April 10, 2021 26001

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 26

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	k	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 26.1 through 26.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(1), 3(2), 4(3), 5(5), 6(4), 7(7), 8(8), 9(9).

QUESTION 26.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 26.1.1 through 26.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generat ed:

$$1(11, 26), 2(6, 21), 3(9, 24), 4(13, 28), 5(12, 27), 6(10, 25)$$
.

Question 26.1.1 (6, 11, 26) Solution:

Since the possiblity of smoking customer is a=.540, and the possiblity of equal or above 30 years old customer is b=.6600, the possiblity of non-smoking customer is c=1.0-a=1.0-.540=.460 and the possiblity of under 30 years old customer is d=1.0-b=1.0-.6600=.3400. So the possibility of non-smoking and under 30 years old customer is $c\times d=.156$.

Answer:

The possibility of non-smoking and under 30 years old customer is (1 - a)(1 - b) = .156.

Question 26.1.2 (6, 6, 21) Answer:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (70.0, 2.0, -2000.0)N$ and m = 50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(70.0, 2.0, -2000.0)N}{50.0kg}$$

$$= (1.4000, 4.0000 \times 10^{-2}, -40.000)ms^{-2}$$

$$= (18144, 518.40, -518400.)km/h^{2}.$$

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (70.0, 2.0, -2000.0)N$ and m = 50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(70.0, 2.0, -2000.0)N}{50.0kg}$$

$$= (1.4000, 4.0000 \times 10^{-2}, -40.000)ms^{-2}$$

$$= (18144., 518.40, -518400.)km/h^{2}.$$

Question 26.1.3 (6, 9, 24) Solution:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$6.000000000 \times 10^{24}$	$6.0000000000 \times 10^{24}$	3.33×10^{-11}
Venus	2.00×10^{24}	4.00×10^{24}	2.50×10^{-11}
Earth	8.00×10^{24}	4.00×10^{24}	1.00×10^{-10}
Mars	7.00×10^{24}	9.00×10^{24}	1.73×10^{-11}
Jupiter	4.00×10^{24}	7.00×10^{24}	1.63×10^{-11}
Saturn	5.00×10^{24}	8.00×10^{24}	1.56×10^{-11}
Uranus	3.00×10^{24}	8.00×10^{24}	9.38×10^{-12}
Neptune	9.00×10^{24}	4.00×10^{24}	1.13×10^{-10}

Answer:

By using Newton's Law of Universal Gravitation:

$$F = G \frac{(Sun's \; mass) \times (Planet's \; mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$6.000000000 \times 10^{24}$	$6.0000000000 \times 10^{24}$	3.33×10^{-11}
Venus	2.00×10^{24}	4.00×10^{24}	2.50×10^{-11}
Earth	8.00×10^{24}	4.00×10^{24}	1.00×10^{-10}
Mars	7.00×10^{24}	9.00×10^{24}	1.73×10^{-11}
Jupiter	4.00×10^{24}	7.00×10^{24}	$1.63 \times 10^{-11}3$
Saturn	5.00×10^{24}	8.00×10^{24}	1.56×10^{-11}
Uranus	3.00×10^{24}	8.00×10^{24}	9.38×10^{-12}
Neptune	9.00×10^{24}	4.00×10^{24}	1.13×10^{-10}

Question 26.1.4 (6, 13, 28)

Answer:

5;

6;

The operation is SUBTRACTION and the result is -1.0000.

Question 26.1.5 (6, 12, 27) Solution:

Since the possibility of non-smoking customer is a = .660, and the possibility of equal-or-above 30 years old customer is b = .3000, the possibility of

smoking customer is c = 1.0 - a = 1.0 - .660 = .340 and the possiblity of under 30 years old customer is d = 1.0 - b = 1.0 - .3000 = .7000. Then

Customer	Possibility
smoking and equal-or-above 30 years old	$.340 \times .3000 = .102$
smoking and under 30 years old	$.340 \times .7000 = .238$
non-smoking and equal-or-above 30 years old	$.660 \times .3000 = .198$
non-smoking and under 30 years old	$.660 \times .7000 = .462$

And the total summation of all possibilities is 1.000.

Answer:

Customer	Possibility
smoking and equal-or-above 30 years old	.102
smoking and under 30 years old	.238
non-smoking and equal-or-above 30 years old	.198
non-smoking and under 30 years old	.462

And the total summation of all possibilities is 1.000.

Question 26.1.6 (6, 10, 25) Auto-answer:

C. A truck

D. An airplane

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e=9.109390\times 10^{-31}$ kg , Universal gas constant R=8.315 J/(mol·K) , $e=1.60217733\times 10^{-19}$ C , and $m_p=1.6726231\times 10^{-27}$ kg may be very helpful.

QUESTION 26.2 (1, 1, 1)

Auto-answer:

C. The acceleration is $(1.80, .18, -160.00)ms^{-2}$.

Answer:

The correct answer from the choices is

C. The accelaration is $(1.80, .18, -160.00)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 9.0, -8000.0)N$ and m = 50.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 9.0, -8000.0)N}{50.0000kg}$$

$$= (1.80, .18, -160.00)ms^{-2}$$

QUESTION 26.3 (2, 2, 2)

Auto-answer:

A. The accelaration is $(1.3793ms^{-2}, 1117.2km/h^2, -155.17ms^{-2})$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (80.000, 5.0000, -9000.0)N$ and m = 58.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(80.000, 5.0000, -9000.0)N}{58.0000kg}$$

$$= (1.3793, 8.6207 \times 10^{-2}, -155.17)ms^{-2}$$

$$= (17876, 1117.2, -2.0110 \times 10^{6})km/h^{2}.$$

QUESTION 26.4 (3, 3, 3) Auto-answer:

F. None of above.

QUESTION 26.5 (5, 5, 5)

Answer:

The correct	l	1. 78 is an odd number.
answer	F	1. 70 is an odd number.
The correct		2. Toronto is in Ontario province.
answer	T	2. Toronto is in Ontario province.
The correct		3. $\mathbf{F} = m\mathbf{a}$ is a mathmatical form of Newton's Law of
answer	F	3. F — ma is a maximilatical form of Newton's Law of

Universal Gravitation.

QUESTION 26.6 (4, 4, 4)

Auto-answer:

Column Left	Column Right	Answers
A. er	ASDF(:)	D.
B. Er	b	C.
С. В	eR	A. , B.
\mathbf{D}_{\bullet} asdf(:)	a	Ε.
E. A	ER	A. , B.

You have done all the above? Excellent! Not much left, please continue.

QUESTION 26.7 (7, 14, 50)

Auto-answer:

A. The accelaration is $(1.55, .12, -120.69)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

 $\mathbf{f} = m\mathbf{a}$.

Since $\mathbf{f} = (90.0, 7.0, -7000.0)N$ and m = 58.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 7.0, -7000.0)N}{58.0kg}$$

$$= (1.55, .12, -120.69)ms^{-2}$$

QUESTION 26.8 (8, 15, 60)

Answer:

$$\begin{pmatrix} 4 & 7 & 5 & 6 \\ 6 & 6 & 7 & 5 \\ 4 & 4 & 4 & 4 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 44 \\ 48 \\ 32 \end{pmatrix}$$
$$\begin{pmatrix} \varepsilon & \rho \\ \sigma & \beta \\ \Lambda & \Delta \\ \Omega & \Xi \end{pmatrix} \begin{pmatrix} \gamma \\ \gamma \end{pmatrix} = \begin{pmatrix} \varepsilon \times \gamma + \rho \times \gamma \\ \sigma \times \gamma + \beta \times \gamma \\ \Lambda \times \gamma + \Delta \times \gamma \\ \Omega \times \gamma + \Xi \times \gamma \end{pmatrix}$$

Solution:

QUESTION 26.9 (9, 16, 70)

Answer:

$\mathbf{Solution}^{-7, 11}$

Roots to the equation

$$7 \times x^2 - 28 \times x - 539 = 0$$

are -7 and 11.

Let us verity -7 first: $7 \times x^2 - 28 \times x - 539 = 343 + (196) + (-539) = 539 + (-539) = 0$

Then verity 11: $7 \times x^2 - 28 \times x - 539 = 847 + (-308) + (-539) = 539 + (-539) = 0$

Here are still some constants for use:

Constant	Symbol	
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 26.1 through 26.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 27

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	$\mid k \mid$	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 27.1 through 27.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(4), 3(3), 4(2), 5(1), 6(5), 7(8), 8(7), 9(9).

QUESTION 27.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 27.1.1 through 27.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generated:

$$1(8, 23), 2(10, 25), 3(6, 21), 4(11, 26), 5(13, 28), 6(7, 22)$$
.

Question 27.1.1 (6, 8, 23)

Auto-answer:

E. none of these.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 6.0, -3000.0)N$ and m = 52.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 6.0, -3000.0)N}{52.0kg}$$

$$= (1.7308, .11538, -57.692)ms^{-2}$$

$$= (22431, .1495.4, -747692.)km/h^{2}.$$

Question 27.1.2 (6, 10, 25) Auto-answer:

C. A truck

 \mathbf{D} . An airplane

Question 27.1.3 (6, 6, 21)

Answer:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 5.0, -5000.0)N$ and m = 50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 5.0, -5000.0)N}{50.0kg}$$

$$= (1.0000, .10000, -100.00)ms^{-2}$$

$$= (12960, .1296.0, -1.2960 \times 10^{6})km/h^{2}.$$

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 5.0, -5000.0)N$ and m = 50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 5.0, -5000.0)N}{50.0kg}$$

$$= (1.0000, .10000, -100.00)ms^{-2}$$

$$= (12960, .1296.0, -1.2960 \times 10^{6})km/h^{2}.$$

Question 27.1.4 (6, 11, 26) Solution:

Since the possiblity of smoking customer is $a = 7.0 \times 10^{-2}$, and the possiblity of equal or above 30 years old customer is b = .8200, the possiblity of non-smoking customer is $c = 1.0 - a = 1.0 - 7.0 \times 10^{-2} = .930$ and the

possiblity of under 30 years old customer is d = 1.0 - b = 1.0 - .8200 = .1800. So the possibility of non-smoking and under 30 years old customer is $c \times d = .167$.

