

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Charlotte Moira Norfor Allerton, et al.)	Serial No.: 10/727,168
Filed: 2 December 2003)	Examiner: Grazier, Nyeemah
Attorney's Docket: PC25420 US)	Group Art Unit: 1636
Title: Morpholine Dopamine Agonists)	

DECLARATION OF DR. GILLIAN BURGESS PURSUANT TO 37 CFR §1.132

- I, Gillian Munro Burgess, hereby declare as follows:
- 1. I have a BSc (1st Class Honours) in pharmacology from the University of Glasgow and a PhD in Pharmacology from University College London and post-doctoral fellowships at the University of Paris XI^e, at Medical College of Virginia, and NIEHS, Research Triangle Park, North Carolina.
- Prior to my employment with Pfizer, I worked at Novartis as Laboratory Head in the Pain Unit. Since joining Pfizer in 1999, I have been Head of the Candidate Research Group (providing human pharmacology data and Safety Pharmacology data for the Pfizer Discovery portfolio), Head of the Urology Therapeutic Area and Research Therapeutic Area Head for the Gastrointestinal and Hepatology, and am now Research Therapeutic Area Head for Pain.
- 3. I am familiar with the subject-matter of the above application and the documents cited therein.
- 4. I am currently Research Therapeutic Area Head for the Pain Therapeutic Area and am responsible for a series of tests carried out on the compound of Example 67 of the present application (hereinafter 'Example 67') and 2-(6-aminopyrid-3-yl)-4-(1,1-dimethylethyl)morpholine, which is the compound of Example 3 of US patent 5077290, assigned to Merck & Co. Inc. (hereinafter 'Merck Example 3'), which is considered to represent the closest prior art. The protocol and results of these tests are presented in the attached Annex and Appendices.
- 5. The results of the tests showed that Example 67 demonstrated notably stronger activity at the D3 receptor in binding (2 different assay formats) and a functional assay, than the more active enantiomer (enantiomer 1) of Merck Example 3. Therefore, even stronger activity for Example 67 would be projected as compared to the racemic mixture as disclosed in Merck Example 3.
- 6. It is a general principle in the field of drug discovery that compounds of higher potency (binding and functional activity) are expected to elicit *in vivo* effects at lower unbound plasma concentrations with potential for a lower human dose size and reduced risk of adverse side effects. Therefore, given its enhanced potency at the D3 receptor, Example 67 would be expected to elicit a response at a lower dose and/or at unbound drug levels in the clinic than enantiomer 1 or, most particularly, the racemic mixture disclosed in Merck Example 3.

- 7. It is a commonly encountered feature of structure-activity relationships in the field of medicinal chemistry that small structural changes can have profound and unpredictable effects on biological activity, either advantageous or deleterious (several examples are described in: *Specific Substituent Effects*. C.G. Wermuth, Ed. Wermuth, C.G. Practice of Medicinal Chemistry (1996), 312-344. Publisher: Academic, Pub. London, UK attached as Reference 1).
- 8. As a specific example, it is widely known that biological and pharmacological activity is often highly dependent upon stereochemistry. Several relevant examples are described in the review article *Stereoselectivity in drug action and disposition: an overview.* Patel, B. K.; Hutt, A. J. Ed. Reddy, I. K.; Mehvar, Reza. in: *Chirality in Drug Design and Development* **2004**, 139-190. Pub. Marcel Dekker, Inc., New York, N.Y attached as Reference 2. Appreciation of stereochemical issues in drug design and development have increased in the last few decades, such that it is now deemed good practice, and a requirement of many pharmaceutical regulatory authorities, to develop chiral drugs as single enantiomers (and stereoisomers).
- 9. With particular relevance to this case, the structural changes and specific stereochemistry required to increase potency at the D3 receptor afforded by example 67 as compared with Merck Example 3, could not have been predicted and were not suggested by the prior art.

I further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with knowledge that wilful false statements and the like may jeopardize the validity of the above application or any patent granted thereon.

Declared at Sandwich, Kent, England this **TEATH** day of May 2007 By:

Gillian Burgess

Before me:

Notary Publi

Andrew Martin Johnson B.A.

NOTARY PUBLIC
29 St George's Place
Canterbury
CT1 1UT, England
Tel: 01227 479479

Annex

D3 Agonist Study Description and Results Summary

Agonist activity of compounds at the D3 receptor was measured using both binding and functional assays. The binding assay measures the affinity of the compound for the D3 receptor. The functional assay measures the ability of the agonist to produce a cellular response as a consequence of binding to the D3 receptor. Both are important measurements as sometimes compounds that bind to receptors do not induce cellular responses.

Example 3 of US patent 5077290 ('Merck Example 3') describes the compound 2-(6-amino-pyrid-3-yl)-4-(1,1-dimethylethyl)morpholine as the citrate salt as a racemic mixture of enantiomers. In order to generate unequivocal data in a functional assay format (where screening of racemic mixtures may generate uninterpretable results) the constituent enantiomers (referred to below as enantiomers 1 and 2 – enantiomer 1 being the first to elute from the chiral HPLC column referred to in Appendix 6) were prepared and tested as the free bases. Under the buffered conditions of the assay the salt form would not be expected to influence assay results.

Detailed test protocols are described as follows:

Appendix 1 - D3 binding assay 1 - Example 67 of the present application

Appendix 2 - D3 binding assay 1 - Merck Example 3, enantiomer 1

Appendix 3 - D3 binding assay 1 - Merck Example 3, enantiomer 2

Appendix 4 - D3 binding assay 2 - all tested compounds

Appendix 5 - D3 functional assay - all tested compounds

The data is summarised in the table below and in Figures 1 and 2.

Compound	D3 binding assay 1 pK _i (K _i μΜ)	D3 binding assay 2 pK _i ± SD (K _i μM)	D3 functional agonist assay pEC ₅₀ ± SD (EC ₅₀ μM)
Example 67 of the present application	6.60 (0.250)	7.02 <u>+</u> 0.09 (0.095)	7.21 ± 0.07 (0.062)
Merck Example 3, enantiomer 1	5.72	6.06 ± 0.21	6.46 ± 0.05
	(1.90)	(0.87)	(0.346)
Merck Example 3, enantiomer 2	7% inhibition @	25.4% inhibition @	49.6% activity
	10 μM	10 μΜ	@ 10 μM

The two constituent enantiomers derived from Merck Example 3 showed significantly different binding and functional activity at the D3 receptor, and unpredictably it was enantiomer 1 which showed the greater affinity. If screened as a racemic mixture (as disclosed in US 5077290) the apparent potency would be expected to be roughly 2x weaker in the binding assay than the binding activity for enantiomer 1 shown in the table. It is more difficult to predict accurately how the racemic mixture would perform in the functional assay, but based on the data for the individual enantiomers it would be expected to be weaker in activity than enantiomer 1.

The results shown in the table and in Figures 1 and 2 clearly show that Example 67 of the present application demonstrated notably higher affinity at the D3 receptor in binding (2 different assay formats) and higher potency in the functional assay, than the more active enantiomer (enantiomer 1). Therefore, even stronger activity for present Example 67 would be projected as compared to the racemic mixture of Merck Example 3.

Figure 1 - Results of D3 binding assay 2

Figure 2 - Results of D3 functional assay

- ▼ Present example 67
- ▲ Merck example 3, enantiomer 2
- Merck example 3 enantiomer 1

Appendix 1

GLP Study report for binding assay 1 for Example 67, completed at CEREP Biosciences

In this report, the compound of Example 67 of the present application is referred to by the reference number PF-592379.

Andrew Martin Johnson B.A.

NOTARY PUBLIC 29 St George's Place Canterbury

CT1 1UT, England Tel: 01227 479479

****Cerep**

STUDY NUMBER 884017 FINAL REPORT

BioPrint Profile

- Part A: PF-592379-00 Pfizer Reference Compound -

Paris

128 rue Danton 92500 Rueil-Malmaison FRANCE tel. +33 (0)1 55 94 84 00 fax +33 (0)1 55 94 84 10

Poitiers

Le Bois l'Evêque 86600 Celle l'Evescault FRANCE tel. +33 (0)5 49 89 30 00 fax +33 (0)5 49 43 21 70

Seattle 15318 NE 95th Street

Redmond, WA 98052 USA iel. +1 (425) 895 8666 fax +1 (425) 895 8668

Tokyo 11th Floor Yurakucho Building 1-10-1 Yurakucho, Chiyoda-ku Tokyo 10000 JAPAN tel. +81 (0)3 5219 2592 fax +81 (0)3 5219 2593

www.cerep.com customer_support@cerep.fr Annie OTTO-BRUC, Ph.D.

Le Bois l'Evêque B.P.1 86 600 Celle l'Evescault France

www.cerep.com Tel: 33 (0)5.49.89.30.00 Fax: 33 (0)5.49.43.21.70

Ref.: Final Report 884017/GG

STUDY NUMBER 884017

BioPrint Profile

- Part A: PF-592379-00 Pfizer Reference Compound -

Study Sponsor:

PFIZER GLOBAL RESEARCH & DEVELOPMENT

Attention:

Dr. Carolyn NAPIER

In Vitro Team Leader

Address:

Candidate Research Group

Building 500, Romm 1.579,

IPC 388

SANDWICH

Kent CT13 9NJ

UNITED KINGDOM

Study Director:

Annie OTTO-BRUC, Ph.D.

Testing Facilities:

Cerep

Le Bois l'Evêque - B.P. 1 - 86600 CELLE L'EVESCAULT,

FRANCE

and 15318 NE 95th Street, REDMOND, WA 98052 U.S.A.

Study Period:

From November 12, 2003 to February 24, 2004

Report Version:

1

Report Date:

August 12, 2004

01000006245122\1.0\Approved\08-Dec-2006 11:49

STUDY DIRECTOR

Annie OTTO-BRUC, Ph.D.
Principal Scientist, Pharmacology

Date

CONTENTS

1. PURPOSE OF THE STUDY	5
2. MATERIALS AND METHODS	6
2.1. IN VITRO PHARMACOLOGY: Binding Assays	
2.1.1. General Procedures	
2.1.2. Experimental Conditions	10
2.1.3. Analysis and Expression of Results	16
2.2. IN VITRO PHARMACOLOGY: Enzyme and Cell-based Assays	18
2.2.1. General Procedures	18
2.2.2. Experimental Conditions	19
2.2.3. Analysis and Expression of Results	21
2.3. ADME-Tox: Solution Properties	2
2.3.1. General Procedures	22
2.3.2. Experimental Conditions	22
2.3.3. Analysis and Expression of Results	23
2.4. ADME-Tox: Bioanalytical	24
2.4.1. General Procedures	24
2.4.2. Experimental Conditions	24
2.4.3. Analysis and Expression of Results	24
2.5. ADME-Tox: In Vitro Absorption	25
2.5.1. General Procedures	25
2.5.2. Experimental Conditions	25
2.5.3. Analysis and Expression of Results	27
2.6. ADME-Tox: In Vitro Metabolism	
2.6.1. General Procedures	30
2.6.2. Experimental Conditions	31
2.6.3. Analysis and Expression of Results	
2.7. ADME-Tox: Cytotoxicity	
2.7.1. General Procedures	34
2.7.2. Experimental Conditions	34
2.7.3. Analysis and Expression of Results	34

3. COMPOUNDS	35
3.1. Test Compound	35
3.2. Reference Compounds	35
4. RESULTS	36
4.1. IN VITRO PHARMACOLOGY: Binding Assays	36
4.2. IN VITRO PHARMACOLOGY: Enzyme and Cell-based Assays	66
4.3. ADME-Tox: Solution Properties	
4.4. ADME-Tox: Bioanalytical	84
4.5. ADME-Tox: In Vitro Absorption	86
4.6. ADME-Tox: In Vitro Metabolism	
4.7. ADME-Tox: Cytotoxicity	96
5. BIBLIOGRAPHY	98
6. STORAGE AND RETENTION OF RECORDS	115
7. QUALITY ASSURANCE STATEMENT	116
APPENDIX A	
APPENDIX B	

1. PURPOSE OF THE STUDY

The purpose of this study was to investigate the effects of PF-592379-00 in various *in vitro* receptor binding, cell biology and ADME-Tox assays.

2. MATERIALS AND METHODS

2.1. IN VITRO PHARMACOLOGY: Binding Assays

2.1.1. General Procedures

Assay	Origin	Reference Compound	Bibliography
	human recombinant (CHO cells)	DPCPX	Townsend-Nicholson and Schofield (1994)
	human recombinant (HEK-293 cells)	NECA	Luthin et al. (1995)
	human recombinant (HEK-293 cells)	IB-MECA	Salvatore et al. (1993)
	rat cerebral cortex	prazosin	Greengrass and Bremner (1979)
α_2	rat cerebral cortex	yohimbine	Uhlen and Wikberg (1991)
(non-selective)			
	human recombinant (CHO cells)	yohimbine	Langin et al. (1989)
α_{2B}	NG 108-15 cells	yohimbine	Bylund et al. (1988)
•	human recombinant (Sf9 cells)	atenolol	Smith and Teitler (1999)
	human recombinant (Sf9 cells)	ICI 118551	Smith and Teitler (1999)
	SK-N-MC cells	cyanopindolol	Curran and Fishman (1996)
	human recombinant (CHO cells)	saralasin	Bergsma et al. (1992)
	human recombinant (Hela cells)	saralasin	Tsuzuki et al. (1994)
BZD (central)	rat cerebral cortex	diazepam	Speth et al. (1979)
	human recombinant (CHO cells)	NPC 567	Pruneau et al. (1998)
	SK-N-MC cells	hCGRPα	Muff et al. (1992)
	human recombinant (HEK-293 cells)	WIN 55212-2	Matsuda et al. (1990)
	human recombinant (HEK-293 cells)	WIN 55212-2	Munro et al. (1993)
CCK _A (h) (CCK ₁)	human recombinant (NIH-3T3 cells)	CCK-8	Talkad et al. (1994)

Assay	Onigin	Reference Compound	Bibliography
CCK _B (h)	human recombinant	CCK-8	Lee et al. (1993)
(CCK ₂)	(HEK-293 cells)		
	human recombinant (L cells)	SCH 23390	Zhou et al. (1990)
	human recombinant (CHO cells)	(+)butaclamol	Grandy et al. (1989)
	human recombinant (CHO cells)	(+)butaclamol	Mackenzie et al. (1994)
	human recombinant (CHO cells)	clozapine	Van Tol et al. (1992)
	human recombinant (CHO cells)	endothelin-3	Buchan et al. (1994)
GABA _A	rat cerebral cortex	muscimol	Snodgrass (1978)
GABA _B	rat cerebral cortex	baclofen	Bowery et al. (1983)
	rat cerebral cortex	kainic acid	Monaghan and Cotman (1982)
	rat cerebral cortex	CGS 19755	Sills et al. (1991)
	rat cerebral cortex	glycine	Siegel et al. (1995)
	human recombinant (HEK-293 cells)	MIP-1α	Neote et al. (1993)
	human recombinant (HEK-293 cells)	ghrelin	Katugampola et al. (2001)
	guinea-pig cerebellum	pyrilamine	Dini et al. (1991)
H ₂	guinea-pig striatum	cimetidine	Ruat et al. (1990)
H ₃	rat cerebral cortex	(R)α-Me-histamine	Arrang et al. (1990)
I ₁ (peripheral)	bovine adrenal medulla glands	rilmenidine	Dontenwill et al. (1999)
LTD ₄ (h)	U-937 cells	LTD ₄	Frey et al. (1993)
MC_1	B16-F1 cells	NDP-α-MSH	Siegrist et al. (1988)
	human recombinant (HEK-293 cells)	NDP-α-MSH	Schioth et al. (1997)
	chicken brain	melatonin	Rivkees et al. (1989)
ML_2 (MT_3)	hamster brain	melatonin	Pickering and Niles (1990)
-	rat cerebral cortex	clorgyline	Cesura et al. (1990)
	rat cerebral cortex	(R)-deprenyl	Cesura et al. (1989)

	human recombinant (CHO cells)	pirenzepine	Dorje et al. (1991)
	human recombinant (CHO cells)	methoctramine	Dorje et al. (1991)
	human recombinant (CHO cells)	4-DAMP	Dorje et al. (1991)
	U-373MG cells	$[Sar^9,Met(O_2)^{11}]$ -SP	Heuillet et al. (1993)
	human recombinant (Sf9 cells)	NPY	Munoz et al. (1995)
	rat cerebral cortex	nicotine	Pabreza et al. (1991)
N <i>(h)</i> (muscle-type)	TE671 cells	α-bungarotoxin	Lukas (1986)
δ ₂ <i>(h)</i> (DOP)	human recombinant (CHO cells)	DPDPE	Simonin et al. (1994)
K (KOP)	guinea-pig cerebellum	U 50488	Kinouchi and Pasternak (1991)
u <i>(h)</i> (MOP)	human recombinant (CHO cells)	DAMGO	Wang et al. (1994)
ORLI <i>(h)</i> (NOP)	human recombinant (HEK-293 cells)	nociceptin	Ardati et al. 1997)
OT <i>(h)</i>	ECV-304 cells	oxytocin	Thibonnier et al. (1999)
PCP	rat cerebral cortex	MK 801	Vignon et al. (1986)
	rat urinary bladder	α,β -MeATP	Bo and Burnstock (1990)
	human recombinant (HEK-293 cells)	8-OH-DPAT	Mulheron et al. (1994)
5-HT _{1B}	rat cerebral cortex	5-HT	Hoyer et al. (1985)
	bovine caudate	serotonin	Heuring and Peroutka (1987)
	human recombinant (HEK-293 cells)	ketanserin	Bonhaus et al. (1995)
	human recombinant (CHO cells)	serotonin	Bonhaus et al. (1995)
	human recombinant (CHO cells)	SB 242084	Stam et al. (1994)
	human recombinant (HEK-293 cells)	MDL 72222	Hope et al. (1996)
	human recombinant (CHO cells)	5-HT	Mialet et al. (2000)

Azzā.	Onigin	Reference Campound	Bibliography
,	human recombinant (HEK-293 cells)	serotonin	Monsma et al. (1993)
	human recombinant (CHO cells)	serotonin	Shen et al. (1993)
σ (non-selective)	rat cerebral cortex	haloperidol	Shirayama et al. (1993)
	human recombinant (HEK-293 cells)	somatostatin	Rohrer et al. (1993)
	human recombinant (HEK-293 cells)	somatostatin	Yamada et al. (1993)
	IM-9 cells (cytosol)	dexamethasone	Clark et al. (1996)
Estrogen α <i>(h)</i> (ERα)	human recombinant (Sf9 cells)	17-β-estradiol	Parker et al. (2000)
Androgen (h) (AR)	LNCaP cells (cytosol)	methyltrienolone	Zava et al. (1979)
	rat liver	T ₃	Inoue et al. (1983)
Jrotensin-II UT-II)	mouse recombinant (CHO cells)	urotensin-II	Liu et al. (1999)
VIP ₁ (h) (VPAC ₁)	human recombinant (CHO cells)	VIP	Couvineau et al. (1985)
	human recombinant (CHO cells)	[d(CH2)51,Tyr(Me)2]-AVP	Tahara et al. (1998)
Ca ²⁺ channel (L, DHP site)	rat cerebral cortex	nitrendipine	Lee et al. (1984)
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)	rat cerebral cortex	D 600	Reynolds et al. (1986)
Ryanodine (RY ₃)	rat cerebral cortex	ryanodine	Padua et al. (1992)
K ⁺ _{ATP} channel	rat cerebral cortex	glibenclamide	Angel and Bidet 1991)
	rat cerebral cortex	α-dendrotoxin	Sorensen and Blaustein (1989)
SK ⁺ _{Ca} channel	rat cerebral cortex	apamin	Hugues et al. (1982)
Na ⁺ channel (site 2)	rat cerebral cortex	veratridine	Brown (1986)
Cl channel	rat cerebral cortex	picrotoxinin	Lewin et al. (1989)
	human recombinant (MDCK cells)	protriptyline	Pacholczyk et al. (1991)

Assay	Origin Reference Compound		Bibliography	
	human recombinant (CHO cells)	ВТСР	Andersen (1987)	
GABA transporter	rat cerebral cortex	nipecotic acid	Shank et al. (1990)	
	rat striatum	hemicholinium-3	Vickroy et al. (1984)	
	human recombinant	imipramine	Tatsumi et al. (1997)	
	(HEK-293 cells)			

2.1.2. Experimental Conditions

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
	[³ H]DPCPX	1 nM	DPCPX (1 μM)	60 min./22°C	Scintillation counting
	[³ H]CGS 21680	6 nM	NECA (10 μM)	90 min./22°C	Scintillation counting
	[¹²⁵ ПАВ-МЕСА	0.1 nM	IB-MECA (1 μM)	90 min./22°C	Scintillation counting
	[³ H]prazosin	0.25 nM	prazosin (0.5 μM)	60 min./22°C	Scintillation counting
,	[³ H]RX 821002	0.5 nM	(-)epinephrine (100 μM)	30 min./22°C	Scintillation counting
	[³ H]RX 821002	l nM	(-)epinephrine (100 μM)	30 min./22°C	Scintillation counting
	[³ H]RX 821002	2.5 nM	(-)epinephrine (100 μM)	25 min./22°C	Scintillation counting
	[³ H](-)CGP 12177	0.15 nM	alprenolol (50 μM)	60 min./22°C	Scintillation counting
	[³ H](-)CGP 12177	0.15 nM	alprenolol (50 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ I]CYP (+ 1 µM (-)propranolol)	0.6 nM	(-)propranolol (1 mM)	90 min./37°C	Scintillation counting

Assay	Lügand	Conc.	Non Speciffic	Imculbattion	Method of Detection
	[¹²⁵ I][Sar ¹ ,Ile ⁸]-AT II	0.05 nM	angiotensin II (10 μM)	60 min./37°C	Scintillation counting
	[¹²⁵ I]CGP 42112A	0.05 nM	angiotensin II (1 μM)	180 min./37°C	Scintillation counting
	[³ H]flunitrazepam	0.4 nM	diazepam (3 μM)	60 min./4°C	Scintillation counting
	[³ H]bradykinin	0.2 nM	bradykinin (1 μM)	90 min./22°C	Scintillation counting
	[¹²⁵ 1]hCGRPa	0.04 nM	hCGRPα (1 μM)	60 min./22°C	Scintillation counting
	[³ H]WIN 55212-2	2 nM	WIN 55212-2 (10 μM)	90 min./37°C	Scintillation counting
	[³ H]WIN 55212-2	0.8 nM	WIN 55212-2 (5 μM)	90 min./30°C	Scintillation counting
	[¹²⁵ I]CCK-8	0.08 nM	CCK-8 (1 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ I]CCK-8	0.025 nM	CCK-8 (1 μM)	60 min./22°C	Scintillation counting
	[³ H]SCH 23390	0.3 nM	SCH 23390 (1 μM)	60 min./22°C	Scintillation counting
	[³ H]spiperone	0.3 nM	(+)butaclamol (10 μM)	60 min./22°C	Scintillation counting
	[³ H]spiperone	0.3 nM	(+)butaclamol (10 μM)	60 min./22°C	Scintillation counting
	[³ H]spiperone	0.3 nM	(+)butaclamol (10 μM)	60 min./22°C	Scintillation counting
	[125]]endothelin-1	0.03 nM	endothelin-1 (0.1 μM)	120 min./37°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
	[³ H]muscimol	5 nM	muscimol (10 μM)	10 min./4°C	Scintillation counting
	[³ H]GABA (+ 40 μM isoguvacine)	10 nM	baclofen (100 μM)	10 min./22°C	Scintillation counting
	[³ H]kainic acid	5 nM	L-glutamate (1 mM)	60 min./4°C	Scintillation counting
	[³ H]CGP 39653	5 nM	L-glutamate (100 μM)	60 min./4°C	Scintillation counting
Glycine (strychnine- insensitive)	[³ H]MDL 105,519	0.5 nM	glycine (1 mM)	45 min./0°C	Scintillation counting
шэснышче)	[¹²⁵ Ι]ΜΙΡ-1α	0.03 nM	MIP-1α (0.1 μM)	90 min./22°C	Scintillation counting
	[¹²⁵ I][His]-ghrelin	0.02 nM	ghrelin (0.1 μM)	30 min./22°C	Scintillation counting
	[³ H]pyrilamine	0.5 nM .	triprolidine (100 μM)	10 min./22°C	Scintillation counting
	[¹²⁵ I]APT	0.1 nM	tiotidine (100 μM)	150 min./22°C	Scintillation counting
	[³ H](R)α-Me-histamine	1 nM	(R)α-Me-histamine (5 μM)	120 min./22°C	Scintillation counting
	[³H]clonidine (+ 10 μM RX821002)	15 nM	rilmenidine (10 μM)	30 min./22°C	Scintillation counting
	[³ H]LTD ₄	0.3 nM	LTD ₄ · (1 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ I]NDP-α-MSH	0.05 nM	NDP-α-MSH (1 μM)	90 min./22°C	Scintillation counting
	[¹²⁵ I]NDP-α-MSH	0.05 nM	NDP-α-MSH (1 μM)	60 min./37°C	Scintillation counting

<u>-</u>					
Assay	Ligand	Comc.	Non Speciffic	lincultratiiom	Milethod of Detection
	[¹²⁵ 1]iodomelatonin	0.025 nM	melatonin (1 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ I]iodomelatonin	0.1 nM	melatonin (30 μM)	30 min./4°C	Scintillation counting
	[³ H]Ro 41-1049	10 nM	clorgyline (1 μM)	60 min/37°C	Scintillation counting
	[³ H]Ro 19-6327	15 nM	(R)-deprenyl (10 μM)	90 min./22°C	Scintillation counting
	[³ H]pirenzepine	2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting
	[³ H]AF-DX 384	2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting
	[³ H]4-DAMP	0.2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting
	[$^{125}\Pi$ [Sar 9 ,Met(O_{2}) 11]-SP	0.15 nM	[Sar ⁹ ,Met(O ₂) ¹¹]-SP (1 μM)	60 min./22°C	Scintillation counting
	[125]]peptide YY	0.05 nM	NPY (1 μM)	60 min./22°C	Scintillation counting
	[³ H]cytisine	1.5 nM	nicotine (10 μM)	75 min./4°C	Scintillation counting
	[¹²⁵ ¶α-bungarotoxin	2.5 nM	α-bungarotoxin (5 μM)	120 min./22°C	Scintillation counting
	[³ H]DADLE	0.5 nM	naltrexone (10 μM)	120 min./22°C	Scintillation counting
	[³ H]U 69593	0.7 nM	naloxone (10 μM)	80 min./22°C	Scintillation counting
	[³H]DAMGO	0.5 nM	naloxone (10 μM)	150 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
	[³ H]nociceptin	0.2 nM	nociceptin (1 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ I]OVTA	0.3 nM	oxytocin (10 μM)	30 min./30°C	Scintillation counting
	[³ H]TCP	5 nM	MK 801 (10 μM)	45 min./22°C	Scintillation counting
	[³ H]α,β-MeATP	3 nM	α,β-MeATP (10 μM)	120 min./4°C	Scintillation counting
	[³ H]8-OH-DPAT	0.5 nM	8-OH-DPAT (10 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ 1]CYP	0.1 nM	serotonin (10 μM)	90 min./37°C	Scintillation counting
	[³ H]serotonin	2 nM	serotonin (10 μM)	30 min./22°C	Scintillation counting
	[³ H]ketanserin	0.5 nM	ketanserin (1 μM)	15 min./37°C	Scintillation counting
	[³ H]LSD	1.2 nM	serotonin (10 μM)	30 min/37°C	Scintillation counting
	[³ H]mesulergine	1 nM	SB 242084 (10 μM)	30 min./37°C	Scintillation counting
	[³ H]BRL 43694	0.5 nM	MDL 72222 (10 μM)	60 min./22°C	Scintillation counting
	[³ H]GR 113808	0.2 nM	serotonin (100 μM)	30 min./37°C	Scintillation counting
	[³H]LSD	2 nM	serotonin (100 μM)	60 min./37°C	Scintillation counting
	[³ H]LSD	4 nM	serotonin (10 μM)	120 min./22°C	Scintillation counting
					,

Assay	Ligand	Conc.	Non Specific	lincultation	Method of Detection
	[³ H]DTG	8 nM	haloperidol (10 μM)	120 min./22°C	Scintillation counting
	[¹²⁵ I]Tyr ¹¹ -somatostatin	0.2 nM	somatostatin (1 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ I]Tyr ¹¹ -somatostatin	0.05 nM	somatostatin (1 μM)	60 min./22°C	Scintillation counting
	[³ H]triamcinolone	1.5 nM	dexamethasone (10 μM)	18 h./4°C	Scintillation counting
	fluormone TM ES2	l nM	17-β-estradiol (1 μM)	120 min./22°C	Fluorescence polarization
	[³ H]methyltrienolone	0.5 nM	mibolerone (1 μM)	24 h./4°C	Scintillation counting
	[¹²⁵ I]T ₃	0.1 nM	Τ ₃ (1 μΜ)	18 h./4°C	Scintillation counting
	[¹²⁵ I]urotensin-II	0.1 nM	urotensin-II (3 μM)	60 min./22°C	Scintillation counting
	[¹²⁵ I]VIP	0.04 nM	VIP (0.3 μM)	60 min./22°C	Scintillation counting
	[³ H]AVP	0.3 nM	AVP (1 μM)	60 min./22°C	Scintillation counting
	[³ H](+)PN 200-110	0.04 nM	nifedipine (1 μM)	90 min./22°C	Scintillation counting
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)	[³ H](-)D 888	0.5 nM	D 600 (10 μM)	60 min./22°C	Scintillation counting
	³ H]ryanodine	3 nM	ryanodine (10 μM)	120 min./37°C	Scintillation counting
	[³ H]glibenclamide	0.1 nM	glibenclamide (1 μM)	60 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
	[¹²⁵ I]α-dendrotoxin	0.01 nM	α-dendrotoxin (50 nM)	30 min./22°C	Scintillation counting
	[¹²⁵ I]apamin	0.004 nM	apamin (0.1 μM)	30 min./0°C	Scintillation counting
	[³ H]batrachotoxinin	10 nM	veratridine (300 μM)	60 min./22°C	Scintillation counting
	[³⁵ S]TBPS	3 nM	picrotoxinin (20 μM)	90 min./22°C	Scintillation counting
	[³ H]nisoxetine	. 1 nM	desipramine (1 μM)	60 min/4°C	Scintillation counting
	[³ H]GBR12935	0.5 nM	BTCP (10 μM)	120 min./4°C	Scintillation counting
	[³ H]GABA (+ 10 μM isoguvacine) (+ 10 μM baclofen)	10 nM	GABA (1 mM)	30 min./22°C	Scintillation counting
	[³ H]hemicholinium-3	. 3 nM	hemicholinium-3 (10 μM)	30 min./22°C	Scintillation counting
	[³ H]paroxetine	0.1 nM	imipramine (10 μM)	30 min./22°C	Scintillation counting

2.1.3. Analysis and Expression of Results

The specific ligand binding to the receptors is defined as the difference between the total binding and the nonspecific binding determined in the presence of an excess of unlabelled ligand.

The results are expressed as a percent of control specific binding and as a percent inhibition of control specific binding obtained in the presence of PF-592379-00. Individual and mean values are presented in the results section.

The IC₅₀ values (concentration causing a half-maximal inhibition of control specific binding) and Hill coefficients (n_H) were determined by non-linear regression analysis of the competition curves using Hill equation curve fitting.

The inhibition constants (K_i) were calculated from the Cheng Prusoff equation $(K_i = IC_{50}/(1+(L/K_D)))$, where L = concentration of radioligand in the assay, and $K_D = affinity$ of the radioligand for the receptor).

2.2. IN VITRO PHARMACOLOGY: Enzyme and Cell-based Assays

2.2.1. General Procedures

Assay	Origin	Reference Compound	Bibliography
	HUV-EC-C cells	NS 398	Miralpeix et al. (1997)
	RAW 264-7 cells	1400W	Tayeh and Marletta (1989)
Phosphodiesterase 2 (h)	differentiated U-937 cells	EHNA	Torphy et al. (1992)
Phosphodiesterase 3 (h)	human platelets	milrinone	Weishaar et al. (1986)
	U-937 cells	rolipram	Torphy et al. (1992)
Phosphodiesterase 5 (h)	human platelets	dipyridamole	Weishaar et al. (1986)
	bovine retina	zaprinast	Ballard et al. (1998)
Phosphodiesterase 11 (h)- Pfizer	Pfizer	dipyridamole	Fawcett et al. (2000)
ACE <i>(h)</i> (recombinant)	human recombinant (murine cells)	captopril	Hoorn and Roth (1993)
Elastase (h)	human leukocytes	3',4'dichloroisocoumarin	Adeyemi et al. (1990)
	human recombinant (E. coli)	pepstatin A	Toth and Marshall (1990)
Neutral endopeptidase (h)	HUV-EC-C cells	thiorphan	Graf et al. (1998)
	human recombinant (E. coli)	GM6001	Bickett et al. (1993)
MMP-2 (h)	human recombinant	GM6001	Nagase et al. (1994)
	human recombinant (Sf9 cells)	GM6001	Nagase et al. (1994)
	human recombinant (E. coli)	GM6001	Quesada et al. (1997)
MMP-9 (h)	human recombinant	GM6001	Nagase et al. (1994)
	human lung	leupeptin	Schwartz and Bradford (1986)
Guanylyl cyclase (basal)	bovine lung	sodium nitroprusside	Wolin et al. (1982)
	human recombinant (E. coli)	Na ₃ VO ₄	Chevalier et al. 1988)
	mouse recombinant (E.coli)	staurosporine	Parker et al. (2000)
CAM kinase II	rat brain	staurosporine	Lengyel et al. (2001)
	rat recombinant (E. coli)	staurosporine	Robbins et al. (1993)

Assay	Onigim	Reference Compound	Bibliography
p56 ^{lyn} kinase	bovine spleen	staurosporine	Parker et al. (2000)
p55fyn kinase	bovine thymus	staurosporine	Cheng et al. (1992)
	human recombinant (insect cells)	staurosporine	Parker et al. (2000)
D4.4 receptor - G protein coupling (h) (agonist effect)	human recombinant (CHO cells)	dopamine	Chio et al. (1994)
D4.4 receptor - G protein coupling (h) (antagonist effect)	human recombinant (CHO cells)	spiperone	Chio et al. (1994)
	human recombinant (HEK-293 cells)	neostigmine	Ellman et al. (1961)
Catechol-	porcine liver	Ro 41-0960	Muller-Enoch et al. (1976)
O-methyl transferase		•	
	rat brain	AoAA	Losher (1981)
ATPase (Na ⁺ /K ⁺)	dog kidney	ouabain	Fiske and Subbarow (1925)

2.2.2. Experimental Conditions

Assay	Substrate/Stiimulus/Tracer	Incubation	Reaction Product .	Method of Detection
COX_2 (h)	arachidonic acid .	10 min./25°C	PGE ₂	EIA
(isolated enzyme)	(1 μM)			
inducible NOS	arginine	3 h./37°C	NO_2^-	Photometry
(isol. enz/ spectrophoto.)	(100 µM)		-	
	[³ H]cAMP	30 min./30°C	[³ H]5'AMP	Scintillation
	+ cAMP (1 μM)			counting
	[³ H]cAMP	30 min./30°C	[³ H]5'AMP	Scintillation
	+ cAMP (0.1 μM)			counting
•	[³ H]cAMP	30 min./30°C	[³ H]5'AMP	Scintillation
	+ cAMP (1 μM)			counting
	[³ H]cGMP	30 min./30°C	[³ H]5'GMP	Scintillation
	+ cGMP (1 μM)		(,e e	counting
	[³H]cGMP	30 min./30°C	[³H]5'GMP	Scintillation
	+ cGMP (2 μM)		. ,	counting

Assay	Substrate/Stimulus/Tracer	Incubation	Reaction Product	Method of Detection
	[³ H]GMPc + GMPc (10 μM)	60 min./30°C	[³ H]5'GMP	Scintillation counting
	Mca-Arg-Pro-Pro-Gly-Phe- Ser-Ala-Phe-Lys (DNP)-OH (10 μΜ)	20 min./22°C	Mca-peptides	Fluorimetry
	MeOSAAPV-pNa (0.1 mM)	60 min./37°C	pNa	Photometry
	antranilyl-HIV (75 μΜ)	40 min./37°C	N-terminal tripeptide	Fluorimetry
	DAGNPG (50 μM)	60 min./37°C	Dansyl-D-Ala-Gly	Fluorimetry
	DNP-Pro-Cha-Gly- Cys(Me)-His-Ala- Lys(n-Me-Abz)-NH ₂	40 min./37°C	Cys(Me)-His-Ala- Lys(n-Me-Abz)-NH ₂	Fluorimetry
	(10 μM) NFF-2 (10 μM)	90 min./37°C	Mca-Arg-Pro-Lys- Pro-Tyr-Ala	Fluorimetry
	NFF-2 (10 μM)	60 min./RT	Mca-Arg-Pro-Lys- Pro-Tyr-Ala	Fluorimetry
	MMP-2/MMP-7 substrate (5 μM)	45 min./37°C	Mca-Pro-Leu-Gly	Fluorimetry
	NFF-2 (5 μM)	45 min./22°C	Mca-Arg-Pro-Lys- Pro-Tyr-Ala	Fluorimetry
	N-p-Tosyl-Gly-Pro-Arg- p-nitroanilide (0.1 mM)	8 min/37°C	p-nitroanilide	Photometry
Guanylyl cyclase (basal)	GTP (0.1 mM)	15 min./30°C	cGMP	RIA
	pNPP (0.6 mM)	30 min./22°C	pNP	Photometry
	poly GT (0.4 μg/ml)	15 min./30°C	phosphopoly GT	Fluorescenc polarization
	$[\gamma$ - ³³ P]ATP + autocamtide-2 (5 μM)	40 min./22°C	$[\gamma^{33}P]$ autocamtide-2	Scintillation counting
	$[\gamma^{33}P]ATP$ + MBP (0.5 mg/ml)	30 min./37°C	$[\gamma^{33}P]MBP$	Scintillation counting

Assay.	Substrate/Sumulus/Tracer	Incubation	Reaction Product	Medhod of Detection
	KVEKIGEGTYGVVYK (300 μM)	45 min./30°C	phosphoKVEKIGEGTYGVVYK	Fluorescence polarization
	$[\gamma^{-33}P]ATP$ + poly GT (0.5 mg/ml)	30 min/25°C	[γ- ³³ P]poly GT	Scintillation counting
	poly GT (0.3 μg/ml)	15 min./22°C	phosphopoly GT	Fluorescence polarization
D4.4 receptor - G protein coupling (h) (agonist effect)	none (10 μM dopamine for control)	30 min./30°C	[³⁵ S]GTP-γ-S binding	Scintillation counting
D4.4 receptor - G protein coupling (h) (antagonist effect)	dopamine (0.3 μM)	30 min./30°C	[³⁵ S]GTP-γ-S binding	Scintillation counting
	AMTCh (50 μM)	30 min./37°C	thio-conjugate	Photometry
Catechol- O-methyl transferase	esculetin (1 μM)	30 min./37 °C	scopoletin	Fluorimetry
	GABA (9 mM) + α-ketoglutarate (9 mM)	60 min./37°C	succinic semialdehyde	Fluorimetry
	ATP (2 mM)	60 min./37°C	Pi	Photometry

2.2.3. Analysis and Expression of Results

The results are expressed as a percent of control values and as a percent variation of control values obtained in the presence of PF-592379-00.

