.1287	3214.89	182284.263	2524.9 736
.8	178.4428	3226.24	183250.432	2533.8888
9	178.7570	3237.61	184220.009	2542.8188
57	179.0712	3249	185193	2551.7646
.1	179.3853	3260.41	186169.411	2560.7260
.2	179.6995	3271.84	187149.248	2569.7031
.2	180.0136	3283.29	188132.517	2578.6959
.4	180.3278	3294.76	189119.224	2587.7045
.5	180.6420	3306.25	190109.375	2596.7287
.6	180,9561	3317.76	191102.976	2605.7687
.7	181.2803	3329.29	192100.033	2614.8243
.8	181.5844	3340.84	193100.552	2623.8957
.9 58	181.8986	3352.41	194104.539	2632,9828
	182.2128	3364	195112	2642.0856
.l	182.5269	3375.61	196122.941	2651.2046
.2 .3	182.8411 183.1552	3387.24	197137.368	2660.3382
.3	183.4694	3398.89 3410.56	198155.287	2669.4882
.5	183.7836	3422.25	199176.704	2678.6538
.5	184.0977	3433.96	200201.625 201230,056	2687.8351 2697.0321
.7	184.4119	3445.69	201230.030	2706,2449
.8	184.7260	3457.44	202202.003	2715.4733
.9	185.0402	3469.21	203237.472	2724.7175
59	185.3544	3481	204330.403	2733.9774
:1	185,6685	3492.81	206425.071	2743.2529
.3	185.9827	3504.64	207474.688	2752.5442
.3	186.2696	3516.49	208527.857	2761.8512
4	186.6110	3528.36	209584.584	2771.1739
.5	186.9252	3540.25	210644.875	2780.5123
.6	187.2393	3552.16	211708.736	2789.8664
.7	187.5535	3564.09	212776.173	2799.2362
.8	187.8676	3576.04	213847.192	2808.6218
.9	188.1818	35 88.01	214921.799	2818.0230

Area.

Cube.

Square.

<u>...</u>

Diam.

.5

.6 .7

.8

.9

202.6332

202.9473

203.2615

203.5756 203.8898

Circum.

4160.25

4173.16

4186.09

4199.04

4212.01

268336.125

269586.136

270840.023

272097.792

273359.449

3267.4603

3277.5998

3287.7550

3297.9260

3308,1126

Diam.	Circum.	Square.	Cube.	Area.
		<u>-</u>		
65	204.2040	4225	274625	3318.31 <i>5</i> 0
.1	204.5181	4238.01	275894.451	3328.5340
.2	204.8323	4251.04	277167.808	3338.7668
.3	205.1464	4264.09	278445.077	3349.0162
.4	205.4606	4277.16	279726.264	3359.2814
.5	205.7748	4290.25	281011.375	3369.562 3
.6	206.0889	4303.36	282300.416	3379.8589
.7	206.4031	4316.49	283593.393	3390.1712
.8	206.7172	4329.64	284890.312	3400.4992
.9	207.0314	4342.81	286191.179	3410.8429
66	207.3456	4356	287496	3421.2024
.1	207.6597	4369.21	288804.781	3431.5775
.2	207.9739	4382.44	290117.528	3441.9633
.3	208.2880	4395.69	291434.247	3452.3749
.4	208.6022	4408.96	292754.944	3462.7971
.5	208.9164	4422.25	294079.625	3473.2351
.6	209.2305	4435.56	295408.296	3483.6888
.7	209.5447	4448.89	296740.963	3494.1640
.8	209.8588	4462.24	298077.632	3504.6432
.9	210.1730	4475.61	299418. 309	3515.1430
67	210.4872	4489	300763	3525.6606
.1	210.8013	4502.41	302111.711	3536.1928
.2	211.1155	4515.84	303464.448	3546.7407
.3	211.4296	4529.29	304821.217	3557.3043
.4	211.7438	4542.76	306182.024	3567.8837
.5	212.0580	4556.25	307546.875	3578.4787
.6	212.3721	4569.76	308915.776	3589.0895
.7	212.6863	4583.29	310288.733	3599.7159
.8	213.0004	4596.84	311665.752	3610.3581
.9	213.3146	4610.41	313046.839	3621.0160
68	213.6288	4624	314432	3631.6896
.1	213.9429	4637.61	315821.241	3642.3788
.2	214.2571	4651.24	317214.568	3653.0838
.3	214.5712	4664.89	318611.987	3663.8040
.4	214.8854	4678.56	320013.504	3674.5410
.5	215.1996	4692.25	321419.125	3685.2931
.6	215.5137	4705.96	322828.856	3696.0060
.7	215.8279	4719.69	324242.703	3706.8445
.8	216.1420	4733.44	325660.672	3717.6437
2.9	216.4562	4747.21	327082.769	3728.4587
69	216.7704	4761	328509	3739.2894
.1	217.0845	4774.81	329939.371	3750.1357
.2	217.3987	4788.64	331373.888	3760.9978
.3	217.7128	4802.49	332812.557	3771.8756
.4	218.0270	4816.36	334255.384	3782.7691
.5	218.3412	4830.25	335702.375	3793.6783
.6	218.6553	4844.16	337153.536	3804.6032
.7	218.9695	4858.09	338608.873	3815.5438
.8	219.2836	4872.04	340068.392	3826.5002
.9	219.5978	4886.01	341532.099	3837.47£2

Diam.	Circum.	Square.	Cube.	Area.
70	219.9120	4900	343000	3848.4600
1.1	220.2261	4914.01	344472,101	3859.4952
$\overline{2}$	220.5403	4928.04	345948,408	3870.4826
.3	220.8544	4942.09	347428.927	3881.5174
.4	221.1686	4956.16	348913.664	3892,5680
.5	221.4828	4970.25	350402.625	3903.6343
.6	221.7969	4984.36	351895.816	3914.7163
.7	222.1111	4998.49	353393,243	3925.8140
.8	222,4252	5012.64	354894.912	3936,9274
.9	222.7394	5026.81	356400.829	3948.0565
71	223.0536	5041	357911	3959.2014
1.1	223.3677	5055.21	359425.431	3970.3619
.2	223.6819	5069.44	360944.128	3981.5381
.3	223.9960	5083.69	362467,097	3992,7301
.4	224.3102	5097.96	363994.344	4003.9373
.5	224,6244	5112.25	365525,875	4015.1611
.6	224.9385	5126.56	367061.696	4026.4002
.7	225.2527	5140.89	368601.813	4037.6550
.8	225.5668	5155.24	370146.232	4048.9254
.9	225.8810	5169.61	371694.959	4060,2116
72	226.1952	5184	373248	4071.5136
1.1	226.5093	5198.41	374805.361	4082.8332
.2	226.8235	5212.84	376367.048	4094.1645
.3	227.1376	5227.29	377933.067	4105.5125
.4	227.4518	5241.76	379503.424	4116.8793
.5	227.7660	5256.25	381078.125	4128.2587
.6	228,0801	5270.76	382657.176	4139.6524
.7	228.3943	5285.29	384240.583	4151.0667
.8	228.7084	5299.84	385828.352	4162.4943
.9	229.0226	5314.41	387420.489	4173.9376
73	229.3368	5329	389017	4185.3966
.1	229.6509	5343.61	390617.891	4196.8712
.2	229.9651	5358.24	392223.168	4208.3614
.3	230.2792	5372.89	393832.837	4219.8678
.4	230.5934	5387.56	395446.904	4231.3896
.5	230.9076	5402.25	397065.375	4242.9271
.6	231.2217	5416.96	398688.256	4254.4803
.7	231.5359	5431.69	400315.553	4266.0493
.8	231.8500	5446.44	401947.272	4277.6339
.9	232.1642	5461.21	403583.419	4289.2343
74	232.4784	5476	405224	4300.8504
.1	232.7925	5490.81	406869.021	4312.4821
.2	233.1067	5505.64	408518.488	4324.1296
.3	233.4208	5520.49	410172.407	4335.7928
.4	233.7350	5535.36	411830.784	4347.4717
.5	234.0492	5550.25	413493.625	4359.1663
.6	234.3633	5565.16	415160.936	4370.8766
.7	234.6775	5580.09	416832.723	4382.6026
.8	234.9916	5595.04	418508.992	4394.3448
.9	235.3058	5610.01	420189.749	4406.1018

		1		
Diam.	Circum.	Square.	Cube.	Area.
75	235.6200	5625	421875	4417.8750
.1	235.9341	5640.01	423564.751	4429.6638
.2	236.2483	5655.04	425259.008	4441.4684
.3	236.5624	5670.09	426957.777	4453.2886
.4	236.8766	5685.16	428661.064	4465.1246
.5	237.1908	5700.25	430368.875	4476.9763
.6	237.5049	5715. 3 6	432081.216	4488.8437
.7	237.8191	5730.49	433798.093	4500.7268
.8	238.1332	5745.64	435519.512	4512.6256
.9	238.4474	5760.81	437245.479	4524.5401
76	238.7616	5776	438976	4536.4704
.1	239.0757	5791.21	440711.081	4548.4163
.2	239.3899	5806.44	442450,728	4560.3787
.3	239.7040	5821.69	444194.947	4572.3553
.4	240.0182	5836.96	445943,744	4584.3583
.5	240.3324	5852.25	447697.125	4596.3571
.6	240.6465	5867.56	449455.096	4608.3816
.7	240.9607	5882,89	451217.663	4620.4218
.8	241.2748	5898.24	452984.832	4632.4776
.9	241.5987	5913.61	454756,609	4644.5492
77	241.9032	5929	456533	4656.6366
.1	242.2173	5944.41	458314.011	4668.7396
.2	242.5315	5959.84	460099.648	4680.8583
.3	242.8456	5975.29	461889.917	4692.9927
.4	243.1598	5990.76	463684.824	4705.1429
.5	243.4740	6006.25	465484.375	4717.3087
₹.6	243.7881	6021.76	467288.576	4729.4903
.7	244.1023	6037.29	469097.433	4741.6875
.8	244.4164	6052.84	470910.952	4753.9605
9	244.7306	6068.41	472729.139	4766.1292
78	245.0448	6084	474552	4778.3736
.1	245.3589	6099.61	476379.541	4790.6336
.2 .3	245.6731	6115.24	478211.768	4802.9094
.3	245.9872 246.3014	6130.89	480048.687	4815.2010
.5	246.6156	6146.56	481890.304	4827.5082
.6	246.9297	6162.25	483736.625	4839.8311
.7	247.2439	6177.96	485587.656	4852.1697
.8	247.5480	6193.69	487443.403	4864.5241
.9	247.8722	6209.44	489303.872	4876.8973
79	248.1864	6225.21 6241	491169.069	4889.2799
13.1	248.5005	6256.81	493039	4901.6814
.2	248.8147	6272.64	494913.671	4914.0985
.3	249.1288	6288.49	496793.088 498677.257	4926.5314 4938.9820
.4	249.4430	6304.36	500566.184	4938.9820 4951.4443
.5	249.7572	6320.25	502459.875	
.6	250.0713	6336.16	504358.336	4963.9243 4976.4840
.7	250.3855	6352.09	506261.573	4988.9314
.8	250.6996	6368.04	508169.592	5001.4586
.9	251.0138	6384,01	510082.399	5014,0014
		0003,01	010002.000	2017,0017

