STAT 6104 Time Series Midterm 7:00-9:30. Monday, 23 Oct 2017

Name:	Major:

1. (45 marks) The data of quarterly property price index of a city is given by

$$\mathbf{x} = (129, 138, 132, 144, 169, 188, 170, 206, 220, 248, 226, 248)$$
.

- a) (5 marks) Sketch a time series plot of \mathbf{x} .
- b) (10 marks) Suggest the period of seasonal effect. Suggest a suitable filter (of the form $(a_{-k}, \ldots, a_0, \ldots, a_k)$) to estimate the trend of the data. Find \hat{T}_4 and \hat{T}_9 (estimated trends at time 4 and 9) using your suggested filter.
- c) (10 marks) Consider an estimated trend

$$\hat{T} = (120, 132, 144, 155, 167, 179, 191, 203, 215, 226, 238, 250)$$

Estimate the seasonal effects.

- d) (10 marks) Using c), find the residuals $\hat{\mathbf{N}}$ of the data after accounting for the trend and seasonal effects. Sketch a time series plot of $\hat{\mathbf{N}}$.
- e) (10 marks) Find the lag one sample ACF of $\hat{\mathbf{N}}$. Based of the lag one sample ACF, test whether the residual $\hat{\mathbf{N}}$ is white noise.
- 2. (25 marks) Given $a_t \stackrel{i.i.d.}{\sim} N(0,1)$. Identify the following ARIMA models (state the order of the model):

a)
$$Z_t = 0.2Z_{t-1} + 0.24Z_{t-2} + a_t - 3a_{t-2}$$
.

b)
$$Z_t = 0.49Z_{t-2} + a_t - 0.5a_{t-1} - 0.14a_{t-2}$$
.

c)
$$Z_t = 1.8Z_{t-1} - 0.8Z_{t-2} + a_t - 4a_{t-1} + 6a_{t-2} - 4a_{t-3} + a_{t-4}$$
.

d)
$$Z_t = 3Z_{t-1} - 3Z_{t-2} + Z_{t-3} + a_t - 1.2a_{t-1} + 0.2a_{t-2}$$
.

e)
$$Z_t = -8Z_{t-1} + 0.81Z_{t-2} + a_t + 7.6a_{t-1} - 4.05a_{t-2}$$
.

State whether the models have stationary solutions. State whether the models are causal and invertible.

3. (20 marks) Consider the ARMA(1,1) model

$$X_t - 0.5X_{t-1} = Z_t + 1.5Z_{t-1}, \quad Z_t \stackrel{i.i.d.}{\sim} N(0,9),$$

where $N(\mu, \sigma^2)$ denotes normal distribution with mean μ and variance σ^2 .

a) (10 marks) Find the values of ψ_k , k = 1,2,3... if the model is represented as

$$X_t = Z_t - \sum_{s=1}^{\infty} \psi_k Z_{t-k} .$$

- b) (8 marks) Find the auto-covariances (ACVF) γ_k , k=0,1,2,3,... of the model.
- c) (2 marks) Is this model useful in practice? Why?
- 4. (5 marks) Consider the time series $Y_t = Z_t + 0.5Z_{t-1} \times Z_{t-2}$, where $Z_t \stackrel{iid}{\sim} N(0,1)$. Find the ACVF function of Y_t .
- 5. (5 marks) Suppose that a time series $\{Y_t\}$ has covariance structure $(\gamma(0), \gamma(1), \gamma(2)) = (1.2, 1, 0.2)$.
 - a) (3 marks) By consider some property of the quantity $Y_t 2Y_{t-1} + Y_{t-2}$, argue that the covariance structure is not reasonable.
 - b) (2 marks) Which set(s) are more reasonable covariance structure?
 - i) $(\gamma(0), \gamma(1), \gamma(2)) = (2, 1, 0.2)$
 - ii) $(\gamma(0), \gamma(1), \gamma(2)) = (1, 1, 0.2)$
 - iii) $(\gamma(0), \gamma(1), \gamma(2)) = (1.2, 1, 0)$

End of paper