Sheaf Theory.

Motivation To obtain a fiven topology on a scheme, and generalise sheet theory in this new situation.

Idea Freat more morphisms (U -> X) rother than Barisk: upon immersions as 'open subset'.

& Presheoves and sheoves

A class E of monphisms of schenes usually scatisfies

- · Isoms ar in 6.
- · blossed under composition.
- . flored under Bose change.

with E/X we mention the full-subcot of Sch/X whose structure months are E-marphs.

eg. E: (Zor) open immersions.

E=(ét) finite étale memphs.

E = (fl) flot and locally of finite type.

Fix X scheme, C/X full subcot of Sch/X. E class of morphism s.t. C/X closed under fibre product,

and, $Y \rightarrow X$ in C/X. $U \rightarrow Y$ in $G \Rightarrow U \rightarrow X$ in C/X.

Def An E-covering of $Y \in CIX$ is a family $(Ui \xrightarrow{g_i} Y)_i$ CE, SI. $Y = Ug_i Ui_i)$. An E-topology on CIX is the class of all such coverings. An E-site is the CIX together with an E-topology.

Motation & Example . (C/X) E. XE when C is clear.

- · small site XE = (E/X)E (analyse of a space)
- · lig site $X_E = (LLFT/X)_E$. (avalgue of cost of spaces)
- · Xzor = (2or/X)zor.
- $\cdot \quad \chi_{\acute{e}t} = (\acute{e}t/\chi)_{\acute{e}t}$
- · X = (LFT/X)f1

Def A preshed on a site $(C/X)_E$ is a function $(C/X)^P \longrightarrow Ab$. A morphism of presheaves is a notrol mans.

=> Prestiences on (C/X) & PShl(C/X)&) = PSh(X&) is

an abelian category.

Example (1) constant presheaf PM(U) = M.

(2) Ga (U) = P(U, Du)

(3) Gm (u) = PIU. Du)x

14) $F \in \mathcal{V}_{x-m}$. $W(F)(U) = P(U, F \partial_{x} \mathcal{V}_{n})$. e.g. $w(\mathcal{V}_{x}) = G_{a}$.

. X S-scheme. W(\Sizis) -> [(., \Sizis).

is on isom for small étale site.

Det A preshect P is a sheaf it

. (S_i) if $S \in P(u)$ and there is a covering $(U_i \rightarrow u)$ such that resu: us = 0 $\forall i$ then S=0

- (S2) if (U: > U) is a covering, and (Si) SieP(Ui) is that

resuixuus, ui Si = resuixuus, us si Vis.

then exists $S \in P(u)$, resulting $\forall i$.

Or equivalently

(S) P(u) -> TP(ui) -> TP(uixu uj)

is exact.

Example Consider $P \in Psh(X_{et})$ and $Y \to X$ a galois evening with group G. $(Y \to X)$ is a covaring, and $Y \times XY = \coprod_{\sigma \in G} Y_{\sigma}$. Projections $Y \times XY = \coprod_{\sigma \in G} Y_{\sigma}$. Projections $Y \times XY = \coprod_{\sigma \in G} Y_{\sigma}$. $Y = \coprod_{\sigma \in G} Y_{\sigma}$.

and thus (S) becomes

 $P(X) \longrightarrow P(Y) \xrightarrow{C[i,...,I]} P(Y)^n$.

If P is a sheef then $P(X) = P(Y)^G$.

Prop A P is a presheaf on étale or flat site on X. Han P is a sheaf iff

(a) for any U in C/X, Plu is a Sheaf for Uzar.

(B) for any covering $(u' \rightarrow u)$ with U and u' both affine, $P(u) \rightarrow P(u') \stackrel{>}{\Rightarrow} P(u' \times_u u')$ is exact.

proof. Necessity is obvious.

To show sufficiency. (a) reduces (8) for $(Ui \rightarrow U)$ to $(U' \rightarrow U)$ where $U' = \Pi Ui$ and (6) proves exactness of (6) for $(Ui \rightarrow U)_{i \in I}$ where I is finite

and U:, U all offine

Oragram chase complete the proof

Con For any gook Dx-md F. WIF) is a sheaf on XFI and X ét

e.g. Go, Gn are indeed sheaves on Xfl, Xet.

Con the presheet defined by a commutative group scheme on X is a sheet for flow, Etale and Sorish; sixes on X.

