Estimation

Model

Suppose the data consist of n observations of the form $\mathcal{D} = \{(\boldsymbol{y}_i, \boldsymbol{x}_{i,1}, \cdots, \boldsymbol{x}_{i,k})\}_{i=1}^n$. Here $\boldsymbol{y}_i \in \mathbb{R}^k$ is a continuous $k \times 1$ response vector, and $\boldsymbol{x}_{i,j}$ is an $p_j \times 1$ vector of covariates for y_{ij} . Conditional on $\mathcal{X}_i = (\boldsymbol{x}_{i,1}, \cdots, \boldsymbol{x}_{i,k})$, the response \boldsymbol{y}_i follows a multivariate normal distribution with unstructured covariance:

$$\begin{pmatrix} y_{i1} \\ \vdots \\ y_{ik} \end{pmatrix} \sim N \begin{pmatrix} \mu_{i1} \\ \vdots \\ \mu_{ik} \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1k} \\ \Sigma_{21} & \Sigma_{22} & & \vdots \\ \vdots & & \ddots & \Sigma_{(k-1)k} \\ \Sigma_{k1} & \cdots & \Sigma_{k(k-1)} & \Sigma_{kk} \end{pmatrix}$$

Regression models for the elements of y_i are given by:

$$\mu_{ij} = E[y_{ij}|\boldsymbol{x}_{i,j}] = \boldsymbol{x}'_{i,j}\boldsymbol{\beta}_j$$

1.1 Notation

Let Y denote the $n \times k$ outcome matrix. The *i*th row of Y is denoted y_i , while the *j*th column is denoted by t_j :

$$t_j \equiv Y[\cdot, j]$$

Let X_j denote the $n \times p_j$ matrix of covariates for t_j :

$$oldsymbol{X}_{n imes p} = \left(egin{array}{c} oldsymbol{x}_{1,j}' \ dots \ oldsymbol{x}_{n,j}' \end{array}
ight)$$

Let $\Lambda = \Sigma^{-1}$ denote the precision matrix.

Likelihood

The log likelihood is:

$$\ell(\boldsymbol{\theta}) \propto -\frac{n}{2} \ln \det(\boldsymbol{\Sigma}) - \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{y}_i - \boldsymbol{\mu}_i)' \boldsymbol{\Lambda} (\boldsymbol{y}_i - \boldsymbol{\mu}_i)$$
(1.2.1)

Define V_i as the residual outer product for the *i*th subject:

$$V_i = (y_i - \mu_i)(y_i - \mu_i)'$$

Define the residual matrix:

$$oldsymbol{E} = \left(oldsymbol{t}_1 - oldsymbol{X}_1oldsymbol{eta}_1, \cdots, oldsymbol{t}_k - oldsymbol{X}_koldsymbol{eta}_k
ight)$$

Let \boldsymbol{V} denote the summed outer product contributions:

$$oldsymbol{V} = \sum_{i=1}^n oldsymbol{V}_i = \sum_{i=1}^n (oldsymbol{y}_i - oldsymbol{\mu}_i) (oldsymbol{y}_i - oldsymbol{\mu}_i)' = oldsymbol{E}' oldsymbol{E}$$

The log likelihood is expressible as:

$$\ell(\boldsymbol{\theta}) \propto -\frac{n}{2} \ln \det(\boldsymbol{\Sigma}) - \frac{1}{2} \mathrm{tr}(\boldsymbol{\Lambda} \boldsymbol{V})$$

Score Equations

3.1 For β_i

The score equation for β_j is:

$$\boldsymbol{U}_{j}(\boldsymbol{\theta}) = \boldsymbol{X}_{j}^{\prime}\boldsymbol{\Lambda}_{jj}(\boldsymbol{t}_{j} - \boldsymbol{X}_{j}\boldsymbol{\beta}_{j}) + \boldsymbol{X}_{j}^{\prime}\sum_{l\neq j}\boldsymbol{\Lambda}_{jl}(\boldsymbol{t}_{l} - \boldsymbol{X}_{l}\boldsymbol{\beta}_{l})$$

3.2 For Σ

The score equation for Σ is:

$$oldsymbol{U}_{\Sigma} = -rac{n}{2}oldsymbol{\Sigma}^{-1} - rac{1}{2}oldsymbol{\Sigma}^{-1}oldsymbol{V}oldsymbol{\Sigma}^{-1}$$

Estimation Strategy

4.1 Initialization

Initialize β_i as:

$$\boldsymbol{\beta}^{(0)} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{t}_i$$

Construct the initial residual matrix $E^{(0)}$, where the jth column is given by:

$$oldsymbol{e}_{i}^{(0)}=oldsymbol{t}_{j}-oldsymbol{X}_{j}oldsymbol{eta}_{i}^{(0)}$$

Initialize Σ using the outer product estimator:

$$\mathbf{\Sigma}^{(0)} = n^{-1} (\mathbf{E}^{(0)})' \mathbf{E}^{(0)}$$

4.2 Notation

Let $E_{(-j)}$ denote the residual matrix E with the jth column elided:

$$\boldsymbol{E}_{(-j)} = \boldsymbol{E}[\cdot, -j]$$

Let $\Lambda_{(-j),j}$ denote the $(k-1)\times 1$ column vector obtained by dropping the jth row of Λ , and subsetting to the jth column:

$$\Lambda_{(-j),j} = \Lambda[-j,j]$$

4.3 Propagation

Procedure 4.1 (Estimation). On the rth iteration:

i. Calculate the baseline objective:

$$Q^{(r)} = -\frac{n}{2} \ln \det \mathbf{\Sigma}^{(r)}$$

- ii. Invert $\Sigma^{(r)}$ to obtain $\Lambda^{(r)}$.
- iii. Copy $\mathbf{E}^{(r+1)} \leftarrow \mathbf{E}^{(r)}$. Note that the residual matrix $\mathbf{E}^{(r+1)}$ is updated iteratively as the regression coefficients are updated.
- iv. For $j \in \{1, \dots, k\}$:
 - (a) Update β_i via:

$$\boldsymbol{\beta}_{j}^{(r+1)} = \boldsymbol{\beta}_{j}^{(0)} + \big(\boldsymbol{X}_{j}'\boldsymbol{X}_{j}\big)^{-1}\boldsymbol{X}_{j}'\boldsymbol{\Lambda}_{jj}^{-1}\big(\boldsymbol{E}_{(-j)}^{(r+1)}\boldsymbol{\Lambda}_{(-j),j}\big)$$

(b) Update the *j*th column of $E^{(r+1)}$

$$\boldsymbol{E}_{j}^{(r+1)} = \boldsymbol{t}_{j} - \boldsymbol{X}_{j}\boldsymbol{\beta}^{(r+1)}$$

v. Update $\Sigma^{(r)}$:

$$\boldsymbol{\Sigma}^{(r+1)} = n^{-1} (\boldsymbol{E}^{(r+1)})' \boldsymbol{E}^{(r+1)}$$

vi. Calculate the proposed objective:

$$Q^{(r+1)} = -\frac{n}{2} \ln \det \mathbf{\Sigma}^{(r+1)}$$

Check the objective for sufficient improvement:

$$\Delta^{(r+1)} = Q^{(r+1)} - Q^{(r)} > \epsilon$$

Inference

Information

1.1 For β_i

The expected information for β_j is:

$$\mathcal{I}_{jj'} = \boldsymbol{X}_j' \Lambda_{jj} \boldsymbol{X}_j$$

The cross information between β_j and β_l is:

$$\mathcal{I}_{jl'} = \boldsymbol{X}_i' \Lambda_{jl} \boldsymbol{X}_l$$

There is no cross information between the regression and covariance parameters:

$$\mathcal{I}_{j\Sigma_{ab}} = 0$$

Inference on β

2.1 Partitioning

Fix β_j as the regression parameter of interest, and drop the subscript j to reduce notation. Partition $\beta = (\beta_A, \beta_B)$, and let $X = (X_A, X_B)$ denote the corresponding partition of the design matrix. Consider the hypothesis $H_0: \beta_A = \beta_A^{\dagger}$. Group together the nuisance regression parameters as $\eta = (\beta_B, \beta_l)$ where $l \neq j$. Write the joint information of $\gamma = (\beta_A, \eta)'$ as:

$$\mathcal{I}_{\gamma\gamma'}(oldsymbol{ heta}) = \left(egin{array}{cc} \mathcal{I}_{eta_Aeta'_A} & \mathcal{I}_{eta_A\eta'} \ \mathcal{I}_{\etaeta'_A} & \mathcal{I}_{\eta\eta'} \end{array}
ight)$$

For $l \neq j$, the component information matrices are:

$$egin{aligned} \mathcal{I}_{eta_Aeta_A'} &= oldsymbol{X}_A' \Lambda_{jj} oldsymbol{X}_A \ \mathcal{I}_{eta_A\eta'} &= ig(oldsymbol{X}_A' \Lambda_{jj} oldsymbol{X}_B, oldsymbol{X}_A' \Lambda_{jl} oldsymbol{X}_lig) \ \mathcal{I}_{\eta\eta'} &= igg(egin{array}{ccc} oldsymbol{X}_B' \Lambda_{jj} oldsymbol{X}_B & oldsymbol{X}_B' \Lambda_{jl} oldsymbol{X}_l \ oldsymbol{X}_l' \Lambda_{lj} oldsymbol{X}_B & oldsymbol{X}_l' \Lambda_{ll} oldsymbol{X}_l \end{array} igg) \end{aligned}$$

2.2 Wald Test

The joint distribution of $(\hat{\beta}_A, \hat{\eta})$ is:

$$egin{pmatrix} \left(\hat{oldsymbol{eta}}_A - oldsymbol{eta}_A^\dagger \ \hat{oldsymbol{\eta}} - oldsymbol{\eta}^\dagger \end{pmatrix} \overset{.}{\sim} Negin{pmatrix} oldsymbol{0} \ oldsymbol{0} \end{pmatrix}, \left(egin{array}{cc} \mathcal{I}_{eta_Aeta_A^\prime}^\dagger & \mathcal{I}_{eta_A\eta^\prime}^\dagger \ \mathcal{I}_{\eta\eta^\prime}^\dagger & \mathcal{I}_{\eta\eta^\prime}^\dagger \end{array}
ight)^{-1}$$

Define the efficient information for β_A :

$$\mathcal{I}_{eta_Aeta_A|\eta} \equiv \mathcal{I}_{eta_Aeta_A'} - \mathcal{I}_{eta_A\eta'}\mathcal{I}_{\eta\eta'}^{-1}\mathcal{I}_{\etaeta_A'}$$

Using block inversion, the marginal distribution of $\hat{\beta}_A - \beta_A^{\dagger}$ is approximately:

$$\hat{\boldsymbol{\beta}}_A - \boldsymbol{\beta}_A^{\dagger} \stackrel{\cdot}{\sim} N \Big(\mathbf{0}, \ \big(\mathcal{I}_{\beta_A \beta_A | \eta}^{\dagger} \big)^{-1} \Big)$$

Here $\mathcal{I}_{\beta_A\beta_A|\eta}^{\dagger}$ denotes evaluation of the efficient information using the true precision Λ^{\dagger} . The Wald test of $H_0: \beta_A = \beta_A^{\dagger}$ is:

$$T_W = (\hat{oldsymbol{eta}}_A - oldsymbol{eta}_A^\dagger)' \mathcal{I}_{eta_A eta'_A | \eta}^\dagger (\hat{oldsymbol{eta}}_A - oldsymbol{eta}_A^\dagger)$$

The realized Wald statistic is:

$$T_W = (\hat{eta}_A - oldsymbol{eta}_A^\dagger)' \hat{\mathcal{I}}_{eta_A oldsymbol{eta}_A'} |_{\eta} (\hat{oldsymbol{eta}}_A - oldsymbol{eta}_A^\dagger)$$

Here $\hat{\mathcal{I}}_{\beta_A\beta_A|\eta}$ denotes evaluation of the efficient information using the precision $\hat{\Lambda}$ estimated without imposing the null hypothesis.

2.3 Score Test

The score equations for (β_A, η) are distributed as:

$$egin{pmatrix} egin{pmatrix} oldsymbol{U}_A^\dagger \ oldsymbol{U}_\eta^\dagger \end{pmatrix} &\stackrel{\cdot}{\sim} Negin{pmatrix} oldsymbol{0} \ oldsymbol{0} \end{pmatrix}, egin{pmatrix} oldsymbol{\mathcal{I}}_{eta_Aeta'_A}^\dagger & oldsymbol{\mathcal{I}}_{eta_Aeta'_A}^\dagger & oldsymbol{\mathcal{I}}_{eta_A\eta'}^\dagger \ oldsymbol{\mathcal{I}}_{\etaeta'_A}^\dagger & oldsymbol{\mathcal{I}}_{\eta\eta'}^\dagger \end{pmatrix}$$

Again U^{\dagger} denotes evaluation of the score using the true regression coefficients β_j^{\dagger} and precision Λ^{\dagger} . The marginal distribution of the score for β_A is:

$$oldsymbol{U}_A^\dagger \stackrel{.}{\sim} N\Big(oldsymbol{0}, \,\, ig(\mathcal{I}_{eta_Aeta_A|\eta}^\dagger ig) \Big)$$

The Score test of $H_0: \beta_A = \beta_A^{\dagger}$ is:

$$T_S = ig(oldsymbol{U}_A^\daggerig)'ig(\mathcal{I}_{eta_Aeta_A'ert\eta}^\daggerig)^{-1}oldsymbol{U}_A^\dagger$$

The realized Score statistic is:

$$T_S = \tilde{\boldsymbol{U}}_A' (\tilde{\mathcal{I}}_{\beta_A \beta_A' | \eta})^{-1} \tilde{\boldsymbol{U}}_A$$

