带显示屏 UART 串口键盘通讯协议

修改记录

版本	内容	审核人	日期
0.1	创建文档	Natural	2018-07-12

目录

1.	基础	诎协议	3
		物理层	
		数据单元格式	
		命令交互过程	
2.	命令	令列表	5
2.	1.	查询版本号 - 1AH	.5
2.	2.	I2C 透传 - 1CH	.5
2.	3.	ECHO 测试 - 16H	.7
2.	4.	按键上报 - A3H	8.
附表	₹ A	LRC 算法	10

1. 基础协议

1.1. 物理层

串口波特率默认设置为9600。数据格式为1位起始位、8位数据位和1位停止位·无校验位。 从上位机发给键盘的单个数据包总长度不得超过128字节。 从键盘发给上位机的单个数据包 总长度不会超过128字节。

1.2. 数据单元格式

通讯数据包如下图所示:

STX(0x02)	Len_H Lei	L PackageNum	CmdType	Data	ETX(0x03)	Lrc
-----------	-----------	--------------	---------	------	-----------	-----

数据包内各个字段含义如下表:

	7101	•	
序号	字段	长度(字节)	说明
1	数据包头(STX)	1	常量:0x02
2	数据单元长度	2	需传输的 PackageNum+ CmdType+ Data 部分的
			长度,高字节在前,低字节在后。
			例如:0x0010 表示 Data 部分有 16 个字节。
3	包序号	1	命令包序号,用于检查相连的命令包和响应包
			是否对应。其值循环使用,从0开始,每次打
			请求包变化一次
4	指令类型	1	用于指示当前命令包用途类型。
5	命令数据	不定	请求包: 包含需要传送的命令数据。
			响应包: 包含命令执行状态(头两个字节)即返
			回的数据。
6	数据包尾	1	常量 0x03
7	校验字节	1	对 Len_H+Len_L+PackageNum+ CmdType+ Data
			+ETX 进行 LRC 校验・算法见 <u>附录 A</u>

1.3. 命令交互过程

上位机与键盘的命令交互主要有两种场景:同步命令·主动上报 同步命令指上位机与键盘一问一答式的交互·如刷屏·流程如下图:

同步命令场景

主动上报指某些事件发生后需要键盘主动上报给上位机,如:按键,交互流程如下图:

上位机 键盘 上报事件被触发 上报数据包

2. 命令列表

键盘共计支持 3 个指令:查询固件版本号(1AH)·ECHO 测试命令(16H)·I2C 透传指令(1CH)·按键上报指令(A3H)

2.1. 查询版本号 - 1AH

此命令用于查询键盘控制器(单片机)的固件版本号。

请求	请求包(HEX)				
序	域名	字节数	示例	描述	
1	报文头	1	02H		
2	长度	2	00H 02H		
3	包序号	1	00H		
4	命令	1	1AH	查询版本	
5	报文尾	1	03H		
6	LRC	1	11H	从 2-5 区域的顺序 XOR 值	
响应	包				
序	域名	字节数	示例	描述	
1	报文头	1	02H		
2	长度	2			
3	包序号	1			
4	类型	1	1AH	指令类型	
5	响应码	2	00H 00H	操作成功・返回0000・	
6	响应数据	n	"KBD_V1.02"	固件版本号·ASCII 编码	
7	报文尾	1	03H		
8	LRC	1			

2.2. I2C 透传 - 1CH

请求	请求包 (HEX)				
序	域名	字节数	示例	描述	
1	报文头	1	02H		
2	长度	2			
3	包序号	1			
4	类型	1	1CH	指令类型	
5	命令数据	n	控制指令	控制命令采用 TLV 格式,规定如下:	

				控制指	章:	
				Т	L	V
				8FH	N	I2C 指令(指令总长度
						N 字节)
				I2C 指	令也是:	TLV 格式:
				Т	L	V
				27H	1	0x00: STB enable
						0x01: STB disable
				28H	1	N - 读 N 个字节
				29H	N	DATA - 写 N 个字节
				2AH	1	N-延时N微秒
6	报文尾	1	03H			
7	LRC	1				
响应	包					
序	域名	字节数	示例	描述		
1	报文头	1	02H			
2	长度	2				
3	包序号	1				
4	类型	1	1CH	指令类	型	
5	响应码	2				回 00 00 · 00 00 值
6	响应数据	n		TLV		
7	报文尾	1	03H			
8	LRC	1				

