3BIT

з лабораторної роботи №2 з дисципліни «Аналіз даних»

Склад команди: Піковець Артем КМ-22

1 Вступ

Підвищений артеріальний тиск є одним із головних факторів ризику серцево-судинних захворювань. Це дослідження спрямоване на виявлення ключових факторів, що впливають на артеріальний тиск, та їхнього відносного значення.

- 1. Чи погіршується артеріальний тиск зі збільшенням віку?
- 2. Чи існують відмінності в артеріальному тиску залежно від статі або раси?
- 3. Люди з більшою кількістю жиру мають гірший артеріальний тиск?
- 4. Чи є жирова маса тіла сильнішим предиктором підвищеного артеріального тиску порівняно з нежировою масою?
- 5. Жир в яких місцях тіла людини більше пов'язаний з підвищенним артеріальним тиском? Чи абдомінальний жир більше пов'язаний з підвищенним артеріальним тиском, ніж стегново-сідничний жир? Чи вісцеральний жир більше пов'язаний з підвищенним артеріальним тиском, ніж підшкірний жир?

2 Дані

З датасету (28097 рядків, 30 змінних) який був отриманий після обробки систолічного та діастолічного тиску було взято 2 підвибірки:

• Вибірка whole_data (28097 рядків), яка містить змінні

```
systolic, diastolic, blood_pressure_category, age, gender, race
```

• Вибірка fat_data (18436 рядків), яка містить змінні

```
systolic, diastolic, blood_pressure_category, age, gender, race,
android_fat_g, android_non_fat_g, gynoid_fat_g, gynoid_non_fat_g,
visceral_fat_g, subcutaneous_fat_g
```

Рядки що містили пропущене значення хоча б однієї зі змінних вибірки були видалені.

3 Статистичне виведення

3.1 Як обчислювалися довірчі інтервали

В даному дослідженні оцінюються наступні параметри розподілів:

- \bullet μ_X сподівання
- \bullet σ_X середньо-квадратичне відхилення
- $P_X(X=x)$ функкція ймовірностей для дискретної випадкової величини
- ullet $Q_X(q) = F_X^{-1}(q)$ квантиль
- \bullet r_s коефіцієнт кореляції Спірмана

 μ_X , σ_X , $P_X(X=x)$ та $Q_X(q)$ мають асимптотичний нормальний розподіл. Для них довірчі інтервали з покриттям $1-\alpha$ будуть мати наступний вигляд:

$$[\hat{\theta} + q_{\frac{\alpha}{2}} \cdot \widehat{se}(\hat{\theta}), \ \hat{\theta} + q_{1-\frac{\alpha}{2}} \cdot \widehat{se}(\hat{\theta})],$$

де q_x - квантиль нормального розподілу

Оцінки параметрів, та оцінки їх дисперсій:

μ_X

$$\hat{\mu}_X = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{a}{\sim} N(\mu_X, \frac{\sigma_X^2}{n})$$

$$\widehat{Var}(\hat{\mu}_X) = \frac{s_X^2}{n}$$

σ_X

$$\begin{split} \hat{\sigma}_X &= s_X \stackrel{a}{\sim} N(\sigma_X, \frac{E[(X-\mu_X)^4] - \sigma_X^4}{4\sigma_X^2 n}) \\ \widehat{Var}(\hat{\sigma}_X) &= \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_X)^4 - \tilde{\sigma}_X^4}{4\tilde{\sigma}_X^2 n}, \quad \text{ge } \tilde{\sigma}_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu}_X)^2 \end{split}$$

• $P_X(X = x)$ (позначимо як p)

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ X_i = x \} \stackrel{a}{\sim} N(p, \frac{p(1-p)}{n})$$

$$\widehat{Var}(\hat{p}) = \frac{\hat{p}(1-\hat{p})}{n}$$

 \bullet $Q_X(q)$

 $\hat{Q}_X(q)$ - вибірковий квантиль. Через невідому асимптотичну дисперсію стандартна похибка буде оцінюватися за допомогою бутсрепу. Через R позначатимо кількість бутстреп-вибірок.

Асимптотичний розподіл для r_s невідомий. Тому для r_s будуть обчислюватися бутсреп довірчі інтервали. Через R позначатимо кількість бутстреп-вибірок.

3.2 Як тестувалися гіпотези

В даному дослідженні тестувалися гіпотези наступного виду за допомогою тесту Волда:

$$H_0: \theta_1 - \theta_2 \ge 0 \quad \text{vs} \quad H_1: \theta_1 - \theta_2 < 0$$

$$\hat{\theta}_1 \stackrel{a}{\sim} N(\theta_1, .), \quad \hat{\theta}_2 \stackrel{a}{\sim} N(\theta_2, .), \quad \hat{\theta}_1 \perp \hat{\theta}_2$$

$$T = \frac{\hat{\theta}_1 - \hat{\theta}_2}{\widehat{se}(\hat{\theta}_1 - \hat{\theta}_2)} = \frac{\hat{\theta}_1 - \hat{\theta}_2}{\sqrt{\widehat{Var}(\hat{\theta}_1) + \widehat{Var}(\hat{\theta}_2)}}$$

 $p = \Phi(T), \; \Phi - \Phi$ ункція нормального розподілу

3.3 Розподіл артеріального тиску

Дескриптивні статистики

Обчислені довірчі інтервали для наступних параметрів артеріального тиску.

	Довірчі інтервали (95%)			
	μ_X σ_X			
systolic	[119.29, 119.73]	[18.58, 19.02]		
diastolic	[67.22, 67.53]	[12.95, 13.20]		

Систолічний тиск виглядає більшим за діастолічний бо вони ϵ відповідно верхньою та нижньою гранню артеріального тиску.

	Довірчі інтервали (95%)
Blood pressure category	$P_X(X=x)$
Normal	[0.548, 0.560]
Elevated	[0.134, 0.142]
Hypertension Stage 1	[0.156, 0.165]
Hypertension Stage 2	[0.143, 0.151]

В даній вибірці більше ніж 50% людей мають нормальний тиск, інші категорії тиску розподілені більш рівномірно.

Кореляція між систолічним та діастолічним тиском

Побудова студентизованого та BCa довірчих інтервалів для коефіцієнтів кореляцій виявилася ресурсозатратною. Тому було вирішено один раз продемонструвати всі 5 видів довірчих інтервалів, а надалі обчислювати тільки norm, basic та perc довірчі інтервали.

Для обчислення всіх 5 видів довірчих інтервалів використано невелику бутстреп-вибірку $R=200, R_{sd}=50,$ де R - кількість бутстреп-вибірок, R_{sd} - кількість бутстреп-вибірок для оцінювання стандартної похибки для студентизованих довірчих інтервалів.

	Довірчі інтервали (95%)
	$r_s({ t systolic},{ t diastolic})$
norm	[0.4905, 0.5095]
basic	[0.4902, 0.5101]
stud	[0.4894, 0.5113]
perc	[0.4916, 0.5115]
BCa	[0.4908, 0.5094]

Присутня позитивна кореляція але недостатнью велика щоб вважати систолічний та діастолічний тиск подібними величинами.

3.4 Вплив віку, статі та раси на артеріальний тиск

Сподівання та дисперсії тиску серед різних вікових груп

Для кожної наступної вікової групи оцінимо сподівання та середньоквадратичне відхилення артеріального тиску.

	Довірчі інтервали (95%)			
	systolic		diastolic	
age	μ_X	σ_X	μ_X	σ_X
[5, 15]	[103.7, 104.3]	[9.4, 9.8]	[55.7, 56.3]	[10.9, 11.4]
(15, 25]	[111.8, 112.5]	[10.6, 11.2]	[63.3, 63.9]	[10.2, 10.8]
(25, 35]	[114.6, 115.5]	[12.5, 13.4]	[69.4, 70.1]	[10.5, 11.2]
(35, 45]	[118.7, 119.7]	[14.6, 15.7]	[73.8, 74.6]	[10.8, 11.4]
(45, 55]	[123.7, 124.9]	[16.5, 17.9]	[75.0, 75.7]	[10.5, 11.1]
(55, 65]	[129.9, 131.1]	[18.5, 19.7]	[72.7, 73.4]	[11.3, 11.9]
(65, 75]	[133.0, 134.4]	[18.5, 19.7]	[68.0, 68.9]	[11.6, 12.3]
(75, 85]	[137.9, 139.9]	[21.6, 23.2]	[63.4, 64.5]	[11.9, 12.9]

Можна побачити, що:

- Систолічний тиск підвищується, та його середньоквадратичне відхилення теж.
- Діастолічний тиск спочатку підвищується, потім починає спадати. Відмінність між середньоквадратичними відхилення вже не така помітна.

