Bayesian Causal Inference for Recurrent Events with Timing Misalignment

Yuqin

2025-08-15

This Markdown of the Bayesian framework was proposed by Oganisian et al. (2024) for causal inference with recurrent events subject to timing misalignment. We use a semiparametric Bayesian model to estimate the average causal effect of a time-varying treatment on the recurrent event rate, accounting for terminal events and censoring.

1. Setup

We configure Stan and set parallelization options for efficient MCMC sampling.

2. Data Preprocessing

This step prepares the longitudinal dataset for analysis, including normalization and handling of missing values.

```
load("data.Rdata")
df_fit <- df %>%
  filter(id %in% 1:100) %>%
  arrange(id, k) %>%
  mutate(k_fac = as.integer(factor(k, levels = sort(unique(k))))) %>%
  group_by(id) %>%
  mutate(
   lagYk = if ("lagYk" %in% names(.)) replace_na(lagYk, 0) else lag(Yk, default = 0)
) %>%
```

```
ungroup() %>%
drop_na(Tk, Yk, Ak, L.1, L.2) %>%
mutate(
    L.1 = as.numeric(scale(L.1)),
    L.2 = as.numeric(scale(L.2))
)
K <- length(unique(df_fit$k_fac))</pre>
```

3. Bayesian Model Fitting

We now fit the joint model for the recurrent events and terminal process using Stan.

```
## Loading pre-compiled Stan model from: D:/Program/R/R-4.4.3/library/BayCauRETM/stan/causal_recur_mode
## Sampling (4 chains * 2000 iter, cores=30)...
```

4. MCMC Diagnostics

Evaluate convergence and identify any problematic chains.

```
# MCMC Diagnosis
message("Checking convergence...")

## Checking convergence...

rstan::check_hmc_diagnostics(fit$stan_fit)

##
## Divergences:

## 64 of 4000 iterations ended with a divergence (1.6%).

## Try increasing 'adapt_delta' to remove the divergences.

##
## Tree depth:
```

```
## 0 of 4000 iterations saturated the maximum tree depth of 15.
##
## Energy:
## E-BFMI indicated no pathological behavior.
diag <- mcmc_diagnosis(fit, pars_to_check = c("beta0", "beta1", "theta0", "theta1", "theta_lag"))</pre>
## ---- MCMC Rhat & Effective Sample Size ----
##
                    n_{eff}
       Parameter
## 1
        beta0[1] 3643.418 0.9998607
## 2
        beta0[2] 4171.389 0.9996020
## 3
        beta0[3] 3020.079 1.0012541
## 4
        beta0[4] 4689.237 0.9994648
## 5
        beta0[5] 4480.888 1.0004749
        beta0[6] 3288.313 0.9998238
## 6
## 7
        beta0[7] 4414.037 1.0009878
## 8
        beta0[8] 3431.080 1.0013344
## 9
        beta0[9] 3096.053 0.9996591
## 10 beta0[10] 2855.590 1.0011239
       beta0[11] 3152.262 0.9997751
## 11
## 12
           beta1 2655.593 1.0019275
## 13 theta0[1] 2212.840 1.0057596
## 14 theta0[2] 3920.799 1.0006062
## 15 theta0[3] 3140.715 1.0049544
## 16 theta0[4] 4333.342 0.9996669
## 17 theta0[5] 2903.138 1.0056761
## 18 theta0[6] 1723.776 1.0026391
## 19 theta0[7] 2310.635 1.0027139
## 20 theta0[8] 2264.325 1.0015809
## 21 theta0[9] 1480.434 1.0057404
## 22 theta0[10] 4139.792 1.0001993
## 23 theta0[11] 3100.707 1.0001999
          theta1 4520.103 1.0010792
## (Values close to Rhat = 1 and large n_eff indicate good convergence.)
```

plot(diag)

Traceplot: beta0

Traceplot: theta0

5. G-Computation

We simulate potential outcomes under hypothetical treatment strategies to estimate causal contrasts.

```
baseline_df <- fit$data_preprocessed %>%
  group_by(pat_id) %>%
  slice_min(order_by = k_idx, n = 1) %>%
  arrange(pat_id) %>%
  ungroup()

message("Running g-computation...")
```

Running g-computation...

```
gcomp <- g_computation(
  fit_out = fit,
  s_vec = s_vec,
  B = B,
  cores = cores
)
print(gcomp)</pre>
```

Causal contrast delta(s, K+1) summary:

```
## s Mean X2.5. X97.5.
## 3 0.027297245 -0.6023125 0.6175602
## 6 0.005338704 -0.5850453 0.5351935
## 9 -0.018524600 -0.6207968 0.5109547
```

```
plot(gcomp, ref_line = 0)
```

Posterior causal contrast $\Delta(s, K+1)$


```
plot(gcomp, interactive = TRUE, ref_line = 0)
```

6. Propensity Score Diagnostics

Assess overlap and positivity for model validity.

```
ps_diag <- propensity_score_diagnostics(
  fit$data_preprocessed,
  treat_col = "A",
  covariates = c("lagYk", "k_idx")
)
plot(ps_diag, type = "histogram")</pre>
```

