Coding Lab: Manipulating data with dplyr

Ari Anisfeld

Summer 2020

Data manipulation with dplyr

Once you have data in R, you'll want to explore it.

The tidyverse package dplyr provides a toolkit for data manipulation.

We will cover:

- select() to pick columns
- arrange() to order the data
- mutate() to create new columns
- filter() to get rows that meet a criteria
- summarize() to summarize data

selecting columns with select()

select()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

selecting columns with select()

Use case: You want to present a subset of your columns

```
select(texas_housing_data, city, date, sales, listings)
```

```
## # A tibble: 8,602 x 4
##
     city date sales listings
## <chr> <dbl> <dbl>
                        <dbl>
## 1 Abilene 2000
                   72
                          701
##
   2 Abilene 2000. 98
                          746
##
   3 Abilene 2000. 130
                          784
##
   4 Abilene 2000. 98
                          785
##
   5 Abilene 2000. 141
                          794
##
   6 Abilene 2000. 156
                          780
                  152
                          742
##
   7 Abilene 2000.
   8 Abilene 2001.
                  131
                          765
##
   9 Abilene 2001. 104
                          771
##
                          764
## 10 Abilene 2001. 101
## # ... with 8.592 more rows
```

selecting columns with select()

```
Use case: You want to present a subset of your columns
select(texas_housing_data, -c(city, date, sales, listings))
```

The - says to exclude the columns listed in the vector.

selecting columns with select(), helpers

Use case: You want to reorder your columns

```
select(texas_housing_data, city, date,
       sales, listings, everything())
```

```
##
  # A tibble: 8,602 x 9
##
     city
              date sales listings year month
                                               volume med
             <dbl> <dbl>
                            <dbl> <int> <int>
##
     <chr>
                                                <dbl>
```

									_
##	1	Abilene	2000	72	701	2000	1	5380000	7:
##	2	Abilene	2000.	98	746	2000	2	6505000	58
##	3	Abilene	2000.	130	784	2000	3	9285000	58

4 Abilene 2000. 98 785 2000 9730000

68 6 ## 5 Abilene 2000. 141 794 2000 5 10590000 ## 6 Abilene 2000. 156 780 2000 13910000 66

7 12635000 73 ## 7 Abilene 2000. 152 742 2000 8 Abilene 2001. 131 765 2000 10710000 7! ## 9 Abilene 2001. 104 771 2000 7615000 64 ## 9

10 Abilene 2001. 764 7040000 101 2000 10 5 ... with 8,592 more rows

sort rows with arrange()

arrange()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

sort rows with arrange()

arrange(texas_housing_data, year)

```
## # A tibble: 8,602 x 9
##
     city
              year month sales volume median listings in
##
     <chr> <int> <int> <dbl>
                                  <dbl>
                                         <dbl>
                                                  <dbl>
                                5380000
                                                   701
##
   1 Abilene 2000
                            72
                                         71400
                       2
                                                   746
##
   2 Abilene 2000
                            98
                                6505000
                                         58700
                       3
##
   3 Abilene 2000
                           130
                                9285000
                                         58100
                                                   784
              2000
                       4
##
   4 Abilene
                            98
                                9730000
                                         68600
                                                   785
##
   5 Abilene
              2000
                       5
                           141 10590000
                                         67300
                                                   794
                       6
                           156 13910000
                                                   780
##
   6 Abilene
              2000
                                         66900
                       7
##
   7 Abilene
              2000
                           152 12635000
                                         73500
                                                   742
##
   8 Abilene
              2000
                       8
                           131
                               10710000
                                         75000
                                                   765
##
   9 Abilene
              2000
                       9
                           104
                                7615000
                                         64500
                                                   771
   10 Abilene
                      10
                           101
                                7040000
                                         59300
                                                   764
              2000
  # ... with 8,592 more rows
```

sort rows with arrange()

