Machine Learning for Intelligent Systems

Lecture 12: Stochastic Gradient Descent

Reading: UML 14

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Regularized Linear Models

Many learning problems can be written as the following optimization on the sample set $S = \{(x_1, y_1), ..., (x_n, y_n)\}.$

$$\min_{\overrightarrow{w},b} \left(\frac{R(\overrightarrow{w})}{R(\overrightarrow{w})} + C \frac{1}{n} \sum_{i=1}^{n} L(\overrightarrow{w} \cdot \overrightarrow{x}_i + b, y_i) \right)$$

Regularizer

Loss of each instance (\vec{x}_i, y_i)

1. Primal SVM:
$$\min_{\overrightarrow{w},b} \frac{1}{2} \overrightarrow{w} \cdot \overrightarrow{w} + C \frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i (\overrightarrow{w} \cdot \overrightarrow{x}_i + b), 0)$$

2. Reg. Logistic Regression:
$$\min_{\overrightarrow{w},b} \frac{1}{2} \overrightarrow{w} \cdot \overrightarrow{w} + C \frac{1}{n} \sum_{i=1}^{n} \log(1 + e^{-y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i + b)})$$

3. Ridge Regression:
$$\min_{\overrightarrow{w},b} \frac{1}{2} \overrightarrow{w} \cdot \overrightarrow{w} + C \frac{1}{n} \sum_{i=1}^{n} (\overrightarrow{w} \cdot \overrightarrow{x}_i + b - y_i)^2$$

Loss Functions

$$\min_{\overrightarrow{w},b} R(\overrightarrow{w}) + C \frac{1}{n} \sum_{i=1}^{n} L(\overrightarrow{w} \cdot \overrightarrow{x}_i + b, y_i)$$

Loss Function $L(\bar{y}, y_i)$	Algorithm
Hinge loss: $\max(1 - \bar{y} y_i, 0)$	SVM
Log loss: $Log(1 + exp(-\bar{y}y_i))$	Logistic Regression
Exponential loss: $\exp(-\bar{y}y_i)$	Boosting
0-1 Loss: $1(\bar{y} \neq y_i)$	Classification loss

Non-Convex

Convex

Regularizers

$$\min_{\overrightarrow{w},b} R(\overrightarrow{w}) + C \frac{1}{n} \sum_{i=1}^{n} L(\overrightarrow{w} \cdot \overrightarrow{x}_i + b, y_i)$$

Regularizer $R(\overrightarrow{w})$	Properties
ℓ_2 regularization: $\frac{1}{2} \overrightarrow{w} \cdot \overrightarrow{w}$	Convex
ℓ_1 regularization: $\ \overrightarrow{w} \ _1$	Convex, sparse
ℓ_p for $0 \le p < 1$	Non-convex, very sparse

Optimizing Regularized Lin. Models

Many learning problems can be written as the following optimization on the sample set $S = \{(x_1, y_1), ..., (x_n, y_n)\}.$

$$\min_{\overrightarrow{w}} R(\overrightarrow{w}) + C \frac{1}{n} \sum_{i=1}^{n} L(\overrightarrow{w} \cdot \overrightarrow{x}_i, y_i)$$

$$\mathcal{L}_S(\overrightarrow{w})$$

Formal guarantees for when $\mathcal{L}_S(\vec{w})$ is convex in \vec{w} . But these methods are widely used for nonconvex optimization as well.

Gradient Descent (GD)

For finding the minimum of a convex function: $\min_{\overrightarrow{w}} \mathcal{L}(\overrightarrow{w})$

Gradient

$$\nabla \mathcal{L}(\overrightarrow{w}) = \left(\frac{\partial \mathcal{L}(\overrightarrow{w})}{\partial w_1}, \dots, \frac{\partial \mathcal{L}(\overrightarrow{w})}{\partial w_d}\right)$$

Gradient Descent

Input: A function \mathcal{L} , number of time steps T, step size η_t

Initialize
$$\vec{w}^{(0)} = (0, ..., 0)$$

For
$$t = 1, 2, 3, ..., T$$

$$\overrightarrow{w}^{(t+1)} \leftarrow \overrightarrow{w}^{(t)} - \eta_t \nabla \mathcal{L}(\overrightarrow{w}^{(t)})$$

Output $\overrightarrow{w}^{(T)}$

Learning with Gradient Descent

Consider the following optimization on $S = \{(x_1, y_1), ..., (x_n, y_n)\}.$

$$\min_{\overrightarrow{w}} \mathcal{L}_{S}(\overrightarrow{w}) = \min_{\overrightarrow{w}} R(\overrightarrow{w}) + C \frac{1}{n} \sum_{i=1}^{n} L(\overrightarrow{w} \cdot \overrightarrow{x}_{i}, y_{i})$$

Gradient Descent for Learning

Input: Step sizes η_t , time T, and samples $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$

Initialize $\overrightarrow{w}^{(0)} = (0, \dots, 0)$

For t = 1, 2, 3, ..., T

$$\vec{w}^{(t+1)} \leftarrow \vec{w}^{(t)} - \eta_t \nabla R(\vec{w}^{(t)}) - \eta_t \frac{C}{n} \sum_{i=1}^n \nabla L(\vec{w}^{(t)} \cdot \vec{x}_i, y_i)$$

Output $\overrightarrow{w}^{(t)}$

Example: GD for SVM

Example: Consider the SVM primal form as written in a regularized linear model (homogenous).

