# HANDLING ASYNCHRONY IN AUDIO-SCORE ALIGNMENT

JOHANNA DEVANEY McGill University DEVANEY@MUSIC.MCGILL.CA

DANIEL P.W. ELLIS COLUMBIA UNIVERSITY DPWE@EE.COLUMBIA.EDU



DISTRIBUTED DIGITAL MUSIC ARCHIVES & LIBRARIES LAB





C | I | R | Centre for Interdisciplinary Research MMT in Music Media and Technology















Introduction

Description of MIDI/Audio alignment

Evaluation of Dynamic Time Warping

Future Work

Conclusions

# INTRODUCTION

- MIDI-Audio alignment can be considered a solved problem for many applications
- There are typically asynchronies in musical performance for events that are notated as simultaneous in the score (Palmer 1996)
- Current methods are unable to account for these asynchronies
- How can existing approaches be extended in order to account for this?

# INTRODUCTION

- Data in studies of musical performance is typically obtained through:
  - manual annotation of audio recordings
  - performances on specialized equipment
- This work is motivated by our interest in studying intonation in vocal ensembles
  - we plan to use alignment as a proxy for polyphonic transcription

# MIDI/AUDIO ALIGNMENT

- MIDI data is adjusted to match the temporal characteristics of the audio
- Alignment can be done in real-time or offline
  - Real-time applications include score following
  - Offline applications include digital libraries and database searches
- Offline systems have the advantage of the entire signal being available before the alignment is calculated

# MIDI/AUDIO ALIGNMENT

- A brief history...
  - ICMC Dannenberg (1984) and Vercoe (1984)
    - Dannenberg made use of dynamic programming
  - Puckette (1995) singing voice
  - Grubb and Dannenberg (1997) singing voice/stochastic
  - Raphael (1999) hidden Markov model

# MIDI/AUDIO ALIGNMENT

- Dynamic Time Warping (DTW) and hidden Markov models (HMMs) approaches perform comparably
- We chose to use DTW as the basis of this research project
- Typical implementations of both methods produce a single time warp
  - A single time warp is problematic because it treats notated simultaneities as single events

# DYNAMIC TIME WARPING

- Dynamic Time Warping (DTW) is a constrained method that allows for the alignment of similar sequences moving at different rates
- First the audio and the MIDI are converted to sets of features
  - peak structure distance (Orio and Schwartz 2001)
  - · chromagrams (Hu, Dannenberg, and Tzanetakis 2003)
  - cosine distance (Turetsky and Ellis 2003)
- Then the two sets of features are then compared in a similarity matrix

# DYNAMIC TIME WARPING OVERVIEW



Turetsky and Ellis 2003



# EVALUATION OF DYNAMIC TIME WARPING

 Test data comprised of hand-annotated excerpts of four-track recordings from Machaut's Messe de Notre Dame

SOPROANO LINE

**MIXDOWN** 

- Note onsets and offsets in the individual tracks could be manually annotated with a high degree of accuracy
- Tests were performed with individual tracks as well as a mixdown of the tracks

#### TIME DOMAIN REPRESENTATION OF SOPRANO IN AUDACITY (WITH LABELS)



#### FREQUENCY DOMAIN REPRESENTATION OF SOPRANO IN AUDACITY (WITH LABELS)



# EVALUATION OF DYNAMIC TIME WARPING

- Three alignment tests were performed on the test data
  - One to One each part is aligned to a recording of the corresponding individual track
  - Many to Many the four voices are simultaneously aligned to a mixdown of the individual tracks
  - One to Many each part is aligned to a mixdown of the individual tracks





# EVALUATION OF DYNAMIC TIME WARPING APPROACH





## EVALUATION OF DYNAMIC TIME WARPING APPROACH



# EXTENSIONS TO DYNAMIC TIME WARPING

- When using standard DTW on polyphonic audio there is a compromise between:
  - aligning the full polyphonic score
    - PROS: most likely to succeed
    - CONS: unable to account for asynchronies
  - aligning individual lines
    - PROS: timing of each line can vary independently
    - CONS: highly prone to errors

