ION IMPLANTATION DEVICE

Patent Number:

JP10302707

Publication date:

1998-11-13

Inventor(s):

AOKI MASAHIKO;; MATSUDA KOJI

Applicant(s):

NISSIN ELECTRIC CO LTD

Requested Patent:

☐ JP10302707

Application Number: JP19970123110 19970425

Priority Number(s):

IPC Classification:

H01J37/317; C23C14/48; H01J37/05; H01J37/09; H01L21/265

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide an ion implantation device which can exclude a light ion including only a hydrogen element and can implant all other ions in a wafer in the case of using hydrogen compound gas as source gas. SOLUTION: This ion implantation device comprises; an ion source which produces a long ion beam having a smaller width 2a larger length T, a diameter of an object sample 6; a longitudinal yoke 10 having a passage of a longitudinal ion beam; main coils M1, M2 wound on the middle of the yoke 10; first auxiliary coils A1, A2 wound on the middle of the yoke 10; first auxiliary coils A1, A2 wound on one of the ends of the yoke 10, in line with the main coils M1, M2; and second auxiliary coils B1, B2 wound on the other end of the yoke 10, in line with the main coils M1, M2. Further, this device comprises: a long mass analysis magnet which generates a magnetic field in a longitudinal direction of longer side of the ion beam passage; and a shutter which shuts a light ion separated by the mass analysis magnet; a sample maintaining structure which maintains the sample so that the ion beam of ions other than the light ion separated by the mass analysis magnet may be implanted therein and which moves the sample to a direction orthogonal to the longitudinal direction of the ion beam. The magnetic field in the longitudinal direction is uniformly distributed in the longitudinal direction by controlling a ca coil current.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出屬公開番号

特開平10-302707

(43)公開日 平成10年(1998)11月13日

(51) Int.Cl. ⁶		識別記号	FΙ			
H01J	37/317		H 0 1 J 37/31	.7 · 2	2	
C 2 3 C	C 2 3 C 14/48		C 2 3 C 14/48 Z			
H01J	37/05	·	H01J 37/05	5		
	37/09		37/09		Z	
H01L	21/265		H 0 1 L 21/26	603I	3	
		•	審査請求未	請求 請求項の数1	FD (全 9 頁)	
(21)出願番号		特願平9-123110	(71)出願人 000	0003942		
			日第	日新電機株式会社		
(22)出願日		平成9年(1997)4月25日	京	3府京都市右京区梅津高畝町47番地		
			(72)発明者 骨	木 正彦		
			京	都府京都市右京区梅草	高畝町47番地日新	
			電板	機株式会社内	•	
			(72)発明者 松(田 耕自		
			京	都府京都市右京区梅洋	市高畝町47番地日新	
			電	機株式会社内		
			(74)代理人 弁3	理士 川瀬 茂樹		
				,		

(54) 【発明の名称】 イオン注入装置

(57)【要約】

【課題】 水素化合物ガスなどを原料ガスとして使う場合、水素元素だけを含む軽イオンは排除して、それ以外のイオンは全てウェファに注入できるようにしたイオン注入装置を与える。

【解決手段】 対象となる試料直径より小さい横幅と、直径より大きい縦幅をもつ縦長のイオンビームを生成するイオン源と、縦長イオンビームの通路を有する縦長のヨークと、ヨークの中央部に巻かれた主コイルM1、M2と、主コイルに並んでヨークの一方の端部に巻かれた第1補助コイルA1、A2と、主コイルと並んでヨークの他方の端部に巻かれた第2補助コイルB1、B2とよりなりイオンビーム通路の長辺側である縦方向に磁場を発生する縦長の質量分析磁石と、質量分析磁石によって分離された軽イオンを遮断するシャッタと、質量分析磁石によって分離された軽イオン以外のイオンビームが注入されるように試料を保持しイオンビームの長手方向と直交する方向に試料を保持しイオンビームの長手方向と直交する方向に試料を移動させる試料保持機構とよりなる。コイル電流を調整することによって縦方向の磁場を縦方向において一様であるようにする。