Протестуємо твердження щодо систолічного тиску.

 $\mu_{[a,b]}$ - сподівання систолічного тиску для людей вікової групи [a,b]

 $\sigma_{[a,b]}$ - середньоквадратичне відхилення систолічного тиску для людей вікової групи [a,b]

$$H_0: \mu_{[a_i,b_i]} - \mu_{[a_{i+1},b_{i+1}]} \geq 0 \quad \text{vs} \quad H_1: \mu_{[a_i,b_i]} - \mu_{[a_{i+1},b_{i+1}]} < 0$$

H_0	p	p < 0.05
$\mu_{[5,15]} - \mu_{(15,25]} \ge 0$	0	TRUE
$\mu_{(15,25]} - \mu_{(25,35]} \ge 0$	2.736e-26	TRUE
$\mu_{(25,35]} - \mu_{(35,45]} \ge 0$	1.305e-34	TRUE
$\mu_{(35,45]} - \mu_{(45,55]} \ge 0$	9.128e-39	TRUE
$\mu_{(45,55]} - \mu_{(55,65]} \ge 0$	5.965e-48	TRUE
$\mu_{(55,65]} - \mu_{(65,75]} \ge 0$	5.786e-11	TRUE
$\mu_{(65,75]} - \mu_{(75,85]} \ge 0$	2.252e-16	TRUE

Усі p-значення дуже малі. Старші вікові групи в середньому мають вищий систолічний тиск.

$$H_0: \sigma_{[a_i,b_i]} - \sigma_{[a_{i+1},b_{i+1}]} \ge 0$$
 vs $H_1: \sigma_{[a_i,b_i]} - \sigma_{[a_{i+1},b_{i+1}]} < 0$

H_0	p	p < 0.05
$\sigma_{[5,15]} - \sigma_{(15,25]} \ge 0$	4.8e-13	TRUE
$\sigma_{(15,25]} - \sigma_{(25,35]} \ge 0$	7.859e-15	TRUE
$\sigma_{(25,35]} - \sigma_{(35,45]} \ge 0$	2.801e-10	TRUE
$\sigma_{(35,45]} - \sigma_{(45,55]} \ge 0$	1.256e-06	TRUE
$\sigma_{(45,55]} - \sigma_{(55,65]} \ge 0$	1.077e-05	TRUE
$\sigma_{(55,65]} - \sigma_{(65,75]} \ge 0$	0.5026	FALSE
$\sigma_{(65,75]} - \sigma_{(75,85]} \ge 0$	7.21e-11	TRUE

Майже усі p-значення є малими. Старші вікові групи мають більший розкид систолічного тиску.

Кореляція між віком та артеріальним тиском

Надалі якщо обчислені довірчі інтервали мало відрізняються, то представлено буде тільки персентильний довірчий інтервал.

Кореляцію з діастолічним тиском обчислимо для різних вікових груп.

		Percentile CI (95%), $R = 1000$
	$r_{\scriptscriptstyle S}({ t age},{ t systolic})$	[0.601, 0.616]
age < 50	$r_s({ t age, diastolic})$	[0.568, 0.589]
$age \ge 50$	$r_s({\sf age}, {\sf diastolic})$	[-0.355, -0.320]

Кореляції помітні. Зі збільшенням віку систолічний тиск теж збільшується; діастолічний тиск теж спочатку збільшується, але потім починає зменшуватися.

Розподіл віку серед людей з нормальним тиском та людей з гіпертонією

Порівняємо розподіл віку (квантилі) серед людей з нормальним тиском та сереж людей з гіпертонією (підвищенним артеріальним тиском).

	Довірчі інтервали $(95\%), R = 300$		
	age		
Blood pressure	Q(0.25)	Q(0.75)	
Normal	[13.04, 14.96]	[41.15, 42.85]	
Hypertension	[43.04, 44.96]	[68.15, 69.85]	

Люди з нормальним тиском значно молодші за людей з гіпертонією. 75% квантиль для людей з нормальним тиском менший за 25% квантиль для людей з гіпертонією.

Протестуємо це.

$$H_0: Q_{normal}(0.75) - Q_{hypertension}(0.25) \ge 0 \quad \text{vs} \quad H_1: Q_{normal}(0.75) - Q_{hypertension}(0.25) < 0$$

$$p = 0.001358 < 0.05$$

Відмінність артеріального тиску за статтю

Порівняємо середні тиску між чоловіками та жінками.

	Довірчі інтервали (95%)			
	$\mu_{systolic}$ $\mu_{diastolic}$			
Female	[117.73, 118.38]	[66.43, 66.83]		
Male	[120.72, 121.32]	[67.92, 68.38]		

Чоловіки у середньому мають вищий артеріальний тиск ніж жінки. Протестуємо це.

$$\begin{split} H_0: \mu^{female} - \mu^{male} &\geq 0 \quad \text{vs} \quad H_1: \mu^{female} - \mu^{male} < 0 \\ p_{systolic} &= 1.352e - 40 < 0.05 \\ p_{diastolic} &= 1.32e - 22 < 0.05 \end{split}$$

Відмінність артеріального тиску за расою

Порівняємо середні тиску серед різних рас. Також перевіримо чи є розподіл віку незалежним від раси.

	Довірчі інтервали (95%)		
			R = 300
	$\mu_{systolic}$	$\mu_{diastolic}$	M_{age}^{1}
Other Race	[115.3, 117.3]	[65.7, 67.2]	[23.6, 28.4]
Mexican American	[116.5, 117.5]	[65.2, 66.0]	[30.6, 33.4]
Non-Hispanic Asian	[116.9, 118.0]	[68.7, 69.5]	[36.7, 39.3]
Other Hispanic	[118.3, 119.7]	[65.9, 66.8]	[38.3, 41.7]
Non-Hispanic White	[119.6, 120.3]	[67.3, 67.8]	[42.9, 45.1]
Non-Hispanic Black	[121.9, 122.9]	[67.6, 68.3]	[36.6, 39.4]

Спостерігається відмінність систолічного тиску між расами, але це може бути пов'язано з відмінністю розподілу віку між расами.

3.5 Вплив кількості та розподілу жиру на артеріальний тиск Види жиру

Розташування андроїдної та гіноїдної області

Ми маємо змінні:

- жирової та нежирової маси в андроїдній області
- жирової та нежирової маси в гіноїдній області
- маси вісцерального жиру
- маси підшкірного жиру в абдоміальній області

Розподіл жиру в андроїдній області

Подивимось на розподіл жиру в андроїдній та гіноїдній області, й підкреслимо відмінності між чоловіками та жінками.

 $^{^{1}}$ Будемо позначати медіану через $M_{X},\,M_{X}=Q_{X}(0.5)$

		Довірчі інтервали $(95\%), R = 300$		
android		Q(0.2)	Q(0.5)	Q(0.8)
fat	Male	[655, 691]	[1584, 1650]	[2825, 2911]
146	Female	[861, 904]	[1749, 1820]	[3044, 3165]
non fat	Male	[2568, 2681]	[3881, 3958]	[5057, 5155]
	Female	[2146, 2205]	[2951, 3010]	[3941, 4020]
fat percent	Male	[0.194, 0.199]	[0.299, 0.305]	[0.379, 0.384]
	Female	[0.278, 0.286]	[0.378, 0.383]	[0.449, 0.452]

В андроїдній області:

- Жінки мають більше жиру ніж чоловіки.
- Чоловіки мають більше не жирової маси ніж жінки.
- У середньому, маса жиру становить приблизно 30% для чоловіків та 38% для жінок від загальної маси області.

Розподіл жиру в гіноїдній області

		Довірчі інтервали (95%), $R = 300$		
gynoid		Q(0.2)	Q(0.5)	Q(0.8)
fat	Male	[1971, 2041]	[3212, 3292]	[4614, 4741]
lat	Female	[2886, 2980]	[4325, 4428]	[6198, 6348]
non fat	Male	[6052, 6349]	[8421, 8532]	[10377, 10515]
	Female	[4827, 4936]	[6257, 6347]	[7845, 7978]
fat percent	Male	[0.232, 0.236]	[0.286, 0.289]	[0.345, 0.348]
	Female	[0.363, 0.366]	[0.413, 0.416]	[0.458, 0.460]

В гіноїдній області:

- Жінки мають більше жиру ніж чоловіки.
- Чоловіки мають більше не жирової маси ніж жінки.
- У середньому, маса жиру становить приблизно 29% для чоловіків та 41% для жінок від загальної маси області.

