Biconnectivity

2/23/2018 12:56 PM

Outline and Reading

- Definitions
 - Separation vertices and edges
 - Biconnected graph
 - Biconnected components
 - Equivalence classes
 - Linked edges and link components
- Algorithms
 - Auxiliary graph
 - Proxy graph

Separation Edges and Vertices

- Definitions
 - Let G be a connected graph
 - A separation edge of G is an edge whose removal disconnects G
 - A separation vertex of G is a vertex whose removal disconnects G
- Applications?
 - e.g., separation edges and vertices represent single points of failure in a network and are critical to the operation of the network
- Example
 - Separation vertices?
 - DFW, LGA and LAX
 - Separation edges?
 - (DFW,LAX)

Biconnected Graph

- Equivalent definitions of a biconnected graph G
 - Graph G has no separation edges and no separation vertices
 - For any two vertices u and v of G, there are two disjoint simple paths between u and v (i.e., two simple paths between u and v that share no other vertices or edges)
 - For any two vertices u and v of G, there is a simple cycle containing u and v

2/23/2018 12:56 PM

Biconnected Components

- Biconnected component of a graph G
 - \blacksquare A maximal biconnected subgraph of G, or
 - A subgraph consisting of a separation edge of G and its end vertices
- Interaction of biconnected components
 - An edge belongs to exactly one biconnected component
 - A nonseparation vertex belongs to exactly one biconnected component
 - A separation vertex belongs to two or more biconnected components
- Example of a graph with four biconnected components

2/23/2018 12:56 PM

More Applications

Internet

2/23/2018 12:56 PM

More Applications

- Is this subset of the Internet biconnected?
- How many biconnected subgraphs are there?
- Which are the most critical nodes?
- At least how many links do I have to follow between node A and node B?
- Is node A connected to node B?

Biconnected Components

Another way of looking at it...

Equivalence Classes

- Given a set S, a relation R on S is a set of ordered pairs of elements of S, i.e., R is a subset of $S \times S$
- lacktriangle An equivalence relation R on S satisfies the following properties

Reflexive: $(x,x) \in \mathbb{R}$

Symmetric: $(x,y) \in R \implies (y,x) \in R$

Transitive: $(x,y) \in R \land (y,z) \in R \Rightarrow (x,z) \in R$

- lacktriangle An equivalence relation R on S induces a partition of the elements of S into equivalence classes
- Example (connectivity relation among the vertices of a graph):
 - Let V be the set of vertices of a graph G
 - Define the relation $C = \{(v,w) \in V \times V \text{ such that } G \text{ has a path from } v \text{ to } w\}$
 - Relation C is an equivalence relation
 - The equivalence classes of relation *C* are the vertices in each connected component of graph *G*

Link Relation

- Edges e and f of connected graph G are linked if
 - $e = f_t$ or
 - G has a simple cycle containing e and f
 - e.g., is biconnected

The link relation on the edges of a graph is an equivalence relation

Proof Sketch:

- The reflexive and symmetric properties follow from the definition
- For the transitive property, consider two simple cycles sharing an edge

Equivalence classes of linked edges:

$$\{a\}\ \{b,c,d,e,f\}\ \{g,i,j\}$$

Link Components

- ◆ The link components of a connected graph G are the equivalence classes of edges with respect to the link relation
- A biconnected component of G is the subgraph of G induced by an equivalence class of linked edges
- A separation edge is a single-element equivalence class of linked edges
- A separation vertex has incident edges in at least two distinct equivalence classes of linked edge

2/23/2018 12:56 PM

Auxiliary Graph

- Auxiliary graph B for a connected graph G
 - Associated with a DFS traversal of G
 - The vertices of B are the edges of G
 - For each back edge e of G, B has edges $(e,f_1), (e,f_2), ..., (e,f_k)$, where $f_1, f_2, ..., f_k$ are the discovery edges of G that form a simple cycle with e
 - Its connected components correspond to the the link components of G

Auxiliary Graph (cont.)

In the worst case, the number of edges of the auxiliary graph is proportional to nm

DFS on graph G

Auxiliary graph B

Proxy Graph

```
Algorithm proxyGraph(G)
Input connected graph G
Output proxy graph F for G
F \leftarrow empty graph
DFS(G, s) { s is any vertex of G}
for all discovery edges e of G
   F.insertVertex(e)
   setLabel(e, UNLINKED)
for all vertices v of G in DFS visit order
   for all back edges e = (u, v)
      F.insertVertex(e)
      repeat
        f \leftarrow discovery edge with dest. u
        F.insertEdge(e,f,\emptyset)
        if f getLabel(f) = UNLINKED
           setLabel(f, LINKED)
           u \leftarrow \text{origin of edge } f
        else
           u \leftarrow v { ends the loop }
      until u = v
return F
```


Proxy Graph (cont.)

- Proxy graph F for a connected graph G
 - Spanning forest of the auxiliary graph B
 - Has m vertices and O(m) edges
 - Can be constructed in O(n + m) time
 - Its connected components (trees)
 correspond to the the link
 components of G
- Given a graph G with n vertices and m edges, we can compute the following in O(n + m) time
 - The biconnected components of G
 - The separation vertices of G
 - The separation edges of G

