

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

WYKŁAD 2 – Cz. II Ewa Frątczak

Elementy teorii weryfikacji hipotez statystycznych

Metody statystyczne I Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak,

dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Struktura:

- 1. Podstawowe pojęcia
- Błąd pierwszego i drugiego rodzaju
- 3. Testy najmocniejsze
- 4. Moc testu
- 5. Zgodność testu
- 6. Test najmocniejszy Neymana Pearsona
- 7. Test jednostajnie najmocniejszy
- 8. Obciążoność testu
- 9. Funkcja mocy testu
- 10. Test ilorazu wiarygodności

1. Podstawowe pojęcia

Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu populacji generalnej o prawdziwości lub fałszywości, którego wnioskuje się na podstawie pobranej próby.

Zbiór hipotez dopuszczalnych Ω jest zbiorem możliwych rozkładów, które mogą charakteryzować badaną populację.

Hipoteza parametryczna to taka, która dotyczy nieznanych wartości parametrów.

Hipotezy, które nie dotyczą parametrów nazywamy hipotezami nieparametrycznymi, są one przypuszczeniami dotyczącymi klasy rozkładów do których należy rozkład populacji.

Metody statystyczne I Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH

Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

1. Podstawowe pojęcia

Hipotezą prostą nazywamy hipotezę statystyczną, która jednoznacznie określa rozkład populacji.

Każdą hipotezę, która nie jest prosta nazywamy hipotezą złożoną.

Każda hipoteza statystyczna ma postać $H:F(x)\in\omega$, gdzie $\omega\subset\Omega$. Wówczas jeśli podzbiór ω składa się z jednego elementu, to badana hipoteza jest hipotezą prostą, jeśli natomiast do podzbioru ω należy więcej niż jeden rozkład, to mówimy o hipotezie złożonej.

1. Podstawowe pojęcia

Testem statystycznym nazywamy regułę postępowania, która każdej możliwej realizacji próby x_1, \ldots, x_n przyporządkowuje, z ustalonym prawdopodobieństwem, decyzję przyjęcia lub odrzucenia sprawdzanej hipotezy.

Test statystyczny w zależności od tego, czy jest weryfikowana hipoteza parametryczna, czy też nieparametryczna nazywamy testem parametrycznym lub testem nieparametrycznym.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

1. Podstawowe pojęcia

W procesie weryfikacji hipotez na początku ze zbioru hipotez dopuszczalnych wybiera się jedną hipotezę, która podlega weryfikacji i nazywa się ją **hipotezą zerową**:

$$H_0: F(x) \in \omega_0$$
, $\omega_0 \subset \Omega$.

Oprócz weryfikowanej hipotezy wyróżnia się jeszcze jedną zwaną hipotezą alternatywną:

$$H_1: F(x) \in \omega_1, \ \omega_1 \subset \Omega$$

która jest przeciwstawna hipotezie zerowej i którą jesteśmy skłonni przyjąć, w przypadku odrzucenia hipotezy zerowej.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

1. Podstawowe pojęcia

- Oznaczmy przez Wn wymiarową przestrzeń próby, czyli zbiór wszystkich możliwych wyników n elementowej próby, niech $W_n = (x_1, ..., x_n)$ oznacza punkt w tej przestrzeni próby.
- Konstrukcja testu polega na podzieleniu przestrzeni próby na dwa rozłączne obszary w oraz W-w.
- Jeśli $W_n \in \mathcal{W}$, to sprawdzaną hipotezę odrzucamy, jeśli natomiast $W_n \in \mathcal{W} \mathcal{W}$, to hipotezę zerową przyjmujemy.
- Obszar w nazywamy **obszarem odrzucenia** hipotezy (obszarem krytycznym), natomiast *W-w* **obszarem przyjęcia** hipotezy zerowej.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

2. Błąd pierwszego i drugiego rodzaju

W wyniku testowania hipotezy statystycznej możemy podjąć poprawną decyzję lub popełnić jeden z dwóch następujących błędów:

1) możemy odrzucić weryfikowaną hipotezę H_0 wtedy, gdy jest ona w rzeczywistości prawdziwa

$$P(W_n \in w \mid H_0) = \alpha(w)$$

- błąd I rodzaju;
- 2) możemy przyjąć weryfikowaną hipotezę $m{H}_0$ jako prawdziwą, podczas gdy jest ona fałszywa

$$P(W_n \in (W - w) | H_1) = \beta(w)$$

- błąd II rodzaju.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

3. Testy najmocniejsze

Ponieważ jednoczesna minimalizacja obydwu rodzajów błędów, przy ustalonej liczebności próby, nie jest możliwa, to ustala się z góry pewne prawdopodobieństwo błędu I rodzaju na żądanym poziomie α. Następnie spośród wszystkich obszarów w spełniających warunek

