NUMBER THEORY

MATHEMATICAL TRIPOS PART II

Familiarity with IA Numbers and Sets is assumed.

1. Divisibility

Theorem 1.1 (Division Algorithm). Given $a, b \in \mathbb{Z}$ with b > 0, there exists $q, r \in \mathbb{Z}$ with a = bq + r and $0 \le r < b$.

Proof. Let $S = \{a - nb : n\mathbb{Z}\}$, then S contains some nonnegative integer. Let the smallest be r. Then r < b, as otherwise $r - b \in S$ would be nonnegative and smaller than r. So a - qb = r for some $q \in \mathbb{Z}$, or a = qb + r.

Definition 1.2. If r = 0, we write $b \mid a$ ("b divides a"), otherwise we write $b \nmid a$.

Given $a_1, \ldots, a_n \in \mathbb{Z}$ not all zero, let $I = \{\lambda_1 a_1 + \cdots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}\}$. Then for $a, b \in I$ and $l, m \in \mathbb{Z}$, we have $la + mb \in I$.

Lemma 1.3. $I = d\mathbb{Z} = \{md \mid m \in \mathbb{Z}\} \text{ for some } d > 0.$

Proof. Let d be the least positive element in I. Then $d\mathbb{Z} \subset I$. Conversely, if $a \in I$, write a = qd + r for some $0 \le r < a$. If r = 0, then $a \in d\mathbb{Z}$. Otherwise, $r = a - qd \in I$ is positive and smaller than d, contradiction.

In particular, $d \mid a_i$ for all i; Conversely, if $c \mid a_i$ for all i, then $d\mathbb{Z} = I \subset c\mathbb{Z}$, hence $c \mid d$.

Definition 1.4. We write $d = \gcd(a_1, \ldots, a_n)$ or (a_1, \ldots, a_n) and say d is the greatest common divisor of a_1, \ldots, a_n .

Corollary 1.5 (Bézout). Suppose $a, b, c \in \mathbb{Z}$ and a, b not both 0. There exists $x, y \in \mathbb{Z}$ such that ax + by = c if and only if $(a, b) \mid c$.

Theorem 1.6 (Euclid's Algorithm). Given $a, b \in \mathbb{N}$ with a > b, setting $b = r_0 > 0$ we can repeatedly apply the division algorithm to get

$$a = q_1r_0 + r_1$$

$$b = q_2r_1 + r_2$$

$$r_1 = q_3r_2 + r_3$$

$$\vdots$$

$$r_{k-1} = q_{k+1}r_k + 0,$$

where $0 < r_i < r_{i-1}$ for $i \le k$. Then $r_k = (a, b)$.

Proof. Note that $r_k \mid r_0$ and $r_k \mid a$, so $r_k \leq (a,b)$. Also if $m \mid a$ and $m \mid b$ then $m \mid r_k$. Hence $(a,b) \leq r_k$, and $(a,b) = r_k$.

Lemma 1.7 (Euclid's Lemma). Let p be a prime and let $a, b \in \mathbb{Z}$. Then $p \mid ab$ if and only if $p \mid a$ or $p \mid b$.

Date: June 8, 2023.

Proof. The "if" direction is clear. Conversely, suppose $p \mid ab$ yet $p \nmid a$, then $(a, p) \neq p$ but $(a, p) \mid p$ and p is prime, so (a, p) = 1, therefore there are some integers n, y such that ax + py = 1. Now $b = b(ax + py) = x(ab) + (by)p \implies p \mid b$

Theorem 1.8 (Fundamental Theorem of Arithmetic). Every n > 1 can be written a a product of primes. Furthermore, this is unique up to reordering.

Proof. Existence follows easily by strong induction. For uniqueness we also use induction. Suppose that n has two prime factorisations $n=p_1\cdots p_k=q_1\cdots q_l$. We have $p_1\mid q_1\cdots q_k$, so $p_1\mid q_i$ for some i. We can label that prime q_1 . Hence $p_1=q_1$. So $n/p_1=p_2\cdots p_k=q_2\cdots q_l$, and by induction k=l and $p_2=q_2, p_3=q_3$, etc.

Theorem 1.9 (Euclid). The number of primes is infinite.

Proof. If there was finitely many primes, say p_1, \ldots, p_k , then the number $N = p_1 p_2 \cdots p_k + 1$ would have no prime factors which is a contradiction.

