Procrastinate Pro+

Расследование

Почему компания терпит убытки

Описание проекта

Вы — маркетинговый аналитик развлекательного приложения Procrastinate Pro+.

Несмотря на огромные вложения в рекламу, последние несколько месяцев компания терпит убытки.

0.1 Ваша задача — разобраться в причинах и помочь компании выйти в плюс.

Есть данные о пользователях, привлечённых с 1 мая по 27 октября 2019 года:

- лог сервера с данными об их посещениях,
- выгрузка их покупок за этот период,
- рекламные расходы.

0.2 Вам предстоит изучить:

- откуда приходят пользователи и какими устройствами они пользуются,
- сколько стоит привлечение пользователей из различных рекламных каналов;
- сколько денег приносит каждый клиент,
- когда расходы на привлечение клиента окупаются,
- какие факторы мешают привлечению клиентов.

1 План работы

- 1. Загрузите данные и подготовьте их к анализу
- Положите данные о визитах, заказах и рекламных тратах в переменные.
- Подготовьте данные к анализу. Убедитесь, что тип данных во всех колонках соответствует значениям. Проверьте отсутствие дубликатов.
- 2. Задайте функции для расчета и анализа LTV, ROI, удержания и конверсии
- 3. Проведите исследовательский анализ данных
- Создайте пользовательские профили. Определите минимальную и максимальную даты привлечения пользователей.
- Выясните, из каких стран пользователи приходят в приложение и на какую страну приходится больше всего платящих пользователей. Постройте таблицу, отражающую количество пользователей и долю платящих из каждой страны.
- Узнайте, какими устройствами пользуются клиенты и какие устройства предпочитают платящие пользователи. Постройте таблицу, отражающую количество пользователей и долю платящих для каждого устройства.

• Изучите рекламные источники привлечения и определите каналы, из которых пришло больше всего платящих пользователей. Постройте таблицу, отражающую количество пользователей и долю платящих для каждого канала привлечения.

4. Маркетинг

- Посчитайте общую сумму расходов на маркетинг. Выясните, как траты распределены по источникам. Визуализируйте изменения метрик во времени.
- Узнайте, сколько в среднем стоило привлечение одного пользователя из каждого источника. Рассчитайте средний САС на одного пользователя для всего проекта и для каждого источника трафика. Используйте профили пользователей.

5. Оцените окупаемость рекламы

Используя графики LTV, ROI и CAC, проанализируйте окупаемость рекламы. Считайте, что на календаре 1 ноября 2019 года, а в бизнес-плане заложено, что пользователи должны окупаться не позднее чем через две недели после привлечения. Необходимость включения в анализ органических пользователей определите самостоятельно.

- Проанализируйте общую окупаемость рекламы. Постройте графики LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проанализируйте окупаемость рекламы с разбивкой по рекламным каналам. Постройте графики LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Проанализируйте окупаемость рекламы с разбивкой по странам. Постройте графики LTV и ROI, а также графики динамики LTV, CAC и ROI.
- Постройте и изучите графики конверсии и удержания с разбивкой по устройствам, странам, рекламным каналам.

Ответьте на такие вопросы:

- Окупается ли реклама в целом?
- Какие устройства, страны и каналы могут снижать окупаемость рекламы?
- Чем могут быть вызваны проблемы окупаемости?
- Опишите возможные причины обнаруженных проблем и промежуточные рекомендации для рекламного отдела.

6. Напишите выводы

- Выделите причины неэффективности привлечения пользователей.
- Сформулируйте рекомендации для отдела маркетинга.

In [2]: ▶

```
# umnopm δυδπυσμέκ
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# importing a Library for operating with a data type "NaN"
import numpy as np
import datetime
from datetime import datetime, timedelta
```

In [3]:

```
# отключаем некритичные уведомления
import warnings
warnings.filterwarnings('ignore')
# показывать до 40ка колонок
pd.set_option('display.max.columns', 40)
# установка формата вывода на дисплей численных значений
pd.options.display.float_format = '{:,.2f}'.format
# Библиотека для отображения картинок
from IPython.display import Image
# бибилиотека для укоругления в бОльшую сторону
import math
```

```
In [4]: 
▶
```

```
# считываем данные
   try:
 2
 3
       # Yandex path
       visits = pd.read_csv('/datas...ort.csv')
 4
       orders = pd.read csv('/datas...ort.csv')
 5
       costs = pd.read_csv('/datas...rt.csv')
 6
 7
 8
9
   except:
10
       # Local patch
11
       visits = pd.read_csv(r"C:\Users\eddyd...ort.csv")
       orders = pd.read_csv(r"C:\Users\eddyd...ort.csv")
12
13
        costs = pd.read_csv(r"C:\Users\eddyd...ort.csv")
```

```
In [5]: 
▶
```

```
# сведения о данных
1
   def full_info(dataframe):
 3
       print(dataframe.columns)
4
       display(dataframe.head(3))
 5
       display(dataframe.info())
       print("describe")
 6
 7
       display(dataframe.describe())
 8
       print("Доли отсутствующих значений")
9
       print(round(dataframe.isna().sum() * 100 / len(dataframe), 2))
10
       return
```

2 Предобработка данных

2.1 visits

In [6]:
▶

```
1 full_info(visits)
```

	User Id	Region	Device	Channel	Session Start	Session End
0	981449118918	United States	iPhone	organic	2019-05-01 02:36:01	2019-05-01 02:45:01
1	278965908054	United States	iPhone	organic	2019-05-01 04:46:31	2019-05-01 04:47:35
2	590706206550	United States	Mac	organic	2019-05-01 14:09:25	2019-05-01 15:32:08

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 309901 entries, 0 to 309900

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	User Id	309901 non-null	int64
1	Region	309901 non-null	object
2	Device	309901 non-null	object
3	Channel	309901 non-null	object
4	Session Start	309901 non-null	object
5	Session End	309901 non-null	object

dtypes: int64(1), object(5)
memory usage: 14.2+ MB

None

describe

	User Id
count	309,901.00
mean	499,766,449,382.69
std	288,789,916,887.83
min	599,326.00
25%	249,369,122,776.00
50%	498,990,589,687.00
75%	749,521,111,616.00
max	999,999,563,947.00

```
Доли отсутствующих значений
```

User Id 0.00
Region 0.00
Device 0.00
Channel 0.00
Session Start 0.00

Session End 0.00 dtype: float64

2.1.1 пропусков данных нет

2.1.2 Названия колонок приведём к змеиному формату

В колонке user_id есть записи с одной строкой на значение user id

```
In [7]:
                                                                                            M
 1 # всё - нижним регистром
 2 visits.columns = visits.columns.str.lower()
 3 visits.columns
Out[7]:
Index(['user id', 'region', 'device', 'channel', 'session start',
       'session end'],
      dtype='object')
In [8]:
                                                                                            M
 1 # заменим пробелы символами подчеркивания
 visits.columns = [_name.replace(' ', '_') for _name in visits.columns]
 3 visits.columns
Out[8]:
Index(['user_id', 'region', 'device', 'channel', 'session_start',
       'session_end'],
      dtype='object')
2.1.3 user_id
посмотрим, сколько уникальных значений
In [9]:
                                                                                            H
 1 visits['user_id'].value_counts()
Out[9]:
33606575057
                46
943775408561
                36
901180916748
                35
870784569391
                34
764086596354
                33
214203066007
                 1
369265191867
                 1
346271445800
                 1
133742530598
                 1
279181973476
                 1
Name: user_id, Length: 150008, dtype: int64
```

и есть с несколькими строками на значение user_id **150000** уникальных пользователей

2.1.4 region

посмотрим, сколько уникальных значений нет ли неявных дубликатов

```
In [10]: ▶
```

```
visits['region'].value_counts()
```

Out[10]:

United States 207327 UK 36419 France 35396 Germany 30759 Name: region, dtype: int64

В region встречается 4 уникальных значения.

Лидер упоминаемости - United States

2.1.5 device

посмотрим, сколько уникальных значений нет ли неявных дубликатов

```
In [11]: ▶
```

```
1 visits['device'].value_counts()
```

Out[11]:

iPhone 112603 Android 72590 PC 62686 Mac 62022

Name: device, dtype: int64

В **device** встречается **4** уникальных значения.

