MATH 424 Notes

Contents

1	Section One	
	1.1 Continuous Functions	
	1.2 Continuous Functions and Convergence	
	1.3 Continuous Functions Arithmetic	
	1.4 Accumulation Points	3
	1.5 Accumulation Points and Convergence	
	1.6 Limits	-
	1.7 Limits and Convergence	-
	1.8 Limits Arithmetic	•
	1.10 One-Sided Limits in Monotonic Functions	
	1.11 Discontinuity in Monotonic Functions	
	1.11 Discontinuity in Monotonic Functions	Š
	1.13 Uniformly Convergent Sequences of Functions	Ś
	1.13 Uniformly Convergent Sequences of Functions	
2	Section Two	
	2.1 Differentiable Functions	
	2.2 Differentiable Functions Arithmetic	-
	2.3 Derivative Chain Rule	
	2.4 Derivative of the Inverse Function	
	2.5 Local Maximum	
	2.6 Local Minimum	
	2.7 Derivatives at Local Vertices	
	2.8 Rolle's Theorem	
	2.10 Mean Value Theorem	
	2.10 Mean Value Theorem	
	2.12 Derivatives and Monotonicity	
	2.13 Taylor's Theorem	
	2.10 laylor o moorom	•
3	Section Three)
	3.1 Partitions	
	3.2 Intervals	
	3.3 Riemann Integrals	
	3.4 Composite Riemann-Stieltjes Integrals	
	3.5 Conditions for Riemann-Stieltjes Integrals)
	3.6 Properties of Riemann-Stieltjes Integrals)
	3.7 Change of Variable of Integration)
	3.8 Refinements	
	3.9 Partition Subsets	
	3.10 Fundamental Theorem of Calculus	
	3.11 Mean Value Theorem for Integrals	ı

4 Section Four			12	
	4.1	Uniformly Cauchy Sequences	12	
	4.2	Uniform Convergence and Differentiation	12	
		Analytic Functions		
	4.4	Uniform Convergence of Power Series	12	
	4.5	Absolute Convergence of Power Series	12	
		Weierstrass M-test		
	4.7	Root Test	13	

1 Section One

1.1 Continuous Functions

A function $f:D\to\mathbb{R}$ is continuous at a point $x_0\in D$ if for all $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-f(x_0)|<\varepsilon$ for all $x\in D$ where $|x-x_0|<\delta$

- All polynomials $f(x) = a_0 + a_1 x + ... + a_n x^n$ are continuous
- Exponential functions $f(x) = b^x$ are continuous when b > 0
- Monomial functions $f(x) = x^n$ are continuous for any $n \in \mathbb{Z}$
 - If n < 0, then x = 0 is not in the domain

1.2 Continuous Functions and Convergence

A function $f:D\to\mathbb{R}$ is continuous at a point $x_0\in D$ if and only if $f(x_n)\to f(x_0)$ for all sequences $x_n\in D$ where $x_n\to x_0$

- A function f is continuous at x_0 if and only if $\lim_{x \to x_0} f(x) = f(x_0)$

1.3 Continuous Functions Arithmetic

If the functions $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$ are continuous at $x_0\in D$, then

- (f+g)(x) is continuous at x_0
- (fg)(x) is continuous at x_0
- $\left(\frac{f}{g}\right)(x)$ is continuous at x_0 when $g(x_0) \neq 0$

1.4 Accumulation Points

A point $x_0 \in D$ is an accumulation point of D if for all $\delta > 0$, there exists $x \in D \setminus \{x_0\}$ such that $|x - x_0| < \delta$

- · An accumulation point is also known as a limit point or a cluster point
- Z has no accumulation points
- R represents the set of all accumulation points of Q
- • R represents the set of all accumulation points of R\Q
- 0 is the only accumulation point of $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$

1.5 Accumulation Points and Convergence

A point $x_0 \in D$ is an accumulation point of D if there exists a sequence $(x_n) \subset D \setminus \{x_0\}$ such that $x_n \to x_0$

1.6 Limits

The limit of a function $\lim_{x\to x_0} f(x) = \ell$ if for all $\varepsilon>0$, there exists $\delta>0$ such that $|f(x)-\ell|<\varepsilon$ for all $x\in D\setminus\{x_0\}$ where $|x-x_0|<\delta$

