

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 955 363 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 10.11.1999 Bulletin 1999/45

(21) Application number: 99107413.9

(22) Date of filing: 26.04.1999

(51) Int. Cl.⁶: **C12N 9/88**, C12N 9/04, C12N 9/02, C12N 9/12, C12N 9/10, C12N 15/53, C12N 15/54, C12N 15/60, C12P 17/02

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 06.05.1998 EP 98108210

(71) Applicant: F. HOFFMANN-LA ROCHE AG 4070 Basel (CH) (72) Inventors:

 Hoshino, Tatsuo Kamakura-shi, Kanagawa-ken 248-0027 (JP)

Ojima, Kazuyuki
 Fujisawa-shi, Kanagawa-ken 251-0877 (JP)

Setoguchi, Yutaka
 Fujisawa-shi, Kanagawa-ken 251-0033 (JP)

(74) Representative: Braun, Axel et al F.Hoffmann-La Roche AG Patent Department (PLP), 124 Grenzacherstrasse 4070 Basel (CH)

(54) Dna sequences encoding enzymes involved in production of isoprenoids

(57) The present invention is directed to an isolated DNA sequence coding for an enzyme involved in the mevalonate pathway or the pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate, vectors or plasmids comprising such DNA, hosts transformed by either such DNAs or vectors or plasmids and a process for the production of isoprenoids and carotenoids by using such transformed host cells.

Description

55

[0001] The present invention relates to molecular biology for the manufacture of isoprenoids and biological materials useful therefor.

[0002] Astaxanthin is known to distribute in a wide variety of organisms such as animal (e.g. birds such as flamingo and scarlet ibis, and fish such as rainbow trout and salmon), algae and microorganisms. It is also recognized that astaxanthin has a strong antioxidation property against oxygen radical, which is expected to apply to pharmaceutical usage to protect living cells against some diseases such as a cancer. Moreover, from a viewpoint of industrial application, a demand for astaxanthin as a coloring reagent is increasing especially in the industry of farmed fish, such as salmon, because astaxanthin imparts distinctive orange-red coloration to the animals and contributes to consumer appeal in the marketplace.

[0003] Phaffia rhodozyma is known as a carotenogenic yeast strain which produces astaxanthin specifically. Different from the other carotenogenic yeast, *Rhodotorula* species, *Phaffia rhodozyma* (*P. rhodozyma*) can ferment some sugars such as D-glucose. This is an important feature from a viewpoint of industrial application. In a recent taxonomic study, a sexual cycle of *P. rhodozyma* was revealed and its telemorphic state was designated under the name of *Xanthophyllomyces dendrorhous* (W.I. Golubev; Yeast 11, 101 - 110, 1995). Some strain improvement studies to obtain hyper producers of astaxanthin from *P. rhodozyma* have been conducted, but such efforts have been restricted to employ the method of conventional mutagenesis and protoplast fusion in this decade. Recently, Wery *et al.* developed a host vector system using *P. rhodozyma* in which a non-replicable plasmid was used to be integrated onto the genome of *P. rhodozyma* at the locus of ribosomal DNA in multicopies (Wery *et al.*, Gene, 184, 89-97, 1997). And Verdoes *et al.* reported more improved vectors to obtain a transformant of *P. rhodozyma* as well as its three carotenogenic genes which code the enzymes that catalyzes the reactions from geranylgeranyl pyrophosphate to β-carotene (International patent WO97/23633). The importance of genetic engineering method on the strain improvement study of *P. rhodozyma* will increase in near future to break through the reached productivity by the conventional methods.

[0004] It is reported that the carotenogenic pathway from a general metabolite, acetyl-CoA consists of multiple enzymatic steps in carotenogenic eukaryotes as shown in Fig.1. Two molecules of acetyl-CoA are condensed to yield acetoacetyl-CoA which is converted to 3-hydroxy-3-methyglutaryl-CoA (HMG-CoA) by the action of 3-hydroxymethyl-3glutaryl-CoA synthase. Next, 3-hydroxy-3-methylglutaryl-CoA reductase converts HMG-CoA to mevalonate, to which two molecules of phosphate residues are then added by the action of two kinases (mevalonate kinase and phosphomevalonate kinase). Mevalonate pyrophosphate is then decarboxylated by the action of mevalonate pyrophosphate decarboxylase to yield isopentenyl pyrophosphate (IPP) which becomes a building unit of wide varieties of isoprene molecules which is necessary in living organisms. This pathway is called as mevalonate pathway taken from its important intermediate, mevalonate. IPP is isomerized to dimethylaryl pyrophosphate (DMAPP) by the action of IPP isomerase. Then, IPP and DMAPP converted to C_{10} unit, geranyl pyrophosphate (GPP) by the head to tail condensation. In a similar condensation reaction between GPP and IPP, GPP is converted to C15 unit, farnesyl pyrophosphate (FPP) which is an important substrate of cholesterol in animal and ergosterol in yeast, and of farnesylation of regulation protein such as RAS protein. In general, the biosynthesis of GPP and FPP from IPP and DMAPP are catalyzed by one enzyme called FPP synthase (Laskovics et al., Biochemistry, 20, 1893-1901, 1981). On the other hand, in prokaryotes such as eubacteria, isopentenyl pyrophosphate was synthesized in a different pathway via 1-deoxyxylulose-5-phosphate from pyruvate which is absent in yeast and animal (Rohmer et al., Biochem. J., 295, 517-524, 1993). In exclusive studies of cholesterol biosynthesis, it was shown that rate-limiting steps of cholesterol metabolism were in the steps of this mevalonate pathway, especially in its early steps catalyzed by HMG-CoA synthase and HMG-CoA reductase. The inventors paid their attention to the fact that the biosynthetic pathways of cholesterol and carotenoid share their intermediate pathway from acetyl-CoA to FPP, and tried to improve the rate-limiting steps in the carotenogenic pathway which might exist in the steps of mevalonate pathway, especially in early mevalonate pathway such as the steps catalyzed by HMG-CoA synthase and HMG-CoA reductase so as to improve the productivity of carotenoids, especially astaxanthin.

[0005] This invention is created based on the above endeavor of the inventors. In accordance with this invention, the genes and the enzymes involved in the mevalonate pathway from acetyl-CoA to FPP which are biological materials useful in the improvement of the astaxanthin production process are provided. This invention involves cloning and determination of the genes which code for HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, mevalonate pyrophosphate decarboxylase and FPP synthase. This invention also involves the enzymatic characterization as a result of the expression of such genes in suitable host organisms such as *E. coli*. These genes may be amplified in a suitable host, such as *P. rhodozyma* and their effects on the carotenogenesis can be confirmed by the cultivation of such a transformant in an appropriate medium under an appropriate cultivation condition.

[0006] According to the present invention, there are provided an isolated DNA sequence coding for an enzyme involved in the mevalonate pathway or the reaction pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate. More specifically, the said enzyme are those having an activity selected from the group consisting of 3-hydroxy-

3-methylglutaryl-CoA synthase activity, 3-hydroxy-3-methylglutaryyl-CoA reductase activity, mevalonate kinase activity, mevalonate pyrophosphate decarboxylase activity and farnesyl pyrophosphate synthase.

The said isolated DNA sequence may be more specifically characterized in that (a) it codes for the said enzyme having an amino acid sequence selected from the group consisting of those described in SEQ ID NOs: 6, 7, 8, 9 and 10, or (b) it codes for a variant of the said enzyme selected from (i) an allelic variant, and (ii) an enzyme having one or more amino acid addition, insertion, deletion and/or substitution and having the stated enzyme activity. Particularly specified isolated DNA sequence mentioned above may be that which can be derived from a gene of Phaffia rhodozyma and is selected from (i) a DNA sequence represented in SEQ ID NOs: 1, 2, 4 or 5; (ii) an isocoding or an allelic variant for the DNA sequence represented in SEQ ID NOs: 1, 2, 4 or 5; and (iii) a derivative of a DNA sequence represented in SEQ ID NOs: 1, 2, 4 or 5 with addition, insertion, deletion and/or substitution of one or more nucleotide(s), and coding for a polypeptide having the said enzyme activity. Such derivatives can be made by recombinant means on the basis of the DNA sequences as disclosed herein by methods known in the state of the art and disclosed e.g. by Sambrook et al. (Molecular Cloning, Cold Spring Harbour Laboratory Press, New York, USA, second edition 1989). Amino acid exchanges in proteins and peptides which do not generally alter the activity are known in the state of the art and are described, for example, by H. Neurath and R. L. Hill in OThe ProteinsO (Academic Press, New York, 1979, see especially Figure 6, page 14). The most commonly occurring exchanges are: Ala/Ser, Val/IIe, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly, as well as these in reverse.

[0008] The present invention also provides an isolated DNA sequence, which is selected from (i) a DNA sequence represented in SEQ ID NO: 3; (ii) an isocoding or an allelic variant for the DNA sequence represented in SEQ ID NO: 3; and (iii) a derivative of a DNA sequence represented in SEQ ID NO: 3 with addition, insertion, deletion and/or substitution of one or more nucleotide(s), and coding for a polypeptide having the mevalonate kinase activity.

[0009] Furthermore the present invention is directed to those DNA sequences as specified above and as disclosed, e.g. in the sequence listing as well as their complementary strands, or those which include these sequences, DNA sequences which hybridize under standard conditions with such sequences or fragments thereof and DNA sequences, which because of the degeneration of the genetic code, do not hybridize under standard conditions with such sequences but which code for polypeptides having exactly the same amino acid sequence.

[0010] "Standard conditions" for hybridization mean in this context the conditions which are generally used by a man skilled in the art to detect specific hybridization signals and which are described, e.g. by Sambrook et al., "Molecular Cloning" second edition, Cold Spring Harbour Laboratory Press 1989, New York, or preferably so called stringent hybridization and non-stringent washing conditions or more preferably so called stringent hybridization and stringent washing conditions a man skilled in the art is familiar with and which are described, e.g. in Sambrook et al. (s.a.). Furthermore DNA sequences which can be made by the polymerase chain reaction by using primers designed on the basis of the DNA sequences disclosed herein by methods known in the art are also an object of the present invention. It is understood that the DNA sequences of the present invention can also be made synthetically as described, e.g. in EP 747 483.

35

55

[0011] Further provided by the present invention is a recombinant DNA, preferably a vector and/or plasmid comprising a sequence coding for an enzyme functional in the mevalonate pathway or the reaction pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate. The said recombinant DNA vector and/or plasmid may comprise the regulatory regions such as promoters and terminators as well as open reading frames of above named DNAs.

[0012] The present invention also provides the use of the said recombinant DNA, vector or plasmid, to transform a host organism. The recombinant organism obtained by use of the recombinant DNA is capable of overexpressing DNA sequence encoding an enzyme involved in the mevalonate pathway or the reaction pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate. The host organism transformed with the recombinant DNA may be useful in the improvement of the production process of isoprenoids and carotenoids, in particular astaxanthin. Thus the present invention also provides such a recombinant organism/transformed host.

[0013] The present invention further provides a method for the production of isoprenoids or carotenoids, preferably carotenoids, which comprises cultivating thus obtained recombinant organism.

[0014] The present invention also relates to a method for producing an enzyme involed in the mevalonate pathway or the reaction pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate, which comprises culturing a recombinant organism mentioned above, under a condition conductive to the production of said enzyme and relates also to the enzyme itself.

[0015] The present invention will be understood more easily on the basis of the enclosed figures and the more detailed explanations given below.

Fig. 1 depicts a scheme of deduced biosynthetic pathway from acetyl-CoA to astaxanthin in P. rhodozyma.

Fig. 2 shows the expression study by using an artificial mvk gene obtained from an artificial nucleotide addition at

amino terminal end of pseudo-*mvk* gene from *P. rhodozyma*. The cells from 50 μl of broth were subjected to 10 % sodium dodesyl sulfide - polyacrylamide gel electrophoresis (SDS-PAGE). Lane 1, *E. coli* (M15 (pREP4) (pQE30) with 1mM IPTG); Lane 3, Molecular weight marker (105 kDa, 82.0 kDa, 49.0 kDa, 33.3 kD and 28.6 kDa, up to down, BIO-RAD); Lane 4, *E. coli* (M15 (pREP4) (pMK1209 #3334) with 1mM IPTG).

5

10

[0016] The present invention provides an isolated DNA sequence which code for enzymes which are involved in a biological pathway comprising the mevalonate pathway or the reaction pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate. The said enzymes can be exemplified by those involved in the mevalonate pathway or the reaction pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate in Phaffia rhodozyma, such as 3-hydroxy-3methylglutaryl-CoA synthase, 3-hydroxy-3-methylglutaryyl-CoA reductase, mevalonate kinase, mevalonate pyrophosphate decarboxylase and farnesyl pyrophosphate synthase. The present invention is useful for the production of the compounds involved in the biological pathway from the mevalonate pathway to the carotenogenic pathway and various products derived from such compounds. The compounds involved in the mevalonate pathway are acetoacetyl-CoA, 3hydroxymethyl-3-glutaryl-CoA, mevalonic acid, mevalonate-phosphate, mevalonate-pyrophosphate and isopentenylpyrohposphate. Subsequently, isopentenyl-pyrohposphate is converted to geranylgeranyl-pyrophosphate through geranyl-pyrophosphate and farnesyl-pyrophosphate via the "Isoprene Biosynthesis" reactions as indicated in Fig. 1. The compounds involved in the carotenogenic pathway are geranylgeranyl-pyrophosphate, phytoene, lycopene, β -carotene and astaxanthin. Among the compounds involved in the above-mentioned biosynthesis, geranyl-pyrophosphate may be utilized for the production of ubiquinone. Farnesyl-pyrophosphate can be utilized for the production of sterols, such as cholesterol and ergosterol. Geranylgeranyl-pyrophosphate is a useful material for the production of vitamin K, vitamin E, chlorophyll and the like. Thus the present invention will be particularly useful when it is applied to a biological production of isoprenoids. Isoprenoids is the general term which collectively designates a series of compounds having isopentenyl-pyrophosphate as a skeleton unit. Further examples of isoprenoids are vitamin A and vitamin D_3 .

[0017] The said DNA of the present inveiton can mean a cDNA which contains only open reading frame flanked between the short fragments in its 5'- and 3'- untranslated region and a genomic DNA which also contains its regulatory sequences such as its promoter and terminator which are necessary for the expression of the gene of interest.

[0018] In general, the gene consists of several parts which have different functions from each other. In eukaryotes, genes which encode corresponding protein are transcribed to premature messenger RNA (pre-mRNA) differing from the genes for ribosomal RNA (rRNA), small nuclear RNA (snRNA) and transfer RNA (tRNA). Although RNA polymerase II (PolII) plays a central role in this transcription event, PolII can not solely start transcription without *cis* element covering an upstream region containing a promoter and an upstream activation sequence (UAS), and a *trans*-acting protein factor. At first, a transcription initiation complex which consists of several basic protein components recognize the promoter sequence in the 5'-adjacent region of the gene to be expressed. In this event, some additional participants are required in the case of the gene which is expressed under some specific regulation, such as a heat shock response, or adaptation to a nutrition starvation, and so on. In such a case, a UAS is required to exist in the 5'-untranslated upstream region around the promoter sequence, and some positive or negative regulator proteins recognize and bind to the UAS. The strength of the binding of transcription initiation complex to the promoter sequence is affected by such a binding of the *trans*-acting factor around the promoter, and this enables the regulation of the transcription activity.

[0019] After the activation of a transcription initiation complex by the phosphorylation, a transcription initiation complex initiates transcription from the transcription start site. Some parts of the transcription initiation complex are detached as an elongation complex from the promoter region to the 3' direction of the gene (this step is called as a promoter clear-ance event) and an elongation complex continues the transcription until it reaches to a termination sequence that is located in the 3'-adjacent downstream region of the gene. Pre-mRNA thus generated is modified in nucleus by the addition of cap structure at the cap site which almost corresponds to the transcription start site, and by the addition of polyA stretches at the polyA signal which locates at the 3'-adjacent downstream region. Next, intron structures are removed from coding region and exon parts are combined to yield an open reading frame whose sequence corresponds to the primary amino acid sequence of a corresponding protein. This modification in which a mature mRNA is generated is necessary for a stable gene expression. cDNA in general terms corresponds to the DNA sequence which is reverse-transcribed from this mature mRNA sequence. It can be synthesized by the reverse transcriptase derived from viral species by using a mature mRNA as a template, experimentally.

[0020] To express a gene which was derived from eukaryote, a procedure in which cDNA is cloned into an expression vector in *E. coli* is often used as shown in this invention. This causes from a fact that a specificity of intron structure varies among the organisms and an inability to recognize the intron sequence from other species. In fact, prokaryote has no intron structure in its own genetic background. Even in the yeast, genetic background is different between ascomycetea to which *Saccharomyces cerevisiae* belongs and basidiomycetea to which *P. rhodozyma* belongs. Wery *et al.* showed that the intron structure of actin gene from *P. rhodozyma* cannot be recognized nor spliced by the ascomycetous yeast, *Saccharomyces cerevisiae* (Yeast, 12, 641-651, 1996).

[0021] Some other researchers reported that intron structures of some kinds of the genes involve regulation of their gene expressions (Dabeva, M. D. et al., Proc. Natl. Acad. Sci. U.S.A., 83, 5854, 1986). It might be important to use a genomic fragment which has its introns in a case of self-cloning of the gene of a interest whose intron structure involves such a regulation of its own gene expression.

[0022] To apply a genetic engineering method for a strain improvement study, it is necessary to study its genetic mechanism in the event such as transcription and translation. It is important to determine a genetic sequence such as its UAS, promoter, intron structure and terminator to study the genetic mechanism.

[0023] According to this invention, the genes which code for the enzymes involving the mevalonate pathway were cloned from genomic DNA of *P. rhodozyma*, and their genomic sequence containing HMG-CoA synthase (*hmc*) gene, HMG-CoA reductase (*hmg*) gene, mevalonate kinase (*mvk*) gene, mevalonate pyrophosphate decarboxylase (*mpd*) gene and FPP synthase (*fps*) gene including their 5'- and 3'-adjacent regions as well as their intron structures were determined.

[0024] At first, we cloned a partial gene fragment containing a portion of hmc gene, hmg gene, mvk gene, mpd gene and fps gene by using degenerate PCR method. The said degenerate PCR is a method to clone a gene of interest which has high homology of amino acid sequence to the known enzyme from other species which has a same or similar function. Degenerate primer, which is used as a primer in degenerate PCR, was designed by a reverse translation of the amino acid sequence to corresponding nucleotides ("degenerated"). In such a degenerate primer, a mixed primer which consists any of A, C, G or T, or a primer containing inosine at an ambiguity code is generally used. In this invention, such the mixed primers were used for degenerate primers to clone above genes. PCR condition used is varied depending on primers and genes to clone as described hereinafter.

[0025] An entire gene containing its coding region with its intron as well as its regulation region such as a promoter or terminator can be cloned from a chromosome by screening of genomic library which is constructed in phage vector or plasmid vector in an appropriate host, by using a partial DNA fragment obtained by degenerate PCR as described above as a probe after it was labeled. Generally, E. coli as a host strain and E. coli vector, a phage vector such as λ phage vector, or a plasmid vector such as pUC vector is often used in the construction of library and a following genetic manipulation such as a sequencing, a restriction digestion, a ligation and the like. In this invention, an EcoRI genomic library of *P. rhodozyma* was constructed in the derivatives of λ vector, λZAPII and λDASHII depending on an insert size. An insert size, what length of insert must be cloned, was determined by the Southern blot hybridization for each gene before a construction of a library. In this invention, a DNA which was used for a probe was labeled with digoxigenin (DIG), a steroid hapten instead of conventional ³²P label, following the protocol which was prepared by the supplier (Boehringer-Mannheim). A genomic library constructed from the chromosome of P. rhodozyma was screened by using a DIG-labeled DNA fragment which had a portion of a gene of interest as a probe. Hybridized plaques were picked up and used for further study. In the case of using \(\text{DASHII} \) (insert size was from 9 kb to 23 kb), prepared \(\text{DNA} \) was digested by the EcoRI, followed by the cloning of the EcoRI insert into a plasmid vector such as pUC19 or pBluescriptII SK+. When λZAPII was used in the construction of the genomic library, in vivo excision protocol was conveniently used for the succeeding step of the cloning into the plasmid vector by using a derivative of single stranded M13 phage, Ex assist phage (Stratagene). A plasmid DNA thus obtained was examined for a sequencing.

[0026] In this invention, we used the automated fluorescent DNA sequencer, ALFred system (Pharmacia) using an autocycle sequencing protocol in which the Taq DNA polymerase is employed in most cases of sequencing.

[0027] After the determination of the genomic sequence, a sequence of a coding region was used for a cloning of cDNA of corresponding gene. The PCR method was also exploited to clone cDNA fragment. The PCR primers whose sequences were identical to the sequence at the 5'- and 3'- end of the open reading frame (ORF) were synthesized with an addition of an appropriate restriction site, and PCR was performed by using those PCR primers. In this invention, a cDNA pool was used as a template in this PCR cloning of cDNA. The said cDNA pool consists of various cDNA species which were synthesized *in vitro* by the viral reverse transcriptase and Taq polymerase (CapFinder Kit manufactured by Clontech was used) by using the mRNA obtained from *P. rhodozyma* as a template. cDNA of interest thus obtained was confirmed in its sequence. Furthermore, cDNA thus obtained was used for a confirmation of its enzyme activity after the cloning of the cDNA fragment into an expression vector which functions in *E. coli* under the strong promoter activity such as the lac or TZ expression system.

[0028] Succeeding to the confirmation of the enzyme activity, an expressed protein would be purified and used for raising of the antibody against the purified enzyme. Antibody thus prepared would be used for a characterization of the expression of the corresponding enzyme in a strain improvement study, an optimization study of the culture condition, and the like.

[0029] After the rate-limiting step is determined in the biosynthetic pathway which consists of multiple steps of enzymatic reactions, there are three strategies to enhance its enzymatic activity of the rate-limiting reaction by using its genomic sequence.

[0030] One strategy is to use its gene itself as a native form. The simplest approach is to amplify the genomic sequence including its regulation sequence such as a promoter and a terminator. This is realized by the cloning of the

genomic fragment encoding the enzyme of interest into the appropriate vector on which a selectable marker that functions in P. rhodozyma is harbored. A drug resistance gene which encodes the enzyme that enables the host survive in the presence of a toxic antibiotic is often used for the selectable marker. G418 resistance gene harbored in pGB-Ph9 (Wery et al. (Gene, 184, 89-97, 1997)) is an example of a drug resistance gene. Nutrition complementation maker can be also used in the host which has an appropriate auxotrophy marker. P. rhodozyma ATCC24221 strain which requires cytidine for its growth is one example of the auxotroph. By using CTP synthetase as donor DNA for ATCC24221, a host vector system using a nutrition complementation can be established. As a vector, two types of vectors would be used. One of the vectors is an integrated vector which does not have an autonomous replicating sequence. Above pGB-Ph9 is an example of this type of a vector. Because such a vector does not have an autonomous replicating sequence in the vector, above vector cannot replicate by itself and can be present only in an integrated form on the chromosome of the host as a result of a single-crossing recombination using the homologous sequence between a vector and a chromosome. In case of increasing a dose of the integrated gene on the chromosome, amplification of the gene is often employed by using such a drug resistance marker. By increasing the concentration of the corresponding drug in the selection medium, the strain, in which the integrated gene is amplified on the chromosome as a result of recombination only can survive. By using such a selection, a strain which has amplified gene can be chosen. Another type of vector is a replicable vector which has an autonomous replicating sequence. Such a vector can exist in a multicopy state and this makes a dose of the harbored gene also exist in a multicopy state. By using such a strategy, an enzyme of interest which is coded by the amplified gene is expected to be overexpressed.

[0031] Another strategy to overexpress an enzyme of interest is a placement of a gene of interest under a strong promoter. In such a strategy, a copy number of a gene is not necessary to be in a multicopy state. This strategy is also applied to overexpress a gene of interest under the appropriate promoter whose promoter activity is induced in an appropriate growth phase and an appropriate timing of cultivation. Production of astaxanthin accelerates in a late phase of the growth such as the case of production of a secondary metabolite. Thus, the expression of carotenogenic genes may be maximized in a late phase of growth. In such a phase, gene expression of most biosynthesis enzyme decreases. For example, by placing a gene, which is involved in the biosynthesis of a precursor of astaxanthin and whose expression is under the control of a vegetative promoter such as a gene which encodes an enzyme which involves in mevalonate pathway, in the downstream of the promoter of carotenogenic genes, all the genes which are involved in the biosynthesis of astaxanthin become synchronized in their timings and phases of expression.

[0032] Still another strategy to overexpress enzymes of interest is induction of the mutation in its regulatory elements. For this purpose, a kind of reporter gene such as β-galactosidase gene, luciferase gene, a gene coding a green fluorescent protein, and the like is inserted between the promoter and the terminator sequence of the gene of interest so that all the parts including promoter, terminator and the reporter gene are fused and function each other. Transformed *P. rhodozyma* in which the said reporter gene is introduced on the chromosome or on the vector would be mutagenized *in vivo* to induce mutation within the promoter region of the gene of interest. Mutation can be monitored by detecting the change of the activity coded by the reporter gene. If the mutation occurs in a *cis* element of the gene, mutation point would be determined by the rescue of the mutagenized gene and sequencing. The determined mutation would be introduced to the promoter region on the chromosome by the recombination between a native promoter sequence and a mutated sequence. In the same procedure, the mutation occurring in the gene which encodes a *trans*-acting factor can be also obtained. It would also affect the overexpression of the gene of interest.

[0033] A mutation can be also induced by an *in vitro* mutagenesis of a *cis* element in the promoter region. In this approach, a gene cassette, containing a reporter gene which is fused to a promoter region derived from a gene of interapproach, a gene cassette, containing a reporter gene which is fused to a promoter region derived from a gene of interest at its 5'-end, is mutagenized and then introduced into *P. rhodozyma*. By detecting the difference of the activity of the reporter gene, an effective mutation would be screened. Such a mutation can be introduced in the sequence of the native promoter region on the chromosome by the same method as the case of an *in vivo* mutation approach.

[0034] As a donor DNA, a gene which encodes an enzyme of mevalonate pathway or FPP synthase could be introduced solely or co-introduced by harboring on plasmid vector. A coding sequence which is identical to its native sequence, as well as its allelic variant, a sequence which has one or more amino acid additions, deletions and/or substitutions can be used as far as its corresponding enzyme has the stated enzyme activity. And such a vector can be introduced into *P. rhodozyma* by transformation and a transformant can be selected by spreading the transformed cells on an appropriate selection medium such as YPD agar medium containing geneticin in the case of pGB-Ph9 as a vector or a minimal agar medium omitting cytidine in the case of using auxotroph ATCC24221 as a recipient.

[0035] Such a genetically engineered *P. rhodozyma* would be cultivated in an appropriate medium and evaluated in its productivity of astaxanthin. A hyper producer of astaxanthin thus selected would be confirmed in view of the relationship between its productivity and the level of gene or protein expression which is introduced by such a genetic engineering method.

Examples

[0036] The following materials and methods were emploied in the Example described below:

5 Strains

15

20

25

30

40

50

[0037] P. rhodozyma ATCC96594 (This strain has been redeposited on April 8, 1998 as a Budapest Treaty deposit under accession No. 74438).

E. coli DH5α: F*, \$80d, lacZΔM15, Δ(lacZYA-argF)U169, hsd (r_K*, m_K*), recA1, endA1, deoR, thi-1, supE44, gyrA96, relA1 (Toyobo)

E. coli XL1-Blue MRF': Δ(mcrA)183, Δ(mcrCB-hsdSMR-mrr)173, endA1, supE44, thi-1, recA1, gyrA96, relA1, lac[F' proAB, lacl^qZΔM15, Tn10 (tet')] (Stratagene)

E. coli SOLR: e14 (mcrA), Δ(mcrCB-hsdSMR-mrr)171, sbcC, recB, recJ, umuC :: Tn5(kan¹), uvrC, lac, gyrA96, relA1, thi-1, endA1, λ^R, [F' proAB, lacf^QZ ΔΜ15] Su (nonsuppressing) (Stratagene, CA, USA)

E. coli XL1 MRA (P2): Δ(mcrA)183, Δ(mcrCB-hsdSMR-mrr)173, endA1, supE44, thi-1, gyrA96, relA1, lac (P2 lysogen) (Stratagene)

E. coli BL21 (DE3) (pLysS): dcm⁻, ompTr_B⁻ m_B⁻ lon⁻ λ(DE3), pLysS (Stratagene)

E. coli M15 (pREP4) (QIAGEN) (Zamenhof P. J. et al., J. Bacteriol. 110, 171-178, 1972)

E. coli KB822: pcnB80, zad :: Tn10, Δ(lacU169), hsdR17, endA1, thi-1, supE44

E. coli TOP10: F⁻, mcrA, Δ (mrr-hsdRMS-mcrBC), ϕ 80, Δ lacZ M15, Δ lacX74, recA1, deoR, araD139, (ara-leu)7697, galU, galK, rpsL (Str¹), endA1, nupG (Invitrogen)

Vectors

[0038]

35 λZAPII (Stratagene)

λDASHII (Stratagene)

pBluescriptII SK+(Stratagene)

pUC57 (MBI Fermentas)

pMOSBlue T-vector (Amersham)

45 pET4c (Stratagene)

pQE30 (QIAGEN)

pCR2.1TOPO (Invitrogen)

Media

[0039] *P. rhodozyma* strain is maintained routinely in YPD medium (DIFCO). *E. coli* strain is maintained in LB medium (10 g Bacto-trypton, 5 g yeast extract (DIFCO) and 5 g NaCl per liter). NZY medium (5 g NaCl, 2 g MgSO₄-7H₂O, 5 g yeast extract (DIFCO), 10 g NZ amine type A (Sheffield) per liter) is used for λ phage propagation in a soft agar (0.7 % agar (WAKO)). When an agar medium was prepared, 1.5 % of agar (WAKO) was supplemented.

Methods

25

[0040] General methods of molecular genetics were practiced according to Molecular cloning: a Laboratory Manual, 2nd Edition (Cold Spring Harbor Laboratory Press, 1989). Restriction enzymes and T4 DNA ligase were purchased from Takara Shuzo (Japan).

[0041] Isolation of a chromosomal DNA from P. rhodozyma was performed by using QIAGEN Genomic Kit (QIAGEN) following the protocol supplied by the manufacturer. Mini-prep of plasmid DNA from transformed E. coli was performed with the Automatic DNA isolation system (PI-50, Kurabo, Co. Ltd., Japan). Midi-prep of plasmid DNA from an E. coli transformant was performed by using QIAGEN column (QIAGEN). Isolation of λ DNA was performed by Wizard lambda preps DNA purification system (Promega) following the protocol of the manufacturer. A DNA fragment was isolated and purified from agarose by using QIAquick or QIAEX II (QIAGEN). Manipulation of λ phage derivatives was done according to the protocol of the manufacturer (Stratagene).

[0042] Isolation of total RNA from *P. rhodozyma* was performed by the phenol method using Isogen (Nippon Gene, Japan). mRNA was purified from total RNA thus obtained by using mRNA separation kit (Clontech). cDNA was synthesized by using CapFinder cDNA construction kit (Clontech).

[0043] In vitro packaging was performed by using Gigapack III gold packaging extract (Stratagene).

[0044] Polymerase chain reaction (PCR) is performed with the thermal cycler from Perkin Elmer model 2400. Each PCR condition is described in examples. PCR primers were purchased from a commercial supplier or synthesized with a DNA synthesizer (model 392, Applied Biosystems). Fluorescent DNA primers for DNA sequencing were purchased from Pharmacia. DNA sequencing was performed with the automated fluorescent DNA sequencer (ALFred, Pharmacia).

[0045] Competent cells of DH5 α were purchased from Toyobo (Japan). Competent cells of M15 (pREP4) were prepared by CaCl₂ method as described by Sambrook *et al.* (Molecular cloning: a Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989).

Example 1 Isolation of mRNA from P. rhodozyma and construction of cDNA library

[0046] To construct cDNA library of *P. rhodozyma*, total RNA was isolated by phenol extraction method right after the cell disruption and the mRNA from *P. rhodozyma* ATCC96594 strain was purified by using mRNA separation kit (Clontech).

[0047] At first, Cells of ATCC96594 strain from 10 ml of two-day-culture in YPD medium were harvested by centrifugation (1500 x g for 10 min.) and washed once with extraction buffer (10 mM Na-citrate / HCl (pH 6.2) containing 0.7 M KCl). After suspending in 2.5 ml of extraction buffer, the cells were disrupted by French press homogenizer (Ohtake Works Corp., Japan) at 1500 kgf/cm² and immediately mixed with two times of volume of isogen (Nippon gene) according to the method specified by the manufacturer. In this step, 400 µg of total RNA was recovered.

[0048] Then this total RNA was purified by using mRNA separation kit (Clontech) according to the method specified by the manufacturer. Finally, 16 µg of mRNA from *P. rhodozyma* ATCC96594 strain was obtained.

[0049] To construct cDNA library, CapFinder PCR cDNA construction kit (Clontech) was used according to the method specified by the manufacturer. One µg of purified mRNA was applied for a first strand synthesis followed by PCR amplification. After this amplification by PCR, 1 mg of cDNA pool was obtained.

Example 2 Cloning of the partial hmc (3-hydroxy-3-methylglutaryl-CoA synthase) gene from P. rhodozyma

[0050] To clone a partial *hmc* gene from *P. rhodozyma*, a degenarate PCR method was exploited. Two mixed primers whose nucleotide sequences were designed and synthsized as shown in TABLE 1 based on the common sequence of known HMG-CoA synthase genes from other species.

TABLE 1

Sequence of primers used in the cloning of hmc gene

Hmgs1; GGNAARTAYACNATHGGNYTNGGNCA (sense primer) (SEQ ID NO: 11)

Hmgs3; TANARNSWNSWNGTRTACATRTTNCC (antisense primer) (SEQ ID NO: 12)

(N=A, C, G or T; R=A or G, Y=C or T, H=A, T or C, S=C or G, W=A or T)

[0051] After the PCR reaction of 25 cycles of 95 °C for 30 seconds, 50 °C for 30 seconds and 72 °C for 15 seconds by using ExTaq (Takara Shuzo) as a DNA polymerase and cDNA pool obtained in example 1 as a template, reaction

mixture was applied to agarose gel electrophoresis. A PCR band that has a desired length was recovered and purified by QIAquick (QIAGEN) according to the method by the manufacturer and then ligated to pMOSBlue T-vector (Amersham). After the transformation of competent *E. coli* DH5a, 6 white colonies were selected and plasmids were isolated with Automatic DNA isolation system. As a result of sequencing, it was found that 1 clone had a sequence whose deduced amino acid sequence was similar to known *hmc* genes. This isolated cDNA clone was designated as pHMC211 and used for further study.

Example 3 Isolation of genomic DNA from P. rhodozyma

[0052] To isolate a genomic DNA from P. rhodozyma, QIAGEN genomic kit was used according to the method specified by the manufacturer.

[0053] At first, cells of *P. rhodozyma* ATCC96594 strain from 100 ml of overnight culture in YPD medium were harvested by centrifugation (1500 x g for 10 min.) and washed once with TE buffer (10 mM Tris / HCl (pH 8.0) containing 1 mM EDTA). After suspending in 8 ml of Y1 buffer of the QIAGEN genomic kit, lyticase (SIGMA) was added at the concentration of 2 mg/ml to disrupt cells by enzymatic degradation and the reaction mixture was incubated for 90 minutes at 30 °C and then proceeded to the next extraction step. Finally, 20 μg of genomic DNA was obtained.

Example 4 Southern blot hybridization by using pHMC211 as a probe

[0054] Southern blot hybridization was performed to clone a genomic fragment which contains *hmc* gene from *P. rhodozyma*. Two µg of genomic DNA was digested by *EcoRI* and subjected to agarose gel electrophoresis followed by acidic and alkaline treatment. The denatured DNA was transferred to nylon membrane (Hybond N+, Amersham) by using transblot (Joto Rika) for an hour. The DNA which was transferred to nylon membrane was fixed by a heat treatment (80 °C, 90 minutes). A probe was prepared by labeling a template DNA (*EcoRI*- and *SaII*- digested pHMC211) with DIG multipriming method (Boehringer Mannheim). Hybridization was performed with the method specified by the manufacturer. As a result, hybridized band was visualized in the range from 3.5 to 4.0 kilobases (kb).

Example 5 Cloning of a genomic fragment containing hmc gene

[0055] Four μg of the genomic DNA was digested by *EcoR*I and subjected to agarose gel electrophoresis. Then, DNAs whose length is within the range from 3.0 to 5.0 kb was recovered by QIAEX II gel extraction kit (QIAGEN) according to the method specified by the manufacturer. The purified DNA was ligated to 1 μg of *EcoR*I-digested and CIAP (calf intestine alkaline phosphatase) -treated λZAPII (Stratagene) at 16 °C overnight, and packaged by Gigapack III gold packaging extract (Stratagene). The packaged extract was infected to *E. coli* XL1Blue MRF' strain and over-laid With NZY medium poured onto LB agar medium. About 6000 plaques were screened by using *EcoR*I- and *SaI*-digested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision prodigested pHMC211 as a probe. Two plaques were hybridized to the labeled probe and subjected to *in vivo* excision probe and subjected to *in vivo* excision probe and subjected to *in vivo* excis

45 Example 6 Cloning of upstream region of hmc gene

50

55

[0056] Cloning of 5'- adjacent region of *hmc* gene was performed by using Genome Walker Kit (Clontech), because pHMC 526 does not contain its 5' end of *hmc* gene. At first, the PCR primers whose sequences were shown in TABLE 2 were synthesized.

TABLE 2

Sequence of primers used in the cloning of 5'- adjacent region of hmc gene

Hmc21; GAAGAACCCCATCAAAAGCCTCGA (primary primer) (SEQ ID NO: 13)

Hmc22; AAAAGCCTCGAGATCCTTGTGAGCG (nested primer) (SEQ ID NO: 14)

[0057] Protocols for library construction and PCR condition were the same as those specified by the manufacturer by using the genomic DNA preparation obtained in Example 3 as a PCR template. The PCR fragments that had EcoRV site at the 5' end (0.45 kb), and that had PvuII site at the 5' end (2.7 kb) were recovered and cloned into pMOSBlue T-vector by using $E.\ coli$ DH5 α as a host strain. As a result of sequencing of each 5 of independent clones from both constructs, it was confirmed that the 5' adjacent region of hmc gene was cloned and small part (0.1 kb) of EcoRI fragment within its 3' end was found. The clone obtained by the PvuII construct in the above experiment was designated as pHMCPv708 and used for further study.

[0058] Next, Southern blot analysis was performed by the method as shown in above Example 4, and 5'- adjacent region of the *hmc* gene existed in 3 kb of *EcoRI* fragment was determined. After a construction from 2.5 to 3.5 kb *EcoRI* library in λ ZAPII, 600 plaques were screened and 6 positive clones were selected. As a result of sequencing of these 6 clones, it was clarified that 4 clones within 6 positive plaques had the same sequence as that of the pHMCPv708, and one of those was named as pHMC723 and used for further analysis.

[0059] The PCR primers whose sequences were shown in TABLE 3 were synthesized to clone small (0.1 kb) *EcoRI* fragment locating between 3.5 kb and 3.0 kb *EcoRI* fragments on the chromosome of *P. rhodozyma*.

TABLE 3

Sequence of primers used in the cloning small EcoRI portion of hmc gene.

Hmc30 ; AGAAGCCAGAAGAGAAAA (sense primer) (SEQ ID NO: 15)

Hmc31; TCGTCGAGGAAAGTAGAT (antisense primer) (SEQ ID NO: 16)

[0060] The PCR condition was the same as shown in Example 2. Amplified fragment (0.1 kb in its length) was cloned into pMOSBlue T-vector and transformed *E. coli* DH5α. Plasmids were prepared from 5 independent white colonies and subjected to the sequencing.

[0061] Thus, it was determined that the nucleotide sequence (4.8 kb) contained *hmc* gene (SEQ ID NO: 1). Coding region was in 2432 base pairs that consisted of 11 exons and 10 introns. Introns were scattered all through the coding region without 5' or 3' bias. It was found that open reading frame consists of 467 amino acids (SEQ ID NO: 6) whose sequence is strikingly similar to the known amino acid sequence of HMG-CoA synthase gene from other species (49.6 % identity to HMG-CoA synthase from *Schizosaccharomyces pombe*).

Example 7 Expression of hmc gene in E. coli and confirmation of its enzymatic activity

15

20

40

45

[0062] The PCR primers whose sequences were shown in TABLE 4 were synthesized to clone a cDNA fragment of hmc gene.

TABLE 4

Sequence of primers used in the cloning of cDNA of hmc gene

Hmc25; GGTACCATATGTATCCTTCTACTACCGAAC (sense primer) (SEQ ID NO: 17)

Hmc26; GCATGCGGATCCTCAAGCAGAAGGGACCTG (antisense primer) (SEQ ID NO: 18)

[0063] PCR condition was as follows; 25 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds and 72 °C for 3 minutes. As a template, 0.1 μg of cDNA pool obtained in Example 2 was used, and Pfu polymerase as a DNA polymerase. Amplified 1.5 kb fragment was recovered and cloned in pT7Blue-3 vector (Novagen) by using perfectly blunt cloning kit (Novagen) according to the protocol specified by the manufacturer. Six independent clones from white colonies of *E. coli* DH5α transformants were selected and plasmids were prepared from those transformants. As a result of restriction analysis, 2 clones were selected for a further selection by sequencing. One clone has an amino acid substitution at position 280 (from glycine to alanine) and another has at position 53 (from alanine to threonine). Alignment of an amino acid sequences derived from known *hmc* genes showed that alanine residue as well as glycine residue at position 280 was observed well in all the sequences from other species and this fact suggested that amino acid substitution at position 280 would not affect its enzymatic activity. This clone (mutant at position 280) was selected as pHMC731 for a succeeding expression experiment.

[0064] Next, 1.5 kb fragment obtained by *NdeI*- and *BamHI*- digestion of pHMC731 was ligated to pET11c (Stratagene) digested by the same pairs of restriction enzymes, and introduced to *E. coli* DH5a. As a result of restriction anal-

ysis, plasmid that had a correct structure (pHMC818) was recovered. Then, competent *E. coli* BL21 (DE3) (pLysS) cells (Stratagene) were transformed, and one clone that had a correct structure was selected for further study.