Individual and mean values are presented in the results section.

The IC₅₀ values (concentration causing a half-maximal inhibition of control values), EC₅₀ values (concentration causing a half-maximal stimulation of control values) and Hill coefficients (n_H) were determined by non-linear regression analysis of the concentration-response curves using Hill equation curve fitting.

2.3. ADME-Tox: Solution Properties

2.3.1. General Procedures

Assay	Technique	Additional Information .	Reference Compound	Bibliography
	Shake-Flask	Chromatographic purity UV/VIS spectrum	8 Reference compounds	Lipinski et al. (1997)
Partition Coefficient (log D, n-octanol/PBS, pH 7.4)	Shake-Flask		8 Reference compounds	Sangster (1997)
Partition Coefficient (log D, cyclohexane/PBS, pH 7.4)	Shake-Flask		8 Reference compounds	Young et al. (1998)

Notes

8 Reference compounds: metoprolol, rifampicin, ketoconazole, phenytoin, haloperidol, simvastatin, diethylstilbestrol, and tamoxifen.

2.3.2. Experimental Conditions

Assay	Test Compound	Equilibration / Incubation	Analytical Method
	200 μM (n=2) 2 % DMSO	24 hours in PBS at pH 7.4 at RT	HPLC-UV/VIS
Partition Coefficient (log D, n-octanol/PBS, pH 7.4)	100 μM (n=3) 1 % DMSO	60 min in n-octanol-PBS at pH 7.4 at RT	HPLC-UV/VIS
	100 μM (n=3) 1 % DMSO	60 min in n-cyclohexane-PBS at pH 7.4 at RT	HPLC-UV/VIS

Notes:

For the solubility assay, the default detection wavelength (230 nm) may be substituted, if appropriate.

For the partition coefficient assay, the optimized detection wavelength is based on the UV/VIS spectrum acquired during the aqueous solubility assay.

Abbreviations:

DMSO: Dimethylsulfoxide

HPLC-UV/VIS: HPLC with photodiode array detection (Instrumentation: Dionex)

HPLC: High performance liquid chromatography

PBS: Phosphate buffered saline; from Sigma, catalog number D-5652

RT: Room temperature UV/VIS: Ultraviolet/Visible

2.3.3. Analysis and Expression of Results

Aqueous Solubility

Aqueous solubility (μ M) was determined by comparing the peak area of the principal peak in a calibration standard (200 μ M) containing organic solvent (methanol/water, 60/40, v/v) with the peak area of the corresponding peak in a buffer sample. In addition, chromatographic purity (%) was defined as the peak area of the principal peak relative to the total integrated peak area in the HPLC chromatogram of the calibration standard. A chromatogram of the calibration standard of the test compound, along with a UV/VIS spectrum with labeled absorbance maxima, was generated.

Partition Coefficient (Log D, pH 7.4)

The total amount of compound was determined as the peak area of the principal peak in a calibration standard (100 μ M) containing organic solvent (methanol/water, 60/40, v/v). The amount of compound in buffer was determined as the combined, volume-corrected, and weighted areas of the corresponding peaks in the buffer phases of three octanol-buffer samples of different composition. An automated weighting system was used to ensure the preferred use of raw data from those samples with well quantifiable peak signals. The amount of compound in octanol was calculated by subtraction. Subsequently, Log D was calculated as the Log₁₀ of the amount of compound in the octanol phase divided by the amount of compound in the buffer phase.

2.4. ADME-Tox: Bioanalytical

2.4.1. General Procedures

Assay	Technique	Additional Information
HPLC-MS Screen	HPLC-MS, and HPLC-MS/MS	Full scan and product ion spectra; SRM conditions for quantitation, and ionization potential

2.4.2. Experimental Conditions

Assay	Test Compound	Analytical method
	200 μ M (n = 1) acetonitrile/methanol/water (25/25/50, v/v/v)	HPLC-MS and
		HPLC-MS/MS

Abbreviations:

HPLC-MS/MS: HPLC coupled with tandem mass spectrometry (Instrumentation: Thermo Finnigan)

HPLC-MS: HPLC with mass spectrometry detection (Instrumentation: Thermo Finnigan)

HPLC: High performance liquid chromatography

SRM: Selected reaction monitoring

2.4.3. Analysis and Expression of Results

HPLC-MS Screen

Full scan HPLC-MS analysis was conducted on the test compound at 200 μ M. Total ion current chromatograms and corresponding mass spectra were generated for the test compound in both positive and negative ionization modes. The precursor ions for MS/MS were selected from either the positive or the negative mass spectrum, as a function of the respective ion abundance. In addition, product ion HPLC-MS/MS analysis was performed in order to determine the appropriate selected fragmentation reaction for use in quantitative analysis. The final reaction monitoring parameters were chosen to maximize the possibility for quantitation of the test compound when present within a complex mixture of components. Finally, the test compound was assigned a rank number of ionization, which directly indicates its ease of quantitation.

2.5. ADME-Tox: In Vitro Absorption

2.5.1. General Procedures

ASSAY	Cell	Passage Number	Days in Culture	Reference Compound	Bibliography
A-B Permeability (pH 6.5/7.4)	TC7	15 passages in culture between passages 20 and 40	13 to 25	propranolol, ranitidine, vinblastine*	Gres et al. (1998)
A-B Permeability (pH 7.4/7.4)	TC7	15 passages in culture between passages 20 and 40	13 to 25	propranolol, ranitidine, vinblastine*	Gres et al. (1998)
B-A Permeability (<i>pH</i> 6.5/7.4)	TC7	15 passages in culture between passages 20 and 40	13 to 25	propranolol, ranitidine, vinblastine*	Hunter et al. 1993
B-A Permeability (pH 7.4/7.4)	TC7	15 passages in culture between passages 20 and 40	13 to 25	propranolol, ranitidine, vinblastine*	Hunter et al.
	TC7	15 passages in culture between passages 20 and 40	13 to 25	verapamil	Cavet et al. (1996)

Notes: TC7 is a sub-clone of the Caco-2 cell line.

2.5.2. Experimental Conditions

Assay	Test Concentration	Biological Conditions	Analytical Method
	50 μM in HBSS (n=2) 1 % DMSO	A-to-B flux at 37 °C with shaking 24-well transwell plate pH 6.5 in A and pH 7.4 in B Donor samples: time 0 and 120 min Receiver samples: time 60 min	HPLC-MS/MS
	50 μM in HBSS (n=2) 1 % DMSO	A-to-B flux at 37 °C with shaking 24-well transwell plate pH 7.4 in A and pH 7.4 in B Donor samples: time 0 and 120 min Receiver samples: time 120 min	HPLC-MS/MS
	50 µM in HBSS (n=2) 1 % DMSO	B-to-A flux at 37 °C with shaking 24-well transwell plate pH 6.5 in A and pH 7.4 in B Donor samples: time 0 and 60 min Receiver samples: time 60min	HPLC-MS/MS

^{*} Vinblastine is tested in the A-B permeability when the B-A permeability is also requested.

Assay	Test Concentration	Biological Conditions	Analytical Method
	50 μM in HBSS (n=2) 1 % DMSO	B-to-A flux at 37 °C with shaking 24-well transwell plate pH 7.4 in A and pH 7.4 in B Donor samples: time 0 and 60min Receiver samples: time 60 min	HPLC-MS/MS
	50 μM in HBSS (n=3) I % DMSO in A and B sides	B-to-A flux at 37 °C with shaking 96-well transwell plate pH 7.4 in A and B sides Donor samples: time 0 and 180 min Receiver samples: time 180 min	Scintillation counting

Notes:

Transwell plate: from Costar, 24-well plate, catalog number 3399

Multiscreen plate: from Millipore, 96-well plate, catalog number MACAC02S5.

Abbreviations:

A: Apical side B: Basolateral side

DMSO: Dimethylsulfoxide

HBSS: Hank's balanced salt solution, from Invitrogen, catalog number 11201

HEPES: N-(2-hydroxyethyl)-piperazine-N'-(2-ethanesulfonic acid)

HPLC-MS/MS: HPLC coupled with tandem mass spectrometry (Instrumentation: Thermo Finnigan)

HPLC-UV/VIS: HPLC with photodiode array detection (Instrumentation: Dionex)

HPLC: High performance liquid chromatography

MES: 2-(N-Morpholino)-ethanesulfonic acid, from Sigma, catalog number M-8652

A-B Permeability:

The working solution for the test compound was prepared as specified in the above table.

 14 C-mannitol (approximately 4 μ M) was also included in the working solution. The working solution was then added to the apical side. The respective buffer was added to the basolateral side.

The following parameter was used for assessing the cell monolayer integrity:

 14 C-D-Mannitol permeability $< 2.5 \times 10^{-6}$ cm/s

B-A Permeability:

The working solution for the test compound was prepared as specified in the above table.

The working solution was then added to the basolateral side. The respective buffer, containing

 14 C-D-mannitol (approximately 4 μ M), was added to the apical side.

The following parameter was used for assessing the cell monolayer integrity:

¹⁴C-D-Mannitol permeability < 2.5×10⁻⁶ cm/s

P-glycoprotein Inhibition:

Working solutions I and II were prepared for each test compound as follows:

Working Solution I: The compound was prepared at 50 μ M in HBSS-HEPES (5 mM), at pH 7.4 from a 10 mM DMSO stock solution. Digoxin (10 μ M) and 0.1 % BSA were included in this working solution. The working solution was then added to the apical side. Working Solution II: The compound was prepared at 50 μ M in HBSS-HEPES (5 mM), at pH 7.4 from a 10 mM DMSO stock solution. 3 H-digoxin (10 μ M) and 0.1 % BSA were included in this working solution. The working solution was then added to the basolateral side.

The following parameters were used for assessing the cell monolayer integrity: Lucifer yellow (100 μ M applied to the apical side) Papp < 1 x 10⁻⁶ cm/sec.

2.5.3. Analysis and Expression of Results

A-B Permeability

The apparent permeability coefficient (P_{app}) of the test compound in the apical to the basolateral direction was calculated as follows.

$$P_{app}(cm/s) = \frac{V_R \times C_{R120}}{\Delta t} \times \frac{1}{A \times (C_{D,mid} - C_{R,mid})}$$

where V_R is the volume of the receiver chamber. C_{R120} is the concentration of the test compound in the receiver chamber at time 120 minutes, Δt is the incubation time (120 minutes) and A is the surface area of the TC7 cell monolayer. $C_{D,mid}$ is the calculated mid-point concentration of the test compound in the donor side, which is the mean value of the donor concentration at time 0 minute and the donor concentration at time 120 minutes. $C_{R,mid}$ is the mid-point concentration of the test compound in the receiver side, which is one half of the receiver concentration at time 120 minutes. Concentrations of the test compound are expressed as peak areas of the test compound.

Recovery of the Test Compound from A-B Permeability Assay

The recovery of the test compound was calculated as follows:

Re cov ery (%) =
$$\frac{V_D \times C_{D120} + V_R \times C_{R120}}{V_D \times C_{WS}} \times 100$$

where V_D and V_R are the volumes of the donor and receiver chambers, respectively. C_{D120} is the concentration of the test compound in the donor sample at time 120 minutes. C_{R120} is the concentration of the test compound in the receiver sample at time 120 minutes. C_{WS} is the concentration of the test compound in the working solution. Concentrations of the test compound are expressed as peak areas of the test compound.

B-A Permeability

The apparent permeability coefficient (P_{app}) of the test compound in the basolateral to the apical direction was calculated as follows.

$$P_{app}(cm/s) = \frac{V_R \times C_{R60}}{\Delta t} \times \frac{1}{A \times (C_{D,mid} - C_{R,mid})}$$

where V_R is the volume of the receiver chamber. C_{R60} is the concentration of the test compound in the receiver chamber at time 60 minutes. Δt is the incubation time (60 minutes). A is the surface area of the TC7 cell monolayer. $C_{D,mid}$ is the calculated mid-point concentration of the test compound in the donor side, which is the mean value of the donor concentration at time 0 minute and the donor concentration at time 60 minutes. $C_{R,mid}$ is the mid-point concentration of the test compound in the receiver side, which is one half of the receiver concentration at time 60 minutes. Concentrations of the test compound are expressed as peak areas of the test compound.

Recovery of the Test Compound from B-A Permeability Assay

The recovery of the test compound was calculated as follows:

Re cov ery (%) =
$$\frac{V_D \times C_{D60} + V_R \times C_{R60}}{V_D \times C_{WS}} \times 100$$

where V_D and V_R are the volumes of the donor and receiver chambers, respectively. C_{D60} is the concentration of the test compound in the donor sample at time 60 minutes. C_{R60} is the concentration of the test compound in the receiver sample at time 60 minutes. C_{WS} is the concentration of the test compound in the working solution. Concentrations of the test compound are expressed as peak areas of the test compound.

P-glycoprotein Inhibition

The percent inhibition of the permeation of ³H-digoxin was calculated as follows:

Inhibition (%) =
$$100 - (\frac{(Value)_{less} - (Mean)_{background}}{(Mean)_{control} - (Mean)_{background}} \times 100)$$

where (Mean)_{control} is the mean scintillation count of ³H-digoxin on the apical side, obtained in the absence of the test compound. (Value)_{test} is an individual scintillation count of ³H-digoxin on the apical side, obtained in the presence of the test compound. (Mean)_{background} is the mean scintillation count of ³H-digoxin on the apical side, obtained in the presence of the highest concentration of the reference compound. This represents the value for passive permeation of ³H-digoxin that cannot be inhibited by verapamil at 200 μM. The average % Pgp inhibition of two individual replicates is then reported.

2.6. ADME-Tox: In Vitro Metabolism

2.6.1. General Procedures

Assay	Source	Reference Compound	Bibliography
	Human recombinant (1.25 pmol/mL)	furafylline	Crespi et al. (1997)
CYP2B6 Inhibition (EFC substrate)	Human recombinant (10 pmol/mL)	ketoconazole	Ekins et al. (1997)
CYP2C9 Inhibition (7-MFC substrate)	Human recombinant (15 pmol/mL)	sulfaphenazole	Crespi et al. (1997)
CYP2C19 Inhibition (CEC substrate)	Human recombinant (10 pmol/mL)	tranylcypromine	Ono et al. (1996)
CYP2D6 Inhibition (AMMC substrate)	Human recombinant (15 pmol/mL)	quinidine	Ono et al. (1996)
CYP2E1 Inhibition (7-EC substrate)	Human recombinant (15 pmol/mL)	4-methylpyrazole	Yamazaki et al. (1996)
CYP3A4 Inhibition (BFC substrate)	Human recombinant (2.5 pmol/mL)	ketoconazole	Stresser et al. (2000)
CYP3A4 Inhibition (BzRes substrate)	Human recombinant (2.5 pmol/mL)	ketoconazole	Stresser et al. (2000)
	Human recombinant (2.5 pmol/mL)	ketoconazole	Lin et al. (2001)
	Human recombinant (22 pmol/mL)	ketoconazole	Nomeir et al. 2001
	Human recombinant (2.5 pmol/mL)	ketoconazole	Chang and Yeung (2001)
	Human liver microsomes [protein]=0.3 mg/mL	4 reference compounds (set 1)	Kuhnz and Gieschen (1998)

Notes:

CYP1A2: from PanVera, catalog number P2792.

CYP2B6: from Discovery Labware, catalog number 456255.

CYP2C9: from PanVera, catalog number P2378. CYP2C19: from PanVera, catalog number P2570. CYP2D6: from PanVera, catalog number P2283.

CYP2E1: from Discovery Labware, catalog number 456206.

CYP3A4: from PanVera, catalog number P2377. CYP3A5: from PanVera, catalog number P2512.

4 Reference compounds - set 1: Propranolol, Imipramine, Verapamil, and Terfenadine.

Human liver microsomes: from Xenotech, catalog number: H0610, pooled and mixed gender.

2.6.2. Experimental Conditions

Assay	Substrate / Cofactor	Incubation	Detected Component	Amalytical Method
	CEC (5 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 30 min, 37 °C	СНС	Fluorimetry
	EFC (1.5 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 50 min, 37 °C	HFC	Fluorimetry
	MFC (50 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 80 min, 37 °C	НГС	Fluorimetry
	CEC (25 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 60 min, 37 °C	СНС	Fluorimetry
	AMMC (1.5 μM), NADP (8.2 μM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 45 min, 37 °C	AHMC	Fluorimetry
	EC (4 μM), NADP (8.2 μM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 50 min, 37 °C	НС	Fluorimetry
	BFC (50 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 30 min, 37 °C	HFC	Fluorimetry
	BzRes (1 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 40 min, 37°C	resorufin	Fluorimetry
	Testosterone (50 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 15 min, 37°C	6β-hydroxy- testosterone	HPLC-UV/VIS
	Midazolam (5 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 20 min, 37°C	1-hydroxymidazolam	HPLC-UV/VIS

Assay	Substrate / Cofactor	Incubation	Detected Component	Analytical Method
	BFC (20 μM), NADP (1.3 mM), G6P (3.3 mM), G6PDHase (0.4 U/mL)	0 and 30 min, 37 °C	HFC	Fluorimetry
	Test compound (1 μM), NADP (1 mM), G6P (5 mM),	0 and 60 min, 37 °C Phosphate	Product ion corresponding to the test compound via SRM	HPLC-MS/MS
,	G6PDHase (1 U/mL) with 0.6 % methanol,	buffer (50 mM) pH 7.4		
	0.6 % acetonitrile			
	(n=2)			

Abbreviations:

AHMC: 3-[2-(N,N-diethyl-N-methylammonium)-ethyl]-7-hydroxy-4-methylcoumarin

AMMC: 3-[2-(N,N-diethyl-N-methylammonium)-ethyl]-7-methoxy-4-methylcoumarin; from Discovery Labware,

catalog number 451700

BFC: 7-Benzyloxy-4-(trifluoromethyl)-coumarin; from Discovery Labware, catalog number 451730

BzRes: 7-benzyloxyresorufin

CEC: 3-Cyano-7-ethoxycoumarin, from Molecular Probes, catalog number C-684

CHC: 3-Cyano-7-hydroxycoumarin

CYP: Cytochrome P450

EC: 7-Ethoxycoumarin, from Molecular Probes, catalog number E-186

EFC: 7-Ethoxy-4-trifluoromethylcoumarin, from Molecular Probes, catalog number E-2882

G6P: D-Glucose-6-phosphate, from Sigma, catalog number G-7772

G6PDHase: Glucose-6-phosphate dehydrogenase, from Sigma, catalog number G-4134

HC: 7-Hydroxycoumarin

HFC: 7-Hydroxy-4-trifluoromethylcoumarin

HPLC-MS/MS: HPLC coupled with tandem mass spectrometry (Instrumentation: Thermo Finnigan)

HPLC: High performance liquid chromatography

MFC: 7-Methoxy-4-trifluoromethylcoumarin, from Sigma, catalog number T-3165

NADP: β-Nicotinamide adenine dinucleotide phosphate, from Sigma, catalog number N-0505

Res: Resorufin

SRM: Selected reaction monitoring

For CYP450 inhibition assays, the compound was tested at 10 μ M concentration in duplicate as specified in the Results section of this report.

2.6.3. Analysis and Expression of Results

Cytochrome P450 Inhibition (fluorimetric detection)

The fluorescent intensity (fu) measured at (t = 0) was subtracted from that measured after the appropriate incubation time (t = final). The ratio of signal-to-noise was calculated by comparing the fluorescence in incubations containing the test compound to the control samples containing the same solvent vehicle. The percent of control activity was then calculated. Subsequently, the percent inhibition was calculated by subtracting the percent control activity from 100. IC₅₀ values (concentration causing a half-maximal inhibition of control values) were determined by non-linear regression analysis of the concentration-response curves using Hill equation curve fitting.

Cytochrome P450 Inhibition (HPLC-UV/VIS and HPLC-MS/MS detection)

Peak areas corresponding to the metabolite of each substrate and the internal standard (when applicable) were recorded. The percent of control activity was then calculated. Subsequently, the percent inhibition was calculated by subtracting the percent control activity from 100 for each compound. IC₅₀ values (concentration causing a half-maximal inhibition of control values) were determined by non-linear regression analysis of the concentration-response curves using Hill equation curve fitting.

Metabolic Stability

At the end of incubation at each of the time points, an equal volume of an organic mixture (acetonitrile/methanol, 50/50, v/v) containing an internal standard (when applicable) was added to the incubation mixture. Peak areas corresponding to the analytes were determined by HPLC-MS/MS. The ratio of precursor compound remaining after 60 minutes relative to the amount remaining at time zero, expressed as percent, is reported as metabolic stability.

2.7. ADME-Tox: Cytotoxicity

2.7.1. General Procedures

Assay	Tissue / Cell Source	Reference Compound	Bibliography
Cell viability	HepG2 cells	chlorpromazine	Nociari et al. (1998)
(HepG2)			

2.7.2. Experimental Conditions

Assay	Substrate / Stimulus	Incubation	Reaction Product	Analytical Method
	AlamarBlue oxidized (resazurin)	48 hours, 37 °C	AlamarBlue reduced (resorufin)	Fluorimetry

The compound was tested at 30 μM in duplicate with a final DMSO (dimethylsulfoxide) concentration of 1 %.

2.7.3. Analysis and Expression of Results

The percent of control activity was calculated. Subsequently, the percent of inhibition was calculated by subtraction of the percent of control value from 100. The IC_{50} value (concentration causing a half-maximal inhibition of control values) was determined by non-linear regression analysis of the concentration-response curve using Hill equation curve fitting.

3. COMPOUNDS

3.1. Test Compound

From: PFIZER GLOBAL RESEARCH & DEVELOPMENT

CEREP LD.	Compound I.D.	Batch Number	Submitted M.W.	Stock Solution	Working Dilution
884017-11 PF-592379-00				1.E-02 M DMSO	1.E-04 M H2O*
	11350201	225 22	1.E-02 M DMSO	3.E-04 M H2O**	
		235.33	1.E-02 M DMSO	5.E-05 M H2O***	
				1.E-02 M DMSO	1.E-03 M H2O****

M.W.: Molecular Weight

3.2. Reference Compounds

In each experiment, the respective reference compounds were tested concurrently with PF-592379-00 in order to assess the assay suitability. It was tested either at one or several concentrations (for IC_{50} or EC_{50} value determination), and the data were compared with historical values determined at Cerep. The assay was rendered valid if the suitability criteria were met, in accordance with the corresponding Standard Operating Procedure.

^{*} For In Vitro Pharmacology

^{**} For the ATPase (Na⁺/K⁺) enzyme assay

^{***} For the human MMP-2, MMP-3 and MMP-9 assays and the Abl kinase assay

^{****} For final test concentrations higher than 1.E-05 M

4. RESULTS

4.1. IN VITRO PHARMACOLOGY: Binding Assays

The mean values for the effects of PF-592379-00 are summarized in table 1 - 1.

The individual data obtained with PF-592379-00 are reported in table 1 - 2.

The IC₅₀ and K_i values for each reference compound are indicated in table 1 - 3. Each is within accepted limits of the historic average \pm 0.5 log units.

The IC₅₀ and K_i values determined for PF-592379-00 are indicated in table 1 - 4.

The corresponding competition curves obtained with PF-592379-00 are shown in figures 1 to 9.

The individual data obtained with PF-592379-00 are reported in table 1 - 5.

The IC₅₀ and K_i values for each reference compound are indicated in table 1 - 6. Each is within accepted limits of the historic average \pm 0.5 log units.

Table 1 - 1
Summary Results

Assay Cerep Compound I.D.	Client Compound L.D.	Test Compentration (M)	% Inhibition of Control Specific Binding
A ₁ (h)			
884017-11	PF-592379-00	1.0E-05	-19
A _{2A} (h) 884017-11	PF-592379-00	1.0E-05	1
A ₃ (h) 884017-11	PF-592379-00	1.0E-05	9
α ₁ (non-selective) 884017-11	PF-592379-00	1.0E-05	-7
α ₂ (non-selective) 884017-11	PF-592379-00	1.0E-05	. 16
α _{2A} (h) 884017-11	PF-592379-00	1.0E-05	3
α _{2B} 884017-11	PF-592379-00	1.0E-05	41
β ₁ (h) 884017-11	PF-592379-00	1.0E-05	24
β ₂ (h) 884017-11	PF-592379-00	1.0E-05	12
β ₃ (h) 884017-11	PF-592379-00	1.0E-05	0
AT ₁ (h) 884017-11	PF-592379-00	1.0E-05	2
AT ₂ (h) 884017-11	PF-592379-00	1.0E-05	-9
BZD (central) 884017-11	PF-592379-00	1.0E-05	11
B ₂ (h) 884017-11	PF-592379-00	1.0E-05	-1
CGRP (h) 884017-11	PF-592379-00	1.0E-05	-18
CB ₁ (h) 884017-11	PF-592379-00	1.0E-05	-8
CB ₂ (h) 884017-11	PF-592379-00	1.0E-05	-5
CCK _A (h) (CCK ₁) 884017-11	PF-592379-00	1.0E-05	-16

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Specific Binding
CCK _B (h) (CCK ₂) 884017-11	PF-592379-00	1.0E-05	-10
D1 (h)			
884017-11	PF-592379-00	1.0E-05	·2
D2S (h)			
884017-11	PF-592379-00	1.0E-05	2
D2 (1)			
D3 <i>(h)</i> 884017-11	PF-592379-00	1.0E-05	82
D4.4 (h)	FF-392379-00	1.02-03	
884017-11	PF-592379-00	1.0E-05	80
ET _B (h)			
884017-11	PF-592379-00	1.0E-05	-4
GABA _A			
884017-11	PF-592379-00	1.0E-05	-18
GABA _B			
884017-11	PF-592379-00	1.0E-05	12
Kainate			
884017-11	PF-592379-00	1.0E-05	-27
NMDA			
884017-11	PF-592379-00	1.0E-05	3
Glycine (strychnine-insensit	•		_
884017-11	PF-592379-00	1.0E-05	-5
CCR1 (h)	DT 500350 00	1.077.07	
884017-11	PF-592379-00	1.0E-05	-14
Ghrelin (h) (GHS) 884017-11	PF-592379-00	1.0E-05	7
	Pr-392379-00	1.0E-05	/
H ₁ (central) 884017-11	PF-592379-00	1.0E-05	47
H ₂	11-372317-00	1.02-03	4,
884017-11	PF-592379-00	1.0E-05	10
H ₃			
884017-11	PF-592379-00	1.0E-05	24
I ₁ (peripheral)			
884017-11	PF-592379-00	1.0E-05	11
LTD ₄ (h)			
884017-11	PF-592379-00	1.0E-05	6
MC ₁			
884017-11	PF-592379-00	1.0E-05	12
$MC_4(h)$			_
884017-11	PF-592379-00	1.0E-05	8

Assay Cerep Compound L.D.	Client Compound LD.	Test Concentration (N)	% Inhibition of Control Specific Binding
$\overline{ML_{l}}$			
884017-11	PF-592379-00	1.0E-05	-1
$\overline{\mathrm{ML}_{2}\left(MT_{3}\right) }$			
884017-11	PF-592379-00	1.0E-05	34
MAO-A	•		
884017-11	PF-592379-00	1.0E-05	70
MAO-B			
884017-11	PF-592379-00	1.0E-05	-16
$M_1(h)$	· · · · · · · · · · · · · · · · · · ·		
884017-11	PF-592379-00	1.0E-05	-23
$\overline{M_2(h)}$			
884017-11	PF-592379-00	1.0E-05	19
$M_3(h)$		· · · · · · · · · · · · · · · · · · ·	
884017-11	PF-592379-00	1.0E-05	16
$\overline{NK_1(h)}$	·		
884017-11	PF-592379-00	1.0E-05	-1
$\overline{\mathbf{Y}_{1}(h)}$			
884017-11	PF-592379-00	1.0E-05	10
N (neuronal) (α-BGTX-ii	nsensitive)		
884017-11	PF-592379-00	1.0E-05	11
N (h) (muscle-type)			
884017-11	PF-592379-00	1.0E-05	3
$\frac{\delta_2(h) \text{ (DOP)}}{\delta_2(h)}$		1.02 05	
884017-11	PF-592379-00	1.0E-05	6
	11 372377 00	1.02 05	
κ (KOP) 884017-11	PF-592379-00	1.0E-05	34
	11-392379-00	1.0E-05	34
μ <i>(h)</i> (MOP) 884017-11	PF-592379-00	1.0E-05	4
***************************************	FF-392379-00	1.UE-U3	4
ORL1 <i>(h)</i> (NOP) 884017-11	PF-592379-00	1.0E-05	-1
	F1-392379-00	1.0E-03	-1
OT <i>(h)</i> 884017-11	PF-592379-00	1.0E-05	-32
	FF-392379-00	1.0E-03	-32
PCP 884017-11	PF-592379-00	1.0E-05	. 0
	FT-374377-00	1.0E-03	V
P2X 884017-11	PF-592379-00	1.0E-05	5
	FF-392379-00	1.05-03	3
5-HT _{1A} (h) 884017-11	PF-592379-00	1.00.05	20
	FF-392379-UU	1.0E-05	39
5-HT _{1B}	DE 502270 00	1.0E-05	F
884017-11	PF-592379-00	1.UE-U3	-5
5-HT _{ID}			

5-HT_{1D}

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Specific Binding
884017-11	PF-592379-00	1.0E-05	24
5-HT _{2A} <i>(h)</i> 884017-11	PF-592379-00	1.0E-05	8
5-HT _{2B} (h) 884017-11	PF-592379-00	1.0E-05	3
5-HT _{2C} (h) 884017-11	PF-592379-00	1.0E-05	. 32
5-HT ₃ (h) 884017-11	PF-592379-00	1.0E-05	6
5-HT _{4e} (h) 884017-11	PF-592379-00	1.0E-05	-7
5-HT ₆ (h) 884017-11	PF-592379-00	1.0E-05	. 25
5-HT ₇ (h) 884017-11	PF-592379-00	1.0E-05	. 10
σ (non-selective) 884017-11	PF-592379-00	1.0E-05	7
sst ₄ (h) 884017-11	PF-592379-00	1.0E-05	-3
sst ₅ (h) 884017-11	PF-592379-00	1.0E-05	7
Glucocorticoid (h) (GR) 884017-11	PF-592379-00	1.0E-05	8
Estrogen α (h) (ERα) 884017-11	PF-592379-00	1.0E-05	-8
Androgen (h) (AR) 884017-11	PF-592379-00	1.0E-05	0
TH 884017-11	PF-592379-00	1.0E-05	-3
Urotensin-II (UT-II) 884017-11	PF-592379-00	1.0E-05	14
VIP ₁ (h) (VPAC ₁) 884017-11	PF-592379-00	1.0E-05	-5
V _{1a} (h) 884017-11	PF-592379-00	1.0E-05	22
Ca ²⁺ channel (L, DHP site) 884017-11	PF-592379-00	1.0E-05	3
Ca ²⁺ channel (L, verapamil 884017-11	site) (phenylalkylamines) PF-592379-00	1.0E-05	-6
Ryanodine (RY ₃) 884017-11	PF-592379-00	1.0E-05	29

Assay Cerep Compound I.D.	Client Compound LD.	Test Concentration (N)	% Inhibition of Control Specific Binding
K ⁺ _{ATP} channel			
884017-11	PF-592379-00	1.0E-05	20
K ⁺ _V channel			
884017-11	PF-592379-00	1.0E-05	-3
SK ⁺ _{Ca} channel 884017-11	PF-592379-00	1.0E-05	-11
Na ⁺ channel (site 2) 884017-11	PF-592379-00	1.0E-05	-35
Cl ⁻ channel 884017-11	PF-592379-00	1.0E-05	-46
NE transporter (h) 884017-11	PF-592379-00	1.0E-05	1
DA transporter (h) 884017-11	PF-592379-00	1.0E-05	3
GABA transporter 884017-11	PF-592379-00	1.0E-05	-12
Choline transporter 884017-11	PF-592379-00	1.0E-05	-4
5-HT transporter (h) 884017-11	PF-592379-00	1.0E-05	. 16

Table 1 - 2
Individual Data

Assay		Test	% of Control Specific Binding		
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	. 1 st	2 nd	Mean
A ₁ (h) 884017-11	PF-592379-00	1.0E-05	115.1	122.6	118.9
A _{2A} (h) 884017-11	PF-592379-00	1.0E-05	107.4	90.6	99.0
A ₃ (h) 884017-11	PF-592379-00	1.0E-05	93.9	88.5	91.2
α ₁ (non-selective) 884017-11	PF-592379-00	1.0E-05	109.2	105.4	107.3
α ₂ (non-selective) 884017-11	PF-592379-00	1.0E-05	92.7	75.6	84.1
α _{2A} (h) 884017-11	PF-592379-00	1.0E-05	99.2	95.8	97.5
α _{2B} 884017-11	PF-592379-00	1.0E-05	52.8	64.8	58.8
β ₁ (h) 884017-11	PF-592379-00	1.0E-05	85.9	66.5	76.2
β ₂ (h) 884017-11	PF-592379-00	1.0E-05	90.8	85.2	88.0
β ₃ (h) 884017-11	PF-592379-00	1.0E-05	102.3	97.5	99.9
AT ₁ (h) 884017-11	PF-592379-00	1.0E-05	98.4	97.0	97.7
AT ₂ (h) 884017-11	PF-592379-00	1.0E-05	111.6	105.7	108.7
BZD (central) 884017-11	PF-592379-00	1.0E-05	88.8	89.4	89.1
B ₂ (h) 884017-11	PF-592379-00	1.0E-05	102.3	100.1	101.2
CGRP (h) 884017-11	PF-592379-00	1.0E-05	112.5	123.1	117.8
CB ₁ (h) 884017-11	PF-592379-00	1.0E-05	101.1	115.5	108.3
CB ₂ (h) 884017-11	PF-592379-00	1.0E-05	99.6	111.4	105.5
CCK _A (h) (CCK ₁) · 884017-11	PF-592379-00	1.0E-05	112.4	119.1	115.7

Assay	C0 1.0	Test	% of Control Specific Binding		
Cerep Compound LD.	Clieni Compound L.D.	Concentration (M)	II ast .	2 nd	Mean
CCK _B (h) (CCK ₂)		•			
884017-11	PF-592379-00	1.0E-05	109.8	110.2	110.0
D1 (h)					
884017-11	PF-592379-00	1.0E-05	97.1	99.7	98.4
D2S (h)					
884017-11	PF-592379-00	1.0E-05	100.0	95.3	97.6
D3 (h)	DE 500370 00	1.05.05	10.0	10.2	40.5
884017-11	PF-592379-00	1.0E-05	17.7	19.3	18.5
D4.4 <i>(h)</i> 884017-11	PF-592379-00	1.0E-05	12.7	28.2	20.4
	PF-392379-00	1.0E-03	12.7	20.2	20.4
ET _B (h) 884017-11	PF-592379-00	1.0E-05	99.9	107.3	103.6
GABAA	11-372317-00	1.0L-03	77.7	107.5	105.0
884017-11	PF-592379-00	1.0E-05	124.1	111.1	117.6
GABA _B	11 0,237, 00	1.02 03			
884017-11	PF-592379-00	1.0E-05	82.5	93.5	88.0
Kainate					
884017-11	PF-592379-00	1.0E-05	152.5	101.0	126.7
NMDA		· · · · · · · · · · · · · · · · · · ·			
884017-11	PF-592379-00	1.0E-05	102.2	91.2	96.7
Glycine (strychnine-insens	sitive)				
884017-11	PF-592379-00	1.0E-05	104.4	106.1	105.2
CCR1 (h)					
884017-11	PF-592379-00	1.0E-05	111.4	116.9	114.1
Ghrelin (h) (GHS)					
884017-11	PF-592379-00	1.0E-05	95.7	90.8	93.3
H ₁ (central)					
884017-11	PF-592379-00	1.0E-05	• 52.2	53.0	52.6
H ₂	DE 602270 00	1.05.05	80.0	00.5	00.5
884017-11	PF-592379-00	1.0E-05	89.0	90.5	89.7
H ₃ 884017-11	PF-592379-00	1.0E-05	71.9	81.0	76.5
I ₁ (peripheral)	11-392379-00	1.01-03	71.9	01.0	70.5
884017-11	PF-592379-00	1.0E-05	79.4	98.6	89.0
LTD ₄ (h)	11 372377 00	1.02 05	,,,,	70.0	07.0
884017-11	PF-592379-00	1.0E-05	79.7	107.4	93.6
MC ₁					
884017-11	PF-592379-00	1.0E-05	75.6	99.5	87.6
MC ₄ (h)	,				
884017-11	PF-592379-00	1.0E-05	91.7	92.5	92.1

