Charla: Fuerzas y Movimiento

Introducción

Se mostrarán distintas experiencias de Mecánica, en las cuales podremos analizar el movimiento de objetos, las fuerzas que afectan el estado de movimiento de objetos y las energías involucradas en el movimiento.

Antes de comenzar las demostraciones, seguir los pasos:

- 1. Preparar todas las demostraciones (en lo possible) antes de realizer la intervanción.
- 2. Saludar a los(las) asistentes a la charla y presentación del(la) charlista y del Grupo de Divulgación "Física en Acción".
- 3. Entrega a los (las) estudiantes de "Encuesta sobre percepción de la Física" (para que la completen mientras se preparan las demostraciones). (5 minutos para contestar)
- 4. Realizar una breve explicación sobre los fenómenos físicos y leyes subyacentes a las demostraciones que se van a presenter (a modo de motivación para realizar tales experimentos).
- 5. Realizar una serie de "preguntas activadoras" sobre Fuerzas y Movimiento dirigidas hacia los(las) estudiantes para dar comienzo a la actividad. Por ejemplo:
 - i) Según tu creencia, ¿qué son las fuerzas?
 - ii) ¿Cómo percibes las fuerzas sobre ti (cuando estás quieto(a), cuando estás moviéndote?
 - iii) ¿Crees que las fuerzas afectan de alguna manera al movimiento de un objeto?
 - iv) Según tu creencia, ¿qué es el movimiento?
 - v) ¿Qué movimientos realizas durante el día?

<u>NOTA:</u> La interacción con los(las) estudiantes es Socrática (ser un **facilitador** que genera diálogo a través de preguntas):

*Si un(a) estudiante le hace una pregunta, usted responde con otra pregunta (orientadora) y abre la discusión a la clase.

**Si los(las) estudiantes están muy confundidos y no logran comprender la física subyacente al fenómeno, se les explica.

Dem1: Caída libre

Contenidos:

Materiales y/o equipos:

Duración:

Caída libre de objetos.

Hoja rígida, bolita velcro, bolita metal, plástico burbujas (para recibir los objetos cayendo).

10 minutos.

Objetivo de Enseñanza:

- Mostrar la caída libre de objetos de distinta geometría y distinta masa, considerando distintas alturas.
- Comparar la caída libre de objetos de diferente masa y geometría, considerando distintas alturas.

Objetivo de Aprendizaje:

- Reconocer que todos los objetos caen con igual aceleración gravitacional g, independientemente de su masa.
- Reconocer que dependiendo de la geometría del objeto que cae, el roce con el aire puede afectar en menor o mayor medida su caída.

<u>Nota:</u> caída libre se refiere al movimiento de un cuerpo bajo la **única acción** de un campo gravitatorio. Esta definición formal excluye a todas las caídas reales influenciadas en mayor o menor medida por el Roce con el aire, así como a cualquier otra que tenga lugar dentor de un fluido; sin embargo, es frecuente también referirse **coloquialmente** a éstas como caídas libres, aunque los efectos de la viscosidad del medio no sean despreciables. El concepto es aplicable también a objetos en movimiento vertical ascendente sometidos a la **acción desaceleradora** de la gravedad, tales como un disparo vertical; o a cualquier objeto (satélites naturales o artificiales, planetas, etc.) en **órbita** alrededor de un cuerpo celeste. Otros sucesos referidos también como caída libre lo constituyen las trayectorias geodésicas en el espacio-tiempo, descritas en la teoría de la relatividad general.

