Introduction to Machine Learning SS20	Ridge regression	Composition rules	fitting : Early Stopping, Regularization $\lambda W _F^2$
True risk and estimated error	$ \hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _2^2$	Valid kernels k_1, k_2 , also valid kernels: $k_1 + k_2$; $k_1 \cdot k_2$; $c \cdot k_1, c > 0$; $f(k_1)$ if f polynomial with pos. coeffs.	Dropout: Randomly ignore hidden units during each SGD iter with probability n. Change weights after
True risk: $R(w) = \int P(x, y)(y - w^T x)^2 \partial x \partial y =$	$=2\mathbf{Z}_{i=1}(y_i + x_i) x_i + 2i\epsilon v$	$c \cdot k_1, c > 0$; $f(k_1)$ if f polynomial with pos. coeffs, or exponential	training to compensate (All units present), Batch
\mathbb{T} [(-1) T_{-1})2] T_{-2}	$ w^* = (X^T X + \lambda I)^{-1} X^T y$	Reformulating the perceptron	Norm.: Reduces cov. shift, larger LR possible, reg
$\mathbb{E}_{x,y}[(y-w^Tx)^T]$, Est. error: $R_D(w)=\frac{1}{ D }\sum_{(x,y)\in D}(y-w^Tx)^2$, Training error (empir-	$ \mathbf{E}[w^*] = (X^TX + \lambda I)^{-1}(X^TX)w$	Ansatz: $w^* \in \text{span}(X) \Rightarrow w = \sum_{j=1}^n \alpha_j y_j x_j$	ularizing effect, Difference Kernels : Kernels optimize α only \Rightarrow convex, ANNs optimize w and θ .
ical risk) systematically underestimates true	.[.,] . (, ,) (,)[(, , ,)]	$\alpha^* = \operatorname{argmin} \sum_{i=1}^{n} \max(0, -\sum_{i=1}^{n} \alpha_i y_i y_j x_i^T x_j)$	Activation functions
risk, thus we need a separate test set.	L1-regularized regression (Lasso)	$lpha{\in}\mathbb{R}^n$	Sigmoid: $\frac{1}{1+exp(-z)}$, $\varphi'(z) = (1-\varphi(z))\cdot\varphi(z)$
Standardization	$ \hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 + \lambda w _1$, Lasso performs		tanh: $tanh(z) = \frac{exp(-z)}{exp(z) + exp(-z)}$, ReLU: $max(z,0)$
Centered data, unit variance: $\tilde{x}_i = \frac{x_i - \hat{\mu}}{\hat{\sigma}}$, $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$.	variable selection as coefficients go to 0 if $\lambda \to \infty$	Use $\alpha^T k_i$ instead of $w^T x_i$,	T (v) + T (v)
$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$, use it before regularization	Classification	use $\alpha^T D_y K D_y \alpha$ instead of $ w _2^2$	Forward Propagation
Cross-Validation	Calva vi* anomin 1/viv v) loss function 1	$k_i = [y_1 k(x_i, x_1),, y_n k(x_i, x_n)], D_y = \text{diag}(y)$ Prediction : $\hat{y} = \text{sign}(\sum_{i=1}^n \alpha_i y_i k(x_i, \hat{x}))$ SGD update:	Input layer: $\mathbf{v}^{(0)} = \mathbf{x}$; Hidden layers: $\mathbf{z}^{(\ell)} = \mathbf{x}$
Data should be iid. Select k: Small: overfitting to		$\alpha_{t+1} = \alpha_t$, if mispredicted: $\alpha_{t+1,i} = \alpha_{t,i} + \eta_t$ (c.f.	$\mathbf{v}^{(\epsilon)}$ $\mathbf{v}^{(\epsilon-1)}$, $\mathbf{v}^{(\epsilon)} = \phi(\mathbf{z}^{(\epsilon)})$; Output layer: $f = \mathbf{v}^{(\epsilon)}$
test set, little data for training, underfitting to train	$l_{0/1}(w; y_i, x_i) = 1$ if $y_i \neq \operatorname{sign}(w^T x_i)$ else 0	updating weights towards mispredicted point)	W (S) V (S) E.g.: $E = (y - u_1 \rho(w_1 x_1 + w_2 x_2) +)^2$
set, Large: Better performance (LOOCV: $k = n$), higher computational complexity.	Perceptron algorithm	Kernelized linear regression (KLR)	SGD for ANNs
