

Filières : ISI & MIL & CPIT

Niveau:
Option:

Epreuve de : Analyse des données

Professeur Chargé de la matière : Mr. A. Ouazza

Examen Session: Normale

<u>Durée</u>: (1H30) 2022/2023.

Mode d'enseignement : Présentiel

Exercice 1

On considère les notes (de 0 à 20) obtenues par neuf étudiants dans cinq matières (Mathématiques, SVT, Français, Anglais et Sport) comme indiqué dans le tableau suivant :

Etudiant	Math	SVT	Fran	Ang	Sport
Hamza	6	6	5	5,5	8
Hafsa	4,5	5	7	7	14
Hind	6	7	11	9,5	11
Zineb	14,5	14,5	15,5	15	5
Mohamed	14	14	12	12,5	6
Aya	16	15	5,5	5	7
Meryam	5,5	7	14	11,5	10
Amine	13	12,5	8,5	9,5	12
Houda	6	8,5	13,5	13	18

Notre objectif dans cet exercice est de faire une analyse en composante principale en utilisant les données <u>centrées réduites</u> (ACP-Normée), les résultats obtenus sont présentés ci-dessous.

- 1. Donner la définition et l'objectif d'une ACP.
- 2. Quel est l'intérêt de centrer et de réduire les données ?
- 3. Calculer l'inertie totale du jeu de données. Donner l'interprétation statistique de cette valeur.
- 4. Quel est le nombre de composantes à choisir dans cet exercice ? Justifier.
- 5. Donner la valeur de covariance entre F1 et F2. Justifier
- 6. Quelle est la variance expliquée par l'axe F2.
- 7. Quelle est la part de la variance expliquée par l'axe F1.
- 8. Calculer l'inertie expliquée par le plan factoriel (F1, F2).
- 9. Quelle est la part de la variance expliquée par le plan (F1, F2).
- 10. Calculer la qualité de représentation sur le plan (F1, F2) de cinq variables étudiées. Interpréter le résultat.
- 11. Interpréter la carte factorielle des variables et la carte factorielle des individus.

Variance totale expliquée

: :: :: :: :: -: -: -: -: -: -: -: -: -:							
	Valeurs propres initiales						
Composante	Total	% de la variance	% cumulés				
1	2,588	51,768	51,768				
2	1,881		•				
3	,499		•				
4	,029		•				
5	,002		100,000				

Matrice des composantes

Matrice des composantes						
	Composante					
	1	2				
Math	,973	,045				
SVT	,938	,202				
Fran	-,001	,987				
Ang	,095	,988				
Sport	-,796	,078				

Carte factorielle des variables

Exercice 2

Cinq personnes souffrant d'obésité suivent un régime d'amincissement. Le tableau suivant donne le nombre de Kgs perdus par chacune d'elle pendant la période de cure suivie:

Individus	1	2	3	4	5
Durrée x (en mois)	3	2	1	4	5
Nombre y de Kgs perdus	6	4	5	9	12

_						
Q1	La moyenne	empirique	de la	variable	X	est:

 $\square \overline{x} = \cdots$

 $\mathbf{Q2}$ La moyenne empirique de la variable Y est :

 $\square \overline{y} = \cdots$

 $\mathbf{Q3}$ L'écart-type de la variable X est :

 $\mathbf{A}.\square \ \sigma_x = 1.41$

B. $\Box \sigma_x = 1.58$

 $\mathbf{C}.\square \ \sigma_x = 2$

 $\mathbf{D}.\Box$ Autre

 $\mathbf{Q4}$ L'écart-type de la variable Y est :

A. $\Box \sigma_{y} = 3.27$

B. $\Box \sigma_{y} = 2.29$

 $\mathbf{C}.\square \ \sigma_y = 2.92$

 $\mathbf{D}.\Box$ Autre

 $\mathbf{Q5}$ On veut expliquer y par x, l'expression de la droite de régression linéaire est donnée par :

 $\mathbf{A}.\Box y = ax + b$

 $\mathbf{B.}\Box \ x = ay + b$

 $\mathbf{C}.\Box y = ax$

 $\mathbf{Q6}$ Le coefficient de régression a est donné par :

 $\mathbf{A}.\Box \ a = \frac{cov(x,y)}{var(y)}$

 $\mathbf{B.} \square \ a = \frac{cov(x,y)}{\sqrt{var(x)}}$

 $\mathbf{C}.\Box \ a = \frac{cov(x,y)}{var(x)}$

 $\mathbf{Q7}$ Le coefficient de régression b est donné par :

 $\mathbf{A.} \Box \ b = \overline{y} - a\overline{x}$

 $\mathbf{B.} \Box \ b = \overline{x} - a\overline{y}$

 $\mathbf{C.} \Box b = \overline{y} + a\overline{x}$

 $\mathbf{Q8}$ En utilisant le tableau ci-dessus, alors les valeurs de a et b sont données par :

A. \Box *a* = 2.69

B. \Box *a* = 1.9

C. $\Box a = 0.44$

D. $\Box a = 1.3$

A. $\Box b = 12.9$

B. $\Box b = -0.87$

C. $\Box b = 1.5$

D. $\Box b = 5.88$

Q9 La valeur de coefficient de détermination R^2 est égale :

A. $\Box R^2 = 0.76$

B. $\square R^2 = 0.92$ **C.** $\square R^2 = 0.96$

 $\mathbf{D} \cdot \Box R^2 = 0.85$

 ${\bf Q10}\,$ Le coefficient de corrélation linéaire r_{xy} entre x et y est égal à :

A. $\Box r_{xy} = 0.92$

B. $\Box r_{xy} = 0.87$

C. $\Box r_{xy} = 0.65$ D. $\Box r_{xy} = 0.96$

Q11 Le résidu de l'observation 3 est égal à :

A.□ 8.4

B. \Box -10.59

 $\mathbf{C}.\square 3.4$

C.□ 1.6