CLAIMS

Listing of Claims:

1. (Currently amended) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 4.0;

providing for a gate electrode in contact with at least a portion of the insulating layer; and

providing a source electrode and a drain electrode in contact with the semiconductor substrate and proximal to the gate electrode wherein a channel is formed between the source electrode and the drain electrode, and further wherein at least one of the source electrode and the drain electrode forms a Schottky contact or Schottky-like region with the semiconductor substrate and the channel.

- 2. (Original) The method of claim 1, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.
- 3. (Original) The method of claim 1, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.
- 4. (Original) The method of claim 1, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 5. (Original) The method of claim 1, wherein the insulating layer is formed from an oxynitride stack.
- 6. (Original) The method of claim 1, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 7. (Original) The method of claim 1, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.

· 8. (Original) The method of claim 1, wherein dopants are introduced into the channel region.

9. (Cancelled)

- 10. (Original) The method of claim 2 or 3, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 11. (Original) The method of claim 2 or 3, wherein the insulating layer is formed from an oxy-nitride stack.
- 12. (Original) The method of claim 10, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel, and wherein dopants are introduced into the channel region.
- 13. (Original) The method of claim 11, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel, and wherein dopants are introduced into the channel region.
- 14. (Original) The method of claim 2 or 3, wherein providing a source electrode and a drain electrode in contact with the semiconductor substrate is performed at a processing temperature of less than about 800 °C.
- 15. (Currently amended) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 7.6;

providing for a gate electrode in contact with at least a portion of the insulating layer; and

providing a source electrode and a drain electrode in contact with the semiconductor substrate and proximal to the gate electrode wherein a channel is formed between the source electrode and the drain electrode, and further wherein at least one of the source electrode and the drain electrode forms a Schottky contact or Schottky-like region with the semiconductor substrate and the channel.

- 16. (Original) The method of claim 15, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.
- 17. (Original) The method of claim 15, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.
- 18. (Original) The method of claim 15, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 19. (Original) The method of claim 15, wherein the insulating layer is formed from an oxy-nitride stack.
- 20. (Original) The method of claim 15, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 21. (Original) The method of claim 15, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
 - 22. (Cancelled).
- 23. (Original) The method of claim 15, wherein dopants are introduced into the channel region.
- 24. (Currently amended) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

Docket no. 14467.05

Application No. 10/796,514 Response After Final O.A.

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 15;

providing for a gate electrode in contact with at least a portion of the insulating layer; and

providing a source electrode and a drain electrode in contact with the semiconductor substrate and proximal to the gate electrode wherein a channel is formed between the source electrode and the drain electrode, and further wherein at least one of the source electrode and the drain electrode forms a Schottky contact or Schottky-like region with the semiconductor substrate and the channel.

- 25. (Original) The method of claim 24, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.
- 26. (Original) The method of claim 24, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.
- 27. (Original) The method of claim 24, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 28. (Original) The method of claim 24, wherein the insulating layer is formed from an oxy-nitride stack.
- 29. (Original) The method of claim 24, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 30. (Original) The method of claim 24, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
- 31. (Original) The method of claim 24, wherein dopants are introduced into the channel region.

Application No. 10/796,514 Response After Final O.A. 32. (Cancelled).

33. (Currently amended) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 4.0;

providing for a gate electrode located in contact with at least a portion of the insulating layer;

exposing the semiconductor substrate on one or more areas proximal to the gate electrode;

providing for a thin film of metal on at least a portion of the exposed semiconductor substrate; and

reacting the metal with the exposed semiconductor substrate such that a <u>source electrode</u> and a drain electrode are formed and wherein a channel is formed between the <u>source electrode</u> and the drain electrode, and further wherein at least one of the <u>source electrode</u> and the drain electrode forms a Schottky contact or Schottky-like region with the <u>semiconductor substrate</u> and the <u>channel</u> Schottky or Schottky-like source electrode and drain electrode are formed on the <u>semiconductor substrate</u> and on.

34. (Original) The method of claim 33, wherein the gate electrode is provided by:
depositing a thin conducting film on the insulating layer;
patterning and etching the conducting film to form a gate electrode; and
forming one or more thin insulating layers on one or more sidewalls of the gate electrode.