【特許請求の範囲】

【請求項1】 対象となる試料直径より小さい横幅と、直径より大きい縦幅をもつ縦長のイオンビームを生成するイオン源と、縦長イオンビームの通路を有する縦長のヨークと、ヨークの中央部に巻かれた主コイルM1、M2と、主コイルに並んでヨークの一方の端部に巻かれた第1補助コイルA1、A2と、主コイルと並んでヨークの他方の端部に巻かれた第2補助コイルB1、B2とよりなりイオンビーム通路の長辺側である縦方向に磁場を発生する縦長の質量分析磁石と、質量分析磁石によって分離された軽イオンを遮断するシャッタと、質量分析磁石によって分離された軽イオンを遮断するシャッタと、質量分析磁石によって分離された軽イオンを遮断するシャッタと、質量分析磁石によって分離された軽イオンと遮断するシャッタと、質量分析磁石によって分離された軽イオンと遮断するシャッタと、質量分析磁石によって分離された軽イオンと変衝された軽イオンと変衝されるように試料を保持しイオンビームの長手方向と直交する方向に試料を移動させる試料保持機構とよりなることを特徴とするイオン注入装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体ウェファ、ガラス基板などのような大型の加工品に、大電流イオン注入を実現するためのイオン注入装置に関する。Siウェファの場合は、ボロン、リン、ヒ素などp型、n型不純物をドープするためにイオン注入することが多い。スループットを上げるために、一様な注入分布でしかも高速でドープする装置が望まれる。さらに水素イオンなどが注入されると温度が過度に上がるなどの悪影響があるから水素イオンなどを除去することが望ましい。

[0002]

【従来の技術】従来の大電流イオン注入装置は大別して ふたつの種類がある。ひとつは、細い(〇次元の広が り)高密度のイオンビームを扇形マグネットによって質 量分析し所望のイオン種のみを、回転並進運動する回転 ターゲットに載置されている加工品(ウェファ)に照射 するものである。細いイオンビームであるから扇形磁石 によって質量分離するのは簡単である。しかしビーム自 体は広がりを持たないので、ウェファの全面に照射する ために、ウェファを並進、回転させる必要がある。ウェ ファを支持するエンドステーション側で2次元的にウェ ファを動かす必要がある。

【0003】もうひとつは大口径のイオン源から大口径イオンビームを引き出し質量分析せずにウェファに照射するものである。ウェファの直径をWとし、イオン源から引き出されたイオンビームの直径をDとする。D>Wの大口径のイオンビームを発生させるので、ウェファを走査する必要がない。

[0004]

【発明が解決しようとする課題】

1. 回転ターゲットを用いる方式では、細い0次元ビームを発生させるのでビーム光学系は単純である。しかし回転並進を行わせなければならないエンドステーションの構造は複雑である。ウェファを戴置したディスクは高

速回転と、イオンビーム電流に比例しビーム位置に反比例するような並進速度制御を行わなければならない。又ウェファでのビーム電流密度が高くなるとウェファのチャージアップ現象が著しくなる。チャージアップは、正または負のイオンビームを注入したとき電荷が逃げず、電荷がウェファなどの表面に蓄積される現象である。これによってウェファの表面のデバイスが破壊されることもあり望ましくない。現在大口径ウェファにイオン注入する方法として、現実的に利用されているのはこの回転ターゲット方式であるが、このような欠点がある。

【0005】2.大口径イオン源非質量分離方式はビーム光学系はイオン引き出し系だけであるあるから装置構成はいっそう単純である。エンドステーションの構造も単純である。しかし大口径イオンビームは質量分析することができないので、所望イオン以外のイオン種も区別されずウェファに注入されてしまう。不純物イオンの注入によって所望の特性が得られない事がある。さらにイオンでなく分子の形でも注入されるので注入深さ分布がプラズマの状態によって変化する。注入深さが一定しにくいのでデバイス特性が一定しにくいという難点もある。

【0006】後者に関しては、例えば、ボロンの注入を行う場合、ジボラン(B_2 H_6)が原料ガスとして用いられる。この際ボロンとともに水素イオンもウェファに注入される。注入された水素は高速であるからゲート酸化膜を突き抜けチャンネル層にまで注入される場合がある。これがゲート電極下方でのチャンネルに格子欠陥を生じさせることがある。イオンエネルギーは全て熱に変換されるが所望のイオン種以外のイオン(例えば水素イオン)が注入されるとそれによって試料が過熱されてしまう。温度上昇によって試料上のデバイスが破壊される惧れがある。

【0007】3. 大口径イオン源方式の難点はそれだけではない。8インチウェファや12インチウェファといった大面積の基板にイオン注入しようとする場合、ウェファ面上いたるところで数%以内の注入均一性が要求される。このような大面積でビームの密度均一性あるイオン源を実現するのは至難の技である。大口径イオン源は現在のところ注入均一性要求の厳しくない小面積のウェファにしか使えない。

【0008】4. 質量分析しないイオン注入法としてさらに、PIII法 (Plasma ImmersionIon Implantation)というものが提案されている。Shu Qin and Chung Chan, "Plasma immersion ion implantaion doping experiments for microelectronics", J. Vac. Sci. Technol. B 12(2), (1994) p962。これはSiウェファをプラズマ中にさらし、ウェファに負の電圧を印加することによってシース領域でイオンを加速しウェファに注入する方法である。イオンビームを引き出すのにシース電圧を使っているので引出電極が不要である。多くの場合、不純物

は電極がスパッタリングされたものである。この方法で は電極から発生する不純物の混入の可能性がない。だか ら質量分析をしなくても良いというわけである。

【0009】しかし原料ガスが含む元素から出る不要イオンを除く事はできない。前記のボロンドーピングの場合は、原料ガスとしてジボランを使うが、水素イオンがウェファに注入される。水素イオンもボロンイオンも同じ加速エネルギーを持つ。水素イオン注入によってウェファが過熱される。スループットを上げるために注入時間を短縮すると水素注入による温度上昇が著しくなる。だから注入時間を余り短くできない。ウェファ1枚に、10分掛かって1.9×10¹⁵ cm⁻²の密度のイオン注入をした事が報告されている。これではスループットが低すぎる。1枚1分以内でイオン注入したいものである。実際この方法は実用化されていないようである。

【0010】5. これまでに、0次元ビーム(断面が点)のビームを質量分析し二次元走査されるウェファにビーム注入する方法と、大口径の2次元ビーム(断面が広い円形)のビームを質量分析しないで静止したウェファに注入する方法と、イオン源を使わずプラズマ中のウェファにイオン注入するPIII法とを説明した。2番目の大口径イオンビーム法において質量分析できれば問題は解決されるはずである。しかし大口径ビームを質量分析しようとする試みはいまだ実現していない。

【0011】質量分離をして水素などの軽元素を除去することのできるイオン注入装置を提供することが本発明の第1の目的である。同じ元素をドープする事ができる異種イオンもイオン注入できるようにしたイオン利用率の高いイオン注入装置を提供することが本発明の第2の目的である。スループットの高いイオン注入装置を提供することが本発明の第3の目的である。

【0012】第1の目的と第2の目的は共通するものがある。原料ガスがプラズマになると多様なイオンが生成されるが、ある元素を含むものであればそれら全部をイオン注入してガスを有効に利用することを目指すのである。ただ水素だけを含む軽イオン(H^+ 、 H_2^+ 、 H_3^+)は除去する必要がある。これはP型不純物又はP型不純物をドープするという本来の目的に沿うものでない。それに水素イオン注入によってウェファの温度が上がりすざる。それで軽イオン(最大で P_3^+)だけを排除するような折衷的な質量分析をおこなう。

【0013】質量分析に関しては、様々の要求がある。 厳格にただ1種類のイオンだけを注入するべきであると するものもある。反対に質量分析は不要だとするものも ある。本発明はこれらのうちでは中間的なものである。 目的とする元素を含むものであればどのイオン種でもみ んな注入され、目的とする元素を含まない水素だけから なるものは排除しようとするのである。

【0014】例えば、シリコンウェファにn型不純物としてPをドープする場合、原料ガスをPHaとするが、

これは P^+ 、 PH^+ 、 PH_2^+ 、 H^+ 、 H_2^+ 、 H_3^+ などのイオンを生ずる。本発明はこのうち、 H^+ 、 H_2^+ 、 H_3^+ を除き、そのほかのイオンは全て試料に注入するようにするものである。Pの化合物のイオンであれば注入のあと、やがてHが抜けてn型不純物になるから無駄でないのである。つまり本発明の質量分析は、ある閾値 M_0 より小さい質量Mのイオン(M < M_0)は排除し、閾値より大きい質量Mのイオンは全て(M > M_0)選択するものである。

[0015]

【課題を解決するための手段】対象となる試料直径Wより小さい横幅2dと、直径Wより大きい縦幅Tをもつ縦長のイオンビームを生成するイオン源と、縦長イオンビームの通路を有する縦長のヨークと、ヨークの中央部に巻かれた主コイルM1、M2と、主コイルに並んでヨークの一方の端部に巻かれた第1補助コイルA1、A2と、主コイルと並んでヨークの他方の端部に巻かれた第2補助コイルB1、B2とよりなり縦方向に磁場を発生する縦長の質量分析磁石と、質量分析磁石によって分離された軽イオンを遮断するシャッタと、質量分析磁石によって分離された軽イオンと当りなの長手方向と直交する方向に試料を保持しイオンビームの長手方向と直交する方向に試料を移動させる試料保持機構とよりなる。【0016】本発明の装置は、まず縦長イオンビームを

