Rule-Based Fuzzy Systems

Ε.ΔΙ.Π. Κωνσταντίνα Χρυσαφιάδη

Ασαφής Μεταβλητή

- Λεκτικές τιμές.
- Πεδίο τιμών είναι ασαφή σύνολα.
- Παραδείγματα:
 - Μεταβλητή «ηλικία», πεδίο τιμών: {βρέφος, παιδί, νέος, μεσήλικας, ηλικιωμένος}
 - Μεταβλητή «θερμοκρασία», πεδίο τιμών: {παγωνιά, κρύο, ζέστη, καύσωνας}
 - Μεταβλητή «ποιότητα», πεδίο τιμών: {κακή, μέτρια, καλή, άριστη}

Λεκτικοί Τελεστές - Hedges

- Τελεστές που όταν εφαρμόζονται σε μια λεκτική τιμή μιας ασαφούς μεταβλητής μεταβάλλουν τον βαθμό συμμετοχής (βαρύτητα).
 - Π.χ. slightly, very, extremely
 - Π.χ. λίγο, πολύ, κάπως, εξαιρετικά
- Ενίσχυση τιμής
 - Πολύ ψηλό, εξαιρετικά καλό
- Εξασθένιση τιμής
- Λίγο νέος, κάπως γρήγορο.

Ασαφείς Προτάσεις

- Ασαφής πρόταση: Θέτει μια τιμή σε μια ασαφή μεταβλητή.
- Παραδείγματα:
 - «Το ύψος της Μαρίας είναι μέτριο» → «ύψος»: ασαφής μεταβλητή, «μέτριο»: τιμήασαφές σύνολο.
 - «Η απόδοση του Κώστα είναι υψηλή» -> «απόδοση»: ασαφής μεταβλητή, «υψηλή»: τιμή-ασαφές σύνολο.
 - «Η ηλικία του Γιάννη είναι μικρή» -> «ηλικία»: ασαφής μεταβλητή, «μικρή»: τιμήασαφές σύνολο.
 - «Αύριο θα έχει ζέστη» → «θερμοκρασία»: ασαφής μεταβλητή (υπονοείται),
 «ζέστη»: τιμή-ασαφές σύνολο

Ασαφείς Κανόνες (1/3)

- "if x is A then y is B"
 - x, y: ασαφείς μεταβλητές
 - Α, Β: λεκτικές τιμές ασαφή σύνολα
- Παραδείγματα:
 - Κλασικός κανόνας: Εάν ο βαθμός είναι μικρότερος του 6/10, τότε επέλεξε ασκήσεις επιπέδου 1.
 - Ασαφής κανόνας: Εάν ο βαθμός είναι χαμηλός, τότε επέλεξε εύκολες ασκήσεις.
 - Κλασικός κανόνας: Εάν η θερμοκρασία είναι μικρότερη από 15°C, τότε θέσε τον θερμοστάτη στους 20°C και άνω και τον ανεμιστήρα στις 100 στροφές και πάνω. Ασαφής κανόνας: Εάν η θερμοκρασία είναι χαμηλή, τότε θέσε τον θερμοστάτη στη ζέστη και τον ανεμιστήρα στο γρήγορο.

Ασαφείς Κανόνες (2/3)

- Χρήση τελεστών AND/OR δημιουργούν πιο σύνθετους κανόνες.
- Οι κανόνες προκύπτουν από ειδικούς ή από αριθμητικά δεδομένα.
- Τα δεδομένα στις υποθέσεις (if) και τα συμπεράσματα (then)
 χαρακτηρίζονται από ασαφή σύνολα.
- Για την κατάταξη στα ασαφή σύνολα χρησιμοποιούνται συναρτήσεις συμμετοχής.