Assay		Test	% of Contro	ol Specific Bi	nding
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	l st	2 nd	Mean
ML ₁ 884017-11	PF-592379-00	1.0E-05	101.3	99.8	100.6
ML ₂ (MT ₃) 884017-11	PF-592379-00	1.0E-05	64.9	67.5	66.2
MAO-A 884017-11	PF-592379-00	1.0E-05	31.9	28.0	29.9
MAO-B 884017-11	PF-592379-00	1.0E-05	115.7	116.8	116.3
M ₁ (h) 884017-11	PF-592379-00	1.0E-05	116.0	130.0	123.0
M ₂ (h) 884017-11	PF-592379-00	1.0E-05	77.8	83.3	80.6
M ₃ (h) 884017-11	PF-592379-00	1.0E-05	91.9	75.5	83.7
NK ₁ (h) 884017-11	PF-592379-00	1.0E-05	100.1	101.6	100.8
Y ₁ (h) 884017-11	PF-592379-00	1.0E-05	81.2	98.3	89.8
N (neuronal) (α-BGTX-i 884017-11	nsensitive) PF-592379-00	1.0E-05	82.3	95.4	88.9
N (h) (muscle-type) 884017-11	PF-592379-00	1.0E-05	100.4	93.5	97.0
δ ₂ (h) (DOP) 884017-11	PF-592379-00	1.0E-05	98.0	90.0	94.0
κ (KOP) 884017-11	PF-592379-00	1.0E-05	72.2	59.0	65.6
μ <i>(h)</i> (MOP) 884017-11	PF-592379-00	1.0E-05	84.7	106.4	95.5
ORL1 (h) (NOP) 884017-11	PF-592379-00	1.0E-05	100.1	100.9	100.5
OT <i>(h)</i> 884017-11	PF-592379-00	1.0E-05	147.5 .	117.4	132.5
PCP 884017-11	PF-592379-00	1.0E-05	106.2	94.3	100.3
P2X 884017-11	PF-592379-00	1.0E-05	92.5	97.6	95.0
5-HT _{1A} (h) 884017-11	PF-592379-00	1.0E-05	62.6	60.3	61.5
5-HT _{1B} 884017-11	PF-592379-00	1.0E-05	99.0	110.8	104.9
5-HT _{ID}					

Assay		Tesi	% of Contro	ol Specific Bi	nding
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	I art	2 ^{rndl}	Mean
884017-11	PF-592379-00	1.0E-05	72.4	78.7	75.5
5-HT _{2A} (h)					
884017-11	PF-592379-00	1.0E-05	90.4	92.9	91.6
5-HT _{2B} (h)					
884017-11	PF-592379-00	1.0E-05	99.9	93.2	96.6
5-HT _{2C} (h) 884017-11	PF-592379 - 00	1.0E-05	66.0	69.2	67.6
5-HT ₃ (h)	11-372317-00	1.02-03	00.0	07.2	07.0
884017-11	PF-592379-00	1.0E-05	97.3	91.1	94.2
5-HT _{4e} (h)					
884017-11	PF-592379-00	1.0E-05	102.2	111.8	107.0
5-HT ₆ (h)					
884017-11	PF-592379-00	1.0E-05	77.3	73.3	75.3
5-HT ₇ (h) 884017-11	PF-592379-00	1.0E-05	90.2	89.9	90.0
σ (non-selective)	FF-392379-00	1.02-03	90.2	69.9	90.0
884017-11	PF-592379-00	1.0E-05	99.8	87.2	93.5
sst ₄ (h)					
884017-11	PF-592379-00	1.0E-05	112.5	93.8	103.1
sst ₅ (h)					
884017-11	PF-592379-00	1.0E-05	87.8	97.4	92.6
Glucocorticoid (h) (GR)	DE 600050 00	1.05.05	•00.0		
884017-11	PF-592379-00	1.0E-05	103.9	81.1	92.5
Estrogen α (h) (ERα) 884017-11	PF-592379-00	1.0E-05	106.2	109.7	108.0
Androgen (h) (AR)	11-372317-00	1.02-03	100.2	107.7	100.0
884017-11	PF-592379-00	1.0E-05	98.3	102.3	100.3
TH		•			
884017-11	PF-592379-00	1.0E-05	102.1	103.2	102.7
Urotensin-II (UT-II)					
884017-11	PF-592379-00	1.0E-05	91.5	80.9	86.2
VIP ₁ (h) (VPAC ₁) 884017-11	PF-592379-00	1.0E-05	103.5	105.6	104.6
V _{1a} (h)	FF-372377-00	1.0E-03	103.3	103.0	104.6
884017-11	PF-592379-00	1.0E-05	75.8	81.2	78.5
Ca ²⁺ channel (L, DHP site)	·			
884017-11	PF-592379-00	1.0E-05	102.7	90.7	96.7
	l site) (phenylalkylamines)				
884017-11	PF-592379-00	1.0E-05	101.5	111.2	106.3
Ryanodine (RY ₃)	DE 602250 00	100.00	**	00.0	
884017-11	PF-592379-00	1.0E-05	58.3	83.9	71.1

Assay		Test	% of Contro	l Specific Bi	nding
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	1 ^{s1}	2 nd	Mean
K ⁺ _{ATP} channel				•	
884017-11	PF-592379-00	1.0E-05	85.3	74.9	80.1
K ⁺ _V channel					
884017-11	PF-592379-00	1.0E-05	-103.5	102.1	102.8
SK ⁺ Ca channel					
884017-11	PF-592379-00	1.0E-05	107.7	114.3	111.0
Na ⁺ channel (site 2)					
884017-11	PF-592379-00	1.0E-05	120.2	150.4	135.3
Cl ⁻ channel					
884017-11	PF-592379-00	1.0E-05	150.5	141.0	145.7
NE transporter (h)					
884017-11	PF-592379-00	1.0E-05	95.5	103.0	99.3
DA transporter (h)					
884017-11	PF-592379-00	1.0E-05	100.2	94.7	97.4
GABA transporter					
884017-11	PF-592379-00	1.0E-05	113.2	110.8	112.0
Choline transporter				-	
884017-11	PF-592379-00	1.0E-05	91.1	117.2	104.2
5-HT transporter (h)					
884017-11	PF-592379-00	1.0E-05	85.4	81.8	83.6

Table 1 - 3

Reference Compound Data

Assay Reference Compound	IC50 (NI)	B~, ((241))	nn _H
A ₁ (h) DPCPX	2.3E-08	1.4E-08	1.3
A _{2A} (h) NECA	2.8E-08	2.3E-08	0.7
A ₃ (h) IB-MECA	2.2E-09	1.5E-09	0.9
α ₁ (non-selective) prazosin	6.4E-10	1.7E-10	0.7
α ₂ (non-selective) yohimbine	7.7E-08	3.3E-08	1.1
α _{2A} (h) yohimbine	3.5E-09	1.5E-09	1.2
α_{2B} yohimbine	9.8E-09	3.8E-09	0.7
β ₁ (h) atenolol	1.5E-06	6.7E-07	0.8
β ₂ (h) ICI 118551	3.6E-09	1.5E-09	1.2
β ₃ (h) cyanopindolol	5.3E-08	3.5E-08	· 0.7
AT ₁ (h) saralasin	1.6E-09	1.2E-09	1.3
AT ₂ (h) saralasin	1.5E-10	5.7E-11	1.0
BZD (central) diazepam	1.2E-08	9.9E-09	0.9
B ₂ (h) NPC 567	6.6E-09	3.0E-09	1.0
CGRP (h) hCGRPα	1.8E-10	4.1E-11	1.0
CB ₁ (h) WIN 55212-2	2.5E-08	1.8E-08	1.1
CB ₂ (h) WIN 55212-2	4.2E-09	1.5E-09	1.3
CCK _A (h) (CCK ₁) CCK-8	7.8E-10	4.8E-10	0.6
CCV. (h) (CCV.)		,	

CCK_B (h) (CCK₂)

Assay Reference Compound	IC ₅₀ (M)	K _i	n _H
CCK-8	2.1E-09	1.4E-09	1.0
D1 (h)		11.12.07	
SCH 23390	6.2E-10	2.9E-10	0.9
D2S (h)			
(+)butaclamol	5.9E-09	2.1E-09	1.1
D3 (h)			
(+)butaclamol	6.1E-08	1.3E-08	1.3
D4.4 (h)			
clozapine	1.3E-07	5.6E-08	1.1
ET _B (h)			
endothelin-3	1.3E-10	9.8E-11	0.7
GABA _A			
muscimol	1.0E-08	7.2E-09	1.2
GABA _B			
baclofen	5.7E-08	3.1E-08	1.4
Kainate			
kainic acid	3.2E-08	2.5E-08	1.0
NMDA			
CGS 19755	3.9E-07	3.2E-07	1.2
Glycine (strychnine-insensitive)			
glycine	4.4E-07	4.0E-07	0.8
CCR1 (h)			
MIP-1α	8.8E-11	3.2E-11	1.1
Ghrelin (h) (GHS)			
ghrelin	4.2E-10	1.7E-10	1.3
H ₁ (central)			
pyrilamine	2.2E-09	9.5E-10	1.3
H ₂	1.17.06		
cimetidine	1.1E-06	9.1E-07	0.7
H ₃	1.55.00	6 OF 10	0.7
(R)α-Me-histamine	1.5E-09	6.0E-10	0.7
I ₁ (peripheral)	2.25.07	1.25.07	0.0
rilmenidine	2.3E-07	1.2E-07	0.8
LTD ₄ (h) LTD ₄	4.2E.00	2.85.00	0.7
	4.2E-09	2.8E-09	0.7
MC ₁	0.2E 11	4.6E 11	, ,
NDP-α-MSH	9.2E-11	4.6E-11	1.1
MC ₄ (h) NDP-α-MSH	3.0E-10	2 SE 10	0.0
	3.UE-10	2.5E-10	0.8
ML ₁ melatonin	2.1E-10	1 45 10	1.0
metatoriiii	Z.1E-10	1.4E-10	1.0

Assay Reference Compound	IC:50 (M)	K.,	m _H
$ML_2(MT_3)$			
melatonin	5.7E-08	5.6E-08	0.9
MAO-A			
clorgyline	1.6E-09	9.2E-10	1.6
MAO-B	-		
(R)-deprenyl	1.2E-08	6.8E-09	0.9
$M_1(h)$	1 2 1		
pirenzepine	5.0E-08	4.3E-08	0.7
$M_2(h)$			
methoctramine	4.8E-08	3.2E-08	0.8
M ₃ (h) 4-DAMP	2.6E-09	1.9E-09	0.8
NK ₁ (h)			
$[Sar^9, Met(O_2)^{11}]-SP$	3.1E-10	1.4E-10	0.8
Y ₁ (h)			
NPY	2.2E-10	1.3E-10	0.8
N (neuronal) (α-BGTX-insensitive)			
nicotine	9.2E-09	5.0E-09	0.9
N (h) (muscle-type)			
α-bungarotoxin	7.2E-09	5.7E-09	0.9
δ_2 (h) (DOP)	•		
DPDPE	3.0E-09	1.8E-09	1.1
κ (KOP)			
U 50488	1.7E-09	5.6E-10	1.4
μ (h) (MOP)			
DAMGO	1.1E-09	3.8E-10	0.8
ORL1 (h) (NOP)			
nociceptin	6.3E-09	2.6E-09	1.9
OT (h)			
oxytocin	4.7E-07	4.6E-07	1.2
PCP			
MK 801	3.8E-09	3.6E-09	1.0
P2X	1.00.00	5 55 00	0.0
α,β-MeATP	1.2E-08	5.5E-09	0.9
3-111 _{1A} (n)	7 CT 10	2.05.10	, ,
8-OH-DPAT	7.5E-10	3.8E-10	1.1
5-HT _{1B} 5-HT	2.7E-08	1.7E-08	0.7
5-HT _{1D}			
serotonin	1.2E-09	7.1E-10	1.9
		~	

Assay	IC ₅₀	К,	
Reference Compound	(M)	(M)	n _H
$5-HT_{2A}$ (h)			
ketanserin	2.5E-09	1.4E-09	1.2
$5-HT_{2B}(h)$		•	
serotonin	9.6E-08	4.3E-08	1.0
$5-HT_{2C}(h)$			
SB 242084	3.0E-08	1.4E-08	2.2
5-HT ₃ (h)			
MDL 72222	2.9E-08	1.5E-08	1.1
$5-HT_{4e}(h)$			
5-HT	1.9E-07	8.3E-08	0.7
5-HT ₆ (h)			
serotonin	4.4E-07	2.1E-07	0.8
5-HT ₇ (h)			
serotonin	5.0E-10	2.2E-10	0.9
σ (non-selective)			
haloperidol	7.8E-08	6.1E-08	1.0
sst ₄ (h)			
somatostatin	1.7E-08	1.5E-08	0.9
$sst_5(h)$			
somatostatin	1.2E-09	1.0E-09	0.6
Glucocorticoid (h) (GR)			
dexamethasone	6.0E-09	3.0E-09	1.2
Estrogen α (h) (ER α)			
17-β-estradiol	4.5E-08	3.6E-08	0.7
Androgen (h) (AR)			
methyltrienolone	1.9E-09	1.5E-09	1.2
TH			
<u>T</u> ₃	3.9E-10	2.8E-10	1.0
Urotensin-II (UT-II)	4.00	4.577.00	
urotensin-II	4.9E-09	4.5E-09	0.9
VIP_1 (h) (VPAC ₁)	2.05.10	1.65.10	0.0
VIP	2.9E-10	1.6E-10	0.9
V _{1a} (h)	1.05.00	7.7E 10	
[d(CH ₂) ₅ , Tyr(Me) ₂]-AVP	1.2E-09	7.7E-10	1.1
Ca ²⁺ channel (L, DHP site)	0.65.10	2.2E 10	1.2
nitrendipine	9.6E-10	3.2E-10	1.3
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines) D 600	1.0E-07	1.7E-08	0.7
Ryanodine (RY ₃)		-	3
ryanodine	3.1E-09	2.0E-09	1.0
7/+			

K⁺_{ATP} channel

Assay	IC ₅₀	, K	un _{:19}
Reference Compound	([M))	(M h)	
glibenclamide	3.6E-09	1.2E-09	2.0
K ⁺ _V channel			
α -dendrotoxin	1.4E-09	1.1E-09	3.3
SK ⁺ _{Ca} channel	· · · · · · · · · · · · · · · · · · ·		
apamin	2.8E-11	1.8E-11	1.2
Na ⁺ channel (site 2)			
veratridine	7.7E-06	6.9E-06	0.8
Cl ⁻ channel			
picrotoxinin	1.3E-07	1.1E-07	1.3
NE transporter (h)			
protriptyline	1.2E-08	9.7E-09	1.1
DA transporter (h)			
BTCP	2.2E-08	9.9E-09	0.9
GABA transporter			
nipecotic acid	6.8E-06	6.8E-06	0.7
Choline transporter			
hemicholinium-3	1.1E-08	7.5E-09	1.1
5-HT transporter (h)			
imipramine	4.9E-09	2.0E-09	1.0

Table 1 - 4

IC₅₀ Determination: Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	IC ₅₀ (M)	К _і (М)	n _H	Flags
α_{2B}					
884017-11	PF-592379-00	1.0E-05	4.0E-06	0.9	
D3 (h)					
884017-11	PF-592379-00	1.2E-06	2.5E-07	0.7	
D4.4 (h)					
884017-11	PF-592379-00	6.6E-07	2.8E-07	0.6	
H ₁ (central)			·		
884017-11	PF-592379-00	1.6E-05	6.9E-06	0.6	
$ML_2(MT_3)$					
884017-11	PF-592379-00	4.3E-05	4.2E-05	0.7	
MAO-A					
884017-11	PF-592379-00				N.C.
κ (KOP)					
884017-11	PF-592379-00	9.5E-05	3.2E-05	0.9	
5-HT _{IA} (h)					
884017-11	PF-592379-00	1.9E-05	9.7E-06	0.9	
5-HT _{2C} (h)					
884017-11	PF-592379-00				N.C.

N.C.: Not calculable. IC50 value is not calculable because of less than 25% inhibition at the highest tested concentration.

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE ALPHA 2B RECEPTOR

$$IC50 = 1.0E-05 M$$

 $nH = 0.9$

Figure 1

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE HUMAN D3 RECEPTOR

$$IC50 = 1.2E-06 M$$

 $nH = 0.7$

Figure 2

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE HUMAN D4.4 RECEPTOR

$$IC50 = 6.6E-07 M$$

 $nH = 0.6$

Figure 3

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE CENTRAL H1 RECEPTOR

$$IC50 = 1.6E-05 M$$

 $nH = 0.6$

Figure 4

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE ML2 RECEPTOR

$$IC50 = 4.3E-05 M$$

 $nH = 0.7$

Figure 5

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE MAO-A RECEPTOR

IC50 not calculable

Figure 6

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE KAPPA RECEPTOR

$$IC50 = 9.5E-05 M$$

 $nH = 0.9$

Figure 7

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE HUMAN 5-HT1A RECEPTOR

$$IC50 = 1.9E-05 M$$

 $nH = 0.9$

Figure 8

COMPETITION CURVE OBTAINED WITH PF-592379-00 AT THE HUMAN 5-HT2C RECEPTOR

IC50 not calculable

Figure 9

 $Table \ 1 - 5$ $IC_{50} \ Determination: Individual \ Data$

Assay		Test	% of Contro	ol Specific B	
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	1 st	2^{nd}	Mean 1 st 2 nd
α_{2B}					
884017-11	PF-592379-00	1.0E-11	104.3	132.6	118.5
884017-11	PF-592379-00	1.0E-10	102.8	107.9	105.4
884017-11	PF-592379-00	1.0E-09	93.8	104.6	99.2
884017-11	PF-592379-00	1.0E-08	103.7	114.9	109.3
884017-11	PF-592379-00	1.0E-07	103.7	109.4	106.6
884017-11	PF-592379-00	1.0E-06	87.1	90.1	88.6
884017-11	PF-592379-00	1.0E-05	73.3	26.5	49.9
884017-11	PF-592379-00	1.0E-04	9.9	15.1	12.5
D3 (h)					
884017-11	PF-592379-00	1.0E-11	95.2	102.1	98.6
884017-11	PF-592379-00	1.0E-10	94.3	84.5	89.4
884017-11	PF-592379-00	1.0E-09	86.6	97.5	92.0
884017-11	PF-592379-00	1.0E-08	97.8	98.7	98.2
884017-11	PF-592379-00	1.0E-07	83.5	86.5	85.0
884017-11	PF-592379-00	1.0E-06	55.4	52.6	54.0
884017-11	PF-592379-00	1.0E-05	15.9	15.1	15.5
884017-11	PF-592379-00	1.0E-04	2.9	2.7	2.8
D4.4 (h)					
884017-11	PF-592379-00	1.0E-11	83.2	94.8	89.0
884017-11	PF-592379-00	1.0E-10	86.8	93.3	90.1
884017-11	PF-592379-00	1.0E-09	102.7	94.1	98.4
884017-11	PF-592379-00	1.0E-08	78.9	75.3	77.1
884017-11	PF-592379-00	1.0E-07	71.7	83.2	77.5
884017-11	PF-592379-00	1.0E-06	45.0	58.0	51.5
884017-11	PF-592379-00	1.0E-05	11.9	17.7	14.8
884017-11	PF-592379-00	1.0E-04	-9.0	-6.8	-7.9
H ₁ (central)	4				
884017-11	PF-592379-00	1.0E-11	107.6	112.4	110.0
884017-11	PF-592379-00	1.0E-10	102.4	119.8	111.1
884017-11	PF-592379-00	1.0E-09	99.4	100.2	99.8
884017-11	PF-592379-00	1.0E-08	104.3	96.9	100.6
884017-11	PF-592379-00	1.0E-07	82.4	95.7	89.1
884017-11	PF-592379-00	1.0E-06	81.7	100.9	91.3
884017-11	PF-592379-00	1.0E-05	48.7	60.6	54.6
884017-11	PF-592379-00	1.0E-04	24.3	26.2	25.3
$\overline{\mathrm{ML}_{2}\left(MT_{3}\right)}$					
884017-11	PF-592379-00	1.0E-11	113.4	116.1	114.7
884017-11	PF-592379-00	1.0E-10	86.4	97.2	91.8

Assay		Test	% of Control Specific Binding Flag		
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	D _{eest}	2 nd	Mean I st 2 nd
884017-11	PF-592379-00	1.0E-09	87.9	90.0	88.9
884017-11	PF-592379-00	1.0E-08	95.5	93.6	94.5
884017-11	PF-592379-00	1.0E-07	103.6	107.2	105.4
884017-11	PF-592379-00	1.0E-06	106.4	104.8	105.6
884017-11	PF-592379-00	1.0E-05	61.5	32.8	61.5 {}
884017-11	PF-592379-00	1.0E-04	37.7	44.6	41.1
MAO-A					
884017-11	PF-592379-00	1.0E-11	100.4	107.9	104.1
884017-11	PF-592379-00	1.0E-10	109.8	102.2	106.0
884017-11	PF-592379-00	1.0E-09	97.5	102.1	99.8
884017-11	PF-592379-00	1.0E-08	96.0	100.3	98.2
884017-11	PF-592379-00	1.0E-07	96.6	95.7	96.1
884017-11	PF-592379-00	1.0E-06	94.6	99.2	96.9
884017-11	PF-592379-00	1.0E-05	101.2	101.3	101.3
884017-11	PF-592379-00	1.0E-04	101.7	102.6	102.1
κ (KOP)	•				
884017-11	PF-592379-00	1.0E-11	94.1	83.6	88.8
884017-11	PF-592379-00	1.0E-10	84.7	86.9	85.8
884017-11	PF-592379-00	1.0E-09	83.0	91.9	87.4
884017-11	PF-592379-00	1.0E-08	91.3	65.9	78.6
884017-11	PF-592379-00	1.0E-07	91.9	73.1	82.5
884017-11	PF-592379-00	1.0E-06	67.0	84.1	75.6
884017-11	PF-592379-00	1:0E-05	79.7	71.4	75.6
884017-11	PF-592379-00	1.0E-04	37.7	43.2	40.5
5-HT _{1A} (h)	•				
884017-11	PF-592379-00	1.0E-11	87.0	99.2	93.1
884017-11	PF-592379-00	1.0E-10	84.7	104.0	94.4
884017-11	PF-592379-00	1.0E-09	88.2	90.2	89.2
884017-11	PF-592379-00	1.0E-08	87.3	91.9	89.6
884017-11	PF-592379-00	1.0E-07	85.0	93.4	89.2
884017-11	PF-592379-00	1.0E-06	78.0	87.0	82.5
884017-11	PF-592379-00	1.0E-05	57.9	60.9	59.4
884017-11	PF-592379-00	1.0E-04	16.8	17.1	17.0
5-HT _{2C} (h)					
884017-11	PF-592379-00	1.0E-11	93.8	104.7	99.2
884017-11	PF-592379-00	1.0E-10	95.6	72.0	83.8
884017-11	PF-592379-00	1.0E-09	82.0	84.4	83.2
884017-11	PF-592379-00	1.0E-08	75.3	70.5	72.9
884017-11	PF-592379-00	1.0E-07	83.5	71.7	77.6
884017-11	PF-592379-00	1.0E-06	75.6	69.6	72.6
884017-11	PF-592379-00	1.0E-05	79.0	72.3	75.6
884017-11	PF-592379-00	1.0E-04	70.7	82.1	76.4

^{{}:} That replicate was excluded from the calculation

Assay Cerep Compound I.D.

Client Compound I.D.

Test Concentration (M) % of Control Specific Binding] ⁵¹

Flags Mean 1st 2nd 2^{nd}

Table 1 - 6

Reference Compound Data

Assay Reference Compound	IC ₅₀ «M)	K _n	ил _{:Н}
$\alpha_{2\mathrm{B}}$			
yohimbine	1.2E-08	4.6E-09	1.8
D3 (h)			
(+)butaclamol	8.7E-08	1.9E-08	1.3
D4.4 (h)			
clozapine	7.4E-08	3.1E-08	1.3
H ₁ (central)			
pyrilamine	1.7E-09	7.3E-10	0.9
ML_2 (MT_3)			
melatonin	1.2E-07	1.2E-07	0.8
MAO-A			
clorgyline	2.0E-09	1.2E-09	1.9
κ (KOP)			
U 50488	7.2E-10	2.4E-10	0.8
5-HT _{1A} (h)			
8-OH-DPAT	5.8E-10	2.9E-10	1.0
5-HT _{2C} (h)			
SB 242084	8.6E-08	4.1E-08	1.5

4.2. IN VITRO PHARMACOLOGY: Enzyme and Cell-based Assays

The mean values for the inhibitory effects of PF-592379-00 are summarized in tables 2 - 1 and 2 - 7. The individual data obtained with PF-592379-00 are reported in tables 2 - 2 and 2 - 8.

The IC₅₀ value for each reference compound is indicated in tables 2 - 3 and 2 - 9. Each is within accepted limits of the historic average \pm 0.5 log units.

The mean values for the stimulatory effects of PF-592379-00 are summarized in table 2 - 4.

The individual data obtained with PF-592379-00 are reported in table 2 - 5.

The EC₅₀ value for each reference compound is indicated in table 2 - 6. Each is within accepted limits of the historic average \pm 0.5 log units.

Table 2 - 1
Summary Results

Assay Cerep Compound I.D.	Client Compound LD.	Test Concentration	% Inhibition of Control Values
COX ₂ (h) (isolated enzyme)			
884017-11	PF-592379-00	1.0E-05	19
inducible NOS (isol. enz/ spectr	-		
884017-11	PF-592379-00	1.0E-05	-3
Phosphodiesterase 2 (h)	DE 500050 00	1.07.05	_
884017-11	PF-592379-00	1.0E-05	-7
Phosphodiesterase 3 (h) 884017-11	PF-592379-00	1.0E-05	13
Phosphodiesterase 4 (h)			
884017-11	PF-592379-00	1.0E-05	6
Phosphodiesterase 5 (h)		····	;
884017-11	PF-592379-00	1.0E-05	24
Phosphodiesterase 6			
884017-11	PF-592379-00	1.0E-05	3
Phosphodiesterase 11 (h)- Pfize	r		
884017-11	PF-592379-00	1.0E-05	-9
ACE (h) (recombinant)		ı	
884017-11	PF-592379-00	1.0E-05	10
Elastase (h)			
884017-11	PF-592379-00	1.0E-05	-2
HIV-1 protease (h)			
884017-11	PF-592379-00	1.0E-05	4
Neutral endopeptidase (h)			
884017-11	PF-592379-00	1.0E-05	-5
MMP-1 (h)			
884017-11	PF-592379-00	1.0E-05	2
MMP-2 (h)			-
884017-11	PF-592379-00	1.0E-05	3
MMP-3 (h)			
884017-11	PF-592379-00	1.0E-05	6
MMP-7 (h)			
884017-11	PF-592379-00	1.0E-05	3
MMP-9 (h)			
884017-11	PF-592379-00	1.0E-05	-26
Tryptase (h)		·	
884017-11	PF-592379-00	1.0E-05	0

Phosphatase 1B (h)

Version 1 August 12, 2004

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Values
884017-11	PF-592379-00	1.0E-05	6
Abl kinase			
884017-11	PF-592379-00	1.0E-05	-5
CAM kinase II			
884017-11	PF-592379-00	1.0E-05	-22
ERK ₂ (P42 ^{mapk})			
884017-11	PF-592379-00	1.0E-05	-13
p56 ^{lyn} kinase			
884017-11	PF-592379-00	1.0E-05	9
p55 ^{fyn} kinase			
884017-11	PF-592379-00	1.0E-05	-5
ZAP70 kinase (h)			
884017-11	PF-592379-00	1.0E-05	6
Acetylcholinesterase (h)			
884017-11	PF-592379-00	1.0E-05	-4
Catechol- O-methyl transferas	e .		
884017-11	PF-592379-00	1.0E-05	11
GABA transaminase			
884017-11	PF-592379-00	1.0E-05	8
ATPase (Na ⁺ /K ⁺)			
884017-11	PF-592379-00	3.0E-05	6

Table 2 - 2
Individual Data

Assav	co c	Test	% of Control Values		
Cerep Compound I.D.	Client Compound L.D.	Concentration (M)]:si	2 ^{'nd}	Mean
COX ₂ (h) (isolated enzyme)					
884017-11	PF-592379-00	1.0E-05	75.6	85.6	80.6
inducible NOS (isol. enz/ spe	- 1				
884017-11	PF-592379-00	1.0E-05	99.1	106.5	102.8
Phosphodiesterase 2 (h)					
884017-11	PF-592379-00	1.0E-05	106.2	108.7	107.4
Phosphodiesterase 3 (h)					-
884017-11	PF-592379-00	1.0E-05	86.5	87.4	87.0
Phosphodiesterase 4 (h)					
884017-11	PF-592379-00	1.0E-05	97.9	90.1	94.0
Phosphodiesterase 5 (h)					
884017-11	PF-592379-00	1.0E-05	78.9	72.6	75.8
Phosphodiesterase 6					
884017-11	PF-592379-00	1.0E-05	98.2	96.5	97.3
Phosphodiesterase 11 (h)- Pfi	zer				
884017-11	PF-592379-00	1.0E-05	107.9	110.8	109.3
ACE (h) (recombinant)					
884017-11	PF-592379-00	1.0E-05	80.4	99.0	89.7
Elastase (h)					
884017-11	PF-592379-00	1.0E-05	103.6	99.7	101.6
HIV-1 protease (h)					
884017-11	PF-592379-00	1.0E-05	94.2	98.5	96.3
Neutral endopeptidase (h)					
884017-11	PF-592379-00	1.0E-05	109.4	101.6	105.5
MMP-1 (h)					
884017-11	PF-592379-00	1.0E-05	97.8	97.3	97.5
MMP-2 (h)					
884017-11	PF-592379-00	1.0E-05	95.8	98.4	97.1
MMP-3 (h)					
884017-11	PF-592379-00	1.0E-05	96.7	91.5	94.1
MMP-7 (h)					
884017-11	PF-592379-00	1.0E-05	93.8	100.1	96.9
MMP-9 (h)					
884017-11	PF-592379-00	1.0E-05	121.9	130.0	126.0
Tryptase (h)					
884017-11	PF-592379-00	1.0E-05	101.2	98.0	99.6
DI 1 (1D (1)	•				

Phosphatase 1B (h)

Version 1 August 12, 2004

Assay	·	Test	% of Control Values		
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	1 st	2 nd	Mean
884017-11	PF-592379-00	1.0E-05	91.3	95.8	93.6
Abl kinase					
884017-11	PF-592379-00	1.0E-05	102.9	106.3	104.6
CAM kinase II					
884017-11	PF-592379-00	1.0E-05	110.1	133.3	121.7
ERK ₂ (P42 ^{mapk})					
884017-11	PF-592379-00	1.0E-05	106.1	120.8	113.4
p56 ^{lyn} kinase					
884017-11	PF-592379-00	1.0E-05	102.1	80.7	91.4
p55 ^{fyn} kinase					
884017-11	PF-592379-00	1.0E-05	109.1	100.2	104.6
ZAP70 kinase (h)					
884017-11	PF-592379-00	1.0E-05	103.4	84.4	93.9
Acetylcholinesterase (h)					
884017-11	PF-592379-00	1.0E-05	103.1	104.6	103.9
Catechol- O-methyl transfer	rase				
884017-11	PF-592379-00	1.0E-05	90.4	87.7	89.0
GABA transaminase					•
884017-11	PF-592379-00	1.0E-05	89.2	94.8	92.0
ATPase (Na ⁺ /K ⁺)					
884017-11	PF-592379-00	3.0E-05	95.9	92.5	94.2

Table 2 - 3

Reference Compound Data

Assay Reference Compound	IC.50	# <i>1</i> _{∂H}
COX ₂ (h) (isolated enzyme)		
NS 398	2.8E-05	0.7
inducible NOS (isol. enz/ spectrophoto.)	,	
1400W	2.2E-08	1.2
Phosphodiesterase 2 (h)		
EHNA	5.6E-06	0.5
Phosphodiesterase 3 (h)		
milrinone	1.1E-07	1.4
Phosphodiesterase 4 (h)		
rolipram	1.2E-06	1.0
Phosphodiesterase 5 (h)		
dipyridamole	8.8E-07	1.1
Phosphodiesterase 6		
zaprinast	5.5E-07	1.0
Phosphodiesterase 11 (h)- Pfizer		
dipyridamole	5.0E-07	1.3
ACE (h) (recombinant)		
captopril	5.8E-09	0.9
Elastase (h)		
3',4'dichloroisocoumarin	. 6.6E-06	1.3
HIV-1 protease (h)		
pepstatin A	1.7E-06	1.1
Neutral endopeptidase (h)		
thiorphan	1.8E-09	0.4
MMP-1 (h)		
GM6001	2.3E-09	1.3
MMP-2 (h)		
GM6001	1.8E-09	1.5
MMP-3 (h)		
GM6001	1.0E-08	1.1
MMP-7 (h)		
GM6001	1.3E-08	0.9
MMP-9 (h)		
GM6001	5.3E-10	1.3
Tryptase (h)	•	
leupeptin	6.6E-07	0.9

Phosphatase 1B (h)

Assay Reference Compound	IC ₅₀	n_H
Na ₃ VO ₄	5.3E-07	0.8
Abl kinase		
staurosporine	3.9E-07	2.4
CAM kinase II		
staurosporine	2.5E-09	1.7
ERK ₂ (P42 ^{mapk})		
staurosporine	2.7E-06	0.8
p56 ^{lyn} kinase		
staurosporine	3.5E-07	0.6
p55 ^{fyn} kinase		
staurosporine	6.4E-08	1.5
ZAP70 kinase (h)		
staurosporine	8.2E-09	.1.5
Acetylcholinesterase (h)		•
neostigmine	3.5E-08	1.1
Catechol- O-methyl transferase		
Ro 41-0960	4.6E-08	1.4
GABA transaminase		
AoAA	1.4E-07	1.2
ATPase (Na ⁺ /K ⁺)		
ouabain	2.9E-07	1.4

Table 2 - 4
Summary Results

Assay Cerep Compound LD.	Client Compound L.D.	Test Concentration (M)	% Stimulation Relative to Control
Guanylyl cyclase (basal)			
884017-11	PF-592379-00	1.0E-05	2
D4.4 receptor - G protein o	coupling (h) (agonist effect)		
884017-11	PF-592379-00	1.0E-07	58
884017-11	PF-592379-00	1.0E-06	96
884017-11	PF-592379-00	1.0E-05	134
884017-11	PF-592379-00	1.0E-04	153

Table 2 - 5

Individual Data

Assay		Test	% Stimulation Relative to Control		
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	1 51	2 nd	Mean
Guanylyl cyclase (basal)					
884017-11	PF-592379-00	1.0E-05	3.9	0.7	2.3
D4.4 receptor - G protein	n coupling (h) (agonist effect	t)			
884017-11	PF-592379-00	1.0E-07	68.1	48.8	58.4
884017-11	PF-592379-00	1.0E-06	97.2	94.9	96.1
884017-11	PF-592379-00	1.0E-05	147.0	120.8	133.9
884017-11	PF-592379-00	1.0E-04	146.3	158.9	152.6

Table 2 - 6

Reference Compound Data

Assay Reference Compound	EC ₅₀ . ((All))	มกาม
Guanylyl cyclase (basal)		
sodium nitroprusside	5.1E-06	1.1
D4.4 receptor - G protein coupling (h) (agonist effect)		
dopamine	1.2E-08	0.5

Table 2 - 7
Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Values
D4.4 receptor - G protein co	oupling (h) (antagonist effect)		
884017-11	PF-592379-00	1.0E-07	-70
884017-11	PF-592379-00	1.0E-06	-56
884017-11	PF-592379-00	1.0E-05	-56
884017-11	PF-592379-00	1.0E-04	-32

Table 2 - 8
Individual Data

Assay		Test	% of Control Values		
Cerep Compound I.D.	Client Compound LD.	Concentration (M)	D _{ee1}	2 nd	Mean
D4.4 receptor - G protein o	coupling (h) (antagonist effect)				
884017-11	PF-592379-00	1.0E-07	150.4	190.0	170.2
884017-11	PF-592379-00	1.0E-06	150.9	161.4	156.1
884017-11	PF-592379-00	1.0E-05	156.6	155.4	156.0
884017-11	PF-592379-00	1.0E-04	112.4	151.1	131.8

Table 2 - 9

Reference Compound Data

Assay Reference Compound	IC ₅₀ (M)	n_H
D4.4 receptor - G protein coupling (h) (antagonist effect)		
spiperone	7.7E-09	1.0

4.3. ADME-Tox: Solution Properties

Aqueous Solubility:

The summary results obtained with PF-592379-00 are reported in table 3 - 1.

The individual data obtained with PF-592379-00 are reported in table 3 - 2.

The data obtained with the reference compounds are reported in table 3 - 3.

Partition Coefficient Log D:

The summary results obtained with PF-592379-00 are reported in table 3 - 4.

The individual data obtained with PF-592379-00 are reported in table 3 - 5.

The data obtained with the reference compounds are reported in table 3 - 6.

The chromatograms and UV/VIS spectra for PF-592379-00 are included in this report as Appendix A.

Table 3 - 1

Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	Flags	
Aqueous Solubility (PBS, pH 7.4) 884017-11	PF-592379-00	2.0E-04	ND	

ND Test compound was undetectable in the calibration sample. This could be due to 1) Test compound's chromophore was insufficient for PDA detection (most likely); 2) Test compound failed to elute within chromatographic run time (rare).

Table 3 - 2

Individual Data

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	Flags
Aqueous Solubility (PBS, pH 7.4)			
884017-11	PF-592379-00	2.0E-04	ND

ND Test compound was undetectable in the calibration sample. This could be due to 1) Test compound's chromophore was insufficient for PDA detection (most likely); 2) Test compound failed to elute within chromatographic run time (rare).

Table 3 - 3

Reference Compound Data

	Test	Wavelength	S	Solubility		Chromatographic
Assay Reference Compound	Concentration (M)	of Detection	Cin y II)			Purity (%)
Aqueous Solubility (PBS,	pH 7.4)					
Diethylstilbestrol	2.0E-04	230	7.13	7.14	7.1	100
Diethylstilbestrol	2.0E-04	230	7.29	7.37	7.3	100
Haloperidol	2.0E-04	230	54.46	53.85	54.2	100
Haloperidol	2.0E-04	230	54.70	46.04	50.4	100
Ketoconazole	2.0E-04	230	136.81	130.87	133.8	100
Ketoconazole	2.0E-04	230	140.34	147.24	143.8	100
Metoprolol tartrate	2.0E-04	230	189.11	185.19	187.2	100
Metoprolol tartrate	2.0E-04	230	193.53	193.59	193.6	100
Phenytoin	2.0E-04	230	104.06	100.68	102.4	99
Phenytoin	2.0E-04	230	105.38	101.43	103.4	100
Rifampicin	2.0E-04	230	183.75	192.07	187.9	100
Rifampicin	2.0E-04	230	184.55	181.88	183.2	100
Simvastatin	2.0E-04	230	11.54	7.58	9.6	100
Tamoxifen	2.0E-04	230	2.24	0.41	1.3	100
Tamoxifen	2.0E-04	230	0.85	0.68	0.8	100

Table 3 - 4

Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Flags
Partition Coefficient (log D, n-octo	anol/PBS, pH 7.4)	
884017-11	PF-592379-00	ND
Partition Coefficient (log D, cyclor	hexane/PBS, pH 7.4)	
884017-11	PF-592379-00	ND

ND Test compound was undetectable in the calibration sample. This could be due to 1) Test compound's chromophore was insufficient for PDA detection (most likely); 2) Test compound failed to elute within chromatographic run time (rare).

Table 3 - 5

Individual Data

Assay Cerep Compound I.D.	Client Compound I.D.	Flags
Partition Coefficient (log D, n-oc	tanol/PBS, pH 7.4)	
884017-11	PF-592379-00	ND
Partition Coefficient (log D, cycle	phexane/PBS, pH 7.4)	
884017-11	PF-592379-00	ND

ND Test compound was undetectable in the calibration sample. This could be due to 1) Test compound's chromophore was insufficient for PDA detection (most likely); 2) Test compound failed to elute within chromatographic run time (rare).

Table 3 - 6
Reference Compound Data

Assay Reference Compound	Test Concentration (M)	Weighed Average of Three Replicates
Partition Coefficient (log D, n-octanol/PBS	, pH 7.4)	
Diethylstilbestrol	1.0E-04	4.58
Haloperidol	1.0E-04	2.76
Ketoconazole	1.0E-04	3.37
Metoprolol tartrate	1.0E-04	-0.41
Phenytoin	1.0E-04	2.33
Rifampicin	1.0E-04	1.28
Simvastatin	1.0E-04	4.46
Tamoxifen	1.0E-04	>4.5
Partition Coefficient (log D, cyclohexane/P	BS, pH 7.4)	•
Diethylstilbestrol	1.0E-04	1.73
Diethylstilbestrol	1.0E-04	1.88
Haloperidol	1.0E-04	0.39
Haloperidol	1.0E-04	0.37
Ketoconazole	1.0E-04	-0.17
Ketoconazole	1.0E-04	-0.20
Metoprolol tartrate	1.0E-04	-2.69
Metoprolol tartrate	1.0E-04	-2.04
Phenytoin	1.0E-04	0.69
Phenytoin	1.0E-04	-0.15
Rifampicin	1.0E-04	-1.21
Rifampicin	1.0E-04	-1.57
Simvastatin	1.0E-04	2.18
Simvastatin	1.0E-04	2.02
Tamoxifen	1.0E-04	>4.6
Tamoxifen	1.0E-04	>4.6

4.4. ADME-Tox: Bioanalytical

The individual data obtained with PF-592379-00 are reported in table 4 - 1.

The HPLC-MS total ion current chromatograms in positive and negative ionization modes, the full scan mass spectra, and the product ion spectra of PF-592379-00 obtained from HPLC-MS/MS screening are included in this report as Appendix B.

Table 4 - 1

Individual Data

Assay Cerep Compound I.D.	Client Compound I.D.	Molecular Weight	FW	Selected ESI (#) Precursor Ion (m/z)	Product Ion (m.z)	Collision Offset	lonization Classification
HPLC-MS Screen 884017-11	PF-592379-00	235.33	235.33	236.3	121.0	-30	2.0

Notes:

- Ionization Classification:

 1 = Highly ionizable compound

 2 = Intermediately ionizable compound

 3 = Poorly ionizable compound

4.5. ADME-Tox: In Vitro Absorption

Permeability:

The summary results obtained with PF-592379-00 are reported in table 5 - 1.

The individual data obtained with PF-592379-00 are reported in table 5 - 2.

The data obtained with the reference compounds are reported in table 5 - 3.

P-glycoprotein Inhibition:

The mean values for the effects PF-592379-00 are summarized in table 5 - 4.

The individual data obtained with PF-592379-00 are reported in table 5 - 5.

The IC₅₀ value for the reference compound is indicated in table 5 - 6.

Table 5 - 1
Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	Mean TC7 Permeability	Flags	Mean Recovery
A-B Permeability (pH 6.	5/7.4)				
884017-11	PF-592379-00	5.0E-05		ND	
A-B Permeability (pH 7.	4/7.4)			·	
884017-11	PF-592379-00	5.0E-05		ND	
B-A Permeability (pH 6.	5/7.4)				
884017-11	PF-592379-00	5.0E-05	25.2		101
B-A Permeability (pH 7.	4/7.4)				
884017-11	PF-592379-00	5.0E-05	20.5		94

ND Test compound was not detected in the assay matrix.

Table 5 - 2
Individual Data

Assay		Test		TC7 Permeability			Percent Recovery		
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	1 ³⁵¹ (110 ⁴⁾ (mm/s)	2 nd (10" cm/s)	Mean (10° cm/s		(56) (56)	2 nd	Mean
A-B Permeability (pH	6.5/7.4)			,					
884017-11	PF-592379-00	5.0E-05				ND			
A-B Permeability (pH	7.4/7.4)								
884017-11	PF-592379-00	5.0E-05				ND			
B-A Permeability (pH	6.5/7.4)					,			
884017-11	PF-592379-00	5.0E-05	25.52	24.89	25.2		106	96	101
B-A Permeability (pH	7.4/7.4)								
884017-11	PF-592379-00	5.0E-05	19.14	21.78	20.5		94	94	94

ND Test compound was not detected in the assay matrix.

Table 5 - 3

Reference Compound Data

Assay	Test	Test TC7 Permeability			Percent Recover		
Reference Compound	Concentration (M)	[⁵¹ (10 ⁻⁶ cm/s)	2 nd (10 ⁻⁶ cm.s)	Mean (10 st cm/s)	^{SI} (%)	2 nd (%)	Mean
A-B Permeability (pH 6.5/7.4)			,				
Propranolol	5.0E-05	36.29	38.42	37.4	91	86	89
Ranitidine	5.0E-05	0.53	0.64	0.6	85	84	85
Vinblastine	5.0E-05	1.68	3.39	2.5	106	99	103
A-B Permeability (pH 7.4/7.4)							
Propranolol	5.0E-05	44.77	49.05	46.9	76	81	78
propranolol	5.0E-05	51.48	71.18	61.3	85	91	88
Ranitidine	5.0E-05	0.66	{3.96}	0.7	97	{98}	97
ranitidine	5.0E-05	0.99	1.03	1.0	53	77	65
Vinblastine	5.0E-05	0.06	0.49	0.3	- 81	103	92
vinblastine	5.0E-05	3.20	4.77	4.0	89	101	95
B-A Permeability (pH 6.5/7.4)							
propranolol	5.0E-05	22.43	20.79	21.6	69	88	78
ranitidine	5.0E-05	3.91	3.42	3.7	79	76	77
vinblastine	5.0E-05	37.49	44.41	40.9	71	101	86

Note: The data point in the brackets was excluded for the calculation of the mean value.

Table 5 - 4

Summary Results

Assay Cerep Compound I.D.	Client Compound LD.	Test Concentration (M)	% Inhibition of Control Values
P-glycoprotein Inhibition	DE 502270 00	C 05 05	12
884017-11	PF-592379-00	5.0E-05	13

Table 5 - 5

Individual Data

Assay		Test	% of Control Values			
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	1351	2^{nd}	Mean	
P-glycoprotein Inhibition			•			
884017-11	PF-592379-00	5.0E-05	87.0	87.7	87.4	

Table 5 - 6

Reference Compound Data

Assay Reference Compound	IC ₅₀ (M)	n_H
P-glycoprotein Inhibition		
verapamil	3.0E-06	0.6

4.6. ADME-Tox: In Vitro Metabolism

Metabolic Stability:

The summary results obtained with PF-592379-00 are reported in table 6 - 1.

The individual data obtained with PF-592379-00 are reported in table 6 - 2.

The data obtained with the reference compounds are reported in table 6 - 3.

CYP Inhibition:

The mean values for the effects of PF-592379-00 are summarized in table 6 - 4.

The individual data obtained with PF-592379-00 are reported in table 6 - 5.

The IC₅₀ values for the reference compounds are reported in table 6 - 6.

Table 6 - 1

Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Test Compound I.D. Concentration	
Metabolic Stability (liver mic	ros. human)		
884017-11	PF-592379-00	1.0E-06	ND

ND Test compound was not detected in the assay matrix.

Table 6 - 2

Individual Data

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration	Flags
Metabolic Stability (liver micro	os. human)		
884017-11	PF-592379-00	1.0E-06	ND

ND Test compound was not detected in the assay matrix.

Table 6 - 3

Reference Compound Data

Assay	Test		Parent Remaining		
Reference Compound	Concentration (M)	1 ^{s1} (%)	2 nd (%)	Mean	
Metabolic Stability (liver micros. human)					
Imipramine	1.0E-06	91.7	85.1	88	
Propranolol	1.0E-06	78.9	75.5	77	
Terfenadine	1.0E-06	9.3	6.2	8	
Verapamil	1.0E-06	12.7	12.7	13	

Table 6 - 4
Summary Results

Assay Cerep Compound LD.	Client Compound I.D.	Test Concentration (NI)	% Inhibition of Control Values
CYP1A2 Inhibition (CEC si	ubstrate)		
884017-11	PF-592379-00	1.0E-05	- 9
CYP2B6 Inhibition (EFC st	ıbstrate)	,	
884017-11	PF-592379-00	1.0E-05	16
CYP2C9 Inhibition (7-MFC	Substrate)		
884017-11	PF-592379-00	1.0E-05	15
CYP2C19 Inhibition (CEC.	substrate)		
884017-11	PF-592379-00	1.0E-05	6
CYP2D6 Inhibition (AMMC	Substrate)		
884017-11	PF-592379-00	1.0E-05	· 2
CYP2E1 Inhibition (7-EC s	ubstrate)		
884017-11	PF-592379-00	1.0E-05	0
CYP3A4 Inhibition (BFC st	ubstrate)		
884017-11	PF-592379-00	1.0E-05	7
CYP3A4 Inhibition (BzRes	substrate)		
884017-11	PF-592379-00	1.0E-05	10
CYP3A4 Inhibition (Testosi	terone substrate)		
884017-11	PF-592379-00	1.0E-05	10
CYP3A4 Inhibition (Midazo	olam substrate)		
884017-11	PF-592379-00	1.0E-05	-3
CYP3A5 Inhibition (BFC st	ubstrate)		
884017-11	PF-592379-00	1.0E-05	9

Table 6 - 5
Individual Data

Assay		Test	% of	Control V	'alues
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	l sı	2 nd	Mean
CYP1A2 Inhibition (CEC :	substrate)				
884017-11	PF-592379-00	1.0E-05	109.4	107.7	108.6
CYP2B6 Inhibition (EFC s	substrate)				
884017-11	PF-592379-00	1.0E-05	82.7	85.8	84.3
CYP2C9 Inhibition (7-MF)	C substrate)				
884017-11	PF-592379-00	1.0E-05	75.8	94.6	85.2
CYP2C19 Inhibition (CEC	substrate)				
884017-11	PF-592379-00	1.0E-05	93.0	94.8	93.9
CYP2D6 Inhibition (AMM	C substrate)				
884017-11	PF-592379-00	1.0E-05	98.1	97.3	97.7
CYP2E1 Inhibition (7-EC.	substrate)				
884017-11	PF-592379-00	1.0E-05	98.8	101.9	100.4
CYP3A4 Inhibition (BFC s	substrate)				
884017-11	PF-592379-00	1.0E-05	93.6	93.0	93.3
CYP3A4 Inhibition (BzRes	s substrate)				
884017-11	PF-592379-00	1.0E-05	89.6	89.9	89.8
CYP3A4 Inhibition (Testos	sterone substrate)				
884017-11	PF-592379-00	1.0E-05	90.5	89.9	90.2
CYP3A4 Inhibition (Midaz	zolam substrate)				
884017-11	PF-592379-00	1.0E-05	104.7	101.4	103.1
CYP3A5 Inhibition (BFC s	substrate)				
884017-11	PF-592379-00	1.0E-05	92.1	90.6	91.4

Table 6 - 6

Reference Compound Data

Assay Reference Compound	IC ₅₀ ₁(7√1)	73 _{7H}
CYP1A2 Inhibition (CEC substrate)		
furafylline	2.2E-06	0.8
CYP2B6 Inhibition (EFC substrate)		
ketoconazole	1.5E-05	1.2
CYP2C9 Inhibition (7-MFC substrate)		
sulfaphenazole	1.2E-07	1.0
CYP2C19 Inhibition (CEC substrate)		
tranylcypromine	3.5E-06	1.0
tranylcypromine	3.4E-06	1.0
CYP2D6 Inhibition (AMMC substrate)		
quinidine	1.3E-08	1.3
CYP2E1 Inhibition (7-EC substrate)		
4-methylpyrazole	3.5E-06	0.9
CYP3A4 Inhibition (BFC substrate)		
ketoconazole	1.7E-06	1.0
CYP3A4 Inhibition (BzRes substrate)		
ketoconazole	1.1E-06	1.3
CYP3A4 Inhibition (Testosterone substrate)		
ketoconazole	9.4E-07	1.7
CYP3A4 Inhibition (Midazolam substrate)		
ketoconazole	1.1E-06	3.0
CYP3A5 Inhibition (BFC substrate)		
ketoconazole	7.8E-07	1.4

4.7. ADME-Tox: Cytotoxicity

Cell Viability:

The mean values for the effects of PF-592379-00 are summarized in table 7 - 1. The individual data obtained with PF-592379-00 are reported in table 7 - 2.

The IC_{50} value for the reference compound is indicated in table 7 - 3.

Table 7 - 1

Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (N)	% Inhibition of Control Values
Cell viability (HepG2) 884017-11	PF-592379-00	3.0E-05	3

Table 7 - 2

Individual Data

Assay	au a	Test	% of 6	Centrol V	Values .
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	II sst ·	2 nd	Mean
Cell viability (HepG2)					
884017-11	PF-592379-00	3.0E-05	100.5	94.1	97.3

Table 7 - 3

Reference Compound Data

Assay Reference Compound	IC±6 €M1	#3 ₂₄
Cell viability (HepG2)		
chlorpromazine	1.8E-05	2.9

5. BIBLIOGRAPHY

ADEYEMI, E.O., SCHADWICK, V.S. and HODGSON, H.J.F. (1990)

The effect of some anti-inflammatory agents on elastase release from neutrophils in vitro.

J. Pharm. Pharmacol., 42: 487-490.

ANDERSEN, P.H. (1987)

Biochemical and pharmacological characterisation of [³H]GBR12935 binding in vitro to rat striatal membranes: labeling of dopamine uptake complex.

J. Neurochem., 48: 1887-1896.

ANGEL, I. and BIDET, S. (1991)

The binding site for [3H]glibenclamide in the rat cerebral cortex does not recognize K-channel agonists or antagonists other than sulphonylureas.

Fundam. Clin. Pharmacol., 5: 107-115.

ARDATI, A., HENNINGSEN, R.A., HIGELIN, J., REINSCHEID, R.K., CIVELLI, O. and MONSMA, F.R. (1997)

Interaction of [3H]orphanin FQ and ¹²⁵I-Tyr¹⁴-orphanin FQ with the orphanin FQ receptor: kinetics and modulation by cations and guanine nucleotides.

Mol. Pharmacol., 51: 816-824.

ARRANG, J.M., ROY, J., MORGAT, J.L., SCHUNACK, W. and SCHWARTZ, J.C. (1990)

Histamine H₃ receptor binding sites in rat brain membranes: modulations by guanine nucleotides and divalent cations. Eur. J. Pharmacol., <u>188</u>: 219-227.

BALLARD, A. S., GINGELL, C.J., TANG, K., TURNER, L.A. PRICE, M.E. et al. (1998)

Effects of Sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes.

J. Urol., 159: 2164-2171

BERGSMA, D.J., ELLIS, C., KUMAR, C., NUTHULAGANTI, P., KERSTEN, H., ELSHOURBAGY, N., GRIFFIN, E., STADEL, J.M. and AIYAR, N. (1992)

Cloning and characterization of a human angiotensin II type 1 receptor.

Biochem. Biophys. Res. Commun., 183: 989-995.

BICKETT, D.A, GREEN, M.D., BERMAN, J., DEZUBE, M., HOWE, A.S., BROWN, P.J., ROTH, J.T. and McGEEHAN, G.M. (1993)

A high throughput fluorogenic substrate for interstitial collagenase (MMP-1) and gelatinase (MMP-9). Anal. Biochem., 212: 58-64.

BO, X. and BURNSTOCK, G. (1990)

High- and low-affinity sites for $[^3H]-\alpha,\beta$ -methylene ATP in rat urinary bladder membranes. Brit. J. Pharmacol., 101: 291-296.

BONHAUS, D.W., BACH, C., DE SOUZA, A., SALAZAR, F.H.R., MATSUOKA, B.D., ZUPPAN, P., CHAN, H.W. and EGLEN, R.M. (1995)

The pharmacology and distribution of human 5-hydroxytryptamine_{2B} (5-HT_{2B}) receptor gene products: comparison with 5-HT_{2A} and 5-HT_{2C} receptors.

Brit. J. Pharmacol., 115: 622-628.

BOWERY, N.G., HILL, D.R. and HUDSON, A.L. (1983)

Characteristics of GABA_B receptor binding sites on rat whole brain synaptic membranes.

Brit. J. Pharmacol., <u>78</u>: 191-206.

BROWN, G.B. (1986)

³H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin.

J. Neurosci., <u>6</u>: 2064-2070.

BUCHAN, K.W., ALLDUS, C., CHRISTODOULOU, C., CLARK, K.L., DYKES, C.W., SUMNER, M.J., WALLACE, D.M., WHITE, D.G. and WATTS, I.S. (1994)

Characterization of three non-peptide endothelin receptor ligands using human cloned ET_A and ET_B receptors. Brit. J. Pharmacol., 112: 1251-1257.

BYLUND, D.B., RAY-PRENGER, C. and MURPHY, T.J. (1988)

Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype.

J. Pharmacol. Exp. Ther., 245: 600-607.

CESURA, A.M., BOS, M., GALVA, M.D., IMHOF, R. and DA PRADA, M. (1990)

Characterization of the binding of [3H]Ro 41-1049 to the active site of human monoamine oxidase-A.

Mol. Pharmacol., 37: 358-366.

CESURA, A.M., GALVA, M.D., IMHOF, R., KYBURZ, E., PICOTTI, G.B. and DA PRADA, M. (1989)

[³H]Ro 19-6327: a reversible ligand and affinity labelling probe for monoamine oxidase-B.

Eur. J. Pharmacol., 162: 457-465.

CHANG, T.K. and YEUNG, R.K. (2001)

Effect of trans-resveratrol on 7-benzyloxy-4-trifluoromethylcoumarin O-dealkylation catalyzed by human recombinant CYP3A4 and CYP3A5.

Can. J. Physiol. Pharmacol., 79(3): 220-226.

CHENG, H.C., NISHIO, H., HATASE, O., RALPH, S. and WANG, J.H. (1992)

A synthetic peptide derived from p34^{cdc2} is a specific and efficient substrate of *src*-family tyrosine kinases.

J. Biol. Chem., <u>267</u>: 9248-9256.

CHEVALIER, S., LANDRY, D. and CHAPDELAINE, A. (1988)

Phosphotyrosine activity of human and canine acid phosphatases of prostatic origin.

Prostate, 12: 209-219.

CHIO, C.L., DRONG, R.F., RILEY, D.T., GILL, G.S., SLIGHTOM, J. and HUFF, R.M. (1994)

D4 dopamine receptor mediated signaling events determined in transfected chinese ovary cells.

J. Biol. Chem., 269: 11813-11819.

CLARK, A.F., LANE, D., WILSON, K., MIGGANS, S.T. and McCARTNEY, M.D. (1996)

Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydrocortisol.

Invest. Ophtalmol. Vis. Sci., 37: 805-813.

COUVINEAU, A., ROUSSET, M. and LABURTHE, M. (1985)

Molecular identification and structural requirement of vasoactive intestinal peptide (VIP) receptors in the human colon adenocarcinoma cell line, HT-29.

Biochem. J., 231: 139-143.

CRESPI, C.L., MILLER, V. and PENMAN B. (1997)

Microtiter plate assays for inhibition of human, drug-metabolizing cytochrome P450.

Analyt. Biochem., 248: 188-190.

CURRAN, P.K. and FISHMAN, P.H. (1996)

Endogenous β_3 - but not β_1 -adrenergic receptors are resistant to agonist-mediated regulation in human SK-N-MC neurotumor cells.

Cell Signal, 8: 355-364.

DINI, S., CASELLI, G.F., FERRARI, M.P., GIANI, R. and CLAVENNA, G. (1991)

Heterogeneity of [3H]-mepyramine binding sites in guinea pig cerebellum and lung.

Agents and Actions, 33: 181-184.

DONTENWILL, M., VONTHRON, C., GRENEY, H., MAGNIER, C., HEEMSKERK, F. and BOUSQUET, P. (1999)

Identification of human I_1 receptors and their relationship to α_2 -adrenoceptors.

Ann. N. Y. Acad. Sci., 881: 123-134.

DORJE, F., WESS, J., LAMBRECHT, G., TACKE, R., MUTSCHLER, E. and BRANN, M.R. (1991)

Antagonist binding profiles of five cloned human muscarinic receptor subtypes.

J. Pharmacol. Exp. Ther., 256: 727-733.

EKINS, S., VANDENBRANDEN, M., RING, B. and WRIGHTON, S. (1997)

Examination of purported probes of human CYP2B6.

Pharmacogenetics, 7: 165-179.

ELLMAN, G.L., COURTNEY, K.D., ANDRES, V. and FEATHERSTONE, R.M. (1961)

A new and rapid colorimetric determination of acetylcholinesterase activity.

Biochem. Pharmacol., 7: 88-95.

FAWCETT, L., BAXENDALE, R., STACEY, P., McGROUTHER, C., HARROW, I., SODERLING, S., HETMAN, J., BEAVO, J.A., PHILLIPS, S.C. (2000)

Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A PNAS, 97: 3702-3707

FISKE, C.M. and SUBBAROW, Y. (1925)

The colorimetric determination of phosphorus.

J. Biol. Chem., 66: 375-400.

FREY, E.A., NICHOLSON, D.W. and METTERS, K.M. (1993)

Characterization of the leukotriene D₄ receptor in dimethylsulphoxide-differentiated U937 cells: comparison with the leukotriene D₄ receptor in human lung and guinea-pig lung.

Eur. J. Pharmacol., 244: 239-250.

GRAF, K., SCHÄPER, C., GRÄFE, M., FLECK, E. and KUNKEL, G. (1998)

Glucocorticoids and protein kinase C regulate neutral endopeptidase 24.11 in human vascular smooth muscle cells.

Basic Res. Cardiol. 93: 11-17

GRANDY, D.K., MARCHIONNI, M.A., MAKAM, H., STOFKO, R.E., ALFANO, M., FROTHINGHAM, L., FISCHER, J.B., BURKE-HOWIE, K.J., BUNZOW, J.R., SERVER, A.C. and CIVELLI, O. (1989)

Cloning of the cDNA and gene for a human D2 dopamine receptor.

Proc. Natl. Acad. Sci. USA, 86: 9762-9766.

GREENGRASS, P. and BREMNER, R. (1979)

Binding characteristics of $[^3H]$ -prazosin to rat brain α -adrenergic receptors.

Eur. J. Pharmacol., 55: 323-326.

GRES, M.C., JULIAN, B., BOURRIE, M., MEUNIER, V. ROQUES, C., BERGER, M., BOULENC, X., BERGER, Y. and FABRE, G. (1998)

Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line.

Pharm. Res., 15: 726-733.

HEUILLET, E., MENAGER, J., FARDIN, V., FLAMAND, O., BOCK, M., GARRET, C., CRESPO, A., FALLOURD, A. M. and DOBLE, A. (1993)

Characterization of a human NK₁ tachykinin receptor in the astrocytoma cell line U373MG.

J. Neurochem., 60: 868-876.

HEURING, R.E. and PEROUTKA, S.J. (1987)

Characterization of a novel ³H-5-hydroxytryptamine binding site subtype in bovine brain membranes.

J. Neurosci., 7: 894-903.

HOORN, C.M. and ROTH, R.A. (1993)

Monocrotaline pyrrole-induced changes in angiotensin-converting enzyme activity of cultured pulmonary artery endothelial cells.

Brit. J. Pharmacol., 110: 597-602.

HOPE, A.G., PETERS, J.A., BROWN, A.M., LAMBERT, J.J. and BLACKBURN, T.P. (1996)

Characterization of a human 5-hydroxytryptamine₃ receptor type A (h5-HT₃R-A_s) subunit stably expressed in HEK 293 cells.

Brit. J. Pharmacol., 118: 1237-1245.

HOYER, D., ENGEL, G. and KALKMAN, H.O. (1985)

Characterization of the 5-HT_{1B} recognition site in rat brain: binding studies with (-) (1251) iodocyanopindolol.

Eur. J. Pharmacol., 118: 1-12.

HUGUES, M., DUVAL, D., KITABGI, P., LAZDUNSKI, M. and VINCENT, J.P. (1982)

Preparation of a pure monoiodo derivative of the bee venom neurotoxin apamin and its binding properties to rat brain synaptosomes.

J. Biol. Chem., 257: 2762-2769.

HUNTER, J., JEPSON, M.A., TSURUO, T., SIMMONS, N.L. and HIRST, B.H. (1993)

Functional expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells.

Kinetics of vinblastine secretion and interaction with modulators.

J. Biol. Chem., 268(20):14991-14997.

INOUE, A., YAMAKAWA, J., YUKIOKA, M. and MORISAWA, S. (1983)

Filter-binding assay procedure for thyroid hormone receptors.

Anal. Biochem., 134: 176-183.

Version 1

August 12, 2004

KATUGAMPOLA, S.D., PALLIKAROS, Z. and DAVENPORT, A.P. (2001)

[¹²⁵I-His⁹]-Ghrelin, a novel radioligand for localizing GHS orphan receptors in human and rat tissue; up-regulation of receptors with atherosclerosis.

Brit. J. Pharmacol., 134: 143-149.

KINOUCHI, K. and PASTERNAK, G.W. (1991)

Evidence for κ_1 opioid receptor multiplicity in the guinea pig cerebellum.

Eur. J. Pharmacol., 207: 135-141.

KUHNZ, W. and GIESCHEN, H. (1998)

Predicting the oral bioavailability of 19-nortestosterone progestins *in vivo* from their metabolic stability in human liver microsomal preparations *in vitro*.

Drug Metab. Dispos., 26: 1120-1127.

LANGIN, D., LAFONTAN, M., STILLING, M.R. and PARIS, H. (1989)

[3H]RX821002: a new tool for the identification of alpha_{2A}-adrenoceptors

Eur. J. Pharmacol. 167: 95-104

LEE, H.R., ROESKE, W.R. and YAMAMURA, H.I. (1984)

High affinity specific [³H](+)PN 200-110 binding to dihydropyridine receptors associated with calcium channels in rat cerebral cortex and heart.

Life Sci., 35: 721-732.

LEE, Y.-M., BEINBORN, M., McBRIDE, E.W., LU, M., KOLAKOWSKI, L.F. and KOPIN, A.S. (1993)

The human brain cholecystokinin-B/gastrin receptor.

J. Biol. Chem., 268: 8164-8169.

LENGYEL, I., NAIRN, A.C., MC CLUSKEY, A., TOTH, B., PENKE, B. and ROSTAS, J.A.P. (2001)

Auto-inhibition of Ca²⁺/calmodulin-dependent protein kinase II by its ATP-binding domain.

J. Neurochem., 76: 1066-1072.

LEWIN, A.H., DE COSTA, B.R., RICE, K.C. and SKOLNICK, P. (1989)

meta- and para-isothiocyanato-t-butylbicycloorthobenzoate: irreversible ligands of the γ -aminobutyric acid-regulated chloride ionophore.

Mol. Pharmacol., 35: 189-194.

Version 1 August 12, 2004

LIN, Y., LU, P., TANG, C., MEI, Q., SANDIG, G., RODRIGUES, A.D., RUSHMORE, T.H. and SHOU M. (2001)

Substrate inhibition kinetics for cytochrome P450-catalyzed reactions.

Drug Metab. Dispos., 29: 368-374.

LIPINSKI, C.A., LOMBARDO, F., DOMINY, B.W. and FEENEY, P.J. (1997)

Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.

Adv. Drug Del. Rev., 46: 3-26.

LIU, Q., PONG, S.S., ZENG, Z. et al. (1999)

Identification of urotensin-II as the endogenous ligand for the orphan G-protein-coupled receptor GPR14.

Biochem. Biophys. Res. Commun., 266: 174-178.

LOSHER, W. (1981)

Effects of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions.

J. Neurochem., <u>36</u>: 1521-1527.

LUKAS, R.J. (1986)

Characterization of curaremimetic neurotoxin binding sites on membrane fractions derived from the human medulloblastoma clonal line, TE671.

J. Neurochem., 46: 1936-1941.

LUTHIN, D.R., OLSSON, R.A., THOMPSON, R.D., SAWMILLER, D.R. and LINDEN, J. (1995)

Characterization of two affinity states of adenosine A2a receptors with a new radioligand,

2-[2-(4-amino-3-[125]]iodophenyl)ethylamino]adenosine.

Mol. Pharmacol., 47: 307-313.

MACKENZIE, R.G., VANLEEUVEN, D., PUGSLEY, T.A., SHIH, Y-H., DEMATTOS, S., TANG, L., TODD, R. and O'MALLEY, K.L. (1994)

Characterization of the human dopamine D3 receptor expressed in transfected cell lines.

Eur. J. Pharmacol., 266: 79-85.

MATSUDA, L.A., LOLAIT, S.J., BROWNSTEIN, M.J., YOUNG, A.C. and BONNER, T.I. (1990)

Structure of a cannabinoid receptor and functional expression of a cloned cDNA.

Nature, 346: 561-564.

MIALET, J., BERQUE-BESTEL, I., EFTEKHARI, P., GASTINEAU, M., GINER, M., DAHMOUNE, Y., DONZEAU-GOUGE, P., HOEBEKE, J., LANGLOIS, M., SICSIC, S., FISCHMEISTER, R. and LEZOUALC'H, F. (2000)

Isolation of the serotoninergic 5-HT_{4(e)} receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines.

Brit. J. Pharmacol., 129: 771-781.

MIRALPEIX, M., CAMACHO, M., LOPEZ-BELMONTE, J., CANALIAS, F., BELETA, J., PALACIO, J.M. and VILA, L. (1997)

Selective induction of cyclo-oxygenase-2 activity in the permanent human endothelial cell line HUV-EC-C: biochemical and pharmacological characterization.

Brit. J. Pharmacol., 121: 171-180.

MONAGHAN, D.T. and COTMAN, C.W. (1982)

The distribution of [³H]kainic acid binding sites in rat CNS as determined by autoradiography.

Brain Res., 252: 91-100.

MONSMA, F.J., SHEN, Y., WARD, R.P., HAMBLIN, M.W. and SIBLEY, D.R. (1993)

Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol. Pharmacol., 43: 320-327.

MUFF, R., STANGL, D., BORN, W. and FISCHER, J.A. (1992)

Comparison of a calcitonin gene-related peptide receptor in a human neuroblastoma cell line (SK-N-MC) and a calcitonin receptor in a human breast carcinoma cell line (T47D).

Ann. N.Y. Acad. Sci., 657: 106-110.

MULHERON, J.G., CASANAS, S.J., ARTHUR, J.M., GARNOVSKAYA, M.N., GETTYS, T.W. and RAYMOND, J.R. (1994)

Human 5-HT $_{1A}$ receptor expressed in insect cells activates endogenous G_0 -like G protein.

J. Biol. Chem., 269: 12954-12962.

MULLER-ENOCH, D., SEIDL, E. and THOMAS, H. (1976)

6.7-dihydroxycoumarin (Aesculetin) as a substrate for catechol-o-methyltransferase.

Z. Naturforsch. [C], 31: 280-284.

MUNOZ, M., SAUTEL, M., MARTINEZ, R., SHEIKH, S.P. and WALKER, P. (1995)

Characterization of the human Y₁ neuropeptide Y receptor expressed in insect cells.

Mol. Cell. Endocrinol., 107: 77-86.

MUNRO, S., THOMAS, K.L. and ABU-SHAAR, M. (1993)

Molecular characterization of a peripheral receptor for cannabinoids.

Nature, 365: 61-65.

NAGASE, N., FIELDS, C. G. and FIELDS, G. B. (1994)

Design and characterization of a fluorogenic substrate selectively hydrolyzed by stromelysin 1 (Matrix Metalloproteinase-3).

J. Biol. Chem., 269: 20952-20957.

NEOTE, K., DIGREGORIO, D., MAK, J.Y., HORUK, R. and SCHALL, T.J. (1993)

Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor.

Cell, 72: 415-425.

NOCIARI, M.M., SHALEV, A., BENIAS, P. and RUSSO, C. (1998)

A novel one-step, highly sensitive fluorometric assay to evaluate cell-mediated cytotoxicity.

J. Immunol. Meth., 213: 157-167.

NOMEIR, A.A., RUEGG, C., SHOEMAKER, M., FAVREAU, L.V., PALAMANDA, J.R., SILBE, P. and LIN, C.C. (2001)

Inhibition of CYP3A4 in a rapid microtiter plate assay using recombinant enzyme and in human liver microsomes using conventional substrates.

Drug Metab. Dispos., 29: 748-753.

ONO, S., HATANAKA, T., HOTTA, H., SATOH, T., GONZALEZ, F. and TSUTSUI, M. (1996)

Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of *in vitro* metabolism using cDNA-expressed human P450s and human liver microsomes.

Xenobiotica, 26: 681-693.

Version 1 August 12, 2004

PABREZA, L.A., DHAWAN, S. and KELLAR, K.J. (1991)

[3H]cytisine binding to nicotinic cholinergic receptors in brain.

Mol. Pharmacol., 39: 9-12.

PACHOLCZYK, T., BLAKELY, R.D. and AMARA, S.G. (1991)

Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter.

Nature, 350: 350-354.

PADUA, R. A., WAN, W., NAGY, J. I. and GEIGER, J.D. (1992)

[³H]Ryanodine binding sites in rat brain demonstrated by membrane binding and autoradiography.

Brain Res., 542: 135-140.

PARKER, G.J., LAW, T.L., LENOCH, F.J. and BOLGER, R.E. (2000)

Development of high throughput screening asssays using fluorescence polarization: nuclear receptor-ligand-binding and kinase*/phosphatase assays.

J. Biomol. Screen., <u>5</u>: 77-88.

PICKERING, D.S. and NILES, L.P. (1990)

Pharmacological characterization of melatonin binding sites in Syrian hamster hypothalamus.

Eur. J. Pharmacol., 175: 71-77.

PRUNEAU, D., LUCCARINI, J.M., FOUCHET, C., DEFRENE, E., FRANCK, R.M., LOILLIER, B., DUCLOS, H., ROBERT, C., CREMERS, B., BELICHARD, P. and PAQUET, J.L. (1998)

LF 16.0335, a novel potent and selective nonpeptide antagonist of the human bradykinin B₂ receptor.

Brit. J. Pharmacol., 125: 365-372.

QUESADA, A.R., BARBACID, M.M., MIRA, E., FERNANDEZ-RESA, P., MARQUEZ, G. and ARACIL, M. (1997)

Evaluation of fluorometric and zymographic methods as activity assays for stromelysins and gelatinases.

Clin. Exp. Metastasis, 15: 26-32.

REYNOLDS, I.J., SNOWMAN, A.M. and SNYDER, S.H. (1986)

(-)[³H]desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and squeletal muscle membranes: differentiation by temperature and dihydropyridines.

J. Pharmacol. Exp. Ther., 237: 731-738.

Version 1 August 12, 2004

RIVKEES, S.A., CASSONE, V.M., WEAVER, D.R. and REPPERT, S.M. (1989)

Melatonin receptors in chick brain: characterization and localisation.

Endocrinology, 125: 363-368.

ROBBINS, D.J., ZHEN, E., OWAKI, H., VANDERBILT, C.A., EBERT, D., GEPPERT, T.D. and COBB, M.H. (1993)

Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro.

J. Biol. Chem., 268: 5097-5106.

ROHRER, L., RAULF, F., BRUNS, C., BUETTNER, R., HOFSTAEDTER, F. and SCHÜLE, R. (1993)

Cloning and characterization of the fourth human somatostatin receptor.

Proc. Natl. Acad. Sci. USA, 90: 4196-4200.

RUAT, M., TRAIFFORT, E., BOUTHENET, M.L., SCHWARTZ, J.C., HIRSCHFELD, J., BUSCHAUER, A. and SCHUNACK, W. (1990)

Reversible and irreversible labeling and autoradiographic localization of the cerebral histamine H₂ receptor using [¹²⁵I]iodinated probes.

Proc. Natl. Acad. Sci. USA, 87: 1658-1662.

SALVATORE, C.A., JACOBSON, M.A., TAYLOR, H.E., LINDEN, J. and JOHNSON, R.G. (1993)

Molecular cloning and characterization of the human A₃ adenosine receptor.

Proc. Natl. Acad. Sci. USA, 90: 10365-10369.

SANGSTER, J. (1997)

Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry.

Wiley Series in Solution Chemistry Volume 2, John Wiley and Sons.

SCHIOTH, H.B., MUCENIECE, R. and WIKBERG, J.E.S. (1997)

Characterization of the binding of MSH-B, HP-228, GHRP-6 and 153N-6 to the human melanocortin receptor subtypes. *Neuropeptides*, <u>31</u>: 565-571.

SCHWARTZ, L.B. and BRADFORD, T.R. (1986)

Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer.

J. Biol. Chem. <u>261</u>: 7372-7379.

SHANK, R.P., BALDY, W.J., MATTUCCI, L.C. and VILLANI, F.J. (1990)

Ion and temperature effects on the binding of γ -aminobutyrate to its receptors and the high-affinity transport system. J. Neurochem., <u>54</u>: 2007-2015.

SHEN, Y., MONSMA, F.J., METCALF, M.A., JOSE, P.A., HAMBLIN, M.W. and SIBLEY, D.R. (1993)

Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype.

J. Biol. Chem., 268: 18200-18204.

SHIRAYAMA, Y., NISHIKAWA, T., UMINO, A. and TAKAHASHI, K. (1993)

 π -Chlorophenylalanine-reversible reduction of σ binding sites by chronic imipramine treatment in rat brain. Eur. J. Pharmacol., 237: 117-126.

SIEGEL, B.W., BARON, B.M., HARRISON, B.L., GROSS, R.S., HAWES, C. and TOWERS, P. (1995)

[3H]MDL 105,519, a high affinity radioligand for the NMDA receptor-associated glycine recognition site.

Ann. Meeting Soc. Neurosci., 21: 1106.

SIEGRIST, W., OESTREICHER, M., STUTZ, S., GIRARD, J. and EBERLE, A.E. (1988)

Radioreceptor assay for α-MSH using mouse B16 melanoma cells.

J. Recep. Res., 8: 323-343.

SILLS, M.A., FAGG, G., POZZA, M., ANGST, C., BRUNDISH, D.E., HURT, S.D., WILUSZ, E.J. and WILLIAMS, M. (1991)

[3H]CGP 39653: a new N-methyl-D-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur. J. Pharmacol., 192: 19-24.

SIMONIN, F., BEFORT, K., GAVERIAUX-RUFF, C., MATTHES, H., NAPPEY, V., LANNES, B., MICHELETTI, G. and KIEFFER, B. (1994)

The human δ -oipioid receptor: genomic organization, cDNA cloning, functionnal expression, and distribution in human brain.

Mol. Pharmacol., 46: 1015-1021.

SMITH, C. and TEITLER, M. (1999)

Beta-blocker selectivity at cloned human beta₁- and beta₂-adrenergic receptors.

Cardiovasc. Drugs Ther., 13: 123-126.

SNODGRASS, S.R. (1978)

Use of [3H]muscimol for GABA receptor studies.

Nature, 273: 392-394.

SORENSEN, R.G. and BLAUSTEIN, M.P. (1989)

Rat brain dendrotoxin receptors associated with voltage-gated potassium channels: dendrotoxin binding and receptor solubilization.

Mol. Pharmacol., 36: 689-698.

SPETH, R.C., WASTEK, G.J. and YAMAMURA, H.I. (1979)

Benzodiazepine receptors: temperature dependence of [3H]flunitrazepam binding.

Life Sci., 24: 351-358.

STAM, N.J., VANDERHEYDEN, P., VAN ALEBEEK, C., KLOMP, J., DE BOER, T., VAN DELFT, A.M.L. and OLIJVE, W. (1994)

Genomic organisation and functional expression of the gene encoding the human serotonin 5-HT_{2C} receptor Eur. J. Pharmacol., <u>269</u>: 339-348.

STRESSER, D.M., BLANCHARD, A.P., TURNER, S.D., ERVE, J.C., DANDENEAU, A.A., MILLER, V.P. and CRESPI, C.L. (2000)

Substrate-dependent modulation of CYP3A4 catalytic activity: analysis of 27 test compounds with four fluorometric substrates.

Drug Metab. Dispos., 28: 1440-1448.

TAHARA, A., SAITO, M.,SUGIMOTO, T., TOMURA, Y., WADA, K., KUSAYAMA, T., TSUKADA, J., ISHII, N., YATSU, T., UCHIDA, W. and TANAKA, A. (1998)

Pharmacological characterization of the human vasopressin receptor subtypes stably expressed in Chinese hamster ovary cells.

Brit. J. Pharmacol., 125: 1463-1470.

TALKAD, V.D., FORTUNE, K.P., POLLO, D.A., SHAH, G.N., WANK, S.A. and GARDNER, J.D. (1994)

Direct demonstration of three different states of the pancreatic cholecystokinin receptor.

Proc. Natl. Acad. Sci. USA, 91: 1868-1872.

TATSUMI, M., GROSHAN, K., BLAKELY, R.D. and RICHELSON, E. (1997)

Pharmacological profile of antidepressants and related compounds at human monoamine transporters.

Eur. J. Pharmacol., 340: 249-258.

TAYEH, M. A. and MARLETTA, M.A. (1989)

Macrophage oxidation of L-arginine to nitric oxide, nitrite, and nitrate.

J. Biol. Chem., 264: 19654-19658.

THIBONNIER, M., CONARTY, D. M., PRESTON, J. A., PLESNICHER, C. L., DWEIK, R. A. and ERZURUM, S. C. (1999)

Human vascular endothelial cells express oxytocin receptors.

Endocrinology, 140: 1301-1308.

TORPHY, T.J., ZHOU, H.L. and CIESLINSKI, L.B. (1992)

Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity.

J. Pharmacol. Exp. Ther., 263: 1195-1205.

TOTH, M.V. and MARSHALL, G.R. (1990)

A simple, continuous fluorometric assay for HIV protease.

Int. J. Protein Res., 36: 544-550.

TOWNSEND-NICHOLSON, A. and SCHOFIELD, P.R. (1994)

A threonine residue in the seventh transmembrane domain of the human A_1 adenosine receptor mediates specific agonist binding.

J. Biol. Chem., 269: 2373-2376.

TSUZUKI, S., ICHIKI, T., HAKAKUBO, H., KITAMI, Y., GUO, D.F., SHIRAI, H. and INAGAMI, T. (1994)

Molecular cloning and expression of the gene encoding human angiotensin II type 2 receptor.

Biochem. Biophys. Res. Commun., 200: 1449-1454.

UHLEN, S. and WIKBERG, J.E. (1991)

Rat spinal chord α_2 -adrenoceptors are of the α_{2A} -subtype: comparison with α_{2A} - and α_{2B} -adrenoceptors in rat spleen, cerebral cortex and kidney using ³H-RX821002 ligand binding.

Pharmacol. Toxicol., 69: 341-350.

Version 1 August 12, 2004

VAN TOL, H.H.M., WU, C.M., GUAN, H.-G., OHARA, K., BUNZOW, J.R., CIVELLI, O., KENNEDY, J., SEEMAN, P., NIZNIK, H.B. and JOVANOVIC, V. (1992)

Multiple dopamine D4 receptor variants in the human population.

Nature, 358: 149-152.

VICKROY, T.W., ROESKE, W.R. and YAMAMURA, H.I. (1984)

Sodium-dependent high-affinity binding of [³H]hemicholinium-3 in the rat brain: a potentially selective marker for presynaptic cholinergic sites.

Life Sci., 35: 2335-2343.

VIGNON, J., PRIVAT, A., CHAUDIEU, I, THIERRY, A., KAMENKA, J.M. and CHICHEPORTICHE, R. (1986)

[³H]thienyl-phencyclidine ([³H]TCP) binds to two different sites in rat brain. Localization by autoradiographic and biochemical techniques.

Brain Res., 378: 133-141.

WANG, J.-B., JOHNSON, P.S., PERSICO, A.M., HAWKINS, A.L., GRIFFIN, C.A. and UHL, G.R. (1994)

Human μ-opiate receptor. cDNA and genomic clones, pharmacological characterization and chromosomal assignment. *FEBS Lett.*, 338 : 217-222.

WEISHAAR, R.E., BURROWS, S.D., KOBYLARZ, D.C., QUADE, M.M. and EVANS, D.B. (1986)

Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Biochem. Pharmacol., 35: 787-800.

WOLIN, M.S., BOOD, K.S. and IGNARRO, L.J. (1982)

Guanylate cyclase from bovine lung. A kinetic analysis of the regulation of the purified soluble enzyme by protoporphyrin IX, heme, and nitrosyl-heme.

J. Biol. Chem., 257: 13312-13320.

YAMADA, Y., KAGIMOTO, S., KUBOTA, A., YASUDA, K., MASUDA, K., SOMEYA, Y., IHARA, Y., LI, Q., IMURA, H., SEINO, S. et al. (1993)

Cloning, functionnal expression and pharmacological characterization of a fourth (hSSTR4) and a fifth (hSSTR5) human somatostatin receptor subtype.

Biochem. Biophys. Res. Commun., 195: 844-852.

YAMAZAKI, H., INOUE, K., MIMURA, M., ODA, Y., GUENGERICH, F. and SHIMADA, T. (1996)

7-Ethoxycoumarin O-deethylation catalyzed by cytochromes P450 1A2 and 2E1 in human liver microsomes. Biochem. Pharmacol., <u>51</u>: 313-319.

YOUNG, R.C., MITCHELL, R.C., BROWN, T.H., GANELLIN, C.R., GRIFFITHS, R., JONES, M., RANA, K.K., SAUNDERS, D., SMITH, I.R., SORE, N.E. et al. (1998)

Development of a new physiochemical model for brain penetration and its application to the design of centrally acting H₂ receptor histamine antagonists.

J. Med. Chem. 31: 656-671.

ZAVA, D.T., LANDRUM, B., HORWITZ, K.B. and McGUIRE, W.L. (1979)

Androgen receptor assay with [3H]Methyltrienolone (R1881) in the presence of progesterone receptor. Endocrinology, <u>104</u>: 1007-1012.

ZHOU, Q.-Y., GRANDY, D.K., THAMBI, L., KUSHNER, J.A., VAN TOL. H.H.M., CONE, R., PRIBNOW, D., SALON, J., BUNZOW, J.R. and CIVELLI, O. (1990)

Cloning and expression of human and rat D1 dopamine receptors.

Nature, 347: 76-80.

6. STORAGE AND RETENTION OF RECORDS

All documents generated during the performance of the study (raw data, various recordings such as QA audit reports, an original of the study report, study plan...) will be stored for a 10-year period in Cerep's archive rooms after achievement of the study. Only Cerep's authorized employees shall have access to the archives.

The original final report provided to the sponsor will be kept by the sponsor under its sole responsibility.

7. QUALITY ASSURANCE STATEMENT

The following audits were performed on this study:

	CALENDAR
Audit of Raw Data	For each assay
Audits of the Final Report	

Audit reports were established for each audit performed.

Audit report of the study report was transmitted to the Study Director for approval.

I certify that results presented in this report were generated using the materials and methods mentioned and that these results accurately reflect the Raw Data.

Quality Unit

APPENDIX A

HPLC Chromatograms and UV/VIS Spectra of the Test Compound,
Derived from the Aqueous Solubility Assay

::Cerep	Cal 884017-11		
Injection #	55	Reference Wavelength (nm)	550
Plate Position	Tray1	Retention Time of Principal Peak	n.a.
Well Position	30	Height of Principal Peak (mAU)	n.a.
Time Injected	11/15/03 14:52:31	Relative Area (Purity; %)	n.a.
Injection Volume	15	Relative Absorbance Maximum (nm)	n.a.
Wavelength (nm)	230	Absolute Absorbance Maximum (nm)	n.a.
Bandwidth (nm)	15	Peak Purity Match (max=1000)	n.a.

Chromatogram

APPENDIX B

HPLC-MS Total Ion Current Chromatograms, Full Scan Mass Spectra, and Product Ion Mass Spectra of the Test Compound

Version 1 August 12, 2004

Appendix 2

<u>GLP Study report for binding assay 1 for Merck Example 3 enantiomer 1, completed at CEREP Biosciences</u>

In this report, enantiomer 1 of Merck Example 3 is referred to by the reference number PF-4542563.

Andrew Martin Johnson B.A.
NOTARY PUBLIC
29 St George's Place
Canterbury

CT1 1UT, England Tel: 01227 479479

STUDY NUMBER 7570671b FINAL REPORT

| FRANCE | te Bois | Evêque | 86600 CELLE L'EVESCAULT | Tel. +33 (0)5 49 89 30 00 | fax +33 (0)5 49 43 21 70

(Headquarters) 155 boulevard Haussmann 75008 PARIS Tel. +33 (0)1 45 64 44 60 Fax +33 (0)1 45 64 44 64

11154

15318 N.E. 95th Street REDWOND, WA 98052 Tel. +1 425 895 8666 Fox +1 425 895 8668

I www.cerep.com

I customer_support@cerep.fr

In Vitro Pharmacology: Pfizer Tier 0 Profile
- Study of PF-04542563-00 -

Annie OTTO-BRUC, Ph.D.

Le Bois l'Evêque B.P.1 86 600 Celle l'Evescault France

www.cerep.com Tel: 33 (0)5.49.89.30.00 Fax: 33 (0)5.49.43.21.70

Ref.: Final Report 7570671b/MN

STUDY NUMBER 7570671b

In Vitro Pharmacology: Pfizer Tier 0 Profile

- Study of PF-04542563-00 -

Study Sponsor:

PFIZER Limited

Attention:

Dr. Gareth WALDRON

Senior Principal Scientist

Address:

Global Safety Pharmacology

Ramsgate Road

IPC 388

SANDWICH

Kent CT13 9NJ

UNITED KINGDOM

Study Director:

Annie OTTO-BRUC, Ph.D.

Testing Facility:

Cerep

Le Bois l'Evêque - B.P. 1 - 86600 CELLE L'EVESCAULT,

FRANCE

Study Period:

From March 06, 2007 to March 14, 2007

Report Version:

1

Report Date:

March 26, 2007

STUDY DIRECTOR

Annie OTTO-BRUC, Ph.D.
Principal Scientist, Pharmacology

March Rb, 2007

CONTENTS

1. PURPOSE OF THE STUDY	4
2. MATERIALS AND METHODS	5
2.1. IN VITRO PHARMACOLOGY: Binding Assays	5
2.1.1. General Procedures	5
2.1.2. Experimental Conditions	
2.1.3. Analysis and Expression of Results	12
2.2. IN VITRO PHARMACOLOGY: Enzyme Assays	13
2.2.1. General Procedures	13
2.2.2. Experimental Conditions	13
2.2.3. Analysis and Expression of Results	14
3. COMPOUNDS	15
3.1. Test Compound	15
3.2. Reference Compounds	
4. RESULTS	16
4.1. IN VITRO PHARMACOLOGY: Binding Assays	16
4.2. IN VITRO PHARMACOLOGY: Enzyme Assays	31
5. HELP TO INTERPRET YOUR RESULTS IN IN VITRO PHARMACOLOGY	35
6. BIBLIOGRAPHY	36
7. STORAGE AND RETENTION OF RECORDS	45
9 OHALITY ASSIDANCE STATEMENT	

1. PURPOSE OF THE STUDY

The purpose of this study was to investigate the effects of PF-04542563-00 in various *in vitro* receptor binding and enzyme assays.

2. MATERIALS AND METHODS

2.1. IN VITRO PHARMACOLOGY: Binding Assays

2.1.1. General Procedures

Assay	say Origin Reference Compound		Bibliography
A ₁ (h)	human recombinant (CHO cells)	DPCPX	Townsend-Nicholson and Schofield (1994)
A _{2A} (h)	human recombinant (HEK-293 cells)	NECA	Luthin et al. (1995)
α_1	rat cerebral cortex	prazosin	Greengrass and Bremner (1979)
(non-selective)			
α_{2A} (h)	human recombinant (CHO cells)	yohimbine	Langin et al. (1989)
α_{2B} (h)	human recombinant (CHO cells)	yohimbine	Devedjian et al. (1994)
β_1 (h)	human recombinant (HEK-293 cells)	atenolol .	Levin et al. (2002)
β_2 (h)	human recombinant (Sf9 cells)	ICI 118551	Smith and Teitler (1999)
AT ₁ (h)	human recombinant (HEK-293 cells)	saralasin	Le et al. (2005)
BZD (central)	rat cerebral cortex	diazepam	Speth et al. (1979)
CB ₁ (h)	human recombinant (CHO cells)	CP 55940	Rinaldi-Carmona et al. (1996)
CB ₂ (h)	human recombinant (CHO cells)	WIN 55212-2	Munro et al. (1993)
CCK _A (h) (CCK ₁)	human recombinant (CHO cells)	CCK-8	Bignon et al. (1999)
CCK _B (h) (CCK ₂)	human recombinant (CHO cells)	CCK-8	Lee et al. (1993)
D ₁ (h)	human recombinant (CHO cells)	SCH 23390	Zhou et al. (1990)
D _{2S} (h)	human recombinant (HEK-293 cells)	(+)butaclamol	Grandy et al. (1989)
D ₃ (h)	human recombinant (CHO cells)	(+)butaclamol	Mackenzie et al. (1994)
GABA _A	rat cerebral cortex	muscimol	Snodgrass (1978)

Assay	Origin	Reference Compound	Bibliography
GABA _{B(1b)} (h)	human recombinant (HEK-293 cells)	CGP 54626	Green et al. (2000)
AMPA	rat cerebral cortex	L-glutamate	Murphy et al. (1987)
Kainate	rat cerebral cortex	kainic acid	Monaghan and Cotman (1982)
NMDA	rat cerebral cortex	CGS 19755	Sills et al. (1991)
Glycine	rat cerebral cortex	glycine	Siegel et al. (1995)
(strychnine-insensitive)			
H ₁ (h)	human recombinant (HEK-293 cells)	pyrilamine	Smit et al. (1996)
H ₂ (h)	human recombinant (CHO cells)	cimetidine	Leurs et al. (1994)
H ₃ (h)	human recombinant (CHO cells)	(R)α-Me-histamine	Lovenberg et al. (1999)
MAO-A	rat cerebral cortex	clorgyline	Cesura et al. (1990)
M ₁ (h)	human recombinant (CHO cells)	pirenzepine	Dorje et al. (1991)
M ₂ (h)	human recombinant (CHO cells)	methoctramine	Dorje et al. (1991)
$M_3(h)$	human recombinant (CHO cells)	4-DAMP	Peralta et al. (1987)
N (neuronal) (α-BGTX-insensitive) (α4β2)	rat cerebral cortex	nicotine	Pabreza et al. (1991)
N (muscle-type) (h)	TE671 cells	α-bungarotoxin	Lukas (1986)
δ ₂ (h) (DOP)	human recombinant (CHO cells)	DPDPE	Simonin et al. (1994)
κ (KOP) (guinea-pig)	guinea-pig cerebellum	U 50488	Kinouchi and Pasternak (1991)
μ <i>(h)</i> (MOP) (agonist site)	human recombinant (HEK-293 cells)	DAMGO	Wang et al. (1994)
PPARγ <i>(h)</i>	human recombinant (E. coli)	rosiglitazone	Ferry et al. (2001)
5-HT _{1A} (h)	human recombinant (HEK-293 cells)	8-OH-DPAT	Mulheron et al. (1994)
5-HT _{1B}	rat cerebral cortex	serotonin	Hoyer et al. (1985)
5-HT _{2A} (h) (agonist site)	human recombinant (HEK-293 cells)	(±)DOI	Bryant et al. (1996)
5-HT _{2B} (h) (agonist site)	human recombinant (CHO cells)	(±)DOI	Choi et al. (1994)

Version 1 March 26, 2007

Assay	ssay Origin Reference Compound		Bibliography
5-HT _{2C} (h) (agonist site)	human recombinant (CHO cells)	(±)DOI	Bryant et al. (1996)
5-HT ₃ (h)	human recombinant (CHO cells)	MDL 72222	Hope et al. (1996)
5-HT _{4e} (h)	human recombinant (CHO cells)	serotonin	Mialet et al. (2000)
5-HT ₇ (h)	human recombinant (CHO cells)	serotonin	Shen et al. (1993)
Glucocorticoid (h) (GR)	IM-9 cells (cytosol)	dexamethasone	Clark et al. (1996)
V_{1a} (h)	human recombinant (CHO cells)	[d(CH2)51,Tyr(Me)2]-AVP	Tahara et al. (1998)
Ca ²⁺ channel (L, DHP site)	rat cerebral cortex	nitrendipine	Lee et al. (1984)
Ca ²⁺ channel (L, diltiazem site) (benzothiazepines)	rat cerebral cortex	diltiazem	Schoemaker and Langer (1985)
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)	rat cerebral cortex	D 600	Reynolds et al. (1986)
Ca ²⁺ channel (N)	rat cerebral cortex	ω-conotoxin GVIA	Wagner et al. (1988)
Na ⁺ channel (site 2)	rat cerebral cortex	veratridine	Brown (1986)
Cl channel	rat cerebral cortex	picrotoxinin	Lewin et al. (1989)
NE transporter (h)	human recombinant (CHO cells)	protriptyline	Pacholczyk et al. (1991)
DA transporter (h)	human recombinant (CHO cells)	ВТСР	Pristupa et al. (1994)
GABA transporter	rat cerebral cortex	nipecotic acid	Shank et al. (1990)
Choline transporter (h) (CHT1)	human recombinant (CHO cells)	hemicholinium-3	Apparsundaram et al. (2000)
5-HT transporter (h)	human recombinant (CHO cells)	imipramine	Tatsumi et al. (1999)

2.1.2. Experimental Conditions

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
A ₁ (h)	[³ H]DPCPX	1 nM	DPCPX (1 μM)	60 min./22°C	Scintillation counting
A _{2A} (h)	[³ H]CGS 21680	6 nM	NECA (10 μM)	120 min./22°C	Scintillation counting
α_1 (non-selective)	[³ H]prazosin	0.25 nM	prazosin (0.5 μM)	60 min./22°C	Scintillation counting
α_{2A} (h)	[³ H]RX 821002	l nM	(-)epinephrine (100 μM)	60 min./22°C	Scintillation counting
α _{2B} (h)	[³ H]RX 821002	2.5 nM	(-)epinephrine (100 μM)	60 min./22°C	Scintillation counting
β ₁ (h)	[³ H](-)CGP 12177	0.15 nM	alprenolol (50 μM)	60 min./22°C	Scintillation counting
β ₂ (h)	[³ H](-)CGP 12177	0.15 nM	alprenolol (50 μM)	60 min./22°C	Scintillation counting
AT ₁ (h)	[¹²⁵ l][Sar ¹ ,Ile ⁸]-AT II	0.05 nM	angiotensin II (10 μM)	120 min./37°C	Scintillation counting
BZD (central)	[³ H]flunitrazepam	0.4 nM	diazepam (3 μM)	60 min./4°C	Scintillation counting
CB ₁ (h)	[³ H]CP 55940	0.5 nM	WIN 55212-2 (10 μM)	120 min./37°C	Scintillation counting
CB ₂ (h)	[³ H]WIN 55212-2	0.8 nM	WIN 55212-2 (5 μM)	120 min./37°C	Scintillation counting
CCK _A (h) (CCK ₁)	[¹²⁵ I]CCK-8	0.08 nM	CCK-8 (1 μM)	60 min./22°C	Scintillation counting
CCK _B (h) (CCK ₂)	[¹²⁵ I]CCK-8	0.054 nM	CCK-8 (1 μM)	60 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
D ₁ (h)	[³ H]SCH 23390	0.3 nM	SCH 23390 (1 μM)	60 min./22°C	Scintillation counting
D _{2S} (h)	[³ H]spiperone	0.3 nM	(+)butaclamol (10 μM)	60 min./22°C	Scintillation counting
D ₃ (h)	[³ H]spiperone	0.3 nM	(+)butaclamol (10 μM)	60 min./22°C	Scintillation counting
GABA _A	[³ H]muscimol	5 nM	muscimol (10 μM)	10 min./4°C	Scintillation counting
GABA _{B(1b)} (h)	[³ H]CGP 54626	2.5 nM	GABA (10 mM)	60 min./22°C	Scintillation counting
AMPA	[³ H]AMPA	8 nM	L-glutamate (1 mM)	60 min./4°C	Scintillation counting
Kainate	[³ H]kainic acid	5 nM	L-glutamate (1 mM)	60 min./4°C	Scintillation counting
NMDA	[³ H]CGP 39653	5 nM	L-glutamate (100 μM)	60 min./4°C	Scintillation counting
Glycine (strychnine-insensitive)	[³ H]MDL 105,519	0.5 nM	glycine (1 mM)	45 min./0°C	Scintillation counting
H ₁ (h)	[³ H]pyrilamine	3 nM	pyrilamine (1 μM)	60 min./22°C	Scintillation counting
H ₂ (h)	[¹²⁵ I]APT	0.2 nM	tiotidine (100 μM)	120 min./22°C	Scintillation counting
H ₃ (h)	[³ H]N ^{\alpha} -Me-histamine	1 nM	(R)α-Me-histamine (1 μM)	60 min./22°C	Scintillation counting
MAO-A	[³ H]Ro 41-1049	10 nM	clorgyline (1 μM)	60 min/37°C	Scintillation counting
M ₁ (h)	[³ H]pirenzepine	2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
M ₂ (h)	[³ H]AF-DX 384	2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting
M ₃ (h)	[³ H]4-DAMP	0.2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting
N (neuronal) (α -BGTX-insensitive) (α 4 β 2)	[³ H]cytisine	1.5 nM	nicotine (10 μM)	75 min./4°C	Scintillation counting
N (muscle-type) (h)	[¹²⁵ 1]α-bungarotoxin	2.5 nM	α-bungarotoxin (5 μM)	120 min./22°C	Scintillation counting
δ ₂ (h) (DOP)	[³ H]DADLE	0.5 nM	naltrexone (10 μM)	120 min./22°C	Scintillation counting
κ (KOP) (guinea-pig)	[³ H]U 69593	0.7 nM	naloxone (10 μM)	80 min./22°C	Scintillation counting
μ (h) (MOP) (agonist site)	[³ H]DAMGO	0.5 nM	naloxone (10 μM)	120 min./22°C	Scintillation counting
PPARy (h)	[³ H]rosiglitazone	10 nM	rosiglitazone (10 μM)	120 min./4°C	Scintillation counting
5-HT _{1A} (h)	[³ H]8-OH-DPAT	0.3 nM	8-OH-DPAT (10 μM)	60 min./22°C	Scintillation counting
5-HT _{1B}	[¹²⁵ I]CYP (+ 30 μM (-)propranolol)	0.1 nM	serotonin (10 μM)	120 min./37°C	Scintillation counting
5-HT _{2A} (h) (agonist site)	[¹²⁵ I](±)DOI	0.2 nM	(±)DOI (1 μM)	60 min./22°C	Scintillation counting
5-HT _{2B} (h) (agonist site)	[¹²⁵ I](±)DOI	0.2 nM	(±)DOI (1 μM)	15 min./37°C	Scintillation counting
5-HT _{2C} (h) (agonist site)	[¹²⁵ I](±)DOI	0.2 nM	(±)DOI (10 μM)	15 min./37°C	Scintillation counting
5-HT ₃ (h)	[³ H]BRL 43694	0.5 nM	MDL 72222 (10 μM)	120 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
5-HT _{4e} (h)	[³ H]GR 113808	0.3 nM	serotonin (100 μM)	60 min./37°C	Scintillation counting
5-HT ₇ (h)	[³ H]LSD	4 nM	serotonin (10 μM)	120 min./22°C	Scintillation counting
Glucocorticoid (h) (GR)	[³ H]dexamethasone	1.5 nM	triamcinolone (10 μM)	6 h./4°C	Scintillation counting
V _{1a} (h)	[³ H]AVP	0.3 nM	AVP (1 μM)	60 min./22°C	Scintillation counting
Ca ²⁺ channel (L, DHP site)	[³ H](+)PN 200-110	0.04 nM	nifedipine (1 μM)	90 min./22°C	Scintillation counting
Ca ²⁺ channel (L, diltiazem site) (benzothiazepines)	[³ H]diltiazem	5 nM	diltiazem (10 μM)	120 min./22°C	Scintillation counting
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)	[³ H](-)D 888	3 nM	D 600 (10 μM)	120 min./22°C	Scintillation counting
Ca ²⁺ channel (N)	[¹²⁵ I]ω-conotoxin GVIA	0.001 nM	ω-conotoxin GVIA (10 nM)	30 min./22°C	Scintillation counting
Na ⁺ channel (site 2)	[³ H]batrachotoxinin	10 nM	veratridine (300 μM)	60 min./22°C	Scintillation counting
Cl ⁻ channel	[³⁵ S]TBPS	3 nM	picrotoxinin (20 μM)	120 min./22°C	Scintillation counting
NE transporter (h)	[³ H]nisoxetine	l nM	desipramine (1 μM)	120 min./4°C	Scintillation counting
DA transporter (h)	[³Н]ВТСР	4 nM	BTCP (10 μM)	120 min./4°C	Scintillation counting
GABA transporter	[³ H]GABA (+ 10 μM isoguvacine) (+ 10 μM baclofen)	10 nM	GABA (1 mM)	30 min./22°C	Scintillation counting
Choline transporter (h) (CHT1)	[³ H]hemicholinium-3	3 nM	hemicholinium-3 (10 μM)	60 min./22°C	Scintillation counting

Version 1 March 26, 2007

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
5-HT transporter (h)	[³ H]imipramine	2 nM	imipramine (10 μM)	60 min./22°C	Scintillation counting

2.1.3. Analysis and Expression of Results

The specific ligand binding to the receptors is defined as the difference between the total binding and the nonspecific binding determined in the presence of an excess of unlabelled ligand.

The results are expressed as a percent of control specific binding ((measured specific binding/control specific binding) x 100) and as a percent inhibition of control specific binding (100-((measured specific binding/control specific binding) x 100)) obtained in the presence of PF-04542563-00.

The IC₅₀ values (concentration causing a half-maximal inhibition of control specific binding) and Hill coefficients (nH) were determined by non-linear regression analysis of the competition curves generated with mean replicate values using Hill equation curve fitting $(Y = D + [(A - D)/(1 + (C/C_{50})^{nH})]$, where Y = specific binding, D = minimum specific binding, A = maximum specific binding, C = compound concentration, $C_{50} = IC_{50}$, and nH = slope factor). This analysis was performed using a software developed at Cerep (Hill software) and validated by comparison with data generated by the commercial software SigmaPlot @ 4.0 for Windows @ (@ 1997 by SPSS Inc.).

The inhibition constants (K_i) were calculated using the Cheng Prusoff equation $(K_i = IC_{50}/(1+(L/K_D)))$, where $L = C_{50}/(1+(L/K_D))$

2.2. IN VITRO PHARMACOLOGY: Enzyme Assays

2.2.1. General Procedures

Assay Origin Reference		Reference Compound	Bibliography
COX ₂ (h)	human recombinant (Sf9 cells)	NS398	Glaser et al. (1995)
PDE3 (h)	human platelets	milrinone	Weishaar et al. (1986)
PDE4 (h)	U-937 cells	rolipram	Torphy et al. (1992)
ACE (h)	human recombinant (murine cells)	captopril	Hoorn and Roth (1993)
FLT-1 kinase (h) (VEGFR1)	human recombinant (Sf9 cells)	staurosporine .	Itokawa et al. (2002)
p38α kinase (h)	human recombinant (E. coli)	SB202190	Frantz et al. (1998)
Acetylcholinesterase (h)	human recombinant (HEK-293 cells)	neostigmine	Ellman et al. (1961)
ATPase (Na ⁺ /K ⁺)	porcine cerebral cortex	ouabain	Fiske and Subbarow (1925)

2.2.2. Experimental Conditions

Assay	Substrate/Stimulus/Tracer	Incubation	Reaction Product	Method of Detection
COX_2 (h)	arachidonic acid (2 μΜ)	5 min./22°C	PGE ₂	EIA
PDE3 (h)	[³ H]cAMP + cAMP (0.1 μM)	60 min./22°C	[³ H]5'AMP	Scintillation counting
PDE4 (h)	[³ H]cAMP + cAMP (1 μM)	60 min./22°C	[³ H]5'AMP	Scintillation counting
ACE (h)	Mca-Arg-Pro-Pro-Gly-Phe- Ser-Ala-Phe-Lys (DNP)- OH (10 μΜ)	20 min./22°C	Mca-peptides	Fluorimetry
FLT-1 kinase (h) (VEGFR1)	ATP + biotinyl- βΑβΑβΑΑΕΕΕΕΥΓΕLVA KKK (0.5 μΜ)	20 min./22°C	phospho-biotinyl- βΑβΑβΑΑΕΕΕΕΥFELVA KKK	HTRF
p38α kinase (h)	ATP + ATF-2 (0.1 μM)	30 min./22°C	phospho-ATF-2	HTRF

Assay	Substrate/Stimulus/Tracer	Incubation	Reaction Product	Method of Detection
Acetylcholinesterase (h)	AMTCh (50 μM)	30 min./37°C	thio-conjugate	Photometry
ATPase (Na ⁺ /K ⁺)	ATP (2 mM)	60 min./37°C	Pi	Photometry

2.2.3. Analysis and Expression of Results

The results are expressed as a percent of control specific activity ((measured specific activity/control specific activity) x 100) and as a percent inhibition of control specific activity (100 – ((measured specific activity/control specific activity) x 100)) obtained in the presence of PF-04542563-00.

The IC₅₀ values (concentration causing a half-maximal inhibition of control specific activity) and Hill coefficients (nH) were determined by non-linear regression analysis of the inhibition curves generated with mean replicate values using Hill equation curve fitting (Y = D + [(A - D)/(1 + (C/C₅₀)^{nH})], where Y = specific activity, D = minimum specific activity, A = maximum specific activity, C = compound concentration, C₅₀ = IC₅₀, and nH = slope factor). This analysis was performed using a software developed at Cerep (Hill software) and validated by comparison with data generated by the commercial software SigmaPlot ® 4.0 for Windows ® (© 1997 by SPSS Inc.).

3. COMPOUNDS

3.1. Test Compound

From: PFIZER Limited

CEREP I.D.	Compound I.D.	Reference Number	Batch Number	Submitted F.W.	Molecular Weight	Stock Solution	Intermediate Dilution
7570671-2	PF-04542563-00	7570671-002	PF-04542563-00-0001	243.82	235.33	1.E-02 M DMSO	1.E-04 M H2O
							1.E-03 M H2O*
							[100x] DMSO**

F.W.: Formula Weight

*: For final test concentrations higher than 1.E-05 M.

3.2. Reference Compounds

In each experiment, the respective reference compound was tested concurrently with PF-04542563-00 in order to assess the assay suitability. It was tested at several concentrations (for IC_{50} value determination), and the data were compared with historical values determined at Cerep. The assay was rendered valid if the suitability criteria were met, in accordance with the corresponding Standard Operating Procedure.

^{**:} For the human CB₁ assay.

4. RESULTS

4.1. IN VITRO PHARMACOLOGY: Binding Assays

The mean values for the effects of PF-04542563-00 are summarized in table 1 - 1.

The individual data obtained with PF-04542563-00 are reported in table 1 - 2.

The IC₅₀ and K_i values for each reference compound are indicated in table 1 - 3. Each is within accepted limits of the historic average \pm 0.5 log units.

The IC₅₀ and K_i values determined for PF-04542563-00 are indicated in table 1 - 4.

The corresponding competition curves obtained with PF-04542563-00 are shown in figures 1 and 2.

The individual data obtained with PF-04542563-00 are reported in table 1 - 5.

