Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Звіт з дисципліни

«Прикладна теорія цифрових автоматів» Лабораторна робота № 9

Тема: "Синтез керуючого автомата Мура на базі регістра зсуву"

Роботу виконав студент 3 курсу КІ-СА, ФРЕКС Мургашов Г.Е.

Хід виконання роботи:

Варіант

0	1	0	1	0	1	0	1	1	1
h_{10}	h_9	h_8	h_7	h_6	h_5	h_4	h_3	h_2	h_1

облистное суму царних позитивних		1	1	 		
$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$	0	1	0	1	0	обчислює суму парних позитивних елементів у масивах A(n,m), B(p)

частип сиптезувати па слементал.

Таблиця 8.2.

h3	h4	Логічні елементи
0	0	І, АБО, НЕ
0	1	I-HE
1	0	АБО-НЕ
1	1	І, АБО- НЕ

Завдання

Розробити функціональну схему керуючого автомата Мура, що **обчислює суму парних позитивних елементів у масивах А(n,m), В(p).**

Синтезувати на елементах **АБО-НЕ** Реалізувати треба **на базі регістру зсуву** Як елемент пам'яті використовуйте **D-тригери.**

Схема алгоритму:

Табличка кодування операційних та умовних вершин.

Код	Зміст	Примітка
mY_1	sum = 0	ініціалізація результуючого значення
mY_2	i = 1	ініціалізація лічильника кількості рядків
mY_3	n	завантаження до
mY_4	m	відповідного регістру значень розмірності матриці A
m <i>Y</i> ₅	j = 1	ініціалізація лічильника кількості елементів в поточному рядку
m <i>Y</i> ₆	A[i, j]	завантаження до відповідного регістру значення елемента матриці А
m <i>Y</i> ₇	i += 1	перехід до дослідження наступного рядка матриці
m <i>Y</i> ₈	sum += A[i, j]	додавання до результуючої сумми значення елементу з масиву A , який задовольняє всім умовам фільтрації
m <i>Y</i> 9	j += 1	перехід до дослідження наступного елемента рядка матриці
mY ₁₀	p	завантаження до відповідного регістру значень розмірності матриці В
mY ₁₁	B[j]	завантаження до відповідного регістру значення елемента матриці В
mY ₁₂	sum += B[j]	додавання до результуючої сумми значення елементу з масиву В , який задовольняє всім умовам фільтрації

m <i>Y</i> ₁₃	sum	виведення результату
X1	$i \leq n$	умовна вершина: так — дослідження чергового рядка масиву \mathbf{A} , ні — всі рядки досліджені
X2	$j \leq m$	умовна вершина: так — дослідження чергового елемента масиву A , ні — всі елементи чергового рядка досліджені
X3	A[i,j] > 0 & $A[i,j] mod 2 = 0$	умовна вершина: так — елемент матриці \mathbf{A} ϵ додатним і парним, ні — умова фільтрації не викону ϵ ться
X4	$j \leq p$	умовна вершина: так — дослідження чергового елемента масиву B , ні — всі елементи чергового рядка досліджені
X5	B[j] > 0 & $B[j]mod2 = 0$	умовна вершина: так — елемент матриці \mathbf{B} ϵ додатним і парним, ні — умова фільтрації не виконується

 mY_k — мікрооперації, який виконує \emph{OA} (операційний автомат) X_l — сигнали, що надходять від \emph{OA} до керуючого автомату

• Закодована мікроопераційна схема алгоритму

Синтез автомата Мура

Граф-схема переходів керуючого автомата

Пряма таблиця переходів-виходів автомата Мура

<u>Початковий</u> <u>стан</u> <u>Sm</u>	Y (вихідний сигнал,що виробляється при переході	<u>Стан переходу</u> <u>Sk</u>	<u>Умова переходу</u>
s_0	=	s_1	<u>1</u>
s_1	y_1, y_2	s_2	<u>1</u>
s_2	y_3	s_3	<u>1</u>
S_3	y_4	S ₄ S ₉	$\frac{x_1}{\overline{x_1}}$
		S ₅	x_2
S_4	${\mathcal Y}_5$	S ₈	$\frac{z}{\overline{x_2}}$
_		s ₆	x_3
S ₅	y_6	S ₇	$\overline{x_3}$
S ₆	y_8	S ₇	<u>1</u>
		S ₅	χ_2
S ₇	y_9	S ₈	$\overline{x_2}$
C -	27-	S ₄	x_1
S ₈	\mathcal{Y}_7	S ₉	$\overline{x_1}$
S ₉	y_{10}	s ₁₀	<u>1</u>
c	27 .	s ₁₁	x_4
S ₁₀	${\mathcal Y}_5$	S ₁₄	$\overline{\chi_4}$
c	17	S ₁₂	x_5
s ₁₁	y_{11}	S ₁₃	$\overline{x_5}$
s ₁₂	y_{12}	s ₁₃	<u>1</u>
c	37	s ₁₁	x_4
S ₁₃	y_9	S ₁₄	$\overline{x_4}$
S ₁₄	y_{13}	s_0	1

Станів 15, тому треба взяти 15 D-тригерів, щоб виконати синтез на базі регістру зсуву.

