JUSTIFIQUEU TOTES LES RESPOSTES

- 1. a) (0.5 punts) Definiu graf bipartit.
 - b) (0.5 punts) Doneu una condició necessària i suficient perquè un graf G sigui bipartit.
 - c) (1 punt) Demostreu que si G = (V, A) és un graf bipartit d'ordre n i mida m, aleshores es compleix $m \le n^2/4$.
- **2.** Sigui G = (V, A) un graf d'ordre n i mida m amb conjunt de vèrtexs $V = \{x_1, x_2, \ldots, x_n\}$. Definim el graf $G^* = (V^*, A^*)$ que té per conjunt de vèrtexs $V^* = V \cup \{y_1, y_2, \ldots, y_n\}$ i arestes $A^* = A \cup \{x_1y_1, x_2y_2, \ldots, x_ny_n\}$.
 - (a) i) (0.5 punts) Calculeu l'ordre i la mida de G^* en funció de n i m.
 - ii) (0.5 punts) Suposem que la seqüència de graus de G és (d_1, \ldots, d_n) . Quina és la seqüència de graus de G^* ?
 - (b) (1 punt) Suposem que G és un graf cicle d'ordre $n, n \geq 3$. Calculeu el radi i el diàmetre de G^* segons els valors de n. Quins són els vèrtexs centrals?
 - (c) Raoneu per a quins valors de n el graf G^* és bipartit en els casos següents:
 - i) (0.5 punts) si G és un cicle d'ordre $n, n \geq 3$;
 - ii) (0.5 punts) si G és un graf complet d'ordre $n, n \ge 1$.
 - (d) (1 punt) Suposem que G és un graf connex d'ordre n amb exactament 3 arestes pont. Quants vèrtexs de tall i quantes arestes pont té el graf G^* ?
 - (e) Suposem que G és un graf bipartit complet $K_{3,4}$. Calculeu en cada cas el mínim nombre d'arestes que cal afegir a G^* :
 - i) (1 punt) per tal d'obtenir un graf que sigui eulerià;
 - ii) (1 punt) per tal d'obtenir un graf que sigui hamiltonià.
 - (f) (2 punts) Dibuixeu els arbres generadors de G^* obtinguts en aplicar els algorismes BFS i DFS quan G és el graf $K_{3,4}$. En aplicar els algorismes suposeu que: les parts estables de $K_{3,4}$ són $\{x_1, x_2, x_3\}$ i $\{x_4, x_5, x_6, x_7\}$; l'algorisme comença en el vèrtex x_1 ; i els vèrtexs de G^* estan ordenats $x_1, x_2, x_3, x_4, x_5, x_6, x_7, y_1, y_2, y_3, y_4, y_5, y_6, y_7$. Doneu en cada cas l'ordre en que s'afegeixen els vèrtexs a l'arbre generador.

Informacions

- Durada de l'examen: 1h 25m
- S'ha de respondre amb tinta blava o negra.
- Cal lliurar els dos exercicis per separat.
- No es poden utilitzar ni llibres, ni apunts, ni calculadores, ni mòbils, ni dispositus electrònics que puguin emmagatzemar, emetre o rebre informació, ...
- Publicació de les notes: 25/11/2020.
- Revisió de l'examen: es publicarà al "racó" el procediment a seguir.

1. a) (0.5 punts) Definiu graf bipartit.

Solució. Un graf G=(V,A) és bipartit si i només si hi ha una partició del conjunt de vèrtexs en dos parts V_1 i V_2 de manera que tota aresta és incident amb un vèrtex de V_1 i amb un vèrtex de V_2 . És a dir, $V=V_1\cup V_2$, amb $V_1,V_2\neq\emptyset$, $V_1\cap V_2=\emptyset$, i si $a=xy\in A$ aleshores $x\in V_1$ i $y\in V_2$, o bé $y\in V_1$ i $x\in V_2$.

b) (0.5 punts) Doneu una condició necessària i suficient perquè un graf G sigui bipartit.

Solució. Un graf és bipartit si i només si no té cicles de longitud senar. O el que és el mateix, tot cicle de G té longitud parella.

c) (1 punt) Demostreu que si G = (V, A) és un graf bipartit d'ordre n i mida m, aleshores es compleix $m \le n^2/4$.

Solució. Suposem que les parts estables de G són V_1 i V_2 , amb $|V_1| = r$ i $|V_2| = s$, r+s=n. Aleshores, la mida del graf G és com a molt la mida del graf bipartit complet $K_{r,s}$, és a dir $m \le rs$. Es pot demostrar que es compleix $rs \le n^2/4$, per a qualsevol parell d'enters r i s tals que r+s=n. En efecte, la designaltat $rs \le n^2/4$ és equivalent a:

$$rs \le n^2/4 \Leftrightarrow rs \le (r+s)^2/4 \Leftrightarrow rs \le (r^2+s^2+2rs)/4$$
$$\Leftrightarrow 4rs \le r^2+s^2+2rs \Leftrightarrow 0 \le r^2+s^2-2rs \Leftrightarrow 0 \le (r-s)^2$$

L'última desigualtat és certa perquè tot quadrat és positiu. Per tant,

$$m \le rs \le n^2/4$$
,

tal com volíem demostrar.

2. Sigui G = (V, A) un graf d'ordre n i mida m amb conjunt de vèrtexs $V = \{x_1, x_2, \ldots, x_n\}$. Definim el graf $G^* = (V^*, A^*)$ que té per conjunt de vèrtexs $V^* = V \cup \{y_1, y_2, \ldots, y_n\}$ i arestes $A^* = A \cup \{x_1y_1, x_2y_2, \ldots, x_ny_n\}$.

Observació. Veiem primer algunes propietats generals del graf G^* que utilitzarem després. El graf G^* s'obté afegint una fulla adjacent a cadascun dels vèrtexs de G. Per tant, es compleix:

- G* conté el graf G com a subgraf;
- la distància entre dos vèrtexs diferents de G^* és $d_{G^*}(x_i, x_j) = d_G(x_i, x_j), d_{G^*}(x_i, y_j) = d_G(x_i, x_j) + 1, i d_{G^*}(y_i, y_j) = d_G(y_i, y_j) + 2;$
- G^* i G tenen exactament els mateixos cicles, ja que un cicle de G^* no pot contenir vèrtexs del conjunt $\{y_1, \ldots, y_k\}$ per ser vèrtexs de grau 1.
- (a) i) (0.5 punts) Calculeu l'ordre i la mida de G^* en funció de n i m. Solució. L'ordre de G^* és $|V^*| = |V| + n = 2n$ i la mida de G^* és $|A^*| = |A| + n = m + n$.
 - ii) (0.5 punts) Suposem que la seqüència de graus de G és (d_1, \ldots, d_n) . Quina és la seqüència de graus de G^* ?

Solució. Per la definició del graf G^* , tenim que $g_{G^*}(x_i) = g_G(x_i) + 1$ i $g_{G^*}(y_i) = 1$. Per tant, la seqüència de graus de G^* és $(d_1 + 1, \dots, d_n + 1, \underbrace{1, \dots, 1}_{n})$

(b) (1 punt) Suposem que G és un graf cicle d'ordre $n, n \geq 3$. Calculeu el radi i el diàmetre de G^* segons els valors de n. Quins són els vèrtexs centrals?

Solució. El diàmetre és el màxim de les excentriciats dels vèrtexs de G^* i el radi, el mínim. Per simetria, tots els vèrtexs del graf cicle G, x_1, \ldots, x_n , tenen la mateixa excentricitat en G^* i els vèrtexs y_1, \ldots, y_n tenen la mateixa excentricitat en G^* . Per tant, només cal calcular l'excentricitat d'un vèrtex del cicle i d'un vèrtex que no sigui del cicle.

Recordem que tots els vèrtexs d'un cicle C_n tenen excentricitat $\lfloor n/2 \rfloor$. Per tant, l'excentricitat del vèrtex x_i en G^* és $\lfloor n/2 \rfloor + 1$, ja que el vèrtex més allunyat d' x_i és la fulla que penja del vèrtex més allunyat d' x_i en el cicle, i l'excentricitat del vèrtex y_j és $\lfloor n/2 \rfloor + 2$, ja que el vèrtex més allunyat d' y_j és la fulla que penja del vèrtex més allunyat d' x_i en el cicle.

Per tant, $r(G^*) = \lfloor n/2 \rfloor + 1$ i $D(G^*) = \lfloor n/2 \rfloor + 2$. Els vèrtexs centrals són els vèrtexs que tenen excentricitat mínima (igual al radi), que en aquest cas són els vèrtexs del cicle, $\{x_1, \ldots, x_n\}$.

- (c) Raoneu per a quins valors de n el graf G^* és bipartit en els casos següents:
 - i) (0.5 punts) si G és un cicle d'ordre $n, n \geq 3$;

Solució. El graf G^* és bipartit si i només si no té cicles de longitud senar.

Si n és senar, G^* no és bipartit perquè conté C_n com a subgraf, és a dir, G^* conté un cicle de longitud senar. Si n és parell, aleshores G^* no conté cicles de longitud senar, ja que G^* només conté el cicle C_n .

Per tant, G^* és bipartit si i només si n és parell.

ii) (0.5 punts) si G és un graf complet d'ordre $n, n \ge 1$.

Solució. Com en l'apartat anterior, comprovem en quins casos el graf G^* no conté cicles de longitud senar.

Si n = 1, aleshores G^* és el graf K_2 , que és bipartit. Si n = 2, aleshores G^* és el graf trajecte d'ordre 4, que és bipartit, perquè no té cicles. Si $n \geq 3$, aleshores G^* no és bipartit, ja que G^* conté K_n com a subgraf i tot graf complet d'ordre almenys 3 conté un cicle d'ordre 3, o sigui, un cicle de longitud senar.

Per tant, G^* és bipartit si i només si $n \in \{1, 2\}$.

(d) (1 punt) Suposem que G és un graf connex d'ordre n amb exactament 3 arestes pont. Quants vèrtexs de tall i quantes arestes pont té el graf G^* ?

Solució. Els vèrtexs y_i , $1 \le i \le n$, no són mai de tall en G^* , ja que tenen grau 1. Els vèrtexs x_i , $1 \le i \le n$, són tots de tall en G^* , ja que al sumprimir x_i de G^* , el vèrtex y_i queda aïllat de la resta de vèrtexs. És a dir, G^* és connex i $G^* - x_i$ no és connex (observem que el graf $G^* - \{x_i, y_i\}$ té almenys un vèrtex perquè G té almenys 3 arestes i per tant G és un graf no trivial), d'on deduïm que x_i és de tall en G^* .

Per tant, G^* té exactament n vèrtexs de tall.

Una aresta és pont si i només si, no és de cap cicle. Hem vist abans que G^* i G tenen els mateixos cicles. Per tant, una aresta de G^* és d'un cicle en G^* si i només si és d'un cicle en G, d'on deduïm que les arestes pont de G^* són les arestes pont de G i totes les les arestes de la forma x_iy_i , $1 \le i \le n$. Per tant, G^* té exactament n+3 arestes pont.

- (e) Suposem que G és un graf bipartit complet $K_{3,4}$. Calculeu en cada cas el mínim nombre d'arestes que cal afegir a G^* :
 - i) (1 punt) per tal d'obtenir un graf que sigui eulerià;

Solució. Un graf és eulerià si i només si és connex i tot vèrtex té grau parell. El graf G^* és connex perquè $K_{3,4}$ ho és i l'únic que fem per a construir G^* és penjar fulles a cadascun dels vèrtexs de $K_{3,4}$. Per l'apartat a)ii), la seqüència de graus de G^* és (5,5,5,4,4,4,4,1,1,1,1,1,1,1,1). Aleshores, G^* té 10 vèrtexs de grau senar, per tant, cal afegir almenys 10/2 arestes, ja que en afegir una aresta es modifica

el grau d'exactament 2 vèrtexs. Veiem amb un exemple que amb 5 arestes n'hi ha prou:

A l'esquerra, el graf G^* amb els vèrtexs de grau senar en blau. A la dreta, si afegim les 5 arestes vermelles al graf G^* obtenim un graf eulerià, ja que el graf és connex i tots els vèrtexs tenen grau parell.

ii) (1 punt) per tal d'obtenir un graf que sigui hamiltonià.

Solució. Un graf hamiltonià té tots els vèrtexs de grau almenys 2. El graf G^* té exactament 7 vèrtexs de grau 1. Per tant, cal afegir almenys $4(=\lceil 7/2 \rceil)$ arestes, ja que en afegir una aresta es modifica el grau d'exactament 2 vèrtexs. Veiem amb un exemple que amb 4 arestes és suficient:

A l'esquerra, en vermell les arestes que afegim al graf G^* per tal d'obtenir un graf hamiltonià. A la dreta, un cicle hamiltonià en el nou graf.

(f) (2 punts) Dibuixeu els arbres generadors de G^* obtinguts en aplicar els algorismes BFS i DFS quan G és el graf $K_{3,4}$. En aplicar els algorismes suposeu que: les parts estables de $K_{3,4}$ són $\{x_1, x_2, x_3\}$ i $\{x_4, x_5, x_6, x_7\}$; l'algorisme comença en el vèrtex x_1 ; i els vèrtexs de G^* estan ordenats $x_1, x_2, x_3, x_4, x_5, x_6, x_7, y_1, y_2, y_3, y_4, y_5, y_6, y_7$. Doneu en cada cas l'ordre en que s'afegeixen els vèrtexs a l'arbre generador.

Solució. Veiem a la figura el graf G^* i els arbres obtinguts.

A l'esquerra, el graf G^* . Al centre, l'arbre obtingut en aplicar l'algorisme BFS. L'arbre està dibuixat de manera que els vèrtexs s'afegeixen a l'arbre d'esquerra a dreta, i de dalt a baix. A la dreta, l'arbre obtingut en aplicar l'algorisme DFS. L'arbre està dibuixat de manera que els vèrtexs s'afegeixen a l'arbre de dalt a baix, i d'esquerra a dreta. Concretament, l'ordre en què s'afegeixen els vèrtexs als arbres generadors obtinguts és:

BFS: $x_1, x_4, x_5, x_6, x_7, y_1, x_2, x_3, y_4, y_5, y_6, y_7, y_2, y_3$. DFS: $x_1, x_4, x_2, x_5, x_3, x_6, y_6, x_7, y_7, y_3, y_5, y_2, y_4, y_1$.

4