Розподіл жиру між андроїдною та гіноїдною областю

Довірчі інтервали (95%), $R = 300$		
	$M_{rac{ m and roid\ fat}{ m }}$	Mandroid non fat
Female	[0.393, 0.400]	[0.474, 0.477]
Male	[0.463, 0.475]	[0.465, 0.468]

Чоловіки більш схильні зберігати жир в андроїдній області ніж жінки. З нежировою масою це вже не так.

Протестуємо це.

$$\begin{split} H_0: M_{\frac{\text{android fat}}{\text{gynoid fat}}}^{female} - M_{\frac{\text{android fat}}{\text{gynoid fat}}}^{male} &\geq 0 \quad \text{vs} \quad H_1: M_{\frac{\text{android fat}}{\text{gynoid fat}}}^{female} - M_{\frac{\text{android fat}}{\text{gynoid fat}}}^{male} &< 0 \\ p &= 8.63e - 109 < 0.05 \\ H_0: M_{\frac{\text{android non fat}}{\text{gynoid non fat}}}^{male} - M_{\frac{\text{android non fat}}{\text{gynoid non fat}}}^{female} &\geq 0 \quad \text{vs} \quad H_1: M_{\frac{\text{android non fat}}{\text{gynoid non fat}}}^{male} - M_{\frac{\text{android non fat}}{\text{gynoid non fat}}}^{female} &< 0 \\ p &= 1.189e - 14 < 0.05 \end{split}$$

Розподіл вісцерального та підшкірного жиру

		Довірчі інтервали (95%), $R=300$		
gynoid		Q(0.2)	Q(0.5)	Q(0.8)
visceral	Female	[131, 138]	[297, 312]	[568, 592]
viscerai	Male	[193, 198]	[324, 338]	[604, 625]
subcutaneous	Female	[926, 964]	[1570, 1614]	[2381, 2438]
subcutaneous	Male	[347, 374]	[973, 1018]	[1661, 1708]
visceral subcutaneous	Female	[0.128, 0.131]	[0.181, 0.185]	[0.270, 0.279]
	Male	[0.268, 0.277]	[0.421, 0.432]	[0.657, 0.673]

- Чоловіки мають більше вісцерального жиру ніж жінки.
- Жінки мають більше підшкірного жиру ніж чоловіки.
- Кількість вісцерального жиру менше ніж кількість інших розглянутих видів жиру.
- Чоловіки більше схильні до накопичення вісцерального жиру ніж жінки.

Кореляція між жировою та нежировою масою

Люди з великою кількістю нежирової маси скоріше за все також будуть мати велику кількість жирової маси?

	Percentile CI (95%), $R = 1000$	
	Female	Male
r_s (android fat, android non fat)	[0.846, 0.860]	[0.883, 0.894]
r_s (gynoid fat, gynoid non fat)	[0.850, 0.864]	[0.738, 0.759]

- Досить великі кореляції. Збільшення жирової маси асоційовано зі збільшенням нежирової маси.
- Виникає проблема встановлення яка саме змінна (жирова маса чи нежирова маса) буде мати вплив на артеріальний тиск?

Кореляція між різними видами жиру

Люди з великою кількістю одного виду жиру скоріше за все також будуть мати велику кількість іншого виду жиру?

	Percentile CI (95%), $R = 1000$	
	Female	Male
r_s (android fat, gynoid fat)	[0.897, 0.907]	[0.916, 0.924]
r_s (visceral fat, subcutaneous fat)	[0.831, 0.846]	[0.805, 0.822]

- Досить великі кореляції. Збільшення кількості одного виду жиру асоційовано зі збільшенням кількості іншого виду жиру.
- Виникає проблема встановлення який саме вид жиру буде мати вплив на артеріальний тиск?

Зміна кількості жиру з віком

На початку життя людини (0-20 років) розмір її тіла помітно збільшується, і кількість жиру теж. Чи збільшується кількість жиру і після 26 років?

