Contents

Introduction to Interrupts	1
Software Interrupts	2
Hardware Interrupts	2
More On Interrupts	2

Introduction to Interrupts

- They cause the computer to pause what they are doing
- Can be software or hardware related
- A computer can handle a very large numbers of interrupts in a short amount of time
- Some of these interrupts are bad (segmentation fault)
- INT instruction is the syscall instruction

Figure 1: Interrupt Diagram

Software Interrupts

- Page fault is an example
- Program Exception: when a software interrupt is not expected
- SIGFAULT: bad pointer

Hardware Interrupts

- I/O Devices
- Interval Timers: provides a constant "tick" interrupt periodically. Another time is use to notify programs after a request interval time has concluded
- Other CPU cores

More On Interrupts

- There are privilege levels
 - 0: root
 - 3: userland
- Interrupts run in this hierarchy
- Interrupt Service Routine: code that runs due to the interrupt
 - First-Level Interrupt Handler (FILH)
 - * Saves the context, then handles the hardware requirements (resetting the hardware, saving information that may only be available at the time of the interrupt)
 - Second-Level Interrupt Handler (SLIH)
 - * More specific to the interrupt (schedulinng the next I/O request to a storage device)
- Interrupt Descriptor Table: a table of ISRs
- When the interrupts happen, the RIP register loads the corresponding ISR address
- After the ISR is done running, the previous state of the processor must be restored to allow the computer to start where it left off
- Polling: the CPU keeps checking all the hardware of the availability of any request
 - Waiting for shit to happen
- Interrupts: like a doorbell or a notification that a task needs to be completed