برنامهریزی نیمهمعین برای طراحی الگوریتمهای تقریبی

جلسه نهم: دوگانی (۴)

مرور

کنج محدب بسته و دوگان کنج

4.2.1 Definition. Let $K \subseteq V$ be a nonempty closed set. K is called a closed convex cone if the following two conditions hold.

- (i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.
- (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

كنج محدب بسته و دوگان كنج

4.2.1 Definition. Let $K \subseteq V$ be a nonempty closed set. K is called a closed convex cone if the following two conditions hold.

- (i) For all $\mathbf{x} \in K$ and all nonnegative real numbers λ , we have $\lambda \mathbf{x} \in K$.
- (ii) For all $\mathbf{x}, \mathbf{y} \in K$, we have $\mathbf{x} + \mathbf{y} \in K$.

4.3.1 Definition. Let $K \subseteq V$ be a closed convex cone. The set

$$K^* := \{ \mathbf{y} \in V : \langle \mathbf{y}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}$$

is called the dual cone of K.

مثال: اگر K و L کنج محدب بسته باشند، آنگاه

$$K \oplus L := \{ (\mathbf{x}, \mathbf{y}) \in V \oplus W : \mathbf{x} \in K, \mathbf{y} \in L \}$$

كنج محدب بسته است.

$$(K \oplus L)^* = K^* \oplus L^*.$$

مثال: اگر K و L كنج محدب بسته باشند، آنگاه

$$K \oplus L := \{ (\mathbf{x}, \mathbf{y}) \in V \oplus W : \mathbf{x} \in K, \mathbf{y} \in L \}$$

كنج محدب بسته است.

$$(K \oplus L)^* = K^* \oplus L^*.$$

4.5.2 Definition. Let $A: V \to W$ be a linear operator. A linear operator $A^T: W \to V$ is called an adjoint of A if

$$\langle \mathbf{y}, A(\mathbf{x}) \rangle = \langle A^T(\mathbf{y}), \mathbf{x} \rangle$$
 for all $\mathbf{x} \in V$ and $\mathbf{y} \in W$.

4.5.2 Definition. Let $A: V \to W$ be a linear operator. A linear operator $A^T: W \to V$ is called an adjoint of A if

$$\langle \mathbf{y}, A(\mathbf{x}) \rangle = \langle A^T(\mathbf{y}), \mathbf{x} \rangle$$
 for all $\mathbf{x} \in V$ and $\mathbf{y} \in W$.

4.5.3 Lemma. Let $V = \text{SYM}_n, W = \mathbb{R}^m$, and $A: V \to W$ defined by $A(X) = (A_1 \bullet X, A_2 \bullet X, \dots, A_m \bullet X)$. Then

$$A^T(\mathbf{y}) = \sum_{i=1}^m y_i A_i.$$

تعریف: نمایش ماتریسی عملگرهای خطی

فضای برداری: فضای برداری: عملگرهای خطی:

 $A_{ij}: V_j \to W_i$ V_1, V_2, \dots, V_n W_1, W_2, \dots, W_m

تعریف: نمایش ماتریسی عملگرهای خطی

فضای برداری:

عملگرهای خطی: فضای برداری:

 $A_{ij}: V_j \to W_i$ V_1, V_2, \dots, V_n W_1, W_2, \dots, W_m

$$\begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
\hline
A_{21} & A_{22} & \cdots & A_{2n} \\
\hline
\vdots & \vdots & & \vdots \\
\hline
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{pmatrix}
: V_1 \oplus V_2 \oplus \cdots \oplus V_n \to W_1 \oplus W_2 \oplus \cdots \oplus W_m$$

تعریف: نمایش ماتریسی عملگرهای خطی

عملگرهای خطی:

فضای برداری:

فضای برداری:

 $A_{ij}: V_i \to W_i$

 V_1, V_2, \ldots, V_n W_1, W_2, \ldots, W_m

$$\begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
\hline
A_{21} & A_{22} & \cdots & A_{2n} \\
\hline
\vdots & \vdots & & \vdots \\
\hline
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{pmatrix}
: V_1 \oplus V_2 \oplus \cdots \oplus V_n \to W_1 \oplus W_2 \oplus \cdots \oplus W_m$$

$$\begin{pmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
A_{21} & A_{22} & \cdots & A_{2n} \\
\vdots & \vdots & & \vdots \\
A_{m1} & A_{m2} & \cdots & A_{mn}
\end{pmatrix} = \begin{pmatrix}
\sum_{j=1}^{n} A_{1j}(\mathbf{x}_{j}), \sum_{j=1}^{n} A_{2j}(\mathbf{x}_{j}), \dots, \sum_{j=1}^{n} A_{mj}(\mathbf{x}_{j}) \\
\vdots & \vdots & \vdots \\
A_{mn} & A_{mn} & A_{mn}
\end{pmatrix}$$

4.5.2 Definition. Let $A: V \to W$ be a linear operator. A linear operator $A^T: W \to V$ is called an adjoint of A if

$$\langle \mathbf{y}, A(\mathbf{x}) \rangle = \langle A^T(\mathbf{y}), \mathbf{x} \rangle$$
 for all $\mathbf{x} \in V$ and $\mathbf{y} \in W$.

/	$^{\prime}$ A_{11}	A_{12}		A_{1n}	Τ	A_{11}^T	A_{21}^T	 A_{m1}^T
	A_{21}	A_{22}		A_{2n}	=	A_{12}^T	A_{22}^T	 A_{m2}^T
	:	:		:		:	÷	:
	A_{m1}	A_{m2}	• • • •	A_{mn}		$oxed{A_{1n}^T}$	A_{2n}^T	 A_{mn}^{T}

قضيه جداسازي

4.4.2 Theorem. Let $K \subseteq V$ be a closed convex cone, and let $\mathbf{b} \in V \setminus K$. Then there exists a vector $\mathbf{y} \in V$ such that

$$\langle \mathbf{y}, \mathbf{x} \rangle \geq 0$$
 for all $\mathbf{x} \in K$, and $\langle \mathbf{y}, \mathbf{b} \rangle < 0$.

هدف نهایی:

(D) Minimize
$$\langle \mathbf{b}, \mathbf{y} \rangle$$

subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$
 $\mathbf{y} \in L^*$.

(P) Maximize $\langle \mathbf{c}, \mathbf{x} \rangle$ subject to $\mathbf{b} - A(\mathbf{x}) \in L$ $\mathbf{x} \in K$.

لم فاركاش:

پایینی شدنی حدی است XOR بالایی شدنی

$$A^T(\mathbf{y}) \in K^*, \langle \mathbf{b}, \mathbf{y} \rangle < 0$$

 $A(\mathbf{x}) = \mathbf{b}, \mathbf{x} \in K$

مرحله ١:

(D) Minimize
$$\langle \mathbf{b}, \mathbf{y} \rangle$$
 subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

(P)
$$\frac{\text{Maximize} \quad \langle \mathbf{c}, \mathbf{x} \rangle}{\text{subject to} \quad \mathbf{b} - A(\mathbf{x}) \in L}$$

 $\mathbf{x} \in K.$

$$c = 0 \qquad \qquad L = \{0\}$$

لم فاركاش:

پایینی شدنی حدی است XOR بالایی شدنی

 $A^T(\mathbf{y}) \in K^*, \langle \mathbf{b}, \mathbf{y} \rangle < 0$

 $A(\mathbf{x}) = \mathbf{b}, \mathbf{x} \in K$

دوگانی قوی:

تحت شرایطی،

(P) شدنی حدی است با جواب کراندار

اگر و فقط اگر (D) شدنی است با جوا*ب کر*اندار

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

(P) Maximize $\langle \mathbf{c}, \mathbf{x} \rangle$ subject to $\mathbf{b} - A(\mathbf{x}) \in L$ $\mathbf{x} \in K$.

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

- $\begin{array}{ll} \text{(D)} & \text{Minimize} & \langle \mathbf{b}, \mathbf{y} \rangle \\ & \text{subject to} & A^T(\mathbf{y}) \mathbf{c} \in K^* \\ & \mathbf{y} \in L^*. \end{array}$
- **4.7.3 Theorem.** The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

(P) Maximize $\langle \mathbf{c}, \mathbf{x} \rangle$ subject to $\mathbf{b} - A(\mathbf{x}) \in L$ $\mathbf{x} \in K$. $\begin{array}{ll} \text{(D)} & \text{Minimize} & \langle \mathbf{b}, \mathbf{y} \rangle \\ & \text{subject to} & A^T(\mathbf{y}) - \mathbf{c} \in K^* \\ & \mathbf{y} \in L^*. \end{array}$

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

 β اگر D شدنی باشد: مقدار

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

• اگر D شدنی باشد: مقدار
$$\theta$$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

$$\boldsymbol{\beta}$$
 اگر D شدنی باشد: مقدار $\boldsymbol{\beta}$

$$\left(\begin{array}{c|c}
A^T & -\mathbf{c} \\
\hline
\text{id} & \mathbf{0} \\
\hline
0 & 1
\end{array}\right) (\mathbf{y}, z) \in K^* \oplus L^* \oplus \mathbb{R}_+ \quad \Rightarrow \quad \langle (\mathbf{b}, -\beta), (\mathbf{y}, z) \rangle \ge 0$$

شدنی حدی است:

$$\left(\frac{A \mid \operatorname{id} \mid 0}{-\mathbf{c}^T \mid \mathbf{0}^T \mid 1}\right) (\mathbf{x}, \mathbf{x}', z) = (\mathbf{b}, -\beta), \ (\mathbf{x}, \mathbf{x}', z) \in (K^* \oplus L^* \oplus \mathbb{R}_+)^* = K \oplus L \oplus \mathbb{R}_+$$

(P)

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

اگر
$$D$$
 شدنی باشد: مقدار = eta ،

$$\begin{pmatrix}
A^T & -\mathbf{c} \\
\hline
 & \mathbf{d} & \mathbf{0} \\
\hline
 & 0 & 1
\end{pmatrix} (\mathbf{y}, z) \in K^* \oplus L^* \oplus \mathbb{R}_+ \quad \Rightarrow \quad \langle (\mathbf{b}, -\beta), (\mathbf{y}, z) \rangle \ge 0$$

شدنی حدی است:

$$\left(\begin{array}{c|c} A & \operatorname{id} & 0 \\ \hline -\mathbf{c}^T & \mathbf{0}^T & 1 \end{array}\right) (\mathbf{x}, \mathbf{x}', z) = (\mathbf{b}, -\beta), \ (\mathbf{x}, \mathbf{x}', z) \in (K^* \oplus L^* \oplus \mathbb{R}_+)^* = K \oplus L \oplus \mathbb{R}_+$$

پس (P) شدنی حدی است با مقداری بیشتر

(P)

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

اگر
$$D$$
 شدنی باشد: مقدار = β ،

شدنی حدی است:

$$\left(\frac{A \mid \text{id} \mid 0}{-\mathbf{c}^T \mid \mathbf{0}^T \mid 1}\right) (\mathbf{x}, \mathbf{x}', z) = (\mathbf{b}, -\beta), \ (\mathbf{x}, \mathbf{x}', z) \in (K^* \oplus L^* \oplus \mathbb{R}_+)^* = K \oplus L \oplus \mathbb{R}_+$$

(بنابر دوگانی ضعیف:) برنامهریزی کنج (P) یس (P) شدنی حدی است با مقداری بیشتر β شدنی است یا مقداری برابر یا

 β مساوى

Maximize $\langle \mathbf{c}, \mathbf{x} \rangle$ (P) subject to $\mathbf{b} - A(\mathbf{x}) \in L$ $\mathbf{x} \in K$.

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

اگر D شدنی باشد: اگر P شدنی حدی باشد:

• فرض خلف (D) شدنی نیست.

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

اگر D شدنی باشد:اگر P شدنی حدی باشد:

• فرض خلف (D) شدنی نیست.

$$\left(\begin{array}{c|c} A^T & -\mathbf{c} \\ \hline \mathrm{id} & 0 \end{array} \right) (\mathbf{y},z) \in K^* \oplus L^* \quad \Rightarrow \quad \langle (\mathbf{0},-1),(\mathbf{y},z) \rangle \geq 0.$$
 نشدنی

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

اگر D شدنی باشد: اگر P شدنی حدی باشد:

• فرض خلف (D) شدنی نیست.

$$\left(\begin{array}{c|c} A^T & -\mathbf{c} \\ \hline \mathrm{id} & 0 \end{array}\right) (\mathbf{y},z) \in K^* \oplus L^* \quad \Rightarrow \quad \langle (\mathbf{0},-1),(\mathbf{y},z) \rangle \geq 0.$$
 نشدنی حدی است:

$$\left(\begin{array}{c|c} A & \mathrm{id} \\ \hline -\mathbf{c}^T & 0 \end{array}\right) (\mathbf{x}, \mathbf{x}') = (\mathbf{0}, -1), \ (\mathbf{x}, \mathbf{x}') \in (K^* \oplus L^*)^* = K \oplus L$$

Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

(P)

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.3 Theorem. The dual program (D) is feasible and has a finite value β if and only if the primal program (P) is limit-feasible and has a finite limit value γ . Moreover, $\beta = \gamma$.

> اگر D شدنی باشد: اگر P شدنی حدی باشد: • فرض خلف (D) شدنی نیست.

$$\left(\begin{array}{c|c} A^T & -\mathbf{c} \\ \hline \mathrm{id} & 0 \end{array} \right) (\mathbf{y},z) \in K^* \oplus L^* \quad \Rightarrow \quad \langle (\mathbf{0},-1),(\mathbf{y},z) \rangle \geq 0.$$
 نشدنی

شدنی حدی است:

$$\left(\begin{array}{c|c}
A & \mathrm{id} \\
\hline
-\mathbf{c}^T & 0
\end{array}\right) (\mathbf{x}, \mathbf{x}') = (\mathbf{0}, -1), \ (\mathbf{x}, \mathbf{x}') \in (K^* \oplus L^*)^* = K \oplus L$$

این جواب + یک جواب حدی برای (P): جوابی بهتر برای (P)

دوگانی برنامهریزی نیمهمعین

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

 $\begin{array}{ll} \text{(D)} & \text{Minimize} & \langle \mathbf{b}, \mathbf{y} \rangle \\ & \text{subject to} & A^T(\mathbf{y}) - \mathbf{c} \in K^* \\ & \mathbf{y} \in L^*. \end{array}$

4.7.1 Theorem. If the primal program (P) is feasible, has a finite value γ and has an interior point $\tilde{\mathbf{x}}$, then the dual program (D) is also feasible and has the same value γ .

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

4.7.1 Theorem. If the primal program (P) is feasible, has a finite value γ and has an interior point $\tilde{\mathbf{x}}$, then the dual program (D) is also feasible and has the same value γ .

maximize $C \bullet X$ subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$ $X \succeq 0.$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

 $\begin{array}{ll} \text{(D)} & \text{Minimize} & \langle \mathbf{b}, \mathbf{y} \rangle \\ & \text{subject to} & A^T(\mathbf{y}) - \mathbf{c} \in K^* \\ & \mathbf{y} \in L^*. \end{array}$

4.7.1 Theorem. If the primal program (P) is feasible, has a finite value γ and has an interior point $\tilde{\mathbf{x}}$, then the dual program (D) is also feasible and has the same value γ .

maximize
$$C \bullet X$$

subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$
 $X \succ 0.$

 $L = \{\mathbf{0}\}$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$

subject to $\mathbf{b} - A(\mathbf{x}) \in L$
 $\mathbf{x} \in K$.

