

Space : A Promising Frontier

Antony Jeevarajan, Ph.D.
Johnson Space Center

National Aeronautics and Space Administration
Houston, TX 77058

Email: antony.s.jeevarajan@nasa.gov

Outline

- ❖ Where are we in the Universe?
- ❖ Technology Evolution during Human Space Exploration Missions
- ❖ Mathematics : A Unifying Discipline
- ❖ More importantly, to answer your questions

NASA Centers

Our Habitation at Night

Beautiful Fragile Blue Planet (~400,000 km)

Mars - Earth Mutual View (~400,000,000 km)

Orbital Speed of the Planets

Milky Way Galaxy

Speed of Light
300,000 km per sec

Hubble Telescope Repair Mission Crew (STS-125)

Webb Telescope

Webb Image during Mirror Alignment

Webb and Lagrangian Point L2 (1.61 Million km)

Tipping Points (Cozzarelli Prize) 2021)

Bury et. al., Proc. National Academy of Sciences,
Vol 118 (2021) No 39.

Shell Formation

Universe

ESA

Hyperbolic Geometry Expands Outward

Human Capacity

Human can neither Create nor destroy a single atom

Human is capable of transforming existing material for the benefit of human race

Our Neighbors

Venus

Atmosphere : 94.5 % CO₂ and
4.5% N₂, SO₂

Temp : 470 deg Celsius

Pressure : 100 atm

Sun rises in West sets in East

Earth

Atmosphere : 80% N₂ and
20% O₂

Temp : -89 to 57 deg Celsius

Pressure : 1 atm

Sun rises in East sets in West

Mars

Atmosphere : 95% CO₂ and 5%
N₂ and Ar

Temp : -140 to 20 deg Celsius

Pressure : 0.006 atm

Sun rises in East sets in West

Mars Landing Sites

Mars 2020 : Jezero Crater

Perseverance Landing

NASA Live: Official Stream of NASA TV

Percy at Jezero Crater (March 2022)

Overview of Notional Mars Expedition

Earth-to-Mars transit: ~6 months
Mars surface stay: ~18 months
Mars-to-Earth transit: ~6 months

Living in a Closed System

Recycling

- Water Regeneration Reactors
- Air Revitalization Reactors
- Environmental Sensors
- Microbial Monitors

Today's Coffee - Yesterday's Coffee

Carbon Dioxide Removal

- Lithium Hydroxide
- Zeolite
- Amine Bed
- Anchored Amine Bed
- Sabatier Reaction

- Oxygen Generation System (Electrolysis)

- Sabatier Reaction

Air Quality Monitoring

D. Gazda
T. Limero

AQM 1 (624 column)	AQM 2 (DB5 column)
Acetone	Ethanol
Hexane	Dichloromethane
1,2-dichloroethane	Trimethylsilanol
Toluene	2-butanone
Hexamethylcyclotrisiloxane	Ethyl acetate
Hexanal	N-butanol
m,p-xylene	Toluene
o-xylene	Hexamethylcyclotrisiloxane
Octamethylcyclotetrasiloxane	m,p-xylene
Decamethylcyclopentasiloxane	o-xylene
Acrolein	Octamethylcyclotetrasiloxane
Isopropanol	Decamethylcyclopentasiloxane
Benzene	

DNA Sequencing in Space!

MinION (Oxford Nanopore Technologies)

Biomolecule Sequencer Payload

A

B

C

Nanopore Technology

Solar Flare and Earth's Magnetic Field

Auroras from ISS

Van Allen Belt

Inner Belt
Protons
640-960 km

Outer Belt
Electrons 13,400-
57,000 km

Spotless Sun 2019

Solar Flare Aug 16, 2020

Solar Flare and Earth (Size Comparison)

Solar Cycle and GCR Modulation

Fu et. Al., The Astrophys. Journal, Vol 254 (2021) 37.

