

Outline

- Basic Tool Shape
- Tool Work Kinematics
- Mechanisms of Surface Generation
- Basic Machining Processes
- Orthogonal and Oblique machining

Basic Parameters in machining

Cutting Speed - V

- · Primary Cutting motion
- · High Speed based on Tool-Work material

Feed - f

- · Secondary Tool-Work motion
- · Low based on part Quality , Surface finish

Depth of Cut - t

- Interference between Tool- Work
- · Low based on Part Quality, Productivity

Process Parameters - V , f, t

Types of Tools and Processes

Single Point Cutting Tools

· Turning, Shaping, Planing, Slotting

Multi Point Cutting Tools

- · Regular Geometry
- Drilling, Milling, Reaming, Threading
- Random Geometry
- · Grinding, Honing, Lapping, Abrasive

Mechanisms of Surface Generation

Profiling

- Simultaneous Cutting (V) and Feed (f) motions
 Single / Multipoint Tool

- Types of Surfaces
 Planar, Cylindrical, Conical, Spherical
 - · Freeform surfaces dies / molds

Form Cutting

- · Form of Tool conforms to the cavity/ gap
- · Broach, Gear milling

Types of Machining

- · Orthogonal machining
- · Oblique machining

Classification based on

- Tool Geometry Tool anglesOrientation of Tool during machining

Orthogonal machining

Characteristics

- Tool Cutting edge is <u>Perpendicular</u> to the cutting Velocity Vector (V)
- Plain Strain (2D) deformation phenomenon
- No Spread of material along the Tool width

Oblique machining

Characteristics

- Tool Cutting edge is at an angle (λ) to the Normal to the velocity vector (V) in the cutting plane

- Inclination angle λ
 modifies Tool angles
 governs the Direction of chip flow

Stabler's Law for Chip flow

 $n_c = k. \lambda$

nc = chip flow angle K = 0.8 - 1.0

