Formelsammlung Statistik

2. Dezember 2009

Das ist eine Formelsammlung für Statistik. Die Formelsammlung enthält alle Formeln aus dem Skript des Wintersemesters 2009/2010. Außerdem ein paar Sachen die mir sinnvoll erschienen und für die Klausur notwendig sein könnten, sowie Formblätter zum schnellen Ausfüllen während der Klausur.

Quellen sind (1) Statistikscript Prof. Dr. Müller, HS Wismar und (2) Taschenbuch der Wirtschaftsmathematik, Wolfgang Eichholz und Eberhard Vilkner.

Fragen:

- $Cov(x,y) = \frac{1}{N}\overline{xy}$?????

Statistische Masse Umfang der Einheiten einer statistischen Untersuchung

Statistische Einheit Untersuchungsobjekt einer statistischen Untersuchung. Träger der

interessanten Informationen.

Merkmal Zu betrachtendes Attribut einer Einheit. Etwa Einkommen,

Altern, ...

Merkmalstypen

diskrete Merksmaltypen bestehen aus einer überschaubare,

endliche Menge (etwa Geschlecht),

stetige Merksmaltypen können in einem bestimmten Bereich

jeden reelen Wert annehmen,

quasi-stetige Merksmaletypen sind eigentlich diskret, enthalten

aber sehr grosse Menge von möglichen Merkmalen

Merkmalsausprägung

Gruppierung Sortierung, gleiche Merkmalsausprägung

Klassifizierung benachbarte Ausprägungen werden zu einer Klasse

zusammengefasst. Übliche Schreibweise [200; 400) mit

der Bedeutung $200 \le x < 400$.

Skalenniveau

nominal qualitativ (also keine Zahlen), etwa Geschlecht oder

Studiengang. Darstellung als gruppierter Wert.

ordinal Merkmalsausprägung mit objektiver Rangordnung,

Abstände sind aber nicht bezifferbar (etwa Noten).

Darstellung als gruppierter Wert.

metrisch Interval quantitativ: reele Zahlen, natürliche Rangfolge,

eindeutige Abstände, etwa Sparsumme,

Verhältnis quantitativ: reele Zahlen, natürliche Rangfolge, eindeutige Abstände, absoluter Bezugspunkt (etwa Nullpunkt). Beispiel: Alter.

Darstellung als klassierter Wert.

Tabelle 0.1: Begriffe

1 Univariante Datenanalyse

Auto^1	x_i	h_i	H_i	f_i	F_i	$x_i h_i$	$x_i \cdot f_i$	$(x_i)^2 \cdot f_i$
BMW	342	1	1	0,167	0,167	342	57,00	19494
Mercedes	549	1	2	$0,\!167$	$0,\!333$	549	$91,\!50$	50234
VW/Audi	1501	1	5	$0,\!167$	$0,\!833$	1501	$250,\!17$	$3{,}76E5$
${\bf Sonstige}$	1713	1	6	$0,\!167$	1,000	1713	$285,\!50$	$4,\!89\mathrm{E}5$

Tabelle 1.1: Beispiel gruppierter, nominaler Werte

x_i	h_i	H_i	f_i	F_i	$x_i h_i$	$x_i \cdot f_i$	$(x_i)^2 \cdot f_i$
280	1	1	0,1	0,1	280		
340	2	3	0,2	0,3	680		
740	1	9	0,1	0,9	740		
1180	1	10	0,1	1,0	1180		

Tabelle 1.2: Beispiel gruppierter, ordinaler Werte

x_i	h_i	H_i	f_i	F_i	$\triangle x_i$	f_i^*	h_i^*
[200;400)	21	21	0,21	0,21	200	0,00105	0,1050
[700;1000)	19	96	$0,\!19$	$0,\!96$	300	$0,\!00063$	$0,\!0633$
[1000;1500)	2	98	$0,\!02$	0,98	500	0,00004	0,0040
[1500;2000)	2	100	0,02	1,00	500	0,00004	0,0040

