### SF4

# **USB Data Logger**



Prof Ioannis Lestas
CUED
icl20@cam.ac.uk

Demonstrators:
Rachel Hudson
Giovanni Pugliese Carratelli
Parfait Lutundula
CUED

## SF4 handouts

For each student

- SF4 handout 1
- SF4 handout 2
- SF4 handout 3 (introductory exercises)

Also available on moodle + additional reading material

### SF4 Aims

develop a modern embedded data logging system

- 1 Hardware design analogue circuitry for taking input signal
- **2 Firmware** control microcontroller unit and handle input
- **3 Communications/Software** protocol of data transfer over USB to PC, PC user interface
- 4 Product Identity datasheet to advertise product, choose how to spend £15 budget
- **5** Experience the dynamics/challenges of research project work

# **SF4** Previous Highlights/Ideas



### Oscilloscope

Fully featured
 e.g. FFT, Dual Trace



#### Radio

- Recording
- Station, volume control
- Autotune



#### **Healthcare monitors**

- Oximeter
- Heart Rate Monitor



#### **Music Accessories**

- Tuner
- Effects amp/pedal



- Recording + playback
- Mixing Desks
- Turntables



#### Weather station

- Temperature
- Wind speed
- Humidity

### SF4 timeline

| 10/05 | Fri 11-1pm (introduction)                           |
|-------|-----------------------------------------------------|
| 14/05 | Tue 9-11am                                          |
| 14/05 | Tue 2-4pm                                           |
| 17/05 | Fri 11-1pm                                          |
| 21/05 | Tue 9-11am ( <b>Interim Report</b> )                |
| 21/05 | Tue 2-4pm                                           |
| 24/05 | Fri 11-1pm ( <b>rep. feedback</b> )                 |
| 28/05 | Tue 9-11am                                          |
| 28/05 | Tue 2-4pm                                           |
| 31/05 | Fri 11-1pm                                          |
| 04/06 | Tue 9-11am                                          |
| 04/06 | Tue 2-4pm ( <b>Demonstration</b> )                  |
| 07/06 | Fri, 4pm, submit in <b>final report</b><br>(moodle) |

- √ work in pairs (ensure complementary knowledge)
- ✓ timetabled sessions are

  supported by 1-2 demonstrators,

  compulsory,

  attendance sheets are used
- ✓ additional: EIETL access hours:

  8-4pm weekdays

  check PC terminal availability

  (overall time budget ~20h/per week)
- √ keep back-ups of computer files/reports

All dates shoted bock 6 days

# SF4 marking

Milestone When and what happens What is required Specification and design – Interim Report Date: 21 May 2023 by 11am 1 set of paperwork per pair containing (2 pages, excl. appendices): Report feedback for 10 mins, in pairs, on analogue circuit design, 24 May parts list for purchasing, block diagrams for comms., firmware, Worth: 10 marks software design. Plus: Who's doing which bit? Date: 4 June 2023 Working hardware; **Demonstration** firmware and software (2-4pm) (so it can be copied during the demo) Students (in pairs) demonstrate their system with the assessor for 15 minutes Worth: 30 marks Date: 7 June 2023, 1 marketing datasheet from each student **Final Report** 4pm (moodle) [1 piece of A4 (2-sides) max] Students must individually write up and hand 1 independent report from each student (10 in their report. Each will be assessed on its sides of A4 max, excluding appendices, as outlined in THIRD YEAR own merits. PROJECT GUIDE\*; add Worth: 40 marks interim report as appendix). Signed declaration that student is submitting own work.

## SF4 marking

#### Each project will be evaluated based on:

- √ design creativity and functionality
- √2-way communications between MCU and computer
- ✓ analogue-digital conversion over multiple channels and/or kHz sampling rate (or appropriate alternative)
- ✓ analogue circuitry including appropriate conditioning
   (eg. anti-aliasing, automatic gain control, DC offset removal etc if appropriate)
- ✓ level of signal processing (eg. Fourier transforms, scaling, averaging etc.)
- √Usability of software interface
- √ robust demonstration of whole system

Clear presentation and effective communication of system design and its features in the interim and final reports as well as in the datasheet.

# SF4 the small print

- For non-attendance at compulsory timetabled sessions, the penalty is 1 mark per hour or part hour missed.
- For late submission of interim reports, the penalty is 3 marks per day.
- ➤ No reports will be accepted after the submission date for the final report. (computer problems are not acceptable reasons)
- Feedback will be given on each report, but the marks will not be disclosed.
- ➤If work is disrupted by illness, project leader, tutor and Dr Alex White must be notified immediately.
- ➤ Max. total length of all reports taken together must not exceed 13 A4 sides, excl. appendices (Interim: 2 pages, Datasheet: 1 page, Final Report: 10 pages)
- ➤ Each report requires a signed statement that you are submitting your own work (Note: "No need to reinvent wheel", BUT you must cite previous work and majority of final report must be your own work)
- ➤ Project moderators will award prizes to top students

# SF4 set-up & tools

Project based around Arduino microcontroller



- ✓ USB bus powered
- ✓ Programmed and debugged via USB

The microcontroller board is supplied, additional circuits can be constructed on the breadboard

A budget of £15 is provided for purchasing additional components for your circuit (excludes resistors and capacitors from EIETL)

order from "Onecall" through EIETL technicians, once approved by demonstrators

## SF4 1st session

Go through Introductory Handout

Familiarise yourself with software & components

Familiarise yourself with the arduino board



Future sessions: create your own design and implement it. Handouts 2 & 3 provide some advice and structure.

# SF4 Tips

### Plan your time carefully

- Components can be ordered before 21st May (Interim report)
- Start firmware/software development before your components arrive
- Fault-finding and debugging might take a lot of the time later on

#### Make use of the handouts

### Start simple

- Come up with an achievable concept
- Start by getting a basic system working and then build on that
- Add advanced features later

### Ask demonstrators for help and advice

# SF4 Tips

### Hardware:

- Design your circuit carefully
- Discuss with demonstrators
- Check datasheets thoroughly before ordering components
- Build a neat circuit
- Test each sub-system separately before connecting the next one
- Don't make your entire circuit before testing it
- 5V and 3.3V supplies available from development board (USB bus powered)
- Use the fuses provided
- 20 mA at each I/O pin (> 40mA causes permanent fault) if you need more current you'll need to provide your own power supply

# SF4 Tips

### Firmware and Software:

- Comment code
- Divide code up sensibly into functions
- Use separate C files as separate modules of code
- Make code readable
- Make small changes and then test them
- Don't write large blocks of code without testing each part
- Use the debugger to see what's going on in the firmware and diagnose problems
- Demonstrators can help you more quickly when code is well written
- Be careful writing firmware in C as a very low level language it allows you to make mistakes that can be hard to debug
- To install new python libraries on the EIETL machines you need to follow the instruction in your handout (run a code provided on moodle)