Secuencia didáctica:

Inicio: preguntas para averiguar conocimientos previos, confusiones, o predicciones

Desarrollo: pasos a seguir, preguntas durante la actividad

Cierre: resumen de la actividad, preguntas para evidenciar aprendizaje

Preparación previa:

1. Antes de ejecutar las distintas caídas de objetos, realizar las siguientes preguntas:

- a. Si dejo caer dos objetos de igual masa desde la misma altura y al mismo tiempo, ¿alguno de los dos llega primero al suelo? O ¿ambos llegan al suelo al mismo tiempo?.
- b. Si dejo caer dos objetos de distinta masa desde la misma altura y al mismo tiempo, ¿alguno de los dos llega primero al suelo? O ¿ambos llegan al suelo al mismo tiempo?.
- c. Si dejo caer una bolita sólida y una hoja desde la misma altura y al mismo tiempo, ¿alguno de los dos objetos llega primero al suelo? O ¿ambos llegan al suelo al mismo tiempo?.

- Comience dejando caer desde el reposo y a cierta altura razonable dos objetos de igual masa (o parecida masa). Pida a los(as) estudiantes que le pasen objetos de igual masa.
- 2. Comente los resultados. (1 minuto)
- 3. Luego, entregue a los(as) estudiantes dos bolitas de distinta masa pero igual geometría para que evidencien la diferencia de masa. (2 minutos)
- 4. Mientras los(as) estudiantes revisan las bolitas, coloque el "plástico de burbujas" en el suelo para recibir a las bolitas cuando caigan (como protección).
- 5. Deje caer desde el reposo y a cierta altura razonable ambas bolitas de distinta masa.
- 6. Comente los resultados. (1 minuto)
- 7. Tome una hoja y dóblela tal que quede rígida (que no se doble durante la caída).
- 8. Deje caer desde el reposo y a cierta altura razonable ambos objetos (la bolita de metal y la hoja doblada), recuerde que el plástico de burbujas siempre debe recibir a los objetos que caen para que éstos no se rompan. OJO: la hoja doblada debe caer de tal modo que su superficie **NO** afecte la caída libre.
- 9. Repita el paso (8), pero ahora deje caer la hoja de tal modo que su superficie **SÍ** afecte la caída libre.
- 10. Comente los resultados. (1 minuto)
- 11. Una vez realizadas todas las demostraciones, puede discutir las siguientes preguntas con los(as) estudiantes: (cierre)
 - a. ¿por qué creen que pasa esto?.
 - b. ¿Qué cantidad(es) física(s) está(n) afectando a la caída libre de los objetos?.
 - c. ¿Importa la masa de cada objeto en la caída libre?.
 - d. ¿Importa la geometría de cada objeto en la caída libre?.
 - e. ¿La superficie del objeto que cae afecta a su velocidad de caída?.
 - f. Si crees que la superficie afecta a la caída de los objetos, ¿por qué razón crees que afecta?, ¿cómo crees tú que afecta?.

- g. ¿Por qué los paracaidistas deben abrir su paracaídas en cierto momento de su caída?.
- h. ¿Qué característica del paracaídas hace que el(la) paracaidista sobreviva en su caída hacia la Tierra?.
- i. ¿Cómo es la geometría del paracaídas?.
- j. ¿Existe alguna relación entre la "aceleración de gravedad de la Tierra" y la velocidad que lleva cada objeto durante la caída libre?.
- k. ¿Existe alguna relación entre la "aceleración de gravedad de la Tierra" y la masa de cada objeto?.
- I. ¿Existe alguna fuerza asociada a la caída libre de los cuerpos en la Tierra y que se relacione de alguna manera con la aceleración de gravedad y la masa del objeto cayendo?.

Dem2: CM1 – doble cono y cilindro

Contenidos:

Centro de masa de objetos. Centro geométrico de objetos. Centro de gravedad de objetos.

Materiales y/o equipos:

Doble-cono de madera. Cilindro de madera. Doble-riel inclinado.

Duración:

10 minutos.

Objetivo de Enseñanza:

- Mostrar el comportamiento de objetos de distinta geometría en relación a la ubicación de su CM.
- Comparar el "movimiento aparente" de cada objeto versus el movimiento de su CM.
- Discutir los conceptos de CM, CG y CGeom; y bajo qué condiciones éstos coinciden en un mismo punto.
- Discutir y mostrar distintas situaciones en donde interviene el CM del cuerpo humano.

Objetivo de Aprendizaje:

- Relacionar los conceptos de CM, CG, y CGeom.
- Reconocer situaciones en las que intervienen estos conceptos en el movimiento y en el equilibrio de objetos y del propio cuerpo humano.
- Identificar la "aparente" trayectoria que recorre un objeto versus la trayectoria que recorre su CM.

Secuencia didáctica:

Inicio: preguntas para averiguar conocimientos previos, confusiones, o predicciones

Desarrollo: pasos a seguir, preguntas durante la actividad

Cierre: resumen de la actividad, preguntas para evidenciar aprendizaje

Preparación previa:

1. Discutir con los(as) estudiantes sobre el concepto de Equilibrio de un objeto extendido regular o irregular (cubos, esferas, cilindros, nuestro cuerpo, etc.) y cómo el CM/CG juega un rol importante.

2. Mostrar (usando su propio cuerpo o una silla) posiciones de equilibrio estático, posiciones fuera del equilibrio estático (comenzar a rotar/trasladarse) y relacionarlo con el concepto de CM/CG.

NOTAS para el(la) charlista:

- a. Un objeto está en equilibrio cuando su CG/CM se encuentra justo arriba y dentro de su base de apoyo (punto de soporte).
- b. Un objeto apoyado sobre una base plana estará en equilibrio estable si la vertical que pasa por el CG corta a la base de apoyo, es decir, el CG se proyecta verticalmente (cae) dentro de la base de apoyo.
- c. Además, si el cuerpo se aleja ligeramente de la posición de equilibrio, aparecerá un "momento restaurador" y recuperará la posición de equilibrio inicial.
- d. No obstante, si se aleja mucho de la posición de equilibrio, el CG puede caer fuera de la base de apoyo y, en estas condiciones, no habrá un "momento restaurador" y el cuerpo abandonará definitivamente la posición de equilibrio inicial mediante una **rotación** que le llevará a una nueva posición de equilibrio.
- e. El CG/CM puede quedar ubicado fuera del punto de soporte, en este caso el cuerpo girará fuera de su posición de equilibrio.
- f. Si asumimos que la aceleración de gravedad (**g**) es uniforme sobre todo el cuerpo, entonces el CG coincide con el CM.
- g. Para un objeto homogéneo, el CG se encuentra ubicado en su CGeom.
- h. <u>CG:</u> El Peso se distribuye en todo nuestro cuerpo, pero podemos suponer que todo el Peso (Peso Neto) se concentra en un punto llamado **centro de gravedad CG.**
- i. <u>CM:</u> el **centro de masa CM** es el punto en donde se ubica la masa total del cuerpo. Podemos calcular con una expresión simple la "posición promedio" del CM de un objeto.

j. <u>CGeom:</u> el **centro geométrico CGeom**, es el centro de un objeto de acuerdo exclusivamente a su geometría, sin tener otras consideraciones.

Pasos a seguir durante la demostración:

- 1. Ubicar el doble riel inclinado sobre la mesa y antes de realizar la demostración con el cilindro, hacer las preguntas activadoras:
 - a. ¿Qué crees que pasará cuando suelte el cilindro de madera desde la parte más alta del doble-riel?.
 - b. ¿Qué crees que pasará cuando suelte el cilindro de madera desde la parte más baja del doble-riel?.
- 2. Realizar la demostración y Comentar los resultados. (1 minuto)
- 3. Antes de mostrar el movimiento del doble-cono, hacer las siguientes preguntas:
 - a. ¿Qué va a pasar cuando suelte el doble-cono desde la parte más alta del doble-riel?.
 - b. ¿Ocurrirá lo mismo que en el caso del cilindro?.
 - c. ¿Qué crees que pasará cuando suelte el doble-cono de madera desde la parte más baja del doble-riel?.
- 4. Una vez realizada la demostración:
 - a. ¿Por qué se produce el efecto observado cuando suelto el doble-cono?.
 - b. ¿Tendrá algo que ver la configuración de los rieles?.
 - c. ¿Tendrá algo que ver la posición del CM/CG del doble-cono, respecto al suelo/mesa/doble-riel?.

Dem3: CM2 - Paloma que desafía a la gravedad

Contenidos:

CM de un objeto irregular. CM ubicado dentro y fuera del objeto. **Materiales:**

Paloma de plástico.

Duración:

10 minutos.

Objetivo de Enseñanza:

- Mostrar un objeto irregular equilibrándose de manera anti-intuitiva.
- Discutir la relación que hay entre el estado de equilibrio estático del objeto y la ubicación del CG/CM y del punto pivote.
- Analizar la relación entre la ubicación del CG/CM de un objeto y el punto de soporte (pivote) del mismo; y cómo afecta a la rotación del objeto en torno al pivote.

Objetivo de Aprendizaje:

- Reconocer los conceptos: punto pivote, equilibrio estático, CG/CM.
- Relacionar el estado de equilibrio estático de un objeto con la ubicación del punto de soporte (pivote) del mismo y la ubicación de su CG/CM.
- Relacionar el comienzo de la rotación de un objeto en torno a un punto pivote con la ubicación del CG/CM del mismo.

Secuencia didáctica:

Inicio: preguntas para averiguar conocimientos previos, confusiones, o predicciones **Desarrollo**: pasos a seguir, preguntas durante la actividad

Cierre: resumen de la actividad, preguntas para evidenciar aprendizaje

Preparación previa:

- 1. Antes de comenzar la actividad hacer las preguntas:
 - a. ¿Por qué podemos mantenernos parados de pie sin caernos?.
 - b. Si somos capaces de mantenernos en equilibrio de pie, ¿por qué cuando nos sentamos, y un chistoso nos quita justo la silla, nos caemos?.
 - c. Según tu creencia, ¿cómo la física puede responder a ese hecho?.
 - d. ¿Existe alguna relación entre nuestra masa distribuida y la fuerza "Peso" que afecta a todo nuestro cuerpo?.
 - e. ¿Cómo se relacionan el CG y el CM de nuestro cuerpo?.
 - f. ¿Qué crees que pasará con la Paloma cuando intente equilibrarla sobre su pico?. ¿por qué crees eso?.

- 1. Equilibrar la Paloma de plástico sobre su pico en alguna esquina de mesa.
- 2. Una vez que se realiza la demostración hacer las preguntas:
 - a. ¿Dónde está el CG/CM de la Paloma?. ¿Por qué?.
 - b. ¿Cómo se relaciona el CM/CG de la paloma con el punto pivote?.
 - c. ¿Qué ocurriría si el CM/CG de la Paloma estuviera fuera de la vertical (imaginaria) que pasa por el punto pivote?.
 - d. ¿Qué debe ocurrir con la ubicación del CM/CG de la Paloma para que ésta comience a rotar en torno al punto pivote (y se caiga)?.

3. NOTA para el(la) charlista:

- a. Cuando intentas equilibrar un objeto, si el punto de apoyo (punto pivote) NO está ubicado en el CG, entonces el objeto girará en el sentido de las agujas del reloj o en el sentido contrario a las agujas del reloj, dependiendo de dónde se ejerza mayor Torque.
- b. Sin embargo, si el punto pivote está en la misma línea vertical que el CG entonces el objeto, sin importar la forma, se va a equilibrar.
- c. Estará en equilibrio estable si el CG del objeto se encuentra **debajo** del punto pivote.
- d. Pero, si el CG está por **encima** del punto pivote, incluso una ligera perturbación lo desequilibrará (inestabilidad).
- e. Si se desea tener equilibrio estable, el CG de este conjunto debe estar **por debajo** del punto pivote.
- f. En la figura, el punto pivote es donde el mondadientes descansa sobre el borde del vaso. El CG debe estar en el espacio vacío entre los dos tenedores y por debajo del punto pivote para lograr la estabilidad.

