DEPARTMENT OF MATHEMATICS, I.I.T. GUWAHATI

MA 322: Scientific Computing Lab - VII

1. Use the methods mentioned below to approximate the solutions to each of the following initial-value problems, and compare the results to the actual values.

(a)
$$y' = \frac{2 - 2ty}{t^2 + 1}$$
, $0 \le t \le 1$, $y(0) = 1$ with $h = 0.1$; actual solution $y(t) = \frac{2t + 1}{t^2 + 1}$.

(b)
$$y' = \frac{y^2 + y}{t}$$
, $1 \le t \le 3$, $y(1) = -2$ with $h = 0.2$; actual solution $y(t) = \frac{2t}{1 - 2t}$.

- (c) $y' = 1 + y/t + (y/t)^2$, $1 \le t \le 3$, y(1) = 0 with h = 0.2; actual solution $y(t) = t \tan(\ln t)$.
- (d) $y' = e^{(t-y)}$, $0 \le t \le 1$, y(0) = 1 with h = 0.5; actual solution $y(t) = \ln(e^t + e 1)$.
 - 1. Explicit-Euler method

2. Implicit-Euler method

3. Modified-Euler method

- 4. Midpoint method
- 5. Second and Fourth-order Runge-Kutta methods
- 2. Solve the initial-value problem $x' = x/t + t \sec(x/t)$ with x(0) = 0 by the fourth-order Runge-Kutta method. Continue the solution to t = 1 using step size $h = 2^{-7}$. Compare the numerical solution with the exact solution, which is $x(t) = t \arcsin t$. Define f(0,0) = 0, where $f(t,x) = x/t + t \sec(x/t)$.
- 3. The irreversible chemical reaction in which two molecules of solid potassium dichromate $(K_2Cr_2O_7)$, two molecules of water (H_2O) , and three atoms of solid sulfur (S) combine to yield three molecules of the gas sulfur dioxide (SO_2) , four molecules of solid potassium hydroxide (KOH), and two molecules of solid chromic oxide (Cr_2O_3) can be represented symbolically by the stoichiometric equation:

$$2K_2Cr_2O_7 + 2H_2O + 3S \rightarrow 4KOH + 2Cr_2O_3 + 3SO_2.$$

If n_1 molecules of $K_2Cr_2O_7$, n_2 molecules of H_2O , and n_3 molecules of S are originally available, the following differential equation describes the amount x(t) of KOH after time t:

$$\frac{dx}{dt} = k \left(n_1 - \frac{x}{2} \right)^2 \left(n_2 - \frac{x}{2} \right)^2 \left(n_3 - \frac{3x}{4} \right)^3$$

where k is the velocity constant of the reaction. If $k = 6.22 \times 10^{-19}$, $n_1 = n_2 = 2 \times 10^3$, and $n_3 = 3 \times 10^3$, use the Runge-Kutta method of order four to determine how many units of potassium hydroxide will have been formed after 0.2s?

- 4. Use Adams-Bashforth and Adams-Moulton methods to approximate the solutions to the IVPs given in Question 1.
 - (a) Use exact starting values.
 - (b) Use starting values obtained from the Runge-Kutta method of order four.

Compare the results to the actual values.