DBSCAN(Density-Based Spatial Clustering of Applications with Noise)
DBSCAN does not need to specify the number of clusters;
can automatically detect the number of clusters based
DBSCAN can find arbitrary shape clusters that k-means are not able to find DBSCAN can handle noise and outliers better

Some parameters used by DBSCAN

Eps: Maximum radius of the neighborhood

MinPts: Minimum number of points in an Eps-neighbourhood of that point

Directly density-reachable: A point p is directly density reachable from a point q w.r.t. Eps, MinPts, if NEps (q): {p belongs to D | dist(p,q) \leq Eps} and |N Eps (q)| \geq MinPts; Minpts = 5, Eps = 1

Density-reachable:

A point p is density-reachable from a point q w.r.t. Eps, MinPts if there is a chain of points p₁, ..., p_n, p₁ = q, p_n = p such that p_{i+1} is directly density-reachable from p_i

p belongs to D | dist(p,q) \leq Eps} and |N Eps (q)| \geq MinPts;

Minpts = 5, Eps = 1

Density-connected

A point p is density-connected to a point q w.r.t. Eps, MinPts if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and MinPts

core point if it has more than a specified number of points (MinPts) within Eps.
 These are points that are at the interior of a cluster A.
 border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

outlier(noise) point, which is the points that are neither core nor border points.

- 1. 1. Arbitrary select a point p
 - 2. Retrieve all points density-reachable from p based on Eps and MinPts
 - 3. If p is a core point, a cluster is formed
 - 4. If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
 - 5. Continue the process until all of the points have been processed

Consider the following data to be clustered;

x1(0,0), x2(1,0), x3(1,1), x4(2,2), x5(3,1), x6(3,0), x7(0,1), x8(3,2), x9(6,3) Eps =1 and MinPts = 3. Find all core points, border points and noise points, and show the final clusters using DBCSAN algorithm

Data Points

♦ X9(6, 3)

6

♦ X4(2, 2) **♦** X8(3, 2)

♦ X7(0, 1) **♦** X3(1, 1)

♦ X5(3, 1)

 \bigstar X1(0, 0) \bigstar X2(1, 0) \bigstar X6(3, 0) 0 1 2 3 4 5

N(p), Eps-neighborhood of point p

$$N(x1) = \{x1, x2, x7\}$$

 $N(x2) = \{x2, x1, x3\}$
 $N(x3) = \{x3, x2, x7\}$
 $N(x4) = \{x4, x8\}$
 $N(x5) = \{x5, x6, x8\}$
 $N(x6) = \{x6, x5\}$

$$N(x7) = \{x7, x1, x3\}$$

$$N(x8) = \{x8, x4, x5\}$$

$$N(x9) = \{x9\}$$

If the size of N(p) is at least MinPts, then p is said to be a core point.

MinPts is 3, thus the size of N(p) is at least 3. Thus core points are:{x1, x2, x3, x5, x7, x8}

given a point p, p is said to be a border point if it is not a core point but N(p) contains at least one core point. $N(x4) = \{x4, x8\}$, $N(x6) = \{x6, x5\}$. here x8 and x5 are core points, So both **x4 and x6 are border points**.

Arbitrary select a point p, now we choose x1 Retrieve all points density-reachable from x1: {x2, x3, x7} Here x1 is a core point, a cluster is formed. So we have Cluster_1: {x1, x2, x3, x7}

Next, we choose x5, Retrieve all points density-reachable from x5: {x8, x4, x6} Here x5 is a core point, a cluster is formed. So we have Cluster_2: {x5, x4, x8, x6} Next, we choose x9, x9 is a noise point, noise points do NOT belong to any clusters.

Data Points