	Percentile CI (95%), $R = 1000$		
$age \ge 26$	Female	Male	
$r_s(\text{age, android fat})$	[0.103, 0.156]	[0.113, 0.169]	
$r_s(age, gynoid fat)$	[-0.0016, 0.0554]	[-0.0858, -0.0293]	
$r_s(age, visceral fat)$	[0.290, 0.341]	[0.365, 0.413]	
r_s (age, subcutaneous fat)	[0.0265, 0.0819]	[0.0239, 0.0815]	

Для дорослих людей, зі збільшенням віку найбільш помітно збільшується тільки вісцеральний жир на відмінну від гіноїдного та підшкірного. Позитивна кореляція андроїдного жиру виникає через те що андроїдна область містить в собі частку вісцерального жиру.

Кореляції жирової та нежирової маси з артеріальним тиском

Як кількість жиру та нежирової маси впливає на артеріальний тиск, що впливає більше?

		Percentile CI ((95%), R = 1000
android		$r_s(., systolic)$	$r_s(., diastolic)$
fat	Female	[0.454, 0.486]	[0.377, 0.412]
lat	Male	[0.470, 0.505]	[0.457, 0.491]
non fat	Female	[0.488, 0.520]	[0.413, 0.449]
non iat	Male	[0.539, 0.570]	[0.509, 0.539]
fat percent	Female	[0.321, 0.356]	[0.256, 0.293]
iat percent	Male	[0.263, 0.300]	[0.269, 0.307]

В андроїдній області:

- Кореляції присутні, підвищення жирової та нежирової маси асоційовано з підвищенням артеріального тиску.
- Кореляція нежирової маси з артеріальним тиском більша за кореляцію жирової маси з артеріальним тиском.
- З іншого боку, збільшення проценту саме жиру асоційовано з підвищенням артеріального тиску. Тому, мабуть, жирова маса має більший вплив на артеріальний тиск.

		Percentile CI ((95%), R = 1000
gynoid		$r_s(.,systolic)$	$r_s(., diastolic)$
fat	Female	[0.392, 0.426]	[0.340, 0.377]
lat	Male	[0.386, 0.423]	[0.337, 0.375]
non fat	Female	[0.403, 0.440]	[0.328, 0.368]
поптат	Male	[0.480, 0.513]	[0.427, 0.460]
fat percent	Female	[0.192, 0.23]	[0.178, 0.217]
	Male	[-0.037, 0.003]	[-0.049, -0.007]

В гіноїдній області:

- Кореляції присутні, але менші ніж в андроїдній області.
- Для чоловіків кореляція нежирової маси з артеріальним тиском більша за кореляцію жирової маси з артеріальним тиском. Для жінок вони майже однакові.
- Збільшення проценту жиру асоційовано з підвищенням артеріального тиску тільки для жінок.

Вплив розподілу маси між андроїдною та гіноїдною областю

Накопичення маси в андроїдній області гірше впливає на артеріальний тиск, порівняно з гіноїдною областю?

	Percentile CI (95%), $R = 1000$	
	Female	Male
$r_s(\frac{\text{android fat}}{\text{gynoid fat}}, \text{systolic})$	[0.389, 0.423]	[0.476, 0.509]
$r_s(\frac{\text{android fat}}{\text{gynoid fat}}, \text{systolic})$ $r_s(\frac{\text{android non fat}}{\text{gynoid non fat}}, \text{systolic})$	[0.344, 0.381]	[0.285, 0.323]
$r_s(\frac{\text{android fat}}{\text{gynoid fat}}, \text{diastolic})$	[0.302, 0.338]	[0.514, 0.543]
$r_s(\frac{\text{android non fat}}{\text{gynoid non fat}}, \text{siastolic})$	[0.306, 0.342]	[0.327, 0.363]

- Кореляції позитивні і достатньо помітні.
- Більше зосередження жирової та нежирової маси в андроїдній області свідчить про вищий артеріальний тиск.
- Для чоловіків кореляції вищі для відношень жирових мас ніж нежирових.

