

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

Roteiro

- o Revisão
 - o Projetos de Circuitos Combinacionais
- Circuitos Combinacionais Especiais (Circuitos de Apoio)
 - o Codificadores/Decodificadores
 - Multiplexadores/Demultiplexadores

Revisão

Projetos de Circuitos Combinacionais

Circuitos Combinacionais

Circuitos Digitais: a) Circuitos Combinacionais

b) Circuitos Sequenciais

Circuito Combinacional:

Circuito cuja saída depende apenas das combinações atuais das entradas. Não possui memória.

-Exemplos: -Portas Lógicas
-Somadores
-Decodificadores

Processo para Projeto de Circuitos Combinacionais

Receita de bolo

- 1. Descrição do problema a ser resolvido.
- 2. Descrição das condições para resolver o problema.
- 3. Estabelecer convenções de nomenclatura para as variáveis que descrevem o problema.
- 4. Montar a Tabela Verdade que descreve o problema usando a nomenclatura estabelecida em 3.
- 5. Simplificar as expressões da Tabela Verdade.
- 6. Desenhar o Circuito Simplificado

Exemplo de Projeto de Circuitos Combinacionais

Modernizando

T - 1

Romi-Isetta

Considere que você trabalha na ONG PNM (Petroleum Never More). Você faz parte da equipe de projeto que tenta ressuscitar o primeiro veículo brasileiro, o Romi-Isetta. Ele foi produzido de 1956 a 1961 pela empresa Máquinas Agrícolas Romi de Santa Bárbara d'Oeste, em São Paulo. O carro tinha chassi construído com tubos de aço e um potente motor BMW de 4 tempos, com 1 cilindro de 0,3 litro e incríveis 13 cv, que levava um mortal à emocionante velocidade máxima de 85 Km/h, com aceleração de 0 a 60 Km/h em apenas 60s. Com 2,285m de comprimento, 1,38m de largura e 1,34m de altura e consumo de 25 Km/l, o projeto do Romi-Isetta é ainda muito atual para as necessidades urbanas de hoje em dia.

Para revitalizar o Romi-Isetta, sua equipe deve desenvolver um projeto para atender itens de segurança para o carro.

O carro tem um assento ejetável. Para algumas combinações de situações de pânico o circuito controlador aciona a ejeção do banco. As situações de pânico são informadas ao circuito por meio de sensores que indicam: inundação do veículo (A), fogo (B), colisão (C), falha dos freios (D), botão de sequestro (E) acionado pelo motorista. Essas variáveis em nível lógico 1 indicam que o respectivo sensor foi acionado. Qualquer uma das seguintes combinações de sensores ativados faz o circuito acionar a ejeção:

- o falha dos freios;
- o colisão e botão de sequestro;
- o colisão e inundação;
- o colisão e fogo;
- o inundação e botão de sequestro.

Projete o circuito de controle de acionamento da ejeção usando os nomes das variáveis do texto.

Variáveis:

- (A) Inundação do veículo;
- (B) Fogo;
- (C) Colisão;
- (D) Falha dos freios;
- (E) Botão de sequestro.

Variáveis em nível lógico 1 indicam sensor acionado.

Condições do Problema:

Qualquer uma das combinações faz o circuito acionar a ejeção:

- o falha dos freios (D);
- o colisão (C) e botão de sequestro (E);
- o colisão (C) e inundação (A);
- o colisão (C) e fogo (B);
- o inundação (A) e botão de sequestro (E).

Tabela Verdade do Circuito

Α	В	С	D	Ε	5
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	0	1	0
0	1	0	1	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	1
0	1	1	1	1	1

Α	В	С	D	Ε	5
1	0	0	0	0	0
1	0	0	0	1	1
1	0	0	1	0	1
1	0	0	1	1	1
1	0	1	0	0	1
1	0	1	0	1	1
1	0	1	1	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

Mapa de Karnaugh do Circuito

		ı	I			4
	1	5	t	_		
В	0	0	1	1	<u>c</u>	
B	0	1	1	1	С	
В	1	1	1	1		
	0	0	1	1	<u>c</u>	
'	E	E		E	•	

 D
 D

 B
 O
 1
 1
 1
 C

 B
 1
 1
 1
 1
 C

 B
 0
 1
 1
 1
 T

 C
 T
 E
 E
 E

Mapa de Karnaugh do Circuito

Mapa de Karnaugh do Circuito

Desenho do Circuito

S=D+AE+AC+CE+BC

Aula de Hoje

Circuitos Combinacionais Especiais:

- o Codificadores/Decodificadores
- Multiplexadores/Demultiplexadores

Codificador e Decodificador:

- Pode-se utilizar palavras binárias para <u>representar</u> o que quisermos, definindo-as de maneira apropriada.
- Por exemplo: descrever quatro direções (esquerda, direita, frente, atrás) usando uma palavra binária.

2²=4 Com 2 bits podemos descrever as 4 direções da seguinte forma:

 $00 \Rightarrow Esquerda$

01 ⇒ Direita

 $10 \Rightarrow Frente$

11 ⇒ Atrás

Codificador e Decodificador:

- Neste exemplo, a tradução da palavra 01 significa "direita"
- Esse processo de dar significado a um grupo de bits é chamado de <u>CODIFICAÇÃO</u>.
- O processo inverso, quando um número binário é interpretado para o nosso uso, é chamado de <u>DECODIFICAÇÃO</u>.
- <u>Código:</u> É um grupo de símbolos que podem representar Números, Letras, etc.
- Análogo ao uso de um dicionário PORTUGUÊS-BINÁRIO

Processo de Codificação e Decodificação

A informação é transformada em uma palavra digital utilizando um CODIFICADOR. A informação digital é então processada pelo circuito digital, que gera uma saída digital, a qual passa por um DECODIFICADOR que traduz a palavra digital em uma forma que possa ser reconhecida pelo usuário.

Exemplo de Aplicação de Codificação e Decodificação

Decimal

Exemplo de Aplicação de Decodificação

Decodificador de Endereços para Memória

Decodificador de Endereços

Entradas

Saídas

S ₁	S ₀	D ₀	D_1	D ₂	D ₃
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

$$D0 = \overline{51.50}$$

$$D1 = \overline{51.50}$$

$$D2 = 51.50$$

$$D3 = 51.50$$

Decodificador de Endereços

Código BCD - Binary Coded Decimal

Decimal Codificado em Binário: Cada Dígito Decimal é representado por seu equivalente binário

Decimal	BCD				
0	0000				
1	0001				
2	0010				
3	0011 0100				
4					
5	0101 0110				
6					
7	0111				
8	1000				
9	1001				

100001110100_{BCD}

Código BCD - Binary Coded Decimal

Decimal Codificado em Binário: Cada Dígito Decimal é representado por seu equivalente binário

Decodificador BCD para Decimal

BCD	S ₉	5 ₈	S ₇	5 ₆	S ₅	S ₄	5 ₃	S ₂	S ₁	S ₀
0000	0	0	0	0	0	0	0	0	0	1
0001	0	0	0	0	0	0	0	0	1	0
0010	0	0	0	0	0	0	0	1	0	0
0011	0	0	0	0	0	0	1	0	0	0
0100	0	0	0	0	0	1	0	0	0	0
0101	0	0	0	0	1	0	0	0	0	0
0110	0	0	0	1	0	0	0	0	0	0
0111	0	0	1	0	0	0	0	0	0	0
1000	0	1	0	0	0	0	0	0	0	0
1001	1	0	0	0	0	0	0	0	0	0
•••	X	X	X	X	X	X	X	X	X	X
1111	X	X	X	X	X	X	X	X	X	Х

- Para definir o decodificador: simplificar expressões de S_0 a S_9 por Mapa de Karnaugh
- 9 Mapas: um para cada saída

Exercícios

1. Faça o diagrama de portas lógicas do circuito Decodificador BCD-Decimal

$$S_5 = B\overline{C}D$$

$$S_3 = \overline{B}CD$$

1. Faça o diagrama de portas lógicas do circuito Decodificador BCD-Decimal A A B B C C P P

S₉=**AD**

S₈=AD

S7=BCD

S₆=**BCD**

 $S_5 = B\overline{C}D$

S4=BCD

S₃=BCD

S₂=BCD

S₁=ABCD

S₀=ABCD

Exercícios

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

Exercícios

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos. (Continuação)

BCD	Display	a	Ь	C	d	e	f	g
0000		1	1	1	1	1	1	0
0001		0	1	1	0	0	0	0
0010		1	1	0	1	1	0	1
0011		1	1	1	1	0	0	1
0100		0	1	1	0	0	1	1
0101		1	0	1	1	0	1	1
0110		1	0	1	1	1	1	1
0111		1	1	1	0	0	0	0
1000		1	1	1	1	1	1	1
1001		1	1	1	1	0	1	1
• • •								
1111		X	X	X	X	X	X	X

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

a=A+C+BD+BD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

b=B+CD+CD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

c=B+C+D

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

d=A+BD+BC+CD+BCD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

e=BD+CD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

f=A+CD+BC+BD

2. Considere o display de 7 segmentos mostrado na figura e a tabela abaixo. Projete o decodificador do código BCD para o display de 7 segmentos.

g=A+BC+BC+CD

Multiplexador

<u>Multiplexador ou Seletor de Dados:</u> É um circuito lógico que tem diversas entradas e apenas uma saída. MUX seleciona uma única entrada para transmitir para a saída.

Entradas de Controle: permitem selecionar a entrada a ser transmitida.

Exemplo MUX 4x1

Demultiplexador

<u>Demultiplexador:</u> É um circuito lógico que realiza a função inversa à do MUX. Tem apenas uma única entrada que é enviada para uma de suas saídas.

Entradas de Controle: permitem selecionar para qual das saídas a entrada será enviada.

Exemplo DEMUX 1x4

Resumo da Aula de Hoje

Tópicos mais importantes:

- o Circuitos Combinacionais Especiais
 - o Codificadores/Decodificadores
 - Multiplexadores/Demultiplexadores