[0065] For an expression study, strain BL21 (DE3) (pLysS) (pHMC818) and vector control strain BL21 (DE3) (pLysS) (pET11c) were cultivated in 100 ml of LB medium at 37 °C until OD at 600 nm reached to 0.8 (about 3 hours) in the presence of 100 µg/ml of ampicillin. Then, the broth was divided in two portions of the same volume, and then 1 mM of isopropyl β-D-thiogalactopyranoside (IPTG) was added to one portion. Cultivation was continued for further 4 hours at 37 °C. Twenty five μI of broth was removed from induced- and uninduced- culture of hmc clone and vector control cultures and subjected to sodium dodesyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) analysis. It was confirmed that protein whose size was similar to deduced molecular weight from nucleotide sequence (50.8 kDa) was expressed only in the case of clone that harbored pHMC818 with the induction. Cells from 50 ml broth were harvested by the centrifugation (1500 x g, 10 minutes), washed once and suspended in 2 ml of hmc buffer (200 mM Tris-HCI (pH 8.2)). Cells were disrupted by French press homogenizer (Ohtake Works) at 1500 kgf/cm² to yield a crude lysate. After the centrifugation of the crude lysate, a supernatant fraction was recovered and used as a crude extract for an enzymatic analysis. In the only case of induced lysate of pHMC818 clone, a white pellet was spun down and was recovered. Enzyme assay for 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase was performed by the photometric assay according to the method by Stewart et al. (J. Biol. Chem. 241(5), 1212-1221, 1966). In all the crude extract, the activity of 3-hydroxy-3-methylglutaryl-CoA synthase was not detected. As a result of SDS-PAGE analysis of the crude extract, an expressed protein band that had found in expressed broth was disappeared. Subsequently the white pellet that was recovered from the crude lysate of induced pHMC818 clone was solubilized with 8 M guanidine-HCl, and then subjected to SDS-PAGE analysis. The expressed protein was recovered in the white pellet, and this suggested that expressed protein would form an inclusion body.

[0066] Next, an expression experiment in more mild condition was conducted. Cells were grown in LB medium at 28 °C and the induction was performed by the addition of 0.1 mM of IPTG. Subsequently, incubation was continued further for 3.5 hours at 28 °C and then the cells were harvested. Preparation of the crude extract was the same as the previous protocol. Results are summarized in TABLE 5. It was shown that HMG-CoA synthase activity was only observed in the induced culture of the recombinant strain harboring *hmc* gene, and this suggested that the cloned *hmc* gene encodes HMG-CoA synthase.

TABLE 5

Enzymatic characterization of hmc cDNA clone						
plasmid	IPTG μ mol of HMG-CoA minute / mg-protei					
pHMC818	-	0				
	+	0.146				
pET11c		0				
	+	0				

Example 8 Cloning of hmg (3-hydroxymethyl-3-glutaryl-CoA reductase) gene

30

35

40

[0067] Cloning protocol of *hmg* gene was almost the same as the *hmc* gene shown in Example 2 to 7. At first, the PCR primers whose sequences were shown in TABLE 6 based on the common sequences of HMG-CoA reductase genes from other species were synthesized.

TABLE 6

50	Sequence of primers used in the cloning of hmg gene
	Red1; GCNTGYTGYGARAAYGTNATHGGNTAYATGCC (sense primer) (SEQ ID NO: 19)
	Red2; ATCCARTTDATNGCNGCNGGYTTYTTRTCNGT (antisense primer) (SEQ ID NO: 20)
55	(N=A, C, G or T; R=A or G, Y=C or T, H=A, T or C, D=A, G or T)

[0068] After the PCR reaction of 25 cycles of 95 °C for 30 seconds, 54 °C for 30 seconds and 72°C for 30 seconds by using ExTaq (Takara Shuzo) as a DNA polymerase, reaction mixture was applied to agarose gel electrophoresis.

PCR band that has a desired length was recovered and purified by QIAquick (QIAGEN) according to the method by the manufacturer and then ligated to pUC57 vector (MBI Fermentas). After the transformation of competent $E.\ coli$ DH5 α , 7 white colonies were selected and the plasmids were isolated from those transformants. As a result of sequencing, it was found that all the clones had a sequence whose deduced amino acid sequence was similar to known HMG-CoA reductase genes. One of the isolated cDNA clones was named as pRED1219 and used for further study.

[0069] Next, a genomic fragment containing 5'- and 3'- adjacent region of *hmg* gene was cloned with the Genome Walker kit (Clontech). The 2.5 kb fragment of 5' adjacent region (pREDPVu1226) and 4.0 kb fragment of 3' adjacent region of *hmg* gene (pREDEVd1226) were cloned. Based on the sequence of the insert of pREDPVu1226, PCR primers whose sequence were shown in TABLE 7 were synthesized.

10

15

TABLE 7

Sequence of primers used in the cloning of cDNA of hmg gene

Red8; GGCCATTCCACACTTGATGCTCTGC (antisense primer) (SEQ ID NO: 21)

Red9; GGCCGATATCTTTATGGTCCT (sense primer) (SEQ ID NO: 22)

[0070] Subsequently a cDNA fragment containing a long portion of *hmg* cDNA sequence was cloned by a PCR method by using Red 8 and Red 9 as PCR primers and the cDNA pool prepared in Example 2 and thus cloned plasmid was named as pRED107. PCR condition was as follows; 25 cycles of 30 seconds at 94 °C, 30 seconds at 55 °C and 1 minute at 72 °C.

[0071] Southern blot hybridization study was performed to clone genomic sequence which contains the entire *hmg* gene from *P. rhodozyma*. Probe was prepared by labeling a template DNA, pRED107 with DIG multipriming method. Hybridization was performed with the method specified by the manufacturer. As a result, labeled probe hybridized to two bands that had 12 kb and 4 kb in their lengths. As a result of sequencing of pREDPVu1226, *EcoR*I site wasn't found in the cloned *hmg* region. This suggested that another species of *hmg* gene (that has 4 kb of hybridized *EcoR*I fragment) existed on the genome of *P. rhodozyma* as found in other organisms.

[0072] Next, a genomic library consisting of 9 to 23 kb of $E\infty RI$ fragment in the $\lambda DASHII$ vector was constructed. The packaged extract was infected to E. coli XL1 Blue, MRA(P2) strain (Stratagene) and over-laid with NZY medium poured onto LB agar medium. About 5000 plaques were screened by using 0.6 kb fragment of Stul- digested pRED107 as a probe. 4 plaques were hybridized to the labeled probe. Then a phage lysate was prepared and DNA was purified with Wizard lambda purification system according to the method specified by the manufacturer (Promega) and was digested with EcoRI to isolate 10 kb of EcoRI fragment and to clone in EcoRI-digested and CIAP-treated pBluescriptII KS-(Stratagene). Eleven white colonies were selected and subjected to a colony PCR by using Red9 and -40 universal primer (Pharmacia). Template DNA for a colony PCR was prepared by heating cell suspension in which picked-up colony was suspended in 10 µl of sterilized water for 5 minutes at 99 °C prior to a PCR reaction (PCR condition; 25 cycles of 30 seconds at 94 °C, 30 seconds at 55 °C and 3 minutes at 72 °C). One colony gave 4 kb of a positive PCR band, and it suggested that this clone had an entire region containing hmg gene. A plasmid from this positive clone was prepared and named as pRED611. Subsequently deletion derivatives of pRED611 were made up for sequencing. By combining the sequence obtained from deletion mutants with the sequence obtained by a primer-walking procedure, the nucleotide sequence of 7285 base pairs which contains hmg gene from P. rhodozyma was determined (SEQ ID NO: 2). The hmg gene from P. rhodozyma consists of 10 exons and 9 introns. The deduced amino acid sequence of 1092 amino acids in its length (SEQ ID NO: 7) showed an extensive homology to known HMG-CoA reductase (53.0 % identity to HMG-CoA reductase from Ustilago maydis).

Example 9 Expression of carboxyl-terminal domain of hmg gene in E. coli

[0073] Some species of prokaryotes have soluble HMG-CoA reductases or related proteins (Lam et al., J. Biol. Chem. 267, 5829-5834, 1992). However, in eukaryotes, HMG-CoA reductase is tethered to the endoplasmic reticulum via an amino-terminal membrane domain (Skalnik et al., J. Biol. Chem. 263, 6836-6841, 1988). In fungi (i.e. Saccharomyces cerevisiae and the smut fungus, Ustilago maydis) and in animals, the membrane domain is large and complex, containing seven or eight transmembrane segments (Croxen et al. Microbiol. 140, 2363-2370, 1994). In contrast, the membrane domains of plant HMG-CoA reductase proteins have only one or two transmembrane segments (Nelson et al. Plant Mol. Biol. 25, 401-412, 1994). Despite the difference in the structure and sequence of the transmembrane domain, the amino acid sequences of the catalytic domain are conserved across eukaryotes, archaebacteria and

[0074] Croxen et al. showed that C-terminal domain of HMG-CoA reductase derived from the maize fungal pathogen,

Ustilago maydis was expressed in active form in *E. coli* (Microbiology, 140, 2363-2370, 1994). The inventors of the present inventiontried to express a C-terminal domain of HMG-CoA reductase from *P. rhodozyma* in *E. coli* to confirm its enzymatic activity.

[0075] At first, the PCR primers whose sequences were shown in TABLE 8 were synthesized to clone a partial cDNA fragment of *hmg* gene. The sense primer sequence corresponds to the sequence which starts from 597th amino acid (glutamate) residue, and a length of protein and cDNA which was expected to obtain was 496 amino acids and 1.5 kb, respectively.

TABLE 8

Sequence of primers used in the cloning of a partial cDNA of hmg gene

Red54; GGTACCGAAGAAATTATGAAGAGTGG (sense primer) (SEQ ID NO: 23)

Red55; CTGCAGTCAGGCATCCACGTTCACAC (antisense primer) (SEQ ID NO: 24)

15

10

[0076] The PCR condition was as follows; 25 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds and 72 °C for 3 minutes. As a template, 0.1 μ g of cDNA pool obtained in Example 2 and as a DNA polymerase, ExTaq polymerase were used. Amplified 1.5 kb fragment was recovered and cloned in pMOSBlue T-vector (Novagen). Twelve independent clones from white colonies of *E. coli* DH5 α transformants were selected and plasmids were prepared from those transformants. As a result of restriction analysis, all the clones were selected for a further selection by sequencing. One clone did not have an amino acid substitution all through the coding sequence and was named as pRED908.

[0077] Next, 1.5 kb fragment obtained by *KpnI*- and *PstI*- digestion of pRED908 was ligated to pQE30 (QIAGEN) digested by the same pairs of restriction enzymes, and transformed to *E. coli* KB822. As a result of restriction analysis, plasmid that had a correct structure (pRED1002) was recovered. Then, competent *E. coli* M15 (pREP4) cells (QIAGEN) were transformed and one clone that had a correct structure was selected for further study.

[0078] For an expression study, strain M15 (pREP4) (pRED1002) and vector control strain M15 (pREP4) (pQE30) were cultivated in 100 ml of LB medium at 30 °C until OD at 600 nm reached to 0.8 (about 5 hours) in the presence of $25 \,\mu g/ml$ of kanamycin and $100 \,\mu g/ml$ of ampicillin. Then, the broth was divided into two portions of the same volume, and then 1 mM of IPTG was added to one portion. Cultivation continued for further 3.5 hours at 30 °C. Twenty five µI of the broth was removed from induced- and uninduced- culture of hmg clone and vector control cultures and subjected to SDS-PAGE analysis. It was confirmed that protein whose size was similar to deduced molecular weight from nucleotide sequence (52.4 kDa) was expressed only in the case of clone that harbored pRED1002 with the induction. Cells from 50 ml broth were harvested by the centrifugation (1500 x g, 10 minutes), washed once and suspended in 2 ml of hmg buffer (100 mM potassium phosphate buffer (pH 7.0) containing 1 mM of EDTA and 10 mM of dithiothreitol). Cells were disrupted by French press (Ohtake Works) at 1500 kgf/cm² to yield a crude lysate. After the centrifugation of the crude lysate, a supernatant fraction was recovered and used as a crude extract for enzymatic analysis. In the only case of induced lysate of pRED1002 clone, a white pellet was spun down and was recovered. Enzyme assay for 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase was performed by the photometric assay according to the method by Servouse et al. (Biochem. J. 240, 541-547, 1986). In all the crude extract, the activity of 3-hydroxy-3-methylglutaryl-CoA synthase was not detected. As a result of SDS-PAGE analysis for the crude extract, expressed protein band that had found in expressed broth was disappeared. Next, the white pellet that was recovered from the crude lysate of induced pRED1002 clone was solubilized with an equal volume of 20 % SDS, and then subjected to SDS-PAGE analysis. An expressed protein was recovered in the white pellet, and this suggested that the expressed protein would form an inclusion body.

[0079] Next, the expression experiment was performed in more mild condition. Cells were grown in LB medium at 28 °C and the induction was performed by the addition of 0.1 mM of IPTG. Then, incubation was continued further for 3.5 hours at 28 °C and then the cells were harvested. Preparation of the crude extract was the same as the previous protocol. Results are summarized in TABLE 9. It was shown that 30 times higher induction was observed, and this suggested that the cloned *hmg* gene codes HMG-CoA reductase.

TABLE 9

Enzymatic characterization of hmg cDNA clone IPTGµ mol of NADPH / plasmid minute / mg-protein pRED1002 0.002 0.059 0 pQE30 0

Example 10 Cloning of mevalonate kinase (mvk) gene

[0080] A cloning protocol of mvk gene was almost the same as the hmc gene shown in Example 2 to 7. At first, the PCR primers whose sequence were shown in TABLE 10, based on the common sequences of mevalonate kinase genes from other species were synthesized.

TABLE 10

Sequence of primers used in the cloning of mvk gene
Mk1; GCNCCNGGNAARGTNATHYTNTTYGGNGA (sense primer) (SEQ ID NO: 25)
Mk2; CCCCANGTNSWNACNGCRTTRTCNACNCC (antisense primer) (SEQ ID NO: 26)
(N=A, C, G or T; R=A or G, Y=C or T, H=A, T or C, S=C or G, W=A or T)

30

5

10

15

20

25

[0081] After the PCR reaction of 25 cycles of 95 °C for 30 seconds, 46 °C for 30 seconds and 72°C for 15 seconds by using ExTaq as a DNA polymerase, the reaction mixture was applied to agarose gel electrophoresis. A 0.6 kb of PCR band whose length was expected to contain a partial mvk gene was recovered and purified by QIAquick according to the method indicated by the manufacturer and then ligated to pMOSBlue T-vector. After a transformation of competent E. coli DH5α cells, 4 white colonies were selected and plasmids were isolated. As a result of sequencing, it was found that one of the clones had a sequence whose deduced amino acid sequence was similar to known mevalonate kinase genes. This cDNA clone was named as pMK128 and used for further study.

[0082] Next, a partial genomic clone which contained mvk gene was cloned by PCR. The PCR primers whose sequence were shown in TABLE 11, based on the internal sequence of pMK128 were synthesized.

TABLE 11

Sequence of primers used in the cloning of genomic DNA containing mvk gene
Mk5; ACATGCTGTAGTCCATG (sense primer) (SEQ ID NO: 27)
Mk6; ACTCGGATTCCATGGA (antisense primer) (SEQ ID NOP: 28)

45

40

[0083] PCR condition was 25 cycles of 30 seconds at 94 °C, 30 seconds at 55 °C and 1 minute at 72 °C. The amplified 1.4 kb fragment was cloned into pMOSBlue T-vector. As a result of sequencing, it was confirmed a genomic fragment containing mvk gene which had typical intron structures could be obtained and this genomic clone was named as pMK224.

[0084] Southern blot hybridization study was performed to clone a genomic fragment which contained an entire mvk gene from P. rhodozyma. Probe was prepared by labeling a template DNA, pMK224 digested by Ncol with DIG multipriming method. Hybridization was performed with the method specified by the manufacturer. As a result, the labeled probe hybridized to a band that had 6.5 kb in its lengths. Next, a genomic library consisting of 5 to 7 kb of EcoRI fragment was constructed in the λZAPII vector. The packaged extract was infected to E. coli XL1Blue, MRF strain (Strata-

gene) and over-laid with NZY medium poured onto LB agar medium. About 5000 plaques were screened by using 0.8 kb fragment of Ncol- digested pMK224 as a probe. Seven plaques were hybridized to the labeled probe. Then a phage lysate was prepared according to the method specified by the manufacturer (Stratagene) and in vivo excision was performed by using E. coli XL1Blue MRF and SOLR strains. Fourteen white colonies were selected and plasmids were isolated from those selected transformants. Then, isolated plasmids were digested by Ncol and subjected to Southern blot hybridization with the same probe as the plaque hybridization. The insert fragments of all the plasmids were hybridized to the probe and this suggested that a genomic fragment containing mvk gene could be cloned. A plasmid from one of the positive clones was prepared and was named as pMK701. About 3 kb of sequence was determined by the primer walking procedure and it was revealed that 5' end of the mvk gene wasn't included into pMK701.

[0085] Next, a PCR primer which had a sequence;

25

30

40

45

50

TTGTTGTCGTAGCAGTGGGTGAGAG (SEQ ID NO: 29) was synthesized to clone the 5'-adjacent genomic region of *mvk* gene with the Genome Walker Kit according to the method specified by manufacturer (Clontech). A specific 1.4 kb PCR band was amplified and cloned into pMOSBlue T-vector. All of the transformants of DH5α selected had expected length of the insert. Subsequent sequencing revealed that 5'-adjacent region of *mvk* gene could be cloned. One of the clone was designated as pMKEVR715 and used for further study. As a result of Southern blot hybridization using genomic DNA prepared in example 3, the labeled pMKEVR715 hybridized to 2.7 kb *EcoRI* band. Then a genomic library in which *EcoRI* fragments from 1.4 to 3.0 kb in lengths were cloned into λZAPII was constructed and screened with 1.0 kb of *EcoRI* fragment from pMKEVR715. Fourteen positive plaques were selected from 5000 plaques and plasmids were prepared from those plaques with *in vivo* excision procedure.

[0086] The PCR primers whose sequences were shown in TABLE 12, taken from the internal sequence of pMKEVR715 were synthesized to select a positive clone with a colony PCR.

TABLE 12

PCR primers used for colony PCR to clone 5'-adjacent region of mvk gene

Mk17; GGAAGAGAAGAGAAAAG (sense primer) (SEQ ID NO: 30)

Mk18; TTGCCGAACTCAATGTAG (antisense primer) (SEQ ID NO: 31)

[0087] PCR condition was as follows; 25 cycles of 30 seconds at 94 °C, 30 seconds at 50 °C and 15 seconds at 72 °C. From all the candidates except one clone, the positive 0.5 kb band was yielded. One of the clones was selected and named as pMK723 to determine the sequence of the upstream region of *mvk* gene. After sequencing of the 3'-region of pMK723 and combining with the sequence of pMK701, the genomic sequence of 4.8 kb fragment containing *mvk* gene was determined. The mvk gene consists of 4 introns and 5 exons (SEQ ID NO: 3). The deduced amino acid sequence except 4 amino acids in the amino terminal end (SEQ ID NO: 8) showed an extensive homology to known mevalonate kinase (44.3 % identity to mevalonate kinase from *Pattus norvegicus*).

Example 11 Expression of mvk gene by the introduction of 1 base at amino terminal region

[0088] Although the amino acid sequence showed a significant homology to known mevalonate kinase, an appropriate start codon for *mvk* gene could not be found. This result suggested the cloned gene might be a pseudogene for mevalonate kinase. To confirm this assumption, PCR primers whose sequences are shown in TABLE 13 were synthesized to introduce an artificial nucleotide which resulted in the generation of appropriate start codon at the amino terminal end.

TABLE 13

PCR primers used for the introduction of a nucleotide into mvk gene

Mk33; GGATCCATGAGAGCCCAAAAAGAAGA (sense primer) (SEQ ID NO: 32)

Mk34; GTCGACTCAAGCAAAAGACCAACGAC (antisense primer) (SEQ ID NO: 33)

[0089] The artificial amino terminal sequence thus introduced were as follows; NH2-Met-Arg-Ala-Gln. After the PCR reaction of 25 cycles of 95 °C for 30 seconds, 55 °C for 30 seconds and 72 °C for 30 seconds by using ExTaq polymerase as a DNA polymerase. The reaction mixture was subjected to agarose gel electrophoresis. An expected 1.4 kb of PCR band was amplified and cloned into pCR2.1 TOPO vector. After a transformation of competent E. coli TOP10 cells,

6 white colonies were selected and plasmids were isolated. As a result of sequencing, it was found that one clone had only one change of amino acid residue (Asp to Gly change at 81st amino acid residue in SEQ ID NO: 8). This plasmid was named as pMK1130 #3334 and used for further study. Then, the insert fragment of pMK1130 #3334 was cloned into pQE30. This plasmid was named as pMK1209 #3334. After the transformation of expression host, M15 (pREP4), expression study was conducted. M15 (pREP4) (pMK1209 #3334) strain and vector control strain (M15 (pREP4) (pQE30)) were inoculated into 3 ml of LB medium containing 100 μg/ml of ampicillin. After the cultivation at 37 °C for 3.75 hours, cultured broth were divided into two portions. 1 mM IPTG were added to one portion and an incubation was continued for 3 hours. Cells were harvested from 50 μl of broth by the centrifugation and were subjected to SDS-PAGE analysis. Protein which had an expected molecular weight of 48.5 kDa was induced by the addition of IPTG in the culture of M15 (pREP4) (pMK1209 #3334) though no induced protein band was observed in the vector control culture (Fig. 2). This result suggested that activated form of the mevalonate kinase protein could be expressed by the artificial addition of one nucleotide at amino terminal end.