刷屏是通过 I2C 透传命令来完成的,需参考 TM1721 说明书。

举例说明:

点亮所有的点:

请求包:02 0031 02 1C 8f 2d <mark>29010c</mark> 270101 <mark>2a0164</mark> 290140 <mark>270101</mark> 2a0164

响应包: 06 02 00 04 02 1C 00 00 03 17

响应包解析:

I2C_Write(0x0C) -> STB Disable -> Delay100us ->

I2C_Write(0x40) -> STB Disable -> Delay100us ->

I2C_Write(0x97) -> STB Disable

显示 0123456789

请求包:02 00 31 021C8f 2d 29010c 270101 2a0164 290140 270101 2a0164 290dc0

005f503d79726b6f537f7b00 270101 2a0164 290197 270101 03 B2

响应包:06 02 00 04 02 1C 00 00 03 17

屏墓上的段码需要参考	TM1721 说明书,	在本产品中数字段码如	下	٠
\mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M}	1 171 4 / 4 4 9 0 1 7 3 1 3			

显示内容	段码
0	5F
1	50
2	3D
3	79
4	72
5	6B
6	6F
7	53
8	7F
9	7B

段码的最高位(BIT[7])是小数点指示位。

显示地址: 0xC0 (参考 TM1721 6.3 节 地址命令设置) 显示地址区域: 00H - 0BH 共计 12 个字节 显示数据划

分:

00H: 信号栏

BIT[7] - 最弱信号(第一格)

BIT[6] - 第二格信号

BIT[5] - 第三格信号

BIT[4] - 最强信号(第四格)

BIT[3] - G BIT[2] - W

01H - 0AH: 数字区域及小数点

其中 0AH 的最高位(BIT[7])为 1 时显示 "元" ,为 0 时 "元" 消失

OBH: 未使用

2.3. ECHO 测试 - 16H

此命令用于包连通性测试。

请求	请求包 (HEX)				
序	域名	字节数	示例	描述	
1	报文头	1	02H		
2	长度	2			
3	包序号	1			
4	类型	1	16H	指令类型	
5	命令数据	n		主机端发送的任意随机数据	
6	报文尾	1	03H		
7	LRC	1			

响应	包			
序	域名	字节数	示例	描述
1	报文头	1	02H	
2	长度	2		
3	包序号	1		
4	类型	1	16H	指令类型
5	响应码	2		操作成功·返回 00 00 失败则返回非 00 00 值
6	数据	n		接收到的数据
7	报文尾	1	03H	
8	LRC	1		

2.4. 按键上报 - A3H

按键上报是由键盘主动上报的。

响应	响应包				
序	域名	字节数	示例	描述	
1	报文头	1	02H		
2	长度	2			
3	包序号	1			
4	类型	1	16H	指令类型	
5	响应码	2	0000		
6	数据	2	XX YY	XX - 第一个字节·表示按下或弹起 YY - 第二个字节·表示按键值	
7	报文尾	1	03H		
8	LRC	1			

键值定义如下:

	•		
键值	按键	键值	按键
0x09	取消	0x03	6
0x13	退格	0x16	-
0x14	÷	0x18	退款
0x0C	设置	0x08	1
0x02	7	0x07	2
0x01	8	0x06	3
0x10	9	0x17	+
0x15	×	0x0B	收款
0x0A	重播	0x0F	0
0x05	4	0x0E	. (小数点)
0x04	5	0x0D	确定

附录 A LRC 算法

Lrc 算法(c 语言):

```
typedef unsigned char U8;
U8 LRC(U8 *pBuff, int nLen)
{
    U8 Lrc = 0;
    while(nLen--)
    {
        Lrc ^=*pBuff++;
    }
    return Lrc;
}
```


1. 概述

TM1721是一种带键盘扫描接口的LCD驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LCD驱动、键盘扫描、幻彩背光驱动等电路。本产品性能优良,质量可靠,无须更改解码板底层指令,与天微电子现有3通讯口LED驱动IC的指令集完全兼容。现有的支持LED显示的解码板可以直接外接LCD显示前面板,不需要外加单片机进行按键扫描(或通过解码板扫描按键),不需要另外用HT6221作按键扫描。同时支持PWM背光驱动和SW普通输入扩展口。主要应用于VCR、VCD、DVD 及家庭影院等产品的显示屏驱动。

