

1^{ère} année Master MAS Méthode de Monte-Carlo et Simulation Année : 2019/2020

Examen Final

<u>EXERCICE N° 1</u>: On considère le générateur de nombres pseudo-aléatoires suivant :

$$x_i = (5 \times x_{i-1} + 1) \mod 16.$$

On prend $x_0 = 5$.

1. La sortie du générateur est :

$$x_1 = 10$$
, $x_2 = 3$, $x_3 = 0$, $x_4 = 1$, $x_5 = 6$, $x_6 = 15$, $x_7 = 12$, $x_8 = 13$, $x_9 = 2$, $x_{10} = 11$, $x_{11} = 8$, $x_{12} = 9$, $x_{13} = 14$, $x_{14} = 7$, $x_{15} = 4$, $x_{16} = 5$, $x_{17} = 10$, ...

Donc la période de ce générateur est égale à 16

2. En utilisant ce générateur, on obtient les 5 valeurs suivante entre [0,1]:

$$u_0 = 0.3125, u_1 = 0.6250, u_2 = 0.1875, u_3 = 0, u_4 = 0.0625, u_5 = 0.3750$$

EXERCICE N° 2:

 $\overline{\text{On considère la}}$ variable aléatoire X dont la loi est donnée par :

x	1	2	3	4	5
$\mathbb{P}(X=x)$	0.2	0.3	0.1	0.3	0.1

1. La fonction de répartition de X

$$\begin{split} \mathbb{P}(X \leq 1) &= 0.2 \\ \mathbb{P}(X \leq 2) &= 0.2 + 0.3 = 0.5 \\ \mathbb{P}(X \leq 3) &= 0.2 + 0.3 + 0.1 = 0.6 \\ \mathbb{P}(X \leq 4) &= 0.2 + 0.3 + 0.1 + 0.3 = 0.9 \\ \mathbb{P}(X \leq 5) &= 0.2 + 0.3 + 0.1 + 0.3 + 0.1 = 1 \end{split}$$

On peut la représenter graphiquement par :

2. L'algorithme qui permet de simuler à partir de la variable aléatoire X.

3. On applique l'algorithme précédent sur les valeur suivantes pour simuler à partir de X:

$$u_1 = 0.15, \ u_2 = 0.61, \ u_3 = 0.65, \ u_4 = 0.43$$

On obtient les valeurs suivantes :

$$x_1 = 1, x_2 = 4, x_3 = 4, x_4 = 2$$

EXERCICE N° 3: On considère la variable aléatoire Y de densité

$$g(y) = \frac{1}{\pi} \frac{1}{1 + y^2}, \qquad y \in \mathbb{R}.$$

1. La fonction de répartition \mathbb{G}_Y de Y est donnée par :

$$\mathbb{G}_Y(y) = \int_{-\infty}^y g(t) \, dt = \int_{-\infty}^y \frac{1}{\pi} \frac{1}{1+t^2} \, dt = \frac{1}{\pi} \arctan(t) \Big|_{-\infty}^y = \frac{1}{\pi} \arctan(y) + \frac{1}{2}$$

2. En résolvant l'équation $U = \mathbb{G}_Y(Y)$, on a :

$$U = \frac{1}{\pi}\arctan(Y) + \frac{1}{2} \Longrightarrow Y = \tan\left(\pi(U - \frac{1}{2})\right)$$

Soit f la densité de la loi normale $\mathcal{N}(0,1)$:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, \quad x \in \mathbb{R}.$$

3. En faisant une étude de variation, on trouve facilement que $M=\sqrt{\frac{2\pi}{\mathrm{e}}}$

En effet, on pose
$$h(x)=rac{f(x)}{g(x)}=rac{rac{1}{\sqrt{2\pi}}{
m e}^{-rac{1}{2}x^2}}{rac{1}{\pi}rac{1}{1+x^2}}=\sqrt{rac{\pi}{2}}(1+x^2){
m e}^{-rac{1}{2}x^2}.$$
 On a

$$h'(x) = \sqrt{\frac{\pi}{2}}(2x - x(1+x^2))e^{-\frac{1}{2}x^2} = \sqrt{\frac{\pi}{2}}x(1-x^2)e^{-\frac{1}{2}x^2}$$

Donc le maximum est atteint pour $x=\pm 1$. Alors $M=h(1)=\sqrt{\frac{2\pi}{\mathrm{e}}}$.

FIGURE 1 – Représentation graphique des courbes de h, f et Mg

- 4. L'algorithme d'acceptation-rejet peut être défini de la manière suivante :
 - (i) générer Y selon la densité g c'est à dire la loi Cauchy; et U selon la loi uniforme $\mathcal{U}[0,1]$;
 - (ii) tester si $U \le \frac{\sqrt{e}}{2} \frac{e^{-\frac{1}{2}Y^2}}{1+Y^2}$:
 - (a) si c'est vrai, accepter la valeur Y et on pose X = Y;
 - (b) sinon, rejeter Y et recommencer à partir de la première étape.
- 5. On a

 $Y_1 = 15.8945448$, $Y_2 = 31.8205160$, $Y_3 = -1.9626105$, $Y_4 = 1.4714553$, $Y_5 = 0.2235265$ On rejette Y_1 , on rejette Y_2 , on accepte Y_3 , on accepte Y_4 , on accepte Y_5 .

FIGURE 2 – Illustration de la méthode de rejet.