Supervisor: Loidl Hans-Wolfgang

Sprint Log

Before 04/05

Task	Done	In-Progress	To Do
Setting up the docker environment	X		
Exercises in haskell	Х		
Exercises in GpH	Х		
Creation of the GitHub repository	X		
Optimisation of the algorithm computing the sum of Euler totient	Х		
computations in parallel			
Sequential and parallel profiling, runtine measurements	X		
Setting up threadscope	X		
Sequential implementation of the resultant			X
Create runtime graphs			X
File discussing performance information			X
Sprint Log file at the top level of the repository			X
Try to execute GpH program on MACS Linux severs			Х

<u>05/05 – 11/05</u>

Task	Done	In-Progress	To Do
Sequential implementation of the resultant		X	
Create runtime graphs		X	
File discussing performance information		X	
Try to execute GpH program on MACS Linux severs	X		
Familiarization with python scripts to call command line functions	Х		
and get their results			
Sprint Log file at the top level of the repository			X
Execute the Sum Euler on 64-cores servers			X

<u>12/05 – 18/05</u>

Task	Done	In-Progress	To Do
Sequential implementation of the resultant	Х		
Create runtime graphs		X	
File discussing performance information		X	
Sprint Log file at the top level of the repository		X	
Execute the Sum Euler on 64-cores servers		X	
Implementation of the univariate resultant using the determinant	Х		
of the Sylvester Matrix and PLU decomposition			
Implementation of the univariate resultant using a recursive	Х		
algorithm and Euclidean division			
License added to the start of the code	X		
Performance analysis of the sequential Resultant			X
Implement the Laplace expansion			X

<u> 19/05 – 25/05</u>

Task		In-Progress	To Do
Create runtime graphs	Х		
File discussing performance information		X	
Sprint Log file at the top level of the repository	X		
Execute the Sum Euler on 64-cores servers	Х		
Performance analysis of the sequential Resultant		X	
Implement the Laplace expansion			X
Creation of a python script allowing to create productivity and runtime	Х		
graphs			
Sprint Log file improved	X		
Introduce parallelism into the PLU and Laplace algorithms			Χ

<u>26/05 – 01/06</u>

Task	Done	In-Progress	To Do
File discussing performance information		X	
Performance analysis of the sequential Resultant	Х		
Implement the Laplace expansion	Х		
Introduce parallelism into the PLU and Laplace algorithms	Х		
Profiling of the sequential and parallel algorithms	Х		
Runtime and productivity graphs for both versions	Х		
Create a runtime/speedup graph with the same input data for all 3			X
algorithms			
Introduce parallelism into the Sequential Recursive algorithm			X
Extend the Recursive algorithm to the multivariate case			X

<u>02/06 – 08/06</u>

Task		In-Progress	To Do
File discussing performance information		X	
Create a runtime/speedup graph with the same input data for all 3	Х		
algorithms			
Introduce parallelism into the Sequential Recursive algorithm	X		
Extend the Recursive algorithm to the multivariate case		X	
Experimentation with the representation of multivariate polynomials	Х		
Search for papers on the multivariate resultant			Х
Implement basic operations on multivariate polynomials			Х
Implement a sequential multivariate resultant algorithm			Х

<u>09/06 – 15/06</u>

Task		In-Progress	To Do
File discussing performance information		X	
Search for papers on the multivariate resultant	Х		
Implement basic operations on multivariate polynomials		X	
Several papers on the multivariate resultant have been studied	Х		
Select an algorithm to implement and better understand it			X
Implement a sequential multivariate resultant algorithm			X

<u> 16/06 – 22/06</u>

Task		In-Progress	To Do
File discussing performance information		X	
Implement basic operations on multivariate polynomials	X		
Select an algorithm to implement and better understand it	X		
Implement a sequential multivariate resultant algorithm		X	
Study of the chosen algorithm and implementation of functions and	Х		
operations on multivariate polynomials			
Test the algorithm on some polynomials			X

23/06 – 29/06

Task	Done	In-Progress	To Do
File discussing performance information		X	
Implement a sequential multivariate resultant algorithm		X	
Test the algorithm on some polynomials		X	
Implementation of the algorithm, and try to fix the errors	Х		
Correct the algorithm to get the right answer			X
Introduce parallelism into the algorithm			X
Start writing the dissertation			Х