linear model (homogenous).
$$\min_{\overrightarrow{w}} \frac{1}{2} \overrightarrow{w} \cdot \overrightarrow{w} + C \frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i), 0)$$
 Gradient of
$$\nabla R(\overrightarrow{w}) = \overrightarrow{w} \qquad \nabla L_S(\overrightarrow{w}) = \frac{C}{n} \sum_{i=1}^{n} ???$$

$$\max(1 - y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i), 0)$$

$$\max(1 - y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i), 0)$$

$$0 \text{ if } y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i) > 1, \qquad 1 - y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i) \text{ if } y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i) \leq 1$$
 Gradient = 0 Gradient = $-y_i x_i$

GD update:
$$\vec{w}^{(t+1)} \leftarrow (1 - \eta_t) \vec{w}^{(t)} + \frac{\eta_t c}{n} \sum_{i=1}^n y_i x_i \, \mathbf{1}(y_i (\vec{w}^{(t)} \cdot \vec{x}_i) \leq 1)$$

Gradient Descent for Large Scale ML

$$\vec{w}^{(t+1)} \leftarrow \vec{w}^{(t)} - \eta_t \nabla R(\vec{w}^{(t)}) - \eta_t \frac{C}{n} \sum_{i=1}^n \nabla L(\vec{w}^{(t)} \cdot \vec{x}_i, y_i)$$

Challenges?

- Large data set $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ for very large n.
- High dimensional data sets $x_i \in \mathbb{R}^d$ for very large d.

Using fewer samples for the update

Each time step use fewer samples for update

$$\overrightarrow{w}^{(t+1)} \leftarrow \overrightarrow{w}^{(t)} - \eta_t \nabla R(\overrightarrow{w}^{(t)}) - \eta_t \frac{C}{n} \sum_{i=1}^n \nabla L(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}_i, y_i)$$

Take a random $(\vec{x}_{(t)}, y_{(t)}) \sim S$.

$$\overrightarrow{w}^{(t+1)} \leftarrow \overrightarrow{w}^{(t)} - \eta_t \nabla R(\overrightarrow{w}^{(t)}) - \eta_t C \nabla L(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}_{(t)}, y_{(t)})$$

Stochastic Gradient Descent (SGD)

Gradient Descent for Learning

Input: Function \mathcal{L} , step sizes η_t , time T, samples $S = \{(x_1, y_1), ..., (x_n, y_n)\}$

Initialize $\overrightarrow{w}^{(0)} = (0, \dots, 0)$

For t = 1, 2, 3, ..., T

Take a random sample of $(\vec{x}, y) \sim S$

$$\overrightarrow{w}^{(t+1)} \leftarrow \overrightarrow{w}^{(t)} - \eta_t \nabla R(\overrightarrow{w}^{(t)}) - \eta_t C \nabla L(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}, y)$$

Output $\overrightarrow{w}^{(T)}$.

%% Or the average of $\overrightarrow{w}^{(1)}, ..., \overrightarrow{w}^{(T)}$

Gradient Descent

Stochastic Gradient Descent:

Each iteration
Average up to now

Added from the whiteboard

Example: SGD for SVM

Example: Consider the SVM primal form as written in a regularized linear model (homogenous).

$$\min_{\overrightarrow{w}} \frac{1}{2} \overrightarrow{w} \cdot \overrightarrow{w} + C \frac{1}{n} \sum_{i=1}^{n} \max(1 - y_i(\overrightarrow{w} \cdot \overrightarrow{x}_i), 0)$$

SGD update: Take $(\vec{x_i}, y_i) \sim S$

$$\overrightarrow{w}^{(t+1)} \leftarrow (1 - \eta_t) \overrightarrow{w}^{(t)} + \eta_t C y_i \overrightarrow{x}_i \mathbf{1} (y_i (\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}_i) \le 1)$$

Equivalently:

Take
$$(\vec{x}_i, y_i) \sim S$$

If
$$y_i(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}_i) \le 1$$
 then $\overrightarrow{w}^{(t+1)} \leftarrow (1 - \eta_t) \overrightarrow{w}^{(t)} + \eta_t C y_i \overrightarrow{x}_i$
Else $\overrightarrow{w}^{(t+1)} \leftarrow (1 - \eta_t) \overrightarrow{w}^{(t)}$.

Effects of Step Size

Smaller step size: More similar to Gradient Descent, less stochastic improvement, less uncertainty

Bigger step size: More stochastic improvement, more uncertainty.

What makes SGD work

Gradient Descent:

$$\overrightarrow{w}^{(t+1)} \leftarrow \overrightarrow{w}^{(t)} - \eta_t \nabla R(\overrightarrow{w}^{(t)}) - \eta_t C \underbrace{\frac{1}{n} \sum_{i=1}^n \nabla L(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}_i, y_i)}_{\mathbb{E}_{(\overrightarrow{x}, y)}[\nabla L(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}, y)]}$$

Stochastic Gradient Descent:

- Uses an "unbiased" estimator for the total gradient.
- Step size helps control the variance.

Noisy Estimates

Reduce Computation

Improve Generalization

Mini-Batch

Go between deterministic Gradient Descent and Stochastic Gradient Descent, take between n and 1 instances.

At each time: Take a random subset S_t of instance

$$\overrightarrow{w}^{(t+1)} \leftarrow \overrightarrow{w}^{(t)} - \eta_t \nabla R(\overrightarrow{w}^{(t)}) - \eta_t C \frac{1}{|S_t|} \sum_{(x,y) \in S_t} \nabla L(\overrightarrow{w}^{(t)} \cdot \overrightarrow{x}, y)$$

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Practical Challenges

Randomly choosing an instance or mini-batch

- In practice: Shuffle and choose without replacement
- Theory: i.i.d, with replacement

Beyond the linear $\vec{w} \cdot \vec{x}$?

Convex Versus Non-Convex

Setting the step size and mini-batch size?

- Parallel computation.
- Generalization?
- Convex versus Non-convex