Diam.	Circum.	Square.	Cube.	Area.
80	251.3280	6400	512000	5026.5600
1.1	251.6421	6416.01	513922.401	5039.1342
.2	251.9563	6432.04	515849.608	5051.7242
.3	252.2704	6448.09	517781.627	5064.3298
.4	252.5846	6464.16	519718.464	5076.9552
.5	252.8988	6480.25	521660.125	5089.5883
.6	253.2129	6496.36	523606.616	5102.2411
.7	253.5271	6512.49	525557.94 3	5114.9096
.8	253.8412	6528.64	527514.112	5127.5938
.9	254.1554	6544.81	529475.129	5140.2937
81	254,4696	6561	531441	5153.0094
.1	254.7837	6577.21	533411.731	5165.7407
.2	255.0979	6593.44	535387.328	5178.4877
.3	255.4120	6609.69	537367.797	5191.2505
.4	255.7262	6625.96	539353.144	5204.0285
.5	256.0404	6642.25	541343.375	5216.8231
.6	256.3545	6658.56	543338.496	5229.6330
.7	256.6687	6674.89	545338.513	5242,4586
.8	256.9828	6691.24	547343.432	5255.2998
.9	257.2970	6707.61	549353.259	5268.1568
82	257.6112	6724	551368	5281.0296
.1	257.9253	6740.41	553387.661	5293,9180
.2	258.2395	6756.84	555412.248	5306.8221
.3	258.5536	6773.29	557441.767	5319.7439
.4	258.8646	6789.76	559476.224	5332.6775
.5	259.1820	6806.25	561515.625	5345.6287
.6	259.4961	6822.76	563559.976	5358.5957
.7	259.8103	6839.29	565609.283	5371.5983
.8	260.1244	6855.84	567663.552	5384.5762
9 83	260.4386	6872.41	569722.789	5397.5908
	260.7528	6889	571787	5410.6206
.1	261.0669	6905.61	573856.191 575930.368	5423,6660 5436,7272
.2	261.3811	6922.24		
.3	261.6952	6938.89	578009.537	5449.8042 5462.8968
.4	262.0094	6955.56	580093.704 582182.875	5476.0051
.5	262.3236 262.6376	6972.25 6988.96	584277.056	5489.1291
.6 .7	262.9519	7005.69	586376.253	5502,2689
.8	263.2640	7003.03	588480.472	5515.4243
.9	263.5802	7039.21	590589.719	5528,5958
84	263.8944	7056	592704	5541.7824
°.1	264.2085	7072.81	594823.321	5554.9849
.2	264.5227	7089.64	596947.688	5568.2032
.3	264.8368	7106.49	599077.107	5581.4372
.3	265.1510	7100.49	601211.584	5294.6869
.5	265.4652	7140.25	603351.125	5607.9523
.6	265.779 3	7140.25 7157.16	605495.736	5621,2334
.7	266.0935	7174.09	607645.423	5634.5682
.8	266.4076	7174.03	609800.192	5647.8428
.9	266.7218	7208.01	611960.04	5661.1710
.0	200.1210	1200.01	011000.04	

CIRCLES, ADVANCING BY A TENTH.

Diam.	Circum.	Square.	Cube.	Area.
85	267.0360	7225	614125	5674.5150
".l	267.3501	7242.01	616295.051	5687.8746
$\hat{\mathbf{z}}$	267.6643	7259.04	618470.208	5701.2500
.3	267.9784	7276.09	620650.477	5714.6410
.4	268.2926	7293.16	622835.864	5728.0478
.5	268.6068	7310.25	625026.375	5741.4703
. <u>6</u>	268.9209	7327.36	627222.016	5754.9085
.7	269.2351	7344.49	629422.793	5768.3624
.8	269.5492	7361.64	631628.712	5781.8320
.9	269.8634	7378.81	633839.779	5795.3173
86	270.1776	7396	636056	5808.8184
°.1	270.4917	7413.21	638277.381	5822.3351
.2	270.8059	7430.44	640503.928	5835.8675
.3	271.1200	7447.69	642735.647	5849.4157
.4	271.4342	7464.96	644972.544	5862.9795
.5	271.7484	7482.25	647214.625	5876.5591
.6	272.0665	7499.56	649461.896	5890.1541
.7	272.3767	7516.89	651714.363	5903.7654
.8	272.6908	7534.24	653972.032	5917.3920
.ĕ	273.0050	7551.61	656234.909	5931.0344
87	273.3192	7569.	658503	5944.6926
".1	273.6333	7586.41	660776.311	5958.3644
.2	273.9875	7603.84	663054.848	5972.0559
.3	274.2616	7621.29	665338.617	5985.7691
.4	274.5758	7638.76	667627.624	5999.4821
.5	274.8900	7656.25	669921.875	6013.2187
.6	275.2041	7673.76	672221.376	6026.9711
.7	275.5183	7691.29	674526.133	6040.7391
.8	275.8324	7708.84	676836.152	6054.5149
.9	276.1466	7726.41	679151.439	6068.3224
88	276.4608	7744	681472	6082.1376
.l	276.7749	7761.61	683797.841	6095.9684
.2	277.0891	7779.24	686128.968	6109.8150
.3	277.4032	7796.89	688465.387	6123.6774
.4	277.7174	7814.56	690807.104	6137.5554
.5	278.0316	7832.25	693154.125	6151.4491
.6	278.3457	7849.96	695506.456	6165.3585
.7	278.6599	7867.69	697864.103	6179.2837
.8	278.9750	7885.44	700227.072	6193.2245
.9	279.2882	7903.21	702595.369	6207.1811
89	279.6024	7921	704969	6221.1534
.1	279.9165	7938.81	707347.971	6235.1413
.2	280.2307	7956.64	709732.288	6249.1450 6263.1644
.3	280.5448	7974.49	712121.957	6277.1995
.4	280.8590	7992.36	714516.984 716917.375	6291.2035
.5	281.1732	8010.25	719323.136	6305,3168
.6 .7	281.4873	8028.16 8046.09	721734.273	6319.3990
	281.8825 282.1156	8064.04	724150.792	6333,4970
.8 .9	282.1150 282.4298	8082.01	726572.699	6347.6813
.9	202.4230	0002.01	120012.033	004110010

CIRCLES, ADVANCING BY A TENTH.

Diam.	Circum.	Square.	Cube.	Area.
90	282,7440	8100	729000	6361.7400
JU.1	283.0581	8118.01	731432.701	6375.8850
.2	283.3723	8136.04	733870.808	6390.0458
.3	283.6864	8154.09	736314.327	6404.2222
.4	284.0006	8172.16	738763.264	6418.4144
.5	284.3148	8190.25	741217.625	6432.6223
.6	284.6289	8208.36	743677.416	6446.8474
.7	284.9431	8226.49	746142.643	6461.0852
.8	285.2572	8244.64	748613.312	6475.3402
.9	285.5714	8262.81	751089.429	6489.6109
91	285.8856	8281	753571	6503.8974
·.1	286.1997	8299.21	756058.031	6518.1995
.2	286.5139	8317.44	758550.528	6532.5173
.3	286.8290	8335.69	761048.497	6546.8909
.4	287,1422	8353.96	763551.944	6561.2081
.5	287.4564	8372.25	766060.875	6575.5651
.6	287.7705	8390.56	768575.296	6589.9458
.7	288.0847	8408.89	771095.213	6604.3222
.8	288.3988	8427.24	773620.632	6618.7542
.9	288.7130	8445.61	776151.559	6633.1820
92	289.0272	8464	778688	6647.6256
.1	289.3413	8482.41	781229.961	6662.0848
.2	289.6555	8500.84	783777.448	6676.5597
.3	289.9696	8519.29	786330.467	6691.0161
.4	290.2838	8537.76	788889.024	6705.5567
.5	290.5980	8556.25	791453.125	6720.0787
.6	290.9121	8574.76	794022.776	6734.6165
.7	291.2263	8593.29	796597.983	6749.1699
.8	291.5404	8611.84	799178.75 2	6763.7391
.9	291.8546	8630.41	801765.089	6778.3240
93	292.1688	8649	804357	6792.9246
.1	292.4829	8667.61	806954.491	6807.5408
.2	292.7971	8686.24	809557.568	6822.1730
.3	293.1112	8704.89	812166.237	6836.8206
.4	293.4254	8723.56	814780.504	6851.4840
.5	293.7396	8742.25	817400.375	6866.1631
.6	294.0537	8760.96	820025.856	6880.8579
.7	294.3679	8779.69	822656.953	6895.5685
.8	294,6820	8798.44	825293.672	6910.2947
.9	294.9962	8817.21	827936.019	6925.0367
94	295.3104	8836	830584	6939.7944
.1	295.6245	8854.81	833237.621	6954.5677
.2	295.9387	8873.64	835896.888	6969.3568
.3	296.2436	8892.49	838561.807	6984.1614
.4	296.5670	8911.36	841232.384	6998.9821
.5	. 296.8812	8930.25	843908.625	7013.8183
.6	297.1953	8949.16	846590.536	7028.6702
.7	297.5095	8968.09	849278.123	7043.5025
.8	297.8236	8987.04	851971.392	7058.4180
.9	298.1378	9006.01	854670.349	7073.3202

CIRCLES, ADVANCING BY A TENTH:

