

FCC PART 15.247 TEST REPORT

For

MAXWEST INTERNATIONAL LIMITED.

No.1,Longgang Road,Buji,Longgang,ShenzhenCity,Guangdong Province, P.R. China

FCC ID: 2AEN3NITRO5W

Report Type: Product Name: Original Report Mobile Phone Kein hu Test Engineer: Kevin Hu Report Number: RDG170504008C **Report Date: 2017-05-25 Henry Ding** Henry Ding **EMC Leader** Reviewed By: **Test Laboratory:** Bay Area Compliance Laboratories Corp. (Chengdu) No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China Tel: 028-65523123, Fax: 028-65525125 www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	10
FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE	11
APPLICABLE STANDARD	11
FCC §15.203 - ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	12
Antenna Connector Construction	12
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	13
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER SETUP	
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	14
TEST EQUIPMENT LIST AND DETAILSTEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARDEUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	18
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	23
TEST EQUIPMENT LIST AND DETAILS	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARDTEST PROCEDURE	
TEST FROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	31

Bay Area Compliance Laboratories Corp. (Chengdu)

APPLICABLE STANDARD	31
TEST PROCEDURE	31
TEST EQUIPMENT LIST AND DETAILS	31
TEST DATA	32
FCC §15.247(e) - POWER SPECTRAL DENSITY	36
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	36
TEST DATA	36

Report No.: RDG170504008C

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *MAXWEST INTERNATIONAL LIMITED*.'s product, model number: *NITRO 5W* (*FCC ID: 2AEN3NITRO5W*) (the "EUT") in this report was a *Mobile Phone*, which was measured approximately: 14.6 cm (L) × 7.4 cm (W) × 1 cm (H), rated input voltage: DC3.7V battery or DC5V charging from adapter.

Adapter information: Model No.: Nitro 5W

INPUT: AC100-240V 50/60Hz OUTPUT: DC5V±5% 700mA

*All measurement and test data in this report was gathered from final production sample, serial number: 170504008 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-05-04, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of *MAXWEST INTERNATIONAL LIMITED.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules

The tests were performed in order to determine the compliance of the EUT with FCC Rules Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2AEN3NITRO5W. FCC Part 15C DSS submissions with FCC ID: 2AEN3NITRO5W. FCC Part 22H, 24E PCE submissions with FCC ID: 2AEN3NITRO5W.

Report No.: RDG170504008C Page 4 of 41

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All of the measurements detailed in this Test Report were performed by Bay Area Compliance Laboratories Corp. (Chengdu).

The Bay Area Compliance Laboratories Corp. Chengdu's measurement Uncertainties (calculated for a k=2 Coverage Factor corresponding to approximately 95% Coverage) were as follows:

- -For all of the AC Line Conducted Emissions Tests reported herein: ±3.17 dB.
- -For of all of the Direct Antenna Conducted Emissions Tests reported herein: ±0.56 dB.
- -For of all of the direct Radiated Emissions Tests reported herein are:

30 MHz to 200 MHz: ±4.7 dB; 200 MHz to 1 GHz: ±6.0 dB; 1 GHz to 6 GHz: ±5.13dB; and, 6 GHz to 40 GHz: ±5.47dB.

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Test Facility

The test site used by BACL to collect test data is located in the No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG170504008C Page 5 of 41

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in testing mode, which was provided by manufacturer. For 2.4GHz band, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	1	1

For 802.11b, 802.11g, and 802.11n ht20 modes were tested with channel 1, 6 and 11.

