

Description

The **vs18P10-T2** uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. It is ESD protested.

General Features

● V_{DS} =-100V,I_D =-18A

 $R_{\text{DS(ON)}}\!<\!100\text{m}\Omega \ \textcircled{0} \ V_{\text{GS}}\!\!=\!\!-10\text{V} \quad (\text{Typ:85m}\Omega)$

 $R_{DS(ON)}$ <120m Ω @ V_{GS} =-10V (Typ:95m Ω)

- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Application

- Power management in notebook computer
- Portable equipment and battery powered systems

Schematic diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VS18P10-T2	VS18P10-T2	TO-252-2L	-	-	-

Absolute Maximum Ratings (T_C=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-100	V	
Gate-Source Voltage	V _{GS}	±20	V	
Drain Current-Continuous	I _D	-18	А	
Drain Current-Continuous(T _C =100°ℂ)	I _D (100℃)	-12	Α	
Pulsed Drain Current	I _{DM}	-100	Α	
Single pulse avalanche energy (Note 5)	E _{AS}	170	mJ	
Maximum Power Dissipation	P _D	70	W	
Derating factor		0.47	W/℃	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	R _{θJc}	2.14	°C/W
--	------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±20	μA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1	-1.9	-3	V
Drain Course On State Besistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-16A	-	85	100	mO
Drain-Source On-State Resistance		V _{GS} =-4.5V, I _D =-16A		95	120	mΩ
Forward Transconductance	g FS	V _{DS} =-50V,I _D =-10A	5	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V = 50VV = 0V	-	3810	-	PF
Output Capacitance	Coss	V_{DS} =-50V, V_{GS} =0V, F=1.0MHz	-	129	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVID2	-	125	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}	V_{DD} =-50V, I_{D} =-16A V_{GS} =-10V, R_{GEN} =9.1 Ω	-	16	-	nS
Turn-on Rise Time	t _r		-	73	-	nS
Turn-Off Delay Time	t _{d(off)}		-	34	-	nS
Turn-Off Fall Time	t _f		-	57	-	nS
Total Gate Charge	Qg	V 50VI 40A	-	70	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-50V,I _D =-16A,	-	12.5	-	nC
Gate-Drain Charge	Q_{gd}	- V _{GS} =-10V	-	15.5	-	nC
Drain-Source Diode Characteristics	<u>'</u>					
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	-18	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF =-16A	-	88.3	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	65.9	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- **5**. EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=-50V,V_G=-10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Vseei Semiconductor Co., Ltd

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance