Машинное обучение. Метрические методы

Алексей Колесов

Белорусский государственный университет

8 ноября 2017 г.

Метод ближайших соседей

- определение ответа для объекта по ответам близких объектов
- гипотеза компактности и непрерывности
- lazy learning

Содержание

- 1 Метод ближайших соседей
- hinspace 2 Анализ метода ближайших соседей hinspace k=1
 - Анализ 1-NN
 - Проклятие размерности
- Обобщения метода

Метод ближайших соседей (k-NN)

- ullet пусть на X определена метрика ho
- ullet для $X=\mathbb{R}^d$ естественна $ho(x,x')=\sqrt{\sum_{i=1}^d (x_i-x_i')^2}$
- пусть $\pi_1(x), \dots, \pi_m(x)$ объекты S, упорядоченные по $ho(x,x_i)$

\mathbf{A} лгоритм 1 k- \mathbb{N}

Вход:
$$S = ((x_1, y_1), \dots, (x_m, y_m)); y_i \in [k]$$

1: return $h(x) \in \operatorname{argmax}_{y \in Y} |\{y_{\pi_i(x)} = y : i \leq k\}|$

Для k=1 получаем $h_{S}(x)=y_{\pi_{1}(x)}$

k-NN для регрессии

- ullet для задач регрессии естественней: $h_{S}(x) = rac{1}{k} \sum_{i=1}^{k} y_{pi_{i}(x)}$
- также часто применяют:

$$h_S(x) = \sum_{i=1}^k \frac{\rho(x, x_{\pi_i(x)})}{\sum_{j=1}^k \rho(x, x_{\pi_j(x)})} y_{\pi_i(x)}$$

Содержание

- 1 Метод ближайших соседей
- 2 Анализ метода ближайших соседей k=1
 - Анализ 1-NN
 - Проклятие размерности
- ③ Обобщения метода

Анализ

- асимптотически k-NN приближается оптимальному решающему правилу (при «хороших» распределениях)
- мы хотим анализ для конечного m
- ullet покажем, что можно достичь оценки $2L_D(h^*)+\epsilon$, где ϵ зависит от m

Предположения и обозначения

- ullet задача бинарной классификации с 0-1 функцией потерь
- ullet $X=[0,1]^d$, $ho ext{-}$ евклидова
- ullet $D_{\!\scriptscriptstyle X}$ маргинальное распределение x, $\eta(x)=\mathbb{P}[y=1|x]$
- ullet напомним, что $h^*(x) = 1_{\eta(x) > 1/2}$
- предположим, что $|\eta(x) \eta(x')| \leqslant c ||x x'||$

Оценка для 1-NN

Оценка для 1-NN

Пусть $S = (x_1, y_1), \dots, (x_m, y_m), h_S - 1$ -NN гипотеза, h^* — оптимальное решающее правило. Тогда:

$$\underset{S \sim D^m}{\mathbb{E}} [L_D(h_S)] \leqslant 2L_D(h^*) + c \underset{S \sim D^m, x \sim D}{\mathbb{E}} [||x - x_{\pi_1(x)}||]$$

Хотим:

$$\mathbb{E}_{S \sim D^{m}}[L_{D}(h_{S})] \leqslant 2L_{D}(h^{*}) + c \mathbb{E}_{S \sim D^{m}, x \sim D}[||x - x_{\pi_{1}(x)}||]$$

- $L_D(h_S) = \mathbb{E}_{(x,y)\sim D}[1_{h_S(x)\neq y}]$
- $L_D(h_S)$ вероятность получить S, затем ещё (x,y), такой что класс $\pi_1(x)$ не равен y
- $L_D(h_S)$ вероятность получить $S_x = (x_1, \dots, x_m)$, затем $x \sim D_x$, затем найти $\pi_1(x)$ и выбрать $y \sim \eta(x)$ и $y_{\pi_1(x)} \sim \eta(\pi_1(x))$, так чтоб метки не совпали