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

The worst condition (maximum power) was setting by the Engineer Mode as following table:

Test Mode	Test Software Version	Engineer Mode					
	Test Frequency	2412MHz	2412MHz 2437MHz 2462				
802.11b	Data Rate	1Mbps	1Mbps	1Mbps			
002.110	Power Level Setting	57	58	59			
Test Frequency		2412MHz	2437MHz	2462MHz			
802.11g	Data Rate	6Mbps	6Mbps	6Mbps			
Power Level Setting		96	97	97			
	Test Frequency	2412MHz	2437MHz	2462MHz			
802.11n	Data Rate	6.5Mbps	6.5Mbps	6.5Mbps			
ht20	Power Level Setting	110	111	111			

The maximum duty cycle as following table:

Test mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)
802.11b	100	100	100
802.11g	1.42	1.43	99
802.11n ht20	1.20	1.21	99

Report No.: RDG170504008C Page 6 of 41

Bay Area Compliance Laboratories Corp. (Chengdu)

802.11b

Date: 11.MAY.2017 14:07:31

802.11g

Date: 11.MAY.2017 14:06:30

Report No.: RDG170504008C Page 7 of 41

Bay Area Compliance Laboratories Corp. (Chengdu)

802.11n ht20

Date: 11.MAY.2017 14:04:54

Report No.: RDG170504008C Page 8 of 41

External Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
USB Cable	Yes	No	1.0	USB Port of Adapter	EUT
Earphone Cable	No	No	1.2	Audio Port of EUT	Earphone

Block Diagram of Test Setup

Report No.: RDG170504008C Page 9 of 41

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliance
§15.247(b)(3)	Maximum conducted output power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RDG170504008C Page 10 of 41

FCC §15.247 (i) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max tune-up conducted power is 9.4 dBm (8.71 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 8.71/5*($\sqrt{2.462}$) = 2.7 ≤ 3.0

So the stand-alone SAR evaluation is not necessary.

Report No.: RDG170504008C Page 11 of 41

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has one internal antenna arrangement for Wifi/BT, and the antenna gain is 0.8dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

Report No.: RDG170504008C Page 12 of 41

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Report No.: RDG170504008C Page 13 of 41

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

 $C_f = A_C + VDF$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2016-12-02	2017-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	100018	2016-12-02	2017-12-01
Rohde & Schwarz	PULSE LIMITER	ESH3Z2	DE14781	2016-10-31	2017-10-30
Unknown	Conducted Cable	Unknown	NO.5	2016-11-10	2017-11-09
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	24.8 °C	
Relative Humidity:	48 %	
ATM Pressure:	98.7 kPa	

The testing was performed by Kevin Hu on 2017-05-09.

Report No.: RDG170504008C Page 14 of 41

Test Mode: Transmitting (Wi-Fi b mode was the worst)

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	41.9	9.000	L1	19.7	24.1	66.0	Compliance
0.203045	43.7	9.000	L1	19.7	19.8	63.5	Compliance
0.279263	39.0	9.000	L1	19.7	21.8	60.8	Compliance
0.343548	39.0	9.000	L1	19.7	20.1	59.1	Compliance
0.409372	35.9	9.000	L1	19.8	21.8	57.7	Compliance
0.480097	36.2	9.000	L1	19.7	20.1	56.3	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.483938	24.0	9.000	L1	19.7	22.3	46.3	Compliance
0.549741	22.8	9.000	L1	19.7	23.2	46.0	Compliance
0.644717	26.9	9.000	L1	19.7	19.1	46.0	Compliance
1.239175	26.6	9.000	L1	19.7	19.4	46.0	Compliance
1.289541	27.2	9.000	L1	19.7	18.8	46.0	Compliance
1.936076	25.4	9.000	L1	19.8	20.6	46.0	Compliance

Report No.: RDG170504008C Page 15 of 41

AC120 V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	43.6	9.000	N	19.7	22.4	66.0	Compliance
0.177322	38.7	9.000	N	19.7	25.9	64.6	Compliance
0.206306	46.7	9.000	N	19.6	16.7	63.4	Compliance
0.277046	40.6	9.000	N	19.6	20.3	60.9	Compliance
0.346296	38.3	9.000	N	19.6	20.8	59.1	Compliance
0.412647	35.7	9.000	N	19.6	21.9	57.6	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.209621	28.9	9.000	N	19.6	24.3	53.2	Compliance
0.426011	20.5	9.000	N	19.6	26.8	47.3	Compliance
1.239175	28.9	9.000	N	19.6	17.1	46.0	Compliance
1.289541	29.3	9.000	N	19.6	16.7	46.0	Compliance
8.388036	25.8	9.000	N	19.8	24.2	50.0	Compliance
9.681660	23.9	9.000	N	19.8	26.1	50.0	Compliance

