PHYSICS OF THE UNIVERSE

END SEM EXAM April 2015

Duration: 03Hours

Total questions: 04

Total Marks: 50

NOTE: PLEASE BOX ALL IMPORTANT STEPS & DOUBLE BOX ALL FINAL ANSWERS.

Q 1. Relativity

[18 points]

Consider the following expression for the metric $g_{\mu
u}$ which describes the geometry outside a Black Hole of mass M:

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}Sin^{2}\theta \ d\phi^{2}$$

Note: M is the mass of the Black Hole and is a constant. (t,r,θ,ϕ) are the coordinates.

For this metric, determine the following connection coefficient $\Gamma_{\beta\mu}^{\gamma}$.

You may use the expression :
$$\Gamma_{\beta\mu}^{\gamma} = \frac{1}{2}g^{\alpha\gamma}(\frac{\partial g_{\alpha\beta}}{\partial x^{\mu}} + \frac{\partial g_{\alpha\mu}}{\partial x^{\beta}} - \frac{\partial g_{\beta\mu}}{\partial x^{\alpha}})$$

(i)
$$\Gamma_{rt}^t$$

(ii)
$$\Gamma_{rr}^r$$

(iii)
$$\Gamma_{tt}^r$$

(iv)
$$\Gamma_{\theta\theta}^{r}$$

(v)
$$\Gamma^r_{\phi\phi}$$

(vi)
$$\Gamma_{\theta r}^{\theta}$$

(vii)
$$\Gamma^{\phi}_{\phi r}$$

(viii)
$$\Gamma^{\phi}_{\theta\phi}$$

(ix)
$$\Gamma_{\phi\phi}^{\theta}$$

Q 2. Thermodynamics

[12 points]

(a) Evaluate the energy density, ρ , of a gas of particles in the high temperature limit (T >> $m, T >> \mu$).

You may use the expression for

$$\rho = \frac{g}{2\pi^2} \int_{m}^{\infty} \frac{[(E^2 - m^2)^{1/2}]E^2 dE}{\exp\left[\frac{(E - \mu)}{T}\right] \pm 1}$$

Express the result in the form:

$$\rho = AgT^n$$

What is the value of n?

(b) Evaluate the number density, n, of a gas of particles in the high T limit (T >> m, T >> μ). You may use the expression:

$$n = \frac{g}{2\pi^2} \int_{m}^{\infty} \frac{[(E^2 - m^2)^{1/2}]E \ dE}{\exp\left[\frac{(E - \mu)}{T}\right] \pm 1}$$

Express the result in the form:

$$n = BgT^m$$

What is the value of m?

(c) Evaluate the pressure P of a gas of particles in the high T limit (T >> m, T >> μ).

You may use the expression for:

$$P = \frac{g}{6\pi^2} \int_{m}^{\infty} \frac{[(E^2 - m^2)^{3/2}] dE}{\exp\left[\frac{(E - \mu)}{T}\right] \pm 1}$$

Express the result as

$$P = CgT^q$$

What is the value of q?

(d) For the high temperature limit, if we express the relationship between the energy density ρ and pressure P as

$$P = \omega \rho$$

then what is the value of ω ?

(e) At the same values of T and g, the ratio of energy densities of Bosons to Fermions,

$$\frac{
ho(Boson)}{
ho(Fermion)} > 1$$
 : is this true (T) or false (F) ? Why?

(f) At the same values of T and g, the ratio of the number density, n of Bosons & Fermions, obeys the relationship: $\frac{n(Boson)}{n(Fermion)} > 1$: is this true (T) or fales (F)? Why?

Q 3. History of the Universe

[12 points]

After the Quark Hadron Phase Transition, the only particle species left in large numbers are the pions (π^+, π^-, π^0) , muons (μ^+, μ^-) , electrons (e^-, e^+) , neutrinos & the photons.

- (a) Determine the effective degrees of freedom, g_* , corresponding to photons (γ). (They are massless spin 1 particles.)
- (b) Determine the g_{st} corresponding to e^+ and e^- . (They are spin $^1\!/_2$ particles.)
- (c) Determine the g_* corresponding to μ^+ and μ^- . (They are spin $^1\!/_2$ particles.)
- (d) Determine the g_* corresponding to neutrinos $(\nu_e,\bar{\nu}_e,\nu_\mu,\bar{\nu}_\mu,\nu_\tau,\bar{\nu}_\tau)$. Take these to be massless spin $\frac{1}{2}$ particles as per the Standard Model of Particle Physics.
- (e) Determine the g_* corresponding to the pions $(\pi^+,\pi^-\&\pi^0)$. These are spin 0 particles.

(f) The g_{*} before the Quark Hadron Transition was 61.75. How many effective degrees of freedom g_{*} , disappeared in the Quark Hadron Phase Transition.

Q4. Evolution of the Universe

[8 points]

A solution of the Friedmann Equations determining the evolution of the Universe can be written down in the form :

$$R = \frac{(1 - \cos\theta)\Omega_0}{2(\Omega_0 - 1)}$$

and

$$H_0t = (\theta - \sin\theta) \times \frac{\Omega_0}{2(\Omega_0 - 1)^{3/2}}$$

where, R is the scale factor of the Universe, H_0 is the Hubble Constant, $\Omega_0 = \frac{\rho_0}{\rho_{critical}}$ and θ is the parameter in the above parametric solution. (The time changes as θ changes.)

- (a) Determine the maximum size of the Universe and express it in terms of Ω_0 .
- (b) What is the value of time or the age of the Universe when the Universe reaches its maximum size? Express the answer in terms of H_0 and Ω_0 . Call this time t_{MAX} .
 - (c) What is the value of time or the age of the Universe at which the Universe re-collapses to zero size. [Note this time should not be 0.] Express this in terms of H_0 and Ω_0 . Call this time t_{CRUNCH} .
 - (d) What is the equation relating t_{CRUNCH} to t_{MAX} . Express this in the simplest relationship possible.