ADDITIONAL PRACTICE 4

VECTORS AND MATRICES

This worksheet is meant to provide additional practice problems for the major concepts from lecture 4 and those in homework problems. In particular, it focuses on properties and operations with vectors and introduces matrices. This worksheet is not graded, but should help students get a solid foundation in the mathematics we will use throughout the course. The solutions to the additional practice problems can be found at the end of worksheet.

Problem 1: Inner Products

Compute the following inner products:

a)
$$< \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 16 \end{pmatrix} >$$

b)
$$< \begin{pmatrix} 4 \\ -3 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} >$$

c)
$$< \begin{pmatrix} -4 \\ -5 \end{pmatrix}, \begin{pmatrix} 6 \\ -3 \end{pmatrix} >$$

d)
$$< \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix}, \begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix} >$$

$$(e) < \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} -2 \\ \frac{3}{2} \\ 3 \end{pmatrix} >$$

f)
$$< \begin{pmatrix} \pi \\ 4 \end{pmatrix}, \begin{pmatrix} 12 \\ -7 \end{pmatrix} >$$

g)
$$< \begin{pmatrix} i \\ 10 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \end{pmatrix} >$$

$$\mathrm{h}) \, < \begin{pmatrix} i \\ -1 \\ -i \end{pmatrix}, \begin{pmatrix} i \\ 2 \\ i \end{pmatrix} >$$

Problem 2: Vector Orthogonality

Two vectors \vec{a} and \vec{b} are orthogonal if $<\vec{a},\vec{b}>=0$.

State whether the following vectors are orthogonal:

- a) $\binom{2}{3}$, $\binom{-3}{2}$
- b) $\binom{9}{3}$, $\binom{-1}{3}$
- c) $\begin{pmatrix} 4 \\ 8 \\ 6 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$
- d) $\binom{12}{5}$, $\binom{-3}{2}$
- e) $\begin{pmatrix} -2\\3 \end{pmatrix}$, $\begin{pmatrix} 6\\4 \end{pmatrix}$
- f) $\binom{1}{7}$, $\binom{-1}{0}$
- g) $\begin{pmatrix} \frac{3}{4} \\ 3 \end{pmatrix}$, $\begin{pmatrix} -4 \\ 1 \end{pmatrix}$
- h) $\binom{6}{i}$, $\binom{\frac{1}{6}}{i}$
- i) Given the vectors: $\vec{a} = \begin{pmatrix} 1 \\ 12 \\ -2 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$
 - i) Verify that they orthogonal to each other.
 - ii) Find x, y in a third vector $\vec{v} = \begin{pmatrix} x \\ 1 \\ y \end{pmatrix}$ such that \vec{v} is orthogonal to both \vec{a} and \vec{b} .
- j) Given the vectors: $\vec{c} = \begin{pmatrix} 12 \\ 1 \\ 3 \end{pmatrix}$ and $\vec{d} = \begin{pmatrix} -1 \\ 6 \\ 2 \end{pmatrix}$
 - i) Verify that they orthogonal to each other.
 - ii) Find x, y in a third vector $\vec{w} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ such that \vec{w} is orthogonal to both \vec{c} and \vec{d} .

Problem 3: Linear Combinations

Consider the vectors:

$$\vec{a} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \qquad \vec{b} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

A linear combination of these vectors corresponds to doing the operation:

$$x\vec{a} + y\vec{b}$$

for any constants x and y.

Example: $\begin{pmatrix} -2 \\ -2 \end{pmatrix}$

$$\begin{pmatrix} -2 \\ -2 \end{pmatrix} = x\vec{a} + y\vec{b}$$

$$\begin{pmatrix} -2 \\ -2 \end{pmatrix} = x \begin{pmatrix} 2 \\ 1 \end{pmatrix} + y \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 2x \\ x \end{pmatrix} + \begin{pmatrix} -3y \\ 2y \end{pmatrix}$$

Which gives the system:

$$2x + 3y = -2$$
$$3 + 2y = -2$$

Solving this gives: x = 2, y = -2. So $\begin{pmatrix} -2 \\ -2 \end{pmatrix} = 2\vec{a} - 2\vec{b}$

What are the linear combinations of \vec{a} and \vec{b} that form the following vectors:

- a) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- b) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- c) $\begin{pmatrix} -1\\1 \end{pmatrix}$
- d) $\binom{12}{7}$
- e) $\binom{8}{6}$
- f) $\binom{48}{30}$
- g) $\begin{pmatrix} -5 \\ -3 \end{pmatrix}$

- h) $\begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix}$ i) $\begin{pmatrix} 18 \\ 11 \end{pmatrix}$
- $j) \quad \binom{7}{4}$
- $k) \binom{2i}{i}$
- $1) \ \begin{pmatrix} -8 \\ -5 \end{pmatrix}$

Problem 4: Matrix Operations

Evaluate the following expressions that involve matrices:

- a) $\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- b) $\begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
- c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$
- d) $\begin{pmatrix} 1 & \frac{1}{2} \\ \frac{3}{2} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- e) $\begin{pmatrix} 2 & -1 \\ i & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- f) $\begin{pmatrix} -1 & 4 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -12 & 11 \end{pmatrix}$
- g) $\begin{pmatrix} 14 & -3 \\ 0 & 6 \end{pmatrix} \begin{pmatrix} 7 & -8 \\ 5 & 2 \end{pmatrix}$
- h) $\begin{pmatrix} -i & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 12 & 0 \\ -1 & i \end{pmatrix}$

Solutions to Problem 1

- a) 22
- b) 0
- c) -9
- d) 3
- e) 15
- f) $12\pi 28$
- g) 3i
- h) -2

Solutions to Problem 2

- a) Yes
- b) Yes
- c) No
- d) No
- e) Yes
- f) No
- g) Yes
- h) Yes
- i) i) $\langle \vec{a}, \vec{b} \rangle = \begin{pmatrix} 1 & 12 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = 2 + 0 + -2 = 0$. Since the inner product of \vec{a} and \vec{b} is 0, then they must be orthogonal.
 - ii) $x = \frac{-12}{5}$ and $y = \frac{24}{5}$
- j) i) $\langle \vec{c}, \vec{d} \rangle = (12 \ 1 \ 3) \begin{pmatrix} -1 \\ 6 \\ 2 \end{pmatrix} = -12 + 6 + 6 = 0$. Since the inner product of \vec{c} and \vec{d} is 0, then they must be orthogonal.
 - ii) $x = \frac{-16}{73}$ and $y = \frac{-27}{73}$

Solutions to Problem 3

- a) x = -1; y = 1
- b) x = 0; y = 0
- c) x = -5; y = 3
- d) x = 3; y = 2
- e) x = -2; y = 4
- f) x = 6; y = 12
- g) x = -1; y = -1
- h) x = 0; y = 1/2
- i) x = 3; y = 4
- j) x = 2; y = 1
- k) x = i; y = 0
- l) x = -1; y = -2

Solutions to Problem 4

- a) $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- b) $\begin{pmatrix} -1\\0 \end{pmatrix}$
- c) $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$
- $d) \quad \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}$
- e) $\binom{1}{i+3}$
- $f) \begin{pmatrix} -50 & 43 \\ -66 & 69 \end{pmatrix}$
- g) $\begin{pmatrix} 83 & -118 \\ 30 & 12 \end{pmatrix}$
- $h) \begin{pmatrix} -12i & 0 \\ 10 & 2i \end{pmatrix}$