Chapter 7 Random-Number Generation

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- Discuss the generation of random numbers.
 - Used to generate event times and other random variables
- Introduce the subsequent testing for randomness:
 - □ Frequency test
 - □ Autocorrelation test.

Properties of Random Numbers

- A sequence of random numbers R_1 , R_2 , ..., must have two important statistical properties:
 - Uniformity
 - □ Independence.
- Random Number, R_i , must be independently drawn from a uniform distribution with pdf: $f(x) = R(x) \cdot R($

 $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$

$$E(R) = \int_0^1 x dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2}$$

$$V(R) = \int_0^1 x^2 dx - \left[E(R) \right]^2 = \frac{x^3}{3} \Big|_0^1 - \left(\frac{1}{2} \right)^2 = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

Uniformity and Independence

- Uniformity: If the interval [0,1] is divided into n classes, or subintervals of equal length, the expected number of observations in each interval is N/n, where N is the total number of observations
- Independence: The probability of observing a value in a particular interval is independent of the previous value drawn

Generation of Pseudo-Random Numbers

- "Pseudo", because generating numbers using a known method removes the potential for true randomness.
 - ☐ If the method is known, the set of random numbers can be replicated!!
- Goal: To produce a sequence of numbers in [0,1] that simulates, or imitates, the ideal properties of random numbers (RN) uniform distribution and independence.

Generation of PRNs (contd..)

- Problems that occur in generation of pseudorandom numbers (PRN)
 - □ Generated numbers might not be uniformly distributed
 - Generated numbers might be discrete-valued instead of continuous-valued
 - Mean of the generated numbers might be too low or too high
 - Variance of the generated numbers might be too low or too high
 - □ There might be dependence (i.e., correlation)

Generation of PRNs (contd..)

- Departure from uniformity and independence for a particular generation scheme can be tested.
- If such departures are detected, the generation scheme should be dropped in favor of an acceptable one.

Generation of PRNs (contd ..)

- Important considerations in RN routines:
 - □ The routine should be fast. Individual computations are inexpensive, but a simulation may require many millions of random numbers
 - □ Portable to different computers ideally to different programming languages. This ensures the program produces same results
 - □ Have sufficiently long cycle. The cycle length, or period represents the length of random number sequence before previous numbers begin to repeat in an earlier order.
 - □ Replicable. Given the starting point, it should be possible to generate the same set of random numbers, completely independent of the system that is being simulated
 - □ Closely approximate the ideal statistical properties of uniformity and independence.

Random Number Generators

- Inventing techniques that seem to generate random numbers is easy
- Inventing techniques that really produce sequences that appear to be independent, uniformly distributed random numbers is very difficult
- Vast literature and rich theory is available on this topic
- Many hours of testing been devoted to establish properties of various generators

Techniques for Generating Random Numbers

- Linear Congruential Method (LCM).
 - □ Most widely used technique for generating random numbers
- Combined Linear Congruential Generators (CLCG).
 - □ Extension to yield longer period (or cycle)
- Random-Number Streams.

Linear Congruential Method

[Techniques]

To produce a sequence of integers, X₁, X₂, ... between 0 and m-1 by following a recursive relationship:

- \blacksquare X_0 is called the seed (initial value)
- The selection of the values for a, c, m, and X_0 drastically affects the statistical properties and the cycle length.
- If $c \neq 0$ then it is called *mixed congruential* method
- When c=0 it is called multiplicative congruential method

Linear Congruential Method

■ The random integers are being generated in the range [0,m-1], and to convert the integers to random numbers:

$$R_i = \frac{X_i}{m}, \quad i = 1, 2, \dots$$

[LCM]

- Use $X_0 = 27$, a = 17, c = 43, and m = 100.
- The X_i and R_i values are:

```
X_1 = (17*27+43) \mod 100 = 502 \mod 100 = 2, R_1 = 0.02; X_2 = (17*2+43) \mod 100 = 77 \mod 100 = 77, R_2 = 0.77; X_3 = (17*77+43) \mod 100 = 1352 \mod 100 = 52 R_3 = 0.52; ...
```

- Notice that the numbers generated assume values only from the set *I* = {0,1/m,2/m,...., (m-1)/m} because each *X_i* is an integer in the set {0,1,2,...,m-1}
- Thus each Ri is discrete on I, instead of continuous on interval [0,1]

Characteristics of a Good Generator

[LCM]

Maximum Density

- □ Such that the values assumed by R_i , i = 1, 2, ..., leave no large gaps on [0, 1]
- \square Problem: Instead of continuous, each R_i is discrete
- □ Solution: a very large integer for modulus *m* (e.g., 2³¹-1, 2⁴⁸)

Maximum Period

- □ To achieve maximum density and avoid cycling.
- \square Achieved by: proper choice of a, c, m, and X_0 .
- Most digital computers use a binary representation of numbers
 - □ Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2.

