PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: (11) International Publication Number: WO 91/13181 A1 C22C 1/04, C22F 1/06 (43) International Publication Date: 5 September 1991 (05.09.91)

(74) Agent: ROONEY, Gerard, P.; Allied-Signal Inc., Law Department (C.A. McNally), P.O. Box 2245R, Morristown, NJ 07962-2245 (US). (21) International Application Number: PCT/US91/01048 (22) International Filing Date: 18 February 1991 (18.02.91)

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent) 481,402 20 February 1990 (20.02.90) US ropean patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent). (71) Applicant: ALLIED-SIGNAL INC. [US/US]; Law De-

partment (C.A. McNally), P.O. Box 2245R, Morristown, NJ 07962-2245 (US). **Published**

(72) Inventors: DAS, Santosh, K.; 10 Farm Road, Randolph, NJ 07869 (US). CHANG, Chin-Fong; 595 Lynne Drive, Morris Plains, NJ 07950 (US). RAYBOULD, Derek; 2 With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of Horizon Drive, Denville, NJ 07834 (US). amendments.

(54) Title: METHOD FOR SUPERPLASTIC FORMING OF RAPIDLY SOLIDIFIED MAGNESIUM BASE METAL AL-LOYS

(57) Abstract

(30) Priority data:

A complex part composed of rapidly solidified magnesium base metal alloy is produced by superplastic forming at a temperature ranging from 160 °C to 275 °C and at a rate ranging from 0.00021 m/sec to 0.00001 m/sec, to improve the formability thereof and allow forming to be conducted at lower temperature. The rapidly solidified magnesium based alloy has a composition consisting essentially of the formula MgbalAlaZnbXc, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium and yttrium, "a" ranges from 0 to about 15 atom percent, "b" ranges from 0 to about 4 atom percent and "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent. Such an alloy contains fine grain size and finely dispersed magnesium-, aluminum- rare earth intermetallic phases. When formed, the part exhibits good corrosion resistance together with high ultimate tensile strength and good ductility at room temperature, which properties are, in combination, far superior to those of conventional magnesium alloys. The part is suitable for application as a structural member in helicopters, missiles and air frames where good corrosion resistance in combination with high strength and ductility is important.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

				MG	Madagascar
AT	Austria	ES	Spain		-
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG .	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	SU	Soviet Union
CM	Cameroon	Li	Liechtenstein	TD	Chud
CS	Czechoslovakia	LK	Sri Lanka	TG	Togo
DE	Germany	LU	Luxembourg	US	United States of America
DY	Denmark	MC	Monaco		

- 1 -

METHOD FOR SUPERPLASTIC FORMING OF RAPIDLY SOLIDIFIED MAGNESIUM BASE METAL ALLOYS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. Application Serial No. 197,796, filed May 23, 1988.

1. Field of Invention

This invention relates to a method for superplastic forming (extrusion, forging, and rolling, etc.) of bulk articles made by consolidation of the powder of rapidly solidified magnesium base metal alloys, to achieve a combination of good formability to complex net shapes and good mechanical properties of the articles. The superplastic forming allows deformation to near net shapes.

2. Description of the Prior Art

Magnesium alloys are considered attractive candidates for structural use in aerospace and automotive industries because of their light weight, high strength to weight ratio, and high specific stiffness at both room and elevated temperatures. Although magnesium has reasonable corrosion properties under regular atmospheric conditions, it 25 is susceptible to attack by chloride containing environments. Furthermore, the high chemical reactivity of magnesium, as represented by its extreme position in the electrochemical series and its inability to form a protective, self-healing, passive film in corrosive environments, makes magnesium alloys vulnerable to galvanic attack when coupled with more noble metals. In addition to the galvanic coupling between the structural members, localized corrosion may occur due to inhomogeneities within the magnesium alloy that act as electrodes for galvanic corrosion. This poor corrosion resistance

- 2 -

of magnesium has been a serious limitation, preventing wide scale use of magnesium alloys.

The application of rapid solidification processing (RSP) in metallic system results in the 5 refinement of grain size and intermetallic particle size, extended solid solubility, and improved chemical homogeneity. By selecting the thermally stable intermetallic compound (Mg2Si) to pin the grain boundary during consolidation, a significant improvement in the mechanical strength [0.2% yield 10 strength (Y.S.) up to 393 MPa, ultimate tensile strength (UTS) up to 448 MPa, elongation (El.) up to 9%] can be achieved in RSP Mg-Al-Zn-Si alloys, [S.K. Das, et al., U.S. Pat. No. 4,675,157, High Strength Rapidly Solidified Magnesium Base Metal Alloys, June 1987]. The addition of rare earth elements (Y, Nd, Pr, Ce) to Mg-Al-Zn alloys further improves corrosion resistance (11 mdd when immersed in 3% NaCl aqueous solution for 3.4 x 10^5 sec. at 27°C) and mechanical 20 properties (Y.S. up to 435 MPa, U.T.S. up to 476 MPa, El. up to 14%) of magnesium alloys [S.K. Das and C.F. Chang, U.S. Pat. No. 4,765,954, Rapidly Solidified High Strength Corrosion Resistant Magnesium Base Metal Alloys, August 1988]. The alloys are subjected 25 to rapid solidification processing by using a melt spin casting method wherein the liquid alloy is cooled at a rate of 105 to 107°C/sec while being solidified into a ribbon or sheet. That process further comprises the provision of a means to protect 30 the melt puddle from burning, excessive oxidation and physical disturbance by the air boundary layer carried with the moving substrate. The protection is provided by a shrouding apparatus which serves the dual purpose of containing a protective gas such as a $_{35}$ mixture of air or $_{2}$ and $_{35}$, a reducing gas such a CO or an inert gas, around the nozzle while excluding extraneous wind currents which may disturb the melt

- 3 -

puddle. The as cast ribbon or sheet is typically 25 to 100 µm thick. The rapidly solidified ribbons are sufficiently brittle to permit them to be mechanically comminuted by conventional apparatus, such as a ball mill, knife mill, hammer mill, pulverizer, fluid energy mill. The comminuted powders are either vacuum hot pressed to about 95% dense cylindrical billets or directly canned to similar size. The billets or cans are then hot extruded to round or rectangular bars at an extrusion ratio ranging form 14:1 to 22:1.

10

Magnesium alloys, like other alloys with hexagonal crystal structures, are much more workable at elevated temperatures than at room temperature. The basic deformation mechanisms in magnesium at room 15 temperature involve both slip on the basal planes along <1,1,-2,0> directions and twinning in planes (1,0,1,2) and (1,0,-1,1) direction. At higher temperatures (>225°C), pyramidal slip (1,0,-1,1) <1,1,-2,0> becomes operative. The limited number of 20 slip systems in the hcp magnesium presents plastic deformation conformity problems during working of a polycrystalline material. This results in cracking unless substantial crystalline rotations of grain boundary deformations are able to occur. For the fabrication of formed magnesium alloy parts, the temperature range between the minimum temperature to avoid cracking and a maximum temperature to avoid softening is quite narrow. The forgeability of 30 conventional processed magnesium alloys depends on three factors: the solidus temperature of the alloy, the deformation rate, and the grain size. Magnesium alloys are often forged within 55°C (100°F) of their solidus temperature [Metals Handbook, Forming and Forging, Vol. 14, 9th ed., ASM International, 1988, pp. 259-260]. An exception is the high-zinc alloy ZK60, which sometimes contains small amounts of the

- 4 -

low melting eutectic that forms during ingot solidification. Forging of this alloy above about 315°C (600°F) - the melting point of the eutectic can cause severe cracking. The problem can be minimized by holding the cast ingot for extended periods at an elevated temperature to dissolve the eutectic and to restore a higher solidus temperature. The mechanical properties developed in magnesium forgings depend on the strain hardening induced during forging. Strain hardening can be 10 achieved by keeping the forging temperature as low as practical; however, if temperatures are too low, cracking will occur. Work on metalworking of formed magnesium parts made from rapidly solidified magnesium alloys is relatively rare. Busk and 15 Leontis [R.S. Busk and T.I. Leontis, "The Extrusion of Powdered Magnesium Alloys", Trans. AIME. 188 (2) (1950), pp. 297-306] investigated hot extrusion of atomized powder of a number of commercial magnesium alloys in the temperature range of 316°C (600°F) -20 427°C (800°F). The as-extruded properties of alloys extruded from powder were not significantly different from the properties of extrusions from permanent mold billets. In the study reported by Isserow and Rizzitano [S. Isserow and F.J. Rizzitano, 25 "Microquenched Magnesium ZK60A Alloy", Inten'l J. of Powder Metallurgy and Powder Technology, 10 (3) (1974), pp. 217-227.] on commercial ZK60A magnesium alloy powder made by rotating electrode process extrusion temperatures varying form ambient to 371°C 30 (700°F) were used. The mechanical properties of the room temperature extrusions were significantly better than those obtained by Busk and Leontis but those extruded at 121°C (250°F) did not show any significant difference between the conventionally processed and rapidly solidified material. However, care must be exercised in comparing their mechanical

- 5 -

properties in the longitudinal direction from room temperature extrusions since they observed significant delamination on the fracture surfaces; and properties may be highly inferior in the transverse direction.

There remains a need in the art for the economic production of complex net shape articles consolidated from rapidly solidified magnesium alloys, particularly containing uniform dispersions of intermetallic compounds that provide the alloys with good corrosion resistance combined with high strength and good ductility.

Summary of the Invention

The present invention provides a method of making a superplastic forming metal complex net shape 15 article fabricated from a high strength, corrosion resistant magnesium based alloy. The alloy is rapidly solidified into ribbon or powder and which is especially suited for consolidation into bulk shapes 20 having a fine microstructure. Generally stated, the alloy has a composition consisting essentially of the formula $Mg_{bal}Al_aZn_bX_c$, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium, and yttrium, "a" ranges from about 0 to 15 atom percent, 25 "b" ranges from about 0 to 4 atom percent, "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent. 30

The magnesium alloys used in the forming of the present invention are subjected to rapid solidification processing by using a melt spin casting method wherein the liquid alloy is cooled at a rate of 10⁵ to 10⁷°C/sec while being formed into a solid ribbon or sheet. That process further comprises the provision of a means to protect the

- 6 -

melt puddle from burning, excessive oxidation and physical disturbance by the air boundary layer carried with the moving substrate. Said protection is provided by a shrouding apparatus which serves the dual purpose of containing a protective gas such as a mixture of air or ${\rm CO}_2$ and ${\rm SF}_6$, a reducing gas such as ${\rm CO}$ or an inert gas, around the nozzle while excluding extraneous wind currents which may disturb the melt puddle.

The alloy elements manganese, cerium, 10 neodymium, praseodymium and yttrium, upon rapid solidification processing, form a fine uniform dispersion of intermetallic phases such as Mg₃Ce,Al₂Nd,Mg₃Pr,Al₂Y, depending on the alloy composition. These finely dispersed intermetallic 15 phases increase the strength of the alloy and help to maintain a fine grain size by pinning the grain boundaries during consolidation of the powder at elevated temperature. The addition of the alloying elements aluminum and zinc contributes to strength 20 via matrix solid solution strengthening and by formation of certain age hardening precipitates such as Mg₁₇Al₁₂ and MgZn.

In accordance with the present invention, the forming is produced from a consolidated metal alloy article. Consolidation of the article is made by compacting powder particles of the magnesium based alloy with or without canning, and degassing. powder particles can be warm pressed by heating in a vacuum to a pressing temperature ranging from 150°C to 275°C, which minimizes coarsening of the dispersed, intermetallic phases. These powder particles can be formed into bulk shapes using conventional methods such as extrusion. The present invention provides a method of metal working of formed magnesium parts to complex net shape by forging and superplastic forming (at a rate ranging

25

35

20

.30

from 0.00021 m/sec to 0.00001 m/sec, and at a temperature ranging from 160°C to 275°C).

Consolidated metal articles made from magnesium based alloys by the process described herein above exhibit good corrosion resistance (i.e., corrosion rate of less than 50 mils per year when immersed in a 3 percent NaCl aqueous solution at 25°C for 96 hours) together with high ultimate tensile strength [up to 513 MPa (74.4 ksi)] and good ductility (i.e., >5 percent tensile elongation) at 10 room temperature. These properties present in superplastic formings produced from the consolidated articles, are, in combination, far superior to those of conventional magnesium alloy. The formings are suitable for applications as structural members in helicopters, missiles and air frames where good corrosion resistance in combination with high strength and ductility is important.

Brief Description of the Drawings

The invention will be more fully understood and further advantages will become apparent when reference is made to the following detailed description and the accompanying drawings, in which:

Fig. 1(a) is a transmission electron
25 micrograph of as-cast ribbon of the alloy
Mg92Zn2Al5Ce1 illustrating the fine grain size and
precipitates thereof;

Fig. 1(b) is a transmission electron micrograph of as-cast ribbon of the alloy $\label{eq:mgg1} \text{Mg}_{91}\text{Zn}_2\text{Al}_5\text{Y}_2;$

Fig. 2(a) is a transmission electron micrograph of as-extruded bulk compact of alloy Mg92Zn2Al5Ce1;

Fig. 2(b) is a transmission electron

micrograph of as-extruded bulk compact of alloy

Mgg1Zn2Al5Y2illustrating the fine grain and

dispersoid size retained after compaction;

- 8 -

Fig. 3(a) is a micrograph of a forging consolidated from an alloy ${\rm Mg_{92}Zn_{2}Al_{5}Nd_{1}}$ at a temperature of 180°C and at a moderate rate; and

Fig. 3(b) is a micrograph of a forging 5 consolidated from an alloy Mg₉₂Zn₂Al₅Nd₁ at a temperature of 160°C and at a low rate illustrating the effect of strain rate on the superplastic formability of the alloy.

Detailed Description of the Invention And the Preferred Embodiments

10

In accordance with the present invention a forming is produced from an article consolidated from a rapidly solidified alloy. The alloy consists essentially of nominally pure magnesium alloyed with about 0 to 15 atom percent aluminum, about 0 to 4 atom percent zinc, about 0.2 to 3 atom percent of at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium, and yttrium, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum 20 and zinc present ranges from about 2 to 15 atom percent. The alloy is melted in a protective environment; and quenched in a protective environment at a rate of at least about 105°C/sec by directing the melt into contact with a rapidly moving chilled surface to form thereby a rapidly solidified ribbon. Such alloy ribbons have high strength and high hardness (i.e., microVickers hardness of at least about 125 kg/mm²). When aluminum is alloyed without addition of zinc, the minimum aluminum content is 30 preferably above about 6 atom percent.

The alloys of the consolidated article from which the forming of the invention is produced have a very fine microstructure which is not resolved by optical micrograph. Transmission electron micrograph reveals a substantially uniform cellular network of solid solution phase ranging from 0.2-1.0 µm in size,

5

10

- 9 -

together with precipitates of very fine, binary or ternary intermetallic phases which are less than 0.1 μm and composed of magnesium and other elements added in accordance with the invention.

The mechanical properties [e.g. 0.2% yield strength (YS) and ultimate tensile strength (UTS)] of the alloys of this invention are substantially improved when the precipitates of the intermetallic phases have an average size of less than 0.1 μm , and even more preferably an average size ranging from about 0.03 to 0.07 μm . The presence of intermetallic phases precipitates having an average size less than 0.1 μm pins the grain boundaries during consolidation of the powder at elevated temperature with the result that a fine grain size is substantially maintained during high temperature consolidation.

In Figs. 1(a) and 1(b) there are illustrated the microstructures of ribbon cast from alloys consisting essentially of the compositions Mg_{9,2}Zn₂Al₅Ce₁ and Mg_{9,1}Zn₂Al₅Y₂, respectively. microstructures shown are typical of samples solidified at cooling rate in excess of 105°C/sec and is responsible for high hardness ranging from 140-200 kg/mm². The high hardness of Mg-Al-Zn-X alloys can be understood by the fine microstructure observed in as-cast ribbons. The as-cast microstructure of alloys containing Ce, Pr and Nd are very similar and show a cellular microstructure with precipitation of Mg_2X (X = Ce, Pr) both inside the cell and at cell boundaries (Fig. la). The alloy containing Y and Nd shows fine spherical precipitates of Al_2X (X = Y. Nd) dispersed uniformly throughout Fig. 1(b).

The as cast ribbon or sheet is typically 25 to 100 µm thick. The rapidly solidified materials of the above described compositions are sufficiently brittle to permit them to be mechanically comminuted by conventional apparatus, such as a ball mill, knife

- 10 -

mill, hammer mill, pulverizer, fluid energy mill, or the like. Depending on the degree of pulverization to which the ribbons are subjected, different particle sizes are obtained. Usually the powder comprises of platelets having an average thickness of less than 100 µm. These platelets are characterized by irregular shapes resulting from fracture of the ribbon during comminution.

The powder can be consolidated into fully dense bulk parts by known techniques such as hot 10 isostatic pressing, hot rolling, hot extrusion, hot forging, cold pressing followed by sintering, etc. Typically, the comminuted powders of the alloys are either vacuum hot pressed to cylindrical billets with diameters ranging form 50 mm to 110 mm and length 15 ranging from 50 mm to 140 mm or directly canned up to 280 mm in diameter. The billets or cans are then hot extruded to round or rectangular bars having an extrusion ratio ranging from 14:1 to 22:1 at a rate ranging from 0.00021 m/sec to 0.00001 m/sec. 20 Generally, each of the extruded bars has a thickness of at least 6 mm measured in the shortest dimension, and is capable of being subsequently hot rolled to 1 mm thick plate. The extrusion temperature normally 25 ranges from 150°C to 275°C. The extruded bars can also be fabricated into complex smooth shape with a thickness of at least 1 mm measured along the shortest direction by superplastic forming at a rate ranging from 0.00021 m/sec to 0.00001 m/sec. 30 superplastic forming temperature ranges from 160°C to 275°C. It was surprisingly found that superplastic forming of this hcp metal is possible and that superplastic forming of these alloys allows lower forming/forging temperatures than conventional 35 forming/forging temperatures.

The microstructure obtained after consolidation depends upon the composition of the

alloy and the consolidation conditions. Excessive times at high temperatures can cause the fine precipitates to coarsen beyond the optimal submicron size, leading to a deterioration of the properties, i.e., a decrease in hardness and strength. Hence, the ability of superplastic forming at lower temperatures than conventional forming offers the opportunity to refine the microstructure and increase the strength.

As representatively shown in Figs. 2(a) and 2(b) for alloys Mg₉₂Zn₂Al₅Ce₁ and Mg₉₁Zn₂Al₅Y₂, respectively, the compacted consolidated article of the invention is composed of a magnesium solid solution phase having an average grain size of 0.5 μm, containing a substantially uniform distribution of dispersed intermetallic phase Mg₃X (X = Ce, Pr), Al₂Nd, or Al₂Y, depending on the alloy and in addition, the microstructure contains aluminum containing precipitates of phase Mg₁₇Al₁₂ and zinc containing phase MgZn. Both Mg₁₇Al₁₂ and MgZn phases are usually larger than the Mg₃X phase and is 0.5 to 1.0 μm in size depending on consolidation temperature.

At room temperature (about 20°C), the compacted, consolidated article has a Rockwell B

25 hardness of at least about 55 and is more typically higher than 65. Additionally, the ultimate tensile strength of the consolidated article from which the forming of the invention is produced is at least about 378 MPa (55 ksi). The high strengths [0.2% YS up to 456 MPa (66.2 ksi) and UTS up to 513 MPa (74.4 ksi)] of the alloys at room temperature, fall to two-thirds [0.2% YS = 250-330 MPa (36.3-48.0 ksi) UTS = 300-380 MPa (43.6-55.2 ksi)] of their room temperature values when tested at 100°C and drop to one-third or one-quarter (0.2% YS = 110-160 MPa (16.0-23.2 ksi), UTS = 140-190 MPa (20.3-27.6 ksi)] of their room temperature values on testing at

- 12 -

150°C. These reductions in strength are accompanied by 10-40 fold increases in elongation to fracture at 100°C (elongation 45-65%) and 150°C (elongation 190-220%), respectively, and with strength levels at 5 150°C comparable with wrought ingot alloys ZK60 and The mechanical properties of the AZ91HP. consolidated article also strongly depend on the strain rate. At a constant temperature increasing the strain rate increases the tensile strength. 10 Moreover, the strain rate dependence of strength increases with increasing temperature. Testing at a high temperature and a low strain rate tends to improve the ductility. Superplastic behavior (elongation > 100%) occurred at a test temperature of 150°C and at a strain rate $\langle 1x10^{-3}/\text{sec.}$ in the consolidated article. The combination of low flow stress and high ductility in the alloys makes them exceptionally useful in superplastic forming such as hot rolling and hot forging. When forged in a close 20 die at a low rate, a complex part may be formed in a single step and with outstanding precision of shape and no cracks. The very low flow stress of these alloys at a low strain rate means that such forgings can be produced in light presses at a temperature as 25 low as 160°C.

The following examples are presented in order to provide a more complete understanding of the invention. The specific techniques, conditions, materials and reported data set forth to illustrate the invention are exemplary and should not be construed as limiting the scope of the invention.

EXAMPLE 1

Ribbons samples were cast in accordance with the procedure described above by using an over pressure of argon or helium to force molten magnesium alloy through the nozzle onto a water cooled copper alloy wheel rotated to produce surface speeds of

between about 900 m/min and 1500 m/min. Ribbons were 0.5-2.5 cm wide and varied from about 25 to 100 μm thick.

The nominal compositions of the alloys based on the charge weight added to the melt are summarized in Table 1 together with their as-cast hardness values. The hardness values are measured on the ribbon surface which is facing the chilled substrate; this surface being usually smoother than the other surface. The microhardness of these Mg-Al-Zn-X 10 alloys used in the forming of the present invention ranges from 140 to 200 Kg/mm². The as-cast hardness increases as the rare earth content increases. hardening effect of the various rare earth elements on Mg-Zn-Al-X alloys is comparable. For comparison, 15 also listed in Table 1 is the hardness of a commercial corrosion resistant high purity magnesium AZ91C-HP alloy. It can be seen that the hardness of the alloys used in the forming of the present invention is higher than commercial AZ91C-HP alloy. 20

TABLE 1
Microhardness (Kg/mm²) Values of R.S. Mg-Al-Zn-X As Cast Ribbons

	Sample	Alloy	Hardness
25		Nominal (At %)	
	1	$Mg_{92.5}Zn_2Al_5Ce_{0.5}$	151
	2	${\tt Mg_{92}Zn_{2}Al_{5}Ce_{1}}$	186
	3	$Mg_{92.5}Zn_2Al_5Pr_{0.5}$	150
	4	Mg ₉₁ Zn ₂ Al ₅ Y ₂	201
30	5	${\tt Mg_{88}Al_{11}Mn_1}$	162
	6	Mg _{88.5} Al ₁₁ Mn _{0.5}	140
	7	${\tt Mg_{92}Zn_{2}Al_{5}Nd_{1}}$	183
	A	lloy Outside The Scope Of The I	nvention
	Commerci	al Alloy AZ 91C-HP	

8 $(Mg_{91.7}Al_{8.0}Zn_{0.2}Mn_{0.1})$

35

5

10

15

20

- 14 -

EXAMPLE 2

Rapidly solidified ribbons were subjected first to knife milling and then to hammer milling to produce -40 mesh powders. The powders were vacuum outgassed and hot pressed at 200-275°C. The compacts were extruded at temperatures of about 200-250°C at extrusion ratios ranging from 14:1 to 22:1. compacts were soaked at the extrusion temperature for about 20 mins. to 4 hours. Tensile samples were machined from the extruded bulk compacted bars and tensile properties were measured in uniaxial tension at a strain rate of about 5.5 x 10^{-4} /sec at room temperature. The tensile properties together with Rockwell B (R_B) hardness measured at room temperature are summarized in Table 2. The alloys show high hardness ranging from 65 to about 81 Rg.

Most commercial magnesium alloys have a hardness of about 50 $R_{\rm B}$. The density of the bulk compacted samples measured by conventional Archimedes technique is also listed in Table 2.

Both the yield strength (YS) and ultimate tensile strength (UTS) of the present alloys are exceptionally high. For example, the alloy $Mg_{91}Zn_2Al_5Y_2$ has a yield strength of 66.2 Ksi and UTS of 74.4 Ksi which is similar to that of conventional 25 aluminum alloys such as 7075, and approaches the strength of some commercial low density aluminum-lithium alloys. The density of the magnesium alloys is only 1.93 g/c.c. as compared with a density of 2.75 g/c.c. for conventional aluminum alloys and 2.49 g/c.c. for some of the advanced low density aluminum lithium alloys now being considered for aerospace applications. Thus, on a specific strength (strength/density) basis the magnesium base alloys provide a distinct advantage in aerospace 35 applications. In some of the alloys ductility is quite good and suitable for engineering

- 15 -

applications. For example, Mg₉₁Zn₂Al₅Y₂ has a yield strength of 66.2 Ksi, UTS of 74.4 Ksi, and elongation of 5.0%, which is superior to the commercial alloys ZK60A, and AZ91C-HP, when combined strength and ductility is considered. The magnesium base alloys find use in military applications such as sabots for armor piercing devices, and air frames where high strength is required.