Tabelle 1.3: Beispiel klassierter, metrischer Werte

Erläuterung	abs. Häufigkeit	abs. Summenhäufigkeit cusum(hi)	relative Häufigkeit	gruppiert Stabdiagramm siehe Abbildung 1.3 auf Seite 10	klassiert Histogramm, siehe Abbildung 1.4 auf Seite 11	abs. Summenhäufigkeit	Stat Masse	abs Häufigkeitsdichte	rel Häufigkeitsdichte	Verteilungsfunktion, Funktion der relativen Summenhäufigkeit	Als Beispiel in gruppierte Daten: $F(500)=0.50$ -> Es wird micht gerechnet, sondern aus dem Diagramm abgelesen, da es sich um	gruppierte Werte handelt! Als grafische Lösung	(1reppendiagramm, keme zwischenwerte:) siene Abbudung 1.1 auf Seite 10		
Formel		$h_1++h_i=\sum_{j=1}^{\imath}h_j$	$rac{h_i}{N} ext{ mit } \sum_{i=1}^k f_i$	1		$f_1 + + f_i = \sum_{j=1}^i f_j$						Gruppe $F(x) = \begin{cases} F_i & x_i \le x < x_{i+1} \end{cases}$	$(1 x \geq x_k)$	Klasse $F(x) =$ $ \begin{cases} 0 & x < x_1^u \\ F(x^u) + f_i(x - x^u) & x^u < x < x^o \end{cases} $	i
$_{ m TR}$	hi	shi	ff			$_{ m gs}$	п	his	gy	f(x)					
Math	h_i	H_i	f_i			F_i	Z	h_i^*	f_i^*	F(x)					

Tabelle 1.4: Überblick Häufigkeiten

Name	Math	$_{ m TR}$	nominal	ordinal	metrisch	Math TR nominal ordinal metrisch Vor- und Nachteile
Modal	x_D	px	ja	ja	ja	Ist die Merkmalsausprägung, die am häufigsten vorkommt. Es kann mehrere Modalwerte geben.
Median	z 8	X	c-·	Ja	je	Mitte aller Merkmalsträger, bzw. welcher Merkmalswert wird von der Hälfte aller Merkmalsträger nicht überschritten. Vorteil: Robust gegen Ausreißer. Mittelwert für ordinale Daten
Quantil	x^{b}	dx	c-·	c-·	c-·	ein Teil aller Merkmalsträger (etwa 0,25x oder 0,75x) bzw. welcher Merkmalswert wird von einem Teil aller Merkmalsträger nicht überschritten. Dabe ist das $x_p=x_{0.5}=x_z$
Arith. Mittelw.	$\mathcal{S}_{ec{l}}$	XS	nein	nein	ja	Der Durchschnitt oder Mittelwert aller Merkmale Mittelwert für metrische Daten
Geom Mittelw.	g_x	X8	¢.	¢.	ja	Mittelwert für Produkte, etwa bei Verhältnissen oder Wachstumswerten. Nur für Zahlen>0 sinnvoll. Mittelwert für Produkte

Tabelle 1.5: Überblick Lageparameter

Math	$_{ m TR}$	Math TR Formel		Erläuterung
x_D	px	Gruppe Klasse	da x_i wo f_i am größsten ist Mitte der modalen Klasse $x_D = \frac{x_i^u + x_i^o}{2} = x_i'$	Ist die Merkmalsausprägung, die am häufigsten vorkommt. Es kann mehrere Modalwerte geben.
x_z	X	Gruppe $Klasse$		Median bzw. Zentralwert ist der Wert, der in der Mitte der Variantsreihe liegt. Ist N gerade, wird der Mittelwert der zwei mittelsten Werte ermittelt. Beispiel: Zuerst Klasse bestimmen und dann $400+\frac{0.5-0.21}{0.56}*300=555.36$ Mittelwert für ordinale Daten
x_p	ďx	Gruppe $Klasse$	$x_p = p \cdot N$ $x_p = x_i^u + \frac{p - F(x_i^u)}{f_i} * \Delta x_i$	Wird eine Variationsreihe in gleich große Teile zerlegt, entstehen Quantile. Typisch sind 0,25, 05, 0,75. Der Quantilabstand ist $Q=x_{0.75}-x_{0.25}$. Das 0,5-Quantil ist gleich dem Median. Quantil ist gewissermaßen das Gegenüber der Verteilungsfunktion!
$\mathcal{X}_{ }$	xa	$Gruppe$ $ar{x}=$ \hat{x}	$\bar{x} = \sum_{i=1}^{k} x_i f_i$ $\bar{x} = \sum_{i=1}^{k} x_i f_i$	Arithmetischer Mittelwert bzw. Durchschnitt. Durchschnitte werden mit $\sum_{m=1}^k N_m * \bar{x_m}$ dieser Formel addiert: $\bar{x} = \frac{\sum_{m=1}^k N_m * \bar{x_m}}{\sum_i N_m}$
x^{G}	XS S	$\sum_{i}^{N} = \sum_{i}^{N} x_{i}$	$\underbrace{\prod_{i=1}^{k} x}_{i=1}$	Mittelwert für metrische Daten Der Geometrische Mittelwert wird bei der Mittelung von Wachstumsraten oder multiplikativ verknüpften Daten angewendet.

Tabelle 1.6: Lageparameter

Math	$_{ m TR}$		Formel	Erläuterung
R	ı	5	$R = x_{max} - x_{min}$	Die Spannweite ist die Differenz zwischen größtem und kleinstem Merkmalswert.
		K	$R = x_k^o - x_1^u$	
0	ď	ŭ	$Q = x_{0.75} - x_{0.25}$	Der Quantilsabstand ist der Abstand zwischen oberem und unterem Quantil.
S_{S}	s2x	Ü	$s_x^2 = \left\{ \sum_{i=1}^k \left[(x_i)^2 \cdot f_i \right] \right\} - \overline{x}$	Die Varianz ist die mittlere quadratische Abweichung aller Merkmalsausprägungen vom arith. Mittelwert. Alternative Zeichen der Varianz sind $s_x^2=s^2=\sigma^2$
		X	$s_x^2 = \left\{\sum_{i=1}^k \left[(x_i')^2 \cdot f_i ight] ight\} - \overline{x}^2$	
		$\mathrm{G/K}$		Varianz der Grundgesamtheit. Gleichungsbeispiel bei der Annahme, dass es zwei Teilmengen
			$s^{2} = \frac{N_{1}s_{1}^{2} + N_{2}s_{2}^{2}}{N_{1} + N_{2}} + \frac{N_{1}(\bar{x}_{1} - \bar{x})^{2} + N_{2}(\bar{x}_{2} - \bar{x})^{2}}{N_{1} + N_{2}}$	gibt und die jeweils die Varianzen und Mittelwerte bekannt sind.
$x \\ s$	X	G/K	G/K $s_x = \sqrt{s_x^2}$	Standardabweichung mittlere Abweichung vom Mittelwert. Nachteil: Bei großen Merkmalsmengen nimmt die Schwankungsbreite zu. Ein Vergleich zwischen Messreihen mit großen und kleinen Verteilungen ist daher ggf. nicht mehr sinnvoll. Statt dessen: Variationskoeffizient. Hinweis: Bei $s_x = 0$ gibt es einen eindeutigen Hinweis auf
c	>	${ m G/K}$	$v = rac{s_{\overline{x}}}{\bar{x}}$	Variationskoeffizient = Auf den Mittelwert bezogenes relatives Streuungsmaß, sofern nur positive Werte auftreten.

