

Università degli Studi di Roma "Tor Vergata"

Tor Vergata

Oggi, l'Ateneo del domani

INGEGNERIA

Guida dello Studente Anno accademico 2017-2018

I dati ripo www.ing.un	rtati sono <mark>iroma2.it</mark> e	aggiornati ventuali agg	al 14 iorname	luglio enti.	2017.	Si	raccomanda	di	verificare	sul	sito
Foto in cope	rtina: Emar	uela Di Mau	lo								
A cura di:	Prof.Ing.Mic	nela Vellini									
	Dott.ssa Fiore										

Sezione prima – Offerta didattica

INTRODUZIONE

Per i Corsi di Studio (CdS) di Ingegneria dell'Università degli Studi di Roma "Tor Vergata" viene applicato un ordinamento didattico conforme al DM270/2004 con un'organizzazione didattica che prevede insegnamenti da 6, 9 e 12 crediti formativi universitari (CFU).

Il corso di Laurea Magistrale a ciclo unico quinquennale in Ingegneria Edile-Architettura adotta un sistema di calcolo dei crediti e di erogazione degli insegnamenti conforme con il percorso formativo riconosciuto dalla Comunità Europea, conformemente alla direttiva 85/384/CEE e successive modificazioni.

Conformemente alle norme vigenti, vengono rilasciati i seguenti titoli:

- Laurea (L): ha l'obiettivo di assicurare allo studente un'adeguata padronanza di metodi e contenuti scientifici generali, anche nel caso in cui sia orientata all'acquisizione di specifiche conoscenze professionali;
- Laurea Magistrale (LM): ha l'obiettivo di fornire allo studente una formazione di livello avanzato per l'esercizio di attività di elevata qualificazione in ambiti specifici.

Si rilasciano altresì diplomi di dottorato di ricerca (DR).

Sono infine stati attivati, disciplinati nei regolamenti didattici di Ateneo, corsi di perfezionamento scientifico e di alta formazione permanente e ricorrente, successivi al conseguimento della Laurea o della Laurea Magistrale, alla conclusione dei quali vengono rilasciati i master universitari di primo e di secondo livello.

Ulteriori informazioni sono disponibili presso le seguenti fonti:

- Ingegneria Università di Roma "Tor Vergata": Via del Politecnico 1, 00133
 Roma, Fax 06-72597504, info@ing.uniroma2.it, sito web http://www.ing.uniroma2.it/
- Servizio di orientamento: <u>Orientamento@ing.uniroma2.it</u>
- Servizio di tutoraggio: <u>tutoraggio@ing.uniroma2.it</u>

La presente guida, per ovvie esigenze di divulgazione, è stata redatta con anticipo rispetto all'inizio effettivo dell'A.A. 2017/2018. Si consiglia pertanto di verificare sempre la correttezza delle informazioni qui contenute attraverso la consultazione del sito web www.ing.uniroma2.it e dei siti web dei corsi di studio che vengono mantenuti costantemente aggiornati.

L'OFFERTA DIDATTICA

L'offerta didattica è così articolata:

- Laurea
- Laurea Magistrale
- Master
- Dottorato di Ricerca

Al credito formativo universitario (CFU) corrispondono 25 ore di impegno complessivo per studente che, nel caso specifico dei Corsi di Studio di Ingegneria dell'Università degli Studi di Roma "Tor Vergata", sono così suddivise:

- 10 ore di attività in classe (lezioni, esercitazioni, laboratorio, verifiche in itinere con la presenza di docenti);
- 15 ore di attività di studio individuale.

Per gli insegnamenti didattici del corso di Laurea Magistrale a ciclo unico in Ingegneria Edile-Architettura, tale suddivisione è diversa per rispondere ai requisiti indicati dalle Direttive CEE in materia di Architettura e secondo le specifiche della classe di laurea magistrale di appartenenza, LM-4 c.u. - Architettura e Ingegneria Edile-Architettura (quinquennale), come meglio specificato nell'Ordinamento didattico del Corso di Laurea.

Gli insegnamenti didattici da 6/9/12 crediti sono articolati in 60/90/120 ore di attività didattiche.

L'articolazione degli studi è la seguente:

- per il conseguimento della laurea triennale e quindi della qualifica accademica di *dottore* lo studente deve aver acquisito almeno 180 crediti. Le attività formative sono così articolate:
 - attività formative in ambiti disciplinari di base, caratterizzanti la classe del corso di studio ed affini o integrativi;
 - attività formative autonomamente scelte dallo studente purché coerenti con il progetto formativo;
 - attività formative relative alla prova finale per il conseguimento del titolo di studio e alla verifica della conoscenza di una lingua straniera;
 - attività formative volte ad acquisire ulteriori conoscenze linguistiche, abilità informatiche e telematiche, relazionali o comunque utili per l'inserimento nel mondo del lavoro, nonché attività formative volte ad agevolare le scelte professionali, mediante la conoscenza diretta del settore lavorativo in cui il titolo di studio può dare accesso, tra cui, in particolare, tirocini formativi e di orientamento
- per il conseguimento della Laurea Magistrale e quindi della qualifica accademica di *dottore magistrale* lo studente deve aver acquisito almeno 120 crediti. Le attività formative sono così articolate:
 - attività formative in ambiti disciplinari caratterizzanti la classe del corso di studio ed affini e integrativi;
 - attività formative autonomamente scelte dallo studente purché coerenti con il progetto formativo;
 - attività formative relative alla prova finale per il conseguimento del titolo di studio;
 - attività formative volte ad acquisire ulteriori conoscenze linguistiche, abilità informatiche e telematiche, relazionali o comunque utili per l'inserimento nel mondo del lavoro, nonché attività formative volte ad agevolare le scelte professionali, mediante la conoscenza diretta del settore lavorativo in cui il titolo di studio può dare accesso, tra cui, in particolare, tirocini formativi e di orientamento

LAUREE

Le Lauree in Ingegneria hanno una durata di tre anni e hanno l'obiettivo di formare tecnici altamente qualificati a svolgere attività connesse con la realizzazione e la gestione di sistemi complessi nei vari settori dell'ingegneria. I Corsi di Laurea forniscono una formazione di base ad ampio spettro, con approfonditi aspetti teorici sia per le discipline scientifiche di base sia per quelle ingegneristiche. Forniscono inoltre un'adeguata preparazione professionale, immediatamente spendibile nel mondo del lavoro, nei campi specifici del corso di studio.

LAUREE MAGISTRALI

Le Lauree Magistrali in Ingegneria hanno una durata di due anni. Per iscriversi alla Laurea Magistrale è necessario aver conseguito un titolo di Laurea (triennale) riconosciuto idoneo. Le

Lauree Magistrali hanno come obiettivo la formazione di specialisti di elevata preparazione, che siano in grado di progettare, realizzare e gestire sistemi complessi, e che siano in grado di promuovere e sviluppare ricerca e innovazione tecnologica. I Corsi di Laurea Magistrale forniscono inoltre un'approfondita preparazione professionale (metodologica, tecnico-progettuale, realizzativa, di esercizio) nei campi specifici del corso di studio.

Il corso di Laurea Magistrale in Ingegneria Edile – Architettura è invece a ciclo unico quinquennale.

MASTER

I Master in Ingegneria hanno una durata minima di un anno e massima di tre anni.

Sono previsti Master di primo e di secondo livello, frequentabili rispettivamente dopo il conseguimento della Laurea e della Laurea Magistrale. I Master forniscono uno strumento di formazione professionale flessibile e versatile, in grado di adattarsi alle richieste altamente specialistiche provenienti dal settore industriale, dal settore dei servizi, e dal settore ricerca e sviluppo.

Per conoscere l'ampia offerta didattica dei Master e per avere ulteriori informazioni si rimanda al sito web www.uniroma2.it.

DOTTORATI DI RICERCA

I Dottorati di Ricerca in Ingegneria hanno una durata triennale.

Per iscriversi ad un Dottorato è necessario aver conseguito il titolo della Laurea Magistrale. I Dottorati forniscono uno strumento di formazione professionale per le attività avanzate di ricerca e sviluppo in università, enti di ricerca ed industria.

Sono stati attivati i seguenti dottorati di ricerca:

Dottorato di Ricerca	Dipartimento di riferimento
Computer Science, Control and Geoinformation	Ingegneria Civile e Ingegneria Informatica
Ingegneria Civile	Ingegneria Civile e Ingegneria Informatica
Ingegneria dell'Impresa	Ingegneria dell'Impresa
Ingegneria Elettronica	Ingegneria Elettronica
Ingegneria Industriale	Ingegneria Industriale
Ingegneria per la Progettazione e Produzione Industriale	Ingegneria dell'Impresa

Per ulteriori informazioni e dettagli sui dottorati di ricerca si rimanda al sito web http://dottorati.uniroma2.it/

I CORSI DI STUDIO

CORSI DI LAUREA

Per l'anno accademico 2017-2018 è prevista la seguente offerta didattica di Corsi di Studio (CdS) – Laurea, secondo l'ordinamento DM270/2004 con insegnamenti da 6/9/12 CFU:

CdS	Dipartimento di riferimento
Ingegneria CIVILE e AMBIENTALE	Ingegneria Civile e Ingegneria Informatica
Ingegneria dell'EDILIZIA	Ingegneria Civile e Ingegneria Informatica
Ingegneria ELETTRONICA	Ingegneria Elettronica
Ingegneria ENERGETICA	Ingegneria Industriale
Ingegneria GESTIONALE	Ingegneria dell'Impresa
Ingegneria INFORMATICA	Ingegneria Civile e Ingegneria Informatica
Ingegneria MECCANICA	Ingegneria Industriale
Ingegneria MEDICA	Ingegneria Civile e Ingegneria Informatica
Ingegneria di INTERNET	Ingegneria Elettronica
ENGINEERING SCIENCES	Ingegneria Industriale

CORSI DI LAUREA MAGISTRALE

Per l'anno accademico 2017-2018 è prevista la seguente offerta didattica di Corsi di Studio (CdS) – Laurea Magistrale, secondo l'ordinamento DM270/2004 con insegnamenti da 6/9/12 CFU:

CdS	Dipartimento di riferimento
Ingegneria per L'AMBIENTE E IL TERRITORIO	Ingegneria Civile e Ingegneria Informatica
Ingegneria dell'AUTOMAZIONE	Ingegneria Civile e Ingegneria Informatica
Ingegneria CIVILE	Ingegneria Civile e Ingegneria Informatica
Ingegneria ELETTRONICA	Ingegneria Elettronica
Ingegneria ENERGETICA	Ingegneria Industriale
Ingegneria GESTIONALE	Ingegneria dell'Impresa
Ingegneria INFORMATICA	Ingegneria Civile e Ingegneria Informatica
Ingegneria MECCANICA	Ingegneria Industriale
Ingegneria MEDICA	Ingegneria Civile e Ingegneria Informatica
Ingegneria e TECNICHE DEL COSTRUIRE	Ingegneria Civile e Ingegneria Informatica
ICT AND INTERNET ENGINEERING	Ingegneria Elettronica
MECHATRONICS ENGINEERING	Ingegneria Elettronica
CHEMISTRY FOR NANO-ENGINEERING	Ingegneria Industriale

CORSI DI LAUREA MAGISTRALE A CICLO UNICO

Per l'anno accademico 2017-2018 è prevista la seguente offerta didattica di Corsi di Studio (CdS) – Laurea Magistrale a ciclo unico:

CdS	Dipartimento di riferimento		
Ingegneria EDILE-ARCHITETTURA	Ingegneria Civile e Ingegneria Informatica		

Tale Corso di Studio prevede una prova di ammissione obbligatoria ed un numero chiuso di immatricolazioni.

CORSI DI LAUREA ON-LINE

Per l'anno accademico 2017-2018 è prevista la seguente offerta didattica di Corsi di Studio (CdS) - Laurea, erogati anche in modalità on-line per buona parte delle attività formative, tramite una piattaforma di e-learning:

CdS	Dipartimento di riferimento
Ingegneria GESTIONALE	Ingegneria dell'Impresa
Ingegneria INFORMATICA	Ingegneria Civile e Ingegneria Informatica

Per i dettagli e le informazioni specifiche si rimanda al sito web: http://iol.uniroma2.it

Sezione seconda – Organizzazione didattica

INTRODUZIONE

I Corsi di Studio in Ingegneria attivi sono ad accesso programmato e si dividono in:

- corsi di Laurea con accesso non vincolato da un numero prefissato di posti che prevedono un "test di valutazione" come verifica delle conoscenze richieste;
- corso di Laurea Magistrale a ciclo unico con numero di posti limitato che prevedono una "prova di ammissione" selettiva;
- corsi di Laurea Magistrale con accesso non vincolato da un numero prefissato di posti che prevedono una "verifica dei requisiti curriculari";
- corsi di studio erogati in lingua inglese con valutazione preventiva delle candidature con procedure specifiche.

In tale sezione verranno illustrati dettagli dell'organizzazione didattica prevista per tali corsi di studio.

IMMATRICOLAZIONI ED ISCRIZIONI

IMMATRICOLAZIONI LAUREA E LAUREA MAGISTRALE A CICLO UNICO

Per accedere a un Corso di Laurea o Laurea Magistrale a ciclo unico in Ingegneria è richiesto uno dei seguenti titoli:

- Diploma di Maturità quinquennale;
- Diploma di Maturità quadriennale con anno integrativo
- Diploma di Maturità quadriennale senza anno integrativo: in questo caso l'immatricolazione è subordinata alla valutazione da parte dei Corsi di laurea che individuano, oltre alle conoscenze richieste per l'accesso, gli eventuali obblighi formativi aggiuntivi.

Le procedure per l'ingresso, il soggiorno e l'immatricolazione degli studenti stranieri/internazionali ai corsi di laurea in Italia per l'anno accademico 2017-2018 sono definite dal MIUR di concerto con i Ministeri degli Affari Esteri e della Cooperazione Internazionale e dell'Interno. Tale procedure sono disponibili sul sito http://www.studiare-in-italia.it/studentistranieri/.

In base all'art. 142 del T.U. n. 1592/1933 non è consentita la contemporanea iscrizione a due corsi universitari, che siano nello stesso ateneo o in due atenei distinti, e il conseguimento di due titoli accademici. E' ammessa esclusivamente la contemporanea frequenza di un corso di studi universitario ed un corso di perfezionamento di impegno inferiore a 1500 ore per complessivi 60 crediti (Nota MIUR, Prot. n. AOODGPER 17188).

Test di ingresso per i corsi di laurea

L'accesso ai corsi di laurea in Ingegneria richiede il superamento di un <u>test di ingresso</u> per il quale i candidati devono preventivamente prenotarsi. Il mancato superamento del test di ingresso dà luogo ad obblighi formativi. L'estinzione degli obblighi formativi, necessaria per l'accesso ai corsi del primo anno, avviene al momento del superamento dell'esame di profitto, previsto per coloro che hanno sostenuto e non superato il test, che si svolgerà prima dell'inizio delle lezioni.

Sono esonerati dal test di ingresso chi è in possesso di Lauree quinquennali (vecchio ordinamento) in Ingegneria, Lauree triennali in Ingegneria, Lauree Specialistiche/Magistrali in Ingegneria, Lauree in Fisica, Lauree in Matematica; tali soggetti potranno richiedere immatricolazione con abbreviazione di corso secondo le modalità successivamente descritte.

Sono altresì esonerati dal test di ingresso gli studenti stranieri che intendono immatricolarsi al corso di laurea in lingua inglese (Engineering Sciences) per i quali sono richiesti specifici requisiti, illustrati dettagliatamente nel sito internet del corso di studio (http://www.engineering-sciences.uniroma2.it).

Per coloro che hanno superato l'esame di maturità con una votazione ≥95/100 sono previste specifiche agevolazioni, relative sia al test di ingresso sia all'immatricolazione, per conoscere le quali si invita a consultare il sito internet http://ing.uniroma2.it/2017/05/11/test-dingresso-e-immatricolazione-a-a-20172018/

Il test di ingresso per i corsi di laurea in Ingegneria si svolgerà il <u>4 settembre 2017</u>. Per essere ammessi a sostenere il test di ingresso occorre presentare apposita domanda entro il 28 Agosto 2017. Eventuali variazioni saranno tempestivamente comunicate attraverso il sito web http://www.ing.uniroma2.it, ove è possibile trovare anche ulteriori dettagli sull'immatricolazione.

Prova di ammissione per il corso di laurea magistrale a ciclo unico

Il Corso di Laurea Magistrale a ciclo unico in Ingegneria Edile Architettura è un corso a numero programmato. Il numero dei posti disponibili per il primo anno è stabilito annualmente in base alle strutture disponibili, alle esigenze del mercato del lavoro e secondo criteri generali fissati dal MIUR.

Per l'A.A. 2017-2018 questo numero è stato fissato in 60 posti + 5 posti riservati a cittadini extracomunitari (di cui 2 per il progetto Marco Polo).

L'immatricolazione è subordinata al superamento di una prova di ammissione. Tale prova si svolgerà contemporaneamente in tutte le università italiane in data <u>7 settembre 2017</u>. La prova di ammissione, di contenuto identico sul territorio nazionale, è predisposta dal Ministero e consiste nella soluzione di quesiti su argomenti di cultura generale e ragionamento logico, storia, disegno e rappresentazione, matematica e fisica.

Per partecipare al concorso occorre attenersi a tutte le procedure, nelle scadenze fissate, indicate nell'apposito bando pubblicato sul sito di Ateneo (http://www.ing.uniroma2.it).

IMMATRICOLAZIONI LAUREA MAGISTRALE

Conformemente al DM 270/2004, l'immatricolazione ai corsi di Laurea Magistrale è subordinata alla verifica del possesso dei requisiti curriculari e dell'adeguatezza della personale preparazione con modalità definite dai singoli Corsi di Studio.

Studenti provenienti da omonimo corso di Laurea di Ingegneria di questo Ateneo

L'accesso alla Laurea Magistrale omonima a quella di provenienza è garantito a tutti gli studenti che conseguono la Laurea presso l'Università degli Studi di Roma "Tor Vergata". Per gli studenti che si sono immatricolati ad un corso di Laurea dall'anno accademico 2007/2008, la prova di ammissione per immatricolarsi alla Laurea Magistrale omonima a quella di provenienza è prevista a partire dall'anno accademico 2010/2011. Lo scopo della prova di ammissione è quello di valutare la personale preparazione; nel caso in cui venissero individuate carenze formative/curricolari, queste dovranno essere colmate prima dell'immatricolazione alla Laurea Magistrale.

Sono esonerati dalla prova di ammissione gli studenti che hanno conseguito una media dei voti di tutti gli esami di profitto con voto non inferiore alla soglia specificata di seguito:

1. per gli studenti immatricolati alla Laurea Triennale negli anni accademici 2007/2008, 2008/2009 o 2009/2010, è richiesta una media dei voti di 24,00/30 se la Laurea è stata

- conseguita entro il quarto anno accademico a partire dall'anno accademico di immatricolazione, o 24,50/30 se conseguita dal quinto anno accademico in poi;
- 2. per gli studenti immatricolati alla Laurea dall'anno accademico 2010/2011 in poi, la media richiesta è di 24,50/30 se la Laurea è stata conseguita entro il quarto anno accademico a partire dall'anno accademico di immatricolazione, 25,00/30 se conseguita dal quinto anno accademico in poi.

Le modalità per colmare le eventuali carenze formative individuate dalla prova di ammissione saranno definite dai Corsi di Studio.

Per i Corsi di Studio di Ingegneria di questo Ateneo

- il Corso di Laurea in Ingegneria Civile e Ambientale è da considerarsi omonimo sia al corso di Laurea Magistrale Ingegneria per l'Ambiente e il Territorio sia al corso di Laurea Magistrale Ingegneria Civile;
- il Corso di Laurea triennale Ingegneria dell'Edilizia è da considerarsi omonimo al corso di Laurea Magistrale Ingegneria e Tecniche del Costruire.

Studenti non provenienti da omonimo corso di Laurea triennale di Ingegneria di questo Ateneo

Per gli studenti non provenienti dalla Laurea omonima di Ingegneria di questo Ateneo, l'ammissione alla Laurea Magistrale è subordinata alla verifica del possesso dei requisiti curriculari richiesti dai singoli Corsi di Studio nel rispetto delle disposizioni di legge.

Nel caso in cui si verifichi una parziale insufficienza dei requisiti formativi necessari, lo studente, prima di poter procedere all'immatricolazione, dovrà dimostrare l'adeguatezza della preparazione personale attraverso il superamento di specifici esami relativi ai corsi indicati dal Coordinatore del Corso di Studio. In tal caso verrà consentita l'iscrizione dello studente a singoli corsi con contributo d'iscrizione, fissato annualmente dagli organi di governo dell'Ateneo. L'immatricolazione sarà consentita solo dopo il superamento degli esami prescritti e si potrà effettuare entro la scadenza fissata per le iscrizioni e le immatricolazioni dell'anno accademico di riferimento.

Informazioni più dettagliate sono disponibili sul sito www.ing.uniroma2.it > area studenti > segreteria studenti > modalità di immatricolazione alla laurea magistrale.

IMMATRICOLAZIONE CON ABBREVIAZIONE DI CORSO

L'immatricolazione con abbreviazione di corso si può effettuare se lo studente è in possesso di Laurea o altro titolo valutabile ai fini dell'ammissione ad anno successivo al primo del corso prescelto a seguito di un riconoscimento di CFU acquisiti durante il precedente corso di studio.

Le abbreviazioni di corso ai Corsi di Studio di Ingegneria sono consentite nel rispetto dei numeri programmati per ciascun Corso di Studio. Pertanto gli studenti che intendano immatricolarsi ad un Corso di Studio dovranno inoltrare preventiva richiesta di valutazione titoli, utilizzando l'apposita pagina web del sito di questo Ateneo (http://delphi.uniroma2.it > Area studenti > punto 2 - immatricolazione con abbreviazione di corso > a - richiesta valutazione titoli (per abbreviazione di

corso) > a – compila la domanda > Ingegneria), entro la data stabilita e pubblicata sul sito www.ing.uniroma2.it > area studenti > segreteria studenti dove è possibile trovare informazioni più dettagliate in merito.

Coloro che non avessero conseguito la Laurea in Ingegneria – Laurea in Fisica – Laurea in Matematica, dovranno inoltre sostenere il test d'ingresso iscrivendosi nei termini previsti

IMMATRICOLAZIONE DI STUDENTI STRANIERI CON TITOLO DI STUDIO CONSEGUITO ALL'ESTERO

I cittadini comunitari ovunque residenti e non comunitari regolarmente soggiornanti in Italia (art. 26 L. 189/2002) possono immatricolarsi ai corsi di Laurea e Laurea magistrale a ciclo unico alle stesse condizioni dei cittadini italiani, purché in possesso di un titolo finale di studi secondari conseguito con almeno 12 anni di scolarità, che consenta l'accesso a un corso analogo presso tutte le Università del Paese in cui il titolo è stato conseguito. Tale titolo deve essere corredato di traduzione ufficiale in lingua italiana, legalizzazione e Dichiarazione di valore rilasciata dalla Rappresentanza Diplomatica italiana competente per territorio (consultare le istruzioni sul sito web www.uniroma2.it \Diamond studenti \Diamond Studenti Stranieri).

Al momento dell'immatricolazione, solo per i cittadini non comunitari, è necessario consegnare copia del regolare permesso di soggiorno.

Per i corsi di Laurea in cui è prevista una prova di ammissione o una valutazione preventiva delle candidature, è necessario seguire le specifiche indicazione del Corso di Studio.

Hanno accesso ai corsi di Laurea Magistrale di durata biennale tutti coloro che sono in possesso di un titolo di studio conseguito all'estero presso una Università o presso Istituti di Istruzione superiore post-secondaria, corredato da traduzione ufficiale in lingua italiana, legalizzazione e dichiarazione di valore rilasciata dalla Rappresentanza Diplomatica italiana competente per territorio (consultare le istruzioni sul sito web www.uniroma2.it \Diamond studenti \Diamond Studenti Stranieri). L'ammissione avviene dopo la valutazione curriculare prevista dai Corsi di Studio.

I cittadini non comunitari residenti all'estero possono reperire le informazioni relative all'immatricolazione sul sito web www.uniroma2.it \Diamond Studenti \Diamond Studenti Stranieri, inviando una email al seguente indirizzo: international.students@uniroma2.it o rivolgendosi allo sportello "Segreteria Studenti Stranieri" situato presso il Rettorato (lunedì, mercoledì e venerdì 9:00-12:00; mercoledì 14:00-16:00.

I Corsi di Studio determinano i criteri per il riconoscimento dei titoli accademici conseguiti presso Università di altri paesi; possono altresì riconoscere studi all'estero che non hanno portato al conseguimento di un titolo accademico, purché adeguatamente documentati.

ISCRIZIONI AGLI ANNI SUCCESSIVI DELLA LAUREA E DELLA LAUREA MAGISTRALE

Dall'anno accademico 2017-2018, previo assolvimento del pagamento delle tasse universitarie, lo studente è iscritto automaticamente all'anno successivo a quello dell'ultima iscrizione/immatricolazione.

È previsto il differimento dei termini di iscrizione per i laureandi; tali soggetti possono infatti presentare una domanda di iscrizione, detta domanda cautelativa, se intendono laurearsi nella sessione invernale (febbraio) o nell'ultima sessione utile dell'anno accademico precedente (aprile). Con la domanda cautelativa è possibile maturare tutti i crediti previsti nel proprio piano di studi (tranne ovviamente quelli previsti per la prova finale ed eventualmente per le AFF) entro la sessione invernale di recupero dell'anno accademico precedente e conseguire il titolo finale nella seduta di laurea di febbraio o di aprile; conseguito il titolo, sarà possibile immatricolarsi in corso d'anno ad una Laurea Magistrale, compatibilmente con la verifica del possesso di tutti i requisiti richiesti per il corso di Laurea Magistrale prescelto, pagando le tasse di iscrizione per l'anno accademico in corso.

ISCRIZIONI AGLI ANNI SUCCESSIVI DELLA LAUREA MAGISTRALE A CICLO UNICO

Per il corso di laurea magistrale a ciclo unico in Ingegneria Edile-Architettura, per gli immatricolati a partire dall'a.a. 2010-2011 valgono le seguenti disposizioni: possono accedere al secondo anno gli studenti che abbiano sostenuto con successo esami per almeno 28 crediti; al terzo anno, gli studenti, senza debiti relativi al primo anno (tranne al massimo 8 crediti), che abbiano sostenuto con successo esami per almeno 74 crediti; al quarto anno, gli studenti, senza debiti relativi al primo anno, che abbiano sostenuto con successo esami per almeno 126 crediti; al quinto anno, gli studenti che abbiano sostenuto con successo esami per almeno 182 crediti.

Gli altri studenti dovranno iscriversi come ripetenti. Lo studente ripetente, presentando un piano di studi individuale, può chiedere al Coordinatore di anticipare esami dell'anno successivo a quello cui è iscritto fino ad un massimo di 20 crediti (indipendentemente da quanti anni lo studente rimarrà ripetente). Se lo studente iscritto ripetente raggiunge nella sessione di esami di febbraio i requisiti per il passaggio all'anno successivo, può chiedere al Coordinatore l'adeguamento della sua iscrizione.

ISCRIZIONE COME STUDENTE A TEMPO PARZIALE

Se per ragioni di natura lavorativa, familiare, medica, personale e assimilabili, si ritiene di non poter dedicare alla frequenza e allo studio le 1.500 ore annue previste come standard dell'impegno, è possibile scegliere di iscriversi a tempo parziale.

Non è consentita l'opzione per il tempo parziale agli studenti fuori corso.

E' possibile richiedere l'opzione al tempo parziale all'inizio di ogni anno accademico dopo essersi immatricolati o iscritti ad anni successivi.

E' possibile richiedere il tempo parziale dopo l'immatricolazione e concordare un percorso formativo di durata maggiore di quello normale ma non superiore al doppio di questa; se invece l'opzione per il tempo parziale viene effettuata all'atto dell'iscrizione ad anni successivi al primo, si può concordare un percorso formativo di durata non superiore al doppio degli anni residui previsti

normalmente per il conseguimento del titolo, compatibilmente con eventuali limiti alla durata massima e minima previsti dalle Macroaree con i cicli unici.

Per attivare la procedura di iscrizione a tempo parziale è necessario accedere al sito http://delphi.uniroma2.it > Area studenti > punto 3 - iscrizione come studente a tempo parziale. Sarà necessario compilare on-line la domanda di opzione al tempo parziale; tale domanda sarà inoltrata alla Segreteria Studenti che ne controllerà la regolarità delle informazioni contenute prima dell'invio alla struttura didattica di competenza. Il Corso di Studio deliberarà sull'accoglimento della richiesta di opzione al tempo parziale definendo anche lo specifico percorso formativo ed eventuale predisposizione di adeguato Piano di Studio.

Per tutte le procedure di immatricolazione e di iscrizione, le scadenze ed i relativi versamenti di tasse e contributi si può fare riferimento alla "Guida dello studente" di Ateneo consultabile sul sito web www.uniroma2.it.

Informazioni sempre aggiornate per Ingegneria sono consultabili sul sito web di Ingegneria www.ing.uniroma2.it e soprattutto sul sito della Segreteria Studenti di Ingegneria http://ing.uniroma2.it/area-studenti/segreteria-studenti/.

TRASFERIMENTI, PASSAGGI E RICONOSCIMENTI CREDITI

TRASFERIMENTI IN ENTRATA

I trasferimenti da altri Atenei sono consentiti nell'ambito dei numeri programmati per ciascun Corso di Studio. Pertanto gli studenti che intendano trasferirsi presso i Corsi di Studio di Ingegneria di questo Ateneo dovranno inoltrare preventiva richiesta di valutazione titoli, utilizzando l'apposita pagina web del sito di questo Ateneo (http:// delphi.uniroma2.it > Area studenti > punto 2 > trasferimenti da altro Ateneo (in entrata) > a - richiesta nulla osta al trasferimento (valutazione preventiva dei titoli) > a - compila la domanda > Ingegneria) entro la data stabilita e pubblicata sul sito www. ing.uniroma2.it > area studenti > segreteria studenti dove è possibile trovare anche informazioni più dettagliate sui trasferimenti.

Per i trasferimenti in entrata sono richiesti due requisiti:

- aver sostenuto il test di ingresso e produrre adeguata certificazione; coloro che non avessero sostenuto, al momento dell'immatricolazione, il test di ingresso per un Corso di Studio in Ingegneria, dovranno comunque sostenere tale prova secondo le modalità previste, iscrivendosi nei termini stabiliti;
- aver acquisito un certo numero di CFU stabiliti dai singoli CdS.

Per i trasferimenti al corso di Laurea Magistrale a ciclo unico quinquennale in Ingegneria Edile-Architettura è obbligatorio superare la relativa prova di ammissione. La valutazione è infatti vincolata al superamento di detta prova.

PASSAGGI TRA CORSI DI STUDIO

Passaggi tra Corsi di Studio di Ingegneria di questo Ateneo

I passaggi tra Corsi di Studio di Ingegneria di questo Ateneo sono consentiti nel rispetto dei numeri programmati per ciascun Corso di Studio. Pertanto gli studenti che intendano cambiare Corso di Studio dovranno inoltrare preventiva richiesta di valutazione titoli, utilizzando l'apposita pagina web del sito di questo Ateneo (http:// delphi.uniroma2.it > Area studenti > punto 4 - Gestione on line della carriera > punto 2 - richiesta nulla osta e valutazione titoli > a - compila la domanda > Ingegneria), entro la data stabilita e pubblicata sul sito www.ing.uniroma2.it > area studenti > segreteria studenti dove sono disponibili anche informazioni più dettagliate sul passaggio tra Corsi di Studio di Ingegneria.

Per i passaggi tra Corsi di Studio di Ingegneria di questo Ateneo sono richiesti due requisiti:

- aver sostenuto il test di ingresso per Ingegneria; coloro che non avessero sostenuto, al momento dell'immatricolazione, il test di ingresso per un Corso di Studio di Ingegneria, dovranno comunque sostenere tale prova secondo le modalità previste, iscrivendosi nei termini stabiliti;
- aver acquisito un certo numero di CFU stabiliti dai singoli Corsi di Studio.

Per i trasferimenti al corso di Laurea Magistrale a ciclo unico quinquennale in Ingegneria Edile-Architettura è obbligatorio superare la relativa prova di ammissione. La valutazione è infatti vincolata al superamento di detta prova.

Passaggi ai Corsi di Studio di Ingegneria da altri Corsi di Studio di questo Ateneo

I passaggi ai Corsi di Studio di Ingegneria da altri Corsi di Studio di questo Ateneo sono consentiti nell'ambito dei numeri programmati per ciascun Corso di Studio. Pertanto gli studenti che intendano effettuare un passaggio ad un Corso di Studi di Ingegneria di questo Ateneo dovranno inoltrare preventiva richiesta di valutazione titoli, utilizzando l'apposita pagina web del sito di questo Ateneo (http://delphi.uni- roma2.it > Area studenti > punto 4 – Gestione on line della carriera > punto 2 – richiesta nulla osta e valutazione titoli > compila la domanda > Ingegneria), entro la data stabilita e pubblicata sul sito www.ing.uniroma2.it > area studenti > segreteria studenti, dove è possibile trovare informazioni più dettagliate sul passaggio ai Corsi di Studio di Ingegneria.

Per i passaggi ai Corsi di Studio di Ingegneria da altri Corsi di Studio di questo Ateneo sono richiesti due requisiti:

- aver sostenuto il test di ingresso per Ingegneria; coloro che non avessero sostenuto, al momento dell'immatricolazione, il test di ingresso per un Corso di Studio di Ingegneria, dovranno comunque sostenere tale prova secondo le modalità previste, iscrivendosi nei termini stabiliti;
- aver acquisito un certo numero di CFU stabiliti dai singoli CdS.

Per i trasferimenti al corso di Laurea Magistrale a ciclo unico quinquennale in Ingegneria Edile-Architettura è obbligatorio superare la relativa prova di ammissione. La valutazione è infatti vincolata al superamento di detta prova.

RICONOSCIMENTO CREDITI

Il riconoscimento di esami sostenuti e di crediti acquisiti da studenti provenienti da una diversa struttura didattica dell'Ateneo o da altri Atenei è effettuato dai Corsi di Studio interessati.

I Corsi di Studio possono proporre programmi di cooperazione con aziende private e pubbliche e con istituzioni nelle quali gli studenti svolgano esperienza di apprendimento sul campo considerate valide ai fini del conseguimento di crediti didattici.

RICONOSCIMENTO STUDI COMPIUTI ALL'ESTERO

I Corsi di Studio determinano i criteri per il riconoscimento dei titoli accademici conseguiti presso Università di altri paesi; possono altresì riconoscere studi all'estero che non hanno portato al conseguimento di un titolo accademico, purché adeguatamente documentati.

Informazioni sempre aggiornate per Ingegneria sono consultabili sul sito della Segrereria Studenti di Ingegneria http://ing.uniroma2.it/area-studenti/segreteria-studenti/.

LEZIONI ED ESAMI

LEZIONI

La didattica frontale è organizzata in 2 semestri della durata massima di quindici settimane.

I crediti assegnati per ogni insegnamento terranno conto del relativo carico didattico (è previsto un carico didattico complessivo di 25 ore per credito comprensive di lezioni frontali, esercitazioni, laboratori, verifiche intermedie, lavoro personale dello studente).

FREQUENZA

Alcuni insegnamenti potrebbero richiedere un obbligo di frequenza.

L'eventuale obbligo della frequenza, le modalità e le metodologie di accertamento saranno tempestivamente comunicati agli studenti dai Coordinatori dei Corsi di Studio interessati.