Maximum Period or Cycle Length

- For m a power of 2, say $m=2^b$, and $c\neq 0$, the longest possible period is $P=m=2^b$, which is achieved when c is relatively prime to m (greatest common divisor of c and m is 1) and a=1+4k, where k is an integer
- For m a power of 2, say $m=2^b$, and c=0, the longest possible period is $P=m/4=2^{b-2}$, which is achieved if the seed X_0 is odd and if the multiplier a is given by a=3+8k or a=5+8k for some k=0,1,...
- For *m* a prime number and *c*=0, the longest possible period is *P*=*m*-1, which is achieved whenever the multiplier *a* has the property that the smallest integer *k* such that *a*^{*k*}-1 is divisible by *m* is *k*=*m*-1

■ Using the multiplicative congruential method, find the period of the generator for a=13, $m=2^6=64$ and $X_0=1,2,3$ and 4

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Xi	1	13	41	21	17	29	57	37	33	45	9	53	49	61	25	5	1
Xi	2	26	18	42	34	58	50	10	2								
Xi	3	39	59	63	51	23	43	47	35	7	27	31	19	55	11	15	3
Xi	4	52	36	20	4												

- m=64, c=0; Maximal period P=m/4=16 is achieved by using odd seeds $X_0=1$ and $X_0=3$ (a=13 is of the form 5+8k with k=1)
- With $X_0=1$, the generated sequence {1,5,9,13,...,53,57,61} has large gaps
- Not a viable generator !! Density insufficient, period too short

- Speed and efficiency in using the generator on a digital computer is also a factor
- Speed and efficiency are aided by using a modulus m either a power of 2 (=2b)or close to it
- After the ordinary arithmetic yields a value of aX_i+c, X_{i+1} can be obtained by dropping the leftmost binary digits and then using only the b rightmost digits

- c=0; a=7⁵=16807; m=2³¹-1=2,147,483,647 (prime #)
- Period *P*=*m*-1 (well over 2 billion)
- Assume X₀=123,457
- $X_1=7^5(123457) \mod (2^{31}-1)=2,074,941,799$
- $R_1 = X_1/2^{31} = 0.9662$
- $X_2=7^5(2,074,941,799) \mod(2^{31}-1)=559,872,160$
- $R_2=X_2/2^{31}=0.2607$
- $X_3 = 7^5(559,872,160) \mod(2^{31}-1) = 1,645,535,613$
- $R_3 = X_3/2^{31} = 0.7662$
-
- Note that the routine divides by *m*+1 instead of *m*. Effect is negligible for such large values of *m*.

[Techniques]

- With increased computing power, the complexity of simulated systems is increasing, requiring longer period generator.
 - Examples: 1) highly reliable system simulation requiring hundreds of thousands of elementary events to observe a single failure event;
 - 2) A computer network with large number of nodes, producing many packets
- Approach: Combine two or more multiplicative congruential generators in such a way to produce a generator with good statistical properties

[Techniques]

- L'Ecuyer suggests how this can be done:
 - □ If $W_{i,1}$, $W_{i,2}$,, $W_{i,k}$ are any independent, discrete valued random variables (not necessarily identically distributed)
 - □ If one of them, say $W_{i,1}$ is uniformly distributed on the integers from 0 to m_1 -2, then

$$W_i = \left(\sum_{j=1}^k W_{i,j}\right) \bmod m_1 - 1$$

is uniformly distributed on the integers from 0 to m_1 -2

[Techniques]

- Let $X_{i,1}$, $X_{i,2}$, ..., $X_{i,k}$, be the i^{th} output from k different multiplicative congruential generators.
 - ☐ The *jth* generator:
 - Has prime modulus m_j and multiplier a_j and period is m_j -1
 - Produced integers $X_{i,j}$ is approx ~ Uniform on integers in $[1, m_i-1]$
 - $W_{i,j} = X_{i,j}$ -1 is approx ~ Uniform on integers in [0, m_i -2]

[Techniques]

