Week 3

Andrew Yao (姚期智)

2024-3-12

➤ For any graph G, let w(G) denote its *clique number*, i.e., the largest size of any clique contained in G. We show that, for large n, a <u>random</u> n-vertex graph G has w(G) close to 2 log₂n.

Theorem For any fixed $0 < \varepsilon < 1$, and large n, a random n-vertex graph G satisfies the condition $(2-\varepsilon) \log_2 n \le w(G) \le (2+\varepsilon) \log_2 n$ with probability 1-o(1).

Proof. Upper bound: $Pr\{w(G) > (2+\varepsilon) \log_2 n\} = o(1)$.

Similarly to the argument used in the proof of Erdös Theorem. Let $s=(2+\varepsilon) \log_2 n$, W be the family of vertex subsets of size s.

$$\Pr \{ w(G) > s \} \le \Pr \{ \bigcup_{V \in W} (V \text{ is a clique in } G) \}$$
$$\le \sum_{V \in W} \Pr \{ V \text{ is a clique in } G \}$$

Largest clique in a random graph (continued)

 $\Pr \{ w(G) > s \} \le \sum_{V \in W} \Pr \{ V \text{ is a clique in } G \}$

$$= \binom{n}{s} \frac{1}{2\binom{s}{2}} \le n^{s} \frac{1}{2^{s(s-1)/2}}$$

$$\le \left(\frac{n\sqrt{2}}{2^{(s-1)/2}}\right)^{s}$$

$$\le 2\left(\frac{\sqrt{2}}{n^{s/2}}\right)^{2\log_{2}n}$$

$$= n - \Omega(\log n) = o(1)$$

This proves the upper bound.

Largest clique in a random graph (continued)

► Lower Bound: Let $m=(2-ε)\log_2 n$, M= the family of vertex subsets of size m, and let T be the event that $w(G) \ge m$.

<u>Prove</u>: $Pr\{T\} = 1 - o(1)$

Define for each $V \subseteq M$ a random variable

 $A_{\lor}(G) = 1$ if V is a clique in G, and $A_{\lor}(G) = 0$ otherwise.

Consider random variable $X = \sum_{v \in W} A_v(G)$.

Note that T is the same as the event X > 0, thus

$$Pr\{T\} = Pr\{X > 0\}$$

> Our strategy is to use Chebyshev's Inequality to show that

$$Pr{X > 0} = 1 - o(1)$$

We'll do it in two steps:

- 1) $E(X) \rightarrow \infty$ as $n \rightarrow \infty$
- 2) $Var(X) = (E(X))^2 \cdot o(1)$

Largest clique in a random graph (continued)

- ▶ We prove the lower bound $Pr\{X > 0\} = 1 o(1)$, where $X = \sum_{V \in W} A_V(G)$ in two steps:
 - 1) $E(X) \rightarrow \infty$ as $n \rightarrow \infty$
 - 2) $Var(X) = (E(X))^2 \cdot o(1)$

It then follows from Chebyshev that

$$\Pr\{X \le 0\} \le \Pr\{ |X - E(X)| > \frac{1}{2} E(X) \}$$

$$\le \frac{Var(X)}{(\frac{1}{2} E(X))^2} = o(1)$$

To prove 1), note by Linearity of Expectation,

$$\begin{split} E(X) &= \sum_{V \in M} E(A_V) = \binom{n}{m} \frac{1}{2\binom{m}{2}} \geq \Omega \left(\frac{n^m}{\sqrt{2\pi m} (\frac{m}{e})^m} \cdot \frac{1}{2^{\frac{1}{2}m(m-1)}} \right) \\ &= \Omega \left(\frac{en}{(2\pi m)^{\frac{1}{2m}} \cdot m} \cdot \frac{1}{2^{\frac{1}{2}m}} \right)^m = \Omega \left(\left(\frac{0.01n}{\log_2 n} \cdot \frac{1}{n^{1-\frac{1}{2}\epsilon}} \right)^m \right) \\ &= \Omega \left(\left(\frac{0.01n^{\frac{1}{2}\epsilon}}{\log_2 n} \right)^{\log_2 n} \right) = n^{\Omega(\log n)}. \end{split}$$

