

SR - CHE - CARBOXYLIC ACID - DPT

1. IUPAC name of val	eric	acid
----------------------	------	------

- 1) Propionic acid
- 2) Butyric acid
- 3) Pentanoic acid
- 4) 2-methyl butanoic acid

2.
$$C_6H_5MgBr \xrightarrow{CO_2} P$$

In the above reaction product P is

- 1) Phenol
- 2) Benzoic acid
- 3) Benzaldehyde
- 4) Benzophenone
- Among ethanol (I) Acetic acid (II), Phenol (III) and benzoic acid (IV), the correct order of increasing 3. acid strength is
 - 1) I<II<III<IV
- 2) I<III<IIV
- 3) I<III<IV<II
- 4) III<IV<I<II
- Predict the product C in the following series of reactions 4.

$$CH_3 - COOH \xrightarrow{PCl_5} A \xrightarrow{C_6H_6} B \xrightarrow{CH_3MgBr} C$$

2)
$$CH_3CH(OH)C_6H_5$$
 3) $CH_3CH(OH)C_2H_5$ 4) $(CH_3)_2C(OH)C_6H_5$

- Correct acidic strength of the following carboxylic acids 5.
 - A) C_6H_5COOH

B) $o - NO_2(C_6H_4)COOH$

C) $p - NO_2(C_6H_4)COOH$

D) $m - NO_2(C_6H_A)COOH$

- 1) A>B>C>D
- 2)B>C>D>A
- 3)B>D>A>C
- 4)B>D>C>A
- In the following reaction, X and Y are respectively $CH_3COOH + NH_3 \rightarrow X \xrightarrow{\Delta} Y + H_2O$. 6.
 - 1) CH_3CONH_2 ; CH_4

2) CH_3COONH_4 ; CH_3CONH_7

3) CH_3CONH_2 ; CH_3COOH

- 4) CH_3NH_2 ; CH_3CONH_2
- $CH_3COOH \xrightarrow{1moleCl_2/\text{Red}P} A \xrightarrow{KCN} B \xrightarrow{H^+/H_2O} C$. Hence C is 7.
 - 1) Oxalic acid
- 2) Maleic acid
- 3) Fumaric acid
- 4) Malonic acid
- Among the following acids, which has the lowest p^{K_a} value? 8.
 - 1) CH₃COOH
- 2) HCOOH
- 3) $(CH_3)_2 CH COOH 4$) $CH_3 CH_2 COOH$
- 9. The reagent that can be used to distinguish between phenol and ethanoic acid is
 - 1) Ammonical silver nitrate solution
- 2) Fehling solution

3) Phenolphthalein

- 4) Sodium carbonate solution
- 10. Compound A reacts with PCl₅ to give B which on treatment with KCN followed by hydrolysis gave propionic acid. What are A and B respectively?
 - 1) $C_3H_8 \& C_3H_7Cl$
- 2) $C_2H_6 \& C_2H_5Cl$ 3) $C_2H_5OH \& C_2H_4Cl_2$ 4) $C_2H_5OH \& C_2H_5Cl$
- Aqueous 10% NaHCO₃ solution is used as a reagent for identifying X. Which one of the following 11. compound yields X on hydrolysis?
 - 1) *CH*₃*CO*₂*C*₂*H*₅
- 2) $C_2H_5 O C_2H_5$
- 3) *CH*₃*CHO*
- 4) $CH_3 CH_2 OH$
- Methyl alcohol when reacted with carbon monoxide using cobalt or rhodium as catalyst, compound A 12. is formed A on heating with HI in the presence of red phosphorus as catalyst, B is formed. Identify B

