Homework 4: Phys 5210 (Fall 2021)

Tien Vo

September 19, 2021

Problem 1: Two particles move about each other in circular orbits under the influence of gravitational forces (so that the potential energy is $U = -\alpha/r$), with a period τ .

Their motion is suddenly stopped at a given instant of time, and they are then released and allowed to fall into each other.

Prove that they collide after a time $\tau/(4\sqrt{2})$.

Solution.

Problem 2: A central force potential is given by

 $U(r) = \begin{cases} 0, & r > a \\ -U_0, & r < a \end{cases}$ (2.1)

Here $U_0 > 0$. We would like to study the scattering in this potential.

- (a) If a particle approaches the potential with the kinetic energy E and the impact parameter s, find the angle φ and $\tilde{\varphi}$ as shown in the Figure above. The figure represents the potential as a circle of radius a, with the trajectory of a particle shown in blue. Use conservation of energy and conservation of angular momentum to find $\tilde{\varphi}$.
 - (b) Determine the scattering angle θ in terms of φ and $\tilde{\varphi}$.
- (c) Express s as a function of θ . This step is tricky as it is easy to find θ in terms of s, harder the other way around. To do that, take the ratio $\sin \frac{\tilde{\varphi}}{\sin \varphi}$. On the one hand, use the results of part (a) to figure out what it is equal to. On the other hand, express $\tilde{\varphi}$ in terms of φ and θ , and work to solve the resulting equation for φ . Finally, use the previous result relating φ to s.
- (d) Finally, find the differential cross section $d\sigma/d\Omega$ where $d\Omega = 2\pi \sin(\theta)d\theta$ for a particle scattering in this potential.

Solution.