Suggested form:

$$X_{i} = \left(\sum_{j=1}^{k} (-1)^{j-1} X_{i,j}\right) \mod m_{1} - 1 \qquad \text{Hence, } R_{i} = \begin{cases} \frac{X_{i}}{m_{1}}, & X_{i} > 0 \\ \frac{m_{1} - 1}{m_{1}}, & X_{i} = 0 \end{cases}$$

The maximum possible period for such a generator is:

$$P = \frac{(m_1 - 1)(m_2 - 1)...(m_k - 1)}{2^{k-1}}$$

[Techniques]

Example: For 32-bit computers, L'Ecuyer [1988] suggests combining k = 2 generators with $m_1 = 2,147,483,563$, $a_1 = 40,014$, $m_2 = 2,147,483,399$ and $a_2 = 40,692$. The algorithm becomes:

Step 1: Select seeds

- $X_{1.0}$ in the range [1, 2,147,483,562] for the 1st generator
- $X_{2,0}$ in the range [1, 2,147,483,398] for the 2nd generator.

Step 2: For each individual generator,

$$X_{1,j+1} = 40,014 X_{1,j} \mod 2,147,483,563$$

 $X_{2,j+1} = 40,692 X_{1,j} \mod 2,147,483,399.$

Step 3: $X_{j+1} = (X_{1,j+1} - X_{2,j+1}) \mod 2,147,483,562.$

Step 4: Return
$$R_{j+1} = \begin{cases} \frac{X_{j+1}}{2,147,483,563}, & X_{j+1} > 0 \\ \frac{2,147,483,562}{2,147,483,563}, & X_{j+1} = 0 \end{cases}$$

Step 5: Set j = j+1, go back to step 2.

□ Combined generator has period: $(m_1 - 1)(m_2 - 1)/2 \sim 2 \times 10^{18}$

Random-Numbers Streams

[Techniques]

- The seed for a linear congruential random-number generator:
 - \square Is the integer value X_0 that initializes the random-number sequence.
 - □ Any value in the sequence can be used to "seed" the generator.
- A random-number stream.
 - \square Refers to a starting seed taken from the sequence $X_0, X_1, ..., X_{P}$
 - □ If the streams are *b* values apart, then stream *i* could defined by starting seed:

$$S_i = X_{b(i-1)}$$
 for $i = 1, 2, \dots, \lfloor P/b \rfloor$

□ Older generators: $b = 10^5$; Newer generators: $b = 10^{37}$.

Random-Numbers Streams (contd..)

- A single random-number generator with k streams can act like k distinct virtual randomnumber generators
- To compare two or more alternative systems.
 - □ Advantageous to dedicate portions of the pseudorandom number sequence to the same purpose in each of the simulated systems.

- Desirable properties of random numbers: Uniformity and Independence
- Number of tests can be performed to check whether these properties have been achieved or not
- Two type of tests:
 - <u>Frequency Test.</u> Uses the Kolmogorov-Smirnov or the Chisquare test to compare the distribution of the set of numbers generated to a uniform distribution
 - Autocorrelation test: Tests the correlation between numbers and compares the sample correlation to the expected correlation, zero

- Two categories:
 - □ Testing for uniformity. The hypotheses are:

$$H_0$$
: $R_i \sim U[0,1]$

$$H_1$$
: $R_i \neq U[0,1]$

- Failure to reject the null hypothesis, H_0 , means that evidence of non-uniformity has not been detected.
- □ Testing for independence. The hypotheses are:

$$H_0$$
: $R_i \sim$ independently distributed

$$H_1$$
: $R_i \neq \text{independently distributed}$

■ Failure to reject the null hypothesis, H_0 , means that evidence of dependence has not been detected.

- For each test, a Level of significance α must be stated.
- The level α , is the probability of rejecting the null hypothesis H_0 when the null hypothesis is true:

$$\alpha = P(reject H_0|H_0 is true)$$

- The decision maker sets the value of α for any test
- Frequently α is set to 0.01 or 0.05

When to use these tests:

- □ If a well-known simulation languages or random-number generators is used, it is probably unnecessary to test
- ☐ If the generator is not explicitly known or documented, e.g., spreadsheet programs, symbolic/numerical calculators, tests should be applied to many sample numbers.

Types of tests:

- □ *Theoretical tests*: evaluate the choices of *m*, *a*, and *c* without actually generating any numbers
- □ Empirical tests: applied to actual sequences of numbers produced. Our emphasis.

