Análise Multivariada

Lupércio França Bessegato Dep. Estatística/UFJF

Análise de Componentes Principais

Roteiro

- 1. Introdução
- Representação de Dados Multivariados
- Análise de Componentes Principais
- Distribuições de Probabilidade Multivariadas
- Análise Fatorial
- Análise de Correlação Canônica
- Análise de Conglomerados
- Análise Discriminante
- Referências

Análise Multivariada - 2016

Introdução

- Objetivo:
 - √ Explicar a estrutura de variância e covariância de conjunto de variáveis através de algumas combinações lineares das mesmas
 - √ Busca-se:
 - Redução de dados
 - Interpretação

Análise Multivariada - 2016

Componentes Principais Exatas

- Algebricamente:
 - $\sqrt{\text{Combinações lineares particulares das } p \text{ variáveis aleatórias } X_1, X_2, ..., X_n$.
- Geometricamente:
 - √ Representam a seleção de um novo sistema de coordenadas obtidas por rotação do sistema original
 - √ Os novos eixos representam as direções com maior variabilidade
 - √ Fornecem descrição mais simples e mais parcimoniosa da estrutura de covariâncias

Análise Multivariada - 2016

- Análise de componentes principais:
 - √ Não pressupõe normalidade
 - Componentes principais derivadas de populações normais têm interpretações úteis
 - √ Com frequência, revela relações insuspeitadas
 - Pode permitir interpretações que não seriam obtidas preliminarmente
 - √ Em geral, é um passo intermediário para a aplicação de outras técnicas

Análise Multivariada - 2016

- Componentes principais:
 - $\sqrt{\text{S}}$ ão necessárias p componentes para reproduzir a variabilidade total do sistema
 - √ As componentes são não correlacionadas entre si
 - Ortogonalidade entre as componentes
 - √ Variabilidade das p variáveis é aproximada pela variabilidade das k principais componentes
 - Buscam-se situações em que haja quase tanta informação nas k componentes principais quanto nas p variáveis originais

Análise Multivariada - 201

Componentes Principais Exatas Extraídas da Matriz de Covariâncias

· Sejam o vetor aleatório

$$\mathbf{X}' = [X_1, X_2, \dots, X_p].$$

com matriz de covariâncias é Σ , cujos autovalores são $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p \geq 0$.

• Componentes principais de Σ:

$$Y_1, Y_2, ..., Y_p$$
.

√ Combinações lineares não correlacionadas do vetor aleatório, cujas variâncias são as maiores possíveis

Análise Multivariada - 2016

• Definição – Componente principal:

√ Sistema cuja j-ésima combinação linear de **X** é definida como:

$$Y_j = \mathbf{a}_j' \mathbf{X} = a_{j1} X_1 + a_{j2} X_2 + \dots + a_{jp} X_p.$$

 $\sqrt{\mathbf{e}_{i}}$: autovetor correspondente ao j-ésimo autovalor

• Esperança e variância de Y_i:

$$E[Y_j] = E[\mathbf{e}'_j \mathbf{X}] = \mathbf{e}'_j \boldsymbol{\mu} = e_{j1} \mu_1 + e_{j2} \mu_2 + \dots + e_{jp} \mu_p.$$

$$\operatorname{Var}[Y_j] = \operatorname{Var}[\mathbf{a}_j' \mathbf{X}] = \mathbf{a}_j' \mathbf{\Sigma} \mathbf{a}_j.$$

• Covariância entre duas componentes principais:

$$Cov[Y_j, Y_k] = \mathbf{a}_i' \mathbf{\Sigma} \mathbf{a}_k, j \neq k, j = 1, 2, \dots, p$$

Análise Multivariada - 2016

• Definição 2 – Componente principal:

 \sqrt{A} j-ésima componente principal da matriz Σ é definida como:

$$Y_j = \mathbf{e}'_j \mathbf{X} = e_{j1} X_1 + e_{j2} X_2 + \dots + e_{jp} X_p.$$

 $\sqrt{\mathbf{e}_i}$: autovetor correspondente ao j-ésimo autovalor

• Esperança e variância de Y_i:

$$E[Y_j] = E[\mathbf{e}'_j \mathbf{X}] = \mathbf{e}'_j \boldsymbol{\mu} = e_{j1} \mu_1 + e_{j2} \mu_2 + \dots + e_{jp} \mu_p.$$

$$\operatorname{Var}[Y_j] = \operatorname{Var}[\mathbf{e}_j' \mathbf{X}] = \mathbf{e}_j' \mathbf{\Sigma} \mathbf{e}_j = \mathbf{e}_j' \left(\sum_{i=1}^p \lambda_i \mathbf{e}_i \mathbf{e}_i' \right) \mathbf{e}_j = \lambda_j.$$

• Covariância entre duas componentes principais:

$$Cov[Y_j, Y_k] = 0, j \neq k$$

13

Análise Multivariada - 2016

 $\sqrt{\text{Buscam-se}}$ os valores dos coeficientes a_{ii} , tais que:

- Y₁, Y₂, ..., Y_p tenham variância máxima e sejam não correlacionadas entre si
- ii. Os vetores **a**; tenham comprimento unitário:

$$\mathbf{a}_{j}'\mathbf{a}_{k} = \begin{cases} 1 & \text{, se } j = k \\ 0 & \text{, se } j \neq k \end{cases}$$

√ Pode-se demostrar que :

- A variância máxima de (a_i, X) é igual a λ_i .
- É obtida quando $\mathbf{a}_i = \mathbf{e}_i$.

Análise Multivariada - 20

• Comentário:

 $\sqrt{\text{Cada}}$ autovalor λ_j representa a variância de uma componente principal $Y_i.$

√ Autovalores estão ordenados em ordem decrescente

- A primeira componente é a de maior variabilidade
- A p-ésima componente é a de menor variabilidade

Análise Multivariada - 2016

• Variâncias total e generalizada de Σ:

$$\sqrt{\text{Total:}} \operatorname{tr}(\mathbf{\Sigma}) = \sum_{i=1}^{p} \sigma_{ii} = \sum_{i=1}^{p} \lambda_{i}$$

 $\sqrt{\text{Generalizada de } \Sigma}$: $|\Sigma| = \prod_{i=1}^{p} \lambda_i$

√ Em termos dessas duas medidas globais de variação, os vetores **X** e **Y** são equivalentes

Análise Multivariada - 2016

- Aproximação de Σ:
 - √ Analisando as k primeiras componentes principais

$$\mathbf{\Sigma}_{p imes p} pprox \sum_{i=1}^k \lambda_i \mathbf{e}_j \mathbf{e}_j'$$

√ Cada parcela da soma envolve uma matriz de dimensão pxp correspondente apenas à informação da j-ésima componente principal

Análise Multivariada - 2016

17

 Proporção da variância total que é explicada pela j-ésima componente principal:

$$\frac{\operatorname{Var}[Y_j]}{\operatorname{Variância total de} \mathbf{X}} = \frac{\lambda_j}{\operatorname{tr}(\mathbf{\Sigma})} = \frac{\lambda_j}{\sum_{i=1}^p \lambda_i}$$

√ 1ª componente tem a maior proporção de explicação

• Proporção da variância total que é explicada pelas k primeiras componentes principais

$$\frac{\sum_{j=1}^{k} \text{Var}[Y_j]}{\text{Variância total de } \mathbf{X}} = \frac{\sum_{j=1}^{k} \lambda_j}{\text{tr}(\mathbf{\Sigma})} = \frac{\sum_{j=1}^{k} \lambda_j}{\sum_{j=1}^{p} \lambda_i}$$

√ Busca-se analisar um conjunto menor de variáveis sem perder muita informação sobre a estrutura de variabilidade original

Análise Multivariada - 20

Correlação entre Componente Principal e Variável Aleatória

 Os coeficientes de correlação entre a componente principal Y_i de S e a variáve1 X_k é

$$\rho_{Y_i, X_k} = \frac{e_{ik} \sqrt{\lambda_i}}{\sqrt{\sigma_{kk}}}$$

 \sqrt{A} magnitude de e_{ik} mede a contribuição da k-ésima variável na i-ésima componente (a despeito das outras variáveis).

- Não medem a importância de X_k na presença das outras variáveis.
- Alguns estatísticos recomendam que somente os valores e_{ik} (e não as correlações) sejam consideradas na interpretação dos componentes

Análise Multivariada - 2016

Estimação das Componentes Principais – Matriz de Covariâncias

• Em geral, Σ é estimada por S:

$$\mathbf{S} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1p} \\ S_{12} & S_{22} & \dots & S_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ S_{1p} & S_{2p} & \dots & S_{pp} \end{bmatrix}.$$

 $\sqrt{\text{Autovalores de S:}}$ $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_n$

 $\sqrt{\text{Autovetores de }\mathbf{S}}: \hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_p$

Análise Multivariada - 2016

• Decomposição espectral de S:

$$\mathbf{S} = \sum_{j=1}^{p} \hat{\lambda}_j \mathbf{e}_j \mathbf{e}_j'.$$

√ Aproximação de S pelas primeiras k componentes

$$\mathbf{S}_{p \times p} pprox \sum_{i=1}^k \hat{\lambda}_i \hat{\mathbf{e}}_j \hat{\mathbf{e}}_j'$$

• Scores das componentes

 $\sqrt{\mbox{ Valor}}$ das componentes para cada elemento amostral

√ Na prática, o uso das componentes relevantes se dá através dos scores

Análise Multivariada - 2016

• j-ésima componente principal de S:

$$\hat{Y}_j = \hat{\mathbf{e}}_j' \mathbf{X} = \hat{e}_{j1} X_1 + \hat{e}_{j2} X_2 + \dots + \hat{e}_{jp} X_p, \ j = 1, 2, \dots, p.$$

• Componentes principais amostrais – Propriedades

i. Variância: $Var[\hat{Y}_i] = \hat{\lambda}_i$.

ii. Covariância entre as componentes: $Cov(\hat{Y}_i, \hat{Y}_k) = 0, j \neq k$

iii. Variância total estimada explicada pela componente:

$$\frac{\mathrm{Var}[\hat{Y}_j]}{\mathrm{Variância\ total\ estimada\ de\ }\mathbf{X}} = \frac{\hat{\lambda}_j}{\mathrm{tr}(\mathbf{S})} = \frac{\hat{\lambda}_j}{\sum_{i=1}^p \hat{\lambda}_i}$$

iv. Correlação estimada entre componente e variável:

$$r_{\hat{Y}_j, X_k} = \frac{\hat{e}_{jk} \sqrt{\hat{\lambda}_j}}{\sqrt{S_{kk}}}$$

Análise Multivariada - 2016

2

Exemplo 8.3

• Pesquisa com 5 variáveis socioeconômicas

 $\sqrt{X_1}$: População total (milhares)

 $\sqrt{X_2}$: Escolaridade mediana (anos concluídos)

 $\sqrt{X_3}$: Emprego total (milhares)

 $\sqrt{X_4}$: Empregos na área da saúde (centenas)

 $\sqrt{X_5}$: Valor mediano da habitação (x \$10.000)

• Dados: BD_multivariada.xls/pesquisa

Análise Multivariada - 2016

• Vetor de médias amostral $(\bar{\mathbf{x}})$

Variable	Me an
K1_Pop	4,323
K2 escol	14,014
K3_empregos	1,952
K4 saude	2,171
K5_habitacao	2,454

• Matriz de covariâncias amostral (S)

	v1 n	X2 escol	v2	s X4 saude	X5 habitaca
(1 Pop	X1_Pop 4.307556	XZ_escoi	x3_empre go	s At_Saude	A3_nabitaca
(2 escol	1,683680	1.767473			
(3 empregos	1,802776	0,588026	0,800669		
4 saude	2,155326	0,177978	1,064828	1,969475	
5 habitacao	-0,253474	0.175549	-0,158339	-0,356807	0,504380

 A variação amostral pode ser resumida por uma ou duas componentes principais?

Análise Multivariada - 2016

- Correlação mede unicamente importância de uma variável individual sem considerar a influência das demais
 - √ No exemplo, os coeficientes de correlação confirmam a interpretação fornecida pelos coeficientes das componentes

Análise Multivariada - 2016

	Componentes Principais						
	1		2		3	4	5
	e1	r(y1,xk)	e2	r(y2,xk)	e3	e4	e5
População Total	0,781	0,99	0,071	-0,04	-0,004	-0,542	0,302
Escolaridade Mediana	0,306	0,61	0,764	-0,76	0,162	0,545	0,009
Total de Empregos	0,334	0,98	-0,083	0,12	-0,015	-0,051	-0,937
Empregos Área Saúde	0,426	0,80	-0,579	0,55	-0,220	0,636	0,172
Valor Mediano Habitação	-0,054	-0,20	0,262	0,49	-0,962	-0,051	-0,025
Variância	6,931		1,	785	0,390	0,230	0,014
% Variância Total (acumulada)	74	4,1	9:	3,2	97,4	99,8	100,0

- Variância amostral é bem resumida por 2 componentes
 - $\sqrt{\mbox{redução}}$ de 14 observações de 5 variáveis para 14 observações de 2 variáveis
 - √ 1ª. componente: média ponderada de 4 variáveis
 - $\sqrt{2^a}.$ componente: contraste entre empregos saúde com média ponderada da escolaridade com valor habitação

Análise Multivariada - 2016

Número de Componentes Principais

- Quantas componentes principais devem ser retidas?
 - √ Não há resposta definitiva
- Considerações a serem tomadas:
 - √ Quantidade explicada de variância amostral total
 - $\sqrt{\text{Tamanho relativo dos autovalores}}$ (variância das componentes amostrais)
 - √ Interpretação das componentes

Análise Multivariada - 2016

Scree Plot

- Gráfico λ_i vs. i
 - √ Procura-se um 'cotovelo' no gráfico
 - √ São consideradas as componentes até o ponto em que os autovalores remanescentes são relativamente pequenos e todos aproximadamente do mesmo valor

Análise Multivariada - 2016

Exemplo 8.4

- Relação entre tamanho e forma de cascos de tartaruga
 - √ Comprimento
 - √ Largura
 - √ Espessura
 - √ Gênero: macho/fêmea
- · Análise para as tartarugas macho
- Literatura sugere transformação logarítmica em estudos de relação entre tamanho e forma
- Dados: BD_multivariada.xls/tartarugas

Análise Multivariada - 2016

36

• Exemplo 8.3

Scree Plot of X1_Pop; ...; X5_habitacao

Total Component Humber

• Vetor de médias amostral $(\bar{\mathbf{x}})$

Descriptive Statistics: log_comp_male; log_larg_male; log_esp_male

Variable Mean
log_comp_male 4,7254
log_larg_male 4,4776
log_esp_male 3,7032

• Matriz de covariâncias amostral (S)

 A variação amostral pode ser resumida por uma componente principal?

Análise Multivariada - 2016

• Scree Plot

√ Uma componente principal é claramente dominante

Análise Multivariada - 2016

Componentes Principais de Variáveis Padronizadas

• Padronização do vetor aleatório X:

$$\mathbf{Z} = \left(\mathbf{V}^{1/2}\right)^{-1} (\mathbf{X} - \boldsymbol{\mu})$$

 $\sqrt{\mathbf{V}^{1/2}}$: matriz diagonal de desvios-padrão

 $\sqrt{\text{Variável padronizada:}} \quad Z_i = \frac{X_i - \mu_i}{\sqrt{\sigma_{ii}}}$

√ Matriz de covariâncias de **Z**:

$$\operatorname{Cov}(\mathbf{Z}) = \left(\mathbf{V}^{1/2}\right)^{-1} \mathbf{\Sigma} \left(\mathbf{V}^{1/2}\right)^{-1} = \mathbf{P}$$

 $\sqrt{\text{Componentes principais de } \mathbf{Z}}$:

- Obtidas dos autovalores e autovetores de P.

Análise Multivariada - 2016

• Componentes principais:

Principal Component Analysis: log_comp_male; log_larg_male; log_esp_male

Eigenvalue 0,023303 0,000598 0,000360
Proportion 0,961 0,025 0,015

Proportion	0,961	0,025	0,019
Cumulative	0,961	0,985	
Variable log_comp_mal log_larg_mal log_esp_male	e 0,510	PC2 -0,159 -0,594 0,788	PC3 -0,713 0,622 0,324

• Componente adotada:

 $\hat{y}_1 = 0,683 \ln(comp) + 0,510 \ln(larg) + 0,523 \ln(espes)$ = $\ln \left[(comp)^{0,683} (larg)^{0,510} (esp)^{0,523} \right]$

√ ln(volume) de uma caixa com dimensões ajustadas

Análise Multivariada - 2016

• Componente principal das variáveis padronizadas:

 \sqrt{A} j-ésima componente principal da matriz Σ :

$$Y_j = \mathbf{e}'_j \mathbf{Z} = \mathbf{e}'_j \left(\mathbf{V}^{1/2} \right)^{-1} (\mathbf{X} - \boldsymbol{\mu}) = e_{j1} Z_1 + e_{j2} Z_2 + \dots + e_{jp} Z_p.$$

 $\sqrt{\mathbf{e}_i}$: autovetor da matriz de correlações \mathbf{P} .

• Variância total de **P**:

$$\sum_{j=1}^{p} \operatorname{Var}[Y_j] = \sum_{j=1}^{p} \operatorname{Var}[Z_j] = p$$

√ Proporção de variância populacional (padronizada) devido à j-ésima componente

$$\frac{\operatorname{Var}[Y_j]}{\operatorname{Variância total de } \mathbf{Z}} = \frac{\lambda_j}{\operatorname{tr}(\mathbf{P})} = \frac{\lambda_j}{p}, \, k = 1, 2, \dots, p$$

 $\sqrt{\text{Correlação entre Y}_{j}}$ e \mathbf{X}_{k} : $\rho_{Y_{j},X_{k}}=e_{jk}\sqrt{\lambda_{j}},\,i,k=1,2,\ldots,p$

Análise Multivariada - 2016

Comentários

- As componentes principais de Σ são diferentes daquelas obtidas de P.
 - √ Seus autovalores e autovetores são diferentes
 - √Um conjunto de componentes principais não é simplesmente uma função do outro conjunto
- A padronização traz consequências
 - √ Variáveis deveriam ser padronizadas se elas são medidas em escalas com amplitudes muito diferentes
 - Ex. Vendas anuais e razão entre lucro/ativos

Análise Multivariada - 2016

• Padronização dos elementos amostrais:

$$\mathbf{z}_{j} = \mathbf{D}^{-1/2} \left(\mathbf{x}_{j} - \bar{\mathbf{x}} \right) = \begin{bmatrix} \frac{x_{j1} - \bar{x}_{1}}{\sqrt{s_{11}}} \\ \frac{x_{j2} - \bar{x}_{2}}{\sqrt{s_{22}}} \\ \vdots \\ \frac{x_{jp} - \bar{x}_{p}}{\sqrt{s_{22}}} \end{bmatrix}, j = 1, 2, \dots, n$$

 \sqrt{D} : matriz diagonal dos desvios-padrão amostrais

• Matriz de dados:

$$\mathbf{Z}_{n imes p} = egin{bmatrix} z_{11} & z_{12} & \dots & z_{1p} \ z_{21} & z_{22} & \dots & z_{2p} \ dots & dots & \ddots & dots \ z_{n1} & z_{n2} & \dots & z_{np} \end{bmatrix} = egin{bmatrix} \mathbf{z}_1' \ \mathbf{z}_2' \ dots \ \mathbf{z}_n' \end{bmatrix}.$$

Análise Multivariada - 2016

Padronização dos Componentes Principais Amostrais

- Frequentemente são padronizadas:
 - √ Variáveis medidas em diferentes escalas
 - $\sqrt{\text{Na}}$ mesma escala, mas com amplitudes bastante diferentes
- As componentes principais não são invariantes às mudanças na escala

Análise Multivariada - 201

tirariada 2016

Análise de Componentes Principais – Matriz de Correlações

- As componentes principais obtidas a partir da matriz de covariâncias são influenciadas pelas variáveis de maior variância
 - √ A padronização das variáveis ameniza esse problema
- Análise de componentes principais de variáveis padronizadas é equivalente a obter as componentes principais através da matriz de correlações

Análise Multivariada - 2016

Estimação das Componentes Principais – Matriz de Correlação

• **P** é estimada por **R**:

 $\sqrt{\text{Importante: }}\mathbf{S}_{\mathbf{Z}} = \mathbf{R}$

$$\mathbf{R} = \begin{bmatrix} 1 & r_{12} & \dots & r_{1p} \\ r_{12} & 1 & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{1p} & r_{2p} & \dots & 1 \end{bmatrix}.$$

 $\sqrt{\text{Autovalores de }\mathbf{R}}: \hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_p$

 $\sqrt{\text{Autovetores de } \mathbf{R}: \ \hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \dots, \hat{\mathbf{e}}_p}$

Análise Multivariada - 2016

52

54

Exemplo 8.5

 Taxas de retorno de 5 ações negociadas na Bolsa de New York

√ Período: Jan./75 a Dez./76

√ Ações:

- Allied Chemical
- du Pont
- Union Carbide
- Exxon
- Texaco

√ Dados: BD_multivariada.xls/

Análise Multivariada - 2016

• j-ésima componente principal de R:

$$\hat{Y}_i = \hat{\mathbf{e}}'_i \mathbf{Z} = \hat{e}_{i1} Z_1 + \hat{e}_{i2} Z_2 + \dots + \hat{e}_{ip} Z_p, \ j = 1, 2, \dots, p.$$

- Componentes principais amostrais Propriedades
 - i. Variância: $Var[\hat{Y}_j] = \hat{\lambda}_j$.
 - ii. Covariância entre as componentes: $Cov(\hat{Y}_i, \hat{Y}_k) = 0, j \neq k$
 - iii. Variância total estimada explicada pela componente:

$$\frac{\hat{\lambda}_j}{p}$$
.

iv. Correlação estimada entre componente e variável:

$$r_{\hat{Y}_j,X_k} = \hat{e}_{jk} \sqrt{\hat{\lambda}_j}$$

Análise Multivariada - 2016

-

- As taxas de retorno entre ativos estão correlacionadas

 $\sqrt{\text{a}}$ ações tendem a se mover juntas em resposta às condições econômicas

Slide 57

LFB1 Calcular matriz de covariâncias amostral

Há domínio de variabilidade?

Lupércio Bessegato; 20/02/2013

• 1^a. componente principal:

 $\hat{y}_1 = 0,464z_1 + 0,457z_2 + 0,470z_3 + 0,421z_4 + 0,421z_5$

√ Variáveis:

- z₁: retorno padronizado Allied Chemical
- − z₁: retorno padronizado − du Pont
- z₁: retorno padronizado Union Carbide
- − z₁: retorno padronizado − Exxon
- z₁: retorno padronizado Texaco

√ Interpretação:

- soma ponderada (índice) das 5 ações
- pesos aproximadamente iguais
- Componente geral do mercado de ações (componente do mercado)

Análise Multivariada - 2016

· Comentários:

- √ A maioria das variações dos ativos devem-se às atividades de mercado (1ª. componente) e atividades industriais não correlacionadas (2ª. componente)
- √ As componente remanescentes não são de simples interpretação
 - coletivamente, representam variação que é provavelmente específica de cada ação

Análise Multivariada - 2016

62

• 2^a. componente principal:

 $\hat{y}_2 = 0,240z_1 + 0,509z_2 + 0,260z_3 - 0,526z_4 - 0,582z_5$ $\sqrt{\text{Interpretação:}}$

- contraste entre ações de indústrias químicas e de óleo & gás
- Componente industrial

Análise Multivariada - 2016

Variáveis Padronizadas - Regra Empírica

- Reter apenas as componentes cujas variâncias (λ_i) são maiores que a unidade
 - √ componente que explicam individualmente pelo menos 1/p da variância amostral padronizada total
- No caso do exemplo anterior (8.6), pareceu-se sensível reter uma componente (y_2) associada à autovalor menor que a unidade

Análise Multivariada - 2016

Importante

- √ Um valor pequeno incomum para o último autovalor da matriz de covariâncias (ou correlação) amostral pode indicar uma dependência linear não detectada no conjunto de dados
- √ Valores grande de autovalores (e correspondentes autovetores são importantes em uma análise
- √ Autovalores próximos de zero não devem ser ignorados
 - Autovetores associados podem apontar dependências lineares no conjunto de dados (problemas computacionais ou de interpretação)

Análise Multivariada - 2016

73

- São combinações das variáveis originais:
 - √ Se as observações provém de população normal multivariada, é razoável esperar que as componentes sejam aproximadamente normais
 - √ Se forem usadas como entrada em análises adicionais
 - Verificar se as 1ª.s componentes são aproximadamente normais
- As últimas componentes principais podem ajudar a apontar observações suspeitas

Análise Multivariada - 2016

Gráfico dos Componentes Principais

• Podem:

√ revelar observações suspeitas

√ fornecer verificações da hipótese de normalidade

Análise Multivariada - 2016

Resumo

- Procedimento auxiliar na verificação de normalidade
 - √ Construir diagrama de dispersão para os pares dos primeiros componentes principais
 - √ Construir Q-Q plots para os valores amostrais gerados por cada componente principal
- Identificação de observações suspeitas:
 - √ Construir diagramas de dispersão e Q-Q plots para as últimas componentes principais.

Análise Multivariada - 2016

Exemplo 8.7

• Plotando os Componentes Principais dos dados das tartarugas macho:

$$\sqrt{x_1} = \ln(\text{comp})$$

$$\sqrt{x_2} = \ln(\text{larg})$$

$$\sqrt{x_3} = \ln(\exp)$$

• Componentes:

$$\begin{array}{lll} \hat{y}_1 & = & 0,683\ln(x_1-4,725)+0,510\ln(x_2-4,478)+0,523\ln(x_3-3,703) \\ \hat{y}_2 & = & -0,159\ln(x_1-4,725)-0,594\ln(x_2-4,478)+0,788\ln(x_3-3,703) \\ \hat{y}_3 & = & -0,713\ln(x_1-4,725)+0,622\ln(x_2-4,478)+0,324\ln(x_3-3,703) \end{array}$$

Análise Multivariada - 2016

Q-Q Plot da 2a. Componente Principal

Scatterplot of y^1 vs y^2

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0,04

0

- Observação da 1ª. tartaruga é suspeita.
 √ Checar registros ou verificar anomalias na tartaruga
- Excetuado esse dado o scatter plot aparenta estar razoavelmente elíptico
- Verificar os plots dos outros conjunto de componentes principais.

