Задача А. Бинарные отношения

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано число n и два бинарных отношения на множестве размера n. Для каждого из этих отношений определите, являются ли они рефлексивными, антирефлексивными, симметричными, антисимметричными и транзитивными, а так же найдите их композицию.

Формат входных данных

В первой строке содержится число n — размер носителя ($1 \le n \le 100$). В следующих n строках находится по n чисел — описание первого отношения. Если j-е число i-й строки равно 1, то пара (i,j) лежит в отношении, иначе эта пара не лежит в отношении. В следующих n строках находится описание второго отношения в таком же формате.

Формат выходных данных

Для каждого из пяти свойств из условия выведите в первой строке 1, если первое отношение обладает этим свойством, и 0 иначе. Во второй строке выведите описание второго отношения в таком же формате.

В следующих n строках выведите по n чисел — композицию двух отношений в таком же формате, что и во входных данных.

Пример

стандартный ввод	стандартный вывод	
3	0 1 0 1 0	
0 1 0	1 0 0 1 0	
0 0 1	0 1 1	
1 0 0	1 0 1	
1 1 0	1 1 0	
0 1 1		
1 0 1		

Задача В. Теорема Поста

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Вам даны n булевых функций, заданных таблицами истинности. Требуется проверить, является ли заданный набор функций полным.

Формат входных данных

В первой строке содержится одно целое число n — количество функций ($1 \le n \le 1000$).

В следующих n строках содержится описание функций. Первым в строке дано число s_i — количество аргументов очередной функции ($0 \le s_i \le 5$). Далее дана строка a_i из 2^{s_i} символов 0 и 1, она описывает таблицу истинности. Функция возвращает a_{ij} , если ей на вход подать представление j в двоичной системе счисления. Порядок аргументов соответствует порядку от младших битов к старшим.

Формат выходных данных

В единственной строке выведите «YES», если набор полон, и «NO» иначе.

Примеры

стандартный ввод	стандартный вывод	
3	YES	
2 0111		
2 0001		
1 10		
2	NO	
2 0110		
1 01		

Задача С. Схема из функциональных элементов

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана схема из функциональных элементов в порядке топологической сортировки (то есть листьяпеременные имеют минимальные номера, а корень схемы — максимальный). Вам предстоит определить ее глубину, а также таблицу истинности для всевозможных входных данных.

Формат входных данных

В первой строке указано натуральное число n — количество вершин в схеме ($1 \leqslant n \leqslant 27$). В следующих строках описано устройство схемы.

Элементы даны в порядке от первого до n-го. Каждый элемент описывается либо одной (если это переменная-лист), либо двумя строчками (если это функция). Все переменные различны. Первое целое число m в первой строчке из описания i-го элемента — количество входов для этого элемента ($0 \le m \le 5$) (если элемент — переменная, то m=0). Далее в этой же строке перечислены m натуральных чисел — номера элементов, значения с которых подаются на вход i-му.

Если m>0, то в следующей строке дано 2^m целых чисел $a_0,a_1,...a_{2^m-1}$. Где a_j — ответ, который выдает i-й элемент, если на входы подать двоичное представление числа j ($0 \le a_j \le 1$). Более старшим разрядам j соответствуют более ранние (с меньшими индексами) входы, в порядке, написанном в предыдущей строке.

Формат выходных данных

В первой строке выведите одно число — глубину данной схемы.

Назовем количество переменных-листьев k. В следующей строке выведите битовую строчку длины 2^k , где в позиции j будет число, выдаваемое схемой если на вход подается число j, старшим разрядам j соответствуют листы, имеющие меньшие индексы.

Пример

стандартный ввод	стандартный вывод	
5	2	
0	01011001	
0		
2 1 2		
1 1 0 1		
0		
2 3 4		
1 0 0 1		

Замечание

Обозначим как ans_i — число, которое получается в i-м элементе. Тогда в данном примере значения функций, например, для 3-го элемента означают

ans_1	ans_2	ans_3
0	0	1
0	1	1
1	0	0
1	1	1

Задача D. Построение схемы из функциональных элементов

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана булева функция, заданная таблицей истинности. Постройте схему из функциональных элементов, реализующую эту функцию в базисе «не», «и» и «или».

Формат входных данных

В первой строке находится число n — количество переменных $(2\leqslant n\leqslant 10)$. Следующие 2^n строк имеют следующий вид: значения переменных x_1,x_2,\ldots,x_n и значение функции при этих переменных. Строки даны в возрастающем лексикографическом порядке значений переменных.

Формат выходных данных

В первой строке выведите число m — количество элементов в вашей схеме (включая n элементов, отвечающие за исходное значение переменных). Элементы с номерами с 1 до n соответствуют входным переменным x_1, x_2, \ldots, x_n . В следующих m-n строках выведите описание каждого нового элемента в схеме. Описание элемента состоит из номера операции в этом элементе и номеров аргументов, которые подаются на вход этому элементу.

Операция «не» имеет номер 1, «и» имеет номер 2, «или» имеет номер 3.

На вход операции «не» должно быть подан один элемент, а всем остальным два. На вход можно подавать только элементы с меньшим номером. Результатом вычисления схемы считается значение последнего элемента.

Разрешается использовать не более 10^5 элементов. Гарантируется, что существует схема, подходящее под данное ограничение.