Gradient Descent (GD)	Use $l_P(w; y_i, x_i) = \max(0, -y_i w^T x_i)$ and SGD	Ansatz: $w^* = \sum_{i=1}^n \alpha_i x$	$\hat{\mathbf{W}} = \operatorname{argmin}_{\mathbf{W}} \sum_{i=1}^{n} \ell(\mathbf{W}; \mathbf{x}_i, y_i); \ \ell(\mathbf{W}; \mathbf{x}, \mathbf{y}) = \ell(\mathbf{y} - f(\mathbf{x}, \mathbf{W})); $ For random $(\mathbf{x}, \mathbf{y}), \ \mathbf{W}_{t+1} = \mathbf{y}$
Pick arbitrary $w_0 \in \mathbb{R}^d$, 2. $w_{t+1} = w_t - \eta_t \nabla \hat{R}(w_t)$.	$\nabla J_{\mathbf{p}}(\mathbf{w}, \mathbf{y}, \mathbf{y}, \mathbf{y}) = \begin{cases} 0 & \text{if } y_{i} \mathbf{w}^{T} x_{i} \ge 0 \end{cases}$	$\alpha^* = \operatorname{argmin}_{\alpha} \alpha^T K - y _2^2 + \lambda \alpha^T K \alpha$	$\mathbf{W}_{t} - \eta_{t} \nabla_{\mathbf{W}} \ell(\mathbf{W}; \mathbf{x}, \mathbf{y})$
mild assumptions, step size sufficiently small: sta-	$(-y_i x_i)$ otherwise Convex surrogate \rightarrow if data lin. separable \Leftrightarrow obtains	$=(K+\lambda I)^{-1}y$, Prediction: $\hat{y} = \sum_{i=1}^{n} \alpha_i k(x_i,\hat{x})$	Backpropagation
$\frac{1}{1}$	la lin_separator (not necessarily optimal)	k Nearest Neighbours (kNN)	Output layer: Err: $\delta^{(L)} = \mathbf{l}'(\mathbf{f}) = [l'(f_1),, l'(f_p)]$
stepsize and squared loss. Convex problems \rightarrow linus			$C \rightarrow \nabla$ $A(\mathbf{x}\mathbf{x}) \rightarrow C(I) (I \rightarrow I)T$
optimum! Compare GD vs Closed Form : Comp. Complex., Problem may not offer closed form sol.	` , , , , , , , , , , , , , , , , , , ,		Hidden layers: Err: $\delta^{(\ell)} = \phi'(\mathbf{z}^{(\ell)}) \odot$
Stochastic Gradient Descent (SGD)	Hinge loss: $l_H(w;x_i,y_i) = \max(0,1-y_iw^Tx_i)$ $0 \text{if } v_iw^Tx_i > 1$	kernelized!	$\mathbf{W}^{(\ell+1)T} \delta^{(\ell+1)}$ Grad: $\nabla_{\mathbf{W}^{(\ell)}} \ell(\mathbf{W}; \mathbf{y}, \mathbf{x}) = \delta^{(\ell)} \mathbf{v}^{(\ell-1)T}$
1. Pick arbitrary $w_0 \in \mathbb{R}^d$	$\nabla_{w} l_{H}(w; y, x) = \begin{cases} 0 & \text{if } y_{i} w^{T} x_{i} \ge 1\\ -y_{i} x_{i} & \text{otherwise} \end{cases}$	Imbalance	Learning with momentum
2. $w_{t+1} = w_t - \eta_t \nabla_w l(w_t; x', y')$, with u.a.r.	$w^* = \operatorname{argmin}_w l_H(w; x_i, y_i) + \lambda w _2^2$	Cost-Sensitive Classification	$a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W_{t+1} \leftarrow W_t - a$
data point $(x',y') \in D$, if data lin. seperable, finds lin	Kernels	Scale loss by cost: $l_{CS}(w;x,y) = c_{\pm}l(w;x,y)$	CNN
	Choosing Kernels Domain knowledge, Brute force	TO FN THE THE	Output dim: $L \times L \times M$, M: filters, F: size of filters
exploit parallelism, reduce variance.	or heuristic search, CV Choosing Param. CV Trick Reformulate such that inner product appear,		S: stride (how many positions the filters are moved)
Feature Selection	replace + Explicit control, Incorporation of prior	Recall/TPR: $\frac{TP}{n}$ FPR: $\frac{FP}{n}$ F1: $\frac{2TP}{n}$ —	P: padding (pad inputs with 0). $L = \lfloor \frac{N-F+2P}{S} - 1 \rfloor$ Pooling : Aggregate Units to decrease width of the
