# Application for the Post Doc Position in Speech Recognition (Malorca project)

#### Luiza Orosanu

INRIA-Loria, Nancy, France

5th February 2016









### **Short introduction**

| 2006 -2010       | -2011              | -2012                  | -2015                  |
|------------------|--------------------|------------------------|------------------------|
| BSc in           |                    |                        |                        |
| computer scienc  | e                  |                        |                        |
|                  | MSc in             |                        |                        |
|                  | computer science   |                        |                        |
|                  |                    | Engineer:              |                        |
|                  |                    | ALLEGRO project        |                        |
|                  |                    |                        | PhD student:           |
|                  |                    |                        | RAPSODIE project       |
|                  |                    |                        |                        |
| head tracking    | speech recognition | incorrect entries      | hybrid language models |
| Wii remote       | remote sound       | non-native speech      | add new words          |
| infrared sensors | adaptation         | speech-text alignments | question detection     |
| Romania          |                    | France                 |                        |

### **Short introduction**

| 2006 -2010       | -2011              | -2012                  | -2015                  |
|------------------|--------------------|------------------------|------------------------|
| BSc in           |                    |                        |                        |
| computer science |                    |                        |                        |
|                  | MSc in             |                        |                        |
|                  | computer science   |                        |                        |
|                  |                    | Engineer:              |                        |
|                  |                    | ALLEGRO project        |                        |
|                  |                    |                        | PhD student:           |
|                  |                    |                        | RAPSODIE project       |
|                  |                    |                        |                        |
| head tracking    | speech recognition | incorrect entries      | hybrid language models |
| Wii remote       | remote sound       | non-native speech      | add new words          |
| infrared sensors | adaptation         | speech-text alignments | question detection     |
| Romania          |                    | France                 |                        |

#### Sommaire

1 Hybrid language models

2 Adding new words to a language model

## **Hybrid language models**

#### Context

\* OOV words (regardless the size of vocabulary)

```
Reference: dans un village du nord
Hypothesis: dans ++parole++ l' âge du nord
```

 maximize the understanding of the resulting transcription for the deaf community

#### Hybrid language models

\* combining words with word-fragments

- Choice of a hybrid language model of words & syllables
  - \* ensure the proper recognition of the most frequent words
  - \* provide a sequence of syllables for out-of-vocabulary words

- Choice of a hybrid language model of words & syllables
  - \* ensure the proper recognition of the most frequent words
  - \* provide a sequence of syllables for out-of-vocabulary words

- Motivations
  - \* syllables ← study on optimising the phonetic decoding

- Choice of a hybrid language model of words & syllables
  - \* ensure the proper recognition of the most frequent words
  - \* provide a sequence of syllables for out-of-vocabulary words

```
\underline{\wedge} syllables trained on real pronunciations (1 syllable = 1 single sequence of phonemes = 1 pronunciation)
```

- Motivations
  - \* syllables  $\longleftarrow$  study on optimising the phonetic decoding
  - \* words ← interviews conducted with deaf people

#### Example of a hybrid transcription

```
Decoding: une femme a été _b_l_e _s_e
Display: une femme a été b l é s é
```

- Training corpus for hybrid language models
  - \* keep only the most frequent words (#occ ≥ N)
  - \* syllabify the other words (less frequent)

- Training corpus for hybrid language models
  - \* keep only the most frequent words  $(\#occ \ge N)$
  - \* syllabify the other words (less frequent)
- Syllabification
  - forced alignement words → phonemes
  - \* syllabification rules phonemes → syllables [Bigi et al. 2010]

- Training corpus for hybrid language models
  - \* keep only the most frequent words (#occ ≥ N)
  - \* syllabify the other words (less frequent)
- Syllabification
  - \* forced alignement words  $\rightarrow$  phonemes
  - \* syllabification rules phonemes → syllables [Bigi et al. 2010]
    - ▷ a syllable contains a single vowel (V)
    - a pause designates a syllable's boundary

| Rule | Sequence of      | Split    | Res  | ulting |
|------|------------------|----------|------|--------|
| type | phonetic classes | position | syll | ables  |
| GEN  | VV               | 0        | V    | V      |
| GEN  | VxV              | 0        | V    | xV     |
| GEN  | VxxV             | 1        | Vx   | xV     |
| EXC  | VOLV             | 0        | V    | OLV    |



#### **Evaluation of hybrid language models**

Word-based model: une femme a été blessée

Hybrid model: une femme a été \_b\_l\_e \_s\_e

#### Performance of hybrid models

- \* phoneme error rate
- percentage of words in the automatic transcription
- \* percentage of correctly recognized words and syllables
- percentage of out-of-vocabulary words recognized as syllables
- Apply a filter on the confidence measure of words
  - → phonetize words with low confidence measures

