STAT 222: Bayesian Nonparametric Methods (Spring 2020)

Homework set on Dirichlet processes: prior properties and simulation (due Wednesday April 22)

1. Assume that random vector $(Y_1, ..., Y_k)$ follows a Dirichlet $(k; a_1, ..., a_k)$ distribution, such that $(Y_1, ..., Y_{k-1})$ has density

$$\frac{\Gamma(a_1+\ldots+a_k)}{\Gamma(a_1)\times\ldots\times\Gamma(a_k)}\;y_1^{a_1-1}\times\ldots\times y_{k-1}^{a_{k-1}-1}\times(1-y_1-\ldots-y_{k-1})^{a_k-1}$$

where $y_i > 0$, for i = 1, ..., k - 1, and $\sum_{i=1}^{k-1} y_i < 1$. Consider a partition $I_1, ..., I_M$ of $\{1, ..., k\}$ (so that the I_j , j = 1, ..., M, are pairwise disjoint, and their union is $\{1, ..., k\}$), and let $U_j = \sum_{i \in I_j} Y_i$, for j = 1, ..., M. Show that:

- (1) $(U_1,...,U_M)$ follows a Dirichlet $(M;b_1,...,b_M)$ distribution, where $b_j = \sum_{i \in I_j} a_i$, for j = 1,...,M.
- (2) $(Y_i/U_j: i \in I_j) \stackrel{ind.}{\sim} \text{Dirichlet}(M_j; a_i, i \in I_j), \text{ for } j = 1, ..., M, \text{ where } M_j \text{ is the size of } I_j.$
- (3) $(U_1, ..., U_M)$ and $(Y_i/U_j : i \in I_j), j = 1, ..., M$, are independent.

(**Hint.** Use the definition of the Dirichlet distribution in terms of independent gamma random variables: the Dirichlet $(k; a_1, ..., a_k)$ distributed random vector $(Y_1, ..., Y_k)$ can be constructed as $(Y_1, ..., Y_k) = (Z_1/Z, ..., Z_k/Z)$, where $Z_i \stackrel{ind.}{\sim} \text{gamma}(a_i, 1)$, for i = 1, ..., k, and $Z = \sum_{i=1}^k Z_i$. Moreover, $(Z_1/Z, ..., Z_k/Z)$ is independent of Z.)

For problems 2 and 3, consider a Dirichlet process (DP) prior, $DP(\alpha, P_0)$, for distributions (probability measures) P on sample space \mathcal{X} , where $\alpha > 0$ is the total mass (precision) parameter, and P_0 is a specified distribution on \mathcal{X} .

- 2. Show that for any (measurable) disjoint subsets B_1 and B_2 of \mathcal{X} , $Corr(P(B_1), P(B_2))$ is negative. Is the negative correlation for random probabilities induced by the DP prior a restriction? Discuss.
- **3.** Let B be a specific (measurable) subset of \mathcal{X} such that $P_0(B) > 0$, and denote by P_B the corresponding conditional distribution, that is, $P_B(A) = P(A \mid B) = P(A \cap B)/P(B)$.
- (a) Prove that if $P \sim \mathrm{DP}(\alpha, P_0)$, then $P_B \sim \mathrm{DP}(\alpha P_0(B), P_0(A \mid B))$, that is, a DP with precision parameter $\alpha P_0(B)$ and centering distribution $P_0(A \mid B) = P_0(A \cap B)/P_0(B)$.
- (b) Consider finite measurable partitions $A_1, ..., A_r$ and $C_1, ..., C_s$ of B and B^c , respectively. Show that $P(B), P(B^c), \{P_B(A_1), ..., P_B(A_r)\}$ and $\{P_{B^c}(C_1), ..., P_{B^c}(C_s)\}$ are independent.

(**Hint.** Use problem 1. Note that, given the definition of the conditional distribution P_B , it suffices to consider partitions of B in order to verify the DP definition for part (a).)

4. Simulation of Dirichlet process prior realizations

Consider a $DP(\alpha, G_0)$ prior over the space of distributions (equivalently c.d.f.s) G on \mathbb{R} , with $G_0 = N(0, 1)$.

- (a) Use both Ferguson's original definition and Sethuraman's constructive definition to generate (multiple) prior c.d.f. realizations from the $DP(\alpha, N(0, 1))$, for different values of α ranging from *small* to *large*.
- (b) In addition to prior c.d.f. realizations, obtain, for each value of α , the corresponding prior distribution for the mean functional $\mu(G) = \int t \, dG(t)$ and for the variance functional $\sigma^2(G) = \int t^2 \, dG(t) \{\int t \, dG(t)\}^2$. (Note that, because G_0 has finite first and second moments, both of the random variables $\mu(G)$ and $\sigma^2(G)$ take finite values almost surely.)
- (c) Consider also simulation under a mixture of DPs (MDP) prior, which extends the DP above by adding a prior for α . Therefore, the MDP prior for G is defined such that, $G \mid \alpha \sim \mathrm{DP}(\alpha,\mathrm{N}(0,1))$, with a prior assigned to precision parameter α . To simulate from the MDP, you can use either of the DP definitions given draws for α from its prior. You can work with a gamma prior for α and 2-3 different choices for the gamma prior parameters.