

Features

- · Meet the ISO 11898 Standard
- Support CAN FD and Data Rates up to 5 Mbps
- · Typical Loop Delay: 110 ns
- 5V Power Supply, 3.0 V~5.5 V IO Interface
- Receiver Common-Mode Input Voltage: ±30 V
- Bus Fault Protection: ±42 V
- Up to 110 Nodes in CAN Network
- Junction Temperatures from –40°C to 150°C
- · Latch-Up Performance Exceeds 500 mA
- · BUS Pin ESD Protection:
 - ±8 kV Human-Body Model
 - ±1.5 kV Charged-Device Model

Applications

- All Devices Support Highly Loaded CAN Networks
- Field Industrial Automation, Sensors, and Drive Systems
- · Building, Security Control Systems
- Energy Storage Systems
- Telecom Base Station Status and Control

Description

The TPT1051V is a CAN transceiver that meets the ISO11898 High Speed CAN (Controller Area Network) physical layer standard. The device is designed to use in CAN FD networks up to 5 Mbps, and enhanced timing margin and higher data rates in long and highly loaded networks. As designed, the device features cross-wire, overvoltage, loss of ground protection from –42 V to +42 V, overtemperature shutdown, and a –30V to +30V common-mode range. TPT1051V has a secondary power supply input for I/O level shifting the input pin thresholds and RXD output level, and the device comes with silent mode which is also commonly referred to as listen-only mode, and it includes many protection features to enhance the device and network robustness.

TPT1051V is available in SOP8 and DFN8L packages, and is characterized from -40°C to +125°C.

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	
Revision History	
Pin Configuration and Functions	
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
Recommended Operating Conditions	[
ESD Electrostatic Discharge Protection	6
Thermal Information	6
Power Consumption	6
Electrical Characteristics	7
AC Timing Requirements	10
Detailed Description	11
Overview	11
Functional Block Diagram	11
Feature Description	12
Driver Function Table	12
Receiver Function Table	12
Normal Mode	12
Silent Mode	12
Tape and Reel Information	13
Package Outline Dimensions	14
SOP8	14
DFN3x3-8L	15
Order Information	16
IMPORTANT NOTICE AND DISCLAIMER	17

2 / 17

Revision History

Date	Revision	Notes
2020/2/18	Rev. Pre 0.0	Initial Version
2020/4/24	Rev. Pre 0.1	Updated ESD level
2020/5/18	Rev. Pre 0.2	Updated electrical parameter
2020/6/17	Rev. Pre 0.3	Added DFN3x3-8L package
2020/6/30	Rev.0	Released Version
2020/12/25	Rev.A.0	Updated the notes for Absolute Maximum Ratings
2022/7/25	Rev.A.1	Updated the POD of SOP8 and DFN3X3-8L
2022/9/28	Rev.A.2	Updated the package drawing of DFN3X3-8L

Pin Configuration and Functions

Table 1. Pin Functions: TPT1051V

Р	in	I/O	Description
NO.	Name	1/0	Description
1	TXD	ı	CAN transmit data input
ľ	TAB	ı	(LOW for dominant and HIGH for recessive bus states)
2	GND	GND	Ground
3	VCC	POWER	Transceiver 5 V supply voltage
4	RXD	0	CAN receive data output
4	KXD		(LOW for dominant and HIGH for recessive bus states)
5	VIO	POWER	Transceiver I/O level shifting supply voltage
3	VIO	FOWER	(Devices with "V" suffix only)
6	CANL	BUS I/O	Low level CAN bus input/output line
7	CANH	BUS I/O	High level CAN bus input/output line
8	S	I	Silent Mode control input (active high)

Specifications

Absolute Maximum Ratings(1)

	Parameter	Condition	Min	Max	Unit
Vcc	5-V Bus Supply Voltage Range		-0.3	7	٧
Vio	I/O Level-Shifting Voltage Range		-0.3	7	V
V _{BU} s	CAN Bus I/O Voltage Range (CANH, CANL)		-42	42	V
$V_{(Logic_Input)}$	Logic Input Terminal Voltage Range (TXD, S)		-0.3	7	٧
V _(Logic_Output)	Logic Output Terminal Voltage Range (RXD)		-0.3	7	V
IO(RXD)	RXD (Receiver) Output Current		-8	8	mA
$T_{j(max)}$	Maximum Junction Temperature		-40	150	°C
T_{stg}	Storage Temperature Range		– 65	150	°C

Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Recommended Operating Conditions

	Parameter	Condition	Min	Max	Unit
Vi/o	Input/output voltage SCL1, SDA1, SCL2, SDA2		3.0	5.5	٧
VCC	Power supply		4.5	5.5	٧
IOH(RXD)	RXD terminal HIGH level output current		-2		mA
IOL(RXD)	RXD terminal LOW level output current			2	mA
T _A	Operating ambient temperature		-40	125	°C

⁽¹⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

⁽²⁾ This data was taken with the JEDEC standard multilayer test boards.

ESD Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	HBM, per ANSI/ESDA/JEDEC JS-	Bus Pin	±8	kV
	001	All Pins Except Bus Pin	±8	kV
CDM	CDM, per ANSI/ESDA/JEDEC JS- 002	All Pins	±1.5	kV
LU	LU, per JESD78	All Pins	±500	mA

Thermal Information

Package Type	Ө ЈА	Ө лс	Unit
SOIC-8	148	48	°C/W
DFN3x3-8	52	23	°C/W

Power Consumption

	Parameter	Test Condition	Value	Unit
Po		VCC = 5 V, VIO = 3.3 V (if applicable), Ta = 25° C, RL = 60Ω , S at 0 V, Input to TXD at 250 kHz, CL_RXD = 15 pF. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate.	65	mW
P _D Average Power Diss	Average Power Dissipation	VCC = 5.5 V, VIO = 3.6 V (if applicable), Ta = 125° C, RL = 50Ω , S at 0 V, Input to TXD at 0.5 MHz, CL_RXD = 15 pF. Typical high load CAN operating conditions at 1 Mbps with 50% transmission (dominant) rate and loaded network.	135	mW

Electrical Characteristics

All test condition is V_{CC} = 4.5 V to 5.5 V, V_{IO} = 3.0 V to 5.5 V, T_A = -40°C to 125°C, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
	Normal Mode (dominant)	TXD = 0 V, R_L = 60 Ω , C_L = open, R_{CM} = open, S = 0 V		50	70	mA
		TXD = 0 V, R_L = 50 Ω , C_L = open, R_{CM} = open, S = 0 V		52	80	mA
ICC	Normal Mode (dominant – bus fault)	$TXD = 0 \text{ V, } S = 0V, \text{ CANH = -12V, } R_L = \text{ open,}$ $C_L = \text{ open, } R_{CM} = \text{ open}$		74	150	mA
	Normal Mode (recessive)	$TXD = V_{CC}, \ R_L = 50 \ \Omega, \ C_L = open, \ R_{CM} = open,$ $S = 0 \ V$		1.3	2.5	mA
	Silent Mode	TXD = V_{CC} , R_L = 50 Ω , C_L = open, R_{CM} = open, $S = V_{CC}$		1.3	2.5	mA
lio	Normal and Silent Modes	RXD Floating, TXD = S = 0 or VIO		73	300	μA
	Rising Undervoltage Detection on VCC for Protected Mode			4.0	4.4	V
UV _{VCC}	Falling Undervoltage Detection on VCC for Protected Mode		3.6	3.9	4.15	
VHYS(UVVCC)	Hysteresis Voltage on UVVCC			200		mV
UV _{VIO}	Undervoltage Detection on VIO for Protected Mode		1.3		2.75	V
VHYS(UVVIO)	Hysteresis Voltage on UVVIO for Protected Mode			150		mV
Pin- S (Mod	e Select Input)		•			
VIH	High-level Input Voltage		0.7 x V _{IO}			
V _{IL}	Low-level Input Voltage				0.3 x V _{IO}	V
Іін	High-level Input Leakage Current	S = V _{CC} or V _{IO} = 5.5 V			30	
lıL	Low-level Input Leakage Current	S = 0 V, V _{CC} = V _{IO} = 5.5 V	-2	0	2	μA
Ilkg(OFF)	Unpowered Leakage Current	S = 5.5 V, V _{CC} = V _{IO} = 0 V	-1	0	1	
Pin- TXD (C	AN Transmit Data Input)		•			
VIH	High-level Input Voltage		0.7 x V _{IO}			.,
VIL	Low-level Input Voltage				0.3 x V _{IO}	V
Іін	High-level Input Leakage Current	S = V _{CC} or V _{IO} = 5.5 V	-2.5	0	1	
lıL	Low-level Input Leakage Current	S = 0 V, V _{CC} = V _{IO} = 5.5 V	-100	-63	- 7	μA
Ilkg(OFF)	Unpowered Leakage Current	TXD = 5.5 V, V _{CC} = V _{IO} = 0 V	-1	0	1	
Cı	Input Capacitance (1)			4.5		pF
		I .	1			1

