Capstone

Neha Deshpande

2025-02-24

```
options(repos = c(CRAN = "https://cloud.r-project.org/"))
install.packages("e1071")
## The downloaded binary packages are in
   /var/folders/b7/wn07yt7x0z3gmqf1172s33080000gn/T//Rtmp0SRjV1/downloaded_packages
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
install.packages("e1071")
##
## The downloaded binary packages are in
   /var/folders/b7/wn07yt7x0z3gmqf1172s33080000gn/T//Rtmp0SRjV1/downloaded_packages
install.packages("caret")
##
## The downloaded binary packages are in
   /var/folders/b7/wn07yt7x0z3gmqf1172s33080000gn/T//Rtmp0SRjV1/downloaded_packages
library(readr)
clean_test <- read_csv("Downloads/Kaggle/clean_test.csv")</pre>
```

```
## Rows: 418 Columns: 11
## Delimiter: ","
## chr (3): Name, Ticket, Cabin
## dbl (8): PassengerId, Pclass, Sex, Age, SibSp, Parch, Fare, Embarked
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
clean_train <- read_csv("Downloads/Kaggle/clean_train.csv")</pre>
## Rows: 714 Columns: 12
## -- Column specification ------
## Delimiter: ","
## chr (3): Name, Ticket, Cabin
## dbl (9): PassengerId, Survived, Pclass, Sex, Age, SibSp, Parch, Fare, Embarked
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
clean_train %>%
 group_by(Survived) %>%
 summarise(Count = n()) %>%
 ggplot(aes(x = factor(Survived), y = Count, fill = factor(Survived))) +
 geom_bar(stat = "identity") +
 labs(title = "Survival Count", x = "Survived", y = "Count") +
 theme minimal()
```



```
ggplot(clean_train, aes(x = Age)) +
  geom_histogram(binwidth = 5, fill = "blue", alpha = 0.7) +
  labs(title = "Age Distribution", x = "Age", y = "Count") +
  theme_minimal()
```



```
clean_train %>%
  group_by(Pclass, Survived) %>%
  summarise(Count = n()) %>%
  ggplot(aes(x = factor(Pclass), y = Count, fill = factor(Survived))) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Survival Rate by Pclass", x = "Pclass", y = "Count") +
  theme_minimal()
```

 $\mbox{\tt \#\#}$ 'summarise()' has grouped output by 'Pclass'. You can override using the $\mbox{\tt \#\#}$ '.groups' argument.


```
clean_train %>%
  group_by(Sex, Survived) %>%
  summarise(Count = n()) %>%
  ggplot(aes(x = factor(Sex), y = Count, fill = factor(Survived))) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(title = "Survival Rate by Sex", x = "Sex", y = "Count") +
  theme_minimal()
```

 $\mbox{\tt \#\#}$ 'summarise()' has grouped output by 'Sex'. You can override using the '.groups' $\mbox{\tt \#\#}$ argument.


```
ggplot(clean_train, aes(x = factor(Survived), y = Age, fill = factor(Survived))) +
  geom_boxplot() +
  labs(title = "Age Distribution by Survival", x = "Survived", y = "Age", fill = "Survived") +
  theme_minimal()
```


