Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau und Bauingenieurwesen

Prof. Dr. Thomas Carraro Dr. Ulrike Kochan-Eilers

Mathematik II/B (WI/ET)

Blatt 2

WT 2025

Grenzwerte, Stetigkeit, Ableitungen

Einführende Bemerkungen

• Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.

Aufgabe 2.1: Funktionenlimes

a) Gegeben sei die Funktion

$$f(x) := \frac{x^3 + |x+1| + \operatorname{sign}(x+1)}{\operatorname{sign} x}, \ x \in D(f) := \mathbb{R}.$$

Bestimmen Sie $\lim_{x\to 0+} f(x)$, $\lim_{x\to 0-} f(x)$, $\lim_{x\to (-1)+} f(x)$ und $\lim_{x\to (-1)-} f(x)$.

b) Gegeben sei die Funktion

$$f(x) = \frac{\sinh x}{\cosh(ax)}, \quad a \in \mathbb{R}.$$

Bestimmen Sie $\lim_{x \to \pm \infty} f(x)$.

Hinweise:

- Mit der zunächst als bekannt vorausgesetzten Exponentialfunktion \mathbf{e}^x gilt

$$sinh x := \frac{e^x - e^{-x}}{2} \quad \text{und} \quad cosh x := \frac{e^x + e^{-x}}{2}.$$

- Die Signum-Funktion liefert das Vorzeichen des Argumentes:

$$\operatorname{sign}(z) = \begin{cases} +1 & , z \ge 0 \\ -1 & , z < 0 \end{cases}$$

Aufgabe 2.2: Grenzwert Analyse - Definition

- a) Notieren Sie die Definition des Grenzwertes und zeigen Sie, dass die Folge $a_n = \frac{1}{n}$ gegen den Grenzwert a = 0 konvergiert. (Dies ist gleichbedeutend mit dem Nachweis, dass $\forall k \in \mathbb{N}$ eine Zahl $N \in \mathbb{R}$ existiert, so dass für alle $n \in \mathbb{N}$ mit n > N gilt: $|a_n - a| < 10^{-k}$).
- b) Berechnen Sie den Grenzwert $a = \lim_{n \to \infty} a_n$ der untenstehenden Folgen und dokumentieren Sie die Rechenregel, die Sie zur Berechnung des Grenzwertes verwendet haben (Produktregel, Einschließungssatz, Produkt beschränkter Folgen, Produkt von Nullfolgen etc).

i)
$$a_n = \frac{n^2 + 5n}{3n^2 + 1}$$
 ii) $a_n = \log_{10}(10n^2 - 2n) - \log_{10}(n^2 + 1)$

iii)
$$a_n = \frac{(n+1)!}{n! - (n+1)!}$$
 iv) $a_n = \left(1 + \frac{1}{n}\right)^{3n}$

$$\mathbf{v)} \qquad a_n = \frac{\cos n}{n} \qquad \qquad \mathbf{vi)} \quad a_n = \sqrt{n+1} - \sqrt{n}$$

$$\mathbf{vii)} \quad a_n = \frac{2^n}{n!}$$

Aufgabe 2.3: Ableitungen

Berechnen Sie die erste Ableitung der folgenden Funktionen

$$\mathbf{a}) \quad f(x) = x^x$$

$$\mathbf{b}) \quad g(x) = x^{3^x}$$

$$\mathbf{c}) \quad h(x) = x^{\cos(x)}$$

Aufgabe 2.4: Differenzieren

Bestimmen Sie jeweils die erste Ableitung. Zur Kontrolle sind die Werte der Ableitung an Kontrollpunkten angegeben. (Eventuell notwendige Beschränkungen des Definition-

1

sgebietes sind nicht angegeben.)

$$f_{1}(t) = 3t^{4} - 4t + 7, f_{2}(t) = (2t - 3)^{4}, f_{3}(t) = t^{3} (t + 3)^{4}$$

$$f_{4}(t) = 3\cos(2t), f_{5}(t) = \sin^{2}(3t), f_{6}(t) = \tan(2 - t/2)$$

$$f_{7}(t) = \frac{2t - 3}{(t + 2)^{3}}, f_{8}(t) = \frac{4t\sin(t)}{\cos(2t)}, f_{9}(t) = t^{2}e^{\sqrt{t}}$$

$$f_{10}(t) = \sqrt{t\sqrt{t\sqrt{t}}}, f_{11}(t) = e^{\frac{1}{1+t^{2}}}, f_{12}(t) = \tan(t)$$

$$f_{13}(t) = \frac{t + \cos(t)\sin(t)}{2}, f_{14}(t) = \frac{t^{2} - t + 2}{2t + 3}, f_{15}(t) = \frac{\sin^{2}(t)}{\cos(t)}$$

Aufgabe 2.5: Differentiation

a) Geben Sie die Konstanten $b, c, d \in \mathbb{R}$ an, damit die Funktion

$$g(x) = \begin{cases} bx^3 + cx^2 + d & \text{für } x \le 1\\ \ln x & \text{für } x > 1 \end{cases}$$

auf \mathbb{R} zweimal differenzierbar ist.

Ist g(x) für diese Wahl auch dreimal differenzierbar?

b) Zeigen Sie, dass die Funktion

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} x \sin(1/x) & \text{für } x \neq 0, \\ 0 & \text{für } x = 0 \end{cases}$$

in x = 0 stetig ist, aber *nicht* differenzierbar.

Hinweis: Betrachten Sie zur Untersuchung der Differenzierbarkeit die Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n=\frac{1}{n\pi+\pi/2}$.

Ergebnisse zu Aufgabe 2.1:

a)
$$\lim_{x \to 0\pm} f(x) = \pm 2$$
, $\lim_{x \to -1\pm} f(x) = 1 \pm (-1)$

b)
$$\lim_{x \to \infty} f(x) = \begin{cases} 0, & |a| > 1\\ 1, & |a| = 1\\ \infty, & |a| < 1 \end{cases}$$

Ergebnisse zu Aufgabe 2.2:

- b)
- **i**) $a = \frac{1}{3}$
- a=1
- **iii**) a = -1
- \mathbf{iv}) $a = e^3$
- \mathbf{v}) a=0
- $\mathbf{vi}) \quad a = 0$
- $\mathbf{vii}) \quad a = 0$

Ergebnisse zu Aufgabe 2.3:

- $f'(x) = x^x (\ln(x) + 1)$
- $g'(x) = x^{3^x} \left(\ln(3) \, 3^x \ln(x) + \frac{3^x}{x} \right)$
- $h'(x) = x^{\cos(x)} \left(\frac{\cos(x)}{x} \ln(x)\sin(x) \right)$

Ergebnisse zu Aufgabe 2.4:

$$f'_{1}(2) = 92, f'_{2}(2) = 8, f'_{3}(2) = 11500,$$

$$f'_{4}(\pi/3) = -3\sqrt{3}, f'_{5}(\pi/3) = 0, f'_{6}(4 + 2\pi) = -1/2,$$

$$f'_{7}(2) = 5/256, f'_{8}(\pi/3) = \frac{20\pi}{3} - 4\sqrt{3}, f'_{9}(4) = 12e^{2},$$

$$f'_{10}(256) = \frac{7}{16}, f'_{11}(2) = -\frac{4e^{1/5}}{25}, f'_{12}(\pi/3) = 4,$$

$$f'_{13}(\pi/3) = \frac{1}{4}, f'_{14}(2) = \frac{13}{49}, f'_{15}(\pi/3) = \frac{5\sqrt{3}}{2}$$