Dem4: CM en movimiento: escalera con slinky

Contenidos:

CM en movimiento. Energía de un objeto bajando por una escalera.

Variación de masa.

Materiales:

Escalerita de madera. Slinky.

Duración:

10 minutos.

Objetivo de Enseñanza:

- Discutir acerca del movimiento del CM de un slinky bajando por una escalera.
- Discutir acerca de la conservación del momentum lineal en el movimiento del slinky (caso ideal).

Objetivo de Aprendizaje:

- Diferenciar el movimiento que hace el objeto (slinky) del movimiento que hace su CM cuando baja por la escalera.
- Reconocer las distintas Energías involucradas en el movimiento del slinky.

- Discutir sobre las Energías (mecánica, cinética, potencial) involucradas durante su movimiento.
- Discutir sobre la conservación de la energía mecánica en el movimiento del slinky (caso ideal).
- Reconocer el concepto de Conservación de la Energía Mecánica durante el movimiento del slinky.
- Reconocer el concepto de Conservación del Momentum Lineal durante el movimiento del slinky.

Secuencia didáctica:

Inicio: preguntas para averiguar conocimientos previos, confusiones, o predicciones **Desarrollo**: pasos a seguir, preguntas durante la actividad

Cierre: resumen de la actividad, preguntas para evidenciar aprendizaje

Preparación previa:

- 1. Coloque la escalera en el suelo y ubique el slinky en el peldaño más alto de la escalera.
- 2. Antes de hacer la demostración, realizar las preguntas activadoras:
 - a. ¿Qué va a ocurrir cuando suelte el slinky desde su posición inicial?.
 - b. ¿Por qué crees que ocurrirá lo que respondiste en la pregunta anterior?.
 - c. ¿Qué sabes sobre el concepto de "energía"?.
 - d. ¿Por qué debemos comer cada cierto tiempo durante el día?.
 - e. ¿Por qué nos canzamos?.
 - f. ¿Qué ocurre con nuestra energía cuando nos movemos?
 - g. ¿Qué energías crees tú que están involucradas cuando subes o bajas una escalera?.
 - h. ¿Qué sabes sobre el momentum lineal de un objeto en movimiento?.
 - ¿Está relacionado el momentum lineal con los choques de objetos?.
 Dame un ejemplo de choque y cómo el momentum lineal afectaría en esa situación.

- 1. Empuje con su dedo el extremo libre del slinky tal que comience a moverse hacia abajo por los peldaños de la escalerita.
- 2. A continuación, haga las siguientes preguntas:
 - a. ¿Qué energía(s) tiene el slinky al principio?.
 - b. ¿Qué energía(s) tiene el slinky al final?.
 - c. ¿Qué pasa con la(s) energía(s) durante el movimiento del slinky?.
 - d. ¿Hay alguna transformación entre energías durante el movimiento?.
 - e. ¿Qué energía(s) se transforma(n)?.

- f. ¿Hay conservación de alguna energía durante el movimiento del slinky?.
- g. ¿Cuál(es) energía(s) se conserva(n)?.
- h. Una vez que soltamos el slinky, ¿Por qué el slinky sigue moviéndose "solo" sin parar hasta el final de la escalera?.
- i. ¿Qué cantidad(es) física(s) provoca(n) que el slinky se mueva sin parar a lo largo de la escalerita?.
- j. ¿Tiene algo que ver el momentum lineal con la continuación del movimiento hacia abajo del slinky?.
- k. Si respondiste afirmativamente en la pregunta anterior: ¿cómo afectaría el momentum lineal al movimiento del slinky?.
- I. ¿Tiene algo que ver la energía con la continuación del movimiento hacia abajo del slinky?.
- m. Si respondiste afirmativamente en la pregunta anterior: ¿cómo afectaría la energía al movimiento del slinky?.