TABLE 2

10 Room Temperature Properties of Rapidly Solidified

Mg-Al-Zn-X Alloy Extrusions

Composition	Density 1	Hardn	ess)	r.s.	U.T.	S. E	long.
Nominal (AT%)	(g/c.c.)	(RB)	MPa	(Ksi)	MP	(Ksi)	(%)
Mg _{92.5} Zn ₂ Al ₅ Ce ₀ .	5 1.89	66	359	(52.1)	425	(61.7)	17.5
${ m Mg}_{92}{ m Zn}_2{ m Al}_5{ m Ce}_1$	1.93	77	425	(61.7)	487	(70.6)	10.1
Mg92.5Zn2Al5Pr0.	5 1.89	65	352	(51.1)	427	(61.9)	15.9
$Mg_{91}Zn_2Al_5Y_2$	1.93	81	456	(66.2)	513	(74.4)	5.0
Mg88Al11Mn1	1.81	66	373	(54.2)	391	(56.8)	3.5
Mg ₉₂ Zn ₂ Al ₅ Nd ₁	1.94	80	436	(63.3)	476	(69.1)	13.8

20 ALLOYS OUTSIDE THE SCOPE OF THE INVENTION

Commercial Alloy

ZK 60 A-T5

15

 $(Mg_{97.7}Zn_{2.1}Zr_{0.2})$ 1.83 50 303 (43.9) 365 (52.9) 11.0 AZ 91 HP-T6

25 (Mg_{91.7}Al_{8.0}Zn_{0.2}Mn_{0.1})

1.83 50 131 (19.0) 276 (40.0) 5.0

EXAMPLE 3

The as-cast ribbon and bulk extruded specimens of rapidly solidified Mg-Al-Zn-X alloys were prepared for transmission electron microscopy by a combination of jet thinning and ion milling. Quantitative microstructural analysis of selected R.S. Mg-Al-Zn-X as cast samples, as shown in Table 3, indicates that the fine grain size ranging from 0.36-0.70 µm and fine cell size ranging from 0.09-0.34 µm of magnesium grains have been obtained by rapid solidification process described herein above. The fine dispersoid

PCT/US91/01048 WO 91/13181

- 16 -

size of magnesium-rare earth or aluminum-rare earth intermetallic compounds ranging from 0.04-0.07 µm is also obtained. Because of high melting point and limited solid solubility, these fine dispersoids of 5 aluminum-rare earth or magnesium-rare earth intermetallic compounds do not coarsen appreciably during high temperature consolidation and are quite effective in pinning the grain boundaries as illustrated in the micrographs in Fig. 2 and the quantitative results in Table 3 for as-extruded samples. Such fine grain and the dispersoid size lead to significant improvements in the mechanical properties as compared to conventionally processed material, as shown in Example 2.

TABLE 3 15 TEM Microstructure Analysis of Selected R.S. Mg-Al-Zn-X As-cast and Extruded Samples

10

	No.	Nominal Comp.	Matrix	Precip	itate Sz. (μm)
		At (%)	Grain	Cell	MgZn
20			Size	Size	
			(µm)	(µm)	
	1	$Mg_{92}Zn_2Al_5Ce_1(a)$	0.56	0.14	0.07
	2	$Mg_{92}Zn_2Al_5Ce_1$ (b)	0.70	-	0.56
	3	Mg92.5Zn2Al5Pr0.5(a	0.70	0.34	0.15
25	4	Mg92.5Zn2Al5Pr0.5(h	0.70	-	0.13
	5	$Mg_{91}Zn_2Al_5Y_2$ (b)	0.36	-	0.23

TABLE 3 (Contd.)

	No.	Precipitate	Size (µm)		Volume
30		$Mg_{17}Al_{12}$	Mg ₃ X	Al ₂ Y	Fraction
			(X=Ce,Pr)		(号)
	1	-	0.04	-	
	2	0.56	0.04	-	2.33
	3	0.15	0.04	-	-
35	4	0.65	0.03	-	2.02
	5	0.23	-	0.04	2.56
	(a)	As-Cast	(b) As-Extr	uded	

PCT/US91/01048

30

35

- 17 -

EXAMPLE 4

The effect of temperature and strain rate on the tensile properties of the extruded Mg-Al-Zn-X alloys were evaluated in uniaxial tension at a strain rate ranging from about $2x10^{-5}$ $-2x10^{-3}$ /sec and at temperatures ranging from ambient to 150°C. Prior to testing, the samples were held at the testing temperature for 30 mins. As compared to room temperature tensile strength of extruded Mg-Al-Zn-X alloys, Y.S. drops to about 38-41 ksi, U.T.S. drops 10 to 44-48 ksi and elongation increase to 50% when sample tested at 100°C at a strain rate of 5.5×10^{-4} /sec. Additional decrease in tensile strength (Y.S. = 16-18 ksi, U.T.S. = 21-22 ksi)accompanied with high elongation (elongation = 200 %) 15 occurred when sample was tested at 150°C. superplastic behavior (elongation > 100%) of these rare earth containing alloys is due to the fine grain and dispersoid size obtained by the rapid solidification process. 20

TABLE 4

Elevated Temperature Tensile Properties of As-Extruded

R.S. Mg-Al-Zn-X Alloy (Strain Rate 5.5x10-4/sec Y.S. U.T.S. Elong. No. Composition Test 25 Temp. (°C) MPa (ksi) MPa (ksi) Nominal (At %) 287 (41.7) 330 (47.9) 100 52.3 Mg₉₁Zn₂Al₅Y₂ 110 (16.0) 148 (21.5) 219.7 150 395 (57.4) 444 (64.5) 50 2 Mg₉₂Zn₂Al₅Nd₁ 100 258 (37.5) 305 (44.3) 150 125 (18.2) 153 (22.2) 199.8

The tensile properties of the consolidated article also strongly depend on the strain rate, Table 5. At a constant temperature, increasing the strain rate increases the tensile strength.

Moreover, the strain rate dependence of strength increases with increasing temperature. Testing at a

high temperature and at a low strain rate tends to

- 18 -

improve the ductility. Superplastic behavior (elongation >100%) occurred at a test temperature of 150°C, and at a strain rate $\langle 1x10^{-3}/\text{sec} \text{ in the} \rangle$ as-extruded bar. The combination of low flow stress (25 ksi yield strength) and high ductility (> 100%) in the alloys of the invention makes them exceptionally useful in superplastic forming such as hot forging. Figure 3 shows two extruded bars of Mg92Zn2Al5Nd1 forged at 160°C at a low rate and at 180°C at a moderate rate. Large cracks occurred when 10 the sample was forged at the moderate rate (0.00021 m/sec), Fig. 3(a). Decreasing the ram speed down to 0.00001 m/sec eliminates the cracks in the sample and improves the formability, Fig. 3(b). The mechanical properties of the as-forged sample is about the same 15 as the as-extruded sample, Tables 6, 7. When forged in a close die at a low rate, a complex part may be formed in a single step and with outstanding precision of shape and no cracks. It is to be noted 20 that under the same forging condition severe cracks have been found in the commercial alloy ZK60A.

TABLE 5

The Effect of Temperature and Strain Rate on the
Tensile Properties of

		As Extru	ded R.	S. Mg92	$2n_2Al_1$	_{L5} Nd ₁ _Al	loy
	Test	Strain	Y.S.		UTT.	5. E	long.
25	Temp.	Rate					
	(°C)	<u>(x10⁼⁵/sec)</u>	MPa	<u>(ksi)</u>	<u>MPa</u>	<u>(ksi)</u>	(8)
	20	2.5	398	(57.8)	449	(65.3)	18.0
	20	55.0	403	(58.6)	454	(65.9)	11.7
	20	250.0	450	(65.4)	497	(72.2)	5.4
	50	2.5	332	(48.3)	375	(54.5)	36.1
	50	55.0	395	(57.4)	444	(64.5)	28.4
30	50	250.0	400	(58.1)	449	(65.3)	21.3
30	100	2.5	169	(24.5)	200	(29.1)	104.5
	100	55.0	258	(37.5)	305	(44.3)	50.3
	100	250.0	287	(41.7)	338	(49.1)	45.8
	150	2.5	58	(8.5)	63	(9.1)	139.6
	150	55.0	125	(18.2)	153	(22.2)	199.8
	150	250.0	164	(23.8)	200	(29.1)	79.4

- 19 -

TABLE 6 Room Temperature Tensile Properties of Forged R.S. Mg₉₂Zn₂Al₅Nd₁ Extrusion Extruded at Normal Rate

	Forged Temp.	Ram Speed	Cracks	Y.S.	U.T.S.	Elong.
5	(°C)	-		MPa (ksi)	MPa (ksi)	(%)
_	150	Low	Very small		499 (72.5	
	180	Low	None	451 (65.5)	505 (73.4) 12.8
	180	High	Large			
	220	High	None	451 (65.0)	516 (75.0) 13.0

TABLE 7 Room Temperature Tensile Properties of Forged R.S. Mg92Zn2Al5Nd1 Extrusion Extruded at Low Rate

10

	Forged Temp.	Ram Speed	Cracks	Y.S.	U.T.S.	Elong.
	(°C)			MPa (ksi)	MPa (ksi)	(%)
	150	Low	Very small		523 (76.0)	8.4
	160	Low	None	450 (65.4)	512 (74.4)	9.1
15	190	Low	None	484 (70.3)	540 (78.6)	6.8
	210	Low	None	457 (66.4)	510 (74.1)	8.8
	220	High	Large			
	230	High	Small	469 (68.1)	536 (77.9)	7.6
	240	High	Small	470 (68.3)	529 (76.9)	7.2

EXAMPLE 5

- Room temperature tensile properties of 1" diameter extrusions (R.S. Mg₉₂Zn₂Al₅Nd₁) made by the present invention were evaluated and compared with the tensile properties of the extrusion made by prior art (S.K. Das and C.F. Chang, U.S. Pat. No.
- 4,765,954, Rapidly Solidified High Strength Corrosion
 Resistant Magnesium Base Alloys, August 1988], Table
 8. Because of the extensive deformation produced in
 the extrusion using the method described in the prior
 art, there is a temperature rise during extrusion.
- As the result, extrusion made by prior art are effected at higher temperatures, causing coarsening of precipitates and decrease of such mechanical properties as yield strength and ultimate tensile strength, as well as non uniformity of those mechanical properties in the formed product.
- However, the procedure of superplastic forming minimizes adiabatic heat build-up during extrusion

- 20 -

providing remarkably uniform mechanical properties throughout the extruded article.

TABLE 8

Comparison of Room Temperature Tensile Properties of

1" Diameter Extrusions (R.S. Mg₉₂Zn₂Al₅Nd₁)

Made by Present Invention and Prior Art

Made by Pr	<u>esent invent:</u>	<u>ton and</u>	Prior Al	<u> </u>
Method of Forming			U.T.S.	Elong.
	From Front	(ksi)	(ksi)	(%)
Prior Art	0"	67	74	9
	24"	61	68	15
Present	0"	67	74	12
Invention	24"	67	74	13

Having thus described the invention in rather full detail, it will be understood that such detail need not be strictly adhered to but that further changes may suggest themselves to one having ordinary skill in the art, all falling within the scope of the invention as defined by the subjoined claims.

20

5

25

30

10

We claim:

- A method of making a superplastic forming form a consolidated metal article, said article having been made by compacting a rapidly solidified magnesium based alloy powder consisting essentially of the formula $Mg_{bal}Al_aZn_bX_c$, wherein X is at least one element selected from the group consisting of manganese, cerium, neodymium, praseodymium, and yttrium, "a" ranges from about 0 to 15 atom percent, "b" ranges from about 0 to 5 atom percent, "c" ranges from about 0.2 to 3 atom percent, the balance being magnesium and incidental impurities, with the proviso that the sum of aluminum and zinc present ranges from about 2 to 15 atom percent, said alloy having a microstructure comprised of a substantially uniform cellular network of solid solution phase of a size ranging from 0.2 -1.0 micron together with precipitates of magnesium and aluminum containing intermetallic phases of a size less than 0.1 micron, comprising the step of forming said article at a forming rate ranging from about 0.00021 m/sec to 0.00001 m/sec.
- 2. A method as recited by claim 1, wherein said forming step is carried out at a temperature ranging from about 160 to 275°C.
- 3. A method as recited by claim 2, wherein said forming step is an extrusion step.
- 4. A method as recited by claim 2, wherein said forming step is a forging step.

20

25

Figure 1(a)

Figure 1(b)

Figure 2(a)

Figure 2(b)

Figure 3(a)

6/6

Figure 3(b)

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 91/01048

			ernational Application No PCT/	
I. CLASSIF	ICATION	OF SUBJECT MATTER (if several classification	on symbols apply, Indicate all)	
According to	Internation	nal Patent Classification (IPC) or to both National	Classification and IPC .	
IPC ⁵ : C		1/04, C 22 F 1/06		
II. FIELDS	SEARCHE	Minimum Documentatio	n Searched 7	
			sification Symbols	
Classification	System			
IPC ⁵		C 22 C, C 22 F		
		Documentation Searched other than to the Extent that such Documents are	Minimum Documentation included in the Fields Searched 9	
III. DOCU	MENTS C	ONSIDERED TO BE RELEVANT	water of the rejevent passages 12	Relevant to Claim No. 13
Category •	Citati	on of Document, 11 with Indication, where appropri		•
A		A, 0219628 (ALLIED COR 29 April 1987 see claims 1,8; exampl (page 5), II (page 6),	es of tables I	1
		ed in the application		1,2
x	₩O,	A, 89/11552 (ALLIED-SI 30 November 1989 see claims 1,2 & US priority 23 May 1		1,2
		serial no. 197796		1
A	EP,	A, 0104774 (ALCAN INTE 4 April 1984 see page 1, lines 1-4; 14; claims 2,10		-
	}			
	1			
ł				
	1			
"A" d	ocument de	es of cited documents: 18 fining the general state of the art which is not be of particular relevance	"T" later document published after or priority date and not in corcited to understand the priority decument of particular relevant	ple or theory underlying th
"L" d	ling date ocument wi which is cite	nent but published on or after the international hich may throw doubts on priority claim(s) or d to establish the publication date of another her special reason (as specified) ferring to an oral disclosure, use, exhibition or	"X" document of particular releving cannot be considered novel involve an inventive step document of particular releving cannot be considered to involve the combined with owners, such combination being the cannot be combined to be combined with owners, such combination being cannot be	ance; the claimed invention
	ther means	isring to an oral disclosure, user, summer siblished prior to the international filing date but a priority date claimed	in the art. "A" document member of the san	
1	RTIFICAT			Court Pener
Date of	the Actual	Completion of the international Search	Date of Mailing of this International .3 1	JUL 1991
14th	June	1991	Signature of Authorized Officer	AL I
		hing Authority	Signature of Additional	7A751 A
1	EUR	OPEAN PATENT OFFICE	1	STOS I. TAZELAS

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

US 9101048 SA 45409

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 22/07/91

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

A A Section

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A- 0219628	29-04-87	US-A- 47659 JP-A- 620834 US-A- 48530 US-A- 48573	146 16-04-87 035 01-08-89
WO-A- 8911552	30-11-89	US-A- 49388 EP-A- 04172	
EP-A- 0104774	04-04-84	AU-B- 5694 AU-A- 18466 CA-A- 11986 GB-A,B 21269 JP-A- 590641 US-A- 45712	283 28-02-85 556 31-12-85 936 04-04-84 735 12-04-84

BLANK PAGE

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

BLANK PAGE