MAG120 - Cálculo Vetorial e Geometria Analítica

Pedro Schneider

2° Semestre de 2024

Sumário

1	Cro	Cronograma e Notas								
	1.1	Critéri	o de Aproveitamento							
	1.2	Cronog	grama							
2	Semana 1 - Matrizes									
	2.1	Funda	mentos e tipos							
		2.1.1	O que são matrizes?							
		2.1.2	Como indicar matrizes?							
		2.1.3	Matriz Quadrada							
		2.1.4	Matriz Retangular							
		2.1.5	Matriz Nula							
		2.1.6	Matriz Identidade							
		2.1.7	Matriz Diagonal							
		2.1.8	Matriz Transposta							
		2.1.9	Matriz Simétricas							
		2.1.10	Matriz Antissimétricas							
		2.1.11	Matriz Inversa							
	2.2	Opera	ções com matrizes							
		2.2.1	Adição							
		2.2.2	Multiplicação por um número real							
		2.2.3	Multiplicação entre duas raízes							
		2.2.4	Operações com matriz transposta							
		2.2.5	Operações com matriz inversa							
	2.3	Fórmu	la de Binet e determinante							
		2.3.1	Determinante							
		2.3.2	Fórmula de Binet							
3	Semana 2 e 3 - Sistemas Lineares									
	3.1	1 Introdução								
		3.1.1	O que é um sistema linear?							
		3.1.2	Como resolver um sistema linear?							
	3.2	Resolu	ção do sistema linear utilizando a regra de Cramer							
	3.3	Resolução do sistema linear utilizando escalonamento								

4	Sen	Semana 4 - Segmentos orientados e vetores						
	4.1	Segme	entos orientados	13				
		4.1.1	O que são vetores e segmentos orientados?	13				
		4.1.2	Notação	14				
		4.1.3	Operações com vetores	14				

1 Cronograma e Notas

1.1 Critério de Aproveitamento

A média final MF é calculada pela fórmula:

$$\boldsymbol{MF} = 0.3 \times \frac{(\boldsymbol{AT1} + \boldsymbol{AT2})}{2} + 0.7 \times \boldsymbol{PF}$$

AT1, AT2 e AT3 - Atividades Avaliativas (avaliação continuada) com as datas préestabelecidas no cronograma.

OBS.: SERÃO REALIZADAS TRÊS ATIVIDADES, PORÉM SÓ SERÃO UTILIZADAS AS DUAS MAIORES NOTAS (A MENOR DELAS SERÁ DESCARTADA).

PF - Prova final contemplando todo conteúdo do semestre.

A nota da avaliação PF poderá ser substituída pela nota da avaliação PS, caso o aluno não alcance média final maior ou igual a 5,0.

