

Team Introduction

Random Forest Gump

PROBLEM STATEMENT

DATA
CLEANING
AND
TREATMENT

SHINY APP

MODEL SELECTION

Problem Statement

- → Each listing is UNIQUE.
 - → Predicting the price for an Airbnb host's new listing in Berlin, Germany.
 - → What additional features a host can offer to command higher prices?

The following questions will drive this project -

What are the features that affect pricing of the listing?

Based on the features, can we determine a fair price for a new listing that fits into its specific market environment and competitors in Berlin?

- Most popular city in Germany
- Size 891km²
- Average 25 homes/ km²

PROBLEM STATEMENT

DATA
CLEANING
AND
TREATMENT

MODEL SELECTION

SHINY APP

Data Cleaning & Treatment

Step 1 - Removing unwanted variables.

- Original Data Frame has 22522 observations and 96 variables
- Based on business understanding, irrelevant parameters were removed
- Using DataQualityReport, identified columns with Null values (More than 40% Null values) and dropped them.

Data Cleaning & Treatment

Step 1 - Removing unwanted variables.

Step 2 - Treatment of Numerical and Categorical Variables

- Numerical Variables All numerical variables are appropriately classified into interval (numeric) class.
- Categorical Variables All categorical variables are appropriately classified into nominal and ordinal class, as necessary.
 - → Missing values treated using Mode.
- Date Variables All date variables are formatted in 'DD-MM-YYYY' format.

Data Cleaning & Treatment

Step 1 - Removing unwanted variables.

Step 2 – Treatment of Numerical and Categorical Variables

Step 3 – Outliers Treatment

- Capped the values above 2 Standard Deviations of Mean
- Floored the values below 2 Standard Deviations of Mean

PROBLEM STATEMENT

DATA
CLEANING
AND
TREATMENT

MODEL SELECTION

SHINY APP

Exploratory Data Analysis

 Price are higher on Fridays and Saturdays compared to other days of the week

- Analysis of amenities in existing Airbnb listings at Berlin.
- TV and Internet has significant values for comparison

Price per night and Neighbourhoods of Berlin

Text Analysis


```
zimmerfile welcomfound know sauber ausziehen
```


PROBLEM STATEMENT

DATA
CLEANING
AND
TREATMENT

SHINY APP

MODEL SELECTION

Data Modelling

Model 1 - Multiple Linear Regression

- Using all variables, we created a Multiple Linear Regression to predict price of the house
- Divided the dataset into Train (80%) and Test (20%)
- RMSE on Test dataset = 22.896

Data Modelling

Model 1 - Multiple Linear Regression

Model 2 - Random Forest Regression

- Using RandomForest with Number of Trees = 500, extracted important variables that influence the price of the property.
- Using these variables, built future models for prediction.
- Important Variables selected through Random Forest are RoomType, CleaningFee, Bedrooms, Neighbourhood_Group, Beds, Bathrooms, Cancellation Policy, TV and Internet.
- RMSE on Test dataset = 22.621

Data Modelling

Model 1 - Multiple Linear Regression

Model 2 – Variable Selection using Random Forest Regression

Model 3 - Gradient Boosting Regression

- Built a Gradient Boosting model (GBM) with Number of Trees = 1000.
- Used Cross Validation test with 10 folds to test the RMSE on the test dataset.
- RMSE on test dataset = 22.579
- Selected Gradient Boosting model based on lowest test RMSE

PROBLEM STATEMENT

DATA
CLEANING
AND
TREATMENT

MODEL SELECTION

SHINY APP

References

R shiny layout:

https://shiny.rstudio.com/articles/layout-guide.html

https://www.rdocumentation.org/packages/shinybootstrap2/versions/0.2.1/topics/fluidPage

Word Clouds:

https://datascienceplus.com/building-wordclouds-in-r/

ggplot:

https://ggplot2.tidyverse.org/reference/scale gradient.html

THANK YOU