TD9 M1S2 Probabilité, Martingale et chaîne de Markov

9.1 L'espace canonique d'une chaîne

Soit E un espace au plus dénombrable, on prend $\Omega = E^{\mathbb{N}}$ et les applications coordonnées $X_n : \Omega \to E, \ \omega \mapsto \omega_n$ pour $n \in \mathbb{N}$.

1. On munit Ω de la tribu \mathcal{F} , la plus petite qui rende mesurables les applications coordonnées X_n , montrer que \mathcal{F} est engendrée par les cylindres, c'est-à-dire les

$$C = \{ \omega \in \Omega : \ \omega_0 = x_0, \dots, \omega_n = x_n \}$$

pour $n \in \mathbb{N}$ et $x_0, x_1, \dots, x_n \in E$.

2. On conviendra que $(\Omega, \mathcal{F}, \mathbb{P}_x)$ désigne l'espace canonique de la chaîne partant de x et de transition Q. Soit $(Y_n)_{n\geq 0}$ une (autre) chaîne de Markov partant de x et de transition Q (définie éventuellement sur un autre espace de proba $(\Omega', \mathcal{F}', \mathbb{P}'_x)$), montrer que, pour tout $B \subset E^{\mathbb{N}}$ mesurable, on a

$$\mathbb{P}'_{x}((Y_{n})_{n\in\mathbb{N}}\in B)=\mathbb{P}_{x}((X_{n})\in B)$$

3. En utilisant le théorème de la propriété de Markov simple dans l'espace canonique (où \mathbb{E}_x est l'espérance sous \mathbb{P}_x de l'espace canonique) : pour tout $F, G : \Omega \to \mathbb{R}_+$ mesurables, telles que F est $\sigma(X_0, \ldots, X_n) := \mathcal{F}_n$ -mesurable, on a

$$\mathbb{E}_x \left[F \cdot G \circ \theta_n \right] = \mathbb{E}_x \left[F \mathbb{E}_{X_n}(G) \right];$$

Montrer que $(Y_n)_{n\geq 0}$ satisfait également la propriété de Markov simple. Commencer par donner un sens à cette propriété, comme par exemple, pour tout Z bornée et $\sigma(Y_n, Y_{n+1}, \ldots)$ -mesurable

$$\mathbb{E}'_x(Z \mid Y_0, \dots, Y_n) = \mathbb{E}'_x(Z \mid Y_n).$$

En fait, n'importe quelle propriété en loi vraie pour $(X_n)_{n\geq 0}$ reste vraie pour $(Y_n)_{n\geq 0}$.

9.2 Temps de couverture sur le cercle

Soit $(X_m)_{m\geq 0}$ la marche simple sur $\mathbb{Z}/n\mathbb{Z}$ partant de 0. Soient Y le dernier site de $\mathbb{Z}/n\mathbb{Z}$ visité par la marche et $T_k := \inf\{m \geq 0 : X_m = k\}$.

- 1. Justifier que la v.a. Y est bien définie.
- 2. Montrer que $\{T_{k-1} < T_k\} = \{Y \in \{k, k+1, \dots, n-1\}\}.$
- 3. Soit $\widetilde{X}_m := -X_m$, pour tout $m \geq 0$. Montrer que le processus $(\widetilde{X}_m)_{m \geq 0}$ est aussi une marche simple sur $\mathbb{Z}/n\mathbb{Z}$ partant de 0.

- 4. Montrer que $\mathbb{P}(Y=1) = \mathbb{P}(Y=n-1)$.
- 5. En utilisant le temps d'arrêt $T_{k-1} \wedge T_{k+1}$ et sans faire de calcul, montrer que $\mathbb{P}(Y = k) = \mathbb{P}(Y = 1)$, pour tout $k \in \{1, 2, \dots, n-1\}$.
- 6. En déduire la loi de Y.
- 7. Quelle est la probabilité que X touche k-1 avant k, pour $k \in \{1, \ldots, n-1\}$?

9.3 Classification des états

Classifier les états dans la chaîne dont les transitions sont données par la figure cidessus et où les transitions sont équiprobables pour toutes possibilités.

9.4 Jeu de serpent et échelle

Avec la carte donnée à droite, à chaque tour un joueur lance une pièce parfaite et avance 1 ou 2 places (dans l'ordre des numéros des cases) en fonction du résultat du lancement. Si on se retrouve en bas d'une échelle, on grimpe en haut ; si on se retrouve sur la tête d'un serpent, on glisse vers le bas.

- 1. On note $X_n \in \{1, 2, ..., 9\}$ la position du joueur à l'instant n. Donc
 - $X_0 = 1$ et si on a $X_n = 9$, pour un $n \in \mathbb{N}$, alors $X_k = 9$, pour tout $k \ge n$. Démontrez que $(X_n)_{n>0}$ est une chaîne de Markov et donnez sa matrice de transition.
- 2. Pouvez vous classifier les états?
- 3. Combien de tours en moyenne pour finir le jeu ?