Example. Let Ga = Spec Z[T]. Ga.x = X x 2 Ga. Then

Morx (U, Ga) = []U, Du) = Ga(u). Thus Ga is

a sheet. So is Gu fu Gu = Spec Z IT.T'].

Example $Fix X = Spec K K a field. Fix genue enic point <math>\bar{x} \longrightarrow X$ and $G = \pi_1(X, \bar{x}) = Gal(K^{sep}/K)$.

PEPShIXei) K'/K finite seponcale Write

P(K') = P(Spec K') Mp = lim, P(K'). Then G D Mp

and Mp = U Mp when H C G mus shrough open

sulgraps of G => Mp is a discrete G-mod.

Conversely, give a discrete G-mil M, define a preshed F in by (a) F in $(K') = M^H$. H = G all (K^{Sep}/K') , $(K) = \prod K_i$.

Fm is a sheaf: (a) of Ry^{Λ} is clean. It suffices to check (B) for Spec L' \rightarrow Spec L, both separable extension of K. Let L'' IL Galois containing L'.

Fm(L) \longrightarrow Fm(L') \Longrightarrow Fm(L'\omega_L')

Fm(L) \longrightarrow Fm(L') \Longrightarrow Fm(L'\omega_L')

Bottow Now execut =) top) now execut.

The correspondence $F \iff M_F$, $M \iff F_M$ induces on equivalence between S(X 'et) and G-mod of discrete G-modules.

& the cost of sheaves

lef A morphism of schemes $\pi: X' \to X$ is a morphism of sites $(C'/X')_{E'} \to (C/X)_{\hat{E}}$ if

- $\forall Y \in C/X$. $Y_{(x')} \in C'/X'$
- . V E-morphism U → Y in C/X, U(x') → Y(x') is
 on E'-morphism.

Also continuous monthism.

Def Let $\pi: X_{E'} \to X_{E}$ be continuous, P' a presheaf on $X_{E'}$. He direct image $\pi_{\star}P'$ on X_{E} is defined by $(\pi_{\star}P')(u) = P'(u_{(X')})$. $\pi_{X}: PSh(X'_{E'}) \to PSh(X_{E})$ is a function. The inverse image function π^{-1} is the left adjoint of π_{\star} .

Construction $(\pi^{-1})(u') = \lim_{n \to \infty} P(u)$, where u runs over all squares

$$\begin{array}{ccc} u' & \longrightarrow & \mathcal{U} \\ \downarrow & & \downarrow \\ \chi' & \stackrel{\pi}{\longrightarrow} & \chi \end{array}$$

Prop The function π_* is exact and π^{-1} is right-exact. π^{-1} is left-exact if

- . finite invense limit exists in C/X, or
- · \(\pi \) is in \(C/X\) = \(C/X\) / X'

Lenma The direct limit defining To is cofiltened if finite invenue limit exists in C/X.

Prop If F is a sheet, then TXF is a sheaf.

Stalk of a specifical in étale site. A point :

given a sheaf is given an alelian group. Not three

for one-point schene unless it is a spectrum of
a separably closed field. A point is a geometric

point.

Let x be a set-theoretic point in X, and $u_X: \bar{x} \to x \to X$ a geometric point.

Def let $P \in PSh(X_{et})$. The stelk of $P = \overline{X}$ is independent of choice of $K(\overline{X})$

Remark. Jaking stalk is exact

- · Px is a GallKiel/KI-module, K=KIX).
- · Let U be an étale noted et \overline{X} , there is consnical $P(u) \rightarrow P_{\overline{X}}$, $S \rightarrow S_{\overline{X}}$.

• For P the shoot defined by a grap where G that is LTT over X, we have [see.].] $P_{\overline{X}} = \varinjlim G(U) = G(\varprojlim U) = G(\mathcal{D}_{X,\overline{X}}).$ eg. $(G_{\alpha})_{\overline{X}} = \mathcal{D}_{X,\overline{X}} = (G_{m})_{\overline{X}} = \mathcal{D}_{X,\overline{X}}^{*}$.

Prop Let $F \in Sh(X\bar{e}t)$. If $s \in F(u)$ is nonzero, then there is an $x \in X$ and on \bar{x} -point of U s.t. $S\bar{x}$ is nonzero.

Thun & Def For any pusheof P on XE there is a short P^{sh} on X_E and a morphism $p:P \to P^{sh}$ s.t. for any shoot F there is notural isomorphism $Hom_{PSh}(P,F) \cong Hom_{Sh}(P^{sh},F)$

psh is the sheet associate with P or the cheafification of P.

proof le prove for étale site.