Análise Multivariada - 2016

85

• Comandos Minitab para Q-Q Plot

```
Name C30 "(j-1/2)/n"
Set C30
1(1:24/1)1
End.
Let C30 = (C30-0,5)/24
                        # Cálculo percentagens
Name C31 "g(i)"
Invcdf c30 c31;
                         # Cálculo quantis
Normal 0 1.
Name C32 "y(2)^"
Sort c25 c32
                         # Ordenação vetor de dados
Plot C32*C31;
                         # Scatter plot
Title "Q-Q Plot da 2ª. Componente Principal";
Symbol.
```

Análise Multivariada - 2016

Propriedades Assintóticas

Assuma que a amostra são observações aleatórias de população normal p-variada

√ Autovalores desconhecidos são distintos e positivos

√ Distribuição amostral autovalores

$$\sqrt{n}(\hat{\boldsymbol{\lambda}} - \boldsymbol{\lambda}) \stackrel{\text{as.}}{\sim} N_p(\boldsymbol{0}, 2\boldsymbol{\Lambda}^2) \quad \hat{\lambda}_i \stackrel{\text{as.}}{\sim} N\left(\lambda_i, 2\frac{\lambda_i^2}{n}\right)$$

√ Distribuição amostral dos autovetores

$$\sqrt{n}(\hat{\mathbf{e}}_i - \mathbf{e}_i) \stackrel{\text{as.}}{\sim} \mathrm{N}_p(\mathbf{0}, \mathbf{E}_i).$$
 $\mathbf{E}_i = \lambda_i \sum_{\substack{k=1\\k \neq i}}^p \frac{\lambda_k}{(\lambda_k - \lambda_i)^2} \mathbf{e}_k \mathbf{e}_k'.$

 $\sqrt{\text{Cada }} \hat{\lambda}_i$ é independente dos elementos de $\hat{\mathbf{e}}_i$ associados

Análise Multivariada - 2016

• Intervalo de confiança aproximado para os λ_i de amostras suficientemente grandes

$$\begin{split} \hat{\lambda}_i &\overset{\text{as. N}}{\sim} \operatorname{N}\left(\lambda_i, 2\frac{\lambda_i^2}{n}\right) \qquad \operatorname{P}\left\{|\hat{\lambda}_i - \lambda_i| \leq z_{\alpha/2} \, \lambda_i \sqrt{\frac{2}{n}}\right\} = 1 - \alpha \\ &\frac{\hat{\lambda}_i}{1 + z_{\alpha/2} \, \sqrt{\frac{2}{n}}} \leq \lambda_i \leq \frac{\hat{\lambda}_i}{1 - z_{\alpha/2} \, \sqrt{\frac{2}{n}}} \end{split}$$

• Intervalos de confiança simultâneos Bonferroni para m λ_i 's

 $\sqrt{\text{Trocar } z_{\alpha/2} \text{ por } z_{\alpha/2m}}$.

Exemplo

• Estudo de poluição do ar em 41 cidades dos EUA

√ Ano: 1970

• Dados: *Usairpollution*{*MVA*}

Análise Multivariada - 2016

Componentes Principais para Matrizes de Covariâncias com Estruturas Especiais

• Matriz diagonal:
$$\Sigma_{p\times p} = \begin{bmatrix} \sigma_{11} & 0 & \cdots & 0 \\ 0 & \sigma_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{pp} \end{bmatrix}.$$

 $\sqrt{\text{i-ésimo autovetor:}} \mathbf{e}'_i = [0, \dots, 0, 1, 0, \dots, 0]$

1 na j-ésima posição

 $\sqrt{\text{j-ésima componente principal:}}$ $Y_j = \mathbf{e}_j' \mathbf{X} = X_j$

√ Não há ganho extraindo as componentes principais

- A padronização não altera a situação

P = I

Variáveis:

 $\sqrt{\text{SO}2}$: conteúdo de dióxido de enxofre no ar, em $\mu g/m^3$.

√ Temp: temperatura média anual (°F)

√ Indust: quantidade de empresas manufatureiras empregando pelo menos 20 empregados.

 $\sqrt{\text{Pop: população (censo 1970), em milhares.}}$

√ Vento: velocidade média anual de vento, em milhas/h

√ Precip: precipitação média anual, em polegadas

√ Dias: número médio anual de dias com precipitação

Análise Multivariada - 2016

Variáveis

√ 'Resposta': SO2

√ Ambientais: Vento, Precip, Dias, Temp

√ Demográficas: Indust, Pop

Análise Multivariada - 2016

```
        ✓ Matriz de correlações:

        → Poluícao.corr <- cor(poluícao[,-1])</td>

        → poluícao.corr
        Indust
        Pop
        Vento
        Precip
        Dias
        negtemp

        Indust
        1.00000000
        0.95526935
        0.23794683
        -0.03241688
        0.13122930
        0.19004216

        Pop
        0.95526935
        1.00000000
        0.021264375
        -0.02611873
        0.04208319
        0.06267813

        Vento
        0.23794683
        0.21264375
        1.00000000
        -0.01294383
        1.61410559
        0.94379363

        Precip
        -0.03241688
        -0.02611873
        -0.01299438
        1.00000000
        0.49609671
        -0.38625342

        blas
        0.13182930
        0.04208319
        0.16410559
        0.43002412
        1.0000000

        hegtemp
        0.19004216
        0.04208319
        0.16410559
        0.49609671
        -0.38625342
        0.43024212
        1.00000000
```

√ Comentário:

- Valores altos de correlação entre Indust e Pop

Análise Multivariada - 2016

99

• Comandos em R:

√ Carregamento dos dados:

√ Comentários:

- Extrair componentes da matriz de correlações:
 - · Variáveis estão em escalas muito distintas
- Ignora a variável SO2 (considera só as 'explicativas')
- Uso da temperatura negativa
 - As 6 variáveis têm valores altos, de maneira que representam um ambiente menos atrativo

Análise Multivariada - 2016

9

100

$\sqrt{\text{Matrix plot:}}$

- Comandos em R:

Análise Multivariada - 2016

Questão Interessante

- Quais dentre as variáveis climáticas e ambientais são as melhores preditoras do grau de poluição do ar (concentração de SO₂)?
 - √ Esta questão é tratada com regressão linear múltipla
 - √ Potencial problema para aplicação dessa técnica:
 - Alta correlação entre Indust e Pop
 - √ Solução:
 - Retirar uma das variáveis
 - √ Alternativa:
 - Fazer regressão dos níveis de ${\rm SO}_2$ com as componentes principais derivadas das 6 variáveis originais
 - Pode ser melhor regredir com todas as 6 componentes

Análise Multivariada - 2016

√ Componentes com menor variância não

necessariamente as menores correlações com a resposta 107

têm

√ SO2 dependendo das componentes principais

Exercício - Solo

- Análise de solo
 - $\sqrt{20}$ amostras
 - √ Variáveis:
 - areia (%)
 - sedimentos (%)
 - argila (%)
 - qte. material orgânico (%)
 - acidez do solo (pH)
 - √ Banco de dados: *BD_multivariada.xls/solo*

Análise Multivariada - 2016

240

• Matriz de covariâncias amostral (S)

• Autovalores de S

• Eliminada X_1 (areia)

√ maior variância amostral tenderia dominar primeira componente

• Matriz de covariâncias amostral (S)

• Autovalores de S

113

• Componentes principais (*p*=5)

 $\sqrt{y5}$ é constante para qualquer observação j y5 = 0,577 (100)

√ Qualquer das três variáveis poderia ser eliminada

Análise Multivariada - 2016

112

• Componentes principais $(p = 4 - \text{eliminada } X_1)$

- √ Duas primeiras componentes explicam 99,2% da variância total
 - 1ª. Componente: Índice de qualidade do solo em termos de % sedimentos e argila
 - sedimentos é a variável mais importante
 - 2ª. Componente: Comparação entre % de sedimentos e % de argila
 - argila tem peso maior na componente
 - 3^a. Componente: variável material orgânico

Diferença de escala e unidades da variáveis
 √ Recomendável padronização para análise de componentes

Componentes principais (p=4) — Matriz de correlação

Principal Component Analysis: sedimentos; argila; morganico; ph

Eigenanalysis of the Correlation Matrix

Eigenvalue 1,6757 1,1461 0,9601 0,2181

Proportion 0,419 0,287 0,240 0,055

Cumulative 0,419 0,705 0,945 1,000

Variable BC1 FC2 FC3 FC4

sedimentos 0,710 0,182 -0,187 -0,664

argila 0,702 -0,241 0,111 0,661

morganico 0,025 0,836 -0,423 0,349

ph 0,042 0,459 0,887 -0,026

Referências

Bibliografia Recomendada

- MANLY, B. J. F. Métodos Estatísticos Multivariados: uma Introdução. Bookman, 2008.
- JOHNSON, R. A.; WINCHERN, D. W. Applied Multivariate Statistical Analysis. Prentice Hall, 2007
- MINGOTI, D.C. Análise de Dados através de Métodos de Estatística Multivariada. Ed. UFMG, 2005.
- EVERITT, B.; HOTHORN, T. An Introduction to Applied Multivariate Analysis with R. Springer, 2011.

Análise Multivariada - 20