# SoC Design Lab1

Institute of Electronics,
National Yang Ming Chiao Tung University
412510020 高振翔

- Brief introduction about the overall system
  - Learn the hls flow
  - Learn how to integrate the IP from vitis\_hls to zynq
  - Learn how to generate bitstream on vivado
  - Learn how to rent the onlineFPGA
  - Learn how the kv260 read the bitstream by library of overlay
  - Learn how to write code on OnlineFPGA by Jupyter

#### What is observed & learned

In this lab, I try may way to install vitis\_hls ubuntu which run on the docker. I try the version of 2022.1 \cdot 2022.2 \cdot 2023.1. They can be install well but it will have error when I run the co-simulation. This error log is tool bug which I find the comment from the website. So I try may version of vitis\_hls. Finally, I still install the tool 2022.1 on my windows, the error does not happen again.

From this lab, I go through the basic flow of HLS by C++ to a Vivado IP. In this process, I simulation my c++ code, try to synthesis the design, co-simulation design and testbench and finally export the Verilog IP. In each step, I try to find some information from the report to understand the implementation view the design not just the abstractive view of c++ code.

And also I never view the summary report from Solution1->syn->report->multip\_2num\_csynth.rpt. It is more detail than Flow Navigator-> C SYNTHESIS-> Report & Viewers->Report.

And I learned the flow of his and integrate to the vivado design. Generating bitstream and upload to the FPGA. The FPGA can control online. I upload the bitstream and edit the python code on Jupyter. I adjust the related file path and compile the code to get the python code result by hw design.

#### C Simulation Result

```
6 >> Start test!
81 * 1 = 1
91 * 2 = 2
101 * 3 = 3
111 * 4 = 4
121 * 5 = 5
131 * 6 = 6
141 * 7 = 7
151 * 8 = 8
161 * 9 = 9
182 * 1 = 2
192 * 2 = 4
20 2 * 3 = 6
21 2 * 4 = 8
22 2 * 5 = 10
23 2 * 6 = 12
24 2 * 7 = 14
25 2 * 8 = 16
26 2 * 9 = 18
283 * 1 = 3
293 * 2 = 6
303 * 3 = 9
31 3 * 4 = 12
323 * 5 = 15
33 3 * 6 = 18
343 * 7 = 21
35 3 * 8 = 24
363 * 9 = 27
384 * 1 = 4
394 * 2 = 8
404 * 3 = 12
414 * 4 = 16
424 * 5 = 20
434 * 6 = 24
444 * 7 = 28
45 4 * 8 = 32
464 * 9 = 36
485 * 1 = 5
495 * 2 = 10
505 * 3 = 15
515 * 4 = 20
```

```
525 * 5 = 25
535 * 6 = 30
545 * 7 = 35
55 5 * 8 = 40
565 * 9 = 45
586 * 1 = 6
596 * 2 = 12
606 * 3 = 18
616 * 4 = 24
626 * 5 = 30
636 * 6 = 36
646 * 7 = 42
656 * 8 = 48
666 * 9 = 54
687 * 1 = 7
69 7 * 2 = 14
707 * 3 = 21
717 * 4 = 28
72 7 * 5 = 35
73 7 * 6 = 42
747 * 7 = 49
75 7 * 8 = 56
767 * 9 = 63
788 * 1 = 8
798 * 2 = 16
808 * 3 = 24
818 * 4 = 32
828 * 5 = 40
838 * 6 = 48
848 * 7 = 56
85 8 * 8 = 64
868 * 9 = 72
889 * 1 = 9
899 * 2 = 18
909 * 3 = 27
919 * 4 = 36
929 * 5 = 45
939 * 6 = 54
949 * 7 = 63
959 * 8 = 72
969 * 9 = 81
97 -----
98 >> Test passed!
```

#### • Performance:

FF: 409

LUT: 307







# Utilization

# **Utilization Estimates**

# □ Summary

| Name            | BRAM_18k | DSP | FF     | LUT   | URAM |
|-----------------|----------|-----|--------|-------|------|
| DSP             | -        | -   | -      | -     | -    |
| Expression      | -        | -   | -      | -     | -    |
| FIFO            | -        | -   | -      | -     | -    |
| Instance        | (        | 3   | 309    | 282   | -    |
| Memory          | -        | -   | -      | -     | -    |
| Multiplexer     | -        | -   | -      | 25    | -    |
| Register        | -        | -   | 100    | -     | -    |
| Total           | (        | 3   | 409    | 307   | 0    |
| Available       | 280      | 220 | 106400 | 53200 | 0    |
| Utilization (%) | (        | 1   | ~0     | ~0    | 0    |