We now prove 2): $Var(X) = (E(X))^2 \cdot o(1)$

$$\begin{aligned} & \forall \text{Var}(X) = (\mathsf{E}(\sum_{V \in W} \mathsf{A}_{V})^{2}) - (\mathsf{E}(X))2 \\ & \leq (\mathsf{E}(\sum_{V} \sum_{V'} \mathsf{A}_{V} \mathsf{A}_{V'}) - \sum_{V} \sum_{|V \cap V'| \leq 1} \mathsf{E}(\mathsf{A}_{V}) \mathsf{E}(\mathsf{A}_{V'}) \\ & = \mathsf{E}(\sum_{V} \mathsf{A}_{V} + \sum_{V} \sum_{|V \cap V'| \leq 1} \mathsf{A}_{V} \mathsf{A}_{V'} + \sum_{V} \sum_{|V \cap V'| > 1} \mathsf{A}_{V} \mathsf{A}_{V'}) - \sum_{V} \sum_{|V \cap V'| \leq 1} \mathsf{E}(\mathsf{A}_{V}) \mathsf{E}(\mathsf{A}_{V'}) \end{aligned}$$

Note that $E(A_V A_{V'}) = E(A_V) E(A_{V'})$ if $|V \cap V'| \le 1$, thus

$$\begin{aligned} & \qquad \qquad \forall \text{Var}(\mathsf{X}) \leq \mathsf{E}(\mathsf{X}) + \sum_{2 \leq k \leq m} \sum_{V} \sum_{|V \cap V'| = k} \mathsf{E}(\mathsf{A}_{\mathsf{V}}, \mathsf{A}_{\mathsf{V}'}) \\ & \qquad \qquad = \mathsf{E}(\mathsf{X}) + \sum_{2 \leq k \leq m} \sum_{V} \sum_{|V \cap V'| = k} \mathsf{Pr}\{\mathsf{A}_{\mathsf{V}} = 1, \; \mathsf{A}_{\mathsf{V}'} = 1\} \\ & \qquad \qquad = \mathsf{E}(\mathsf{X}) + \sum_{2 \leq k \leq m} \sum_{V} \sum_{|V \cap V'| = k} \mathsf{Pr}\{\mathsf{A}_{\mathsf{V}} = 1\} \; \mathsf{Pr}\{\mathsf{A}_{\mathsf{V}} = 1 | \mathsf{A}_{\mathsf{V}'} = 1\} \end{aligned}$$

> By symmetry, all $\Pr\{A_v=1|A_{v'}\}=1\}$ with $|V\cap V'|=k$ have the same value

$$Var(X) \leq E(X) + \sum_{2 \leq k \leq m} \sum_{V} \Pr\{A_{V} = 1\} \cdot \binom{m}{k} \binom{n-m}{m-k} \frac{1}{2\binom{m}{2} - \binom{k}{2}}$$

$$= E(X) + E(X) \cdot \sum_{2 \leq k \leq m} \binom{m}{k} \binom{n-m}{m-k} \frac{1}{2\binom{m}{2} - \binom{k}{2}}$$

$$\underline{\mathsf{Lemma}} \ \sum_{2 \leq k \leq m} \binom{m}{k} \binom{n-m}{m-k} \frac{1}{2\binom{m}{2}-\binom{k}{2}} \leq \frac{m^5}{n-m+1} E(X).$$

Proof. (Homework)

 \triangleright By this Lemma and the fast $E(X) \rightarrow \infty$, we have for large n,

$$Var(X) \le E(X) + \frac{64(\log_2 n)5}{n} E(X)^2$$

$$\le \frac{128(\log_2 n)5}{n} E(X)^2$$

By Chebyshev's Inequality,

$$\Pr\{|X-E(X)| \ge \frac{Var(X)}{(\frac{1}{2}E(X))^2} = O(\frac{(\log_2 n)5}{n})$$

> Thus $\Pr\{X > 0\} \le \Pr\{|X - E(X)| \ge \frac{1}{2} E(X)\} = O(\frac{(\log_2 n)5}{n}) = o(1).$

This proves the lower bound, and the theorem on random graph clique size.

A Network Routing Problem

Assume:

- > message M_A goes A → D via A→E→F→D message M_B goes B → C via B→E→F→C
- both M_A, M_B start at t=0, each link takes 1 time unit, each link's transport capacity = I message

n=2

At t=1, both M_A and M_B arrive at E to use link EF, hence one of them must wait in a queue and gets routed at t=2 through EF.

Question: How to design a routing algorithm to avoid congestion and long delays?

Hypercube Network

An <u>n-Hypercube</u> has $N=2^n$ nodes $V=\{0,1\}^n$, and directed edges $E=\{d_H(i,i')=1\}$.

$$|E| = 2 \cdot 2^n = 8 \text{ edges}$$

Hypercube Network (continued)

A <u>routing task</u> is specified by a $\sigma \in S_n$. Starting at t=0, each node $i \in V$ has a message M_i to be routed to destination $\sigma(i)$. The goal is to get all messages successfully delivered within a reasonably short time.

Bit-Fixing Algorithm (BSA):

```
i = 0011010

0111010

0110010

\sigma(i) = 0110001
```

- \triangleright Path(i, σ (i)) is of length = d_H(i, σ (i))
- \triangleright Each node along path decreases distance d_H to destination σ (i) by 1
- > Call such paths *geodesics*

Fact This routing algorithm has exponential delay in the worst case.

pf. Only need to exhibit one bad σ . Let n=odd and define σ such that $\sigma(u0v)=v1u$ where |u|=|v|=(n-1)/2. The corresponding path looks like: $u0v \dots v0v$, $v1v \dots v1u$ In particular, the path from $i=u0^{(n+1)/2}$ to $\sigma(i)=0^{(n-1)/2}1u$ must contain the (middle) link e=(0^n , $0^{(n-1)/2}1$ $0^{(n-1)/2}$). Hence at least $2^{(n-1)/2}$ messages need to be routed through e, causing a time delay of $2^{(n-1)/2}$ for <u>some</u> message M_i

Actually, this kind of worst-case exponential delay also happens to many other deterministic routing algorithms. How can we avoid it?

Randomized BSA (Valiant 1981)

Let σ be the permutation specifying the routing task. Let V={0,1}ⁿ, and recall N=2ⁿ.

Phase 1. For each node $i \in V$, generate a random $v_i \in V$.

Use BFA to route message M_i from node i to v_i .

Phase 2. At time t=6n, for each $i \in V$,

use BFA to route message M_i from node v_i to $\sigma(i)$.

This is a <u>randomized</u> algorithm, whose randomness comes from the choice of the intermediate node $v_i \in V$ for each $i \in V$. Let U be the set of all possible mappings $V \rightarrow V$, clearly $|U| = N^N$. Thus the probability space is P = (U, p), where p = 1/|U|. The delivery time for M_i is a random variable in P. For any routing task σ , let B_{σ} be the event that, for all $i \in V$, message M_i reaches destination $\sigma(i)$ by time 12n.

<u>Theorem 1</u>. For any σ , $Pr\{B_{\sigma}\} > 1 - (2^{-3n})$.