The IC₅₀ and K_i values for each reference compound are indicated in table 1 - 6. Each is within accepted limits of the historic average \pm 0.5 log units.

Table 1 - 1
Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Specific Binding
$\overline{A_1(h)}$			
7570671-2	PF-04542563-00	1.0E-05	5
A _{2A} (h) 7570671-2	PF-04542563-00	1.0E-05	-3
α ₁ (non-selective) 7570671-2	PF-04542563-00	1.0E-05	7
α _{2A} (h) 7570671-2	PF-04542563-00	1.0E-05	25
α _{2B} (h) 7570671-2	PF-04542563-00	1.0E-05	41
β ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	0
β ₂ (h) 7570671-2	PF-04542563-00	1.0E-05	3
AT ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	-6
BZD (central) 7570671-2	PF-04542563-00	1.0E-05	8
CB ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	11
CB ₂ (h) 7570671-2	PF-04542563-00	1.0E-05	-2
CCK _A (h) (CCK ₁) 7570671-2	PF-04542563-00	1.0E-05	-11
CCK _B (h) (CCK ₂) 7570671-2	PF-04542563-00	1.0E-05	4
D ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	-9
D _{2S} (h) 7570671-2	PF-04542563-00	1.0E-05	5
D ₃ (h) 7570671-2	PF-04542563-00	1.0E-05	55
GABA _A 7570671-2	PF-04542563-00	1.0E-05	-19·
GABA _{B(1b)} (h) 7570671-2	PF-04542563-00	1.0E-05	11
AMPA 7570671-2	PF-04542563-00	1.0E-05	-16
Kainate 7570671-2	PF-04542563-00	1.0E-05	2
NMDA 7570671-2	PF-04542563-00	1.0E-05	7

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Specific Binding
Glycine (strychnine-insensit	tive)		
7570671-2	PF-04542563-00	1.0E-05	-4
H ₁ (h) 7570671-2	DF 04542562 00	1.05.05	
	PF-04542563-00	1.0E-05	6
H ₂ (h) 7570671-2	PF-04542563-00	1.0E-05	14
H ₃ (h) 7570671-2	PF-04542563-00	1.0E-05	. 30
MAO-A	DE 04542562 00	1.00.05	10
7570671-2	PF-04542563-00	1.0E-05	18
M ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	31
M ₂ (h)		1.00.00	25
7570671-2	PF-04542563-00	1.0E-05	25
M ₃ (h) 7570671-2	PF-04542563-00	1.0E-05	51
N (neuronal) (α-BGTX-inse		1.02 03	31
7570671-2	PF-04542563-00	1.0E-05	11
N (muscle-type) (h)			
7570671-2	PF-04542563-00	1.0E-05	4
δ ₂ (h) (DOP)			
7570671-2	PF-04542563-00	1.0E-05	-9
κ (KOP) (guinea-pig) 7570671-2	PF-04542563-00	1.0E-05	11
$\frac{7370071-2}{\mu (h) (MOP) (agonist site)}$	F1-04342303-00	1.0E-03	11
7570671-2	PF-04542563-00	1.0E-05	18
PPARγ (h)			
7570671-2	PF-04542563-00	1.0E-05	8
5-HT _{1A} (h)	DD 0454555000		_
7570671-2	PF-04542563-00	1.0E-05	-8
5-HT _{1B} 7570671-2	PF-04542563-00	1.0E-05	0
5-HT _{2A} (h) (agonist site)			
7570671-2	PF-04542563-00	1.0E-05	12
5-HT _{2B} (h) (agonist site)			
7570671-2	PF-04542563-00	1.0E-05	10
5-HT _{2C} (h) (agonist site) 7570671-2	PF-04542563-00	1.0E-05	-6
5-HT ₃ (h)		1.32 00	
7570671-2	PF-04542563-00	1.0E-05	2
5-HT _{4e} (h)	DF 04543562 00	1.05.05	
7570671-2	PF-04542563-00	1.0E-05	1
5-HT ₇ (h) 7570671-2	PF-04542563-00	1.0E-05	8
Glucocorticoid (h) (GR)			
7570671-2	PF-04542563-00	1.0E-05	5
V _{1a} (h) 7570671-2	PF-04542563-00	1.0E-05	7
, , , , , , , , , , , , , , , , , , , ,	11-0454255-00	1.02-03	

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration	% Inhibition of Control Specific Binding
Ca ²⁺ channel (L, DHP site)		(M)	
7570671-2	PF-04542563-00	1.0E-05	12
Ca ²⁺ channel (L, diltiazem si	te) (benzothiazepines)		
7570671-2	PF-04542563-00	1.0E-05	6
Ca ²⁺ channel (L, verapamil s	ite) (phenylalkylamines)		
7570671-2	PF-04542563-00	1.0E-05	1
Ca ²⁺ channel (N)			
7570671-2	PF-04542563-00	1.0E-05	-2
Na ⁺ channel (site 2)			
7570671-2	PF-04542563-00	1.0E-05	4
Cl channel			
7570671-2	PF-04542563-00	1.0E-05	3
NE transporter (h) 7570671-2	PF-04542563-00	1.0E-05	2
DA transporter (h)	45 (18)		
7570671-2	PF-04542563-00	1.0E-05	8
GABA transporter			
7570671-2	PF-04542563-00	1.0E-05	2
Choline transporter (h) (CH)	(1)		
7570671-2	PF-04542563-00	1.0E-05	-5
5-HT transporter (h)			-
7570671-2	PF-04542563-00	1.0E-05	-13

Table 1 - 2,
Individual Data

Assay		Test	% of Contro	l Specific Bir	nding
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	1 st	2 nd	Mean
A ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	91.7	98.8	95.3
A _{2A} (h) 7570671-2	PF-04542563-00	1.0E-05	105.3	101.2	103.3
α ₁ (non-selective) 7570671-2	PF-04542563-00	1.0E-05	91.8	94.3	93.0
α _{2A} (h) 7570671-2	PF-04542563-00	1.0E-05	72.8	77.8	75.3
α _{2B} (h) 7570671-2	PF-04542563-00	1.0E-05	63.7	54.1	58.9
β ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	95.9	103.3	99.6
β ₂ (h) 7570671-2	PF-04542563-00	1.0E-05	97.2	96.3	96.8
AT ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	104.3	107.5	105.9
BZD (central) 7570671-2	PF-04542563-00	1.0E-05	93.5	91.0	92.3
CB ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	88.5	90.2	89.3
CB ₂ (h) 7570671-2	PF-04542563-00	1.0E-05	107.4	96.2	101.8
CCK _A (h) (CCK ₁) 7570671-2	PF-04542563-00	1.0E-05	117.0	104.5	110.8
CCK _B (h) (CCK ₂) 7570671-2	PF-04542563-00	1.0E-05	96.8	96.0	96.4
D ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	108.3	109.6	109.0
D _{2S} (h) 7570671-2 D ₃ (h)	PF-04542563-00	1.0E-05	91.8	98.8	95.3
7570671-2 GABA _A	PF-04542563-00	1.0E-05	46.8	42.6	44.7
7570671-2	PF-04542563-00	1.0E-05	121.5	.115.6	118.5
GABA _{B(1b)} (h) 7570671-2 AMPA	PF-04542563-00	1.0E-05	81.4	96.1	88.8
7570671-2 Kainate	PF-04542563-00	1.0E-05	109.7	121.6	115.6
7570671-2 NMDA	PF-04542563-00	1.0E-05	99.7	96.0	97.8
7570671-2	PF-04542563-00	1.0E-05	95.5	90.9	93.2

Assav		Test	% of Contro	l Specific Bir	nding
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)) :S1	2 nd	Mean
Glycine (strychnine-insens	itive)	12003			
7570671-2	PF-04542563-00	1.0E-05	107.9	100.3	104.1
H ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	87.4	100.0	93.7
$H_2(h)$					
7570671-2	PF-04542563-00	1.0E-05	82.0	90.8	86.4
H ₃ (h) 7570671-2	PF-04542563-00	1.0E-05	70.4	68.7	69.6
MAO-A	DE 04540562 00	1.00.05			
7570671-2	PF-04542563-00	1.0E-05	83.7	80.5	82.1
M ₁ (h) 7570671-2	PF-04542563-00	1.0E-05	70.5	67.1	68.8
$M_2(h)$					
7570671-2	PF-04542563-00	1.0E-05	75.0	76.0	75.5
M ₃ (h) 7570671-2	PF-04542563-00	1.0E-05	50.3	48.2	49.2
N (neuronal) (α-BGTX-ins	sensitive) (α4β2)				
7570671-2	PF-04542563-00	1.0E-05	92.2	86.7	89.5
N (muscle-type) (h) 7570671-2	PF-04542563-00	1.0E-05	96.5	94.8	95.7
$\frac{7370071-2}{\delta_2 (h) (DOP)}$	11-04342303-00	1.01.00	90.3	74.0	73.7
7570671-2	PF-04542563-00	1.0E-05	106.8	110.5	108.7
κ (KOP) (guinea-pig)		•			
7570671-2	PF-04542563-00	1.0E-05	91.8	85.3	88.5
μ (h) (MOP) (agonist site) 7570671-2	PF-04542563-00	1.0E-05	82.1	82.5	82.3
PPARγ (h)					••••
7570671-2	PF-04542563-00	1.0E-05	94.1	89.1	91.6
5-HT _{1A} (h)	DD 04540540 00				
7570671-2 5-HT _{IB}	PF-04542563-00	1.0E-05	112.5	102.7	107.6
7570671-2	PF-04542563-00	1.0E-05	88.9	111.7	100.3
5-HT _{2A} (h) (agonist site) 7570671-2	PF-04542563-00	1.0E-05	78.5	98.3	88.4
5-HT _{2B} (h) (agonist site)	11 013 12303 00	1.02.05	70.5	76.5	00.7
7570671-2	PF-04542563-00	1.0E-05	84.0	95.4	89.7
5-HT _{2C} (h) (agonist site)	DE 04542562 00	1.05.05	110.4	00.0	1010
7570671-2 5-HT ₃ (h)	PF-04542563-00	1.0E-05	113.4	99.2	106.3
7570671-2	PF-04542563-00	1.0E-05	97.9	97.9	97.9
5-HT _{4e} (h) 7570671-2	PF-04542563-00	1.0E-05	100.5	07.0	00.2
5-HT ₇ (h)	11-04242303-00	1.UE-UJ	100.5	97.8	99.2
7570671-2	PF-04542563-00	1.0E-05	87.3	96.7	92.0
Glucocorticoid (h) (GR) 7570671-2	PF-04542563-00	1.0E-05	96.5	92.6	94.5
V _{1a} (h) 7570671-2	PF-04542563-00				,
13/00/1-2	F1-04342303-00	1.0E-05	93.6	93.4	93.5

Assay		Test	% of Contro	l Specific Bir	nding
Cerep Compound I.D.	Client Compound I.D.	Concentration * (M)	l st	2 nd	Mean
Ca ²⁺ channel (L, DHP site)	1	,			
7570671-2	PF-04542563-00	1.0E-05	86.7	90.2	88.4
Ca ²⁺ channel (L, diltiazem	site) (benzothiazepines)				
7570671-2	PF-04542563-00	1.0E-05	93.0	94.3	93.6
Ca ²⁺ channel (L, verapamil	site) (phenylalkylamines)				
7570671-2	PF-04542563-00	1.0E-05	100.0	97.9	99.0
Ca ²⁺ channel (N)					
7570671-2	PF-04542563-00	1.0E-05	103.8	100.4	102.1
Na ⁺ channel (site 2)					
7570671-2	PF-04542563-00	1.0E-05	107.1	85.3	96.2
Cl ⁻ channel					
7570671-2	PF-04542563-00	1.0E-05	93.6	99.7	96.7
NE transporter (h)					
7570671-2	PF-04542563-00	1.0E-05	89.8	105.4	97.6
DA transporter (h)					
7570671-2	PF-04542563-00	1.0E-05	89.7	94.6	92.2
GABA transporter					
7570671-2	PF-04542563-00	1.0E-05	90.7	105.1	97.9
Choline transporter (h) (Ch	HT1)				
7570671-2	PF-04542563-00	1.0E-05	125.6	84.3	105.0
5-HT transporter (h)	-				
7570671-2	PF-04542563-00	1.0E-05	127.0	98.0	112.5

Table 1 - 3

Reference Compound Data

Assay Reference Compound	IC ₅₀ (M)	K; (M)	n_H
A ₁ (h) DPCPX	1.1E-08	7.0E-09	1.0
A _{2A} (h) NECA	4.5E-08	3.6E-08	1.0
α_1 (non-selective)			
prazosin	6.0E-10	1.6E-10	1.1
α _{2A} (h) yohimbine	5.7E-09	2.5E-09	1.1
α _{2B} (h) yohimbine	9.1E-09	6.1E-09	1:1
β ₁ (h) atenolol	5.4E-07	3.9E-07	1.1
β ₂ (h) ICI 118551	2.2E-09	9.0E-10	1.3
AT ₁ (h) saralasin	8.8E-10	4.4E-10	0.6
BZD (central) diazepam	1.3E-08	1.1E-08	1.4
CB ₁ (h) CP 55940	1.0E-09	8.8E-10	1.2
CB ₂ (h) WIN 55212-2	3.0E-09	1.9E-09	1.0
CCK _A (h) (CCK ₁) CCK-8	6.9E-10	5.2E-10	1.3
CCK _B (h) (CCK ₂) CCK-8	7.9E-10	4.7E-10	1.0
D ₁ (h) SCH 23390	9.9E-10	4.0E-10	1.2
D _{2S} (h) (+)butaclamol	7.7E-09	2.6E-09	1.3
D ₃ (h) (+)butaclamol .	4.9E-09	1.1E-09	1.1
GABA _A muscimol	1.2E-08	8.3E-09	1.9
GABA _{B(1b)} (h) CGP 54626	1.1E-08	4.8E-09	1.1
AMPA L-glutamate	3.2E-07	2.9E-07	1.1
Kainate kainic acid	1.0E-08	8.3E-09	0.7
NMDA CGS 19755	6.0E-07	4.9E-07	1.1
Glycine (strychnine-insensitive) glycine	3.2E-07	2.9E-07	0.7

H_1 (h) pyrilamine 3.6E-09 1.3E-09 1.0 H_2 (h)
H_2 (h) cimetidine 3.7E-07 3.5E-07 1.0 H_3 (h) (R)α-Me-histamine 1.2E-09 2.9E-10 1.2 MAO-A clorgyline 2.6E-09 1.5E-09 1.4 M_1 (h) pirenzepine 1.4E-08 1.2E-08 0.9 M_2 (h) methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
cimetidine 3.7E-07 3.5E-07 1.0 H_3 (h) (R)α-Me-histamine 1.2E-09 2.9E-10 1.2 MAO-A clorgyline 2.6E-09 1.5E-09 1.4 M_1 (h) pirenzepine 1.4E-08 1.2E-08 0.9 M_2 (h) methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2) ***********************************
H_3 (h) (R)α-Me-histamine 1.2E-09 2.9E-10 1.2 MAO-A clorgyline 2.6E-09 1.5E-09 1.4 M ₁ (h) pirenzepine 1.4E-08 1.2E-08 0.9 M ₂ (h) methoctramine 4.1E-08 2.8E-08 0.9 M ₃ (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
(R)α-Me-histamine 1.2E-09 2.9E-10 1.2 MAO-A clorgyline 2.6E-09 1.5E-09 1.4 M_1 (h) pirenzepine 1.4E-08 1.2E-08 0.9 M_2 (h) methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2) ***********************************
MAO-A clorgyline 2.6E-09 1.5E-09 1.4 M ₁ (h) pirenzepine 1.4E-08 1.2E-08 0.9 M ₂ (h) methoctramine 4.1E-08 2.8E-08 0.9 M ₃ (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
clorgyline 2.6E-09 1.5E-09 1.4 M_1 (h) pirenzepine 1.4E-08 1.2E-08 0.9 M_2 (h) methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
M_1 (h) pirenzepine 1.4E-08 1.2E-08 0.9 M_2 (h) methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
pirenzepine 1.4E-08 1.2E-08 0.9 M_2 (h) ** methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) ** 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
M_2 (h) methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
methoctramine 4.1E-08 2.8E-08 0.9 M_3 (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2) $\frac{1.2}{1.2}$
M ₃ (h) 4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
4-DAMP 5.9E-10 4.2E-10 1.2 N (neuronal) (α-BGTX-insensitive) (α4β2)
N (neuronal) (α-BGTX-insensitive) (α4β2)
0.00.00 4.00.00 0.00
<u>nicotine</u> 8.9E-09 4.8E-09 0.9
N (muscle-type) (h)
$\frac{\text{a-bungarotoxin}}{\text{bungarotoxin}} \qquad \qquad 8.5\text{E-09} \qquad 6.7\text{E-09} \qquad 1.2$
δ_2 (h) (DOP)
DPDPE 3.2E-09 1.9E-09 1.0
κ (KOP) (guinea-pig)
U 50488 5.6E-10 1.9E-10 1.1
μ (h) (MOP) (agonist site)
DAMGO 6.8E-10 2.8E-10 0.9
PPARy (h)
rosiglitazone 3.7E-08 1.3E-08 0.8
5-HT _{1A} (h)
8-OH-DPAT 6.4E-10 4.0E-10 1.0
5-HT _{1B}
serotonin 1.3E-08 8.3E-09 0.7
5-HT _{2A} (h) (agonist site)
()DOI 5.9E-10 3.6E-10 0.7
5-HT _{2B} (h) (agonist site)
<u>()DOI</u> 6.3E-09 6.1E-09 0.7
5-HT _{2C} (h) (agonist site)
()DOI 1.8E-09 1.4E-09 0.6
5-HT ₃ (h)
MDL 72222 8.6E-09 6.0E-09 1.1
$5-HT_{4e}(h)$
serotonin 1.6E-07 5.3E-08 0.6
$5-HT_7(h)$
serotonin 8.7E-10 3.2E-10 0.8
Glucocorticoid (h) (GR)
dexamethasone 3.9E-09 2.0E-09 1.1
$V_{la}(h)$
[d(CH2)51,Tyr(Me)2]-AVP 1.3E-09 8.0E-10 1.0
Ca ²⁺ channel (L, DHP site)
<u>nitrendipine</u> 6.8E-10 2.3E-10 1.1

Assay	IC _{so}	K _{i.}	27
Reference Compound	(M)	(M)	n_H
Ca ²⁺ channel (L, diltiazem site) (benzothiazepines)			
diltiazem	1.7E-08	1.5E-08	1.5
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)			
D 600	6.5E-08	3.3E-08	0.6
Ca ²⁺ channel (N)			
ω-conotoxin GVIA	1.1E-12	4.5E-13	1.1
Na ⁺ channel (site 2)			
veratridine	4.7E-06	4.3E-06	0.8
Cl channel			
picrotoxinin	4.4E-07	3.6E-07	0.8
NE transporter (h)			_
protriptyline	6.4E-09	4.8E-09	1.0
DA transporter (h)			
BTCP	8.4E-09	4.5E-09	0.9
GABA transporter			
nipecotic acid	9.9E-06	9.9E-06	0.9
Choline transporter (h) (CHT1)			_
hemicholinium-3	1.3E-08	7.4E-09	1.1
5-HT transporter (h)		•	•
imipramine	3.6E-09	1.7E-09	1.2

Table 1 - 4

IC₅₀ Determination: Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	IC ₅₀ (M)	K _i (M)	n _H
D ₃ (h) 7570671-2	PF-04542563-00	8.6E-06	1.9E-06	1.0
M ₃ (h) 7570671-2	PF-04542563-00	1.2E-05	8.6E-06	1.0

COMPETITION CURVE OBTAINED WITH COMPOUND PF-04542563-00 AT THE HUMAN D3 RECEPTOR

$$IC50 = 8.6E-06 M$$

 $nH = 1.0$

Figure 1

COMPETITION CURVE OBTAINED WITH COMPOUND PF-04542563-00 AT THE HUMAN M3 RECEPTOR

$$IC50 = 1.2E-05 M$$

 $nH = 1.0$

Figure 2

Table 1 - 5

IC₅₀ Determination : Individual Data

Assay		Test	% of Control Specific Bind		nding
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	i si	2 nd	Mean
D_3 (h)					
7570671-2	PF-04542563-00	1.0E-11	110.0	89.9	100.0
7570671-2	PF-04542563-00	1.0E-10	105.7	87.5	96.6
7570671-2	PF-04542563-00	1.0E-09	95.3	89.8	92.5
7570671-2	PF-04542563-00	1.0E-08	97.7	94.0	95.9
7570671-2	PF-04542563-00	1.0E-07	90.4	91.2	90.8
7570671-2	PF-04542563-00	1.0E-06	89.0	85.1	87.1
7570671-2	PF-04542563-00	1.0E-05	44.4	42.2	43.3
7570671-2	PF-04542563-00	1.0E-04	8.7	10.2	9.5
$M_3(h)$					
7570671-2	PF-04542563-00	1.0E-11	96.5	86.0	91.3
7570671-2	PF-04542563-00	1.0E-10	99.7	91.4	95.6
7570671-2	PF-04542563-00	1.0E-09	87.0	92.8	89.9
7570671-2	PF-04542563-00	1.0E-08	89.0	87.7	88.3
7570671-2	PF-04542563-00	1.0E-07	90.0	92.1	91.0
7570671-2	PF-04542563-00	1.0E-06	82.4	83.4	82.9
7570671-2	PF-04542563-00	1.0E-05	50.1	50.5	50.3
7570671-2	PF-04542563-00	1.0E-04	8.8	10.3	9.6

Table 1 - 6

Reference Compound Data

Assay Reference Compound	IC ₅₀ (M)	K _i (M)	n_H
D ₃ (h)			
(+)butaclamol	5.6E-09	1.2E-09	1.3
$M_3(h)$			
4-DAMP	5.7E-10	4.1E-10	1.3

4.2. IN VITRO PHARMACOLOGY: Enzyme Assays

The mean values for the effects of PF-04542563-00 are summarized in table 2 - 1. The individual data obtained with PF-04542563-00 are reported in table 2 - 2.

The IC_{50} value for each reference compound is indicated in table 2 - 3. Each is within accepted limits of the historic average \pm 0.5 log units.

Table 2 - 1

Summary Results

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Values
$\overline{\text{COX}_2(h)}$			
7570671-2	PF-04542563-00	1.0E-05	5
PDE3 (h)			
7570671-2	PF-04542563-00	1.0E-05	3
PDE4 (h)			
7570671-2	PF-04542563-00	1.0E-05	-4
ACE (h)			
7570671-2	PF-04542563-00	1.0E-05	3
FLT-1 kinase (h) (VEGFR1)			
7570671-2	PF-04542563-00	1.0E-05	1
p38α kinase (h)			
7570671-2	PF-04542563-00	1.0E-05	7
Acetylcholinesterase (h)			
7570671-2	PF-04542563-00	1.0E-05	-11
ATPase (Na ⁺ /K ⁺)			
7570671-2	PF-04542563-00	3.0E-05	6

Table 2 - 2
Individual Data

Assay		Test	% of Control Values		
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	l sı	2 nd	Mean
$COX_2(h)$					
7570671-2	PF-04542563-00	1.0E-05	97.0	92.4	94.7
PDE3 (h)					
7570671-2	PF-04542563-00	1.0E-05	98.4	95.6	97.0
PDE4 (h)					
7570671-2	PF-04542563-00	1.0E-05	101.9	105.6	103.7
ACE (h)					
7570671-2	PF-04542563-00	1.0E-05	96.6	98.0	97.3
FLT-1 kinase (h) (VEGFR1)					
7570671-2	PF-04542563-00	1.0E-05	95.6	102.9	99.3
p38α kinase (h)					
7570671-2	PF-04542563-00	1.0E-05	93.0	93.0	93.0
Acetylcholinesterase (h)					-
7570671-2	PF-04542563-00	1.0E-05	111.6	110.4	111.0
ATPase (Na ⁺ /K ⁺)					
7570671-2	PF-04542563-00	3.0E-05	99.1	88.8	94.0

Table 2 - 3

Reference Compound Data

Assay	IC ₅₀	
Reference Compound	(M)	n _H
$COX_2(h)$		
NS398	1.0E-07	1.9
PDE3 (h)	*	
milrinone	1.6E-07	0.9
PDE4 (h)		
rolipram	3.0E-07	0.7
ACE (h)		
captopril	2.0E-09	0.8
FLT-1 kinase (h) (VEGFR1)		
staurosporine	8.9E-09	1.6
p38α kinase (h)	,	
SB202190	2.1E-08	0.9
Acetylcholinesterase (h)		
neostigmine	3.9E-08	1.0
ATPase (Na ⁺ /K ⁺)		
ouabain	9.0E-07	1.1

5. HELP TO INTERPRET YOUR RESULTS IN IN VITRO PHARMACOLOGY

- . Results showing an inhibition (or stimulation for assays run in basal conditions) higher than 50% are considered to represent significant effects of the test compounds. 50% is the most common cut-off value for further investigation (determination of IC_{50} or EC_{50} values from concentration-response curves).
- . Results showing an inhibition (or stimulation) between 20% and 50% are indicative of weak to moderate effects (in some assays, they may be confirmed by further testing as they are within a range where more inter-experimental variability can occur).
- . Results showing an inhibition (or stimulation) lower than 20% are not considered significant and mostly attributable to variability of the signal around the control level.
- . Low to moderate negative values have no real meaning and are attributable to variability of the signal around the control level. High negative values (≥ 50%) that are sometimes obtained with high concentrations of test compounds are generally attributable to non-specific effects of the test compounds in the assays, apart from a few exceptions.

6. BIBLIOGRAPHY

APPARSUNDARAM, S., FERGUSON, S.M., GEORGE, A.L. and BLAKELY, R.D. (2000)

Molecular cloning of a human hemicholinium-3-sensitive choline transporter.

Biochem. Biophys. Res. Commun., 276: 862-867.

BIGNON, E., BACHY, A., BOIGEGRAIN, R. et al. (1999)

SR146131: a new potent, orally active and selective non-peptide cholecystokinin subtype 1 receptor agonist: *in vitro* studies.

J. Pharmacol. Exp. Ther. 289: 742-751.

BROWN, G.B. (1986)

³H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin.

J. Neurosci., <u>6</u>: 2064-2070.

BRYANT, H.U., NELSON, D.L., BUTTON, D., COLE, H.W., BAEZ, M.B., LUCAITES, V.L., WAINSCOTT, D.B., WHITESITT, C., REEL, J., SIMON, R. and KOPPEL, G.A. (1996)

A novel class of 5-HT_{2A} receptor antagonist: aryl aminoguanidines.

Life Sci., 15: 1259-1268.

CESURA, A.M., BOS, M., GALVA, M.D., IMHOF, R. and DA PRADA, M. (1990)

Characterization of the binding of [³H]Ro 41-1049 to the active site of human monoamine oxidase-A. *Mol. Pharmacol.*, <u>37</u>: 358-366.

CHOI, D.S., BIRRAUX, G., LAUNAY, J.M. and MAROTEAUX, L. (1994)

The human serotonin 5-HT_{2B} receptor: pharmacological link between 5-HT₂ and 5-HT_{1D} receptors. *FEBS Lett.*, 352: 393-399.

CLARK, A.F., LANE, D., WILSON, K., MIGGANS, S.T. and McCARTNEY, M.D. (1996)

Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydrocortisol.

Invest. Ophtalmol. Vis. Sci., 37: 805-813.

DEVEDJIAN, J.-C., ESCLAPEZ, F., DENIS-POUXVIEL, C. and PARIS, H. (1994)

Further characterization of human α_2 -adrenoceptor subtypes : [³H]RX821002 binding and definition of additional selective drugs.

Eur. J. Pharmacol., 252: 43-49.

DORJE, F., WESS, J., LAMBRECHT, G., TACKE, R., MUTSCHLER, E. and BRANN, M.R. (1991)

Antagonist binding profiles of five cloned human muscarinic receptor subtypes.

J. Pharmacol. Exp. Ther., 256: 727-733.

ELLMAN, G.L., COURTNEY, K.D., ANDRES, V. and FEATHERSTONE, R.M. (1961)

A new and rapid colorimetric determination of acetylcholinesterase activity.

Biochem. Pharmacol., 7: 88-95.

FERRY, G., BRUNEAU, V., BEAUVERGER, P., GOUSSARD, M., RODRIGUEZ, M., LAMAMY, V., DROMAINT, S., CANET, E., GALIZZI, J-P. and BOUTIN, J.A. (2001)

Binding of prostaglandins to human PPAR gamma: tool assessment and new natural ligands.

Eur. J. Pharmacol., 417: 77-89.

FISKE, C.M. and SUBBAROW, Y. (1925)

The colorimetric determination of phosphorus.

J. Biol. Chem., 66: 375-400.

FRANTZ, B., KLATT, T., PANG, M., PARSONS, J., ROLANDO, A., WILLIAMS, H., TOCCI, M.J., O'KEEFE, S.J. and O'NEILL, E.A. (1998)

The activation state of p38 Mitogen-Activated Protein Kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding.

Biochemistry, 37: 13846-13853.

GLASER, K., SUNG, M.L., O'NEILL, K., BELFAST, M., HARTMAN, D., CARLSON, R., KREFT, A., KUBRAK, D., HSIAO, C.L. and WEICHMAN, B. (1995)

Etodolac selectively inhibits human prostaglandin G/H synthase 2 (PGHS-2) versus human PGHS-1.

Eur. J. Pharmacol., 281: 107-111.

GRANDY, D.K., MARCHIONNI, M.A., MAKAM, H., STOFKO, R.E., ALFANO, M., FROTHINGHAM, L., FISCHER, J.B., BURKE-HOWIE, K.J., BUNZOW, J.R., SERVER, A.C. and CIVELLI, O. (1989)

Cloning of the cDNA and gene for a human D2 dopamine receptor.

Proc. Natl. Acad. Sci. U.S.A., 86: 9762-9766.

GREEN, A., WALLS, S., WISE, A., GREEN, R. H., MARTIN, A. K. and MARSHALL F. H. (2000)

Characterization of [³H]-CGP54626A binding to heterodimeric GABA_B receptors stably expressed in mammalian cells. Brit. J. Pharmacol., <u>131</u>: 1766-1774.

GREENGRASS, P. and BREMNER, R. (1979)

Binding characteristics of [${}^{3}H$]-prazosin to rat brain α -adrenergic receptors.

Eur. J. Pharmacol., 55: 323-326.

HOORN, C.M. and ROTH, R.A. (1993)

Monocrotaline pyrrole-induced changes in angiotensin-converting enzyme activity of cultured pulmonary artery endothelial cells.

Brit. J. Pharmacol., 110: 597-602.

HOPE, A.G., PETERS, J.A., BROWN, A.M., LAMBERT, J.J. and BLACKBURN, T.P. (1996)

Characterization of a human 5-hydroxytryptamine₃ receptor type A (h5-HT₃R-A_s) subunit stably expressed in HEK 293 cells.

Brit. J. Pharmacol., 118: 1237-1245.

HOYER, D., ENGEL, G. and KALKMAN, H.O. (1985)

Characterization of the 5-HT_{1B} recognition site in rat brain: binding studies with (-) (¹²⁵I) iodocyanopindolol. *Eur. J. Pharmacol.*, 118: 1-12.

ITOKAWA, T., NOKIHARA, H., NISHIOKA, Y., SONE, S., IWAMOTO, Y., YAMADA, Y., CHERRINGTON, J., McMAHON, G., SHIBUYA, M., KUWANO, M. and ONO, M. (2002)

Antiangiogenic effect by SU5416 is partly attributable to inhibition of Flt-1 receptor signaling. Mol. Cancer Ther., 1: 295-302.

KINOUCHI, K. and PASTERNAK, G.W. (1991)

Evidence for κ_1 opioid receptor multiplicity in the guinea pig cerebellum.

Eur. J. Pharmacol., 207: 135-141.

LANGIN, D., LAFONTAN, M., STILLING, M.R. and PARIS, H. (1989)

[3H]RX821002: a new tool for the identification of alpha_{2A}-adrenoceptors

Eur. J. Pharmacol., 167: 95-104.

LE, M.T., DE BACKER, J.-P., HUNYADY, L., VANDEHEYDEN, P.M.L. and VAUQUELIN, G. (2005)

Ligand binding and functional properties of human angiotensin AT₁ receptors in transiently and stably expressed CHO-K1 cells.

Eur. J. Pharmacol., 513: 35-45.

LEE, H.R., ROESKE, W.R. and YAMAMURA, H.I. (1984)

High affinity specific [³H](+)PN 200-110 binding to dihydropyridine receptors associated with calcium channels in rat cerebral cortex and heart.

Life Sci., 35: 721-732.

LEE, Y.-M., BEINBORN, M., McBRIDE, E.W., LU, M., KOLAKOWSKI, L.F. and KOPIN, A.S. (1993)

The human brain cholecystokinin-B/gastrin receptor.

J. Biol. Chem., 268: 8164-8169.

LEURS, R., SMIT, M.J., MENGE, W. and TIMMERMAN, H. (1994)

Pharmacological characterization of the human histamine H₂ receptor stably transfected in chinese hamster ovary cells. Brit. J. Pharmacol., 112: 847-854.

LEVIN, M.C., MARULLO, S., MUNTANER, O., ANDERSON, B. and MAGNUSSON, Y. (2002)

The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down regulation.

J. Biol.Chem., 277: 30429-30435.

LEWIN, A.H., DE COSTA, B.R., RICE, K.C. and SKOLNICK, P. (1989)

meta- and *para*-isothiocyanato-*t*-butylbicycloorthobenzoate : irreversible ligands of the γ-aminobutyric acid-regulated chloride ionophore.

Mol. Pharmacol., 35: 189-194.

LOVENBERG, T.W., ROLAND, B.L. WILSON, S.J., JIANG, X., PYATI, J., HUVAR, A., JACKSON, M.R. and ERLANDER, M.G. (1999)

Cloning and functional expression of the human histamine H₃ receptor.

Mol. Pharmacol., 55: 1101-1107.

LUKAS, R.J. (1986)

Characterization of curaremimetic neurotoxin binding sites on membrane fractions derived from the human medulloblastoma clonal line, TE671.

J. Neurochem., 46: 1936-1941.

LUTHIN, D.R., OLSSON, R.A., THOMPSON, R.D., SAWMILLER, D.R. and LINDEN, J. (1995)

Characterization of two affinity states of adenosine A2a receptors with a new radioligand,

2-[2-(4-amino-3-[125I]iodophenyl)ethylamino]adenosine.

Mol. Pharmacol., 47: 307-313.

MACKENZIE, R.G., VANLEEUVEN, D., PUGSLEY, T.A., SHIH, Y-H., DEMATTOS, S., TANG, L., TODD, R. and O'MALLEY, K.L. (1994)

Characterization of the human dopamine D₃ receptor expressed in transfected cell lines.

Eur. J. Pharmacol., 266: 79-85.

MIALET, J., BERQUE-BESTEL, I., EFTEKHARI, P., GASTINEAU, M., GINER, M., DAHMOUNE, Y., DONZEAU-GOUGE, P., HOEBEKE, J., LANGLOIS, M., SICSIC, S., FISCHMEISTER, R. and LEZOUALC'H, F. (2000)

Isolation of the serotoninergic 5-HT_{4(e)} receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines.

Brit. J. Pharmacol., 129: 771-781.

MONAGHAN, D.T. and COTMAN, C.W. (1982)

The distribution of [³H]kainic acid binding sites in rat CNS as determined by autoradiography.

Brain Res., 252: 91-100.

MULHERON, J.G., CASANAS, S.J., ARTHUR, J.M., GARNOVSKAYA, M.N., GETTYS, T.W. and RAYMOND, J.R. (1994)

Human 5-HT_{1A} receptor expressed in insect cells activates endogenous G₀-like G protein.

J. Biol. Chem., <u>269</u>: 12954-12962.

MUNRO, S., THOMAS, K.L. and ABU-SHAAR, M. (1993)

Molecular characterization of a peripheral receptor for cannabinoids.

Nature, 365: 61-65.

MURPHY, D.E., SNOWHILL, E.W. and WILLIAMS, M. (1987)

Characterization of quisqualate recognition sites in rat brain tissue using DL-[3 H] α -amino-3-hydroxy- 5-methylisoxazole-4-proprionic acid (AMPA) and a filtration assay.

Neurochem. Res., 12: 775-781.

PABREZA, L.A., DHAWAN, S. and KELLAR, K.J. (1991)

[³H]cytisine binding to nicotinic cholinergic receptors in brain.

Mol. Pharmacol., 39: 9-12.

PACHOLCZYK, T., BLAKELY, R.D. and AMARA, S.G. (1991)

Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter.

Nature, 350: 350-354.

PERALTA, E. G., ASHKENAZI, A., WINSLOW, J. W., SMITH, D. H., RAMACHANDRAN, J. and CAPON, D. J. (1987)

Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors.

Embo. J., 6: 3923-3929.

PRISTUPA, Z.B., WILSON, J.M., HOFFMAN, B.J., KISH, S.J. and NIZNIK, H.B. (1994)

Pharmacological heterogeneity of the cloned and native human dopamine transporter: disassociation of [3H]WIN 35,428 and [3H]GBR 12,935 binding.

Mol. Pharmacol., 45: 125-135.

REYNOLDS, I.J., SNOWMAN, A.M. and SNYDER, S.H. (1986)

(-)[³H]desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and squeletal muscle membranes: differentiation by temperature and dihydropyridines.

