

## Introduction to Objects in Python

By: Iman Khani Jazani

- Senior Data Scientist, Adin
- Technical AI Product Manager and Advisor, Mehra
- Al and Data Specialist, AiHum
- Adjunct Professor, Sharif University of Technology



- Short Presentation
- Review the Last Lecture
- Problem Modeling
- Data types in Python
- Interpret your commands with Python
- Programming with Python
- Application of Programming in the Digital Age!



- Short Presentation
- Review the Last Lecture
- What are objects in real world and Python?
- What are statements from flowchart view?
- Programming with Python
- Application of Programming in the Digital Age!



### Send your feedback about the class whenever you want!



- Gmail: <u>ImanKhaniJazani@gmail.com</u>
- · LinkedIn: https://www.linkedin.com/in/ImanKhaniJazani/
- Telegram: @IKJ1992





#### Main links for our class

گروه خصوصی شد!

- Telegram group: \*
- GitHub organization: github.com/SharifPythonSpace





- Approx. 25% Programming Assignments (judgment with Quera)
- Approx. 14% Mid-term Project (alone, judgment with TAs and Quera)
- Approx. 37% Final Project (team work~5 member, judgment with TAs and Quera)
  - Proposal (about real needs)
  - Coding
  - Release
- Approx. 30% Final Exam (algorithm-based paper exam)
- Approx. 5% Short Presentation(extra score, for the next week lecture, only for the first two person)
- Approx. 2% Challenging Questions and Contributions in Class (extra score)
- Approx. 7% long presentation (extra score)

### Short Presentations



#### Design and explain a flowchart for a simple Homsa! You can propose new features!

Who is volunteer for the short presentation?

**Short Presenration** 

### Review the Last Lecture



#### From question to algorithm!

- Understand your needs or questions!
  - explain easily for someone else
- Decompose your problem (make some steps)!
- Make a flowchart for the decomposed version of your problem
- Explain each steps in one or two sentences (paper-based or paperless)
  - input, output, process
- Explain each steps mathematically...
- Develop your algorithms for each steps
- Check your process flow from the first step to the last one!



#### Different problem, different data!

 You can encounter with different types of data in input, output, or even in process (auxiliary)





- Primitive data
  - Numbers
    - Int, float, complex
  - String
  - List
  - Tuple
  - Set
  - dictionary
- User-defined data
  - Class



## **How Python Works**



# What are objects in real world and Python?

## Everything in Python is an OBJECT! © OOP!?



#### Memory stores information in what way?

- Program
- Data





#### How can computer detect which locations in memory are instruction or value or ...?

Who is volunteer for the short presentation?

**Short Presenration** 



#### What is garbage collector? How can do this job?

Who is volunteer for the short presentation?

**Short Presenration** 



### So, where is our data???





#### How can CPU process our code?

- On the level of machine language, the operation of the CPU is fairly straightforward (although it is very complicated in detail). The CPU executes a program that is stored as a sequence of machine language instructions in main memory. It does this by repeatedly reading, or fetching, an instruction from memory and then carrying out, or executing, that instruction. This process:
  - fetch an instruction, execute it, fetch another instruction, execute it, and so on forever...

is called the fetch-and-execute cycle.



#### **Object-oriented Thinking**





#### Data and other things in Python are object!

- Primitive data
  - Numbers
    - Int, float, complex
  - String
  - List
  - Tuple
  - Set
  - dictionary
- User-defined data
  - Class



### What are statements from flowchart view?



#### The most simple statement!

## Assignment

Variables are created by assignment (=)



 One of the most powerful features of a programming language is the ability to manipulate variables. A variable is a name that refers to a value.



#### How python can find type of variables?





#### What is the difference between expression and statement?





#### We have different types of statement!

- Simple statement (+)
- Loop statement (while)
- Control statement (if)



## Programming with Python



What is the website need?

• How can we get more users for our news website?



#### From question to algorithm!

- Understand your needs or questions!
  - explain easily for someone else
- Decompose your problem (make some steps)!
- Make a flowchart for the decomposed version of your problem
- Explain each steps in one or two sentences (paper-based or paperless)
  - input, output, process
- Explain each steps mathematically...
- Develop your algorithms for each steps
- Check your process flow from the first step to the last one!



#### What is your solution?

- Input?
- Output?
- Process?



# Application of Programming in the Digital Age!







#### Mission Simulation Toolkit (MST)

https://ti.arc.nasa.gov/opensource/projects/mission-simulation-toolkit/

NASA Open Source 3.0

MST offers a simulation framework to support research in autonomy for remote exploration. The system allows developers to test models in a high-fidelity simulation and then evaluate system performance against a set of integrated, standardized simulations.

A.I. generated tags: #nlp:autonomy #nlp:mathematical model #nlp:distributed processing #nlp:computerized simulation #nlp:systems simulation #nlp:dynamic model #nlp:digital simulation #nlp:simulation #nlp:performance prediction #nlp:model

Human generated tags: #NASA #ARC #Open Source #Autonomous Systems



#### Sound Lab (SLAB), Version 5

https://ti.arc.nasa.gov/opensource/projects/slab-spatial-audio-renderer/

NASA Open Source 3.0

SLAB is a software-based, real-time, virtual acoustic-environment rendering system designed to study spatial hearing in environments such as concert halls, listening rooms, virtual reality, aviation spatial information displays, and video game sound effects.

A.I. generated tags: #nlp:real time operation #nlp:game theory #nlp:interactive control #nlp:time dependence #nlp:computer graphic #nlp:virtual reality #nlp:display device #nlp:hearing

Human generated tags: #NASA #ARC #Open Source #System Testing

## Lecture Resources

- https://math.hws.edu/eck/cs124/javanotes6/c1/s1.html#:~:text= When%20the%20CPU%20executes%20a,of%20a%20sequence% 200f%20locations.
- https://towardsdatascience.com/python-memory-and-objectse7bec4a2845
- P. Wentworth, J. Elkner, A. B. Downey, C. Meyers. How to Think Like a Computer Scientist: Learning with Python. 3rd Edition, Open Book Project, 2011.