#### Neural Network Theory

## Artificial Intelligence and Brain

Jeju National University Yung-Cheol Byun Materials are here:

https://github.com/yungbyun/neuralnetworks git clone [link]

## Agenda

- Artificial Intelligence
- Brain and neuron
- Synapses, the core of neural networks
- Neuron, equation, and matrix

#### Intelligence



- One's capability for logic, understanding, self-awareness, learning, planning, creativity, and problem solving
- The ability to perceive information, and to retain it as knowledge to be applied towards adaptive behaviors within an environment
- Human Intelligence = Natural Intelligence

### Artificial Intelligence

- Intelligence exhibited by machines
- A <u>computerized</u> version of the human (natural) intelligence
- Theory and development of computer systems able to perform tasks such as visual perception, voice recognition, decision-making, and translation between languages

# How can machines (computers) get Artificial Intelligence?

# How can human get natural intelligence?



# What happens inside the human brain?

## Neuroanatomist

신경해부학자



#### The **cerebellum**(소뇌) that controls muscles



#### Neurons in a bird's brain



Ramón y Cajal's drawing of the neurons in a bird's cerebellum – a part of the brain.

#### Brain of Human







1천억개 이상

# 100 billion neurons more than the number of stars in the universe

#### So, what **happens** inside?

The flow of sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) ions generates an electrical signal.



From a DVD that comes with the illustrated medical atlas, The Human Brain, DK Publishing UK.



#### Simulation(signaling)



#### 3 neurons and Connection





# synapse Synapse (simplified)

The Brain—Lesson 2—How Neurotransmission Works





## Neurotransmitter in synapse

신경전달물질

# How much neurotransmitters in a synapse?



w = 17

In a figurative sense, 비유적으로 표현할 때

#### 3 neurons and Connection



#### How it works?



GPT-3.5 Model 175,000,000,000 = 175B Synapses = 1,750억 개 시냅스



What happens if ...



치매환자 Alzheimer's

#### Paralysis, loss of memory

moving
memory
thinking
emotion
and everything

식물인간 Person in a vegetative state



### Experience &

Adjusting of the amount of neurotransmitter



#### Experience -- Adjusting





3 variables implementation with Python



## That is **learning**.

to the direction to increase



### A Happiness

to the direction to decrease



Stress

Stress/Error/Cost/Loss function

## S/W implementation → Al



## A Neuron with Multiple Inputs



## A Neuron with 1 Input



# h, Hypothesis



A hypothesis is a proposed <u>explanation</u> (assumption) for a <u>phenomenon</u>.

가설(hypothesis): 어떤 현상을 설명(가정)하는 것. 뉴런의 동작을 설명(가정)하는 것

Explanation(assumption) about the way a neuron works in.

Output of a neuron, prediction

## Action of a neuron

#### **DR.** Alan Hodgkin, Andrew Huxley

- Discovered how the action potential works
- The flow of sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) ions generates an electrical signal.



$$h = wx$$
 w: weighted

## **Application**: Wage Calculator NN

임금 계산기

- Experience: 1 hour working(input x)  $\rightarrow$  1USD(correct answer, groundtruth y) payment
- How much you get for 3-hour working? (prediction)



| x (hour) | W         | Output of a neuron | y (correct<br>answer,<br>wage) | Error/Stress<br>Function | Reaction               |
|----------|-----------|--------------------|--------------------------------|--------------------------|------------------------|
| 1        | 4(random) | 4                  | 1                              | 4-1                      | scolding<br>seriously  |
| 1        | 2         | 2                  | 1                              | 2-1                      | ordinarily             |
| 1        | 1.5       | 1.5                | 1                              | 1.5-1                    | not bed                |
| 1        | 1.3       | 1.3                | 1                              | 1.3-1                    | good but not<br>enough |
| 1        | 1.1       | 1.1                | 1                              | 1.1-1                    | acceptable             |



Scolding a dog/dolphin/child automatically updates the connection strength(w)

to make the error smaller in the next step.

## Learning

is to find the optimal value of parameter (w) to predict correctly.

the amount of neurotransmitter

# Drawing a neuron

Representing the below equation:

$$h = 1x$$







#### Simplified version



 $(1) (1) \rightarrow (h)$ 

## Where is the synapse/connection?



$$(\mathbf{x})(1) \rightarrow (h)$$

#### Simplified version



$$\binom{1}{2}(1) \rightarrow \binom{h_1}{h_2}$$

## Where is the synapse/connection?



my.csv

$$(\mathbf{x})(1) \rightarrow (h)$$

#### Simplified version



## Where is the synapse/connection?



$$\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
(1) \rightarrow \begin{pmatrix}
h_1 \\
h_2 \\
h_3
\end{pmatrix}$$

my.csv

# A neuron and the **matrix** to describe the action of it.

## A Neuron with Multiple Inputs





if the input values are (0,0,0,1), then h is ...

$$h = 1 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 + 3 \cdot x_4$$

$$(x_1, x_2, x_3, x_4) \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} \longrightarrow (h)$$

One instance

$$(0,0,0,1)\begin{pmatrix}1\\2\\1\\3\end{pmatrix} \longrightarrow (h)$$



my.csv

## Real operation of a neuron

- Thresholding
- Signal  $\overline{\text{ON}}$  if the weighted sum is greater than T
- otherwise signal OFF





Weighted sum and Thresholding





$$\boldsymbol{h} = \begin{cases} 1 & if \ x_1 + 2x_2 + x_3 + 3x_4 > T \\ 0 & otherwise \end{cases}$$



#### Drawing



#### Drawing



#### Drawing



# What is learning again?

## **Updating the parameters**

(synapses)



# How do we update it?