Introducción a la Lógica y la Computación. 3er parcial, 21/11/2007.

Apellido y Nombre:

nota	1.	2	3 .	4	5.
					3

- (1) Considere el NFA con mov. ϵ de la Fig. 1, donde $\Sigma = \{a,b\}$ y $F = \{q_2,q_3\}$.
 - (a) Determine cuales de las siguientes palabras son aceptadas: abab, ϵ , abb.
 - (b) Dé una caracterización sencilla, con palabras, del lenguaje aceptado por el autómata.
 - (c) Justifique la afirmación hecha en el apartado (b).
- (2) Construir un DFA que acepte exactamente el lenguaje aceptado por el autómata de la Fig. 1. Debe utilizarse el método enseñado en el curso.
- (3) Considere el autómata de la Fig. 1, y considere también el método desarrollado en la construcción del Teorema de Kleene.
 - a. Dé explícitamente M_{12} y M_{13} .
 - b. Calcule la expresión e_{13} , que satisface $L(e_{13}) = L(M_{13})$. Desarrolle el método paso por paso, detallando los casos bases.
- (4) Use Pumping Lemma para demostrar que el siguiente lenguaje sobre el alfabeto $\Sigma = \{0, 1\}$ no es regular.

 $\{01^n00^n1: n \ge 1\}$

- (5) Responda Verdadero o Falso. Justifique sus respuestas.
 - (a) Si $M = (Q, \Sigma, \delta, q_0, F)$ es un NFA con mov. ϵ , y $\alpha \in \Sigma^*$, entonces existe $q \in Q$ tal que α transforma q_0 en q.
 - (b) Para toda expresión regular e se tiene $L((e + \emptyset)\epsilon) = L(e)$.
 - (c) Los lenguajes aceptados por los NFA con mov. ε son también generados por gramáticas libres de contexto.
 - (d) Existe una gramática regular que genere el lenguaje $\{a,b\}^* \{a^ib^j : i,j \ge 0\}$.