Example 12 Cloning of the mevalonate pyrophosphate decarboxylase (mpd) gene

[0090] A cloning protocol of *mpd* gene was almost the same as the *hmc* gene shown in Example 2 to 7. At first, the PCR primers whose sequence were shown in TABLE 14 based on the common sequences of mevalonate pyrophosphate decarboxylase genes from other species were synthesized.

20

25

55

15

TABLE 14

Sequence of primers used in the cloning of mpd gene

Mpd1; HTNAARTAYTTGGGNAARMGNGA (sense primer) (SEQ ID NO: 34)

Mpd2; GCRTTNGGNCCNGCRTCRAANGTRTANGC (antisense primer) (SEQ ID NO: 35)

(N=A, C, G or T; R=A or G, Y=C or T, H=A, T or C, M=A or C)

[0091] After the PCR reaction of 25 cycles of 95 °C for 30 seconds, 50 °C for 30 seconds and 72°C for 15 seconds by using ExTaq as a DNA polymerase, reaction mixture was subjected to agarose gel electrophoresis. A 0.9 kb of PCR band whose length was expected to contain a partial mpd gene was recovered and purified by QIAquick according to the method prepared by the manufacturer and then ligated to pMOSBlue T-vector. After a transformation of competent $E.\ coli\ DH5\alpha\ cells$, 6 white colonies were selected and plasmids were isolated. Two of 6 clones had an expected length of insert. As a result of sequencing, it was found that one of the clones had a sequence whose deduced amino acid sequence was similar to known mevalonate pyrophosphate decarboxylase genes. This cDNA clone was designated as pMPD129 and used for further study.

[0092] Next, a partial genomic fragment which contained mpd gene was cloned by PCR. As a result of PCR whose condition was the same as that of the cloning of a partial cDNA fragment the amplified 1.05 kb fragment was obtained and was cloned into pMOSBlue T-vector. As a result of sequencing, it was confirmed that a genomic fragment containing mpd gene which had typical intron structures have been obtained and this genomic clone was named as pMPD220. [0093] Southern blot hybridization study was performed to clone a genomic fragment which contained the entire mpd gene from P. rhodozyma. Probe was prepared by labeling a template DNA, pMPD220 digested by KpnI, with DIG multipriming method. Hybridization was performed with the method specified by the manufacturer. As a result, the probe hybridized to a band that had 7.5 kb in its lengths. Next, a genomic library consisting of from 6.5 to 9.0 kb of EcoRI fragment in the λZAPII vector was constructed. The packaged extract was infected to E. coli XL1Blue, MRF' strain and overlaid with NZY medium poured onto LB agar medium. About 6000 plaques were screened by using the 0.6 kb fragment of KpnI- digested pMPD220 as a probe. 4 plaques were hybridized to the labeled probe. Then a phage lysate was prepared according to the method specified by the manufacturer (Stratagene) and in vivo excision was performed by using E. coli XL1Blue MRF and SOLR strains. Each 3 white colonies derived from 4 positive plaques were selected and plasmids were isolated from those selected transformants. Then, isolated plasmids were subjected to a colony PCR method whose protocol was the same as that in example 8. PCR primers whose sequences were shown in TABLE 14, depending on the sequence found in pMPD129 were synthesized and used for a colony PCR.

TABLE 15

Sequence of primers used in the colony PCR to clone a genomic mpd clone

Mpd7; CCGAACTCTCGCTCATCGCC (sense primer) (SEQ ID NO: 36)

TABLE 15 (continued)

Sequence of primers used in the colony PCR to clone a genomic mpd clone

Mpd8; CAGATCAGCGCGTGGAGTGA (antisense primer) (SEQ ID NO: 37)

[0094] PCR condition was almost the same as the cloning of mvk gene; 25 cycles of 30 seconds at 94 °C, 30 seconds at 50 °C and 10 seconds at 72 °C. All the clone except one produced a positive 0.2kb PCR band. A plasmid was prepared from one of the positive clones and the plasmid was named as pMPD701 and about 3 kb of sequence thereof was determined by the primer walking procedure (SEQ ID NO: 4). There existed an ORF consisted of 402 amino acids (SEQ ID NO: 9) whose sequence was similar to the sequences of known mevalonate pyrophosphate decarboxylase (52.3 % identity to mevalonate pyrophosphate decarboxylase from *Schizosaccaromyces pombe*). Also determined was a 0.4 kb of 5'-adjacent region which was expected to include its promoter sequence.

Example 13 Cloning of farnesyl pyrophosphate synthase (fps) gene

[0095] A cloning protocol of fps gene was almost the same as the hmc gene shown in Example 2 to 7. At first, the PCR primers whose sequence were shown in TABLE 16 based on the common sequences of farnesyl pyrophosphate synthase genes from other species were synthesized.

20

25

45

50

15

5

TABLE 16

Sequence of primers used in the cloning of fps gene

Fps1; CARGCNTAYTTYYTNGTNGCNGAYGA (sense primer) (SEQ ID NO: 38)

Fps2; CAYTTRTTRTCYTGDATRTCNGTNCCDATYTT (antisense primer) (SEQ ID NO: 39)

(N=A, C, G or T; R=A or G, Y=C or T, D=A, G or T)

[0096] After the PCR reaction of 25 cycles of 95 °C for 30 seconds, 54 °C for 30 seconds and 72°C for 30 seconds by using ExTaq as a DNA polymerase, a reaction mixture was applied to agarose gel electrophoresis. A PCR band that has a desired length (0.5 kb) was recovered and purified by QlAquick according to the method prepared by the manufacturer and then ligated to pUC57 vector. After a transformation of competent *E. coli* DH5α cells, 6 white colonies were selected and plasmids were then isolated. One of the plasmids which had desired length of an insert fragment was sequenced. As a result, it was found that this clone had a sequence whose deduced amino acid sequence was similar to known farnesyl pyrophosphate synthase genes. This cDNA clone was named as pFPS107 and used for further study. [0097] Next, a genomic fragment was cloned by PCR by using the same primer set of Fps1 and Fps2. The same PCR condition as the case of cloning of a partial cDNA was used. A 1.0 kb band yielded was cloned and sequenced. This clone contained the same sequence with the pFPS107 and some typical intron fragments. This plasmid was named as pFPS113 and used for a further experiment.

[0098] Then, also cloned was a 5'- and 3'- adjacent region containing *fps* gene with the method described in Example 8. At first, the PCR primers whose sequences were shown in TABLE 17 were synthsized.

TABLE 17

Sequences of primers used for a cloning of adjacent region of fps gene

Fps7; ATCCTCATCCCGATGGGTGAATACT (sense for downstream cloning) (SEQ ID NO: 40)

Fps9; AGGAGCGGTCAACAGATCGATGAGC (antisense for upstream cloning) (SEQ ID NO: 41)

[0099] Amplified PCR bands were isolated and cloned into pMOSBlue T-vector. As a result of sequencing, it was found that the 5'-adjacent region that had 2.5 kb in its length and 3'-adjacent region that had 2.0 kb in its length were cloned. These plasmids were named as pFPSSTu117 and pFPSSTd117, respectively. After sequencing of both plasmids, it was found that an ORF that consisted of 1068 basepairs with 8 introns. Deduced amino acid sequence showed an extensive homology to the known farnesyl pyrophosphate synthase from other species. Based on the sequence determined, two PCR primers were synthesized with the sequences shown in TABLE 17 to clone a genomic fps clone and cDNA clone for fps gene expression in E. coli.

TABLE 18

Sequences of primers used for a cDNA and genomic fps cloning

Fps27; GAATTCATATGTCCACTACGCCTGA (sense primer) (SEQ ID NO: 42)

5

35

40

45

50

55

Fps28; GTCGACGGTACCTATCACTCCCGCC (antisense primer) (SEQ ID NO: 43)

[0100] PCR condition was as follows; 25 cycles of 30 seconds at 94 °C, 30 seconds at 50 °C and 30 seconds at 72 °C. One cDNA clone that had a correct sequence was selected as a result of sequencing analysis of clones obtained by PCR and was named as pFPS113. Next, Southern blot hybridization study was performed to clone a genomic fragment which contained the entire *fps* gene from *P. rhodozyma*. Probe was prepared by labeling a template DNA, pFPS113 with DIG multipriming method. As a result, labeled probe hybridized to a band that had about 10 kb in its length.

[0101] Next, a genomic library consisting of 9 to 15 kb of EcoRI fragment was constructed in a λDASHII vector. The packaged extract was infected to E. coli XL1 Blue, MRA(P2) strain (Stratagene) and over-laid with NZY medium poured onto LB agar medium. About 10000 plaques were screened by using the 0.6 kb fragment of Sacl- digested pFPS113 as a probe. Eight plaques were hybridized to the labeled probe. Then a phage lysate was prepared according to the method specified by the manufacturer (Promega). All the plaques were subjected to a plaque PCR using Fps27 and Fps28 primers. Template DNA for a plaque PCR was prepared by heating 2 µl of solution of phage particles for 5 minutes at 99 °C prior to a PCR reaction. PCR condition is the same as that of pFPS113 cloning hereinbefore. All the plaques gave a 2 kb of positive PCR band, and this suggested that these clones had an entire region containing fps gene. One of the λ DNA that harbored fps gene was digested with $E\infty R$ I to isolate 10 kb of EcoRI fragment and to clone in EcoRI-digested and CIAP-treated pBluescriptII KS- (Stratagene). Twelve white colonies from transformed E. coli $DH5\alpha$ cells were selected and plasmids were prepared from these clones and subjected to colony PCR by using the same primer sets of Fps27 and Fps28 and the same PCR condition. Two kb of positive band were yielded from 3 of 12 candidates. One clone was cloned and named as pFPS603. It was confirmed that sequence of fps gene which was previously determined from the sequence of pFPSSTu117 and pFPSStd117 were almost correct although they had some PCR errors. Finally, it was determined the nucleotide sequence of 4092 base pairs which contains fps gene from P. rhodozyma (Fig. 3), and an ORF which consisted of 365 amino acids with 8 introns was found (SEQ ID NO: 5). Deduced amino acid sequence (SEQ ID NO: 10) showed an extensive homology to known FPP synthase (65 % identity to FPP synthase from Kluyveromyces lactis).

SEQUENCE LISTING

5	(1) GENERA	AL INFORMATION:
	(i) i	APPLICANT: F.HOFFMANN-LA ROCHE. AG
	(ii) ⁽	TITLE OF INVENTION: Improvement of microbiological carotenoid production and biological materials therefor
10	(iii) ¹	NUMBER OF SEQUENCES: 43
15	(iv) (CORRESPONDENCE ADDRESS: (A) ADDRESSEE: (B) STREET: Grezacherstrasse 124 (C) CITY: BASLE (E) COUNTRY: SWITZERLAND (F) ZIP: CH-4002
20	(v)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25
25	(vi)	CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE: (C) CLASSIFICATION:
25	(ix)	TELECOMMUNICATION INFORMATION: (A) TELEPHONE: 061-688 25 11 (B) TELEFAX: 061-688 13 95 (C) TELEX: 962292/965542 hlr c
30	(2) INFOR	MATION FOR SEQ ID NO:1:
35	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 6370 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear
	(ii)	MOLECULE TYPE: DNA (genomic)
	(iii)	HYPOTHETICAL: NO
40	(iv)	ANTI-SENSE: NO
	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Phaffia rhodozyma (B) STRAIN: ATCC96594
45		FEATURE: (A) NAME/KEY: exon (B) LOCATION: 14411466
50	(ix)	FEATURE: (A) NAME/KEY: intron (B) LOCATION: 14671722
	(ix)	FEATURE: (A) NAME/KEY: exon (B) LOCATION: 17231813

	(ix) FEATURE:
	(A) NAME/KEY: intron (B) LOCATION: 18141914
5	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 19152535
10	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 25362621
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 26222867
15	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 28682942
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 29433897
20	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 38984030
25	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 40314516
	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 45174616
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 46174909
35	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 49105007
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 50085081
40	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 50825195
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 51965446
45	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 54475523
50	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 55245756
	(ix) FEATURE: (A) NAME/KEY: polyA_site

(B) LOCATION: 6173

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

•							
5	GGAAGACATG	ATGGTGTGGG	TGTGAGTATG	AGCGTGAGCG	TGGGTATGGG	CCTGGGTGTG	60
	GGTATGAGCG	GTGGTGGTGA	TGGATGGATG	GGTGGGTGGC	GTGGAGGGGT	CCGTGCGGCA	120
	AGATGTTTTC	TCTGGGTAGG	AGCGTTCTGC	ATTGGGGCAG	GAGAAAAAAT	AGTGTGGTTA	180
10	CGGGAGATCG	TGGTTACATC	AAGCCATCGT	CACTGTAAGG	CTCTGTAAGG	CTCGGTTGTT	240
	AAGAAGGTAA	CCAAGTGTAA	TCACTTGGTT	CGCGGGGTGA	CACTTAGGCT	CTGGCGATTA	300
	ATATATCTGA	AGCAGACCAA	ACTATTAACA	ATATACTTTT	GGATAAGAGG	TTTCAACAAG	360
15	AATCTCAGCT	TGAGGAAAAC	TCTTATCCAA	GAAGGCGCGA	GGGCGTCCCC	GTTTTATATC	420
	AGGACCCCTC	GCGCATTTGG	TCTGCCACTA	AAGATATACA	TATGACGAGC	CTAGAGAGGC	480
	TCGAGATCAC	GAAAACTAAA	AAGATGAAGC	ATGAACCATG	CAAACTAGAG	CATGATGGAA	540
20	AATGGGCGAA	GAGGCATAAG	GGATGGAGGG	AACGAATAGC	CTGTAGGGGT	AACCCACGTA	600
	AGAGAACACG	TGATACTTAA	CCCGTATCCC	TGACAGTCAC	GGTGTTTCTT	GAGAGTCAGT	660
	AATGTCCAGC	TGTGACCTCA	CGTGACTAAA	CCCGACACGT	GTGCTTCGAC	CGAGGTGGGA	720
05	CGATCTTTTT	TTTGGGGGGA	GAAACCGAGT	GGGACGATAG	AGAGGACTAC	GGAGAACTGT	780
25	AGTGAATTGT	AGTGCGCTCA	CTACGGAGAG	TTCTAGTTGA	GCAAGCGATG	TGATTTTCAA	840
	TACAATCCCG	GACTACAAGC	TCTCTAATAG	AGCTCTATAA	TAGAAGGACA	AAAGTCGTCC	900
	CACTCCTATC	TCCCGCGCGT	TTTAATAGAG	ACCGATTGTT	TTTTTCCCTA	ATGTTTTATT	960
30	TTCTTTCCCC	GATCGGCTCA	TTTTTCTTCT	CTCCGCGTAT	TCTTCACACA	ACGCTCCCTC	1020
	CGATCTTTTT	TCTTCTTGTT	CCTGTTCCTC	TTCGTCTCCT	TCCATTGTCT	TCTTTCCTTC	1080
	CTTCCTTCCT	TCTTGCCTCT	AGCCAGCTTC	AACAGCGACG	TCTCTCTCTC	TCTGTGTGGT	1140
35	GATCTCCGAC	TGTAGTGTCT	CTCTCGGTCA	CTTTCACGAA	TCAACTTCGT	TTCTTTTCTG	1200
	ATCGATCGGT	CGTCTTTCCC	TCAATCCGTG	CATACACTCA	CACTTACACT	CACACCCACA	1260
	CACTCAAACA	CGCTAAATAA	TCAGATCCGT	CTCCCCTTCT	TGATCTCCTT	CGGCTTAGGC	1320
40	AATGGCTTCC	TTGTTCGGCC	TCCGGCGGTC	CTCAAACGAG	CAGCCGCGCT	CTCCTCTGCT	1380
	CATCCAATCG	AAGTCATCCT	TTCTACCTTT	GTCGTGGTCA	CCTTGACGTA	CTTTCAGTTG	1440
	ATGTACACCA	TCAAGCACAG	TAATTTGTAC	GTCCGATCAT	CTATTTGTCG	TGTTCTCCTT	1500
45	AGTCTCTTTC	TCTTCCTCCT	TTGTCTTTCG	CGTCAGCGTG	GCTGGATTTC	CGTCTCCATG	1560
	TCATTTCCCT	TATTTCCTCT	TCCTGTCATT	TGTTCCTCTA	CTTTTCTTTC	TCTACCTCCT	1620
	TTCCCTGTCG	TTTGCTTTCC	TTCGCCAGTT	GACCACCGAT	CCTCAGGATT	CATGGCTAAC	1680
50	ATGCCCAACA	CAAACTTGCA	TATCATCTCT	CTTCGTCCAC	AGTCTTTCTC	AGACGATTAG	1740
	CACACAATCT	ACCACCAGCT	GGGTCGTCGA	TGCGTTCTTC	TCTTTGGGAT	CCAGATACCT	1800
	TGACCTCGCG	AAGGTTAGTC	AGTTGACCCT	CTCATGCTTC	TTTTCTCTCA	GTCTTGTGTG	1860

	TGCGCATATA	CCCACTCATA	GACATCTTCG	TACGCTGCAC	TTTCCCTCCC	TTAGCAAGCA	1920
	GACTCGGCCG	ATATCTTTAT	GGTCCTCCTC	GGTTACGTCC	TTATGCACGG	CACATTCGTC	1980
	CGACTGTTCC	TCAACTTTCG	TCGGATGGGC	GCAAACTTTT	GGCTGCCAGG	CATGGTTCTT	2040
	GTCTCGTCCT	CCTTTGCCTT	CCTCACCGCC	CTCCTCGCCG	CCTCGATCCT	CAACGTTCCG	2100
	ATCGACCCGA	TCTGTCTCTC	GGAAGCACTT	CCCTTCCTCG	TGCTCACCGT	CGGATTTGAC	2160
o	AAGGACTTTA	CCCTCGCAAA	ATCTGTGTTC	AGCTCCCCAG	AAATCGCACC	CGTCATGCTT	2220
	AGACGAAAGC	CGGTGATCCA	ACCAGGAGAT	GACGACGATC	TCGAACAGGA	CGAGCACAGC	2280
	AGAGTGGCCG	CCAACAAGGT	TGACATTCAG	TGGGCCCCTC	CGGTCGCCGC	CTCCCGTATC	2340
5	GTCATTGGCT	CGGTCGAGAA	GATCGGGTCC	TCGATCGTCA	GAGACTTTGC	CCTCGAGGTC	2400
	GCCGTCCTCC	TTCTCGGAGC	CGCCAGCGGG	CTCGGCGGAC	TCAAGGAGTT	TTGTAAGCTC	2460
	GCCGCGTTAA	TTTTGGTGGC	CGACTGCTGC	TTCACCTTTA	CCTTCTATGT	CGCCATCCTC	2520
2	ACCGTCATGG	TCGAGGTAAG	CCTTTTCTTC	AAGTTTCTTG	CTGTCATTTT	CCTTTCGACA	2580
0	CGTATGCTCA	TCTTTCGTTT	CCGTCTCTCT	CACCTTTCCA	GGTTCACCGA	ATCAAGATCA	2640
	TCCGGGGCTT	CCGACCGGCC	CACAATAACC	GAACACCGAA	TACTGTGCCC	TCTACCCCTA	2700
	CTATCGACGG	TCAATCTACC	AACAGATCCG	GCATCTCGTC	AGGGCCTCCG	GCCCGACCGA	2760
5	CCGTGCCCGT	GTGGAAGAAA	GTCTGGAGGA	AGCTCATGGG	CCCAGAGATC	GATTGGGCGT	2820
	CCGAAGCTGA	GGCTCGAAAC	CCGGTTCCAA	agttgaagtt	GCTCTTAGTA	AGTAAACTTC	2880
	CTTTGTTCTT	CTCATCATTC	TTTATCTCCG	AATCCTGACG	TCGGACCCTT	CTCGATTCAA	2940
o	AGATCTTGGC	CTTTCTTATC	CTTCATATCC	TCAACCTTTG	CACGCCTCTG	ACCGAGACCA	3000
	CAGCTATCAA	GCGATCGTCT	AGCATACACC	AGCCCATTTA	TGCCGACCCT	GCTCATCCGA	3060
	TCGCACAGAC	AAACACGACG	CTCCATCGGG	CGCACAGCCT	AGTCATCTTT	GATCAGTTCC	3120
5	TTAGTGACTG	GACGACCATC	GTCGGAGATC	CAATCATGAG	CAAGTGGATC	ATCATCACCC	3180
	TGGGCGTGTC	CATCCTGCTG	AACGGGTTCC	TCCTAAAAGG	GATCGCTTCT	GGCTCTGCTC	3240
	TCGGACCCGG	TCGTGCCGGA	GGAGGAGGAG	CTGCCGCCGC	CGCCGCCGTC	TTGCTCGGAG	3300
0	CGTGGGAAAT	CGTCGATTGG	AACAATGAGA	CAGAGACCTC	AACGAACACT	CCGGCTGGTC	3360
U	CACCCGGCCA	CAAGAACCAG	AATGTCAACC	TCCGACTCAG	TCTCGAGCGG	GATACTGGTC	3420
	TCCTCCGTTA	CCAGCGTGAG	CAGGCCTACC	AGGCCCAGTC	TCAGATCCTC	GCTCCTATTT	3480
	CACCGGTCTC	TGTCGCGCCC	GTCGTCTCCA	ACGGTAACGG	TAACGCATCG	AAATCGATTG	3540
5	AGAAACCAAT	GCCTCGTTTG	GTGGTCCCTA	ACGGACCAAG	ATCCTTGCCT	GAATCACCAC	3600
	CTTCGACGAC	AGAATCAACC	CCGGTCAACA	AGGTTATCAT	CGGTGGACCG	TCCGACAGGC	3660
	CTGCCCTAGA	CGGACTCGCC	AATGGAAACG	GTGCCGTCCC	CCTTGACAAA	CAAACTGTGC	3720
o	TTGGCATGAG	GTCGATCGAA	GAATGCGAAG	AAATTATGAA	GAGTGGTCTC	GGGCCTTACT	3780
	CACTCAACGA	CGAAGAATTG	ATTTTGTTGA	CTCAAAAGGG	AAAGATTCCG	CCGTACTCGC	3840

