

OWNER'S MANUAL

TABLE OF CONTENTS

Keyboard	4
Real and Integer Operations	
Complex Operations	
Memory	11
Stack Mechanics	13
Comparing and Addressing Real Numbers	14
Comparing and Addressing Complex Numbers	15
Addressing Labels	16
Statistical Distributions, Probabilities etc	17
Display and Modes	18
Fonts	25
Index of Operations	26
Non-programmable Control, Clearing and Information Commands	56
Catalogs	58
Addressing Catalog Items	64
Constants	65
Unit Conversions	68
Predefined Global Alpha Labels	72
Messages	73
Programmed Input and Output	75
Appendix A: Support Commands	76
Appendix B: Release Notes	80

WELCOME

Dear user, now you have got your own WP 34S. It uses the mechanics and hardware of the *HP-20b Business Consultant* or the new *HP-30b Business Professional*, so you get their unexcelled processor speed and with the *HP-30b* also the famous rotate-and-click keys giving the tactile feedback appreciated in vintage *Hewlett-Packard* calculators for decades. On the other hand, the firmware and the user interface of the WP 34S are carefully new designed and written from scratch to give you a fast and compact scientific calculator like you have never had before.

Its function set is based on the one of the renowned *HP-42S RPN Scientific*, the most powerful programmable RPN calculator built so far ¹. We expanded this set, incorporating the functionality of the famous programmer's calculator *HP-16C*, the fraction mode of the *HP-32SII*, probability distributions as featured by the *HP-21S*, and added many more useful functions for mathematics, statistics, physics, engineering, programming etc. like

- + Euler's Beta function, Fibonacci number calculation, Lambert's W (all of these in the real and complex domains), the error function, incomplete regularized Beta and Gamma, Riemann's Zeta, the most 'popular' orthogonal polynomials, testing for primality,
- many statistical distributions and their inverses like Poisson, Binomial, Geometric as well as Cauchy-Lorentz, Exponential, Logistic, Weibull for reliability analysis, Lognormal and Gaussian with arbitrary means and standard deviations,
- + programmable sums and products, first and second derivatives,
- + extended date and time calculations based on a real time clock,
- + integer computing in arbitrary bases from binary to hexadecimal,
- + financial operations like mean rate of return and margin calculations,
- + 80 conversions, mainly between universal SI and old Imperial units,
- nearly 50 fundamental physical constants as precise as known today by national standards institutes like NIST or PTB.
- + complete Greek and extended Latin letter fonts covering many languages (upper and lower case in two font sizes each).

The WP 34S is the first RPN calculator overcoming the limits of a 4-level stack – forget worries about stack overflow in calculations. It features a choice of two stack sizes expanded by a complex LASTx register: traditional 4 stack levels for HP compatibility, 8 levels for convenient calculations in complex domain, for more advanced real formulas, or for whatever application you have in your mind. The WP 34S features a full command set for navigation in either size.

Furthermore, the WP 34S features over 100 general purpose registers, more than 100 user flags, 506 program steps, 4 programmable hotkeys for your favorite functions or routines, and a 31 byte alpha register for message generation.

If you know how to deal with a good old HP RPN scientific calculator, you can start with your WP 34S right away. Else get an HP-42S Owner's Manual, e.g. on the DVDs

_

¹ Though the *HP-42S* was sold in 1988 already, this statement holds still. – Due to display restrictions, the *HP-42S* matrix math cannot be supported by the WP 34S. Sorry for this.

distributed by the *Museum of Hewlett-Packard Calculators* (<u>www.hpmuseum.org</u>). Then please read Part 1 of it as a starter, including an excellent introduction to RPN. Part 2 will become beneficial when you are heading for programming your WP 34S. Further documentation, also about the other calculators mentioned, will add valuable information – it is all readily accessible on a single DVD from said source.

This little manual here is meant as a supplement showing you all the new features of the WP 34S. It starts presenting its keyboard as it will be active in various modes, so you know where to find what you are looking for. It continues explaining the memory and addressing items therein, and the display and indicators used to tell you what's going on. Then the major part of this booklet is taken by the index of all operations, catalog contents, constants and conversions featured. It closes with a list of messages the WP 34S will display if special input conditions prevent it from executing your command as expected.

Your WP 34S is the result of a long range collaboration of two individuals, an Australian and a German. We did this in our free time, so you may call it our hobby (though some people close to us found different names for this). Our project was discussed on the open forum in the Museum of HP Calculators from its beginning, so we want to express our gratitude to all contributors there who taught us a lot and brought their ideas and support in several stages of our project. Special thanks go to Marcus von Cube supporting us in bringing it to life, starting with an emulator for v1.14 allowing widespread use and easy testing. From v1.17 on, it runs on the real hardware, too.

We baptized it WP 34S in honor of one of the most powerful LED pocket calculators, the *HP-34C*, and since it is our humble approach – with the hardware given – to a future 43S we can only dream of becoming the successor of the *HP-42S*. Maybe it will help convincing those having access to more resources than us that it is worthwhile covering the market of serious scientific instruments.

Firmware-wise, we have carefully checked everything we could think of to our best knowledge, so our hope may be justified the WP 34S is bug-free. We cannot guarantee this, however, nor can we bear any liability for errors in calculations nor their possible consequences. Nevertheless, we promise we will improve the WP 34S whenever it turns out being necessary – so if you discover any strange result, please report it to us, and if it is revealed to be an internal error we will provide you with an update as soon as we have one ourselves.

Enjoy!

Paul Dale and Walter Bonin

PRINT CONVENTIONS

Throughout this manual, calculator commands are generally called by their names, usually written in CAPITALS. Each and every command featured is listed in the Index of Operations. This **CPX** font is taken for explicit references to keys.

Register addresses are printed using Times New Roman. Lower case italic letters of this font are employed for register contents (so e.g. y lives in stack level Y, r45 in general purpose register R45, or alpha in the alpha register, respectively). Lower case bold italic Arial letters like n are used for variables.

All this holds unless stated otherwise explicitly.

KEYBOARD

Generally speaking, white labels execute the *default primary function* of the respective key. To access a golden, blue, or green label, use *prefix* , g, or h, respectively. Any label underlined opens a *catalog*. For example, 5 preceded by

- 1 calculates the mean values of the data in the statistic registers via 🗓,
- g returns the standard deviations for the same data via s,
- **h** opens a catalog of supplementary statistic functions via **STAT**.
- The grey letter R will become relevant in alpha mode.

You may keep the respective prefix pressed if you want to call several functions showing the same label color in sequence.

Please note that numeric entry fills the command line and is interpreted when completed, not earlier.

Further remarks (all meant as appetizers – find more about these topics in dedicated texts below):

- The *hotkeys* \overline{A} , \overline{B} , \overline{C} , and \overline{D} immediately call the user programs carrying these labels if defined, else they act as $\overline{\Sigma +}$, \overline{Y} , or \overline{X} , respectively.
- → trailed by H.MS, H.d, DEG, RAD, GRAD, 2, 8, 10, or 16, converts x, i.e. the value currently displayed.
- If , is used twice in numeric input, the WP 34S enters fraction mode.
- **CPX** is employed as a prefix for calling functions in complex domain.

Please see the following text and especially the <u>index of operations</u> for a complete list and the necessary explanations of all the commands provided.

Virtual active keyboard in **hexadecimal** mode:

Primary functions of the top six keys will be numeric input, so is used for accessing their *default* primary functions. is exclusively for addressing and temporary display in other bases here (see <u>addressing tables</u> and <u>index of operations</u> below).

For smaller integer bases than 16, the active keyboard will look similar, but those top keys not needed for numeric input will keep their default primary functions, except Σ + and \overline{CPX} . Attempts to enter an illegal digit will be blocked.

Virtual active keyboard in alpha mode:

In this mode, the alpha register is displayed in the dot matrix, and the numeric line is accessible by commands only. All labels printed on dark red or blue background in this picture append characters to *alpha* immediately or via alpha catalogs; those on blue deviate from the labels printed on the WP 34S keyboard at these locations.

 When *alpha* exceeds 31 characters, the leftmost character(s) are discarded.

A <u>temporary alpha</u> mode is entered during input processing in comparisons and in memory addressing, e.g. during storing. See the respective virtual keyboard here:

This mode is left automatically when sufficient characters are put in for the respective command. Examples are shown below.

Special rules apply for T and Z – see <u>below</u>.

²The digits 0 and 1 may also be called using 10 or 11, respectively.

³ "Homonymic" according to ancient Greek pronunciation. And we assigned **Gamma** also to **C** due to the alphabet, and **Chi** to **H** since this letter comes next in pronunciation. Three Greek letters require special handling: **Psi** is accessed via **g 0** (below **PSE**), **Theta** via **g 1** (below **TEST** and following **T**), and **Eta** via **g ENTER1**. **Omicron** is not featured since looking exactly like the Latin letter **O** in either case. – Where we printed Greek capitals with lower contrast on page 7, they look like the respective Latin letters in our fonts. Greek professors, we count on your understanding.

REAL AND INTEGER OPERATIONS

Most of the commands your WP 34S provides are mathematical operations or functions in real domain. "Real domain" means these functions use and work with real numbers like 1 or 2.34 or π or 5.6E-7. Please note integer numbers like 8, 9, 10, or -1 are just a subset of real numbers.

Most real number functions provided operate on one number only. Examples are $1/\chi$, \sqrt{x} , or SIN. Such functions replace x (i.e. the contents of the displayed stack level x) by the result y stored in y again. Everything else stays unchanged as is.

Some of the most popular mathematical functions, however, operate on two numbers. Think of + and -, for example. On the WP 34S, such a two-number real function replaces x by the result $\mathbf{f}(x,y)$, i.e. it eats up the lowest two stack levels but needs only one to put its result in. Thus, level \mathbf{Y} is then filled with the content of the next higher level, i.e. z. This goes on for higher levels, as shown <u>below</u>. Please note the top stack level content is repeated then since there is nothing else available. You may use this top level repetition for some nice tricks.

There are also a few three-number real functions included – e.g. I β and %MRR – replacing x by the result f(x, y, z). Then Y is filled with t and so on, and the content of the top level is repeated twice. And there is SLVQ with three input and two output levels, thus treating the higher levels as two-number functions do.

Some real functions (e.g. DECOMP) operate on one number but return two. Other operations (like RCL or SUM) do not consume any stack input at all but just return one or two numbers. Then these extra number(s) will be pushed on the stack, taking one level per real number.

COMPLEX OPERATIONS

Mathematicians know more complicated items than real numbers. The next step are complex numbers. If you do not know them nor want to learn about them, leave them aside – you can use your WP 34S perfectly without them.

Else please note the WP 34S supports many operations in complex domain as well. The key CPX is employed as a prefix for calling complex functions. E.g. CPX CCOS calls the complex cosine, and it is displayed and listed as CCOS (the elevated C is the signature for complex functions on the WP 34S). All such functions operate on Cartesian coordinates exclusively. Generally, if an arbitrary real function f operates on ...

- one real number x only, then its complex sibling ${}^{\mathbf{c}}\mathbf{f}$ will operate on the complex number $x_c = x + i y$.
- one register, e.g. R12, then ^Cf will operate on R12 and R13.
- x and y, then c_f will operate on x, y, z and t.

Where one-number real functions replace x by the result $\mathbf{f}(x)$, one-argument complex functions replace x by the real part and y by the imaginary part of the complex result ${}^{\mathbf{c}}\mathbf{f}(x_c)$. Higher stack levels remain unchanged. Such functions are ${}^{\mathbf{c}}\mathbf{1}/x$, ${}^{\mathbf{c}}\mathsf{ABS}$,

^CANGLE, ^CCUBE, ^CCUBERT, ^CFIB, ^CFP, ^CIP, ^CRND, ^CSIGN, ^CW, ^CW, ¹, ^Cx!, ^Cx², ^C√, ^C+/−, ^CΓ(x), the logarithmic and exponential functions with bases 10, 2 and **e**, as well as hyperbolic, trigonometric, and their inverses.

Two-number real functions replace x by the result f(x, y). Analogously, two-argument complex functions replace x by the real part and y by the imaginary part of the complex result ${}^{C}f(x_{o},y_{c})$. The next stack levels are filled with the complex contents of higher levels, and the complex number contained in the top two stack levels is repeated as shown <u>below</u>. Such complex functions are ${}^{C}LOG_{X}$, ${}^{C}y^{X}$, ${}^{C}\beta(x,y)$, ${}^{C}//$, and the basic arithmetic operations in complex domain.

Where complex operations (like ^CRCL) do not consume any stack input at all but just return a complex number, this will be pushed on the stack taking two levels.

MEMORY

	Stack registers	
	D *	
	C *	
	B *	
Mode (19 bits)	A *	
	T	
Alpha (31 bytes)	Z	
	Y	
Display	X	
	L	I **

For the first time ever in a calculator, the WP 34S offers a choice of 4 or 8 stack levels. So either **T** or **D** will be the top level. Registers **A** - **D** will be allocated as stack registers if required.

Please see <u>below</u> for top level repetition and stack contents in complex calculations. While register \mathbf{L} takes the real part of the last argument, \mathbf{I} takes the imaginary part when a complex function was executed (see ^CLASTx).

Using Σ +, registers R87 - R99 will contain statistical sums as indicated. J and K may be taken for parameters of statistical distributions. R80 - R85 may be employed for TVM calculations.

Unless required for the purposes just mentioned, A - D, I, J, and K are available as additional general purpose registers. For <u>indirect addressing</u>, the stack levels and named registers carry the numbers 100 ... 111 as shown at right.

For information about the flags, please turn overleaf.

General purpose registers	User flags	Program steps
R00	00	000
R01	01	001
R02	02	002
R85	97	504
$R86 \Sigma (x^2 y)$	98	505
R87 Σ <i>x</i>	99	506
R88 Σ x ²	Α	
R89 Σ <i>y</i>	B Big, overflow	
R90 Σ y ²	C Carry	
R91 Σ (x y)	D Danger	X = R100
R92 n		Y = R101
R93 Σ (ln x)		Z = R102
R94 Σ (ln² x)		T = R103
R95 Σ (ln <i>y</i>)		A = R104
R96 Σ (ln² y)		B = R105
R97 Σ(ln <i>x</i> ln <i>y</i>)		C = R106
R98 Σ (x ln y)		D = R107
R99 Σ (y ln x)	/	L = R108
		I = R109
J ***		J = R110
K ***		K = R111

Flags 00 ... 99 are free to use for whatever purpose you like. Flags A, B, C and D may be used the same way, but the system checks them, too. Flag A lights the big '=' symbol in display. In integer modes, flags B and C will be set by the system in analogy to the overflow and carry bits of the *HP-16C*. Some integer operations (like shift and rotate) also read flag C. Flag D may be set by the user to allow special results (infinities and non-numeric results) without getting an error. The system only reads D. – For *indirect addressing*, flags A ... D carry the numbers 100 ... 104.

In addition to the RAM provided, the WP34S allows you accessing **flash memory** for voltage-fail safe storage of user programs and data. Flash memory features four segments (regions, banks) of 1 kB each. Segment 0 is the backup region, holding the image of the entire program memory, registers and calculator state as soon as you completed a SAVE. Segments 1 ... 3 hold programs only. Alphanumeric labels (see below) in flash can be called via XEQ like in RAM. This allows creating program libraries in flash. Use CAT to see the labels defined already.

Flash memory is ideal for backups or other long-living data, but shall not be used for repeated transient storage like in programmed loops (since it will not survive more than approximately 10,000 flashes). Registers and standard user program memory, residing in RAM on the opposite, are designed for frequent data changes – but will not hold data with the batteries removed. So both kinds of memory have specific advantages and disadvantages you shall take into account for optimum benefit and long lasting joy with your WP 34S.

Structuring program memory and jumping around in it is eased by **labels** you may tag to any program steps – as known from previous programmable pocket calculators. The WP 34S features a full set of alphanumeric labels as described <u>below</u>.

When a command like e.g. GTO xy is encountered, with xy representing one, two or three characters (like A, BC, 12, Tst, Pg3, x1 μ , etc.), the WP 34S will search this label xy using the following method:

- 1. If **xy** is purely numeric, it will be searched forward from the current position of the program pointer. When the end of the program space is reached without finding **xy**, the quest will continue at the start of the current segment. No other segments will be searched. This is as known from vintage HP calculators.
- 2. Else, i.e. if **xy** is an alpha label of up to three characters of arbitrary case, searching will start at program step 000 and cover the entire memory in the order RAM, flash segments 3, 2, 1, 0, and XROM, independent of the position of the program pointer.

STACK MECHANICS

The following assumes you are familiar with RPN – else please turn to the *HP-42S Owner's Manual* first.

The fate of particular stack contents depends on the operation executed, its domain (real or complex) and the stack size chosen. Real functions in a 4-level stack work as known for decades. In a larger stack, everything works alike on the WP 34S – just with more levels for intermediate results. Calculating formulas from inside out stays a wise strategy in either stack. With more levels, however, stack overflow will hardly ever happen, even with the most advanced formulas you compute in your life as a scientist or engineer.

Calculating with complex numbers uses two registers or stack levels for each such number as explained above and shown here:

	Level	Assumed stack contents at the beginning:	^c EN ⁻	th	e <u>c</u>	ts <u>after</u> executing <u>complex</u> stack register operations complex complex c					complex fu one number like ^C x ²	two numbers like ^C /	of two numbers like / Before After		
With 4 stack levels	T Z Y X	$Im(y_c) = Im(t_c)$ $Re(y_c) = Re(t_c)$ $Im(x_c)$ $Re(x_c)$	Re((x_c) (x_c) (x_c)		$y_c = t_c$ y_c		Im(x) Re(x) Im(y) Re(y)	(c) (c)	<i>x_c y_c</i>	x_c $lastx_c$	$y_c = t_c$ $Im((x_c)^2)$ $Re((x_c)^2)$	$y_c = t_c$ $\frac{\text{Im}(y_c / x_c)}{\text{Re}(y_c / x_c)}$	t	t t z y/x
With 8 stack levels	D C B	$\operatorname{Im}(t_c)$ $\operatorname{Re}(t_c)$ $\operatorname{Im}(z_c)$	z_c	x_c		t_c		t_c	t_c	Z _c	z _c	t_c	t _c	d c b	d d c
	A T Z	$\frac{Re(z_c)}{Im(y_c)}$ $Re(y_c)$	x_c	x_c		z_c		x_c	$\frac{\iota_c}{z_c}$	x_c	x_c	<i>z_c y_c</i>	z_c	a t z	b a t
	Y X	$\frac{Im(x_c)}{Re(x_c)}$	x_c	x_c		y_c		y_c	y_c	t_c	lastx _c	$(x_c)^2$	y_c / x_c	$\frac{y}{x}$	$\frac{z}{y/x}$

So, an 8-level stack gives you the same flexibility in complex domain you are used to with a 4-level stack in real domain.

