

WHAT IS CLAIMED IS:

1. A rolling die for a ball screw, comprising:
a cylindrical portion including a helical protrusion
5 formed in an outer peripheral surface thereof for forming a
helical ball groove in a raw material of a screw shaft of the
ball screw; and
a conical lead-in portion formed in one end portion of
the cylindrical portion, the lead-in portion including a
10 plurality of frustum-cone-shaped portions,
wherein the contact angles of the frustum-cone-shaped
portions with respect to the raw material of the screw shaft
are each set so as to increase sequentially in the order starting
at and from the frustum-cone-shaped portion adjoining the
15 cylindrical portion.

2. The rolling die for a ball screw as set forth in claim
1, wherein the lead-in portion includes a first
frustum-cone-shaped portion adjoining the cylindrical portion
20 and a second frustum-cone-shaped portion adjoining the first
frustum-cone-shaped portion.

3. The rolling die for a ball screw as set forth in claim
2, wherein a contact angle of the first frustum-cone-shaped
25 portion is set at an angle of 0.4° , and a contact angle of the

second frustum-cone-shaped portion is set at an angle of 4° .

4. The rolling die for a ball screw as set forth in claim
2, a run-off portion is formed in the other end portion of the
5 cylindrical portion, a contact angle of the run-off portion
is set not more than the contact angle of the first
frustum-cone-shaped portion.

5. The rolling die for a ball screw as set forth in claim
10 2, wherein an axial-direction length L of the first
frustum-cone-shaped portion is set in the range of $\kappa \leq L \leq 10\kappa$,
where κ expresses the moving amount of the raw material of the
screw shaft per 1/2 rotation.