To change the order of use desc()

```
arrange(texas_housing_data, desc(year))
```

```
# A tibble: 8,602 x 9
##
            year month sales volume median listings :
     city
##
     <chr>
              <int> <int> <dbl>
                                   <dbl>
                                          <dbl>
                                                  <dbl>
##
   1 Abilene
               2015
                        1
                            158 23486998 134100
                                                    801
##
   2 Abilene 2015
                        2
                            151 19834263 126500
                                                    767
##
   3 Abilene
               2015
                            198 31869437 136800
                                                    821
                        4
                            201 28301159 129600
##
   4 Abilene
               2015
                                                    891
                        5
##
   5 Abilene 2015
                            199 31385757 144700
                                                    919
##
   6 Abilene
               2015
                        6
                            260 41396230 141500
                                                    965
   7 Abilene
               2015
                            268 45845730 148700
                                                    986
##
   8 Amarillo
              2015
                            204 33188726 138500
                                                   1120
##
   9 Amarillo
              2015
                        2
                            188 34355428 149400
                                                   1084
##
   10 Amarillo
               2015
                        3
                            317 53603130 140900
                                                   1051
  # ... with 8,592 more rows
```

Introducing the pipe operator

Interlude: Ceci est une %>%

The pipe %>% operator takes the left-hand side and makes it *input* in the right-hand side.

▶ by default, the left-hand side is the *first argument* of the right-hand side function.

```
# a tibble is the first argument
select(texas_housing_data, city, year, sales, volume)

texas_housing_data %>%
    select(city, year, sales, volume)
```

Ceci est une %>%

We can chain together tidyverse functions to avoid making so many intermediate data frames!

```
texas_housing_data %>%
  select(city, year, month, median) %>%
  arrange(desc(median))
```

12 / 34

```
## # A tibble: 8,602 x 4
##
     city
                   year month median
##
     <chr>
             <int> <int> <dbl>
   1 Collin County 2015
##
                            5 304200
   2 Collin County 2015
                            6 300400
##
   3 Collin County 2015
##
                            7 292600
   4 Collin County 2015
                            4 291400
##
##
   5 Collin County
                   2015
                            3 285800
##
   6 Fort Bend
                   2015
                            6 284200
##
   7 Collin County
                   2015
                            2 283400
   8 Midland
                   2014
                            6 283100
##
                            6 282300
##
   9 Fort Bend
                   2014
```

creating columns with mutate()

mutate()

storm	wind	pressure	date		storm	wind	pressure	date	ratio	inverse
Alberto	110	1007	2000-08-12		Alberto	110	1007	2000-08-12	9.15	0.11
Alex	45	1009	1998-07-30		Alex	45	1009	1998-07-30	22.42	0.04
Allison	65	1005	1995-06-04	\rightarrow	Allison	65	1005	1995-06-04	15.46	0.06
Ana	40	1013	1997-07-01		Ana	40	1013	1997-07-01	25.32	0.04
Arlene	50	1010	1999-06-13		Arlene	50	1010	1999-06-13	20.20	0.05
Arthur	45	1010	1996-06-21		Arthur	45	1010	1996-06-21	22.44	0.04

creating columns with mutate()

texas_housing_data %>%

```
select(city, year, month, mean_price, sales, volume)
## # A tibble: 8,602 x 6
     city year month mean_price sales volume
##
##
     <chr> <int> <int>
                           <dbl> <dbl>
                                        <dbl>>
   1 Abilene 2000
                          74722.
                                   72
                                      5380000
##
                     1
##
   2 Abilene 2000
                          66378.
                                   98
                                      6505000
   3 Abilene 2000
                     3
                          71423. 130
##
                                      9285000
   4 Abilene 2000
                     4
                          99286. 98 9730000
##
   5 Abilene 2000
                    5
##
                          75106. 141 10590000
   6 Abilene 2000 6
                          89167.
                                  156 13910000
##
##
   7 Abilene 2000
                     7
                          83125
                                  152 12635000
##
   8 Abilene 2000
                     8
                          81756.
                                  131 10710000
                     9
##
   9 Abilene 2000
                          73221.
                                  104 7615000
  10 Abilene 2000
                    10
                          69703.
                                  101 7040000
  # ... with 8,592 more rows
```

mutate(mean_price = volume / sales) %>%

Binary operators: Math in R

R is a calculator! We can do math with numbers, using the following symbols:

```
4 + 4

4 - 4

4 * 4

4 / 4

4 ^ 4

5 %% 4 # gives the remainder after dividing
```

creating columns with mutate()

When we mutate, you can create new columns.

- On the right side of the equal sign, you have the name of a new column.
- ► On the left side, you have code that creates a new column (using vector operations)¹

```
texas_housing_data %>%
  mutate(mean_price = volume / sales) %>%
  select(city, year, month, mean_price, sales, volume)
```

```
## # A tibble: 8,602 x 6
##
    city year month mean_price sales volume
    <chr> <int> <int> <dbl> <dbl>
##
                                      <dbl>
## 1 Abilene 2000
                         74722.
                                 72
                                    5380000
##
   2 Abilene 2000 2
                         66378. 98
                                    6505000
                    3
##
   3 Abilene 2000
                         71423. 130
                                    9285000
##
   4 Abilene 2000 4
                         99286. 98
                                    9730000
   5 Abilene
            2000
                    5
                         75106. 141 10590000
##
```

16 / 34

creating columns with mutate()

You can create multiple columns at a single time and even use information from a newly created column as input.

```
## # A tibble: 8,602 x 6
             year month mean_price sales
##
     city
                                       volume
##
     <chr> <int> <int>
                           <dbl> <dbl>
                                        <dbl>
##
   1 Abilene 2000
                          74722.
                                   72
                                       5380000
##
   2 Abilene 2000
                          66378. 98
                                       6505000
                     3
##
   3 Abilene 2000
                          71423. 130
                                       9285000
   4 Abilene 2000
                     4
                          99286. 98
                                       9730000
##
                     5
                          75106.
##
   5 Abilene 2000
                                  141 10590000
##
   6 Abilene 2000
                     6
                          89167.
                                  156 13910000
   7 Abilene
             2000
                     7
                          83125
                                  152 12635000
##
   8 Abilene
             2000
                          81756.
                                  131 10710000
##
```

17/34

Get all the data from 2013

```
filter(texas_housing_data, year == 2013)
```

```
# A tibble: 552 \times 9
##
     city
           year month sales volume median listings in
                                   <dbl>
##
     <chr>
             <int> <int> <dbl>
                                         <dbl>
                                                   <dbl>
##
   1 Abilene 2013
                            114 15794494 125300
                                                     966
##
   2 Abilene 2013
                        2 140 16552641 94400
                                                     943
                        3
##
   3 Abilene 2013
                            164 19609711 102500
                                                     958
                        4
                           213 27261796 113700
##
   4 Abilene 2013
                                                     948
   5 Abilene 2013
                        5
                           225 31901380 130000
##
                                                     923
##
   6 Abilene 2013
                        6
                            209 29454125 127300
                                                     960
##
    7 Abilene 2013
                            218 32547446 140000
                                                     969
                           236 30777727 120000
                                                     976
##
   8 Abilene
              2013
##
   9 Abilene
              2013
                        9
                            195 26237106 127500
                                                     985
                            167 21781187 119000
   10 Abilene
              2013
                       10
                                                     993
##
    ... with 542 more
                      rows
```

Relational operators return TRUE or FALSE

Before moving forward with filter(), we need to know about relational operators and logical operators

Operator	Name
<	less than
>	greater than
<=	less than or equal to
>=	greater than or equal to
==	equal to
!=	not equal to
%in%	matches something in

Relational operators in practice

```
4 < 4
## [1] FALSE
4 >= 4
## [1] TRUE
4 == 4
## [1] TRUE
4 != 4
## [1] FALSE
4 %in% c(1, 2, 3)
## [1] FALSE
```

logical operators combine TRUEs and FALSEs logically

Operator	Name
!	not
&	and
	or

```
# not true
! TRUE
## [1] FALSE
# are both x & y TRUE?
TRUE & FALSE
## [1] FALSE
# is\ either\ x\ /\ y\ TRUE?
TRUE | FALSE
```

[1] TRUE

What do the following return?

Logical operators team up with relational operators.

- ▶ First, evaluate the relational operator
- ► Then, care out the logic.

```
! (4 > 3) # ! TRUE
(5 > 1) & (5 > 2) # TRUE & TRUE
(4 > 10) | (20 > 3) # FALSE | TRUE
```

This is hard to wrap your head around. We'll have plenty of practice!