COMPARING AND ADDRESSING REAL NUMBERS

1 User input	X		, <u>x≠?,</u> ≈?, <u>x≥?</u> , or <u>x></u>	?	RCL, STO, RCLS, STOS, aRCL, aSTO, VIEW, VIEW, VIEW, DSE, ISG, DSZ, ISZ, FIX, SCI, ENG, DISE, ISG, CB and many more bit commands, and the other flag commands etc.						
Dot matrix display	OP _ (v	with temporary a	lpha mode set), e.	g. x>_	OP _ (with temporary alpha mode set), e.g. RCL _ 4						
2 User input	0 or 1	Stack level or named reg.	ENTER↑ ⁵ leaves temp. alpha mode.	opens indirect addressing.	Stack level or named register (X), (Y), (Z),, (K) 6	Number of register or flag or bit(s) or decimals ⁷	opens indirect addressing.				
Dot matrix display	OP <i>n</i> e.g. x ≤ 0 ?	OP x e.g. x ≥ y ?	OP r_	OP → _	OP x e.g. SCI Z	OP <i>nn</i> e.g. SF 15	OP → _				
3 User input	Compares x	Compares x	Register no.	Look right for	Sets scientific display						
Dot matrix display	with the number 0 .	with the number on stack level Y .	OO 99 OP r nn e.g. x≠ r23?	more about indirect addressing.	with the number of decimals specified in stack level Z .	Stack level etc. (X), (Y), (Z),, (K) OP $\rightarrow x$ e.g. VIEW \rightarrow L	Register number 0 0 9 9 OP → nn e.g. \$T0 → 45				

⁴ For **RCL** and **STO**, any of **+**, **-**, **x**, **7**, **△**, or **▼** may precede step 2, except in RCLM and STOM. **VIEW ENTER†** calls αVIEW, **ENG ENTER†** calls SCIOVR. See the index of operations.

⁵ You may skip this for register numbers >19.

⁶ Exceptions: RCL T, RCL x T, RCL Z, RCL+ Z require an **ENTER†** preceding **T** or **Z**, e.g. **RCL** + **ENTER† Z** for the latter. This holds for STO as well.

Legal register numbers are 00 ... 111 (00 ... 99 may be specified directly). Valid flag numbers are 00 ... 104, with the four top flags directly addressed via **A**, **B**, **C**, and **D**. Legal numbers of decimals are 0 ... 11, accepted integer bases 2 ... 16, bit numbers 0 to 63, and integer word size up to 64 bits. For numbers <10, you may key in e.g. **5 ENTER** instead of **0 5**. – Take into account some registers may be allocated to special applications.

COMPARING AND ADDRESSING COMPLEX NUMBERS

1 L	Jser input		CPX x=	? or x≠ ?	CPX RCL, STO, or x₹						
	Oot matrix display	,	OP _ (with tempora	ary alpha mode set) •x= _	OP _ (with temporary alpha mode set) e.g. PRCL _8						
2 (Jser input	0 or 1	Stack level or named register X, Z, A, C, L, or J	ENTER↑ 9 leaves temp. alpha mode	opens indirect addressing.	Stack level or named register Z 10, A, C, L, or J	Register number 0 0 9 8 11	opens indirect addressing.			
	Oot matrix display	OP <i>n</i> e.g. "x= 0 ?	OP x e.g. ° x≠ z ?	OP r_	OP → _	OP x e.g. ■RCL L	OP <i>nn</i> e.g. °STO 18	OP → _			
3 (Jser input	Compares $\mathbf{x} + i \ \mathbf{y}$ with the real number 0 .	Compares $x + i y$ with $z + i t$.	Register number	Look right for more about indirect addressing.	This is ^C LASTx.	Stack level or named register X, Y,, K	Register number			
	Oot matrix lisplay			OP r <i>nn</i> e.g. ^e x≠ r26?			OP → x e.g. •x<> →Z	OP → nn e.g. •STO →45			
				Compares $x + i y$ with $r26 + i r27$.		Z is pointing to, the contents of the next one.	Stores $x + i y$ into 2 consecutive registers, starting with the one where R45 is pointing to.				

__

 $^{^{8}}$ For $\overline{\textbf{RCL}}$ and $\overline{\textbf{STO}}$, any of $\overline{\textbf{+}}$, $\overline{\textbf{-}}$, $\overline{\textbf{x}}$, or $\overline{\textit{/}}$ may precede step 2. See the index of operations.

⁹ You may skip this keystroke for register numbers >19.

Exceptions: CRCL Z, CRCL + Z, CSTO Z, and CSTO + Z require an ENTER† preceding Z, e.g. CPX STO + ENTER† Z for the latter.

You may key in e.g. 8 ENTER1 instead of 08. Take care of pairs, since a complex operation will always affect two registers: the one specified and the one following this. We strongly recommend storing complex numbers with their real parts at even register numbers. – Take into account some registers may be allocated to special applications.

ADDRESSING LABELS

Additionally, see <u>above</u> for a description of the way the WP 34S searches labels, and look up GTO in the <u>index of operations</u> for two special cases applying to this command exclusively.

¹² Works with all these operations except **LBL** .

¹³ The 3rd character terminates entry and closes alpha mode – shorter labels need a closing **ENTER**†. For the example given here you just key in **(EXIT) (EXIT) (EXIT) (EXIT) (DX) (1) (EXIT) (EXIT) (3) (7)** and you are done. Statements including labels being 2 or 3 characters long decrement the number of free program steps by 2. – **WARNING:** LBL A and LBL'A' are different animals! The latter is entered in alpha mode, the first via the hotkey directly.

¹⁴ Some registers may be allocated to special applications. Please check the memory table above.

STATISTICAL DISTRIBUTIONS, PROBABILITIES ETC.

You find a lot of statistics in the WP 34S. Many preprogrammed functions are implemented here for the first time in an RPN scientific calculator – we packed all in what we always had missed. All of these functions, however, have a few features in common:

• Whenever we sum up a probability mass function (pmf ¹⁵) p(n) to get a cumulated distribution function (cdf) F(m) we start at n=0. Thus,

$$F(m) = \sum_{i=0}^{m} p(i) .$$

• Whenever we integrate a function, we start at the left end of the integration interval. Thus, integrating a probability density function (pdf) f(x) to get a cdf F(x) works as

$$F(x) = \int_{-\infty}^{x} f(\xi) d\xi = P(x) .$$

- Typically, F starts with a very shallow slope, becomes steeper then, and runs out with a decreasing slope while slowly approaching 100%. Obviously you get the most precise results on the left side of the cdf using P(x). On its right side, however, the "error probability" Q(x) = 1 P(x) is more precise since P(x) comes very close to 1 there. The digits available shall be sufficient in any case.
- On the WP 34S, with an arbitrary cdf named **XYZ** you find **XYZ**_P for the pdf or pmf, and **XYZ**⁻¹ for the inverse cdf, unless stated otherwise explicitly.
- For calculating confidence limits for the "true value" based on a sample evaluation, employing a particular confidence level (e.g. 95%), you must know your objective:
 - Do you want to know the upper limit, under which the "true value" will lie with a 95% probability? Then take 0.95 as the argument of the inverse cdf to get said limit, and remember there is an inevitable chance of 5% for the "true value" being greater than it.
 - Do you want an upper <u>and</u> a lower limit confining the "true value"? Then there is an inevitable 2.5% chance for said value being less than the lower limit and an equal chance for it being greater than the upper limit. So you shall use 0.025 and 0.975 as arguments in two subsequent calculations using the inverse cdf to get both limits.
 - If you cannot live with these chances, inevitable as they are, employ an higher confidence level.

Turn to a good statistics textbook for more information, also about the particular distributions provided.

¹⁵ pmf translates to German "Dichtefunktion", pdf to "Wahrscheinlichkeitsdichte", cdf to "Verteilungsfunktion" on "Wahrscheinlichkeitsverteilung".

DISPLAY AND MODES

The display features three sections: numeric, dot matrix and fixed symbols. The numeric section features a minus sign and 12 digits for the mantissa, as well as a minus sign and 3 digits for the exponent. The dot matrix is 6 dots high and 43 dots wide, allowing for some 7 to 12 characters, depending on their widths. The fixed symbols (except the big "=") are called *annunciators*, and are for indicating modes.

The dot matrix section above is used for

- 1. indicating some more modes than the annunciators allow,
- 2. passing additional information to the user.

The numeric section in the lower part of the LCD is used for displaying numbers in different formats, status, or messages.

If two or more requests concur for display space, the items will be shown according to their priorities as follows:

- 1. error messages as described in a paragraph further below,
- 2. special information as explained below,
- 3. information about the modes the calculator is running in.

The annunciators or specific characters in the LCD signal the modes:

Integer base or mode name	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	DECM
Signaled by in the exponent		3	4	5	6	7	0	9	d	-1	-2	-3	-4	-5	h	
Set by	2	ВА	SE3,		, BAS	SE7,	8,	BAS	E9, (10,		, B/	ASE1	5	16	-d
Cleared by		F	IX,						_				, dz wil		DECN	Л

Mode name	PRG	α				FRC
Signaled by	STO	INPUT	360	RAD	G	
Set by	P/R	αON	DEG	RAD	GRAD	d/c, ab/c 2 nd . in input BASE1, FRACT
Cleared by	P/R	ENTER αOFF	GRAD RAD	DEG GRAD	DEG RAD	BASE ≠ 1 (H.MS), TIME, → H.MS (FIX), SCI, ENG

BEG indicates the program pointer standing at step 000 of program memory. A running program is signaled by a flashing **RCL** annunciator. **RPN** may be lit permanently. Time modes (12h / 24h) are seen in the time string directly. The numeric format of fraction mode is unambiguous as well. Further settings are signaled in the dot matrix section, like the different date modes being indicated there by **Y.MD** or **M.DY**. Defaults D.MY and DECM are not indicated. Please check the examples below.

Some mode and display settings may be stored and recalled collectively by STOM and RCLM. The command RCLM recalls a 19-bit word containing mode data packed as follows, starting with the least significant bit:

Bits	Meaning	Values and corr	esponding setting	gs
0, 1	Display format for real numbers	0 = ALL 2 = SCI	1 = FIX 3 = ENG	
2	Overflow for ALL	0 = SCIOVR	1 = ENGOVR	
3 6	Number of decimals	0 12		
7, 8	Angular mode	0 = DEG	1 = RAD	2 = GRAD
9, 10	Date display format	0 = D.MY	1 = Y.MD	2 = M.DY
11	Time display format	0 = 24h	1 = 12h	
12	Radix mark	0 = point	1 = comma	
13 15	Curve fit model	0 = LinF 2 = PowerF	1 = ExpF 3 = LogF	4 = BestF
16, 17	Integer sign mode	0 = 2COMPL 2 = UNSIGN	1 = 1COMPL 3 = SIGNMT	
18	Stack depth	0 = 4 levels	1 = 8 levels	

So the start-up default with 4 stack levels, ALL, SCIOVR, DEG, D.MY, 24h, decimal point, LinF, and 2COMPL equals zero in this mode word. On the other hand, the settings for e.g. 8 stack levels, SCI 2, RAD, Y.MD, 12h, decimal comma, BestF, and UNSIGN correspond to

$$1101001101010010010_2 = 69A92_{16} = 432786_{10}$$
.

STOM takes such a number and sets the calculator modes accordingly. Please see the <u>index of operations</u> for more information about changing modes and the individual commands employed.

Some regional combinations may be set at once using a single command:

- SETCHN sets 24h, Y.MD, decimal point, and E3OFF;
- SETEUR sets 24h, D.MY, decimal comma, E3ON, and JG1582 (these settings apply also to South America);
- SETIND sets 24h, D.MY, decimal point, E3OFF, and JG1752;

- SETUK sets 12h, D.MY, decimal point, E3ON, and JG1752.
- SETUSA sets 12h, M.DY, decimal point, E3ON, and JG1752;

Please note the people living in the area of the former Soviet Union, in South Africa, Indonesia, and Vietnam use the decimal comma as well, but have different settings for dates and times.

Especially the angular modes deserve a closer look: there are three of them, DEG, RAD, and GRAD. And degrees (DEG) may be displayed in decimal numbers as well as in hours, minutes, seconds and hundredth of seconds (H.MS). Conversions are provided for going from one to the other:

to	degrees H.MS	decimal degrees	radians	gon (grad)	current angular mode
degrees H.MS	1	→H.MS	ı	_	_
decimal degrees	→H .d	I	rad→°	G→°	→DEG
radians	_	°→rad	_	G→rad	→RAD
gon/grad	_	°→G	rad→G	_	→GRAD
current angular mode	_	DEG→	RAD→	GRAD→	_

Please see the <u>index of operations</u> for the commands printed on white background, and the <u>catalog of unit conversions</u> for those printed on yellow.

Some commands and modes use the display in a special way. They are listed below in order of falling priority:

- 1. **VERS** generates a display similar to the one shown on the title page of this manual. Pressing any key will delete this message and return to previous state.
- 2. **STATUS** shows the status of 30 user flags very concisely in one display, allowing an immediate status overview after some training. If e.g. flags 2, 3, 5, 7, 11, 13, 14, 17, 19, and 23 are set, and labels B, C, and D are defined in program memory, STATUS will display this:

Within the numeric section, each row of horizontal bars in the mantissa shows the status of 10 flags. When a flag is set, the respective bar turns black. So here the top row of bars indicates flags 0 and 1 are clear, 2 and 3 set, and flag 4 clear. Then, the divider II separates the first group of five flags from the next. Top row bars on its right side indicate flags 5 and 7 are set. Next row of bars shows flags 11, 13, 14, 17, 19

are set, and in the lowest row only flag 23 is set. All other flags in the range from 10 to 29 are clear.

Scrolling down by will display flags 10 - 39, then 20 - 49 etc. until 90 - D. Scrolling up by reverts this. Alternatively, pressing a digit, e.g. 5, will show up to 30 flags starting with 10 times this digit, e.g. flags 50 - 79. The numeric exponent always indicates the status of the hotkeys top left on the keyboard – if all four labels are used in program memory then **ALL** will be displayed there.

The status will be displayed until any key is pressed but ▼, ▲, or a digit.

3. During **command input**, the dot matrix displays the command chosen until input is completed, i.e. until all required trailing parameters are entered. The prefixes [], [g], and [h] are shown until they are resolved. If you pressed any of [f], [g], or [h] erroneously, recovery is as easy as follows:

```
    o f f = NOP = g g = h h = CPX CPX = → →
    o g f = h f = f
    f g = h g = g
    f h = g h = h
```

In addressing, progress is recorded as explained in the <u>tables above</u> in detail. You may cancel such pending operations by <u>EXIT</u> as described <u>below</u>.

4. In **programming mode**, the numeric display indicates the program step (000 – 505) in the mantissa and the number of free steps in the exponent, while the dot matrix shows the command contained in the respective step, e.g.:

5. For **floating point decimal numbers**, the mantissa will be displayed adjusted to the right, the exponent to the left. Within the mantissa, either points or commas may be selected as radix marks ¹⁶, and additional marks may be chosen to separate thousands. Assume the display set to FIX 4, then 12.345678901 millions may look like:

with thousands separators on, and without them like:

These separators may also be beneficial in integer or fraction modes described below. – With ENG 3 and after changing the sign, the same number will look like this:

¹⁶ Starting here, decimal input is written using a point as radix mark throughout this manual, although significantly less visible, unless specified otherwise explicitly. By experience, the "comma people" are more capable to read radix points and interpret them correctly than vice versa.

If the last operation executed was a complex one, a capital $\bf C$ is displayed top left in the dot matrix pointing to the fact that you find the result of this function in $\bf X$ and $\bf Y$.

Floating point decimal numbers within $10^{-383} < x < 10^{+385}$ may be entered easily. Using a decimal mantissa, even numbers down to 10^{-394} can be keyed in. The calculator works with numbers down to 10^{-398} correctly. Smaller values are set to zero. For results $x \ge 10^{+385}$, error 4 or 5 will appear (see <u>below</u>).

6. In **integer modes**, numbers are displayed adjusted to the right as well. Word size and complement setting are indicated in the dot matrix using a format **xx.ww**, with **xx** being **1c** or **2c** for 1's or 2's complement, respectively, **un** for unsigned, or **sm** for sign-and-mantissa mode. Sign and first digit of the exponent show the base, a "c" in the second digit signals a carry bit set, an "o" in the third an overflow. Integer bases are indicated as follows:

Base	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Sign and 1 st digit of exponent displayed	b	3	4	5	6	7	0	9	d	-1	-2	-3	-4	-5	h

The example shows the WP 34S an arbitrary number in unsigned hexadecimal mode with word size 64 and carry set:

After changing to binary mode, this number will need 28 digits, being 1001001110100001010010110110. The 12 least significant digits will be displayed initially together with an indication that there are three display windows in total with the rightmost shown:

Now press <a> and you will get the next 12 digits in the middle window:

Press <a> again to show the most significant digits:

If leading zeros were turned on, there will be six display windows in this case, with the three "most significant" containing only zeros.

Please note numeric input is limited to 12 digits in any integer base.

7. **Fraction mode** works similar to HP-35S. In particular, DENMAX sets the maximum allowable denominator (see the <u>index of operations</u>). Display will look like in the examples below. If the fraction is exactly equal, slightly less, or greater than the floating point number converted, "=", "Lt", or "Gt" is indicated in the exponent, respectively. This mode can handle numbers with absolute values < 100,000 and > 0.0001. Maximum denominator is 9999. Underflows as well as overflows will be displayed in the format set before fraction mode was entered.

Now assume the WP 34S reset. Key in -47.40625 and you will see:

Please note integers like 123 will be displayed as "123 0/1" or "123/1" in fraction mode, respectively.

Squaring the improper fraction shown above results in

Now, enter ab/c for converting this result into a proper fraction. You will get

with a little hook left of the first digit shown. This indicates the leading number is displayed incompletely – there are at least two digits preceding 47 but no more display space. Press SHOW to unveil the integer part of this proper fraction is 2247.

Input in fraction mode is straightforward and logically coherent:

Key in:	and get in proper fraction mode:
12.3.4 ENTER†	12 ³ / ₄
1.2 ENTER†	1 ¹ / ₅
. 1 . 2 ENTER t	1/2
. 1 2 ENTER t	$^{3}/_{25}$ (= 0.12)
1.2 ENTER+	$1^{0}/_{1} (= 1^{0}/_{2}!)$

For comparison, please note the HP-32SII reads the last input here as $\frac{1}{2}$ – which is, however, not consistent with its other input interpretations in fraction mode.

8. In **H.MS** display mode, format is hhhh°mm'ss.dd" with the number of hours or degrees limited to 9000. Output may look like this:

depending on the radix setting. For decimal times less than 5ms or 0.005 angular seconds but greater than zero, an "u" for underflow will be lit in the exponent section. For times or angles exceeding the upper limit, an "o" will be shown there signaling an overflow, and the value is displayed modulo 9000.

 Output of the function DAY will look as follows for an input of 1.13201 in M.DY mode (equivalent to inputs of 13.01201 in D.MY or 2010.0113 in Y.MD). Expect similar displays after DAYS+.

10. In **alpha mode**, the alpha register is displayed in the dot matrix, showing the last characters it is containing, while the numeric section keeps the result of the last numeric operation, e.g.:

Different information may be appended to *alpha*. See the commands starting with " α " in the index of operations below. E.g. α TIME allows creating texts like

depending on time mode setting (12h / 24h). And αDATE will append – depending on date format setting – either 2011-04-16 or 16.04.2011 or 04/16/2011 to *alpha*.

Please note *alpha* may contain up to 31 characters. And the WP 34S features a rich set of special letters. So you may store a message like

easily. Use \blacktriangle and \blacktriangledown for browsing it in steps of 6 characters. Browsing to the left will stop with the very first characters shown, browsing to the right stops showing the right end completely, i.e.

in this very special case.

All keyboard input will be interpreted according to the mode set at input time.

FONTS

The WP 34S features a large and a small font. Both are based on Luiz Viera's fonts as distributed in 2004. Some letters were added and some modified for better legibility, since the dot matrix is only 6 pixels high here. The following tables show the characters directly accessible through the keyboard. More are in the alpha catalogs (see <u>below</u>).