Ασαφείς Κανόνες (3/3)

If the light is red	if my speed is high	and if the light is	then I brake hard.
		close	
If the light is red	if my speed is low	and if the light is	then I maintain my
		far	speed.
If the light is or-	if my speed is aver-	and if the light is	then I brake gently.
ange	age	far	
If the light is green	if my speed is low	and if the light is	then I accelerate.
		close	

Ιδιότητες συνόλου κανόνων ενός ασαφούς συστήματος

- Πληρότητα: Για οποιαδήποτε είσοδο να υπάρχει οπωσδήποτε ένας κανόνας.
- Συνέπεια: Να μην υπάρχουν αντικρουόμενοι κανόνες, δηλαδή κανόνες που να έχουν το ίδιο υποθετικό μέρος και διαφορετικό συμπέρασμα.
- Συνέχεια: Το σύνολο των κανόνων είναι συνεχές.

Ανάλυση-Εφαρμογή κανόνων - Παράδειγμα

- Ασαφής μεταβλητή a = {A1, A2, A3}
- Ασαφής μεταβλητή c = {C1, C2, C3}
- Κανόνας: If a is A1 then c is C1
- Έστω ότι μ_{Δ1}(a)=0,3

Ανάλυση-Εφαρμογή σύνθετων κανόνων

- AND \rightarrow $\tau \circ \mu \dot{\eta} \rightarrow$ min $\dot{\eta}$ product ($\gamma \iota \nu \dot{\circ} \mu \epsilon \nu \dot{\circ}$)
 - Ο τελεστής Min λαμβάνει το μικρότερο από τους βαθμούς συμμετοχής.
 - Ο τελεστής του γινομένου υπολογίζει το αριθμητικό γινόμενο των βαθμών συμμετοχής των ασαφοποιημένων τιμών.
- OR → ένωση → max ή asum
 - Ο τελεστής Max λαμβάνει το μεγαλύτερο από τους βαθμούς συμμετοχής.
 - Ο τελεστής asum υπολογίζει την διαφορά του γινομένου των βαθμών συμμετοχής των ασαφοποιημένων τιμών από το άθροισμα αυτών.
- Το αποτέλεσμα από την εφαρμογή των τελεστών max/min/product/asum παράγει το λεγόμενο βαθμό εκπλήρωσης (degree of fulfillment) του κανόνα.
- Ο βαθμός εκπλήρωσης του κανόνα εκφράζει τη βαρύτητα που έχει το αποτέλεσμα του κανόνα.

- Ασαφής μεταβλητή a = {A1, A2, A3}
- Ασαφής μεταβλητή b = {B1, B2, B3}
- Ασαφής μεταβλητή c = {C1, C2, C3}
- Κανόνας: If a is A1 or b is B2 then c is C3
- Έστω ότι $\mu_{A1}(a)=0,3$ και $\mu_{B2}(b)=0,5$
- $Max(\mu_{A1}(a), \mu_{B2}(b))=0,5$
- asum $(\mu_{A1}(a), \mu_{B2}(b))=$
- = $(\mu_{A1}(a) + \mu_{B2}(b)) (\mu_{A1}(a) + \mu_{B2}(b)) = 0.65$

Ανάλυση-Εφαρμογή σύνθετων κανόνων – ΑΝD- Παράδειγμα 1 , , , , / , /

- Ασαφής μεταβλητή a = {A1, A2, A3}
- Ασαφής μεταβλητή b = {B1, B2, B3}
- Ασαφής μεταβλητή c = {C1, C2, C3}
- Κανόνας: If a is A2 and b is B3 then c is C2
- Έστω ότι μ_{A2}(a)=0,2 και μ_{B3}(b)=0,8
- Min($\mu_{A2}(a)$, $\mu_{B3}(b)$)=0,2
- product($\mu_{A2}(a)$, $\mu_{B3}(b)$)= $\mu_{A2}(a)*\mu_{B3}(b)$ = 0,16

- Αν η ταχύτητα είναι μεγάλη (βαθμός συμμετοχής 0.4) και η απόσταση μικρή (βαθμός συμμετοχής = 0.2) τότε η δύναμη πέδησης είναι μεγάλη.
- Εφαρμογή min
 - Min (0.4, 0.2) = 0.2
 - Άρα η πέδηση είναι μεγάλη με βαθμό συμμετοχής 0.2
- Εφαρμογή Product
 - 0.2*0.4=0.8
 - Άρα η πέδηση είναι μεγάλη με βαθμό συμμετοχής 0.8

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων(1/8)

- Θ: θερμοκρασία, Φ: ποσότητα φαρμάκου σε ml
- Ασαφή σύνολα:
 - Θ = {Low, High, Very High}
 - Φ = {Low, Medium, High}
- Ασαφείς Κανόνες:
 - 1) If Θ is Low then Φ is Low
 - 2) If Θ is High then Φ is Medium
 - 3) If Θ is Very High then Φ is High

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων(2/8)

$$\mu_{Low}(x) = \begin{cases} 0, & x \le 37 \text{ or } x \ge 38\\ \frac{x - 37}{0.5}, & 37 \le x \le 37.5\\ \frac{38 - x}{0.5}, & 37.5 \le x \le 38 \end{cases}$$

$$\mu_{High}(x) = \begin{cases} 0, & x \le 37,5 \text{ or } x \ge 40\\ x - 37,5, & 37,5 \le x \le 38,5\\ \frac{40 - x}{1.5}, & 38,5 \le x \le 40 \end{cases}$$

$$\mu_{VeryHigh}(x) = \begin{cases} 0, & x \le 38,5\\ \frac{x - 38,5}{1,5}, & 38,5 \le x \le 40\\ 1, & x \ge 40 \end{cases}$$

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων(3/8)

$$\mu_{Low}(x) = \begin{cases} 0, & x \ge 5 \\ \\ \frac{5-x}{5}, & 0 \le x \le 5 \end{cases}$$

$$\mu_{Medium}(x) = \begin{cases} 0, & x \le 3 \text{ or } x \ge 7 \\ \frac{x-3}{2}, & 3 \le x \le 5 \\ \frac{7-x}{2}, & 5 \le x \le 7 \end{cases}$$

$$\mu_{High}(x) = \begin{cases} 0, & x \le 5\\ \frac{x-5}{5}, & 5 \le x \le 10 \end{cases}$$

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων(4/8)

- Κάθε θερμοκρασία χαρακτηρίζεται από μία τριάδα (μ_{Low}(x), μ_{High}(x), μ_{VeryHigh}(x)) που προσδιορίζει τον βαθμό συμμετοχής της στα αντίστοιχα ασαφή σύνολα.
- Παραδείγματα:
 - $x=37,2 \rightarrow (0.4, 0, 0)$
 - $x=37.6 \rightarrow (0.8, 0.1, 0)$
 - $x = 38 \rightarrow (0, 0.5, 0)$
 - $x = 38.8 \rightarrow (0, 0.13, 0.2)$
 - $x = 40 \rightarrow (0, 0, 1)$

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων(5/8)

- Κάθε ποσότητα φαρμάκου χαρακτηρίζεται από μία τριάδα (μ_{Low}(x), μ_{Medium}(x),
 μ_{High}(x)) που προσδιορίζει τον βαθμό συμμετοχής της στα αντίστοιχα ασαφή σύνολα.
- Παραδείγματα:

•
$$x=1 \rightarrow (0.8, 0, 0)$$

- $x=4 \rightarrow (0.2, 0.5, 0)$
- $x=5 \rightarrow (0, 1, 0)$
- $x=6 \rightarrow (0, 0.5, 0.2)$
- $x = 8 \rightarrow (0, 0, 0.6)$
- $x=10 \rightarrow (0, 0, 1)$

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων(6/8)

- Έστω ότι η θερμοκρασία είναι 37.2°C
- Η 3άδα που χαρακτηρίζει την θερμοκρασία αυτή είναι (0.4, 0, 0).
- Άρα η θερμοκρασία είναι Low.
- Επομένως, εφαρμόζω τον 1° κανόνα, σύμφωνα με τον οποίον το Φ είναι Low.

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων (7/8)

- Έστω ότι η θερμοκρασία είναι 38.7°C
- Η 3άδα που χαρακτηρίζει την θερμοκρασία αυτή είναι (0, 0.87, 0.13).
- Άρα πόσο είναι η θερμοκρασία;
- Η θερμοκρασία είναι και High και Very High με διαφορετικό βαθμό συμμετοχής.
- Άρα εφαρμόζω και τους κανόνες 2 και 3.
- Επομένως, η ποσότητα φαρμάκου ανήκει και στο Medium και στο High.

Ένα ακόμα παράδειγμα εφαρμογής ασαφών κανόνων(8/8)

- Η εφαρμογή των ασαφών κανόνων δίνει ένα ασαφές αποτέλεσμα.
- Αποτέλεσμα: Βαθμός συμμετοχής στα οριζόμενα ασαφή σύνολα.
- Πώς θα αποφασίσω, τελικά, πόση ποσότητα φαρμάκου θα δώσω;
- Το επόμενο βήμα είναι να κάνω αποσαφοποίηση (Defuzzification).

Rule-based Fuzzy Inference System

A FLS – Ασαφές Σύστημα βασισμένο στους κανόνες (1/2)

- Άλλες ονομασίες-αναφορές: Mamdani FLS, fuzzy expert system, fuzzy model, fuzzy system, or fuzzy logic controller.
- Οι κανόνες είναι ο πυρήνας («η καρδιά») ενός FLS.
- Ένα FLS δέχεται ως είσοδο διακριτούς-συγκεκριμένους αριθμούς, τους αντιστοιχεί σε ασαφή σύνολα, εφαρμόζει κανόνες, εξάγει ασαφή συμπεράσματα και τα μετατρέπει σε διακριτά-συγκεκριμένα αποτελέσματα-αριθμούς.

Α FLS – Ασαφές Σύστημα βασισμένο στους κανόνες (2/2)

- Ο ασαφοποιητής (fuzzifier) αντιστοιχεί διακριτούς-συγκεκριμένους αριθμούς σε ασαφή σύνολα. Καθορίζει σε ποια ασαφή σύνολα αντιστοιχούν και τον αντίστοιχο βαθμό συμμετοχής.
- Η μηχανή συμπερασμάτων του FLS εφαρμόζει και συνδυάζει κανόνες επί των ασαφών συνόλων και εξάγει ασαφή συμπεράσματα.
- Η μηχανή συμπερασμάτων του FLS θεωρείται ως προσομοίωση της ανθρώπινης σκέψης-διαδικασίας που σχετίζεται με την λήψη αποφάσεων.
- Ο αποσαφοποιητής (defuzzifier) μετατρέπει το ασαφές συμπέρασμα σε διακριτό-συγκεκριμένο αριθμό.

Μέθοδοι αποσαφοποίησης (Defuzzification methods)

- Max-Membership Principle.
- Centroid Method.
- Weighted Average Method.
- Mean-Max Membership.
- Centre of Sums.
- Centre of Largest Area.

Max-Membership Principle (Αρχή μέγιστης συμμετοχής)

- Η μέθοδος αυτή είναι γνωστή και ως height method (μέθοδος ύψους).
- Η χρήση της χρησιμοποιείται κυρίως στις τριγωνικές συναρτήσεις συμμετοχής.
- $\mu(z^*) >= \mu(z)$ for all $z \in Z$.

Παραδείγματα χρήσης της Max-Membership Principle

Crisp output = 20

Crisp output = [6, 7]

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Max-Membership Principle) (1/2)

- 1ⁿ περίπτωση: θερμοκρασία = 37.2°C → Low με (0.4, 0, 0).
- Αποτέλεσμα \rightarrow το Φ είναι Low με $\mu_{Low}(x)=0.4$

Crisp output = [0,3]

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Max-Membership Principle) (2/2)

- 2ⁿ περίπτωση: θερμοκρασία = 38.7°C → High & Very High με (0, 0.87, 0.13).
- Αποτέλεσμα \rightarrow το Φ είναι Medium με $\mu_{Medium}(x)$ =0.87 και High με $\mu_{High}(x)$ =0.13

Crisp output = [4.5, 5.5]

Weighted Average Method (Μέθοδος Σταθμισμένου Μέσου όρου)

- Έχει ισχύ μόνο για συναρτήσεις συμμετοχής με συμμετρικό αποτέλεσμα.
- Κάθε συνάρτηση συμμετοχής σταθμίζεται από την μέγιστη τιμή συμμετοχής της.