Хотим:

$$\underset{S \sim D^m}{\mathbb{E}}[L_D(h_S)] \leqslant 2L_D(h^*) + c \underset{S \sim D^m, x \sim D}{\mathbb{E}}[||x - x_{\pi_1(x)}||]$$

Распишем:

$$\mathbb{E}[L_D(h_S)] = \mathbb{E}_{S_x \sim D_x^m, x \sim D_x, y \sim \eta(x), y' \sim \eta(\pi_1(x))}[1_{y \neq y'}] \tag{1}$$

$$= \underset{S_{x} \sim D_{x}^{m}, x \sim D_{x}}{\mathbb{E}} \left[\underset{y \sim \eta(x), y' \sim \eta(\pi_{1}(x))}{\mathbb{P}} [y \neq y'] \right]$$
(2)

Хотим:

$$\mathbb{E}_{S \sim D^{m}}[L_{D}(h_{S})] \leqslant 2L_{D}(h^{*}) + c \mathbb{E}_{S \sim D^{m}, x \sim D}[||x - x_{\pi_{1}(x)}||]$$

Распишем:

$$\mathbb{P}_{y \sim \eta(x), y' \sim \eta(x')}[y \neq y'] = \eta(x')(1 - \eta(x)) + (1 - \eta(x'))\eta(x) \tag{3}$$

$$= 2\eta(x)(1 - \eta(x)) + (\eta(x) - \eta(x'))(2\eta(x) - 1)$$

$$\leq 2\eta(x)(1 - \eta(x)) + c||x - x'|| \tag{5}$$

Хотим:

$$\mathbb{E}_{S \sim D^{m}}[L_{D}(h_{S})] \leqslant 2L_{D}(h^{*}) + c \mathbb{E}_{S \sim D^{m}, x \sim D}[||x - x_{\pi_{1}(x)}||]$$

Получили:

$$\mathbb{E}_{S}[L_{D}(h_{S})] \leqslant \mathbb{E}_{x}[2\eta(x)(1-\eta(x))] + c \mathbb{E}_{S,x}[||x-x_{\pi_{1}(x)}||]$$

Заметим:

$$L_D(h^*) = \underset{\mathsf{x}}{\mathbb{E}}[\min\{\eta(\mathsf{x}), 1 - \eta(\mathsf{x})\}] \geqslant \underset{\mathsf{x}}{\mathbb{E}}[\eta(\mathsf{x})(1 - \eta(\mathsf{x}))]$$

Лемма

Безымянная лемма

Пусть C_1, \ldots, C_r множество подмножеств X. Пусть S — множество из m объектов из X, выбранных независимо с одинаковым распределением. Тогда:

$$\mathbb{E}_{S \sim D^m} \left[\sum_{i: C_i \cap S = \emptyset} \mathbb{P}[C_i] \right] \leqslant \frac{r}{me}$$

Хотим:

$$\mathbb{E}_{S \sim D^m} \left[\sum_{i: C_i \cap S = \emptyset} \mathbb{P}[C_i] \right] \leqslant \frac{r}{me}$$

•
$$\mathbb{E}_{S \sim D^m} \left[\sum_{i: C_i \cap S = \varnothing} \mathbb{P}[C_i] \right] = \sum_{i=1}^r \mathbb{P}[C_i] \mathbb{P}[C_i \cap S = \varnothing]$$

•
$$\mathbb{P}[C_i \cap S = \varnothing] = (1 - P(C_i))^m \leqslant e^{-P[C_i]m}$$

•
$$\mathbb{E}_{S \sim D^m} \left[\sum_{i: C_i \cap S = \varnothing} \right] \leqslant \sum_{i=1}^r \mathbb{P}[C_i] e^{-\mathbb{P}[C_i]m} \leqslant r \max_i \mathbb{P}[C_i] e^{-\mathbb{P}[C_i]m}$$

