

PCT

世界知的所有権機関
国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 H04N 5/92, 7/24, G11B 20/10, 20/12	A1	(11) 国際公開番号 WO97/13364
		(43) 国際公開日 1997年4月10日(10.04.97)
(21) 国際出願番号 PCT/JP96/02804		森 美裕(MORI, Yoshihiro) 〒573 大阪府枚方市東香里元町15-14 Osaka, (JP)
(22) 国際出願日 1996年9月27日(27.09.96)		小塚雅之(KOZUKA, Masayuki) 〒572 大阪府寝屋川市石津南町19-1-1207 Osaka, (JP)
(30) 優先権データ 特願平7/276710 特願平8/41583	JP JP	福島能久(FUKUSHIMA, Yoshihisa) 〒536 大阪府大阪市城東区闇目6丁目14番C-508 Osaka, (JP) 河原俊之(KAWARA, Toshiyuki) 〒573-01 大阪府枚方市津田駅前1-18-16 Osaka, (JP) 東谷 易(AZUMATANI, Yasushi) 〒569 大阪府高槻市昭和台町1丁目7-22 Osaka, (JP) 岡田智之(OKADA, Tomoyuki) 〒576 大阪府交野市妙見坂6-6-101 Osaka, (JP) 松井健一(MATSUI, Kenichi) 〒572 大阪府寝屋川市香里西之町22-7 Osaka, (JP)
(71) 出願人 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) (JP/JP) 〒571 大阪府門真市大字門真1006番地 Osaka, (JP)		(72) 発明者 柏木吉一郎(KASHIWAGI, Yoshiichiro) 〒614 京都府八幡市男山香呂2 A59-501 Kyoto, (JP) 長谷部巧(HASEBE, Takumi) 〒614 京都府八幡市橋本意足17-16 Kyoto, (JP) 津賀一宏(TSUGA, Kazuhiko) 〒665 兵庫県宝塚市花屋敷つじヶ丘9-33 Hyogo, (JP) 中村和彦(NAKAMURA, Kazuhiko) 〒573 大阪府枚方市香里ヶ丘11丁目35-53 Osaka, (JP)
		(74) 代理人 弁理士 青山 葵, 外(AOYAMA, Tamotsu et al.) 〒540 大阪府大阪市中央区城見1丁目3番7号 IMPビル 青山特許事務所 Osaka, (JP)
		(81) 指定国 CN, JP, KR, MX, SG, VN, 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
		添付公開書類 国際調査報告書

(54) Title: METHOD AND DEVICE FOR SEAMLESS-REPRODUCING A BIT STREAM CONTAINING NONCONTINUOUS SYSTEM TIME INFORMATION

(54) 発明の名称 非連続システム時間情報を有するビットストリームのシームレス再生方法及び装置

(57) 要約

本発明は、動画像データとオーディオデータをインターリープした構成であるシステムストリームを複数記録した大容量光ディスク (M)において、システムストリーム (VOB) 同士のスムーズな接続を行なうための光ディスク (M) 並びにその再生装置 (DCD) を提供する。光ディスク (M) に記録するシステムストリーム (VOB)において、第1のシステムストリームのデコードにおいて信号処理用デコーダ (3801, 3100, 3200) が参照するSTCと第1のシステムストリームに続いて連続再生される第2のシステムストリームのデコードにおいて信号処理用デコーダ (3801, 3100, 3200) が参照するSTCを切替える。

情報としての用途のみ

PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

A L	アルバニア	E E	エストニア	L R	リベリア	R U	ロシア連邦
A M	アルメニア	E S	スペイン	L S	レソト	S D E	スー丹
A T	オーストリア	F I	フィンランド	L T	リトアニア	S E G	スウェーデン
A U	オーストラリア	F R	フランス	L U	ルクセンブルグ	S S I K	シンガポール
A Z	セルバイイアン	G A	ガボン	L V	ラトヴィア	S S N Z	スロヴァキア共和国
B B	バルバドス	G B E	イギリス	M C	モナコ	T D	セネガル
B E	ベルギー	G E	グルジア	M D	モルドバ	T G	スウェーデン
B F	ブルガニア・ファソ	G H	ガーナ	M G	マダガスカル	T J	チャード
B G	ブルガリア	G N	ギニア	M K	マケドニア旧ユーゴスラ	T R R	トルコメニスタン
B J	ベナン	G R	ギリシャ	V I	ヴァイア共和国	T T	トルコメニスタン
B R	ブラジル	H U	ハンガリー	M L	マリ	U A	トリニダード・トバゴ
B Y	ベラルーシ	I E	アイルランド	M M	モンゴル	U G S	ウクライナ
C A	カナダ	I S T	イスランド	M R	モーリタニア	U S S	ウガンダ
C F	中央アフリカ共和国	J P E	イタリー	M W	マラウイ	U Z Z	米国
C G	コンゴー	K E	ケニア	M X	メキシコ	V N	ウズベキスタン共和国
C H	スイス	K G P	キルギスタン	N E	ニジエール	Y U	ヴィエトナム
C I	コート・ジボアール	K P R	朝鮮民主主義人民共和国	N L	オランダ		ヨーグoslavia
C M	カメルーン	K R	大韓民国	N O	ノルウェー		
C N	中国	K Z	カザフスタン	N Z	ニュージーランド		
C Z	チェコ共和国	L I	リヒテンシュタイン	P L	パーランド		
D E	ドイツ	L K	スリランカ	P T	ポルトガル		
D K	デンマーク			R O	ルーマニア		

明細書

非連続システム時間情報を有するビットストリームのシームレス再生方法
及び装置

5

技術分野

この発明は、非連続システム時間情報を有するビットストリームのシームレス再生方法及び装置に関し、特に、一連の関連付けられた内容を有する各タイトルを構成する動画像データ、オーディオデータ、副映像データの情報
10 を搬送するビットストリームに様々な処理を施して、ユーザーの要望に応じた内容を有するタイトルを構成するべくビットストリームを生成し、その生成されたビットストリームを所定の記録媒体に効率的に記録する記録装置と記録媒体、及び再生する再生装置及びオーサリングシステムに用いられるビットストリームに関する。

15

背景技術

近年、レーザーディスクやビデオCD等を利用したシステムに於いて、動画像、オーディオ、副映像などのマルチメディアデータをデジタル処理して、一連の関連付けられた内容を有するタイトルを構成するオーサリングシステムが実用化されている。
20

25

特に、ビデオCDを用いたシステムに於いては、約600Mバイトの記憶容量を持ち本来デジタルオーディオの記録用であったCD媒体上に、MPEGと呼ばれる高圧縮率の動画像圧縮手法により、動画像データの記録を実現している。カラオケをはじめ従来のレーザーディスクのタイトルがビデオCDに置き替わりつつある。

年々、各タイトルの内容及び再生品質に対するユーザーの要望は、より複雑及び高度になって来ている。このようなユーザーの要望に応えるには、従来より深い階層構造を有するビットストリームにて各タイトルを構成する必要がある。このようにより深い階層構造を有するビットストリームにより、構成されるマルチメディアデータのデータ量は、従来の十数倍以上になる。更に、タイトルの細部に対する内容を、きめこまかく編集する必要があり、それには、ビットストリームをより下位の階層データ単位でデータ処理及び制御する必要がある。

このように、多階層構造を有する大量のデジタルビットストリームを、各階層レベルで効率的な制御を可能とする、ビットストリーム構造及び、記録再生を含む高度なデジタル処理方法の確立が必要である。更に、このようなデジタル処理を行う装置、この装置でデジタル処理されたビットストリーム情報を効率的に記録保存し、記録された情報を迅速に再生することが可能な記録媒体も必要である。

このような状況に鑑みて、記録媒体に関して言えば、従来用いられている光ディスクの記憶容量を高める検討が盛んに行われている。光ディスクの記憶容量を高めるには光ビームのスポット径Dを小さくする必要があるが、レーザの波長を λ 、対物レンズの開口数をNAとすると、前記スポット径Dは、 λ/NA に比例し、 λ が小さくNAが大きいほど記憶容量を高めるのに好適である。

ところが、NAが大きいレンズを用いた場合、例えば米国特許5,235,581に記載の如く、チルトと呼ばれるディスク面と光ビームの光軸の相対的な傾きにより生じるコマ収差が大きくなり、これを防止するためには透明基板の厚さを薄くする必要がある。透明基板を薄くした場合は機械的強度が弱くなると言う問題がある。

また、データ処理に関しては、動画像、オーディオ、グラフィックスなどの信号データを記録再生する方式として従来のMPEG 1より、大容量データを高速転送が可能なMPEG 2が開発され、実用されている。MPEG 2では、MPEG 1と多少異なる圧縮方式、データ形式が採用されている。MPEG 1とMPEG 2の内容及びその違いについては、ISO11172、及びISO13818のMPEG規格書に詳述されているので説明を省く。

MPEG 2に於いても、ビデオエンコードストリームの構造に付いては、規定しているが、システムストリームの階層構造及び下位の階層レベルの処理方法を明らかにしていない。

上述の如く、従来のオーサリングシステムに於いては、ユーザーの種々の要求を満たすに十分な情報を持った大量のデータストリームを処理することができない。さらに、処理技術が確立したとしても、大容量のデータストリームを効率的に記録、再生に十分用いることが出来る大容量記録媒体がないので、処理されたデータを有効に繰り返し利用することができない。

言い換れば、タイトルより小さい単位で、ビットストリームを処理するには、記録媒体の大容量化、デジタル処理の高速化と言うハードウェア、及び洗練されたデータ構造を含む高度なデジタル処理方法の考案と言うソフトウェアに対する過大な要求を解消する必要があった。

本発明は、このように、ハードウェア及びソフトウェアに対して高度な要求を有する、タイトル以下の単位で、マルチメディアデータのビットストリームを制御して、よりユーザーの要望に合致した効果的なオーサリングシステムを提供することを目的とする。

更に、複数のタイトル間でデータを共有して光ディスクを効率的に使用するため、複数のタイトルを共通のシーンデータと、同一の時間軸上に配される複数のシーンを任意に選択して再生するマルチシーン制御が望ましい。

しかしながら、複数のシーン、つまりマルチシーンデータを同一の時間軸上に配する為には、マルチシーンの各シーンデータを連続的に配列する必要がある。その結果、選択した共通シーンと選択されたマルチシーンデータの間に、非選択のマルチシーンデータを挿入せざるを得ないので、マルチシーン
5 データを再生する際に、この非選択シーンデータの部分で、再生が中断されると言う問題が予期される。

つまり、本来1本のストリームであったタイトル編集単位であるVOBを
切断して別々のストリームにした場合を除き、別々のVOBを単に続けて再
生するだけではシームレス再生を行うことはできない。これは、VOBを構
10 成するビデオ、オーディオ、サブピクチャはそれぞれ、同期をとりながら再
生する必要があるが、この同期をとるための機構がVOB毎に閉じているた
め単純に接続したのでは、VOBの接続点における同期機構が正常に動かな
いことによる。

本発明に於いては、このようなマルチシーンデータに於いても、各シーン
15 のデータが中断なく再生されるシームレス再生を可能にする再生装置を提
供することを目的とする。なお、本出願は日本国特許出願番号H7-276
710 (1995年9月29日出願) 及びH8-041583 (1996年
2月28日出願) に基づいて出願されるものであって、該両明細書による開
示事項はすべて本発明の開示の一部となすものである

20

発明の開示

本発明は、少なくとも動画像データとオーディオデータをインターリープ
した1つ以上のシステムストリームとシステムストリーム間の接続情報を
入力とするシステムストリーム再生装置であって、システムストリームの再
25 生基準クロックであるSTCを発生するSTC部と、STCを基準として動作する少

なくとも1つ以上の信号処理用デコーダと、該信号処理用デコーダに転送されるシステムストリームデータを一時記憶するデコーダバッファと、第1のシステムストリームのデコードにおいて該信号処理用デコーダが参照するSTCと第1のシステムストリームに続いて連続再生される第2のシステム
5 ストリームのデコードにおいて該信号処理用デコーダが参照するSTCを切替えるSTC切替え部を具備することを特徴とするシステムストリーム連続再生装置である。

図面の簡単な説明

- 10 図1は、マルチメディアビットストリームのデータ構造を示す図であり、
図2は、オーサリングエンコーダを示す図であり、
図3は、オーサリングデコーダを示す図であり、
図4は、単一の記録面を有するDVD記録媒体の断面を示す図であり、
図5は、単一の記録面を有するDVD記録媒体の断面を示す図であり、
15 図6は、単一の記録面を有するDVD記録媒体の断面を示す図であり、
図7は、複数の記録面(片面2層型)を有するDVD記録媒体の断面を示す図であり、
図8は、複数の記録面(両面1層型)を有するDVD記録媒体の断面を示す図であり、
20 図9は、DVD記録媒体の平面図であり、
図10は、DVD記録媒体の平面図であり、
図11は、片面2層型DVD記録媒体の展開図であり、
図12は、片面2層型DVD記録媒体の展開図であり、
図13は、両面1層型DVD記録媒体の展開図であり、
25 図14は、両面1層型DVD記録媒体の展開図であり、

- 図15は、マルチレイティッドタイトルストリームの一例を示す図であり、
図16は、VTSのデータ構造を示す図であり、
図17は、システムストリームのデータ構造を示す図であり、
図18は、システムストリームのデータ構造を示す図であり、
5 図19は、システムストリームのパックデータ構造を示す図であり、
図20は、ナップラックNVのデータ構造を示す図であり、
図21は、DVDマルチシーンのシナリオ例を示す図であり、
図22は、DVDのデータ構造を示す図であり、
図23は、マルチアングル制御のシステムストリームの接続を示す図であ
り、
10 図24は、マルチシーンに対応するVOBの例を示す図であり、
図25は、DVDオーサリングエンコーダを示す図であり、
図26は、DVDオーサリングデコーダを示す図であり、
図27は、VOBセットデータ列を示す図であり、
15 図28は、VOBデータ列を示す図であり、
図29は、エンコードパラメータを示す図であり、
図30は、DVDマルチシーンのプログラムチェーン構成例を示す図であ
り、
図31は、DVDマルチシーンのVOB構成例を示す図であり、
20 図32は、同期制御部のブロック図であり、
図33は、マルチアングル制御の概念を示す図であり、
図34は、エンコード制御フローチャートを示す図であり、
図35は、非シームレス切り替えマルチアングルのエンコードパラメータ生
成フローチャートを示す図であり、

