For any set X, $A = \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable} \}$ is a σ -algebra.

E is cocountable

- **1.** $\emptyset \in \mathcal{A}$ because \emptyset is countable.
- **2.** Let $E \in \mathcal{A}$. Then either E is countable or $X \setminus E$ is countable. In the first case, $X \setminus E$ is the complement of a countable set, so $X \setminus E \in \mathcal{A}$. In the second case, $X \setminus E \in \mathcal{A}$ since it's countable. So \mathcal{A} is closed under complements.

Example.

For any set X, $A = \{E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable} \}$ is a σ -algebra.

3. Let $\{E_j\}_1^\infty \subseteq \mathcal{A}$. We need to show that either $\bigcup_1^\infty E_j$ is countable or that $X \setminus (\bigcup_1^\infty E_j)$ is countable.

First suppose that E_j is countable for all j. Then $\bigcup_{1}^{\infty} E_j$ is countable, since the countable union of countable sets is countable.

On the other hand, suppose at least one of the E_j , WLOG let's say E_1 , is uncountable. Since $E_1 \in \mathcal{A}$ it must be that $X \setminus E_1$ is countable. Then

$$X\setminus\bigcup_{j=1}^{\infty}E_{j}=\bigcap_{j=1}^{\infty}(X\setminus E_{j})\subseteq X\setminus E_{1},$$

so $X\setminus (\cup_1^\infty E_j)$ is contained in a countable set which means it's countable and in \mathcal{A} . Thus \mathcal{A} is closed under countable unions.

Definition. Let X be a set and A a set of subsets of X. Then the intersection of all σ -algebras on X that contain A is a σ -algebra on X. We call this the σ -algebra generated by \mathcal{A} and write $\sigma(\mathcal{A})$.

Example. Suppose X is a set and S is the set of subsets of X that

consist of exactly one element:
$$S = \{ \{x\} : x \in X \}.$$

Then $\sigma(S) = \{ E \subseteq X : E \text{ is countable or } X \setminus E \text{ is countable} \}.$

Argue why any
$$\tau$$
-algebra on X that contains S needs to contain $\tau(S)$,

$$S \subseteq \sigma(S)$$

S={ {x}: x eR}

 C_X $\chi = \mathbb{R}$

Measure Theory, EDGE 2020

Lecture 2

Borel sets

The Borel σ -algebra on \mathbb{R} , written $\mathcal{B}(\mathbb{R})$ (or $\mathcal{B}_{\mathbb{R}}$ or sometimes just \mathcal{B}) is the σ -algebra generated by the open sets of \mathbb{R} . Elements of $\mathcal{B}(\mathbb{R})$ are called *Borel sets*.

 \mathcal{B} is generated by each of the following collections:

1.
$$C_1 = \{(a, b) : a, b \in \mathbb{R}\}$$

2.
$$C_2 = \{[a, b] : a, b \in \mathbb{R}\}$$

3.
$$C_3 = \{(a, b] : a, b \in \mathbb{R}\}$$

4.
$$C_4 = \{(a, \infty) : a \in \mathbb{R}\}$$

5. $C_5 = \{(-\infty, a] : a \in \mathbb{R}\}$

/5.
$$C_5 = \{(-\infty, a] : a \in \mathbb{R}\}$$

(work in groups)

1. Claim:
$$T(C_1) = B(R)$$

First we need the fact that every open set in \mathbb{R} can be written as a complete union of open intervals. So all open sets belong to $T(C_i)$

Next we'll we the following important fact:

if
$$A \subseteq B$$
 Pen $\sigma(A) \subseteq \sigma(B)$

So
$$\tau(\{open sets\}) \subseteq \tau(\tau(\zeta))$$

= $\tau(\zeta)$

Stoff every open interval is an open set,
so
(, \sum_{\lefta} \int \text{open sets}\forall

Therefore
$$T(C_i) = \mathcal{B}(IR)$$

Claim:
$$B(R) = T(C_5)$$
, where $C_5 = S(-\infty, a]: a \in R_5$

First let's show $(a,b) \in \mathcal{T}(C_5)$ for all a < b.

