Data Cleaning and EDA


```
from sklearn.model_selection import train_test_split

# Split the data into training (80%) and testing (20%) while keeping 'price' in both
X_train, X_test = train_test_split(df, test_size=0.2, random_state=42) # Set random_state for reproducibility

# Print the number of rows in each dataset
print("Training set size:", len(X_train))
print("Test set size:", len(X_test))
```

Training set size: 17290 Test set size: 4323

OLS Regression Results

Dep. Variable	2:	price		iared:		0.492	
Model:		OLS		Adj. R-squared:		0.492	
Method:		Least Squares		F-statistic:		1.677e+04	
Date:	Sa	Sat, 08 Feb 2025		Prob (F-statistic):		0.00	
Time:		21:36:33		Log-Likelihood:		-2.3995e+05	
No. Observati	ions:	17290				4.799e+05	
Df Residuals	:	17288		BIC:		4.799e+05	
Df Model:			1				
Covariance Ty	/pe:	nonrobu	ist				
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-4.2e+04	4886.778	-8.594	0.000	-5.16e+04	-3.24e+04	
saft living	279.5548	2.159	129.496	0.000	275.323	283.786	

Intercept	-4.2e+04	4886.778	-8.594	0.000	-5.16e+04	-3.24e+04				
sqft_living	279.5548	2.159	129.496	0.000	275.323	283.786				
Omnibus:		11990.49	95 Durbin-	Durbin-Watson:		2.030				
Prob(Omnibus):		0.00	00 Jarque-	Bera (JB):		483410.340				
Skew:		2.83	35 Prob(JE	Prob(JB):		0.00				
Kurtosis:		28.27	76 Cond. N	Cond. No.		5.65e+03				

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.65e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

Adjusted R-squared: 0.4923544744403926

71. # __! C ___#

List:

sqft_living: 0.4923 grade: 0.4451 sqft_above: 0.3856 bathrooms: 0.3338 sqft_living15: 0.3249

view: 0.1877

sqft_basement: 0.1721

lat: 0.1124

waterfront: 0.1056 floors: 0.0895 yr_built: 0.0521 sqft_lot: 0.0087 sqft_lot15: 0.0079 yr_renovated: 0.0032

long: 0.0028 condition: 0.0019

The top 3 predictors based on the adj R squared: sqft_living, grade, and sqft_above. I conducted simple linear regression for each predictor using statsmodels.ols(), with price as the dependent variable. After fitting the models, I extracted the Adjusted R-squared values for each predictor to evaluate their performance. Finally, I ranked the predictors in descending order based on their Adjusted R-squared

values to determine which variables had the strongest relationship with price. Yes, the correlation matrix analysis identified sqft_living as the best guess predictor because it had the highest correlation with price. After validating this through Adjusted R-squared values from linear regression, sqft_living remains the strongest predictor, confirming its significant relationship with price.