第四节 磁场对运动电荷及电流的作用

- 一、洛仑兹力
- 二、安培定律
- 三、磁场对载流线圈的作用
- 四、磁力的功

一、洛仑兹力

广义洛仑兹力:
$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

电场力 磁场力(洛仑兹力)

1. 磁场对运动电荷的作用: $\vec{F} = q\vec{v} \times \vec{B}$

大小: $F = qvB\sin\theta$

方向: 垂直于 (\vec{v}, \vec{B}) 平面

$$\left\{ egin{array}{ll} +q: & ec{v} imesec{B} & ec{\sigma} \cap \ -q: & -(ec{v} imesec{B}) & ec{\sigma} \cap \ \end{array}
ight.$$

洛仑兹力特点:不改变 \vec{v} 大小,只改变 \vec{v} 方向,不对q做功。

练习: 求 q_1 , q_2 相互作用洛仑兹力的大小和方向

$$q_{1} \bigcirc \overrightarrow{F}_{12} \stackrel{\overrightarrow{V}_{1}}{\longrightarrow} \stackrel{\overrightarrow{V}_{2}}{\longrightarrow} q_{2}$$

$$q_{1} \bigcirc \overrightarrow{F}_{12} \stackrel{\overrightarrow{W}_{1}}{\longrightarrow} q_{2}$$

$$B_1 = \frac{\mu_0 q_1 v_1 \sin \alpha_1}{4\pi r^2}$$

$$F_{21} = q_2 v_2 B_1 \sin 90^{\circ}$$

$$= \frac{\mu_0 q_1 q_2 v_1 v_2 \sin \alpha_1}{4\pi r^2}$$

$$\therefore \vec{F}_{12} \neq -\vec{F}_{21}$$

$$\mathbf{\hat{B}} = \frac{\mu_0 q \vec{v} \times \vec{r}}{4\pi r^3}$$

$$\vec{F} = q\vec{v} \times \vec{B}$$

$$B_2 = \frac{\mu_0 q_2 v_2 \operatorname{sin}\alpha_2}{4\pi r^2}$$

$$F_{12} = q_1 v_1 B_2 \sin 90^\circ$$

$$=\frac{\mu_0 q_1 q_2 v_1 v_2 \sin \alpha_2}{4\pi r^2}$$

$$q_1$$
 \Longrightarrow 磁场 \Longrightarrow q_2

2. 带电粒子在电磁场中的运动

匀强电场	$ec{v}_0^{\prime}/\hspace{-0.1cm}/\hspace{-0.1cm}/ec{E}$	$ec{v}_0 \perp ec{E}$	\vec{v}_0 与 \vec{E} 夹 θ 角
	$ec{F}=qec{E}$		
	匀变速 直线运动	类 学 P	$ \raise $ $ \ra$
匀强磁场	$\vec{v}_0 /\!\!/ \vec{B}$	$\vec{v}_0 \perp \vec{B}$	\vec{v}_0 与 \vec{B} 夹 θ 角
	$\vec{F} = 0$	$F = qv_0B$	$F = qv_0 B \sin\theta$
	匀线 直线	匀速率圆周运动 $R=mv_0/qB$ $T=2\pim/qB$	等螺距螺旋线运动 $R = mv_{\perp}/qB = mv_{0}\sin\theta/qB$ $h = Tv_{//} = \frac{2\pi m}{qB}v_{0}\cos\theta$

例:已知: $\vec{E} = E\vec{i}$, $\vec{B} = -B\vec{k}$ m,+q, $\vec{v}_0 = v_0\vec{i}$, $\beta = \frac{q}{m}$ 在 P 点恰不与板相碰求:P点轨道曲率半径 r_p 及此时运动电荷切向和法向加速度的大小.