Greedy: +: Any pred. method, convex -: Slower (Train many models). // Greedy Forward: Add	replace + Explicit control, Incorporation of prior knowledge by kernel eng Avoid large <i>d</i> but solu-	$\frac{2}{n_{+}}, \text{TR.} \frac{1}{n_{-}}, \text{TR.} \frac{1}{n_{-}}, \text{TR.} \frac{2}{2TP+FP+FN}$	network (avg or max)
best elements according to loss and stop once error	tion is in \mathbb{R} , Hard to design Proof Validity Show Symmetry and p.d., Find an explicit feature map,	prec rec	Clustering
micreases. (Tasier) Greeuv Dackwaru. Timu best	Dorivo the karnel from others Proof Invol. Dien	Multi-class	k-mean
element to remove according to loss until error doesn't decrease anymore. (handles dependant		One-vs-all (Classif. c) but requires confidence in	$ \hat{\mathbf{p}}(\mathbf{u}) - \nabla^n = \min_{\mathbf{u} \in \mathbb{R}^n} \mathbf{p}(\mathbf{u}) ^2 \hat{\mathbf{u}} = \operatorname{argmin}_{\mathbf{u}} \hat{\mathbf{p}}(\mathbf{u})$
features) L1: + Faster (training and feature selection		2	
joint), - Only works with linear models.	$k: X \times X \to \mathbb{R}$, k must be some inner product (effi-	Multi-class Hinge loss	non-convex, NP-hard, only conv. to local opt., iter can be exponential $O(nkd)$ Selecting k: Elbow
Regression	cientm implicit, symmetric, positive-definite, linear) for some space V i.e. $k(\mathbf{x}, \mathbf{x}') = \langle \boldsymbol{\sigma}(\mathbf{x}) \rangle \langle \boldsymbol{\sigma}(\mathbf{x}') \rangle_{V} \frac{Eucl.}{2}$	$l_{MC-H}(w^{(1)},,w^{(c)};x,y) =$	method, increasing k leads to negligible decrease in
Solve $w^* = \operatorname{argmin}_{w} \hat{R}(w) + \lambda C(w)$	From some space V . i.e. $\kappa(\mathbf{A},\mathbf{A}) = \langle \psi(\mathbf{A}), \psi(\mathbf{A})/V \rangle = \langle \psi(\mathbf{A}), \psi(\mathbf{A})/V \rangle$	$\max(0,1+\max_{j\in\{1,\dots,y-1,y+1,\dots,c\}}w^{(j)T}x-w^{(y)T}x)$	loss, CV can't be used as test loss keeps decreasing
Linear Regression	$\varphi(\mathbf{x})^T \varphi(\mathbf{x}')$ and $k(\mathbf{x},\mathbf{x}') = k(\mathbf{x}',\mathbf{x})$ Kernel matrix: Positive semi-definite!	J∈{1,···,y−1,y+1,···,c} Neural networks	Lloyd's Heuristic: 0. Initialize cluster centers While not converged: 1.Assign points, 2.Update
$\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 = Xw - y _2^2$	Important kernels	Parameterize feature map with θ : $\phi(x, \theta) =$	centers. (converges to local optimum) k-Means++
$\nabla \hat{R}(w) = \sum_{i=1}^{n} (y_i - w \cdot x_i) - Aw - y _2$ $\nabla \hat{R}(w) = -2\sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i$	Linear: $k(x,y) = x^T y$, Poly: $k(x,y) = (x^T y + 1)^d$	$\alpha(0T_{\rm w})$ $\alpha(z)$ (activation function α)	Start with rand. data pts. as center, add centers rand.
$\nabla_{w} \hat{R}(w) = -2\sum_{i=1}^{n} (y_{i} - w^{T} x_{i}) \cdot x_{i}$ $w^{*} = (X^{T} X)^{-1} X^{T} y,$	Gaussian: $k(x,y) = x$ y, Foly. $k(x,y) = (x$ $y+1)$	Σ^n $1(\dots,\Sigma^m,\dots,\Delta^n,\Omega)$	\propto squared dist. to closest center. $O(\log k)$ cost of opt. k-Means sol. Spectral clustering = kernelized
$\mathbf{E}[w^*] = w, \mathbf{V}[w^*] = (X^T X)^{-1} \sigma^2$		$f(x; w, \theta_{1:d}) = \sum_{i=1}^{m} w_i \varphi(\theta_i^T x) = w^T \varphi(\Theta x) \text{ Over-}$	k-means.