#### **Conclusions**

- our hybrid modeling solution takes into acount real pronunciations
- the speech recognition outputs contain mainly words
- over 70% of words are correctly recognized
- the confidence measures can effectively select the correctly recognized words
- an increased amount of syllables in the training corpus
  - \* improves the percentage of correctly recognized syllables
  - \* improves the percentage of OOV words decoded as syllables

#### Sommaire

- 1 Hybrid language models
- 2 Adding new words to a language model

### Adding new words to a language model

#### Context

- \* OOV words that are frequently pronounced
  - ▷ ex: words specific to a certain area

- Adding new words to an ASR system involves
  - \* generating the pronunciation variants
  - \* modifying the language model

- without retraining or adapting the model (which requires a lot of new data relative to the new words)
- approach based on the similarity between words

on ignorait encore lundi soir les conditions de sa survie on ignorait encore lundi matin les conditions de sa survie

- without retraining or adapting the model (which requires a lot of new data relative to the new words)
- approach based on the similarity between words

on ignorait encore lundi soir les conditions de sa survie on ignorait encore lundi matin les conditions de sa survie

- → use a few examples of sentences for each new word
- → find similar known words (having similar neighbor distributions)
- → transpose the LM probabilities of known words onto the new words

#### Neighbors of new words

- 1. Use a few examples of sentences with the new word
  - $\rightarrow$  compute the neighbor distributions of the new word  $\ensuremath{\text{nW}}$

$$P_k(w|\mathbf{nW})$$
 for  $k \in \{..., -2, -1, +1, +2, ...\}$ 

#### Neighbors of new words

- 1. Use a few examples of sentences with the new word
  - ightarrow compute the neighbor distributions of the new word  ${
    m nW}$

$$P_k(w|\mathbf{nW})$$
 for  $k \in \{..., -2, -1, +1, +2, ...\}$ 

- example of a new word: soir
- examples of sentences

|                    | -2           | -1        |      | +1        | +2         |              |
|--------------------|--------------|-----------|------|-----------|------------|--------------|
| on ignorait        | encore       | lundi     | soir | les       | conditions | de sa survie |
| devine qui vient   | <u>dîner</u> | ce        | soir |           |            |              |
| pas de consigne de | <u>vote</u>  | <u>au</u> | soir | <u>du</u> | premier    | tour         |

• preceding and succeeding neighbors

$$\begin{array}{lll} k=-2 & \text{encore, dîner, vote, ...} \\ k=-1 & \text{lundi, ce, au, ...} \\ k=+1 & \text{les, du, ...} \\ k=+2 & \text{conditions, premier, ...} \end{array}$$

#### Neighbors of known words

- 2. Search for similar words in a reference corpus
  - $\rightarrow$  compute the neighbor distributions of each known word kW

$$P_k(w'|kW)$$
 for  $k \in \{..., -2, -1, +1, +2, ...\}$ 

#### Neighbors of known words

- 2. Search for similar words in a reference corpus
  - ightarrow compute the neighbor distributions of each known word kW

$$P_k(w'|\mathbf{kW})$$
 for  $k \in \{..., -2, -1, +1, +2, ...\}$ 

use directly the n-gram counts file

```
* 3-gram \Rightarrow maximum 4 neighbors k \in \{-2, -1, +1, +2\}
```

examples of 3-gram entries with the known word 'matin'

```
"matin a été 10" \rightarrow voisin k=+1 'a'; voisin k=+2 'été' "beau matin de 9" \rightarrow voisin k=-1 'beau'; voisin k=+1 'de' "jusqu' au matin 28" \rightarrow voisin k=-2 'jusqu'; voisin k=-1 'au'
```

 $lack preceding and succeeding neighbors <math>egin{array}{c|c} k=-2 & jusqu', \dots \\ k=-1 & beau, au, \dots \\ k=+1 & de, a, \dots \\ k=+2 & \text{\'et\'e}, \dots \end{array}$ 

#### Word similarity

- 3. Compute the KL divergence between the neighbor distributions
  - $\rightarrow$  between each known word (kW) and the new word (nW)

Divergence computed on each k position:

$$D_{KL}(P_k(\bullet|kW) || P_k(\bullet|nW)) = \sum_{w \in V(nW)} P_k(w|kW) \log \left(\frac{P_k(w|kW)}{P_k(w|nW)}\right)$$

Global divergence: 
$$D(kW, nW) = \sum_{k} D_{k}(kW, nW)$$

#### Word similarity

- 3. Compute the KL divergence between the neighbor distributions
  - $\rightarrow$  between each known word (kW) and the new word (nW)

```
Divergence computed on each k position: D_{KL}(P_k(\bullet|\mathbf{kW}) \mid\mid P_k(\bullet|\mathbf{nW})) = \sum_{w \in V(\mathbf{nW})} P_k(w|\mathbf{kW}) \log\left(\frac{P_k(w|\mathbf{kW})}{P_k(w|\mathbf{nW})}\right) Global divergence: D(\mathbf{kW},\mathbf{nW}) = \sum_k D_k(\mathbf{kW},\mathbf{nW})
```