Answer:

The possibility of non-smoking and under 30 years old customer is (1 - a)(1 - b) = .167.

Question 27.1.5 (6, 13, 28) Answer:

5;

4;

The operation is MULTIPLICATION and the result is 20.000.

Question 27.1.6 (6, 7, 22)

Auto-answer:

I. The accelaration (vector) is $(7476.9, 747.69, -747692.)km/h^2$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (30.0, 3.0, -3000.0)N$ and m = 52.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(30.0, 3.0, -3000.0)N}{52.0kg}$$

$$= (.57692, 5.7692 \times 10^{-2}, -57.692)ms^{-2}$$

$$= (7476.9, 747.69, -747692.)km/h^{2}.$$

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e = 9.109390 \times 10^{-31}$ kg, Universal gas constant

 $R = 8.315~\mathrm{J/(mol\cdot K)}$, $e = 1.60217733\times 10^{-19}~\mathrm{C}$, and $m_p = 1.6726231\times 10^{-27}$ kg may be very helpful.

QUESTION 27.2 (4, 4, 4)

Auto-answer:

Column Left	Column Right	Answers
A. er	b	C.
B. $A = 6/2$	ER	Α.
С. В	YJH	Ε.
\mathbf{D}_{\bullet} asdf(:)	a=3	В.
E. yjh	ASDF(:)	D.

QUESTION 27.3 (3, 3, 3)

Auto-answer:

A. Canada has 10 provinces and 3 territories.

QUESTION 27.4 (2, 2, 2)

Auto-answer:

E. The accelaration is $(1.3793ms^{-2}, 2011.0km/h^2, -155.17ms^{-2})$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (80.000, 9.0000, -9000.0)N$ and m = 58.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(80.000, 9.0000, -9000.0)N}{58.0000kg}$$

$$= (1.3793, .15517, -155.17)ms^{-2}$$

$$= (17876, 2011.0, -2.0110 \times 10^{6})km/h^{2}.$$

QUESTION 27.5 (1, 1, 1)

Auto-answer:

D. The accelaration is $(.769, 3.8 \times 10^{-2}, -38.462)ms^{-2}$.

Answer:

The correct answer from the choices is

D. The accelaration is $(.769, 3.8 \times 10^{-2}, -38.462)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (40.0, 2.0, -2000.0)N$ and m = 52.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(40.0, 2.0, -2000.0)N}{52.0000kg}$$

$$= (.769, 3.8 \times 10^{-2}, -38.462)ms^{-2}$$

QUESTION 27.6 (5, 5, 5)

Answer:

The correct	
answer	F
The correct	
answer	F
The correct	
answer	T
Law.	

- 1. 47 is an even number.
- 2. Montreal is in Ontario province.
- 3. $\mathbf{F} = m\mathbf{a}$ is a mathmatical form of the Newton's Second

37 1 1 11 1

You have done all the above? Excellent! Not much left, please continue.

QUESTION 27.7 (8, 15, 60)

Answer:

$$\begin{pmatrix} 5 & 7 & 7 & 6 \\ 5 & 4 & 6 & 5 \\ 6 & 6 & 5 & 5 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 50 \\ 40 \\ 44 \end{pmatrix}$$
$$\begin{pmatrix} \zeta & \Theta \\ \Xi & \Theta \\ \eta & \gamma \\ \rho & \delta \end{pmatrix} \begin{pmatrix} \beta \\ \beta \end{pmatrix} = \begin{pmatrix} \zeta \times \beta + \Theta \times \beta \\ \Xi \times \beta + \Theta \times \beta \\ \eta \times \beta + \gamma \times \beta \\ \rho \times \beta + \delta \times \beta \end{pmatrix}$$

Solution:

QUESTION 27.8 (7, 14, 50)

Auto-answer:

B. The accelaration is $(1.38, .14, -137.93)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (80.0, 8.0, -8000.0)N$ and m = 58.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(80.0, 8.0, -8000.0)N}{58.0kg}$$

$$= (1.38, .14, -137.93)ms^{-2}$$

QUESTION 27.9 (9, 16, 70)

Answer:

25, -13

Solution:

Roots to the equation

$$9 \times x^2 - 108 \times x - 2925 = 0$$

are 25 and -13.

Let us verity 25 first:
$$9 \times x^2 - 108 \times x - 2925 = 5625 + (-2700) + (-2925) = 2925 + (-2925) = 0$$

Then verity -13:
$$9 \times x^2 - 108 \times x - 2925 = 1521 + (1404) + (-2925) = 2925 + (-2925) = 0$$

Here are still some constants for use:

Constant	Symbol	Value
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 27.1 through 27.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 28

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	k	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 28.1 through 28.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(5), 3(3), 4(4), 5(1), 6(2), 7(8), 8(7), 9(9).

QUESTION 28.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 28.1.1 through 28.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generat ed:

$$1(11, 26), 2(7, 22), 3(10, 25), 4(6, 21), 5(12, 27), 6(9, 24).$$

Question 28.1.1 (6, 11, 26) Solution:

Since the possiblity of smoking customer is a=.580, and the possiblity of under 30 years old customer is b=.6200, the possiblity of non-smoking customer is c=1.0-a=1.0-.580=.420 and the possiblity of equal or above 30 years old customer is d=1.0-b=1.0-.6200=.3800. So the possibility of non-smoking and equal or above 30 years old customer is $c\times d=.160$.

Answer:

The possibility of non-smoking and equal or above 30 years old customer is (1-a)(1-b) = .160.

Question 28.1.2 (6, 7, 22)

Auto-answer:

C. The accelaration (vector) is $(17876., 893.79, -1.3407 \times 10^6) km/h^2$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (80.0, 4.0, -6000.0)N$ and m = 58.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(80.0, 4.0, -6000.0)N}{58.0kg}$$

$$= (1.3793, 6.8966 \times 10^{-2}, -103.45)ms^{-2}$$

$$= (17876., 893.79, -1.3407 \times 10^{6})km/h^{2}.$$

Question 28.1.3 (6, 10, 25) Auto-answer:

C. An airplane

D. A truck

Question 28.1.4 (6, 6, 21) Answer:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (70.0, 4.0, -9000.0)N$ and m = 56.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(70.0, 4.0, -9000.0)N}{56.0kg}$$

$$= (1.2500, 7.1429 \times 10^{-2}, -160.71)ms^{-2}$$

$$= (16200., 925.71, -2.0829 \times 10^{6})km/h^{2}.$$

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (70.0, 4.0, -9000.0)N$ and m = 56.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(70.0, 4.0, -9000.0)N}{56.0kg}$$

$$= (1.2500, 7.1429 \times 10^{-2}, -160.71)ms^{-2}$$

$$= (16200, 925.71, -2.0829 \times 10^{6})km/h^{2}.$$

Question 28.1.5 (6, 12, 27) Solution:

Since the possiblity of smoking customer is a=.120, and the possiblity of equal-or-above 30 years old customer is b=.7000, the possiblity of non-smoking customer is c=1.0-a=1.0-.120=.880 and the possiblity of under 30 years old customer is d=1.0-b=1.0-.7000=.3000. Then

Customer	Possibility
smoking and equal-or-above 30 years old	$.120 \times .7000 = 8.40 \times 10^{-2}$
smoking and under 30 years old	$.120 \times .3000 = 3.60 \times 10^{-2}$
non-smoking and equal-or-above 30 years old	$.880 \times .7000 = .616$
non-smoking and under 30 years old	$.880 \times .3000 = .264$

And the total summation of all possibilities is 1.000.

Answer:

Customer	Possibility
smoking and equal-or-above 30 years old	8.40×10^{-2}
smoking and under 30 years old	3.60×10^{-2}
non-smoking and equal-or-above 30 years old	.616
non-smoking and under 30 years old	.264

And the total summation of all possibilities is 1.000.

Question 28.1.6 (6, 9, 24) Solution:

By using Newton's Law of Universal Gravitation:

$$F = G \frac{(Sun's \ mass) \times (Planet's \ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the fore	ces can be ea	asily calculated as
---	------------	---------------	---------------------

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$5.000000000 \times 10^{24}$	$2.0000000000 \times 10^{24}$	7.50×10^{-10}
Venus	6.00×10^{24}	4.00×10^{24}	2.25×10^{-10}
Earth	7.00×10^{24}	5.00×10^{24}	1.68×10^{-10}
Mars	7.00×10^{24}	7.00×10^{24}	8.58×10^{-11}
Jupiter	5.00×10^{24}	3.00×10^{24}	3.33×10^{-10}
Saturn	7.00×10^{24}	6.00×10^{24}	1.17×10^{-10}
Uranus	9.00×10^{24}	6.00×10^{24}	1.50×10^{-10}
Neptune	5.00×10^{24}	7.00×10^{24}	6.13×10^{-11}

Answer:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$5.000000000 \times 10^{24}$	$2.0000000000 \times 10^{24}$	7.50×10^{-10}
Venus	6.00×10^{24}	4.00×10^{24}	2.25×10^{-10}
Earth	7.00×10^{24}	5.00×10^{24}	1.68×10^{-10}
Mars	7.00×10^{24}	7.00×10^{24}	8.58×10^{-11}
Jupiter	5.00×10^{24}	3.00×10^{24}	$3.33 \times 10^{-10}3$
Saturn	7.00×10^{24}	6.00×10^{24}	1.17×10^{-10}
Uranus	9.00×10^{24}	6.00×10^{24}	1.50×10^{-10}
Neptune	5.00×10^{24}	7.00×10^{24}	6.13×10^{-11}

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e=9.109390\times 10^{-31}$ kg , Universal gas constant R=8.315 J/(mol·K) , $e=1.60217733\times 10^{-19}$ C , and $m_p=1.6726231\times 10^{-27}$ kg may be very helpful.

