1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\sum
					14					1.6								h favil		

FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO IZPIT IZ VERJETNOSTI IN STATISTIKE 2013/2014

	00	27. JANUAR	2014		
IME IN	PRIIMEK:	Navodila	VPISNA ŠT: [
True/I jen 0 ir odgovo -0.5 to	vprašanje se odgovarja pisno False (vedno drži/ne drži vedno za nepravilen pa -1 točko. 10 ora (pravilen je en sam): za pročke. Vse odgovore (P/N in asuspeha!	no): za pravile 0 vprašanj iz II ravilen odgovom	en odgovor dol II. skupine je dobite 4 točk	oite 1 točko, za ne na zaokroževanje p e, za nepravilen od	eodgovor- ravilnega lgovor pa
I. Cen	tralni limitni izrek				
(a) Pr	redstavi centralni limitni izrek	(CLI) iz vzorče	enja za pričak o	ovano vrednost.	
(b) Pr	redstavi centralni limitni izrek	(CLI2) iz vzor	čenja za delež		
	X slučajna spremenljivka z E \overline{X} finiraj vzorčno povprečje \overline{X}	$EX = \mu \text{ in } DX$	$=\sigma^2$. Za njen	slučajen vzorec $\{X$	$\{i\}_{i=1}^n$
in izpe	lji, kaj se dogaja z naraščanjer	m velikosti vzor	ca s		
(d) pr	ičakovano vrednostjo vzorčneg	ga povprečja E	X in had the word then yellobsone		

(e) z disperzijo vzorčnega povprečja $\mathsf{D}\bar{X}.$

II. skupina

1. Če za dogodka A in B velja

$$P(A) = P(\overline{A})$$
 in $P(B) = P(\overline{B})$, potem je $P(AB) = 1/4$.

- 2. Dogodka, ki sta nezdružljiva, sta lahko tudi neodvisna.
- Dogodki vzorčnega prostora, ki pripadajo različnim vrednostim slučajne spremenljivke tvorijo listo paroma nezdružljivih dogodkov.
- 4. Pri binomski porazdelitvi parameter p predstavlja verjetnost, da se bo dogodek zgodil enkrat pri n ponovitvah.
- 5. Predpostavimo, da je X slučajna spremenljivka, ki je porazdeljena $N(\mu, \sigma)$. Če je X standardizirana v Z, potem lahko iz katerih koli treh vrednosti izmed x, μ , σ in z vedno izračunamo preostalo (četrto) vrednost.
- 6. Za binomsko porazdelitev s fiksno vrednostjo p, postaja z naraščanjem velikosti n binomska porazdelitev vse bolj podobna normalni.
- 7. Vsako binomsko porazdelitev lahko aproksimiramo zelo natančno z ustrezno normalno porazdelitvijo.
- 8. Če vzorčimo iz populacije, ki je porazdeljena normalno s pričakovano vrednostjo 100 in standardnim odklonom 10, potem za vzorčno povprečje \overline{X} velja

$$P(90 < X < 100) < P(90 < \overline{X} < 100).$$

- 9. Porazdelitev vzorčnih povprečij je normalna za vzorce vseh velikosti, pod pogojem da je začetna porazdelitev normalna.
- 10. Pri preverjanju domnev z α označimo verjetnost napake prve vrste in z β verjetnost napake druge vrste. Če pri testu povečamo α , se β vedno zmanjša.

III. skupina

- 11. Iz kupa igralnih kart (52) na slepo izberemo eno karto in jo nato vrnemo nazaj. Postopek ponovimo 5-krat. Kakšna je verjetnost, da bomo videli dvakrat srce, po enkrat pa pika, križa in karo?
 - (a) 0
 - **(b)** 1/4
 - (c) 0.05859
 - (d) 0.04859
 - (e) 0.03859
 - (f) $\binom{5}{2}$
 - (g) $1/2^5$
 - (h) 1