Diam.	Circum.	Square.	Cube.	Area.
95	298.4520	9025	857375	7088.2350
1.1	298.7661	9044.01	860085,351	7103.1654
.2	299.0723	9063.04	862801.408	7118.1116
.3	299.3944	9082.09	865523,177	7133.0734
.4	299,7086	9101.16	868250.664	7148.0510
.5	300.0228	9120.25	870983.875	7163.0443
.6	300.3369	9139.36	873722.816	7178.0533
.7	300.6511	9158.49	876467.493	7193.0780
.8	300.9652	9177.64	879217.912	7208.1184
.9	301.2794	9196.81	881974,079	7223.1745
96	301.5936	9216	884736	7238.2464
.1	301.9077	9235.21	887503.681	7253.3339
.2	302.2219	9254.44	890277.128	7268.4371
.3	302.5360	9273.69	893056.347	7283.5561
.4	302.8502	9292,96	895841.344	7298.6907
.5	303.1644	9312.25	898632.125	7313.8411
.6	303.4785	9331.56	901428.696	7329.0072
.7	303.7927	9350.89	904231.063	7344.1890
.8	304.1068	9370.24	907039.232	7359.3864
.9	304.4210	9389.61	909853.209	7374.5996
97	304.7352	9409	912673	7389.8286
1.1	305.0493	9428.41	915498.611	7405.0732
.2	305.3635	9447.84	918330.048	7420.3335
.3	305.6776	9467.29	921167.317	7435.6095
.4	305.9918	9486.76	924010.424	7450.9013
.5	306.3060	9506.25	926859.375	7466.2087
.6	306.6201	9525.76	929714.176	7481.5319
.7	306.9363	9545.29	932574.833	7496.8707
.8	307.2484	9564.84	935441.352	7512.2253
.9	307.5626	9584.41	938313.739	7527.5956
98	307.8768	9604	941192	7542.9816
.1	308.1909	9623.61	944076.141	7558.3832
.2	308.5051	9643.24	946966.168	7573.8006
.3	308.8192	9662.89	949862.087	7589.2338
.4	309.1334	9682.56	952763.904	7604.6826
.5	309.4476	9702.25	955671.625	7620.1471
.6	309.7617	9721.96	958585.256	7635.6273
.7	310.0759	9741.69	961504.803	7651.1933
.8	310.3960	9761.44	964430.272	7666.6 34 9
.9	310.7042	9781.21	967361.669	7682.1623
99	311.0184	9801	970299	7697.7054
.1	311.3325	9820.81	973242.271	7713.2641
.2	311.6467	9840.64	976191.488	7728.8386
.3	311.9608	9860.49	979146.657	7744.4288
.4	312.2750	9880.36	982107.784	7760.0347
.5	312.5892	9900.25	985074.875	7775.6563
.6	312.9033	9920.16	988047.936	7791.2936
.7	313.2175	9940.09	991026.973	7806.9466
.8	313.5116	9960.04	994011.992	7822.6154
9	313.8458	9980.01	997002.999	7838.2998
100	314.1600	10000	1000000	7854.0000

TABLE 11.

Containing the circumferences and areas of circles, from one-eighth to 100 inches, advancing by an eighth.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
ri-spicotose atrabado	.3927 .7854 1.1781 1.5708 1.9635 2.3562 2.7489	.0122 .0490 .1104 .1963 .3068 .4417	in.	15.7080 16.1007 16.4934 16.8861 17.2788 17.6715 18.0642 18.4569	19.6350 20.6290 21.6475 22.6907 23.7583 24.8505 25.9672 27.1085
1 in.	3.1416 3.5343 3.9270 4.3197 4.7124 5.1051 5.4978 5.8905	.7854 .9940 1.2271 1.4848 1.7671 2.0739 2.4052 2.7611	6 in.	18.8496 19.2423 19.6350 20.0277 20.4204 20.8131 21.2058 21.5985	28.2744 29.4647 30.6796 31.9192 33.1831 34.4717 35.7847 37.1224
2 in.	6.2832 6.6759 7.0686 7.4613 7.8540 8.2467 8.6394 9.0321	3.1416 3.5465 3.9760 4.4302 4.9087 5.4119 5.9395 6.4918	7	21.9912 22.3839 22.7766 23.1693 23.5620 23.9547 24.3474 24.7401	38.4846 39.8713 41.2825 42.7184 44.1787 45.6636 47.1730 48.7070
co-structures-constructed	9.4248 9.8175 10.2102 10.6029 10.9956 11.3883 11.7810 12.1737	7.0686 7.6699 8.2957 8.9462 9.6211 10.3206 11.0446 11.7932	8 in.	25.1328 25.5255 25.9182 26.3109 26.7036 27.0963 27.4890 27.8817	50,2656 51,8486 53,4562 55,0885 56,7451 58,4264 60,1321 61,8625
4 in.	12.5664 12.9591 13.3518 13.7445 14.1372 14.5299 14.9226 15.3153	12.5664 13.3640 14.1862 15.0331 15.9043 16.8001 17.7205 18.6655	9 in.	28.2744 28.6671 29.0598 29.4525 29.8452 30.2379 30.6306 31.0233	63.6174 65.3968 67.2007 69.0293 70.8823 72.7599 74.6620 76.5887

CIRCLES, ADVANCING BY AN EIGHTH.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
10 in.	31.4160	78.5400	16 in.	50.2656	201.0624
1 1	31.8087	80.5157	1 1	50.6583	204.2162
1 1 1	32.2014	82.5160	¥	51.0510	207.3946
1 3 1	32.5941	84.5409	3	51.4437	210.5976
1 1 1	32.9868	86.5903	1 1	51.8364	213.8251
1 4 1	33.3795	88.6643		52.2291	217.0772
1 3 1	83.7722	90.7627	1 3	52.6218	220.3537
] }	34.1649	92,8858	3	53.0145	223.6549
11 in.	34.5576	95.0334	17 in.	53.4072	226.9806
1 1	34.9503	97.2055	1 1	58. 7999	230.3308
1 1	35.3430	99.4021	l I	54.1926	233.7055
	35.7357	101.6234		54.5853	237.1049
1 }	36.1284	103.8691	1	54.9780	240.5287
	3 6.5211	106.1394		55.3707	243.9771
1 3	36.9138	108.4342	i š	55.7634	247.4500
1 8	37.3065	110.7536	#	56.1561	250.9475
12 in.	37.6992	113.0976	18 in.	56.5488	254.4696
1 8	38.0919	115.4660	1 1	56.9415	258.0161
1 1 1	38.4846	117.8590	1 4	57.3342	261.5872
1 8 1	38.8773	120.2766	8	57.7269	265.1829
	39.2700	122.7187	∥ ₫	58.1196	268.8031
	39.6627	125.1854	∥ 8	58.512 3	272.4479
1 3	40.0554	127.6765	3	58.9050	276.1171
8	40.4481	130.1923	₹	59.2977	279.8110
13 in.	40.8408	132.7326	19 in.	59.6904	283.5294
1 1	41.2335	135.2974	1 8	60.0831	287.2723
l i	41.6262	137.8867	1 I	60.4758	291.0397
	42.0189	140.5007	1 8	60.8685	294.8312
	42.4116	143.1391	1 1	61.2612	298.648 3
	42.8043	145.8021	∥ #	61.6539	302.4894
1 3	43.1970	148.4896	1 3	62,0466	306.3550
8	43.5897	151.2017	₹	62,4393	310,2452
14 in.	43.9824	153.9384	20 in.	62.8320	314.1600
1 8	44.3751	156.6995	l e	63.2247	318.0992
1 1	44.7678	159.4852	1 4	63.6174	322.0630
	45.1605	162.2956	∥ ∦	64.0101	326.0514
	45.5532	165.1303	2	64.4028	330.0643
1 8	45.9459	167.9896	∥ (1	64.7955	334.1018
1 1	46.3386	170.8735	1 3	65.1882	338.1637
ŧ	46.7313	173.7820	8	65.5809	342.2503
15 in.	47.1240	176.7150	21 in.	65.9736	346.3614
	47.5167	179.6725	†	66.3663	350.4970
1 1	47.9094	182.6545	4	66.7590	354.6571
	48.3021	185.6612		67.1517	358.8419
	48.6948	188.6923	4	67.5444	363.0511 367.2849
	49.0875	191.7480	N 8	67.9371	
1 7	49.4802	194.8282	CHARRIET	68.3298	371.5432 375.8261
ŧ	49.8729	197.9330	f f	68.7225	010.0201

CIRCLES, ADVANCING BY AN EIGHTH.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
22 in.	69.1152	380,1336	28 in.	87.9648	615.7536
1	69.5079	384.4655	1	88,3575	621.2636
1 1	69.9006	388.8220	T	88.7502	626.7982
3	70.2933	393.2031	1	89.1429	
9	70.6860		7		632.3574
7		397.6087]	89.5356	637.9411
8	71.0787	402.0388		89.9283	643.5494
3	71.4714	406.4935	1 1	90.3210	649.1821
*	71.8641	410.9728	8	90.7137	654.8395
23 in.	72.2568	415.4766	29 in.	91.1064	660.5214
	72.6495	420.0049		91.4991	666.2278
4 1	73.0422	424.5577	1	91.8918	671.9587
#	73.4349	429.1352	1 9 1	92.2845	677.7143
1 1	73.8276	433.7371	0 %	92.6772	683,4943
ā l	74.2203	438,3636		93.0699	689.2989
3	74.6130	443.0146	1 3	93,4626	695.1280
7	75.0057	447.6902	1 2	93.8553	700.9817
24 in.	75.3984	452.3904	30 in.	94.2480	706.8600
	75.7911	457.1150	1	94.6407	712.7627
1	76.1838	461.8642	II I I	95.0334	718,6900
3	76.5765	466.6380	1 1	95.4261	724.6419
: I	76.9692	471.4363		95.8188	730.6183
8	77.3619	476.2592	7	96.2115	
8	77.7546		1 8 1		736.6193
3		481.1065		96.6042	742.6447
8	78.1473	485.9785	f f	96.9969	748.6948
25 in.	78.5400	490.8750	31 in.	97.3896	754.7694
- A	78.9327	495.7960	1 1	97.7823	760.8685
- 1	79.3254	500.7415	∥ ¥ ∣	98.1750	766.9921
3	79.7181	505.7117	1 3	98.5677	773,1404
1 I	80.1108	510.7063	1 1 .	98.9604	779.3131
4	80.5035	515.7255		99.3531	785.5104
3	80.8962	520.7692	8	99.7458	791.7322
1 1	81.2889	525.8375	∥ ₹	100.1385	797.9786
oe ;			8		
26 in.	81.6816	530.9304	32 in.	100.5312	804.2496
†	82.0743	536.0477		100.9239	810.5450
4	82.4670	541.1896		101.3166	816.8650
8	82.859 7	546.3561		101.7 0 93	823.2096
- }	83.2524	551.5471	الأها	102.1020	829.5787
A I	83.6451	556.7627	S v	102.4947	835.9724
3	84.0378	562.0027	3	102.8874	842.3905
3	84.4305	567.2674	3	103.2801	848.8333
27 in.	84.8232	572.5566	33 in.	103.6728	855.3006
4	85.2159	577.8703	1	104.0655	861.7924
¥	85.6086	83.2085	I	104.4582	868.3087
3	86.0013	588.5714	3	104.8509	874.8497
3	86.3940	593.9587	1	105.2436	881.4151
4	86.7867	599.3706	3	105.6363	888.0051
3 1	87.1794	604.8070	d-setamonia-one	106.0290	894.6196
7	87.5721	610.2680] 7		
5 1	01.0141	010.4000	11 🛊 1	106.4217	901.2587