- 4. Select the mots similar words to the new word
  - ightarrow those having minimal divergences

#### Word similarity

- 3. Compute the KL divergence between the neighbor distributions
  - $\rightarrow$  between each known word (kW) and the new word (nW)

#### Divergence computed on each k position:

$$D_{KL}(P_k(\bullet|kW) || P_k(\bullet|nW)) = \sum_{w \in V(nW)} P_k(w|kW) \log \left(\frac{P_k(w|kW)}{P_k(w|nW)}\right)$$

Global divergence: 
$$D(kW, nW) = \sum_{k} D_{k}(kW, nW)$$

- 4. Select the mots similar words to the new word
  - ightarrow those having minimal divergences

#### Examples of similar words:

```
soir \rightarrow matin, midi, dimanche, samedi, vendredi
```

soirs  $\rightarrow$  temps, joueurs, matchs, pays, matches

#### Adding new n-grams

- **5. Transpose the n-gram probabilities** of similar words onto the new word
  - ightarrow seek the n-grams that contain similar words
  - → replace the 'similar words' with the 'new word'
  - ightarrow add the new n-grams into the new language model

#### Adding new n-grams

- Transpose the n-gram probabilities of similar words onto the new word
  - → seek the n-grams that contain similar words
  - → replace the 'similar words' with the 'new word'
  - ightarrow add the new n-grams into the new language model
- new word "soir" similar to known word "matin"
- known n-grams (in the language model)

```
"-1.48214 possible ce matin"
```

- "-1.404164 **matin** ajoute que"
- new n-grams (to add into the new language model)

```
"-1.48214 possible ce soir"
```

"-1.404164 **soir** ajoute que"

#### **Setup for experiments**

- 44 new words selected
- Search for similar words
  - \* sentences based on "word POS" units

```
qui|PRO:REL vient|VER:pres dîner|VER:infi ce|PRO:DEM soir|NOM
```

- \* 4 neighbors for each word:  $k \in \{-2, -1, +1, +2\}$
- Evaluate the impact of
  - \* number of examples of sentences for each new word (5, 10, 20 or 50)
  - \* nomber of similar words for each new word (5, 10, 20 or 50)

#### **Setup for experiments**

- BASELINE language model
  - \* large vocabulary language model trained by interpolation
  - \* the 44 new words are absent in this model
- ORACLE language model
  - \* large vocabulary language model trained by interpolation
  - \* the 44 new words are present in this model
- 4 language models LM-INTERP-1,-2,-3,-4
  - \* large vocabulary language models trained by interpolation
    - on the same data as 'BASELINE'
    - plus the examples of sentences for each new word (5, 10, 20 or 50)
  - \* the 44 new words are present in these models
  - - ightarrow the 44 new words have an occurrence frequency of 0,93%

#### Size of language models

- New language models ('baseline+1-,2-,3-grams')
  - \* add 1-,2-,3-grams of new words into the BASELINE model
  - \* new n-grams chosen according to the
    - □ number of examples of senteneces for each new word (5, 10, 20 or 50)
    - □ number of similar words for each new word (5, 10, 20 or 50)

#### Size of language models

- New language models ('baseline+1-,2-,3-grams')
  - \* add 1-,2-,3-grams of new words into the BASELINE model
  - new n-grams chosen according to the
    - □ number of examples of senteneces for each new word (5, 10, 20 or 50)
    - □ number of similar words for each new word (5, 10, 20 or 50)

|          |          | 'baseline+              | ORACLE                   |        |
|----------|----------|-------------------------|--------------------------|--------|
|          | baseline | 5 examples of sentences | 50 examples of sentences | OKACLE |
|          |          | 5 similar words         | 50 similar words         |        |
| #2-grams | 37,1     | 38,0 [+2%]              |                          | 43,3   |
| #3-grams | 63,1     | 67,2 [+6%]              |                          | 80,1   |

Number [in milions] of 2-grams and 3-grams

#### Size of language models

- New language models ('baseline+1-,2-,3-grams')
  - \* add 1-,2-,3-grams of new words into the BASELINE model
  - new n-grams chosen according to the
    - □ number of examples of senteneces for each new word (5, 10, 20 or 50)
    - □ number of similar words for each new word (5, 10, 20 or 50)

|          |          | 'baseline+1-,2-,3-grams' |                         |            | ORACLE                   |      |
|----------|----------|--------------------------|-------------------------|------------|--------------------------|------|
|          | baseline | 5 examples               | 5 examples of sentences |            | 50 examples of sentences |      |
|          |          | 5 similar wo             | rds                     | 50 similar | words                    |      |
| #2-grams | 37,1     | 38,0                     | [+2%]                   | 40,7       | [+10%]                   | 43,3 |
| #3-grams | 63,1     | 67,2                     | [+6%]                   | 94,2       | [+49%]                   | 80,1 |

