

Centro Universitario de Ciencias Exactas e Ingenierías

### Seminario de Algoritmia

# REPORTE DE PRÁCTICA

### **IDENTIFICACIÓN DE LA PRÁCTICA**

| Práctica | 9                                       | No       | mbre de la práctica              | Algoritmo de Prim             |  |
|----------|-----------------------------------------|----------|----------------------------------|-------------------------------|--|
| Fecha    | 05/11/2021                              | No       | mbre del profesor                | Alma Nayeli Rodríguez Vázquez |  |
|          |                                         |          | Cárdenas Pérez Calvin Cristopher |                               |  |
|          | Nombre de los<br>integrantes del equipo |          | Farfán de León José Osvaldo      |                               |  |
| intogram | os dei equi                             | <b>,</b> | García Martínez N                | oe Aaron                      |  |

### **OBJETIVO**

El objetivo de esta práctica consiste en implementar el algoritmo de Prim para encontrar el árbol de recubrimiento mínimo de un grafo.

#### **PROCEDIMIENTO**

Realiza la implementación siguiendo estas instrucciones.

Implementa el algoritmo de Prim utilizando Matlab y C++ / Python. Para la implementación, apóyate del siguiente algoritmo y del ejemplo:

```
function Prim(G = \langle N, A \rangle): graph; length: A \to \mathbb{R}^+): set of edges {initialization} T \leftarrow \varnothing B \leftarrow \{an arbitrary member of N \} while B \neq N do find e = \{u, v\} of minimum length such that u \in B and v \in N \setminus B T \leftarrow T \cup \{e\} B \leftarrow B \cup \{v\} return T
```





Centro Universitario de Ciencias Exactas e Ingenierías

## Seminario de Algoritmia

| Step           | $\{u,v\}$    | В                              |
|----------------|--------------|--------------------------------|
| Initialization | _            | {1}                            |
| 1              | {1,2}        | <i>{</i> 1 <i>,</i> 2 <i>}</i> |
| 2              | {2,3}        | {1,2,3}                        |
| 3              | <b>{1,4}</b> | {1,2,3,4}                      |
| 4              | {4,5}        | {1,2,3,4,5}                    |
| 5              | {4,7}        | {1,2,3,4,5,7}                  |
| 6              | <i>{7,6}</i> | {1,2,3,4,5,6,7}                |

### **IMPLEMENTACIÓN**

```
Agrega el código de tu implementación aquí.
no nodos=7;
no conjuntos=no nodo
s;grafo= [1 2 1;
           1 4 4;
           2 3 2;
           2 4 6;
           2 5 4;
           3 5 5;
           3 6 6;
           4 5 3;
           4 7 4;
           5 6 8;
           5 7 7;
           6 7 3];
  pesos=grafo(:,3);
  aristas=grafo(:,1:2);
  [pesos, ind] = sort (pesos);
  aristas=aristas(ind,:);
  no aristas=size(aristas,1
  ); T=[];
  conjuntos={};
  for
  i=1:no nodos
      conjuntos(i)=
  i;end
  for i=1:no aristas
      arista i=aristas(i,:
      );peso i=pesos;
      for j=1:no conjuntos
                 ismember(arista i(1),conjuntos
                 (j))conjunto1=j;
                 break;
end
```



Centro Universitario de Ciencias Exactas e Ingenierías

## Seminario de Algoritmia

```
n
      d
      е
     n
  for j=1:no conjuntos
           ismember(arista i(2),conjuntos
           (j))conjunto2=j;
           end
      end
  if conjunto1~=conjunto2
       conjuntos{conjunto1} = [conjuntos {conjunto1}; conjuntos {conjunto2}
       }]conjuntos{conjunto2}=[];
       T=[T; arista i
     peso_i];end
sizeT=size(T,1);
if
      sizeT==no nod
     os-1break;
      end
е
n
d
е
n
d
pesoTotal=sum(T(:,3))
```

