

Statistik II

Prof. Dr. Simone Abendschön Vorlesung am 15.5.23

Plan heute

- Kurze Wiederholung und Auflösung der Übungen vom letzten Mal
- Grundlagen der Inferenzstatistik
 - Zentrales Grenzwerttheorem
 - Standardfehler

Übungsbeispiel 3): Hausaufgabe bzw. Tutorium

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <- 0,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert <-0,5 zu erhalten?

Übungsbeispiel 3)

Bsp. c)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <- 0,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert <-0,5 zu erhalten?

Vorgehen:

Skizzieren NV und gesuchte Fläche

Bestimme z = -0.5 in der z-Werte Tabelle:

$$P(z < -0.5) = 0.3085 = 30.85\%$$

Übungsbeispiel 4)

Welcher z-Wert separiert die obersten 10% aller Werte von den restlichen 90% der Verteilung?

Übungsbeispiel 4)

Welcher z-Wert separiert die obersten 10% aller Werte von den restlichen 90% der Verteilung?

- Skizzieren der Normalverteilung und der gesuchten Fläche
- Bestimme P = 0.90 in der z-Werte Tabelle
- Bestimme korrespondierenden z-Wert: z = 1.28

Welche z-Werte separieren die mittleren 60% aller Werte von den restlichen 40% der Verteilung?

Übungsbeispiel 5)

Welche z-Werte separieren die mittleren 60% aller Werte von den restlichen 40% der Verteilung?

- Skizzieren der Normalverteilung und der gesuchten Fläche
- Bestimme P = 0.20 in der z-Werte Tabelle
- Bestimme korrespondierende z-Werte:

$$z = -0.84$$
; $z = 0.84$

Flächenanteile & Wahrscheinlichkeiten für z-Werte

Anwendungsbeispiel A:

Gegeben sei eine Verteilung von IQ-Werten mit μ= 100 und σ= 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?</p>

Anwendungsbeispiel A:

Gegeben sei eine Verteilung von IQ-Werten mit μ= 100 und σ= 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?</p>

- Anwendungsbeispiel A:
- Gegeben sei eine Verteilung von IQ-Werten mit μ = 100 und σ = 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?
- 1) Transformieren Rohwerte in z-Werte

$$z = \frac{x-\mu}{\sigma} = \frac{120-100}{15} = \frac{20}{15} = 1.33$$

IQ-Wert von 120 entspricht einem z-Wert von 1.33 IQ-Werte kleiner als 120 entsprechen z-Werten kleiner als 1.33

2) Korrespondierenden z-Wert in Tabelle auswählen:

$$P = 0.9082$$

$$P(X < 120) = P(z < 1.33) = 0.9082 = 90.82\%$$

Flächenanteile & Wahrscheinlichkeiten für z-Werte

Anwendungsbeispiel B:

- Wahrscheinlichkeiten bzw. Anteile zwischen zwei (normalverteilten) X-Werten bestimmen
- In der Gießener Innenstadt werden Geschwindigkeitsmessungen für Autofahrer durchgeführt. Bei der letzten Überprüfung sei für Autofahrer eine Durchschnitts-Geschwindigkeit von μ= 58km/h mit einer Standardabweichung von σ= 10 festgestellt worden. Die Messwerte seien (näherungsweise) normalverteilt.
- Wie hoch ist der Anteil der Autofahrer, die zwischen 55km/h und 65km/h in der Gießener Innenstadt fahren?

Anwendungsbeispiel B:

1) Transformieren der Rohwerte in z-Werte

Für X =
$$55$$
km/h: $z = \frac{X-\mu}{\sigma} = \frac{55-58}{10} = -\frac{3}{10} = -0.3$

Für X = 65km/h:
$$z = \frac{X-\mu}{\sigma} = \frac{65-58}{10} = \frac{7}{10} = 0.7$$

- 2. Verteilung mit gesuchtem Intervall skizzieren
- 3a. Bestimmen der Fläche links von X = 65

3b. Bestimmen der Fläche links von X = 55

Für
$$z = -.30$$
, $P = 0.38$

4. Subtrahieren: 0.76 - 0.38 = 0.38

Flächenanteile & Wahrscheinlichkeiten für z-Werte

Anwendungsbeispiel B:

- Wahrscheinlichkeiten/Anteile zwischen zwei (normalverteilten) X-Werten bestimmen
- In der Gießener Innenstadt werden Geschwindigkeitsmessungen für Autofahrer durchgeführt. Bei der letzten Überprüfung sei für Autofahrer eine Durchschnitts-Geschwindigkeit von μ = 58km/h mit einer Standardabweichung von σ = 10 festgestellt worden. Die Messwerte seien (näherungsweise) normalverteilt.
- Wie hoch ist der Anteil der Autofahrer, die zwischen 55km/h und 65km/h in der Gießener Innenstadt fahren? → 38%