First, we started by cleaning the dataset that was provided by Kaggle. Cleaning included the NA, missing, and irrelevant values. Then we printed the summary of the dataset by using summary(clean_train). An important part of data analysis is using exploratory techniques to get an idea of the background of the data. I used several visualizations to show the different patterns and trends that were found in the dataset. The first visualization is a bar plot that shows survival counts. This allows us to see the overall proprtion of surviors and non-survivors. This is followed by a histogram of passenger ages, which helps identify age distributions and possible patterns related to survival. Another grouped bar plot shows survival rates across passenger classes (pclass), revealing that first-class passengers had a higher chance of survival compared to lower classes. Another plot illustrates survival rates by gender, confirming that female passengers had a significantly higher survival probability than males.

```
features <- c("Pclass", "Sex", "Age", "SibSp", "Parch", "Fare", "Embarked")

clean_train <- clean_train %>% select(all_of(features), Survived)

clean_test <- clean_test %>% select(all_of(features), PassengerId)

clean_train$Sex <- as.factor(clean_train$Sex)
clean_train$Embarked <- as.factor(clean_train$Embarked)</pre>
```

```
clean_train$Survived <- as.factor(clean_train$Survived)</pre>
clean_test$Sex <- as.factor(clean_test$Sex)</pre>
clean_test$Embarked <- as.factor(clean_test$Embarked)</pre>
clean_train <- na.omit(clean_train)</pre>
clean_test <- na.omit(clean_test)</pre>
library(e1071)
svm_model <- svm(Survived ~ ., data = clean_train, kernel = "linear", cost = 1)</pre>
svm_model
##
## Call:
## svm(formula = Survived ~ ., data = clean_train, kernel = "linear",
       cost = 1)
##
##
##
## Parameters:
## SVM-Type: C-classification
## SVM-Kernel: linear
          cost: 1
##
## Number of Support Vectors: 338
predictions <- predict(svm_model, clean_test)</pre>
predicted_survival <- as.numeric(predictions) - 1</pre>
table(clean_train$Survived)
##
##
   0 1
## 424 290
prop.table(table(clean_train$Survived))
##
## 0.5938375 0.4061625
summary(svm_model)
##
## svm(formula = Survived ~ ., data = clean_train, kernel = "linear",
##
       cost = 1)
##
##
## Parameters:
   SVM-Type: C-classification
## SVM-Kernel: linear
```

```
##
          cost: 1
##
## Number of Support Vectors: 338
##
    ( 168 170 )
##
##
## Number of Classes: 2
##
## Levels:
## 0 1
library(ggplot2)
ggplot(clean_train, aes(x = Pclass, fill = Survived)) +
  geom_bar(position = "fill") +
  labs(title = "Survival Rate by Passenger Class", y = "Proportion", x = "Pclass")
```

Survival Rate by Passenger Class


```
if ("Sex_female" %in% colnames(clean_train)) {
    ggplot(clean_train, aes(x = Sex_female, fill = Survived)) +
        geom_bar(position = "fill") +
        labs(title = "Survival Rate by Gender (Female)", y = "Proportion", x = "Female (1 = Yes, 0 = No)")
}
getwd()
```

[1] "/Users/nehadeshpande"

submission <- data.frame(PassengerId = clean_test\$PassengerId, Survived = predicted_survival)
submission</pre>

##	DaggangarTd	Curvinod
## 1	PassengerId 892	O 0
## 2	893	1
## 3	894	0
## 4	895	0
## 5	896	1
## 6	897	0
## 7	898	1
## 7	899	0
## 9	900	1
## 9	901	0
## 10	903	0
## 12	904	1
## 12	905	0
## 13	906	1
## 15	907	1
## 16	908	0
## 17	909	0
## 17	910	1
## 19	910	1
## 19	912	0
## 20	913	0
## 21	915	0
## 22	916	1
## 23 ## 24	917	0
## 24	918	1
## 26	919	0
## 27	920	0
## 28	922	0
## 29	923	0
## 30	924	1
## 31	926	0
## 32	927	0
## 33	929	1
## 34	930	0
## 35	932	0
## 36	934	0
## 37	935	1
## 38	936	1
## 39	937	0
## 40	938	0
## 41	940	1
## 42	941	1
## 43	942	0
## 44	943	0
## 45	944	1
## 46	945	1
## 47	947	0
## 48	948	0
10	0.10	3

40	0.40	^
## 49	949	0
## 50	951	1
## 51	952	0
## 52	953	0
## 53	954	0
## 54	955	1
## 55	956	0
## 56	958	1
## 57	959	0
## 58	960	0
## 59	961	1
## 60	962	1
## 61	963	0
## 62	964	1
## 63	965	0
## 64	966	1
## 65	967	0
## 66	969	1
## 67	970	0
## 68	971	1
## 69	972	0
## 70	973	0
## 71	974	0
## 72	978	1
## 73	979	1
## 74	981	0
## 75	982	1
## 76	984	1
## 77	986	0
## 78	987	0
## 79	988	1
## 80	989	0
## 81	990	1
## 82	991	0
## 83	992	1
## 84	993	0
## 85	995	0
## 86	996	1
## 87	997	0
## 88	998	0
## 89	1001	0
## 90	1002	0
## 91	1004	1
## 92	1005	1
## 93	1006	1
## 94	1007	0
	1007	
		1
## 96	1010	0
## 97	1011	1
## 98	1012	1
## 99	1014	1
## 100	1015	0
## 101	1017	1
## 102	1018	0