Report No.: RDG170504008C Page 16 of 41

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

Report No.: RDG170504008C Page 17 of 41

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30MHz-1000MHz:

Detector	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

1GHz-25GHz:

Detector	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
Ava	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Note: T is minimum transmission duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

Report No.: RDG170504008C Page 18 of 41

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2016-12-02	2017-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A121808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726- 0113024	2014-06-16	2017-06-15
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2017-05-20	2018-05-19
HP	Amplifier	8449B	3008A00277	2016-12-02	2017-12-01
EMCT	Semi-Anechoic Chamber	966	966-1	2015-04-24	2018-04-23
Unknown	RF Cable (below 1GHz)	Unknown	NO.1	2016-11-10	2017-11-09
Unknown	RF Cable (below 1GHz)	Unknown	NO.4	2016-11-10	2017-11-09
Unknown	RF Cable (above 1GHz)	Unknown	NO.2	2016-11-10	2017-11-09

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	23.7°C
Relative Humidity:	50 %
ATM Pressure:	97.8 kPa

^{*} The testing was performed by Kevin Hu on 2017-05-23.

Test Mode: Transmitting

Report No.: RDG170504008C Page 19 of 41

30MHz-25GHz:

802.11b Mode

	Rec	eiver	Rx A	ntenna	Cable	Amplifier	Corrected				
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	Low Channel: 2412 MHz										
2412	71.66	PK	Н	23.50	3.00	0.00	98.16	N/A	N/A		
2412	66.68	AV	Н	23.50	3.00	0.00	93.18	N/A	N/A		
2412	68.17	PK	V	23.50	3.00	0.00	94.67	N/A	N/A		
2412	61.21	AV	V	23.50	3.00	0.00	87.71	N/A	N/A		
2390	35.94	PK	Н	23.57	3.00	0.00	62.51	74.00	11.49		
2390	21.09	AV	Н	23.57	3.00	0.00	47.66	54.00	6.34		
4824	43.64	PK	Н	30.84	5.11	26.87	52.72	74.00	21.28		
4824	40.49	AV	Н	30.84	5.11	26.87	49.57	54.00	4.43		
7236	34.4	PK	Н	34.77	6.18	26.36	48.99	74.00	25.01		
7236	23.94	AV	Н	34.77	6.18	26.36	38.53	54.00	15.47		
3131	40.1	PK	Н	24.93	3.63	26.46	42.20	74.00	31.80		
3131	29.68	AV	Н	24.93	3.63	26.46	31.78	54.00	22.22		
54.25	39.2	QP	Н	7.88	0.43	28.44	19.07	40.00	20.93		
38.73	35.1	QP	Н	16.30	0.38	28.52	23.26	40.00	16.74		
			Mid	ddle Char	nel: 243	7 MHz					
2437	70.35	PK	Н	23.41	3.00	0.00	96.76	N/A	N/A		
2437	65.63	AV	Н	23.41	3.00	0.00	92.04	N/A	N/A		
2437	67.95	PK	V	23.41	3.00	0.00	94.36	N/A	N/A		
2437	61.32	AV	V	23.41	3.00	0.00	87.73	N/A	N/A		
4874	43.53	PK	Н	31.00	5.09	26.87	52.75	74.00	21.25		
4874	40.88	AV	Н	31.00	5.09	26.87	50.10	54.00	3.90		
7311	34.34	PK	Н	34.92	6.21	26.40	49.07	74.00	24.93		
7311	24.09	AV	Н	34.92	6.21	26.40	38.82	54.00	15.18		
3131	39.39	PK	Н	24.93	3.63	26.46	41.49	74.00	32.51		
3131	28.06	AV	Н	24.93	3.63	26.46	30.16	54.00	23.84		
3190	40.68	PK	Н	25.26	3.72	26.48	43.18	74.00	30.82		
3190	29.12	AV	Н	25.26	3.72	26.48	31.62	54.00	22.38		
54.25	39.3	QP	Н	7.88	0.43	28.44	19.17	40.00	20.83		
38.73	35.4	QP	Н	16.30	0.38	28.52	23.56	40.00	16.44		
	T			igh Chanr							
2462	72.12	PK	Н	23.33	2.99	0.00	98.44	N/A	N/A		
2462	66.61	AV	Н	23.33	2.99	0.00	92.93	N/A	N/A		
2462	68.49	PK	V	23.33	2.99	0.00	94.81	N/A	N/A		
2462	62.33	AV	V	23.33	2.99	0.00	88.65	N/A	N/A		
2483.5	35.89	PK	Н	23.26	2.99	0.00	62.14	74.00	11.86		
2483.5	24.37	AV	Н	23.26	2.99	0.00	50.62	54.00	3.38		
4924	43.08	PK	Н	31.16	5.07	26.88	52.43	74.00	21.57		
4924	40.57	AV	Н	31.16	5.07	26.88	49.92	54.00	4.08		
7386	33.94	PK	Н	35.07	6.25	26.43	48.83	74.00	25.17		
7386	24.53	AV	Н	35.07	6.25	26.43	39.42	54.00	14.58		
3131	41.15	PK	Н	24.93	3.63	26.46	43.25	74.00	30.75		
3131	29.59	AV	Н	24.93	3.63	26.46	31.69	54.00	22.31		
54.25	39.2	QP	Н	7.88	0.43	28.44	19.07	40.00	20.93		
38.73	35.3	QP	Н	16.30	0.38	28.52	23.46	40.00	16.54		

