Fahrzeugmechatronik I Modellbildung

Prof. Dr.-Ing. Steffen Müller M. Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Seite 2

Parameter	
Masse	m
Schwerpunktlage	u_{xS}, u_{yS}, u_{zS}
Trägheitstensor	$\begin{bmatrix} J_{xx} & J_{xy} & J_{xz} \\ sym & J_{yy} & J_{yz} \\ sym & sym & J_{zz} \end{bmatrix}$

Seite 3

Kennwertermittlung Massenparameter

_			- 1	1	
	ai	ma			II'a
					ш

Masse

Schwerpunktlage

Massenträgheitsmoment um eine Achse

Trägheitstensor

Bestimmung über Zeichnung

Volumenbestimmung, Dichte, Zerlegung in Elementarkörper

Zerlegung in Elementarkörper

Zerlegung in Elementarkörper, Satz von Steiner

Transformationen

Ermittlung der Masse

Verfahren der Frequenzmessung – Variante 1

Eigenfrequent dine insaturasse f = 2 = =

Eigenfrequenz mit Eusadzmasse Fam = 1 TC

Mun
$$\frac{f^2}{f^2 + f^2 m} = \frac{c}{m} = \frac{c}{m + am}$$

$$= \frac{1}{m + am}$$
Somit
$$m = am \left(\frac{f^2 + f^2 m}{a^2 + am}\right) / m$$

Seite 5

Ermittlung der Masse Verfahren der Frequenzmessung – Variante 2

Erzanfregnens unit Eusatzfeolo

Nuy
$$f^{L} - f^{Z} = \frac{1}{(d\pi)^{Z}} \left(C - C + \Delta C \right)$$

$$= -\frac{1}{(2\pi)^{Z}} \Delta C$$

$$= \frac{1}{(2\pi)^{Z}} \Delta C$$

Seite 6

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	WiegenFrequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	AushängenErmittlung von Aufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendelversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Ermittlung der Schwerpunktlage Aushängen

Seite 8

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	WiegenFrequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	AushängenErmittlung von Aufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendelversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Ermittlung der Schwerpunktlage Bestimmung von Aufstandskräften

Statisches nomenten-GG um A

Seite 10

Ermittlung der Schwerpunktlage Bestimmung von Aufstandskräften

Bauteile ohne Struktursymmetrie

Ermittlung der Schwerpunktlage Bestimmung von Aufstandskräften

Seite 12

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	WiegenFrequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	AushängenErmittlung von Aufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendelversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Ermittlung eines Massenträgheitsmomentes Einfacher Pendelversuch

Ermittlung eines Massenträgheitsmomentes Einfacher Pendelversuch

Seite 15

Ermittlung eines Massenträgheitsmomentes Einfacher Pendelversuch - Praxiseinsatz

Bild 5: Einspannvorrichtung für die Messung der tatsächlichen Massenträgheit des Autos Figure 5: Inertia jig used to measure the real inertia of the complete car (driver included)

Quelle: ATZ Extra 12/08, Formular Student Germany, "Konstruktion einer Radaufhängung", Team Quebec

Seite 16

Parameter	Ermittlung durch Messung	Bestimmung über Zeichnung
Masse	WiegenFrequenzmessung	Volumenbestimmung, Dichte, Zerlegung in Elementarkörper
Schwerpunktlage	AushängenErmittlung von Aufstandskräften	Zerlegung in Elementarkörper
Massenträgheits- moment um eine Achse	einfacher Pendelversuch	Zerlegung in Elementarkörper, Satz von Steiner
Trägheitstensor	Transformationen	Transformationen

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Für die Ermittlung des Trägheitstensors sind 6 Werte zu bestimmen

$$\mathbf{J}^{S} = egin{pmatrix} J_{xx} & J_{yx} & J_{zx} \ J_{yx} & J_{yy} & J_{zy} \ J_{zx} & J_{zy} & J_{zz} \end{pmatrix}$$

Für ein körperfestes Koordinatensystem <u>e</u>₀ gilt für die kinetische Energie einer reinen Drehung um den Schwerpunkt:

$$E_{kin} = \frac{1}{2} \mathbf{\omega}^{T} \cdot \mathbf{J}^{S} \cdot \mathbf{\omega} = \frac{1}{2} \begin{bmatrix} \omega_{x} & \omega_{y} & \omega_{z} \end{bmatrix} \begin{bmatrix} J_{xx} & J_{yx} & J_{zx} \\ J_{yx} & J_{yy} & J_{zy} \\ J_{zx} & J_{zy} & J_{zz} \end{bmatrix} \begin{bmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{bmatrix}$$

$$= \frac{1}{2} \left(J_{xx} \omega_x^2 + J_{yy} \omega_y^2 + J_{zz} \omega_z^2 + 2J_{yx} \omega_y \omega_x + 2J_{zx} \omega_z \omega_x + 2J_{zy} \omega_z \omega_y \right)$$

