2.解

为种律:

13	X	D	1	2
1	0	0	0	35
1	1	0	6 35	7.
1	2 3 3 3 3 3		0 35 12 35 235 235	35
			35	0

3. 静.

(1).
$$F(xx,y) = \int_{0}^{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} k(6-x-y) dx$$

(9).
$$P_{1} \times (1, Y < 3)$$

= $\int_{2}^{3} dy \int_{0}^{1} \frac{1}{8} (6 - \chi - y) dx = \frac{3}{8}$

(3)
$$P_3 \times < 1.5$$
 }
= $\int_2^4 dy \int_0^{45} \frac{1}{8} (6-x-y) dx = \frac{27}{32}$

(4)
$$P < x + Y \le 43$$

= $\int_{0}^{2} dx \int_{2}^{6-x} \frac{1}{5} (6-x-y) dxy = \frac{2}{3}$

6解:

6
$$P_{\theta}(x=0, Y=0) = (\frac{1}{2})^3 = \frac{1}{8}$$

P(x=0, Y=1) =
$$(\frac{1}{2})^{\frac{1}{2}} \times \frac{1}{2} = \frac{1}{8}$$

$$P(x=1, Y=1) = P(x)C_{1}C_{2}^{1} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

$$P(x=1, Y=2) = C_{1}^{1} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

$$P(x=2, Y=2) = C_{1}^{1}(\frac{1}{2})^{2} \times \frac{1}{2} = \frac{1}{8}$$

$$P(x=2, Y=3) = C_{v}(\frac{1}{2})^{2} \times \frac{1}{2} = \frac{1}{8}$$

分布律句;

5	V			-		
	$\nearrow \nearrow$	0	(2	3	Pix=i]
	0	18	18	O	0	1/4
	1	0	4	4	0	-12
	2	₽0	0	1-18	8	4
	P:Y=33	0 - 100	38	38	18	1

Q).

9. 杨华:

$$||f|| = \int_{-1}^{1} dx \int_{x_{-}}^{1} cx^{2}y dy$$

$$= \int_{-1}^{1} \frac{1}{2} cx^{2} (1 - x^{2}) dx$$

$$= \frac{4}{21} C$$

$$f_{X}(x) = \int_{a}^{2} f(x) y(x) dy = \begin{cases} -1 & \text{if } x = 1 \\ 0 & \text{if } x = 1 \end{cases}$$

$$f_{X}(x) = \int_{a}^{2} f(x) y(x) dy = \begin{cases} -1 & \text{if } x = 1 \\ 0 & \text{if } x = 1 \end{cases}$$

$$f_{X}(x) = \int_{a}^{2} f(x) y(x) dy = \begin{cases} -1 & \text{if } x = 1 \\ 0 & \text{if } x = 1 \end{cases}$$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx = \begin{cases} \int_{0}^{1/2} \frac{1}{4} x^{y} y dy x & 0 \le y \le 1 \\ 0 & \text{for} \end{cases} = \begin{cases} \frac{7}{2} y^{\frac{1}{2}} & 0 \le y \le 1 \\ 0 & \text{for} \end{cases}$$