Report No.: RDG170504008C Page 20 of 41

802.11g Mode

Eroguene	Rec	eiver	Rx A	ntenna	Cable	Amplifier	Corrected	l insit	Manair		
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	Low Channel: 2412 MHz										
2412	72.19	PK	Н	23.50	3.00	0.00	98.69	N/A	N/A		
2412	65.62	AV	Н	23.50	3.00	0.00	92.12	N/A	N/A		
2412	70.16	PK	V	23.50	3.00	0.00	96.66	N/A	N/A		
2412	61.02	AV	V	23.50	3.00	0.00	87.52	N/A	N/A		
2390	32.16	PK	Н	23.57	3.00	0.00	58.73	74.00	15.27		
2390	23.45	AV	Н	23.57	3.00	0.00	50.02	54.00	3.98		
4824	35.44	PK	Н	30.84	5.11	26.87	44.52	74.00	29.48		
4824	24.79	AV	Н	30.84	5.11	26.87	33.87	54.00	20.13		
7236	33.71	PK	Н	34.77	6.18	26.36	48.30	74.00	25.70		
7236	22.64	AV	Н	34.77	6.18	26.36	37.23	54.00	16.77		
2950	37.37	PK	Н	24.10	3.39	26.46	38.40	74.00	35.60		
2950	26.66	AV	Н	24.10	3.39	26.46	27.69	54.00	26.31		
54.25	39.5	QP	Н	7.88	0.43	28.44	19.37	40.00	20.63		
38.73	34.9	QP	Н	16.30	0.38	28.52	23.06	40.00	16.94		
			Mi	iddle Chan	nel: 2437	MHz					
2437	70.99	PK	Н	23.41	3.00	0.00	97.40	N/A	N/A		
2437	65.58	AV	Н	23.41	3.00	0.00	91.99	N/A	N/A		
2437	67.26	PK	V	23.41	3.00	0.00	93.67	N/A	N/A		
2437	61.84	AV	V	23.41	3.00	0.00	88.25	N/A	N/A		
4874	36.78	PK	Н	31.00	5.09	26.87	46.00	74.00	28.00		
4874	25.89	AV	Н	31.00	5.09	26.87	35.11	54.00	18.89		
7311	34.65	PK	Н	34.92	6.21	26.40	49.38	74.00	24.62		
7311	23.73	AV	Н	34.92	6.21	26.40	38.46	54.00	15.54		
2950	38.03	PK	Н	24.10	3.39	26.46	39.06	74.00	34.94		
2950	26.81	AV	Н	24.10	3.39	26.46	27.84	54.00	26.16		
3610	35.66	PK	Н	27.44	4.34	26.58	40.86	74.00	33.14		
3610	25.15	AV	Н	27.44	4.34	26.58	30.35	54.00	23.65		
54.25	39.3	QP	Н	7.88	0.43	28.44	19.17	40.00	20.83		
38.73	35.1	QP	Н	16.30	0.38	28.52	23.26	40.00	16.74		
				ligh Chann							
2462	71.52	PK	Н	23.33	2.99	0.00	97.84	N/A	N/A		
2462	64.51	AV	Н	23.33	2.99	0.00	90.83	N/A	N/A		
2462	69.31	PK	V	23.33	2.99	0.00	95.63	N/A	N/A		
2462	60.42	AV	V	23.33	2.99	0.00	86.74	N/A	N/A		
2483.5	36.95	PK	Н	23.26	2.99	0.00	63.20	74.00	10.80		
2483.5	23.27	AV	Н	23.26	2.99	0.00	49.52	54.00	4.48		
4924	36.24	PK	Н	31.16	5.07	26.88	45.59	74.00	28.41		
4924	25.81	AV	Н	31.16	5.07	26.88	35.16	54.00	18.84		
7386	34.29	PK	Н	35.07	6.25	26.43	49.18	74.00	24.82		
7386	24.15	AV	Н	35.07	6.25	26.43	39.04	54.00	14.96		
2950	37.44	PK	Н	24.10	3.39	26.46	38.47	74.00	35.53		
2950	26.65	AV	Н	24.10	3.39	26.46	27.68	54.00	26.32		
54.25	39.4	QP	Н	7.88	0.43	28.44	19.27	40.00	20.73		
38.73	34.9	QP	Н	16.30	0.38	28.52	23.06	40.00	16.94		