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ABCDEFGHIJKLM NOPQRSTUVWXYZ ABCDEFGHIJKLM NOPQRSTUVWXYZ

a b c d e f g h i j k l m n o p q r s t u v w x y z

abcdef9hijklm noparstuvwxyz abcdefghijklm noparstuvwxyz

ΑΒΓΔΕΖΗΘΙΚΛΜ ΝΞΟΠΡΣΤΥΦΧΨΩ

ΑΒΓΔΕΖΗΘΙΚΑΜ ΝΞΟΠΡΣΤΥΦΧΨΩ ΑΒΓΔΕΖΗΘΙΚΑΜ ΝΞΟΠΡΣΤΥΦΧΨΩ

αβγδεζηθικλμ νξοπρστυφχψω

αβγέεζηθικλμυξοπρστυφχψω αβγέεζηθικλμυξοπρστυφχψω

0123456789	()+-×/±.!	#21/2 # 2 6£#
0123456789	()+-×/±.!	#%1/8 ≠ ≇€£¥
0 1 2 3 4 5 6 7 8 9	()+-×/±.!	↔ % √ \ & ≠ \$ € £ ¥

Page 25 of 81

INDEX OF OPERATIONS

All commands available are found below with their *names* and *keystrokes* necessary. Names printed in **bold** face in this list belong to functions directly accessible on the keyboard, the other commands may be picked from catalogs. The command names will show up in program listings as well. Sorting in index and catalogs is case insensitive and works in the following order:

_, 0...9, A...Z,
$$\alpha$$
... ω , () + - × / ± , . ! ? : ; ' " # * @ _ ~ \rightarrow ← ↑ ↓ \leftrightarrow < ≤ = \neq ≥ > % \$ \in £ ¥ $\sqrt{\ }$ ∞ & \ ^ | G [] { }

Super- and subscripts are handled like normal characters in sorting. The fifth last item in the sorting order list above is the indicator for the angular mode GRAD.

Generally, functions and keystroke programming will work as on *HP-42S*, bit and integer functions as on *HP-16C*, unless stated otherwise under remarks. Especially, all **tests** will return "true" or "false" in the dot matrix if called from the keyboard; if called in a program, they will skip the next program line if the test is false. Please refer to the manuals of the vintage calculators mentioned for additional information about traditional commands.

Functions available on the WP 34S for the first time on an RPN calculator are high-lighted yellow under remarks, while operations carrying a familiar name but deviating in their functionality here are marked light red.

Parameters will be taken from the lowest stack level(s) unless mentioned explicitly in the 2^{nd} column – then they must follow the command. If <u>underlined</u>, they may also be specified using indirect addressing, as shown in the <u>tables</u> above. Some parameters of statistical distributions must be given in registers **J** and **K** if specified.

In the following, each function is listed stating the mode(s) it will work in, abbreviated by their <u>indicators</u>. In this column an "&" stands for a Boolean AND, a comma for an OR, and a backslash for "not". So e.g. 2^X works in all modes but alpha. All operations may also be entered in mode PRG unless stated otherwise explicitly.

Name	Keys to press	in modes	Remarks
c	CPX	DECM	Indicates an operation allowing complex input(s) and/or complex results (see <u>above</u>). The prefix CPX may be heading all functions whose names are printed in italics in this list.
10×	f 10 ^x	DECM	
12h	h MODE 12h	\α	Sets 12h time display mode meaning 1:23 becomes 1:23 AM and 13:45 becomes 1:45 PM. This makes a difference in αTIME only.
1COMPL	h MODE 1COMPL	\α	Sets 1's complement mode like in HP-16C.
1/x	f 1/x	DECM	
1/X	В	DECM	Shortcut as long as label B is not defined yet.

Name	Keys to press	in modes	Remarks
24h	h MODE 24h	\α	Sets 24h time display mode meaning 1:23 AM becomes 1:23, and 1:45 PM becomes 13:45.
2COMPL	h MODE 2COMPL	\α	Sets 2's complement mode like in HP-16C.
2 ^x	f 2 ^x)	\α	
4.00	fixi	\α	Returns the absolute value.
ABS	CPX f x	DECM	Returns $r = \sqrt{x^2 + y^2}$ in X and clears Y .
ACOS	g COS-1	DECM	Returns $arccos(x)$.
ACOSH	g HYP-1 COS	DECM	Inverse hyperbolic cosine, known as <i>arcosh</i> . Note there is no need for pressing 1 here.
AGM	h X.FCN AGM	DECM	Returns the arithmetic-geometric mean of \boldsymbol{x} and \boldsymbol{y} .
ALL	h ALL <u>n</u>	\α	Selects the format displaying "all" digits. For $x>10^{13}$ or $x<10^{-n}$, display will switch to SCI or ENG with the maximum number of digits displayable (see SCIOVR and ENGOVR). ALL 00 works like ALL in $HP-42S$.
		Integer	Works bitwise as in HP-16C.
AND	h AND	DECM	Works like AND in $HP-28S$, i.e. x and y are interpreted before executing this operation. 0 is "false", any other real number is "true".
ANOLE	h X.FCN ANGLE	DECM	Returns the angle between positive x-axis and the straight line from the origin to the point (x, y) , i.e. $\arctan(y/x)$. This is a two-number function in real domain.
ANGLE	CPX X.FCN ANGLE	DECM	Calculates the angle as above, and returns it in X while clearing Y . This is a one-number function in complex domain. Note there is no need for pressing h here.
ASIN	g SIN-1	DECM	Returns $\arcsin(x)$.
ASINH	g HYP-1 SIN	DECM	Inverse hyperbolic sine, known as arsinh.
ASR	h X.FCN ASR <u>n</u>	Integer	Works like $\it n$ (up to 63) consecutive ASRs in $\it HP$ -16C. ASR 0 executes as NOP, but loads $\it L$.
ATAN	g TAN-1	DECM	Returns $arctan(x)$.

Name	Keys to press	in modes	Remarks
ATANH	g HYP-1 (TAN)	DECM	Inverse hyperbolic tangent, known as artanh.
BACK	h P.FCN BACK <u>n</u>	PRG	Jumps n program steps backwards (1 $\leq n \leq$ 99). So e.g. BACK 01 goes to the previous step. Reaching step 000 stops program execution. ATTENTION: The BACK instruction must not be the last step of the program.
BASE	MODE BASE <u>n</u>		
BASE10	f 10		Sets the base for integer calculations, with $2 \le n \le 16$. Popular bases are directly accessible
BASE16	g 16	\α	on the keyboard. Current integer base setting is indicated in the exponent as explained <u>above</u> .
BASE2	f 2		Furthermore, BASE0 equals DECM, and BASE1 calls FRACT. See below.
BASE8	g 8		odilo 110 to 1. Goo bolow.
BATT	ATT hX.FCN BATT	DECM	Measures the battery voltage in the range between 1.9V and 3.4V and returns this value.
		Integer	As above but returns the voltage in 0.1V units.
BC?	h TEST BC? <u>n</u>	Integer	Tests the specified bit in x .
BestF	h STAT BestF	DECM	Selects the best curve fit model, maximizing the correlation like BEST does in <i>HP-42S</i> .
Binom			Binomial distribution with the number of successes g in X , the probability of a success p_0 in J and the sample size n in K :
Binom _P	h PROB Binom etc.	DECM	pmf: $p_B(g;n;p_0) = \binom{n}{g} \cdot p_0^g \cdot (1-p_0)^{n-g}$. cdf: $F_B(m;n;p_0) = \sum_{g=0}^m p_B(g;n;p_0)$, with the maximum number of successes \mathbf{m} in \mathbf{X} .
Binom ⁻¹	Binom ⁻¹		The pdf equals BINOMDIST($g; n; p_0; 0$) and the cdf BINOMDIST($m; n; p_0; 1$) in MS Excel. Binom $^{-1}$ returns m for given probabilities F_B in \mathbf{X} and \mathbf{p} in \mathbf{J} with sample size \mathbf{n} in \mathbf{K} .
B _n	h X.FCN B _n	DECM	Returns the Bernoulli number for an integer $n > 0$ given in \mathbf{X} : $B_n = (-1)^{n+1} n \cdot \zeta(1-n) \text{ . See below for } \zeta.$

Name	Keys to press	in modes	Remarks
B _n *	h X.FCN B _n *	DECM	Returns the Bernoulli number according to its old definition for integer $n > 0$ given in X : $B_n^* = \frac{2 \cdot (2n)!}{(2\pi)^{2n}} \cdot \zeta(2n) \text{ . See below for } \zeta.$
BS?	h TEST BS? n	Integer	Tests the specified bit in x .
Cauch			Cauchy-Lorentz distribution with the location \mathbf{x}_0 specified in \mathbf{J} and the shape γ in \mathbf{K} , also known as Lorentz or Breit-Wigner distribution:
Cauch _P	h PROB Cauch etc.	DECM	pdf: $f_{Ca}(x) = \frac{1}{\pi \gamma} \cdot \frac{1}{1 + \left(\frac{x - x_0}{\gamma}\right)^2}$
Cauch ⁻¹			cdf: $F_{Ca}(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x - x_0}{\gamma}\right)$. Cauch ⁻¹ returns \mathbf{x} for a given probability $\mathbf{F_{Ca}}$ in \mathbf{X} , with location $\mathbf{x_0}$ in \mathbf{J} and shape γ in \mathbf{K} .
СВ	h X.FCN CB n	Integer	Clears the specified bit in x .
CEIL	h X.FCN CEIL	DECM	Returns the smallest integer $\geq x$.
CF	h P.FCN CF n	\α	Clears the flag specified.
CLFLAG	h P.FCN CLFLAG	\α	Clears all user flags.
CLREG	h X.FCN CLREG	All	Clears all general purpose registers.
CLSTK	O g FILL h P.FCN CLSTK	\α	Clears all stack registers.
CLx	h CLx	All	Clears the lowest stack register and disables stack lift as usual.
CLα	f CLa	All	Clears the alpha register like CLA in HP-42S.
CLΣ	g CL ₂	DECM	Clears all statistical sums in the respective general purpose registers.

Name	Keys to press	in modes	Remarks
СОМВ	f Cy.x	DECM	Returns the number of possible <u>sets</u> of y items taken x at a time. No item occurs more than once in a set, and different orders of the same x items are <u>not</u> counted separately. Formula: $C_{y,x} = \begin{pmatrix} y \\ x \end{pmatrix} = \frac{y!}{x!(y-x)!}$
CONJ	CPX X.FCN CONJ	DECM	Changes the sign of y.
CORR	gr	DECM	Returns the correlation coefficient for the current statistical data and curve fitting model.
cos	f cos	DECM	Returns the cosine of the angle in X.
COSH	f HYP COS	DECM	Returns the hyperbolic cosine of x.
COV	h STAT COV	DECM	Returns the population covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $COV_{xy} = \frac{1}{n^2} \Big(n \sum x_i y_i - \sum x_i \sum y_i \Big)$ See s_{xy} for the sample covariance.
CUBE	h X.FCN CUBE	\α	Returns x^3 .
CUBERT	h X.FCN CUBERT	\α	Returns $\sqrt[3]{x}$.
DATE	h P.FCN DATE	DECM	Recalls the date from the real time clock and displays it in the numeric section in the format selected. See D.MY, M.DY, and Y.MD. The function DATE of <i>HP-12C</i> corresponds to DAYS+ in WP 34S (see below).
DAY	h X.FCN DAY	DECM	Takes x as a date in the format selected and returns the name of the day in the dot matrix and a corresponding integer in the numeric display (Monday = 1, Sunday = 7).
DAYS+	h X.FCN DAYS+	DECM	Works like DATE in HP -12 C , adding x days on a date in Y in the format selected and displaying the resulting date including the day of week in the same format as DAY does.

Name	Keys to press	in modes	Remarks
DBLR	h X.FCN DBLR	Integer	
DBL ×	h X.FCN DBL×		Double precision commands for remainder, multiplication and division like in <i>HP-16C</i> .
DBL/	h X.FCN DBL/		
DEC	h P.FCN DEC <u>r</u>	\α	Decrements \boldsymbol{r} by one, equivalent to 1 STO- \boldsymbol{r} , but without modifying the stack.
DECM	f H.d	\α	Sets default decimal mode for calculations.
DECOMP	h X.FCN DECOMP	FRC	Decomposes x (after converting it into an improper fraction, if applicable), resulting in a stack [numerator(x), denominator(x), y , z] or [num(x), den(x), y , z , t , a , b , c], respectively. Reversible by division.
DEG	g DEG	DECM	Sets angular mode to degrees.
DEG→	h X.FCN DEG→	DECM	Takes x as degrees and converts them to the angular mode currently set.
DENANY	h MODE DENANY	\α	Sets default fraction format like in <i>HP-35S</i> , allowing maximum precision. Any denominator up to the value set by DENMAX may appear.
DENFAC	h MODE DENFAC	\α	Sets "factors of the maximum denominator". With e.g. DENMAX = 60, possible denominators are 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60.
DENFIX	h MODE DENFIX	\α	Sets fixed denominator format, i.e. the denominator equaling DENMAX always.
DENMAX	h MODE DENMAX	\α	Works like \sqrt{c} in HP -35S, but maximum denominator settable is 9999. It will be set to this value if $x < 1$ or $x > 9999$ at execution time. For $x = 1$ the current setting is recalled.
DISP	h MODE DISP <u>n</u>	DECM	Changes the number of decimals while keeping the display format (FIX, SCI, ENG) as is. With ALL set, DISP will change the switchover point (see ALL).
DROP	h P.FCN DROP	\α	Drops x , changing stack contents to $[y, z, t, t]$ or $[y, z, t, a, b, c, d, d]$, respectively. See <u>above</u> for ^C DROP.
DSE	f DSE r	PRG & DECM	Given ccccc.fffii in r , this function decrements r by ii, skipping next program line if then cccccc \leq fff.

Name	Keys to press	in modes	Remarks
DSZ	h P.FCN DSZ <u>r</u>	PRG	Decrements ${\it r}$ by one, skipping next program line if then $ {\it r} < 1$.
D.MY	h MODE D.MY	\α	Sets the format for date display.
D→J	h X.FCN D→J	DECM	Takes x as a date in the format selected and converts it to a Julian day number according to JG
D→R		DECM	Please see the <u>catalog of conversions below</u> for conversions from degrees to radians.
E3OFF	h MODE E30FF	١	Toggle the thousands separator (either a point
E3ON	h MODE E3ON	\α	or a comma depending on the radix setting).
ENG	h ENG <u>n</u>	\α	Sets engineering display format.
ENGOVR	h ENG ENTER†	\α	Numbers exceeding the range displayable in ALL or FIX will be shown in engineering format. See SCIOVR.
ENTER↑	ENTER 1	\α	See <u>above</u> for ^C ENTER.
ENTRY?	h TEST ENTRY?	All	Checks if at least one character was entered in response to a programmed STOP.
erf	h X.FCN erf	DECM	Returns the error function and its complementary, respectively:
erfc	h X.FCN erfc	DECM	$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\tau^{2}} d\tau$ and $erfc(x) = 1 - erf(x)$
ERR	h P.FCN ERR <u>n</u>	PRG	Raises the error specified. See <u>below</u> for the respective error codes.
EVEN?	h TEST EVEN?	\α	Checks if x is integer and even.
e *	f e ^x	DECM	
ExpF	h STAT ExpF	DECM	Selects the exponential curve fit model.
Expon			Exponential distribution with the rate λ specified in J :
Expon _P	h PROB Expon etc.	DECM	pdf: $f_{Ex}(x) = \lambda \cdot e^{-\lambda x} = \text{EXPONDIST}(x; \lambda; 0),$ cdf: $F_{Ex}(x) = 1 - e^{-\lambda x} = \text{EXPONDIST}(x; \lambda; 1)$ in MS Excel.
Expon ⁻¹			Expon ⁻¹ returns the survival time t_s for a given probability F_{Ex} in X and rate λ in J .

Name	Keys to press	in modes	Remarks
e ^x -1	h X.FCN e ^X -1	DECM	Returns more accurate results for the fractional part of e^X with $x \approx 0$.
FB	hX.FCN FB <u>n</u>	Integer	Inverts ("flips") the specified bit in x .
FC?			
FC?C	h TEST FC? n		Tests if the flag specified is clear. Clears, flips,
FC?F	etc.	\α	or sets this flag after testing, if applicable.
FC?S			
FF	h P.FCN FF n	\α	Flips the flag specified.
FIB	h X.FCN FIB	\α	Returns the Fibonacci number F_x .
FILL	g FLL	\α	Copies x to all stack levels. See <u>above</u> for ^C FILL.
FIX	h FIX <u>n</u>	\α	Sets fixed point display format.
FLOOR	h X.FCN FLOOR	DECM	Returns the largest integer $\leq x$.
FP	gFP	DECM	Returns the fractional part of x .
FP?	h TEST FP?	\α	Tests x for having a nonzero fractional part.
FRACT	h MODE FRACT	\α	Sets fraction mode like in HP-35S, but keeps display format as set by PROFRC or IMPFRC.
FS?			
FS?C	h TEST FS? n	V	Tests if the flag specified is set. Clears, flips, or
FS?F	etc.	\α	sets this flag after testing, if applicable.
FS?S			
F(x)	h PROB F(x)	DECM	F-distribution. The cdf F(x) equals 1 - Q(F) in
F ⁻¹ (p)	etc.	DECIVI	HP-21S. The degrees of freedom are specified in ${f J}$ and ${f K}$.
f'(x)	h P.FCN f'(x) label	DECM	Return the first or second derivative of $f(x)$, respectively, with the function $f(x)$ being specified in a routine starting with LBL <i>label</i> . The return stack will have y , z , and t cleared and the position x in L .
f"(x)	h P.FCN f"(x) label	DECIVI	Either command will attempt to call a user routine labeled 'δx' to provide a fixed step size <i>dx</i> . If that routine is not defined, a step size of 0.1 is employed instead.