1.2 Cronograma

Tabela 1: Cronograma semestral

Semanas	Datas	Conteúdo
	08/08 a 10/08	MATRIZES. OPERAÇÕES.
Sem. 1		MATRIZ TRANSPOSTA E MATRIZ INVERSA.
		FÓRMULA DE BINET
Sem. 2	12/08 a 16/08	SISTEMAS LINEARES
Sem. 3	19/08 a 24/08	SISTEMAS LINEARES
	26/08 a 31/08 ATP 1	SEGMENTOS ORIENTADOS.
Sem. 4		EQUIPOLÊNCIA VETORES.
		OPERAÇÕES COM VETORES.
C F	02/09 a 07/09	DEPENDÊNCIA LINEAR E BASES.
Sem. 5	Feriado 07/09	COORDENADAS DE UM VETOR
Sem. 6	09/09 a 14/09	MUDANÇA DE BASE.
Sem. 0		EQUAÇÕES DE MUDANÇA
Sem. 7	16/09 a 21/09	PRODUTOS ESCALAR
		PRODUTOS ESCALAR (continuação).
Sem. 8	23/09 a 28/09	VETOR PROJEÇÃO ORTOGONAL e
		COSSENOS DIRETORES
Sem. 9	30/09 a 04/10	PRODUTO VETORIAL E APLICAÇÕES.
Sem. 9	ATP 2	
Sem. 10	07/10 a 12/10	PRODUTO MISTO.
Sem. 10	Feriado 12/10	TRODUTO MISTO.
	14/10 a 19/10	SISTEMAS DE COORDENADAS.
Sem. 11		EQUAÇÕES DA RETA.
		Posições relativas entre duas retas.
Sem. 12	21/10 a 26/10	EQUAÇÕES DO PLANO.
Sem. 12	22 e 23 - INOVAÇÃO	VETOR NORMAL A UM PLANO.
Sem. 13	28/10 a 02/11	EQUAÇÕES DO PLANO.
Sem. 15	Feriado 02/11	VETOR NORMAL A UM PLANO.
Sem. 14	04/11 a 09/11	POSIÇÕES RELATIVAS ENTRE
Sem. 14	ATP 3	RETAS E PLANOS.
Sem. 15	11/11 a 16/11	PROBLEMAS CLÁSSICOS
	11/11 a 16/11	DE GEOMETRIA ESPACIAL.
Sem. 16	18/11 a 20/11	DISTÂNCIAS.
	21/11 a 30/11	PERÍODO PROVAS FINAIS
Sem. 17-19	$02/12 \ { m a} \ 07/12$	REVISÃO DE PROVAS
Dem. 17-19	09/12 a 14/12	PERÍODO PROVAS SUBSTITUTIVAS
	20/12	1 EIGODO I IOVAS SUBSTITUTIVAS

2 Semana 1 - Matrizes

2.1 Fundamentos e tipos

2.1.1 O que são matrizes?

É uma tabela contendo $M\times N$ elementos, com $M,N\in\mathbb{N},$ dispostos em linhas e colunas. Ex.:

$$A = \begin{pmatrix} -2 & 1\\ -5 & 0\\ \sqrt{7} & 1/3 \end{pmatrix}$$

2.1.2 Como indicar matrizes?

Com letra latina maiúscula, $A = [a_{ij}]$, onde i indica a **linha** e j indica a **coluna** em que se encontra o elemento; sabendo que $1 \le i \le m$ e $1 \le j \le n$.

$$A = [a_{ij}]$$
 onde $1 \le i \le 2$ e $1 \le j \le 3 \rightarrow A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$

2.1.3 Matriz Quadrada

Quando m = n, ou seja, número de linhas é igual ao número de colunas.

$$A = \begin{pmatrix} 2 & -1 & 3 \\ 0 & 5 & -2 \\ 1 & 7 & 1 \end{pmatrix}$$

2.1.4 Matriz Retangular

Quando $m \neq n$, ou seja, número de linhas é diferente do número de colunas.

$$A = \begin{pmatrix} 2 & -1 \\ -5 & 4 \\ 3 & 0 \end{pmatrix}$$
Ordem 3×2

2.1.5 Matriz Nula

Quando todos os elementos são nulos, ou seja, iguais a 0.

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

5

2.1.6 Matriz Identidade

Quando temos uma matriz quadrada onde os elementos da diagonal principal são unitários e os demais são nulos, ou seja, se $i = j \rightarrow a_{ij} = 1$ e se $i \neq j \rightarrow a_{ij} = 0$.

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

2.1.7 Matriz Diagonal

Quando temos uma matriz quadrada onde os elementos da diagonal principal são unitários e os demais são nulos, ou seja, se $i = j \rightarrow a_{ij} \neq 0$ e se $i \neq j \rightarrow a_{ij} = 0$.

$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$

2.1.8 Matriz Transposta

Dada a matriz $A = [a_{ij}]; 1 \le i \le m, 1 \le j \le n$, a matriz transposta é indicada por A^T , e é a matriz tal que $B = [b_{ij}]$, onde $b_{ij} = a_{ij}$.

$$A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & -3 & 4 \end{pmatrix} \implies A^{T} = \begin{pmatrix} -1 & 2 \\ 2 & -3 \\ -3 & 4 \end{pmatrix}$$

2.1.9 Matriz Simétricas

Uma matriz quadrada $A = [a_{ij}]$ é simétrica se $a_{ij} = a_{ji}$ para todos os elementos da matriz. Em outras palavras, é uma matriz quadrada tal que: $A = A^T$.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}, A = A^{T}$$

2.1.10 Matriz Antissimétricas

Uma matriz quadrada tal que: $A = -A^T$.

$$A = \begin{pmatrix} 0 & 2 & -4 \\ -2 & 0 & 3 \\ 4 & -3 & 0 \end{pmatrix}, A = -A^{T}$$

2.1.11 Matriz Inversa

Se a matriz A é quadrada, quem é sua inversa?

É outra matriz quadrada, indicada por A^{-1} , que satisfaz a condição $A \cdot A^{-1} = A^{-1} \cdot A = I_n$, sendo I_n a matriz identidade de ordem n.

 $\mathbf{E}\mathbf{x}$:

$$A = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 3 & 1 \\ 3 & -1 & 1 \end{pmatrix}, entao: A^{-1} = \frac{1}{4} \cdot \begin{pmatrix} 4 & -2 & -2 \\ 4 & -1 & -3 \\ -8 & 5 & 7 \end{pmatrix}, pois A^{-1} A = I_3$$

Toda matriz quadrada é invertível?

Não, a matriz só possui inversa se o seu determinante for não nulo $(det(A) \neq 0)$.

2.2 Operações com matrizes

2.2.1 Adição

Dadas duas matrizes de mesma ordem: $A = [a_{ij}]$ e $B = [b_{ij}]$, $1 \le i \le m$ e $1 \le j \le n$, a soma é a matriz: $A + B = (a_{ij} + b_{ij})$. Ex.:

$$\begin{pmatrix} 2 & -3 \\ 8 & 5 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 4 & -3 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 12 & 2 \end{pmatrix}$$

Propriedades da adição de matrizes

 $\forall A, B, C$, de mesma ordem, tem-se:

- a) Comutatividade: A + B = B + A
- b) Associatividade: A + (B + C) = (A + B) + C
- c) Existência do elemento neutro: A + 0 = A
- d) Existência do elemento oposto: A + (-A) = 0

2.2.2 Multiplicação por um número real

Dado um número real λ e uma matriz $A = [a_{ij}]$, de ordem $M \times N$:

$$\lambda A = \lambda [a_{ij}] = \lambda a_{ij}$$

Ex.:

$$A = \begin{pmatrix} 2 & -3 \\ 8 & 5 \end{pmatrix}, 3A = \begin{pmatrix} 6 & -9 \\ 24 & 15 \end{pmatrix}$$

7

Propriedades da multiplicação de matrizes por um número real $\forall A, B$, de mesma ordem, $\forall \lambda, \mu \in \mathbb{R}$ tem-se:

a)
$$(\lambda A)\mu = (\lambda \mu)A$$

b)
$$\lambda(A+B) = \lambda A + \lambda B$$

c)
$$(\lambda \mu)A = \lambda A + \mu A$$

d) Existência do elemento neutro: 1A = A

2.2.3 Multiplicação entre duas raízes

Dadas duas matrizes $A = [a_{ij}]$ e $B = [b_{jk}]$, $1 \le i \le m$, $1 \le j \le n$ e $1 \le k \le p$, o produto de A por B é uma matriz $C = [c_{ik}]$, de ordem $N \times P$, onde $c_{ik} = \sum_{1}^{n} a_{ij}b_{jk}$. O produto entre duas matrizes só é possível se o número de **colunas** da matriz A for **igual** ao número de **linhas** da matriz B. Ex.:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & -1 \\ 5 & 4 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 \cdot 3 + 2 \cdot 5 & 1 \cdot (-1) + 2 \cdot 4 \\ 2 \cdot 3 + 1 \cdot 5 & 2 \cdot (-1) + 1 \cdot 4 \end{pmatrix} = \begin{pmatrix} 13 & 7 \\ 11 & 2 \end{pmatrix}$$

$$BA = \begin{pmatrix} 3 \cdot 1 + (-1) \cdot 2 & 3 \cdot 2 + (-1) \cdot 1 \\ 5 \cdot 1 + 4 \cdot 2 & 5 \cdot 2 + 4 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 13 & 14 \end{pmatrix}$$