J. Pharmacol. Exp. Ther., 237: 731-738.

RINALDI-CARMONA, M., CALANDRA, B., SHIRE, D., BOUABOULA, M., OUSTRIC, D., BARTH, F., CASELLAS, P., FERRARA, P. and LE FUR, G. (1996)

Characterization of two cloned human CB₁ cannabinoid receptors isoform.

J. Pharmacol. Exp. Ther., 278: 871-878.

SCHOEMAKER, H. and LANGER, S.Z. (1985)

[3H]diltiazem binding to calcium channel antagonist recognition sites in rat cerebral cortex.

Eur. J. Pharmacol., 111: 273-277.

SHANK, R.P., BALDY, W.J., MATTUCCI, L.C. and VILLANI, F.J. (1990)

Ion and temperature effects on the binding of γ -aminobutyrate to its receptors and the high-affinity transport system. J. Neurochem., <u>54</u>: 2007-2015.

SHEN, Y., MONSMA, F.J., METCALF, M.A., JOSE, P.A., HAMBLIN, M.W. and SIBLEY, D.R. (1993)

Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype.

J. Biol. Chem., 268: 18200-18204.

SIEGEL, B.W., BARON, B.M., HARRISON, B.L., GROSS, R.S., HAWES, C. and TOWERS, P. (1995)

[³H]MDL 105,519, a high affinity radioligand for the NMDA receptor-associated glycine recognition site. Ann. Meeting Soc. Neurosci., 21: 1106.

SILLS, M.A., FAGG, G., POZZA, M., ANGST, C., BRUNDISH, D.E., HURT, S.D., WILUSZ, E.J. and WILLIAMS, M. (1991)

[³H]CGP 39653: a new N-methyl-D-aspartate antagonist radioligand with low nanomolar affinity in rat brain. *Eur. J. Pharmacol.*, <u>192</u>: 19-24.

SIMONIN, F., BEFORT, K., GAVERIAUX-RUFF, C., MATTHES, H., NAPPEY, V., LANNES, B., MICHELETTI, G. and KIEFFER, B. (1994)

The human δ-oipioid receptor: genomic organization, cDNA cloning, functionnal expression, and distribution in human brain.

Mol. Pharmacol., 46: 1015-1021.

SMIT, M.J., TIMMERMAN, H., HIJZELENDOORN, J.C., FUKUI, H. and LEURS, R. (1996)

Regulation of the human histamine H₁ receptor stably expressed in Chinese hamster ovary cells.

Brit. J. Pharmacol., <u>117</u>: 1071-1080.

SMITH, C. and TEITLER, M. (1999)

Beta-blocker selectivity at cloned human beta₁- and beta₂-adrenergic receptors.

Cardiovasc. Drugs Ther., 13: 123-126.

SNODGRASS, S.R. (1978)

Use of [3H]muscimol for GABA receptor studies.

Nature, 273: 392-394.

SPETH, R.C., WASTEK, G.J. and YAMAMURA, H.I. (1979)

Benzodiazepine receptors: temperature dependence of [3H]flunitrazepam binding.

Life Sci., 24: 351-358.

TAHARA, A., SAITO, M.,SUGIMOTO, T., TOMURA, Y., WADA, K., KUSAYAMA, T., TSUKADA, J., ISHII, N., YATSU, T., UCHIDA, W. and TANAKA, A. (1998)

Pharmacological characterization of the human vasopressin receptor subtypes stably expressed in Chinese hamster ovary cells.

Brit. J. Pharmacol., 125: 1463-1470.

TATSUMI, M., JANSEN, K., BLAKELY, R.D. and RICHELSON, E. (1999)

Pharmacological profile of neuroleptics at human monoamine transporters.

Eur. J. Pharmacol., 368: 277-283.

TORPHY, T.J., ZHOU, H.L. and CIESLINSKI, L.B. (1992)

Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity.

J. Pharmacol. Exp. Ther., 263: 1195-1205.

TOWNSEND-NICHOLSON, A. and SCHOFIELD, P.R. (1994)

A threonine residue in the seventh transmembrane domain of the human A_1 adenosine receptor mediates specific agonist binding.

J. Biol. Chem., 269: 2373-2376.

WAGNER, J.A., SNOWMAN, A.M., BISWAS, A., OLIVERA, B.M. and SNYDER, S.H. (1988)

 $\omega\text{-conotoxin GVIA binding to high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization.}$

J. Neurosci., <u>8</u>: 3354-3359.

WANG, J.-B., JOHNSON, P.S., PERSICO, A.M., HAWKINS, A.L., GRIFFIN, C.A. and UHL, G.R. (1994)

Human μ-opiate receptor. cDNA and genomic clones, pharmacological characterization and chromosomal assignment. *FEBS Lett.*, <u>338</u>: 217-222.

WEISHAAR, R.E., BURROWS, S.D., KOBYLARZ, D.C., QUADE, M.M. and EVANS, D.B. (1986)

Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Biochem. Pharmacol., 35: 787-800.

ZHOU, Q.-Y., GRANDY, D.K., THAMBI, L., KUSHNER, J.A., VAN TOL. H.H.M., CONE, R., PRIBNOW, D., SALON, J., BUNZOW, J.R. and CIVELLI, O. (1990)

Cloning and expression of human and rat D₁ dopamine receptors.

Nature, 347: 76-80.

7. STORAGE AND RETENTION OF RECORDS

All documents generated during the performance of the study (raw data, various recordings such as QA audit reports, an original of the study report, study plan...) will be stored for a 10-year period in Cerep's archive rooms after achievement of the study. Only Cerep's authorized employees shall have access to the archives.

The original final report provided to the sponsor will be kept by the sponsor under its sole responsibility.

8. QUALITY ASSURANCE STATEMENT

The following audit was performed on t	his study:	
	CALENDAR	-
Audit of the Final Report	April 03 2007	
palament) and make makemakin distribution on the case has been distributed to the form of the case of the site of the case of	,	

Audit report of the study report was transmitted to the Study Director for approval.

I certify that results presented in this report were generated using the materials and methods mentioned and that these results accurately reflect the Raw Data.

April 03, 2007

Taratilles

Nadine Pasquier

Quality Unit

Appendix 3

GLP Study report for binding assay 1 for Merck Example 3 enantiomer 2, completed at CEREP Biosciences

In this report, enantiomer 2 of Merck Example 3 is referred to by the reference number PF-4542565.

Andrew Martin Johnson B.A.
NOTARY PUBLIC

29 St George's Place

Canterbury

CT11UT, England

Tel:01227479479

STUDY NUMBER 7570671a **FINAL REPORT**

| FRANCE | 16 Bors | Evéque | 86600 CELLÉ | 1 EVESCAULT | Tel +33 (0)5 49 89 30 00 | Fax +33 (0)5 49 43 21 70

Irleadquarters) 1.55 boulevard Hausemann 75008 PAR S Tel. +53 (0)1 45 64 44 60 Fax +33 (0)1 45 64 44 64

I USA 15318 N.E. 951 Street REDWOND WA 98052 Tet =1 425 895 8666 Fax +1 425 895 8668

I www.cerep.com

I customer_support@cerep.fr

In Vitro Pharmacology: Pfizer Tier 0 Profile - Study of PF-04542565-00 -

Annie OTTO-BRUC, Ph.D.

Le Bois l'Evêque B.P.1 86 600 Celle l'Evescault France

www.cerep.com Tel: 33 (0)5.49.89.30.00 Fax: 33 (0)5.49.43.21.70

Ref.: Final Report 7570671a/MN

STUDY NUMBER 7570671a

In Vitro Pharmacology: Pfizer Tier 0 Profile

- Study of PF-04542565-00 -

Study Sponsor:

PFIZER Limited

Attention:

Dr. Gareth WALDRON

Senior Principal Scientist

Address:

Global Safety Pharmacology

Ramsgate Road

IPC 388

SANDWICH

Kent CT13 9NJ

UNITED KINGDOM

Study Director:

Annie OTTO-BRUC, Ph.D.

Testing Facility:

Cerep

Le Bois l'Evêque - B.P. 1 - 86600 CELLE L'EVESCAULT,

FRANCE

Study Period:

From March 06, 2007 to March 14, 2007

Report Version:

1

Report Date:

March 26, 2007

STUDY DIRECTOR

Annie OTTO-BRUC, Ph.D.
Principal Scientist, Pharmacology

March Rb, 2007
Date

CONTENTS

1. PURPOSE OF THE STUDY	4
2. MATERIALS AND METHODS	5
2.1. IN VITRO PHARMACOLOGY: Binding Assays	5
2.1.1. General Procedures	5
2.1.2. Experimental Conditions	8
2.1.3. Analysis and Expression of Results	12
2.2. IN VITRO PHARMACOLOGY: Enzyme Assays	13
2.2.1. General Procedures	13
2.2.2. Experimental Conditions	13
2.2.3. Analysis and Expression of Results	14
3. COMPOUNDS	15
3.1. Test Compound	15
3.2. Reference Compounds	15
4. RESULTS	16
4.1. IN VITRO PHARMACOLOGY: Binding Assays	16
4.2. IN VITRO PHARMACOLOGY: Enzyme Assays	26
5. HELP TO INTERPRET YOUR RESULTS IN IN VITRO PHARMAG	COLOGY30
6. BIBLIOGRAPHY	31
7. STORAGE AND RETENTION OF RECORDS	40
9 OHALITY ASSUDANCE STATEMENT	41

1. PURPOSE OF THE STUDY

The purpose of this study was to investigate the effects of PF-04542565-00 in various *in vitro* receptor binding and enzyme assays.

2. MATERIALS AND METHODS

2.1. IN VITRO PHARMACOLOGY: Binding Assays

2.1.1. General Procedures

Assay	Origin	Reference Compound	Bibliography
A ₁ (h)	human recombinant (CHO cells)	DPCPX	Townsend-Nicholson and Schofield (1994)
A _{2A} (h)	human recombinant (HEK-293 cells)	NECA	Luthin et al. (1995)
α_1	rat cerebral cortex	prazosin	Greengrass and Bremner (1979)
(non-selective)			
α_{2A} (h)	human recombinant (CHO cells)	yohimbine	Langin et al. (1989)
α_{2B} (h)	human recombinant (CHO cells)	yohimbine	Devedjian et al. (1994)
β ₁ (h)	human recombinant (HEK-293 cells)	atenolol	Levin et al. (2002)
β_2 (h)	human recombinant (Sf9 cells)	ICI 118551	Smith and Teitler (1999)
AT ₁ (h)	human recombinant (HEK-293 cells)	saralasin	Le et al. (2005)
BZD (central)	rat cerebral cortex	diazepam	Speth et al. (1979)
CB ₁ (h)	human recombinant (CHO cells)	CP 55940	Rinaldi-Carmona et al. (1996)
CB ₂ (h)	human recombinant (CHO cells)	WIN 55212-2	Munro et al. (1993)
CCK _A (h) (CCK ₁)	human recombinant (CHO cells)	CCK-8	Bignon et al. (1999)
CCK _B (h) (CCK ₂)	human recombinant (CHO cells)	CCK-8	Lee et al. (1993)
D ₁ (h)	human recombinant (CHO cells)	SCH 23390	Zhou et al. (1990)
D _{2S} (h)	human recombinant (HEK-293 cells)	(+)butaclamol	Grandy et al. (1989)
D ₃ (h)	human recombinant (CHO cells)	(+)butaclamol	Mackenzie et al. (1994)
GABA _A	rat cerebral cortex	muscimol	Snodgrass (1978)

Assay	Origin	Reference Compound	Bibliography
GABA _{B(1b)} (h)	human recombinant (HEK-293 cells)	CGP 54626	Green et al. (2000)
AMPA	rat cerebral cortex	L-glutamate	Murphy et al. (1987)
Kainate	rat cerebral cortex	kainic acid	Monaghan and Cotman (1982)
NMDA	rat cerebral cortex	CGS 19755	Sills et al. (1991)
Glycine	rat cerebral cortex	glycine	Siegel et al. (1995)
(strychnine-insensitive)			
H ₁ (h)	human recombinant (HEK-293 cells)	pyrilamine	Smit et al. (1996)
H ₂ (h)	human recombinant (CHO cells)	cimetidine	Leurs et al. (1994)
H ₃ (h)	human recombinant (CHO cells)	(R)α-Me-histamine	Lovenberg et al. (1999)
MAO-A	rat cerebral cortex	clorgyline	Cesura et al. (1990)
M_1 (h)	human recombinant (CHO cells)	pirenzepine	Dorje et al. (1991)
$M_2(h)$	human recombinant (CHO cells)	methoctramine	Dorje et al. (1991)
$M_3(h)$	human recombinant (CHO cells)	4-DAMP	Peralta et al. (1987)
N (neuronal) (α-BGTX-insensitive) (α4β2)	rat cerebral cortex	nicotine	Pabreza et al. (1991)
N (muscle-type) (h)	TE671 cells	α-bungarotoxin	Lukas (1986)
δ ₂ (h) (DOP)	human recombinant (CHO cells)	DPDPE	Simonin et al. (1994)
κ (KOP) (guinea-pig)	guinea-pig cerebellum	U 50488	Kinouchi and Pasternak (1991)
μ (h) (MOP) (agonist site)	human recombinant (HEK-293 cells)	DAMGO	Wang et al. (1994)
PPARγ (h)	human recombinant (E. coli)	rosiglitazone	Ferry et al. (2001)
5-HT _{1A} (h)	human recombinant (HEK-293 cells)	8-OH-DPAT	Mulheron et al. (1994)
5-HT _{IB}	rat cerebral cortex	serotonin	Hoyer et al. (1985)
5-HT _{2A} (h) (agonist site)	human recombinant (HEK-293 cells)	(±)DOI	Bryant et al. (1996)
5-HT _{2B} (h) (agonist site)	human recombinant (CHO cells)	(±)DOI	Choi et al. (1994)

Assay	Origin	Reference Compound	Bibliography
5-HT _{2C} (h) (agonist site)	human recombinant (CHO cells)	(±)DOI	Bryant et al. (1996)
5-HT ₃ (h)	human recombinant (CHO cells)	MDL 72222	Hope et al. (1996)
5-HT _{4e} (h)	human recombinant (CHO cells)	serotonin	Mialet et al. (2000)
5-HT ₇ (h)	human recombinant (CHO cells)	serotonin	Shen et al. (1993)
Glucocorticoid (h) (GR)	IM-9 cells (cytosol)	dexamethasone	Clark et al. (1996)
V _{1a} (h)	human recombinant (CHO cells)	[d(CH2)51,Tyr(Me)2]-AVP	Tahara et al. (1998)
Ca ²⁺ channel (L, DHP site)	rat cerebral cortex	nitrendipine	Lee et al. (1984)
Ca ²⁺ channel (L, diltiazem site) (benzothiazepines)	rat cerebral cortex	diltiazem	Schoemaker and Langer (1985)
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)	rat cerebral cortex	D 600	Reynolds et al. (1986)
Ca ²⁺ channel (N)	rat cerebral cortex	ω-conotoxin GVIA	Wagner et al. (1988)
Na ⁺ channel (site 2)	rat cerebral cortex	veratridine	Brown (1986)
Cl⁻ channel	rat cerebral cortex	picrotoxinin	Lewin et al. (1989)
NE transporter (h)	human recombinant (CHO cells)	protriptyline	Pacholczyk et al. (1991)
DA transporter (h)	human recombinant (CHO cells)	ВТСР	Pristupa et al. (1994)
GABA transporter	rat cerebral cortex	nipecotic acid	Shank et al. (1990)
Choline transporter (h) (CHT1)	human recombinant (CHO cells)	hemicholinium-3	Apparsundaram et al. (2000)
5-HT transporter (h)	human recombinant (CHO cells)	imipramine	Tatsumi et al. (1999)

2.1.2. Experimental Conditions

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
A ₁ (h)	[³ H]DPCPX	1 nM	DPCPX (1 μM)	60 min./22°C	Scintillation counting
A _{2A} (h)	[³ H]CGS 21680	6 nM	NECA (10 μM)	120 min./22°C	Scintillation counting
α_1 (non-selective)	[³ H]prazosin	0.25 nM	prazosin (0.5 μM)	60 min./22°C	Scintillation counting
α_{2A} (h)	[³ H]RX 821002	l nM	(-)epinephrine (100 μM)	60 min./22°C	Scintillation counting
α _{2B} (h)	[³ H]RX 821002	2.5 nM	(-)epinephrine (100 μM)	60 min./22°C	Scintillation counting
β ₁ (h)	[³ H](-)CGP 12177	0.15 nM	alprenolol (50 μM)	60 min./22°C	Scintillation counting
β ₂ (h)	[³ H](-)CGP 12177	0.15 nM	alprenolol (50 μM)	60 min./22°C	Scintillation counting
AT ₁ (h)	[¹²⁵ I][Sar ¹ ,Ile ⁸]-AT II	0.05 nM	angiotensin II (10 μM)	120 min./37°C	Scintillation counting
BZD (central)	[³ H]flunitrazepam	0.4 nM	diazepam (3 μM)	60 min./4°C	Scintillation counting
CB ₁ (h)	[³ H]CP 55940	0.5 nM	WIN 55212-2 (10 μM)	120 min./37°C	Scintillation counting
CB ₂ (h)	[³ H]WIN 55212-2	0.8 nM	WIN 55212-2 (5 μM)	120 min./37°C	Scintillation counting
CCK _A (h) (CCK ₁)	[¹²⁵ 1]CCK-8	0.08 nM	ССК-8 (1 µМ)	60 min./22°C	Scintillation counting
CCK _B (h) (CCK ₂)	[¹²⁵ I]CCK-8	0.054 nM	CCK-8 (1 μM)	60 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
D ₁ (h)	[³ H]SCH 23390	0.3 nM	SCH 23390 (1 μM)	60 min./22°C	Scintillation counting
D _{2S} (h)	[³ H]spiperone	0.3 nM	(+)butaclamol (10 μM)	60 min./22°C	Scintillation counting
D ₃ (h)	[³ H]spiperone	0.3 nM	(+)butaclamol (10 μM)	60 min./22°C	Scintillation counting
GABA _A	[³ H]muscimol	5 nM	muscimol (10 μM)	10 min./4°C	Scintillation counting
GABA _{B(1b)} (h)	[³ H]CGP 54626	2.5 nM	GABA (10 mM)	60 min./22°C	Scintillation counting
AMPA	[³ H]AMPA	8 nM	L-glutamate (1 mM)	60 min./4°C	Scintillation counting
Kainate	[³ H]kainic acid	5 nM	L-glutamate (1 mM)	60 min./4°C	Scintillation counting
NMDA	[³ H]CGP 39653	5 nM	L-glutamate (100 μM)	60 min./4°C	Scintillation counting
Glycine (strychnine-insensitive)	[³ H]MDL 105,519	0.5 nM	glycine (1 mM)	45 min./0°C	Scintillation counting
H ₁ (h)	[³ H]pyrilamine	3 nM	pyrilamine (1 μM)	60 min./22°C	Scintillation counting
H ₂ (h)	[¹²⁵ I]APT	0.2 nM	tiotidine (100 μM)	120 min./22°C	Scintillation counting
H ₃ (h)	$[^3H]N^{\alpha}$ -Me-histamine	1 nM	(R)α-Me-histamine (1 μM)	60 min./22°C	Scintillation counting
MAO-A	[³ H]Ro 41-1049	10 nM	clorgyline (1 μM)	60 min/37°C	Scintillation counting
M ₁ (h)	[³ H]pirenzepine	2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
$M_2(h)$	[³ H]AF-DX 384	2 nM	2 nM atropine 60 min./22°C (1 μM)		Scintillation counting
M ₃ (h)	[³ H]4-DAMP	⁻ 0.2 nM	atropine (1 μM)	60 min./22°C	Scintillation counting
N (neuronal) (α -BGTX-insensitive) (α 4 β 2)	[³ H]cytisine	1.5 nM	nicotine (10 μM)	75 min./4°C	Scintillation counting
N (muscle-type) (h)	[¹²⁵ I]α-bungarotoxin	2.5 nM	α-bungarotoxin (5 μM)	120 min./22°C	Scintillation counting
δ ₂ (h) (DOP)	[³ H]DADLE	0.5 nM	naltrexone (10 μM)	120 min./22°C	Scintillation counting
κ (KOP) (guinea-pig)	[³ H]U 69593	0.7 nM	naloxone (10 μM)	80 min./22°C	Scintillation counting
μ <i>(h)</i> (MOP) (agonist site)	[³ H]DAMGO	0.5 nM ·	naloxone (10 μM)	120 min./22°C	Scintillation counting
PPAR _γ (h)	[³ H]rosiglitazone	10 nM	rosiglitazone (10 μM)	120 min./4°C	Scintillation counting
5-HT _{1A} (h)	[³ H]8-OH-DPAT	0.3 nM	8-OH-DPAT (10 μM)	60 min./22°C	Scintillation counting
5-HT _{IB}	[¹²⁵ I]CYP (+ 30 μM (-)propranolol)	0.1 nM	serotonin (10 μM)	120 min./37°C	Scintillation counting
5-HT _{2A} (h) (agonist site)	[¹²⁵ I](±)DOI	0.2 nM	(±)DOI (1 μM)	60 min./22°C	Scintillation counting
5-HT _{2B} (h) (agonist site)	[¹²⁵ I](±)DOI	0.2 nM	(±)DOI (1 μM)	15 min./37°C	Scintillation counting
5-HT _{2C} (h) (agonist site)	[¹²⁵ I](±)DOI	0.2 nM	(±)DOI (10 μM)	15 min./37°C	Scintillation counting
5-HT ₃ (h)	[³ H]BRL 43694	0.5 nM	MDL 72222 (10 μM)	120 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
5-HT _{4e} (h)	[³ H]GR 113808	0.3 nM	serotonin (100 μM)	60 min./37°C	Scintillation counting
5-HT ₇ (h)	[³ H]LSD	4 nM	serotonin (10 μM)	120 min./22°C	Scintillation counting
Glucocorticoid (h) (GR)	[³ H]dexamethasone	1.5 nM	triamcinolone (10 μM)	6 h./4°C	Scintillation counting
V _{1a} (h)	[³ H]AVP	0.3 nM	AVP (1 μM)	60 min./22°C	Scintillation counting
Ca ²⁺ channel (L, DHP site)	[³ H](+)PN 200-110	0.04 nM	nifedipine (1 μM)	90 min./22°C	Scintillation counting
Ca ²⁺ channel (L, diltiazem site) (benzothiazepines)	[³ H]diltiazem	5 nM	diltiazem (10 μM)	120 min./22°C	Scintillation counting
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)	[³ H](-)D 888	3 nM	D 600 (10 μM)	120 min./22°C	Scintillation counting
Ca ²⁺ channel (N)	[¹²⁵ I]ω-conotoxin GVIA	0.001 nM	ω-conotoxin GVIA (10 nM)	30 min./22°C	Scintillation counting
Na ⁺ channel (site 2)	[³ H]batrachotoxinin	10 nM	veratridine (300 μM)	60 min./22°C	Scintillation counting
Cl ⁻ channel	[³⁵ S]TBPS	3 nM	picrotoxinin (20 μM)	120 min./22°C	Scintillation counting
NE transporter (h)	[³ H]nisoxetine	l nM	desipramine (1 μM)	120 min./4°C	Scintillation counting
DA transporter (h)	[³ H]BTCP	4 nM	BTCP (10 μM)	120 min./4°C	Scintillation counting
GABA transporter	[³ H]GABA (+ 10 μM isoguvacine) (+ 10 μM baclofen)	10 nM	GABA (1 mM)	30 min./22°C	Scintillation counting
Choline transporter (h) (CHT1)	[³ H]hemicholinium-3	3 nM	hemicholinium-3 (10 μM)	60 min./22°C	Scintillation counting

Assay	Ligand	Conc.	Non Specific	Incubation	Method of Detection
5-HT transporter (h)	[³ H]imipramine	2 nM	imipramine (10 μM)	60 min./22°C	Scintillation counting

2.1.3. Analysis and Expression of Results

The specific ligand binding to the receptors is defined as the difference between the total binding and the nonspecific binding determined in the presence of an excess of unlabelled ligand.

The results are expressed as a percent of control specific binding ((measured specific binding/control specific binding) x 100) and as a percent inhibition of control specific binding (100-((measured specific binding/control specific binding) x 100)) obtained in the presence of PF-04542565-00.

The IC₅₀ values (concentration causing a half-maximal inhibition of control specific binding) and Hill coefficients (nH) were determined by non-linear regression analysis of the competition curves generated with mean replicate values using Hill equation curve fitting $(Y = D + [(A - D)/(1 + (C/C_{50})^{nH})]$, where Y = specific binding, D = minimum specific binding, A = maximum specific binding, C = compound concentration, $C_{50} = IC_{50}$, and nH = slope factor). This analysis was performed using a software developed at Cerep (Hill software) and validated by comparison with data generated by the commercial software SigmaPlot ® 4.0 for Windows ® (© 1997 by SPSS Inc.).

The inhibition constants (K_i) were calculated using the Cheng Prusoff equation $(K_i = IC_{50}/(1+(L/K_D)))$, where L = concentration of radioligand in the assay, and K_D = affinity of the radioligand for the receptor).

2.2. IN VITRO PHARMACOLOGY: Enzyme Assays

2.2.1. General Procedures

Assay	Origin	Reference Compound	Bibliography
COX ₂ (h)	human recombinant (Sf9 cells)	NS398	Glaser et al. (1995)
PDE3 (h)	human platelets	milrinone	Weishaar et al. (1986)
PDE4 (h)	U-937 cells	rolipram	Torphy et al. (1992)
ACE (h)	human recombinant (murine cells)	captopril	Hoorn and Roth (1993)
FLT-1 kinase (h) (VEGFR1)	human recombinant (Sf9 cells)	staurosporine	Itokawa et al. (2002)
p38α kinase (h)	human recombinant (E. coli)	SB202190	Frantz et al. (1998)
Acetylcholinesterase (h)	human recombinant (HEK-293 cells)	neostigmine	Ellman et al. (1961)
ATPase (Na ⁺ /K ⁺)	porcine cerebral cortex	ouabain	Fiske and Subbarow (1925)

2.2.2. Experimental Conditions

Assay	Substrate/Stimulus/Tracer	Incubation	Reaction Product	Method of Detection
COX ₂ (h)	arachidonic acid (2 μM)	5 min./22°C	PGE ₂	EIA
PDE3 (h)	[³ H]cAMP + cAMP (0.1 μM)	60 min./22°C	[³ H]5'AMP	Scintillation counting
PDE4 (h)	[³ H]cAMP + cAMP (1 μM)	60 min./22°C	[³ H]5'AMP	Scintillation counting
ACE (h)	Mca-Arg-Pro-Pro-Gly-Phe- Ser-Ala-Phe-Lys (DNP)-OH (10 μΜ)	20 min./22°C	Mca-peptides	Fluorimetry
FLT-1 kinase (h) (VEGFR1)	ATP + biotinyl- βΑβΑβΑΑΕΕΕΕΥFELVAK KK (0.5 μM)	20 min./22°C	phospho-biotinyl- βΑβΑβΑΑΕΕΕΕΥFELVA KKK	HTRF
p38α kinase (h)	ATP + ATF-2 (0.1 μM)	30 min./22°C	phospho-ATF-2	HTRF
Acetylcholinesterase (h)	AMTCh (50 μM)	30 min./37°C	thio-conjugate	Photometry

Assay	Substrate/Stimulus/Tracer	Incubation	Reaction Product	Method of Detection
ATPase (Na ⁺ /K ⁺)	ATP	60 min./37°C	Pi	Photometry
, ,	(2 mM)			

2.2.3. Analysis and Expression of Results

The results are expressed as a percent of control specific activity ((measured specific activity/control specific activity) x 100) and as a percent inhibition of control specific activity (100 – ((measured specific activity/control specific activity) x 100)) obtained in the presence of PF-04542565-00.

The IC₅₀ values (concentration causing a half-maximal inhibition of control specific activity) and Hill coefficients (nH) were determined by non-linear regression analysis of the inhibition curves generated with mean replicate values using Hill equation curve fitting (Y = D + [(A - D)/(1 + (C/C₅₀)^{nH})], where Y = specific activity, D = minimum specific activity, A = maximum specific activity, C = compound concentration, C₅₀ = IC₅₀, and nH = slope factor). This analysis was performed using a software developed at Cerep (Hill software) and validated by comparison with data generated by the commercial software SigmaPlot ® 4.0 for Windows ® (© 1997 by SPSS Inc.).

3. COMPOUNDS

3.1. Test Compound

From: PFIZER Limited

CEREP I.D.	Compound I.D.	Reference Number	Batch Number	Submitted F.W.	Molecular Weight	Stock Solution	Intermediate Dilution
							1.E-04 M H2O
7570671-1	PF-04542565-00	7570671-001	PF-04542595-00-0001	239.58	235.33	1.E-02 M DMSO	3.E-04 M H2O*
							[100x] DMSO**

F.W.: Formula Weight

*: For ATPase (Na⁺/K⁺) assay.

**: For the human CB₁ assay.

3.2. Reference Compounds

In each experiment, the respective reference compound was tested concurrently with PF-04542565-00 in order to assess the assay suitability. It was tested at several concentrations (for IC₅₀ value determination), and the data were compared with historical values determined at Cerep. The assay was rendered valid if the suitability criteria were met, in accordance with the corresponding Standard Operating Procedure.

4. RESULTS

4.1. IN VITRO PHARMACOLOGY: Binding Assays

The mean values for the effects of PF-04542565-00 are summarized in table 1 - 1. The individual data obtained with PF-04542565-00 are reported in table 1 - 2.

The IC₅₀ and K_i values for each reference compound are indicated in table 1 - 3. Each is within accepted limits of the historic average \pm 0.5 log units.

Table 1 - 1
Summary Results

A1 (h) 7570671-1 PF-04542565-00 1.0E-05 3 A2A (h) 7570671-1 PF-04542565-00 1.0E-05 3	
A _{2A} (h) 7570671-1 PF-04542565-00 1.0E-05 3	
7570671-1 PF-04542565-00 1.0E-05 3	
α ₁ (non-selective) 7570671-1 PF-04542565-00 1.0E-05 2	
α _{2A} (h) 7570671-1 PF-04542565-00 1.0E-05 0	
α _{2B} (h) 7570671-1 PF-04542565-00 1.0E-05 18	
β ₁ (h) 7570671-1 PF-04542565-00 1.0E-05 -2	
β ₂ (h) 7570671-1 PF-04542565-00 1.0E-05 -1	
AT ₁ (h) 7570671-1 PF-04542565-00 1.0E-05 -6	
BZD (central) 7570671-1 PF-04542565-00 1.0E-05 7	
CB ₁ (h) 7570671-1 PF-04542565-00 1.0E-05 3	
CB ₂ (h) 7570671-1 PF-04542565-00 1.0E-05 1	
CCK _A (h) (CCK ₁) 7570671-1 PF-04542565-00 1.0E-05 -12	
CCK _B (h) (CCK ₂) 7570671-1 PF-04542565-00 1.0E-05 5	
D ₁ (h) 7570671-1 PF-04542565-00 1.0E-05 -4	
D _{2S} (h) 7570671-1 PF-04542565-00 1.0E-05 5	
D ₃ (h) 7570671-1 PF-04542565-00 1.0E-05 8	
GABA _A 7570671-1 PF-04542565-00 1.0E-05 2	
GABA _{B(1b)} (h) 7570671-1 PF-04542565-00 1.0E-05 6	
AMPA 7570671-1 PF-04542565-00 1.0E-05 -19	
Kainate 7570671-1 PF-04542565-00 1.0E-05 6	
NMDA 7570671-1 PF-04542565-00 1.0E-05 9	

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Specific Binding
Glycine (strychnine-insensit	ive)		
7570671-1	PF-04542565-00	1.0E-05	2
H ₁ (h) 7570671-1	PF-04542565-00	1.0E-05	3
H ₂ (h) 7570671-1	PF-04542565-00	1.0E-05	5
H ₃ (h) 7570671-1	PF-04542565-00	1.0E-05	6
MAO-A 7570671-1	PF-04542565-00	1.0E-05	-2
M ₁ (h) 7570671-1	PF-04542565-00	1.0E-05	33
M ₂ (h) 7570671-1	PF-04542565-00	1.0E-05	. 21
M ₃ (h) 7570671-1	PF-04542565-00	1.0E-05	31
N (neuronal) (α-BGTX-inse 7570671-1	nsitive) (α4β2) PF-04542565-00	1.0E-05	17
N (muscle-type) (h) 7570671-1	PF-04542565-00	1.0E-05	4
δ ₂ (h) (DOP) 7570671-1	PF-04542565-00	1.0E-05	3
κ (KOP) (guinea-pig) 7570671-1	PF-04542565-00	1.0E-05	12
μ (h) (MOP) (agonist site) 7570671-1	PF-04542565-00	1.0E-05	28
PPARγ (h) 7570671-1	PF-04542565-00	1.0E-05	3
5-HT _{1A} (h) 7570671-1	PF-04542565-00	1.0E-05	. 1
5-HT _{1B} 7570671-1	PF-04542565-00	1.0E-05	-3
5-HT _{2A} (h) (agonist site) 7570671-1	PF-04542565-00	1.0E-05	10
5-HT _{2B} (h) (agonist site) 7570671-1	PF-04542565-00	1.0E-05	5
5-HT _{2C} (h) (agonist site) 7570671-1	PF-04542565-00	1.0E-05	-9
5-HT ₃ (h) 7570671-1	PF-04542565-00	1.0E-05	1
5-HT _{4e} (h) 7570671-1	PF-04542565-00	1.0E-05	-2
5-HT ₇ (h) 7570671-1 Glycoporticoid (h) (GP)	PF-04542565-00	1.0E-05	0
Glucocorticoid (h) (GR)	PF-04542565-00	1.0E-05	4
V _{1a} (h) 7570671-1	PF-04542565-00	1.0E-05	7

Assay Cerep Compound I.D.	Client Compound I.D.	Test Concentration (M)	% Inhibition of Control Specific Binding
Ca ²⁺ channel (L, DHP site)			
7570671-1	PF-04542565-00	1.0E-05	3
Ca ²⁺ channel (L, diltiazem si	ite) (benzothiazepines)		
7570671-1	PF-04542565-00	1.0E-05	10
Ca ²⁺ channel (L, verapamil s	site) (phenylalkylamines)		
7570671-1	PF-04542565-00	1.0E-05	-1
Ca ²⁺ channel (N)			
7570671-1	PF-04542565-00	1.0E-05	1
Na ⁺ channel (site 2)			
7570671-1	PF-04542565-00	1.0E-05	18
Cl ⁻ channel			
7570671-1	PF-04542565-00	1.0E-05	-4
NE transporter (h)			
7570671-1	PF-04542565-00	1.0E-05	-5
DA transporter (h)			
7570671-1	PF-04542565-00	1.0E-05	7
GABA transporter		1 1 1	
7570671-1	PF-04542565-00	1.0E-05	6
Choline transporter (h) (CH	Γ1)		
7570671-1	PF-04542565-00	1.0E-05	14
5-HT transporter (h)	•		
7570671-1	PF-04542565-00	1.0E-05	2

Table 1 - 2
Individual Data

Assay		Test	% of Control Specific Binding		
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	la	2 nd	Mean
$A_1(h)$					
7570671-1	PF-04542565-00	1.0E-05	95.0	98.5	96.7
A _{2A} <i>(h)</i> 7570671-1	PF-04542565-00	1.0E-05	99.4	94.7	97.0
α ₁ (non-selective) 7570671-1	PF-04542565-00	1.0E-05	99.7	95.8	97.8
α _{2A} (h) 7570671-1	PF-04542565-00	1.0E-05	102.3	97.3	99.8
α _{2B} <i>(h)</i> 7570671-1	PF-04542565-00	1.0E-05	82.0	81.1	81.6
β ₁ (h) 7570671-1	PF-04542565-00	1.0E-05	100.6	104.1	102.3
β ₂ (h) 7570671-1	PF-04542565-00	1.0E-05	103.2	98.0	100.6
AT ₁ (h) 7570671-1	PF-04542565-00	1.0E-05	103.2	107.9	105.6
BZD (central) 7570671-1	PF-04542565-00	1.0E-05	94.4	91.1	92.8
CB ₁ (h) 7570671-1	PF-04542565-00	1.0E-05	93.6	99.8	96.7
CB ₂ (h) 7570671-1	PF-04542565-00	1.0E-05	104.4	94.2	99.3
CCK _A (h) (CCK ₁) 7570671-1	PF-04542565-00	1.0E-05	117.6	105.8	111.7
CCK _B (h) (CCK ₂) 7570671-1	PF-04542565-00	1.0E-05	98.8	92.0	95.4
D ₁ (h) 7570671-1	PF-04542565-00	1.0E-05	107.0	101.3	104.1
D _{2S} (h) 7570671-1	PF-04542565-00	1.0E-05	102.9	86.9	94.9
D ₃ (h) 7570671-1	PF-04542565-00	1.0E-05	98.7	85.8	92.3
GABA _A 7570671-1	PF-04542565-00	1.0E-05	104.5	90.7	97.6
GABA _{B(1b)} (h) 7570671-1	PF-04542565-00	1.0E-05	83.9	105.1	94.5
AMPA 7570671-1	PF-04542565-00	1.0E-05	110.8	128.1	119.4
Kainate 7570671-1	PF-04542565-00	1.0E-05	92.3	96.0	94.1
NMDA 7570671-1	PF-04542565-00	1.0E-05	90.6	90.5	90.6