i}

		TGGAAAAAGC	ATTGCAGAAC	TGTGAGCGGG	CGGTCAAGAT	TCGAAGGGCG	GTTATCTGTA	3900
5		GGTCTTTTTC	TCCTTTGAAT	TTCAAGCCTT	GGAGGAGAGG	AAAGTGCTTC	GGGGTACAAT	3960
		ACAGGTTGTG	CAAACAAACC	AAGAGAAACT	AAAGAAAACT	ттсттстсст	СТСТСТСССС	4020
		TCGACGTCAG	CCCGAGCATC	CGTTACTAAG	ACGCTGGAAA	CCTCGGACTT	GCCCATGAAG	4080
		GATTACGACT	ACTCGAAAGT	GATGGGCGCA	TGCTGTGAGA	ACGTTGTCGG	ATATATGCCT	4140
1	0	CTCCCTGTCG	GAATCGCTGG	TCCACTTAAC	ATTGATGGCG	AGGTCGTCCC	CATCCCGATG	4200
		GCCACCACCG	AGGGAACTCT	CGTGGCCTCG	ACGTCGAGAG	GTTGCAAAGC	GCTCAACGCG	4260
		GGTGGCGGAG	TGACCACCGT	CATCACCCAG	GATGCGATGA	CGAGAGGACC	GGTGGTGGAT	4320
1:	5	TTCCCTTCGG	TCTCTCAGGC	CGCACAGGCC	AAACGATGGT	TGGATTCGGT	CGAAGGAATG	4380
		GAGGTTATGG	CCGCTTCGTT	CAACTCGACT	TCTAGATTCG	CCAGGTTGCA	GAGCATCAAG	4440
		TGTGGAATGG	CCGGCCGATC	GCTATACATC	CGTTTGGCGA	CCAGTACCGG	AGATGCGATG	4500
20	,	GGAATGAACA	TGGCTGGTGA	GTGCGACGAG	TTTTCTTTGT	TCTTCTTGTG	CGGACCATGT	4560
	,	TTTCTCATCC	AGCCAATTCA	TTCTTCATTC	CTTCTCGGTG	TTTGGCAACC	TTTTAGGTAA	4620
		AGGAACGGAG	AAAGCTTTGG	AAACCCTGTC	CGAGTACTTC	CCATCCATGC	AGATCCTTGC	4680
		TCTTTCTGGT	AACTACTGTA	TCGACAAGAA	GCCTTCTGCC	ATCAACTGGA	TTGAGGGCCG	4740
2	5	TGGAAAGTCC	GTGGTGGCCG	AGTCGGTGAT	CCCTGGAGCG	ATCGTCAAGT	CTGTCCTCAA	4800
		GACAACGGTT	GCGGATCTCG	TCAACTTGAA	CATTAAGAAA	AACTTGATCG	GAAGTGCCAT	4860
		GGCAGGCAGC	ATTGGAGGAT	TCAACGCCCA	CGCGTCGAAT	ATTTTGACTG	TGCGTACTTC	4920
30)	TCTTTCCATA	TTCGTCCTCG	TTTAATTTCT	TTTCTGTCCA	GTCTTATGAC	GTCTGATTGG	4980
		TTCTTCTTTT	CACCCACACA	CATACAGTCA	ATCTTCTTGG	CTACAGGTCA	GGATCCTGCA	5040
		CAGAATGTGG	AGTCCTCAAT	GTGCATGACA	TTGATGGAGG	CGTACGTTTT	TTGTTTTGTT	5100
35	5	TTCCTTCTTT	TTCCATATGT	TTCTACTTCT	ACTTTCTTCC	CGAGTCCGCC	AAGCTGATAC	5160
		CTTTATACGG	TCCTTCTCTT	TCTCATGACG	AGTAGTGTGA	ACGACGGAAA	AGATCTACTC	5220
		ATCACCTGCT	CGATGCCGGC	GATCGAGTGC	GGAACGGTCG	GTGGAGGAAC	TTTCCTCCCT	5280
40	,	CCGCAAAACG	CCTGTTTGCA	GATGCTCGGT	GTCGCAGGTG	CCCATCCAGA	TTCGCCCGGT	5340
		CACAATGCTC	GTCGACTAGC	AAGAATCATC	GCTGCCAGTG	TGATGGCTGG	AGAGTTGAGT	5400
		TTGATGAGTG	CTTTGGCCGC	TGGTCATTTA	ATCAAGGCCC	ACATGAGTAA	GTCTGCCACC	5460
46		TTTTGATAAT	CAAAAGGGTC	GTGGTACTGG	TGTCACTGAC	TGGTGACTCT	TCCTGTCATG	5520
45	•	CAGAGCACAA	TCGATCGACA	CCTTCGACTC	CTCTACCGGT	CTCACCGTTG	GCGACCCGAC	5580
		CGAACACGCC	GTCCCACCGG	TCGATTGGAT	TGCTCACACC	GATGACGTCT	TCCGCATCGG	5640
		TCGCCTCGAT	GTTCTCTGGG	TTCGGTAGTC	CGTCGACGAG	CTCGCTCAAG	ACGGTAGGTA	5700
50	l	GCATGGCTTG	CGTCAGGGAA	CGAGGGGACG	AGACGAGTGT	GAACGTGGAT	GCCTGAACTG	5760
		GGGACTCCCT	TTTCTTGGTA	TCCCTTCCGT	TTTTCTTTCG	GCCTTTGAAT	CCTGTATTCT	5820

	TGTCCGTTTT TTCATCTTCT CTTCCTGGTT CTCCTTCTCT CGTTCATCTG CAAAAACAAA	5880					
	ATTCAATCGC ATCGGTCTCT GGCATTCCAT TTGGGTTTCA AAATCAAATC	5940					
5	TACTATCTCA AATATCTTTT TTTCATCTTT TGATTCATTT CTGTTGAAAA CTGTCTTGCC	6000					
	CTTCTCCTAC TTCTTATCTC TGCCTTCTTG CCAAAGTTCA ATTCGTTGTC CATCTGTGCA	6060					
	CTCTGATCTA TCAGTCTGTA TCAAGTACGC TCTTAAATCT GTAATTGGCT CTCGGAGGTG	6120					
10	TCTCGTCATC TCACATATGG CTGGCGATAT GATGTGTCGG TTTCTTCCCC TCCAACAAAG	6180					
	GCGACGTGGC TCCTTCATCA ATCTTTGGCG CAAGCTCTCA AAATTCTCCA AAACGGCTGA	6240					
	CTAAGCAAGG TTTCCAAGTA CTCTCAAACC GAGCAAGGCC ATCCATCCTC AAATCAACTT	6300					
15	GTGAAACCCT TTGTGGATAG ACCGTCCAAA CCGAGCTCTT CCCAATCTTC GCCTCCCCTT	6360					
	CTTCCTGCAG	6370					
	(2) INFORMATION FOR SEQ ID NO:2:						
	(i) SEQUENCE CHARACTERISTICS:						
20	(A) LENGTH: 4775 base pairs (B) TYPE: nucleic acid						
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear						
	(ii) MOLECULE TYPE: DNA (genomic)						
25	(iii) HYPOTHETICAL: NO						
	(iv) ANTI-SENSE: NO						
	(vi) ORIGINAL SOURCE:						
30	(A) ORGANISM: Phaffia rhodozyma (B) STRAIN: ATCC96594						
	(ix) FEATURE:						
	(A) NAME/KEY: exon (B) LOCATION: 13051361						
35	(ix) FEATURE:						
	(A) NAME/KEY: intron (B) LOCATION: 13621504						
	(ix) FEATURE:						
40	(A) NAME/KEY: exon (B) LOCATION: 15051522						
	(ix) FEATURE:						
	(A) NAME/KEY: intron (B) LOCATION: 15231699						
	(ix) FEATURE:						
45	(A) NAME/KEY: exon (B) LOCATION: 17001826						
	(ix) FEATURE:						
	(A) NAME/KEY: intron (B) LOCATION: 18271920						
50	(ix) FEATURE:						
	(A) NAME/KEY: exon (B) LOCATION: 19212277						

	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 22782351	
5	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 23522409	
10	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 24102497	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 24982504	
15	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 25052586	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 25872768	
20	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 27692851	•
25	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 28522891	
	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 28922985	
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 29863240	
35	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 32413325	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 33263493	
40	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 34943601	
45	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 36023768	
	(ix) FEATURE: (A) NAME/KEY: polyA_site (B) LOCATION: 4043	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
50	CATCGAAGAG AGCGAAGTGA TTAGGGAAGC CGAAGAGGCA CTAACAACGT GGTTGTATAT	60
	GTGTGTTTAT GAGTGTTATA TCGTCAAGAA CGAAGTCCAT TCATTTAGCT AGACAGGGAG	120

	AGAGGGAGAA ACGTACGGGT TTACCCTATT GGACCAGTCT AAAGAGAGAAA CGAGAGTTTT	180
5	TGGGTCGGTC ACCTGAAGAG TTTGAACCTC CACAAGTTTA TTCTAGATTA TTTCCGGGGG	240
	TATGTGAAGG ATAATGTCAA ACTTTGTCCA GATTGAAGAA GGCAAGAAAG GAAAGGGGCG	300
	AACGAGAGTA TCGTCCCATC TATGGGTGAC CAGTCGACCT TCTGCATCGG CGATCCCGAG	360
	AACGAAAGTA TCGTGCCTAGAAGTAGG TTTCCTAAGC TCAAACATAG GTCATTGCGA	420
10	GTGAGATACA TATGCAGACT GATATGCTAG TCAAACCGAA CGAGATTTCT CTGTTTGCTT	480
10	TCAAAAAGAC GAACCAACCA TTTCATGTCC AAGATGGCAG GTCCTTCGAT TCTTTGAAGC	540
	TCCTCCCTGA TGCGGACAGA AAAGAATAAA AAGTAGACAG ACTGTCAAGT CGACAGCGCA	600
	AGTITATCAA GCTGAGCGAG AAAACTCGAA CTTACATACC TTGGCCGTCA GTTCTGTAGA	660
15	CCAAGCATCG GCCTTTCCTC TTTGCGGCAG GTGTACGCGT TGGCTCACCA TCGTCACTCT	720
	CCAAGCATCG GCCTTGCTT TCCTTGACAG CAGTCTGTTC CACAGGTTTC TCTAACTGAT	780
	AGGTCCCAAC AGCAAAGATA TCTGGATGTC TATGTGAGAA CTCTACTGAG TCGGCAGAGT	840
20	ACACCGTATC GATATAGGCG AGTGAGGAAG CTTTGAAAGG TGAAGAAGTA GCGAAAGATC	900
	ATCAGCGAAT GAGGACTATG ACAAAAAAGA AATTTTCGTA TAATCCACTG GACAAATCAC	960
	CTTCCATCGT GTCCTCCAAG AGGGTTTCGT CTGAAACGTA AGGACGAGGT ATTGATAGAT	1020
25	GATTGACCTT GAGTACGCGG ATGGACAAGG AACGAGCCCA CTCCCAGGGC TATGTAACAC	1080
	CACACGTGAC TCCACTTGAA TTGCGGCAGA TAAACGAAGT CTTACGATCG GACGACTTTG	1140
	TAACCATTTA GTTATTTACC CGTCTTGTTT TCTTACTTTG ATCGTCCCAT TTTAGACACA	1200
30	AAAAAAGAAG CCAGAAGAGA AAAGAATAAA ACGTCTACCG TGTTCTCTCC GAATTCTTAC	1260
30	CACACCCACA AAACCATACA CAATCTCAAT CTAGATATCC AGTTATGTAC ACTTCTACTA	1320
	CCGAACAGCG ACCCAAAGAT GTTGGAATTC TCGGTATGGA GGTATGTTGT TCAATTCTGT	1380
	TTGTGTTCAA TCTTTAATCA TCTTTAGTCG ACTGACCGGT TCTTCCTTTT TTTTTCTTCA	1440
35	TCAAACAAAA CAACCCTTCT CGATTCATGT CATCTTTCTT TCCAATGCGC TACTCCTTCT	1500
	GTAGATCTAC TTTCCTCGAC GAGTGCGTAA CTATTCTCTC TTCTGCATTC TCTCTCTATT	1560
	CCCATGTTCG ATCCCTCGCC CTCATATGGG CGACTGTTTC ATCTCTTTTG CTTCCGTCCA	1620
40	TTCTTCTTTG ATCTTGTTCA TTTTCTACTA ATATCTCCCG ACGCGAAATA CAACACTGAC	1680
	CGCGATTTCT CTCGATCAGG CCATCGCTCA CAAGGATCTC GAGGCTTTTG ATGGGGTTCC	1740
	TTCCGGAAAG TACACCATCG GTCTCGGCAA CAACTTCATG GCCTTCACCG ACGACACTGA	1800
45	TTCCGGAAAG TACACCATCG GTCTCGGCAA CHEGTTOTTCCG TTTCAGCAAT CGACAGGAAA GGACATCAAC TCGTTCGCCT TGAACGGTCA GTCTCTTCCG TTTCAGCAAT CGACAGGAAA	1860
	GGACATCAAC TCGTTCGCCT TGAACGGTCA GTCTCTCGG TTTTGCTTAG AAGGCCCAAG CGCATCTCAC TGACACCTTT CTCCGTTTTG CAATTCCATT TGATTGTTAG	1920
	AAGGCCCAAG CGCATCTCAC TGACACCTTT CICCGTTTO CICTATOCACCTCACCTCACCTCACCTCACCTCACCTCAC	1980
5 0	CTGTTTCCGG TCTTCTATCA AAGTACAACG TTGATCCCAA GACAGTCCTT ATGGACTTGT	2040
50	TCGGAACTGA GTCCATCATT GACAAGTCCA AATCTGTCAA GACAGTCCTT ATGGACTTGT TCGAGTCCCA CGGCAACACA GATATTGAGG GTATCGACTC CAAGAATGCC TGCTACGGTT	2100
	TOGACTOCCA CGGCAACACA GATATTGAGG GTATCGACTC CAAGAATOG	

	CTACCGCGGC CCTGTTCAAT GCCGTCAACT GGATCGAGTC ATCCTCTTGG GACGGAAGAA	2160
5	CTACCGCGGC CCTGTTCAAT GCCGTCAACT GGMCCACCTGCCGACCTGCCG	2220
	ATGCCATTGT CTTCTGCGGA GACATTGCCA TCTACGCCGA GGGTGCTGCC CGACCTGCCG	2280
3	GAGGTGCTGG TGCTTGCGCC ATCCTCATCG GACCCGACGC TCCCGTCGTC TTCGAGCGTG	2340
	AGTTCCAATC CGTCATTTTC TTCCACGGCA GCGGCTGAAA CAACCCTTAT CCGTCATTCT	2400
	CATCAATCTA GCCGTCCACG GAAACTTCAT GACCAACGCT TGGGACTTCT ACAAGCCTAA	2460
10	TCTTTCTTCG TATGTTCAAA TTTTGAAGTT TGCGCTTGGG AGAGTCTTAC ACTAATTCGG	2520
	GGTGCTCGTA TCCTTCGAAT CGTTTGTTGC TTTATAGTGA ATACGTTCGT CTGCGCACCT	2580
	CCTATATTTA GTTTTGATC AAATATTGTC CATTGAATTA ACTCTGAAAC CTTCTCCTCC	2640
15	AAATAGCCCA TTGTCGATGG ACCTCTCTCC GTCACTTCCT ACGTCAACGC CATTGACAAG	
	GCCTATGAAG CTTACCGAAC AAAGTATGCC AAGCGATTTG GAGGACCCAA GACTAACGGT	2700
	GTCACCAACG GACACACCGA GGTTGCCGGT GTCAGTGCTG CGTCGTTCGA TTACCTTTTG	2760
	TTCCACAGGT AAGCGTCATC TTCTGTATTC TCCTTAAATT CAACCGATCA ACGGAGTTAA	2820
20	TTCGTGTCAT CATATTATCT TGTTGGAACA GTCCTTACGG AAAGCAGGTT GTCAAAGGCC	2880
	ACGGCCGACT TGTAAGCAGT CTTTTTGTAA CTCTTAGCTT GCAGATAAAA ACTTTTAGGT	2940
	TTCTGGTACT CATTATTTAT GCATCTCTTG AATCACCTTA TCTAGTTGTA CAATGACTTC	3000
25	CGAAACAACC CCAACGACCC GGTTTTTGCT GAGGTGCCAG CCGAGCTTGC TACTTTGGAC	3060
	ATGAAGAAAA GTCTTTCAGA CAAGAATGTC GAGAAATCTC TGATTGCTGC CTCCAAGTCT	3120
	TCTTTCAACA AGCAGGTTGA GCCTGGAATG ACCACCGTCC GACAGCTCGG AAACTTGTAC	3180
30	ACCGCCTCTC TCTTCGGTGC TCTCGCAAGT TTGTTCTCTA ATGTTCCTGG TGACGAGCTC	3240
	GTAAGTCTTG ATCTCTATCC CAATCATCTC TTCCTTATCA ATTGAACTGA ACTCTTTTCT	3300
	TTAATGCTGG CTTTCTCTTG AACAGGTCGG CAAGCGCATT GCTCTCTACG CCTACGGATC	3360
35	TGGAGCTGCT GCTTCTTTCT ATGCTCTTAA GGTCAAGAGC TCAACCGCTT TCATCTCTGA	3420
	GAAGCTTGAT CTCAACAACC GATTGAGCAA CATGAAGATT GTCCCCTGTG ATGACTTTGT	3480
	CAAAGCTCTG AAGGTACGTT GGATAATGAC TTTTTTTGTG GACCGTGGTC TTTGTCAACC	3540
	GCTAACAACC TTCTTGAATC GGTCTCTTTT GGTTTGAAAT TCGCTCGGCG CTTCGACACA	3600
40	GGTCCGAGAA GAGACTCACA ACGCCGTGTC ATATTCGCCC ATCGGTTCGC TTGACGATCT	3660
	CTGGCCTGGA TCGTACTACT TGGGAGAGAT TGACAGCATG TGGCGTCGAC AGTACAAGCA	3720
	GGTCCCTTCT GCTTGAACGG GATATTAAAA GTTTCAAAAG TTATGAAAGA GGTCGGCGAA	3780
45	GATTCAAAAT AAATAAATAT AACACCTTGC TTTTTGGCTT GTTTTCCTTC TTCACTCTCG	3840
	TTTCCGATGT GTTTCCTCCG TTTCTTCCCT CTTTTGTTCC TTTTTCCTCC CTCTTTTGGT	3900
50	TACAATCTCT TTGGGTTTTA CAGGCTGGCA ATCTCTGTAC AATCTTCGTT CGCGTGATCC	3960
	GACATAGATA CCGTTGTGGC ATACACCTTG CGTCTTACAT CTTTTGAGAG CTTCGGAGGT	402
	GACATAGATA CCGTTGTGGC ATTACATO CCCATCTCTT GAATGTCCTG ACTAAATTGA	408
	GATUTUATE MAGMMATIC MOOST CONTROL	