2. Congruences

Definition 2.1. Let $n \ge 1$ be an integer. We say a is *congruent* to b modulo n, written $a \equiv b \pmod{n}$, if $n \mid a - b$.

Theorem 2.2. There exists x such that $ax \equiv 1 \pmod{n}$ if and only if (a, n) = 1.

Proof. The "only if" direction is clear. For the "if" direction, by Bézout we can write ax + ny = 1 for some d, and so $ax \equiv 1 \pmod{n}$ as required.

Theorem 2.3 (Chinese Remainder Theorem). Given $m_1, \ldots, m_k \in \mathbb{N}$ pairwise coprime, the set of congruences $x \equiv a_i \pmod{m_i}$, $1 \le i \le k$, has a unique solution $x \mod M = m_1 \cdots m_k$.

Proof. Write $M_i = M/m_i$, then $(m_i, M_i) = 1$ for all i. Therefore for each i there is a b_i such that $M_ib_i \equiv 1 \pmod{m_i}$. We also have $M_ib_i \equiv 0 \pmod{m_j}$ for all $j \neq i$. Take $x = \sum_i a_ib_iM_i$. For uniqueness, if x, y satisfies the system, then $m_i \mid x - y$ for all i, therefore $M \mid x - y$ since there is no prime that divides two distinct m_i 's. \square

Theorem 2.4 (Fermat's Little Theorem). If $a, p \in \mathbb{Z}$ with p prime, then $a^p \equiv a \pmod{p}$.

Proof. For p=2 this is true. Then for $p \neq 2$, $a^p - (a-1)^p \equiv 1 \pmod{p}$ by the binomial theorem.

Definition 2.5 (Euler Totient Function). Let $\phi(n)$ denote the number of integers $a, 1 \le a \le n$, with (a, n) = 1.

Remark. Directly from the definition we get that $\phi(p^k) = p^k - p^{k-1}$ for p prime, that $\phi(n)$ is multiplicative and thus $\phi(n) = n \prod_{p|n} (1 - 1/p)$.

Theorem 2.6 (Euler-Fermat). If $a, n \in \mathbb{Z}$ have (a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{p}$.

Proof. By Lagrange's theorem (on groups), the order of a in $(\mathbb{Z}/n\mathbb{Z})^{\times}$ divides the order of the group, $\phi(n)$.

Theorem 2.7 (Wilson). $(p-1)! \equiv -1 \pmod{p}$.

Proof. We can pair up terms in the product (p-1)! with their inverses which then multiply to one, but this leaves only 1 and p-1 unpaired.

Theorem 2.8 (Lagrange). Let p be a prime and let f(x) be an integer polynomial of degree n. Then $f(x) \equiv 0 \pmod{p}$ has at most n solutions modulo p.

Definition 2.9. For $a, n \in \mathbb{Z}$ with n > 0, the *order* of a modulo n is the least positive integer d such that $a^d \equiv 1 \pmod{n}$. We say that a is a *primitive root* if its order is $\phi(n)$.

Theorem 2.10. There exists a primitive root mod n if and only if $n = 2, 4, p^j$ or $2p^j$, where p is an odd prime.

Proof. For n=2,4 this is easy. We first find a primitive root modulo p. Let $\psi_p(d)$ count the number of $1,2,\ldots,p-1$ of order d modulo p. Observe that $\psi_p(d)=0$ if $d\nmid p-1$, so $\sum_{d\mid p-1}\psi_p(d)=p-1$. If a has order d, $\{a,a^2,\ldots,a^d\}$ are solutions to $x^d\equiv 1\pmod p$ and hence are all of them by Lagrange. So $\psi(d)\leq \phi(d)$. But $\sum_{d\mid n}\phi(d)=n$ as $\phi(d)$ counts $\{m\mid (m,n)=n/d\}$. Thus $\psi(d)=\phi(d)$ for all d. In particular, there are $\phi(p-1)$ elements of order p-1. Let g be one of them.

If $n=p^j,\ j>1$, suppose g has orders p^ks modulo $n,\ s\mid p-1$. By Fermat's Little Theorem $g^{p^ks}\equiv g^s\pmod p$, so s=p-1. $g^{p-1}\equiv 1\pmod p^2$ implies $(g+p)^{p-1}\equiv 1+(p-1)g^{p-2}p\not\equiv 1\pmod p^2$, so WLOG $g^{p-1}\not\equiv 1\pmod p^2$, thus g is a primitive root mod p^2 . $g^{p^{j-2}(p-1)}=(1+\ell p)^{p^{j-2}}\equiv 1+\ell p^{j-1}\not\equiv 1\pmod p^j$, so g is also a primitive root mod p^j for all $j\geq 2$. One of $g,g+p^j$ is odd, and thus also serves as a primitive root mod $2p^j$, noting $\phi(2p^j)=\phi(p^j)$.

For the other direction, for n not a prime power, n=rs with (r,s)=1 and $\phi(r), \phi(s)$ both even. $a^{\phi(n)}/2 \equiv a^{\phi(r)\phi(s)/2} \equiv 1 \mod s$. So $a^{\phi(n)/2} \equiv 1 \pmod n$. For $n=2^j, j\geq 3, a^2\equiv 1 \pmod 8$ for all odd a, thus $a^{2^{k+1}}\equiv (a^2)^{2^k}\equiv 1 \pmod 2^{k+3}$.

3. Quadratic Residues

Definition 3.1. We call a a quadratic residue modulo n if there exists x such that $x^2 \equiv a \pmod{n}$.

Lemma 3.2. Let p be an odd prime. Then there are exactly (p-1)/2 quadratic residues modulo p.

Proof. Take g to be a primitive root modulo p. Then the set of quadratic residues is exactly $\{g^{2n} \mod p \mid n \in \mathbb{Z}\}$ which has size (p-1)/2.

Definition 3.3. Let p be an odd prime and $a \in \mathbb{Z}$. The *Legendre symbol* is defined as

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } p \mid a, \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p, \\ -1 & \text{otherwise.} \end{cases}$$

Theorem 3.4 (Euler's Criterion). Let p be an odd prime, and $a \in \mathbb{Z}$, then

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Proof. If a is a quadratic residue, we can write $x^2 \equiv a \pmod{p}$ and then $a^{(p-1)/2} \equiv x^{p-1} \equiv 1 \pmod{p}$, as required. By Lagrange, $a^{(p-1)/2} \equiv 1 \pmod{p}$ has at most (p-1)/2 solutions, so if a is not a quadratic residue, we must have $a^{(p-1)/2} \equiv -1 \pmod{p}$.

Corollary 3.5. Let p be an odd prime and let $a, b \in \mathbb{Z}$, then

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Corollary 3.6. Let p be an odd prime, then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ -1 & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

Definition 3.7. The numerically least residue a' of $a \pmod{n}$ to $a' \equiv a$ with $-n/2 < a' \le n/2$.

Theorem 3.8 (Gauss' Lemma). Given an odd prime p and a with (a, p) = 1, let a_j denote the numerically least residue of $a \cdot j \pmod{p}$. Then $(a/p) = (-1)^{\ell}$, where $\ell = |\{j \leq (p-1)/2 \mid a_j < 0\}|$.

Proof. We have $a_j = \pm a_k$ if and only if $j = \pm k$, so $|a_j|$ takes all values $1, \ldots, (p-1)/2$. Hence $\prod_{j \leq (p-1)/2} a_j = (-1)^\ell r!$, so $a^{(p-1)/2} \equiv (-1)^\ell \pmod p$. The result then follows from Euler's Criterion.

Theorem 3.9 (Law of Quadratic Reciprocity). If p, q are distinct odd primes, (p/q) = (q/p) unless $p \equiv q \equiv 3 \pmod{4}$, in which case (p/q) = -(q/p). More concisely, $(p/q)(q/p) = (-1)^{((p-1)/2)((q-1)/2)}$.

Proof. By Gauss' lemma, $(p/q)=(-1)^\ell$, where ℓ is the number of lattice points (x,y) satisfying 0 < x < q/2, -q/2 < px - qy < 0. For such points q(y-1/2) < px, so y < p/2 + 1/2/ We therefore lose nothing in imposing the extra symmetrising condition 0 < y < p/2. Similarly $(q/p)=(-1)^m$ where m is the number of lattice points in the rectangle 0 < x < q/2. 0 < y < p/2, satisfying -p/2 < qx - py < 0 or equivalently 0 < px - qy < p/2. Now it suffices to prove that $((p-1)/2)((q-1)/2) - (\ell+m)$ is even. But ((p-1)/2)((q-1)/2) is just the number of lattice points in our rectangle and we have a bijection between such points with $px - qy \le -q/2$ and those with $px - qy \ge p/2$ by means of transformation x' = (q+1)/2 - x, y' = (p+1)/2 - y. (This does not fix the line px - qy = 0, so we cannot say the same for our original sets.