- □ Detail

  - **⊕** DSP

  - **⊕ FIFO**
  - **⊕** Expression
  - **⊞** Multiplexer
  - **⊞** Register

# Interface

### **▼** HW Interfaces

### ▼ S\_AXILITE Interfaces

| Interface     | Data Width | Address Width | Offset | Register |  |
|---------------|------------|---------------|--------|----------|--|
| s_axi_control | 32         | 6             | 16     | 0        |  |
|               |            |               |        |          |  |

## ▼ S\_AXILITE Registers

| Interface     | Register        | Offset | Width | Access | Description                  | Bit Fields          |  |
|---------------|-----------------|--------|-------|--------|------------------------------|---------------------|--|
| s_axi_control | n32ln1          | 0x10   | 32    | W      | Data signal of n32ln1        |                     |  |
| s_axi_control | n32ln2          | 0x18   | 32    | W      | Data signal of n32ln2        |                     |  |
| s_axi_control | pn32ResOut      | 0x20   | 32    | R      | Data signal of pn32ResOut    |                     |  |
| s_axi_control | pn32ResOut_ctrl | 0x24   | 32    | R      | Control signal of pn32ResOut | 0=pn32ResOut_ap_vld |  |
|               |                 |        |       |        |                              |                     |  |

### ▼ TOP LEVEL CONTROL

| Interface | Туре       | Ports                             |  |
|-----------|------------|-----------------------------------|--|
| ap_clk    | clock      | ap_clk                            |  |
| ap_rst_n  | reset      | ap_rst_n                          |  |
| ap_ctrl   | ap_ctrl_hs | ap_done ap_idle ap_ready ap_start |  |
|           |            |                                   |  |

| Interface                                      |       |             |             |               |              |  |  |
|------------------------------------------------|-------|-------------|-------------|---------------|--------------|--|--|
|                                                |       |             |             |               |              |  |  |
|                                                |       |             |             |               |              |  |  |
| ☐ Summary                                      |       |             |             |               |              |  |  |
| RTL Ports                                      | Dir   | Bits        | Protocol    | Source Object | С Туре       |  |  |
| s_axi_control_AWVALID                          | in    | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_AWREADY                          | out   | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_AWADDR                           | in    | 6           | s_axi       | control       | pointer      |  |  |
| s_axi_control_WVALID                           | in    | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_WREADY                           | out   | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_WDATA                            | in    | 32          | s_axi       | control       | pointer      |  |  |
| s_axi_control_WSTRB                            | in    | 4           | s_axi       | control       | pointer      |  |  |
| s_axi_control_ARVALID                          | in    | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_ARREADY                          | out   | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_ARADDR                           | in    | 6           | s_axi       | control       | pointer      |  |  |
| s_axi_control_RVALID                           | out   | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_RREADY                           | in    | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_RDATA                            | out   | 32          | s_axi       | control       | pointer      |  |  |
| s_axi_control_RRESP                            | out   | 2           | s_axi       | control       | pointer      |  |  |
| s_axi_control_BVALID                           | out   | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_BREADY                           | in    | 1           | s_axi       | control       | pointer      |  |  |
| s_axi_control_BRESP                            | out   | 2           | s_axi       | control       | pointer      |  |  |
| ap_clk                                         | in    | 1           | ap_ctrl_hs  | multip_2num   | return value |  |  |
| ap_rst_n                                       | in    | 1           | ap_ctrl_hs  | multip_2num   | return value |  |  |
| ap_start                                       | in    | 1           | ap_ctrl_hs  | multip_2num   | return value |  |  |
| ap_done                                        | out   | 1           | ap_ctrl_hs  | multip_2num   | return value |  |  |
| ap_idle                                        | out   | 1           | ap_ctrl_hs  |               |              |  |  |
| ap_ready                                       | out   | 1           | ap_ctrl_hs  | multip_2num   | return value |  |  |
|                                                |       |             |             |               |              |  |  |
|                                                |       |             |             |               |              |  |  |
| on a set the a second set ( between the second | ماء س | - E         | nast Diales |               |              |  |  |
| kport the report(.html) usir                   | ig tn | <u>е Ех</u> | port Dialog | l.            |              |  |  |

# Co-simulation transcript/Waveform





## Jupyter Notebook execution results

```
[1] list all online device boards
[2] rent a specified device board
[3] return your rented device board
[0] exit OnlineFPGA service

please enter your option:
>> 2

[1] pynq
[2] kv260

please enter your option:
>> 1

[1] rent a device board by choice
[2] rent a device board by assignment

please enter your option:
>> 2

device pynq_04 is available do you want to rent this device? (y/n)
>> y
user michael61112.ee12@nycu.edu.tw rented device pynq_04 successfully
jupyter web ip port is 140.112.207.200:20400, web passwd is fv0vnY and timeup at 09/20/2023 23:43:10
```