CIRCLES, ADVANCING BY AN EIGHTH.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
34 in.	106.8144	907.9224	40 in.	125.6640	1256.6400
1 -1 -1	107.2071	914.6105	1	126.0567	1264.5062
1 1 1	107.5998	921.3232	1 1	126.4494	1272.3970
1 1	107.9925	928.0605	3	126.8421	1280.3124
1 1	108.3852	934.8223	ı	127.2348	1288.2523
	108.7779	941.6087	i X	127.6275	1296,2168
1 1 1	109.1706	948,4195	3	128,0202	1304.2057
1 2	109.5633	955.2550	3	128.4129	1312.2193
35 in.	109.9560	962.1150	41 in.	128.8056	1320.2574
1 1	110.3487	968.9995	1	129.1983	1328.3200
1 1	110.7414	975.9085	1 1	129.5910	1336.4071
1 1	111.1341	982.8422		129.9837	1344.5189
1 1	111.5268	989.8003	}	130.3764	1352.6551
1 # 1	111,9195	996.7830	∥ 🛊 ∣	130.7691	1360.8159
1 3	112,3122	1003.7902	1 3	131.1618	1369.0012
1 8	112.7049	1010.8220	₹	131.5545	1377.2111
36 in.	113.0977	1017.8784	42 in.	131.9472	1385.4456
1 1	113.4903	1024.9592	1 1	132.3399	1393.7045
1 1	113.8830	1032.0646	1 1	132.7326	1401.9880
	114.2757	1039,1946		133.1253	1410.2961
1 3	114.6684	1046.3491		133.5180	1418.6287
	115.0611	1053.5281		133.9107	1426.9859
1 1	115.4538	1060.7317	1 1	134.3034	1435.3675
8	115.8465	1067.9599	8	134,6961	1443.7738
37 in.	116.2392	1075.2126	43 in.	135.0888	1452.2046
1 1	116.6319	1082.4898		135.4815	1460.6599
1 1	117.0246	1089.7915	1 1	135.8742	1469.1397
	117.4173	1097.1179	₹	136.2669	1477.6342
1 1	117.8100	1104.4687	9 1	136.6596	1486.1731
	118.2027	1111.8441		137.0523	1494.7266
1 1	118.5954	1119.2440	7	137.4450	1503.3046
Į ž	118.9881	1126.6685	8	137.8377	1511.9072
38 in.	119.3808	1134.1176	44 in.	138.2304	1520.5344
1 1	119.7735	1141.5911	ŧ	138.6231	1529.1860
1 1	120.1662	1149.0892	1 1	139.0158	1537.8622
1 8 1	120.5589	1156.6119		139.4085	1546.5530
1 1	120.9516	1164.1591	2	139.8012	1555.2883
	121.3443	1171.7309	1 8	140.1939	1564.0382
1 3 1	121.7370	1179.3271	3	140.5866	1572.8125
8	122,1297	1186.9480	ŧ	140.9793	1581.6115
39 in.	122.5224	1194.5934	45 in.	141.3720	1590.4350
	122.9151	1202.2633	∥ †	141.7647	1599.2830 1608.1555
1 [123.3078	1209.9577	1 1	142.1574	
1 1	123.7005	1217.6768	1	142.5505 142.9428	1617.0427 1625.9743
1 2	124.0932	1225.4203	1 2	142.9428	1634.9205
	124.4859	1233.1884	1 8	143.7282	1643.8912
1 3	124.8786	1240.9810	3	143.7262	1652.8865
8	125.2713	1248.7982	8	144.1203	1002.0000

CIRCLES, ADVANCING BY AN EIGHTH.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
46 in.	144.5136	1661.9064	52 in.	163.3632	2123.7216
À	144.9063	1670.9507	1	163 7559	2133.9440
ł	145.2990	1680.0196	¥	164.1486	2144.1910
1 3 1	145.6917	1689.1031	1 1	164.5413	2154.4626
4	146.0844	1698.2311	1	164.9340	2164.7587
8 1	146.4771	1707.3737	I ∯ ∣	165.3267	2175.0794
3	146.8698	1716.5407	3	165.7194	2185.4245
हैं	147.2625	1725.7324	8	166,1121	2195.7943
47 in.	147.6552	1734.9486	53 in.	166.5048	2206.1886
1 1	148.0479	1744.1893	1	166.8975	2216.6074
l I i	148.4406	1753.4545	l ¥ l	167.2902	2227.0507
1 8	148.8333	1762.7344		167.6829	2237.5187
1	149,2260	1772.0587]	168.0756	2248.0111
8	149.6187	1781.3976	Atomics and	168.4683	2258.5281
3	150.0114	1790.7610	3	168.8610	2269.0696
8	150.4041	1800.1490	7	169.2537	2279,6357
48 in.	150.7968	1809.5616	54 in.	169.6464	2290,2264
1	151.1895	1818.9986	i i	170.0391	2300.8415
1	151.5822	1828.4602	1	170.4318	2311.4812
3	151.9749	1837.9364	3	170.8245	2322,1455
1	152.3676	1847.4571	1 1	171.2172	2332.8343
8	152.7603	1856.9924	Ä	171.6099	2343.5477
3	153.1530	1866.5521	3	172.0026	2354.2855
7	153.5457	1876.1 3 65	7 8	172.3953	2365.0480
49 in.	153,9384	1885.7454	55 in.	172,7880	2375 8350
4	154.3311	1895.3788	l l	173.1807	2386.6465
1	154.7238	1905.0367	l I	173.5734	2397.4825
3	155.1165	1914.7093	8 1	173.9661	2408.343 2
1 J	155.5092	1924.4263	1 1	174.3588	2419.2283
	155.9019	1934.1579	Į.	174.7515	2430.1830
3 I	156.2946	1943.9140	3	175.1442	2441.0722
8	156.6873	1953.6947	7	175.5369	2452.0310
50 in.	157.0800	1963.5000	56 in.	175,9296	2463.0144
1	157.4727	1973.3297	1	176.3223	2474.0222
. II I	157.8654	1983.1840	¥	176.7150	2485.0546
8	158.2581	1993.0529	- ₿ 1	177.1077	2496.1116
<u> </u>	158.6508	2002.9663	3	177.5004	2507.1931
8	159.0435	2012.8943	8	177.8931	2518.2992
3	159.4362	2022.8467	*	178.2858	2529.4297
₹	159.8289	2032.8238	78	178.6785	2540.5849
51 in.	160.2216	2042.8254	57 in.	179.0712	2551.7646
1	160.6143	2052.8515	ᆲ	179.4639	2562.9688
4	161.0070	2062.9021	- <u>∤</u>	179.8566	2574.1975
#	161.3997	2072.9674	8	180.2493	2585.4509
2	161.7924	2083.0771	9	180.6420	2596.7287
∦	162.1851	2093.2014	₩	181.0347	2608.0311
*	162.5778 162.9705	2103.3502 2113.5236	1	181.4274	2619.3580
			* 1	181.8201	2630.7095

CIRCLES, ADVANCING BY AN EIGHTH.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
58 in.	182.2128 182.6055	2642.9836 2653.4861	64 in.	201.0624 201.4551	3216.9984 3229.5770
1 1	182.9982 183.3909	2664.9112 2676.3609	🛊	201.8478 202.2405	3242.1782 3254.8080
3	183.7836	2687.8351	akcopus - zak	202.6332	3267.4603
4	184.1763	2699.3338	8	203.0259	3280.1372
energezher-to	184.5690 184.9617	2710.8571 2722.4050	37	203.4186 203.8113	3292.8 38 5 3305.56 4 5
59 in.	185.3544	2733.9774	65 in.	204.2040	3318.3150
1	185.7471	2745.5743	1 1	204.5967	3331.0900
3	186.1398 186.5325	2757.1957 2768.8418	3	204.9894 205.3821	3343.887 <i>5</i> 3356.7137
1 1	186.9252	2780.5123		205.7748	3369.5623
CT C	187.3179	2792.2074	20074	206.1675	3382.4355
4	187.7106	2803.9270	3	206.5602	3395.3332
ě	188.1033	2815.6712	1	206.9529	3408.2555
60 in.	188.4960	2827.4400	66 in.	207.3456	3421.2024
†	188.8887	2839.2332	†	207.7383	3434.1737
1	189.2814 189.6741	2851.0510 2862.8934	3 1	208.1310 208.5237	3447.1676 3460.1901
1	190.0668	2874.7603	1 1	208.9164	3473.2351
	190.4595	2886.6517	0	209.3091	3486,3047
3	190.8522	2898.5677	1 🛂	209.7018	3499.3987
8	191.2449	2910.5083	1 8	210.0945	3512.5174
61 in.	191.6376	2922.4734	67 in.	210.4872	3525.6606
🛊	192.0303	2934.4630		210.8799	3538.8283
	192.4230	2946.4771	1 4	211.2726	3552.0185
	192.81 <i>57</i> 193.2084	2958.5159 2970.5791	1	211.6653 212.0580	3565.2374 3578.4787
Asset: catoria	193.6011	2982.6669	240	212.0300	3591.7446
3	193.9938	2994.7792	3	212.8434	3605.0350
7 8	194.3865	3006.9161	7 8	213,2361	3618.3500
62 in.	194.7792	3019.0776	68 in.	213.6288	3631.6896
ŧ	195.1719	3031.2635	†	214.0215	3645.0536
4	195.5646 195.9573	3043.4740 3055.7091	3	214.4142 214.8069	3658.4402 3671.8554
1	196.3500	3067.9687	1	215.1996	3685.2931
ž	196.7427	3080.2529	🔏	215.5923	3698.7554
¥ ·	197.1354	3092.5615	}	215.9850	3712.2421
₹	197.5281	3104.8948	{	216.3777	3725.7535
63 in .	197.9208	3117.2526	69 in.	216.7704	3739.2894
	198.3135	3129.6349		217.1631	3752.8498
1 1	198.7062 199.0989	3142.0417 3154.4732	1	217.5558 217.9485	3766.4327 3780.0443
	199.0969	3166.9291	🚦	218.3412	3793.6783
1 2	199.8843	3179.4096	3 .	218.7339	3807.3369
3	200.2770	3191.9146	Creativities in	219.1266	3821.0200
7	200.6697	3204.4442	7	219.5193	3834.7277

