0.

Stochastic List Update Seminar

Loric ANDRE

05.07.2021

Outline

Introduction

Rivest paper

Model

Move To Front

Cost of MTF

Relative positioning for MTF

Static Optimal

Conclusion for Rivest Paper

Our work

Model

Move Recursively Forward

Cost of MRF

Relative positioning for MRF

Static Optimal with dependencies

Conclusion for MRF

Conclusion

Introduction

- Add dependencies to classic list update problem
- Current goal : Stochastic case, probabilities associated with nodes
- ► Based on Rivest's "On Self-Organizing Sequential Search Heuristics"

Rivest Paper

- ► No dependencies yet
- ► Competitive ratio for Move To Front

Model

- ▶ n nodes, 1,..n
- \triangleright Request probabilities $p_1, ... p_n$
- Cost of any algorithm ALG : $C_{ALG} = \sum_{i=1}^{n} pos(i) \cdot p_i$

MTF

- ► Move To Front
- ▶ Move accessed node to the front of the list

Cost of MTF

- ▶ $pos(i) = |\{nodes in front of node i\}| + 1$
- \blacktriangleright b(i,j) probability that node i is in front of node j
- ▶ Average number of nodes in front of node j : $\sum_{i\neq j} b(i,j)$
- Conclusion : Average asymptotic cost :

$$C_{MTF} = \sum_{j=1}^{n} p_j \cdot \left(1 + \sum_{i \neq j} b(i, j)\right)$$

b(i, j) for MTF

- Node i in front of node j if and only if node i accessed after node j
- At any point, node i accessed then neither node i nor node j anymore
- Conclusion :

$$b(i,j) = \sum_{k=1}^{\infty} p_i \cdot (1 - p_i - p_j)^{k-1}$$

$$= \frac{p_i}{p_i + p_j}$$
(1)

Static Optimal Algorithm

- ► Sort nodes by probability
- ▶ If $p_i \ge p_{i+1}$

$$C_{STAT} = \sum_{i=1}^{n} i \cdot p_i \tag{2}$$

Conclusion for Rivest Paper

In the case without dependencies:

$$b(i,j) = \frac{p_i}{p_i + p_j}$$

$$C_{MTF} = 1 + \sum_{j=1}^{n} p_j \sum_{i \neq j} \frac{p_i}{p_i + p_j} = 1 + \sum_{j=1}^{n} \cdot 2p_j \sum_{1 \leq i < j} \frac{p_i}{p_i + p_j}$$

•
$$C_{MTF} \leq 1 + 2 \sum_{j=1}^{n} p_j (j-1)$$

$$ightharpoonup C_{STAT} = 1 + \sum_{i=1}^{n} p_{i}(i-1)$$

Our Work

- ► Similar reasoning
- ► Dependencies complicate some steps

Model

- ► DAG *G* : dependency graph
- ► Edge between i and j means i depends on j

▶ Right now : Working with a Forest

Credits to Juan Vanerio for the figure

Move Recursively Forward

Move accessed node until we meet a dependency, then do the same again with this dependency (recursively) until we reach the head of the list

Credits to Juan Vanerio for the figure

Cost of MRF

- Formula for access cost in terms of b(i, j) holds with dependencies!
- ► Updated b(i, j)
- \triangleright b(i, j) = 1 if j depends on i
- \blacktriangleright b(i, j) = 0 if i depends on j
- Other cases in next slides

b(i, j) for independent nodes (1/4)

Conditions, at some point :

- i moved : i or a node depending on it accessed and
- i moved ahead of j and
 - i and j not moved or
 - i was not moved and j was not moved enough to overtake i

b(i, j) for independent nodes (2/4): i moved ahead of j

▶ i moved if and only if i or a node depending on it is accessed :

$$\sum_{k\in\mathcal{D}(i)}p_k=\gamma_i$$

• i could move ahead of j if and only if its parent was in front of j: this is b(par(i), j)

Figure source: wikimedia

b(i, j) for independent nodes (2/4): i and j not moved afterwards

The probability that nodes i and j are not moved afterwards is simply:

$$\sum_{k=1}^{\infty} (1 - \gamma_i - \gamma_j)^{(k-1)} = \frac{1}{\gamma_i + \gamma_j}$$

b(i, j) for independent nodes (3/4): i not moved and j didn't overtake i

- Like in the previous slide, i not moved is $\frac{1}{\gamma_i}$
- ▶ j not overtaking i : j was moved less than m times, m is the number of parents of j after i
- \blacktriangleright m is between 0 and δ_i (depth of j in its dependency tree)
- ► Total :

$$\sum_{m=1}^{\delta_j} b(i, par^m(j)) (\gamma_j)^m$$

b(i, j) for independent nodes (4/4): summary

Putting all this together gives us:

$$b(i,j) = \gamma_i \cdot b(par(i),j) \left(\frac{1}{\gamma_i + \gamma_j} + \frac{1}{\gamma_i} \sum_{m=1}^{\delta_j} b(i, par^m(j)) (\gamma_j)^m \right)$$

This expression is recursive in both i and j. The b(par(i), j) can be dealt with using a product over the parents but it still leaves the recursion over all parents of j, and as such is not usable in itself.

Cost for STATD

- Static optimal algorithm with dependencies
- ▶ This is the point we're currently having trouble with
- need a lower bound for its cost
 - Cost higher than STAT (Rivest bound)
 - Node always behind all parents

Conclusion for MRF

- ▶ b(i, j) is too complicated in its full form
- ▶ Bounding it yields good result in some cases
- We still need a better bound on STATD to get its ratio in all cases

Conclusion

- Currently no numeric bound on the ratio : need a better bound on STATD
- ► Goal : Less than 4 (current bound for MRF in general case)
- ightharpoonup Hope : π in stochastic case

Questions

Thank you for listening, any questions?