Cartes de contrôle CUSUM et EWMA

François Husson

Département statistique & informatique - Institut Agro

francois.husson@institut-agro.fr

Plan

- Introduction
- 2 Définition de la carte CUSUM
- 3 Choix de la carte comparaison avec la carte de Shewart
- 4 Améliorations possibles de la carte CUSUM
- 5 Estimation de la date et de l'amplitude du déréglage
- 6 Présentation de la carte EWMA

Introduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWM/

Introduction

"Zéro défaut" n'existe pas en production ⇒ surveiller tout processus en contrôlant les objets fabriqués

2 types de contrôle : - de réception

- en cours de fabrication

IDÉE SIMPLE : contrôler tous les objets mais

- pb de coût
- impossible si contrôle destructif
- inutile car c'est le processus qui est contrôlé

Carte de contrôle = signal d'alarme

Carte de Shewart

si *Processus* $\sim \mathcal{N}(\mu_0, \sigma)$, alarme si $\bar{x}_i > \mu_0 + 3\sigma/\sqrt{n}$ ou $\bar{x}_i < \mu_0 - 3\sigma/\sqrt{n}$

- simple
- décèle bien écarts brusques et importants
- détecte mal écarts petits et moyens ($\approx 1 \text{ à } 2 \sigma$)

Usure d'une machine ⇒ déréglage lent et progressif

Détection rapide permet de réagir avant gros déréglage

Comment détecter des déréglages de petites ou moyennes amplitudes?

Introduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWMA

Comment détecter des déréglages de petites ou moyennes amplitudes?

• augmenter la taille de l'échantillon prélevé à chaque contrôle

Pb: pas toujours possible:

- objets/unité de temps faible
- mesure prend du temps
- mesure coûte chère
- utiliser résultats du passé pour déceler dérive lente : règles des séries (analyse des structures de points sur la carte de Shewart).

Pb: hausse des fausses alarmes

Définition de la carte CUSUM

Conditions d'application : Idem carte de Shewart

Hypothèses:

- Mesures (ou moyennes de mesures) v.a. de même loi
- Variance du processus (σ^2) et valeur cible (μ_0) connues
- Lois des variables normales (sert pour calculer l'efficacité des cartes)

$$hyp \Longrightarrow \left\{ egin{array}{ll} E(x_i) &= \mu_0 &, & V(x_i) = \sigma^2 & {
m avant \ d\'{e}r\'{e}glage} \\ &= \mu_0 + \Delta &, & V(x_i) = \sigma^2 & {
m apr\`{e}s \ d\'{e}r\'{e}glage} \end{array} \right.$$

Hypothèses = fiction, mais utile pour prendre des décisions

Construction de la carte

Notations : \bar{x}_1 , ..., \bar{x}_i moyennes de n résultats individuels successifs,

$$z_i = \sqrt{n} \; \frac{\bar{x}_i - \mu_0}{\sigma}$$

Si loi normale:

$$\left\{ \begin{array}{ll} \bar{x}_i \sim \mathcal{N}(\mu_0, \frac{\sigma}{\sqrt{n}}) & \Rightarrow z_i \quad \sim \mathcal{N}(0,1) \text{ avant déréglage} \\ \bar{x}_i \sim \mathcal{N}(\mu_0 + \Delta, \frac{\sigma}{\sqrt{n}}) & \Rightarrow z_i \quad \sim \mathcal{N}(\ \delta \ = \ \frac{\Delta \sqrt{n}}{\sigma}, 1) \text{ après déréglage} \end{array} \right.$$

Construction de la carte

Construction de 2 statistiques :

$$S_i^+ = \max \left(0, S_{i-1}^+ + (z_i - k)\right) \text{ avec } S_0^+ = 0$$
 $S_i^- = \min \left(0, S_{i-1}^- + (z_i + k)\right) \text{ avec } S_0^- = 0$

Tant que S_i^+ et S_i^- entre h et -h alors processus sous contrôle sinon processus hors contrôle

