

INDIAN INSTITUTE OF SCIENCE, BENGALURU

DEPARTMENT OF ELECTRONIC SYSTEMS ENGINEERING

DESIGN FOR ANALOG CIRCUITS LABORATORY REPORT

ASSIGNMENT 7
ACTIVE FILTERS

SOUMYA KANTA RANA

S.R. No.: 04-01-00-10-51-21-1-19261

September 26, 2021

Contents

1	Low Pass Filter	1
	1.1 Aim	1
	1.2 Schematic	1
	1.3 Component Selection	1
	1.4 Frequency Response	1
	1.5 Transient Response	2
2	High Pass Filter	3
	2.1 Aim	3
	2.2 Schematic	3
	2.3 Component Selection	3
	2.4 Frequency Response	3
	2.5 Transient Response	4
3	Band Pass Filter	5
	3.1 Aim	5
	3.2 Schematic	5
	3.3 Component Selection	5
	3.4 Frequency Response	5
	3.5 Transient Response	6
4	Band Reject Filter	7
	4.1 Aim	7
	4.2 Schematic	7
	4.3 Component Selection	7
	4.4 Frequency Response	7
	4.5 Transient Response	8
5	Conclusion	8

List of Figures

1	LTSpice Schematic of Low Pass Filter
2	Frequency response of Low Pass Filter
3	Transient response of Low Pass Filter
4	LTSpice Schematic of High Pass Filter
5	Frequency response of High Pass Filter
6	Transient response of High Pass Filter
7	LTSpice Schematic of Band Pass Filter
8	Frequency response of Band Pass Filter
9	Transient response of Band Pass Filter
10	LTSpice Schematic of Band Reject Filter
11	Frequency response of Band Reject Filter
19	Transiant response of Band Reject Filter

1 Low Pass Filter

1.1 Aim

To perform transient and frequency domain simulations of active low pass filter.

1.2 Schematic

Figure 1: LTSpice Schematic of Low Pass Filter

1.3 Component Selection

The transfer function of the filter (assuming ideal op-amp) is given by

$$\frac{V_{o1}(s)}{V_{i1}(s)} = -\frac{R_3}{R_1} \frac{1}{1 + sR_3C_1} \tag{1}$$

The -3 dB cutoff frequency of the filter is $f_L = \frac{1}{2\pi R_3 C_1}$. For obtaining a cutoff frequency of 1.59 kHz=10 krad/s, we choose $R_1 = R_2 = R_3 = 1k\Omega$ and $C_1 = 0.1\mu F$.

Figure 2: Frequency response of Low Pass Filter

The figure 2 above shows the frequency response of the low pass filter circuit. The -3 dB cutoff frequency obtained is 1589.89 Hz from LTSpice measurement.

1.5 Transient Response

Figure 3: Transient response of Low Pass Filter

The figure 3 above shows the transient simulation results with 1V, 1kHz sinewave input. An output voltage of 0.846V is obtained.

2 High Pass Filter

2.1 Aim

To perform transient and frequency domain simulations of active high pass filter.

2.2 Schematic

Figure 4: LTSpice Schematic of High Pass Filter

2.3 Component Selection

The transfer function of the filter (assuming ideal op-amp) is given by

$$\frac{V_{o2}(s)}{V_{i2}(s)} = -\frac{R_6}{R_4} \frac{sC_2R_4}{1 + sC_2R_4} \tag{2}$$

The -3 dB cutoff frequency of the filter is $f_L=\frac{1}{2\pi R_4C_2}$. For obtaining $f_L=1.59kHz=10krad/s$, we choose $R_4=R_5=R_6=1k\Omega$ and $C_2=0.1\mu F$.

Figure 5: Frequency response of High Pass Filter

The figure 5 above shows the frequency response of the high pass filter circuit. The -3 dB cutoff frequency obtained is 1588.59 Hz.

