GENERAL COMMENTS:

- Everything is getting better.
- Keep proof reading your solutions aloud so you can hear your grammar mistakes (and just where words do not make sense together). This will also help you break up run-on sentences.
- Acknowledge who you have worked with, and what sources you have consulted for assistance.
- I have anonymously included some student solutions for this homework set.

1. (Chapter 3, exercise 19)

Let $f, g: D \to \mathbb{R}$ be uniformly continuous. Prove that $f + g: D \to \mathbb{R}$ is uniformly continuous. What can be said about fg? Justify.

Proof. Let $\epsilon > 0$ be given. Since f is uniformly continuous, we know there exists $\delta_1 > 0$ such that if $|x-y| < \delta_1$, where $x, y \in D$, then $|f(x) - f(y)| < \frac{\epsilon}{2}$. Similarly, since g is uniformly continuous, there exists $\delta_2 > 0$ such that if $|x-y| < \delta_2$, where $x, y \in D$, then $|g(x) - g(y)| < \frac{\epsilon}{2}$. Set $\delta = \min\{\delta_1, \delta_2\}$. Thus, if $|x-y| < \delta$, with $x, y \in D$, we have

$$\begin{aligned} |(f+g)(x) - (f+g)(y)| &= |f(x) + g(x) - (f(y) + g(y))| \\ &= |f(x) - f(y) + g(x) - g(y)| \\ &\leq |f(x) - f(y)| + |g(x) - g(y)| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon, \end{aligned}$$

showing that $(f+g): D \to \mathbb{R}$ is uniformly continuous.

Given that $f, g: D \to \mathbb{R}$ are uniformly continuous, it is not guaranteed, however, that fg must be uniformly continuous. We simply consider the example f(x) = g(x) = x, where both are defined on all of \mathbb{R} . Then both f and g are uniformly continuous. However, $fg(x) = x^2$ is not uniformly continuous on \mathbb{R} . Note, by Theorem 3.8, if D is compact, then it would follow that fg is uniformly continuous on D.

SOLUTIONS MATH 331 HMWK 7 2

2. (Chapter 3, exercise 29)

If $D \subset \mathbb{R}$ is bounded, prove that \overline{D} is bounded.

Proof.

Student solution 1:

Suppose $D \subset \mathbb{R}$ is bounded. It follows that $\exists a, b \in \mathbb{R}$ s.t. $D \subset [a, b]$. Let $\overline{D} = D \cup D'$. I will prove $D' \subset [a, b]$.

Suppose $\exists x_0 \in D'$ s.t. $x_0 \in \mathbb{R} \setminus [a, b]$. This is a contradiction because if $x_0 \in \mathbb{R} \setminus [a, b]$, \exists a neighborhood of x_0 , call it P, s.t. $x_0 \in P \subset \mathbb{R} \setminus [a, b]$. It follows that $P \cap D = \emptyset$, but this is impossible because $x_0 \in D'$. Thus, $\forall x_0 \in D'$, $x_0 \in [a, b]$, so D' is bounded and $D' \cup D = \overline{D}$ is bounded.

Student solution 2:

We show that if $x_0 \in D'$, then $\inf(D) \le x_0 \le \sup(D)$. Suppose that $x_0 > \sup(D)$. Then for all $\delta > 0$, $(x_0 - \delta, x_0 + \delta)$ contains infinitely many $x \in D$. Choose $\delta = x_0 - \sup(D) > 0$. Then $(x_0 - \delta, x_0 + \delta) = (\sup(D), 2x_0 - \sup(D))$ and so $(\sup(D), 2x_0 - \sup(D)) \cap D = \emptyset$, since there exist no $x \in D$ such that $x > \sup(D)$, per the definition of supremum. This contradicts the assumption that $x_0 \in D'$, so $x \le \sup(D)$, as a result.

Similarly, suppose that $x_0 \in D'$ is less than $\inf(D)$. Then for all $\delta > 0$, $|(x_0 - \delta, x_0 + \delta) \cap D| = \infty$. Let $\delta = \inf(D) - x_0 > 0$. So $(x_0 - \delta, x_0 + \delta) = (2x_0 - \inf(D), \inf(D))$ and $(x_0 - \delta, x_0 + \delta) \cap D = \emptyset$ for this choice of $\delta > 0$. This contradicts the fact that $x_0 \in D'$. So $\inf(D) \leq x_0$.

In turn, if $x_0 \in D'$, then $\inf(D) \le x_0 \le \sup(D)$, so D' is bounded. In the trivial case, where D has no accumulation points, the proof is done, since $D' = \emptyset$, D is bounded and $\overline{D} = D \cup D' = D$.

Maureen's write up:

By definition, $\overline{D} = D \cup D'$. There are two cases.

Case I: D is finite.

In this case, D does not have any accumulation points. Hence, $\overline{D} = D$, which is bounded. Case II: D is infinite.

Suppose D is infinite and nonempty. (If D is empty, we are back in case I.) Then by the least upper bound property of $\mathbb R$ and Theorem 0.20, D has both a supremum, denoted M, and an infimum, denoted N. Thus, $N \leq d \leq M$ for all $d \in D$, and $D \subset [N, M]$. By exercise 1.22, $M, N \in D$ or $M, N \in D'$. We claim $N \leq d \leq M$ for all $d \in \overline{D}$, that is $\overline{D} \subset [N, M]$.

Let a be an accumulation point of D. Then we know every neighborhood of a contains at least one point of D other than a. Suppose for the sake of contradiction that a < N. (The case for a > M is similar and will be omitted.) Then there exists an $\epsilon > 0$ such that $a < a + \epsilon < N$, and hence, $(a - \epsilon, a + \epsilon) \cap [N, M] \subset (a - \epsilon, a + \epsilon) \cap D = \emptyset$. Thus, we have arrived at a contradiction and it must be true that $\overline{D} \subset [N, M]$. This shows that \overline{D} is bounded, as was to be shown.

3. (Chapter 3, exercise 34)

Find an open cover of (1,2) with no finite subcover.

Proof. Let $O_n = (1 + \frac{1}{n}, 2)$. Then the family $\{O_n\}_{n \in \mathbb{N}}$ of open sets forms an open cover of the interval (1, 2) as $(1, 2) \subseteq \bigcup_{n=2}^{\infty} O_n$. Let $\{O_{n_i}\}_{1 \leq i \leq k}$ be any finite subcover. It follows that $\bigcup_{i=1}^{k} O_{n_i} = O_N$, where $N = \max\{n_1, n_2, \ldots, n_k\}$. However, $O_N = (1 + \frac{1}{N}, 2)$, does not contain $(1, 1 + \frac{1}{N})$, and hence does not cover (1, 2).