$$z^* = rac{\sum \mu_C(ar{z}) \cdot ar{z}}{\sum \mu_C(ar{z})}$$

Παράδειγμα χρήσης της Weighted Average Method

- Για κάθε ασαφές σύνολο, υπολογίζεται το «κέντρο» πολλαπλασιάζοντάς την μέση τιμή με την αντίστοιχη τιμή της συνάρτησης συμμετοχής.
- Έπειτα, υπολογίζεται ο μέσος όρος όλων των συνόλων..

$$z^* = \frac{0.3*2.5+5*0,5+6.5*1}{0.3+0,5+1} = 5,146$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Weighted Average Method) (1/2)

- 1ⁿ περίπτωση: θερμοκρασία =
 37.2°C → Low με (0.4, 0, 0).
- Αποτέλεσμα \rightarrow το Φ είναι Low με $\mu_{\text{Low}}(x)$ =0.4
- Δεν μπορεί να εφαρμοστεί γιατί δεν έχουμε συμμετρική συνάρτηση συμμετοχής

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Weighted Average Method) (2/2)

- 2ⁿ περίπτωση: θερμοκρασία = 38.7°C →
 High & Very High με (0, 0.87, 0.13).
- Αποτέλεσμα \rightarrow το Φ είναι Medium με $\mu_{Medium}(x)=0.87$ και High με $\mu_{High}(x)=0.13$
- Δεν μπορεί να εφαρμοστεί διότι αν και το ασαφές σύνολο Medium είναι συμμετρικό, δεν είναι το High.

Mean-Max Membership

- Η μέθοδος αυτή είναι γνωστή και ως middle of the maxima (η μέση του μέγιστου).
- Μοιάζει πολύ με την Max Membership principle,
 με την διαφορά ότι η θέση-τοποθεσία της μέγιστης
 συνάρτησης συμμετοχής δεν είναι μοναδική.

Παράδειγμα χρήσης της Mean-Max Membership

• Ο μέγιστος βαθμός συμμετοχής είναι 1.

$$z^* = \frac{6+7}{2} = 2,5$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Mean-Max Membership) (1/2)

- 1ⁿ περίπτωση: θερμοκρασία = 37.2°C → Low με (0.4, 0, 0).
- Αποτέλεσμα \rightarrow το Φ είναι Low με $\mu_{Low}(x)=0.4$

$$z^* = \frac{0+3}{2} = 1,5$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Mean-Max Membership) (2/2)

- 2ⁿ περίπτωση: θερμοκρασία = 38.7°C →
 High & Very High με (0, 0.87, 0.13).
- Αποτέλεσμα \rightarrow το Φ είναι Medium με $\mu_{Medium}(x)=0.87$ και High με $\mu_{High}(x)=0.13$
- Ο μέγιστος βαθμός συμμετοχής είναι 0.87
 και βρίσκεται για τιμές x μεταξύ 4,74 και

 $z^* = \frac{4,74+5,26}{2} = 5$

Centre of Sums (Κέντρο αθροισμάτων)

- Χρησιμοποιεί το αλγεβρικό άθροισμα των μεμονωμένων ασαφών υποσυνόλων αντί για την ένωσή τους.
- Οι υπολογισμοί είναι πολύ γρήγοροι.
- Μειονέκτημα: οι «κοινές» περιοχές (που τέμνονται)
 προστίθενται δύο φορές.

$$z^*=rac{\sum_{k=1}^n \mu_{C_k}(z)\int(ar{z}\,dz)}{\sum_{k=1}^n \mu_{C_k}(z)\int dz}$$

Παράδειγμα χρήσης της Centre of Sums

• Αρχικά υπολογίζω το εμβαδόν για κάθε ασαφές σύνολο.

$$E_{A} = \frac{(5+3)*0,3}{2} = 1,2$$

$$E_{B} = \frac{(4+2)*0,5}{2} = 1,5$$

$$E_{C} = \frac{(3+1)*1}{2} = 2$$

 Ύστερα, βρίσκω το κέντρο για κάθε ασαφές σύνολο και υπολογίζω το κέντρο των αθροισμάτων.

$$z^* = \frac{1,2*2,5+1,5*5+2*6,5}{1,2+1,5+2} = 5$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Centre of Sums) (1/2)

