6.1 - Work Done by a Constant Force

Tuesday, January 2, 2018 9:34 PM

- Work transferring energy (ex. Pushing a car)
- Two essential elements: force and displacement

- \circ Diagram shows constant pushing force, \vec{F}
- \circ Displacement, \vec{s} points in same direction
- Customary to use *s* instead of *x* when dealing with displacement and work.
- \circ In this case, work is defined as magnitude F of the force times the magnitude S of the displacement. W = FS
- Work is the same regardless of direction, i.e. it's a scalar quantity.
- Units: unit of force times the unit of distance -> newton times meter.
 - SI: Nm -> Joule (J)
 - o CGS: erg
 - BE: ft * lb
- If the object does not move, the force acting on the object does no work.

- What if the force isn't the same direction as the displacement?
 - \circ In the image, displacement is parallel to floor but force is applied at an angle relative to the ground, θ .
 - o In this case, only the component of F that's the **same direction** as displacement is doing work. That's F_{χ} , in this case the angle is adjacent to the horizontal, so we use cosine (*SOH CAH TOA*).
 - \circ Therefore, the equation is $W = (F \cos \theta)s$
- To do work, there **must** be a force *and* a displacement.
 - Suppose there's a perpendicular force. If there's no displacement in the perpendicular direction, the force does no work. Makes sense: cos(90) = 0, so W = 0!
- Work can be either positive or negative.
 - o Positive work: force and displacement go in the **same** direction.
 - Negative work: force and displacement go in **opposite** directions.
 - Example: lifting weights.
 - When pushing weight up, angle between force and displacement is 0. cos(0) = 1, so W
 = Fs
 - When lowering the weight, angle between force and displacement is 180, because they're opposite. cos(180) = -1, so W = -Fs (note the negative!)

- What about static friction? Oh boy.
 - The crate doesn't slip when the truck is moved, so that means static friction is playing a role.
 - $\circ\quad \mbox{W}$ and \emph{F}_n are perpendicular to the displacement, so they do no work.
 - Static friction is in the same direction as the displacement. This is the net force, so to find the net work, all we have to do is solve for that!

$$f_s = ma = (120kg)(1.5 m/s^2) = 180N$$

$$W = (f_s \cos 0)(65m) = 1.2 * 10^4 J$$