【0016】本発明の装置は、まず縦長イオンビームを発生させるというところに第1の特長がある。試料の直径よりも高い縦長のビームを用いるから試料はビームの横方向にだけ移動させれば足りる。ために注入時間を短縮することができスループットが向上する。但し縦長といっているが、もちろん横長のイオンビームであって横方向に磁場を懸け短辺方向に質量分析して、試料を縦方向に動かしても良い。ここでは磁場を縦としビームも縦長と表現する。

【0017】しかし縦長ビームをマグネットによって曲げようとする場合、磁極間隔が極めて長いので一様磁場になりにくい。一様磁場でないと、場所によって曲がり角度が異なるからビームの断面が歪んでしまうし、正しく質量分析することができない。そこで本発明は、長い磁極間隔において一様な磁界を形成することができるよう工夫している。ヨークに巻いた主コイル、第1補助コイル、第2補助コイルなどの組み合わせによって長い磁極間で一様磁場を発生させるようにした。

【0018】一様な縦磁場によって、縦長ビームを短辺側に曲げ、イオンを質量分離する。軽イオンだけを除去するためにシャッターを設けて一定角度以上に曲がったビームをシャッターによって遮断する。残りのビームは全て試料に注入する。試料はビームの長辺とは直交する方向に移動するようになっていて、試料全面にイオンビーム注入できる。

(0019)

【発明の実施の形態】図1は本発明のイオン注入装置の

概略構成図である。縦長のイオン源1が、縦長のイオン引き出し口2から、帯状(縦長)のビーム3を生成する。試料(ウェファ)の直径をWとすると、ビームの縦長さTはWより大きい、ビームの横幅2dはWより小さい(T>W>2d)。ビーム3の経路には、ビームの長辺下に平行な縦磁場Byが形成されている。ここで座標系を定義する。ビームの進行方向をz方向、縦長ビームの短辺の方向をx方向、ビーム長辺の方向をy方向とする。帯状ビーム3は縦磁場Byの為にローレンツ力を受け、x方向に曲がる。曲率半径をRとすると、

[0020]

 $ByR = (2MV/q)^{1/2}$ (1)

【0021】である。qは電荷、Vは引出電圧、Mは質量である。重いイオンはRが大きい。つまり曲がりにくい。軽いイオンはRが小さい。つまり曲がり易い。軽イオンはビーム5のように大きく曲がる。重イオンはビーム4のように殆ど曲がらない。軽イオンは水素のイオン(H^+ 、 H_2^+ 、 H_3^+)などを意味する。重イオンは、先ほどのPドープの例では、 P^+ 、P H_2^+ などである。行路中にシャッター7を進退自在に入れて軽イオン5を遮断するようにしている。スリットではなくて、シャッターであるから、ある質量以上のイオンは全て通す。

【0022】シャッター7で遮られなかった重イオンの ビーム4は対象物(ウェファ)6の表面に注入される。 ビーム4は複数のイオン種を含むのでウェファ6面で広 がりを持つ。複数イオン種の存在のために注入面8の幅 Δ x は、もとのビームの幅2 d よりも広くなる(Δ x > 2 d)。

【0023】ビームの短辺方向(x方向)に一様磁場を作るのは比較的簡単である。磁極間隔が狭いからである。本発明はそうではなくて、ビームの長辺方向(y方向)に一様磁場Byを作りだし、これによってビームを質量分析しようとする。磁極間距離が長いので、細長い閉ループからなるヨークにコイルを巻いたものではヨーク面からの磁束漏れのために一様な磁場を形成することができない。中央部で強く、両端で弱い磁場となる。y=0の近くではビームは強く曲がり、y=0から離れると弱く曲がるようになる。すると図8(a)のようにビームがウェファ面で湾曲してしまう。湾曲するだけでなく、y=0から離れた部位で、重イオンP*と、軽イオンH3*のビームの一部が重なってしまう。ここで質量分離が不完全になる。

【0024】そこで一様な縦磁場形成の為に本発明は特別な工夫をしている。図2は本発明のイオン注入装置の縦断面図、図3は同じものの平面図である。イオン源1は縦長のイオン源であって、縦長のイオン引き出し口2を持ち、ここからy方向に長く、x方向に短い断面のビーム3が引き出される。ビームはz方向に進行し、ヨーク10の内部に入る。ヨーク10の内部には一様な縦磁

場Byが存在する。これによって軽いイオン5は強く曲がり、重いイオンは弱く曲がる。ビーム経路に出入自在にシャッタ7と位置検出器11が設けられる。これは図1と図3に示した。

【0025】位置検出器11は初めにイオンビームの空間的な分布を調べるためのものである。シャッタの前にあっても、後ろにあっても、さらにウェファの後ろにあっても良い。これはxy面に広がる二次元の検出器を使う場合はセンサ列と直角方向に移動させて実質的に二次元のセンサとする。初めに位置検出器11これをビーム経路に持ち出して、磁界が0の時の直進ビームのxy方向のイオン分布を調べる。さらに磁界を掛けてイオンプロフィルの歪をモニタし、イオンビームが歪まないように補助コイル電流を調整する。

【0026】位置検出器11とシャッタ7は同様にx方向に進退可能である。イオン注入を行うときは、位置検出器11を引き込み、代わりにシャッター7を繰り出す。軽いイオンは強く曲がるのでシャッター7によって遮断される。重いイオンは曲がりが少ないのでシャッター7に触れず、ウェファ6に入射する。エンドステーション9は、ウェファ6を支持しx方向に移動できる支持機構を備える。

【0027】図4はヨーク10と6つのコイルを示している。ヨークは強磁性体の閉磁路を構成する。矩形状であってy方向に長く、x方向に短い。x方向のヨーク部分をX枠、y方向のヨーク部分をY枠と呼ぶ。Y枠には6つのコイル、M1、M2、A1、A2、B1、B2が設けられている。中央の主コイルM1、M2は最も巻き数の多いコイルである。巻き方向は同一であって、何れも上向きの磁束をヨーク10に上下向きの循環型の磁束を生じさせるのではない。主コイルより下方には第1補助コイルA1、A2がある。これも巻き方向は同一であり何れも上向きの磁束を生じる。主コイルより上方には第2補助コイルB1、B2がある。これも上向きの磁束を発生させる。

【0028】つまりこのヨークは閉曲線の磁路を持つが、コイルによって作られる磁束は閉曲線に沿ってヨーク中を回るものではない。左側Y枠に巻き付けてある3つのコイルB1、M1、A1は何れも上向き磁束を与える。右側Y枠にある3つのコイルB2、M2、A2も上向き磁束を作る。磁束はX枠の中央Uで衝突し、上下にヨークから飛び出す。

【0029】上向きに飛び出したものは、ヨークを大きく外回りして、反対側のX枠の中心Dに戻る。これは磁束の損失である。下向きに飛び出したものは、下向きの磁束密度Bとなる。これは質量分析空間12を縦に貫き、下のX枠の中央Dでヨーク内に戻る。このように、ヨーク10は上下のX枠の中点UとDが磁極になる。【0030】右側の磁束は、A2、M2、B2を下から

上に抜け、ヨーク10の上枠の中点Uから下降して、ビーム3を通り、下枠の中点Dへ戻りさらにA2、M2,B2を通過する閉ループを描く。

【0031】左側の磁束は、A1、M1, B1を下から上に抜け、ヨーク10の上枠の中点Uから下降して、ビーム3を通り、下枠の中点DへもどりさらにA1、M1、B1を通過する閉ループを描く。

【0032】このように、X枠の中点U、Dで磁束が強く衝突し磁場エネルギーがここで高くなるので、その近傍でのヨークからの磁束の漏れが大きい。これが問題である。もしも一対の主コイルM1、M2だけであると、ヨーク半ばでの磁束漏れのためにByがy方向で一様にならない。

【0033】図6は主コイルM1、M2だけに5000 OATの電流を流し、補助コイルA1、A2、B1、B 2には電流を流さない時の、磁束密度By(y)のy方 向の分布である。ATというのは本来MKS単位系での 磁場Hの単位であるが、ヨークに発生させる起磁力を与 えるものとしてここでは、コイルの巻数Nと電流Iの積 によってコイル起磁力を表現している。もしもヨークが 閉磁路をなし、漏れ磁束がないとすれば、ヨーク内の磁 場HはATの値を磁路長によって割った値になる。

【0034】しかし本発明の使い方では磁束漏れがあるのでヨーク内の磁場は、ATを磁路長で割ったものにはならない。従ってAT/mと磁束密度Bの間に単純な比例関係はない。コイルに流す電流が大きいので磁極間が離れていても十分な磁束密度Bを発生させることができる。ATが大きいとヨークの飽和が起こる惧れがある。しかしヨークの断面積が十分であれば、磁束密度は数kGの程度であるから、飽和が起こる心配は無い。

