Problème : Conception d'un système de prédiction de données avec Python avancé

Interface IModel

L'interface IModel est une classe abstraite qui définit deux méthodes principales que tout modèle de machine learning doit implémenter :

- train : Pour entraîner le modèle avec des données d'entraînement.
- predict : Pour faire des prédictions sur de nouvelles données.

```
In [2]: from abc import ABC, abstractmethod
from typing import List
import pandas as pd

class IModel(ABC):
    @abstractmethod
    #Méthode d'entraînement du modèle.
    def train(self, X: pd.DataFrame, y: pd.Series) -> None:
        pass

#Méthode de prédiction sur des données.
    @abstractmethod
    def predict(self, X: pd.DataFrame) -> List[float]:
        pass
```

Décorateur @log_decorator

La fonction log_decorator est un décorateur Python qui permet de :

• Enregistrer un message de log avant l'exécution d'une fonction avec ses arguments.

- Enregistrer un message de succès si la fonction s'exécute correctement.
- Enregistrer un message d'erreur avec les détails si une exception survient dans la fonction.

```
In [3]: import logging

# Configuration de base du Logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', filename='system.log')

def log_decorator(func):
    def wrapper(*args, **kwargs):
        try:
        logging.info(f"Running {func.__name__} with arguments {args} {kwargs}")
        result = func(*args, **kwargs)
        logging.info(f"{func.__name__} completed successfully.")
        return result
    except Exception as e:
        logging.error(f"Error in {func.__name__}): {e}")
        raise e
    return wrapper
```

Classe DataPipeline

La classe DataPipeline gère le chargement, le prétraitement, et la division des données. Elle utilise un générateur pour parcourir les données ligne par ligne.

- Attributs :
 - _filename : Nom du fichier CSV contenant les données.
 - _data : Données chargées sous forme de DataFrame de pandas.
- Méthodes :
 - load_data : Charge les données depuis un fichier CSV.
 - preprocess_data : Nettoie les données en supprimant les valeurs manquantes.
 - split_data : Divise les données en ensembles d'entraînement et de test.
 - data_generator : Générateur qui permet de parcourir les données ligne par ligne.

```
In [9]: import pandas as pd
        from sklearn.model selection import train test split
        from typing import Tuple, Generator
        class DataPipeline:
            def init (self, filename: str):
                self. filename = filename
                self. data: pd.DataFrame = None
            @property
            #Getter pour les données.
            def data(self) -> pd.DataFrame:
                return self._data
            @data.setter
            #Setter pour les données.
            def data(self, data: pd.DataFrame) -> None:
                self. data = data
            @log decorator
            #Charge Les données depuis un fichier CSV.
            def load_data(self) -> None:
                self. data = pd.read csv(self. filename)
                print(f"Données chargées depuis @ {self. filename}")
            @log decorator
            def preprocess data(self) -> None:
                self. data = self. data.dropna(inplace=True)
            @log decorator
            #Diviser les données en ensemble d'entraînement et de test.
            def split_data(self, test_size: float = 0.2) -> Tuple[pd.DataFrame, pd.DataFrame, pd.Series, pd.Series]:
                X = self._data.drop('target', axis=1)
                y = self. data['target']
                return train_test_split(X, y, test_size=test_size, random_state=42)
            #Générateur pour parcourir les données.
            def data_generator(self, batch_size: int) -> Generator[pd.DataFrame, None, None]:
                for start in range(0, len(self. data), batch size):
                    yield self. data.iloc[start:start + batch size]
```

Décorateur @timing

Le décorateur @timing mesure et affiche le temps d'exécution des méthodes qu'il décore. Il est utilisé pour suivre la performance en temps réel.

```
def timing(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"Temps d'exécution de {func.__name__}}: {end_time - start_time:.4f} secondes")
        return result
    return wrapper
```

Classe RandomForestModel

Implémente le modèle de Random Forest à l'aide de l'interface IModel. Ce modèle utilise RandomForestClassifier de scikit-learn.

- Méthodes :
 - train: Entraîne le modèle avec des données d'entraînement.
 - predict : Fait des prédictions sur de nouvelles données.
 - evaluate : Calcule la précision du modèle sur des données de test.

```
In [10]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score

class RandomForestModel(IModel):
    def __init__(self):
        self.model = RandomForestClassifier()

@log_decorator
```

```
@timing
#Entraîner le modèle RandomForest.
def train(self, X: pd.DataFrame, y: pd.Series) -> None:
    self.model.fit(X, y)
@log decorator
@timing
#Prédiction avec le modèle RandomForest.
def predict(self, X: pd.DataFrame) -> List[float]:
    return self.model.predict(X).tolist()
@log decorator
#Évaluer le modèle sur un ensemble de test.
def evaluate(self, X_test: pd.DataFrame, y_test: pd.Series) -> float:
   y pred = self.predict(X test)
    return accuracy score(y test, y pred)
# Évaluer le modèle sans sklearn accuracy score.
# def evaluate(self, X test: pd.DataFrame, y test: pd.Series) -> float:
   y_pred = self.predict(X_test)
     correct = sum(y test == y pred)
     return correct / len(y test)
```

Classe SVMModel

Implémente le modèle SVM en utilisant SVC de scikit-learn. Ce modèle implémente également l'interface IModel.

