基于机器学习的预测模型的建立和实现:

主要分为 Data Cleaning, Features Engineering, Models Training

Data Cleaning

- 1. 移除多余的 duplicate features (相同或极为相似的 features)
- 2. 移除 constant features (只有一个 value 的 feature)

#R 里面可以使用 unique()函数判断,如果返回值为1,则意味着为 constant features

3. 移除方差过小的 features (方差过小意味着提供信息很有限)

#R 中可以使用 caret 包里的 nearZeroVar()函数

#Python 里可以使用 sklearn 包里的 VarianceThreshold()函数

4. 缺失值处理:将 missing value 重新编为一类。

#比如原本-1 代表 negative, 1 代表 positive, 那么 missing value 就可以全部标记为 0

#对于多分类的 features 做法也类似二分类的做法

#对于 numeric values, 可以用很大或很小的值代表 missing value 比如-99999.

5. 填补缺失值

可以用 mean, median 或者 most frequent value 进行填补

#R 用 Hmisc 包中的 impute()函数

#Python 用 sklearn 中的 Imputer()函数

6. 高级的缺失值填补方法

利用其他 column 的 features 来填补这个 column 的缺失值(比如做回归)

#R 里面可以用 mice 包,有很多方法可供选择

注意:不是任何时候填补缺失值都会对最后的模型预测效果带来正的效果,必须进行一定的检验。

Features Engineering

- 1. Data Transformation
- a. Scaling and Standardization

#标准化, R用 scale(), Python用 StandardScaler()

#注意: Tree based 模型无需做标准化

b. Responses Transformation

#当 responses 展现 skewed distribution 时候用,使得 residual 接近 normal distribution #可以用 $\log(x)$, $\log(x+1)$, $\operatorname{sqrt}(x)$ 等

2. Features Encoding

#把 categorical features 变成 numeric feature

#Label encoding: Python 用 LabelEncoder()和 OneHotEncoder(), R用 dummyVars()

- 3. Features Extraction
- 4. Features Selection
- a. 方法很多:

Feature Selection Methods					
Туре	Name	R	Python		
Feature Importance Ranking	Gini Impurity	randomForest varSeIRF	skleam, ensemble Random Forest Classifier skleam, ensemble Random Forest Regress or skleam, ensemble Gradien(BoostingClassifier skleam, ensemble Gradien(Boosting)Tegres sor		
	Chi-square	Fselector	skleam.feature_selection.chi2		
	Correlation	Hmisc Fselector	scipy.stats.pearsonr scipy.stats.spearmanr		
	Information Gain	randomForest varSelRF Fselector	sklearn. ensemble .Random Forest Classifier sklearn. ensemble .Random Forest Regressor sklearn. ensemble .GradientBoostingClassifier sklearn. ensemble .GradientBoostingRegressor xpboost		
	L1-based Non-zero Coefficients	- gimnet	skleam.linear_model.Lasso skleam.linear_model.Logistic Regression skleam.svmLinearSVC		
Feature Subset Selection	Recursive Feature Elimination (RFE)	rfe (caret)	skleam.feature_selection.RFE		
	Boruta Feature Selection	Boruta			
	Greedy Search (forward/backward)	Fselector			
	Hill Climbing Search	Fselector			
	Genetic Algorithms	gafs (caret)			

注: 其中 randomForest 以及 xgboost 里的方法可以判断 features 的 Importance

- b. 此外,PCA等方法可以生成指定数量的新 features (映射)
- c. 擅对 features 进行 visualization 或 correlation 的分析。

Models Trainning

Mostly Used ML Models

ModelType	Name	R	Python
Regression	Linear Regression	- gim, gimnet	sklearn.linear_model.LinearRegression
	Ridge Regression	glmnet	sklearn.linear_model.Ridge
	Lasso Regression	- gimnet	sklearn.linear_model.Lasso
Instance-based	K-nearest Neighbor (KNN)	• knn	sklearn_neighbors.KNeighborsClassifier
	Support Vector Machines (SVM)	sym {e1071} LiblinearR	sklearn.svm.SVC, sklearn.svm.SVR sklearn.svm.LinearSVC, sklearn.svm.LinearSVR
Hyperplane-based	Naive Bayes	naiveBayes (e1071)	sklearn.naive_bayes.GaussianNB sklearn.naive_bayes.MultinomialNB sklearn.naive_bayes.BernoulliNB
	Logistic Regression	gim, gimnet LiblinearR	sklearn.linear_model.LogisticRegression
Ensemble Trees	Random Forests	randomForest	sklearn.ensemble.RandomForestClassifier sklearn.ensemble.RandomForestRegressor
	Extremely Randomized Trees	extraTrees	sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.ExtraTreesRegressor
	Gradient Boosting Machines (GBM)	gbm xgboost	sklearn.ensemble.GradientBoostingClassifier sklearn.ensemble.GradientBoostingRegressor xgboost
Neural Network	Multi-layer Neural Network	nnet neuralnet	PyBrain Theano
Recommendation	Matrix Factorization	- NMF	• nimfa
	Factorization machines		• pyFM
Clustering	K-means	• kmeans	sklearn.cluster.KMeans
	t-SNE	Pitane	sklearn manifold TSNE

机器学习的工作流程

①选择数据:将你的数据分成三组:训练数据、验证数据和测试数据

②模型数据:使用训练数据来构建使用相关特征的模型

③验证模型: 使用你的验证数据接入你的模型

④测试模型: 使用你的测试数据检查被验证的模型的表现

⑤使用模型: 使用完全训练好的模型在新数据上做预测

⑥调优模型: 使用更多数据、不同的特征或调整过的参数来提升算法的性能表现