

Conteúdo Programático

- Tipos abstratos de dados.
- Estruturas:
 - Pilhas
 - Filas
 - Alocação dinâmica
 - Listas encadeadas
 - Tabelas de Espalhamento (hash)
 - Árvores
 - Grafos
- Recursividade e Métodos de ordenação.
- Aplicações das estruturas de dados em problemas computacionais na área de Ciência de dados.

Conteúdo Programático - Planejamento

Semana	Data	Temas/Atividades		
1	08/08	Acolhimento e Boas-vindas! Introdução a Disciplina. Formas de Avaliação e Percurso Pedagógico. Tipo de dado abstrato.		
2	15/08	Complexidade de Algoritmos		
3	22/08	Revisão de Programação Orientada a Objetos (POO)		
4	29/08	Vetores não-Ordenados e busca sequencial		
5	05/09	Vetores Ordenados e busca binária		
6	12/09	Pilhas		
7	19/09	Filas		
8	26/09	Listas encadeadas		
9	03/10	Recursão		
10	10/10	Primeira Avaliação Formal. (P1). Correção da Avaliação após o intervalo.		
11	17/10	Algoritmos de Ordenação		
12	24/10	Algoritmos de Ordenação		
13	31/10	Árvores		
14	07/11	Árvores		
15	14/11	Grafos		
16	21/11	Grafos		
17	28/11	Tabela Hash (tabela de espalhamento)		
18	05/12	Segunda Avaliação Formal (P2). Correção da Avaliação após o intervalo		
19	12/12	Exame / Avaliação Substitutiva. Correção da Avaliação após o intervalo		
20	19/12	Divulgação do Resultado Final.		

BÁSICA:

- MENEZES, Nilo Ney Coutinho. Introdução à Programação com Python: Algoritmos e Lógica de Programação para Iniciantes, 2 ª edição. Novatec, 2014. ISBN: 9788575224083.
- RAMALHO, Luciano. Python Fluente. Novatec, 2015. ISBN: 978-85-7522-462-5
- GOODRICH, Michael T; TAMASSIA, Roberto; GOLDWASSER, Michael H. Data Structures and Algorithms in Python. John Wiley & Sons, Inc, 2013. 8576058812, 9788576058816.

COMPLEMENTAR:

- BIANCHI, Francisco; FREITAS, Ricardo; PIVA Jr, Dilermando. Estrutura de Dados e Técnicas de Programação. Elsevier Brasil, 2014. ISBN: 8535274383, 9788535274387.
- EDELWEISS, Nina; GALANTE, Renata. Estruturas de dados. V 18. Porto Alegre: Bookman, 2009. ISBN: 857780450X, 9788577804504.

BÁSICA:

MENEZES, Nilo Ney Coutinho. Introdução à Programação com Python: Algoritmos e Lógica de

Programação para Iniciantes, 2 ª edição. Novatec, 2014. ISBN: 9788575224083.

• RAMALHO, Luciano. Python Fluente. Novatec, 2015. ISBN: 978-85-7522-462-5

 GOODRICH, Michael T; TAMASSIA, Roberto; GOLDWASSER, Michael H. Data Stru Algorithms in Python. John Wiley & Sons, Inc, 2013. 8576058812, 9788576058816.

- BIANCHI, Francisco; FREITAS, Ricardo; PIVA Jr, Dilermando. Estrutura de Dados e de Programação. Elsevier Brasil, 2014. ISBN: 8535274383, 9788535274387.
- EDELWEISS, Nina; GALANTE, Renata. Estruturas de dados. V 18. Porto Alegre: Bc 2009. ISBN: 857780450X, 9788577804504.

BÁSICA:

 MENEZES, Nilo Ney Coutinho. Introdução à Programação com Python: Algoritmos e Lógica de Programação para Iniciantes, 2 ª edição. Novatec, 2014. ISBN: 9788575224083.

• RAMALHO, Luciano. Python Fluente. Novatec, 2015. ISBN: 978-85-7522-462-5

• GOODRICH, Michael T; TAMASSIA, Roberto; GOLDWASSER, Michael H. Data Stru Algorithms in Python. John Wiley & Sons, Inc, 2013. 8576058812, 9788576058816.

- BIANCHI, Francisco; FREITAS, Ricardo; PIVA Jr, Dilermando. Estrutura de Dados e de Programação. Elsevier Brasil, 2014. ISBN: 8535274383, 9788535274387.
- EDELWEISS, Nina; GALANTE, Renata. Estruturas de dados. V 18. Porto Alegre: Bo 2009. ISBN: 857780450X, 9788577804504.

BÁSICA:

- MENEZES, Nilo Ney Coutinho. Introdução à Programação com Python: Algoritmos e Lógica de Programação para Iniciantes, 2 ª edição. Novatec, 2014. ISBN: 9788575224083.
- RAMALHO, Luciano. Python Fluente. Novatec, 2015. ISBN: 978-85-7522-462-5

 GOODRICH, Michael T; TAMASSIA, Roberto; GOLDWASSER, Michael H. Data Structures and Algorithms in Python. John Wiley & Sons, Inc, 2013. 8576058812, 9788576058816.

- BIANCHI, Francisco; FREITAS, Ricardo; PIVA Jr, Dilermando. Estrutura de Dados e Técros de Programação. Elsevier Brasil, 2014. ISBN: 8535274383, 9788535274387.
- EDELWEISS, Nina; GALANTE, Renata. Estruturas de dados. V 18. Porto Alegre: Bookma 2009. ISBN: 857780450X, 9788577804504.

BÁSICA:

- MENEZES, Nilo Ney Coutinho. Introdução à Programação com Python: Algoritmos e Lógica de Programação para Iniciantes, 2 ª edição. Novatec, 2014. ISBN: 9788575224083.
- RAMALHO, Luciano. Python Fluente. Novatec, 2015. ISBN: 978-85-7522-462-5
- GOODRICH, Michael T; TAMASSIA, Roberto; GOLDWASSER, Michael H. Data Structures and Algorithms in Python. John Wiley & Sons, Inc, 2013. 8576058812, 9788576058816.

- BIANCHI, Francisco; FREITAS, Ricardo; PIVA Jr, Dilermando. Estrutura de Dados e Técnicas de Programação. Elsevier Brasil, 2014. ISBN: 8535274383, 9788535274387.
- EDELWEISS, Nina; GALANTE, Renata. Estruturas de dados. V 18. Porto Alegre: Bookman, 2009. ISBN: 857780450X, 9788577804504.

BÁSICA:

- MENEZES, Nilo Ney Coutinho. Introdução à Programação com Python: Algoritmos e Lógica de Programação para Iniciantes, 2 ª edição. Novatec, 2014. ISBN: 9788575224083.
- RAMALHO, Luciano. Python Fluente. Novatec, 2015. ISBN: 978-85-7522-462-5

 GOODRICH, Michael T; TAMASSIA, Roberto; GOLDWASSER, Michael H. Data Structures and Algorithms in Python. John Wiley & Sons, Inc, 2013. 8576058812, 9788576058816.

COMPLEMENTAR:

 BIANCHI, Francisco; FREITAS, Ricardo; PIVA Jr, Dilermando. Estrutura de Dados e Técnica de Programação. Elsevier Brasil, 2014. ISBN: 8535274383, 9788535274387.

 EDELWEISS, Nina; GALANTE, Renata. Estruturas de dados. V 18. Porto Alegre: Bookman, 2009. ISBN: 857780450X, 9788577804504.

BÁSICA:

- MENEZES, Nilo Ney Coutinho. Introdução à Programação com Python: Algoritmos e Lógica de Programação para Iniciantes, 2ª edição. Novatec, 2014. ISBN: 9788575224083.
- RAMALHO, Luciano. Python Fluente. Novatec, 2015. ISBN: 978-85-7522-462-5

GOODRICH, Michael T; TAMASSIA, Roberto; GOLDWASSER, Michael H. Data Structures and

Algorithms in Python. John Wiley & Sons, Inc, 2013. 8576058812, 9788576058816.

Forma de Avaliação

Instru	ımentos de Avaliação	Cronograma	Pesos
Nota 1:	Prova 1	10/10	30%
Nota 2:	Prova 2	05/12	40%
Nota 3:	Projeto Interdisciplinar	Ao longo do semestre	20%
Nota 4:	Participação	Aulas e Portfólio	10%
Nota 5:	Avaliação Substitutiva	12/12	P1 ou P2

Atenção:

A **avaliação substitutiva**, é aplicada aos estudantes que por ventura venham a perder alguma das duas avaliações presenciais (P1 ou P2). Existe a necessidade de comprovação formal do motivo da ausência.

Algoritmos...

Site / Blog da Disciplina:

http://www.piva.pro.br/

© Prof. Dr. Dilermando Piva Jr.

Por que aprender Estrutura de Dados?

EFICIÊNCIA E DESEMPENHO

- Estruturas de dados eficientes permitem que algoritmos processem grandes volumes de dados de forma rápida e eficaz.
- Em ciência de dados, onde frequentemente lidamos com **grandes datasets**, a escolha correta de uma estrutura de dados pode fazer a diferença entre um algoritmo que roda em segundos ou em horas.

ORGANIZAÇÃO E ARMAZENAMENTO

- Estruturas de dados nos ajudam a organizar e armazenar dados de maneira que sejam facilmente acessíveis e manipuláveis.
- Isso é crucial para realizar **análises complexas** e para manter a **integridade dos dados** ao longo do tempo.

RESOLUÇÃO DE PROBLEMAS COMPLEXOS

- Muitos problemas em ciência de dados podem ser resolvidos de forma mais eficiente quando utilizamos estruturas de dados adequadas.
- Por exemplo, encontrar o caminho mais curto em uma rede de transporte, ordenar listas de grandes volumes de dados, ou realizar buscas eficientes em bases de dados

FUNDAMENTO PARA ALGORITMOS AVANÇADOS

- Estruturas de dados são a base para muitos algoritmos avançados utilizados em machine learning, processamento de grandes volumes de dados (big data) e inteligência artificial.
- Compreender como essas estruturas funcionam é essencial para desenvolver soluções inovadoras e eficazes.

Estruturas de dados são **formas organizadas** de <u>armazenar</u>, <u>gerenciar</u> e <u>manipular dados</u> de maneira eficiente.

Elas são fundamentais na ciência da computação e em qualquer aplicação de software porque permitem que os dados sejam acessados e modificados de maneira

eficiente.

<u>Definição</u>: Estruturas de dados são formatos especializados para organizar e armazenar dados em um computador, de modo que possam ser acessados e manipulados de maneira eficiente.

Exemplo: Pense em uma lista de compras. Você pode armazenar os itens em uma lista (array), onde cada item está em uma posição específica que pode ser acessada

facilmente.

Importância...

<u>Eficiência</u>: Diferentes estruturas de dados permitem que você acesse, insira, remova e organize dados de maneiras diferentes. A escolha da estrutura correta pode tornar um programa muito mais eficiente.

Organização: Elas ajudam a organizar dados de maneira lógica, facilitando a realização de operações complexas.

Base para Algoritmos: Muitos algoritmos são construídos em cima de estruturas de dados específicas. Por exemplo, algoritmos de busca e ordenação frequentemente usam arrays ou listas ligadas.

Tipos Básicos...

Estruturas Lineares: Dados são organizados em uma sequência linear.

- Array (Vetor): Uma coleção de elementos armazenados em posições contíguas na memória. Exemplo: uma lista de números.
- Lista Ligada (Linked List): Cada elemento (nó) contém um valor e um ponteiro para o próximo elemento. Exemplo: uma lista de tarefas onde cada tarefa aponta para a próxima.
- Pilha (Stack): Segue o princípio LIFO (Last In, First Out). Exemplo: uma pilha de pratos onde você só pode acessar o prato no topo.
- Fila (Queue): Segue o princípio FIFO (First In, First Out). Exemplo: uma fila de pessoas esperando para entrar em um cinema.

Tipos Básicos...

Estruturas Não Lineares: Dados são organizados de forma hierárquica ou em uma rede.

- Árvore (Tree): Uma estrutura hierárquica onde cada nó tem um valor e ponteiros para os nós filhos. Exemplo: uma árvore genealógica.
- **Grafo (Graph):** Consiste em nós (vértices) e arestas (ligações) que conectam os nós. Exemplo: redes sociais onde pessoas são nós e amizades são arestas.

LISTAS (ARRAY)

- **Aplicação**: Armazenamento de uma sequência de dados como preços de ações, temperaturas diárias, ou notas de alunos.
- **Benefício**: Acesso rápido e eficiente aos elementos, ideal para operações de leitura e escrita simples.

PILHAS (STACKS) E FILAS (QUEUES)

- Aplicação: Gestão de tarefas em processamento de dados, algoritmos de backtracking em inteligência artificial, e controle de fluxo em sistemas de recomendação.
- Benefício: Facilita a organização e processamento de dados em ordem específica (LIFO para pilhas e FIFO para filas).

LISTAS LIGADAS (LINKED LISTS)

- Aplicação: Implementação de estruturas dinâmicas como listas de tarefas, manipulação de sequências de dados de tamanhos variáveis.
- **Benefício:** Inserção e remoção eficientes de elementos, útil em contextos onde o tamanho da coleção de dados varia frequentemente.

ÁRVORES (TREES)

- Aplicação: Estruturação de dados hierárquicos, como sistemas de arquivos, modelos de decisão em machine learning.
- **Benefício:** Permite buscas rápidas, inserções e remoções eficientes em grandes conjuntos de dados.

GRAFOS (GRAPHS)

- Aplicação: Modelagem de redes sociais, mapas de rotas em sistemas de navegação, e redes de comunicação.
- Benefício: Representa relações complexas entre dados, permitindo análises profundas e detalhadas de conexões e caminhos.

