

Photogrammetric Processing of Planetary Stereo Images Using SOCET SET®

July 27 - 29, 2015

Photogrammetric Processing of HiRISE Stereo Images

Robin Fergason & Randy Kirk

Project Chiefs

Presenters
Robin Fergason, Ph.D. Research Geophysicist
Donna Galuszka, Cartographer
Bonnie Redding, Cartographic Tecnician

USGS Flagstaff Science Campus, Building 6: Astrogeology

Daily Schedule

- Begin daily at 8:00 am
- Lunch break: 11:30 am 1:00 pm
 - Lunch is on your own
 - Can eat off campus or bring a lunch
- Afternoon session: 1:00 5:00 pm
- Short breaks in the morning and afternoon

Intended Audience

- Workshop is intended to serve those actively working in the planetary science field
 - Both scientists and engineers
 - Funding provided by NASA
 - Demonstrations and training aimed at HiRISE, however other cameras follow the same general steps
- Guest Facility Users
 - Receive initial training
 - Return at a later date to do processing here
 - Will not need distributed files and software

Outline

- "Photogrammetry 101"— a quick introduction to cartography and stereo topographic mapping
- HiRISE overview
- Review ISIS and SOCET SET software versions
- ISIS <-> SOCET SET workflow
- ISIS3 HiRISE processing steps
- SOCET SET import procedures for HiRISE
- SOCET SET processing steps
- SOCET SET export procedures (ISIS3)
- Future work

What is Cartography?

car•tog•ra•phy *n.* the study and practice of making maps

- Products of planetary cartography:
 - Unit maps, such as geochemical, geomorphic, albedo, and thermal maps
 - Geologic maps integrating many different, registered data sets, to interpret a body's surface
 - Elevation, slope, and slope aspect maps (e.g., DEMs)
 - Nomenclature
- Often closely integrated with Geographical Information Systems (GIS)

Local and Global Strain History

Voyager image, Bubastis Sulci, Ganymede

HiRISE DEM; Palikir crater, Mars, L_S=290

Dundas et al., LPSC, Abs. 2327, 2015

HiRISE DEM; Palikir crater, Mars, L_S=290

Dundas et al., LPSC, Abs. 2327, 2015

HIRISE

InSight Ellipse 8

15

10

	Terrain Type	Unit Mask	Mean Slope	Standard Deviation
E08_FW	Smooth Terrain	1	3.85	2.55
	Crater Ejecta Terrain	2		
	Dark Terrain	3	4.22	2.72
	Etched Terrain	4	4.41	2.83
	Ridged Terrain	5		
	Dense Crater Swarms	6		
	Crater Rim Terrain	7		
	Gradational Etched Terrain	8		

CET SET®

What Matters in Cartography?

Establishing the coordinate system in which features can be located

Geodesy – Size, shape, spin of body; prime meridian, "sea level", latitude and longitude; orbit and gravity modeling; global network of landmarks for reference

Determining the locations of features

Photogrammetry – Calculate real-world positions based on measurements in images

Portraying locations and spatial relations between features

GIS – Manage spatial databases
Scientific Visualization –
Effective portrayal of data

Photogrammetry 101

- Input Data
 - "Match", "Pass", or "Tie" point
 - Ground control points (known)
- Types of Calculations
 - Intersection
 - Bundle Adjustment
 - Orthorectification
- Complications Due to Different Sensors
 - Framing cameras (GLL SSI, CSS ISS, Clem UVVIS)
 - Line scanners (MGS MOC, MRO HIRISE, LRO LROC)
 - Pixel scanners (GLL NIMS, CSS VIMS)
 - Altimeters (MGS MOLA, LRO LOLA)

Photogrammetry 101

- The camera lens, image point, and ground point, must form a straight line (co-linear)
- The location of a ground point can be found using two overlapping images and by intersecting the lines through the same point on both images up to the camera lenses

Image Credit: BAE Systems® Training Material

Omega, Phi, Kappa

- These values are used to determine the rotation of the camera in 3 directions
 - Omega represents the rotation of the camera about the X axis
 - Phi represents the rotation of the camera about the Y axis
- Kappa represents the rotation of the camera about the Z axis
 - This value can be determined by estimating the flight direction
 - The angle from the ground easting to the camera X axis with positive angles generated in a counter or anti-clockwise direction

Image and Content Credit: BAE Systems® Training Material

History of Photogrammetry

Image credit: USGS Astrogeology

Image credit: USGS

History of Photogrammetry

Analytic Stereo Analysis

USGS Viking Orbiter Global DTM

Wu et al., 1986

History of Photogrammetry

Typical HiRISE Pair

Image credit: NASA/JPL/UofA

Image credit: USGS Astrogeology

For a long HiRISE image, there can actually be more posts than in the Viking Orbiter Global DEM

HiRiSE DEM contains almost 100% real data – no interpolation

We've come a long way!