- 1ⁿ περίπτωση: θερμοκρασία =
 37.2°C → Low με (0.4, 0, 0).
- Αποτέλεσμα \rightarrow το Φ είναι Low με $\mu_{\text{Low}}(x)$ =0.4

$$E = \frac{(5+3)*0,4}{2} = 1,6$$

$$z^* = \frac{1,6*2,5}{1,6} = 2,5$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Centre of Sums) (2/2)

- 2ⁿ περίπτωση: θερμοκρασία = 38.7°C →
 High & Very High με (0, 0.87, 0.13).
- Αποτέλεσμα \rightarrow το Φ είναι Medium με $\mu_{Medium}(x)=0.87$ και High με $\mu_{High}(x)=0.13$ $\mu_{Medium}(x)=0.13$

$$E_{\text{Medium}} = \frac{(4+0.8)*0.87}{2} = 2.088$$

$$E_{\text{High}} = \frac{(5+4.35)*0.13}{2} = 0.60775$$

$$z^* = \frac{2,088*5+0,60775*7,5}{2,088+0,60775} = 5,56$$

Centre of Largest Area (Κέντρο της μεγαλύτερης περιοχής)

- Αυτή η μέθοδος χρησιμοποιείται όταν υπάρχουν τουλάχιστον 2 ασαφή σύνολα που επικαλύπτονται.
- Λαμβάνεται υπόψη μόνο το κέντρο βάρους της μέγιστης υποπεριοχής με το μεγαλύτερο εμβαδόν.

$$z^* = rac{\int \mu_{C_m}(z) \cdot z dz}{\int \mu_{C_m}(z) dz}$$

Παράδειγμα χρήσης της Centre of Largest Area

• Αρχικά υπολογίζω το εμβαδόν για κάθε ασαφές σύνολο.

$$E_{A} = \frac{(5+3)*0,3}{2} = 1,2$$

$$E_{B} = \frac{(4+2)*0,5}{2} = 1,5$$

$$E_{C} = \frac{(3+1)*1}{2} = 2$$

- Παρατηρώ ότι το μεγαλύτερο εμβαδόν το έχει το C.
- Άρα βρίσκω το κέντρο του C

$$z^* = 6.5$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Centre of Largest Area) (1/2)

- 1ⁿ περίπτωση: θερμοκρασία =
 37.2°C → Low με (0.4, 0, 0).
- Αποτέλεσμα \rightarrow το Φ είναι Low με $\mu_{\text{Low}}(x)=0.4$
- Έχω μόνο μία περιοχή, άρα δεν έχει νόημα να εφαρμόσω το Centre of Largest Area.

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (Centre of Largest Area) (2/2)

- 2ⁿ περίπτωση: θερμοκρασία = 38.7°C →
 High & Very High με (0, 0.87, 0.13).
- Αποτέλεσμα \rightarrow το Φ είναι Medium με $\mu_{Medium}(x)$ =0.87 και High με $\mu_{High}(x)$ =0.13

$$E_{\text{Medium}} = \frac{(4+0.8)*0.87}{2} = 2,088$$

$$E_{High} = \frac{(5+4.35)*0.13}{2} = 0,60775$$

 Η περιοχή "Medium" έχει μεγαλύτερο εμβαδόν, άρα υπολογίζεται το κέντρο αυτής.

$$z^* = 5$$

Centroid Method - Center of Gravity

- Βρίσκει το κέντρο βάρους της επιφάνειας μεταξύ της καμπύλης και των αξόνων.

• Υπολογίζεται από τον τύπο:
$$g = \frac{\int_{a}^{b} \mu_{A}(x) x dx}{\int_{a}^{b} \mu_{A} dx}$$

Χρήσιμοι τύποι - Centroid Method - Center of Gravity

- Ορθογώνιο
 - Εμβαδόν: z*(b-a)
 - Κέντρο: (b-a)/2
- Τρίγωνο
 - Εμβαδόν:
 - 1: z*(b-a)/2
 - 2: z*(d-c)/2
 - Κέντρο:
 - 1: (a+a+b)/3
 - 2: (c+d+d)/3

Παράδειγμα χρήσης της centroid μεθόδου

- Πρώτα υπολογίζω το εμβαδόν όλης της περιοχής-ένωσης.

Sub Area No.	Area	\overline{x}	Area $\times \overline{x}$
1.	$\frac{1\times0.3}{2}$ = 0.150	0.67	0.100
2.	$3 \times 0.3 = 0.90$	2.50	2.250
3.	$\frac{0.4 \times 0.2}{2} = 0.04$	3.73	0.149
4.	$2 \times 0.5 = 1.00$	5.00	5.000
5.	$\frac{0.5 \times 0.5}{2} = 0.125$	5.87	7.330
6.	1×1 = 1.00	6.50	6.500
7.	$\frac{1\times1}{2}=0.50$	7.33	3.660
	∑ Area=3.715		\sum Area $\times \bar{x}$ =24.989

$$G = \sum Area \times \bar{x} \div \sum Area = 24.989 \div 3.715 = 6.72$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (centroid) (1/2)

- 1ⁿ περίπτωση: θερμοκρασία = 37.2°C → Low με (0.4, 0, 0).
- Αποτέλεσμα \rightarrow το Φ είναι Low με $\mu_{Low}(x)$ =

περιοχή	Εμβαδόν (E)	Κέντρο (c)	E*c
1	1,2	1,5	1,8
2	0,4	3,67	1,468

$$g = \frac{1,8 + 1,468}{1.2 + 0.4} = 2,0425$$

Αποσαφοποίηση παραδείγματος με θερμοκρασία-φάρμακο (centroid) (2/2)

- 2ⁿ περίπτωση: θερμοκρασία = 38.7°C → High & Very High με (0, 0.87, 0.13).
- Αποτέλεσμα \rightarrow το Φ είναι Medium με $\mu_{Medium}(x)$ =0.87 και High με $\mu_{High}(x)$ =0.13

περιοχή	Εμβαδόν (E)	Κέντρο (c)	E*c
1	0,7569	4,16	3,148704
2	0,4524	5	2,262
3	0,6438	5,75	3,70185
4	0,6162	7,63	4,701606
Σύνολο	2,4693		13,81416

$$g = \frac{13,81416}{2,4693} = 5,59$$

Τύποι Fuzzy Inference System (FIS)

- Mamdani FIS
- Sugeno FIS

Mamdani FIS

- The Mamdani FIS προτάθηκε από τον Ebhasim Mamdani.
- Αρχικά σχεδιάστηκε για να ελέγχει έναν συνδυασμό ατμομηχανής και λέβητα με ένα σύνολο κανόνων γλωσσικού ελέγχου που ελήφθησαν από έμπειρους χειριστές.
- Είναι ο πιο γνωστός και κοινώς χρησιμοποιούμενος τύπος FIS
- Ακολουθεί τα εξής βήματα:
 - 1. Κατάταξη των τιμών εισόδου στα οριζόμενα ασαφή σύνολα με βάση τις οριζόμενες συναρτήσεις συμμετοχής.
 - 2. Εκτέλεση των ασαφών κανόνων για εξαγωγή ασαφούς αποτελέσματος.
 - 3. Αποσαφοποίηση του ασαφούς αποτελέσματος.

Sugeno FIS (1/3)

- Προτάθηκε από τους Takagi, Sugeno και Kang για την ανάπτυξη μιας συστηματικής προσέγγισης για τη δημιουργία ασαφών κανόνων από ένα δεδομένο σύνολο δεδομένων εισόδου-εξόδου.
- Έχει ομοιότητες με το Mamdani FIS.
- Η διαδικασία της αποασαφοποίησης περιλαμβάνεται στην εκτέλεση των ασαφών κανόνων.
- Η συνέπεια αποτέλεσμα του κανόνα αναπαρίσταται μέσω μιας πολυωνυμικής συνάρτησης (συνήθως σταθερή ή γραμμική).

