producing, in this way, electrical energy from any source of thermal energy including solar energy

¶14. The following table details the support for the claims:

<u>Claims</u>	Support In Original Specification
7. A process for producing electrical energy from thermal	Pg. 1, line 4 & page 3, line 3
energy comprising the steps of:	
supplying thermal energy to a heat pipe containing a	Pg. 5, line 5 & Fig. 1
working fluid and a capillary insert to evaporate the working	Pg. 4, lines 6-9 & Fig. 1
fluid in a vaporizer section of the heat pipe;	Pg. 4, lines 14-16 & Fig. 1
directing the resulting vapor flow through the heat pipe	Pg. 4, lines 14-16 & Fig. 1
to a condenser section of the heat pipe where the vapor is	Pg. 4, lines 14-16 & Fig. 1
condensed and the resulting condensate returns to the vaporizer	Pg. 4, lines 14-16 & Fig. 1
section via the capillary insert;	Pg. 4, lines 16-16 & Fig. 1
entraining liquid droplets of an electrostatic generator	Pg. 5, lines 16-19 & Fig. 1
by means of the vapor flow from the vaporizer section of the	Pg. 5, lines 16-19 & Fig. 1
heat pipe, the electrostatic generator having a liquid working	Pg. 4, lines 9-12 & Fig. 1
medium to supply the liquid droplets, a solid working medium	Pg. 4, lines 9-12 & Fig. 1
for charges separation, and a pick-up electrode within the	Pg. 4, lines 9-12 & Fig. 1
condenser section of the heat pipe;	Pg. 4, lines 9-12 & Fig. 1
passing the vapor entrained with the liquid droplets by	Pg. 5, lines 16-19, & claim 2
the solid working medium to cause separation of the	Pg. 5, lines 9-19, & Fig. 1
electrostatic charges between the solid and liquid working	Pg. 5, lines 9-19 & Fig. 1
media;	
displacing of the resulting charged liquid droplets-	Pg. 5, lines 5-19 & Fig. 1
working medium under the action of external forces caused by	Pg. 5, lines 5-19 & Fig. 1
the kinetic energy of the molecules of the vapor flow, wherein	Pg. 5, lines 5-19 & Fig. 1
the external forces perform work against the Coulomb forces;	Pg. 1, lines 4-12 & Fig. 1
and	

13

Serial No.: 09/830,017 Attorney Docket No.: 08889-01

passing the liquid droplets-working medium past the
pick-up electrode to pick up electric charges that are
mechanically displaced by the external forces against the
Coulomb forces to generate electrical energy from the thermal
energy.

- Pg. 5, lines 5-19 & Fig. 1
 Pg. 5, lines 5-19 & Fig. 1
 Pg. 5, lines 5-19 & Fig. 1
 Pg. 1, lines 4-12 & Fig. 1
- 8. The process of claim 7, wherein said electrostatic generator also has a first external electrode connected to said solid working medium and a second external electrode connected to said pick-up electrode.
- Pg. 4, lines 9-12, pg. 5, lines 21-23 & Fig. 1
- 9. The process of claim 8, wherein the pick-up electrode is a grid
- Pg. 5, lines 29-30 & Fig. 1
- 10. The process of claim 9, wherein the solid working medium comprises a second grid through which the vapor entrained with liquid droplets passes.
- Pg. 6, lines 1-3, Fig. 3 & claim 3
- 11. The process of claim 7, wherein a diaphragm of separates the vaporizer section from the condenser section to create an area of maximum flow velocity.
- Pg. 5, lines 9-14 & Fig. 1
- 12. The process of claim 11, wherein the solid working medium is located within the heat pipe roughly at the position of the maximum flow velocity.
- Pg. 5, lines 9-14, Fig. 11 & claim 4
- 13. The process of claim 7, wherein the liquid droplets are recovered and fall by gravity into a loop return and are returned to be entrained by means of the vapor.
- Pg. 4, lines 9-12 & Fig. 1

- 14. The process of claim 7, wherein the liquid droplets are recovered through a loop return containing a capillary insert and are returned to be retained by means of the vapor.
- Pg. 5, lines 25-29 & Fig. 2
- Pg. 5, lines 25-29 & Fig. 2.
- Pg. 6, lines 21-23 & claim 6
- 15. The process of claim 7, wherein the same liquid is used as the fluid in the heat pipe and the working liquid medium of the generator.
- Pg. 1, line 12
- 16. The process of claim 7, wherein the thermal energy is solar energy.

In view of the foregoing amendments and remarks, the Primary Examiner's objections to the drawings, the specification, and the abstract have been removed and rejection of the claims have been overcome. New Claims 7-16 are now believed to be in a condition further examination. If the Examiner has any question concerning this amendment, please contact the undersigned attorney.

Respectfully submitted,

RichardaDansella

Richard A. Dannells Registration No. 22,654

January 30, 2003 COUDERT BROTHERS LLP 600 Beach Street, 3rd Floor San Francisco, CA 94109 Telephone: (415) 409-2900

Telefax: (415) 409-7400