Structuring the Synthesis of Heap-Manipulating Programs

NADIA POLIKARPOVA, UCSD, USA ILYA SERGEY, University College London, UK

Introduction

```
\{x \mapsto a * y \mapsto b\} void swap(loc x, loc y) \{x \mapsto b * y \mapsto a\}
```

Intérêt : Faire avancer l'état de l'art en matiére de synthèse de programmes qui manipulent des pointeurs à partir de spécifications fonctionelles formelles.

Idée Clé : Utiliser la logique de séparation.

Contributions: Synthetic Separation Logic un systeme de preuve.

Et SuSLik leur synthétiseur

Spécifications pour la Synthèse

On utilise ici des tas symboliques.

$$\Sigma; \Gamma; \{\mathcal{P}\} \leadsto \{\mathcal{Q}\}|c$$

- Γ : environnement
- $ightharpoonup \Sigma$: contexte
- $\triangleright \mathcal{P}, \phi, \mathsf{P}$: précondition, ses parties pure et spatiale
- Q, ψ ,Q : postcondition, ses parties pure et spatiale
- $GV(\Gamma, \mathcal{P}, \mathcal{Q}) = Vars(\mathcal{P}) \backslash \Gamma$
- $EV(\Gamma, \mathcal{P}, \mathcal{Q}) = Vars(\mathcal{Q}) \setminus (\Gamma \cup Vars(\mathcal{P}))$

Règles d'Inférence Basiques

Un exemple

$$\begin{split} & \underset{\Gamma}{\text{EMP}} \\ & \text{EV}(\Gamma, \mathcal{P}, Q) = \emptyset \quad \phi \Rightarrow \psi \\ & \Gamma; \left\{ \phi; \text{emp} \right\} \sim \left\{ \psi; \text{emp} \right\} | \text{skip} \end{split}$$

$$\begin{aligned} & \text{READ} \\ & a \in \text{GV}\left(\Gamma, \mathcal{P}, Q\right) \quad y \notin \text{Vars}\left(\Gamma, \mathcal{P}, Q\right) \\ & \Gamma \cup \left\{ y \right\}; \left[y/a \right] \left\{ \phi; (x,t) \mapsto a * P \right\} \sim \left[y/a \right] \left\{ o \right\} | c \\ \hline{\Gamma;} \left\{ \phi; (x,t) \mapsto a * P \right\} \sim \left\{ Q \right\} | \text{let } y = *(x+t); c \end{aligned}$$

$$\begin{aligned} & \text{WRITE} \\ & \text{Vars}\left(e\right) \subseteq \Gamma \\ & \Gamma; \left\{ \phi; (x,t) \mapsto e * P \right\} \sim \left\{ \psi; (x,t) \mapsto e * Q \right\} | c \\ \hline{\Gamma;} \left\{ \phi; (x,t) \mapsto e * P \right\} \sim \left\{ \psi; (x,t) \mapsto e * Q \right\} | c \end{aligned}$$

$$\begin{aligned} & \text{FRAME} \\ & \text{EV}\left(\Gamma, \mathcal{P}, Q\right) \cap \text{Vars}\left(R\right) = \emptyset \\ & \Gamma; \left\{ \phi; P \right\} \rightarrow \left\{ \psi; Q \right\} | c \\ \hline{\Gamma;} \left\{ \phi; P \right\} \rightarrow \left\{ \psi; Q \right\} | c \end{aligned}$$

Fig. 1. Simplified basic rules of SSL.

$$\frac{ \left\{ x,\,y,\,\mathsf{a2},\,\mathsf{b2} \right\};\,\left\{\mathsf{emp}\right\} \leadsto \left\{\mathsf{emp}\right\} }{ c_0 = c_7 } \\ \frac{ \left\{ x,\,y,\,\mathsf{a2},\,\mathsf{b2} \right\};\,\left\{\,y\mapsto\mathsf{a2}\,\right\} \leadsto \left\{\,y\mapsto\mathsf{a2}\,\right\} \right| c_6}{ c_5 = *y = \mathsf{a2};\,c_6} \\ \frac{ \left\{ x,\,y,\,\mathsf{a2},\,\mathsf{b2} \right\};\,\left\{\,y\mapsto\mathsf{b2}\,\right\} \leadsto \left\{\,y\mapsto\mathsf{a2}\,\right\} \right| c_5}{ c_4 = c_5} \\ \left\{ x,\,y,\,\mathsf{a2},\,\mathsf{b2} \right\};\,\left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{b2}\right\} \leadsto \left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{a2}\right\} \right| c_5} \\ \left\{ x,\,y,\,\mathsf{a2},\,\mathsf{b2} \right\};\,\left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{b2}\right\} \leadsto \left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{a2}\right\} \right| c_5} \\ \left\{ x,\,y,\,\mathsf{a2},\,\mathsf{b2} \right\};\,\left\{\,x\mapsto\mathsf{a2}\,\,*y\mapsto\mathsf{b2}\right\} \leadsto \left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{a2}\right\} \right| c_5} \\ \left\{ x,\,y,\,\mathsf{a2},\,\mathsf{b2} \right\};\,\left\{\,x\mapsto\mathsf{a2}\,\,*y\mapsto\mathsf{b2}\right\} \leadsto \left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{a2}\right\} \right| c_2} \\ \left\{ x,\,y,\,\mathsf{a2} \right\};\,\left\{\,x\mapsto\mathsf{a2}\,\,*y\mapsto\mathsf{b}\right\} \leadsto \left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{a2}\right\} \right| c_2} \\ \left\{ x,\,y,\,\mathsf{a3} \right\};\,\left\{\,x\mapsto\mathsf{a2}\,\,*y\mapsto\mathsf{b3}\right\} \leadsto \left\{\,x\mapsto\mathsf{b2}\,\,*y\mapsto\mathsf{a3}\right\} \right| c_1} \\ \left\{ x,\,y,\,\mathsf{a3} \right\};\,\left\{\,x\mapsto\mathsf{a3}\,\,*y\mapsto\mathsf{b4}\right\} \mapsto \left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \right| c_2} \\ \left\{ x,\,y,\,\mathsf{b4} \right\};\,\left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \mapsto \left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \right| c_2} \\ \left\{ x,\,y,\,\mathsf{b4} \right\};\,\left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \mapsto \left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \right| c_2} \\ \left\{ x,\,y,\,\mathsf{b4} \right\};\,\left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \mapsto \left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \right| c_3} \\ \left\{ x,\,y,\,\mathsf{b4} \right\};\,\left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \mapsto \left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \right| c_3} \\ \left\{ x,\,y,\,\mathsf{b4} \right\};\,\left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \mapsto \left\{\,x\mapsto\mathsf{b4}\,\,*y\mapsto\mathsf{b4}\right\} \right| c_3} \\ \left\{ x,\,y,\,y,\,z\mapsto\mathsf{b4}\right\}$$

Fig. 2. Derivation of swap (x,y) as c_1 .

Règles d'Inférence Basiques

- EMP terminale, parties spatiales vide, $\mathit{EV} = \emptyset$, $\phi \implies \psi$ skip
- READ assigne la valeur d'une GV a une nouvelle variable de programme et substitue toutes les occurences. let b = *x
- WRITE assigne l'évaluation d'une expression e à une case mémoire. *x = b
- FRAME Enlève une partie spatiale commune à ϕ et ψ , si cela ne crée pas de variable existentielle. skip

