

Theory of Computation

Dr Samayveer Singh

Context-Free Languages

Context-Free Languages

- A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple (V_N, Σ, P, S) where
 - V_N is a set of non-terminal symbols.
 - $-\sum$ is a set of terminals where $V_N \cap \sum = NULL$.
 - − P is a set of rules, P: $V_N \rightarrow (V_N \cup \Sigma)^*$, i.e., the left-hand side of the production rule P does have any right context or left context.
 - S is the start symbol.
- Example
 - The grammar ($\{A\}$, $\{a, b, c\}$, P, A), $P : A \rightarrow aA$, $A \rightarrow abc$.
 - The grammar ($\{S, a, b\}, \{a, b\}, P, S$), $P: S \rightarrow aSa, S \rightarrow bSb, S \rightarrow \varepsilon$
 - The grammar ({S, F}, {0, 1}, P, S), P: S → 00S | 11F, F → 00F | ε

Context-Free Grammar

A grammar is context-free if every production is of the form

$$A \rightarrow \alpha$$

where $A \in V_N$ and $\alpha \in (V_N \cup \Sigma)^*$.

Derivation Trees

- The derivations in a CFG can be represented using trees. Such trees representing derivations are called derivation trees.
- A derivation tree (also called a parse tree) for a CFG $G = (VN, \Sigma, P, S)$ is a tree satisfying the following conditions:
 - Every vertex has a label which is a variable or terminal or \wedge .
 - The root has label S.
 - The label of an internal vertex is a variable.
 - If the vertices \mathbf{n}_1 , \mathbf{n}_2 , ... \mathbf{n}_k written with labels X_1 , X_2 , ..., X_k are the sons of vertex \mathbf{n} with label A, then $A \rightarrow X_1$, X_2 , ..., X_k is a production in P.
 - A vertex \mathbf{n} is a leaf if its label is $a \in \sum or \land$; \mathbf{n} is the only son of its father if its label is \land .

4

For eg: let $G = (\{S, A\}, \{a, b\}, P, S)$. where P consists of $S \rightarrow aAS / a / SS$, A $\rightarrow SbA / ba$. Draw the derivation tree for the G.

Consider G whose productions are $S \rightarrow aAS / a$, $A \rightarrow SbA / SS / ba$. Show that S ==> aabbaa and construct a derivation tree whose yield is <u>aabbaa</u>.

Types of derivation trees

- There are two types of derivation namely leftmost and rightmost derivation tree.
 - -Leftmost derivation: A derivation is called a *leftmost derivation* if we apply a production only to the leftmost variable at every step.

-Rightmost derivation: A derivation is a *rightmost derivation* if we apply production to the rightmost variable at every step.

Let G be the grammar S $\rightarrow 0B/1A$, $A \rightarrow 0/0S/1AA$, $B \rightarrow 1/1S/0BB$. For the string 00110101, find (a) the leftmost derivation, (b) the rightmost derivation, and (c) the derivation tree.

(P)

8

Let G be the grammar S \rightarrow OB /1A, A \rightarrow 0 / 0S /1AA, B \rightarrow 1/1S / OBB. For the string 00110101, find (a) the leftmost derivation, (b) the rightmost derivation, and (c) the derivation tree.

Ambiguity in Context-free Grammars

A terminal string W & L(G) is ambiguous if there exist two or more derivation trees for w (or there exist two or more leftmost derivations of w).

10

Consider, for example, $G = (\{S\}, \{a, b, +, *\}, P. S)$, where P consists of $S \rightarrow S + S \mid S * S \mid a \mid b$. Can we draw two derivation trees for string a + a * b.

If G is the grammar $S \rightarrow SbS / a$, show that G is ambiguous.

