Proof-Based Math Readings Session: Large Sample Theory

2024 Summer

Zeki Akyol*

Department of Economics Istanbul Technical University Click here for the most recent version

Version: 01 April 2025, 06:16 PM $\,$

Table of contents

)	Motivation	2
1	Prerequisites	2
2	Format	2
3	Resources 3.1 Main Book and Main Book's Playlist 3.2 Supplementary 3.2.1 Large-Sample Theory 3.2.2 Proof Techniques 3.2.3 Real Analysis	2 2 2
4	Reading Schedule	3
5	Further Readings (Optional)	3

^{*}zekiakyol.com

0 Motivation

- Proof-Based Math Readings is a free, independent online reading group where we study the mathematics required for economics master's and PhD programs through an intuitive approach. Active since May 2023.
- This session of the reading group is on Large Sample Theory.

1 Prerequisites

- Proof Techniques and Real Analysis resources below.
- Please use the Application Form to join our reading group; you will receive a response within a week.

2 Format

- This session takes 12 weeks. We do not have face-to-face/online meetings due to the size of the group.
- Members read the main book and discuss the topics/exercises in the Proof-Based Math Readings Discord .

3 Resources

3.1 Main Book and Main Book's Playlist

Elements of Large-Sample Theory - Erich L. Lehmann (1999) is our main book for this session because it is well-written and well-structured.

Jingyi Jessica Li's playlist is our main playlist because her narrative is great.

- \blacksquare Elements of Large-Sample Theory Erich L. Lehmann (1999) \rightarrow Easier but doesn't contain solutions
- Elements of Large-Sample Theory Erich L. Lehmann (1999, Errata)
- \blacksquare A Course in Large Sample Theory Thomas S. Ferguson (2002) \rightarrow Harder but contains solutions
- A Course in Large Sample Theory Thomas S. Ferguson (2002, Errata)
- A Course in Large Sample Theory Thomas S. Ferguson (2002, Playlist by Jingyi Jessica Li)
- A Course in Large Sample Theory Thomas S. Ferguson (2002, Notes by Jingyi Jessica Li)

3.2 Supplementary

3.2.1 Large-Sample Theory

- Notes for a Graduate-Level Course in Asymptotics for Statisticians David R. Hunter (2025)
- *Understanding Convergence Concepts: A Visual-Minded and Graphical Simulation-Based Approach P. Micheaux, B. Liquet (2009)

3.2.2 Proof Techniques

- Book of Proof Richard Hammack (3.4 Edition, 2025)
- Book of Proof Richard Hammack (3.4 Edition, 2025, Playlist by Jeremy Teitelbaum)
- Book of Proof Richard Hammack (3.4 Edition, 2025, Playlist by Michael Penn)

3.2.3 Real Analysis

- Basic Analysis I: Introduction to Real Analysis Jiri Lebl (Version 6.1, 2024)
- Basic Analysis I: Introduction to Real Analysis Jiri Lebl (Version 6.1, 2024, Playlist by Casey Rodriguez)
- Introduction To Metric Spaces Paige Bright (2023)

Reading Schedule

• ELST is the abbreviation of Elements of Large-Sample Theory - Erich L. Lehmann (1999).

ELST, Chapter 1: Mathematical Background

Week 01-02

- 1.1 The concept of limit
- 1.2 Embedding sequences
- 1.3 Infinite series
- 1.4 Order relations and rates of convergence
- 1.5 Continuity
- 1.6 Distributions

ELST, Chapter 2: Convergence in Probability and in Law

Week 03-04-05-06

- 2.1 Convergence in probability
- 2.2 Applications
- 2.3 Convergence in law
- 2.4 The central limit theorem
- 2.5 Taylor's theorem and the delta method
- 2.6 Uniform convergence
- 2.7 The CLT for independent non-identical random variables
- 2.8 Central limit theorem for dependent variables

ELST, Chapter 3: Performance of Statistical Tests

Week 07-08-09

- 3.1 Critical values
- **3.2** Comparing two treatments
- 3.3 Power and sample size
- **3.4** Comparison of tests: Relative efficiency
- 3.5 Robustness

E ELST, Chapter 4: Estimation

Week 10-11-12

- 4.1 Confidence intervals
- **4.2** Accuracy of point estimators
- **4.3** Comparing estimators
- **4.4** Sampling from a finite population

Further Readings (Optional) 5

Asymptotic Theory for Econometricians - Halbert White (Revised Edition, 2000)