Definition 3.10. For n odd, (m, n) = 1, we define the *Jacobi symbol* (m/n) by

$$\left(\frac{m}{p_1^{\alpha_1}\cdots p_k^{\alpha_k}}\right) = \left(\frac{m}{p_1}\right)^{\alpha_1}\cdots \left(\frac{m}{p_k}\right)^{\alpha_k}$$

in terms of Legendre symbols.

Remark. All of our previously stated theorems hold for Jacobi symbols, though Jacobi symbols are not a test for quadratic residuality, only a computational technique.

4. Quadratic Forms

Definition 4.1. A binary quadratic form is a function $f(x,y) = ax^2 + byx + cy^2$, $a, b, c \in \mathbb{Z}$. This may sometimes be represented more simply as (a, b, c). Note that

$$f(x,y) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Definition 4.2. A unimodular substitution is a transformation X = px + qy, Y = rs + sy with ps - qr = 1. Equivalently, $(X \ Y)^{\mathsf{T}} = A(x \ y)^{\mathsf{T}}$, with $A \in \mathrm{SL}_2(\mathbb{Z})$.

Definition 4.3. Two binary quadratic forms f and f' are equivalent of they are related by a unimodular substitution. We then write $f \sim f'$.

Definition 4.4. $4af(x,y) = (2ax + by)^2 - dy^2$ where $d = \operatorname{disc}(f) = b^2 - 4ac$ is the discriminant of f.

Theorem 4.5. Equivalent forms have the same discriminant.

Proof. We have

$$\operatorname{disc}(f) = -4 \left| \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix} \right|$$
$$= -4 \left| \begin{pmatrix} p & q \\ r & s \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} \right|$$

as $(ps - qr)^2 = 1$, and this is equal to $\operatorname{disc}(f')$.

Definition 4.6. A binary quadratic form with $d \neq 0$ is positive definite if $f(x,y) \geq 0$ for all x, y. It's negative definite if $f(x,y) \leq 0$, and indefinite otherwise.

Theorem 4.7. A positive definite form (a, b, c) is equivalent to some reduced form satisfying $-a < b \le a < c$ or $0 \le b \le a = c$.

Proof. Using unimodular substitution $S:(a,b,c) \mapsto (c,-b,a)$ and $T_{\pm}:(a,b,c) \to (a,b\pm 2a,a\pm b+c)$, if a>c. i.e. S to decrease a while keeping |b| fixed. If a< c and |b|>a, then use T_+ or T_- to decrease |b| whilst keeping a fixed, noting all the while that a+|b| is strictly decreasing so this process must stop. Finally if b=-a, apply T_+ to get +a and if a=c, apply S to get b>0.

Theorem 4.8. The smallest integer $\neq 0$ represented by a reduced positive definite form (a, b, c) all coprime are a, c and a - |b| + c in that order.

Proof. f(0,0) = 0. f(1,0) = a, f(0,1) = c, $0 < a \le c$ since f is reduced. Now, for $|x| \ge |y| > 0$, $f(x,y) \ge a|x|^2 - |b||x|^2 + c|y|^2 = (a - |b|)|x|^2 + c|y|^2 \ge a - |b| + c$. Similarly if $|y| \ge |x| > 0$, and we can only achieve equality at $(\pm 1, \pm 1)$ and indeed we do.

Theorem 4.9. No two reduced forms are equivalent.

Proof. By our result on the smallest represented integer, $f \sim f'$ implies a = a' and c = c'. Then by equivalent forms having the same discriminant, d = d' hence $b = \pm b'$. If b = 0 or b = b' we are done, so suppose b > 0 and $(a, b, c) \sim (a, -b, c)$. Then both reduced implies a < c and |b| < a, or b = -a (which cannot happen). Now f, f' both satisfy f(x, y) = a if and only if $(x, y) = (\pm 1, 0)$ and f(x, y) = c if and only if $(x, y) = (0, \pm 1)$. so if they are equivalent under substitution $\begin{pmatrix} p & q \\ r & s \end{pmatrix}$ we

must have
$$\begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} \pm 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \pm 1 \\ 0 \end{pmatrix}$$
 implying $p = \pm 1, r = 0$ and $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 0 \\ \pm 1 \end{pmatrix} = \begin{pmatrix} 0 \\ \pm 1 \end{pmatrix}$ implying $q = 0, s = \pm 1$. det $\begin{pmatrix} p & q \\ r & s \end{pmatrix} = \pm I$ implies $f = f'$ as required. \square

Theorem 4.10. There are finitely many reduced forms with discriminant d. Indeed, $|b| \le a \le \sqrt{d/2}$.

