

END
DATE
FILMED
9 = 78

FINAL REPORT

9438 LOW LEVEL TRAVELING WAVE TUBE AMPLIFIER ANOMALY

Prepared by TRW, Inc TRW Defense and Space Systems Group One Space Park Redondo Beach, CA 90278

> REVISION A 7 June 1978

Report No. 28600-AR-016-01

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

Prepared for
SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
Los Angeles Air Force Station
P. O. Box 92960, Worldway Postal Center
Los Angeles, CA 90009

This final report was submitted by TRW Defense and Space Systems Group, One Space Park, Redondo Beach, CA 90278, under Contract F04701-75-C-0257, Contract Data Requirement List sequence number C009, with the Space and Missile Systems Organization, Deputy for Space Communications Systems, P. O. Box 92960, Worldway Postal Center, Los Angeles, CA 90009.

Capt G. D. Nordley, SAMSO/SKT, was the Project Officer for Space Communications Systems.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

H. WYNNE, Col, USAF

System Program Director, DSCS

Deputy for Space Comm Systems

ROY B. FREEMAN, Lt Col, USAF Director of Test & Operations Deputy for Space Comm Systems

FOR THE COMMANDER

Brig General, USAF

Deputy for Space Comm Systems

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
SAMSO-TR-78-26	3. RECIPIENT'S CATALOG NUMBER
Final Report, 9438 Low Level Traveling Wave Tube Anomaly Technical Report and Appendixes	5. TYPE OF REPORT & PERIOD COVERED Final 6. PERFORMING ORG. REPORT NUMBER 28600-AR-016-01
J. A. Durschinger	F04701-75-C-0257
PERFORMING ORGANIZATION NAME AND ADDRESS TRW Defense and Space Systems Group One Space Park Redondo Beach, California 90278	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Department of the Air Force Headquarters SAMSO (AFSC) Post Office Box 92960 Worldway Postal Center, Los Angeles, CA 90009 4. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	12. REPORT DATE 15 February 1978 13. NUMBER OF PAGES 15. SECURITY CLASS. (of this report)
	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, Il different from Report)

18. SUPPLEMENTARY NOTES

distribution unlimited.

13. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Low Level Traveling Wave Tube Amplifier (LLTWTA) DSCS-II, Satellite 9438

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The results of an investigation into an orbit failure of a LLTWTA on a DSCS-II satellite are presented. The possible causes of this failure are examined in light of orbit data and laboratory simulation testing.

78 117

25

038

R-78-26 - REV-A

FINAL REPORT 9438 LOW LEVEL TRAVELING WAVE TUBE AMPLIFIER ANOMALY, Revision A

Prepared by TRW, Inc

TRW Defense and Space Systems Group

One Space Park

Redondo Beach, CA 90278

5 F04 701-75-7-025 FEVISION A 7 June 1978

10 J.A./Durschinger

7 Jun 78

AR-016-01-REV-A

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

Prepared for SPACE AND MISSILE SYSTEMS ORGANIZATION AIR FORCE SYSTEMS COMMAND Los Angeles Air Force Station P. O. Box 92960, Worldway Postal Center Los Angeles, CA 90009

409 637

all

FINAL REPORT

9438 LOW LEVEL TRAVELING WAVE TUBE AMPLIFIER ANOMALY

28600-AR-016-01

REVISION A

7 JUNE 1978

REPLACE: PAGES: 2

25

ENANGOUNCED US L'ICALION BY DISTRIBUTION/AYAILABILITY CODES	VTIS	White Section
PAS LICATION BY DISTRIBUTION/AVAILABILITY CODES	DOC	Buff Section [
DISTRIBUTION/AYAILABIHITY CODES	MANIOUNCE	
	IS LICATION	
1 1	D' .	
~		1

ACKNOWLEDGMENT

This report represents the work accomplished by numerous TRW staff members, with generous support from Hughes Aircraft Corporation, Electron Dynamics Division. SAMSO and Aerospace personnel also gave generously of their time and interest. This support and involvement is gratefully acknowledged.

PREFACE

This report presents the 9438 Low-Level Traveling Wave Tube Amplifier (LLTWTA) anomaly investigation with the resulting conclusions and recommendations. The 9438 satellite is still in operation, using the redundant LLTWTA, and is providing all desired communications service. It was not possible to state definitively the exact cause of the 9438 failure. Rather, a set of candidate failure modes was identified which could have caused the observed failure signature. Each of these was examined during the investigation, and a judgment was made concerning the likelihood of such a failure occurring in LLTWTAs scheduled for use on future DSCS II satellites. It was concluded that all of the identified failure modes were isolated in nature, not likely to recur. Hence, no recommendations are made concerning future LLTWTAs.

CONTENTS

															Page
1.	INTRO	DUCTION	١												1
	1.1	Anomaly	Descri	ption											1
	1.2	Telemet	ry Data												1
	1.3	System	Interfa	ces			. /								3
		1.3.2	Command Telemet Mechani Electri	ry In	terf nter	ace	9	fac	e	 			 	 	3 3 11
2.	ANALY	SIS OF	TELEMET	RY DA	TA										13
3.	BREAD	BOARD T	ESTING	AND S	IMUL	ATI	ON								16
	3.1	Externa	1 Failu	re Mo	des										16
	3.2	Interna	1 Failu	re Mo	des										16
		3.2.2	Faults High Vo Semicon	ltage	Mod	ule	Fa	ilu	res	d k	liri :	ng :	:		19 19 22
4.	PARTS	REVIEW	١												25
5.	CONCL	USIONS													29
APPE	ENDICE	S													
	A LL	TWTA Te	lemetry	Cali	brat	ion	Da	ta							A-1
	B LL	TWTA Sc	hematic												B-1

ILLUSTRATIONS

			Page
1.	DSCS II Transponder		 . 4
2.	LLTWTA Turn-On Command Interface		 . 5
3.	LLTWTA Input Current Telemetry Interface Schematic		 . 6
4.	LLTWTA Filament Voltage Interface Schematic		 . 7
5.	LLTWTA Cathode Voltage Telemetry Interface Schematic		 . 8
6.	LLTWTA Cathode Current Telemetry Interface Schematic		 . 9
7.	LLTWTA Helix Current Interface Schematic		 . 10
8.	LLTWTA Primary Power Interface		 . 12
9.	Cross-Section of Heater-Cathode Assembly		 . 26
	TABLES		
1.	NCLLTWTA-2 Data, Before and After Anomaly		 . 2
2.	Telemetry Uncertainty Analysis		 . 14
3.	Performance Characteristics of a LLTWTA Subjected to Application of Low Command Voltage		 . 17
4.	Operation of LLTWTA with Series Resistance in the Primary Power Distribution Lines		 . 18
5.	Summary of TWT Failure Modes and Effects Testing $$.		 . 20
6.	Summary of HV Module Failure Modes and Effects Testing		 . 21
7.	Summary of Semiconductor Failure Modes and Effects Testing		 . 23

INTRODUCTION

A failure of a low-level traveling wave tube amplifier (LLTWTA) occurred in August 1977 on 777 Satellite 9438. A detailed investigation of this anomaly has been conducted. This investigation included analysis of telemetry data, failure simulation testing on a breadboard LLTWTA, review of past failure history, review of application, derating, and part testing of critical parts, review of the TWT heater configuration and critical dimensions. The results of this investigation are summarized in this report, along with conclusions as to the nature of the orbit failure and recommendations for future activities regarding LLTWTAs on the 777 satellites.

1.1 ANOMALY DESCRIPTION

On 28 August, at approximately 0700Z, DCA notified the STC that 9438 narrow coverage communications had been lost at 0650Z. An emergency support was scheduled. When telemetry became available (at 0723Z), it was noted that the NCLLTWTA-2 had low readings on all telemetry parameters. That amplifier was commanded OFF, then ON. All parameters had the same low values, whereupon the -1 amplifier was commanded ON at 0806Z. DCA reported communications were restored.

1.2 TELEMETRY DATA

No telemetry is available for the time at which the anomaly occurred. The data that is available for the failed TWTA - the last pass prior to the anomaly and the emergency pass after the anomaly - is summarized in Table 1. The data indicates decreases in all TWTA voltages and currents. The cathode current and helix current are probably zero, although the values in the table are those derived from telemetry calibration data. Obviously, the negative value for helix current is impossible, and it should be considered zero. It has been generally concluded that the cathode current really is zero, also.

The data does establish one fact: this anomaly is quite different from those previously encountered with HLTWTAs. In those anomalies, all TWTA parameters read zero counts, indicating the TWTA was off either by operation of an overcurrent trip circuit or due to a blown fuse (or possibly a failure of the turn-on circuit). In the case of the LLTWTA, at least part of the power supply circuits are receiving power and functioning to some extent.

		TELEMETERED PARAMETERS	PARAMETERS			
INPUT CURRENT(MA)	INPUT CATHODE HELIX FILAMENT HELIX CURRENT(MA) CURRENT(MA) VOLTAGE(V) VOLTAGE(V)	HELIX CURRENT(MA)	FILAMENT VOLTAGE(V)	HELIX VOLTAGE(V)	TEMPERATURE (°F)	REMARKS
193	5.35	0.046	3.913-3.977 1715-1741	1715-1741	90	LAST PASS PRIOR TO ANOMALY. NOMINAL
72-82	0.165*	-0.027*	3.012-3.198 1646-1690	1646-1690	83	FIRST DATA AVAILABLE AFTER ANOMALY. ENDS WITH OFF COMMAND.
77	0.165*	-0.027*	3.033	1658	83	DATA WHEN NCLLTWTA-2 WAS TURNED ON AGAIN.

NCLLTWTA-2 Data, Before and After Anomaly.* (The values for helix and cathode current are, in fact, taken to be zero. The non-zero values shown are due to bias and offset in the telemetry conditioning circuits in the TWTA.) Table 1.

1.3 SYSTEM INTERFACES

The LLTWTA functions as the driver amplifier for the HLTWTAs in the EC and NC communications transmitters on the 777 satellite. An identical backup unit is provided for each operating amplifier, making a total of four LLTWTAs on each satellite. The functional location of the LLTWTAs within the 777 transponder is shown in Figure 1. The major interfaces between the satellite and the TWTAs are command, telemetry, structural, thermal, and primary power.

1.3.1 Command Interface

The ON command for the LLTWTA is a steady state +5 VDC signal supplied by the SLA. As shown in Figure 2, this signal is supplied from the 5 VDC output of the SLA converter through relay contacts in the SLA. Signal return for this ON command is through the TWTA, SLA, and despun platform structure. It should be noted that the only circuitry in the SLA peculiar to an individual TWTA are the two printed circuit board traces and one wire connecting that TWTA to the common +5 VDC source used to provide the ON command voltage for all TWTAs.

1.3.2 Telemetry Interface

Five telemetry measurements are available from each LLTWTA; input current, helix voltage, filament voltage, helix current, and cathode current. Interface schematics for each of these measurements are shown in Figures 3 through 7. It should be noted at this point that the helix current, cathode current, helix voltage and filament voltage measurements are cross-strapped in the satellite harness with the corresponding measurement from the redundant amplifier. Since only one of each pair of redundant amplifiers is on at a time, the effect of this cross-strapping arrangement is to place a parallel passive resistive load across the telemetry output of the operating tube. The effect of this parallel load on measurement accuracy is accounted for when the telemetry circuits are calibrated by the amplifier vendor.

1.3.3 Mechanical Interface

The LLTWTAs are mounted to the satellite platform with four screws inserted through feet at the corners of the amplifier chassis into platform inserts. A layer of RTV is applied to the platform prior to

Figure 1. DSCS II Transponder

LLTWTA Turn-On Command Interface. (A steady state 5 VDC signal from the SLA is used to turn on each LLTWTA individually.) Figure 2.

LLTWTA Input Current Telemetry Interface Schematic. (A saturable reactor is used to measure TWTA input current and generate an overcurrent signal. The overcurrent signal is used to trigger a trip circuit (not shown) which shuts down the TWTA.) Figure 3.

LLTWTA Filament Voltage Interface Schematic. (The filament voltage is measured indirectly using an auxiliary winding on the heater transformer.) Figure 4.

LLTWTA Cathode Voltage Telemetry Interface Schematic. (The cathode voltage is measured indirectly using an auxiliary winding on the high voltage transformer.) Figure 5.

measured using a saturable reactor in the cathode voltage output section of the high voltage module. A capacitor is installed in the harness to reduce the magnitude of noise spikes on the TWTA telemetry output.) Figure 6.

LLTWTA Helix Current Interface Schematic. (The helix current is measured as a voltage across a series resistor in the helix voltage section of the high voltage module.) Figure 7.

installing the TWTA. The RTV is used to insure intimate thermal contact between the baseplate of the TWTA and the satellite platform.

1.3.4 Electrical Power Interface

Fused primary power is distributed to each LLTWTA independently from the Power Distribution Unit (PDU) on the spinning platform. Details of this distribution scheme are shown in Figure 8. The primary power from the PCU is regulated at 32.4 ±0.2 VDC whenever the satellite is in sunlight not recharging the batteries after an eclipse. During each eclipse and for several hours thereafter, the primary bus goes through one voltage cycle from 32.4 V to approximately 26 V and back to 32 V. This voltage cycle occurs 45 times in one eclipse season, two eclipse seasons per year.

The nominal primary current load at 32.4 V is approximately 190 ma for a LLTWTA. The slip rings are rated for continuous operation at 3 A each. Two are used in parallel for each TWTA.

LLTWTA Primary Power Interface. (Primary power is supplied to each individual LLTWTA through a 2 A fuse and two parallel slip rings.) Figure 8.

2. ANALYSIS OF TELEMETRY DATA

The amplifier parameters given in Table 1 are direct copies of the numerical values derived from the calibration curves in use at the SCF. Calibration curves are derived from ones used during satellite integration which are themselves derived from vendor supplied calibration curves developed during factory testing of the TWTA power supply. Also, it must be kept in mind that the satellite telemetry system is a digital one with a quantization of 20 mV per count. The factors which can obscure the actual value of the measured TWTA parameter when it is deduced from satellite telemetry voltages include the following:

- The telemetry conditioning circuits in the TWTA's have a slightly temperature sensitive transfer function.
- Only one calibration curve for each parameter is used in the satellite calibration file during Integration and Test (I&T). This curve is an average one drawn approximately through the center of the temperature spread for each parameter.
- 3. Only a limited amount of computer storage capacity is available for telemetry calibrations both in the I&T file and the SCF. Hence, some compromises are required in matching the stored calibration curves to the measured vendor curves.
- The quantizing factor of the satellite telemetry system is 20 mV/count.

In light of these factors a telemetry uncertainty analysis was performed which is presented in Table 2. The detailed calibration curves, and computer equivalents are contained in Appendix A. An additional entry included in Table 2 is a listing of the change in telemetry voltages and associated parameters.

An initial analysis of the telemetry data in Table 2 indicated the heater voltage on the TWT had fallen sufficiently to stop cathode emissions. The small amount of apparent cathode current indicated by telemetry after the anomaly is due to the fact that the cathode current telemetry conditioning circuit in the TWT has an output of approximately 2.0 V when the cathode current is in fact 0. The change in cathode voltage telemetry is caused by a change in the telemetry signal conditioning circuit transfer function when the cathode current goes to zero or slightly above. This circuit uses

		INPUT	FILAMENT	CATHODE VOL TAGE	CATHODE	HEL I X CURRENT
S/N 24-19	Telemetry Voltage	2.54 to 2.58v	4.18 to 4.22v	4.18 to 4.22v 2.26 to 2.46v 3.58 to 3.62v 3.88 to 3.92v -1711 to -1745v 5.3 to 5.45ma	3.58 to 3.62v	0.42 to 0.46v
Nominal	Parameter Value	180 to 188 ma	3.88 to 3.92v		5.3 to 5.45ma	0.04 to 0.06ma
S/N 24-19	S/N 24-19 Telemetry Voltage	2.06 to 2.14v	2.90 to 3.12v	2.06 to 2.14v 2.90 to 3.12v 1.82 to 1.14v 1.98 to 2.02v 30 to 110 ma 3.0 to 3.22v -1643 to -1699v 0.1 to 0.15ma	1.98 to 2.02v	0.16 to 0.20v
Anomaly	Anomaly Parameter Value	30 to 110 ma	3.0 to 3.22v		0.1 to 0.15ma	0 ma
△ from Normal	Telemetry Voltage Parameter Value	48 to44v -158 to -70ma	48 to44v -1.28 to -1.10v 44 to32v -158 to -70ma 92 to66v +102 to +16v		-1.60v026v -5.35 to -5.15ma04 to06ma	026v 04 to06ma

Telemetry Uncertainty Analysis. (For a given telemetry voltage, an analysis was performed of the maximum and minimum parameter value which could exist. Significant variations can be seen in input current and filament voltage.) Table 2.

a saturated reactor to sense the cathode voltage which is also sensitive to changes in cathode current. Hence, the apparent slight reduction in cathode current after the anomaly can be explained by the loss of beam current.

Due to the redundant current measurements included in the satellite system, it was possible to obtain an independent check that an unomaly had occurred within the TWTA which reduced its input current. The main bus current monitor measures the total satellite load being supplied by the Power Control Unit (PCU), exclusive of battery charging current. The data from this monitor confirmed that the bus load had been reduced by 70 to 120 ma after the TWTA anomaly. Further, it showed a similar decrease when the NCLLTWTA No. 2 was commanded off. The uncertainty in these changes is due to the quantizing of the main bus current monitor which is 60 ma per telemetry count. This data did confirm the apparent reduction in TWTA input current after the anomaly and the approximate value of the residual current being drawn by the TWTA after the anomaly.

The main emphasis of the subsequent failure investigation was directed at identifying specific failure modes in the TWT power supply heater circuit which could produce the observed failure signature. This circuit consists of a linear regulator and a DC to AC converter, plus the TWT filament.

3. BREADBOARD TESTING AND SIMULATION

A series of failure simulation tests were performed on a breadboard model of the TWTA power supply operating with a TWT load. During the course of these tests attempts were made to recreate the telemetry voltage signature of the orbit failure by simulating various external and internal failures. Opens and shorts of various active components within the power supply were simulated. Also certain partial short circuit (overload) and partial open circuit (series resistance) faults were simulated both within and external to the power supply. A schematic diagram of the LLTWTA is included in Appendix B for reference.

3.1 EXTERNAL FAILURE MODES

As discussed in Section 1.3, the LLTWTA has two primary interfaces with the satellite electrical system whose malfunction could cause misoperation of the amplifier. The first of these is the command interface; the second, primary power. The tests on the command interface were performed by reducing the command voltage from 5 V to the point where anomalous performance was observed. The results of this test are given in Table 3. As can be seen, it was not possible to reproduce the orbit anomaly signature. The tests on the power interface were performed by inserting a series resistance in series with the primary power source to the TWTA and gradually increasing the resistance. This was done to simulate a possible slip-ring failure where the series resistance of the slip ring increases with time. This test, summarized in Table 4, also did not reproduce the orbit anomaly characteristic.

3.2 INTERNAL FAILURE MODES

The internal failure mode testing was done in several phases, using data from the initial tests to indicate more refined follow-up tests to be performed. This report will not attempt to trace this chronology but will discuss the test results on a functionally allocated basis. The tests were primarily concerned with three areas: TWT and associated wiring faults, failures of the high voltage module, and failures of the heater voltage linear regulator.

		INPUT CURRENT	FILAMENT	CATHODE	CATHODE	HELIX CURRENT	SWITCHING REGULATOR	L INEAR REGULATOR
BREADBOARD NOMINAL	TELEMETRY PARAMETER	1.66 188ma	3.91 3.90v	2.23 -1730v	3.62 5.3ma	0.82 .186ma	1869v	۷۲۶.۲۱
LOW COMMAND VOLTAGE (1.15v) PARAMETER	TELEMETRY PARAMETER	3.60 280ma	3.91 3.93v	2.22 -1730v	3.50 5.4ma	0.849 0.18ma		
LOW COMMAND TELEMETRY VOLTAGE (1.1v) PARAMETER	TELEMETRY PARAMETER	7.82 430ma	3.92	3.84	4.33 6.0ma	3.43 0.83ma		

0

Performance Characteristics of a LLTWTA Subjected to Application of Low Command Voltage. (The command voltage threshold for nominal LLTWTA power supply operation is slightly above 1.15 V. Below this value, the TWTA draws excessive input current.) Table 3.

BREADBOARD TELEMETRY VOLTAGE 1.66v 3.91v 2.23v 3.62v 0.82 NOWINAL PARAMETER VALUE 188ma 3.90v -1730v 5.3ma .186ma .186ma 27.A. SERIES TELEMETRY VOLTAGE 3.65v 3.91v 2.22v 3.51v 0.790 22.3.3.7 2.22v 3.51v .78w 3.91v 2.22v 3.51v .79w 23.5.5A/SERIES TELEMETRY VOLTAGE 3.78v 3.91v 2.22v 3.51v .180ma 34.A. SERIES TELEMETRY VOLTAGE 3.79v -1730v 5.3m .180ma 40.A. SERIES TELEMETRY VOLTAGE 3.52v 3.79v -1723v 5.3m .18ma 40.A. SERIES TELEMETRY VOLTAGE 3.52v 3.79v -1723v 5.3m .18ma 40.A. SERIES TELEMETRY VOLTAGE 3.52v 3.79v -1730v 4.65ma .158ma 50.A. SERIES TELEMETRY VOLTAGE 3.05v 3.6v -1539v 4.34v 4.65ma 50.A. SERIES <			INPUT	FILAMENT VOLTAGE	CATHODE	CATHODE	HELIX CURRENT	SWITCHING REGULATOR	LINEAR REGULATOR
PARAMETER VALUE 188ma 3.90v -1730v 5.3ma TELEMETRY VOLTAGE 3.65v 3.91v 2.22v 3.51v PARAMETER VALUE 350ma 3.91v 2.22v 3.51v TELEMETRY VOLTAGE 3.78v 3.9v -1730v 5.3ma TELEMETRY VOLTAGE 3.78v -1730v 5.3ma TELEMETRY VOLTAGE 3.52v 2.21v 3.51v PARAMETER VALUE 360ma 3.9v -1723v 5.3ma TELEMETRY VOLTAGE 3.52v 1.42v 3.18v PARAMETER VALUE 360ma 3.6v -1598v 4.65ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.28v -1482v 4.05ma TELEMETRY VOLTAGE 2.31v 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v	BREADBOARD	TELEMETRY VOLTAGE	1.66v	3.91v	2.23v	3.62v	0.82		
TELEMETRY VOLTAGE 3.65v 3.91v 2.22v 3.51v PARAMETER VALUE 360ma 3.9v -1730v 5.3ma TELEMETRY VOLTAGE 3.78v 3.91v 2.22v 3.51v PARAMETER VALUE 360ma 3.9v -1730v 5.3v TELEMETRY VOLTAGE 4.24v 3.92v -1723v 5.3ma TELEMETRY VOLTAGE 3.52v 3.79v -1723v 5.3ma TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 360ma 3.6v -1539v 4.55ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1482v 4.05ma TELEMETRY VOLTAGE 2.75v 3.28v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.28v -1482v 3.7ma TELEMETRY VOLTAGE 2.52v 3.0v -1482v 3.7ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v PARAMETER VALUE 300 ma 3.0v -1349v 2.67v TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v PARAMETER VALUE 300 ma 3.0v -1349v 2.6ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v TELEMETRY VOLTAGE 2.31v 3.10v -1349v 2.6ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v TELEMETRY VOLTAGE 2.31v 3.14v 2.149v 2.6ma TELEMETRY VOLTAGE 2.31v 3.14v 2.149v 2.6ma TELEMETRY VOLTAGE 2.31v 3.14v 2.07v 2.6ma TELEMETRY VOLTAGE 2.31v 3.14v 2.149v 2.6ma TELEMETRY VOLTAGE 2.31v 3.10v 3.10v 4.05ma TELEMETRY VOLTAGE 2.31v 3.10v 3.00v 4.05ma TELEMETRY VOLTAGE 2.31v 3.00v 4.05ma TELEMETRY VOLTAGE 3.00ma TELEMETRY VOLTAGE 3.00ma	NOMINAL	PARAMETER VALUE	188ma	3.90v	-1730v	5.3ma	.186ma		
PARAMETER VALUE 350ma 3.9v -1730v 5.3ma TELEMETRY VOLTAGE 3.78v 3.91v 2.22v 3.51v PARAMETER VALUE 360ma 3.9v -1730v 5.3v TELEMETRY VOLTAGE 4.24v 3.92v 2.21v 3.51v PARAMETER VALUE 360ma 3.9v -1723v 5.3ma TELEMETRY VOLTAGE 3.52v 3.79v 1.42v 3.18v PARAMETER VALUE 360ma 3.6v -1598v 4.65ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.28v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v -1349v -1349v	27A SERIES	TELEMETRY VOLTAGE	3.65v	3.91v	2.22v	3.51v	0.790		
TELEMETRY VOLTAGE 3.78v 3.91v 2.22v 3.51v PARAMETER VALUE 360ma 3.9v -1730v 5.3v 5.3v FLEMETRY VOLTAGE 4.24v 3.92v 2.21v 3.51v 9ARAMETER VALUE 390ma 3.9v -1723v 5.3ma TELEMETRY VOLTAGE 3.52v 3.79v 1.42v 3.18v 4.65ma TELEMETRY VOLTAGE 3.05v 3.6v -1598v 4.34ma TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 340ma 3.2v -1539v 4.34ma TELEMETRY VOLTAGE 2.75v 3.28v -1539v 4.34ma TELEMETRY VOLTAGE 2.52v 3.28v -1482v 4.05ma 3.0v -1482v 4.05ma 3.0v ma 3.0v -1426v 3.7ma +0ropping 3.7ma 4.070ping 2.31v 2.88ma 3.0v -1349v 2.34v 2.88ma 3.0v -1349v 2.56ma 3.0v 2.88ma 3.0v -1349v 3.0v 3.0v 3.0v 3.0v 3.0v 3.0v 3.0v 3.0	(22.3v)	PARAMETER VALUE	350ma	3.9v	-1730v	5.3ma	0.180ma		
PARAMETER VALUE 360ma 3.9v -1730v 5.3v TELEMETRY VOLTAGE 4.24v 3.92v 2.21v 3.51v PARAMETER VALUE 390ma 3.9v -1723v 5.3ma TELEMETRY VOLTAGE 3.52v 3.79v 1.42v 3.18v PARAMETER VALUE 360ma 3.6v -1598v 4.65ma TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 320ma 3.2v -1482v 4.34ma TELEMETRY VOLTAGE 2.52v 3.28v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.28v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.0v -1349v 2.34v	29A SERIES	TELEMETRY VOLTAGE	3.78v	3.91v	2.22v	3.51v	.798v		
TELEMETRY VOLTAGE 4.24v 3.92v 2.21v 3.51v PARAMETER VALUE 390ma 3.9v -1723v 5.3ma TELEMETRY VOLTAGE 3.52v 3.79v 1.42v 3.18v 4.65ma 3.6v -1598v 4.65ma 3.6v -1598v 4.65ma TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 340ma 3.2v -1539v 4.34ma TELEMETRY VOLTAGE 2.75v 3.24v -1539v 4.05ma 3.0v -1482v 4.05ma 3.0v -1426v 3.7ma 4.05ma 3.0v ma 3.0v -1426v 3.7ma 4.05ma 3.0v -1349v 2.67v 2.84v PARAMETER VALUE 300 ma 3.0v -1426v 3.7ma 4.05ma 3.0v -1349v 2.34v 2.85ma 3.0v -1349v 2.34v	(21.6v)	PARAMETER VALUE	360ma	3.9v	-1730v	5.3v	.180та	-1263v	+254v
PARAMETER VALUE 390ma 3.9v -1723v 5.3ma TELEMETRY VOLTAGE 3.52v 3.79v 1.42v 3.18v PARAMETER VALUE 360ma 3.6v -1598v 4.65ma TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 340ma 3.2v -1539v 4.34ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.52v 3.28v .449v 2.67v PARAMETER VALUE 300 ma 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.0v -1426v 3.7ma	34 A SERIES	TELEMETRY VOLTAGE	4.24v	3.92v	2.21v	3.51v	,803v		
TELEMETRY VOLTAGE 3.52v 3.79v 1.42v 3.18v PARAMETER VALUE 360ma 3.6v -1598v 4.65ma TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 340ma 3.2v -1539v 4.34ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.28v .449v 2.67v PARAMETER VALUE 300 ma 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v	(18.7v)	PARAMETER VALUE	390ma	3.9v	-1723v	5.3ma	.18ma	-1259v	+254v
PARAMETER VALUE 360ma 3.6v -1598v 4.65ma TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 340ma 3.2v -1539v 4.34ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1482v 4.05ma PARAMETER VALUE 300 ma 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v	40A SERIES	TELEMETRY VOLTAGE	3.52v	3.79v	1.42v	3.18v	v068.		
TELEMETRY VOLTAGE 3.05v 3.61v 1.08v 3.01v PARAMETER VALUE 340ma 3.2v -1539v 4.34ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.28v .449v 2.67v PARAMETER VALUE 300 ma 3.0v +0ropping 3.7ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v PARAMETER VALUE 285ma 3.0v -1349v .26ma	(17.4v)	PARAMETER VALUE	360та	3.6v	-1598v	4.65та	.21та	-1165v	+235v
PARAMETER VALUE 340ma 3.2v -1539v 4.34ma TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v PARAMETER VALUE 320ma 3.0v -1482v 4.05ma TELEMETRY VOLTAGE 2.52v 3.28v .449v 2.67v PARAMETER VALUE 300 ma 3.0v -1426v 3.7ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v PARAMETER VALUE 285ma 3.0v -1349v .26ma	450 SERIES	TELEMETRY VOLTAGE	3.05v	3.61v	1.08v	3.01v	.673v		
TELEMETRY VOLTAGE 2.75v 3.44v .762v 2.84v	(16.65v)	PARAMETER VALUE	340ma	3.2v	-1539v	4.34ma	.158ma	-1124v	+224v
TELEMETRY VOLTAGE 2.52v 3.28v .449v 2.67v	50 A SERIES	TELEMETRY VOLTAGE	2.75v	3.44v	.762v	2.84v	.495v		
TELEMETRY VOLTAGE 2.52v 3.28v .449v 2.67v 7.00 ma 3.0v -1426v 3.7ma 4.0ropping 3.7ma TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v PARAMETER VALUE 285ma 3.0v -1349v .26ma	(15.94v)	PARAMETER VALUE	320ma	3.0v	-1482v	4.05ma	.llma +Climbing	-1085v	-214v
PARAMETER VALUE 300 ma 3.0v -1426v 3.7ma 4.0ropping 4.0ropping 5.34v 5.34v	55A SERIES	TELEMETRY VOLTAGE		· 3.28v	.449v	2.67v	.430v		
TELEMETRY VOLTAGE 2.31v 3.14v .017v 2.34v PARAMETER VALUE 285ma 3.0v -1349v .26ma	(15.3v)	PARAMETER VALUE	300 ma	3.0v	-1426v +Dropping	3.7ma	.10ma +Climbing	-1045v	+206v
PARAMETER VALUE 285ma 3.0v -1349v .26ma	60ASERIES	TELEMETRY VOLTAGE	2.31v	3.14v	v710.	2.34v	1.00v		
	(14.7v)	PARAMETER VALUE	285та	3.04	-1349v	.26ма	.27ma +Dropping	-982v	+197v

Operation of LLTWTA with Series Resistance in the Primary Power Distribution Lines. (With a series resistance greater than approximately 25 α , the LLTWTA power supply input current increases, while the filament voltage is relatively unchanged.) Table 4.

3.2.1 Faults in the TWT and Associated Wiring

A series of tests of various opens and shorts of the TWT heater, cathode, and helix were conducted, the results of which are presented in Table 5. As can be seen from the data summarized in Table 5, none of these failure modes appeared to match the signature of the orbit anomaly. One or more of the resultant telemetry readings was significantly different from the corresponding orbit value. The closest failure mode was a heater short of somewhere between 5 and 7 Ω . The change in input current was close to the minimum value indicated by orbit telemetry, and the change in filament voltage telemetry close to the maximum value. Because of this, a specific review was performed of the heater geometry. The review, summarized elsewhere in this report, concluded this type of partial short appeared very unlikely.

3.2.2 High Voltage Module Failures

The results of the tests performed simulating various failure modes in the power supply high voltage module are given in Table 6. As with the results of the fault tests reported in Table 5, no failure mechanism was tested that gave a very close approximation to the F8 orbit anomaly.

Two failure modes were, however, tantalizingly close to matching the orbit anomaly. These two modes occur when one of the high voltage rectifier diodes in the heater converter is replaced with a small (3 Ω) resistor or is shunted by a 3 Ω resistor; i.e., CR1 or CR2 in the high voltage module partially shorted. In this case, the input current drops almost as much as indicated by orbit telemetry (67 ma in test versus a minimum of 70 ma in orbit). Also, the filament voltage telemetry becomes grossly inaccurate (an indicated value of approximately 2 V from calibration curves, versus an actual value of .38 to .46 V measured). This is due to distortions of the wave shape of the filament voltage when one output rectifier diode is no longer rectifying. This wave shape distortion depends on the degree of saturation of the filament voltage transformer with CR1 or CR2 partially shorted, and would vary greatly from unit to unit and as a function of the impedance of the shorted diode. Therefore, a partial short of CR2 or CR1 in the high voltage module cannot be ruled out as the cause of the orbit anomaly.

	INPUT	CURRENT	FILAME	FILAMENT VOLTAGE	CATHOL	CATHODE VOLTAGE	САТНОВ	CATHODE CURRENT	HEL IX	HEL IX CURRENT	SWITCHING	LINEAR	
FAILURE MODE	TLM	PARAMETER VALUE	YOUT	PARAMETER VALUE	TLM	PARAMETER VALUE	TUN	PARAMETER VALUE	TLM	PARAMETER VALUE	REG. VOLTAGE		REMARKS
BREADBOARD NOMINAL	1.66	188 ma	3.91	3.90 ∨	2.23	-1730 v	3.62	5.3 ma	0.82	.186 та	18.69 v	17.37 v	
HEATER ON, E DISCONNECTED A FROM NOMINAL	1.28	108 ma	3.72	3.65 v 25v	1.76	- 1727 v	1.90	0 ma	.18	0 118	16.87 v	16.4 v	HEATER VOLTAGE TOO HIGH
HV ON, FILMHENT DISCONNECTED 1.20	1.20	74 ma	5.63	8.26 v •4.36 v	1.78	-1728 v	1.91	0 ma	.18	0 ma	16.83 v	16.76 v	HEATER VOLTAGE TOO HIGH
HY & FILAMENT DISCONNECTED	1.21	75 ma	5.63	8.3 v	1.79	-1729 v	16.1	o ma	.18	Pus 0	16.83 v	16.77 v	HEATER VOLTAGE TOO HIGH
HEATER SHORTED 0	1.38	128 ma -60 ma	2.44	.3.90 v	1.99	-1726 v	1.99	0 ma	. 18	0 116	17.41 v	4.1 v	INPUT CURRENT TO HIGH, HEATER VOLTAGE TOO LOW
HEATER SHORTED 5 ~	1.39	127 88 -61 88	2.73	1.61 v	2.80	-1726 v	1.97	.006 ma	.20	.007 ma	17.39 v	9.89 v	INPUT CURRENT TOO HIGH
HEATER SHORTED $7 \sim$ Δ From nominal	1.47	159 ma -29 ma	2.99	2.07 v	1.82	-1740 v	1.99	.036 та	.32	.04 ma	17.17 v	11.36 v	INPUT CURRENT TOO HIGH
HEATER SHORTED 10 -C-	3.6	181 ms -7 ms	3.24	2.24 v	2.19	-1727 v	2.48	.78 ma	2.15	.51 ma	N/A	13.77 v	INPUT CURRENT TOO HIGH
HEATER SHORTED 20_C. \$\infty\$ FROM NOMINAL	1.74	219 ma +31 ma	3.95	3.77 v	12.21	-1729 v	3.61	5.3 ma	88.	.195 ma	N/A	17.35 v	INPUT CURRENT TOO HIGH
HELIX/HEATER SHORT (100K A) 7.87 A FROM NOMINAL	7.87	1.88 a +1.69 a	3.94	3.0 v	2.48	-1639 v	8.08	4.9 ma	7.99	.23 ma	. N/A	N/A	INPUT CURRENT TOO HIGH
HELIX/HEATER SHORT (200K-A) 7.88 A FROM NOMINAL	7.88	1.02 4	3.94	3.0 v	2.37	-1735 v	6.64	5.5 ma	7.95	.175 ma	A/N	N/A	INPUT CURRENT TOO HIGH
60 ARESISTANCE IN CATHODE	2.31	. N/A	3.14	3.0 v	110.	-1349 v	2.34	.26 та	1.80 drpg.	.27 ms	N/A	N/A	CATHODE VOLTAGE TOO HIGH HELIX CURRENT TOO HIGH
15 ALRESISTANCE IN SERIES UITH HEATER A FROM NOMINAL	1.28	100 mg -	3.93	3.76 P.S. 1.43 TMT	1.70	-1731 v	1.90	0 ma	.19	0 ma	17.32 v	17.00 v	HEATER VOLTAGE TOO HIGH

0

Summary of TWT Failure Modes and Effects Testing. (The tested failure modes did not yield a significantly close failure signature to the observed post-failure orbit data.) Table 5.

	TUMNI	INPUT CURRENT	FILAME	FILAMENT VOLTAGE	CATHOL	CATHODE VOLTAGE	CATHOL	CATHODE CURRENT	HELIX CURRENT	CURRENT	SWITCHING	INFAR	
FAILURE MODE	YOUT	PARAMETER	YOUT	PARAMETER VALUE	TLM	PARAMETER VALUE	TLM	PARAMETER VALUE	YOUT	PARAMETER VALUE	REG. VOLTAGE	REG. VOLTAGE	REMARKS
BREADBOARD NOMINAL	1.66	188 ma	3.91	3.90 v	2.23	-1730 v	3.62	5.3 ma	0.82	. 186 ma	18.69 v	17.37 v	
CRI OR CR2 OPEN AFROM NOMINAL	1.66	185 ma -3 ma	4.93	3.64 v 26 v	2.18	-1728 v	3.63	5.15 ma	216.	ът 961.	18.85 v	17.36 v	INPUT CURRENT & HEATER YOLTAGE TOO HIGH
CR1 OR CR2 SHORT \$\times\$ FROM NOMINAL	1.43	131 ma	2.03	-3.90 v	1.99	-1726 v	2.00	9	0.18	0 ma	17.38 v	2.0 v	2.0 v FILAMENT VOLTAGE TOO LOM
CRT AND CRZ OPEN A FROM NOMINAL	. 994	N/A	5.79	-3.90 v	2.07	-1734 v	1.87	O ma	.248	0 ma			FILAMENT VOLTAGE TELEMETRY TOO HIGH
37-RESISTANCE IN PLACE OF CR2	1.35 31	121 ms -67 ms	3.02	.38 v -3.52 v	88.	-1723 v	1.98	0	.25	0	17.28 V	5.08 v	INPUT CURRENT & FILAMENT VOLTAGE TELEMETRY SLIGHTLY HIGH
24.0 RESISTANCE IN PARALLE CR2 A FROM NOMINAL	1.71	209 ma +21 ma	4.53	3.0	2.18	-1728 v	2.87	1.7 ma	2.81	. 68 m	18.85 v	14.24 v	INPUT CURRENT & FILAMENT VOLTAGE TELEMETRY TOO HIGH
3. RESISTANCE IN PARALLEL CR2 AFROM MOMINAL	1.35	121 ma -67 ma	3.00	.46 v	1.83	-1723 v	1.97	0 ma	.23	0 me	17.27 ¥	5.03 v	INPUT CURRENT & FILAMENT WOLTAGE TELEMETRY SLIGHTLY HIGH
OPEN C8 \$\triangle\$ FROM NOMINAL	1.67	190 ma +2 ma	4.03	3.91 v	2.22	-1732 v	3.66	5.35 ma	18.	. 18 ma	18.66 v	17.36 v	INPUT CURRENT TO FILAMENT VOLTAGE TOO HIGH
SHORT C8	SAME	SAME AS SHORTED HEATER	HEATE										

Summary of HV Module Failure Modes and Effects Testing. (One tested failure mode, partial short of CR1 or CR2, does provide a reasonable, although not exact, replication of the orbit failure signature.) Table 6.

3.2.3 Semiconductor Module Failures

The final group of failure simulation tests were performed on the linear regulator and telemetry boards in the semiconductor module. A summary of the results of these tests is given in Table 7. As with the previous two sets of tests, none of the specific failure simulations yielded a characteristic signature identical to the one in orbit. However, it becomes apparent that the orbit failure signature could be very closely reproduced under the condition where the heater voltage decreased to the point where the TWT beam is extinguished. A test of three similar TWTs showed that this occurred when the heater voltage was at 2.6, 2.85, and 2.9 V. The heater voltage in the flight TWTA is indicated to be as low as 2.70 V by telemetry. Thus, this data is consistent with the hypothesis that the beam has been extinguished in the flight TWT by a failure in the linear regulator which has reduced the heater voltage to 2.7 to 3.0 V. This level of heater voltage would exist if the series regulator output voltage had been reduced to about 13 V from its nominal value of 17.5 V.

A specific failure mode which did not appear likely is an open or short of the transistors (Al-QlO and Al-QlI) used to drive the primary windings of the heater high voltage transformer. The test results showed this type of failure produced grossly different symptoms from the one experienced in orbit.

A number of component failures could reduce the linear regulator output to the signatured values. These can be listed:

- A shift in value of semiconductor module SIT R6 from a nominal 5 Ω to 10 Ω
- A partial short (50 to 75 Ω) of A2-CR20 or A2-CR21
- A reduction in gain in A2-Q2
- Any failure in the sense and control circuitry which controls A2-Q2 and hence regulates the output voltage of the linear regulator.

The most likely parts in the linear regulator are the elements in the pass circuit; i.e., the first three listed above. Hence, these were selected for additional investigation described in subsequent sections of this report.

	INPUT	CURRENT	FILME	FILAMENT VOLTAGE	CATHODE	E VOLTAGE	CATHODE	E CURRENT	HELIX	CURRENT	SWITCHING	LINEAR	
FAILURE MODE		PARAMETER VALUE	VOLT	PARAMETER VALUE	VOLT	PARAMETER VALUE	TLN VOLT	PARANETER VALUE	YOLT	PARAMETER VALUE	REG. VOLTAGE	REG. VOLTAGE	
BREADBOARD NOMINAL	1.66	188 та	3.91	3.90 v	2.23	-1730 v	3.62	5.3 ma	0.82	0.186 ma	18.69 v	17.37 v	
BASE/EMITTER SHORT A1-Q10	3.56	N/A	3.76	3.7 v	2.189	-1727 v	3.37	4.1 ma	1.48	0.45 ma	N/A v	N/A	CATHODE & HELIX CURRENT TOO HIGH
COLLECTOR/EMITTER SHORT A1-011 Δ FROM NOMINAL	1.40	149 ma -39 ma	-3.91	-3.90 v	1.75	-1726 v	1.93	O ma	.242	0 ma	16.90 v	0.24 v	FILAMENT VOLTAGE TOO LOM
EMITTER OPEN A1-011 \$\times\$ FROM NOMINAL	1.78	227 ma +39 ma	7.74	3.27 v 63 v	2.18	-1729 v	3.42	4.1 ma	2.07	0.52 ma	18.92 v	17.33 v	INPUT CURRENT TOO HIGH
SHORT OF A2-R3S (0.1) Δ from nominal	1.25	91 ma -97 ma	1.21	1.02 v -2.88 v	1.81	-1733 v	1.91	0 ma	. 18	0 та	16.8 v	6.48 v	FILAMENT VOLTAGE TOO LOM
200K SHORT OF A2-R35 Δ From nominal	1.65	168 ma -20 ma	3.06	3.02 v 88 v	2.21	-1731 v	2.88	2.8 ma -2.5 ma	2.86	0.74 ma +.554 ma	19.01 v	13.91 v	INPUT, CATHODE, AND HELIX CURRENT TOO HIGH
PARTIAL SHORT A2-CR20 (79-1-11) \$\times FROM NOMINAL	1.61	151 ma -36 ma	2.92	2.90 ▼	2.19	-1729 v	2.70	1.7 ma -3.6 ma	2.53	.6 ma +,414 ma	18.68 v	13.24 v	13.24 V INPUT, CATHODE & HELIX CURRENT TOO HIGH
PARTIAL SHORT A2-CR20 (51-7-in 11)	1.27	103 ma -85 ma	1.47	1.29 v -1.61 v	1.73	-1729 v	1.93	0 ma	.241	0 118	16.82 v	7.45 v	FILAMENT VOLTAGE TOO LOM
PARTIAL SHORT A2-C16 (196-∩1n 11) △FROM NOMINAL	1.71	212 ma +24 ma	3.05	3.00 v	2.18	-1728 v	2.91	2.07 ma -3.43 ma	2.86	.07 ma	18.91 v	13.96 🔻	INPUT & CATHODE CURRENT TOO HIGH

Summary of Semiconductor Failure Modes and Effects Testing. (Failure modes which reduced the linear regulator output to approximately 13 V would cause the TWT beam to be extinguished. This type of failure is consistent with the characteristics of the orbit anomaly.) Table 7.

	INPUT			FILAMENT VOLTAGE	CATHO	CATHODE VOLTAGE		CATHODE CURRENT	HEL IX	HEL IX CURRENT	SWITCHING	LINEAR	
FAILURE MODE	TUN	PARANETER	YOUT	PARAMETER VALUE	TLM	PARAMETER VALUE	TLM	PARAMETER VALUE	YOLT	PARAMETER VALUE	REG. VOLTAGE	PEG. VOLTAGE	
OPEN A3-CR10	1.67	190 ma +2 ma	3.83	3.94 v	2.22	-1732 v	3.66	5.4 ma +.1 ma	.855	. 18 ma . 006ma	18.66 v	17.37 v	17.37 V ALL CURRENTS & FILAMENT VOLTAGE TOO HIGH
SHORTED A3-CR10 A FROM NOMINAL	1.40	148 ma 40 ma	.242	0.47 v -3.43 v	1.75	-1728 v	1.93	0 20	.240	0	16.92 v	4.65 v	4.65 v INPUT CURRENT TOO HIGH.
PARTIALLY SHORTED A3-CRIO (28 L in 11)	1.81	226 ma	3.00	3.15 v	2.13	-1723 v	3.18	2.75 ma	3.01	.76 па			ALL CURRENTS & FILAMENT VOLTAGE TOO HIGH
SHORTED A3-C3 \$\triangle\$ FROM NOMINAL	1.40	130 ma -58 ma	.032	0.92 v -2.98 v	2.0	-1728 v	2.0	0 me	.243	0	17.42 v	6.44 v	6.44 V FILAMENT VOLTAGE LOW, INPUT CURRENT HIGH
PARTIALLY SHORTED A3-C3 (16_in 11) AFROM NOMINAL	1.71	228 ma +40 ma	3.00	3.71 v 19 v	2.19	-1728 v	3.63	5.7 ma	126.	.20 ma	18.63 v	16.59 v	16.59 v ALL CURRENTS & FILAMENT VOLTAGE TOO HIGH
DEGRADED GAIN SCH-Q2 (180_A fn 11 B-E) \$\triangle\$ FROM NOMINAL	1.58	147 ms -41 ms	2.89	2.92 v	2.14	-1724 v	2.60	1.6 ma	2.38	. a.	19.16 v	3.00 v	
CHANGE IN VALUE SCH-R6 (10-1). \$\times\$ FROM NOMINAL	1.56	148 ma -40 ma	2.92	2.89 v -1.01 v	2.19	-1728 v	2.59	1.38 ma	2.46	.64 ma	18.78 v	13.63 v	13.63 V INPUT & CATHODE CURRENT TOO HIGH
CHANGE IN VALUE SCH-R6 (15-A.) A FROM NOMINAL	1.26	em 16-	1.53	1.36 v -2.54 v	1.76	-1728 •	1.91	9 0	.254	0 118	16.71 v	7.69 v	7.69 V FILAMENT VOLTAGE TOO LOM

Table 7. Summary of Semiconductor Failure Modes and Effects Testing (Continued)

4. PARTS REVIEW

The analysis and testing performed during the investigation identified certain specific parts which could be the source of the F8 orbit anomaly. Each of these was viewed in detail in order to attempt to reach an assessment as to relative likelihood of occurrence and the likelihood that a similar failure or failures could be expected in the LLTWTAs on inventory for F9-F12. The potential failure modes identified for review were the following:

- Partial short of the TWT heater
- Partial short of CR1 or CR2 in high voltage module
- Gain degradation of pass transistor in linear regulator (A2-Q2)
- Partial short of bias diodes in semiconductor module, A2-CR20 and A2-CR21
- Partial short of output filter capacitor, C16
- Partial short of linear regulator filter capacitor, C8.

The coiled heater is made of tungsten wire which is cataphoritically coated with aluminum oxide. The heater is encased in a split cup made of aluminum oxide. One end of the heater is spot welded to the cathode body. The other end of the heater passes through a small diameter hole in the aluminum oxide cup, then through a larger diameter hole in the metallic heat shield, and is spot welded to a tab on a cross-member which connects to the heater ring on the gun body. The critical portions of this assembly are illustrated in Figure 9. From an examination of the geometry, it appears the only likelihood of a short of any significance is where the heater lead passes through the aluminum heat shield. Contact at this point, sufficient to cut through the aluminum oxide coating, could result in a high impedance short. However, the possibility of this type of short is very remote, particularly since the clearance hole in the metallic heat shield is specifically made larger than the matching hole in the aluminum oxide cup. This situation, supported by the lack of previous failures of this heater assembly, was judged to be a very unlikely source of the orbit anomaly.

Cross-Section of Heater-Cathode Assembly. (The critical part of the assembly is the point where the heater lead passes through the aluminum heat shield.) Figure 9.

The rectifier diodes (CRI and CR2) are IN 5417s built to JANTX requirements and upgraded to JANTXV parts at the vendor's. No irregularities existed in the component test data. These diodes are metallurgically bonded, and no potential defects were observed in the DPA sample.

The first components selected for analysis in the semiconductor modules were the pass transistors in the linear regulator (A2-Q2). This device, a 2N2907A, is bought as a JANTXV part. The component test data and DPA on the lot of these devices used in this build of LLTWTAs were excellent, with no irregularities. In addition, the vendor reports no known failure history of this type of part.

The bias diodes (A2-CR20 and A2-CR21) in the semiconductor module are IN4148s bought as JANTX parts and upgraded to JANTXV standards by the vendor. These diodes are a compression contact rather than metallurgically bonded design and are subject to some misalignment. However, it was concluded that the upgrading inspection and X-ray process has removed any badly aligned diodes and tilted dice so that shorting or partial shorting of these parts as a failure mode is remote.

Two capacitors were also investigated. One (C8) is the output filter capacitor on the heater voltage source to the TWT, and the other (A2-C16) the output filter capacitor on the linear regulator. A partial short of either one, if stabilized at the proper equivalent resistance, could cause the orbit anomaly. Both of these are tantalum capacitors, one a solid tantalum (C16) and the other a sintered mode (wet slug) polarized tantalum capacitor. The screening and DPA data for C16 showed no anomalous or non-typical indications. Hence, a failure of this part would appear very unlikely.

The second capacitor type (C8) had one device of the 12 used for lot qualification show a higher than specified (1.8 ma versus 1 ma) leakage current after an 8-hour vibration exposure. However, during the subsequent life test (2,000 hours), the leakage current values were within specified limits. Since the leakage current remained low during the life test, it was concluded that vibration is not a cause for device failure or reason for concern.

The manufacturing data package for the failed LLTWTA was reviewed in detail to determine whether some irregularity had occurred during the buildup and

ground testing which could possibly explain the orbit failure. Although the data packages documented various squawks and associated rework activities, the corrective actions taken at the time by the TWTA manufacturer seemed appropriate. There was no reason to feel that this TWTA had not been built and tested properly.

5. CONCLUSIONS

Because it was possible to contrive several different failure modes which yielded signatures similar to the limited satellite telemetry data, it was not possible to pinpoint one specific cause for the orbit anomaly. However, all evidence at hand indicated the failure had occurred somewhere in the TWT heater or the heater power supply. This includes either the linear regulator, the DC to DC converter, or the TWT heater. The piece part failures which most closely fit the flight telemetry signatures are: a partial short of bias diode CR20 or CR21, a change in value of R6, or a gain reduction in Q2 or any parasitic path which effectively results in the same degradation of the linear regulator circuit in the semiconductor module. Each individual failure mode which could have caused this anomaly was judged to be extremely remote. Also, no evidence was found which would indicate there was any sort of defect in the F8 LLTWTA or any of the units in inventory for F9 through F12. The conclusion is that this failure should be considered isolated in nature, not subject to repeat. No corrective action for the LLTWTAs in inventory for F9 through F12 is recommended.

APPENDIX A LLTWTA TELEMETRY CALIBRATION DATA

9438 SCF Calibration Curves - No. 2 NCLLTWTA

SUBC	WORD	CNR	LOPE	Parameter	REMAKES
3	30	0 /32 255	447 . 213 /. 511	NCLL 2I (Input Cusient) AMPS	2 segments 1st = 5.10ma/cut 2nd = 10.55ma/cut ON-ORBIT and IST cols are the same
3	46	139 255	2.505 10.54	NCLLKI (Cathode Carrent) milliamps	I segment Slope = .06925mg/ ch. This segment is the same as Jet. BELOW 139 CNTS The slope does not follow the Jet cal Curve
3	62	0 255	1355 2161	NCLLHV (Helix VoHoge) Volts	I segment Slope = 3.148 V/con Same as IsT al curve
4	7	0 255	077 /.354	NCLLHI (Helix Current) milli amps	I segment Slope = 5.58844 Same as I ot Cal curve
4	10	160 255	3. 3.01 4.509	NC LL FU (Filoment volla Volts	I segment Slope

Uncertainty Analysis - LLTWTA Input Current TLM Calibration

DSB200302-410 9 910 PAGE 14 DATA SHEET NO. SERIAL NO. TELLMETER VOLTACE OUTPUT (VAC) 11 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.6 0.7 0.5 0.6 0.7 0.8 0.9 1.0 CURVE **TEST DATA SHEET** HUGHES ELECTRON DYNAMICS DIVISION **HOC.**

CREATE DATE 11/ 22/ 76 CALFILE ID FLTB

UNIT AMPS

PAGF NCLL

	•	-0.402	-0.302	-0.252	-0.202	-0.152	-0.102	-0.052	-0.002	0.047	760.0	0.148	0.198	0.279	0.385	0.492	0.598	0.704	0.810	0.916	1.023	1.129	1.235	1.341	1.447	
	œ	-0.407	-0.307	-0.257	-0.207	-0.157	-0.107	-0.057	-0.007	0.042	0.092	0.143	0.193	0.269	0.375	0.481	0.587	0.693	0.800	906.0	1.012	1.118	1.224	1.331	1.437	
	1	-0.412	-0.312	-0.262	-0.212	-0.162	-0.112	-0.062	-0.012	0.037	0.087	0.138	0.188	0.258	0.364	0.470	175.0	0.683	0.789	0.895	1.001	1.108	1.714	1.320	1.426	
	ç	-0.417	-0.317	-0.267	-0.217	-0.167	-0.117	190.0-	-0.017	0.032	0.082	0.132	0.183	0.247	0.354	0.460	0.566	0.672	0.778	0.885	166.0	1.097	1.203	1.309	1.416	
	r	-0.422	-0.322	-0.272	-0.222	-0.172	-0.122	-0.072	-0.022	0.027	0.077	0.127	0.178	0.237	0.343	0.449	0.555	0.662	0.768	0.874	0.980	1.086	1.193	1.299	1.405	1.511
7750	1	-0.427	-0.327	-0.277	-0.227	-0.177	-0.127	-0.077	-0.027	0.022	0.072	0.122	0.173	0.226	0.332	0.438	0.545	0.651	151.0	0.863	696.0	1.076	1.182	1.288	1.394	1.500
Ċ	6	-0.432	-0.332	-0.282	-0.232	-0.182	-0.132	-0.0H2	-0.032	0.017	0.067	0.117	0.168	0.215	0.322	0.428	0.534	0.640	0.746	0.853	0.959	1.065	1.171	1.277	1.384	1.490
NPIIT I	2	-0.437	-0.337	-0.287	-0.237	-0.187	-0.137	-0.087	-0.037	0.012	0.062	0.112	0.163	0.213	0.311	0.417	0.523	0.630	0.736	0.842	876°0	1.054	1.161	1.267	1.373	1.479
8 11 1	1	-0.442	-0.342	-0.242	-0.242	-0.192	-0.142	-0.092	-0.042	0.007	150.0	0.107	0.158	0.208	0.300	0.407	0.513	0.619	0.725	0.831	0.938	1.044	1.150	1.256	1.362	1.469
30 NC	C	-0.447	-0.347	-0.297	-0.247	-0.197	-0.147	160.0-	-0.047	0.002	0.052	0.102	0.153	0.203	0.290	0.396	0.202	809.0	0.715	0.821	0.927	1.033	1.139	1.246	1.352	1.458
F1 13	5	0000	0000	0030	0.500	0000	0900	0010	0800	0600	0 100	0110	0120	0130	0110	0120	0160	0110	0.180	0100	0200	0210	0220	0230	0520	0520

CALFILE ID FLTR CREATE DATE 11/ 22/ 76

	PAGE NCLL	NCL		INIT VOL	LTS							
	F1 1	3	62 N	NC B LL HE	FLIX V	03	7750					
	ט		c	-	2	٤	4	2	¢	7	œ	6
	0000		1355.	1358.	1362.	1365.	1368.	1371.	1374.	1377.	1381.	1384.
	0100		1387.	1390.	1393.	1396.	1400.	1403.	1406.	1409.	1412.	1415.
	0000		1418.	1422.	1425.	1428.	1431.	1434.	1437.	1441.	1444.	1447.
	0030		1450.	1453.	1456.	1460.	1463.	1466.	1469.	1472.	1475.	1478.
	0000		1482.	1485.	1488.	1491.	1494.	1497.	1501.	1504.	1507.	1510.
	0000		1513.	1516.	1520.	1573.	1526.	1529.	1532.	1535.	1538.	1542.
	0900		1545.	1548.	1551.	1554.	1557.	1561.	1564.	1567.	1570.	1573.
	0070		1576.	1580.	1583.	1586.	1589.	1592.	1595.	1598.	1602.	1605.
-	0.000		1608.	1611.	1614.	1617.	1621.	1624.	1627.	1630.	1633.	1636.
4-6	0500		1640	1643.	1646.	1649.	1652.	1655.	1658.	1662.	1665.	1668.
5	(1) [:11]		1671.	1674.	1677.	1681.	16.84.	1687.	1690.	1693.	1696.	1700.
	0110		1703.	1706.	1709.	1712.	1715.	1718.	1722.	1725.	1728.	1731.
	0110		1734.	1737.	1741.	1744.	1747.	1750.	1753.	1756.	1760.	1763.
	0130		1766.	1769.	1772.	1775.	1778.	1787.	1785.	1788.	1791.	1794.
	0140		1797.	1901.	1804.	1807.	1810.	1813.	1816.	1820.	1823.	1826.
	0150		1829.	1832.	1835.	1838.	1842.	1845.	1848.	1851.	1854.	1857.
	0110		1861.	1864.	1867.	1870.	1873.	1876.	1840.	1443.	1886.	i AH9.
	0110		1892.	1895.	1898.	1902.	1905.	1908.	1911.	1914.	1917.	1921.
	OHEO		1924.	1927.	1930.	1933.	1936.	1940.	1943.	1946.	1949.	1952.
	01.0		1955.	1958.	1962.	1965.	1968.	1971.	1974.	1977.	1981.	1984.
	0500		1987.	1990.	1993.	1996.	2000.	2003.	2006.	2009.	2012.	2015.
	0210		2018.	2022.	2025.	2028.	2031.	2034.	2037.	2041.	2044.	2047.
	0220		2050.	2043.	2056.	2060.	2063.	2066.	2069.	2072.	2075.	2078.
	0230		2082.	2085.	20 88 .	2691.	2094.	2097.	2101.	2104.	2107.	2110.
	0540		2113.	2116.	2120.	2123.	2126.	2129.	2132.	2135.	2138.	2142.
	0250		2145.	2148.	2151.	2154.	2157.	2161.				

CALFILE ID FLTA CREATE DATE 11/ 22/ 76

NC B LL HFLIX I

UNIT MA

PAGE NCLL

6	-0.026	0.085	0.141	0.197	0.253	0.309	0.366	0.422	0.478	0.534	0.590	0.646	0.702	0.759	0.815	0.871	0.927	0.983	1.039	1.096	1.152	1.208	1.764	1.320	
œ	-0.032	0.079	0.135	0.192	0.248	0.304	0.360	0.416	0.472	0.528	0.585	0.641	169.0	0.753	0.809	0.865	0.921	0.978	1.034	1.090	1.146	1.202	1.258	1.315	
	-0.038	0.074	0.130	0.186	0.242	0.29R	0.354	0.410	0.467	0.523	0.579	0.635	0.691	747.0	0.804	0.860	916.0	0.972	1.028	1.084	1.140	1.197	1.253	1.309	
¢	0.012	0.068	0.124	0.180	0.236	0.293	0.349	0.405	0.461	0.517	0.573	0.629	0.686	0.742	N.79R	0.854	0.910	0.966	1.023	1.079	1.135	1.191	1.247	1.303	
s	0.006	0.062	0.119	0.175	0.231	0.287	0.343	0.399	0.455	0.512	0.568	0.624	0.680	0.736	0.792	0.848	0.905	196.0	1.017	1.073	1.129	1.185	1.242	1.298	1.354
4	-0.055	0.057	0.113	0.169	0.225	0.281	0.337	0.394	0.450	0.506	0.562	0.618	G. 674	0.731	0.787	0.843	0.899	0.955	1.011	1.067	1.124	1.180	1.236	1.292	1.348
8	-0.060	0.051	0.107	0.163	0.220	0.276	0.332	0.388	0.444	0.500	0.556	0.613	699.0	0.725	0.781	0.837	698.0	0.950	1.006	1.062	1.118	1.174	1.230	1.286	1.343
8	-0.010	0.046	0.102	0.158	0.214	0.270	0.326	0.382	0.439	0.495	0.551	10.607	0.663	0.719	0.775	0.832	0.888	556.0	1.000	1.056	1.112	1.169	1.225	1.281	1.337
1	-0.071	0.040	960.0	0.152	0.208	0.264	0.321	0.377	0.433	0.489	0.545	0.601	0.658	0.714	0.770	0.826	0.882	0.938	766.0	1.051	1.107	1.163	1.219	1.275	1.331
С	-0.077	0.034	0.090	0.147	0.203	0.259	0.315	0.371	0.427	0.483	0,50,0	966.0	669.0	0.708	0.764	0.820	0.877	0.933	0.989	1.045	1.101	1.157	1.213	1.270	1.326
נו	00000	0000	0600	0500	0000	0900	0200	0080	0600	0.100	0110	0120	0130	0140	0120	0 160	0110	0.180	0100	0020	0210	0220	0530	0560	0520

CAIFILE IN FLTB CREATE DATE 11/ 22/ 76

NC B LL CATH I

46

INIT MA

PAGE NCLL

C

6	-2.833	-2,200	-1.866	-1.533	-1.200	-0.867	-0.533	-0.200	0.132	0.465	0.799	1.433	2.505	3.199	3.492	4.584	5.277	5.970	6.663	7.355	8.048	H. 741	9.434	10.12	
œ	-2.899	-2.233	-1.900	-1.566	-1.233	-0.900	-0.567	-0.233	660.0	0.432	0.765	1.326	7.39R	3.130	3.822	4.515	5.208	5.901	6.593	7.286	7.979	8.672	9.364	10.05	
7	-2.933	-2.266	-1.933	-1.600	-1.266	-0.933	009.0-	-0.267	0.066	0.399	0.732	1.219	2.290	3.060	3.753	4.446	5.139	5.831	4.524	7.217	7.910	8.602	9.295	9.988	
4	-2.633	-2.300	-1.966	-1.633	-1.300	146.0-	-0.633	-0.300	0.032	0.365	0.699	1.111	2.183	2.991	3.684	4.377	5.069	5.762	6.455	7.148	7.840	R.533	9.226	616.6	
5	-2.666	-2.333	-2.000	-1.666	-1.333	-1.000	-0.667	-0.333	-0.000	0.332	0.665	0.999	2.076	2.922	3.615	4.307	5.000	5.493	4.386	7.078	7.771	8.464	9.157	9.H49	10.54
4	-3.033	-2.366	-2.033	-1.700	-1.366	-1.033	-0.700	-0.367	-0.033	0.299	0.632	596:0	1.969	2.853	3.545	4.23R	4.931	5.624	6.316	7.009	7.702	R.395	9.0H7	9.780	10.47
8	-3.066	-2.400	-2.066	-1.733	-1.400	-1.067	-0.733	-0.400	790.0-	0.265	665.0	0.932	1.862	2.783	3.476	4.169	4.862	5.554	6.247	6.940	7.633	H. 325	9.018	9.7111	10.40
2	-3.099	-2.433	-2.100	-1.766	-1.433	-1.100	192.0-	-0.433	-0.100	0.232	0.565	0.899	1.754	2.714	3.407	4.100	4.792	5.485	6.178	6.871	7.563	8.256	8.949	9.641	10.33
-	-3.133	-2.466	-2.133	-1.800	-1.466	-1.133	-0.800	194.0-	-0.133	0.199	0.532	0.865	1.647	2.645	3.337	4.030	4.723	5.416	6.108	6.801	7.494	R. 187	R.879	9.572	10.26
С	-3.166	-2.500	-2.166	-1.833	-1.500	-1.167	-0.833	-0.500	-0.167	0.165	665.0	0.832	1.540	2.575	3.268	3.961	4.624	2.346	6.039	6.732	7.473	8.117	8.810	9.503	10.19
נו	0000	0050	0030	0000	0000	0900	07.00	0080	0600	0100	0110	0120	0130	0 140	0120	0 160	0110	0.180	0610	0020	01.10	0770	0230	0540	05.50

CALFILE IN FLTB CREATE DATE 11/ 22/ 76

NC B LL FILA V

UNIT VOLTS

PAGE NCLL

•	0.193	0.408	0.623	0.838	1.053	1.268	1.482	1.697	1.912	2.127	2.342	2.557	2.771	2.986	3.201	3.416	3.593	3.745	3.897	4.046	4.143	4.240	4.337	4.434	4.531	
œ	0.172	0.387	0.602	0.816	1.031	1.246	1.461	1.676	1.891	2,105	2.320	2.535	2,750	2.965	3.180	3.395	3.578	3.730	3.841	4.037	4.134	4.231	4.328	4.425	4.522	
7	0.150	0.365	0.580	0.795	1.010	1.225	1.439	1.654	1.869	2.084	2.299	2.514	2.729	2.943	3.158	3.373	3.563	3.715	3.866	4.027	4.124	4.221	4.318	4.415	4.512	
ç	0.129	0.344	0.559	0.773	0.988	1.203	1.418	1.633	1.848	2.062	2.277	2.492	2.707	2.922	3.137	3.352	3.548	3.699	3.851	4.003	4.114	4.211	4.30B	4.405	4.502	
5	0.107	0.322	0.537	0.752	196.0	1.182	1.396	1.611	1.826	2.041	2.256	2.471	2.686	2.900	3.115	3.330	3.533	3.684	3.836	3.948	4.104	4.202	4.299	4.396	4.493	4.590
4	0.086	0.301	0.516	0.730	946.0	1.160	1.375	1.590	1.805	2.020	2.234	2.449	2:664	2.879	3.094	3,309	3.517	3.669	3.821	3.972	4.095	4.192	4.249	4.386	4.483	4.580
m	0.064	0.279	0.494	0.709	0.924	1.139	1.354	1.568	1.783	1.998	2.213	2.428	2.643	2.857	3.072	3.287	3.502	3.654	3.806	3.957	4.085	4.182	4.279	4.376	4.473	4.570
2	0.043	0.258	0.473	0.687	0.902	1.117	1,332	1.547	1.762	1.977	2.191	2.406	2.621	2.836	3.051	3.266	3.480	3.639	3.790	3.942	4.075	4.172	4.269	4.366	4.464	4.561
-	0.021	0.236	0.451	0.666	0.881	1.096	1.311	1.525	1.740	1.955	2.170	2.385	2.600	2.814	3.029	3.244	3.459	3.624	3.775	3.927	4.066	4.163	4.260	4.357	4.454	4.551
c	00000	0.215	0.430	0.645	0.829	1.074	1.289	1.504	1.719	1.934	2.148	2.363	2.578	2.793	3.008	3,223	3.437	3.608	3.760	3.912	4.004	4.153	4.250	4.347	4.444	4.241
13	0000	0010	0000	0030	0000	0000	0900	0070	0000	0600	0 100	0110	0120	0130	0 140	0100	0160	0110	0.180	0100	0500	0210	0220	0230	0570	0520

APPENDIX B

0

LLTWTA SCHEMATIC

THIS PAGE IS BEST QUALITY PRACTICABLE INCOME COPY FURNISHED TO DDG

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDG