Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal, ya, semangat!

Pertama, masukkan dulu nilai initial value dan randomnya ya ...

Initial Value

X ₁	Х2	Х3	α	Threshold	Y _{d,6}
0.7	0.8	09	0.1	-1.0	0

Initial Random

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W 46	W ₅₆	θ ₄	θ ₅	0 ₆
0.5	0.6	0.3	1.1	-1.0	0.1	-1.1	-0.7	0.2	0.3	0.4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya

Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function

$$\begin{array}{ll} {\rm Y}_4 & = {\rm sigmoid} \, (X_1W_{14} + X_2W_{24} + X_3W_{34} + {\rm Threshold} \, \theta_4) \\ & = \frac{1}{1 + e^{-(0.7 \times 0.5 + 0.8 \times 0.3 + 0.9 \times (-1.0) + (-1) \times 0.2)}} \\ & = 0.3752 \\ {\rm Y}_5 & = {\rm sigmoid} \, (X_1W_{15} + X_2W_{25} + X_3W_{35} + {\rm Threshold} \, \theta_5) \\ & = \frac{1}{1 + e^{-(0.7 \times 0.6 + 0.8 \times 1.1 + 0.9 \times 0.1 + (-1) \times 0.3)}} \\ & = 0.7484 \\ {\rm Y}_6 & = {\rm sigmoid} \, (Y_4W_{46} + Y_5W_{56} + {\rm Threshold} \, \theta_6) \\ & = \frac{1}{1 + e^{-(0.3752 \times (-1.1) + 0.7484 \times (-0.7) + (-1) \times 0.4)}} \\ & = 0.2081 \end{array}$$

e =
$$Y_{d,6} - Y_6$$

= 0 - 0.2081
= - 0.2081

Y ₄	Y ₅	Y ₆	e
0.3752	0.7484	0.2081	- 0.2081

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections

$$\delta_6 = Y_6 (1 - Y_6)e$$

$$= 0.2081 \times (1 - 0.2081) \times (-0.2081)$$

$$= -0.0343$$

$$\nabla_{46} = \alpha \times Y_4 \times \delta_6$$

$$= 0.1 \times 0.3752 \times (-0.0343)$$

$$= -0.0013$$

$$\nabla_{56} = \alpha \times Y_5 \times \delta_6$$

$$= 0.1 \times 0.7484 \times (-0.0343)$$

$$= -0.0026$$

$$\nabla\theta_6 = \alpha \times \text{Threshold} \times \delta_6$$

$$= 0.1 \times (-1) \times (-0.0343)$$

$$= 0.0034$$

δ_6 ∇_{46}		$ abla_{56}$	$ abla heta_6$	
-0.0343	-0.0013	-0.0026	0.0034	

Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle Layer/Hidden Layer

$$\delta_4$$
 = $Y_4 (1 - Y_4) \times \delta_6 \times W_{46}$
= 0.3752 × (1 - 0.3752) × (-0.0343) × (-1.1)
= 0.0088
 δ_5 = $Y_5 (1 - Y_5) \times \delta_6 \times W_{56}$
= 0.7484 × (1 - 0.7484) × (-0.0343) × (-0.7)
= 0.0045

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_4	δ_5
0.0088	0.0045

Langkah 4: Hitung weight corrections

$$abla_{w_{14}} = \alpha \times X_{1} \times \delta_{4}$$
 $= 0.1 \times 0.7 \times 0.0088$
 $= 0.0006$
 $abla_{w_{24}} = \alpha \times X_{2} \times \delta_{4}$
 $= 0.1 \times 0.8 \times 0.0088$
 $= 0.0007$
 $abla_{w_{34}} = \alpha \times X_{3} \times \delta_{4}$
 $= 0.1 \times 0.9 \times 0.0088$
 $= 0.0008$
 $abla_{\theta_{4}} = \alpha \times Threshold \times \delta_{4}$
 $= 0.1 \times (-1) \times 0.0088$
 $= -0.0009$

$$\nabla w_{15} = \alpha \times X_{1} \times \delta_{5}$$

$$= 0.1 \times 0.7 \times 0.0045$$

$$= 0.0003$$

$$\nabla w_{25} = \alpha \times X_{2} \times \delta_{5}$$

$$= 0.1 \times 0.8 \times 0.0045$$

$$= 0.0004$$

$$\nabla w_{35} = \alpha \times X_{3} \times \delta_{5}$$

$$= 0.1 \times 0.9 \times 0.0045$$

$$= 0.0004$$

$$\nabla \theta_{5} = \alpha \times Threshold \times \delta_{5}$$

$$= 0.1 \times (-1) \times 0.0045$$

$$= -0.0005$$

∇w ₁₄	∇ w ₂₄	∇ w ₃₄	∇θ ₄	∇ w ₁₅	∇ w ₂₅	∇w ₃₅	∇θ₅
0.0006	0.0007	0.0008	- 0.0009	0.0003	0.0004	0.0004	- 0.0005

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

$$w_{14} = W_{14} + \nabla W_{14}$$

$$= 0.5 + 0.0006$$

$$= 0.5006$$

$$w_{15} = W_{15} + \nabla W_{15}$$

$$= 0.6 + 0.0003$$

$$= 0.6003$$

$$w_{24} = W_{24} + \nabla W_{24}$$

$$= 0.3 + 0.0007$$

$$= 0.3007$$

$$= 0.3007$$

$$W_{25} = W_{25} + \nabla W_{25}$$

$$= 1.1 + 0.0004$$

$$= 1.1004$$

$$W_{34} = W_{34} + \nabla W_{34}$$

$$= -1.0 + 0.0008$$

$$= -0.9992$$

$$W_{35} = W_{35} + \nabla W_{35}$$

$$= 0.1 + 0.0004$$

$$= 0.1004$$

$$\theta_{4} = \theta_{4} + \nabla \theta_{4}$$

$$= 0.2 + (-0.0009)$$

$$= 0.1991$$

$$\theta_{5} = \theta_{5} + \nabla \theta_{5}$$

$$= 0.3 + (-0.0005)$$

$$= 0.2995$$

$$\theta_{6} = \theta_{6} + \nabla \theta_{6}$$

= 0.4 + 0.0034

= 0.4034

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W 34	W 35	θ_3	θ_4	θ_5
0.5006	0.6003	0.3007	1.1004	-0.9992	0.1004	0.1991	0.2995	0.4034

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge, semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang~