# Coner Features and Matching

### Finding Local Features

#### **Applications of local feature matching:**

Recognition, stereo calibration, motion tracking, 3D object reconstruction, auto calculation of epipolar geometry, etc...

Corners provide repeatable points for matching

### Harris (1988) corner detector:

- Exactly at a corner, gradient is ill defined.
- However, in the region around a corner, gradient has two or more different values.



### The Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in response



### Harris Detector: Basic Idea







"flat" region: no change in all directions "edge":
no change along
the edge direction

"corner":
significant change
in all directions

Change of intensity for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[ I(x+u,y+v) - I(x,y) \right]^2$$
Window function  $w(x,y) = 0$ 
Or
I in window, 0 outside Gaussian

For small shifts [u,v] we have a bilinear approximation:

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Intensity change in shifting window: eigenvalue analysis

$$E(u,v) \cong [u,v]$$
  $M \begin{bmatrix} u \\ v \end{bmatrix}$   $\lambda_1, \lambda_2$  - eigenvalues of  $M$ 

$$\lambda_1, \lambda_2$$
 – eigenvalues of  $M$ 



Classification of  $\lambda_2$ "Edge"  $\lambda_2 \gg \lambda_1$ image points using • "Corner" eigenvalues of M:  $\lambda_1$  and  $\lambda_2$  are large,  $\lambda_1 \sim \lambda_2$ ; E increases in all directions  $\lambda_1$  and  $\lambda_2$  are small; "Flat" E is almost constant in all directions region

Measure of corner response:

$$R = \det M - k(\operatorname{trace} M)^2$$

(where k is an empirically determined constant; k = 0.04 - 0.06)

$$\det M = \lambda_1 \lambda_2$$

$$trace M = \lambda_1 + \lambda_2$$

 $\lambda_2$ 

- R depends only on eigenvalues of M
- R is large for a corner
- *R* is negative with large magnitude for an edge
- |R| is small for a flat region



### Harris Detector Summary:

- Filter image with Gaussian to reduce noise
- Compute magnitude of the x and y gradients at each pixel
- Construct M in a window around each pixel (Harris uses a Gaussian window just blur) and then R
- Find points with large corner response function R (R > threshold)
- Take the points of local maxima of R



Compute corner response R



Find points with large corner response: R>threshold



Take only the points of local maxima of *R* 



### Automatic Matching of Images

How to get correct correspondences without human intervention?

Can be used for image stitching or automatic

determination of eninolar geometry



from Hartley & Zisserman



#### Feature Extraction

- Find features in pair of images using Harris corner detector
- Assumes images are roughly the same scale





from Hartley & Zisserman

~500 features found

### Finding Feature Matches

 Select best match over threshold within a square search window (here 300 pixels<sup>2</sup>) using SSD or normalized cross-correlation (NCC) for small patch around the corner





### Finding Feature Matches

SSD(Sum of Squared Difference)

$$SSD(I, J) = \Sigma(I(x, y) - J(x, y))^2$$

The SSD values closer to 0 indicate a higher similarity between the two images.

NCC (Normalized Cross Correlation)

$$NCC(I, J) = \Sigma(I(x, y) * J(x, y)) / \sqrt{(\Sigma I(x, y)^2 * \Sigma J(x, y)^2)}$$

The NCC value ranges from -1 to 1, and the closer the value is to 1, the higher the similarity between the two images.

## Initial Match Hypotheses



268 matched features (over SSD threshold) in left image pointing to locations of corresponding right image features

#### Outliers & Inliers after RANSAC

- n is 4 for this problem (a homography relating 2 images)
- Assume up to 50% outliers
- 43 samples used with t = 1.25 pixels





from Hartley & Zisserman

117 outliers 151 inliers