### 60016 OPERATIONS RESEARCH

Basic feasible solutions

#### Last Lecture

- ► Taxonomy of LP models
  - ► Resource allocation & blending models
  - Operations planning models
  - ► Shift scheduling models
  - ► Time-phased models
  - **.**..

#### This Lecture

- Basic solutions
- ► Algebra vs. geometry
- ► Fundamental theorem of linear programming
- Basic representations

### Assumptions

From now on we focus on LPs in standard form

min 
$$z = c^T x$$
  
s.t.  $Ax = b$   
 $x \ge 0$   $(\mathcal{LP})$ 

with data  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$  (where  $b \ge 0$ ).

- ▶ We assume:
  - # of variables  $= n \ge m = \#$  of equations (otherwise, the system Ax = b is overdetermined);
  - rows of A are linearly independent (otherwise, the constraints are redundant or inconsistent).
  - $\Rightarrow$  rank(A) = m

### Linear Dependence

#### Linear dependence of rows in A implies either:

contradictory constraintsi.e., no solution to A x = b, e.g.

$$x_1 + x_2 = 1$$
  
 $x_1 + x_2 = 2$ 

redundant constraints, e.g.

$$x_1 + x_2 = 1$$
  
 $2x_1 + 2x_2 = 2$ 

#### Index Sets

lacktriangle Consider only the system of linear equations in problem  $\mathcal{LP}$ .

$$A x = b$$

- ▶ Let  $A = [a_1, ..., a_n]$ , where  $a_i \in \mathbb{R}^m$  is the *i*th column vector of A.
- Select a subset of m columns  $a_i$  that are linearly independent. This is always possible since  $m = \operatorname{rank}(A)$  and  $n \ge m$ .
- Collect in the index set I the indexes for these m columns. I is therefore a subset of  $\{1, \ldots, n\}$ .

Definition: The matrix  $B = B(I) \in \mathbb{R}^{m \times m}$  consisting of the columns  $\{a_i\}_{i \in I}$  is called the basis corresponding to the index set I.

### Example: Partition of A

$$A = \left[ \begin{array}{rrrrrr} 2 & 4 & 3 & 3 & 1 & 0 \\ 3 & -3 & 4 & 2 & 0 & 1 \\ -1 & 2 & 1 & 2 & 0 & 0 \end{array} \right]$$

Choose 
$$I = \{1, 5, 2\}$$

$$\Rightarrow B(I) = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 0 & -3 \\ -1 & 0 & 2 \end{bmatrix}$$

#### **Basic Solutions**

Definition: A solution x to Ax = b with  $x_i = 0$  for all  $i \notin I$  is a basic solution (BS) to Ax = b with respect to the index set I.

Definition: A solution x satisfying both Ax = b and  $x \ge 0$  is a feasible solution (FS).

Definition: A feasible solution which is also basic is a basic feasible solution (BFS).

# Basic Solutions (cont)

Assume for example that  $I = \{1, ..., m\}$ .

$$\begin{array}{rcl}
 a_{11}x_1 + \ldots + a_{1m}x_m + a_{1,m+1}x_{m+1} + \ldots + a_{1n}x_n & = & b_1 \\
 a_{21}x_1 + \ldots + a_{2m}x_m + a_{2,m+1}x_{m+1} + \ldots + a_{2n}x_n & = & b_2 \\
 & \vdots & \vdots & \vdots & \vdots \\
 a_{m1}x_1 + \ldots + a_{mm}x_m + a_{m,m+1}x_{m+1} + \ldots + a_{mn}x_n & = & b_m
 \end{array}$$

The following system is equivalent to  $Bx_B = b$ .

# Basic Solutions (cont)

Assume for example that  $I = \{1, ..., m\}$ .

$$\begin{array}{rcl}
 a_{11}x_1 + \ldots + a_{1m}x_m + a_{1,m+1}x_{m+1} + \ldots + a_{1n}x_n & = & b_1 \\
 a_{21}x_1 + \ldots + a_{2m}x_m + a_{2,m+1}x_{m+1} + \ldots + a_{2n}x_n & = & b_2 \\
 & \vdots & \vdots & \vdots & \vdots \\
 a_{m1}x_1 + \ldots + a_{mm}x_m + a_{m,m+1}x_{m+1} + \ldots + a_{mn}x_n & = & b_m
 \end{array}$$

The following system is equivalent to  $Bx_B = b$ .

$$\begin{array}{rclcrcr}
 a_{11}x_1 & + & \dots & + & a_{1m}x_m & = & b_1 \\
 a_{21}x_1 & + & \dots & + & a_{2m}x_m & = & b_2 \\
 \vdots & & & \vdots & & \vdots \\
 a_{m1}x_1 & + & \dots & + & a_{mm}x_m & = & b_m
 \end{array}$$

Remove non-linear independent columns => Linear Independent Column Index Sets

# Basic Solutions (cont)

Observation: The basic solution corresponding to I is unique.

As the vectors  $\{a_i\}_{i\in I}$  are linearly independent, the basis B is invertible. Thus, the system

$$B x_B = b$$

has a unique solution  $x_B = B^{-1}b \in \mathbb{R}^m$ .

Define  $x = (x_1, \dots, x_n)$  through

$$(x_i)_{i\in I}=x_B$$
 and  $(x_i)_{i\notin I}=0$ .

This x is the unique basic solution to Ax = b with respect to. 1.

### Algebra vs. Geometry

► Geometric intuition: LP solution at corner of feasible set



► Algebra: Corners of feasible set correspond to basic feasible solutions

# Example 1 (revisited)

```
max y = x_1 + x_2 : objective function
s.t. 2x_1 + x_2 \le 11 : constraint on availability of X
```

 $x_1 + 3x_2 \le 18$ : constraint on availability of Y  $x_1 \le 4$ : constraint on demand of A

 $x_1 \le 4$  . Constraint on defining of  $x_1, x_2 \ge 0$  : non-negativity constraints

In standard form: n = 5 variables & m = 3 constraints

-min 
$$z = -x_1 - x_2$$
  
s.t.  $2x_1 + x_2 + x_3 = 11$   
 $x_1 + 3x_2 + x_4 = 18$   
 $x_1 + x_5 = 4$   
 $x_1, x_2, x_3, x_4, x_5 \ge 0$   
x3, x4, x5 are slack variables



5 Dimensional Problems as 5 decision variables.







### Importance of BFS

Vertices of the feasible set = basic feasible solutions!

- Geometry: optimum always achieved at a vertex
- Algebra: optimum always achieved at a BFS

Definition: Given an LP in standard form, a feasible solution to the constraints  $\{A \mid x = b; x \geq 0\}$  that achieves the optimal value of the objective function is called an optimal feasible solution. If the solution is basic then it is an optimal BFS.

#### Fundamental Theorem of LP

Theorem 1: For an LP in standard form with rank $(A) = m \le n$ :

- 1.  $\exists$  a feasible solution  $\Rightarrow \exists$  a BFS.
- 2.  $\exists$  an optimal solution  $\Rightarrow \exists$  an optimal BFS.

Feasible, but not basic



The reverse is in general not true:

- there may be feasible solutions that are not BFS
- there may be optimal solutions that are not BFS

The naïve statement "an LP has an optimal BFS" is also in general not true as the LP may be infeasible or unbounded.

### Searching for Optima

- ▶ Theorem 1 reduces solving an LP to searching over BFS's.
- ► For an LP in standard form with *n* variables and *m* constraints, there are

$$\binom{n}{m} = \frac{n!}{m! (n-m)!}$$

possibilities of selecting *m* columns in the *A* matrix.

- $\Rightarrow$  There are at most  $\binom{n}{m}$  basic solutions: a finite number of possibilities!
- ⇒ Theorem 1 offers an obvious but terribly inefficient way of computing the optimum through a finite search.

### Number of BFS

*Note*: There are  $\binom{n}{m}$  index sets  $I \subseteq \{1, \ldots, n\}$  with |I| = m.

- $\Rightarrow$  The number of distinct BFS is finite and usually  $<\binom{n}{m}$  for the following reasons:
  - 1. B(I) may be singular,
  - 2. the BS corresponding to *I* may not be feasible.

### A "Small" Problem

Let m = 30, and n = 100.

$$\binom{100}{30} = \frac{100!}{30! \ 70!} \approx 2.9 \times 10^{25}.$$

It takes approximately  $10^{12}$  years if we check  $10^6$  sets/sec.

(The age of the universe is  $\approx 14 \times 10^9$  years!)

#### Basic Variables

Fix an index set I with |I| = m and B(I) invertible.

Definition The variables  $\{x_i\}_{i\in I}$  are referred to as the basic variables (BV), while the variables  $\{x_i\}_{i\notin I}$  are called the nonbasic variables (NBV) corresponding to I.

*Note*: By construction, the nonbasic variables are always zero, but the basic variables can be zero or non-zero.

### Example: Algebra vs Geometry



### Example: Basic vs Nonbasic Variables



### Basic Representation

Fix an index set I with |I| = m and B(I) invertible.

Definition: The basic representation corresponding to I is the (unique) reformulation of the system ( $z = c^T x, Ax = b$ ) which expresses the objective function value z and each BV as a linear function of the NBV's:

$$\left[\begin{array}{c}z\\x_B\end{array}\right]=f(x_N),$$

#### where

- $ightharpoonup x_N = [x_i | i \notin I] \text{ (NBV's)}$ and
- $ightharpoonup f: \mathbb{R}^{n-m} \to \mathbb{R}^{m+1}$  is linear.

#### Matrix Partition

Let  $A = [a_1, \dots a_n]$ , where  $a_i \in \mathbb{R}^m$  is the *i*th column of A. For any index set  $I \subseteq \{1, \dots, n\}$  with |I| = m. Define

- ▶  $B = B(I) = [a_i | i \in I];$
- $\triangleright$   $N = N(I) = [a_i | i \notin I];$
- ►  $c_B = c_B(I) = [c_i | i \in I];$
- ►  $x_B = x_B(I) = [x_i | i \in I];$

This implies

$$Ax = Bx_B + Nx_N$$
 and  $c^Tx = c_B^Tx_B + c_N^Tx_N$ .

### Example: Partition of A

$$A = \left[ \begin{array}{rrrrrr} 2 & 4 & 3 & 3 & 1 & 0 \\ 3 & -3 & 4 & 2 & 0 & 1 \\ -1 & 2 & 1 & 2 & 0 & 0 \end{array} \right]$$

Choose 
$$I = \{3, 4, 5\}$$

$$\Rightarrow B(I) = \begin{bmatrix} 3 & 3 & 1 \\ 4 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix} \quad \text{and} \quad N(I) = \begin{bmatrix} 2 & 4 & 0 \\ 3 & -3 & 1 \\ -1 & 2 & 0 \end{bmatrix}$$

# Basic Representation (cont)

Given this partition, we have:

Since B is invertible by construction, this implies that

$$x_B = B^{-1}(b - Nx_N) = B^{-1}b - B^{-1}Nx_N$$
.

Substituting this formula into the expression for z we find

$$z = c_B^T x_B + c_N^T x_N = c_B^T B^{-1} b + (c_N^T - c_B^T B^{-1} N) x_N$$

which may be equivalently rewritten as

$$z = c_B^T B^{-1} b + (c_N - N^T B^{-T} c_B)^T x_N$$

where we use the shorthand notation  $B^{-T} = (B^{-1})^T$ .

# Basic Representation (cont)

Thus, the original system  $z = c^T x$ , Ax = b is equivalent to the basic representation

$$z = c_B^T B^{-1} b + (c_N - N^T B^{-T} c_B)^T x_N$$

$$x_B = B^{-1} b - B^{-1} N x_N,$$
(\*)

which expresses z and  $x_B$  as linear functions of  $x_N$ .

*Note*: By setting  $x_N = 0$  in (\*) we obtain the basic solution  $x = (x_B, x_N) = (B^{-1}b, 0)$  with objective value  $z = c_B^T B^{-1}b$ .

Definition: We call  $r = c_N - N^T B^{-T} c_B$  the reduced cost vector. This vector characterises the sensitivity of the objective function value z with respect to the nonbasic variables  $x_N$ .

### Example: Basic Representation

#### Consider the following LP:

min 
$$z = 6x_1 + 3x_2 + 4x_3 + 2x_4 - 3x_5 + 4x_6$$
  
subject to:

$$2x_1 -1x_2 +3x_3 +2x_4 +3x_5 +2x_6 +x_7 = 4$$

$$3x_1 +4x_2 +2x_3 +2x_4 +3x_5 +x_8 = 2$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8 \ge 0$$

# Example: Basic Representation (cont)

Thus, we are given the following problem data:

$$A = \begin{bmatrix} 2 & -1 & 3 & 2 & 3 & 2 & 1 & 0 \\ 3 & 4 & 2 & 2 & 3 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, c = \begin{bmatrix} 0 \\ 3 \\ 4 \\ 2 \\ -3 \\ 4 \\ 0 \\ 0 \end{bmatrix}$$

# Example: Basic Representation (cont)

Choose  $I = \{4, 3\}$ . Then, we have

$$B = \begin{bmatrix} 2 & 3 \\ 2 & 2 \end{bmatrix} \Rightarrow B^{-1} = \begin{bmatrix} -1 & \frac{3}{2} \\ 1 & -1 \end{bmatrix},$$

$$N = \begin{bmatrix} 2 & -1 & 3 & 2 & 1 & 0 \\ 3 & 4 & 3 & 0 & 0 & 1 \end{bmatrix},$$

$$c_B^T = \begin{bmatrix} 2 & 4 \end{bmatrix}, \quad c_N^T = \begin{bmatrix} 6 & 3 & -3 & 4 & 0 & 0 \end{bmatrix}.$$

# Example: Basic Representation (cont)

Using (\*), we find that the original system

$$z = 6x_1 +3x_2 +4x_3 +2x_4 -3x_5 +4x_6$$
  
 $2x_1 -1x_2 +3x_3 +2x_4 +3x_5 +2x_6 +x_7 = 4$   
 $3x_1 +4x_2 +2x_3 +2x_4 +3x_5 +x_8 = 2$ 

is equivalent to the basic representation

The corresponding BS is not feasible:

$$(z, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) = (6, 0, 0, 2, -1, 0, 0, 0, 0)$$

### Importance of Basic Representations

Fix an index set I with |I| = m.

- Assume that
  - the basis B is invertible and
  - ▶ the corresponding BS with  $x_B = B^{-1}b$  and  $x_N = 0$  is feasible, i.e.,  $B^{-1}b \ge 0$ .
- ▶ The objective value of this BFS is  $z = c_B^T B^{-1} b$ .
- ▶ Any other feasible solution satisfies  $x_N \ge 0$ .
- ▶ The basic representation

$$z = c_B^T B^{-1} b + r^T x_N$$
 and  $x_B = B^{-1} b - B^{-1} N x_N$ 

tells us how z and  $x_B$  change when the nonbasic variables increase.

### Importance of Basic Representations

In particular, the reduced cost vector r enables us to:

- recognise whether the current BFS is optimal (this is the case iff  $r \ge 0$ ; then, no other feasible solution can have a lower objective value than the current BFS);
- ▶ find a new BFS with a lower objective value if the current BFS is not optimal (by increasing a nonbasic variable with a negative reduced cost).