Name	Keys to press	in modes	Remarks
GCD	h X.FCN GCD	\α	Returns the Greatest Common Divisor of \boldsymbol{x} and \boldsymbol{y} .
Geom			Geometric distribution: pdf: $f_{Ge}(m) = p_0(1-p_0)^m$,
Geom _P	h PROB Geom etc.	DECM	cdf: $F_{Ge}(m) = 1 - (1 - p_0)^{m+1}$ is the probability for a first success after $m = x$ Bernoulli experiments. The probability p_0 for a success in each such experiment must be specified in J .
Geom ⁻¹			Geom ⁻¹ returns the number of failures f before the first success for given probabilities F_{Ge} in X and p_0 in J .
GRAD	g GRAD	DECM	Sets angular mode to gon or grads.
GRAD→	h X.FCN GRAD→	DECM	Takes x as gon or grads and converts them to the angular mode currently set.
		PRG	Inserts an unconditional branch to label.
	h GTO <u>label</u>	∖PRG, ∖α	Positions the program pointer to <i>label</i> .
GTO	h GTO . A , B , C , or D	\α	Positions the program pointer to one of these labels if defined (not programmable).
	h GTO . nnn	\α	Positions the program pointer to line <i>nnn</i> (not programmable).
	h GTO	\α	Positions the program pointer to line 000 (not progr.) and lights the annunciator <i>BEG</i> .
GTOα	h P.FCN GTO α	\α	Takes the first three characters of <i>alpha</i> (or less if there are less available) as a label and positions the program pointer to it.
H _n	h X.FCN H _n	DECM	Hermite's polynomials for probability: $H_n(x) = (-1)^n \cdot e^{\frac{x^2}{2}} \cdot \frac{d^n}{dx^n} \left(e^{-\frac{x^2}{2}} \right) \text{ with } \boldsymbol{n} \text{ in } \mathbf{Y},$ solving the differential equation $f''(x) - 2x \cdot f'(x) + 2n \cdot f(x) = 0.$
H _{np}	h X.FCN H _{np}	DECM	Hermite's polynomials for physics: $H_{np}(x) = (-1)^n \cdot e^{x^2} \cdot \frac{d^n}{dx^n} \left(e^{-x^2} \right) \text{ with } \mathbf{n} \text{ in } \mathbf{Y}.$

Name	Keys to press	in modes	Remarks
H.MS	f H.MS	DECM	Assumes X containing <i>decimal</i> hours or degrees, and displays them converted in the format hhhho mm'ss.dd" as shown in the paragraph above. Will return to the previous decimal display with the next keystroke thereafter.
H.MS+	h P-FCN H.MS+	DECM	Assumes X and Y containing times or degrees in the format hhhh.mmssdd, and adds or sub-
H.MS-	h P.FCN H.MS-		tracts them, respectively.
IMPFRC	g d/c	\α	Sets fraction mode allowing improper fractions in display (i.e. $^5/_3$ instead of 1 $^2/_3$). Converts x according to the settings by DEN Absolute decimal equivalents of x must not exceed 100,000. Compare PROFRC.
		FRC	Allows displaying improper fractions. Thus converts a proper fraction in X into the equivalent improper fraction, if applicable.
INC	h P.FCN INC <u>r</u>	\α	Increments ${\it r}$ by one, equivalent to 1 STO+ ${\it r}$, but without modifying the stack.
INT?	h TEST INT?	\α	Tests x for being an integer, i.e. having a fractional part equal to zero. Compare FP?.
IP	f P	DECM	Returns the integer part of x .
ISG	g ISG r	PRG & DECM	Given ccccc.fffii in r , this function increments r by ii, skipping next program line if then cccccc > fff.
ISZ	h P.FCN ISZ r	PRG	Increments ${\bf r}$ by one, skipping next program line if then $ {\bf r} < 1$.
Ιβ	h X.FCN Iβ	DECM	Returns the regularized incomplete beta function $\frac{\beta_x(x,y,z)}{\beta(y,z)} = \frac{1}{\beta(y,z)} \cdot \int_0^x t^{y-1} (1-t)^{z-1} dt \qquad \text{with} \beta_x$ being the incomplete beta function and β being Euler's beta (see below).
ΙΓ	h X.FCN IF	DECM	Returns the regularized incomplete gamma function $\frac{\gamma(x,y)}{\Gamma(x)}$ with $\gamma(x,y)=\int\limits_0^y t^{x-1}e^{-t}dt$ being the lower incomplete gamma function. For Γ see below.

Name	Keys to press	in modes	Remarks
JG1582 JG1752	h X.FCN JG1582	DECM	These two commands reflect different dates the Gregorian calendar was introduced in different large areas of the world. D→J and J→D will be
JG1752	h X.FCN JG1752		calculated accordingly.
J→D	h X.FCN J→D	DECM	Takes x as a Julian day number and converts it to a date according to JG in the format selected
KEY?	h TEST KEY? <u>a</u>	DECM	Tests if a key was pressed while a program was running or paused. If <u>no</u> key was pressed, the next program step after KEY? will be executed, else it will be skipped and the code of said key will be found in address a . Key codes start top left (A is 11, CPX is 16, STO is 21, + is 75).
LASTx	RCL L	\α	See <u>above</u> for ^c LASTx .
LBL	[] LBL label	PRG	Identifies programs and routines for execution and branching. See opportunities for specifying <i>label</i> in the table <i>above</i> .
LBL?	h TEST LBL? <u>label</u>	All	Tests for the existence of the label specified, anywhere in program memory. See opportunities for specifying <i>label</i> in the table <i>above</i> .
LCM	h X.FCN LCM	\α	Returns the Least Common Multiple of x and y .
LEAP?	h TEST LEAP?	DECM	Takes x as a date in the format selected, extracts the year, and tests for a leap year.
LgNrm			Lognormal distribution with $\mu = \ln \bar{x}_g$ specified in $\bf J$ and $\sigma = \ln \varepsilon$ in $\bf K$. See $\bar{x}g$ and ε below.
LgNrm _P	h PROB LgNrm etc.	DECM	pdf: $f_{Ln}(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}$, cdf: $F_{Ln}(x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$ with $\Phi(z)$ denoting
LgNrm ⁻¹			the standard normal cdf. LgNrm $^{-1}$ returns ${\it x}$ for a given probability ${\it F}_{\it Ln}$ in ${\it X}$, ${\it \mu}$ in ${\it J}$, and ${\it \sigma}$ in ${\it K}$.
LinF	h STAT LinF	DECM	Selects the linear curve fit model.
LJ	h X.FCN LJ	Integer	Left adjust as in HP-16C.
LN	gLN	DECM	Returns the natural logarithm of \boldsymbol{x} , i.e. the logarithm of \boldsymbol{x} for base \boldsymbol{e} .

Page 36 of 81

Name	Keys to press	in modes	Remarks
L _n	h X.FCN L _n	DECM	Laguerre's polynomials (compare $L_n\alpha$ below): $L_n(x) = \frac{e^x}{n!} \cdot \frac{d^n}{dx^n} \Big(x^n e^{-x} \Big) = L_n^{(0)}(x) \text{with} \textbf{n} \text{in} \textbf{Y},$ solving the differential equation $x \cdot y'' + (1-x)y' + ny = 0 .$
LN1+x	h X.FCN LN1+x	DECM	Natural logarithm of values close to zero. Returns $\ln(1+x)$, providing a much higher accuracy in the fractional part of the result.
$L_n \alpha$	h X.FCN L _n α	DECM	Laguerre's generalized polynomials with \mathbf{n} in \mathbf{Y} and $\mathbf{\alpha}$ in \mathbf{Z} : $L_n^{(\alpha)}(x) = \frac{x^{-\alpha}e^x}{n!} \cdot \frac{d^n}{dx^n} \left(x^{n+\alpha}e^{-x} \right).$
LNβ	h STAT LNβ h X.FCN LNβ	DECM	Returns the natural logarithm of Euler's β function. See there.
LNT	h STAT LNF	DECM	Returns the natural logarithm of $\Gamma(x)$. See there.
LOAD	h X.FCN LOAD	\α	Restore the entire backup. See SAVE.
LOG ₁₀	gLG	DECM	Returns the logarithm of x for base 10.
LOG ₂	gLB	\α	Returns the logarithm of x for base 2.
LogF	h STAT LogF	DECM	Selects the logarithmic curve fit model.
Logis			Logistic distribution with μ given in \mathbf{J} and \mathbf{s} in \mathbf{K} pdf: $f_{Lg}(x) = e^{-\frac{x-\mu}{s}} / s \cdot \left(1 + e^{-\frac{x-\mu}{s}}\right)^2$,
Logis _P	h PROB Logis etc.	DECM	cdf: $F_{Lg}(x) = \left(1 + e^{-\frac{x-\mu}{s}}\right)^{-1}$
Logis ⁻¹			Logis ⁻¹ returns $F_{Lg}^{-1}(p) = \mu + s \cdot \ln\left(\frac{p}{1-p}\right)$ for a probability \mathbf{p} given in \mathbf{X} , $\boldsymbol{\mu}$ in \mathbf{J} , and \mathbf{s} in \mathbf{K} .
	gLOGx	DECM	Returns the logarithm of y for base x .
LOGx	CPX g LOGx	DECM	Returns the complex logarithm of $z + it$ for the complex base $x + iy$.

Name	Keys to press	in modes	Remarks
LZOFF	h MODE LZOFF	1	Toggles leading zeros like flag 3 does in
LZON	h MODE LZON	\α	HP-16C. Relevant in integer modes only.
L.R.	h L.R.	DECM	Returns the parameters a1 and a0 of the fit curve through the data points accumulated, according to the model selected, and pushes them on the stack. For a straight regression line, a0 is the y-intercept and a1 the slope.
MASKL	h X.FCN	Latana	Work like MASKL and MASKR on HP-16C, but
MASKR	MASKL <u>n</u> etc.	Integer	with the mask length following the command instead of taken from \mathbf{X} .
MAX	h X.FCN MAX	\α	Returns the maximum of x and y .
MIN	h X.FCN MIN	\α	Returns the minimum of x and y .
MIRROR	h X.FCN MIRROR	Integer	Reflects the bit pattern in <i>x</i> (e.g. 000101 becomes 101000 for word size 6).
M.DY	h MODE M.DY	\α	Sets the format for date display.
NAND	h X.FCN NAND	\α	Works in analogy to AND.
NaN?	h TEST NaN?	\α	Tests x for "Not a Number".
nBITS	h X.FCN nBITS	Integer	Counts bits set in x like #B does on HP-16C.
NOP	h P.FCN NOP	PRG	"Empty" step FWIW.
NOR	NOR NOR	\α	Works in analogy to AND.
Norml			Normal distribution with an arbitrary mean μ specified in ${\bf J}$ and standard deviation ${\bf \sigma}$ in ${\bf K}$: pdf: $f_N(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{(x-\mu)^2}{2\sigma^2}}$,
Norml _P	h PROB Norml etc.	DECM	cdf: $F_N(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ with Φ denoting the standard normal distribution. The pdf equals NORMDIST(x ; μ ; σ ; 0) and the
Norml ⁻¹			cdf NORMDIST(x ; μ ; σ ; 1) in MS Excel. Norml ⁻¹ returns x for a given probability F_N in X , mean μ in J , and standard deviation σ in K . Equals NORMINV(F_N ; μ ; σ) in MS Excel.
NOT	h NOT	\α	Works in analogy to AND.

Name	Keys to press	in modes	Remarks
nΣ	h STAT nΣ	DECM	Recalls the number of accumulated data points. Necessary for basic statistics.
ODD?	h TEST ODD?	\α	Checks if x is integer and odd.
OFF	gOFF	PRG	Inserts a step to turn the WP 34S off under program control.
OR	h OR	\α	Works in analogy to AND.
PERM	g Ру _• х	DECM	Returns the number of possible <u>arrangements</u> of y items taken x at a time. No item occurs more than once in an arrangement, and different orders of the same x items <u>are</u> counted separately. Formula: $P_{y,x} = x! \cdot C_{y,x}$, see COMB.
P _n	h X.FCN P _n	DECM	Legendre's polynomials: $P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right] \text{ with } \boldsymbol{n} \text{ in } \boldsymbol{Y}, \text{ solving the differential equation}$ $\frac{d}{dx} \left[(1 - x^2) \cdot \frac{d}{dx} f(x) \right] + n(n+1) f(x) = 0.$
Poiss			Poisson distribution with the number of successes g in X , gross error probability p_0 in J , and sample size n in K . Alternatively, Poisson's $\lambda = n \cdot p_0$ may be in J if $k = 1$:
Poiss _P	h PROB Poiss etc.	DECM	pmf: $P_P(g;\lambda) = \frac{\lambda^g}{g!} e^{-\lambda}$, cdf: $F_P(m;\lambda) = \sum_{g=0}^m P_P(g;\lambda)$, with the maximum number of successes m in X .
Poiss ⁻¹			The pdf equals POISSON($g; \lambda; 0$) and the cdf POISSON($g; \lambda; 1$) in MS Excel. Poiss ⁻¹ returns m for given probabilities F_P in X and p in Y with sample size Y in Y .
PowerF	h STAT PowerF	DECM	Selects the power curve fit model.
PRCL	h X.FCN PRCL n	\α	Recall the user program space from flash segment n to RAM where it may be edited (see above).
PRIME?	h TEST PRIME?	\α	Checks if the absolute value of the integer part of x is a prime.

Page 39 of 81

Name	Keys to press	in modes	Remarks
PROFRC [ab/c	DECM	Sets fraction mode like in <i>HP-35S</i> , allowing only proper fractions or mixed numbers in display. Converts x according to the settings by DEN Absolute decimal equivalents of x must not exceed 100,000. Compare IMPFRC.	
		FRC	Allows displaying only proper fractions. Thus converts an improper fraction in \mathbf{X} , if applicable, e.g. 5/3 into 1 2/3.
PROMPT	h P.FCN PROMPT	PRG	Displays $alpha$ and stops program execution (equaling $\alpha VIEW$ followed by STOP actually). See \underline{below} for more.
PSE	h PSE nn	PRG	Refreshes the display and pauses program execution for nn times 0.1s, with $0 \le nn \le 99$. The pause will be terminated early as soon as a key is pressed.
PSTO	h X.FCN PSTO	No.	Stores the user program space in flash segment n or exchanges it with the contents of flash
P≒	h X.FCN P≒	\α	segment <i>n</i> , respectively (see <u>above</u>).
RAD	gRAD	DECM	Sets angular mode to radians.
RAD→	h X.FCN RAD→	DECM	Takes x as radians and converts them to the angular mode currently set.
RAN#	f RAN#	DECM	Returns a random number between 0 and 1 like RAN in <i>HP-42S</i> .
		Integer	Returns a random bit pattern for the word size set.
RCF	h X.FCN RCF s	\α	Works like RCL but recalls from flash memory.
RCFRG	N X.FCN RCFRG	\α	Recover all general purpose registers from the backup region (see SAVE and <u>above</u>).
RCFST	h X.FCN RCFST	\α	Recover the system state from the backup region (see SAVE and <u>above</u>).
RCF+			
RCF-			
RCF×	h X.FCN RCF + s	\o:	Works like RCL+ etc. but recalls from flash
RCF/	etc.	\α	memory.
RCF↑			
RCF↓			

Name	Keys to press	in modes	Remarks
RCL	RCL s	\α	See the <u>addressing table above</u> for ^C RCL.
RCLM	RCL MODE	\α	Recalls selected mode settings into X . See <u>above</u> for details about the mode word.
RCLS	h P.FCN RCLS <u>s</u>	\α	Recalls 4 or 8 values from a set of registers starting at address s , and pushes them on the stack. This is the converse command of STOS.
RCL+	<u>RCL</u> + <u>s</u>		Recalls the content of address s , executes the specified operation on it and pushes the result
RCL-	RCL - s		on the stack.
RCL×	RCL X s	\α	E.g. RCL -12 recalls $r12$, subtracts x from it and displays the result (corresponding to the steps
RCL/	RCL / s	ia	RCL 12, x≒y, –, but without losing a stack level).
RCL↑	RCL s		RCL \uparrow (\downarrow) recalls the maximum (minimum) of the values in s and X .
RCL↓	RCL ▼ s		See the <u>addressing table above</u> for ^C RCL.
	h MODE RDX,	,	
RDX,	h P.FCN RDX,	\α	Sets the decimal mark to a comma.
	h./,		Toggles the radix mark.
RDX.	h MODE RDX.		Sets the decimal mark to a point.
	h P.FCN RDX.	\α	
RJ	h X.FCN RJ	Integer	Right adjusts, in analogy to LJ on HP-16C.
RL	h X.FCN RL <u>n</u>	la (a a a a	Works like n consecutive RLs / RLCs on
RLC	h X.FCN RLC n	Integer	<i>HP-16C.</i> For RL, $1 \le n \le 63$. For RLC, $1 \le n \le 64$. RL 0 and RLC 0 execute as NOP.
RMDR	h RMDR	\α	MOD of HP-42S equals RMD of HP-16C.
ROUND	g (RND)	DECM	Rounds x using the current display format, like RND in $HP-42S$.
KOUND		FRC	Rounds x using the current denominator, like RND in HP -35 S .
ROUNDI	h X.FCN ROUNDI	DECM	Rounds x to next integer. $\frac{1}{2}$ rounds to 1.
RR	h X.FCN RR <u>n</u>	Integer	Works like <i>n</i> consecutive RRs / RRCs on
RRC	h X.FCN RRC <u>n</u>	meger	HP-16C. See RL / RLC for more.

Name	Keys to press	in modes	Remarks
		\PRG	Moves the program pointer to step 000.
RTN	gRIN	PRG	Last command in a routine. Returns control to the calling routine in program execution, i.e. moves the program pointer one step behind the most recent XEQ instruction encountered. If there is none, program execution halts.
RTN+1	h P.FCN RTN+1	PRG	Returns control to the calling routine like RTN does, but moves the program pointer to the second line following the most recent XEQ instruction encountered. If there is no matching XEQ, program execution halts.
R-CLR	h P.FCN R-CLR	DECM	Interprets x in the form $ss.nn$. Clears nn registers starting with number ss . E.g. for $x = 34.56$, R-CLR will clear $R34$ through $R89$.
R-COPY	h P.FCN R-COPY	DECM	Interprets x in the form $ss.nndd$. Takes nn registers starting with number ss and copies their contents to dd . E.g. for $x = 7.0345678$, $r07$, $r08$, $r09$ will be copied into $R45$, $R46$, $R47$, respectively. For $x < 0$, R-COPY will read nn registers from flash memory, starting with register number $ ss $.
R-SORT	h P.FCN R-SORT	DECM	Interprets x in the form ss.nn. Sorts the contents of nn registers starting with number ss . Assume $x = 49.026$, $r49 = 1.2$, $r50 = -3.4$; then R-SORT returns $r49 = -3.4$, $r50 = 1.2$.
R-SWAP	h P.FCN R-SWAP	DECM	Works like R-COPY but swaps the register contents of source and destination.
R→D		DECM	Please see the <u>catalog of conversions below</u> for conversions of radians to degrees.
R↑	hRt	\α	Rotates the stack contents one level up or down,
R↓	R↓		respectively. See <u>above</u> for complex rotations.
s	gs	DECM	Takes the statistical sums, calculates the sample standard deviations \mathbf{s}_y and \mathbf{s}_x and pushes them on the stack.

Name	Keys to press	in modes	Remarks
SAVE	h X.FCN SAVE	\α	Saves user program space, registers and system state to flash memory. Program space is stored in segment 0. Registers and system state are in their own special region.
SB	h X.FCN SB n	Integer	Sets the specified bit in $oldsymbol{x}$.
SCI	h sci <u>n</u>	\α	Sets scientific display format.
SCIOVR	h SCI ENTER+	\α	Numbers exceeding the range displayable in ALL or FIX will be shown in scientific format (default as in vintage HP calculators). Compare ENGOVR.
SEED	h STAT SEED	DECM	Stores a seed for random number generation.
SERR	h STAT SERR	DECM	Works like s but pushes the standard errors s/\sqrt{n} on the stack (i.e. the standard deviations of $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$).
SERRW	h STAT SERRW	DECM	Works like sw but returns the standard error $s/\sqrt{\sum y_i}$ (i.e. the standard deviation of \bar{x} w).
SETCHN	h MODE SETCHN	\α	Sets some regional preferences (see <u>above</u>).
SETDAT	h X.FCN SETDAT	DECM	Sets the date for the real time clock (doesn't work with the emulator, since it takes this information from the PC clock).
SETEUR	h MODE	1	Cot come regional professores (acc about)
SETIND	SETEUR etc.	\α	Set some regional preferences (see <u>above</u>).
SETTIM	h X.FCN SETTIM	DECM	Sets the time for the real time clock (doesn't work with the emulator, since it takes this information from the PC clock).
SETUK	h MODE SETUK	\α	Set some regional preferences (see <i>above</i>).
SETUSA	etc.	ια	oct some regional preferences (see <u>above</u>).
SF	h P.FCN SF <u>n</u>	\α	Sets the flag specified.
SIGN	h X.FCN SIGN	\α	Returns 1 for $x > 0$, -1 for $x < 0$, and 0 for $x = 0$ or non-numbers.
	CPX X.FCN SIGN	DECM	Returns the unit vector of $x + i y$ in X and Y .
SIGNMT	h MODE SIGNMT	\α	Sets sign-and-mantissa mode for integers.