- 35. (Original) The method of claim 33, further comprising removing metal not reacted during the reacting process.
- 36. (Original) The method of claim 33, wherein the reacting comprises thermal annealing.
- 37. (Original) The method of claim 33, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.

- 38. (Original) The method of claim 33, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.
- 39. (Original) The method of claim 33, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 40. (Original) The method of claim 33, wherein the insulating layer is formed from an oxy-nitride stack.
- 41. (Original) The method of claim 33, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 42. (Original) The method of claim 33, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
- 43. (Original) The method of claim 33, wherein dopants are introduced into the channel region.
- 44. (Currently amended) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 7.6;

providing for a gate electrode located in contact with at least a portion of the insulating layer;

exposing the semiconductor substrate on one or more areas proximal to the gate electrode;

providing for a thin film of metal on at least a portion of the exposed semiconductor substrate; and

Docket no. 14467.05

Application No. 10/796,514 Response After Final O.A.

reacting the metal with the exposed semiconductor substrate such that a <u>source electrode</u> and a drain electrode are formed and wherein a channel is formed between the source electrode and the drain electrode, and further wherein at least one of the source electrode and the drain electrode forms a Schottky contact or Schottky-like region with the semiconductor substrate and the channel Schottky or Schottky-like source electrode and drain electrode are formed on the semiconductor substrate and on.

- 45. (Original) The method of claim 44, wherein the gate electrode is provided by: depositing a thin conducting film on the insulating layer; patterning and etching the conducting film to form a gate electrode; and forming one or more thin insulating layers on one or more sidewalls of the gate electrode.
- 46. (Original) The method of claim 44, further comprising removing metal not reacted during the reacting process.
- 47. (Original) The method of claim 44, wherein the reacting comprises thermal annealing.
- 48. (Original) The method of claim 44, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.
- 49. (Original) The method of claim 44, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth suicides.
- 50. (Original) The method of claim 44, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 51. (Original) The method of claim 44, wherein the insulating layer is formed from an oxy-nitride stack.

- 52. (Original) The method of claim 44, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 53. (Original) The method of claim 44, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
- 54. (Original) The method of claim 44, wherein dopants are introduced into the channel region.
- 55. (Currently amended) A method for manufacture of a device for regulating the flow of electrical current, the method comprising:

providing for a semiconductor substrate;

providing for an electrically insulating layer in contact with the semiconductor substrate, the insulating layer having a dielectric constant greater than 15;

providing for a gate electrode located in contact with at least a portion of the insulating layer;

exposing the semiconductor substrate on one or more areas proximal to the gate electrode;

providing for a thin film of metal on at least a portion of the exposed semiconductor substrate; and

reacting the metal with the exposed semiconductor substrate such that a <u>source electrode</u> and a drain electrode are formed and wherein a channel is formed between the source electrode and the drain electrode, and further wherein at least one of the source electrode and the drain electrode forms a Schottky contact or Schottky-like region with the semiconductor substrate and the channel Schottky or Schottky-like source electrode and drain electrode are formed on the semiconductor substrate and on.

56. (Original) The method of claim 55, wherein the gate electrode is provided by: depositing a thin conducting film on the insulating layer; patterning and etching the conducting film to form a gate electrode; and forming one or more thin insulating layers on one or more sidewalls of the gate electrode.

- 57. (Original) The method of claim 55, further comprising removing metal not reacted during the reacting process.
- 58. (Original) The method of claim 55, wherein the reacting comprises thermal annealing.
- 59. (Original) The method of claim 55, wherein the source and drain electrodes are formed from a member of the group consisting of: platinum silicide, palladium silicide and iridium silicide.
- 60. (Original) The method of claim 55, wherein the source and drain electrodes are formed from a member of the group consisting of the rare earth silicides.
- 61. (Original) The method of claim 55, wherein the insulating layer is formed from a member of the group consisting of metal oxides.
- 62. (Original) The method of claim 55, wherein the insulating layer is formed from an oxy-nitride stack.
- 63. (Original) The method of claim 55, wherein the Schottky contact or Schottky-like region is formed at least in areas adjacent to the channel.
- 64. (Original) The method of claim 55, wherein an entire interface between at least one of the source electrode and the drain electrode and the semiconductor substrate forms a Schottky contact or Schottky-like region with the semiconductor substrate.
- 65. (Original) The method of claim 55, wherein dopants are introduced into the channel region.

66-96 (Cancelled).