QUESTION 28.2 (5, 5, 5)

Answer:

The correct	
answer	T
The correct	
answer	T
The correct	T

1. 80 is an even number.

2. Toronto is in Ontario province.

3. $|\mathbf{F}| = Gm_1m_2r^{-2}$ is a mathmatical form of the New-

ton's Second Law.

QUESTION 28.3 (3, 3, 3)

Auto-answer:

A. Canada has 10 provinces and 3 territories.

QUESTION 28.4 (4, 4, 4)

Auto-answer:

Column Left	Column Right	Answers
$\mathbf{A.} \operatorname{asdf}(:)$	b	B.
В. В	a	D.
C. yjh	YJH	C.
D. A	eR	Ε.
E. er	ASDF(:)	Α.

QUESTION 28.5 (1, 1, 1)

Auto-answer:

G. The accelaration is $(1.80, 8.0 \times 10^{-2}, -60.000)ms^{-2}$.

Answer:

The correct answer from the choices is

G. The accelaration is $(1.80, 8.0 \times 10^{-2}, -60.000)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

 $\mathbf{f} = m\mathbf{a}$.

Since $\mathbf{f} = (90.0, 4.0, -3000.0)N$ and m = 50.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 4.0, -3000.0)N}{50.0000kg}$$

$$= (1.80, 8.0 \times 10^{-2}, -60.000)ms^{-2}$$

QUESTION 28.6 (2, 2, 2)

Auto-answer:

E. The accelaration is $(1.6667ms^{-2}, 1680.0km/h^2, -148.15ms^{-2})$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.000, 7.0000, -8000.0)N$ and m = 54.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.000, 7.0000, -8000.0)N}{54.0000kg}$$

$$= (1.6667, .12963, -148.15)ms^{-2}$$

$$= (21600, 1680.0, -1.9200 \times 10^{6})km/h^{2}.$$

You have done all the above? Excellent! Not much left, please continue.

QUESTION 28.7 (8, 15, 60)

Answer:

$$\begin{pmatrix} 6 & 5 & 6 & 4 \\ 4 & 5 & 4 & 6 \\ 5 & 6 & 5 & 4 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 42 \\ 38 \\ 40 \end{pmatrix}$$
$$\begin{pmatrix} \beta & \Gamma \\ \epsilon & \beta \\ \eta & \beta \\ \Xi & \epsilon \end{pmatrix} \begin{pmatrix} \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \beta \times \beta + \Gamma \times \gamma \\ \epsilon \times \beta + \beta \times \gamma \\ \eta \times \beta + \beta \times \gamma \\ \Xi \times \beta + \epsilon \times \gamma \end{pmatrix}$$

Solution:

QUESTION 28.8 (7, 14, 50)

Auto-answer:

B. The accelaration is $(1.60, .10, -180.00)ms^{-2}$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (80.0, 5.0, -9000.0)N$ and m = 50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(80.0, 5.0, -9000.0)N}{50.0kg}$$

$$= (1.60, .10, -180.00)ms^{-2}$$

QUESTION 28.9 (9, 16, 70)

Answer:

Solution:

Roots to the equation

$$15 \times x^2 + 210 \times x - 7905 = 0$$

are 17 and -31.

Let us verity 17 first:
$$15 \times x^2 + 210 \times x - 7905 = 4335 + (3570) + (-7905) = 7905 + (-7905) = 0$$

Then verity -31:
$$15 \times x^2 + 210 \times x - 7905 = 14415 + (-6510) + (-7905) = 7905 + (-7905) = 0$$

Here are still some constants for use:

Constant	Symbol	Value
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 28.1 through 28.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 29

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	$\mid k \mid$	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 29.1 through 29.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(2), 3(3), 4(5), 5(1), 6(4), 7(7), 8(8), 9(9).

QUESTION 29.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 29.1.1 through 29.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generated:

$$1(8, 23), 2(11, 26), 3(9, 24), 4(13, 28), 5(12, 27), 6(7, 22)$$
.

Question 29.1.1 (6, 8, 23)

Auto-answer:

C. The accelaration is $(.40000ms^{-2}, .10000ms^{-2}, -2.3328 \times 10^6 km/h^2)$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (20.0, 5.0, -9000.0)N$ and m = 50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(20.0, 5.0, -9000.0)N}{50.0kg}$$

$$= (.40000, .10000, -180.00)ms^{-2}$$

$$= (5184.0, 1296.0, -2.3328 \times 10^{6})km/h^{2}.$$

Question 29.1.2 (6, 11, 26) Solution:

Since the possiblity of smoking customer is a = .660, and the possiblity of equal or above 30 years old customer is b = .4000, the possiblity of non-smoking customer is c = 1.0 - a = 1.0 - .660 = .340 and the possiblity of

under 30 years old customer is d = 1.0 - b = 1.0 - .4000 = .6000. So the possibility of non-smoking and under 30 years old customer is $c \times d = .204$.

Answer:

The possibility of non-smoking and under 30 years old customer is (1 - a)(1 - b) = .204.

Question 29.1.3 (6, 9, 24) Solution:

By using Newton's Law of Universal Gravitation:

$$F = G \frac{(Sun's \ mass) \times (Planet's \ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$3.000000000 \times 10^{24}$	$8.0000000000 \times 10^{24}$	2.50×10^{-11}
Venus	6.00×10^{24}	9.00×10^{24}	3.95×10^{-11}
Earth	7.00×10^{24}	4.00×10^{24}	2.33×10^{-10}
Mars	6.00×10^{24}	2.00×10^{24}	8.00×10^{-10}
Jupiter	9.00×10^{24}	3.00×10^{24}	5.34×10^{-10}
Saturn	4.00×10^{24}	8.00×10^{24}	3.33×10^{-11}
Uranus	4.00×10^{24}	6.00×10^{24}	5.93×10^{-11}
Neptune	9.00×10^{24}	3.00×10^{24}	5.34×10^{-10}

Answer:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G=6.67\times 10^{-11}Nm^2(kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$3.000000000 \times 10^{24}$	$8.0000000000 \times 10^{24}$	2.50×10^{-11}
Venus	6.00×10^{24}	9.00×10^{24}	3.95×10^{-11}
Earth	7.00×10^{24}	4.00×10^{24}	2.33×10^{-10}
Mars	6.00×10^{24}	2.00×10^{24}	8.00×10^{-10}
Jupiter	9.00×10^{24}	3.00×10^{24}	$5.34 \times 10^{-10}3$
Saturn	4.00×10^{24}	8.00×10^{24}	3.33×10^{-11}
Uranus	4.00×10^{24}	6.00×10^{24}	5.93×10^{-11}
Neptune	9.00×10^{24}	3.00×10^{24}	5.34×10^{-10}

Question 29.1.4 (6, 13, 28) Answer:

7;

8:

The operation is ADDITION and the result is 15.000.

Question 29.1.5 (6, 12, 27) Solution:

Since the possiblity of smoking customer is a = .790, and the possiblity of equal-or-above 30 years old customer is b = .6200, the possiblity of non-smoking customer is c = 1.0 - a = 1.0 - .790 = .210 and the possiblity of under 30 years old customer is d = 1.0 - b = 1.0 - .6200 = .3800. Then

Customer	Possibility
smoking and equal-or-above 30 years old	$.790 \times .6200 = .490$
smoking and under 30 years old	$.790 \times .3800 = .300$
non-smoking and equal-or-above 30 years old	$.210 \times .6200 = .130$
non-smoking and under 30 years old	$.210 \times .3800 = 7.98 \times 10^{-2}$

And the total summation of all possibilities is 1.000.

Answer:

Possibility
.490
.300
.130
7.98×10^{-2}

And the total summation of all possibilities is 1.000.

Question 29.1.6 (6, 7, 22)

Auto-answer:

C. The accelaration (vector) is $(7476.9, 747.69, -498462.)km/h^2$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (30.0, 3.0, -2000.0)N$ and m = 52.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(30.0, 3.0, -2000.0)N}{52.0kg}$$

$$= (.57692, 5.7692 \times 10^{-2}, -38.462)ms^{-2}$$

$$= (7476.9, 747.69, -498462.)km/h^{2}.$$

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e=9.109390\times 10^{-31}$ kg , Universal gas constant R=8.315 J/(mol·K) , $e=1.60217733\times 10^{-19}$ C , and $m_p=1.6726231\times 10^{-27}$ kg may be very helpful.