Flächenanteile & Wahrscheinlichkeiten für z-Werte

Anwendungsbeispiel C:

X-Werte für Wahrscheinlichkeiten/Anteile bestimmen

- Der Asta der JLU finanziert eine sozialwissenschaftliche Untersuchung zur Belastung durch Pendeln unter Studierenden. Die Ergebnisse zeigen, dass von den Studierenden im Durchschnitt μ= 24.3 Minuten pro Studientag für An-und Abreise verbraucht werden; die Standardabweichung sei σ= 10.
- Wieviel Minuten müssten Sie mindestens pendeln, um zu den 10% Studis mit der höchsten Pendeldauer für An-und Abreise zum Studienort zu gehören?

- Anwendungsbeispiel C: X-Werte für Wahrscheinlichkeiten/Anteile bestimmen
- 1. Bestimme 90% bzw. 0.90 in der z-Werte Tabelle und den dazugehörigen z-Wert: z = 1.282
- 2. Bestimme das Vorzeichen des gesuchten z-Wertes: positiv
- 3. Transformiere den z-Wert in den Rohwert:

$$X=\mu+z\sigma$$

= 24.3 + 1.282·10
= 24.3 + 12.82
= 37.1

Anwendungsbeispiel C:

X-Werte für Wahrscheinlichkeiten/Anteile bestimmen

- Der Asta der JLU finanziert eine sozialwissenschaftliche Untersuchung zur Belastung durch Pendeln unter Studierenden. Die Ergebnisse zeigen, dass von den Studierenden im Durchschnitt μ = 24.3 Minuten pro Studientag für An-und Abreise verbraucht werden; die Standardabweichung sei σ = 10.
- Wieviel Minuten müssten Sie mindestens pendeln, um zu den 10% Studis mit der höchsten Pendeldauer für An-und Abreise zum Studienort zu gehören?
- → ca. 37 Minuten

Hausaufgabe / Tutorium!

Anwendungsbeispiel D (gleiche Population wie eben):

- X-Werte zwischen zwei
 Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

Anwendungsbeispiel D (gleiche Population):

- X-Werte zwischen zwei
 Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

- 1) 90% = jeweils 5% auf beiden Seiten der symmetrischen Normalverteilung
- 2) Bestimmung der gesuchten z-Werte: ...

Flächenanteile & Wahrscheinlichkeiten für z-Werte

Anwendungsbeispiel D (gleiche Population):

- X-Werte zwischen zwei Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

- 1) 90% = jeweils 5% auf beiden Seiten der symmetrischen Normalverteilung
- 2) Bestimmung der gesuchten z-Werte (z-Tabelle!): z = +1.65 und z = -1.65 trennen jeweils 5% von der Gesamtfläche
- 3) Bestimmung der X-Werte:
- $X=\mu+z\sigma=24.3+1.65\cdot10=40.8$
- $X=\mu+z\sigma=24.3+(-1.65)\cdot 10=7.8$

Flächenanteile & Wahrscheinlichkeiten für z-Werte

- Anwendungsbeispiel D:
- X-Werte zwischen zwei Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

- 1)90% = jeweils 5% auf beiden Seiten der symmetrischen Normalverteilung
- 2)Bestimmung der gesuchten z-Werte: z = +1.65 und z = -1.65 trennen jeweils 5% von der Gesamtfläche
- 3) Bestimmung der X-Werte:
- $X=\mu+z\sigma=24.3+1.65\cdot10=40.8$
- $X=\mu+z\sigma=24.3+(-1.65)\cdot 10=7.8$

90% aller Gießener Studierenden pendeln zwischen 7.8 und 40.8 Minuten zum Studienort, was einer Spannweite von 33 entspricht

Zusammenfassung

- Dichtefunktion der Normalverteilung als Hilfsmittel, um Häufigkeiten bzw. Wahrscheinlichkeiten für kontinuierliche Variablen zu ermitteln
- Wahrscheinlichkeiten können als (Flächen-)Anteile interpretiert werden
- Für normalverteilte Daten liegen tabellarische Darstellungen für interessierende Anteilwerte/Wahrscheinlichkeiten vor, die mit den jeweiligen z-Werten korrespondieren
 - Anhand der Formel zur z-Transformation können X-Werte in z-Werte und z-Werte in X-Werte transformiert werden
 - Für z-Werte können die zugehörigen Wahrscheinlichkeiten/Anteile aus der z-Tabelle entnommen werden

Lernziele

- Sie erweitern Ihre Kenntnisse über die sog.
 "Normalverteilung" und wissen wozu sie in der Statistik dient
- Sie können Flächenanteile und damit Wahrscheinlichkeiten innerhalb der Normalverteilung berechnen

Plan heute

Grundlagen der Inferenzstatistik

- Zentrales Grenzwerttheorem
- Standardfehler

Lernziele heute und nächste Woche

- Kennen und Verstehen des Zentralen Grenzwerttheorems
- Kennen und Bestimmen des Standardfehlers

Einführung

Bislang haben wir die Konzepte der Wahrscheinlichkeit, z-Wert-Transformation und Normalverteilung nur für Stichproben mit der Größe n = 1 angewendet, d.h.

Wie groß ist die Wahrscheinlichkeit per Zufallsauswahl bei gegebenem Mittelwert und Standardabweichung einen Fall in einem bestimmten Werteintervall auszuwählen?

Stichproben und Grundgesamtheit

- Aber sozialwissenschaftliche Forschungspraxis:
 Stichproben sind typischerweise (sehr) viel größer
 - Z.B. ALLBUS: > 3000 Befragte; European Social Survey: ca. 35.000 Befragte
- Schätzungen auf Basis von Stichprobenkennwerten (z.B. Mittelwerte oder Anteilswerte)
- Diese Kennwerte können ebenfalls in z- (bzw. t-)
 Werte transformiert und für
 Wahrscheinlichkeitsaussagen genutzt werden

Inferenzstatistik

Grundgesamtheit

(Erwartungswert – "Durchschnitt der Grundgesamtheit")

Stichprobe

Inferenz

 \bar{x} Statistik

(Arithmetisches Mittel Stichprobe)

Inferenzstatistik

Inferenzstatistik

Grundgesamtheit

Grundannahmen über die Verteilung von Stichprobenkennwerten

(Erwartungswert – "Durchschnitt der Grundgesamtheit")

Statistik $\bar{\chi}$ (Arithmetisches Mittel

Stichproben und Grundgesamtheit

- Stichprobenfehler (Stichprobenschwankung/Sampling Error):
 - Empirische Ergebnisse einer Zufallsstichprobe weichen immer (mehr oder weniger) vom tatsächlichen Wert in Grundgesamtheit ab
 - \rightarrow Diskrepanz zwischen Stichprobenkennwert \bar{x} und Populationskennwert μ
 - Berechnung eines Standardfehlers

Stichproben und Grundgesamtheit

- Da wir den "wahren" Wert in der GG nicht kennen, wissen wir nicht ob unser Stichprobenfehler groß oder klein ist
 - Stichprobenergebnisse variieren wir können eine "gute" oder "schlechte" Stichprobe erwischen
 - Zufällige Einflüsse: Unterschiedliche Stichproben = unterschiedliche Beobachtungseinheiten
- Aber: Grundannahmen über die Verteilung von Stichprobenkennwerten!

Zentrales Grenzwerttheorem

Auch: zentraler Grenzwertsatz

Definition:

- Eine Stichprobenkennwerteverteilung für unendlich viele Stichproben von Mittelwerten nähert sich der Normalverteilung an, falls die Stichproben ausreichend groß sind (n>= 30) oder die Werte in der GG normalverteilt sind
- Der Erwartungswert E der Stichprobenmittelwerte entspricht dem "wahren" Mittelwert der GG

$$\mu$$
: $E(\bar{x}) = \mu$

Stichprobenkennwerteverteilung

Wie können wir das wissen?

- Es werden theoretisch unendlich viele Stichproben vom jeweils gleichen Umfang n aus derselben Grundgesamtheit gezogen.
- Für jede einzelne Stichprobe wird der interessierende Kennwert (hier arithmetisches Mittel) berechnet
- → Stichprobenmittelwerteverteilung
 (Stichprobenkennwerteverteilung), "theoretische"
 Verteilung

Simulationsbeispiel

- Es werden theoretisch unendlich viele Stichproben vom jeweils gleichen Umfang n aus derselben Population gezogen (Simulationsbeispiel n=100.000)
- Für jede einzelne Stichprobe wird der interessierende Kennwert (hier arithmetisches Mittel, funktioniert aber auch mit Anteilswert) berechnet

Simulationsbeispiel

- Simulierte Daten, Modellpopulation N= 100.000,
- Unterschiedliche Verteilungsformen
- Für jede Verteilungsform: jeweils 1.000 Zufallsstichproben vom Umfang n= 500; Berechnung \bar{x} für jede einzelne Stichprobe
- Berechnung des arithmetischen Mittels aus diesen 1000 Mittelwerten
- Wie sieht die Verteilung der Mittelwerte aus? Was passiert? (Siehe auch Abbildung 22 im Lehrbrief)

Verteilung der Stichprobenmittelwerte:

Normalverteilung

Population:

Verteilung der Stichprobenmittelwerte:

Gleichverteilung

Population:

Verteilung der Stichprobenmittelwerte:

Zentrales Grenzwerttheorem

- Zentrale Tendenz der Verteilung von Stichprobenkennwerten (Mittelwerte, aber auch Anteilswerte)
- Unabhängig von der Verteilung eines interessierenden Merkmals in der Population wird die Verteilung der Stichprobenmittelwerte (und Anteilswerte) normalverteilt um μ sein
 - falls die Stichprobe ausreichend groß ist (n>= 30)
 - oder die Werte in der Population normalverteilt sind

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist 43,9

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Die arithmetischen Mittel verschiedener Stichproben sind (mit zunehmender Anzahl an Beobachtungen n) normalverteilt um das arithmetische Mittel μ der

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Die arithmetischen Mittel verschiedener Stichproben sind (mit zunehmender Anzahl an Beobachtungen n) normalverteilt um das arithmetische Mittel μ der

Stichprobenkennwerteverteilung Alter

Arithmetisches Mittel des Alters der dt. Bevölkerung (μ) ist
 43,9 Jahre (vgl. (Destatis Zensus 2011: https://www.destatis.de/DE/ZahlenFakten/ImFokus/Bevoelkerung/AltersstrukturZensus.html)

Standardfehler des Mittels

- Standardabweichung der Stichprobenmittelwerte als Standardfehler der Stichprobenmittelwerte oder Standardfehler des Mittels (kurz: Standardfehler, $\sigma_{\bar{\chi}}$)
- Durchschnittliche Streuung der arithmetischen Mittel
- Informiert darüber, wie präzise ein
 Stichprobenmittelwert den Populationsmittelwert schätzt
- Informiert über die Größe der Diskrepanz zwischen einem Stichprobenmittelwert \bar{x} und dem Populationsmittelwert μ
- Englische Bezeichnung: Standard Error (S.E.)

Standardfehler des Mittels

- Ein relativ kleiner Standardfehler bedeutet, dass die Stichprobenmittelwerte alle relativ ähnlich sind, d.h. grafisch wenig streuen
- Ein relativ großer Standardfehler bedeutet, dass die Stichprobenmittelwerte alle relativ unähnlich sind, d.h. stärker streuen
- Je größer der Standardfehler desto unsicherer die Schätzung
- Formal: $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

Beispiel: Standardfehler

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n= 4 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert?

Beispiel: Standardfehler

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n=4 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert? $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n= 4 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert? → S.E. =5

Übung: Standardfehler

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

- Gegeben sei für ein interessierendes Merkmal eine Population mit der Standardabweichung σ = 10.
- Wie groß ist die durchschnittliche Abweichung zwischen dem Mittelwert einer Stichprobe für n= 25 zufällig aus dieser Population ausgewählten Beobachtungseinheiten und dem Populationsmittelwert?

Durch welche Faktoren wird der Standardfehler beeinflusst?

1. Varianz des Merkmals in der Grundgesamtheit

 Je größer die Varianz des Merkmales in der Population, desto größer ist der Standardfehler der Stichprobenmittelwerte.

Durch welche Faktoren wird der Standardfehler noch beeinflusst?

Stichprobengröße (n)	Standardfehler	
1	$\sigma_{ar{X}} = rac{10}{\sqrt{1}}$	= 10
9	$\sigma_{\bar{X}} = \frac{10}{\sqrt{9}}$	= 3.33
25	$\sigma_{ar{X}} = rac{10}{\sqrt{25}}$	= 2
100	$\sigma_{ar{X}} = rac{10}{\sqrt{100}}$	= 1

Durch welche Faktoren wird der Standardfehler beeinflusst?

