Grayscale Image Segmentation with K-Means

Marcos Daniel Calderón-Calderón

August 5, 2019

1 Grayscale Image Segmentation with K-Means

Let $I_{m \times n}$ a grayscale image with m rows and n columns. Choose, randomly, an initial vector of K-means:

$$V = \{m_1, m_2, m_3, \dots, m_K\}.$$
 (1)

For each pixel $x_{i,j} \in I$ $(1 \le i \le m, 1 \le j \le n)$, the euclidean distance, in absolute value, is calculated with each of the elements of the vector S:

$$d_{i,j}^{p} = \mid x_{i,j} - m_p \mid, \ \forall \ m_p \in V, \ 1 \le p \le K.$$
 (2)

In an new image $I'_{m \times n}$, each pixel $x'_{i,j} \in I'$ is initialized with the index p of the value m_p that minimizes the euclidean distance calculated in equation (2):

$$x'_{i,j} = p_{min}. (3)$$

The next step is to calculate a new vector of means V. Each new $m_p \in V$ is calculated by adding all the pixels $x_{i,j} \in I$ assigned to the same mean index stored in I' and dividing the sum with the number of pixels with the same mean index assigned:

$$m_p = \frac{\sum x_{i,j}}{N_p} \quad if \quad x'_{i,j} = p \quad \forall \ m_p \in V.$$
 (4)

Finally, the pixels $x_{i,j}$ of the original image I will be replaced by the value of the mean indicated in the index stored in $x'_{i,j}$, (see Figure 1).

With the new image I calculated in the previous step, and the new vector V calculated in equation (4),the above procedure is iterated until a convergence condition is reached. For example, if the norm of two consecutive vectors: V_i , V_{i-1} is less than a very small given value $\epsilon = 0.002$.

1	2	5	4	80
4	3	4	5	86
200	250	251	244	90
217	213	234	245	90
214	254	255	243	99

(a) Pixels of initial grayscale image I.

1	1	1	1	2
1	1	1	1	2
3	3	3	3	2
3	3	3	3	2
3	3	3	3	2

(a) Image I' with indexes to the nearest mean of V for every pixel in I.

	3-Means vector			
Value:	10	100	200	
Index:	1	2	3	

(b) Initial vector V of 3 means.

10	10	10	10	100
10	10	10	10	100
200	200	200	200	100
200	200	200	200	100
200	200	200	200	100

(b) New image I replacing the pixel value with the nearest mean in V indicated in I'.

Figure 1: Simple example of the K-Means algorithm.

2 Results

2.1 Image "Student"

(a) Original image "Student".

(b) Segmented image with k = 2.

(c) Segmented image with k = 4.

(a) Segmented image with k = 6.

(b) Segmented image with k = 8.

(c) Segmented image with k = 10.

Figure 2: K-Means clustering algorithm applied to image "Student".

2.2 Image "Cup"

Figure 3: K-Means clustering algorithm applied to image "Cup".