 $\begin{array}{ll} \text{(D)} & \text{Minimize} & \langle \mathbf{b}, \mathbf{y} \rangle \\ & \text{subject to} & A^T(\mathbf{y}) - \mathbf{c} \in K^* \\ & \mathbf{y} \in L^*. \end{array}$

4.7.1 Theorem. If the primal program (P) is feasible, has a finite value γ and has an interior point $\tilde{\mathbf{x}}$, then the dual program (D) is also feasible and has the same value γ .

maximize
$$C \bullet X$$

subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$
 $X \succ 0.$

 $L = \{\mathbf{0}\}$

 $K = PSD_n$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{b} - A(\mathbf{x}) \in L$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{x} \in K$.

(P) maximize
$$C \bullet X$$
 subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$
$$K = PSD_n$$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{b} - A(\mathbf{x}) \in L$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

(P) maximize $C \bullet X$ subject to $A_i \bullet X = b_i$, $i = 1, 2, ..., m$

$$L = \{\mathbf{0}\}$$

 $K = PSD_n$

(D)
$$\operatorname{Minimize} \langle \mathbf{b}, \mathbf{y} \rangle$$

 $X \succeq 0$.

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{b} - A(\mathbf{x}) \in L$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

(P) maximize $C \bullet X$ subject to $A_i \bullet X = b_i$, $i = 1, 2, ..., m$ $L = \{\mathbf{0}\}$ $K = \mathrm{PSD}_n$

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{b} - A(\mathbf{x}) \in L$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

(P) maximize $C \bullet X$ subject to $A_i \bullet X = b_i$, $i = 1, 2, ..., m$ $L = \{\mathbf{0}\}$ $X \succeq 0$.

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$

$$K = PSD_n$$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{b} - A(\mathbf{x}) \in L$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ $\mathbf{y} \in L^*$.

(P) maximize $C \bullet X$ subject to $A_i \bullet X = b_i$, $i = 1, 2, \dots, m$
$$K = PSD_n$$
(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$
$$K^* = ???$$

$$\mathbf{y} \in \mathbb{R}^m$$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{b} - A(\mathbf{x}) \in L$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ subject to $A \in K$.

(P) maximize $C \bullet X$ subject to $A_i \bullet X = b_i$, $i = 1, 2, \dots, m$

$$X \succeq 0.$$

(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$

$$L = \{\mathbf{0}\}$$

$$K = PSD_n$$

$$\sum_{i=1}^{m} y_i A_i - C \in K^*$$

$$y \in \mathbb{R}^m$$

$$L^* = \mathbb{R}^m$$

 $K^* = ???$

(P) Maximize
$$\langle \mathbf{c}, \mathbf{x} \rangle$$
 subject to $\mathbf{b} - A(\mathbf{x}) \in L$ subject to $A^T(\mathbf{y}) - \mathbf{c} \in K^*$ subject to $A \in K$.