	ATTGGAAGCA ACTTATATGA AGAGCAAATT GATGGATCCA GAAAGGAACA AGTCTAGAAA	4140
	ATTGGAAGCA ACTIAIATGA ACTIONION TO THE TOTAL ACTIONION OF T	4200
5	TCAGTGATTT GTGCGAAAAA TCAGCAATTO ATTGCCCCATG CGCGTGATGT TGTCTGACCG TTCTCCTCCA TTCCCCCACT CTCAACCTTC	4260
	ATTGCCCATG CGCGTGATGT TGTCTGACCG TTGTCTGATCCTT TACAGGGTGT CTCTCTTTGA GAATCGAAGA AGAAGGCGAA GAAAACCTGA CTTGATCCTT TACAGGGTGT	4320
	CTCTCTTTGA GAATCGAAGA AGAAGGCGAA GAATTTCTTTTGTT CGTATCTGAG TTACTTTTCC TCCTTTCCTT	4380
	TTCTTTTGTT CGTATCTGAG TTACTTTTCC TCCTTTCCT TGAGGATAGA ATATCCCCCT ATCTGACTCC TCCGCCTACC TCGGCGACTG GGCTATATCT TGAGGATAGA ATATCCCCCT	4440
10	ATCTGACTCC TCCGCCTACC TCGGCGACTG GGCTATATCT TCCTCAATC AATAGATCAT GACAATCCCA TTTCTCAAGA TTCTTTCAAA CAAGAAAACT AGTTCCAATC AATAGATCAT	4500
	GACAATCCCA TTTCTCAAGA TTCTTTCAAA CAAGAATACT TOO	4560
	CTGATCAACC TTGTGTGAAC ATAATCATCT GCAGAAGCAC TGAACTGAGA AAGTCTTCCT	4620
15	CAGAGGAAAG AGAATACTAG ATAAGATCAT TCGGTTGGGA AGGTAAAGGA ATGAAGTCTG	4680
	GTTCTGGGTT TAGCTCTGGT TCCGTAGGGG GTTCGACTAT AGTTTCTTCT GTTCGACTAG	4740
	AAACAGGAGA AACCGTACAT GTAAATGGTA TGATATTCTT GTCTCTGTAT CATGTCCCGC	4775
20	TCATCTCTTT GTTTGCAAGT CACTCTGGAG AATTC	
	(2) INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 4135 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Phaffia rhodozyma	
35	(B) STRAIN: ATCC96594	
	(ix) FEATURE: (A) NAME/KEY: exon	
	(B) LOCATION: 10211124	
	(ix) FEATURE:	
40	(A) NAME/KEY: intron (B) LOCATION: 11251630	
	(ix) FEATURE:	
	(A) NAME/KEY: exon (B) LOCATION: 16311956	
45	(iv) FRATTIRE:	
	(A) NAME/KEY: intron (B) LOCATION: 19572051	
	(ix) FEATURE: (A) NAME/KEY: exon 2052 2366	
50	(B) LOCATION: 20522366	
	(ix) FEATURE: (A) NAME/KEY: intron	

	(B) LOCATION: 23672446	
5	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 24472651	
	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 26522732	
10	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 27333188	
15	<pre>(ix) FEATURE: (A) NAME/KEY: polyA_site (B) LOCATION: 3284</pre>	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	ACTGACTCGG CTACCGGAAA ATATCTTTTC AGGACGCCTT GATCGTTTTG GACAACACCA	60
	TGATGTCACC ATATCTTCAG CGGCCGTTGG AGCTAGGAGT AGACATTGTA TACGACTCTG	120
20	GAACAAAGTA TTTGAGTGGA CACCACGATC TCATGGCTGG TGTGATTACT ACTCGTACTG	180
	AGGAGATTGG GAAGGTTCGT GCTTGCTTGC TTTGAATGTC GTGCCTAAAG CCATTGCCAT	240
	AAGACAGAGT CTGATCTATG TCGTTTGCCT ACAACAGAGA ATGGCCTGGT TCCCAAATGC	300
25	TATGGGAAAT GCATTGTCTC CGTTCGACTC GTTCCTTCTT CTCCGAGGAC TCAAAACACT	360
	TCCTCTCCGA CTGGACAAGC AGCAGGCCTC ATCTCACCTG ATCGCCTCGT ACTTACACAC	420
	CCTCGGCTTT CTTGTTCACT ACCCCGGTCT GCCTTCTGAC CCTGGGTACG AACTTCATAA	480
30	CTCTCAGGCG AGTGGTGCAG GTGCCGTCAT GAGCTTTGAG ACCGGAGATA TCGCGTTGAG	540
30	TGAGGCCATC GTGGGCGGAA CCCGAGTTTG GGGAATCAGT GTCAGTTTCG GAGCCGTGAA	600
	CAGTITGATC AGCATGCCTT GTCTAATGAG GTTAGTTCTT ATGCCTTCTT TTCGCGCCTT	660
	CTAAAATTTC TGGCTGACTA ATTGGGTCGG TCTTTCCGTT CTTGCATTTC AGTCACGCAT	720
35	CTATTCCTGC TCACCTTCGA GCCGAGCGAG GTCTCCCCGA ACATCTGATT CGACTGTGTG	780
	TCGGTATTGA GGACCCTCAC GATTTGCTTG ATGATTTGGA GGCCTCTCTT GTGAACGCTG	840
	GCGCAATCCG ATCAGTCTCT ACCTCAGATT CATCCCGACC GCTCACTCCT CCTGCCTCTG	900
40	ATTCTGCCTC GGACATTCAC TCCAACTGGG CCGTCGACCG AGCCAGACAG TTCGAGCGTG	960
	TTAGGCCTTC TAACTCGACA GCCGGCGTCG AAGGACAGCT TGCCGAACTC AATGTAGACG	102
	ATGCAGCCAG ACTTGCGGGC GATGAGAGCC AAAAAGAAGA AATTCTTGTC AGTGCACCGG	108
45	GAAAGGTCAT TCTGTTCGGC GAACATGCTG TAGGCCATGG TGTTGTGAGT GAGAAATGAA	114
40	AGCTTTATGC TCTCATTGCA TCTTAACTTT TCCTCGCCTT TTTTGTTCTC TTCATCCCGT	120
	CTTGATTGTA GGGATGCCCC CCTTTGCCCC TTTCCCCTTC TTGCATCTGT CTATATTTCC	126
50	TTATACATTT CGCTCTTAAG AGCGTCTAGT TGTACCTTAT AACAACCTTT GGTTTTAGCA	132
	TCCTTTGATT ATTCATTTCT CTCATCCTTC GGTCAGAGGC TTTCGGCCAT CTTTACGTCT	138
	TCCTTGATT ATTCATTTCT CTCATCCTTC GOTCLAMAGG	

GATTAGATTG TAATAGCAAG AACTATCTTG CTAAGCCTTT TCTCTTCCTC TTCCTCCTAT	1440
GATTAGATTG TAATAGCAAG AACTATCTTG CTAAGGCTTT ATCATCAAGG GGTGGGGGGC ATAAATCGAA TTCACTTTCG GACATGTTTA TTTTGGGGAA ATCATCAAGG GGTGGGGGGC	1500
ATARATCGAA TTCACTTTCG GACATGTTA TTTTGGGGGG GTTCAGAATC AGTCACTGAC	1560
CAATCCCGAC ACTAATTTC TGCTCACGTC AAAACTCAGC GTTCAGAATC AGTCACTGAC	1620
CANTCCCGAC ACTACTTTCTCTCACCC CCTGATACGT GTCTCTATGT GTGTGGGTGT ACGTGCGAAT TGTGACTCGA CGTTCTACGC CCTGATACGT GTCTCTATGT GTGTGGGTGT ACGTGCGAAT TGTGACTCGA CGTTCTCTCACCC	1680
TTAAAAACAG ACCGGGATCG CTGCTTCCGT TGATCTTCGA TGCTACGCTC TTCTCTCACC	1740
CACTGCTACG ACAACAACAT CATCGTCGTT ATCGTCTACA AACATTACCA TCTCCCTAAC	1800
GGACCTGAAC TTTACGCAGT CTTGGCCTGT TGATTCTCTT CCTTGGTCAC TTGCGCCTGA	1860
CTGGACTGAG GCGTCTATTC CAGAATCTCT CTGCCCGACA TTGCTCGCCG AAATCGAAAG	1920
GATCGCTGGT CAAGGTGGAA ACGGAGGAGA AAGGGAGAAG GTGGCAACCA TGGCATTCTTT	1980
GATCGCIGGI CARGOTOTA	2040
TTGCCTATAA AGACTCTTAA CTGACGGAGA AAGTGTTGGG TTTCTTCCTT CGGGGGTTCA	2100
ATCAATTAAA GTGAGCCGTT CGAGTTGACG GCTCGATCTG CGCTTCCGAT GGGAGCTGGT	2160
THE CONTROL CONCOUNTY ATCGARCETET CTTGCCCTAG TCTTTCTTCT CCACTTILET	2220
CARCACTO CARCOACGAC TOGCAGAGAA TCAACAATCC CGACGGCCGA CACAGAAGIA	2280
GCCCGTTCTT AGCTGAAAAA GTCATCCATG GAAATCCGAG TGGGAIIGA	2340
AND CONTROL CTACGAGAGG AGGCGCTGTT GCTTTCAAAA GAAAGATTGA GGGAAAACAG	2400
THE THE THE THE THE TANGE OF THE	2460
ACCORDANCE ACCORDANG ARCGIOTITO TACATITOGA ATATAGOTTO ACATOCATIO	2520
CACAGATTCT CGTATCGGAA GGGATACAAG ATCTCTCGTT GCAGGAGIGA	2520
A TOUTOGRACE CATTURGERG CURGREGIGA TUGTUCUTTI GITGGRAGUG ATTURGUNGA	
THE COUNTY COUTATTOGA TOCTTGAAAG ATTCAGAGAT GGAACGTGCT GTCATGATEG	2640
ARCHAGING ACTTACTICT TGTTCCTTTC AAGACTCTTT GTGACATTGT GTCTTATCCT	2700
AGAACTTGGT CTCCGAGAAC CACGCACACC	2760
TAGGACCACT TESTGTCC CACCEATECE TEGAAGAGAT TATECEGGATE GUIGATATA	2820
AGGREGATION AGGREGATION AND AGGREGATION OF THE PROPERTY OF THE	2880
TGGTGCCGA TGGTAAAGTC TCTCCTTTC TCTTCCGTCC AAGCGACACA TCTGACCGAT	2940
GCGCATCCTG TACTTTTGGT CAACCAGACT TCTCGACTGA AACCCTTCAA GCTCTTATGG	3000
AGACGCTCGT TCAATCATCG TTCGCCCCTT ATATTGCCCG AGTGGGTGGT TCAGGCGTCG	3060
AGACGCTCGT TCAATCATCG TOOGGT AAGATGGGGA GAACAGACTT AAAGATGGGC GATTCCTTTC ATCAACTAAG GCCGATCCGG AAGATGGGGA GAACAGACTT AAAGATGGGC	3120
GATTCCTTTC ATCAACTAAG GCCGATGGGC TGGTGGGAAC GGAGATTGAT GAGCTAGACA GATGGGCTTT GAAAACGGGT CGTTGGTCTT TGGTGGGAAC GGAGATTGAT GAGCTAGACA GATGGGCTTT GAAAACGGGT CGTTGGTCTT	3180
TGGTGGGAAC GGAGATTGAT GAGCTAGACT TAGGGTACAG ATCCTTTGCT GTCATTTTTTTTTT	A 3240
TTGCTTGAAC GAAAGATAGG AAACGGTGAT TAGGGTATGCCC TCATCTCTAT CCATAGACACCCAAAACACTT TCTTATGTCT TCATGACTCA ACGTATGCCC TCATCTCTAT CCATAGACAC	G 3300
CAAAACACTT TCTTATGTCT TCATGACTCA ACGTATGGG CAAAACATGC GGCACACGA CACGGTACCT CTCAGGTTTC AATACGTAAG CGTTCATCGA CAAAACATGC GGCACACGA	A 3360
CACGGTACCT CTCAGGTTTC AATACGTAAG CGTTCATCGT	

	AACGAGTGGA TATAAGGGAG AAGAGAGATA TTAGAGCGAA AAAGAGAAGA GTGAGAGAGG
	AAAAAAATAA CCGAGAACAA CTTATTCCGG TTTGTTAGAA TCGAAGATCG AGAAATATGA
5	AGTACATAGT ATAAAGTAAA GAAGAGAGGT TTACCTCAGA GGTGTGTACG AAGGTGAGGA
	CAGGTANGAG GAATAATTGA CTATCGAAAA AAGAGAACTC AACAGAAGCA CTGGGATAAA
	GCCTAGAATG TAAGTCTCAT CGGTCCGCGA TGAAAGAGAA ATTGAAGGAA GAAAAAGCCC
10	CCAGTAAACA ATCCAACCAA CCTCTTGGAC GATTGCGAAA CACACACAC CACGCGGACA
10	TATTTCGTAC ACAAGGACGG GACATTCTTT TTTTATATCC GGGTGGGGAG AGAGAGGGTT
•	ATAGAGGATG AATAGCAAGG TTGATGTTTT GTAAAAGGTT GCAGAAAAAG GAAAGTGAGA
	GTAGGAACAT GCATTAAAAA CCTGCCCAAA GCGATTTATA TCGTTCTTCT GTTTTCACTT
15	CTTTCCGGGC GCTTTCTTAG ACCGCGGTGG TGAAGGGTTA CTCCTGCCAA CTAGAAGAAG
	CAACATGAGT CAAGGATTAG ATCATCACGT GTCTCATTTG ACGGGTTGAA AGATATATTT
	AGATACTAAC TGCTTCCCAC GCCGACTGAA AAGATGAATT GAATCATGTC GAGTGGCAAC
20	GAACGAAAGA ACAAATAGTA AGAATGAATT ACTAGAAAAG ACAGAATGAC TAGAA
	(2) INFORMATION FOR SEQ ID NO:4:
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2767 base pairs
25	(B) TypE: nucleic acid
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA (genomic)
30	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
	(vi) ORIGINAL SOURCE:
	(A) ORGANISM: Phaffia Inodozyma
<i>35</i>	(B) STRAIN: ATCC96594
	(ix) FEATURE: (A) NAME/KEY: exon
	(B) LOCATION: 401451
	(ix) FEATURE:
40	(A) NAME/KEY: intron (B) LOCATION: 452633
	(ix) FEATURE: (A) NAME/KEY: exon
	(B) LOCATION: 634876
45	(ix) FEATURE:
	(A) NAME/KEY: intron (B) LOCATION: 8771004
	(ix) FEATURE: (A) NAME/KEY: exon
50	(B) LOCATION: 10051916
	(ix) FEATURE:

(A) NAME/KEY: polyA_site (B) LOCATION: 2217

5

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
5	GAATTCTTCC CGACTGGGCT GATCGACTTG ACTGGAAGAT CTAAGGCGGA GGGATGAAGG	60
	AAGTAATTGG AGGGAATGAG GAAAAAAAAA GGCGAGGGAA CGCGGTCTTC TTTCCTGGCA	120
	AGGCAATGTC GTGTATCTCT CTTGATTCTT TCGTTGTATC GACGGACCAC ACTCTTTTCG	180
10	AATGAATATC ACTATCGCAT CCAATGATCG CTATACATGG CATTTACATA TGCCAGACAT	240
	CGCTGAGAAA GAGAGAACAT TCCTTTGGAA AAAGCCTACT GTGCCTGAAG TCAGGCTGAT	300
	GTTGATTAAA CGTCTTTCCC CATCCTAAGC AGACAAACAA CTTCTTTTCG TTCAACACAC	360
15	CACCTCTCTC CGAAAAAGCT CTTCAATCCA GTCCATTAAG ATGGTTCATA TCGCTACTGC	420
,0	CTCGCTCCC GTTAACATTG CGTGTATCAA GGTCCGTCTG CATTGTGAAT GCTGCTCGTT	480
	TGCCTTGTGT GCGTTTGGTG GATCTGAAAG AACCCTTGCT TGAACCATTC CATCTCTGCT	540
	CTTTTTCTTC CTGTCCTTTC CTTTTTCTCA CGACAAAAA ACCACCTGGA CCCTTTGTGT	600
20	TCCTTTCCAT TGGTGTTCAT ACACCTAACA CAGTACTGGG GTAAACGGGA TACCAAGTTG	660
	ATTCTCCCTA CAAACTCCTC CTTGTCTGTC ACTCTCGACC AGGATCACCT CCGATCGACG	720
	ATTCTCCCTA CAAACTCCTC CTTGTCTGTC ACTGTCCAC TTTGGCTTAA CGGGATCGAG ACGTCTTCTG CTTGTGACGC CTCGTTCGAG AAGGATCGAC TTTGGCTTAA CGGGATCGAG	780
25	ACGTCTTCTG CTTGTGACGC CTCGTTCGAG AAGGTTCTA AGGAGATGAA GAAGCTTCGA GAGGAGGTCA AGGCTGGTGG TCGGTTGGAT GTCTGCATCA AGGAGATGAA GAAGCTTCGA	840
	GAGGAGGTCA AGGCTGGTGG TCGGTTCTG GAGAAAGTGA GTTTTTCTCC TGTGTGCGTG GCGCAAGAGG AAGAGAAGGA TGCCGGTCTG GAGAAAGTGA GTTTTTCTCC TGTGTGCGTG	900
	GCGCAAGAGG AAGAGAAGGA TGCCGGTCTG GAGAGAGGTTTGG AAGAGTTTGG ATCTTACTCT TGTACTCTGT ATAGGTACCG TTGACAGGAC AGTCTTTCTG AAGAGTTTGG ATCTTACTCT	960
30	TGTACTCTGT ATAGGTACCG TGACAGAAC AGTCTTCTO TCTTTCAACG TTTTTTGGGGG GGTGGTGGTG TTTGAAATAA TGACCAAAAT AAAGCTCTCA TCTTTCAACG	1020
30	TTTTTGGGGG GGTGGTGGTG TTTGAAATAA TGACCAAAATA	1080
	TGCACCTTGC GTCTTACAAC AACTTCCCGA CTGCCGCTGG ACTTGCTTCC TCCGCTTCCG	1140
	GTCTAGCTGC GTTGGTCGCC TCGCTCGCCT CGCTCTACAA CCTCCCAACG AACGCATCCG	1200
35	AACTCTCGCT CATCGCCCGA CAAGGTTCTG GTTCTGCCTG CCGATCGCTC TTCGGCGGGT	1260
	TCGTTGCTTG GGAACAGGGC AAGCTTTCCT CTGGAACCGA CTCGTTCGCT GTTCAGGTCG	1320
	AGCCCAGGGA ACACTGGCCC TCACTCCACG CGCTGATCTG TGTAGTTTCC GACGAGAAAA	1380
40	AGACGACGGC CTCGACGGCA GGCATGCAAA CCACGGTGAA CACCTCGCCT TTGCTCCAAC	1440
	ACCGAATCGA ACACGTCGTT CCAGCCCGGA TGGAGGCCAT CACCCAGGCG ATCCGGGCCA	1500
	AGGATTTCGA CTCGTTCGCA AAGATCACCA TGAAGGACTC CAACCAGTTC CACGCCGTCT	1560
	GCCTCGATTC GGAACCCCCG ATCTTTTACT TGAACGATGT CTCCCGATCG ATCATCCATC	1620
45	TCGTCACCGA GCTCAACAGA GTGTCCGTCC AGGCCGGCGG TCCCGTCCTT GCCGCCTACA	
	CGTTCGACGC CGGGCCGAAC GCGGTGATCT ACGCCGAGGA ATCGTCCATG CCGGAGATCA	1680
50	TCAGGTTAAT CGAGCGGTAC TTCCCGTTGG GAACGGCTTT CGAGAACCCG TTCGGGGTTA	1740
	ACACCGAAGG CGGTGATGCC CTGAGGGAAG GCTTTAACCA GAACGTCGCC CCGGTGTTCA	1800
	GGAAGGGAAG CGTCGCCCGG TTGATTCACA CCCGGATCGG TGATGGACCC AGGACGTATG	1860

	CCTCCTCAAG GCTTAGACTA	1920
	GCGAGGAGGA GAGCCTGATC GGCGAAGACG GTCTGCCAAA GGTCGTCAAG GCTTAGACTA	1980
	TAGGTTGTTT CTTCTAAATT TGAGCCTTCC TCCCGCCTCC CTTCCACAAG CATAAAACAA	2040
5	AGGATAAACA AATGAATTAT CAAAATAACT ATAGGTTGTT TCTTCTAAAT TTGAGCCTTC	2100
	CTCCCGCCTC CCTTCCACAA GCATAAAACA AAGGATAAAC AAATGAATTA TCAAAAATAAA	2160
	ATAAAAAGTC TGCCTTCTTT GTTTTGGAAT ACATCTTCTT TGGGACATGA CCCTTCTCCT	
10	TCTTTTCCGT ATACATCTTT TTGGGTATTT CATGGTGATC AAACAACATT GTGATCGAAA	2220
	GCAGAGACGG CCATGGTGCT GGCTTTGAGC GTCTGGCGTT TTGTGTGTCC TGCACTTGAG	2280
•	CAACCCCAAG CTGACCGCTA GGAAAACTCA TTGATGTGAT TTATATCGTA CGATGAAAGA	2340
15	GAATAAAATG ATAGAAGAAC AAAGAAGAAC AAAGTAGAAG AACGTCTGAG AAGAAAGACA	2400
15	GGAAAATGAC ACGTACATAG TGTTCGATGA TGAATGATAT AATATTAAAT ATAAAATGAG	2460
	GTAAACGTAT AGCATCACGG GATGAACGGA TGAACATGTA GTGGACAAGG TTGGGAAATA	2520
	GGAATGTAGA ATCCAAGAAT CGTTGACTGA TGGACGGACG TATGTAAACA GGTACACCCC	2580
20	AAAGAAAGA AAGAAAGAAA GAAAGAAAAC ACAAAGCCAA GGAAGTAAAG CAGATGGTCT	2640
	TCTAAGAATA CGGCTTCAAA AAGACAGTGA ACACTCGTCG TCGAGGAATG ACAAGAAAAG	2700
	TGAGAGACTA CGAAAGGAAG AAACCAAGAC GAAAAGAAGA ACGGAGATCG AACGGACAGA	2760
25	AATAAAG	2767
	MIN.	
	(2) INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4092 base pairs	
30	(R) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE:	
40	(A) ORGANISM: Phaffia rhodozyma (B) STRAIN: ATCC96594	
	(ix) FEATURE:	
	(A) NAME/KEY: exon (B) LOCATION: 852986	
46	(iv) FFATURE:	
45	(A) NAME/KEY: intron (B) LOCATION: 9871173	
	(ix) FEATURE:	
	(A) NAME/KEY: exon (B) LOCATION: 11741317	
50		
	(ix) FEATURE: (A) NAME/KEY: intron	

