- 1. (Aug-13.3) Let I and J be ideals in a commutative ring R.
 - (a) Show that if I + J = R, then $I \cap J = IJ$.
 - (b) Suppose that I and J are ideals in $\mathbb{C}[x]$, and suppose that I + J = (x). Show that $(I \cap J)/IJ$ is 1-dimensional as a complex vector space, and moreover that it is isomorphic to $\mathbb{C}[x]/(x)$ as a $\mathbb{C}[x]$ -module.
 - (c) On the other hand, for general commutative rings R, once R/(I+J) is not trivial, the difference between $I \cap J$ and IJ can be large even if $R/(I \cap J)$ is small. Demonstrate this by showing that, if $R = \mathbb{C}[x,y]$, there exist ideals I and J in R such that I+J=(x,y) and the dimension of $(I\cap J)/IJ$ as a \mathbb{C} -vector space is at least 100.
- 2. (Jan-04.2) Let K be a field and R be the subring of K[x] of all polynomials with zero x-coefficient.
 - (a) Show that x^2 and x^3 are irreducible but not prime in R.
 - (b) Show that R is Noetherian.
 - (c) Show that the ideal of all polynomials of R with zero constant term is not principal.
- 3. (Jan-13.3) A ring R is "von Neumann regular" if for every $a \in R$ there exists an $x \in R$ with a = axa. (The element x is called a weak inverse of a.) In particular, observe that every division ring is von Neumann regular: take x = 0 for a = 0 and $x = a^{-1}$ otherwise.
 - (a) Give an example of a commutative von Neumann regular ring which is not a field.
 - (b) Let $R = M_2(\mathbb{C})$ and $a = e_{12}$, the nilpotent matrix which sends $(e_1, e_2) \mapsto (0, e_1)$. Find a weak inverse for a
 - (c) Show that if V is a vector space over a field k, the ring of endomorphisms $\operatorname{End}_k V$ is von Neumann regular.
- 4. (Aug-05.2) Let R be a ring with 1, V a Noetherian right R-module, and $\theta: V \to V$ a homomorphism.
 - (a) Show that $\ker(\theta^{n+1}) = \ker(\theta^n)$ for some $n \ge 1$.
 - (b) If θ is onto, prove that it is one-to-one.
 - (c) If V has a unique maximal submodule M, and it is true that if $X \subseteq Y$ are any submodules with $Y/X \cong V/M$ then Y = V, prove that θ is either 0 or an isomorphism.
- 5. (Aug-03.2) Let R be a commutative integral domain (with 1).
 - (a) If K is the field of fractions of R and $t \in R$ is such that K = R[1/t], show that t is contained in every nonzero prime ideal of R.
 - (b) Let $R = F[x_1, \dots, x_n]$ for a field F. If $f(x_1, \dots, x_n)$ is contained in every nonzero prime ideal of R, show that $f(a_1, \dots, a_n) = 0$ for all $a_1, \dots, a_n \in F$.
 - (c) Suppose $f(x_1, \dots, x_n)$ is a polynomial with coefficients in F, where F is an infinite field. If $f(a_1, \dots, a_n) = 0$ for all $a_1, \dots, a_n \in F$, show that f is the zero polynomial.

- 6. (Jan-09.2) Let S be the subring of $\mathbb{C}[x]$ consisting of all polynomials with real constant term.
 - (a) Show that the ideal of S consisting of all polynomials with 0 constant term is not principal.
 - (b) Let I be a nonzero ideal of S and choose $f \in I \setminus \{0\}$ to have minimal possible degree n. If $g \in I$, show that there exists $s \in S$ with g sf either equal to 0 or to a polynomial of degree n.
 - (c) Conclude that any ideal I of S is either principal or generated by two elements of the same degree.
- 7. (Aug-01.2) Let R be a commutative ring with 1 and M a maximal ideal of R.
 - (a) Show that R/M^2 has no idempotents other than 0 and 1.
 - (b) If R is Noetherian, show that M/M^2 is a finitely-generated R/M-module.
 - (c) If $R = K[x_1, \dots, x_t]$ where K is a field, show that $\dim_K(R/M^2) < \infty$.
- 8. (Aug-00.5) Let R be a ring with 1 and Z be its center. A derivation $D: R \to R$ is an additive map such that D(ab) = aD(b) + D(a)b.
 - (a) If $r \in R$, show that the map $A_r : R \to R$ given by $A_r(A) = ar ra$ for all $a \in R$, is a derivation.
 - (b) If D is a derivation, show that $D(Z) \subseteq Z$.
 - (c) If D is a derivation of R and $e \in Z$ is an idempotent, show that D(e) = 0.
- 9. (Aug-12.2) Let F be a field, R = F[x, y], and I = (x).
 - (a) Prove that I/I^2 is infinite-dimensional as an F-vector space.
 - (b) Let $S \subset R$ be the subring S = F + I, so that I is also an ideal of S. Show that I is not finitely-generated as an ideal of S.
 - (c) Let M be a maximal ideal of R and $\theta: R \to R/M$ be the projection map. Then $\theta(S)$ is a ring with $\theta(F) \subseteq \theta(S) \subseteq \theta(R)$. Discuss the nature of the extension $\theta(F) \subseteq \theta(R)$, prove that $\theta(S)$ is a field, and conclude that $M \cap S$ is a maximal ideal of S.