Frequency Tests

[Tests for RN]

- Test of uniformity
- Two different methods:
 - □ Kolmogorov-Smirnov test
 - ☐ Chi-square test
- Both these tests measure the degree of agreement between the distribution of a sample of generated random numbers and the theoretical uniform distribution
- Both tests are based on null hypothesis of no significant difference between the sample distribution and the theoretical distribution

- Non-parametric test
- Compares the continuous cdf, F(x), of the uniform distribution with the empirical cdf, $S_N(x)$, of the N sample observations. F(x) = x, $0 \le x \le 1$
 - □ We know:
 - □ If the sample from the RN generator is R_1 , R_2 , ..., R_N , then the empirical cdf, $S_N(x)$ is:

$$S_N(x) = \frac{\text{number of } R_1, R_2, ..., R_n \text{ which are } \le x}{N}$$

The cdf of an empirical distribution is a step function with jumps at each observed value (See example slide).

$$D = \max | F(x) - S_N(x)|$$

- The distribution of D is known and tabulated (A.8) as function of N
- Steps:
 - 1. Rank the data from smallest to largest. Let $R_{(i)}$ denote i^{th} smallest observation, so that $R_{(1)} \leq R_{(2)} \leq ... \leq R_{(N)}$

2. Compute
$$D^{+} = \max_{1 \le i \le N} \left\{ \frac{i}{N} - R_{(i)} \right\}; \quad D^{-} = \max_{1 \le i \le N} \left\{ R_{(i)} - \frac{i-1}{N} \right\}$$

- 3. Compute $D = max(D^+, D^-)$
- 4. Locate in Table A.8 the *critical value* $D\alpha$, for the specified significance level α and the sample size N (degrees of freedom)
- 5. If the sample statistic D is greater than the critical value $D\alpha$, the null hypothesis is rejected. If $D \le D\alpha$, conclude there is no difference

Kolmogorov-Smirnov Test

[Frequency Test]

Example: Suppose 5 generated numbers are 0.44, 0.81, 0.14, 0.05, 0.93.

0.04

0.21

Step 1:	$R_{(i)}$	0.05	0.14			0.93 ~	
	i/N	0.20	0.40	0.60	0.80	1.00	
01.5.5.0	i/N – R _(i)	0.15	0.26	0.16	-	0.07 -	

0.05

 $D^+ = \max \{i/N - R_{(i)}\}$

Arrange R_(i) from smallest to largest

 $D^{-} = max \{R_{(i)} - (i-1)/N\}$

Step 3:
$$D = max(D^+, D^-) = 0.26$$

 $R_{(i)} - (i-1)/N$

Step 4: For
$$\alpha = 0.05$$
,

$$D_{\alpha} = 0.565 > D$$

Hence, H_0 is not rejected.

0.13

Chi-square test uses the sample statistic:

- □ Approximately the chi-square distribution with *n-1* degrees of freedom (where the critical values are tabulated in Table A.6)
- \square For the uniform distribution, E_i , the expected number in the each class is:

$$E_i = \frac{N}{n}$$
, where N is the total # of observation

- Valid only for large samples, e.g. N >= 50
- Reject H_0 if $\chi_0^2 > \chi_{\alpha,N-1}^2$

Example 7.7: Use Chi-square test for the data shown below with α =0.05. The test uses n=10 intervals of equal length, namely [0,0.1),[0.1,0.2),, [0.9,1.0)

0.34	0.90	0.25	0.89	0.87	0.44	0.12	0.21	0.46	0.67
0.83	0.76	0.79	0.64	0.70	0.81	0.94	0.74	0.22	0.74
0.96	0.99	0.77	0.67	0.56	0.41	0.52	0.73	0.99	0.02
0.47	0.30	0.17	0.82	0.56	0.05	0.45	0.31	0.78	0.05
0.79	0.71	0.23	0.19	0.82	0.93	0.65	0.37	0.39	0.42
0.99	0.17	0.99	0.46	0.05	0.66	0.10	0.42	0.18	0.49
0.37	0.51	0.54	0.01	0.81	0.28	0.69	0.34	0.75	0.49
0.72	0.43	0.56	0.97	0.30	0.94	0.96	0.58	0.73	0.05
0.06	0.39	0.84	0.24	0.40	0.64	0.40	0.19	0.79	0.62
0.18	0.26	0.97	0.88	0.64	0.47	0.60	0.11	0.29	0.78