2. 特性说明

- ➤ 采用低功耗CMOS工艺
- ➤ 32X4点LCD驱动
- ▶ 6X4按键输入
- ▶ 4路LED驱动,具有64级PWM,可用于LCD幻彩背光驱动;
- ▶ 4通用输入口,可连接拨轮式电子编码开关
- ▶ 1/3LCD驱动偏压
- ▶ LCD工作电压可调
- ▶ 串行接口 (CLK, STB, DIO)
- ▶ 振荡方式:内置RC振荡
- ▶ 封装形式: SSOP48.LOFP48

3. 管脚定义

管脚功能说明

符号	引脚名称	脚号 SSOP48	脚号 LFQP48	说明
DIO	串行 数据线	2	44	在时钟上升沿输入/输出串行数据,从低位开始。 输出为N管开漏输出,需外加上拉电阻
CLK	串行 时钟线	3	45	在时钟上升沿输入/输出串行数据。
STB	片选	4	46	在下降沿初始化串行接口,随后等待接收指令。 STB 为低后的第一个字节作为指令。当处理指 令时,当前其它处理被终止。STB 为高时,CLK、 DIO 被忽略
COM0~COM3	共用端 输出	44~48	38~41	LCD 共用端(common)驱动口
SEG0~SEG19	段输出	44~43 42~24	18~37	LCD 段(segment)驱动口
PWM0/SEG20 PWM1/SEG21 PWM2/SEG22 PWM3/SEG23	PWM输出/ 段输出 复合端口	20~23	14~17	可分别配置成段输出或PWM输出端口,作为PWM输出的时候,具有64级PWM,可用于LCD的背光驱动
SW0/SEG24 SW1/SEG25 SW2/SEG26 SW3/SEG27	通用输入/ 段输出 复合端口	16-19	10-13	可分别配置成段输出或通用输入端口, 可连接拨轮式电子编码开关
KEY0/SEG28 KEY1/SEG29 KEY2/SEG30 KEY3/SEG31	按键输入/ 段输出 复合端口	12-15	6-9	可分别配置成段输出或按键输入端口,最大可支 持4X6个按键
KS0~KS5	键扫输出	6-11	1-5 48	按键扫描信号输出
VDD	电源	1	43	接电源正
GND	地	5	47	接电源负
NC	空脚	42	42	内部未连线

▲ **注意:** DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推荐10K的上拉电阻(图1)。 DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,你可以参考图(5),在等待数据口电平稳定后再进行读数操作。

▲ 产品选型引脚资源分配请注意,TM1721的SEGx/PWMx、SEGx/KEYx、SEGx/SWx复合端口只能选其中一种功能使用,例如:SEGx/KEYx 引脚,在做按键功能输出时不能做SEG驱动输出,也就是不可同时输出两种功能。

©Titan Micro Electronics

5. 显示寄存器

该寄存器存储通过串行接口从外部器件传送到TM1721 的数据,地址从00H-0FH共16字节单元,分别与芯片SGE和COM管脚所接的LCD段位对应,分配如下图:

写LCD显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

COMO	COM1	COM2	COM3	COMO	COM1	COM2	COM3	对应管脚位 存储器地址
	SE	G0			SE		00H	
	SE	G2			SE	G3		01H
	SE	G4		Ż.	SE	G5		02H
	SE	G6			SE	G7		03H
	SE	G8			SE	G9		04H
	SEC	G10			SEC	G11		05H
	SEC	G12			SEC	06H		
	SEC	G14			SEC	07H		
	SEC	G16			SEC	08H		
	SEC	G18			SEC	09H		
	SEC	G20			SEC	0AH		
	SEC	G22			SEC	0BH		
	SEC	G24			SEC	0CH		
	SEC	G26			SEC	0DH		
	SEC	G28			SEC	0EH		
	SEC	G30			SEC	0FH		
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	

