data

adam okulicz-kozaryn
adam.okulicz.kozaryn@gmail.com

this version: Saturday 9th September, 2023 13:01

the 'join'

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps

Notebook: join/merge

DATA SOURCES

census data [probably do one week later]

see examples in notebook

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps

Notebook: join/merge

DATA SOURCES

census data [probably do one week later] see examples in notebook

regular (not gis) data: xls, csv, etc

what are data?

- u/a: unit of analysis: what do you study?
- u/a=# of obs=# of rows=sample size
- dataset has variables, which are the *attributes* of u/as
- say students: age; counties: water area
- if several layers: may have several u/as
- eg counties: #18; hospitals:#700; ex of attr?
- dataset is a matrix/spreadsheet/2D object
- cols are vars, rows are obs
- vars are characteristics of obs
- eg: edu, age, inc are vars
- o and persons are obs—each row is a different person

regular (not gis) data: xls, csv, etc 5/34

storage type: numeric v string

- strings are safer; eg string "0821" made into a number results in "821", which is a mistake!
- that's why many software packages, incl qgis often store numbers as strings
- but then we often need to make them into numeric to do the math or mapping
- be careful about it, triple check, there are often problems and it's non-intuitive

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps

Notebook: join/merge

DATA SOURCES

census data [probably do one week later]

see examples in notebook

files

- .shp (along with bunch of others)
- .kml
- and there's much more
- we'll cover them on "as is" basis
- o if you bump into something weird, email listserv

raster (picture) and vector (point, line, or polygon)

- raster (has resolution)
- area covered by cells/pixels
- each cell/pixel have values/colors
- vector (no resolution): all real world features:
- o points (dots/nodes): airports, cities, trees
- o lines (arcs): rivers, roads
- o polygons (areas): counties, cities

raster and vector

gis data as layers of shapes with regular data

- data are organized by *layers*, eg roads, admin boundaries, etc; show example/draw a picture
- each layer: loc info (shapes)+often some regular data
- o ie data table with loc info (shapes) must underlie a map
- (the data table often has some regular data, too)
- often you want to produce thematic (choropleth) maps
- thematic maps use different symbols/colors (themes) to show variation in regular data

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps

Nieteleeele tete /www.

Notebook: join/merge

DATA SOURCE

census data [probably do one week later]

see examples in notebook

gis data (has shapes, can make a map from it): shp, kml, etc.

the 'join'

Notebook: join/merge

census data [probably do one week later]

the 'join'

some real skills

- this is where the real value come from:
- o to bring different vars together to produce new insight
- if you just map vars from same or similar data:
- o it has probably already been done!
- o just goog: "what you study, map" and see images
- but combining creatively variety of vars:
- o there is no such map in the world!
- eg https://scholarship.libraries.rutgers.edu/view/ delivery/01RUT_INST/12643382240004646/13643522850004646

the 'join'

howto map regular (eg xls) data?

- it would likely have geo id:
- hospital name/code, county name/id, etc
- codes/ids are great: unique! (as opposed to names)
- o then google a shapefile that you can join with your data
- google "geo in you data, shapefile"
- o eg "NJ counties, shapefile"
- and then join the two to produce a map

the 'join' 15/34

"the join problems": some examples

- "Camden county" ≠ "Camden"
- "Congo" ≠ "Congo, Republic of"
- "Great Britain" ≠ "United Kingdom"
- "Camden" \neq "CAMDEN"
- "Camden" ≠ "Camden" (space is a character!)
- "08012" \(\neq\) "8012"
- be very careful; check the tables to see if it merged right
- does it make sense? eg Camden richer than Cherry Hill?

the 'join' 16/34

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps the 'join'

Notebook: join/merge

DATA COUDCEC

census data [probably do one week later] see examples in notebook

Notebook: join/merge

don't trust anybody! neither yourself

- remember, always be critical
- triangulate your results: compare with other source
- o just goog picture, eg 'nj counties property values map'
- looks about right
- o (other definition of the prices, but correlation is important)
- show to others, ask for comments

Notebook: join/merge 18/34

tip1: triple check

- merging (joining) data is tedious and tricky
- be careful, double, triple check
- easy to make mistake

Notebook: join/merge 19/34

tip2: what if traditional data is in weird format

- same as with gis data
- o if you see something else than .shp or .kml, email us!
- \circ there are many data formats, and we cannot cover them all
- we'll do them if we bump into them—do let us know what you've found!

