

We covered...

- Data management/Visualization by python
 - Numpy, pandas, data acquisition
- Machine learning workflow with data
- EDA (Exploratory Data Analysis)
- Supervised learning
 - k-NN classifier
 - logistic regression based binary classification
 - Support vector machine
 - Decision tree
 - Random Forest

Today's Subjects

- Model Evaluation
 - Accuracy
 - Precision
 - Recall

Represent / Train / Evaluate / Refine Cycle

Extract and select object features

<u>Train models</u>:

Fit the estimator to the data

Feature and model refinement

Evaluation

Evaluation

- Different applications have very different goals
- Accuracy is widely used, but many others are possible, e.g.:
 - User satisfaction (Web search)
 - Amount of revenue (e-commerce)
 - Increase in patient survival rates (medical)

Evaluation

- It's very important to choose evaluation methods that match the goal of your application.
- Compute your selected evaluation metric for multiple different models.
- Then select the model with 'best' value of evaluation metric.

Accuracy with imbalanced classes

- Suppose you have two classes:
 - Relevant (R): the positive class
 - Not_Relevant (N): the negative class
- Out of 1000 randomly selected items, on average
 - One item is relevant and has an R label
 - The rest of the items (999 of them) are not relevant and labelled N.
- Recall that:

Accuracy with imbalanced classes

- You build a classifier to predict relevant items, and see that its accuracy on a test set is 99.9%.
 - Wow! Amazingly good, right?
- For comparison, suppose we had a "dummy" classifier that didn't look at the features at all, and always just blindly predicted the most frequent class (i.e. the negative N class).
- Assuming a test set of 1000 instances, what would this dummy classifier's accuracy be?

Dummy classifiers

- Some commonly-used settings for the strategy parameter for DummyClassifier in scikit-learn:
 - most_frequent : predicts the most frequent label in the training set.
 - stratified : random predictions based on training set class distribution.
 - uniform: generates predictions uniformly at random.
 - constant : always predicts a constant label provided by the user.

Binary prediction outcomes

<u>True</u> negative

TN

FP

<u>True</u> positive

FN

T'P

Label 1 = positive class (class of interest)

Label 0 = negative class (everything else)

TP = true positive

FP = false positive (Type I error)

TN = true negative

FN = false negative (Type II error)

Predicted negative

Predicted positive

positive

Confusion Matrix for Binary Prediction Task

True negative	TN = 400	FP = 7
True	FN = 17	TP = 26

Always look at the confusion matrix for your classifier.

Predicted negative

Predicted positive

$$N = 450$$

Visualization of Different Error Types

TN = 429	FP= 6
FN = 2	TP = 13

Model Evaluation Metric: Accuracy

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted	Predicted	N = 450

Accuracy =
$$\frac{TN+TP}{TN+TP+FN+FP}$$

= $\frac{400+26}{400+26+17+7}$
= 0.95

Predicted Predicted positive

Model Evaluation Metric: Classification Error

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted	Predicted	N = 450

ClassificationError =
$$\frac{FP + FN}{TN + TP + FN + FP}$$

$$=\frac{7+17}{400+26+17+7}$$

$$= 0.060$$

Model Evaluation Metric: Precision

True negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted	Predicted	N = 450

positive

negative

$$Precision = \frac{TP}{TP + FP}$$

$$=\frac{26}{26+7}$$

$$= 0.79$$

Model Evaluation Metric: Recall

True
negative

True positive

TN = 400	FP = 7	
FN = 17	TP = 26	
Predicted	Predicted	N = 450

positive

negative

$$Recall = \frac{TP}{TP + FN}$$

$$=\frac{26}{26+17}$$

$$= 0.60$$

Recall is also known as:

- True Positive Rate (TPR)
- Sensitivity
- Probability of detection

digits dataset: positive class (black) is digit 1, negative class (white) all others

TN = 429	FP= 6
FN = 2	TP = 13

Precision =
$$\frac{TP}{TP+FP} = \frac{13}{19} = 0.68$$

Recall = $\frac{TP}{TP+FN} = \frac{13}{15} = 0.87$

$$TN = 435$$
 $FP = 0$ $FN = 8$ $TP = 7$

Precision =
$$\frac{TP}{TP+FP} = \frac{7}{7} = 1.00$$

Recall = $\frac{TP}{TP+FN} = \frac{7}{15} = 0.47$

digits dataset: positive class (black) is digit 1, negative class (white) all others

$$TN = 408$$
 $FP = 27$ $FN = 0$ $TP = 15$

Precision =
$$\frac{TP}{TP+FP} = \frac{15}{42} = 0.36$$

Recall = $\frac{TP}{TP+FN} = \frac{15}{15} = 1.00$

- Recall-oriented machine learning tasks:
 - Search and information extraction in legal discovery
 - Tumor detection
 - Often paired with a human expert to filter out false positives
- Precision-oriented machine learning tasks:
 - Search engine ranking, query suggestion
 - Document classification
 - Many customer-facing tasks (users remember failures!)