Table 1 ESTIMATION RESULTS

Utility Function Parameters			
Disutility of labor			
	a_2	Disutility of labor curvature	$1.2618(8.504 \times 10^{-4})$
b	b_n	Non-high school	$1.831 \times 10^{-5} (1.89 \times 10^{-7})$
	b_h	High school graduate	$1.65 \times 10^{-5} (6.80 \times 10^{-8})$
	b_c	Some college	$1.62 \times 10^{-5} (1.04 \times 10^{-7})$
	b_{cg}	College graduate	$1.75 \times 10^{-5} (2.04 \times 10^{-7})$
	σ_1	Std. error of disutility shock	$0.01156(6.75 \times 10^{-4})$
Consumption utility			
	a_1	Consumption CRRA	$0.2617(5.73 \times 10^{-4})$
	C_0	Constant	$0.017(5.97 \times 10^{-5})$
C_1	C_{1n}	Non-high school	0.5859(-0.0108)
	C_{1h}	High school graduate	0.5241(-0.003821)
	C_{1c}	Some college	0.5175(-0.01022)
	C_{1cg}	College graduate	0.546(-0.01967)
C_2	C_{2n}	Non-high school	0.2259(-0.005984)
	C_{2h}	High school graduate	0.1672(-0.001954)
	C_{2c}	Some college	0.1294(-0.007231)
	C_{2cg}	College graduate	0.1517(-0.00627)
	β	Discount factor	$0.9529(2.47 \times 10^{-4})$
Production Function Parameters ^a			
δ	δ_n	Non-high school	0.404(0.002633)
	δ_h	High school graduate	$0.3458(9.71 \times 10^{-4})$
	δ_c	Some college	0.3189(0.002413)
	δ_{cg}	College graduate	0.3434(0.002145)
k_0	k_{0n}	Non-high school	0.01588(0.002521)
	k_{0h}	High school graduate	0.02843(0.002224)
	k_{0c}	Some college	0.05387 (0.001278)
	k_{0cg}	College graduate	0.05719(0.002262)
A_0	A_{0n}	Non-high school	$0.1304(6.91 \times 10^{-4})$
	A_{0h}	High school graduate	$0.1513(3.15 \times 10^{-4})$
	A_{0c}	Some college	$0.1536(6.59 \times 10^{-4})$
	A_{0cg}	College graduate	$0.1463(5.12 \times 10^{-4})$
A_1	A_{1n}	Non-high school	$-0.002139(1.83 \times 10^{-5})$
	A_{1h}	High school graduate	$-0.00342(1.62\times10^{-5})$
	A_{1c}	Some college	$-0.002915(7.11\times10^{-5})$
	A_{1cg}	College graduate	$-0.003329(6.94 \times 10^{-5})$
α	α_n	Non-high school	$0.2279(4.14 \times 10^{-4})$
	α_h	High school graduate	$0.2243(1.36 \times 10^{-4})$
	α_n	Some college	$0.2258(3.31 \times 10^{-4})$
	α_h	College graduate	$0.2275(3.31 \times 10^{-4})$
	B_2	$-B_2(h+d_1)$	$4.05 \times 10^{-4} (7.29 \times 10^{-7})$
	B_1	Additive constant in capital	$0.04021(7.29 \times 10^{-4})$

```
term B_1 + K
                  Std. error of wage shock
                                                          0.05781(6.05 \times 10^{-4})
         \sigma_0
                  Additive constant in hours
                                                          367.2(6.035)
         d_1
                  term h + d_1
Mean Initial Assets
 \bar{A}
                  Mean initial assets when
                                                          3250.8(458.6)
                  the starting age is 20
 \bar{A}
                  Mean initial assets when
                                                          7190.4(631.1)
                  the starting age is after 20
V_{\bar{A}}
                  Std. error, initial assets
                                                          2218.7(241.3)
Measurement Error Parameters
                  Initial period wage <sup>b</sup>
                                                          0.4909 (0.003626)
\sigma_{\xi 0}
                  Wage <sup>c</sup>
                                                          0.4643 \ (0.001333)
\sigma_{\xi 1}
                  Hours <sup>d</sup>
                                                          590.7 (2.156)
\sigma_{\xi 2}
                  Asset <sup>e</sup>
                                                          2623.5 (178.5)
\sigma_{\xi 31}
                  Asset
                                                          948.8 (11.98)
\sigma_{\xi 32}
```

NOTES: Standard errors are in parentheses.

```
a g(K,h,t) = A_0(1+A_1(t-19))(B_1+K)[(h+d_1)^{\alpha}-B_2(h+d_1)] + \delta K + k_0.

b K_{t_0}^D = K_{t_0}\xi_0, \quad \ln{(\xi_0)} \sim N\left(0,\sigma_{\xi,0}\right)

c K_t^D = K_t h t \frac{\xi_{1,t}}{h_t^D}, \quad \ln{(\xi_{1,t})} \sim N\left(0,\sigma_{\xi,1}\right)

d h_t^D = h_t + \xi_{2,t}, \quad \xi_{2,t} \sim N\left(0,\sigma_{\xi,2}\right)

e A_t^D = A_t + \xi_{3,t}, \quad \xi_{3,t} \sim N\left(0,\sigma_{\xi,3}\right), \quad \sigma_{\xi,3} = \sigma_{\xi,3,1} + \sigma_{\xi,3,2}(t-19).
```