CMPEN 454 PROJECT-3 Writeup

Pengwen Zhu

Part 1 Theory Questions

Q1.1: Calculating the Jacobian

Assuming the affine warp model defined in Equation 3, derive the expression for the Jacobian Matrix J in terms of the warp parameters $p = [p_1, p_2, p_3, p_4, p_5, p_6]'$.

$$\mathbf{W}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} \mathbf{W}_x \\ \mathbf{W}_y \\ \mathbf{W}_1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} 1 + p_1 & p_3 & p_5 \\ p_2 & 1 + p_4 & p_6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \text{ and,}$$

$$\mathbf{p} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 \end{bmatrix}^T$$

$$egin{aligned} rac{\partial \mathbf{W}}{\partial \mathbf{p}} &= egin{bmatrix} rac{\partial \mathbf{W}_u}{\partial \mathbf{p}_1} & \cdots & rac{\partial \mathbf{W}_u}{\partial \mathbf{p}_6} \ rac{\partial \mathbf{W}_v}{\partial \mathbf{p}_1} & \cdots & rac{\partial \mathbf{W}_v}{\partial \mathbf{p}_6} \end{bmatrix} = egin{bmatrix} u & 0 & v & 0 & 1 & 0 \ 0 & u & 0 & v & 0 & 1 \end{bmatrix} \ L &= \sum_{\mathbf{x}} [\mathbf{T}(x) - \mathbf{I}(\mathbf{W})]^2 \end{aligned}$$

$$\mathbf{J} = \frac{\partial L}{\partial \mathbf{p}} = \frac{\partial L}{\partial \mathbf{I}(\mathbf{W})} \frac{\partial \mathbf{I}(\mathbf{W})}{\partial \mathbf{W}} \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$$

$$= -2 \sum_{\mathbf{x}} [\mathbf{T}(x) - \mathbf{I}(\mathbf{W})] \begin{bmatrix} \frac{\partial \mathbf{I}}{\partial u} & \frac{\partial \mathbf{I}}{\partial v} \end{bmatrix} \begin{bmatrix} u & 0 & v & 0 & 1 & 0 \\ 0 & u & 0 & v & 0 & 1 \end{bmatrix}$$

Q1.2: Computational complexity

Initialization step

First calculate $\nabla \mathbf{T}$, which the runtime is O(n), then calculate $\mathbf{J} = \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ at $\mathbf{p} = \mathbf{0}$. To calculate the $\nabla \mathbf{T} \cdot \frac{\partial \mathbf{W}}{\partial \mathbf{p}}$, since $\nabla \mathbf{T}$ is of dimension $(m \times 2)$ and $\frac{\partial \mathbf{W}}{\partial \mathbf{p}}$ is of dimension (2×6) , this multiplication should be O(n). To calculate the Hessian matrix $\mathbf{H} = \mathbf{J}^{\mathbf{T}} \mathbf{J}$, since \mathbf{J} is of dimension $(m \times 6)$, this multiplication should be $O(n^2)$.

Thus the initialization cost will be $O(n+n^2)=O(n^2)$.

Incremental step

First, calculate the $\mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p}))$ cost should be O(n). Then calculate the cost of $[\mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p})) - \mathbf{T}] = O(n)$.

Then calculate the cost of $\sum_{\mathbf{x}} (\nabla \mathbf{T} \frac{\partial \mathbf{W}}{\partial \mathbf{p}})^{\mathbf{T}} [\mathbf{I}(\mathbf{W}(\mathbf{x}; \mathbf{p})) - \mathbf{T}(\mathbf{x})] = O(n)$, multiply the previous result with the inverse of Hessian to get $\Delta \mathbf{p} = O(n^3)$. Then update the warp function, which is $O(n^2)$

The total time complexity is $O(n+n^3)=O(n^3)$

Part 2 Lucas-Kanade Tracker

Best The best comes from the Lucas Kanade tracker.