PRÉSENTATION DU SUBMERSIBLE LE NAUTILE

Les documents du sujet sont issus des sites suivants :

http://wwz.ifremer.fr/grands_fonds/Les-moyens/Les-engins

https://fr.wikipedia.org/wiki/Nautile_(sous-marin_de_poche)

Le *Nautile* est un sous-marin habité, conçu par l'Ifremer, pour l'observation et l'intervention jusqu'à 6 000 mètres de profondeur. Il rend accessible 97 % de la superficie des fonds marins.

Caractéristiques techniques :

Profondeur d'intervention : 6 000 m

Masse (pour une plongée à 6 000 m): 19 500 kg

<u>Équipage</u>: 3 personnes

Réglage d'assiette par transfert de mercure :

± 10°

<u>Propulsion principale</u>: 1 propulseur axial orientable

Autonomie (travail sur le fond) à 6 000 m : 5 h

Télémanipulation:

- 1 bras de préhension à 4 degrés de liberté (+ ouverture et fermeture de la pince)
- 1 bras de manipulation à 6 degrés de liberté (+ ouverture et fermeture de la pince)

PARTIE A - PLONGÉE ET EXPLORATION

Cette partie fait appel aux documents D1 à D8 pages 10 et 11.

- A.1 L'habitacle qui accueille l'équipage est une sphère. Un panneau cylindrique de 45 centimètres de diamètre permet d'y accéder, par l'intermédiaire d'un sas. Sachant que plus de 97 % de la surface des océans est à moins de 6 000 mètres de profondeur, les concepteurs retiennent cette référence. Par sécurité toutefois, la sphère a été conçue pour résister à une pression relative pouvant aller jusqu'à $P_{max} = 900$ bar.
 - **A.1.1** Le manomètre extérieur du *Nautile* indique une pression absolue $P_0 = 1,00$ bar avant l'immersion. Lors de la plongée, le manomètre indique une pression absolue $P_1 = 600$ bar. Quelles auraient été les indications du manomètre s'il avait mesuré les pressions relatives ? Justifier votre réponse.
 - A.1.2 À l'aide des **documents** page 4 et en appliquant le principe fondamental de l'hydrostatique (loi de la statique des fluides), indiquer si le *Nautile* se trouve sous le seuil des 6,00 km lors de la mesure $P_1 = 600$ bar.
 - **A.1.3** Une pression est le quotient d'une force par une surface. Calculer la force pressante, F_{max} , en méganewton (MN), qui s'applique sur le sas de la sphère à la pression maximale.
 - A.1.4 Calculer la masse, m_{max}, en tonne (t), à appliquer sur le sas si un test de sécurité devait être fait à l'air libre.
- **A.2** Le *Nautile* se stabilise à une profondeur constante lors de la plongée. Le poids, \overrightarrow{P} , du submersible est compensé par la poussée d'Archimède $\overrightarrow{F_A}$:

$$\overrightarrow{P} + \overrightarrow{F_A} = \overrightarrow{0}$$

Le *Nautile* navigue à vitesse constante v= **2,00 nœud**. La force motrice, \overrightarrow{F} , a une intensité F= **300 daN**.

A.2.1 Le submersible est soumis à une force de frottements, \overrightarrow{f} , de la part de l'eau de mer. L'intensité f est-elle égale, inférieure ou supérieure à l'intensité F?

Tracer le vecteur, \vec{f} , sur le document réponse DR1 page 6.

A.2.2 « La sphère offre, pour une pression donnée, le meilleur rapport masse/volume disponible, suivie de l'ellipsoïde, puis du cylindre. Mais le choix ne repose pas que sur cet unique critère. En matière d'hydrodynamisme, l'ordre est différent : ellipsoïde, cylindre, sphère. [...] Le choix s'est finalement porté sur une sphère [...], elle-même enchâssée dans une coque ellipsoïdale. [...] Cette coque extérieure bien profilée aide à donner à notre sous-marin un faible coefficient de traînée (Cx) suivant l'axe horizontal [...]. » (source : http://wwz.ifremer.fr)

À l'aide des documents page 4, pour une surface frontale valant $S=14 \text{ m}^2$, calculer le coefficient de trainée, C_X , du *Nautile* si f=300 daN.

Le choix d'une forme profilée, lors de la conception du *Nautile*, a-t-il permis d'améliorer le coefficient de traînée ?

A.2.3 Le pilote arrête le moteur.

