Feuille de TD n.6 de IPD 2022-2023, Ensimag 2A IF

H. Guiol

Exercice 1. Intégrale du Brownien par le Brownien.

Soit $B=(B_t)_{t\geq 0}$ un $(\mathcal{F}_t)_{t\geq 0}$ -MBS. On cherche à calculer $\int_0^T B_s \ dB_s$. Pour tout entier n>0, on considère la subdivision régulière $(kT/n)_{0\leq k\leq n}$ de [0,T] et on pose

$$B_t^n = \sum_{k=0}^{n-1} B_{kT/n} \ \mathbf{1}_{[kT/n,(k+1)T/n[}(t).$$

On note $\Pi_2^2[0,T]$ l'ensemble des processus $H=(H_t)_{t\geq 0}$, continus à droite, $(\mathcal{F}_t)_{t\geq 0}$ -adaptés vérifiant

$$\mathbb{E}\left[\int_0^T H_s^2 \ ds\right] < +\infty.$$

- 1. Montrer que B et $(B_t^n)_{0 \le t \le T}$ sont des processus de $\Pi_2^2[0,T]$.
- 2. Montrer que

$$\lim_{n \to \infty} \mathbb{E} \left[\int_0^T (B_s^n - B_s)^2 \ ds \right] = 0.$$

Par définition on pose

$$\int_0^T B_s^n dB_s = \sum_{k=0}^{n-1} B_{kT/n} \left(B_{(k+1)T/n} - B_{kT/n} \right)$$

On montrera dans le cours que tout processus H de $\Pi_2^2[0,T]$ vérifie l'isométrie d'ito : $\forall t \in [0,T]$

$$\mathbb{E}\left[\left(\int_0^t H_s \ dB_s\right)^2\right] = \mathbb{E}\left[\int_0^t H_s^2 \ ds\right]$$

3. En déduire que $\int_0^T B_s dB_s$ s'écrit comme la limite dans $L^2(\Omega)$ de

$$\sum_{k=0}^{n-1} B_{kT/n} \ (B_{(k+1)T/n} - B_{kT/n}).$$

4. Calculer

$$\lim_{n \to \infty} \text{Var} \left(\sum_{k=0}^{n-1} (B_{(k+1)T/n} - B_{kT/n})^2 \right).$$

- 5. En déduire que $\sum_{k=0}^{n-1} (B_{(k+1)T/n} B_{kT/n})^2$ converge dans $L^2(\Omega)$ vers T.
- 6. Calculer la limite dans $L^2(\Omega)$ de $\sum_{k=0}^{n-1} B_{kT/n}(B_{(k+1)T/n} B_{kT/n})$ à l'aide des questions précédentes. Indication : on pourra utiliser l'identité $2ab = -(b-a)^2 + a^2 + b^2$.
- 7. Calculer la valeur de $\int_0^T B_s \ dB_s$ et vérifier que c'est bien une martingale.
- 8. En vous inspirant des questions précédentes, calculer la limite dans $L^2(\Omega)$ de

$$\sum_{k=0}^{n-1} B_{(k+1)T/n} (B_{(k+1)T/n} - B_{kT/n}).$$

9. En vous inspirant des questions précédentes, calculer la limite dans $L^2(\Omega)$ de

$$\sum_{k=0}^{n-1} \frac{B_{(k+1)T/n} + B_{kT/n}}{2} (B_{(k+1)T/n} - B_{kT/n}).$$