OUTPUT STAGES

- Main Purpose:
 - > To drive load with sufficient current
- Both *BJT* and *MOS* output stages available
- BJT output stages preferred due to their large current handling capability
- **BiMOS** circuits use **MOS** devices in the **core** of the circuit, while using **BJT** devices in the **output** stage
 - > Best of both worlds!

• Requirements:

- > Sufficient drive current/power transfer to load
- > Low output distortion
- ➤ Ideal voltage source:
 - The venin equivalent: V_0 with $R_0 \rightarrow 0$
- \triangleright Voltage gain A_v independent of load
 - Ideally unity with no phase shift
- > Low Standby (or Idling) Power
 - While not driving any load
- > Should not degrade frequency response

- > High power conversion efficiency η
 - η = (average power delivered to load)/(average power drawn from supply)
- Classification:
 - \triangleright Depends on the conduction angle (θ)
 - θ: Angle over the complete cycle (360°) for which either both or one of the output transistors are/is on
 - > Class A:
 - $\theta = 360^{\circ}$ and $\eta_{max} = 25\%$ (large standby power)
 - \succ Class B:
 - θ slightly less than 180° and $\eta_{max} = 78.5\%$ (zero standby power)

> Class AB:

- $\theta = 180^{\circ}$ and $\eta_{max} \approx 78.5\%$ (very small standby power)
- > Class C:
 - $\theta << 180^{\circ}$ (used in RF applications)
- ➤ There are *other classes* also, namely *D*, *E*, *F*, *G*, and *H*
 - Used only in special cases, e.g., pulse width modulated input, lowering of distortion, etc.
- In this course, we shall be discussing only about *Class B* and *Class AB* output stages

• *Class B*:

- ➤ Uses *complementary* set of output transistors (*npn and pnp*, *NMOS and PMOS*)
- ➤ One takes care of the *positive half cycle*, while the other takes care of the *negative half cycle*
- \triangleright θ slightly less than 180° for each
- ➤ Both output devices never ON simultaneously
 - Zero standby power (significant advantage)
- ➤ Also known as *Push-Pull Stage*

- During *positive half cycle*, the stage *pushes* current through load
- During *negative half cycle*, the stage *pulls* current away from load
- \triangleright Very high η_{max} of 78.5%
- ➤ However, there is a *very big limitation*, known as *Crossover Distortion*
 - Also known as *Deadband Distortion*
 - Occurs during zero crossings of the signal
 - For BJT/MOS Class B stage, the input voltage must at least equal V_{γ} (~ 0.6 V)/ V_{TN} ($|V_{TP}|$) (~ 0.7-1 V) for the output stage transistors to turn on

• Class AB:

- > Eliminates Crossover Distortion by prebiasing the output transistors
 - They remain at the verge of conduction in the standby stage
- \triangleright θ exactly equal to 180°
- $> \eta_{max}$ slightly less than 78.5% due to a small amount of standby power
- > Extremely popular and most widely used

• Class B Push-Pull Output Stage: BJT Implementation:

- ➤ Also known as *Comple-mentary Output Stage*
- ➤ Uses dual symmetric power supplies
- ➤ Typical values used:
 ±3 V, ±5 V, ±12 V, ±15 V
- ightharpoonup Q-point: $V_i = V_o = 0$ $\Rightarrow V_{be1} = V_{eb2} = 0$

Circuit Schematic

- \triangleright Both Q_1 and Q_2 cutoff
 - ⇒ Zero standby power
- \gt{Note} : $V_{be1} + V_{eb2} = 0$ (always)
- \gt As $V_i \uparrow$ beyond zero, $V_{be1} \uparrow$ and $V_{eb2} \checkmark$
 - \Rightarrow Q_1 moves towards turning on and Q_2 is pushed deeper into cutoff
- $\succ V_i$ has to be at least equal to V_{γ} for Q_1 to conduct till then, V_o remains zero
- \triangleright Once V_i becomes greater than V_{γ} , Q_1 turns on, supplies current to the load (R_L) , and V_o starts to increase

