2022 ~2023 学年第 二 学期

《 微积分 (一) 》课程期中试题解答

一. 基本计算题(每小题 6分, 共 60分)

1. 已知 $y_1 = x + \cos x$, $y_2 = x + \sin x$, $y_3 = x$ 是某个二阶常系数非齐次线性微分方程的三个解, 求该微分方程及其通解.

从而特征方程的特征根为 $r_1 = i, r_2 = -i$,特征方程为 $r^2 + 1 = 0$.

对应齐次方程为
$$y'' + y = 0$$
 . (4分)

设非齐次线性微分方程为y'' + y = f(x),则 $f(x) = y_3'' + y_3 = x$.

故方程为
$$y'' + y = x$$
, 通解为 $y = C_1 \cos x + C_2 \sin x + x$ (C_1, C_2)为任意常数). (6分)

2. 已知单位矢量 \overline{OA} 与三个坐标轴正向的夹角相等, \overline{OA} 的方向余弦为正,点 B 是点 M(1,-2,2) 关于点 N(-1,2,1) 的对称点,求以 \overline{OA} 、 \overline{OB} 为邻边的平行四边形的面积.

解: 由题设知 $\overrightarrow{OA} = \{\cos\alpha, \cos\alpha, \cos\alpha\}$, 因 $\cos^2\alpha + \cos^2\alpha + \cos^2\alpha = 1$,

所以 $\cos \alpha = \pm \frac{1}{\sqrt{3}}$, 又 \overline{OA} 的方向余弦为正, 所以 $\cos \alpha = \frac{1}{\sqrt{3}}$,

因而
$$\overrightarrow{OA} = \{\cos\alpha, \cos\alpha, \cos\alpha\} = \{\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\} = \frac{1}{\sqrt{3}}\{1, 1, 1\}$$
 (2分)

设点 B 的坐标为 (x, y, z), 则有 $-1 = \frac{x+1}{2}$, $2 = \frac{y-2}{2}$, $1 = \frac{z+2}{2}$, 解得 x = -3, y = 6, z = 0,

所以
$$\overrightarrow{OB} = \{-3,6,0\}$$
. (4分)

$$\overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ -3 & 6 & 0 \end{vmatrix} = \sqrt{3} \{-2, -1, 3\},$$

故所求平行四边形面积为
$$|\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{3} \cdot \sqrt{(-2)^2 + (-1)^2 + 3^2} = \sqrt{42}$$
 (6分)

3. 求二重极限
$$\lim_{\substack{x \to a \\ y \to 0}} \frac{\sin xy}{y}$$
 (a 为常数)

解:
$$\lim_{\substack{x \to a \\ y \to 0}} \frac{\sin xy}{y} = \lim_{\substack{x \to a \\ y \to 0}} \frac{\sin xy}{xy} \cdot x = \lim_{\substack{x \to a \\ y \to 0}} \frac{\sin xy}{xy} \cdot \lim_{\substack{x \to a \\ y \to 0}} x = 1 \cdot a = a$$
 (6 分)

4. 求球面 $x^2 + y^2 + z^2 = 50$ 与锥面 $x^2 + y^2 = z^2$ 所截出的曲线在(3,4,5) 处切线与法平面方程.

解 令
$$F(x, y, z) = x^2 + y^2 + z^2 - 50$$
, $G(x, y, z) = x^2 + y^2 - z^2$,

$$\operatorname{grad} F = \{2x, 2y, 2z\} = 2\{x, y, z\}, \operatorname{grad} G = \{2x, 2y, -2z\} = 2\{x, y, -z\},$$

则取两个曲面的法矢量分别为

$$n_F = \{x, y, z\}_{(3,4,5)} = \{3,4,5\}$$
 $n_G = \{x, y, -z\}_{(3,4,5)} = \{3,4,-5\},$ (2 \Re)

$$n_F \times n_G = \begin{vmatrix} i & j & k \\ 3 & 4 & 5 \\ 3 & 4 & -5 \end{vmatrix} = 10\{-4, 3, 0\},$$
取切矢量 $\tau = \{-4, 3, 0\}$

故曲线在该点的切线方程为: $\frac{x-3}{-4} = \frac{y-4}{3} = \frac{z-5}{0}$,

法平面方程为:
$$-4(x-3)+3(y-4)+0\cdot(z-5)=0$$
, 即 $4x-3y=0$ (6分)

注意: 切线方程写为
$$\frac{x-3}{-160} = \frac{y-4}{120} = \frac{z-5}{0}$$
 或 $\begin{cases} 3x+4y-25=0\\ z=5 \end{cases}$ 都是对的.

