CSE 5/7350 – Test #3 November 30, 2022

Name:		
ID:		

- 1. [8 pts] Answer the following questions:
 - (i) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (C * S) about how long would it take to process an input size of C=14 and S=700?
 - (ii) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (C * S) about how long would it take to process an input size of C=7 and S=1400?
 - (iii) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (C + S) about how long would it take to process an input size of C = 7 and S = 1400?
 - (iv) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ ($C * S^2$) about how long would it take to process an input size of C=7 and S=1400?
 - (v) A program requires 1000s to process an input size of C = 7 and S = 700. If the running time is Θ (2^{CS}) about how long would it take to process an input size of C=7 and S=1400?

2 300 = - 1 pt 1000 x 2 4900 Se

2. [6 pts] Use the DGT algorithm discussed in class to determine how to represent the value 689 using the number system $\beta=5$, $D=\{-1,0,2,3,6\}$. Show your work.

3. [8 pts] Give the asymptotic running time supported by the following tables:

a	n	time (ms)	b	n	time (ms)	С	n	time (ms)	d	n	time (ms)
L	1	1		1	2		1	3		2	3
	2	4		2	4		2	48		3	4.754888
L	3	27		3	12		3	243		4	6
	4	256		4	48		4	768		5	6.965784
L	5	3125		5	240		5	1875	Γ	6	7.754888
	6	46656		6	1440		6	3888		7	8.422065
	7	823543		7	10080		7	7203		8	9
L	8	16777216		8	80640		8	12288		9	9.509775
L	9	3.87E+08		9	725760		9	19683		10	9.965784
	10	1E+10		10	7257600		10	30000		11	10.37829
	11	2.85E+11		11	79833600		11	43923		12	10.75489
E	f (r	$\binom{n}{n}$	6	7 (r	1)	t	H r	4		A (ly(n

- 4. [10 pts] Consider the following NP completeness questions. Answer them with the best answer of "some" "all" "none" or "unknown"
 - (i) Which Problems in P are also in NP? ("some" ("all") "none" or "unknown")
 - (ii) Which Problems in NP are also in P? ("some" "all" "none" or "unknown")
 - (iii) Which Problems in NP-Hard are also in NP? ("some") "all" "none" "unknown")
 - (iv) Which Problems in NP-Hard are also in NP-Complete ("some" "all" "none" or "unknown")
 - (v) The set of problems matching question (iii) is exactly the same as the set of problems matching question (iv) (true or false)
 - (vi) If someone can solve an NP-Hard problem in Polynomial Time, then all NP problems can be solved in polynomial time. (true or false)
 - (vii) If someone can solve an NP-Complete problem in Polynomial Time, then all NP and all NP-Complete problems can be solved in polynomial time. (true or false)
 - (viii) At least 1 NP problem can be solved in polynomial time? (True or False)
 - (ix) Which NP-Hard Problems are also NP-Complete? ("some") "all" "none" or "unknown")
 - (x) To show a problem is NP-Complete, you must show it is NP and that a solver for that problem can also solve some other NP-Complete problem with polynomial extra time. (True or False)

5. [8 pts] Set up a table to compute the length of the Longest Common Subsequence for the following two strings:

ACTTCGCC and CTACGAC

	A	C	t	T	(6	((
00	0	O ₁	0		0	1		1	
+0	0		2	2	2	2	2	2	
AO	48	Ł	7	2	2	2	2	2	
60		2	2	2	3	3	3	3	
6-0		2	2	2	3	4	H	Н	
10	1	2	2	2		4	4	4	
Co	1	2	2	2	3	4	5	5	
	2.00								

6. [6 pts] Two people need to establish a secret key for encrypting communications. They agree to use a Diffie-Hellman key exchange with a modulus of 11 and decide on 2 as the base. Person A chooses a random value of 9 and performs the appropriate computations. Person B chooses a random value of 3 and performs the appropriate computations:

a. What is the value Person A sends to Person B

b. What is the value Person B sends to Person A

c. What is the shared secret key between Person A and Person B

- 7. [8 pts] You have 5 different dice. The table for the summation of the dice is listed below for die 1,2 and 3. Die #4 has 4 sides of values {1, 2, 3, 4} and Die #5 has 4 sides of values {-1, -1, 0, 0}.
 - a. Fill in the table for Die 4 and Die 5.

b. How many sides and of what values is Die #1? c. What is the probability of rolling a 6 with these dice? ### 127, 331 H 15,6%.											
c.	c. What is the probability of rolling a 6 with these dice?										
	418/2684										
		0	0	0	0						
		1	1	1	0						
		2	2	4	2		H				
		3	2	7	11	2	30				
		4	1	7	28	13	108				
		5	0	4	43	41	250				
		6	0	1	43	84	418				
		7	0	0	28	姆1万	534				
		8	0	0	11	142	534				
		9	0	0	2	125	418				
		10	0	0	0	84	290				
		11	0	0	0	41	108				
		12	0	0	0	13	36	×	en (
						0					

8. [10 pts] Determine a Huffman encoding for each symbol in a message that contains:

How many bits are in the entire message if each symbol is encoded with 3 bits?

0 192

How many bits are in the entire Huffman coded message?

40+40+40+42二岁162

How much entropy is in the entire message (Give a number)?

1.67 A 3.91 D 4.41

9. [6 pts] Argue that the problem of sorting an array of numbers is just as hard or possibly harder (within $\Theta(1)$) than the problem of finding a median of an array of numbers.

- 10. [5 pts] A rooted tree has an
 - a. In-order Traversal of X Q K H N F M W B Y G P D S Z
 - b. Pre-Order Traversal of G M H Q X K N F Y M B P D Z S

- 11. [9 pts] A complete bi-partite graph B_{j,k} is a graph which has j vertices in one partition and k vertices in another partition and all possible edges are present. Answer the following questions:
 - (i) For which values of j and k does B_{j,k} have an Euler Tour?

even j even K

- (ii) For which values of j and k is $B_{j,k}$ two-colorable?
- (iii) For which values of j and k is $B_{j,k}$ a tree?

Jak=1

- (iv) If every edge of tree of $B_{j,k}$ has a weight of w, what is the weight of the minimum spanning tree of $B_{j,k}$. \mathcal{W} $(\mathbf{y} + \mathbf{y} \mathbf{l})$
- (v) If every edge of tree of $B_{j,k}$ has a weight of w, what is the maximum flow between the two partitions of $B_{j,k}$ where \mathcal{J} is \mathcal{J} is \mathcal{J} .
- (vi) For which values of j and k does B_{j,k} have a Hamiltonian Cycle?

J=K

- 12. [10 pts] Consider an RSA encryption system that has a public key of 1109 for the value of e and 2881 for the value of the modulus n. A message was encrypted with this key and this encrypted message has the value 2.
- (i) [6 pts] With a quantum computer, you were able to factor the modulus 2881 into the product of two primes: 43*67. Using this information, determine the private key. Be sure to show your table for the Extended Euclidian Algorithm
 - (ii) [2 pts] What is the unencrypted message?

254, 2881 (32) CMEMORY A LOOD = 554542 = 554542 = -

13. [6 pts] Answer the Following:

- (i) $-3 \mod 7 =$
- (ii) 1/3 mod 11 =
- (iii) $-(1/3) \mod 13 =$
- (iv) $2^{122} \mod 11$
- (v) $1\bar{4}$ base 8 = 10
- (vi) A message has 160 symbols in it. The symbol Z occurs 10 times. How much entropy does each 'Z' contain in the message?
- (vii) What is the length of the longest common subsequence of the two strings: AABBBBCC and ZZBBBBYY
- (viii) What are the maximum number of swaps might be necessary to insert an element into a heap that has 16 elements in it already?
- (ix) What is 2 + 2? \mathcal{L}

Yall osled fra gossim like this!