Amagon MS Cooling tost Q Ginen a 20 matrin of size NxM.

Count the no of unique paths to reach (N-1, M-1) from (0,0) if from any cell you can more right or donum.

Path (O to (i,j)) = Path (O to (i-1,j)) + Path (O, to (i,j-1))

Path (i,j) = Path (i-1,j) + Path (i,j-1);

No of paths from

Bare Care

m-1, m-1

Patho (i, j) -> total patho for (0,0) to (n-1, m-1)

بر نده ال ناده) مد ه;

Recursin Cale

$$dP(i)(j) = dP(i-1)(j) + dP(i)(j-1)$$

$$ono \longrightarrow dP(n-1)[m-1]$$

1	T	1	1
1	2	3	4
1.	3	6	10
1	4	10	20
Ţ	5	15	35
1	6	21	5 ₆

TC: O(NM)

SC:O(NM)

> O(N)/O(M) ?

Q Given a 2D grid with some values. Returble min path Sum from S(0,0) to e(N-1, M-1)

10	ર	6
3	-10	70
16	5	7
7	ાર	16

min Path $(i, j) = \min \left(\min Path(i-1, j), + A(i)(j) \right)$ $\min Path(i, j-1) + A(i)(j)$

0	2	6
3	-10	70
16	5	7
1	ાર	16
A		

9	12	18
در	2	72
29	7	14
30	19	20
	<u> </u>	

Q Given a 2D grid with some values. Returble max path Sum from S(0,0) to E(N-1, M-1) $\Rightarrow R$

Google Dungeon Princeso

· you can move in right or drein direction

• $S \longrightarrow (O, D)$ C - (N-1, M-1)

بر 2 ع		-3 3	-10 (30 -5
	φ φ	-2	-ح	10

- · tre no. increase your health & the no. reduce your health
- · if at any point the health < 0 -> clear (xx) Return the min amount of heath cuth certich you need to Stat in order to reach the princes in living state. (ht >0)

				~ \ H
	3	L	-5	_
	-3	-10	30	
<u>કું </u>	-2	جح	10	
\$/X				

$$7 \xrightarrow{-2} 5 \xrightarrow{-3} 2 \xrightarrow{+3} 5$$

$$\downarrow +1$$

$$6$$

$$\downarrow -5$$

1	-10	رى
-10	-10	100
ι	1	(%)

上	−ເ <i>ٯ</i> ງ	- ଓ
2_	3	~।%
ţ	ک	- (v)

				2/4
	10	-ა	-೭	<u> </u>
	30	-10	-3	
	-5	_	3	
-8	e			

2/4	\$			
	7	5	2	
れつ	6	LL	5	
	1	1	6	c
			_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

1-m >=6 x =5

ڪ-

2	د		x+30	フ
	30	-5	X = -	
			<u></u>	

=6

x + A[i][j] >= min(dP[i+1][j), dP[i][j+1]);

dP(i)[j] = minimum amount of energy required before stepping with (ii, j) for reaching the princes alive.

x = min(dp[i+i][j], dp[x](j+i]) - A(i)(j)

 $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2}$