TM1721

6. 指令说明

指令用来设置显示模式和LCD驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以区别不同 的指令。

В7	В6	指令
0	0	显示模式设置
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据无效(之前 传送的指令或数据保持有效)。

6.1. 显示模式设置

工作模式设置好后,不允许在使用中切换工作模式。

MSB			_	LDB			
B7	B6	B5	B4	В3	B2	B1	B 0
0	0	b5	b4	b3	b2	b1	b0

b5b4	PWM输出口/段输出设置
00	SG20、SG21、SG22、SG23
01	SG20、SG21、SG22、 PWM3
10	SG20、SG21、PWM2、PWM3
11	PWM0、PWM1、PWM2、PWM3

b3b2	按键输入/段输出设置						
00	SG28、SG29、SG30、SG31						
01	SG28、SG29、SG30、KEY3						
10	SG28、SG29、KEY2、KEY3						
11	KEY0、KEY1、KEY2、KEY3						

b1b0	通用输入口/段输出设置						
00	SG24、SG25、SG26、SG27						
01	SG24、SG25、SG26、SW3						
10	SG24、SG25、SW2、SW3						
11	SW0、SW1、SW2、SW3						

该指令用来设置工作模式,上电后,初始状态为b5b4b3b2b1b0=000000

6.2. 数据命令设置

该指令用来设置数据写和读。

MSB							LSB		
В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
0	1					0	0		写数据到显示寄存器
0	1					0	1	数据读写模式设置	写数据到 PWM 寄存器
0	1					1	0	数据以与保 八以且	读键扫数据
0	1	无关项	页,填			1	1		读SW开关输入口数据
0	1	()		0			地址增加模式设置	自动地址增加
0	1				1			地址增加铁八以且	固定地址
0	1			0				测试模式设置(内	普通模式
0	1			1				部使用)	测试模式

6.3. 地址命令设置

MSB	3						LSB	
В7	B6	B5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00Н
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1		4	0	0	1	1	03H
1	1			0	1	0	0	04H
1	1			0	1	0	1	05H
1	1			0	1	1	0	06H
1	1	无关项	页,填	0	1	1	1	07H
1	1)	1	0	0	0	H80
1	1			1	0	0	1	09H
1	1		<i>\</i>	1	0	1	0	0AH
1	1			1	0	1	1	0BH
1	1			1	1	0	0	0CH
1	1			1	1	0	1	0DH
1	1			1	1	1	0	0EH
1	1			1	1	1	1	0FH

地址的选择:根据数据设置指令的不同,地址所表示的含义也不同。

如果数据设置指令是写数据到显示寄存器模式,那么本次地址设定的是显示寄存器地址,最多有效地址为00H-0FH;

如果数据设置指令是写数据到PWM控制寄存器模式,那么本次地址设置PWM寄存器的地址,有效地址为00H-03H。

▲注意: 芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令,将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作,即上电后向16位显存地址C0H-CFH中全部写入数据0x00。

©Titan Micro Electronics

6.4. 显示控制命令设置

	MSB					LSB		
Г	B7	B6	B2	B1	B0			
	1	0	0	b4	b3	b2	b1	b0

b4: 显示开关设置位; 为1显示开, 为0显示关

b3: LCD驱动偏压设置位; 为1设为全屏点亮; 为0设为1/3偏压

b2b1b0: LCD工作电压设置位;

当b2b1b0=111时,工作电压=VCC(VCC为芯片的工作电压)。当VCC=5V,调节电压的范围约是2.88-5V。

* 上电后, b4b3b2b1b0 默认为 00111

7. 按键与按键寄存器

7.1. 键扫矩阵为 6×4bit

键扫数据储存地址如下所示,先发读键命令后,开始读取按键数据BYTE1—BYTE3字节,读数据从低位开始输出。芯片KEY(0—3)和KS引脚对应的按键按下时,相对应的字节内的 BIT位为1。

7.2. 该寄存器存储通过串行接口从 TM1721 的读取数据,地址分配如下:

KEY0/ SG28	KEY1/ SG29	KEY2/ SG30	KEY3/ SG31	KEY0/ SG28	KEY1/ SG29	KEY2/ SG30	KEY3/ SG31	对应管脚位 键寄存器地址
	K	S0				00H		
	K	S2				01H		
	K	S4			02H			
Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	位

图 (3)

