Integrais Impróprias

São integrais cujo integrando está definido em intervalos não limitados do tipo $[a, +\infty)$, $(-\infty, b]$ ou mesmo $(-\infty, +\infty)$.

Integrais Impróprias do Tipo I

1. Quando $f:[a,+\infty)\to\mathbb{R}$ é integrável em [a,t] para qualquer $t\geq a$, definimos:

$$\int_{a}^{+\infty} f(x) \, \mathrm{d}x = \lim_{t \to +\infty} \int_{a}^{t} f(x) \, \mathrm{d}x$$

2. Quando $f:(-\infty,b]\to\mathbb{R}$ é integrável em [t,b] oara qualquer $t\le b$, definimos:

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

Quando o resultado for finito, as integrais **convergem**. Quando o limite não existir ou for $\pm \infty$, as integrais **divergem**.

3. Quando as integrais

$$\int_{-\infty}^{c} f(x) \, \mathrm{d}x \, \, \mathrm{e} \, \int_{c}^{+\infty} f(x) \, \mathrm{d}x$$

convergem, para algum $c \in \mathbb{R}$, então definimos

$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x = \int_{-\infty}^{c} f(x) \, \mathrm{d}x + \int_{c}^{+\infty} f(x) \, \mathrm{d}x$$

Observações:

1. A escolha de c não altera o valor da integral.

2. Se pelo menos uma das integrais $\int_{-\infty}^{c} f(x) dx$, $\int_{c}^{+\infty} f(x) dx$ diverge, então $\int_{-\infty}^{+\infty} f(x) dx$ diverge.

3.
$$\int_{-\infty}^{+\infty} f(x) \, \mathrm{d}x \neq \lim_{t \to +\infty} \int_{-t}^{t} f(x) \, \mathrm{d}x$$

Integrais Impróprias do Tipo II

4. Quando $f:[a,b)\to\mathbb{R}$ não está definida no ponto b e é integrável no intervalo [a,t] para qualquer $a\le t< b$ definimos

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{t \to b^-} \int_a^t f(x) \, \mathrm{d}x$$

5. Quando $f:(a,b]\to\mathbb{R}$ não está definida no ponto a e é integrável no intervalo [t,b] para qualquer $a< t\leq b$ definimos

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{t \to a^+} \int_t^b f(x) \, \mathrm{d}x$$

6. Quando $f:[a,c)\cup(c,b]\to\mathbb{R}$ é continua em e as integrais $\int_a^c f(x)\,\mathrm{d}x$ e $\int_c^b f(x)\,\mathrm{d}x$ forem convergentes, então $\int_a^b f(x)\,\mathrm{d}x$ é convergente e

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_a^b f(x) \, \mathrm{d}x$$

Teste da Comparação

Quando não for possível calcular o valor exato de uma integral imprópria, podemos usar o teste da comparação para descobrir sua convergência.

Sejam f e g funções integráveis em $[a, +\infty)$ tais que $0 < f(x) \le g(x)$ para todo $x \ge a$.

- 1. Se $\int_a^{+\infty} g(x) \, \mathrm{d}x$ converge, então $\int_a^{+\infty} f(x) \, \mathrm{d}x$ converge. 2. Se $\int_a^{+\infty} f(x) \, \mathrm{d}x$ diverge, então $\int_a^{+\infty} g(x) \, \mathrm{d}x$ diverge.