Note: Typ data is based on bench test by LRC meter E4980AL.

Electrical Characteristics (Continued)

All test condition is V_{CC} = 4.5 V to 5.5 V, V_{IO} = 3.0 V to 5.5 V, T_A = -40°C to 125°C, unless otherwise noted.

Symbol	Parameter		Test Conditions	Min	Тур	Max	Unit
Pin- RXD (CAN Receive data output)						
Vон	High-level output voltage		Devices with the "V" suffix (I/O levelshifting), $I_{O} = -2 \text{ mA} \label{eq:IO}$	0.8 × V	lo		V
Vol	Low-level output voltage		Devices with the "V" suffix (I/O levelshifting), $I_0 = +2 \text{ mA}$			0.2 x V _{IO}	
likg(OFF)	Unpowered leakage current		RXD = 5.5 V, V _{CC} = 0 V, V _{IO} = 0 V	-1	0	1	μA
Driver elec	trical characteristics						
		CANH	TXD = 0 V, S = 0 V, 50 Ω \leq R _L \leq 65 Ω , C _L = open,	2.75		4.5	V
Vo(dom)	Bus output voltage (dominant	CANL	R _{CM} = open	0.5		2.25	V
Vo(REC)	Bus output voltage (recessive)	CANH CANL	$TXD = V_{CC}, V_{IO} = V_{CC}, S = V_{CC} \text{ or } 0 \text{ V}^{(2)}, R_L = \text{open}$ (no load), $R_{CM} = \text{open}$	2	0.5xVCC	3	٧
	Differential output voltage (dominant)		TXD = 0 V, S = 0 V, 45 Ω \leq R _L $<$ 50 Ω , C _L = open, R _{CM} = open	1.4		3	V
Vod(dom)		CANH CANL	TXD = 0 V, S = 0 V, 50 Ω \leq R _L \leq 65 Ω , C _L = open, R _{CM} = open	1.5		3	V
			TXD = 0 V, S =0 V, R_L = 2240 Ω , C_L = open, R_{CM} = open	1.5		5	V
.,			TXD = VCC, S = 0 V, RL = 60 Ω , CL = open, RCM = open	-120		12	mV
Vod(rec)	Vod(rec)	Vod(rec)	TXD = VCC, S = 0 V, RL = open (no load), CL = open, RCM = open	-50		50	mV
Vsүм	Transient symmetry (dominant or recess (Vo(CANH) + Vo(CANL)) / Vcc Note1	sive)	S at 0 V, R _{term} = 60 Ω , C _{split} = 4.7 nF, C _L = open, R _{CM} = open, T _{XD} = 250 kHz, 1 MHz		1.0		V/V
Vsym_dc	DC Output symmetry (dominant or rece (Vcc – Vo(CANH) – Vo(CANL)) Note1	ssive)	S = 0 V,R _L = 60 Ω , C _L = open, R _{CM} = open	-1	0.2	1	V
los(ss_dom)	Short-circuit steady-state output current	dominant	S at 0 V, V _{CANH} = -5 V to 40 V, CANH = open, TXD = 0 V	-100			mA
IO3(33_DOM)	Onor-onoun steady-state output current	Short-circuit steady-state output current, dominant				100	ША
los(ss_rec)	Short-circuit steady-state output current	, recessive	$-27~{ m V}~\leqslant~{ m VBUS}~\leqslant~32~{ m V}, { m Where}~{ m VBUS}={ m CANH}$ = CANL, TXD = VCC, all modes	-5		5	mA

