Exploratory Data Analysis (EDA) and Visualization Data Mining

Edgar Roman-Rangel. edgar.roman@itam.mx

Department of Computer Science. Instituto Tecnológico Autónomo de México, ITAM.

Outline

EDA

Visualization

EDA

Exploratory data analysis (EDA).

- Consists in getting an overall picture of our data (exploring and investigating).
- ► It focuses on looking at the "position" and dispersion of each variable, and ultimately at its distribution.
- ▶ It also looks at the correlations between pairs of variables (univariate, bivariate, multivariate).
- It might as well include data cleaning.

The general goal of an EDA is: to get an overview of our data, and to identify useful and useless variables.

Centrality

Location - typical value of a variable.

- mean,
- median,
- mode,
- expected value,
- weighted mean,
- trimmed mean.

Dispersion

Variability of our data around its location.

- standard deviation,
- variance.
- mead absolute deviation (MAD).
- mead absolute deviation from the median.
- entropy,
- range,
- quantiles,
- interquartile range.

Distributions

More generally, we could be interested in being able to describe a variable using its distribution, either parametric or non-parametric.

- parametric: binomial, Gaussian, uniform, other.
- non-parametric: kernel density estimation and visualization tools.
- visualization tools: boxplots, frequency tables, histograms, density plots, scatter plots, etc.

Kernel Density Estimation

We can estimate (approximate) the probability density function of a dataset by the sum of **base density functions** (kernels), located at each sample point.

- which standard deviation?,
- which kernel function (Gaussian, triangle, square).

Other analyses

More generally, we could be interested in being able to describe a variable using its distribution, either parametric or non-parametric.

- minimum and maximum,
- biases and skewness,
- anomalies,
- temporal patterns,
- correlations and collinearities.

Binary, categorical, and ordinal variables

There are some tools that are preferred for categorical-like data. For instance.

- Frequency table for categorical or binned real-valued variables,
- histograms (including empty bins),
- bar or pie charts,
- mode and expected value.

Correlations

Often, we would like to explore more that one variable at a time,

- Correlation between pairs of independent variables,
- correlation between each independent variable and the target variable.

Depending on the type of data, correlation can be estimated by,

- Spearman, Pearson,
- mutual information,
- ANOVA test.

Visualization of correlations

Some visualization tools for this type of analysis are,

- ► Correlation matrix (with p-values),
- scatter plots,
- hexagonal binning chart for numeric data,
- contour plots for numeric data,
- contigency table (joint counting of possible outcome) for categorical data,
- boxplots with each box = possible outcome for categorical and numeric data.
- violin plot (extension of boxplot showing density).

ITAM

Outline

EDA

Visualization

Introduction

Plotting allows to present informative summaries of our data.

Plots and charts are a good tool to help the EDA.

Some common plot types include,

- ► line, scatter, bar, pie,
- histogram, boxplot, heatmaps,
- scatter matrices, correlation matrices,
- tree maps, network graphs.

Line and scatter

Bar and pie

Frequency table

Table 1-5. A frequency table of population by state

			*
BinNumber	BinRange	Count	States
1	563,626-4,232,658	24	WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE,WV,NM,NV,UT,KS,AR,MS,IA,CT,OK,OF
2	4,232,659– 7,901,691	14	KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,MA,WA
3	7,901,692– 11,570,724	6	VA,NJ,NC,GA,MI,OH
4	11,570,725– 15,239,757	2	PA,IL
5	15,239,758– 18,908,790	1	FL .
6	18,908,791– 22,577,823	1	NY
7	22,577,824— 26,246,856	1	TX
8	26,246,857— 29,915,889	0	
9	29,915,890— 33,584,922	0	
10	33,584,923- 37,253,956	1	CA

Histogram and boxplot

Heatmap and radar

ITAM

Correlation

Contour plots and Hexagonal binning

Network graphs

Others

References

Jiawei Han, Micheline Kamber, Jian Pei.

"Data Mining Concepts and Techniques". Ch 2.2, and Ch 3.2.

Elsevier. 2012.

EDA example.

https://medium.datadriveninvestor.com/step-by-step-exploratory-data-analysis-of-titanic-dataset-2d0fb09b0e86

Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C.Lichtendahl, Jr.

"Data Mining for Business Analytics: Concepts, Techniques, and Applications in \mathbb{R} ". Ch 3.

Wiley. 2018.

Matplotlib.

https://matplotlib.org/

Seaborn.

https://seaborn.pydata.org/index.html

Q&A

Thank you!

edgar.roman@itam.mx