
Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2020-2021

Examen de la session principale

Matière: Thermodynamique pour l'Ingénieur Documents Autorisés: NON

Classes: 1TA Enseignant: S.KORDOGHLI & D. LOUNISSI

Durée: 1h30 **Nombre de pages:** 3 pages **Date:** 07/06/2021

N.B: L'épreuve comporte trois pages, deux pour l'énoncé et 1 page pour l'annexe1.

Exercice 1: (12 points)

Une turbine à vapeur sert à produire de l'électricité à partir de la détente de la vapeur d'eau sur ses pales comme indiqué sur la **figure 1**. La vapeur d'eau entre dans la turbine à **60 bars** et **450** °C. A la sortie, l'eau sort à une pression de **20 kPa** à un état bi-phasique (saturé). Le travail fourni par la turbine durant ce processus est de **950 kJ/kg**.

Figure 1

Les propriétés thermodynamiques de la vapeur d'eau sont fournies dans l'annexe 1 de la page3 de ce document.

- 1) En appliquant le premier principe de la thermodynamique à ce système et en supposant que la turbine est adiabatique, déterminer la fraction de vapeur x_{vap} à la sortie de la turbine. (On négligera la variation de l'énergie potentielle et cinétique).
- 2) Déterminer alors la variation d'entropie durant cette détente. Commentez le résultat.
- 3) Combien serait le débit de vapeur en **kg/s** si la puissance de la turbine était de **4MW**?
- 4) Combien serait le travail **W'**_{turbine} fourni en **kJ/kg** si la détente dans la turbine était isentropique ? comparer cette valeur à la valeur réelle **W**_{turbine} et commenter ?

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2020-2021

Exercice 2: (8points)

Un œuf ordinaire peut être assimilé à une sphère de diamètre approximatif D=5.5 cm. L'œuf est initialement à une température uniforme de 8° C et est plongé dans un récipient d'eau bouillante à 97° C.

Figure 2

On donne les propriétés de l'œuf : $\rho = 1020 \frac{kg}{m^3}$; $C_p = 3.32 \frac{kJ}{kg.K}$

- 1) Déterminer la chaleur absorbée par l'œuf lorsque sa température atteint 70°C.
- 2) En admettant que la variation d'entropie de l'œuf peut être exprimée par :

$$\Delta S = S_2 - S_1 = m. c_p. \ln \left(\frac{T_2}{T_1}\right)$$

Déterminer la variation d'entropie de l'univers (œuf + l'eau bouillante). Commenter le résultat.

Bon travail

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2020-2021

Annexe 1 : Propriétés thermodynamiques de l'eau

Tableau 1 : Vapeur d'eau surchauffée à P =60 bars

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)
1	100,00	60,000	961,10	423,60	1,3026
2	150,00	60,000	920,11	635,61	1,8357
3	200,00	60,000 868,0		854,09	2,3235
4	250,00	60,000	801,23	1085,7	2,7886
5	275,58	60,000	758,00	1213,9	3,0278
6	275,58	60,000	30,818	2784,6	5,8901
7	300,00	60,000	27,632	2885,5	6,0703
8	350,00	60,000	23,668	3043,9	6,3357
9	400,00	60,000	21,088	3178,2	6,5432
10	450,00	60,000	19,170	3302,9	6,7219
11	500,00	60,000	17,646	3423,1	6,8826
12	550,00	60,000	16,388	3541,3	7,0307
13	600,00	60,000	15,322	3658,7	7,1693

Tableau 2 : Etat saturé de l'eau

	Temperature (°C)	Pressure (bar)	Liquid Density (kg/m³)	Vapor Density (kg/m³)	Liquid Enthalpy (kJ/kg)	Vapor Enthalpy (kJ/kg)	Liquid Entropy (kJ/kg-K)	Vapor Entropy (kJ/kg-K)
1	45,806	0,10000	989,83	0,068166	191,81	2583,9	0,64920	8,1488
2	60,058	0,20000	983,13	0,13075	251,42	2608,9	0,83202	7,9072
3	69,095	0,30000	978,25	0,19126	289,27	2624,5	0,94407	7,7675
4	75,857	0,40000	974,30	0,25044	317,62	2636,1	1,0261	7,6690
5	81,317	0,50000	970,94	0,30864	340,54	2645,2	1,0912	7,5930
6	85,926	0,60000	967,99	0,36607	359,91	2652,9	1,1454	7,5311
7	89,932	0,70000	965,34	0,42287	376,75	2659,4	1,1921	7,4790
8	93,486	0,80000	962,93	0,47914	391,71	2665,2	1,2330	7,4339
9	96,687	0,90000	960,70	0,53494	405,20	2670,3	1,2696	7,3943
10	99,606	1,0000	958,63	0,59034	417,50	2674,9	1,3028	7,3588

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2020-2021

Correct Exm pringed Thermodynamow 2010-2011 Ex 11 1) Iron principle & sys ouvert bh = gt w =0 Will - 1/2 - h. h, (60 hm, 250 %) = 33 02,9 kg/kg =0 hz = 3302,9 - 950 = 2352,9 kJ/lag a 0,2 km (20 kla) ona: heg = 251,425/15 hvap = 2608, 4 13/19 Myap = h2 - hey = 84, 14% 2) DS = S2 -SA S1 = 6, 7219 15/kg/k 12 = 2009 - Dup + 26 - Sty a (20 + Pa) Da = 4, 1388 kjllegk DS = 0,4169 KJ/19K

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria ****

Année Universitaire 2020-2021

Z'entropia a augmenté donnt le processes adiobitique
=0 détent vouversible
3) with = 4 HW = mean x Wturki
= 1,21 kg/s = 4,21 kg/s
4) Si AS = 0 = 8 As = 51 = 6, 72 19
= 20 k? (12 hm) > mp - 32 - 3 kg = 83, 24%
=8 1/2 = 2213, 95 K5 kg
-0 DL = - 1088, 94 1-3 hg = Winhi
W'th > Whenh
le travail fourne lors d'un trans ventropique (reverseld en superieur à celu d'un transf réell.

Université de Carthage

Ecole Nationale des Sciences et Technologies Avancées deBorjCedria

Année Universitaire 2020-2021

