

#### **Software Processes**

## **Topics covered**



- ♦ Software process models
- ♦ Process activities
- ♦ Coping with change

## The software process



- ♦ Many different software processes but all involve:
  - Specification defining what the system should do;
  - Design and implementation defining the organization of the system and implementing the system;
  - Validation checking that it does what the customer wants;
  - Evolution changing the system in response to changing customer needs.
- ♦ A software process model is an abstract representation of a process. It presents a <u>description of a process from</u> <u>some particular perspective.</u>

## Software process descriptions



- When we describe and discuss processes, we usually talk about the activities in these processes such as specifying a data model, designing a user interface, etc. and the ordering of these activities.
- ♦ Process descriptions may also include:
  - Products, which are the outcomes of a process activity;
  - Roles, which reflect the responsibilities of the people involved in the process;
  - Pre- and post-conditions, which are statements that are true before and after a process activity has been enacted or a product produced.

## Plan-driven and agile processes



- Plan-driven processes are processes where all of the process activities are planned in advance and progress is measured against this plan.
- ♦ In agile processes, planning is incremental and it is easier to change the process to reflect changing customer requirements.
- ♦ In practice, most practical processes include elements of both plan-driven and agile approaches.
- ♦ There are no right or wrong software processes.



# **Software process models**

## Software process models



#### ♦ The waterfall model

 Plan-driven model. Separate and distinct phases of specification and development.

#### ♦ Incremental development

 Specification, development and validation are interleaved. May be plan-driven or agile.

## ♦ Integration and configuration

- The system is assembled from existing configurable components. May be plan-driven or agile.
- In practice, most large systems are developed using a process that incorporates elements from all of these models.

#### The waterfall model





## Waterfall model phases



- There are separate identified phases in the waterfall model:
  - Requirements analysis and definition
  - System and software design
  - Implementation and unit testing
  - Integration and system testing
  - Operation and maintenance
- The main drawback of the waterfall model is the difficulty of accommodating change after the process is underway. In principle, a phase has to be complete before moving onto the next phase.

## Waterfall model problems



- Inflexible partitioning of the project into distinct stages makes it difficult to respond to changing customer requirements.
  - Therefore, this model is only appropriate when the requirements are well-understood and changes will be fairly limited during the design process.
  - Few business systems have stable requirements.
- ♦ The waterfall model is mostly used for large systems engineering projects where a system is developed at several sites.
  - In those circumstances, the <u>plan-driven nature of the waterfall</u> model helps coordinate the work.

## Incremental development





## Incremental development benefits



- ♦ The cost of accommodating changing customer requirements is reduced.
  - The amount of analysis and documentation that has to be redone is much less than is required with the waterfall model.
- ♦ It is easier to get customer feedback on the development work that has been done.
  - Customers can comment on demonstrations of the software and see how much has been implemented.
- More rapid delivery and deployment of useful software to the customer is possible.
  - Customers are able to use and gain value from the software earlier than is possible with a waterfall process.

## Incremental development problems



- ♦ The process is not visible.
  - Managers need regular deliverables to measure progress. If systems are developed quickly, it is not cost-effective to produce documents that reflect every version of the system.
- ♦ System structure tends to degrade as new increments are added.
  - Unless time and money is spent on <u>refactoring</u> to improve the software, regular change tends to corrupt its structure.
    Incorporating further <u>software changes becomes increasingly</u> <u>difficult and costly.</u>

## Integration and configuration



- Based on software reuse where systems are integrated from existing components or application systems (sometimes called COTS -Commercial-off-the-shelf) systems).
- Reused elements may be configured to adapt their behaviour and functionality to a user's requirements
- Reuse is now the standard approach for building many types of business system







## Key process stages



- ♦ Requirements specification
- ♦ Software discovery and evaluation
- ♦ Requirements refinement
- ♦ Application system configuration
- ♦ Component adaptation and integration

## Advantages and disadvantages



- Reduced costs and risks as less software is developed from scratch
- ♦ Faster delivery and deployment of system
- But requirements compromises are inevitable so system may not meet <u>real needs</u> of users
- ♦ Loss of control over evolution of reused system elements



#### **Process activities**

# Software Engineering: Products, People & Process







## Software specification



- The process of establishing what services are required and the constraints on the system's operation and development.
- ♦ Requirements engineering process
  - Requirements elicitation and analysis
    - What do the system stakeholders require or expect from the system?
  - Requirements specification
    - Defining the requirements in detail
  - Requirements validation
    - Checking the validity of the requirements

# **Requirement Types**



- ♦ Functional –Internal to system
- ♦ Non-Functional External to system

## Software design and implementation



- ♦ The process of converting the system specification into an executable system.
- ♦ Software design
  - Design a software structure that realises the specification;
- ♦ Implementation
  - Translate this structure into an executable program;
- The activities of design and implementation are closely related and may be inter-leaved.

## **Design activities**



- Architectural design, where you identify the overall structure of the system, the principal components (subsystems or modules), their relationships and how they are distributed.
- Database design, where you design the system data structures and how these are to be represented in a database.
- Interface design, where you define the interfaces between system components.
- Component selection and design, where you search for reusable components. If unavailable, you design how it will operate.

# UI Validation Examples... why do we need to test all?



- ♦ Browser testing (IE, Chrome, etc.)
- ♦ Operating system (windows, Linux, mac)
- ♦ Hardware
- ♦ Mobile apps( for all versions)
- Android
- IOS, Windows



#### Software validation



- Verification and validation (V & V) is intended to show that a system conforms to its specification and meets the requirements of the system customer.
- Involves checking and review processes and system testing.
- ♦ System testing involves executing the system with test cases that are derived from the specification of the real data to be processed by the system.
- ♦ Testing is the most commonly used V & V activity.

# **Stages of testing**





## **Testing stages**



## ♦ Component testing

- Individual components are tested independently;
- Components may be functions or objects or coherent groupings of these entities.

## ♦ System testing

 Testing of the system as a whole. Testing of emergent properties is particularly important.

#### ♦ Customer testing

 Testing with customer data to check that the system meets the customer's needs.

#### Software evolution



- ♦ Software is inherently flexible and can change.
- ♦ As requirements change through changing business circumstances, the software that supports the business must also evolve and change.
- Although there has been a demarcation between development and evolution (maintenance) this is increasingly irrelevant as fewer and fewer systems are completely new.
- Refactor: changing internal structure without changing external behaviour of the system/product.

## **System evolution**



29



## **Key points**



- Design and implementation processes are concerned with transforming a requirements specification into an executable software system.
- ♦ Software validation is the process of checking that the system conforms to its specification and that it meets the real needs of the users of the system.
- ♦ Software evolution takes place when you change existing software systems to meet new requirements. The software must evolve to remain useful.
- Processes should include activities such as prototyping and incremental delivery to cope with change.