Кореляції вісцерального та підшкірного жиру з артеріальним тиском

	Percentile CI (95%), $R = 1000$	
	Female	Male
r_s (visceral fat, systolic)	[0.476, 0.508]	[0.476, 0.508]
r_s (subcutaneous fat, systolic)	[0.404, 0.438]	[0.400, 0.434]
r_s (visceral fat, diastolic)	[0.409, 0.445]	[0.518, 0.548]
r_s (subcutaneous fat, diastolic)	[0.322, 0.358]	[0.368, 0.406]

- Присутні позитивні кореляції.
- Вісцеральний жир має більшу кореляцію з артеріальним тиском ніж підшкірний жир.

3.6 Множиние тестувания гіпотез

Використаємо метод Беньяміні-Хохберга для усіх протестованих гіпотез.

H_0	p_{BH}	$p_{BH} < 0.05$
$\mu_{[5,15]} - \mu_{(15,25]} \ge 0$	0	TRUE
$\mu_{(15,25]} - \mu_{(25,35]} \ge 0$	7.426e-26	TRUE
$\mu_{(25,35]} - \mu_{(35,45]} \ge 0$	4.131e-34	TRUE
$\mu_{(35,45]} - \mu_{(45,55]} \ge 0$	3.469e-38	TRUE
$\mu_{(45,55]} - \mu_{(55,65]} \ge 0$	3.778e-47	TRUE

```
8.457e-11
                                                                                                                                                                                                                                                                                                                                              TRUE
                                                     \mu_{(55,65]} - \mu_{(65,75]} \ge 0
                                                                                                                                                                                                                                                       4.754e-16
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                     \mu_{(65,75]} - \mu_{(75,85]} \ge 0
                                                        \sigma_{[5,15]} - \sigma_{(15,25]} \ge 0
                                                                                                                                                                                                                                                             7.6e-13
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                     \begin{array}{l} \sigma_{(15,25]} - \sigma_{(25,35]} \geq 0 \\ \sigma_{(25,35]} - \sigma_{(35,45]} \geq 0 \end{array}
                                                                                                                                                                                                                                                        1.493e-14
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                       3.548e-10
                                                      \sigma_{(35,45]} - \sigma_{(45,55]} \ge 0
                                                                                                                                                                                                                                                        1.491e-06
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                      \sigma_{(45,55]} - \sigma_{(55,65]} \ge 0
                                                                                                                                                                                                                                                        1.204e-05
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                     \sigma_{(55,65]} - \sigma_{(65,75]} \ge 0
                                                                                                                                                                                                                                                               0.5026
                                                                                                                                                                                                                                                                                                                                              FALSE
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                     \sigma_{(65,75]} - \sigma_{(75,85]} \ge 0
                                                                                                                                                                                                                                                       9.786e-11
Q_{normal}(0.75) - Q_{hypertension}(0.25) \ge 0
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                         0.001433
                                         \begin{array}{l} l(0.75) - Qhypertension \\ \mu_{systolic}^{female} - \mu_{systolic}^{male} \geq 0 \\ \mu_{diastolic}^{female} - \mu_{diastolic}^{male} \geq 0 \\ f_{emale}^{female} - \mu_{diastolic}^{male} \geq 0 \\ f_{emale}^{fomale} - M_{emale of tall ended fat all ended non fat ended fat noid non fat ended for female of fema
                                                                                                                                                                                                                                                       6.423e-40
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                       3.134e-22
                                                                                                                                                                                                                                                     8.199e-108
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                                                                                                               TRUE
                                                                                                                                                                                                                                                       2.055e-14
```

Рішення про відкидання нульових гіпотез не змінилось.

4 Висновки

- Помітний вплив віку на артеріальний тиск. Зі зростанням віку систолічний тиск збільшується, а діастолічний тиск спочатку збільшується і потім зменшується.
- Спостерігається відмінність артеріального тиску за статтю: чоловіки у середньому мають вищий артеріальний тиск ніж жінки.
- Розподіл жиру та його вплив на артеріальний тиск відрізняється між чоловіками та жінками.
- Збільшення жирової маси асоційованно з підвищенням артеріального тиску.
- Більше скупчення жиру в андроїдній області у порівнянні з гіноїдною областю ассоційовано з підвищенням артеріального тиску.
- Залишається проблемою встановити чи насправді існує вплив жирової або нежирової маси на артеріальний тиск, та порівняти вплив різних видів жиру.

5 Використані джерела

[1] Лекції курсу "Аналіз даних"