Лидер упоминаемости - iPhone

2.1.6 channel

посмотрим, сколько уникальных значений нет ли неявных дубликатов

In [12]:

```
1 visits['channel'].value_counts()
```

Out[12]:

organic	107760
TipTop	54794
FaceBoom	49022
WahooNetBanner	20465
LeapBob	17013
OppleCreativeMedia	16794
RocketSuperAds	12724
YRabbit	9053
MediaTornado	8878
AdNonSense	6891
lambdaMediaAds	6507
Name: channel, dtype:	int64

В **channel** встречается **11** уникальных значения.

Лидер упоминаемости - organic

А среди платных каналдов - TipTop и FaceBoom

2.1.7 session start и session_end

переведём в формат даты

```
In [13]: ▶
```

```
visits['session_start'] = pd.to_datetime(visits['session_start'])
visits['session_end'] = pd.to_datetime(visits['session_end'])
```

минимальные и максимальные значения (временной интервал)

```
In [14]: ▶
```

```
print("Минимальное значение session_start", min(visits['session_start']))
print("Минимальное значение session_end", min(visits['session_end']))
print()
print("Максимальное значение session_start", max(visits['session_start']))
print("Максимальное значение session_end", max(visits['session_end']))

print("Максимальное значение session_end", max(visits['session_end']))
```

```
Минимальное значение session_start 2019-05-01 00:00:41
Минимальное значение session_end 2019-05-01 00:07:06
```

Максимальное значение session_start 2019-10-31 23:59:23 Максимальное значение session_end 2019-11-01 01:38:46

2.2 orders

In [15]:

```
1 full_info(orders)
```

Index(['User Id', 'Event Dt', 'Revenue'], dtype='object')

	User Id	Event Dt	Revenue
0	188246423999	2019-05-01 23:09:52	4.99
1	174361394180	2019-05-01 12:24:04	4.99
2	529610067795	2019-05-01 11:34:04	4.99

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40212 entries, 0 to 40211
Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	User Id	40212 non-null	int64
1	Event Dt	40212 non-null	object
2	Revenue	40212 non-null	float64
dtyp	es: float6	4(1), int64(1),	object(1)

memory usage: 942.6+ KB

None

describe

	User Id	Revenue
count	40,212.00	40,212.00
mean	499,029,531,203.23	5.37
std	286,093,675,967.16	3.45
min	599,326.00	4.99
25%	251,132,440,436.75	4.99
50%	498,283,972,665.00	4.99
75%	743,332,711,780.00	4.99
max	999,895,427,370.00	49.99

Доли отсутствующих значений

User Id 0.00 Event Dt 0.00 Revenue 0.00 dtype: float64

2.2.1 Пропусков данных нет

```
In [16]:
                                                                                             H
 1 # всё - нижним регистром
 2 orders.columns = orders.columns.str.lower()
   orders.columns
Out[16]:
Index(['user id', 'event dt', 'revenue'], dtype='object')
In [17]:
                                                                                             M
 1 # заменим пробелы символами подчеркивания
 2 orders.columns = [_name.replace(' ', '_') for _name in orders.columns]
   orders.columns
Out[17]:
Index(['user_id', 'event_dt', 'revenue'], dtype='object')
2.2.3 user_id
посмотрим, сколько уникальных значений
                                                                                             M
In [18]:
   orders['user_id'].value_counts()
Out[18]:
901180916748
                22
883098437811
                20
75337957494
                19
512471511263
                19
295795879965
                19
829252887757
                 1
499471996783
                 1
847348136580
                 1
390188868722
                 1
168548862926
                 1
Name: user_id, Length: 8881, dtype: int64
В колонке user_id есть записи с одной строкой на значение user_id
и есть с несколькими строками на значение user_id
8881 уникальных пользователей
```

2.2.4 event_dt

переведём в формат даты посмотрим мин и макс значения

интересно, это количество значительно меньше, чем в данных о визитах

In [19]:

```
1 orders['event_dt'] = pd.to_datetime(orders['event_dt'])
2 print("Минимальное значение event_dt", min(orders['event_dt']))
3 print("Максимальное значение event_dt", max(orders['event_dt']))
```

Минимальное значение event_dt 2019-05-01 00:28:11 Максимальное значение event_dt 2019-10-31 23:56:56

Интервал времени совпадает с данными в табл о визитах

2.2.5 revenue

In [20]:

```
1 print("Минимальное значение revenue", min(orders['revenue']))
2 print("Среднее значение revenue", orders['revenue'].mean())
3 print("Медиана значение revenue", orders['revenue'].median())
4 print("Максимальное значение revenue", max(orders['revenue']))
```

Минимальное значение revenue 4.99 Среднее значение revenue 5.370607778770249 Медиана значение revenue 4.99 Максимальное значение revenue 49.99

Распределение и ящик с усами

In [21]:

```
1 # setup size plot
 2 sns.set(rc = {'figure.figsize':(15,15)})
 3 fig=plt.figure()
 5 ax=fig.add_subplot(1,3,1)
 6 ax2=fig.add_subplot(1,3,2)
 7 ax3=fig.add_subplot(1,3,3)
 8 # plot line graph
 9 ax.hist(orders['revenue'])
10 ax.set_ylabel("Количество покупок", color="C1", fontsize=20)
11 ax.set_xlabel("Сумма покупки", color="C1", fontsize=20)
12 ax.set_title("Γистограмма", fontsize=20)
13
14 # plot box
15 | ax2.boxplot(orders['revenue'])
16 ax2.set_ylabel("Сумма покупки", color="C1", fontsize=20)
   ax2.set_title("Ящик с усами \пполный", fontsize=20)
17
18
19 # plot box 2
20 ax3.boxplot(orders['revenue'])
21 ax3.set_ylabel("", color="C1", fontsize=20)
22 ax3.set_title("Ящик с усами \пограниченный", fontsize=20)
23 ax3.set_ylim(0, 10.0)
24
25 plt.show()
```


Подавляющее число продаж - минимальный пакет за базовую стоимость 4,99

2.2.5.1 Посмотрим, какие покупки по цене встречаются

```
In [22]:

1 orders['revenue'].unique()

Out[22]:
array([ 4.99, 5.99, 9.99, 49.99, 19.99])

Подписки: * 4,99 * 5,99 * 9,99 * 19,99 * 49,99
```

2.3 costs

In [23]:

```
1 full_info(costs)
```

```
Index(['dt', 'Channel', 'costs'], dtype='object')
```

	dt	Channel	costs
0	2019-05-01	FaceBoom	113.30
1	2019-05-02	FaceBoom	78.10
2	2019-05-03	FaceBoom	85.80

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1800 entries, 0 to 1799
Data columns (total 3 columns):
Column Non-Null Count Dtype

0 dt 1800 non-null object
1 Channel 1800 non-null object
2 costs 1800 non-null float64

dtypes: float64(1), object(2)

memory usage: 42.3+ KB

None

describe

	costs
count	1,800.00
mean	58.61
std	107.74
min	0.80
25%	6.50
50%	12.29
75%	33.60
max	630.00

Доли отсутствующих значений

dt 0.00 Channel 0.00 costs 0.00 dtype: float64

Пропусков данных нет

2.3.1 Названия колонок приведём к змеиному формату

In [24]: ▶

```
1 # всё - нижним регистром
2 costs.columns = costs.columns.str.lower()
3 costs.columns
```

Out[24]:

```
Index(['dt', 'channel', 'costs'], dtype='object')
```

2.3.2 dt

переведём в формат даты

- название месяца
- в коротком формате

посмотрим мин и макс значения

In [25]:

```
# выделяем месяц
costs['month'] = pd.to_datetime(costs['dt']).dt.strftime('%b')
# выделяем дату
costs['dt'] = pd.to_datetime(costs['dt']).dt.date
print("Минимальное значение event_dt", min(costs['dt']))
print("Максимальное значение event_dt", max(costs['dt']))
```

Минимальное значение event_dt 2019-05-01 Максимальное значение event_dt 2019-10-27

Интервал времени совпадает с другими таблицами Добавим колонку с названием месяца

2.3.3 channel

Посмотрим уникальные значения и количества записей с ними

In [26]:

```
1 costs['channel'].value_counts()
```

Out[26]:

FaceBoom 180 MediaTornado 180 RocketSuperAds 180 TipTop 180 YRabbit 180 AdNonSense 180 LeapBob 180 OppleCreativeMedia 180 WahooNetBanner 180 lambdaMediaAds 180 Name: channel, dtype: int64

10 значений - все каналы за исключением органического Количество записей одинаковое - **180** для каждого Значит, во все каналы вкладывались равномерно

2.3.4 costs

In [27]: ▶

```
print("Минимальное значение costs", min(costs['costs']))
print("Среднее значение costs", costs['costs'].mean())
print("Медиана значение costs", costs['costs'].median())
print("Максимальное значение costs", max(costs['costs']))
```

Минимальное значение costs 0.8 Среднее значение costs 58.60961111111118 Медиана значение costs 12.285000000000002 Максимальное значение costs 630.0

Распределение и ящик с усами

In [28]:

```
1 # setup size plot
 2 sns.set(rc = {'figure.figsize':(15,15)})
 3 fig=plt.figure()
 5 ax=fig.add_subplot(1,3,1)
 6 ax2=fig.add_subplot(1,3,2)
 7 ax3=fig.add_subplot(1,3,3)
 8 # plot line graph
 9 ax.hist(costs['costs'])
10 ax.set_ylabel("Количество оплат", color="C1", fontsize=20)
11 ax.set_xlabel("Стоимость рекламы", color="C1", fontsize=20)
12 ax.set_title("Γистограмма", fontsize=20)
13
14 # plot box
15 | ax2.boxplot(costs['costs'])
16 ax2.set_ylabel("Стоимость рекламы", color="C1", fontsize=20)
   ax2.set_title("Ящик с усами \пполный", fontsize=20)
18
19 # plot box 2
20 ax3.boxplot(costs['costs'])
21 ax3.set_ylabel("", color="C1", fontsize=20)
22 ax3.set_title("Ящик с усами \пограниченный", fontsize=20)
23 ax3.set_ylim(0, 65.0)
24
25 plt.show()
```


Интересная картина.

Основная масса платежей за рекламные каналы в интервале от 7 до 35 единиц.

Приэтом наблюдается достаточно мощный горб гистограммы в области 150 - 250 единиц за канал. В дальнейшем можно будет внимателнее рассматривать эту историю, при необходимости.

2.4 Вывод по Предобработка данных

Данные поступили в хорошем состоянии.

Названия колонок приведены к змеиному формату.

Данные без пропусков и дубликатов.

Также отсутствуют неявные дубликаты.

Количества каналов и временные интервалы по всем таблицам коррелируют друг с другом (то есть совпадают).

Проблем не выявлено.

2.4.1 Структура данных

- user id идентификатор пользователя, целочисленное
- region регион, в котором находится пользователь, строковое
- device тип устройства, строковое
- channel канал привлечения, строковое
- session start тайм-код начала сессии, полная дата
- session_end тайм-код окончания сессии, полная дата

2.4.1.2 orders

- user_id идентификатор пользователя, целочисленное
- event dt тайм-код покупки, полная дата
- revenue сумма покупки, численное

2.4.1.3 costs

- dt дата оплаты рекламного канала, дата без времени
- channel рекламный канал, строковое
- costs сумма оплаты, численное

2.4.2 Основные особенности на предварительном анализе:

- * 150000 уникальных пользователей
- * United States лидер упоминаемости
- * iPhone лидер упоминаемости
- * 10 платных каналов трафика
- * **ТірТор** и **FaceBoom** лидеры по упоминаемости
- * интервалы времени с мая 2019 по ноябрь 2019
- * покупателей лишь 8881 из 150000 визитёров
- * Подавляющее число продаж минимальный пакет за базовую стоимость 4,99
- * Основная масса платежей за рекламные каналы в интервале от 7 до 35 единиц.
- * * Приэтом наблюдается достаточно мощный горб гистограммы в области 150 250 еди ниц за канал.

3 Функции для расчётов

для расчета и анализа LTV, ROI, удержания и конверсии

3.1 LTV и ROI

```
get_ltv( profiles, purchases, observation_date, horizon_days, dimensions=[], ignore_horizon=False )
return (
result_raw, # сырые данные
result_grouped, # таблица LTV
result_in_time, # таблица динамики LTV
```

```
roi_grouped, # таблица ROI
roi_in_time, # таблица динамики ROI
)
```

In [29]: ▶

```
1
   def get_ltv(
 2
       profiles,
 3
       purchases,
 4
       observation date,
 5
       horizon_days,
       dimensions=[],
 6
 7
        ignore_horizon=False,
 8
    ):
 9
10
        # исключаем пользователей, не «доживших» до горизонта анализа
       last_suitable_acquisition_date = observation_date
11
12
        if not ignore_horizon:
            last_suitable_acquisition_date = observation_date - timedelta(
13
14
                days=horizon_days - 1
15
16
       result_raw = profiles.query('dt <= @last_suitable_acquisition_date')</pre>
17
        # добавляем данные о покупках в профили
18
        result_raw = result_raw.merge(
            purchases[['user_id', 'event_dt', 'revenue']], on='user_id', how='left'
19
20
        # рассчитываем лайфтайм пользователя для каждой покупки
21
        result raw['lifetime'] = (
22
23
            result_raw['event_dt'] - result_raw['first_ts']
24
        ).dt.days
25
        # группируем по cohort, если в dimensions ничего нет
26
        if len(dimensions) == 0:
27
            result_raw['cohort'] = 'All users'
28
            dimensions = dimensions + ['cohort']
29
30
       # функция группировки по желаемым признакам
        def group_by_dimensions(df, dims, horizon_days):
31
32
            # строим «треугольную» таблицу выручки
33
            result = df.pivot_table(
                index=dims, columns='lifetime', values='revenue', aggfunc='sum'
34
35
            )
36
            # находим сумму выручки с накоплением
37
            result = result.fillna(0).cumsum(axis=1)
38
            # вычисляем размеры когорт
39
            cohort sizes = (
40
                df.groupby(dims)
                .agg({'user_id': 'nunique'})
41
                .rename(columns={'user_id': 'cohort_size'})
42
43
44
            # объединяем размеры когорт и таблицу выручки
45
            result = cohort_sizes.merge(result, on=dims, how='left').fillna(0)
46
            # считаем LTV: делим каждую «ячейку» в строке на размер когорты
47
            result = result.div(result['cohort_size'], axis=0)
48
            # исключаем все лайфтаймы, превышающие горизонт анализа
49
            result = result[['cohort_size'] + list(range(horizon_days))]
50
            # восстанавливаем размеры когорт
51
            result['cohort_size'] = cohort_sizes
52
53
            # собираем датафрейм с данными пользователей и значениями САС,
54
            # добавляя параметры из dimensions
55
            cac = df[['user_id', 'acquisition_cost'] + dims].drop_duplicates()
56
57
            # считаем средний CAC по параметрам из dimensions
58
            cac = (
59
                cac.groupby(dims)
```

```
60
                 .agg({'acquisition_cost': 'mean'})
61
                 .rename(columns={'acquisition_cost': 'cac'})
             )
62
63
64
             # считаем ROI: делим LTV на CAC
             roi = result.div(cac['cac'], axis=0)
65
 66
             # удаляем строки с бесконечным ROI
 67
             roi = roi[~roi['cohort_size'].isin([np.inf])]
 68
 69
 70
             # восстанавливаем размеры когорт в таблице ROI
             roi['cohort_size'] = cohort_sizes
71
72
             # добавляем САС в таблицу ROI
73
74
             roi['cac'] = cac['cac']
75
 76
             # в финальной таблице оставляем размеры когорт, САС
 77
             # и ROI в лайфтаймы, не превышающие горизонт анализа
             roi = roi[['cohort_size', 'cac'] + list(range(horizon_days))]
 78
79
             # возвращаем таблицы LTV и ROI
80
81
             return result, roi
 82
 83
        # получаем таблицы LTV и ROI
        result_grouped, roi_grouped = group_by_dimensions(
 84
85
             result_raw, dimensions, horizon_days
86
        )
87
88
        # для таблиц динамики убираем 'cohort' из dimensions
        if 'cohort' in dimensions:
 89
 90
             dimensions = []
91
        # получаем таблицы динамики LTV и ROI
92
        result_in_time, roi_in_time = group_by_dimensions(
93
             result_raw, dimensions + ['dt'], horizon_days
94
95
96
97
        return (
             result_raw, # сырые данные
98
             result_grouped, # таблица LTV
99
             result_in_time, # таблица динамики LTV
100
             roi_grouped, # таблица ROI
101
             roi_in_time, # таблица динамики ROI
102
        )
103
104
```