ESAMI DI PROFITTO

L'esame è la verifica di profitto che si deve sostenere e superare per ogni insegnamento previsto dal piano di studio ufficiale e/o individuale dello studente. Gli esami di profitto si possono articolare in prove scritte, prove pratiche in laboratorio, prove orali, o in più di una di tali modalità. La votazione minima è 18/30 e quella massima è 30/30: al voto massimo può essere aggiunta la lode quale speciale distinzione. La valutazione finale può anche tenere conto di risultati di eventuali prove periodiche definite dal docente del corso. Il superamento dell'esame consente la relativa acquisizione dei crediti previsti per quell'insegnamento.

Gli esami di profitto si svolgono durante le sessioni di esami, con cadenze distanziate e pubblicizzate per ciascun corso di studio dalle competenti strutture didattiche.

Per essere ammesso agli esami di profitto/prove di valutazione è necessario:

- aver inserito i relativi insegnamenti nel piano di studio approvato;
- aver soddisfatto le propedeuticità obbligatorie;
- essere in regola con il pagamento delle tasse e dei contributi.

Gli esami sostenuti in difetto anche di uno solo dei requisiti suindicati sono nulli di fatto e di diritto. Dell'annullamento sarà data comunicazione scritta agli interessati.

È possibile prenotarsi on-line agli esami di profitto. Il servizio è disponibile per un certo periodo, stabilito dal docente, precedente la data dell'esame.

Non è consentito ripetere un esame di profitto già sostenuto con esito positivo.

La valutazione negativa non comporta l'attribuzione di un voto, ma solo di un giudizio riportato sul verbale (secondo i casi: ritirato o respinto) che non sarà inserito nel curriculum e pertanto non influirà sulla media della votazione finale.

PIANO DI STUDI INDIVIDUALE

Il piano di studi è il percorso che comprende tutte le attività formative che si devono svolgere per conseguire la laurea e la laurea magistrale. Poiché ogni corso di studio prevede un certo numero di insegnamenti obbligatori e di insegnamenti a scelta dagli studenti, durante la compilazione del piano di studi lo studente può scegliere una parte degli insegnamenti, seguendo le indicazioni suggerite dal Corso di Studio. I piani di studi presentati dagli studenti sono esaminati dai Coordinatori dei Corsi di Studio e possono di conseguenza essere approvati integralmente, approvati con modifiche o respinti. Nel caso in cui il piano di studi venga respinto, ha valore l'ultimo piano di studi individuale approvato.

Gli studenti possono presentare ogni anno accademico un solo piano di studi individuale.

Per conoscere esattamente i termini di scadenza di presentazione dei piani di studi individuali è necessario fare riferimento alle Segreterie Didattiche dei Corsi di Studio. Nel caso di iscrizione in corso d'anno alla Laurea Magistrale, gli studenti possono presentare un proprio piano di studi individuale entro un mese dall'iscrizione.

Gli studenti possono inserire nel proprio piano di studi insegnamenti di anni successivi a quello di iscrizione (ma sempre all'interno di quelli previsti per il proprio corso di laurea) e possono frequentare le relative lezioni e sostenerne gli esami a condizione che il piano di studi riceva l'approvazione del Coordinatore del Corso di Studio e che vengano rispettate le propedeuticità obbligatorie. In caso contrario tutte gli esami sostenuti sono annullati.

PROPEDEUTICITÀ

Le propedeuticità sono decise dai singoli Corsi di Studio e sono dettagliatamente illustrate nei siti internet dei singoli Corsi di Studio.

La propedeuticità si applica sempre ad insegnamenti che prevedono una numerazione incrementale: per sostenere quindi un esame (parte 2) che prevede un'omonima parte 1 all'anno precedente, è necessario aver superato detta parte 1.

Le propedeuticità non possono riguardare insegnamenti dello stesso anno di corso.

I singoli docenti possono consigliare agli studenti di sostenere gli esami in ordine tale da garantire il migliore apprendimento possibile (prerequisiti).

ESAMI IN SOVRANNUMERO

Gli esami sostenuti in difformità dal piano di studi sono nulli.

Gli studenti possono però inserire nel proprio piano di studi, con l'approvazione dei Coordinatori dei Corsi di Studio di appartenenza, un numero limitato di esami in sovrannumero. Gli esami in sovrannumero non saranno riconoscibili ai fini dell'eventuale successivo conseguimento della Laurea Magistrale, ma concorreranno alla formazione della media utilizzata poi nel calcolo del voto di laurea.

ESAMI DI LINGUA

Gli studenti che hanno una buona conoscenza della lingua inglese possono sostenere una prova per ottenere il riconoscimento totale o parziale dei crediti previsti dal proprio Corso di Studio per la lingua straniera. Gli studenti che non hanno, invece, una buona conoscenza della lingua inglese o che devono approfondire la propria preparazione possono iscriversi e frequentare specifici corsi di lingua inlgese. Tutte le informazioni in merito ai corsi di lingua e ai relativi esami sono disponibili nel sito web http://cla.uniroma2.it/.

I certificati attestanti un adeguato livello di conoscenze linguistiche (livello TOEFL) possono essere presi in considerazione per il riconoscimento totale o parziale dei crediti previsti dai vari Corsi di Studio per la lingua straniera.

La prova di lingua inglese è una prova di idoneità che accerta il possesso di un requisito; può essere sostenuta, indipendentemente dalla frequenza, in qualsiasi momento purché siano state regolarizzate le procedure di immatricolazione o iscrizione.

I Coordinatori dei singoli Corsi di Studio possono valutare in crediti la conoscenza dimostrata anche di un'altra lingua straniera.

ESAMI DI LAUREA

Il conseguimento della Laurea comporta il superamento di una prova finale secondo specifiche modalità definite dai singoli Corsi di Studio. Tale prova finale può consistere in una relazione scritta su un argomento proposto da un docente dei Corsi di Studio di Ingegneria.

Tutte le informazioni relative alla procedura da seguire sono disponibili al sito www.ing.uniroma2.it > area studenti > segreteria studenti > ti vuoi laureare?.

ESAMI DI LAUREA MAGISTRALE

La tesi di Laurea Magistrale consiste in una relazione scritta che ha lo scopo di integrare le conoscenze acquisite nei vari corsi e di verificare la maturità raggiunta dal candidato. L'argomento della tesi verrà assegnato da un docente dei Corsi di Studio di Ingegneria che sarà il relatore della tesi. Previa autorizzazione, potranno essere svolte tesi che abbiano come relatore un docente di altri Corsi di Studio.

La tesi potrà essere svolta in uno dei Dipartimenti dell'Ateneo, presso Enti di ricerca, presso Aziende o presso altre istituzioni idonee.

L'esame di Laurea Magistrale consiste nell'esposizione e nella discussione da parte del laureando del proprio lavoro di tesi di fronte alla Commissione di Laurea.

Tutte le informazioni relative alla procedura da seguire sono disponibili al sito www.ing.uniroma2.it > area studenti > segreteria studenti > ti vuoi laureare?.

Informazioni sempre aggiornate per Ingegneria sono consultabili sul sito web di Ingegneria www.ing.uniroma2.it e soprattutto sul sito della Segreteria Studenti di Ingegneria http://ing.uniroma2.it/area-studenti/segreteria-studenti/.

BORSE DI STUDIO

BORSE DI STUDIO LAZIODISU

La borsa Laziodisu, assegnata sulla base di un concorso, ha la funzione di coprire i costi di mantenimento agli studi presso l'Università. Gli importi complessivi sono aggiornati annualmente e variano a seconda della fascia di reddito di appartenenza e alla qualifica di "studente in sede", "pendolare" e "fuori sede". Per ulteriori informazioni consultare il sito: http://www.laziodisu.it/.

ALTRE BORSE DI STUDIO E PREMI DI STUDIO

Si riporta il sito dove è possibile consultare l'elenco delle borse di studio e i premi di studio: http://web.uniroma2.it/module/name/Content/newlang/italiano/navpath/STD/section_parent/845

ATTIVITÀ DI COLLABORAZIONE DEGLI STUDENTI

È previsto il conferimento di incarichi di collaborazione degli studenti in attività connesse ai servizi resi dall'Ateneo, con esclusione di quelli inerenti le attività di docenza, lo svolgimento degli esami di profitto, l'assunzione di responsabilità amministrative, con presumibilmente un'attività lavorativa per 150 ore complessive da ripartire secondo le esigenze interne della struttura presso cui viene svolta la collaborazione. Alle collaborazioni possono accedere gli studenti regolarmente iscritti ai corsi di studio.

Web: web.uniroma2.it > Studenti > opportunità

http://web.uniroma2.it/module/name/Content/newlang/italiano/navpath/STD/section_parent/3293

ERASMUS PLUS

È prevista la mobilità internazionale di studenti di tutti i livelli nell'ambito di Erasmus+ il Programma europeo per l'istruzione, la formazione, la gioventù e lo sport 2014-2020, in vigore dal 1 gennaio 2014, che integra e sostituisce i programmi UE della programmazione 2007-2013.

Informazioni sulla mobilità Erasmus+ e sui progetti attivi al momento della visita sono disponibili sul sito: http://torvergata.llpmanager.it

Informazioni sulle procedure amministrative del Programma sono fornite dall'Ufficio Erasmus+ d'Ateneo (dettagli nelle sezioni successive)

Informazioni sulle università partner e sugli esami da sostenere all'estero nell'ambito della mobilità Erasmus+ per Ingegneria sono disponibili presso:

Coordinatore didattico: Prof.ssa Cinthia Campi – cinthia.campi@uniroma2.it

Responsabile: Sig.ra Rita Ricci - ricci@ing.uniroma2.it - tel. 0672597256

STAGE E TIROCINI

È prevista l'attivazione di stage e tirocini - non costituenti rapporti di lavoro dipendente - presso aziende o Enti pubblici a favore di laureandi, laureati, frequentanti Master, Dottorati di Ricerca e Scuole di Specializzazione dell'Ateneo, per maturare un'esperienza professionale e farsi conoscere nel mondo del lavoro e arricchire il proprio curriculum vitae.

L'attivazione dello stage avviene tramite la stipula di una convenzione tra l'Università e l'Azienda/Ente ospitante e la sottoscrizione di un progetto formativo.

Sul sito dell'Ateneo è presente la "procedura di attivazione stage presso Aziende/Enti", nella quale sono disponibili tutte le informazioni per l'attivazione dei procedimenti amministrativi, oltre ai moduli di convenzione e progetto formativo da compilare a cura dell'Azienda/Ente e da inviare all'Ufficio Stage, via e-mail.

Sede: Via O. Raimondo, 18 – 00173 Roma VI piano stanze 650 – 601

Tel 06 72592653 / 359 / 3066 Fax 06 72593066

Orario: martedì e giovedì, ore 10.00-12.00 e ore 14.30-15.30

Mail: ufficio.stages@uniroma2

http://web.uniroma2.it/module/name/Content/newlang/italiano/navpath/sta/section_parent/4717

Informazioni per Ingegneria sono disponibili presso:

Servizio Tirocini curriculari: Sig.ra Silvana Santamaria Tel. 0672597281 e-mail santamaria@ing.uniroma2.it Edificio Didattica ultimo piano area "Macroarea di Ingegneria"

Per tutte le informazioni sulle borse di studio si può fare riferimento alla "Guida dello studente" di Ateneo consultabile sul sito web www.uniroma2.it.

Informazioni sempre aggiornate per Ingegneria sono consultabili sul sito web di Ingegneria www.ing.uniroma2.it e soprattutto sul sito della Segreteria Studenti di Ingegneria http://ing.uniroma2.it/area-studenti/segreteria-studenti/.

ALTRI ASPETTI

STUDENTI ISCRITTI ALL'ORDINAMENTO DIDATTICO 270/2004 (5/10 CFU)

Gli studenti iscritti all'ordinamento didattico DM270/2004 con sistema di crediti 5/10 conservano il diritto di concludere la loro carriera secondo tale sistema in accordo al programma di corso stabilito nell'anno di immatricolazione. L'ordine degli studi di riferimento è pertanto quello contenuto nella Guida dello Studente dell'anno di immatricolazione. Si invitano comunque gli studenti iscritti all'ordinamento didattico DM270/2004 a contattare il Coordinatore del Corso di Studio per concordare eventuali aggiustamenti del piano di studi al fine di renderlo compatibile con l'offerta didattica in corso.

STUDENTI ISCRITTI ALL'ORDINAMENTO DIDATTICO 509/1999

Gli studenti iscritti all'ordinamento didattico DM509/2009 conservano il diritto di concludere la loro carriera secondo tale sistema in accordo al programma di corso stabilito nell'anno di immatricolazione. L'ordine degli studi di riferimento è pertanto quello contenuto nella Guida dello Studente dell'anno di immatricolazione. Si invitano comunque gli studenti iscritti all'ordinamento didattico DM509/1999 a contattare il Coordinatore del Corso di Studio per concordare eventuali aggiustamenti del piano di studi al fine di renderlo compatibile con l'offerta didattica in corso. Le modalità di esame sono, in ogni caso, quelle previste dall'ordinamento DM270/2004.

INTERRUZIONE E RIPRESA DEGLI STUDI

Se lo studente non rinnova l'iscrizione, in applicazione al D.Lgs. n. 68/2012, e intende riprendere gli studi, deve presentare apposita domanda di ripresa degli studi. - Nel periodo di interruzione degli studi e fino al termine della sessione straordinaria dell'anno accademico oggetto della ricongiunzione, non può compiere alcun atto di carriera relativa al corso di studio interrotto: in tal caso tali atti saranno annullati d'ufficio.

La richiesta di interruzione non è revocabile.

Il periodo di interruzione non è preso in considerazione ai fini della valutazione del merito.

Non è consentito effettuare più di due richieste di interruzione di carriera nell'ambito di ciascun ciclo di corso di studio.

Ci sono due tipi di interruzione: (i) interruzione normale, senza obbligo di certificazione delle cause che l'hanno determinata, (ii) interruzione a causa di infermità gravi e prolungate dello studente. L'interruzione normale degli studi si configura quando lo studente non rinnova l'iscrizione per almeno due anni accademici. Prima di procedere alla richiesta di ripresa degli studi, lo studente deve regolarizzare la propria posizione contributiva (rate non pagate e relative more) relativa all'anno accademico di ultima iscrizione. L'interruzione a causa di infermità gravi e prolungate dello studente si configura quando gli studenti sono costretti a interrompere gli studi a causa di

infermità gravi e prolungate debitamente certificate, per almeno un anno accademico; in questo caso gli studenti sono esonerati totalmente dal pagamento di tasse e contributi universitari in tale periodo. Prima di procedere alla richiesta di ripresa degli studi, regolarizzare la propria posizione contributiva (rate non pagate e relative more) relativa all'anno accademico di ultima iscrizione.

DECADENZA

Se sono trascorsi più di otto anni accademici consecutivi dalla data in cui lo studente ha sostenuto esami di profitto (con esito positivo e negativo purché verbalizzati) è considerato studente decaduto. Il computo degli otto anni va fatto alla data dell'ultimo esame sostenuto, oppure, se più favorevole, dall'anno accademico della sua ultima iscrizione in corso. La decadenza incorre anche se lo studente continua a pagare le tasse universitarie. La decadenza non interviene se lo studente ha superato tutti gli esami di profitto ed è in debito unicamente dell'esame di Laurea.

Se, dopo la decadenza, si vuole riprendere gli studi si è considerati a tutti gli effetti alla stessa stregua degli studenti che chiedono l'immatricolazione e assoggettati alle norme previste per l'iscrizione al primo anno. L'eventuale riconoscimento di crediti acquisiti è effettuato dal competente Corso di Studio, previa verifica della loro non obsolescenza.

RINUNCIA

La rinuncia agli studi è un atto formale e irrevocabile con il quale lo studente decide di interrompere la propria carriera universitaria. Lo studente:

- può presentare domanda di rinuncia in qualsiasi periodo dell'anno;
- non è tenuto al pagamento di eventuali rate universitarie rimaste in sospeso e non potrà richiedere il rimborso di eventuali rate già versate;
- estingue la propria carriera universitaria che quindi non può più produrre effetti giuridici;
- potrà ottenere comunque certificati relativi alla carriera percorsa con l'annotazione obbligatoria dell'avvenuta rinuncia
- potrà richiedere una nuova immatricolazione; in questo caso il Corso di Studio potrebbe discrezionalmente valutare gli studi compiuti come titolo attestante la cultura e la capacità acquisita e tradurli in CFU in qualità di "altre attività formative".

SOSPENSIONE

E' possibile richiedere la sospensione della carriera per:

- iscriversi presso Università straniere;
- istituti di formazione militare;
- Dottorato di Ricerca;
- Master Universitario di primo e secondo livello;

- Scuole di Specializzazione (fino al conseguimento del relativo titolo);
- se titolari di "assegni di ricerca" ai sensi dell'art. 22 della legge 30 dicembre 2010, n. 240 per tutta la durata dell'assegno, compreso l'eventuale rinnovo nell'ambito delle possibilità consentite dalla legge.

Durante il periodo di sospensione non è consentito svolgere nessun atto di carriera, come a esempio sostenere esami, modificare o presentare un piano di studi, richiedere riconoscimenti di attività formative, svolgere studi all'estero con il programma Erasmus, laurearsi.

Per tutte le informazioni sugli aspetti trattati in questa sezione si può fare riferimento alla "Guida dello studente" di Ateneo consultabile sul sito web www.uniroma2.it.

Informazioni sempre aggiornate per Ingegneria sono consultabili sul sito web di Ingegneria www.ing.uniroma2.it/area-studenti/segreteria-studenti/. Segreteria Studenti di Ingegneria http://ing.uniroma2.it/area-studenti/segreteria-studenti/.

SERVIZI UTILI

L'Ateneo e la Macroarea di Ingegneria sono dotati di numerosi servizi utili.

ATENEO

UFFICIO RELAZIONI CON IL PUBBLICO (URP)

Servizio di comunicazione e assistenza agli studenti. Riceve istanze di accesso agli atti amministrativi ai sensi della legge 241/90 e segnalazioni su disguidi e disservizi e proposte di miglioramento dei servizi.

Sede: via Orazio Raimondo 18 - 00173 Roma

Orario: da lunedì a venerdì dalle 9:00 alle 13:00 - martedì e giovedì dalle 14.00 alle 16.00

e-mail: relazioni.pubblico@uniroma2.it sito internet: http://urp.uniroma2.it

"CHIAMA TOR VERGATA"

Servizio di informazione e consulenza a risposta telefonica sulle attività dell'Ateneo rivolte agli studenti.

Telefono 06 7231941

Orario: telefonare dal lunedì al giovedì dalle 8.00 alle 13:00 e dalle 14:00 alle 18.00 venerdì dalle 8:00 alle 12:00

SERVIZIO DI ORIENTAMENTO E TUTORATO

Dalla scelta universitaria fin dopo la laurea l'Ateneo offre ai suoi studenti molti servizi con l'obiettivo di guidare, in ogni momento, verso la scelta giusta.

Sede: via Orazio Raimondo 18 - 00173 Roma Telefono 06 72592701

Orario: da lunedì a venerdì dalle 9:00 alle 13:00 - martedì e giovedì dalle 14:00 alle 16:00

e-mail: info@orientamento.uniroma2.it

sito internet <u>www.uniroma2.it</u> \diamond sezione "Futuri Studenti" \diamond Accoglienza, Orientamento e Tutorato

SEGRETERIA STUDENTI STRANIERI

Informazioni sull'immatricolazione a tutti i corsi di laurea per studenti con titolo di studio conseguito all'estero. Procedure per la richiesta di riconoscimento titoli di studio conseguiti all'estero.

Telefono +39 0672592566 - +39 0672592022 - +39 0672592567

Orario lun-mer-ven dalle 9:00 alle ore 12:00 e merc. dalle 14:00 alle 16:00

e-mail: international.students@uniroma2.it

COMMISSIONE D'ATENEO PER L'INCLUSIONE DEGLI STUDENTI CON DISABILITÀ E DSA (CARIS)

Servizio di assistenza in attuazione della legge n.104/92 per garantire e favorire il diritto allo studio agli studenti diversamente abili, con disturbi specifici dell'apprendimento o difficoltà temporanee. L'impegno della Commissione, dal momento della sua costituzione nel gennaio del 2000 a oggi, si è concretizzato in una serie di azioni integrate, mirate al superamento delle barriere tecnologiche e informatiche, di quelle di natura organizzativa e gestionale, nonché all'analisi e alla promozione di interventi tesi al superamento delle barriere architettoniche. L'obiettivo finale è quello di contribuire a realizzare un Campus sempre più "amichevole", accogliente, solidale, che garantisca il diritto allo studio di tutti gli studenti.

Sede: Macroarea di Ingegneria, Via del Politecnico 1 – 00133 Roma ed. Didattica – piano terra Telefono: 06 2022876, tel/fax 06 72597483.

Orario: lunedì, mercoledì e venerdì dalle ore 9:30 alle ore 12:30 martedì e giovedì dalle ore 14:30 alle ore 16:00

e-mail segreteria@caris.uniroma2.it sito internet: http://caris.uniroma2.it

SEGRETERIA MASTER

Servizio per la gestione amministrativa dei Master e dei Corsi di Perfezionamento proposti dalle varie Facoltà e Macroaree dell'Università degli Studi di Roma "Tor Vergata"

Orario lun-mer-ven dalle 9:00 alle ore 12:00 e merc. dalle 14:00 alle 16:00

e-mail: segreteriamaster@uniroma2.it

ERASMUS +

Servizio per la gestione amministrativa mobilità internazionale di studenti di tutti i livelli nell'ambito di Erasmus+ il Programma europeo per l'istruzione, la formazione, la gioventù

Sede: Via Orazio Raimondo 18 - 00173 Roma, Rettorato, Piano Terra

Telefono +39 06 7259.2555

Orario lun-mer-ven dalle 9:00 alle ore 12:00 e merc. dalle 14:00 alle 16:00

e-mail erasmus.ateneo@uniroma2.it

sito internet http://torvergata.llpmanager.it

BIBLIOTECHE

Il Sistema Bibliotecario dell'Università degli Studi di Roma Tor Vergata si fonda principalmente sulle Biblioteche di Area e sui loro cataloghi cartacei ed elettronici. Le Biblioteche di Area sono state create in base a criteri di omogeneità scientifico-culturale e sono dislocate presso le Macroaree dell'Ateneo. È garantito l'accesso alle strutture da parte di tutti i membri della comunità universitaria. Ogni Biblioteca di Area regolamenta autonomamente l'accesso di altri studiosi e del pubblico. Nelle Macroaree di Giurisprudenza e Ingegneria sono presenti anche delle Biblioteche di Dipartimento.

Biblioteca dell'Area di Ingegneria

Via del Politecnico, 1 - 00133 Roma

Tel. 0672597109-7108-7106 Fax 06.72597109

e-mail: ingegneria@biblio.uniroma2.it

Orario: lunedì-giovedì ore 9.30-18.00, venerdì ore 9.30-15.00

Responsabile: Dott. Vito Cuccia

sito internet: ingegneria.biblio.uniroma2.it

Digital Library

La Tor Vergata Digital Library si pone l'obiettivo di fornire un'informazione dettagliata su tutte le risorse elettroniche disponibili per l'utenza istituzionale dell'Ateneo e assicurarne un accesso semplice e diretto.

Sito: http://d-library.uniroma2.it/?HomePage

GARANTE DEGLI STUDENTI

Il Garante degli studenti è l'organo cui compete ricevere eventuali reclami, osservazioni e proposte a garanzia di ogni studente anche al fine di promuovere il miglioramento delle attività didattiche e dei servizi dell'Ateneo. Lo studente che si rivolge al Garante degli studenti ha diritto, a richiesta, all'anonimato. Il Garante degli studenti è il Prof. Giovanni Bruno. Orario di ricevimento previo appuntamento: giovedì dalle ore 11.00 alle ore 12.00 presso la stanza n. 37 - I piano (ex Facoltà di Lettere) Tel. 06.72592628 e-mail: garantestudenti@uniroma2.it

REGOLAMENTI

Pe quanto riguarda i regolamenti specifici agli studenti, si rimanda per la loro consultazione alla seguente pagina web: www.uniroma2.it > Il Campus > Bollettino ufficiale di Ateneo > Regolamenti

INGEGNERIA

SERVIZIO SEGRETERIA STUDENTI

La Segreteria Studenti (Responsabile sig.ra Emanuela Di Maulo) è situata presso l'edificio della Didattica di Ingegneria in via del Politecnico, 1 (Tel. 06/72597599 06/72597253 - 06/72597598 anche Fax) ed è aperta al pubblico il lunedì, mercoledì e venerdì dalle ore 9.00 alle ore 12.00, il mercoledì anche dalle ore 14.00 alle ore 16.00.

E-mail: segreteria-studenti@ing.uniroma2.it

La Segreteria studenti è presente anche su facebook:

https://www.facebook.com/segreteriastudentiingegneria/

SITO WEB INGEGNERIA

È attivo il sito web: http://www.ing.uniroma2.it. Attraverso tale sito si può anche accedere ai siti specifici dei Corsi di Studio per ottenere ulteriori informazioni sulla didattica.

SITO WEB DELLA DIDATTICA

Tutte le informazioni relative agli insegnamenti impartiti (programmi dei corsi, testi di riferimento, modalità di esame, etc.) sono disponibili al seguente sito internet:

http://didattica.uniroma2.it/home/accedi

SEGRETERIE DIDATTICHE

Ingegneria

Prenotazione aule: Sig.ra Adele Marrese Tel. 06/72597121; e-mail: marrese@ing.uniroma2.it Servizio Tirocini curriculari: Sig.ra Silvana Santamaria Tel. 0672597281 e-mail santamaria@ing.uniroma2.it Edificio Didattica ultimo piano area "Macroarea di Ingegneria"

Corsi di Studio in Ingegneria Civile e Ambientale, Ingegneria dell'Edilizia, Ingegneria Edile-Architettura, Ingegneria Civile, Ingegneria Matematica, Mathematical Engineering, Ingegneria e Tecniche del Costruire, Ingegneria per l'Ambiente e il Territorio, Ingegneria Medica

Responsabili: Dott.ssa M. L. Cottone e Sig.ra M. B. Giambenedetti, Sig. ra S. Maniccia

Tel. 06/72597003; 06/72597041, Fax 06/72597055

e-mail: didattica.civile@ing.uniroma2.it, maniccia@ing.uniroma2.it

Edificio Ingegneria Civile

Corsi di Studio in Ingegneria dell'Automazione, Ingegneria Informatica Responsabile: Sig.ra Adele Marrese Tel. 06/72597121

e-mail: segrccsinfo@disp.uniroma2.it; marrese@ing.uniroma2.it;

Edificio della Didattica Ingegneria ultimo piano, stanza 215

Corsi di Studio in Ingegneria Elettronica, Ingegneria di Internet, ICT and Internet Engineering

Responsabile: Sig.ra Margherita Musetti

Tel. 06/72597459;

e-mail: musetti@eln.uniroma2.it

Edificio Ingegneria dell'Informazione (Piano Terra, stanza BT-01)

Gli studenti stranieri che non parlano italiano possono rivolgersi alla Dott.ssa Rosanna Gervasio

Tel. 06/72597488;

e-mail: rosanna.gervasio@uniroma2.it

Corso di Studio in Ingegneria Gestionale Responsabile Sig.ra Patrizia Dominici Tel.06/72597356;

e-mail: infogest@dii.uniroma2.it
Edificio Ingegneria dell'Informazione

Corso di Studio in Ingegneria Meccanica e Ingegneria Energetica

Responsabile: Sig.ra Anna Mezzanotte

Tel. 06/72597156;

e-mail: anna.mezzanotte@uniroma2.it

Edificio Ingegneria Industriale

Corso di Studio in Engineering Sciences Responsabile: Dott.ssa Carlotta Dell'Arte e-mail: carlotta.dell.arte@uniroma2.it

Edificio Ingegneria Industriale

COORDINATORI DEI CORSI DI STUDIO

Ingegneria Civile e Ambientale: Prof. Giulia Viggiani <u>viggiani@uniroma2.it</u> Ingegneria dell'Edilizia: Prof. Stefania Mornati <u>mornati@ing.uniroma2.it</u> Ingegneria Elettronica: Prof. Marcello Salmeri <u>salmeri@ing.uniroma2.it</u> Ingegneria Energetica: Prof. Giuseppe Leo Guizzi <u>guizzi@ing.uniroma2.it</u>

Ingegneria Gestionale: Prof. Stefano Giordani stefano.giordani@uniroma2.it

Ingegneria Informatica: Prof. Vincenzo Grassi vincenzo.grassi@uniroma2.it

Ingegneria Meccanica: Prof. Stefano Cordiner cordiner@uniroma2.it

Ingegneria Medica: Prof. Paolo Bisegna <u>bisegna@uniroma2.it</u>
Ingegneria di Internet: Prof. Silvello Betti <u>betti@ing.uniroma2.it</u>
Engineering Sciences: Prof. Roberto Verzicco <u>verzicco@uniroma2.it</u>

Ingegneria Edile- Architettura: Prof. Tullia Iori iori@ing.uniroma2.it

Ingegneria per l'Ambiente e Territorio: Prof. Francesco Lombardi lombardi@uniroma2.it

Ingegneria dell'Automazione: Prof. Laura Menini menini@disp.uniroma2.it

Ingegneria Civile: Prof. Alberto Meda alberto.meda@uniroma2.it

Ingegneria e Tecniche del Costruire: Prof. Stefania Mornati mornati@ing.uniroma2.it

ICT and Internet Engineering: Prof. Silvello Betti betti@ing.uniroma2.it

Mechatronics Engineering: Prof. Gian Carlo Cardarilli cardarilli@eln.uniroma2.it

Chemistry for Nano-Engineering: Prof. Maria Luisa Di Vona divona@uniroma2.it

<u>INTRODUZIONE</u>

In tale sezione verranno illustrati i dettagli del calendario delle attività didattica per l'anno accademico 2017-2018

CALENDARIO DELLE ATTIVITÀ DIDATTICHE

EROGAZIONE DELLA DIDATTICA FRONTALE

Le attività didattiche vengono svolte, per tutti gli anni, in 2 semestri della durata di quindici settimane.

I singoli Corsi di Studio, con l'esclusione dei corsi del primo anno della Laurea e dei corsi da 12 CFU, possono concentrare le lezioni, esercitazioni ed attività di laboratorio nelle prime 13 settimane, dedicando le due successive allo studio individuale degli studenti e ad eventuali recuperi e/o approfondimenti. Informazioni dettagliate sono riportate sui siti web dei singoli corsi di studio.

Il numero di ore di didattica frontale (lezioni, esercitazioni ed attività di laboratorio) è il seguente:

insegnamenti da 6 CFU: 60 ore totaliinsegnamenti da 9 CFU: 90 ore totali

insegnamenti da 12 CFU: 120 ore totali

Per i due semestri, le date di inizio e termine delle lezioni sono le seguenti:

I semestre: dal 25/09/2017 al 20/01/2018 II semestre: dal 05/03/2018 al 16/06/2018

Gli orari delle lezioni delle singole discipline saranno tempestivamente comunicati sul sito web

www.ing.uniroma2.it

SESSIONI DI ESAMI

Per lo svolgimento degli esami sono previste tre sessioni: invernale ed estiva della durata di 6 settimane ed autunnale della durata di 4 settimane. Sulla base dell'art. 3, comma 4, della Carta dei Diritti delle Studentesse e degli Studenti, per ogni sessione d'esame successiva al periodo di svolgimento del corso, gli studenti hanno diritto a un numero minimo di 2 appelli per ciascun insegnamento di norma posti ad intervalli di almeno due settimane ed evitando sovrapposizioni tra le date degli appelli d'esame relativi ad insegnamenti appartenenti allo stesso anno di corso. Di norma, hanno diritto a 2 appelli anche nelle altre sessioni.

Il calendario delle tre sessioni di esami è il seguente:

sessione invernale: dal 22/01/2018 al 03/03/2018

> sessione estiva: dal 18/06/2018 al 28/07/2018

> sessione autunnale: dal 28/08/2018 al 22/09/2018

SESSIONI DI LAUREA

Le sedute di Laurea e Laurea Magistrale si svolgeranno orientativamente nei seguenti periodi:

- > metà-fine ottobre
- > metà-fine febbraio
- > metà-fine aprile
- > metà-fine luglio

Le Segreterie Didattiche dei Corsi di Studio provvederanno all'adeguata e tempestiva pubblicizzazione delle date precise delle sedute.

Inoltre II calendario aggiornato delle sedute di laurea sarà pubblicato sul sito www.ing.uniroma2.it > area studenti > segreteria studenti > ti vuoi laureare?.

Sezione quarta – Corsi di Laurea

INTRODUZIONE

Sono attivati dieci corsi di studio di durata triennale e pertanto possono conseguirsi le seguenti lauree:

Ingegneria CIVILE e AMBIENTALE

Ingegneria dell'EDILIZIA

Ingegneria ELETTRONICA

Ingegneria ENERGETICA

Ingegneria GESTIONALE

Ingegneria INFORMATICA

Ingegneria MECCANICA

Ingegneria MEDICA

Ingegneria di INTERNET

ENGINEERING SCIENCES (corso di laurea triennale in lingua inglese)

CORSO DI LAUREA IN INGEGNERIA CIVILE E AMBIENTALE

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il principale obiettivo del corso è quello di formare un ingegnere di primo livello con conoscenze di base nella ingegneria civile (strutturale, idraulica, geotecnica, dei trasporti) e ambientale (tecnologie, ambientali, tutela del territorio e sicurezza). In particolare le conoscenze di base comprenderanno:

- gli aspetti metodologici e deduttivi della matematica e della fisica;
- la struttura, le proprietà e le trasformazioni della materia descritti dalla chimica;
- gli aspetti metodologici e applicativi della meccanica, con particolare riguardo alla modellazione del comportamento meccanico dei materiali, delle strutture, dei fluidi, delle terre e delle loro interazioni;
- il disegno e l'inserimento nell'ambiente delle opere infrastrutturali, puntuali, a rete ed architettoniche;
- i vincoli e le condizioni funzionali, normative e ambientali posti dalle esigenze di sicurezza, tutela e compatibilità ambientale e territoriale.

Il corso di laurea non prevede indirizzi di specializzazione, e si intende finalizzato alla prosecuzione degli studi con l'iscrizione, senza debiti formativi, ai Corsi di Laurea Magistrale in Ingegneria Civile e in Ingegneria Ambientale.

Il percorso formativo è coerente con gli obiettivi suindicati e comprende unità didattiche e altre attività formative per un totale di 180 CF, dei quali 156 obbligatori, 12 organizzati in pacchetti formativi per una maggiore specializzazione in ingegneria civile e ambientale, rispettivamente, e 12 a scelta dello studente.

Il primo anno di studi è completamente dedicato allo studio di materie di base (Analisi Matematica I, Fisica I, Geometria, Chimica e Disegno), con unità didattiche per 48 CF.

La maggior parte dei corsi del secondo anno di studi, che comprende unità didattiche per 54 CF, consiste di insegnamenti di base, caratterizzanti o affini, obbligatori (Analisi Matematica II, Fisica II, Tecnologia dei Materiali e Chimica Applicata, Probabilità e Statistica, Meccanica dei Solidi, Fisica Tecnica e Architettura Tecnica), mentre soli 6 CF sono dedicati a materie affini, facoltative e caratteristiche di uno dei due pacchetti formativi.

Il terzo anno di studi è finalizzato all'acquisizione dei fondamenti delle discipline caratteristiche della ingegneria civile e ambientale (strutturale, idraulica, geotecnica, dei trasporti, sanitaria, territoriale, energetica) e comprende unità didattiche per un totale di 54 CF dei quali 48 obbligatori (Scienza delle Costruzioni, Tecnica delle Costruzioni, Idraulica, Geotecnica e Ingegneria Sanitaria e Ambientale), 6 di pacchetto, e 12 a scelta dello studente.

L'offerta formativa è organizzata in modo da permettere agli allievi, con opportune scelte delle materie "di pacchetto" e di quelle a libera scelta, di mantenere aperta la possibilità dell'iscrizione senza debiti formativi a entrambi Corsi di Laurea Magistrale in Ingegneria Civile e in Ingegneria

Ambientale, realizzando in questo modo compiutamente l'obiettivo di una formazione di base comune.

Completano il percorso i crediti attribuiti alla conoscenza della lingua straniera, ad altre attività formative, a alla prova finale.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria Civile ed Ambientale comprende unità didattiche ed altre attività formative per un totale di 180 crediti, organizzati secondo un unico indirizzo e due pacchetti formativi consigliati (Ambiente e Civile). Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Fisica I	1	2	12
Disegno	1	2	6
Geometria	1	2	9
Chimica	1	1	9
Analisi Matematica II	2	1	12
Fisica II	2	1	6
Tecnologia dei Materiali	2	2	6
Probabilità e statistica	2	2	6
Meccanica dei solidi	2	2	9
Fisica Tecnica	2	2	9
Complementi di Chimica (Pacchetto Ambiente)	2	2	6
Teoria dei Sistemi di Trasporto Sostenibili (Pacchetto Civile)	2	2	6
Architettura Tecnica	2	1	6
Scienza delle Costruzioni	3	1	12
Idraulica	3	1	9
Macchine (Pacchetto Ambiente)	3	1	6
Progetto di Strade, Ferrovie e Aeroporti (Pacchetto Civile)	3	2	6
Ingegneria Sanitaria e Ambientale	3	2	9
Geotecnica	3	2	9
Tecnica delle Costruzioni	3	2	9
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS)			12
Attività formative (AFF)			1
Prova finale			2

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Complementi di chimica	2	2	6
Teoria dei Sistemi di Trasporto Sostenibili	2	2	6
Calcolo numerico	2	1	6
Macchine	3	1	6
Progetto di Strade, Ferrovie e Aeroporti	3	2	6
Elettrotecnica	2	1	6
Metodi Matematici per l'Ingegneria	3	1	6
Diritto dell'Ambiente	3	1	6
Chimica Biologica	3	2	6

Propeudicità formali

INSEGNAMENTO	Insegnamenti Propedeutici
Analisi matematica II	Analisi matematica I
Fisica II	Fisica I
Tecnologia dei Materiali	Chimica
Probabilità e Statistica	Analisi matematica I
Meccanica dei Solidi	Analisi matematica I, Fisica I, Geometria
Fisica Tecnica	Fisica I
Elettrotecnica	Fisica I
Complementi di Chimica	Chimica
Teoria dei Sistemi di Trasporto Sostenibili	Analisi matematica I
Architettura Tecnica	Disegno
Scienza delle Costruzioni	Meccanica dei Solidi, Analisi Matematica II
Idraulica	Analisi Matematica II, Fisica II
Ingegneria Sanitaria e Ambientale	Analisi matematica I, Fisica I, Chimica

Per maggiori informazioni si consulti il sito web: http://www.dicii.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Civile e Ambientale di Primo Livello

funzione in un contesto di lavoro

Il laureato potrá lavorare come libero professionista per ativitá di media importanza. Potrá essere inserito nel mondo del lavoro come dipendente in studi professionali sotto la direzione di ingegneri esperti.

- > competenze associate alla funzione
 - libero professionista
 - dipendente in studi di ingegneria
 - dipendente in imprese di costruzione
 - dipendente in enti o pubblica amministrazione

> sbocchi occupazionali

- area dell'ingegneria civile: imprese di costruzione e manutenzione di opere civili, impianti ed infrastrutture civili; studi professionali e società di progettazione di opere, impianti ed infrastrutture; uffici pubblici di progettazione, pianificazione, gestione e controllo di sistemi urbani e territoriali; aziende, enti, consorzi ed agenzie di gestione e controllo di sistemi di opere e servizi; società di servizi per lo studio di fattibilità dell'impatto urbano e territoriale delle infrastrutture;
- area dell'ingegneria ambientale e del territorio: imprese, enti pubblici e privati e studi professionali per la progettazione, pianificazione, realizzazione e gestione di opere e sistemi di controllo e monitoraggio dell'ambiente e del territorio, di difesa del suolo, di gestione dei rifiuti, delle materie prime e delle risorse ambientali, geologiche ed energetiche e per la valutazione degli impatti e della compatibilità ambientale di piani ed opere;
- area dell'ingegneria della sicurezza e della protezione civile, ambientale e del territorio: grandi infrastrutture, cantieri, luoghi di lavoro, ambienti industriali, enti locali, enti pubblici e privati in cui sviluppare attività di prevenzione e di gestione della sicurezza e in cui ricoprire i profili di responsabilità previsti dalla normativa attuale per la verifica delle condizioni di sicurezza (leggi 494/96, 626/94, 195/03, 818/84, UNI 10459).

CORSO DI LAUREA IN INGEGNERIA DELL'EDILIZIA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

L'obiettivo formativo principale è delineare una figura professionale che attraverso la propria preparazione interdisciplinare sia in grado di identificare i problemi e di ricercare appropriate soluzioni nell'intero settore dell'edilizia, e di mettere in atto le strategie più corrette ed attuali nell'ambito della costruzione e della progettazione edilizia. Il CdS è stato progettato in sintonia con le indicazioni espresse nel DPR 328/2001. Il laureato è abilitato alla professione di Ingegnere junior, figura professionale che deve avere competenze che gli consentano di affiancare l'attività dell'Ingegnere, o operare in autonomia. Da un lato, il laureato nella classe L23 deve essere in grado di concorrere e collaborare alle attività degli Ingegneri in particolare nell'applicazione delle scienze, intese come conoscenze scientifiche acquisite nel proprio percorso formativo, e nel supporto e collaborazione alle attività di progettazione, direzione dei lavori, stima, collaudo delle opere edilizie.

Dall'altro lato, il percorso formativo proposto nel CdS deve consentire al laureato di acquisire competenze proprie, che gli permettano di svolgere attività autonome di progettazione, direzione dei lavori, stima, contabilità e collaudo relative a costruzioni semplici, caratterizzate dall'impiego di metodologie di uso corrente; il percorso formativo previsto nel CdS mette inoltre il laureato in grado di affrontare rilievi diretti e strumentali sull'edilizia attuale e storica e rilievi geometrici di qualunque natura.

Infine, il CdS mette in condizioni il laureato di proseguire, eventualmente, verso una laurea magistrale.

Il percorso formativo del Corso di Studio si pone quindi i seguenti obiettivi:

- offrire una solida preparazione di base a carattere generale, essenziale per affrontare lo studio dei corsi più specialistici del suo settore;
- offrire una preparazione ingegneristica multidisciplinare in grado di fare fronte alle dinamiche evolutive del comparto dell'edilizia.

Il Corso si articola fornendo una preparazione che consentirà al laureato di operare efficacemente in diversi campi, quali:

- la progettazione, con metodologie standard, di nuove costruzioni, per gli aspetti architettonici, tecnologici, strutturali, impiantistici;
- la manutenzione del patrimonio edilizio esistente;
- pone le basi per affrontare i temi della conservazione, riqualificazione, recupero;
- organizzazione dello sviluppo del processo costruttivo, con ruolo di coordinamento e direzione, relativamente agli aspetti tecnologici, economici, operativi e gestionali.

Il laureato nel CdS potrà affrontare l'ingresso nel mondo del lavoro con una capacità autonoma di conversione e di adattamento alle diverse funzioni e alle specifiche dinamiche evolutive del settore, senza essere vincolato ad ambiti ristretti da una preparazione eccessivamente settoriale.

Il percorso formativo si sviluppa quindi come segue: le attività formative di base si sviluppano nel I e nel II anno del percorso formativo e sono finalizzate a garantire allo studente l'acquisizione degli strumenti conoscitivi fondamentali per proseguire nell'iter didattico e affrontare le materie caratterizzanti. Nelle attività formative di base sono comprese anche quelle relative all'area della rappresentazione e della storia, finalizzate a fornire allo studente le abilità tecniche e ad apprendere le conoscenze culturali necessarie per affrontare consapevolmente le tematiche della progettazione. Nel secondo e terzo anno del percorso si concentrano le attività formative caratterizzanti nell'Architettura e nell'Edilizia; le prime consentono allo studente di acquisire le competenze relativamente alla tecnologia edilizia e alle attività proprie dell'ingegnere junior. Gli insegnamenti più pertinenti all'area dell'Edilizia intendono fornire allo studente le conoscenze scientifiche indispensabili per operare, in affiancamento o in autonomia, nell'attività di progettazione e collaudo in edilizia. A completamento del percorso formativo lo studente deve scegliere ulteriori insegnamenti ritenuti indispensabili per completare adeguatamente e coerentemente la formazione dell'ingegnere junior e favorire la più ampia professionalizzazione. Queste attività formative collocate al II e III anno, sono finalizzate a integrare le conoscenze acquisite con ulteriori competenze specifiche dell'ingegnere junior relativamente alle tematiche impiantistiche e ambientali, alla gestione in sicurezza di un cantiere edile, alla conoscenza dei materiali edili, alla conoscenza del quadro normativo entro il quale si svolge la professione. A chiusura del percorso formativo lo studente potrà scegliere tra le attività di tirocinio, per l'acquisizione delle abilità informatiche, per la conoscenza delle lingue.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di laurea in Ingegneria dell'Edilizia (L-23 Classe delle lauree in Scienze e tecniche dell'edilizia) comprende unità didattiche e altre attività formative per un totale di 180 crediti. Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	9
Geometria	1	1	9
Storia dell'architettura 1	1	1	9
Disegno dell'architettura	1	2	9
Fondamenti di Informatica	1	2	6
Fisica Generale I	1	2	9
Analisi Matematica II	2	1	9
Architettura tecnica 1	2	1	9
Chimica	2	1	9
Fisica Generale II	2	1	9
Meccanica dei solidi	2	2	9

Scienza delle costruzioni	3	1	9
Tecnica delle costruzioni	3	2	9
Architettura tecnica 2	3	2	9
Rilievo dell'architettura	3	2	9
Insegnamenti a scelta dello studente (4)			36
Attività formative			6
Lingua inglese			3
Prova finale			3

Almeno 2 insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studio:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Tecnologia dei materiali e chimica applicata 1 + Tecnologia dei materiali e chimica applicata 2	2	1	9
Fisica tecnica ambientale	3	1	9
Organizzazione del cantiere*	3	2	9
Legislazione OO.PP.	3	2	9

^{*}L'insegnamento, se integrato da 30 ore di lezione per le quali viene riconosciuto n. 1 CFU, è valido ai fini del conseguimento del titolo di Coordinatore per la progettazione e esecuzione dei lavori, ai sensi del D. Lgs 81/2008 e s.m.i., con conseguente rilascio dell'attestato. La frequenza è obbligatoria. Coloro che non raggiungeranno il numero minimo di ore di frequenza richiesto dal decreto potranno sostenere l'esame ma non potranno ricevere l'attestato. Le 30 ore integrative saranno svolte nelle ore destinate al Laboratorio di Organizzazione del cantiere (corso di laurea in Ingegneria Edile Architettura)

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Fisica applicata ai BBCC Modulo A	3	1	6
Fisica applicata ai BBCC Modulo B	3	1	6
Complementi di Scienza delle Costruzioni	3	1	9
Certificazione energetica e acustica	3	1	6
Ingegneria Forense	3	2	9

Propeudicità formali

INSEGNAMENTO	Insegnamenti Propedeutici
Architettura tecnica 1	Disegno dell'architettura
Organizzazione del cantiere	Disegno dell'architettura, Architettura Tecnica 1

Per maggiori informazioni si consulti il sito web: http://www.dicii.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI ingegnere edile junior

funzione in un contesto di lavoro

Il titolo professionale di Ingegnere junior è conseguibile solo previo il superamento dell'Esame di Stato e l'iscrizione all'ordine professionale.

Le principali funzioni sono inerenti alla formazione di figure professionali in grado di:

- conoscere e comprendere i caratteri tipologici, funzionali, strutturali e tecnologici di un organismo edilizio nelle sue componenti materiali e costruttive, in rapporto al contesto fisico-ambientale, socio-economico e produttivo;
- conoscere e comprendere un organismo edilizio, in rapporto alle sue origini e successive trasformazioni storiche ed al contesto insediativo di appartenenza, e di rilevarlo analizzando le caratteristiche dei materiali che lo compongono, le fasi e le tecniche storiche della sua costruzione e il regime statico delle strutture;
- conoscere e comprendere i caratteri fisico-spaziali ed organizzativi di un contesto ambientale, nelle sue componenti naturali ed antropiche in rapporto alle trasformazioni storiche e al contesto socio-economico e territoriale di appartenenza;
- conoscere e comprendere gli aspetti dell'ingegneria della sicurezza e della protezione delle costruzioni edili, in rapporto alle relative attività di prevenzione e di gestione.
- valutare la fattibilità tecnica ed economica, il calcolo dei costi e il processo di produzione e di realizzazione dei manufatti edilizi e delle trasformazioni ambientali.

I laureati saranno in possesso di competenze idonee a svolgere attività professionali in diversi campi, anche concorrendo alle attività di programmazione, progettazione e attuazione degli interventi di organizzazione e trasformazione dell'ambiente costruito alle varie scale, l'analisi del rischio, la gestione della sicurezza in fase di prevenzione e di emergenza, sia nella libera professione che nelle imprese manifatturiere o di servizi nelle amministrazioni pubbliche. Essi potranno esercitare tali competenze presso enti, aziende pubbliche e private, società di progettazione, industrie di settore e imprese di costruzione, oltre che nella libera professione e nelle attività di consulenza. Saranno inoltre capaci di comunicare efficacemente, in forma scritta e orale, in almeno una lingua dell'Unione Europea, oltre l'italiano. I ruoli che i laureati potranno esercitare saranno definiti in rapporto ai diversi campi di applicazione tipici della classe in cui è collocato il Corso di studio.

competenze associate alla funzione

Il corso, dopo il superamento dell'Esame di Stato e l'iscrizione all'albo, abilita alle seguenti professioni regolamentate:

- architetto junior
- geometra laureato
- ingegnere civile e ambientale junior

- perito industriale laureato

sbocchi occupazionali

Il titolo professionale di Ingegnere junior è conseguibile solo previo il superamento dell'Esame di Stato e l'iscrizione all'ordine professionale.

I principali sbocchi occupazionali previsti sono:

- attività di analisi, valutazione tecnico-economica, interpretazione, rappresentazione e rilievo di manufatti edilizi e di contesti ambientali;
- attività di supporto alla progettazione, quali: la definizione degli interventi e la scelta delle relative tecnologie mirati al miglioramento della qualità ambientale e all'arresto dei processi di degrado e di dissesto di manufatti edilizi e contesti ambientali ed all'eliminazione e contenimento delle loro cause;
- attività gestionali, quali: l'organizzazione e conduzione del cantiere edile, la gestione e valutazione economica dei processi edilizi o di trasformazione di aree a prevalente valenza naturale, la direzione dei processi tecnico-amministrativi e produttivi connessi;
- attività correlate all'ingegneria della sicurezza e protezione delle costruzioni edili, quali: le grandi infrastrutture edili, i sistemi di gestione e servizi per le costruzioni edili per i cantieri e i luoghi di lavoro, i luoghi destinati agli spettacoli e agli avvenimenti sportivi, gli enti pubblici e privati in cui sviluppare attività di prevenzione e di gestione della sicurezza e in cui ricoprire i profili di responsabilità previsti dalla normativa vigente per la verifica delle condizioni di sicurezza (Testo Unico sulla sicurezza, leggi 195/03, 818/84, UNI 10459).

CORSO DI LAUREA IN INGEGNERIA ELETTRONICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Fermi restando gli obiettivi formativi qualificanti della Classe, di seguito vengono riportati gli obiettivi formativi ed i risultati di apprendimento attesi, con riferimento ai descrittori dei titoli di studio adottato in sede europea. Il corso di studi intende formare giovani laureati dotati di una solida preparazione di base e di un ampio bagaglio di competenze scientifiche nel campo dell'ingegneria dell'informazione per manutenere, gestire ed intervenire su sistemi e apparati dedicati all'acquisizione, elaborazione e trasmissione delle informazioni. La formazione impartita dovrà fornire sia gli aspetti tecnici, necessari per riuscire a interpretare e sfruttare i vantaggi della continua innovazione del settore elettronico a favore dei vari comparti produttivi (quali il settore industriale, la pubblica amministrazione, il settore dei servizi) sia gli strumenti metodologici per analizzare l'ampia gamma di fenomeni fisici che riguardano le diverse fasi di trattamento dell'informazione, riuscendo anche a contribuire alla sintesi di apparati innovativi di media complessità. Per raggiungere tale obiettivo, i contenuti e la successione temporale dei corsi sono concepiti in modo da privilegiare uno sviluppo graduale nell'acquisizione delle conoscenze nelle varie discipline. A tale scopo, l'acquisizione di conoscenze muoverà dalle discipline di base e dal comportamento del singolo dispositivo, alla capacità di simulare, realizzare e misurare anche sistemi di crescente complessità. Il corso di laurea è quindi strutturato in modo che siano acquisite, al termine del secondo anno, le competenze di base, sia fisico-matematiche che di tipo ingegneristico, che permettano di comprendere ed assimilare i metodi propri dell'ingegneria elettronica che saranno impartiti nei corsi del 3 anno.

Il percorso formativo del laureato in Ingegneria Elettronica si articola quindi su tre livelli:

- a) formazione generale di base, nell'ambito della matematica, della geometria, della fisica e della chimica:
- b) formazione nelle discipline ingegneristiche di base, con particolare riferimento agli aspetti inerenti i circuiti elettrici, i controlli automatici, i campi elettromagnetici, l'analisi dei segnali ed i fondamenti dell'elettronica e delle misure;
- c) formazione di natura propriamente caratterizzante, finalizzata all'acquisizione di competenze interdisciplinari nel settore delle misure, dei campi elettromagnetici, dell'informatica e chiaramente dell'elettronica.

Il percorso formativo risultante è orientato all'approfondimento degli aspetti metodologici e delle tecniche di progettazione hardware e software di apparati e sistemi che possono intervenire nella produzione, elaborazione e trasmissione delle informazioni.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria Elettronica comprende unità didattiche e altre attività formative per almeno 180 CFU. Le unità didattiche prevedono 15 insegnamenti obbligatori (141 CFU), 1 insegnamento da scegliere tra due laboratori (6 CFU), 1 insegnamento da scegliere tra due corsi di misure (6 CFU), 1 idoneità di lingua (inglese) (3 CFU), ulteriori 15 CFU a scelta dello studente, 3 CFU per attività formative e 6 CFU associati alla prova finale.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Fondamenti di Informatica	1	1	9
Chimica	1	1	6
Fisica Generale I	1	2	12
Geometria	1	2	9
Economia Applicata all'Ingegneria	1	2	6
Analisi Matematica II	2	1	9
Fisica Generale II	2	1	9
Elettrotecnica	2	1	12
Fondamenti di Elettronica	2	2	9
Fondamenti di Telecomunicazioni	2	2	9
Fondamenti di Controlli oppure Feedback Control Systems	2	2	9
Elettronica Analogica	3	1	12
Elettronica Digitale	3	1	12
Campi Elettromagnetici	3	1	6
Laboratorio Elettronica Analogica <i>oppure</i> Laboratorio Elettronica Digitale	3	2	6
Misure sui Segnali oppure Misure Elettriche 1	3	2	6
Insegnamenti a scelta dello studente (ASS)	3		15
Lingua Straniera	1-3		3
Attività formative (AFF)	1-3		3
Prova finale	3		6

Insegnamenti a scelta dello studente coerenti con il progetto formativo suggeriti dal Corso di Studio:

INSEGNAMENTI AI	NNO	SEMESTRE	CREDITI
Laboratorio Elettronica Digitale		2	6
Laboratorio Elettronica Analogica		2	6

Fondamenti di Internet	1	9
Elaborazione numerica dei segnali	2	9
Probabilità, fenomeni aleatori ed analisi dei dati	1	9
Programmazione web	2	6

Per maggiori informazioni si consulti il sito web: http://www.elettronica.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Elettronico Junior

> funzione in un contesto di lavoro

In generale la caratteristica dell'Ingegnere Elettronico è sia quella di essere un progettista, ossia un tecnico in grado sia di realizzare nuovi componenti e sistemi, sia di comprendere il funzionamento di sistemi elettronici esistenti, e quindi in grado di utilizzarli nel migliore dei modi.

Per tale figura professionale, ai diversi livelli di preparazione, non ci sono attualmente né è prevedibile che vi siano in futuro, particolari specificità d'inserimento professionale.

Naturalmente sono diverse le competenze del laureato e del laureato magistrale. Il laureato, partendo da una preparazione a largo spettro, sarà in grado di seguire validamente le indicazioni di tecnici esperti, mentre una competenza che porti a soluzioni progettuali originali potrà essere richiesta, normalmente, al laureato magistrale.

Una prima area da considerare per eventuali sbocchi occupazionali è quella classica della componentistica elettronica, che in Italia vede la presenza di grandi aziende e piccole e medie aziende in nuovi settori, i più rilevanti dei quali sono connessi alla sensoristica per le più diverse applicazioni.

Passando dalla componentistica ai sistemi, una delle motivazioni che rendono molto interessante per l'industria la laurea di primo livello è l'attuale carenza di ingegneri progettisti nel settore elettronico, ossia di tecnici in grado di realizzare un sistema in tempi compatibili con le esigenze di mercato sulla base delle specifiche e utilizzando gli strumenti esistenti di progettazione e sintesi assistite (CAD).

È prevedibile che questo tipo di competenza sarà ancor più necessario in futuro in relazione alla sempre maggiore diffusione di sistemi di elaborazione e controllo in aree sempre più vaste.

Così l'ingegnere elettronico trova ampio spazio nelle grandi industrie manifatturiere nei settori delle telecomunicazioni, dell'auto, dello spazio, dei sistemi di controllo industriale.

I laureati nei corsi di laurea della classe devono:

- conoscere adeguatamente gli aspetti metodologico-operativi della matematica e delle altre scienze di base ed essere capaci di utilizzare tale conoscenza per interpretare e descrivere i problemi dell'ingegneria;
- conoscere adeguatamente gli aspetti metodologico-operativi delle scienze dell'ingegneria, sia in generale sia in modo approfondito relativamente a quelli di una specifica area dell'ingegneria dell'informazione nella quale sono capaci di identificare, formulare e risolvere i problemi utilizzando metodi, tecniche e strumenti aggiornati;
- essere capaci di utilizzare tecniche e strumenti per la progettazione di componenti, sistemi, processi;
- essere capaci di condurre esperimenti e di analizzarne e interpretarne i dati;
- essere capaci di comprendere l'impatto delle soluzioni ingegneristiche nel contesto sociale e fisico-ambientale;
- conoscere le proprie responsabilità professionali ed etiche;
- conoscere i contesti aziendali e la cultura d'impresa nei suoi aspetti economici, gestionali e organizzativi;
- conoscere i contesti contemporanei;
- avere capacità relazionali e decisionali;
- essere capaci di comunicare efficacemente, in forma scritta e orale, in almeno una lingua dell'Unione Europea, oltre l'italiano;
- possedere gli strumenti cognitivi di base per l'aggiornamento continuo delle proprie conoscenze.

competenze associate alla funzione

I laureati della classe saranno in possesso di conoscenze idonee a svolgere attività professionali in diversi ambiti, anche concorrendo ad attività quali la progettazione, la produzione, la gestione ed organizzazione, l'assistenza delle strutture tecnico-commerciali, l'analisi del rischio, la gestione della sicurezza in fase di prevenzione ed emergenza, sia nella libera professione che nelle imprese manifatturiere o di servizi e nelle amministrazioni pubbliche. In particolare, le professionalità dei laureati della classe potranno essere definite in rapporto ai diversi ambiti applicativi tipici della classe. A tal scopo i curricula dei corsi di laurea della classe si potranno differenziare tra loro, al fine di approfondire distinti ambiti applicativi.

sbocchi occupazionali

I principali sbocchi occupazionali previsti dai corsi di laurea della classe sono:

 area dell'ingegneria dell'automazione: imprese elettroniche, elettromeccaniche, spaziali, chimiche, aeronautiche in cui sono sviluppate funzioni di dimensionamento e realizzazione di architetture complesse, di sistemi automatici, di processi e di impianti

- per l'automazione che integrino componenti informatici, apparati di misure, trasmissione ed attuazione;
- area dell'ingegneria biomedica: industrie del settore biomedico e farmaceutico produttrici e fornitrici di sistemi, apparecchiature e materiali per diagnosi, cura e riabilitazione; aziende ospedaliere pubbliche e private; società di servizi per la gestione di apparecchiature ed impianti medicali, anche di telemedicina; laboratori specializzati;
- area dell'ingegneria elettronica: imprese di progettazione e produzione di componenti, apparati e sistemi elettronici ed optoelettronici; industrie manifatturiere, settori delle amministrazioni pubbliche ed imprese di servizi che applicano tecnologie ed infrastrutture elettroniche per il trattamento, la trasmissione e l'impiego di segnali in ambito civile, industriale e dell'informazione;
- area dell'ingegneria gestionale: imprese manifatturiere, di servizi e pubblica amministrazione per l'approvvigionamento e la gestione dei materiali, per l'organizzazione aziendale e della produzione, per l'organizzazione e l'automazione dei sistemi produttivi, per la logistica, il project management ed il controllo di gestione, per l'analisi di settori industriali, per la valutazione degli investimenti, per il marketing industriale;
- area dell'ingegneria informatica: industrie informatiche operanti negli ambiti della produzione hardware e software; industrie per l'automazione e la robotica; imprese operanti nell'area dei sistemi informativi e delle reti di calcolatori; imprese di servizi; servizi informatici della pubblica amministrazione;
- area dell'ingegneria delle telecomunicazioni: imprese di progettazione, produzione ed esercizio di apparati, sistemi ed infrastrutture riguardanti l'acquisizione ed il trasporto delle informazioni e la loro utilizzazione in applicazioni telematiche; imprese pubbliche e private di servizi di telecomunicazione e telerilevamento terrestri o spaziali; enti normativi ed enti di controllo del traffico aereo, terrestre e navale;
- area dell'ingegneria della sicurezza e protezione dell'informazione: sistemi di gestione e dei servizi per le grandi infrastrutture, per i cantieri e i luoghi di lavoro, per gli enti locali, per enti pubblici e privati, per le industrie, per la sicurezza informatica, logica e delle telecomunicazioni e per svolgere il ruolo di "security manager".

CORSO DI LAUREA IN INGEGNERIA ENERGETICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

L'obiettivo del percorso formativo del corso di Laurea (I livello) in Ingegneria Energetica è quello di approfondire - dopo una salda preparazione di base nelle discipline matematiche, fisiche e chimiche - lo studio della termodinamica delle conversioni energetiche fino ad arrivare a trattare le macchine a fluido ed elettriche, gli impianti ed i sistemi energetici convenzionali, avanzati ed innovativi.

Tale percorso è caratterizzato da una prevalente connotazione industriale (meccanica/elettrica) con significativi contenuti gestionali e intende fornire una salda preparazione specialistica in termofluidodinamica industriale ed ambientale, nelle macchine termiche, idrauliche ed elettriche e nei sistemi per la produzione di energia. Le materie di questo corso di studi intendono trattare gli impianti energetici e i loro componenti sia sotto l'aspetto fenomenologico sia sotto quello della loro progettazione, gestione, manutenzione ed interazione con l'ambiente, nonché tematiche innovative di risparmio energetico e di ottimizzazione degli usi finali.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria Energetica comprende unità didattiche ed altre attività formative per un totale di 180 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Chimica	1	1	9
Economia Applicata all'Ingegneria	1	1	6
Fisica Generale I	1	2	12
Fondamenti di Informatica	1	2	6
Geometria	1	2	6
Analisi Matematica II	2	1	9
Fisica Generale II	2	1	9
Fisica Tecnica	2	1	9
Fondamenti di Scienza dei Materiali	2	2	6
Meccanica Applicata alle Macchine	2	2	9
Scienza delle Costruzioni	2	2	9
Elettrotecnica	3	1	12
Macchine	3	1	9
Termotecnica	3	1	6

Complementi di Macchine	3	2	6
Disegno e Costruzioni di Macchine	3	2	9
Fluidodinamica	3	2	6
Tecnologia Meccanica	3	2	9
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS)			12
Attività formative (AFF)			3
Prova finale			3

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Gestione dell'Energia	3	1	6
Impianti Industriali	3	1	6
Misure	3	1	6
Feedback Control Systems	3	2	6
Metallurgia	3	2	6
Probabilità e Statistica	3	2	6

Per maggiori informazioni si consulti il sito web: http://www.energetica.uniroma2.it/

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI <u>Ingegnere Energetico</u>

➤ funzione in un contesto di lavoro

La figura dell'Ingegnere Energetico potrà trovare specifica collocazione in un ampio spettro di attività collegate al settore dell'energia.

Le prospettive professionali dell'Ingegnere Energetico, inoltre, saranno sempre più numerose nel futuro in virtù della liberalizzazione del mercato dell'energia, che favorirà il moltiplicarsi di iniziative industriali e territoriali rivolte all'autoproduzione e all'aggregazione di enti in consorzi per la produzione, la distribuzione ed il consumo di energia.

In particolare, i possibili sbocchi professionali potrebbero pertanto riguardare:

 le aziende pubbliche e private che si occupano di studi di fattibilità, analisi tecnicoeconomiche e pianificazione nella produzione, nell'impiego e nell'uso razionale dell'energia;

- le industrie che producono, commercializzano o utilizzano macchine ed impianti di conversione e/o trasformazione di energia meccanica, elettrica e termica;
- il settore della pianificazione, della gestione e dell'impiego ottimale dell'energia, anche in virtù della liberalizzazione del mercato dell'energia, che favorirà il moltiplicarsi di iniziative industriali e territoriali rivolte all'autoproduzione e all'aggregazione di enti in consorzi per la produzione, la distribuzione ed il consumo di energia (la legge italiana prevede un'apposita figura di "tecnico responsabile per la conservazione e l'uso razionale dell'energia" per aziende con consumi energetici superiori ad una certa soglia).

> competenze associate alla funzione

Il corso di studi in Ingegneria Energetica intende definire un profilo professionale con una preparazione specialistica nell'ambito delle macchine termiche, idrauliche ed elettriche, dei sistemi per la produzione di energia, e della termofluidodinamica industriale ed ambientale.

Le materie di questo curriculum intendono trattare gli impianti energetici e i loro componenti sia sotto l'aspetto fenomenologico sia sotto quello della loro progettazione, gestione, manutenzione ed interazione con l'ambiente, nonché tematiche innovative di risparmio energetico e di ottimizzazione degli usi finali.

L'Ingegneria Energetica richiede pertanto competenze culturali fondanti in:

- principi fisici, chimici ed elettrici associati alle tematiche energetiche;
- termofluidodinamica industriale ed ambientale;
- macchine a fluido ed elettriche e sistemi per l'energia e l'ambiente;
- sistemi energetici convenzionali, avanzati ed innovativi e relativi aspetti di gestione e controllo.

L'Ingegnere Energetico sarà dunque caratterizzato da una prevalente connotazione industriale (meccanica/elettrica) con significativi contenuti gestionali e possiederà una salda preparazione specialistica in termofluidodinamica industriale ed ambientale, nelle macchine termiche, idrauliche ed elettriche e nei sistemi per la produzione di energia.

sbocchi occupazionali

La laurea triennale in Ingegneria Energetica fornisce le competenze necessarie a gestire sistemi energetici anche complessi e basati sull'impiego di fonti primarie e vettori energetici diversi: impianti industriali, impianti tecnici, centrali per la produzione di energia elettrica, etc.

CORSO DI LAUREA IN INGEGNERIA GESTIONALE

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

L'Ingegneria Gestionale studia il comportamento di sistemi complessi, in cui diversi elementi interagiscono e concorrono a determinare le prestazioni globali, e gli interventi che permettono di ottenere comportamenti assegnati. Il laureato in ingegneria gestionale ha una formazione di base che integra le conoscenze fisico-matematiche comuni a tutte le Lauree in Ingegneria e i contenuti fondamentali delle discipline che qualificano l'aspetto industriale, con la comprensione degli elementi fondamentali dell'analisi economica e organizzativa e delle tecniche decisionali. Su questa base vengono sviluppate competenze distintive sulle metodologie e gli strumenti di intervento nella gestione dei sistemi complessi. In particolare, l'ingegnere gestionale è in grado di applicare efficacemente le tecnologie dell'informazione e le metodologie della ricerca operativa, dell'analisi economica e del management alla soluzione dei problemi dell'organizzazione e della gestione operativa dei sistemi produttivi.

In aggiunta agli obiettivi formativi generali indicati nella relativa Classe di Laurea, i laureati in Ingegneria Gestionale devono specificamente:

- conoscere adeguatamente gli aspetti metodologico-operativi dell'area dell'ingegneria gestionale, nella quale sono capaci di identificare, formulare e risolvere i problemi utilizzando metodi, tecniche e strumenti allo stato dell'arte;
- saper valutare i costi di esercizio e gli investimenti dell'impresa e, in particolare, la dimensione economico-gestionale della riorganizzazione dei processi aziendali;
- saper operare nei processi di pianificazione e controllo dei sistemi produttivi, misurando costi e prestazioni dei processi aziendali;
- saper analizzare i mercati di approvvigionamento e di sbocco dell'impresa, intervenendo nelle scelte e nella gestione del marketing industriale e della logistica;
- saper utilizzare gli strumenti quantitativi della simulazione e della ottimizzazione per proporre scelte efficienti di progettazione, pianificazione e gestione dei singoli processi nelle organizzazioni;
- essere capaci di utilizzare tecniche e strumenti per la costruzione di modelli di sistemi e processi complessi ed analizzare, attraverso questi, il funzionamento e l'evoluzione di sistemi e processi reali per intervenire sul loro controllo;
- essere capaci di pianificare un progetto e controllare lo stato di avanzamento delle relative attività;
- essere capaci di utilizzare tecniche e strumenti per la progettazione di componenti, sistemi, processi;
- essere capaci di condurre esperimenti e di analizzarne ed interpretarne i dati;

- essere capaci di comprendere l'impatto delle soluzioni ingegneristiche nel contesto sociale e fisico-ambientale;
- conoscere le proprie responsabilità professionali ed etiche;
- conoscere i contesti aziendali e la cultura d'impresa nei suoi aspetti economici, gestionali e organizzativi;
- conoscere i contesti contemporanei;
- avere capacità relazionali e decisionali;
- essere capaci di comunicare efficacemente, in forma scritta e orale, in almeno una lingua dell'Unione Europea, oltre l'italiano;
- possedere gli strumenti cognitivi di base per l'aggiornamento continuo delle proprie conoscenze.

Il Corso di Laurea in Ingegneria Gestionale è articolato in distinti curricula (indirizzi), che consentono di definire percorsi formativi specifici caratterizzati dalla presenza di insegnamenti che trattano dell'economia e dell'organizzazione aziendale, della gestione aziendale, degli impianti industriali, dei sistemi di produzione, dei sistemi logistici e di trasporto, della gestione delle infrastrutture energetiche e di quelle dell'information-telecomunication technology.

Il regolamento didattico del corso di studio e l'offerta formativa saranno tali da consentire agli studenti che lo vogliono di seguire percorsi formativi nei quali sia presente un'adeguata quantità di crediti in settori affini e integrativi che non sono già caratterizzanti.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria Gestionale comprende unità didattiche ed altre attività formative per un totale di 180 crediti.

Sono previsti cinque indirizzi: a) Ingegneria dell'Organizzazione, b) Ingegneria della Produzione, c) Ingegneria Logistica e dei Trasporti, d) Ingegneria delle Infrastrutture e dei Sistemi a Rete, e) Ingegneria Gestionale delle Telecomunicazioni.

Il Piano di studi ufficiale dell'indirizzo a) **Ingegneria dell'Organizzazione** è qui di seguito riportato. Tale indirizzo (Ingegneria dell'Organizzazione) è impartito anche in modalità "online" (teledidattica) per gran parte delle attività formative, consentendo agli studenti di poter fruire il Corso di Laurea anche attraverso un Canale Online. L'accesso a questo canale è tipicamente rivolto a quegli studenti che per ragioni di lavoro, salute, distanza geografica, non sono in grado di usufruire dell'offerta formativa erogata in modalità "in presenza" (didattica frontale). Maggiori informazioni sono disponibili sui siti web: **gestionale.uniroma2.it/canale-online** e **iol.uniroma2.it**

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I*	1	1	12

Economia Applicata all'Ingegneria 1 + 2*	1	1	12
Fondamenti di Chimica dei Materiali*	1	1	6
Fisica Generale I*	1	2	12
Fondamenti di Informatica*	1	2	9
Geometria*	1	2	6
Analisi Matematica II*	2	1	9
Elettrotecnica*	2	1	6
Fisica Generale II*	2	1	9
Ricerca Operativa*	2	1	12
Economia e Organizzazione Aziendale 1 +2	2	2	9
Fondamenti di Automatica e Controlli Automatici*	2	2	9
Macchine*	2	2	6
Gestione Aziendale 1 + 2*	3	1	12
Istituzioni di Diritto Privato oppure Sistemi Software	3	1	6
Metodi e Modelli di Ottimizzazione Discreta 1	3	1	6
Probabilità e Processi Stocastici	3	1	6
Fondamenti di Marketing	3	2	6
Impianti Industriali	3	2	6
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			3

^{*} Insegnamento erogato anche in modalità "online" (teledidattica).

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Basi di Dati e Conoscenza	3	1	12
Gestione della Qualità	3	1	6
Gestione dello Spettro Radio	3	2	6
Gestione ed Esercizio dei Sistemi di Trasporto	3	2	6
Istituzioni di Diritto Commerciale solo se non Istituzioni di Diritto Privato	3	1	6
Istituzioni di Diritto Privato oppure Sistemi Software	3	1	6
Laboratorio di Ricerca Operativa	3	1	6
Logistica	3	2	6
Metodi Esplorativi per l'Analisi dei Dati	2	2	6
Modelli di Sistemi di Produzione	3	2	6

Modelli e Linguaggi di Simulazione solo se anche Sistemi Software	3	2	6
Pratica della Gestione d'Impresa	3	2	6
Sistemi di Telecomunicazioni	3	1	6
Teoria dei Sistemi di Trasporto 1	2	2	6
Turismo Digitale	2	2	6
Insegnamenti caratterizzanti di altri indirizzi			6 o 12

Il Piano di studi ufficiale dell'indirizzo b) **Ingegneria della Produzione** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Economia Applicata all'Ingegneria 1 + 2	1	1	12
Fondamenti di Chimica dei Materiali	1	1	6
Fisica Generale I	1	2	12
Fondamenti di Informatica	1	2	9
Geometria	1	2	6
Analisi Matematica II	2	1	9
Elettrotecnica	2	1	6
Fisica Generale II	2	1	9
Ricerca Operativa	2	1	12
Fondamenti di Automatica e Controlli Automatici	2	2	9
Macchine	2	2	6
Materiali Metallici nei Processi Produttivi + Fondamenti di Costruzioni di Macchine	2	2	12
Gestione Aziendale 1	3	1	6
Metodi e Modelli di Ottimizzazione Discreta 1	3	1	6
Probabilità e Processi Stocastici	3	1	6
Impianti Industriali	3	2	6
Modelli di Sistemi di Produzione	3	2	6
Tecnologie dei Processi Produttivi	3	2	9
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			3

Insegnamenti a scelta dello studente coerenti con il progetto formativo del Corso di Studio:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Affidabilità e Sicurezza delle Macchine	3	2	6
Automazione Manifatturiera	3	1	6
Disegno di Macchine	1	2	6
Disegno e Costruzioni di Macchine	3	2	9
Elementi Costruttivi delle Macchine	3	2	9
Fisica Tecnica Ambientale	3	1	9
Fondamenti di Progettazione Meccanica	3	1	6
Fonti Rinnovabili di Energia in alternativa a Fisica Tecnica Ambientale	3	2	6
Gestione dell'Energia	3	1	6
Gestione della Qualità	3	1	6
Gestione ed Economia dell'Energia	3	2	6
Gestione ed Esercizio dei Sistemi di Trasporto	3	2	6
Laboratorio di Ricerca Operativa	3	1	6
Laboratorio di Tecnologie dei Processi Produttivi	3	2	6
Logistica	3	2	6
Machine Design	3	2	9
Meccanica Applicata alle Macchine	2	2	9
Metodi Esplorativi per l'Analisi dei Dati	2	2	6
Robotica con Laboratorio	3	1	6
Tecnologie di Chimica Applicata	3	2	6
Insegnamenti caratterizzanti di altri indirizzi			6 o 12

Il Piano di studi ufficiale dell'indirizzo c) **Ingegneria Logistica e dei Trasporti** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Economia Applicata all'Ingegneria 1 + 2	1	1	12
Fondamenti di Chimica dei Materiali	1	1	6
Fisica Generale I	1	2	12
Fondamenti di Informatica	1	2	9
Geometria	1	2	6
Analisi Matematica II	2	1	9
Elettrotecnica	2	1	6
Fisica Generale II	2	1	9
Ricerca Operativa	2	1	12
Fondamenti di Automatica e Controlli Automatici	2	2	9

Macchine	2	2	6
Teoria dei Sistemi di Trasporto 1 + 2	2	2	9
Gestione Aziendale 1	3	1	6
Metodi e Modelli di Ottimizzazione Discreta 1	3	1	6
Probabilità e Processi Stocastici	3	1	6
Impianti Industriali	3	2	6
Modelli di Sistemi di Produzione + Logistica	3	2	12
Trasporti Urbani e Metropolitani	3	2	6
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			3

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Automazione Manifatturiera	3	1	6
Fisica Tecnica Ambientale	3	1	9
Fonti Rinnovabili di Energia in alternativa a Fisica Tecnica Ambientale	3	2	6
Gestione dell'Energia	3	1	6
Gestione della Qualità	3	1	6
Gestione dello Spettro Radio	3	2	6
Gestione ed Economia dell'Energia	3	2	6
Gestione ed Esercizio dei Sistemi di Trasporto	3	2	6
Istituzioni di Diritto Privato	3	1	6
Laboratorio di Ricerca Operativa	3	1	6
Laboratorio di Tecnologie dei Processi Produttivi	3	2	6
Metodi Esplorativi per l'Analisi dei Dati	2	2	6
Robotica con Laboratorio	3	1	6
Sistemi di telecomunicazioni	3	1	6
Sistemi Software	3	1	6
Tecnologie dei Processi Produttivi	3	2	9
Turismo Digitale	2	2	6
Insegnamenti caratterizzanti di altri indirizzi			6 o 12

Il Piano di studi ufficiale dell'indirizzo d) **Ingegneria delle Infrastrutture e dei Sistemi a Rete** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Economia Applicata all'Ingegneria 1 + 2	1	1	12
Fondamenti di Chimica dei Materiali	1	1	6
Fisica Generale I	1	2	12
Fondamenti di Informatica	1	2	9
Geometria	1	2	6
Analisi Matematica II	2	1	9
Elettrotecnica	2	1	6
Fisica Generale II	2	1	9
Ricerca Operativa	2	1	12
Economia e Organizzazione Aziendale 1 + 2	2	2	9
Fondamenti di Automatica e Controlli Automatici	2	2	9
Macchine	2	2	6
Gestione Aziendale 1	3	1	6
Probabilità e Processi Stocastici	3	1	6
Impianti Industriali	3	2	6
Insegnamenti specifici di un Percorso Formativo			24
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			3

PERCORSO FORMATIVO 1	ANNO	SEMESTRE	CREDITI
Teoria dei Sistemi di Trasporto 1	2	2	6
Metodi e Modelli di Ottimizzazione Discreta 1+2	3	1	12
Sistemi di Telecomunicazioni	3	1	6
PERCORSO FORMATIVO 2			
Teoria dei Sistemi di Trasporto 1	2	2	6
Basi di Dati e Conoscenza	3	1	12
Metodi e Modelli di Ottimizzazione Discreta 1	3	1	6
PERCORSO FORMATIVO 3			
Basi di Dati e Conoscenza	3	1	12
Metodi e Modelli di Ottimizzazione Discreta 1	3	1	6
Sistemi di Telecomunicazioni	3	1	6
PERCORSO FORMATIVO 4			
Metodi e Modelli di Ottimizzazione Discreta 1+2	3	1	12

Fonti Rinnovabili di Energia	3	2	6
Gestione ed Economia dell'Energia	3	2	6
PERCORSO FORMATIVO 5			
Basi di Dati e Conoscenza	3	1	12
Metodi e Modelli di Ottimizzazione Discreta 1	3	1	6
Sistemi Software	3	1	6

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Basi di Dati e Conoscenza	3	1	12
Gestione dello Spettro Radio	3	2	6
Gestione ed Esercizio dei Sistemi di Trasporto	3	2	6
Information Retrieval	3	1	6
Istituzioni di Diritto Privato	3	1	6
Laboratorio di Ricerca Operativa	3	1	6
Metodi Esplorativi per l'Analisi dei Dati	2	2	6
Modelli e Linguaggi di Simulazione solo se anche Sistemi Software	3	2	6
Sistemi Software obbligatorio se Percorso Formativo 2 o 3	3	1	6
Turismo Digitale	2	2	6
Insegnamenti caratterizzanti di altri indirizzi			6 o 12

Il Piano di studi ufficiale dell'indirizzo e) **Ingegneria Gestionale delle Telecomunicazioni** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Economia Applicata all'Ingegneria 1 + 2	1	1	12
Fondamenti di Chimica dei Materiali	1	1	6
Fisica Generale I	1	2	12
Fondamenti di Informatica	1	2	9
Geometria	1	2	6
Analisi Matematica II	2	1	9
Elettrotecnica	2	1	6
Fisica Generale II	2	1	9
Ricerca Operativa	2	1	12
Economia ed Organizzazione Aziendale 1 + 2	2	2	12

Fondamenti di Automatica e Controlli Automatici	2	2	9
Macchine	2	2	6
Gestione Aziendale 1	3	1	6
Metodi e Modelli di Ottimizzazione Discreta 1	3	1	6
Segnali e Processi per le Telecomunicazioni	3	1	9
Sistemi di Telecomunicazioni	3	1	6
Impianti Industriali	3	2	6
Reti di Telecomunicazioni e Internet	3	2	9
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			3

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Basi di Dati e Conoscenza	3	1	12
Gestione dello Spettro Radio	3	2	6
Information Retrieval	3	1	6
Modelli e Linguaggi di Simulazione solo se anche Sistemi Software	3	2	6
Programmazione Web	2	2	6
Sistemi Software	3	1	6
Turismo Digitale	2	2	6
Insegnamenti caratterizzanti di altri indirizzi			6 o 12

Per maggiori informazioni si consulti il sito web: http://gestionale.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Laureato in Ingegneria Gestionale

funzione in un contesto di lavoro

Le principali aree funzionali di impiego dell'ingegnere gestionale sono:

- la pianificazione strategica;
- il marketing e le vendite;
- il project management;
- la business administration e il controllo di gestione;
- lo sviluppo nuovi prodotti;

- l'innovazione di processo e la gestione dell'innovazione;
- la direzione di produzione;
- la gestione della catena logistica.

> competenze associate alla funzione

Le capacità di problem solving acquisite e la sua formazione fortemente diversificata, permettono all'ingegnere gestionale di affrontare problemi di organizzazione e di gestione, interagendo con colleghi ingegneri di formazione più marcatamente tecnica. Per questo, il laureato in ingegneria gestionale trova facilmente collocazione sia in grandi organizzazioni, sia in piccole e medie aziende, industriali e di servizio.

sbocchi occupazionali

Tra i settori che maggiormente ricercano ingegneri gestionali, abbiamo:

- l'industria manifatturiera;
- le aziende operanti nel settore dell'energia e dell'impiantistica;
- il settore della logistica e dei trasporti;
- il settore dei servizi e della consulenza;
- tutti i settori della Pubblica Amministrazione.

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il Corso di Laurea in Ingegneria Informatica intende formare laureati che abbiano acquisito conoscenze e competenze utilizzabili sia per svolgere professioni tecnico-applicative nell'ambito dell'informatica, sia come base su cui innestare gli approfondimenti previsti dalla laurea di 2° livello in ingegneria informatica.

A questo scopo, gli insegnamenti inseriti nel percorso formativo della laurea triennale in Ingegneria Informatica possono essere inquadrati in quattro aree che hanno i seguenti obiettivi generali:

- Area A. Fornire una solida preparazione di base sia in senso generale, approfondendo temi relativi alle discipline matematiche e fisiche, sia in ambiti più vicini all'informatica, approfondendo temi relativi ad algebra, logica, teoria degli automi e linguaggi, algoritmi, linguaggi di programmazione;
- Area B. Fornire una solida base di conoscenze e una adeguata preparazione sulla organizzazione, progettazione e programmazione dei moderni sistemi informatici e delle loro reti di interconnessione;
- Area C. Fornire una solida preparazione relativa alla progettazione e programmazione di moderne applicazioni software, o di sistemi per l'automazione e la robotica;
- **Area D.** Fornire una formazione di base in aree dell'Ingegneria dell'informazione (elettronica e telecomunicazioni) contigue all'informatica, allo scopo di completare la formazione di un ingegnere informatico.

La laurea triennale in Ingegneria Informatica è organizzata in due *indirizzi* distinti ognuno dei quali seleziona all'interno delle quattro aree elencate sopra un sottoinsieme delle rispettive materie, per soddisfare i seguenti specifici obiettivi formativi:

- indirizzo Sistemi software e Web: formare un laureato esperto nella progettazione e programmazione di applicazioni e sistemi informatici, con competenze di base nel campo dei linguaggi, delle architetture dei sistemi e delle reti che li connettono;
- indirizzo Robotica e automazione: formare un laureato con competenze di base nella progettazione di sistemi di controllo dinamico di impianti e sistemi di produzione, e di robot industriali e di servizio.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria Informatica comprende unità didattiche ed altre attività formative per un totale di almeno 180 crediti.

Sono previsti due indirizzi: a) Sistemi software e Web, b) Robotica e automazione.

Il piano di studi ufficiale dell'indirizzo *Sistemi software e Web* per studenti immatricolati nell'A.A. 2017/2018 è il seguente:

Insegnamenti	ANNO	SEMESTRE	CREDITI
Analisi matematica I	1	1	12
Geometria	1	1	9
Algebra e Logica	1	1	6
Fisica generale I	1	2	9
Fondamenti di informatica	1	2	9
Probabilità e statistica	1	2	6
Analisi matematica II	2	1	6
Calcolatori elettronici	2	1	9
Ingegneria degli algoritmi	2	1	9
Automi e linguaggi*	2	2	6
Fisica generale II	2	2	6
Fondamenti di telecomunicazioni^	2	2	9
Sistemi operativi*	2	2	6
Basi di dati	3	1	9
Campi elettromagnetici^	3	1	9
Ingegneria del software e progettazione Web ⁺	3	1	9
Laboratorio di applicazioni software	3	1	3
Ingegneria di Internet e Web	3	1	9
Fondamenti di elettronica^	3	2	9
Fondamenti di controlli	3	2	9
Mobile programming*	3	2	6
Ricerca operativa	3	2	6
Lingua straniera			3
Insegnamenti a scelta dello studente			12
Attività formative (tirocinio)			6
Prova finale			3

^{^ (}Per l'indirizzo "Sistemi sofware e Web") materie in alternativa, sceglierne due su tre.

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di studio (indirizzo Sistemi software e Web)

^{* (}Per l'indirizzo "Sistemi sofware e Web") materie in alternativa, sceglierne due su tre.

[†] Le materie "Ingegneria del software e progettazione Web" e "Laboratorio di applicazioni software" formano un corso integrato con un'unica prova d'esame

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Chimica	1	1	6
Elettrotecnica	2/3	1	6
Laboratorio di automatica	1	2	6
Management dell'innovazione e entrepreunership	3	1	6
Mobile programming	3	2	6

Il piano di studi ufficiale dell'indirizzo *Robotica e automazione* per studenti immatricolati nell'A.A. 2017/2018 è il seguente:

Insegnamenti	ANNO	SEMESTRE	CREDITI
Analisi matematica I	1	1	12
Geometria	1	1	9
Fisica generale I	1	2	9
Fondamenti di informatica	1	2	9
Laboratorio di automatica	1	2	6
Probabilità e statistica	1	2	6
Analisi matematica II	2	1	6
Calcolatori elettronici	2	1	9
Ingegneria degli algoritmi	2	1	9
Fisica generale II	2	2	6
Fondamenti di controlli	2	2	9
Fondamenti di telecomunicazioni	2	2	9
Sistemi operativi	2	2	6
Automazione e robotica con laboratorio	3	1	12
Basi di dati**	3	1	9
Controlli automatici	3	1	6
Ingegneria del software e progettazione Web**	3	1	9
Ingegneria di Internet e Web**	3	1	9
Laboratorio di applicazioni software	3	1	3
Fondamenti di elettronica	3	2	9
Ricerca operativa	3	2	6
Teoria dei sistemi	3	2	6
Lingua straniera			3
Insegnamenti a scelta dello studente			12
Attività formative (tirocinio)			6
Prova finale			3

^{** (}Per l'indirizzo "Robotica e automazione") scegliere una tra le materie indicate che, unita a "Laboratorio di applicazioni software" formerà un'unica materia integrata.

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di studio (indirizzo Robotica e automazione)

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Algebra e logica	1	1	6
Chimica	1	1	6
Elettrotecnica	2/3	1	6
Fisica tecnica	2	2	6
Management dell'innovazione e entrepreunership	3	1	6
Meccaniica applicata alle macchine	3	2	9

NOTF:

I 12 crediti a scelta dello studente possono anche essere scelti al di fuori degli elenchi riportati sopra, tra tutti i corsi insegnati in altri Corsi di Studio di Ingegneria/Ateneo, purché congruenti con gli obiettivi formativi del corso di laurea. In questo caso, la proposta fatta dallo studente è soggetta ad approvazione da parte del Corso di Studio. Si consiglia di consultare i docenti del Corso di Studio per consigli e suggerimenti in proposito.

Per cause di forza maggiore la ripartizione temporale (in anni e semestri) dei moduli didattici potrebbe subire variazioni rispetto a quella indicata.

Per maggiori informazioni ed eventuali aggiornamenti si rimanda al sito del corso: inginformatica.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Informatico

> funzione in un contesto di lavoro

Sviluppo e progettazione di macchine, impianti, reti e sistemi informatici, a livello di hardware e software di base, a livello di linguaggi e software applicativo. Architetture e sistemi informatici distribuiti, mobili, per applicazioni Web, Internet. Ingegneria del software. Sicurezza nei sistemi informatici e in Internet. Analisi e sviluppo della qualità nei sistemi informatici. Automazione dei processi industriali e del movimento. Robotica industriale e spaziale.

> competenze associate alla funzione

L'ingegnere informatico possiede competenze che gli consentono di operare in tutte le imprese e organizzazioni pubbliche o private interessate allo sviluppo e utilizzazione di sistemi informatici e robotici per la gestione e conduzione delle proprie attività.

> sbocchi occupazionali

Attività tecnico-applicative nell'impresa, nella pubblica amministrazione, nella libera professione e nelle società di consulenza finalizzate a:

- installazione, configurazione, gestione e manutenzione di reti, impianti e sistemi informatici;
- configurazione e ottimizzazione di sistemi di controllo centralizzato o distribuito;
- installazione, configurazione e sviluppo di applicazioni informatiche e sistemi informativi, e progetto e configurazione di sistemi di controllo, in ambito civile, economico, industriale, di trasporto, automobilistico, avionico, satellitare, energetico, medicale, di ambiente e territorio.

Attività di istruzione formale e professionale in ambito informatico e dell'automazione. Attività di assistenza agli specialisti nella ricerca informatica e telematica e nella teoria del controllo.

CORSO DI LAUREA IN INGEGNERIA MECCANICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il laureato in ingegneria meccanica deve:

- conoscere adeguatamente gli aspetti metodologico-operativi della matematica e delle altre scienze di base e deve essere capace di utilizzare tale conoscenza per interpretare e descrivere i problemi dell'ingegneria;
- conoscere adeguatamente gli aspetti metodologico-operativi delle scienze dell'ingegneria, sia in generale che in modo approfondito relativamente a quelli di una specifica area dell'ingegneria industriale tipica del corso di laurea seguito, nella quale deve essere capace di identificare, formulare e risolvere i problemi ingegneristici, utilizzando metodi, tecniche e strumenti aggiornati;
- essere capace di utilizzare tecniche e strumenti per la progettazione di componenti, sistemi, processi;
- essere capace di impostare e condurre esperimenti e di analizzarne ed interpretarne i dati;
- essere capace di comprendere l'impatto delle soluzioni ingegneristiche nel contesto sociale e fisico-ambientale;
- conoscere le sue responsabilità professionali ed etiche;
- conoscere i contesti aziendali e i relativi aspetti economici, gestionali e organizzativi;
- conoscere i contesti contemporanei;
- avere capacità relazionali e decisionali;
- essere capace di comunicare efficacemente in modo scritto e orale, anche in un contesto internazionale;
- possedere gli strumenti cognitivi di base per un aggiornamento continuo delle proprie conoscenze ed essere capace di apprendere attraverso lo studio individuale.

L'articolazione del percorso formativo parte dall'acquisizione delle conoscenze di base della matematica, fisica, chimica, del loro sviluppo modellistico e metodologico fino all'articolazione in corsi a carattere progettuale.

In particolare gli aspetti metodologici-operativi della matematica e delle altre scienze di base vengono trattati nei corsi di base e utilizzati nei corsi caratterizzanti, affini, altri a scelta e nelle attività formative per la preparazione della prova finale.

Le conoscenze relative alle scienze dell'ingegneria, che includono la risoluzione di problemi ingegneristici mediante un'analisi del problema, pianificazione di una sperimentazione o analisi numerica, analisi dei risultati e del loro impatto nel contesto sociale e fisico-ambientale, vengono acquisite principalmente nei corsi caratterizzanti, affini e in modo particolare nella fase riguardante le attività formative. In tali corsi vengono trattati aspetti progettuali, tipici dell'ingegneria meccanica, ma anche organizzativi-gestionali, oltre che etici e professionali.

La capacità di comunicare efficacemente in modo scritto e orale viene acquisita nei corsi durante l'intero percorso formativo attraverso elaborati, verifiche in itinere, esami orali e la stesura della tesi di laurea.

Il percorso formativo prevede inoltre un modulo di lingua straniera e l'utilizzo in numerosi corsi di testi specialistici e pubblicazioni scientifiche in lingua inglese che migliorano la capacità comunicativa anche in contesti scientifici internazionali.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria Meccanica comprende unità didattiche ed altre attività formative per un totale di 180 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Chimica	1	1	6
Economia applicata all'Ingegneria	1	1	6
Geometria	1	2	6
Fisica Generale I	1	2	12
Fondamenti di Informatica	1	2	6
Disegno di Macchine	1	2	6
Analisi Matematica II	2	1	9
Fisica Generale II	2	1	9
Fisica Tecnica Industriale 1	2	1	9
Elettrotecnica	2	1	6
Fondamenti di Scienza dei Materiali e Metallurgia	2	2	12
Scienza delle Costruzioni	2	2	9
Meccanica Applicata alle Macchine	2	2	9
Fondamenti di Progettazione Strutturale Meccanica	3	1	6
Impianti Industriali	3	1	6
Macchine	3	1	9
Elementi Costruttivi delle Macchine	3	2	9
Tecnologia Meccanica	3	2	9
Lingua Straniera			3
Insegnamenti a scelta dello studente (ASS)			12
Attività formative (AFF)			3
Prova finale			6

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Geometria II	2	1	6
Finanziamento e Gestione Societaria dell'Impresa	3	1	6
Gestione dei Consumi Energetici	3	1	6
Gestione dell'Energia	3	1	6
Gestione della Qualità	3	1	6
Laboratorio di Metallurgia	3	1	6
Meccanica delle Vibrazioni	3	1	6
Misure	3	1	6
Modellazione Infografica per l'Industria (dal 2019/20)	3	1	6
Affidabilità e Sicurezza delle Macchine	3	2	6
Tecnologie dei Processi Produttivi	3	2	6
Tecnologie di Chimica Applicata	3	2	6

Per maggiori informazioni si consulti il sito web: www.ingegneriameccanica.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI <u>Ingegnere Meccanico</u>

funzione in un contesto di lavoro

Il Laureato in Ingegneria Meccanica è un tecnico con preparazione universitaria, in grado di condurre la progettazione esecutiva di prodotto e di processo, lo sviluppo di prodotti, l'installazione e il collaudo di macchine e di sistemi complessi, la manutenzione e la gestione di reparti produttivi, nonché lo svolgimento di attività di controllo, verifica ed assistenza tecnica. Il laureato acquisisce le competenze che gli permettono di svolgere queste tipiche mansioni principalmente nell'ambito delle industrie meccaniche, ma spesso anche nel settore più vasto dell'ingegneria industriale, delle società di servizi e degli enti pubblici

> competenze associate alla funzione

L'ingegnere meccanico così formato possiede ampie possibilità di esprimere la propria attività professionale nei vari settori industriali. In particolare, egli sarà preparato a sviluppare il progetto di sistemi meccanici dal punto di vista funzionale, costruttivo ed energetico, il progetto della disposizione, la gestione e l'utilizzo ottimale delle macchine di un impianto. Ulteriori opportunità sono inoltre offerte nelle industrie manifatturiere e negli

impianti di produzione per quanto riguarda la progettazione, la produzione, lo sviluppo di nuove tecnologie, le tecniche di misura e la scelta dei materiali più appropriati. Oltre che nell'attività produttiva e di servizio, il laureato può trovare collocazione presso pubbliche amministrazioni o enti di ricerca, nei quali può mettere a frutto le conoscenze acquisite.

> sbocchi occupazionali

I laureati in Ingegneria Meccanica hanno una vasta gamma di opportunità occupazionali, con diverse funzioni, principalmente nelle:

- industrie che progettano e producono componenti e sistemi meccanici ed elettromeccanici;
- industrie di trasformazione e manifatturiere che si avvalgono di sistemi di produzione meccanici, metallurgici ed elettromeccanici;
- aziende ed enti per la conversione dell'energia;
- imprese impiantistiche;
- società di servizio e di consulenza industriale;
- enti pubblici in funzioni di tipo tecnico.

CORSO DI LAUREA IN INGEGNERIA MEDICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

E' a tutti noto come gli straordinari risultati conoscitivi che a partire dagli ultimi decenni si stanno via via conseguendo nelle scienze della vita già consentono applicazioni alla Medicina ed offrano sicura prospettiva di migliori terapie e qualità di vita nel prossimo futuro. La chiave dell'avvenire è quindi nello sviluppo di tecnologie fondate su tali scienze, compito primario di professionisti ad esse formati e che posseggono lo strumento intellettuale dell'analisi quantitativa e del progetto. Questo è dunque l'Ingegnere Medico, così come è stato progettato, in collaborazione con la Facoltà di Medicina, dalla Facoltà di Ingegneria di Roma "Tor Vergata", che ha cominciato a formarlo a partire dall'A.A. 1998/1999 con il Corso di Laurea in Ingegneria Medica. L'impostazione, come detto, è stata quella di formare un professionista che, possedendo le leggi scientifiche che governano il comportamento della materia, sia inanimata che vivente, fosse capace di orientarle a pratiche applicazioni attraverso le capacità di analisi e di sintesi acquisite dallo studio della matematica. La preparazione, generalista e di largo spettro, avrebbe così consentito attività diversificate nei molteplici aspetti del campo professionale. La doverosa ottemperanza al più volte citato DM 509/1999 ha parzialmente indebolito il progetto formativo iniziale, la cui robustezza ha comunque consentito di ottenere risultati soddisfacenti. Fin dall'inizio, infatti, il Consiglio di Corso di Laurea ha presentato agli immatricolati al Corso di Laurea triennale in Ingegneria Medica l'impianto culturale unitario di tale corso in collegamento con quello omonimo specialistico, volto alla formazione di un Ingegnere dotato di piena capacità professionale. Gli allievi, seguendo l'indicazione loro data, hanno in massa completato i due cicli di laurea: a questa scelta hanno corrisposto il raggiunto obiettivo della piena occupazione dei laureati e la fiducia dei giovani, che in misura costante ogni anno si immatricolano.

L'applicazione della riforma ex DM 270/2004 a partire dall'A.A. 2008/09 viene qui proposta sulla base di un decennio di sperimentazione della Laurea in Ingegneria Medica. Si osserva preliminarmente che, seguendo la via tracciata dall'Ateneo di Roma "Tor Vergata", in molte altre Università italiane sono stati avviati corsi appartenenti alla medesima classe di laurea, confermando l'esistenza di una prospettiva professionale su base nazionale. E' appena poi il caso di citare che in campo internazionale formazioni interdisciplinari simili alla nostra, capaci di integrare Biologia, Neuroscienze, Meccanica, Elettronica, Informatica sono sempre più diffuse. In ambito europeo, a ciò corrisponde la mobilità degli studenti di Ingegneria Medica dell'Ateneo nei quadri Erasmus e Leonardo.

Nel merito della presente proposta, viene confermata la visione culturale di fondo dei Corsi di Laurea e Laurea Magistrale in Ingegneria Medica come percorso unitario ed indivisibile, nel quale il conseguimento del titolo triennale è da considerarsi un mero accidente tecnico, potendosi soltanto al termine ottenere da parte di ciascun allievo la pienezza, in termini di conoscenze e capacità e flessibilità, che il campo professionale richiede.

Rispetto alla precedente organizzazione, sono state corrette le distorsioni indotte dalla lettera del DM 509/1999, trasferendo ed ampliando lo spettro della applicazioni alla Laurea Magistrale. Inoltre, il passaggio all'organizzazione semestrale dei corsi, con conseguente riduzione del numero degli esami, assicura agli allievi una più unitaria visione ed il necessario tempo di maturazione ed assimilazione, nell'ambito di ciascun corso di insegnamento.

Gli obiettivi formativi risultano quindi ancor più sintonici con quelli richiesti e misurati dai descrittori europei ai fini dell'accreditamento dei corsi di Laurea.

In definitiva, con la riprogettazione qui presentata, la Facoltà di Ingegneria di Roma "Tor Vergata", liberata dall'improprio vincolo a formare tecnici superiori, potrà tornare alla propria naturale vocazione di educare Ingegneri Medici.

La proposta culturale del corso di laurea, articolata sull'intero arco quinquennale contiene tutte le necessarie catene formative, sia nelle scienze della materia inanimata che in quelle della vita, queste ultime già sperimentate ed insegnate con la stessa logica nelle Facoltà di Medicina. Appare anche l'approfondita formazione matematica, indispensabile per far acquisire agli allievi i canoni interpretativi e modellistici delle suddette scienze. Queste tre componenti formative, profonde ed estese nel progetto culturale dell'Ingegneria Medica, sostanziano la proposta di una arco formativo lungo, poiché solo negli ultimi due anni le diverse applicazioni delle scienze, che costituiscono l'essenza della professione di Ingegnere, possono essere presentate agli allievi e da loro acquisite e dominate.

La suddivisione del percorso quinquennale in due blocchi, di durata triennale e biennale rispettivamente, comporta un mero traguardo tecnico intermedio, essendo unitari gli obiettivi, le capacità e le abilità che l'allievo dovrà conseguire nel percorso completo di studi finalizzato alla creazione della figura professionale formata a tutto tondo.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria Medica comprende unità didattiche ed altre attività formative per un totale di 180 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Geometria	1	1	9
Chimica	1	1	9
Fisica Generale I	1	2	12
Informatica	1	2	6
Chimica Biologica	1	2	9
Analisi Matematica II	2	1	9
Citologia ed Istologia	2	1	9

Fisica Generale II	2	1	9
Meccanica dei solidi	2	2	9
Anatomia Umana	2	2	6
Fisiologia I	2	2	6
Insegnamento a scelta			
Scelta fortemente consigliata			
Metodi Matematici per l'Ingegneria	2	2	9
Scienza delle Costruzioni	3	1	12
Elettrotecnica	3	1	12
Fisiologia II	3	1	9
Scienza e Tecnologia dei Biomateriali	3	2	9
Elettronica I	3	2	9
Meccanica dei Sistemi Biologici	3	2	6
Insegnamento a scelta dello studente(*)	3		6

(*) Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studio:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Ingegneria Sanitaria Ambientale	3	2	6
Istituzioni Giuridiche	3	2	6
Nanomedicina	3	2	6
Altro	3		6

NOTA: Lo svolgimento di un lavoro completo, a carattere analitico o progettuale, che abbia la dignità di tesi di laurea è riservato alla conclusione degli studi specialistici. Per l'intermedio traguardo corrispondente alla laurea triennale, il Regolamento didattico del Corso di Laurea prescrive l'approfondimento di una disciplina ai fini dell'acquisizione dei crediti dovuti quale prova finale. Per maggiori informazioni si consulti il sito web: http://www.dicii.uniroma2.it

Propeudicità

INSEGNAMENTO	Insegnamenti Propedeutici
Analisi matematica II	Analisi matematica I
Fisica Generale II	Fisica Generale I
Metodi Matematici per l'Ingegneria	Analisi matematica I
Meccanica dei Solidi	Analisi matematica I, Fisica Generale I, Geometria
Scienza delle Costruzioni	Meccanica dei Solidi, Analisi Matematica II
Scienza e Tecnologia dei Biomateriali	Chimica, Fisica Generale I, Chimica Biologica

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI

funzione in un contesto di lavoro
 Progettazione di apparecchiatore e di sistemi
 Funzioni tecniche dirigenziali di Aziende sanitarie
 Gestione di grandi sistemi, in particolare ad orientamento sanitario
 Ricerca e Sviluppo

> competenze associate alla funzione

Una formazione scientifica e tecnica sul comportamento dei sistemi biologici e sui metodi ingegneristici finalizzati alla loro conoscenza e supporto in un quadro industriale o assistenziale.

sbocchi occupazionali

Industrie del settore biomedico e farmaceutico produttrici e fornitrici di sistemi, apparecchiature e materiali per diagnosi, cura e riabilitazione; aziende ospedaliere pubbliche e private; società di servizi per la gestione di apparecchiature ed impianti medicali, di telemedicina; laboratori specializzati

CORSO DI LAUREA IN INGEGNERIA DI INTERNET

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il corso di Laurea in Ingegneria di Internet si prefigge una formazione metodologica nei campi delle tecnologie di Internet, delle telecomunicazioni, dell'informatica e dell'elettronica, completata da competenze specifiche nella trasmissione dei segnali, nelle reti di telecomunicazione, nelle piattaforme internet, nell'analisi dei dati, e nei principali componenti utilizzati nei sistemi internet nel cui ambito il laureato deve essere in grado di identificare, formulare e risolvere problemi, utilizzando metodi, tecniche e strumenti aggiornati.

La preparazione di base è ottenuta riservando 48 crediti alla matematica, alla fisica generale e alla geometria. Fondamenti di informatica introduce i principi, le metodologie e le tecniche di base dell'informatica, avviando agli ambienti e agli strumenti per lo sviluppo di programmi. La conoscenza di base dei componenti e dei circuiti è acquisita attraverso i Campi elettromagnetici, l'Elettrotecnica e i Fondamenti di elettronica, quella di base dei segnali e delle reti da Fondamenti di Telecomunicazioni, da Fondamenti di Internet e da Elaborazione numerica dei segnali. Il corso di Campi elettromagnetici introduce anche al telerilevamento. L'addestramento all'analisi dei sistemi deterministici e statistici è ottenuto con i corsi di Fondamenti di Controlli e di Teoria dei fenomeni aleatori; l'ultimo corso fornisce anche conoscenze e abilità per analizzare statisticamente dati e serie temporali, ed operare e decidere in condizioni di incertezza. Comunicazioni elettriche, Fondamenti di Internet, e numerosi insegnamenti e laboratori relativi a programmazione e configurazione di sistemi software e di rete, anche per dispositivi mobili e piattaforme distribuite, forniscono una visione della situazione attuale e delle tendenze evolutive e gli strumenti per la valutazione delle prestazioni.