 $P(W_n \in w \mid H_0) = \alpha$

wybieramy taki obszar W_0 , dla którego prawdopodobieństwo błędu II rodzaju jest najmniejsze, tzn.

$$\min_{w} P(W_n \in (W - w) | H_1) = P(W_n \in (W - w_0) | H_1).$$

Tak zbudowane testy nazywamy testami najmocniejszymi.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

4. Moc testu

Mocą testu opartego na obszarze odrzucenia w nazywamy prawdopodobieństwo odrzucenia sprawdzanej hipotezy H_0 przy założeniu, że prawdziwa jest hipoteza alternatywna H_1 , piszemy

 $M(w) = P(W_n \in w \mid H_1)$

Zauważmy, że

$$P(W_n \in (W - w) | H_1) = P(W_n \in W | H_1) - P(W_n \in w | H_1) = 1 - P(W_n \in w | H_1)$$

Zatem

$$\beta(w) = 1 - M(w)$$

UWAGA: Testy najmocniejsze nie zawsze istnieją.

5. Zgodność testu

Test oparty na obszarze odrzucenia w jest **zgodny**, jeśli jego moc dąży do jedności

$$\lim_{n\to\infty} P(W_n \in w \mid H_1) = 1$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

6. Test najmocniejszy Neymana – Pearsona

Załóżmy, że hipoteza zerowa H_0 i alternatywna H_1 są hipotezami prostymi. Rozważamy populację generalną o rozkładzie zadanym gęstością $f(x;\theta)$. Weryfikujemy hipotezę $H_0: \theta = \theta_0$, wobec hipotezy alternatywnej $H_1: \theta = \theta_1$.

Podstawowy Iemat Neymana – Pearsona

Test zbudowany na podstawie obszaru odrzucenia w, który spełnia warunki:

$$\frac{\prod\limits_{i=1}^{n}f(x_{i};\theta_{1})}{\prod\limits_{i=1}^{n}f(x_{i};\theta_{0})}\geq k \quad \text{wewnqtrz obszaru } w, \\ \frac{\prod\limits_{i=1}^{n}f(x_{i};\theta_{0})}{\prod\limits_{i=1}^{n}f(x_{i};\theta_{0})}\leq k \quad \text{na zewnqtrz obszaru } w, \\ \prod\limits_{i=1}^{n}f(x_{i};\theta_{0})$$

gdzie stała k jest tak dobrana, aby $P(W_n \in w \mid H_0) = \alpha$, jest testem najmocniejszym z prawdopodobieństwem błędu pierwszego rodzaju równym α .

Przykład 1

Z populacji o rozkładzie normalnym $N(m,\sigma)$ pobrano n - elementową próbę, w celu sprawdzenia hipotezy $H_0: m=m_0$, wobec hipotezy alternatywnej $H_1: m=m_1$, przy czym $m_1 < m_0$. Zakładamy, że σ jest znane.

Chcemy zbudować test najmocniejszy z prawdopodobieństwem błędu pierwszego rodzaju równym α .

Metody statystyczne I Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak,

dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Przykład 1

Wyznaczmy lewą stronę nierówności z lematu Neymana – Pearsona:

$$\frac{\prod_{i=1}^{n} f(x_i; m_1)}{\prod_{i=1}^{n} f(x_i; m_0)} = \frac{\frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x_1 - m_1)^2}{2\sigma^2}\right) \cdot \dots \cdot \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x_n - m_1)^2}{2\sigma^2}\right)}{\frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x_1 - m_0)^2}{2\sigma^2}\right) \cdot \dots \cdot \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x_n - m_0)^2}{2\sigma^2}\right)}$$

$$= \frac{\exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - m_1)^2\right)}{\exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - m_0)^2\right)} = \exp\left[\frac{1}{2\sigma^2} \left(\sum_{i=1}^{n} (x_i - m_0)^2 - \sum_{i=1}^{n} (x_i - m_1)^2\right)\right]$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Przykład 1

Z lematu wynika, że obszar krytyczny w dający test najmocniejszy zawiera te wszystkie punkty $W_n = (x_1, ..., x_n)$ przestrzeni próby, dla których powyższe wyrażenie jest słabo większe od k. Zatem

$$\exp\left[\frac{1}{2\sigma^{2}}\left(\sum_{i=1}^{n}(x_{i}-m_{0})^{2}-\sum_{i=1}^{n}(x_{i}-m_{1})^{2}\right)\right] \geq k$$

$$\left[\frac{1}{2\sigma^{2}}\left(\sum_{i=1}^{n}(x_{i}-m_{0})^{2}-\sum_{i=1}^{n}(x_{i}-m_{1})^{2}\right)\right] \geq \ln k$$

$$\sum_{i=1}^{n}x_{i}^{2}+nm_{0}^{2}-2m_{0}n\bar{x}-\sum_{i=1}^{n}x_{i}^{2}-nm_{1}^{2}+2m_{1}n\bar{x} \geq 2\sigma^{2} \ln k$$

$$-n(m_{1}^{2}-m_{0}^{2})+2n\bar{x}(m_{1}-m_{0}) \geq 2\sigma^{2} \ln k$$

$$\bar{x} \leq \frac{2\sigma^{2} \ln k+n(m_{1}^{2}-m_{0}^{2})}{2n(m_{1}-m_{0})} = K(k)$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Przykład 1

Ponieważ założyliśmy, że prawdopodobieństwo błędu I rodzaju jest równe α , to liczbę K dobieramy tak, aby $P(\bar{x} \le K \mid H_0) = \alpha$.

Przy założeniu, że hipoteza $H_0: m=m_0$ jest prawdziwa zmienna $\overline{\sigma/\sqrt{n}}$ ma rozkład N(0,1).

$$P\left(\frac{\overline{X}-m_0}{\sigma/\sqrt{n}} \le \frac{K-m_0}{\sigma/\sqrt{n}}\right) = \alpha$$

Stąd $P\!\!\left(\frac{\overline{X}-m_0}{\sigma/\sqrt{n}}\!\leq\!\frac{K-m_0}{\sigma/\sqrt{n}}\right)\!=\!\alpha$ Z tablic rozkładu normalnego $N\!\!\left(0,\!1\right)$ odczytujemy liczbę $K'=\frac{K-m_0}{\sigma/\sqrt{n}}$

Jeśli
$$\frac{\overline{X}-m_0}{\sigma/\sqrt{n}} \leq K'$$
,

to hipotezę zerową odrzucamy, w przeciwnym razie hipotezę tą przyjmujemy.

Przykład 1

<u>UWAGA</u>: Tak zbudowany test gwarantuje przy prawdopodobieństwie błędu I rodzaju równym α, możliwie największą moc, czyli możliwie najmniejsze prawdopodobieństwo błędu II rodzaju.

UWAGA: Otrzymany obszar krytyczny
$$\frac{\overline{X} - m_0}{\sigma / \sqrt{n}} \le K'$$

jest niezależny od hipotezy alternatywnej, jeśli tylko $m_1 < m_0$.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Wniosek

Jeśli populacja generalna ma rozkład normalny $N(m,\sigma)$ ze znanym odchyleniem standardowym σ , to obszarem odrzucenia dającym test najmocniejszy dla hipotezy zerowej $H_0: m = m_0$ wobec hipotezy alternatywnej:

1) $H_1: m=m_1, \quad m_1 < m_0 \text{ jest obszar } \frac{\overline{x}-m_0}{\sigma/\sqrt{n}} \leq K'$, gdzie K' jest tak dobrane, aby $P\bigg(\frac{\overline{x}-m_0}{\sigma/\sqrt{n}} \leq K'\bigg) = \alpha$

$$P\left(\frac{\overline{x}-m_0}{\sigma/\sqrt{n}} \le K'\right) = \alpha$$

2) $H_1: m=m_1$, $m_1>m_0$ jest obszar $\frac{\overline{x}-m_0}{\sigma/\sqrt{n}}\geq K'$, gdzie K' jest tak dobrane aby $P\left(\frac{\overline{x}-m_0}{\sigma/\sqrt{n}}\geq K'\right)=\alpha$

$$P\left(\frac{\overline{x}-m_0}{\sigma/\sqrt{n}} \ge K'\right) = \alpha$$

Metody statystyczne I Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak,

dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

7. Test jednostajnie najmocniejszy

Rozważamy tak, jak poprzednio populację generalną o funkcji gęstości $f(x;\theta)$. Załóżmy teraz, że weryfikujemy prostą hipotezę zerową $H_0:\theta=\theta_0$ wobec złożonej hipotezy alternatywnej $H_1:\theta\in\omega$, $\omega\subset\Omega$.

Testem jednostajnie najmocniejszym względem zbioru ω nazywamy taki test najmocniejszy dla hipotezy zerowej $H_0:\theta=\theta_0$, który jest identyczny dla wszystkich możliwych prostych hipotez alternatywnych θ ze zbioru ω .

<u>UWAGA</u>: Test jednostajnie najmocniejszy nie zawsze istnieje.

Przykład 2

W przykładzie pierwszym zbudowaliśmy test najmocniejszy dla hipotezy $H_0: m=m_0$, wobec prostej hipotezy alternatywnej $H_1: m=m_1$ i otrzymaliśmy, że otrzymany obszar krytyczny jest niezależny od hipotezy alternatywnej, jeśli tylko $m_1 < m_0$.

Zatem otrzymany test jest testem jednostajnie najmocniejszym dla hipotezy $H_0: m=m_0$ wobec hipotezy alternatywnej $H_1: m\in \omega$, gdzie zbiór ω jest wyznaczony przez relację $m_1 < m_0$.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

8. Obciążoność testu

Załóżmy, że rozważamy populację generalną o funkcji gęstości $f(x; \theta)$

Weryfikujemy prostą hipotezę zerową $H_0: \theta = \theta_0$, wobec złożonej hipotezy alternatywnej $H_1: \theta \neq \theta_0$. Załóżmy ponadto, że został zbudowany jakiś test z obszarem odrzucenia w.

Mówimy, że ten test jest **obciążony**, jeśli istnieje taka wartość parametru θ_1 , $\theta_1 \neq \theta_0$, dla której zachodzi następująca nierówność

$$P(W_n \in w \mid \theta = \theta_1) < P(W_n \in w \mid \theta = \theta_0)$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

9. Funkcja mocy testu

Funkcja mocy testu opartego na obszarze odrzucenia w

Weryfikując prostą hipotezę $H_0: \theta=\theta_0$ wobec złożonej hipotezy alternatywnej $H_1: \theta \in \omega$ można dla każdego $\theta_1 \in \omega$ wyznaczyć moc rozpatrywanego testu:

$$M(\theta_1) = P(W_n \in w \mid \theta = \theta_1)$$

<u>UWAGA</u>: Jeśli zbiór wartości, na których określona jest funkcja mocy rozszerzymy na punkt $\theta = \theta_0$, to otrzymamy

$$P(W_n \in w \mid \theta = \theta_1) = \alpha$$

10. Test ilorazu wiarygodności

Test ilorazu wiarygodności stosujemy głównie w przypadku sprawdzania hipotez złożonych, jak również hipotez prostych, gdy nie istnieje test nieobciążony jednostajnie najmocniejszy.

Rozważamy populację generalną o rozkładzie zadanym funkcją gęstości $f(x;\theta)$. Na podstawie n – elementowej próby pobranej z tej populacji chcemy zweryfikować hipotezę $H_0:\theta=\theta_0$, wobec hipotezy alternatywnej $H_1:\theta\in\omega$, gdzie ω jest zbiorem możliwych alternatywnych wartości parametru θ .

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

10. Test ilorazu wiarygodności

Określmy funkcję wiarygodności

$$L(\theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$$

Przy założeniu prawdziwości hipotezy zerowej $H_0: \theta = \theta_0$, mamy

$$L(\theta_0) = \prod_{i=1}^n f(x_i; \theta_0)$$

Estymatorem MNW parametru θ będzie taka wartość $\hat{\theta}$ parametru θ , dla której

 $\max_{\theta \in \Omega} L(\theta) = L(\hat{\theta}),$

gdzie Ω oznacza zbiór wszystkich możliwych wartości parametru heta.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

10. Test ilorazu wiarygodności

Niech

$$\lambda = \frac{L(\theta_0)}{L(\hat{\theta})} = \frac{L(\theta_0)}{\max_{\theta \in \Omega} L(\theta)}$$

Ponieważ λ jest funkcją próby losowej X_1,\dots,X_n , to jest zmienną losową. Zatem jako obszar odrzucenia hipotezy $H_0:\theta=\theta_0$ wobec hipotezy alternatywnej $H_1:\theta\in\omega$ przyjmujemy obszar zadany nierównością $\lambda\leq k$.

