Next >

:= mide meni

Introduction to Neural Networks and TensorFlow

Practice Assignment: Classification Using Deep Neural Networks

N-grams vs. Sequence Models

- ✔ Video: Lesson Introduction 49 sec
- (Video: Traditional Language models 3 min
- Reading: Traditional Language models 5 min
- (>) Video: Recurrent Neural Networks 4 min
- Reading: Recurrent Neural Networks 4 min
- (Video: Applications of RNNs 3 min
- Reading: Application of RNNs
- **✓ Video:** Math in Simple RNNs 3 min
- Reading: Math in Simple RNNs
- **⊘ Lab:** Hidden State Activation 20 min
- **Video:** Cost Function for RNNs 2 min
- Reading: Cost Function for RNNs
- ▶ Video: Implementation Note 1 min
- Reading: Implementation Note
- ▶ Video: Gated Recurrent Units 4 min
- Reading: Gated Recurrent Units
- ✓ Lab: Vanilla RNNs, GRUs and the scan function 20 min
- RNNs 4 min
- Reading: Deep and Bi-directional RNNs 10 min
- Reading: Calculating Perplexity
- **Lab:** Calculating Perplexity 20 min

Search

Deep and Bi-directional RNNs

Bi-directional RNNs are important, because knowing what is next in the sentence could give you more context about the sentence itself.

So you can see, in order to make a prediction \hat{y} , you will use the hidden states from both directions and combine them to make one hidden state, you can then proceed as you would with a simple vanilla RNN. When implementing Deep RNNs, you would compute the following.

Note that at layer l, you are using the input from the bottom $a^{[l-1]}$ and the hidden state h^l . That allows you to get your new h, and then to get your new a, you will train another weight matrix Wa, which you will multiply by the corresponding h add the bias and then run it through an activation layer.

Mark as completed

Dislike

□ Report an issue

< Previous