6.3 Motor Control

For controlling the phase of the magnets of the Eddy Current brake, a stepper motor was chosen for it's accuracy and the ability to control it's operation with the Raspberry Pi's GPIO pins.

(a) Nema 23 Stepper Motor with 15:1 Gearbox (b) TB660 v1.1 Stepper Motor Driver (Micro Robotics) (Communica)

Figure 6.2: Motor Control Components

After testing the resistance level between the wires on the Nema-23 stepper motor, the results were:

Table 6.2: Stepper Motor Wire Resistance Measurement Results

	Black	Green	Red	Yellow	White
Blue	$> 1 \mathrm{M}\Omega$	$> 1 \mathrm{M}\Omega$	41.2Ω	$> 1 \mathrm{M}\Omega$	20.7Ω
White	$> 1 \mathrm{M}\Omega$	$> 1 \mathrm{M}\Omega$	20.8Ω	$> 1 \mathrm{M}\Omega$	
Yellow	20.7Ω	20.5Ω	$> 1 \mathrm{M}\Omega$		
Red	$> 1 \mathrm{M}\Omega$	$> 1 \mathrm{M}\Omega$			
Green	40.5Ω				

From Table 6.2 above, the wires associated with each coil can be identified. A resistance of > 1 M Ω indicates that the wires are not connected to the same coil. For the wires on the same coil, a larger resistance indicates that there is more coiled wire between the connections, and they are thus farther apart. This results in the :