##	103	1020	0
##	104	1021	0
##	105	1022	0
##	106	1023	0
##	107	1026	0
##	108	1027	0
##	109	1028	0
##	110	1029	0
##	111	1030	1
##	112	1031	0
##	113	1032	1
##	114	1033	1
##	115	1034	0
##	116	1035	0
## ##	117 118	1036 1037	0
##	119	1037	0
##	120	1039	0
##	121	1041	1
##	122	1045	1
##	123	1045	0
##	124	1047	0
##	125	1048	1
##	126	1049	1
##	127	1050	0
##	128	1051	1
##	129	1053	0
##	130	1054	1
##	131	1056	0
##	132	1057	1
##	133	1058	0
##	134	1059	0
##	135	1061	1
##	136	1063	0
##	137	1064	0
##	138	1066	0
##	139	1067	1
##	140	1068	1
##	141	1069	0
##	142	1070	1
##	143	1071	1
##	144	1072	0
##	145	1073	0
##	146	1074	1
##	147	1076	1
##	148	1077	0
##	149	1078	1
##	150	1079	0
##	151	1081	0
##	152	1082	0
##	153	1084	0
##	154	1085	0
##	155	1086	0
##	156	1087	0

## 157	1088	0
## 157	1089	1
	1009	
## 159		0
## 160	1093	0
## 161	1094	0
## 162	1095	1
## 163	1096	0
## 164	1098	1
## 165	1099	0
## 166	1100	1
## 167	1101	0
## 168	1102	0
## 169	1104	0
## 170	1105	1
## 171	1106	1
## 172	1107	0
## 173	1109	0
## 174	1110	1
## 175	1112	1
## 176	1113	0
## 177	1114	1
## 178	1115	0
## 179	1116	1
## 180	1118	0
## 181	1120	0
## 182	1121	0
## 183	1122	0
## 184	1123	1
## 185	1124	0
## 186	1124	0
## 187	1127	0
## 188	1127	0
## 189	1129	0
	1129	
## 190		1
## 191	1131	1
## 192	1132	1
## 193	1133	1
## 194	1134	0
## 195	1137	0
## 196	1138	1
## 197	1139	0
## 198	1140	1
## 199	1142	1
## 200	1143	0
## 201	1144	0
## 202	1145	0
## 203	1146	0
## 204	1149	0
## 205	1150	1
## 206	1151	0
## 207	1152	0
## 208	1153	0
## 209	1154	1
## 210	1155	1

##	211	1156	0
##	212	1161	0
##	213	1162	0
##	214	1164	1
##	215	1167	1
##	216	1168	0
##	217	1169	0
##	218	1170	0
##	219	1171	0
##	220	1172	1
##		1173	0
##	222	1175	1
##	223	1176	1
##	224	1177	0
##	225	1179	0
##	226	1183	1
##	227	1185	0
##	228	1186	0
##	229	1187	0
##	230	1188	1
##	231	1190	0
##	232	1191	0
##	233	1192	0
##	234	1194	0
##	235	1195	0
##	236	1197	1
##	237	1198	0
##	238	1199	0
##	239	1200	0
##	240	1201	1
##	241	1202	0
##	242	1203	0
##	243	1205	1
##	244	1206	1
##	245	1207	1
##	246	1208	0
##	247	1209	0
##	248	1210	0
##	249	1211	0
##	250	1212	0
##	251	1213	0
##	252 253	1214	0
##		1215	0
##	254	1216	1
##	255	1217	0
##	256	1218	1
##	257	1219	0
##	258	1220	0
##	259	1221	0
##	260	1222	1
##	261	1223	0
##	262	1225 1226	
##	263		0
##	264	1227	0