QUESTION 29.2 (2, 2, 2)

Auto-answer:

E. The accelaration is $(.55556ms^{-2}, 720.00km/h^2, -111.11ms^{-2})$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (30.000, 3.0000, -6000.0)N$ and m = 54.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(30.000, 3.0000, -6000.0)N}{54.0000kg}$$

$$= (.55556, 5.5556 \times 10^{-2}, -111.11)ms^{-2}$$

$$= (7200.0, 720.00, -1.4400 \times 10^{6})km/h^{2}.$$

QUESTION 29.3 (3, 3, 3)

Auto-answer:

E. Canada has 10 provinces and 3 territories.

QUESTION 29.4 (5, 5, 5)

Answer:

The correct	
answer	T
The correct	
answer	F
The correct	
answer	T

1. 30 is an even number.

2. Montreal is in Ontario province.

3. $\mathbf{F} = m\mathbf{a}$ is a mathmatical form of the Newton's Second

Law.

QUESTION 29.5 (1, 1, 1)

Auto-answer:

E. The accelaration is $(.800, .14, -100.00)ms^{-2}$.

Answer:

The correct answer from the choices is

E. The accelaration is $(.800, .14, -100.00)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (40.0, 7.0, -5000.0)N$ and m = 50.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(40.0, 7.0, -5000.0)N}{50.0000kg}$$

$$= (.800, .14, -100.00)ms^{-2}$$

QUESTION 29.6 (4, 4, 4)

Auto-answer:

Column Left	Column Right	Answers
A. Er	YJH	Ε.
B. C	eR	A. , C.
C. er	b	D.
D. B	ER	A. , C.
E. yjh	С	В.

You have done all the above? Excellent! Not much left, please continue.

QUESTION 29.7 (7, 14, 50)

Auto-answer:

C. The accelaration is $(1.54, .19, -57.692)ms^{-2}$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (80.0, 10.0, -3000.0)N$ and m = 52.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(80.0, 10.0, -3000.0)N}{52.0kg}$$

$$= (1.54, .19, -57.692)ms^{-2}$$

QUESTION 29.8 (8, 15, 60)

Answer:

$$\begin{pmatrix} 5 & 6 & 5 & 5 \\ 5 & 5 & 7 & 4 \\ 4 & 6 & 6 & 6 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 42 \\ 42 \\ 44 \end{pmatrix}$$
$$\begin{pmatrix} \Gamma & \Gamma \\ \sigma & \Xi \\ \Lambda & \delta \\ \delta & \rho \end{pmatrix} \begin{pmatrix} \beta \\ \beta \end{pmatrix} = \begin{pmatrix} \Gamma \times \beta + \Gamma \times \beta \\ \sigma \times \beta + \Xi \times \beta \\ \Lambda \times \beta + \delta \times \beta \\ \delta \times \beta + \rho \times \beta \end{pmatrix}$$

Solution:

QUESTION 29.9 (9, 16, 70)

Answer:

Solution:

Roots to the equation

$$-15 \times x^2 + 210 \times x + 2205 = 0$$

are 21 and -7.

Let us verity 21 first:
$$-15 \times x^2 + 210 \times x + 2205 = -6615 + (4410) + (2205) = -2205 + (2205) = 0$$

Then verity -7: $-15 \times x^2 + 210 \times x + 2205 = -735 + (-1470) + (2205) = -2205 + (2205) = 0$

Here are still some constants for use:

Constant	Symbol	Value
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 29.1 through 29.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 30

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	k	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 30.1 through 30.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(4), 3(3), 4(1), 5(5), 6(2), 7(8), 8(7), 9(9).

QUESTION 30.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 30.1.1 through 30.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generated:

$$1(11, 26), 2(6, 21), 3(12, 27), 4(8, 23), 5(10, 25), 6(13, 28)$$
.

Question 30.1.1 (6, 11, 26) Solution:

Since the possiblity of smoking customer is a=.150, and the possiblity of equal or above 30 years old customer is b=.3600, the possiblity of non-smoking customer is c=1.0-a=1.0-.150=.850 and the possiblity of under 30 years old customer is d=1.0-b=1.0-.3600=.6400. So the possibility of non-smoking and under 30 years old customer is $c\times d=.544$.

Answer:

The possibility of non-smoking and under 30 years old customer is (1 - a)(1 - b) = .544.

Question 30.1.2 (6, 6, 21) Answer:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 4.0, -8000.0)N$ and m = 56.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 4.0, -8000.0)N}{56.0kg}$$

$$= (1.6071, 7.1429 \times 10^{-2}, -142.86)ms^{-2}$$

$$= (20829, 925.71, -1.8514 \times 10^{6})km/h^{2}.$$

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 4.0, -8000.0)N$ and m = 56.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 4.0, -8000.0)N}{56.0kg}$$

$$= (1.6071, 7.1429 \times 10^{-2}, -142.86)ms^{-2}$$

$$= (20829, 925.71, -1.8514 \times 10^{6})km/h^{2}.$$

Question 30.1.3 (6, 12, 27) Solution:

Since the possiblity of smoking customer is a = .520, and the possiblity of equal-or-above 30 years old customer is b = .2600, the possiblity of non-smoking customer is c = 1.0 - a = 1.0 - .520 = .480 and the possiblity of under 30 years old customer is d = 1.0 - b = 1.0 - .2600 = .7400. Then

Customer	Possibility
smoking and equal-or-above 30 years old	$.520 \times .2600 = .135$
smoking and under 30 years old	$.520 \times .7400 = .385$
non-smoking and equal-or-above 30 years old	$.480 \times .2600 = .125$
non-smoking and under 30 years old	$.480 \times .7400 = .355$
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000

And the total summation of all possibilities is 1.000.

Answer:

Customer	Possibility
smoking and equal-or-above 30 years old	.135
smoking and under 30 years old	.385
non-smoking and equal-or-above 30 years old	.125
non-smoking and under 30 years old	.355

And the total summation of all possibilities is 1.000.

Question 30.1.4 (6, 8, 23)

Auto-answer:

B. The accelaration is $(.92593ms^{-2}, .12963ms^{-2}, -1.2000 \times 10^6 km/h^2)$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 7.0, -5000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 7.0, -5000.0)N}{54.0kg}$$

$$= (.92593, .12963, -92.593)ms^{-2}$$

$$= (12000., 1680.0, -1.2000 \times 10^{6})km/h^{2}.$$

Question 30.1.5 (6, 10, 25) Auto-answer:

C. A truck

D. An airplane

Question 30.1.6 (6, 13, 28) Answer: 2;

The operation is ADDITION and the result is 7.0000.

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e=9.109390\times 10^{-31}$ kg , Universal gas constant R=8.315 J/(mol·K) , $e=1.60217733\times 10^{-19}$ C , and $m_p=1.6726231\times 10^{-27}$ kg may be very helpful.

QUESTION 30.2 (4, 4, 4)

Auto-answer:

Column Left	Column Right	Answers
A. C	YJH	D.
B. er	ER	B. , C.
C. Er	С	Α.
D. yjh	a=3	$\mathbf{E}.$
E. $A = 6/2$	eR	B. , C.

QUESTION 30.3 (3, 3, 3)

Auto-answer:

 ${f B.}$ Canada has 10 provinces and 3 territories.

QUESTION 30.4 (1, 1, 1)

Auto-answer:

E. The accelaration is $(.536, .14, -125.00)ms^{-2}$.

Answer:

The correct answer from the choices is

E. The accelaration is $(.536, .14, -125.00)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

 $\mathbf{f} = m\mathbf{a}$.

Since $\mathbf{f} = (30.0, 8.0, -7000.0)N$ and m = 56.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(30.0, 8.0, -7000.0)N}{56.0000kg}$$

$$= (.536, .14, -125.00)ms^{-2}$$

QUESTION 30.5 (5, 5, 5)

Answer:

The correct	
answer	T
The correct	
answer	T
The correct	
answer	T

- 1. 28 is an even number.
- 2. Montreal is in Quebec province.
- 3. $\mathbf{F} = m\mathbf{a}$ is a mathematical form of the Newton's Second

Law.

QUESTION 30.6 (2, 2, 2)

Auto-answer:

B. The accelaration is $(1.4815ms^{-2}, 1200.0km/h^2, -166.67ms^{-2})$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (80.000, 5.0000, -9000.0)N$ and m = 54.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(80.000, 5.0000, -9000.0)N}{54.0000kg}$$

$$= (1.4815, 9.2593 \times 10^{-2}, -166.67)ms^{-2}$$

$$= (19200, 1200.0, -2.1600 \times 10^{6})km/h^{2}.$$

You have done all the above? Excellent! Not much left, please continue.

QUESTION 30.7 (8, 15, 60)

Answer:

$$\begin{pmatrix} 7 & 4 & 5 & 7 \\ 4 & 5 & 6 & 4 \\ 7 & 5 & 5 & 7 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 46 \\ 38 \\ 48 \end{pmatrix}$$
$$\begin{pmatrix} \rho & \beta \\ \zeta & \Theta \\ \Lambda & \Psi \\ \Gamma & \Gamma \end{pmatrix} \begin{pmatrix} \beta \\ \beta \end{pmatrix} = \begin{pmatrix} \rho \times \beta + \beta \times \beta \\ \zeta \times \beta + \Theta \times \beta \\ \Lambda \times \beta + \Psi \times \beta \\ \Gamma \times \beta + \Gamma \times \beta \end{pmatrix}$$

Solution:

QUESTION 30.8 (7, 14, 50)

Auto-answer:

C. The accelaration is $(1.67, 3.7 \times 10^{-2}, -111.11)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 2.0, -6000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 2.0, -6000.0)N}{54.0kg}$$

$$= (1.67, 3.7 \times 10^{-2}, -111.11)ms^{-2}$$

QUESTION 30.9 (9, 16, 70)

Answer:

Solution:

Roots to the equation

$$-15 \times x^2 - 30 \times x + 525 = 0$$

are 5 and -7.

Let us verity 5 first:
$$-15 \times x^2 - 30 \times x + 525 = -375 + (-150) + (525) = -525 + (525) = 0$$

Then verity -7:
$$-15 \times x^2 - 30 \times x + 525 = -735 + (210) + (525) = -525 + (525) = 0$$

Here are still some constants for use:

Constant	Symbol	Value
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 30.1 through 30.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 31

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	$\mid k \mid$	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 31.1 through 31.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(3), 3(4), 4(2), 5(5), 6(1), 7(8), 8(7), 9(9).

QUESTION 31.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 31.1.1 through 31.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generated:

$$1(\ 9,\ 24)\ ,\ 2(\ 13,\ 28)\ ,\ 3(\ 11,\ 26)\ ,\ 4(\ 7,\ 22)\ ,\ 5(\ 8,\ 23)\ ,\ 6(\ 12,\ 27)\ .$$

Question 31.1.1 (6, 9, 24) Solution:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$7.000000000 \times 10^{24}$	$5.0000000000 \times 10^{24}$	9.34×10^{-11}
Venus	2.00×10^{24}	6.00×10^{24}	1.85×10^{-11}
Earth	9.00×10^{24}	6.00×10^{24}	8.34×10^{-11}
Mars	2.00×10^{24}	5.00×10^{24}	2.67×10^{-11}
Jupiter	5.00×10^{24}	5.00×10^{24}	6.67×10^{-11}
Saturn	4.00×10^{24}	2.00×10^{24}	3.33×10^{-10}
Uranus	7.00×10^{24}	2.00×10^{24}	5.84×10^{-10}
Neptune	4.00×10^{24}	4.00×10^{24}	8.34×10^{-11}

Answer:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$7.000000000 \times 10^{24}$	$5.0000000000 \times 10^{24}$	9.34×10^{-11}
Venus	2.00×10^{24}	6.00×10^{24}	1.85×10^{-11}
Earth	9.00×10^{24}	6.00×10^{24}	8.34×10^{-11}
Mars	2.00×10^{24}	5.00×10^{24}	2.67×10^{-11}
Jupiter	5.00×10^{24}	5.00×10^{24}	$6.67 \times 10^{-11}3$
Saturn	4.00×10^{24}	2.00×10^{24}	3.33×10^{-10}
Uranus	7.00×10^{24}	2.00×10^{24}	5.84×10^{-10}
Neptune	4.00×10^{24}	4.00×10^{24}	8.34×10^{-11}

Question 31.1.2 (6, 13, 28)

Answer:

7;

2;

The operation is SUBTRACTION and the result is 5.0000.

Question 31.1.3 (6, 11, 26) Solution:

Since the possiblity of smoking customer is a=.970, and the possiblity of equal or above 30 years old customer is $b=6.00\times10^{-2}$, the possiblity of non-smoking customer is $c=1.0-a=1.0-.970=3.00\times10^{-2}$ and the possiblity of under 30 years old customer is $d=1.0-b=1.0-6.00\times10^{-2}=.9400$. So the possibility of non-smoking and under 30 years old customer is $c\times d=2.82\times10^{-2}$.

Answer:

The possibility of non-smoking and under 30 years old customer is $(1 - a)(1 - b) = 2.82 \times 10^{-2}$.

Question $31.1.4 \ (6, 7, 22)$

Auto-answer:

D. The accelaration (vector) is $(8937.9, 1787.6, -446897.)km/h^2$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (40.0, 8.0, -2000.0)N$ and m = 58.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(40.0, 8.0, -2000.0)N}{58.0kg}$$

$$= (.68966, .13793, -34.483)ms^{-2}$$

$$= (8937.9, 1787.6, -446897.)km/h^{2}.$$

Question 31.1.5 (6, 8, 23)

Auto-answer:

A. The accelaration is $(1.7308ms^{-2}, .17308ms^{-2}, -747692.km/h^2)$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 9.0, -3000.0)N$ and m = 52.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 9.0, -3000.0)N}{52.0kg}$$

$$= (1.7308, .17308, -57.692)ms^{-2}$$

$$= (22431, .2243.1, -747692.)km/h^{2}.$$

Question 31.1.6 (6, 12, 27) Solution:

Since the possiblity of smoking customer is a=.470, and the possiblity of equal-or-above 30 years old customer is b=.1600, the possiblity of non-smoking customer is c=1.0-a=1.0-.470=.530 and the possiblity of under 30 years old customer is d=1.0-b=1.0-.1600=.8400. Then

Customer	Possibility
smoking and equal-or-above 30 years old	$.470 \times .1600 = 7.52 \times 10^{-2}$
smoking and under 30 years old	$.470 \times .8400 = .395$
non-smoking and equal-or-above 30 years old	$.530 \times .1600 = 8.48 \times 10^{-2}$
non-smoking and under 30 years old	$.530 \times .8400 = .445$

And the total summation of all possibilities is 1.000.

Answer:

Customer	Possibility
smoking and equal-or-above 30 years old	7.52×10^{-2}
smoking and under 30 years old	.395
non-smoking and equal-or-above 30 years old	8.48×10^{-2}
non-smoking and under 30 years old	.445

And the total summation of all possibilities is 1.000.

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e = 9.109390 \times 10^{-31}$ kg , Universal gas constant R = 8.315 J/(mol·K) , $e = 1.60217733 \times 10^{-19}$ C , and $m_p = 1.6726231 \times 10^{-27}$ kg may be very helpful.

QUESTION 31.2 (3, 3, 3)

Auto-answer:

D. Canada has 10 provinces and 3 territories.

QUESTION 31.3 (4, 4, 4) Auto-answer:

Column Left	Column Right	Answers
A. yjh	b	В.
В. В	ER	C.
C. Er	a=2	E.
D. A	YJH	Α.
E. $A = 4/2$	a	D.

QUESTION 31.4 (2, 2, 2)

Auto-answer:

B. The accelaration is $(1.2000ms^{-2}, 1296.0km/h^2, -120.00ms^{-2})$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (60.000, 5.0000, -6000.0)N$ and m = 50.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(60.000, 5.0000, -6000.0)N}{50.0000kg}$$

$$= (1.2000, .10000, -120.00)ms^{-2}$$

$$= (15552, 1296.0, -1.5552 \times 10^{6})km/h^{2}.$$

QUESTION 31.5 (5, 5, 5)

Answer:

The correct answer	F	1.
The correct		9
answer	F	∠.
The correct		3
answer	F	3.

1. 37 is an even number.

2. Hull is in Ontario province.

3. $\mathbf{F} = m\mathbf{a}$ is a mathmatical form of Newton's Law of

Universal Gravitation.

QUESTION 31.6 (1, 1, 1)

Auto-answer:

E. The accelaration is $(.893, 8.9 \times 10^{-2}, -160.71) ms^{-2}$.

Answer:

The correct answer from the choices is

E. The accelaration is $(.893, 8.9 \times 10^{-2}, -160.71) ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 5.0, -9000.0)N$ and m = 56.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 5.0, -9000.0)N}{56.0000kg}$$

$$= (.893, 8.9 \times 10^{-2}, -160.71)ms^{-2}$$

You have done all the above? Excellent! Not much left, please continue.

QUESTION 31.7 (8, 15, 60)

Answer:

$$\begin{pmatrix} 4 & 6 & 5 & 6 \\ 5 & 4 & 5 & 6 \\ 6 & 5 & 5 & 5 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 42 \\ 40 \\ 42 \end{pmatrix}$$
$$\begin{pmatrix} \Phi & \gamma \\ \gamma & \Upsilon \\ \beta & \zeta \\ \Lambda & \Delta \end{pmatrix} \begin{pmatrix} \gamma \\ \beta \end{pmatrix} = \begin{pmatrix} \Phi \times \gamma + \gamma \times \beta \\ \Upsilon \times \gamma + \Upsilon \times \beta \\ \beta \times \gamma + \zeta \times \beta \\ \Lambda \times \gamma + \Delta \times \beta \end{pmatrix}$$

Solution:

QUESTION 31.8 (7, 14, 50)

Auto-answer:

C. The acceleration is $(.862, 8.6 \times 10^{-2}, -51.724)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 5.0, -3000.0)N$ and m = 58.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 5.0, -3000.0)N}{58.0kg}$$

$$= (.862, 8.6 \times 10^{-2}, -51.724)ms^{-2}$$

QUESTION 31.9 (9, 16, 70)

Answer:

Solution:

Roots to the equation

$$9 \times x^2 + 72 \times x + 63 = 0$$

are -7 and -1.

Let us verity -7 first: $9 \times x^2 + 72 \times x + 63 = 441 + (-504) + (63) = -63 + (63) = 0$

Then verity -1: $9 \times x^2 + 72 \times x + 63 = 9 + (-72) + (63) = -63 + (63) = 0$

Here are still some constants for use:

Constant	Symbol	
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 31.1 through 31.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 32

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	$\mid k \mid$	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 32.1 through 32.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(5), 3(4), 4(2), 5(3), 6(1), 7(8), 8(7), 9(9).

QUESTION 32.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 32.1.1 through 32.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generat ed:

$$1(12, 27)$$
, $2(8, 23)$, $3(9, 24)$, $4(7, 22)$, $5(10, 25)$, $6(6, 21)$.

