PONOVLJENI 2. MEĐUISPIT IZ VJEROJATNOSTI I STATISTIKE

15. 06. 2007.

1. (3 boda) Gustoća razdiobe slučajne varijable X iznosi

$$f(x) = \frac{2}{\pi}\cos^2 x, \quad x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

Izračunaj vjerojatnost da od tri realizacije varijable X, točno dvije padnu unutar intervala $(0, \frac{\pi}{4})$.

Rješenje: $P = 3(\frac{\pi+2}{4\pi})^2 \frac{3\pi-2}{4\pi}$

- 2. (3 boda) Zadan je trokut sa osnovicom duljine a i visinom duljine v na tu osnovicu. Točka se bira na sreću unutar trokuta. Za vrijednost slučajne varijable X uzimamo udaljenost točke do osnovice. Izračunaj očekivanje varijable X.
- 3. Rješenje: $E(X) = \frac{v}{3}$.

(3 boda) Ako slučajna varijabla X ima eksponencijalnu razdiobu, dokažite da je P(X < x + t | X > t) = P(X < x), $\forall x, t > 0$.

Rješenje: vidi predavanja

4. (**4 boda**)

- (a) Izvedite karakterističnu funkciju jedinične normalne razdiobe.
- (b) Izvedite pravilo 3σ za normalnu razdiobu.

Rješenje: vidi predavanja

- 5. (3 boda) Slučajni vektor (X,Y) ima gustoću $f(x,y) = \frac{1}{\pi^2(x^2 + y^2 + x^2y^2 + 1)}$.
 - (a) Izračunajte funkciju razdiobe F(x,y) slučajnog vektora (X,Y).
 - (b) Dokažite da su slučajne varijable X i Y nezavisne.

Rješenje: a) $F(x,y) = (\frac{1}{\pi}arctgx + \frac{1}{2})(\frac{1}{\pi}arctgy + \frac{1}{2})$

- 6. (4 boda) Slučajni vektor (X,Y) zadan je gustoćom f(x,y)=Cxy, na području $D=\{(x,y):0\leq x\leq 1,0\leq y\leq 1,x+y\leq 1\}.$
 - (a) Odredite konstantu C,
 - (b) Izračunajte marginalnu gustoću $f_X(x)$,
 - (c) Izračunajte P(X > Y).

Rješenje: a) C = 24, b) $f_X(x) = 12x(1-x^2)$, $0 \le x \le 1$, c) $\frac{1}{2}$.

7. (**5** bodova)

- (a) Neka je f(x,y) gustoća slučajnog vektora (X,Y). Odredi gustoću slučajne varijable $Z=3X-\frac{1}{2}Y$.
- (b) Neka je $f(x,y)=x^2+Cy,\ 0\le x\le 1,\ 0\le y\le 1.$ Odredi konstantu C. Odredi gustoću razdiobe slučajne varijable $Z=3X-\frac{1}{2}Y.$

Rješenje: a) $g_Z(z)=\int_{-\infty}^{\infty}2f(x,6x-2z)dx$, b) integrirati izraz pod a) za slučajeve $z\in[-1/2,0],\ z\in[0,5/2],\ z\in[5/2,3].$