Name	Keys to press	in modes	Remarks
SIN	f SIN	DECM	Returns the sine of the angle in X.
SINC	h X.FCN SINC	DECM	Returns $\frac{\sin(x)}{x}$.
SINH	f HYP SIN	DECM	Returns the hyperbolic sine of x .
SKIP	h P.FCN SKIP <u>n</u>	PRG	Skips n program steps forwards ($1 \le n \le 99$). So e.g. SKIP 02 skips over the next two steps, going e.g. from step 123 to step 126. If the skip would land beyond the end of <u>occupied</u> program memory, the same will happen as if a RTN had been encountered.
SL	h X.FCN SL <u>n</u>	Integer	Works like n (up to 63) consecutive SLs on HP-16C. SL 0 executes as NOP.
SLV	SLV label	DECM	Solves the equation $f(x) = 0$, with $f(x)$ calculated by the routine specified. Two initial estimates of the root must be supplied in X and Y when calling SLV. For the rest, the user interface is as in $HP-15C$.
SLVQ	h X.FCN SLVQ	DECM	Assumes the stack containing the parameters [c , b , a ,] of an equation $ax^2 + bx + c = 0$, and returns its two roots $-\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}}$ in \mathbf{Y} and \mathbf{X} . Then \mathbf{Z} will contain what was in \mathbf{T} when SLVQ was called, etc. Please note SLVQ works for real numbers only.
SPEC?	h TEST SPEC?	\α	True if x is special, i.e. infinity or NaN.
SR	h X.FCN SR n	Integer	Works like <i>n</i> consecutive SRs on <i>HP-16C</i> . SR 0 executes as NOP.
SSIZE4	h MODE SSIZE4	\α	Set the stack size to 4 or 8 levels, respectively. If stack size grows, the top level contents will be copied into the new levels. If the stack shrinks, previous top levels will be lost.
SSIZE8	h MODE SSIZE8		The same will happen if stack size is changed via STOM.
SSIZE?	IN TEST SSIZE?	\α	Returns the number of stack levels accessible.
STO	STO <u>d</u>	\α	See the <u>addressing table above</u> for ^c STO.

Name	Keys to press	in modes	Remarks
STOM	STO MODE	\α	Sets selected modes as encoded in x . See the paragraph about <u>indicators</u> above for details about the mode word.
STOP	R/S	PRG	Stops program execution. May be used to wait for an input, for example.
STOS	h P.FCN STOS <u>d</u>	\α	Stores all stack levels in a set of 4 or 8 registers, starting at destination <i>d</i> .
STO+	STO + <u>d</u>		Executes the specified operation on the content of address d and stores the result into said ad-
STO-	<u>STO</u> – <u>d</u>		dress.
STO×	STO X d	\α	E.g. STO-12 subtracts x from $r12$, and stores the result in $R12$ again (corresponding to the
STO/	STO / <u>d</u>	ια	steps RCL 12, x≒y, –, STO 12, but without touching the stack at all).
STO↑	STO A d		STO↑ (↓) takes the maximum (minimum) of the values in d and X and stores it.
ѕто↓	<u>STO</u> ▼ <u>d</u>		See the <u>addressing table above</u> for ^c STO.
SUM	h STAT SUM	DECM	Recalls the linear sums Σy and Σx . Useful for elementary vector algebra.
sw	h STAT sw	DECM	Returns the standard deviation for weighted data $s_w = + \sqrt{\frac{\sum y_i \cdot \sum \left(y_i \cdot x_i^2\right) - \left[\sum \left(y_i \cdot x_i\right)\right]^2}{\left(\sum y_i\right)^2 - \sum y_i^2}} \text{with} \text{the weights in y.}$
sxy	h STAT sxy	DECM	Returns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it returns $s_{xy} = \frac{1}{n \cdot (n-1)} \Big(n \sum x_i y_i - \sum x_i \sum y_i \Big) \ .$ See COV for the population covariance.
S.L	h P.FCN S.L	DECM	Shifts the decimal point or comma left by x decimals, equivalent to multiplying x by 10^x .
S.R	h P.FCN S.R	DECM	Shifts the decimal point or comma right by x decimals, equivalent to dividing x through 10^x .
TAN	f TAN	DECM	Returns the tangent of the angle in X.
TANH	f HYP TAN	DECM	Returns the hyperbolic tangent of x .

Name	Keys to press	in modes	Remarks
TICKS	h P.FCN TICKS	\α	Returns the number of ticks from the real time clock at execution time.
TIME	h P.FCN TIME	DECM, α	Recalls the time from the real time clock at execution, displaying it in the format hh.mmssdd in 24h-mode. Chose FIX 6 for best results.
T _n	h X.FCN T _n	DECM	Chebychev's (a.k.a. Tschebyschow) polynomials of first kind $T_n(x)$ with \boldsymbol{n} in \boldsymbol{Y} , solving the differential equation $ (1-x^2)y''-x\cdot y'+n^2y=0 \ . $
t(x)	h PROB t(x) etc.	DECM	Student's t distribution. $t(x)$ equals $1-Q(t)$ in $HP\text{-}21S$. The degree of freedom is stored in J .
Un	h X.FCN U _n	DECM	Chebychev's polynomials of second kind $U_n(x)$ with \mathbf{n} in \mathbf{Y} , solving the differential equation $ (1-x^2)y''-3x\cdot y'+n(n+2)y=0 \ . $
UNSIGN	MODE UNSIGN	\α	Sets unsigned mode for integers.
VIEW	h VIEW s	\α	Displays the content of address s until the next key is pressed. See <u>below</u> for more.
VWα+	h VIEW s	α	Displays the contents of the alpha register in the top line plus those of address s in the bottom line until the next key is pressed. See <u>below</u> for more.
W W ⁻¹	h X.FCN W h X.FCN W ⁻¹	DECM	W returns Lambert's W for given $x \ge -1/e$, while W ⁻¹ returns x for given W (≥ -1).
Weibl			Weibull distribution with the shape parameter \boldsymbol{b} in \boldsymbol{J} and the characteristic lifetime \boldsymbol{T} in \boldsymbol{K} : pdf: $f_W(t) = \frac{b}{T} \left(\frac{t}{T}\right)^{b-1} e^{-\left(\frac{t}{T}\right)^b}$,
Weibl _P	h PROB Weibl etc.	DECM	cdf: $F_W(t) = 1 - e^{-\left(\frac{t}{T}\right)^b}$. The pdf equals WEIBULL(x ; b ; T ; 0) and the
Weibl ⁻¹			cdf WEIBULL(x ; b ; T ; 1) in MS Excel. Weibl $^{-1}$ returns the survival time t_s for given probability F_W , b in J and T in K .

Name	Keys to press	in modes	Remarks
WSIZE	h MODE WSIZE <u>n</u>	\α	Works like on <i>HP-16C</i> , but with the parameter following the command instead of taken from X . Reducing the word size truncates the values in the stack registers employed, including L . WSIZE 0 sets the word size to maximum, i.e. 64 bits.
WSIZE?	h TEST WSIZE?	\α	Recalls the word size set.
x ²	g x ²	\α	
	XEQ label	PRG	Calls the respective subroutine.
	AEQ <u>Iabei</u>	∖PRG, ∖α	Executes the respective program.
XEQ	B , C , or D (you may need f for	PRG	Calls the respective subroutine, so e.g. XEQ C will be inserted when $\boxed{\textbf{C}}$ is pressed.
	accessing these hotkeys in integer bases >10.)	∖PRG, ∖α	Executes the respective program if defined.
XEQα	h P.FCN XEQα	\α	Takes the first three characters of <i>alpha</i> (or less if there are less) as a label and calls or executes the respective routine.
XNOR	h X.FCN XNOR	\α	Works in analogy to AND.
XOR	h XOR	\α	Works in analogy to AND.
x	ſx	DECM	Returns the arithmetic means, pushing $\bar{y} = \frac{1}{n} \sum y$ and $\bar{x} = \frac{1}{n} \sum x$ on the stack. See also s, SERR, and σ .
х̄g	h STAT x̄g	DECM	Returns the geometric means, pushing $\overline{y}_g = \sqrt[n]{\prod y} = e^{\frac{1}{n}\sum \ln y}$ and $\overline{x}_g = \sqrt[n]{\prod x}$ on the stack. See also ε , εg , and ε_P .
Χ̄W	h STAT xw	DECM	Returns the weighted arithmetic mean $\sum xy / \sum y$. See also sw and SERRw.
Ŷ	h STAT x̂	DECM	Returns a forecast x for a given y (in X) following the fit model chosen. See L.R. for more.
x!	h!	DECM	Return the factorial, equaling $\Gamma(x + 1)$.

Name	Keys to press	in modes	Remarks
x → α		All	Interprets x as a character code. Appends the respective character to $alpha$, similar to XTOA in HP - $42S$.
x≒	hx? <u>r</u>	\α	Swaps the contents of X and r . See <u>above</u> for complex $x \leftrightarrows$.
x≒y	x ≥ y	\α	Swaps x and y , performing Re \Rightarrow Im if a complex operation was executed immediately before. See <u>above</u> for $^{\rm C}$ x \Rightarrow y.
x < ?	h TEST x < ? <u>a</u>		
x ≤ ?	h TEST x ≤ ? <u>a</u>		Compare x with a . The three dots will be replaced in the listing by a according to the exam-
x = ?	f x = ? <u>a</u>		ples given in the <u>addressing table above</u> .
x ≈ ?	h TEST x≈? <u>a</u>	\α	$x \approx ?$ will be true if the <u>rounded</u> values of x and a are equal (see ROUND).
x ≠ ?	g x # ? <u>a</u>		CPX f $x = ?$ a and CPX $g x \neq ?$ a compare the complex number $x + i y$ as explained in the addressing table above.
x ≥ ?	h TEST x≥? <u>a</u>		
x > ?	h TEST x > ? <u>a</u>		
	f y ^x	\α	In integer modes x must be ≥ 0 .
y ^x	C	\α, \13, \14, \15, \h	Shortcut working as long as label C is not defined yet.
ŷ	fŷ	DECM	Returns a forecast y (in X) for a given x following the fit model chosen. See L.R. for more.
ŷ Y.MD	f ŷ h MODE Y.MD	DECM \α	Returns a forecast y (in X) for a given x following the fit model chosen. See L.R. for more. Sets the format for date display.
			ing the fit model chosen. See L.R. for more.
Y.MD	h MODE Y.MD	\α	ing the fit model chosen. See L.R. for more. Sets the format for date display. Takes <i>x</i> as a date and appends it to <i>alpha</i> in the format set. See DATE. — To append a date
Y.MD αDATE	h MODE Y.MD h X.FCN αDATE	\α \integer	ing the fit model chosen. See L.R. for more. Sets the format for date display. Takes <i>x</i> as a date and appends it to <i>alpha</i> in the format set. See DATE. — To append a date stamp to <i>alpha</i> , call DATE αDATE. Takes <i>x</i> as a date, recalls the name of the respective day and appends its first 3 letters to <i>al</i> -

Name	Keys to press	in modes	Remarks
αLENG	h X.FCN αLENG	All	Returns the number of characters found in <i>alpha</i> , like ALENG in <i>HP-42S</i> .
αΜΟΝΤΗ	h X.FCN αMONTH	\integer	Takes x as a date, recalls the name of the respective month and appends its first 3 letters to $alpha$.
αOFF	h P.FCN αOFF	PRG & α	Work like AOFF and AON in HP-42S, turning
αΟΝ	h P.FCN αΟΝ	PRG & \α	alpha mode off and on.
αRCL	f RCL s	α	Interprets the content of the source s as charac-
UNCL	h X.FCN αRCL <u>s</u>	\α	ters and appends them to <i>alpha</i> .
αRC#	h X.FCN αRC# s	All	Takes the content of s as a number, converts it to a string in the format set, and appends this to <i>alpha</i> . If e.g. s = 1234 and ENG 2 and RDX. are set, then _1.23E3 will be appended.
αRL	h X.FCN αRL <u>n</u>	All	Rotates <i>alpha</i> by <i>n</i> characters like AROT in <i>HP-42S</i> , but with $n \ge 0$ and the parameter trailing the command instead of taken from X . α RL 0 executes as NOP.
αRR	h X.FCN αRR <u>n</u>	All	Works like αRL but rotates to the right.
αSL	h X.FCN αSL <u>n</u>	All	Shifts the $\it n$ leftmost characters out of $\it alpha$, like ASHF in $\it HP-42S$. $\it \alpha$ SL 0 equals NOP.
αSR	h X.FCN αSR <u>n</u>	All	Works like αSL but takes the \emph{n} rightmost characters instead.
αSTO	1 STO <u>d</u> 1 X.FCN αSTO <u>d</u>	\α	Stores the first (i.e. leftmost) 6 characters in the alpha register into destination d .
αΤΙΜΕ	h X.FCN αTIME	\integer	Takes x as a decimal time and appends it to $al-pha$ in the format hh:mm:ss according to the time mode selected. See TIME. — To append a time stamp to $alpha$, call TIME α TIME.
αVIEW	h VIEW ENTER † h P.FCN αVIEW h X.FCN αVIEW	All	Displays <i>alpha</i> in the top line and in the bottom line until the next key is pressed. See <i>below</i> for more.

Name	Keys to press	in modes	Remarks
αXEQ	h P.FCN αXEQ <i>nn</i>	\α	Takes the contents of Rnn as character code. Interprets the first three characters (or less if there are only less) of the converted code as an alpha label and calls or executes the respective routine.
$\alpha \rightarrow x$		All	Returns the character code of the leftmost character in <i>alpha</i> and deletes this character, like ATOX in <i>HP-42S</i> .
	h STAT β	DEOM	Returns Euler's Beta $B(x, y) = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}$ with
β	h X.FCN β	DECM	$\operatorname{Re}(x) > 0$, $\operatorname{Re}(y) > 0$. Called β here for avoiding ambiguities.
Γ	h STAT Γ h X.FCN Γ	DECM	Returns $\Gamma(x)$. Additionally, h! calls $\Gamma(x+1)$.
ΔDAYS	h (X.FCN) ΔDAYS	DECM	Assumes X and Y containing dates in the format chosen and calculates the number of days between them. Works like in <i>HP-12C</i> .
Δ%	g <u>\</u> %	DECM	Returns $100 \cdot \frac{x-y}{y}$ like %CH in <i>HP-42S</i> .
3	h STAT &	DECM	Calculates the scattering factors (or geometric standard deviations) $\ln(\varepsilon_y) = \sqrt{\frac{\sum \ln^2(y) - 2n \cdot \ln(\overline{y}_G)}{n-1}} \text{and} \ln(\varepsilon_x)$ and pushes them on the stack. ε works for the geometric mean in analogy to s for the arithmetic mean but <u>multiplicative</u> .
ε _m	h STAT ϵ_{m}	DECM	Works like ε but pushes the scattering factors of the geometric means $\varepsilon_m = \varepsilon^{1/\sqrt{n}}$ on the stack.
ε _p	h STAT E	DECM	Works like ε but with a denominator \boldsymbol{n} instead of $\boldsymbol{n-1}$, returning the scattering factors of the populations.
ζ	h X.FCN ζ	DECM	Returns Riemann's Zeta function for real arguments, with $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ for $x > 1$ and its analytical continuation for $x < 1$: $\zeta(x) = 2^x \pi^{x-1} \sin\left(\frac{\pi}{2}x\right) \cdot \Gamma(1-x) \cdot \zeta(1-x) \ .$

Name	Keys to press	in modes	Remarks
π	hπ	DECM	Complex version copies π in X and clears Y .
п	<mark>1 π label</mark>	DECM	Computes a product with the routine specified by <i>label</i> . Initially, X contains the loop control number in the format <code>ccccc.fffii</code> and the product is set to 1. Each run through the routine specified computes a factor. At its end, this factor is multiplied with said product; the operation then decrements <code>cccccc</code> by <code>ii</code> and runs said routine again if then <code>cccccc</code> > fff, else returns the resulting product in X .
Σ	g \(\Sigma\) <u>label</u>	DECM	Computes a sum with the routine specified by <code>label</code> . Initially, <code>X</code> contains the loop control number in the format <code>ccccc.fffii</code> and the sum is set to 0. Each run through the routine specified computes a summand; at its end, this is added to said sum; the operation then decrements <code>cccccc</code> by <code>ii</code> and runs said routine again if then <code>cccccc</code> > <code>fff</code> , else returns the resulting sum in <code>X</code> .
σ	h STAT σ	DECM	Works like s but returns the standard deviations of the populations instead.
Σln²x Σln²y Σlnx Σlnxy Σlnxy Σlny Σlny	h STAT Σln²x etc.	DECM	Recall the respective statistical sums. These sums are necessary for curve fitting models beyond pure linear. Calling them by name enhances readability of programs significantly.
σw	h STAT ow	DECM	Works like sw but returns the standard deviation of the population instead. $\sigma_{\scriptscriptstyle w} = + \sqrt{\frac{\sum y_i \big(x_i - \overline{x}_{\scriptscriptstyle w}\big)^2}{\sum y_i}}$

Name	Keys to press	in modes	Remarks	
$\begin{array}{c} \Sigma x \\ \Sigma x^2 \\ \Sigma x^2 y \\ \Sigma xy \\ \Sigma y \\ \Sigma y^2 \end{array}$	h STAT Σx etc.	DECM	Recall the respective statistical sums. These sums are necessary for basic statistics and linear curve fitting. Calling them by name enhances readability of programs significantly.	
Σ+	h Σ+	DECM	Adds a data point to the statistical sums.	
2.	A	DECM	Shortcut as long as label A is not defined yet.	
Σ–	h Σ-	DECM	Subtracts a data point from the statistical sums.	
φ(x)	h PROB φ(x)	DECM	Standard normal pdf: $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.	
Ф(х)	f (Φ)	DECM	Standard normal cdf $\Phi(z) = \int_{-\infty}^{z} \varphi(x) dx$, equals $1 - Q$ in $HP-32E$ and $1 - Q(z)$ in	
Φ ⁻¹ (p)	g (0 -1		HP-21S with $z = x$.	
χ^2 χ^2 INV	$\begin{array}{c} \text{h PROB} \chi^2 \\ \text{etc.} \end{array}$	DECM	Chisquare distribution. The cdf χ^2 (with the degrees of freedom given in $\bf J$) equals 1 - Q(χ^2) in <i>HP-21S</i> .	
(-1) [×]	h X.FCN (-1) X	\α	For x not being a natural number, this function will return $\cos(\pi \cdot x)$.	
+	+	\α	Returns $y + x$.	
_		\α	Returns $y-x$.	
×	X	\α	Returns $y \cdot x$.	
/	/	\α	Returns y/x .	
+/-	+/_	\α	Unary minus like CHS in HP-35.	
→DEG	→ (g) DEG	DECM	Takes x as an angle in the angular mode currently set and converts it to degrees. Prefix gmay be omitted.	
→GRAD	→ (g) GRAD	DECM	Like →DEG, but converts to gon or grads.	