Unification Spatiale et Backtrack

Raisonner sur les contraintes pures

Préconditions

Raisonner sur les contraintes pures

Postconditions

Mémoire dynamique

Synthèse pour prédicats inductifs Induction

mauctic

Déroulement de prédicat

Etiquette de niveau

Déroulement dans la postcondition

Permettre l'appel de procèdure

Enlévement de l'appel

```
Variable x,y Alpha-numeric identifiers

Value d Theory-specific atoms

Offset \iota Non-negative integers

Expression e:=d\mid x\mid e=e\mid e\land e\mid \neg e\mid \dots

Command c:=\det x=*(x+\iota)\mid *(x+\iota)=e\mid

\sinh | error \mid magic \mid

\inf (e) \{c\} \text{ else } \{c\}\mid f(\overline{e_i})\mid c; c

Type t:=\log | \inf | bool | \sec

Fun. dict. \Delta := \epsilon\mid \Delta, f(\overline{t_i},\overline{t_i})\mid \{c\}
```

Fig. 10. Programming language grammar.

```
Pure assertion \phi, \psi, \xi, \chi := e

Symbolc heap P, Q, R := emp \mid \langle e, \iota \rangle \mapsto e \mid [x, n] \mid p(\overline{x_i}) \mid P * Q

Assertion \mathcal{P}, Q ::= \{\phi, P\}

Heap predicate \mathcal{D} ::= p(\overline{x_i}) \overline{\langle \xi_j, \{\chi_j, R_j\} \rangle}

Function spec \mathcal{F} ::= f(\overline{x_i}) : \{\mathcal{P}\}\{Q\}

Environment \Gamma := \epsilon \mid \Gamma, x

Context \Sigma := \epsilon \mid \Sigma, \mathcal{D} \mid \Sigma, \mathcal{F}
```

Fig. 11. SSL assertion syntax.

Induction

$$\begin{split} \frac{f \triangleq \text{goal's name}}{\overline{x_i} \triangleq \text{goal's formals}} \\ P_f \triangleq p^1(\overline{y_i}) * \{P\} & Q_f \triangleq [Q] \\ \mathcal{F} \triangleq f(\overline{x_i}) : \{\phi_f; P_f\} \{\psi_f; Q_f\} \\ \mathcal{\Sigma}, \mathcal{F}; \Gamma; \{\phi; p^0(\overline{y_i}) * P\} \leadsto \{Q\} \} c \\ \hline{\mathcal{\Sigma}; \Gamma; \{\phi; p^0(\overline{y_i}) * P\} \leadsto \{Q\} \} c} \end{split}$$

ЕМР

$$\frac{\mathsf{EV}(\Gamma, \mathcal{P}, Q) = \emptyset \qquad \phi \Rightarrow \psi}{\Gamma; \{\phi; \mathsf{emp}\} \rightarrow \{\psi; \mathsf{emp}\} | \mathsf{skip}}$$

Inconsistency $\phi \Rightarrow \bot$

$$\frac{\tau}{\Gamma; \ \{\phi; P\} \rightsquigarrow \{Q\} | \text{error}}$$

NullNotLVal

NOLINGILVAL
$$x \neq 0 \notin \phi \qquad \phi' \triangleq \phi \land x \neq 0$$

$$\Sigma; \Gamma; \{\phi'; \langle x, \iota \rangle \mapsto e * P\} \rightsquigarrow \{Q\} | c$$

$$\Sigma; \Gamma; \{\phi; \langle x, \iota \rangle \mapsto e * P\} \rightsquigarrow \{Q\} | c$$

SubstLeft

$$\frac{\phi \Rightarrow x = y}{\Gamma; [y/x]\{\phi; P\} \leadsto [y/x]\{Q\} \mid c} \frac{\Gamma; [y/x]\{\phi; P\} \leadsto [Q] \mid c}{\Gamma; \{\phi; P\} \leadsto \{Q\} \mid c}$$

STARPARTIAL

$$\begin{array}{ll} x+\iota\neq y+\iota'\notin\phi & \phi'\triangleq\phi\wedge(x+\iota\neq y+\iota')\\ \Sigma;\Gamma;\left\{\phi';\langle x,\iota\rangle\mapsto e*\langle y,\iota'\rangle\mapsto e'*P\right\}\leadsto\{Q\}\big|\,c\\ \overline{\Sigma};\Gamma;\left\{\phi;\langle x,\iota\rangle\mapsto e*\langle y,\iota'\rangle\mapsto e'*P\right\}\leadsto\{Q\}\big|\,c \end{array}$$

Open

$$\begin{split} \mathcal{D} &\triangleq p(\overline{x_l}) \Big\langle \xi_f, \left\{ \chi_f, R_f \right\} \Big\rangle_{f \in 1, \dots, N} \in \Sigma \\ \ell &< \mathsf{MaxUnfold} \quad \sigma \triangleq \left[\overline{x_i} \mapsto y_i \right] \quad \mathsf{Vars}\left(\overline{y_i} \right) \subseteq \Gamma \\ \phi_j &\triangleq \phi \land [\sigma] \xi_f \land [\sigma] \chi_f \quad P_j \triangleq \left[[\sigma] R_f \right]^{\ell+1} * \left[P \right] \\ \forall j \in 1, \dots, N, \quad \Sigma; \Gamma; \left\{ \phi_j; P_f \right\} \leadsto \left\{ Q \right\} \Big| c_j \\ c &\triangleq \mathsf{if}\left([\sigma] \xi_1 \right) \{ c_1 \; \mathsf{else} \; \left\{ \mathsf{if}\left([\sigma] \xi_2 \right) \dots \mathsf{else} \; \left\{ c_N \right\} \right\} \end{split}$$

$$\Sigma; \Gamma; \left\{ \phi; P * p^{\ell}(\overline{y_i}) \right\} \rightsquigarrow \{Q\} \mid c$$

READ

$$\begin{aligned} &a \in \mathsf{GV}(\varGamma, \mathcal{P}, Q) & y \notin \mathsf{Vars}(\varGamma, \mathcal{P}, Q) \\ &\varGamma \cup \{y\}; [y/a]\{\phi; \langle x, \iota \rangle \mapsto a * P\} \leadsto [y/a]\{Q\}|c \\ &\Sigma; \varGamma; \{\phi; \langle x, \iota \rangle \mapsto a * P\} \leadsto \{Q\}| \mathsf{let} \ y = *(x + \iota); c \end{aligned}$$

CLOSE

$$\begin{split} & \text{AbduceCall} \\ & \mathcal{F} \triangleq f(\overline{x_i}) : \left\{ \phi_f ; P_f * F_f \right\} \left\{ \psi_f ; Q_f \right\} \in \Sigma \\ & F_f \text{ has no predicate instances} \quad [\sigma] P_f = P \\ & F_f \neq \text{emp} \quad F' \triangleq [\sigma] F_f \qquad \Sigma; \Gamma; \left\{ \phi; F \right\} \leadsto \left\{ \phi; F' \right\} \left| c_1 \right. \\ & \qquad \qquad \Sigma; \Gamma; \left\{ \phi; P * F * R \right\} \leadsto \left\{ Q \right\} \right| c_2 \\ & \qquad \qquad \qquad \Sigma : \Gamma; \left\{ \phi; P * F * R \right\} \leadsto \left\{ Q \right\} \left| c_1; c_2 \right. \end{split}$$

ALLOC

$$R = [z, n] * *_{0 \le i \le n} (\langle z, i \rangle \mapsto e_i) \quad z \in EV(\Gamma, \mathcal{P}, Q)$$
$$(\{y\} \cup \{\overline{t_i}\}) \cap Vars(\Gamma, \mathcal{P}, Q) = \emptyset$$
$$R' \triangleq [y, n] * *_{0 \le i \le n} (\langle y, i \rangle \mapsto t_i)$$
$$\Sigma; \Gamma; \{\phi; P * R'\} \rightarrow \{\psi; Q * R\} | c$$

$$\varSigma; \varGamma; \: \{\phi; P\} \! \leadsto \! \{\psi; Q*R\} | \: \mathsf{let} \: y = \mathsf{malloc}(n); c$$