Statistique S_i^+ détecte déréglages positifs de la moyenne S_i^- détecte ses diminutions

k = coefficient de filtrage

Exemple

Valeur cible pour la moyenne $\mu_0=10$, écart-type $\sigma=\sqrt{2}$

 \bar{x}_i : moyenne de 2 observations successives

k = 0.5 et les limites de contrôle h = 4.774 (et -h = -4.774)

 $\sigma_{\bar{\mathbf{x}}} = \sqrt{2}/\sqrt{2} = 1$

~ ^ v -	, v —						
Numéro							
du sous	X _{i1}	x_{i2}	\bar{x}_i	z_i	S_i^+	S_i^-	Alarme
groupe i					•	·	
0					0	0	
1	10.5	11.0	10.75	0.75	0.25	0	
2	10.0	9.0	9.50	-0.50	0	0	
3	11.5	10.0	10.75	0.75	0.25	0	
4	8.0	7.0	7.50	-2.50	0	-2	
5	9.5	11.5	10.50	0.50	0	-1	
6	8.0	9.0	8.50	-1.50	0	-2	
7	9.0	10.0	9.50	-0.50	0	-2	
8	11.5	12.0	11.75	1.75	1.25	0	
9	10.5	12.0	11.25	1.25	2.00	0	
10	13.0	9.0	11.00	1.00	2.50	0	
11	12.0	11.0	11.50	1.50	3.50	0	
12	11.0	12.0	11.50	1.50	4.50	0	
13	12.0	11.0	11.50	1.50	5.50	0	*

Exemple (carte CUSUM)

$$k = 0.5$$
 et $h = 4.774$

Processus sous-contrôle jusqu'à t=12, alarme à t=13

roduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWMA

Exemple (carte Shewart)

Carte de Shewart avec les mêmes observations ⇒ Pas d'alarme

Principe de la carte

Décalage positif de la moyenne supérieur à k, écarts $(z_i - k)$ seront cumulés dans S_i^+ jusqu'à ce que S_i^+ atteigne h

Pour éviter d'avoir à remonter le handicap d'une valeur négative : $S_i^+ \geq 0$

Après un réglage, on réinitialise la carte CUSUM : $S_0^+ = S_0^- = 0$

roduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWM

Choix de la carte - comparaison avec la carte de Shewart

Comment comparer deux cartes de contrôle?

- Probabilité de déceler un déréglage
 Carte de Shewart : proba connue
 Carte CUSUM : proba dépend du numéro du contrôle
- Période Opérationnelle Moyenne, POM POM_{δ} : nb moyen de contrôle pour détecter un déréglage δ
- Période Opérationnelle Maximum (POMAX)
 nb max de contrôles pour déceler un déréglage (seuil 95%)

Rq : détection d'un déréglage peut être rapide mais nb de fausses alarmes augmente $(POM_0 \text{ élevée et } POM_\delta \text{ faible})$

troduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWMA

Comparaison de la carte CUSUM et de la carte de Shewart

Déréglage	Shewart		CI	JSUM	CUSUM	
δ	L = 3.00		k = 0.5, h = 4.774		k = 1, h = 2.517	
	POM POMAX		POM POMAX		POM	POMAX
0.00	370		370		370	
0.25	281	841	122	369	197	631
0.50	155	464	35	99	69	205
0.75	81	242	16	37	28	76
1.00	44	130	9.9	20	13.6	36
1.50	15.0	44	5.5	10	5.5	13
2.00	6.3	18	3.9	6	3.3	6
2.50	3.2	9	3.0	4	2.4	4
3.00	2	5	2.5	4	1.9	3
4.00	1.2	2	2.0	3	1.3	2
5.00	1.03	1	1.61	2	1.07	2

CUSUM > Shewart si déréglages faibles et moyens

CUSUM < Shewart si déréglages élevés

Table – POM et POMAX pour cartes Shewart et CUSUM

```
library(spc) > xcusum.arl(k=0.5, h=4.774, mu=1) ## calcul des POM [1] 9.925031
```