3.2 удержания

```
get_retention( profiles, sessions, observation_date, horizon_days, dimensions=[], ignore_horizon=False )
return result_raw, result_grouped, result_in_time
```

In [30]: ▶

```
def get retention(
 1
 2
        profiles,
 3
        sessions,
 4
        observation date,
 5
        horizon_days,
        dimensions=[],
 6
 7
        ignore_horizon=False,
 8
    ):
 9
        # добавляем столбец payer в передаваемый dimensions список
10
        dimensions = ['payer'] + dimensions
11
12
13
        # исключаем пользователей, не «доживших» до горизонта анализа
14
        last_suitable_acquisition_date = observation_date
        if not ignore_horizon:
15
            last_suitable_acquisition_date = observation_date - timedelta(
16
17
                days=horizon days - 1
18
19
        result_raw = profiles.query('dt <= @last_suitable_acquisition_date')</pre>
20
        # собираем «сырые» данные для расчёта удержания
21
22
        result raw = result raw.merge(
23
            sessions[['user_id', 'session_start']], on='user_id', how='left'
24
25
        result_raw['lifetime'] = (
26
            result_raw['session_start'] - result_raw['first_ts']
27
        ).dt.days
28
29
        # функция для группировки таблицы по желаемым признакам
30
        def group_by_dimensions(df, dims, horizon_days):
            result = df.pivot_table(
31
32
                index=dims, columns='lifetime', values='user_id', aggfunc='nunique'
33
34
            cohort_sizes = (
                df.groupby(dims)
35
36
                .agg({'user_id': 'nunique'})
                .rename(columns={'user_id': 'cohort_size'})
37
38
            )
39
            result = cohort sizes.merge(result, on=dims, how='left').fillna(0)
            result = result.div(result['cohort_size'], axis=0)
40
41
            result = result[['cohort_size'] + list(range(horizon_days))]
42
            result['cohort_size'] = cohort_sizes
43
            return result
44
45
        # получаем таблицу удержания
46
        result grouped = group by dimensions(result raw, dimensions, horizon days)
47
48
        # получаем таблицу динамики удержания
49
        result_in_time = group_by_dimensions(
50
            result_raw, dimensions + ['dt'], horizon_days
51
        )
52
53
        # возвращаем обе таблицы и сырые данные
54
        return result_raw, result_grouped, result_in_time
```

get_conversion(profiles, purchases, observation_date, horizon_days, dimensions=[], ignore_horizon=False)
return result_raw, result_grouped, result_in_time

In [31]:

```
def get_conversion(
 1
 2
        profiles,
 3
        purchases,
 4
        observation date,
 5
        horizon_days,
        dimensions=[],
 6
 7
        ignore_horizon=False,
 8
    ):
 9
10
        # исключаем пользователей, не «доживших» до горизонта анализа
        last_suitable_acquisition_date = observation_date
11
12
        if not ignore_horizon:
13
            last_suitable_acquisition_date = observation_date - timedelta(
                days=horizon_days - 1
14
15
        result_raw = profiles.query('dt <= @last_suitable_acquisition_date')</pre>
16
17
18
        # определяем дату и время первой покупки для каждого пользователя
19
        first_purchases = (
20
            purchases.sort_values(by=['user_id', 'event_dt'])
21
            .groupby('user_id')
            .agg({'event_dt': 'first'})
22
23
            .reset_index()
24
        )
25
26
        # добавляем данные о покупках в профили
27
        result_raw = result_raw.merge(
28
            first_purchases[['user_id', 'event_dt']], on='user_id', how='left'
29
        )
30
        # рассчитываем лайфтайм для каждой покупки
31
32
        result_raw['lifetime'] = (
            result_raw['event_dt'] - result_raw['first_ts']
33
34
        ).dt.days
35
36
        # группируем по cohort, если в dimensions ничего нет
37
        if len(dimensions) == 0:
38
            result_raw['cohort'] = 'All users'
39
            dimensions = dimensions + ['cohort']
40
        # функция для группировки таблицы по желаемым признакам
41
        def group_by_dimensions(df, dims, horizon_days):
42
43
            result = df.pivot_table(
                index=dims, columns='lifetime', values='user_id', aggfunc='nunique'
44
45
            result = result.fillna(0).cumsum(axis = 1)
46
47
            cohort_sizes = (
48
                df.groupby(dims)
49
                .agg({'user_id': 'nunique'})
50
                .rename(columns={'user_id': 'cohort_size'})
51
            )
52
            result = cohort_sizes.merge(result, on=dims, how='left').fillna(0)
            # делим каждую «ячейку» в строке на размер когорты
53
54
            # и получаем conversion rate
55
            result = result.div(result['cohort_size'], axis=0)
56
            result = result[['cohort_size'] + list(range(horizon_days))]
57
            result['cohort_size'] = cohort_sizes
58
            return result
59
```

```
60
       # получаем таблицу конверсии
61
       result_grouped = group_by_dimensions(result_raw, dimensions, horizon_days)
62
       # для таблицы динамики конверсии убираем 'cohort' из dimensions
63
       if 'cohort' in dimensions:
64
           dimensions = []
65
66
       # получаем таблицу динамики конверсии
67
68
       result_in_time = group_by_dimensions(
            result_raw, dimensions + ['dt'], horizon_days
69
70
       )
71
       # возвращаем обе таблицы и сырые данные
72
73
       return result_raw, result_grouped, result_in_time
```

3.4 Служебные функции

• get_profiles(sessions, orders, events, ad_costs, event_names=[])

return profiles

In [32]:

```
1
    def get_profiles(sessions, orders, events, ad_costs, event_names=[]):
 2
 3
        # находим параметры первых посещений
 4
        profiles = (
 5
            sessions.sort_values(by=['user_id', 'session_start'])
            .groupby('user_id')
 6
 7
            .agg(
 8
                {
 9
                     'session_start': 'first',
                     'channel': 'first',
10
                     'device': 'first',
11
                     'region': 'first',
12
13
                }
14
            )
            .rename(columns={'session_start': 'first_ts'})
15
16
            .reset_index()
17
        )
18
19
        # для когортного анализа определяем дату первого посещения
20
        # и первый день месяца, в который это посещение произошло
        profiles['dt'] = profiles['first_ts'].dt.date
21
22
        profiles['month'] = profiles['first_ts'].astype('datetime64[M]')
23
        # добавляем признак платящих пользователей
24
25
        profiles['payer'] = profiles['user_id'].isin(orders['user_id'].unique())
26
27
        # добавляем флаги для всех событий из event_names
28
        for event in event names:
29
            if event in events['event_name'].unique():
30
                profiles[event] = profiles['user_id'].isin(
                    events.query('event_name == @event')['user_id'].unique()
31
32
                )
33
34
        # считаем количество уникальных пользователей
35
        # с одинаковыми источником и датой привлечения
36
        new_users = (
            profiles.groupby(['dt', 'channel'])
37
38
            .agg({'user_id': 'nunique'})
39
            .rename(columns={'user id': 'unique users'})
40
            .reset index()
        )
41
42
        # объединяем траты на рекламу и число привлечённых пользователей
43
        ad_costs = ad_costs.merge(new_users, on=['dt', 'channel'], how='left')
44
45
        # делим рекламные расходы на число привлечённых пользователей
46
47
        ad_costs['acquisition_cost'] = ad_costs['costs'] / ad_costs['unique_users']
48
49
        # добавляем стоимость привлечения в профили
50
        profiles = profiles.merge(
            ad_costs[['dt', 'channel', 'acquisition_cost']],
51
52
            on=['dt', 'channel'],
53
            how='left',
54
        )
55
56
        # стоимость привлечения органических пользователей равна нулю
57
        profiles['acquisition_cost'] = profiles['acquisition_cost'].fillna(0)
58
59
        return profiles
```