Question 32.1.1 (6, 12, 27) Solution:

Since the possibility of non-smoking customer is a = .460, and the possibility of equal-or-above 30 years old customer is b = .7000, the possibility of smoking customer is c = 1.0 - a = 1.0 - .460 = .540 and the possibility of under 30 years old customer is d = 1.0 - b = 1.0 - .7000 = .3000. Then

Customer	Possibility
smoking and equal-or-above 30 years old	$.540 \times .7000 = .378$
smoking and under 30 years old	$.540 \times .3000 = .162$
non-smoking and equal-or-above 30 years old	$.460 \times .7000 = .322$
non-smoking and under 30 years old	$.460 \times .3000 = .138$

And the total summation of all possibilities is 1.000.

Answer:

Customer	Possibility
smoking and equal-or-above 30 years old	.378
smoking and under 30 years old	.162
non-smoking and equal-or-above 30 years old	.322
non-smoking and under 30 years old	.138

And the total summation of all possibilities is 1.000.

Question 32.1.2 (6, 8, 23)

Auto-answer:

C. The acceleration is $(1.6667ms^{-2}, 9.2593 \times 10^{-2}ms^{-2}, -1.2000 \times 10^{6}km/h^{2})$. Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 5.0, -5000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 5.0, -5000.0)N}{54.0kg}$$

$$= (1.6667, 9.2593 \times 10^{-2}, -92.593)ms^{-2}$$

$$= (21600., 1200.0, -1.2000 \times 10^{6})km/h^{2}.$$

Question 32.1.3 (6, 9, 24) Solution:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$2.000000000 \times 10^{24}$	$6.0000000000 \times 10^{24}$	2.59×10^{-11}
Venus	6.00×10^{24}	3.00×10^{24}	3.11×10^{-10}
Earth	8.00×10^{24}	5.00×10^{24}	1.49×10^{-10}
Mars	5.00×10^{24}	2.00×10^{24}	5.84×10^{-10}
Jupiter	3.00×10^{24}	9.00×10^{24}	1.73×10^{-11}
Saturn	8.00×10^{24}	9.00×10^{24}	4.61×10^{-11}
Uranus	5.00×10^{24}	4.00×10^{24}	1.46×10^{-10}
Neptune	3.00×10^{24}	8.00×10^{24}	2.19×10^{-11}

Answer:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$2.000000000 \times 10^{24}$	$6.0000000000 \times 10^{24}$	2.59×10^{-11}
Venus	6.00×10^{24}	3.00×10^{24}	3.11×10^{-10}
Earth	8.00×10^{24}	5.00×10^{24}	1.49×10^{-10}
Mars	5.00×10^{24}	2.00×10^{24}	5.84×10^{-10}
Jupiter	3.00×10^{24}	9.00×10^{24}	$1.73 \times 10^{-11}3$
Saturn	8.00×10^{24}	9.00×10^{24}	4.61×10^{-11}
Uranus	5.00×10^{24}	4.00×10^{24}	1.46×10^{-10}
Neptune	3.00×10^{24}	8.00×10^{24}	2.19×10^{-11}

Question 32.1.4 (6, 7, 22)

Auto-answer:

E. The accelaration (vector) is $(12960., 1814.4, -1.5552 \times 10^6) km/h^2$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 7.0, -6000.0)N$ and m = 50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 7.0, -6000.0)N}{50.0kg}$$

$$= (1.0000, .14000, -120.00)ms^{-2}$$

$$= (12960., 1814.4, -1.5552 \times 10^{6})km/h^{2}.$$

Question 32.1.5 (6, 10, 25) Auto-answer:

A. A truck

C. An airplane

Question 32.1.6 (6, 6, 21) Answer:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 5.0, -3000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 5.0, -3000.0)N}{54.0kg}$$

$$= (.92593, 9.2593 \times 10^{-2}, -55.556)ms^{-2}$$

$$= (12000., 1200.0, -720000.)km/h^{2}.$$

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.0, 5.0, -3000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.0, 5.0, -3000.0)N}{54.0kg}$$

$$= (.92593, 9.2593 \times 10^{-2}, -55.556)ms^{-2}$$

$$= (12000, 1200.0, -720000.)km/h^{2}.$$

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e = 9.109390 \times 10^{-31}$ kg, Universal gas constant

 $R = 8.315~\mathrm{J/(mol\cdot K)}$, $e = 1.60217733\times 10^{-19}~\mathrm{C}$, and $m_p = 1.6726231\times 10^{-27}$ kg may be very helpful.

QUESTION 32.2 (5, 5, 5)

Answer:

The correct	
answer	T
The correct	
answer	T
The correct	
answer	T

1. 5 is an odd number.

2. Kingston is in Ontario province.

3. $\mathbf{F} = m\mathbf{a}$ is a mathematical form of the Newton's Second

Law.

QUESTION 32.3 (4, 4, 4)

Auto-answer:

Column Left	Column Right	Answers
A. yjh	eR	C. , D.
B. C	b	Ε.
C. er	YJH	Α.
D. Er	ER	C. , D.
Е. В	С	В.

QUESTION 32.4 (2, 2, 2)

Auto-answer:

E. The accelaration is $(.34483ms^{-2}, 2234.5km/h^2, -155.17ms^{-2})$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (20.000, 10.0000, -9000.0)N$ and m = 58.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(20.000, 10.0000, -9000.0)N}{58.0000kg}$$

$$= (.34483, .17241, -155.17)ms^{-2}$$

$$= (4469.0, 2234.5, -2.0110 \times 10^{6})km/h^{2}.$$

QUESTION 32.5 (3, 3, 3)

Auto-answer:

A. Canada has 10 provinces and 3 territories.

QUESTION 32.6 (1, 1, 1)

Auto-answer:

F. The accelaration is $(.800, .16, -120.00)ms^{-2}$.

Answer:

The correct answer from the choices is

F. The accelaration is $(.800, .16, -120.00)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (40.0, 8.0, -6000.0)N$ and m = 50.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(40.0, 8.0, -6000.0)N}{50.0000kg}$$

$$= (.800, .16, -120.00)ms^{-2}$$

You have done all the above? Excellent! Not much left, please continue.

QUESTION 32.7 (8, 15, 60)

Answer:

$$\begin{pmatrix} 7 & 4 & 4 & 7 \\ 6 & 4 & 5 & 7 \\ 5 & 6 & 6 & 5 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 44 \\ 44 \\ 44 \end{pmatrix}$$
$$\begin{pmatrix} \Xi & \eta \\ \Upsilon & \Lambda \\ \delta & \delta \\ \rho & \sigma \end{pmatrix} \begin{pmatrix} \beta \\ \beta \end{pmatrix} = \begin{pmatrix} \Xi \times \beta + \eta \times \beta \\ \Upsilon \times \beta + \Lambda \times \beta \\ \delta \times \beta + \delta \times \beta \\ \rho \times \beta + \sigma \times \beta \end{pmatrix}$$

Solution:

QUESTION 32.8 (7, 14, 50)

Auto-answer:

D. The accelaration is $(1.21, .10, -86.207)ms^{-2}$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (70.0, 6.0, -5000.0)N$ and m = 58.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(70.0, 6.0, -5000.0)N}{58.0kg}$$

$$= (1.21, .10, -86.207)ms^{-2}$$

QUESTION 32.9 (9, 16, 70) Answer:

$\mathbf{Solution}$:

Roots to the equation

$$1 \times x^2 - 2 \times x - 15 = 0$$

are -3 and 5.

Let us verity -3 first:
$$1 \times x^2 - 2 \times x - 15 = 9 + (6) + (-15) = 15 + (-15) = 0$$

Then verity 5: $1 \times x^2 - 2 \times x - 15 = 25 + (-10) + (-15) = 15 + (-15) = 0$

Here are still some constants for use:

Constant	Symbol	Value
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 32.1 through 32.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 33

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	k	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 33.1 through 33.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(3), 3(5), 4(1), 5(2), 6(4), 7(8), 8(7), 9(9).

QUESTION 33.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 33.1.1 through 33.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generat ed:

$$1(12, 27)$$
, $2(11, 26)$, $3(13, 28)$, $4(9, 24)$, $5(8, 23)$, $6(10, 25)$.

Question 33.1.1 (6, 12, 27) Solution:

Since the possiblity of smoking customer is a=.440, and the possiblity of under 30 years old customer is $b=2.00\times 10^{-2}$, the possiblity of non-smoking customer is c=1.0-a=1.0-.440=.560 and the possiblity of equal-orabove 30 years old customer is $d=1.0-b=1.0-2.00\times 10^{-2}=.9800$. Then

1 11011	
Customer	Possibility
smoking and equal-or-above 30 years old	$.440 \times .9800 = .431$
smoking and under 30 years old	$.440 \times 2.000 \times 10^{-2} = 8.80 \times 10^{-3}$
non-smoking and equal-or-above 30 years old	$.560 \times .9800 = .549$
non-smoking and under 30 years old	$.560 \times 2.000 \times 10^{-2} = 1.12 \times 10^{-2}$

And the total summation of all possibilities is 1.0000.

Answer:

Customer	Possibility
smoking and equal-or-above 30 years old	.431
smoking and under 30 years old	8.80×10^{-3}
non-smoking and equal-or-above 30 years old	.549
non-smoking and under 30 years old	1.12×10^{-2}

And the total summation of all possibilities is 1.0000.

