Computational Connection Matrix Theory

...toward new tools in applied topology

workflows

persistent homology paradigm

Data Structures

graded complexes

X cellular complex (Lefschetz, CW)

 (X, \leq) face poset

 \mathbb{R} poset

an order preserving map (X, \leq) $\xrightarrow{\nu}$ (\mathbb{R}, \leq) filters X via pre-images of downsets

 $u^{-1}(-\infty,a]$ is a subcomplex of **X** the collection $\{\nu^{-1}(-\infty,a]\}_{a\in\mathbb{R}}$ is a filtration

 $U \subseteq \mathbb{R}$ is a down-set if the following holds: $x \in U$ and $y \leq x$ implies $y \in U$

X cellular complex (Lefschetz, CW)

 (X, \leq) face poset

P poset

an order preserving map
$$(X, \leq)$$
 $\xrightarrow{\nu}$ (P, \leq)

filters X via pre-images of downsets

 $\{\nu^{-1}(U)\}_{U\in O(P)}$ is a lattice of subcomplexes

the lattice of down sets O(P) is

$$O(P) := \{ U \subset P : U \text{ is a downset} \} \land := \cap \lor := \cup$$

$$\wedge := \cap \quad \vee := \cup$$

X cellular complex (Lefschetz, CW)

 (X, \leq) face poset

P poset

Definition (P-graded cell complex)

X, P, and a poset morphism ν from X to P

$$(X, \leq) \xrightarrow{\nu} (P, \leq)$$

a graded cell complex determines

a P-graded chain complex $(C(X), \partial)$

boundary map is P-graded

 $\partial_{pq} \neq 0 \implies p \leq q$

$$C(\mathsf{X}) = \bigoplus_{\in \mathsf{P}} C(\nu^{-1}(p))$$

upper triangular wrt P

for a graded chain complex
$$C(X) = \bigoplus_{p \in P} C(\nu^{-1}(p))$$

structure is determined by the fibers of ν

Definition (cyclic P-graded complex)

P-graded complex with cyclic fibers

$$\partial_{pp} = 0$$
 for \boldsymbol{p} in \boldsymbol{P}

'small' objects

i.e. ∂ is strictly upper triangular wrt **P**

goal: replace graded complex with equivalent cyclic graded complex

Categories

goal: homologically-faithful data compression

category GCh(P) of P-graded chain complexes morphisms: P-graded chain maps

homotopy category **GK(P)** of **P**-graded chain complexes localize about graded chain equivalences

interpretation of connection matrix for data analysis:

a *Conley complex* is a cyclic representative of isomorphism class in **GK(P)** the boundary operator of a Conley complex is a *connection matrix*

moral: homotopy categories for chain-level data compression without loss of homological information

subcategory $GK_0(P)$ of cyclic P-graded complexes

$$\mathsf{GK}_0(\mathsf{P}) \longrightarrow \mathsf{GK}(\mathsf{P})$$

Theorem: over fields, the inclusion functor \Im is full, faithful and essentially surjective (categorical equivalence)

thus there exists an inverse functor ${\mathfrak C}$ called a Conley functor

$$GK_0(P)$$
 $\xrightarrow{\mathfrak{T}}$ $GK(P)$

taking a graded chain complex to a Conley complex analogous to a homology functor

under the hood: discrete morse theory

Theorem: For any graded complex the persistent homology groups of $C_{\bullet}(\mathsf{P})$ and $\mathfrak{C}(C_{\bullet}(\mathsf{P}))$ are isomorphic

computational Conley homology

applications + implementation

application i:

discrete flows

discrete flows

the simplest discrete flow is a *combinatorial vector field* on simplicial complex (Forman)

a combinatorial vector field is a partial matching $\{c_i\} \sqcup \{y_i < x_i\}$ two cells are matched only if one is a facet of another (no acyclicity requirement)

arrows give the matching cells are critical if they are not matched

face poset and matching give a directed graph on complex a discrete flow line is a sequence

$$y_0 < x_0 > y_1 < x_1 > \ldots > y_k < x_k$$

simplicial complex partitions into poset of strongly connected components

discrete flows ii

Remark: computational connection matrix theory generalizes to multi-vectors (Mrozek)

application ii:

transversality

transversality models

topological spaces are approximated with cell complexes

continuous dynamics are approximated with graph on top cells X_n

poset P of strongly connected components

$$(X_n, \leq) \longrightarrow (P, \leq)$$

transversality model

there is an edge $\ \xi \to \xi'$ between adjacent top cells unless flow is transverse to $\ \xi \cap \xi'$ in the direction $\ \xi' \to \xi$

Theorem: if the graph is a transversality model then there is an extension

$$(X_n, \leq)$$
 (X, \leq) graded cell complex (P, \leq)

Remark: Computations + theorems are valid for any differential equation $\dot{x} = f(x)$ which is transverse to top cell boundaries in direction indicated

transversality models ii

connection matrix is represented with respect to a basis

different bases give different qualitative descriptions of dynamics

in this example: four different bases

nontrivial boundaries are given edges

Connection Matrix Data

```
Boundaries of 0-cells (by cell index):

Cell 0 (valuation 1): set([])

Cell 1 (valuation 0): set([])

Boundaries of 1-cells (by cell index):

Cell 2 (valuation 2): set([0L, 1])

Cell 3 (valuation 3): set([0L, 1])

Cell 4 (valuation 0): set([])

Cell 5 (valuation 1): set([])

Boundaries of 2-cells (by cell index):

Cell 6 (valuation 6): set([2, 3, 4, 5])

Cell 7 (valuation 5): set([5])

Cell 8 (valuation 4): set([2, 3])
```

application iii:

Morse theory on braids

Morse theory on braids

van den Berg, Ghrist, van der Vorst, Inventiones Math. 2003

Braided equilibrium solutions to parabolic PDE with periodic boundary conditions

graded cubical complex in \mathbb{R}^2

Fact: Nontrivial Conley indices imply existence of solutions to PDE

Fact: Nonzero entry in connection matrix between adjacent elements proves existence of connecting orbit

braids i

braids iii

order data

chain data

```
Connection Matrix Data
_____
  Boundaries of 0-cells in Conley complex:
    0 : set()
    1 : set()
  Boundaries of 1-cells in Conley complex:
    2:\{0,1\}
  Boundaries of 2-cells in Conley complex:
    3 : set()
  Boundaries of 3-cells in Conley complex:
    4: {3}
    5: {3}
  Boundaries of 4-cells in Conley complex:
    6:\{4,5\}
    7: \{4, 5\}
    8: {4, 5}
    9 : set()
 Boundaries of 5-cells in Conley complex:
    10: \{8, 9, 6\}
    11: {8, 9, 7}
    12: {9, 6, 7}
  Boundaries of 6-cells in Conley complex:
    13 : set()
  Boundaries of 7-cells in Conley complex:
    14: {13}
    15 : {13}
    16: {13}
  Boundaries of 8-cells in Conley complex:
    17: {14, 15}
    18: {16, 14}
    19: {16, 15}
```

Conley-Morse Graph

organizes global dynamics

Conley index for each node

Conley Complex

connection matrix

boundaries can be queried from the data structure

thank you for your attention

Collaborators:

S. Harker

K. Mischaikow

R. van der Vorst

