第三章 多维随机变量及其概率分布作业

	姓名	学号
--	----	----

一、选择题(每小题 4 分, 共 32 分)

1. 设二维离散型随机变量(X,Y)的联合分布律如下表,X和Y相互独立,则a和b分别是().

Y X	1	2	3
1	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$
2	$\frac{1}{3}$	a	b

A.
$$a = \frac{1}{9}, b = \frac{2}{9}$$
; B. $a = \frac{2}{9}, b = \frac{1}{9}$; C. $a = \frac{5}{9}, b = \frac{4}{9}$; D. $a = \frac{4}{9}, b = \frac{5}{9}$.

B.
$$a = \frac{2}{9}, b = \frac{1}{9}$$
;

C.
$$a = \frac{5}{9}, b = \frac{4}{9}$$
;

D.
$$a = \frac{4}{9}, b = \frac{5}{9}$$

2. 设随机变量 X 和 Y 相互独立且同分布, $P(X=1) = P(Y=1) = \frac{1}{3}$, $P(X=-1) = P(Y=-1) = \frac{2}{3}$, 则下列各式中不成立的是(

A.
$$P(X=Y) = 1$$
;

B.
$$P(X=Y) = \frac{5}{9}$$
;

A.
$$P(X=Y)=1$$
; B. $P(X=Y)=\frac{5}{9}$; C. $P(X+Y=0)=\frac{4}{9}$; D. $P(XY=1)=\frac{5}{9}$.

D.
$$P(XY=1) = \frac{5}{9}$$

3. 设f(x,y)为二维连续型随机变量(X,Y)的联合密度函数,则()不成立.

A.
$$f(x,y)$$
 为可积函数;

B.
$$f(x, y) > 0$$
;

$$C. f(x,y) \ge 0;$$

A.
$$f(x,y)$$
为可积函数; B. $f(x,y) > 0$; C. $f(x,y) \ge 0$; D. $\iint_{\mathbb{R}^2} f(x,y) dx dy = 1$.

4. 设二维随机变量 (X,Y) 服从矩形区域 $D = \{(x,y) | a \le x \le b, c \le y \le d\}$ 上的均匀分布,则 X 服从 区间()上的均匀分布.

A.
$$[a,b]$$
;

B.
$$[c,d]$$
;

C.
$$[b,d]$$
;

D.
$$[a,c]$$
.

5. 设二维连续型随机变量 (X,Y) 服从区域 D 上的均匀分布,其中区域 D 由曲线 $y=x^2$ 和 $y=x^3$ 所 围,则(X,Y)的联合密度函数为(

A.
$$f(x,y) = \begin{cases} \frac{1}{12}, & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}$$
; B. $f(x,y) = \begin{cases} 12, & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}$;

B.
$$f(x, y) = \begin{cases} 12, & (x, y) \in D \\ 0, & (x, y) \notin D \end{cases}$$

C.
$$f(x,y) = \begin{cases} \frac{1}{6}, & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}$$
, D. $f(x,y) = \begin{cases} 6, & (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}$.

D.
$$f(x, y) = \begin{cases} 6, & (x, y) \in D \\ 0, & (x, y) \notin D \end{cases}$$

6. 设 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} kxy, & 0 < x < 1, 0 < y < 1 \\ 0. & 其他 \end{cases}$,则 k = (X,Y)

A. 2; B.
$$\frac{1}{2}$$
; C. 3; D. 4.

7. 设 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} 8xy, & 0 < x < 1, 0 < y < x \\ 0, & \text{其他} \end{cases}$,则随机变量 Y 的边缘密度函 数为().

A.
$$\begin{cases} \int_{y}^{1} 8xy dx, & 0 < y < 1 \\ 0, & 其他 \end{cases}$$

A.
$$\begin{cases} \int_{y}^{1} 8xy dx, & 0 < y < 1 \\ 0, & 其他 \end{cases}$$
 B.
$$\begin{cases} \int_{1}^{y} 8xy dx, & 0 < y < 1 \\ 0, & 其他 \end{cases}$$

C.
$$\begin{cases} \int_0^1 8xy dx, & 0 < y < 1 \\ 0, & 其他 \end{cases}$$
 D. $\begin{cases} \int_x^1 8xy dx, & 0 < y < 1 \\ 0, & 其他 \end{cases}$

D.
$$\begin{cases} \int_{x}^{1} 8xy dx, & 0 < y < 1 \\ 0, & 其他 \end{cases}$$

8. 设 $X_1 \sim N(0,2)$, $X_2 \sim N(1,3)$, $X_3 \sim N(0,6)$, 且 X_1, X_2, X_3 相互独立, $\Phi(x)$ 表示标准正态分布 的分布函数,则 $P(2 \le 3X_1 + 2X_2 + X_3 \le 8) = ($).

- A. $\Phi(1) \Phi(0)$; B. $\Phi(1) \Phi(2)$; C. $\Phi(3) \Phi(0)$; D. $\Phi(5) \Phi(0)$.

二、填空题(每空4分,共36分)

1. 设 (X,Y) 为二维离散型随机变量,若 $P(X=a) = \frac{3}{5}$, $P(X=a,Y=b) = \frac{9}{20}$,则 $P(Y=b|X=a) = ______.$ 若 X 与 Y 相互独立,则 $P(Y=b) = _____$

且 $P(X_1X_2=0)=1$,则 $P(X_1=X_2)=$ ______.

3. 设随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} 4, & (x,y) \in D \\ 0, & 其他 \end{cases}$,则区域 D 的面积 为______.

4. 设 $X \sim N(1,4)$, $Y \sim N(2,9)$, 且 X 与 Y相互独立, $\Phi(x)$ 表示标准正态分布的分布函数,则 $2X + Y \sim$ ______, $P(-1 \le 2X + Y \le 9) =$ ______

5. 设随机变量 X 和 Y 相互独立, X 服从区间[1,5]上的均匀分布, Y 服从参数为3的指数分布,则 (X,Y) 的联合密度函数为

6. 设二维随机变量 (X,Y) 的分布函数为 F(x,y) ,则 $F(+\infty,+\infty) = _____$, $F(-\infty,y) = _____$.

三、计算题(共32分)

1. 己知随机变量
$$(X,Y)$$
 的联合密度函数为 $f(x,y) = \begin{cases} ce^{-2x-y}, & 0 < x < +\infty, 0 < y < +\infty, \\ 0, & 其他, \end{cases}$

求: (1) 常数c; (2) 边缘密度函数 $f_{X}(x)$, $f_{Y}(y)$. (12分)

2. 设二维离散型随机变量 (X,Y) 的联合分布律如下表

Y	0	1	
0	$\frac{1}{12}$	$\frac{1}{6}$	
1	$\frac{1}{4}$	$\frac{1}{2}$	

(1) 求(X,Y)的边缘概率分布律; (2) 判断 X 与 Y 是否相互独立. (8分)

- 3. 已知二维连续型随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} \frac{1}{12} xy, & 0 \le x \le 2, 2 \le y \le 4 \\ 0, & \text{其他} \end{cases}$
 - (1) $P(X \ge 1, Y \le 3)$; (2) $P(X \le \frac{3}{2})$. (12 %)