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Mit dem Massenträgheitsmoment J_{kk} um eine Achse gilt für die kinetische Energie

 $E_{kin} = \frac{1}{2}J_{kk} \cdot \omega_k^2$

Für die Komponenten von ω ausgedrückt im \underline{e}_0 –Koordinatensystem ergibt sich

$$\omega_x = \omega_k \cos \alpha_k$$

$$\omega_{y} = \omega_{k} \cos \beta_{k}$$

$$\omega_z = \omega_k \cos \gamma_k$$

Die Winkel α_k, β_k und γ_k müssen gemessen werden.

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Die kinetische Energie bei einer Drehung um die k-Achse ist gleich der kinetischen Energie der gleichen Drehung ausgedrückt im <u>e</u>₀ –System

$$E_{kin} = \frac{1}{2}J_{kk} \cdot \omega_k^2 = \frac{1}{2} \left(J_{xx} \omega_x^2 + J_{yy} \omega_y^2 + J_{zz} \omega_z^2 + 2J_{yx} \omega_y \omega_x + 2J_{zx} \omega_z \omega_x + 2J_{zy} \omega_z \omega_y \right)$$

Daraus folgt:

$$J_{kk} = J_{xx} \cos^2 \alpha_k + J_{yy} \cos^2 \beta_k + J_{zz} \cos^2 \gamma_k$$
$$+ 2J_{yx} \cos \alpha_k \cos \beta_k + 2J_{zx} \cos \alpha_k \cos \gamma_k + 2J_{zy} \cos \beta_k \cos \gamma_k$$

Werden nun 6 Versuche durchgeführt, ergeben sich 6 Bestimmungsgleichungen für die 6 unbekannten Tensorkomponenten.

Seite 20

Ermittlung des Trägheitstensors Verfahren des Energievergleichs

Es werden i=1,...,K Versuche um K k_i-Achsen durchgeführt und die Messgleichung

$$\mathbf{y} = \mathbf{A} \cdot \mathbf{x}$$

aufgestellt. Hierbei sind

$$\mathbf{y} = [J_{11}, J_{22}, ..., J_{KK}]^T$$

$$\mathbf{x} = \begin{bmatrix} J_{xx}, J_{yy}, J_{zz}, J_{yx}, J_{zx}, J_{zy} \end{bmatrix}^T$$

$$\mathbf{A} = \begin{bmatrix} \cos^2 \alpha_1 & \cos^2 \beta_1 & \cos^2 \gamma_1 & 2\cos \alpha_1 \cos \beta_1 & 2\cos \alpha_1 \cos \gamma_1 & 2\cos \beta_1 \cos \gamma_1 \\ \dots & \dots & \dots & \dots & \dots \\ \cos^2 \alpha_K & \cos^2 \beta_K & \cos^2 \gamma_K & 2\cos \alpha_K \cos \beta_K & 2\cos \alpha_K \cos \gamma_K & 2\cos \beta_K \cos \gamma_K \end{bmatrix}$$

Seite 21

Ermittlung des Trägheitstensors Methode der kleinsten Fehlerquadrate

Gesucht ist x, so dass der Messfehler minimal wird. Hierzu

$$\Delta = \mathbf{y} - \mathbf{A} \cdot \mathbf{x}$$

Dann

$$\Delta^T \cdot \Delta = Min$$

Somit

$$Q(\mathbf{x}) = (\mathbf{y} - \mathbf{A} \cdot \mathbf{x})^T (\mathbf{y} - \mathbf{A} \cdot \mathbf{x}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{x}^T \mathbf{A}^T \mathbf{y} + \mathbf{y}^T \mathbf{y} = Min$$

$$\frac{\partial Q(\mathbf{x})}{\partial \mathbf{x}} = \begin{cases} \frac{\partial Q(\mathbf{x})}{\partial x_1} \\ \frac{\partial Q(\mathbf{x})}{\partial x_6} \end{cases} = \mathbf{0} \qquad \mathbf{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Seite 22

Vielen Dank für Ihre Aufmerksamkeit!