Con respecto al CM:

- n. ¿Dónde podemos ubicar, aproximadamente, el CM del slinky durante su movimiento?.
- o. ¿Cuál crees que es la trayectoria del CM del slinky durante su movimiento?.

Dem5: ¿Cuál objeto tiene más masa? – barra en equilibrio

Contenidos:

Objetos extendidos en equilibrio (no puntuales).

Fuerzas aplicadas sobre una barra en equilibrio.

Torque (momento de torsión).

Condiciones de equilibrio estático:

Fuerza neta = 0, Torque neto = 0.

Materiales:

Soporte para la barra. Barra de madera.

Pesos de distintas masas.

Duración:

10 minutos.

Objetivo de Enseñanza:

- Mostrar objetos que ejercen distintas Fuerzas sobre una barra horizontal en equilibrio.
- Repasar la relación entre la ubicación del CM/CG de un objeto

Objetivo de Aprendizaje:

- Reforzar la relación entre la ubicación del CM/CG de un objeto y su estado de equilibrio estático en torno a un punto pivote. y su estado de equilibrio estático en torno a un punto pivote.

- Iniciación al concepto de Torque (momento de torsión) que ejerce una fuerza sobre un objeto en equilibrio.
- Repasar las condiciones de equilibrio estático: Fuerza neta = 0, Torque neto = 0.
- Reforzar las condiciones de equilibrio estático de un objeto.
- Relacionar la distancia 1 (brazo) a la que se aplica una fuerza con la posibilidad de rotar del objeto en equilibrio estático.
- Identificar cuál de los objetos tiene mayor masa, por medio del análisis de la distancic ubicación del objeto respecto al pivote.

Secuencia didáctica:

Inicio: preguntas para averiguar conocimientos previos, confusiones, o predicciones

Desarrollo: pasos a seguir, preguntas durante la actividad

Cierre: resumen de la actividad, preguntas para evidenciar aprendizaje

Preparación previa:

- 1. Encajar la barra de madera en el soporte de fierro, justo en el orificio de su CM. Este será el punto pivote.
- 2. Una vez que la barra esté en equilibrio, realizar las siguientes preguntas:
 - a. ¿Cómo sabemos que la barra se encuentra en equilibrio estático?.
 - b. ¿Por qué la barra está en equilibrio estático?.
 - c. ¿Qué ocurre en el punto de contacto con el soporte (pivote) de la barra para que se mantenga en equilibrio?.
 - d. Si coloco dos objetos sobre la barra en equilibrio, ¿cómo sé si tienen la misma masa o es distinta?.
 - e. ¿En qué lugares de la barra puedo ubicar dos objetos de distinta masa para que ésta se mantenga en equilibrio?.

- 1. Realizar la demostración ubicando dos pesos de distinta masa en dos lugares de la barra, de tal modo que ésta se mantenga en equilibrio.
- 2. Luego, hacer las preguntas:
 - a. ¿Cuál masa es mayor?.
 - b. ¿Cómo podemos saber cuál masa es mayor?.
 - c. ¿Hay alguna relación entre la distancia (perpendicular) al pivote y la ubicación de cada masa?.
 - d. ¿Cada una de las masas está ejerciendo una fuerza sobre la barra en su respectiva ubicación?.
 - e. ¿qué cantidades físicas están "participando" en esta situación de equilibrio estático?.

f. Si conociéramos el valor de una masa, ¿podríamos encontrar el valor de la otra masa?. ¿cómo lo harías?.

Dem6: Cadena levitando (the chain fountain)

Contenidos:

Movimiento circular.
Aceleración centrípeta.
Variación de masa de un objeto de gran longitud.
Torque de fuerzas sobre cada bolita.
Energías cinética y potencial.