$$(a,b) = \bigcup_{n=1}^{\infty} (a,b_n) \quad \text{where } b_n = b - \frac{1}{n}$$

$$= \bigcup_{n=1}^{\infty} (-\infty,b_n) \cap (a,\infty)$$

$$= \bigcup_{n=1}^{\infty} (-\infty,b_n) \cap (a,\infty)$$

$$= \bigvee_{n\geq 1}^{\infty} \left(\left(-\infty, b_n \right) \cap \left(-\infty, a \right)^{C} \right)$$

So
$$(a,b) \in \sigma(C_5)$$
 for all (a,b)

$$C_1 \subseteq \sigma(C_5)$$

$$\Rightarrow \sigma(C_5) = \sigma$$

The for all
$$\alpha \in \mathbb{R}$$
,
$$(-\infty, \alpha] = \mathbb{R} \setminus ((\alpha, \infty))$$

$$= \mathbb{R} \setminus (\bigcup_{n=1}^{\infty} (a, n)) \in \mathcal{T}(C_1)$$

$$\Rightarrow \mathcal{T}(C_5) \leq \mathcal{T}(C_1) = \mathcal{B}(\mathbb{R})$$

space.

Definition. Let
$$(X, \mathcal{M})$$
 be a measurable space. A **measure** on (X, \mathcal{M}) is a function $\mu : \mathcal{M} \to [0, \infty]$ such that

1.
$$\mu(\emptyset) = 0$$
 $\sim \infty$ is allowed

2. (countable additivity) If
$$\{E_j\}$$
 is a collection of pairwise disjoint sets in \mathcal{M} , then $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$.

for all
$$E_i$$
 and E_j
 $E_i \cap E_j = \emptyset$

Definition If
$$\mu$$
 is a measure on (X, \mathcal{M}) , then (X, \mathcal{M}, μ) is called a **measure space**.

Measures

Examples and non-examples of measures (work in groups)

For the following let $(X, \mathcal{M}) = (\mathbb{R}, \mathcal{P}(\mathbb{R}))$.

1
$$\Phi(\mathbb{D})$$
 0 of E is countable, Y_0

1.
$$\alpha: \mathcal{P}(\mathbb{R}) \to [0,\infty]$$
 defined by $\alpha(E) = \begin{cases} 0 & \text{if E is countable,} \\ \infty & \text{if E is finite.} \end{cases}$

2.
$$\beta: \mathcal{P}(\mathbb{R}) \to [0,\infty]$$
 defined by $\beta(E) = \begin{cases} 0 & \text{if E is finite,} \\ \infty & \text{if E is infinite.} \end{cases}$ NoT a measure 3. $\gamma: \mathcal{P}(\mathbb{R}) \to [0,\infty]$ defined by $\gamma(E) = \text{cardinality of E}$. Yes, this is called counting

3.
$$\gamma: \mathcal{P}(\mathbb{R}) \to [0,\infty]$$
 defined by $\gamma(E) = \text{cardinality of } E$. $\gamma \in \mathcal{P}(\mathbb{R}) \to [0,\infty]$ by
$$\delta_{x_0}(E) = \begin{cases} 1 & x_0 \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Measure Theory, EDGE 2020

4)
$$\cdot x_0 \notin \beta$$
 so $\delta_{x_0}(\beta) = 0$
 $\cdot c$ consider $\bigvee_{j=1}^{\infty} E_j$ where each $E_j \in \mathcal{P}(R)$
and the E_j are paradize disjoint.

Case [: suppose $x_0 \in E_j$ for some j , then x_0 is in exactly one of the E_j . So
$$\bigvee_{j=1}^{\infty} \delta_{x_0}(E_j) = 1 = \delta_{x_0} \left(\bigvee_{j=1}^{\infty} E_j \right) \vee$$
Case 2: Y_0 is not in any of the E_j . Then X_0 does not belong to their union either. So
$$\bigvee_{j=1}^{\infty} \delta_{x_0}(E_j) = 0 = \delta_{x_0} \left(\bigvee_{j=1}^{\infty} E_j \right) \vee$$
So $\delta_{x_0}(E_j) = 0 = \delta_{x_0} \left(\bigvee_{j=1}^{\infty} E_j \right) \vee$
Called the point nears at X_0 or Dirac dolfa measure

a).
$$\mathcal{B}(\mathcal{S}) = 0$$
 because \mathcal{G} is finite.

