Table of Contents

Problem 2.1

Use MacCullagh's Formula to compare the difference in gravity at the pole and at the equator without Earth's spin and assume present shape and interior structure.

```
% g = -gradient of V
% V is MacCullagh's Formula
mEarth = 5.972e24;
                             % Mass of Earth (kg)
J = 0.001;
                             % J_2 value for flattening roughly,
unitless
a = 6378000;
                             % Radius of Earth at equator m
G = 6.6743e-11;
                             % Gravitational constant N*m^2/kg^2
% radius and theta
rPole = 6357000;
                           % radius at the pole meters
thetaPole = 0;
                            % theta at the pole degrees
rEquator = a;
                            % radius at the equator meters
                            % theta at the equator degrees
thetaEquator = 90;
% component for g at the poles without phi
g_rPole = G*(mEarth/rPole^2-(3*a^2*J*(3*cosd(thetaPole)^2-1))/
(2*rPole^4));
g_thetaPole = G*(-3*a^2*J*sind(thetaPole)*cosd(thetaPole))/rPole^4;
% component for g at the equator without phi
g_rEquator = G*(mEarth/rEquator^2-
(3*a^2*J*(3*cosd(thetaEquator)^2-1))/(2*rEquator^4));
g_{thetaEquator} = G*(-3*a^2*J*sind(thetaEquator)*cosd(thetaEquator))/
rEquator^4;
```

Problem 2.2

```
% Calculate the value of the geopotential U on the geoid w = 7.2921150e-5; % Earth's spin rate (rad/s) theta = 0:180; % degrees of latitude
```

```
f = (3/2)*J+(a^3*w^2)/(2*G*mEarth); % flattening, unitless
r0 = a*(1-f*cosd(theta).^2);
                                        % changing radius value in
meters
P = (1/2)*(3*cosd(theta).^2-1);
                                        % Legrende Polynomial,
unitless
mono = -G*mEarth./r0;
                                        % Monopole N*m/kg
quad = (G*mEarth*a^2)*(J*P)./(r0.^3); % Quadrupole N*m/kq
spin = -(1/2)*w^2*r0.^2.*sind(theta).^2; % Rotation m^2/s^2
U0= mono+quad+spin;
                                        % Geopoential U on the geoid
U0mean = mean(U0)
figure(1)
subplot(2,1,1)
plot(theta, U0, 'LineWidth',1)
hold on
plot(theta, mono, 'LineWidth',1)
ylabel('Potential (m^2/s^2 or Nm/kg)','FontSize',15)
legend('U_0','Monopole')
hold off
title('U_0 Summation of Monopole, Quadrupole, and
 Rotation','FontSize',15)
subplot(2,1,2)
plot(theta,quad,'r','LineWidth',1)
hold on
plot(theta, spin,'k','LineWidth',1)
ylabel('Potential (m^2/s^2 or Nm/kg)', 'FontSize',15)
legend('Quadrupole','Rotation')
xlabel('Colatitude \theta (degrees)','FontSize',15)
set(gcf,'color','w');
hold off
U0mean =
```

2

-6.2634e+07

Problem 2.3

(radiusSource^3);

```
shape.
% The source of the Mississippi is 47 degrees North and the delta is 29
% degrees North of the Equator.
```

% Find the rotation rate, omega, when the Mississippi starts to flow % backward from South to North. Assuming the Earth does not change

```
MissLatS = 43;
                        % Mississippi source colatitude from the pole
 degrees
MissLatD = 61;
                        % Mississippi delta colatitude from the pole
 degrees
radiusSource = r0(44)+450;
                                % radius of source in meters
Psource = (1/2)*(3*cosd(MissLatS).^2-1);
                                                 % Legrende Polynomial
 for Source
% Vary omega for when potential for the source and delta are equal
omega = (-1e-4:1e-7:1e-4); % Spin radian/sec
% Calculate the source gravitational potential, V source in N*m/kg or
% m^2/s^2
Vsource = -G*mEarth/radiusSource + G*mEarth*a^2*J*Psource/
```

```
% Calculate the source apparent centrifugal force, depends on omega
m^2/s^2
SpinSource = -(1/2)*omega.^2*radiusSource^2*sind(MissLatS)^2;
% Calculate the delta gravitational potential, geoid potential, V in
N*m/kg
% depends on omega
f = (3/2)*J+(a^3*omega.^2)/(2*G*mEarth); % flattening depends on
 rot. rate
rODelta = a*(1-f.*cosd(MissLatD).^2);
                                                % radius meters
depends on rotation rate
Pdelta = (1/2)*(3*cosd(MissLatD)^2-1);
                                              % Legrende Polynomial,
 unitless
Vdelta = -G*mEarth./r0Delta + G*mEarth*a^2*J*Pdelta./(r0Delta.^3);
% Calculate the delta apparent centrifugal force m^2/s^2, depends on
omega
SpinDelta = -(1/2)*omega.^2.*r0Delta.^2*sind(MissLatD)^2;
% Source and Delta potential equalling zero
SandDequal0 = -Vsource - SpinSource + Vdelta + SpinDelta;
                                % Period of rotation of Earth in hours
T = (2*pi./omega)/(60*60);
Topp = T(300)
                                % Period in the opposite direction
Tsame = T(1702)
                                % Period for the same direction today
figure(2)
plot(omega, SandDequal0, 'LineWidth', 1)
hold on
plot(omega, zeros(length(omega)), 'LineWidth',1)
plot([omega(1702) omega(300)],[SandDequal0(1702)
SandDequal0(300)],'k*','LineWidth',1)
% plot(omega(300), SandDequal0(300), 'k*', 'LineWidth', 1)
plot(w, 0,'mx','LineWidth',1)
ylabel('Potential (m^2/s^2 or Nm/kg)', 'FontSize', 15)
xlabel('\omega rad/sec','FontSize',15)
title('Potential of Varying \omega', 'FontSize', 15)
set(qcf,'color','w')
hold off
Topp =
  -24.8977
Tsame =
   24.8977
```


Published with MATLAB® R2020a