PHÂN LOẠI MỰC ĐỘ NGHIÊM TRỌNG BỆNH VÕNG MẠC TIỂU ĐƯỜNG

Nguyễn Văn Hoàng - 20521346

Nội dung

04

Phương pháp và Đánh giá và thực mô hình nghiệm

05

Giới thiệu bài toán

- Diabetic Retinopathy: Bệnh võng mạc tiếu đường (DR), là một dạng suy giảm thị lực do lượng đường trong máu cao.
- Áp dụng kiến thức thị giác máy tính, em đề xuất phương án giúp phân loại mức độ nghiêm trọng của DR trong các hình ảnh đáy mắt khác nhau.

Mô tả bài toán

- Input: -1 hình ảnh chụp đáy mắt.
- Output: Mức độ bệnh của mắt trong hình đó.

(Được đánh giá theo thang đo từ 0 đến 4, gồm: 0- No

DR(không bị), 1 – Mild(nhẹ), 2 – Moderate(trung bình), 3 –

Severe(nặng), 4 - Proliferative DR(DR tăng sinh)

Input: No DR

Tập dữ liệu

- Tập dữ liệu lấy từ Kaggle, được thu thập bởi hiệp hội nhãn khoa Châu Á Thái Bình Dương (Tele-Ophthalmology Society/APTOS) như một cuộc thi nhằm nâng cao nhận thức về bệnh võng mạc.
- Tập dữ liệu gồm 3662 hình ảnh được chia thành 5 lớp:
 - 0 No DR, 1 Mild, 2 Moderate, 3 Severe,
 - 4 Proliferative DR(DR tăng sinh))

Diagnosis	0 - No DR	1 - Mild	2 - Moderate	3 - Severe	4 - Proliferative DR	
Amount	1805	370	999	193	295	

Các bước tạo ra model phân loại

Phương pháp và model

Em chọn 2 model là DeseNet121 và ResNet50 thử nghiệm trên 3 loại ảnh khác nhau (Original/RGB, Green, High Contrast) để tìm ra phương pháp có kết quả tốt nhất.

	Original (RGB)	Green	High Contrast (HC)
DenseNet121	DenseNet121 + RGB	DenseNet121 + Green	DenseNet121 + HC
ResNet50	ResNet50 + RGB	ResNet50 + Green	ResNet50 + HC

Tiền xử lý

RGB

Phiên bản ảnh gốc

Green

Thay thế các giá trị của màu đỏ và các cột màu xanh lam của mảng hình ảnh có các số 0

High Contrast

Chia ảnh thành 3 lớp đỏ, xanh lục và xanh lam. Sau đó, chúng tôi cân bằng biểu đồ của từng lớp hình ảnh và hợp nhất chúng lại với nhau

Tiền xử lý

Thay đổi kích thước tất cả các hình ảnh của mình thành độ phân giải 244x244.

05

Đánh giá mô hình và thử nghiệm

DenseNet121 + RGB

ResNet50 + RGB

Accuracy

DenseNet121 + Green

ResNet50 + Green

Accuracy

DenseNet121 + High Contrast

ResNet50 + High Contrast

Accuracy

DenseNet121 + RGB

ResNet50 + RGB

Loss

DenseNet121 + Green

ResNet50 + Green

Loss

1.0 0.9 -8.0 Validation Loss Training Loss Best Epoch 0.3 0.2 -0.1 10 12 14 Epoch #

DenseNet121 + High Contrast

ResNet50 + High Contrast

Loss

Kết quả tổng hợp

	RGB	Green	HC
DN121	82,7%	79,2%	78,9%
RN50	83,7%	79,4%	83,4%

Average Validation Accuracy (%)

	RGB	Green	HC
DN121	0,17	0,21	0,21
RN50	0,22	0,28	0,20

Average Validation Loss $(0 \le L \le 1)$

Kết quả

	RGB	Green	нс
DN121 RN50	75 ,6%	78,2%	78,9%
	<mark>79</mark> ,8%	77,8%	78,2%

	RGB	Green	нс
DN121	75,6%	78,2%	78,9%
RN50	79,8%	77,8%	78,2%

Nhận xét

Chúng ta đi đến kết luận rằng là chúng tôi không có đủ dữ liệu để có câu trả lời chắc chắn về việc kết hợp nào hoạt động tốt nhất. Tuy nhiên, chúng tôi đã đạt được kết quả khá cao trong hầu hết các trường hợp thử nghiệm của mình, nhưng những con số này luôn có thể được cải thiện

Phát triển

Đa dạng tập dữ liệu

Thử nghiệm trên các mô hình khác

Ứng dụng vào một số bài toán tương tự

Tài liệu tham khảo

- [1] APTOS. (2019, June). APTOS 2019 Blindness Detection, Version 1. Retrieved August 13, 2021 from https://www.kaggle.com/c/aptos2019-blindness-detection/data.
- [2] Arora, A. (2020, August 2). Densenet architecture explained with pytorch implementation from torchvision. Committed towards better future.
- https://amaarora.github.io/2020/08/02/densenets.html#densenet-architecture-introduction
- [3] Brownlee, J. (2020, September 11). Understand the impact of learning rate on neural network performance. Machine Learning Mastery.
- https://machinelearningmastery.com/
- understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/.
- [4] Ruiz, P. (2018, October 18). Understanding and Visualizing densenets. Medium.
- https://towardsdatascience.com/
- understanding-and-visualizing-densenets-7f688092391a.

Cảm ơn thấy và các bạn đã lắng nghe !