Name	Keys to press	in modes	Remarks
→ Н	→ f H.d	DECM	Takes x as hours or degrees in the format hhhh.mmssdd and converts them into a decimal time or angle.
→H.MS	→ f H.MS	DECM	Takes x as decimal hours or degrees and converts them into hhhh.mmssdd as in vintage HPs. For calculations, use H.MS+ or H.MS-then or reconvert to decimal values before.
→POL	g R∢▶P	DECM	Assumes X and Y containing 2D Cartesian coordinates (x, y) and converts them to the respective polar coordinates $(r, 9)$ with the radius $r = \sqrt{x^2 + y^2}$
→RAD	→ (g) RAD	DECM	Works like →DEG, but converts to radians.
→REC	f R∢▶P	DECM	Assumes X and Y containing 2D polar coordinates $(r, 9)$ and converts them to the respective Cartesian coordinates (x, y) .
%	f %	DECM	Returns $\frac{x \cdot y}{100}$, leaving Y unchanged.
%MG	h X.FCN h % MG	DECM	Returns the margin 17 $100 \cdot \frac{x-y}{x}$ in % for a price x and cost y , like %MU-Price in HP -17B.
%MRR	h X.FCN h % MRR	DECM	Returns the mean rate of return in percent per period, i.e. $100 \cdot \left[\left(\frac{x}{y} \right)^{\frac{1}{z}} - 1 \right]$ with $x = \text{FV} = \text{future value after } z \text{ periods}, \ y = \text{PV} = \text{present value}.$ For $z = 1$, $\Delta\%$ returns the same result easier.
%Т	hX.FCN h% T	DECM	Returns $100 \cdot \frac{x}{y}$, interpreted as % of total.
%Σ	h STAT h % Σ h X.FCN h % Σ	DECM	Returns $100 \cdot \frac{x}{\sum x}$.
%+MG	h X.FCN h % +MG	DECM	Calculates a sales price $y/(1-0.01\cdot x)$ by adding a margin of x % to the cost y , as %MU-Price does in HP -17 B .

The state of the s

Name	Keys to press	in modes	Remarks	
	f 🗷	\α		
√	D	\α, \14, \15, \h	Shortcut working as long as label D is not defined yet.	
ı	g / label	DECM	Integrates the function given in the routine specified. Lower and upper integration limits must be supplied in \mathbf{Y} and \mathbf{X} , respectively. Otherwise, the user interface is as in HP -15 C .	
∞?	h TEST ∞?	\α	Tests x for infinity.	
11	gII	DECM	Returns $\left(\frac{1}{x} + \frac{1}{y}\right)^{-1}$.	

Alphanumeric input:

Character	Keys to press	in modes	Remarks
_	h PSE	α	Appends a blank space to alpha.
o		DECM	Separates degrees or hours from minutes and seconds, so input format is hhhh.mmssdd. The user has to take care where an arbitrary real number represents such an angle or time.
	0 9	\α	Standard numeric input. For integer bases <10, input of illegal digits throws an <u>error message</u> .
0 9	09	in ad- dressing	Register input. See the <u>tables</u> above for more.
	0, 1, 62,,	α	Appends the respective digit to <i>alpha</i> .
A F	A F (grey print)	11, 12, 13, 14, 15, h	
A 7		in ad- dressing	
A Z	(grey print)	α	Appends the respective Latin letter to <i>alpha</i> . Use to toggle cases.
EEX	EEX	DECM & \FRACT	Works like E in the Pioneers.

Character	Keys to press	in modes	Remarks
Α Ω	g A g O (grey print)	α	Appends the respective Greek letter to <i>alpha</i> . Use to toggle cases. See page 7 for more.
(
)	g	α	Appends the respective symbol to <i>alpha</i> .
+, -, x, /	f + f /		
/	Second ,	DECM	A persistent 2 nd in input switches to fraction mode and will be interpreted as explained below. Please note you cannot enter E after you entered twice – but you may delete the 2 nd dot while editing the input line.
		FRC	First is interpreted as a space, 2 nd as a fraction mark. E.g. input of 2 is 4 results in 2 ³ / ₄ in the display. Improper fractions may be entered starting with a is , e.g. is 3 is 2 .
±	f +/_		
,	h /, XEQ	α	Appends the respective symbol to <i>alpha</i> .
•	f,		
'.' or ','	•	DECM	Inserts a radix mark as selected.
!	h!		
\$	h x ?		
#	h XOR		
%	h-		
\$	(grey print)		
€	h U (grey print)		Appends the respective symbol to what
£	hπ	α	Appends the respective symbol to <i>alpha</i> .
¥	h Y (grey print)		
√			
&	hAND		
\	hNOT		
I	h OR		

NON-PROGRAMMABLE CONTROL, CLEARING AND INFORMATION COMMANDS

Keys to press	in modes	Remarks
	All	These two navigation keys will repeat with 5Hz when held down for longer than 0.5s.
	Status open	Goes to previous / next set of flags.
	Catalog open	Goes to previous / next item in this catalog.
A / V	α	Scrolls the display window six characters to the left / right in <i>alpha</i> if possible. If less than six characters are beyond the limits of the display window on the left / right side, the window will be positioned to the beginning / end of string. Useful for longer strings.
	Else	Acts like BST / SST in HP-42S.
	Input pending	Deletes the last digit or character put in.
	α	Deletes the rightmost character in <i>alpha</i> .
 	PRG	Deletes current step.
	Else	Acts like CLx.
f d / g b	Integer	Shifts the display window to the left / right like in <i>HP-16C</i> . Helpful while working with small bases.
	α	Toggles upper and lower case.
f 1	\α	Enters a memory browser.
h X.FCN CLALL	\PRG	Clears all registers and programs if confirmed.
h CLP	\α	Clears the program memory after confirmation.
ENTER†	Catalog open	Selects the current item like XEQ below.
———	α	Turns alpha mode off.
	Catalog open	Leaves the catalog without executing anything.
	Input pending	Cancels the execution of pending operations, returning to the calculator status as it was before.
EXIT	\PRG & pro- gram running	Stops the running program like R/S . See below.
V	PRG	Leaves programming mode like hP/R. See below.
	α	Turns alpha mode off like ENTER1 . See above.
	Else	Does nothing.
gOFF	\PRG	Turns calculator off.
ON	Calculator off	Turns calculator on.

Keys to press	in modes	Remarks
h P/R	\α	Toggles programming mode for keyboard entry.
h X.FCN RESET	All	Executes CLALL and resets all modes to start-up default, i.e. 24h, 2COMPL, ALL, DEG, DENANY, DENMAX 9999, DECM, LinF, PROFRC, RDX., SCIOVR, SSIZE4, WSIZE 64, Y.MD.
R/S	\PRG, \α	If a program is running: Stops it immediately. "Stopped" will be shown in the upper line until the next keystroke. Else: Runs the current program or resumes its execution starting with the current step. Compare the programmable command STOP.
	DECM & \PRG	Shows the full mantissa until the next key is pressed.
h SHOW	PRG	Displays a CRC checksum of program memory contents, allowing validation of program integrity.
h STATUS \PRG		Shows the status of all user flags, similar to STATUS on <i>HP-16C</i> . See <u>above</u> .
h X.FCN VERS	\PRG	Shows the firmware version and build number.
XEQ	Catalog open	Selects the item currently displayed and exits, executing the respective command. See <u>below</u> .
f ox	\α	Turns on alpha mode for keyboard entry. When entering alpha constants in programs, please note there is no concatenation character – added characters are appended to $alpha$ always. For starting a new string, use $CL\alpha$ first. Alpha constants will be listed like e.g. 'Test 1'.
→ f 2→ f 10→ (g) 16→ (g) 8	\α	These commands show x in target integer representation until the next key is pressed. Base is kept as set. Prefix g may be omitted here. If used in integer bases 15 and 16, prefix g must precede the key g

CATALOGS

A catalog on the WP 34S is a collection of items, e.g. operations or characters. Such catalogs may be called using the keystrokes listed below: $\frac{1}{2}$

Keys to press	in modes	Contents of said catalog	
h CAT	\α	Predefined alpha labels. Some special rules apply here: ▲ and ✔ browse the catalog as usual, but in the numeric line the location of the respective label is indicated (RAM, Lib for XROM, or SEG <i>n</i> for flash memory segment <i>n</i>). ○ - 3 go to the first alpha label in the flash segment specified. ENTER¹ goes to the alpha label as displayed, while XEQ or R/S execute it. These keystrokes will perform a label search as described above. Labels in XROM cannot be accessed by ENTER¹. • goes to the first alpha label in XROM. • or EXIT leave CAT returning to the state as before.	
h CONST	DECM	Constants like in HP35s. Picking a constant will recall it. See the constants listed in a <u>table below</u> .	
CPX CONST	DECM	This catalog contains the same constants. Picking one, however, does a complex recall here. So, if the stack was $[x, y,]$ before, it will look like $[constant, 0, x, y,]$ thereafter.	
h CONV	DECM	Conversions as listed in a <u>table below</u> .	
f CPX	α	"Complex" letters mandatory for many languages. Case is determined by setting (see above).	
h MODE	\α	Mode setting functions.	
h PROB	DECM	Extra probability distributions.	
h P.FCN	\α	Extra programming functions.	
f Rt	α	Subscripts.	
h Rt	α	Superscripts.	
h STAT	DECM	Extra statistical functions.	
h (TEST)	\α	All tests except the two on the keyboard.	
	α	Comparison symbols and brackets, except [] (and [g]).	

Keys to press	in modes	Contents of said catalog		
	DECM	Extra real functions.	These three estaless are unit	
h (X.FCN)	Integer	Extra integer functions.	These three catalogs are united in mode PRG to ease pro-	
	α	Extra alpha functions.	gramming.	
CPX X.FCN	DECM	Extra complex functions.		
h./,	α	Punctuation marks and text symbols.		
f →	α	Arrows and mathematical symbols.		

Opening a catalog will set alpha mode to allow for typing the first character(s) of the item wanted. A subset of the full alpha keyboard shown <u>above</u> is sufficient for browsing:

Please note
will just call the character
while browsing a catalog.

and browse the catalog. **ENTER** or (XEQ) select the item shown, recall or execute it, and exit the catalog, while **EXIT** will just leave it without executing anything, returning to the mode as set before.

See <u>below</u> for some examples.

Reopening the very last catalog called, the last command selected therein is displayed for easy repetitive use. This position is lost when the WP 34S turns off.

See the <u>table below about addressing cataloged items</u>, and the next pages for detailed item lists of the various catalogs.

Within each catalog, items are sorted alphabetically (see <u>above</u> for the sorting order). You may access particular items fast and easily by typing the first characters of their names. See <u>below</u> for some examples and constraints. Within the following lists, the characters necessary to access a specific function from an arbitrary position in the respective catalog are printed bold. Where a character is printed **grey** it will be faster employing \blacktriangledown to get to this function. E.g. for addressing Logis⁻¹, press \bigcirc \blacktriangledown and you will reach it the easiest.

A single function, e.g. CB, may be contained in more than one catalog.

The alpha catalogs are found three pages below. See also the special catalogs CONST and CONV in separate paragraphs further below.

Catalog contents in detail:

MODE 12h 1COMPL 24h 2COMPL BASE DENANY DENFAC DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX, RDX, RDX.
1COMPL 24h 2COMPL BASE DENANY DENFAC DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
24h 2COMPL BASE DENANY DENFAC DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
2COMPL BASE DENANY DENFAC DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
BASE DENANY DENFAC DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
DENANY DENFAC DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
DENFAC DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
DENFIX DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
DENMAX DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
DISP D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
D.MY E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
E3OFF E3ON FRACT LZOFF LZON M.DY RDX,
E3ON FRACT LZOFF LZON M.DY RDX,
FRACT LZOFF LZON M.DY RDX,
LZOFF LZON M.DY RDX,
M.DY RDX,
M.DY RDX,
RDX,
RDX.
SETCHN
SETEUR
SETIND
SETUK
SETUSA
SIGNMT
SSIZE4
SSIZE8
UNSIGN
WSIZE Y.MD
טועו. ו

ents in det
PROB
B inom
B inom _P
Binom ⁻¹
Cauch
Cauch _P
Cauch -1
Expon
Expon _P
Expon ⁻¹
F(x)
F ⁻¹ (p)
Geom
Ge om _P
Geom ⁻¹
L gnrm
L gnrm _P
L gnrm ^{−1}
Lo gis
Logis _P
Logis ⁻¹
Norml
Norml _P
Norml ⁻¹
Poiss
Poiss _P
Poiss ⁻¹
t(x)
t ⁻¹ (p)
Weibl
We ibl _P

ε ε_m

 ϵ_{p}

•				
STAT				
B estF	σ			
COV	ΣI n ² x			
Ex pF	ΣI n²y			
LinF	Σlnx			
LN β	ΣΙηχγ			
LNΓ	Σlny			
Lo gF	σw			
nΣ	Σχ			
P owerF	Σx²			
SEED	Σx ² y			
SERR	ΣxIny			
SERRW	Σχ			
SUM	Σy			
sw	Σy²			
sx y	Σylnx			
x g	%Σ			
x ₩				
x				
β				
Γ				

TEST
BC?
BS?
ENTRY?
EVEN?
FC?
FC?C
FC?F
FC?S
FP?
FS?
FS?C
FS?F
FS?S
INT?
KEY?
LBL?
LEAP?
NaN?
ODD?
PRIME?
SPEC?
SSIZE?
W SIZE?
x < ?
x ≤ ?
x ≈ ?
x ≥ ?
x > ?

∞?

P.F	CN				
BACK	R-CLR				
CF	R-COPY				
CL FLAG	R-SORT				
CLSTK	R-SWAP				
D ATE	S F				
DEC	SKIP				
DR OP	STOM				
DSZ	STOS				
E RR	S.L				
F F	S.R				
f '(x)	TICKS				
f "(x)	TIME				
G ΤΟα	V Wα+				
H.MS+	$\mathbf{X} \mathbf{E} \mathbf{Q} \alpha$				
H.MS-	αGTO				
INC	αOFF				
IS Z	αΟΝ				
NOP	α X EQ				
P ROMPT	α V IEW				
RCLM					
RCLS					
RDX,					
RDX.					

RTN+1

Weibl ⁻¹

 $\phi(x)$

χ² INV

X.FCN varie	es with the mo	de set, excep	ot ir	PRG. It con	tains in		CPX
alpha decimal n		node:		integer modes:			X.FCN
mode:	A GM	MIN		A SR	R CF		^C A GM
CLALL	ANGLE	N AND		BATT	RCFRG		^c C ONJ
CLREG	B ATT	NO R		СВ	RCFST		^c CUBE
RESET	B _n	P _n		CLALL	RESET		CCUBERT
V ERS	B _n *	PRCL		CLF LAG	RJ		^c D ROP
αDATE	CEIL	PS TO		CLREG	RL		с е х -1
αDΑΥ	CLALL	P↔		CUBE	RLC		^c F IB
αIP	CLREG	RAD→		CUBERT	RR		^c LN1+x
αLENG	CUBE	RCF		D BLR	RRC		^c LNβ
α M ONTH	CUBERT	RCFRG		DBL*	SAVE		CLNL
αRC#	DAY	RCFST		DBL/	SB		^c R CF
αRL	DAYS+	RESET		F B	SEED		^c SIGN
αRR	DE COMP	ROUNDI		FI B	SIGN		^c SINC
αSL	DEG→	SAVE		G CD	SL		cM
αSR	D→J	SETDAT		LCM	SR		CW -1
αTIME	erf	SETTIM		LJ	V ERS		^c β
	e rfc	SIGN		LOAD	νω α+		сГ
	e ^x -1	SINC		MASKL	XNOR		^c (-1) ^x
	FIB	SLVQ		MASKR	αIP		
FL OOR G CD		T _n	T _n		αLENG		
		U _n		MIN	αRCL		
	GRAD→	VERS		MIRROR	αRC#		
	H _n	νω α+		NAND	αRL		
	H _{np}	W	V		αRR		
	Iβ	W ⁻¹		NO R	αSL		
	IF	XNOR		P RCL	αSR		
	J G1582	αDATE		PS TO	α ST O		
	J G1752		αDAY		αVIEW		
J→D		αIP			(-1) ^X		
LCM		α L ENG					
L _n LN1+x L _n α		α M ONTH	1	α ST O			
		αRCL		αTIME	(-1) ^X		
		αRC#		αVIEW	% MG		
	LNβ		αRL		%M RR		
	LNΓ	αRR		Γ	%T		
	LOAD	αSL		∆DAYS	%Σ		
	MAX	αSR		ζ	%+ MG		

Page 62 of 81

CPX					
À	j.	Ħ	à	ā	ā
Á	D.	3, 3'	á	ō.	ů.
ÂÃĀĂ	Ъi	E	âãāă	۵ı	10
Ä	Ä	.	ä (ă)	Ö:	ä
Å	À	.E .E .⊓	å	á	à
Ć	ċ	Ē	ć	ć	Ē
Č	Ē		č	Ē	Ξ
Ç	Ç	Ç	Ç	ç	ς
È	Ē	Ē	è	ē	ŧ
É	Ē	Ē	é	ē	Ē
À Á ÂÃĀĂ Ä Å Ć Ç E È É	.d.d.:d.:d.:0.:0.:0.:7.	R: RI RI R' 177 NI	êēĕě	<u>`a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a,</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ë	Ë		ë (ĕ)	ë	Ë
			ħ	ħ	ħ
Ì	:0:0:0'Z'H:H!H:H:		ì	ī	ī
ĺ	Ī	ī	ĺ	ī	ī
ÎĨĪĬ	Ī	ī	îīīĭ	ī	ī
Ϊ	Ϊ	ï	Ϊ(Ĭ)	ï	ï
ÑŇ	М	12 .0	ñň	ħ	ħ
Ò	ō		Ò	ō	6
ÑŇ Ò Ó	ō	0	ó	ō	ō
ÔÕŌŎ	ō		ôõōŏ	5	5
Ö	0	0	ö (ŏ)	ö	ö
Ø Ř Š	Ø	Ø	Ø	ø	Ø
Ř	Ē	Ē	ř	F	7
Š	몺	Ī	š	四小工品	3
			ß		β
ù Ú	Ù	ū	ù	.J 'J	ū
Ú	Ū	Ľ.	ú	ű	ū
ÛŨŪŬ	Ū		ûũūŭ	C: CI	ū
l i'i	Ü	ü	ü (ŭ)	ü	ü
U			_	-	-
Ů	Ú	Ü	ů	u	u
Ů Ý	ý Y	<. C :	ů ý	y V	ÿ
Ü	<: <, C. C. C. C. C.	el <: <- E-	ů ý ÿ ž	제목(독)	With the total and the tall and the test

Here are the contents of the alpha catalogs making the WP 34S the most versatile global calculator known. Large font is printed in left column or upper row, small font in right column or lower row. Accented letters show the same width as plain ones wherever possible.

The letters provided in the WP 34S allow for correct writing the languages of more than 3·10⁹ people (still only half of mankind yet), i.e.:

Afrikaans, Català, Cebuano, Česky, Cymraeq. Deutsch. Eesti, English, Español, Euskara. Français, Gaeilge, Galego, Bahasa Indonesia, Italiano, Basa Jawa, Kiswahili, Kreyòl ayisyen, Magyar, Bahasa Melayu, Nederlands, Português, Quechua, Shqip, Slovenčina, Slovenščina, Basa Sunda, Suomeksi, Svenska, Tagalog, Winaray, Zhōngwén (with a little trick explained below), and almost Dansk and Norsk (sorry, no æ) as well as Hrvatski and Srpski (no đ). If you know further living languages covered, please tell us.

Mandarin Chinese (Zhōngwén) features four tones, usually transcribed like e.g. mā, má, má, and mà. So you need different letters for ā and ă here, and for e, i, o, and u as well. With six pixels total character height we found no way to display these in both fonts nicely, keeping letters and accents separated for easy reading. For an unambiguous solution, we suggest using a dieresis (else not employed in Hànyǔ pīnyīn) representing the third tone here. Pinyin writers, we ask for your understanding.