Number [in milions] of 2-grams and 3-grams

#### **Evaluation**

- Setup for evaluations
  - the LMs are evaluated over the ESTER2 development set
  - the 44 new words have an occurrence frequency of 1.33%
- Compare the performance of new LMs with baseline LM
  - word error rate (WER)
  - percentage of new words correctly recognized

## The WER performances

BASELINE 26.97% ORACLE 24.80%

↑ 1,33% occurrences of 44 new words

## The WER performances

BASELINE 26.97% ORACLE 24.80%

|                       |    |           | 'baseline+1-,2-,3-grams' |       |       |       |
|-----------------------|----|-----------|--------------------------|-------|-------|-------|
|                       |    | LM-INTERP | # similar words          |       |       |       |
|                       |    |           | 5                        | 10    | 20    | 50    |
| examples<br>sentences | 5  |           | 25.78                    | 25.83 | 25.96 | 26.01 |
|                       | 10 |           | 25.74                    | 25.84 | 25.96 | 26.05 |
| exa<br>sen.           | 20 |           | 25.63                    | 25.68 | 25.92 | 25.95 |
| ø#                    | 50 |           | 25.68                    | 25.75 | 25.82 | 25.99 |

- ⇒ better performances are obtained with few similar words (5) and with a reasonable number of examples of sentences (20-50)
- $\Rightarrow$  adding n-grams of new words provides an absolute improvement of 1.3% on WER

## The WER performances

BASELINE 26.97% ORACLE 24.80%

|           |    |           | 'base | eline+1- | ,2-,3-gr | ams'  |
|-----------|----|-----------|-------|----------|----------|-------|
|           |    | LM-INTERP |       | # simila | ar words |       |
|           |    |           | 5     | 10       | 20       | 50    |
| Ses       | 5  | 26.12     | 25.78 | 25.83    | 25.96    | 26.01 |
| sentences | 10 | 26.02     | 25.74 | 25.84    | 25.96    | 26.05 |
| sen.      | 20 | 25.81     | 25.63 | 25.68    | 25.92    | 25.95 |
| ₽ţ        | 50 | 25.68     | 25.68 | 25.75    | 25.82    | 25.99 |

 $\Rightarrow$  the new models 'baseline+1-,2-,3-grams' outperform the 'LM-INTERP' models

## Percentage of new words correctly recognized

BASELINE 0.00% ORACLE **85.45**%

## Percentage of new words correctly recognized

BASELINE 0.00% ORACLE **85.45**%

|             |    |           | 'baseline+1-,2-,3-grams' # similar words |       |       |       |
|-------------|----|-----------|------------------------------------------|-------|-------|-------|
|             |    | LM-INTERP |                                          |       |       |       |
|             |    |           | 5                                        | 10    | 20    | 50    |
| examples    | 5  |           | 64.90                                    | 61.09 | 58.36 | 56.72 |
|             | 10 |           | 63.09                                    | 61.09 | 57.09 | 55.27 |
| exa<br>sen. | 20 |           | 68.72                                    | 65.81 | 61.27 | 58.18 |
| 6#          | 50 |           | 68.54                                    | 63.45 | 61.81 | 57.09 |

- ⇒ better performances are obtained with few similar words (5) and with a reasonable number of examples of sentences (20-50)
- ⇒ adding n-grams of new words allows to correctly recognize 69% of new words

## Percentage of new words correctly recognized

BASELINE 0.00% ORACLE **85.45**%

|           |    |           | 'base           | eline+1- | ,2-,3-gr | ams'  |
|-----------|----|-----------|-----------------|----------|----------|-------|
|           |    | LM-INTERP | # similar words |          |          |       |
|           |    |           | 5               | 10       | 20       | 50    |
| Ses       | 5  | 44.72     | 64.90           | 61.09    | 58.36    | 56.72 |
| sentences | 10 | 47.45     | 63.09           | 61.09    | 57.09    | 55.27 |
| sen       | 20 | 54.18     | 68.72           | 65.81    | 61.27    | 58.18 |
| ĕ         | 50 | 59.63     | 68.54           | 63.45    | 61.81    | 57.09 |

 $\Rightarrow$  the new models 'baseline+1-,2-,3-grams' outperform the 'LM-INTERP' models

#### **Conclusions**

- our approach based on the word similarity to add new n-grams in a language model is efficient
- adding n-grams of new words provides
   an absolute improvement of 1.3% on the WER
   and allows to correctly recognize 69% of new words
- the new language models outperform the interpolated models

## Thank you for your attention!