Lineare Algebra II Repetitorium Übungen, Tag 4

Jendrik Stelzner

22. September 2016

Übung 1.

Es seien V und W zwei endlichdimensionale K-Vektorräume und $\beta\colon V\times V\to K$ und $\gamma\colon V\times V\to K$ zwei nicht-entartete symmetrische Bilinearformen. Es seien $\Phi_V\colon V\to V^*,$ $v\mapsto \beta(-,v)$ und $\Phi_W\colon W\to W^*,$ $w\mapsto \gamma(-,w)$. Zudem sei $f\colon V\to W$ ein K-lineare Abbildung und $f^T\colon W^*\to V^*,$ $\psi\mapsto \psi\circ f$ die duale Abbildung.

1. Zeigen Sie, dass eine Abbildung $f^* \colon W \to V$ das Diagramm

$$\begin{array}{ccc}
W & \xrightarrow{f^*} & V \\
 & \downarrow & \downarrow \\
 & \downarrow & \downarrow \\
W^* & \xrightarrow{f^T} & V^*
\end{array}$$

genau dann zum kommutieren bringt, wenn

$$\gamma(f(v), w) = \beta(v, f^*(w))$$
 für alle $v \in V, w \in W$.

2. Zeigen Sie, dass es genau eine Abbildung f^* gibt, die das obige Diagramm zum kommutieren bringt, und dass diese K-linear ist.

Übung 2.

Es sei V ein K-Vektorraum, $\beta \colon V \times V \to K$ eine symmetrische Bilinearform und $q \colon V \to K$, $v \mapsto \beta(v,v)$ die zugehörige quadratische Form.

1. Zeigen Sie für $char(K) \neq 2$, dass

$$\beta(v_1, v_2) = \frac{q(v_1 + v_2) - q(v_1) - q(v_2)}{2}$$
 $v_1, v_2 \in V$.

2. Zeigen Sie für $\mathrm{char}(K) \neq 2, V \neq 0$ und β nicht-entartet, dass es ein $v \in V$ mit $q(v) \neq 0$ gibt.

3. Zeigen Sie durch Angabe eines expliziten Beispiels, dass es im Fall char(K)=2 verschiedene symmetrische Bilinearformen mit gleicher quadratischer Form geben kann.

Übung 3.

Es seien

$$A_1 := \begin{pmatrix} 4 & 3 \\ 3 & 4 \end{pmatrix}, A_2 := \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix}, A_3 := \begin{pmatrix} 3 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 1 \end{pmatrix}, A_4 := \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

- 1. Bestimmen Sie jeweils eine orthogonale Martix $O_i \in O(n)$, so dass $O_i^T A_i O_i$ in Diagonalgestalt vorliegt.
- 2. Entschieden Sie für die nicht-entarteten Fälle jeweils, ob es sich bei der Menge

$$H_i := \{x \in \mathbb{R}^{n_i} \mid x^T A_i x = 10\}$$

um eine Ellipse oder eine Hyperbel bzw. um ein Ellipsoid oder ein einschaliges oder zweischaliges Hyperboloid handelt. Geben Sie jeweils die Länge der entsprechenden Hauptachsen an.

Übung 4.

Entscheiden Sie, welche der folgenden Aussagen für jeden reellen Vektorraum V und jede symmetrische Bilinearform $\langle -, - \rangle : V \times V \to \mathbb{R}$ mit $\beta \neq 0$ gilt. Geben Sie gegebenenfalls ein Gegenbeispiel.

- 1. Ist $\langle v, v \rangle \geq 0$ für alle $v \in V$, so ist $\langle -, \rangle$ ein Skalarprodukt.
- 2. Ist $\mathcal{B}\subseteq V$ eine Basis von V mit $\langle v_1,v_2\rangle>0$ für alle $v_1,v_2\in\mathcal{B}$, so ist $\langle -,-\rangle$ ein Skalarprodukt.
- 3. Die Teilmengen

$$U_{+} := \{v \in V \mid \langle v, v \rangle \geq 0\} \quad \text{und} \quad U_{-} := \{v \in V \mid \langle v, v \rangle \leq 0\}$$

sind Untervektorräume von V.

- 4. Für alle Untervektorräume $U_1, U_2 \subseteq V$ gilt $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$.
- 5. Die Teilmenge $U_0 := \{v \in V \mid \langle v, v \rangle = 0\}$ ist ein Untervektorraum von V.
- 6. Ist $\dim V < \infty$, so gilt $\dim V = \dim U + \dim U^{\perp}$ für jeden Untervektorraum $U \subseteq V$.
- 7. Ist $U \subseteq V$ ein Untervektorraum mit $(U^{\perp})^{\perp} = V$, so ist U = V.

Übung 5.

Es sei $n\geq 1.$ Es seien

$$S_+ := \{ A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = A \}$$

der Vektorraum der symmetrischen reellen Matrizen und

$$S_{-} \coloneqq \{ A \in \mathsf{M}_{n}(\mathbb{R}) \mid A^{T} = -A \}$$

der Vektorraum der schiefsymmetrischen reellen Matrizen.

- 1. Zeigen Sie, dass $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ für alle $A, B \in \operatorname{M}_n(\mathbb{R}).2$
- 2. Zeigen Sie, dass $\sigma \colon \mathrm{M}_n(\mathbb{R}) \times \mathrm{M}_n(\mathbb{R}) \to \mathbb{R}$ mit

$$\sigma(A,B) \coloneqq \operatorname{tr}(AB) \quad \text{für alle } A,B \in \operatorname{M}_n(\mathbb{R})$$

eine symmetrische Bilinearfom ist.

- 3. Zeigen Sie, dass $M_n(\mathbb{R}) = S_+ \oplus S_-$.
- 4. Zeigen Sie, dass S_+ und S_- orthogonal zueinander bezüglich σ sind.
- 5. Zeigen Sie, dass die Einschränkung $\sigma|_{S_+\times S_+}$ positiv definit ist, und dass die Einschränkung $\sigma|_{S_-\times S_-}$ negativ definit.
- 6. Bestimmen Sie eine Basis $\mathcal C$ von $\mathrm{M}_2(\mathbb R)$, so dass $\mathrm{M}_{\mathcal C}(\sigma)$ in Diagonalgestalt ist und 1,-1,0 die einzigen möglichen Diagonaleinträge sind.

Lösung 3.

Dritte Matrix: $T^3 - 6T^2 + 3T + 10$, Nullstellen -1, 2, 5. Eigenvektoren:

$$\begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

Vierte Matrix: $T^3 - 6T^2 + 9T = T(T-3)^2$. Eigenvektoren (nicht orthogonal):

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$