- f is continuous at $x_0 \in D$ if and only if $\lim_{x \to x_0} f(x) = f(x_0)$
- If a limit $\lim_{x \to r_0} f(x)$ exists, then it is unique

1.7 Limits and Convergence

The limit of a function $\lim_{x\to x_0} f(x) = \ell$ if and only if $f(x_n) \to \ell$ for all $x \in D$ where $x_n \neq x_0$ and $x_n \to x_0$

1.8 Limits Arithmetic

Given functions $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$ and an accumulation point $x_0\in D$

- If $\lim_{x\to x_0}f(x)=A$ and $\lim_{x\to x_0}g(x)=B$, then $\lim_{x\to x_0}(f+g)(x)=A+B$
- If $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} g(x) = B$, then $\lim_{x \to x_0} (fg)(x) = AB$
- If $\lim_{x\to x_0}f(x)=A$ and $\lim_{x\to x_0}g(x)=B$ with $B\neq 0$, then $\lim_{x\to x_0}\left(\frac{f}{g}\right)(x)=\frac{A}{B}$

1.9 One-Sided Limits

The left-hand limit $\lim_{x\to x_0^-} f(x) = \ell$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in (x_0 - \delta, x_0)$

• The left-hand limit is written as $f(x_0^-) = \lim_{x \to x_0^-} f(x)$

The right-hand limit $\lim_{x \to x_0^+} f(x) = \ell$ if for all $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - \ell| < \varepsilon$ for all $x \in (x_0, x_0 + \delta)$

• The right-hand limit is written as $f({x_0}^+) = \lim_{x \to {x_0}^+} f(x)$

Theorems

- $\lim_{x \to x_0} f(x) = \ell$ if and only if $f(x_0^-) = f(x_0^+) = \ell$
- A function f is continuous at x_0 if and only if $f(x_0^-) = f(x_0^+) = f(x)$

1.10 One-Sided Limits in Monotonic Functions

Let $f:(a,b)\to\mathbb{R}$ be a monotonically increasing function. Then $f(x^-)$ and $f(x^+)$ exist at every point $x\in(a,b)$ where

$$\sup_{a < t < x} f(t) = f(x^{-}) \le f(x) \le f(x^{+}) = \inf_{x < t < b} f(t)$$

• If a < x < y < b, then $f(x^+) \le f(y^-)$

Let $f:(a,b)\to\mathbb{R}$ be a monotonically decreasing function. Then $f(x^-)$ and $f(x^+)$ exist at every point $x\in(a,b)$ where

$$\inf_{a < t < x} f(t) = f(x^-) \ge f(x) \ge f(x^+) = \sup_{x < t < b} f(t)$$

• If a < x < y < b, then $f(x^+) \ge f(y^-)$

1.11 Discontinuity in Monotonic Functions

Let $f:(a,b)\to\mathbb{R}$ be a monotonic function. Then the set of points at which f is discontinuous is at most countable

- Analogues hold for [a,b), (a,b], [a,b] and for all unbounded intervals
- An increasing function $f:I\to\mathbb{R}$ defined on an interval is continuous if and only if f(I) is an interval
- An increasing function $f:I\to\mathbb{R}$ is invertible on its range f(I) if and only if it is strictly increasing
 - In this case, $f^{-1}: f(I) \to I$ is also strictly increasing
- If $f: I \to \mathbb{R}$ is strictly increasing and continuous, then f(I) is an interval and $f^{-1}: f(I) \to I$ is strictly increasing and continuous
- Analogues of the above hold for decreasing functions

1.12 Pointwise Convergent Sequences of Functions

A sequence of functions $\{f_n:D\to\mathbb{R}\}$ converges pointwise to a function $f:D\to\mathbb{R}$ if for each point $x\in D$, given $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that $|f_n(x)-f(x)|<\varepsilon$ for all $n\geq N$

• $\{f_n\}$ converges pointwise to f if $\lim_{n\to\infty}f_n(x)=f(x)$ for each point $x\in D$