Question 33.1.2 (6, 11, 26) Solution:

Since the possiblity of smoking customer is a = .810, and the possiblity of equal or above 30 years old customer is b = .5200, the possiblity of non-

smoking customer is c = 1.0 - a = 1.0 - .810 = .190 and the possibility of under 30 years old customer is d = 1.0 - b = 1.0 - .5200 = .4800. So the possibility of non-smoking and under 30 years old customer is $c \times d = 9.12 \times 10^{-2}$.

Answer:

The possibility of non-smoking and under 30 years old customer is $(1 - a)(1 - b) = 9.12 \times 10^{-2}$.

Question 33.1.3 (6, 13, 28) Answer:

5:

2;

The operation is MULTIPLICATION and the result is 10.000.

Question 33.1.4 (6, 9, 24) Solution:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$3.000000000 \times 10^{24}$	$2.0000000000 \times 10^{24}$	1.00×10^{-10}
Venus	7.00×10^{24}	5.00×10^{24}	3.74×10^{-11}
Earth	7.00×10^{24}	9.00×10^{24}	1.15×10^{-11}
Mars	6.00×10^{24}	5.00×10^{24}	3.20×10^{-11}
Jupiter	6.00×10^{24}	4.00×10^{24}	5.00×10^{-11}
Saturn	7.00×10^{24}	7.00×10^{24}	1.91×10^{-11}
Uranus	8.00×10^{24}	5.00×10^{24}	4.27×10^{-11}
Neptune	5.00×10^{24}	5.00×10^{24}	2.67×10^{-11}

Answer:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$3.000000000 \times 10^{24}$	$2.0000000000 \times 10^{24}$	1.00×10^{-10}
Venus	7.00×10^{24}	5.00×10^{24}	3.74×10^{-11}
Earth	7.00×10^{24}	9.00×10^{24}	1.15×10^{-11}
Mars	6.00×10^{24}	5.00×10^{24}	3.20×10^{-11}
Jupiter	6.00×10^{24}	4.00×10^{24}	$5.00 \times 10^{-11}3$
Saturn	7.00×10^{24}	7.00×10^{24}	1.91×10^{-11}
Uranus	8.00×10^{24}	5.00×10^{24}	4.27×10^{-11}
Neptune	5.00×10^{24}	5.00×10^{24}	2.67×10^{-11}

Question 33.1.5 (6, 8, 23) Auto-answer:

B. The accelaration is $(1.4000ms^{-2}, .18000ms^{-2}, -2.0736 \times 10^6 km/h^2)$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f}=(70.0,9.0,-8000.0)N$ and m=50.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(70.0, 9.0, -8000.0)N}{50.0kg}$$

$$= (1.4000, .18000, -160.00)ms^{-2}$$

$$= (18144, 2332.8, -2.0736 \times 10^{6})km/h^{2}.$$

Question 33.1.6 (6, 10, 25) Auto-answer:

A. An airplane

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e = 9.109390 \times 10^{-31}$ kg, Universal gas constant R = 8.315 J/(mol·K), $e = 1.60217733 \times 10^{-19}$ C, and $m_p = 1.6726231 \times 10^{-27}$ kg may be very helpful.

QUESTION 33.2 (3, 3, 3)

Auto-answer:

A. Canada has 10 provinces and 3 territories.

QUESTION 33.3 (5, 5, 5)

Answer:

The correct	
answer	T
The correct	
answer	T
The correct	

- 1. 60 is an even number.
- 2. Kingston is in Ontario province.
- 3. $\mathbf{F} = m\mathbf{a}$ is a mathematical form of the Newton's Second

Law.

QUESTION 33.4 (1, 1, 1)

Auto-answer:

G. The accelaration is $(.385, .17, -76.923)ms^{-2}$.

Answer:

The correct answer from the choices is

G. The accelaration is $(.385, .17, -76.923)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (20.0, 9.0, -4000.0)N$ and m = 52.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(20.0, 9.0, -4000.0)N}{52.0000kg}$$

$$= (.385, .17, -76.923)ms^{-2}$$

QUESTION 33.5 (2, 2, 2)

Auto-answer:

G. None of these.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (100.000, 2.0000, -9000.0)N$ and m = 50.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(100.000, 2.0000, -9000.0)N}{50.0000kg}$$

$$= (2.0000, 4.0000 \times 10^{-2}, -180.00)ms^{-2}$$

$$= (25920, 518.40, -2.3328 \times 10^{6})km/h^{2}.$$

 $\overline{\mathbf{B}}$.

QUESTION 33.6 (4, 4, 4) Auto-answer:

Column Left Column Right Answers A. B ER C. B. asdf(:) a= 2 E. C. er YJH D. D. yjh b A.

ASDF(:)

E. A = 4/2

You have done all the above? Excellent! Not much left, please continue.

QUESTION 33.7 (8, 15, 60)

Answer:

$$\begin{pmatrix} 6 & 6 & 6 & 4 \\ 5 & 4 & 5 & 6 \\ 4 & 4 & 5 & 4 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 44 \\ 40 \\ 34 \end{pmatrix}$$
$$\begin{pmatrix} \Theta & \eta \\ \rho & \Gamma \\ \zeta & \Delta \\ \alpha & \Theta \end{pmatrix} \begin{pmatrix} \beta \\ \beta \end{pmatrix} = \begin{pmatrix} \Theta \times \beta + \eta \times \beta \\ \rho \times \beta + \Gamma \times \beta \\ \zeta \times \beta + \Delta \times \beta \\ \alpha \times \beta + \Theta \times \beta \end{pmatrix}$$

Solution:

QUESTION 33.8 (7, 14, 50)

Auto-answer:

B. The accelaration is $(.370, 7.4 \times 10^{-2}, -55.556)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (20.0, 4.0, -3000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(20.0, 4.0, -3000.0)N}{54.0kg}$$

$$= (.370, 7.4 \times 10^{-2}, -55.556)ms^{-2}$$

QUESTION 33.9 (9, 16, 70)

Answer:

 $\mathbf{Solution}^{9,-19}$

Roots to the equation

$$3 \times x^2 + 30 \times x - 513 = 0$$

are 9 and -19.

Let us verity 9 first:
$$3 \times x^2 + 30 \times x - 513 = 243 + (270) + (-513) = 513 + (-513) = 0$$

Then verity -19:
$$3 \times x^2 + 30 \times x - 513 = 1083 + (-570) + (-513) = 513 + (-513) = 0$$

Here are still some constants for use:

Constant	Symbol	
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 33.1 through 33.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

THIS IS THE ANSWER AND SOLUTION FOR PAPER NUMBER 34

THIS IS AN EXAMPLE OF PERSONALIZED TESTS.

If needed, please use the following constants.

Constant	Symbol	Value
Acceleration due to earth's gravity	g	9.80 m/s^2
Avogadro's number	N_A	$6.0221367 \times 10^{23} \text{ mol}^{-1}$
Boltzmann's constant	k	$1.380658 \times 10^{-23} \text{ J/K}$
Coulomb's constant	k	$8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$
Electron charge magnitiude	e	$1.60217733 \times 10^{-19} \text{ C}$
Permeability of free space	μ_0	$1.25663706 \times 10^{-6} \text{ T} \cdot \text{m/A}$
Permittivity of free space	ϵ_0	$8.854187817 \times 10^{-12} \text{ C}^2/(\text{N} \cdot \text{m}^2)$
Pi	π	3.14159265
Planck's constant	h	$6.6260755 \times 10^{-34} \text{ J} \cdot \text{s}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

Constant	Symbol	Value
Mass of neutron	m_n	$1.6749286 \times 10^{-27} \text{ kg}$
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Speed of light in vacuum	c	299792458. m/s
Universal gravitational constant	G	$6.67259 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
Universal gas constant	R	8.314510 J/(mol·K)

Please be advised that in this paper there are questions from 34.1 through 34.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

In this paper, big questions will be generated in the following order: 1(6), 2(2), 3(1), 4(3), 5(5), 6(4), 7(8), 8(7), 9(9).

QUESTION 34.1 (6) Please answer ONLY 5 of the following 6

questions (Questions 34.1.1 through 34.1.6).

Here are still some constants for use in the following questions:

Constant	Symbol	Value
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$
Avogadro's number	N_A	$6.022 \times 10^{23} \text{ mol}^{-1}$
Mass of electron	m_e	$9.1093897 \times 10^{-31} \text{ kg}$

In this big question of CHOOSE structure, 6 questions will be generat ed:

$$1(8, 23), 2(9, 24), 3(7, 22), 4(11, 26), 5(6, 21), 6(10, 25)$$
.

