Hardwarebeschreibung

Digital-Design

Prof. Dr.-Ing. habil. Jürgen Kampe

Modellierung eines Kommunikationsprotokolls

26. März 2025 6. Seminar HB: 1

Es soll ein *functional model* eines erweiterten *hand-shake*-Protokolls für eine asynchrone Schnittstelle ermittelt werden. Zur Erweiterung des Protokolls nach IEEE 1284 für mehrere Sender dient Sender-seitig ein *request*-Signal R zur Steuerung des Zugriffs durch mehrere Sender. Dem Signalspiel liegen folgende Spezifikationen zu Grunde:

Folgende Signalverläufe für die Daten und handshake-Signale sind spezifiziert:

Legende:

	D =	data	
Sender:	R =	request	Anforderung der Schnittstelle durch einen Sender
	S =	strobe	Daten sind verfügbar/gültig
Empfänger:	B =	busy	Verarbeitungszeit
	A =	acknowledge	Verarbeitung erfolgreich beendet

J. Kampe

Erläuterung zu den Spezifikationen:

- *1 Der Sender blockiert die Schnittstelle.
- *2 Der Sender startet den Zyklus, nachdem er ein Datenwort ausgegeben hat.
- *3 Der Empfänger reagiert.
- *4 Der Sender reagiert, lässt die Datenausgabe aber aktiv.
- *5 Der Empfänger hat das Datenwort gelesen.
- *6 Verarbeitungszeit des Empfängers.

Erläuterung zu den Spezifikationen:

- *7 Der Empfänger hat die Daten verarbeitet.
- *8 Der Sender gibt die Schnittstelle frei.
- *9 (Mindest-)Reaktionszeit des Senders.
- *10 Empfänger kehrt in den Wartezustand zurück.
- *11 Erholungszeit des Empfängers.

Das *functional model* dient als Referenzmodell zur effizienten Verifikation sowohl der Realisierung der gesamten Schnittstelle als auch der Schaltungsteile für den Sender bzw. den Empfänger.

- 1. Modellieren Sie das Kommunikationsprotokoll mit Hilfe eines Signalübergangsgraphen (signal transition diagram STG).
- 2. Erstellen Sie ein Verhaltensmodell (*functional model*) für Sender und Empfänger auf dem Abstraktionsniveau der Logikebene.

Signalübergangsgraph (signal transition diagram) STG

Was ist ein STG?

- Spezifikation von Kommunikationsprotokollen
- interpretierter, maskierter, gerichteter Graph (modifiziertes Petri-Netz); die Knoten werden als Signalübergänge interpretiert:

 X^+ Übergang des Signals X von $0 \to 1$

 X^- Übergang des Signals X von $1 \to 0$

- die Marken liegen auf den Kanten des Graphen, welche die aktuellen Signalzustände darstellen, maximal eine Marke pro Kante.
- Gewichte der Knoten: Verzögerungszeit
- Gewichte der Kanten: minimale und maximale Verweilzeiten

Signalübergangsgraph (signal transition diagram) STG

Was ist ein STG?

- Bedingung: STG muss "lebendig" sein:
- starker Zusammenhang des Graphen:

starker Zusammenhang im gerichteten Graphen:

Für je zwei Knoten i und j existiert stets ein Weg (Kantenfolge unter Beachtung der Richtung) von i nach j und von j nach i.

- jeder einfache Zyklus enthält genau eine Marke,
- aufsteigende und abfallende Signalübergänge treten alternierend auf.
- Animation des Graphen:
- Ein Signalübergang kann nur stattfinden (im Perti-Netz: ein Knoten kann nur dann "feuern"), wenn alle einlaufenden Kanten je eine Marke tragen;
- im Ergebnis erhält jede ablaufende Kante eine Marke.

Konstruktion des STG

- 1. Zusammenstellen der Bedingungen für Signalwechsel,
- 2. im STG werden die Bedingungen zu einlaufenden Kanten,
- 3. Inherente Pfade $X^{\pm} \to X^{\mp}$ entfallen, wenn sie nicht spezifiziert sind, d. h. kein paralleler Pfad existiert. Daraus ergibt sich die Konstruktionsregel: Inherente Pfade $X^{\pm} \to X^{\mp}$ werden nur dann vorgesehen, wenn kein spezifizierter Pfad von X^{\pm} nach X^{\mp} existiert.
- 4. Jeder einfache Zyklus enthält eine Marke: Die aktuelle Markenposition ergibt sich aus den Signalbelegungen zum aktuellen Zeitpunkt.

Konstruktion des STG:

Im STG werden die Bedingungen zu einlaufenden Kanten:

1. Die aus den spezifizierten Signalwechseln resultierenden notwendigen Bedingungen ergeben:

_	Flanke	Bedingung für die Flanke						
		Sender	Empfänger		Se	nder	Empf	änger
Bus frei	R^{-}					 	_F .	
Bus belegt	R^+				(R^+)	(R^-)	(A^+)	(A^-)
Daten gültig	S^{-}	R^+ *2		?				
	S^+			•	\			
Empfänger frei	B^{-}				(S^+)	S^{-}	$\widehat{\left(B^{+} ight)}$	$\bigcap_{D^{-}}$
Empfänger belegt	B^+				(3)	\bigcirc	(B)	(B^-)
Daten empfangen	A^{-}					1 ! !		
	A^+							

Konstruktion des STG:

3. Inherente Pfade $X^{\pm} \to X^{\mp}$ entfallen, wenn sie nicht spezifiziert sind und ein paralleler Pfad existiert. Konstruktionsregel: Inherente Pfade $X^{\pm} \to X^{\mp}$ werden nur vorgesehen, wenn kein Pfad $X^{\pm} \to X^{\mp}$ existiert. Flanke Redingung für die Flanke

	Flanke	Bedingung für die Flanke			
		Sender		Em	pfänger
Bus frei	R^{-}	S^+	*9	A^-	*8
Bus belegt	R^+				
Daten gültig	S^{-}	R^+	*2		
	S^+			B^+	*4
Empfänger frei	B^{-}				
Empfänger belegt	B^+	S^-	*3	A^+	*11
Daten empfangen	A^{-}			B^-	*6
	A^+	R^-	*10		

Konstruktion des STG:

4. Eintragen der aktuellen Markenposition.

Erreichbarkeitsgraph

(reachability graph oder state transition diagram STD)

Wie kommt man zu einer Muster-Realisierung (golden model) für die testbench?

Der Erreichbarkeitsgraph dient als Automatengraph für die Realisierung des handshake-Automaten.

- Ausgehend vom Initialzustand werden alle erreichbaren Marken-Positionen im STG als Knoten im STD in ihrer kausalen Abfolge durch Weiterrücken jeweils einer Marke dargestellt.
- Das Knotengewicht sind die Werte der Signale xyz in der Reihenfolge der Zustandskodierung:
- 0, 1 statische Werte,
- $0\star$, $1\star$ aktiviertes Signal, d. h. der Signalübergang x^+ bzw. x^- steht zwingend bevor.

Konstruktion des Erreichbarkeitsgraphen:

Zustandskodierung RSBA

STG

Erreichbarkeitsgraph

Synthese der Realisierungen für den Sender und den Empfänger aus dem Erreichbarkeitsgraph:

Für ein Referenzmodell ist nicht notwendigerweise ein Takt erforderlich, wenn der Automat zyklenfrei stabil ist.

J. Kampe 6. Seminar HB: 11

Synthese der Realisierungen für den Sender und den Empfänger aus dem Erreichbarkeitsgraph:

- 1. Zustandskodierung (aktuelle Zustände $\{R, S, B, A\}$):
- Die Zustandskodierung kann aus dem Erreichbarkeitsgraph abgeleitet werden. Hier werden die Signale S, B und A direkt auf Zustandsvariable abgebildet; der Automat benötigt keine Ausgabefunktion.
- 2. Ermittlung der Zustandsüberführungsfunktionen (Folgezustände $\{^1R, ^1S, ^1B, ^1A\}$):

Wenn für einen Signalwechsel keine Bedingung mehr zu erfüllen ist (das Signal aktiviert ist), dann soll der Automat diesen Signalwechsel im Folgezustand realisieren.

Also: Aktivierte Signale blockieren den Zustandswechsel nicht.

Für die aktivierten Signale wird deshalb: $0 \star \Rightarrow 1$

$$1\star \Rightarrow 0$$

verwendet. Zustände, die im Erreichbarkeitsgraph nicht vorkommen, können nur dann als *don't care* angenommen werden, wenn der Automat initialisiert wird.

3. Stabilitätsanalyse

1. Zustandskodierung (aktuelle Zustände $\{R,S,B,A\}$ für *Medvedev*-Automat):

Keine eindeutige Belegung der Zustandsvariablen!

Einfügung einer zusätzlichen Zustandsvariable X, so dass kein Zustand mehrfach auftritt:

1. Zustandskodierung (aktuelle Zustände $\{X, R, S, B, A\}$ für *Medvedev*-Automat):

2. Ermittlung der Zustandsüberführungsfunktionen (Zustände $\{X, R, S, B, A\}$, Folgezustand 1A):

2. Ermittlung der Zustandsüberführungsfunktionen (Zustände $\{X, R, S, B, A\}$, Folgezustand 1B):

2. Ermittlung der Zustandsüberführungsfunktionen (Zustände $\{X, R, S, B, A\}$, Folgezustand 1S):

2. Ermittlung der Zustandsüberführungsfunktionen (Zustände $\{X, R, S, B, A\}$, Folgezustand 1R):

2. Ermittlung der Zustandsüberführungsfunktionen (Zustände $\{X, R, S, B, A\}$, Folgezustand 1X):

Verzeichnis der Präsentationen

Asynchrone Kommunikation	6. Seminar HB: 1
	6. Seminar HB: 2
	6. Seminar HB: 3
	6. Seminar HB: 4
	6. Seminar HB: 5
	6. Seminar HB: 6
Signalübergangsgraph (signal transition diagram) STG	6. Seminar HB: 7
Signalübergangsgraph (signal transition diagram) STG	6. Seminar HB: 8
Konstruktion des STG	6. Seminar HB: 9
Erreichbarkeitsgraph: (reachability graph oder state transition diagram STD)	6. Seminar HB: 10
Synthese der Realisierungen	6. Seminar HB: 11
Synthese der Realisierungen	6. Seminar HB: 12
Verzeichnis der Präsentationen	Präsentationen: 1