Report No.: RDG170504008C Page 21 of 41

802.11 n ht20 Mode

F	Rec	eiver	Rx Aı	ntenna	Cable	Amplifier	Corrected			
Frequency (MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
Low Channel: 2412 MHz										
2412	71.66	PK	Н	23.50	3.00	0.00	98.16	N/A	N/A	
2412	61.69	AV	Н	23.50	3.00	0.00	88.19	N/A	N/A	
2412	68.53	PK	V	23.50	3.00	0.00	95.03	N/A	N/A	
2412	59	AV	V	23.50	3.00	0.00	85.50	N/A	N/A	
2390	36.78	PK	Н	23.57	3.00	0.00	63.35	74.00	10.65	
2390	18.12	AV	Н	23.57	3.00	0.00	44.69	54.00	9.31	
4824	35.65	PK	Н	30.84	5.11	26.87	44.73	74.00	29.27	
4824	25.25	AV	Н	30.84	5.11	26.87	34.33	54.00	19.67	
7236	33.81	PK	Н	34.77	6.18	26.36	48.40	74.00	25.60	
7236	24.01	AV	Н	34.77	6.18	26.36	38.60	54.00	15.40	
2950	37	PK	Н	24.10	3.39	26.46	38.03	74.00	35.97	
2950	26.64	AV	Н	24.10	3.39	26.46	27.67	54.00	26.33	
54.25	39.1	QP	Н	7.88	0.43	28.44	18.97	40.00	21.03	
38.73	35.3	QP	Н	16.30	0.38	28.52	23.46	40.00	16.54	
			Mic	ldle Chan						
2437	69.56	PK	Н	23.41	3.00	0.00	95.97	N/A	N/A	
2437	60.24	AV	Н	23.41	3.00	0.00	86.65	N/A	N/A	
2437	65.37	PK	V	23.41	3.00	0.00	91.78	N/A	N/A	
2437	55.29	AV	V	23.41	3.00	0.00	81.70	N/A	N/A	
4874	36.74	PK	Н	31.00	5.09	26.87	45.96	74.00	28.04	
4874	25.26	AV	Н	31.00	5.09	26.87	34.48	54.00	19.52	
7311	34.11	PK	Н	34.92	6.21	26.40	48.84	74.00	25.16	
7311	24.64	AV	Н	34.92	6.21	26.40	39.37	54.00	14.63	
2950	37.13	PK	Н	24.10	3.39	26.46	38.16	74.00	35.84	
2950	26.94	AV	Н	24.10	3.39	26.46	27.97	54.00	26.03	
3610	35.11	PK	Н	27.44	4.34	26.58	40.31	74.00	33.69	
3610	25.36	AV	H	27.44	4.34	26.58	30.56	54.00	23.44	
54.25	39.5	QP	Н	7.88	0.43	28.44	19.37	40.00	20.63	
38.73	35.1	QP	H	16.30 gh Chanr	0.38	28.52	23.26	40.00	16.74	
2462	71.25	PK	H "	23.33	2.99	0.00	97.57	N/A	N/A	
2462	61.52	AV	Н	23.33	2.99	0.00	87.84	N/A N/A	N/A N/A	
2462	67.41	PK	V	23.33	2.99	0.00	93.73	N/A N/A	N/A N/A	
2462	60.01	AV	V	23.33	2.99	0.00	86.33	N/A	N/A	
2483.5	38.25	PK	H	23.26	2.99	0.00	64.50	74.00	9.50	
2483.5	24.91	AV	Н	23.26	2.99	0.00	51.16	54.00	2.84	
4924	36.05	PK	H	31.16	5.07	26.88	45.40	74.00	28.60	
4924	25.98	AV	H	31.16	5.07	26.88	35.33	54.00	18.67	
7386	34.54	PK	H	35.07	6.25	26.43	49.43	74.00	24.57	
7386	24	AV	H	35.07	6.25	26.43	38.89	54.00	15.11	
3475	33.9	PK	H	26.86	4.14	26.58	38.32	74.00	35.68	
3475	22.87	AV	H	26.86	4.14	26.58	27.29	54.00	26.71	
54.25	39.2	QP	H	7.88	0.43	28.44	19.07	40.00	20.93	
38.73	34.8	QP	H	16.30	0.38	28.52	22.96	40.00	17.04	

Report No.: RDG170504008C Page 22 of 41

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	23.7°C
Relative Humidity:	50 %
ATM Pressure:	97.8 kPa

^{*} The testing was performed by Kevin Hu on 2017-05-23.

Report No.: RDG170504008C Page 23 of 41

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots.

Test mode	Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)
	Low	2412	10.08	≥0.5
802.11b	Middle	2437	10.16	≥0.5
	High	2462	10.16	≥0.5
	Low	2412	16.32	≥0.5
802.11g	Middle	2437	16.00	≥0.5
	High	2462	16.32	≥0.5
000 44=	Low	2412	17.28	≥0.5
802.11n ht20	Middle	2437	17.36	≥0.5
11(20	High	2462	17.36	≥0.5

802.11b Low Channel

Date: 23.MAY.2017 18:19:30

802.11b Middle Channel

Date: 23.MAY.2017 18:21:30

802.11b High Channel

Date: 23.MAY.2017 19:24:07

Bay Area Compliance Laboratories Corp. (Chengdu)

802.11g Low Channel

Date: 23.MAY.2017 18:25:00

802.11g Middle Channel

Date: 23.MAY.2017 18:28:51

Bay Area Compliance Laboratories Corp. (Chengdu)

802.11g High Channel

Date: 23.MAY.2017 18:30:16

802.11n ht20 Low Channel

Date: 23.MAY.2017 18:32:53

Report No.: RDG170504008C Page 27 of 41

802.11n ht20 Middle Channel

Date: 23.MAY.2017 18:35:00

802.11n ht20 High Channel

Date: 23.MAY.2017 18:36:26

Report No.: RDG170504008C Page 28 of 41

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.
- 4. Set the power Meter to test Peak output power, record the result as peak power.
- 5. Set the power meter to test average output power, record the result as average power.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54170074	2017-01-03	2018-01-02
Agilent	P-Series Power Meter	N1912A	MY5000798	2017-01-03	2018-01-02
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Report No.: RDG170504008C Page 29 of 41

Test Data

Environmental Conditions

Temperature:	23.7°C	
Relative Humidity:	50 %	
ATM Pressure:	97.8 kPa	

^{*} The testing was performed by Kevin Hu on 2017-05-23.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table.