	(B) LOCATION: 13181468	
5	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 14691549	
	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 15501671	
10	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 16721794	
15	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 17951890	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 18911979	
20	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 19802092	
	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 20932165	
. 25	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 21662250	
30	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 22512391	`
	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 23922488	
35	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 24892652	
40	(ix) FEATURE: (A) NAME/KEY: intron (B) LOCATION: 26532784	
40	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 27852902	
45	(ix) FEATURE: (A) NAME/KEY: polyA_site (B) LOCATION: 3024	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	60
	CGCCCGGTAT CTTGCCACAG ATGCCGCCGG AGTGTCTGGC GGAGTGCTAG GAACAACGTC	120
50	ATCTCCATCT GACGAGCAAG CGTACCACAA GCTAGCTCTT CGTCTGTCAG AAGGACATCC ACGCACCTTC CTGGCCTTCG GGGATGGCAC CTTCTCGTCG ACTTCCCATG GCCGTGCCCC	180
	ACGCACCTTC CTGGCCTTCG GGGATGGCAC CTTCTCGTCG	

	TGGCCTTGTG AAGATACTGT TTGCCAAGCT GAGCGCCTCC CCGCTGCTCC AGGTCCGCAA	240
	GGTCCGAGAG TATTGGACGT CGAAGATATG TTCAAAGTGT CAGGCGAGTT CTCGGGAGAA	300
5	AAAAAAAGCG TGGGCTCTGA AACAGTGTGG AAATGTCTAC AAAGTGAGCT GGATTTATTG	360
	TGTGTGTATG TGTGTGTGT TGTATGTTCT GTGTTGGTTG CTCACTGTAC TCTATGCTCT	420
	CTCTTAGATT TGGGGAACAG TGCTGTGAAC GCGTCGCGAA ACATGCTGCA CCTAGCCCTT	480
10	CACCAGAAGG AGAACCAGAG GGCGGGAATG CTGGTGTCTG ACGCTGCTAC TGCTGCTACG	540
	CTAGCCGCTG AGGCTGAGGC TGGCAGAAAC TAAATCCATG ACCCATCAGA TCTTGGTGAT	600
	TCGTGGTCTG AGGACACCCA AGTCCAAAAG GGCTATATAT CGACCATCAT CCGTTGCGGT	660
15	CACTCAGTAG TAACTAAAGC TATACATAGG AATGTTCTGA ACTTGATAAC CCTAACACTA	720
,,,	CGAAAATATC TCGGAAAATA GATTAATTTC CTTCTCATCT CAAACAAAAG ACACAACACC	780
	ATCAATCACG CTCCTTTCAC ACACTCTCCT TTTTGCTCTC TCGTTCGACA GAAAATAACA	840
	TCAATAGCCA AATGTCCACT ACGCCTGAAG AGAAGAAAGC AGCTCGAGCA AAGTTCGAGG	900
20	CTGTCTTCCC GGTCATTGCC GATGAGATTC TCGATTATAT GAAGGGTGAA GGCATGCCTG	960
	CCGAGGCTTT GGAATGGATG AACAAGGTTC GTCAAGGGTT TCTTCTTTAT TCTTCTGGTC	1020
	TTTGTTTCGG TCGAACTGGC TTTCGAACTT GGCCTTGACC GGTTGGATCT CGGTTGTTGC	1080
25	GCCAAAACGA TGTCGAAGCA AAACTTACTC TTACCTGTTC GGTTTCCTTC CTTCCGACCT	1140
	TCTCTCTACC CTTGCCTCCG ATCGGTCTTA TAGAACTTGT ACTACAACAC TCCCGGAGGA	1200
	AAACTCAACC GAGGACTTTC CGTGGTGGAT ACTTATATCC TTCTCTCGCC TTCTGGAAAA	1260
30	GACATCTCGG AAGAAGAGTA CTTGAAGGCC GCTATCCTCG GTTGGTGTAT CGAGCTTGTA	1320
	CGCGTTTTCT TCATTCACCT TTCTTTCTCG TCTTCTACTC TCTTCTCTCG AACTATCTTC	1380
	CCTGCGTGTC ATCCTACACG AATCTTTATA CTTACATGTT GGAACATATG CCCTGTTCTT	1440
35	AATTCACCTC TTTTGTCTCG GATGGTAGCT CCAAGCTTAC TTCTTGGTGG CTGATGATAT	1500
	GATGGACGCC TCAATCACCC GACGAGGCCA ACCCTGTTGG TACAAAGTTG TTAGTCCCTT	1560
	CTTCTCTTC TGTCCTCTTT CTTCTGAGCT ATGCCAATTC TTGATTGAAA TCGGTGGTGC	1620
40	CGTCCGGACT AATCCGTTTG TCGTTTTTAT CATATCTTCT TGCACAAACA GGAGGGAGTG	1680
	TCTAACATTG CCATCAACGA CGCGTTCATG CTCGAGGGAG CTATCTACTT TTTGCTCAAG	1740
	AAGCACTTCC GAAAGCAGAG CTACTATGTC GATCTGCTAG AGCTCTTCCA CGATGTTTGT	1800
45	CTCTATTTCT TTTCTTCCTC CCCTCAATAA ACTGTATTTG TGACCATTCT GGATCCTTTC	1860
45	CTGACGATGA ATCATTCTTC GGATGAGTAG GTTACTTTCC AAACCGAGTT GGGACAGCTC	1920
	ATCGATCTGT TGACCGCTCC TGAGGATCAC GTCGATCTCG ACAAGTTCTC CCTTAACAAG	1980
50	TATGCCCGTC ATATATTCGT TTTGTTGCAT TCACGTCTGA TTGTCAGCTC CGATTATTGA	2040
	CTCTGATGGT GATGGTATTG ACCACATCAT GCGATGTTTG ACTTTCTCGT AGGCACCACC	2100
	TCATCGTTGT TTACAAGACC GCTTTCTATT CATTCTACCT TCCTGTCGCA CTCGCTATGC	2160

	GAATGGTGGG TCTCTCTCTT CAACTGTTCT TCCTGATTTT CTTGACCATC TGTAACATAA	2220
5	ATCCTTGGAA TTTTGAACTC TATGTCATAG GTCGGCGTGA CAGATGAGGA GGCGTACAAG	2280
	CTTGCGCTCT CGATCCTCAT CCCGATGGGT GAATACTTTC AAGTTCAGGA TGATGTGCTC	2340
	GACGCGTTCG CTCCTCCGGA GATCCTTGGA AAGATCGGAA CCGACATCTT GGTGCGTTTT	2400
	CGTTCCTTCC TTCTACGTTC TGTTTTCTAT CTTCTGACTC CCCGTCCATC ATTTATGCTT	2460
10	CTGTTAAAAC GTATTGAAAC ATCAAAAGGA CAACAAATGT TCATGGCCTA TCAACCTTGC	2520
	ACTOTOTOTO GCCTCGCCCG CTCAGCGAGA GATTCTCGAT ACTTCGTACG GTCAGAAGAA	2580
	CTCGGAGGCA GAGGCCAGAG TCAAGGCTCT GTACGCTGAG CTTGATATCC AGGGAAAGTT	2640
	CAACGCTTAT GAGTATGTCA TCTTTTTTAA ATTTTCTAAT TTTCTTTTCA TCTCTTGTTC	2700
15	CCAAGAATTA TTTTGTGAAA GTTCTGGGAC TGAACATGGT GCATCCCTTT GGGTTCACTC	2760
	CGCATATGTC TCCCGTTTGA ATAGGCAACA GAGTTACGAG TCGCTGAACA AGTTGATTGA	2820
	CAGTATTGAC GAAGAGAAGA GTGGACTCAA GAAAGAAGTC TTCCACAGCT TCCTGGGTAA	2880
20	GGTCTATAAG CGAAGCAAGT AATTCTCCTC TTTATATGCA AAGGGAAGAT TTTGGCGGGA	2940
	GTGATAGGTA GGAAGAGAAG GGAGGGTCAT ATTCATTAGG CATTTCTCTT GCAGATATAG	3000
	ATGATCAAAA AGGGATATCG GTCCTCTTCT TTGTTCCGAA TACATAATAA GTCATACGAA	3060
25	GCCGAACATG ACAAAAGTGG TTCATGAGAT CAAACTTTTT GCATGATCTT CTGCGATTTT	3120
	GTACAATTCT CTCGCATCCT ATTAGGATCG AACCAGGAGA AGATGAGAGA AGGAAACCCT	3180
	CACCCCGTCA GATAACAAAC GAGAAGTCTC ATCACACACA CACACAGATG AAAGAGAAAA	3240
30	ATAAACTGAC GAGGATAACT TCCAATCCGA TTTTTCCAGC CCACGAACCT TCCTTGGTCC	3300
	CCGCTCCGGT GCCTTCGAGT CCGATCAATG GGGCCCAAAC GCCTGAAGAT CCAAAGAACC	3360
	CTIGTTGAGG TGTATTTCTC GTCTGAGCAA TCTTAGATCC TTCAATTTGC AGTCGCGCAT	3420
35	ATATACCATC AACATCATCG TCATCACCAT CATTGTCGTC CACAACAGCA CCGCAACGCC	3480
55	GTTAATGGCA GGGCTTGGAC AACTTGAGGC GGTTTCTAGC AGGTCGGACC GATTGGAGCT	3540
	CGACCCAGGG TGCACATCAC CAAGACACAT TCTCCTTCAA ATGAGCGAAC AAGACATAAT	3600
	GAGGGAAGTA GTACGCTATC GAACGTCTTC TCACATCCCG GGTTCTTGGC GTATCTTTTG	3660
40	GCGATTCTTT TTGTTGAAAT AGAAAATTGA AGAGAAAAAA AGAGATCCAC ATGATGAAGA	3720
	ACGGCTCTGT AGATTCATGC TCGAAAGAAA GAAAGAAAGA AAAAGAGGGG AACGAACG	3780
	TCTGAATCTG TGGCCAACCA AAAAGTAGGC ACAAAGATGA CAACAGCGCC CTCTTCGACA	3840
45	AGTCTTTGAA CTGCTTGTGG ATGAGACAAG TCCCAGCAGA TCAACATTCC TGCTTTACCC	3900
	CATGGAGTAT CAAACACCTG AGAATAGGTC TTGCCCGGCT GTAGATAATC TCTGGACCGT	3960
50	CATATGCGCG AAACGATCAG TACGACCGAC TCTACTCGAA GTCGTCAAGA GCACGGACGA	4020
	GAACGAAAAG AGGACAAACC GCTCTGGATG CCATAAATTT CTCTTCTCAT ACCTCTCCCA	4080
	CCCACCCTCA GG	4092

	(2)	INFOR	1ATI	ON F	OR SI	EQ II	ON C	:6:									
		(i) {	(A) (B)	LENO TYP	CHAI GTH: E: au OLOG	109: nino	aci	ino a d	: acid	s							
		(ii) 1	MOLE	CULE	TYP	E: p	rote	in									
0		(iii)	нүро	THET	ICAL	: NO											
		(vi)	(A)	ORG	SOU ANIS AIN:	M: P	haff C965	ia r 94	hođo	zyma							
15		(xi)														_	
10		1			Ile	5					10						
					Thr 20					25					-		
20		Arg	Tyr	Leu 35	Asp	Leu	Ala	Lys	Gln 40	Ala	Asp	Ser	Ala	Asp 45	Ile	Phe	Met
		Val	Leu 50	Leu	Gly	Tyr	Val	Leu 55	Met	His	Gly	Thr	Phe 60	Val	Arg	Leu	Phe
25		Leu 65	Asn	Phe	Arg	Arg	Met 70	Gly	Ala	Asn	Phe	Trp 75	Leu	Pro	Gly	Met	Val 80
		Leu	Val	Ser	Ser	Ser 85	Phe	Ala	Phe	Leu	Thr 90	Ala	Leu	Leu	Ala	Ala 95	Ser
30		Ile	Leu	Asn	Val 100	Pro	Ile	Asp	Pro	Ile 105	Суѕ	Leu	Ser	Glu	Ala 110	Leu	Pro
		Phe	Leu	Val 115	Leu	Thr	Val	Gly	Phe 120	Asp	Lys	Asp	Phe	Thr 125	Leu	Ala	Lys
35		Ser	Val 130		Ser	Ser	Pro	Glu 135	Ile	Ala	Pro	Val	Met 140	Leu	Arg	Arg	Lys
		Pro 145		Ile	Gln	Pro	Gly 150	Asp	Asp	Asp	Asp	Leu 155	Glu	Gln	Asp	Glu	His 160
40		Ser	Arg	Val	Ala	Ala 165	Asn	Lys	Val	. Asp	Ile 170	Gln	Trp	Ala	Pro	Pro 175	Val
		Ala	Ala	Ser	180	Ile	Va]	l Ile	Gly	/ Ser 185	Val	Glu	Lys	Ile	Gly 190	Ser	Ser
45		Ile	e Val	Arg	g Asp	Phe	Ala	a Leu	Glu 200	ı Val	Ala	Val	Leu	Let 205	Leu 5	Gly	Alá
		Ala	a Ser 210		y Lev	ı Gly	, Gl	y Let 21!	ı Ly:	s Glu	ı Phe	суя	220	: Let	ı Ala	Ala	Le
50		110		ı Va	l Ala	a Asp	Cy:	s Су: 0	s Pho	e Thi	r Phe	235	Phe	ту	r Vai	l Ala	24
		Le	u Th	r Va	l Me	t Va:	1 G1 [.] 5	u Va	l Hi	s Ar	g Ile 250	Lys	3 Ile	e Il	e Ar	g Gly 25	y Ph 5

	Arg	Pro	Ala	His 260	Asn	Asn	Arg	Thr	Pro 265	Asn	Thr	Val	Pro	Ser 270	Thr	Pro
5	Thr		Asp 275	Gly	Gln	Ser	Thr	Asn 280	Arg	Ser	Gly	Ile	Ser 285	Ser	Gly	Pro
	Pro	Ala 290	Arg	Pro	Thr	Val	Pro 295	Val	Trp	Lys	Lys	Val 300	Trp	Arg	Lys	Leu
10	Met 305	Gly	Pro	Glu	Ile	Asp 310	Trp	Ala	Ser	Glu	Ala 315	Glu	Ala	Arg	Asn	Pro 320
	Val				325					330					335	
15				340					345		Thr			350		
			355					360			Asp		365			
20		370					375				His	380				
	385					390					Val 395					400
25		-			405					410	Ser				415	
_				420					425		Ala			430		
			435					440			Ala		445			
30		450					455				Glu	460				
	465					470					Asn 475					480
35					485					490	Tyr				495	
				500					505		Ile			510		
40			515					520			Ala		525			
	_	530					535					540				Pro
45	545					550					555					Ile 560
					565					570					575	Gly
50				580					585					590		Ser
	Ile	Glu	Glu 595		Glu	Glu	Ile	Met 600		Ser	Gly	Leu	Gly 605	Pro	Tyr	Ser

	Leu	Asn 610	Asp	Glu	Glu	Leu	Ile 615	Leu	Leu	Thr	Gln :	Lys 620	Gly	Lys	Ile	Pro	
5	Pro 625	Tyr	Ser	Leu	Glu	Lys 630	Ala	Leu	Gln	Asn	Cys 635	Glu	Arg	Ala	Val	Lys 640	
	Ile	Arg	Arg	Ala	Val 645	Ile	Ser	Arg	Ala	Ser 650	Val	Thr	Lys	Thr	Leu 655	Glu	
10	Thr	Ser	Asp	Leu 660	Pro	Met	Lys	Asp	Туг 665	Asp	Tyr	Ser	Lys	Val 670	Met	Gly	
	Ala	Суз	Cys 675	Glu	Asn	Val	Val	Gly 680	Tyr	Met	Pro	Leu	Pro 685	Val	Gly	Ile	
45	Ala	Gly 690		Leu	Asn	Ile	Asp 695	Gly	Glu	Val	Val	Pro 700	Ile	Pro	Met	Ala	
15	Thr 705		Glu	Gly	Thr	Leu 710	Val	Ala	Ser	Thr	Ser 715	Arg	Gly	Cys	Lys	Ala 720	
	Leu	Asn	Ala	Gly	Gly 725	Gly	Val	Thr	Thr	Val 730	Ile	Thr	Gln	Asp	Ala 735	Met	
20	Thr	Arg	Gly	Pro 740		Val	Asp	Ph€	745	Ser	Val	Ser	Gln	Ala 750	Ala	Gln	
	Ala	Lys	Arg 755	Trp	Leu	Asp	Ser	Va]	. Glu	Gly	Met	Glu	Val 765	Met	Ala	Ala	
25	Ser	Phe 770	Asn	Ser	Thr	Ser	Arg 775	Phe	e Ala	Arg	Leu	Gln 780	Ser	Ile	Lys	Cys	
	Gly 785		. Ala	Gly	Arg	Ser 790	Leu	Ty	r Ile	e Arg	Leu 795	Ala	Thr	Ser	Thr	61y 800	, }
30	Asr) Ala	Met	Gly	Met 805	Asn	Met	Ala	a Gly	/ Lys 810	Gly	Thr	Glu	Lys	815	Leu	1
	Glu	ı Thi	r Lev	ser 820	Glu	туг	Phe	Pr	82	r Met 5	Gln	Ile	Lev	Ala 830	Let	ı Ser	:
35			83.	5				84	U		r Ala		04.	•			
	Gl	y Ar		y Ly:	s Sei	r Val	Va. 85	1 A1	a Gl	u Se:	r Val	860	Pro	o Gly	y Ala	a Ile	9
40	Va 86		s Se	r Va	l Le	u Lys 870	s Th	r Th	r Va	l Al	a Ası 875	Le	ı Va	l As	n Le	u Ası 88	n 0
					88	5				09					•-	_	
	Ph	e As	n Al	a Hi 90	s Al O	a Se	r As	p Il	e Le 90	u Th	r Se	r Il	e Ph	e Le 91	u Al O	a Th	r
45	Gl	y Gl	n As 91		o Al	a Gl	n As	n Va 92	1 GI 20	lu Se	r Se	r Me	t Cy 92	s Me 5	t Th	r Le	u
	Me	t GI		a Va	l As	n As	p G1 93	у L <u>у</u> 5	/s As	sp Le	u Le	u Il 94	e Th	r Cy	s S∈	r Me	t
50	P1 94		la II	e Gl	.u Cy	's Gl 95	y Tì O	ır V	al G	ly Gl	y G1 95	y Th	ar Ph	e Le	eu Pi	0 Pr 96	0 50

	Gln	Asn A	Ala (Cys I	Leu (965	Gln	Met	Leu	Gly	Val 970	Ala	Gly	Ala	His	Pro 975	Asj	þ
5	Ser	Pro (Gly i	His 2	Asn .	Ala	Arg	Arg	Leu 985	Ala	Arg	Ile	Ile	Ala 990	Ala	Se	r
	Val	Met i	Ala (995	Gly (Glu	Leu	Ser	Leu 100	Met O	Ser	Ala	Leu	Ala 100	Ala 5	Gly	Hi	s
10	Leu	Ile : 1010		Ala :	His	Met	Lys 1015	His 5	Asn	Arg	Ser	Thr 102	Pro 0	Ser	Thr	Pr	0
	Leu 102	Pro '	Val	Ser	Pro	Leu 1030	Ala)	Thr	Arg	Pro	Asn 103	Thr 5	Pro	Ser	His	Ar 10	g 40
15	Ser	Ile	Gly	Leu	Leu 1045	Thr	Pro	Met	Thr	Ser 105	Ser 0	Ala	Ser	Val	Ala 105	Se 5	r
75	Met	Phe	Ser	Gly 1060	Phe	Gly	Ser	Pro	Ser 106	Thr 5	Ser	Ser	Leu	Lys 107	Thr 0	Va	1
	Gly	Ser	Met 1075	Ala	Суз	Val	Arg	Glu 108	Arg	Gly	Asp	Glu	Thr 108	Ser 5	Val	As	m
20	Val	Asp 1090															
	2) INFO																
25	(i)	(B)	UENCI) LER) TYI) TOI	NGTH PE:	: 46 min	7 am o ac	ino id	S: acid	is								
30		MOL					ein										
	(iii) (vi)	HYP															
	(***	(A) OR	GANI	SM:	Phai	fia 5594	rho	dozy	ma							
35) SEQ											••-		1	. T	
	Mei 1	t Tyr	Thr	Ser	Thi 5	Th:	r Gl	u Gl	n Ar	g Pr 10	o Ly	s As	p va	I GI	15	- -	,eu
40	Gl	y Met	Glu	11e 20	ту	r Ph	e Pr	o Ar	g Ar 25	g Al	a Il	e Al	a Hi	s Ly 30	s As	pΙ	eu
/	G1:	u Ala	a Phe	e Asp	Gl:	y Va	l Pr	o Se	er Gl	ly Ly	/ѕ Ту	r Th	r Il 45	.e G1	y Le	u (Sly
4 5	As	n Ası 50	n Phe	e Met	: Al	a Ph	e Th	r As	sp As	sp Ti	ır Gl	.u As	p Il	le As	sn S€	er 1	Phe
-	A1 65	a Le	u Ası	n Ala	a Va	1 Se 70	r Gl	ly Le	eu Le	eu So	er Ly 75	ys Ty S	/r A	sn Va	al As	p	Pro 80
	Ly	s Se	r Il	e G1;	y Ar 85	g Il	e As	sp Va	al G	ly T 9	hr Gi 0	lu S	er I	le I	le As 9:	sp 5	Lys
50	Se	er Ly	s Se	r Va 10	1 L y 0	rs Tì	ır Və	al L	eu M 1	et A 05	sp L	eu P	he G	lu S 1	er H	is	Gly

