Nuclear Energy

EG5066 Energy Technologies: current issues & future directions

Nuclear Power - timelines

1933 - Concept of nuclear chain reaction – Hungarian Leo Szilard

1954 – First civil nuclear reactor – AM-1 Obninsk Nuclear Power Plant (5MWe)

1942 – First nuclear reactor built by Enrico Fermi – Chicago Pile-1

1956 – First "commercial" nuclear plant – Calder Hall, Sellafield (50 MWe, later 200 MWe)

EG5066 Energy Technologies: current issues & future directions

Nuclear Power in the World

- The first commercial nuclear power stations started operation in the 1950s
- There are now some 430 commercial nuclear power reactors operating in 31 countries, with 372,000 MWe of total capacity
- Mean age of reactors 27 years
- They provide about 13.5% of the world's electricity as continuous, reliable base-load power, and their efficiency is increasing
- 56 countries operate a total of about 240 research reactors
- 180 reactors power ships and submarines

Nuclear Consumption (Mtoe)

	1965	1975	1985	1995	2005	2010
North America	0.9	43.8	105.1	184.5	209.2	213.8
S & C America	-	0.5	2.1	2.2	3.7	4.9
Europe & Eurasia	4.9	32.6	181.1	243.7	286.3	272.9
Middle East	-	-	-	-	-	-
Africa	-	-	1.3	2.7	2.9	3.1
Asia Pacific	-	5.5	45.8	93.0	125.0	131.7
World	5.8	82.4	335.3	526.1	627.2	626.3

Source: BP 2012

EG5066 Energy Technologies: current issues & future directions

Nuclear Consumption (TWh)

	1970	1980	1990	2000	2010
North America	23.0	300.1	682.6	874.1	945.0
S & C America	-	2.3	9.5	12.2	21.6
Europe & Eurasia	49.8	312.2	1013.0	1181.7	1205.9
Middle East	-	-	-	-	-
Africa	-	-	8.9	13.7	13.5
Asia Pacific	4.6	96.8	288.3	500.7	582.1
World	77.3	711.4	2002.3	2582.4	2768.1

Source: BP 2012

Nuclear Consumption (Mtoe)							
	1965	1975	1985	1995	2005	2010	
USA	0.9	41.1	91.4	160.4	185.9	192.2	
France	0.2	4.1	50.7	85.4	102.4	96.9	
S Africa	-	-	1.3	2.7	2.9	3.1	
China	-	-	-	2.9	11.8	16.7	
India	-	0.5	1.0	1.7	4.0	5.2	
Japan	-	4.9	34.4	65.1	66.3	66.2	
S Korea	-	-	3.8	12.7	33.2	33.6	
						Source: BP 2012	
EG5066 Ene	rgy Technolo	gies: current	issues & fut	ure directions	8		

Nuclear

Big 6 countries provide 70% of generation

	No Reactors	Capacity (Mwe)	Average age (y)	Share Electricity	Share Energy
France	58	63130	27	78	41
Germany	9	12068	27	18	8
Japan	44	38120	25	18	8
Russia	33	23643	29	18	6
S Korea	21	18657	17	35	13
USA	104	101465	33	19	8

EG5066 Energy Technologies: current issues & future directions

World Nuclear Power
September 2012

Reactors	No	Production (MWe)
Operable	433	372,010
Under construction	65	64, 979
Planned	160	177,915
Proposed	323	366,415

Tonnes of Uranium required in 2012 67,990

Chain reaction

Chain reaction controlled by:

- Neutron poisons e.g. control rods
- Neutron moderators e.g. heavy water

Cooling system

- Removes heat from reactor core and used to produce heat of other useful work
- Hot coolant used as heat source for a boiler and pressurised steam drives electrical generators

EG5066 Energy Technologies: current issues & future directions

Common Components of Reactors

Fuel

- Usually pellets of uranium oxide arranged in tubes to form fuel rods
- Rods arranged into fuel assemblies in the reactor core

Moderator

- Material in the core which slows neutrons released from fission
- Usually water, sometimes heavy water or graphite

Control rods

- Neutron absorbing material e.g. cadmium, hafnium, boron
- Inserted or withdrawn from the core to control the rate of reaction or to halt it

Common Components of Reactors

Coolant

- A liquid or gas circulating through the core to transfer heat from it
- In light water reactors the water moderator functions also as primary coolant
- Except in BWRs there is a secondary coolant circuit where the steam is made

Pressure vessel or pressure tubes

- Usually a robust steel vessel containing the reactor core & moderator/coolant
- May be a series of tubes holding the fuel and conveying the coolant through the moderator

EG5066 Energy Technologies: current issues & future directions

Common Components of Reactors

Steam generator

Part of the cooling system where the primary coolant bringing heat from the reactor is used to make steam for the turbine

Containment

- Structure around the reactor core designed to protect it from outside intrusion and protect those outside from effects of radiation in case of a malfunction
- typically a metre-thick concrete and steel structure

Fission

Nuclear chain reaction controlled by neutron poisons and neutron moderators:

Poisons:

- Control rods
- Boron

Moderators:

- Light water (75% of world's reactors)
- Solid graphite (20% of reactors)
- Heavy water (5%)

EG5066 Energy Technologies: current issues & future directions

Types of Reactor

- Pressurized water reactors (PWR)
- Boiling Water Reactor (BWR)
- Pressurized Heavy Water Reactor (PHWR)
- Advanced Gas-cooled Reactor (AGR)
- High Power Channel Reactor (RBMK)
- Fast Neutron Reactor (FBR)

Reactor	Fuel	Moderator	Coolant
PWR	Enriched Uranium	Light water	Light water
BWR	Enriched Uranium	Light water	Light water/steam
Magnox	Natural Uranium	Graphite	CO ₂ gas
AGR	Enriched Uranium	Graphite	CO ₂ gas
CANDU	Natural Uranium	Heavy water	Heavy water
RBMK	Enriched Uranium	Graphite	Light water/steam
LMFBR	Highly Enriched Uranium	None	Liquid sodium

EG5066 Energy Technologies: current issues & future directions

Nuclear Power Plant in Commercial Operation (2008)

Reactor Type	Main Countries	Number	GWe	Fuel	Coolant	Moderator
Pressurised water reactor (PWR)	US, France, Japan, Russia, China	265	251.6	Enriched UO ₂	Water	Water
Boiling Water Reactor (BWR)	US, Japan, Sweden	94	86.4	Enriched UO ₂	Water	Water
Pressurised heavy water reactor "Candu"	Canada	44	24.3	Natural UO ₂	Heavy water	Heavy Water
Gas cooled reactor (AGR & Magnox)	UK	18	10.8	Natural U Enriched UO ₂	CO ₂	Graphite
Light water graphite reactor (RBMK)	Russia	12	12.3	Enriched UO ₂	Water	Graphite
Fast neutron reactor (FBR)	Japan, France, Russia	4	1	PuO ₂ & UO ₂	Liquid Sodium	None

Reactor Type	Thermal Power (MW/m³)	Yield (%)
Magnox	1	30
AGCR	2	41
PWR, VVER	100	33
BWR	50	33
Candu	12	29
FBR	500	40
HTR*	8	>45

^{*} High temperature reactor, a generation IV prototype

Source: Ngo & Natowitz, 2009

EG5066 Energy Technologies: current issues & future directions

Pressurized Water Reactor

- Main type of Light Water Reactor
- In contrast to boiling water reactor the primary coolant loop is superheated water under high pressure
- Use ordinary light water as both coolant & moderator

Diablo Canyon Power Plant

PWR Reactor Vessel heads

Pressurised Water Reactors (PWRs)

- Based on US technology
- Most common reactor type used in the world
- Reactor is contained in a steel pressure vessel
- Pressurised water (moderator & coolant) pumped around reactor & through boilers
- Pressure vessel, boilers and connecting pipework form a sealed primary pressurised circuit, which is contained within a steel-lined prestressed concrete containment building, which also acts as a biological shield.
- Remainder of the generation process is similar to that for other power stations.

Source: DECC

EG5066 Energy Technologies: current issues & future directions

Boiling Water Reactor

- 2nd most common reactor
- Ordinary water used as moderator & coolant
- Operates at low pressure which allows water to boil
- No separate secondary steam cycle
- Water from reactor converted to steam & used to directly drive the generator turbine

Laguna Verde Nuclear power plant, Mexico

Pressurized Heavy Water Reactors (PHWR)

CANDU Reactor

- Canadian invented pressurized heavy water reactor late 1950s & 1960s
- CANada Deuterium Uranium deuterium-oxide (heavy water) moderator and Uranium

CANDU Bruce Nuclear Reactor Second largest plant in the world.

Fuel bundles

Advanced gas-cooled reactor (AGR)

- 2nd generation of British gas-cooled reactors developed from Magnox
- Uses graphite as the neutron moderator and CO₂ as coolant
- Configured with 2 reactors in single building

1

3

- 2. Control rods
- 3. Graphite moderator
- 4. Fuel assemblies
- 5. Concrete pressure vessel & radiation shielding
- 6. Gas circulator
- 7. Water
- 8. Water circulator
- 9. Heat exchanger
- 10. Steam

EG5066 Energy Technologies: current issues & future directions

Advanced gas-cooled reactor (AGR)

- Successor to the Magnox reactors & unique to the UK
- Use enriched uranium clad stainless steel cans
- Also have a graphite moderator and use pressurised CO₂ as the coolant.
- These allow the AGRs to operate at a higher temperature than the Magnox reactor.
- Reactor is encased in a steel-lined prestressed concrete pressure vessel several metres thick which acts as the biological shield, with the boilers inside.
- Coolant conveys heat from the reactor to the boilers which, in turn, heats water in an isolated steam circuit which is then used to turn the turbines.

