Algorithm analysis

Big O: Let f(n) and g(n) be functions that map positive integers to real positive numbers.

f(n) is O(g(n)) if $f(n) \le c \cdot g(n)$, $n \ge n_0$ for some $c \in \mathbb{R}$ and $n_0 \in \mathbb{Z}^+$

Big Omega (Ω): Let f(n) and g(n) be functions that map positive integers to real positive numbers.

f(n) is $\Omega(g(n))$ if $f(n) \geq c \cdot g(n)$, $n \geq n_0$ for some $c \in \mathbb{R}$ and $n_0 \in \mathbb{Z}^+$

Big Theta(Θ): Let f(n) and g(n) be functions that map positive integers to real positive numbers.

f(n) is $\Theta(g(n))$ if $c' \cdot g(n) \le f(n) \le c'' \cdot g(n)$, $n \ge n_0$ for some c', $c'' \in \mathbb{R}$ and $n_0 \in \mathbb{Z}^+$

Loop invariant: Any predicate/condition that holds true for every iteration of a loop

Recursion

- Understand differences between linear recursion, binary recursion, multiple recursion in terms how many recursive class each function makes

Trees

Tree: If a tree is non-empty, there exists a root node with no parent. Each child of that root is in turn the root of another sub-tree

Descendant: Any node lower by 2 or more levels

Ancestor: Any node higher by 2 or more levels

Depth: Number of levels separating node from the root **Height**: The maximum levels of the tree (excluding root)

Proper binary tree: Each node must have either 0 or 2 children

Complexities: depth $\rightarrow O(dp + 1)$, height $\rightarrow O(n)$

Preorder: Visit node before left-right children **Postorder:** Visit left-right children before node **Inorder:** Visit left child, node, right child

Permutations of n elements in a BST: Given by the n_{th} Catalan number, $C_n = \frac{1}{n+1} {2n \choose n} = \frac{2n!}{(n+1)!n!}$

Sorted maps and Balanced Search Trees

Map: Stores key-value pairs. Also known as an associative array

Balanced search tree: A binary tree is balanced if for every internal position p, the heights of p's children differ at most by 1

Deletion policy: If internal node with 2 children, replace with inorder predecessor

AVL tree: Balance after each insertion/deletion with trinode restructuring

2,4 tree: Size property – Every internal node has at most 4 children. Depth property – all external nodes have the same depth

Insertion: On overflow, promote third child (k3 is promoted from (k1, k2, k3, k4))

Deletion: Remove node, replace and cascade if internal, until we remove a key from an internal node whose children are external nodes. If underflow and sibling is a 3/4-node, transfer. Otherwise if sibling is a 2-node, merge both to form a 3-node

Red-black tree: Root property – root is black. External property – every external sentinel node is black. Red property – the children of a red node are black. Depth property – All external nodes have the same black depth **Insertion**: x = inserted node, y = parent, z = grandparent. If y = is red, double red. If y = has black sibling, trinode restructuring on z = to form new 4-node. Otherwise, recolor y = y = sibling, and z = propagating if necessary.

Deletion: Delete normally and cascade until reaching a node with external child. If red, no issue. If black with one red child, promote red child and color black. Otherwise, double black. p = promoted child, y = sibling of p, z = common parent of p and y.

- 1: If y is black with a red child x, trinode restructuring on z (2,4 transfer)
- 2 :If y is black with black children, recolor y to red, p to black and z black or double black and propagate (2,4 fusion)
- 3: If y is red, z must be black. Rotate such that y is the parent of z, recolor y to black, z to red. Go to case 1 or 2

Complexities: search, insertion, removal $o O(\log(n))$ for AVL (restructuring) and RBT (recoloring)

For red-black tree insertion, ≤ 1 trinode restructure. For red-black tree deletion, ≤ 2 trinode restructures

Hash Tables and Maps

Hashcode implementations: XOR, polynomial function, bitwise cyclic shift

Probing methods: Given a hashcode h(k), we probe A[(h(k) + f(i))%N] for i = 1, 2, ..., N:

Linear probing $\to f(i) = i$, Quadratic probing $\to f(i) = i^2$, Double hashing $\to f(i) = i \cdot h'(k)$

Heaps and Priority Queues

Heap: Heap-order property – for every position p, the key is greater than its parent. Complete binary tree property – every level of the tree has the maximal number of nodes possible, and the remaining noes reside in the leftmost possible positions.

Complexities: insertion+removal $\to O(n)$ for list implementations, $O(\log(n))$ for heap. heap insertion $\to O(\log(n))$, heapify $\to O(n)$

Graphs

Graph: A tuple G = (V, E) where V is the set of vertices and E is the set of edges

Path: A set of alternating vertices and edges from u to v, where each edge is incident on the immediate predecessor and successor vertices. *Simple* if no repeated vertices

Cycle: A path from u to itself, involving at least one other vertex. Simple if no repeated vertices

Connectedness: A graph is connected if there is a path between any 2 vertices. *Strongly connected* if for any pair of vertices u and v, u is reachable from v and v is reachable from u

Subgraph: G' = (V', E') is a subgraph of G = (V, E) if $V' \in V$ and $E' \in E$. Spanning subgraph if V' = V,

Degree: Number of edges incident on a vertex. *In-degree* - incoming edges, *Out-degree* - outgoing edges

Edge list: n vertices and m edges stored in separate unordered lists. Limitations in processing edges for a given vertex

Adjacency list: n vertices stored in an unordered list, where each vertex maintains its own unordered list of all incident edges

Adjacency map: n vertices stored in an unordered list, each vertex maintains a map where key=adjacent vertex and value=edge

Adjacency matrix: 2D array A of $n \times n$, where A[u][v] holds a references to the (u, v) edge if it exists

Topological ordering: Any given graph G has a topological ordering if and only if it is acyclic. Its vertices $V_1, V_2, ..., V_n$ are ordered such that for every edge (V_i, V_i) of G, we have i < j

Minimum spanning tree: Given an undirected, weighted graph G, a minimum spanning tree of G is a tree T containing all the vertices in G, that minimizes the sum of weights, $\sum_{(u,v\in T)}w(u,v)$. If all edges of G has distinct weights, the minimum spanning tree is unique

Method	Edge List	Adj List	Adj Map	Adj Matrix
numVertices(), numEdges()	0(1)	0(1)	0(1)	0(1)
vertices()	O(n)	0(n)	0(n)	O(n)
edges()	O(m)	O(m)	O(m)	O(m)
getEdge(u, v)	O(m)	O(1)	O(1) expected	O(1)
outDegree(v), $indegree(v)$	O(m)	0(1)	0(1)	O(n)
outgoingEdges(v),	O(m)	$O(d_v)$	$O(d_v)$	O(n)
incomingEdges(v)				
removeVertex(v)	O(m)	$O(d_v)$	$O(d_v)$	$O(n^2)$
insertVertex(x),	0(1)	0(1)	0(1)	0(1)
insertEdge (u, v, x) ,				
removeEdge(e)				

Prim-Jarnik: Start from any vertex as its own graph, build up by adding lowest cost edges to undiscovered nodes

Kruskal: Each node is its own cluster at the beginning. Iteratively consume lowest cost edges that connect different clusters