`	<u>Year</u>	<u>Status</u>	Frequency	Wavelength	Aperture (m)	Instrument	Detectors	Science Aim	<u>Type</u>	Location	Notes	<u>Links</u>
STO-2	2016	Flown	1.4 1.9 4.7 (THz)	64 258 215 (μm)	0.8	Spectrometer	HEBM	Observations of CII, NII, and OI fine structure line in Milky Way giant molecular clouds.	LDB	Antarctica	2nd gen	https://iopscience.io p.org/article/10.108 8/1757- 899X/101/1/012131 /meta
OLIMPO	2018	Flown	150 220 350 480 (GHz)	625 857 1499 1999 (μm)	2.6	Differential spectrometer	KID	Study inverse Compton scattering of CMB photons crossing clusters of galaxies (Sunyaev- Zeldovich effect).	LDB	Svalbard, Norway		https://www.science direct.com/science/a rticle/pii/S13876473 06003253
вовсат	2019	Flown	-	-	3-4	-	-	Develop new technology for infrared ballooning (lighter dewars, larger telescopes, etc.).	Conventional	New Mexico, USA	No observing instrument, it was a cryogenic tech demo	https://ui.adsabs.har vard.edu/abs/2020A AS23546004D/abs tract
PIPER	2019	Flown	200 270 350 600 (GHz)	500 857 1110 1499 (um)	1	Polarimeter	TES (BUG)	Map CMB polarization at large angular scales.	Conventional	New Mexico, USA	Flew, but telescope lid did not open (no science yet)	https://www.spiedig itallibrary.org/confer ence-proceedings-of- spie/9914/99141J/T he-Primordial- Inflation- Polarization- Explorer- PIPER/10.1117/12. 2231109.short?SSO= 1
BLAST- TNG	2020	Flown	1199 856 599 (GHz)	250 350 500 (μm)	2.5	Polarimeter/ B-field mapper	KID	Map polarized dust emission locally (galactic molecular clouds) and in select extragalactic sources.	LDB	Antarctica	Flew but came down in the first few hours due to an error	https://www.spiedig itallibrary.org/confer ence-proceedings-of- spie/11453/1145304 /Characterization- deployment-and-in- flight-performance- of-the-BLAST- TNG/10.1117/12.25 60854.short?SSO=1
GUSTO	71177	Pendin g flight	1897 4758 1462 (GHz)	63 158 205 (μm)	0.9	Three wide- field heterodyne array receivers	-	Map CII, OI, and NII in the Milky Way, the LMC, and select deep regions.	ULDB	Antarctica	Hard to find detailed documentation for	https://ui.adsabs.har vard.edu/abs/2018A AS23123105K/abs tract
EXCLAI M	2023	Pendin g flight	420 - 540 (GHz)	555 - 714 (μm)	0.9	Six spectrometer- on-a-chip devices (R~512)	KID	Perform line intensity mapping of CO and CII at intermediate redshifts. Map Galactic CI abundances.	Conventional	New Mexico, USA		https://www.spiedig itallibrary.org/journa ls/Journal-of-Astronomical-Telescopes-Instruments-and-Systems/volume-7/issue-4/044004/Experime nt-for-cryogenic-large-aperture-instrument-design/10.1117/1.J ATIS.7.4.044004.sho rt?SSO=1
ASTHRO S	71173	Pendin g flight	1.4 - 1.5 2.4 - 2.7 (THz)	200 - 214 111 – 125 (μm)	2.5	Heterodyne array camera	KID	Simultaneously observe the NII fine structure lines in galactic and extragalactic star forming regions.	LDB	Antarctica	Interesting and bold astro2020 white paper	https://www.jpl.nas a.gov/missions/asthr os
TIM		Pendin g flight	0.7 - 1.25 (THz)	240 - 420 (μm)	2	Imaging (grating) spectrometer (R~230)	KID	Perform line intensity mapping of FIR lines (CII, OIII, etc.) from z~0.2 - 3.8.	LDB	Antarctica		https://arxiv.org/ab s/2009.14340
JUSTIINE	2025	Propos ed	9-10 (GHz)	30-90 (mm)	-	Polarizing Fourier Transform Spectrometer (R~100)	-	Observe young stellar objects (YSOs), evolved stars, and a select AGN.	unknown	unknown		documentation thin
BEGINS	2026	Propos ed	4.7 - 12 (THz)	25 - 64 (μm)	0.5	Spectro- photometric imager	KID	Create spectral energy distribution (SED) maps of molecular cloud environments.	LDB	TBD		https://ui.adsabs.har vard.edu/abs/2021A AS23823201G/abs tract
BLAST- Observato ry	2027	Propos ed	856 1199 1713 (GHz)	175 250 350 (μm)	1.8	Polarized 3- band photometer	KID	Map polarized dust emission in nearby molecular clouds, LMC/SMC, and the diffuse ISM.	ULDB	Antarctica or New Zealand	ULDB mid- latitude flight (Wanaka) 30% of time for external observers	https://arxiv.org/ab s/2012.01376
Dust Buster	2027	Propos ed	0.115 – 2.5 (THz)	120 – 2600 (μm)	1.9	Polarizing Fourier Transform Spectrometer	-	Map polarized dust and use spectra to determine dust composition and properties. Improve dust foreground removal.	unknown	unknown		documentation thin

Balloon Type	Zero Pressure (ZP)	ZP	Super Pressure (SP)					
Mission Type	Conventional	LDB	ULDB					
Duration	2 hours to 3 days	Typical 7-15 days Up to 55+ days	Up to 100 days					
Science Payload Weight	Up to 2,721 kg (Up to 6,000 lbs)	Up to 2,721 kg (Up to 6,000 lbs)	18.8 MCF* – 907 kg (2000 lbs) 26 MCF – 454 kg (1000 lbs)					
Typical Float Altitude	29.2 to 38.7 km (96 to 127 kft)	36.5 to 38.7 km (120 to 127 kft)	18.8 MCF – up to 34 km (~110 kft) 26 MCF – up to 36 km (~117 kft)					
Support Package	Consolidated Instrumentation Package (CIP) Line of Sight (LOS) Up to 1 Mbps direct return	Support Instrumentation Package (SIP) Over The Horizon (OTH) 6 kbps TDRSS downlink 100 kbps option with TDRSS or Iridium						
	Micro Instrumentation Package (MIP) Stand alone package for small payload support LOS and OTH TM & Command (Iridium) 255 byte/min packets Up to 1 Mbps LOS option System without batteries ~20 lbs (9 kg)							
	* MCF – Million Cubic Feet							