- \gt Similarly, as $V_i \checkmark below zero$, $V_{be1} \checkmark and V_{eb2} \uparrow$
 - \Rightarrow Q_2 moves towards turning on and Q_1 is pushed deeper into cutoff
- Again, V_i has to be at least equal to $-V_{\gamma}$ for Q_2 to conduct till then, V_o remains zero
- \succ Once V_i becomes less than $-V_{\gamma}$, Q_2 turns on, pulls current away from the load (R_L), and V_o starts to decrease (remains negative)
- > Thus, the name *Push-Pull*
 - Each transistor remains on for little less than half a cycle

The Voltage Transfer Characteristic (VTC)

- \triangleright Note the *deadband* $(V_o = 0)$ between $\pm V_{\gamma}$
- \triangleright Consider *positive* V_i :
 - For $V_i > V_{\gamma}$, V_o follows V_i with a slope of almost unity and without any phase shift (CC stage)
 - $As V_o \uparrow$, $V_{ce1} \checkmark$, and Q_1 starts to move towards saturation
 - \Rightarrow Positive $V_{o,max} = V_{CC} V_{CEI}(HS)$
 - However, for this to happen, V_i has to be greater than V_{CC} (since there is an extra drop of V_{bel})
 - ⇒ This point can never be reached
- \triangleright The characteristic for negative V_i can be similarly understood

Crossover Distortion

> Crossover Distortion:

- Quantified by ϕ (refer to the diagram)
- **Expressed as:**

$$\phi = \sin^{-1}(V_{\gamma}/V_{M})$$

V_M: Amplitude of the input signal

- Appears four times over a complete cycle
- Parameterized by a term known as the Total Crossover Distortion (TCD), expressed in percent: $TCD = (2\phi/\pi) \times 100\%$
- This distortion becomes more acute as $V_M \downarrow$
- For $V_M \leq V_{\gamma}$, no output $(V_o = 0 \text{ always})$

• MOS Implementation:

- ➤ Working principle
 absolutely similar to
 BJT implementation
- $ightharpoonup Only exception that V_{γ} replaced by V_{TN} and $V_{TP}$$
- \triangleright **Q-point**: $V_i = V_o = 0$
- > Both devices suffer from body effect issue

Circuit Schematic

- $\gt V_{TN}$ and V_{TP} function of V_o
 - ⇒ VTC significantly nonlinear
 - ⇒ Output shows more distortion
- $\triangleright V_i$ can't be more than V_{DD} or less than V_{SS}
 - $\Rightarrow V_o$ can't have rail-to-rail swing
- ➤ Also, *MOS devices* are *inherently much*poorer than their BJT counterparts in terms of current carrying capability
 - ⇒ Makes this stage quite a poor choice (needs extremely large W/L ratios)

• Class AB Push-Pull Output Stage:

- ➤ In a *Class B* stage, *Crossover Distortion* arises because the transistors are *absolutely cold* in the *standby state*, i.e., *dead off*
- ➤ If instead, these are prebiased at the verge of conduction, but not quite turned on, then a slight swing of the input either way can make one of these transistors turn on and either supply current to the load or pull current away from the load
- > This is the whole idea behind a Class AB stage

- Either of the output transistors remain on for complete half cycles
- Thus, it's a mixture of Class A and Class B operation
- ➤ Hence, it's called *Class AB Push-Pull Stage*
- > Eliminates Crossover Distortion completely
- > Obvious fallout:
 - Dissipation of standby power
- > Extremely popular topology and widely used
- > Efficiency drops slightly as compared to a pure Class B stage

• BJT Implementation:

- ightharpoonup Needs additional circuitry $(I_O-Q_3-Q_4)$
- $ightharpoonup Q_3$ - Q_4 diode-connected transistors and both are biased by the same current I_Q
- This produces a *DC bias* V_{BIAS} between the *bases*of Q_1 - Q_2

Circuit Schematic

- \triangleright Consider *idling condition* with R_L opencircuited $(I_0 = 0)$
- > Neglecting base currents of Q_1 - Q_2 , I_Q flows through Q_3 - Q_4 and develops a voltage drop:

$$V_{BIAS} = V_{BE3} + V_{BE4} = V_{T} \ln \left(\frac{I_{Q}^{2}}{I_{S3}I_{S4}} \right)$$

- $> I_Q$, I_{S3} , and I_{S4} chosen such that $V_{BIAS} \approx 2V_{\gamma}$
- \gt{Note} : V_{BIAS} is also equal to $(V_{BE1} + V_{EB2})$
 - $\Rightarrow Q_1$ - Q_2 remain at the verge of conduction, carrying a standby (or idling) current $I_{Standby}$

- This *extra current* of $(I_Q + I_{standby})$ causes *standby* (or *idling*) power dissipation
- ➤ Noting that:

$$V_{\text{BIAS}} = V_{\text{BE1}} + V_{\text{EB2}} = V_{\text{T}} \ln \left(\frac{I_{\text{Standby}}^2}{I_{\text{S1}}I_{\text{S2}}} \right)$$

$$\Rightarrow I_{Standby} = I_{Q} \sqrt{\frac{I_{S1}I_{S2}}{I_{S3}I_{S4}}}$$

Now, Q_1 - Q_2 has to supply/sink large amount of current to/from load \Rightarrow Their BE junction areas are made large \Rightarrow Large I_{S1} - I_{S2}

$\succ I_{S1}$ - I_{S2} typically 10 times or more than I_{S3} - I_{S4}

- $\Rightarrow I_{standby} \geq 10I_Q$
- ⇒ Adds to the power overhead of the circuit
- > Another option of prebias circuit:
 - V_{BE}-Multiplier
 - $V_{BIAS} = V_{BE3} (1 + R_2/R_1)$
 - Values of R_1 and R_2 chosen to give $V_{BIAS} = 2V_{\gamma}$

The Voltage Transfer Characteristic (VTC)

- > The VTC does not pass through origin
- > Intercepts (known as input-output offset):
 - $V_i = 0, V_o = +V_{EB2}$
 - $V_o = 0, V_i = -V_{EB2}$
- For $V_i > -V_{EB2}$, V_{be1} and $V_{eb2} \checkmark$, with their sum remaining constant at V_{BIAS}
 - \Rightarrow Q_1 starts to conduct and supply current to the load (R_L), while Q_2 starts to go deeper into cutoff
 - $\Rightarrow V_o$ starts to follow V_i with a slope ~1 (CC stage)

- $\succ V_o$ can rise all the way up to $[V_{CC} V_{CEI}(HS)]$, provided that V_i can drive it that far
- Similarly, for $V_i < -V_{EB2}$, V_{eb2} and V_{be1} , with their sum again remaining constant at V_{BIAS}
 - \Rightarrow Q_2 starts to conduct and pull current away from the load (R_L), while Q_1 starts to go deeper into cutoff
 - \Rightarrow V_o again starts to follow V_i with a slope ~1, and can go down all the way to $[V_{EE} + V_{EC2}(HS)]$

> Power Output and Efficiency:

- Refer to the figure in the next slide
 - **The constant of Set of V_{EB2} is neglected**
- Both transistors are not ON over the entire cycle
 - Q_1 takes care of the positive half cycle
 - Q_2 takes care of the negative half cycle
- V_{oM} : *Maximum value of* V_o
 - * Maximum possible swing between $[V_{CC} V_{CEI}(HS)]$ and $[V_{EE} + V_{EC2}(HS)]$
- I_{oM} : *Maximum value of load current* (= V_{oM}/R_L)
- Average rms power P_L delivered to load:

$$P_{L} = \frac{V_{oM}}{\sqrt{2}} \times \frac{I_{oM}}{\sqrt{2}} = \frac{V_{oM}^{2}}{2R_{L}}$$

Aloke Dutta/EE/IIT Kanpur

- Now, we need to calculate the power supplied to the stage by the power supplies
- The average current I_{supply} drawn by Q_1 from V_{CC} (happens only during the positive half cycle):

$$I_{\text{supply}} = \frac{1}{T} \int_{0}^{T} I_{c1}(t) dt = \frac{1}{2\pi} \int_{0}^{\pi} I_{oM} \sin \theta d\theta = \frac{I_{oM}}{\pi} = \frac{V_{oM}}{\pi R_{L}}$$

- The same current will also be pushed by Q_2 to V_{EE} (= $-V_{CC}$) during the negative half cycle
- Thus, over a complete cycle, the average supply power P_{supply} drawn from the power supplies:

$$P_{supply} = 2V_{CC}I_{supply} = 2V_{CC}V_{oM}/(\pi R_L)$$

• Thus, the *power conversion efficiency* (η) :

$$\eta = \frac{P_{L}}{P_{\text{supply}}} = \frac{V_{\text{oM}}^{2}/(2R_{L})}{2V_{\text{CC}}V_{\text{oM}}/(\pi R_{L})} = \frac{\pi V_{\text{oM}}}{4V_{\text{CC}}}$$

- η directly proportional to V_{oM} , and independent of R_L
 - ⇒ Significant advantage
- Also, $V_{oM}(max) \approx V_{CC}$ $\Rightarrow \eta_{max} = \pi/4 = 0.785 \text{ (or 78.5\%)}$
- This value may not be attainable in practice
 - ❖ For $V_{oM} = -V_{CC}$, V_i has to be less than $-V_{CC}$, which may not be practically achievable
 - **This analysis** neglects the standby power (quite small though) \Rightarrow Inclusion of this term will reduce η_{max}

> Transistor Ratings:

- Specified by two parameters:
 - ❖ Breakdown Voltage
 - * Maximum Power Rating
- Breakdown Voltage:
 - riangle Maximum positive/negative V_{CE} that can be applied to an npn/pnp BJT
 - o Known as the *Collector-to-Emitter Breakdown Voltage with Base Open* (BV_{CE0})
 - \bullet Focus on Q_1 (Q_2 will be similar)
 - A Refer to the diagram in the next slide (*Output characteristic of Q₁ along with the load line*)
 - \clubsuit In the analysis, the *offset in the VTC*, the *small standby current*, and $V_{CEI}(HS)$ are *neglected*

The Output Characteristic of Q 1 along with the Load Line

- At Q-point: $V_o = 0 \Rightarrow V_{ce1} = V_{CC}$
- **During positive half cycle:**

$$V_o(max) \approx V_{CC} \Rightarrow V_{cel} \approx 0$$

- \Rightarrow V_{ce1} ranges between 0 and V_{CC} during the positive half cycle
- The slope of the load line in this part of the characteristic = $-1/R_L$
- ***** For negative half cycle, Q_1 cuts off (Q_2 conducts during this period)
 - $\Rightarrow I_{c1} = 0$ for V_o ranging between 0 and $-V_{CC}$
 - $\Rightarrow V_{cel}(max) = 2V_{CC}$
 - $\Rightarrow BV_{CE0} = 4V_{CC}$ [using a **Safety Factor** (or **Factor** of **Safety**) of 2]

Maximum Power Rating:

- \diamond Same for both Q_1 and Q_2
- ❖ Average power P_L delivered by Q_I to R_L during the positive half cycle = area covered under the load line

$$\Rightarrow P_{L} = \frac{1}{2} \times V_{CC} \times \frac{V_{CC}}{R_{L}} = \frac{V_{CC}^{2}}{2R_{L}}$$

- * Refer to the *constant power hyperbola* $(V_{ce1} \times I_{c1})$ shown in the figure
- * Maximum power dissipation of Q_1 happens when this hyperbola becomes tangent to the load line, which is right at the middle of the load line
- **Proof**:

Constant power hyperbola (P_1) :

$$P_1 = V_{ce1} \times I_{c1} = (V_{CC} - I_{c1}R_L) \times I_{c1} = V_{CC}I_{c1} - I_{c1}^2R_L$$

Plug $dP_1/dI_{c1} = 0$ to get $I_{c1} = V_{CC}/(2R_L)$

This is the *mid-point of the load line*, with *coordinates* $[V_{CC}/2, V_{CC}/(2R_L)]$

$$\Rightarrow P_{\text{max}} = \frac{V_{\text{CC}}^2}{2R_{\text{L}}} \text{ (using a Safety Factor of 2)}$$

