DBL 2018-C

2 MOTOR DRIVER FOR A VTR

The DBL 2018-C is a monolithic intergrated circuit designed to perform bi-directional DC Motor driving.

☐ FEATURES

- Stable braking characteristics by built-in braking function.
- O Stable driving direction change.
- Built-in element to absorb dash current derived from changing motor direction and braking motor driving.
- O C2 MOS logic level compatible input level.

☐ MAXIMUM RATINGS(Ta=25°C)

Characteristics Supply Voltage Input Voltage		Symbol	Rating	Unit V V	
		V _{cc}	25		
		V _{IN}	V _{CC}		
Output Current	Peak	I _O (peak)	2	A A	
	Ave.	I _O (Ave)	1		
Allowable Power Dissipation		PD	12.5	W	
Operating Temperature		T _{opr}	-30~+75	°C	
Storage Temperature		T _{stq}	−55~+150	°C	

☐ BLOCK DIAGRAM

☐ LOGIC TRUTH TABLE

INPUT		OUTPUT			MODE		
IN 1	IN 2	IN 3	OUT 1	OUT 2	OUT 3	M 1	M 2
0	0	1/0	L	L	L	BRAKE	BRAKE
1	0	0	Н	L	∞	CW/CCW	STOP
1	0	1	L	Н	∞	CCW/CW	STOP
0	1	0	Н	∞	L	STOP	CW/CCW
0	1	1	L	∞	Н	STOP	CCW/CW
1	1	1/0	L	L	L	BRAKE	BRAKE

∞ : High Impedance Input Level 'H' : Active

☐ BLOCK DIAGRAM

☐ LOGIC TRUTH TABLE

INPUT		OUTPUT			MODE		
IN 1	IN 2	IN 3	OUT 1	OUT 2	OUT 3	M 1	M 2
0	0	1/0	L	L	L	BRAKE	BRAKE
1	0	0	Н	L	∞	CW/CCW	STOP
1	0	1	L	Н	∞	CCW/CW	STOP
0	1	0	Н	∞	L	STOP	CW/CCW
0	1	1	L	∞	Н	STOP	CCW/CW
1	1	1/0	L	L	L	BRAKE	BRAKE

∞ : High Impedance Input Level 'H' : Active

DBL 2018-C

\square ELECTRICAL CHARACTERISTICS(V $_{CC}$ =12V, V $_{S}$ =18V, Ta=25°C)

Characteristic		Symbol	Test Circuit	Test Conditions	Min.	Тур.	Max.	Unit
Supply Current		I _{CC1}	1	Output Off CW/CCW	_	17	30	mA
		I _{CC2}	1	Output off brake	-	13	25	mA
1	1(High)	V _{IN1}	2	Pin 4,5,6	3.5	_	5.5	٧
Input Voltage	2(Low)	V _{IN2}	2	Pin 4,5,6	GND	_	0.8	٧
Input Current		I _{IN}	2	Sink V _{IN} = 3.5V		5	20	μΑ
Input Hysteresis Range		$\triangle V_{T}$	2		_	0.7	-	٧
Saturation Voltage	Upper	V _{SATU-1}	3	$V_{ref}: V_{s}$ Short;Output $-V_{s}$ $I_{o} = 0.2A$	_	0.9	1.3	V
	Lower	V _{SATL-1}	3	$V_{ref}: V_{s}$ Short; Output - GND $I_{o} = 0.2A$		1.1	1.4	٧
	Upper	V _{SATU-2}	3	$V_{ref}: V_{s} Short; Output - V_{s}$ $I_{o} = 0.1A$	_	1.8	2.3	٧
	Lower	V _{SATL-2}	3	V _{ref} : V _S Short;Output — GND I _O = 0.1A	_	2.4	2.9	٧
Output Voltage		V ₀₁	3	$V_{ref} = 10V, I_{O} = 0.5A$	10.7	11	11.8	V
		V ₀₂	3	$V_{ref} = 10V, I_{O} = 1.0A$	10.4	10.7	11.5	٧
Output Tr.	Upper	l _{LU}		V _S =25V	-		50	μΑ
Leakage Current	Lower	ILL		V _S = 25V	_	-	50	μΑ
Diode Forward	Upper	V _{FU}	4	I _F = 1A	0.7	2.2	2.7	٧
Voltage	Lower	V _{FL}	4	I _F = 1A	0.1	1.4	2	٧
Control Supply Current		^l ref	2	V _{ref} = 10V Source type	-	5	30	μΑ

☐ TEST CIRCUITS

1.

2.

☐ TEST CIRCUITS(Continued)

Adjust R $_{\rm L1}$, R $_{\rm L2}$, R $_{\rm L3}$, so that I $_{\rm out}$ may be 0.2A or 1.0A .