Choix des paramètres de la carte CUSUM

Trois paramètres à définir : h, k, n en fonction de :

- ullet δ , déréglage que l'on veut détecter rapidement
- POM₀

Proposition : $k = \delta/2$

Prendre ensuite h pour obtenir la POM_0 fixée

Déréglage	nb contrôle		
petit ($\approx \sigma$)	10	h = 4.77 $k = 0.5$	n tq $\delta=1$
moyen	3	$h = 2.52 \qquad k = 1$	$n \operatorname{tq} \delta = 2$
important	au plus 2	h = 1.6 $k = 1.5$	$n \operatorname{tq} \delta = 3$
très important	dès le premier	choisir carte de Shewart	

roduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWM

Améliorations possibles de la carte CUSUM

QUALITÉS DE LA CARTE CUSUM :

- Bonne détection des petits et moyens déréglages
- Bonne détection des dérives lentes

DÉFAUTS DE LA CARTE CUSUM:

- Mauvaise réactivité si déréglage dès le début
- Mauvaise détection des gros déréglages

Carte à réponse rapide

DÉTECTION DES DÉRÉGLAGES DÈS LE DÉMARRAGE \implies prendre $S_0^+=h/2$ et $S_0^-=-h/2$

Déréglage	CUSUM $k = 0.5$	CUSUM $k = 0.5$	CUSUM $k = 0.5$
δ	$h = 5, S_0^+ = S_0^- = 0$	$h = 5, S_0^+ = -S_0^- = 1$	$h = 5, S_0^+ = -S_0^- = 2.5$
0.00	465	461	430
0.50	38	36	29
1.00	10.4	9.0	6.4
2.00	4.0	3.4	2.4
3.00	2.6	2.2	1.54
5.00	1.7	1.3	1.02

Table – Périodes Opérationnelles Moyennes comparées de la carte CUSUM avec Initialisation à Réponse Rapide

roduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWM

Carte combinée CUSUM-Shewart

Meilleure détection des déréglages importants

⇒ carte combinée CUSUM-Shewart

Pb : nb de fausses alarmes augmente \Rightarrow prendre LCS = 3.5 et LCI = -3.5 pour carte de Shewart

Déréglage	Ca	rte seule	Carte combinée CUSUM-Shewart			
δ	Shewart	CUSUM	k = 0.5, h = 5		5	
	L = 3.00	k = 0.5, h = 5	L = 3.00	L = 3.50	L = 4.00	
0.00	370	465	223	391	459	
0.50	155	38	34	37	38	
1.00	43.9	10.4	9.8	10.2	10.4	
2.00	6.3	4.0	3.5	3.8	4	
3.00	2.0	2.6	1.8	2.1	2.4	
5.00	1.02	1.7	1.02	1.07	1.16	

Table - Comparaison des POM de la carte CUSUM et de cartes combinées CUSUM-Shewart

Carte allie qualités des cartes CUSUM et Shewart

roduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWMA

Estimation de la date et de l'amplitude du déréglage

```
Si \ alarme: \left\{ \begin{array}{l} r\'{e}glage \ du \ processus \\ r\'{e}initialisation \ de \ la \ carte \end{array} \right.
```

Question : que faire des dernières productions?

- Si déréglage faible : vente
- Si déréglage important : tri exhaustif de toute la production
- ⇒ Estimation de l'amplitude du déréglage

Si tri : jusqu'à quand doit-on tout recontrôler?

