COMP90038 Algorithms and Complexity

Lecture 17: Hashing

(with thanks to Harald Søndergaard & Michael Kirley)

Andres Munoz-Acosta

munoz.m@unimelb.edu.au

Peter Hall Building G.83

Recap

- We talked about using some memory space (in the form of extra tables, arrays, etc.) to speed up our computation.
 - Memory is cheap, time is not.

Sorting by counting

Horspool's Algorithm

Sorting by counting

- Lets go through this example carefully:
 - The keys are: [1 2 3 4 5]
 - The data is: [5 5 1 5 4 1 2 3 5 5 1 5 5 3 5 1 3 5 4 5]
- Lets count the appearances of each key:

Key	1	2	3	4	5
Occurrences					

Lets add up the occurrences

Occurrences			
Cumulation			

Sorting by counting

• Lets sort the data:

Key	1	2	3	4	5
Cumulation	4	5	8	10	20
P[20]					19
P[10]				9	
P[19]					18
P[8]			7		

Index	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Unsorted	5	5	1	5	4	1	2	3	5	5	1	5	5	3	5	1	3	5	4	5
Sorted								3		4									5	5

Horspool's algorithm

- Lets go through this example carefully:
 - The pattern is TAACG (A=1, T=2, G=3, C=4 \rightarrow P[.] = [2 1 1 4 3], m =5)
 - The string is GACCGCGTGAGATAACGTCA
- This algorithm creates the table of shifts:

function FINDSHIFTS(
$$P[\cdot], m$$
)
for $i \leftarrow 0$ to alphasize -1 do
Shift[i] $\leftarrow m$
for $j \leftarrow 0$ to $m-2$ do
Shift[$P[j]$] $\leftarrow m - (j+1)$

	А	Т	G	С
After first loop	5	5	5	5
j=0	5	4	5	5
j=1	3	4	5	5
j=2	2	4	5	5
j=3	2	4	5	1

Horspool's algorithm

- We append a sentinel at the end of the data to guarantee completion
 - The string is now GACCGCGTGAGATAACGTCATAACG

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
STRING	G	Α	С	С	G	С	G	Т	G	Α	G	Α	Т	Α	Α	C	G	Т	С	Α	Т	Α	Α	С	G
T[.]	3	1	4	4	3	4	3	2	3	1	3	1	2	1	1	4	3	2	4	1	2	1	1	4	3
FAILED (C!=A)	Т	Α	Α	С	G																				
IS 'CG' SOMEWHERE ELSE?	Т	Α	Α	С	G																				
(NO, SHIFT BY G)																									
FAILED (A!=G, SHIFT BY A)						Т	Α	Α	С	G															
FAILED (A!=G, SHIFT BY A)								Т	Α	Α	C	G													
FAILED (A!=G, SHIFT BY A)										Т	Α	Α	С	G											
FAILED (C!=G, SHIFT BY C)												Т	Α	Α	C	G									
FOUND AT 16													Т	Α	Α	C	G								

Horspool's algorithm

• For this algorithm, at the end of **while True do** iteration, [i k] are:

```
function Horspool(P[\cdot], m, T[\cdot], n)
   FINDSHIFTS(P, m)
   i \leftarrow m-1
   while True do
       k \leftarrow 0
       while k < m and P[m-1-k] = T[i-k] do
           k \leftarrow k + 1
       if k = m then
           if i \geq n then
               return -1
           else
               return i - m + 1
       i \leftarrow i + Shift[T[i]]
```

k
2
C
C
C
C

Hashing

- Hashing is a standard way of implementing the abstract data type "dictionary", a collection of <attribute name, value> pairs. For example an student record:
 - Attributes: Student ID, Name, data of birth, address, major, etc...
- Implemented well, it makes data retrieval very fast.
- A key identifies each record. It can be anything: integers, alphabetical characters, even strings
 - It should map efficiently to a positive integer.
 - The set *K* of keys need not be bounded.

Hashing

- We will store our records in a **hash table** of size m.
 - *m* should be large enough to allow efficient operation, without taking up excessive memory.
- The idea is **to have a function** *h* **that takes the key** *k*, and determines an index in the hash table. This is the **hash function**.
 - A record with key k should be stored in location h(k).
- The hash address is the value of h(k).
 - Two different keys could have the same hash address (a collision).

Hashing

- Few example application are:
 - The MD5 algorithm used for data integrity verification.
 - The blockchain structure used in crypto currencies

The Hash Table

- We can think of the hash table as an abstract data structure supporting operations:
 - Find
 - Insert
 - Lookup (search and insert if not found)
 - Initialize
 - Delete
 - Rehash
- The challenges in implementing a table are:
 - Design a robust hash function
 - Handling of same addresses (collisions) for different key values

The Hash Function

- The hash function:
 - Must be easy (cheap) to compute.
 - Ideally distribute keys evenly across the hash table.

- Examples:
 - If the keys are integers, we could define $h(n) = n \mod m$. If m=23:

n	19	392	179	359	262	321	97	468
h(n)	19	1	18	14	9	22	5	8

• If the keys are strings, we could define a more complex function.

Hashing of strings

• Assume:

- this table of 26 characters.
- a hash table of size 13
- the hash function:

$$h(s) = \left(\sum_{i=0}^{|s|-1} a_i\right) \mod 13$$

 and the following list of keys:
 [A, FOOL, AND, HIS, MONEY, ARE, SOON, PARTED]

char	a	char	a	char	а
Α	0	J	9	S	18
В	1	K	10	Т	19
С	2	L	11	U	20
D	3	M	12	V	21
E	4	N	13	W	22
F	5	0	14	Χ	23
G	6	Р	15	Υ	24
Н	7	Q	16	Z	25
I	8	R	17		

Calculating the addresses

						SUM /	h(s)
Α							
0						0	0
F	0	0	L				
5	14	14	11			44	5
Α	N	D					
0	13	3				16	3
Н	ı	S					
7	8	18				33	7
M	0	Ν	Ε	Υ			
12	14	13	4	24		67	2
А	R	Ε					
0	17	4				21	8
S	0	0	Ν				
18	14	14	13			59	7
Р	Α	R	Т	Ε	D		
15	0	17	19	4	3	58	6

The same address!!!

A more complex hash function

- Assume a binary representation of the 26 characters
 - We need **5 bits** per character (0 to 31)
- Instead of adding, we concatenate the binary strings
- Our hash table is of size 101 (m is prime)
- Our key will be 'MYKEY'

char	a	bin(a)
Α	0	00000
В	1	00001
C	2	00010
D	3	00011
E	4	00100
F	5	00101
G	6	00110
Н	7	00111
I	8	01000

char	a	bin(a)
J	9	01001
K	10	01010
L	11	01011
M	12	01100
N	13	01101
0	14	01110
Р	15	01111
Q	16	10000
R	17	10001

char	a	bin(a)
S	18	10010
Т	19	10011
U	20	10100
V	21	10101
W	22	10110
Χ	23	10111
Υ	24	11000
Z	25	11001

A more complex hash function

			STRING				KEY mod
	M	Υ	K	Е	Υ	KEY	101
int	12	24	10	4	24		
bin(int)	01100	11000	01010	00100	11000		
Index	4	3	2	1	0		
32^(index)	1048576	32768	1024	32	1		
a*(32^index)	12582912	786432	10240	128	24	13379736	64

- By concatenating the strings, we are basically multiplying by 32
- Note that the hash function is a polynomial:

$$h(s) = a_{|s|-1} 32^{|s|-1} + a_{|s|-2} 32^{|s|-2} + \dots + a_1 32 + a_0$$

Handling Long Strings as Keys

What would happen if our key is the longer string 'VERYLONGKEY'

$$h(VERYLONGKEY) = (21 \times 32^{10} + 4 \times 32^9 + \dots + 4 \times 32 + 24) \mod 101$$

- The stuff between parentheses quickly becomes a very large number quickly
 - DEC: 23804165628760600

Calculating this polynomial by brute force is very expensive

Horner's rule

 Fortunately there is a trick, Horner's rule, that simplifies polynomial calculation.

$$p(x) = a_3 \times x^3 + a_2 \times x^2 + a_1 \times x + a_0$$

• By factorizing x we have that:

$$p(x) = (((a_3 \times x) + a_2) \times x + a_1) \times x + a_0$$

• If we apply the modulus we have:

$$p(x) = ((((a_3 \times x) + a_2) \times x + a_1) \times x + a_0) \mod m$$

Horner's rule

• We then can use the following properties of modular arithmetic:

$$x \boxplus y = (x + y) \mod m = ((x \mod m) + (y \mod m)) \mod m$$

 $x \boxtimes y = (x \times y) \mod m = ((x \mod m) \times (y \mod m)) \mod m$

• Given that modulus distributes across all operations, then we have:

$$p(x) = (((((a_3 \boxtimes x) \boxplus a_2) \boxtimes x) \boxplus a_1) \boxtimes x) \boxplus a_0$$

• The results of each operation will not exceed m.

Handling collisions

- The hash function should be as random as possible.
- However, in some cases different keys will be mapped to the same hash table address. For example $h(n) = n \mod 23$

KEY	19	392	179	359	663	262	639	321	97	468	814
ADDRESS	19	1	18	14	19	9	18	22	5	8	9

- When this happens we have a collision.
- Different hashing methods resolve collisions differently.

Separate Chaining

(open hashing)

• Each element *k* of the hash table is a **linked list**, which makes collision handling very easy

ADDRESS	0	1	2	2	3 4	4 5	6	7	8	9	10	11	12	1 4	14	15	16	17	18	19	20	21	22
LIST		392				97			468	262					359				179	19			
										814									639	663			

• Exercise: add to this table [83 110 14]

m cells

- The **load factor** $\alpha = n/m$, where n is the number of items stored.
 - Number of probes in **successful** search \sim (1 + α)/2.
 - Number of probes in **unsuccessful** search $\sim \alpha$.

$$S \approx 1 + \frac{\alpha}{2}$$
 and $U = \alpha$

Separate chaining: advantages and disadvantages

- Compared with sequential search, reduces the number of comparisons by the size of the table (a factor of m).
- Good in a dynamic environment, when (number of) keys are hard to predict.
- The chains can be ordered, or records may be "pulled up front" when accessed.
- Deletion is easy.
- However, separate chaining uses extra storage for links.

Open-Addressing Methods

• With <u>open-addressing</u> methods (also called <u>closed hashing</u>) all records are stored in the hash table itself (not in linked lists hanging off the table).

- There are many methods of this type. We focus on two:
 - linear probing
 - double hashing

• For these methods, the load factor $\alpha \leq 1$.

Linear probing

- In case of collision, try the next cell, then the next, and so on.
- Assume the following data (and its keys) arriving one at the time:

$$[19(19) \ 392(1) \ 179(18) \ 663(19 \rightarrow 20) \ 639(18 \rightarrow 21) \ 321(22) \ ...]$$

- Search proceeds in similar fashion
- If we get to the end of the table, we wrap around.
- For example, if key 20 arrives, it will be placed in cell 0.

Linear probing

• Exercise: Add [83(14) 110(18) 497(14)] to the table

ADDRESS	0	1	2	3	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
LIST		392				97			468	262	814				359				179	19	663	639	321

- Again let m be the table size, and n be the number of records stored.
- As before, $\alpha = n/m$ is the load factor. Then, the average number of probes:
 - Successful search: $0.5 + 1/(2(1-\alpha))$
 - Unsuccessful: $0.5 + 1/(2(1-\alpha)^2)$

$$S \approx \frac{1}{2}(1 + \frac{1}{1 - \alpha})$$
 and $U \approx \frac{1}{2}(1 + \frac{1}{(1 - \alpha)^2})$

successful search

unseccessful search

Linear probing: advantages and disadvantages

- Space-efficient.
- Worst-case performance miserable; must be careful not to let the load factor grow beyond 0.9.
- Comparative behavior, m = 11113, n = 10000, $\alpha = 0.9$:
 - Linear probing: 5.5 probes on average (success)
 - Binary search: 12.3 probes on average (success)
 - Linear search: 5000 probes on average (success)
- Clustering (large groups of contiguous keys) is a major problem:
 - The collision handling strategy leads to clusters of contiguous cells being occupied.
- Deletion is almost impossible.

Double Hashing

- To alleviate the clustering problem in linear probing, there are better ways of resolving collisions.
- One is double hashing which uses a second hash function s to determine an offset to be used in probing for a free cell.
- For example, we may choose $s(k) = 1 + k \mod 97$.
- By this we mean, if h(k) is occupied, next try h(k) + s(k), then h(k) + 2s(k), and so on.

if get to the end of table, wrap around

• This is another reason why **it is good to have m being a prime number**. That way, using h(k) as the offset, we will eventually find a free cell if there is one.

Rehashing

- The standard approach to avoiding performance deterioration in hashing is to keep track of the load factor and to **rehash** when it reaches, say, 0.9.
- Rehashing means allocating a larger hash table (typically about twice the current size), revisiting each item, calculating its hash address in the new table, and inserting it.
- This "stop-the-world" operation will introduce long delays at unpredictable times, but it will happen relatively infrequently.

An exam question type

• With the hash function $h(k) = k \mod 7$. Draw the hash table that results after inserting in the given order, the following values

- When collisions are handled by:
 - separate chaining
 - linear probing
 - double hashing using $h'(k) = 5 (k \mod 5)$

Solution

Index	0	1	2	3	4	5	6
Separate Chaining							
Separate chairing							
Linear Probing							
Double Hashing							

Rabin-Karp String Search

not examable

- The Rabin-Karp string search algorithm is based on string hashing.
- To search for a string p (of length m) in a larger string s, we can calculate hash(p) and then check every substring $s_i \dots s_{i+m-1}$ to see if it has the same hash value. Of course, if it has, the strings may still be different; so we need to compare them in the usual way.
- If $p = s_i \dots s_{i+m-1}$ then the hash values are the same; otherwise the values are almost certainly going to be different.
- Since false positives will be so rare, the O(m) time it takes to actually compare the strings can be ignored.

Rabin-Karp String Search

• Repeatedly hashing strings of length *m* seems like a bad idea. However, the hash values can be calculated **incrementally**. The hash value of the length-*m* substring of *s* that starts at position *j* is:

hash
$$(s,j) = \sum_{i=0}^{m-1} \operatorname{chr}(s_{j+i}) \times a^{m-i-1}$$

 where a is the alphabet size. From that we can get the next hash value, for the substring that starts at position j+1, quite cheaply:

$$hash(s, j + 1) = (hash(s, j) - a^{m-1}chr(s_j)) \times a + chr(s_{j+m})$$

• modulo m. Effectively we just subtract the contribution of s_j and add the contribution of s_{j+m} , for the cost of two multiplications, one addition and one subtraction.

An example

- The data '31415926535'
- The hash function $h(k) = k \mod 11$
- The pattern '26'

STRING	3	1	4	1	5	9	2	6	5	3	5
31 MOD 11		9									
14 MOD 11			3								
41 MOD 11				8							
15 MOD 11					4						
59 MOD 11						4					
92 MOD 11							4				
26 MOD 11								4			

Why Not Always Use Hashing?

Some drawbacks:

- If an application calls for traversal of all items in sorted order, a hash table is no good.
- Also, unless we use separate chaining, deletion is virtually impossible.
- It may be hard to predict the volume of data, and rehashing is an expensive "stop-the-world" operation.

When to Use Hashing?

- All sorts of information retrieval applications involving thousands to millions of keys.
- Typical example: Symbol tables used by compilers. The compiler hashes all (variable, function, etc.) names and stores information related to each – no deletion in this case.
- When hashing is applicable, it is usually superior; a well-tuned hash table will outperform its competitors.
- **Unless** you let the load factor get too high, or you botch up the hash function. It is a good idea to print statistics to check that the function really does spread keys uniformly across the hash table.

Next lecture

• Dynamic programming and optimization.