Note1: Test data based on bench test and design simulation

Electrical Characteristics (Continued)

All test condition is V_{CC} = 4.5 V to 5.5 V, V_{IO} = 3.0 V to 5.5 V, T_A = -40°C to 125°C, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Receiver E	Electrical Characteristics				1	
Vсм	Common Mode Range, Normal Mode	S = 0 or Vcc or Vio	-30		+30	V
VIT+	Positive-going Input Threshold Voltage, all modes	S = 0 arV arV 20 V < 120 V			900	mV
VIT-	Negative-going Input Threshold Voltage, all modes	$S = 0$ or V_{CC} or V_{10} , $-20 \text{ V} \le V_{CM} \le +20 \text{ V}$	400			mv
VIT+	Positive-going Input Threshold Voltage, all modes	S = 0 = 1/4 = 20 V 5 V = 5 120 V			1000	>/
VIT-	Negative-going Input Threshold Voltage, all modes	S = 0 or V_{CC} or V_{IO} , -30 V \leq $V_{CM} \leq$ +30 V				mV
VHYS	Hysteresis Voltage (V _{IT+} - V _{IT-}) ⁽¹⁾	S = 0 or Vcc or Vio		115		mV
Ilkg(IOFF)	Power-off (unpowered) Bus Input Leakage Current	CANH = CANL = 5 V, V _{CC} = V _{IO} = 0 V			4.8	μΑ
Cı	Input Capacitance to Ground (CANH or CANL) (2)			35		pF
C _{ID}	Differential Input Capacitance (3)			20		pF
R _{ID}	Differential Input Resistance	$TXD = V_{CC} = V_{IO} = 5 \text{ V}, S = 0 \text{ V}, -30 \text{ V} \le V_{CM} \le +30$	30		80	kΩ
R _{IN}	Input Resistance (CANH or CANL)	V	15		40	kΩ
RIN(M)	Input Resistance Matching:	VCANH = VCANL = 5 V	-2%		+2%	
i siiv(ivi)	[1 - RIN(CANH) / RIN(CANL)] × 100%	VONVII - VONVE - U V	270		. 2 /0	

⁽¹⁾ The test data is based on the bench test and design simulation.

⁽²⁾ Typ data is based on the bench test by LRC meter E4980AL.

⁽³⁾ Typ data is based on the bench test by LRC meter E4980AL.

AC Timing Requirements

All test condition is V_{CC} = 4.5 V to 5.5 V, V_{IO} = 3.0 V to 5.5 V, T_A = -40°C to 125°C, unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Device Switching	Characteristics					
tPROP(LOOP1)	Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant	$S = 0 \text{ V}, \text{RL} = 60 \Omega,$		100	160	
tPROP(LOOP2)	Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive	CL = 100 pF, CL(RXD) = 15 pF		110	175	ns
tmode	Mode change time, from Normal to Silent or from Silent to Normal			0.15	10	μs
Driver Switching C	Characteristics					
tpHR	Propagation delay time, high TXD to driver recessive (dominant to recessive) Note1			70		
tpLD	Propagation delay time, low TXD to driver dominant (recessive to dominant) Note1	er $S = 0 \text{ V}, R_L = 60 \Omega,$ $C_L = 100 \text{ pF}, R_{CM} = \text{open}$		42		ns
tsk(p)	Pulse Skew (t _{pHR} - t _{pLD}) (1)			20		
tr	Differential Output Signal Rise Time (1)			45		
tF	Differential Output Signal Fall Time (1)			45		
ttxd_dto	Dominant Timeout	$S = 0 \text{ V}, R_L = 60 \Omega,$ $C_L = \text{open}$	1.2		3.8	ms
Receiver Switching	g Characteristics					
t _P RH	Propagation delay time, bus recessive input to high output (Dominant to Recessive) (1)			76		
tpDL	Propagation delay time, bus dominant input to low output (Recessive to Dominant) (1)	S = 0 V, C _{L(RXD)} = 15 pF		59		ns
tr	RXD Output Signal Rise Time Note1			10		
tF	RXD Output Signal Fall Time Note1			10		
FD Timing Parame	ters		•			
tbit(bus)	Bit time on CAN bus output pins with $t_{BIT(TXD)}$ = 500 ns, all devices		435		530	
tb11(b03)	Bit time on CAN bus output pins with $t_{BIT(TXD)}$ = 200 ns, G device variants only		155		210	
tour(pyp)	Bit time on RXD output pins with t _{BIT(TXD)} = 500 ns, all devices	$S = 0 \text{ V}, R_L = 60 \Omega, C_L = 100 \text{ pF},$ $C_{L(RXD)} = 15 \text{ pF},$	400		550	no
tbit(RXD)	Bit time on RXD output pins with $t_{BIT(TXD)}$ = 200 ns, G device variants only	$\Delta t_{\text{REC}} = t_{\text{BIT}(RXD)} - t_{\text{BIT}(BUS)}$	120		220	ns
Δtrec	Receiver timing symmetry with $t_{BIT(TXD)}$ = 500 ns, all devices		-65		40	
ZINEC	Receiver timing symmetry with $t_{BIT(TXD)}$ = 200 ns, G device variants only		-45		15	

Note1: Test data based on bench test and design simulation

Detailed Description

Overview

The TPT1051V is a CAN transceiver that meets the ISO11898 High Speed CAN (Controller Area Network) physical layer standard. The device is designed to use in CAN FD networks up to 5 Mbps, and enhanced timing margin and higher data rates in long and highly loaded networks. As designed, the device features cross-wire, overvoltage, loss of ground protection from -42 V to +42 V, overtemperature shutdown, and a -30V to +30V common-mode range. TPT1051V has a secondary power supply input for I/O level shifting the input pin thresholds and RXD output level, and the device comes with silent mode which is also commonly referred to as listen-only mode, and it includes many protection features to enhance the device and network robustness.

Functional Block Diagram

Feature Description

Driver Function Table

Device	Inputs		Out	Delege BUO 04-4-	
	S	TXD	CANH	CANL	Driven BUS State
All Devices	L or open	L	Н	L	Dominant
		H or Open	Z	Z	Recessive
	Н	X	Z	Z	Recessive

Receiver Function Table

Device Mode	CAN Differential Inputs VID = VCANH - VCANL	BUS State	RXD Terminal
Normal or Silent	$V_{ID} \ge V_{IT+(MAX)}$	Dominant	L
	$VIT-(MIN) \le VID \le VIT+(MAX)$	Indeterminate	Indeterminate
	$VID \leq VIT-(MIN)$	Recessive	Н
	Open (V _{ID} ≈ 0 V)	Open	Н

Normal Mode

A Low level on pin S selects the normal mode. In normal mode, the transceiver transmits and receives data via the bus lines CANH and CANL. The differential receiver converts the analog data on the bus lines into digital data which is output to pin RXD. The slopes of the output signals on the bus lines are controlled internally and optimized to guarantee the lowest possible Electro Magnetic Emission (EME).

Silent Mode

A High level on pin S selects the silent mode. In silent mode, the transmitter is disabled, releasing the bus pins to a recessive state. All other IC functions, including the receiver, continue to operate as in the normal mode, just like listen-only mode. Silent mode can be used to prevent a faulty CAN controller from disrupting all network communications.

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPT1051V-SO1R	SOP8	330.0	17.6	6.4	5.4	2.1	8.0	12.0	Q1
TPT1051V-DF6R	DFN3X3-8L	330.0	17.6	3.3	3.3	1.1	8.0	12.0	Q1

Package Outline Dimensions SOP8

DFN3x3-8L

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan	
TPT1051V-SO1R	-40 to 125°C	SOP8	T1051V	3	Tape and Reel, 4000	Green	
TPT1051V-DF6R	-40 to 125°C	DFN3x3-8	1051V	3	Tape and Reel, 4000	Green	

⁽¹⁾ For Future products, contact the 3PEAK factory for more information and sample.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.