

Dr. Chelsea Parlett-Pelleriti

PCA Overview

Dimensionality Reduction

Dimensionality Reduction

GPA

 $\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$

1. What are the directions of stretch and squish?

2. How much do we stretch and squish?

$$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \quad Ax = \lambda x$$

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 1 & 0.5 \\ 0.5 & 1 \end{vmatrix} Ax = \lambda x$$

$$|A - \lambda I| = 0$$

$|A - \lambda I| = 0$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$(1 - \lambda)(1 - \lambda) - (0.5)(0.5)$$

$$-\lambda I = 0$$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$(1 - \lambda)(1 - \lambda) - (0.5)(0.5)$$

$$\lambda^2 - 2\lambda + 0.75$$

$$\lambda = 1.5, 0.5$$

$$(\lambda-1.5)(\lambda-0.5)$$

$$\lambda = 1.5, 0.5$$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$\lambda = 1.5, 0.5$$

$$\begin{bmatrix} 1 - \lambda & 0.5 \\ 0.5 & 1 - \lambda \end{bmatrix}$$

$$\begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix} \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}$$

Principal Component Analysis

PCA

$$cov(\mathbf{x}) = \begin{bmatrix} 1 & 0.68 \\ 0.68 & 1 \end{bmatrix}$$

Loadings

Weights

Variable	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Income	0.314	0.145	-0.676	-0.347	-0.241	0.494	0.018
Education	0.237	0.444	-0.401	0.240	0.622	-0.357	0.103
Age	0.484	-0.135	-0.004	-0.212	-0.175	-0.487	-0.657
Residence	0.466	-0.277	0.091	0.116	-0.035	-0.085	0.487
Employ	0.459	-0.304	0.122	-0.017	-0.014	-0.023	0.368
Savings	0.404	0.219	0.366	0.436	0.143	0.568	-0.348
Debt	-0.067	-0.585	-0.078	-0.281	0.681	0.245	-0.196
Credit cards	-0.123	-0.452	-0.468	0.703	-0.195	-0.022	-0.158

Component Scores

New

```
-0.009346561 0.97125244 0.812390987 0.16654000 0.041430260 -0.59984809 -2.147002620 -0.60889442
```

1.413295183 -0.31382581

-3.123826392 -0.04680691

PC1

-0.809722735

-1.688064279

-2.550657933

1.657943766

PC2

0.08256115

0.19483917

0.21442421

0.89216807

0.512723998 -1.18058477 -0.755004514 -0.74959709

0.201041435 -0.24101236

Components

Component Loadings

Component Scores

Original Data

```
        A
        B
        C

        0
        -0.495414
        -0.150791
        -1.547534

        1
        -0.889168
        -0.840230
        -0.654650

        2
        1.158441
        1.046401
        1.369631

        3
        2.349085
        1.355365
        1.700785
```

```
(-0.696795*-0.495414) +
(-0.680594*-0.150791) +
(-0.226426*-1.547534) \approx 0.799
```

Dimensionality Reduction

Scree and Cumulative Variance Plots

Recap

Original Data Eigenvectors/ **Component Scores** Loadings (New Variables) Age Weight Height 🍍 Rate **3** The color of the circles represents data from different people PC₁ Score for $\frac{2}{3}$ The color of the rectangles represents data from different original variables The linetype represents different eigenvectors (the eigenvectors are the loadings for each Principal Component). PC₂ Score for $\frac{1}{100}$ 3 The color of the squares represent which original variable that value goes with. **PCA Matrix Algebra** @chelseaparlett

Why PCA?

- Dimensionality Reduction
- (Factor Analysis: Understanding which variables go together)