Scott Kelly (1 Year Mission) Twin Studies

Food for Space Missions

Natural Form Foods

Rehydratable Foods

Intermediate Moisture Foods

Beverages

Irradiated & Thermo-stabilized Foods

Sleep

Human Health & Performance

Enable successful space exploration by minimizing the Human System Risks of spaceflight hazards

Hazards of Spaceflight (RIDGE)

Hazards Drive Human Spaceflight Risks

Radiation

Acute In-flight effects
Long term cancer risk

Distance from earth

Autonomous Medical Care
and Operations;
Communication Delay

Environment (Closed/Hostile)

Vehicle Design
Environmental – CO₂ Levels,
Toxic Exposures, Water,
Food

Isolation & Confinement

Behavioral aspect of
isolation
Sleep disorders

Altered Gravity - Physiological Changes

Balance Disorders
Fluid Shifts
Cardiovascular Deconditioning
Decreased Immune Function
Muscle Atrophy
Bone Loss

Bone Loss During Space Missions

Treadmill in International Space Station

Resistive Exercise Device

Reactivation of Varicella Zoster Virus(VZV) in Astronauts

Potential Immunologic Countermeasures for Deep Space Missions

Precision Countermeasures

Pre-Mission Immunological Screen

Pre-mission immunological screen may include:
Personal history of allergy/hypersensitivity, etc.
Medication history (antihistamines, etc.)
Leukocyte distribution (NK cell subsets)
Cytokine concentration: Th1/Th2, etc.
Allergy screen, patch testing
Latent herpesvirus sero-positivity

Pathogen-Specific Mitigations

Antiviral (VZV) vaccination

General Countermeasures

Already in Place/Will be Optimized

Pre-flight medical operations screening of crewmembers
Pre-flight quarantine
Microbial screening of vehicle/payloads/foods
Environmental control
Optimized exercise equipment
Radiation shielding

Multisystem Countermeasures

Optimized exercise regimen
Adequate sleep schedules
Psychological support - family communication
Stress relieving techniques

Specific Countermeasures

Nutritional Countermeasures

Diet optimized to reduce nutrient deficiency
Functional foods/bioactive compounds
Nutritional supplements:

- Antioxidants
- Probiotics
- Omega 3 fatty acids
- Supplemental nucleotides
- AHCC
- Pegylated-IL-2

Pharmacological Intervention

Beta blockers
Anti-cortisol
Antibiotics
Antiviral
Anti-inflammatory
Cytokine therapy

In-flight Monitoring of Immune Parameters?

Integrated Visual Impairment/Intracranial Pressure

- Hyperopic Shifts
 - Up to +1.75 diopters

Normal Globe Flatten Globe

- Altered Blood flow
 - “cotton wool” spots

MRI Orbital Image showing globe flattening

Macias, JAMA Ophthalmology, 2020

- Choroidal Folds - parallel grooves in the posterior pole

- #### ► •Optic Disc Edema (swelling)

- Increased Optic Nerve Sheath Diameter

Addressing Critical Health Issues for Exploration- ISS research is necessary to address recently discovered health issue related to long duration space exposure. As a result of elevated intracranial pressure in space, visual acuity changes are occurring in over 76% of astronauts.

Astronauts with ocular changes had higher serum homocysteine concentration than astronauts without ocular changes. *Before* flight.

Zwart et al., Vision changes after spaceflight are related to alterations in folate- and vitamin B-12-dependent one-carbon metabolism.. *J Nutrition*, 2012

Enzyme Polymorphisms Studied

Data Analytics in Healthcare

Li *et al.*, Science Trans Medicine, Vol 7, 311, 2015

Type 2 Diabetic Patients
N = 1184

Subtype 1 : Kidney and Eye
Subtype 2 : Heart and cancer
Subtype 3 : Heart and Neuro

System Biology

The Cellular Biotechnology Program

Johnson Space Center Houston, Texas

PI : Dr. Lisa Freed, MIT, *Proc. Natl. Acad. Sci.* 94, (1997) pp 1385-1389.

Vascularized Human Liver Tissue (1 cm³; 30 day Survival)
Wake Forest Institute for Regenerative Medicine, NC

System Engineering (Past, Present and Future)

Artemis Program

First woman to land on the Moon
Technology validation on Moon for the Human
Space Exploration of Mars

In Greek Mythology, Artemis is the
twin sister of Apollo⁵⁷

Lunar Scientists have a lot of places they would like to go!

(<https://lunar-landing.arc.nasa.gov/>)

Near Side

Far Side

Moon Landing Potential Sites : 2025

Mazarico, LEAG 2013

To become an Astronaut?