Call

$$\mathcal{F} \triangleq f(\overline{x_i}) : \{\phi_f; P_f\} \{\psi_f; Q_f\} \in \Sigma$$

$$R = {}^{\ell} [\sigma] P_f \qquad \phi \Rightarrow [\sigma] \phi_f$$

$$\phi' \triangleq [\sigma] \psi_f \qquad R' \triangleq [[\sigma] Q_f] \qquad \overline{e_i} = [\sigma] \overline{x_i}$$

$$\forall \text{vars} (\overline{e_i}) \subseteq \Gamma \qquad \Sigma; \Gamma; \{\phi \land \phi'; P * R'\} \hookrightarrow \{Q\} | c$$

$$\Sigma; \Gamma; \{\phi : P * R\} \hookrightarrow \{Q\} | f(\overline{e_i}); c$$

FREE

$$R = [x, n] * *_{0 \le i \le n} (\langle x, i \rangle \mapsto e_i)$$

$$\underbrace{\mathsf{Vars}(\{x\} \cup \{\overline{e_i}\}) \subseteq \Gamma}_{\Sigma; \Gamma; \{\phi; P\} \leadsto \{Q\} \mid C} \{Q\} \mid c$$

$$\underbrace{\Sigma; \Gamma; \{\phi; P * R\} \leadsto \{Q\} \mid \mathsf{free}(n); c}$$

WRITE

$$Vars(e) \subseteq \Gamma \qquad \Gamma; \ \{\phi; \langle x, \iota \rangle \mapsto e * P\} \leadsto \{\psi; \langle x, \iota \rangle \mapsto e * Q\} | c$$

$$\Gamma; \{\phi; \langle x, \iota \rangle \mapsto e' * P\} \leadsto \{\psi; \langle x, \iota \rangle \mapsto e * O\} | *(x + \iota) = e; c$$

UNIFYHEAPS

$$[\sigma]R' = R$$
 frameable (R') $\emptyset \neq \text{dom}(\sigma) \subseteq \text{EV}(\Gamma, \mathcal{P}, \mathcal{Q})$

UNIFYPURE

 $[\sigma]\psi' = \phi'$

 $\emptyset \neq \text{dom}(\sigma) \subseteq \text{EV}(\Gamma, \mathcal{P}, Q)$

 Γ ; $\{\mathcal{P}\} \sim [\sigma]\{Q\} | c$

 Γ ; $\{\phi \land \phi'; P\} \rightsquigarrow \{\psi \land \psi'; Q\} | c$

 Γ ; $\{P * R\} \sim [\sigma] \{\psi; Q * R'\} | c$ Γ ; $\{\phi; P * R\} \sim \{\psi; Q * R'\} | c$

Ріск $y \in EV(\Gamma, \mathcal{P}, Q)$

 $Vars(e) \in \Gamma \cup GV(\Gamma, \mathcal{P}, Q)$ Γ ; $\{\phi; P\} \sim [e/y] \{\psi; Q\} | c$

 $\Gamma: \{\phi: P\} \rightarrow \{\psi: O\} \mid c$

FRAME

$$\mathsf{EV}(\Gamma, \mathcal{P}, \mathcal{Q}) \cap \mathsf{Vars}(R) = \emptyset$$

frameable (R') Γ ; $\{\phi; P\} \sim \{\psi; Q\} | c$ Γ ; $\{\phi; P * R\} \sim \{\psi; O * R\} \mid c$

SUBSTRIGHT $x \in EV(\Gamma, \mathcal{P}, Q)$

 $\Sigma; \Gamma; \{\mathcal{P}\} \sim [e/x] \{\psi, Q\} | c$

 $\overline{\Sigma : \Gamma : \{\mathcal{P}\}} \sim \{\psi \land x = e; Q\} | c$

La validité pour la partie SL est assez similaire au cas plus classique.