			_
##	265	1228	0
##	266	1229	0
##	267	1230	0
##	268	1232	0
##	269	1233	0
##	270	1235	1
##	271	1237	1
##	272	1238	0
##	273	1239	1
##	274	1240	0
##	275	1241	1
##	276	1242	1
##	277	1243	0
			0
##	278	1244	
##	279	1245	0
##	280	1246	1
##	281	1247	0
##	282	1248	1
##	283	1251	1
##	284	1252	0
##	285	1253	1
##	286	1254	1
##	287	1255	0
##	288	1256	1
##	289	1259	1
##	290	1260	1
##	291	1261	0
##	292	1262	0
##	293	1263	1
##	294	1264	0
##	295	1265	0
##	296	1266	1
##	297	1267	1
##	298	1268	1
##	299	1269	0
##	300	1270	0
##	301	1271	0
##	302	1273	0
##	303	1275	1
##	304	1277	1
##	305	1278	0
##	306	1279	0
##	307	1280	0
##	308	1281	0
##			0
	309	1282	
##	310	1283	1
##	311	1284	0
##	312	1285	0
##	313	1286	0
##	314	1287	1
##	315	1288	0
##	316	1289	1
##	317	1290	0
##	318	1291	0

```
## 319
              1292
## 320
              1293
                           0
## 321
              1294
                           1
## 322
              1295
                           0
## 323
              1296
                           0
              1297
## 324
                           0
## 325
              1298
                           0
## 326
              1299
                           0
## 327
              1301
                           1
## 328
              1303
                           1
## 329
              1304
                           1
              1306
## 330
                           1
## 331
              1307
                           0
write.csv(submission, "/Users/nehadeshpande/Documents/submission.csv", row.names = FALSE)
library(caret)
## Loading required package: lattice
train_predictions <- predict(svm_model, clean_train)</pre>
train_actual <- as.factor(clean_train$Survived)</pre>
train_pred <- as.factor(train_predictions)</pre>
conf_matrix <- confusionMatrix(train_pred, train_actual)</pre>
print(conf_matrix)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
               0
            0 360 93
##
            1 64 197
##
##
##
                  Accuracy : 0.7801
##
                     95% CI: (0.7479, 0.81)
##
       No Information Rate : 0.5938
       P-Value [Acc > NIR] : < 2e-16
##
##
##
                      Kappa: 0.5369
##
##
   Mcnemar's Test P-Value: 0.02544
##
##
               Sensitivity: 0.8491
##
               Specificity: 0.6793
##
            Pos Pred Value: 0.7947
            Neg Pred Value: 0.7548
##
##
                Prevalence: 0.5938
##
            Detection Rate: 0.5042
##
      Detection Prevalence: 0.6345
```

```
##
         Balanced Accuracy: 0.7642
##
          'Positive' Class: 0
##
##
accuracy <- conf_matrix$overall["Accuracy"]</pre>
precision <- conf_matrix$byClass["Precision"]</pre>
recall <- conf_matrix$byClass["Recall"]</pre>
f1_score <- conf_matrix$byClass["F1"]</pre>
cat("Model Performance Metrics:\n")
## Model Performance Metrics:
cat("Accuracy:", accuracy, "\n")
## Accuracy: 0.780112
cat("Precision:", precision, "\n")
## Precision: 0.794702
cat("Recall:", recall, "\n")
## Recall: 0.8490566
cat("F1-score:", f1_score, "\n")
```

F1-score: 0.8209806

The SVM model code starts by loading and preparing the training data, where selected features are extracted and relevant variables are converted into factors, ensuring that categorical data such as gender and port of embarkation are properly handled. Once the data is cleaned, the SVM model is trained using the svm() function from the e1071 package. The formula Survived ~ . specifies that survival status is the target variable, while all other selected features serve as predictors. After training, predictions are made on the test dataset using predict(), and the results are stored. The survival rate distribution is analyzed using table() and prop.table() to understand class proportions. Titanic survival demonstrates an overall accuracy of 78.01%, meaning it correctly classifies survival outcomes in most cases. The confusion matrix shows that the model successfully identified 360 non-survivors (true negatives) and 197 survivors (true positives). However, it also misclassified 64 passengers as survivors who did not survive (false positives) and 93 passengers as non-survivors who actually survived (false negatives).