•
$$\max_{\alpha} \alpha e^{-m\alpha} \leqslant \frac{1}{me}$$

Оценка для 1-NN

Оценка для 1-NN

Пусть $S = (x_1, y_1), \dots, (x_m, y_m), h_S - 1$ -NN гипотеза, $h^* -$ оптимальное решающее правило. Тогда:

$$\mathbb{E}_{S \sim D^{m}}[L_{D}(h_{S})] \leq 2L_{D}(h^{*}) + 4c\sqrt{d}m^{-\frac{1}{d+1}}$$

- ullet возьмём целое число T и положим $\epsilon=1/T$, и положим сетку из $r=T^d$ кубиков со стороной ϵ (C_1,\ldots,C_r)
- ullet для любых x, x' из одного кубика: $||x-x'||\leqslant \sqrt{d}\epsilon$
- для любых x, x': $||x x'|| \leqslant \sqrt{d}$

$$\mathbb{E}_{x,S}[||x - x_{\pi_1(x)}||] \leqslant \mathbb{E}_{S} \left[\mathbb{P} \left[\bigcup_{i:C_i \cup S = \emptyset} \right] \sqrt{d} + \mathbb{P} \left[\bigcup_{i:C_i \cup S \neq \emptyset} \right] \epsilon \sqrt{d} \right]$$

$$\mathbb{E}_{x,S}[||x - x_{\pi_1(x)}||] \leqslant \sqrt{d} \left(\frac{r}{me} + \epsilon \right)$$

Имеем:

$$\mathbb{E}_{x,S}[||x - x_{\pi_1(x)}||] \leqslant \sqrt{d} \left(\frac{r}{me} + \epsilon\right)$$

Подставив $r=(1/\epsilon)^d$ и $\epsilon=2m^{-1/(d+1)}$, получим:

$$\underset{S \sim D^m}{\mathbb{E}} [L_D(h_S)] \leqslant 2L_D(h^*) + 4c\sqrt{d} \, m^{-\frac{1}{d+1}}$$

Проклятие размерности

- $4c\sqrt{d}m^{-\frac{1}{d+1}}$ растёт с c и d
- ullet чтоб получить оценку $\leqslant \epsilon$, необходимо выбрать $m\geqslant (4c\sqrt{d}/\epsilon)^{d+1}$
- размер выборки должен расти экспоненциально с размерностью пространства

NoFLT

NoFLT для липшицевых распределений

Для любого c>1 и решающего правила L существует распределение $[0,1]^d\times 0,1$, такое что $\eta(x)$ является c-липшицевой, ошибка оптимального решающего правила равна нулю, но для размера выборки $m\leqslant (c+1)^d/2$ ошибка L не меньше 1/4

Доказательство: если выбрать решётку с шагом 1/c (из $(c+1)^d$ точек), то любая функция распределения будет c-липшицевой \Rightarrow NoFLT.

Применение

- ullet наивный алгоритм работает за $\mathcal{O}(dm)$
- ullet алгоритмы из вычислительной геометрии требуют $o(d^{\mathcal{O}(1)}\log(m))$, но занимают $m^{\mathcal{O}(d)}$ памяти
- чаще всего применяют приближённые алгоритмы (local-sensitive hashing)

Содержание

- Метод ближайших соседей
- $oxed{2}$ Анализ метода ближайших соседей k=1
 - Анализ 1-NN
 - Проклятие размерности
- ③ Обобщения метода

Предположения

- гипотеза компактности: близкие объекты, как правило, лежат в одном классе
- гипотеза непрерывности: близким объектам соответствуют близкие ответы
- ullet близкие объекты, у которых ho(x,x') мало

Примеры расстояний

- для сайтов в интернете: минимальное количество переходов по ссылкам
- для текстов: редакторское расстояние Левенштейна
- для сигналов: энергия сжатия

Обобщённый метрический классификатор

Обобщённый метрический классификатор:

$$h_{S}(x) = \underset{y \in Y}{\operatorname{argmax}} \underbrace{\sum_{i=1}^{m} 1_{[y_{\pi_{i}(x)} = y]} w(i, x)}_{\Gamma_{y}(x)}$$