	Asn	Thr	Asp 115	Ile	Glu	Gly	Ile	Asp 120	Ser	Lys	Asn	Ala	Cys 125	Tyr	Gly	Ser
5	Thr	Ala 130	Ala	Leu	Phe	Asn	Ala 135	Val	Asn	Trp	Ile	Glu 140	Ser	Ser	Ser	Trp
	Asp 145	Gly	Arg	Asn	Ala	Ile 150	Val	Phe	Cys	Gly	Asp 155	Ile	Ala	Ile	Tyr	Ala 160
10	Glu	Gly	Ala	Ala	Arg 165	Pro	Ala	Gly	Gly	Ala 170	Gly	Ala	Суѕ	Ala	Ile 175	Leu
	Ile	Gly	Pro	Asp 180	Ala	Pro	Val	Val	Phe 185	Glu	Pro	Val	His	Gly 190	Asn	Phe
15	Met	Thr	Asn 195	Ala	Trp	Asp	Phe	Tyr 200	Lys	Pro	Asn	Leu	Ser 205	Ser	Glu	Tyr
	Pro	Ile 210	Val	Asp	Gly	Pro	Leu 215	Ser	Val	Thr	Ser	Tyr 220	Val	Asn	Ala	Ile
20	Asp 225	Lys	Ala	Tyr	Glu	Ala 230	Tyr	Arg	Thr	Lys	Tyr 235	Ala	Lys	Arg	Phe	Gly 240
	Gly	Pro	Lys	Thr	Asn 245	Gly	Va1	Thr	Asn	Gly 250	His	Thr	Glu	Val	Ala 255	Gly
25	Val	Ser	Ala	Ala 260	Ser	Phe	Asp	Tyr	Leu 265	Leu	Phe	His	Ser	Pro 270	Tyr	Gly
	Lys	Gln	Val 275	Val	Lys	Gly	His	Gly 280	Arg	Leu	Leu	Tyr	Asn 285	Asp	Phe	Arg
	Asn	Asn 290	Pro	Asn	Asp	Pro	Val 295	Phe	Ala	Glu	Val	Pro 300	Ala	Glu	Leu	Ala
30	Thr 305	Leu	Asp	Met	Lys	Lys 310	Ser	Leu	Ser	Asp	Lys 315	Asn	Val	Glu	Lys	Ser 320
	Leu	Ile	Ala	Ala	Ser 325	Lys	Ser	Ser	Phe	Asn 330	Lys	Gln	Val	G1u	Pro 335	Gly
35	Met	Thr	Thr	Val 340	Arg	Gln	Leu	Gly	Asn 345	Leu	Tyr	Thr	Ala	Ser 350	Leu	Phe
	Gly	Ala	Leu 355	Ala	Ser	Leu	Phe	Ser 360	Asn	Val	Pro	Gly	Asp 365	Glu	Leu	Val
40	Gly	Lys 370	Arg	Ile	Ala	Leu	Tyr 375	Ala	Tyr	Gly	Ser	Gly 380	Ala	Ala	Ala	Ser
	Phe 385	Tyr	Ala	Leu	Lys	Val 390	Lys	Ser	Ser	Thr	Ala 395	Phe	Ile	Ser	Glu	Lys 400
45	Leu	Asp	Leu	Asn	Asn 405	Arg	Leu	Ser	Asn	Met 410	Lys	Ile	Val	Pro	Cys 415	Asp
	qzA	Phe	Val	Lys 420	Ala	Leu	Lys	Val	Arg 425	Glu	Glu	Thr	His	Asn 430	Ala	Val
50	Ser	Tyr	Ser 435	Pro	Ile	Gly	Ser	Leu 440	Asp	Ąsp	Leu	Trp	Pro 445	Gly	Ser	Tyr
	Tyr	Leu 450	Gly	Glu	Ile	Asp	Ser 455	Met	Trp	Arg	Arg	Gln 460	Tyr	Lys	Gln	Val

Pro Ser Ala 465

5	(2)	INFORM	ATIC	n fo	R SE	Q II	NO:	8:											
		(i) S	(A)	NCE LENG TYPE TOPO	TH:	432	aci	no a 1	: cids										
10		(ii) 1	MOLE	CULE	TYPE	: p	rote	in											
		(iii) 1	HYPO	THET:	CAL:	NO.													
15		(vi)	(A) (B)	ORG	ANISI AIN:	M: P OTA	C965	94											
		(xi)	SEQU	ENCE	DES	CRIP	TION	: SI	Q I	D NO):8:	•				•	Pho	G1s	,
		Lys 1	Glu	Glu	Ile	Leu 5	Val	Ser	Ala	Pro	o G	ly L O	ys \	al.	шe	reu	15	U -,	•
20				Ala	20														
				Cys 35															
25			50	Leu				,,,											
		65		Gln			, ,												
30				Thr		82													
				Ile	TOO					_									
35				val 115)														
35			130	y Lys					-										
		14	5	t Gly			1.												
40				u Va		70													
				g Gl	18	U													
4 5				a Ph	5				_										
			2:	sn Al 10															
50		1 2	le G 25	lu G	ly Ly	ys G	ln G 2	1u 6 30	1у (Gly	Met	Gl:	u Al 23	a Il 5	e L	ys S	er F	ne	240

	Ser I				243											
5	Ser I			260												
	Ile '		275					200								
10		290					233									
	Leu 305					210										
45	Val				343					_						
15				340)											Cys
			355)				300	•							Ala
20		370)				٠,,	,								a Arg
	385					יככ										400
25					40	9										u Ile 5
	Asp	Gl	u Le	u As 42	p Ar O	g Tr	p Al	a Le	u Ly 42	s Th 5	r Gl	y Ar	g Tr	p Se 43	o Pr	e Ala
30 (2)) INFO	ORMA	TION	FOR	SEC	D	NO:9):								
	(i)	(A) I	ENG!	H: 4	CTEF 101 a ino a : lir	mino cid	CS:	ds							
35						; pro	otei	n								
40	(iii (vi	.) OI	RIGI	NAL ORGA	SOUR NISM		aff i 9659	a rh 4	odoz	yma						
	(xi	i) S	EQUE	NCE	DESC	RIPT	ION:	SEC	ID Ser A	NO:9	: ro V	al A	sn I	le l	Ala 9	ys Ile 15
45	1				-	,										Asn Ser
				- 4	20											Thr Ser
50				35												Asn Gly
	S		50	cys.	· 4		'	55					60			

	Ile 65	Glu	Glu	Glu	Val	Lys 70	Ala	Gly	Gly	Arg	Leu 75	Asp	Val	Cys	Ile	Lys 80
5	Glu	Met	Lys	Lys	Leu 85	Arg	Ala	Gln	Glu	Glu 90	Glu	Lys	Asp	Ala	Gly 95	Leu
	Glu	Lys	Leu	Ser 100	Ser	Phe	Asn	Val	His 105	Leu	Ala	Ser	Tyr	Asn 110	Asn	Phe
10	Pro	Thr	Ala 115	Ala	Gly	Leu	Ala	Ser 120	Ser	Ala	Ser	Gly	Leu 125	Ala	Ala	Leu
	Val	Ala 130	Ser	Leu	Ala	Ser	Leu 135	Tyr	Asn	Leu	Pro	Thr 140	Asn	Ala	Ser	Glu
15	Leu 145	Ser	Leu	Ile	Ala	Arg 150	Gln	Gly	Ser	Gly	Ser 155	Ala	Суѕ	Arg	Ser	Leu 160
	Phe	Gly	Gly	Phe	Val 165	Ala	Trp	Glu	Gln	Gly 170	Lys	Leu	Ser	Ser	Gly 175	Thr
20	_			180					185	Arg				190		
			195					200		Glu			205			
25		210					215			Thr		220				
25	225					230				Met	235					240
					245					Ala 250					255	
30				260					265					270		
			275					280		Ile			285			
35		290					295			Pro		300				
	305					310				Tyr	315					320
40					325					330					335	
				340)				345	•				350	ı	Arg
45			355	•				360	1				365)		Val
		370	1				375	5				380)			Gly
50	Glu 385		Glu	Ser	. Leu	1 Ile 390		g Glu	ASI	Gly	7 Leu 395	Pro	Lys	val	. Val	400
	Ala	ì														

	(2) INFORMATION FOR SEQ ID NO:10:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 355 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: protein
	(iii) HYPOTHETICAL: NO
10	(vi) ORIGINAL SOURCE:(A) ORGANISM: Phaffia rhodozyma(B) STRAIN: ATCC96594
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
15	Met Ser Thr Thr Pro Glu Glu Lys Lys Ala Ala Arg Ala Lys Phe Glu 15 1 Cluster C
	Ala Val Phe Pro Val Ile Ala Asp Glu Ile Leu Asp Tyr Met Lys Gly 20 25
20	Glu Gly Met Pro Ala Glu Ala Leu Glu Trp Met Asn Lys Asn Leu Tyr 35 40 45
	Tyr Asn Thr Pro Gly Gly Lys Leu Asn Arg Gly Leu Ser Val Val Asp 50 55
25	Thr Tyr Ile Leu Leu Ser Pro Ser Gly Lys Asp Ile Ser Glu Glu 80
	Tyr Leu Lys Ala Ala Ile Leu Gly Trp Cys Ile Glu Leu Leu Gln Ala 95
30	Tyr Phe Leu Val Ala Asp Asp Met Met Asp Ala Ser Ile Thr Arg Arg 110 100 105 110
	Gly Gln Pro Cys Trp Tyr Lys Val Glu Gly Val Ser Asn Ile Ala Ile 125 115
, 35	Asn Asn Ala Phe Met Leu Glu Gly Ala Ile Tyr Phe Leu Leu Lys Lys 130 135 140
	His Phe Arg Lys Gln Ser Tyr Tyr Val Asp Leu Leu Glu Leu Phe His 160 145
	Asp Val Thr Phe Gln Thr Glu Leu Gly Gln Leu Ile Asp Leu Leu Thr 175
40	Ala Pro Glu Asp His Val Asp Leu Asp Lys Phe Ser Leu Asn Lys His 180 185 190
	His Leu Ile Val Val Tyr Lys Thr Ala Phe Tyr Ser Phe Tyr Leu Pro 195 200 205
45	Val Ala Leu Ala Met Arg Met Val Gly Val Thr Asp Glu Glu Ala Tyr 210 215
	Lys Leu Ala Leu Ser Ile Leu Ile Pro Met Gly Glu Tyr Phe Gln Val
50	Gln Asp Asp Val Leu Asp Ala Phe Arg Pro Pro Glu Ile Leu Gly Lys 245 250 255

	Ile	Gly	Thr	Asp 260	Ile	Leu	Asp	Asn	Lys 265	Cys	Ser	Trp	Pro	Ile 270	Asn	Leu	
5	Ala	Leu	Ser 275	Pro	Ala	Ser	Pro	Ala 280	Gln	Arg	Glu	Ile	Leu 285	Asp	Thr	Ser	
	Tyr	Gly 290	Gln	Lys	Asn	Ser	Glu 295	Ala	Glu	Ala	Arg	Val 300	Lys	Ala	Leu	Tyr	
10	Ala 305	Glu	Leu	Asp	Ile	Gln 310	Gly	Lys	Phe	Asn	Ala 315	Tyr	Glu	Gln	Gln	Ser 320	
	Tyr	Glu	Ser	Leu	Asn 325	Lys	Leu	Ile	qaA	Ser 330	Ile	Asp	Glu	Glu	Lys 335	Ser	
15	Gly	Leu	Lys	Lys 340	Glu	Val	Phe	His	Ser 345	Phe	Leu	Gly	Lys	Val 350	Tyr	Lys	
	Arg	Ser	Lys 355														
20	(2) INFO	SEQ	JENC:	E CH	ARAC'	TERI:	STIC	S:									
		(B)	TY ST	ngth Pe: 1 Rand Polo	aucl EDNE	eic a SS:	acid sing										
25	(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic)								
	(iii)	нүр	OTHE	TICA	L: N	0											
	(iv)	ANT	I-SE	NSE:	NO												
30	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	:11:							
	GGNAARTA	YA C	NATH	GGNY	T NG	GNCA											26
	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0:12	:									
35	(i)	(B (C) LE) TY) ST	E CH NGTH PE: RAND	: 26 nucl EDNE	bas eic SS:	e pa acid sing	irs									
40	(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic	:)								
	(iii)	нүр	OTHE	TICA	L: N	Ю											
	(iv)	ANT	I-SE	NSE:	NO												
45	(xi)	SEC	UENC	E DE	SCR1	PTIC	N: 5	EQ I	D NC):12:	:						
	TANARNS	VINS W	NGTF	RTACA	T RT	TNCC	:										26
	(2) INFO	ORMAT	CION	FOR	SEQ	ID N	10:13	3:								•	
50	(i)	(E) LI 3) T	CE CH ENGTH (PE: FRANI	I: 24	l bas leic	e pa acid	airs 1									

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	24
10	GAAGAACCCC ATCAAAAGCC TCGA	24
10	(2) INFORMATION FOR SEQ ID NO:14:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
20	(iv) ANTI-SENSE: NO	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:14:	25
	AAAAGCCTCG AGATCCTTGT GAGCG	
25	(2) INFORMATION FOR SEQ ID NO:15:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
35	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	18
	AGAAGCCAGA AGAGAAAA	
40	(2) INFORMATION FOR SEQ ID NO:16:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	

	TCGTCGAGGA AAGTAGAT	18
5	(2) INFORMATION FOR SEQ ID NO:17:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	30
	GGTACCATAT GTATCCTTCT ACTACCGAAC	30
20	(2) INFORMATION FOR SEQ ID NO:18:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	30
	GCATGCGGAT CCTCAAGCAG AAGGGACCTG	30
	(2) INFORMATION FOR SEQ ID NO:19:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	32
	GCNTGYTGYG ARAAYGTNAT HGGNTAYATG CC	32
50	(2) INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid	

	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
10	ATCCARTTDA TNGCNGCNGG YTTYTTRTCN GT	32
	(2) INFORMATION FOR SEQ ID NO:21:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	25
25	GGCCATTCCA CACTTGATGC TCTGC	25
	(2) INFORMATION FOR SEQ ID NO:22:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
40	GGCCGATATC TTTATGGTCC T	21
	(2) INFORMATION FOR SEQ ID NO:23:	
4 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (genomic)	•
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
5	GGTACCGAAG AAATTATGAA GAGTGG	26
3	(2) INFORMATION FOR SEQ ID NO:24:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	. 26
	CTGCAGTCAG GCATCCACGT TCACAC	20
20	(2) INFORMATION FOR SEQ ID NO:25:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	29
	GCNCCNGGNA ARGTNATHYT NTTYGGNGA	23
35	(2) INFORMATION FOR SEQ ID NO:26:	
4 0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
45	(iv) ANTI-SENSE: NO	
,,,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	2:
	CCCCANGINS WNACNGCRIT RICNACNCC	2:
50	(2) INFORMATION FOR SEQ ID NO:27:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs	

	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	ACATGCTGTA GTCCATG	17
	(2) INFORMATION FOR SEQ ID NO:28:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	ACTCGGATTC CATGGA	16
	(2) INFORMATION FOR SEQ ID NO:29:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: Phaffia rhodozyma (B) STRAIN: ATCC96594</pre>	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	TTGTTGTCGT AGCAGTGGGT GAGAG	25
45	(2) INFORMATION FOR SEQ ID NO:30:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
5	GGAAGAGGAA GAGAAAAG	18
	(2) INFORMATION FOR SEQ ID NO:31:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
20	TTGCCGAACT CAATGTAG	18
	(2) INFORMATION FOR SEQ ID NO:32:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	
	(vi) ORIGINAL SOURCE:(A) ORGANISM: Phaffia rhodozyma(B) STRAIN: ATCC96594	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	GGATCCATGA GAGCCCAAAA AGAAGA	26
40	(2) INFORMATION FOR SEQ ID NO:33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(vi) ORIGINAL SOURCE:	
50	(A) ORGANISM: Phaffia rhodozyma (B) STRAIN: ATCC96594	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	

	GTCGACTCAA GCAAAAGACC AACGAC	26
5	(2) INFORMATION FOR SEQ ID NO:34: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	23
	HTNAARTAYT TGGGNAARMG NGA (2) INFORMATION FOR SEQ ID NO:35:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(iii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: GCRTTNGGNC CNGCRTCRAA NGTRTANGC	29
35	(2) INFORMATION FOR SEQ ID NO:36: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOFOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO	
4 5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36: CCGAACTCTC GCTCATCGCC	20
50	(2) INFORMATION FOR SEQ ID NO:37: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
5	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
10	CAGATCAGCG CGTGGAGTGA	20
	(2) INFORMATION FOR SEQ ID NO:38:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
25	CARGCNTAYT TYYTNGTNGC NGAYGA	26
	(2) INFORMATION FOR SEQ ID NO:39:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
40	CAYTTRTTRT CYTGDATRTC NGTNCCDATY TT	32
	(2) INFORMATION FOR SEQ ID NO:40:	
4 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	

	ATCCTCATCC CGATGGGTGA ATACT	25
5	(2) INFORMATION FOR SEQ ID NO:41:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
	AGGAGCGGTC AACAGATCGA TGAGC	25
20	(2) INFORMATION FOR SEQ ID NO:42:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
35	GAATTCATAT GTCCACTACG CCTGA	25
	(2) INFORMATION FOR SEQ ID NO:43:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: DNA (genomic)	
70	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
	GTCGACGGTA CCTATCACTC CCGCC	25

Claims

5

10

15

25

30

35

40

- An isolated DNA sequence, which codes for an enzyme involved in the mevalonate pathway or the pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate.
- An isolated DNA sequence according to claim 1, wherein said enzyme has an activity selected from the group consisting of 3-hydroxy-3-methylglutaryl-CoA synthase activity, 3-hydroxy-3-methylglutaryyl-CoA reductase activity, mevalonate kinase activity, mevalonate pyrophosphate decarboxylase activity and farnesyl pyrophosphate synthase activity.
- 3. An isolated DNA sequence according to claim 1 or 2, which is characterized in that
 - (a) the said DNA sequence codes for the said enzyme having an amino acid sequence selected from the group consisting of those described in SEQ ID NOs: 6, 7, 8, 9 and 10, or
 - (b) the said DNA sequence codes for a variant of the said enzyme selected from (i) an allelic variant, and (ii) an enzyme having one or more amino acid addition, insertion, deletion and/or substitution and having the stated enzyme activity.
- 4. An isolated DNA sequence according to any one of claims 1-3, which can be derived from a gene of *Phaffia* rhodozyma and is selected from:
 - (i) a DNA sequence represented in SEQ ID NOs: 1, 2, 4 or 5;
 - (ii) an isocoding or an allelic variant for the DNA sequence represented in SEQ ID NOs: 1, 2, 4 or 5; and
 - (iii) a derivative of a DNA sequence represented in SEQ ID NOs: 1, 2, 4 or 5 with addition, insertion, deletion and/or substitution of one or more nucleotide(s), and coding for a polypeptide having the said enzyme activity.
 - 5. An isolated DNA sequence, which is selected from:
 - (i) a DNA sequence represented in SEQ ID NO: 3;
 - (ii) an isocoding or an allelic variant for the DNA sequence represented in SEQ ID NO: 3; and
 - (iii) a derivative of a DNA sequence represented in SEQ ID NO: 3 with addition, insertion, deletion and/or substitution of one or more nucleotide(s), and coding for a polypeptide having the mevalonate kinase activity.
 - 6. An isolated DNA sequence as claimed in claim 1 or 2 and which is selected from:
 - (i) a DNA sequence which hybridizes under standard conditions with a sequence as shown in SEQ ID Nos: 1 10 or its complementary strand or fragments thereof; and
 - (ii) a DNA sequence which do not hybridize as defined in (i) because of the degeneration of the genetic code but which codes for polypeptives having exactly the same amino acid sequence as shown in SEQ ID Nos: 1 10 or those encoded by a DNA sequence as defined above under (i).
 - 7. A vector or plasmid comprising a DNA sequence as defined in any of claims 1-6.
- 8. A host cell which has been transformed or transfected by a DNA sequence as claimed in anyone of claims 1 to 6, or a vector or plasmid as claimed in claim 7.
 - 9. A process for producing an enzyme involed in the mevalonate pathway or the pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate, which comprises culturing a host cell as claimed in claim 8, under the conditions conductive to the production of said enzyme.
 - 10. A process for the production of isoprenoids or carotenoids, preferably astaxanthin, which comprises cultivating a host cell as claimed in claim 8 under suitable culture conditions.

Fig. 1 Biosynthetic pathway from acetyl-CoA to astaxanthin in P. rhodozyma

Lane: 1 2 3 4 5

Fig. 2 Expression study of pseudo-mvk gene by insertion of one base