5. 设函数 z = z(x, y) 由方程 $(z + y)^x = x + 2y$ 确定,求 $dz|_{(1,2)}$.

解一: 由 x = 1, v = 2 得 z = 3.

设 $F(x,y,z) = (z+y)^x - x - 2y$, 则

$$F_{v} = (z+y)^{x} \ln(z+y) - 1$$
, $F_{v} = x(z+y)^{x-1} - 2$, $F_{z} = x(z+y)^{x-1}$, (3 f)

它们均在P(1,2,3)的某邻域内连续,且 $F_x(P)=1\neq 0$,又 $F_x(P)=5\ln 5-1$, $F_y(P)=-1$,

所以
$$\frac{\partial z}{\partial x}|_{(1,2)} = -\frac{F_x(P)}{F_x(P)} = 1 - 5\ln 5$$
, $\frac{\partial z}{\partial y}|_{(1,2)} = -\frac{F_x(P)}{F_x(P)} = 1$, (5分)

$$\therefore dz|_{(1,2)} = \frac{\partial z}{\partial x}|_{(1,2)} dx + \frac{\partial z}{\partial y}|_{(1,2)} dy = (1 - 5\ln 5)dx + dy. \tag{6 \%}$$

解二: 由x=1, y=2得 z=3.

方程变形为

$$x\ln(z+y) = \ln(x+2y) \tag{2}$$

(4分)

两边关于
$$x$$
求导得 $\ln(z+y)+x\cdot\frac{z_x}{z+y}=\frac{1}{x+2y}$

将
$$x = 1, y = 2$$
 代入得 $\ln 5 + \frac{1}{5} z_x(1,2) = \frac{1}{5}$

从而得
$$z_{r}(1,2)=1-5\ln 5$$
.

同理可得
$$z_{u}(1,2)=1$$
 (5 分)

$$\therefore dz \mid_{(1,2)} = \frac{\partial z}{\partial x} \mid_{(1,2)} dx + \frac{\partial z}{\partial y} \mid_{(1,2)} dy = (1 - 5 \ln 5) dx + dy. \tag{6 \%}$$

解三 由x=1, y=2得 z=3.

方程变形为
$$x \ln(z+y) = \ln(x+2y)$$
 (2分)

方程两边微分得
$$\ln(z+y)dx + \frac{x}{z+y}(dz+dy) = \frac{dx+2dy}{x+2y},$$

将
$$x = 1, y = 2, z = 3$$
 代入得 $\ln 5dx + \frac{1}{5}(dz + dy) = \frac{dx + 2dy}{5}$, (4分)

因此
$$dz|_{(1,2)} = (1-5\ln 5)dx + dy$$
 (6分)

6. 设
$$u = f(x, y, z), \varphi(x^2, e^y, z) = 0, y = \cos x,$$
其中 f, φ 具有一阶连续偏导数,且 $\frac{\partial \varphi}{\partial z} \neq 0,$

求
$$\frac{\mathrm{d}u}{\mathrm{d}x}$$
.

解: 对方程组
$$\begin{cases} \varphi(x^2, e^y, z) = 0, \\ y = \cos x \end{cases}$$
 两边关于 x 求导,得

$$\frac{\mathrm{d}u}{\mathrm{d}x} = f_1' + f_2' \cdot \frac{\mathrm{d}y}{\mathrm{d}x} + f_3' \cdot \frac{\mathrm{d}z}{\mathrm{d}x} \tag{5.5}$$

$$= f_1' + f_2' \cdot (-\sin x) + f_3' \cdot \frac{1}{\varphi_3'} (2x\varphi_1' - e^{\cos x} \sin x\varphi_2')$$

$$= f_1' - \sin x f_2' + \frac{f_3'}{\varphi_1'} (2x\varphi_1' + e^{\cos x} \sin x \varphi_2') . \tag{6 }$$

7. 设
$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{3} - \frac{4}{\pi} \iint_D f(x,y) dxdy$$
, 其中平面区域 $D = \{(x,y) \mid x^2 + y^2 \le 1\}$, $f(x,y)$

为区域D上的连续函数,求 f(x,y).

