相关系数

介绍两种常用的相关系数,皮尔逊相关系数和斯皮尔曼等级相关系数。可以用来衡量两个变量之间的相关性的大小,根据数据满足的不同条件,选择不同的相关系数进行分析和计算。

现有某中学八年级所有女学生的体测样本数据,请见下表,试计算各变量之间的皮尔逊相关系数。

身高	体重	肺活量	50米跑	立定跳远	坐位体前屈
155	51	1687	9.7	158	9.3
158	52	1868	9.3	162	9.6
160	59	1958	9.9	178	9.5
163	59	1756	9.7	183	10.1
165	60	1575	9	156	10.4
151	47	1700	9.1	154	11.1
150	45	1690	9.7	164	12.5
147	43	1888	8.9	178	11.2
158	42	1949	12.1	168	10.6
161	51	1548	11.1	180	9.6
162	47	1624	10.1	191	9.8
165	47	1657	9.8	193	7.8
157	45	1574	9.6	190	8.7
154	41	1544	9.2	187	9.8
149	40	1687	9	167	9.7

基本概念

1.总体和样本

总体——所要考察对象的全部介体叫做总体. 我们总是希望得到总体数据的一些特征(例如均值方差等)

样本--从总体中所抽取的一部分个体叫做总体的一个样本.

计算这些抽取的样本的统计量来估计总体的统计量:

例如使用**样本均值、样本标准差**来估计**总体的均值(平均** 水平)和总体的标准差(偏离程度)。

例子:

我国10年进行一次的人口普查得到的数据就是总体数据。 大家自己在QQ群发问卷叫同学帮忙填写得到的数据就是样本数据。

2.总体皮尔逊相关系数

如果两组数据 $X:\{X_1,X_2,\cdots,X_n\}$ 和 $Y:\{Y_1,Y_2,\cdots,Y_n\}$ 是总体数据(例如普查结果),

那么总体均值:
$$E(X)=\frac{\displaystyle\sum_{i=1}^n X_i}{n}$$
 , $E(Y)=\frac{\displaystyle\sum_{i=1}^n Y_i}{n}$ 总体协方差: $\mathrm{Cov}(X,Y)=\frac{\displaystyle\sum_{i=1}^n (X_i-E(X))(Y_i-E(Y))}{n}$

直观理解协方差:如果X、Y变化方向相同,即当X大于(小于)其均值时,Y也大于(小于)其均值,在这两种情况下,乘积为正。如果X、Y的变化方向一直保持相同,则协方差为正;同理,如果X、Y变化方向一直相反,则协方差为负;如果X、Y变化方向之间相互无规律,即分子中有的项为正,有的项为负,那么累加后正负抵消。

注意: 协方差的大小和两个变量的量纲有关, 因此不适合做比较。

如果两组数据 $X:\{X_1,X_2,\cdots,X_n\}$ 和 $Y:\{Y_1,Y_2,\cdots,Y_n\}$ 是总体数据(例如普查结果),

那么总体均值:
$$E(X) = \frac{\displaystyle\sum_{i=1}^{n} X_{i}}{n}$$
 , $E(Y) = \frac{\displaystyle\sum_{i=1}^{n} Y_{i}}{n}$ 总体协方差: $Cov(X,Y) = \frac{\displaystyle\sum_{i=1}^{n} (X_{i} - E(X))(Y_{i} - E(Y))}{n}$ 总体Pearson相关系数: $\rho_{XY} = \frac{\displaystyle Cov(X,Y)}{\displaystyle\sigma_{X}} = \frac{\displaystyle\sum_{i=1}^{n} \frac{(X_{i} - E(X))}{\sigma_{X}} \frac{(Y_{i} - E(Y))}{\sigma_{Y}}}{n}$ $\sigma_{X}(sigma~X)$ 是 X 的标准差, $\sigma_{X} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} (X_{i} - E(X))^{2}}{n}}$, $\sigma_{Y} = \sqrt{\frac{\displaystyle\sum_{i=1}^{n} (Y_{i} - E(Y))^{2}}{n}}$ 可以证明, $|\rho_{XY}| \leq 1$,且当 $Y = aX + b$ 时, $\rho_{XY} = \begin{cases} 1 & a > 0 \\ -1 & a < 0 \end{cases}$

