Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №1 по дисциплине «Методы машинного обучения» на тему

«Разведочный анализ данных. Исследование и визуализация данных»

Выполнил: студент группы ИУ5-22М Вей Пхьоу Ту

1. Цель лабораторной работы

Изучить различные методы визуализации данных [1].

2. Задание

Требуется выполнить следующие действия [1]:

- Выбрать набор данных (датасет).
- Создать ноутбук, который содержит следующие разделы:
 - 1. Текстовое описание выбранного набора данных.
 - 2. Основные характеристики датасета.
 - 3. Визуальное исследование датасета.
 - 4. Информация о корреляции признаков.
- Сформировать отчет и разместить его в своем репозитории на GitHub

3. Ход выполнения работы

3.1. Текстовое описание набора данных

Сердце - это удивительный орган. Он бьется ровно, ровно, примерно от 60 до 100 раз каждую минуту. Это примерно 100 000 раз в день. Иногда твое сердце выходит из ритма. Ваш врач называет нерегулярное или неправильное сердцебиение аритмией. Аритмия (также называемая дисритмией) может вызывать неравномерное сердцебиение или сердцебиение, которое либо слишком медленное, либо слишком быстрое.

3.2. Основные характеристики набора данных

Подключим все необходимые библиотеки [1]

```
[1] from datetime import datetime
   import pandas as pd
   import seaborn as sns

[2] # Enable inline plots
   %matplotlib inline
   # Set plot style
   sns.set(style="ticks")
   # Set plots formats to save high resolution PNG
   from IPython.display import set_matplotlib_formats
   set_matplotlib_formats("retina")

[3] pd.set_option("display.width", 70)

[4] data = pd.read_csv("./SolarPrediction.csv")
```

Настроим отображение графиков [3,4]:

Загрузим непосредственно данные[5]

```
[6] data.dtypes
                      datetime64[ns, Pacific/Honolulu]
    UNIXTime
                                                 object
    Date
    Time
                                                object
    Radiation
                                                float64
    Temperature
                                                  int64
    Pressure
                                                float64
    Humidity
                                                  int64
    WindDirection
                                                float64
                                                float64
    Speed
    TimeSunRise
                                                object
    TimeSunSet
                                                object
    dtype: object
```

Посмотрим на данные в данном наборе данных:

data.head()												
		UNIXTime	Date	Time	Radiation	Temperature	Pressure	Humidity	WindDirection	Speed	TimeSunRise	TimeSunSet
	0	2016-09-29 23:55:26-10:00	2016-09-29	23:55:26	1.21	48	30.46	59	177.39	5.62	06:13:00	18:13:00
	1	2016-09-29 23:50:23-10:00	2016-09-29	23:50:23	1.21	48	30.46	58	176.78	3.37	06:13:00	18:13:00
	2	2016-09-29 23:45:26-10:00	2016-09-29	23:45:26	1.23	48	30.46	57	158.75	3.37	06:13:00	18:13:00
	3	2016-09-29 23:40:21-10:00	2016-09-29	23:40:21	1.21	48	30.46	60	137.71	3.37	06:13:00	18:13:00
	4	2016-09-29 23:35:24-10:00	2016-09-29	23:35:24	1.17	48	30.46	62	104.95	5.62	06:13:00	18:13:00

Проверим размер набора данных:

Проверим основные статистические характеристики набора данных:

df.describe()									
	Radiation	Temperature	Pressure	Humidity	WindDirection	Speed	Day	TimeInSeconds	DayPart
count	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000	32686.000000
mean	207.124697	51.103255	30.422879	75.016307	143.489821	6.243869	306.110965	43277.574068	0.482959
std	315.916387	6.201157	0.054673	25.990219	83.167500	3.490474	34.781367	24900.749819	0.602432
min	1.110000	34.000000	30.190000	8.000000	0.090000	0.000000	245.000000	1.000000	-0.634602
25%	1.230000	46.000000	30.400000	56.000000	82.227500	3.370000	277.000000	21617.000000	-0.040139
50%	2.660000	50.000000	30.430000	85.000000	147.700000	5.620000	306.000000	43230.000000	0.484332
75%	354.235000	55.000000	30.460000	97.000000	179.310000	7.870000	334.000000	64849.000000	1.006038
max	1601.260000	71.000000	30.560000	103.000000	359.950000	40.500000	366.000000	86185.000000	1.566061

3.3. Визуальное исследование датасета

Давайте оценим распределение целевого атрибута - Рейтинг:

[13] sns.distplot(df["Radiation"]);

/usr/local/lib/python3.7/dist-packages/seaborn/distributio
warnings.warn(msg, FutureWarning)

sns.jointplot(x="DayPart", y="Radiation", data=df, kind="hex")


```
[15] dfd = df[(df["DayPart"] >= 0) & (df["DayPart"] <= 1)]
    sns.distplot(dfd["Radiation"]);</pre>
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557
warnings.warn(msg, FutureWarning)

[15] sns.jointplot(x="DayPart", y="Radiation", data=dfd, kind="hex");

Построим парные диаграммы по всем показателям по исходному набору данных:

3.4. Информация о корреляции признаков

df.corr()									
	Radiation	Temperature	Pressure	Humidity	WindDirection	Speed	Day	TimeInSeconds	DayPart
Radiation	1.000000	0.734955	0.119016	-0.226171	-0.230324	0.073627	-0.081320	0.004348	0.005980
Temperature	0.734955	1.000000	0.311173	-0.285055	-0.259421	-0.031458	-0.370794	0.197227	0.198520
Pressure	0.119016	0.311173	1.000000	-0.223973	-0.229010	-0.083639	-0.332762	0.091066	0.094403
Humidity	-0.226171	-0.285055	-0.223973	1.000000	-0.001833	-0.211624	-0.063760	0.077851	0.075513
WindDirection	-0.230324	-0.259421	-0.229010	-0.001833	1.000000	0.073092	0.153255	-0.077956	-0.078130
Speed	0.073627	-0.031458	-0.083639	-0.211624	0.073092	1.000000	0.174336	-0.057908	-0.056095
Day	-0.081320	-0.370794	-0.332762	-0.063760	0.153255	0.174336	1.000000	-0.007094	-0.010052
TimeInSeconds	0.004348	0.197227	0.091066	0.077851	-0.077956	-0.057908	-0.007094	1.000000	0.998980
DayPart	0.005980	0.198520	0.094403	0.075513	-0.078130	-0.056095	-0.010052	0.998980	1.000000

Построим корреляционную матрицу по всему набору данных:

Визуализируем корреляционную матрицу с помощью тепловой карты:

Список литературы

[1] Гапанюк Ю. Е. Лабораторная работа «Разведочный анализ данных. Исследование и визуализация данных» [Электронный ресурс] // GitHub. — 2019. — Режим доступа: https://github.com/ugapanyuk/ml_course/wiki/LAB_EDA_VISUALIZATION (дата обращения: 13.02.2019)