図3 6は、エンコードパラメータ生成の共通フローチャートを示す図であり、

図3 7は、シームレス切り替えマルチアンダルのエンコードパラメータ生成フローチャートを示す図であり、

5 図3 8は、パレンタル制御のエンコードパラメータ生成フローチャートを示す図であり、

図3 9は、STC生成部のブロック図を示す図であり、

図4 0は、VOG接続時のSCRとPTSの関係を示す図であり、

図4 1は、デコーダ同期制御部のブロック図を示す図であり、

10 図4 2は、同期機構制御部のブロック図を示す図であり、

図4 3は、同期機構制御部のフローチャートを示す図であり、

図4 4は、VOG中のSCRとPTSの関係を示す図であり、

図4 5は、VOG接続時のSCRとPTSの関係を示す図であり、

図4 6は、VOG接続時のSCRとPTSの関係を示す図であり、

15 図4 7は、VOG中のSCRとPTSの関係を示す図であり、

図4 8は、VOG中のSCRとPTSの関係を示す図であり、

図4 9は、フォーマッタ動作フローチャートを示す図であり、

図5 0は、非シームレス切り替えマルチアンダルのフォーマッタ動作サブルーチンフローチャートを示す図であり、

20 図5 1は、シームレス切り替えマルチアンダルのフォーマッタ動作サブルーチンフローチャートを示す図であり、

図5 2は、パレンタル制御のフォーマッタ動作サブルーチンフローチャートを示す図であり、

図5 3は、単一シーンのフォーマッタ動作サブルーチンフローチャートを示す図であり、

25

- 図5 4は、デコードシステムテーブルを示す図であり、
図5 5は、デコードテーブルを示す図であり、
図5 6は、デコーダのフローチャートを示す図であり、
図5 7は、PGC再生のフローチャートを示す図であり、
5 図5 8は、ストリームバッファ内のデータデコード処理フローチャートを示す図であり、
図5 9は、各デコーダの同期処理フローチャートを示す図であり、
図6 0は、非シームレス用同期処理フローチャートを示す図であり、
図6 1は、シームレス用同期処理フローチャートを示す図であり、
10 図6 2は、ストリームバッファへのデータ転送のフローチャートを示す図であり、
図6 3は、非マルチアングルのデコード処理フローチャートを示す図であり、
図6 4は、インターリープ区間のデコード処理フローチャートを示す図であり、
15 図6 5は、連続ブロック区間のデコード処理フローチャートを示す図であり、
図6 6は、非マルチアングルのデコード処理フローチャートを示す図であり、
20 図6 7は、シームレスマルチアングルデコード処理フローチャートを示す図であり、
図6 8は、非シームレスマルチアングルデコード処理フローチャートを示す図であり、
図6 9はストリームバッファのブロック図であり、

図70は、単一シーンのエンコードパラメータ生成フローチャートを示す図であり、

図71は、インターリープブロック構成例を示す図であり、

図72は、VTSのVOBブロック構成例を示す図であり、

5 図73は、連続ブロック内のデータ構造を示す図であり、

図74は、インターリープブロック内のデータ構造を示す図である。

発明を実施するための最良の形態

本発明をより詳細に説明するために、添付の図面に従ってこれを説明す
10 る。

オーサリングシステムのデータ構造

先ず、図1を参照して、本発明に於ける記録装置、記録媒体、再生装置お
よび、それらの機能を含むオーサリングシステムに於いて処理の対象される
マルチメディアデータのビットストリームの論理構造を説明する。ユーザが
15 内容を認識し、理解し、或いは楽しむことができる画像及び音声情報を1タ
イトルとする。このタイトルとは、映画でいえば、最大では一本の映画の完
全な内容を、そして最小では、各シーンの内容を表す情報量に相当する。

所定数のタイトル分の情報を含むビットストリームデータから、ビデオタ
イトルセットVTSが構成される。以降、簡便化の為に、ビデオタイトルセ
20 ットをVTSと呼称する。VTSは、上述の各タイトルの中身自体を表す映
像、オーディオなどの再生データと、それらを制御する制御データを含んで
いる。

所定数のVTSから、オーサリングシステムに於ける一ビデオデータ単位
であるビデオゾーンVZが形成される。以降、簡便化の為にビデオゾーンを
25 VZと呼称する。一つのVZに、K+1個のVTS#0～VTS#K (Kは、

0を含む正の整数)が直線的に連続して配列される。そしてその内一つ、好みしくは先頭のVTS#0が、各VTSに含まれるタイトルの中身情報を表すビデオマネージャとして用いられる。この様に構成された、所定数のVZから、オーサリングシステムに於ける、マルチメディアデータのビットストリームの最大管理単位であるマルチメディアビットストリームMBSが形成される。

オーサリングエンコーダEC

図2に、ユーザーの要望に応じた任意のシナリオに従い、オリジナルのマルチメディアビットストリームをエンコードして、新たなマルチメディアビットストリームMBSを生成する本発明に基づくオーサリングエンコーダECの一実施形態を示す。なお、オリジナルのマルチメディアビットストリームは、映像情報を運ぶビデオストリームSt1、キャプション等の補助映像情報を運ぶサブピクチャストリームSt3、及び音声情報を運ぶオーディオストリームSt5から構成されている。ビデオストリーム及びオーディオストリームは、所定の時間の間に対象から得られる画像及び音声の情報を含むストリームである。一方、サブピクチャストリームは一画面分、つまり瞬間の映像情報を含むストリームである。必要であれば、一画面分のサブピクチャをビデオメモリ等にキャプチャして、そのキャプチャされたサブピクチャ画面を継続的に表示することができる。

これらのマルチメディアソースデータSt1、St3、及びSt5は、実況中継の場合には、ビデオカメラ等の手段から映像及び音声信号がリアルタイムで供給される。また、ビデオテープ等の記録媒体から再生された非リアルタイムな映像及び音声信号であったりする。尚、同図に於ては、簡便化のために、3種類のマルチメディアソースストリームとして、3種類以上で、それぞれが異なるタイトル内容を表すソースデータが入力されても良いこ

とは言うまでもない。このような複数のタイトルの音声、映像、補助映像情報有するマルチメディアソースデータを、マルチタイトルストリームと呼称する。

- オーサリングエンコーダECは、編集情報作成部100、エンコードシステム制御部200、ビデオエンコーダ300、ビデオストリームバッファ400、サブピクチャエンコーダ500、サブピクチャストリームバッファ600、オーディオエンコーダ700、オーディオストリームバッファ800、システムエンコーダ900、ビデオゾーンフォーマッタ1300、記録部1200、及び記録媒体Mから構成されている。
- 同図に於いて、本発明のエンコーダによってエンコードされたビットストリームは、一例として光ディスク媒体に記録される。
- オーサリングエンコーダECは、オリジナルのマルチメディアタイトルの映像、サブピクチャ、及び音声に関するユーザの要望に応じてマルチメディアビットストリームMB Sの該当部分の編集を指示するシナリオデータとして出力できる編集情報生成部100を備えている。編集情報作成部100は、好ましくは、ディスプレイ部、スピーカ部、キーボード、CPU、及びソースストリームバッファ部等で構成される。編集情報作成部100は、上述の外部マルチメディアストリーム源に接続されており、マルチメディアソースデータS t 1、S t 3、及びS t 5の供給を受ける。
- ユーザーは、マルチメディアソースデータをディスプレイ部及びスピーカを用いて映像及び音声を再生し、タイトルの内容を認識することができる。更に、ユーザは再生された内容を確認しながら、所望のシナリオに沿った内容の編集指示を、キーボード部を用いて入力する。編集指示内容とは、複数のタイトル内容を含む各ソースデータの全部或いは、其々に対して、所定時

間毎に各ソースデータの内容を一つ以上選択し、それらの選択された内容を、所定の方法で接続再生するような情報を言う。

CPUは、キーボード入力に基づいて、マルチメディアソースデータのそれぞれのストリームS_t1、S_t3、及びS_t5の編集対象部分の位置、長さ、及び各編集部分間の時間的相互関係等の情報をコード化したシナリオデータS_t7を生成する。

ソースストリームバッファは所定の容量を有し、マルチメディアソースデータの各ストリームS_t1、S_t3、及びS_t5を所定の時間T_d遅延させた後に、出力する。

これは、ユーザーがシナリオデータS_t7を作成するのと同時にエンコードを行う場合、つまり逐次エンコード処理の場合には、後述するようにシナリオデータS_t7に基づいて、マルチメディアソースデータの編集処理内容を決定するのに若干の時間T_dを要するので、実際に編集エンコードを行う場合には、この時間T_dだけマルチメディアソースデータを遅延させて、編集エンコードと同期する必要があるからである。このような、逐次編集処理の場合、遅延時間T_dは、システム内の各要素間での同期調整に必要な程度であるので、通常ソースストリームバッファは半導体メモリ等の高速記録媒体で構成される。

しかしながら、タイトルの全体を通してシナリオデータS_t7を完成させた後に、マルチメディアソースデータを一気にエンコードする、いわゆるバッチ編集時に於いては、遅延時間T_dは、一タイトル分或いはそれ以上の時間必要である。このような場合には、ソースストリームバッファは、ビデオテープ、磁気ディスク、光ディスク等の低速大容量記録媒体を利用して構成できる。つまり、ソースストリームバッファは遅延時間T_d及び製造コストに応じて、適当な記憶媒体を用いて構成すれば良い。

エンコードシステム制御部200は、編集情報作成部100に接続されており、シナリオデータS_t7を編集情報作成部100から受け取る。エンコードシステム制御部200は、シナリオデータS_t7に含まれる編集対象部の時間的位置及び長さに関する情報に基づいて、マルチメディアソースデータの編集対象分をエンコードするためのそれぞれのエンコードパラメータデータ及びエンコード開始、終了のタイミング信号S_t9、S_t11、及びS_t13をそれぞれ生成する。なお、上述のように、各マルチメディアソースデータS_t1、S_t3、及びS_t5は、ソースストリームバッファによつて、時間T_d遅延して出力されるので、各タイミングS_t9、S_t11、及びS_t13と同期している。

つまり、信号S_t9はビデオストリームS_t1からエンコード対象部分を抽出して、ビデオエンコード単位を生成するために、ビデオストリームS_t1をエンコードするタイミングを指示するビデオエンコード信号である。同様に、信号S_t11は、サブピクチャエンコード単位を生成するために、サブピクチャストリームS_t3をエンコードするタイミングを指示するサブピクチャストリームエンコード信号である。また、信号S_t13は、オーディオエンコード単位を生成するために、オーディオストリームS_t5をエンコードするタイミングを指示するオーディオエンコード信号である。

エンコードシステム制御部200は、更に、シナリオデータS_t7に含まれるマルチメディアソースデータのそれぞれのストリームS_t1、S_t3、及びS_t5のエンコード対象部分間の時間的相互関係等の情報に基づいて、エンコードされたマルチメディアエンコードストリームを、所定の相互関係になるように配列するためのタイミング信号S_t21、S_t23、及びS_t25を生成する。

エンコードシステム制御部200は、1ビデオゾーンVZ分の各タイトルのタイトル編集単位(VOB)について、そのタイトル編集単位(VOB)の再生時間を示す再生時間情報ITおよびビデオ、オーディオ、サブピクチャのマルチメディアエンコードストリームを多重化(マルチプレクス)する
5 システムエンコードのためのエンコードパラメータを示すストリームエンコードデータS t 33を生成する。

エンコードシステム制御部200は、所定の相互的時間関係にある各ストリームのタイトル編集単位(VOB)から、マルチメディアビットストリームMBSの各タイトルのタイトル編集単位(VOB)の接続または、各タイトル編集単位を重畳しているインターリープタイトル編集単位(VOBs)
10 を生成するための、各タイトル編集単位(VOB)をマルチメディアビットストリームMBSとして、フォーマットするためのフォーマットパラメータを規定する配列指示信号S t 39を生成する。

ビデオエンコーダ300は、編集情報作成部100のソースストリームバッファ及び、エンコードシステム制御部200に接続されており、ビデオストリームS t 1とビデオエンコードのためのエンコードパラメータデータ及びエンコード開始終了のタイミング信号のS t 9、例えば、エンコードの開始終了タイミング、ビットレート、エンコード開始終了時にエンコード条件、素材の種類として、NTSC信号またはPAL信号あるいはテレシネ素材であるかなどのパラメータがそれぞれ入力される。ビデオエンコーダ300は、ビデオエンコード信号S t 9に基づいて、ビデオストリームS t 1の所定の部分をエンコードして、ビデオエンコードストリームS t 15を生成する。

同様に、サブピクチャエンコーダ500は、編集情報作成部100のソースバッファ及び、エンコードシステム制御部200に接続されており、サブ

ピクチャストリームS_t3とサブピクチャストリームエンコード信号S_t11がそれぞれ入力される。サブピクチャエンコーダ500は、サブピクチャストリームエンコードのためのパラメータ信号S_t11に基づいて、サブピクチャストリームS_t3の所定の部分をエンコードして、サブピクチャエンコードストリームS_t17を生成する。

オーディオエンコーダ700は、編集情報作成部100のソースバッファ及び、エンコードシステム制御部200に接続されており、オーディオストリームS_t5とオーディオエンコード信号S_t13がそれぞれ入力される。オーディオエンコーダ700は、オーディオエンコードのためのパラメータデータ及びエンコード開始終了タイミングの信号S_t13に基づいて、オーディオストリームS_t5の所定の部分をエンコードして、オーディオエンコードストリームS_t19を生成する。

ビデオストリームバッファ400は、ビデオエンコーダ300に接続されており、ビデオエンコーダ300から出力されるビデオエンコードストリームS_t15を保存する。ビデオストリームバッファ400は更に、エンコードシステム制御部200に接続されて、タイミング信号S_t21の入力に基づいて、保存しているビデオエンコードストリームS_t15を、調時ビデオエンコードストリームS_t27として出力する。

同様に、サブピクチャストリームバッファ600は、サブピクチャエンコーダ500に接続されており、サブピクチャエンコーダ500から出力されるサブピクチャエンコードストリームS_t17を保存する。サブピクチャストリームバッファ600は更に、エンコードシステム制御部200に接続されて、タイミング信号S_t23の入力に基づいて、保存しているサブピクチャエンコードストリームS_t17を、調時サブピクチャエンコードストリームS_t29として出力する。

また、オーディオストリームバッファ800は、オーディオエンコーダ700に接続されており、オーディオエンコーダ700から出力されるオーディオエンコードストリームS t 19を保存する。オーディオストリームバッファ800は更に、エンコードシステム制御部200に接続されて、タイミング信号S t 25の入力に基づいて、保存しているオーディオエンコードストリームS t 19を、調時オーディオエンコードストリームS t 31として出力する。

システムエンコーダ900は、ビデオストリームバッファ400、サブピクチャストリームバッファ600、及びオーディオストリームバッファ800に接続されており、調時ビデオエンコードストリームS t 27、調時サブピクチャエンコードストリームS t 29、及び調時オーディオエンコードS t 31が入力される。システムエンコーダ900は、またエンコードシステム制御部200に接続されており、ストリームエンコードデータS t 33が入力される。

システムエンコーダ900は、システムエンコードのエンコードパラメータデータ及びエンコード開始終了タイミングの信号S t 33に基づいて、各調時ストリームS t 27、S t 29、及びS t 31に多重化処理を施して、タイトル編集単位(VOB) S t 35を生成する。

