Sistemas Distribuidos

Introducción y Características

Objetivos

- 1. Qué es un Sistema Distribuido?
- 2. Tipos de Sistemas Distribuidos
- 3. Principales arquitecturas
- 4. Cómo los procesos y threads funcionan
- 5. Comunicación
- 6. Nombres
- 7. Sincronización
- 8. Consistencia y replicación
- 9. Tolerancia a fallos
- 10. Seguridad

Bibliografía

- Sistemas Distribuidos: Conceptos y Diseño. Coulouris et al, 5ta. Edi. Cap. 1.
- Sistemas Distribuidos: Principios y Paradigmas. Andrew S.
 Tanenbaum. 2da. Ed. Introducción.

Conceptos Fundamentales de Sistemas Distribuidos.

- Introducción
- Definición de Sistemas Distribuidos
- Objetivos
- Características
- Ejemplos
- Desafíos
- Tipos de Sistemas Distribuidos

Introducción

Evolución de los Sistemas Computacionales

• 1945 – 1980 : Grandes y caros.

Empresas: Pocas computadoras - independientes

- 1985 :
 - Desarrollo de microprocesadores 8 bits. CPU 16, 32 y 64 bits.
 - Costo / instrucciones por segundo
 - Máquinas costo 10 millones \$ 1 instrucción / seg.
 - Máquinas costo 1000 \$ millones de instrucciones / seg.
 - Ganancia precio / rendimiento
 - Invención de redes de computadores de alta velocidad
 - Redes de área local (LAN Local area networks): Interconexión cientos de máquinas, transfieren información entre máquinas en microsegundos.
 - Redes de área amplia (WAN Wide area networks): millones, velocidad 64 Kbps Gigabits/seg.

Redes de computadoras están en todos lados

- Redes de teléfonos móviles
- Redes corporativas
- Redes empresariales
- Campus
- Casas
- Redes dentro de los carros, trenes, aviones

Objetivo General de Estudio de S.D.:

- Cubrir las características de las redes de computadoras que impactan el diseño de sistemas y su implementación.
- Presentar los principales conceptos y técnicas que han sido desarrolladas para ayudar en las tareas de diseño e implementación

Definición de Sistemas Distribuidos (S.D.)

• Un Sistema Distribuido es una colección de <u>computadoras</u> independientes que dan al <u>usuario</u> la impresión de constituir un único sistemas coherente [*Tanenbaum*]

• Un sistema en que los componentes de hardware y software, ubicados en redes de computadoras, comunican y coordinan sus acciones solo por el paso de mensajes [Coulouris]

Definición de Sistemas Distribuidos

 Un Sistema Distribuido es aquel en el que no puedo utilizar ningún trabajo porque alguna máquina de la que nunca he oído hablar se ha bloqueado [Leslie Lamport]

Ejemplos de S. D.

- Redes sociales
- E-commerce
- Google
- Cluster
- Cloud

Organización de un S. D.

Figura 1-1. Un sistema distribuido organizado como middleware. La capa de middleware se extiende sobre diversas máquinas, y ofrece a cada aplicación la misma interfaz. [*Tanenbaum*]

Redes vs. Sistemas Distribuidos

 Redes: Un medio para interconectar computadoras locales y de área amplia e intercambiar mensajes basados en protocolos. Las entidades de red son visibles y están direccionadas visiblemente (Dirección IP).

• S. D.: La existencia de múltiples computadoras autónomas es transparente.

Sin embargo:

Muchos problemas en común, pero en diferentes niveles

- Redes se enfocan en paquetes, *routing*, etc., mientras que D.S. se enfocan en aplicaciones
- Cada S.D. se basa en el servicio proporcionado por una red informática.

Distributed Systems

Computer Networks

Razones S.D.

- Separación en la funcionalidad
 - Existencia de computadoras con diferentes propósitos y capacidades
 - Cliente / servidor
 - Colección de datos y procesamiento de datos
- Inherente distribución
 - Variedad de información es creada y mantenida por gente diferente. Ej., páginas web
 - Computadoras soportan el trabajo colaborativo
- Confiabilidad
 - Preservación a largo plazo y backup (replicación) en diferentes ubicaciones
- Economía:
 - Compartir una impresora por muchos usuarios, reducción de costos.

Consecuencia de S.D.

- Las computadoras en un S.D. pueden estar en continentes separados, en un mismo edificio o en una habitación
- Las consecuencias son:
 - Concurrencia: cada sistema es autónomo
 - Tareas realizadas independientemente
 - Tareas coordinan sus acciones por intercambiar mensajes.
 - Heterogeneidad
 - Inexistencia de un reloj global
 - Fallas independientes

Características de S.D.

- Actividades paralelas
 - Componentes autónomos ejecutan tareas concurrentes.
- Comunicación vía paso de mensajes
 - No comparten memoria
- Recursos compartidos
 - Impresora, BD, otros servicios
- Inexistencia de estado global
 - Ningún proceso simple puede tener conocimiento del estado global del sistema.
- Inexistencia de un reloj global
 - Precisión limitada para que los procesos sincronicen sus relojes

Objetivos

- Recursos fácilmente accesibles
- Transparencia
- Grado de apertura
- Escalabilidad

- Online bookstore
 - Los clientes pueden conectar su computadora a un web server:
 - Abre el inventario
 - Ubica órdenes
 - •

- Qué sucede si
 - Tus clientes usan hardware diferente (Pc, MAC, ...)
 - ... diferentes S.O.? (Windows, Unix, ...)
 - Diferente manera de representar los datos? (ASCII,)
 - Heterogeneidad
- O
 - Quieres mover tu negocio y computadoras al Caribe (pos causa del clima)?
 - Tus clientes se mueven al Caribe?
 - Transparencia