CIRCLES, ADVANCING BY AN EIGHTH.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
70 in.	219.9120	3848.4600	76 in.	238,7616	4536,4704
1 0 1,5.	220.3047	3862,2167	1	239.1543	4551.4023
8	220.6974	3875.9960	1	239.5470	4566.3626
3	221.0901	3889.8039	1 1	239.9397	4581.3486
9	221.4828	3903.6343		240.3324	4596.3571
2 5	221.4626	3917.4893	5	240.7251	4611.3902
PECON	222.2682	3931.3687	8	241.1178	4626.4477
3		3945.2728	3		
8	222.6609	1	8	241.5105	4641.5299
71 in.	223.0536	3959.2014	77 in.	241.9032	4656.6366
1 1	223.4463	3973.1545	1 1	242.2959	4671.7678
1 1	223.8390	3987.1301	}	242.6866	4686.9215
3	224,2317	4001.1344	3	243.0813	4702,1039
1	224.6244	4015.1611	l i	243.4740	4717.3087
Ã	225.0171	40:29.2124	1 4	243.8667	4732.5381
3	225,4098	4043,2882	3	244,2594	4747.7920
2	225.8025	4057.3886	7	244.6521	4763.0705
72 jn.	226.1952	4071.5136	78 in.	245.0448	
12 m.			78 in.		4778-3736
ŧ i	226.5879	4085.6631		245.4375	4793.7012
1 1	226.9806	4099.8350	1 4	245.8302	4809.0512
\$	227.3733	4114.0356		246.2229	4824.4299
1 2 1	227.7660	4128.2587	2	246.6156	4839.8311
	228.1587	4142.5064	18	247.0083	4855.2568
1 1	228.5514	4156.7785	1 1	247.4010	4870.7071
ŧ	228.9441	4171.0753	g g	247.79 37	4886.1820
73 in.	229.3368	4185.3966	79 in.	248.1864	4901.6814
	229.7295	4199.7424	1	248.5791	4917.2053
1 3	230.1222	4214.1107	1 1	248.9718	4932.7517
1 3	230.5149	4228.5077	3	249.3645	4948.3268
1 1	230.9076	4242.9271	1 1	249,7572	4963.9243
	231.3003	4257.3711	4	250,1499	4979.5456
1 3	231.6930	4271.8396	3	250.5426	4995.1930
7	232.0857	4286.3327	1 7	250.9353	5010.8642
74 in.	232.4784	4300.8504	80 in.	251,3280	5026,5600
14 17.	232.4764	4315.3926	80 in.	251.7207	5042.2803
1 F	233.2638	4329.9572	=	252.1134	5058.0230
1 4	233.6565	4344.5505	3 •	252.1154 252.5061	5073.7944
Į Ą	234.0492	4359.1663	9	252,8988	
2				253,2915	5089.5883 5105.4060
	234.4419 234.8346	4373.8067		253,6842	
4 4		4388.4715	7		5121.2497
ŧ	235.2273	4403.1610	8	254.0769	51 37. 1173
75 in.	235.6200	4417.8750	81 in.	254.4696	5153.0094
8	236.0127	4432.6135	ااةا	254.8623	5168.9260
1 1	236.4054	4447.3745	1	255.2550	5184.8651
3	236.7981	4462.1642	3	255.6477	5200.8329
1 1	237.1908	4476.9763	1	256.0404	5216.8231
	237.5835	4491.8130	🛊	256.4331	5232.8371
	237.9762	4506.6742	98 34 7 6	256.8258	5248.8772
1 8	238.3689	4521.5600	7	257.2185	5264.9411

CIRCLES, ADVANCING BY AN EIGHTH.

Diam.	Circum.	Area.	Diam.	Circum.	Area.
82 in.	257,6112	5281.0296	88 in.	276.4608	6082.1376
1	258.0039	5297.1426	1 1	276.8535	6099.4287
1 1	258.3866	5313.2780	1 1	277.2462	6116.7422
3	258,7993	5329.4421	3	277.6389	6134.0844
	259.1820	5345.6287	1 1	278.0316	6151.4491
3	259.5747	5361.8391	1 3	278.4243	6168.8376
3	259.9674	5378.0755	1	278.8170	6186.2521
7	260.3601	5394.3358	3	279.2097	6203.6905
83 in.	260.7528	5410.6206	89 in.	279.6024	6221.1534
1	261,1455	5426.9299	1 1	279.9951	6238.6408
1	261.5382	5443.2617	1 I 1	280.3878	6256.1507
3	261.9309	5459.6222	1 4	280.7805	6273.6893
Ĭ	262,3236	5476.0051		281.1732	6291.2503
ž	262.7163	5492.4118	1 5	281.5659	6308.8351
3 1	263,1090	5508.8446	1 2	281.9586	6326.44 6 0
3	263.5017	5525.3012	7 8	282.3513	6344.0807
84 in.	263.8944	5541.7824	90 in.	282.7440	6361.7400
1	264.2871	5558.2881	1 1	283.1367	6379.4238
- I	264.6798	<i>5</i> 574.8162	1 1	283.5294	6397.1300
3	265.0725	<i>55</i> 91.3730	1 2	283.9221	6414.8649
1 1	265.4652	5607.9523	1 3	284.3148	6432.6223
- 4	265.8579	5624.5554	#	284.7075	6450.4039
\$	266.2506	5641.1845	1 3	285.1002	6468.2107
7	266.6433	5657.8357	8	285.4929	6486.0418
85 in.	267.0360	5674.5150	91 in.	285.8856	6503.8974
	267.4287	5691.2170		286.2788	6521.7775
I I	267.8214	5707.9415	#	286.6710	6539.6801
8	268.2141	5724.6947	#	287.0637	6557.6114
1	268.6068	5741.4703		287.4564	6575.5651
4	268.9995	5758.2697		287.8491	6593.5431
3	269.3922	5775.0952	1 2 1	288.2418	6611.5462
7	269.7849	5791.9445	8	288.6345	6629.5736
86 in.	270.1776	5808.8184	92 in.	289.0272	6647.6258
1	270.5703	5825.7168	1	289.4199	6665.7021
I I	270.9630	5842.6376	‡	289.8126	6683.8010
. a l	271.3557	5859.5871	∰	290.2053	6701.9286
រូរ	271.7484	5876.5591	3	290.5980	6720.0787
- §	272.1411	5893.5549		290.9907	6738.2530
暑し	272.5338	5910.5767	1 3	291.3834	6756.4525
7	272.9265	5927.6224	8	291.7761	6774.6763
87 in.	273.3192	5944.6926	93 in.	292.1688	6792,9248
ᆲᅵ	273.7119	5961.7873	1	292.5615	6811.1974
I I	274.1046	5978.9045	1 4	292.9542	6829.4927
3	274.4973	5996.0504	#	293.3469	6847.8167
- 1 i	274.8900	6013.2187	1 2	293.7396	6866.1631
4	275.2827	6030.4108	1 2	294.1323	6884.5338
- <u>\$</u>	275.6754	6047.6290	3	294.5250	6902.9296
7	276.0681	6064.8710	 Z	294.9177	6921.3497

TABLE X,

Containing the circumferences and areas of circles from 1 to 50 feet, and advancing by an inch.

			 		
Diam.	Circum.	Area.	Diam.	Circum.	Area.
1 ft.	3.1416	.7854	4 ft.	12.5664	12,5664
ľί	3.4034	.9217	- i'''	12.8282	13.0952
$\hat{2}$	3.6652	1.0690	$\bar{2}$	13.0900	13.6353
	3.9270	1.2271	3	13.3518	14.1862
ĭ	4.1888	1.3962	Ă	13.6136	14.7479
ŝ	4.4506	1.5761	5	13.8754	15.3206
6	4.7124	1.7671	6	14.1372	15.9043
3 4 5 6 7	4.9742	1.9689	7	14.3990	16.4986
8	5.2360	2.1816	8	14.6608	17.1041
ğ	5.4978	2.4052	9	14.9226	17.7205
10	5.7596	2.6398	10	15.1844	18.3476
iĭ	6.0214	2.8852	iĭ	15.4462	18.9858
2 ft.	6.2832	3.1416	5 ft.	15.7080	19.6350
ไว้	6.5450	3.4087	I	15.9698	20.2947
2	6.8068	3.6869	2	16.2316	20.9656
3	7.0686	3.9760	3	16.4934	21.6475
4	7.3304	4.2760	4	16.7552	22.3400
5	7.5922	4.5869	5	17.0170	23.0437
5 6 7	7.8540	4.9087	6	17.2788	23.7583
	8.1158	5.2413	7	17.5406	24.4835
8	8.3776	5.5850	8	17.8024	25.2199
9	8.6394	5.9395	9	18.0642	25.9672
10	8.9012	6.3049	10	18.3260	26.7251
11	9.1630	6.6813	11	18.5878	27.4943
3 ft.	9.4248	7.0686	6 ft.	18.8496	28.2744
i	9,6866	7.4666	l i	19.1114	29.0649
2	9.9484	7.8757	2	19.3732	29.8668
	10.2102	8.2957	2 3 4	19.6350	30,6796
3 4 5	10.4720	8.7265		19.8968	31.5029
5	10.7338	9.1683	5	20.1586	32,3376
67	10,9956	9.6211	6	20.4204	33.1831
lžl	11.2574	10.0846	7	20.6822	34,0391
8	11.5192	10.5591	8	20.9440	34.9065
8 9	11.7810	11.0446	9	21.2058	35,7847
10	12.0428	11.5409	10	21.4676	36,6735
11	12.3046	12.0481	11	21.7294	37.5736