ビデオゾーンフォーマッタ1300は、システムエンコーダ900に接続されて、タイトル編集単位S t 35を入力される。ビデオゾーンフォーマッタ1300は更に、エンコードシステム制御部200に接続されて、マルチメディアビットストリームMBSをフォーマットするためのフォーマットパラメータデータ及びフォーマット開始終タイミングの信号S t 39を入力される。ビデオゾーンフォーマッタ1300は、タイトル編集単位S t 39に基づいて、1ビデオゾーンVZ分のタイトル編集単位S t 35を、ユ

ザの要望シナリオに沿う順番に、並べ替えて、編集済みマルチメディアビットストリームS t 4 3を生成する。

このユーザの要望シナリオの内容に編集された、マルチメディアビットストリームS t 4 3は、記録部1200に転送される。記録部1200は、編集5マルチメディアビットストリームMB Sを記録媒体Mに応じた形式のデータS t 4 3に加工して、記録媒体Mに記録する。この場合、マルチメディアビットストリームMB Sには、予め、ビデオゾーンフォーマッタ1300によって生成された媒体上の物理アドレスを示すボリュームファイルストラクチャVFSが含まれる。

また、エンコードされたマルチメディアビットストリームS t 3 5を、以下に述べるようなデコーダに直接出力して、編集されたタイトル内容を再生するようにしても良い。この場合は、マルチメディアビットストリームMB Sには、ボリュームファイルストラクチャVFSは含まれないことは言うまでもない。

15 オーサリングデコーダDC

次に、図3を参照して、本発明にかかるオーサリングエンコーダECによって、編集されたマルチメディアビットストリームMB Sをデコードして、ユーザの要望のシナリオに沿って各タイトルの内容を展開する、オーサリングデコーダDCの一実施形態について説明する。なお、本実施形態に於いて20は、記録媒体Mに記録されたオーサリングエンコーダECによってエンコードされたマルチメディアビットストリームS t 4 5は、記録媒体Mに記録されている。

オーサリングデコーダDCは、マルチメディアビットストリーム再生部2000、シナリオ選択部2100、デコードシステム制御部2300、ストリームバッファ2400、システムデコーダ2500、ビデオバッファ26

00、サブピクチャバッファ2700、オーディオバッファ2800、同期制御部2900、ビデオデコーダ3800、サブピクチャデコーダ3100、オーディオデコーダ3200、合成部3500、ビデオデータ出力端子3600、及びオーディオデータ出力端子3700から構成されている。

5 マルチメディアビットストリーム再生部2000は、記録媒体Mを駆動させる記録媒体駆動ユニット2004、記録媒体Mに記録されている情報を読み取り二値の読み取り信号S_t57を生成する読み取りヘッドユニット2006、読み取り信号S_t57に種々の処理を施して再生ビットストリームS_t61を生成する信号処理部2008、及び機構制御部2002から構成される。機構制御部2002は、デコードシステム制御部2300に接続され10て、マルチメディアビットストリーム再生指示信号S_t53を受けて、それぞれ記録媒体駆動ユニット(モータ)2004及び信号処理部2008をそれぞれ制御する再生制御信号S_t55及びS_t59を生成する。

15 デコーダDCは、オーサリングエンコーダECで編集されたマルチメディアタイトルの映像、サブピクチャ、及び音声に関する、ユーザの所望の部分が再生されるように、対応するシナリオを選択して再生するように、オーサリングデコーダDCに指示を与えるシナリオデータとして出力できるシナリオ選択部2100を備えている。

20 シナリオ選択部2100は、好ましくは、キーボード及びCPU等で構成される。ユーザーは、オーサリングエンコーダECで入力されたシナリオの内容に基づいて、所望のシナリオをキーボード部を操作して入力する。CPUは、キーボード入力に基づいて、選択されたシナリオを指示するシナリオ選択データS_t51を生成する。シナリオ選択部2100は、例えば、赤外線通信装置等によって、デコードシステム制御部2300に接続されてい25る。デコードシステム制御部2300は、S_t51に基づいてマルチメディ

アビットストリーム再生部 2000 の動作を制御する再生指示信号 S_t 5
3 を生成する。

ストリームバッファ 2400 は所定のバッファ容量を有し、マルチメディ
アビットストリーム再生部 2000 から入力される再生信号ビットストリ
5 ム S_t 61 を一時的に保存すると共に、及び各ストリームのアドレス情報
及び同期初期値データを抽出してストリーム制御データ S_t 63 を生成す
る。ストリームバッファ 2400 は、デコードシステム制御部 2300 に接
続されており、生成したストリーム制御データ S_t 63 をデコードシステム
制御部 2300 に供給する。

10 同期制御部 2900 は、デコードシステム制御部 2300 に接続されて、
同期制御データ S_t 81 に含まれる同期初期値データ (SCR) を受け取り、
内部のシステムクロック (STC) セットし、リセットされたシステムクロッ
ク S_t 79 をデコードシステム制御部 2300 に供給する。

15 デコードシステム制御部 2300 は、システムクロック S_t 79 に基づい
て、所定の間隔でストリーム読み出信号 S_t 65 を生成し、ストリームバッフ
ア 2400 に入力する。

ストリームバッファ 2400 は、読み出信号 S_t 65 に基づいて、再生ビッ
トストリーム S_t 61 を所定の間隔で出力する。

20 デコードシステム制御部 2300 は、更に、シナリオ選択データ S_t 51
に基づき、選択されたシナリオに対応するビデオ、サブピクチャ、オーディ
オの各ストリームの ID を示すデコードストリーム指示信号 S_t 69 を生
成して、システムデコーダ 2500 に出力する。

25 システムデコーダ 2500 は、ストリームバッファ 2400 から入力され
てくるビデオ、サブピクチャ、及びオーディオのストリームを、デコード指
示信号 S_t 69 の指示に基づいて、それぞれ、ビデオエンコードストリーム

S_t71としてビデオバッファ2600に、サブピクチャエンコードストリームS_t73としてサブピクチャバッファ2700に、及びオーディオエンコードストリームS_t75としてオーディオバッファ2800に出力する。

システムデコーダ2500は、各ストリームS_t67の各最小制御単位で
5 の再生開始時間(PTS)及びデコード開始時間(DTS)を検出し、時間情報信号S_t77を生成する。この時間情報信号S_t77は、デコードシステム制御部2300を経由して、同期制御データS_t81として同期制御部2900に入力される。

同期制御部2900は、同期制御データS_t81として、各ストリームについて、それがデコード後に所定の順番になるようなデコード開始タイミングを決定する。同期制御部2900は、このデコードタイミングに基づいて、ビデオストリームデコード開始信号S_t89を生成し、ビデオデコーダ3800に入力する。同様に、同期制御部2900は、サブピクチャデコード開始信号S_t91及びオーディオデコード開始信号S_t93を生成し、
15 サブピクチャデコーダ3100及びオーディオデコーダ3200にそれぞれ入力する。

ビデオデコーダ3800は、ビデオストリームデコード開始信号S_t89に基づいて、ビデオ出力要求信号S_t84を生成して、ビデオバッファ2600に対して出力する。ビデオバッファ2600はビデオ出力要求信号S_t84を受けて、ビデオストリームS_t83をビデオデコーダ3800に出力する。ビデオデコーダ3800は、ビデオストリームS_t83に含まれる再生時間情報を検出し、再生時間に相当する量のビデオストリームS_t83の入力を受けた時点で、ビデオ出力要求信号S_t84を無効(disable)にする。このようにして、所定再生時間に相当するビデオストリームがビデオデ

コーダ3800でデコードされて、再生されたビデオ信号S_t104が合成部3500に出力される。

同様に、サブピクチャデコーダ3100は、サブピクチャデコード開始信号S_t91に基づいて、サブピクチャ出力要求信号S_t86を生成し、サブピクチャバッファ2700に供給する。サブピクチャバッファ2700は、サブピクチャ出力要求信号S_t86を受けて、サブピクチャストリームS_t85をサブピクチャデコーダ3100に出力する。サブピクチャデコーダ3100は、サブピクチャストリームS_t85に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のサブピクチャストリームS_t85をデコードして、サブピクチャ信号S_t99を再生して、合成部3500に出力される。

合成部3500は、ビデオ信号S_t104及びサブピクチャ信号S_t99を重畠させて、マルチピクチャビデオ信号S_t105を生成し、ビデオ出力端子3600に出力する。

オーディオデコーダ3200は、オーディオデコード開始信号S_t93に基づいて、オーディオ出力要求信号S_t88を生成し、オーディオバッファ2800に供給する。オーディオバッファ2800は、オーディオ出力要求信号S_t88を受けて、オーディオストリームS_t87をオーディオデコーダ3200に出力する。オーディオデコーダ3200は、オーディオストリームS_t87に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のオーディオストリームS_t87をデコードして、オーディオ出力端子3700に出力する。

このようにして、ユーザのシナリオ選択に応答して、リアルタイムにユーザの要望するマルチメディアビットストリームMB_Sを再生する事ができる。つまり、ユーザが異なるシナリオを選択する度に、オーサリングデー

ダDCはその選択されたシナリオに対応するマルチメディアビットストリームMBSを再生することによって、ユーザの要望するタイトル内容を再生することができる。

以上述べたように、本発明のオーサリングシステムに於いては、基本のタイトル内容に対して、各内容を表す最小編集単位の複数の分岐可能なサブストリームを所定の時間的相関関係に配列するべく、マルチメディアソースデータをリアルタイム或いは一括してエンコードして、複数の任意のシナリオに従うマルチメディアビットストリームを生成する事ができる。

また、このようにエンコードされたマルチメディアビットストリームを、複数のシナリオの内の任意のシナリオに従って再生できる。そして、再生中であっても、選択したシナリオから別のシナリオを選択し(切り替えて)も、その新たな選択されたシナリオに応じた(動的に)マルチメディアビットストリームを再生できる。また、任意のシナリオに従ってタイトル内容を再生中に、更に、複数のシーンの内の任意のシーンを動的に選択して再生することができる。

このように、本発明に於けるオーサリングシステムに於いては、エンコードしてマルチメディアビットストリームMBSをリアルタイムに再生するだけでなく、繰り返し再生することができる。尚、オーサリングシステムの詳細に関しては、本特許出願と同一出願人による1996年9月27日付けの日本国特許出願に開示されている。

DVD

図4に、单一の記録面を有するDVDの一例を示す。本例に於けるDVD記録媒体RC1は、レーザー光線LSを照射し情報の書き込み及び読み出を行う情報記録面RS1と、これを覆う保護層PL1からなる。更に、記録面RS1の裏側には、補強層BL1が設けられている。このように、保護層PL1側

の面を表面S A、補強層B L 1側の面を裏面S Bとする。この媒体R C 1のように、片面に単一の記録層R S 1を有するDVD媒体を、片面一層ディスクと呼ぶ。

図5に、図4のC 1部の詳細を示す。記録面R S 1は、金属薄膜等の反射膜を付着した情報層4 1 0 9によって形成されている。その上に、所定の厚さT 1を有する第1の透明基板4 1 0 8によって保護層P L 1が形成される。所定の厚さT 2を有する第二の透明基板4 1 1 1によって補強層B L 1が形成される。第一及び第二の透明基板4 1 0 8及び4 1 1 1は、その間に設けられ接着層4 1 1 0によって、互いに接着されている。

さらに、必要に応じて第2の透明基板4 1 1 1の上にラベル印刷用の印刷層4 1 1 2が設けられる。印刷層4 1 1 2は補強層B L 1の基板4 1 1 1上の全領域ではなく、文字や絵の表示に必要な部分のみ印刷され、他の部分は透明基板4 1 1 1を剥き出しにしてもよい。その場合、裏面S B側から見ると、印刷されていない部分では記録面R S 1を形成する金属薄膜4 1 0 9の反射する光が直接見えることになり、例えば、金属薄膜がアルミニウム薄膜である場合には背景が銀白色に見え、その上に印刷文字や図形が浮き上がって見える。印刷層4 1 1 2は、補強層B L 1の全面に設ける必要はなく、用途に応じて部分的に設けてもよい。

図6に、更に図5のC 2部の詳細を示す。光ビームL Sが入射し情報が取り出される表面S Aに於いて、第1の透明基板4 1 0 8と情報層4 1 0 9の接する面は、成形技術により凹凸のピットが形成され、このピットの長さと間隔を変えることにより情報が記録される。つまり、情報層4 1 0 9には第1の透明基板4 1 0 8の凹凸のピット形状が転写される。このピットの長さや間隔はCDの場合に比べ短くなり、ピット列で形成する情報トラックもピッチも狭く構成されている。その結果、面記録密度が大幅に向上している。

また、第1の透明基板4108のピットが形成されていない表面SA側は、平坦な面となっている。第2の透明基板4111は、補強用であり、第1の透明基板4108と同じ材質で構成される両面が平坦な透明基板である。そして所定の厚さT1及びT2は、共に同じく、例えば0.6mmが好ましいが、それに限定されるものでは無い。

情報の取り出しが、CDの場合と同様に、光ビームLSが照射されることにより光スポットの反射率変化として取り出される。DVDシステムに於いては、対物レンズの開口数NAを大きく、そして光ビームの波長λを小さくすることができるため、使用する光スポットLsの直径を、CDでの光スポットの約1/1.6に絞り込むことができる。これは、CDシステムに比べて、約1.6倍の解像度を有することを意味する。

DVDからのデータ読み出しには、波長の短い650nmの赤色半導体レーザと対物レンズのNA(開口数)を0.6mmまで大きくした光学系とが用いられる。これと透明基板の厚さTを0.6mmに薄くしたこととが、15 しまって、直径120mmの光ディスクの片面に記録できる情報容量が5Gバイトを越える。

DVDシステムは、上述のように、単一の記録面RS1を有する片側一層ディスクRC1に於いても、CDに比べて記録可能な情報量が10倍近いため、単位あたりのデータサイズが非常に大きい動画像を、その画質を損なわずに取り扱うことができる。その結果、従来のCDシステムでは、動画像の画質を犠牲にしても、再生時間が74分であるのに比べて、DVDでは、高画質動画像を2時間以上に渡って記録再生可能である。このようにDVDは、動画像の記録媒体に適しているという特徴がある。