- Figure 2. Event B_{σ} : all message M_i reach destination $\sigma(i)$ by time 12n. Theorem 1. For any σ , $Pr{B_{\sigma}} > 1 (2^{-3n})$.
- ▶ It suffices to prove, for each of Phase 1 and 2, the probability for any M_i not to reach destination in time 6n is O(2⁻³ⁿ). We'll prove it for Phase 1. (The proof of Phase 2 is similar and left as exercise.)
- ▶ In Phase 1, let T_i be the arrival time for message M_i to reach its intermediate node v_i . Theorem 1' Pr {∃ i ϵ V with T_i >6n} = O(2⁻³ⁿ).

Note that Theorem 1' can be reduced to proving the following:

Main Lemma Fix any i ϵ V and u ϵ V. Then Pr { T_i >6n | v_i=u } = O(2⁻⁴ⁿ).

The Main Lemma together with distributive law implies, for any i ϵ V,

$$Pr \{T_{i} > 6n\} = \sum_{u \in V} Pr \{v_{i} = u\} \cdot Pr \{T_{i} > 6n \mid v_{i} = u\}$$

$$= O(2^{-4n}) \sum_{u \in V} Pr \{v_{i} = u\}$$

$$= O(2^{-4n})$$

By union bound, Pr { $\exists i \in V$ with $T_i > 6n$ } $\leq |V| O(2^{-4n}) = O(2^{-3n})$, which is Theorem 1'

Main Lemma For any fixed i ϵV and u ϵV , Pr { T_i >6n | v_i =u } = O(2⁻⁴ⁿ). pf. Consider the random variable S={ j | j \neq i, Path(j, v_i) \cap Path(i, v_i = u) \neq \\emptyset{\pi}} (i.e., the two paths share at least 1 edge).

- Key Insight $T_i \le d_H(i, v_i) + |S|$. (Prove this in homework)
- ▶ Note that $d_H(i, v_i) \le n$ is the absolutely minimum time needed to traverse the hypercube from i to v_i . The above inequality says that the additional 'delay' in delivering message M_i is no greater than the <u>number</u> of messages M_i intersecting the path taken by M_i. This key insight amazingly transforms the analysis of an algorithm into the analysis of a 'static' combinatorial quantity |S|.
- > Given the Key Insight, to prove the Main Lemma, we will show that Proposition $Pr\{|S|>5n\}=O(2^{-4n})$.
 - pf. We first generate for i a <u>new</u> independent random variable v_i . Define

 $S' = \begin{cases} SU\{i\} & \text{if Path}(i, v_{i'}) \cap Path(i, u) \neq \emptyset \\ S & \text{otherwise,} \end{cases}$ For all $k \in V$, let $X_k = 1$ if $k \in S'$ and 0 otherwise, then $|S'| = \sum_{k \in V} X_k$ then $|S'| = \sum_{k \in V} X_k$

Note that $|S'| = \sum_{k \in V} X_k$ is a sum of independent Boolean variables.

Since $S \subseteq S'$, we only need to prove

<u>Proposition'</u> $Pr\{|S'| > 5n\} = O(2^{-4n}).$

pf. We will need the following Lemma

Lemma A $E(|S'|) \le n/2$.

Using Lemma A we can obtain $\Pr\{|S'|-E(S')>4n\} \le 2^{-4n}$, because by Corollary 2 to Chernoff's bound: $\Pr\{|Z-E(Z)>c\} \le 2^{-c}$ if c>6E(Z). Using Lemma A again, $\Pr\{|S'|>5n\} \le 2^{-4n}$, proving the Proposition.

- We now prove Lemma A. First introduce a random variable Y_e for each edge in the network: $Y_e \equiv \#$ of nodes $j \in V$ in the network such that Path(j, v_j) contains e. Fact. $E(Y_e) = 1/2$ for each edge e. (Homework)
- > To prove Lemma A, we write Path(i, v_i)= $e_1e_2\cdots e_\ell$ with $\ell=d_H(i,v_i)\leq n$. Note $|S'|\leq \sum_{1\leq k\leq \ell}Y_{e_k}$ since every node of S' is counted at least once on the RHS.