# FUTURE WORK

- DTW is applied to the full polyphonic score to get a rough alignment
- This is refined by realigning the portion of the audio inbetween the notes
- Each note goes through a three-state sequence
  - initial note silence final note
- The complexity of this is 3<sup>N</sup>, where N is the number of simultaneous notes
  - 2 voices would have 9 possible combinations
  - 3 voices would have 27 possible combinations
  - 4 voices would have 81 possible combinations

# FUTURE WORK

#### TRANSITION MATRIX FOR TWO NOTES

- B ends (top line)
- D ends (bottom line)
- E begins (bottom line)
- C begins (top line)



# **CONCLUSIONS**

- DTW-based approaches are the generally robust for aligning the particularly challenging idiom of polyphonic *a cappella* vocal recordings
- DTW-based approaches are unable to account for asynchronies in notated simultaneities
- Aligning one line at a time against a polyphonic signal with this technique is not a viable option
- Standard DTW-based approaches need to be extended in order to account for these asynchronies

#### **ACKNOWLEDGEMENTS**

- This work was supported by the Center for Research in Music Media and Technology (CIRMMT) and the Social Sciences and Humanities Research Council of Canada (SSHRC)
- We would also like to thank Ichiro Fujinaga for his feedback at various stages of this project
- We would like to thank Chris Raphael and Paul Peeling for providing code for evaluation purposes

# THANK YOU

QUESTIONS?

## REFERENCES

Dannenberg, R. 1984. An on-line algorithm for real-time accompaniment. In *Proceedings of the 1984 International Computer Music Conference*. 193–8.

Grubb, L., and R. Dannenberg. 1997. A stochastic method of tracking a vocal performer. In *Proceedings of the 1997 International Computer Music Conference*. 301–8.

Hu, N., R., Dannenberg, & G. Tzanetakis. 2003. Polyphonic Audio Matching and Alignment for Music Retrieval. In *Proceedings of the IEEE Workshop on Audio and Signal Processing to Audio and Acoustics*. 185-8.

Orio, N., & D. Schwarz. 2001. Alignment of Monophonic and Polyphonic Music to a Score. In *Proceedings of the International Computer Music Conference*. 129-32.

Palmer, C. 1997. Music Performance. Annual Review of Psychology. 48. 115-38.

Puckette, M. 1995. Score following using the sung voice. In *Proceedings of the 1995 International Computer Music Conference*. 175–8.

Raphael, C. 1999. Automatic segmentation of acoustic musical signals using hidden Markov Models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. 21(4): 360–70.

Turetsky, R., & D.P.W. Ellis. Ground-Truth Transcriptions of Real Music from Force-Aligned MIDI Syntheses. In Proceedings of the International Conference on Music Information Retrieval. 135-41.

Vercoe, B. 1984. The synthetic performer in the context of live performance. In *Proceedings of the 1984 International Computer Music Conference*. 199–200.

# EVALUATION OF DYNAMIC TIME WARPING

MEAN AND STANDARD DEVIATION IN SECONDS BETWEEN THE ONSET AND OFFSET SET ALIGNMENTS AND THE GROUND TRUTH

|      | TEST I<br>Individual |                 |       |         | TEST 3 COMPOSITE INDIVIDUAL |                 |
|------|----------------------|-----------------|-------|---------|-----------------------------|-----------------|
|      | Means                | STD <b>D</b> EV | Means | STD DEV | Means                       | STD <b>D</b> EV |
| Ons  | 0.171                | 0.146           | 0.142 | 0.117   | 0.612                       | 0.836           |
| OFFS | 0.147                | 0.331           | 0.118 | 0.124   | 0.693                       | 0.974           |

# EVALUATION OF DYNAMIC TIME WARPING

Percentage of onsets and offsets predicted by the alignment within 100ms of the ground truth asynchrony for a notated simultaneity

|      | TEST I<br>Individual | Test 2 Composite Simultaneous | TEST 3 COMPOSITE INDIVIDUAL |
|------|----------------------|-------------------------------|-----------------------------|
| Ons  | 31%                  | 40%                           | 26%                         |
| OFFS | 64%                  | 60%                           | 46%                         |