図7及び図8に、上述の記録面RSを複数有するDVD記録媒体の例を示す。図7のDVD記録媒体RC2は、同一側、つまり表側SAに、二層に配

- された第一及び半透明の第二の記録面RS1及びRS2を有している。第一の記録面RS1及び第二の記録面RS2に対して、それぞれ異なる光ビームLS1及びLS2を用いることにより、同時に二面からの記録再生が可能である。また、光ビームLS1或いはLS2の一方にて、両記録面RS1及びRS2に対応させても良い。このように構成されたDVD記録媒体を片面二層ディスクと呼ぶ。この例では、2枚の記録層RS1及びRS2を配したが、必要に応じて、2枚以上の記録層RSを配したDVD記録媒体を構成できることは、言うまでもない。このようなディスクを、片面多層ディスクと呼ぶ。
- 一方、図8のDVD記録媒体RC3は、反対側、つまり表側SA側には第一の記録面RS1が、そして裏側SBには第二の記録面RS2、それぞ設けられている。これらの例に於いては、一枚のDVDに記録面を二層もうけた例を示したが、二層以上の多層の記録面を有するように構成できることは言うまでもない。図7の場合と同様に、光ビームLS1及びLS2を個別に設けても良いし、一つの光ビームで両方の記録面RS1及びRS2の記録再生に用いることもできる。このように構成されたDVD記録媒体を両面一層ディスクと呼ぶ。また、片面に2枚以上の記録層RSを配したDVD記録媒体を構成できることは、言うまでもない。このようなディスクを、両面多層ディスクと呼ぶ。
- 図9及び図10に、DVD記録媒体RCの記録面RSを光ビームLSの照射側から見た平面図をそれぞれ示す。DVDには、内周から外周方向に向けて、情報を記録するトラックTRが螺旋状に連続して設けられている。トラックTRは、所定のデータ単位毎に、複数のセクターに分割されている。尚、図9では、見易くするために、トラック1周あたり3つ以上のセクターに分割されているように表されている。

通常、トラックTRは、図9に示すように、ディスクRCAの内周の端点IAから外周の端点OAに向けて時計回り方向DrAに巻回されている。このようなディスクRCAを時計回りディスク、そのトラックを時計回りトラックTRAと呼ぶ。また、用途によっては、図10に示すように、ディスクRCBの外周の端点OBから内周の端点IBに向けて、時計周り方向DrBに、トラックTRBが巻回されている。この方向DrBは、内周から外周に向かって見れば、反時計周り方向であるので、図9のディスクRCAと区別するために、反時計回りディスクRCB及び反時計回りトラックTRBと呼ぶ。上述のトラック巻回方向DrA及びDrBは、光ビームが記録再生のためにトラックをスキャンする動き、つまりトラックパスである。トラック巻回方向DrAの反対方向RdAが、ディスクRCAを回転させる方向である。トラック巻回方向DrBの反対方向RdBが、ディスクRCBを回転させる方向である。

図11に、図7に示す片側二層ディスクRC2の一例であるディスクRC2oの展開図を模式的に示す。下側の第一の記録面RS1は、図9に示すように時計回りトラックTRAが時計回り方向DrAに設けられている。上側の第二の記録面RS2には、図12に示すように反時計回りトラックTRBが反時計回り方向DrBに設けられている。この場合、上下側のトラック外周端部OB及びOAは、ディスクRC2oの中心線に平行な同一線上に位置している。上述のトラックTRの巻回方向DrA及びDrBは、共に、ディスクRCに対するデータの読み書きの方向である。この場合、上下のトラックの巻回方向は反対、つまり、上下の記録層のトラックパスDrA及びDrBが対向している。

対向トラックパスタイプの片側二層ディスクRC2oは、第一記録面RS1に対応してRdA方向に回転されて、光ビームLSがトラックパスDrA

に沿って、第一記録面RS1のトラックをトレースして、外周端部OAに到達した時点で、光ビームLSを第二の記録面RS2の外周端部OBに焦点を結ぶように調節することで、光ビームLSは連続的に第二の記録面RS2のトラックをトレースすることができる。このようにして、第一及び第二の記録面RS1及びRS2のトラックTRAとTRBとの物理的距離は、光ビームLSの焦点を調整することで、瞬間に解消できる。その結果、対向トラックパスタイプの片側二層ディスクRC0に於いては、上下二層上のトラックを一つの連続したトラックTRとして処理することができる。故に、図1を参照して述べた、オーサリングシステムに於ける、マルチメディアデータの最大管理単位であるマルチメディアビットストリームMBSを、一つの媒体RC2oの二層の記録層RS1及びRS2に連続的に記録することができる。

尚、記録面RS1及びRS2のトラックの巻回方向を、本例で述べたのと反対に、つまり第一記録面RS1に反時計回りトラックTRBを、第二記録面に時計回りトラックTRAを設け場合は、ディスクの回転方向をRdBに変えることを除けば、上述の例と同様に、両記録面を一つの連続したトラックTRを有するものとして用いる。よって、簡便化の為にそのような例についての図示等の説明は省く。このように、DVDを構成することによって、長大なタイトルのマルチメディアビットストリームMBSを一枚の対向トラックパスタイプ片面二層ディスクRC2oに収録できる。このようなDVD媒体を、片面二層対向トラックパスタイプディスクと呼ぶ。

図12に、図7に示す片側二層ディスクRC2の異なる例RC2pの展開図を模式に示す。第一及び第二の記録面RS1及びRS2は、図9に示すように、共に時計回りトラックTRAが設けられている。この場合、片側二層ディスクRC2pは、RdA方向に回転されて、光ビームの移動方向はトラ

ックの巻回方向と同じ、つまり、上下の記録層のトラックパスが互いに平行である。この場合に於いても、好ましくは、上下側のトラック外周端部OA及びOAは、ディスクRC2pの中心線に平行な同一線上に位置している。それ故に、外周端部OAに於いて、光ビームLSの焦点を調節することで、

- 5 図11で述べた媒体RC2oと同様に、第一記録面RS1のトラックTRAの外周端部OAから第二記録面RS2のトラックTRAの外周端部OAへ瞬間に、アクセス先を変えることができる。

しかしながら、光ビームLSによって、第二の記録面RS2のトラックTRAを時間的に連続してアクセスするには、媒体RC2pを逆(反RdA方向に)回転させれば良い。しかし、光ビームの位置に応じて、媒体の回転方向を変えるのは効率が良くないので、図中で矢印で示されているように、光ビームLSが第一記録面RS1のトラック外周端部OAに達した後に、光ビームを第二記録面RS2のトラック内周端部IAに、移動させることで、論理的に連続した一つのトラックとして用いることができ。また、必要であれば、上下の記録面のトラックを一つの連続したトラックとして扱わずに、それぞれ別のトラックとして、各トラックにマルチメディアビットストリームMBSを一タイトルづつ記録してもよい。このようなDVD媒体を、片面二層平行トラックパス型ディスクと呼ぶ。

尚、両記録面RS1及びRS2のトラックの巻回方向を本例で述べたのと反対に、つまり反時計回りトラックTRBを設けても、ディスクの回転方向をRdBにすることを除けば同様である。この片面二層平行トラックパス型ディスクは、百科事典のような頻繁にランダムアクセスが要求される複数のタイトルを一枚の媒体RC2pに収録する用途に適している。

図13に、図8に示す片面にそれぞれ一層の記録面RS1及びRS2を有する両面一層型のDVD媒体RC3の一例RC3sの展開図を示す。一方の

記録面RS 1は、時計回りトラックTRAが設けられ、他方の記録面RS 2には、反時計回りトラックTRBが設けられている。この場合に於いても、好ましくは、両記録面のトラック外周端部OA及びOBは、ディスクRC 3 sの中心線に平行な同一線上に位置している。これらの記録面RS 1とRS 2は、トラックの巻回方向は反対であるが、トラックパスが互いに面對称の関係にある。このようなディスクRC 3 sを両面一層対称トラックパス型ディスクと呼ぶ。この両面一層対称トラックパス型ディスクRC 3 sは、第一の記録媒体RS 1に対応してR d A方向に回転される。その結果、反対側の第二の記録媒体RS 2のトラックパスは、そのトラック巻回方向D r Bと反対の方向、つまりD r Aである。この場合、連続、非連続的に関わらず、本質的に二つの記録面RS 1及びRS 2に同一の光ビームLSでアクセスする事は実際的ではない。それ故に、表裏の記録面のそれぞれに、マルチメディアビットストリームMS Bを記録する。

図14に、図8に示す両面一層DVD媒体RC 3の更なる例RC 3 aの展開図を示す。両記録面RS 1及びRS 2には、共に、図9に示すように時計回りトラックTRAが設けられている。この場合に於いても、好ましくは、両記録面側RS 1及びRS 2のトラック外周端部OA及びOBは、ディスクRC 3 aの中心線に平行な同一線上に位置している。但し、本例に於いては、先に述べた両面一層対象トラックパス型ディスクRC 3 sと違って、これらの記録面RS 1とRS 2上のトラックは非対称の関係にある。このようなディスクRC 3 aを両面一層非対象トラックパス型ディスクと呼ぶ。この両面一層非対象トラックパス型ディスクRC 3 sは、第一の記録媒体RS 1に対応してR d A方向に回転される。その結果、反対側の第二の記録面RS 2のトラックパスは、そのトラック巻回方向D r Aと反対の方向、つまりD r B方向である。

故に、単一の光ビームLSを第一記録面RS1の内周から外周へ、そして第二記録面RS2の外周から内周へと、連続的に移動させれば記録面毎に異なる光ビーム源を用意しなくても、媒体PC3aを表裏反転させずに両面の記録再生が可能である。また、この両面一層非対象トラックパス型ディスク
5 では、両記録面RS1及びRS2のトラックパスが同一である。それ故に、媒体PC3aの表裏を反転することにより、記録面毎に異なる光ビーム源を用意しなくても、単一の光ビームLSで両面の記録再生が可能であり、その結果、装置を経済的に製造することができる。尚、両記録面RS1及びRS
10 2に、トラックTRAの代わりにトラックTRBを設けても、本例と基本的に同様である。

上述の如く、記録面の多層化によって、記録容量の倍増化が容易なDVDシステムによって、1枚のディスク上に記録された複数の動画像データ、複数のオーディオデータ、複数のグラフィックスデータなどをユーザとの対話操作を通じて再生するマルチメディアの領域に於いてその真価を發揮する。
15 つまり、従来ソフト提供者の夢であった、ひとつの映画を製作した映画の品質をそのまま記録で、多数の異なる言語圏及び多数の異なる世代に対して、一つの媒体により提供することを可能とする。

パレンタル

従来は、映画タイトルのソフト提供者は、同一のタイトルに関して、全世界の多数の言語、及び歐米各国で規制化されているパレンタルロックに対応した個別のパッケージとしてマルチレイティッドタイトルを制作、供給、管理しないといけなかった。この手間は、たいへん大きなものであった。また、これは、高画質もさることながら、意図した通りに再生できることが重要である。このような願いの解決に一步近づく記録媒体がDVDである。

25 マルチアングル

また、対話操作の典型的な例として、1つのシーンを再生中に、別の視点からのシーンに切替えるというマルチアングルという機能が要求されている。これは、例えば、野球のシーンであれば、バックネット側から見た投手、捕手、打者を中心としたアングル、バックネット側から見た内野を中心としたアングル、センター側から見た投手、捕手、打者を中心としたアングルなどいくつかのアングルの中から、ユーザが好きなものを見たかもカメラを切り替えているように、自由に選ぶというようなアプリケーションの要求がある。

DVDでは、このような要求に応えるべく動画像、オーディオ、グラフィックスなどの信号データを記録する方式としてビデオCDと同様のMPEGが使用されている。ビデオCDとDVDとでは、その容量と転送速度および再生装置内の信号処理性能の差から同じMPEG形式といつても、MPEG 1とMPEG 2という多少異なる圧縮方式、データ形式が採用されている。ただし、MPEG 1とMPEG 2の内容及びその違いについては、本発明の趣旨とは直接関係しないため説明を省略する（例えば、ISO11172、ISO13818のMPEG規格書参照）。

本発明に掛かるDVDシステムのデータ構造について、図16、図17、図18、図19、及び図20を参照して、後で説明する。

マルチシーン

上述の、パレンタルロック再生及びマルチアングル再生の要求を満たすために、各要求通りの内容のタイトルを其々に用意していれば、ほんの一部分の異なるシーンデータを有する概ね同一内容のタイトルを要求数だけ用意して、記録媒体に記録しておかなければならない。これは、記録媒体の大部分の領域に同一のデータを繰り返し記録することになるので、記録媒体の記憶容量の利用効率を著しく疎外する。さらに、DVDの様な大容量の記録媒

体をもってしても、全ての要求に対応するタイトルを記録することは不可能である。この様な問題は、基本的に記録媒体の容量を増やせれば解決するとも言えるが、システムリソースの有効利用の観点から非常に望ましくない。

DVDシステムに於いては、以下にその概略を説明するマルチシーン制御
5 を用いて、多種のバリエーションを有するタイトルを最低必要限度のデータ
でもって構成し、記録媒体等のシステムリソースの有効活用を可能としている。
つまり、様々なバリエーションを有するタイトルを、各タイトル間での
共通のデータからなる基本シーン区間と、其々の要求に即した異なるシーン
群からなるマルチシーン区間とで構成する。そして、再生時に、ユーザが各
10 マルチシーン区間での特定のシーンを自由、且つ随時に選択できる様にして
おく。なお、パレンタルロック再生及びマルチアングル再生を含むマルチシ
ーン制御に関して、後で、図21を参照して説明する。

DVDシステムのデータ構造

図22に、本発明に掛かるDVDシステムに於ける、オーサリングデータ
15 のデータ構造を示す。DVDシステムでは、マルチメディアビットストリー
ムMBSを記録する為に、リードイン領域LI、ボリューム領域VSと、リ
ードアウト領域LOに3つに大別される記録領域を備える。

リードイン領域LIは、光ディスクの最内周部に、例えば、図9及び図1
0で説明したディスクに於いては、そのトラックの内周端部IA及びIBに
20 位置している。リードイン領域LIには、再生装置の読み出し開始時の動作
安定用のデータ等が記録される。

リードアウト領域LOは、光ディスクの最外周に、つまり図9及び図10
で説明したトラックの外周端部OA及びOBに位置している。このリードア
ウト領域LOには、ボリューム領域VSが終了したことを示すデータ等が記
25 録される。

- ボリューム領域VSは、リードイン領域LIとリードアウト領域LOの間に位置し、2048バイトの論理セクタLSが、 $n+1$ 個 (n は0を含む正の整数) 一次元配列として記録される。各論理セクタLSはセクタナンバー (#0、#1、#2、…#n) で区別される。更に、ボリューム領域VS
5 は、 $m+1$ 個の論理セクタLS #0～LS #m (m はnより小さい0を含む正の整数) から形成されるボリューム／ファイル管理領域VFSと、 $n-m$ 個の論理セクタLS #m+1～LS #n から形成されるファイルデータ領域FDSに分別される。このファイルデータ領域FDSは、図1に示すマルチメディアビットストリームMBSSに相当する。
- 10 ボリューム／ファイル管理領域VFSは、ボリューム領域VSのデータをファイルとして管理する為のファイルシステムであり、ディスク全体の管理に必要なデータの収納に必要なセクタ数m (m はnより小さい自然数) の論理セクタLS #0からLS #mによって形成されている。このボリューム／ファイル管理領域VFSには、例えば、ISO9660、及びISO133
15 46などの規格に従って、ファイルデータ領域FDS内のファイルの情報が記録される。
- 15 ファイルデータ領域FDSは、 $n-m$ 個の論理セクタLS #m+1～LS #n から構成されており、それぞれ、論理セクタの整数倍 ($2048 \times I$ 、 I は所定の整数) のサイズを有するビデオマネージャVMGと、及びk個のビデオタイトルセットVTS #1～VTS #k (k は、100より小さい自然数) を含む。
- 20 ビデオマネージャVMGは、ディスク全体のタイトル管理情報を表す情報を保持すると共に、ボリューム全体の再生制御の設定／変更を行うためのメニューであるボリュームメニューを表す情報を有する。ビデオタイトルセッ

