

${\bf QCM-Transmetteurs}$

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant. Question

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 $\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

Soit le schéma suivant. Question $\frac{\mathbf{4}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

Soit le schéma suivant.

 $\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1} \qquad \boxed{\mathbf{B}} \ \frac{Z_1}{Z_2}$

 $\begin{array}{c|ccccc}
\hline
A & & & \hline
B & \frac{Z_2}{Z_1} & & \hline
C & & & \\
& -\frac{Z_1}{Z_2} & & & -\frac{Z_2}{Z_1} & & \\
\end{array}$

Question $\frac{5}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

$$-\frac{Z_1}{Z_2}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 7 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	n et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : \blacksquare \Box \Box \Box

Question 2: A B C

Question 3 : A B C

Question 4: A B C

Question $5: A \square C D$

Question $6: A \square C D$

Question $7: \blacksquare \ \Box \ \Box \ \Box$

Question $8: A B \square$

+1/4/57+

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge Question 1 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 Z_1

 $oxed{f A} -rac{Z_2}{Z_1}$ Soit le schéma suivant.

Soit le schéma suivant.

 $v = \frac{mZ_2^2}{2Z_1} \omega_{\text{10}}^{\text{Question}}$ Déterminer

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

 $-\frac{D_2}{D_1} \quad \blacksquare \quad \frac{D_1}{D_2}$

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question 7

$$\triangle$$
 $\frac{Z_2}{Z_1}$

 $oxed{\mathbb{C}} -rac{Z_1}{Z_2}$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{10}}{}$

Question 8 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	n et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

Question $2: \square \square \square$

Question 3: A B D

Question 4: A B D

Question $5: A \square C D$ Question $6: A \square C D$

Question 7: $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{D}}$

Question $8: A \square C D$

+2/4/53+

${\bf QCM-Transmetteurs}$

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{10}}$.

Question 3 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{10}}$.

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 5 Déterminer $\frac{\tilde{\omega}_{20}}{}$.

Soit le schéma suivant. Question 7

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$egin{array}{c} \overline{\mathrm{B}} \\ -rac{Z_2}{Z_1} \end{array}$$

$$\boxed{\mathrm{D}} \ \frac{Z_1}{Z_2}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\frac{\omega_{10}}{N} = \frac{N}{Z_1} \omega_{30}$

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Non	ı et pr	énom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question 2 : A B D

Question 3 : A B C

Question 4: A B D

Question $5: A B \square D$

Question $6: \square \square \square$

Question $7: \blacksquare B C D$

Question 8 : A B D

On note v la vitesse de la charge

QCM - Transmetteurs

$$\begin{array}{c|cccc}
\hline
A & & \blacksquare & \\
-\frac{Z_1}{Z_2} & & -\frac{Z_2}{Z_1} & & \boxed{D} & \frac{Z_2}{Z_2}
\end{array}$$

M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p

le pas de la vis.

Question 4 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question Déterminer ω_{20}

Soit le schéma suivant. Question 7

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\bigcirc Z_1$

 $2Z_2$

$$\frac{\overline{A}}{-\frac{D_1}{D}}$$
 $\frac{D_2}{D_1}$

$$\begin{array}{c|c} \hline \mathbf{C} & & \hline \mathbf{D} & \frac{D_1}{D_2} \\ -\frac{D_2}{D_1} & & \end{array}$$

Roue et vis sans fin N filets A

$$\omega_{10} = \omega_1$$

$$\frac{Z_2^2}{NZ_1}\omega_{30}$$

$$\frac{N}{Z_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant.

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No	O.	n	1	ϵ	et	р	r	é	n	ıC)1	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 3 : A B C

Question 4: A B D

Question $5: A \square C D$

Question $6: A \square C D$

Question 7: \overline{A} \overline{B} \overline{D}

Question 8 : A B C

${\bf QCM-Transmetteurs}$

Question 1 On note v la vitesse de la charge **Question** M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question $\frac{3}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant.

 $oldsymbol{C}$

Soit le schéma suivant.

 $\begin{array}{c} \textbf{Question} & \textbf{4} \\ \textbf{D\'aterminer} & \frac{\omega_{10}}{} \end{array}$ Déterminer

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant.

A

$$\begin{array}{c|c} \hline \mathbf{A} \\ -\frac{D_1}{D_2} \end{array} \quad \begin{array}{c|c} \hline \mathbf{D} \\ \hline D_2 \end{array} \quad \begin{array}{c|c} \hline \mathbf{D} \\ \hline D_1 \end{array} \quad \begin{array}{c|c} \hline \mathbf{D} \\ \hline -\frac{D_1}{D_2} \end{array}$$

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{10}}$.

$$\begin{array}{c|cccc}
\hline
A & & \hline
B & \frac{D_1}{D_2} & & \hline
\hline
 & \frac{D_2}{D_1} & & \hline
 & -\frac{D_2}{D_1} & & -\frac{D_2}{D_1}
\end{array}$$

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	n et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : \square \square \square \square$

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question $3: A \square C D$

Question 4: A B D

Question 5: A B C

Question $6: [A] [B] \blacksquare [D]$

Question $7 : A B \square$

Question 8 : A B C

+5/4/41+

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge **Question** Question 1 M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

 $\frac{\mathbf{3}}{\omega_{10}}$ Déterminer

Soit le schéma suivant.

 $\begin{array}{c} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Question 4 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\begin{array}{ccc}
& & & \boxed{C} & \boxed{D} \\
& \omega_{10} = & & \omega_{10} = \\
& \frac{N}{Z_1} \omega_{30} & & NZ_1 \omega_{30}
\end{array}$

 $\begin{array}{ll} \textbf{Question} & \textbf{5} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{Z_2}{Z_1}$$

 $\boxed{\mathrm{B}} \ \frac{Z_2}{Z_1}$

 $\boxed{\mathrm{D}} \ \frac{Z_1}{Z_2}$

Question 6 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

$$\begin{array}{c}
\boxed{\mathbf{A}} \\
-\frac{D_2}{D_1}
\end{array}$$

 $\boxed{\mathbf{B}} \ \frac{D_1}{D_2}$

Question 7 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	n et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B D

Question 2 : A B C

Question 3: A B D

Question $4: A \square C D$

Question 5: A B D

Question 6: A B C

Question 7: A B C

Question 8: A B C

+6/4/37+

${\bf QCM-Transmetteurs}$

On note v la vitesse de la charge Question 1 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

Question $\frac{\mathbf{3}}{\omega_{10}}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$

Soit le schéma suivant.

$$Z_2$$

 Z_1 Z_2

$$\boxed{\mathrm{B}} \frac{Z_2}{Z_1}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Question $\frac{4}{\omega_{20}}$.

Soit le schéma suivant.

Soit le schéma suivant.

Question Déterminer ω_{10} Soit le schéma suivant.

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\begin{array}{c|c}
\hline
B \\
-\frac{D_1}{D_2}
\end{array}
\qquad \boxed{C} \frac{D_2}{D_1}$$

$$\frac{\boxed{\mathrm{D}}}{-\frac{D_2}{D_1}}$$

Exprimer ω_{10} en fonction de ω_{30} Question 6 (en valeur absolue).

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

$$\omega_{10} = NZ_1\omega_{30}$$

$$\frac{C}{\omega_{10}} = \frac{Z_2^2}{NZ} \omega_{30}$$

$$\begin{array}{c} \omega_{10} = \\ \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30} \\ \boxed{\mathbf{A}} \end{array}$$

 D_1 Poulies - Courroie

 D_2

$$\frac{D_1}{D_2}$$
 $\boxed{ }$ $\frac{D_2}{D_1}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et	prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : A B C

Question 2 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{D}}$

Question 3: A B C

Question $4: \square \square \square \square$

Question $5: \ \square \ \square \ \square \ \square \ \square$

Question $6: A \square C D$

Question 7: A B C

Question $8: A \square C D$

QCM - Transmetteurs

 $\begin{array}{ll} \textbf{Question} & \mathbf{1} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant. Question

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant.

$$\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2} \qquad \boxed{\mathrm{C}} \ \frac{Z_2}{Z_1}$$

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question $\frac{\mathbf{5}}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant. $\mathbf{Question}$

er $\frac{\mathbf{5}}{\cdots}$. Soit le schéma suivant

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

Question 6 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\omega_{10} = \frac{N}{N} \omega_{30}$

В

 $\omega_{10} = \frac{Z_2^2}{NZ_1}\omega_{30}$

 \mathbf{C}

 $\frac{\omega_{10}}{N} = \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30}$

 $\omega_{10} = NZ_1\omega_{30}$

 $\begin{array}{c|c} \boxed{\mathbf{A}} & \blacksquare & \frac{D_2}{D_1} & \boxed{\mathbf{C}} & \\ -\frac{D_2}{D_1} & & -\frac{D_1}{D_2} & \end{array}$

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

 Question 1 :
 A
 B
 C
 Image: C
 D

 Question 2 :
 A
 B
 C
 D

 Question 3 :
 A
 B
 C
 Image: C
 Image: C
 D

 Question 5 :
 A
 B
 C
 D

 Question 6 :
 Image: C
 D

 Question 7 :
 A
 Image: C
 D

 Question 8 :
 A
 B
 Image: D

+8/4/29+

QCM - Transmetteurs

 $\begin{array}{cc} \textbf{Question} & \textbf{1} & \text{Soit} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant. **Question**Déterminer

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 $-\frac{D_2}{D_1} \qquad \boxed{\mathbb{B}} \quad \frac{D_2}{D_1} \qquad \boxed{\mathbb{D}} \quad \frac{D_1}{D_2} \qquad \boxed{\mathbb{D}}$ Ouestion 4 Soit le schéma suivant.

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$-rac{Z_1}{Z_1}$$
 $rac{B}{Z_2}$ $rac{Z_1}{Z_2}$ $rac{Z_2}{Z_1}$ $rac{Z_2}{Z_2}$

Question 5 Déterminer $\frac{\tilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question 7

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

fonction de ω_{10} (en valeur absolue).

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

$$v = \underbrace{Z_1 p}_{2Z_2 \pi} \omega_{10}$$

Roue et vis sans fin N filets

 $\bigcirc Z_1$

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : A B D

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 3: A B D

Question 4: A B C

Question 5: A B D

Question $6: A B \square D$

Question $7: A \square C D$

Question 8 : A B C

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant. Question

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\square \frac{Z_1}{Z_2}$$

Question 2
Déterminer $\frac{\omega_{10}}{\omega_{10}}$ Soit le schéma suivant. Déterminer

$$A$$

$$-\frac{D_1}{D_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$ Soit le schéma suivant.

$$\blacksquare \frac{Z_1}{Z_2}$$

$$-\frac{Z_2}{Z_1}$$

$$\begin{array}{c|c} \hline \mathbf{B} & \hline \mathbf{C} & \hline \mathbf{D} & \overline{Z_2} \\ -\frac{Z_2}{Z_1} & -\frac{Z_1}{Z_2} & \end{array}$$

On note v la vitesse de la charge Question 4 ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question Déterminer ω_{10}

Soit le schéma suivant. Question

Déterminer $\frac{\dot{\omega}_{10}}{}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}}$$
 $-\frac{D_2}{D_1}$

 $-\frac{D_1}{D_2}$

$$oxed{\mathrm{A}} \ rac{Z_1}{Z_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} - \frac{Z_2}{Z_1}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B CQuestion 2: A B CQuestion 3: B CQuestion 4: B CQuestion 5: A BQuestion 6: A BQuestion 7: A BQuestion 7: A B

Question 8 : A B D

+10/4/21+

Question $\frac{1}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant. Question

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Poulies - Courroie

 D_1

1

Soit le schéma suivant.

 $\boxed{D} \frac{Z_2}{Z_1} \qquad \blacksquare \frac{D_1}{D_2}$

Question $\frac{2}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant.

Question 4 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $egin{array}{c|c} \hline {
m B} & \hline {
m C} & rac{Z_1}{Z_2} & \hline {
m D} & rac{Z_2}{Z_1} \ \hline \end{array}$

A

Question 7 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

 Z_1 Z_1 Z_2 Z_2

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\begin{bmatrix} \mathbf{A} \\ -\frac{D_2}{D_1} \end{bmatrix} -\frac{\mathbf{B}}{D_2} -\frac{D_1}{D_2} \qquad \boxed{\square} \quad \frac{D_2}{D_1}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No	O.	n	1	e	t	р	r	é	n	ıC)1	n	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $A \square C D$

Question $2: \square \square \square \square$

Question $3: \square \square \square \square$

Question $4: A B \square$

Question $5: A \square C D$

Question 6: A B C

Question $7: A B \square$

Question 8 : A B C

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant. Question 3

$$-rac{Z_2}{Z_1}$$

 $\frac{Z_1}{Z_2}$ $\stackrel{\square}{=}$ $\frac{Z_2}{Z_1}$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

$$\boxed{\mathbf{A}} \frac{Z_1}{Z_2}$$

On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

Question $\frac{4}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$. Soit le schéma suivant.

Question 5 Déterminer $\frac{\tilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant.

Question Soit le schéma suivant. 6 Déterminer $\frac{\breve{\omega}_{10}}{}$

$$\begin{bmatrix} \mathbf{B} \\ -\frac{D_2}{D_1} \end{bmatrix}$$

$$\boxed{C} \frac{D_1}{D_2} \qquad \blacksquare \frac{D_2}{D_1}$$

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 8 On note v la vitesse de la charge ${\cal M}$ selon la direction verticale. Exprimer ven fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B C

Question $2 : A B \square$

Question $3: \square \square \square \square$

Question 4: A B C

Question $5: A \square C D$

Question 6: A B C

Question 7: A B C

Question $8: A \square C D$

Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Question $\frac{1}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

Question 2 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question $\frac{4}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

Question 5 Déterminer $\frac{\check{\omega}_{10}}{}$ ω_{20}

Soit le schéma suivant. Question

Déterminer $\frac{\dot{\omega}_{10}}{}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\mathbb{C}$$

$$\boxed{\mathbf{D}} \ \frac{Z_1}{Z_2}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$oxed{ ext{A}} rac{Z_1}{Z_2} \qquad lacksquare -rac{Z_2}{Z_2}$$

$$\begin{array}{c|c} \blacksquare & \hline \\ -\frac{Z_2}{Z_1} & -\frac{Z_1}{Z_2} \end{array}$$

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et	prénom:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : A B D

Question 2 : \blacksquare \Box \Box \Box

Question 3: A B C

Question 4: A B D

Question 5 : $A \square \square$ $C \square$

Question 6: A B C

Question $7: A \square C D$

Question 8 : A B D

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question Déterminer

Poulies - Courroie

 D_1

1

Soit le schéma suivant.

 $\omega_{10} = NZ_1\omega_{30}$

 $\boxed{\mathbf{A}} \ \frac{D_1}{D_2}$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant.

 $\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2} \qquad \boxed{\mathrm{C}} \ \frac{Z_2}{Z_1}$

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 7 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Soit le schéma suivant.

 $\begin{array}{c|cccc}
\hline{\mathbf{A}} & \overline{Z_1} & & \blacksquare & \hline{\mathbf{C}} & & \boxed{\mathbf{D}} & \overline{Z_2} \\
& -\overline{Z_1} & & -\overline{Z_2} & & \boxed{\mathbf{D}} & \overline{Z_2}
\end{array}$

$$\blacksquare \frac{D_1}{D_2} \qquad \boxed{\mathbf{B}} \qquad \boxed{\mathbf{C}} \qquad \boxed{\mathbf{D}} \frac{D_2}{D_2}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : \blacksquare \Box \Box \Box

Question 2: A B C

Question $3: A \square C D$

Question $4: \square \square \square \square$

Question $5: \square \square \square \square$

Question $6: \square \square \square \square$

Question $7: \square \square \square \square$

Question $8: A \square C D$

+14/4/5+

Question 1 M selon la direction verticale. Exprimer v en (en valeur absolue). fonction de ω_{10} (en valeur absolue).

On note v la vitesse de la charge **Question 3** Exprimer ω_{10} en fonction de ω_{30}

В $\omega_{10} = \frac{Z_2^2}{NZ_1}\omega_{30}$ $\omega_{10} = NZ_1\omega_{30}$

Soit le schéma suivant.

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

 $-rac{Z_2}{Z_1}$ $extbf{C}$ $rac{Z_2}{Z_1}$ $extbf{D}$ $rac{Z_1}{Z_2}$

Question Déterminer ω_{20}

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

 $-\frac{D_2}{D_1}$

 $\boxed{\mathbf{C}} \ \frac{D_1}{D_2}$

Soit le schéma suivant.

 $\blacksquare \begin{array}{ccc} \underline{Z_1} & & \boxed{\mathrm{B}} & & \boxed{\mathrm{C}} \\ -\underline{Z_1} & & -\underline{Z_2} & & -\underline{Z_2} \end{array}$

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Question $\frac{8}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et	prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

 Question 1 : A B C

 Question 2 : A B D

 Question 3 : A B C

 Question 4 : B C D

 Question 5 : A B C

Question $6: \square \square \square \square \square$ Question $7: \square \square \square \square$

Question $8: A B \square$

+15/4/1+

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

 $\frac{\mathbf{3}}{\omega_{20}}$ Question Déterminer

 Z_1

2

Soit le schéma suivant.

A $\frac{Z_1}{Z_2}$

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

Question 5 Déterminer $\frac{\widetilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question 7

Déterminer $\frac{\dot{\omega}_{10}}{\omega_{20}}$.

Soit le schéma suivant.

 Z_2

 $\begin{array}{c} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 $egin{array}{ccccc} ar{f A} & rac{Z_2}{Z_1} & ar{f B} & rac{Z_1}{Z_2} & lacksquare & -rac{Z_2}{Z_1} \end{array}$

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	n et prénom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

Question $2: A \square C D$

Question 3: A B D

Question 4: A B C

Question 5: A B D

Question $6 : A B \square D$

Question 7: A B D

Question 8: A B C

+16/4/57+

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question Déterminer

Soit le schéma suivant.

 $\omega_{10} =$ $NZ_1\omega_{30}$

On note v la vitesse de la charge ${\cal M}$ selon la direction verticale. Exprimer ven fonction de ω_{10} (en valeur absolue).

 $\begin{array}{c} \textbf{Question} & \textbf{4} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

 $\boxed{ ext{C}} \; rac{Z_2}{Z_1}$

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question 7

Déterminer $\frac{\dot{\omega}_{10}}{}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$egin{array}{c|c} \hline {
m C} & \hline {
m D} & \hline {
m A} & \overline{Z_2} \ \hline -rac{Z_1}{Z_2} & -rac{Z_2}{Z_1} \end{array}$$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

N	V	C)]	Υ	1	•	et	,	r	ı	é	r	10)]	n	1	:												
				•																									

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : \blacksquare \Box \Box \Box

Question 2: A B C

Question $3: A \square C D$

Question $4: \square \square \square \square$

Question $5: A \square C D$

Question $6: A B \square$

Question $7: A \square C D$

Question $8: A \square C D$

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$Z_2$$
 \subset Z_2

Soit le schéma suivant. Question Déterminer ω_{10}

$$\begin{bmatrix} \mathbf{A} \\ -\frac{D_2}{D_1} \end{bmatrix}$$

Soit le schéma suivant. Question 3 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \omega_{10} & & & \ Z_2^2 & & N \ & Z_2^2 & & Z_2 \end{aligned}$$

$$\omega_{10} = \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30}$$

On note v la vitesse de la charge Question 4 M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question

Déterminer

Soit le schéma suivant.

Soit le schéma suivant.

 $-\frac{D_2}{D_1} \quad \blacksquare \quad \frac{D_2}{D_1} \qquad \boxed{\mathbb{D}} \quad \frac{D_1}{D_2}$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

 Z_2

 T_2

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et	prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question 2 : A B D

Question $3: A \square C D$

Question 4: A B C

Question $5: \square \square \square \square$

Question $6: \square \square \square \square$

Question 7: A B D

Question $8: A \square C D$

+18/4/49+

М

On note v la vitesse de la charge **Question** Question 1 M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Poulies – Courroie D_2 Déterminer $\frac{3}{\omega_{20}}$ Soit le schéma suivant.

