Utilização de Redes Neurais Artificiais para Resolução de Problemas

Sabrina Eloise Nawcki

¹Bacharelado em Ciência da Computação - Universidade Tuiuti do Paraná (UTP) Curitiba - PR - Brasil

snawcki@gmail.com

Abstract. This article aims to analyze and summarize a work in the field of Artificial Intelligence that uses Artificial Neural Networks to solve a problem of climate forecasting.

Resumo. Este artigo tem por objetivo analisar e sumarizar um trabalho da área da Inteligência Artificial que utiliza Redes Neurais Artificiais para solucionar um problema de previsão climática.

1. Introdução

As redes neurais artificiais (RNA) são modelos computacionais com potencial de aprendizagem que podem ser utilizados para reconhecer padrões, agrupar, separar ou organizar dados. [Lima et al. 2014]

Neste artigo foi analisado e sumarizado um trabalho realizado por Purkote em 2019 para a aplicação da RNA a um problema de previsão climática.

Na seção 2 é apresentado a fundamentação teórica utilizada pelo autor do trabalho. Na seção 3 é apresentada a análise do problema que o autor visa resolver. Os resultados experimentais realizados pelo autor estão na seção 4.

2. Fundamentação Teórica

As redes neurais artificiais (RNA) são modelos computacionais com potencial de aprendizagem que podem ser utilizados para reconhecer padrões, agrupar, separar ou organizar dados por meio de

uma estrutura de processamento paralelo. [Lima et al. 2014]

Os modelos de RNA foram inspirados no funcionamento do cérebro e neurônio biológico humano, portanto são compostos por neurônios, que calculam funções matemáticas e são interligados em uma ou mais camadas por meio de conexões. [Castro and Ferrari 2016] [Braga et al. 2000]

Para a resolução do problema, o trabalho utilizou a RNA do tipo MLP (*Multi Layer Perception*). O MLP possui uma ou mais camadas ocultas entre a entrada e saída atuando na obtenção de características e padrões nos dados de entrada, desta forma a rede gera sua própria relação de classificação. [Yegnanarayana 2006]

3. Análise do Problema

O problema analisado pelo trabalho foi a aplicação da RNA para previsão de chuvas na Austrália a partir de uma base de dados inicial da plataforma *Kaggle*. Os dados representam diariamente as condições meteorológicas locais obtidas de estações de monitoramento existentes na Austrália. Os fatores analisados pelo trabalho são apresentados na tabela 1.

Para resolver o problema foram criadas uma RNA com o objetivo de prever se choverá no dia seguinte e uma RNA com o objetivo de prever a quantidade da precipitação da chuva em milímetros. [Purkote 2019]

Para eliminar fatores redundantes da base de dados foi feita uma análise estatística através de um teste de correlação

Variável	Descrição
Data	Data da observação
Localização	Estação metereológica da observação
Temperatura Mínima	Temperatura mínima na data em graus Celsius
Temperatura Máxima	Temperatura máxima na data em graus Celsius
Precipitação	Quantidade de chuva registrada no dia em mm
Evaporação	Taxa de evaporação registrada em 24 horas até as 9h da data de observação
Claridade	Número de horas com luz do Sol na data de observação
Direção da rajada de vento	Direção do vento mais forte registrado na data de observação
Velocidade da rajada de vento	Velocidade em Km/h do vento mais forte registrado na data de observação
Direção dos ventos às 9h	Direção dos ventos às 9h
Direção dos ventos às 15h	Direção dos ventos às 15h
Velocidade dos ventos às 9h	Velocidade do vento em Km /h em média 10 minutos antes das 9h
Velocidade dos ventos às 15h	Velocidade do vento em Km /h em média 10 minutos antes das 15h
Umidade do ar às 9h	Umidade do ar em % às 9h
Umidade do ar às 15h	Umidade do ar em % às 15h
Pressão às 9h	Pressão atmosférica em hPa ao nível do mar às 9h
Pressão às 15h	Pressão atmosférica em hPa ao nível do mar às 15h
Nebulosidade às 9h	Fração do céu ocupada por nuvens às 9h
Nebulosidade às 15h	Fração do céu ocupada por nuvens às 15h
Temperatura às 9h	Temperatura às 9h na data em graus Celsius
Temperatura às 15h	Temperatura às 15h na data em graus Celsius
Precipitação hoje	Variável booleana que indica se houve precipitação (1) ou não (0) na data da observação
Precipitação amanhã em mm	Quantidade em mm de chuva na data seguinte a observação
Precipitação amanhã	Variável booleana que indica se houve precipitação (1) ou não (0) na data da observação

