Giving a database schema:

- Sailors(sid: integer, sname: string, rating: integer, age:real)

- Boats(bid:integer, bname: string, color: string)

- Reserves(sid: integer, bid: integer, day: date)

Sid	Sname	Rating	Age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Sid	Bid	Day
22	101	10/10/08
22	102	10/10/08
22	103	10/08/08
22	104	10/07/08
31	102	11/10/08
31	103	11/06/08
31	104	11/12/08
64	101	9/05/08
64	102	9/08/08
74	103	9/08/08

Bid	Bname	Color
101	Interlake	Blue
102	Interlake	Red
103	Clipper	Green
104	Marine	Red

Boats

Sailors Reserves

Using relational algebra expression to answer below queries

Group1.

- 1. Find the names of sailors who have reserved boat 103
- 2. Find the names of sailors who have reserved a red boat
- 3. Find the colors of boats reserved by Lubber.
- 4. Find the names of sailors who have reserved at least one boat.
- 5. Find the names of sailors who have reserved a red or a green boat

Group 2.

- 6. Find the names of sailors who have reserved a red and a green boat
- 7. Find the sids of sailors with age over 20 who have not reserved a red boat
- 8. Find the names of sailors who have reserved all boats
- 9. Find the names of sailors who have reserved all boats called Interlake
- 10. Find the names of sailors who have reserved at least two boats

Assume the following relations:

- BOOKS(DocId, Title, Publisher, Year)
- STUDENTS(Stld, StName, Major, Age)
- AUTHORS(AName, Address)
- borrows(DocId, StId, Date)
- has-written(DocId, AName)
- describes(DocId, Keyword)

Group 3.

1. List the year and title of each book

- 2. List all students with the books they can borrow
- 3. List all books published by McGraw-Hill before 1990
- 4. List the names of all students who have borrowed a book and who are CS majors
- 5. Find the name of the youngest student

Group 4.

- 1. List the name of those authors who are living in Davis
- 2. List the name of students who are older than 30 and who are not studying CS
- 3. Rename AName in the relation AUTHORS to Name
- 4. Find the title of the oldest book
- 5. List the authors of the books the student 'Smith' has borrowed

Write relational algebra expressions for the following nine queries:

Person (name, age, gender)
name is a key
Frequents (name, pizzeria)
(name, pizzeria) is a key
Eats (name, pizza)
(name, pizza) is a key
Serves (pizzeria, pizza, price)
(pizzeria, pizza) is a key

Group 5.

- 1. Find all pizzerias frequented by at least one person under the age of 18.
- 2. Find the names of all females who eat either mushroom or pepperoni pizza (or both).
- 3. Find the names of all females who eat both mushroom and pepperoni pizza.
- 4. Find all pizzerias that serve at least one pizza that Amy eats for less than \$10.00.
- 5. Find all pizzerias that are frequented by only females or only males.

Group 6.

- 1. For each person, find all pizzas the person eats that are not served by any pizzeria the person frequents. Return all such person (name) / pizza pairs.
- 2. Find the names of all people who frequent only pizzerias serving at least one pizza they eat.
- 3. Find the names of all people who frequent every pizzeria serving at least one pizza they eat.
- 4. Find the pizzeria serving the cheapest pepperoni pizza. In the case of ties, return all of the cheapest-pepperoni pizzerias.