Diam.	Circum.	Area.	Diam.	Circum.	Area.
7 ft.	21.9912	38.4846	11 #	34.5576	95.0334
7 ft. 1	22.2530	39.4060	11 ft.	34.8194	96.4783
$\hat{2}$	22.5148	40.3388	$\hat{2}$	35,0812	97.9347
3	22.7766	41.2825	3	35,3430	99.4021
4	23.0384	42.2367	4	35.6048	100.8797
	23.3002	43,2022	Ē	35.8666	102.3689
5 6 7 8	23.5620	44.1787	5 6 7	36.1284	103.8691
7	23.8238	45,1656	7	36.3902	105.3794
Ř	24.0856	46.1638	8	36.6520	106.9013
9	24.3474	47.1730	9	36.9138	108.4342
10	24.6092	48,1926	10	37.1756	109.9772
ii	24.8710	49.2236	11	37.4374	111.5319
8 ft.	25.1328	50.2656	12 ft .	37.6992	113.0976
i	25.3946	51.3178	i	37.9610	114.6732
$\tilde{2}$	25.6564	52.3816	2	38.2228	116.2607
3	25.9182	53.4562	3	38.4846	117.8590
4	26.1800	54.5412	4	38.7464	119.4674
5	26.4418	55.6377	5 6	39.0082	121.0876
6	26.7036	56.7451	6	39.2700	122.7187
4 5 6 7 8	26.9654	57.8628	7	39.5318	124.3598
8	27.2272	58.9920	8	39.7936	126.0127
9	27.4890	60.1321	9	40.0554	127.6765
10	27.7508	61.2826	10	40.3172	129.3504
11	28.0126	62.4445	11	40.5790	131.0360
9 ft.	28.2744	63.6174	13 ft.	40.8408	132.7326
i	28.5362	64.8006	1 1	41.1026	134.4391
2	28.7980	65.9951	2	41.3644	136.1574
3	29.0598	67.2007	3 4	41.6262	137.8867
4	29.3216	68.4166		41.8880	139.6260
5 6 7 8	29.5834	69.6440	5 6	42.1498	141.3771
6	29.8452	70.8823	6	42.4116	143.1391
7	30.1070	72.1309	7	42.6734	144.9111
8	30.3688	73.3910	8	42.9352	146.6949
9	30.6306	74.6620	.9	43.1970	148.4896
10	30.8924	75.9433	10	43.4588	150.2943
11	31.1542	77.2362	11	43.7206	152.1109
10 ft.	31.4160	78.5400	14 ft.	43.9824	153.9384
Ĭ	31.6778	79.8540		44.2442	155.7758
2	31.9396	81.1795	$egin{array}{c} 2 \\ 3 \end{array}$	44.5060	157.6250
3	32,2014	82.5160	3	44.7678	159.4852
4	32.4632	83.8627	4	45.0296	161.3553
4 5 6 7	32.7250	85.2211	5 6 7	45.2914	163.2373
6	32.9868	86.5903	6	45.5532	165.1303
7	33.2486	87.9697	7	45.8150	167.0331
8	33.5104	89.3608	8	46.0768	168.9479
9	33.7722	90.7627	.9	46.3386	170.8735
10	34.0340	92.1749	10	46.6004	172.8091
11	34.2958	93,5986	11	46.8622	174.756 5
			И.,		

Diam.	Circum.	Area.	Diam.	Circum.	Area.
15 ft.	47-1240	176.7150	19 ft.	59.6904	283.5294
l~í"	47-3858	178.6832	ı i i	59.9522	286.0210
$ar{2}$	47.6476	180.6634	2	60.2140	288.5249
3	47.9094	182.6545	3	60.4758	291.0397
4	48.1712	184.6555	4	60.7376	293.5641
5	48.4330	186.6684	5	60.9994	296.1007
5 6	48.6948	188.6923	6	61.2612	298.6483
7	48.9566	190.7260	7	61.5230	301.2054
8	49.2184	192.7716	8	61.7848	303.7747
9	49.4802	194.8282	9	62.0466	306.3550
10	49.7420	196.8946	10	62.3084	308.9448
11	50.0038	198.9730	11	62.5702	311.5469
16 ft .	50.2656	201.0624	20 ft.	62.8320	314.1600
ľ	50.5274	203.1615	1 1	63.0938	316.7824
2	50.7892	205.2726	2	63.3556	319.4173
3	51.0510	207.3946	3	63.6174	322.0630
4	51.3128	209.5264	4	63.8792	324.7182
5	51.5746	211.6703	5	64.1410	327.3858
6 7	51.8364	213.8251	6	64.4028	330.0643
7	52.0982	215.9896	7	64.6646	332.7522
8	52.3600	218.1662	8	64.9264	335.4525
9	52.6218	220.3537	9	65.1882	338.1637
10	52.8836	222.5510	10	65.4500	340.8844
11	53.1454	224.7603	11	65.7118	343.6174
17 ft.	53.4072	226.9806	21 ft.	65 . 97 3 6	346.3614
Í	53.6690	229.2105	I	66.2354	349.1147
2	53.9308	231.4525	2	66.4972	351.8804
3	54.1926	233.7055	3	66.7590 •	354.6571
4	54.4544	235.9682	4	67.0208	357.4432
5	54.7162	238.2430	5	67.2826	360.2417
6	54.9780	240.5287	6	67.5444	363.0511
7	55.2398	242.8241	7	67.8062	365.8698
8	55.5016	245.1316	8	68.0680	368.7011
.9	55.7634	247.4500	.9	68.3298	371.5432
10	56.0252	249.7781	10	68.5916	374.3947
11	56.2870	252,1184	11	68.85 34	377.2587
18 <i>ft</i> .	56.5488	254.4696	22 ft.	69.1152	380.1336
1	56.8106	256.8303	Ĭ	69.3770	383.0177
. 2	57.0724	259.2033	2	69.6388	385.9144
3	57.3342	261.5872	3 4	69.9006	388.8220 391.7389
4	57.5960	263.9807		70.1624	391.7389
5	57.8578	266.3864	5	70.4242	
6	58.1196	268.8031	6 7	70.6860	397.6087 400.5583
7	58.3814	271.2293	8	70.9478 71.2096	400.5565
8 9	58.6432	273.6678	9		406.4935
1 10	58.9050	276.1171	10	71.4714 71.73 3 2	400.4955
10 11	59.1668	278.5761	11	71.7552	412.4707
11	59.4286	281.0472	11	11.9900	Z12.21VI

Diam.	Circum.	Area.	Diam.	Circum.	Area.
23 ft.	72.2568	415.4766	27 ft.	84.8232	572.5566
I	72.5186	418.4915	i	85.0850	576.0949
2	72.7804	421.5192	2	85.3468	579.6463
3	73.0422	424.5577	3	85.6086	583.2085
4	73.3040	427.6055	4	85.8704	586.7796
5	73.5658	430.6658	5	86.1322	590.3637
6	73.8276	433.7371	6	86.3940	593.9587
7	74.0894	43 6.8175	7	86.6558	597.5625
8	74.3512	439.9106	8	86.9176	601.1793
9	74.6130	443.0146	9	87.1794	604.8070
10	74.8748	446.1278	10	87.4412	608.4436
11	75.1366	449.2536	11	87.7030	612.0931
24 ft.	75.3984	452.3904	28 ft.	87.9648	615.7536
1	75.6602	455.5362	1	88.2266	619.4228
2	75.9220	458.6948	2	88.4884	623.1050
3	76.1838	461.8642	3	88.7502	626.7982
4	76.4456	465.0428	4	89.0120	630.5002
5	76.7074	468.2341	5	89.2738	634.2152
6	76.9692	471.4363	6	89.5356	637.9411
7	77.2310	474.6476	7	89.7974	641.6758
8	77.4928	477.8716	8	90.0592	645.4235
9	77.7546	481.1065	9	90.3210	649.1821
10	78.0164	484.3506	10	90.5828	652.9495
11	78.2782	487.6073	11	90.8446	656.7300
25 ft.	78.5400	490.8750	29 ft.	91.1064	660.5214
	78.8018	494.1516	1 1	91.3682	664.3214
2	79.0636	497.4411	2	91.6300	668.1346
3	79.3254	500.7415	3	91.8918	671.9587
4	79.5872	504.0510	4	92.1536	675.7915
5	79.8490	507.3732	5	92.4154	679.6375
6	80.1108	510.7063	6	92.6772	683.4943
7	80.3726	514.0484	7	92.9390	687.3598
8	80.6344	517.4034	8	93.2008	691.2385
9	80.8962	520.7692	9	93.4626	695.1280
10 11	81.1580 81.4198	524.1441 527.5318	10 11	93.7244 93.9862	699.0263 702.9377
1 1					
26 ft.	81.6816	530.9304	30 ft.	94.2480	706.8600
l i	81.9434	534.3379	1	94.5098	710.7909
2	82,2052	537.7583	2	94.7716	714.7350
3	82.4670	541.1896	3	95.0334	718.6900
4	82.7288	544.6299	4	95.2952	722.6537
5	82,9906	548.0830	5 6	95.5570	726.6305
6 7	83,2524	551.5471	7	95.8186	730.6183
8	83,5142 83,7760	555.0201 558.5059		96.0806	734.6147 738.6242
9	84.0378	562.0027	8 9	96.3424	
10	84.2996	565,5084	10	96.6042 96.8660	742.6447 746.6738
ii	84,5614	569,0270	ii	97.1278	750.7161
1	02,0014	303,0270	11	31.1210	730.7101

Diam.	Circum.	Area.	Diam.	Circum.	Area.
39 ft.	122,5224	1194.5934	43 ft.	135.0888	1452.2046
1 I I	122,7842	1199.7195	1	135.3506	1457.8365
2	123.0460	1204.8244	2	135.6124	1463.4827
3	123.3078	1209.9577	3	135.8742	1469.1397
4	123.5696	1215.0990	4	136.1360	1474.8044
5	123.8314	1220.2542	5	136.3978	1480.4833
6	124,0932	1225.4203	6	136.6596	1486.1731
7	124.3550	1230.5943	7	136.9214	1491.8705
8	124.6168	1235 7822	8	137.1832	1497.5821
9	124.8786	1240.9810	9	137.4450	1503.3046
10	125.1404	1246.1878	10	137.7068	1509.0348
11	125,4022	1251.4084	11	137.9686	1514.7791
40 ft.	125.6640	1256.6400	44 ft.	138.2304	1520.5344
1	125.9258	1261.8794	l i	138,4922	1526.2971
2	126.1876	1267.1327	2	138.7540	1532.0742
3	126,4494	1272.3970	3	139.0158	1537.8622
4	126.7112	1277.6692	4	139.2776	1543.6578
5	126.9730	1282,9553	5	139.5394	1549.4676
6	127.2348	1288.2523	6	139.8012	1555.2883
7	127,4966	1293.5572	7	140.0630	1561.1165
8	127.7584	1298.8760	l 8	140.3248	1566,9591
ğ	128.0202	1304.2057	ğ	140.5866	1572.8125
10	128.2820	1309.5433	10	140.8484	1578.6735
ii	128.5438	1314.8949	īĭ	141.1102	1584.5488
41 <i>ft</i> .	128,8056	1320.2574	45 ft.	141.3720	1590.4350
ĭ	129.0674	1325.6276	1	141.6338	1596.3286
2	129,3292	1331.0119	2	141.8956	1602.2366
3	129.5910	1336.4071	3	142.1574	1608.1555
4	129,8528	1341.8101	4	142.4192	1614.0819
5	130.1146	1347.2271	5	142.6810	1620.0226
6	130,3764	1352.6551	6	142.9428	1625.9743
7	130.6382	1358.0908	7	143.2046	1631.9334
8	130,9000	1363.5406	8	143.4664	1637.9068
9	131.1618	1369.0012	9	143.7282	1643.8912
10	131.4236	1374.4697	10	143.9900	1649.8831
11	131.6854	1379.9521	11	144.2518	1655.8892
42 ft.	131.9472	1385 4456	46 ft.	144.5136	1661.9064
j i	132.2090	1390.2467	1	144.7754	1667.9308
2	132,4708	1396.4619	2	145.0372	1673.9698
3	132.7326	1401.9880	3	145.2990	1680.0196
4	132.9944	1407.5219	4	145.5608	1686.0769
5	133.2562	1413.0698	5	145.8226	1692.1485
6	133.5180	1418.6287	6	146.0844	1698.2311
7	133.7798	1424.1952	7	146.3462	1704.3210
8	134,0416	1429.7759	8	146.6080	1710.4254
9	134.3034	1435.3675	9	146.8698	1716.5407
10	134.5652	1440.9668	10	147.1316	1722.6634
11	134.8270	1446,5802	11	147.3934	1728,8005