Tabela 1. Variaveis Utilizadas

entre todas as variáveis. Analisando os resultados obtidos do teste, verificou-se a aplicabilidade do modelo de previsão de precipitações na Austrália por meio de RNA do tipo MLP. [Purkote 2019]

O algoritmo RNA do tipo MLP teve propagação *backward* com ajuste em relação ao erro e o critério de parada foi quando o algoritmo calculasse um erro menor que o estabelecido. [Purkote 2019]

Na fase de treinamento foram utilizados 80% dos dados da base fornecida, correspondente a 46.834 observações, e 20% para o teste do algoritmo, totalizando 12.937 observações. [Purkote 2019]

O resultado da previsão da RNA foi comparado com os valores reais, através da função predict e do pacote RSNNS, e foi calculada a diferença numérica entre o real e o previsto. [Purkote 2019]

4. Resultados Experimentais

Os testes da RNA responsável pela previsão de ocorrência de chuva no dia se-

guinte são apresentados na tabela 2 que mostra o número de neurônios da camada oculta e o erro representa os dias do conjunto de teste que a rede previu que iria chover e na realidade não choveu e vice-versa. [Purkote 2019]

Analisando os dados da tabela é possível verificar que a rede que apresentou melhor desempenho possui 47 neurônios na camada oculta onde o valor de erro foi igual à zero. [Purkote 2019]

Os testes da RNA responsável pela previsão em milímetros de chuva no dia seguinte são apresentados na tabela 3.

Analisando os resultados da segunda RNA é possível observar que a melhor configuração de neurônios da camada oculta possui 36 neurônios, com a média de erro de 8,077 mm. Além disso, é possível afirmar que comparando o resultado da RNA com a média de chuva do conjunto de teste com a RNA houve um erro de 3,36 vezes a média do conjunto de testes. [Purkote 2019]

Nro de Neurônios	Erro	Nro de Neurônios	Erro
1	2556	26	285
2	1187	27	372
3	2556	28	411
4	2556	29	319
5	1214	30	323
6	2556	31	1028
7	120	32	93
8	836	33	205
9	457	34	493
10	343	35	334
11	271	36	201
12	1120	37	292
13	305	38	265
14	321	39	785
15	281	40	436
16	281	41	432
17	2	42	994
18	647	43	266
19	283	44	107
20	267	45	508
21	244	46	315
22	213	47	0
23	878	48	1075
24	358	49	103
25	512	50	63

Tabela 2. Resultados RNA: Previsão de Ocorrência De Chuva no Dia Seguinte

NT 1 NT ^ 1	-	N. 1 N. A.	-
Nro de Neurônios	Erro	Nro de Neurônios	Erro
1	8,818	26	8,39
2	8,818	27	8,431
3	8,818	28	8,233
4	8,818	29	8,312
5	8,818	30	8,455
6	8,818	31	8,485
7	8,39	32	8,913
8	8,818	33	8,156
9	8,317	34	8,353
10	8,818	35	8,391
11	8,818	36	8,077
12	8,232	37	8,643
13	8,615	38	9,082
14	8,469	39	8,427
15	8,409	40	8,497
16	8,616	41	8,414
17	8,428	42	8,265
18	8,553	43	8,319
19	8,313	44	8,291
20	8,415	45	8,372
21	8,394	46	8,528
22	8,812	47	8,194
23	8,138	48	8,889
24	8,704	49	8,244
25	8,199	50	8,278

Tabela 3. Resultados RNA: Previsão em Milimetros de Chuva no Dia Seguinte

Referências

Braga, A. P., Carvalho, A. P. L. F., and Ludermir, T. B. (2000). *Redes Neurais Artificiais: Teoria e Aplicações*. LTC, 2nd edition.

Castro, L. N. and Ferrari, D. G. (2016). Introdução à Mineração de Dados. Conceitos básicos, algoritmos e aplicações. Saraiva.

Lima, I., Pinheiro, C. A. M., and Santos, F. A. O. (2014). *Inteligência artificial*. Elsevier Brasil.

Purkote, A. (2019). Redes neurais artificais aplicadas a um problema de previsão climática. Universidade Federal do Paraná.

Yegnanarayana, B. (2006). *Artificial Neural Networks*. Prentice-Hall India.