2.5 Transient Response

Figure 6: Transient response of High Pass Filter

The figure 6 above shows the transient simulation results with 1V, 1kHz sinewave input. An output voltage of 0.532V is obtained.

3 Band Pass Filter

3.1 Aim

To perform transient and frequency domain simulations of active band pass filter.

3.2 Schematic

Figure 7: LTSpice Schematic of Band Pass Filter

3.3 Component Selection

The transfer function of the filter circuit (assuming ideal op-amp) is given by

$$\frac{V_{o3}(s)}{V_{i3}(s)} = -\frac{R_9}{R_7} \frac{1}{1 + sR_9C_4} \frac{sC_3R_7}{1 + sC_3R_7}$$
(3)

The -3 dB cutoff frequencies of the filter are $f_H=\frac{1}{2\pi R_9C_4}$ and $f_L=\frac{1}{2\pi R_7C_3},\,f_L$ and f_H being the lower and upper cuttoff frequencies respectively. For obtaining $f_L=1.59kHz=10krad/s$ and $f_H=80kHz=502.7krad/s$, we choose $R_7=R_8=R_9=1k\Omega$, $C_3=0.1\mu F$ and $C_4=2nF$.

Figure 8: Frequency response of Band Pass Filter

The figure 8 above shows the frequency response of the band pass filter circuit. The -3 dB cutoff frequencies obtained are $1589.25~\mathrm{Hz}$ and $75.393~\mathrm{kHz}$ respectively.

3.5 Transient Response

Figure 9: Transient response of Band Pass Filter

The figure 9 above shows the transient simulation results with 1V, 1kHz sinewave input. An output voltage of 0.532V is obtained.

4 Band Reject Filter

4.1 Aim

To perform transient and frequency domain simulations of active band reject filter.

4.2 Schematic

Figure 10: LTSpice Schematic of Band Reject Filter

4.3 Component Selection

The transfer function of the filter (assuming ideal op-amp and $R_{11} = R_{13}$) is given by

$$\frac{V_{o4}(s)}{V_{i4}(s)} = -\frac{R_{12}}{R_{11}} \left(\frac{1}{1 + sR_{10}C_5} + \frac{sR_{14}C_6}{1 + sR_{14}C_6} \right) \tag{4}$$

The -3 dB cutoff frequencies of the filter are $f_H=\frac{1}{2\pi R_14C_6}$ and $f_L=\frac{1}{2\pi R_{10}C_5},\ f_L$ and f_H being the lower and upper cuttoff frequencies respectively. For obtaining $f_L=2.5kHz=15.71krad/s$ and $f_H=50kHz=314.16krad/s$, we choose $R_{10}=R_{11}=R_{12}=R_{13}=R_{14}=1k\Omega$, $C_5=63.7nF$ and $C_6=3.18nF$.

Figure 11: Frequency response of Band Reject Filter

The figure 11 above shows the frequency response of the band reject filter circuit. The -3 dB cutoff frequencies obtained are 2289.85 Hz and 55.823 kHz respectively.

4.5 Transient Response

Figure 12: Transient response of Band Reject Filter

The figure 12 above shows the transient simulation results with 1V, 1kHz sinewave input. An output voltage of 0.922V is obtained.

5 Conclusion

- a The op-amp is a vital component of active filters. As a result, the performance of the filter depends largely on the op-amp parameters. Due to high frequency limitations of the op-amp the high-frequency response obtained is often not desirable (as evident from figures 5 and 11 respectively). The IC741 op-amp having an unity gain bandwidth of 1 MHz, its gain at frequencies higher than 10kHz is not good enough for the ideal op-amp approximations used to derive the transfer functions.
- b A very important advantage of active filters is that it can provide gain to the output signal, which is not possible with passive filters.
- c The active filter also eliminates usage of inductors, reducing the weight and footprint of the circuit.
- d Due to the high frequency limitations active filters cannot be used in RF applications. Also, the input and output voltage range is limited by the op-amp supply voltage levels.