Propensity Score Histogram

plot(ps_diag, type = "density")

7. Switching Probability Summary

Visualize the probability of treatment switching across time intervals.

```
sw_diag <- switching_probability_summary(fit$data_preprocessed)
plot(sw_diag, type = "boxplot")</pre>
```


8. Summary of Causal Estimates

This table summarizes posterior distributions of model parameters and g-computation estimates.

```
sum_tbl <- result_summary_table(
  fit_out = fit,
  gcomp_out = gcomp,
  s_vec = s_vec,
  format = "kable",
  pars_to_report = c("beta0","beta1","theta0","theta1","theta_lag")
)
print(sum_tbl)</pre>
```

```
##
##
## Table: Posterior Parameters
##
                                                              n_eff|
## |Parameter
                               X2.5.
                                          X97.5.
                                                      Rhat|
                                                                         MCSE | CI width |
                     Mean |
                  1.2778096
                           0.8170051
                                      1.7859695 | 1.0015809 | 2264.325 | 0.0052266 | 0.9689644 |
## |theta0[8]
## |theta0[7]
                1.2422718|
                            0.8949164|
                                       1.5951514 | 1.0027139 | 2310.635 | 0.0037906 | 0.7002350 |
## |theta0[10] |
                1.2326209|
                            0.5583714|
                                      1.9492660 | 1.0001993 | 4139.792 | 0.0053465 | 1.3908946 |
                                      1.2114804 | 1.0006062 | 3920.799 | 0.0009469 | 0.2334086 |
## |theta0[2]
                1.0969824
                            0.9780719|
## |theta0[9]
             | 1.0814387|
                           0.4039912 | 1.6528517 | 1.0057404 | 1480.434 | 0.0080535 | 1.2488605 |
```

```
## |theta0[6] | 1.0713936| 0.7704645| 1.3744647| 1.0026391| 1723.776| 0.0037316| 0.6040002|
## |theta0[4]
              1.0478263 | 0.8464265 | 1.2390124 | 0.9996669 | 4333.342 | 0.0015203 | 0.3925859 |
## |theta0[3]
              1.0336144 | 0.8470569 | 1.2028357 | 1.0049544 | 3140.715 | 0.0016008 | 0.3557787
             0.9582156 | 0.6867505 | 1.2025883 | 1.0056761 | 2903.138 | 0.0024122 | 0.5158378
## |theta0[5]
## |theta0[11] | 0.8980481 | -0.1739855 | 1.6704040 | 1.0001999 | 3100.707 | 0.0081792 | 1.8443895 |
## |theta1
              | -0.0045741| -0.1565815| 0.1529654| 1.0010792| 4520.103| 0.0011812| 0.3095469|
## |beta1
              | -0.2738372| -0.8349362| 0.2539825| 1.0019275| 2655.593| 0.0052570| 1.0889187|
              | -1.0746173| -1.6278035| -0.5065139| 1.0012541| 3020.079| 0.0052647| 1.1212896|
## |beta0[3]
## |beta0[7]
              | -1.2202484| -2.2784033| -0.1526570| 1.0009878| 4414.037| 0.0079061| 2.1257463|
## |beta0[4]
              | -1.3227703| -2.0599208| -0.6460827| 0.9994648| 4689.237| 0.0052212| 1.4138381|
## |beta0[5]
              | -1.3640904| -2.2492749| -0.6078952| 1.0004749| 4480.888| 0.0061163| 1.6413797|
              | -1.3774038| -2.4994385| -0.5047122| 0.9998238| 3288.313| 0.0084864| 1.9947263|
## |beta0[6]
              | -1.3808169| -1.9009925| -0.8952062| 0.9996020| 4171.389| 0.0039650| 1.0057864|
## |beta0[2]
## |beta0[11]
              | -1.3960660| -3.3607202| 0.1180596| 0.9997751| 3152.262| 0.0146346| 3.4787798|
## |beta0[10]
              | -1.4313400| -3.3580137| -0.0561994| 1.0011239| 2855.590| 0.0148535| 3.3018144|
## |beta0[9]
               | -1.4793041| -3.3338234| -0.1845534| 0.9996591| 3096.053| 0.0137655| 3.1492699|
## |beta0[8]
               | -1.5055170| -3.3313261| -0.3513822| 1.0013344| 3431.080| 0.0126382| 2.9799440|
  |theta0[1]
              -2.2065630| -2.8607747| -1.6549254| 1.0057596| 2212.840| 0.0064082| 1.2058493|
   |beta0[1]
              | -4.1251431| -6.1958689| -2.6873879| 0.9998607| 3643.418| 0.0147233| 3.5084810|
##
##
##
## Table: delta(s, K+1)
## | s|
              Meanl
                        X2.5. | X97.5. | CI width |
  |--:|-----:|-----:|-----:|
     3 | 0.0272972 | -0.6023125 | 0.6175602 | 1.219873 |
     6 | 0.0053387 | -0.5850453 | 0.5351935 | 1.120239 |
## | 9| -0.0185246| -0.6207968| 0.5109547| 1.131752|
```