トVTS # k ‘は、単にビデオファイルとも呼び、動画、オーディオ、静止画などのデータからなるタイトルを表す。

図16は、図22のビデオタイトルセットVTSの内部構造を示す。ビデオタイトルセットVTSは、ディスク全体の管理情報を表すVTS情報(VTSI)と、マルチメディアビットストリームのシステムストリームであるVTSタイトル用VOBS(VTSIT_VOBS)に大別される。先ず、以下にVTS情報について説明した後に、VTSタイトル用VOBSについて説明する。

VTS情報は、主に、VTSI管理テーブル(VTSI_MAT)及びVTPG
10 C情報テーブル(VTS_PGCIT)を含む。

VTSI管理テーブルは、ビデオタイトルセットVTSの内部構成及び、ビデオタイトルセットVTS中に含まれる選択可能なオーディオストリームの数、サブピクチャの数およびビデオタイトルセットVTSの格納場所等が記述される。

15 VTPG C情報管理テーブルは、再生順を制御するプログラムチェーン(PGC)を表すi個(iは自然数)のPGC情報VTS_PGI#1～VTS_PGI#Iを記録したテーブルである。各エントリーのPGC情報VTS_PGI#Iは、プログラムチェーンを表す情報であり、j個(jは自然数)のセル再生情報C_PBI#1～C_PBI#jから成る。各セル再生情報C_PBI#jは、セルの再生順序や再生に関する制御情報を含む。

また、プログラムチェーンPGCとは、タイトルのストーリーを記述する概念であり、セル(後述)の再生順を記述することでタイトルを形成する。上記VTS情報は、例えば、メニューに関する情報の場合には、再生開始時に再生装置内のバッファに格納され、再生の途中でリモコンの「メニュー」キーが押下された時点で再生装置により参照され、例えば#1のトップメニ

5 ューが表示される。階層メニューの場合は、例えば、プログラムチェーン情報VTS_PGCI#1が「メニュー」キー押下により表示されるメインメニューであり、#2から#9がリモコンの「テンキー」の数字に対応するサブメニュー、#10以降がさらに下位層のサブメニューというように構成される。また例
10 えば、#1が「メニュー」キー押下により表示されるトップメニュー、#2以降が「テン」キーの数字に対応して再生される音声ガイダンスというように構成される。

10 メニュー自体は、このテーブルに指定される複数のプログラムチェーンで表されるので、階層メニューであろうが、音声ガイダンスを含むメニューであろうが、任意の形態のメニューを構成することを可能にしている。

15 また例えば、映画の場合には、再生開始時に再生装置内のバッファに格納され、PGC内に記述しているセル再生順序を再生装置が参照し、システムストリームを再生する。

20 ここで言うセルとは、システムストリームの全部または一部であり、再生時のアクセスポイントとして使用される。たとえば、映画の場合は、タイトルを途中で区切っているチャプターとして使用する事ができる。

尚、エントリーされたPGC情報C_PBI#jの各々は、セル再生処理情報及び、セル情報テーブルを含む。再生処理情報は、再生時間、繰り返し回数などのセルの再生に必要な処理情報から構成される。ロックモード(CB)
M)、セルロックタイプ(CBT)、シームレス再生フラグ(SPF)、インターリープロック配置フラグ(IAF)、STC再設定フラグ(STCDF)、セル再生時間(C_PBTM)、シームレスアングル切替フラグ(SACF)、セル先頭VOBU開始アドレス(C_FVOBU_SA)、及びセル終端VOBU開始アドレス(C_LVOBU_SA)から成る。

ここで言う、シームレス再生とは、DVDシステムに於いて、映像、音声、副映像等のマルチメディアデータを、各データ及び情報を中断する事無く再生することであり、詳しくは、図23及び図24参照して後で説明する。

- 5 ブロックモードCBMは複数のセルが1つの機能ブロックを構成しているか否かを示し、機能ブロックを構成する各セルのセル再生情報は、連続的にPGC情報内に配置され、その先頭に配置されるセル再生情報のCBMには、“ブロックの先頭セル”を示す値、その後に配置されるセル再生情報のCBMには、“ブロックの最後のセル”を示す値、その間に配置されるセル再生情報のCBMには“ブロック内のセル”を示す値を示す。
- 10 セルブロックタイプGBTは、ブロックモードCBMで示したブロックの種類を示すものである。例えばマルチアングル機能を設定する場合には、各アングルの再生に対応するセル情報を、前述したような機能ブロックとして設定し、さらにそのブロックの種類として、各セルのセル再生情報のGBTに“アングル”を示す値を設定する。
- 15 シームレス再生フラグSPFは、該セルが前に再生されるセルまたはセルブロックとシームレスに接続して再生するか否かを示すフラグであり、前セルまたは前セルブロックとシームレスに接続して再生する場合には、該セルのセル再生情報のSPFにはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。
- 20 インターリープアロケーションフラグIAFは、該セルがインターリープ領域に配置されているか否かを示すフラグであり、インターリープ領域に配置されている場合には、該セルのインターリープアロケーションフラグIAFにはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。

STC再設定フラグSTCDFは、同期をとる際に使用するSTC (System Time Clock) をセルの再生時に再設定する必要があるかないかの情報であり、再設定が必要な場合にはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。

- 5 シームレスアングルチェンジフラグSACFは、該セルがアングル区間に属しあつ、シームレスに切替える場合、該セルのシームレスアングルチェンジフラグSACFにはフラグ値1を設定する。そうでない場合には、フラグ値0を設定する。

セル再生時間(C_PBTM)はセルの再生時間をビデオのフレーム数精度で示
10 している。

C_LVOBU_SAは、セル終端VOBU開始アドレスを示し、その値はVTSタイトル用VOBS(VTSTT_VOBS)の先頭セルの論理セクタからの距離をセクタ数で示している。C_FVOBU_SAはセル先頭VOBU開始アドレスを示し、V
15 TSタイトル用VOBS(VTSTT_VOBS)の先頭セルの論理セクタから距離をセクタ数で示している。

次に、VTSタイトル用VOBS、つまり、1マルチメディアシステムストリームデータVTSTT_VOBSについて説明する。システムストリームデータVTSTT_VOBSは、ビデオオブジェクトVOBと呼ばれるi個(iは自然数)のシステムストリームSSからなる。各ビデオオブジェクトVOB#1～VOB#iは、
20 少なくとも1つのビデオデータで構成され、場合によっては最大8つのオーディオデータ、最大32の副映像データまでがインターリープされて構成される。

各ビデオオブジェクトVOBは、q個(qは自然数)のセルC#1～C#qから成る。各セルCは、r個(rは自然数)のビデオオブジェクトユニットVOBU#1～VOBU#rから形成される。
25

各VOBUは、ビデオエンコードのリフレッシュ周期であるG O P (Group Of Picture) の複数個及び、それに相当する時間のオーディオおよびサブピクチャからなる。また、各VOBUの先頭には、該VOBUの管理情報であるナップラックNVを含む。ナップラックNVの構成については、図19を参照
5 して後述する。

図17に、ビデオゾーンVZ (図22) の内部構造を示す。同図に於いて、ビデオエンコードストリームS t 15は、ビデオエンコーダ300によってエンコードされた、圧縮された一次元のビデオデータ列である。オーディオエンコードストリームS t 19も、同様に、オーディオエンコーダ700によってエンコードされた、ステレオの左右の各データが圧縮、及び統合された一次元のオーディオデータ列である。また、オーディオデータとしてサラウンド等のマルチチャネルでもよい。

システムストリームS t 35は、図22で説明した、2048バイトの容量を有する論理セクタLS #nに相当するバイト数を有するパックが一次15 元に配列された構造を有している。システムストリームS t 35の先頭、つまりVOBUの先頭には、ナビゲーションパックNVと呼ばれる、システムストリーム内のデータ配列等の管理情報を記録した、ストリーム管理パックが配置される。

ビデオエンコードストリームS t 15及びオーディオエンコードストリームS t 19は、それぞれ、システムストリームのパックに対応するバイト数毎にパケット化される。これらパケットは、図中で、V1、V2、V3、V4、…、及びA1、A2、…と表現されている。これらパケットは、ビデオ、オーディオ各データ伸長用のデコーダの処理時間及びデコーダのバッファサイズを考慮して適切な順番に図中のシステムストリームS t 35

としてインターリープされ、パケットの配列をなす。例えば、本例ではV1、V2、A1、V3、V4、A2の順番に配列されている。

図17では、一つの動画像データと一つのオーディオデータがインターリープされた例を示している。しかし、DVDシステムに於いては、記録再生容量が大幅に拡大され、高速の記録再生が実現され、信号処理用LSIの性能向上が図られた結果、一つの動画像データに複数のオーディオデータや複数のグラフィックスデータである副映像データが、一つのMPEGシステムストリームとしてインターリープされた形態で記録され、再生時に複数のオーディオデータや複数の副映像データから選択的な再生を行うことが可能となる。図18に、このようなDVDシステムで利用されるシステムストリームの構造を表す。

図18に於いても、図17と同様に、パケット化されたビデオエンコードストリームS_t15は、V1、V2、V3、V4、・・・と表されている。但し、この例では、オーディオエンコードストリームS_t19は、一つではなく、S_t19A、S_t19B、及びS_t19Cと3列のオーディオデータ列がソースとして入力されている。更に、副画像データ列であるサブピクチャエンコードストリームS_t17も、S_t17A及びS_t17Bと二列のデータがソースとして入力されている。これら、合計6列の圧縮データ列が、一つのシステムストリームS_t35にインターリープされる。

ビデオデータはMPEG方式で符号化されており、GOPという単位が圧縮の単位になっており、GOP単位は、標準的にはNTSCの場合、15フレームで1GOPを構成するが、そのフレーム数は可変になっている。インターリープされたデータ相互の関連などの情報をもつ管理用のデータを表すストリーム管理パックも、ビデオデータを基準とするGOPを単位とする間隔で、インターリープされる事になり、GOPを構成するフレーム数が変

われば、その間隔も変動する事になる。DVDでは、その間隔を再生時間長で、0.4秒から1.0秒の範囲内として、その境界はGOP単位としている。もし、連続する複数のGOPの再生時間が1秒以下であれば、その複数GOPのビデオデータに対して、管理用のデータパックが1つのストリーム
5 中にインターリープされる事になる。

DVDではこのような、管理用データパックをナップパックNVと呼び、このナップパックNVから、次のナップパックNV直前のパックまでをビデオオブジェクトユニット(以下VOBUと呼ぶ)と呼び、一般的に1つのシーンと定義できる1つの連続した再生単位をビデオオブジェクトと呼び(以下VO
10 Bと呼ぶ)、1つ以上のVOBUから構成される事になる。また、VOBが複数集まつたデータの集合をVOBセット(以下VOBSと呼ぶ)と呼ぶ。これらは、DVDに於いて初めて採用されたデータ形式である。

このように複数のデータ列がインターリープされる場合、インターリープされたデータ相互の関連を示す管理用のデータを表すナビゲーションパック
15 NVも、所定のパック数単位と呼ばれる単位でインターリープされる必要がある。GOPは、通常12から15フレームの再生時間に相当する約0.5秒のビデオデータをまとめた単位であり、この時間の再生に要するデータパケット数に一つのストリーム管理パケットがインターリープされると考えられる。

20 図19は、システムストリームを構成する、インターリープされたビデオデータ、オーディオデータ、副映像データのパックに含まれるストリーム管理情報を示す説明図である。同図のようにシステムストリーム中の各データは、MPEG2に準拠するパケット化およびパック化された形式で記録される。ビデオ、オーディオ、及び副画像データ共、パケットの構造は、基本的には同じである。DVDシステムに於いては、1パックは、前述の如く20
25

48バイトの容量を有し、PESパケットと呼ばれる1パケットを含み、パックヘッダPKH、パケットヘッダPTH、及びデータ領域から成る。

パックヘッダPKH中には、そのパックが図26におけるストリームバッファ2400からシステムデコーダ2500に転送されるべき時刻、つまり

- 5 AV同期再生のための基準時刻情報、を示すSCRが記録されている。MPEGに於いては、このSCRをデコーダ全体の基準クロックとすること、を想定しているが、DVDなどのディスクメディアの場合には、個々のプレーヤに於いて閉じた時刻管理で良い為、別途にデコーダ全体の時刻の基準となるクロックを設けている。また、パケットヘッダPTH中には、そのパケット
10 に含まれるビデオデータ或はオーディオデータがデコードされた後に再生出力として出力されるべき時刻を示すPTSや、ビデオストリームがデコードされるべき時刻を示すDTSなどが記録されているPTSおよびDTSは、パケット内にデコード単位であるアクセスユニットの先頭がある場合
15 に置かれ、PTSはアクセスユニットの表示開始時刻を示し、DTSはアクセスユニットのデコード開始時刻を示している。また、PTSとDTSが同時刻の場合、DTSは省略される。

更に、パケットヘッダPTHには、ビデオデータ列を表すビデオパケットであるか、プライベートパケットであるか、MPEGオーディオパケットであるかを示す8ビット長のフィールドであるストリームIDが含まれている。

ここで、プライベートパケットとは、MPEG2の規格上その内容を自由に定義してよいデータであり、本実施形態では、プライベートパケット1を使用してオーディオデータ(MPEGオーディオ以外)および副映像データを搬送し、プライベートパケット2を使用してPCIパケットおよびDSI
25 パケットを搬送している。

プライベートパケット1およびプライベートパケット2はパケットヘッダ、プライベートデータ領域およびデータ領域からなる。プライベートデータ領域には、記録されているデータがオーディオデータであるか副映像データであるかを示す、8ビット長のフィールドを有するサブストリームIDが含まれる。プライベートパケット2で定義されるオーディオデータは、リニアPCM方式、AC-3方式それぞれについて#0～#7まで最大8種類が設定可能である。また副映像データは、#0～#31までの最大32種類が設定可能である。

データ領域は、ビデオデータの場合はMPEG2形式の圧縮データ、オーディオデータの場合はリニアPCM方式、AC-3方式又はMPEG方式のデータ、副映像データの場合はランレンジングス符号化により圧縮されたグラフィックスデータなどが記録されるフィールドである。

また、MPEG2ビデオデータは、その圧縮方法として、固定ビットレート方式(以下「CBR」とも記す)と可変ビットレート方式(以下「VBR」とも記す)が存在する。固定ビットレート方式とは、ビデオストリームが一定レートで連続してビデオバッファへ入力される方式である。これに対して、可変ビットレート方式とは、ビデオストリームが間欠して(断続的に)ビデオバッファへ入力される方式であり、これにより不要な符号量の発生を抑えることが可能である。DVDでは、固定ビットレート方式および可変ビットレート方式とも使用が可能である。MPEGでは、動画像データは、可変長符号化方式で圧縮されるために、GOPのデータ量が一定でない。さらに、動画像とオーディオのデコード時間が異なり、光ディスクから読み出した動画像データとオーディオデータの時間関係とデコーダから出力される動画像データとオーディオデータの時間関係が一致しなくなる。このため、動画像とオーディオの時間的な同期をとる方法を、図26を参照して、