- Méthodes :
 - train : Entraîne le modèle SVM.
 - predict : Fait des prédictions sur de nouvelles données.
 - evaluate : Calcule la précision du modèle.

```
In [13]: from sklearn.svm import SVC

class SVMModel(IModel):
    def __init__(self):
        self.model = SVC()
```

```
@log decorator
             @timing
             #Entraîner le modèle SVM.
             def train(self, X: pd.DataFrame, y: pd.Series) -> None:
                 self.model.fit(X, y)
             @log decorator
             @timing
             #Prédiction avec le modèle SVM.
             def predict(self, X: pd.DataFrame) -> List[float]:
                 return self.model.predict(X).tolist()
             #Évaluer le modèle sur un ensemble de test.
             def evaluate(self, X test: pd.DataFrame, y test: pd.Series) -> float:
                 y pred = self.predict(X test)
                 return accuracy_score(y_test, y_pred)
             # Évaluer le modèle sans sklearn accuracy score.
             # def evaluate(self, X_test: pd.DataFrame, y_test: pd.Series) -> float:
                 y pred = self.predict(X test)
             # correct = sum(y test == y pred)
                return correct / len(y_test)
In [14]: if __name__ == "__main__":
             # 1. Charger et prétraiter les données
             pipeline = DataPipeline('data.csv')
             pipeline.load_data()
             pipeline.preprocess_data()
             # 2. Diviser Les données
             X_train, X_test, y_train, y_test = pipeline.split_data(test_size=0.2)
             # 3. Entraîner et évaluer le modèle RandomForest
             print("\nRandomForestModel")
             rf model = RandomForestModel()
             rf_model.train(X_train, y_train)
             rf_model.evaluate(X_test, y_test)
```

4. Entraîner et évaluer le modèle SVM

```
print("\nSVMModel")
     svm model = SVMModel()
     svm model.train(X train, y train)
     svm model.evaluate(X test, y test)
     # 7. Utiliser le générateur pour parcourir les données
     print("\nData Generator:")
     for row in pipeline.data generator(batch size=1000):
         print(row)
         break #show the first row 👺
Données chargées depuis 😊 data.csv
RandomForestModel
Temps d'exécution de train: 0.1964 secondes
Temps d'exécution de predict: 0.0089 secondes
SVMModel
Temps d'exécution de train: 0.0020 secondes
Temps d'exécution de predict: 0.0010 secondes
Data Generator:
```

```
      feature1
      feature2
      feature3
      feature4
      target

      0
      0.374540
      2.378596
      1.068571
      0.773856
      1

      1
      0.950714
      0.405175
      0.836367
      0.046878
      0

      2
      0.731994
      2.123425
      0.599406
      0.084544
      0

      3
      0.598658
      0.299509
      1.188251
      0.991677
      0

      4
      0.156019
      2.862336
      0.296391
      1.194115
      1

      5
      0.155995
      1.220905
      1.526876
      0.953861
      0

      6
      0.058084
      0.346888
      0.354275
      0.741358
      1

      7
      0.866176
      0.173258
      0.904170
      1.169807
      1
```

Output:

- 1. Données chargées depuis data.csv:
 - Les données ont été chargées avec succès depuis le fichier data.csv.
- 2. RandomForestModel:

- Temps d'exécution de train : 0.1964 ondes
- Cela indique que la méthode train du modèle RandomForestModel a pris **0.1964condes** pour s'exécuter.

 Temps d'exécution de predict : 0.0089econdes

Cela montre que la méthode predict du modèle RandomForestModel a pris 0.0089econdes pour faire des prédictions.

3. **SVMModel**:

- Temps d'exécution de train : 0.0020 secondes

 La méthode train du modèle SVMModel a pris 0.0020 secondes pour s'exécuter.
- **Temps d'exécution de predict** : 0.0010 secondes La méthode predict du modèle SVMModel a pris **0.0010 secondes** pour faire des prédictions.

4. Data Generator:

• Le générateur de données a renvoyé les premières lignes des données suivantes :

feature1	feature2	feature3	feature4	target
0.374540	2.378596	1.068571	0.773856	1
0.950714	0.405175	0.836367	0.046878	0
0.731994	2.123425	0.599406	0.084544	0
0.598658	0.299509	1.188251	0.991677	0
0.156019	2.862336	0.296391	1.194115	1
0.155995	1.220905	1.526876	0.953861	0
0.058084	0.346888	0.354275	0.741358	1
0.866176	0.173258	0.904170	1.169807	1

Mohamed BELANNAB