Test mode	Channel	Frequency (MHz)	Max Peak Conducted Output Power (dBm)	Max Conducted Average Output Power (dBm)	Limit (dBm)
	Low	2412	11.12	9.28	30
802.11b	Middle	2437	11.19	9.13	30
	High	2462	11.59	9.24	30
	Low	2412	16.4	9.10	30
802.11g	Middle	2437	16.55	9.10	30
	High	2462	16.74	9.04	30
802.11n ht20	Low	2412	17.18	9.25	30
	Middle	2437	17.35	9.28	30
	High	2462	17.47	9.26	30

Report No.: RDG170504008C Page 30 of 41

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Report No.: RDG170504008C Page 31 of 41

Test Data

Environmental Conditions

Temperature:	23.7°C	
Relative Humidity:	50 %	
ATM Pressure:	97.8 kPa	

^{*} The testing was performed by Kevin Hu on 2017-05-23.

Test mode: Transmitting

Test Result: Compliant. Please refer to following plots.

802.11b: Band Edge, Left Side

Date: 23.MAY.2017 18:20:32

Report No.: RDG170504008C Page 32 of 41

802.11b: Band Edge, Right Side

Date: 23.MAY.2017 18:24:03

802.11g: Band Edge, Left Side

Date: 23.MAY.2017 18:26:17

Report No.: RDG170504008C Page 33 of 41

802.11g: Band Edge, Right Side

Date: 23.MAY.2017 18:31:31

802.11n ht20 Band Edge, Left Side

Date: 23.MAY.2017 18:34:06

Report No.: RDG170504008C Page 34 of 41

802.11n ht20 Band Edge, Right Side

Date: 23.MAY.2017 18:37:26

Report No.: RDG170504008C Page 35 of 41

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3×RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Unknown	RF Cable	Unknown	C-2	Each Time	1

^{*} Statement of Traceability: BACL(Chengdu) attests that all of the calibrations on the equipment items listed above were traceable to NIM or to another internationally recognized National Metrology Institute (NMI), and were compliant with the NIST HB 150-2016 Normative Annex B "Implementation of traceability policy in accredited laboratories".

Test Data

Environmental Conditions

Temperature:	23.7°C	
Relative Humidity:	50 %	
ATM Pressure:	97.8 kPa	

^{*} The testing was performed by Kevin Hu on 2017-05-23.

Report No.: RDG170504008C Page 36 of 41

Test Mode: Transmitting

Test Result: Compliant. Please refer to the following table and plots

Test mode	Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
	Low	2412	-15.99	≤8
802.11b	Middle	2437	-15.83	≤8
	High	2462	-15.41	≤8
	Low	2412	-15.36	≤8
802.11g	Middle	2437	-14.99	≤8
	High	2462	-14.89	≤8
802.11n ht20	Low	2412	-12.38	≤8
	Middle	2437	-11.55	≤8
	High	2462	-11.64	≤8

Power Spectral Density, 802.11b Low Channel

Date: 23.MAY.2017 18:20:14

Report No.: RDG170504008C Page 37 of 41

Power Spectral Density, 802.11b Middle Channel

Date: 23.MAY.2017 18:22:10

Power Spectral Density, 802.11b High Channel

Date: 23.MAY.2017 19:24:22

Report No.: RDG170504008C Page 38 of 41

Power Spectral Density, 802.11g Low Channel

Date: 23.MAY.2017 18:27:25

Power Spectral Density, 802.11g Middle Channel

Date: 23.MAY.2017 18:29:37

Report No.: RDG170504008C Page 39 of 41

Power Spectral Density, 802.11g High Channel

Date: 23.MAY.2017 18:31:02

Power Spectral Density, 802.11n ht20 Low Channel

Date: 23.MAY.2017 18:33:36

Report No.: RDG170504008C Page 40 of 41

Power Spectral Density, 802.11n ht20 Middle Channel

Date: 23.MAY.2017 18:35:41

Power Spectral Density, 802.11n ht20 High Channel

Date: 23.MAY.2017 18:37:09

**** END OF REPORT ****

Report No.: RDG170504008C Page 41 of 41