Source: DECC

RBMK Reactors

- Russian High Power Channel Type Reactor
- Class of graphite-moderated nuclear power reactor
- Type involved in Chernobyl accident
- Uses light water for cooling and graphite for moderation
- Uses natural uranium for fuel

Ignalina Nuclear Power Plant, Lithuania

Chernobyl

EG5066 Energy Technologies: current issues & future directions

Fast Neutron Reactor

- Fission chain reaction sustained by fast neutrons
- Needs no neutron moderator
- Needs fuel rich in fissile material
- All current fast reactors are liquid metal cooled (lead or sodium)
- Fuel enriched uranium or plutonium

Superphenix power plant, France

Shevchenko BN350 nuclearheated desalination plant

Dounreay

Generation IV Nuclear Energy Systems Very High Temperature Reactor (VHTR) Super Critical Water Cooled Reactor (SCWCR) Gas Cooled Fast Reactor (GCFR) Lead Cooled Fast Reactor (LCFR) Sodium Cooled Fast Reactor (SCFR) Molten Salt Reactor (MSR)

Scraphite-moderated Helium-cooled Once-through uranium fuel cycle. Supplies heat with high core outlet temperatures which enables applications such as hydrogen production or process heat for the petrochemical industry or others Once-through uranium fuel cycle. Supplies heat with high core outlet temperatures which enables applications such as hydrogen production or process heat for the petrochemical industry or others Once-through uranium fuel cycle. Supplies heat with high core outlet temperatures which enables applications such as hydrogen production or process heat for the petrochemical industry or others Once-through uranium fuel cycle. EG5066 Energy Technologies: current issues & future directions

Gas-Cooled Fast Reactor (GFR) Features a fast-spectrum, helium-cooled reactor and closed fuel cycle. a self-generating core (i.e., conversion ratio = 1) with a fast neutron spectrum direct energy conversion with a gas turbine Source: Idaho National Laboratory

EG5066 Energy Technologies: current issues & future directions

Main characteristics:

robust refractory fuel high operating temperature

full actinide recycling

Lead-Cooled Fast Reactor (LFR)

Features a fast-spectrum lead or lead/bismuth eutectic liquid metal-cooled reactor and a closed fuel cycle for efficient conversion of fertile uranium and management of actinides.

Issues for Nuclear Power

Safety

- Windscale, UK 1957
- Three Mile Island, USA, 1979
- Chernobyl, Ukraine, 1986
- Fukushima-Daiichi, Japan, 2011

Costs

- More expensive than gas-fired power stations
- Not "too cheap to meter"
- Increasing in response to concerns over safety

Weapons proliferation/terrorism

Wastes

 Need to find long-term storage solution that satisfies concerns of public

Availability of Uranium

Is there more than 50 years supply left?

EG5066 Energy Technologies: current issues & future directions

Issues for Nuclear Power

Safety

- Windscale, UK 1957 fire at plutonium production pile releases 1000TBq of radioactive iodine
- Three Mile Island, USA,
 1979 loss of coolant,
 partial meltdown of the fuel
 in the reactor core

Issues for Nuclear Power

Safety

- Chernobyl, Ukraine, 1986
- Fukushima-Daiichi, Japan, 2011

EG5066 Energy Technologies: current issues & future directions

Issues for Nuclear Power

Wastes

Need to find long-term storage solution that satisfies concerns of public

Swedish KBS-3 capsule for nuclear waste

Geologic Depository at Olkiluoto Nuclear Power Plant in Finland

Known Recoverable Resources of Uranium

- Uranium is abundant in the earth's crust as tin or zinc
- Uranium occurs in many kinds of chemical compounds, minerals & rocks
- Uranium ore is an uranium containing deposit from which uranium can be extracted economically
- Known amount of ore depends on market prices
- Known recoverable = RAR + EAR
 - RAR = Reasonable Assured Resources
 - EAR = Estimated Additional Resources
- Figures on next slide based on 130US\$/kgU
- Current Fleet is 372 GW which uses 6800 tonnes uranium per annum
- Estimates indicate that exploitable reserves of uranium will have been depleted by 2070

Known Recoverable Resources	of	[:] Uraniu	ım 2011
-----------------------------	----	---------------------	---------

Country	K tonnes	%
Australia	1,661	31
Kazakhstan	629	12
Russia	487	9
Canada	469	9
Niger	421	8
South Africa	279	5
Nambia	261	5
Brazil	263	5
USA	207	4
China	166	3
Ukraine	120	2
Uzbekistan	96	2
World	5327	

EG5066 Energy Technologies: current issues & future directions

Nuclear fusion

Fusion power offers the prospect of an almost inexhaustible source of energy for future generations, but it also presents so far insurmountable scientific and engineering challenges.

