Social Network Analysis: Terms, Data, Theory & Vizualization

jimi adams

Associate Professor

University of Colorado Denver

Department of Health & Behavioral Sciences

- For matrix multiplication order matters: $AB \neq BA$.
- To be conformable, the number of rows in the 1st matrix must match the number of columns in the 2nd. That is:
 - A_{m^*k} is conformable with B_{k^*q}
 - Thus:
 - \bullet $A_{4x2} \times B_{2x3} = C_{4x3}$
 - but
 - $A_{2x4} \times B_{2x3}$ is not defined
- This is because in matrix multiplication, elements in the resulting matrix are:
 - the sum of
 - the element wise multiplication of the
 - corresponding:
 - rows from the 1st matrix, and
 - columns from the 2nd matrix:

- Matrix operations require that the matrices are conformable (have compatible dimensions for the operation.
- For addition (+), subtraction (-), or element-wise multiplication (#), conformable matrices have the same number of rows *and* columns.
 - For these operations, the new cell values are the operation applied to the corresponding cell values in each initial matrix.

Multiplication by a scalar:
$$3A =$$

$$3a 3d \\
3b 3e \\
3c 3f$$
A#B =
$$au dx \\
bv ey \\
cw fz$$

Why Matrices? Matrix Algebra & Graph Theory

Adjacency Matrix

0	0	1	0	0	0
0	0	1	0	0	0
1	1	0	1	0	0
0	0	1	0	1	1
0	0	0	1	0	1
0	0	0	1	1	0

Attribute

1	0	
1	0	
1	0	
0	1	
0	1	
0	1	

Alter Attribute

$\lfloor 1 \rfloor$	0
1	0
2	1
1	2
0	2
0	2

Why Matrices?

Matrix Algebra & Graph Theory

$$0*1 + 0*1 + 1*1 + 0*0 + 0*0 + 0*0 = 1$$

 $1*1 + 1*1 + 0*1 + 1*0 + 0*0 + 0*0 = 2 \dots$

$$0*0 + 0*0 + 1*0 + 0*1 + 0*1 + 0*1 = 0 \dots$$

Adjacency Matrix

0	0	1	0	0	0
0	0	1	0	0	0
1	1	0	1	0	0
0	0	1	0	1	1
0	0	0	1	0	1
0	0	0	1	1	0

Attribute

1	U
1	0
1	0
0	1
0	1
0	1

Alter Attribute

1	0
1	0
2	1
1	2
0	2
0	2

■ The *transpose* (` or ^T) of a matrix swaps the rows/columns:

$$\boldsymbol{A^t}_{ij}\!\!=\!\!\boldsymbol{A}_{ji}$$

■ An M x N matrix becomes an N x M matrix.

$$\begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix} = \begin{bmatrix} a & c & e \\ b & d & f \end{bmatrix}$$

Why Matrices? Matrix Algebra & Gr

Matrix Algebra & Graph Theory

Transpose(Attribute)

1	1	1	0	0	0
0	0	0	1	1	1

1	0
1	0
1	0
0	1
0	1
0	1

Alter Attribute

1	0	
1	0	
2	1	
1	2	
0	2	
0	2	

Attribute Mixing Matrix

Why Matrices?

Matrix Algebra & Graph Theory

1	1	0	0	1	0
0	0	1	1	0	1

Alter

