Problemy do rozwiązania na zaliczenie drugiej części wykładu z programowania równoległego, semestr zimowy 2014/15 — CUDA

- 1. Zbadaj, jak prędkość mnożenia macierzy kwadratowych NxN zależy od ich rozmiaru N. W tym celu wykonaj wykresy:
 - czasu jednego mnożenia, t(N), w funkcji N
 - t(N)/N² w funkcji N
 - wykonaj analogiczne symulacje na swoim CPU, porównaj otrzymane wyniki (być może na tych samych rysunkach), wyciągnij wnioski.

Uwaga: do wykonania symulacji na GPU użyj biblioteki cuBLAS. Obliczenia wykonuj w arytmetyce zmiennoprzecinkowej podwójnej precyzji.

- 2. Napisz program, który na GPU rozwiąże następujący problem: dane są dwa ciągi (x_i) , (y_i) , $i=0,\ldots,N-1$, definiujące położenia N punktów na płaszczyźnie. Kolejne trójki tych punktów definiują położenia wierzchołków N-2 trójkątów. Innymi słowy, wierzchołki pierwszego trójkąta mają indeksy 0,1,2; wierzchołki drugiego trójkąta indeksy 1,2,3 itd.
 - Napisz program, który w osobnej tablicy zapisze pola powierzchni tych trójkątów.
 - Przetestuj efektywność swojego programu dla kilku wartości N.
 - Porównaj jego wydajność z wydajnością analogicznego programu rozwiązującego ten problem na CPU.
- 3. Dane są 3 ciąg liczb (vx_i) , (vy_i) , (m_i) , $i=0,\ldots,N-1$, definiujące składowe x, y prędkości punktów na płaszczyźnie oraz ich masy.
 - Napisz program w CUDA wyznaczający średnią energię kinetyczną cząstek tego układu.
 - Zbadaj szybkość działania tego programu dla kilku wartości N.
 - Porównaj efektywność Twojego rozwiązania z kodem na CPU.
- 4. Napisz kernel CUDA, który kopiuje jedną tablicę danych typu double do drugiej tablicy. Za pomocą tego kernela:
 - Zbadaj, w jaki sposób prędkość kopiowania danych w GPU zależy od wielkości bloku.
 - Porównaj uzyskane przez siebie wyniki z teoretyczną przepustowością pamięci twojego urządzenia.
 - Porównaj uzyskane przez siebie wyniki z wartością uzyskaną w programie bandwidthTest z CUDA SDK.
- 5. Napisz program, który na GPU rozwiąże następujący problem: dany jest ciąg par punktów (x_i, y_i) , $i=0,\ldots,N-1$, definiujących punkty na płaszczyźnie, oraz kąt alfa.
 - Napisz program, który przekształci strumień wejściowy w nowy strumień, zawierający współrzędne punktów ze strumienia wejściowego obróconych o kąt alfa względem środka układu współrzędnych.
 - Przetestuj jego efektywność dla kilku wartości N.
 - Porównaj jego wydajność z wydajnością analogicznego programu rozwiązującego ten problem na CPU.
- 6. Napisz program, który na GPU rozwiąże następujący problem: dany jest ciąg czwórek punktów (x_i, y_i, vx_i, vy_i) , i = 0, ..., N-1, definiujących punkty na płaszczyźnie oraz pewna liczba dt.
 - Napisz program, który zamieni x_i na x_i + dt^*vx_i oraz y_i na y_i + dt^*vy_i dla każdego i.
 - Przetestuj jego efektywność dla kilku wartości N.
 - Porównaj jego wydajność z wydajnością analogicznego programu rozwiązującego ten problem na CPU.

Uwaga: czwórkę liczb zmiennopozycyjnych wygodnie zapisuje się w typie danych float4.

- 7. Napisz program, który na GPU rozwiązuje następujący problem: dany jest ciąg czwórek liczb (a_i, r_i, g_i, b_i) , $i = 0, \dots, N-1$, o wartościach typu float z przedziału [0,1], definiujących kolory przypisane kolejnym pikselom obrazu.
 - Napisz program, który zamieni r_i, g_i, b_i na ich średnią arytmetyczną.
 - Przetestuj efektywność tego programu dla kilku wartości N.