⇒ Estimation de la date du déréglage

Estimation de la date et de l'amplitude du déréglage

Hypothèse : alarme au contrôle t

 \hat{t}_0 : estimateur de la date de déréglage

 $\hat{\delta}$: estimateur de l'amplitude du déréglage

• \hat{t}_0 : dernier point de contrôle tel que $S_{\hat{t}_0-1}=0$

•
$$\hat{\delta} = \frac{S_t^+}{t - \hat{t}_0 + 1} + k$$
 ou $\hat{\delta} = \frac{S_t^-}{t - \hat{t}_0 + 1} - k$

roduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWMA

Carte EWMA (Exponential Weighted Moving Average)

- mêmes hypothèses que carte CUSUM
- plus simple d'utilisation, efficacité similaire

Principe de la carte :

$$\left\{ \begin{array}{l} z_i = \lambda \bar{x}_i + (1 - \lambda) z_{i-1} \qquad \text{avec} \quad 0 < \lambda \leq 1 \\ z_0 = \mu_0 \end{array} \right.$$

 $z_i = \text{moyenne pondérée du passé } z_{i-1}$, et du présent \bar{x}_i

- λ petit : résultats du passé importants, faibles dérives bien détectées
- ullet λ grand : bonne réactivité aux déréglages brusques et élevés

Remarque : si $\lambda=1$: carte de Shewart

Détermination des limites de la carte

$$z_i = \lambda \sum_{j=0}^{i-1} (1 - \lambda)^j \bar{x}_{i-j} + (1 - \lambda)^i z_0$$

 z_i = moyenne pondérée des \bar{x}_k \bar{x}_k a un poids d'autant plus faible qu'il est loin dans le passé

$$Var(z_i) = \frac{\sigma^2}{n} \frac{\lambda (1 - (1 - \lambda)^{2i})}{2 - \lambda}$$
 (si indépendance des \bar{x}_k)

$$\lim_{i\to\infty} Var(z_i) = \sigma_z^2 = \frac{\sigma^2}{n} \frac{\lambda}{2-\lambda}$$

Limite de contrôle supérieure $LCS=\mu_0+L\sigma_z$ Limite de contrôle inférieure $LCI=\mu_0-L\sigma_z$ avec $L\approx 3$ troduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWMA

Définition de la carte EWMA

Figure – Carte EWMA avec $\lambda = 0.4$ et L = 2.958

Processus sous contrôle

Définition de la carte EWMA

Trois paramètres à définir : λ , L et n

Déréglage	Nb de contrôle		
petit	10	$L = 2.8$ $\lambda = 0.15$	n tq $\delta=1$
moyen	3	$L = 2.96$ $\lambda = 0.4$	$n \operatorname{tq} \delta = 2$
important	au plus 2	$L=3$ $\lambda=0.7$	$n \operatorname{tq} \delta = 3$
très important	dès le premier	choisir une carte de Shewart	

roduction Carte CUSUM Choix de la carte Améliorations Date et amplitude Carte EWMA

Périodes opérationnelles moyennes de la carte EWMA

	δ Shewart $L = 3.00$		EWMA		EWMA		EWMA	
δ			$\lambda = 0.5 L = 2.978$		$\lambda = 0.4 \ L = 2.958$		$\lambda = 0.25 \ L = 2.898$	
	POM	pomax	POM	pomax	POM	pomax	POM	pomax
0.00	370		370		370		370	
0.25	281	841	196	584	174	515	135	397
0.50	155	464	72	210	58	169	41	114
0.75	81	242	30	86	24	67	18	46
1.00	44	130	15.2	41	12.7	33	10.3	24
1.50	15.0	44	6.0	14	5.5	12	5.2	10
2.00	6.3	18	3.4	7	3.3	6	3.5	6
2.50	3.2	9	2.4	4	2.4	4	2.6	4
3.00	2	5	1.9	3	1.9	3	2.2	3
4.00	1.2	2	1.3	2	1.39	2	1.7	2
5.00	1.03	1	1.07	1	1.10	1	1.27	2

Table – Périodes Opérationnelles Moyennes et POMAX pour cartes Shewart et EWMA

Pour calculer les valeurs dans la table :

```
library(spc)
xewma.arl(1 = 0.4, cE = 2.958, mu=1, sided="two")
```

Rq : Existence de cartes EWMA à réponses rapides et cartes combinées EWMA-Shewart