▲注意: 1、TM1721最多可以读3个字节,不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE3读取,不可跨字节读。例如:硬件上的KEY2与KS5对应按键按下时,此时想要读到此按键数据,必须需要读到第3个字节的第6BIT位,才可读出数据;

当KEY1与KS5,KEY2与KS5,KEY3与KS5三个按键同时按下时,此时BYTE3所读数据的B5,B6,B7位均为1。

3、组合键只能是同一个KS,不同的KEY引脚才能做组合键;同一个KEY与不同的KS引脚不可以做成组合键使用。

7.3. 按键扫描

键扫描由TM1721自动完成,不受用户控制,用户只需要按照时序读键值。按照图(6)用示波器观察KS0 和KS1的输出键扫波形,见图(7)。

IC在键盘扫描时候KSN的波形:

图 (7)

T、t 和IC工作的振荡频率有关,我公司TM1721经过多次完善,振荡频率不完全一致,测量参数仅仅提供 参考,以实际测量为准。

8. 端口控制寄存器

8.1. PWM 寄存器说明

PWM地址低	寄存器名称	PWM寄存器值		
两位(B1B0)		高位	低位	
00	PWM0	XXb5b4_b3	b2b1b0	
01	PWM1	XXb5b4_b3b2b1b0		
10	PWM2	XXb5b4_b3	b2b1b0	
11	PWM3	XXb5b4_b3	b2b1b0	

PWM0-PWM3寄存器数据说明

b5b4_b3b2b1b0	PWM脉冲宽度设定
00H	恒为0
01H~3EH	1/64~62/64
3FH	恒为1

上电后所有寄存器初始状态为0, PWM的地址参考地址命令设置

按照图(8)的流程来控制PWM输出口,用示波器可以观察到PWM0、PWM1、PW3口的波形

TM1721芯片+5V供电,用示波器观察到PWM口的波形,如图 (9):

图 (9)

T的时间与IC的震荡频率有关,我公司TM1721经过多次完善,振荡频率不完全一致,测量参数仅仅提供参考,以实际测量为准。

8.2. SW 输入口寄存器说明

如下所示,用读指令读取,读从低位开始

LSB							MSB
b0	b1	b2	b3	b4	b5	b6	b7
SW1	SW2	SW3	SW4	0	0	0	0

如果某SW/SEG端口被设置为SEG端口,该端口相对应的输入口寄存器恒为0

SW开关信号输入口

SW具有扩展MCU输入口的功能。操作SW输入口和读键的原理类似。 以图(10)为例子介绍SW输入口的原理。

图(10)

按照图(11)的流程你可以读到的值是03H。

9

9. 串行数据传输格式

读取和接收1个BIT都在时钟的上升沿操作。

▲ **注意**:读取数据时,从串行时钟CLK 的第8 个上升沿开始设置指令到CLK 下降沿读数据之间需要一个等待时间Twait(最小2 μS)。

10

10. 应用时串行数据的典型传输方式

10.1. 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕,"STB"不需要置高紧跟着传数据,最多16BYTE,数据传送完毕才将"STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多16bytes)

Command4: 显示控制命令

10.2. 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址,最多16BYTE数据传送完毕,"STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5: 显示控制命令

10.3. 读按键时序

Command1: 设置数据命令 Data1~3:读取按键数据

11. 引脚驱动波形

给出使用 1/4 复用, 1/3 偏压驱动下显示"5"的波形:

V3=VDD (VDD 为 LCD 供电电压)

V2=2/3VDD

V1=1/3VDD

V0=0

©Titan Micro Electronics www.titanmec.com V1.5

12. 程序流程图

12.1. 采用地址自动加 1 模式流程图

12.2. 采用固定地址模式流程图

13. 应用原理图

▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1721芯片放置,加强滤波效果。

2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。

14. 电气参数

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+6.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
静态工作电流	ID	10	uА
工作温度	Topt	−40 ~ +80	$^{\circ}$
储存温度	Tstg	-65 ∼+150	$^{\circ}$

正常工作范围(Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试 条件
工作电源电压	VDD	-	5	-	V	-
高电平输入电压	VIH	0.7 VDD	-	VDD	V	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性 (Ta = -20 ~ +70℃, VDD = 5V, Vss = 0 V