Get all the data from 2013 for Houston.

in filter() additional match criteria are treated like and

```
texas_housing_data %>%
  filter(year == 2013,
         city == "Houston")
```

##	# A tibble:	12 x	9				
##	city	year	${\tt month}$	sales	volume	${\tt median}$	listings
##	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>

##	<chr></chr>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl< th=""></dbl<>
##	1 Houston	2013	1	4273	852045057	149500	2136

##	1 Houston	2013	1	4273	852045057	149500	2136
##	2 Houston	2013	2	4886	1060985674	161900	2129

##	1	Houston	2013	1	4273	852045057	149500	21364
##	2	Houston	2013	2	4886	1060985674	161900	21293
##	3	Houston	2013	3	6382	1479273481	172300	20909

##	4 Houston	2013	4	7116	1770746764	182400	20607
	5 Houston		_		2121508529		20526
##	6 Hougton	2012	6	7025	2072000207	101600	21000

21008 Houston 2013 7935 2073909387 ## 7 Houston 2013 8468 2168720825 187800 21497 8155 2083377894 186700 ## 8 Houston 2013 21366

Get all the data from 2013 for Houston or Austin

- ▶ in filter() additional match criteria are treated like and
- we get nothing returned here, because no observation is in Houston AND in Austin.

Get all the data from after than 2013 for Houston OR Austin

A tibble: 38×9

##

9 Austin

10 Austin

2014

```
texas_housing_data %>%
  filter(year > 2013,
         city == "Houston" | city == "Austin")
```

```
##
     city year month sales volume median listings:
     <chr> <int> <int> <dbl>
##
                                 <dbl> <dbl>
                                                <dbl>
```

1 Austin 2014 1582 426127544 213700 5118 ## 1

2 Austin 2014 ## 2 1903 550882376 229400

5255 ## 3 Austin 2014 3 2434 717821612 235600 5512

4 Austin 2014 4 2691 813253968 237000 5838

5 3178 1012123948 243900 ## 5 Austin 2014 6539

6 ## 6 Austin 2014 3195 1023051880 248900

7040

7 ## 7 Austin 2014 3151 982086356 246900

7475

8 Austin 2014 8 3023 927019222 243800 7326

2588

796863816 239600

676914

10

2014 9 2664 813797562 238900 7072

Get all the data from after than 2013 for Houston Galveston

```
texas_housing_data %>%
  filter(year > 2013,
         city %in% c("Houston", "Dallas", "Austin"))
```

```
## # A tibble: 57 \times 9
##
      city year month sales volume median listings:
```

<chr> <int> <int> <dbl> ## <dbl> <dbl> <dbl> 1 Austin 2014 1582 426127544 213700 5118 1

2 Austin 2014 2 1903 550882376 229400

5255 ## 3 Austin 2014 3 2434 717821612 235600 5512

4 Austin 2014 4 2691 813253968 237000

5838 5 3178 1012123948 243900 ## 5 Austin 2014 6539

6 ## 6 Austin 2014 3195 1023051880 248900

7040

7 ## 7 Austin 2014 3151 982086356 246900 7475

7326

2588

796863816 239600

7072

67/914

8 Austin 2014 8 3023 927019222 243800

2014 9 2664 813797562 238900 ## 9 Austin

10

2014

10 Austin

city	particle size	amount (µg/m³)	
New York	large	23	
New York	small	14	
London	large	22	
London	small	16	
Beijing	large	121	
Beijing	small	56	

median 22.5

Calculate total volume of sales in Texas from 2014.

Calculate the mean and median number of sales in Texas's three largest cities.

```
## # A tibble: 1 x 2
## median_n_sales mean_n_sales
## <dbl> <dbl>
## 1 3996 3890.
```

There are many useful functions that go with summarize. Try ?summarize for more.

```
## # A tibble: 1 x 2
## n_obs n_cities
## <int> <int>
## 1 561 3
```

If you try to make a summarize statistic that does not collapse the data to a single value (per group), you'll get an error like so:

Get number of observations

piping dplyr verbs together

dplyrverbs can be piped together in any order you want, although different orders can give you different results, so be careful!

```
## # A tibble: 1 x 1
##
     log_mean_price_2013
##
                    <dbl>
## 1
                     12.1
# Won't give you the same result as
# texas_housing_data %>%
    select(city, year, month, sales, volume) %>%
    mutate(log mean price = log(volume / sales)) %>%
 # summarize(log mean price = mean(log mean price, na^{33}rm^{3})
```

Recap: manipulating data with dplyr

We learned

- how to employ the 5 dplyr verbs of highest importance including
 - select() to pick columns
 - arrange() to order the data
 - mutate() to create new columns
 - filter() to get rows that meet a criteria
 - summarize() to summarize data
- how to use relation operators, binary operators for math and logical operators in dplyr contexts