There is also *standby power*:

$$P_{Standby} = V_{CC} \times I_{Standby}$$

- ightharpoonup In general, $P_{max} >> P_{Standby}$
- * Refer to the figure in the next slide
 - o V_{cel} oscillates between 0 and $2V_{CC}$
 - o I_{c1} appears only during the positive half cycle, with peak value of V_{CC}/R_L (when $V_{cel} = 0$)
 - o $P_1 = V_{ce1} \times I_{c1}$ oscillates between 0 and $V_{CC}^2/(4R_L)$ at twice the frequency only during the positive half cycle

- * Two Special Cases:
 - o $R_L \rightarrow \infty$ (open-circuit):

Load line becomes horizontal with $I_{c1} = 0$

$$\Rightarrow P_1 = 0 \Rightarrow no issue$$

o $R_L = 0$ (short-circuit):

Load line becomes vertical with $I_{c1} \rightarrow \infty$

Potentially dangerous situation

Resulting power dissipation and consequent heat generation can completely damage the device

- **!** In actual situation, I_{c1} won't reach infinite value due to:
 - o Limited current driving capability of the driver stage
 - o Fall of β at high current levels due to High-Level Injection or Kirk Effect
- ❖ These two are *in-built self-protection mechanisms*
- ❖ Nevertheless, practical output stages need short-circuit protection

> Linearity and Output Resistance:

• While supplying/sinking current to/from load, Q_1/Q_2 operate in CC mode

$$\Rightarrow A_v = R_L/(R_L + r_{Ei})$$
 (i = 1,2) ($r_{Ei} = V_T/I_{Ci}$)

- Thus, if $R_L >> r_{Ei}$, then $A_v \to I$, and very high linearity in the VTC can be achieved
- However, *r_{Ei}* is not constant rather it changes with the load current
- Thus, A_v can depart significantly from unity, when the load current is very small (large r_{Ei})
- Referring to the VTC, the slope of the characteristic near $\pm V_{\gamma}$ will be significantly less than unity (Class B)

- However, as V_o \uparrow , load current \uparrow , r_{Ei} \checkmark , and the VTC starts to attain its maximum slope of unity
- Thus, for major part, the VTC is highly linear and produces an almost distortionless output
- Output Resistance:
 - o $Open R_L$ and look back from the output
 - o $R_0 = r_{Ei}$ (by inpsection), since bases of Q_1 - Q_2 can be considered to be at ac ground
 - o R_0 is variable, but for major part, extremely small
- Generally, the *linearity and output resistance* are calculated at the region of maximum slope of the VTC

> Summary:

- Quite small standby power
- Large current driving capability
- Almost linear VTC
- Very low distortion at the output
- $A_v \sim 1$
- No phase shift between input and output
- Very low output resistance
 Thus, this stage is a superb one and is highly popular!

• MOS Implementation:

- ➤ Biased using dual symmetric power supplies V_{DD}/V_{SS}
- $> M_1-M_2$ in push-pull configuration
 - M_1 supplying current to load (R_L) during the positive half cycle
 - M₂ pulling current away from load during the negative half cycle

Circuit Schematic

- \succ M₁-M₂ prebiased by the series combination of M₃-M₄ (both diode-connected) biased with I_Q
- ► Develops V_{BIAS} across the gates of M_3 - M_4 , which is same as that between the gates of M_1 - M_2
- $\succ V_{BIAS}$ chosen to be slightly less than $(V_{TN} + |V_{TP}|)$
- > Crossover Distortion eliminated completely, at the cost of introducing standby power into the system
- Rest of the operation of the circuit exactly similar to that of a BJT Class AB Push-Pull Output Stage

- > All transistors suffer from body effect problem
 - \Rightarrow More distortion at the output
- > The linearity of the VTC is not that good
- > Low current drive capability
- \triangleright Biasing itself becomes tricky, due to the body effect of M_3 - M_4
- The output resistance not that low, since MOSFETs have lower g_m than BJTs
- > Overall, the stage *suffers from quite a few problems* and is *not used much*
- > We will explore this through an assignment

• Overload Protection:

- > Protects the output
 stage from accidental
 short-circuits
- > Needs 4 more components:
 - **2 BJTs** (Q_5, Q_6)
 - 2 Resistors (R_1,R_2) $R_1,R_2 \sim 25-50 \Omega$

Circuit Schematic

During *normal operation*, these *extra circuits* play absolutely *no role*, and come *into picture* only under *accidental short-circuit* of the *output terminal to ground*

> Numerical Example:

- Assume V_i at its *positive peak*, the *maximum drive current* to the base of $Q_1 = 1$ mA, and $\beta_1 = 100$
- Now output gets *accidentally shorted to ground* $(V_0 = 0)$ $\Rightarrow I_{c1} = 100 \text{ mA}$ and $V_{cel} = 5 \text{ V}$

$$\Rightarrow P_1 = 500 \ mW$$

■ This may be way above the maximum power rating of the transistor ($\sim 100-150 \text{ mW}$) and the transistor would burn out \Rightarrow potentially dangerous situation!

- > Principle of Operation of the Protection Circuit:
 - Assume *positive* V_i with Q_1 *supplying current to load*
 - Q_2 is off during this time
 - As $R_L \checkmark$, $I_{c1} \uparrow$ (since $I_{c1} = V_o / R_L$) $\Rightarrow V_{be5} (= I_{c1} R_1) \text{ also } \uparrow$
 - As $V_{be5} \rightarrow V_{\gamma}$ of Q_5 , it starts to *turn on*
 - \Rightarrow A part of base drive current of Q_1 starts to get shunted away by Q_5 , and appears at the output almost without any gain $(1/\alpha_5)$
 - This acts as a *limit of the rate* at which the *output current can increase*, and thus, *protects the circuit*

- Thus, the *current can't increase indefinitely*
- Assume $R_1 = 30 \Omega$ and $V_{\gamma} = 0.6 V$
 - \Rightarrow As soon as I_{c1} reaches about 20 mA, Q_5 cuts in, shunts current away from the base of Q_1 , and protects the circuit
- Due to the *exponential dependence* of this *shunted current* on V_{be5}, the *maximum output current* will *saturate near around 20 mA itself*
- Thus, under this case, if the output is accidentally shorted to ground, then $P_1(max)$ will be around 100 mW, which is well within limit, and protection will be achieved

- Similarly, for the *negative half cycle*, this job of *protection will be achieved by the* Q_6 - R_2 *combination*
- The *drop across* R_2 will depend on the *amount of current* being *sunk by* Q_2
- Once this drop reaches the cut-in voltage of Q_6 , it will turn on, and bypass the drive current of Q_2 , thus protecting the circuit
- This *protection circuit* is *widely used* due to its *efficacy*, and the *most popular analog building block*, the *op-amp*, *uses this protection scheme*

> Quantitative Estimate of the Protection Mechanism:

- Assume V_i positive and supplying drive current
 I_i to Q₁
- Output shorted to ground

$$\Rightarrow$$
 $V_o = 0$

- $I_{i} = I_{b1} + I_{c5}$ $I_{c5} = I_{S5} exp(V_{be5}/V_{T})$
- $V_{be5} = I_{c1}R_1$ (assuming $\alpha_1 = 1$ and neglecting I_{b5})

Protection Scheme

- For *small values* of I_{c1} , V_{be5} will be *small*, and I_{c5} will be *negligible*
- Also, $I_{c1} = \beta_1 I_{b1} = \beta_1 (I_i I_{c5})$ $\Rightarrow \beta_1 I_i = I_{c1} + \beta_1 I_{S5} \exp(I_{c1} R_1 / V_T)$
- This is the *final protection expression*
- For *small* I_{c1}, the *second term* on the *RHS* will be *negligible*
 - \Rightarrow I_{c1} would follow I_i linearly with proportionality constant β_1
- As I_{c1} 7, the second term on the RHS increases at a much more rapid rate than the first term

- Once it starts to become *comparable* to the first term, a *very little change* in I_{c1} can *counter a large change* in I_i
 - \Rightarrow I_{c1} gets clamped to almost a constant value of $I_{c1,max}$
- Note that the *protection equation* is *transcendental*
 - \Rightarrow Needs numerical or iterative solution

Protection Characteristic