	recursion tree, each node represents the cost of a single newhere in the set of recursive function invocations. *
0	Problem
()	sub problem
0	instruction
0	node
0	Other:

Solve the following recurrence using Master's theorem. *

$$T(n) = T(n/2) + 2^n$$

- T(n) = O(n*n)
- $T(n) = O(n*n \log n)$
- $T(n) = O(2^n)$
- cannot be solved

running time of a		algorithm. *
0	Dynamic	
0	Greedy	
•	Divide-and-conquer	
0	Backtracking	

Solve
$$T(n) = 8T(n/2) + n^2$$

- O (n^2)
- () O(n)
- O(n^3)
- O(n^2 log n)

Solve the recurrence by master method

$$T(n) = T(\sqrt{n}) + 1$$

(a)
$$T(n) = \Theta(loglogn)$$

(b)
$$T(n) = \Theta(log n)$$

(c)
$$T(n) = \Theta(\sqrt{n})$$

(d) None of these.

- a
- O 6
- O c
- O d

Under what case of Masters theorem will the recurrence relation of merge sort fall?

- (a) 1st case
- (b) 2^{nd} case
- (c) 3rd case
- (d) It cannot be solved using masters theorem
- O :
- b
- 0 0
- \bigcirc a

If $T(n) = T(n/4) + T(n/2) + n^2$, then using recursion tree method

- (a) $T(n) = \theta(n)$.
- (b) $T(n) = \theta(n^2)$.
- (c) T(N) = θ(n³).
- (d) None of the above
- 0 :
- b
- 0 0
- \bigcirc d

Recurrence relation for binary search

(a)
$$T(n) = 2T(n/2) + \theta(1)$$

$$T(n) = T(n/2) + \theta(1)$$

(c)
$$T(n) = 2T(n/2) + \theta(n)$$

(d)
$$T(n) = 2T(n/2) + \theta(n^2)$$

Assume that a merge sort algorithm in the worst case takes 30 seconds for an input of size 64. Which of the following most closely approximates the maximum input size of a problem that can be solved in 6 minutes?

- (a) 256
- (b) 512
- (c) 1024
- (d) 2048
- () E
- b
- \bigcirc \circ
- \bigcirc \circ

*

What would be the number of zeros in the adjacency matrix of the given graph?

- (a) 10
- (b) 6
- (c) 16
- (d) 0
- a
- \bigcirc b
- 0 0
- \bigcirc d