3.5 Графические функции

- filter_data(df, window)
- return df
- plot_retention(retention, retention_history, horizon, window=7)
- plot_conversion(conversion, conversion_history, horizon, window=7)
- plot_ltv_roi(ltv, ltv_history, roi, roi_history, horizon, window=7)

In [33]:

```
1 def filter_data(df, window):
2 # для каждого столбца применяем скользящее среднее
3 for column in df.columns.values:
4 df[column] = df[column].rolling(window).mean()
5 return df
```

In [34]:

```
1
    def plot_retention(retention, retention_history, horizon, window=7):
 2
 3
        # задаём размер сетки для графиков
 4
        plt.figure(figsize=(15, 10))
 5
 6
        # исключаем размеры когорт и удержание первого дня
 7
        retention = retention.drop(columns=['cohort_size', 0])
 8
        # в таблице динамики оставляем только нужный лайфтайм
 9
        retention_history = retention_history.drop(columns=['cohort_size'])[
10
            [horizon - 1]
        1
11
12
        # если в индексах таблицы удержания только рауег,
13
14
        # добавляем второй признак — cohort
15
        if retention.index.nlevels == 1:
            retention['cohort'] = 'All users'
16
17
            retention = retention.reset_index().set_index(['cohort', 'payer'])
18
19
        # в таблице графиков — два столбца и две строки, четыре ячейки
20
        # в первой строим кривые удержания платящих пользователей
21
        ax1 = plt.subplot(2, 2, 1)
        retention.query('payer == True').droplevel('payer').T.plot(
22
23
            grid=True, ax=ax1
24
        )
25
        plt.legend()
26
        plt.xlabel('Лайфтайм')
27
        plt.title('Удержание платящих пользователей')
28
29
        # во второй ячейке строим кривые удержания неплатящих
30
        # вертикальная ось — от графика из первой ячейки
        ax2 = plt.subplot(2, 2, 2, sharey=ax1)
31
32
        retention.query('payer == False').droplevel('payer').T.plot(
33
            grid=True, ax=ax2
34
35
        plt.legend()
36
        plt.xlabel('Лайфтайм')
37
        plt.title('Удержание неплатящих пользователей')
38
39
        # в третьей ячейке — динамика удержания платящих
40
        ax3 = plt.subplot(2, 2, 3)
        # получаем названия столбцов для сводной таблицы
41
        columns = [
42
43
            name
44
            for name in retention_history.index.names
45
            if name not in ['dt', 'payer']
46
47
        # фильтруем данные и строим график
        filtered_data = retention_history.query('payer == True').pivot_table(
48
49
            index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
50
51
        filter data(filtered data, window).plot(grid=True, ax=ax3)
52
        plt.xlabel('Дата привлечения')
53
        plt.title(
54
            'Динамика удержания платящих пользователей на {}-й день'.format(
55
                horizon
56
            )
57
        )
58
59
        # в чётвертой ячейке — динамика удержания неплатящих
```

```
60
       ax4 = plt.subplot(2, 2, 4, sharey=ax3)
61
       # фильтруем данные и строим график
       filtered data = retention history.query('payer == False').pivot table(
62
            index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
63
64
       filter_data(filtered_data, window).plot(grid=True, ax=ax4)
65
       plt.xlabel('Дата привлечения')
66
       plt.title(
67
68
            'Динамика удержания неплатящих пользователей на {}-й день'.format(
69
                horizon
70
       )
71
72
73
       plt.tight_layout()
       plt.show()
74
75
```

In [35]:

```
1
   def plot_conversion(conversion, conversion_history, horizon, window=7):
 2
 3
        # задаём размер сетки для графиков
 4
        plt.figure(figsize=(15, 5))
 5
        # исключаем размеры когорт
 6
 7
        conversion = conversion.drop(columns=['cohort_size'])
 8
        # в таблице динамики оставляем только нужный лайфтайм
        conversion_history = conversion_history.drop(columns=['cohort_size'])[
9
            [horizon - 1]
10
11
        ]
12
13
        # первый график — кривые конверсии
14
        ax1 = plt.subplot(1, 2, 1)
15
        conversion.T.plot(grid=True, ax=ax1)
16
        plt.legend()
        plt.xlabel('Лайфтайм')
17
18
        plt.title('Конверсия пользователей')
19
20
        # второй график — динамика конверсии
21
        ax2 = plt.subplot(1, 2, 2, sharey=ax1)
22
        columns = [
23
            # столбцами сводной таблицы станут все столбцы индекса, кроме даты
            name for name in conversion_history.index.names if name not in ['dt']
24
25
        filtered data = conversion history.pivot table(
26
27
            index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
28
29
        filter_data(filtered_data, window).plot(grid=True, ax=ax2)
30
        plt.xlabel('Дата привлечения')
31
        plt.title('Динамика конверсии пользователей на {}-й день'.format(horizon))
32
33
        plt.tight_layout()
34
        plt.show()
35
```

In [36]:

```
1
    def plot_ltv_roi(ltv, ltv_history, roi, roi_history, horizon, window=7):
 2
 3
        # задаём сетку отрисовки графиков
 4
        plt.figure(figsize=(20, 10))
 5
 6
        # из таблицы Ltv исключаем размеры когорт
 7
        ltv = ltv.drop(columns=['cohort_size'])
 8
        # в таблице динамики Ltv оставляем только нужный лайфтайм
 9
        ltv_history = ltv_history.drop(columns=['cohort_size'])[[horizon - 1]]
10
        # стоимость привлечения запишем в отдельный фрейм
11
12
        cac_history = roi_history[['cac']]
13
14
        # из таблицы roi исключаем размеры когорт и сас
15
        roi = roi.drop(columns=['cohort_size', 'cac'])
        # в таблице динамики roi оставляем только нужный лайфтайм
16
17
        roi_history = roi_history.drop(columns=['cohort_size', 'cac'])[
            [horizon - 1]
18
19
        1
20
21
        # первый график — кривые Ltv
22
        ax1 = plt.subplot(2, 3, 1)
23
        ltv.T.plot(grid=True, ax=ax1)
24
        plt.legend()
25
        plt.xlabel('Лайфтайм')
26
        plt.title('LTV')
27
28
        # второй график — динамика Ltv
29
        ax2 = plt.subplot(2, 3, 2, sharey=ax1)
        # столбцами сводной таблицы станут все столбцы индекса, кроме даты
30
31
        columns = [name for name in ltv_history.index.names if name not in ['dt']]
32
        filtered_data = ltv_history.pivot_table(
33
            index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
34
35
        filter_data(filtered_data, window).plot(grid=True, ax=ax2)
36
        plt.xlabel('Дата привлечения')
37
        plt.title('Динамика LTV пользователей на {}-й день'.format(horizon))
38
39
        # третий график — динамика сас
40
        ax3 = plt.subplot(2, 3, 3, sharey=ax1)
        # столбцами сводной таблицы станут все столбцы индекса, кроме даты
41
42
        columns = [name for name in cac_history.index.names if name not in ['dt']]
43
        filtered_data = cac_history.pivot_table(
            index='dt', columns=columns, values='cac', aggfunc='mean'
44
45
46
        filter data(filtered data, window).plot(grid=True, ax=ax3)
47
        plt.xlabel('Дата привлечения')
48
        plt.title('Динамика стоимости привлечения пользователей')
49
50
        # четвёртый график — кривые roi
51
        ax4 = plt.subplot(2, 3, 4)
52
        roi.T.plot(grid=True, ax=ax4)
53
        plt.axhline(y=1, color='red', linestyle='--', label='Уровень окупаемости')
54
        plt.legend()
55
        plt.xlabel('Лайфтайм')
56
        plt.title('ROI')
57
58
        # пятый график — динамика гоі
59
        ax5 = plt.subplot(2, 3, 5, sharey=ax4)
```

```
# столбцами сводной таблицы станут все столбцы индекса, кроме даты
60
61
       columns = [name for name in roi_history.index.names if name not in ['dt']]
       filtered data = roi history.pivot table(
62
63
            index='dt', columns=columns, values=horizon - 1, aggfunc='mean'
64
       filter_data(filtered_data, window).plot(grid=True, ax=ax5)
65
       plt.axhline(y=1, color='red', linestyle='--', label='Уровень окупаемости')
66
       plt.xlabel('Дата привлечения')
67
       plt.title('Динамика ROI пользователей на {}-й день'.format(horizon))
68
69
       plt.tight_layout()
70
       plt.show()
71
72
```

4 Исследовательский анализ данных

4.1 Пользовательские профили.

