Fundamentos de Sistemas Computacionias (IC/UFRJ)

Aula 8: Redes de Computadores e a Internet - Núcleo da rede

Prof. Silvana Rossetto (IC/CCMN/UFRJ)

O núcleo da rede

O núcleo da rede

- Como os recursos do núcleo da rede são gerenciados para transmitir dados de um sistema final para outro?
- Enlaces e comutadores podem ser usados para transmissões diferentes ao mesmo tempo?

Comutação de circuitos e de pacotes

- Comutação por circuitos: recursos ao longo de todo o caminho alocados a priori (taxa constante de transmissão garantida)
- Comutação por pacotes: recursos alocados por demanda (podem gerar filas)

Comutação de circuitos e de pacotes

Quais as **vantagens e desvantagens** de cada modelo de comutação?

- Na telefonia clássica: redes de comutação de circuitos
- Na Internet: redes de comutação de pacotes (melhor esforço para atender bem)

Comutação de circuitos

Comutação de circuitos

- comutadores de circuitos interconectados por enlaces
- cada enlace com N circuitos, suportando N conexões simultâneas
- cada sistema final se conecta diretamente a um dos circuitos
- quando dois sistemas finais se comunicam, uma conexão fim-a-fim é estabelecida
- fração de 1/N da largura de banda do enlace para cada conexão

Multiplexação em redes de comutação de circuitos

- FDM: multiplexação com banca de frequência reservada para cada conexão
- TDM: multiplexação com o tempo dividido em quadros de duração fixa, cada quadro dividido em compartimentos alocados para cada conexão

Multiplexação em redes de comutação de circuitos

Multiplexação em redes de comutação de circuitos

Quais dificuldades/desvantagens temos nessa técnica?

Comutação de circuitos

dificuldades/desvantagens

- Circuitos dedicados ficam ociosos durante períodos de silêncio (ausência de dados)
- Complexidade de sinalização para coordenar a operação dos comutadores fim-a-fim

Exercício

Quanto tempo será necessário para transmitir um arquivo de 640 Kbits do sistema final A para o sistema final B por uma rede de comutação de circuitos?

- todos os circuitos usam TDM de 24 compartimentos com taxa de 1,536 Mbps
- estabelecer o circuito consome 500 milisegundos
- desconsidera-se o tempo de propagação (veremos adiante)

Exercício

Solução

- cada circuito tem taxa de 1,536Mbps / 24 = 64Kbps
- então temos 640 Kbits / 64 Kbps = 10 seg
- somando 500 milisegundos de estabelecimento de conexão, temos 10,5 seg (independente da quantidade de enlaces!)

Comutação de pacotes

Pacotes (fragmentos de mensagens longas) são transmitidos por cada enlace de comunicação, usando toda a capacidade do enlace

- em geral, comutadores armazenam e reenviam pacotes nas entradas dos enlaces
- recebem o pacote inteiro para então começar a transmití-lo para o enlace de saída
- atraso de armazenamento e reenvio na entrada de cada enlace

Comutação de pacotes

dificuldades/desvantagens

- Para cada enlace do comutador, há uma fila de saída de pacotes
- O tempo de espera na fila pode variar dependendo do congestionamento da rede
- Pacotes poder ser descartados se a fila etiver cheia

Exercício

Quanto tempo será necessário para transmitir um pacote de **L bits** do sistema final A para o sistema final B por uma rede de comutação de pacotes?

- sendo Q a quantidade de enlaces entre A e B
- e R bps a taxa de transmissão de cada enlace
- (desconsidera-se o tempo de propagação e de atraso nas filas dos roteadores)

Exercício

Solução

O pacote deverá ser armazenado e retransmitido em cada enlace. O tempo de transmissão em cada enlace será de L/R. Então, para Q enlaces teremos: Q*(L/R) segundos.

Comutação de circuitos e pacotes

Comutação de circuitos e pacotes

- Comutação de circuitos: aloca previamente a utilização do enlace, independente da demanda
- Comutação de pacotes: aloca enlaces por demanda (multiplexação estatística)

Pacotes melhor do que circuito?

Ótimo para dados em rajadas

- Multiplexação estatística dos recursos, mais simples e sem configuração de chamada
- Mas, congestionamento excessivo causa atraso e perda
- Buffers em excesso criam filas com enormes atrasos

Como fornecer comportamento tipo circuito?

Problema não totalmente resolvido, mas Internet evolui, adequando-se para todos os tipos de aplicações

Como os pacotes percorrem a rede?

Como o roteador determina o enlace de saída de um pacote?

- na Internet, cada pacote contem seu endereço de destino, que possui uma estrutura hierárquica (como endereços postais)
- cada roteador possui uma base de conhecimento que mapeia o endereço de destino paraum enlace de saída

Como as bases de conhecimento se configuram?

Manualmente? Automaticamente?

Como as bases de conhecimento se configuram?

Os protocolos de roteamento incluem mecanismos para atualizar os caminhos mais curtos de cada roteador até seus possíveis destinos e ajustar a base conhecimento automaticamente.

Pacotes com mesmo destino podem seguir rotas diversas, dependendo do estado da base de conhecimento no instante de encaminhamento do pacote

ISPs e backbones na Internet

Na Internet pública, redes de acesso na borda são conectadas ao restante da rede por uma hierarquia de ISPs

ISPs de nível 1

- conectam-se diretamente a cada um dos outros ISPs de nível 1
- conectam-se a um grande número de ISPs de nível 2 e a outras redes
- cobertura internacional
- formam redes de backbone

Pontos de acesso (POPs)

Os pontos de conexão entre ISPs são chamados **pontos de presença** (POPs) (um ou mais roteadores com os quais roteadores em outro ISP podem se conectar)

Pontos de acesso (POPs)

Referências bibliográficas

J. Kurose and K. Ross, Computer
Networking: A Top-Down Approach,
Addison-Wesley, 5^a ed., 2009