Пример

стандартный ввод	стандартный вывод
3	6
000 0	1 3
001 0	3 2 4
010 0	2 1 5
011 0	
100 1	
101 0	
110 1	
111 1	

Замечание

Функцию из примера можно задать формулой $x_1 \wedge (x_2 \vee \neg x_3)$. Ответ на пример — схема, реализующая эту формулу.

Задача Е. Полином Жегалкина

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана таблица истинности. Найдите по ней коэффициенты полинома Жегалкина.

Формат входных данных

В первой строке содержится число n — количество переменных в функции ($1 \le n \le 10$). Следующие 2^n строчек имеют следующий вид: значения переменных x_1, x_2, \ldots, x_n и значение функции при этих переменных. Строки даны в лексикографически возрастающем порядке значений переменных.

Формат выходных данных

Вывести 2^n строчек в следующем формате: значения переменных, через пробел значение коэффициента полинома Жегалкина для этой записи. Порядок строк должен быть таким же, как и во входных данных.

Примеры

стандартный ввод	стандартный вывод
2	00 0
00 0	01 1
01 1	10 0
10 0	11 0
11 1	
2	00 1
00 1	01 1
01 0	10 1
10 0	11 0
11 1	

Задача F. Форма Хорна

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

В этой задаче задана булева функция в форме Хорна. Требуется проверить, является ли она тождественным нулем.

Формат входных данных

Первая строка содержит два натуральных числа n, k — количество литералов и дизъюнктов (скобок в формуле) соответственно ($1 \le n, k \le 100$).

Следующие k строк описывают дизъюнкт в следующем формате: n чисел $x_i \in \{-1, 0, 1\}$.

 $x_i = 1 - i$ -й литерал входит в дизъюнкт без отрицания.

 $x_i = 0 - i$ -й литерал входит в дизъюнкт с отрицанием.

 $x_i = -1 - i$ -й литерал не входит в дизъюнкт.

Формат выходных данных

Выведите «YES» (без кавычек), если функция — тождественный ноль. Иначе выведите «NO» (без кавычек).

Примеры

стандартный ввод	стандартный вывод	
3 3	NO	
1 0 -1		
0 1 0		
-1 0 1		
1 2	YES	
1		
0		

Замечание

В первом примере формула выглядит следующим образом: $(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (\overline{x_2} \lor x_3)$ Второй пример: $(x_1) \land (\overline{x_1})$

Задача G. К или Д?

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дано целое число n и n неотрицательных целых чисел. Требуется проверить, можно ли составить формулу, используя побитовые И («&»), ИЛИ («|»), НЕ («~»), круглые скобки («(», «)») и данные числа, чтобы ее результатом являлось число s. Если да, то выведите любую. Вместо самих чисел в формуле должны быть их порядковые номера во входных данных. Для лучшего понимания разберите тесты из условия.

Формат входных данных

На первой строке содержится целое число $n\ (1\leqslant n\leqslant 5).$

Во второй n целых чисел a_i ($0 \le a_i \le 2^{32} - 1$).

В последней строке содержится ровно одно целое число s.

Формат выходных данных

Выведите формулу, описанную выше, или «Impossible», если ответа не существует. Если ответов несколько, выведите любой из них.

Примеры

стандартный ввод	стандартный вывод
1	1
8	
8	
2	Impossible
48 83	
68	
2	2&~1
20 8	
8	
1	Impossible
1	
4294967295	

Замечание

Коды символов в ASCII: «&» — 38, «|» — 124, «~» — 126, «(» — 40, «)» — 41.

Задача Н. Штрих Шеффера

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Известно, что с помощью штриха Шеффера (отрицание конъюнкции) можно выразить любую булеву функцию. Таблица истинности штриха Шеффера приведена ниже:

x	y	x y
0	0	1
0	1	1
1	0	1
1	1	0

Рассмотрим задачу сложения двух двоичных чисел A и B, каждое из которых состоит из N бит. Биты в числах A и B пронумерованы от 0 (младший разряд) до N-1 (старший разряд). Сумму A и B всегда можно представить как N+1-битное число. Назовем самый старший бит суммы (бит с номером N) битом переполнения.

Вам нужно построить булеву формулу, вычисляющую значение бита переполнения для произвольных N-битных чисел A и B, используя только штрих Шеффера. Формула строится по следующим правилам:

- Ai формула, равная значению i-го бита числа A.
- \bullet Ві формула, равная значению *i*-го бита числа B.
- (x|y) формула, обозначающая применение штриха Шеффера к x и y, где x и y некоторые формулы.

Индекс i в формулах для битов чисел A и B записывайте десятичным числом без ведущих нулей, например, бит числа A с номером 12 должен быть записан как A12. Вокруг каждого применения штриха Шеффера должны стоять скобки (согласно третьему правилу). Внутри формулы не должно быть пробелов.

Формат входных данных

Вход содержит число N ($1 \le N \le 100$).

Формат выходных данных

Выведите формулу, вычисляющую бит переполнения суммы двух N-битных чисел A и B по правилам, описанным в условии. Для обозначения штриха Шеффера используйте символ | (ASCII код 124).

Размер выходного файла не должен превосходить 50N байт.

Пример

стандартный ввод	стандартный вывод	
2	((((A0 B0) (A0 B0)) ((A1 A1) (B1 B1)))	(A1 B1))