[尔逊相关系数也可以看成是剔除了两个变量量纲影响,即将X和Y标准化后的协方差。

3.样本皮尔逊相关系数

假设有两组数据 $X:\{X_1,X_2,\cdots,X_n\}$ 和 $Y:\{Y_1,Y_2,\cdots,Y_n\}$ (一般调查得到的数据均为样本数据)

样本均值:
$$\bar{X} = \frac{\sum\limits_{i=1}^{n} X_i}{n}$$
 , $\bar{Y} = \frac{\sum\limits_{i=1}^{n} Y_i}{n}$
样本协方差: $Cov(X,Y) = \frac{\sum\limits_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$
样本 $Pearson$ 相关系数: $r_{XY} = \frac{Cov(X,Y)}{S_X S_Y}$

其中:
$$S_X(sigma~X)$$
是 X 的样本标准差, $S_X = \sqrt{\frac{\displaystyle\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}}$,同理 $S_Y = \sqrt{\frac{\displaystyle\sum_{i=1}^n (Y_i - \bar{Y})^2}{n-1}}$

这里的相关系数只是用来衡量两个变量线性相关程度的指标; 也就是说,你必须先确认这两个变量是线性相关的,然后这个相关系数才能 告诉你他俩相关程度如何。

- (1) 非线性相关也会导致线性相关系数很大, 例如图2。
- (2) 离群点对相关系数的影响很大,例如图3,去掉离群点后,相关系数为0.98。
- (3)如果两个变量的相关系数很大也不能说明两者相关,例如图4,可能是受到了异常值的影响。
- (4)相关系数计算结果为0.只能说不是线性相关,但说不定会有更复杂的相关 关系(非线性相关),例如图5。

对相关系数大小的解释

相关性	负	Œ
无相关性	-0.09 to 0.0	0.0 to 0.09
弱相关性	-0.3 to -0.1	0.1 to 0.3
中相关性	-0.5 to -0.3	0.3 to 0.5
前相关性	-1.0 to 0.5	0.5 to 1.0

上表所定的标准从某种意义上说是武断的和不严格的。对相关系数的解释是依赖于具体的应用背景和目的的。

事实上,比起相关系数的大小,我们往往更关注的是显著性。 (假设检验)

Matlab中基本统计量的函数 (一般用标粗的):

函数名	功能		
min	数组的最小元素		
mink	计算数组的 k 个最小元素		
max 👵	数组的最大元素		
maxk	计算数组的 k 个最大元素		
bounds	最小元素和最大元素		
topkrows	按排序顺序的前若干行		
mean	数组的均值		
median	数组的中位数值		
mode	数组的众数		
skewness	数组的偏度		
kurtosis	数组的峰度		
std	标准差		
var	方差		

这些函数默认都是按列计算,如果令第二个参数为1.则变为按行计算

4.计算皮尔逊相关系数之前,首先要确定两个变量之间是线性关系。如果不是线性关系,计算出的皮尔逊相关系数无法说明变量之间的相关性。所以要先画出散点图,观察变量的线性关系。

5.可以将数据导入SPSS中,点击图形,选择旧对话框,选择散点图,点图,再 选择矩阵散点图。可以根据散点图观察线性关系。

6.皮尔逊相关系数的计算

Test矩阵即为题目中给出的数据。

corrcoef函数: correlation coefficient相关系数

R = corrcoef(A)

返回 A 的相关系数的矩阵,其中 A 的列表示随机变量(指标),行表示观测值(样本)。 R = corrcoef(A,B)

返回两个随机变量 A 和 B (两个向量)之间的系数。

我们要计算体测的六个指标之间的相关系数,只需要使用下面这个语句: R = corrcoef(Test);

7.首先在matlab中的变量区新建变量,再将excel中的数据复制到变量中,保存到相应的文件夹中。然后在matlab中load此mat文件即可。

8.对相关系数表进行美化

将结果R复制到excel中,选中数据,点击条件格式,选择色阶。