Lecture notes in Derived Algebraic Geometry Session 4

Course by F. Binda, notes by E. Hecky

21 February 2025

The aim of this last session is to finish the construction of the cotangent complex, and to discuss a bit about how to globalize the ring-theoretic construction that were introduced in the previous session.

1 Square-zero extensions and the cotangent complex

This section is actually the continuation of the last section of the previous lesson. Recall that we defined an augmented A-algebra $A \oplus M$ for every animated module M over an animated ring A, satisfying intuitive basic properties.

Lemma 1.1. There exists a fiber sequence

$$M \to A \oplus M \to A$$

where the second map is an effective epimorphism, and a commutative diagram of ∞ -categories

$$\begin{array}{cccc} \operatorname{Ani}(\operatorname{CRMod}^{\heartsuit}) & \longrightarrow & \operatorname{Ani}(\operatorname{CRMod}^{\heartsuit}) & & (A,M) & \longmapsto & (A,0) \\ & & & & & \downarrow^{\operatorname{pr}_1} & & & \downarrow & & \downarrow \\ & & & & & & \downarrow^{\operatorname{pr}_1} & & & \downarrow & & \downarrow \\ & & & & & & & & A \oplus M & \longmapsto & A \end{array}$$

Remember that classically, $\operatorname{Der}(A, M) \simeq \operatorname{Hom}_{/A}(A, A \oplus M)$. This motivates the definition of derivations in the animated context.

Definition 1.2. Let $(A, M) \in \text{Ani}(CRMod^{\heartsuit})$. Then define

$$\operatorname{Der}(A, M) = \operatorname{Map}_{\operatorname{CAlg}^{\operatorname{ani}}_{/A}}(A, A \oplus M).$$

Remark 1.3. $A \oplus M$ is a loop space! Indeed, there is a pullback square of the form

$$\begin{array}{ccc}
A \oplus M & \longrightarrow & A \\
\downarrow & & \downarrow \\
A & \longrightarrow & A \oplus M[1]
\end{array}$$

Also, Der(A, M) is the fiber of the map

$$\operatorname{Map}_{\operatorname{CAlg}^{\operatorname{ani}}}(A, A \oplus M) \to \operatorname{Map}_{\operatorname{CAlg}^{\operatorname{ani}}}(A, A).$$

Proposition 1.4. The functor

$$\operatorname{Der}(A, -) : \operatorname{Mod}_A \to \mathcal{S}\operatorname{pc}$$

is accessible and preserves limits. Therefore, it has a left adjoint

$$G: \mathcal{S}pc \to Mod_A$$
.

Proof. For the accessibility, it is enough to observe that Map(A, -) is accessible since $M \mapsto A \oplus M$ commutes with sifted colimits by design (it is an animation), so it is accessible.

To show that the functor preserves limits, notice that the forgetful functor $\operatorname{CAlg}^{\operatorname{ani}}_{/A} \to \operatorname{CAlg}^{\operatorname{ani}}$ detects limits, so it is enough to show that if $p: K \to \operatorname{Mod}_A$ is a diagram of A-modules, then

$$\operatorname{Map}_{/A}(A[\underline{T}], A \oplus \lim_{K} p) \simeq \lim_{K} \operatorname{Map}_{/A}(A[\underline{T}], A \oplus p).$$

Why is this the case? Recall that there is an adjunction:

$$\mathbb{L}\mathrm{Sym}_{\mathbf{Z}}:\mathrm{Mod}_{\mathbf{Z}}^{\mathrm{ani}}\rightleftarrows\mathrm{CAlg}^{\mathrm{ani}}:\mathrm{for}$$

between the (derived) free symmetric algebra and forgetful functors. Apply this adjunction and recall that small limits in Mod_A commute with \oplus (which is simply the product in Mod_A) to obtain :

$$\begin{split} \operatorname{Map}_{\operatorname{CAlg}_{/A}}(A[\underline{T}],A \oplus \lim_K p) &\simeq \operatorname{Map}_{\operatorname{Mod}_A}(A^{\oplus n},\operatorname{for}(A \oplus \lim_K p)) \\ &\simeq \lim_K \operatorname{Map}_{\operatorname{Mod}_A}(A^{\oplus n},\operatorname{for}(A \oplus p)) \\ &\simeq \lim_K \operatorname{Map}_{\operatorname{CAlg}_{/A}}(\mathbb{L}\operatorname{Sym}(A^{\oplus n}) = A[\underline{T}],A \oplus p). \end{split}$$

One can now define the cotangent complex.

Definition 1.5. The absolute cotangent complex \mathbb{L}_A is the module G(*).

Remark 1.6. There is another, spectral way to construct the cotangent complex. If \mathcal{C} is a symmetric monoidal stable ∞ -category, then one can define a functor $G: \mathrm{CAlg}^{\mathrm{aug}}(\mathcal{C}) \to \mathcal{C}$ sending an augmented algebra $f: A \to \mathbf{1}$ to its cofiber. There is a theorem stating that G^1 induces an equivalence

$$\partial G: \mathcal{S}\mathrm{p}(\mathrm{CAlg}^\mathrm{aug}(\mathcal{C})) \simeq \mathcal{S}\mathrm{p}(\mathcal{C}) \simeq \mathcal{C}$$

which can be used to define the cotangent complex. The advantage of this approach is that it lets us defined $A \oplus M$ for any non-necessarily animated \mathbb{E}_{∞} -ring spectrum A.

Theorem 1.7. The construction $A \mapsto \mathbb{L}_A$ extends to a functor

$$CAlg^{ani} \to Ani(CRMod^{\heartsuit})$$

sending $f: A \to B$ to $B \otimes_A^{\mathbb{L}} \mathbb{L}_A \to \mathbb{L}_B$. If A is a polynomial algebra then $\mathbb{L}_A \simeq \Omega_{A/\mathbf{Z}}$.

¹or more precisely, its Goodwillie derivative

Definition 1.8. For an animated ring map $f: A \to B$, its relative cotangent complex $\mathbb{L}_{B/A}$ is the cofiber of the map $\mathbb{L}_A \otimes_A^{\mathbb{L}} B \to \mathbb{L}_B$.

Proposition 1.9. There is an equivalence

$$\operatorname{Map}_{\operatorname{Mod}_B}(\mathbb{L}_{B/A}, N) \simeq \operatorname{Map}_{\operatorname{CAlg}_{A//B}}(B, B \oplus N).$$

Define the space $Der_A(B, N)$ of A-linear derivations from B to N to be this space.

Proposition 1.10. The cotangent complex satisfies the following basic properties:

- 1. (Base change) If $B \simeq B' \otimes_{A'} A$, then $\mathbb{L}_{B/A} \simeq \mathbb{L}_{B'/A'} \otimes B$;
- 2. If $A \to B \to C$ is a fiber sequence, then there is a fiber sequence

$$C \otimes_B \mathbb{L}_{B/A} \to \mathbb{L}_{C/A} \to \mathbb{L}_{C/B}$$
;

3. For every map $f: A \to B$, there is an associated map $\varepsilon(f): B \otimes_A \operatorname{Cof}(f) \to \mathbb{L}_{B/A}$. We have the following connectivity estimate: if the fiber of f is connective, then the fiber of $\varepsilon(f)$ is 2-connective.

An important "slogan" in derived algebraic geometry which gives even more importance to this object is the idea that all animated rings can be built from discrete rings with square-zero extensions.

Definition 1.11. A map $S' \to S$ in CAlg^{ani} is a *square-zero extension* if there is an S-module M and a derivation $d \in \pi_0 \operatorname{Map}_{/S}(S, S \oplus M[1])$ such that the following square is cartesian :

$$\begin{array}{ccc}
S' & \longrightarrow & S \\
\downarrow & & \downarrow d_0 \\
S & \xrightarrow{d} & S \oplus M[1]
\end{array}$$

Here, d_0 denotes the trivial derivation $S \to S \oplus M[1]$ which is just the inclusion of the first factor

Proposition 1.12 (Lurie, DAG). Let M be an animated module over S. If S' is a square-zero extension of S by M and if $R \to S$ is any ring map, then the space of lifts $\operatorname{Map}_{\operatorname{CAlg}^{\operatorname{ani}}/S}(R,S')$ is a torsor under $\operatorname{Der}(R,M)$.

Concretely, this means that to get a lift $R \to S'$ in the following diagram

$$\begin{array}{cccc} R & \longrightarrow & S' & \longrightarrow & S \\ & & \downarrow & & \downarrow d_0 \\ & S & \longrightarrow & S \oplus M[1] \end{array}$$

it is sufficient and necessary that the derivation $R \to S \xrightarrow{d} S \oplus M[1]$ in $\pi_0 \operatorname{Der}(R, M[1]) = \pi_0 \operatorname{Map}_{\operatorname{Mod}_R}(\mathbb{L}_R, M[1])$ is the trivial derivation.

Example 1.13. Postnikov towers give rise to square zero extensions! Recall that for every $n \geq 0$, there is a functor

$$\tau_{\leqslant n}: \mathrm{CAlg}^{\mathrm{ani}} \to \mathrm{CAlg}^{\mathrm{ani}}.$$

Then $\tau_{\leq n}R$ is a square-zero extension of $\tau_{\leq n-1}R$ by $(\pi_nR)[n]$, i.e. there is a pullback square :

$$\tau_{\leqslant n}R \xrightarrow{\int} \tau_{\leqslant n-1}R$$

$$\downarrow \qquad \qquad \downarrow d_0$$

$$\tau_{\leqslant n-1}R \xrightarrow{-\bar{\underline{a}_d}} \tau_{\leqslant n-1}R \oplus (\pi_n R)[n+1]$$

This explains the philosophy of derived algebraic geometry, that after passing from varieties to schemes by adding non-reduced points, we pass from schemes to derived schemes by adding finer infinitesimal information. This Postnikov construction allows for handy inductive arguments using the cotangent complex.