Tabelle 1.7: Streuungsparameter

Math	$_{ m TR}$	Formel	Erläuterung
Id	id	Gruppe $p_i = \frac{x_i \cdot hi}{N \cdot \bar{x}}$ Klasse $p_i = \frac{x_i \cdot hi}{N \cdot \bar{x}}$	Konzentrationskoeffizient berechnet den Anteil eines Merkalswertes an der Merkmalssumme, bzw. zeigt den prozentualen Anteil an der Gesamtsumme.
P_i $L(F_i)$	ids -	$P_i = \sum_{j=1}^i p_j$ -	Das Konzentrationsmaß beschreibt die relative Merkmalssumme. Die Lorenzkurve veranschaulicht das Konzentrationsmaß grafisch. Die Fläche zwischen Gleichverteilung und Lorenzkurve wird als Lorenzfläche bezeichnet und ist ein weiteres Konzentrationsmaß. Je größer die Fläche, desto größer die Konzentration. Beispiel zur Lorenzkurve siehe 1.5 auf Seite 11 Lorenzkurve: Welchen Anteil haben Merkalsträger an Merkmalen. Etwa $0.5 = 50\%$ der Autohersteller (F_i) haben Anteil von $0.25 = 25\%$ F_i der Produktion
Ö	<i>₽</i> 0	$G = \frac{0.5 - A(L)}{0.5}$ im Bereich $0 \le G \le 1$	Stat. Maß zur Darstellung der Ungleichverteilung. Der Gini-Koeffizient misst die Höhe der relatitiven Konzentration über das Verhältnis der Lorenzfläche zur Fläche bei maximaler Konzentration. Es kann unterschiedliche Lorenzflächen bei identischem G geben. Eigenschaft: Werden alle x_i um denselben Prozentsatz erhöht oder gesenkt, dann bleibt der Gini-Koeffizient unverändert. Werden alle x_i um einen additiven Zuschlag erhöht, dann wird der Gini-Koeffizient kleiner. Wird ein x_i -teilbetrag von einem größeren zu einem kleineren x_i transferiert, so wird der Gini-Koeffizient kleiner. Beispiel: Der Ginikoeffizient für die Einkommensverteilung liegt in Deutschland bei 0,274 (2003), in Frankreich bei 0,327 (1995), in Großbritannien bei 0,360 (1999), in Japan bei 0,249 (1993) und in den USA bei 0,408
A(L)	la	$A(L)$ al $A(L) = \sum_{i=1}^{k} \frac{P_{i-1} + P_i}{2} \cdot f_i \text{ mit } P_0 = 0$	Fläche unter der Trapezkurve Hinweis: Sind großgeschriebene P's also spi.

Tabelle 1.8: Relative Konzentration

Abbildung 1.1: Funktion relativer Sumenhäufigkeit F(x) bei gruppierten Daten

Abbildung 1.2: Funktion F(x) relativer Summenhäufigkeit bei klass. Daten

Abbildung 1.3: Darstellung rel Häufigkeit von Gruppen: Stabdiagramm

Abbildung 1.4: Darstellung rel. Häufigkeit von Klassen: Histogramm

2 Multivariante Datenanalyse

Gı	m cuppe/Klassenmitte	Strul	ktur y	
	Merkmal x	y_1	y_4	Zeilensumme
1	$x_{i=1}$	h_{11}	h_{12}	$h_{1.}$
2	$x_{i=2}$	h_{21}	h_{22}	$h_{2.}$
	Spaltensumme	h.1	$h_{.2}$	N =

Tabelle 2.1: Zweidimensionale Häufigkeitsverteilung

Gı	m cuppe/Klassenmitte	Studier	ngang	
	Geschlecht	BWL	WI	Zeilensumme
1	weiblich	57	2	59
2	männlich	43	8	51
	Spaltensumme	100	10	110

Tabelle 2.2: Beispiel Abs. Häufigkeitsverteilung bei nominalen Daten

Gı	m cuppe/Klassenmitte	Studie	ngang	
	Geschlecht	BWL	WI	Zeilensumme
1	weiblich	0.518	0.018	0.536
2	männlich	0.391	0.073	0.464
	Spaltensumme	0.909	0.091	1.000