6 crediti sono riservati alla conoscenza elementare dei contesti aziendali e della cultura d'impresa nei suoi aspetti economici, gestionali e organizzativi. 3 crediti sono riservati alla prova relativa all'apprendimento della lingua inglese. 6 crediti sono riservati ad attività personali di approfondimento di tematiche hardware e/o software svolte nel laboratorio didattico o, con approvazione del Consiglio di corso di studi, presso aziende esterne sulla base di un programma concordato. La prova finale, alla quale sono attribuiti 6 crediti, consiste nell'elaborazione e nella presentazione alla Commissione in seduta pubblica di una relazione su un tema suggerito da un docente relatore o - preferibilmente - sull'attività sviluppata, d'intesa con un docente relatore, presso aziende attive nei settori delle tecnologie di Internet e delle telecomunicazioni. Lo studente completa il suo curriculum con scelte autonome per un numero minimo di 12 crediti. Nel rispetto dell'autonomia delle scelte, il Consiglio del corso di Laurea propone agli allievi, tra gli insegnamenti disponibili nell'Ateneo, alcune scelte orientate all'acquisizione di una migliore comprensione e utilizzazione della lingua (italiana o inglese) sia scritta che parlata, alla conoscenza dei problemi connessi all'impatto delle soluzioni ingegneristiche nel contesto sociale e fisico-ambientale, alle tecniche dell'informatica.

Nell'ambito dei singoli insegnamenti è prassi consolidata del nostro corso di studi organizzare seminari tenuti da persone dell'industria e da enti esterni all'Università. La frequentazione di questi seminari, unita all'esperienza aziendale acquisita in occasione della preparazione della prova finale favorisce una corretta e approfondita relazione con il mondo del lavoro in anticipo rispetto all'ingresso formale che avverrà dopo il conseguimento del titolo di studio.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Ingegneria di Internet comprende unità didattiche ed altre attività formative per un totale di 180 crediti. Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	12
Elementi di economia e organizzazione aziendale	1	1	6
Fondamenti di Informatica	1	1	9
Geometria e algebra	1	2	9
Fisica Generale I	1	2	12
Programmazione web	1	2	6
Analisi Matematica II	2	1	9
Elettrotecnica	2	1	6
Fisica Generale II	2	1	6
Probabilità, fenomeni aleatori ed analisi dei dati	2	1	9
Fondamenti di controlli/Feedback control systems	2	2	9
Fondamenti di Elettronica	2	2	9
Fondamenti di Telecomunicazioni	2	2	9
Campi Elettromagnetici	3	1	9
Fondamenti di Internet	3	1	9
Basi di dati e conoscenza	3	1	6
Elaborazione numerica dei segnali	3	2	9
Lingua inglese			6
Insegnamenti a scelta dello studente (vedi lista)			18
Attività formative: Laboratorio			6
Prova finale			6

Nell'ambito degli insegnamenti a scelta dello studente e delle ulteriori attività formative (laboratori), il corso di Laurea offre i seguenti moduli didattici:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Sistemi sensoriali	3	1	6
Modelli e linguaggi di simulazione	3	2	6

Programmazione java per dispositivi mobili	3	2	6	
Laboratorio di configurazione e gestione di reti locali	3	2	6	
Vulnerabilià e difesa dei sistemi Internet	3	2	6	
Geo-informazione	3	2	6	
Tecnologie per le comunicazioni in fibra ottica	3	2	6	

Per motivi organizzativi, la ripartizione temporale in semestri dei moduli didattici potrebbe subire variazioni. Per maggiori informazioni su docenti, programmi di esame, metodi di verifica delle conoscenze, eventuali aggiornamenti dell'organizzazione temporale, e più in generale per opportunità ed informazioni supplementari, si rimanda al sito web del corso di laurea: http://internet.uniroma2.it

Ulteriori link utili:

Didattica programmata – sito ufficiale:

http://uniroma2public.gomp.it/Manifesti/RenderAll.aspx?anno=2018

Didattica erogata – sito ufficiale:

http://uniroma2public.gomp.it/programmazioni/renderAll.aspx?anno=2018

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI

- funzione in un contesto di lavoro
 - dipendente (analista, programmatore, gestore di infrastrutture, sistemi e servizi ICT, progettazione assistita di infrastrutture, sistemi e servizi ICT);
 - consulente (configurazione, progettazione di reti e servizi in area locale, certificatore, troubleshooting);
 - Imprenditore (servizi innovativi web e per terminali mobili)
- competenze associate alla funzione
 - operatore di apparati e sistemi ICT, inclusi progettazione assistita, pianificazione, installazione e messa in esercizio, configurazione, personalizzazione, integrazione, certificazione;
 - amministratore e gestore di infrastrutture, inclusi operatori fissi e mobili ed Internet
 Service Provider;
 - amministratore e gestore di piattaforme per lo sviluppo di servizi ICT e multimediali;
 - programmatore ed analista dati;
 - progettista e sviluppatore di applicazioni Internet, sia in sistemi informativi web che in dispositivi mobili;

 analista tecnico in enti pubblici normativi e di controllo delle telecomunicazioni e dei servizi ICT

> sbocchi occupazionali

- operatori di reti e sistemi di telecomunicazione, nazionali e regionali;
- aziende pubbliche e private preposte alla gestione e/o sviluppo di servizi ICT ed applicativi;
- piccole o medie imprese ad elevata tecnologia ICT;
- integratori di sistemi e servizi ed aziende di consulenza ICT;
- enti normativi, di standardizzazione, di certificazione.

CORSO DI LAUREA IN ENGINEERING SCIENCES

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Tenendo conto che il corso è totalmente tenuto in lingua inglese con insegnamenti affini che toccano il mondo dell'elettronica al fine di conferire al corso carattere pluridisciplinare, sono previsti i seguenti obiettivi:

- favorire l'ingresso nel nostro sistema sapere di altri saperi forgiati in contesti etnici diversi;
- promuovere una crescita culturale orientata all'ingegneria dei sistemi di utilità sociale visti come beni e non come semplici prodotti
- porre attenzione all'ingegneria attinente la progettazione e fabbricazione dei beni, del loro trasporto e della loro utilizzazione, nel rispetto delle esigenze condivise che toccano il risparmio energetico, le energie alternative, la contaminabilità e la contaminazione
- rafforzare il ruolo trainante della meccanica-elettronica, facendo uso della nanoscienza e delle nanotecnologie sfruttando al massimo le nuove proprietà dei nanomateriali, i nuovi itinerari del software applicato allo sviluppo di nuovi beni dell'ingegneria
- operare per generare opportunità di lavoro con il nuovo sapere
- coltivare con più incisività il sapere antico e nuovo ed aprire alla pluridiscipinarità
- promuovere ed amplificare la diffusione bidirezionale del sapere

Il laureato in Engineering Sciences, per quanto attiene il percorso formativo, deve conoscere approfonditamente gli aspetti metodologico-operativi delle matematiche e delle altre scienze di base ed essere in grado di utilizzare la conoscenza aumentata per interpretare e risolvere i problemi dell'ingegneria. che attengono la meccanica, l'elettronica e d i sistemi elettromeccanici nel senso più generale del termine.

L'articolazione del percorso formativo parte da un piedistallo culturale molto solido di materie di Base (ben 69 CFU), impiegato successivamente per l'apprendimento dei contenuti nelle materie Caratterizzanti (51 CFU ed Affini 18 CFU). Vengono poi dedicati 3CFU per la conoscenza di almeno una lingua dell'UE oltre all'inglese, 3CFU per i tirocini formativi e di orientamento e 6CFU per la prova finale. Restano 30CFU a scelta dello studente da selezionare da un insieme corposo di materie in diverse discipline. La scelta opportuna di tale insieme di crediti potrà favorire l'inserimento dello studente in alcune Lauree Magistrali della nostra Facoltà.

I laureati in Engineering Sciences immessi nelle Lauree Magistrali contribuiranno significativamente, in virtù della loro forte ed inusuale preparazione di base, ad una efficace disseminazione di conoscenza per il beneficio dei colleghi e della didattica in generale.

Le conoscenze relative alle scienze dell'ingegneria, che includono la risoluzione di problemi ingegneristici mediante un'analisi del problema, pianificazione di una sperimentazione o analisi numerica, analisi dei risultati e del loro impatto nel contesto sociale e fisico-ambientale, vengono acquisite principalmente nelle materie caratterizzanti, affini e in modo particolare nella fase riguardante le attività formative finalizzate. In tali corsi vengono trattati aspetti progettuali, tipici

dell'ingegneria meccanica, e dell'elettronica ma anche organizzativi-gestionali, senza trascurare quelli etici e professionali. La capacità di comunicare efficacemente in modo scritto e orale, presupposto di ogni positiva interazione sociale, in questo caso in lingua inglese, viene acquisita nei corsi durante l'intero percorso formativo attraverso elaborati, verifiche in itinere, esami orali e la stesura delle tesi di laurea. Il percorso formativo prevede inoltre l'utilizzo, in numerosi corsi, di testi specialistici e pubblicazioni scientifiche in lingua inglese che potranno contribuire a migliorare la capacità comunicativa anche in contesti scientifici internazionali.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea in Engineering Sciences comprende unità didattiche ed altre attività formative per un totale di 180 crediti. Il piano di studi ufficiale è il seguente.

The 3-year degree in Engineering Sciences includes 180 credits of didactic units and formative activities. The official educational path is the following.

MANDATORY COURSES	YEAR	SEMESTER	CREDITS
Engineering Economics	1	1	6
Fundamentals of Chemistry	1	1	9
Mathematical Analysis I	1	1	12
Fundamentals of Computing	1	2	9
Linear Algebra and Geometry	1	2	9
Physics I	1	2	12
Electrical Network Analysis	2	1	9
Mathematical Analysis II	2	1	9
Physics II	2	1	9
Analogue Electronics	2	2	9
Feedback Control Systems	2	2	9
Mechanics of Materials and Structures	2	2	9
Thermodynamics and Heat Transfer	2	2	9
Digital Electronics	3	1	9
Kinematics and Dynamics of Mechanisms	3	1	9
Insegnamenti a scelta dello studente (ASS) Courses that can be chosen by the student			30
Attività formative(AFF) Formative activities			3
Lingua straniera Foreign language			3
Prova finale Final project			6

Blocks of mandatory courses left at students to make a choice:

COURSES	YEAR	SEMESTER	CREDITS
Electronic Engineering			
High Performance Electronics	3	1	6
Laboratory of Sensors	3	2	9
Experimental Electronics	3	2	6
VLSI Circuit and System Design	3	2	9
Energy and Mechanical Engineering			
Fluid machinery	3	1	6
Manufacturing Technologies	3	2	9
Energy systems	3	2	6
Machine Design	3	2	9
ICT and Internet Engineering			
Electromagnetic Fields	3	1	6
Networking and Internet	3	2	9
Fundamentals of Telecommunications	3	2	9
Digital Signal Processing	3	2	6

Per maggiori informazioni si consulti il sito web: http://www.engineering-sciences.uniroma2.it
For more information visit our web-site: http://www.engineering-sciences.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Profilo con solida preparazione di base e competenze in Meccanica, Energetica ed Elettronica

- funzione in un contesto di lavoro L'ingegnere laureato in Engineering Sciences si pone tra l'ingegneria industriale e quella dell'informazione colmando così un vuoto di competenze per tutte quelle applicazioni in cui meccanica, energetica ed elettronica giocano un ugual ruolo.
- competenze associate alla funzione
 Competenze di progettazione, realizzazione e gestione di applicazioni e processi industriali complessi
- sbocchi occupazionali
 Industrie elettromeccaniche e di produzione e gestione dell'energia.

<u>INTRODUZIONE</u>

È attivato un corso di laurea magistrale a ciclo unico di durata quinquennale: Ingegneria EDILE-ARCHITETTURA

INGEGNERIA EDILE-ARCHITETTURA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il percorso formativo è compreso tra quelli nel settore dell'architettura che sono oggetto di reciproco riconoscimento tra Stati membri dell'Unione europea, quale stabilito conformemente all'articolo 7 della direttiva 85/384/CEE e dalla successiva Direttiva 2005/36/CE (in particolare, l'Allegato V come aggiornato dalla GUE del 17 ottobre 2013).

Al compimento degli studi viene conseguito il titolo di dottore magistrale in ingegneria edilearchitettura.

Obiettivo del corso di studi è quello di formare una figura professionale qualificata che, alla specifica padronanza delle metodologie e delle strumentazioni operative orientate a progettare opere nel campo dell'architettura e dell'ingegneria, accompagni la capacità di poter seguire con competenza la completa e corretta esecuzione dell'opera ideata.

Il corso di laurea ha un ordinamento specificamente strutturato nel rispetto della direttiva citata che prescrive che, nell'ambito del corso, gli insegnamenti siano equilibratamente ripartiti tra gli aspetti teorici e pratici al fine di assicurare il raggiungimento:

- della capacità dì creare progetti architettonici che soddisfino le esigenze estetiche e tecniche;
- di una adeguata conoscenza della storia e delle teorie dell'architettura nonché delle arti, tecnologie e scienze umane ad essa attinenti;
- di una conoscenza delle belle arti in quanto fattori che possono influire sulla qualità della concezione architettonica;
- di un'adeguata conoscenza in materia di urbanistica, pianificazione e tecniche applicate nel processo di pianificazione;
- della capacità di cogliere i rapporti tra uomo e creazioni architettoniche e tra creazioni architettoniche e il loro ambiente, nonché la capacità di cogliere la necessità di adeguare tra loro creazioni architettoniche e spazi, in funzione dei bisogni e della misura dell'uomo;
- della capacità di capire l'importanza della professione e delle funzioni dell'architetto nella società, in particolare elaborando progetti che tengano conto dei fattori sociali;
- di una conoscenza dei metodi d'indagine e di preparazione del progetto dì costruzione;
- della conoscenza dei problemi di concezione strutturale, di costruzione e di ingegneria civile connessi con la progettazione degli edifici;
- di una conoscenza adeguata dei problemi fisici e delle tecnologie nonçhé della funzione degli edifici, in modo da renderli internamente confortevoli e proteggerli dai fattori climatici;
- di una capacità tecnica che consenta di progettare edifici che rispondano alle esigenze degli utenti, nei limiti imposti dal fattore costo e dai regolamenti in materia di costruzione;

 di una conoscenza adeguata delle industrie, organizzazioni, regolamentazioni e procedure necessarie per realizzare progetti di edifici e per l'integrazione dei piani nella pianificazione.

L'impostazione della didattica è tale da assicurare l'acquisizione di capacità creative e di professionalità legate alla realtà operativa che si deve presupporre in continuo divenire; a tal fine sono ammessi itinerari didattici sperimentali e comunque equilibrati sotto il profilo umanistico e scientifico.

Il percorso formativo si sviluppa, a partire dai primi anni di corso, attraverso attività formative di base che approfondiscono le discipline matematiche, storiche, fisico-tecniche ed impiantistiche applicate all'architettura oltre che le discipline di rappresentazione dell'architettura e dell'ambiente. Negli anni successivi lo studente affronta attività formative caratterizzanti il corso, in particolare la progettazione architettonica e la progettazione urbanistica, la statica, la scienza e la tecnica delle costruzioni architettoniche e i fondamenti della geotecnica, le tecniche costruttive dell'architettura e le tecniche di produzione edilizia e di cantiere, le teorie e le tecniche per il restauro, le discipline estimative, economiche, sociali, giuridiche per l'architettura e l'urbanistica. Il percorso viene completato da altre attività formative complementari in settori affini o integrativi all'ingegneria, della costruzione e all'architettura. A completamento del percorso lo studente può scegliere altre attività formative calibrate in funzione delle sue particolari attitudini, attività pratiche di tirocinio e di stage. Per conseguire il titolo deve, infine, elaborare, guidato da uno o più docenti, una tesi finale.

I vari insegnamenti sono articolati in lezioni frontali, esercitazioni applicative, esercitazioni progettuali, laboratori progettuali sotto la guida collegiale di più docenti per accrescere negli allievi la capacità di analisi e di sintesi dei molteplici fattori che intervengono nella progettazione architettonica e urbanistica

OFFERTA DIDATTICA PROGRAMMATA

Il corso di laurea magistrale a ciclo unico in Ingegneria Edile - Architettura (LM-4 c.u. Architettura e ingegneria edile-architettura, quinquennale) comprende unità didattiche ed altre attività formative per un totale di 300 crediti.

Il piano di studi ufficiale del corso di laurea è il seguente:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi Matematica I	1	1	8
Geometria	1	1	8
Storia dell'architettura e dell'arte 1 + Laboratorio	1	1	10
Disegno dell'architettura + Laboratorio	1	2	10
Fisica Generale I	1	2	8

Analisi matematica II	2	1	8
Architettura tecnica 1 + Laboratorio	2	2	10
Tecnologia dei materiali e chimica applicata	2	1	8
Composizione architettonica 1 + Laboratorio	2	2	10
Statica	2	2	8
Fisica tecnica ambientale	3	1	8
Scienza delle costruzioni	3	1	8
Tecnica urbanistica + Laboratorio	3	1	10
Composizione architettonica 2 + <i>Laboratorio</i>	3	2	10
Architettura tecnica 2 + Laboratorio	3	2	10
Legislazione delle opere pubbliche	3	2	8
Composizione architettonica 3 + Laboratorio	4	1	10
Costruzioni idrauliche urbane	4	1	8
Rilievo dell'architettura + <i>Laboratorio</i>	4	2	10
Fondamenti di geotecnica	4	2	8
Tecnica delle costruzioni + Laboratorio	4	2	10
Restauro architettonico + Laboratorio	4	2	10
Composizione architettonica 4	5	1	8
Economia ed estimo civile	5	1	8
Urbanistica + Laboratorio	5	1	10
Storia dell'architettura e dell'arte 2	5	2	10
Un insegnamento a scelta tra			
Organizzazione del cantiere + Laboratorio	5	2	10
Tecnologia degli elementi costruttivi + Laboratorio	5	2	10
Un insegnamento a scelta tra			
Progettazione integrale	5	1	10
Progetti per la ristrutturazione e il risanamento edilizio	5	1	10
Un insegnamento a scelta tra			
Costruzione dell'architettura	5	2	10
Progettazione impiantistica per l'architetteura	5	1	10
Statica delle costruzioni storiche in muratura	5	2	10

Strutture speciali	5	1	10
Uno degli esami a scelta precedenti non già sostenuto	5		10
Altre attività: lingua straniera			5
Altre attività formative			15
Laboratorio di tesi di laurea			16

NOTE: per maggiori informazioni si consulti il sito web: http://www.dicii.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Architetto

funzione in un contesto di lavoro

I laureati potranno svolgere, oltre alla libera professione, funzioni di elevata responsabilità in istituzioni ed enti pubblici e privati, oltre che in studi professionali e società di progettazione, operanti nei campi dell'architettura, dell'urbanistica e della costruzione edilizia.

> competenze associate alla funzione

- analisi dei fabbisogni e individuazione delle risorse;
- progettazione strutturale di nuove opere d'arte, con particolare riferimento a quelle strutture (ponti urbani, grandi coperture, ecc.) la cui forma architettonica incide profondamente sulla città e sul paesaggio;
- progettazione architettonica ed esecutiva dei nuovi organismi architettonici, con particolare riferimento alla fattibilità costruttiva in rapporto anche alle problematiche procedurali, energetiche e all'innovazione tecnologica;
- recupero e restauro del patrimonio edilizio storico monumentale in rapporto alla tutela, risanamento e valorizzazione degli organismi edilizi, degli elementi costruttivi e e dei materiali;
- progettazione urbanistica in rapporto alle dinamiche di sviluppo e di trasformazione della struttura urbana; progettazione tecnologica in riferimento alla qualità del prodotto edilizio nonché il controllo delle fasi esecutive della realizzazione edilizia, tradizionale ed industrializzata, anche in rapporto alle condizioni di sicurezza.

sbocchi occupazionali

I principali sbocchi occupazionali previsti dai corsi di laurea magistrale della classe sono:

- attività nelle quali i laureati magistrali della classe sono in grado di progettare, attraverso gli strumenti propri dell'architettura e dell'ingegneria edile-architettura, dell'urbanistica e del restauro architettonico e avendo padronanza degli strumenti

relativi alla fattibilità costruttiva ed economica dell'opera ideata, le operazioni di costruzione, trasformazione e modificazione dell'ambiente fisico e del paesaggio, con piena conoscenza degli aspetti estetici, distributivi, funzionali, strutturali, tecnicocostruttivi, gestionali, economici e ambientali e con attenzione critica ai mutamenti culturali e ai bisogni espressi dalla società contemporanea.

attività nelle quali i laureati magistrali della classe predispongono progetti di opere e ne dirigono la realizzazione nei campi dell'architettura e dell'ingegneria edilearchitettura, dell'urbanistica, del restauro architettonico, ed in generale dell'ambiente urbano e paesaggistico coordinando a tali fini, ove necessario, altri magistrali e operatori.

<u>INTRODUZIONE</u>

Sono attivati tredici corsi di studio di durata biennale e pertanto possono conseguirsi le seguenti Lauree Magistrali:

Ingegneria per L'AMBIENTE E IL TERRITORIO
Ingegneria dell'AUTOMAZIONE
Ingegneria CIVILE
Ingegneria ELETTRONICA
Ingegneria ENERGETICA
Ingegneria GESTIONALE
Ingegneria INFORMATICA
Ingegneria MECCANICA
Ingegneria MEDICA
Ingegneria e TECNICHE DEL COSTRUIRE
ICT AND INTERNET ENGINEERING (corso di Laurea Magistrale lingua inglese)
MECHATRONICS ENGINEERING (corso di Laurea Magistrale lingua inglese)

CHEMISTRY FOR NANO-ENGINEERING (corso di Laurea Magistrale lingua inglese)

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA PER L'AMBIENTE E IL <u>TERRITORIO</u>

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Formare un ingegnere con ampia preparazione interdisciplinare, finalizzata alla progettazione ed alla realizzazione di opere di ingegneria civile (idraulica, geotecnica, urbanistica, trasporti), impiantistica (macchine), ambientale (trattamento acque, rifiuti e bonifica dei siti contaminati, inquinamento elettromagnetico), energetica (fonti rinnovabili ed energie sostenibili), a livello di specializzazione, in modo consapevole dei vincoli, delle condizioni, delle implicazioni operative poste dalle esigenze di sicurezza, tutela e compatibilità ambientale e territoriale.

Il percorso formativo si estrinseca conformemente ai predetti obiettivi, e comprende unità didattiche ed altre attività formative per un totale di 120 CFU. Le materie a scelta dello studente sono fissate a minimo 12 CFU.

Il corso di Laurea Magistrale in Ingegneria per l'Ambiente e il Territorio è strutturato in base ad un percorso comune a tutti gli studenti di 84 CFU da conseguire sostenendo positivamente le prove di esame per gli insegnamenti obbligatori (caratterizzanti ed affini). Il secondo anno prevede inoltre il completamento formativo attraverso 24 CFU a scelta di cui 12-18 senza alcun vincolo (esami a scelta) ed i restanti 6-12 tra gli insegnamenti affini ed integrativi da scegliere a cura dello studente ed indicati nel Regolamento didattico, attraverso i quali lo studente può completare la propria formazione con insegnamenti congruenti le finalità e gli obiettivi del corso di Laurea Magistrale in questione, in quanto sostanziali approfondimenti in aree dell'ingegneria civile, della sostenibilità e sicurezza ambientali e territoriali. Gli ulteriori 12 CFU sono da conseguire attraverso congrue attività formative e professionalizzanti oltre alla prova finale di conseguimento del titolo di Laurea Magistrale.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria per l'Ambiente e il Territorio comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il Corso di Laurea Magistrale in Ingegneria per l'Ambiente ed il Territorio è strutturato in base ad un percorso comune a tutti gli studenti di 84 CFU da conseguire sostenendo positivamente le prove di esame per gli insegnamenti obbligatori (caratterizzanti ed affini). Il secondo anno prevede inoltre il completamento formativo attraverso 24 CFU a scelta di cui 12-18 senza alcun vincolo (esami a scelta) ed i restanti 6-12 tra gli insegnamenti affini ed integrativi da scegliere a cura dello studente in un elenco stabilito dal CdLM, attraverso i quali lo studente può completare la propria formazione. Gli ulteriori 12 CFU sono da conseguire attraverso congrue attività formative e professionalizzanti oltre alla prova finale di conseguimento del titolo di Laurea Magistrale.

INSEGNAMENTI CARATTERIZZANTI	ANNO	SEMESTRE	CREDITI
Costruzioni Idrauliche	1	1	12
Dinamica degli inquinanti ⁽¹⁾	1	1	9
Bonifica dei siti contaminati ⁽¹⁾	1	2	6
Processi e Metodi per la gestione della Sicurezza Territoriale	1	1	6
Telerilevamento e Cartografia	1	2	9
Geologia Applicata	1	2	6
Geotecnica per la Difesa del territorio	1	2	6
INSEGNAMENTI AFFINI E INTEGRATIVI	ANNO	SEMESTRE	CREDITI
Macchine applicate alle tecnologie ambientali	2	1	6
Impianti trattamento rifiuti	2	1	12
Fognature urbane ⁽¹⁾	2	2	6
Impianti trattamento acque ⁽¹⁾	2	2	6
Insegnamenti a scelta tra quelli presenti in elenco*			12
Insegnamenti a scelta dello studente	2		12
Attività formative (AFF)	2		3
Prova finale	2		9

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studio:

* ELENCO INSEGNAMENTI A SCELTA TRA GLI AFFINI E INTEGRATIVI	ANNO	SEMESTRE	CREDITI
Inquinanmento Elettromagnetico	2	1	6
Ingegneria costiera	2	2	6
Misure Ambientali	2	1	6
Frane e Stabilità dei Pendii	2	2	6
Teoria dei Sistemi di trasporto sostenibile	2	2	6

Lo studente può sostituire tra i 12 crediti riguardanti gli insegnamenti a scelta tra quelli presenti in elenco*, in un piano di studio individuale, insegnamenti per un totale di 6 CFU scegliendo tra gli insegnamenti impartiti in altri Corsi di Studi di Ingegneria o compresi nell'elenco seguente:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Tecnica Urbanistica	2	1	9
Trasporti e Territorio	2	1	6
Monitoraggio Satellitare	2	2	9

Fonti Rinnovabili d'energia	2	2	6
Interazione Macchine e Ambiente	2	1	6

Ulteriori informazioni ed eventuali aggiornamenti sul sito web:

http://www.dicii.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere civile e ambientale

- funzione in un contesto di lavoro Le funzioni professionali sono quelli previste per un ingegnere civile e ambientale con competente atte ad ideare, pianificare, progettare e gestire sistemi, processi e servizi complessi e/o innovativi.
- competenze associate alla funzione I principali sbocchi occupazionali previsti dai corsi di laurea magistrale della classe sono quelli dell'innovazione e dello sviluppo della produzione, della progettazione avanzata, della pianificazione e della programmazione, della gestione dei sistemi complessi, sia nella libera professione, sia delle imprese manufatturiere o di servizi che nell'amministrazione pubbliche.

> sbocchi occupazionali

I laureati magistrali potranno trovare occupazione presso imprese, enti pubblici e privati, studi professionali per la progettazione, pianificazione, realizzazione e gestione di opere e sistemi di controllo e monitoraggio dell'ambiente e del teritorio, di difesa del suolo, di gestione dei rifiuti, delle materie prime e delle risorse ambientali, geologiche ed energetiche e per la valutazione degli impatti e della compatibilità ambientale di piani e opere.

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA DELL'AUTOMAZIONE

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

L'obiettivo formativo del corso di laurea magistrale in ingegneria dell'automazione è la formazione di figure professionali che operino (sia in ambito nazionale sia in ambito internazionale, specialmente quello europeo) nel settore del controllo e dell'automazione dei sistemi e dei processi, in aziende e centri di ricerca sia pubblici sia privati.

I laureati magistrali in ingegneria dell'automazione devono:

- conoscere in modo approfondito, sia da un punto di vista metodologico sia applicativo, le tecniche e le metodologie delle scienze di base (la matematica, la fisica e la chimica), ed essere capaci di utilizzare tali conoscenze per interpretare e descrivere per mezzo di modelli formali (logico/matematici) i problemi dell'ingegneria in generale e, in particolare, quelli dell'ingegneria dell'automazione, con particolare riferimento alla scrittura di modelli formali di processi e sistemi, alla loro simulazione, al progetto di leggi/strategie di controllo.
- conoscere in modo approfondito, sia da un punto di vista metodologico sia applicativo, le tecniche e le metodologie delle scienze dell'ingegneria, ed in particolare dell'automazione, della meccanica, dell'elettronica e dell'informatica, con particolare riferimento alla capacità di identificare, formulare e risolvere i problemi che possono venir posti nella vita professionale, utilizzando metodi, tecniche e strumenti aggiornati;
- essere capaci di utilizzare tecniche e strumenti per la progettazione di componenti o di interi sistemi di automazione, con particolare riferimento alla progettazione di leggi/strategie di controllo dei processi/sistemi;
- essere capaci di condurre esperimenti, di analizzarne e interpretarne i dati per mezzo di ausili informatici, con il particolare scopo di identificare formalmente un processo/sistema, così da poterlo poi caratterizzare attraverso un modello matematico;
- essere capaci di comprendere l'impatto delle proprie scelte progettuali nel contesto sociale e fisico-ambientale in cui si opera, anche sulla base della conoscenza delle proprie responsabilità professionali ed etiche;
- conoscere i contesti aziendali e la cultura d'impresa nei suoi aspetti economici, gestionali e organizzativi ed, in particolare, saper caratterizzare tali aspetti in modo formale, con riferimento ai contesti contemporanei generali;
- avere capacità relazionali e di lavoro di gruppo, ed avere la capacità di prendere decisioni ben motivate dall'analisi del contesto in cui si opera;
- essere capaci di comunicare efficacemente, in forma scritta e orale, in almeno una lingua dell'Unione Europea, oltre l'italiano;
- possedere gli strumenti cognitivi di base per l'aggiornamento continuo delle proprie conoscenze, sia attraverso il proseguimento degli studi attraverso corsi di master o dottorato, sia attraverso lo studio individuale su libri e riviste scientifiche del campo.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria dell'AUTOMAZIONE comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Metodi di ottimizzazione per big data	1	1	12
Robotica industriale	1	1	12
Ingegneria di Internet e Web *	1	1	9
Controllo robusto e adattativo	1	2	9
Meccanica applicata alle macchine*	1	2	9
Ottimizzazione nei sistemi di controllo	1	2	12
Analisi e sintesi di sistemi non lineari	2	1	12
Sistemi operativi open-source, embedded e real-time	2	1	6
Sicurezza informatica e Internet*	2	2	9
Insegnamenti a scelta dello studente (ASS)			15
Attività formative (AFF)			3
Prova finale			12

^(*) Tali insegnamenti non possono essere inseriti nel piano della Laurea Magistrale qualora lo studente ne abbia già sostenuto e superato l'esame relativo durante la Laurea Triennale, o abbia già sostenuto e superato l'esame di un corso equivalente. In tal caso devono essere sostituiti con altri insegnamenti, sentito il Coordinatore del Corso di Studio.

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studio:

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Automazione e robotica con laboratorio*	1	1	12
Controlli automatici*	1	1	6
Complementi di probabilità e statistica	1	1	9
Teoria dei sistemi*	1	2	6
Sistemi distribuiti e cloud computing*	2	1	9
Teoria dei giochi e delle decisioni	2	1	9
Ingegneria del software e prøgettazione Web*	2	1	9
Performance modeling of computer systems and networks*	2	1	9
Web mining and Retrieval	2	2	6

^(*) Tali insegnamenti non possono essere inseriti nel piano della Laurea Magistrale qualora lo studente ne abbia già sostenuto e superato l'esame relativo durante la Laurea Triennale, o abbia già sostenuto e superato l'esame di un

corso equivalente. In tal caso devono essere sostituiti con altri insegnamenti, sentito il Coordinatore del Corso di Studio.

I 15 crediti a scelta dello studente possono essere scelti al di fuori dell'elenco riportato, tra i corsi insegnati negli altri Corsi di Studio di Ingegneria/Ateneo, purché congruenti con gli obiettivi formativi del corso di laurea. Lo studente deve presentare, seguendo le regole del Corso di Studio, un piano di studi individuale che specifichi gli insegnamenti a scelta. Si consiglia di consultare il Coordinatore del Corso di Studio per suggerimenti in proposito.

Per cause di forza maggiore la ripartizione temporale (in anni e semestri) dei moduli didattici potrebbe subire variazioni rispetto a quella indicata.

Ulteriori informazioni ed eventuali aggiornamenti sul sito web:

http://dicii.uniroma2.it/?PG=48.12.1

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere dell'Automazione

- funzione in un contesto di lavoro Ingegnere progettista ed analista di sistemi di controllo in: enti di ricerca e industrie dei settori spaziale, nucleare e della difesa; aziende impegnate nella produzione industriale (automobilistica, aerea, manifatturiera, farmaceutica); impianti di produzione, trasformazione e distribuzione dell'energia; impianti petrolchimici e farmaceutici
- Competenze associate alla funzione L'ingegnere dell'automazione ha competenze che gli permettono di operare in tre aree principali: le aziende che producono e forniscono sistemi d'automazione, le aziende e le società che utilizzano impianti automatizzati di produzione o gestiscono servizi d'elevata complessità, le società d'ingegneria e di consulenza che studiano e progettano impianti e sistemi complessi, tecnologicamente sofisticati.
- sbocchi occupazionali L'ingegnere dell'automazione può trovare impiego in tutte le industrie, aziende ed enti nei quali i sistemi di predizione, diagnosi, controllo e supporto alle decisioni sono tecnologicamente rilevanti.

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA CIVILE

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

La Laurea Magistrale in Ingegneria Civile persegue i seguenti obiettivi principali:

- conoscenza approfondita degli aspetti metodologici, applicativi e costruttivi delle scienze dell'ingegneria civile, con particolare riguardo alle applicazioni ed alla modellazione del comportamento meccanico dei solidi, dei fluidi, delle terre e delle loro interazioni;
- conoscenza approfondita del disegno e dell'inserimento nell'ambiente delle opere infrastrutturali, puntuali, a rete ed architettoniche;
- capacità di valutare la fattibilità, la sostenibilità tecnico-economica e di progettare integralmente sistemi complessi ed infrastrutture civili.

Il percorso formativo, facendo leva sulla formazione di base fornita dalla Laurea in Ingegneria Civile (scienze applicate, meccanica del continuo ed elementi di progettazione) e con la dotazione di strumenti di indagine ed interpretazione così acquisita, prevede l'approfondimento e la creazione di figure professionalizzate nella pianificazione, progettazione e gestione delle infrastrutture civili attraverso i seguenti principali insegnamenti e discipline: teoria delle strutture, dinamica delle strutture, tecnica delle costruzioni, tecnica delle fondazioni e degli scavi, costruzioni di strade ferrovie ed aeroporti, costruzioni idrauliche, trasporti, economia e diritto applicati all'ingegneria, sicurezza ed organizzazione del cantiere.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria Civile comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il piano di studi ufficiale dell'indirizzo STRUTTURE e GEOTECNICA è il seguente:

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Costruzioni Idrauliche	1	1	9
Fondazioni	1	2	9
Una materia a scelta (Gruppo A)	1		9
Una materia a scelta (Gruppo B)	1		9
Una materia a scelta (Gruppo B)	1		9
Costruzioni di Strade, Ferrovie ed Aeroporti	2	1	9
Scavi e Opere di Sostegno	2	1	9
Una materia a scelta (Gruppo B)	2		9
Una materia a scelta (Gruppo B o C)	2		9
Una materia a scelta (Gruppo B o C)	2		9

Insegnamenti a scelta dello studente (ASS)			18
Attività formative (AFF)			3
Prova finale			9
GRUPPO A			
Complementi di Scienza delle Costruzioni	1	1	9
Meccanica dei Materiali e della Frattura	1	1	9
Teoria delle Strutture	1	2	9
GRUPPO B			
Statica delle Costruzioni Storiche in Muratura	1	2	9
Complementi di Tecnica delle Costruzioni	1	2	9
Calcolo Automatico delle Strutture	2	1	9
Strutture Speciali	1	1	9
Costruzioni in Zona Sismica	2	1	9
GRUPPO C			
Geotecnica Sismica	2	2	9
Ponti e Gallerie	2	2	9

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studio:

- > tutti gli insegnamenti dell'indirizzo Strutture e Geotecnica
- > tutti gli insegnamenti dell'indirizzo Infrastrutture e Sistemi di Trasporto

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Fognature Urbane	2	2	6
Ingegneria Costiera	2	2	6
Materiali Compositi	2	2	6
Legislazione Opere Pubbliche	2	2	6
Laboratorio Ponti e Gallerie	2	2	6

Il piano di studi ufficiale dell'indirizzo INFRASTRUTTURE e SISTEMI DI TRASPORTO è il seguente:

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Costruzioni Idrauliche	1	1	9
Fondazioni	1	2	9
Una materia a scelta (Gruppo A)	1		9

Una materia a scelta (Gruppo B)	1		9
Una materia a scelta (Gruppo B)	1		9
Costruzioni di Strade, Ferrovie ed Aeroporti	2	1	9
Scavi e Opere di Sostegno	2	1	9
Una materia a scelta (Gruppo D)	2		9
Una materia a scelta (Gruppo D)	2		9
Una materia a scelta (Gruppo D)	2		9
Insegnamenti a scelta dello studente (ASS)			18
Attività formative (AFF)			3
Prova finale			9
GRUPPO A			
Complementi di Scienza delle Costruzioni	1	1	9
Meccanica dei Materiali e della Frattura	1	1	9
Teoria delle Strutture	1	2	9
GRUPPO B			
Statica delle Costruzioni Storiche in Muratura	1	2	9
Complementi di Tecnica delle Costruzioni	1	2	9
Calcolo Automatico delle Strutture	2	1	9
Strutture Speciali	1	1	9
Costruzioni in Zona Sismica	2	1	9
Ponti e Gallerie	2	2	9
GRUPPO D			
Teoria e Tecnica della Circolazione + Esercizio e Controllo delle Reti di Trasporto	2	1	9
Trasporti Urbani e Metropolitani + Gestione ed Esercizio dei Sistemi di Trasporto	2	2	9
Logistica Territoriale	2	2	9

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studio:

- > tutti gli insegnamenti dell'indirizzo Strutture e Geotecnica
- > tutti gli insegnamenti dell'indirizzo Infrastrutture e Sistemi di Trasporto

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Fognature Urbane	2	1	6
Gestione della Manutenzione delle Infrastrutture	2	2	6

Ingegneria Costiera	2	2	6
Materiali Compositi	2	2	6
Legislazione Opere Pubbliche	2	2	6
Laboratorio Ponti e Gallerie	2	2	6

Per maggiori informazioni si consulti il sito web: www.dicii.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Civile di Secondo Livello

- funzione in un contesto di lavoro Le principali funzioni professionali sono la responsabilità di progettazione sia nella libera professione che all'interno di studi di progettazione
- competenze associate alla funzione
 - libera professione
 - lavoro in studi di ingegneria
 - lavoro in enti o nella pubblica amministrazione

sbocchi occupazionali

I principali sbocchi occupazionali previsti dai corsi di laurea magistrale della classe sono quelli dell'innovazione e dello sviluppo della produzione, della progettazione avanzata, della pianificazione e della programmazione, della gestione di sistemi complessi, sia nella libera professione, sia nelle imprese manifatturiere o di servizi e nelle amministrazioni pubbliche. I laureati magistrali potranno trovare occupazione presso imprese di costruzione e manutenzione di opere civili, impianti e infrastrutture civili; studi professionali e società di progettazione di opere, impianti e infrastrutture; uffici pubblici di progettazione, pianificazione, gestione e controllo di sistemi urbani e territoriali; aziende, enti, consorzi ed agenzie di gestione e controllo di sistemi di opere e servizi; società di servizi per lo studio di fattibilità dell'impatto urbano e territoriale delle infrastrutture.

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRONICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

L'Ingegneria Elettronica è una specializzazione nell'area delle Tecnologie dell'Informazione e della Comunicazione (ICT), orientata per tradizione e cultura a fornire gli strumenti necessari per la comprensione, la valutazione e la progettazione di circuiti e sistemi elettronici nei settori più diversi.

È' evidente agli occhi di tutti l'importanza che l'elettronica ha assunto e sempre più sta assumendo, oltre che nel settore dell'ICT, in altri ambiti, quali i trasporti, i beni culturali, l'ambiente, la biomedicina, il settore agroalimentare, la meccanica, la demotica, i sistemi di controllo industriali.

La previsione di due livelli individua due diverse esigenze, la prima quella corrispondente alla necessità di un numero adeguato di tecnici in grado di fornire, opportunamente guidati, prestazioni professionali nel settore, la seconda quella di preparare ingegneri in grado di affrontare e risolvere problemi nuovi o di elavata complessità.

Pur nella separazione delle lauree prevista dalla nuova normativa, la laurea magistrale ha come presupposto le competenze acquisite e gli strumenti professionali acquisiti nella laurea di primo livello, che vengono utilizzati per affrontare le problematiche progettuali di specifici settori applicativi.

La laurea magistrale in ingegneria elettronica prevede diversi indirizzi, orientati alle applicazioni di maggiore interesse sia nell'area geografica di riferimento che per interesse oggettivo. In particolare si spazia dall'elettronica per l'energia a quella per la salute e l'ambiente, dall'elettronica per l'industria a quella per lo spazio e la sicurezza, oltre che per le telecomunicazioni e la multimedialità.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria Elettronica comprende unità didattiche ed altre attività formative per un totale di almeno 120 CFU. Le unità didattiche prevedono 6 insegnamenti obbligatori comuni (54 CFU), un pacchetto formativo a scelta secondo l'indirizzo (32 CFU), ulteriori 12 CFU a scelta dello studente, 3 CFU per attività formative e 15 CFU associati alla prova finale. Il piano di studi ufficiale è il seguente.

Insegnamenti comuni, a scelta dello studente, attività formative e prova finale

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Dispositivi Elettronici e Sensori	1	1	9
Elettronica per Alta Frequenza I	1	1	9
Optoelettronica	1	1	9

Progettazione di Circuiti e Sistemi VLSI	1	2	9	
Sintesi dei Circuiti	1	2	9	
Controllo dei Sistemi Industriali	1	2	9	
Insegnamenti a scelta dello studente (ASS)	1-2		12	
Attività formative (AFF)	1-2		3	
Prova finale	2		12	

Indirizzo a) Elettronica per l'Energia	ANNO	SEMESTRE	CREDITI
Elettronica Organica e Biologica	2	1	9
Elettronica di Potenza	2	1	9
Laboratorio di Dispositivi e Sistemi per l'Energia e l'Efficienza Energetica	2	2	12
Elettronica per l'Energia Rinnovabile	2	2	6
Indirizzo b) Elettronica per l'Industria	ANNO	SEMESTRE	CREDITI
Controllo di Sistemi non Lineari	2	1	9
Identificazione di Sistemi Dinamici	2	1	6
Elettronica di Potenza	2	1	9
Controllo di Macchine Elettriche	2	2	6
Sistemi Adattativi	2	2	6
Indirizzo c) Elettronica per la Salute e l'Ambiente	ANNO	SEMESTRE	CREDITI
Misure ed Analisi Dati	1	2	12
Sensori Chimici e Biochimici	2	1	6
Pattern Recognition e Machine Learning	2	1	6
Ambient Assist Living	2	1	6
Circuiti e Algoritmi per il Trattamento di Segnali Multimediali e Biosegnali	2	2	6
Indirizzo d) Elettronica per lo Spazio e la Sicurezza	ANNO	SEMESTRE	CREDIT
Sistemi Elettronici per lo Spazio	1	2	6
Elettronica per Alta Frequenza II	2	1	9
Cicrcuiti Distribuiti per Alta Frequenza	2	1	9
Sistemi di Misura ad Alta Frequenza	2	2	6
Sistemi Elettronici per la Sicurezza	2	2	6
Indirizzo e) Elettronica per le Telecomunicazioni e la Multimedialità	ANNO	SEMESTRE	CREDIT
Elettronica per le Telecomunicazioni	2	1	12
Sistemi Digitali per l'Elaborazione di Segnali e Immagini	1	1	6
Architetture e Sistemi VLSI per il DSP	2	2	12
Tecnologie Circuitali per il Suono	2	2	6

Insegnamenti a scelta dello studente coerenti con il progetto formativo suggeriti dal Consiglio di Corso di Studio per indirizzo e l'anno consigliato secondo l'indirizzo

INSEGNAMENTI	Indirizzi	ANNO	SEMESTRE	CREDITI
Simulazione Numerica	a	1	2	6
Nanoelettronica	a	2	1	6
Robotica con Laboratorio	b	1	1	6
Misure ed Analisi Dati	b	1	2	6 (o 12)
Elettronica di Interfaccia e Circuiti Integrati Analogici	С	1	2	6
Micro-Nano Sistemi e Tecnologie	c, d	2, 1	2	6
Elaborazioni di Immagini	c, e	2	2	6
Misure Elettriche 2	С	2	2	6
Wireless Electromagnetic Technologies	d	2	1	6
Affidabilità di Componenti e Sistemi VLSI	d, e	2	1	6
Sistemi Elettronici per lo Spazio	е	1	2	6
Circuiti e Algoritmi per il trattamento di Segnali Multimediali e Biosegnali	e	2	2	6

Per maggiori informazioni si consulti il sito web: http://www.elettronica.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Elettronico

funzione in un contesto di lavoro

I laureati nei corsi di laurea magistrale della classe sono in grado di:

- conoscere approfonditamente gli aspetti teorico-scientifici della matematica e delle altre scienze di base ed essere capaci di utilizzare tale conoscenza per interpretare e descrivere i problemi dell'ingegneria complessi o che richiedono un approccio interdisciplinare;
- conoscere approfonditamente gli aspetti teorico-scientifici dell'ingegneria, sia in generale sia in modo approfondito relativamente a quelli dell'ingegneria elettronica, nella quale sono capaci di identificare, formulare e risolvere, anche in modo innovativo, problemi complessi o che richiedono un approccio interdisciplinare;- essere capaci di ideare, pianificare, progettare e gestire sistemi, processi e servizi complessi e/o innovativi;
- essere capaci di progettare e gestire esperimenti di elevata complessità;
- avere conoscenze nel campo dell'organizzazione aziendale (cultura d'impresa) e dell'etica professionale;

essere dotati di conoscenze di contesto e di capacità trasversali.

> competenze associate alla funzione

I principali sbocchi occupazionali previsti dai corsi di laurea magistrale della classe sono quelli dell'innovazione e dello sviluppo della produzione, della progettazione avanzata, della pianificazione e della programmazione, della gestione di sistemi complessi, sia nella libera professione sia nelle imprese manifatturiere o di servizi che nelle amministrazioni pubbliche. I laureati magistrali potranno trovare occupazione presso imprese di progettazione e produzione di componenti, apparati e sistemi elettronici ed optoelettronici; industrie manifatturiere, settori delle amministrazioni pubbliche e imprese di servizi, che applicano tecnologie e infrastrutture elettroniche per il trattamento, la trasmissione e l'impegno di segnali in ambito civile, industriale e dell'informazione.

> sbocchi occupazionali

- Progettista di componenti elettronici
- Progettista di apparati e sistemi a forte contenuto tecnologico elettronico
- Progettista di sistemi complessi

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ENERGETICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il corso di Laurea Magistrale in Ingegneria Energetica si prefigge di creare un profilo professionale di elevata qualificazione mediante approfondimenti tematici e metodologici nel settore dell'energia.

Più segnatamente, obiettivo di questa Laurea Magistrale è quello di creare un profilo di Ingegnere di adeguata padronanza nei settori delle macchine termiche, idrauliche ed elettriche, dei sistemi per la produzione di energia e nella termofluidodinamica industriale ed ambientale, che sia idoneo a soddisfare le richieste di un significativo settore del mondo del lavoro relativamente alla ideazione, pianificazione, progettazione e gestione di sistemi e processi energetici complessi e/o innovativi.

Il laureato in Ingegneria Energetica di Il livello è in grado di svolgere attività di ricerca di base e di ricerca industriale sui processi e sui sistemi attinenti alla conversione, alla trasformazione e all'utilizzo delle varie forme di energia; è altresì in grado di applicare le conoscenze acquisite e consolidate nelle discipline matematiche, fisiche e chimiche, nella termofluidodinamica teorica ed applicata e nelle tecnologie energetiche per l'ideazione, nonché nella progettazione e gestione dei sistemi e degli impianti energetici e dei loro componenti, garantendo il miglior impiego delle risorse con il minimo impatto ambientale.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria Energetica comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Elettronica Industriale	1	1	9
Fluidodinamica delle Macchine 1	1	1	6
Centrali Termoelettriche	1	2	9
Elettrotecnica Industriale	1	2	9
Fisica dell'Energia Nucleare	1	2	9
Termotecnica 2	1	2	6
2 insegnamenti a scelta tra le materie del gruppo A (Chimica Applicata)	1	*	12
Gestione dei Consumi Energetici	2	1	6
Misure, Controllo e Diagnostica dei Sistemi Energetici	2	1	9

Gestione ed Economia dell'Energia	2	2	6
1 insegnamento a scelta tra le materie del gruppo B (Energie Rinnovabili)	2	2	6
Insegnamenti a scelta dello studente (ASS)			18
Attività formative (AFF)			3
Prova finale			12
Insegnamenti del gruppo A (Chimica Applicata)			
Chimica per l'Energia	1	1	6
Complementi di Chimica	1	2	6
Tecnologie di Chimica Applicata	1	2	6
Insegnamenti del gruppo B (Energie Rinnovabili)			
Fonti Rinnovabili di Energia	2	2	6
Sistemi e Componenti per la Conversione dell'Energia da Fonti Rinnovabili	2	2	6

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studio:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Gestione della Qualità	1/2	1	6
Impianti Tecnici	1/2	1	6
Interazione tra le Macchine e l'Ambiente	1/2	1	6
La Regolazione del Mercato dell'Energia	1/2	1	6
Tecnologia dei Laser di Potenza	1/2	1	6
Teoria dei Sistemi di Trasporto Sostenibili	1/2	1	6
Controllo di Macchine Elettriche	1/2	2	6
Corrosione e Protezione dei Materiali Metallici	1/2	2	6
Fonti Rinnovabili di Energia	1/2	2	6
Gasdinamica	1/2	2	6
Gasdinamica dei Processi Industriali	1/2	2	6
Geotermia e Confinamento della CO2	1/2	2	6
Motori a Combustione Interna	1/2	2	6
Regolamentazione, Mercato e Concorrenza	1/2	2	9
Sistemi e Componenti per la Conversione dell'Energia da Fonti Rinnovabili	1/2	2	6
Sistemi Produttivi e Sostenibilità Energetica	1/2	2	6

Per maggiori informazioni si consulti il sito web: http://www.energetica.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Energetico Magistrale

funzione in un contesto di lavoro

La figura dell'Ingegnere Energetico potrà trovare specifica collocazione in un ampio spettro di attività collegate al settore dell'energia. Le prospettive professionali dell'Ingegnere Energetico, inoltre, saranno sempre più numerose nel futuro in virtù della liberalizzazione del mercato dell'energia, che favorirà il moltiplicarsi di iniziative industriali e territoriali rivolte all'autoproduzione e all'aggregazione di enti in consorzi per la produzione, la distribuzione ed il consumo di energia. In particolare, i possibili sbocchi professionali potrebbero pertanto riguardare:

- le aziende pubbliche e private che si occupano di studi di fattibilità, analisi tecnicoeconomiche e pianificazione nella produzione, nell'impiego e nell'uso razionale dell'energia;
- le industrie che producono, commercializzano o utilizzano macchine ed impianti di conversione e/o trasformazione di energia meccanica, elettrica e termica;
- il settore della pianificazione, della gestione e dell'impiego ottimale dell'energia, anche in virtù della liberalizzazione del mercato dell'energia, che favorirà il moltiplicarsi di iniziative industriali e territoriali rivolte all'autoproduzione e all'aggregazione di enti in consorzi per la produzione, la distribuzione ed il consumo di energia (la legge italiana prevede un'apposita figura di "tecnico responsabile per la conservazione e l'uso razionale dell'energia" per aziende con consumi energetici superiori ad una certa soglia).

> competenze associate alla funzione

Il corso di studi in Ingegneria Energetica intende definire un profilo professionale con una preparazione specialistica nell'ambito delle macchine termiche, idrauliche ed elettriche, dei sistemi per la produzione di energia, e della termofluidodinamica industriale ed ambientale.

Le materie di questo curriculum intendono trattare gli impianti energetici e i loro componenti sia sotto l'aspetto fenomenologico sia sotto quello della loro progettazione, gestione, manutenzione ed interazione con l'ambiente, nonché tematiche innovative di risparmio energetico e di ottimizzazione degli usi finali.

L'Ingegneria Energetica richiede pertanto competenze culturali fondanti in:

- principi fisici, chimici ed elettrici associati alle tematiche energetiche;
- termofluidodinamica industriale ed ambientale;
- macchine a fluido ed elettriche e sistemi per l'energia e l'ambiente;
- sistemi energetici convenzionali, avanzati ed innovativi e relativi aspetti di gestione e controllo.

L'Ingegnere Energetico sarà dunque caratterizzato da una prevalente connotazione industriale (meccanica/elettrica) con significativi contenuti gestionali e possiederà una salda preparazione specialistica in termofluidodinamica industriale ed ambientale, nelle macchine termiche, idrauliche ed elettriche e nei sistemi per la produzione di energia.

> sbocchi occupazionali

La laurea magistrale in Ingegneria Energetica fornisce le competenze necessarie a progettare, collaudare, gestire e verificare sotto il profilo funzionale sistemi energetici anche complessi e basati sull'impiego di fonti primarie e vettori energetici diversi: impianti industriali, impianti tecnici, centrali per la produzione di energia elettrica (centrali termoelettriche, centrali idroelettriche, impianti basati su fonti rinnovabili), etc.

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA GESTIONALE

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il Laureato Magistrale in Ingegneria Gestionale, oltre alle conoscenze di base (negli ambiti della matematica, della fisica e dell'informatica) comuni a tutte le Lauree in Ingegneria, ha una formazione avanzata orientata alle discipline in grado di fornire le competenze necessarie per la gestione di sistemi complessi. In particolare, il Laureato Magistrale in Ingegneria Gestionale è in grado di perfezionare l'applicazione delle tecnologie dell'informazione e delle metodologie della ricerca operativa, dell'analisi economica e del management alla soluzione di problemi di grande complessità nell'organizzazione e della gestione operativa dei sistemi di produzione di beni e/o servizi.

Si specificano più nel dettaglio gli obiettivi formativi per quanto riguarda il corso di studio. I Laureati Magistrali in Ingegneria Gestionale devono infatti:

- conoscere approfonditamente gli aspetti teorico-scientifici della matematica e delle altre scienze di base ed essere capaci di utilizzare tale conoscenza per interpretare e descrivere i problemi complessi dell'ingegneria o che richiedono un approccio interdisciplinare;
- possedere una solida ed approfondita conoscenza degli aspetti metodologico-operativi dell'area dell'ingegneria gestionale, nella quale sono capaci di identificare, formulare e risolvere problemi di grande complessità utilizzando metodi, tecniche e strumenti anche molto avanzati;
- saper controllare completamente la dimensione economico-gestionale dell'impresa, potendo intervenire per la riorganizzazione dei processi aziendali;
- saper pianificare e controllare i sistemi produttivi, allestendo strumenti di misurazione di costi e prestazioni dei processi aziendali e coordinando gli obiettivi generali dell'impresa con quelli delle sue diverse strutture organizzative;
- saper agire sui mercati di approvvigionamento e di sbocco dell'impresa, controllando i processi e le scelte nel dominio del marketing industriale e della logistica;
- saper progettare strumenti quantitativi di ottimizzazione per proporre scelte efficienti di progettazione, pianificazione e gestione dei singoli processi nelle organizzazioni;
- essere capaci di progettare modelli di sistemi e processi complessi ed analizzare, attraverso questi, il funzionamento e l'evoluzione di sistemi e processi reali per intervenire sul loro controllo;
- essere capaci di pianificare un progetto, controllare lo stato di avanzamento delle relative attività ed intervenire, coordinando il contributo di diverse tipologie di risorse, per assicurare l'ottimale svolgimento del progetto stesso;
- essere capaci di formulare ed impostare un piano di attività di ricerca per il successivo sviluppo di prodotti o applicazioni innovative;

- essere capaci di ideare, pianificare, progettare e gestire sistemi, processi e servizi complessi e/o innovativi;
- essere capaci di progettare e gestire esperimenti di elevata complessità;
- essere dotati di conoscenze di contesto e di capacità trasversali;
- avere conoscenze nel campo dell'organizzazione aziendale (cultura d'impresa) e dell'etica professionale;
- essere in grado di utilizzare fluentemente, in forma scritta e orale, almeno una lingua dell'Unione Europea oltre l'italiano, con riferimento anche ai lessici disciplinari.

Struttura del percorso di studio.

Il percorso formativo è progettato in modo da prevedere per il Laureato Magistrale in Ingegneria Gestionale una formazione comune che ha l'obiettivo di formare competenze per la progettazione, pianificazione, direzione, ottimizzazione e controllo dei sistemi organizzati in genere, tra cui i sistemi organizzativi-aziendali, i sistemi produttivi di beni e di servizi, e i sistemi economico-finanziari.

Completano la formazione lo sviluppo di competenze specifiche per la gestione di sistemi di particolare rilevanza nell'attuale contesto economico produttivo con particolare attenzione alle esigenze del territorio, quali: i sistemi di impresa, i sistemi di produzione, i sistemi logistici e di trasporto, i sistemi di governo digitale per le pubbliche amministrazioni, i sistemi di telecomunicazione, i sistemi informativi aziendali e i sistemi socioeconomici e dei mercati.

A tal riguardo il Corso di Laurea Magistrale in Ingegneria Gestionale è articolato in distinti curricula che consentono allo studente di selezionare un percorso formativo orientato maggiormente alla gestione di uno dei suddetti sistemi.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria Gestionale comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Sono previsti sette indirizzi: a) Direzione d'Impresa, b) Sistemi di Produzione, c) Sistemi Logistici e di Trasporto, d) Sistemi di Governo Digitale per le Pubbliche Amministrazioni, e) Ingegneria Gestionale delle Telecomunicazioni, f) Sistemi Informativi Aziendali, g) Socioeconomic Engineering.

Il Piano di studi ufficiale dell'indirizzo a) **Direzione d'Impresa** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Metodi Matematici per l'Ingegneria	1	1	6
Ottimizzazione non Lineare	1	1	12
Teoria dei Giochi e delle Decisioni	1	1	9
Gestione dell'Innovazione e dei Progetti	1	2	6
Operations Management 1	1	2	6

Ottimizzazione nei Sistemi di Controllo 1	1	2	6
Direzione d'Impresa + Organizzazione e Strategie d'Impresa	2	1	12
Economia dei Sistemi Industriali 1 + 2	2	1	12
Marketing Industriale	2	1	6
Analisi dei Sistemi Finanziari 1 + 2	2	2	12
Elementi di Diritto dei Contratti	2	2	6
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			12

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi Tecnico-Economica dei Progetti ICT	2	1	6
Economia dell'ICT	1	1	6
Economia dell'Innovazione	1	1	6
Economia della Complessità	1	1	6
Geotermia e Confinamento della CO2	2	2	6
Gestione dei Consumi Energetici	2	1	6
Gestione dei Sistemi di Telecomunicazione	1	2	6
Gestione e Politica dell'Innovazione Industriale solo se non Elementi di Diritto Digitale	2	2	6
Metodi e Modelli per la Matematica Applicata	2	2	6
Modelli per la Gestione dei Sistemi Complessi	1	2	12
Operations Management 2	1	2	6
Ottimizzazione nei Sistemi di Controllo 2	1	2	6
Pianificazione e Sistemi per la Sicurezza Territoriale	2	2	6
Politica Economica e Finanziaria Applicata	1	1	6
Production Management	2	1	6
Progettazione e Simulazione dei Sistemi di Produzione e di Servizio	1	1	9
Reti di Telecomunicazioni di Nuova Generazione	2	2	6
Reti Mobili Multimediali	2	1	6
Sistemi Informativi Web	1	2	6
Teoria della Sicurezza e Crittografia	1	1	6
Web Mining and Retrieval	1	2	6
Insegnamenti caratterizzanti di altri indirizzi			6, 9 o 12

Il Piano di studi ufficiale dell'indirizzo b) **Sistemi di Produzione** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Corrosione e Protezione dei Materiali <i>oppure</i> Materiali per la Produzione Industriale <i>oppure</i> Proptotipazione Virtuale oppure Simulazione dei Sistemi Meccanici	1	1	6
Metodi Matematici per l'Ingegneria	1	1	6
Progettazione e Simulazione dei Sistemi di Produzione e di Servizio	1	1	9
Sustainabiliy Management	1	1	6
Modelli per la Gestione dei Sistemi Complessi	1	2	12
Operations Management 1 + 2	1	2	12
Ottimizzazione nei Sistemi di Controllo 1	1	2	6
Direzione d'Impresa	2	1	6
Tecnologie dei Sistemi Industriali	2	1	12
Analisi dei Sistemi Finanziari 1 + 2	2	2	12
Tecnologia dei beni Strumentali	2	2	6
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			12

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Affidabilità e Sicurezza delle Macchine	1	2	6
Centrali Termoelettriche	1	1	9
Calcolo Automatico dei Sistemi Meccanici	1	2	6
Controllo di Macchine Elettriche	2	2	6
Corrosione e Protezione dei Materiali Metallici	1	1	6
Costruzione di Macchine	2	1	9
Costruzioni di Veicoli Terrestri	2	1	6
Gasdinamica dei Proccessi Industriali	2	2	6
Gestione dei Consumi Energetici	2	1	6
Gestione dell'Innovazione e dei Progetti	1	2	6
Interazione tra le Macchine e l'Ambiente	2	1	6
Materiali per la Produzione Industriale	1	1	6
Ottimizzazione non Lineare	1	1	12
Production Management	2	1	6

Prototipazione Virtuale	1	1	6
Robotica Industraile	2	1	6
Simulazione dei Sistemi Meccanici	1	1	6
Sistemi Integrati di Produzione	1	2	6
Tecnica delle Costruzioni Meccaniche	2	1	6
Tecnologie di Produzione per l'Industria 4.0	2	2	6
Insegnamenti caratterizzanti di altri indirizzi			6, 9 o 12

Il Piano di studi ufficiale dell'indirizzo c) **Sistemi Logistici e di Trasporto** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Metodi Matematici per l'Ingegneria	1	1	6
Progettazione e Simulazione dei Sistemi di Produzione e di Servizio	1	1	9
Teoria e Tecnica della Circolazione + Esercizio e Controllo delle Reti di Trasporto	1	1	12
Modelli per la Gestione dei Sistemi Complessi	1	2	12
Operations Management 1 + 2	1	2	12
Ottimizzazione nei Sistemi di Controllo 1	1	2	6
Direzione d'Impresa + Organizzazione e Strategie d'Impresa	2	1	12
Economia dei Sistemi Industriali 1	2	1	6
Analisi dei Sistemi Finanziari 1 + 2	2	2	12
Logistica Territoriale 1	2	2	6
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			12

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi Tecnico-Economica dei Progetti ICT	2	1	6
Economia dell'ICT	1	1	6
Economia dell'Innovazione	1	1	6
Economia della Complessità	1	1	6
Elementi di Diritto dei Contratti <i>oppure</i> Gestione e Politica dell'Innovazione Industriale	2	2	6
Geotermia e Confinamento della CO2	2	2	6

Gestione dei Consumi Energetici	2	1	6
Gestione dei Sistemi di Telecomunicazione	1	2	6
Gestione dell'Innovazione e dei Progetti	1	2	6
Gestione della Manutenzione delle Infrastrutture	2	1	6
Logistica Territoriale 2	2	2	3
Metodi e Modelli per la Matematica Applicata	2	2	6
Ottimizzazione nei Sistemi di Controllo 2	1	2	6
Ottimizzazione non Lineare	1	1	12
Pianificazione e Sistemi per la Sicurezza Territoriale	2	2	6
Production Management	2	1	6
Reti di Telecomunicazioni di Nuova Generazione	2	2	6
Reti Mobili Multimediali	2	1	6
Sistemi Informativi Web	1	2	6
Supply Chain Mangament	2	2	6
Teoria dei Giochi e delle Decisioni	1	1	9
Teoria della Sicurezza e Crittografia	1	1	6
Web Mining and Retrieval	1	2	6
Insegnamenti caratterizzanti di altri indirizzi			6, 9 o 12

Il Piano di studi ufficiale dell'indirizzo d) **Sistemi di Governo Digitale per le Pubbliche Amministrazioni** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Metodi Matematici per l'Ingegneria	1	1	6
Ottimizzazione non Lineare	1	1	12
Teoria dei Giochi e delle Decisioni	1	1	9
Elementi di Diritto Digitale	1	2	6
Gestione dell'Innovazione e dei Progetti	1	2	6
Operations Management 1	1	2	6
Ottimizzazione nei Sistemi di Controllo 1	1	2	6
Sistemi Informativi Web	1	2	6
Direzione d'Impresa + Organizzazione e Strategie d'Impresa	2	1	12
Economia dei Sistemi Industriali 1 + 2	2	1	12
Analisi dei Sistemi Finanziari 1 + 2	2	2	12
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			12

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi Tecnico-Economica dei Progetti ICT	2	1	6
Economia dell'ICT	1	1	6
Economia dell'Innovazione	1	1	6
Economia della Complessità	1	1	6
Elementi di Diritto dei Contratti <i>oppure</i> Gestione e Politica dell'Innovazione Industriale	2	2	6
Geotermia e Confinamento della CO2	2	2	6
Gestione dei Consumi Energetici	2	1	6
Gestione dei Sistemi di Telecomunicazione	1	2	6
Governo Digitale	1	2	6
Intelligenza nei Sistemi di Governo delle Pubbliche Amministrazioni	2	2	6
Modelli per la Gestione dei Sistemi Complessi	1	2	12
Operations Management 2	1	2	6
Pianificazione e Sistemi per la Sicurezza Territoriale	2	2	6
Piattaforme per il Governo Digitale	2	1	6
Politica Economica e Finanziaria Applicata	1	1	6
Progettazione e Simulazione dei Sistemi di Produzione e di Servizio	1	1	9
Reti di Telecomunicazioni di Nuova Generazione	2	2	6
Reti Mobili Multimediali	2	1	6
Teoria della Sicurezza e Crittografia	1	1	6
Web Mining and Retrieval	1	2	6
Insegnamenti caratterizzanti di altri indirizzi			6, 9 o 12

Il Piano di studi ufficiale dell'indirizzo e) **Ingegneria gestionale delle Telecomunicazioni** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Economia dell'ICT	1	1	6
Metodi Matematici per l'Ingegneria	1	1	6
Progettazione e Simulazione dei Sistemi di Produzione e di Servizio	1	1	9
Gestione dei Sistemi di Telecomunicazione	1	2	6
Modelli per la Gestione dei Sistemi Complessi	1	2	12

Operations Management 1	1	2	6
Ottimizzazione nei Sistemi di Controllo 1	1	2	6
Direzione d'Impresa + Organizzazione e Strategie d'Impresa	2	1	12
Economia dei Sistemi Industriali 1 + 2	2	1	12
Reti Mobili Multimediali	2	1	6
Analisi dei Sistemi Finanziari 1 + 2	2	2	12
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			12

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi Tecnico-Economica dei Progetti ICT	2	1	6
Geotermia e Confinamento della CO2	2	2	6
Gestione dei Consumi Energetici	2	1	6
Operations Management 2	1	2	6
Ottimizzazione non Lineare	1	1	12
Pianificazione e Sistemi per la Sicurezza Territoriale	2	2	6
Reti di Telecomunicazioni di Nuova Generazione	2	2	6
Teoria dei Giochi e delle Decisioni	1	1	9
Teoria della Sicurezza e Crittografia	1	1	6
Web Mining and Retrieval	1	2	6
Insegnamenti caratterizzanti di altri indirizzi			6, 9 o 12

Il Piano di studi ufficiale dell'indirizzo f) **Sistemi Informativi Aziendali** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Metodi Matematici per l'Ingegneria	1	1	6
Teoria dei Giochi e delle Decisioni	1	1	9
Modelli per la Gestione dei Sistemi Complessi	1	2	12
Operations Management 1	1	2	6
Ottimizzazione nei Sistemi di Controllo 1	1	2	6
Web Mining and Retrieval	1	2	6
Direzione d'Impresa + Organizzazione e Strategie d'Impresa	2	1	12
Economia dei Sistemi Industriali 1 + 2	2	1	12
Sistemi Informativi Aziendali	2	1	6

Analisi dei Sistemi Finanziari 1 + 2	2	2	12
Metodi e Sistemi di Simulazione Distribuita su Internet	2	2	6
Insegnamenti a scelta dello studente (ASS) (valgono un esame)			12
Attività formative (AFF)			3
Prova finale			12

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi di Reti	1	1	6
Economia dell'ICT	1	1	6
Ingegneria del Software	1	1	6
Machine Learning	2	2	9
Natural Language Processing	2	1	6
Ottimizzazione non Lineare	1	1	12
Progettazione e Simulazione dei Sistemi di Produzione e di Servizio	1	1	9
Service-oriented Software Emgineering	2	1	9
Sistemi Informativi Web	1	2	6
Social Media Analytics	2	1	6
Teoria della Sicurezza e Crittografia	1	1	6
Insegnamenti caratterizzanti di altri indirizzi			6, 9 o 12

Il Piano di studi ufficiale dell'indirizzo g) **Socioeconomic Engineering** è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Metodi Matematici per l'Ingegneria	1	1	6
Ottimizzazione non Lineare	1	1	12
Politica Economica e Finanziaria Applicata	1	1	6
Teoria dei Giochi e delle Decisioni	1	1	9
Operations Management 1	1	2	6
Ottimizzazione nei Sistemi di Controllo 1	1	2	6
Social Media Organizational Communication	1	2	6
Direzione d'Impresa + Organizzazione e Strategie d'Impresa	2	1	12
Economia dei Sistemi Industriali 1 + 2	2	1	12
Social Media Analytics	2	1	6
Analisi dei Sistemi Finanziari 1 + 2	2	2	12

Insegnamenti a scelta dello studente (ASS) (valgono un esame)	12
Attività formative (AFF)	3
Prova finale	12

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi Tecnico-Economica dei Progetti ICT	2	1	6
Economia dell'ICT	1	1	6
Economia dell'Innovazione	1	1	6
Economia della Complessità	1	1	6
Elementi di Diritto dei Contratti	2	2	6
Elementi di Diritto Digitale	1	2	6
Intelligenza nei Sistemi di Governo delle Pubbliche Amministrazioni	2	2	6
Modelli per la Gestione dei Sistemi Complessi	1	2	12
Pianificazione e Sistemi per la Sicurezza Territoriale	2	2	6
Piattaforme per il Governo Digitale	2	1	6
Progettazione e Simulazione dei Sistemi di Produzione e di Servizio	1	1	9
Sistemi Informativi Web	1	2	6
Supply Chain Management	2	2	6
Teoria della Sicurezza e Crittografia	1	1	6
Insegnamenti caratterizzanti di altri indirizzi			6, 9 o 12

Per maggiori informazioni si consulti il sito web: http://gestionale.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Laureato Magistrale in Ingegneria Gestionale

- funzione in un contesto di lavoro Analisi, dimensionamento, gestione e ottimizzazione di sistemi di distribuzione, energetici, informativi, logistici, di produzione, di servizio, di telecomunicazione e di trasporto. Direzione di impresa. Pianificazione e gestione dei progetti. Pianificazione strategica. Marketing. Adeguamento tecnologico. Analisi dei sistemi finanziari.
- > competenze associate alla funzione

Le capacità di problem solving acquisite e la sua formazione fortemente diversificata, permettono al laureato magistrale in ingegneria gestionale di affrontare in posizione apicale problemi di organizzazione e di gestione, interagendo con colleghi ingegneri di formazione più marcatamente tecnica.

Il laureato magistrale in ingegneria gestionale trova facilmente collocazione sia in grandi organizzazioni, sia in piccole e medie aziende, industriali (tipicamente manufatturiere) e di servizio (tra cui anche la Pubblica Amministrazione), per: l'approvvigionamento e la gestione dei materiali; l'organizzazione aziendale e della produzione; l'organizzazione e l'automazione dei sistemi produttivi; la logistica e i trasporti; il project management ed il controllo di gestione; la valutazione degli investimenti; la gestione delle infrastrutture; la gestione dell'innovazione; l'adeguamento tecnologico di prodotti e processi; il marketing industriale e la gestione delle vendite; l'analisi e la gestione dei sistemi finanziari.

sbocchi occupazionali

Imprese manifatturiere, imprese di servizi e pubblica amministrazione per l'approvvigionamento e la gestione dei materiali, per l'organizzazione aziendale e della produzione, per l'organizzazione e l'automazione dei sistemi produttivi, per la logistica e i trasporti, per il project management ed il controllo di gestione, per l'analisi di settori industriali, per la valutazione degli investimenti, per la gestione delle infrastrutture, dell'innovazione e dell'adeguamento tecnologico, per il marketing industriale.

Per il laureato magistrale in ingegneria gestionale sono certamente anche possibili sbocchi nel mondo della libera professione, dell'attività di consulenza e dell'imprenditorialità.

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il Corso di Laurea magistrale in Ingegneria Informatica intende formare laureati che abbiano un elevato livello di competenze metodologiche e operative sia su temi di natura matematica-statistica che su temi avanzati di natura informatica e dell'automazione. In particolare, laureati che abbiano capacità di affrontare con rigore formale sia problematiche di ricerca informatica proponendo soluzioni originali e innovative, sia problemi informatici di tipo manageriale-ingegneristico proponendo soluzioni effettive ed efficienti.

Gli insegnamenti inseriti nel percorso formativo della laurea magistrale in Ingegneria Informatica possono quindi essere inquadrati in tre aree che hanno i seguenti obiettivi generali:

- Area A. Approfondire la preparazione su temi di probabilità e statistica e ingegneria economico-gestionale, estendendo le competenze su questi temi acquisite nella laurea di 1° livello. Tali competenze serviranno sia per fornire strumenti matematici fondativi per alcuni temi avanzati di natura informatica e dell'automazione, che per acquisire capacità di interpretazione di dati e informazioni;
- Area B. Fornire un percorso di approfondimento comune a tutti i laureandi magistrali, su tematiche fondamentali nella progettazione e gestione delle moderne reti e sistemi informatici complessi, quali: Cloud computing; Ingegneria del Software; Sicurezza nei sistemi informatici e in Internet; Analisi delle prestazioni e affidabilità e dimensionamento di impianti e sistemi informatici;
- Area C. Fornire percorsi differenziati di approfondimento su temi di particolare interesse nella formazione di un moderno ingegnere informatico, che includono: Big data e Data Science; progettazione e gestione di sistemi operativi; progettazione, gestione e sviluppo di applicazioni e sistemi paralleli e distribuiti su media/larga scala, e di sistemi mobili; progettazione e controllo di robot industriali e di servizio.

Le aree A e B costituiscono la parte comune del percorso formativo, e sono uguali per tutti gli studenti. L'area C viene invece coperta componendo in maniera opportuna le materie messe a disposizione dal corso di laurea. Attualmente, le materie inquadrate nell'area C sono articolate in due distinti indirizzi, aventi i seguenti obiettivi:

Computer and Information Engineering. Questo indirizzo ha l'obiettivo di formare uno specialista nella progettazione e gestione di reti e sistemi informatici complessi, distribuiti, mobili, che sia anche in grado di interloquire alla pari con esperti di differenti aree culturali. A tale scopo l'indirizzo offre un insieme di materie che possono essere selezionate e composte tra loro per approfondire temi particolari di interesse, lasciando margini abbastanza ampi per l'esplorazione di sinergie e intersezioni tra tematiche diverse.

■ Data Science and Engineering. Questo indirizzo ha l'obiettivo di formare specialisti informatici in grado di affrontare la sfida dei "Big Data", e di proporre soluzioni innovative, efficaci ed efficienti per conservare, analizzare, filtrare e combinare questi dati, per estrarre da essi informazioni utili ad aumentare il livello di consapevolezza e la qualità delle decisioni prese. A tale scopo, questo indirizzo offre un insieme di materie per approfondire argomenti relativi ad algoritmi, sistemi e architetture, metodologie matematico-statistiche, per la gestione di "Big Data".

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria Informatica comprende unità didattiche ed altre attività formative per un totale di almeno 120 crediti.

Sono previsti due indirizzi: a) Computer and Information Engineering, b) Data Science and Engineering.

Il piano di studi ufficiale dell'indirizzo *Computer and Information Engineering* per studenti immatricolati nell'A.A. 2017/2018 è il seguente:

Insegnamenti obbligatori (45 crediti)	ANNO	SEMESTRE	CREDITI
Complementi di probabilità e statistica	1	1	9
Performance modeling of computer systems and networks	1	1	9
Sistemi distribuiti e cloud computing	1	1	9
Ingegneria dei sistemi software e dei servizi in rete	1	2	9
Sicurezza informatica e Internet	1	2	9
Insegnamenti caratterizzanti (39 crediti) ¹			
Automatic software verification	1	1	6
Cartografia e telerilevamento	1	2	6
Algoritmi e modelli di ottimizzazione discreta	1	2	9
Controlli automatici	2	1	6
Mobile systems and applications	2	1	6
Programmazione di sistemi multi-core e many-core	2	2	6
Robotica industriale	2	1	9
Sistemi operativi open-source, embedded, e real-time	2	1	9
Teoria dei giochi e progetto di reti	2	1	9
Advanced networking and Internet modeling	2	2	9
Algoritmi per il Web	2	2	6
Monitoraggio satellitare	2	2	9
Sistemi e architetture per Big Data	2	2	6
Insegnamenti a scelta dello studente			12

Attività formative (tirocinio)	6
Prova finale	18

¹Per indicazioni sulla selezione dei 39 crediti in accordo alle finalità dell'indirizzo e secondo un coerente percorso formativo, consultare il sito web: inginformatica.uniroma2.it/index.php/indirizzo_computer_and_information_engineering

Il piano di studi ufficiale dell'indirizzo *Data Science and Engineering* per studenti immatricolati nell'A.A. 2017/2018 è il seguente:

Insegnamenti obbligatori (45 crediti)	ANNO	SEMESTRE	CREDITI
Complementi di probabilità e statistica	1	1	9
Performance modeling of computer systems and networks	1	1	9
Sistemi distribuiti e cloud computing	1	1	9
Ingegneria dei sistemi software e dei servizi in rete	1	2	9
Sicurezza informatica e Internet	1	2	9
Insegnamenti caratterizzanti (39 crediti) ²			
Metodi di ottimizzazione per Big Data	2	1	12
Processi stocastici e analisi di serie temporali	2	1	6
Sistemi operativi open-source, embedded, e real-time	2	1	9
Advanced networking and Internet modeling	2	2	9
Algoritmi per il Web	2	2	6
Metodi Probabilistici e Statistici per i Mercati Finanziari	2	2	6
Sistemi e architetture per Big Data	2	2	6
Insegnamenti a scelta dello studente			12
Attività formative (tirocinio)			6
Prova finale			18

²Per indicazioni sulla selezione dei 39 crediti in accordo alle finalità dell'indirizzo e secondo un coerente percorso formativo, consultare il sito web: inginformatica.uniroma2.it/index.php/indirizzo_data_science_and_engineering

Insegnamenti a scelta dello studente consigliati per entrambi gli indirizzi per il completamento del curriculum (almeno 12 crediti)

Sono consigliati tutti gli insegnamenti caratterizzanti elencati sopra per i due indirizzi, se non già inseriti nel proprio percorso formativo. In aggiunta a quelli, sono consigliati:

INSEGNAMENTI	ANNO	SEMESTRE	CREDITI
Analisi tecnico-economica dei progetti ICT	2	1	6
Management dell'innovazione e entrepreunership	2	1	6
Internet technology and protocols	2	1	6
Teoria elementare dei numeri	1	1	6
Web mining and Retrieval	1	2	6

NOTE:

I 12 crediti a scelta dello studente possono anche essere scelti al di fuori degli elenchi riportati sopra, tra tutti i corsi insegnati in altri Corsi di Studio di Ingegneria/Ateneo, purché congruenti con gli obiettivi formativi del corso di laurea. In questo caso, la proposta fatta dallo studente è soggetta ad approvazione da parte del Corso di Studio. Si consiglia di consultare i docenti del Corso di Studio per consigli e suggerimenti in proposito.

Per cause di forza maggiore la ripartizione temporale (in anni e semestri) dei moduli didattici potrebbe subire variazioni rispetto a quella indicata.

Per maggiori informazioni ed eventuali aggiornamenti si rimanda al sito del corso: inginformatica.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Informatico Magistrale

funzione in un contesto di lavoro

Progettazione e sviluppo di impianti, reti e sistemi informatici, a livello di hardware e software di base, a livello di linguaggi e software applicativo. Architetture e sistemi informatici distribuiti, mobili, per applicazioni Web, Internet. Ingegneria del software. Sicurezza nei sistemi informatici e in Internet. Cloud computing. Analisi e sviluppo della qualità nei sistemi informatici. Dinamica e controllo dei robot industriali e dei robot di servizio. Progettazione dei dispositivi e dei sistemi per il controllo dinamico degli impianti e dei sistemi di produzione. Modellistica e controllo di sistemi ecologici e sociali.

competenze associate alla funzione

L'ingegnere informatico magistrale possiede competenze che gli consentono di operare con autonomia e capacità organizzative e di coordinamento in tutte le imprese e organizzazioni pubbliche o private interessate allo sviluppo e utilizzazione di sistemi informatici per la gestione e conduzione delle proprie attività.

sbocchi occupazionali

Attività di progettazione avanzata, pianificazione, sviluppo e gestione di reti, impianti e sistemi informatici complessi, svolta nell'ambito della libera professione e nelle società di consulenza, all'interno di imprese manifatturiere o di servizi, nelle amministrazioni pubbliche.

Attività di ricerca su temi avanzati dell'informatica e dell'automazione, in enti sia pubblici che privati.

Attività di formazione avanzata su temi di natura informatica e/o dell'automazione.

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCANICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il Corso di Laurea Magistrale in Ingegneria Meccanica forma un professionista con una solida preparazione tecnica di base negli ambiti culturali propri dell'ingegneria industriale e dotato delle competenze specifiche nell'ambito meccanico, privilegiando le conoscenze di base e gli aspetti metodologici e fornendo al contempo una approfondita formazione specialistica in settori specifici.

Nel dettaglio gli obiettivi formativi specifici sono:

- conoscenza delle basi fisiche e chimiche e degli strumenti matematici ed informatici utili per le applicazioni ingegneristiche;
- conoscenza delle basi tecniche e delle metodologie utilizzate nell'ambito dell'ingegneria industriale;
- conoscenze, e capacità di buon livello, nei settori specifici dell'ingegneria meccanica: materiali, metodologie di progettazione, termo fluidodinamica, macchine a fluido e termiche, tecnologie di produzione, impianti industriali e relativi servizi tecnici;
- capacità di operare in autonomia e di lavorare in modo efficace in gruppi di lavoro, anche interdisciplinari;
- capacità di interfacciarsi, con proprietà di linguaggio tecnico e conoscenza dei concetti di base, con specialisti di altri settori dell'ingegneria;
- capacità di confrontarsi col cambiamento supportato da una forte propensione all'aggiornamento continuo delle proprie conoscenze e in grado di adattarsi alle varie situazioni industriali.

La figura professionale che viene formata è in grado di operare nel campo dell'ingegneria industriale in compiti di progettazione di prodotti e di processi, nella gestione, manutenzione ed esercizio di sistemi impianti complessi, all'interno di reparti di Ricerca e Sviluppo con la capacità di sviluppare autonomamente progetti, anche innovativi. L'ingegnere meccanico magistrale è in grado di operare sia in modo autonomo sia all'interno di team, sempre più frequentemente multidisciplinari, anche assumendo responsabilità di coordinamento. La preparazione del Laureato Magistrale è anche perfettamente adeguata al proseguimento degli studi sia in ambito nazionale che internazionale.

Il percorso formativo prevede una parte comune di approfondimento in aree culturali specifiche dell'ingegneria meccanica e due diversi orientamenti (ingegneria di prodotto ed ingegneria di processo) con un nucleo di insegnamenti obbligatori ed un insieme di insegnamenti di specializzazione, raggruppati in tematiche omogenee corrispondenti a specializzazioni professionali di interesse degli ingegneri meccanici.

Le materie comuni sono erogate in italiano. All'interno dei vari blocchi vi sono delle materie erogate in lingua inglese.

Il percorso si conclude con una tesi che potrà riguardare attività progettuali impegnative (di prodotto, di processo, di impianti) o attività originali di ricerca applicata al fine di dimostrare non soltanto la padronanza degli argomenti studiati ma anche la capacità di affrontare tematiche inedite e operare in modo autonomo all'interno di una struttura industriale o di ricerca.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria Meccanica comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Fisica Tecnica Industriale 2	1	1	9
Fluidodinamica	1	2	6
Costruzione di Macchine	2	1	9
Insegnamenti di un indirizzo			48
Insegnamenti a scelta tra le materie del Gruppo A (possono essere inseriti anche insegnamenti dell'indirizzo non scelto)			18
Insegnamenti a scelta dello studente (ASS) (si consigliano gli insegnamenti del Gruppo A + B e quelli dell'indirizzo non scelto)			12
Attività formative (AFF)			6
Prova finale			12
INDIRIZZO: INGEGNERIA DI PRODOTTO			
Fluidodinamica delle Macchine 1	1	1	6
Prototipazione Virtuale e Simulazione dei Sistemi Meccanici	1	1	12
Calcolo Automatico dei Sistemi Meccanici	1	2	6
Materiali Metallici e Loro Interazione con l'Ambiente	1	2	9
Progetto di Macchine	2	2	9
Termotecnica 2	2	2	6
INDIRIZZO: INGEGNERIA DI PROCESSO			
Centrali Termoelettriche	1	2	9
Motori a Combustione Interna	1	2	9
Controlli Automatici	2	2	6
Gasdinamica	2	2	6
Operations Management	2	2	9
Tecnologie Speciali	2	2	9

GRUPPO A	ANNO	SEMESTRE	CREDITI
Complementi di Scienza delle Costruzioni	1	1	6
Economia applicata all'ingegneria 2	1	1	6
Elettronica industriale	1	1	9
Robotica con Laboratorio	1	1	6
Trattamenti Termomeccanici dei metalli con Laboratorio	1	1	6
Turbolenza e Fluidi complessi	1	1	6
Affidabilità e Sicurezza delle Macchine	1	2	6
Calcolo Numerico di Sistemi Termofluidodinamici	1	2	6
Elettrotecnica industriale	1	2	6/9
Energetica	1	2	6
Gasdinamica dei processi industriali	1	2	6
Produzione Assistita dal Calcolatore	1	2	6
Sistemi Produttivi e sostenibilità energetica	1	2	6
Corrosione e protezione dei materiali metallici	2	1	6
Costruzioni di Veicoli Terrestri	2	1	6
Economia dei sistemi industriali 1 + 2	2	1	12
Materiali di Frontiera per Applicazioni Industriali	2	1	6
Materiali per la Produzione Industriale	2	1	6
Tecnica delle Costruzioni Meccaniche	2	1	6
Production Management (ex Gest. degli Imp. Ind.)	2	1	6
Feedback Control Systems	2	2	6
Fluidodinamica delle macchine 2	2	2	6
Gestione dell'Innovazione e dei Progetti	2	2	6
Interazione tra le Macchine e l'Ambiente	2	2	6
Laboratorio di Tecnologie Speciali	2	2	6
Materiali Metallici per Applicazioni Speciali con Laboratorio	2	2	6
Misure, controllo e diagnostica dei sistemi energetici	2	2	6
Sistemi e componenti per la conversione dell'energia da fonti rinnovabili	2	2	6

GRUPPO B	ANNO	SEMESTRE	CREDITI
Metodi e tecnologie per i beni culturali	1	1	6
Gestione e finanziamento dell'impresa in crisi	1	2	6
Nanostrutture e Nano materiali	1	2	6
Impianti tecnici	2	1	6
Microscopia e nanoscopia	2	1	6
Controllo di macchine elettriche	2	2	6
Gestione e Politica dell'Innovazione Industriale	2	2	6

Per la scelta degli insegnamenti all'interno della lista del gruppo A, la Segreteria Didattica fornirà agli studenti informazioni e supporto per definire, attraverso tutti gli insegnamenti a scelta, un percorso tematico coerente con gli obiettivi del Corso di Studio e rispondente agli interessi formativi e culturali dello studente.

Per maggiori informazioni si consulti il sito web: www.ingegneriameccanica.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere Meccanico

funzione in un contesto di lavoro

Il Laureato in Ingegneria Meccanica è un tecnico con preparazione universitaria, in grado di condurre la progettazione esecutiva di prodotto e di processo, lo sviluppo di prodotti, l'installazione e il collaudo di macchine e di sistemi complessi, la manutenzione e la gestione di reparti produttivi, nonché lo svolgimento di attività di controllo, verifica ed assistenza tecnica. Il laureato acquisisce le competenze che gli permettono di svolgere queste tipiche mansioni principalmente nell'ambito delle industrie meccaniche, ma spesso anche nel settore più vasto dell'ingegneria industriale, delle società di servizi e degli enti pubblici

> competenze associate alla funzione

L'ingegnere meccanico così formato possiede ampie possibilità di esprimere la propria attività professionale nei vari settori industriali. In particolare, egli sarà preparato a sviluppare il progetto di sistemi meccanici dal punto di vista funzionale, costruttivo ed energetico, il progetto della disposizione, la gestione e l'utilizzo ottimale delle macchine di un impianto. Ulteriori opportunità sono inoltre offerte nelle industrie manifatturiere e negli impianti di produzione per quanto riguarda la progettazione, la produzione, lo sviluppo di nuove tecnologie, le tecniche di misura e la scelta dei materiali più appropriati. Oltre che nell'attività produttiva e di servizio, il laureato può trovare collocazione presso pubbliche amministrazioni o enti di ricerca, nei quali può mettere a frutto le conoscenze acquisite. In

particolare, a ciascuno dei tre diversi livelli formativi indicati in precedenza corrisponde una figura professionale direttamente spendibile sul mercato del lavoro.

sbocchi occupazionali

I laureati in Ingegneria Meccanica hanno una vasta gamma di opportunità occupazionali, con diverse funzioni, principalmente nelle:

- industrie che progettano e producono componenti e sistemi meccanici ed elettromeccanici;
- industrie di trasformazione e manifatturiere che si avvalgono di sistemi di produzione meccanici, metallurgici ed elettromeccanici;
- aziende ed enti per la conversione dell'energia;
- imprese impiantistiche;
- società di servizio e di consulenza industriale;
- enti pubblici in funzioni di tipo tecnico.

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MEDICA

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

È a tutti noto come gli straordinari risultati conoscitivi che a partire dagli ultimi decenni si stanno via via conseguendo nelle scienze della vita già consentono applicazioni alla Medicina ed offrano sicura prospettiva di migliori terapie e qualità di vita nel prossimo futuro. La chiave dell'avvenire è quindi nello sviluppo di tecnologie fondate su tali scienze, compito primario di professionisti ad esse formati e che posseggono lo strumento intellettuale dell'analisi quantitativa e del progetto. Questo è dunque l'Ingegnere Medico, così come è stato progettato, in collaborazione con la Facoltà di Medicina, dalla Facoltà di Ingegneria di Roma "Tor Vergata", che ha cominciato a formarlo a partire dall'A.A. 1998/1999 con il Corso di Laurea in Ingegneria Medica. L'impostazione, come detto, è stata quella di formare un professionista che, possedendo le leggi scientifiche che governano il comportamento della materia, sia inanimata che vivente, fosse capace di orientarle a pratiche applicazioni attraverso le capacità di analisi e di sintesi acquisite dallo studio della matematica. La preparazione, generalista e di largo spettro, avrebbe così consentito attività diversificate nei molteplici aspetti del campo professionale. La doverosa ottemperanza al più volte citato DM 509/1999 ha parzialmente indebolito il progetto formativo iniziale, la cui robustezza ha comunque consentito di ottenere risultati soddisfacenti. Fin dall'inizio, infatti, il Consiglio di Corso di Laurea ha presentato agli immatricolati al Corso di Laurea triennale in Ingegneria Medica l'impianto culturale unitario di tale corso in collegamento con quello omonimo specialistico, volto alla formazione di un Ingegnere dotato di piena capacità professionale. Gli allievi, seguendo l'indicazione loro data, hanno in massa completato i due cicli di laurea: a questa scelta hanno corrisposto il raggiunto obiettivo della piena occupazione dei laureati e la fiducia dei giovani, che in misura costante ogni anno si immatricolano.

L'applicazione della riforma ex DM 270/2004 a partire dall'A.A. 2008/09 viene qui proposta sulla base di un decennio di sperimentazione della Laurea in Ingegneria Medica. Si osserva preliminarmente che, seguendo la via tracciata dall'Ateneo di Roma "Tor Vergata", in molte altre Università italiane sono stati avviati corsi appartenenti alla medesima classe di laurea, confermando l'esistenza di una prospettiva professionale su base nazionale. E' appena poi il caso di citare che in campo internazionale formazioni interdisciplinari simili alla nostra, capaci di integrare Biologia, Neuroscienze, Meccanica, Elettronica, Informatica sono sempre più diffuse. In ambito europeo, a ciò corrisponde la mobilità degli studenti di Ingegneria Medica dell'Ateneo nei quadri Erasmus e Leonardo.

Nel merito della presente proposta, viene confermata la visione culturale di fondo dei Corsi di Laurea e Laurea Magistrale in Ingegneria Medica come percorso unitario ed indivisibile, nel quale il conseguimento del titolo triennale è da considerarsi un mero accidente tecnico, potendosi soltanto al termine ottenere da parte di ciascun allievo la pienezza, in termini di conoscenze e capacità e flessibilità, che il campo professionale richiede.

Rispetto alla precedente organizzazione, sono state corrette le distorsioni indotte dalla lettera del DM 509/1999, trasferendo ed ampliando lo spettro della applicazioni alla Laurea Magistrale. Inoltre, il passaggio all'organizzazione semestrale dei corsi, con conseguente riduzione del numero degli esami, assicura agli allievi una più unitaria visione ed il necessario tempo di maturazione ed assimilazione, nell'ambito di ciascun corso di insegnamento.

Gli obiettivi formativi risultano quindi ancor più sintonici con quelli richiesti e misurati dai descrittori europei ai fini dell'accreditamento dei corsi di Laurea.

In definitiva, con la riprogettazione qui presentata, la Facoltà di Ingegneria di Roma "Tor Vergata", liberata dall'improprio vincolo a formare tecnici superiori, potrà tornare alla propria naturale vocazione di educare Ingegneri Medici.

La proposta culturale del corso di laurea, articolata sull'intero arco quinquennale contiene tutte le necessarie catene formative, sia nelle scienze della materia inanimata che in quelle della vita, queste ultime già sperimentate ed insegnate con la stessa logica nelle Facoltà di Medicina. Appare anche l'approfondita formazione matematica, indispensabile per far acquisire agli allievi i canoni interpretativi e modellistici delle suddette scienze. Queste tre componenti formative, profonde ed estese nel progetto culturale dell'Ingegneria Medica, sostanziano la proposta di una arco formativo lungo, poiché solo negli ultimi due anni le diverse applicazioni delle scienze, che costituiscono l'essenza della professione di Ingegnere, possono essere presentate agli allievi e da loro acquisite e dominate.

La suddivisione del percorso quinquennale in due blocchi, di durata triennale e biennale rispettivamente, comporta un mero traguardo tecnico intermedio, essendo unitari gli obiettivi, le capacità e le abilità che l'allievo dovrà conseguire nel percorso completo di studi finalizzato alla creazione della figura professionale formata a tutto tondo.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Ingegneria Medica comprende unità didattiche ed altre attività formative in numero non inferiore a 120 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Fisica Tecnica	1	1	9
Campi elettromagnetici	1	1	6
Segnali	1	1	6
Bioprotesi	1	1	6
Fisiopatologia Umana I	1	2	6
Elettronica II	1	2	6
Controlli Automatici	1	2	9

Sensori ed Applicazioni	1	2	9
Strumentazione e Tecniche di Monitoraggio e Terapia	2	1	9
Wireless Electromagnetic Technologies	2	1	6
Fisiopatologia Umana II	2	1	9
Insegnamenti a scalta dello studente (*)			27
Prova finale			12

^(*) Gli insegnamenti a scelta dello studente dovranno di norma essere individuati nell'ambito di uno dei seguenti pacchetti formativi, aventi coerenza tematica e finalizzati all'acquisizione di competenze professionali in specifici settori di interesse scientifico ed industriale.

Ciascun indirizzo prevede attività pratiche relative a simulazione, progettazione e realizzazione di dispositivi e sistemi.

A. Bioingegneria Elettronica	ANNO	SEMESTRE	CREDITI
Elettronica di Interfaccia e Circuiti Integrati Analogici	2	2	6
Radiosistemi Medicali	2	2	6
Applicazioni Mediche di Elettronica	2	2	6
Almeno 9 CFU da scegliere tra i seguenti corsi			
Pattern Recognition a Applicazioni	2	1	6
Micro-Nano-Sistemi e Tecnologie	2	2	6
Modellazione e Simulazione di Sistemi Fisiologici	2	2	6
Tecnologie Neurofisiopatologiche	2	2	6
B. Bioingegneria Industriale	ANNO	SEMESTRE	CREDITI
Almeno 27 CFU da scegliere tra i seguenti corsi			
Macchine per l'Ingegneria Medica	2	1	6
Impianti Termici e Misure per l'Ingegneria Medica	2	1	6
Micro-Nano-Sistemi e Tecnologie	2	2	6
Modellazione e Simulazione di Sistemi Fisiologici	2	2	6
Radiosistemi Medicali	2	2	6
Robotica	2	1	6
Termofluidodinamica dei Sistemi Biologici	2	2	6
C. Ingegneria Clinica	ANNO	SEMESTRE	CREDITI
Almeno 27 CFU da scegliere tra i seguenti corsi			
Controllo Qualità ed Organizzazione dei Sistemi Sanitari	2	2	6
Economia Sanitaria	2	1	6
Impianti Termici e Misure per l'Ingegneria Medica	2	1	6
Macchine per l'Ingegneria Medica	2	1	6
Sicurezza Informatica	2	2	9

NOTA: La prova finale del percorso formativo specialistico prevede lo svolgimento di un lavoro, a carattere analitico e/o progettuale, in grado di mettere in risalto le capacità di sintesi e propositive di interesse scientifico o professionale dell'allievo. L'articolazione delle attività necessarie all'acquisizione dei corrispondenti crediti formativi è determinata dal disposto del Regolamento didattico del Corso di Laurea. Qualora lo desiderino, gli Allievi sono incoraggiati ad ampliare la propria preparazione inserendo nel proprio curriculum un numero di insegnamenti a scelta maggiore del minimo richiesto.

Per maggiori informazioni si consulti il sito web: http://www.dicii.uniroma2.it

Propedeuticità formali:

Strumentazione e Tecniche di Monitoraggio e Terapia Sensori ed Applicazioni, Elettronica II

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI

- funzione in un contesto di lavoro
 Progettazione di apparecchiatore e di sistemi
 Funzioni tecniche dirigenziali di Aziende sanitarie
 Gestione di grandi sistemi, in particolare ad orientamento sanitario
 Ricerca e Sviluppo
- competenze associate alla funzione Una formazione scientifica e tecnica sul comportamento dei sistemi biologici e sui metodi ingegneristici finalizzati alla loro conoscenza e supporto in un quadro industriale o assistenziale.
- sbocchi occupazionali Industrie del settore biomedico e farmaceutico produttrici e fornitrici di sistemi, apparecchiature e materiali per diagnosi, cura e riabilitazione; aziende ospedaliere pubbliche e private; società di servizi per la gestione di apparecchiature ed impianti medicali, di telemedicina; laboratori specializzati

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA E TECNICHE DEL COSTRUIRE

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il Corso di Studio si pone come obiettivo la formazione di un laureato in grado di affrontare i problemi complessi dell'ingegneria dei sistemi edilizi, nel settore dell'Ingegneria civile e ambientale. Il laureato viene perciò preparato ad affrontare le problematiche attuali delle tecniche della costruzione, sia da un punto di vista progettuale che esecutivo. La sua formazione, forte del patrimonio di strumenti di base acquisiti nella laurea di primo livello, è organizzata in insegnamenti specialistici che affrontano tematiche avanzate nel comparto delle tecniche costruttive.

Il Corso di Studio è stato progettato in sintonia con le indicazioni del DPR 328/2001 ed è pertanto finalizzato ad instaurare una stretta concordanza tra il percorso formativo proposto allo studente e la complessità e specialità delle attività che saranno attribuite nella professione al laureato nel CdS; il CdS è pertanto orientato a garantire l'acquisizione del patrimonio di conoscenze e competenze coerente con la complessità tecnica, sotto il profilo quantitativo e qualitativo, dell'attività professionale riservata al laureato che sarà quindi in grado di provvedere alla realizzazione di quelle opere che implicano conoscenza peculiari degli studi di ingegneria. In particolare, il laureato nel CdS dovrà essere in grado si affrontare attività innovative che implicano l'uso di metodologie avanzate, innovative e sperimentali, nella progettazione, direzione lavori, stima, collaudo e gestione di strutture, sistemi e processi complessi e innovativi nell'ambito delle opere edili e delle strutture.

Gli obiettivi formativi specifici del corso sviluppano quindi la tematica della progettazione esecutiva, in relazione sia alle nuove costruzioni che al recupero di edifici esistenti. Ciò avviene attraverso l'integrazione della progettazione architettonica, della progettazione strutturale innovativa, della sperimentazione progettuale d'avanguardia sui materiali da costruzione, della progettazione impiantistica sofisticata, della conoscenza delle tecniche edilizie e del loro sviluppo, della conoscenza della storia materiale dell'architettura e della costruzione.

L'offerta formativa di base si articola dunque come segue:

- attività formative specialistiche caratterizzanti nell'Architettura (Architettura tecnica, Progettazione architettonica ed esecutiva, Produzione edilizia, Tecnologia degli elementi costruttivi) per 54 CFU; questi insegnamenti consentono allo studente di acquisire ulteriori competenze relativamente alla progettazione architettonica ed esecutiva, alla tecnologia edilizia contemporanea e alle attività progettuali proprie dell'ingegnere
- attività formative specialistiche caratterizzanti nell'Edilizia (Geotecnica, Impianti , Estimo)
 per 27 CFU, attraverso le quali lo studente completa le conoscenze scientifiche indispensabili
 per affrontare con piena consapevolezza le problematiche tecniche dell'attività di progettazione.

Vi sono inoltre le attività di indirizzo, per 18 CFU, che seguono le linee di ricerca di massimo sviluppo tra i docenti del CdS. Lo studente può scegliere se orientare la propria formazione verso le materie tecnico progettuali, ovvero verso l'approfondimento di tematiche strutturali.

Altri insegnamenti a scelta (18 CFU) consentono allo studente di ampliare, in base alle personali propensioni, le conoscenze su materie specifiche e di completamento delle competenze dell'Ingegnere, conservando l'unitarietà del percorso formativo con il quale gli insegnamenti proposti si trovano in assoluta coerenza. Lo studente può, quindi, completare il proprio percorso formativo orientandosi verso l'acquisizione di ulteriori abilità e conoscenze inerenti la progettazione architettonica, il recupero del patrimonio edilizio esistente, la progettazione strutturale, la tecnica urbanistica, la progettazione impiantistica, le tematiche ambientali, la storia dell'architettura.

A completamento del percorso formativo sono previste attività a scelta e di tirocinio (7 CFU) e prova finale (14 CFU).

Il corso di laurea non è di nuova istituzione bensì esiste nella Facoltà di Ingegneria dell'Università di Tor Vergata dal 1992, in seguito alla divisione del corso di laurea vecchio ordinamento in Ingegneria Civile Edile nei due corsi di Ingegneria edile e Ingegneria civile. Dopo l'entrata in vigore dell'ordinamento 509/99 il corso si è articolato nei previsti due livelli (triennale e specialistico) rispettivamente nelle classi di laurea 4 (Scienze dell'architettura e dell'ingegneria edile) e 4S (Architettura e Ingegneria edile). Nel nuovo ordinamento 270/04, è stata finalmente definita una nuova classe di laurea autonoma, LM-24 Ingegneria dei sistemi edilizi, che consente di inquadrare senza ambiguità il percorso formativo, proprio della scienza ingegneristica e ben distinto dal percorso formativo tipico dell'architettura. Il corso è stato pertanto aggiornato in base alle indicazioni del decreto e 'trasferito' nella nuova classe appositamente creata.

OFFERTA DIDATTICA PROGRAMMATA

Il corso di laurea magistrale in Ingegneria e Tecniche del Costruire (LM-24 Classe delle lauree in Ingegneria dei sistemi edilizi) comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il piano di studi ufficiale è il seguente:

INSEGNAMENTI OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Architettura e composizione architettonica	1	1	9
Progettazione impiantistica per l'architettura	1	1	9
Economia ed estimo civile	1	1	9
Fondamenti di geotecnica	1	2	9
Tecnologia degli elementi costruttivi	1	2	9
Progettazione integrale	2	1	9
Insegnamenti a scelta dello studente (5)			45

Attività formative	7
Prova finale	14

Almeno due insegnamenti a scelta tra:

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Progetti per la ristrutturazione e il risanamento edilizio	2	1	9
Composizione architettonica 2	2	2	9
Costruzione dell'architettura	2	2	9

Almeno un insegnamento a scelta tra:

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Strutture speciali	1	1	9
Complementi di tecnica delle costruzioni	1	2	9
Fondazioni	2	2	9
Statica delle costruzioni storiche in muratura	2	2	9

Insegnamenti a scelta dello studente coerenti con il progetto formativo consigliati dal Corso di Studi:

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Costruzioni idrauliche urbane	1	1	9
Strutture speciali	1	1	9
Diritto dell'ambiente	1	1	6
Tecnica urbanistica	1	1	9
Metodi e tecnologie dei beni culturali	1	1	6
Complementi di tecnica delle costruzioni	1	2	9
Ingegneria sanitaria ambientale	1	2	9
Fisica Ambientale per la Conservazione dei Beni Librari	1	2	6
Progetto di strade ferrovie ed aeroporti	2	1	6
Progetti per la ristrutturazione e il risanamento edilizio	2	1	9
Storia urbana	2	2	9
Restauro architettonico	2	2	9
Composizione architettonica 2	2	2	9
Fondazioni	2	2	9
Storia dell'architettura 2	2	2	9
Statica delle costruzioni storiche in muratura	2	2	9
Fonti rinnovabili d'energia	2	2	6

Per maggiori informazioni si consulti il sito web: http://www.dicii.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere edile e ambientale

funzione in un contesto di lavoro

I laureati magistrali potranno svolgere, oltre alla libera professione, funzioni di elevata responsabilità in istituzioni ed enti pubblici e privati (enti istituzionali, enti e aziende pubblici e privati, studi professionali e società di progettazione), operanti nei campi della costruzione e trasformazione delle città e del territorio.

competenze associate alla funzione

I laureati applicano le loro conoscenze e conducono ricerche nel campo della progettazione, della costruzione e della manutenzione di edifici e di altre costruzioni civili e industriali. Conducono ricerche sulle caratteristiche tecnologiche di particolari materiali e processi; definiscono e progettano standard e procedure per garantire la funzionalità e la sicurezza degli edifici e delle strutture. Sovrintendono e dirigono tali attività. Il CdS consentirà l'accesso all'esame di Stato per la sezione A per l'esercizio della professione di Ingegnere (nel settore a civile e ambientale).

sbocchi occupazionali

I principali sbocchi occupazionali previsti dal CdS magistrale sono:

- la progettazione, attraverso gli strumenti propri dell'ingegneria dei sistemi edili, con padronanza dei relativi strumenti, delle operazioni di costruzione, trasformazione e modificazione dell'ambiente fisico e dell'ambiente costruito, con piena conoscenza degli aspetti distributivi, funzionali, strutturali, tecnico-costruttivi, gestionali, economici e ambientali e con attenzione critica ai mutamenti culturali e ai bisogni espressi dalla società contemporanea;
- la predisposizione di progetti di opere edilizie e la relativa realizzazione e il coordinamento, a tali fini, ove necessario, di altri operatori del settore.

CORSO DI LAUREA MAGISTRALE IN ICT AND INTERNET ENGINEERING

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Il corso di Laurea Magistrale (LM) in ICT and Internet Engineering ambisce a formare il moderno ingegnere esperto in infrastrutture digitali ("smart infrastructures"). Il corso, sebbene formalmente collocato nella classe di Laurea Magistrale LM-27 (Ingegneria delle Telecomunicazioni), ambisce a fornire competenze e metodologie ad ampio spettro, atte a coprire la pluralità di impieghi lavorativi ed opportunità emergenti nel settore dell'ICT e del digitale.

Tale obiettivo è concretamente conseguito con un opportuno bilanciamento ed equilibrio tra i CFU dedicati ad insegnamenti in settori scientifico disciplinari caratterizzanti (specificatamente, 48 CFU) ed un congruo numero di CFU dedicato ad insegnamenti in settori scientifico disciplinari affini (specificatamente, 39 CFU). Questa scelta permette al corso di estendere la tradizionale preparazione nelle discipline tradizionalmente contenute nella classe di Laurea LM-27 con la possibilità, per lo studente, di identificare (attingendo dagli insegnamenti nei settori scientifico disciplinari affini) percorsi formativi specialistici in gran parte dello spettro delle tematiche e delle professioni ICT. Lo studente acquisirà infatti competenze relative a piattaforme software avanzate, e, tramite percorsi a scelta guidata nell'ambito degli insegnamenti caratterizzanti, potrà specializzarsi ulteriormente nelle aree della sicurezza, telerilevamento, radionavigazione, monitoraggio, analisi dei dati, oltre a complementare la preparazione con ulteriori contenuti e metodologie nei settori dell'elettronica, dell'informatica e della matematica applicata.

Più specificatamente, il corso ha identificato (ed offre moduli didattici all'interno di esse) quattro aree tematiche considerate cruciali nell'evoluzione futura del settore ICT, ovvero:

- 1) acquisizione ed elaborazione dei dati: tecnologie, dispositivi, sistemi, strumenti ed algoritmi per il monitoraggio, rilevamento, localizzazione, "sensing" e trattamento dell'informazione;
- 2) trasporto e distribuzione dei dati: tecnologie, sistemi e protocolli per la comunicazione e la distribuzione dei dati, incluse le tecnologie ed i protocolli alla base dell'infrastruttura di rete Internet;
- 3) Analisi dei dati: algoritmi e tecnologie scalabili per l'analisi predittiva e l'estrazione di conoscenza da (potenzialmente enormi) quantità di dati provenienti da fonti eterogenee (sensori, misure, traffico in rete, informazione distribuita su siti Internet e reti sociali, etc);
- 4) Sviluppo di applicazioni e servizi (sia in contesti aziendali e purpose-specific, che in contesti web, mobile, social) e relativa gestione, inclusa la capacità di identificare vulnerabilità e minacce e proteggere da cyber-attacchi.

Il corso parte da una base minima di competenze e metodologie nel settore dell'ingegneria dell'informazione (acquisita e verificata come discusso nella precedente sezione relativa alle competenze in ingresso, di norma tramite una Laurea Triennale nel settore dell'Ingegneria dell'Informazione); arricchisce la preparazione acquisita dallo studente durante gli studi di primo

livello con corsi specialistici nei settori dell'informatica, dell'elettronica, delle telecomunicazioni, della matematica applicata, e dell'ingegneria economico-gestionale; completa la sua formazione negli aspetti metodologici delle tecnologie di Internet e delle telecomunicazioni, approfondendo la preparazione teorica ed applicativa nella trasmissione ed elaborazione dei segnali, nelle reti di telecomunicazioni, nelle tecniche di analisi statistica dei dati e riconoscimento di fenomeni, nei sistemi di telecomunicazione e nel telerilevamento con sensori attivi (radar) e passivi. Lo studente della LM riceve adeguata e aggiornata preparazione nei moderni sistemi di comunicazione a larga banda, nelle tecniche di modulazione avanzate, nei protocolli di rete e di comunicazione tra le reti. In tutti i suddetti ambiti lo studente è istruito a identificare, formulare e risolvere, anche in modo innovativo, problemi complessi o che richiedono un approccio interdisciplinare. Lo studente potrà infine scegliere autonomamente 12 CFU per completare la formazione teorica ed applicativa nelle aree specialistiche di suo interesse.

La prova finale, alla quale sono attribuiti 18 crediti, consiste nell'elaborazione e nella discussione della Tesi di Laurea magistrale di fronte alla Commissione d'esame in seduta pubblica. Lo studente completa il suo curriculum tramite tirocini o acquisendo competenze telematiche e/o informatiche di supporto alla Tesi, secondo le indicazioni del docente relatore della Tesi e del Consiglio del corso di studi.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in ICT and Internet Engineering, attivo dall'A.A. 2015/16, è l'estensione e la trasformazione in lingua inglese del precedente corso in lingua italiana denominato Ingegneria di Internet. Il corso comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il corso prevede tre tipologie di insegnamenti:

- 1) insegnamenti obbligatori, erogati durante il primo anno di corso;
- 2) insegnamenti caratterizzanti, a scelta libera dello studente tra quelli elencati nelle liste sotto riportate;
- 3) insegnamenti integrativi: riservati esclusivamente a studenti che necessitano di una integrazione delle competenze di partenza, in quanto non fornite durante il percorso di laurea da cui provengono.

INSEGNAMENTI E ATTIVITÀ FORMATIVE OBBLIGATORI	ANNO	SEMESTRE	CREDITI
Mobile wireless networks	1	1	9
Service-oriented software engineering	1	1	9
Wireless electromagnetic technologies	1	1	9
Network infrastructures	1	1	6
Fundamentals of radar and localization	1	2	9
Networking and internet protocols	1	2	6/9

Digital communications	1	2	6
Insegnamenti caratterizzanti a scelta			42
Formative extra activities			3
Prova finale			18

Insegnamenti caratterizzanti a ascelta [42 CFU]. A completamento del piano di studi, lo studente può scegliere **42 CFU** tra i seguenti insegnamenti coerenti con il progetto formativo, consigliati dal Consiglio di Corso di Studio ed organizzati per convenienza di presentazione in tre aree tematiche:

Area "Sensing, Systems, Infrastructures"	ANNO	SEMESTRE	CREDITI
Satellite Earth Observation	1/2	2	6/9
Satellite navigation and surveillance systems	2	1	6/9
Internet via Satellite	2	1	6
Radar systems and applications	2	1	6
Radioware propagation	2	1	6
Microwaves	2	2	6
Optical Communications	2	2	6
Area "Networks & Services"	ANNO	SEMESTRE	CREDITI
Network Security	1/2	2	6/9
Internet Services Performance	2	1	6/9
ICT infrastructures and applications	2	1	6
Enterprise Networks	2	1	6
Cloud Computing and Networking	2	2	6
Internet-based Distributed Simulation	2	2	6
Multimedia Processing and Communication	2	2	6
Internet of Things: Principles and Applications	2	2	6
Area "Data Analytics & Methodologies"	ANNO	SEMESTRE	CREDITI
Information Theory and data Mining	2	1	6
Operations Research methods for network optimization	2	1	6/9
Optimization Methods for Big Data	2	1	6
Web mining and Retrieval	2	2	6/9

Insegnamenti integrativi. Tali insegnamenti non sono da considerarsi parte del Corso di Laurea Magistrale (ovvero, non sono offerti a scelta agli studenti), ma sono messi a disposizione agli studenti immatricolati che hanno necessità di integrare le competenze iniziali (ad esempio, studenti che provengono da corsi di laurea non specificatamente nel settore dell'Ingegneria di Internet, e/o che hanno specifiche esigenze di recupero della formazione in uno o più tra le aree

oggetto dei sottoelencati insegnamenti). Operativamente, tali insegnamenti sono proposti allo studente direttamente dal Consiglio di Corso di Studio durante la fase di immatricolazione.

INSEGNAMENTO	ANNO	SEMESTRE	CREDITI
Data Base	1	1	6
Electromagnetic fields	1	1	6
Fundamentals of Telecommunications	1	2	9
Networking and Internet	1	2	9
Digital Signal Processing	1	2	6

Per motivi organizzativi, la ripartizione temporale in semestri dei moduli didattici potrebbe subire variazioni. Per maggiori informazioni su docenti, programmi di esame, metodi di verifica delle conoscenze, eventuali aggiornamenti dell'organizzazione temporale, e più in generale per opportunità ed informazioni supplementari, si rimanda al sito web del corso di laurea: http://internet.uniroma2.it.

NOTE:

- Gli insegnamenti caratterizzanti a scelta di 9 CFU sono sempre offerti anche in modalità "ridotta", ovvero da 6 CFU. In particolare, lo studente seguirà il medesimo corso di 9 CFU fino a circa 2/3 del programma e svolgerà ovviamente l'esame sulla sola parte di competenza. Per i dettagli, contattare direttamente i docenti dei corsi.
- Ove lo studente lo ritenesse opportuno, può indicare al Consiglio di Corso di Studi insegnamenti alternativi a scelta, fino ad un massimo di 12 CFU, scelti nell'ambito dell'offerta didattica dell'intero Ateneo. L'approvazione da parte del Consiglio di Corso di Studio è subordinata alla valutazione della coerenza di tali scelte con il percorso formativo in ICT and Internet Engineering.

Ulteriori link utili:

Didattica programmata – sito ufficiale:

http://uniroma2public.gomp.it/Manifesti/RenderAll.aspx?anno=2018

Didattica erogata – sito ufficiale:

http://uniroma2public.gomp.it/programmazioni/renderAll.aspx?anno=2018

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI

- funzione in un contesto di lavoro
 - dipendente (analista, programmatore, gestore di infrastrutture, sistemi e servizi ICT, progettazione assistita di infrastrutture, sistemi e servizi ICT);

- consulente (configurazione, progettazione di reti e servizi in area locale, certificatore, troubleshooting, "data scientist");
- Impiegato in enti di ricerca ed alta formazione;
- Imprenditore (servizi innovativi Internet, Web, Mobile; tecnologie e piattaforme di acquisizione, trasporto, distribuzione ed analisi dei dati e segnali).

competenze associate alla funzione

- progettista di apparati e sistemi ICT;
- operatore di apparati e sistemi ICT, inclusi pianificazione, installazione e messa in esercizio, configurazione, personalizzazione, integrazione, certificazione;
- progettista, amministratore e gestore di infrastrutture, inclusi operatori fissi e mobili ed Internet Service Provider;
- progettista, amministratore e gestore di piattaforme per lo sviluppo di servizi ICT e multimediali;
- progettista e sviluppatore di applicazioni Internet, sia in sistemi informativi web che in dispositivi mobili;
- progettista e sviluppatore di algoritmi e sistemi di analisi scalabile di grosse quantità di dati, ed estrazione di informazione dai dati (sensori, osservazioni ambientali, dati Internet, etc);
- analista tecnico in enti pubblici normativi e di controllo delle telecomunicazioni, dei servizi ICT e multimediali;
- ricercatore nel settore ICT e Internet di futura generazione
- progettista per sistemi e tecnologie per il rilevamento e controllo del traffico anche aereo;
- esperto di cybersecurity e tecnologie ICT per la sicurezza.

sbocchi occupazionali

- operatori di reti e sistemi di telecomunicazione, nazionali e regionali;
- manifatturieri e produttori di apparati nel settore ICT e difesa;
- aziende pubbliche e private preposte alla gestione e/o sviluppo di servizi ICT ed applicativi;
- piccole o medie imprese ad elevata tecnologia ICT;
- imprese ed aziende di altri settori (trasporto,energia, salute, etc) che fanno uso di tecnologie Internet ed ICT
- integratori di sistemi e servizi ed aziende di consulenza ICT;
- enti normativi, di standardizzazione, di certificazione;
- centri di ricerca e sviluppo.

CORSO DI LAUREA MAGISTRALE IN MECHATRONICS ENGINEERING

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

Tenendo conto che il corso è totalmente tenuto in lingua inglese con insegnamenti affini interdisciplinari che toccano il mondo dell'automatica, della meccanica, della robotica, dei nuovi materiali, al fine di conferire al corso carattere pluridisciplinare, sono previsti i seguenti obiettivi:

- favorire l'ingresso nel nostro formativo di studenti formati in contesti culturali diversi,
- promuovere una crescita culturale orientata all'ingegneria dei sistemi in grado di aumentare il valore sociale ed economico dei beni prodotti,
- porre attenzione all'ingegneria attinente la progettazione e fabbricazione dei beni
- rafforzare il ruolo trainante della meccanica-elettronica,
- operare per generare opportunità di lavoro con il nuovo sapere.

Il laureato in Mechatronics Engineering, per quanto attiene il percorso formativo, deve conoscere approfonditamente gli aspetti metodologico-operativi dell'applicazione delle discipline di base per risolvere i problemi complessi dell'ingegneria che attengono la meccanica, l'elettronica ed i sistemi elettromeccanici nel senso più generale del termine.

La laurea magistrale in Mechatronics Engineering prevede diversi indirizzi, orientati sia al completamento della formazione di provenienza sia all'interesse specifico dello studente. Possibili applicazioni di interesse vanno dai sistemi per l'energia a quelli per la salute e l'ambiente, dai sistemi meccatronici per l'industria a quelli per lo spazio e la sicurezza. La capacità di comunicare efficacemente in modo scritto e orale, presupposto di ogni positiva interazione sociale, in questo caso in lingua inglese, viene acquisita nei corsi durante l'intero percorso formativo attraverso elaborati, verifiche in itinere, esami orali e la stesura delle tesi di laurea.

Il percorso formativo prevede inoltre l'utilizzo, in numerosi corsi, di testi specialistici e pubblicazioni scientifiche in lingua inglese che potranno contribuire a migliorare la capacità comunicativa anche in contesti scientifici internazionali.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Mechatronics Engineering, da attivarsi nell'A.A. 2017/18, prevede tre curricula pensati sia per integrare la formazione di provenienza sia per tenere conto dell'interesse specifico dello studente. Ciascun curriculum prevede tre blocchi di materie. Il primo blocco ha l'obiettivo di armonizzare la formazione di base (tenendo conto della diversa laurea di provenienza), il secondo fornisce invece la formazione comune, ed il terzo ha l'obiettivo di fornire la formazione specifica, tenendo conto dei possibili sbocchi occupazionali di interesse dello studente. Nello specifico sono stati definiti i seguenti tre curricula.

- 1. Indirizzo "Systems": orientato agli studenti con preparazione mista e maggiormente interessati alla visione globale del sistema meccatronico, anche da un punto di vista delle tecnologie innovative presenti in questo ambito.
- 2. Indirizzo "Electronics": orientato agli studenti con preparazione di base in elettronica e maggiormente interessati alla componente elettronica del sistema meccatronico.
- 3. Indirizzo "Mechanics": orientato agli studenti con preparazione di base in meccanica e maggiormente interessati alla componente meccanica del sistema meccatronico.

L'ampia disponibilità di attività formative a scelta consente l'ibridazione dei percorsi formativi indicati in precedenza, permettendo allo studente di soddisfare i propri interessi culturali e di prospettiva professionale.

La struttura dei tre indirizzi è la seguente.

Il Piano di Studi ufficiale dell'indirizzo "SYSTEMS" è il seguente:

INSEGNAMENTI E ATTIVITÀ FORMATIVE	ANNO	SEMESTRE	CREDITI
Innovative Materials with Laboratory	1	1	6
Robot Mechanics	1	1	9
Power Electronics and Electrical Drives	1	1	9
Insegnamento a scelta dello studente (ASS)	1	1	6
Internal Combustion Engines	1	2	9
VLSI Circuit and System Design	1	2	9
Nanotechnology	1	2	6
Insegnamento a scelta dello studente (ASS)	1	1	6
Electronics of IoT and embedded systems	2	1	12
Electronic Devices and Sensors	2	1	9
Control of Industrial Systems	2	1	9
A scelta tra:	2	2	6
Control of Non-Linear Systems			
Control of Electrical Machines			
Measurement Systems for Mechatronics	2	2	6
Internship/Formative extra activities			6
Final exam	2		12

Il Piano di Studi ufficiale dell'indirizzo "ELECTRONICS" è il seguente:

INSEGNAMENTI E ATTIVITÀ FORMATIVE	ANNO	SEMESTRE	CREDITI
Kinematics & dynamics of mechanism	1	1	9
Power Electronics and Electrical Drives	1	1	9

Insegnamento a scelta dello studente (ASS)	1	1	6
Mechanics of Materials and Structures	1	2	9
VLSI Circuit and System Design	1	2	9
Thermodynamics and Heat Transfer	1	2	9
Electronics of IoT and embedded systems	2	1	12
Electronic Devices and Sensors	2	1	9
Control of Industrial Systems	2	1	9
Insegnamento a scelta dello studente (ASS)	2	2	6
Measurement Systems for Mechatronics	2	2	6
Internship/Formative extra activities			6
Final exam	2		12

Il Piano di Studi ufficiale dell'indirizzo "MECHANICS" è il seguente:

INSEGNAMENTI E ATTIVITÀ FORMATIVE	ANNO	SEMESTRE	CREDITI
Innovative Materials with Laboratory	1	1	6
Robot Mechanics	1	1	9
Power Electronics and Electrical Drives	1	1	9
Digital Electronics	1	1	9
Internal Combustion Engines	1	2	9
Feedback control systems	1	2	9
Analogue Electronics	1	2	9
Electronics of IoT and embedded systems	2	1	12
Electronic Devices and Sensors	2	1	9
Control of Industrial Systems	2	1	9
Insegnamento a scelta dello studente (ASS)	2	2	6
Insegnamento a scelta dello studente (ASS)	2	2	6
Internship/Formative extra activities			6
Final exam	2		12

Insegnamenti a scelta dello studente (ASS). A completamento del percorso formativo lo studente dovrà scegliere ulteriori 12 CFU tra quelli presenti negli altri indirizzi, ovvero potrà indicare al Consiglio di Corso di Studi insegnamenti alternativi, sempre fino ad un massimo di 12 CFU, scelti nell'ambito dell'offerta didattica dell'intero Ateneo. L'approvazione da parte del Consiglio di Corso di Studio è subordinata alla valutazione della coerenza di tali scelte con il percorso formativo in Mechatronics Engineering.

link utili: mechatronics.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Ingegnere magistrale in Mechatronics Engineering

funzione in un contesto di lavoro

La Laurea magistrale in Mechatronics Engineering si pone l'obiettivo di formare figure professionali in grado di ricoprire ruoli tecnici, e di ricerca e sviluppo in quei contesti che richiedono la conoscenza degli aspetti metodologici ed operativi delle scienze di base e dell'Ingegneria. Il laureato potrà inoltre operare anche in un contesto progettuale e di ricerca avanzato, curando gli aspetti specifici degli ambiti dell'Elettronica, della Meccanica e dei Controlli, con particolare riferimento all'interazione fra tali discipline.

L'ingegnere magistrale in Mechatronics Engineering si inserisce quindi in una moltitudine di contesti di prevalente contenuto tecnologico e progetta, organizza la costruzione o la messa in opera o segue la manutenzione e la gestione della fase operativa di componenti e sistemi elettronici e meccanici integrati.

> competenze associate alla funzione

I laureati nei corsi di laurea magistrale della classe dovranno essere in grado di:

- conoscere approfonditamente gli aspetti teorico-scientifici della matematica e delle altre scienze di base ed essere capaci di utilizzare tale conoscenza per interpretare e descrivere i problemi dell'ingegneria complessi o che richiedono un approccio interdisciplinare;
- conoscere approfonditamente gli aspetti teorico-scientifici dell'ingegneria, sia in generale sia in modo approfondito relativamente a quelli dell'ingegneria elettronica/meccanica, nella quale sono capaci di identificare, formulare e risolvere, anche in modo innovativo, problemi complessi o che richiedono un approccio interdisciplinare;
- essere capaci di ideare, pianificare, progettare e gestire sistemi, processi e servizi complessi e/o innovativi;
- essere capaci di progettare e gestire esperimenti di elevata complessità;
- avere conoscenze nel campo dell'organizzazione aziendale (cultura d'impresa) e dell'etica professionale;
- essere dotati di conoscenze di contesto e di capacità trasversali.

> sbocchi occupazionali

I principali sbocchi occupazionali previsti dai corsi di laurea magistrale della classe sono quelli dell'innovazione e dello sviluppo della produzione, della progettazione avanzata, della pianificazione e della programmazione, della gestione di sistemi complessi, sia nella libera professione sia nelle imprese manifatturiere o di servizi che nelle amministrazioni pubbliche. I laureati magistrali potranno trovare occupazione presso imprese di progettazione e produzione di componenti, apparati sia elettronici che meccanici, industrie

manifatturiere, nel settore delle amministrazioni pubbliche e nelle imprese di servizi, che applicano tecnologie e infrastrutture meccatroniche per l'acquisizione e il trattamento dei segnali, il controllo e l'ottimizzazione di apparati e sistemi meccanici, in ambito civile e industriale.

La formazione mediante un percorso in lingua inglese, consentirà una più agevole proiezione del laureato in un mercato del lavoro direttamente estero ovvero l'inserimento in realtà produttive nazionali che abbiano una spiccata tendenza internazionale.

CORSO DI LAUREA MAGISTRALE IN CHEMISTRY FOR NANO-ENGINEERING

OBIETTIVI SPECIFICI DEL CORSO E DESCRIZIONE DEL PERCORSO FORMATIVO

La laurea Magistrale, Chemistry for Nano-Engineering, (Chimica per la Nano-Ingegneria, Classe LM-71, Scienze e Tecnologie della Chimica Industriale) è un Master internazionale congiunto che si articola tra tre università: Aix-Marseille University, Wrocław University of Technology, e Roma Tor Vergata University.

La missione del Master in Chemistry for Nano-Engineering è quella di fornire conoscenze avanzate dei principi della chimica con un forte indirizzo verso la realtà industriale ed uno speciale orientamento nel campo delle nanotecnologie.

Data la sua natura internazionale il Master fornirà un'esperienza interculturale, in stretta relazione con le competenze dei tre membri del consorzio, per migliorare il potenziale di innovazione degli studenti nelle loro attività future e per prepararli all'apprendimento in posti nuovi, culture diverse e diversi sistemi di istruzione e lavoro. Il laureato magistrale in Chemistry for Nano-Engineering possederà una solida formazione nelle aree multidisciplinari della scienza e dell'ingegneria unita a competenze sia sperimentali che numeriche.

Le nanotecnologie sono un campo in pieno sviluppo. Sempre di più, infatti, le principali industrie (sia grandi che piccole) hanno necessità di competenze legate alle nanotecnologie e questo nei settori produttivi di maggiore rilevanza: dalla medicina, alla chimica e l'ambiente, all'energia, alle comunicazioni wireless di prossima generazione, all'industria pesante, ecc.

Questo Master, che unisce competenze chimiche, ingegneristiche e fisiche, unico in Italia, seguirà ed anticiperà le tendenze del mondo scientifico e del lavoro e preparerà studenti con una conoscenza integrata, scientifica ed interdisciplinare e con competenze professionali.

Gli studenti del Master in Chemistry for Nano-Engineering potranno ricoprire ruoli di leadership nelle industrie emergenti di alta tecnologia, nelle industrie tradizionali e nei laboratori pubblici e privati.

La conoscenza approfondita delle moderne tecniche strumentali e l'uso di apparecchiature e strumentazioni per la definizione delle relazioni struttura-proprietà e di analisi dei dati lo metterà grado di operare con ampia autonomia anche assumendo responsabilità di gestione di strutture e processi di produzione ai livelli più elevati.

L'impostazione fortemente interdisciplinare della sua preparazione gli consentirà di affrontare problemi di progettazione, sperimentazione, scaling-up e realizzazione e lo metterà in grado di interagire efficacemente con le diverse professionalità dell'area scientifica e ingegneristica. L'interdisciplinarità fornirà un ambiente di apprendimento dinamico per una risoluzione creativa dei problemi.

Si vuole con il Master in Chemistry for Nano-Engineering educare una nuova generazione di laureati che possano partecipare, ma anche iniziare, nuove imprese ad alta tecnologia. Questa

potrà essere la chiave per mantenere posti di lavoro, ricchezza e infrastrutture educative in una nuova rivoluzione industriale basata sulle nanotecnologie.

Il Master è suddiviso in 6 principali gruppi di apprendimento:

- 1. Chimica Analitica, Chimica Inorganica, Chimica Organica, Chimica Fisica e Nano-scienza
- 2. Chimica ed Ingegneria dei Materiali
- 3. Applicazioni della Nano-Engineering Technology
- 4. Termodinamica e modellazione di nano-materiali
- 5. Seminari e progetti sulla nano-ingegneria
- 6. Lingua
- 7. Tesi di Master

Le competenze che il laureato magistrale in Chemistry for Nano-Engineering possederà saranno quindi:

- un'avanzata conoscenza dei principi fondamentali della chimica nei suoi diversi settori, delle metodologie di sintesi e dei metodi strumentali per la caratterizzazione e la definizione delle relazioni struttura-proprietà dei materiali e dei nano materiali;
- un'avanzata conoscenza dei principi fondamentali dell'ingegneria e della chimica industriale che consentirà allo studente di conoscere i principali materiali dell'industria chimica (specialmente nel campo delle nanotecnologie) ed i processi per ottenerli; la capacità di gestire ed utilizzare le nanotecnologie per lo sviluppo di materiali e processi destinati alla realizzazione di nuovi dispositivi; la promozione e lo sviluppo dell'innovazione scientifica e tecnologica;
- la capacità di valutazione tecnica ed economica di un progetto di innovazione e di ricerca;
- la comprensione e l'applicazione dei principi scientifici moderni;
- la capacità di ricoprire ruoli di leadership nel campo della scienza e dell'ingegneria a livello industriale e di ricerca fondamentale;
- la possibilità di effettuare un'analisi critica delle informazioni con conseguente risoluzione dei problemi;
- la capacità di analizzare e valutare i dati numerici;
- la promozione e sviluppo dell'innovazione scientifica e tecnologica, nonché della gestione e progettazione di tecnologie avanzate;
- la capacità di lavorare efficacemente in team.

OFFERTA DIDATTICA PROGRAMMATA

Il Corso di Laurea Magistrale in Chemistry for Nano-Engineering (CNE), attivo dall'A.A. 2017/18, è un International Joint Master Degree tra le seguenti Istituzioni:

- University of Aix-Marseille, France
- Wroclaw University of Science and Technology, Poland

University of Rome Tor Vergata, Italy

Il corso, erogato completamente in lingua Inglese, comprende unità didattiche ed altre attività formative per un totale di 120 crediti.

Il corso prevede il seguente schema di mobilità:

- 1° Semestre: University of Aix-Marseille, France
- 2° Semestre: Wroclaw University of Science and Technology, Poland
- 3° Semestre: University of Rome Tor Vergata, Italy
- 4° Semestre: Tesi di Master

1° Semestre: Aix-Marseille University	CREDITI
Organic Chemistry of Nano-Materials	3
Solid State Nano-materials	7
Basics of Quantum Chemistry Modeling	3
Computational Modeling of Nano-Systems	7
Nano-Electrochemistry	3
Thermodynamics of Materials, Interactions and Surface Forces	3
Nano-engineering seminar +Project	2
Language	2

2° Semestre: Wroclaw University of Science and Technology	CREDITI
Structure and Crystallography of Solids	3
Synthesis and Fabrication of Nano-engineering Systems	3
Fabrication of Smart Polymers	3
Engineering of Nanomachines	3
Bio-photonics, Biomaterials-Biomedical Devices	5
Nanostructures in Industrial and Numerical Applications	6
Economics and Management	3
Nano-engineering seminar + Project	2
Language	2

3° Semestre: University of Rome Tor Vergata	CREDITI
Characterization of Nano-engineering Systems	6
Nanoscale Synthesis Methods	5
Macromolecular and Supramolecular Chemistry	5
Nanoscale Energy Technology, Nano-sensors and Microfluidity	5
Nano-engineering seminar + Project	2
Language	2

Insegnamenti opzionali (University of Rome Tor Vergata):

Option A: Chemistry	CREDITI
NMR of nanosystems	2
Structural and functional properties of biopolymers	3
Option B: Modeling	CREDITI
Option B: Modeling Nanoscale Structural transformations and Kinetics	CREDITI 2

Ulteriori link utili:

Didattica programmata – sito ufficiale:

http://uniroma2public.gomp.it/Manifesti/RenderAll.aspx?anno=2018

Didattica erogata – sito ufficiale:

http://uniroma2public.gomp.it/programmazioni/renderAll.aspx?anno=2018

Sito CNE

www.chem-nano-eng.uniroma2.it

PROFILO PROFESSIONALE E SBOCCHI OCCUPAZIONALI E PROFESSIONALI PREVISTI Chimico delle nanotecnologie

funzione in un contesto di lavoro

Il corso di studi in Chemistry for Nano-Engineering definisce una nuova figura professionale sfruttando le competenze sinergiche di una solida conoscenza chimica unita ad una forte preparazione ingegneristica ed applicativa. L'approfondita conoscenza dei principi della chimica nei suoi diversi settori, l'avanzata conoscenza dei principi dell'ingegneria e la capacità di effettuare approfondite ricerche bibliografiche, consentirà ai laureati magistrali di mantenersi costantemente aggiornati ed alla pari con i progressi che si realizzano nell' ambito delle tecnologie chimiche e industriali, e nelle attività lavorative di contesto.

Il laureato in Chem-Nano-Eng sarà in grado di:

- svolgere attività di leadership nella conduzione di ricerche e nella produzione di nuovi materiali
- controllare e gestire il processo di innovazione tecnologica legato allo sviluppo
- esprimere capacità nella scelta e utilizzo delle metodiche sperimentali, nella raccolta ed analisi di dati
- sviluppare metodologie e prodotti e processi innovativi in osservanza alle norme di sicurezze, al rispetto dell'ambiente e alla qualità del prodotto
- coordinare, gestire e dirigere progetti di elevata tecnologia e complessità
- progettare, controllare, produrre e mantenere nuovi dispositivi

- risolvere problematiche trasversali
- assumere responsabilità di gestione di strutture e processi di produzione ai livelli più elevati

competenze associate alla funzione

Alle funzioni su indicate sono connesse le seguenti competenze:

- conoscenza approfondita degli aspetti teorico-scientifici in tutti i settori della chimica e della nano-chimica;
- progettazione e gestione di componenti, macchine, meccanismi e sistemi a livello nanometrico, anche di nuova concezione;
- conoscenze delle tecniche di caratterizzazione dello stato solido e dei materiali polimerici;
- conoscenze di processi e impianti industriali di nano-ingegneria;
- gestione dei processi produttivi che riguardano materiali e nano-materiali non convenzionali;
- conoscenze di base delle dinamiche aziendali.

sbocchi occupazionali

Il laureato Magistrale in Chemistry for Nano-Engineering sarà in grado di controllare e gestire il processo di innovazione tecnologica legato allo sviluppo e troverà impiego in un ampia gamma di settori industriali specialmente nel campo delle nanotecnologie. Inoltre il laureato in Chemistry for Nano-Engineering sarà in grado di coordinare, gestire e dirigere progetti di elevata tecnologia e complessità; potrà svolgere attività di leadership grazie alle acquisite capacità multidisciplinari di sviluppo di metodologie e prodotti innovativi, di progettazione e controllo, di risoluzione di problematiche trasversali.

Questa figura professionale potrà essere impiegata, a livello nazionale ed internazionale. nell'industria manifatturiera ad alto contenuto tecnologico che opera nei diversi settori della chimica e dell'ingegneria industriale:

- aziende per la produzione e trasformazione dei materiali avanzati, inorganici, polimerici e compositi;
- aziende per le applicazioni nel settore chimico, dell'energia, dell'edilizia, dei trasporti,
 biomedico, ambientale e aerospaziale.

Il laureato di Master troverà anche impiego come ricercatore in laboratori industriali e centri di ricerca e sviluppo di aziende ed enti pubblici e privati.

La solida formazione scientifica consentirà inoltre al laureato magistrale di continuare nell'iter universitario accedendo ai corsi di Dottorato di Ricerca in Scienze Chimiche ed Ingegneristiche.

Data la sua natura internazionale il Master fornirà un'esperienza interculturale, in stretta relazione con le competenze dei tre membri del consorzio, per migliorare il potenziale di

innovazione degli studenti nelle loro attività future, e per prepararli all'apprendimento in posti nuovi, culture diverse e diversi sistemi di istruzione e lavoro.

In sintesi il corso forma una figura professionale esperta nelle nanotecnologie, nello sviluppo di materiali e prodotti, nello sviluppo di dispositivi mediante l'utilizzo di nanotecnologie e nella progettazione e gestione di sistemi complessi.

<u>INDICE</u>

0.55	_
Sezione prima – Offerta didattica	3
Sezione seconda – Organizzazione didattica	9
Sezione terza – Calendario delle attività didattiche	33
Sezione quarta – Corsi di Laurea	37
Ingegneria CIVILE e AMBIENTALE	38
Ingegneria dell'EDILIZIA	42
Ingegneria ELETTRONICA	47
Ingegneria ENERGETICA	52
Ingegneria GESTIONALE	55
Ingegneria INFORMATICA	65
Ingegneria MECCANICA	70
Ingegneria MEDICA	74
Ingegneria di INTERNET	78
ENGINEERING SCIENCES	82
Sezione quinta – Corsi di Laurea Magistrale a ciclo unico	85
Ingegneria EDILE-ARCHITETTURA	86
Sezione sesta – Corsi di Laurea Magistrale	91
Ingegneria per L'AMBIENTE E IL TERRITORIO	92
Ingegneria dell'AUTOMAZIONE	95
Ingegneria CIVILE	98
Ingegneria ELETTRONICA	102
Ingegneria ENERGETICA	106
Ingegneria GESTIONALE	110
Ingegneria INFORMATICA	121
Ingegneria MECCANICA	125
Ingegneria MEDICA	130
Ingegneria e TECNICHE DEL COSTRUIRE	134
ICT AND INTERNET ENGINEERING	138
MECHATRONICS ENGINEERING	143
CHEMISTRY FOR NANO- ENGINEERING	148

Indice della Guida

