Shcheniayev
DA 15022025-091335

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=200~{\rm Om}.$ Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=4.5~\Gamma\Gamma$ ц и $f_{\rm B}=13.2~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.32+j0; 3 использован наикратчайший отрезок, удовлетворяющий вышеупомянутым

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

Варианты ОТВЕТА:

1) 0.6 дБ

условиям.

- 2) 2.5 дБ
- 3) 1.2 дБ
- 4) 2.9 дБ

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.8f_{\scriptscriptstyle \rm B}$:

```
s_{11}=0.137-0.175i. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 34 O_M
- 2) 73 O_M
- 3) 82 Ом
- 4) 128 O_M

Даны значения s-параметров:

Freq	req s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.7	0.702	96.7	1.544	14.1	0.147	36.3	0.211	-105.1

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который *не может* обеспечить согласование со стороны плеча 1 на частоте 3.7 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- $1 W_T$ меньше 91 Ом;
- 2 θ_{Π} меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 7.7 ГГц с помощью калибровочной меры с названием "холостой ход". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения: 0.48-0.88i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 8.5 cm
- 2) 32.8 cm
- 3) 18.3 см
- 4) 14.5 cm

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.305 мм и с волновым сопротивлением 31 Ом;
- 2 толщиной 0.406 мм и с волновым сопротивлением 46 Ом;
- 3 толщиной 0.203 мм и с волновым сопротивлением 18 Ом;
- 4 толщиной 0.508 мм и с волновым сопротивлением 62 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4