【0035】さて3-20の開口のy方向の長さを40cmとして、中央部y=0では1600がウスになる。しかし両端部 $y=\pm20c$ mでは720がウスにしかならない。Byがy方向に不均一になる。y=0の付近を通るビームは強く曲がるが、 $y=\pm20c$ mの付近を通るビームは曲がりが小さい。

【0036】そこで両側に補助コイルを設けてこれらに大電流を流す事によって両端での磁場を増強する。図7は主コイルM1、M2にそれぞれ25000ATの電流を流し、補助コイルA1、A2、B1、B2にはそれぞれ12500ATの電流を流した時のy方向の磁束密度By(y)を示す。y=0cmで1040ガウスであるが、y=±20cmに至るまで一様であり、平坦な磁束密度分布が実現されている。このように補助コイルA、Bを励磁することによってy方向の磁場を一様にすることができる。磁場が一様であれば、y方向の位置の違いによらず、ビームの曲がりを等しくできる。

【0037】図8の(b)に示すように、初めに矩形断面のビームであれば、ウェファ面上でも、Pについて矩形断面になるし、H3についても矩形断面になる。図8

の PEH_3 の境界の部分にシャッターを入れると、 H_3 ⁺、 H_2 ⁺、H⁺ などの軽イオンを全て落とし、P以上 の質量をもつ、P⁺、PH⁺ 、 PH_2 ⁺、 PH_3 ⁺などのイオンを全てウェファに注入することができる。図8 (b) ではPの領域と H_3 の領域が接触しているが、もう少しウェファを後ろへずらすと両者はH分に離隔する。

【0038】初めに二次元分解能を持つ位置検出器11 (ファラディカップなど)によってイオンビームの分布を求めておき、PとH。ビームの境界を求め、境界部分にシャッターを位置させる。照射領域8が既知になるので、ウェファ6をx→-x方向に走査すればよい。これはウェファの支持機構によって行う。一方向の並進だけでウェファの全面に一様にビームを注入することができる。高速回転と並進運動を同時に行う、従来の大口径ウェファ用のイオン注入装置のエンドステーションに比較して、格段に単純化される。

[0039]

【実施例】直径30cmのシリコンウェファにPイオンをドープする場合について説明する。原料ガスはPH3ガスである。これをイオン源に導入してプラズマとし、引出電極の作用によってイオンビームとして引き出す。 縦長のイオン源1から高さが40cm横幅が10cmの帯状のイオンビームを発生させる。ビーム前方には二次元の位置検出器11を配置する。これによってイオンビームのx、y方向に二次元分布を調べる。

【0040】たとえば二次元の検出機能をもつファラディカップを用いる。二次元分解能を持たせるため、例えば1cm径のイオン検出部を多数格子状に並べたファラディカップが適する。二次元検出器の代わりに、y方向に伸びる一次元位置検出器をx方向に移動させても良い。或いはx方向に伸びる一次元位置検出器をy方向に移動させることもできる。これらのビーム強度の二次元信号をパラレルに、或いはゲートを懸けて、シリアルに読み出して適当な数学的処理をパソコンで行い、ビームの2次元分布をCRTに表示できる。この状態では、水素イオンや燐イオンは重なったピークを作っている。

【0041】つぎに主コイルM1、M2に通電してヨークから縦磁場Byを発生させる。磁場分布は図6のようになる。イオンビームは×方向に曲がり、ピークが二つに分離する。図8(a)のようにH3のビームと、Pのビームは中央部では分離しているが、端では互いに重なっている。もとのビームが40cm×10cmの矩形状であるのにビームが歪むのは中央で磁場が強く端で弱いからである。

【0042】さらに補助コイルA1、A2、B1、B2 に通電してこれを励磁する。主コイルM1、M2の電流 とバランスを取りながら補助コイル電流を増加させる。 ビームの分布が図8(b)のように矩形状になり完全に 分離できればよい。このとき図7のような一様磁場が形 成されている。

【0043】注入角度が問題になるときは、基板6を傾 けて燐イオンのビームが直角になるようにする。この条 件では、燐イオンの入射角は約10度、水素イオンは約 40度程度である。であるからウェファ6を約10度傾 けて入射するようにすれば良い。入射角が10度位傾い ても差し支えないという場合は、ウェファは傾けなくて も良い。ビーム断面はy方向に長い長方形であるから、 基板6は×方向に並進させて全面にイオン注入する。