Tabelle 2.3: Beispiel Rel. Häufigkeitsverteilung bei nominalen Daten

Studierende No	1	2	3	4	5	6	7	8	9	10
Alter	22	24	26	24	21	28	21	21	23	21
Einkommen	280	650	650	740	340	1180	340	600	650	560

Tabelle 2.4: Beispiel 2D-Häufigkeitstabelle (Wertepaare)

Gruppe/Klassenmitte		Einkommen							
	Alter	280	340	560	600	650	740	1180	Zeilensumme
1	21		2	1	1				4
2	22	1							1
3	23					1			1
4	24					1	1		2
5	26					1			1
6	28							1	1
Spaltensumme		1	2	1	1	3	1	1	10

Tabelle 2.5: Beispiel 2D-Häufigkeitstabelle (Korrelationstabelle)

Math	TR	8 Formel	Erläuterung
h_{i}	hip	$h_{i_{\bullet}}$ hip $\sum_{k=1}^{n} h_{ik}$ $(i=1,2,\ldots,m)$	abs. Häufigkeit von x bzw. Randhäufigkeit von x oder auch schlicht "Zeilensumme".
h_{ullet}^{k}	hpk	$h_{m{.}k} ext{hpk} \sum\limits_{k=1}^m h_{ik} \ (k=1,2,\ldots,n)$	abs. Häufigkeit von y bzw. Randhäufigkeit von y oder auch schlicht "Spaltensumme".
h_{ik}	п	$N = \sum_{i=1}^{m} \sum_{k=1}^{n} h_{ik} = \sum_{i=1}^{m} h_{i.} = \sum_{k=1}^{n} h_{.k}$	abs. Häufigkeit bzw. Anzahl Merkmalsträger oder auch schlicht: Die Summe aller Spalten bzw. Summe aller Zeilen.
f_{ik}	fik	$f_{ik} = \frac{h_{ik}}{N} \mathrm{bzw}. \ f_{i.} = \frac{h_{i.}}{N} \mathrm{bzw}. \ f_{.k} = \frac{h_{.k}}{N}$	rel. Häufigkeit
	sfik	sfik $1 = \sum_{i=1}^{m} \sum_{k=1}^{n} f_{ik} = \sum_{i=1}^{m} f_{i.} = \sum_{k=1}^{n} f_{.k}$	Summe aller relativen Häufigkeiten
H			abs Häufigkeitstabelle von Matrix mit m_abshae
ĹΉ			rel Häufigkeitstabelle von Matrix mit m_relhae

Tabelle 2.6: Überblick Häufigkeit

Math		TR Formel	Erläuterung
$f(y_k x_i)$		$f(y_k x_i) = \frac{h_{ik}}{h_{i,.}}$	Bedingte relative Häufigkeit. Absolute Häufigkeit durch Zeilensumme. Beispiel: $f(y_1, x_1) = \frac{h_{11}}{h_{11}} = \frac{57}{59} = 0.966$ m_bedhae(m_abshae())
		$f(y_k x_i) = f(y_k x_2) = \dots = f(y_k x_m) = f_k$ für $k = 1, 2, \dots m$	Statistische Unabhängigkeit: Wenn alle bedingten, relativen Häufigkeiten gleich sind, sind die Merkmale statistisch unabhängig.
χ^2_{2}	kap	$N \cdot \left[\left(\sum_{i=1}^{m} \sum_{k=1}^{n} \frac{h_{i,k}^2}{h_i \cdot h_{\cdot,k}} \right) - 1 \right]$	Chi-Quadrat. Beispiel: $110 \left[\left(\frac{57^2}{59*100} + \frac{2^2}{59*10} + \frac{43^2}{51*100} + \frac{8^2}{51*10} \right) - 1 \right] = 5.0047$ =m_chiquad(m_abshae())
		$N \cdot \left[\left(\sum \sum_{Zeilensumme_h \cdot Spaltensumme_h}^{h^2} ight) - 1 ight]$	
Ö	၁	$C = \sqrt{\frac{1}{N} * \frac{\chi^2}{\min((m-1);(n-1))}}$	Maß von Cramer. Maß für den Zusammenhang zweier Merkmale Im Bereich 01. Bei vollständiger Abhängigkeit=1.
			$C = \sqrt{\frac{1}{110}} * \frac{5.0047}{min((2-1);(2-1))} = 0.213$ =m_cramer(m_abshae())