1.13 Uniformly Convergent Sequences of Functions

A sequence of functions $\{f_n:D\to\mathbb{R}\}$ converges uniformly to a function $f:D\to\mathbb{R}$ if given $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that $|f_n(x)-f(x)|<\varepsilon$ for all $n\geq N$ and for all $x\in D$

• $\{f_n\}$ is said to converge uniformly on D to f

1.14 Uniformly Convergent Sequences of Continuous Functions

If $\{f_n:D\to\mathbb{R}\}$ is a sequence of continuous functions that converges uniformly to the function $f:D\to\mathbb{R}$, then the limit function f is also continuous

2 Section Two

2.1 Differentiable Functions

A function $f: I \to \mathbb{R}$ is differentiable at x_0 if the following limit exists

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- The limit $f'(x_0)$ is called the derivative of f at x_0
- If $f: I \to \mathbb{R}$ is differentiable at every point in I, then f is differentiable
- If f is differentiable at x_0 , then f is continuous at x_0
 - The converse does not hold
- If f is differentiable at x_0 and $f'(x_0)$ exists, then

$$F(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} & \text{if } x \neq x_0 \text{ and } x \in I\\ f'(x_0) & \text{if } x = x_0 \end{cases}$$

is continuous at x_0

• If $f'(x_0)$ exists, then

$$u(h) = \begin{cases} \frac{f(x+h) - f(x_0)}{h} - f'(x_0) & \text{if } h \neq 0\\ 0 & \text{if } h = 0 \end{cases}$$

is continuous at 0

- All polynomials $f(x) = a_0 + a_1x + ... + a_nx^n$ are differentiable everywhere
- Exponential functions $f(x) = b^x$ are differentiable everywhere when b > 0
- Monomial functions $f(x) = x^n$ are differentiable everywhere for any $n \in \mathbb{Z}$
 - If n < 0, then x = 0 is not in the domain

2.2 Differentiable Functions Arithmetic

If the functions $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at x_0 , then

- (f+g)(x) is differentiable at x_0 with $(f+g)'(x_0)=f'(x_0)+g'(x_0)$
- (fg)(x) is differentiable at x_0 with $(fg)'(x_0) = f(x_0)g'(x_0) + f'(x_0)g(x_0)$
- $\left(\frac{f}{g}\right)'(x)$ is differentiable at x_0 with $\left(\frac{f}{g}\right)'(x_0)=\frac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{(g(x_0))^2}$ when $g(x)\neq 0$ for all $x\in I$

2.3 Derivative Chain Rule

Let $f:(a,b)\to\mathbb{R}$ and $g:(c,d)\to\mathbb{R}$ be functions with $f((a,b))\subseteq(c,d)$. If f is differentiable at $x_0\in(a,b)$ and g is differentiable at $f(x_0)$, then

- $g \circ f : (a,b) \to \mathbb{R}$ is differentiable at x_0
- $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

2.4 Derivative of the Inverse Function

Let $f:(a,b)\to\mathbb{R}$ be strictly increasing and continuous. Let $g=f^{-1}:f((a,b))\to(a,b)$. If f is differentiable at $x_0\in(a,b)$ and $f'(x_0)\neq 0$, then g is differentiable at $y_0=f(x_0)$ and

$$g'(y_0) = \frac{1}{f'(x_0)}$$

- $g: f((a,b)) \to (a,b)$ is also strictly increasing
- f((a,b)) is the open interval (f(a),f(b))
- · Analogues of the above hold for strictly decreasing functions

2.5 Local Maximum

A function $f:I\to\mathbb{R}$ has a local maximum at $x_0\in I$ if there exists $\delta>0$ such that $f(x_0)\geq f(x)$ for all $x\in I$ where $|x-x_0|<\delta$

2.6 Local Minimum

A function $f:I\to\mathbb{R}$ has a local minimum at $x_0\in I$ if there exists $\delta>0$ such that $f(x_0)\le f(x)$ for all $x\in I$ where $|x-x_0|<\delta$

2.7 Derivatives at Local Vertices

Let $f: I \to \mathbb{R}$ be differentiable at x_0 . If x_0 is a local maximum or minimum of f, then $f'(x_0) = 0$

2.8 Rolle's Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous over [a,b] and differentiable over (a,b). If f(a)=f(b), then there exists a point $x_0\in(a,b)$ such that $f'(x_0)=0$

2.9 Cauchy Mean Value Theorem

Let $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ be continuous over [a,b] and differentiable over (a,b). Then there exists a point $x\in(a,b)$ at which

$$[f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x)$$

Also known as the generalized mean value theorem

2.10 Mean Value Theorem

Let $f:[a,b]\to\mathbb{R}$ be continuous over [a,b] and differentiable over (a,b). Then there exists a point $x_0\in(a,b)$ at which

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

• Given two points on a curve with slope m, there exists a point in between such that the tangent also has slope m

2.11 Intermediate Value Theorem for Derivatives

Let $f:[a,b] \to \mathbb{R}$ be differentiable and suppose that $f'(a) < \lambda < f'(b)$. Then there exists $\alpha \in (a,b)$ such that $f'(\alpha) = \lambda$

- If a function is differentiable everywhere, then intermediate values are assumed
- If f is differentiable on [a, b], then f' cannot have any simple discontinuities on [a, b]

2.12 Derivatives and Monotonicity

Let $f:(a,b)\to\mathbb{R}$ be differentiable over (a,b)

- $f'(x) \ge 0$ for all $x \in (a,b)$ if and only if f is monotone increasing on (a,b)
- f'(x) = 0 for all $x \in (a, b)$ if and only if f is constant
- If f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on (a, b)
 - The converse does not hold

2.13 Taylor's Theorem

Let I=(a,b) and $f:I\to\mathbb{R}$ such that $f^{(n)}(x)$ exists for every $x\in I$ for some $n\in\mathbb{N}$. If α,β are distinct points in I, then there exists a point $c\in(\alpha,\beta)$ such that

$$f(\alpha) = \sum_{k=0}^{n-1} \left[\frac{f^{(k)}(\beta)}{k!} (\alpha - \beta)^k \right] + \frac{f^{(n)}(c)}{n!} (\alpha - \beta)^n$$

$$f(\beta) = \sum_{k=0}^{n-1} \left[\frac{f^{(k)}(\alpha)}{k!} (\beta - \alpha)^k \right] + \frac{f^{(n)}(c)}{n!} (\beta - \alpha)^n$$

3 Section Three

3.1 Partitions

A partition P of [a, b] is a finite set of points $x_0, x_1, ..., x_n$ where

$$a = x_0 \le x_1 \le \dots \le x_{n-1} \le x_n = b$$

• A partition is a subdivision of [a, b] into finitely many closed subintervals

3.2 Intervals

Let $P=\{x_0,x_1,...,x_n\}$ be a partition of [a,b] and let α be a monotonically increasing function on [a,b]. Then the interval of the partition is $\Delta x_i=x_i-x_{i-1}$ and the function interval of the partition is $\Delta \alpha_i=\Delta \alpha(x_i)=\alpha(x_i)-\alpha(x_{i-1})$ for i=1,...,n

3.3 Riemann Integrals

Let $f:[a,b]\to\mathbb{R}$ be a bounded function, let $P=\{x_0,x_1,...,x_n\}$ be a partition of [a,b], and let α be a monotonically increasing function of [a,b]. Then

$$M_{i} = \sup_{x \in [x_{i-1}, x_{i}]} f(x)$$

$$m_{i} = \inf_{x \in [x_{i-1}, x_{i}]} f(x)$$

$$U(P, f, \alpha) = \sum_{i=1}^{n} M_{i} \Delta \alpha_{i}$$

$$L(P, f, \alpha) = \sum_{i=1}^{n} m_{i} \Delta \alpha_{i}$$

$$\int_{a}^{b} f d\alpha = \inf_{P \in \Omega_{P}} U(P, f, \alpha)$$

$$\int_{a}^{b} f d\alpha = \sup_{P \in \Omega_{P}} L(P, f, \alpha)$$

 $\bar{\int}_a^b f\ d\alpha$ and $\int_a^b f\ d\alpha$ are the upper and lower Riemann-Stieltjes integrals of f over [a,b] respectively

- If $\bar{\int}_a^b f \ d\alpha = \underline{\int}_a^b f \ d\alpha = \int_a^b f \ d\alpha$, then f is integrable with respect to α in the Riemann sense
- $\mathcal{R}(\alpha)$ represents the set of functions integrable with respect to α in the Riemann sense
- If $\int_a^b f \ dx = \int_a^b f \ dx = \int_a^b f \ dx$, then f is Riemann-integrable on [a,b]
- R represents the set of Riemann-integrable functions
- · If the upper and lower integrals are equal, then the common integral is denoted as

$$\int_{a}^{b} f \ d\alpha = \int_{a}^{b} f(x) \ d\alpha(x)$$

- $m_i \leq M_i$ for all $i \in \{0, 1, ..., n\}$ such that $L(P, f, \alpha) \leq U(P, f, \alpha)$
- α is not necessarily continuous

3.4 Composite Riemann-Stieltjes Integrals

Let $f \in \mathcal{R}(\alpha)$ be a bounded function on [a,b] with $m \leq f \leq M$. If ϕ is continuous on [m,M] and $h(x) = \phi(f(x))$, then $h \in \mathcal{R}(\alpha)$ on [a,b]

3.5 Conditions for Riemann-Stieltjes Integrals

Let f be a function on the interval [a, b]

• A function $f \in \mathcal{R}(\alpha)$ if and only if for every $\varepsilon > 0$, there exists a partition P such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$$

- If f is continuous, then $f \in \mathcal{R}(\alpha)$
- If f is monotonic and α is continuous, then $f \in \mathcal{R}(\alpha)$
- If f is bounded, f has only finitely many points of discontinuity, and α is continuous at every point at which f is discontinuous, then $f \in \mathscr{R}(\alpha)$

3.6 Properties of Riemann-Stieltjes Integrals

Let f, g be functions on the interval [a, b] and $c \in \mathbb{R}$

- If $f, g \in \mathcal{R}(\alpha)$, then $\int_a^b (f+g) d\alpha = \int_a^b f d\alpha + \int_a^b g d\alpha$
- If $f \in \mathcal{R}(\alpha)$, then $\int_a^b cf \ d\alpha = c \int_a^b f \ d\alpha$
- If $f \leq g$, then $\int_a^b f \ d\alpha \leq \int_a^b g \ d\alpha$
- If $f \in \mathscr{R}(\alpha)$ on [a,b] and $c \in (a,b)$, then $f \in \mathscr{R}(\alpha)$ on [a,c] and [c,b] with $\int_a^c f \ d\alpha + \int_c^b f \ d\alpha = \int_a^b f \ d\alpha$
- If $f \in \mathscr{R}(\alpha)$ on [a,b] and $|f(x)| \leq M$ on [a,b], then $\left| \int_a^b f \ d\alpha \right| \leq M \left[\alpha(b) \alpha(a) \right]$
- If $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$, then $\int_a^b f \ d(\alpha_1 + \alpha_2) = \int_a^b f \ d\alpha_1 + \int_a^b f \ d\alpha_2$
- If $f\in \mathscr{R}(\alpha)$, then $|f|\in \mathscr{R}(\alpha)$ and $\left|\int_a^b f\ d\alpha\right|\leq \int_a^b |f|\ d\alpha$

3.7 Change of Variable of Integration

• Let α be a monotonically increasing function with derivative $\alpha' \in \mathcal{R}$ and let f be a bounded real function on [a,b]. Then

$$\int_{a}^{b} f \ d\alpha = \int_{a}^{b} f(x)\alpha'(x) \ dx$$

such that $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$

• Suppose that φ is a strictly increasing continuous function that maps an interval [A,B] onto [a,b], α is a monotonically increasing function on [a,b], and $f\in\mathscr{R}(\alpha)$ on [a,b]. Let β and g be functions on [A,B] such that $\beta(y)=\alpha(\varphi(y))$ and $g(y)=f(\varphi(y))$. Then

$$\int_{A}^{B} g \ d\beta = \int_{a}^{b} f \ d\alpha$$

and $g \in \mathcal{R}(\beta)$

3.8 Refinements

A partition P^* is a refinement of P if $P \subset P^*$, that is every point of P is a point of P^*

• If P_1, P_2 are partitions of [a, b] and $P^* = P_1 \cup P_2$, then P^* is the common refinement of P_1, P_2

3.9 Partition Subsets

Let P^* be a refinement of P. Then

$$L(P, f, \alpha) \le L(P^*, f, \alpha) \le U(P^*, f, \alpha) \le U(P, f, \alpha)$$
$$L(P_1, f, \alpha) \le L(P_1 \cup P_2, f, \alpha) \le U(P_1 \cup P_2, f, \alpha) \le U(P_2, f, \alpha)$$

- If P_1, P_2 are partitions of [a, b], then $L(P_1, f, \alpha) \leq U(P_2, f, \alpha)$
- If P_1, P_2 range over all partitions of [a,b], then $\sup_{P_1 \in \Omega_P} L(P_1,f,\alpha) \leq \inf_{P_2 \in \Omega_P} U(P_2,f,\alpha)$

3.10 Fundamental Theorem of Calculus

Let $f \in \mathcal{R}$ be a function on [a,b] and let $F(x) = \int_a^x f(t) \ dt$ for some $a \le x \le b$. Then

- F is continuous on [a, b]
- If f is continuous at a point x_0 of [a,b], then F is differentiable at x_0 and $F'(x_0)=f(x_0)$

•
$$\int_a^b f(x) \ dx = F(b) - F(a)$$

3.11 Mean Value Theorem for Integrals

If $f:[a,b]\to\mathbb{R}$ is continuous, then there exists $x_0\in(a,b)$ such that $\int_a^b f(t)\ dt=f(x_0)(b-a)$

Section Four

Uniformly Cauchy Sequences

A sequence of functions $\{f_n:D\to\mathbb{R}\}$ is uniformly Cauchy if given $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that $|f_n(x)-f_m(x)|<\varepsilon$ for all $m,n\geq N$ and for all $x\in D$

A sequence of functions is uniformly convergent if and only if it is uniformly Cauchy

Uniform Convergence and Differentiation

Suppose $\{f_n\}$ is a sequence of functions differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If $\{f_n'\}$ converges uniformly on [a,b], then $\{f_n\}$ converges uniformly on [a,b] to a function f and

$$f'(x) = \lim_{n \to \infty} f_n'(x)$$
 $(a \le x \le b)$

Analytic Functions

An analytic function is a function of the form $f(x) = \sum_{n=0}^{\infty} c_n x^n$ where $c_n \in \mathbb{R}$

4.4 Uniform Convergence of Power Series Suppose that the power series $\sum_{n=0}^{\infty}c_nx^n$ converges for all |x|< R. Then the analytic function $f(x)=\sum_{n=0}^{\infty}c_nx^n$ over the domain (-R,R) converges uniformly for all $|x|< R-\varepsilon$ and for any $\varepsilon>0$

- The function f is continuous and differentiable for all |x| < R
- The derivative of f over the domain (-R,R) is given by $f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}$
- The radius of convergence is $R = \left(\limsup |c_n|^{\frac{1}{n}}\right)^{-1}$
 - If the series does not converge for any $x \in \mathbb{R}$, then R = 0
 - If the series converges for all $x \in \mathbb{R}$, then $R = \infty$

4.5 Absolute Convergence of Power Series

- If |x| < R, then $\sum_{n=0}^{\infty} c_n x^n$ converges absolutely
- If |x| > R, then $\sum_{n=0}^{\infty} c_n x^n$ diverges

4.6 Weierstrass M-test

Let $\{f_n\}$ be a sequence of functions defined on a set D and let $|f_n(x)| \leq M_n$ for all $x \in D$ and for all $n\in\mathbb{N}.$ If $\sum_{n\in\mathbb{N}}M_n$ converges, then $\sum_{n\in\mathbb{N}}f_n$ converges uniformly on D

4.7 Root Test

Let
$$r = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}$$

- If r < 1, then $\displaystyle \sum_{n=1}^{\infty} a_n$ converges absolutely
- If r>1, then $\sum_{n=1}^{\infty}a_n$ diverges
- If r=1, then the root test is inconclusive