For $\overline{x} = \operatorname{Spes} K(\overline{x})$. Where $K(\overline{x})$ is algebraically elosed, P^{sh} is determined by $P(\overline{x})$ in an obvious way. For general X. For each $X \in X$ choose $\overline{x} \to X$. Write $P_{\overline{x}}^* = (U_{\overline{x}}^{-1}P)^{sh}$, i.e., the sheef defined by $P_{\overline{x}}$.

Let $P^* = \prod_{n} u_{n,*} P_n^*$ which is a sheef. There is notunal $\phi: P \rightarrow P^*$ induced by

 $P \longrightarrow u_{x,*} \circ u_{x}^{-1} \stackrel{>}{} \longrightarrow u_{x,*} (u_{x}^{-1})^{sh}$.

Let P^{sh} be the intersection of all sulsheaves containing $\phi(P)$ in P^{*} .

Possiden $P \xrightarrow{\phi} P \xrightarrow{sh} C \Rightarrow P^*$ $\downarrow \psi$ $F \xrightarrow{\varphi} F \xrightarrow{\varphi} F^*$

where $P^* \xrightarrow{\psi} F^*$ is induced by ϕ and $F \hookrightarrow F^*$ since F is a sheaf. $\phi(P) \subset \psi^{-1}(F)$, thus $P^{sh} \subset \psi^{-1}(F)$, and $\psi(P) \hookrightarrow \psi^{-1}(F) \longrightarrow F$ is a maphism making diagram commute. If $\psi(F) \hookrightarrow \varphi(F) \hookrightarrow \varphi(F)$ such a maphism then $\ker(\psi_1 - \psi_0) \subset \varphi(F) \hookrightarrow \varphi(F)$ is a subsheaf containing $\varphi(P)$, making $\ker(\psi_1 - \psi_0) = \varphi(F) \hookrightarrow \varphi$

Remark. Ihm Q Def says that

(.) sh: PSh(XE) = Sh(XE): U

is an adjoint pain.

P and Psh have same stalks.

Pup. (.) sh : PSh (XE) -> Sh (XE) is exact

. For étale ropology.

のふどーシチーングーショ

being exact in Sh(XE) is equivalent to

0 -> F= -> F= -> F= -> o

being exact for any geometric point à.

Example. Let μ_n be the subshef of G_{tm} such that $\mu_n(u) = n$ -th rosts of unit in $\Gamma(u, \mathcal{D}_u)$. It is represented by Spec $\mathbb{Z}\overline{c}TJ/(T^n-1)$, thus a sheef.

o >> pu -> Gm -> Gm

is exact in PSh(Xe) and hence in Sh(XE). However, Gm - Gm is narry epimonphiz in Sh(XiZar). On the other hand, for a strictly local ring (A.M), as long as $N \neq 0 \in K = A/III$. By Hensel lemma.

0 -> p. (A) -> A -> 2

It provides that 0 -> p_- -> Gam -> Gam -> 0 is exact in Sh(XEI) if n +> e K(x) for any x e X.

In $Sh(X_{fl})$ exactness helds even without restriction on residue field character. $(A \rightarrow A[T]/(T^2-\alpha)$ is flat).

· let X be an Ep-scheme. Then $(Z/pZ)_{\times} = X \times_{E_p} E_p ITJ / (T^P - T)$

Thus the constant sheaf $(Z/pZ)\times is$ given by $(Z/pZ)\times [U]=[\alpha\in\Gamma(U,\partial u):\alpha^2-\alpha=0].$

Cousider

 $0 \longrightarrow (\mathcal{C}/p\mathcal{Z})_X \longrightarrow G_\alpha \xrightarrow{F^{-1}} G_\alpha \longrightarrow \circ.$

when F(0) = a? It is not exact in Sh(X2.01) in general.

But is exact in Sh(Xēt) (and hence Sh(Xp1)), (AITI/(T'-T))

is étale over A!

Again le X be an \mathbb{E}_{p} -scheme. Let Δ_{p} be defined by $d_{p}(u) = \int \alpha \in \Gamma(u, \vartheta_{n}) : \alpha' = 0$. Then α_{p} is a short represented by $\mathbb{E}_{p}(T) / (T^{p})$.

o -> op -> Ga F> Ga->>

is always execut in $Sh(X_{Fi})$, but not in $Sh(X_{E1})$ or $Sh(X_{2cor})$