- Training in one of the STEM (Science, Technology, Engineering and Mathematics) disciplines
- Diverse Experience
- Team Player

- Group Living Skills
- Teamwork Skills
- Performance under Stress
- Self-regulation
- Motivation
- Judgment/Decision-making
- Conscientiousness
- Communication Skills
- Leadership/Followership Skills

Astronaut Class of 2021

U.S. Air Force Maj. Nichole Ayers, Christopher Williams, U.S. Marine Corps Maj. (retired) Luke Delaney, U.S. Navy Lt. Cmdr. Jessica Wittner, U.S. Air Force Lt. Col. Anil Menon, U.S. Air Force Maj. Marcos Berrios, U.S. Navy Cmdr. Jack Hathaway, Christina Birch, U.S. Navy Lt. Deniz Burnham, and Andre Douglas. Credits: NASA

In Your Lifetime

Knowledge will travel rapidly to
Individuals, who are
Ready, Capable and Eager to Apply

Needs and Outcome Oriented
Applied and Translational
Socially Responsive & Use-inspired Basic

Who is at Your Window?

I feel responsible - Collins

Acknowledgment

Engineers, Scientists
Physicians and Astronauts

Thanks

Beautiful Fragile Blue Planet

With God's grace, Make a difference
Passion, Perseverance and Patience

BACK-UP

EVA at Neutral Buoyancy Lab (NBL)

Bed Rest Studies :envihab

Under Water NEEMO

Mars 500 Analog

Rover : Desert Rat

Deep Space Habitat : Isolation and Confinement

Zero-Gravity Aircraft

Shuttle Launch : Speed of Rocket

Gross Lift-off weight : 2 Million tons

Thrust : 33,327 kilonewtons

SRB Separation : 45 km

External Tank Separation : 111 km

Orbital velocity : 27,869 km/hour

Payload weight : 25 tons

Shuttle weight : 78 tons

Routes into biologically isolated sections of the Lunar Receiving Lab are shown here by red lines. At upper left, lunar samples arrive and are taken to vacuum system and radiation lab by elevator. Other entrances indicated are for astronauts, for the command module, for food and laundry. Times at far right show where lab personnel come and go through ultraviolet airlocks (graph).

Lunar Sample Laboratory

More than 300 scientists and technicians will perform tests with lunar materials in the lab area, shaded green.

- 1 Vacuum system where lunar material is received and processed
- 2 Chambers for storage and transfer of lunar material
- 3 Controls for vacuum system
- 4 Equipment for postflight tool sterilization
- 5 Gas analysis laboratory
- 6 Special air conditioning system to sterilize air entering and leaving building
- 7 Elevator
- 8 Viewing room for participating scientists
- 9 Pump room and electrical support equipment for vacuum system
- 10 Transfer tubes for moving samples directly from vacuum system to labs
- 11 Physical-chemical test labs—mineralogy, petrology, geochemistry
- 12 Bio-preparation lab where lunar material is prepared, weighed and packaged for distribution
- 13 Bio-analysis lab for blood tests and other tests on mice
- 14 Holding lab for green-free mice
- 15 Holding lab for conventional mice
- 16 Lunar microbiology lab to isolate, identify and possibly grow lunar microorganisms
- 17 Spectrographic lab and darkroom (connected to 13)
- 18 Bird, fish and invertebrate lab where shrimp, quail, cockroaches, oysters and other creatures are exposed to lunar material
- 19 Microbiology lab for test cultures of lunar and astronaut material
- 20 Egg and tissue culture lab (support and additional facilities for 21)
- 21 Cervicovirology lab for postflight virological analysis of astronauts
- 22 Plant lab where green-free algae, seeds, weeds and seedlings will be exposed to lunar material
- 23 Entrance to lunar sample operations area. Showers and facilities for all personnel passing in and out to change clothing
- 24 Autoclave for sterilizing all material entering or leaving area
- 25 Bio-safety labs to monitor all personnel
- 26 Support offices
- 27 Distance to radiation counting lab

Anatomy of a Lunar Receiving Lab

Astronaut Reception Area

Quarantine area where astronauts will live and be examined, is shaded yellow. In an emergency, lunar lab workers could also be quarantined there.

