featexp

Feature exploration for supervised learning. Helps with feature understanding, identifying noisy features, feature debugging, leakage detection and model monitoring.

Installation

```
pip install featexp
```

Using featexp

Detailed Medium post on using featexp. Translations from web: Chinese, Russian

featexp draws plots similar to partial dependence plots, but directly from data instead of using a trained model like current implementations of pdp do. Since it draws plots from data directly, it helps with understanding the features well and building better ML models.

featexp bins a feature into equal population bins and shows the mean value of the dependent variable (target) in each bin. Here's how to read these plots:

- 1. The trend plot on the left helps you understand the relationship between target and feature.
- 2. Population distribution helps you make sure the feature is correct.
- 3. Also, shows the number of trend direction changes and the correlation between train and test trend which can be used to identify noisy features. A high number of trend changes or low trend correlation implies high noise.

Plots for YEARS_BEGINEXPLUATATION_M
Train data plots

Test data plots

Example of a noisy feature: Has low trend correlation

Getting binned feature stats

Returns mean target and population in each bin of a feature

Getting stats for all features

Returns trend changes and trend correlation for all features in a dataframe

```
1 from featexp import get_trend_stats_feature
2 stats = get_trend_stats(data=data_train, target_col='target', data_test
     =data_test)
4 # data_test is optional. If not passed, trend correlations aren't
     calculated.
```

Returns a dataframe with trend changes and trend correlation which can be used for dropping the

In [79]:	stats				
Out[79]:		Feature	Trend_changes	Trend_changes_test	Trend_correlation
	0	CNT_CHILDREN	2	2	0.975688
	1	AMT_INCOME_TOTAL	4	3	0.921382
	2	AMT_CREDIT	3	3	0.988779
	3	AMT_ANNUITY	4	4	0.97232
	4	AMT_GOODS_PRICE	7	7	0.994683
	5	REGION_POPULATION_RELATIVE	3	3	0.987832
	6	DAYS_BIRTH	0	0	0.992783
	7	DAYS_EMPLOYED	1	1	0.995426
	8	DAYS_REGISTRATION	2	2	0.97689 ⁻
	9	DAYS_ID_PUBLISH	0	2	0.98510 ⁻
	10	OWN_CAR_AGE	1	1	0.994656
, etc.	11	FI AG MORII	n	n	0 00000

Leakage detection

It helps with identifying why a feature is leaky which helps with debugging.

Nulls have 0% mean target and 100% mean target in other bins. Implies this feature is populated only for target = 1.

Citing featexp

DOI 10.5281/zenodo.2616757