Capturing Dependency of Data using Graphical Models

Song Liu (song.liu@bristol.ac.uk)

Objectives

 Understand equivalence of conditional independence of R.Vs and factorizations of their probability distribution over a graph.

- •Simple undirected graphical models:
 - Gaussian Markov Network
 - Logistic Model

Example: Scores of Units

•Imagine a table of unit scores.

Name	SPS	Math	Python	Mach. Learn.
Song	80	70	50	60
Harry	50	40	70	80
Ron	50	50	•••	45
Hermione	90	100	•••	100
•••	•••	•••	•••	•••

Example: Scores of Units

- •Given a dataset $\{x_i\}_{i=1}^n$,
 - $\bullet x_i = \left[x_i^{(1)}, x_i^{(2)} \dots x_i^{(d)} \right] \in \mathbb{R}^d$
 - • x_i is a vector of a student i's scores.
 - • $x^{(1)}$ is SPS score, $x^{(2)}$ is Math score, ... $x^{(d)}$ is Mach. Learn. score.

•What does $p(x^{(1)}, x^{(2)} \dots x^{(d)})$ look like?

An (undirected) Graphical Representation of Dependency

- •Scores of units are dependent!
 - Student with **high** Math, Python score is likely to receive **high** SPS score.
- A graphical representation:

Example: Image Segmentation

- •The probability of one pixel being labelled as "Cow" is correlated with adjacent pixels.
 - A pixel is more likely to be a Cow pixel if surrounding pixels are all Cow pixels

Jamie Shotton et. al. IJCV 2009

Independence of R.V.s

- Let's look at how independence between R.V.s are expressed in probability:
- •R.V. X is **independent** of Y:
 - $\bullet X \perp Y$
 - $\bullet \Leftrightarrow p(X,Y) = p(X)p(Y)$
 - Factorization
 - $\bullet \Leftrightarrow p(X|Y) = p(X) \Leftrightarrow p(Y|X) = p(Y)$
 - Information Flow

Example: Likelihood with Independent Datapoints:

- Likelihood over the dataset
 - •Factorizes into product over each x_i

•
$$p(x_1, x_2, ... x_n; \theta) = \prod_{i=1}^n p(x_i; \theta)$$

- Maximum Likelihood Estimation
 - $\operatorname{max}_{\theta} \prod_{i=1}^{n} p(x_i; \theta)$
 - Lab sheet 4.1

Conditional Independence of R.V.s

- •R.V. X is independent of Y given Z
 - $X \perp Y \mid Z$
 - $\bullet \Leftrightarrow p(X,Y|Z) = p(X|Z)p(Y|Z)$
 - $\bullet \Leftrightarrow p(X,Y,Z) \propto g_1(X,Z) \cdot g_2(Y,Z)$
 - Factorization
 - $\bullet \Leftrightarrow p(X|Y,Z) = p(X|Z)$
 - •Information flow: Given Z, Y does not give any additional info which changes the prob. of X.
 - $\bullet \Leftrightarrow p(Y|X,Z) = p(Y|Z)$

Conditional Independence of R.V.s

- •Conditional Independence is interesting since it tells how information **flows** between R.V.s
 - • $X \perp Y | Z$ tells information **flows into** X from Y are "bottlenecked" by Z.
 - vice versa.

Representing Conditional Independence by Graph

- •Given many R.Vs, listing all cond. independence can be cumbersome.
- •A graph representation is helpful:

"
$$X \perp Y \mid Z$$
"

Representing Conditional Independence by Graph

- •Given a graph $G = \langle E, V \rangle$, and three random variables $X, Y, Z \in V$
 - •if X and Y are completely "**blocked**" by Z, we say $X \perp Y \mid Z$ is represented by G.
 - •X, Y, Z can also be a group of R.Vs.

Example: Encoding cond. ind. by graph

Representing Prob. Distribution Factorization by Graph

- Writing a factorization of a probability distribution with many R.V. can be messy.
- •Given a graph $G = \langle E, V \rangle$,
- •We say p(X) factorizes over G:
- •If $p(X) \propto \prod_{c \in C} g_c(X^{(c)})$
 - •where C is set of all **cliques** in G.
 - • g_c is a function defined on $X^{(c)}$, which is the subset of X restricted on c.

Example

- Cliques: Fully connected subgraphs.
- •Maximum cliques:
 - Math-SPS, SPS-Python-ML
- • $p(Ma, SPS, Py, ML) \propto g_1(Ma, SPS) \cdot g_2(Py, ML, SPS)$.

Equivalency between Factorization and Conditional Independence over *G*

- Using graph represent a factorization of a probability distribution
- •Using graph represent a list of conditional independence
- Remarkably, these two seemingly irrelevant notions are equivalent!

Equivalency between Factorization and Conditional Independence over *G*

•If p factorizes over G, p satisfies all conditional independence represented by G.

•If p satisfies all conditional independence represented by G, then p factorizes over G.

Equivalency between Factorization and Conditional Independence over *G*

Verify this on Scores of Units example!

- Live demonstration.
- •Hint: $X \perp Y$, $W|Z \Rightarrow X \perp Y|Z$

Markov Network

•A probability distribution p(X) which uses undirected graph representing its conditional independence, is called an **undirected graphical** model, or a Markov network.

- Multivariate Gaussian distribution:
- • $x \in R^d$, $x \sim N(0, \Sigma)$
- •Let Θ is be the inverse of Σ .

•
$$p(x) \propto \exp\left[-\frac{x(\Sigma)^{-1}x^{\mathsf{T}}}{2}\right]$$

$$\propto \exp\left[-\frac{\sum_{u,v} \Theta^{(u,v)} \chi^{(u)} \chi^{(v)}}{2}\right]$$

$$\propto \prod_{u,v;\Theta^{(u,v)}\neq 0} \exp\left(-\Theta^{(u,v)} \chi^{(u)} \chi^{(v)}\right)$$

- • $p(\mathbf{x}) \propto \prod_{u,v} g_{u,v}(\mathbf{x}^{(u)}, \mathbf{x}^{(v)})$ •Edge $(X^{(u)}, X^{(v)})$ is a clique!
- •p(x) factorizes over structure of Θ !

• factorizes over
$$G$$
 defined by the adjacency matrix $A_{i,j} = \begin{cases} 0, \Theta_{i,j} = 0 \\ 1, \Theta_{i,j} \neq 0 \end{cases}$
• G must be an undirected graph (why?)

- •⇔ satisfies the conditional independence encoded in G.

- •Knowing structure of p(x) in advance, we can hand-craft a Gaussian Markov network model by specifying Θ .
 - Careful: Θ must be positive definite!

Example

•
$$x^{(1)}$$
:Math; $x^{(2)}$:Py; $x^{(3)}$:SPS; $x^{(4)}$:ML

$$\bullet x^{(1)} : \mathsf{Math}; \, x^{(2)} : \mathsf{Py}; \, x^{(3)} : \mathsf{SPS}; \, x^{(4)} : \mathsf{ML}$$

$$\bullet \mathbf{\Theta} = \begin{bmatrix} \Theta_{11} & 0 & \Theta_{13} & 0 \\ 0 & \Theta_{22} & \Theta_{23} & \Theta_{24} \\ \Theta_{13} & \Theta_{23} & \Theta_{33} & \Theta_{34} \\ 0 & \Theta_{24} & \Theta_{34} & \Theta_{44} \end{bmatrix}$$

Constructing Likelihood

- •**PC:** If (x_0, \mathbf{x}) are drawn from a joint Gaussian $p(x_0, \mathbf{x})$, show log likelihood $\log p(x_0|\mathbf{x})$ has the form:
 - • $-(x_0 \sum_i \beta_i x_i)^2/b$, where $\beta_i \neq 0$ iff (X_0, X_i) is an edge in the Markov network structure of p.
 - •How does it help us select good features in least squares fitting?

- •Not knowing structure of p(x), given dataset D, we can fit a sparse Θ .
 - •Using MLE: $\max_{\mathbf{\Theta}} \log p(D; \mathbf{\Theta})$
 - •The sparsity of Θ gives a graphical representation of p(x)!
 - Such representation reveals how random variables "interacts" with each other!

Example: Gene Expression Data

Name of Genes	Gene1	Gene2	Gene3	Gene4
t1	.1	.2	.5	.2
t2	.5	.4	.7	.8
t3	.5	.5	•••	.45
t4	.9	.2	•••	.01
•••	•••	•••	•••	•••

Gene Network (Banerjee et al., 2008)

Exponential Family Distribution

 Gaussian Markov network belongs to a wider family of distributions, which are defined using a generic form:

•
$$p(x; \theta) := \frac{\exp(\langle \theta, f(x) \rangle)}{Z(\theta)}$$

- •f(x) is a feature transform on x.
- • $Z(\theta) := \int \exp(\langle \theta, f(x) \rangle) dx$
- •PC: show when f is 2^{nd} degree poly. transform with pairwise terms, $p(x; \theta)$ is a multivariate Gaussian distribution.

Conditional Markov Network

- •In many tasks, the conditional distribution is the key interest.
 - •p(Y|X) measures the randomness on Y given X and help us make a prediction.
 - •Both regression and classification requires a **conditional** model.
- •How to factorize a conditional distribution over *G*?

Conditional Markov Network

- •We say a conditional probability distribution P(Y|X) factorizes over G whose nodes $V = X \cup Y$, if
- $\bullet p(Y|X) = \frac{1}{Z(X)} \prod_{c \in C} g_c(Z), Z \subseteq X \cup Y$
- • $Z(X) := \int \prod_{c \in C} g_c(Z) \, dY$
- •PC: show $Z \not\subseteq X$
 - •p(Y|X) =does not include factors on conditioning variable X!

Example Python Math SPS ML •p(SPS|Ma, Py, ML) $= \frac{1}{Z(Ma, Py, ML)} g_1(SPS, Py, ML) g_2(SPS, Ma)$

•
$$Z(Ma, Py, ML) = \int g_1(SPS, Py, ML)g_2(SPS, Ma)dSPS$$

Example

- • $Z(Ma, Py, SPS) = \int g_1(SPS, Py, ML) \frac{dML}{dML}$
- • g_2 is gone!

Logistic Regression

•The way of constructing a conditional P.D. gives us a simple classification tool: Logistic Regression.

Consider a simple Markov Net

Logistic Regression

Using the factorization rule above,

$$\bullet p(Y|X) = \frac{1}{Z(X)} \prod_i g_i(Y, X^{(i)})$$

•Let
$$g_i(Y = y, X_i = x^{(i)}) := \exp(\beta_i \cdot yx^{(i)})$$

•
$$p(y|\mathbf{x}) = \frac{1}{Z(X)} \exp(\sum_{i} \beta^{(i)} \cdot yx^{(i)})$$

$$=\frac{1}{Z(X)}\exp(\langle \boldsymbol{\beta},\boldsymbol{x}\rangle y).$$

•
$$Z(X) = \exp(\langle \beta, x \rangle) + \exp(-\langle \beta, x \rangle)$$

Logistic Regression

•Logistic model:

•
$$p(y|\mathbf{x};\boldsymbol{\beta}) = \frac{1}{Z(X)} \exp(\langle \boldsymbol{\beta}, \mathbf{x} \rangle y)$$

$$\bullet Z(x) = \exp(\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle) + \exp(-\langle \boldsymbol{\beta}, \boldsymbol{x} \rangle)$$

- • β can be fitted using MLE.
 - $\widehat{\boldsymbol{\beta}} = \arg \max_{\boldsymbol{\beta}} \ \sum_{i=1}^{n} \log p(y_i|\boldsymbol{x}_i;\boldsymbol{\beta})$
 - •The process of fitting $\pmb{\beta}$ using MLE is called Logistic Regression.
 - sklearn.linear_model.LogisticRegression

Example

• Unlike least squares classifier, logistic classifier is a probabilistic classifier, which outputs $p(y|x; \hat{\beta})$, which is more interpretable!

Conclusion

- Markov network uses a graph to represent its conditional independencies.
 - •It visualizes interactions of R.V.s in a P.D.

- Two examples of Markov network
 - •Gaussian Makov network factorizes over the graph defined by its **inverse covariance**.
 - Logistic model is a conditional P.D. model factorizes over a classification model