Here $\tilde{\mathcal{I}}_{\beta_A\beta_A'|\eta}$ denotes evaluation of the efficient information using the precision $\tilde{\Lambda}$ estimated while imposing the null hypothesis:

$$ilde{m{U}}_A = m{U}_A m{eta}_A = m{eta}_A^\dagger, m{\eta} = ilde{m{\eta}}, m{\Lambda} = ilde{m{\Lambda}} m{ar{\Lambda}}$$

Specifically, $(\tilde{\eta}, \tilde{\Lambda})$ satisfy the score equations:

$$egin{aligned} oldsymbol{U}_{\eta}(oldsymbol{eta}_{A}=oldsymbol{eta}_{A}^{\dagger},oldsymbol{\eta}= ilde{oldsymbol{\eta}},oldsymbol{\Lambda}= ilde{oldsymbol{\Lambda}})=oldsymbol{0} \ oldsymbol{U}_{\Lambda}(oldsymbol{eta}_{A}=oldsymbol{eta}_{A}^{\dagger},oldsymbol{\eta}= ilde{oldsymbol{\eta}},oldsymbol{\Lambda}= ilde{oldsymbol{\Lambda}})=oldsymbol{0} \end{aligned}$$

Procedure 2.1 (Score Test).

i. Obtain $(\tilde{\boldsymbol{\eta}}, \tilde{\boldsymbol{\Lambda}})$ by fitting the model with $\boldsymbol{\beta}_A$ fixed at $\boldsymbol{\beta}_A^{\dagger}$.

ii. Evaluate the score for β_1 under H_0 as: The score for β_A is:

$$\tilde{\boldsymbol{U}}_{A} = \boldsymbol{X}_{A}^{\prime} \tilde{\boldsymbol{\Lambda}}_{jj} (\boldsymbol{t}_{j} - \boldsymbol{X}_{A} \boldsymbol{\beta}_{A}^{\dagger} - \boldsymbol{X}_{B} \tilde{\boldsymbol{\beta}}_{B}) + \boldsymbol{X}_{A}^{\prime} \sum_{l \neq j} \tilde{\boldsymbol{\Lambda}}_{jl} (\boldsymbol{t}_{l} - \boldsymbol{X}_{l} \tilde{\boldsymbol{\beta}}_{l})$$

iii. Evaluate the efficient information for $\boldsymbol{\beta}_A$ using $\tilde{\boldsymbol{\Lambda}}$:

$$\tilde{\mathcal{I}}_{\beta_1\beta_1|\eta} = \left[\mathcal{I}_{\beta_1\beta_1'} - \mathcal{I}_{\beta_1\eta'}\mathcal{I}_{\eta\eta'}^{-1}\mathcal{I}_{\eta\beta_1'}\right]_{\boldsymbol{\Lambda} = \tilde{\boldsymbol{\Lambda}}}$$

iv. Calculate the score statistic:

$$T_S = \tilde{\boldsymbol{U}}_A' (\tilde{\mathcal{I}}_{\beta_A \beta_A' | \eta})^{-1} \tilde{\boldsymbol{U}}_A$$

2.4 Non-centrality

Under the null hypothesis $H_0: \beta_A = \beta_A^{\dagger}$:

$$\left(\mathcal{I}_{\beta_A\beta_A'|\eta}^{\dagger}\right)^{1/2}\left(\hat{\boldsymbol{\beta}}_A-\boldsymbol{\beta}_A^{\dagger}\right)\stackrel{\mathcal{L}}{\longrightarrow} N\left(\mathbf{0},\ \boldsymbol{I}\right)$$

Under the sequence of local alternatives $\beta_A = \beta_A^{\dagger} + n^{-1/2} \delta$:

$$(\mathcal{I}_{\beta_A\beta_A'|\eta}^{\dagger})^{1/2} (\hat{\boldsymbol{\beta}}_A - \boldsymbol{\beta}_A^{\dagger}) \stackrel{\mathcal{L}}{\longrightarrow} N \Big((\boldsymbol{i}_{\beta_A\beta_A'|\eta}^{\dagger})^{1/2} \boldsymbol{\delta}, \ \boldsymbol{I} \Big)$$

Here $i_{\beta_A\beta'_A|\eta}$ is the *unit*, as opposed to the *sample*, efficient information. The non-centrality parameter for the Wald test is therefore:

$$\Delta = oldsymbol{\delta}'ig(oldsymbol{i}_{eta_Aeta_A'|\eta}ig)oldsymbol{\delta}$$

The estimated non-centrality parameter is exactly the realized Wald statistic $\hat{\Delta} = T_W$.