countable additivity and the fails

ex. take \mathcal{G} ii]

for each $\mathcal{B}(\mathcal{G}) = 0$ since $\mathcal{G}(\mathcal{G}) = 0$ since $\mathcal{G}(\mathcal{G}) = 0$ and $\mathcal{B}(\mathcal{G}) = 0$ since $\mathcal{B}(\mathcal{G}) = 0$ since

Outer measure on R - cone back to this tomorrow

Definition. The length of an open interval
$$I \subseteq \mathbb{R}$$
 is defined by

$$\ell(I) = egin{cases} 0 & I = \emptyset \ b - a & I = (a, b) ext{ with } a < b \ \infty & I = (-\infty, a) ext{ or } (a, \infty) ext{ or } (-\infty, \infty) \end{cases}$$

Definition. Define the **Lebesgue outer measure** of
$$E \subseteq \mathbb{R}$$
, written $|E|$ (Axler) or $m^*(E)$ (Bass) by
$$\inf \left\{ \sum_{i=1}^{\infty} \ell(A_i) : \text{ each } A_i \text{ is an open interval of } \mathbb{R} \text{ and } E \subseteq \bigcup_{i=1}^{\infty} A_i \right\}.$$

Outer measure is **not** a measure on $(\mathbb{R}, \mathcal{P}(\mathbb{R}))$. We will soon see that it is a measure on $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, and in fact there is a somewhat larger σ -algebra \mathcal{L} such that outer measure is a measure on (\mathbb{R},\mathcal{L}) .

Measure Theory, EDGE 2020 Lecture 2

Special kinds of measures - Cine back homomore

Definition.

- μ is a *finite* measure if $\mu(X) < \infty$
- μ is a probability measure if $\mu(X) = 1$
- μ is called σ -finite if $X = \bigcup_{n=1}^{\infty} X_n$ where $\mu(X_n) < \infty$ for all n.

Measure Theory, EDGE 2020

Properties of measures

Theorem. Let
$$(X, \mathcal{M}, \mu)$$
 be a measure space. Then for all $E, F \in \mathcal{M}$ and for all $\{E_i\}_{i=1}^{\infty} \subseteq \mathcal{M}$:

- **1.** (monotonicity) If $E \subseteq F$ then $\mu(E) < \mu(F)$.
- 2. (countable subadditivity) $\mu(\bigcup_{j=1}^{\infty} E_j) \leq \sum_{j=1}^{\infty} \mu(E_j)$.
- **3.** (continuity from below) If $E_i \subseteq E_{i+1}$ for all j, then $\mu\left(\bigcup_{j\to\infty}^{\infty}E_{j}\right)=\lim_{j\to\infty}\mu(E_{j}).$
- **4.** (continuity from above) If $\mu(E_1) < \infty$ and $E_i \supseteq E_{i+1}$ for all j, then $\mu\left(\bigcap_{j\to\infty}^{\infty}E_{j}\right)=\lim_{j\to\infty}\mu(E_{j}).$

Proof of [1]

Since ESF, F=EU (F/E) where E and F/E are disjoint. EEM by hypothesis and FIE = FNEC = (FCUE) CEX by closure under complements and unions.

Then by countable additivity of measure,

$$\mu(F) = \mu(E) + \mu(F \setminus E) \ge \mu(E) + 0 \ge \mu(E)$$
.

Proof of [2]

$$F_2 = F_2 \setminus F_1$$

$$F_3 = E_3 \setminus (E_1 \cup E_2)$$

$$F_{k} = E_{k} \setminus \left(\bigcup_{j=1}^{k} E_{j} \right)$$

Ten Te (Fk) are patraise disjoint sets in M and

Now we can use countable additivity of measure on p.w. disjoint sets to compute

$$\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right) = \mu\left(\bigcup_{j=1}^{\infty} F_{j}\right) = \sum_{j=1}^{\infty} \mu\left(F_{j}\right)$$

Since F; S For each J, by monotonicity:

$$\leq \sum_{j\geq 1}^{\infty} \mu(E_j)$$