

Síntesis del Habla

Tipos de Síntesis del Habla

- Síntesis articulatoria.
- Síntesis de formantes.
- Síntesis basada en HMM.
- Síntesis concatenativa.

Síntesis Articulatoria

- Requiere precisos modelos mecánicos y acústicos de la producción del habla:
 - Vibración de las cuerdas vocales (sonidos sonoros).
 - Aspiración de aire (sonidos sordos).
 - Movimiento de los articuladores (lengua, labios, etc.).
- Cómputos (costosos) de la acústica del tracto vocal.
- Produce resultados inteligibles y con amplio control, pero todavía lejos de sonar naturales.

- Virtudes:
- Control sobre la variabilidad prosódica → Muy útil para generar estímulos en experimentos de percepción (p.ej.).
- Muy livianos.
- Costo bajo de cambiar de idioma.
- http://www.vocaltractlab.de
- tts-vocaltractlab-halt.avi "Nächster Halt: Hamburg."
- tts-vocaltractlab-zug.avi "Der Zug hat eine Stunde Verspätung."
- Laboratorio de Sistemas Dinámicos, Depto. de Física
 - http://www.lsd.df.uba.ar

Síntesis de Formantes

- Síntesis paramétrica, acústica o de resonancia.
- Encapsula el tracto vocal como una caja negra.
- Busca reproducir sus características de input/output.
- A una fuente de sonido le aplica una combinación de filtros.

Síntesis de Formantes

- Parametric Artificial Talker, por Walter Lawrence (1953).
- tts-pat_way "What did you say before that? Tea or coffee? What have you done with it?"
- Demos:
- http://www.speech.kth.se/wavesurfer/formant/
- http://www.asel.udel.edu/speech/tutorials/synthesis/k

Ejemplo: tts-klaat.wav, generado con estos comandos:

TIME=0; AV=80; F1=500; F2=1500; F3=2250; F0=120

TIME=30; AV=80; F1=650; F2=1700; F3=2500

TIME=50; F2=1775

TIME=250; F0=90

TIME=500; F0=130; F1=800; F2=1900; F3=3000

END

Virtudes = síntesis articulatoria (control, liviano, idioma)

Síntesis Basada en HMM

- Hidden Markov Model (HMM+GMM)
 - Modelo probabilístico generativo usado en reconocimiento.
- Fono ↔ Patrón espectral.
- Reconocer un fono == Reconocer su patrón espectral.
- ¿Cómo usar HMM+GMM para síntesis?
 - Para sintetizar una secuencia de fonos [xyz], producimos el espectrograma de [xyz] según el HMM+GMM.

Síntesis Concatenativa

- 1936 Speaking Clock del Reino Unido: tts-clock.wav
 "At the third stroke, it will be eight fifty-seven, precisely."
- 1981 Hora oficial de la Argentina: tts-113.wav
- Tiene infinidad de usos en dominios específicos:
 "El vuelo número N N N N de AEROLINEA con destino a CIUDAD se encuentra ESTADO."
- Muy barato, fácil de implementar, de rápido desarrollo.

Síntesis Concatenativa

- 1) Construir una base de datos de habla.
 - a) Grabar a una persona diciendo oraciones preparadas.
 - b) Recortar unidades de habla (frases, palabras, sílabas, sonidos, etc.).
- 2) Para cada nueva oración a sintetizar:
 - a) Elegir las unidades de la base de datos.
 - b) Concatenarlas.
 - c) [Procesar el resultado para mejorar la calidad.]

Difonos

- Para sintetizar cualquier oración (dominio abierto), necesitamos usar unidades más chicas.
- Difono: Desde la región estable de un fono hasta la región estable del siguiente fono.

 Los difonos capturan la coarticulación (influencia de un fono sobre sus vecinos) y evitan saltos en la señal.

Síntesis Concatenativa

- Dominio abierto (sintetizar cualquier oración):
 - Unidad = difono (desde el medio de un fono hasta el medio del siguiente)
- Síntesis de difonos:
 - Guardar una sola instancia de cada difono.
 - Modificar la secuencia para cambiar la prosodia.
- Selección de unidades:
 - Guardar varias instancias de cada difono.
 - Elegir difonos cercanos a la prosodia deseada.

Inventario de difonos

- Cantidad de difonos = O(fonos²)
- No todos los difonos son válidos en un lenguaje.
 - Restricciones fonotácticas.
 - Ejemplos en español: /pf/ /kg/ /pp/ ...
- Ejemplo:
 - Sistema en inglés (AT&T, Olive et al. 1998).
 - 43 fonos.
 - 43² = 1849 difonos posibles.
 - Sólo 1162 difonos válidos.

Frases, grabación y segmentación

- Tono, intensidad y duración constantes.
- Frases portadoras: aportan consistencia.

```
/ba/ → #tabama# /-a/ → #ama#

/pa/ → #tapama# /-e/ → #ema#

/sa/ → #tasama# /-o/ → #oma#

# = silencio
```

- Antes de grabar cada frase, escuchar una frase fija.
- Segmentación semi-automática de difonos.
 - 1) Alineación forzada con sistema de reconocimiento de habla.
 - Corrección manual.

Concatenación de difonos

- Concatenar difonos puede generar ruidos (clicks) causados por 3 tipos de discontinuidad:
 - De fase.
 - De tono (f0).
 - De espectro.
- Smoothing (suavizado) de las uniones.
 - Hanning windowing.