ADDRESSING CATALOG ITEMS

1	User input	CONST, CONV, MODE, PROB, P.FCN, STAT, TEST, or X.FCN	CPX, R♣, or R↑ in alpha mode	→, (TEST), or ./. in alpha mode			
	Dot	Shows 1 ^s	t item in selected c	atalog.			
	matrix display	(e.g. BC? in P.FCN) Alpha mode is set.	(e.g. Á in CPX)	(e.g. , in ./.)			
2	User input	XEQ, ▼, ▲, EXIT, or 1 st character	XEQ, ▼, ▲, EXIT, or character				
		(e.g. F)	(e.g. O)				
	Dot matrix display	Shows 1 st item starting with this character *) (e.g. FB)	Shows 1 st item starting with this letter *) (e.g. Ó)				
3	User input	XEQ, ▼, ▲, EXIT, or 2 nd character					
		(e.g. S)					
	Dot matrix display	Shows 1 st item starting with this sequence *) (e.g. FS?)					
4	User	XE	Q, ▼, ▲, or EXIT				
	input		(e.g. ▼)				
	Dot	Shows	s next item in this catalog				
	matrix display	(e.g. FS?C)	(e.g. Ò)	(e.g. ?)			
		Continue browsi	ng this way until reaching the	e item desired			
		(e.g. FS?F).	(e.g. Ö).	(e.g. 🕻).			
n	User		XEQ				
	input	Calculator leaves	the catalog returning to the n	node set before			
		and executes or					
	Dot	inserts the command chosen, or recalls the	and appends the selected character to <i>alpha</i> .				
	matrix display	constant selected.	Contents of alpha register				
Result			(e.g. Östl. Seite:)				

^{*)} If a character or sequence specified is not found in this catalog then the first item following alphabetically will be shown. If there is no such item, then the last item in this catalog is displayed. You may key in even more than two characters − after 3 seconds, however, or after ▼ or ▲, the search string will be reset and you may start with a first character again.

CONSTANTS

Below you find the contents of the catalog CONST. Navigation works as in the catalogs mentioned before. Values of physical constants (*incl. their relative standard deviations given in parentheses below*) are from CODATA 2006, copied in August 2010. Green background denotes exact or almost exact values. The more the color turns to red, the less precise the respective constant is known ¹⁸.

For the units, remember Tesla with $1T=1\frac{Wb}{m^2}=1\frac{V\cdot s}{m^2}$, Joule with $1J=1N\cdot m=1\frac{kg\cdot m^2}{s^2}$ and on the other hand $1J=1W\cdot s=1V\cdot A\cdot s=\frac{1}{e}eV\approx 6.24\cdot 10^6 TeV$. Thus $1\frac{J}{T}=1A\cdot m^2$.

	Numeric value	Unit	Remarks
а	365.2425	d	Gregorian year (per definition)
a ₀	5.2917720859 E -11 (6.8 E -10)	m	Bohr radius $=\frac{\alpha}{4\pi \cdot R_{\infty}}$
С	2.99792458 E 8	m/s	Vacuum speed of light (per definition)
C ₁	3.74177118 E -16 <i>(5.0E-8)</i>	$m^2 \cdot W$	First radiation constant $= 2\pi \cdot h \cdot c^2$
C ₂	0.014387752 <i>(1.7E-6)</i>	$m \cdot K$	Second radiation constant $=\frac{hc}{k}$
е	1.602176487 E -19 <i>(2.5E-8)</i>	С	Electron charge $=\frac{2}{K_J R_K} = \Phi_0 G_0$
еE	2.718281828459045	1	Euler's e. Please note the letter e is used for the electron charge elsewhere in this table.
F	96485.3399 <i>(2.5E-8)</i>	$\frac{C}{mol}$	Faraday's constant = $e N_A$
g	9.80665	m/s^2	Standard earth acceleration (per definition)
G	6.67428 E -11 <i>(1.0E-4)</i>	$\frac{m^3}{kg \cdot s^2}$	Newton's gravitation constant
G _o	7.7480917004 E -5 (6.8 E -10)	$^{1\!/}_{\Omega}$	Conductance quantum $= \frac{2e^2}{h} = \frac{2}{R_K}$ with the von Klitzing constant R _K = 25812.807557 Ω
g e	2.0023193043622 (7.4 E -13)	1	Landé's g-factor

¹⁸ The bracketed values printed here for your kind attention allow you to compute the precision of results you may obtain using these constants. The procedure to be employed is called error propagation. It is often ignored, though essential for trustworthy results – not only in science. Please turn to respective texts before you believe in 4 decimals of a calculation result based on yardstick measurements.

1 (

	Numeric value	Unit	Remarks
h	6.62606896 E -34 <i>(5.0E-8)</i>		Planck constant
ħ	1.054571628 E -34 (5.0 E -8)	Js	$=\frac{h}{2\pi}$
k	1.3806504 E -23 <i>(1.7E-6)</i>	$J/_{K}$	Boltzmann constant $= \frac{R}{N_A}$
l _p	1.616252 E -35 <i>(5.0E-5)</i>	m	Planck length = $\sqrt{\hbar G/c^3} = t_p c$
m e	9.10938215 E -31 <i>(5.0E-8)</i>		Electron mass
m _n	1.674927211 E -27 <i>(5.0E-8)</i>		Neutron mass
m _p	1.672621637 E -27 <i>(5.0E-8)</i>		Proton mass
Mp	2.17644 E -8 (5.0 E -5)	kg	Planck mass = $\sqrt{\hbar c/G} \approx 22 \mu g$
mu	1.660538782 E- 27 <i>(5.0E-8)</i>		Atomic unit mass = $10^{-3} kg / N_A$
mμ	1.88353103 E -28 <i>(5.6E-8)</i>		Muon mass
N _A	6.02214179 E 23 (5.0 E -8)	$\frac{1}{mol}$	Avogadro's number
NaN			"not a number"
po	101325	Pa	standard atmospheric pressure (per definition)
~			
q p	1,8755459 E -18 <i>(5.0E-5)</i>	As	Planck charge $=\sqrt{4\pi\varepsilon_0\hbar c}\approx 11.7e$
R	1,8755459 E -18 <i>(5.0E-5)</i> 8.314472 <i>(1.7E-6)</i>	$\frac{J}{mol \cdot K}$	Planck charge $=\sqrt{4\pi\varepsilon_0\hbar c}\approx 11.7e$ Molar gas constant
	· · · · · · · · · · · · · · · · · · ·	J	
R	8.314472 <i>(1.7E-6)</i>	$\frac{J}{mol \cdot K}$	Molar gas constant
R r _e	8.314472 (1.7 E -6) 2.8179402894 E -15 (2.1 E -9)	$\frac{J}{mol \cdot K}$	Molar gas constant
R r _e	8.314472 (1.7E-6) 2.8179402894E-15 (2.1E-9) 1.0973731568527E7 (6.6E-12)	$\frac{J}{mol \cdot K}$ m $\frac{1}{m}$	Molar gas constant
R R _∞ T _o	8.314472 (1.7E-6) 2.8179402894E-15 (2.1E-9) 1.0973731568527E7 (6.6E-12) 273.15	$\frac{J}{mol \cdot K}$ m $\frac{1}{m}$ K	Molar gas constant Classical electron radius $= \alpha^2 \cdot a_0$ Rydberg constant $= \frac{\alpha^2 m_e c}{2h}$ $= 0^{\circ}\text{C}$, standard temperature (per definition)

	Numeric value	Unit	Remarks
Z _o	376.730313461	Ω	Characteristic impedance of vacuum $= \sqrt{\frac{\mu_0}{\varepsilon_0}} = \mu_0 c$
α	7.2973525376 E -3 (6.8 E -10)	1	Fine-structure constant $=\frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$
γЕМ	0.57721566490153286	1	Euler-Mascheroni constant
γр	2.675222099 E 8 (2.6 E -8)	$\frac{1}{s \cdot T}$	Proton gyromagnetic ratio = $\frac{2\mu_P}{\hbar}$
εο	8.854187817 E- 12	$\frac{A \cdot s}{V \cdot m}$ or $\frac{F}{m}$	Electric constant, vacuum permittivity = $\frac{1}{\mu_0 c^2}$
λς	2.4263102175 E -12 <i>(1.4E-9)</i>		Compton wavelength of the electron = $\frac{h}{m_e c}$
λ _{cn}	1.3195908951 E -15 <i>(1.5E-9)</i>	m	Compton wavelength of the neutron $= \frac{h}{m_n c}$
λ _{ср}	1.3214098446 E -15 <i>(1.9E-9)</i>		Compton wavelength of the proton $= \frac{h}{m_p c}$
μο	1.2566370614 E -6	$\frac{V \cdot s}{A \cdot m}$	Magnetic constant, also known as vacuum permeability = $4\pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m}$ (per definition)
μв	9.27400915 E -24 <i>(</i> 2.5 E -8 <i>)</i>		Bohr's magneton $=\frac{e\hbar}{2m_e}$
μ _e	-9.28476377 E -24 (2.5 E -8)	1/	Electron magnetic moment
μ _n	-9.6623641 E -27 <i>(2.4E-7)</i>	J_T	Neutron magnetic moment
μ _p	1.410606662 E -26 (2.6 E -8)	or $A \cdot m^2$	Proton magnetic moment
μ _u	5.05078324 E -27 <i>(</i> 2.5 E -8 <i>)</i>		Nuclear magneton $=\frac{e\hbar}{2m_p}$
μ_{μ}	-4.49044786 E -26 <i>(3.6E-8)</i>		Muon magnetic moment
π	3.141592653589793	1	
σ_{B}	5.6704 E -8 (7.0 E -6)	$\frac{W}{m^2K^4}$	Stefan Boltzmann constant $=\frac{2\pi^5 k^4}{15h^3c^2}$
Φ	1.61803398874989485	1	Golden ratio $=\frac{1+\sqrt{5}}{2}$

	Numeric value	Unit	Remarks
Фо	2.067833667 E -15 (2.5 E -8)	Vs	Magnetic flux quantum $=\frac{h}{2e}=\frac{1}{K_J}$ with the Josephson constant $K_J=4.83597891\cdot 10^{14} Hz/V$
∞		1	Infinity (may the Lord of Mathematics forgive us calling this a constant)

UNIT CONVERSIONS

Find below the contents of the catalog CONV ¹⁹. Navigation works as in the other catalogs. There is one specialty, however: $(i \cdot B)$ (i.e. $(i \cdot L)$) will execute the inverse of the conversion displayed. Example: Assume the display set to FIX 3. Then keying in

4 h CONV **A** will display acres ⇒ha and 1.619 below telling you 4 acres equal 1.619 hectares.

Now press **B** and you will get 9.884 instead, being the amount of acres equaling 4 hectares.

Press **h CONV** again and you will see acres+ha and 4.000 below confirming what was just said.

Leave the catalog via **EXIT** and the display will return to 9.884.

The constant T_o may be useful for conversions of temperatures, too; since it is only added or subtracted, it is not included here but found in the <u>catalog CONST</u>. The conversion factors or divisors listed below for your information are user transparent in executing a conversion – those printed on light green background in this table apply exactly.

Conversion		Remarks	Class
°C→°F	* 1.8 + 32		Temperature
°F→°C	- 32) / 1.8		Temperature
° → G	/ 0.9	Converts to 'grads' or 'gon'	Angle
° →r ad	* π / 180	Equals D→R	Angle
a cres→ha	* 0.4046873	1 ha = 10 ⁴ m ²	Area
ar .→dB	10 * lg(R)	Amplitude ratio	Ratio

For most readers, many of the units appearing here may look obsolete at least. They die hard, however, in some corners of this world. All they have in common is English is spoken there. For symmetry reasons, we may also add some traditional Indian and Chinese units. Anyway, this catalog provides the means to convert local to common units.

WP 34S Owner's Manual

Conversion		Remarks	Class
at m→Pa	* 1.01325 E 5		Pressure
AU →km	* 1.495979 E 8	Astronomic units	Length
b ar→Pa	* 1 E 5		Pressure
b hp→W	* 745.6999	British horse power	Power
Bt u→J	* 1055.056	British thermal units	Energy
c al→J	* 4.1868		Energy
cf t→ <i>l</i>	* 28.31685	Cubic feet	Volume
cm →inches	/ 2.54		Length
d B→ar.	$10^{R_{dB}/20}$		Ratio
d B→pr.	$10^{R_{dB}/10}$	Power ratio	Ratio
f athom→m	* 1.8288		Length
fe et→m	* 0.3048		Length
flozUK→ml	* 28.41306		
flozUS→ml	* 29.57353	1 $l = \frac{1}{1000} \text{m}^3$	Volume
g alUK→ <i>l</i>	* 4.54609	$1 t = 7_{1000} \text{ III}$	Volume
galUS→ l	* 3.785418		
G→°	* 0.9	Grads or gon	Angle
g→oz	/ 28.34952		Mass
G→r ad	* π / 200		Angle
g→tr.oz	/ 31.10348		Mass
h a→acres	/ 0.4046873	1 ha = 10^4m^2	Area
HP _e →W	* 746	Electric horse power	Power
inches→cm	* 2.54		Length
inHg→Pa	* 3386.389		Pressure
J →Btu	/ 1055.056		Energy
J →cal	/ 4.1868		Energy
J →kWh	/ 3.6 E 6		Energy
k g→lb	/ 0.4535924		Mass

Conversion		Remarks	Class	
kg→stones	/ 6.35029318		Mass	
km →AU	/ 1.495979 E 8	Astronomic units	Length	
km→l.y.	/ 9.460730 E 12	Light years	Length	
km→miles	/ 1.609344		Length	
km→nmi	/ 1.852	Nautical miles	Length	
km→pc	/ 3.085678 E 16	Parsec	Length	
kW h→J	* 3.6E6		Energy	
lbf→N	* 4.448222		Force	
Ib→ kg	* 0.4535924		Mass	
<i>l.y.</i> →km	* 9.460730 E 12	Light years	Length	
l →cft	/ 28.31685			
<i>l</i> →galUK	/ 4.54609	1 $l = {}^{1}/_{1000} \text{ m}^{3}$	Volume	
<i>l</i> →galUS	/ 3.785418			
m iles→km	* 1.609344		Length	
m <i>l→</i> flozUK	/ 28.41306	4 4 2 3	\/aluma	
m <i>l</i> →flozUS	/ 29.57353	1 $ml = 1 \text{ cm}^3$	Volume	
mm Hg→Pa	* 133.3224	1 torr = 1 mm Hg	Pressure	
m→fathom	/ 1.8288		Length	
m→feet	/ 0.3048		Length	
m →y ards	/ 0.9144		Length	
n mi→km	* 1.852	Nautical miles	Length	
N→lbf	/ 4.448222		Force	
o z→g	* 28.34952	Ounces	Mass	
P a→atm	/ 1.01325 E 5	1 Pa = 1 N/m ²	Pressure	
Pa→bar	/ 1 E 5		Pressure	
Pa⇒inHg	/ 3386.389		Pressure	
Pa→mmHg	/ 133.3224		Pressure	
Pa→psi	/ 6894.757		Pressure	
Pa→torr	/ 133.3224		Pressure	

Conversion		Remarks	Class
pc→km	* 3.085678 E 16	Parsec	Length
pr .→dB	10 * lg(R)	Power ratio	Ratio
ps i→Pa	* 6894.757	Pounds per square inch	Pressure
PS(hp)→W	* 735.4988	Horse power	Power
rad→°	* 180 / π	Equals R→D	Angle
rad→G	* 200 / π		Angle
s tones→kg	* 6.35029318		Mass
s. tons→t	* 0.9071847	Short tons	Mass
t ons→t	* 1.016047	Imperial tons	Mass
to rr→Pa	* 133.3224	1 torr = 1 mm Hg	Pressure
tr .oz→g	* 31.10348	Troy ounces	Mass
t→s.tons	/ 0.9071847	$1 t = 10^3 kg$	Mass
t→tons	/ 1.016047	11 = 10 kg	IVIASS
W →bhp	/ 745.6999		Power
W →HP _e	/ 746		Power
W →PS(hp)	* 735.4988		Power
y ards→m	* 0.9144		Length

You may, of course, combine conversions as you like. For example, filling your tires with a maximum pressure of 30 psi the following will help you at a gas station in Europe:

Now you can set the filler and will not blow your tires.

In cases of emergency of a particular kind, remember Becquerel equals Hertz, Gray is the unit for deposited or absorbed energy (1Gy = 1J/kg), and Sievert is Gray times a radiation dependant dose conversion factor for the damage caused in human bodies.

In this area also some outdated units may be found in older literature: Pour les ami(e)s de Mme. Curie, $1Ci=3.7\cdot 10^{10}\,Bq=3.7\cdot 10^{10}\,decays/s$. And for those admiring the very first Nobel laureate in physics, Mr. Röntgen, for finding the x-rays (ruining his hands in these experiments), the charge generated by radiation in matter was measured by the unit $1R=2.58\cdot 10^{-4}\,As/kg$. A few decades ago, Rem (i.e. Röntgen equivalent men) was measuring what Sievert does today.

PREDEFINED GLOBAL ALPHA LABELS

There are a few labels employed and provided for particular tasks already. You find them listed in CAT. The respective routines are located in XROM, thus not taking any steps from user program memory. The following global labels are used:

TVM	Time Value of Money almost as known since the <i>HP-80</i> . This routine contains the equation $PMT - \frac{I}{k} \cdot \left[PV + \frac{PV + FV}{(1+I)^n - 1} \right] = 0 \text{ with}$
	PMT= periodic payment= $r80$,PV= present value= $r81$,FV= future value= $r82$,I= interest rate per period= $r83$,n= number of periods= $r84$,
	 k = 1 if payment is made at the end of the period = flag 80 clear, = 1 + I if it is made at the beginning of the period = flag 80 set.
	Store all you know and solve for the unknown. E.g. solving for PMT may look like:
	LBL 'PMT' ;routine is entered with a first guess in X . SLV 01 NOP ;this step must be included since SLV acts as a test. RTN
	LBL 01 STO 80 ;initial or previous guess XEQ 'TVM' RTN
	See SLV for more.
WHO	Displays credits.
δχ	Provides the step size for differentiation. See f'(x) and f"(x) for more information.

MESSAGES

There are some commands generating messages, also in the dot matrix section of the display. Four of them, DAY, DAYS+, STATUS, and VERS, were introduced above in the <u>paragraph about display</u> already. Others are PROMPT, aVIEW and many more alpha commands, and the test commands as mentioned <u>above</u>.

Also two constants will return a special display when called: NaN and ∞ will show

Furthermore, there are a number of error messages. Depending on error conditions, the following messages will be displayed in the mode(s) listed:

Message	Error Code	Mode(s)	Explanation and Examples
bad date 300 RPN Error	2	DECM	Invalid date format or incorrect date in input, e.g. month >12, day >31 etc.
bad digit *** Error b	9	Integer	Invalid digit in integer input, e.g. 2 in binary, 9 in octal, or +/- in unsigned mode.
bad mode 30 RPN Error	13	All	Caused by calling an operation in a mode where it is not defined, e.g. SIN in hexadecimal.
domain 360 RPN Error	1	\α	An argument exceeds the domain of the mathematical function called. May be caused by roots or logs of negative numbers (if not preceded by (CPX)), by $0/0$, LN(0), $\Gamma(0)$, TAN(90°) and equivalents, ATANH(x) for $ Re(x) \ge 1$, ACOSH(x) for
			$\operatorname{Re}(x) < 1$, etc.
invalid BEG 360 RPM	16	\α	Similar to error 1 but a parameter specified in \mathbf{J} or \mathbf{K} is out of supported range for the function called. May appear e.g. if LgNrm is called with $j < 0$.
no such 360 RPN LABEL	6	All	Attempt to address an undefined label.