The value of χ_0^2 =3.4; The critical value from table A.6 is $\chi_{0.05,9}^2$ =16.9. Therefore the null hypothesis is not rejected

Table 7.3 Computations for Chi-Square Test

Interval	O_i	E_i	$O_i - E_i$	$(O_i - E_i)^2$	$\frac{(O_i - E_i)^2}{E_i}$
1	8	10	-2	4	0.4
2	8	10	-2	4	0.4
3	10	10	0	0	0.0
4	9	10	-1	1	0.1
5	12	10	2	4	0.4
6	8	10	-2	4	0.4
7	10	10	0	0	0.0
8	14	10	4	16	1.6
9	10	10	0	0	0.0
10	11	10	1	1	0.1
	100	100	0 7, 7		3.4

- The test for autocorrelation are concerned with the dependence between numbers in a sequence.
- Consider:

- Though numbers seem to be random, every fifth number is a large number in that position.
- This may be a small sample size, but the notion is that numbers in the sequence might be related

- Testing the autocorrelation between every m numbers (m is a.k.a. the lag), starting with the ith number
 - □ The autocorrelation ρ_{im} between numbers: R_i , R_{i+m} , R_{i+2m} , $R_{i+(M+1)m}$
 - \square *M* is the largest integer such that $i+(M+1)m \leq N$
- Hypothesis:

 $H_0: \rho_{im} = 0$, if numbers are independent

 $H_1: \rho_{im} \neq 0$, if numbers are dependent

- If the values are uncorrelated:
 - □ For large values of M, the distribution of the estimator of ρ_{im} , denoted $\hat{\rho}_{im}$ is approximately normal.

$$Z_0 = \frac{\hat{
ho}_{im}}{\hat{\sigma}_{\hat{
ho}_{im}}}$$

 \square Z_0 is distributed normally with mean = 0 and variance = 1, and:

$$\hat{\rho}_{im} = \frac{1}{M+1} \left[\sum_{k=0}^{M} R_{i+km} R_{i+(k+1)m} \right] - 0.25$$

$$\hat{\sigma}_{\rho_{im}} = \frac{\sqrt{13M+7}}{12(M+1)}$$

- If $\rho_{im} > 0$, the sub-sequence has positive autocorrelation
 - □ High random numbers tend to be followed by high ones, and vice versa.
- If ρ_{im} < 0, the sub-sequence has negative autocorrelation
 - □ Low random numbers tend to be followed by high ones, and vice versa.

- After computing Z_0 , do not reject the hypothesis of independence if $-z_{\alpha/2} \le Z_0 \le z_{\alpha/2}$
- \bullet a is the level of significance and $z_{\alpha/2}$ is obtained from table A.3

- Test whether the 3rd, 8th, 13th, and so on, for the output on Slide 37 are auto-correlated or not.
 - □ Hence, $\alpha = 0.05$, i = 3, m = 5, N = 30, and M = 4. M is the largest integer such that $3+(M+1)5 \le 30$.

$$\hat{\rho}_{35} = \frac{1}{4+1} \begin{bmatrix} (0.23)(0.28) + (0.28)(0.33) + (0.33)(0.27) \\ + (0.27)(0.05) + (0.05)(0.36) \end{bmatrix} - 0.25$$

$$= -0.1945$$

$$\hat{\sigma}_{\rho_{35}} = \frac{\sqrt{13(4) + 7}}{12(4+1)} = 0.128$$

$$Z_0 = -\frac{0.1945}{0.1280} = -1.516$$

□ From Table A.3, $z_{0.025} = 1.96$. Hence, the hypothesis is not rejected.

- The test is not very sensitive for small values of M, particularly when the numbers being tested are on the low side.
- Problem when "fishing" for autocorrelation by performing numerous tests:
 - □ If $\alpha = 0.05$, there is a probability of 0.05 of rejecting a true hypothesis.
 - □ If 10 independent sequences are examined,
 - The probability of finding no significant autocorrelation, by chance alone, is $0.95^{10} = 0.60$.
 - Hence, the probability of detecting significant autocorrelation when it does not exist = 40%

Summary

- In this chapter, we described:
 - □ Generation of random numbers
 - □ Testing for uniformity and independence

Caution:

- Even with generators that have been used for years, some of which still in use, are found to be inadequate.
- □ This chapter provides only the basics
- Also, even if generated numbers pass all the tests, some underlying pattern might have gone undetected.