

Description

The series of devices uses **Super Trench II** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

Application

- DC/DC Converter
- •Ideal for high-frequency switching and synchronous rectification

General Features

- V_{DS} =100V,I_D =75A
 R_{DS(ON)}=7.4mΩ, typical (TO-220)@ V_{GS}=10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST10N074-TC	VST10N074	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	75	A A A W	
Drain Current-Continuous(T _C =100℃)	I _D (100°C)	58		
Pulsed Drain Current	I _{DM}	300		
Maximum Power Dissipation	P _D	120		
Derating factor		0.8	W/℃	
Single pulse avalanche energy (Note 4)	E _{AS}	420	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case $R_{\theta,JC}$ 1.25 °C/W
--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit			
Off Characteristics									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100		-	V			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μA			
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA			
On Characteristics (Note 3)									
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.0	3.0	4.0	V			
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =37.5A	-	7.4	8.0	mΩ			
Forward Transconductance	g FS	V _{DS} =5V,I _D =37.5A		60	-	S			
Dynamic Characteristics (Note3)									
Input Capacitance	C _{lss}	\/ -50\/\/ -0\/	-	3070	-	pF			
Output Capacitance	Coss	V_{DS} =50V, V_{GS} =0V, F=1.0MHz	-	290	-	pF			
Reverse Transfer Capacitance	C _{rss}	Γ-1.UIVIΠZ	-	23	-	pF			
Switching Characteristics (Note 3)									
Turn-on Delay Time	t _{d(on)}		-	15	-	nS			
Turn-on Rise Time	t _r	V_{DD} =50 V , I_{D} =37.5 A	-	10	-	nS			
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.6 Ω	-	34	-	nS			
Turn-Off Fall Time	t _f		-	8	-	nS			
Total Gate Charge	Qg	V _{DS} =50V,I _D =37.5A,	-	53	-	nC			
Gate-Source Charge	Q _{gs}	$V_{DS} = 50V, I_D = 37.5A,$ $V_{GS} = 10V$	-	18	-	nC			
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	16	-	nC			
Drain-Source Diode Characteristics									
Diode Forward Voltage (Note 2)	V _{SD}	V _{GS} =0V,I _S =37.5A	-	-	1.2	V			
Diode Forward Current	Is		-	-	75	Α			
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = 37.5A$	-	60	-	nS			
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	106	-	nC			

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 3. Guaranteed by design, not subject to production
- 4. EAS condition : Tj=25 $^{\circ}\text{C}$,V $_{DD}$ =50 V ,V $_{G}$ =10 V ,L=0.25 mH ,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Vds Drain-Source Voltage (V)

Vgs Gate-Source Voltage (V)

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Gate Charge

Figure 5 Source- Drain Diode Forward

Figure 6 Capacitance vs Vds

T_J-Junction Temperature(°C)

Figure 7 Power De-rating

Figure 9 Current De-rating

Figure 8 Safe Operation Area

T_J-Junction Temperature(°C)

Figure 10 Rdson-Junction Temperature

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance