Desvendando a Criptografia de Curvas Elípticas Propriedades, Métodos e Implementação

Isak Paulo de Andrade Ruas

Sob orientação

Me. Celimar Reijane Alves Damasceno Paiva Me. Fernando Marcos Souza Silva

> Instituto Federal do Norte de Minas Gerais Campus Januária Curso de Licenciatura em Matemática

> > 8 de Março de 2024

Agenda

- Introdução: Motivação, Metodologia e Objetivos
- Panorama Histórico da Criptografia
- Sundamentos e Características da Criptografia
- 4 Criptografia com Curvas Elípticas
- Implementação Prática
- Considerações Finais

- 1 Introdução: Motivação, Metodologia e Objetivos
- 2 Panorama Histórico da Criptografia
- 3 Fundamentos e Características da Criptografia
- 4 Criptografia com Curvas Elípticas
- Implementação Prática
- 6 Considerações Finais

Introdução: Motivação, Metodologia e Objetivos

- Motivação para estudar a criptografia e sua importância na era digital.
- Metodologia adotada: revisão bibliográfica e criação de uma biblioteca Python.
- Objetivos do estudo: compreender e aplicar criptografia de curvas elípticas.

- 1 Introdução: Motivação, Metodologia e Objetivos
- Panorama Histórico da Criptografia
- 3 Fundamentos e Características da Criptografia
- 4 Criptografia com Curvas Elípticas
- Implementação Prática
- 6 Considerações Finais

Panorama Histórico da Criptografia

- O uso da criptografia desde Júlio César até os tempos modernos.
- A evolução da criptografia com novas tecnologias e o surgimento do telégrafo.
- Papel atual da criptografia na segurança de dados em um contexto digital crescente.

- 1 Introdução: Motivação, Metodologia e Objetivos
- 2 Panorama Histórico da Criptografia
- 3 Fundamentos e Características da Criptografia
- 4 Criptografia com Curvas Elípticas
- Implementação Prática
- 6 Considerações Finais

Fundamentos e Características da Criptografia

- Conceitos de criptografia simétrica e assimétrica.
- Importância de chaves seguras e a diferença entre chave pública e privada.
- Escolha entre criptografia simétrica e assimétrica com base em necessidades específicas.

Entendendo a criptografia simétrica

Figura: Ilustração do processo de criptografia Simétrico

Fonte: Seragiotto, 2023, p. ?

Entendendo a criptografia assimétrica

Figura: Ilustração do processo de criptografia Assimétrico

Fonte: Seragiotto, 2023, p. ?

- 1 Introdução: Motivação, Metodologia e Objetivos
- Panorama Histórico da Criptografia
- 3 Fundamentos e Características da Criptografia
- 4 Criptografia com Curvas Elípticas
- Implementação Prática
- 6 Considerações Finais

Criptografia com Curvas Elípticas

- Definição e propriedades das curvas elípticas em criptografia.
- Protocolos de Diffie-Hellman e Massey-Omura para troca de chaves.
- Uso do algoritmo de Koblitz para codificar mensagens em curvas elípticas.
- Implementação do ECDSA para assinatura digital de mensagens.

Definição de Curvas Elípticas

Definição

Uma curva elíptica $E = \{(x, y) \in \mathbb{K} | (y^2 = x^3 + Ax + B) \}$ no qual $(car(\mathbb{K}) \notin \{2, 3\})$ e $(4A^3 + 27B^2 \neq 0)$.

Definição

$$E(\mathbb{Z}_p): y^2 \equiv x^3 + Ax + B \pmod{p}$$
, donde $4A^3 + 27B^2 \neq 0 \pmod{p}$

Catálogo de curvas elípticas

Figura: Catálogo de curvas elípticas

Fonte: Domínio Público

Protocolo Diffie-Hellman

Tabela: Fluxo de passos do protocolo Diffie-Hellman

Alice	Canal Público	Bob
Gera alea-		Gera alea-
toriamente		toriamente
$d_A \in \{1,\ldots,n\}$		$d_B \in \{1,\ldots,n\}$
Define $H_A = d_A \cdot G$	$H_A \Rightarrow$	Define $H_B = d_B \cdot G$
Calcula $S = d_A \cdot$	$\Leftarrow H_B$	
H_B		
		Calcula $S = d_B \cdot$
		H_A

Fonte: Maimon, 2018, p. 5

Em que n é a ordem do gerador da curva $i.e \ \forall P \in E : n \cdot P = \mathcal{O}$.

Protocolo Massey-Omura

Tabela: Fluxo de passos do protocolo Massey-Omura

Alice	Canal Público	Bob
Representa m como um		
ponto $M_A \in E$		
Gera aleatoriamente		Gera aleatoriamente
$d_A \in \{1,\ldots,n\},$		$d_B \in \{1,\ldots,n\},$
$mdc(d_A, n) = 1$		$mdc(d_B, n) = 1$
Define $H_A = d_A \cdot M_A$	$H_A \Rightarrow$	Define $H_B = d_B \cdot H_A$
$S_A = (d_A^{-1} \pmod{n}) \cdot$	$\Leftarrow H_B$	
H_B		
	$S_A \Rightarrow$	$M_A = (d_B^{-1} \pmod{n}) \cdot$
		S_A

Fonte: Autoria própria.

Em que n é a ordem do gerador da curva $i.e \ \forall P \in E : n \cdot P = \mathcal{O}$.

Algoritmo de Koblitz

Definição

 \mathcal{M} é a representação de uma mensagem na forma de uma sequência de caracteres, denotada como $\{m_1,m_2,\ldots,m_n\}$, onde n é o tamanho da mensagem. \mathcal{A} é uma sequência numérica, representada como $\{a_1,a_2,\ldots,a_n\}$, que corresponde ao decimal de cada caractere de \mathcal{M} obtido nas tabelas Unicode ou ASCII. Considerando $b=2^{16}$ para Unicode e $b=2^8$ para ASCII, a mensagem cifrada m será obtida por: $m=\sum_{k=1}^n a_k \cdot b^{k-1}$ e cada elemento $\{a_1,a_2,\ldots,a_n\}$ poderá ser obtido novamente pela relação a seguir: $a_n=m\div b^{n-1}\pmod b$ Nota: \div neste contexto representa divisão na qual o resultado é o quociente inteiro, sem considerar a parte fracionária.

Algoritmo de Assinatura Digital de Curva Elíptica

Definição

Seja $E(\mathbb{Z}_p): y^2 \equiv x^3 + Ax + B \pmod p$ curva elíptica, um ponto base G, um natural n, primo, tal que $\forall P \in E: n \cdot P = \mathcal{O}$, onde \mathcal{O} é o ponto no infinito, m um numero natural representando uma mensagem e $d \in \{1, \ldots, n-1\}$ representando uma chave privada e $Q = d \cdot G$ representando uma chave publica.

Para Q assinar a mensagem m em E, siga os seguintes passos:

Algoritmo de Assinatura Digital de Curva Elíptica

Para Q assinar a mensagem m em E, siga os seguintes passos:

- 1. Escolha um $k \in \mathbb{N} \mid 1 \le k \le n-1$ e mdc(k, n) = 1.
- 2. Calcule $P = k \cdot G$.
- 3. Calcule $r = P_x \pmod{n}$. Se r = 0 volte ao passo 1.
- 4. Calcule $s = (m + r \cdot d) \cdot (k^{-1} \pmod{n}) \pmod{n}$. Se s = 0 volte ao passo 1.
- 5. A assinatura da mensagem m, por Q é o par r e s.

Para verificação da assinatura de m em E, dados r e s, siga os seguintes passos:

- 1. Verifique se r e s estão no intervalo $\{1, \ldots, n-1\}$
- 2. Calcule $w = s^{-1} \pmod{n}$
- 3. Calcule $u_1 = m \cdot w \pmod{n}$ e $u_2 = r \cdot w \pmod{n}$
- 4. Calcule $P = u_1 \cdot G \oplus u_2 \cdot Q$. Se $P = \mathcal{O}$ a assinatura é invalida.
- 5. Calcule $v = P_x \pmod{n}$. Se v = r a assinatura é valida.

- Introdução: Motivação, Metodologia e Objetivos
- Panorama Histórico da Criptografia
- 3 Fundamentos e Características da Criptografia
- 4 Criptografia com Curvas Elípticas
- Implementação Prática
- 6 Considerações Finais

Implementação Prática

- Demonstração da implementação dos conceitos com a linguagem Python.
- Exemplo de geração e troca de chaves usando Diffie-Hellman e Massey-Omura.
- Exemplo de assinatura digital e verificação com o ECDSA.

- 1 Introdução: Motivação, Metodologia e Objetivos
- 2 Panorama Histórico da Criptografia
- 3 Fundamentos e Características da Criptografia
- 4 Criptografia com Curvas Elípticas
- Implementação Prática
- 6 Considerações Finais

Considerações Finais

- Resumo da contribuição do trabalho para o entendimento da criptografia de curvas elípticas.
- Importância da criptografia para a segurança de informações na era digital.
- Perspectivas futuras para criptografia em resposta a novos desafios de segurança.

Perguntas?

Obrigado pela atenção! Perguntas?