(P) maximize $C \bullet X$ subject to $A_i \bullet X = b_i$, $i = 1, 2, \dots, m$
$$K = PSD_n$$
(D) Minimize $\langle \mathbf{b}, \mathbf{y} \rangle$

 $K^* = ???$

 $L^* = \mathbb{R}^m$

$$\sum_{i=1}^{m} y_i A_i - C \in \mathrm{PSD}_n$$
$$y \in \mathbb{R}^m$$

(P) maximize
$$C \bullet X$$
 subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$ $X \succeq 0.$

(D) Minimize
$$\langle \mathbf{b}, \mathbf{y} \rangle$$

$$\sum_{i=1}^{m} y_i A_i - C \in \text{PSD}$$

$$y \in \mathbb{R}^m$$

(P) maximize
$$C \bullet X$$

subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$
 $X \succ 0.$

4.1.1 Theorem. If the semidefinite program (4.1) is feasible and has a finite value γ , and if there is a positive definite matrix \tilde{X} such that $A(\tilde{X}) = \mathbf{b}$, then the dual program

minimize
$$\mathbf{b}^T \mathbf{y}$$

subject to $\sum_{i=1}^m y_i A_i - C \succeq 0$ (4.2)

(D)

Minimize

is feasible and has finite value $\beta = \gamma$.

$$\langle \mathbf{b}, \mathbf{y} \rangle$$

$$\sum_{i=1}^{m} y_i A_i - C \in \mathrm{PSD}_n$$

$$y \in \mathbb{R}^m$$

قضىه:

هر ماتریس متقارن M حقیقی را میتوان به صورت زیر نوشت:

$$M = \sum_{i=1}^n \lambda_i \beta_i \beta_i^T.$$

که eta_i بردار ویژههای M هستند و λ_i مقدار ویژه مربوط به بردار ویژه M است.

قضيه:

هر ماتریس متقارن M حقیقی را میتوان به صورت زیر نوشت:

$$M = \sum_{i=1}^{n} \lambda_i \beta_i \beta_i^T.$$

که eta_i بردار ویژههای $oldsymbol{M}$ هستند و λ_i مقدار ویژه مربوط به بردار ویژه $oldsymbol{M}$ است.

قضيه:

اگر ضرب BA معنی دار باشد:

$$Tr(AB) = Tr(BA)$$

قضیه: اگر ضرب BA معنی دار باشد:

$$Tr(AB) = Tr(BA)$$

قضیه: اگر ضرب BA معنی دار باشد:

$$\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$$

$$\sum_{i,j} a_{ij} b_{ji}$$

قضیه: اگر ضرب BA معنی دار باشد:

$$Tr(AB) = Tr(BA)$$

$$\sum_{i,j} a_{ij} b_{ji}$$

$$\sum_{i,j} b_{ij} a_{ji}$$

- $X \in \mathrm{PSD}^* < = اگر X$ مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

- $X \in PSD^* <$ اگر X مثبت نیمهمعین اگر X
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

$$X \bullet Y = \operatorname{Tr} \left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y \right)$$

- $X \in PSD^* <= 1$ اگر اگر کا مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

$$X \bullet Y = \operatorname{Tr}\left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i} \beta_{i}^{T} Y)$$

- $X \in PSD^* <= اگر X$ مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

$$X \bullet Y = \operatorname{Tr}\left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i} \beta_{i}^{T} Y)$$
$$= \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i}^{T} Y \beta_{i})$$

- $X \in PSD^* <= اگر X$ مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

$$X \bullet Y = \operatorname{Tr}\left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i} \beta_{i}^{T} Y)$$
$$= \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i}^{T} Y \beta_{i}) = \sum_{i=1}^{n} \lambda_{i} \beta_{i}^{T} Y \beta_{i} \geq 0$$

- $X \in PSD^* <= اگر X$ مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

$$X \bullet Y = \operatorname{Tr}\left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i} \beta_{i}^{T} Y)$$
$$= \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i}^{T} Y \beta_{i}) = \sum_{i=1}^{n} \lambda_{i} \beta_{i}^{T} Y \beta_{i} \geq 0$$

اگر $M <= M \in \mathrm{PSD}^*$ مثبت نیمه معین

$$0 \le M \bullet \mathbf{x} \mathbf{x}^T$$

 PSD^* تعریف

- $X \in PSD^* <= اگر X$ مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

$$X \bullet Y = \operatorname{Tr}\left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i} \beta_{i}^{T} Y)$$
$$= \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i}^{T} Y \beta_{i}) = \sum_{i=1}^{n} \lambda_{i} \beta_{i}^{T} Y \beta_{i} \geq 0$$

اگر $M <= M \in PSD^*$ مثبت نیمهمعین

$$0 \le M \bullet \mathbf{x} \mathbf{x}^T = \operatorname{Tr}((M\mathbf{x})\mathbf{x}^T)$$

تعریف *PSD

- $X \in PSD^* <=$ اگر X مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای

$$X \bullet Y = \operatorname{Tr}\left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i} \beta_{i}^{T} Y)$$
$$= \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i}^{T} Y \beta_{i}) = \sum_{i=1}^{n} \lambda_{i} \beta_{i}^{T} Y \beta_{i} \geq 0$$

اگر $M <= M \in PSD^*$ مثبت نیمهمعین

$$0 \le M \bullet \mathbf{x} \mathbf{x}^T = \text{Tr}((M\mathbf{x})\mathbf{x}^T) = \text{Tr}(\mathbf{x}^T M\mathbf{x})$$

تعریف *PSD

- $X \in PSD^* <=$ اگر X مثبت نیمهمعین
- $X \bullet Y \ge 0$ معادلا: به ازای هر PSD معادلا: به ازای م

$$X \bullet Y = \operatorname{Tr}\left(\sum_{i=1}^{n} \lambda_{i} \beta_{i} \beta_{i}^{T} Y\right) = \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i} \beta_{i}^{T} Y)$$
$$= \sum_{i=1}^{n} \lambda_{i} \operatorname{Tr}(\beta_{i}^{T} Y \beta_{i}) = \sum_{i=1}^{n} \lambda_{i} \beta_{i}^{T} Y \beta_{i} \geq 0$$

اگر $M <= M \in PSD^*$ مثبت نیمهمعین

$$0 \le M \bullet \mathbf{x} \mathbf{x}^T = \text{Tr}((M\mathbf{x})\mathbf{x}^T) = \text{Tr}(\mathbf{x}^T M\mathbf{x}) = \mathbf{x}^T M\mathbf{x}$$

تعریف *PSD

الگوريتم هازان

برنامهریزی خطی روی اسپکتراهدرون

maximize $C \bullet X$ subject to $A_i \bullet X \leq b_i, \quad i = 1, 2, \dots, m$ $\operatorname{Tr}(X) = 1$ $X \succeq 0.$

maximize
$$C \bullet X$$

subject to $A_i \bullet X \leq b_i, \quad i = 1, 2, \dots, m$
 $\operatorname{Tr}(X) = 1$
 $X \succeq 0.$

5.1.1 Theorem. Let γ_{opt} be the value of the semidefinite program (5.1), and let $\varepsilon \in (0,1]$ be given. Hazan's algorithm either finds a matrix $\tilde{X} \in \text{Spect}_n$ such that

$$\frac{\gamma_{\text{opt}} - C \bullet \tilde{X}}{\|C\|_F} \le 2\varepsilon, \quad \frac{A_i \bullet \tilde{X} - b_i}{\|A_i\|_F} \le \varepsilon, \quad i = 1, 2, \dots, m,$$

or correctly reports that (5.1) has no feasible solution. The number of arithmetic operations is bounded by

$$O\left(\frac{N(\log n)(\log m)\log(1/\varepsilon)}{\varepsilon^3}\right)$$

with high probability, assuming that $1/\varepsilon$ is bounded by some fixed polynomial function of n.

الگوريتم نقطه دروني

برنامهريزى نيمهمعين

ايده:

Maximize
$$f_{\mu}(X) := C \bullet X + \mu \ln \det X$$

subject to $A_i \bullet X = b_i, \quad i = 1, 2, \dots, m,$
 $X \succ 0,$ (6.2)

پایان