On rappelle le principe fondamental de la dynamique :

$$\overrightarrow{P} + \overrightarrow{F_A} + \overrightarrow{F} + \overrightarrow{f} = m.\vec{a}$$

Choisir et recopier sur votre copie la proposition correspondante à cette situation :

F diminue Proposition 1: f augmente v diminue. F augmente Proposition 2: f augmente v diminue. F est nulle Proposition 3: f augmente v diminue. Proposition 4: F est nulle f diminue v diminue.

A.3 Le *Nautile* est à l'arrêt pour récolter un échantillon de roche à l'aide de son bras télémanipulateur. En extension maximale, le bras peut encore exercer une force $F_1 = 80,0$ daN.

Le mouvement du bras et la prise d'objet peuvent déclencher une rotation du submersible qui risque de le déstabiliser.

« Il est intéressant de disposer d'un moyen simple pour faire varier l'assiette de plus ou moins dix degrés. [...] Sur le *Nautile*, la solution retenue repose sur un circuit [...] de mercure, qui sous pression d'huile peut être déplacé rapidement de l'extrême avant à l'extrême arrière. »

Source: http://wwz.ifremer.fr

Voir les documents D7 et D8 page 5.

- **A.3.1** Placer sur le **document réponse DR2 page** 6 la distance, d_1 , correspondant au « bras de levier » de la force $\overrightarrow{F_1}$ lorsque le *Nautile* prélève un échantillon de roche.
- **A.3.2** Calculer le moment de force $M_{\overrightarrow{F_1}}$ créé par la force, F_1 , exercée par l'échantillon récolté sachant que $M_{\overrightarrow{F_1}} = F_1 \times d_1$ et que le bras de levier, d_1 , vaut **4,00 m**.
- **A.3.3** Il va falloir compenser le moment de force $M_{\overrightarrow{F_1}}$ par un autre moment de force $M_{\overrightarrow{F_2}}$ pour garder la même assiette. Le mouvement du mercure assure cette stabilité en jouant sur les moments de force qui agissent sur le sous-marin : $M_{\overrightarrow{F_1}} M_{\overrightarrow{F_2}} = 0$.

Calculer alors le volume, V_2 , du mercure nécessaire pour garder l'assiette nulle, sachant que le bras de levier correspondant à $\overrightarrow{F_2}$ vaut $d_2 = 3,00$ m. Donner le résultat final en litres (L).

- A.3.4 À l'aide du document D8 page 5 , indiquer l'inconvénient d'avoir du mercure à bord du Nautile.
- A.3.5 « En terrain accidenté ou pour certaines observations, il est intéressant de disposer d'un moyen simple pour faire varier l'assiette de plus ou moins dix degrés. [Une autre option] serait [...] de déplacer la batterie principale par vérin à vis. » (source : http://wwz.ifremer.fr)

Argumenter, en vous aidant du document D8 page 5, le choix d'un circuit de mercure à bord du Nautile.

Document D1 : Conversions d'unités

Pression: 1,00 bar = 105 Pa

Vitesse: 1 nœud = 0,514 m.s⁻¹

Document D2: Multiples

Méga (M)	kilo (k)	déca (da)	unité
10 ⁶	10 ³	10	1

Document D3 : Données physiques

Masse volumique moyenne de l'eau de mer : $\rho_{eau} = 1$ 030 kg.m⁻³

L'intensité de la pesanteur terrestre : g = 9,83 N.kg-1

Pression atmosphérique : Patm = 1,00 bar

Document D4 : Coefficient de trainée CX

L'intensité de la force de frottements f exercée par l'eau est donnée par la relation :

$$f = \frac{1}{2} \times \rho_{eau} \times S \times C_x \times V^2$$

ρ_{eau} : masse volumique de l'eau en kg.m⁻³.

S : surface frontale du Nautile en m².
C_x : coefficient de trainée sans unité

V : vitesse en m.s⁻¹

Document D5 : Coefficient de trainée CX

Document D6: L'assiette

L'assiette désigne la position de l'axe d'un aéronef, d'un navire ou d'un sous-marin par rapport au plan horizontal.

Document D7 : La récolte d'échantillons

Document D8: Le mercure

Symbole: Hg

Couleur : argenté, blanc

Masse volumique: 13 600 kg.m⁻³

État ordinaire : liquide

SGH:

DR1 (Question A.2.1) : Vecteurs \vec{f} et \vec{f}

DR2 (Question A.3.1) : Bras de levier d1