解: 令
$$\iint_D f(x,y) dxdy = A$$
, 则 $f(x,y) = \frac{x^2}{2} + \frac{y^2}{3} - \frac{4}{\pi}A$,

所以
$$\iint_{D} (\frac{x^{2}}{2} + \frac{y^{2}}{3} - \frac{4}{\pi}A) dxdy = A,$$

由于D关于直线 v=x 对称,由二重积分的轮换对称性得

$$\iint_{D} \left(\frac{x^{2}}{2} + \frac{y^{2}}{3}\right) dxdy = \frac{5}{12} \iint_{D} (x^{2} + y^{2}) dxdy = \frac{5}{12} \int_{0}^{2\pi} d\theta \int_{0}^{1} r^{3} dr = \frac{5}{24} \pi, \tag{4 \%}$$

所以
$$\frac{5\pi}{24} - \frac{4}{\pi} A \cdot \pi = A$$
, 解得 $A = \frac{\pi}{24}$,

于是
$$f(x,y) = \frac{x^2}{2} + \frac{y^2}{3} - \frac{1}{6}$$
. (6分)

8. 求积分
$$I = \int_{-1}^{1} dx \int_{-1}^{x} x \sqrt{1 - x^2 + y^2} dy$$
.

解: 积分区域如右图.

由所给积分次序,积分困难,交换积分次序

$$I = \int_{-1}^{1} dy \int_{y}^{1} x \sqrt{1 - x^{2} + y^{2}} dx$$
 (2 3)

$$= -\frac{1}{2} \int_{-1}^{1} (1 - x^2 + y^2)^{\frac{3}{2}} \Big|_{x=y}^{x=1} dy = \frac{1}{3} \int_{-1}^{1} (1 - |y|^3) dy \qquad (4 \, \frac{1}{3})$$

$$= \frac{2}{3} \int_0^1 (1 - y^3) dy = \frac{2}{3} (y - \frac{1}{4} y^4) \Big|_0^1 = \frac{1}{2}$$
 (6 \(\frac{1}{2}\))

$$\frac{\partial^2 z}{\partial x \partial y}$$

解:
$$\frac{\partial z}{\partial x} = 2xf_1' + y\phi'f_2'$$
 (2分)

$$\frac{\partial^2 z}{\partial r \partial v} = 2x(-f_{11}'' + x\varphi' f_{12}'') + \varphi' f_2' + xy\varphi'' f_2' + y\varphi'(-f_{21}'' + x\varphi' f_{22}'') \tag{4 \(\frac{1}{2}\)}$$

$$=-2xf_{11}''+(2x^2-y)\varphi'f_{12}''+(\varphi'+xy\varphi'')f_2'+xy(\varphi')^2f_{22}''$$
(6 \(\frac{1}{2}\))

10. 设平面区域 $D = \{(x,y) | x^2 + y^2 \le 1, x^2 + y^2 \ge 2y, x^2 + y^2 \ge -2y, x \ge 0\}$, 求二重积分

$$I = \iint_{\mathbb{R}} (y^3 + \sqrt{x^2 + y^2}) dx dy.$$

解: 平面区域如右图

$$=\frac{\pi}{9} + 2\sqrt{3} - \frac{32}{9} \tag{6 \(\frac{1}{2}\)}$$

- 二. 综合题 (每小题 8 分, 共 40 分)
- 1. 设函数 f(u) 具有二阶连续导数, $z = f(e^x \cos y)$ 满足

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}.$$

若 f(0) = 0, f'(0) = 0, 求 f(x)的表达式.

解 设 $u = e^x \cos y$,则

$$\frac{\partial z}{\partial x} = f'(u)e^{x}\cos y , \quad \frac{\partial^{2} z}{\partial x^{2}} = f''(u)[e^{x}\cos y]^{2} + f'(u)e^{x}\cos y ,$$

$$\frac{\partial z}{\partial y} = -f'(u)e^{x}\sin y , \quad \frac{\partial^{2} z}{\partial y^{2}} = f''(u)[-e^{x}\sin y]^{2} - f'(u)e^{x}\cos y ,$$
(2 \(\frac{\psi}{2}\right)

由
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (4z + e^x \cos y)e^{2x}$$
可得 $f''(u)e^{2x} = (4f(u) + u)e^{2x}$,即 $f(u)$ 满足微分方程

$$f''(u) = 4f(u) + u,$$
 (*)

其特征方程 $r^2-4=0$ 有解 $r_{1,2}=\pm 2$,所以对应的齐次方程的通解为 $C_1e^{2u}+C_2e^{-2u}$. (4分)

设特解为 $t^* = Au$,代入方程得 $t^* = -\frac{1}{4}u$,所以(*)的通解为

2. 求直线 L: $\begin{cases} x+y+z-1=0, \\ 2x+y+4z-2=0 \end{cases}$ 在曲面 xy+z=0 的点 $P_0(2,1,-2)$ 处切平面上的投影直线的

方程.

