WEEK 9 YANG DICHENG

Monday, 16 December 2019 21:09

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

		II tempe
	22:00	23:00
	∆ ∆ LightRain	& & LightRain
Temperatura effettiva	6°C	7°C
Temperatura percepita	6°C	7°C
Precipitazioni	0 mm	0 mm
Umidità	96 %	95 %
Pressione atmosferica	1021 hPa	1020 hPa
Intensità del vento	3 km/h	2 km/h
Direzione del vento	□	\hookrightarrow
	0	0
Probabilità di nebbia	0 %	0 %
Punto di rugiada	6°C	6°C
Nuvole	100 %	100 %
Nuvole basse	100 %	100 %
Nuvole medie	99 %	92 %
Nuvole alte	95 %	100 %

According to the website, at 22:00

The humidity is 96%, so ϕ =96% The total air pressure is 1021 hPa, P=102.7Kpa Temperature is 6°C , T= 6°C

According to the Psychrometric Chart, when the humidity is ϕ =96% and the temperature T=6°C,

THE ABSOLUTE HUMIDITY is ω =0.005 THE WET_BULB TEMPERATURE T_{wb} = 5°C

MASS OF WATER VAPOR

$$V_{\text{room}} = 20X6X6 = 720m^{2}$$

$$P_{v} = \frac{P\omega}{0.622 + \omega} = \frac{102.7X0.005}{0.622 + 0.005} = 0.818kg$$

$$m_v = \frac{VP_v}{TR_v} = \frac{0.818X720}{0.4615X(273+6)} = 4.7kg$$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

	Lat:	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone: 1.00 (EUW)		Period: 86-10		WBAN:	99999		
	Annual He	ating and H	lumidificat	ion Design C	onditions												
	Coldest	Heatle	o DB		Hum	nidification D	P/MCDB and	IHR		Coldest month WS/MCDB					/PCWD	1	
	Month		Heating DB			99.6%		99%		0.4%		1%		to 99.6% DB			
	WOULD	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD		
	(0)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	oling, Dehu	umidificatio	on, and Enth	alpy Design	n Condition:	5										
		11-111			0	DD #4014D					F	. HEDATODE			MOING	DOLLID	i
	Hottest	Hottest Month	0	Cooling DB/MCWB			2%		0.	Evaporation WB/MCDB 0.4% 1%				2%	MCWS/PCWD to 0.4% DB		
	Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific	ation DP/M	CDB and HF	₹		Enthalpy/MCDB							Hours	
		0.4%		1%			2%						% 2%			8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	1
	(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme Annual Design Conditions																
						Annual DB							lues of Extreme DB				
			Max		ean	Standard			years		years		years	n=50			
	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
	(a)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Noc=2

Height=2.5m²

Conditioned Floor Area=200m²

Internal Gains:

$$\dot{Q}_{igsensible} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2 \times 200 + 22 \times 2 = 620W$$

 $\dot{Q}_{iglatent} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 \times 200 + 12 \times 2 = 88W$

 $A_{ul}(GOOD\ CONSTRUCTION) = 1.4\ cm^2/m^2$

 $A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{ m}^2$

 $A_L = A_{es} \times A_{ul} = 344 \times 1.4 = 481.6 \text{ cm}^2$

The cooling temperature in Brindisi is $T_{cooling}$ = 24 °C and heating temperature $T_{heating}$ = 20°C in Brindisi

 $\Delta T_{\text{cooling}} = 31.1 - 24 = 7.1^{\circ}C = 7.1K$

 $\Delta T_{\text{heating}} = 20 - (-4.1) = 24.1$ °C = 24.1K

 $DR = 7.1^{\circ}C = 7.1K$

 $IDF_{heating} = 0.073 \text{ L/s} \cdot \text{cm}^2$

 $IDF_{cooling} = 0.033 \text{ L/s} \cdot \text{cm}^2$

$$\begin{split} \dot{V}_{infiltration \; heating} &= A_L \times IDF_{heating} = 481.6 \times 0.073 = 35.157 \; L/S \\ \dot{V}_{infiltration \; cooling} &= A_L \times IDF_{cooling} = 481.6 \times 0.033 = 15.89 \; L/ \end{split}$$

$$\dot{V}_{\text{ventilation}} = 0.05A_{\text{cf}} + 3.5(N_{\text{br}} + 1) = 0.05 \times 200 + 3.5 \times (1 + 1) = 17 \text{ L/S}$$

$$\dot{V}_{inf-ventilation heating}$$
 = 35.157 + 17 = 52.157 L/S

 $\dot{V}_{inf-ventilation cooling}$ = 15.89 + 17 = 32.893 L/S

 $C_{sensible}$ = 1.23, C_{latent} = 3010, $\Delta\omega_{cooling}$ = 0.0039

 $\dot{Q}_{inf-ventilation \ cooling \ sensible} = C_{sensible} \times \dot{V} \times \Delta T_{cooling} = 1.23 \times 32.893 \times 7.1 = 287.25 W$

 $\dot{Q}_{inf-ventilation\ heating\ sensible}$ = $C_{sensible} \times \dot{V} \times \Delta T_{heating}$ = 1.23 × 52.157 × 24.1 = 1546.09W

 $\dot{Q}_{inf-ventilation cooling latent} = C_{lantent} \times \dot{V} \times \Delta \omega_{cooling} = 3010 \times 32.893 \times 0.0039$ = 386.13W