IN THE CLAIMS:

Please enter the following amended claim 6:

	\-	
·	1 h	1. (Previously Amended) A method of driving a liquid crystal display
	<i>y</i> ₂	device, said liquid crystal display device comprising:
Dl	3/	a first substrate;
/	4	a second substrate opposing said first substrate with a gap therebetween;
	5	a liquid crystal layer confined in said gap;
/	6	a thin-film transistor formed on said first substrate;
	7	a data bus line formed on said first substrate in electrical connection with said
CMP	8	thin-film transistor, said data bus line supplying an alternate-current driving voltage signal to
	9	said thin-film transistor;
	10	a pixel electrode provided on said first substrate in electrical connection to said
	11	thin-film transistor; an auxiliary electrode formed on said first substrate in the vicinity of said
	12	data bus line so as to extend along said data bus line and so as to form an auxiliary
	13	capacitance connected parallel to said pixel electrode, said auxiliary electrode being disposed
	14	so as to induce a lateral electric field between said auxiliary electrode and said data bus line;
	15 ,	and an opposing electrode formed on said second substrate;
	16	said method comprising the step of:
	17	applying to said auxiliary electrode a common voltage substantially equal to a
	18	central voltage of said alternate-current driving voltage signal.
		7

1 2. (Original) A method as claimed in claim 1, wherein said common voltage is deviated from said central voltage by an amount corresponding to 2/5 or less of 2 an amplitude of said alternate-current driving voltage signal set so as to provide a 3 4 maximum gradation level. A method as claimed in claim 1, wherein said common 1 3. (Original) voltage is deviated from said central voltage by an amount corresponding to 1/20 or less of 2 an amplitude of said alternate-current driving voltage signal set so as to provide a 3 maximum gradation level. (Original) A method ás claimed in claim 1, wherein said central 1 4. 2 voltage is substantially zero volt. A method as claimed in claim 1, wherein said central 5. 1 (Original) 2 voltage is offset from zero volt. 1 6. (Currently Amended) A method as claimed in claim 1, wherein said common voltage is set such that a fluctuation of a leakage light, caused by a 2 disclination induced in said liquid crystal layer by a lateral electric filed field is 10% or 3

4

less.

•	J
	7. (Original) A method as claimed in claim 1, wherein said central
2	voltage is offset from zero volt.
•	
	8. (Previously Amended) A liquid crystal display device, said liquid
2	crystal display device comprising:
3	a first substrate;
4	a second substrate opposing said first substrate with a gap therebetween;
al.	a liquid crystal layer confined in said gap;
Conf	a thin-film transistor formed on said first substrate;
<i>U</i> ,	a data bus line formed on said first substrate in electrical connection with said
8	thin-film transistor;
9	a driving circuit supplying an alternate-current driving voltage signal to said
10	thin-film transistor via said data bus line;
1	a pixel electrode provided on said first substrate in electrical connection to said
12	thin-film transistor;
13	an auxiliary electrode formed on said first substrate in the vicinity of said data
14	bus line so as to extend along said data bus line and so as to form an auxiliary capacitance
15	connected parallel to said pixel electrode, said auxiliary electrode being disposed so as to
10	induce a lateral electric field between said auxiliary electrode and said data bus line;

١.

an opposing electrode formed on said second substrate; and
a direct-current source applying, to said auxiliary electrode, a common voltage
substantially equal to a central voltage of said alternate-current driving voltage signal.

9. (Original) A liquid crystal display device as claimed in claim 8, wherein said direct-current source produces said common voltage such that said common voltage is deviated from said central voltage by an amount corresponding to 2/5 or less of an amplitude of said alternate-current driving voltage signal set so as to provide a maximum gradation level.

10. (Original) A liquid crystal display device as claimed in claim 8, wherein said direct-current source produces said common voltage such that said common voltage is deviated from said central voltage by an amount corresponding to 1/20 or less of an amplitude of said alternate-current driving voltage signal set so as to provide a maximum gradation level.

11. (Original) A liquid crystal display device as claimed in claim 8, wherein said driving circuit produces said alternate-current driving voltage signal such that said central voltage is substantially zero volt.

- 1 12. (Original) A liquid crystal display device as claimed in claim 8,
 2 wherein said driving circuit produces said alternate-current driving voltage signal such that
 3 said central voltage is offset from zero volt.
- 1 13. (Original) A liquid crystal display device as claimed in claim 8,
 2 wherein said direct-current source produce said common voltage such that a fluctuation of a
 3 leakage light, caused by a disclination induced in said liquid crystal layer by a lateral electric
 4 filed, is 10% or less.
- 1 14. (Original A liquid crystal display device as claimed in claim 8, wherein said direct-current source produces said common voltage such that a flow of liquid crystal molecules, caused in said liquid crystal layer by a disclination induced in said liquid crystal layer by a lateral electric field, has a velocity of 80 μm or less per an interval of 24 hours.
- 1 15. (Original) A liquid crystal display device as claimed in claim 8, 2 wherein said liquid crystal layer is formed of a low-voltage liquid crystal.

16. (Original) A liquid crystal display device as claimed in claim 8, wherein said auxiliary electrode extends along an edge of said conductor pattern, said liquid crystal display device thereby forming an H-type Cs liquid crystal display device.