1^a Lista de Exercícios

- 1. Seja A um conjunto com duas operações que satisfazem todas as condições da definição de anel com unidade, com a possível exceção da condição: a+b=b+a para todo $a,b\in A$. Prove que A é um anel.
- 2. Seja A um anel e R um subanel de A. Pode acontecer que:
 - (a) A seja um anel com unidade e R não;
 - (b) R seja um anel com unidade e A não;
 - (c) A e R sejam anéis com unidade e a unidade de A seja diferente da unidade de R;
 - (d) A e R sejam anéis com unidade e as unidades de A e de R coincidem.

Dar exemplos que ilustre cada uma das situações acima.

- 3. Prove que o único automorfismo do anel \mathbb{Z} é o automorfismo idêntico.
- 4. Sejam A um corpo, A' um anel e $\varphi \colon A \to A'$ um homomorfismo de anéis não nulo. Prove que φ é monomorfismo.
- 5. Sejam A um anel e I um ideal à esquerda de A. Chama-se anulador de I ao conjunto $Anl(I) = \{x \in A \mid xm = 0, \forall m \in I\}$. Prove que Anl(I) é um ideal bilateral de A.
- 6. Consideremos os anel $M_2(\mathbb{Q})$ das matrizes 2×2 com coeficientes em \mathbb{Q} .
 - (a) Prove que os únicos ideais bilaterais de $M_2(\mathbb{Q})$ são (0) e o próprio $M_2(\mathbb{Q})$;
 - (b) Dar exemplos de ideais à esquerda e à direita não triviais de $M_2(\mathbb{Q})$;
 - (c) Generalizar os resultados anteriores para um anel de matrizes $M_2(F)$ onde F é um corpo.
- 7. Seja p um número primo. Prove que:
 - (a) Se A é um anel de integridade finito de característica p, então a aplicação $\varphi \colon A \to A$ dada por $\varphi(a) = a^p$ é um automorfismo de A;
 - (b) O único automorfismo de \mathbb{Z}_p é o automorfismo idêntico. Deduzir que $a^p \equiv a \pmod{p}$ para todo $a \in A$:
 - (c) Prove o Teorema de Fermat, isto é, se p não divide a, então $a^{p-1} \equiv 1 \pmod{p}$.
- 8. Seja A um anel tal que $x^2 = x$ para todo $x \in A$, este anel é chamado anel de Boole. Mostre que A é um anel comutativo.
- 9. Mostre que todo anel de integridade finito é um corpo. Note que \mathbb{Z} é um anel de integridade infinito e não é um corpo.
- 10. Sejam A um anel, I e J ideais à direita (esquerda)de A. Mostre que $I \cup J$ é um ideal à direita (esquerda) de A se e somente se $I \subset J$ ou $J \subset I$.
- 11. Seja $m \in \mathbb{Z}$, m > 0. Mostre que $m\mathbb{Z}$ é um ideal maximal de \mathbb{Z} se e somente se m é um número primo.
- 12. Seja A um anel tal que $x^3 = x$ para todo $x \in A$. Mostre que A é um anel comutativo.
- 13. Seja A um anel tal que os únicos ideais à direita de A são $\{0\}$ e A. Mostre que A é um anel com divisão ou um anel com um número primo de elementos no qual ab = 0 para todos $a, b \in A$.
- 14. Sejam F um corpo e F[X,Y] o anel dos polinômios em duas indeterminadas com coeficientes em F. Prove que F[X,Y] não é um anel principal.

Sugestão: considerar o ideal gerado pelo conjunto $\{X,Y\}$.

- 15. Seja $A = \mathcal{C}([0,1])$ o anel das funções continuas de [0,1] em \mathbb{R} . Se M é um ideal maximal de A, prove que existe $c \in [0,1]$ tal que $M = \{ f \in A \mid f(c) = 0 \}$.
- 16. Prove que:
 - (a) O ideal I de \mathbb{Z} é maximal se e somente se I = (p), onde p é um número primo;
 - (b) F[X] é um anel principal, onde F é um corpo. Qual a condição sobre $f \in F[X]$ para que (f) seja um ideal maximal?
- 17. Seja $A = \mathcal{C}[0,1]$ o anel das funções reais continuas definidas no intervalo [0,1]. Prove que $I = \{f \in A \mid f(\frac{1}{2}) = 0\}$ é um ideal maximal de A.
- 18. Seja M um A-módulo. Prove que:
 - (a) $(-a)m = a(-m) = -(am), \forall a \in A, \forall m \in M;$
 - (b) $0.m = 0, \ \forall m \in M;$
 - (c) $a.0 = 0, \forall a \in A.$
- 19. Sejam M um A-módulo e S e T submódulos de M. Prove que $S \cup T$ é um submódulo de M se e somente se $S \subset T$ ou $T \subset S$.
- 20. Determinar: todos os submódulos do \mathbb{Z} -módulo \mathbb{Z}_{12} , o anulador de cada elemento de \mathbb{Z}_{12} e o anulador do módulo todo.
- 21. Dar um exemplo de um Z-módulo, onde dois submódulos quaisquer sejam sempre não isomorfos.
- 22. Prove que se m e n são dois inteiros relativamente primos, o único \mathbb{Z} -homomorfismo $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_m$ é o homomorfismo nulo.
- 23. Seja M um \mathbb{Z} -módulo finito tal que o conjunto dos seus submódulos é totalmente ordenado por inclusão. Prove que existe um número primo p tal que o número de elementos de M é uma potência de p.
- 24. Um A-módulo M é simples se $M \neq (0)$ e os únicos submódulos de M são (0) e o próprio M.
 - (a) Prove que se M é simples e $\varphi \colon M \to N$ é um A-homomorfismo não nulo, então φ é um monomorfismo. Prove que se N também é simples então φ é um isomorfismo.
 - (b) Seja $\operatorname{Hom}(M,N)$ o conjunto de todos os A-homomorfismos de M em N. Mostrar que com a soma definida pontualmente e o produto por composição, $\operatorname{Hom}(M,M)$ é um anel. Prove que se M é simples, então $\operatorname{Hom}(M,M)$ é um anel com divisão. (este resultado é conhecido como Lema de Schur).
- 25. Prove que, se a seqüência, $M \stackrel{\varphi}{\to} N \stackrel{\psi}{\to} R \stackrel{\phi}{\to} S$ é exata, são equivalentes:
 - (a) φ é epimorfismo;
 - (b) $Im(\psi) = 0$;
 - (c) ϕ é monomorfismo.
- 26. Seja o diagrama comutativo:

Suponhamos que as filas são seqüências exatas, prove que:

(a) Se φ' e φ'' são epimorfismos, então φ é epimorfismo;

- (b) Se φ' e φ'' são isomorfismos, então φ é isomorfismo.
- 27. Seja o diagrama comutativo:

Suponhamos que as filas são seqüências exatas, prove que:

- (a) Se h_1 é epimorfismo e h_4 é monomorfismo, então $\ker(h_3) = f_2(\ker(h_2));$
- (b) Se h_2 é epimorfismo e h_5 é monomorfismo, então $g_3^{-1}(\operatorname{Im}(h_4)) = \operatorname{Im}(h_3);$
- (c) (Lema dos cinco) Se $h_1,\ h_2,\ h_4$ e h_5 são isomorfismos, então h_3 é um isomorfismo.