Prediction with Expert Advice

Mehryar Mohri
Courant Institute and Google Research
mohri@cs.nyu.edu

Motivation

- On-line decisions, agent interacts with environment.
- Model: adversarial, no assumption about points being drawn from a distribution.
- Performance measure: regret, no risk or expected loss.

General On-Line Setting

- \blacksquare For t=1 to T do
 - receive instance $x_t \in X$.
 - predict $\widehat{y}_t \in Y$.
 - receive label $y_t \in Y$.
 - incur loss $L(\widehat{y}_t, y_t)$.
- **Classification:** $Y = \{0, 1\}, L(y, y') = |y' y|.$
- **Regression:** $Y \subseteq \mathbb{R}$, $L(y, y') = (y'-y)^2$.
- Objective: minimize total loss $\sum_{t=1}^{T} L(\widehat{y}_t, y_t)$.

Prediction with Experts

- \blacksquare For t=1 to T do
 - receive instance $x_t \in X$ and advice $y_{t,i} \in Y, i \in [1, N]$.
 - predict $\widehat{y}_t \in Y$.
 - receive label $y_t \in Y$.
 - incur loss $L(\widehat{y}_t, y_t)$.
- Objective: minimize regret, i.e., difference of total loss incurred and that of best expert.

$$Regret(T) = \sum_{t=1}^{T} L(\widehat{y}_t, y_t) - \min_{i=1}^{N} L(\widehat{y}_{t,i}, y_t).$$

Weighted Majority Algorithm

- Algorithm: prediction with $N \ge 1$ experts, 0/I-loss.
 - at any time t, expert i has weight w_i^t .
 - originally, $w_i^0 = 1, \forall i \in [1, N].$
 - prediction according to weighted majority.
 - weight of each wrong expert updated ($\epsilon > 0$):

$$w_i^{t+1} \leftarrow w_i^t (1 - \epsilon).$$

Weighted Majority - Bound

Theorem (mistake bound): let m_i^t be the number of mistakes made by expert i till time t and m^t the total number of mistakes. Then, for all t and for any expert i (in particular best expert),

$$m^t \le \frac{2\log N}{\epsilon} + 2(1+\epsilon)m_i^t.$$

- Thus, $m^t \leq O(\log N) + \text{constant} \times \text{best expert.}$
- Realizable case: $m^t \leq O(\log N)$.

Weighted Majority - Proof

- Potential: $\Phi^t = \sum_{i=1}^N w_i^t$.
- Upper bound: after each error,

$$\Phi^{t+1} \le [1/2 + 1/2 (1 - \epsilon)] \Phi^t = [1 - \epsilon/2] \Phi^t.$$

Thus, $\Phi^t \leq (1 - \epsilon/2)^{m^t} N$.

- Lower bound: for any expert i, $\Phi^t \ge w_i^t = (1-\epsilon)^{m_i^t}$.
- Comparison: $(1 \epsilon)^{m_i^t} \le (1 \epsilon/2)^{m^t} N$ $\Rightarrow m_i^t \log(1 - \epsilon) \le \log N + m^t \log(1 - \epsilon/2)$ $\Rightarrow - m_i^t (\epsilon + \epsilon^2) \le \log N - m^t \epsilon/2.$

Exponential Weighted Average

Algorithm:

- total loss incurred by expert *i* up to time *t*
- weight update: $w_{t+1,i} \leftarrow w_{t,i} e^{-\eta L(\widehat{y}_{t,i},y_t)} = e^{-\eta L_{t,i}}$.
- prediction: $\widehat{y}_t = \frac{\sum_{i=1}^N w_{t,i} y_{t,i}}{\sum_{i=1}^N w_{t,i}}$.
- Theorem: assume that L is convex in its first argument and takes values in [0,1]. Then, for any $\eta > 0$ and any sequence $y_1, \ldots, y_T \in Y$, the regret at T satisfies

 $\operatorname{Regret}(T) \le \frac{\log N}{\eta} + \frac{\eta T}{8}.$

For
$$\eta = \sqrt{8 \log N/T}$$
,

$$\operatorname{Regret}(T) \leq \sqrt{(T/2)\log N}$$

Exponential Weighted Avg - Proof

- Potential: $\Phi_t = \log \sum_{i=1}^N w_{t,i}$.
- Upper bound:

$$\begin{split} \Phi_t - \Phi_{t-1} &= \log \frac{\sum_{i=1}^N w_{t-1,i} \, e^{-\eta L(\widehat{y}_{t,i},y_t)}}{\sum_{i=1}^N w_{t-1,i}} \\ &= \log \left(\underset{w_{t-1}}{\operatorname{E}} [e^{-\eta L(\widehat{y}_{t,i},y_t)}] \right) \\ &\leq -\eta \underset{w_{t-1}}{\operatorname{E}} [L(\widehat{y}_{t,i},y_t)] + \frac{\eta^2}{8} \quad \text{(Hoeffding's ineq.)} \\ &\leq -\eta L(\underset{w_{t-1}}{\operatorname{E}} [\widehat{y}_{t,i}],y_t) + \frac{\eta^2}{8} \quad \text{(convexity of first arg. of } L) \\ &= -\eta L(\widehat{y}_t,y_t) + \frac{\eta^2}{8}. \end{split}$$

