Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа N 3.4.2

(Общая физика: электричество и магнетизм)

Закон Кюри-Вейсса

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2022 год

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Оборудование: катушка самоиндукции с образцом из гадолиния, термостат, частометр, цифровой вольтметр, LC-автогенератор, термопара медь-константин.

1 Историческая справка

Ферромагнетики обладают свойством намагничиваться даже в слабых магнитных полях. Впервые количественную теорию ферромагнетизма разработал французский физик Вейсс в 1907 году. В настоящей работе для изучения температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри (то есть в парамагнитной области) используется закон Кюри-Вейса (который назван так по аналогии с законом Кюри для парамагнетиков). Закон выражается следующей математической формулой:

$$\chi = \frac{C}{T - \Theta_p} \sim \frac{1}{T - \Theta_p},\tag{1}$$

где χ — магнитная восприимчивость, С — постоянная Кюри, зависящая от вещества, T — абсолютная температура в кельвинах, Θ_p — парамагнитная температура Кюри, К.

2 Теоретическое введение

При повышении температуры Т возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле) - по закону Кюри.

Рис. 1: Теоретический график зависимости обратной магнитной восприимчивости от температуры

При $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках (под влиянием обменных сил) это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ , в котором добавка к температуре Θ_p — некая температура, называемая парамагнитной точкой Кюри. Она близка к Θ , но немного больше ее (см. рис.1). Оказывается, что у ферромагнетиков закон Кюри должен быть заменён законом Кюри-Вейсса (1). Эта формула хорошо описывает поведение ферромагнитных веществ после их перехода в парамагнитную фазу при заметном удалении температуры от 0 , но недостаточно точна при $T \approx \Theta$. В нашей работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в интервале комнатных температур.

Магнитная воосприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0) \propto \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$

где C — ёмкость конутра автогенератора. Период колебаний в отсуствие образца опредлеяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2} \tag{2}$$

3 Экспериментальная установка

Рис. 2: Схема эксперементальной установки

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LС-автогенератора. Гадолиний является хорошим проводником электрического тока, а рабочая частота генерато-

ра достаточно велика (50 кГц), поэтому для уменьшения вихревых токов образец из готовлен из мелких кусочков размером 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Для нагрева используется термостат. Температура исследуемого образца всегда несколько отличается от температуры дистиллированной воды в сосуде. После того как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медноконстантановой термопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом , а другой погружён в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится ≤ 0.5 °C. Чувствительность термопары k=24 град/мВ.

4 Ход работы

Запишем данные установки: k=24 град/мВ, $\tau_0=6.95636$ мкс, $\sigma_{\Delta U}=0.012$ мВ, $\sigma_{T_{\rm B}}=0.1^{\circ}C$, $\sigma_{\tau}=0.01$ мкс. Так как нам нужно, чтобы разница была не более половины градуса, то мы вычисляем максимальное напряжение, при котором допустимо измерение:

$$U_m = \frac{T_d}{k} = \frac{0.5}{24} \approx 0.021 \text{MB}$$
 (3)

Теперь снимем показания вольтметра и частометра при температуре термостата равной 14 °C, и проведем такой опыт при 14 разных температурах, повышая после каждого измерения температуру термостата на два градуса. При этом температуру образца будем считать по следующей формуле:

$$T_{\text{реал}} = T - |k\Delta U| \tag{4}$$

Результаты занесем в таблицу:

T, °C	Δ(T), °C	Треал, °С	U, мкВ	T, MKC	f(τ), мкс^(-2)
14,1	0,19	13,91	8	7,967	0,064
16,1	0,24	15,86	10	7,901	0,068
18,1	0,31	17,79	13	7,795	0,077
20,1	0,26	19,84	11	7,651	0,090
22,1	0,36	21,74	15	7,420	0,117
24,1	0,31	23,79	13	7,240	0,164
26,1	0,31	25,79	13	7,167	0,226
28,1	0,34	27,76	14	7,134	0,287
30,1	0,36	29,74	15	7,101	0,342
32,1	0,41	31,69	17	7,083	0,401
34,1	0,34	33,76	14	7,069	0,448
36,1	0,36	35,74	15	7,059	0,508
38	0,36	37,64	15	7,052	0,553
40	0,34	39,66	14	7,046	0,589

Рис. 3: Результаты измерений

Таблица 1: Погрешности

таолица т. ттогрешпости					
$N_{\overline{0}}$	$\sigma_{T_{\mathrm{pean}}}$	$\sigma_{f(\tau)}, \text{ MKC}^{-2}$			
1.	0.02	0.00003			
2.	0.02	0.00004			
3.	0.02	0.00005			
4.	0.02	0.00007			
5.	0.02	0.00014			
6.	0.02	0.00033			
7.	0.02	0.00054			
8.	0.02	0.00072			
9.	0.02	0.00098			
10.	0.02	0.00120			
11.	0.02	0.00142			
12.	0.02	0.00161			
13.	0.02	0.00177			
14.	0.02	0.00193			

Посчитаем погрешности:

$$\sigma_{T_o} = \sqrt{\sigma_{T_B}^2 + \sigma_{dUk}^2}$$

$$\sigma_{f(\tau)} = \frac{\partial f(\tau)}{\partial \tau} \, \sigma_{\tau} = \frac{2\tau}{(\tau^2 - \tau_0^2)^2} \, \sigma_{\tau} \qquad (5)$$

На основе этих таблиц построим график зависимости величины $f(\tau)$ от температуры образца.

На графике проведем прямую через последние 7 точек и аппроксимируем ее к оси абсцисс

На графике рис.4 видно, что наблюдается излом в райне пятой точки графика.

Рис. 4: Зависимость $f(\tau)$ от температуры образца

Таким образом, это и есть искомая точка Кюри Θ , которая наблюдается в ожидаемом для нее месте (согласно табличным данным, $\Theta=16~^{\circ}C$). На графике рис.3 видно, что график превращается в почти параллельную оси абсцисс прямую, близкую к нулю, также в районе $16~^{\circ}C$.

Таблица 2: Расчет апроксимированной прямой y = a + bx

	Estimate	Standard Error
a	-0.473	0.016
b	0.0272	0.0005

$$f(\tau) = 0.027 T_o - 0.473 \tag{6}$$

При y=0 парамагнитная температура Кюри $\Theta_p=\frac{0.4730}{0.0272}\approx 17.39~^{\circ}C.$

Погрешность полученной величины:

$$\sigma_{\Theta_p} = \Theta_p \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2} = 0.67 \, ^{\circ}C \tag{7}$$

Исходя из данных графика $f(\tau)$ можно оценить температуру Кюри:

$$\Theta_K \approx 15 \, ^{\circ}C$$

5 Вывод

Была проверена справедливость закона Кюри-Вейсса для гадолиния при температурах больше $20~^{\circ}C$ и подтвержден характер обратной зависимости магнитной восприимчивости у ферромагнетика выше точки Кюри, была посчитана парамагнитная точка Кюри для гадолиния:

$$\Theta_p = (17.39 \pm 0.67) \, ^{\circ}C$$

Как и предполагалось в теоретическом введении, это значение близко к температуре Кюри, которая примерно равна $16-17~^{\circ}C$.

Полученный результат достаточно хорошо согласуется с табличными данными, где точка Кюри гадолиния $\Theta_{\rm r}=20~^{\circ}C.$