Materiales:

Cadena de bolitas muy larga. Taza que contiene a la cadena de bolitas. Plástico burbujas para recibir a la cadena cayendo.

Duración:

10 minutos.

Objetivo de Enseñanza:

- Mostrar el particular fenómeno que se produce cuando una cadena de bolitas de metal muy larga se deja caer desde cierta altura.
- Discutir conceptos de energía, movimiento circular, fuerzas, torque.

Objetivo de Aprendizaje:

- Relacionar conceptos de energía potencial gravitacional y Peso de ciertas partes de la cadena con el movimiento particular de ésta.
- Relacionar fuerzas y torque de un fuerza con el inicio del movimiento de la cadena al interior del vaso.
- Reconocer elementos del movimiento circular, por medio del análisis de la sección circular que forma la cadena en su punto más alto de movimiento.

Secuencia didáctica:

Inicio: preguntas para averiguar conocimientos previos, confusiones, o predicciones **Desarrollo**: pasos a seguir, preguntas durante la actividad

Cierre: resumen de la actividad, preguntas para evidenciar aprendizaje

Preparación previa:

- 1. Coloque el vaso con la cadena en el borde de una mesa o sosténgalo en su mano
- 2. Antes de hacer la demostración, realice las siguientes preguntas:
 - a. ¿Qué va a pasar cuando suelte bruscamente el extremo de la cadena de bolitas?.
 - b. ¿Por qué crees que ocurrirá lo que respondiste en la pregunta anterior?.

Pasos a seguir durante la demostración:

- 1. Coloque el plástico de burbujas en el lugar para que reciba a la cadena y ésta no se dañe en la caída.
- 2. Luego, tome un extremo de la cadena de bolitas (la cadena debe estar **DESENREDADA** dentro del vaso) y suéltelo rápidamente, de tal modo que comience a caer hacia el piso.
- 3. Una vez hecha la demostración, realizar las preguntas:
 - a. ¿Por qué se produce el efecto observado cuando suelto la cadena?.
 - b. ¿Cómo puede la cadena hacer ese movimiento?.
 - c. ¿Hay energías involucradas en el movimiento de la cadena?. ¿Cuáles?.
 - d. ¿Hay fuerza(s) involucrada(s) en el movimiento de la cadena?. Si respondiste que sí: ¿cuál(es) fuerza(s)?.
 - e. ¿Hay aceleración(es) involucrada(s) en el movimiento de la cadena?. Si respondiste que sí: ¿cuál(es) aceleración(es)?.
 - f. ¿Qué pasa con la rapidez de la cadena en el tramo de su longitud en movimiento?.
 - g. ¿Qué ocurre en el tramo de longitud de la cadena que forma un semicírculo?.
 - h. ¿Cómo comienza a moverse hacia arriba cada bolita de la cadena dentro del vaso?.
 - i. ¿Qué cantidades físicas están involucradas en el movimiento de cada bolita de la cadena dentro del vaso, en la sección semicircular y en el tramo vertical que llega al suelo?.

Dem7: Silla giratoria

Contenidos:

Conservación del Momentum Angular. Torque. Movimiento Rotacional combinado (silla y rueda bicicleta).

Materiales:

Silla giratoria. Rueda de bicicleta. Cuerda para enrollar/desenrollar la rueda.

Duración:

10 minutos.

Objetivo de Enseñanza:

- Mostrar los conceptos de momentum angular, torque momento de inercia, frecuencia angular (ω) y

Objetivo de Aprendizaje:

- Mostrar los conceptos de Reconozcan el concepto de momentum angular y momentum angular, torque, su relación con el giro de objetos.
 - Reconozcan las condiciones para que el momentum angular se conserve.

conservación del momentum angular usando una silla giratoria y una rueda de bicicleta.