Convex \to SGD: $w = w + \eta_t yx \cdot \hat{P}(Y = -y|w,x)|$ Fisher's linear discriminant analysis: Assuming the MLE. Constrained GMM: different covariance PCA (linear dim. reduction) matrices \rightarrow different sizes of clusters. (Diagonal = $\hat{P}(Y = -y|w,x) = \frac{1}{1 + exp(yw^Tx)}$, can be regularized equal class probabilities and covariances: GNB). Each iteration in M-step is equiv. to training Linear mapping W^Tx that projects vectors x into $|(L1, L2)| + \text{ kernelized, apply to NN for class prob} f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0, \quad w_0 = \frac{1}{2} (\hat{\mu}_-^T \hat{\Sigma}^{-1} \hat{\mu}_- - \hat{\mu}_-)$ a GBC with weighted data. \rightarrow Closed form solution a k-dim. subspace such that the reconstruction abilities, multi-class setting: maintain 1 w per class, $\hat{\mu}_{+}^{T}\hat{\Sigma}^{-1}\hat{\mu}_{+}$, $\mathbf{w} = \hat{\Sigma}^{-1}(\hat{\mu}_{+} - \hat{\mu}_{-})$ Soft-EM for semi-supervised learning error (euclidian) is minimal. $D = x_1,...,x_n \subset \mathbb{R}^d$ model the others. $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T, \, \mu = 0$ if assumptions met, Gaussian NB and LDA same learning from unlabeled and labeled data. **Bayesian decision theory** pred. as *logistic* regression, LDA maximizes ra-E-step: labeled points: y_i : $\gamma_i^{(t)}(x_i) = [j = y_i]$, unla- $(W,z_1,...,z_n) = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^n ||Wz_i - x_i||_2^2$ Conditional distribution over labels P(y|x), Set of to of between-class and within-class variances. actions A Cost function $C: Y \times A \to \mathbb{R}$ Quadratic discriminant analysis: we predict $W = (v_1|...|v_k) \in \mathbb{R}^{d \times k}$, orthogonal; $z_i = W^T x_i$ beled: $\gamma_i^{(t)}(x_i) = P(Z = j | x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$ actions A, Cost function $C: Y \times A \rightarrow \mathbb{R}$ v_i are the eigenvectors of $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^{\top}$. Only $a^* = \operatorname{argmin}_{a \in A} \mathbb{E}[C(y,a)|x]$ $|y = \text{sign}(f(\mathbf{x}))|$ $(f(\mathbf{x}) = \text{discriminant function})$ **Useful Math** if $k = d x_i$ can be reconstructed from k principal Calculate \mathbb{E} via sum/integral. **Categorical Naive Bayes Classifier Calculus** components. Via SVD $\rightarrow k$ first columns of V. Classification: $C(y,a) = [y \neq a]$; asymmetric: MLE for $P(y) = p = \frac{n_{+}}{n}$, MLE for feature distr.: F'(x) = f'(g(x))g'(x)**Kernel PCA** $(c_{FP}, if y = -1, a = +1)$ $\hat{P}(X_i = c|Y = y) = \theta_{c|y}^{(i)} = \frac{Count(X_i = c, Y = y)}{Count(Y = y)}$ $\frac{\delta x^T A x}{\delta x} = (A + A^T) x, \quad \frac{\delta x^T a}{\delta x} = \frac{\delta a^T x}{\delta x} = a, \quad \frac{\delta a^T X b}{\delta X} = ab^T$ $|C(y,a)| = \{c_{FN}, \text{ if } y = +1, a = -1\}$ Kernel PC: $\alpha^{(1)}, ..., \alpha^{(k)} \in \mathbb{R}^n, \alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$ 0 otherwise Prediction: $y^* = \operatorname{argmax}_{v} \hat{P}(y|x)$ $\frac{\delta a^T X^T b}{\delta X} = b a^T, \ \frac{\delta a^T X a}{\delta X} = \frac{\delta a^T X^T a}{\delta X} = a a^T$ $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T, \lambda_1 \geq ... \geq \lambda_d \geq 0$ **Regression**: $C(y, a) = (y - a)^2$; asymmetric: Could lift Naive assumption by modeling joint cond. $C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$ New point: $\hat{z} = f(\hat{x}) = \sum_{i=1}^{n} \alpha_i^{(i)} k(\hat{x}, x_i)$ **Probabilities** dist., but exponetial in d and prone to overfitting. |E.g. $y \in \{-1, +1\}$, predict + if $c_+ < c_-, c_+ =$ **Autoencoders** Mixture models $|\mathbb{E}(C(y,+1)|x) = P(y=1|x) \cdot 0 + P(y=-1|x) \cdot c_{FP}$ Find identity function: $x \approx f(x; \theta), f(x; \theta) =$ Model each c. as probability distr. $P(x|\theta_i)$ c_{-} likewise $f_{decode}(f_{encode}(x; \theta_{encode}); \theta_{decode}), \text{ if } \phi(z) = z \rightarrow$

features conditionally independent Hard-EM algorithm

Use conjugate priors (posterior dist. same as prior) comlete data: $D^{(t)} = \{(x_1, z_1^{(t)}, ..., x_n, z_n^{(t)})\}$

 $|P(y|x) = \frac{1}{2}P(y)P(x|y), Z = P(x)^{-1} = \sum_{y} P(y)P(x|y)$ with spherical covariances same as k-means. CV can

Classes can be mixture of categorical and continuous features. Prediction using **Bayes rule**: $z_i^{(t)} = \operatorname{argmax}_z P(z|x_i, \theta^{(t-1)})$

 $\underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} log(1 + exp(-y_i w^T x_i)),$

equal to PCA.

Probabilistic modeling Find $h: X \to Y$ that minimize prediction error: $P(x,y) = P(x|y) \cdot P(y) = P(y|x) \cdot P(x)$. Discrimi-= latent variable modeling)

$R(h) = \int P(x,y)l(y;h(x))\partial yx\partial y = \mathbb{E}_{x,y}[l(y;h(x))]$

Dimensionality reduction

For least squares regression Bayes optimal predictor h: $h^*(x) = \mathbb{E}[Y|X=x]$ Pred.: $\hat{\mathbf{y}} = \hat{\mathbb{E}}[Y|X = \hat{\mathbf{x}}] = \int \hat{P}(y|X = \hat{\mathbf{x}})y\partial y$ Maximum Likelihood Estimation (MLE)

 $\theta^* = \operatorname{argmax}_{\theta} \hat{P}(y_1, ..., y_n | x_1, ..., x_n, \theta)$ E.g. lin. + Gauss: $y_i = w^T x_i + \varepsilon_i, \varepsilon_i \sim N(0, \sigma^2)$ i.e. $y_i \sim N(w^T x_i, \sigma^2)$, With MLE (use