後程、詳述するが、一先ず、簡便のため固定ビットレート方式を基に説明をする。

図20に、ナップラックNVの構造を示す。ナップラックNVは、PCIパケットとDSIパケットからなり、先頭にパックヘッダPKHを設けている。

- 5 PKHには、前述したとおり、そのパックが図26におけるストリームバッファ2400からシステムデコーダ2500に転送されるべき時刻、つまりAV同期再生のための基準時刻情報、を示すSCRが記録されている。

PCIパケットは、PCI情報：(PCI_GI)と非シームレスマルチアングル情報(NSML_AGLI)を有している。

- 10 PCI情報(PCI_GI)には、該VOBUに含まれるビデオデータの先頭ビデオフレーム表示時刻(VOBU_S_PTm)及び最終ビデオフレーム表示時刻(VOBU_E_PTm)をシステムクロック精度(90KHz)で記述する。

- 15 非シームレスマルチアングル情報(NSML_AGLI)には、アングルを切り替えた場合の読み出し開始アドレスをVOB先頭からのセクタ数として記述する。この場合、アングル数は9以下であるため、領域として9アングル分のアドレス記述領域(NSML_AGL_C1_DSTA~NSML_AGL_C9_DSTA)を有す。

DSIパケットにはDSI情報(DSI_GI)、シームレス再生情報(SML_PBI)およびシームレスマルチアングル再生情報(SML_AGLI)を有している。

- 20 DSI情報(DSI_GI)として該VOBU内の最終パックアドレス(VOBU_EA)をVOBU先頭からのセクタ数として記述する。

- シームレス再生に関しては後述するが、分岐あるいは結合するタイトルをシームレスに再生するために、連続読み出し単位をILVUとして、システムストリームレベルでインターリーブ(多重化)する必要がある。複数のシステムストリームがILVUを最小単位としてインターリーブ処理されて25いる区間をインターリーブブロックと定義する。

このように ILVU を最小単位としてインターリープされたストリームをシームレスに再生するために、シームレス再生情報 (SML_PBI) を記述する。シームレス再生情報 (SML_PBI) には、該 VOBU がインターリープロックかどうかを示すインターリープユニットフラグ (ILVU flag) を記述する。このフラグはインターリープ領域に（後述）に存在するかを示すものであり、インターリープ領域に存在する場合 "1" を設定する。そうでない場合には、フラグ値 0 を設定する。

また、該 VOBU がインターリープ領域に存在する場合、該 VOBU が ILVU の最終 VOBU かを示すユニットエンドフラグ (UNIT END Flag) を記述する。ILVU は、連続読み出し単位であるので、現在読み出している VOBU が、ILVU の最後の VOBU であれば "1" を設定する。そうでない場合には、フラグ値 0 を設定する。

該 VOBU がインターリープ領域に存在する場合、該 VOBU が属する ILVU の最終パックのアドレスを示す ILVU 最終パックアドレス (ILVU_EA) を記述する。ここでアドレスとして、該 VOBU の NV からのセクタ数で記述する。

また、該 VOBU がインターリープ領域に存在する場合、次の ILVU の開始アドレス (NT_ILVU_SA) を記述する。ここでアドレスとして、該 VOBU の NV からのセクタ数で記述する。

また、2つのシステムストリームをシームレスに接続する場合に於いて、特に接続前と接続後のオーディオが連続していない場合（異なるオーディオの場合等）、接続後のビデオとオーディオの同期をとるためにオーディオを一時停止（ポーズ）する必要がある。例えば、NTSC の場合、ビデオのフレーム周期は約 33.33msec であり、オーディオ AC 3 のフレーム周期は 32msec である。

このためにオーディオを停止する時間および期間情報を示すオーディオ
再生停止時刻1 (VOBU_A_STP_PTMI) 、オーディオ再生停止時刻2
(VOBU_A_STP_PTM2) 、オーディオ再生停止期間1 (VOB_A_GAP_LEN1) 、オー
ディオ再生停止期間2 (VOB_A_GAP_LEN2) を記述する。この時間情報はシス
5 テムクロック精度 (90 KHz) で記述される。

また、シームレスマルチアングル再生情報 (SML_AGLI) として、アングル
を切り替えた場合の読み出し開始アドレスを記述する。このフィールドはシ
ームレスマルチアングルの場合に有効なフィールドである。このアドレスは
該VOBUのNVからのセクタ数で記述される。また、アングル数は9以下
10 であるため、領域として9アングル分のアドレス記述領域：
(SML_AGL_C1_DSTA ~ SML_AGL_C9_DSTA) を有す。

DVDエンコーダ

図25に、本発明に掛かるマルチメディアビットストリームオーサリング
システムを上述のDVDシステムに適用した場合の、オーサリングエンコー
15 ダECDの一実施形態を示す。DVDシステムに適用したオーサリングエン
コーダECD (以降、DVDエンコーダと呼称する) は、図2に示したオー
サリングエンコーダECに、非常に類似した構成になっている。DVDオー
サリングエンコーダECDは、基本的には、オーサリングエンコーダECの
ビデオゾーンフォーマッタ1300が、VOBバッファ1000とフォーマ
20 ッタ1100にとって変わられた構造を有している。言うまでもなく、本發
明のエンコーダによってエンコードされたビットストリームは、DVD媒体
Mに記録される。以下に、DVDオーサリングエンコーダECDの動作をオ
ーサリングエンコーダECと比較しながら説明する。

DVDオーサリングエンコーダECDに於いても、オーサリングエンコー
25 ダECと同様に、編集情報作成部100から入力されたユーザーの編集指示

- 内容を表すシナリオデータ S t 7に基づいて、エンコードシステム制御部 200が、各制御信号 S t 9、S t 11、S t 13、S t 21、S t 23、S t 25、S t 33、及び S t 39を生成して、ビデオエンコーダ 300、サブピクチャエンコーダ 500、及びオーディオエンコーダ 700を制御する。尚、DVDシステムに於ける編集指示内容とは、図 25 を参照して説明したオーサリングシステムに於ける編集指示内容と同様に、複数のタイトル内容を含む各ソースデータの全部或いは、其々に対して、所定時間毎に各ソースデータの内容を一つ以上選択し、それらの選択された内容を、所定の方法で接続再生するような情報を含むと共に、更に、以下の情報を含む。
- つまり、マルチタイトルソースストリームを、所定時間単位毎に分割した編集単位に含まれるストリーム数、各ストリーム内のオーディオ数やサブピクチャ数及びその表示期間等のデータ、パレンタルあるいはマルチアングルなど複数ストリームから選択するか否か、設定されたマルチアングル区間でのシーン間の切り替え接続方法などの情報を含む。
- 尚、DVDシステムに於いては、シナリオデータ S t 7には、メディアソースストリームをエンコードするために必要な、VOB 単位での制御内容、つまり、マルチアングルであるかどうか、パレンタル制御を可能とするマルチレイティッドタイトルの生成であるか、後述するマルチアングルやパレンタル制御の場合のインターリープとディスク容量を考慮した各ストリームのエンコード時のビットレート、各制御の開始時間と終了時間、前後のストリームとシームレス接続するか否かの内容が含まれる。エンコードシステム制御部 200は、シナリオデータ S t 7から情報を抽出して、エンコード制御に必要な、エンコード情報テーブル及びエンコードパラメータを生成する。エンコード情報テーブル及びエンコードパラメータについては、後程、図 27、図 28、及び図 29を参照して詳述する。

- システムストリームエンコードパラメータデータ及びシステムエンコード開始終了タイミングの信号S_t33には上述の情報をDVDシステムに適用してVOB生成情報を含む。VOB生成情報として、前後の接続条件、オーディオ数、オーディオのエンコード情報、オーディオID、サブピクチャ数、サブピクチャID、ビデオ表示を開始する時刻情報(VPTS)、オーディオ再生を開始する時刻情報(APTS)等がある。更に、マルチメディア尾ビットストリームMBSのフォーマットパラメータデータ及びフォーマット開始終了タイミングの信号S_t39は、再生制御情報及びインターリープ情報を含む。
- 10 ビデオエンコーダ300は、ビデオエンコードのためのエンコードパラメータ信号及びエンコード開始終了タイミングの信号S_t9に基づいて、ビデオストリームS_t1の所定の部分をエンコードして、ISO13818に規定されるMPEG2ビデオ規格に準ずるエレメンタリーストリームを生成する。そして、このエレメンタリーストリームをビデオエンコードストリームS_t15として、ビデオストリームバッファ400に出力する。
- ここで、ビデオエンコーダ300に於いてISO13818に規定されるMPEG2ビデオ規格に準ずるエレメンタリーストリームを生成するが、ビデオエンコードパラメータデータを含む信号S_t9に基に、エンコードパラメータとして、エンコード開始終了タイミング、ビットレート、エンコード開始終了時にエンコード条件、素材の種類として、NTSC信号またはPAL信号あるいはテレシネ素材であるかなどのパラメータ及びオープンGOP或いはクローズドGOPのエンコードモードの設定がエンコードパラメータとしてそれぞれ入力される。
- 25 MPEG2の符号化方式は、基本的にフレーム間の相関を利用する符号化である。つまり、符号化対象フレームの前後のフレームを参照して符号化を

行う。しかし、エラー伝播およびストリーム途中からのアクセス性の面で、他のフレームを参照しない（イントラフレーム）フレームを挿入する。このイントラフレームを少なくとも1フレームを有する符号化処理単位をGOPと呼ぶ。

- 5 このGOPに於いて、完全に該GOP内で符号化が閉じているGOPがクローズドGOPであり、前のGOP内のフレームを参照するフレームが該GOP内に存在する場合、該GOPをオープンGOPと呼ぶ。

従つて、クローズドGOPを再生する場合は、該GOPのみで再生できるが、オープンGOPを再生する場合は、一般的に1つ前のGOPが必要である。

10 また、GOPの単位は、アクセス単位として使用する場合が多い。例えば、タイトルの途中からの再生する場合の再生開始点、映像の切り替わり点、あるいは早送りなどの特殊再生時には、GOP内のフレーム内符号化フレームであるいフレームのみをGOP単位で再生する事により、高速再生を実現する。

15 サブピクチャエンコーダ500は、サブピクチャストリームエンコード信号S_t11に基づいて、サブピクチャストリームS_t3の所定の部分をエンコードして、ビットマップデータの可変長符号化データを生成する。そして、この可変長符号化データをサブピクチャエンコードストリームS_t17として、サブピクチャストリームバッファ600に出力する。

20 オーディオエンコーダ700は、オーディオエンコード信号S_t13に基づいて、オーディオストリームS_t5の所定の部分をエンコードして、オーディオエンコードデータを生成する。このオーディオエンコードデータとしては、ISO11172に規定されるMPEG1オーディオ規格及びISO13818に規定されるMPEG2オーディオ規格に基づくデータ、また、

AC-3オーディオデータ、及びPCM (LPCM) データ等がある。これらのオーディオデータをエンコードする方法及び装置は公知である。

ビデオストリームバッファ400は、ビデオエンコーダ300に接続されており、ビデオエンコーダ300から出力されるビデオエンコードストリームS_t15を保存する。ビデオストリームバッファ400は更に、エンコードシステム制御部200に接続されて、タイミング信号S_t21の入力に基づいて、保存しているビデオエンコードストリームS_t15を、調時ビデオエンコードストリームS_t27として出力する。

同様に、サブピクチャストリームバッファ600は、サブピクチャエンコーダ500に接続されており、サブピクチャエンコーダ500から出力されるサブピクチャエンコードストリームS_t17を保存する。サブピクチャストリームバッファ600は更に、エンコードシステム制御部200に接続されて、タイミング信号S_t23の入力に基づいて、保存しているサブピクチャエンコードストリームS_t17を、調時サブピクチャエンコードストリームS_t29として出力する。

また、オーディオストリームバッファ800は、オーディオエンコーダ700に接続されており、オーディオエンコーダ700から出力されるオーディオエンコードストリームS_t19を保存する。オーディオストリームバッファ800は更に、エンコードシステム制御部200に接続されて、タイミング信号S_t25の入力に基づいて、保存しているオーディオエンコードストリームS_t19を、調時オーディオエンコードストリームS_t31として出力する。

システムエンコーダ900は、ビデオストリームバッファ400、サブピクチャストリームバッファ600、及びオーディオストリームバッファ800に接続されており、調時ビデオエンコードストリームS_t27、調時サブ

ピクチャエンコードストリームS t 29、及び調時オーディオエンコードS t 31が入力される。システムエンコーダ900は、またエンコードシステム制御部200に接続されており、システムエンコードのためのエンコードパラメータデータを含むS t 33が入力される。

- 5 システムエンコーダ900は、エンコードパラメータデータ及びエンコード開始終了タイミング信号S t 33に基づいて、各調時ストリームS t 2
7、S t 29、及びS t 31に多重化（マルチプレクス）処理を施して、最
小タイトル編集単位（VOBs）S t 35を生成する。

VOBバッファ1000はシステムエンコーダ900に於いて生成され
10 たVOBを一時格納するバッファ領域であり、フォーマッタ1100では、
S t 39に従ってVOBバッファ1100から調時必要なVOBを読み出
し1ビデオゾーンVZを生成する。また、同フォーマッタ1100に於いて
はファイルシステム（VFS）を付加してS t 43を生成する。

このユーザの要望シナリオの内容に編集された、ストリームS t 43は、
15 記録部1200に転送される。記録部1200は、編集マルチメディアビット
ストリームMB Sを記録媒体Mに応じた形式のデータS t 43に加工し
て、記録媒体Mに記録する。

DVDデコーダ

次に、図26を参照して、本発明に掛かるマルチメディアビットストリー
20 ムオーサリングシステムを上述のDVDシステムに適用した場合の、オーサ
リングデコーダDCの一実施形態を示す。DVDシステムに適用したオーサ
リングエンコーダDCD（以降、DVDデコーダと呼称する）は、本発明に
かかるDVDエンコーダECDによって、編集されたマルチメディアビット
ストリームMB Sをデコードして、ユーザの要望のシナリオに沿って各タイ
25 トルの内容を展開する。なお、本実施形態に於いては、DVDエンコーダE

CDによってエンコードされたマルチメディアビットストリームS t 45
は、記録媒体Mに記録されている。DVDオーサリングデコーダDCDの基
本的な構成は図3に示すオーサリングデコーダDCと同一であり、ビデオデ
コーダ3800がビデオデコーダ3801に替わると共に、ビデオデコーダ
5 3801と合成部3500の間にリオーダバッファ3300と切替器34
00が挿入されている。なお、切替器3400は同期制御部2900に接続
されて、切替指示信号S t 103の入力を受けている。

DVDオーサリングデコーダDCDは、マルチメディアビットストリーム
再生部2000、シナリオ選択部2100、デコードシステム制御部230
10 0、ストリームバッファ2400、システムデコーダ2500、ビデオバッ
ファ2600、サブピクチャバッファ2700、オーディオバッファ280
0、同期制御部2900、ビデオデコーダ3801、リオーダバッファ33
00、サブピクチャデコーダ3100、オーディオデコーダ3200、セレ
クタ3400、合成部3500、ビデオデータ出力端子3600、及びオ
15 ディオデータ出力端子3700から構成されている。

マルチメディアビットストリーム再生部2000は、記録媒体Mを駆動さ
せる記録媒体駆動ユニット2004、記録媒体Mに記録されている情報を読
み取り二値の読み取り信号S t 57を生成する読み取りヘッドユニット200
6、読み取り信号S T 57に種々の処理を施して再生ビットストリームS t
20 61を生成する信号処理部2008、及び機構制御部2002から構成され
る。機構制御部2002は、デコードシステム制御部2300に接続され
て、マルチメディアビットストリーム再生指示信号S t 53を受けて、それ
ぞれ記録媒体駆動ユニット（モータ）2004及び信号処理部2008をそ
れぞれ制御する再生制御信号S t 55及びS t 59を生成する。

デコーダDCは、オーサリングエンコーダECで編集されたマルチメディアタイトルの映像、サブピクチャ、及び音声に関する、ユーザの所望の部分が再生されるように、対応するシナリオを選択して再生するように、オーサリングデコーダDCに指示を与えるシナリオデータとして出力できるシナリオ選択部2100を備えている。

シナリオ選択部2100は、好ましくは、キーボード及びCPU等で構成される。ユーザーは、オーサリングエンコーダECで入力されたシナリオの内容に基づいて、所望のシナリオをキーボード部を操作して入力する。CPUは、キーボード入力に基づいて、選択されたシナリオを指示するシナリオ選択データSt51を生成する。シナリオ選択部2100は、例えば、赤外線通信装置等によって、デコードシステム制御部2300に接続されて、生成したシナリオ選択信号St51をデコードシステム制御部2300に入力する。

ストリームバッファ2400は所定のバッファ容量を有し、マルチメディアビットストリーム再生部2000から入力される再生信号ビットストリームSt61を一時的に保存すると共に、ボリュームファイルストラクチャVFS、各パックに存在する同期初期値データ(SOR)、及びナップパックNV存在するVOBU制御情報(DSI)を抽出してストリーム制御データSt63を生成する。

デコードシステム制御部2300は、デコードシステム制御部2300で生成されたシナリオ選択データSt51に基づいてマルチメディアビットストリーム再生部2000の動作を制御する再生指示信号St53を生成する。デコードシステム制御部2300は、更に、シナリオデータSt53からユーザの再生指示情報を抽出して、デコード制御に必要な、デコード情報テーブルを生成する。デコード情報テーブルについては、後程、図54、

及び図55を参照して詳述する。更に、デコードシステム制御部2300は、ストリーム再生データS_t63中のファイルデータ領域FDS情報から、ビデオマネージャVMG、VTS情報VTSI、PGC情報C_PBI#j、セル再生時間(C_PBTM)等の光ディスクMに記録されたタイトル情報を抽出してタイトル情報S_t200を生成する。

ここで、ストリーム制御データS_t63は図19におけるパック単位に生成される。ストリームバッファ2400は、デコードシステム制御部2300に接続されており、生成したストリーム制御データS_t63をデコードシステム制御部2300に供給する。

同期制御部2900は、デコードシステム制御部2300に接続されて、同期再生データS_t81に含まれる同期初期値データ(SCR)を受け取り、内部のシステムクロック(STC)セットし、リセットされたシステムクロックS_t79をデコードシステム制御部2300に供給する。

デコードシステム制御部2300は、システムクロックS_t79に基づいて、所定の間隔でストリーム読み出し信号S_t65を生成し、ストリームバッファ2400に入力する。この場合の読み出し単位はパックである。

ここでストリーム読み出し信号S_t65の生成方法について説明する。デコードシステム制御部2300では、ストリームバッファ2400から抽出したストリーム制御データ中のSCRと、同期制御部2900からのシステムクロックS_t79を比較し、S_t63中のSCRよりもシステムクロックS_t79が大きくなった時点で読み出し要求信号S_t65を生成する。このような制御をパック単位に行うことで、パック転送を制御する。

デコードシステム制御部2300は、更に、シナリオ選択データS_t51に基づき、選択されたシナリオに対応するビデオ、サブピクチャ、オーディ

オの各ストリームの ID を示すデコードストリーム指示信号 S_t69 を生成して、システムデコーダ 2500 に出力する。

5 タイトル中に、例えば日本語、英語、フランス語等、言語別のオーディオ等の複数のオーディオデータ、及び、日本語字幕、英語字幕、フランス語字幕等、言語別の字幕等の複数のサブピクチャデータが存在する場合、それぞれに ID が付与されている。つまり、図 19 を参照して説明したように、ビデオデータ及び、MPEG オーディオデータには、ストリーム ID が付与され、サブピクチャデータ、AC3 方式のオーディオデータ、リニア PCM 及びナップパック NV 情報には、サブストリーム ID が付与されている。ユーザ 10 は ID を意識することはないが、どの言語のオーディオあるいは字幕を選択するかをシナリオ選択部 2100 で選択する。英語のオーディオを選択すれば、シナリオ選択データ S_t51 として英語のオーディオに対応する ID が 15 デコードシステム制御部 2300 に搬送される。さらに、デコードシステム制御部 2300 はシステムデコーダ 2500 にその ID を S_t69 上に搬送して渡す。

システムデコーダ 2500 は、ストリームバッファ 2400 から入力されてくるビデオ、サブピクチャ、及びオーディオのストリームを、デコード指示信号 S_t69 の指示に基づいて、それぞれ、ビデオエンコードストリーム S_t71 としてビデオバッファ 2600 に、サブピクチャエンコードストリーム S_t73 としてサブピクチャバッファ 2700 に、及びオーディオエンコードストリーム S_t75 としてオーディオバッファ 2800 に出力する。つまり、システムデコーダ 2500 は、シナリオ選択部 2100 より入力される、ストリームの ID と、ストリームバッファ 2400 から転送されるパックの ID が一致した場合にそれぞれのバッファ（ビデオバッファ 260

0、サブピクチャバッファ 2700、オーディオバッファ 2800) に該パックを転送する。

システムデコーダ 2500は、各ストリーム S_t 67 の各最小制御単位での再生開始時間 (PTS) 及び再生終了時間 (DTS) を検出し、時間情報信号 S_t 77 を生成する。この時間情報信号 S_t 77 は、デコードシステム制御部 2300 を経由して、S_t 81 として同期制御部 2900 に入力される。

同期制御部 2900 は、この時間情報信号 S_t 81 に基づいて、各ストリームについて、それぞれがデコード後に所定の順番になるようなデコード開始タイミングを決定する。同期制御部 2900 は、このデコードタイミングに基づいて、ビデオストリームデコード開始信号 S_t 89 を生成し、ビデオデコーダ 3801 に入力する。同様に、同期制御部 2900 は、サブピクチャデコード開始信号 S_t 91 及びオーディオエンコード開始信号 S_t 93 を生成し、サブピクチャデコーダ 3100 及びオーディオデコーダ 3200 にそれぞれ入力する。

ビデオデコーダ 3801 は、ビデオストリームデコード開始信号 S_t 89 に基づいて、ビデオ出力要求信号 S_t 84 を生成して、ビデオバッファ 2600 に対して出力する。ビデオバッファ 2600 はビデオ出力要求信号 S_t 84 を受けて、ビデオストリーム S_t 83 をビデオデコーダ 3801 に出力する。ビデオデコーダ 3801 は、ビデオストリーム S_t 83 に含まれる再生時間情報を検出し、再生時間に相当する量のビデオストリーム S_t 83 の入力を受けた時点で、ビデオ出力要求信号 S_t 84 を無効にする。このようにして、所定再生時間に相当するビデオストリームがビデオデコーダ 3801 でデコードされて、再生されたビデオ信号 S_t 95 がリオーダーバッファ 3300 と切替器 3400 に出力される。

ビデオエンコードストリームは、フレーム間相関を利用した符号化であるため、フレーム単位でみた場合、表示順と符号化ストリーム順が一致していない。従って、デコード順に表示できるわけではない。そのため、デコードを終了したフレームを一時リオーダバッファ 3300 に格納する。同期制御部 2900 に於いて表示順になるように St 103 を制御しビデオデコーダ 3801 の出力 St 95 と、リオーダバッファ St 97 の出力を切り替え、合成部 3500 に出力する。

同様に、サブピクチャデコーダ 3100 は、サブピクチャデコード開始信号 St 91 に基づいて、サブピクチャ出力要求信号 St 86 を生成し、サブピクチャバッファ 2700 に供給する。サブピクチャバッファ 2700 は、ビデオ出力要求信号 St 84 を受けて、サブピクチャストリーム St 85 をサブピクチャデコーダ 3100 に出力する。サブピクチャデコーダ 3100 は、サブピクチャストリーム St 85 に含まれる再生時間情報に基づいて、所定の再生時間に相当する量のサブピクチャストリーム St 85 をデコードして、サブピクチャ信号 St 99 を再生して、合成部 3500 に出力する。

合成部 3500 は、セレクタ 3400 の出力及びサブピクチャ信号 St 99 を重畠させて、映像信号 St 105 を生成し、ビデオ出力端子 3600 に出力する。

オーディオデコーダ 3200 は、オーディオデコード開始信号 St 93 に基づいて、オーディオ出力要求信号 St 88 を生成し、オーディオバッファ 2800 に供給する。オーディオバッファ 2800 は、オーディオ出力要求信号 St 88 を受けて、オーディオストリーム St 87 をオーディオデコーダ 3200 に出力する。オーディオデコーダ 3200 は、オーディオストリーム St 87 に含まれる再生時間情報に基づいて、所定の再生時間に相当す

る量のオーディオストリームS_t87をデコードして、オーディオ出力端子3700に出力する。

このようにして、ユーザのシナリオ選択に応答して、リアルタイムにユーザの要望するマルチメディアビットストリームMBSを再生する事ができる。
5 つまり、ユーザが異なるシナリオを選択する度に、オーサリングデコーダDCDはその選択されたシナリオに対応するマルチメディアビットストリームMBSを再生することによって、ユーザの要望するタイトル内容を再生することができる。

尚、デコードシステム制御部2300は、前述の赤外線通信装置等を経由
10 して、シナリオ選択部2100にタイトル情報信号S_t200を供給してもよい。シナリオ選択部2100は、タイトル情報信号S_t200に含まれるストリーム再生データS_t63中のファイルデータ領域FDS情報から、光ディスクMIに記録されたタイトル情報を抽出して、内蔵ディスプレイに表示することにより、インタラクティブなユーザによるシナリオ選択を可能とする。
15

また、上述の例では、ストリームバッファ2400、ビデオバッファ2600、サブピクチャバッファ2700、及びオーディオバッファ2800、及びリオーダバッファ3300は、機能的に異なるので、それぞれ別のバッファとして表されている。しかし、これらのバッファに於いて要求される読み込み及び読み出し速度の数倍の動作速度を有するバッファメモリを時分割で使用することにより、一つのバッファメモリをこれら個別のバッファとして機能させることができる。

マルチシーン

図21を用いて、本発明に於けるマルチシーン制御の概念を説明する。既
25 に、上述したように、各タイトル間での共通のデータからなる基本シーン区

間と、其々の要求に即した異なるシーン群からなるマルチシーン区間とで構成される。同図に於いて、シーン1、シーン5、及びシーン8が共通シーンである。共通シーン1とシーン5の間のアングルシーン及び、共通シーン5とシーン8の間のパレンタルシーンがマルチシーン区間である。マルチアン
5 グル区間に於いては、異なるアングル、つまりアングル1、アングル2、及びアングル3、から撮影されたシーンの何れかを、再生中に動的に選択再生できる。パレンタル区間に於いては、異なる内容のデータに対応するシーン6及びシーン7の何れかをあらかじめ静的に選択再生できる。

このようなマルチシーン区間のどのシーンを選択して再生するかという
10 シナリオ内容を、ユーザはシナリオ選択部2100にて入力してシナリオ選択データS:t51として生成する。図中に於いて、シナリオ1では、任意のアングルシーンを自由に選択し、パレンタル区間では予め選択したシーン6を再生することを表している。同様に、シナリオ2では、アングル区間では、自由にシーンを選択でき、パレンタル区間では、シーン7が予め選択されて
15 いることを表している。

以下に、図21で示したマルチシーンをDVDのデータ構造を用いた場合の、PGC情報VTS_PCCIについて、図30、及び図31を参照して説明する。

図30には、図21に示したユーザ指示のシナリオを図16のDVDデータ構造内のビデオタイトルセットの内部構造を表すVTS_Iデータ構造
20 で記述した場合について示す。図において、図21のシナリオ1、シナリオ2は、図16のVTS_I中のプログラムチェーン情報VTS_PGCIT内の2つプログラムチェーンVTS_PCCI#1とVTS_PCCI#2として記述される。すなわち、シナリオ1を記述するVTS_PCCI#1は、シーン1に相当するセル再生情報C_PBI#1、マルチアングルシーンに相当するマルチアングルセルブ
25 ロック内のセル再生情報C_PBI#2、セル再生情報C_PBI#3、セ

ル再生情報C_PB_I # 4、シーン5に相当するセル再生情報C_PB_I # 5、シーン6に相当するセル再生情報C_PB_I # 6、シーン8に相当するC_PB_I # 7からなる。

また、シナリオ2を記述するVTS_PGC#2は、シーン1に相当するセル再生情報C_PB_I # 1、マルチアングルシーンに相当するマルチアングルセルブロック内のセル再生情報C_PB_I # 2、セル再生情報C_PB_I # 3、セル再生情報C_PB_I # 4、シーン5に相当するセル再生情報C_PB_I # 5、シーン7に相当するセル再生情報C_PB_I # 6、シーン8に相当するC_PB_I # 7からなる。DVDデータ構造では、シナリオの1つの再生制御の単位であるシーンをセルというDVDデータ構造上の単位に置き換えて記述し、ユーザの指示するシナリオをDVD上で実現している。

図31には、図21に示したユーザ指示のシナリオを図16のDVDデータ構造内のビデオタイトルセット用のマルチメディアビットストリームであるVOBデータ構造VTS_TT_VOB_Sで記述した場合について示す。

図において、図21のシナリオ1とシナリオ2の2つのシナリオは、1つのタイトル用VOBデータを共通に使用する事になる。各シナリオで共有する単独のシーンはシーン1に相当するVOB # 1、シーン5に相当するVOB # 5、シーン8に相当するVOB # 8は、単独のVOBとして、インターリーブブロックではない部分、すなわち連続ブロックに配置される。

シナリオ1とシナリオ2で共有するマルチアングルシーンにおいて、それぞれアングル1はVOB # 2、アングル2はVOB # 3、アングル3はVOB # 4で構成、つまり1アングルを1VOBで構成し、さらに各アングル間の切り替えと各アングルのシームレス再生のために、インターリーブブロックとする。

また、シナリオ1とシナリオ2で固有なシーンであるシーン6とシーン7は、各シーンのシームレス再生はもちろんの事、前後の共通シーンとシームレスに接続再生するために、インターリープブロックとする。

以上のように、図21で示したユーザ指示のシナリオは、DVDデータ構造において、図30に示すビデオタイトルセットの再生制御情報と図31に示すタイトル再生用VOBデータ構造で実現できる。
5

シームレス

上述のDVDシステムのデータ構造に関連して述べたシームレス再生について説明する。シームレス再生とは、共通シーン区間同士で、共通シーン区間とマルチシーン区間とで、及びマルチシーン区間同士で、映像、音声、副映像等のマルチメディアデータを、接続して再生する際に、各データ及び情報を中断する事無く再生することである。このデータ及び情報再生の中止の要因としては、ハードウェアに関連するものとして、デコーダに於いて、ソースデータ入力される速度と、入力されたソースデータをデコードする速度のバランスがくずれる、いわゆるデコーダのアンダーフローと呼ばれるものがある。
10
15

更に、再生されるデータの特質に関するものとして、再生データが音声のように、その内容或いは情報をユーザが理解する為には、一定時間単位以上の連続再生を要求されるデータの再生に関して、その要求される連続再生時間確保出来ない場合に情報の連續性が失われるものがある。このような情報の連續性を確保して再生する事を連続情報再生と、更にシームレス情報再生と呼ぶ。また、情報の連續性を確保出来ない再生を非連続情報再生と呼び、更に非シームレス情報再生と呼ぶ。尚、言うまでまでもなく連続情報再生と非連続情報再生は、それぞれシームレス及び非シームレス再生である。
20

上述の如く、シームレス再生には、バッファのアンダーフロー等によって物理的にデータ再生に空白あるいは中断の発生を防ぐシームレスデータ再生と、データ再生自体には中断は無いものの、ユーザーが再生データから情報を認識する際に情報の中断を感じるのを防ぐシームレス情報再生と定義

5 する。

シームレスの詳細

なお、このようにシームレス再生を可能にする具体的な方法については、図23及び図24参照して後で詳しく説明する。

インターリープ

10 上述のDVDデータのシステムストリームをオーサリングエンコーダE
Cを用いて、DVD媒体上の映画のようなタイトルを記録する。しかし、同一の映画を複数の異なる文化圏或いは国に於いても利用できるような形態で提供するには、台詞を各国の言語毎に記録するのは当然として、さらに各文化圏の倫理的・政治的要求に応じて内容を編集して記録する必要がある。このよう
15 な場合、元のタイトルから編集された複数のタイトルを1枚の媒体に記録するには、DVDという大容量システムに於いてさえも、ビットレートを落とさなければならず、高画質という要求が満たせなくなってしまう。そこで、共通部分を複数のタイトルで共有し、異なる部分のみをそれぞれのタイトル毎に記録するという方法をとる。これにより、ビットレートをおとさず、1
20 枚の光ディスクに、国別あるいは文化圏別の複数のタイトルを記録する事ができる。

1枚の光ディスクに記録されるタイトルは、図21に示したように、パレンタルロック制御やマルチアングル制御を可能にするために、共通部分（シーン）と非共通部分（シーン）のを有するマルチシーン区間を有する。

パレンタルロック制御の場合は、一つのタイトル中に、性的シーン、暴力的シーン等の子供に相応しくない所謂成人向けシーンが含まれている場合、このタイトルは共通のシーンと、成人向けシーンと、未成年向けシーンから構成される。このようなタイトルストリームは、成人向けシーンと非成人向けシーンを、共通シーン間に、設けたマルチシーン区間として配置して実現する。

また、マルチアングル制御を通常の単一アングルタイトル内に実現する場合には、それぞれ所定のカメラアングルで対象物を撮影して得られる複数のマルチメディアシーンをマルチシーン区間として、共通シーン間に配置する事で実現する。ここで、各シーンは異なるアングルで撮影されたシーンの例を上げている、同一のアングルであるが、異なる時間に撮影されたシーンであっても良いし、またコンピュータグラフィックス等のデータであっても良い。

複数のタイトルでデータを共有すると、必然的に、データの共有部分から非共有部分への光ビームLSを移動させるために、光学ピックアップを光ディスク(RC1)上の異なる位置に移動することになる。この移動に要する時間が原因となって音や映像を途切れずに再生する事、すなわちシームレス再生が困難であるという問題が生じる。このような問題点を解決するには、理論的には最悪のアクセス時間に相当する時間分のトラックバッファ(ストリームバッファ2400)を備えれば良い。一般に、光ディスクに記録されているデータは、光ピックアップにより読み取られ、所定の信号処理が施された後、データとしてトラックバッファに一旦蓄積される。蓄積されたデータは、その後デコードされて、ビデオデータあるいはオーディオデータとして再生される。

25 インターリープの定義

前述のような、あるシーンをカットする事や、複数のシーンから選択を可能にするには、記録媒体のトラック上に、各シーンに属するデータ単位で、互いに連続した配置で記録されるため、共通シーンデータと選択シーンデータとの間に非選択シーンのデータが割り込んで記録される事態が必然的に
5 おこる。このような場合、記録されている順序にデータを読むと、選択したシーンのデータにアクセスしてデコードする前に、非選択シーンのデータにアクセスせざるを得ないので、選択したシーンへのシームレス接続が困難である。

しかしながら、DVDシステムに於いては、その記録媒体に対する優れた
10 ランダムアクセス性能を活かして、このような複数シーン間でのシームレス接続が可能である。つまり、各シーンに属するデータを、所定のデータ量を有する複数の単位に分割し、これらの異なるシーンの属する複数の分割データ単位を、互いに所定の順番に配置することで、ジャンプ性能範囲に配置する事で、それぞれ選択されたシーンの属するデータを分割単位毎に、断続的に
15 アクセスしてデコードすることによって、その選択されたシーンをデータが途切れる事なく再生する事ができる。つまり、シームレスデータ再生が保証される。

インターリーブブロック、ユニット構造

図24及び図71を参照して、シームレスデータ再生を可能にするインターリーブ方式を説明する。図24では、1つのVOB (VOB-A) から複数のVOB (VOB-B, VOB-D, VOB-C) へ分岐再生し、その後1つのVOB (VOB-E) に結合する場合を示している。図71では、これらのデータをディスク上のトラックTRに実際に配置した場合を示している。

図71に於ける、VOB-AとVOB-Eは再生の開始点と終了点が単独なビデオオブジェクトであり、原則として連続領域に配置する。また、図24に示すように、VOB-B、VOB-C、VOB-Dについては、再生の開始点、終了点を一致させて、インターリープ処理を行う。そして、そのインターリープ処理された領域をディスク上の連続領域にインターリープ領域として配置する。さらに、上記連続領域とインターリープ領域を再生の順番に、つまりトラックパスD_rの方向に、配置している。複数のVOB、すなわちVOBSをトラックTR上に配置した図を図71に示す。

図71では、データが連続的に配置されたデータ領域をブロックとし、そのブロックは、前述の開始点と終了点が単独で完結しているVOBを連続して配置している連続ブロック、開始点と終了点を一致させて、その複数のVOBをインターリープしたインターリープブロックの2種類である。それらのブロックが再生順に、図72に示すように、ブロック1、ブロック2、ブロック3、・・・、ブロック7と配置されている構造をもつ。

図72に於いて、VTSIT_VOBSは、ブロック1、2、3、4、5、6、及び7から構成されている。ブロック1には、VOB1が単独で配置されている。同様に、ブロック2、3、5、及び7には、それぞれ、VOB2、3、6、及び10が単独で配置されている。つまり、これらのブロック2、3、5、及び7は、連続ブロックである。

一方、ブロック4には、VOB4とVOB5がインターリープされて配置されている。同様に、ブロック6には、VOB7、VOB8、及びVOB9の三つのVOBがインターリープされて配置されている。つまり、これらのブロック4及び6は、インターリープブロックである。

図73に連続ブロック内のデータ構造を示す。同図に於いて、VOBSにVOB-i、VOB-jが連続ブロックとして、配置されている。連続ブロ

ック内のVOB-i 及びVOB-j は、図16を参照して説明したように、更に論理的な再生単位であるセルに分割されている。図ではVOB-i 及びVOB-j のそれぞれが、3つのセルCELL#1、CELL#2、CELL#3で構成されている事を示している。セルは1つ以上のVOBUで構成されており、VOBUの単位で、その境界が定義されている。セルはDVDの再生制御情報であるプログラムチェーン(以下PGCと呼ぶ)には、図16に示すように、その位置情報が記述される。つまり、セル開始のVOBUと終了のVOBUのアドレスが記述されている。図73に明示されるように、連続ブロックは、連続的に再生されるように、VOBもその中で定義されるセルも連続領域に記録される。そのため、連続ブロックの再生は問題はない。

次に、図74にインターリープブロック内のデータ構造を示す。インターリープブロックでは、各VOBがインターリープユニットILVU単位に分割され、各VOBに属するインターリープユニットが交互に配置される。そして、そのインターリープユニットとは独立して、セル境界が定義される。同図に於いて、VOB-kは四つのインターリープユニットILVUk1、ILVUk2、ILVUk3、及びILVUk4に分割されると共に、二つのセルCELL#1k、及びCELL#2kが定義されている。同様に、VOB-mはILVUm1、ILVUm2、ILVUm3、及びILVUm4に分割されると共に、二つのセルCELL#1m、及びCELL#2mが定義されている。つまり、インターリープユニットILVUには、ビデオデータとオーディオデータが含まれている。

図74の例では、二つの異なるVOB-kとVOB-mの各インターリープユニットILVUk1、ILVUk2、ILVUk3、及びILVUk4とILVUm1、ILVUm2、ILVUm3、及びILVUm4がインタ

一リープブロック内に交互に配置されている。二つのVOBの各インターリープユニットILVUを、このような配列にインターリープする事で、単独のシーンから複数のシーンの1つへ分岐、さらにそれらの複数シーンの1つから単独のシーンへのシームレスな再生が実現できる。このようにインターリープすることで、多くの場合の分岐結合のあるシーンのシームレス再生可能な接続を行う事ができる。

マルチシーン

ここで、本発明に基づく、マルチシーン制御の概念を説明すると共にマルチシーン区間に付いて説明する。

異なるアングルで撮影されたシーンから構成される例が挙げている。しかし、マルチシーンの各シーンは、同一のアングルであるが、異なる時間に撮影されたシーンであっても良いし、またコンピュータグラフィックス等のデータであっても良い。言い換えれば、マルチアングルシーン区間は、マルチシーン区間である。

パレンタル

図15を参照して、パレンタルロックおよびディレクターズカットなどの複数タイトルの概念を説明する。

図15にパレンタルロックに基づくマルチレイティッドタイトルストリームの一例を示す。一つのタイトル中に、性的シーン、暴力的シーン等の子供に相応しくない所謂成人向けシーンが含まれている場合、このタイトルは共通のシステムストリームSSa、SSb、及びSSeと、成人向けシーンを含む成人向けシステムストリームSScと、未成年向けシーンのみを含む非成人向けシステムストリームSSdから構成される。このようなタイトルストリームは、成人向けシステムストリームSScと非成人向けシステムス

トリームSSdを、共通システムストリームSSbとSSeの間に、設けたマルチシーン区間にマルチシーンシステムストリームとして配置する。

上述の用に構成されたタイトルストリームのプログラムチェーンPGCに記述されるシステムストリームと各タイトルとの関係を説明する。成人向
5 タイトルのプログラムチェーンPGC1には、共通のシステムストリームSSa、SSb、成人向けシステムストリームSSc及び、共通システムストリームSSeが順番に記述される。未成年向タイトルのプログラムチェーンPGC2には、共通のシステムストリームSSa、SSb、未成年向けシステムストリームSSd及び、共通システムストリームSSeが順番に記述さ
10 れる。

このように、成人向けシステムストリームSScと未成年向けシステムストリームSSdをマルチシーンとして配列することにより、各PGCの記述に基づき、上述のデコーディング方法で、共通のシステムストリームSSa及びSSbを再生したのち、マルチシーン区間で成人向けSScを選択して再生し、更に、共通のシステムストリームSSeを再生することで、成人向
15 けの内容を有するタイトルを再生できる。また、一方、マルチシーン区間で、未成年向けシステムストリームSSdを選択して再生することで、成人向けシーンを含まない、未成年向けのタイトルを再生することができる。このよ
うに、タイトルストリームに、複数の代替えシーンからなるマルチシーン区
20 間を用意しておき、事前に該マルチ区間のシーンのうちで再生するシーンを選択しておき、その選択内容に従って、基本的に同一のタイトルシーンから異なるシーンを有する複数のタイトルを生成する方法を、パレンタルロックという。

なお、パレンタルロックは、未成年保護と言う観点からの要求に基づいて、
25 パレンタルロックと呼ばれるが、システムストリーム処理の観点は、上述の

如く、マルチシーン区間での特定のシーンをユーザが予め選択することにより、静的に異なるタイトルストリーム生成する技術である。一方、マルチアンダルは、タイトル再生中に、ユーザが隨時且つ自由に、マルチシーン区間のシーンを選択することにより、同一のタイトルの内容を動的に変化させる
5 技術である。

また、パレンタルロック技術を用いて、いわゆるディレクターズカットと呼ばれるタイトルストリーム編集も可能である。ディレクターズカットとは、映画等で再生時間の長いタイトルを、飛行機内で供する場合には、劇場での再生と異なり、飛行時間によっては、タイトルを最後まで再生できない。このような事態にさけて、予めタイトル制作責任者、つまりディレクターの判断で、タイトル再生時間短縮の為に、カットしても良いシーンを定めておき、そのようなカットシーンを含むシステムストリームと、シーンカットされていないシステムストリームをマルチシーン区間に配置しておくことによって、制作者の意志に沿つシーンカット編集が可能となる。このようなパレンタル制御では、システムストリームからシステムストリームへのつなぎ目に於いて、再生画像をなめらかに矛盾なくつなぐ事、すなわちビデオ、オーディオなどバッファがアンダーフローしないシームレスデータ再生と再生映像、再生オーディオが視聴覚上、不自然でなくまた中断する事なく再生するシームレス情報再生が必要になる。
10
15
20

マルチアンダル

図33を参照して、本発明に於けるマルチアンダル制御の概念を説明する。通常、マルチメディアタイトルは、対象物を時間Tの経過と共に録音及び撮影（以降、単に撮影と言う）して得られる。#SC1、#SM1、#SM2、#SM3、及び#SC3の各ブロックは、それぞれ所定のカメラアンダルで対象物を撮影して得られる撮影単位時間T1、T2、及びT3に得ら
25