解:定性分析q在电磁场中的运动:q在任意位置Q受力如图

由对称性原理: 轨道为平面曲线。

恰不与板相碰: \vec{v}_P // 板。

q在位置 P受力如图

$$Bqv_P - qE = m\frac{v_P^2}{r_P} \qquad (1)$$

过程能量方程: $qEd = \frac{1}{2}mv_P^2 - \frac{1}{2}mv_0^2$ (2)

由(1)、(2)得:
$$r_P = \frac{m(v_0^2 + 2\frac{q}{m}Ed)}{q(B\sqrt{2\frac{q}{m}Ed + v_0^2} - E)} = \frac{v_0^2 + 2\beta Ed}{\beta(B\sqrt{2\beta Ed + v_0^2} - E)}$$

切向加速度的大小:0 法向加速度的大小; $\frac{2qEd + mv_0^2}{m^3} - \frac{qE}{m}$

应用举例:磁聚焦

均匀磁场, 且 8 很小:

$$v_{\perp} = v \sin \theta \approx v \theta$$

$$v_{//} = v \cos \theta \approx v$$

$$h = T v_{//} = \frac{2\pi m v}{q B}$$

带电粒子作不同半径的螺旋线运动, 螺距 h近似相等, 带电粒子经过距离h又重新汇集 —— 磁聚集。

具有轴对称性的磁场对电子束说来起着透镜的作用

---(德)蒲许

磁透镜→电子显微镜→开创物质微观结构研究的新纪元。

3. 霍耳效应(美国人霍尔1879年发现)

(1) 现象

霍耳效应: 导体中通电流I,磁场B垂直于I,在既垂直于I,又垂直于B方向出现电势差 ΔU 。

设: 载流子q=-e, 密度n, 漂移速度 \vec{v}

电流:I = evnS = evnld

$$\therefore v = \frac{I}{enld}$$

洛仑兹力:
$$\vec{F}_m = q\vec{v} \times \vec{B} = -e\vec{v} \times \vec{B}$$

大小:
$$F_m = evB = \frac{IB}{nld}$$
 方向: 向上

结果: 电子向上运动, 上侧面聚 集电子,下侧面聚集正电荷。

电场力:
$$F_e = eE = e\frac{\Delta U}{l}$$
 方向:向下

平衡条件:
$$F_m = F_e$$
 $\frac{IB}{nld} = e^{\Delta U}$ $\therefore \Delta U = \frac{IB}{end}$

$$\Delta U = \frac{IB}{end}$$

$$\diamondsuit k = \frac{1}{en}$$
 为霍耳系数 $\therefore \Delta U = k \frac{IB}{d}$

一般情况下,设载流子电量为q,则: $k=\frac{1}{2}$ -质决定

-、洛仑兹力

注意:

结论:不能将负电荷的运动等效成正电荷的反向运动。

(3)应用

- 测载流子密度 $n = \frac{BI}{\Delta U \cdot q \cdot d}$
- 测载流子电性 半导体类型

- 测磁场 \vec{B} (霍尔元件)
- 磁流体发电

• • • • • •

二、安培定律

电流元在磁场中所受安培力: $d\vec{F} = Id\vec{l} \times \vec{B}$

大小: $dF = IdlB \sin\theta$

特例: $\left\{ \begin{array}{l} \Phi \hat{\mathbf{n}} : dF = IdlB \\ \Psi \hat{\mathbf{n}} : dF = 0 \end{array} \right.$

方向:右手法则

求载流导线在磁场中所受的磁场力步骤:

- 1. 在载流导线上取电流元 Idl
- 2. 利用安培定律得到电流元所受安培力 $d\vec{F} = Id\vec{l} \times \vec{B}$

3. 由叠加原理求载流导线所受磁场力 $\vec{F} = \int_L d\vec{f} = \int_L I d\vec{l} \times \vec{B}$ 若各电流元受力方向相同,用代数量积分: $F = \int_L dF$ 若各电流元受力方向不同,用分量积分:

$$F_{x} = \int_{L} dF_{x}$$

$$F_{y} = \int_{L} dF_{y}$$

$$F_{z} = \int_{L} dF_{z}$$

$$\vec{F} = F_{x}\vec{i} + F_{y}\vec{j} + F_{z}\vec{k}$$

特例: 若载流导线为直导线, 且在均匀磁场中:

$$F = \int dF = \int IB \sin\theta dl = IBL \sin\theta$$
 方向:右手法则

例1(P₂₆₆例3): 求均匀磁场中弯曲导线所受磁场力

解:建立如图所示坐标系,在 导线上取电流元 $Id\overline{l}$ 其所受安培力 $dF = IdlB\sin\theta$ 方向: \otimes

$$F = \int dF = \int_{a}^{b} IB \sin\theta' dl = IB \int_{0}^{L\sin\theta} dy = IBL\sin\theta$$
$$\therefore F = BIL\sin\theta \quad \text{方向}: \otimes$$

均匀磁场中,弯曲载流导线所受磁场力与从起点到终点间载有同样电流的直导线所受的磁场力相同。

二、安培定律

练习:

求电流在磁场中所受的力

$$F = BI \cdot 2R$$

方向向右

$$\vec{F} = 0$$

 I_2 受力 $\vec{F} \neq 0$

例2(P_{266} 例4):求 I_2 受 I_1 磁场作用力

解:建立如图所示坐标系, I_1 产生的

$$B = rac{\mu_0 I_1}{2\pi R \sin heta}$$
 方向如图
$$\mathbf{R} \quad I_2 \mathbf{d}l = I_2 R \mathbf{d} heta$$

$$dF = \frac{\mu_0 I_1 I_2 d\theta}{2\pi \sin \theta}$$
方向如图

$$dF_x = dF \cdot \sin \theta$$

由对称性:
$$F_y = \int dF_y = 0$$

$$F = F_x = \int dF_x = \int dF \cdot \sin\theta = \frac{\mu_0 I_1 I_2}{2\pi} \int_0^{2\pi} d\theta = \mu_0 I_1 I_2$$

沿 + x 方向

二、安培定律

自学: P₂₈₂ 10.19:

已知: B_1, B_2

求: 载流平面上单位面积所

受磁场力

解:图中 \vec{B} 分布:

由安培环路定理:
$$B=B_{\perp}=B_{\top}=\frac{\mu_{0}J}{2}$$

$$B_{2} = B_{0} + B$$

$$B_{0} = \frac{B_{2} + B_{1}}{2}$$

$$B_{1} = B_{0} - B$$

$$B = \frac{B_{2} - B_{1}}{2} \longrightarrow j = \frac{B_{2} - B_{1}}{\mu_{0}}$$

二、安培定律

无限大载流平面上任一电流元受载流平面上其它电流磁场力的合力为零。只计算其所受均匀场 \vec{B}_{lpha} 的作用。

电流元

$$Idl = jdxdy = jdS$$

$$dF = B_0 I dl = B_0 j dS$$

单位面积受力:

$$\frac{dF}{dS} = B_0 j = \frac{B_2 + B_1}{2} \cdot \frac{B_2 - B_1}{\mu_0} = \frac{B_2^2 - B_1^2}{2\mu_0} \qquad \text{ if } i : -z$$

三、磁场对载流线圈的作用

设均匀磁场,矩形线圈($B.l_1.l_2.\theta.I$) bc和da受力大小:

$$F_{1} = F_{1} = BIl_{1} \sin(\frac{\pi}{2} + \theta)$$
 $= BIl_{1} \cos \theta$ 方向如图

ab和cd受力大小:

形成力偶。

$$F_2 = F_2' = BIl_2 \sin \frac{\pi}{2} = BIl_2$$
 方向如图
$$\therefore \sum \vec{F} = 0$$
 $F_1 \approx F_1' + f_1' + f_2 \approx F_2' = F_2' = F_1'$

