SVEUČILIŠTE U RIJECI TEHNIČKI FAKULTET

Preddiplomski sveučilišni studij računarstva

Ugradbeni računalni sustavi

GPSmart

Sandro Babić David Krešo Marin Krmpotić Ana Tomas

Sadržaj

1.	. Uvo	od	1
	1.1.	Plan rješenja	1
2.	Kor	nponente sustava	2
	2.1.	ATmega32	2
	2.2.	Adafruit Ultimate GPS Breakout v3	2
	2.3.	TFT_320QVT	3
	2.4.	USB programator BAITE EvUSBasp	4
3.	Spa	janje komponenti	5
	3.1.	Shema spajanja	5
	3.2.	Tablični prikaz spojeva	5
	3.2.	Spoj programatora i mikrokontrolera	6
	3.2.	2. Spoj mikrokontrolera i GPS modula	6
	3.2.	3. Spoj mikrokontrolera i LCD ekrana	6
4.	Pok	retanje programa	8
5.	Pre	gled izrađenog rješenja	9
	5.1.	Izbornik	9
	5.2.	Live GPS1	0
	5.3.	Distances1	1
	5.4.	Altitude	1
	5.5.	Distance Calculator	2
6.	Zak	ljučak1	3
T	itaratu	ra 1	1

1. Uvod

Za izradu projekta na raspolaganju su bile sljedeće komponente: mikrokontroler ATmega32-16PU, USB programator, GPS modul Adafruit Ultimate GPS Breakout v3 i LCD ekran TFT_320QVT. Tema samog zadatka bila je proizvoljna.

1.1. Plan rješenja

Nakon spajanja komponenti i inicijalnim upoznavanjem s principima rada istih odlučeno je da će se izraditi aplikacija naziva *GPSmart* s četiri osnovne funkcionalnosti: prikazom očitanja GPS modula u realnom vremenu, kalukacijom udaljenosti između trenutne pozicije i prethodno definiranih gradova, grafičkim prikazom trenutne nadmorske visine i kalkulatorom za izračun udaljenosti između trenutne pozicije i koordinata koje proizvoljno unese korisnik.

Izrada je podijeljena u faze spajanja komponenti, osposobljavanja ispisa na ekranu, osposobljavanja serijske komunikacije mikrokontrolera i GPS modula, osposobljavanja detekcije dodira na ekranu, programiranja funkcionalnosti, izrade grafičkog sučelja i testiranja.

Koristi se razvojno okruženje *Atmel Studio 6.2*, *AVRDUDE* za zapisivanje na AVR i upravljački program za programator *WinAVR*.

2. Komponente sustava

Sve korištene komponente povezane su preko eksperimentalne pločice koristeći oko 40 žica.

2.1. ATmega32

Atmega32 je 8-bitni AVR mikrokontroler baziran na RISC-u [1]. Uključuje 32KB programabilne flash memorije, 2KB SRAM-a, 1KB EEPROM-a, 8-kanalni 1-bitni A/D pretvornik i JTAG sučelje za otkrivanje pogrešaka (engl. *debugging*). Uređaj ima propusnost od 16 MIPS-a pri frekvenciji od 16 MHz i radi u rasponu napona od 4.5 do 5.5 V.

Izvršavajući instrukcije u jednom otkucaju takta, uređaj postiže propusnost od približno 1 MIPS/MHz balansirajući potrošnju energije i brzinu obrade podataka. Raspored pinova mikrokontrolera ATmega32 prikazan je na slici 1.

Slika 1. Raspored pinova mikrokontrolera ATmega32

2.2. Adafruit Ultimate GPS Breakout v3

Ultimate GPS Breakout (slika 2) je GPS modul koji može pratiti do 22 satelita na 66 kanala [2]. Ima prijemnik visoke osjetljivosti i ugrađenu antenu. Može osvježiti lokaciju do 10 puta u sekundi i izuzetno je niske potrošnje.

Na modulu se nalazi signalna LED lampica koja prilikom traženja satelita svijetli frekvencijom od približno 1 Hz, a jednom u 15 sekundi svijetli kada su sateliti pronađeni.

Slika 2. GPS modul Ultimate GPS Breakout v3

2.3. TFT_320QVT

TFT_320QVT (slika 3) je TFT LCD ekran. Ima 40 pinova. Uključuje LCD ekran za ispis, touch screen, modul za SD karticu i mogućnost proširenja eksterne flash memorije [3]. Rezolucija ekrana je 320x240 piksela. Dijagonala ekrana je 3.2 inča. Kontroler na ekranu jest SSD1289 koji podržava 16-bitni način rada te podržava rad sa različitim mikrokontrolerima među kojima je i AVR.

Touch screen kontroler je XPT2046. Rezistivnog je tipa što znači da reagira na dodir prstom ili bilo kakvim objektom sličnim stilusu. XPT2046 detektira lokaciju dodira izvođenjem 2xADP. Za čitati sa touch screen-a koristi se SPI (od mikrokontrolera).

Slika 3. Lice i naličje ekrana TFT 320QVT

2.4. USB programator BAITE EvUSBasp

USB programator (slika 4) koristi se za zapisivanje programa na mikrokontroler. Kompajler pretvara C kôd u strojno čitljiv kôd. Za AVR je to .hex datoteka (*Intel Hex Format*). Programator koristi 6-pinski ISP konektor za komunikaciju s mikrokontrolerom i preko istoga zapisuje kôd u flash memoriju mikrokontrolera.

Slika 4. USB programator BAITE EvUSBasp

3. Spajanje komponenti

U ovom poglavlju prikazat će se shema spajanja komponenti na temelju koje je pisano programsko rješenje. Uz grafičku shemu svi spojevi predstavit će se i tablično.

3.1. Shema spajanja

Grafička shema cjelokupnog sklopa može se vidjeti na slici 5.

Slika 5. Shema sklopa

3.2. Tablični prikaz spojeva

Tablični prikaz spojeva razdijelit će se na nekoliko tablica: spoj programatora i mikrokontrolera, spoj mikrokontrolera i GPS modula te spoj mikrokontrolera i LCD ekrana.

3.2.1. Spoj programatora i mikrokontrolera

Svi spojevi između programatora i mikrokontrolera navedeni su u tablici 1.

Tablica 1. Popis pripadajućih spojeva pinova programatora i mikrokontrolera

Programator	Mikrokontroler
MOSI	PB5
RST	RESET
SCK	PB7
MISO	PB6
VCC, AVCC	VCC
GND (4x)	GND (2x)

3.2.2. Spoj mikrokontrolera i GPS modula

Svi spojevi između mikrokontrolera i GPS modula navedeni su u tablici 2.

Tablica 2. Popis pripadajućih spojeva pinova mikrokontrolera i GPS modula

Mikrokontroler	GPS modul
RXD	TX
TXD	RX
GND	GND
VCC	VIN

3.2.3. Spoj mikrokontrolera i LCD ekrana

Svi spojevi između mikrokontrolera i LCD ekrana navedeni su u tablici 3.

Tablica 3. Popis pripadajućih spojeva pinova mikrokontrolera i LCD ekrana

Mikrokontroler	LCD ekran
PB2	T_IRQ
PB4	T_CS
PB5	T_DIN
PB6	T_DO
PB7	T_CLK
PD2	RS
PD3	CS
PD4	RD
PD5	WR
PA0	DB0
PA1	DB1
PA2	DB2
PA3	DB3
PA4	DB4

PA5	DB5
PA6	DB6
PA7	DB7
PC7	DB15
PC6	DB14
PC5	DB13
PC4	DB12
PC3	DB11
PC2	DB10
PC1	DB9
PC0	DB8
PD7	REST
VCC	LED_A, VCC
GND	GND

4. Pokretanje programa

Program je pisan u programskom jeziku C, razvijan u razvojnom okruženju *Atmel Studio* 6.2 uz alat *AVR Dude*. Tvornički su postavke osigurača mikrokontrolera postavljene na 0xE1 (niži bajt) i 0x99 (viši bajt) čime se definira uporaba internog RC oscilatora pri frekvenciji od 1 MHz. Za ispravan rad programa *GPSmart* potrebno je povisiti frekvenciju oscilatora na 8 MHz postavljajući vrijednosti osigurača mikrokontrolera na 0xE4 (niži bajt) i 0x99 (viši bajt). To se može postići upisivanjem sljedeće naredbe u komandnu liniju operacijskog sustava (ili koristeći ekstenziju *AVR Dude* za *Atmel Studio*):

```
avrdude -U lfuse:w:0xe4:m -U hfuse:w:0x99:m
```

Nakon uspješnog kompajliranja programa generirana .hex datoteka zapisuje se na mikrokontroler sljedećom naredbom:

```
avrdude -c usbasp -p m32 -v -U flash:w:$(TargetDir)$(TargetName).hex:i
```

Cjelokupni sklop napaja se preko USB programatora, a program se može početi koristiti nakon što signalna LED lampica na GPS modulu signalizira uspješan pronalazak satelita paljenjem lampice jednom u 15 sekundi.