- Reconozcan el concepto de frecuencia angular (o rapidez angular) de un objeto rotando.
- Reconozcan el concepto de momento de inercia de un objeto en rotación.
- Reconozcan la relación entre el momentum angular de un objeto y su relación con la frecuencia angular de éstos y con el momento de inercia.
- Relacionen la conservación del momentum angular con el cambio en la magnitud de la frecuencia angular.
- Reconozcan la relación que hay entre el Torque sobre un objeto y su momentum angular.

Secuencia didáctica:

Inicio: preguntas para averiguar conocimientos previos, confusiones, o predicciones

Desarrollo: pasos a seguir, preguntas durante la actividad

Cierre: resumen de la actividad, preguntas para evidenciar aprendizaje

Preparación previa:

- 1. Ubique la silla giratoria al frente de la sala y aleje cualquier otro mueble y/o instrumento del sector, para que no interfiera con la demostración.
- 2. Coloque la rueda de bicicleta en un lugar cercano para poder tomarla cuando sea requerido.
- 3. Aleje a los(as) estudiantes para no pasarlos(as) a llevar cuando esté girando en la silla.

- 1. Siéntese sobre la silla giratoria con los pies en el suelo (para no comenzar a girar) y antes de comenzar la demostración haga las siguientes preguntas:
 - a. ¿Qué va a ocurrir cuando suba los pies a la silla?.
 - b. ¿Qué cantidades físicas podemos identificar en ese movimiento?.
- 2. Haga la demostración. Comenzará a girar en la silla rotatoria ya que ésta tiene fricción despreciable.
- 3. Ahora, realice las siguientes preguntas antes de la segunda demostración:
 - a. ¿Qué cantidades físicas intervinieron en mi rotación?.
 - b. ¿Qué ocurrirá si extiendo mis brazos mientras giro en la silla?.
 - c. ¿Qué ocurrirá si luego recojo mis brazos mientras giro en la silla?.
- 4. Haga la segunda demostración. Mientras se encuentra girando, extienda y recoja sus brazos para mostrar el cambio en la magnitud de la frecuencia angular de rotación.
- 5. Luego de la demostración, haga las preguntas:

- a. ¿Por qué giraba más rápido cuando encogía mis brazos?.
- b. ¿Por qué giraba más lento cuando extendía mis brazos?.
- c. ¿Qué relación hay entre mi momentum angular mientras giraba y mi rapidez angular?.
- d. ¿ Qué relación hay entre mi momentum angular mientras giraba y mi momento de inercia?.
- 6. En la siguiente demostración, siéntese en la silla giratoria con una rueda de bicicleta en sus manos. Marilú/Marioly enrollará una cuerda a la bicicleta y la tirará para que comience ésta comience a girar mientras usted la tiene en sus manos.
- 7. Mientras la rueda gira, rótela con sus manos tal que quede en posición horizontal (hacia un lado y luego hacia el otro lado). Notará que va a comenzar a girar usted en la silla también.
- 8. Luego de la demostración, haga las siguientes preguntas:
 - a. ¿Por qué al colocar la rueda de bicicleta girando en posición horizontal, comienzo a girar yo también?.
 - b. Dependiendo de la dirección en que "acuesto" la rueda, giro hacia un lado o giro hacia el otro lado, ¿por qué ocurre eso?.
 - c. ¿Tiene algo que ver el torque de mis manos sobre la rueda en ese fenómeno?.
 - d. ¿Tiene algo que ver la conservación del momentum angular en ese fenómeno?.

Cierre: (10 minutos)

- 1. Se recogen las reflexiones de los (las) estudiantes, por medio de una "lluvia de ideas", acerca de los fenómenos observados durante las demostraciones.
- 2. Se responden dudas que puedan tener los(las) estudiantes.
- 3. Se vuelve a entregar una "Encuesta sobre percepción de la Física", para que estudiantes la respondan y la entreguen al Equipo.
- 4. Despedida de los(as) estudiantes y del(a) profesor(a) a cargo.