解一: 令
$$F(x, y, z) = xy + z$$
, 则 $grad F|_{(2,1-2)} = \{y, x, 1\}|_{(2,1-2)} = \{1, 2, 1\}$,

曲面xy+z=0在点 $P_0(2,1,-2)$ 处切平面方程为:

$$(x-2)+2(y-1)+(z+2)=0$$
 即 $x+2y+z-2=0$ (4分)

设过直线 $L: \begin{cases} x+y+z-1=0 \\ 2x+y+4z-2=0 \end{cases}$ 的平面束方程为:

$$\lambda(x+y+z-1)+\mu(2x+y+4z-2)=0$$
,

即
$$(\lambda+2\mu)x+(\lambda+\mu)y+(\lambda+4\mu)z-\lambda-2\mu=0$$
, (6分)

由
$$(\lambda+2\mu)\cdot 1+(\lambda+\mu)\cdot 2+(\lambda+4\mu)\cdot 1=0$$
 得 $\lambda=-2\mu$

代入平面束方程并化简得 y-2z=0

故所求投影直线的方程为
$$\begin{cases} y-2z=0, \\ x+2y+z-2=0. \end{cases}$$
 (8 分)

解二: 令 F(x, y, z) = xy + z, 则 $\operatorname{grad} F|_{(2,1,-2)} = \{y, x, 1\}|_{(2,1,-2)} = \{1,2,1\}$,

曲面xv+z=0在点 $P_{x}(2,1,-2)$ 处切平面方程为:

$$(x-2)+2(y-1)+(z+2)=0$$
 即 $x+2y+z-2=0$. (4分)

记过直线L且与切平面垂直的平面为 π ,设它的法向量为n,直线L的方向向量为s,

则
$$s=\{1,1,1\}\times\{2,1,4\}=\{3,-2,-1\}$$
,且 $n\perp s, n\perp\{1,2,1\}$

$$\mathbb{R}$$
 $n = s \times \{1, 2, 1\} = \{3, -2, -1\} \times \{1, 2, 1\} = \{0, -4, 8\}$

在直线 L 取点 (1,0,0), 则 π 的方程为 y-2z=0

故所求投影直线的方程为
$$\begin{cases} y-2z=0, \\ x+2y+z-2=0. \end{cases}$$
 (8分)

3. 设曲面 Σ 为曲线 $\begin{cases} 3x^2 + 2y^2 = 12 \\ z = 0 \end{cases}$ 绕 y 轴 旋 转 一 周 得 到 的 旋 转 曲 面 , 求 函 数

 $u=z^4-3xz+x^2+y^2$ 沿 Σ 上点 $P(0,\sqrt{3},\sqrt{2})$ 处指向外侧的法向量方向的方向导数.

解:根据题意可得旋转曲面Σ的方程为: $3(x^2+z^2)+2y^2=12$.

$$\diamondsuit F(x, y, z) = 3(x^2 + z^2) + 2y^2 - 12$$
, 则

grad
$$F|_{(0,\sqrt{5},\sqrt{2})} = \{6x,4y,6z\}|_{(0,\sqrt{5},\sqrt{2})} = 2\{0,2\sqrt{3},3\sqrt{2}\}.$$

该旋转曲面在点 $P(0,\sqrt{3},\sqrt{2})$ 处的外矢量可取为 $n = \{0,2\sqrt{3},3\sqrt{2}\},$ (4分)

单位外法矢量 $n^{\circ} = \frac{1}{\sqrt{5}} \{0, \sqrt{2}, \sqrt{3}\}$,

$$\mathbf{grad}u|_{p} = \{2x - 3z, 2y, 4z^{3} - 3x\}|_{(0,\sqrt{3},\sqrt{2})} = \{-3\sqrt{2}, 2\sqrt{3}, 8\sqrt{2}\}$$

$$\frac{\partial u}{\partial n}|_{p} = \operatorname{grad} u|_{p} \cdot n^{*} = \{-3\sqrt{2}, 2\sqrt{3}, 8\sqrt{2}\} \cdot \frac{1}{\sqrt{5}} \{0, \sqrt{2}, \sqrt{3}\} = 2\sqrt{30}$$
 (8 \(\frac{\psi}{2}\))

