Data Mining <u>Classification: Basic Concepts, Decision Trees,</u> and Model Evaluation

Lecture Notes for Chapter 4 Part III

Introduction to Data Mining by

Tan, Steinbach, Kumar

Adapted by Qiang Yang (2010)

Practical Issues of Classification

Underfitting and Overfitting

Missing Values

Costs of Classification

Underfitting and Overfitting (Example)

500 circular and 500 triangular data points.

Circular points:

$$0.5 \le sqrt(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2+x_2^2) > 0.5 or$$

$$sqrt(x_1^2+x_2^2) < 1$$

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Notes on Overfitting

 Overfitting results in decision trees that are more complex than necessary

Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

Estimating Generalization Errors

- Re-substitution errors: error on training (Σ e(t))
- I Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - ◆ Total error counts: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%

Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

- Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
 - For complex models, there is a greater chance that it was fitted accidentally by errors in data
 - Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)

X	у
X_1	1
X_2	0
X_3	0
X_4	1
X _n	1

X	у
X_1	?
X ₂	?
X_3	?
X_4	?
X _n	?

- Cost(Model,Data) = Cost(Data|Model) + Cost(Model)
 - Cost is the number of bits needed for encoding.
 - We should search for the least costly model.
- Cost(Data|Model) encodes the errors on training data.
- Cost(Model) estimates model complexity, or future error...

How to Address Overfitting in Decision Trees

Pre-Pruning (Early Stopping Rule)

- Stop the algorithm before it becomes a fully-grown tree
- Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
- More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Heuristic: Class label of leaf node is determined from majority class of instances in the sub-tree
 - generalization error count = error count + 0.5*N, where N is the number of leaf nodes,
 - ◆This is a heuristic used in some algorithms, but there are other ways using statistics

Post-Pruning based on | leaves |

Class = Yes	20	
Class = No	10	
Error = 10/30		

Training Error (Before splitting) = 10/30

Pessimistic error (Before splitting) = (10 + 1X 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Examples of Post-pruning

Optimistic error?

Don't prune for both cases

– Pessimistic error?

Don't prune case 1, prune case 2

Data Fragmentation

 Number of instances gets smaller as you traverse down the tree

- Number of instances at the leaf nodes could be too small to make any statistically significant decision
- Solution: limit number of instances per leaf node>= a user given value n.

Decision Trees: Feature Construction

- Test condition may involve multiple attributes, but hard to automate!
- Finding better node test features is a difficult research issue

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix: count or percentage

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class I

- medical diagnosis, customer segmentation

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
	C(i j)	+	-
ACTUAL CLASS	+	-1	100
	-	1	0

Confusion matrix

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS					
ACTUAL CLASS		+	-			
	+	250	45			
	-	5	200			

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Information Retrieval Measures

Precision:
$$p = \frac{a}{a+c}$$

Recall:
$$r = \frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PREDICTED CLASS							
ACTUAL CLASS		Class=Yes	Class=No					
	Class=Yes	а	b					
	Class=No	С	d					

- Let C be cost (can be count in our example)
- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

Test of Significance (Sections 4.5,4.6 of TSK Book)

- Given two models:
 - Model M1: accuracy = 85%, tested on 30 instances
 - Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

- Prediction can be regarded as a Bernoulli trial
 - A Bernoulli trial has 2 possible outcomes
 - Possible outcomes for prediction: correct or wrong
 - Collection of Bernoulli trials has a Binomial distribution:
 - ◆ x ~ Bin(N, p) x: number of correct predictions
 - ◆ e.g: Toss a fair coin 50 times, how many heads would turn up?
 Expected number of heads = N×p = 50 × 0.5 = 25
- Given x (# of correct predictions) or equivalently, acc=x/N, and N =# of test instances,
 - Can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

- For large N, let 1-α be confidence
 - acc has a normal distribution
 with mean p and variance p(1-p)/N

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{1-\alpha/2})$$

$$= 1 - \alpha$$

Confidence Interval for p:

$$p = \frac{2 \times N \times acc + Z_{\alpha/2}^{2} \pm \sqrt{Z_{\alpha/2}^{2} + 4 \times N \times acc - 4 \times N \times acc^{2}}}{2(N + Z_{\alpha/2}^{2})}$$

Confidence Interval for Accuracy

Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:

- N=100, acc = 0.8
- Let $1-\alpha = 0.95$ (95% confidence)
- From probability table, $Z_{\alpha/2}=1.96$

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Z				
0.99	2.58				
0.98	2.33				
0.95	1.96				
0.90	1.65				

ROC (Receiver Operating Characteristic)

- Page 298 of TSK book.
- Many applications care about ranking (give a queue from the most likely to the least likely)
- Examples...
- Which ranking order is better?
- ROC: Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	v 0.25	/ +

Predicted by classifier

This is the ground truth

- Use classifier that produces posterior probability for each test instance P(+|A) for instance A
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve: AUC
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- ı (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