- 1 Crew reception area (connected to transfer van)
- 2 Medical and dental examination rooms
- 3 Medical examination room
- 4 Operating room
- 5 Tilt-table room for physiological testing
- 6 Tape-out room where data can be passed into nonquarantine area electronically
- 7 Biomedical lab—clinical chemistry and immunology of astronauts and support personnel
- 8 Exercise room
- 9 Astronaut debriefing room, separated by glass from family visiting room
- 10 Observatory for support personnel
- 11 Offices for astronauts and doctors
- 12 Paired sleeping quarters for three astronauts and their three attendant doctors
- 13 Lounge and dining room
- 14 Kitchen
- 15 Receiving room where food and laundry is sterilized passing in and out
- 16 Computer room for data storage from bio-medical lab (7)
- 17 Spacecraft storage, equipped with closed-circuit TV for inspection
- 18 Microbiology lab for clinical tests of quarantined personnel
- 19 X-ray room with fluoroscope and darkroom

Radiation Laboratory

Chips from the first lunar samples will be sent to a radiation lab above in a drawing built 50 feet underground. There, their radioactivity will be measured and results may help indicate the age of the rocks and whether they ever existed in molten form.

Support and Administration

Beyond the two biologically secure portions of the lab, offices and support facilities are shown at left above. To the right, green areas test animals and plants are raised and tested for studies. When quarantine is lifted, other areas in the section will be used to prepare lunar samples for shipment to universities around the world.

Astronaut Class of 2017

Zena Cardman, Jasmin Moghbeli, Jonny Kim, Frank Rubio, Matthew Dominick, Warren Hoburg, Robb Kulin, Kayla Barron, Bob Hines, Raj Chari, Loral O'Hara and Jessica Watkins.

Magnitude of the Universe

Number of Atoms in the Universe $< 10^{80}$

Atoms in the earth = $6 \times 10^{27} \text{ g}/12 \text{ g}) \times 6 \times 10^{23} = 3 \times 10^{50}$

Atoms in the solar system = $3 \times 10^{50} \times 1000 = 3 \times 10^{53}$

Atoms in the Milkyway Galaxy = $3 \times 10^{53} \times 10^9 = 3 \times 10^{62}$

Atoms in the Universe = $3 \times 10^{62} \times 10^9 = 3 \times 10^{71}$

View from Sudan

Zuma Pilot Picture

Why Mars?

* Mars is our most hospitable planetary neighbor

- * Venus is closer, but its average temperature of 462°C (864°F) and the sulfuric acid atmosphere—90 times higher pressure than Earth—would crush our spaceships

* Mars will feel like home in many ways:

- * Approximately the same day/night cycle as Earth
- * 4 seasons: cold winters, but as warm as 20°C (70°F) on a summer day
- * Vistas similar to Earth's deserts: mountains, cliffs, valleys, dunes, dust devils
- * Abundant natural resources: oxygen (from ice or CO₂), water, iron, sunlight
- * Enough atmosphere to provide some radiation protection

* Mars is also exotic:

- * 0.64 of Earth's gravity and 2 moons that cross each other traveling different directions
- * May have once supported life
- * We don't know what may be underground--our rovers have only explored a fraction of Mars' surface

Life Support Requirements Mass Breakdown

5.02 - 30.74 kg per person-day

DAILY INPUTS - NOMINAL

	kg
Oxygen	0.84
Food Solids	0.62
Water in Food	1.15
Food Prep Water	0.79
Drink	1.62
Hand/Face Wash	
Water	1.82
Shower Water	5.45
Clothes Wash Water	12.50
Dish Wash Water	5.45
Flush Water	0.50
<hr/>	
TOTAL	30.74

11.3 Metric Tons Per Person-Year

DAILY OUTPUTS - NOMINAL

	kg
Carbon Dioxide	1.00
Respiration and Perspiration Water	2.28
Urine	1.50
Feces Water	0.09
Sweat Solids	0.02
Urine Solids	0.06
Feces Solids	0.03
Hygiene Water	6.68
Clothes Wash Water	11.90
Clothes Wash	0.60
Latent Water	
Other Latent Water	0.65
Dish Wash Water	5.43
Flush Water	0.50
<hr/>	
TOTAL	30.74

Resources and Recycling

- Water Regeneration Reactors
- Air Revitalization Reactors
- Environmental Sensors (Chemical)
- Microbial Monitors

Salt and Pepper

Super-Woman

One Day in other planets

Planet	Day Length
Mercury	1,408 hours
Venus	5,832 hours
Earth	24 hours
Mars	25 hours
Jupiter	10 hours
Saturn	11 hours
Uranus	17 hours
Neptune	16 hours

X-37B Space Plane