 $A v = D v = D v = D v = fonction de <math>\omega_{10}$ (en valeur absolue). On note $m = \frac{D_2 D_3}{D_1} \omega_{10}$ $\frac{D_1 D_3}{2D_2} \omega_{10}$ $\frac{D_1 D_3}{D_2} \omega_{10}$ $\frac{D_2}{D_1 D_3} \omega_{10}$ de module des roues dentées.

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Poulies - Courroie

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prenom	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 3: A B C

Question 4: A B D

Question 5 : \blacksquare \Box \Box \Box

Question $6: \square \square \square$

Question 7: A B D

Question $8: A \square C D$

QCM - Transmetteurs

Question $\frac{1}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Question Soit le schéma suivant. Question 3 On note v la vitesse de la charge

M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

$$Z_1 = Z_1 \qquad \boxed{D} \ Z_2 \qquad \boxed{D$$

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Question Déterminer $\frac{\tilde{\omega}_{20}}{}$.

Soit le schéma suivant. Question 7

 \mathbf{D}

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

A $\omega_{10} =$ $NZ_1\omega_{30}$

Soit le schéma suivant.

Question Déterminer

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Non	n et prénon	n:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : A B D

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 3: A B C

Question $4: \square \square \square \square$

Question $5: \square \square \square \square$

Question $6: A \square C D$

Question $7: A \square C D$

Question 8 : A B C

+20/4/41+

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

 $\omega_{10} = NZ_1\omega_{30}$

Question 2 Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 $ext{C} \ rac{Z_2}{Z_1}$

 $\blacksquare \frac{D_1}{D_2} \qquad \boxed{\mathbf{B}} \qquad -\frac{D_2}{D_1} \qquad \boxed{\mathbf{C}} \frac{D_2}{D_1} \qquad \boxed{\mathbf{D}} \qquad -\frac{D_1}{D_2}$

Question Déterminer ω_{20} Soit le schéma suivant. Question 7

Déterminer $\frac{\dot{\omega}_{20}}{}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

$$\begin{array}{c}
\boxed{D} \\
-\frac{D_2}{D_1}
\end{array}$$

$$egin{array}{c|c} ar{A} & & \blacksquare & \dfrac{Z_1}{Z_2} & & \hline{\mathbb{C}} & \dfrac{Z_2}{Z_1} & & \hline{\mathbb{D}} \end{array}$$

$$\boxed{ ext{C}} \ rac{Z_2}{Z_1}$$

$$\frac{\mathbb{D}}{-\frac{Z}{Z}}$$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\begin{array}{c|c}
 v = & B v = \\
 \frac{Z_1 p}{2Z_2 \pi} \omega_{10} & \frac{Z_2}{Z_1 p} \omega_{10}
\end{array}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	О	n	1	ϵ	et	,	р	r	é	n	10)]	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1: \square \ \Box \ \Box \ \Box$

Question 2: A B C

Question $3: \square \square \square \square$

Question $4: \square \square \square \square \square$

Question 5 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{D}}$

Question $6: \square \square \square$

Question 7 : $\boxed{\mathbf{A}} \boxed{\mathbf{C}} \boxed{\mathbf{D}}$

Question $8: \square \square \square \square$

QCM - Transmetteurs

 $\begin{array}{ll} \textbf{Question} & \textbf{1} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

$$\boxed{A} \quad \frac{Z_2}{Z_1} \qquad \boxed{C} \\
-\frac{Z_2}{Z}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Question 4 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question Déterminer $\frac{\dot{\omega}_{20}}{}$ Soit le schéma suivant.

 Z_1 TZ_2

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Α $\frac{Z_2}{Z_1}$

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et préno	m :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 2 : A B C

Question $3: A \square C D$

Question $4: \square \square \square \square$

Question 5: A B C

Question 6: A B C

Question 7: A B D

Question $8: A \square C D$

+22	/4/	/33+
-----	-----	------

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

$$\begin{array}{c|cc}
\hline{A} & & \hline{B} & & \hline{C} & \frac{D_2}{D_1} \\
-\frac{D_1}{D_2} & & -\frac{D_2}{D_1} & & \hline{D}_{\frac{1}{2}}
\end{array}$$

Exprimer ω_{10} en fonction de ω_{30} Question 5 (en valeur absolue).

Question 7 Déterminer $\frac{\dot{\omega}_{20}}{\omega_{10}}$.

 Z_1

Soit le schéma suivant.

 $\omega_{10} = \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30}$

$$\omega_{10} = Z_2^2$$

A

 TZ_2

$$oxed{oxed}}}}}}}}}}}}}}}} } } } } }$$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant.

$$-\frac{D_2}{D}$$

$$\boxed{\mathbf{D}} - \frac{D_1}{D_2}$$

$$\begin{bmatrix} -\frac{Z_2}{Z_1} & \blacksquare \\ -\frac{Z_1}{Z_2} & -\frac{Z_1}{Z_2} \end{bmatrix} \qquad \boxed{\mathbb{D}} \ \frac{Z_2}{Z_1}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et préno	m :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1: A \square C D$

Question 2: A B D

Question 3: A B D

Question 4: A B C

Question $5: \boxed{A} \boxed{B} \boxed{C}$

Question $6: \square \square \square$

Question $7: A \square C D$

Question $8: A \square C D$

On note v la vitesse de la charge **Question 3** Question 1 fonction de ω_{10} (en valeur absolue). On note p fonction de ω_{10} (en valeur absolue). le pas de la vis.

On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en M selon la direction verticale. Exprimer v en

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

$$oxed{\overline{\mathrm{A}}}_{-rac{Z_1}{Z_2}} \quad oxed{\overline{\mathrm{B}}} \; rac{Z_2}{Z_1} \quad oxed{oxed}_{-rac{Z_2}{Z_1}} \quad oxed{\overline{\mathrm{D}}} \; rac{Z_1}{Z_2}$$

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 5 Déterminer $\frac{\widetilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question

Déterminer

Soit le schéma suivant.

 D_1 Poulies - Courroie D_2

$$-\frac{Z_2}{Z_{11}}$$

$$\begin{array}{c|c} \blacksquare \\ -\frac{Z_2}{Z_1} & \hline{\mathbf{C}} & \frac{Z_2}{Z_1} & \overline{\mathbf{D}} \\ -\frac{Z_1}{Z_2} & -\frac{Z_1}{Z_2} \end{array}$$

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$ Soit le schéma suivant. $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

$$\boxed{\mathrm{B}}$$
 $-\frac{D_2}{D_3}$

$$\blacksquare \begin{array}{ccc} \underline{D_1} & & \underline{B} & & \underline{C} \\ -\underline{D_2} & & -\underline{D_2} & & -\underline{D_1} \end{array}$$

$$\boxed{\mathbf{D}} \ \frac{D_2}{D_1}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No)]	n	1	ϵ	et	,	р	r	é	n	ıC)]	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

 Question 1 : A B C

 Question 2 : A B D

 Question 3 : B C D

 Question 4 : A B D

 Question 5 : A C D

 Question 6 : B C D

Question $8: A \square C D$

Question 7: A B C |

+24	/4/	25+
-----	-----	-----

Question 1 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 3 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Soit le schéma suivant.

 $\frac{\omega_{10}}{N} = \begin{array}{c} \textbf{Question} & \textbf{4} \\ \frac{N}{Z_2} \frac{Z_1}{Z_2} \overset{\text{Déterminer}}{\omega_{30}} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

$$\frac{Z_1}{Z_2}$$
 \blacksquare $\frac{Z_1}{Z_2}$ \Box $\frac{Z_2}{Z_1}$ \Box $\frac{Z_2}{Z_1}$

$$\boxed{\mathbb{D}} \ \frac{Z_2}{Z_1}$$

Question 5 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en Déterminer fonction de ω_{10} (en valeur absolue).

Question

Soit le schéma suivant.

 $\frac{Z_1}{Z_2}$

 $\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$

Question 6 On note v la vitesse de la charge Question M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m Déterminer le module des roues dentées.

 $\frac{8}{\omega_{20}} \\ \frac{\omega_{10}}{\omega_{10}}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	O	n	a	(et	,	p	r	é	r	10)]	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: $A \square C$

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question $3: A B \square$

Question 4: A B C

Question $5: \square \square \square \square$

Question $6: A \square C D$

Question $7: A B \square D$

Question $8: A \square C D$

Question1
 ω_{10} Soit le schéma suivant.Question $\frac{3}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

$$\begin{array}{c|cccc}
\hline
A & & \hline
B & \frac{D_1}{D_2} & & \hline
\hline
 & \frac{D_2}{D_1} & & \hline
 & -\frac{D}{D}
\end{array}$$

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

$$\begin{array}{c|cccc}
\hline
A & & \hline
B & \frac{D_2}{D_1} & & \blacksquare & \frac{D_1}{D_2} & & \hline
& & -\frac{D_1}{D_2} & & \\
\end{array}$$

Question 3 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question 4 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{20}}$.

Question 8 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et préno	m :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B D

Question 2: A B D

Question 3: A B D

Question $4: \square \square \square \square$

Question $5: A \square C D$

Question $6: A B \square D$

Question $7: A \square C D$

Question 8: A B C

+26/4	/17+
-------	------

 $\begin{array}{ll} \textbf{Question} & \mathbf{1} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

Question $\frac{2}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$. Soit le schéma suivant.

Soit le schéma suivant. Question 3 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\omega_{10} =$

 $NZ_1\omega_{30}$

Soit le schéma suivant. Question 4 Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Question Déterminer ω_{10} Soit le schéma suivant. Question 7

Déterminer $\frac{\dot{\omega}_{20}}{}$

Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$$

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} - \frac{D_2}{D_1}$$

$$\begin{bmatrix} \mathbf{B} \\ -\frac{D_2}{D_1} \end{bmatrix} - \frac{D_1}{D_2}$$

$$\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$$

$$\begin{bmatrix} \overline{\mathbf{B}} \end{bmatrix}_{-\frac{Z_1}{Z_2}} \quad \blacksquare \quad \frac{Z_1}{Z_2}$$

$$oxed{\mathbb{D}} -rac{Z_2}{Z_1}$$

Question 6 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 8 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et 1	prénom:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{D}}$

Question 2: A B D

Question 3: A B C

Question $4: \square \square \square \square$

Question 5: A B C

Question $6: [A] [B] \blacksquare [D]$

Question $7: A B \square$

Question 8 : A B D

 $\begin{array}{c} \textbf{Question} & \textbf{1} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{10}}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$

$$\boxed{\mathbf{A}} - \frac{D_1}{D_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{2} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

Soit le schéma suivant.

$$\frac{\overline{A}}{-\frac{Z_1}{Z_1}}$$
 \overline{B} $\frac{\overline{Z}}{\overline{Z}}$

Question 4 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

Question 5 Déterminer $\frac{\widetilde{\omega}_{20}}{}$

Soit le schéma suivant.

$$-\frac{Z_1}{Z_2}$$

 Z_2

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

$$\begin{array}{c}
\underline{\mathbf{A}} \quad v = \\
\frac{Z_2}{Z_1} \omega_{10}
\end{array}$$

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 8 Déterminer $\frac{\omega_{20}}{\omega_{20}}$ Soit le schéma suivant.

$$oxed{\mathbb{D}} -rac{Z_2}{Z_1}$$

Nom et prénom :

Feuille de réponses :

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

.....

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 2 : A B C

Question 3 : A B C

Question $4: A \square C D$

Question $5: \square \square \square$

Question $6: \boxed{A} \boxed{B} \boxed{C}$

Question 7: [A] [B] [C]

Question $8: A \square C D$

+28	11	/0.
+28	/4	/9+

$$\begin{array}{c}
\boxed{\mathbf{A}} \\
-\frac{D_2}{D_1}
\end{array}$$

 $\boxed{\mathbf{B}} \ \frac{D_1}{D_2}$

 $\boxed{\mathbf{D}} - \frac{D_1}{D_2}$

$$\boxed{\mathbf{A}} \ \frac{D_2}{D_1}$$

 $-\frac{D_2}{D_1}$

 $\blacksquare \frac{D}{D}$

Question 3 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{10}}$.

$$\begin{array}{c|c}
\hline
A \\
-\frac{Z_1}{Z_2}
\end{array}
\qquad
-\frac{Z_2}{Z_1}$$

 $\boxed{ ext{D}} \; rac{Z_2}{Z_1}$

$$\begin{array}{c|cccc}
\hline
\mathbf{A} & & & & \mathbf{B} & \frac{Z_1}{Z_2} & & & \blacksquare \\
-\frac{Z_1}{Z_2} & & & & -\frac{Z_2}{Z_1}
\end{array}$$

 Z_2 $\boxed{\mathrm{D}} \frac{Z_2}{Z_1}$

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\langle v|_{10} \rangle}$.

 $egin{array}{c|c} ar{A} & -rac{Z_1}{Z_2} & \blacksquare & rac{Z_1}{Z_2} & egin{array}{c|c} \hline C & -rac{Z_2}{Z_1} & \hline \end{array}$

Question 8 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

 $-\frac{Z_1}{Z_2} \qquad \boxed{\mathbb{B}} \ \frac{Z_2}{Z_1} \qquad \boxed{\mathbb{C}} \ \frac{Z_1}{Z_2} \qquad \boxed{\mathbb{D}} \\ -\frac{Z_2}{Z_1}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et pr	rénom:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: A B D

Question 2: A B C

Question $3: A \square \square$

Question 4: A B D

Question 5: A B D

Question $6: \square \square \square$

Question $7: A \square C D$

Question $8: \square \square \square \square$

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

 $\frac{\mathbf{3}}{\omega_{10}}$ Question Déterminer

Soit le schéma suivant.

 D_1 1 Poulies - Courroie D_2

Question 2 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

A

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}} \end{array}$

Soit le schéma suivant.

 D_1 Poulies - Courroie D_2

Question $\frac{5}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Soit le schéma suivant. Question 7

Question 7 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\boxed{\mathbf{A}} - \frac{Z_1}{Z_2}$$

 $\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$

 $\square \frac{Z_2}{Z_1}$

 \triangle $\frac{Z_1}{Z_2}$

 $\boxed{\mathrm{B}} \frac{Z_2}{Z_1}$

 $\begin{bmatrix} \mathbf{C} \end{bmatrix} - \frac{2}{3}$

 $\omega_{10} = \frac{N}{Z_1}\omega_{30}$

 $\begin{array}{c} \boxed{\mathbb{C}} \\ \omega_{10} = \\ \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30} \end{array} \quad \begin{array}{c} \boxed{\mathbb{I}} \\ NZ_1 \omega_{30} \end{array}$

 $\begin{bmatrix} \mathbf{D} \end{bmatrix}$ ω_{10} Z

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prén	om:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : \blacksquare \Box \Box \Box

Question 2: A B C

Question 3 : A B C

Question $4: \square \square \square \square$

Question 5: A B C

Question 6: A B C

Question $7: \square \square \square \square$

Question 8 : A B D

+30/4/1+

Question 3 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\begin{array}{c|c}
\hline
A \\
-\frac{D_1}{D}
\end{array}
\qquad
\blacksquare
\begin{array}{c}
\frac{D_1}{D_2}
\end{array}$$

 $\boxed{\mathbb{C}} \frac{D_2}{D_1}$

$$D$$
 $-\frac{D_2}{D_1}$

Question 2 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\begin{array}{c} 3 \\ \omega_{10} = \\ \frac{Z_2^2}{MZ} \omega_{30} \end{array}$

 $\omega_{10} = \frac{\omega_{10}}{N} = \frac{N}{Z_1} \omega$

 $\begin{array}{c}
\boxed{\mathbf{D}} \\
\omega_{10} = \\
NZ_1\omega_{30}
\end{array}$

Question Déterminer ω_{20} Soit le schéma suivant.

$$\frac{D_1}{D_2} \quad \boxed{C} \quad \frac{D_1}{D_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{Déterminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

$$\boxed{\mathrm{D}} \ \frac{Z_1}{Z_2}$$

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

$$v = \frac{C}{Z_2 p} \omega_{10}$$

$$\begin{array}{c|c}
\boxed{D} v = \\
0 & \frac{Z_2}{Z_1 p} \omega_{10}
\end{array}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Non	ı et pr	énom :	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question 2 : A B D

Question 3 : A B B D

Question $4: \square \square \square \square$

Question $5: \boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{C}}$

Question 6 : \blacksquare \blacksquare \square \square

Question $7: \square \square \square \square$

Question 8: A B C

+31/4/57+

On note v la vitesse de la charge **Question 3** Question 1 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m fonction de ω_{10} (en valeur absolue). le module des roues dentées.

On note v la vitesse de la charge M selon la direction verticale. Exprimer v en

Soit le schéma suivant.

2 Z_2

$$-\frac{Z_1}{Z_2} \qquad \boxed{\text{B}} \quad \frac{Z_2}{Z_1} \qquad \boxed{\text{C}} \quad -\frac{Z_2}{Z_1} \qquad \boxed{\text{D}} \quad \frac{Z_1}{Z_2}$$

 $\begin{array}{ll} \textbf{Question} & \textbf{4} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$ Soit le schéma suivant.

Question 5 Déterminer $\frac{\check{\omega}_{10}}{}$.

Soit le schéma suivant. Question

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

Soit le schéma suivant. Déterminer

 $\begin{array}{c|c}
\hline
B \\
-\frac{D_1}{D_2}
\end{array}
\quad
\blacksquare
\quad
\frac{D_1}{D_2}$

Question 8 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom	:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

Question 2 : \blacksquare \Box \Box \Box

Question $3: \square \square \square \square$

Question $4: \square \square \square \square$

Question 5 : \blacksquare \blacksquare \square \square

Question $6: \square \square \square$

Question 7: A B D

Question 8: A B C

Question 1 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p fonction de ω le pas de la vis.

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

 $\bigcirc Z_1$

 $2Z_2$

$$\begin{array}{c|cccc}
\hline
A & & \blacksquare & \\
& -\frac{Z_2}{Z_1} & & -\frac{Z_1}{Z_2} & & \hline{C} & \frac{Z_1}{Z_2} & & \boxed{D} & \frac{Z_2}{Z_1}
\end{array}$$

Question 5 Déterminer $\frac{\widetilde{\omega}_{10}}{}$. ω_{20}

Soit le schéma suivant. Question 7

Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $-rac{Z_2}{Z_1}$

 $\bigcirc Z_1$ $2Z_2$

Roue et vis sans fin N filets

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$

Soit le schéma suivant.

 $\boxed{\mathbb{B}} \ \frac{Z_2}{Z_1} \qquad \boxed{\mathbb{C}} \ \frac{Z_1}{Z_2}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 3: A B D

Question $4: A \square C D$

Question 5: A B D

Question 6 : A B D

Question $7: \square \square \square \square$

Question $8: \square \square \square \square$

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{20}}$.

$$\begin{bmatrix} \frac{Z_2}{Z_1} & & \mathbb{B} \\ -\frac{Z_1}{Z_2} & & \end{bmatrix} - \begin{bmatrix} \mathbf{Z}_1 & & \mathbb{D} \\ -\frac{Z_1}{Z_2} & & \end{bmatrix} - \begin{bmatrix} \mathbf{D} & \mathbf{D} \\ -\frac{Z_1}{Z_2} & & \end{bmatrix}$$

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$\begin{array}{c|cccc}
\hline
A & & \hline
B & \frac{D_1}{D_2} & \hline
 & -\frac{D_1}{D_2} & \hline
 & -\frac{D_1}{D_2}
\end{array}$$

Question 5 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en Déterminer fonction de ω_{10} (en valeur absolue).

Question

Soit le schéma suivant.

$$\begin{array}{ccc} v &=& \boxed{\mathbf{C}} & v &=& \boxed{\mathbf{D}} \\ D_1 D_3 & \omega_{10} & D_2 D_3 \\ D_2 & D_1 & D_1 \end{array}$$

$$v = \frac{D_1 D_3}{2D_2} \omega_{10} - \frac{Z_2}{Z_1}$$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p Déterminer le pas de la vis.

 $\frac{8}{\omega_{10}}$ Question

Soit le schéma suivant.

$$-\frac{Z_2}{Z_1}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Ν	Į)	n	1	(et	,	р	r	é	n	ıC)1	Υ	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question $2 : A B \square$

Question 3 : A B C

Question 4: A B C

Question 5: A B C

Question 6: A B C

Question $7: \square \square \square \square$

Question 8: A B C

Soit le schéma suivant. Question $\frac{\mathbf{3}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$ Question $\frac{1}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

Soit le schéma suivant.

Soit le schéma suivant.

 $\begin{array}{c} \textbf{Question} & \textbf{4} \\ \textbf{Déterminer} & \frac{\omega_{20}}{} \end{array}$ Déterminer

Question 2 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

A

 \mathbf{D} $\omega_{10} = NZ_1\omega_{30}$

Question 5 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

 D_1 eionnoole sellnoole D_2 D_2

Question 8 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

No	O]	n	1	€	et	,	p	r	é	r.	10)]	r	1	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : \blacksquare \Box \Box \Box

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 3: A B C

Question $4: \square \square \square \square$

Question 5: A B C

Question $6: \square \square \square$

Question $7: \square \square \square \square$

Question $8: \square \square \square \square$

Question $\frac{1}{\omega_{10}}$.

Soit le schéma suivant. Question 3 (en valeur abs

Question 3 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

$$\boxed{\mathbf{A}} \ \frac{Z_1}{Z_2}$$

 $\frac{Z_2}{Z_1}$ $\boxed{C} \frac{Z_2}{Z_1}$

Question 4 Soit le schéma suivant. $\frac{Z_1}{Z_2}$ Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Roue et vis sans fin N filets

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

$$\frac{Z_1}{Z_2}$$
 $-\frac{Z_2}{Z_1}$
 $\frac{Z_2}{Z_1}$
 $-\frac{Z}{Z_2}$

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. ω_{10}

Soit le schéma suivant. Question 7

$$oxed{L} Z_2$$

Question 6 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{20}}{}$

 $\begin{array}{c} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

N	0	n	1	ϵ	et	р	r	é	n	ıC)1	r	l	:												

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question $2 : A \square \Box$

Question $3: A \square C D$

Question $4: A \square C D$

Question 5: A B C

Question 6: A B C

Question $7: \square \square \square \square$

Question $8: A \square C D$

${\bf QCM-Transmetteurs}$

Question 1 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

Question 3 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Question Déterminer ω_{10}

Soit le schéma suivant. Question 7

 $\boxed{\mathbf{C}} \ \frac{D_2}{D_1}$

 $\begin{array}{ll} \textbf{Question} & \textbf{6} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Soit le schéma suivant.

 $\begin{array}{ccc}
 & \underline{\mathbb{C}} & \underline{\mathbb{C}} \\
 & \underline{Z_1} & \underline{-\frac{Z_2}{Z_1}}
\end{array}$

Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{10}}{\omega_{20}}$.

Soit le schéma suivant.

Question $\frac{8}{\omega_{10}}$. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

 $\boxed{ \mathbb{B} \ \frac{Z_2}{Z_1} \qquad \boxed{\mathbb{C}} \ \frac{Z_1}{Z_2} \qquad \boxed{ \mathbb{D}} \\ -\frac{Z_1}{Z_2}$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom	1:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question $1 : A \square C D$

Question $2: \square \square \square$

Question 3: A B C

Question $4: A \square C D$

Question $5: A \square C D$

Question 6: A B C

Question $7: A \square C D$

Question $8: \square \square \square \square$

QCM - Transmetteurs

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

Question 3 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\blacksquare \frac{D_2}{D_1} \qquad \boxed{\mathbf{B}} \frac{D_1}{D_2} \qquad \boxed{\mathbf{C}} \qquad \boxed{\mathbf{D}} \\ -\frac{D_2}{D_1} \qquad -\frac{D_1}{D_2}$$

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question 7 On note v la vitesse de la charge ${\cal M}$ selon la direction horizontale. Exprimer ven fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

 $\begin{array}{ccc}
 & & & \underline{D} \\
 \omega_{10} = & \omega_{10} = \\
 \frac{N}{Z_2} \frac{Z_1}{Z_2} \omega_{30} & N Z_1 \omega_{30}
\end{array}$

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

Soit le schéma suivant.

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom	1:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: \blacksquare \blacksquare \square \square

Question 2 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{C}}$ $\boxed{\mathbf{D}}$

Question 3: A B C

Question $4: \square \square \square \square$

Question $5: \square \square \square \square$

Question $6: \boxed{A} \boxed{B} \boxed{C}$

Question 7: A B D

Question $8: \square \square \square \square$

QCM - Transmetteurs

 $\boxed{\mathbf{A}} \ \frac{Z_2}{Z_1}$

 $\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$

 $\begin{array}{c|c}
C & \blacksquare \\
-\frac{Z_1}{Z_2} & -\frac{Z}{Z}
\end{array}$

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

$$\begin{array}{c|c}
\hline
A \\
-\frac{D_2}{D_1}
\end{array}
\quad
\begin{array}{c|c}
\hline
B \\
-\frac{D_1}{D_2}
\end{array}
\quad
\begin{array}{c|c}
\hline
D_1 \\
\overline{D_2}
\end{array}
\quad
\begin{array}{c|c}
\overline{D_2} \\
\overline{D_1}
\end{array}$$

Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

Question

Soit le schéma suivant.

 $egin{array}{cccc} ar{
m A} & rac{D_1}{D_2} & ar{
m B} & & ar{
m C} & & ar{
m C} & & ar{
m D}_1 \ & -rac{D_2}{D_1} & & -rac{D_1}{D_2} & & ar{
m D}_1 \end{array}$

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p le pas de la vis.

 $\begin{array}{lll} \textbf{Question 5} & \text{On note } v \text{ la vitesse de la charge} & \textbf{Question} & \textbf{7} \\ M \text{ selon la direction verticale. Exprimer } v \text{ en} & \text{Déterminer } \frac{\omega_{10}}{\omega_{20}} \\ \text{fonction de } \omega_{10} \text{ (en valeur absolue)}. \end{array}$

Question 7 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

$$egin{array}{cccc} ar{f A} & rac{Z_2}{Z_1} & ar{f B} & -rac{Z_1}{Z_2} & -rac{Z_2}{Z_1} \end{array}$$

Question 8 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom :	:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $\boxed{\mathbf{A}}$ $\boxed{\mathbf{B}}$ $\boxed{\mathbf{C}}$

Question $2: A B \square$

Question 3: A B C

Question 4: A B C

Question 5: A B C

Question $6 : A B \square$

Question 7: A B D

Question $8: A B \square D$

${\bf QCM-Transmetteurs}$

 $\begin{array}{ll} \textbf{Question} & \mathbf{1} \\ \textbf{Déterminer} & \frac{\omega_{20}}{\omega_{10}}. \end{array}$ Question

Soit le schéma suivant. Question

 $\begin{array}{ll} \textbf{Question} & \textbf{3} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}} \end{array}$

Soit le schéma suivant.

 Z_1

Question 2 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note mle module des roues dentées.

 $\frac{\mathbf{4}}{\omega_{20}}$ Question Déterminer

Soit le schéma suivant.

$$\blacksquare \frac{D_1}{D_2} \qquad \boxed{\mathbb{B}} \frac{D_2}{D_1} \qquad \boxed{\mathbb{C}} \qquad \boxed{\mathbb{D}} \\ -\frac{D_1}{D_2} \qquad -\frac{D_2}{D_1}$$

Question Déterminer ω_{20}

Soit le schéma suivant.

Question 7 On note v la vitesse de la charge M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue).

$$\blacksquare \frac{D_2}{D_1}$$

$$\begin{array}{c|c}
\hline
B \\
-\frac{D_1}{D_2}
\end{array}
\qquad \boxed{C} \frac{D_1}{D_2}$$

$$\boxed{D} - \frac{D_2}{D_1}$$

Poulies – Courroie Treuil D_2

$$\begin{array}{c}
\boxed{C} \quad v = \\
\omega_{10} \quad \frac{D_1 D_3}{D_2} \omega_{10} \quad \frac{D_1}{2I}
\end{array}$$

Soit le schéma suivant.

Question 8 Déterminer $\frac{\omega_{20}}{\omega_{20}}$

On note v la vitesse de la charge Question 6 M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note ple pas de la vis.

$$v = \frac{Z_1 p}{2Z_2 \pi} \omega_{10}$$

$$\begin{array}{c|c}
\hline C & v = \\
\hline 0 & \frac{Z_2 p}{2Z_1 \pi} \omega_{10}
\end{array}$$

$$\begin{array}{ccc}
\boxed{D} & v &= \\
v_{10} & \frac{Z_2}{Z} \omega_{10}
\end{array}$$

$$\boxed{\mathrm{B}} \ \frac{Z_1}{Z_2}$$

$$\begin{bmatrix} \mathbf{C} \\ -\frac{Z_2}{Z_1} \end{bmatrix}$$

$$\boxed{\mathrm{D}} \ \frac{Z_2}{Z_1}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et 1	prénom:

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1: $A \square C$

Question $2: \square \square \square \square$

Question $3: \square \square \square \square$

Question $4: \square \square \square \square$

Question $5: \square \square \square \square$

Question $6: A \square C D$

Question 7: A B C

Question $8: \square \square \square \square$

+40/4/21+

${\bf QCM-Transmetteurs}$

$$\begin{array}{c}
\boxed{\mathbf{A}} \\
-\frac{D_2}{D_1}
\end{array}$$

 $\boxed{\mathbf{D}} - \frac{D_1}{D_2}$

Question 2 Soit le schéma suivant. Déterminer $\frac{\omega_{20}}{\omega_{10}}$.

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} - \frac{Z_2}{Z_1}$$

 $\boxed{\mathrm{B}} \ \frac{Z_2}{Z_1}$

 $\boxed{\mathrm{D}} \ \frac{Z_1}{Z_2}$

Question 3 Soit le schéma suivant. Déterminer $\frac{\omega_{10}}{\omega_{20}}$.

 $\boxed{\mathbf{A}} \frac{Z_2}{Z_1}$

 $\frac{\boxed{\text{C}}}{-\frac{Z_1}{Z_2}}$

 $\boxed{\mathbf{D}} \ \frac{Z_1}{Z_2}$

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 5 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

Question Soit le schéma suivant. Déterminer $\frac{\dot{\omega}_{10}}{}$

 Z_1

Question $\frac{\mathbf{6}}{\omega_{20}}$ Déterminer $\frac{\omega_{20}}{\omega_{10}}$

Soit le schéma suivant.

$$\mathbb{B} \frac{Z_2}{Z_1}$$

 $\boxed{\mathrm{B}} \ \frac{Z_2}{Z_1} \qquad \boxed{\mathrm{C}} \ \frac{Z_1}{Z_2}$

Question 8 On note v la vitesse de la charge ${\cal M}$ selon la direction verticale. Exprimer ven fonction de ω_{10} (en valeur absolue).

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom et prénom :

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : $A \square C D$

Question 2 : $\boxed{\mathbf{A}} \boxed{\mathbf{B}} \boxed{\mathbf{D}}$

Question $3: A \square C D$

Question $4: \square \square \square \square$

Question $5: \square \square \square \square$

Question $6: A \square C D$

Question $7: \square \square \square \square$

Question 8: A B C

+41/4/17+

QCM - Transmetteurs

On note v la vitesse de la charge **Question 3** Question 1 M selon la direction horizontale. Exprimer v en M selon la direction verticale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note p fonction de ω_{10} (en valeur absolue). le pas de la vis.

On note v la vitesse de la charge

Question $\frac{2}{\omega_{20}}$. Déterminer $\frac{\omega_{20}}{\omega_{10}}$. Soit le schéma suivant.

$$\begin{bmatrix} \mathbf{A} \\ -\frac{D_2}{D_1} \end{bmatrix} - \frac{\mathbf{D}_1}{D_2} \quad \begin{bmatrix} \mathbf{C} \\ \frac{D_2}{D_1} \end{bmatrix} \quad \blacksquare \quad \frac{D_1}{D_2}$$

Question 4 On note v la vitesse de la charge M selon la direction horizontale. Exprimer v en fonction de ω_{10} (en valeur absolue). On note m le module des roues dentées.

Question 5 Déterminer $\frac{\check{\omega}_{20}}{}$. Soit le schéma suivant. Question

Soit le schéma suivant.

$$\boxed{\frac{\mathbf{A}}{Z_1}} - \frac{Z_2}{Z_1}$$

Question 6 Exprimer ω_{10} en fonction de ω_{30} (en valeur absolue).

 $\begin{array}{ll} \textbf{Question} & \textbf{8} \\ \textbf{D\'{e}terminer} & \frac{\omega_{10}}{\omega_{20}}. \end{array}$ Soit le schéma suivant.

$$\begin{array}{c|cccc}
\hline
A & & \blacksquare & \\
-\frac{Z_1}{Z_2} & & -\frac{Z_2}{Z_1} & \hline
\end{array}$$

Noircir votre numéro personnel.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Nom	et prénom	1:	

Pour répondre aux questions noircir consciencieusement la réponse sélectionnée.

Question 1 : A B D

Question 2: A B C

Question $3: A \square \square$

Question 4: A B C

Question $5: A \square C D$

Question $6: \square \square \square$

Question $7: \square \square \square \square$

Question $8: A \square C D$