Modificación de la prosodia

- Todos los difonos tienen la misma prosodia (f0, int, dur).
- La prosodia deseada se consigue con proc. de señales.
- La intensidad se puede modificar fácilmente.
- ¿Cómo modificar tono y duración?
 - Aumentar la duración de una señal disminuye el tono.
- TD-PSOLA:
 - Time-Domain Pitch-Synchronous Overlap-and-Add
 - Identificar ciclos básicos de la señal.
 - Para cambiar la duración: duplicar/borrar ciclos.
 - Para cambiar el tono: juntar o separar ciclos.
- Ver clase de Prosodia.

Síntesis de difonos

- Base de datos pequeña: ~8MB para inglés (16Hz, 16 bits).
- Modificación de la prosodia con procesamiento de señales (e.g. TD-PSOLA): resultados poco naturales.
- Idea alternativa:
 - Guardar muchas instancia de cada difono; al sintetizar, elegir la instancia con las características prosódicas más parecidas a las deseadas.
 - Eso se conoce como síntesis con selección de unidades.

Síntesis con selección de unidades

- Las frases a grabar deben contener múltiples instancias de cada difono.
 - Respetar la distribución de frecuencias del lenguaje.
 - En español, muchas instancias de /la/; pocas de /pt/.
- Varias horas de grabación.
- Segmentación semi-automática de fonemas.
 - 1) Alineación forzada con sistema de reconocimiento.
 - 2) Corrección manual.

Síntesis con selección de unidades

- Síntesis = Encontrar en la base de datos la secuencia de difonos que mejor cumpla la especificación dada.
- ¿Qué significa "mejor"?
 - Costo del objetivo (T): Cuán bien respetan los difonos las características deseadas (prosodia, contexto, etc.).
 - Costo de unión (J): Cuán bien se concatenan los difonos adyacentes.

$$\hat{U} = \underset{U}{\operatorname{argmin}} \sum_{i} T(s_i, u_i) + \sum_{i} J(u_i, u_{i+1})$$

donde s_i : especificación de la i-ésima unidad a sintetizar u_i : unidad de la base de datos

Costo del objetivo T(s, u)

- ¿Cuánto se parecen la unidad u (de la base de datos) y la especificación objetivo s?
- Ejemplos de especificaciones de difonos:

```
/-t/, acentuado, principio frase, F0 alto, adverbio, ...
/la/, no acent., medio frase, F0 medio, artículo, ...
```

- Costo objetivo T = suma de P subcostos T_p:
 - Acentuación, posición en la frase y en la palabra, F0, duración, intensidad, POS de la palabra, etc.
 - Cada subcosto tiene un peso w_n

$$T(s, u) = \sum_{p=1}^{P} w_p \cdot T_p(s, u)$$

- ¿Cómo se determinan los pesos w_n?

Costo de unión $J(u_i, u_{i+1})$

- ¿Cuán suave es la concatenación de dos unidades u_i y u_{i+1} (ambas de la base de datos)?
- Costo de unión J = suma de P subcostos J_p:
 - Intensidad, F0, atributos espectrales, etc.
 - Cada subcosto tiene un peso W_p .

$$J(u_i, u_{i+1}) = \sum_{p=1}^{P} w_p \cdot J_p(u_i, u_{i+1})$$

Síntesis con selección de unidades

S = -o ol la am mu un nd do o-

(con sus especificaciones prosódicas y contextuales)

Base de datos de difonos:

$$\hat{U} = \underset{U}{\operatorname{argmin}} \sum_{i} T(s_i, u_i) + \sum_{i} J(u_i, u_{i+1})$$

Síntesis con selección de unidades

- Algoritmo de Viterbi
 - Programación dinámica.
 - Encuentra en forma eficiente y exacta el camino con el costo más bajo.
 - Complejidad: O(M * N²).
 - M = Longitud de la secuencia objetivo.
 - N = Número de difonos en la base de datos.

Síntesis con selección de unidades

- Resultados más naturales que con otras técnicas.
- Base de datos muy grande: O(GB).
- Búsqueda de difonos: cara computacionalmente.
 - Cuadrática en el tamaño de la base de datos!
 - Técnicas de optimización: e.g. clustering de difonos.
- La calidad puede ser muy mala cuando no hay buenos candidatos en la base de datos.
 - Problema: en interacciones humano-máquina suele ser muy molesto mezclar cosas muy buenas y muy malas.

Herramientas y Demos de TTS

- Herramientas para desarrollo:
 - Festival http://www.cstr.ed.ac.uk/projects/festival/
 - Mary TTS http://mary.dfki.de/
- Demos comerciales:
 - IBM BlueMix https://text-to-speech-demo.mybluemix.net
 - Cepstral http://www.cepstral.com/en/demos
 - LumenVox http://www.lumenvox.com/products/tts/
 - Google Chrome https://developer.chrome.com/extensions/examples/extensions/ttsdemo/ttsdemo.html

Síntesis del Habla - Resumen

- Síntesis articulatoria:
 - Modelos del tracto vocal. Glottal volume velocity

- Síntesis de formantes:
 - Fuentes y filtros.
- Síntesis basada en HMM.

- Síntesis concatenativa:
 - Dífonos, TD-PSOLA, selección de unidades.