The main hope is centred on tokamak reactors which confine a deuterium-tritium plasma magnetically.

Thorium Cycle

- Naturally occurring, slightly radioactive metal discovered in 1828 by Swedish chemist Jons Jakob Berzelius
- 3 times more abundant than uranium
- Mainly obtained from monazite sands (a rare earth phosphate mineral)
- Single isotope − ²³²Th
- In reactor captures a neutron and converted to ²³³U
- 233U undergoes fission like 235U and 239Pu but releases more neutrons
- Amount of transuranic waste vastly decreased cf uranium/plutonium-based reactors
- Used in India's nuclear programme
 - Have 25% of world's thorium reserves
 - Kakrapar-1 first thorium reactor
 - Developing a 3 stage thorium fuel cycle
 - Developing a 300MWe thorium-based Advanced Heavy Water Reactor (AHWR)

EG5066 Energy Technologies: current issues & future directions

Thorium

Advantages

- An abundant resource
- Production of power with few long-lived transuranic elements in the waste
- Reduced radioactive wastes generally

Problems

- High cost of fuel fabrication, due partly to the high radioactivity of ²³³U chemically separated from the irradiated thorium fuel
- Similar problems in recycling thorium due to highly radioactive ²²⁸Th (an alpha emitter with a 2 year half life) present
- Concern over weapons proliferation risk of ²³³U
- Technical problems in reprocessing solid fuels but may disappear with development of molten salt reactor (MSR)
- Long-lived actinides produced that constitute a long-term radiological impact (eg ²³¹Pa)

Thorium

Country	Reserves (k tonnes)	Percentage
India	846	16
Turkey	744	14
Brazil	606	11
Australia	521	10
USA	434	8
Egypt	380	7
Norway	320	6
Venezuela	300	6
World	5385	

Source: NEA 2011

EG5066 Energy Technologies: current issues & future directions

Nuclear Power in the UK

- The UK has 16 reactors at 9 plants generating 16% of its electricity and all but 2 will be retired by 2023
- 14 AGRs, 1 Magnox & 1 PWR operating
- At peak in 1997 generated 26% of electricity
- First commercial nuclear power reactor in 1956
- Has full fuel cycling facilities, including major reprocessing plants
- UK Government commitment to the future of nuclear energy is firm
- New generation plants expected to be on line about 2017?
- Scottish Government is strongly anti-nuclear

Nuclear Power Reactors Operating in UK

Reactor	Operator	Туре	Net Capacity	Start	Shutdown
Wylfa 1&2	Magnox	Magnox	980	1972	End 2012
Dungeness B 1&2	EDF	AGR	1110	1985	2018
Hartlepool 1&2	EDF	AGR	1210	1989	2019
Heysham 1	EDF	AGR	1150	1989	2019
Heysham 2	EDF	AGR	1250	1989	2023
Hinkley Point B 1&2	EDF	AGR	1220	1976	2016
Hunterson B	EDF	AGR	1190	1976	2016
Torness 1&2	EDF	AGR	1250	1988	2023
Sizewell B	EDF	PWR	1188	1995	2035

EG5066 Energy Technologies: current issues & future directions

Nuclear Power Reactors Retired in UK

Power Station	Туре	Net MWe	Start	Close
Calder Hall	Magnox	200	1959	2003
Chapelcross	Magnox	240	1960	2004
Berkeley	Magnox	276	1962	2004
Bradwell	Magnox	246	1962	1989
Hunterston A	Magnox	300	1964	1990
Hinkley Point A	Magnox	470	1965	2000
Trawsfynydd	Magnox	390	1965	1991
Dungeness A	Magnox	450	1965	2006
Sizewell A	Magnox	420	1966	2006
Oldbury	Magnox	434	1968	2012

Future of Nuclear Power in UK

November 2009 UK government identified 10 nuclear sites for future

reactors, reduced to 8 in 2010:

- Bradwell in Essex
- Sellafield in Cumbria
- Hartlepool ion County Durham
- Heysham in Lancashire
- Hinkley Point in Somerset
- Oldbury in Gloucestershire
- Sizewell in Suffolk
- Wyfla in North Wales

EG5066 Energy Technologies: current issues & future directions