【0044】先ほどヨークの飽和について述べたが、こ こで、燐ドープの例について、パラメータの例を説明す る。図5は横幅JHG(2d)のある縦長ビームが磁場 のファラディ力で曲がる有り様を示す。有効な磁場の存 在する領域の幅をLとする。水素H3+イオンは点Cを中 心として小さい半径Rμの円弧を描く。中心角をΘμと する。H₃+ビームは入口でJHGの広がりを持つので、 出口でもSQPの範囲に広がっている。中心点Hからz 方向に引いた線と領域の端の線の交点をFとする。燐イ オンは点Eを中心として大きい半径R。の円弧を描く。 中心角を Θ _pとする。P⁺ ビームは入口でJHGの幅を 持つから、出口でもNMKの広がりを持つ。

【0045】燐ビームの出口分布で最もxの値が大きい のは点Nである。H3 ビームの出口分布で最もxの小さ

$$R_{-} = R_{-} \cos \Theta_{-} = d$$

【0056】であればよい。具体的に、磁場領域の幅し を50cm、ビーム半幅dを5cm、ビームエネルギー を100keVとして、分離すべきイオンをH₃イオン と、Pイオンとすると、必要な磁束密度は1000ガウ ス程度になる。この時 (B=0.1テスラ)、R_H=7 9 cm, $\Theta_{\text{H}} = 39^{\circ}$, $R_{\text{P}} = 253 \text{ cm}$, $\Theta_{\text{P}} = 11$ *となる。このとき不等式(8)を満足している。この 程度の縦磁場を発生させるのは可能である。図7のよう に、主コイルに25000AT、補助コイルに1250 OATの電流を流すと、B=1040ガウスになる。

【0057】図9には補助コイル電流を0としたとき の、ビームの広がりを示す。図9(a)は燐イオンを1 OOke Vに加速したときのビームである。ビームには もともと横幅(2d:図5のGHJ))があるので、中 央と左右のビーム軌跡3本を示す。いずれも3本に分離 しているが、これはy方向の磁場Byがばらついている からである。図9 (b)は100keVのH3 イオンの 軌跡である。軽いイオンであるから曲がりがより著し い。やはりByの不均一性のために3本以上のビームに 分離している。

【0058】図10は補助コイル電流を流し、Byを一 様にした時のビーム広がりを示す。図10(a)は10 Oke Vの燐イオンの軌跡である。Byがy方向で一様 であるから、ビームは分離しない。図10(b)は10 Oke VのH₃ イオンの軌跡である。これは僅かに分離 しているが、xの大きい範囲でByが少し不均一になっ

ャッターをPN間に置く事によってH₃を全部落とす事 ができる。もちろんビーム角度も違うので実際にはもっ と余裕がある。

[0046]

$$R_{H} = (M_{H} \ V)^{1/2} / 0.69B$$
 (2) [0047]

 $R_H = (M_P \ V)^{1/2} / 0.69B$

【0048】ここで半径Rの単位はcm、磁束密度の単 位はテスラ、MH(3)、MP(31)は質量数である (M_H = 3、M_P = 31)。加速電圧Vの単位は10k e Vである。磁場領域Lでのビーム曲がりの中心角Θ P、OHは、

$$[0049]R_{H} \sin \Theta_{H} = L$$
 (4)

$$[0050]R_{p} \sin \Theta_{p} = L \qquad (5)$$

【0051】によって決まる。

[0052]

 $FN=R_p - R_p \cos \Theta_p + d$ (6)

[0053]

 $FP=R_H-R_H\cos\Theta_H-d$ (7)

【0054】である。分離の条件は FP>FNである から、

[0055]

$$R_H - R_H \cos \Theta_H - d > R_P - R_P \cos \Theta_P + d$$
 (8)
具体的に、磁場領域の幅し ているからである。

【0059】図11には主コイル電流が50000A T、補助コイル電流が0の時の(図6と同じ条件)ヨー クや磁極間の磁力線の分布を示す。ヨーク外側の枠は無 限円の代わりに仮想的な境界条件を設定する枠である。 磁力線は連続するのでこのような境界条件を入れないと 磁力線を計算できない。実際にヨークをこのような強磁 性体の箱で囲む事もあるが、囲まない場合もある。この ような境界条件は内部の磁力線分布にはあまり強い影響 を持たない。主コイルだけを励磁するので、ヨークから 漏れが多く、磁力線が磁極間で完全に平行にならない。 【0060】図12には主コイルに25000AT、補 助コイルに12500ATの電流を流した時(図7と同 じ条件)のヨークや磁極間の磁力線分布を示す。磁極間 で磁力線が完全に平行になっている事が分かる。