Przy przyjętym prawdopodobieństwie błędu I rodzaju α , stałą k wyznaczamy tak, aby spełniony był warunek

$$P(\lambda \le k \mid H_0) = \alpha$$

Metody statystyczne I Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH

Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Przykład 3

Z populacji o rozkładzie normalnym $N(m,\sigma)$ pobrano n - elementową próbę, w celu sprawdzenia hipotezy $H_0: m=m_0$, wobec hipotezy alternatywnej $H_1: m=m_1$, $-\infty < m_1 < +\infty$. Zakładamy, że σ jest znane.

Wówczas funkcja wiarygodności dana jest wzorem

$$L(m) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x_1 - m)^2}{2\sigma^2}\right) \cdot \dots \cdot \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(x_n - m)^2}{2\sigma^2}\right)$$
$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - m)^2\right),$$
$$-\infty < m < +\infty.$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Przykład 3

Przy założeniu, że hipoteza $H_0: m=m_0$ jest prawdziwa:

$$L(m_0) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - m_0)^2\right)$$

$$= \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2 - \frac{1}{2\sigma^2} n(\bar{x} - m_0)^2\right]$$

Estymatorem MNW parametru m jest $\hat{m} = \overline{x}$, zatem

$$L(\hat{m}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \bar{x})^2\right)$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Przykład 3

Wyznaczmy

$$\lambda = \frac{L(m_0)}{L(\hat{m})} = \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2 - \frac{1}{2\sigma^2} n(\bar{x} - m_0)^2 + \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2\right]$$

$$= \exp \left[-\frac{n}{2\sigma^2} \left(\overline{x} - m_0 \right)^2 \right]$$

Obszar odrzucenia H_0 wobec H_1 określony jest nierównością $\lambda \leq k$.

Stąd

$$\exp\left[-\frac{n}{2\sigma^2}(\bar{x} - m_0)^2\right] \le k$$
$$-\frac{n}{2\sigma^2}(\bar{x} - m_0)^2 \le \ln k$$
$$\left(\frac{\bar{x} - m_0}{\sigma/\sqrt{n}}\right)^2 \ge -2\ln k$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

Przykład 3

Jeśli przyjmiemy
$$-2\ln k = K^2(k)$$
, to otrzymujemy obszar odrzucenia
$$\left|\frac{\overline{x} - m_0}{\sigma/\sqrt{n}}\right| \geq K$$

Przy założeniu, że hipoteza $H_0: m=m_0$ jest prawdziwa zmienna

$$rac{\overline{X}-m_0}{\sigma/\sqrt{n}}$$
 ma rozkład $N(0,1)$.

Stąd z tablic rozkładu normalnego N(0,1) odczytujemy liczbę K taką, że

$$P\left(\left|\frac{\overline{x}-m_0}{\sigma/\sqrt{n}}\right| \ge K\right) = \alpha$$

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

10. Test ilorazu wiarygodności

W przypadku dużych prób, gdy znalezienie dokładnego rozkładu zmiennej λ jest trudne, korzystamy z tego, ze zmienna losowa $-2\ln\lambda$ ma asymptotyczny rozkład chi – kwadrat z jednym stopniem swobody.

Wówczas obszar odrzucenia wyznaczony jest następującą nierównością

 $-2\ln\lambda > \chi_{\alpha}^2$

gdzie χ^2_{α} jest tak dobrane, aby przy ustalonym prawdopodobieństwie błędu I rodzaju α , zachodziła relacja

$$P(-2\ln\lambda > \chi_{\alpha}^2) = \alpha$$
.

Zakład Analizy Historii Zdarzeń i Analiz Wielopoziomowych ISiD SGH Zespół realizujący: dr hab. prof. SGH, Ewa Frątczak, dr Wioletta Grzenda, dr Aneta Ptak-Chmielewska

10. Test ilorazu wiarygodności

<u>UWAGA</u>: Jeśli przez w oznaczymy obszar wyznaczony przez punkty przestrzeni próby, dla których $-2\ln\lambda>\chi_\alpha^2$, przy czym $P\left(-2\ln\lambda>\chi_\alpha^2\right)=\alpha$, to dla punktu W_n w n – elementowej przestrzeni próby mamy

$$\lim_{n\to\infty} P(W_n \in w \mid H_1) = 1$$

Zatem tak zbudowane testy są zgodne, tzn. ich moc dąży do jedności.

DZIĘKUJĘ ZA UWAGĘ!