Algorithmique & Prog. Impérative

2 octobre 2018 40 minutes. Tous documents interdits. Une feuille A4 R/V manuscrite autorisée.

Nom:	Groupe de TD
Prénom:	

Exercice 1 (Permutations d'entiers)

Dans cet exercice, on s'intéresse à des permutations d'entiers. On veut stocker tous les entiers de 1 à n dans un ordre aléatoire dans une séquence S sous forme de **tableau avec longueur explicite**.

On propose l'algorithme bas-niveau ci-dessous, qui part d'une séquence vide et à chaque étape insère un nombre (l'entier courant i) à une position aléatoire p (par échange avec le dernier élément) dans la séquence. On suppose $n \leq \texttt{LMAX}$.

$S \leftarrow$ nouvelle Séquence				
pour chaque i de 1 à n faire				
$p \leftarrow \text{al\'eatoire}(0, S.\text{longueu})$	r)			
$S.$ longueur \leftarrow A:				
S.tab[B:	$] \leftarrow S.tab[p]$			
$S.tab[p] \leftarrow C$:				
retourner S				

Consigne : compléter les trous de l'algorithme :

Quick test: Ensembles, Séquences et Tableaux

A:

B:

C:

Exercice 2 (Analyse d'algorithme)

Dans cet exercice, on part de la séquence S aléatoire de l'exercice précédent. On suppose donc que tous les entiers de 1 à n sont stockés dans un ordre aléatoire dans S.

On considère l'algorithme décrit informellement ci-dessous :

- 1. on commence par chercher l'entier 1 dans S;
- 2. on le déplace à la fin de S;
- 3. on recommence avec l'entier 2, et ainsi de suite jusqu'à n.

Consignes

- 1. Commencez par montrer sur un exemple le comportement de l'algorithme en exhibant sa trace d'exécution (montrer l'évolution de la séquence, des variables, etc.).
- 2. Question de cours : donnez les définitions des structures de données qui seront nécessaires.
- 3. Donnez l'algorithme en pseudo-code. **Attention** : il est conseillé de donner l'algorithme en haut-niveau et de détailler les opérations bas-niveau dans des fonctions séparées.
- 4. Faites une analyse de complexité de votre algorithme.
- 5. Bonus : commentez rapidement l'effet de cet algorithme sur la séquence.

Algorithmique & Prog. Impérative

2 octobre 2018 40 minutes. Tous documents interdits. Une feuille A4 R/V manuscrite autorisée.

Nom:	Groupe de TD
Prénom :	

Exercice 1 (Permutations d'entiers)

Dans cet exercice, on s'intéresse à des permutations d'entiers. On veut stocker tous les entiers de 1 à n dans un ordre aléatoire dans une séquence S sous forme de **tableau avec longueur explicite**.

On propose l'algorithme bas-niveau ci-dessous, qui part d'une séquence vide et à chaque étape insère un nombre (l'entier courant i) à une position aléatoire p (par échange avec le dernier élément) dans la séquence. On suppose $n \leq \texttt{LMAX}$.

$S \leftarrow$ nouvelle Séquence				
pour chaque i de 1 à n faire				
$p \leftarrow \text{al\'eatoire}$	(0, S.longueur)			
S .longueur \leftarrow	A:			
S.tab[B:] ← S	.tab[p]	
$S.tab[p] \leftarrow$	C:			
retourner S				

Consigne : compléter les trous de l'algorithme :

Quick test: Ensembles, Séquences et Tableaux

A:

B:

C :

Exercice 2 (Analyse d'algorithme)

Dans cet exercice, on part de la séquence S aléatoire de l'exercice précédent. On suppose donc que tous les entiers de 1 à n sont stockés dans un ordre aléatoire dans S.

On considère l'algorithme décrit informellement ci-dessous :

- 1. on commence par chercher l'entier 1 dans S;
- 2. on le décale de 1 position vers la droite dans S;
- 3. on recommence avec l'entier 2 que l'on décale de 2 positions;
- 4. on procède de même jusqu'à n; si le décalage ferait « sortir » l'entier de la séquence, on le place en fin de la séquence.

Consignes

- 1. Commencez par montrer sur un exemple le comportement de l'algorithme en exhibant sa trace d'exécution (montrer l'évolution de la séquence, des variables, etc.).
- 2. Question de cours : donnez les définitions des structures de données qui seront nécessaires.
- 3. Donnez l'algorithme en pseudo-code. **Attention** : il est conseillé de donner l'algorithme en haut-niveau et de détailler les opérations bas-niveau dans des fonctions séparées.
- 4. Faites une analyse de complexité de votre algorithme.
- 5. Bonus : commentez rapidement l'effet de cet algorithme sur la séquence.