Cutting Costos Pollos

amac

May 2020

1 Introduction

2 Modelo

Conjuntos

T: Conjunto finito de periodos de tiempo, de igual tamaño, en los que se divide el horizonte de planificación. $T = \{1..30\}.$

F: Conjunto finito de productos finales trozados (incluyendo al pollo entero como producto final).

K: Conjunto finito de patrones de corte posibles (formas de trozar el pollo entero).

 δ : Duración del inventario inicial, antes de que caduque. $\delta = \{1..14\}$.

Parámetros

 h_f : Costo diario de almacenamiento de una unidad del producto final f.

 α_f : Máximo valor que puede alcanzar la demanda de un producto final f.

 β_f : Tasa de cambio de la demanda ante una variación unitaria en el precio del un producto final f (sensibilidad precio demanda).

 c_k : Costo de cortar una pieza entera para obtener el conjunto k.

 $Insumos_t$: Materia prima que se debe procesar cada día t.

 $ncuts_{fk}$: Cantidad de productos finales f que se obtiene al cortar siguiendo el patrón de corte k.

 $InvIni_{f\delta}$: Inventario inicial, de duración δ .

 δ_1 : Duración inventario inicial. $\delta_1 = 14$.

TF: Periodo final del horizonte de planificación. TF = 30.

Variables

 $P_f^t \geq 0$: Producción del producto final f el periodo t.

 $W_{f_{t_1}}^{t_2} \ge 0$: Producción del producto final f en el periodo t_1 , vendida el periodo t_2 . Se admite $t_1 = t_2$.

 $W_{0f\delta_1}^{\delta_2} \ge 0$: Distribución del inventario inicial del producto f en distintos periodos de tiempo, según la cantidad de periodos de tiempo antes de que caduque el producto.

 $L_f^t \geq 0$: Pérdida de un producto f el periodo t.

 $X_k^t \geq 0$: Cantidad de producto inicial cortado según el patrón de corte k el periodo t.

 $CCorte_k^t \ge 0$: Costo de realizar el corte k el periodo t.

Modelo

Función Objetivo

$$\max \sum_{t \in T} \sum_{f \in F} P_f^t * precio_f - \sum_{f \in F} \sum_{s \in 1..TF} \sum_{u \in s..TF} h_f * W_{f_s}^u * (u - s)$$

$$- \sum_{f \in F} \sum_{s \in 1..TF} \sum_{u \in s..TF} h_f * W_{0f_s}^u * (u - s) - \sum_{k \in K} \sum_{t \in T} X_k^t * CCorte_k^t$$
(1)

sujeto a:

Costo de corte sujeto a efecto curva de aprendizaje.

$$CCorte = c_k * (0.6 + 0.4 * e^{-0.0007 * X_k^t})$$
 $k \in K, t \in T$ (2)

La producción debe ser menor a los insumos del periodo.

$$\sum_{k \in K} X_k^t = Insumos_t \qquad t \in T \tag{3}$$

Asignación de producción.

Si
$$t + \delta_1 < TF$$
:

$$\sum_{k \in K} X_k^t * ncuts_f^k = \sum_{u \in t..t + \delta_1} W_f^u \qquad t \in T$$

$$\tag{4}$$

De otro modo, si $t + \delta_1 \ge TF$:

$$\sum_{k \in K} X_k^t * ncuts_f^k = \sum_{u \in t..TF} W_f^u \qquad t \in T$$
 (5)

Asignación de demanda.

$$P_f^t = \sum_{tt \in 1...t} \sum_{t < \delta_1} W_{0f_{tt}}^t + \sum_{tt \in 1...t} W_{f_s}^t \qquad f \in F, \ t \in 1...\delta_1$$
 (6)

Asignación de demanda.

$$P_f^t = \sum_{s \in t - \delta_1..t} W_{f_s}^t \qquad f \in F, \ \ t \in 1..\delta_1$$
 (7)

Asignación de inventario inicial en los primeros días.

$$\sum_{t \in \delta} W_{0f_t^{tt}} \le InvIni_f^{tt} \qquad f \in F, \ tt \in \delta$$
 (8)

El inventario inicial no puede ser asignado a un día pasado.

$$\sum_{tt\in 1..\delta} \sum_{ttt} W_{0ftt}^{t} = 0 \qquad f \in F, \ t \in \delta$$

$$\tag{9}$$

El inventario no puede ser asignado a un día pasado.

$$\sum_{tt \in 1...\delta} \sum_{ttt} W_{ftt}^{t} = 0 \qquad f \in F, \ t \in \delta$$
 (10)

Restricción de perecibilidad.

$$\sum_{tt \in T} \sum_{tt} W_{ft}^{tt} = 0 \qquad f \in F, \ t \in T$$

$$\tag{11}$$

Máxima pérdida.

$$L_f^t \le 20 \qquad f \in F, \ \ t \in T \tag{12}$$

Asignación de costos de almacenamiento.

$$costo_{hold} = \sum_{f \in F} \sum_{s \in 1..TF} \sum_{u \in s..TF} hold_f * W_f^u_s * (u - s) + \sum_{f \in F} \sum_{s \in 1..\delta_1} \sum_{u \in s..\delta_1} hold_f * W_0 f^u_s * (u - s) \qquad f \in F, \quad t \in T$$

$$(13)$$

Variable auxiliar que permite contar el inventario diario.

$$TInv_f^t = \sum_{tt \in T} \sum_{tt \neq t} W_{ft}^{tt} \qquad f \in F, \ t \in T$$

$$\tag{14}$$

A continuación, en la se muestra la curva de aprendizaje utilizada en esta investigación.

Figure 1: Curva de aprendizaje

Resultados

A continuación, se muestran los resultados obtenidos en la investigación. Estos se muestran en un análisis de sensibilidad para comprender la influencia de las variables en el resultado.

1. Variables de aprendizaje.

La primera variable sensibilizada fue el número que va dentro de la exponencial. El valor original es de 0.0007. Se realizaron 500 iteraciones, en cada una, se aumentó ese valor en 0.0000028, comenzando desde cero. Los resultados son los siguientes:

Figure 2: Producción, Inventario y FO según $apren_k$

La segunda variable sensibilizada fue el porcentaje de aprendizaje. El valor original es de 0.4. Se realizaron 500 iteraciones, en cada una, se aumentó ese valor en 0.0016, comenzando desde cero. Los resultados son los siguientes:

2. Variables de costos de almacenaje.

Se sensibilizó h_f , que corresponde al costo de almacenar una unidad por día. Se realizaron 500 iteraciones. El resumen de los valores utilizados se muestra en la siguiente tabla:

Hold	Original	Cambio (+)
Entero	2	0.02
Medio	1.45	0.0145
Cuarto	0.875	0.00875
Octavo	0.45	0.0045

Los resultados obtenidos son los siguientes:

3. Variables de Demanda.

Se sensibilizó α_f y β_f ; estas corresponden al valor máximo de la demanda y la tasa de cambio por variaciones unitarias, respectivamente. Se realizaron 500 iteraciones. El resumen de los valores utilizados se muestra en

Figure 3: Producción, Inventario y FO según $porap_k$

Figure 4: Producción, Inventario y FO según $hold_f$

las siguientes tablas:

α_f	Original	Cambio (+)
Entero	1600	6.4
Medio	800	3.2
Cuarto	400	1.6
Octavo	200	0.8

β_f	Original	Cambio (+)
Entero	0.18	0.00072
Medio	0.042	0.000168
Cuarto	0.0052	0.0000208
Octavo	0.00178	0.00000712

Los resultados obtenidos son los siguientes:

Figure 5: Producción, Inventario y FO según α_f

4. Variables de Insumos.

Se sensibilizó $insumos_t$; corresponde a la cantidad de materia prima que ingresa diariamente a la planta. El valor original es de 7200. Se realizaron 500 iteraciones, en cada una, se aumentó ese valor en 20, comenzando desde cero. Los resultados son los siguientes:

Figure 6: Producción, Inventario y FO según β_f

Figure 7: Producción, Inventario y FO según $insumos_t$