

Scientific Talk

Indexing Protected Deep Face Templates by Frequent Binary Patterns

Dailé Osorio-Roig

da/sec – Biometrics and Internet Research Group

Hochschule Darmstadt

Contents

Introduction.

Proposed System.

Experimental Setup.

Results.

Conclusions.

Introduction

Motivation

- > EU GDPR 2016/679 defines biometric information as sensitive data.
- > Reconstruction of facial images from their corresponding embeddings.
- > Limited application of the biometric template protection methods.

Contribution

- Introduction of a new approach based on the search of frequent binary patterns.
 - 1. High application: for indexing and retrieval of protected binary templates across different cancelable schemes, i.e. *Computational workload reduction*.
 - 2. Agnostic approach: in terms of biometric modality and cancelable scheme.

Introduction

Biometric template protection schemes

- Biometric Cryptosystems.
 - ✓ Key-binding or Key-generation schemes.
 - ✓ Homomorphic encryption.

- Enable complex process of biometric comparison by verifying the correctness of a retrieved key.
- Optimizations are depending on the encoding schemes.
- Limited operations in the encrypted domain.

- Cancelable schemes
 - ✓ Feature transformation step.

✓ Retaining efficient biometric comparators.

- High application in identification systems.
- Even, for exhaustive searches.
- Workload reduction accelerates one-toone comparison.

Introduction

Properties of biometric data

Common binary patterns can be suitable for biometric indexing, even, for cancelable templates?.

Proposed system

- \triangleright Let $b \in \{0,1\}^N$ be a bit-string of size N and K < N a given frequent pattern length.
- \triangleright A set P of binary patterns are extracted from N bits.
- \triangleright Frequent patterns are defined according to their corresponding number of occurrences in N.

Proposed system

- > Enrolment step: the frequent binary pattern with maximum number of occurrence is selected as a bin.
- ➤ Retrieval step: the search is through **all** their **most frequent binary patterns** (sorted) until a match is found.
- Definition of the workload reduction.

$$W = \sum_{i=1}^{z} |l_i|$$

 $\left| l_i
ight|$ Denotes the number of references stored in bin $\left| l_i
ight|$

Denotes a threshold for the maximum number of bins visited.

Workload reduction can be easily controlled by the number of bins visited!

Experimental setup

- LFW and SDUMLA image databases for Face and Finger-vein.
- ➤ Embedding features from ArcFace (Face) and ImageNet (Finger-vein (set of testing)) pre-trained models.
- Sub-sampling over 10 rounds.
- Number of enrolled subjects in Face and Finger-vein: 1680 and 318, respectively.
- For impostor comparisons:
 - sub-set of subjects containing a single sample (LFW).
 - sub-set of samples selected for the training set (SDUMLA).
- > Evaluation in closed-set scenario in terms of hit-rate (HR) and penetration rate (PR).
- > Evaluation in open-set scenario in terms of DET curves.

Experimental setup

- ➤ Generic cancelable schemes, representing the current state-of-the-art for biometric template protection:
 - BioHashing a single binary representation.
 - Variants of Index-of-Maximum Hashing: Uniformly Random Permutation (IoM-URP) and Gaussian Random Projection (IoM-GRP).
 - Encoding step over IoM-URP and IoM-GRP.
 - Baseline: original embeddings are binarized by using the function sign with threshold 0,
 representing the unprotected system.
- Normal- (where each user's key is assumed to be secret) and stolen-token- (where the impostor has access to the genuine user's secret key) scenarios for cancelable schemes.

Results over Face (closed-set scenario)

Stolen-token-scenario

fbp = frequent binary pattern

- Non-significant differences between Normaland Stolen-token- scenario.
- ➤ H-R 100% is maintained to a certain length of the fbp depending on the BTP scheme.
- P-R < 52% reducing the baseline workload (i.e. 100%).</p>
- Lowest WR (P-R < 36%) by a drop in the H-R (down to 93%) while fixing a length fbp across BTP schemes.

Results over Finger-vein (closed-set scenario)

Stolen-token-scenario

fbp = frequent binary pattern

- Non-significant differences between Normaland Stolen-token- scenario.
- ➤ H-R 100% is maintained to a certain length of the fbp depending on the BTP scheme.
- For larger lengths than face, while maintaining H-R 100%.
- P-R < 22% reducing the baseline workload (i.e100%) IoM-URP (PR < 45%) over H-R 100%.

Hit-Rate(%)

Results over Open-set scenario

Stolen-token-scenario – challenging scenario

$$W = \sum_{i=1}^{z} |l_i|$$

For
$$z = [1,16]$$

For
$$k = 4$$

Finger-Vein

Best results over Open-set scenario

Face

BTP approach	Normal-scenario			Stolen-token-scenario		
	FNIR@FPIR=1.0%	${f z}$	P-R(%)	FNIR@FPIR=1.0%	${f z}$	P-R(%)
Baseline	19.76	11	66.08	19.76	11	66.08
BioHashing	23.30	11	66.27	23.14	11	66.44
IoM-GRP	19.57	11	66.28	20.37	11	66.61
IoM-URP	22.33	5	87.90	29.99	5	88.59

- A rejection rate for genuine identification
 transactions of less than
 24%.
- 66% of workload-reduction.

Finger-Vein

BTP approach	Normal-scenario			Stolen-token-scenario		
	FNIR@FPIR=1.0%	\mathbf{z}	P-R(%)	FNIR@FPIR=1.0%	\mathbf{z}	P-R(%)
Baseline	14.40	7	45.60	14.40	7	45.60
BioHashing	17.86	8	50.17	14.81	8	49.15
IoM-GRP	16.54	8	50.31	13.49	8	50.89
IoM-URP	11.45	3	84.95	11.16	3	84.04

- A rejection rate for genuine identification
 transactions of less than
 18%.
- > 51% of workload-reduction.

Future Work

- > Extension of the proposed system to multi-biometrics :
 - Frequent binary patterns are combined from multiple biometric characteristics.
- Generalise the idea to other biometric characteristics (e.g. deep iris features).
- Selection of the best configuration in terms of the number of bins visited from the probe is a challenge:
 - Include evaluation of the accuracy in terms of rank-1.
- Larger datasets.

Conclusions

- > Search of frequent binary patterns over binary representations seems to be suitable for biometric indexing.
- High application for indexing templates protected by Cancelable schemes.
- ➤ Different statistical data in terms of workload-reduction could be perceived from different biometric characteristics.
- Many future work avenues.

Thank you for your attention!

Questions?