Problem set 10 - Due: Friday, March 28

1. Assume $\omega < \infty$. Suppose that A, B, C are points with $\overrightarrow{AC} < \omega$ and A-B-C. Let X be any point not on \overrightarrow{AC} and let A^* be the antipode of A. Prove that $\overrightarrow{XB} \cdot \overrightarrow{XC} \cdot \overrightarrow{XA}^*$

Proof. Assume $\omega < \infty$, A, B, C are points with $AC < \omega$, and A-B-C. Let X be any point not on \overrightarrow{AC} , and let A^* be the antipode of A.

First, let $\overrightarrow{XA} = n$, $\overrightarrow{XB} = j$, $\overrightarrow{XC} = \ell$, $\overrightarrow{XA^*} = k$. Thus, we aim to show that $j-\ell-k$. We first note that by Ax.C, we have

$$n$$
- j - ℓ .

Next, we observe that by theorem 9.1, A-C-A*, and by Ax.C, \overrightarrow{XA} - \overrightarrow{XC} - \overrightarrow{XA} *, or n- ℓ -k. Thus, we have

$$n$$
- j - ℓ and n - ℓ - k .

Which by the rule of insertion, gives us

$$n$$
- j - ℓ - k .

Which yields $j-\ell-k = \overrightarrow{XB}-\overrightarrow{XC}-\overrightarrow{XA}^*$ as desired

2. Prove Theorem 11.9

Remark. (Theorem 11.9 Almost uniqueness of quadrichotomy for rays): Suppose that a, b, c, r are distinct rays in a pencil P, and that a-b-c. Then, **exactly** one of

$$r$$
- a - b a - r - b b - r - c b - c - r

With the exception that both r-a-b and b-c-r are true when r = b'

(Dual of Theorem 8.3): Let $x \neq y$ by rays distinct from ray a on the fan \overrightarrow{ab} . Then, exactly one of the following relations must hold.

$$a$$
- x - y or a - y - x .

Proof: We proceed by dualizing the proof of theorem 9.2.

By Axiom.QR, at least one of

$$r$$
- a - b a - r - b b - r - c b - c - r .

Suppose we have a-r-b. Then, a-b-c and the rule of insertion yields a-r-b-c

So, a-r-b and r-b-c are true. Which, by the UMT guarantees that both b-r-c and b-c-r are false.

Next, suppose that b-r-c is true. Then, a-b-c and the rule of insertion yields a-b-r-c. So, a-b-r and b-r-c are true, and by the UMT, all three of r-a-b, a-r-b, b-c-r are false. Thus, none of the other three relations hold.

So, if more than one of r-a-b, a-r-b, b-r-c, b-c-r holds, they must be exactly r-a-b and b-c-r

Assume that r-a-b and b-c-r are true. Suppose toward a contradiction that br < 180. Then, fan \overrightarrow{br} is defined, and r-a-b, b-c-r implies a, c are in \overrightarrow{br} . By the dual of theorem 8.3 (stated above), one of

$$b$$
- a - c or b - c - a

is true. But, this contradicts a-b-c by the UMT.

Therefore, br = 180, hence r = b'.

3. Prove Theorem 11.10

Remark. (Theorem 11.10: Opposite Fan Theorem). Let p, q, r be rays in pencil P such that q-p-r. Then, $\overrightarrow{pq} \cup \overrightarrow{pr} = P$, and $\overrightarrow{pq} \cap \overrightarrow{pr} = \{p, p'\}$

Proof. p,q,r are together in the unique pencil P. Further, q-p-r implies $pq,pr < qr \leqslant 180$, so fans $\overrightarrow{pq},\overrightarrow{pr}$ are defined.

If $x \neq p, q, r$ is in pencil P, then ax.QR says one of

$$x$$
- q - p q - x - p p - x - r p - r - x

must be satisfied. In other words, x is in \overrightarrow{pq} or \overrightarrow{pr} . So, $P \subseteq \overrightarrow{pq} \cup \overrightarrow{pr}$. Hence, $P = \overrightarrow{pq} \cup \overrightarrow{pr}$

Since \overrightarrow{pq} and \overrightarrow{pr} have the same endpoint, and $\overrightarrow{pq} \cup \overrightarrow{pr} = P$, \overrightarrow{pq} and \overrightarrow{pr} are opposite rays

What about $\overrightarrow{pq} \cap \overrightarrow{pr}$? q-p-r implies not p-q-r or p-r-q, so $q \notin \overrightarrow{pr}$, and $r \notin \overrightarrow{pq}$. So, neither q nor r is in $\overrightarrow{pq} \cap \overrightarrow{pr}$

Let x be any ray $\neq p, q, r$ in P. Suppose $X \in \overrightarrow{pq} \cap \overrightarrow{pr}$

$$x \in \overrightarrow{pq} \implies x\text{-}q\text{-}p \text{ or } q\text{-}x\text{-}p$$

 $x \in \overrightarrow{pr} \implies p\text{-}x\text{-}r \text{ or } p\text{-}r\text{-}x.$

So two are true. Theorem 11.10 applied to q-p-r and ray x implies it must be q-x-p and p-r-x, with x = p'. Thus, $\overrightarrow{pq} \cap \overrightarrow{pr} = \{p, p'\}$