UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Program	B.Tech (All SoCSBranches)	Semester	I
Course	Engineering Mathematics	Course Code	MATH 1036

1. Find the *n*th derivative of $\frac{1}{1-5x+6x^2}$.

2. Find the *n*th derivative of *sin6xcos4x*.

3. If $y\sqrt{1+x^2} = \log(x+\sqrt{(1+x^2)})$, prove that $(1+x^2)y_{n+2} + (2n+3)x y_{n+1} + (n+1)^2 y_n = 0$.

4. Show that $f_{xyz} = f_{yzx}$ for all (x,y,z) when $f(x,y,z) = e^{xy} \sin z$.

5. If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$.

6. Find the local maximum/minimum values of the function $f(x, y) = x^2 - y^2 - 2y$.

7. Evaluate $\int_{0}^{1\sqrt{1+x^2}} \frac{dydx}{1+x^2+y^2}$.

8. Let D be the region in the first quadrant bounded by the curves xy=16,x=y,y=0 and x=8. Sketch the region of integration of the integral $\iint_D x^2 dx dy$ and evaluate it by expressing it as an appropriate repeated integral.

9. Evaluate $\int_{0}^{1} \int_{x}^{x} (x^2 + y^2) dy dx$

10. Evaluate $\iint (x^2 + y^2) dx dy$ over the region in positive quadrant for which $x + y \le 1$.

11. Evaluate $\int_{0}^{\log 2} \int_{0}^{x+\log y} e^{x+y+z} dz dy dx$

12. Evaluate $\iiint xyzdzdydx$ over the volume enclosed by the planes x=0, y=0, z=0 and x + y + z = a.

13. Evaluate $\int_{0}^{\pi a(1-\cos\theta)} \int_{0}^{r^2} \sin\theta dr d\theta.$

14. Evaluate by changing the order of integration: $\int_{0e^{x}}^{1e} \frac{dydx}{\log y}$

15. Evaluate by changing the order of integration: $\int_{0.2y}^{1.2} e^{x^2} dx dy$.