Proof. $d = b^2 - 4ac \le ac - 4ac \le -3a^2$ which implies our claim. $c = (b^2 - d)/4a$.

Theorem 4.11. Given $n \in \mathbb{N}$, n is properly represented by a form f, that is f(x,y) = n for some coprime x,y if and only if f is equivalent to a form (n,w,c) with first coefficient n.

Proof. If f is equivalent to this form $f \sim f'$, f'(1,0) = n so f(x,y) = n properly represented as coprimality is preserved under $\mathrm{SL}_2(\mathbb{Z})$. If f(x,y) = n with (x,y) = 1 then there exists q, s such that xs - qy = 1. Then

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & q \\ y & s \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$$

so applying this matrix being in $SL_2(\mathbb{Z})$ to f, we get f' with f'(1,0) = n.

Theorem 4.12. Given $n \in \mathbb{N}$, n is properly represented by some form of discriminant d if and only if there is a solution w to $w^2 = d \pmod{4n}$.

Proof. By the previous theorem, $w^2 - 4nc = d$. Conversely, $w^2 \equiv d \pmod{4n}$ implies there exists c such that $w^2 = d + 4nc$ implies (n, w, c) has discriminant d.

5. Prime Numbers

Definition 5.1. The prime counting function is $\pi(x)$, the number of primes $\leq x$.

Definition 5.2. The Möbius function $\mu(n)$, $n \in \mathbb{N}$ is such that $\mu(n) = 0$ if n is not squarefree, and $\mu(n) = (-1)^r$ if n is a product of r distinct primes.

Observe that $\sum_{d|n} \mu(d) = 0$ for n > 1.

Theorem 5.3 (Legendre's Formula). $\pi(x) - \pi(\sqrt{x}) + 1 = \sum_{d|P} \mu(d) \lfloor x/d \rfloor$, where P denotes the product $P = p_1 \cdots p_k$ of primes $\leq \sqrt{x}$.

Proof. The Eratosthenes sieve up to \sqrt{x} applied to $\{1, 2, ..., x\}$ crosses out all multiples of $p_1, ..., p_k$ leaving behind only primes p with $\sqrt{x} and 1. The result now follows by the Inclusion-Exclusion principle.$

Theorem 5.4. $\sum_{i=1}^{\infty} 1/p_i$ diverges.

Proof. Otherwise, there exists k such that the truncated series $\sum_{i>k} 1/p_i < 1/2$. Set $P = p_1 \cdots p_k$ and observe that every number equivalent to 1 (mod p) can be factorised as a product of j of the primes P_{k+1}, p_{k+2}, \ldots for some j. Hence

$$\sum_{n \equiv 1 \bmod p} \frac{1}{n} \le \sum_{j=1}^{\infty} \left(\sum_{i=k+1}^{\infty} \frac{1}{p_i} \right)^j \le \sum_{j=1}^{\infty} \left(\frac{1}{2} \right)^j = 1,$$

which is a contradiction.

Theorem 5.5. $\prod_{p \le n} p \le 4^n$.

Proof. The proof is by induction, observing

$$\prod_{n$$

Corollary 5.6. $\pi(x) \le x \log 4 / \log x$.

Theorem 5.7 (Prime Number Theorem). $\pi(x) \sim \frac{x}{\log x}$.

Definition 5.8. The *Riemann zeta function* is defined for $s = \sigma + it$ for $\sigma > 1$ by $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$.

Theorem 5.9 (Euler Product). $\zeta(s) = \prod_p (1 - p^{-s})^{-1}, \ \sigma > 1.$

Proof. For any N, $\prod_{p \leq N} (1-p^{-s})^{-1} = \prod_{p \leq N} (1+p^{-s}+p^{-2s}+\cdots) = \sum_m m^{-s}$, where m runes through all integers with no prime factors > N. the difference between this and $\sum_{n \leq N} n^{-s}$ is bounded in absolute value by $\sum_{n > N} n^{-\sigma} \to 0$ as $N \to \infty$.