$\underset{k}{\operatorname{argmin}} - \log : w^* = \underset{k}{\operatorname{argmin}}_w \sum (y_i - w^T x_i)^2. \text{ For } P(y|x) = \frac{P(y)P(x|y)}{P(x)} = \frac{P(y)P(x|y)}{\sum_{v} P(x,v)}$ Gaussian MLE equal to least squares solution. **Bias Variance trade-off**

Prediction error = $Bias^2 + Variance + Noise$ Maximum a posteriori estimate (MAP)

likelihood = loss function, regularizer = prior. $\hat{\theta} = \operatorname{argmax}_{\theta} f(\theta|x) = \operatorname{argmax}_{\theta} g(\theta) \prod_{i=1}^{n} f(x|\theta)$

Gauss. prior $\equiv ||w||_2^2$, Laplace prior $\equiv ||w||_1$

SGD: $w = w(1-2\lambda \eta_t) + \eta_t yx \hat{P}(Y = -y|w,x)$ Logistic regression

Bernoulli noise instead: $P(y|x,w) = Ber(y;\sigma(w^Tx)) \Big| \mathbb{R}^d, \hat{\Sigma}_y = \frac{1}{n_y} \sum_{i:y_i=y} (x_i - \hat{\mu}_y)(x_i - \hat{\mu}_y)^T \in \mathbb{R}^{d \times d}$ Classification: Use P(y|x,w), predict most likely class label. (Boundary shifted towards less training Discriminant function:

data points) MLE: $\underset{w}{\operatorname{argmax}}_{w} P(y_{1:n}|w,x_{1:n}) \Rightarrow w^{*} \stackrel{\varepsilon}{=} \left| f(\mathbf{x}) = \log \frac{p}{1-p} + \frac{1}{2} \left| \log \frac{|\Sigma_{-}|}{|\hat{\Sigma}_{-}|} + \frac{1}$

Gaussian (Naive) Bayes Classifier **Gaussian Naive Bayes**: $\hat{\mu}_{v}$, $\hat{\sigma}_{v}$, indep. assumption. # param. = $O(c \cdot d)$ Gaussian Bayes: corr. among features, but $O(c \cdot d^2)$, MLE for GB: $\hat{P}(x|y) =$ Link func.: $\sigma(w^Tx) = \frac{1}{1 + exp(-w^Tx)}$ (Sigmoid), iid $N(x; \hat{\mu}_y, \hat{\Sigma}_y)$, $\hat{P}(Y = y) = \hat{p}_y = \frac{n_y}{n}$, $\hat{\mu}_y = \frac{1}{n_y} \sum_{i:y_i = y} x_i \in Y$

 $y^* = \operatorname{amax}_{v} P(y|x) = \operatorname{amax}_{v} P(y) \prod_{i=1}^{d} P(x_i|y)$

Discriminative vs. generative modeling

native: generally more robust, but cannot detect

outliers. Generative: Can be more powerful (e.g.,

given Y, prior on labels P(y), Estimate con-

ditional distribution P(x|y) for each class

detect outliers) if model assumptions are met.

Naive Bayes

to avoid overfitting.

Deriving decision rule

Naive:

E-step: Calc. cluster membership weights for each point: $\gamma_i^{(t)}(x_i)$ given estimates of previous iterations.

 $|(\mathbf{x}-\hat{\boldsymbol{\mu}}_{-})^{T}\hat{\Sigma}_{-}^{-1}(\mathbf{x}-\hat{\boldsymbol{\mu}}_{-})-(\mathbf{x}-\hat{\boldsymbol{\mu}}_{+})^{T}\hat{\Sigma}_{+}^{-1}(\mathbf{x}-\hat{\boldsymbol{\mu}}_{+})|$

 $P(D|\theta) = \prod_{i=1}^{n} \sum_{i=1}^{k} w_i P(x_i|\theta_i)$

 $P(x|y) = \sum_{i=1}^{k_y} w_i^{(y)} N(x; \mu_i^{(y)}, \sum_i^{(y)})$

M-step: Compute the MLE:

Soft-EM algorithm

Initialize parameters $\theta^{(0)}$, for t = 1,2,...

y, E-step: Predict most likely class for each point:

 $|\theta^{(t)}| = \operatorname{argmax}_{\theta} P(D^{(t)}|\theta)$, i.e. $\mu_i^{(t)} = \frac{1}{n_i} \sum_{i:z_i = j} x_j$

optimization on the complete data likelihood.

Gaussian-Mixture Bayes classifiers

Estimate prior P(y); Est. cond. distr. for each class:

= argmax_z $P(z|\theta^{(t-1)})P(x_i|z,\theta^{(t-1)})$; now we have

M-step: Fit clusters to weighted data points: $w_j^{(t)} = \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \ \mu_j^{(t)} = \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)x_i}{\sum_{i=1}^n \gamma_i^{(t)}(x_i)}$ $Av = \sigma u$ $\sigma_{i}^{(t)} = \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})^{T}(x_{i} - \mu_{j}^{(t)})}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})^{T}(x_{i} - \mu_{j}^{(t)})}$

if: ≥ 0) \Leftrightarrow all eigenvalues of A are positive. Eigendecomposition $AP = PD \Leftrightarrow A = PDP^{-1}$ iff eigenvectors of A form

Cholesky decomposition

Singular value decomposition

 $A = U\Sigma V^{\top}$: $A^{m\times n}$: $U^{m\times m}$, $V^{n\times n}$: U,V orthogonal and $\Sigma^{m \times n}$ diagonal with singular values $\sigma = \sqrt{\lambda} (A^{\top} A)$

 $A^{n\times n}:A=LL^{\top}$, symmetric and positive definite.

a basis in \mathbb{R}^n . D diagonal matrix of eigenvalues be used to determine # cluster centers. Alternating Eigenvectors in P. $Ap = \lambda p$

Symmetric: $A^{n \times n} : A^{\top} = A$, symmetric positive definite if: $\forall x \setminus \{0\} \in \mathbb{R}^n : x^\top Ax > 0$ (semi-definite

 $A^{m \times m} : A^{\top} A = I_d = AA^{\top} \Leftrightarrow A^{\top} = A^{-1}$ **Symmetric Positive Definite Matrices**

Ax = 0 has only trivial solution x = 0. **Orthogonal Matrices**

 $A^{m \times m}: A^{-1}A = I_d = AA^{-1}$ only if $\det(A) \neq 0$

Invertible/nonsingular Matrices

 $\operatorname{Cov}[X,Y] = \mathbb{E}[(X - \mathbb{E}(X)(Y - \mathbb{E}(Y))] = \mathbb{E}[XY]$ $\mathbb{E}[X]\mathbb{E}[Y]$, $\mathbb{V}[X+Y] = \mathbb{V}[X] + \mathbb{V}[Y] + 2\text{Cov}[X,Y]$

Discriminative estimate P(y|x), generative $L(w,\theta) = -\sum_{i=1}^{n} \log \sum_{i=1}^{k} w_i P(x_i|\theta_i)$. (\rightarrow Fitting a $|V_x|b + cX| = c^2 V_x[X]$, $V_x[b + CX]$ Generative approach uses chain rule: GMM = Training a GBC without labels; Clustering $CV_x[X]C^{\top}, C \in \mathbb{R}^{n \times n}$

 $\mathbb{E}_x[b + cX] = b + c \cdot \mathbb{E}_x[X] \mathbb{E}_x[b + CX] =$ $b+C\cdot\mathbb{E}_{x}[X],C\in\mathbb{R}^{n\times n}$

 $\mathbb{E}_{x}[X] = \int x \cdot p(x) \partial x$ (cont.), $\mathbb{E}_{x}[X] = \sum_{x} x \cdot p(x)$ $\operatorname{Var}[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Avoid degeneravy: small term to the diagonal of