Notebook: join/merge 20/34

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps

Notebook: join/merge

DATA SOURCES

census data [probably do one week later]

DATA SOURCES 21/

data management takes time! value your time!

- producing maps fast; data management 50-95% of time
- figuring out, understanding, cleaning, documenting, combining, etc
- so we start with data management: only 2 classes
- spend it on data you care about and will use in your career!
- think hard about data you'll use in your career

• otherwhise you'll waste 100+ hours !!!

DATA SOURCES 22/34

gis data

- camden county https://camdencountynj-ccdpw.opendata. arcgis.com/search?collection=Dataset eg camden zoning:)
- NJ https://gisdata-njdep.opendata.arcgis.com
- Philly https://www.opendataphilly.org
- a lot!: http://geocommons.com/search.html
- o just search for what you are interested in, say 'road'
- https://www.policymap.com/maps
- \circ \$ to downld data, but click 'Source' and download by hand
- open gov, especially city data, just few examples
- https://data.cityofchicago.org/, http://opencityapps.org/, http://www.opendataphilly.org/, http://www.phila.gov/data/Pages/data.aspx

DATA SOURCES 23/34

data

- https://tax1.co.monmouth.nj.us/cgi-bin/prc6.cgi?menu= index&ms_user=monm&passwd=data&district=1301&mode=11
- o can pick 'advanced srch' to srch say 'vacant'
- o and 'output format' excel
- NJ parcels

```
https://njgin.nj.gov/njgin/edata/parcels/#!/
```

• https://www.njmap2.com/parcels/parcels/

https://www.arcgis.com/apps/webappviewer/index.html?id

DATA SOURCES 24/34

gis data

- NJ DCA has a Data Hub: excel files and Community Assets Map
- o https://www.nj.gov/dca/services/xxdatahub.html
- o https:
- //njdca.maps.arcgis.com/apps/webappviewer/
 index.html?id=96ec274c50a34890b23263f101e4ad9b
 o layer-View in Attr Tab; 'Options' at top left and Export all
- layer-View in Attr Tab; 'Options' at top left and Export all to csv
 ineq, redlining, etc
- https://dsl.richmond.edu/panorama/redlining/#loc=5/39.589/-94.57

DATA SOURCES 25/34

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps

Notebook: join/merge

DATA SOURCES

census data [probably do one week later]

see examples in notebook

regular (not gis) data: xls, csv, etc

gis data (has shapes, can make a map from it): shp, kml, etc

Notebook: dive into thematic/choloropleth maps

Natabaalu iain/mayaa

Notebook: Join/merge

DATA SOURCE

census data [probably do one week later]

see examples in notebook

healthy corner stores

- makes sense to label zipcodes; right proportions
- these aren't sq miles! sq ft or meters!
- colors denote polygon sizes—so same info twice
- o better could map educ, inc, age, bmi, etc
- o dots could be little smaller or hollow so they overlap less
- make goog map and zoom in: show more detail see environ: other businesses, pub transpo, sch, etc
- wonder about big healthy stores like wholefoods
- o could dentote big ones with big dots
- usually may want to put year on a map

see examples in notebook 29/34

Contaminations Sites in New Jersey 1992

contaminations

- perfect size and color for contaminated sites!
- doesn't overlap much but big enough to see
- o and grayish good for contamination
- informative— NYC and Philly the worst
- excellent idea to relate poverty to contamination
- there is lit linking them! so nice test! [also can do race]
- could do poverty at municipal or census tract levels
 use space better! NJ should be bigger like Philly stores
- thousands must be set off by commas in legendvery good to match contaminations and poverty by year!
- "poverty status" guess counts; better %
- as in Philly map: zoom to Camden, have goog map in

contaminations

- http://www.nytimes.com/interactive/2015/07/08/us/ census-race-map.html?_r=0
- in couple classes we'll be making online maps like this
- but already now you can do sth similar
- see footnote: census and socialexplorer.com: download data
- map in qgis and bring in background from googmaps
- with openlayers plugin

open space

New Jersey Preserved Open Space

see examples in notebook

open space

- excellent idea for map—open space related to population
- great use of multiple layers
- great non-cluttered borders
- can use space better-portrait orientation, bigger NJ
- use commas for population
- say for which year it is
- pop den probably more meaningful
- on the other hand, we already see size from map
- o and so we can sort out density