Diam.	Circum.	Area.	Diam.	Circum.	Area.
31 ft.	97,3896	754.7694	35 ft.	109.9560	962,1150
31 <i>ft</i> .	97.6514	758.8311	ľ	110.2178	966,7001
$ar{2}$	97.9132	762.9062	2	110.4796	971.2989
3	98.1750	766.9921	3	110.7414	975.9085
4 \	98.4368	771.0866	4	111.0032	980.5264
5	98,6986	775.1944	5	111.2650	985.1579
6	98.9604	779.3131	6	111.5268	989.8003
Ž	99.2222	783.4403	7	111.7886	994.4509
8	99,4840	787.5808	8	112.0504	999.1151
9	99.7458	791.7322	9	112.3122	1003.7902
10	100.0076	795,8922	10	112.5740	1008.4736
îĭ	100.2694	800.0654	11	112.8358	1013.1705
32 ft.	100.5312	804.2496	36 ft.	113.0976	1017.8784
ĭ	100.7930	808.4422	1	113.3594	1022,5944
2	101.0548	812.6481	2	113.6212	1027.3240
3	101.3166	816.8650	3	113.8830	1032.0646
4	101.5784	821.0904	4	114.1448	1036.8134
5	101.8402	825,3291	5	114.4066	1041.5758
6	102,1020	829.5787	6	114.6684	1046.3491
7	102.3638	833.8368	7	414.9302	1051.1306
8	102.6256	838.1082	8	115.1920	1055.9257
9	102.8874	842.3905	9	115.4538	1060.7317
10	103.1492	846.6813	10	115.7756	1065.5459
11	103.4110	850.9855	11	115.9774	1070.3738
33 ft.	103.6728	855.3006	37 ft.	116.2392	1075.2126
ì	103.9346	859.6240		116.5010	1080.0594
2	104.1964	863.9609	2	116.7628	1084.9201
3	104.4582	868.3087	3	117.0246	1089.7915
4	104.7200	872.6649	4	117.2864	1094.6711
5	104.9818	877.0346	5	117.5482	1099.5644
6	105.2436	881.4151	6	117.8100	1104.4687
ž	105.5054	885.8040	7	118.0718	1109.3810
8	105.7672	890.2064	. 8	118.3336	1114.3071
9	106.0290	894.6196	9	118.5954	1119.2440
10	106.2908	899.0413	10	118.8572	1124.1891
11	106.5526	903.4763	11	119.1190	1129.1478
34 ft.	106.8144	907.9224	38 ft.	119.3808	1134.1176
1 1	107.0762	912.3767	1	119.6426	1139.0953
2	107.3380	916.8445	2	119.9044	1144.0868
3	107.5998	921.3232	3	120.1662	1149.0892
4	107.8616	925.8103	4	120.4280	1154.0997
5	108.1234	930.3108	5	120.6898	1159.1239
6	108.3852	934.8223	6	120.9516	1164.1591
7	108.6470	939.3421	7	121.2134	1169.2023
8	108.9088	943.8753	8	121.4752	1174.2592
9	109.1706	948.4195	.9	121.7370	1179.3271
10	109.4324	952.9720	10	121.9988	1184.4030
11	109.6942	957.5380	11	122.2606	1189.4927

Diam.	Circum.	Area.	Diam.	Circu m	Area.
47 ft.	147.6552	1734.9486	48 7	152.6294	1853.8087
ĺ	147.9170	1741.1039	8	152.8912	1860.1750
2	148.1788	1747.2738	9	153.1530	1866.5521
2 3	148.4406	1753.4545	10	153.4148	1872.9365
	148.7024	1759.6426	11	153.6766	1879.3355
4 5	148.9642	1765.8452	40.6	1 59 0904	100t #454
6	149.2260	1772.0587	49 ft.	153.9384	1885.7454
7	149,4878	1778.2795	1 1	154.2002	1892.1724
8	149.7496	1784.5148	2	154.4620	1898.5041
8 9	150.0114	1790.7610	3	154.7238	1905.0367
1ŏ	150.2732	1797.0145	5 6	154.9856	1911.4965
îĭ	150.5350	1803.2826	5	155.2474	1917.9609
			6	155.5092	192 4.4263
48 ft.	150.7968	1809.5616	7	155.7710	1930.9188
1	151.0586	1815.8477	8	156.0328	1937.3159
3	151.3294	1822.1485	9	156.2946	1943.9140
3	151.5822	1828.4602	10	156.5564	1950.4 3 92
	151.8440	1834.7791	11	156.8182	1956.9691
4 5	152.1058	1841.1127	50 ft.	157.0800	1963,5000
6	152.3676	1847.4571	J. J.	101.0000	1909.0000

TABLE XI,

Containing the superficies and solid content of spheres, from 1 to
12, and advancing by a tenth.

Diam.	Superficies.	Solidity.	Diam.	Superficies.	Solidity.
1.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 2.0 .1 .2 .3	3.1416 3.8013 4.5239 5.3093 6.1575 7.0686 8.0424 9.0792 10.1787 11.3411 12.5664 13.8544 15.2053 16.6190 18.0956	.5236 .6969 .9047 1.1503 1.4367 1.7671 2.1446 2.5724 3.0536 3.5913 4.1888 4.8490 5.5752 6.3706 7.2382	2.5 .6 .7 .8 .9 3.0 .1 .2 .3 .4 .5 .6 .7 .8	19.6350 21.2372 22.9022 24.6300 26.4208 28.2744 30.1907 32.1699 34.2120 36.3168 38.4846 40.7151 43.0085 45.3647 47.7837	8.1812 9.2027 10.3060 11.4940 12.7700 14.1372 15.5985 17.1573 18.8166 20.5795 22.4493 24.4290 26.5219 28.7309 31.0594

Dias	m. Superficies.	Bolidity.	Diam.	Superficies.	Solidity.
4.9		33.5104	8.0	201.0624 206.1203	268.0832
[.		36.0870	.1		278.2625
.2		38.7924	.2	211.2411	288.6962
.5		41.6298 44.6023	.3	216.4248 221.6712	299.3876 310.3398
.4		47.7130	.5	226.9806	321.5558
.6		50.9651	.6	232,3527	333.0389
.7		54.3617	.7	237.7877	344.7921
, i		57.9059	.8	243.2855	356.8187
.3		61.6010	.9	248.8461	369.1217
5.0		65.4500	9.0	254.4696	381.7044
		69.4560	. <u>l</u>	260.1558	394.5697
.2		73.6223	.2	265.9130	407.7210
		77.9519	.3	271.7169	421.1613
.4		82.4481 87.1139	.4	277.5917	434.8937 448.921 <i>5</i>
1 .5		91.9525	.5 .6	283.5294 289.5298	463.2477
		96.9670	.7	295.5931	477.7755
1.7		102.1606	.8	301.7192	492.8081
		107.5364	.9	307.9082	508.0485
6.0		113.0976	10.0	314.1600	523.6000
.1		118.8472	.1	320.4746	539.4656
		124.7885	.2	326.8520	555.6485
		130.9246	.3	333.2923	572.1518
-4		137.2585	.4	339.7954	588.9784
ام		143.7936	.5	346.3614	606.1324
.9		150.5329	.6	352.9901	623.6159
1 3		157.4795 164.6365	.7	359.6817 366.4362	641.4325 659.5852
1 -		172.0073	8.	373.2534	678.0771
			.9	380.1336	696.9116
7.		179.5948	11.0		
1 -		187.4021 195.4326	1.1	387.0765 394.0823	716.0915 735.6200
		203.6893	.2	401.1509	755.5008
-		212.1752	.8	408.2823	775.7364
1 :		220.8937	.5	415.4766	796.3301
1 3		229.8478	.6	422,7336	817.2851
		239.0511	.7	430.0536	838.6045
		248.4754	.8	437.4363	860.2915
		258.1552	.ö	444.8819	882.3492
		1	12.0	452,3904	904.7808
			12.0	202.0504	304.7006

TABLE XII,

Containing the squares, cubes, superficies, and solid content of spheres, from 1 inch to 12 inches, advancing by an eighth.

