Finite Automata Sheet

Gallo Tenis

April 10, 2025

Automata theory problems from the book "Automata Theory, Languages, and Computation" by J. Ullman.

DFA and NFA equivalence

1. (Equivalence theorem.) If $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is the DFA constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ by the subset construction, then L(D) = L(N). Conversely if L is a language that is accepted by some DFA then it is accepted by some NFA.

Proof. By definition of language of both N and a generic DFA

$$L(N) := \{ w \in \Sigma^* : \hat{\delta}_N(q_0, w) \cap F_N \neq \emptyset \}$$

$$L(D) := \{ w \in \Sigma^* : \hat{\delta}_D(\{q_0\}, w) \in F_D \}$$

In our case, let $S = \hat{\delta}_D(\{q_0\}, w)$ (which is a state made of a set of F_N), then

$$S \in F_D \iff S \cap F_N \neq \emptyset$$
.

In other words, the only thing to prove is that for any $w \in \Sigma^n$

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w).$$

We need to rely in the transition function constructed by subsets out of $\hat{\delta}_N$. By induction on n = |w|:

Basis. Assume n=0 so that $w=\varepsilon$. Then the construction by subsets transition function will simply be $\delta_D(\{q_0\},\varepsilon)=\{q_0\}$ then also we have

$$\hat{\delta}_D(\{q_0\}, \varepsilon) = q_0 = \hat{\delta}_N(q_0, \varepsilon).$$

Thus we conclude that $\delta_D = \hat{\delta}_D = \hat{\delta}_N$ (under renaming the singleton set $\{q_0\}$ as q_0).

Hypothesis. Assume that for the string x of length n it held that

$$\hat{\delta}_D(\{q_0\}, x) = \hat{\delta}_N(q_0, x) = \{p_1, \dots, p_m\} = S.$$

Thesis. We have to prove that for a string w = xa such that n = |x| it follows that

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w).$$

To prove this assertion we recall the definition of $\hat{\delta}_D$ for any DFA and compare it to the one constructed by subsets. We have that

$$\hat{\delta}_D(\{q_0\}, w) \stackrel{def}{=} \delta_D(\hat{\delta}_D(\{q_0\}, x), a) \tag{1}$$

$$\delta_D(S, a) \stackrel{c.b.s.}{=} \bigcup_{p \in S} \delta_N(p, a) = \bigcup_{i=1}^m \delta_N(p_i, a).$$
 (2)

Note that in (2), by construction S is a subset of Q_N such that

$$\hat{\delta}_D(\{q_0\}, w) = \delta_D(\hat{\delta}_D(\{q_0\}, x), a) = \delta_D(S, a)$$
(3)

hence, the transition function constructed by subsets is a valid transition function for D. Furthermore by equation (1)

$$\hat{\delta}_D(\{q_0\}, w) = \bigcup_{i=1}^m \delta_N(p_i, a).$$

We also note that in the case of the extended transition function of N

$$\hat{\delta}_N(q_0, w) \stackrel{def}{=} \bigcup_{i=1}^m \delta_N(p_i, a) = \delta_D(S, a) \stackrel{\text{(3)}}{=} \hat{\delta}_D(\{q_0\}, w).$$

Since Conversely, to prove that a DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ induced language is the same as some NFA language, by structural induction on n, the length of the input string, we define the NFA N as

Basis. We let the start state q_0 of D be the start state also of N. So that for $w = \varepsilon$, $\hat{\delta}_D(\{q_0\}, \varepsilon) = \hat{\delta}_N(q_0, \varepsilon)$.

Hypothesis. For |x| = n suppose $\hat{\delta}_D(\{q_0\}, x) = p_n$ then we let $\hat{\delta}_N(q_0, x) = \{p_n\}$.

Thesis. For w = xa with |w| = n + 1, by hypothesis

$$\hat{\delta}_D(\{q_0\}, w) = \delta_D(\hat{\delta}_D(\{q_0\}, x), a) = \delta_D(p_n, a) = p_{n+1}.$$

We let $\hat{\delta}_N(q_0, w) = \{p_{n+1}\}.$

2. (Worst case.) Show that there exists a NFA with n states such that equivalent DFA has 2^n states.

Solution. We shall build an NFA that accepts univocally the language

 $\{w \in \{0,1\}^* : \text{ the } n\text{-th symbol from the end of } w \text{ is } 1\}.$

We first construct an NFA of this language having n states. By structural induction on |w|

Basis.

Hypothesis.

Thesis.

3. Prove that if N is an NFA that has at most one choice of state for any state and input symbol (i.e., $\delta(q,a)$ never has size greater than 1), then the DFA D constructed from N by the subset construction has exactly the states and transitions of N plus transitions to a new dead state whenever N is missing a transition for a given state and input symbol.

Solution. Let $Q_N = q_0, q_1, \ldots, q_n$. Consider the maximal case in which each state except possibly the last one has exactly one transition. Therefore the automaton is isomorphic to

$$\operatorname{start} \longrightarrow \overbrace{q_0} \xrightarrow{a_1} \overbrace{q_1} \xrightarrow{a_2} \cdots \xrightarrow{a_{n-1}} \overbrace{q_{n-1}} \xrightarrow{a_n} \overbrace{q_n}$$

It is clear that the NFA described must accept only strings w of lenght n. Else, for the sake of contradiction, suppose that the lenght were k > n then, by pigeonhole principle there must exist at least one state q_i such that for a symbol a_i ; $\delta_N(q_i, a_i) = \{p, r\}$, contradicting the fact that $\delta_N(q, a)$ is a singleton (supposing that k < n yields the same contradiction, but we get an unused state instead).

We claim that $\hat{\delta}_N(q_0, w) = \{q_n\}$ this is, $\hat{\delta}_N(q_0, w)$ is a singleton. To prove this claim, by induction on n the amount of states (not counting the starting one) and the length of the accepted strings

Basis. If n = 1, then by problem hypothesis

$$\hat{\delta}_N(q_0, a_1) = \delta_N(q_0, a_1) = \{q_1\}.$$

Hypothesis. Assume that for n states and for a string $x = a_1 \dots a_n$ we had

$$\hat{\delta}_N(q_0, x) = \{q_n\}.$$

Thesis. We have to prove that for n+1 states and for a string xa_{n+1}

$$\hat{\delta}_N(q_0, xa_{n+1}) = \{q_{n+1}\}.$$

By hypothesis,

$$\hat{\delta}_N(q_0, x a_{n+1}) = \bigcup_{p \in \hat{\delta}_N(q_0, x)} \delta_N(p, a_{n+1}) = \bigcup_{p \in \{q_n\}} \delta_N(p, a_{n+1}) = \delta_N(q_n, a_{n+1})$$

so by construction,

$$\delta_N(q_n, a_{n+1}) = \{q_{n+1}\}.$$

By induction on k the length of any accepted string (and the amount of states distincts from the starting one), we claim that the equivalent DFA yields the same states as the NFA plus a dead state.

Basis. For k = 2 consider the transition table for the NFA,

$$\begin{array}{c|c|c} & a_1 & a_2 \\ \hline \rightarrow q_0 & \{q_1\} & \varnothing \\ q_1 & \varnothing & \{q_2\} \\ *q_2 & \varnothing & \varnothing \\ \end{array}$$

Then, the transition table for the equivalent DFA will be

	a_1	a_2
Ø	Ø	Ø
$\rightarrow q_0$	$\{q_1\}$	Ø
q_1	Ø	$\{q_2\}$
$*q_2$	Ø	Ø
$\{q_0,q_1\}$	$\{q_1\}$	$\{q_2\}$
$*\{q_0, q_2\}$	$\{q_1\}$	Ø
$*\{q_1, q_2\}$	Ø	$\{q_2\}$
$*\{q_0, q_1, q_2\}$	$\{q_1\}$	$\{q_2\}$

Changing names of states we see that

	a_1	a_2
Ø	Ø	Ø
$\rightarrow q_0$	$\{q_1\}$	Ø
q_1	Ø	$\{q_2\}$
$*q_2$	Ø	Ø
A	$\{q_1\}$	$\{q_2\}$
*B	$\{q_1\}$	Ø
*C	Ø	$\{q_2\}$
*D	$\{q_1\}$	$\{q_2\}$

so that in particular, A and D are the same state, B is the same state as q_0 and C is the same state as q_1 . Furthermore, we see that A, D are unreachable. We conclude that for k=2 the transition table for the NFA is

$$\begin{array}{c|c|c|c} & a_1 & a_2 \\ \hline \varnothing & \varnothing & \varnothing \\ \rightarrow q_0 & \{q_1\} & \varnothing \\ q_1 & \varnothing & \{q_2\} \\ *q_2 & \varnothing & \varnothing \\ \end{array}.$$

Hypothesis. Assume that for a string $x = a_1 \dots a_k$ of length k it held that for an NFA N with states $Q_N = \{q_0, \dots, q_k\}$ the equivalent DFA had same k states as the NFA plus one dead state: $Q_D = \{q_0, \dots, q_k, \varnothing\}$.

Thesis. Consider the string $a_1 ldots a_k a_{k+1} = x a_{k+1}$, this case can be seen by adding a column a_{k+1} , hence by the first claim,

$$\hat{\delta}_N(q_0, xa_{k+1}) = \bigcup_{i=1}^k \delta_N(q_i, a_{k+1}) = \{q_{k+1}\}$$

so that the DFA also transitions to the singleton $\{q_{k+1}\}$ only in the state q_k by subset construction. Then, necessarily q_{k+1} transitions to \varnothing since there are not further states.

We see that by hypothesis all the subsets of $\{q_0, \ldots, q_k\}$ that are not singletons are unreachable, then since the only reachable state starting from q_k is q_{k+1} and q_{k+1} transitions to \emptyset , it follows that any subset state of $\{q_1, \ldots, q_k, q_{k+1}\}$ is unreachable.

ε -NFA

Regular expressions