- $\bullet \ \, \langle h,s\rangle \vDash^{\varSigma}_{I} \{\phi; \mathrm{emp}\} \ \mathit{iff} \ \llbracket \phi \rrbracket_{s} = \mathrm{true} \ \mathrm{and} \ \mathrm{dom} \, (h) = \emptyset. \\ \bullet \ \, \langle h,s\rangle \vDash^{\varSigma}_{I} \{\phi; [x,n]\} \ \mathit{iff} \ \llbracket \phi \rrbracket_{s} = \mathrm{true} \ \mathrm{and} \ \mathrm{dom} \, (h) = \emptyset.$
- $\langle h, s \rangle \models_{\mathcal{T}}^{\Sigma} \{ \phi; \langle e_1, \iota \rangle \mapsto e_2 \}$ iff $\llbracket \phi \rrbracket_s = \text{true and dom}(h) = \llbracket e_1 \rrbracket_s + \iota \text{ and } h(\llbracket e_1 \rrbracket_s + \iota) = \llbracket e_2 \rrbracket_s$.
- $\langle h, s \rangle \models_{\mathcal{T}}^{\Sigma} \{ \phi; P_1 * P_2 \}$ iff $\exists h_1, h_2, h = h_1 \cup h_2$ and $\langle h_1, s \rangle \models_{\mathcal{T}}^{\Sigma} \{ \phi; P_1 \}$ and $\langle h_2, s \rangle \models_{\mathcal{T}}^{\Sigma} \{ \phi; P_2 \}$.
- $\langle h, s \rangle \models_{I}^{\Sigma} \{ \phi; p(\overline{x_{i}}) \}$ iff $\llbracket \phi \rrbracket_{s} = \text{true and } \mathcal{D} \triangleq p(\overline{x_{i}}) \overline{\left\langle \xi_{j}, \left\{ \chi_{j}, R_{j} \right\} \right\rangle} \in \Sigma \text{ and } \left\langle h, \overline{\llbracket x_{i} \rrbracket_{s}} \right\rangle \in I(\mathcal{D}).$

Definition 3.1 (Sized validity). We say a specification Σ ; Γ ; $\{P\}$ c $\{Q\}$ is n-valid wrt. the function dictionary Δ whenever for any h, h', s, s' such that

- $|h| \leq n$,
- Δ ; $\langle h, (c, s) \cdot \epsilon \rangle \rightsquigarrow^* \langle h', (\text{skip}, s') \cdot \epsilon \rangle$, and
- dom $(s) = \Gamma$ and $\exists \sigma_{gv} = [\overline{x_i \mapsto d_i}]_{x_i \in GV(\Gamma, \mathcal{P}, Q)}$ such that $\langle h, s \rangle \models_I^{\Sigma} [\sigma_{gv}] \mathcal{P}$, it is the case that $\exists \sigma_{ev} = [\overline{y_j \mapsto d_j}]_{y_j \in EV(\Gamma, \mathcal{P}, Q)}$, such that $\langle h', s' \rangle \models_I^{\Sigma} [\sigma_{ev} \cup \sigma_{gv}] Q$

On définit une correction vis à vis de la pré et post condition mais seulement pour des tas de taille n.

Definition 3.2 (Coherence). A dictionary Δ is n-coherent wrt. a context Σ (coh (Δ, Σ, n)) iff

- $\Delta = \epsilon$ and functions(Σ) = ϵ , or
- $\Delta = \Delta'$, $f(\overline{t_i x_i}) \{ c \}$, and $\Sigma = \Sigma'$, $f(\overline{x_i}) : \{ \mathcal{P} \} \{ Q \}$, and $\operatorname{coh}(\Delta', \Sigma', n)$, and Σ' ; $\{ \overline{x_i} \} ; \{ \mathcal{P} \} c \{ Q \}$ is n-valid wrt. Δ' , or
- $\Delta = \Delta'$, $f(\overline{t_i x_i})$ { c }, and $\Sigma = \Sigma'$, $f(\overline{x_i})$: $\{\phi; [P] * p^1(\overline{e_i})\}\{[Q]\}$, and $coh(\Delta', \Sigma', n)$, and Σ ; $\{\overline{x_i}\}$; $\{[P] * p^1(\overline{e_i})\}$ c $\{[Q]\}$ is n'-valid wrt. Δ for all n' < n.