 Porównaj jego wydajność z wydajnością analogicznego programu rozwiązującego ten problem na CPU.

Uwaga: czwórkę liczb zmiennopozycyjnych wygodnie zapisuje się w typie danych float4;

- 8. Napisz program, który na GPU rozwiąże następujący problem: dany jest ciąg par punktów (x_i, y_i) , $i = 0, \dots, N-1$, definiujących punkty na płaszczyźnie oraz N-elementowa tablica n przekazana poprzez wskaźnik do pierwszego elementu.
 - Napisz program, który w elemencie i tablicy n, i = 0,...,N-1, zapisze indeks k takiego punktu (x_k, y_k) , że żaden inny punkt, poza (x_i, y_i) , nie leży bliżej punktu (x_i, y_i) w sensie metryki Euklidesowej.
 - Przetestuj efektywność swojego programu dla kilku wartości N.
 - Porównaj wydajność swojego rozwiązania z wydajnością analogicznego programu rozwiązującego ten problem na CPU.

Uwaga: Oddziaływanie "każdy z każdym" to wdzięczny temat do optymalizacji programu równoległego, ale w tym wypadku wystarczy rozwiązanie po prostu działające. W CUDA pary liczb zmiennopozycyjnych wygodnie zapisuje się w typie float2 lub double2.

- 9. Napisz program, który na GPU rozwiąże następujący problem: dany jest ciąg trójek liczb (x_i, y_i, z_i) , $i=0,\ldots,N-1$, definiujących współrzędne środków gwiazd w przestrzeni oraz N-elementowa tablica v przekazana poprzez wskaźnik do pierwszego elementu. W środku układu współrzędnych znajduje się Bardo Masywny Obiekt i interesują nas energie potencjalne gwiazd w polu grawitacyjnym Obiektu.
 - Napisz program, który w elemencie i tablicy v, i = 0,...,N-1, zapisze odwrotność odległości punktu (x_i, y_i, z_i) od środka układu współrzędnych.
 - Przetestuj efektywność swojego programu dla kilku wartości N.
 - Porównaj wydajność swojego rozwiązania z wydajnością analogicznego programu rozwiązującego ten problem na CPU.

Uwaga: Trójki liczb zmiennopozycyjnych wygodnie zapisuje się w typie float3 lub double3. Możesz też użyć typów float4 i double4 i założyć, że potencjały zapisuje się w czwartej składowej tych struktur zamiast w tablicy v.

- 10. Podobno wyznaczanie reszty z dzielenia na GPU jest operacją kosztowną. Sprawdź to. Zakładając, że masz ciąg N liczb całkowitych (np. kolejnych liczb 1,..,N lub liczb wygenerowanych losowo):
 - Napisz program, który w innym strumieniu danych (tj. w osobnej tablicy) zapisze reszty z dzielenia liczb z tablicy wejściowej przez 11
 - Przetestuj efektywność swojego programu dla kilku wartości N.
 - Porównaj wydajność swojego rozwiązania z wydajnością analogicznego programu rozwiązującego ten problem na CPU.
 - Jak wykonanie programów na CPU i GPU zmieni się, jeżeli zamiast wyznaczać resztę z dzielenia przez 11 Twój program będzie w strumieniu wyjściowym zapisywał reszty z dzielenia prze 8?

Uwaga:

Proszę zgłaszać mi numery wybranego zadania. Jedno zadanie może zostać przydzielone maksymalnie 2 osobom. Projekty rozwiązujemy indywidualnie. Zaliczenie projektu wymaga przedstawienia wyników swoich obliczeń w formie pisemnej, w formie krótkiego raportu, np. składającego się z krótkiego wstępu (opis problemu), uzyskanych wyników (rysunki), ich omówienia i wniosków. Samo omówienie programu zostawiamy na egzamin (ustny). W razie wątpliwości proszę o kontakt mailowy lub podczas zajęć.