- Qué sucede si:
 - Dos clientes quieren ordenar el mismo producto al mismo tiempo?
 - Concurrencia
- O
 - La base de datos conteniendo información del inventario falla?
 - Las computadoras de los clientes fallan en medio de una orden?
 - Tolerancia a fallas

- Qué sucede si:
 - Alguien intenta entrar en tu sistema para robar los datos?
 - Los clientes ordenan algo y no aceptan la entrega diciendo que no lo hicieron?
 - Seguridad
- O
 - Eres tan exitoso que millones de personas están visitando tu tienda online al mismo tiempo?
 - Escalabilidad

- Cuando construyes el sistema:
 - Quieres realizar el software por tu propia cuenta (redes, base de datos)?
 - Que hay acerca de las nuevas tecnologías y actualizaciones?
 - Grado de Apertura
- 0
 - Eres tan exitoso que millones de personas están visitando tu tienda online al mismo tiempo?
 - Escalabilidad

Objetivos

- Transparencia
 - La distribución debe ocultarse a los usuarios, tanto como sea posible
- Escalabilidad
 - Los sistemas deben trabajar correctamente con el incremento de los usuarios
 - El desempeño de los sistemas debe incrementarse con la inclusión de nuevos recursos
- Tolerancia a fallas
 - Las fallas de un componente no deben resultar en fallas en todo el sistema
- Heterogeneidad
 - Los componentes heterogéneos deben ser interoperados
- Concurrencia
 - Acceso compartido a los recursos debe ser posible
- Apertura
 - Las interfaces deben ser validas públicamente para facilitar la inclusión de nuevos componentes
- Seguridad
 - El sistema debe ser usado de forma prevista

Ejemplos de S. D.

- Los S. D. se basan en redes de computadoras:
 - Internet
 - Intranet
 - Wireless networks
- Ejemplos:
 - Web (y muchas de sus aplicaciones)
 - Data center y clouds
 - Sistemas de banca
 - Comunicación a nivel de usuario

Dominios de Aplicación

Finance and commerce	eCommerce e.g. Amazon and eBay, PayPal, online banking and trading
The information society	Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace.
Creative industries and entertainment	online gaming, music and film in the home, user-generated content, e.g. YouTube, Flickr
Healthcare	health informatics, on online patient records, monitoring patients
Education	e-learning, virtual learning environments; distance learning
Transport and logistics	GPS in route finding systems, map services: Google Maps, Google Earth
Science and Engineering	Grid and Cloud computing as an enabling technology for collaboration between scientists
Environmental management	sensor technology to monitor earthquakes, floods or tsunamis

Internet y sus servicios

Móvil & Computación Ubicua

Objetivo: Accesibilidad

• Facilitar:

- Aplicaciones y/o usuarios, el acceso a los recursos remotos, y compartirlos de manera controlada y eficiente.
 - Recursos: Impresoras, computadoras, dispositivos de almacenamiento, datos, archivos, páginas web, redes
 - Objetivo: económico
- Conectar recursos y usuarios para la colaboración y el intercambio de información
 - Conectividad de internet (protocolo): intercambio de archivos, correo, documentos, audio, video.
 - Groupware
 - Comercio electrónico.
 - Protección Seguridad

Objetivo: Transparencia en la distribución

- Ocultar que los procesos y recursos están físicamente distribuidos a través de múltiples computadoras.
- Transparente: Capaz de presentarse ante el usuario y aplicaciones como si se tratase de una sola computadora

Transparencia	Descripción
Acceso	Oculta diferencias en la representación de los datos y la forma en que un recurso accede a los datos
Ubicación	Oculta la localización de un recurso
Migración	Oculta el que un recurso pudiera moverse a otra ubicación
Reubicación	Oculta el que un recurso pudiera moverse a otra ubicación mientra está en uso
Replicación	Oculta el número de copias de un recurso
Concurrencia	Oculta que un recurso puede ser compartido por varios usuarios que compiten por él
Falla	Oculta la falla y recuperación de un recurso

Objetivo: Grado de Apertura

- Ofrece servicios de acuerdo a las reglas estándar que describe su sintaxis y la semántica.
- En las redes las reglas determinan el formato, contenido y significado de los mensajes enviados y recibidos – protocolos
- Los servicios se especifican a través de las interfaces lenguaje de definición de interfaz (IDL) – sintaxis de los servicios. Qué hacen esos servicios - semántica

Objetivo: Escalabilidad

- Se mide a través de 3 dimensiones:
 - Tamaño agregar usuarios y recursos
 - Geografía usuarios y recursos radican muy lejos unos de otros.
 - Administrativo diferentes organizaciones involucradas

Resumen

- Los S.D. están en todos lados
- Internet permite a los usuarios de todo el mundo acceder a sus servicios desde cualquier lugar
- Compartir recursos es la principal motivación para construir S.D.
- Desafíos al construir S.D.
 - Heterogeneidad, apertura, seguridad, escalabilidad, tolerancia a fallas, concurrencia y transparencia
- S.D. permiten la globalización:
 - Comunidades (equipos virtuales, redes sociales)
 - Ciencia (e-Science)
 - Negocios (e-banking)
 - Entretenimiento (Youtube, e-friends)

Trabajo

- Explicar y determinar:
 - Diferencias entre:
 - Sistemas Distribuidos y Paralelismo
 - Sistemas Distribuidos y Redes
- Relación entre:
 - Sistemas Distribuidos y Clusters
 - Sistemas Distribuidos y Cloud

Exponer

• Desafios de un S.D.