

Bayesian Networks

... continued

A good way to factor joint distributions of random variables:

A variable is only conditionally dependent on its parents.

Conditional Independence in BN

Given variables *X,Y* and **known variables**

$$\mathcal{E} = \{E_1, \dots, E_k\}$$

are X and Y independent given knowledge of \mathcal{E} ?

Conditional Independence in BN

Given variables X,Y and **known variables** $\mathcal{E} = \{E_1, \dots, E_k\}$ are X and Y independent given knowledge of \mathcal{E} ?

Can be shown

using algebra (annoying and tedious):

$$Pr[X \mid \mathcal{E}] = \cdots = Pr[X \mid \mathcal{E}, Y]$$

via counterexample (computing via the CPTs)

Can we show that two nodes are **necessarily** independent?

Causal Chains

"Rain (A) causes traffic (B) which causes me to be late (C)"

Question: are A and C necessarily independent?

Question: are A and C conditionally independent, given B?

Causal Chains

$$\Pr[C \mid A, B] = \frac{\Pr[A \land B \land C]}{\Pr[A \land B]} = \frac{\Pr[A] \Pr[B \mid A] \Pr[C \mid B]}{\Pr[A] \Pr[B \mid A]} = \Pr[C \mid B]$$

 $Pr[C \mid A, B] = Pr[C \mid B]$: given B, knowing A does not update my beliefs on C!

Common Cause

"Batman (A) catches the Joker (B) and Bane (C)"

Question: are *B* and *C* necessarily independent?

Question: are B and C conditionally independent, given A?

Common Cause

$$\Pr[B \mid A, C] = \frac{\Pr[A \land B \land C]}{\Pr[A \land C]} = \frac{\Pr[A] \Pr[B \mid A] \Pr[C \mid A]}{\Pr[A] \Pr[C \mid A]} = \Pr[B \mid A]$$

 $Pr[B \mid A, C] = Pr[B \mid A]$: given A, knowing C does not update my beliefs on B!

Common Effect

"The Joker (A) and Bane (B) could both rob the bank (C)"

Question: are A and B necessarily independent?

Question: are A and B conditionally independent, given C?

Common Effect

Observing an effect makes two causes dependent

- I know that the bank was robbed (C = 1)
- It could be either the Joker or Bane.
- If I know the Joker didn't do it -my belief about Bane doing it is higher!

$$Pr[A \mid C, B] \neq Pr[A \mid C]$$

but
 $Pr[A \mid B] = Pr[A]$

It's All About the CPTs

 $\Pr[A] = 0.5$

Pr[B] = 0.5

 $A \longrightarrow B$

A =	B =	$\Pr[C \mid A, B] =$
1	1	1
1	0	1
0	1	1
0	0	0

$$Pr[A = 1] = Pr[A = 1 | B = 0] = 0.5$$

but
 $Pr[A = 1 | B = 0, C = 1] = 1$

General Case -d Separation

Given variables X, Y and **known variables** $\mathcal{E} = \{E_1, ..., E_k\}$ are X and Y **surely** independent given \mathcal{E} ?

Idea: any general graph can be broken down into the three cases described above, to determine conditional independence of X, Y given knowledge of \mathcal{E} .

General Case -d Separation

Given variables X, Y and **known variables** $\mathcal{E} = \{E_1, ..., E_k\}$ are X and Y **surely** independent given \mathcal{E} ?

- Check every **undirected** path between *X* and *Y* (ignore direction of arcs).
- If all paths are not active then X and Y are independent given ε.

General Case -d Separation

- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

- Degenerate cases:
 - Disconnected variables: always independent.
 - Directly connected variables: never surely independent.

- All paths must be inactive.
- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

Is X_1 independent of X_2 ? Yes!

- All paths must be inactive.
- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

No!

- All paths must be inactive.
- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

Is X_3 independent of X_7 given X_5 ?

- All paths must be inactive.
- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

- All paths must be inactive.
- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

- All paths must be inactive.
- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

Is X_3 independent of X_7 given X_5 ?

