Théorie des Langages - Feuille nº 5

AUTOMATES FINIS ET LANGAGES RÉGULIERS

Exercice 1 - Soit $\Sigma = \{a, b\}$. Soient les automates M_1 (à gauche) et M_2 (à droite) suivants. En utilisant le théorème d'Arden, donnez sous forme d'expressions régulières les langages $\mathcal{L}(M_1)$ et $\mathcal{L}(M_2)$.

Exercice 2 - Soit $\Sigma = \{a, b\}$. Montrez, en utilisant le théorème d'Arden, que $L(M) = (aa^*b)^*$

Exercice 3 - Par la méthode d'élimination des états, donnez les expressions régulières équivalentes aux automates suivants :

1. Automate M_1

2. Automate M_2 (à gauche) et automate M_3 (à droite)

Exercice 4 - Construire, en utilisant l'algorithme de Thompson, les automates qui reconnaissent les langages :

- $L = (b(aa)^*b)^*$ (avec $Σ = {a,b}$)
- $L = c(a+b)^*a$ (avec Σ = {a,b,c})

Exercice 5 - Reprenez les automates M_1 et M_2 de l'exercice 1. Proposez une grammaire qui engendre $\mathcal{L}(M_1)$, et une grammaire qui engendre $\mathcal{L}(M_2)$.

Exercice 6 - Soit la grammaire $G = \langle V, \Sigma, P, S \rangle$, avec $V = \{S, T, a, b\}$, $\Sigma = \{a, b\}$, $P = \{S \rightarrow aS, S \rightarrow bT, S \rightarrow \varepsilon, S \rightarrow a, T \rightarrow aS, T \rightarrow bT, T \rightarrow a\}$.

Construire l'automate M tel que $\mathcal{L}(G) = \mathcal{L}(M)$.

Exercice 7 - Les langages suivants sont-ils réguliers?

- 1. $L_1 = \{0^{2n} | n \ge 1\}$
- 2. $L_2 = \{0^{2^n} | n \ge 1\}$
- 3. $L_3 = \{x \in \{0,1\}^* | x \text{ n'a pas 3 zéros consécutifs} \}$