4. 讨论函数
$$f(x,y) = \begin{cases} \frac{\sqrt{|xy|}\sin(x^2+y^2)}{x^2+y^2}, (x,y) \neq (0,0),$$
在原点 $(0,0)$ 的连续性、偏导数存在 $(x,y) = (0,0)$

性及可微性.

$$\Re R: : 0 \le \left| \frac{\sqrt{|xy|} |\sin(x^2 + y^2)}{x^2 + y^2} \right| \le \sqrt{\frac{x^2 + y^2}{2}}, \quad \operatorname{inj} \lim_{\substack{x \to 0 \\ x \to 0}} \sqrt{\frac{x^2 + y^2}{2}} = 0$$

由夹逼准则知
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{\sqrt{|xy|} \sin(x^2 + y^2)}{x^2 + y^2} = 0$$
, 又 $f(0,0) = 0$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sqrt{|xy|}\sin(x^2 + y^2)}{x^2 + y^2} = f(0,0), \text{ 即 } f(x,y) 在原点(0,0) 连续$$
 (2 分)

$$f(x,0) = 0, f(0,y) = 0$$

$$\lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\Delta z - f_x(0,0)\Delta x - f_x(0,0)\Delta y}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = \lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} \cdot \frac{\sin((\Delta x)^2 + (\Delta y)^2)}{(\Delta x)^2 + (\Delta y)^2}$$

而
$$\lim_{\Delta y \to 0 \atop \Delta y \to \Delta x} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = \lim_{\Delta x \to 0} \frac{\sqrt{|k(\Delta x)^2|}}{\sqrt{(k^2 + 1)(\Delta x)^2}} = \frac{\sqrt{|k|}}{\sqrt{k^2 + 1}}$$
 随着 k 的变化而变化

因此
$$\lim_{\substack{\Delta \to 0 \\ \Delta \neq 0}} \frac{\sqrt{|\Delta x \Delta y|}}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} \cdot \frac{\sin((\Delta x)^2 + (\Delta y)^2)}{(\Delta x)^2 + (\Delta y)^2}$$
 不存在,更不可能等于 0 故 $f(x,y)$ 在在原点 $(0,0)$ 不可微. (8 分)

5. 设 $P_0(x_0,y_0,z_0)$ 为光滑曲面 S: $\varphi(x,y,z)=0$ 外的一固定点,P(x,y,z)为 S 上任意一点.证明: 若 $|P_0P|$ 最短,则 $|P_0P|$ 必是曲面 S 在点 P 处的法向量.

证明:
$$|\overline{P_0P}| = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$$
,此问题转化为
 $u = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2$ 在 $\varphi(x,y,z) = 0$ 约束下的最小值.
设 $F(x,y,z,\lambda) = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 + \lambda \varphi(x,y,z)$, (2分)

若 $|\overline{P_0P}|$ 最短,则 $|\overline{P_0P}|^2$ 最短,且在极值点处必有

$$\begin{cases} F_x(x, y, z, \lambda) = 0 \\ F_y(x, y, z, \lambda) = 0, \end{cases} \quad \text{IP} \begin{cases} 2(x - x_0) + \lambda \varphi_x(x, y, z) = 0 \\ 2(y - y_0) + \lambda \varphi_y(x, y, z) = 0, \\ 2(z - z_0) + \lambda \varphi_x(x, y, z) = 0 \end{cases}$$
(4 \(\frac{1}{2}\))

从而有
$$\frac{x-x_0}{\varphi_x(x,y,z)} = \frac{y-y_0}{\varphi_y(x,y,z)} = \frac{z-z_0}{\varphi_x(x,y,z)} = -\frac{1}{2}\lambda$$

故得
$$\{x-x_0, y-y_0, z-z_0\}$$
 || $\{\varphi_x(x, y, z), \varphi_y(x, y, z), \varphi_z(x, y, z)\}$ (6分)

而曲面 S 在点 P(x,y,z) 处的法向量 $n=\{\varphi_x(x,y,z),\varphi_y(x,y,z),\varphi_z(x,y,z)\}$

从而有
$$\overline{P_0P} \parallel n$$
,因此 $\overline{P_0P}$ 为曲面 S 在点 $P(x,y,z)$ 处的法向量. (8分)