CSC/MAT-220: Discrete Structures Homework 2

Due: 9/8/2017

Book Problems

Please do each of the following problems from your book: 8.12, 9.7, 9.18, 10.13, and 12.21.

Other Problems

- I. Write the following definitions and their negation using quantifiers and logical symbolism.
 - a. A function $f: D \to \mathbb{R}$ is *continuous* at $c \in D$ if and only if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $|f(x) f(c)| < \epsilon$ whenever $|x c| < \delta$ and $x \in D$.
 - b. A function f is uniformly continuous on a set S if and only if for $\epsilon > 0$ there is a $\delta > 0$ such that $|f(x) f(y)| < \epsilon$ whenever x and y are in S and $|x y| < \delta$.
- II. Prove the following statement: Let A be a subset of U, then $A \cup (U A) = U$.
- III. Let f_n denote the number of ways to tile a board of n squares, using squares and dominoes (two squares joined together). Give a combinatorial proof for each of the following propositions.
 - i. For $n \ge 0$, $f_0 + f_1 + f_2 + \dots + f_n = f_{n+2} 1$.
 - ii. For $n \ge 0$, $f_0 + f_2 + f_4 + \dots + f_{2n} = f_{2n+1}$.
 - iii. For $n \ge 1$, $f_1 + f_3 + \dots + f_{2n-1} = f_{2n} 1$.