- All paths must be inactive.
- A path is active iff every triple on path is active
- One inactive triple ⇒ path is inactive!

Is X_3 independent of X_7 given X_5 ?

 X_3, X_5, X_4, X_6, X_7 form an **active path**

Learning From Examples

AIMA Chapter 18

Learning – What and Why?

- An agent is said to be *learning* if it improves its performance P on task T based on experience/observations/data E
 - T must be fixed, P must be measurable, E must exist
 - e.g., image recognition, game playing, driving in urban environments...

Reasons for learning:

- Unknown, dynamically changing task environments
- Hard to encode all knowledge (e.g., face recognition)
- Easier to program

ML is Everywhere!

Designing Learning Elements

Design of learning elements

- What are we learning?
- Data represented?
- Performance feedback?

Feedback

- Supervised learning: each example is labeled
- Unsupervised learning: correct answers not given
- Reinforcement learning: occasional rewards given

Supervised Learning

Key idea: Learn an unknown function f from examples

The Data:

- We are given a dataset $\mathcal{X} \subseteq \mathbb{R}^n$
- Each datapoint $\vec{x} \in \mathcal{X}$ has a label $f(\vec{x})$ (for now, $f(\vec{x}) \in \{\pm 1\}$).

Problem

• Search for hypothesis $h \in \mathcal{H}$ such that $h \simeq f$.

Performance:

- Measured over examples that are distinct from training set
- Hypothesis generalizes well if it correctly predicts the value of f for novel examples.

Measuring Error

Where does the data come from? Distribution \mathcal{D}

Key idea: Learn an unknown function f from examples

- Given a hypothesis $h \in \mathcal{H}$, let the loss wrt \mathcal{D} $L_{\mathcal{D}}(h) = \Pr_{\vec{x} \sim \mathcal{D}}[h(\vec{x}) \neq f(\vec{x})]$
- The error of \mathcal{H} : the best that we can do with \mathcal{H}

$$OPT_{\mathcal{D}}(\mathcal{H}) = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$$

Nearly optimal error:

$$L_{\mathcal{D}}(h) \leq OPT_{\mathcal{D}}(\mathcal{H}) + \varepsilon$$

• Given a set of samples $\mathcal{X} = \{\vec{x}_1, ..., \vec{x}_m\}$, let the empirical error be:

$$\widehat{L}_{\mathcal{X}}(h) = \frac{1}{m} \sum_{j=1}^{m} \mathbb{I}\left(h(\vec{x}_j) \neq f(\vec{x}_j)\right)$$

What is the probability that h will misclassify

Probably Approximately Correct Learning

Key idea: Learn an unknown function f from examples

Efficient PAC Learning

Approximately correct part of PAC

 The hypothesis is likely to match f on future samples

$$L_{\mathcal{D}}(h) = \Pr_{\vec{x} \sim \mathcal{D}}[h(\vec{x}) \neq f(\vec{x})] < OPT_{\mathcal{D}}(\mathcal{H}) + \varepsilon$$

- Guarantee holds with probability $\geq 1 \delta$
- Sample Complexity: $|\mathcal{X}|$ polynomial in

$$n, \frac{1}{\varepsilon}, \log \frac{1}{\delta}$$

Probably part of PAC. How likely is it that the sample from \mathcal{D} when drawn IID is bad? Should be very small!

Learning a Good Classifier

• Our goal is to find a function $h: \mathbb{R}^n \to \{-1,1\}$ that fits the data: what is the likeliest function to have generated our dataset?

Choosing Simple Hypotheses

- Generalize better in the presence of noisy data
- Faster to search through simple hypothesis space
- Easier and faster to use simple hypothesis

Linear Classifiers

Assumption: data was generated by some linear function

$$f(\vec{x}) = \begin{cases} 1 \text{ if } \vec{w}^T \vec{x} - w_0 \ge 0\\ -1 \text{ otherwise.} \end{cases}$$

f is called a *linear classifier*.

$$f(x,y) = \mathbb{I}(w_1 x + w_2 y \ge w_0)$$

Linear Classifiers

Question: given a dataset, how would we determine which linear classifier is "good"?

