LOIS NORMALES

1. LOI NORMALE CENTRÉE RÉDUITE

DÉFINITION

On dit qu'une variable aléatoire X suit la **loi normale centrée réduite** sur \mathbb{R} (notée $\mathcal{N}(0;1)$) si sa densité de probabilité f est définie par :

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Cela signifie que, pour tous réels a et b tels que $a \le b$:

$$p(a \le X \le b) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

REMARQUES

- On admet que f définit bien une densité, c'est à dire que l'aire comprise entre l'axe des abscisses et la courbe représentative de f est égale à 1
- On a également :

$$p(X \geqslant a) = \lim_{x \to +\infty} \int_{a}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt \text{ (limite que l'on peut noter : } \int_{a}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt \text{)}$$

$$p(X \leqslant b) = \lim_{x \to -\infty} \int_{x}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt \text{ (limite que l'on peut noter : } \int_{-\infty}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt \text{)}$$

• La fonction $f: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ est dérivable sur \mathbb{R} , paire, positive, son tableau de variation est :

x	-∞		0		+∞
f'(x)		+	0	_	
f(x)	0		$\frac{1}{\sqrt{2\pi}}$		~ 0

et sa courbe représentative :

• $p(a \le X \le b)$ est l'aire du domaine coloré ci-dessous :

• $p(X \le a)$ est l'aire du domaine coloré ci-dessous :

PROPRIÉTÉS

Soit *X* une variable aléatoire qui suit la loi normale centrée réduite :

- L'espérance mathématique de X est E(X) = 0 (loi centrée);
- La variance de X est $\sigma(X) = 1$ (loi *réduite*).

PROPRIÉTÉS

Soit X une variable aléatoire qui suit la loi normale centrée réduite et a un réel quelconque :

- $p(X \le 0) = p(X \ge 0) = 0.5$
- $p(X \leqslant -a) = p(X \geqslant a)$
- $p(-a \leqslant X \leqslant a) = 1 2 \times p(X \geqslant a) = 2 \times p(X \leqslant a) 1$

REMARQUE

Ces propriétés résultent du fait que :

- la courbe de la fonction $x\mapsto \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ est symétrique par rapport à l'axe des ordonnées
- l'aire comprise entre l'axe des abscisses et la courbe est égale à 1.

On retrouve facilement ces propriétés à l'aide d'une figure par exemple pour la seconde formule :

$$p(X \leqslant -a) = p(X \geqslant a)$$

PROPRIÉTÉ («LOI NORMALE INVERSE»)

Soient X une variable aléatoire qui suit la loi normale centrée réduite et un réel $k \in]0;1[$.

Il existe un **unique** réel m_k tel que $p(X \le m_k) = k$.

REMARQUE

On peut calculer les valeurs de m_k à la calculatrice.

THÉORÈME

Soient X une variable aléatoire qui suit la loi normale centrée réduite et un réel $\alpha \in]0;1[$.

Il existe un **unique** réel u_{α} tel que :

$$p\left(-u_{\alpha}\leqslant X\leqslant u_{\alpha}\right)=1-\alpha.$$

$$p(-u_{\alpha} \leq X \leq u_{\alpha}) = 1 - \alpha$$

REMARQUES

- En utilisant la formule $p(-\alpha \le X \le a) = 2 \times p(X \le a) 1$ et la *«loi normale inverse»* on peut calculer les valeurs de u_{α} à la calculatrice.
- Deux valeurs à retenir :

 $u_{0,05}=1,96$ c'est à dire que $p\left(-1.96\leqslant X\leqslant 1.96\right)=0,95$

 $u_{0,01} = 2,58$ c'est à dire que $p(-2,58 \le X \le 2,58) = 0,99$

2. LOI NORMALE D'ESPÉRANCE μ ET D'ÉCART-TYPE σ

DÉFINITION ET THÉORÈME

Soient deux réels μ et $\sigma > 0$.

On dit qu'une variable aléatoire X suit une **loi normale de paramètres** μ **et** σ^2 (notée $\mathcal{N}(\mu;\sigma^2)$) si la variable aléatoire $Y=\frac{X-\mu}{\sigma}$ suit la loi normale centrée réduite.

L'espérance mathématique de X est μ et son écart-type σ (et donc sa variance σ^2).

REMARQUE

La courbe représentative de la distribution d'une loi $\mathcal{N}(\mu; \sigma^2)$ est une courbe « en cloche » qui admet la droite d'équation $x = \mu$ comme axe de symétrie. Elle est plus ou moins « étirée » selon les valeurs de σ

 $\mu = 3 \text{ et } \sigma = 0,5;1;2$

PROPRIÉTÉ (RÈGLE DES TROIS SIGMAS)

Si *X* suit une loi normale $\mathcal{N}(\mu; \sigma^2)$ alors :

- $p(\mu \sigma \le X \le \mu + \sigma) \approx 0.68$ (à 10^{-2} près)
- $p(\mu 2\sigma \leqslant X \leqslant \mu + 2\sigma) \approx 0.95$ (à 10^{-2} près)
- $p(\mu 3\sigma \le X \le \mu + 3\sigma) \approx 0,997$ (à 10^{-3} près)

EXEMPLE

Si X suit une loi normale $\mathcal{N}(11;3^2)$ alors :

$$p(5 \leqslant X \leqslant 17) \approx 0.95$$

3. THÉORÈME DE MOIVRE-LAPLACE

THÉORÈME (MOIVRE-LAPLACE)

Soit X_n une variable aléatoire qui suit une loi **binomiale** $\mathcal{B}(n; p)$.

On pose
$$Z_n = \frac{X_n - E(X_n)}{\sigma(X_n)}$$
.

Alors pour tous réels a et b:

$$\lim_{n \to +\infty} p\left(a \leqslant Z_n \leqslant b\right) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

REMARQUES

- On rappelle que pour une loi binomiale X de paramètres n et p:E(X)=np et $\sigma(X)^2=np\left(1-p\right)$. Z_n peut donc aussi s'écrire : $Z_n=\frac{X_n-np}{\sqrt{np\left(1-p\right)}}$
- Ce théorème signifie que pour n élevé, la loi de \mathbb{Z}_n est proche de la loi normale centrée réduite :

Histogramme de Z_n pour n = 24 *et p* = 0,5 *et loi* \mathcal{N} (0;1)

• En pratique, on considèrera que «n est suffisamment élevé» si $n \ge 30$; $np \ge 5$; $n(1-p) \ge 5$. La loi binomiale X pourra alors être approximée par la loi normale $\mathcal{N}\left(E(X);\sigma(X)^2\right)$

EXEMPLE

X suit une loi binomiale \mathcal{B} (30; 0, 4).

On cherche à calculer p (7 < $X \le 17$).

Posons
$$Z = \frac{X - 30 \times 0.4}{\sqrt{30 \times 0.4 \times 0.6}} = \frac{X - 12}{\sqrt{7,2}}$$
. Alors:

$$7 < X \leqslant 17 \Leftrightarrow -5 < X - 12 \leqslant 5 \qquad \Leftrightarrow -\frac{5}{\sqrt{7,2}} < \frac{X - 12}{\sqrt{7,2}} \leqslant \frac{5}{\sqrt{7,2}} \qquad \Leftrightarrow -1,86 < Z \leqslant 1,86 \text{ On}$$

a bien $n \geqslant 30$; $np \geqslant 5$; $n(1-p) \geqslant 5$. On peut donc approximer Z par une loi normale centrée réduite.

A la calculatrice on trouve alors :

 $p(-1,86 < Z \le 1,86) \approx 0,937$ (un calcul direct avec la loi binomiale donne 0,935)