

National Institute of Technology Tiruchirappalli

BRANCH: Computer Science and Engineering

B.Tech., End Semester Examination

SUB. CODE & TITLE: CSPC42 & Design and Analysis of Algorithms
DATE: 11.05.2021, Max. Marks: 30, No. of Pages:02

Instructions: Answer all the questions.

1. **A.** What is the value of following recurrence?

$$T(n) = T(n/4) + T(n/2) + cn^2$$

T(1) = c

T(0) = 0

Where c is a positive constant. Use Recurrence tree method to solve the above. (3)

B. The running time of an algorithm is represented by the following recurrence relation:

if
$$n \le 3$$
 then $T(n) = n$

else T(n) = T(n/3) + cn

Find the time complexity of the algorithm.

2. **A.** Let X={a/20; b/15; c/5; d/15; e/45} be the alphabet and its frequency distribution. Calculate the Optimum prefix code for the distribution using Huffman Coding along with its algorithm. (3)

B. Write short note on greedy design technique and state its advantages, disadvantages, and suitable applications. (3)

3. **A.** Which algorithm design paradigm is used to solve Travelling Salesman Problem? Explain the suitable algorithm for solving Travelling salesman problem for the below figure that consists of 4 cities. (3)

B. Suppose there are three items and Knapsack has capacity 5. Item 1 has weight 1, benefit 6. Item 2 has weight 2, benefit 10. Item 3 has weight 3, benefit 12. Using Dynamic Programming algorithm, find the maximum amount the knapsack can contain.

(3)

(3)

- 4. **A**. What is randomized binary search? Write the randomized binary search algorithm with example. (3)
 - **B.** Write the Pseudocode for Randomized Quicksort. Show that Randomized Quicksort expected running time is $\Omega(n \log n)$. (3)
- 5. Explain P, NP, NPC, and NPH problems with suitable diagram. (6)