Tabelle 2.7: Zusammenhang nominaler Merkmale

Erläuterung	Darstellung als - Wertpaar - Korrelationstabelle - Streudiagramm (mit Verlauf des Funktionsgraphen) linear, polynom, kein Zusammenhang)	Kovarianz für Wertepaare Bei klassierten Daten Klassenmitten benutzen. Bei $=0$ kein <i>linearer</i> Zusammenhang. Einheit von $cov(x,y)$ ist das Produkt von x-Einheit und y-Einheit (etwa EuroJahr) Basis: Arbeitstabelle Wertepaare m_cov_w(wertematrix mit zwei zeilen) m_cov_wf(wertematrix mit zwei zeilen)	Kovarianz für zweidim Häufigkeitsverteilung Bei klassierten Daten Klassenmitten benutzen. Bei =0 kein linearer Zusammenhang. Einheit von $cov(x, y)$ ist das Produkt von x-Einheit und y-Einheit (etwa EuroJahr) Basis: Arbeitstabelle Regressionsanalyse	Korrelationskoeffizient nach Pearson/Bravis = Maß für die Höhe des linearen Zusammenhangs. Geht nur für metrische Daten! Wertebereich im Interval -1 (=vollständig negative Abhängigkeit) und +1(vollständig positiver Abhängigkeit) 0=kein linearer Zusammenhang m_s2x_w(wertetabelle) m_s2y_w(wertetabelle) m_rxv(wertematrix mit 2 Zeilen)	Mittelwert der x-Zeile für Korrelationstabelle	Mittelwert der y-Zeile für Korrelationstabelle
TR Formel		$\operatorname{Cov}(\mathbf{x}, \mathbf{y}) \operatorname{cov}(\mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \overline{x}) (y_i - \overline{y})$ $= \frac{1}{N} \sum_{i=1}^{N} x_i y_i - \overline{x} \overline{y}$	$\operatorname{cov}(\mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{m} \sum_{k=1}^{n} \left(x_i - \overline{x} \right) \left(y_k - \overline{y} \right) h_{ik}$ $= \frac{1}{N} \sum_{i=1}^{m} \sum_{k=1}^{n} x_i y_i f_{ik} - \overline{x} \overline{y}$	$=\frac{Cov(x,y)}{s_x s_y}$	$ \begin{array}{ll} xa & =m_xa(tabelle, zeilen[]) \\ oder = m_xaf(tabelle, zeilen[]) \; (nur \; Wert) \\ \end{array} $	ya =m_ya(tabelle, spalten[]) oder = m_yaf(tabelle, spalten[]) (nur Wert)
Math		Cov(x,y)	Cov(x,y) cov(x,y)	fxy	x	\overline{y}