Минимальную и максимальную даты привлечения пользователей

Вызовем функцию get_profiles(), передав ей данные о посещениях, покупках, и тратах на рекламу. Укажем, что данных о событиях у нас нет.

```
In [37]: ▶
```

```
1 events = None
2 profiles = get_profiles(visits, orders, events, costs)
3 display(profiles.head(5))
```

	user_id	first_ts	channel	device	region	dt	month	payer	acquisition_cost
0	599326	2019-05- 07 20:58:57	FaceBoom	Mac	United States	2019- 05-07	2019- 05-01	True	1.09
1	4919697	2019-07- 09 12:46:07	FaceBoom	iPhone	United States	2019- 07-09	2019- 07-01	False	1.11
2	6085896	2019-10- 01 09:58:33	organic	iPhone	France	2019- 10-01	2019- 10-01	False	0.00
3	22593348	2019-08- 22 21:35:48	AdNonSense	PC	Germany	2019- 08-22	2019- 08-01	False	0.99
4	31989216	2019-10- 02 00:07:44	YRabbit	iPhone	United States	2019- 10-02	2019- 10-01	False	0.23

4.1.1 Минимальные и максимальные даты

```
In [38]:

1 print(min(profiles['first_ts'].dt.date), "- минимальная дата первой сессии пользователе print(max(profiles['first_ts'].dt.date), "- максимальная дата первой сессии пользовате
```

```
2019-05-01 - минимальная дата первой сессии пользователей 2019-10-27 - максимальная дата первой сессии пользователей
```

4.1.2 Выясним, из каких стран пользователи приходят в приложение

4.1.3 На какую страну приходится больше всего платящих пользователей

Out[76]:

France

Germany

17450

14981

Рейтинги общего количества пользователей и количества платящих пользователей по странам совпадают

4.1.4 Доля платящих пользователей по странам

In [77]:

```
# all users
all_users = profiles[['region','user_id']].groupby(by='region').count().sort_values(by=
# payers
payers = profiles[['region','payer']][profiles['payer'] == True]\
.groupby(by='region').count().sort_values(by='payer', ascending=False)
# οδωεθεμικ δθε παδλυμω
percentage_of_buyers = all_users.merge(payers, on='region')
# doδαβωκ κολομκy δολεŭ
percentage_of_buyers['percentage'] = (percentage_of_buyers['payer'] / percentage_of_buyers)
```

user_id payer percentage

region			
United States	100002	6902	6.90
UK	17575	700	3.98
France	17450	663	3.80
Germany	14981	616	4.11

United States - безусловный лидер.

И по количеству пользователей, и доле платящих из них.

Germany занимет последнее место по количеству пользователей, но на **втором** месте по доле плятящих.

хорошая точка роста бизнеса

4.1.5 Какими устройствами пользуются клиенты

какие устройства предпочитают платящие пользователи

Построим таблицу, отражающую количество пользователей и долю платящих для каждого устройства

In [78]:

user_id payer percentage

device			
iPhone	54479	3382	6.21
Android	35032	2050	5.85
PC	30455	1537	5.05
Мас	30042	1912	6.36

Пользователи iPhone и Mac подтверждают устоявшееся мнение о них)))

4.1.6 Рекламные источники привлечения

- каналы, из которых пришло больше всего платящих пользователей
- таблица, отражающая количество пользователей и долю платящих для каждого канала привлечения

In [79]:

```
# channels
all_users_ch = profiles[['channel','user_id']].groupby(by='channel').count().sort_value
# payers
channels = profiles[['channel','payer']][profiles['payer'] == True]\
.groupby(by='channel').count().sort_values(by='payer', ascending=False)
# οδъеденим две таблицы
percentage_of_channels = all_users_ch.merge(channels, on='channel')
# добавим колонку долей
percentage_of_channels['percentage'] = (percentage_of_channels['payer'] / percentage_of_display(percentage_of_channels.sort_values('payer', ascending=False))
```

user_id payer percentage

channel			
FaceBoom	29144	3557	12.20
ТірТор	19561	1878	9.60
organic	56439	1160	2.06
WahooNetBanner	8553	453	5.30
AdNonSense	3880	440	11.34
RocketSuperAds	4448	352	7.91
LeapBob	8553	262	3.06
OppleCreativeMedia	8605	233	2.71
lambdaMediaAds	2149	225	10.47
YRabbit	4312	165	3.83
MediaTornado	4364	156	3.57

FaceBoom - рекорсмен конверсии (12,20%). Это позволило каналу FaceBoom опередить органический канал по количеству платящих пользователей.

Перспективные каналы для инвестиций - **AdNonSense** и **lambdaMediaAds**. Эти каналы характеризуются высоким коэффициентов конверсии.

4.1.7 Выводы по исследованию профилей пользователей

- 2019-05-01 минимальная дата первой сессии пользователей
- 2019-10-27 максимальная дата первой сессии пользователей
- United States страна-лидер по количеству и качеству пользователей
- Germany занимет последнее место по количеству пользователей, но на втором месте по доле платящих.
- хорошая точка роста бизнеса*
- Пользователи iPhone и Mac лидируют
- **FaceBoom** рекордсмен конверсии (12,20%). Это позволило каналу FaceBoom опередить органический канал по количеству платящих пользователей.
- Перспективные каналы для инвестиций AdNonSense и lambdaMediaAds. Эти каналы характеризуются высоким коэффициентов конверсии.

4.2.1 Общая сумма расходов на маркетинг.

Выясним, как траты распределены по источникам.

Таблица costs

4.2.2 Всего расходов на рекламу

```
In [44]:

1 print(int(costs['costs'].sum()), "общая сумма расходов на рекламу")
```

105497 общая сумма расходов на рекламу

4.2.3 Расходы на рекламу по каналам

```
In [45]:

1 costs[['channel','costs']].groupby(by='channel').sum().sort_values(by='costs', ascendir
```

Out[45]:

	costs
channel	
ТірТор	54,751.30
FaceBoom	32,445.60
WahooNetBanner	5,151.00
AdNonSense	3,911.25
OppleCreativeMedia	2,151.25
RocketSuperAds	1,833.00
LeapBob	1,797.60
lambdaMediaAds	1,557.60
MediaTornado	954.48
YRabbit	944.22

Рекламный бизнес в плену ожиотажных тенденций. Самые большие вливания в новомодный канал **ТірТор**

4.2.4 Изменение затрат на рекламу в течении времени

```
In [46]: ▶
```

```
costs.pivot_table(index = 'dt', columns = 'channel', values = 'costs', aggfunc = 'sum')
```

Out[46]:

channel	AdNonSense	FaceBoom	LeapBob	MediaTornado	OppleCreativeMedia	RocketSuperAc
dt						
2019- 05-01	40.95	113.30	2.52	6.24	4.25	21.(
2019- 05-02	34.65	78.10	2.94	5.04	4.25	16.9
2019- 05-03	47.25	85.80	2.73	6.96	5.75	16.3
2019- 05-04	51.45	136.40	3.99	9.36	4.25	17.5
2019- 05-05	36.75	122.10	4.62	11.04	5.50	27.5
4						•

In [47]:

```
sns.set(rc = {'figure.figsize':(10,10)})
 1
   ax=fig.add_subplot(2,2,1)
 2
   ax2=fig.add_subplot(2,2,2)
 3
4 # полноформатный график
   ax = costs.pivot_table(index = 'dt', columns = 'channel', values = 'costs', aggfunc =
 5
   ax.set_ylabel("Стоимость рекламы");
   ax.set_xlabel("Даты");
 7
8
   ax.set_title("Изменение затрат на рекламу \n в течении времени");
9
   # график усечённый по оси Ү
   ax2 = costs.pivot_table(index = 'dt', columns = 'channel', values = 'costs', aggfunc =
10
   ax2.set_ylim(0, 60)
11
   ax2.set_ylabel("Стоимость рекламы");
12
13
   ax2.set_xlabel("Даты");
   ax2.set_title("Нижняя часть графика \n Значения до 60");
14
15
16
   plt.show()
```

Изменение затрат на рекламу в течении времени

По графикам видим: Вливания в каналы - лидеры по оплатам **TipTop и FaceBoom** идут по **нарастющей** в течении года.

