統計解析特論 講義メモ 2 回帰分析

- データ: $(\boldsymbol{x}_1,y_1),\ldots,(\boldsymbol{x}_n,y_n), \quad \boldsymbol{x}_i \in \mathcal{X}, \ y_n \in \mathbb{R}$.
- y を x の関数で説明する
- ・用語の説明
 - x:入力(独立変数・説明変数)
 - y: 出力(従属変数・目的変数)

線形モデル

 $m{x}$ と y の関係:基底関数 $\phi_1(m{x}),\ldots,\phi_d(m{x})$ の線形和でを説明.

線形モデル:
$$y_i = \sum_{k=1}^d \phi_k(\boldsymbol{x}_i) \theta_k + \varepsilon_i = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\theta} + \varepsilon_i.$$
$$\boldsymbol{\phi}(\boldsymbol{x}) = (\phi_1(\boldsymbol{x}), \dots, \phi_d(\boldsymbol{x}))^T.$$

データからパラメータ $\boldsymbol{\theta}=(\theta_1,\dots,\theta_d)^T$ を推定。 線形モデル:「関数部分 $\boldsymbol{\phi}(\boldsymbol{x})^T\boldsymbol{\theta}$ がパラメータ $\boldsymbol{\theta}$ について線形」という意味。

- 1変数 (or 単回帰) モデル: $y_i = \theta_0 + \theta_1 x_i + \varepsilon_i, \quad x_i \in \mathbb{R}, \; \boldsymbol{\theta} = (\theta_0, \theta_1)^T.$
- 多項式回帰モデル:

$$y_i = \theta_0 + \theta_1 x_i + \theta_2 x_i^2 + \dots + \theta_d x_i^d + \varepsilon_i, \quad x_i \in \mathbb{R}, \ \boldsymbol{\theta} = (\theta_0, \theta_1, \dots, \theta_d)^T$$

最小2乗法

パラメータ θ の推定法:データとモデルの間の2乗誤差を最小化

$$\underbrace{\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}}_{Y} = \underbrace{\begin{pmatrix} \phi_1(\boldsymbol{x}_1) & \cdots & \phi_d(\boldsymbol{x}_1) \\ \vdots & \ddots & \vdots \\ \phi_1(\boldsymbol{x}_n) & \cdots & \phi_d(\boldsymbol{x}_n) \end{pmatrix}}_{\Phi} \underbrace{\begin{pmatrix} \theta_1 \\ \vdots \\ \theta_d \end{pmatrix}}_{H} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

関数
$$\phi(\mathbf{x})^T \boldsymbol{\theta}$$
 の 2 乗誤差 $=\sum_{i=1}^n (y_i - \boldsymbol{\theta}^T \phi(\mathbf{x}_i))^2 = \|Y - \Phi \boldsymbol{\theta}\|^2 \longrightarrow \min_{\boldsymbol{\theta}}$

極値条件:
$$\frac{\partial}{\partial \boldsymbol{\theta}} \|Y - \Phi \theta\|^2 = -2\Phi^T (Y - \Phi \widehat{\boldsymbol{\theta}}) = \mathbf{0}$$

$$\Longrightarrow$$
 最小2乗推定量: $\hat{\boldsymbol{\theta}} = (\Phi^T \Phi)^{-1} \Phi^T Y$

note: 多変数関数の微分

関数 $f: \mathbb{R}^k \to \mathbb{R}$ に対して、 $\Phi \in \mathbb{R}^{k \times d}$ 、 $\theta \in \mathbb{R}^d$ 、 $g(\theta) = f(\Phi \theta)$ とすると

$$\frac{\partial g}{\partial \theta_j}(\boldsymbol{\theta}) = \sum_k \frac{\partial f}{\partial z_k} (\Phi \boldsymbol{\theta}) \frac{\partial (\Phi \boldsymbol{\theta})_k}{\partial \theta_j} = \sum_k \frac{\partial f}{\partial z_k} \Phi_{kj}$$

したがって
$$\frac{\partial f}{\partial z} = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_k}\right)^T$$
 とすると

$$\frac{\partial g}{\partial \boldsymbol{\theta}}(\Phi \boldsymbol{\theta}) = \Phi^T \frac{\partial f}{\partial \boldsymbol{z}}(\Phi \boldsymbol{\theta}).$$

最小2乗推定量の幾何的解釈

 $\Phi = (\phi_1, \dots, \phi_d) \in \mathbb{R}^{n \times d}$ とする: $\min_{\boldsymbol{\theta}} \|Y - \Phi \boldsymbol{\theta}\|^2 \longrightarrow \boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}$. $\Longrightarrow \Phi \widehat{\boldsymbol{\theta}} : \phi_1, \dots, \phi_d$ で張られる \mathbb{R}^n の部分空間への $Y \in \mathbb{R}^n$ の射影.