Propriedades da multiplicação entre matrizes

a) O produto AB e BA não é comutativo, dependendo da ordem das matrizes esse produto pode nem existir, e caso exista, a ordem da matriz produto poderá ser diferente.

Ex.: $A_{3\times 2}B_{2\times 1}=C_{3\times 1}$ e $B_{2\times 1}A_{3\times 2}=$ \sharp (Não é possível realizar essa operação)

b) $(A + B) \cdot C = AC + BC$ é válida? Sim, desde que existam esses produtos.

2.2.4 Operações com matriz transposta

Propriedades da matriz transposta

a)
$$(A+B)^T = A^T + B^T$$

b)
$$(AB)^T = B^T A^T$$

$$\mathbf{c)} \ (A^T)^T = A$$

d)
$$(\lambda A)^T = \lambda A^T, \lambda \in \mathbb{R}$$

2.2.5 Operações com matriz inversa

Propriedades da matriz inversa

a)
$$(A^{-1})^{-1} = A$$

b)
$$(AB)^{-1} = B^{-1}A^{-1}$$

c)
$$(\lambda A)^{-1} = \lambda^{-1} A^{-1}, \lambda \in \mathbb{R}$$

2.3 Fórmula de Binet e determinante

2.3.1 Determinante

O determinante de uma matriz quadrada A de ordem n é indicado por det(A) ou |A|, e é um número real que pode ser calculado de diversas formas, como por exemplo, pelo método de cofatores. Considerando a matriz A de ordem 2:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

O determinante de A é dado por:

$$det(A) = ad - bc$$

Já para uma mtriz de ordem 3, podemos usar, por exemplo, a Regra de Sarrus:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ q & h & i \end{pmatrix}$$

O determinante de A é dado por:

$$det(A) = aei + bfg + cdh - ceg - bdi - afh$$

O determinante de uma matriz quadrada de ordem n pode ser calculado por meio de operações com matrizes, como a eliminação de Gauss, por exemplo. Além disso, o determinando é um fator de multiplicação que depende de n, por exemplo: numa matriz de **ordem** 2, seu determinante é um fator de multiplicação da **área**; já para uma de **ordem** 3, é um fator de multiplicação do **volume**.

2.3.2 Fórmula de Binet

Dada uma matriz quadrada A de ordem n, a fórmula de Binet é dada por:

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot det(A_{ij})$$

onde A_{ij} é a matriz obtida de A eliminando a linha i e a coluna j.

Ou, pode ser escrita da seguinte forma:

$$M^{-1} = \frac{1}{\Delta} (cof M)^T$$

Com M sendo a matriz quadrada de ordem n, Δ sendo o determinante de M e cof M sendo a matriz dos cofatores de M.

Ex.:

$$M = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 3 & 1 \\ 3 & -1 & 1 \end{pmatrix}$$

$$Cof M = \begin{pmatrix} 4 & 4 & -8 \\ -2 & -1 & 5 \\ -2 & -3 & 7 \end{pmatrix}$$

$$(Cof M)^T = \begin{pmatrix} 4 & -2 & -2 \\ 4 & -1 & -3 \\ -8 & 5 & 7 \end{pmatrix}$$

$$M^{-1} = \frac{1}{\det(M)} \cdot (Cof M)^T = \frac{1}{4} \cdot \begin{pmatrix} 4 & -2 & -2 \\ 4 & -1 & -3 \\ -8 & 5 & 7 \end{pmatrix}$$

3 Semana 2 e 3 - Sistemas Lineares

3.1 Introdução

3.1.1 O que é um sistema linear?

É um conjunto de equações lineares, ou seja, um conjunto de equações do tipo $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$.

Existem três tipos de sistemas lineares:

- 1. Sistema Possível e Determinado (SPD): quando o sistema possui uma única solução.
- 2. Sistema Possível e Indeterminado (SPI): quando o sistema possui infinitas soluções.
- 3. Sistema Impossível (SI): quando o sistema não possui solução.

3.1.2 Como resolver um sistema linear?

Existem diversos métodos para resolver sistemas lineares, como por exemplo:

- 1. **Método de Substituição**: consiste em isolar uma variável em uma equação e substituir nas demais.
- 2. **Método de Igualdade**: consiste em igualar duas equações e resolver o sistema resultante.
- 3. **Método de Adição**: consiste em somar ou subtrair duas equações para eliminar uma variável.
- 4. **Método de Matriz Inversa**: consiste em utilizar a matriz inversa para encontrar a solução do sistema.

Além desses métodos, é possível matrizes para resolver sistemas lineares utilizando, por exemplo, a **Regra de Cramer** ou **escalonamento** (ou *Método de Gauss*).

3.2 Resolução do sistema linear utilizando a regra de Cramer

Para resolver o sistema linear utilizando a regra de Cramer, siga os seguintes passos:

1. Escreva o sistema linear na forma matricial:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \\ 1 \end{pmatrix}$$

2. Calcule o determinante da matriz dos coeficientes:

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & -1 & 1 \end{vmatrix}$$

3. Calcule o determinante da matriz obtida substituindo a coluna dos coeficientes de x pela coluna dos termos independentes:

$$\Delta_x = \begin{vmatrix} 6 & 1 & 1 \\ -4 & -1 & -1 \\ 1 & -1 & 1 \end{vmatrix}$$

4. Calcule o determinante da matriz obtida substituindo a coluna dos coeficientes de y pela coluna dos termos independentes:

$$\Delta_y = \begin{vmatrix} 1 & 6 & 1 \\ 1 & -4 & -1 \\ 2 & 1 & 1 \end{vmatrix}$$

5. Calcule o determinante da matriz obtida substituindo a coluna dos coeficientes de z pela coluna dos termos independentes:

$$\Delta_z = \begin{vmatrix} 1 & 1 & 6 \\ 1 & -1 & -4 \\ 2 & -1 & 1 \end{vmatrix}$$

6. Calcule as soluções do sistema utilizando as fórmulas de Cramer:

$$x = \frac{\Delta_x}{\Delta}, \quad y = \frac{\Delta_y}{\Delta}, \quad z = \frac{\Delta_z}{\Delta}$$

Nese caso, a solução será:

$$x = 1, \quad y = 3, \quad z = 2$$

11

3.3 Resolução do sistema linear utilizando escalonamento

Para resolver o sistema linear utilizando escalonamento, siga os seguintes passos:

1. Escreva o sistema linear na forma matricial:

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ -4 \\ 1 \end{pmatrix}$$

2. Realize as operações elementares nas linhas da matriz aumentada até obter uma matriz triangular superior.

a. Diminuir a segunda linha pela primeira e a terceira linha por 2 vezes a segunda.

b. Dividir a segunda linha pela sua metade negativa.

c. Somar a terceira linha com a segunda.

3. Reescreva o sistema e encontre as variáveis.

Nesse caso, a solução será:

$$x = 1, \quad y = 3, \quad z = 2$$

12

4 Semana 4 - Segmentos orientados e vetores

4.1 Segmentos orientados

4.1.1 O que são vetores e segmentos orientados?

Um segmento orientado é um segmento de reta que possui um sentido, ou seja, uma direção. Ele é representado por uma reta que possui um ponto de origem e um ponto de destino. Considere o segmento orientado AB, onde A é o ponto de origem e B é o ponto de destino. Podemos representar esse segmento como \overrightarrow{AB} .