Канал AdNonSense начали достаточно активно, но потом значительно снизили. Опраданно ли это?...

4.2.5 Сколько в среднем стоило привлечение одного пользователя из каждого источника

- средний САС на одного пользователя для всего проекта
- средний САС на одного пользователя для каждого источника трафика

Группируем данные по источникам.

Суммируем суммы платежей.

Суммируем количество пользователей.

Делим платежи на пользователей.

In [48]: ▶

```
# пользователи и каналы
users_and_channels = profiles[['channel', 'user_id']].groupby(by='channel').count()
users_and_channels
```

Out[48]:

user_id

channel	
AdNonSense	3880
FaceBoom	29144
LeapBob	8553
MediaTornado	4364
OppleCreativeMedia	8605
RocketSuperAds	4448
ТірТор	19561
WahooNetBanner	8553
YRabbit	4312
lambdaMediaAds	2149
organic	56439

In [49]: ▶

```
# каналы и оплаты
channels_and_costs = costs[['channel', 'costs']].groupby(by='channel').sum()
channels_and_costs
```

Out[49]:

costs

channel		
AdNonSense	3,911.25	
FaceBoom	32,445.60	
LeapBob	1,797.60	
MediaTornado	954.48	
OppleCreativeMedia	2,151.25	
RocketSuperAds	1,833.00	
ТірТор	54,751.30	
WahooNetBanner	5,151.00	
YRabbit	944.22	
lambdaMediaAds	1,557.60	

In [50]: ▶

```
1 # объеденим результаты
2 # только по платным каналам
3 cac_by_channels = channels_and_costs.merge(users_and_channels, on='channel')
4 cac_by_channels
```

Out[50]:

costs	user_id
-------	---------

channel		
AdNonSense	3,911.25	3880
FaceBoom	32,445.60	29144
LeapBob	1,797.60	8553
MediaTornado	954.48	4364
OppleCreativeMedia	2,151.25	8605
RocketSuperAds	1,833.00	4448
ТірТор	54,751.30	19561
WahooNetBanner	5,151.00	8553
YRabbit	944.22	4312
lambdaMediaAds	1,557.60	2149

4.2.5.1 Средний САС в целом

```
In [51]:
```

```
print("Стоимость привлечения одного пользователя в целом по проекту:")
print()
print((sum(costs['costs']) / len(visits['user_id'].value_counts())) , "по всему проекту
print()
print((sum(cac_by_channels['costs']) / sum(cac_by_channels['user_id'])) , "за вычетом п
```

Стоимость привлечения одного пользователя в целом по проекту:

- 0.7032778251826577 по всему проекту, включая органический трафик
- 1.127481323942759 за вычетом пользователей органического трафика

4.2.5.2 Средний САС по каналам

In [52]:

```
# вычисляем САС и сортируем по нему
cac_by_channels['cac'] = cac_by_channels['costs'] / cac_by_channels['user_id']
display(cac_by_channels.sort_values(by='cac', ascending=False))
```

	costs	user_id	cac
channel			
ТірТор	54,751.30	19561	2.80
FaceBoom	32,445.60	29144	1.11
AdNonSense	3,911.25	3880	1.01
lambdaMediaAds	1,557.60	2149	0.72
WahooNetBanner	5,151.00	8553	0.60
RocketSuperAds	1,833.00	4448	0.41
OppleCreativeMedia	2,151.25	8605	0.25
YRabbit	944.22	4312	0.22
MediaTornado	954.48	4364	0.22
LeapBob	1,797.60	8553	0.21

Самые дорогие привлечённые пользователи из ТірТор

Вдвое дешевле из FaceBoom и AdNonSense

В группе дешевых каналов 4 участника:

- OppleCreativeMedia
- YRabbit
- MediaTornado
- LeapBob

4.2.5.3 Графически соотношение САС и вливаний в каналы

In [80]: ▶

```
# Код ревьюера:
    fig, ax = plt.subplots()
 3
    for i, txt in enumerate(cac_by_channels.index.values):
    legend = (str(i) + ' - ' + str(cac_by_channels.reset_index()['channel'][i]))
 4
 5
        ax.annotate(i, (cac_by_channels['cac'][i], cac_by_channels['costs'][i]),
 6
 7
                       xytext=(5,5), textcoords='offset points')
         plt.scatter(cac_by_channels['cac'][i], cac_by_channels['costs'][i], label = legend)
 8
 9
    plt.grid(True)
10
    plt.legend(loc="upper left")
11
12
13
    plt.show()
```


Здесь видно, что в каналы с низкой стоимостью привлечения, мало денежных вливаний.

А в каналы с большой стоимостью привлечения пользователя - самые большие денежные транши.

4.2.6 Может быть, надо сделать наоборот?

4.2.6.1 Динамика изменения САС для каждого источника во времени

Группируем профили пользователей по-месячно (за вычетом органического трафика)

Группируем оплаты рекламы по-месячно

5

plt.show()

```
In [57]:

1 profiles.pivot_table(index='dt', columns='channel', values='acquisition_cost', aggfunc=
2 plt.ylabel('CAC')
3 plt.xlabel('Дата')
4 plt.title('Динамика CAC')
```


4.3 Окупаемость рекламы

Сегодня - 01.11.2019 г. Срок окупаемости - ДВЕ недели.

Сделаем ДВА анализа:

- с органикой
- без органики

4.3.1 Установим момент и горизонт анализа данных.

```
In [60]:
```

```
1 observation_date = datetime(2019, 11, 1).date() # момент анализа
2 horizon_days = 14 # горизонт анализа
```

Используя графики LTV, ROI и CAC

4.3.2 Считаем бизнес-показатели

Для начала оценим общую ситуацию — посмотрим на окупаемость рекламы. Рассчитаем и визуализируем LTV и ROI, вызвав функции get Itv() и plot Itv_roi().

4.3.2.1 Включая органический трафик

```
In [61]:
```

```
# считаем LTV u ROI
tv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
profiles, orders, observation_date, horizon_days

# строим графики
plot_ltv_roi(ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days)
```


4.3.2.2 Исключая органический трафик

In [62]:

```
# profiles not organic
  profiles_not_organic = profiles.query('channel != "organic"')
2
3
4
  # считаем LTV и ROI
  ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
5
6
      profiles_not_organic, orders, observation_date, horizon_days
7
  )
8
  # строим графики
9
  plot_ltv_roi(ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days)
```


Органический трафик сильно улучшает показатели.

Поэтому для чистоты исследования исключим данные органического трафика в данных для анализа.

4.3.3 По графикам можно сделать такие выводы:

- Реклама не окупается. ROI в конце недели чуть выше 80%.
- САС стабильно увеличивается. Значит, эффективность рекламных кампаний падает.
- LTV +/- стабилен. Значит, дело не в ухудшении качества пользователей.
- Чтобы разобраться в причинах, пройдём по всем доступным характеристикам пользователей рекламным каналам, стране и устройству первого посещения.

4.3.4 Начнём с разбивки по рекламным каналам: передадим параметру dimensions столбец channel.

In [63]: ▶

```
# смотрим окупаемость с разбивкой по источникам привлечения
 1
 2
   dimensions = ['channel']
 3
4
 5
   ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
       profiles_not_organic, orders, observation_date, horizon_days, dimensions=dimensions
 6
 7
 8
 9
   plot_ltv_roi(
       ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
10
11
```


каша-малаша

Выведем данные двумя группами. По 5 штук.

In [64]:

```
1
   # смотрим окупаемость с разбивкой по источникам привлечения
 2
 3
   dimensions = ['channel']
 4
 5
   # каналы группа раз
   channels_1 = ['FaceBoom', 'TipTop', 'WahooNetBanner', 'AdNonSense', 'RocketSuperAds']
 6
 7
 8
   ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
 9
       profiles_not_organic.query('channel in @channels_1') , orders, observation_date, ho
10
11
12
13
   plot_ltv_roi(
       ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
14
15
```


In [65]: ▶

```
1
   # смотрим окупаемость с разбивкой по источникам привлечения
 2
 3
   dimensions = ['channel']
 4
 5
   # каналы группа раз
   channels_2 = ['LeapBob', 'OppleCreativeMedia', 'lambdaMediaAds', 'YRabbit', 'MediaTorna']
 6
 7
 8
 9
   ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
       profiles_not_organic.query('channel in @channels_2') , orders, observation_date, ho
10
11
12
13
   plot_ltv_roi(
        ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
14
15
```


а теперь - два самых хитовых канала FaceBoom и TipTop

In [66]:

```
# смотрим окупаемость с разбивкой по источникам привлечения
 1
 2
   dimensions = ['channel']
 3
 4
 5
   # каналы группа раз
   channels_3 = ['FaceBoom', 'TipTop']
 6
 7
 8
 9
   ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
10
       profiles_not_organic.query('channel in @channels_3') , orders, observation_date, ho
11
12
   plot_ltv_roi(
13
        ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
14
15
```


4.3.4.1 Вывод промежуточный по рекламным каналам:

- ТірТор
 самый большой объём вливаний
 хорошая конверсия в покупателей
 окупаемость низкая, около 0,5
 окупаемость снижается в течении отчётного периода
 стоимость привлечения растёт с огромной скоротью
 LTV приэтом растёт и стабилен на 14й день
- FaceBoom стабильные показатели жизни пользователей и стоимости их привлечения стабильные показатели по времени окупаемость низкая до 0,8
- WahooNetBanner
 стабильная стоимость привлечения пользователей
 окупаемость более 1,5
 с течением времени окупаемость нестабильна, но всегда положительная
- AdNonSense
 стабильная стоимость привлечения пользователей окупаемость отрицательная

с течением времени окупаемость нестабильна, то положительная, то отрицательная

· OppleCreativeMedia

стабильная стоимость привлечения пользователей

окупаемость более 1,5

с течением времени окупаемость нестабильна, но всегда положительная

RocketSuperAds

стоимость привлечения пользователей ** снижается** с течением времени

окупаемость более 2

с течением времени окупаемость нестабильна, но всегда положительная

LeapBob

стоимость привлечения пользователей ** снижается** с течением времени

окупаемость более 2

с течением времени окупаемость нестабильна, но всегда положительная

lambdaMediaAds

стоимость привлечения пользователей ** снижается** с течением времени

окупаемость более 2

с течением времени окупаемость нестабильна, но всегда положительная

MediaTornado

стоимость привлечения пользователей ** снижается** с течением времени

окупаемость более 2

с течением времени окупаемость нестабильна, но всегда положительная

YRabbit

стоимость привлечения пользователей ** снижается** с течением времени

окупаемость более 2

с течением времени окупаемость нестабильна, но всегда положительная

4.3.5 По странам: передадим параметру dimensions столбец region.

In [67]:

```
1
   # смотрим окупаемость с разбивкой по источникам привлечения
 2
 3
   dimensions = ['region']
 4
 5
   ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
 6
        profiles_not_organic, orders, observation_date, horizon_days, dimensions=dimensions
 7
 8
 9
   plot_ltv_roi(
       ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
10
11
```


4.3.5.1 United States - портит всю картину

- рост расходов и стоимости привлечения со временем
- падение окупаемости со временем
- отрицательная окупаемость

4.3.6 Перейдём к устройствам.

In [68]:

```
1
   # смотрим окупаемость с разбивкой по источникам привлечения
 2
 3
   dimensions = ['device']
 4
 5
   ltv_raw, ltv_grouped, ltv_history, roi_grouped, roi_history = get_ltv(
 6
       profiles_not_organic, orders, observation_date, horizon_days, dimensions=dimensions
 7
 8
 9
   plot_ltv_roi(
10
        ltv_grouped, ltv_history, roi_grouped, roi_history, horizon_days, window=14
11
```


4.3.6.1 РС - лидер по показателям

Android идёт за ними, но не достигает окупаемости всё равно

• iPhone и Мас идут вровень, но **очень плохо**, что очень странно, ведь считается, что эта аудитория наиболее **платёжеспособна и лояльна к платным услугам и товарам**

Посчитаем и визуализируем конверсию, вызвав функции get_conversion() и plot_conversion().

In [69]: ▶

```
# смотрим конверсию с разбивкой по устройствам

conversion_raw, conversion_grouped, conversion_history = get_conversion(
    profiles_not_organic, orders, observation_date, horizon_days, dimensions=dimensions)

plot_conversion(conversion_grouped, conversion_history, horizon_days)
```


4.3.7.1 Судя по графикам, пользователи iPhone и Мас конвертируются очень хорошо, причём постоянно.

Видимо, дело в удержании. .

4.3.8 Вывод по окупаемости рекламы

- страны проблемная страна United States
- каналы проблемные каналы
 - TipTop
 - FaceBoom

Вызовем функции get_retention() и plot_retention(), чтобы рассчитать и отразить на графиках этот показатель.

4.3.9 Удержание по устройствам

In [70]:

```
# cмompum ydepжaнue c pas6u6κοŭ no ycmpoŭcm6am

dimensions = ['device']

retention_raw, retention_grouped, retention_history = get_retention(
    profiles_not_organic, visits, observation_date, horizon_days, dimensions=dimensions
)

plot_retention(retention_grouped, retention_history, horizon_days)
```


4.3.9.1 Удержание пользователей всех платформ примерно схоже

4.3.10 Удержание по рекламным каналам

In [71]:

```
# смотрим удержание с разбивкой по рекламным каналам

dimensions = ['channel']

retention_raw, retention_grouped, retention_history = get_retention(
profiles_not_organic, visits, observation_date, horizon_days, dimensions=dimensions)

plot_retention(retention_grouped, retention_history, horizon_days)
```


4.3.10.1 Проблемное удержание пользователей

- AdNonSense
- FaceBoom

удержание канала ТірТор хорошее

4.3.11 Удержание по странам

In [72]:

```
# смотрим удержание с разбивкой по странам

dimensions = ['region']

retention_raw, retention_grouped, retention_history = get_retention(
profiles_not_organic, visits, observation_date, horizon_days, dimensions=dimensions)

plot_retention(retention_grouped, retention_history, horizon_days)
```


4.3.11.1 United States - отстают от других стран

4.3.12 итог

4.3.12.1 Реклама в целом не окупается

4.3.12.2 Провальные моменты

- Страна аутсайдер United States
- Провальные рекламные каналы FaceBoom и TipTop

4.3.12.3 Возможные причины

• рекламные кампании построены **без учёта особенностей** пользователей страны **United States** и каналов **FaceBoom** и **TipTop**

4.3.12.4 Стратегия выхода на окупаемость

- отключить рекламу в United States и в каналах FaceBoom и TipTop
- изучить особенности пользователей в United States и в каналах FaceBoom и TipTop
- (пригласить к сотрудничеству специалистов по United States и каналам FaceBoom и TipTop)
- запустить в тестовом режиме обновлённые рекламные кампании в **United States** и в каналах **FaceBoom** и **TipTop**
- проверить результаты

5 Вывод

• Реклама в целом не окупается

5.1 Тянут вниз

- · United States
- FaceBoom
- TipTop

5.2 Драйверы успеха

Рекламные каналы

- RocketSuperAds
- LeapBob
- lambdaMediaAds
- MediaTornado
- YRabbit

Платформы

- PC
- Android

5.3 Рекомендации по исправлению ситуации

- отключить рекламу в United States и в каналах FaceBoom и TipTop
- изучить особенности пользователей в United States и в каналах FaceBoom и TipTop
- (пригласить к сотрудничеству специалистов по United States и каналам FaceBoom и TipTop)
- запустить в тестовом режиме обновлённые рекламные кампании в United States и в каналах FaceBoom и TipTop
- проверить результаты

Анализ провёл Эдуард Дементьев

(https://eddydewrussia.ru/category/%d0%b0%d0%bd%d0%b0%d0%bb%d0%b8%d0%b7-%d0%b4%d0%b0%d0%bd%d0%bd%d1%8b%d1%85/)