413 III (144 = 20 1)						
参数	符号	最小	典型	最大	单位	测试条件
LCD COM输入电流	IOL1	150	250	-	uA	COMO~COM3 Vo=0.5V
LCD COM输出电流	IOH1	-120	-150	-	uA	COMO~COM3 Vo=4.5V
LCD SEG输入电流	I0L2	120	200	_	uA	COMO~COM3 Vo=0.5V
LCD SEG输出电流	IOH2	-70	-100	_	uA	COMO~COM3 Vo=4.5V
PWM低电平输入电流	10L3	30	60	-	mA	PWMO [~] PWM3 (设定成PWM输出状态) Vo=1V
PWM高电平输出电流	10Н3	-15	-25	-	mA	PWMO~PWM3 (设定成PWM输出状态) Vo=3V
KS低电平输入电流	IOL3	15	30	-	mA	KSO [~] KS5 (设定成PWM输出状态) Vo=0.5V
KS高电平输出电流	10Н3	-15	-25	ı	MA	KSO [~] KS5 (设定成PWM输出状态) Vo=3V
DIO低电平输入电流	Idout	4	-	_	mA	VO = 0.4V, dout
KEY/SW输出下拉电阻	RL	20	Т	80	КΩ	KEYO [~] KEY3 SWO [~] SW3 (设定成按键输入和通 用输入状态)
输入电流	II	_	_	±1	μА	VI = VDD / VSS CLK, DIO, STB
高电平输入电压	VIH	0.7 VDD	_		V	CLK, DIO, STB

	低电平输入电压	VIL	-	-	0.3 VDD	V	CLK, DIO, STB
	滞后电压	VH	_	0.35	-	V	CLK, DIO, STB
Г	动态电流损耗	IDDdyn	-	_	1	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 5 V)

参数	符号	最小	典型	最大	单位	测试条件
振荡频率	fosc	-	128	-	KHz	
11 14 25 12 2 1 2	tPLZ	_	_	300	ns	CLK → DIO
传输延迟时间	tPZL	-	_	100	ns	(DIO为输出状态时) CL = 15pF, RL = 10K Ω
最大时钟频率	fmax	1	-	-	MHz	占空比50%
输入电容	CI	_	_	15	pF	DIO STB CLK

时序特性 (Ta = -20 ~ +70℃, VDD = 5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	-	- /	ns	-
选通脉冲宽度	PWSTB	1	_	-	μs	-
数据建立时间	tSETUP	100	_	-	ns	DIO为输入状态
数据保持时间	tHOLD	100	-	_	ns	DIO为相人认然
CLK →STB 时间	tCLK-STB	1	-	-	μs	CLK ↑ →STB ↑
等待时间	tWAIT	1	-		μs	CLK ↑ → CLK ↓

时序波形图

15. 封装尺寸图

15.1. SSOP48

符号	单位:	毫米	单位: 英寸		
打与	最小	最大	最小	最大	
Α	2.41	2.78	0.095	0.109	
A1	0.20	0.40	0.008	0.016	
A2	2.18	2.38	0.086	0.094	
b	0.20	0.35	0.008	0.014	
c	0.20	0.40	0.008	0.016	
D	15.77	15.97	0.621	0.629	
Е	7.39	7.59	0.291	0.299	
E1	10.01	10.61	0.394	0.418	
e	0.635(BSC)		0.025(BSC)		
L	0.61	0.91	0.024	0.036	
θ	0°	8°	0°	8°	

15.2. LQFP48

符号	单位:	毫米	单位: 英寸		
17-5	最小	最大	最小	最大	
A		1.600		0.063	
A1	0.050	0.150	0.002	0.006	
A2	1.350	1.450	0.053	0.057	
b	0.180	0.280	0.007	0.010	
С	0.090	0.200	0.004	0.008	
D	6.900	7.100	0.272	0.280	
D1	8.800	9.200	0.346	0.362	
Е	6.900	7.100	0.272	0.280	
E1	8.800	9.200	0.346	0.362	
e	0.500(BSC)		0.020(BSC)		
L	0.450	0.750	0.018	0.030	
θ	0°	7°	0°	7°	

All specs and applications shown above subject to change without prior notice by Titanmec. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)