Least Squared Error

Let
$$y(\vec{w}, w_0, \vec{x}) = \mathbb{I}(\vec{w}^T \vec{x} \ge w_0)$$

Empirical error:

given a data point \vec{x}_j labelled t_j , our classifier is wrong if

$$y(\vec{w}, w_0, \vec{x}_j) \neq t_j$$

Objective – minimize empirical loss:

$$\min_{\overrightarrow{w} \in \mathbb{R}^n, w_0} \sum_{j} (y(\overrightarrow{w}, w_0, \overrightarrow{x}_j) - t_j)^2$$

"find \vec{w} , w_0 that minimize the total number of mistakes on dataset"

Other loss functions are possible!

Regularization

$$\min_{\overrightarrow{w},w_0} \frac{1}{m} \sum_{j=1}^{m} \left(y (\overrightarrow{w},w_0,\overrightarrow{x}_j) - t_j \right)^2 + \lambda ||\overrightarrow{w}||$$
 Minimize: Empirical Loss + Regularization
$$\widehat{L}(h)$$
 $R(h)$

- If there is some hypothesis $h \in \mathcal{H}$ for which $\widehat{L}(h) = 0$, then for a sufficiently small $\lambda > 0$, we are just minimizing $\|\overrightarrow{w}\|$.
- In general: tradeoff between simplicity and accuracy.

CS3243: Introduction to Al

Concluding Remarks

Assessment: Reminder

What	When	Grade Percentage
Midterm Exam	30 September 2019	20%
Final Exam	26 November 2019 (morning)	40%
2 Assignments	As announced!	20%
3 rd Assignments	As announced!	10%
Participation (lecture + tutorial)	-	10%

Final Exam - **26 November 2019** (morning) Where? — Check on Edurec (MPSH/UT)

What Can You Bring

- Closed book assessment.
- 1 A4-sized double-sided sheet of personal notes. (No appendages!)
- NUS APPROVED CALCULATOR

Structure

- 2 parts MCQ and structured questions
- Bring 2B pencil
- Writing in pencil is allowed

Topics for Final Exam

Topics to be covered

- Chapter 2 Agents
- Chapter 3.1 to 3.4 Uninformed Search
- Chapter 3.5.1 to 3.5.2, 3.6.1 to 3.6.2 Informed Search
- Chapter 4.1 Local Search
- Chapter 5.1 to 5.5 Adversarial Search
- Chapter 6.1 to 6.4 Constraint Satisfaction Problems
- Chapter 7 Logical Agents, Propositional Logic & Inference
- Chapter 8, 9.1 to 9.3, 9.4.1, 9.5.1 to 9.5.3 First-Order Logic & Inference
- Chapter 13 Uncertainty
- Chapter 14.1 to 14.2 Bayesian Networks

Summary: What Have You Learned?

First half of CS3243:

- Assume complete environment knowledge.
- Make decisions, search for solutions

Second half of CS3243:

- Incomplete information
- Gather information/knowledge, infer/predict environment data, to make better decisions

Key Idea #1 – Search

Basic Model Paradigm

- Informed
- Uninformed
- Adversarial

CSPs + Logic

• Finding solutions as search problem

Optimization

• Optimal solutions found via search

Search cutoff strategies

- Heuristic functions
- Heuristics in CSPs/Logic

Key Idea #2 - Randomization

Search

• makes it faster, avoids getting stuck in bad local optimal states.

Heuristics

• needs to be corrected

Strategic play

• abstraction and expected utility

In SAT solving

• obtain nearly optimal solutions quickly

Bayesian inference

• basic building block of inference under uncertainty

Learning

• approximately optimal learners from randomly generated datasets.

From Appreciating to Applying Al

Any Final Questions?

Keep in touch: anarayan@comp.nus.edu.sg