```
import numpy as np
In [2]:
         import pandas as pd
        import os
In [3]: for dirname,_, filenames in os.walk('/kaggle/input'):
             for filename in filenames:
                 print(os.path.join(dirname, filename))
In [4]:
        import seaborn as sns
         import matplotlib.pyplot as plt
        import scipy.stats as st
        %matplotlib inline
        sns.set(style="whitegrid")
In [5]:
        import warnings
        warnings.filterwarnings('ignore')
In [6]: df = pd.read_csv(r"C:\Users\hp\Documents\heart.csv")
In [7]: print('The shape of the dataset :',df.shape)
       The shape of the dataset : (303, 14)
In [8]: df.head()
Out[8]:
            age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca
                                                                                         thal
         0
                       3
                                   233
                                          1
                                                   0
                                                         150
                                                                          2.3
                                                                                      0
                                                                                            1
             63
                   1
                              145
                                                                  0
                                                                                  0
                       2
                              130
                                   250
                                          0
                                                         187
                                                                  0
                                                                          3.5
                                                                                      0
                                                                                           2
         1
             37
                   1
                                                                                  0
                                   204
                                                   0
                                                                                           2
         2
                   0
                       1
                              130
                                          0
                                                         172
                                                                  0
                                                                          1.4
                                                                                  2
                                                                                      0
             41
                                                                                           2
             56
                              120
                                   236
                                                   1
                                                         178
                                                                  0
                                                                          8.0
                                                                                      0
         3
                   1
                                          0
                                                                                  2
                                                                                           2
         4
                                   354
                                                   1
                                                                          0.6
                                                                                  2
                                                                                      0
             57
                   0
                       0
                              120
                                          0
                                                         163
                                                                   1
In [9]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):

#	Column	Non-	-Null Count	Dtype
0	age	303	non-null	int64
1	sex	303	non-null	int64
2	ср	303	non-null	int64
3	trestbps	303	non-null	int64
4	chol	303	non-null	int64
5	fbs	303	non-null	int64
6	restecg	303	non-null	int64
7	thalach	303	non-null	int64
8	exang	303	non-null	int64
9	oldpeak	303	non-null	float64
10	slope	303	non-null	int64
11	ca	303	non-null	int64
12	thal	303	non-null	int64
13	target	303	non-null	int64
d+vnos: floa+64(1)			in+61/12)	

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

In [10]: df.dtypes

Out[10]: age int64 sex int64

int64 int64 ср trestbps int64 chol int64 fbs int64 restecg int64 thalach int64 int64 exang oldpeak float64 slope int64 ca int64 thal int64 target int64

dtype: object

In [11]: df.describe()

Out[11]:

reste	fbs	chol	trestbps	ср	sex	age	
303.0000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	count
0.5280	0.148515	246.264026	131.623762	0.966997	0.683168	54.366337	mean
0.5258	0.356198	51.830751	17.538143	1.032052	0.466011	9.082101	std
0.0000	0.000000	126.000000	94.000000	0.000000	0.000000	29.000000	min
0.0000	0.000000	211.000000	120.000000	0.000000	0.000000	47.500000	25%
1.0000	0.000000	240.000000	130.000000	1.000000	1.000000	55.000000	50%
1.0000	0.000000	274.500000	140.000000	2.000000	1.000000	61.000000	75%
2.0000	1.000000	564.000000	200.000000	3.000000	1.000000	77.000000	max
							4 =

```
In [12]:
         df.columns
Out[12]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
                 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                dtype='object')
In [13]: df['target'].nunique()
Out[13]: 2
In [14]: df['target'].unique()
Out[14]: array([1, 0])
In [15]: df['target'].value_counts()
Out[15]: target
               165
               138
          Name: count, dtype: int64
In [16]: f, ax = plt.subplots(figsize=(8,6))
         ax = sns.countplot(x="target", data=df)
         plt.show()
           160
           140
           120
           100
            80
            60
            40
            20
                                 0
                                                                       1
                                                  target
In [17]: df.groupby('sex')['target'].value_counts()
```

```
Out[17]: sex target
0 1 72
0 24
1 0 114
1 93
```

Name: count, dtype: int64

```
In [18]: f, ax = plt.subplots(figsize=(8,6))
    ax = sns.countplot(x="sex", hue="target", data=df)
    plt.show()
```



```
In [19]: f, ax = plt.subplots(figsize=(8,6))
    ax = sns.countplot(y="target", hue="sex", data=df)
    plt.show()
```



```
In [21]: f, ax = plt.subplots(figsize=(8, 6))
    sns.countplot(x="target", data=df, facecolor=(0,0,0,0), linewidth=5, edgecolor=s
    plt.show()
```



```
In [22]: f, ax = plt.subplots(figsize=(8,6))
    ax = sns.countplot(x="target", hue="fbs", data=df)
    plt.show()
```


In [24]: correlation = df.corr()

```
correlation['target'].sort_values(ascending=False)
In [25]:
Out[25]: target
                     1.000000
          ср
                     0.433798
          thalach
                     0.421741
                    0.345877
          slope
          restecg
                    0.137230
                    -0.028046
          fbs
          chol
                    -0.085239
          trestbps -0.144931
                    -0.225439
          age
          sex
                    -0.280937
          thal
                    -0.344029
                    -0.391724
          ca
                    -0.430696
          oldpeak
                    -0.436757
          exang
          Name: target, dtype: float64
In [26]: df['cp'].nunique()
Out[26]: 4
In [27]: df['cp'].value_counts()
Out[27]: cp
          0
              143
          2
               87
          1
                50
          3
               23
          Name: count, dtype: int64
In [28]: f, ax = plt.subplots(figsize=(8,6))
         ax = sns.countplot(x="cp", data=df)
         plt.show()
```



```
In [29]: df.groupby('cp')['target'].value_counts()
```

Out[29]: cp target

Name: count, dtype: int64

```
In [30]: f, ax = plt.subplots(figsize=(8,6))
    ax = sns.countplot(x="cp", hue="target", data=df)
    plt.show()
```


plt.show()


```
In [33]: f, ax = plt.subplots(figsize=(10, 6))
x = df['thalach']
x.name = "thalach variable"
sns.histplot(x, bins=10, ax=ax)
plt.show()
```



```
In [34]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
ax = sns.distplot(x, bins=10, vertical=True)
plt.show()
```



```
In [35]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
x.name = "thalach variable"
ax = sns.kdeplot(x)
plt.show()
```



```
In [36]: f, ax = plt.subplots(figsize=(10,6))
           x = df['thalach']
           x.name = "thalach variable"
           ax = sns.kdeplot(x, shade=True, color='r')
           plt.show()
           0.0175
           0.0150
           0.0125
         Density
0.0100
           0.0075
           0.0050
           0.0025
           0.0000
                     50
                                75
                                           100
                                                      125
                                                                            175
                                                                                      200
                                                                                                 225
```

```
In [37]: f, ax = plt.subplots(figsize=(10,6))
x =df['thalach']
ax = sns.distplot(x, kde=False, rug=True, bins=10)
plt.show()
```

thalach variable

In [39]: f, ax = plt.subplots(figsize=(8,6))
sns.stripplot(x="target",y="thalach", data=df)
plt.show()


```
In [41]: f, ax = plt.subplots(figsize=(8,6))
sns.boxplot(x="target",y="thalach", data=df)
```

target

0

1


```
In [45]: plt.figure(figsize=(16,12))
   plt.title("Correlation' Heatmap of Heart Disease Dataset")
   a = sns.heatmap(correlation, square=True, annot=True, fmt='.2f', linecolor='whit
   a.set_xticklabels(a.get_xticklabels(), rotation=90)
   a.set_yticklabels(a.get_yticklabels(), rotation=30)
   plt.show()
```


In [46]: num_var = ['age','trestbps','chol','thalach','oldpeak','target']
 sns.pairplot(df[num_var], kind='scatter' , diag_kind='hist')
 plt.show()


```
In [47]: df['age'].nunique()
```

Out[47]: **41**

```
In [48]: df['age'].describe()
```

```
Out[48]: count
                   303.000000
          mean
                    54.366337
                     9.082101
          std
                    29.000000
          min
          25%
                    47.500000
          50%
                    55.000000
          75%
                    61.000000
                    77.000000
          max
          Name: age, dtype: float64
```

```
In [49]: f, ax = plt.subplots(figsize=(10,6))
x = df['age']
ax = sns.distplot(x, bins=10)
plt.show()
```


In [50]: f, ax = plt.subplots(figsize=(8,6))
 sns.stripplot(x="target", y="age" , data=df)
 plt.show()


```
In [51]: f, ax = plt.subplots(figsize=(8,6))
sns.boxplot(x="target", y="age" , data=df)
plt.show()
```



```
In [55]: f, ax = plt.subplots(figsize=(8,6))
    ax = sns.regplot(x="age", y="trestbps" , data=df)
    plt.show()
```



```
In [56]: f, ax = plt.subplots(figsize=(8,6))
    ax = sns.scatterplot(x="age", y="chol" , data=df)
    plt.show()
```



```
In [58]: f, ax = plt.subplots(figsize=(8,6))
ax = sns.scatterplot(x="chol", y="thalach", data=df)
```



```
df.isnull().sum()
In [60]:
Out[60]: age
                     0
         sex
                     0
                     0
         ср
         trestbps
                     0
                     0
         chol
         fbs
                     0
                     0
         restecg
         thalach
                     0
         exang
         oldpeak
                     0
                     0
         slope
         ca
                     0
         thal
         target
         dtype: int64
In [61]: assert pd.notnull(df).all().all()
In [62]: assert(df >=0).all().all()
In [63]: df['age'].describe()
Out[63]: count
                  303.000000
         mean
                   54.366337
         std
                   9.082101
         min
                  29.000000
         25%
                  47.500000
         50%
                   55.000000
         75%
                   61.000000
                   77.000000
         max
         Name: age, dtype: float64
In [64]: f, ax = plt.subplots(figsize=(8,6))
         ax = sns.boxplot(x=df["age"])
         plt.show()
```



```
In [65]: df['trestbps'].describe()
                   303.000000
Out[65]: count
          mean
                   131.623762
          std
                   17.538143
          min
                   94.000000
          25%
                   120.000000
          50%
                   130.000000
          75%
                   140.000000
                   200.000000
          max
          Name: trestbps, dtype: float64
In [66]: f, ax = plt.subplots(figsize=(8,6))
         sns.boxplot(x=df["trestbps"])
         plt.show()
```



```
In [67]: df['chol'].describe()
                   303.000000
Out[67]: count
          mean
                   246.264026
          std
                    51.830751
          min
                   126.000000
          25%
                   211.000000
          50%
                   240.000000
          75%
                   274.500000
                   564.000000
          max
          Name: chol, dtype: float64
In [70]: f, ax = plt.subplots(figsize=(8,6))
         sns.boxplot(x=df["chol"])
         plt.show()
```



```
In [71]: df['thalach'].describe()
                   303.000000
Out[71]: count
          mean
                   149.646865
          std
                    22.905161
          min
                   71.000000
          25%
                   133.500000
          50%
                   153.000000
          75%
                   166.000000
                   202.000000
          max
          Name: thalach variable, dtype: float64
In [73]: f, ax = plt.subplots(figsize=(8,6))
         sns.boxplot(x=df["thalach"])
         plt.show()
```



```
In [74]: df['oldpeak'].describe()
                   303.000000
Out[74]: count
          mean
                     1.039604
          std
                     1.161075
          min
                     0.000000
          25%
                     0.000000
          50%
                     0.800000
          75%
                     1.600000
                     6.200000
          max
          Name: oldpeak, dtype: float64
In [75]: f, ax = plt.subplots(figsize=(8,6))
         sns.boxplot(x=df["oldpeak"])
         plt.show()
```


TII [] •	
In []:	

In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	
In []:	