Sugeno FIS (2/3)

- Ασαφής κανόνας $1^{ης}$ τάξης: IF x is A and y is B THEN z = f(x, y)
 - z: συνάρτηση που δίνει ευκρινές-διακριτό (crisp) συμπέρασμα
 - Το z μπορεί να είναι και ένα αριθμός
- Παράδειγμα κανόνα με σταθερή έξοδο:
 - If temperature is very cold = 2 → Έξοδος: 2 (σταθερή τιμή του αποτελέσματος)
- Παράδειγμα κανόνα με γραμμική έξοδο:
 - If temperature is very cold and humidity is high = 2*temperature+1*humidity →
 Έξοδος: το αποτέλεσμα της συνάρτησης του αποτελέσματος.
 - Οι τιμές temperature και humidity είναι οι αποσαφοποιημένες τιμές.

Sugeno FIS (3/3)

• Αν έχω ένα σύνολο ασαφών κανόνων, τότε η έξοδος είναι ο σταθμισμένος μέσος όρος των αποτελεσμάτων της συνάρτησης του κάθε κανόνα. $\sum_{w_i z_i}$

Final Output = $\frac{\sum_{i=1}^{N} w_i z_i}{\sum_{i=1}^{N} w_i}$

 Τα ασαφή Sugeno μοντέλα υψηλότερης τάξης παρουσιάζουν σημαντική πολυπλοκότητα.

Σύγκριση Mandani FIS- SUGENO FIS (1/2)

Mandani	Sugeno
Output membership function is present	No output membership function is present
The output of surface is discontinuous	The output of surface is continuous
Distribution of output	Non distribution of output, only Mathematical combination of the output and the rules strength
Through defuzzification of rules consequent of crisp result is obtained	No defuzzification here. Using weighted average of the rules of consequent crisp result is obtained
Expressive power and interpretable rule consequent	Here is loss of interpretability

Σύγκριση Mandani FIS- SUGENO FIS (2/2)

Mandani	Sugeno
It possess less flexibility in the system design	It possess more flexibility in the system design
It has more accuracy in security evaluation block cipher algorithm	It has less accuracy in security evaluation block cipher algorithm
It is using in MISO (Multiple Input and Single Output) and MIMO (Multiple Input and Multiple Output) systems	It is using only in MISO (Multiple Input and Single Output) systems
Mamdani inference system is well suited to human input	Sugeno inference system is well suited to mathematically analysis
Application: Medical Diagnosis System	Application: To keep track of the change in aircraft performance with altitude

A Rule-based interval type-2 Fuzzy Logic System (FLS) (1/3)

A Rule-based interval type-2 Fuzzy Logic System (FLS) (2/3)

- A type-2 FLS μπορεί να θεωρηθεί ως μια συλλογή από ένα μεγάλο αριθμό από ενσωματωμένα type-1 FLSs
- Η διαδικασία μείωσης του τύπου (Type-reduction) μετατρέπει ένα ασαφέσ σύνολο τύπου-2 σε ασαφές σύνολο τύπου-1.
- Υπολογισμός των κεντροειδών (centroid) όλων των ενσωματωμένων T1 FLSs
- Συγχώνευση των κεντροειδών (centroids) χρησιμοποιώντας την ένωση.

A Rule-based interval type-2 Fuzzy Logic System (FLS) (3/3)

- Type-reduction παρέχει ένα χρήσιμο μέτρο αβεβαιότητας που είναι ανάλογο με το διάστημα εμπιστοσύνης από πλευρά στατιστικής.
- Υπάρχουν αρκετές type-reduction μέθοδοι.
- Ο αλγόριθμος ΚΜ είναι η ποιο γνωστή και πολυχρησιμοποιημένη μέθοδος type-reduction.
- Ο αλγόριθμος ΚΜ είναι επαναληπτικός, αλλά και πολύ γρήγορος.

Πηγές

- https://docplayer.gr/34470412-Asafis-logiki-fuzzy-logic.html
- https://people.iee.ihu.gr/~adamidis/IntelSys/FS_notes.pdf
- https://eclass.upatras.gr/modules/document/file.php/EE846/fuzzy_logic.pdf
- http://vlabs.iitb.ac.in/vlabs-dev/labs/machine_learning/labs/exp9/theory.php
- https://www.sciencedirect.com/topics/engineering/defuzzification
- https://en.wikipedia.org/wiki/Fuzzy_logic
- https://www.geeksforgeeks.org/comparison-between-mamdani-and-sugeno-fuzzy-inference-system/