Preventing Overfitting in Decision Trees

11 试题

True

1 point
1. (True/False) When learning decision trees, smaller depth USUALLY translates to lower training error.
True
False
2. (True/False) If no two data points have the same input values, we can always learn a decision tree that achieves 0 training error. True False
1 point 3. (True/False) If decision tree T1 has lower training error than decision tree T2, then T1 will always have better test error than T2.

•	False
1 point	
4. Which o	of the following is true for decision trees?
	Model complexity increases with size of the data.
	Model complexity increases with depth.
	None of the above
1 point 5. Pruning	g and early stopping in decision trees is used to
	combat overfitting
	improve training error
	None of the above
1 point 6. Which o	of the following is NOT an early stopping method?
	Stop when the tree hits a certain depth
	Stop when node has too few data points (minimum node "size")
	Stop when every possible split results in the same amount of error reduction
	Stop when best split results in too small of an error

1 point

7.

Consider decision tree T1 learned with minimum node size parameter = 1000. Now consider decision tree T2 trained on the same dataset and parameters, except that the minimum node size parameter is now 100. Which of the following is always true?

/	The depth of T2 >= the depth of T1
✓	The number of nodes in T2 >= the number of nodes in T1
	The test error of T2 <= the test error of T1
\checkmark	The training error of T2 <= the training error of T1

1 point

8.

Questions 8 to 11 refer to the following common scenario:

Imagine we are training a decision tree, and we are at a node. Each data point is (x1, x2, y), where x1,x2 are features, and y is the label. The data at this node is:

x1	x2	у
0	1	+1
1	0	+1
0	1	+1
1	1	-1

What is the classification error at this node (assuming a majority class classifier)?

0.25			
------	--	--	--

1 point
Refer to the scenario presented in Question 8.
9. If we split on x1, what is the classification error?
0.25
1 point
Refer to the scenario presented in Question 8.
10. If we split on x2, what is the classification error?
0.25
1 point
11. Refer to the scenario presented in Question 8.
If our parameter for minimum gain in error reduction is 0.1, do we split or stop early?
Split
Stop early

I, **伟臣 沈**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

了解荣誉准则的更多信息

##