Theorem 3.3 (Soundness of SSL). For any n, Δ' , if

- (i) Σ' ; Γ ; $\{P\} \rightarrow \{Q\} \mid c$ for a goal named f with formal parameters $\Gamma \triangleq \overline{x_i}$, and
- (ii) Σ' is such that $coh(\Delta', \Sigma', n)$, and
- (iii) for all $p^0(\overline{e_i})$, ϕ ; P, such that $\{P\} = \{\phi; p^0(\overline{e_i}) * P\}$, taking $\mathcal{F} \triangleq f(\overline{x_i}) : \{\phi; p^1(\overline{e_i}) * [P]\} \{ [Q] \}$, Σ' , \mathcal{F} ; Γ ; $\{P\}$ c $\{Q\}$ is n'-valid for all n' < n wrt. $\Delta \triangleq \Delta'$, f $(\overline{t_i} \ \overline{x_i}) \{ c \}$,

then Σ' ; Γ ; $\{\mathcal{P}\}$ c $\{Q\}$ is n-valid wrt. Δ .

PROOF. By the top-level induction on n and by inner induction on the structure of derivation $\Sigma'; \Gamma; \{\mathcal{P}\} \to \{Q\} | c$. We refer the reader to Appendix A for the details.

Algorithme de synthèse basé sur SSL

Optimisations:

Règles inversibles

Optimisations:

- Règles inversibles
- ► Recherche multi-phase

Optimisations:

- Règles inversibles
- ► Recherche multi-phase
- Rèduction des symétries

Optimisations:

- Règles inversibles
- ► Recherche multi-phase
- Rèduction des symétries
- Règles d'échec

Optimisations:

- Règles inversibles
- ► Recherche multi-phase
- Rèduction des symétries
- ▶ Règles d'échec

Extensions:

Fonctions auxilliaire

Optimisations:

- Règles inversibles
- Recherche multi-phase
- Rèduction des symétries
- ▶ Règles d'échec

Extensions:

- Fonctions auxilliaire
- Enlèvement de branches

Benchmark

Group	Description	Code	Code/Spec	Time	T-phase	T-inv	T-fail	T-com	T-all	T-IS
Integers	swap two	12	0.9x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	min of two ²	10	0.7x	0.1	0.1	0.1	< 0.1	0.1	0.2	
Linked List	length ^{1,2}	21	1.2x	0.4	0.9	0.5	0.4	0.6	1.4	29x
	max ¹	27	1.7x	0.6	0.8	0.5	0.4	0.4	0.8	20x
	min ¹	27	1.7x	0.5	0.9	0.5	0.4	0.5	1.2	49x
	singleton ²	11	0.8x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	dispose	11	2.8x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	initialize	13	1.4x	< 0.1	0.1	0.1	< 0.1	0.1	< 0.1	
	copy ³	35	2.5x	0.2	0.3	0.3	0.1	0.2	-	
	append ³	19	1.1x	0.2	0.3	0.3	0.2	0.3	0.7	
	delete ³	44	2.6x	0.7	0.5	0.3	0.2	0.3	0.7	
Sorted list	prepend ¹	11	0.3x	0.2	1.4	83.5	0.1	0.1	-	48x
	insert1	58	1.2x	4.8	-	-	-	5.0	-	6x
	insertion sort ¹	28	1.3x	1.1	1.8	1.3	1.2	1.2	74.2	82x
Tree	size	38	2.7x	0.2	0.3	0.2	0.2	0.2	0.3	
	dispose	16	4.0x	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	copy	55	3.9x	0.4	49.8	-	0.8	1.4	-	
	flatten w/append	48	4.0x	0.4	0.6	0.5	0.4	0.4	0.6	
	flatten w/acc	35	1.9x	0.6	1.7	0.7	0.5	0.6	-	
BST	insert1	58	1.2x	31.9	-	-	-	-	-	11x
	rotate left ¹	15	0.1x	37.7	-	-	-	-	-	0.5x
	rotate right ¹	15	0.1x	17.2	_	-	-	-	-	0.8x