Assay		Test	% of Contro	l Specific Bir	nding
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	l ^{'st}	2 nd	Mean
Glycine (strychnine-insensi	itive)	(WI)			
7570671-1	PF-04542565-00	1.0E-05	98.4	96.7	97.5
$\overline{H_1(h)}$					
7570671-1	PF-04542565-00	1.0E-05	100.5	94.1	97.3
$H_2(h)$					
7570671-1	PF-04542565-00	1.0E-05	89.5	100.6	95.1
H ₃ (h) 7570671-1	PF-04542565-00	• 1.0E-05	90.4	97.6	94.0
MAO-A	11 0 10 12203 00	1.02 03	,,,,	37.0	7.110
7570671-1	PF-04542565-00	1.0E-05	107.5	95.6	101.6
$M_1(h)$					
7570671-1	PF-04542565-00	1.0E-05	68.3	65.8	67.0
$M_2(h)$					
7570671-1	PF-04542565-00	1.0E-05	80.6	77.0	78.8
$M_3(h)$	DD 04540555 00				
7570671-1	PF-04542565-00	1.0E-05	68.4	68.8	68.6
N (neuronal) (α-BGTX-ins			•••		
7570671-1	PF-04542565-00	1.0E-05	85.0	81.4	83.2
N (muscle-type) (h) 7570671-1	PF-04542565-00	1.0E-05	98.5	93.5	96.0
$\frac{7576671}{\delta_2 (h) (DOP)}$	11 01312303 00	1.02.03		75.5	70.0
7570671-1	PF-04542565-00	1.0E-05	101.4	92.6	97.0
κ (KOP) (guinea-pig)					
7570671-1	PF-04542565-00	1.0E-05	83.6	92.9	88.3
μ (h) (MOP) (agonist site)					
7570671-1	PF-04542565-00	1.0E-05	74.1	70.1	72.1
PPARγ (h)					
7570671-1	PF-04542565-00	1.0E-05	94.0	99.2	96.6
5-HT _{1A} (h)					
7570671-1	PF-04542565-00	1.0E-05	104.4	94.2	99.3
5-HT _{1B}	DD 04542565 00	1.05.06	02.7	112.2	102.4
7570671-1	PF-04542565-00	1.0E-05	93.7	113.2	103.4
5-HT _{2A} (h) (agonist site) 7570671-1	PF-04542565-00	1.0E-05	86.2	92.9	89.5
5-HT _{2B} (h) (agonist site)					
7570671-1	PF-04542565-00	1.0E-05	89.0	100.6	94.8
5-HT _{2C} (h) (agonist site)					
7570671-1	PF-04542565-00	1.0E-05	106.1	112.6	109.4
5-HT ₃ (h)					
7570671-1	PF-04542565-00	1.0E-05	94.2	103.5	98.8
5-HT _{4e} (h)					
7570671-1	PF-04542565-00	1.0E-05	102.8	100.3	101.6
5-HT ₇ (h)					
7570671-1	PF-04542565-00	1.0E-05	104.4	95.5	100.0
Glucocorticoid (h) (GR)	DD 04540545 00	1.07.05		00.0	
7570671-1	PF-04542565-00	1.0E-05	99.2	92.9	96.1
V _{1a} (h) 7570671-1	DE 04542565 00	1 05 05	02 6	02.0	. 02.0
/3/00/1-1	PF-04542565-00	1.0E-05	93.6	92.0	92.8

Assay	•	Test		% of Control Specific B	
Cerep Compound 1.D.	Client Compound 1.D.	Concentration (M)	la	2 nd	Mean
Ca ²⁺ channel (L, DHP site))	·			
7570671-1	PF-04542565-00	1.0E-05	95.9	97.4	96.7
Ca ²⁺ channel (L, diltiazem	site) (benzothiazepines)				
7570671-1	PF-04542565-00	1.0E-05	88.5	91.8	90.2
Ca ²⁺ channel (L, verapami	site) (phenylalkylamines)				
7570671-1	PF-04542565-00	1.0E-05	102.4	99.5	100.9
Ca ²⁺ channel (N)					
7570671-1	PF-04542565-00	1.0E-05	100.4	97.7	99.1
Na ⁺ channel (site 2)				.,	
7570671-1	PF-04542565-00	1.0E-05	79.0	84.5	81.7
Cl ⁻ channel					
7570671-1	PF-04542565-00	1.0E-05	103.5	104.8	104.1
NE transporter (h)		•			
7570671-1	PF-04542565-00	1.0E-05	106.4	102.8	104.6
DA transporter (h)					
7570671-1	PF-04542565-00	1.0E-05	99.7	87.1	93.4
GABA transporter					
7570671-1	PF-04542565-00	1.0E-05	103.3	84.9	94.1
Choline transporter (h) (CI	HT1)				
7570671-1	PF-04542565-00	1.0E-05	85.9	85.3	85.6
5-HT transporter (h)					
7570671-1	PF-04542565-00	1.0E-05	93.9	101.6	97.8

Table 1 - 3

Reference Compound Data

Assay Reference Compound	IC ₅₀ (M)	K _i (M)	n _H
A ₁ (h) DPCPX	1.1E-08	7.0E-09	1.0
A _{2A} (h) NECA	4.5E-08	3.6E-08	1.0
α ₁ (non-selective) prazosin	6.0E-10	1.6E-10	1.1
α _{2A} (h) yohimbine	5.7E-09	2.5E-09	1.1
α _{2B} (h) yohimbine	9.1E-09	6.1E-09	1.1
β ₁ (h) atenolol	5.4E-07	3.9E-07	1.1
β ₂ (h) ICI 118551	2.2E-09	9.0E-10	1.3
AT ₁ (h) saralasin	8.8E-10	4.4E-10	0.6
BZD (central) diazepam	1.3E-08	1.1E-08	1.4
CB ₁ (h) CP 55940	1.0E-09	8.8E-10	1.2
CB ₂ (h) WIN 55212-2	3.0E-09	1.9E-09	1.0
CCK _A (h) (CCK ₁) CCK-8	6.9E-10	5.2E-10	1.3
CCK _B (h) (CCK ₂) <u>CCK-8</u> D ₁ (h)	7.9E-10	4.7E-10	1.0
SCH 23390 D _{2S} (h)	9.9E-10	4.0E-10	1.2
(+)butaclamol D ₃ (h)	7.7E-09	2.6E-09	1.3
(+)butaclamol GABA _A	4.9E-09	1.1E-09	1.1
muscimol GABA _{B(1b)} (h)	1.2E-08	8.3E-09	1.9
CGP 54626 AMPA	1.1E-08	4.8E-09	1.1
L-glutamate Kainate	3.2E-07	2.9E-07	1.1
kainic acid NMDA	1.0E-08	8.3E-09	0.7
CGS 19755 Glycine (strychnine-insensitive)	6.0E-07	4.9E-07	1.1
glycine (strycnnine-insensitive)	3.2E-07	2.9E-07	0.7

Assay Reference Compound	IC ₅₀ (M)	К _і (м)	n_H
H ₁ (h)			
pyrilamine	3.6E-09	1.3E-09	1.0
$H_2(h)$			
cimetidine	3.7E-07	3.5E-07	1.0
$H_3(h)$			
(R)α-Me-histamine	1.2E-09	2.9E-10	1.2
MAO-A	2 (5 00		
clorgyline	2.6E-09	1.5E-09	1.4
$M_1(h)$	1.45.09	1.25.00	0.0
pirenzepine	1.4E-08	1.2E-08	0.9
$M_2(h)$	4.15.09	2.00.00	0.0
methoctramine	4.1E-08	·2.8E-08	0.9
M ₃ (h) 4-DAMP	5 OF 10	4.2E-10	1.2
	5.9E-10	4.2E-10	1.2
N (neuronal) (α-BGTX-insensitive) (α4β2) nicotine	9 OF 00	4 9E 00	0.9
N (muscle-type) (h)	8.9E-09	4.8E-09	0.9
	8.5E-09	6.7E-09	1.2
α-bungarotoxin	8.3E-09	0.7E-09	1.2
δ ₂ (h) (DOP) DPDPE	3.2E-09	1.05.00	1.0
	3.2E-09	1.9E-09	1.0
κ (KOP) (guinea-pig) U 50488	5 6E 10	1.0E 10	, ,
	5.6E-10	1.9E-10	1.1
μ (h) (MOP) (agonist site)	C 9E 10	2.05.10	0.0
DAMGO	6.8E-10	2.8E-10	0.9
PPARγ (h)	2.75.09	1.25.09	0.0
rosiglitazone	3.7E-08	1.3E-08	0.8
5-HT _{IA} (h) 8-OH-DPAT	6.4E-10	4.0E-10	1.0
5-HT _{IB}	0.4L-10	4.00-10	1.0
serotonin	1.3E-08	8.3E-09	0.7
5-HT _{2A} (h) (agonist site)	1.32 00	0.5E 07	0.7
()DOI	5.9E-10	3.6E-10	0.7
5-HT _{2B} (h) (agonist site)			
()DOI	6.3E-09	6.1E-09	0.7
5-HT _{2C} (h) (agonist site)			
()DOI	1.8E-09	1.4E-09	0.6
5-HT ₃ (h)			····
MDL 72222	8.6E-09	6.0E-09	1.1
5-HT _{4e} (h)			
serotonin	1.6E-07	5.3E-08	0.6
5-HT ₇ (h)			
serotonin	8.7E-10	3.2E-10	0.8
Glucocorticoid (h) (GR)	_		
dexamethasone	3.9E-09	2.0E-09	1.1
$V_{1a}(h)$			
[d(CH2)51,Tyr(Me)2]-AVP	1.3E-09	8.0E-10	1.0
Ca ²⁺ channel (L, DHP site)	(05.10	0.25.10	, .
nitrendipine	6.8E-10	2.3E-10	1.1

Assay	. IC ₅₀	K _i	n_H
Reference Compound	(M)	(M)	77Н
Ca ²⁺ channel (L, diltiazem site) (benzothiazepines)			
diltiazem	1.7E-08	1.5E-08	1.5
Ca ²⁺ channel (L, verapamil site) (phenylalkylamines)			
D 600	6.5E-08	3.3E-08	0.6
Ca ²⁺ channel (N)		•	
ω-conotoxin GVIA	1.1E-12	4.5E-13	1.1
Na ⁺ channel (site 2)			
veratridine	4.7E-06	4.3E-06	0.8
Cl ⁻ channel			
picrotoxinin	4.4E-07	3.6E-07	0.8
NE transporter (h)			·
protriptyline	6.4E-09	4.8E-09	1.0
DA transporter (h)			
BTCP	8.4E-09	4.5E-09	0.9
GABA transporter	•		
nipecotic acid	9.9E-06	9.9E-06	0.9
Choline transporter (h) (CHT1)			
hemicholinium-3	1.3E-08	7.4E-09	1.1
5-HT transporter (h)			
imipramine	3.6E-09	1.7E-09	1.2

4.2. IN VITRO PHARMACOLOGY: Enzyme Assays

The mean values for the effects of PF-04542565-00 are summarized in table 2 - 1. The individual data obtained with PF-04542565-00 are reported in table 2 - 2.

The IC₅₀ value for each reference compound is indicated in table 2 - 3. Each is within accepted limits of the historic average \pm 0.5 log units.

Table 2 - 1
Summary Results

Compound I.D.	Concentration (M)	% Inhibition of Control Values
542565-00	1.0E-05	4
542565-00	1.0E-05	2
542565-00	1.0E-05	-1
•		
542565-00	1.0E-05	3
542565-00	1.0E-05	-1
542565-00	1.0E-05	2
542565-00	1.0E-05	-31
542565-00	3.0E-05	3
	542565-00 542565-00 542565-00 542565-00 542565-00 542565-00 542565-00	(M) 542565-00 1.0E-05 542565-00 1.0E-05 542565-00 1.0E-05 542565-00 1.0E-05 542565-00 1.0E-05 542565-00 1.0E-05

Table 2 - 2
Individual Data

Assay		Test	% of	Control V	'alues
Cerep Compound I.D.	Client Compound I.D.	Concentration (M)	l sa	2 nd	Mean
COX ₂ (h)					
7570671-1	PF-04542565-00	1.0E-05	100.2	91.7	96.0
PDE3 (h)					•
7570671-1	PF-04542565-00	1.0E-05	98.1	97.4	97.7
PDE4 (h)					
7570671-1	PF-04542565-00	1.0E-05	101.4	101.5	101.5
ACE (h)					
7570671-1	PF-04542565-00	1.0E-05	98.6	94.7	96.6
FLT-1 kinase (h) (VEGFR1)					
7570671-1	PF-04542565-00	1.0E-05	102.3	100.2	101.3
p38α kinase (h)		•			
7570671-1	PF-04542565-00	1.0E-05	101.4	94.7	98.0
Acetylcholinesterase (h)					
7570671-1	PF-04542565-00	1.0E-05	133.9	128.9	131.4
ATPase (Na ⁺ /K ⁺)					
7570671-1	PF-04542565-00	3.0E-05	93.1	100.7	96.9

Table 2 - 3

Reference Compound Data

Assay	IC ₅₀	
Reference Compound	(M)	n_H
COX_2 (h)		
NS398	1.0E-07	1.9
PDE3 (h)		
milrinone	1.6E-07	0.9
PDE4 (h)	·	
rolipram	3.0E-07	0 .7
ACE (h)		
captopril	2.0E-09	0.8
FLT-1 kinase (h) (VEGFR1)		
staurosporine	8.9E-09	1.6
p38α kinase (h)	•	
SB202190	2.1E-08	0.9
Acetylcholinesterase (h)		
neostigmine	3.9E-08	1.0
ATPase (Na ⁺ /K ⁺)		
ouabain	9.0E-07	1.1

5. HELP TO INTERPRET YOUR RESULTS IN IN VITRO PHARMACOLOGY

- . Results showing an inhibition (or stimulation for assays run in basal conditions) higher than 50% are considered to represent significant effects of the test compounds. 50% is the most common cut-off value for further investigation (determination of IC_{50} or EC_{50} values from concentration-response curves).
- . Results showing an inhibition (or stimulation) between 20% and 50% are indicative of weak to moderate effects (in some assays, they may be confirmed by further testing as they are within a range where more inter-experimental variability can occur).
- . Results showing an inhibition (or stimulation) lower than 20% are not considered significant and mostly attributable to variability of the signal around the control level.
- . Low to moderate negative values have no real meaning and are attributable to variability of the signal around the control level. High negative values ($\geq 50\%$) that are sometimes obtained with high concentrations of test compounds are generally attributable to non-specific effects of the test compounds in the assays, apart from a few exceptions.

6. BIBLIOGRAPHY

APPARSUNDARAM, S., FERGUSON, S.M., GEORGE, A.L. and BLAKELY, R.D. (2000)

Molecular cloning of a human hemicholinium-3-sensitive choline transporter.

Biochem. Biophys. Res. Commun., 276: 862-867.

BIGNON, E., BACHY, A., BOIGEGRAIN, R. et al. (1999)

SR146131: a new potent, orally active and selective non-peptide cholecystokinin subtype 1 receptor agonist: *in vitro* studies.

J. Pharmacol. Exp. Ther. 289: 742-751.

BROWN, G.B. (1986)

³H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin.

J. Neurosci., 6: 2064-2070.

BRYANT, H.U., NELSON, D.L., BUTTON, D., COLE, H.W., BAEZ, M.B., LUCAITES, V.L., WAINSCOTT, D.B., WHITESITT, C., REEL, J., SIMON, R. and KOPPEL, G.A. (1996)

A novel class of 5-HT_{2A} receptor antagonist: aryl aminoguanidines.

Life Sci., 15: 1259-1268.

CESURA, A.M., BOS, M., GALVA, M.D., IMHOF, R. and DA PRADA, M. (1990)

Characterization of the binding of [³H]Ro 41-1049 to the active site of human monoamine oxidase-A. *Mol. Pharmacol.*, <u>37</u>: 358-366.

CHOI, D.S., BIRRAUX, G., LAUNAY, J.M. and MAROTEAUX, L. (1994)

The human serotonin 5-HT_{2B} receptor: pharmacological link between 5-HT₂ and 5-HT_{1D} receptors. *FEBS Lett.*, <u>352</u>: 393-399.

CLARK, A.F., LANE, D., WILSON, K., MIGGANS, S.T. and McCARTNEY, M.D. (1996)

Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydrocortisol.

Invest. Ophtalmol. Vis. Sci., 37: 805-813.

DEVEDJIAN, J.-C., ESCLAPEZ, F., DENIS-POUXVIEL, C. and PARIS, H. (1994)

Further characterization of human α_2 -adrenoceptor subtypes : [3 H]RX821002 binding and definition of additional selective drugs.

Eur. J. Pharmacol., 252: 43-49.

DORJE, F., WESS, J., LAMBRECHT, G., TACKE, R., MUTSCHLER, E. and BRANN, M.R. (1991)

Antagonist binding profiles of five cloned human muscarinic receptor subtypes.

J. Pharmacol. Exp. Ther., 256: 727-733.

ELLMAN, G.L., COURTNEY, K.D., ANDRES, V. and FEATHERSTONE, R.M. (1961)

A new and rapid colorimetric determination of acetylcholinesterase activity.

Biochem. Pharmacol., 7: 88-95.

FERRY, G., BRUNEAU, V., BEAUVERGER, P., GOUSSARD, M., RODRIGUEZ, M., LAMAMY, V., DROMAINT, S., CANET, E., GALIZZI, J-P. and BOUTIN, J.A. (2001)

Binding of prostaglandins to human PPAR gamma: tool assessment and new natural ligands.

Eur. J. Pharmacol., 417: 77-89.

FISKE, C.M. and SUBBAROW, Y. (1925)

The colorimetric determination of phosphorus.

J. Biol. Chem., 66: 375-400.

FRANTZ, B., KLATT, T., PANG, M., PARSONS, J., ROLANDO, A., WILLIAMS, H., TOCCI, M.J., O'KEEFE, S.J. and O'NEILL, E.A. (1998)

The activation state of p38 Mitogen-Activated Protein Kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding.

Biochemistry, 37: 13846-13853.

GLASER, K., SUNG, M.L., O'NEILL, K., BELFAST, M., HARTMAN, D., CARLSON, R., KREFT, A., KUBRAK, D., HSIAO, C.L. and WEICHMAN, B. (1995)

Etodolac selectively inhibits human prostaglandin G/H synthase 2 (PGHS-2) versus human PGHS-1.

Eur. J. Pharmacol., 281: 107-111.

GRANDY, D.K., MARCHIONNI, M.A., MAKAM, H., STOFKO, R.E., ALFANO, M., FROTHINGHAM, L., FISCHER, J.B., BURKE-HOWIE, K.J., BUNZOW, J.R., SERVER, A.C. and CIVELLI, O. (1989)

Cloning of the cDNA and gene for a human D2 dopamine receptor.

Proc. Natl. Acad. Sci. U.S.A., 86: 9762-9766.

GREEN, A., WALLS, S., WISE, A., GREEN, R. H., MARTIN, A. K. and MARSHALL F. H. (2000)

Characterization of [³H]-CGP54626A binding to heterodimeric GABA_B receptors stably expressed in mammalian cells. *Brit. J. Pharmacol.*, <u>131</u>: 1766-1774.

GREENGRASS, P. and BREMNER, R. (1979)

Binding characteristics of [${}^{3}H$]-prazosin to rat brain α -adrenergic receptors.

Eur. J. Pharmacol., 55: 323-326.

HOORN, C.M. and ROTH, R.A. (1993)

Monocrotaline pyrrole-induced changes in angiotensin-converting enzyme activity of cultured pulmonary artery endothelial cells.

Brit. J. Pharmacol., 110: 597-602.

HOPE, A.G., PETERS, J.A., BROWN, A.M., LAMBERT, J.J. and BLACKBURN, T.P. (1996)

Characterization of a human 5-hydroxytryptamine₃ receptor type A (h5-HT₃R-A_s) subunit stably expressed in HEK 293 cells.

Brit. J. Pharmacol., 118: 1237-1245.

HOYER, D., ENGEL, G. and KALKMAN, H.O. (1985)

Characterization of the 5-HT_{1B} recognition site in rat brain: binding studies with (-) (¹²⁵I) iodocyanopindolol. *Eur. J. Pharmacol.*, <u>118</u>: 1-12.

ITOKAWA, T., NOKIHARA, H., NISHIOKA, Y., SONE, S., IWAMOTO, Y., YAMADA, Y., CHERRINGTON, J., McMAHON, G., SHIBUYA, M., KUWANO, M. and ONO, M. (2002)

Antiangiogenic effect by SU5416 is partly attributable to inhibition of Flt-1 receptor signaling. *Mol. Cancer Ther.*, 1: 295-302.

KINOUCHI, K. and PASTERNAK, G.W. (1991)

Evidence for κ_1 opioid receptor multiplicity in the guinea pig cerebellum.

Eur. J. Pharmacol., 207: 135-141.

LANGIN, D., LAFONTAN, M., STILLING, M.R. and PARIS, H. (1989)

[3H]RX821002: a new tool for the identification of alpha_{2A}-adrenoceptors

Eur. J. Pharmacol., 167: 95-104.

LE, M.T., DE BACKER, J.-P., HUNYADY, L., VANDEHEYDEN, P.M.L. and VAUQUELIN, G. (2005)

Ligand binding and functional properties of human angiotensin AT₁ receptors in transiently and stably expressed CHO-K1 cells.

Eur. J. Pharmacol., 513: 35-45.

LEE, H.R., ROESKE, W.R. and YAMAMURA, H.I. (1984)

High affinity specific [³H](+)PN 200-110 binding to dihydropyridine receptors associated with calcium channels in rat cerebral cortex and heart.

Life Sci., 35: 721-732.

LEE, Y.-M., BEINBORN, M., McBRIDE, E.W., LU, M., KOLAKOWSKI, L.F. and KOPIN, A.S. (1993)

The human brain cholecystokinin-B/gastrin receptor.

J. Biol. Chem., 268: 8164-8169.

LEURS, R., SMIT, M.J., MENGE, W. and TIMMERMAN, H. (1994)

Pharmacological characterization of the human histamine H₂ receptor stably transfected in chinese hamster ovary cells. Brit. J. Pharmacol., 112: 847-854.

LEVIN, M.C., MARULLO, S., MUNTANER, O., ANDERSON, B. and MAGNUSSON, Y. (2002)

The myocardium-protective Gly-49 variant of the beta 1-adrenergic receptor exhibits constitutive activity and increased desensitization and down regulation.

J. Biol.Chem., 277: 30429-30435.

LEWIN, A.H., DE COSTA, B.R., RICE, K.C. and SKOLNICK, P. (1989)

meta- and para-isothiocyanato-t-butylbicycloorthobenzoate: irreversible ligands of the γ-aminobutyric acid-regulated chloride ionophore.

Mol. Pharmacol., 35: 189-194.

LOVENBERG, T.W., ROLAND, B.L. WILSON, S.J., JIANG, X., PYATI, J., HUVAR, A., JACKSON, M.R. and ERLANDER, M.G. (1999)

Cloning and functional expression of the human histamine H₃ receptor.

Mol. Pharmacol., 55: 1101-1107.

LUKAS, R.J. (1986)

Characterization of curaremimetic neurotoxin binding sites on membrane fractions derived from the human medulloblastoma clonal line, TE671.

J. Neurochem., 46: 1936-1941.

LUTHIN, D.R., OLSSON, R.A., THOMPSON, R.D., SAWMILLER, D.R. and LINDEN, J. (1995)

Characterization of two affinity states of adenosine A2a receptors with a new radioligand,

2-[2-(4-amino-3-[125]]iodophenyl)ethylamino]adenosine.

Mol. Pharmacol., 47: 307-313.

MACKENZIE, R.G., VANLEEUVEN, D., PUGSLEY, T.A., SHIH, Y-H., DEMATTOS, S., TANG, L., TODD, R. and O'MALLEY, K.L. (1994)

Characterization of the human dopamine D₃ receptor expressed in transfected cell lines.

Eur. J. Pharmacol., 266: 79-85.

MIALET, J., BERQUE-BESTEL, I., EFTEKHARI, P., GASTINEAU, M., GINER, M., DAHMOUNE, Y., DONZEAU-GOUGE, P., HOEBEKE, J., LANGLOIS, M., SICSIC, S., FISCHMEISTER, R. and LEZOUALC'H, F. (2000)

Isolation of the serotoninergic 5-HT_{4(e)} receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines.

Brit. J. Pharmacol., 129: 771-781.

MONAGHAN, D.T. and COTMAN, C.W. (1982)

The distribution of [³H]kainic acid binding sites in rat CNS as determined by autoradiography.

Brain Res., 252: 91-100.

MULHERON, J.G., CASANAS, S.J., ARTHUR, J.M., GARNOVSKAYA, M.N., GETTYS, T.W. and RAYMOND, J.R. (1994)

Human 5-HT_{1A} receptor expressed in insect cells activates endogenous G₀-like G protein.

J. Biol. Chem., 269: 12954-12962.

MUNRO, S., THOMAS, K.L. and ABU-SHAAR, M. (1993)

Molecular characterization of a peripheral receptor for cannabinoids.

Nature, 365: 61-65.

MURPHY, D.E., SNOWHILL, E.W. and WILLIAMS, M. (1987)

Characterization of quisqualate recognition sites in rat brain tissue using DL-[3 H] α -amino-3-hydroxy- 5-methylisoxazole-4-proprionic acid (AMPA) and a filtration assay.

Neurochem. Res., 12: 775-781.

PABREZA, L.A., DHAWAN, S. and KELLAR, K.J. (1991)

[³H]cytisine binding to nicotinic cholinergic receptors in brain.

Mol. Pharmacol., 39: 9-12.

PACHOLCZYK, T., BLAKELY, R.D. and AMARA, S.G. (1991)

Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter.

Nature, 350: 350-354.

PERALTA, E. G., ASHKENAZI, A., WINSLOW, J. W., SMITH, D. H., RAMACHANDRAN, J. and CAPON, D. J. (1987)

Distinct primary structures, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors.

Embo. J., 6: 3923-3929.

PRISTUPA, Z.B., WILSON, J.M., HOFFMAN, B.J., KISH, S.J. and NIZNIK, H.B. (1994)

Pharmacological heterogeneity of the cloned and native human dopamine transporter: disassociation of $[^3H]WIN$ 35,428 and $[^3H]GBR$ 12,935 binding.

Mol. Pharmacol., 45: 125-135.

REYNOLDS, I.J., SNOWMAN, A.M. and SNYDER, S.H. (1986)

(-)[³H]desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and squeletal muscle membranes: differentiation by temperature and dihydropyridines.

J. Pharmacol. Exp. Ther., <u>237</u>: 731-738.

RINALDI-CARMONA, M., CALANDRA, B., SHIRE, D., BOUABOULA, M., OUSTRIC, D., BARTH, F., CASELLAS, P., FERRARA, P. and LE FUR, G. (1996)

Characterization of two cloned human CB₁ cannabinoid receptors isoform.

J. Pharmacol. Exp. Ther., 278: 871-878.

SCHOEMAKER, H. and LANGER, S.Z. (1985)

[3H]diltiazem binding to calcium channel antagonist recognition sites in rat cerebral cortex.

Eur. J. Pharmacol., 111: 273-277.

SHANK, R.P., BALDY, W.J., MATTUCCI, L.C. and VILLANI, F.J. (1990)

Ion and temperature effects on the binding of γ -aminobutyrate to its receptors and the high-affinity transport system. J. Neurochem., <u>54</u>: 2007-2015.

SHEN, Y., MONSMA, F.J., METCALF, M.A., JOSE, P.A., HAMBLIN, M.W. and SIBLEY, D.R. (1993)

Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype.

J. Biol. Chem., 268: 18200-18204.

SIEGEL, B.W., BARON, B.M., HARRISON, B.L., GROSS, R.S., HAWES, C. and TOWERS, P. (1995)

[3H]MDL 105,519, a high affinity radioligand for the NMDA receptor-associated glycine recognition site.

Ann. Meeting Soc. Neurosci., 21: 1106.

SILLS, M.A., FAGG, G., POZZA, M., ANGST, C., BRUNDISH, D.E., HURT, S.D., WILUSZ, E.J. and WILLIAMS, M. (1991)

[³H]CGP 39653: a new N-methyl-D-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur. J. Pharmacol., 192: 19-24.

SIMONIN, F., BEFORT, K., GAVERIAUX-RUFF, C., MATTHES, H., NAPPEY, V., LANNES, B., MICHELETTI, G. and KIEFFER, B. (1994)

The human δ -oipioid receptor: genomic organization, cDNA cloning, functionnal expression, and distribution in human brain.

Mol. Pharmacol., 46: 1015-1021.

SMIT, M.J., TIMMERMAN, H., HIJZELENDOORN, J.C., FUKUI, H. and LEURS, R. (1996)

Regulation of the human histamine H₁ receptor stably expressed in Chinese hamster ovary cells.

Brit. J. Pharmacol., <u>117</u>: 1071-1080.

SMITH, C. and TEITLER, M. (1999)

Beta-blocker selectivity at cloned human beta₁- and beta₂-adrenergic receptors.

Cardiovasc. Drugs Ther., 13: 123-126.

SNODGRASS, S.R. (1978)

Use of [3H]muscimol for GABA receptor studies.

Nature, 273: 392-394.

SPETH, R.C., WASTEK, G.J. and YAMAMURA, H.I. (1979)

Benzodiazepine receptors: temperature dependence of [3H]flunitrazepam binding.

Life Sci., 24: 351-358.

TAHARA, A., SAITO, M.,SUGIMOTO, T., TOMURA, Y., WADA, K., KUSAYAMA, T., TSUKADA, J., ISHII, N., YATSU, T., UCHIDA, W. and TANAKA, A. (1998)

Pharmacological characterization of the human vasopressin receptor subtypes stably expressed in Chinese hamster ovary cells.

Brit. J. Pharmacol., 125: 1463-1470.

TATSUMI, M., JANSEN, K., BLAKELY, R.D. and RICHELSON, E. (1999)

Pharmacological profile of neuroleptics at human monoamine transporters.

Eur. J. Pharmacol., 368: 277-283.

TORPHY, T.J., ZHOU, H.L. and CIESLINSKI, L.B. (1992)

Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity.

J. Pharmacol. Exp. Ther., 263: 1195-1205.

TOWNSEND-NICHOLSON, A. and SCHOFIELD, P.R. (1994)

A threonine residue in the seventh transmembrane domain of the human A₁ adenosine receptor mediates specific agonist binding.

J. Biol. Chem., 269: 2373-2376.

WAGNER, J.A., SNOWMAN, A.M., BISWAS, A., OLIVERA, B.M. and SNYDER, S.H. (1988)

ω-conotoxin GVIA binding to high-affinity receptor in brain : characterization, calcium sensitivity, and solubilization.

J. Neurosci., <u>8</u>: 3354-3359.

WANG, J.-B., JOHNSON, P.S., PERSICO, A.M., HAWKINS, A.L., GRIFFIN, C.A. and UHL, G.R. (1994)

Human μ-opiate receptor. cDNA and genomic clones, pharmacological characterization and chromosomal assignment. *FEBS Lett.*, <u>338</u>: 217-222.

WEISHAAR, R.E., BURROWS, S.D., KOBYLARZ, D.C., QUADE, M.M. and EVANS, D.B. (1986)

Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Biochem. Pharmacol., 35: 787-800.

ZHOU, Q.-Y., GRANDY, D.K., THAMBI, L., KUSHNER, J.A., VAN TOL. H.H.M., CONE, R., PRIBNOW, D., SALON, J., BUNZOW, J.R. and CIVELLI, O. (1990)

Cloning and expression of human and rat D₁ dopamine receptors.

Nature, <u>347</u>: 76-80.

7. STORAGE AND RETENTION OF RECORDS

All documents generated during the performance of the study (raw data, various recordings such as QA audit reports, an original of the study report, study plan...) will be stored for a 10-year period in Cerep's archive rooms after achievement of the study. Only Cerep's authorized employees shall have access to the archives.

The original final report provided to the sponsor will be kept by the sponsor under its sole responsibility.

8. QUALITY ASSURANCE STATEMENT

The following audit was performed on	this study:
	CALENDAR
Audit of the Final Report	April 03, 2007

Audit report of the study report was transmitted to the Study Director for approval.

I certify that results presented in this report were generated using the materials and methods mentioned and that these results accurately reflect the Raw Data.

April 03, 2007

Torontills

Nadine Pasquier

Quality Unit

Appendix 4

Protocol for binding assay 2 for Example 67 and Merck Example 3 enantiomers 1 and 2

Materials

- 96 well microtiter plates (V-bottom, polypropylene)
- Skatron cell harvester
- 37°C incubator
- Centrifuge
- Whatman GF/B Brandell cell Harvester Filters
- Cells expressing Dopamine D3 receptor
- [³H]-DPAT (0.4 nM)
- Buffer A: (incubation) 50 mM TRIS (2-amino-2-hydroxymethyl-1,3-propanediol), 120 mM NaCl, 5 mM KCl, 2mM CaCl₂, 5mM MgCl₂, pH 7.4 @ 25°C
- Buffer B: (wash) 50 mM TRIS, pH 7.4 @ 25°C

Methods

For CHO D3 cells, media was removed and cells lifted from a flask with 5mM ethylendiamine-tetraacetic acid pH 7.4. All subsequent operations were performed at 4°C. Cells were pelletized by centrifugation at 1000 rpm or less for 5 minutes and the supernatant removed. Cells were homogenized 2 times with Polytron (20 seconds, setting 6) in 20 ml 50 mM TRIS, 5mM MgSO₄ at pH 7.4. The homogenate was centrifuged after each homogenization at 20,000 rpm at 4°C for 10 minutes. The pellet can be frozen at -70°C for approximately 6 months. The pellet was resuspended in a final volume of buffer A so that the concentration of tissue was 2.0 mg/ml.

Binding assay

Incubation mixture (volumes in µl)

Ligand	25
Tissue	200
Drug or vehicle	25
Total volume	250

The reaction was started by the addition of tissue and incubated for 15 minutes at 37°C. The reaction was stopped by rapid filtration through GF/B (the filters were previously soaked in 0.5% PEI (polyethyleneimine) for 2 hours and dried). Filters were washed with ice cold buffer B in the Skatron harvester. Filters were dried overnight and counted in the Beta counter using Betaplate Scint.

Interpretation

Data are expressed as IC_{50} (the concentration that inhibits 50% of the specific binding) or as an apparent K_i , calculated by the formula:

$$K_i = IC_{50}/(1+[L]/K_d)$$

wherein [L] is the ligand concentration and K_d is the affinity constant for [³H]-ligand, determined in a separate experiment.

Andrew Martin Johnson B.A. **NOTARY PUBLIC** 29St George's Place Canterbury CT1 1UT, England Tel: 01227479479

Appendix 5

Protocol for functional assay for Example 67 and Merck Example 3 enantiomers 1 and 2

Description of the cell line

The HEK293-G alpha15.D3 cell line stably expresses G alpha 15 which was generated by transfection of a HEK293 cell line with a G alpha15-blasticidin plasmid. The D3 receptor expression is maintained in the presence of puromycin. This cell line attaches poorly to typical tissue culture treated flasks. For a strongly adherent phenotype, the cells are grown on Matrigel (Becton Dickinson), diluted 1:200 with serum-free DMEM (Dulbecco's Modified Eagle's Medium) coated flasks.

Methods

20,000 cells were plated at 50 μl/well in a 384-well poly-D-lysine coated plate and the plates returned to a 37°C incubator overnight. 24 hours later, the growth media was removed and replaced with serum-free media in the presence of the calcium-sensitive fluorescent dye, fluo-4 (4 mM) and the active transport inhibitor probenecid (2.5 mM). The plate was incubated for 1 hour at 37°C in an incubator.

The media was aspirated and the plates washed with buffer 3 times with HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffered saline (10 mM HEPES, 2 mM CaCl₂, 1 mM MgSO₄, 5 mM KCl, 10 mM glucose, 145 mM NaCl plus 2.5 mM probenecid) to remove excess dye.

The plates were incubated for 15-45 minutes (in 30 μ l) in an incubator at 37°C and the drug plate pre-heated for 15 minutes in the 37C incubator. The assay was set up in the FLIPR (Fluorescent Imaging Plate Reader) and fluorescence levels monitored continuously over a 90 second period.

Agonist/antagonist additions (15μ l volume) were made simultaneously to all 384 wells after 20 seconds of baseline recording.

Andrew Martin Johnson B.A.
NOTARY PUBLIC
29St George's Place
Canterbury

CT1 1UT, England Tel: 01227 479479

Appendix 6

Analytical HPLC conditions for identification of Merck compounds

The compounds were separated on a Chiralcel OD-H column (250*4.6mm id); mobile phase heptane:2-propanol:diethylamine (80:20:0.1), flow rate 1ml/min, detection 225nm., at ambient temperature.

Enantiomer 1 eluted first (retention time: 7.646 minutes), followed by

Enantiomer 2 (retention time: 12.790 minutes).

Andrew Martin Johnson B.A.

NOTARY PUBLIC 29St George's Place Canterbury

CT1 1UT, England Tel: 01227 479479

Reference 1

Specific Substituent Effects. C.G. Wermuth, Ed. Wermuth, C.G. Practice of Medicinal Chemistry (1996), 312-344. Publisher: Academic, Pub. London, UK.

Andrew Martin Johnson B.A.
NOTARY PUBLIC

29 St George's Place Canterbury

CT1 1UT, England Tel: 01227 479479

Reference 2

Stereoselectivity in drug action and disposition: an overview. Patel, B. K.; Hutt, A. J. Ed. Reddy, I. K.; Mehvar, Reza. in: *Chirality in Drug Design and Development* **2004**, 139-190. Pub. Marcel Dekker, Inc., New York, N.Y

Andrew Martin Johnson B.A.

NOTARY PUBLIC

29 St George's Place Canterbury

CT1 1UT, England Tel: 01227 479479