

MITx: 6.008.1x Computational Probability and Inference

Heli

▶ Introduction

Part 1: Probability and Inference

 Part 2: Inference in Graphical Models

Week 5: Introduction to Part 2 on Inference in Graphical Models

Week 5: Efficiency in Computer Programs

Exercises due Oct 20, 2016 at 02:30 IST

Week 5: Graphical Models

Exercises due Oct 20, 2016 at 02:30 IST

Week 5: Homework 4

Homework due Oct 20, 2016 at 02:30 IST

Week 6: Inference in Graphical Models -Marginalization Part 2: Inference in Graphical Models > Week 5: Efficiency in Computer Programs > Exercise: Storing the Joint Probability Table of Two Random Variables

Exercise: Storing the Joint Probability Table of Two Random Variables

 \square Bookmark this page

STORING JOINTLY DISTRIBUTED RANDOM VARIABLES

Let's start with two random variables, X and Y. To infer the value of random variable X given the observed value of a random variable Y, we first model how X and Y relate. As we saw in the first part of the course, we can model the relationship between X and Y by looking at their joint probability table $p_{X,Y}$ (which we might not know directly but can piece together if, for instance, we had other tables such as p_X and $p_{Y|X}$).

Exercise: Storing the Joint Probability Table of Two Random Variables

4/4 points (graded)

Suppose X takes on k different values and Y takes on ℓ different values.

For the answer boxes below, please provide your answer as a mathematical formula (and not as Python code). Use $^{\wedge}$ for exponentiation, e.g., $^{\wedge}$ 2 denotes $\boldsymbol{x^2}$. Explicitly include multiplication using * , e.g. $^{\times}$ 4 is \boldsymbol{xy} .

• Suppose that X and Y may possibly be dependent (i.e., we don't know if they are independent). Exercises due Oct 27, 2016 at (A) 02:30 IST How many table entries are in the joint probability table $p_{X,Y}$? Week 6: Special Case: Marginalization in Hidden ✓ Answer: k*l k*l Markov Models Exercises due Oct 27, 2016 at 02:30 IST $k \cdot l$ Week 6: Homework 5 Homework due Oct 27, 2016 at ullet Next, consider when the two random variables X and Y are known to be independent. This means (A) 02:30 IST that the joint probability table factorizes so that $p_{X,Y}(x,y) = p_X(x)p_Y(y)$. In other words, rather Weeks 6 and 7: Mini-project than storing $p_{X,Y}$, we could instead store the marginal distributions p_X and p_Y , and then to on Robot Localization (to be compute $p_{X,Y}(x,y)$, we first look up $p_X(x)$ and $p_Y(y)$ and multiply these two numbers together. posted) How many table entries are in the probability table p_X ? ✓ Answer: k k \boldsymbol{k} How many table entries are in the probability table p_V ? ✓ Answer: I

Note that the number of table entries needed to store p_X and p_Y without making any additional assumptions is precisely the sum of the number of table entries in p_X and the number of table entries in p_Y .

• Now suppose that p_X and p_Y are actually independent and identically distributed and so each of X and Y now take on k possible values. How many table entries are needed to store p_X and p_Y ? Please provide your answer in terms of k and not ℓ .

Independence can drastically reduce how many numbers we need to store especially when we look at distributions over many random variables!

Solution:

• Suppose that X and Y may possibly be dependent (i.e., we don't know if they are independent). How many table entries are in the joint probability table $p_{X,Y}$?

Solution: There are k possibilities for X, and ℓ possibilities for Y so the joint probability table has $\boxed{k\ell}$ entries.

• Next, consider when the two random variables X and Y are known to be independent. This means that the joint probability table factorizes so that $p_{X,Y}(x,y)=p_X(x)p_Y(y)$. In other words, rather than storing $p_{X,Y}$, we could instead store the marginal distributions p_X and p_Y , and then to compute $p_{X,Y}(x,y)$, we first look up $p_X(x)$ and $p_Y(y)$ and multiply these two numbers together.

How many table entries are in the probability table p_X ?

Solution: There are k possibilities for X, so p_X has k entries.

How many table entries are in the probability table p_Y ?

Solution: There are ℓ possibilities for Y, so p_Y has $\boxed{\ell}$ entries.

Note that the number of table entries needed to store p_X and p_Y without making any additional assumptions is precisely the sum of the number of table entries in p_X and the number of table entries in p_Y .

• Now suppose that p_X and p_Y are actually independent and identically distributed and so each of X and Y now take on k possible values. How many table entries are needed to store p_X and p_Y ? Please provide your answer in terms of k and not ℓ .

Solution: It suffices to store a single table for both p_X and p_Y with \boxed{k} entries.

Submit

You have used 1 of 5 attempts

✓ Correct (4/4 points)

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

