## C-Based VLSI (CS 577) Mid Sem Examination (Part B)

**Total Marks: 30** 

Name:

**Roll No:** 

1. Given 2 resources of type Mult (\*) and 2 resources of type ALU (+, -, <) and each operation of the unit cycle, answer the following questions on ILP formulation of the following sequence graph. Write your answers based on the Boolean variable  $x_{il}$ , where i represents the node  $v_i$  and l is the time step. Consider the ASAP and ALAP bound for  $x_{il}$ . To compute ALAP, consider the latency obtained by ASAP scheduling. (2+2+4+3+4=15)



- (a) Write the objective function of ML-RC scheduling.
- (b) Write the objective fn. of MR-LC scheduling assuming the cost of MULT and ALU as 10 and 2, respectively.
- (c) Determine the correct inequality representing the data dependency constraint (i) between operations V3 and V6 and (ii) between operations V5 and V8.
- (d) Write down the inequality representing the unique start time of operations V3 and V9.
- (e) Determine the resource constraints in the time step 3.
- 2. Consider the following code snippet: a = b + c; d = d + b; x = a d; The questions are interdependent. Use the solution of the previous question to answer the next: (2 + 3 + 3 + 4 + 3 = 15)
  - (a) Schedule the behavior considering only one ALU (+, -) and each operation is a single cycle.
  - (b) Identify the lifetime of the variables (draw only a diagram to show lifetime).
  - (c) Find the variable to register mapping where at most two variables can be mapped to one register.
  - (d) Draw the datapath of the design. The datapath must use minimum-size multiplexers (some code modification may need to achieve that).
  - (e) Find the control signal value in each state and draw the final controller FSM.

| Variable | a | b | c | d | X |
|----------|---|---|---|---|---|
| Register |   |   |   |   |   |

|          | Name of Student :                                                                          | I.                         | 3,1 N 2 10              | Ro ! I Ro                                                            | I No. | - W                 |
|----------|--------------------------------------------------------------------------------------------|----------------------------|-------------------------|----------------------------------------------------------------------|-------|---------------------|
|          | Course No.                                                                                 |                            | Signature of the        | student :                                                            |       |                     |
| 0 1      | Subjective                                                                                 |                            |                         | 1 12                                                                 | CX    | -8V                 |
| 9 1      | 0.00                                                                                       | -                          |                         |                                                                      |       |                     |
| A        | SAP                                                                                        | 2.1                        | ALAP                    | Lankon                                                               |       |                     |
| . 1 1/4  | V <sub>3</sub> V <sub>2</sub> V <sub>5</sub> V <sub>4</sub> V <sub>10</sub> V <sub>8</sub> | 1                          | V1                      | V <sub>2</sub>                                                       |       |                     |
| > 1      | 1. Vi.                                                                                     | 1 1/8/1                    | 1188 1                  | Vy                                                                   |       |                     |
| 25   V6  | VS V4                                                                                      |                            | V V J                   |                                                                      |       |                     |
| 57 V9    |                                                                                            | -                          | V7 V5 V3                | .,44                                                                 | 61/1  |                     |
| 4>       | V10 V8                                                                                     | ч                          | Ve                      | Ve                                                                   |       |                     |
| 6) V     |                                                                                            |                            |                         |                                                                      |       |                     |
| 1        | mirc obs.                                                                                  | 2                          | Vg                      | Vio                                                                  |       | o 1J                |
| a        |                                                                                            | 5]<br>fun =<br>L C =       | Ст. t<br>Ста<br>[10 20] | C= [I                                                                | , 00  | o 1J                |
| a        | Mirc obj.                                                                                  | 5]<br>fun =<br>L C =       | Ст. t<br>Ста<br>[10 20] | 1 C= [                                                               | , 00  | o 1J                |
| a> b>    | MIRC Obj. ,                                                                                | s <br>fun =<br>LC =<br>=   | Ст. t<br>Ста<br>[10 20] | C= [I                                                                | , 00  | ) · 2J <sub>.</sub> |
| a) b) c) | MLRC Obj. obj. obj. obj. obj. obj. obj.                                                    | s <br>fun =<br>LC =<br>=   | Ст. t<br>Ста<br>[10 20] | C= [I                                                                | , 00  | o 1J                |
| a) b) c) | MLRC obj. $r_i$ Obj. $r_i$ Data depand $(V_2 \rightarrow V_2)$                             | fun =<br>LC =<br>=<br>ency | CT. t  CT a  [10. 2     | VIO<br>I C= [1<br>I [amu]<br>and and and and and and and and and and | , 0 ( | 5, 2J               |
| a) b) c) | MLRC obj. $r_i$ Obj. $r_i$ Data depand $(V_2 \rightarrow V_2)$                             | fun =<br>LC =<br>=<br>ency | CT. t  CT a  [10. 2     | VIO<br>I C= [1<br>I [amu]<br>and and and and and and and and and and | , 0 ( |                     |







