Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное

образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Отчет

по лабораторной работе «Исследование потенциометрического датчика углового перемещения»

по дисциплине «Преобразователи информации»

Выполнили: Евстигнеев Д.М. (R34423) Яшник А.И. (R34423) Проверил: Быстров С. В.

Санкт-Петербург 2022

Цель работы:

Изучение датчиков углового положения, исследование статических характеристик инкрементального энкодера E50S8 как датчика угла поворота и потенциометрического датчика ПТП5К1.

Основные технические характеристики исследуемого датчика:

Таблица 1 — Технические характеристики инкрементального энкодера E50S8

Диаметр корпуса	50 мм
Диаметр вала	8 мм
Количество импульсов на оборот вала	3600
Выходной сигнал	Дифференциальный,
Выходной сигнал	парафазный
Напряжение питания энкодера	5 В постоянного тока

Таблица 2 – Технические характеристики потенциометра ПТП5К1

Вид характеристики	Линейная
Допустимое отклонение от линейности	±0,1%
Допустимое отклонение по сопротивлению	±2%
Номинальное сопротивление постоянному току	2 кОм
Допустимая рассеиваемая мощность	1 Вт

Рабочий угол поворота вала	±170 град.
Вес, не более	0,03 кг

Экспериментальная установка:

Внешний вид блока установки представлен на Рисунке 1. Блок представляет собой оптический энкодер, потенциометрический датчик угловых перемещений и вращающийся трансформатор, соединенные ременными передачами

Рисунок 1 Датчики углового положения

Блок индикаторов представлен на Рисунке 2. Для данной лабораторной работы мы использовали блок индикации, отображающий угол поворота α.

Рисунок 2 Блок индикаторов

Выполнение:

1. Статическую характеристику потенциометрического датчика на холостом ходу:

Таблица 3 статическая характеристика на холостом ходу

α, град.	75	120	160	200	225
N, число импульсов	211	335	445	552	523
$U_{\scriptscriptstyle m BMX}$, B	1.6	1.87	1.95	2.1	2.17

2. Статические характеристики потенциометрического датчика при различных значениях сопротивления нагрузки

Таблица 4 — статическая характеристика при значении сопротивления нагрузки $R=315~{
m Om}$

α, град.	75	120	160	200	225
N, число импульсов	207	337	448	554	528
$U_{\scriptscriptstyle m BЫX}$, В	1.7	1.26	1.5	1.56	1.6

Таблица 5 — статическая характеристика при значении сопротивления нагрузки $R=792~{
m Om}$

α, град.	75	120	160	200	225
N, число импульсов	222	343	443	556	557
$U_{\scriptscriptstyle m BMX}$, B	1.25	1.3	1.5	1.4	1.6

3. Графики полученных статических характеристик и их линеаризованные характеристики:

Рисунок 3 Графики полученных статических характеристик при различных значениях сопротивления

4. Максимальные значения абсолютных и относительных погрешностей:

Получилась линейная зависимость вида $U = k\alpha$.

Вычислим коэффициент передачи для холостого хода. Из графика зависимости $U(\alpha)k=0.018$.

Для расчета погрешности воспользуемся формулой $\sigma_k = \sqrt{\frac{1}{n-2} \left(\frac{\sigma_U^2}{\sigma_\alpha^2} - k^2\right)}$, где $\sigma_\alpha^2 = \overline{\alpha^2} - \bar{\alpha}^2$ и $\sigma_U^2 = \overline{U^2} - \overline{U}^2$. Отсюда погрешность равна $\sigma_k = 0.0001 \frac{\mathrm{B}}{\mathrm{pag}}$. Тогда, коэффициент передачи потенциометра на холостом ходу равен $k = 0.0027 \pm 0.0001 \frac{\mathrm{B}}{\mathrm{pag}}$.

По аналогии вычислим коэффициенты для остальных значений сопротивления нагрузки:

При
$$R=315$$
 Ом, $k=0.00019\pm0.0001\frac{\mathrm{B}}{\mathrm{рад}}$

При
$$R=792$$
 Ом, $k=0.00022\pm0.0001\frac{\mathrm{B}}{\mathrm{рад}}$

Вывод:

В ходе выполнения данной лабораторной работы было произведено изучение потенциометрического датчика и его статических. При построении аппроксимации статических характеристик видно, что напряжение на выходе увеличивается при увеличении градуса поворота потенциометрического датчика.