LCG - BEII - Introduction and contents DUBii 2019

Jacques van Helden

2019-02-05

Scope of the course

This courses provides an overview of bioinformatics methods used to analyse cis-regulation.

- 1. Detection of cis-regulatory elements and other types of nucleic sequence motifs.
- 2. Next Generation Sequencing approaches to genomi regulation
 - ChIP-seq for transcription factors
 - ChIP-seq for chromatine marks (histone acetylation, methylation)
 - RNA-seq (differentially expressed genes)
- 3. Underlying statistics

Schedule

Day	Topics
Day 1	Regulatory sequences: cis-regulatory elements intro + predicting binding sites
Day 2	Regulatory sequences: motif discovery
Day 3	Analysing regulation with NGS data
Day 4	Integrative exercises and evaluations

General goals of the course

- Learn the concepts and methods related to bioinformatics analysis of cis-regulation
- Understand the underlying algorithms and statistics.
- Get a practical experience of bioinformatics resources (databases and tools) used in the domain

Specific goal: skills in statistics

1. Topics

- Sequence models
- Statistics of motif detection (scanning, discovery)
- NGS statistics (read mapping, peak calling, differential expression)
- Designing control sets to validate the statistical models

2. Approach

- Minimalist theoretical elements
- Intuitive approach to the statisics: lots of graphs, simulations, controls

3. Environment

- R statistical language (https://www.r-project.org/)
- Bioconductor: (https://www.bioconductor.org/)
- Developing environment: RStudio (https://www.rstudio.com/)

Specific goal: technical skills

- Writing reports in R markdown (http://rmarkdown.rstudio.com/)
- Version management with git (https://git-scm.com/)
 - see Blischak, Davenport, and Wilson (2016)

Resources for this course

Name	Description + URL
LCG_BEII	The course material for this course on github http://jvanheld.github.io/LCG_BEII
RSAT	Regulatory Sequence Analysis Tools http://rsat.eu/
RSAT	Teaching material for the analysis of regulatory
course	sequences http://rsa-tools.github.io/course/

Downloading a local copy of the course material

This is optional.

If you wish to download a local copy of all the course material, open a Unix terminal and type.

```
git clone https://github.com/jvanheld/LCG_BEII.git
```

Then open the file *LCG_BEII/index.html* with a Web browser.

Since the course will be periodically improved, you can get the updates with the following command.

```
cd LCG_BEII;
git pull
```

Command-line use of RSAT for LCG students

LCG students can access RSAT on the command line with the following commands

Open an ssh connection to the local server
ssh tepeu

Load the RSAT configuration file
source /export/apps/rsat/RSAT_config.bashrc

Check that the paths are correct supported-organisms

References

Blischak, John D, Emily R Davenport, and Greg Wilson. 2016. "A Quick Introduction to Version Control with Git and GitHub." *PLoS Computational Biology* 12 (1): e1004668.