[0061]

【発明の効果】本発明は、帯状のイオンビームを短辺の 方向に磁石によって曲げてイオンを質量分析する。原料 ガスをイオンとしたとき、不要な軽イオンと必要な重イ オンを含むようになる場合、これを分離し不要な軽イオ ンを除く。非質量分析タイプのイオン注入装置に比較し て発熱が少なく、不純物の注入による悪影響も少ない。 必要な重いイオンが複数種ある場合それらの全てをイオ ン注入できるから原料を有効に利用できるし、注入処理 能力も大きい。対象物(ウェファ)は一方向だけに往復 移動させれば良いのでエンドステーションの構造が単純

になる。

【0062】この種のエンドステーションの場合、ウェファをビーム幅の長さだけ余分にオーバースキャンしなければ注入均一性を保証できないが、ウェファ面上でのビームプロフィルを、補正コイルの電流によって制御できるので、オーバースキャン幅を補正コイルなしの場合に比べてより狭くできる。これにより注入時間を短縮できる。曲げ角度が少なくて済みビームラインが短くて良い。そのために空間電荷効果によるビーム発散が少ないので、ビーム損失が少ない。

【図面の簡単な説明】

- 【図1】本発明のイオン注入装置の概略斜視図。
- 【図2】本発明のイオン注入装置の縦断面図。
- 【図3】図2に示す本発明のイオン注入装置の横断平面図.
- 【図4】本発明で利用する縦長ビームの質量分析マグネットのヨークとコイルの関係を示す正面図。
- 【図5】マグネットによて縦長ビームを横方向に曲げる ことによって水素よりなる軽イオンH₃ * と燐Pを含む イオンとを質量分析できることを示す説明図。
- 【図6】主コイルだけに50000ATの電流を流したときのヨーク開口内での、磁束密度Byのy方向分布を示すグラフ。y=0で磁束密度が過度になり、これから遠ざかるに従って磁束密度が過小になる。
- 【図7】主コイルに25000AT、補助コイルに12500ATの電流を流したときのヨーク開口内での、磁 束密度Byのy方向分布を示すグラフ。y方向で磁束密 度が一様になっている。
- 【図8】補助コイルによる磁場がビームプロフィルにどのような影響を及ぼすのかを説明するための図。(a)は補助コイル電流が0の場合、(b)は補助コイルに適当な電流を流している場合を示す。
- 【図9】補助コイル電流が無いとき、質量分析マグネットが、イオンビーム軌跡にどのような影響を及ぼすかを説明するビーム軌跡図。(a)は補助コイル電流が0の時の、100ke Vに加速した燐イオンの軌跡図。

(b) は補助コイル電流が0の時の、100keVに加速した H_3 イオンの軌跡図。いずれも3本のビームに分離している。

【図10】補助コイルに適当な電流を流したときに、質量分析マグネットが、イオンビーム軌跡にどのような影響を及ぼすかを説明するビーム軌跡図。(a)は補助コイル電流が0の時の、100keVに加速した燐イオンの軌跡図。(b)は補助コイル電流が0の時の、100keVに加速したH3イオンの軌跡図。y方向に磁束密度が一様であるからビームが分離しない。

【図11】主コイル電流が50000ATで、補助コイル電流=0の時、コイル電流によってヨーク内に形成される磁力線の分布に関する計算結果を示す図。ヨークの外側に閉磁路をなす磁気回路を仮定し無限遠まで磁力線が広がらないという境界条件を課している。磁極間で磁力線が湾曲している。

【図12】主コイル電流が25000ATで、補助コイル電流=12500ATの時、コイル電流によってヨーク内に形成される磁力線の分布を示す図。ヨークの外側に閉磁路をなす磁気回路を仮定し無限違まで磁力線が広がらないという境界条件を課している。磁極間で磁力線が直線になっている。

【符号の説明】

- 1 縦長のイオン源
- 2 イオン引き出し口
- 3 帯状イオンビーム
- 4 重いイオンを含むビーム
- 5 軽いイオンを含むビーム
- 6 ウェファ
- 7 シャッター
- 8 重いイオンの照射領域
- 9 エンドステーション
- 10 質量分析磁石のヨーク
- 11 位置検出器
- 12 質量分析空間

【図8】

【図3】

【図9】

【図10】

【図11】

【図12】