- 12. V škatli imamo 3 neizpravne in 17 izpravnih enot. Dve enoti si izberemo (brez vračanja). Kakšna je verjetnost, da sta obe enoti neizpravni, če je bila prva, ki smo jo izbrali neizpravna?
 - (a) 0.967
 - (b) 0.666
 - (c) 0.750
 - (d) 0.257
 - (e) 0·105
 - (f) 0.987
 - (g) 0·1
 - **(h)** 0

- 13. Naj bo p(x) = (6 |x 7|)/36 za $x = 2, 3, \dots, 12$ verjetnostna funkcija. Koliko je P(6 < x < 8)?
 - (a) 0
 - **(b)** 1/6
 - (c) 4/9
 - (d) 1/2
 - (e) 5/36
 - (f) 5/18
 - (g) 1
 - (h) p(x) ni verjetnostna funkcija.

- 15. Naprava izdeluje dele, od katerih je 2% defektnih. Če izberani naključni vzorec petih delov vsebuje dva ali več defektnih delov, je potrebno napravo zaustaviti in poklicati serviserja. Izračunaj verjetnost, da bo potrebno zaustavit napravo na osnovi omenjenega načrta.
 - (a) 0.996
 - (b) 0.94
 - (c) 0.02
 - (d) 0.03
 - (e) 0·04
 - (f) 0.0002
 - (g) 0·004
 - (h) 0.05
- 14. Za neko binomsko porazdeljeno slučajno spremenljivko (B(n,p)) je pričakovana vrednost $\mu=4$ in standardni odklon $\sigma=\sqrt{3}$. Določi verjetnost p.
 - (a) 4
 - **(b)** 1/2
 - **(c)** 1/3
 - (d) 1/4
 - **(e)** 1/5
 - **(f)** 1/6
 - (g) 1
 - **(h)** 0

- 16. Ploščina pod standardizirano normalno krivuljo med z=0.0 in z=2.0 je
 - (a) 0.9772
 - **(b)** 0.7408
 - (c) 0·1359
 - (d) 0·4772
 - (e) 0.67
 - (f) 0.82
 - (g) 0·4998
 - **(h)** 0.2365

17. Histogram prikazuje, koliko odstotkov vseh točk je v povprečju študent nabral pri vsaki nalogi na 1. kolokviju ViS. Če veš, da so študentje v povprečju pri zadnji nalogi zbrali 5 točk, koliko točk so v povprečju dosegli na 1. kolokviju?

- (a) 11
- (b) 11/4
- (c) 11/3
- (d) 12
- (e) 55
- **(f)** 50
- (g) 45
- (h) Iz histograma tega ne moremo ugotoviti.
- 18. Populacija ima $\mu = x$ in $\sigma = y$. Poišči 90. centil za vzorčno porazdelitev, če izbiramo vzorce velikosti 64:
 - (a) x
 - (b) x+y
 - (c) x + 0.16y
 - (d) 64
 - (e) x + 0.67y
 - **(f)** 0.90
 - (g) 0·45
 - **(h)** x + 0.12y

- 19. Če vzorčimo iz N(50,5), izračunaj kakšna mora biti velikost vzorca, da bo 90% vzorčnega povprečja med 48.5 in 51.5?
 - (a) 22
 - (b) 26
 - (c) 30
 - (d) 31
 - (e) 38
 - **(f)** 42
 - (g) 18
 - (h) 34

(V pomoč naštejmo vrednosti $z_{\alpha/2}$ za nekaj najbolj standardnih tveganj:

- $\alpha = 0.10$, $z_{\alpha/2} = 1.65$,
- $\alpha = 0.05$, $z_{\alpha/2} = 1.96$,
- $\alpha = 0.01$, $z_{\alpha/2} = 2.58$.)
- 20. Katera porazdelitev je na sliki, če veš, da je njen edini parameter enak 0.5?

- (a) Pascalova
- (b) Poissonova
- (c) Geometrijska
- (d) Binomska
- (e) Normalna
- (f) Polinomska
- (g) Enakomerna diskretna v \mathbb{R}^n , pri čemer je n omenjeni parameter.
- (h) Nimamo dovolj podatkov, da bi jo natančno določili.