Exercise 05 - Reinforcement Learning

German Shiklov - 317634517

Question 1:

(Part 1.1)

(1 art 1.1)	
(Q.1.1)	Input: 7 - Learning Rate, T - total number of episodel
	Pr- Probability vin left PR - win right machine
	In tichzation: Po + 1
7 11 14	
	Procedure:
	For each episode, t = {1,2,,T}
	1. select Stochastically (ibrinal, uniform), where Por; areas
	2. It reward wrote + faction-win: 1, action-10st:03
	3. compute gradent of log-Policy Thou x (ax Pro) =) at it as = ax
	4. Estimate Policy gradient, Ge= Vt. Velog Tr (at Pt-1)
	5. Update Policy Parameter, Pt = Pt, + M. Gt
	6. Project Pt to ensure Pt & (0,1) => Pt = max (min (Pt 1-E), E)
	output: Pa , Probability of choosing the most beneficial machine.
(D. +1.2)	
(Part 1.2)	
(Q.1.2)	when there are no States, and immediate rewards obtained,
	the eligibility trace acts binary and resets every timestamp.
	as the decision is independent of previous action.
	then let $e_{\epsilon}(a) = \begin{cases} 1 & \text{if } a = a \\ 0 & \text{otherwise} \end{cases}$
	then the update policy parameter
85/11/2	Pe = Pe-1 + Q (r+-b+) e+(a+) T+ log x (a+ Pt-1)
	LR bias, Zero.

(Part 1.3)

Let
$$R(P) = P_L(1-P) + P_R \cdot P$$
, be the expected remark, for Policy P.

let $dR = \frac{d}{dP} \left[P_L(1-P) + P_R \cdot P \right] = -P_L + P_R$

Where in the general case (b^+0) $P_t = P_{t-1} + P_t (r_t - b) \frac{\partial \log \pi(a_t \mid P)}{\partial P}$

for $b = 0$, $P_t = P_{t-1} + P_t \cdot r_t \cdot \frac{dR}{dP} = P_{t-1} + P_t \cdot r_t \cdot (P_R - P_L)$

If $P_R > P_L$, the policy intends to increase P when r_t is 1.

Conversely, $P_R < P_L$, decreases when $r_t = 0$, promoting the left machine.

(Part 1.4) The blue line is unable to converge and mostly has deviation around 0.4 to 0.7 as the LR is not able to overstep the learning curve and figure the difference between the machines.

Figure 1. Simulation of $P_L=0.2$, $P_R=0.7$, LR=0.01. The blue line doesn't seem to favor any machine after 1000 iterations.

(Part 1.5)

It's clearly visible that for both cases of LR 0.01, it is "not enough" to provide convergence and preferability to the machines, even though there's major differences between the PL, PR pairs. Figure 2 shows a scenario where the particularly "close" probabilities were difficult to converge, yet Figure 3 presents a scenario where the agent was able to converge and seemingly with a much shorter amount of steps.

Figure 2. Simulation of $P_L=0.4$, $P_R=0.5$, LR=0.01. The orange line doesn't seem to favor any machine either, while comparing to the blue line like in the previous case..

Figure 3. Simulation of P L=0.4, P R=0.5, LR=0.01. The orange line has managed to favor a machine.

(Part 1.6)

The two cases of different probabilities, and higher learning rate (0.025), explicitly shows that it is able to converge after a while, compared to LR of 0.01. Though it would be expected that the green line would converge faster than the red, as there is a greater difference in probability between the two machines. Generally as a comparison to the lower LR, definitely the search has been made easier for simulation 6a-b, the red and green lines.

Figure 4. Simulation of $P_L=0.2$, $P_R=0.7$ as green line, and $P_L=0.4$, $P_R=0.5$, as red line, LR=0.025. Both cases have managed to converge quite fast as the LR was great enough for yet greater difference between the left and right probabilities.

Question 2.1

(2.1.1)	he optimal policy of $\pi_t(S,a) = \frac{1-\epsilon}{4}$	E. Sa, a+(s) lin 9+1. Sa, a+(s)
	6. C uniform dist only for exploration	Is the exploitation part, biases the selection
lim E70	he optimal policy of $\pi_t(S, a) = \frac{1-\epsilon}{4}$ - \(\xi\) uniform dist pick for exploration 4 4 Any action chaoses, not necessity best action to take	towards the current best known action.
- The	policy is deterministic as we adjust the	value of $E \rightarrow 1$.
	$\pi^{\beta}(S) = \underset{\alpha \in A(S)}{\operatorname{arg max}} g^{\infty}(S, \alpha)$	
	aEA(S) Lt	parate Comment A
1 2	here for the start state, 5, g (S, UP)	lects rewards of "Shortest Paths" to G
2. th	en for the other states, g*(s,a), re:	Heats rewards of "Shortest Paths" to G
9 W	thout clift).	
3 · Fo	rany states on the cliff, q" (s, any act	ion leading off the chiff) - reflects
V	ry I'm penity for falling.	
Le	+ the optimal value function be g(St, At)	= 9(S+, A+)+ d[R++ 8 max 9(S++, a) -9(S+, A+)]
A	ϵ approaches δ , $\pi_{\epsilon}(s, \omega)$ converges to a	purely greedy Policy lim T+(S, a) = {0, otherwise
	lim Ti (5,a) = 1A(5)1 , make	Sit uniformly rundom.
A c	emmon practice is to Start E=0, and in	wise to 1, to Shurpen towards
	optimal Choice towards 6.	A COLOR DE LA COLO

Question 2.2.1

The optimal policy as a function of ϵ . Convergence occurs once the mean episodes go towards zero, obviously to some plateau near zero. This is due to the agent being able to learn the environment and the adjustment of the parameter, leading the decision towards the shortest path, minimizing the episode's exploration, thus transferring to the exploitation phase.

Figure 5. Optimal policy as a function of $\epsilon \rightarrow 1$. Converging over time.

Question 2.2.2

This plot demonstrates the mean total reward as a function of the episodes, thus making it apparent that for a very small ϵ , the decisions are more likely to be uniformly random, thus the blue lines finds it very difficult to converge with an order of magnitude, compared to greater epsilons. Interestingly there's not much of a difference between the 0.3 and 1 boundary, as it seems the grid(environment) is small enough to have the rewards to converge swiftly. Figure 6 shows how every epsilon which is below one has a plateau it reaches and cannot pass as the uniform-distribution is part of the computation. Sometimes it's worth it to keep the parameter small to allow exploration for greater grids.

Figure 6. Mean total reward as a function of episodes, comparing different convergence rates for ϵ in [0.1-0.9]

Question 2 - Bonus

The motivation of using the greedy-policy is during learning to balance exploration and exploitation of the available states. Mainly, the benefit is particularly to emphasize the early learning process of the agent's knowledge of the environment is limited. As $\epsilon \rightarrow 0$, the phase of exploration is available, due to the "exploitation" decision being near zero chance, and thus making a uniform distribution between the four available states, up, down, right, left. Conversely the agent "less explores" when $\epsilon \rightarrow 1$ then the "random" choice disappears and the policy is more strict for choosing the likely best action. As the rewards manage to minimize, it will be beneficial to start changing to ϵ from 0 towards 1.

Figure 7. Final results of optimal policy for 1000 iterations of episodes.