

# Logistic Regression

## Classification

Machine Learning

#### Classification

- → Email: Spam / Not Spam?
- → Online Transactions: Fraudulent (Yes / No)?
- > Tumor: Malignant / Benign?

$$y \in \{0,1\}$$
 0: "Negative Class" (e.g., benign tumor) 1: "Positive Class" (e.g., malignant tumor) 
$$y \in \{0,1\}$$
 1: "Positive Class" (e.g., malignant tumor)



 $\rightarrow$  Threshold classifier output  $h_{\theta}(x)$  at 0.5:

If 
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1" 
$$\text{If } h_{\theta}(x) < 0.5 \text{, predict "y = 0"}$$

Classification: 
$$y = 0$$
 or 1

$$h_{\theta}(x)$$
 can be  $\geq 1$  or  $\leq 0$ 

Logistic Regression: 
$$0 \le h_{\theta}(x) \le 1$$

$$0 \le h_{\theta}(x) \le 1$$





**Machine Learning** 

## Logistic Regression

Hypothesis Representation

#### **Logistic Regression Model**

Want 
$$0 \le h_{\theta}(x) \le 1$$

$$\underline{h_{\theta}(x)} = \mathbf{g}(\theta^T x)$$

$$\Rightarrow 9 \implies = 1 + e^{-\frac{\pi}{2}}$$

They are the same function

> Sigmoid function Logistic function



## Interpretation of Hypothesis Output

$$h_{\theta}(x)$$
 = estimated probability that  $y = 1$  on input  $x \leftarrow x$ 

Example: If 
$$\underline{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$

$$h_{\theta}(x) = 0.7$$

Tell patient that 70% chance of tumor being malignant

$$h_{\Theta}(x) = P(y=1|x;\Theta)$$

$$y = 0 \text{ or } 1$$

"probability that 
$$y = 1$$
, given  $x$ , parameterized by  $\theta$ "

$$P(y=0|y) + P(y=1|y) =$$

$$\rightarrow P(y=0|x;\theta) = 1 - P(y=1|x;\theta)$$



#### Machine Learning

# Logistic Regression

Decision boundary

#### **Logistic regression**

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict 
$$\underline{"y=1}$$
 " if  $\underline{h_{\theta}(x) \geq 0.5}$ 

predict 
$$\underline{"y=0}$$
" if  $\underline{h_{\theta}(x)<0.5}$ 



$$g(z) > 0.5$$
when  $z > 0 \text{ M}$ 
 $h_{6}(x) = g(6) \times 0.5$ 



#### **Non-linear** decision boundaries

$$\begin{array}{c} \mathbf{x}_{2} \\ \mathbf{x} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{2} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{8} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{2} \\ \mathbf{x}_{5} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{7} \\ \mathbf{x}_{8} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\ \mathbf{x}_{5} \\ \mathbf{x}_{6} \\ \mathbf{x}_{7} \\ \mathbf{x}_{1} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \\ \mathbf{x}_{3} \\ \mathbf{x}_{4} \\ \mathbf{x}_{5} \\$$



$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$



# Logistic Regression

## Cost function

Machine Learning

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

set:

m examples

$$x \in \left[\begin{array}{c} x_0 \\ x_1 \\ \cdots \\ x_n \end{array}\right] \quad x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\underline{\theta}^T x}}$$

How to fit the parameter "theta" to logistic regression in order to minimize the cost function?

How to choose parameters  $\theta$ ?

- h\_theta(x) in logistic regression is the prob of getting value "y=1"

#### **Cost function**

-> Linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)$$



$$=\frac{1}{2}\left(h_{\theta}(x)\right)-y$$





## **Logistic regression cost function**



$$-\log(h_{\theta}(x))$$





large cost.



But as 
$$h_{\theta}(x) \to 0$$
  
 $Cost \to \infty$ 

Captures intuition that if  $h_{\theta}(x) = 0$ ,

Logistic function

(predict  $P(y=1|x;\theta)=0$ ), but y=1, we'll penalize learning algorithm by a very

#### Logistic regression cost function





Machine Learning

# Logistic Regression

Simplified cost function and gradient descent

#### Logistic regression cost function

$$\Rightarrow J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\Rightarrow \operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\text{Note: } y = 0 \text{ or } 1 \text{ always}$$

$$\Rightarrow \operatorname{Cost}(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - ((-y)\log(1 - h_{\theta}(x))) = -y \log(h_{\theta}(x))$$

$$\text{If } y = 1 \text{: } \operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

$$\text{If } y = 0 \text{: } \operatorname{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

#### Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= \frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters  $\theta$ :

$$\min_{\theta} J(\theta)$$
 Great  $\Theta$ 

To make a prediction given new x:

Output 
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

#### Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

## Want $\min_{\theta} J(\theta)$ :

Vant 
$$\underline{\min_{\theta} J(\theta)}$$
:

Repeat  $\{$ 

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$\{ \text{simultaneously update all } \theta_j \}$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{n} \underbrace{\{ (h_{\theta}(x^{(i)}) - y^{(i)}) \times j \}}$$

#### **Gradient Descent**

$$J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

$$\text{Want } \min_{\theta} J(\theta):$$

$$\text{Repeat } \left\{ \begin{array}{c} \theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \\ \text{(simultaneously update all } \theta_{j} \end{array} \right)$$

Algorithm looks identical to linear regression!



Machine Learning

# Logistic Regression

# Advanced optimization

#### **Optimization algorithm**

Cost function  $\underline{J(\theta)}$ . Want  $\min_{\theta} J(\underline{\theta})$ .

Given  $\theta$ , we have code that can compute

Gradient descent:

$$\rightarrow \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

#### **Optimization algorithm**

Given  $\theta$ , we have code that can compute

#### **Optimization algorithms:**

- Gradient descent
  - Conjugate gradient
  - BFGS
  - L-BFGS

#### Advantages:

- No need to manually pick  $\alpha$
- Often faster than gradient descent.

#### **Disadvantages**:

More complex

```
Example: min 3(0)
                                                function [jVal, gradient]
\Rightarrow \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad \text{o.s.} \quad \text{o.s.}
                                                               = costFunction(theta)
                                                   jVal = (\underline{theta(1)-5)^2} + \dots
                                                               (theta(2)-5)^2;
J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2
                                                   gradient = zeros(2,1);
\rightarrow \frac{\partial}{\partial \theta_1} J(\theta) = 2(\theta_1 - 5)
                                                   gradient(1) = 2*(theta(1)-5);
                                                  -gradient(2) = 2*(theta(2)-5);
\rightarrow \frac{\partial}{\partial \theta_2} J(\theta) = 2(\theta_2 - 5)
-> options = optimset(\(\frac{\GradObj', \on'}{\on'}\), \(\frac{\MaxIter', \on'}{\OMBOSON}\));
\rightarrow initialTheta = zeros(2,1);
 [optTheta, functionVal, exitFlag] ...
       = fminunc(@costFunction, initialTheta, options);
                                         Och d>2
```

```
\begin{array}{c} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{array} theta(2) \vdots \\ \theta_n \end{array} theta(n+1)
theta =
function (jVal) (gradient) = costFunction(theta)
          jVal = [code to compute J(\theta)];
         gradient (1) = [code to compute \frac{\partial}{\partial \theta_0} J(\theta)
         gradient(2) = [code to compute \frac{\partial}{\partial \theta_1} J
         gradient(n+1) = [code to compute \frac{\partial}{\partial \theta_n} J(\theta)
```



Machine Learning

# Logistic Regression

Multi-class classification: One-vs-all

#### **Multiclass classification**

Email foldering/tagging: Work, Friends, Family, Hobby

Weather: Sunny, Cloudy, Rain, Snow

## Binary classification:

## Multi-class classification:



## One-vs-all (one-vs-rest):





#### One-vs-all

Train a logistic regression classifier  $h_{\theta}^{(i)}(x)$  for each class i to predict the probability that y=i.

On a new input  $\underline{x}$ , to make a prediction, pick the class i that maximizes