Структурна таблиця переходів-виходів автомата Мура

				_		
<u>Sm</u>	K(<u>Sm</u>)	<u>S</u> <u>k</u>	K(<u>Sk</u>)	Y	<u>Умова</u> <u>перех</u> <u>оду</u>	<u>Φ3</u>
s_0	100000000000000000000000000000000000000	s_1	010000000000000		<u>1</u>	D2
s_1	01000000000000000	s_2	001000000000000	y_1, y_2	<u>1</u>	D3
s_2	00100000000000000	s_3	000100000000000	y_3	<u>1</u>	D4
	0001000000000000	S ₄	000010000000000		x_1	D 5
s_3	0001000000000000	S ₉	00000000100000	y_4	$\overline{x_1}$	D10
	0000100000000000	S ₅	000001000000000		x_2	D6
S ₄	0000100000000000	S ₈	00000001000000	y_5	$\overline{x_2}$	D9
	0000010000000000	s ₆	00000100000000		x_3	D7
S ₅	0000010000000000	S ₇	00000010000000	y_6	$\overline{x_3}$	D8
s ₆	000000100000000	S ₇	00000010000000	y_8	<u>1</u>	D8
	000000010000000	S ₅	000001000000000		x_2	D6
S ₇	000000010000000	S ₈	00000001000000	y_9	$\overline{x_2}$	D9
	00000001000000	S ₄	000010000000000		x_1	D 5
S ₈	00000001000000	S_9	00000000100000	y_7	$\overline{x_1}$	D10
S_9	00000000100000	S ₁₀	00000000010000	<i>y</i> ₁₀	<u>1</u>	D11
	00000000010000	s ₁₁	00000000001000		x_4	D12
<i>S</i> ₁₀	00000000010000	S ₁₄	000000000000001	y_5	$\overline{x_4}$	D15
	000000000001000	S ₁₂	000000000000000000000000000000000000000	4.7	<i>x</i> ₅	D13
<i>s</i> ₁₁	000000000001000	S ₁₃	00000000001000	<i>y</i> ₁₁	$\overline{x_5}$	D14
S ₁₂	000000000000000000000000000000000000000	S ₁₃	00000000001000	<i>y</i> ₁₂	<u>1</u>	D14
	000000000000000000000000000000000000000	s ₁₁	00000000001000		x_4	D12
<i>S</i> ₁₃	000000000000000000000000000000000000000	S ₁₄	000000000000001	y_9	$\overline{x_4}$	D15
S ₁₄	00000000000000001	s_0	1000000000000000000	<i>y</i> ₁₃	1	D1

Система рівнянь переходів

$$D_{1} = S_{14}
D_{2} = S_{0}
D_{3} = S_{1}
D_{4} = S_{2}$$

$$D_{5} = x_{1}S_{3} \cup x_{1}S_{8} = \overline{x_{1}} \cup \overline{(S_{3} \cup S_{8})}
D_{6} = x_{2}S_{4} \cup x_{2}S_{7} = \overline{x_{2}} \cup \overline{(S_{4} \cup S_{7})}
D_{7} = x_{3}S_{5} = \overline{S_{5}} \cup \overline{x_{3}}
D_{8} = \overline{x_{3}}S_{5} \cup S_{6} = \overline{(S_{5} \cup x_{3})} \cup S_{6},
\overline{D_{8}} = \overline{(S_{5} \cup x_{3})} \cup S_{6}$$

$$D_{9} = \overline{x_{2}}S_{4} \cup \overline{x_{2}}S_{7} = \overline{x_{2}} \cup \overline{(S_{4} \cup S_{7})}
D_{10} = \overline{x_{1}}S_{3} \cup \overline{x_{1}}S_{8} = \overline{x_{1}} \cup \overline{(S_{3} \cup S_{8})}
D_{11} = S_{9}$$

$$D_{12} = x_{4}S_{10} \cup x_{4}S_{13} = \overline{x_{4}} \cup \overline{(S_{10} \cup S_{13})}
D_{13} = x_{5}S_{11} = \overline{S_{11}} \cup \overline{x_{5}}$$

$$D_{14} = \overline{x_{5}}S_{11} \cup S_{12} = \overline{(S_{11} \cup x_{5})} \cup S_{12},
\overline{D_{14}} = \overline{(S_{11} \cup x_{5})} \cup S_{12}$$

$$D_{15} = \overline{x_{4}}S_{10} \cup \overline{x_{4}}S_{13} = \overline{x_{4}} \cup \overline{(S_{10} \cup S_{13})}$$

Система рівнянь виходів

$$\begin{cases} y_1 = s_1 \\ y_2 = s_1 \\ y_3 = s_2 \\ y_4 = s_3 \\ y_5 = s_4 \cup s_{10} \\ y_6 = s_5 \\ y_7 = s_8 \\ y_8 = s_6 \\ y_9 = s_7 \cup s_{13} \\ y_{10} = s_9 \\ y_{11} = s_{11} \\ y_{12} = s_{12} \\ y_{13} = s_{14} \end{cases}$$

Побудова функціональної схеми автомата

Вся схема повністю

Частина із D-тригерами:

Частина схеми із входами і виходами:

Графіки із станами, входами та виходами:

Висновок: В даній лабораторній роботі було побудована функціональна схема керуючого автомата Мура на базі регістру зсуву, який керує виконанням алгоритму знаходження парних невід'ємних елементів двох заданих масивів. Завдяки цьому, можна відмовитись від дешифратора, бо кожен стан кодується унітарним кодом, і ототожнюється з виходом певного тригера. Були побудовані схеми переходів станів, а для побудови схеми було використано елементи «АБО-НІ».