"Você é o capitão de um barco e quer viajar para o sul a 40 nós. Se a corrente marítma está se movendo para nordeste a 16 nós, em que direção e magnitude você opera o motor?"

São características de um segmento orientado:

- 1. **Módulo** (*Tamanho*): é a medida do segmento, ou seja, a distância entre os pontos A e B.
- 2. **Direção**: é a orientação do segmento, ou seja, o ângulo formado entre o segmento e o eixo x.
- 3. Sentido: é a direção do segmento, ou seja, a orientação do segmento.

Vetores são segmentos orientados que possuem as mesmas características, ou seja, módulo, direção e sentido.

Em outras palavras, vetores são o conjunto de segmentos equipolentes.

4.1.2 Notação

Os vetores são representados por letras minúsculas em negrito, como \mathbf{v} , e são indicados por uma seta sobre a letra, como \overrightarrow{v} .

$$\overrightarrow{v} = \overrightarrow{AB}$$
 ou na notação de Grassmann $\overrightarrow{v} = \overrightarrow{AB} = (B - A) = (x_2 - x_1, y_2 - y_1)$

4.1.3 Operações com vetores

1. **Soma de vetores**: a soma de vetores é realizada pela regra do paralelogramo, ou seja, a soma de dois vetores é um vetor que possui a mesma direção e sentido da diagonal do paralelogramo formado pelos vetores.

Ex.: Dado dois vetores \overrightarrow{v} e \overrightarrow{u} pelos seus representantes, considere um ponto qualquer A e os pontos $B = A + \overrightarrow{u}$ e $C = A + \overrightarrow{v}$.

Por definição, o vetor $\overrightarrow{w} = \overrightarrow{AD} = (D - A) \rightarrow \overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$

- 2. **Subtração de vetores**: a subtração de vetores é realizada pela soma do vetor com o vetor oposto, ou seja, a subtração de dois vetores é a soma do vetor com o vetor oposto.
- 3. **Multiplicação de vetor por um escalar**: a multiplicação de um vetor por um escalar é realizada multiplicando cada componente do vetor pelo escalar.

Dado $a \in \mathbb{R}$ e um vetor qualquer \overrightarrow{v} , define-se $a\overrightarrow{v}$:

- a) se a = 0 ou se $\overrightarrow{v} = \overrightarrow{0}$, então $a\overrightarrow{v} = \overrightarrow{0}$ (Vetor nulo).
- b) se $a \neq 0$ ou se $\overrightarrow{v} \neq \overrightarrow{0}$, então:

Módulo: $|a\overrightarrow{v}| = |a||\overrightarrow{v}|$

Direção: Mesma direção de \overrightarrow{v} $(a\overrightarrow{v}//\overrightarrow{v})$

Sentido: Se a > 0, mesmo sentido de \overrightarrow{v} ;

se a < 0, sentido oposto de \overrightarrow{v} .

Ex.:

- 4. Multiplicação de vetor por outro vetor: $\forall \overrightarrow{u} \in \overrightarrow{v} \in \forall \alpha, \beta \in \mathbb{R}$ são válidas as seguintes propriedades:
 - a) $\alpha \beta \overrightarrow{v} = (\alpha \beta) \overrightarrow{v}$

b) $\alpha(\overrightarrow{u} + \overrightarrow{v}) = \alpha \overrightarrow{u} + \alpha \overrightarrow{v}$

- c) $(\alpha + \beta)\overrightarrow{u} = \alpha \overrightarrow{u} + \beta \overrightarrow{u}$
- d) $1\overrightarrow{u} = \overrightarrow{u}$

Associativa

Distributiva à esquerda

Distributiva à direita

Elemento neutro da operação

Versor de um vetor

Mesma direção e mesmo sentido de \overrightarrow{v} módulo unitário.

$$\hat{v} = \frac{\overrightarrow{v}}{|\overrightarrow{v}|} = \frac{1}{|\overrightarrow{v}|} \overrightarrow{v}$$

$$\overrightarrow{v}$$