

(19)日本国特許庁(JP)

## (12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-335578

(P2001 - 335578A)

(43)公開日 平成13年12月4日(2001.12.4)

| (51) Int.Cl.7 | 藏別記号 |       | FI      |         | <del>7</del> - | ·マコード( <b>参考</b> ) |
|---------------|------|-------|---------|---------|----------------|--------------------|
| C 0 7 D 487   | /22  |       | C 0 7 D | 487/22  |                |                    |
| A61B 5        | /055 |       | A 6 1 K | 49/00   | С              |                    |
| A 6 1 K 49    | /00  |       | C 0 7 F | 5/00    | J              |                    |
| 51            | /00  |       |         |         | D              |                    |
| C07F 5        | /00  |       |         | 13/00   | A              |                    |
|               | 審査請: | 求 未請求 | 請求項の数21 | OL 外国新出 | 顏 (全 51 頁)     | 最終頁に続く             |
|               |      |       |         |         |                |                    |

特置2000-404615(P2000-404615) (71)出願人 593108772 (21)出願番号 ヘルス リサーチ インコーポレイテッド Health Research, In 平成12年12月25日(2000.12.25) (22)出顯日 アメリカ合衆国、ニューヨーク州 14263、 (31)優先権主張番号 60/171961 パッファロー、エルム アンド カールト 平成11年12月23日(1999.12.23) (32)優先日 ン ストリーツ (番地なし)、ロズウェル (33)優先権主張国 米国(US) パーク キャンサー インスティテュー (31)優先権主張番号 09/739155 ト ディヴィジョン内 平成12年12月18日(2000.12.18) (32) 優先日 (74)代理人 100059959 (33)優先権主張国 米国(US) 弁理士 中村 稔 (外10名)

最終頁に続く

(54) 【発明の名称】 MR造影剤又は放射性医薬品用のクロリン又はパクテリオクロリン系アミノフェニルDTPA又はN2S2結合体

(57)【要約】

【課題】 腫瘍や加齢関連責斑変性症の湿潤形態と関連がある新生血管増殖のような過剰増殖組織の診断用照イメージングにおいて、放射性元素を過剰増殖組織の細胞へ運び、腫瘍組織によって生じる信号を劇的に増強する新規ない、腫瘍制造にイメージング用化合物の提供。

【解決手段】 ボルフィリン、クロリン、バクテリオクロリン、又はテトラピロール関連化合物とテクネチウム 39、ガドリニウム、インジウム<sup>111</sup>や放射性ヨウ素のような放射性元素との化学的組合わせである組成物を用いる。



RIF腫瘍をもつマウスにおける生体内反射分光法による 腫瘍(一)と筋肉(・・・)の取込みの生体内測定

#### 【特許請求の範囲】

【請求項1】 下記式を有することを特徴とするテトラ ピロール化合物。

#### 【化1】

(式中、R<sub>1</sub>は

【化2】

$$H_3C \nearrow R$$

-(CH<sub>2</sub>)<sub>2</sub>CONHフェニレンCH<sub>2</sub>DTPA.

### 【化3】

であり、ここで、 $R_0$ は $-OR_{10}$ であり、 $R_{10}$ は炭素原子1~6個を有する低級アルキルであり;  $R_2$ は $-CH_3$ であり、 $R_6$ は  $-CH_2$ CH $_3$ であり、 $R_6$ と $R_4$ は共に共有結合を形成するか又は $R_2$ と $R_3$ は共に+Oであり、 $R_6$ は $-CH_2$ CH $_3$ であり;  $R_6$ は-O0、 $R_6$ 1、-O1、-O1、-O2 であり;  $R_6$ 2、-O3 の -O4、-O5 の -O5 の -O6 の -O7 の -O8 の -O9 の

#### 【化4】

であり;R<sup>L1</sup>は炭素原子1~6個を有する低級アルキル、-(CH<sub>2</sub>)<sub>2</sub>CONHフェニレンCH<sub>2</sub>DTPA、

### 【化5】

である: 但し、 $R_{\rm tot}$   $R_{\rm tot}$   $R_{\rm tot}$  のうちの 1 つだけが-(C  $R_{\rm tot}$  ) CONHフェニレン CH DTPA、

### 【化6】

#### である。)

【請求項2】  $R_i$   $R_i$   $Z(dR_{ij})$ が 【化7】

## である、請求項1記載の化合物

【請求項3】  $R_1$ 、 $R_8$   $\mathbb{Z}(dR_{11})$   $\mathfrak{d}$   $\mathcal{L}(CH_2)_2$   $\mathfrak{CONH}$  フェニレン  $\mathfrak{CH}_2$   $\mathfrak{D}$   $\mathfrak{TPA}$  である、請求項1記載の化合物。

【請求項4】 R<sub>8</sub>が

### 【化8】

である、請求項2記載の化合物。

【請求項5 】 R<sub>o</sub>かー(CH<sub>o</sub>)<sub>2</sub> CDNHフェニレンCH<sub>o</sub>DTPAである、請求項 3 記載の化合物。

【請求項6】 R₂が-CH;であり, R₁が-CH; CH; である、 請求項5記載の化合物。

【請求項7】 R<sub>6</sub>か-NR<sub>10</sub>-である、請求項1記載の化合物。

【請求項8 】  $R_e$ が $+NE_{1,0}$ ーであり、 $R_{1,0}$ が、ヘキシルである、請求項7記載の化合物。

【請求項9】 請求項2記載の化合物のテクネチウム 99回舗体。

【請求項10】 請求項3記載の化合物のインジウム 111錯体。

【請求項11】 請求項3記載の化合物のガドリニウム (III)錯体、

【請求項12】 該化合物がHPPHの99aTcビスアミノエタンチオール類縁体であることを特徴とする、請求項9記載の化合物。

【請求項13】 該化合物がHPPHの<sup>111</sup>InアミノフェニルDTPA類縁体であることを特徴とする、請求項10記載の化合物。

【請求項14】 該化合物がHPPH-Gd(III) アミノフェニル DTFAであることを特徴とする、請求項11記載の化合物。

【請求項15】 該化合物がプルプリン18イミド-Gd (III) アミノフェニルDTPAであることを特徴とする、請求項11記載の化合物。

【請求項16】 該化合物がパクテリオクロリンのGd(1 14)アミノフェニルDTPA類縁体であることを特徴とする。請求項11記載の化合物。

【請求項17】 請求項14記載の化合物の調製方法であって、

メチルシ(ハキシルオキシ)エチルフェオフォルヒドaをLiOH、メタノール及びテトラヒドロフランの水溶液で加水分解して対応するカルホン酸を得る工程:該カルボン酸と4-アミノフェニルDTPAペンタ-tert-ブチルエステルヒを反応させてそのtert-ブチルアミノフェニルDTPA類縁体を得る工程:該のTPA類縁体とトリフルオロ酢酸とを反応させてそのtert-ブチル基をカルボン酸基に変換する工程:ガドリウニウム6水和物の溶液と反応させる工程:を含む、前記方法。

【請求項18】 請求項15記載の化合物の調製方法であって、

N-ペキシルブルブリンイミドのペキシル誘導体のメチルエステル基を対応するカルボン酸に加水分解する工程;得られたカルボキシブルブリンイミドとアミノフェニルDTPAペンターtertーブチルエステルとを反応させる工程;得られた結合体とトリフルオロ酢酸とを反応させてカルボン酸を得る工程;及び得られたカルボン酸と塩化ガトリニウムとを反応させて所望の化合物を得る工程;を含む。方法。

【請求項19】 請求項16記載の調製が法であって、3ビニルブルプリンイミド7を水素添加してメソーへキシルプルプリン-18-イミドを得る工程:該メソーペーへキシルプルプリン-18-イミトとオスミウムテトロキシド、ピリジン及びH,Sとを反応させてvic-ジヒドロキシバクテリオクロリンを得る工程:該vic-ジヒドロキシバクテリオクロリンと硫酸とを反応させてアーケトバクテリオクロリンと硫酸とを反応させてアーケトバクテリオクロリンのメチルエステル基をカルボキシ基に加水分解する工程:そのカルボキシアーケトバクテリオクロリンとアミノフェニルのアPAペンターtert-ブチルエステルとを反応させて対応するカルボン酸DTFA類縁体を得る工程:及びそのカルボキシPTFA類縁体と塩化ガトリニウムとを反応させて所望の化合物を得る工程:を含む、前記方法。

【請求項20】 請求項12記載の化合物の調製方法であって、

HPPHとアミノビスエタンチオールとを反応させてチオ保護HPPH結合体を得る工程;該結合体とトリエチルシラン及びTFAとを反応させてチオールを脱保護する工程;及

びチオールを脱保護した該結合体とSn(II)グルコペプト ネートで還元した第4日ベルテクナテートとを反応させ て所望の化合物を得る工程:を含む、前記方法。

【請求項21】 請求項12記載の化合物の測製方法であって

ⅢPH-アミノフェニルDTPAと塩化□ In(III)とを反応させて所望の化合物を得る工程(を含む。前記方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本出願は 1999年12月23日出 願の暫定特許出願第60/171,951号の優先権を主張する。 【00003】

【従来の技術】がんは、米国において最も一般的な死亡 原因の第2位であり、全死亡率の20%を占めている。こ れまでは、手術で切除する。放射線で攻撃する、尺は化 学療法で殺滅するという野蛮な力でかん細胞を制圧する 医学が試みられてきた。しかしながら、あまりにもしば しば数個の細胞が猛攻撃を切り抜け、しばしば数年後に 治療を受けつけない腫瘍へ成長する。腫瘍が初期の段階 で診断され得る場合には、がん患者の生存率は確実に上 昇する。従って、効率のよい腫瘍診断用イメージング剤 を開発する努力が我々の及び他の様々な研究室で現在行 われている。長い間、ヒト解剖学の生体内イメージング は、放射性原子(核医学)又は非放射性ヨウ素化造影剤 (様々なx線試験法やコンピュータ断層撮影法) の静脈 内投与に依存していた。しかしながら、ここ10年間は磁 気共鳴画像法 (MRI) がイメーシングの重要な役割を引 き受けてきた。x線又はコンピュータ断層撮影法と異な り、MRは常磁性イオン、特にガトリニウム[Gd(III)]を 含有する造影剤を用いるものである。常磁性イオンは、 MIスキャナでそれ自体は『見られる』ことはない。むし ろ、体内組織の水に影響を及ぼし、磁場に置かれる場合 に組織によって出される『信号』を増強する。

【0003】一般的には、MR造影剤は疾患特異的でも臓 器特異的でもない。静脈内に注入されると、たいていは 糸球体ろ過によって腎臓から速やかに排泄される。数種 の肝臓特異的造影剤がつくられたが、他の臓器を巧く標 的にすることがなく、腫瘍結合活性配造影剤は今日まで 用いられていない。診断用腫瘍イメージングにおいては 不明の原発性腫瘍や転移疾患の検出が重要であることか ら、腫瘍結合活性造影剤が予後、治療の選択、及び患者 の成果に大きく関係する。治療と好転の全課題に影響す る。最近、潜在的磁気共鳴画像法としてある種のGd系巨 環状化合物 (例えば、Z.D. Grossman &; S.F. Rosebroug h, Clinical Radioimmunoimaging, Grune &; Stratton I nc., 1988, この文献の記載は本願明細書に含まれるも のとする)及び放射性医薬品として99mTc又は111Inキレ ート化合物(例えは、H.D. Burns, R.F. Gibson, R.F. Dannals &; P.K.S. Siegel(Eds.); Nuclear imaging in Drug Discovery, Development and Approval, Birkhaus

er, 1993, G.B. Saha, Fundamentalsof Nuclear Pharma cy. Springer-Verlag, 1992, これらの文献の記載は本願明細書に含まれるものとする)に文献が集中してきた。

【0004】1988年に[Gd(DTPA)(H<sub>2</sub>0)]2-が承認された ので 30トンのガドリニウムが世界中の何百万人という 患者に投与された。MRI例の約30%には造影剤が含ま れ、この割合は新規な物質や適用が出てくるにつれて高 くなると予想される。ガドリニウムは、医学研究にも余 地が見出されている。基礎的科学文献には毎年600件を 超えるガドリニウムに対する文献が出てくる。他のタイ プのMRI造影剤 即ち、鉄粒子に基づく物質やマンガン (II)キレート化合物が承認されたが、Gd(III)は依然と して支配的な物質である。この理由としては、MRI現出 ♪問題やGdキレート化合物の種類が含まれる。MRIの信 号強度は、主に、水のプロトンの縦緩和速度、1/T」、と 横緩和速度、1/Tっの局部的な値から生じる。信号は、1/ T<sub>i</sub>が大きくなるにつれて大きくなり、1/T<sub>i</sub>が大きくなる につれて小さくなる傾向がある。1/T<sub>1</sub>の変化を強調する パルスシーケンスは、1/1」周期と呼ばれ、逆は15周期ス キャンに言えることである。造影剤は、1/T」と1/T。双方 をそれらの種類や印加磁場によっていろいろな程度まで 高めるものである。1/T1と1/T2をほぼ同じ量だけ高める ガドリニウム(III)のような物質は、組織内の1/T<sub>2</sub>の変 化%が1/Tgより非常に大きいことからTg周期画像を用い て最も良く可視化する。縦緩和値及び横緩和値ヒィ及びピ は1ミリオモルの物質につきそれぞれ1/T1及び1/T2の増 加を意味する。T<sub>1</sub>作用物質のr<sub>1</sub>/r<sub>2</sub>比は通常1~2であ り、酸化鉄粒子のようなT。作用物質のその値は10以上ほ ビである、MRIの進展には、 $T_1$ 作用物質、つまり、ガド リニウム(111)が非常に好ましい。分解能の高い高速ス キャンには急速高周波パルス標識が必要であり、各ボク セル内の配信号が飽和されるので、一般的には「周期で ある。Li作用物質は、パルス間の縦磁化の良好な部分を 回復させることによりこの飽和を軽減する。同時に、良 好な写作用物質は局在している組織コンバートメントの ハルク磁化率にほとんど影響しないので、イメージアー チファクト及び/又は信号強度の減少をまねき得る不均 等をできるだけ少なくする。

【0005】ガドリニウム(III)キレート化合物の他の重要かつ興味深い特性は、その安定性である。体内でキレート化したままであり、そのまま排泄される。例えば、DTPAのような既製のリガンドは、安定な錯体を形成するので、物質が生体内にある間、検出可能に解離しない。サイズが大きいために、ランタニドは水性媒体中高配位数を容易にする傾向がある。現在、MIでの使用に承認されたすべてのGI(III)系キレート化合物は、9配位錯体であり、リガンドが金属中央で8結合部位を占め、9番目の配位部位は溶媒の水分子によって占められている。放射性医薬品は、放射性核種を含む薬剤であ

り、診断又は治療に核医学部門で通常用いられている 放射性医薬品は、主な2つ種類、生体内分布が化学的性質と物理的性質によって独占的に決められるもの(ヨウ素-131のように)及び最後の分布が生物学的相互作用によって決められるもの(放射能標識抗体のように)に分類し得る。後者の種類としては、標的特異的放射性医薬品が含まれる。標的特異的放射性医薬品は、4つの部分:標的分子、リンカー、キレートリガンド及び放射性核種からなる。標的分子は、媒体(vehicle)として疾患組織内の標的部位に放射性核種を運ぶ働きをする。放射性核種は、放射線源である。

【0006】金属放射性核種は、種々のキレート剤で金 属のまわりの配位環境を変えることにより新規な放射性 医薬品を設計する多くの機会を与える。慣用の核医学に 用いられるほとんどの放射性医薬品は、半減期が短く (6時間)かつア放射が理想的である (140 KeV) こと からタタルTc標識されている。ミリキュリー量は、患者に 過度に放射せずに送達し得る。単一エネルギー140 KeV プロトンは、平行にしやすく、優れた空間分解能の画像 を与える。更に、タシューTcは、シタMo-タタッTcシェネレータか ら滅菌した発熱物質を含まない無担体状態で容易に得ら れる、そのら時間半減期は、標識放射性医薬品の合成、 純度分析、患者への注入、及び画像化に十分長いか、放 射線量をできるだけ少なくするのには十分短い。巧く用 いられる他の放射性核種は、111 Inである。ソマトスタ チン受容体ポジティブ腫瘍の診断に用いられる薬剤IN-D TPA-オクトレオチト(OCTREUSCAN)の成功は、新規な標 的特異的放射性医薬品の探究を強化した。§₱●Tcに比べ て、111Inの半減期は、非常に長い(72時間)。

【0007】ある種のポルフィリンやテトラピロール関 連化合物は、悪性腫瘍や他の過剰増殖組織、例えば一過 剰増殖血管に正常組織より非常に高濃度で局在する傾向 があるので、光力学治療(PDT)による様々なタイプの。 がんや他の過剰増殖組織の治療にツールとして有効であ & (T.J. Dougherty, C.J. Gomer, E.W. Henderson, G. Jori, D. Kessel, M. Kprbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst., 1998, 90, 889, この文献の記載 は本願明細書に含まれるものとする)。しかしながら、 PHOTOFRIN(登録商標) (腫瘍の治療に世界的に承認され ている)を含むほとんどのボルフィリン系光増感剤は、 正常組織から徐々に除去されるので、患者は治療後かな りの時間日光にあたるのを避けなければならない。最 近、多くのクロロフィル類縁体が合成され、PDTの光増 感剤としての使用が評価された(例えば、R.K. Pandey, D. Herman, Chemistry &; Industry, 1998, 739, この 文献の記載は本願明細書に含まれるものとする)。これ らの光増感剤の中でピロフェオフォルビド-aのヘキシル エーテル誘導体9 (HPPH) (例えば、R.K. Pandey, A.B. Sumlin, S. Constantine, M. Aoudia, W. R. Potter, D.A. Bellnier, B.W. Henderson, M.A. Rodgers, K.M.

Smith &: T.J. Dougherty, Photochem, Photobiol., 199 6, 64, 194; B.W. Henderson, D.A. Pellnier, W.R. Gr aco, A. Sharma, R.K. Pandey, L.A. Vaughan, W.R. We ishaupt &; T. J. Dougherty, CancerRes., 1997, 57, 4 90c; R. K. Pandey, T.J. Dougherty, 米国特許第5,19 8,460号,1993;同第5,314,905号,1994;同第5,459,15 9号、1995、これらの文献及び明細書の記載は本願明細 書に含まれるものとする)及びプルプリン-18-N-ヘキシ ルイミドのペキンル-エーテル誘導体10 (例えば、R.K. Pandey, W.R. Potter & T.J. Dougherty, 米国特許第5.9 52.366号, 1999. この明細書の記載は本願明細書に含ま れるものとする)は、PHOTOFRIN(登録商標)と比べて腫 瘍摂取率が高く、皮膚光毒性が低い。HPPHは、現在、ロ でウェルパーク癌研究所、ニューヨーク州バッファロー で光力学治療による様々なタイプのがんの治療に1/11相 臨床試験中であり、結果は有望である。

#### [0008]

【発明が解決しようとする課題】本発明は、ポルフィリ ンスはクロリンスはテトラピロール関連化合物とテクネ チウム<sup>69</sup>、ガドリニウム、インジウム<sup>111</sup>や放射性ヨウ 素のような放射性元素との化学的組合わせてある組成物 を含んている。元素がカチオンをつくり得る場合、化合 物は、一般的には、ポルフィリン又はクロリン構造を有 するキレート化合物である。元素がアニオンをつくる場 台、化合物は、一般的には、放射性元素をポリフィリン 尺はクロリン構造に直接化学的に結合したものである。 本発明に従って変更される場合に、放射性元素を含む化 合物を形成し得るポルフィリン又はクロリン構造の例 は、例えば、米国特許第5,756,541号; 同第5,028,621 号: 第4,866,168号: 第4,649,151号: 第5,438,071号; 第5.198,460号;第5,002,962号;第5,093,349号;第5.1 71,741号; 第5,173,504号; 第4,968,715号;第5,314.905 号; 第5,459,159号; 第5,770,730号; 第5,864,035号; 第5,190,966号;及び第5,952,366号に記載され、これら のすべての明細書の記載は本願明細書に含まれるものと する。本発明は、更に、腫瘍や加齢関連黄斑変性症の温

【OO15】であり、ここで、 $R_0$ は $+OR_{10}$ であり、 $R_{10}$ は 炭素原子1 $\sim$ 6個を有する低級アルキルであり; $R_1$ は $+CH_2$ であり, $R_3$ と $R_4$ は共に共有結合を形成するか又は $R_1$ と $R_3$ は共に=0であり, $R_4$ は $+CH_2$   $CH_3$ であり; $R_6$ は $+CH_2$ であり; $R_6$ は $+CH_2$ であり; $R_6$ は $+CH_3$ 00 $+CCH_3$ 0 $+CCH_3$ 00 $+CCH_3$ 0 $+CCH_3$ 0+CC

潤形態と関連がある新生血管増殖のような過剰増殖組織の診断用イメージングのために本発明の化合物を用いる方法を含んでいる。子想外に、上記のボルフィリン又はクロリンは、注入時に放射性元素を過剰増殖組織の細胞へ運び、配イメージングにおいて腫瘍組織によって生じる信号を劇的に増強する。ボルフィリン化合物又はクロリン化合物(バクテリオクロリンを含む)は、過剰増殖組織細胞(例えば、腫瘍)内に選択的に侵入及び保持させることができるテトラピロール基本構造が残っているならば、置換又は修飾によって他の形に化学的に変化させることができることは理解されるへきである。

[0009]

【課題を解決するための手段】本発明の化合物は、一般的には、下記式を有する。

[0010]

【化9】

【0011】(式中、R<sub>1</sub>は

[0012]

【化10】

(0.013] -(CH<sub>2</sub>)<sub>2</sub> CONHフェニレンCH<sub>2</sub>DTPA、

[0014]

【化11】

【0017】であり:R-1は炭素原子1〜6個を有する低級 アルキル、-(CH。)、CONHフェニレン:CH。DTPA、

[0018]

【化13】

【 0 0 1 9 】である; 但し、R<sub>1</sub>、R<sub>8</sub>又はR<sub>11</sub>のっちの 1 つだけが-(CH<sub>2</sub>)<sub>2</sub> CONHフェニレンCH<sub>2</sub>DTPA、

[0020]

【化14】

【COコ1】である。)

[0022]

【発明の実施の形態】本発明の目的は、所望の結合体 (GIスは放射性核種とキレート化した) を腫瘍に送達す る媒体としてこれらの光増感剤を用いることであった。 キレート化合物は、一方にGdを結合し、もう一方に標的 特異的媒体を結合することから『二官能性』である。キ レート化合物は、金属に配位する適切な結合基をもつ多 座配位リガンドである。好適実施態様においては、本発 明は、極いによる腫瘍診断剤として親油性が変化しつる クロリン又はバクテリオクロリン系Gd(HI)アミノフェ ニルDTPA結合体の創製、又は腫瘍診断用放射性医薬品と して親油性が変化しうるクロリンスはバクテリオクロリ ン系15 Inアミノフェニル DTPA又は99 To N.S。結合体の 創製を含んでいる。目標は、(i)はしめは光力学治療 (FDT) 用に設計された腫瘍結合活性ポルフィリンにガ ドリニウムを巧く結合させ、24時間の著しい腫瘍取込み が腫瘍によって生じた『信号』を増強し、よってMRイス ーシングに関する特徴を劇的に増強すること及び(ii) 核医学用診断剤として99mTc又は111In標識関連放射性医 薬品を調製することであった。本発明は、配造影剤及び 原発性悪性腫瘍や転移疾患の診断用放射性医薬品として ある種のクロリンスはバクテリオクロリン系ピスアミノ エタンチオール  $(N_1S_2)$  結合体又は修飾したジテトラト リエチルアミンペンタカルボン酸(DTPA)結合体の合成 と適用を含んでいる。

[0023]

【実施例】下記の実施例は、磁気共鳴イメージング剤の 合成及び使用の例を記載するものである。

HPPH-Gd(III)アミノフェニルDTPA 14の合成:標記化合物

の調製として、文献の手順に従ってメチルフェオフォル ヒドーa 6a (スピルリナ・アルゲ(Spirulina Algae)から 抽出したもの) からピロフェオフォルビド-a 65を得 た。次に、我々の実験室で開発した方法に従ってメチル ティスキシルオキシ)エチル類緑体9aへ変換した。スチル エチル官能性をLiDE/メタノール(TIFの水溶液で加水分 解して対応するカルボン酸別を定量的収量で得た。96と カルボジイミド法(R.K. Fandey, F.Y. Shrau, A.B. Su mlin, I.J. Dougherty &: K.M. Smith, Biolog Med. Ch em. Lett. 1994, 4. 1263, この文献の記載は本願明細 書に含まれるものとする)による図4の方法に従って調 製した4-アミノフェニルMTPAバンタ-tert-ブチルエステ ルとを反応させて対応する類縁体12を57%の収率で得た (図5及び図6)。構造をNMRと質量分析法の分析によ り確認した。Gd(HT)錯体を調製する前に、結合体のter t-ブチル基をトリフルオロ酢酸と反応させることにより 対応するカルボン酸に変換した(収率100%)。Gd(HI) 錯体14の調製として、結合体をピリジンに溶解し、塩化 ガドリニウム6水和物を脱イナン水に溶解した。混合液 を室温で2時間撹拌した。反応の完了後(TLCでモニタ した)、ビリンプを高真空中で除去した。残留物を水洗 して過剰の塩化ガトリニウムを除去し、減圧下で乾燥 し、標記化合物を92%の収率で単離した。最終生成物の 構造を質量分析により確認した。

【0024】プルプリン-18-イミド-Gd(III)アミノフェ ニルDTPA 16の合成:メチルフェオフォルビド-a 7aをN-ヘキシルブルプリンイミドのヘキシルエーテル誘導体に 70%の収率で変換した。次に、96の調製に記載された方 法に従って メチルエステル基を対応するカルボン酸10に 加水分解した。次に、図7に示された反応順序に従って ブルプリンイミド10とアミノフェニルDTPAペンクtert-プチルエステルとを反応させ、中間結合体を45%の収率 で単離した。更に、トリフルオロ酢酸、次に、GdClarGil エと反応させてGd(III) 錯体16を>90%の収率で得た。 結合体の構造をNMRと質量分析により確認した。巨環状 化合物におけるGd(III)結合体の位置の影響を調べる我 々に試みにおいて、常法によりプルブリンイミドテを関 連のカルホン酸類縁体11に変換した。10とアミノフェニ ルITPA 5とを反応させてGd(ELL)アミファニルITPA結 合体15、フルフリン18-3-テヒニル-テモ4-アミドフェニ ルガドリニウム(III) DTPA]-N-ペキシルイミドを得る。 この一連の化合物において、分子の全体の親油性は、ア ルキルエーテル置換基及び/又はV-置換アルキル鎖の炭 素鎖の長さを変えることにより変化させ得る。従って これらの化合物は、腫瘍取込みと親油性の相関を調べる ユニークな概会を与える。

【00025】ハクテリオクロリン系Gd(HI)アミノフェニルDTP4-22の合成:パクテリオクロリンは、相互に対角の2つのピロール単位が還元されている種類のテトラピロールである。N-ペキシルアルプリンイミドフから出発

して、我々は図りに示される反応順序に従ってケトバク テリオクロリン20を調製した。我々の方法においては、 3位にビニル基を含むプルプリンイミドフを、触媒とし てPa/Cを用いて水素と反応させることによりターデビニル -3-エチル類縁体17 (メソートーヘキンルプルプリン-18-イ ミドとも名付けられている)に変換した、次に、オスミ ウムテトロキンド/ピリジン/HJSと反応させ(A.N. Kory rev. T.J. Dougherty&: R.K. Pandey. Tetrahedron Let t. 1996. 37. 3781. この文献の記載は本願明細書に含 まれるものとする) 対応するvic-ジヒドロキシバクテ リオクロリン18をジアステレオマーの混合物として75%。 の収率で単離した(trans-運元環Dに対して上又は下のc is-ヒドロキシ基)。ジアステレオマー混合物としての ジヒドロキシ類縁体をピナコールーピナコロン反応条件 下に硫酸で処理し (K.K. Pandey, T. Tsuchida, S. Cons. tantine, G. Zheng, C. Medforth, A. Kozyrev, A. Mohammad, M.A.J. Rodgers, K.M. Smith &; T.J. Dougherty, J. Med. Chem., 1997, 40, 2770, この文献の記載は本 願明細書に含まれるものとする)、それぞれ7位(化台 物20) か又は8位(化合物19) にケト基を含むケトパク テリオクロリンを70%の収率で単離した。これらのパク テリオクロリンの中で、7-ケト類縁体20がRIF腫瘍を移 植したマウスモデルにおいて生体内反射分光法で求めた 腫瘍取込みが大きかった(図3参照されたい)。バクテ リオクロリン19及び20の構造をNMRと質量分析法の分析。 により確認した。本発明の次の工程は、プルブリンイミ 下20のメチルエステル基をカルボン酸21に加水分解した 後、上記の関連HPPH類縁体とプルプリンイミト類縁体の 調製の方法に従って対応する4-アミノフェニルDTPA結合 体22に変換することであった。

【0026】HPPH系ピスアミノエタンチオール結合体が の合成:95mTc標識放射性医薬品の調製について、2種の。 アミノビスエタンチオール23と24を我々の実験室で開発 した方法に従って調製した(G. Li, Q. Ma, B. Ma. Z. D. Grossman &; R.K. Pandey, Heterocyclics, 1999. ED 刷中: G. Li. B. Ma, J.R. Missert, Z.D. Grossman &: R.K. Pandey, Heterocyclics, 印刷中, これらの文献の 記載は本願明細書に含まれるものとする)。NgSa結合体 26の合成について、HPHISN<sub>2</sub>S<sub>2</sub>キレート化合物23とを反 応させ、チオ保護HPFH結合体25を40%の収率で単離し た、続いて、チオールをトリエチルシラン/TFAで脱保護 して対応するビスアミノエタンチオール26を定量的収率 で得た。新規に合成された化合物の構造をNMRと質量分 析法の分析で確認した。Kungと共同研究者の方法に従っ てSn(II)グルコペプトネートで還元した99mTcペルテク ナテートとのリガンド交換反応によりTc-99m錯体37を調 製した (S.K. Meegalla, K. Plossl, M-P. Kung, S. Ch umpradit, D.A. Stevenson, S.A. Kushner, W.T. McElg in, P.D. Mozley &; H.F. Kung, J. Med. Chem., 1997, 40.9,この文献の記載は本願明細書に含まれるものとす。

る)。**放射能標識収率は >80%であった**、Tc=9m錯体の 純度は、プロマトグラフィーにより1>95%であった。

【 0 0 2 7 】 HPPH系 ロ Inアミノフェニル DTPA結合体28 の合成: 標記化合物の調製については、 -- InfdTPA-薬酸塩の調製についてLowと共同研究者によって記載された方法 (S. wans J. Juo, D.A. Lantrip, D.A. waters. C.J. Mathias, W.A. Green, P.L. Fix hs V: P.S. Low, B coronjugate Chem. 1997, 8, 67s. この文献の記載は本類明細書に含まれるものとする」に使ってHPH-アミノフェニル DTPA 13と塩化ローIn (111)とを反応させ、ロー根線数化合物を82%の収率で得た。

【0028】体内腫瘍Mイメージング

HPPH-Gd(HII)アミノフェニルDTPA結合体14:GD標識HPPH の合成に従って、一組の3匹のラットに静脈内に注射 し、注射の1時間後、及び2時間後に直もに実験してGd -HPPHが現在標準的な造影剤 (マクナビスト(Magnavist) スはGd-DTPA) より長い循環が保たれるかを確かめた。 マグナビストは16~20分の循環の半減時間で糸球体ろ過 によって哺乳動物の循環から連やかに除去されるが、新 規に合成された造影剤GI-HPHは1時間の脳循環が明ら かであった。続いて、GR-HPPHか腫瘍結合活性であるか。 を確かめるために、皮下に移植したワート結腸がんをも つ1匹のラットを静脈内GI-IPPHの24時間後に画像化し た。2番目の腫瘍をもつラットをマグナビストの注射の 24時間後に画像化した(図1及び図2を参照された い)。Gd-HPPH注入後の腫瘍信号の増強から、Gd-HPPH 1 4がMR用造影剤として可能性があることが示されたこと は明らかである。HPPH(クロロフィルー誘導物)は媒体 であり、これによってGd錯体が腫瘍へ運ばれる。Gdキレ ート化合物をIPPIに付加すると、一重項酸素生成能を形 成する能力を妨害しないので、この造影剤は三重の作 用:MRイメージングに関する局在化の増強(診断)、続 いて腫瘍損傷における光照射の特定(治療)に可能性が ある。また、腫瘍選択性が優れかつ蛍光が強いことか ら、新規に合成された結合体はIRイメージングにも使用 し得る。また、本発明で合成及び提唱したクロリン及び バクテリオクロリンに結合したインジウム又はTc-99m/1 ような他の放射性核種(後者は $N_i S_i$ リガンドによって結 台する)は、核医学のイメージング剤としての可能性が ある。

#### 【図面の簡単な説明】

【図1】市販の造影剤を用いたMI画像制御とコントラス 下強調剤を用いていないMI画像を示す図である。市販の 造影剤を用いた画像の腫瘍領域は、ほとんど又は全く強 調されていない。

【図2】本発明のGd-HPPH造影剤を用いた極画像と造影 剤なしのMR画像を示す図である。本発明の造影剤を用い てつくられた画像は、腫瘍領域の劇的な画像強調を示し ている。

【図3】図3に示される化合物の反射分光法による腫瘍

と筋肉の取込みの生体内測定のグラフである。

【図4】4-アミノフェニルDTPAペンタ-tert-ブチルエス テルの化学合成を示すスキームである。

【【45】メチルフェオフォルビド-aからカルボキシ3-(ヘキシルオキシ)エチルピロフェオフォルビド-aの化学 合成を示すスキームである。

【図6】カルボキシチ(ヘキシルオキシ)エチルビロフェオフォルビド-aと4-アミノフェニルDTPAペンタ-tert-ブチルエステルからHPH-アミノフェニルDTPAを化学合成し、続いて三塩化ガドリニウム(III)と反応させてHPPH-アミノフェニルDTPAを形成する工程を示すスキームである。

【図7】 アルプリン-18-イミドGd(III) アミノフェニルD TPA (16) の化学合成を示すスキームである。

【図8】 アルブリン 7からGd(III) アミノフェニルDTPA 錯体の調製を示すスキームである。

【図9】バクテリオクロリン系Gd(III)アミノフェニルD TPAの調製を示すスキームである。

【図10】ビスアミノエタンチオール化合物23の図式である。

【図1.1】ビスアミノエタンチオール化合物24の図式である。

【図12】HPPH系ピスアミノエタンチオール結合体27の 調製を示すスキームである。

【図13】HPPH系InアミノフェニルDTPA結合体28の調製を示すスキームである。

【図1.4】本発明のDTPA又は $N_2S_2$ ジヒドロテトラピロー

ル化合物からN-S<sub>c</sub>リガンド<sup>30=</sup>Tc錯体、アミノフェニルDTPA にIn錯体及びアミノフェニルDTPA Gd(ITI)錯体、例えば 3-デビニル-3-(1'-アルコキシエチル)-17-[3'-(4''-アミドへ、ジルガドノニウム(ITI)DTPA)]エチルビロフェオフォルビト-の割製を示すスキームである。

【図1.6】本発明のDTPAでは $N_i$ S<sub>2</sub>ジヒドロテトラピロール化合物から $N_i$ S<sub>2</sub>リガンド $^{998}$ Tc錯体、アミノフェニルDTPA<sup>111</sup>In錯体、及びアミノフェニルDTPA<sup>111</sup>In錯体、及びアミノフェニルDTPA Gd(III)錯体、例えば、プルプリン $^{-18-(3-\overline{r})}$ ビニル $^{-3-(1'-\overline{r})}$ アミドベンジルガドリニウム(III)DTPA)]エチルピロフェオフォルビドの調製を示すスキームである。

【図17】本発明のDTPA、スは $N_1S_2$ テトラヒドロテトラピロール化合物から $N_2S_2$ リガンド $^{55}$  Tc錯体、アミノフェニルDTPALLIn錯体、及びアミノフェニルDTPA Gd( $^{11}$ ) 錯体。例えば、バクテリオブルブリン- $^{18-3}$ -(アルキル又はアルコキシアルキル)- $^{7-}$ ケト- $^{17-}$ [ $^{3}$ - $^{4}$ "-アミドベンジルガドリニウム( $^{11}$ )DTPA)]- $^{18-3}$ -である。

【図4】

O<sub>2</sub>M<sub>1</sub> O<sub>2</sub>M<sub>2</sub> O<sub>2</sub>M<sub>3</sub> O<sub>2</sub>M<sub>4</sub> O<sub>2</sub>

【図10】

【図11】

【図1】



腫瘍をもつラットのベースライン画像(左)と注入24時間後の画像(右)。 造影剤はマグナビストー市販の標準的物質とした。 問題の腫瘍領域『1』は視覚的又は定量的に信号を増強しなかった。 【図2】



ン画像(左)と注入24時間後の画像(7間題の領域[3』は623から881に著7番しい。信号の増強はほとんど腫瘍|変化せず(1998が1939になる)、 腫瘍をもつラットのベースラー 造影剤はGdーHPPHとした 効果は視覚的にも定量的に ことに留意されたい。脂肪は 筋肉の増強は最低である。



## RIF腫瘍をもつマウスにおける生体内反射分光法による腫瘍(一)と筋肉(・・・)の取込みの生体内測定



## 【図6】

## 【図7】

## 【図8】

## 【図14】



 $R_1 = 7$ ェニル- $CH_2$ -DTPA又はN,S<sub>2</sub>総合体 R  $\approx$  -( $CH_2$ )=-DTPA又はN,S<sub>2</sub> 総合体 R 及び  $R_1$  =機論性が変化しうる個機器

## 【図9】

## 【図12】

## 【図15】



 $R_3 = 7x= \mu - CH_2 - DTPA x th <math>_3S_2$  報合体  $R = -(CH_2) = -DTPA x th <math>_3S_2$  能合体 R 及び  $R_1 = 機論性が変化しろる置換基$ 

## 【図16】



#### R<sub>3</sub> = フェニル・CH<sub>2</sub>-DIPARはN<sub>3</sub>S。結合体 R = -(CH<sub>3</sub>)a-DTPARはN<sub>3</sub>S。結合体 R 及び R<sub>1</sub> =銀油性が変化しうる遺換基

### 【図17】



R<sub>3</sub> = フェニル - CH<sub>2</sub>-DTPARはN<sub>3</sub>S<sub>2</sub> 結合体 R = -(CH<sub>2</sub>)D-DTPARはN<sub>3</sub>S<sub>2</sub> 結合体 R au R<sub>1</sub> = 根油性が変化しうる管接基

## フロントページの続き

| (51) Int. Cl. | 識別記号                  | FΙ      |         | テーマコード(参考)      |
|---------------|-----------------------|---------|---------|-----------------|
| C07F          | 5/00                  | A 6 1 B | 5/05    | 383             |
|               | 13/00                 | A 6 1 K | 49/02   | В               |
| G01R          | 33/28                 |         |         | C               |
|               |                       | G 0 1 N | 24/02   | В               |
| (72)発明者       | ラヴィンドラ ケイ パンデイ        | (72)発明者 | ピーター カ. | ンター             |
|               | アメリカ合衆国 ニューヨーク州 14221 |         | アメリカ合衆[ | 国 ニューヨーク州 14052 |
|               | ウィリアムスヴィル ラメイ コート     |         | イースト    | オーロラークウェイカー ロー  |
|               | 75                    |         | ─ F 925 |                 |
| (72)発明者       | ザッカリー グロースマン          | (72)発明者 | トーマスジ、  | ェイ ドーハティー       |
|               | アメリカ合衆国 ニューヨーク州 14209 |         | アメリカ合衆[ | 国 ニューヨーク州 14072 |
|               | バッファロー デラウェア アベニュー    |         | グランド    | アイランド ウェスト オー   |
|               | 1217 アパートメント 804      |         | クフィールド  | ロード 2306        |

【外国語明細書】

# CHLORIN AND BACTERIOCHLORIN-BASED AMINOPHENYL DTPA AND N<sub>2</sub>S<sub>2</sub> CONJUGATES FOR MR CONTRAST MEDIA AND RADIOPHARMACEUTICALS

## BACKGROUND OF THE INVENTION

This application claims priority from Provisional Patent Application No. 60/171,961 filed December 23, 1999.

Cancer is the second most common cause of death in the United States, accounting for 20% of all deaths. Until now, medicine has tried to overwhelm the cancer cell with brute force, slicing it out with surgery, zapping it with radiation, or poisoning it with chemotherapy. All too often, however, a few cells survive the onslaught and germinate, sometimes years later, into tumors that are impervious to treatment. If tumors can be diagnosed at early stages, it will certainly increase the survival rate of the cancer patients. Therefore, efforts are currently underway in our and various other laboratories to develop efficient tumor diagnostic imaging agents.

For many years, in vivo imaging of human anatomy was dependent upon the intravenous administration of radioactive atoms (nuclear medicine) or non-radioactive iodinated contrast media (various x-ray tests and computed tomography). However, over the last decade magnetic resonance imaging (MRI) has assumed a critical role in imaging, and, unlike x-rays or computed tomography, MR uses contrast media that contain paramagnetic ions, particularly Gadolinium [Gd(III)]. Paramagnetic ions are not themselves "seen" by the MR seanner. Rather, they affect the water in body tissue so as to increase the "signal" emitted by tissue when it is placed in a magnetic field.

By and large, MR contrast media have been neither disease-specific nor organspecific. Injected intravenously, most are rapidly excreted by the kidneys by glomercular filtration. Although several liver-specific contrast media have been created, other organs have not been successfully targeted, and no tumor-avid MR contrast agents are available to date.

Because of the importance of detection of unknown primary tumor and metastatic disease in diagnostic oncology imaging, a tumor-avid MR contrast medium would have high implications for prognosis, therapy selection, and patient outcomes. The entire issue of cure versus palliation would be impacted.

In recent years several reports focused on certain Gd-based macrocycles as potential magnetic resonance imaging (e.g. Z.D. Grossman and S.F. Rosebrough, Clinical Radioimmunoimaging, Grune & Stratton Inc., 1988, incorporated herein by reference as background art) and <sup>99m</sup>Tc or <sup>111</sup>In chelated compounds as radiopharmaceuticals (e.g. H.D. Burns, R.F. Gibson, R.F. Dannals and P.K.S. Siegel (Eds.); Nuclear imaging in Drug Discovery, Development and Approval, Birkhauser, 1993, and G.B. Saha, Fundamentals of Nuclear Pharmacy, Springer-Verlag, 1992, incorporated herein by reference as background art).

Since the approval of  $[Gd(DTPA)(H_2O)]^2$  in 1988, more than 30 metric tons of Gadolinium have been administered to millions of patients worldwide. Approximately 30% of MRI exams include contrast agents, and this percentage is projected to increase as new agents and applications appear. Gadolinium is also finding a place in medical research. Over 600 references to Gadolinium appear each year in the basic science literature. While other types of MRI contrast agents, namely an iron-particle-based agent and a manganese (II)

chelate have been approved, Gd(III) remains the dominant material. The reasons for this include the direction of MRI development and the nature of Gd chelates. The signal intensity in MRI stems largely from the local value of the longitudinal relaxation rate of water protons,  $1/T_I$ , and the transverse rate  $1/T_I$ . Signal tends to increase with increasing  $1/T_I$  and decrease with increasing  $1/T_2$ . Pulse sequences that emphasize changes in  $1/T_I$  are referred to as  $1/T_I$ weighed, and the opposite is true for  $T_2$ -weighed scans. Contrast agents increase both  $1/T_1$ and  $1/T_2$  to varying degrees, depending on their nature as well as the applied magnetic field. Agents such as Gadolinium (III) that increases  $1/T_I$  and  $1/T_2$  by roughly similar amounts are best visualized using  $T_1$ -weighted images, because the percentage change in  $1/T_1$  in tissue is much greater than that in  $1/T_2$ . The longitudinal and transverse relaxivity values  $r_1$  and  $r_2$ refer to the increase in  $1/T_1$  and  $1/T_2$ , respectively, per milliomole of agent.  $T_1$  agents usually have  $r_2/r_1$  ratios of 1-2, whereas that value for  $T_2$  agents, such as iron oxide particles, is as high as 10 or more. Advances in MRI have strongly favored  $T_I$  agents and thus Gadolinium (III). Faster scans with higher resolution require more rapid radio frequency pulsing and are thus generally  $T_{I}$ -weighed, since the MR signal in each voxel becomes saturated.  $T_{I}$  agents relieve this saturation by restoring a good part of the longitudinal magnetization between pulses. At the same time a good  $T_I$  agent would not significantly affect the bulk magnetic susceptibility of the tissue compartment in which it is localized, thus minimizing any inhomogeneities which can lead to image artifacts and/or decreased signal intensity.

The other important and interesting characteristic of Gadolinium (III) chelates is their stability. They remain chelated in the body and are excreted intact. For example, the off-the shelf ligands like DTPA form complexes so stable that while the agent is in vivo, there is no detectable dissociation. Owing to their large size, lanthanides tend to favor high coordination

number in aqueous media. Currently, all Gd(III)-based chelates approved for use in MRI are nine-coordinate complexes in which the ligand occupies eight binding sites at the metal center and the ninth coordinate site is occupies by a solvent water molecule.

Radiopharmaceuticals are drugs containing a radionuclide and are used routinely in nuclear medicine department for the diagnosis or therapy. Radiopharmaceuticals can be divided into two primary classes: Those whose biodistribution is determined exclusively by their chemical and physical properties (like iodine-131) and those whose ultimate distribution is determined by their biological interactions (like a radiolabeled antibody). The latter class includes more target-specific radiopharmaceuticals. A target-specific radiopharmaceutical consists of four parts: a targeting molecule, a linker, a chelating ligand and a radionuclide. The targeting molecule serves as the vehicle, which carries the radionucleide to the target site in diseased tissue. The radionuclide is the radiation source.

Metallic radionuclides opportunities for designing new offcr many radiopharmaceuticals by modifying the coordination environment around the metal with a variety of chelators. Most of the radiopharmaceuticals used in conventional nuclear medicine are <sup>99m</sup>Tc labeled, because of its short half-life (6 hours) and ideal gamma emission (140 KeV). Millicurie quantities can be delivered without excessive radiation to the patient. The monoenergetic 140-KeV photons are readily collimated, producing images of superior spatial resolution. Furthermore, 9910 TC is readily available in a sterile, pyogen-free, and carrier-free state from 99MO-99mTC generators. Its 6h half-life is sufficiently long to synthesize the labeled radiopharmaceuticals, assay for purity, inject the patient, and image yet short enough to minimize radiation dose. Another radionuclide successfully used is 111 In. The success of the pharmaceutical IN-DTPA-Octreotide (OCTREOSCAN), used for

diagnosis of somatostatin receptor-positive tumors, has intensified the search for new target-specific radiopharmaceuticals. Compared to <sup>99m</sup>Tc, the half-life of <sup>111</sup>In is much longer (72 hours).

Certain porphyrins and related tetrapyrrolic compounds tend to localize in malignant tumors and other hyperproliferative tissue, such as hyperproliferative blood vessels, at much higher concentrations than in normal tissues, so they are useful as a tool for the treatment of various type of cancers and other hyperproliferative tissue by photodynamic therapy (PDT) (T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Kproelik, J. Moan, Q. Peng, J. Natl. Cancer Inst., 1998, 90, 889 incorporated here by reference as background art). However, most of the porphyrin-based photosensitizers including PHOTOFRIN® (approved worldwide for the treatment of tumors) clear slowly from normal tissue, so patients must avoid exposure to sunlight for a significant time after treatment. In recent years, a number of chlorophyll analogs have been synthesized and evaluated for their use as photosensitizers for PDT (e.g. R. K. Pandey, D. Herman, Chemistry & Industry, 1998, 739 incorporated herein by reference as background art). Among these photosensitizers, the hexyl ether derivative of pyropheophorbide-a 9 (HPPH) (e.g. R.K. Pandey, A.B. Sumlin, S. Constantine, M. Aoudia, W. R. Potter, D.A. Bellnier, B.W. Henderson, M.A. Rodgers, K.M. Smith and T. J. Dougherty, Photochem. Photobiol., 1996, 64, 194; B.W. Henderson, D.A. Bellnier, W.R. Graco, A. Sharma, R.K. Pandey, L.A. Vaughan, W.R. Weishaupt and T. J. Dougherty, Cancer Res., 1997, 57, 4000; and R. K. Pandey, T.J. Dougherty, U.S. Patent, 1993, 5,198,460; U.S. Patent, 1994, 5,314,905 and U.S. Patent, 1995, 5,459,159, incorporated herein by reference as background art) and the hexyl-ether derivative of purpurin-18-Nhexylimide 10 (e.g. R.K. Pandey, W.R. Potter and T.J. Dougherty, U.S. Patent, 1999,

5,952,366, incorporated herein by reference as background art) have shown high tumer uptake and minimal skin phototoxicity compared with PHOTOFRIN®. HPPH is currently in phase I/II clinical trials for treatment of various types of cancer by photodynamic therapy at the Roswell Park Cancer Institute, Buffalo, NY and the results are promising.

#### BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows an MR image control using a commercially available contrast agent vs. no use of contrast enhancement agent. The turnor area of the images shows little or no enhancement using the commercially available contrast agent.

Figure 2 shows the MR image using a Gd-HPPH contrast agent of the invention vs. no contrast agent. The image formed using the contrast agent of the invention shows dramatic image enhancement of the tumor area.

Figure 3 is a graph of in vivo measurement of tumor vs. muscle uptake by reflection spectroscopy of the compound shown in Figure 3.

Figure 4 is a schematic diagram showing chemical synthesis of 4-aminophenyl DTPA penta-tert-butyl esters.

Figure 5 is a schematic diagram showing chemical synthesis of carboxy 3-(hexyloxy)ethyl pyropheophorbide-a from methylpheophorbide-a.

Figure 6 is a schematic diagram showing chemical synthesis of HPPH-aminophenyl DTPA from carboxy 3-(hexyloxy)ethyl pyropheophorbide-a and 4-aminophenyl DTPA penta-tert-butyl ester followed by reaction with Gadolinium (III) trichloride to form HPPH-aminophenyl DTPA.

Figure 7 is a schematic diagram showing chemical synthesis of purpurin-18-imide-Gd(III) aminophenyl DTPA (16).

Figure 8 is a schematic diagram showing preparation of Gd(III) aminophenyl DTPA complex from purpurin 7.

Figure 9 is schematic diagram showing preparation of bacteriochlorin based Gd(III) aminophenyl DTPA.

Figure 10 is a schematic formula for bisaminoethanethiol compound 23.

Figure 11 is a schematic formula for bisaminoethanethiol compound 24.

Figure 12 is a schematic diagram showing preparation of HPPH based bisaminoethanethiol conjugate 27.

Figure 13 is a schematic diagram showing preparation of HPPH based in Arminophenyl DTPA conjugate 28.

Figure 14 is a schematic diagram showing preparation of N<sub>2</sub>S<sub>2</sub> ligand <sup>99m</sup>Tc complex, Aminophenyl DTPA <sup>111</sup>In complex and Aminophenyl DTPA Gd(III) complex, e.g. 3-devinyl-3-(1'-alkoxy ethyl)-17-[3'-(4"-amidobenzyl gadolinium(III)DTPA)]ethyl pyropheophorbide-a, from a DTPA or N<sub>2</sub>S<sub>2</sub> dihydro tetrapyrrole compound of the invention.

Figure 15 is a schematic diagram showing N<sub>2</sub>S<sub>2</sub> ligand <sup>99m</sup>Tc complex, Aminophenyl DTPA "In complex, and Aminophenyl DTPA 111In Complex, and Aminophenyl DTPA Gd(III) complex, e.g. purpurin-18-(30devinyl-3-(4"-amidobenzyl gadoliniumDTPA)]-N-substituted imide, from a DTPA or N<sub>2</sub>S<sub>2</sub> dihydro tetrapyrrole compound of the invention.

Figure 16 is a schematic diagram showing N<sub>2</sub>S<sub>2</sub> ligand <sup>99th</sup>Tc complex, Aminophenyl DTPA "In complex, and Aminophenyl DTPA <sup>111</sup>In Complex, and Aminophenyl DTPA Gd(III) complex, e.g. purpurin-18-(3-devinyl-3-(1'alkoxy ethyl)-17-[3'-(4"-amidobenzyl gadolinium(III)DTPA)]ethyl pyropheophorbide-a, from a DTPA or N<sub>2</sub>S<sub>2</sub> dihydro tetrapyrrole compound of the invention.

Figure 17 is a schematic diagram showing N<sub>2</sub>S<sub>2</sub> ligand <sup>99m</sup>Tc complex, Aminophenyl DTPA "In complex, and Aminophenyl DTPA "In Complex, and Aminophenyl DTPA Gd(III) complex, e.g. bacteriopurpurin 18-3-(alkyl or alkoxyalkyl)-7-keto-17-[3'-(4"-amidobenzyl gadolinium(III)DTPA)]-N-substituted imide, from a DTPA or N<sub>2</sub>S<sub>2</sub> tetrahydro tetrapyrrole compound of the invention.

## BRIEF DESCRIPTION OF THE INVENTION

The invention includes compositions that are chemical combination of porphyrins and chlorins and related tetra-pyrrolic compounds with radioactive elements such as Technetium, Gadolinium, Indium<sup>111</sup> and radioactive iodine. When the element can form cations, the compound is usually a chelate with the porphyrin or chlorin structure. When the element forms anions, the compound is usually a direct chemical combination of the radioactive element into the porphyrin or chlorin structure.

Examples of porphyrin and chlorin structures that can form compounds with radioactive elements, when modified in accordance with the present invention, are for example described in U.S. Patents 5,756,541; 5,028,621; 4,866,168; 4,649,151; 5,438,071; 5,198,460; 5,002,962; 5,093,349; 5,171,741; 5,173,504; 4,968,715; 5,314,905; 5,459,159; 5,770,730; 5,864,035; 5,190,966; and 5,952,366 all of which are incorporated by reference as background art.

The invention further includes the method of using the compounds of the invention for diagnostic imaging of hyperproliferative tissue such as tumors and new blood vessel growth as is associated with the wet form of age related macular degeneration.

Unexpectedly, porphyrins and chlorins, as above described, upon injection, carry the radioactive element into cells of hyperproliferative tissue and dramatically enhance the signal produced by tumor tissue in MR imaging.

It is to be understood that porphyrin and chlorin compounds (including bacteriochlorins) may be chemically altered to other forms by substitutions and modifications; provided that, the base tetrapyrrolic structure that allows selective entry and retention in hyperproliferative tissue cells (e.g. tumors) is retained.

Compounds of the invention usually have the formula

In the above formula,  $R_1 = {}^{H_3C} {}^{R_9}$ ;  $(CH_2)_2CONH$  phenylene  $CH_2DTPA$ ,  $-CH_2CN {}^{SH}$  or  $-CH_2CN {}^{SH}$  sh

where  $R_9 = -OR_{10}$  where  $R_{10}$  is lower alkyl of 1 though 6 carbon atoms;  $R_2$  is  $-CH_3$ ,  $R_5$  is  $-CH_2CH_3$ , and  $R_3$  and  $R_4$  together form a covalent bend of  $R_2$  and  $R_3$  together are = 0,  $R_4$  is  $-CH_2CH_3$  and  $R_5$  is  $-CH_3$ ;  $R_6$  is  $-N_7$  or a covalent bond;  $R_7$  is = 0 when  $R_6$  is  $-N_7$  and  $R_7$  is a  $R_{10}$ 

covalent bond; and R<sub>8</sub> is -(CH<sub>2</sub>)CO<sub>2</sub>CH<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>CONHphenyleneCH<sub>2</sub>DTPA,

R<sub>11</sub> is lower alkyl of 1 through 6 carbon atoms, -(CH<sub>2</sub>)<sub>2</sub>CONHphenyleneCH<sub>2</sub>DTPA,

$$-cH_{2}\overset{0}{\stackrel{}{\subset}}NH \qquad \text{or} \qquad -cH_{2}\overset{0}{\stackrel{}{\subset}}NH \qquad \text{; provided that only one of } R_{1}, R_{8} \text{ or } R_{11} \text{ is}$$

## DETAILED DESCRIPTION OF THE INVENTION

An objective of the invention was to use these photosensitizers as a vehicle for delivering the desired conjugate (chelated with Gd or radionuclides) to tumor. The chelate is "bifunctional" because, it binds the Gd at one end and binds the target specific vehicle at the other. The chelate is a multidentate ligand, which has appropriate ligating groups for coordination to the metal. In a preferred embodiment, our invention includes:

Development of chlorin and bacteriochlorin-based Gd(III)aminophenyl DTPA conjugates with variable lipophilicity as tumor diagnostic agent by MRI.

Development of chlorin and bacteriochlorin-based  $^{111}$ In aminophenyl DTPA and  $^{99m}$ Te  $N_2S_2$  conjugates with variable lipophilicity as tumor diagnostic radiopharmaceuticals.

A goal has been: (i) to successfully bind Gadolinium to a tumor-avid porphyrin, originally designed for photodynamic therapy (PDT), and to prove that striking tumor uptake at 24 hours enhances the "signal" produced by tumor, thus dramatically increasing its conspicuity on MR imaging and (ii) to prepare related <sup>99m</sup>Tc and <sup>111</sup>In labeled radiopharmaceuticals as diagnostic agents for nuclear medicine.

This invention includes the synthesis and application of certain chlorin and bacteriochlorin-based bisaminoethanethiol (N<sub>2</sub>S<sub>2</sub>) and modified ditetratriethylamine penta carboxylic acid (DTPA) conjugates as MR contrast media and radiopharmaceuticals for diagnosis of primary malignancy and metastatic disease.

The following examples describe examples for synthesis and use of magnetic resonance imaging agents. Synthesis of HPPH-Gd(IU)aminophenylDTPA 14: For the preparation of the title compound, pyropheophorbide-a 6b was obtained from methylpheophorbide-a 6a (which in turn was extracted from Spirulina Algae) by following the literature procedure. It was then converted into methyl 3-(hexyloxy)ethyl analog 9a by following a methodology developed in our laboratory. Hydrolysis of the methyl ester functionality with aqueous LiOH/methanol/THF produced the corresponding carboxylic acid 9b in quantitative yield. The reaction of 9b with 4-aminophenyl DTPA penta-tert-butyl esters prepared by following the methodology in Figure 4 via the carbodiimide approach (R.K. Pandey, F.-Y. Shiau, A.B. Sumlin, T.I. Dougherty and K.M. Smith, Bioorg. Med. Chem. Lett., 1994, 4, 1263, incorporated herein by reference as background art) produced the corresponding analog 12 in 57% yield (Figures 5 and 6). The structure was confirmed by NMR and mass spectrometry analyses.

Before preparing the Gd(III) complex, the tert-butyl groups in conjugate were converted into corresponding carboxylic acid by reacting with trifluoroacetic acid (yield 100%). For the preparation of Gd(III) complex 14, the conjugate was dissolved in pyridine and Gadolinium chloride hexahydrate dissolved in deionized water. The mixture was stirred at room temperature for 2h. After the completion of the reaction (monitored by TLC), pyridine was removed under high vacuum. The residue was washed with water to remove the excess of Gadolinium chloride, dried under vacuum and the title compound was isolated in 92% yield. The structure of the final product was confirmed by mass spectrometry. Synthesis of Purpurin-18-imide-Gd(III)aminophenylDTPA 16: Methylpheophorbide-a 7a was converted into the hexylether derivative of N-hexyl purpurinimide in 70% yield. The methyl ester group was then hydrolyzed to the corresponding carboxylic acid 10 by following the methodology as discussed for the preparation of 9b. Purpurin-imide 10 was then reacted with aminophenyIDTPA penta tert-butyl ester 5 by following a reaction sequence depicted in Figure 7 and the intermediate conjugate was isolated in 45% yield. Further reaction with trifluoroaceficacid and then with GdCl<sub>3</sub>.6H<sub>2</sub>O produced the Gd(III) complex 16 in >90% yield. The structures of the conjugates were confirmed by NMR and mass spectrometry.

In our attempt to investigate the effect of the position of the Gd(III) conjugate in the macrocycle, purpurin-imide 7 was converted into the related carboxylic acid analog 11 by conventional procedures. Reaction of 10 with aminophenyl DTPA 5 will produce Gd(III) aminophenyl DTPA conjugate 15, purpurin 18-3-devinyl-3[4'-amidophenyl Gadolinium (III) DTPA]-N-hexylimide.

In this series of compounds, the overall lipophilicity of the molecule can be altered by varying the length of the carbon chain of either the alkyl ether substituents and/or N-

substituted alkyl chain. Thus, these compounds provide a unique opportunity to investigate the correlation of tumor uptake and lipophilicity.

Synthesis of Bacteriochlorin basedGD(III)aminophenylDTPA 22:

Bactériochlorins are a class of tetrapyrroles in which the two pyrrole units diagonal to each other are reduced. Starting from N-hexyl-purpurin imide 7 we have prepared ketobacteriochlorin 20 by following a reaction sequence illustrated in Figure 9. In our approach purpurinimide 7 containing a vinyl group at position 3 was converted into the 3devinyl-3-ethyl analog 17 (also be named as meso-N-hexyl-purpurin-18-imide) by reacting hydrogen using Pd/C as a catalyst. was then reacted with osmiumtetroxide/pyridine/H2S (A.N. Kozyrev. T.J. Dougherty and R.K. Pandey, Tetrahedron Lett., 1996, 37, 3781, incorporated herein by reference as background art) and the corresponding vic-dihydroxybacteriochlorin 18 was isolated in 75% yield as a mixture of diasteriomers (cis-hydroxy groups up or down relative to trans-reduced ring D). The dihydroxy analog as a diasteriomeric mixture was treated with sulfuric acid under pinacolpinacolone reaction conditions, (R.K. Pandey, T. Tsuchida, S. Constantine, G. Zheng, C. Medforth, A Kozyrev, A. Mohammad, M.A.J. Rodgers, K.M. Smith and T.J. Dougherty, J. Med. Chemi, 1997, 40, 2770, incorporated herein by reference as background art) and the ketobacteriochlorin, containing keto- group either at 7- (compound 20) or 8-position (compound 19) respectively were isolated in 70% yield. Among these bacteriochlorins, the 7-keto analog 20 showed high tumor uptake as determined by in vivo reflectance spectroscopy in mice model transplanted with RIF tumor (see Figure 3). The structures of bacteriochlorins 19 and 20 were confirmed by NMR and mass spectrometry analyses.

Our next step was to hydrolyze the methyl ester group in purpurinimide 20 into carboxylic acid 21 before converting it into the corresponding 4-aminophenylDTPA conjugate 22 by following the methodology discussed previously for the preparation of related HPPH and purpurin-imide analogs.

Synthesis of HPPH-based Bisaminoethanethiol conjugates 27: For preparing the <sup>99m</sup>Tc labeled radiopharmaceuticals, two aminobiscthanethiols 23 and 24 were prepared by following the methodology developed in our laboratory (G. Li, Q. Ma, B. Ma, Z.D. Grossman and R.K. Pandey, Heterocyclics, 1999, in press; and G. Li, B. Ma, J.R. Missert, Z.D. Grossman and R.K. Pandey, Heterocyclics, in press, incorporated herein by reference as background art). For the synthesis of N<sub>2</sub>S<sub>2</sub> conjugate 26, HPPH was reacted with N<sub>2</sub>S<sub>2</sub> chelate 23 and the thioprotected HPPH conjugate 25 was isolated in 40% yield. Subsequent deprotection of the thiols with triethysilane/TFA afforded the corresponding bisaminoethanethiol 26 in quantitative yield. The structure of the newly synthesized compound was confirmed by NMR and mass spectrometry analyses.

The Tc-99m complex 27 was prepared by ligand-exchange reaction with <sup>99a</sup>Tc pertechnatate reduced by Sn(II)glucoheptonate by following the methodology of Kung and coworkers (S.K. Meegalla, K. Plossi, M-P. Kung, S. Chumpradit, D.A. Stevenson, S.A. Kushner, W.T. McElgin, P.D. Mozley and H.F. Kung. J. Med. Chem., 1997, 40, 9, incorporated herein by reference as background art). The radiolabeling yield was >80%. The purity of the Tc-99m complex was >95%, by chromatography.

Syntheses of HPPH based <sup>111</sup>In AminophenylDTPA conjugate 28: For the preparation of the title compound, the HPPH-aminophenylDTPA 13 was reacted with <sup>111</sup>In(III) chloride, following the methodology reported by Low and coworkers (S. Wang J. Juo, D.A. Lantrip,

D.A. Waters, C.J. Mathias, W.A. Green, P.L. Fuchs and P.S. Low, *Bioconjugate Chem.*, 1997, 8, 673, incorporated herein by reference as background art) for the preparation of <sup>1.1</sup>In DTPA-Folate and the <sup>111</sup>In labeled compound was obtained in 82% yield.

Body Tumor MR Imaging:

HPPH-Gd(III)AminophenylDTPA conjugate 14:

Following the synthesis of GD-labeled HPPH, a series of three rats were injected intravenously and studied immediately after injection, at 1 hour, and at 24 hours, to establish whether the Gd-HPPH remained in the circulation longer than the current standard contrast medium (Magnavist or Gd-DTPA).

Whereas Magnavist clears rapidly from the mammalian circulation by glomerular filtration, with a circulatory half-time of 16-20 minutes, the newly-synthesized contrast medium Gd-HPPH, was evident in the cerebral circulation at 1 hour. Subsequently, to establish whether the GD-HPPH is tumor-avid, a single rat with a subcutaneously-implanted Ward colon carcinoma was imaged, 24 hours after intravenous GD-HPPH, A second tumor-bearing rat was imaged 24 hours after injection of Magnavist (See Figures 1 and 2). Clearly, the enhanced tumor signal after Gd-HPPH injection indicated that GD-HPPH 14 has potential as a contrast medium for MR. HPPH (a chlorophyll- a derivative) represents the vehicle by which the Gd complex is carried into the tumor. Addition of the Gd chelate to HPPH does not hinder its ability to form singlet oxygen producing efficacy, so this contrast medium also has the potential for dual action: enhanced localization on MR imaging (diagnosis), followed by directed light exposure with tumor injury (treatment). Also, because of its excellent tumor selectivity and high fluorescence, the newly synthesized conjugate can be used for IR imaging. Also, Indium or other radionuclides like Te-99m (the latter

(お2) 101-335578 (P2001-33缶8

conjugated by an  $N_2S_2$  ligand) bound to chlorins and bacteriochlorins synthesized and proposed in this invention have potential as imaging agents for nuclear medicine.

What is claimed is:

1. A tetrapyrrole compound characterized in that it has the formula

$$R_1 = \frac{1}{3}C$$
 $R_2 = \frac{1}{3}C$ 
 $R_3 = \frac{1}{3}C$ 
 $R_3 = \frac{1}{3}C$ 
 $R_4 = \frac{1}{3}C$ 
 $R_5 = \frac{1}$ 

where  $R_9 = -OR_{10}$  where  $R_{10}$  is lower alkyl of 1 though 6 carbon atoms;  $R_2$  is -CH<sub>3</sub>,  $R_3$  is -CH<sub>2</sub>CH<sub>3</sub>, and  $R_3$  and  $R_4$  together form a covalent bend or  $R_2$  and  $R_3$  together are = 0,  $R_4$  is -CH<sub>2</sub>CH<sub>3</sub> and  $R_5$  is -CH<sub>3</sub>;  $R_6$  is -N- or a covalent bend;  $R_7$  is = 0 when  $R_6$  is -N- and  $R_7$  is a  $R_{11}$ 

covalent bond; and R<sub>8</sub> is -(CH<sub>2</sub>)CO<sub>2</sub>CH<sub>3</sub>, -(CH<sub>2</sub>)<sub>2</sub>CONHphenyleneCH<sub>2</sub>DTPA,

R<sub>11</sub> is lower alkyl of 1 through 6 carbon atoms, -(CH<sub>2</sub>)<sub>2</sub>CONHphenyleneCH<sub>2</sub>DTPA,

-(CH<sub>2</sub>)<sub>2</sub>COl ThphenyleneCH<sub>2</sub>DTPA,  $-ch_2 cN sh$  or  $-ch_2 cN sh$  or  $-ch_2 cN sh$ .

The compound of Claim 1 characterized in that  $R_1$ ,  $R_2$  or  $R_{11}$  is  $\frac{-CH_2CN}{CNH_SH}$  or  $\frac{NH_SH}{C}$ 

- The compound of Claim 1 characterized in that R<sub>1</sub>, R<sub>8</sub> or R<sub>11</sub> is 3.  $-(CH_2)_2CO$ . Which the engine  $CH_2$  DTPA.
- The compound of Claim 2 characterized in that R<sub>8</sub> is  $-CH_2CN$  SH or ONH SH
- 5. The compound Claim -(CH<sub>2</sub>)<sub>2</sub>CONHphenyleneCH<sub>2</sub>DTPA.
- The compound of Claim 5 characterized in that R2 is -CH3 and R5 is -CH2CH3. 6.

- 7. The compound of Claim 1 characterized in that  $R_6$  is -N-.  $R_{10}$
- 8. The compound of Claim 7 characterized in that  $R_6$  is -N- where  $R_{10}$  is hexyl.  $R_{10}$
- 9. A Technetium 99m complex of the compound of Claim 2.
- 10. An Indium 111 complex of the compound of Claim 3.
- 11. A Gadolinium(III) complex of the compound of Claim 3.
- 12. The compound of Claim 9 characterized in that the compound is a <sup>99m</sup>Tc bisaminoethanethiol analog of HPPH.
- 13. The compound of Claim 10 characterized in that the compound is a <sup>111</sup>In aminophenyl DTPA analog of HPPH.
- 14. The compound of Claim 11 characterized in that the compound is HPPH-Gd(III)aminophenylDTPA
- 15. The compound of Claim 11 characterized in that the compound is purpurin 18 imide-Gd(III)amin ophenylDTPA.
- 16. The compound of Claim 11 characterized in that the compound is a Gd(III)aminophenylDTPA analog of bacteriochlorin.

17. A method for the preparation of the compound of Claim 14 characterized in that it comprises:

hydrolizing methyl 3-(hexyloxy)ethyl pheophorbide a with an aqueous solution of LiOH, methanol and tetrahydrofuran to obtain the corresponding carboxylic acid;

reacting the carboxylic acid with 4-aminophenyl DTPA penta-tert-butyl ester to produce the tert-butyl aminophenyl DTPA analog;

reacting the DTPA analog with trifluoroacetic acid to convert the tertiary butyl groups to carboxylic acid groups;

reacting with a solution of Gadolinium hexahydrate.

18. A method for the preparation of the compound of Claim 15 characterized in that it comprises:

hydrolizing a methyl ester group of the hexylether derivative of N-hexyl purpurinimide to the corresponding carboxylic acid;

reacting the resulting carboxy purpurin imide with a solution of aminophenylDTPA penta-tert-butyl ester;

reacting the resulting conjugate with trifluoroacetic acid to obtain a carboxylic acid; and

reacting the resulting carboxylic acid with Gadolinium chloride to obtain the desired compound.

19. A method for the preparation of the compound of Claim 16 characterized in that it comprises:

hydrogenating 3 vinyl purpurinimide 7 to obtain meso-N-hexyl-purpurin-18-imide; reacting the meso-N-hexyl-purpurin-18-imide with osmiumtetroxide, pyridine and H<sub>2</sub>S to obtain vic-dihydroxybacteriochlorin;

reacting the vic-dihydroxybacteriochlorin with sulfuric acid to obtain a 7-ketobacteriochlorin;

hydrolizing a methyl ester group in the 7-ketobacteriochlorin to a carboxy group;
reacting the carboxy 7-ketobacteriochlorin with aminophenylDTPA penta-tertiary
butyl ester,

reacting the resulting product with trifluoroacctic acid to obtain the corresponding carboxylic acid DTPA analog; and

reacting the carboxy DTPA analog with Gadolinium chloride to obtain the desired compound.

20. A method for the preparation of the compound of Claim 12 characterized in that it comprises:

reacting HPPH with aminobisethanethiol to obtain a thioprotected HPPH conjugate; reacting the conjugate with triethylsilane and TFA to deprotect the thiols; and reacting the conjugate with deprotected thiols with <sup>99m</sup>Tc pertechnatate reduced by Sn(II) glucoheptonate to obtain the desired compound.

21. A method for the preparation of the compound of claim 12 characterized in that it comprises:

reacting HPPH-aminophenylDTPA with "In(III)chloride to obtain the desired compound.



Fig. 1

Baseline (left) and 24-hour post-injection images (right) of a tumor-bearing rat. Contrast medium was Magnavits - the standard, commercially available agent. Tumor area of interest "1" revealed no signal enhancement, visually or quantitatively.



Fig. 2

Baseline (left) and 24-hour post-injection images (right) of a tumor-bearing rat. Contrast medium was Gd-HPPH. Area of interest "3" increases markedly, from 623 to 881. The effect is striking both visually as well as quantitatively. Note that the signal enhancement is largely restricted to tumor: fat is unchanged (1998 goes to 1939), and muscle enhancement is minimal



In vivo measurement of tumor (----) vs muscle (----) uptake by in vivo reflection spectroscopy in a mouse bearing a RIF tumor.

Fig. 4

Fig. 5

Fig. 7

Fig. 8

Fig. 9

(46))01-335578 (P2001-33缶8

Fig. 10

Fig. 11

Fig. 12

Fig. 13



Fig. 14

 $R_3$  = phenyl-CH<sub>2</sub>-DTPA or  $N_2S_2$  conjugates  $R = -(CH_2)n$ -DTPA or  $N_2S_2$  conjugates R and  $R_1$  = Substituents with variable liphophilicity



Flg. 15

 $R_3$  = phenyl-CH<sub>2</sub>-DTPA or  $N_2S_2$  conjugates  $R = -(CH_2)n$ -DTPA or  $N_2S_2$  conjugates R and  $R_1$  = Substituents with variable liphophilicity



Fig. 16

 $R_3 = \text{phenyl-}CH_2\text{-}DTPA \text{ or } N_2S_2 \text{ conjugates}$   $R = -(CH_2)\text{n-}DTPA \text{ or } N_2S_2 \text{ conjugates}$   $R \text{ and } R_1 = \text{Substituents with variable liphophilicity}$ 



Fig. 17

 $R_3$  = phenyl-CH<sub>2</sub>-DTPA or  $N_2S_2$  conjugates  $R = -(CH_2)n$ -DTPA or  $N_2S_2$  conjugates R and  $R_1$  = Substituents with variable liphophilicity

## ABASTRACT OF THE DISCLOSURE

Compositions that are chemical combination of porphyrins, chlorins, bacteriochlorins, and related tetra-pyrrolic compounds with radioactive elements such as Technetium<sup>99</sup>, Gadolinium. Indium<sup>111</sup> and radioactive iodine. When the element can form cations, the compound is usually a chelate with the porphyrin or chlorin structure. When the element forms anions, the compound is usually a direct chemical combination of the radioactive element into the porphyrin or chlorin structure. The invention further includes the method of using the compounds of the invention for diagnostic imaging of hyperproliferative tissue such as tumors and new blood vessel growth as is associated with the wet form of age related macular degeneration and methods of making the compounds. Compounds for MRI contrast imaging of the invention are usually Tc<sup>99</sup>, In<sup>111</sup> or Gd(III) complexes of compounds of the formula: