Sampling-based Rig Conversion into Non-rigid Helper Bones

Tomohiko Mukai*, Tokai University (*currently, Tokyo Metropolitan University)

Motivation

Rigging with Rigid Helper Bones

[I3D 2015, SIG 2016]

Linear blend skinning + Procedural control of rigid bones

Data-driven rigging [I3D 2015]

+ dynamics [SIG 2016]

Our approach: adding scaling component to helper bones

Data-driven Rigging [I3D 2015]

Overview

Related Work

Automated rigging [Baran 2007]

Animation setup transfer [Avril 2016]

Anatomy Transfer [Ali-Hamadi 2013]

Our approach: Skeleton-based deformer into helper bones, Same skeleton structure, Same skin mesh geometry

Related Commercial Tools

- Autodesk Maya
 - Bake Deformer Tools
- SideFx Houdini
 - Skinning Converter

Our approach: Higher conversion quality using helper bones, and sampling mechanism

Overview

Two-step Sampling of Training Data

Per-joint Uniform Sampling

 Uniform 3D rotation sampling [Yershova 2010] within joint range of motion

- Per-joint sampling while fixing other joints
 - # of samples ∞ # of joints
 - Approximated solution for LBS

Displacement Measure

 quantifies the size of the displacement that the joint rotation yields on the vertex

Dependency Measure

 quantifies the influence of the joint rotation on the vertex displacement (∞ skinning weight)

Dependency measure (inner product)

Deformed shape

Pose Selection

(# of joints) × 200 samples

Displacement measure

Dependency measure

Important for approximating visible non-rigid deformation (ex. exaggerated deformation)

(# of joints) \times 20 samples

Important for accurate skinning weight estimation

Data-driven Weight Optimization

Helper bone rig

Non-rigid helper bone rigging

Rigid transformation

+ scaling component

[Le 2012]

LBS rig with no helper

Experiments

Linear blend
skinning(LBS) to LBS

Branched skeleton

602 vertices Six joints

Helper Bone Rigging

deformer)

Helper bone rig

Non-rigid helper bone rigging

Rigid transformation

+ scaling component

Data-driven skinning

LBS rig with no helper 16

Optimization Procedure

Incremental Helper Bone Insertion

- Find a vertex showing the largest error and its 1-ring neighbors
- 2. Estimate similarity transformation
- 3. Inserting a new helper bone using the similarity transformation

SSDS: Smooth Skinning Decomposition with Similarity transformations

Subject to $S_{q,h}$: Non-negative scale, $R_{q,h}$: Rotation, $T_{q,h}$: Translation $w_{i,j}, w_{i,h}$: Non-negative, Partition of unity, Number of non-zeros

SSDS: Block Coordinate Descent - 1

1. Skinning weight optimization [Le 2012]

$$\min \sum_{q} \sum_{i} \left| \tilde{\mathbf{v}}_{q,i} - \sum_{j=1}^{J} [\mathbf{w}_{i,j}] \overline{\mathbf{v}}_{i} \widetilde{\mathbf{M}}_{q,j} - \sum_{h=1}^{H} [\mathbf{w}_{j,h}] \overline{\mathbf{v}}_{j} \mathbf{S}_{q,h} \mathbf{R}_{q,h} \mathbf{T}_{q,h} \right|_{2}^{2}$$

Subject to $S_{q,h}$: Non-negative scale, $R_{q,h}$: Rotation, $T_{q,h}$: Translation

 $W_{i,j}$, $W_{i,h}$: Non-negative, Partition of unity, Number of non-zeros

SSDS: Block Coordinate Descent - 2

2. Transformation optimization of helper bones

$$\min \sum_{q} \sum_{i} \left| \widetilde{\mathbf{v}}_{q,i} - \sum_{j=1}^{J} w_{i,j} \overline{\mathbf{v}}_{i} \widetilde{\mathbf{M}}_{q,j} - \sum_{h=1}^{H} w_{j,h} \overline{\mathbf{v}}_{j} S_{q,h} R_{q,h} T_{q,h} \right|_{2}^{2}$$

Subject to $S_{q,h}$: Non-negative scale, $R_{q,h}$: Rotation, $T_{q,h}$: Translation $w_{i,j}, w_{i,h}$: Non-negative, Partition of unity, Number of non-zeros

SSDS: Block Coordinate Descent - 2

- 2.1 Non-uniform scale estimation
- 2.2 Rigid transformation estimation

$$\min \sum_{q} \sum_{i} \left| \tilde{\mathbf{v}}_{q,i} - \sum_{j=1}^{J} w_{i,j} \bar{\mathbf{v}}_{i} \widetilde{\mathbf{M}}_{q,j} - \sum_{h=1}^{H} w_{j,h} \bar{\mathbf{v}}_{j} (\mathbf{S}_{q,h}) (\mathbf{R}_{q,h} \mathbf{T}_{q,h}) \right|_{2}^{2}$$

Subject to $\mathbf{S}_{q,h}$: Non-negative scale , $\mathbf{R}_{q,h}$: Rotation , $\mathbf{T}_{q,h}$: Translation

 $W_{i,j}$, $W_{i,h}$: Non-negative, Partition of unity, Number of non-zeros

Sparse Regression of Bone Controller

from Rigid Helper Bone

Rigid Helper bone to Non-rigid helper bone

Bulging cylinder 1962 vertices Three joints One helper bone

from Pose Space Deformation

Pose space deformer to helper bones

Arm-like model
622 vertices
Three joints
Five blendshapes

from Virtual Muscles

Virtual muscles to helper bones

Monster leg
522 vertices
20 joints
11 muscles

from Virtual Muscles

Virtual muscles to helper bones

Exaggerated arm 15768 vertices Four joints One muscle

Limitations

- Only skeleton-driven deformer
 - not support cage-based deformers or blendshapes
- No theoretical grounding on optimality
- Only vertex position, not vertex normal
- Low editability of helper bone controllers

Summary

Acknowledgement: JSPS KAKENHI 15K16110 & 15H02704, PlatinumGames Inc.