Лабораторная работа №2

Ввод и вывод значений простых переменных и одномерных массивов. Создание функциональных тестов

(2 ак.часа)

Разработать нисходящим способом алгоритм, отделив ввод и вывод от её решения, и написать программу на *Delphi*, создав консольное приложение для *MS Windows*, для решения задачи из нижеприведенного перечня задач. При этом:

- 1) Ввод исходных данных выполнить с клавиатуры, не забывая о приглашениях к вводу.
- 2) Вывод исходных данных и результатов выполнить на экран вывода консольного приложения, не забывая о пояснениях.
- 3) Все задачи в первом семестре выполнять только с использованием статических (не динамических открытых) массивов.
- 4) При наличии альтернативных решений, особенно отрицательных, предусмотреть вывод соответствующих сообщений. Например, «Невозможно найти среднее значение среди положительных элементов, т.к. таких элементов в массиве нет».
- 5) Код решения задачи пока не писать, заменив временно простейшей заглушкой прямым присваиванием значения результатам.
- 6) Создайте (рукописную или в электронном виде) спецификацию задачи для уровня абстракций А0. Для этого
 - а) Приведите условие задачи из перечня задач без каких-либо изменений;
 - б) Уточните условие задачи, добавив типы, имена и структуры исходных и данных и результатов, не указанные в условии, и предусмотрите вывод сообщений при невозможности найти положительное решение;
 - в) Продумайте пример, демонстрирующий порядок решения задачи при положительном решении; или несколько примеров, демонстрирующих различные альтернативные решения задачи;
 - г) Заполните таблицу данных, выделив исходные данные и результаты, и вспомогательные переменные; продумайте, какими должны быть диапазоны исходных данных, чтобы при решении задачи не возникла ситуация переполнения и не потерялась задуманная точность решения, но при этом они были достаточно разнообразными для всесторонней демонстрации работы алгоритма.
 - д) Аномальные ситуации можно не рассматривать, особенно, если ранее не изучали язык *Pascal* или *Delphi*, или рассмотреть лишь частично.
 - е) Продумать порядок ввода исходных данных и текст приглашений к вводу, а также порядок вывода исходных данных и результатов (при разных альтернативных решениях, если такие есть), и отразить их в виде форм ввода и вывода;
 - ж) Составить функциональные тесты для проверки правильности работы программы ДЛЯ исходных данных, лежащих внутри выбранных диапазонов, И, особенно, также для на их границах, разных альтернативных решений И экстремальных средних И значениях выходных данных и промежуточных результатов;

- 3) Изобразите в виде блок-схемы порядок выполнения ввода и вывода, выделив подзадачу(и) решения в отдельный блок, для которого известны пока только имена входных и выходных данных;
- и) Напишите код программы;
- к) Структурные тесты здесь и далее (до выполнения типового расчета) можно не составлять.

Пример решения задачи (спецификация) описан в Практическом занятии №.1

Алгоритмы ввода и вывода простых переменных и одномерных массивов также можно найти в файле Кодирование-алгоритмов.pdf, информация о выводе сообщений на русском языке — в файле RUS.pdf.

Перечень задач:

- 1. Найти сумму и число тех элементов заданного массива $X_1, X_2, ..., X_n$, которые попадают на заданный отрезок.
- 2. Подсчитать по отдельности суммы C1 и C2 и количества M1 и M2 отрицательных и положительных элементов заданного одномерного массива.
- 3. Выделяя из заданных элементов $X_1, X_2, ..., X_n$ положительные элементы, для которых к тому же справедливо равенство $sin X_i \le 0$, найти число и произведение такого рода элементов.
- 4. Найти сумму и общее количество тех элементов заданного массива $X_1, X_2, ..., X_n$, абсолютная величина которых отличается от P не более, чем на T(P и T заданные величины).
- 5. Для заданного массива $X_1, X_2, ..., X_n$ найти среднее арифметическое элементов, имеющих четные номера и притом положительных, а для заданного массива $Y_1, Y_2, ..., Y_n$ найти среднее арифметическое элементов, имеющих нечетные номера и притом отрицательных.
- 6. При заданных элементах $X_1, X_2, ..., X_n$ найти по отдельности суммы C1и C2 и количества M1 и M2 элементов, значения которых соответственно больше P и меньше -P.
- 7. При заданных $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$, проверяя на равенство элементы пар $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$, подсчитать число случаев равенства элементов пар; одновременно найти среднее арифметическое элементов $X_1, X_2, ..., X_n$.
- 8. Вычислить куб суммы и число тех элементов заданного массива $X_1, X_2, ..., X_n$, значения которых меньше R или находятся в пределах от T до P.
- 9. При заданной величине A и заданных элементах $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ определить число произведений вида X_iY_i , удовлетворяющих условию $X_iY_i \le A$, и сумму таких произведений.
- 10. Найти среднее арифметическое тех элементов $X_1, X_2, ..., X_n$, значения которых не превышают X_1 , включая и сам элемент X_1 . Найти также среднее арифметическое всех элементов данного массива.
- 11. Найти $\sqrt{CX \cdot CY}$, где CX и CY средние арифметические положительных элементов заданных массивов $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ соответственно.
- 12. Найти сумму и число тех элементов заданного массива X_1 , X_2 , ..., X_n , каждый из которых, вопервых, больше элемента с тем же номером из другого заданного массива Y_1 , Y_2 , ..., Y_n , а, вовторых, положителен.
- 13. При заданных абсциссах $X_1, X_2, ..., X_n$ и ординатах $Y_1, Y_2, ..., Y_n$ п точек плоскости X0Y определить, у какого числа этих точек положительна как абсцисса, так и ордината, а также найти среднюю ординату всех прочих точек из числа заданных.

- 14. При заданных A и B подсчитать, сколько кругов с заданными радиусами $R_1, R_2, ..., R_n$ имеют большую площадь, чем прямоугольник со сторонами A и B.
- 15. При заданных абсциссах X_1 , X_2 , ..., X_n и ординатах Y_1 , Y_2 , ..., Y_n n точек плоскости X0Y подсчитать количество точек, ордината которых больше абсциссы, и сумму расстояний от последней заданной точки (X_n, Y_n) до всех остальных точек.
- 16. При заданных $A_1, A_2, ..., A_n, B_1, B_2, ..., B_n$ и $C_1, C_2, ..., C_n$ для каждой из n троек вида (A_i, B_i, C_i) проверить, может ли быть построен треугольник со сторонами A_i, B_i, C_i , при этом подсчитать число треугольников и сумму их периметров.
- 17. При заданных XT, YT, абсциссах $X_1, X_2, ..., X_n$ и ординатах $Y_1, Y_2, ..., Y_n$ и точек плоскости X0Y определить, в каком числе случаев расстояние между одной из таких точек и точкой с координатами XT, YT превышает заданную величину B, и найти средние координаты для заданной совокупности точек, исключая точку (XT, YT).
- 18. Найти среднее арифметическое не равных нулю элементов заданного массива X_1, X_2, \dots, X_n и подсчитать число элементов с неотрицательными значениями (включая и равные нулю).
- 19. Изменить значения всех положительных элементов заданного массива X_1, X_2, \dots, X_n делением каждого из них на его номер в массиве и подсчитать число отрицательных элементов данного массива.
- 20. При заданных X_1 , X_2 , ..., X_n и Y_1 , Y_2 , ..., Y_n заменить значение каждого неположительного элемента массива X абсолютной величиной соответствующего (по номеру) элемента массива Y и подсчитать количество замен.
- 21. При заданных $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ получить массив $T_1, T_2, ..., T_n$, элементы которого получают значения по правилу: $T_i = max(X_i, Y_i)$, и подсчитать, сколько элементов T_i получило значения X_i .
- 22. При заданных X_1, X_2, \ldots, X_n сформировать массив элементов Y_1, Y_2, \ldots, Y_n по правилу: $Y_i = \begin{cases} 1 \sin X_i \big| X_i > 0 \\ 1 \cos X_i \big| X_i \leq 0 \end{cases}.$ При этом подсчитать число неотрицательных X_i .
- 23. В заданном массиве $X_1, X_2, ..., X_n$ заменить значения отрицательных элементов их абсолютными величинами; при этом подсчитать число элементов, равных нулю.
- 24. Подсчитать, сколько среди заданных элементов $X_1, X_2, ..., X_n$ отрицательных, и изменить значение каждого положительного элемента (кроме последнего) путем его деления на значение последующего члена (если это не ноль).
- 25. Сформировать массив элементов $Y_1, Y_2, ..., Y_n$ на основе заданного массива $X_1, X_2, ..., X_n$, используя правило $Y_i = \begin{cases} -2X_i | X_i < 0 \\ X_i^2 | X_i \ge 0 \end{cases}$. При этом подсчитать число элементов X_i , равных нулю.
- 26. В заданном массиве $X_1, X_2, ..., X_n$ изменить значения всех положительных элементов, умножив их значения на K, а отрицательные элементы уменьшить вдвое; при этом подсчитать количество элементов, абсолютная величина которых не превышает L.
- 27. При заданных $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ заменить в массиве X значения тех элементов X_i , для которых выполняется условие $|X_i Y_i| \le E$, значениями элементов Y_i , и подсчитать число произведенных замен.
- 28. При заданных $X_1, X_2, ..., X_n$ и $Y_1, Y_2, ..., Y_n$ заменить значение каждого элемента массива Y новым значением, определяемым по правилу $Y_i = \begin{cases} X_i Y_i | X_i \geq Y_i \\ Y_i X_i | X_i < Y_i \end{cases}$ и подсчитать число случаев равенства X_i и Y_i .

- 29. При заданных абсциссах $X_1, X_2, ..., X_n$ и ординатах $Y_1, Y_2, ..., Y_n$ и точек плоскости X0Y подсчитать, сколько из них находится в пределах круга заданного радиуса R с центром в начале координат, а также среднее арифметическое расстояния от начала координат для всех заданных точек с положительными абсциссами.
- 30. При заданных $X_1, X_2, ..., X_n, Y_1, Y_2, ..., Y_n$ и $Z_1, Z_2, ..., Z_n$ получить новые значения этих элементов, последовательно рассматривая тройки (X_i, Y_i, Z_i) : X_i следует задать наименьшее из этих значений, Z_i наибольшее, а Y_i оставшееся значение данной тройки.
- 31. При заданных абсциссах X_1 , X_2 , ..., X_n и ординатах Y_1 , Y_2 , ..., Y_n и точек плоскости X0Y подсчитать количество точек, у которых одна и только одна из координат отрицательна, и сумму расстояний от начала координат до всех точек, удаление которых от начала координат не превышает заданной величина R.
- 32. При заданных X_1, X_2, \dots, X_n и Z_1, Z_2, \dots, Z_n получить новые значения этих элементов, последовательно рассматривая пары (X_i, Z_i) , по правилу: $Z_i = \begin{cases} X_i^2 \big| X_i < D \\ Z_i \big| X_i \geq D \end{cases}; X_i = \begin{cases} X_i \big| X_i < D \\ \big| Z_i \big| \big| X_i \geq D \end{cases}$ и подсчитать число измененных Z_i .
- 33. При заданных абсциссах X_1 , X_2 , ..., X_n и ординатах Y_1 , Y_2 , ..., Y_n n точек плоскости X0Y найти сумму абсцисс точек, удаление которых от начала координат не превышает заданной величина R, и среднее расстояние от начала координат до всех точек, у которых одна и только одна из координат отрицательна.
- 34. Для заданных чисел $Y_1, Y_2, ..., Y_n$ найти по отдельности суммы отрицательных и положительных значений, а также количество нулевых.
- 35. При заданных абсциссах X_1 , X_2 , ..., X_n и ординатах Y_1 , Y_2 , ..., Y_n n точек плоскости X0Y найти среднее значение обеих координат точек, удаление которых от начала координат не превышает заданной величина R, и количество точек, у которых нулевое значение хотя бы одной из координат.
- 36. Для заданной последовательности чисел $Y_1, Y_2, ..., Y_n$ найти по отдельности средние значения отрицательных и положительных значений.

Контрольные вопросы

- 1. Становится ли результатом работы программы исходное данное, если его вывести на экран перед результатами работы программы?
- 2. Как определить диапазон значений суммы элементов массива, если известно, что в массиве может хранится до 20 значений с диапазонами от -100 до +100?
- 3. Как определить диапазон значений количества положительных элементов массива, если известно, что в массиве может хранится до 20 значений с диапазонами от -100 до +100?
- 4. Как ввести значения двух целочисленных переменных в одной строке через пробел при вводе с клавиатуры? Как ввести из разных строк?
- 5. Как ввести только первые значения из двух последовательно введенных с клавиатуры наборов целочисленных значений, разделенных пробелами? Например, ввести 10 и 20 из

20 21

- 6. В чем отличия между процедурами ввода Read и ReadLn?
- 7. Что такое отрицательное решение? Положительное? Альтернативное? Есть ли такие решения в вашей задаче?

- 8. Что такое аномальная ситуация? Приведите пример условия возникновения аномальной ситуации в вашей задаче.
- 9. Ситуация, когда невозможно найти среднее значение отрицательных элементов в одномерном массиве из 10 элементов с диапазонами значений [-1000, +1000], это аномалия, ошибка или отрицательное решение?
- 10. Какого рода ошибок можно избежать, если не только вводить, но и выводить исходные данные?
- 11. Нужен ли алгоритм или программа для составления функциональных тестов?
- 12. Как переключить кодовую страницу для корректного отображения сообщений, написанных кириллицей в приложениях *Microsoft Windows*, для удобного диалога с пользователем в окне консольного вывода.