Message	Error Code	Mode(s)	Explanation and Examples
out of range 300 RPN Error	8	All	 A number exceeds the valid range. Caused e.g. by specifying decimals >11, word size >64, negative flag numbers, integers ≥2⁶⁴, hours or degrees >9000, invalid times, denominators ≥9999 etc. A register address exceeds the valid range. May also happen in indirect addressing. An R-operation (e.g. R-COPY) attempts exceeding valid register numbers (0 99).
SLY J I II RAD STO RPN	7	PRG	Nested use of solve, integrate, sum or product is not allowed.
stack BEG 360 RPM	12	All	STOS or RCLS attempt using registers that would overlap the stack. Will happen with e.g. SSIZE = 8 and STOS 94.
too few *** *** d8t8 Points	15	DECM	A statistical calculation was started based on too few data points, e.g. regression or standard deviation for < 2 points.
too lon9 300 RPN	10	All	Keyboard input is too long for the buffer (should never happen, but who knows).
undefined 550 RPN OP-COdE	3	All	An instruction with an undefined op-code occurred (should never happen, but who knows).
word size *** Łoo SMALL ***	14	Integer, \PRG	Stack or register content is too big for the word size set.
+w 360 RPN	4	\α, \PRG	 Division of a number > 0 (or < 0) by zero. Divergent sum or product or integral.
	5	ia, ii ito	 Positive (or negative) overflow in DECM (see <u>above</u>).
>8 levels RAD STO RPN ∩EStEd	11	PRG	Subroutine nesting exceeds 8 levels.

Any key pressed will erase the error message displayed and execute with the stack contents present. Thus, the easiest return to the display shown before the error occurred is pressing a prefix twice.

PROGRAMMED INPUT AND OUTPUT

A number of commands may be employed for controlling I/O of programs. In the index <u>above</u>, their behavior is described if they are entered from the keyboard. Executed by a program, however, this will differ in a characteristic way.

With a program running, the display will be updated at certain instances only instead of after each operation. So where a command in manual mode shows an information until the next key is pressed, it will show it until the next display update in automatic mode. Such an update will occur with PROMPT, PSE, STOP, VIEW, VW α +, and α VIEW only. This allows for the following operations:

 Output of messages or other information for a defined time interval using the following code segment

```
... VIEW PSE ... (or simply PSE alone) for plain numeric calculated output or ... \alphaVIEW (or even VW\alpha+) PSE ... for complex alphanumeric information you composed in alpha.
```

Asking ("prompting") for numeric input employing

```
... \alphaVIEW (or VW\alpha+) STOP ... or simply PROMPT, the latter being identical to VW\alpha+ X STOP
```

Whatever you key in will be in X after you continue the program by pressing R/S. If you want it elsewhere, take care of it.

Prompting for alphanumeric input by

```
\begin{array}{l} ... \\ \alpha \text{ON} \\ \text{PROMPT} \\ \alpha \text{OFF} \end{array}
```

Whatever you key in will be appended to alpha here. Again, the program will continue when you pressed $\boxed{R/S}$.

Have fun!

APPENDIX A: SUPPORT COMMANDS

How to flash your HP-20b or -30b

You need a special cable and a PC featuring a serial interface. For further information, please turn to http://dl.dropbox.com/u/10022608/Flashing%20a%2020b%20Calculator.pdf edited by Tim Wessmann of HP.

Commands for handling the flash memory on the real calculator

Flash memory is very useful for backups as explained <u>above</u>. Alternatively to the commands SAVE and LOAD contained in X.FCN (see the <u>index of operations</u>), you may use another approach. Hold down ON (i.e. **EXIT**) and press one of the following keys:

STO for backup: Creates a copy of the RAM in flash memory like SAVE does.

RCL for restore: Restores the most recent backup like LOAD does.

S (i.e. **6**) for SAM-BA: Clears the GPNVM1 bit and turns the calculator off.

ATTENTION: You can now only boot into SAM-BA mode! Without the SAM-BA software and the cable, you will be lost!

These ON key combinations have to be pressed twice in a row without releasing the ON key to be executed.

We recommend doing a SAVE or ON+STO before flashing a new release! After flashing, your backup will still be available – if you used ON+S to get into SAM-BA boot mode and didn't accidently press the ERASE button on the cable.

Further commands for flash memory operations are in X.FCN: PRCL, PSTO, P≒, RCF, RRCL, and SRCL. See there.

Mapping of memory regions to emulator state files

Region	Start address in flash	State file	Remarks
Unnamed	0x11FC00	wp34s-R.dat	Backup of registers and state
0	0x11F800	wp34s-0.dat	Backup of program memory
1	0x11F400	wp34s-1.dat	Space for generic user programs.
2	0x11F000	wp34s-2.dat	The files wp34s- x .dat are written whenever a respective flash command is executed.
3	0x11EC00	wp34s-3.dat	
RAM	n/a	wp34s.dat	Backup of the emulator RAM area (registers, state, and programs) – this file is written only when exiting the emulator.

All files are only read into memory on emulator startup.

Transferring data between the calculator and your PC

The entire RAM is saved to address 0x11F800 (relative address 0x1F800) by SAVE or ON + $\boxed{\textbf{STO}}$. This content can be copied to your PC or loaded from it if the special interface cable mentioned above is connected.

- 1. From calculator to PC:
 - a. Press ON + STO,
 - b. press ON + S,
 - c. press the RESET button on the cable.
 - d. Press ON once and start SAM-BA on the PC. Both devices should connect.
 - e. Set the start address to 0x11F800 and the size to 0x800.
 - f. Enter a file name of your choice in the receive field. You can now receive the file with SAM-BA.
 - g. Move it into your emulator directory (where wp34sgui.exe is stored) under the name wp34s.dat.
 - h. The emulator should accept the file. Your registers and programs will then be in place.
 - i. To get your calculator back in business, start the "Boot from flash" script in SAM-BA the same procedure you should know from flashing the firmware.
 - j. Press the RESET button on the cable.
 - k. Press ON to power up. The most recent backup (i.e. the one of step a. here) will be automatically restored. If not, then the backup area in flash is no longer valid (most probably you have accidentally pressed the ERASE button on the cable). You can still try LOAD or RCLS.
- 2. From PC to calculator:
 - a. Execute steps 1.a to d.
 - b. Set the start address to $0 \times 11 = 800$.
 - c. Point SAM-BA to your wp34s.dat file from the emulator.
 - d. You can now send the short file with SAM-BA.
 - e. Execute steps 1.i to k.

The program regions accessible with the commands PSTO, PRCL and P \leftrightarrows are stored at addresses 0x11EC000 and above (see the table above) and have a length of 0x400 (1 kB) each. The emulator creates files wp32s-x.dat, with x being the region number. You can handle these files the same way as the complete state file from the emulator. The regions have identical formatting and can be swapped by copying their data to the 'wrong' place. The register and state portion of the backup area at 0x11FC00 is formatted differently.

If you want to get your emulator data from your PC into your calculator all in once, do the following in Windows:

As an alternative, the following will copy the backup data instead of the RAM state file:

```
copy /b calc.bin+wp34s-3.dat+wp34s-2.dat+wp34s-1.dat+wp34s-0.dat
+wp34s-R.dat calc-full.bin
```

The resulting file can be transferred into flash as described in sequence 2 and all data will be readily available.

More keyboard commands employing ON (use at your own risk)

With **ON** (i.e. the key **EXIT**) held down, press one of the following keys:

C: Tells the system a quartz **c**rystal is installed for the real time clock. This is a hardware modification described elsewhere. ATTENTION: If this command is entered though the hardware does not contain said modification, the system will hang!

. : Toggles the radix mark as ./, does.

Internal commands (use at your own risk)

Some commands are used in internal routines exclusively and are not accessible from the keyboard. They are listed here for sake of a complete documentation only:

Name	Pur	rpose and remarks					
iC <u>n</u>	Red	Recalls internal constants, selected by the number specified:					
	0 1 2	0 1 5.01402 Kronrod only weight loop initialize	or (constants 5 - 14 holow)				
	3	15.02903 Gauss-Kronrod weight loop initia	lizer (constants 15 - 29 below) Midpoint location is 0.5.				
	4	0.149445554002916905664936468389821	Kronrod weight for midpoint k10				
	5	0.995657163025808080735527280689003	Kronrod location of k0 and k20				
	6	0.011694638867371874278064396062192	Kronrod weight for k0 and k20				
	7 8	0.930157491355708226001207180059508 0.054755896574351996031381300244580	Kronrod location of k2 and k18 Kronrod weight for k2 and k18				
	9	0.780817726586416897063717578345042	Kronrod location of k4 and k16				
	10	0.093125454583697605535065465083366	Kronrod weight for k4 and k16				
	11	0.562757134668604683339000099272694	Kronrod location of k6 and k14				
	12	0.123491976262065851077958109831074	Kronrod weight for k6 and k14				
	13	0.294392862701460198131126603103866	Kronrod location of k8 and k12				
	14	0.142775938577060080797094273138717	Kronrod weight for k8 and k12				
	15	0.973906528517171720077964012084452	Location of g0, g9, k1 and k19				
	16	0.066671344308688137593568809893332	Gauss weight for g0 and g9				
	17	0.032558162307964727478818972459390	Kronrod weight for k1 and k19				
	18	0.865063366688984510732096688423493	Location of g1, g8, k3 and k17				
	19	0.149451349150580593145776339657697	Gauss weight for g1 and g8				
	20	0.075039674810919952767043140916190	Kronrod weight for k3 and k17				
	21	0.679409568299024406234327365114874	Location of g2, g7, k5 and k15				
	22	0.219086362515982043995534934228163	Gauss weight for g2 and g7				
	23	0.109387158802297641899210590325805	Kronrod weight for k5 and k15				
	24	0.433395394129247190799265943165784	Location of g3, g6, k7 and k13				
	25	0.269266719309996355091226921569469	Gauss weight for g3 and g6				
	26	0.134709217311473325928054001771707	Kronrod weight for k7 and k13				
	27	0.148874338981631210884826001129720	Location of g4, g5, k9 and k11				
	28	0.295524224714752870173892994651338	Gauss weight for g4 and g5				
	29	0.147739104901338491374841515972068	Kronrod weight for k9 and k11				
	inte of in esti	nstants 2 29 are for the 10 / 21 point Gauss-Kegration command. Locations are in the range (0, integration. The quadrature sums the weight time imate the integral. In Gauss-Kronrod schemes the dratures although the weights are different. This	1) which is scaled to match the interval is the function value at each location to the Gauss points are common to both				

Name	Purpose and remarks		
	can be performed without increasing the number of function evaluations which in turn allows an estimate of the error to be made. The cost for this is a reduction in the degree of polynomial function that is always integrated exactly.		
	The two solver commands described below may use some hidden registers and flags. The start points of the respective register and flag blocks are passed as one argument n .		
	Registers: n+0 n+1: first two estimates a and b for the root n+2: third estimate c n+3: function value at first estimate f(a) n+4: function value at second estimate f(b)		
	Flags: n+0 n+7: an eight bit iteration counter n+8: "bracket flag" – true if we've got an interval with f(a) * f(b) < 0 n+9: true if all function evaluations have been constant so far		
SLVI <u>n</u>	Initializes the solver. SLVI clears the iteration counter, takes \boldsymbol{a} and \boldsymbol{b} and calculates $\boldsymbol{f}(\boldsymbol{a})$ and $\boldsymbol{f}(\boldsymbol{b})$, sets the last 2 flags accordingly, and produces a guess \boldsymbol{c} . There is no stack interaction.		
SLVS <u>n</u>	Solver step. Updates the internal solver state based on the last function evaluation. In particular, SLVS takes a , b , c , f(a) , and f(b) from the register block plus f(c) from X and updates the register values so that c and f(c) replace one of a and f(a) or b and f(b) . It also produces a new guess c and returns zero in X if the solving should continue and non-zero if not. Otherwise, the stack isn't altered.		
	The built in solver loop looks like this in principle, assuming <i>n</i> = 0: SLVI ; calculate f(a) and f(b) and initialize the registers and flags LBL 00 RCL 02 ; recall <i>c</i> XEQUSR ; call the user's subroutine calculating f(c) x≈ 0? ; test if the solution has converged GTO 01 ; converged, so exit the routine SLVS ; update estimates x= 0? ; should we continue? GTO 00 ; loop back again LBL 01 RCL 02 ; best guess so far RTN The actual solver is fairly complex. A combination of quadratic interpolation and a guarded secant method is used.		
XEQUSR	Calls a user subroutine (used by SLV, \int , Π and Σ). The subroutine is defined by the argument to the initial command (either numeric of alpha label).		

APPENDIX B: RELEASE NOTES

	Date	Release notes
1	9.12.08	Start
1.1	15.12.08	Added the table of indicators; added NAND, NOR, XNOR, RCLWS, STOWS, //, N, SERR, SIGMA, < and >; deleted HR, INPUT, 2 flag commands, and 2 conversions; extended explanations for addressing and COMPLEX &; put XOR on the keyboard; corrected errors.
1.2	4.1.09	Added ASRN, CBC?, CBS?, CCB, SCB, FLOAT, MIRROR, SLN, SRN, >BIN, >DEC, >HEX, >OCT, BETA, D>R, DATE, DDAYS, D.MY, M.DY, Y.MD, CEIL, FLOOR, DSZ, ISZ, D>R, R>D, EMGAM, GSB, LNBETA, LNGAMMA, MAX, MIN, NOP, REAL, RJ, W and WINV, ZETA, %+ and %-; renamed the top left keys B, C, and D, and bottom left EXIT.
1.3	17.1.09	Added AIP, ALENG, ARCL, AROT, ASHF, ASTO, ATOX, XTOA, AVIEW, CLA, PROMPT (all taken from 42S), CAPP, FC?C, FS?C, SGMNT, and the# commands; renamed NBITS to BITS and STOWS to WSIZE; specified the bit commands closer; deleted the 4 carry bit operations.
1.4	10.2.09	Added CONST and a table of constants provided, D>J and J>D, LEAP?, %T, RCL and STO ▲ and ▼, and 2 forgotten statistics registers; deleted CHS, EMGAM, GSB, REAL and ZETA; purged and renamed the bit operations; renamed many commands.
1.5	5.3.09	Added RNDINT, CONV and its table, a memory table, the description of XEQ B, C, D to the operation index, and a and g_e to the table of constants; put CLSTK on a key, moved CL Σ and FILL, changed the % and log labels on the keyboard, put CLALL in X.FCN; checked and cleaned alpha mode keyboard and added a temporary alpha keyboard; rearranged the alphabet to put Greek after Latin, symbols after Greek consistently; separated the input and non-programmable commands; cleaned the addressing tables.
1.6	12.8.09	Added BASE, DAYS+, DROP, DROPY, E3OFF, E3ON, FC?F, FC?S, FIB, FS?F, FS?S, GCD, LCM, SETDAT, SETTIM, SET24, SINC, TIME, VERS, α DAY, α MONTH, α RC#; α S, as well as F-, t-, and α S-distributions and their inverses; reassigned DATE, modified DENMAX, FLOAT, α ROT, and α SHIFT; deleted BASE arithmetic, BIN, DEC, HEX, and OCT; updated the alpha keyboards; added flags in the memory table; included indirect addressing for comparisons; added a paragraph about the display; updated the table of indicators; corrected errors.
1.7	9.9.09	Added P.FCN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLAG, DECOMP, DENANY, DENFAC, DENFIX, I β , I Γ , α DATE, α RL, α RR, α SL, α SR, α TIME, 12h, 24h, fraction mode limits, normal distribution and its inverse for arbitrary μ and σ , and Boolean operations working within FLOAT; deleted α ROT, α SHIFT, the timer, and forced radians after inverse hyperbolics; renamed WINV to W $^{-1}$, and beta and gamma commands to Greek; added tables of catalog contents; modified label addressing; relabeled PRGM to P/R and PAUSE to PSE; swapped SHOW and PSE as well as Δ % and % on the keyboard; relabeled Q; corrected CEIL and FLOOR; updated X.FCN and alpha commands; updated the virtual alpha keyboard.
1.8	29.10.09	Added R-CLR, R-COPY, R-SORT, R-SWAP, RCLM, STOM, alpha catalogs, 1 more constant and some more conversions, a table of error messages, as well as the binomial, Poisson, geometric, Weibull and exponential distributions and their inverses; renamed some commands; put $\sqrt{}$ instead of π on hotkey D.
1.9	14.12.09	Added two complex comparisons; swapped and changed labels in the top three rows of keys, dropped CLST; completed function descriptions in the index.
1.10	19.1.10	Added IMPFRC, PROFRC, ^C ENTER, αBEG, αEND, and an addressing table for items in catalogs; updated temporary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; renamed the exponential distribution; wrote the introduction.
1.11	21.9.10	Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π , CLPR, and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other programmable tests from P.FCN; added %MG, %+MG, %MRR, RESET, SSIZE4, SSIZE8, SSIZE?, ^DROP, ^FILL, ^CR\(1\), registers J and K, a table of contents and tables for stack mechanics and addressing in complex operations; updated memory and real number addressing tables, DECOMP, α OFF, α ON, Π , and Σ ; renamed ROUNDI, WSIZE?, β (x,y), Γ (x) and the constant p_0 ; deleted DROPY (use $x \leftrightarrow y$, DROP instead), α APP, α BEG, α END, and the "too long error" message; deleted Josephson and von Klitzing constants (they are just the inverses of other constants included in CONST already); brought more symbols on the alpha keyboard.
1.12	22.12.10	Modified keyboard layout; added catalogs MODE and PROB; changed mode word, catalog contents and handling (XEQ instead of ENTER), as well as some non-programmable info commands; expanded IMPFRC and PROFRC; added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and some conversions; deleted FRACT, OFF and ON.
1.13	3.2.11	Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOFF, LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S.
1.14	18.3.11	Added DEC and INC, renamed FLOAT to DECM; redefined α TIME and H.MS mode; updated appendix A; documented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors showing up with the emulator.

1.15	21.3.11	Modified FIX, removed ALL from MODE, updated CONV.
1.16	27.3.11	Added LBL?, f'(x), and f''(x); modified PSE; upgraded catalog searching.
1.17	9.5.11	Modified keyboard layout for adding a fourth hotkey; added AGM, BATT, B_n , B_n^* , Cauch, Lgnrm, Logis and their inverses, all the pdf, COV, CUBE, CUBERT, DEG \rightarrow , ENGOVR, ENTRY?, erfc, GRAD \rightarrow , GTO . hotkey, KEY?, RAD \rightarrow , SCIOVR, SERRW, SLVQ, sw, sxy, TICKS, TVM, xg, ϵ_n , ϵ_p , ζ , σ w, $(-1)^X$, the polynomials, four angular conversions, four Planck constants, the regional settings, global alpha labels, and three messages; renamed most cdf; changed \rightarrow DEG, \rightarrow RAD, \rightarrow GRAD to leaving angular mode as set; altered PSE for early termination by keystroke; made D.MY default instead of Y.MD; moved degrees to radians conversions to CONV; removed C CLx, H.MS mode, %+ and %-; corrected errors.
1.18	5.6.11	Expanded program memory; modified label addressing (A \neq 'A') and fraction mode limits, changed ANGLE to work in real and complex domains, renamed MOD to RMDR, changed the keyboard layout; put BACK, ERR, SKIP, and SPEC? to the main index; added CAT and the I/O commands for flash memory, expanded R-COPY; corrected $x\rightarrow \alpha$.
2.0	13.6.11	Added S.L, S.R, VWα+, flag A, and a paragraph about I/O; renamed RRCL and SRCL to RCFRG and RCFST, respectively; added an inverse conversion shortcut, stones≒kg, and changed Pa≒mbar to Pa≒bar; modified the VIEW commands, ALL, DISP, MODE, and X.FCN; repaired hyperlinks; included flash.txt; now entering beta test phase.