Operating Systems Memory Management

Christian Khoury

Objectives

- Understand the various memory-management mechanisms
 - Contiguous
 - Paging
 - Segmentation

Contents

- Definitions
- Contiguous Allocation
- Paging
- Segmentation
- Virtual Memory

Definitions

- Logical/Virtual Address
 - Generated by the CPU

- Physical Address
 - Generated by the MMU

Contents

- Definitions
- Contiguous Allocation
- Paging
- Segmentation
- Virtual Memory

Contiguous Allocation (1/5)

Base register contains value of smallest physical address

 Limit register contains range of logical addresses – each logical address must be less than the limit register

MMU maps logical address dynamically

Contiguous Allocation (2/5)

Contiguous Allocation (3/5)

- Multiple-partition allocation
 - Hole block of available memory; holes of various size are scattered throughout memory
 - When a process arrives, it is allocated memory from a hole large enough to accommodate it
 - Operating system maintains information about:
 a) allocated partitions
 b) free partitions (hole)

Contiguous Allocation (4/5)

- Dynamic memory allocation strategies
 - First Fit
 - First on route"big enough" hole is used
 - Best Fit
 - Allocate the smallest hole that is big enough
 - Smallest leftover holes
 - Worst Fit
 - Allocate the largest hole that is big enough
 - Largest leftover holes

Contiguous Allocation (5/5)

External Fragmentation

- Processes are loaded an removed from memory
- Free memory (holes) is broken into little pieces (Fragments)
- May have enough global memory for a request but noncontiguous!

Solutions

- Compaction : Not always possible, expensive
- Paging, Segmentation

Contents

- Definitions
- Contiguous Allocation
- Paging
- Segmentation
- Virtual Memory

Paging (1/11)

 Memory managment scheme that permits the physical address space to be noncontiguous/fragmented

Need to map logical addresses into physical ones

Paging (2/11)

- The programmer/user sees a process as a contiguous block
 - Think of arrays, adjacent instrunctions, ...
- What if holes are used totally or partially in physical memory to store a process?
 - We would need to keep a list of where each of the different logical parts are stored!
 - Too complicated! Time/Space consuming!

Paging: Basic Scheme (3/11)

- 1. Break physical memory into fixed-size blocks called **frames**
- 2. Break logical memory into fixed-size blocks called **pages**
- 3. Frames and pages are of identical size
- 4. Address translation is done using a **page table**

Paging: Basic Scheme (4/11)

Paging: Basic Scheme (5/11)

- Address Translation scheme
 - Address generated by the CPU is divided in 2 parts
 - Page number: used as an index on the page table
 - Offset: address inside the page
 - Every valid entry in the page table holds the address of its corresponding physical frame

Paging: Basic Scheme (6/11)

Paging (7/11)

- Advantages
 - Solves the EXTERNAL fragmentation problem
 - Shared pages
- Drawbacks
 - Internal fragmentation : on average, one half page per process
 - Small page sizes are desirable BUT...what about the page table size ?
 - One more memory access to the page table in order to produce the physical address => 2 times slower!
 - Address cache: Translation Lookaside Buffer (TLB)

Paging (8/11)

- TLB
 - Associative high-speed memory
 - Its benefits are based on the principles of spatial an temporal locality

Paging with TLB (9/11)

Hierarchical Paging (10/11)

- Large logical address space => large page table size
 - 2^64 with a page size of 4KB => page table of 2^52 entries!

Use an N-level paging algorithm

Hierarchical Paging (11/11)

- 2-level paging scheme
 - Break the logical address space into Blocks
 - Break blocks into sub-blocks