2. Stichprobenumfang

- "Gesetz der großen Zahl": Je größer der Stichprobenumfang, desto kleiner ist der Standardfehler, denn:
 - mit steigendem Stichprobenumfang wird die Informationsunsicherheit über die Grundgesamtheit reduziert

- Zusammenhang ist negativ: Je größer die Stichprobe, desto kleiner der Standardfehler
- Zusammenhang ist monoton, aber nicht-linear

Stichprobengröße (n)	Standardfehler	
1	$\sigma_{ar{X}} = rac{10}{\sqrt{1}}$	= 10
9	$\sigma_{\bar{X}} = \frac{10}{\sqrt{9}}$	= 3.33
25	$\sigma_{\bar{X}} = \frac{10}{\sqrt{25}}$	= 2
100	$\sigma_{ar{X}} = rac{10}{\sqrt{100}}$	= 1

Fazit Standardfehler

- Durchschnittliche Streuung aller Stichprobenmittelwerte
- Maß für die Genauigkeit des Stichprobenmittelwerts
- Interpretation?
 - Je kleiner desto besser (da präziser)
 - (Standard-)Normalverteilung als "Hilfe" für Berechnung von Wahrscheinlichkeiten

Gegeben sei eine Grundgesamtheit mit μ = 50 und σ = 12.

- a) Wie lautet der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?
- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 4 für die Verteilung der Stichprobenmittelwerte zu erwarten?
- c) Wie lautet der Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=36?
- d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 36 für die Verteilung der Stichprobenmittelwerte zu erwarten?

Gegeben sei eine Population mit μ = 50 und σ = 12.

a) Wie lautet der Erwartungswert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?

$$\mu = 50; \sigma_{\bar{X}} = \frac{12}{\sqrt{4}} = 6$$

- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n=4 für die Verteilung der Stichprobenmittelwerte zu erwarten? Keine Normalverteilung.
- c) Wie lautet der Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=36?

d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 36 für die Verteilung der Stichprobenmittelwerte zu erwarten?

Gegeben sei eine Population mit μ = 50 und σ = 12.

a) Wie lautet der Erwartungswert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?

 $\mu = 50; \sigma_{\bar{X}} = \frac{12}{\sqrt{4}} = 6$

- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n=4 für die Verteilung der Stichprobenmittelwerte zu erwarten? Keine Normalverteilung.
- c) Wie lautet der (erwartete) Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von *n*= 36?

 $\mu = 50$; $\sigma_{\bar{X}} = \frac{12}{\sqrt{36}} = 2$

d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 36 für die Verteilung der Stichprobenmittelwerte zu erwarten?

Gegeben sei eine Population mit μ = 50 und σ = 12.

a) Wie lautet der Erwartungswert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=4?

$$\mu = 50; \sigma_{\bar{X}} = \frac{12}{\sqrt{4}} = 6$$

- b) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 4 für die Verteilung der Stichprobenmittelwerte zu erwarten? Keine Normalverteilung.
- c) Wie lautet der Mittelwert und der Standardfehler für die Verteilung der Stichprobenmittelwerte für eine Stichprobengröße von n=36?

$$\mu = 50$$
; $\sigma_{\bar{X}} = \frac{12}{\sqrt{36}} = 2$

d) Angenommen die Verteilung in der Population sei nicht normalverteilt; welche Form wäre dann bei n = 36 für die Verteilung der Stichprobenmittelwerte zu erwarten? Normalverteilung

Stichprobenmittelwerte, Standardfehler und Tus-LIEBIG-Wahrscheinlichkeit

Beispiel

- Arithmetisches Mittel des Alters der Bevölkerung (μ) ist 43,9 Jahre
- Wie hoch ist die Wahrscheinlichkeit einen Stichprobenmittelwert $\bar{x} = 32$ Jahre zufällig zu ziehen?

Stichprobenmittelwerte, Standardfehler und Tus-LIEBIG-Wahrscheinlichkeit

- Hängt vom Standardfehler $\sigma_{ar{\chi}}$ ab
- Arithmetische Mittel des Alters der Bevölkerung (μ) ist 43,9 Jahre
- Wie hoch ist die Wahrscheinlichkeit einen Stichprobenmittelwert $\bar{x} = 32$ Jahre zufällig zu ziehen?
- 3 verschiedene Streuungsbeispiele:
 - $\sigma_{\bar{x}} = 15$ Jahre, $\bar{x} = 32$ Jahre
 - $\sigma_{\bar{x}} = 10$ Jahre, $\bar{x} = 32$ Jahre
 - $\sigma_{\bar{x}} = 5$ Jahre, $\bar{x} = 32$ Jahre

Stichprobenkennwerteverteilung

• $\mu=43.9$ Jahre und $\sigma_{\bar{\chi}}=15$

Stichprobenkennwerteverteilung Alter

Stichprobenkennwerteverteilung

• $\mu=43.9$ Jahre und $\sigma_{\bar{x}}=10$

Stichprobenkennwerteverteilung

• $\mu=43,9$ Jahre und $\sigma_{\bar{x}}=5$

 $\bar{x} = 32$ Jahre sehr unwahrscheinlich

Stichprobenkennwerteverteilung Alter