- \bullet w(i,x) степень важности i-го соседа
- $\Gamma_y(x)$ оценка близости объекта x к классу y

1-NN

$$w(i,x)=1_{i=1}$$

Преимущества:

- простота реализации
- интерпретируемость решения (вывод на основе прецедентов)

Недостатки:

- неустойчивость к шуму
- отсутствие настраиваемых параметров
- низкое качество классификации
- необходимо хранить всю выборку

k-NN

$$w(i,x) = 1_{i \leqslant k}$$
Преимущества:

- менее чувствителен к шуму
- возможность настраивать k

Недостатки:

ullet неоднозначность классификации $\Gamma_y(x) = \Gamma_{y'}(x)$

$\mathsf{M}\mathsf{e}\mathsf{T}\mathsf{o}\mathsf{d}\ k$ взвшенных соседей

$$w(i,x)=1_{i\leqslant k}w_i$$

Эвристики:

•
$$w_i = \frac{k+1-i}{k}$$

$$ullet$$
 $w_i = q^i$ для $0 < q < 1$

Вопросы:

- как выбрать, какие веса использовать?
- может лучше, чтоб w_i зависел от $\rho(x, x')$, а не i?

Метод парзеновского окна

$$w(i,x) = K\left(\frac{\rho(x,x_{\pi_i(x)})}{h}\right)$$

K(r) — ядро, не возрастает и положительно на [0,1]

Метод парзеновского окна фиксированной ширины:

$$h_{S,w,K}(x) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{m} 1_{[y_{\pi_i(x)} = y]} K\left(\frac{\rho(x, x_{\pi_i(x)})}{w}\right)$$

Метод парзеновского окна переменной ширины:

$$h_{S,k,K}(x) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{m} 1_{[y_{\pi_i(x)} = y]} K\left(\frac{\rho(x, x_{\pi_i(x)})}{\rho(x, x_{\pi_{k+1}(x)})}\right)$$

Надо выбирать:

- ширину окна
- ядро

Метод потенциальных функций

$$w(i,x) = \gamma_i K\left(\frac{\rho(x, x_{\pi_i(x)})}{h_i}\right)$$

Классификатор:

$$h_{S}(x) = \operatorname*{argmax}_{y \in Y} \sum_{i=1}^{m} 1_{[y_{\pi_{i}(x)} = y]} \gamma_{i} K\left(\frac{\rho(x, x_{\pi_{i}(x)})}{h_{i}}\right)$$

Аналогия:

- ullet γ_i величина заряда
- h_i радиус действия
- у_i знак заряда

Метод потенциальных функций — линейный классификатор

$$w(i,x) = \gamma_i K\left(\frac{\rho(x, x_{\pi_i(x)})}{h_i}\right)$$

Классификатор:

$$h_{S}(x) = \underset{y \in Y}{\operatorname{argmax}} \sum_{i=1}^{m} 1_{[y_{\pi_{i}(x)} = y]} \gamma_{i} K\left(\frac{\rho(x, x_{\pi_{i}(x)})}{h_{i}}\right) = \operatorname{sign} \sum_{i=1}^{m} \gamma_{i} y_{i} K_{i}$$

Аналогия:

- $y_i K_i$ признаковое описание
- γ_i линейные коэффициенты

Содержание

- Метод ближайших соседей
- $oxed{2}$ Анализ метода ближайших соседей k=1
 - Анализ 1-NN
 - Проклятие размерности
- Обобщения метода

Итоги

- разобрали метод ближайших соседей
- рассмотрели обобщения метода ближайших соседей
- ullet доказали оценки для метода ближайших соседней (k=1)

Литература

- Shai Shalev-Shwartz and Shai Ben-David Understanding Machine Learning: From theory to algorithms (глава 19)
- К.Воронцов метрические методы