Diam.	Squares.	Cubes.	Superficies.	Solidity.
1	.25	.125	.7854	.0654
1 2	.390625	.244140625	1.2271	.1278
3	.5625	.421875	1.7671	.2208
1 1	.765625	.669921875	2,4052	.3507
l in.	1	1	3.1416	.5236
1	1.265625	1.423818125	3.9760	.7455
1 1	1.5625	1.953125	4.9087	1.0226
l 3	1.890625	2.599609375	5.9395	1.3611
ľ	2.25	3,375	7.0686	1.7671
1 1	2.640625	4.291015625	8.2957	2.2467
1 1	3.0625	5.359375	9.6211	2,8061
1 2	3.515625	6.591796875	11.0446	3.4514
2 in.	4	8	12.5664	4.1888
1	4.515625	9.595703125	14.1862	5.0243
1	5.0625	11.390625	15.9043	5.9640
	5.640625	13.39648375	17.7205	7.0143
1 8	6.25	15.625	19.6350	8.1812
4	6.890625	18.087890625	21.6475	9.4708
ă.	7.5625	20.796875	23.7583	10.8892
7 1	8.265625	23.763671875	25.9672	12.4426
3 in.	9	27	28.2744	14.1372
1	9.765625	30.517578125	30.6796	15.9790
1	10.5625	34.328125	33.1831	17.9742
4	11.390625	38.443359375	35.7847	20.1289
¥	12.25	42.875	38.4846	22.4493
	13.140625	47.634765625	41.2825	24.9415
1	14.0625	52.734375	44.1787	27.6117
7	15.015625	58.185546875	47.1730	30.4659
4 in.	16	64	50.2656	33.5104
8 1	17.015625	70.189453125	53.4562	36.7511
4	18.0625	76.765625	56.7451	40.1944
8 1	19.140625	83.740234375	60.1321	43.8463
2	20.25	91.125	63.6174	47.7127
- 8	21.390625	98.931640625	67.2007	51.8006
3	22,5625	107.171875	70.8823	56.1151
ŧ	23.765625	115.857421875	74.6620	60.6629
5 in.	25	125	78.5400	65.4500
ᇸ	26.265625	134.611328125	82.5160	70.4824
4	27.5625	144.703125	86.5903	75.7664
₹	28.890625	155.287109375	90.7627	81.3083
4	30.25	166.375	95.0334	87.1139
₩	31.640625	177.978515625	99.4021	93.1875
3	33.0625	190.109375	103.8691	99.5412
ŧ	34.515625	202.779296875	108.4342	106.1754

1

100mmの 100mmの まなれ

Diam.	Squares.	Cubes.	Superficies.	Solidity
6 in.	36	216	113.0976	113.0976
1	37.515625	229.783203115	117.8590	120.3139
1	39.0625	244.140625	122.7187	127.8320
1 1	40.640625	259.083984375	127.6765	135.6563
9	42.25	274.625	132.7326	143.7936
1 3	43.890625	290.775390625	137.8867	152.2499
1 3	45.5625	307.546875	143.1391	161.0315
7	47.265625	324.951171875	148.4896	170.1682
7 in.	49	343	153.9384	179.5948
1 176.	50.765625	361.704078125	159.4852	189.3882
1	52-5625	381.078125	165.1303	
3	54.390625	401.130859375	170.8735	199.5325
ą į	56.25	421.875		210.0331
2	58.140625	443.322265625	176.7150 182.6545	220.8937
1 9	60.0625			232.1235
1 3	62.015625	465.484375	188.6923	243.7276
, ŧ.		488.373046875	194.8282	255.7121
8 in.	64	512	201.0624	268.0832
1 1	66.015625	536.376953125	207.3946	280.8469
1 4	68.0625	561.515625	213.8251	294.0095
	70.140625	587.427734375	220.3537	307.5771
1 4	72.25	614.125	226.9806	321.5553
1 8	74.390625	641.619140625	233.7055	335.9517
3	76.5625	669.921875	240.5287	350.7710
ŧ	78,765625	699.044921875	247.4500	366.0199
9 in.	81	729	254.4696	381.7017
À	83.265625	759.798828125	261.5872	397.8306
ł	85-5625	791.453125	268.8031	414.4048
3	87-890625	823.974609375	276.1171	431.4361
1 3	90.25	857.375	283.5294	448.9215
8	92.640625	891.666015625	291.0397	466.8763
3	95.0625	926.859375	298.6483	485.3035
7	97.515625	962.966796875	306.3550	504.2094
10 in.	100	1000	314.1600	523,6000
ł	102.515625	1037.970703125	322.0630	543.4814
I I	105.0625	1076.890625	330.0643	563.8603
	107.640625	1116.771448375	338.1637	584.7415
i i	110.25	1157.625	346.3614	606.1318
1 1	112.890625	1199.462890625	354.6571	628.0387
3	115.5625	1242.296875	3 63.0511	650.4666
7 8	118.265625	1286.138671875	371.5432	673.4222
11 in.	121	1331	380.1336	696.9116
ł	123.765625	1376.892578125	388.8220	720.9409
Į į	126.5625	1423.828125	397.6087	745.5004
1 4	129.390625	1471.818359375	406.4935	770.6440
Į Ž	132.25	1520.875	415.4766	796.3301
	135.140625	1571.009765625	424.5576	822.5807
¥	138.0625	1622.234375	433.7371	849.4035
1 4	141.015625	1674.560546875	443.0146	876.7999
12 in.	144 ·	1728	452.3904	904.7808
				,

A Table containing the price of metals, or other materials, by the ton, cwt., quarter, or lb.

Per ton.	Per cwt.	Per qui	Per ton.	Per cwt.	Per qrtr.	ĭЬ	Per ton.	Per cwt.	Per qrtr.	ge lb.
£ s. d. 8 2 10 6 3 15 6 3 10 6 3 15 6 5 10 6 5 10 6 6 10 6 6 10 6 6 10 6 6 10 6 10	8. d. d. 22 6 9 3 0 3 3 6 9 4 4 3 6 8 9 0 1 4 4 8 9 9 9 4 4 3 6 8 9 9 9 4 6 9 1 1 1 3 6 8 9 9 9 4 6 1 1 1 3 6 8 9 9 9 4 6 1 1 1 3 6 8 9 9 9 4 6 1 1 1 3 6 8 9 9 9 4 6 1 1 1 3 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Tr. b. d.	## s. d. 14 10 0 0 14 15 0 0 15 5 0 0 15 15 0 0 16 6 5 0 16 6 5 0 16 6 6 6 16 16 16 16 16 16 16 16 16 16	E a. d. 0 14 6 10 15 10	3 8 4 3 9 4 9 3 3 114 4 0 11 4 4 1 4 4 4 4 4 4 4 4 4 4 4	24 24 24 33	25 s. d. 32 10 0 32 13 4 33 10 0 33 10 0 33 10 0 33 10 0 35 10 0 35 10 0 36 10 0 36 10 0 37 6 8 37 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 38 10 0 39 10 0 39 10 0 39 10 0 39 10 0 41 10 6 41 10	£ s. d. 6 8 1 12 8 5 1 12 8 5 6 1 12 8 8 6 1 12 8 8 6 1 12 8 1 13 6 6 6 6 1 1 13 6 6 6 6 6 1 1 13 6 6 6 6	5 s. d. 6 s. d	一直,另一一一条一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一

A Table for calculating interest.

				,	
1	3 per cent.	3½ per cent.	4 per cent.	41 per cent.	5 per cent.
2,000,000 1,009,000 900,000 700,000 600,0 0 500,000 400,000 200,000 200,000	£ s. d. 164 7 8.05 82 3 10.03 73 19 5.42 65 15 0.82 57 10 8.22 49 6 3.62 41 1 11.01 32 17 6.41 24 18 9.21 8 4 4 60	£ 8. d. 191 15 7.40 95 17 9.70 86 6 0.33 76 14 2.96 67 2 5.59 57 10 8.22 47 18 10.85 38 7 1.48 28 15 4.11 19 3 6.74 9 11 9.37	£ 8. d. 219 3 6.74 1 9 11 937 98 12 7.23 87 13 5.10 76 14 2.96 65 15 0.82 54 15 10.69 43 16 8.55 32 17 6.41 21 18 4.27 10 19 2.14	£ 8. d. 246 11 6.08 123 5 9.04 110 19 2.14 98 12 7.23 86 6 0.33 73 19 5.42 61 12 10 52 49 6 3.62 36 19 8.71 124 13 1.81 12 6 6.90	£ s. d. 273 19 5.42 136 19 8.71 123 5 9.04 109 11 9.37 95 17 9.70 82 3 10.03 68 9 10.36 54 15 10.68 41 1 11.01 27 7 11.34 13 13 11.67
90,000 80,000 70,000 60,000 50,000 40,000 30,00 20,000 10,000	7 7 11.34 6 11 6.08 5 15 0.82 4 18 7.56 4 2 2.30 3 5 9.04 2 9 3.78 1 12 10.52 0 16 5.26	8 12 7.23 7 13 5.10 6 14 2.96 5 15 0.82 4 15 10.68 3 16 8 55 2 17 6.41 1 18 4.27 19 2.14	9 17 3.12 8 15 4.11 7 13 5.10 6 11 6.08 5 9 7.17 4 7 8.05 3 5 9.04 2 3 10.03 1 1 11.01	11 1 11.01 9 17 3.12 8 12 7.23 7 7 11.34 6 3 3.45 4 18 7.56 3 13 11.67 2 9 3.78 1 4 7.89	12 6 6.90 10 19 2.14 9 11 9.37 8 4 4.60 6 16 11.84 5 9 7.07 4 2 2.30 2 14 9.53 1 7 4.77
9,000 8,000 7,006 6,000 5,000 4,000 3,000 2,000	14 9.53 13 1.81 11 6.08 9 1''.36 8 2.63 6 6.90 4 11.18 3 3.45 1 7.73	. 17 3.12 . 15 4.11 . 13 5.10 . 11 6.08 . 9 7.17 . 7 8.05 . 5 9.04 . 3 10.03 . 1 11.01	19 8.71 17 6.41 15 4.11 13 1.81 10 11.51 8 9.20 6 6.90 4 4.60 2 2.30	1 2 2.30 19 8.71 17 3.12 14 9.53 12 3.94 9 10.36 7 4.77 4 11.18	1 4 7.89 1 1 11.01 19 2.14 16 5.26 13 8.38 10 11.51 8 2.63 5 5.75 2 8.88
960 800 700 6 d 500 400 30 0 206 100	. 1 5.75 . 1 3.78 . 1 1.81 . 11.84 . 9.86 . 7.89 5.92 3 9.5	1 8.71 1 6.41 1 4.11 1 1.81 11.51 9.21 6.9 4.60	1 11.67 1 9.04 1 6 41 1 3.78 1 1.15 10.52 7.89 5.26	2 2.63 1 11.67 1 8.71 1 5.75 1 2.79 11.84 8.88 5 92	2 5.59 2 2.30 1 11.01 1 7.73 1 4.44 1 1.15 9.86 6.58
90 80 70 60 50 40 30 20					
98 87 65 44 32 1	0.18 0.16 0.14 0.12 r.10 0.08 0.06 0.04				

Norm.—For 2 per cent. take the half of 4, and $2\frac{1}{2}$ per cent. the half of 5.

Rule.—Multiply the principle by the number of days, and take the interest corresponding to the product from the marginal column.

EXAMPLE.—Suppose £375 for 144 days, at 3 per cent.

$$375 \times 144 = 54,000.$$
By table—50,000 = £4 2 2.30
 $4,000 = 0 6 6.90$
Interest.. £4 8 9.20

A Table of discount per cent.

Printed by Egerton Smith and Co., Lord-street, Liverpool.

-

??

:

.

.

1

•