力偶矩(磁力矩):

$$\vec{M} = \vec{P}_{m} \times \vec{B}$$

大小: $M = \left| \vec{P}_m \times \vec{B} \right| = BP_m \sin \theta$

方向:右手法则

方向:垂直于纸面向外

方向

对于任意形状平面载流线圈等效于由许多小矩形线圈的组合,所以上式对任意形状平面载流线圈适用。

小结: 平面载流线圈在均匀磁场中

$$\sum \vec{F} = 0$$
 不平动

$$\vec{M} = \vec{P}_m \times \vec{B}$$

 特动到 $\vec{P}_m = \vec{B}$ 同向:稳定平衡
 若 $\vec{P}_m = \vec{B}$ 反向:不稳定平衡。

非均匀磁场中:
$$\sum \vec{F} \neq 0$$
 不但转动, 还要平动, $\sum \vec{M} \neq 0$ 移向 \vec{B} 较强的区域。

例:

$$\vec{M}$$

$$\vec{P}_m = \frac{1}{5} k \pi R^5 \vec{\omega}$$

$$\vec{M} = \vec{P}_m \times \vec{B} \quad \left\{ \begin{array}{c} \text{大小} : M = \frac{1}{5} k \pi R^5 B \omega \\ \text{方向向上} \end{array} \right.$$

四、磁力的功

1. 载流导线运动

$$A = Faa' = BIlaa' = BI\Delta S = I\Delta\phi_m$$

2. 矩形载流线圈转动

$$M = P_m B \sin \theta = BIS \sin \theta \quad \notin \theta \downarrow$$

$$dA = -Md\theta = -BIS \sin\theta d\theta$$
$$= Id(BS \cos\theta) = Id\phi_m$$

$$A = \int \mathrm{d}A = I\Delta\phi_m(I$$
为恒量)

3. 推广:

磁力的功=电流强度×穿过回路磁通量增量 =电流强度×载流导线切割磁力线条数 例4(P_{282} 10.19):等腰直角三角形直角边为a,通电流I,置于均匀磁场B中:(1)若CD固定,A向纸外绕CD转 $\pi/2$,(2)若AD固定,C向纸内绕AD转 $\pi/2$,,求两种情况下做多少功?

解:设 \overline{S} 与I成右旋关系,即向外为正。 $\phi_{m0} = BS \cos 90^{\circ} = 0, \Delta \phi_{m} = \phi_{m1} - \phi_{m0} = \phi_{m1}$ (1) A绕CD向外转 $\pi/2$:

$$\Delta \phi_m = \phi_{m1} = BS \cos 90^\circ = 0$$
$$\therefore A = I\Delta \phi_m = 0$$

(2) C绕AD向内转π/2:

$$\Delta \phi_m = \phi_{m1} = BS \cos(\frac{3}{4}\pi) = -\frac{\sqrt{2}}{2}BS = -\frac{\sqrt{2}}{4}Ba^2$$

$$\therefore A = I\Delta \phi_m = -\frac{\sqrt{2}}{4}IBa^2$$

作业

- 1. No. 10 (希望在作业题纸中选择、填空各题的相应位置处写出其关键步骤):
- 2. 自学本章各例题并完成书上的习题(对照书后的参考答案自己订正)。

第十五周星期三交作业

第五节 磁介质

- 一、磁介质
- 二、顺磁质和抗磁质的磁化
- 三、磁化状态的描述
- 四、磁介质的安培环路定理

一、磁介质

设真空中长直螺线管线圈中电流为1. 内部磁感 应强度大小为 B_0 ,则当在螺线管中充满某种磁介 质时, 电流仍为I, 螺线管内的磁感应强度为:

$$\boldsymbol{B} = \boldsymbol{\mu_r} \boldsymbol{B_0}$$

其中: μ_r 为磁介质的相对磁导率. 且 $\chi_m = \mu_r - 1$ 为磁化率。

磁介质与电介质比较

	电介质	磁介质	
分子模型	电偶极子	分子 {分子中所有原子(电 子,原子核)固有磁 电流 矩的等效电流	
分类	有极分子 $\vec{p}_e \neq 0$, $\sum \vec{p}_e = 0$ 电介质	顺磁质 $\vec{p}_m \neq 0$, $\sum \vec{p}_m = 0$	
	无极分子 $\vec{p}_e = 0$, $\sum \vec{p}_e = 0$ 电介质	抗磁质 $\vec{p}_m = 0$, $\sum \vec{p}_m = 0$	
外场中	极化	磁化	

顺 **无外磁场:**磁 质

抗磁 •

二、顺磁质和抗磁质的磁化

外场 \vec{B}_0 中: 磁介质将会磁化, 以顺磁质为例:

$$\vec{M} = \vec{p}_m \times \vec{B}_0$$

- (1)转向
- (2)产生与 \vec{B}_0 反向的 附加磁矩 $\Delta \vec{p}_m$

抗磁质:

相当于上图中两种情况叠加,仍产生与 \vec{B} 。反向的附加磁矩。

分子模型:分子电流

二、顺磁质和抗磁质的磁化

宏观效果

1. 介质中总磁矩不为零

顺磁质:

$$\sum \vec{p}_m + \sum \Delta \vec{p}_m \approx \sum \vec{p}_m \neq 0$$
 与 \vec{B}_0 同 向

抗磁质:

$$\sum \Delta \vec{p}_m \neq 0$$
 与 \vec{B}_0 反向

二、顺磁质和抗磁质的磁化

2. 介质表面出现磁化电流 顺磁质

 $I_{\rm s}$ 与 \vec{B}_0 成右旋关系

抗磁质

 $I_{\rm s}$ 与 \vec{B}_0 成左旋关系

二、顺磁质和抗磁质的磁化

三、磁化状态的描述

磁化强度:

$$ec{M} = rac{\sum ec{p}_m + \sum \Delta ec{p}_m}{\Delta V}$$

$$= rac{I_s \cdot S ec{n}}{LS} = j_s ec{n}$$
磁化电流的线密度

磁化强度与磁化电流的关系:

$$\oint_{L'} \vec{M} \cdot d\vec{l} = Ml = j_s l = \sum_{(\vec{x} \not \supseteq L')} I_s$$

以抗磁质为例

三、磁化状态的描述

四、磁介质的安培环路定理

安培环路定理: 传导电流 磁化电流

$$\oint_{L} \vec{B} \cdot d\vec{l} = \mu_{0} \sum_{(L \nmid 1)} I = \mu_{0} \sum_{(L \mid 1)} (\vec{I}_{0} + \vec{I}_{s}) = \mu_{0} (\sum I_{0} + \oint_{L} \vec{M} \cdot d\vec{l})$$

$$\oint_L (\frac{B}{\mu_0} - \vec{M}) \cdot d\vec{l} = \sum_{(L \nmid 1)} I_0$$

令
$$\vec{H} = \frac{B}{\mu_0} - \vec{M}$$
 为磁场强度 — 与空间 I_0 , I_s 均有关。

则:
$$\oint_L \vec{H} \cdot d\vec{l} = \sum_{(Lh)} I_0 \longrightarrow 磁介质中的安培环路定理$$

注意: $(\vec{H} \cdot d\vec{l})$ 只与穿过 \vec{L} 的传导电流代数和有关。

四、磁介质的安培环路定理

对各向同性磁介质: $\vec{M} = \chi_m \vec{H}$

由
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$$
 得

$$\vec{B} = \mu_0(\vec{H} + \vec{M}) = \mu_0(1 + \chi_m)\vec{H}$$

又 $\mu_r = 1 + \chi_m$ 为介质的相对磁导率,则:

$$\vec{B} = \mu_0 \mu_r \vec{H}$$

令 $\mu = \mu_0 \mu_r$ 为介质磁导率,则:

$$\vec{B} = \mu \vec{H}$$

真空中:
$$\mu_r=1$$
, $\mu=\mu_0$, $\bar{B}=\mu_0 H$

+磁化率,与方向无关

 μ_r 为图中曲线的斜率。

四、磁介质的安培环路定理

练习:

关于磁场强度H的下列说法中, 正确的是:

- (A) H仅与传导电流有关。
- (B) 若闭合曲线内没有包围传导电流,则曲线上各点的H必为零。
- (C)若闭合曲线上各点H均为零,则该曲线所包围的传导电流代数和为零。
- (D)以闭合曲线为边界的任意曲面的H通量均相等。

答案: C