Theorem 5.10. There are infinitely many primes in the arithmetic progression a, a + d, ... provided (a, d) = 1.

-

6. Diophantine Approximation

Theorem 6.1 (Dirichlet). Given $\theta \in \mathbb{R}$, $N \in \mathbb{N}$, there exists integers p, q with $q \leq N$ such that $|\theta - p/q| \leq 1/q^N \leq 1/q^2$.

Proof. Two of θ , 2θ , ..., $N\theta$ must differ by $\leq 1/N$ modulo 1. Their difference $q\theta$ differs from some p by $\leq 1/N$.

Definition 6.2. Given $\theta \in \mathbb{R}$, define $a_0 = \lfloor \theta \rfloor$, $\theta_1 = \frac{1}{\theta - a_0}$, $a_1 = \lfloor \theta_1 \rfloor$, $\theta_2 = \frac{1}{\theta_1 - a_1}$, etc. terminating if some θ_i is an integer. Then

$$\theta = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

is the continued fraction representation of θ . The integers a_i are called partial quotients of θ , and we write $\theta = [a_0, a_1, \ldots]$. $p_n/q_n = [a_0, a_1, \ldots, a_n]$ are called convergents.

Theorem 6.3. (i) The p_n, q_n satisfy the recurrence relations

$$p_n = a_n p_{n-1} + p_{n-2},$$

$$q_n = a_n q_{n-1} + q_{n-2},$$

with $p_0=a_0$ and $q_0=1$, $p_1=a_0a_1+1$ and $q_1=a_1$. (ii) $|p_{n-1}/q_{n-1}-p_n/q_n|=\frac{1}{q_{n-1}q_n}$. (iii) θ lies in $[p_{n-1}/q_{n-1},p_n/q_n]$ and thus $|\theta-p_n/q_n|\leq 1/q_n^2$.

Proof. (i) We check this is true for n=2. Then supposing it is true for $n=m-1\geq 2$, we observe $p_j/q_j=a_0+q_j'/p_j'$, where $p_j'/q_j'=[a_1,a_2,\ldots,a_j]$. Then $p_j=a_0p_j'+q_j'$ and $q_j=p_j'$ expanded implies our result. (ii) $p_nq_{n+1}-p_{n+1}q_n=(-1)^{n+1}$ follows from (i) by induction. (iii) Observe $\theta=[a_0,a_1,\ldots,a_n,\theta_{n+1}]$ and $0<1/\theta_{n+1}\leq 1/a_{n+1}$ so θ lies in the interval $[p_n/q_n,\,p_{n+1}/q_{n+1}]$ and this with the other results gives the stated bound.

Theorem 6.4. The continued fractions process terminates if θ is rational.

Proof. If $\theta = a/b$ then $1/q_n^2 \ge |\theta - p_n/q_n| \ge 1/q_n b$ for $p_n/q_n \ne a/b$, so q_n may never exceed b. The partial quotients a_0, a_1, \ldots are in fact the q_i of Euclid's algorithm on (a, b).

Theorem 6.5. $\theta = \frac{p_n \theta_{n+1} + p_{n-1}}{q_n \theta_{n+1} + q_{n-1}}$ from $\theta = [a_0, \ldots, a_n, \theta_{n+1}]$. The p_n/q_n give successively better approximations of θ as n increases.

Proof. Multiplying up $|q_n\theta - p_n|$, we find that it equals $(q_n\theta_{n+1} + q_{n-1})^{-1}$ and the denominator of the latter exceeds $q_n + q_{n-1} = (a_n + 1)q_{n-1} + q_{n-2} > q_{n-1}\theta_n + q_{n-2}$.

Theorem 6.6. If $0 < q < q_{n+1}$, $|q\theta - p| \ge |q_n\theta - p_n|$.

Proof. Define u, v by $p = up_n + vp_{n+1}, q = uq_n + vq_{n+1}$. Solving by multiplying the former by q_{n+1} and the latter by p_{n+1} and q_n, p_n respectively observe that u, v are integers. $|q\theta - p| = |u(q_n\theta - p_n) + v(q_{n+1}\theta - p_{n+1})| \ge |q_n\theta - p_n|$ as $u \ne 0$ and $\operatorname{sgn}(v) \ne \operatorname{sgn}(u)$.

