Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte Campus Natal Central

Diretoria Acadêmica de Gestão e Tecnologia da Informação Curso de Tecnologia em Redes de Computadores

Cálculo Diferencial e Integral

Prof.: Fco. Assis de Oliveira

Tabela Geral de Derivadas

Nesta tabela, u e v são funções deriváveis em x, e a, b e c são constantes reais.

01 -
$$y = c$$
 , então $y' = 0$

$$02 - y = x$$
, então y' = 1

$$03 - y = x^b$$
, então $y' = b x^{(b-1)}$

$$04 - y = c u$$
, então y' = c. u'

$$05 - y = u + v$$
, então $y' = u' + v'$

06 -
$$y = u v$$
, então $y' = u' \cdot v + u \cdot v'$

07 -
$$y = \frac{u}{v}$$
, então $y' = (u' \cdot v - u \cdot v') / v^2$

08 -
$$y = u^b$$
 (com $b \neq 0$), então $y' = b u^{(b-1)}$. u' ;

$$09 - y = \mathbf{e}^x$$
, então $y' = \mathbf{e}^x$

09 -
$$y = \mathbf{e}^x$$
, então $y' = \mathbf{e}^x$
10 - $y = \mathbf{e}^u$, então $y' = \mathbf{e}^u$. u'

11 -
$$y = a^x$$
 (com $0 < a$ e $a \ne 1$), então $y' = \ln(a) a^x$

12 -
$$y = a^u$$
 (com $0 < a$ e $a \ne 1$), então $y' = \ln(a) a^u$. u'

13 -
$$y = \ln(x)$$
, então y' = $\frac{1}{x}$

14 -
$$y = \log_a(x)$$
 (com $0 < a \in a \neq 1$), então $y' = \left[\frac{1}{\ln(a)}\right] \left[\frac{1}{x}\right]$

15 -
$$y = \log_a(u)$$
 (com $0 < a \in a \neq 1$), então $y' = \left[\frac{1}{\ln(a)}\right] \left[\frac{1}{u}\right] \cdot u'$

16 -
$$y = \ln(u)$$
, então $y' = \frac{1}{u} \cdot u'$

17 -
$$y = u^v$$
 (com $0 < u$), então $y' = v \cdot u^{(v-1)} \cdot u' + u^v \cdot \ln(u) \cdot v'$

$$_{18}$$
 - $y = \operatorname{sen}(x)$, $\operatorname{ent\tilde{ao}} y' = \cos(x)$

19 -
$$y = \operatorname{sen}(u)$$
 , então $y' = \cos(u)$. u'

$$20 - y = \cos(x)$$
, então $y' = -\sin(x)$

$$21 - y = \cos(u)$$
, $\cot y = -\sin(u)$.

$$22 - y = tg(x)$$
, então $y' = [sec(x)]^2$

23 -
$$y = tg(u)$$
, então $y' = [sec(u)]^2$. u'

24 -
$$y = \arcsin(x)$$
, então $y' = \frac{1}{\sqrt{1 - x^2}}$

25 - y = arcsen(u), então y' =
$$\frac{1}{\sqrt{1 - u^2}}$$
.u'

$$_{26}$$
 - $y = \arccos(x)$, então $y' = \frac{-1}{\sqrt{1-x^2}}$

27 -
$$y = \arccos(u)$$
, então $y' = \frac{-1}{\sqrt{1 - u^2}}$. u'

28 -
$$y = arctg(x)$$
, então $y' = \frac{1}{1 + x^2}$

29 -
$$y = \arctan(u)$$
, então $y' = \frac{1}{1 + u^2}$.u'