03 Error Analysis

Confusion Matrix / Occlusion-based Saliency Map

Confusion Matrix

 A specific table layout that allows visualization of the performance of an (often supervised) learning algorithm

Baseline Resnet18 VGG16

Resnet50

Senet50

Ensemble

Occlusion-based Saliency Map

- Image occlusion: systematically occlude different portions of the input image and observe the output of the classifier
- Saliency map: compute the gradient of the output category with respect to the input image

Source: https://www.kaggle.com/blargl/simple-occlusion-and-saliency-maps

Interpretability

04 Future Works

Data Augmentation / Siamese Net / Triplet Loss

Data Augmentation

- increase the amount of data by adding slightly modified copies or newly created synthetic data from existing data
- acts as a regularizer and helps reduce overfitting

Source: Data augmentation-assisted deep learning of hand-drawn partially colored sketches for visual search

Siamese Network (SNN)

- a class of neural network architectures that contain two or more 'identical' subnetworks
- find the similarity of the inputs by comparing its feature vectors
- learn a similarity function

Source: Siamese Network used in Signet

Pros

More robust to class imbalance

Nicely ensembled with other supervised classifiers

Learning from Semantic similarity

Cons

More training time

Doesn't output probabilities

Triplet Loss (Contrastive Loss)

- Triplet loss is a loss function where a baseline (anchor) input is compared to a positive (truthy) input and a negative (falsy) input
- Contrastive loss is a distance-based loss used to learn closest embeddings of two similar instances and farthest embeddings otherwise(as opposed to conventional error-prediction loss)

Source: https://towardsdatascience.com/a-friendly-introduction-to-siamese-networks-85ab17522942

Acknowledgement

This work is inspired by the awesome project by Khanzada *et al.*

References

- [1] C. DARWIN AND P. PRODGER, The expression of the emotions in man and animals., (1998).
- [2] T. HASSNER, S. HAREL, E. PAZ, AND R. ENBAR, Effective face frontalization in unconstrained images, CoRR, abs/1411.7964 (2014).
- [3] A. KHANZADA, C. BAI, AND F. T. CELEPCIKAY, Facial expression recognition with deep learning, 2020.
- [4] S. LI AND W. DENG, Deep facial expression recognition: A survey, IEEE Transactions on Affective Computing, (2020), p. 1–1.
- [5] C. PRAMERDORFER AND M. KAMPEL, Facial expression recognition using convolutional neural networks: State of the art, 2016.
- [6] Y. TANG, Deep learning using linear support vector machines, 2015.