	1) CH_3COOH	2) CH ₃ CHO	3) <i>CH</i> ₃ <i>CH</i> ₂ <i>I</i>	4) <i>CH</i> ₃ <i>CH</i> ₃				
13.	Formic Acid and aceti	Formic Acid and acetic acid can be distinguished by						
	1) Baeyer's reagent	2) Tollen's reagent	3) Litmus paper	4) Sodium bicarbonate				
14.			odium metal and releas	e H ₂ gas . A and B react together				
	to give ethyl acetate. T 1) HCOOH and C ₂ H ₅ O		2) C ₂ H ₅ OH and CH ₃ C	OOH				
	3) CH ₃ COOH and CH		4) CH ₃ COOH and HC					
15.	,	-3	,	B,C and D are respectively.				
	2			s,e and s are respectively.				
	1) $CH \equiv CH$, $Ca(OH)_2$, $CH_3CHO \& CH_3COOH$ 2) $Ca(OH)_2$, $CH \equiv CH$, $CH_3CHO \& (CH_3COO)_2$, Ca							
	72 72							
	`	$)_2$, CH ₃ CHO & (CH ₃ CO	7 2					
	4) $CH \equiv CH, CH_3CH_6$	$O, Ca(OH)_2 & (CH_3CO)$	$O)_2 Ca$					
16.	16. What are A,B and C in the following reactions?							
	CH_3CO_2Na — Soda $\lim e/\Delta$	$\rightarrow A$, CH_3CO_2H $\frac{LiAlH_4}{}$	$\rightarrow B$, $CH_3CO_2Na^{-Kol}$	$\xrightarrow{\text{be'selectrolysis}} C$				
	A	В	C					
	1) C_2H_6	C_2H_5OH	CH ₄					
	2) CH ₄	C_2H_5OH	C_2H_6					
	3) C_2H_6	CH ₃ COCH ₃	C_3H_8					
	4) (CH ₃ CO) ₂ O	C_2H_6	C_2H_6					
17.	Identify A,B and C in	the following reactions						
	$CH Cl \xrightarrow{KCN} A \xrightarrow{I}$	$Hydrolysis$ \longrightarrow B C_2H_5	OH/H^+					
	$CII_3Ci \longrightarrow 7I$	$H_3O^{(+)}$	Δ					
	A	В	C					
	1) <i>CH</i> ₃ <i>NC</i>	CH_3NHCH_3	$CH_3N(CH_3)C_2H_5$					
	2) <i>CH</i> ₃ <i>CN</i>	CH_3CONH_2	CH_3CO_2H					
	3) <i>CH</i> ₃ <i>CN</i>	CH_3CO_2H	$CH_3CO_2C_2H_5$					
	4) <i>CH</i> ₃ <i>CN</i>	CH_3CO_2H	$(CH_3CO)_2O$					
18.	What is Z in the follow	wing sequence of reaction	ons?					
	Phenol $\xrightarrow{Zn dust} Y$	CH_3Cl $anhyd.AlCl_3$ $Y.Y$	alkaline 7					
	Thenor 721	$anhyd.AlCl_3$	$KMnO_4$					
	1) Toluene	2) Benzene	3) Benzoic acid	4) Benzaldehyde				
19.	- -	nitration of benzoic acid						
	1) 3-nitro benzoic acid 2) 4-nitro benzoic acid							
		1 4) 2,4-dinitro benzoic						
20.	Consider an esterificat	tion of isotopically label	led carboxylic acid					
	O 18	$CH_2OH \xrightarrow{H^+} (A) \& (B)$	D)					
	$CH_3 - C - OH + CH_3CH_2OH \xrightarrow{\iota\iota} (A) \& (B)$							

Compounds (A) and (B) respectively are

$$CH_{3} - C - OC_{2}H_{5}; H_{2}O$$

$$CH_{3} - C - OC_{2}H_{5}; H_{2}O$$

$$CH_{3} - C - OC_{2}H_{5}; H_{2}O$$

2)
$$CH_3 - C - OC_2H_5; H_2O^{18}$$

$$CH_3 - C - OC_2H_5; H_2O^{18}$$

- 21. Number of π electrons in pthalic acid is
- Number of oxygen atoms present in product. Which is formed by the oxidation of toluene with alkali 22. $KMnO_{4}$
- 23. How many of the following more acidic than Benzoic acid. CH_3COOH , HCOOH, NO_2-COOH , $C_6H_5-CH_2-COOH$, CH_3-CH_2-COOH
- How many of the following not involved in HVZ reaction 24.

$$CH_{3}$$

$$CH_{3}CH_{2}COOH, HCOOH, C_{6}H_{5}-COOH, CH_{3}-CH-COOH, CH_{3}-CH-COOH, CH_{3}-CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

- Sodium ethanoate on decarboxylation to form a product. Number of σ bonds in the product is 25.
- 26. Number of Lone pairs x, σ bonds y, π bonds z in acetamide. Then sum of x,y,z is
- $3R COOH + PCl_3 \longrightarrow 3RCOCl + x$. Basicity of x is _____ 27.
- R-COOH + $SOCl_2 \longrightarrow RCOCl + x + HCl$. 28. Product of σ and π bonds in x is
- 29. In 4 – methoxy Benzoic acid number of oxygen atoms attached to aryl groups
- 30. Styrene formula $C_x H_y$. Product of x & y is _____

KEY

1) 3	2) 2	3) 2	4) 4	5) 2	6) 2	7) 4	8) 2	9) 4	10) 4
11) 1	12) 4	13) 2	14) 2	15) 1	16) 2	17) 3	18) 3	19) 1	20) 2
21) 10	22) 2	23) 2	24) 3	25) 4	26) 12	27) 2	28) 4	29) 1	30) 64

SOLUTIONS

- Valeric acid CH₃CH₂CH₂CH₂COOH 1.
- 2. - I E Groups increases the acidic strength
- 3. $A = CH_3COCl$

$$B = C_6 H_5 - C - CH_3$$

$$OH$$

$$C = CH_3 - C - C_6H_5$$

$$CH_3$$

- Presence of –I.E, -R effect groups, acidic strength is high 4.
- $X = CH_3COONH_4, Y = CH_3CONH_2$ 5.

$$A = \begin{matrix} CH_2 - COOH, B = CH_2 - COOH, C = CH_2 - COOH \\ Cl & CN & COOH \end{matrix}$$

6.

7. Acidic strength $\propto \frac{1}{p^{K_a}}$

8. Na_2CO_3 solution

9. $A = C_2H_5OH, B = C_2H_5Cl$

$$CH_{3}COOC_{2}H_{5} \xrightarrow{H_{2}O} CH_{3}COOH + C_{2}H_{5}OH \otimes CH_{3}COOH + C_{2}H_{5}OH$$

10.

CH₃COOH can be identified by NaHCO₃ solution

11.

$$CH_3OH + CO \xrightarrow{Co/Rh} CH_3COOH \xrightarrow{HI} CH_3CH_3$$

$$A \qquad \qquad (A) \qquad (B)$$

12. Formic acid reduces Tollen's reagent

$$H-C-group$$

Absence of α -hydrogen

14.
$$CH_3COOH + C_2H_5OH \xrightarrow{H^+} CH_3COOC_2H_5 + H_2O$$

15.
$$A = CH \equiv CH$$
; $B = Ca(OH)_2$; $C = CH_3 - CHO$; $D = CH_3COOH$

16. A=CH₄,B=C₂H₅OH,C=C₂H₆

17. A=CH₃CN,B=CH₃COOH, C=CH₃COOC₂H₅

18.
$$X=C_6H_6$$
; $Y=C_6H_5-CH_3$, $Z=C_6H_5-COOH$

19.

13.

20. Esterfication

21.

 π bonds = 5

$$\pi e^{-} = 5 \times 2 = 10$$

22.

No. of oxygen atoms = 2

23. HCOOH, $NO_2 - COOH$ are more acidic than benzoic acid

24.
$$\alpha$$
 H are not present in HCOOH, C_6H_5COOH and $CH_3 - \overset{C}{C} - COOH$

$$\overset{C}{CH_3}$$

25.
$$CH_3COONa + NaOH \xrightarrow{CaO} CH_4 + Na_2CO_3$$

 $\sigma \ bonds = 4$

26.
$$CH_3 - C - NH_2$$
 L.P x = 3 $\sigma = 8$ $x + y + z = 8 + 3 + 1 = 12$

27.
$$x = H_3 PO_3$$

$$H = \bigcap_{P}^{O} OH$$

Basicity is 2

28.
$$x = SO_2$$

30. C_8H_8

$$CH = CH_2$$

$$x = 8, y = 8 \Rightarrow 8 \times 8 = 64$$