Exponential Weighted Avg - Proof

Upper bound: summing up the inequalities yields

$$\Phi_T - \Phi_0 \le -\eta \sum_{t=1}^{I} L(\widehat{y}_t, y_t) + \frac{\eta^2 T}{8}.$$

Lower bound:

$$\Phi_T - \Phi_0 = \log \sum_{i=1}^{N} e^{-\eta L_{T,i}} - \log N \ge \log \max_{i=1}^{N} e^{-\eta L_{T,i}} - \log N$$
$$= -\eta \min_{i=1}^{N} L_{T,i} - \log N.$$

Comparison:

$$-\eta \min_{i=1}^{N} L_{T,i} - \log N \le -\eta \sum_{t=1}^{T} L(\widehat{y}_t, y_t) + \frac{\eta^2 T}{8}$$

$$\Rightarrow \sum_{t=1}^{T} L(\widehat{y}_t, y_t) - \min_{i=1}^{N} L_{T,i} \le \frac{\log N}{\eta} + \frac{\eta T}{8}.$$

Exponential Weighted Avg - Notes

- Advantage: weight update does not depend on past predictions, but only on past performance.
- Disadvantage: choice of η requires knowledge of horizon T.

Doubling Trick

- Idea: divide time into periods $[2^k, 2^{k+1} 1]$ of length 2^k with $k = 0, \ldots, n, T \ge 2^n 1$, and choose $\eta_k = \sqrt{\frac{8 \log N}{2^k}}$ in each period.
- Theorem: with the same assumptions as before, for any T, the following holds:

$$\operatorname{Regret}(T) \leq \frac{\sqrt{2}}{\sqrt{2} - 1} \sqrt{(T/2) \log N} + \sqrt{\log N/2}.$$

Doubling Trick - Proof

By the previous theorem, for any $I_k = [2^k, 2^{k+1} - 1]$,

$$L_{I_k} - \min_{i=1}^{N} L_{I_k,i} \le \sqrt{2^k/2 \log N}.$$

Thus,
$$L_T = \sum_{k=0}^n L_{I_k} \le \sum_{k=0}^n \min_{i=1}^N L_{I_k,i} + \sum_{k=0}^n \sqrt{2^k (\log N)/2}$$

$$\le \min_{i=1}^N L_{T,i} + \sum_{k=0}^n 2^{\frac{k}{2}} \sqrt{(\log N)/2}.$$

with

$$\sum_{i=0}^{n} 2^{\frac{k}{2}} = \frac{\sqrt{2}^{n+1} - 1}{\sqrt{2} - 1} = \frac{2^{(n+1)/2} - 1}{\sqrt{2} - 1} \le \frac{\sqrt{2}\sqrt{T} + 1 - 1}{\sqrt{2} - 1} \le \frac{\sqrt{2}(\sqrt{T} + 1) - 1}{\sqrt{2} - 1} \le \frac{\sqrt{2}\sqrt{T}}{\sqrt{2} - 1} + 1.$$

Notes

- Doubling trick used in a variety of other contexts and proofs.
- More general method, learning parameter function of time: $\eta_t = \sqrt{(8 \log N)/t}$. Constant factor improvement:

$$\operatorname{Regret}(T) \leq 2\sqrt{(T/2)\log N} + \sqrt{(1/8)\log N}.$$

Exp. Weighted Avg - Small Loss

- Cumulated loss: $L_T = \sum_{t=1}^T L_t = \sum_{t=1}^T L(\widehat{y}_t, y_t)$.
- Theorem: assume that L is convex in its first argument and takes values in [0,1]. Then, for any $\eta > 0$ and any sequence $y_1, \ldots, y_T \in Y$, the cumulated loss L_T satisfies

$$L_T \le \frac{\eta L_T^* + \log N}{1 - e^{-\eta}}.$$

For $\eta = 1$,

$$L_T \le \frac{L_T^* + \log N}{1 - 1/e}.$$

Better bound when $L_T^* \leq O(\sqrt{T})$.

Small Loss - Proof

- Potential: $\Phi_t = \log \sum_{i=1}^N w_{t,i}$.
- Upper bound: use variance.

$$\Phi_t - \Phi_{t-1} = \log \frac{\sum_{i=1}^N w_{t-1,i} e^{-\eta L(\widehat{y}_{t,i}, y_t)}}{\sum_{i=1}^N w_{t-1,i}} = \log \left(\sum_{w_{t-1}} \left[e^{-\eta L(\widehat{y}_{t,i}, y_t)} \right] \right).$$

$$E[e^{-\eta Y_t}] = 1 - E[\eta Y_t] + \sum_{n=2}^{+\infty} \frac{(-\eta)^n}{n!} E[Y_t^n]$$

$$\leq 1 + \sigma^2[e^{-\eta} - 1 + \eta]$$

$$\leq 1 + E[X_t](1 - E[X_t])[e^{-\eta} - 1 + \eta]$$

$$\leq 1 + E[X_t][e^{-\eta} - 1 + \eta].$$

 $Y_t = X_t - \mathbb{E}|X_t|$

Small Loss - Proof

Upper bound on difference of potential

$$\begin{split} \Phi_t - \Phi_{t-1} &= \log \mathop{\mathbf{E}}_{w_{t-1}} [e^{-\eta X_t}] \\ &= \log \mathop{\mathbf{E}}_{w_{t-1}} [e^{-\eta Y_t} e^{-\eta \mathop{\mathbf{E}}[X_t]}] \\ &\leq \mathop{\mathbf{E}}[X_t] [e^{-\eta} - 1 + \eta] - \eta \mathop{\mathbf{E}}[X_t] \\ &= \mathop{\mathbf{E}}[X_t] [e^{-\eta} - 1] \\ &\leq L(\widehat{y}_t, y_t) [e^{-\eta} - 1] \quad \text{(Jensen's ineq.)}. \end{split}$$

Thus, $\Phi_T - \Phi_0 \le L_T[e^{-\eta} - 1]$.

Lower bound (proof of a previous theorem):

$$\Phi_T - \Phi_0 \ge -\eta L_T^* - \log N.$$

Small Loss - Better Bound

Corollary: assume that L is convex in its first argument and takes values in [0,1]. Then, for the choice $\eta = \log \left(1 + \sqrt{(2\log N)/L_T^*}\right)$ and any sequence $y_1, \ldots, y_T \in Y$, the regret satisfies

$$\operatorname{Regret}(T) \le \sqrt{2L_T^* \log N} + \log N.$$

Better bound when $L_T^* \leq O(T)$.

Better Bound - Proof

Use inequality $\eta \leq (e^{\eta} - e^{-\eta})/2$ in theorem to bound η in the numerator:

$$L_T \le \frac{\eta L_T^* + \log N}{1 - e^{-\eta}}$$

$$\le \frac{e^{\eta} - e^{-\eta}}{1 - e^{-\eta}} L_T^* / 2 + \frac{\log N}{1 - e^{-\eta}}$$

$$= \frac{e^{\eta} - 1 + 1 - e^{-\eta}}{1 - e^{-\eta}} L_T^* / 2 + \frac{\log N}{1 - e^{-\eta}}$$

$$= (e^{\eta} + 1) L_T^* / 2 + \frac{\log N}{1 - e^{-\eta}}$$

$$= (1/u + 1) L_T^* / 2 + \frac{\log N}{1 - u} = f(u). \qquad (u = e^{-\eta})$$

Better Bound - Proof

 \blacksquare Differentiating f and setting it to zero gives:

$$f'(u) = -\frac{L_T^*}{2u^2} + \frac{\log N}{(u-1)^2} = 0$$

$$\Leftrightarrow u^2(2\log N/L_T^* - 1) + 2u - 1 = 0.$$

$$\Delta' = 1 + 2\log N/L_T^* - 1 = 2\log N/L_T^*.$$

Since $u = e^{-\eta} > 0$, it is equal to the positive root:

$$u = \frac{-1 + \sqrt{(2\log N)/L_T^*}}{(2\log N)/L_T^* - 1} = \frac{1}{\sqrt{(2\log N)/L_T^* + 1}}.$$

General Case

- lacksquare Potential Φ_t .
- Predictions:

$$\widehat{y}_{t} = \frac{\sum_{i=1}^{N} \nabla \Phi(L_{t-1} - L_{t-1,i}) y_{t,i}}{\sum_{i=1}^{N} \nabla \Phi(L_{t-1} - L_{t-1,i})}.$$