5. Pregled izrađenog rješenja

Izrađeno rješenje (slika 6) pruža nekoliko funkcionalnosti. Pri spajanju na napajanje prikazuje se izbornik preko kojega je moguće pokrenuti prikaze *Live GPS*, *Distances*, *Altitude* i *Distance Calculator*.

Slika 6. Fotografija funkcionalnog rješenja

5.1. Izbornik

Izbornik (slika 7) se sastoji od četiri stavke koje se mogu odabrati dodirom. Pritiskom na pojedinačnu stavku pokreće se željeni prikaz.

Slika 7. Prikaz izbornika s popisom stavki

5.2. Live GPS

Prikaz *Live GPS* (slika 8) prikazuje očitanja s GPS modula u realnom vremenu. Prikazuje se trenutno vrijeme, geografska širina i dužina, nadmorska visina i broj satelita s kojima komunicira.

Slika 8. Prikaz Live GPS s očitanjima GPS modula u realnom vremenu

5.3. Distances

Prikaz *Distances* (slika 9) u realnom vremenu računa udaljenosti između trenutne pozicije i određenih gradova. Sastoji se od dvije sekcije: *Croatia* i *World* u sklopu kojih se prikazuju udaljenosti do hrvatskih gradova, odnosno onih svjetskih.

Slika 9. Prikaz Distances s udaljenostima do definiranih gradova

5.4. Altitude

Prikaz *Altitude* (slika 10) u realnom vremenu grafički prikazuje trenutnu nadmorsku visinu na skali između 0 i 1472 m.

Slika 10. Prikaz Altitude s grafičkim prikazom nadmorske visine u realnom vremenu

5.5. Distance Calculator

Prikaz *Distance Calculator* (slika 11) omogućuje korisniku unos željenih geografskih koordinata koristeći tipkovnicu prikazanu na ekranu. Nakon unosa koordinati ispisuje se udaljenost između trenutne pozicije i unesenih koordinati koja se neprestano osvježava ovisno o očitanjima s GPS modula.

Slika 11. Prikaz Distance Calculator koji omogućuje korisniku računanje udaljenosti do proizvoljno unesenih koordinati

6. Zaključak

Svrha završnog projekta iz kolegija Ugradbeni računalni sustavi bila je izraditi funkcionalni sklop proizvoljnih funkcionalnosti koristeći zadane komponente. Komponente su uspješno spojene, a aplikacija isprogramirana. Predstavljena je ideja iza projekta, a sam kôd detaljno dokumentiran u svrhu jednostavnije evaluacije i eventualnih budućih nadogradnji.

GPSmart je jednostavna aplikacija koja se oslanja na očitanja GPS modula, a predstavlja neke od mogućih primjena raspoloživih modula. Korisniku omogućuje prikaz očitanja GPS modula u realnom vremenu, kalkulaciju udaljenosti između trenutne pozicije i prethodno definiranih gradova, grafički prikaz trenutne nadmorske visine i kalkulator za izračun udaljenosti između trenutne pozicije i koordinata koje proizvoljno unese korisnik.

Većih problema tijekom realizacije projekta nije bilo. Najviše je vremena utrošeno na ispravno spajanje komponenti i upravljanje istima mikrokontrolerom. Programiranje funkcionalnosti koje je uslijedilo nakon uspješne inicijalizacije komponenti izvršeno je bez ikakvih poteškoća, kao i dizajniranje sučelja te testiranje.

Literatura

- [1] Atmel Corporation (2011) *Atmega32/L Datasheet: Revision 2503Q–AVR–02/11*: Atmel Corporation.
- [2] Adafruit Industries (2014) Adafruit Ultimate GPS Breakout 66 channel w/10 Hz updates
- *Version 3*, ONLINE. Dostupno na: http://www.adafruit.com/products/746. [Pristupano 3. rujna 2015].
- [3] Lincomatic's DIY Blog (2014) *Interfacing a TFT_320QVT LCD/Touchscreen/SD to a Teensy 3.0*, ONLINE. Dostupno na: http://blog.lincomatic.com/?p=1448. [Pristupano 3. rujna 2015.]