Theorem 6.7. If rational p/q satisfies $|\theta - p/q| < \frac{1}{2q^2}$, then it is convergent to θ .

Proof. Suppose $q_n < q < q_{n+1}$. Then $|p/q - p_n/q_n| \le |\theta - p/q| + |\theta - p_n/q_n| \le 2|q\theta - p|/q_n < 1/qq_n$, which is a contradiction.

Definition 6.8. The equation $x^2 - dy^2 = 1$, where d is a positive integer which is not a square is known as *Pell's equation*.

Theorem 6.9. If (x,y) is a solution to the Pell equation $x^2 - dy^2 = 1$, then x/y must be a convergent to \sqrt{d} .

Proof. $(x-y\sqrt{d})(x+y\sqrt{d})=1$ implies $x-y\sqrt{d}=\frac{1}{x+y\sqrt{d}}$. Certainly $x>y\sqrt{d}$, whence $x-y\sqrt{d}<\frac{1}{2y\sqrt{d}}$ and thus $|\sqrt{d}-x/y|<\frac{1}{2y^2}$. The previous theorem hen gives us our result.

Theorem 6.10. If (x,y) is the solution of $x^2 - dy^2 = 1$ with $x + y\sqrt{d}$ minimal, then every solution is given by (x_n, y_n) , where $x_n + y_n\sqrt{d} = (x + y\sqrt{d})^n$ for some n.

Proof. Denoting $x+y\sqrt{d} \in \mathbb{R}$ by $\varepsilon > 1$, suppose to the contrary we have a solution (a,b) with $\varepsilon^k < a+b\sqrt{d} < \varepsilon^{k+1}$. Define $N(a+b\sqrt{d})=a^2-db^2$ and observe that $N(\alpha\beta)=N(\alpha)N(\beta),\ N(\varepsilon)=1=N(\varepsilon^{-k}(a+b\sqrt{d}))$, where $\varepsilon^{-1}=x-y\sqrt{d}$, which gives us a contradiction.

Definition 6.11. $\alpha \in \mathbb{R}$ or \mathbb{C} is *algebraic* if it is the root of a polynomial with integer coefficients. If $P(\alpha) = 0$ with P irreducible and $\deg P = n$ then α is said to have *degree* n. Non-algebraic numbers are called *trancendental*.

Theorem 6.12 (Liouville's Theorem). If $\alpha \in \mathbb{R}$ is algebraic of degree n > 1, there exists c depending on α such that $|\alpha - p/q| > c/q^n$ for all $p/q \in \mathbb{Q}$.

Proof. Observe $P(\alpha) - P(p/q) = (\alpha - p/q)p'(\xi)$ for some ξ between α and p/q. Choose P to be the minimal polynomial of α , so $P(\alpha) = 0$ and P irreducible implies $0 \neq |P(p/q)| \geq 1/q^n$. WLOG $|\alpha - p/q| < p$ and choose C so that $|P'(\xi)| < C$ for $|\xi - \alpha| < 1$. Then $|\alpha - p/q| \geq c/q^n$ with c = 1/C.

7. Primality Testing

Definition 7.1. If n is an odd composite number and (b, n) = 1, then n is a Fermat pseudoprime to the base b if $b^{n-1} \equiv 1 \pmod{n}$. If it is a pseudoprime to every b, then it is a Carmichael number.

Theorem 7.2. Let N > 1. If N is not a Fermat pseudoprime to some base b_0 , then it is not a Fermat pseudoprime to base b for at least half of b coprime to N.

Proof. The set B of integers $1 \leq b < N$ such that (b, N) = 1 where N is a Fermat pseudoprime to base b is clearly a subgroup of $(\mathbb{Z}/NZ)^{\times}$. It's proper as $b_0 \in (\mathbb{Z}/NZ)^{\times}$ is not in B. Consequently $|B| \leq |(\mathbb{Z}/NZ)^{\times}|/2$ which concludes the proof.

Definition 7.3. Let $b \in \mathbb{N}$. An odd composite integer N > 1 is said to be an Euler pseudoprime to base b if $b^{(N-1)/2} \equiv \left(\frac{b}{N}\right) \mod N$.

Theorem 7.4. Let N > 1. If N is not an Euler pseudoprime to some base b_0 , then it is not a Euler pseudoprime to base b for at least half of b coprime to N.

Proof. Same as the corresponding theorem for Fermat pseudoprimes. \Box