### Código de Matlab

```
#include
<iostream>
#include <vector>
#include <queue>
#include <utility>
#include
<functional>
#include <unordered_set> //requerido para la cola
#define p pair < int, int >
```



Centro Universitario de Ciencias Exactas e Ingenierías

## Seminario de Algoritmia

```
#define pa pair < int, p
>#define infinite 32767
#define nil 32767
using namespace
std;bool debug;
unordered_set <int>
Q;int N, E;
vector<int> pie, key, V;
priority_queue < pa, vector<pa>, greater<pa> > minE;
* El gráfico y los costos / pesos de los bordes se mantienen en matrices 2D
 vector < vector <int> > w, G;
 void init(){
       w.resize(N);
       G.resize(N);
       for(int i=0; i<N; i++){
              V.push_ba
              ck(i);
              w[i].resize(
              N);
       }
       pie.resiz
       e(N);
       key.resiz
       e(N);
 }
 void addCola(int x){
       for(int y : G[x]){
              minE.push(pa(w[x][y], p(x,
              y)));if(debug == true){
                    cout<<"\t added "<<y+1<<" from"<<x+1;
              }
       }
 }
 void MST_PRIM(int
       r=0){for(auto
       u : V){
```



Centro Universitario de Ciencias Exactas e Ingenierías

## Seminario de Algoritmia

```
key[u]=infi
              nite;
              pie[u]=nil;
       }
       key[r]=0; addCola(r);
       while(minE.empty()!=t
       rue){
              if(debug==true) cout<<"\tBucle interior\n";
              int u=minE.top().second.first;
              v=minE.top().second.secon
              d;int c=minE.top().first;
              minE.pop();
              if(c<key[v]){</pre>
                    pie[v]=u;
                    key[v]=
                    C;
                    addCol
                    a(v);
              }
       }
 }
int main(){
      debug=false;
      cout<<"Algoritmo de prim.\n Ingrese el numero de vertices y aristas:
      " ;cin>>N>>E;
      cout<<"\nIngrese todos los bordes en el grafico en formato - v1 v2 borde-costo : \n
[apartir de 1, a la raiz]";
      int tmp1, tmp2,
      tmp3;init();
      for(int i=0; i<E; i++){
            cin>>tmp1>>tmp2>>tmp3;
             G[tmp1-1].push_back(tmp2-
             1);G[tmp2-
             1].push back(tmp1-1);
            w[tmp1-1][tmp2-1]=tmp3;
            w[tmp2-1][tmp1-1]=tmp3;
      int cost=0;
      pie[0]=0;
      MST_PRIM
```



Centro Universitario de Ciencias Exactas e Ingenierías

# Seminario de Algoritmia

```
cout<<" ::MST::\La raiz es :
    1";for(int i=1; i<N; i++){
        cout<<"( "<<i+1<<", "<<pie[i]+1<<") :
        "<key[i]<<"\n";cost+=key[i];
    }
    cout<<"Costo minimo =
    "<<cost;return 0;
}</pre>
Código en C++/Python
```

#### **RESULTADOS**

Resultados Matlab (La matriz "T" y la suma de los pesos)



Centro Universitario de Ciencias Exactas e Ingenierías

## Seminario de Algoritmia

```
Algortimo de prim.
Ingrese el numero de vertices y aristas: 3

Ingrese todos los bordes en el grafico en formato - v1 v2 borde-costo :
[a partir de 1, a la raiz]1

2

3

4

4

3
```

Resultados C++/Python (La matriz "T" y la suma de los pesos)

#### **CONCLUSIONES**

Escribe tus observaciones y conclusiones.

Es un buen algoritmo junto al de Kruskal para encontrar el camino mínimo nada más que en este algoritmo puedes empezar del vértice que gustes y de ahí empiezas a tomar las aristas con menor peso hasta conectar todo, no es tan difícil de entender. La actividad no se complico tanto, realmente me gusto hacerla porque es entretenida.