Question 34.1.1 (6, 8, 23)

Auto-answer:

C. The acceleration is $(1.3462ms^{-2}, 3.8462 \times 10^{-2}ms^{-2}, -498462.km/h^2)$. Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (70.0, 2.0, -2000.0)N$ and m = 52.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(70.0, 2.0, -2000.0)N}{52.0kg}$$

$$= (1.3462, 3.8462 \times 10^{-2}, -38.462)ms^{-2}$$

$$= (17446, 498.46, -498462.)km/h^{2}.$$

Question 34.1.2 (6, 9, 24) Solution:

By using Newton's Law of Universal Gravitation:

$$F = G \frac{(Sun's \ mass) \times (Planet's \ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$.	, the forces can be easily calculated as
---	--

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$7.000000000 \times 10^{24}$	$8.0000000000 \times 10^{24}$	4.38×10^{-11}
Venus	4.00×10^{24}	6.00×10^{24}	4.45×10^{-11}
Earth	5.00×10^{24}	7.00×10^{24}	4.08×10^{-11}
Mars	6.00×10^{24}	7.00×10^{24}	4.90×10^{-11}
Jupiter	4.00×10^{24}	4.00×10^{24}	1.00×10^{-10}
Saturn	4.00×10^{24}	7.00×10^{24}	3.27×10^{-11}
Uranus	3.00×10^{24}	3.00×10^{24}	1.33×10^{-10}
Neptune	7.00×10^{24}	3.00×10^{24}	3.11×10^{-10}

Answer:

By using Newton's Law of Universal Gravitation:

$$F = G\frac{(Sun's\ mass) \times (Planet's\ mass)}{(distance)^2},$$

where $G = 6.67 \times 10^{-11} Nm^2 (kg)^{-2}$, the forces can be easily calculated as

The Planet	Mass (kg)	Distanace from Sun (m)	The Force (N)
Mercury	$7.000000000 \times 10^{24}$	$8.0000000000 \times 10^{24}$	4.38×10^{-11}
Venus	4.00×10^{24}	6.00×10^{24}	4.45×10^{-11}
Earth	5.00×10^{24}	7.00×10^{24}	4.08×10^{-11}
Mars	6.00×10^{24}	7.00×10^{24}	4.90×10^{-11}
Jupiter	4.00×10^{24}	4.00×10^{24}	$1.00 \times 10^{-10}3$
Saturn	4.00×10^{24}	7.00×10^{24}	3.27×10^{-11}
Uranus	3.00×10^{24}	3.00×10^{24}	1.33×10^{-10}
Neptune	7.00×10^{24}	3.00×10^{24}	3.11×10^{-10}

Question 34.1.3 (6, 7, 22) Auto-answer:

A. The accelaration (vector) is $(7200.0, 1920.0, -1.9200 \times 10^6) km/h^2$. **Solution:**

We will use the Newton's Second Law:

 $\mathbf{f} = m\mathbf{a}$.

Since $\mathbf{f} = (30.0, 8.0, -8000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(30.0, 8.0, -8000.0)N}{54.0kg}$$

$$= (.55556, .14815, -148.15)ms^{-2}$$

$$= (7200.0, 1920.0, -1.9200 \times 10^{6})km/h^{2}.$$

Question 34.1.4 (6, 11, 26) Solution:

Since the possiblity of smoking customer is a=.130, and the possiblity of under 30 years old customer is b=.9200, the possiblity of non-smoking customer is c=1.0-a=1.0-.130=.870 and the possiblity of equal or above 30 years old customer is $d=1.0-b=1.0-.9200=8.000\times 10^{-2}$. So the possibility of non-smoking and equal or above 30 years old customer is $c\times d=6.96\times 10^{-2}$.

Answer:

The possibility of non-smoking and equal or above 30 years old customer is $(1-a)(1-b) = 6.96 \times 10^{-2}$.

Question 34.1.5 (6, 6, 21) Answer:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (20.0, 3.0, -6000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(20.0, 3.0, -6000.0)N}{54.0kg}$$

$$= (.37037, 5.5556 \times 10^{-2}, -111.11)ms^{-2}$$

$$= (4800.0, 720.00, -1.4400 \times 10^{6})km/h^{2}.$$

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (20.0, 3.0, -6000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(20.0, 3.0, -6000.0)N}{54.0kg}$$

$$= (.37037, 5.5556 \times 10^{-2}, -111.11)ms^{-2}$$

$$= (4800.0, 720.00, -1.4400 \times 10^{6})km/h^{2}.$$

Question 34.1.6 (6, 10, 25) Auto-answer:

C. A truck

D. An airplane

You have done all the above? A very good beginning, please go ahead. More constants the Mass of electron $m_e=9.109390\times 10^{-31}$ kg , Universal gas constant R=8.315 J/(mol·K) , $e=1.60217733\times 10^{-19}$ C , and $m_p=1.6726231\times 10^{-27}$ kg may be very helpful.

QUESTION 34.2 (2, 2, 2)

Auto-answer:

C. The accelaration is $(1.0000ms^{-2}, 1555.2km/h^2, -100.00ms^{-2})$. **Solution:**

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (50.000, 6.0000, -5000.0)N$ and m = 50.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(50.000, 6.0000, -5000.0)N}{50.0000kg}$$

$$= (1.0000, .12000, -100.00)ms^{-2}$$

$$= (12960, .1555.2, -1.2960 \times 10^{6})km/h^{2}.$$

QUESTION 34.3 (1, 1, 1)

Auto-answer:

G. The accelaration is $(.714, .18, -142.86)ms^{-2}$.

Answer:

The correct answer from the choices is

G. The accelaration is $(.714, .18, -142.86)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (40.0, 10.0, -8000.0)N$ and m = 56.0000kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(40.0, 10.0, -8000.0)N}{56.0000kg}$$

$$= (.714, .18, -142.86)ms^{-2}$$

QUESTION 34.4 (3, 3, 3)

Auto-answer:

E. Canada has 10 provinces and 3 territories.

QUESTION 34.5 (5, 5, 5)

Answer:

T
T
T

1. 97 is an odd number.

2. Kingston is in Ontario province.

3. $\mathbf{F} = m\mathbf{a}$ is a mathmatical form of the Newton's Second

Law.

QUESTION 34.6 (4, 4, 4)

Auto-answer:

Column Left	Column Right	Answers
A. C	YJH	Ε.
B. A	a	В.
С. В	С	Α.
\mathbf{D}_{\bullet} asdf(:)	ASDF(:)	D.
E. yjh	b	C.

You have done all the above? Excellent! Not much left, please continue.

QUESTION 34.7 (8, 15, 60)

Answer:

$$\begin{pmatrix} 5 & 5 & 4 & 6 \\ 6 & 4 & 7 & 5 \\ 7 & 7 & 7 & 7 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 40 \\ 44 \\ 56 \end{pmatrix}$$
$$\begin{pmatrix} \zeta & \varepsilon \\ \gamma & \Gamma \\ \Theta & \varepsilon \\ \gamma & \zeta \end{pmatrix} \begin{pmatrix} \beta \\ \beta \end{pmatrix} = \begin{pmatrix} \zeta \times \beta + \varepsilon \times \beta \\ \gamma \times \beta + \Gamma \times \beta \\ \Theta \times \beta + \varepsilon \times \beta \\ \gamma \times \beta + \zeta \times \beta \end{pmatrix}$$

Solution:

QUESTION 34.8 (7, 14, 50)

Auto-answer:

C. The accelaration is $(1.67, .17, -74.074)ms^{-2}$.

Solution:

We will use the Newton's Second Law:

$$\mathbf{f} = m\mathbf{a}$$
.

Since $\mathbf{f} = (90.0, 9.0, -4000.0)N$ and m = 54.0kg, bring them into the above equation, then we get

$$\mathbf{a} = \frac{\mathbf{f}}{m}$$

$$= \frac{(90.0, 9.0, -4000.0)N}{54.0kg}$$

$$= (1.67, .17, -74.074)ms^{-2}$$

QUESTION 34.9 (9, 16, 70)

Answer:

21, 20

Solution:

Roots to the equation

$$-5 \times x^2 + 205 \times x - 2100 = 0$$

are 21 and 20.

Let us verity 21 first:
$$-5 \times x^2 + 205 \times x - 2100 = -2205 + (4305) + (-2100) = 2100 + (-2100) = 0$$

Then verity 20:
$$-5 \times x^2 + 205 \times x - 2100 = -2000 + (4100) + (-2100) = 2100 + (-2100) = 0$$

Here are still some constants for use:

Constant	Symbol	Value
Mass of proton	m_p	$1.6726231 \times 10^{-27} \text{ kg}$
Boltzmann's constant	k	$1.381 \times 10^{-23} \text{ J/K}$

Thank you very much for answering these questions!

Please be advised that in this paper there are questions from 34.1 through 34.9. And any one of them may contain more than one sub-question, thus the total number of sub-questions here is around 14, of which 13 should be answered.

*** END OF PAPER, THANKS ***

By: 239(26, 34)

STATISTICS

Initial seed for random numbers	239
First paper number	26
Last paper number	34
Total papers to be generated	9
Total marks from input file	100.00
Total actual marks	100.00
Total lines of the input file	915
Total QUESTIONs in input file	16
Total CHOOSEs in input file	1
Total NOTEs in input file	2
Total (big) questions in each paper	9
Total actual (sub)questions in each paper	14
Total (sub)questions to be answered in each paper	13

For each big question

Big question	Choose?	Questions needed	Questions from	Question IDs
1(4,3.13)	No	1(1,1)	1(1,3.13,10.00)	1
2(4,1.56)	No	1(1,1)	2(0,1.56,5.00)	2
3(4,1.56)	No	1(1,1)	3(1,1.56,5.00)	3
4(4,3.13)	No	1(1,1)	4(0,3.13,10.00)	4
5(4,1.56)	No	1(1,1)	5(0,1.56,5.00)	5
6(2,62.50,40.00)	1	6(5,8)	6(0,12.50,5.00)	21
			7(0,12.50,5.00)	22
			8(0,12.50,6.00)	23
			9(0,12.50,8.00)	24
			10(1 ,12.50 ,5.70)	25
			11(0 ,12.50 ,12.40)	26
			12(0 ,12.50 ,24.50)	27

Big question	Choose?	Questions needed	Questions from	Question IDs
			13(0 ,12.50 ,67.20)	28
7(8,12.50)	No	1(1,1)	14(1 ,12.50 ,40.00)	50
8(8,12.50)	No	1(1,1)	15(0 ,12.50 ,40.00)	60
9(14,1.56)	No	1(1,1)	16(0,1.56,5.00)	70