Question:

Prove that the following two languages are undecidable.

- **a.** $OVERLAP_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs where } L(G) \cap L(H) \neq \emptyset \}.$ (Hint: Adapt the hint in Problem 5.21.)
- **b.** PREFIX- $FREE_{CFG} = \{\langle G \rangle | G \text{ is a CFG where } L(G) \text{ is prefix-free} \}.$

Answer:

----SETP1----

The given languages have to be proven to be un-decidable.

a)

 $OVERLAP_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are CFGs where } L(G) \cap L(H) \neq \emptyset \}$

----SETP2----

Assume that $OVERLAP_{CFG}$ is decidable. Given an instance for the problem of Post Correspondence $P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, ..., \begin{bmatrix} t_n \\ b_n \end{bmatrix} \right\}$, introduce unique new terminals $a_1, a_2, ..., a_n$ for the CFGs.

----SETP3----

• Define the CFG^G as:

$$\begin{split} G &= t_1, t_2, ..., t_n \\ L\left(G\right) &= \left\{s \mid s = t_i t_j ... t_k a_k a_j a_i\right\} \\ S_G &\rightarrow t_1 S_G a_1 \mid ... \mid t_n S_G a_n \mid t_1 a_1 \mid ... \mid t_n a_n \end{split}$$

• Similarly, define the CFGH as follows:

$$\begin{split} H &= b_1, b_2, \dots, b_n \\ L\left(H\right) &= \left\{s \mid s = b_i b_j \dots b_k a_k \dots a_j a_i\right\} \\ S_H &\to b_1 S_H a_1 \mid \dots \mid b_n S_H a_n \mid b_1 a_1 \mid \dots \mid b_n a_n \\ \mathrm{As} \, L\left(G\right) \cap L\left(H\right) \neq \emptyset \, \text{ we get } t_i t_j \dots t_k a_k \dots a_j a_i = b_i b_j \dots b_k a_k \dots a_j a_i \end{split}$$

----SETP4----

ullet Since the new terminals $a_1,a_2,...,a_n$ are unique, which can be cancelled from both sides resulting in:

$$t_i t_j ... t_k = b_i b_j ... b_k$$

This is a way to solve for **the Post Correspondence Problem** P**.** This is a contradiction as the Post Correspondence **Problem is un-decidable**. Therefore, the assumption taken that $OVERLAP_{CFG}$ is **decidable**, is incorrect.

----SETP5----

b)

 $PREFIX\text{-}FREE_{CFG} = \{\langle G \rangle | G \text{ is a CFG where } L(G) \text{ is prefix-free} \}$

A mapping reducibility from the language A_{TM} (does a Turing machine accept a string?) to the language PREFIX- $FREE_{CFG}$ is given by the function f. Here, $\langle M, w \rangle$ is taken as an input of the computable functions f and $\langle M', w \rangle$ is returned in such a way that:

$$\langle M, w \rangle \in A_{TM}$$
 iff $\langle M', w' \rangle \in PREFIX\text{-}FREE_{CFG}$

The machine F to compute the function f is:
$F =$ "when $\langle M, w \rangle$ is taken as an input:
1. The machine M is constructed
M' = "On input x:
1. For all proper prefixes ^y of ^x :
1. M will be run on y .
2. then reject.
2. $\operatorname{Run} M$ on x .
3. If it is accepted by M , then $accept$.
4. If it is rejected by M ,, then $reject$."
2. Output $\langle M^{'},w^{'} angle$.
The output machine M only accepts an input string w if the language $L(M)$ is prefix-free. It does so by checking if any of the proper prefixes of w do not lie in $L(M)$ and w lies in it.

----SETP7----

- It has been shown that $^{A_{T\!M}}$ is mapping reducible to $^{PREFIX ext{-}FREE}_{\mathit{CFG}}$, that is:

$$A_{TM} \leq_m PREFIX\text{-}FREE_{CFG}$$

Thus as A_{TM} is un-decidable, the language PREFIX-FREE $_{CFG}$ is also un-decidable.