Selected Planetary Imagers

Target	Mission	Instrument	Res	Image Size	Sensor Model	Remarks
Moon	Lunar Orbiter	High Res	1-60 m	31000x8000	Frame	Film scanned on s/c
		Med Res	8-500 m	9000x8000	"	"
	Apollo	Mapping	20 m	9000x9000	"	Film returned
		Panoramic	≥ 1 m	9000x90000	Panoramic	"
	Clementine	UVVIS	100-300 m	384x288	Frame	Polar maps made
Venus	Magellan	SAR	75 m	250x250000	Custom	18% of planet in stereo
Mars	Viking Orbiter	VIS	8-1000 m	1156x1204	Frame	Vidicon, pre-correct dist'n
	MGS	MOC NA	≥ 1.5 m	2048x many k	Pushbroom	Limited stereo
		MOC WA	≥ 250 m	3456x many k	"	Fisheye, pre-correct dist'n
	Odyssey	THEMIS VIS	≥ 18 m	1024x200	Frame	Nadir only, so far
		THEMIS IR	100 m	320x many k	Pushbroom	"
	Mars Express	HRSC	≥ 10 m	5184x many k	"	9-line stereo + color
		SRC	≥ 2.5 m	1024x1024	Frame	Stereo with MOC NA
	MRO	HiRISE	≥ 0.3 m	20000x60000	Pushbroom	Extensive stereo
Landers	Viking Lander	Panoramic	≥ 2 mm	≤9000x2500	Custom Req'd	2 cams for stereo, fixed
	MPF	IMP	≥ 1 mm	256x248	Frame	2 cams for stereo, rotating
	MER	Pancam	≥ 0.3 mm	1024x1024	"	u
		MI	0.03 mm	1024x1024	"	Microscope w/stereo
Asteroid	NEAR	MSI	2-10 m	244x537	"	Complex image coverage
Comets	DS 1	MICAS	≥ 50 m	60x150	"	2 stereopairs
	Stardust	ONC	≥ 14 m	150x150	"	~10 stereopairs
Titan	Cassini	RADAR	300-1400 m	400x25000	Custom	Limited stereo planned
	Huygens	DISR	≥ 10 m	≤130x256	Frame	3 cameras on spinning probe, some stereo

Stereo and Single-Line Pushbroom Scanners

Pushbroom/Line scan

Rather than a single frame acquired, a "line" of data is acquired and images can vary in length.

MRO HIRISE

3 sets of detectors for color, but stereo angle is negligible. Obtain stereo pairs by repeat imaging on separate orbits.

HiRISE Instrument

14 CCDs (2048 x 128 pixels):

- 10 CCDs Form Red Channel (20,000 pixels)
- 2 CCDs Form Blue-Green Channel (4000 pixels)
- 2 CCDs Form NIR Channel (4000 pixels)

Noproj: needed for undistorted DTMs

- Required for HiRISE and Viking
- Removes camera (lens) distortions in a level 1 cube
 - Creates an undistorted version of the level 1 cube based on an idealized camera
 - Maintains level 1 image geometry
 - Image statistics at any pixel

Noproj: needed for undistorted DTMs

- Additionally for HiRISE
 - Adjusts all CCDs to the same line in the focal plane so we can mosaic to create a single undistorted image
 - Jitter distortions can also be removed by resampling from jittery to smooth CK blob
 - Not yet in HiRISE pipeline...but soon

Noproj – HiRISE Focal Plane

Figure from: HiRISE_EDR_SIS_2006_13_17

All RED CCDs are aligned

IR CCDs overlay RED4 and RED5

BG CCDs overlay RED4, RED5, IR10 & IR11

Boresight is centered on the focal plane

Sample NOPROJ results for PSP_001777_1650

(Summation=1; output samples=20,000)

PSP_001777_1640 Undistorted mosaic