Wirtschaftsstatistik - ESA 1

Przemyslaw Jozwiak - Matrikelnummer 885582 07. November 2020

Aufgabe 1

1 Teil A

Um die Auswirkung der Regelstudienzeit zu demonstrieren, wurden die Studienzeiten von 200 Wirtschaftsingenieuren erhoben, die in den vergangenen vier Semestern ihr Studium erfolgreich abgeschlossen haben. Es ergaben sich folgende (fiktive) Daten:

Semesterzahl	10	11	12	13	14	15
relative Häufigkeiten	0,1	0,1	0,4	0,2	0,15	0,05

1.1 Wie heißt die statistische Größe (Merkmal) und wie ist es skaliert?

Semesterzahl ist hier uns Merkmal und es ist diskret.

1.2 Bestimmen Sie die absoluten Häufigkeiten (Häufigkeitstabelle).

Semesterzahl	10	11	12	13	14	15
absolute Häufigkeiten	20	20	80	40	30	10

1.3 Bestimmen Sie die absoluten und relativen kumulierten Häufigkeiten.

Semesterzahl	10	11	12	13	14	15
absolute Häufigkeiten	20	20	80	40	30	10
relative Häufigkeiten	0,1	0,1	0,4	0,2	0,15	0,05
absolute kumulierte Häufigkeit	10	10 + 11 = 21	21 + 12 = 33	33 + 13 = 46	46 + 14 = 60	60 + 15 = 75
relative kumulierte Häufigkeit	0,1	0.1 + 0.1 = 0.2	0.2 + 0.4 = 0.6	0.6+0.2=0.8	0.8 + 0.15 = 0.95	0.95 + 0.05 = 1

1.4 Skizzieren Sie (Graph) die relative Häufigkeitsfunktion und Verteilungsfunktion der statistischen Größe [absolut und relativ].

1.5 Wie viele Semester höchstens benötigen die 10% schnellsten Studenten? Die schnellsten 10% aller der 200 Studenten benötigen 10 Semester.

1.6 Wie viele Semester mindestens benötigen die 80% langsamsten Studenten? Die langsamen 80% der Studenten benötigen zwischen 12 und 15 Semester.

1.7 Geben Sie die Semesterzahl an, die genau 20% der Studenten benötigen Die Anzahl der Semester, die 20% der Studenten benötigen, beträgt 13.

2 Teil B

Im Teil B soll nur noch das Merkmal Y: "Semesterzahl" mit den Ausprägungen:

"klein" (weniger als 12 Semester)

"mittel" (genau 12 Semester)

"groß" (mehr als 12 Semester)

betrachtet werden.

2.1 Welche Skalierungsart liegt jetzt vor?

Hier liegt eine Ordinalskala vor.

2.2 Stellen Sie die absolute (nur) Häufigkeitsfunktion auf (Tabelle + Graph).

"Semesterzahl"	"klein"	"mittel"	"groß"
absolute Häufigkeiten	40	80	80

2.3 Ist es sinnvoll, bei einem nominal skalierten Merkmal eine Verteilungsfunktion anzugeben? [Begründen Sie]

Nein, dies ist nicht sinnvoll da die Werte einer Nominalskala, da wir die sich die Werte zwar unterscheiden aber wir diese nicht sortieren können.

3 Aufgabe 2

Ein Sportverein hat sich in seiner Leichtathletikabteilung einen Schwerpunkt in der Förderung des 100-Meter-Laufs gesetzt. Nach einem Jahr intensivsten Trainings wurden die Zeiten der 20 Läufer des Vereins gemessen. Dabei ergab sich folgende Verteilungsfunktion:

3.1 Zeichnen Sie das zur Verteilungsfunktion gehörende Histogramm.

Läufer	10.2	10.6	10.8	11
relative Häufigkeit	0.1	0.5	0.2	0.2
absolute Häufigkeit	2	10	4	4

3.2 Welche Zeit höchstens benötigen die 80% schnellsten Läufer?

Die schnellsten 80% der Läufer benötigen 10,8 Sekunden.