Tabelle 2.8: Zusammenhang metrischer Merkmale

Math	TR	Math TR Formel	Erläuterung
			$linear \hat{y} = a_1 x + a_0$
			polynom $\hat{y} = a_2x^2 + a_1x + a_0$
			Geschatzte Regressionsgielchung nur sinnvoll, wenn eingesetzte Werte im Bereich der Messwerte liegen.
a_1	al	$=\frac{Cov(x,y)}{s_x^2}=r_{xy}\frac{s_y}{s_x}$	Einheit x/y z.B. $\frac{Euro}{Jahr}$ m at wortetabelle)
a_0	a0	$=\overline{y}-a_1\overline{x}$	Einheit x z.B. Euro
			m_a0_w(wertetabelle)
			Bewertung der Schätzqualität: desto besser desto mehr die
			Schwankungen der y-weite durch die Gierchung ermant werden können bzw. desto geringer die Residuen.
B^2	b2	$=s_{\hat{v}}^2/s_y^2 = a_1^2 s_x^2/s_y^2 = 1 - (s_e^2/s_y^2)$	Bestimmheitsmaß=Kriterium der Schätzqualität einer
			Regressionsfunktion $D_{\text{consoling}} = D_{\text{consoling}} = D_{\text{consoling}}$
			De grot den er kraf ungswert der regressionstunktion im met van von 0 bis 1 an. Er bringt zum Ausdruck, wie der Zusammenhang
			zwischen den beiden Werten durch die Reg-Funktion beschrieben
			wird. 1=alle Werte liegen auf der Funktion.

Tabelle 2.9: Regressionsrechnung

m_b2_w(wertetabelle)

Erläuterung	Rangkorrelationskoeffizient nach Spearman als Maß der Ausgeprägtheit des Zusammenhangs zweier Merkmale. Für ordinale Werte (klare Rangordnung, aber Abstand nicht interpretierbar) RZ=Fortlaufend, aber Mittelwert für identische Werte l_rang(list) Rangzahlen einer Liste aufsteigend m_rang(list, list) -> Rangzahlen Arbeitstabelle m_rangko(m_rang) -> Rangzahlenkoeffizient	
Math TR Formel	$R ext{ r } R = 1 - rac{6 \cdot \sum\limits_{i=1}^{N} d_i^2}{N(N^2 - 1)} ext{ mit } -1 \le R \le 1$	

Tabelle 2.10: Zusammenhang von ordinalen Merkmalen

3 Anhang

Klasse oder Gruppe einer statistischen Zählung. Variable kann Zeichen \boldsymbol{x} Х haben wie 1, i, k die für das 1-te, i-te oder letzte Gruppe/Klasse stehen. Modalwert, der Wert mit der häufigsten Merkmalsausprägung xd x_d Median, Mitte aller Merkmalsausprägungen, d.h. nach oben und unten x_z XZgleich viele Merkmalsausprägungen Quantile überschreiten einen gewissen Anteil von Merkmalsausprägungen хр x_p $x_{i}^{'}$ Klassenmitte deri-ten Klasse $x_i^u x_i^o$ untere bzw. obere Grenze der i-ten Klasse hAnzahl von Einheiten innerhalb einer Gruppe oder Klasse. Tiefgestellte h Zeichen gleiche Bedeutung wie bei xDie Summe aller h ist die statistische Masse H_i absolute Summenhäufigkeit, wie h_i aber aufsteigend addiert. Der größte Wert=N f_i fi relative Häufigkeit. Summe aller $f_i = 1$ Entspricht dem prozentualen Anteil an der statistischen Masse. F_i sfirelative Summenhäufigkeit. Wie f_i aber aufsummiert. Der größte Wert = 1 Klassenbreite der i-ten Klasse Δx_i dxirelative Summenhäufigkeit einer Klasse s_i NStatistische Masse, also die Menge aller Merkmalsausprägungen. n

Table 3.1: Überblick Variablen

Figure 3.1: Zusammenhänge von Variablen

- $\diamondsuit 1$ Umschalten Statistikmodus auf Gruppe
- $\Diamond 2$ Umschalten Statistikmodus auf Klasse
- ♦3 Umschalten Statistikmodus auf Multivariante Analyse
- $\diamondsuit 4$ Berechne unteres Quantil
- $\diamondsuit 5$ Berechne Median
- $\diamondsuit 6$ Berechne oberes Quantil
- $\Diamond 7$ Berechne Modus

 $\Diamond 8$

 $\Diamond 9$ Alles neu berechnen

Table 3.2: Überblick Tastaturabkürzungen