最小2乗法: $\widehat{\boldsymbol{\theta}} = (\Phi^T \Phi)^{-1} \Phi^T Y$ なので $\Phi \widehat{\boldsymbol{\theta}} = \Phi(\Phi^T \Phi)^{-1} \Phi^T Y$. $\Pi = \Phi(\Phi^T \Phi)^{-1} \Phi^T \in \mathbb{R}^{n \times n}$ は $\operatorname{span}\{\boldsymbol{\phi}_1, \dots, \boldsymbol{\phi}_d\}$ への直交射影.

射影の補足

- 射影演算子: $\Pi=\Pi^T, \Pi^2=\Pi$ を満たす正方行列 Π .
- 射影演算子 Ⅱ の性質
 - Ⅱ の固有値は 0 か 1.
 - $S = \text{range}(\Pi)$ とすると、 Πy は $y \in \mathbb{R}^n$ の S への直交射影。 $a \in S$ に対して $\Pi a = a$, $b \in S^{\perp}$ に対して $\Pi b = \mathbf{0}$.
 - $y = \Pi y + (I \Pi)y$ は、 $S \in S^{\perp}$ 方向への y の直交分解.

最適な回帰関数

仮定:データ(x,y) の確率密度を p(x,y) とする. 期待2乗誤差のもとで最適な関数は

$$f^*(\boldsymbol{x}) = E[y|\boldsymbol{x}] = \int yp(y|\boldsymbol{x})dy.$$

Proof. 任意の関数 g(x) に対して以下が成立.

$$\mathbb{E}[(y - g(\mathbf{x}))^2] = \mathbb{E}[(y - f^*(\mathbf{x}))^2] + \mathbb{E}[(f^*(\mathbf{x}) - g(\mathbf{x}))^2].$$

近似誤差・推定誤差

- 線形モデル: $g_{\theta}(\boldsymbol{x}) = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\theta}$.
- 期待 2 乗誤差ものとで最適なパラメータ θ^* :以下を満たす.

$$\min_{\boldsymbol{\theta}} \mathbb{E}[(f^*(\boldsymbol{x}) - g_{\boldsymbol{\theta}}(\boldsymbol{x}))^2] = \mathbb{E}[(f^*(\boldsymbol{x}) - g_{\boldsymbol{\theta}^*}(\boldsymbol{x}))^2].$$

線形モデルに対して次式が成立:

$$\mathbb{E}[(y - g_{\boldsymbol{\theta}}(\boldsymbol{x}))^{2}] = \mathbb{E}[(y - f^{*}(\boldsymbol{x}))^{2}] + \mathbb{E}[(f^{*}(\boldsymbol{x}) - g_{\boldsymbol{\theta}}(\boldsymbol{x}))^{2}]$$

$$= \underbrace{\mathbb{E}[(y - f^{*}(\boldsymbol{x}))^{2}]}_{\mathcal{I} + \mathcal{I} \tilde{\mathcal{I}}} + \underbrace{\mathbb{E}[(f^{*}(\boldsymbol{x}) - g_{\boldsymbol{\theta}^{*}}(\boldsymbol{x}))^{2}]}_{\text{線形モデルの誤差}} + \underbrace{\mathbb{E}[(g_{\boldsymbol{\theta}^{*}}(\boldsymbol{x}) - g_{\boldsymbol{\theta}}(\boldsymbol{x}))^{2}]}_{\mathcal{I} \tilde{\mathcal{I}} \times - \mathcal{I} \tilde{\mathcal{I}} \tilde{\mathcal{I$$

- 大数の法則: $\frac{1}{n}\sum_{i=1}^n(y_i-g_{\boldsymbol{\theta}}(\boldsymbol{x}_i))^2 \xrightarrow{p} \mathbb{E}[(y-g_{\boldsymbol{\theta}}(\boldsymbol{x}))^2].$
 - 最小2乗法:「パラメータの誤差」を近似的に最小化
 - データ数 $\rightarrow \infty$ のとき $\widehat{\boldsymbol{\theta}} \stackrel{p}{\longrightarrow} \boldsymbol{\theta}^*$.

最小2乗推定量の性質:

• 一致性: $\widehat{\boldsymbol{\theta}} \stackrel{p}{\longrightarrow} \boldsymbol{\theta}^* \quad (n \longrightarrow \infty)$

• 不変性: $f^*(\boldsymbol{x}) = g_{\boldsymbol{\theta}^*}(\boldsymbol{x})$ のとき、 $\mathbb{E}[\widehat{\boldsymbol{\theta}}] = \boldsymbol{\theta}^*$

$$\mathbb{E}[\widehat{\boldsymbol{\theta}}] = \int (\Phi^T \Phi)^{-1} \Phi^T Y p(y_1 | \boldsymbol{x}_1) p(\boldsymbol{x}_1) \cdots p(y_n | \boldsymbol{x}_n) p(\boldsymbol{x}_n) dy dx$$
$$= \int (\Phi^T \Phi)^{-1} (\Phi^T \Phi) \boldsymbol{\theta}^* p(\boldsymbol{x}_1) \cdots p(\boldsymbol{x}_n) dx = \boldsymbol{\theta}^*$$

別の書き方:

$$\mathbb{E}[\widehat{\boldsymbol{\theta}}] = \mathbb{E}_x \mathbb{E}_{y|x} [(\Phi^T \Phi)^{-1} \Phi^T Y] = \mathbb{E}_x [(\Phi^T \Phi)^{-1} \Phi^T \mathbb{E}_{y|\boldsymbol{x}} [Y|\boldsymbol{x}]]$$
$$= \mathbb{E}_x [(\Phi^T \Phi)^{-1} \Phi^T \Phi \boldsymbol{\theta}^*] = \mathbb{E}_x [\boldsymbol{\theta}^*] = \boldsymbol{\theta}^*$$

データ解析の例:名古屋の平均気温

データ:名古屋の平均気温 (1891~2008年). 気象庁のホームページにデータがある

 $1 次式: y_i = \theta_0 + \theta_1 x_i + \varepsilon_i,$

2次式: $y_i = \theta_0 + \theta_1 x_i + \theta_2 x_i^2 + \varepsilon_i$

- 1次式よりも2次式のほうが良くあてはまっている
- どちらが良いかを決める客観的な方法:クロスバリデーションなど

§ 最小2乗法の性質, 交差検証法

天気データ: 1次式と2次式のどちらが良いか?→ 予測誤差が小さいほうがよい。

関数 f(x) の予測誤差(テスト誤差):

$$e(f) = \mathbb{E}_{\boldsymbol{x},y}[(y - f(\boldsymbol{x}))^2] = \int (y - f(\boldsymbol{x}))^2 p(\boldsymbol{x},y) d\boldsymbol{x} dy$$

(x,y):将来のデータ

学習誤差 (training error): 観測データに対する誤差

$$\widehat{e}(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2.$$

最小2乗推定量の学習誤差: $\widehat{e}(g_{\widehat{\theta}}) = \min_{\theta} \widehat{e}(g_{\theta})$

過学習

統計モデル $M_1 \subset M_2 \subset \cdots \subset M_\ell$.

例: M_i はj次多項式モデル.

 M_j のもとでの最小2乗推定量: $\widehat{g}_j(\boldsymbol{x}), j=1,\ldots,\ell$

$$\widehat{e}(\widehat{g}_j) = \min_{g \in M_j} \widehat{e}(g).$$

以下が成立:

$$\widehat{e}(\widehat{g}_1) \geq \widehat{e}(\widehat{g}_2) \geq \cdots \geq \widehat{e}(\widehat{g}_\ell).$$

どの \widehat{g}_j を用いるのがよいか?

- ullet $e(\widehat{g}_j)$ を小さくする \widehat{g}_j を使いたい.
- 注意: $\widehat{e}(\widehat{g}_j)$ は $e(\widehat{g}_j)$ のよい推定値にはならない。 (とくに j が大きいとき)

例

● 過学習

- モデルの次元が高いほど学習誤差は小さくなる。一方、予測誤差は大きくなる傾向がある。
- 学習誤差:学習に使うデータで評価も行う → 評価が甘くなる

交差検証法(cross validation, cv)

- 目標:推定量の予測誤差を推定
 - \rightarrow 適切なモデル M_j を選択
- ポイント:データを分ける
 - \hat{g}_i の学習に使うデータ
 - $e(\widehat{g}_i)$ の推定に使うデータ

K重交差検証法 (K-fold cross validation)

推定方法のイメージ: データをK個のグループに分割

平均 $\widehat{e}_{\mathrm{cv}} = \frac{1}{K} \sum_{\ell=1}^{K} \mathrm{error}_{\ell}$ を予測誤差の推定値とする.

K重交差検証法のアルゴリズム

1. データ $\mathcal{D} = \{(\boldsymbol{x}_1, y_1), \dots, (\boldsymbol{x}_n, y_n)\}$ をほぼ同じサイズの K 個の グループ $\mathcal{D}_1, \ldots, \mathcal{D}_K$ に分割。 $\mathcal{D}^{(k)}$ を以下のように定める。

$$\mathcal{D}_i \cap \mathcal{D}_j = \emptyset \ \ (i \neq j), \quad \cup_{i=1}^K \mathcal{D}_i = \mathcal{D}, \quad \mathcal{D}^{(k)} := \mathcal{D} \setminus \mathcal{D}_k = \cup_{i \neq k} \mathcal{D}_i.$$

- **2.** $\ell = 1, \ldots, K$ に対して以下を繰り返す.
 - (a) $\mathcal{D}^{(\ell)}$ を用いて学習: $\widehat{f}_{\ell}(oldsymbol{x})$
 - (b) \mathcal{D}_{ℓ} に対する $\widehat{f}_{\ell}(\boldsymbol{x})$ の誤差を $\operatorname{error}_{\ell}$ とする.

$$\operatorname{error}_{\ell} := \frac{1}{|\mathcal{D}_{\ell}|} \sum_{(x,y) \in \mathcal{D}_{\ell}} (y - \widehat{f_{\ell}}(\boldsymbol{x}))^2$$
 (推定に使ってないデータの予測)
3. 出力:予測誤差の推定値 $\widehat{e}_{\operatorname{cv}} = \frac{1}{K} \sum_{\ell=1}^{K} \operatorname{error}_{\ell}$.

cross validation によるモデル選択

- **1.** 統計モデル: M_1, \ldots, M_ℓ
- 2. M_j を用いるときの予測誤差を K-cv で推定 ightarrow $\widehat{e}_{\mathrm{cv},j}$
- 3. $\min_{j=1,...,\ell} \widehat{e}_{\mathrm{cv},j} \longrightarrow \widehat{j}$. 統計モデル $M_{\widehat{j}}$ を使う.

天気データの例

5-CV (K=5): データをランダムにほぼ均等に5分割。 \hat{e}_{cv} を計算。

- 1次式モデル M_1 : $\hat{e}_{\text{cv},1} = 0.366$
- 2次式モデル M_2 : $\widehat{e}_{\mathrm{cv},2} = 0.311$

2次式モデルのほうが予測精度が高いことが期待される.

K-CV と予測誤差

• K-CV: 推定量 $D \mapsto \widehat{f}_D$ (Dは観測データ)

$$E_D[e(\hat{f}_D)] = E_D[E_{x,y}[(y - \hat{f}_D(x))^2]]$$
 を推定.

データ数 n(K-1)/K のときの予測誤差. Kが小さいと推定バイアスが大きい.

• Kの決めかた:Kが大きいほど計算コストが大きい。 計算リソースから決める。 $K=5\sim 10$ 程度。

§ 統計解析特論:高次元モデルと正則化

予測誤差が小さな推定量が望ましい.

2つのアプローチ

- モデル選択:いくつかのモデルから選択
- 正則化:大きなモデルを適当に制約

正則化が最近の主流:Ridge 正則化, Lasso 正則化.

モデル選択より扱いやすい:

大きなモデルを1つ設定. 階層的なモデルを設定しなくてよい.

- 複雑なデータの解析
 - → 自由度の大きなモデルを使う.
- モデルの自由度が大きすぎてもうまくいかない:
 - → データに過剰に適合して、将来の予測がうまくいかない

• 最小2乗法で推定した結果:

正則化:モデルの自由度を調整

大きな次元の統計モデル:さまざまなデータに対応

$$Y = \sum_{k=1}^{d} \theta_k \phi_k(\mathbf{x}) + b + \varepsilon, \quad d \gg 1$$

定数項bと基底関数 $\phi_k(x)$ を分けることが多い。

例 **1.**
$$\phi(x) = (x, x^2, x^3, \dots, x^{100})$$
.

データ:
$$\{(x_1, y_1), \dots, (x_n, y_n)\}$$
.

正則化項付き最小2乗法

$$\min_{\theta, b} \sum_{i=1}^{n} (y_i - (\phi(\boldsymbol{x}_i)^T \theta + b))^2 + \frac{\lambda R(\theta)}{\text{Ellkq}}$$

$$\implies$$
 最適解 $\hat{\theta}$, \hat{b} . $\hat{f}(x) = \phi(x)^T \theta + \hat{b}$

正則化パラメータ $\lambda > 0$.

- $\lambda \rightarrow$ 大:正則化強い (モデルの自由度小さい)
- $\lambda \rightarrow \Lambda$: 正則化弱い (モデルの自由度大きい)

正則化項 $R(\theta)$: データへの overfit を防ぐ.

- L_0 正則化: $R(\theta) = \|\theta\|_0$:「 $(\theta_1, \ldots, \theta_d)$ の中の非ゼロ要素の数」
 - 基底数を制約、組合せ最適化、高次元だと実用的でない、
- L_1 正則化 (Lasso) : $R(\theta) = \|\theta\|_1 = \sum_{i=1}^d |\theta_i|$
 - L_0 正則化の近似. 凸 2 次計画問題. スパース解 (θ の要素はほとんど0) を得る.
- L_2 正則化 (Ridge) $: R(\theta) = \|\theta\|_2^2 = \sum_{i=1}^d \theta_i^2$
 - 計算しやすい。

正則化項付き最小2乗法は以下と等価:

$$\min_{\theta, b} \sum_{i=1}^{n} (y_i - (\phi(\boldsymbol{x}_i)^T \theta + b))^2, \quad \text{s. t.} \quad R(\theta) \le r$$

 λ と r の対応:大きい $\lambda \Leftrightarrow$ 小さい r.

Ridge の場合:

Ridge推定量の計算:

$$\min_{\theta, b} ||Y - \Phi \boldsymbol{\theta} - b \mathbf{1}||^2 + \lambda ||\theta||^2, \quad (\Phi_{ij} = \phi_j(\boldsymbol{x}_i))$$

関数
$$L(\theta,b) = ||Y - \Phi \theta - b\mathbf{1}||^2 + \lambda ||\theta||^2$$
 として

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = -2\Phi^{T}(Y - \Phi\boldsymbol{\theta} - b\mathbf{1}) + 2\lambda\boldsymbol{\theta} = 0$$
$$\frac{\partial L}{\partial b} = -2\mathbf{1}^{T}(Y - \Phi\boldsymbol{\theta} - b\mathbf{1}) = 0$$

$$\begin{pmatrix} \Phi^T \Phi + \lambda \mathbf{I} & \Phi^T \mathbf{1} \\ \mathbf{1}^T \Phi & n \end{pmatrix} \begin{pmatrix} \boldsymbol{\theta} \\ b \end{pmatrix} j = \begin{pmatrix} \Phi^T Y \\ \mathbf{1}^T Y \end{pmatrix}$$

• 15次多項式モデル:
$$y=\sum_{k=1}^{15}x^k\theta_k+b+\varepsilon$$
• Ridge の正則化パラメータ $\lambda>0$

小さい \longleftarrow モデル自由度 (表現力) \longrightarrow 大きい

正則化パラメータの選択

- 正則化パラメータをうまく選べば、予測誤差が小さくなる.
- cross validationで正則化パラメータを選ぶ.
 - **1.** λ の候補 $\{\lambda_1, \lambda_2, \ldots, \lambda_m\}$ を設定.
 - **2.** 各 λ_k , k = 1, ...m に対して,**cv** で予測誤差を推定。 $\widehat{e}_{\text{cv}}(\lambda_k)$, k = 1, ..., m を得る.
 - **3.** $\hat{e}_{cv}(\lambda_k)$ を最小にする正則化パラメータ λ_k を用いる.

- 15次多項式モデル: $y=\sum_{k=1}^{15}x^k\theta_k+b+\varepsilon$ 正則化パラメータ $\lambda=2^{-20}\sim 2^{10}$

*λ*に対する 5-CV のプロット

CVで選ばれた λ による回帰

optimal lambda=0.125

§ カーネル回帰分析

「大きなモデル+正則化」 ⇒ カーネル法

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \sum_{i=1}^n (y_i - \boldsymbol{\theta}^T \boldsymbol{\phi}(\boldsymbol{x}_i))^2 + \lambda \|\boldsymbol{\theta}\|^2$$

• $\theta \in \text{span}\{\phi(x_1), \dots, \phi(x_n)\}$ の範囲で考えれば十分.

Proof. $S = \text{span}\{\phi(\boldsymbol{x}_1), \dots, \phi(\boldsymbol{x}_n)\}$ とおく、 $\boldsymbol{\theta} = \boldsymbol{\theta}_1 + \boldsymbol{\theta}_2$, $\boldsymbol{\theta}_1 \in \mathcal{S}$, $\boldsymbol{\theta}_2 \in \mathcal{S}^{\perp}$ とおくと、 $\boldsymbol{\theta}^T \phi(\boldsymbol{x}_i) = \boldsymbol{\theta}_1^T \phi(\boldsymbol{x}_i)$, $\|\boldsymbol{\theta}\| \geq \|\boldsymbol{\theta}_1\|$. したがって

$$\sum_{i=1}^{n} (y_i - \boldsymbol{\theta}^T \phi(\boldsymbol{x}_i))^2 + \lambda \|\boldsymbol{\theta}\|^2 \ge \sum_{i=1}^{n} (y_i - \boldsymbol{\theta}_1^T \phi(\boldsymbol{x}_i))^2 + \lambda \|\boldsymbol{\theta}_1\|^2$$

よってSの範囲で探索すれば十分.

$$m{ heta} = \sum_{j=1}^n m{\phi}(m{x}_j)eta_j = \Phim{eta}$$
 を2乗誤差に代入。 $m{eta} = (eta_1,\dots,eta_n)^T$

$$\sum_{i=1}^{n} (y_i - \boldsymbol{\theta}^T \boldsymbol{\phi}(\boldsymbol{x}_i) - b)^2 + \lambda \|\boldsymbol{\theta}\|^2$$

$$= \|\boldsymbol{y} - \boldsymbol{\Phi}^T \boldsymbol{\Phi} \boldsymbol{\beta} - b \boldsymbol{1}\|^2 + \lambda \boldsymbol{\beta}^T \boldsymbol{\Phi}^T \boldsymbol{\Phi} \boldsymbol{\beta} \longrightarrow \min_{\boldsymbol{\beta}, b}$$

カーネル法

• カーネル関数の定義: $k(\boldsymbol{x}, \boldsymbol{x}') := \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{x}') \in \mathbb{R}$ $n \times n$ 行列 $K_{ij} = k(\boldsymbol{x}_i, \boldsymbol{x}_j) \Longrightarrow K = \boldsymbol{\Phi}^T \boldsymbol{\Phi}$

正則化項付き $\mathbf{2}$ 乗誤差: $\|\mathbf{y} - K\boldsymbol{\beta} - b\mathbf{1}\|^2 + \lambda \boldsymbol{\beta}^T K\boldsymbol{\beta}$ \longrightarrow 最適解 $\hat{\boldsymbol{\beta}}$, \hat{b}

- 回帰関数: $\widehat{f}(\boldsymbol{x}) = \boldsymbol{\phi}(\boldsymbol{x})^T \sum_{i=1}^n \boldsymbol{\phi}(\boldsymbol{x}_i) \widehat{\beta}_i + \widehat{b} = \sum_{i=1}^n k(\boldsymbol{x}, \boldsymbol{x}_i) \widehat{\beta}_i + \widehat{b}$
- 関数 $k(\boldsymbol{x}, \boldsymbol{x}')$ だけから推定量 $\widehat{f}(\boldsymbol{x})$ を計算可能. \longrightarrow 最初から $k(\boldsymbol{x}, \boldsymbol{x}')$ を与えて推定.

カーネル回帰分析の特徴

- $\phi(x) = (\phi_1(x), \phi_2(x), \ldots) \in \mathbb{R}^D$ とする. $D = \infty$ でも、k(x, x') を簡単に計算できる場合がある. 例:ガウシアンカーネル(\rightarrow 次頁)
- 線形モデル $y = x^T \theta + \varepsilon$ とほぼ同じ手間で、表現力が大幅アップ.

カーネル関数の例: $oldsymbol{x} \in \mathbb{R}^d \longmapsto oldsymbol{\phi}(oldsymbol{x}) \in \mathbb{R}^D$.

- 線形カーネル: $k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x}^T \boldsymbol{x}', \quad D = d$
- 多項式カーネル: $k(\boldsymbol{x}, \boldsymbol{x}') = (1 + \boldsymbol{x}^T \boldsymbol{x}')^k$, $k \in \mathbb{N}$, $D = \frac{(k+d)!}{k! \, d!}$. k次以下の単項式全体の線形和.
- \dot{T}

$$k(x, x') = \exp\{-\gamma \cdot ||x - x'||_2^2\}, \quad \gamma > 0$$