From $|S'| \leq \sum_{1 \leq k \leq \ell} Y_{e_k}$ it follows that

$$E(|S'|) \le E(\sum_{1 \le k \le \ell} Y_{e_k}) = \sum_{1 \le k \le \ell} E(Y_{e_k})$$
$$= \ell \cdot \frac{1}{2}$$
$$\le n/2.$$

This completes the proof of Lemma A, and hence the Main Lemma, and Theorem 1.

Comment:

The above analysis shows that <u>randomization</u> sometimes leads to simple and more efficient algorithms than the standard algorithms.

We'll later discuss a result that a wide class of deterministic routing algorithms must have exponential congestion and hence delay time, just like the Bit-Fixing Alg.

This course:

- ✓ Topic 1: Probability Theory Models and Tools:
- Probability space
- EventUnion bound
- Random variable X

Expectation E(X), Variance VAR(X)

Linearity of expectation

Independent random variables X_i; sum and product

Conditional Probability

Conditional Expectation

Chain rules for conditional probability

Law of total Probability

Law of total Expectation

Topic 1: Probability Theory

Models and Tools: (continued)

- Tail Estimates
 - Markov's Inequality, Chebyshev's Inequality, Chernoff's Inequality

Application Examples:

- Erdos Theorem on Random numbers (union bound)
- Number of cycles in random permutations
- Analysis of Greedy Clique Algorithm in random graph (union bound)
- Max clique size in random graphs (union bound, Chebyshev)
- Second moment method to prove Pr{X>0} = 1- o(1)
- Randomized Routing (linearity of expectation, total probability, key insight, Chernoff)

Some Classical Open Problems:

- 1. Lower bounds to Ramsey numbers
- 2. Can we find clique in random graphs of size clog₂n for c >1?

This course:

- ✓ Topic 1: Probability Theory
 - Topic 2: Graph Theory / Combinatorics
 - -- Counting problems
 - -- Complexity questions
- ➤ Introduce a widely-used technique called "generating functions".
 - Let $\langle a_k \rangle = a_0 \, a_1 \, a_2 \, \dots$ be an infinite sequence of complex numbers. Its generating function is defined as $A(x) = \sum_{k \geq 0} a_k \, x^k$. This conceptually provides an innovative alternative way to view the sequence $\langle a_k \rangle$. The rich set of tools available in the mature fields of real/complex analysis often makes it possible to obtain explicit information on $\langle a_k \rangle$.
- We begin with a simple example. Let X be a random variable with range $N = \{0,1,2,...\}$ and $p_k = Pr\{X=k\}$ for $k \in N$. Assume that the generating function $A(x) = \sum_{k \ge 0} p_k x^k$ is convergent (and hence analytic) in a neighborhood of x=0.

► A(x)= $\sum_{k\geq 0} p_k x^k$ where p_k = Pr{X=k} for k \in N. Theorem 1. E(X)=A'(1) and Var(X)=A''(1) + A'(1)-A'(1)^2

Pf. A'(x) =
$$\sum_{k\geq 0} k p_k x^{k-1}$$

A"(x) = $\sum_{k\geq 0} k(k-1) p_k x^{k-2}$
It follows that A'(1) = $\sum_{k\geq 0} k p_k = E(X)$
and A"(1) = $\sum_{k\geq 0} k^2 p_k - \sum_{k\geq 0} k p_k = E(X^2) - E(X)$
Thus, $Var(X) = E(X^2) - (E(X))^2$
=A"(1) + A'(1)-A'(1)²

For instance, let X be the number of 1's in a throw of n independent coin tosses with bias 0
b<1. Then $p_k = \binom{n}{k} b^k (1-b)^{n-k}$, and $A(x) = \sum_{k \geq 0} p_k x^k = (bx+(1-b))^n$. It follows that $A'(1) = n(b \cdot 1 + (1-b))^{n-1} b = bn$, and $A''(1) = n(n-1)(b \cdot 1 + (1-b))^{n-2} b^2 = n(n-1)b^2.$ By Theorem 1, we have E(X) = A'(1) = bn

and
$$Var(X)=A''(1) + A'(1)-A'(1)^2 = n(n-1)b^2 + bn - (bn)^2$$

= b(1-b)n, as expected.

We now turn to a more sophisticated usage of generating functions.

When the explicit form of $\langle a_k \rangle$ is unknown, it may be easier to obtain its generating function first in some familiar form, and then obtain exact or approximate expressions for the elements in the sequence $\langle a_k \rangle$. Specifically, we will discuss the solution of <u>recurrence relations</u> via generating functions.

First we need to introduce two basic operations on generating functions:

- \rightarrow Let A(x), B(x) be the generating function of sequences $\langle a_k \rangle$, $\langle b_k \rangle$ respectively.
- 1. A(x)+B(x) is the generating function of the sequence $\langle c_k \rangle$ where $c_k = a_k + b_k$
- 2. $A(x) \cdot B(x)$ is the generating function of the sequence $\langle d_k \rangle$ where $d_k = \sum_{0 \le j \le k} a_j b_{k-j}$.

^{**} The sequence $\langle d_k \rangle$ so defined is often called the convolution of $\langle a_k \rangle$ and $\langle b_k \rangle$

Example 1. Fibonacci Numbers

Consider a sequence $\langle a_k \rangle$ defined by the recurrence relation

$$a_0 = 1$$
, $a_1 = 1$
 $a_n = a_{n-1} + a_{n-2}$

At first sight, it is not clear there is a familiar expression for a_n . However, as we'll see, the recurrence relation almost immediately reveals the generating function A(x)!

> Indeed, from the recurrence relation we have

$$A(x) = a_0 + a_1 x + \sum_{n \ge 2} a_n x^n$$

$$= 1 + x + \sum_{n \ge 2} (a_{n-1} + a_{n-2}) x^n$$

$$= 1 + x + x \sum_{n \ge 2} a_{n-1} x^{n-1} + x^2 \sum_{n \ge 2} a_{n-2} x^{n-2}$$

$$= 1 + x + x (A(x) - 1) + x^2 A(x)$$

> Thus $(1 - x - x^2)A(x) = 1$, and $A(x) = \frac{1}{1 - x - x^2}$

It is now easy to obtain an explicit form of a_n th by partial fraction as follows.

Example 1. Fibonacci Numbers (continued)

We solve
$$A(x) = \frac{1}{1 - x - x^2}$$
 as follows:

$$A(x) = \frac{1}{(1 - \frac{1}{2}x)^2 - \frac{5}{4}x^2}$$

$$= \frac{1}{(1 - \frac{1}{2}x - \frac{\sqrt{5}}{2}x)(1 - \frac{1}{2}x + \frac{\sqrt{5}}{2}x)}$$

$$= \frac{1}{(1 - \frac{1+\sqrt{5}}{2}x)(1 - \frac{1-\sqrt{5}}{2}x)}$$

This is of the form A(x) =
$$\frac{1}{(1-\alpha x)(1-\beta x)}$$

= $\frac{\alpha}{\alpha-\beta} \frac{1}{1-\alpha x} - \frac{\beta}{\alpha-\beta} \frac{1}{1-\beta x}$
= $\frac{\alpha}{\alpha-\beta} \sum_{n\geq 0} \alpha^n x^n - \frac{\beta}{\alpha-\beta} \sum_{n\geq 0} \beta^n x^n$

We have thus derived an exact formula for a_n (known as the n-th Fibonacci number):

$$a_n = \frac{\alpha}{\alpha - \beta} (\alpha^{n+1} - \alpha^{n+1})$$
 for $n \ge 0$, where $\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.7$ $\beta = \frac{1 - \sqrt{5}}{2} \approx -0.6$

End