MLL 100

Introduction to Materials Science and Engineering

Lecture-17 (February 12, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)

What have we learnt in Lecture-16?

- ☐ Heterogeneous nucleation
- Wetting property

Parameters influencing nucleation rate

- Potential atoms capable of jumping to make a critical nucleus supercritical are the atoms which are just 'adjacent' to the liquid, say 5*.
- If the *lattice vibration frequency is* ν and the *activation barrier* for an atom facing the nucleus (i.e. atom belonging to s*) to jump into the nucleus (to make in supercritical) is ΔH_d , the frequency with which nuclei become supercritical due atomic jumps into the nucleus

$$v' = s^* v e^{\left(-\frac{\Delta H_d}{kT}\right)}$$

Rate of nucleation

$$I = \frac{dN}{dt}$$

No. of critical sized particles

Frequency with which they become supercritical

$$v' = s v e^{\left(-\frac{\Delta H_d}{kT}\right)}$$

 $v \rightarrow$ lattice vibration frequency (~10¹³/s)

Dependence of Nucleation rate on Temperature

- How does the plot of nucleation rate vary with temperature?
 - ightharpoonup At T_m , ΔG^* is $\infty \Rightarrow I = 0$ (if there is no undercooling there is no nucleation).
 - \rightarrow At T = 0 K again I = 0
- \Box This implies that the function should reach a maximum between T = T_m and T = 0.
- Nucleation rate is not a monotonic function of undercooling.

Growth rate

- Fraction of the product phase (solid phase) forming with time
 - → the sigmoidal growth curve

- Overall transformation rate, $\frac{dX}{dt}$ (s⁻¹): Fraction transformed (X) per second.
- Nucleation Rate, I (in m⁻³s⁻¹): No of nucleation events per unit volume per second.
- Growth Rate, $G = \frac{dR}{dt} (\text{ms}^{-1})$: Rate of increase of the size of growing particle.

$$\frac{dX}{dt} = f(I,G)$$
$$X = 1 - \exp(-\frac{\pi}{3}IG^3t^4)$$

$$\frac{dX}{dt} = f(I,G)$$

$$X = 1 - \exp(-\frac{\pi}{3}IG^3t^4)$$

Nucleation slows down because of reduction in driving force (less liquid)

Growth slows down because of grain impingement

Transformation rate

