Vector field controller: Formulas implemented are the following

V(p) is a 2D potential created so that repulsive points (p_{ri}) are hills and the attractive point (p_a) is a hole. The robot follows -grad(V) to converge to the attractive point.

$$V(p) = \|p - p_a\|^{ka} + \sum_{i} \frac{kr_{heigth}}{kr_{slope}} \exp(kr_{dist} - \|p - p_{ri}\|))$$

$$-grad(V) = -ka(p - p_a)\|p - p_a\|^{ka - 1} + \sum_{i} \frac{p - p_{ri}}{\|p - p_{ri}\|} \frac{kr_{heigth}}{\|p - p_{ri}\|} \exp(\frac{kr_{slope}}{\|kr_{dist} - \|p - p_{ri}\|}))$$

Repulsive potential shape, customizable with: kr_{dist} , kr_{heigth} , kr_{slope} Attractive potential shape, customizable with: ka

We need to clamp those functions to avoid unwanted very high gradient values

Speeds Clamping strategy

Vector field controller Implementation

The package directly manage point following and speed commands (teleoperation) features

Visualization (Python program): Repulsive only

Unclamped Repulsive potential

$$f(x) = 2 \cdot \exp(1 \cdot (0 - x))$$

Clamped Repulsive potential

Visualization (Python program): Attractive only

Unclamped merged potentials

$$f(x) = x^3$$

Clamped merged potential

$$x = \|p - p_r\|$$

Visualization (Python program): Attractive + repulsive

Example of potential for coincident attractive and repulsive point

Visuals of how would be the potential V around a point $p_r = p_a$ $f(x) = abs(clamped(2 \cdot exp(1 \cdot (0 - x))) - clamped(x^3))$

In this example the robot would converge to a position almost 1m away from the obstacle p_r

Simulation (Python program): Attractive + repulsive

We can customize the navigation behavior by changing the parameters

Visualization with ROS2 and Gazebo (simulated robot): Repulsive only

Ka: 0.0

Kr_dist: 0.8

Kr_height: 1.0 Kr_slope: 30.0

Min_spd_norm: 0.1

Max_spd_norm:

1.0

Visualization with ROS2 and Gazebo (simulated robot): Attractive only

Ka: 3.0

Kr_dist: 0.8

Kr_height: 0.0

Kr_slope: 30.0

Min_spd_norm: 0.1 Max_spd_norm:

1.0

Visualization with ROS2 and Gazebo (simulated robot): Attractive + Repulsive

Ka: 3.0

Kr_dist: 0.8

Kr_height: 1.0 Kr_slope: 30.0

Min_spd_norm: 0.1

Max_spd_norm:

1.0

Simulation with ROS2 and Gazebo (simulated robot): Attractive + Repulsive

Ka: 3.0

Kr_dist: 0.8

Kr_height: 1.0 Kr_slope: 30.0

Min_spd_norm: 0.1

Max_spd_norm:

1.0

(Open doc.pptx to play the video)