1. RICORRENZE LOCALI

1.1. Ricorrenza locale Grafo $P_1^{(1)} \times P_8^{(1)}$.

$$T(n,k) = T(n-1,k) + T(n-2,k-1)$$

1.2. Ricorrenza locale Grafo $P_1^{(1)} \times P_8^{(2)}$.

$$F(x) = \frac{(-3 - x - 2x^2)}{(-1 + x + x^3)} \ .$$
 schema
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \hline 0 & 1 \\ \hline 0 & * \end{bmatrix}$$

$$T(n,k) = T(n-1,k) + T(n-3,k-1)$$

1.3. Ricorrenza locale Grafo $P_1^{(1)} \times P_8^{(3)}$.

In questo caso otteniamo la *ricorrenza locale* dal denominatore della funzione generatrice della somma delle righe:

1

 $1\quad 11\quad 28\quad 10$

10 21

4

10

11

$$F(x) = \frac{\left(-4 - x - 2x^2 - 3x^3\right)}{\left(-1 + x + x^4\right)} \ .$$
 schema
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \hline 0 & 1 \\ \hline 0 & * \end{bmatrix}$$

$$T(n,k) = T(n-1,k) + T(n-4,k-1)$$

1.4. Ricorrenza locale Grafo $P_1^{(1)} \times P_8^{(e3)}$.

$$F(x) = \frac{(-5 - 2x + x^2 - 3x^3)}{(-1 + x + x^2 - x^3 + x^4)} .$$
 schema
$$\begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & * \end{bmatrix}$$

$$T(n,k) = T(n-1,k) + T(n-2,k-1) - T(n-3,k-1) + T(n-4,k-1)$$

1.5. Ricorrenza locale Grafo $P_2^{(1)} \times P_7^{(1)}$.

$$F(x) = \frac{(-3-x)}{(-1+2x+x^2)} .$$
 schema
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & * \end{bmatrix}$$

$$T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1)$$

1.6. Ricorrenza locale Grafo $P_2^{(1)} \times P_7^{(2)}$.

T(n,k)	k = 0	1	2	3	4	5
0	1					
1	1	2				
2	1	4	2			
3	1	6	6			
4	1	8	14	4		
5	1	10	26	18	2	
6	1	12	42	48	14	
7	1	14	62	102	56	6

$$F(x) = \frac{(-7 - 6x - 7x^2 - 3x^3)}{(-1 + x + x^2 + 2x^3 + x^4)} .$$

$$T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-1) + T(n-3,k-2) + T(n-4,k-2)$$

1.7. Ricorrenza locale Grafo $P_2^{(1)} \times Z_7^{(1)}$.

$$F(x) = \frac{(-3 - 2x)}{(-1 + x + 2x^2)} .$$
 schema
$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & * \end{bmatrix}$$

$$T(n,k) = T(n-1,k) + 2T(n-2,k-1)$$

1.8. Ricorrenza locale Grafo $P_2^{(1)} \times Z_7^{(2)}$.

$$F(x) = \frac{\left(-5 - 4x - 3x^2\right)}{\left(-1 + x + x^2 + x^3\right)} \ .$$
 schema
$$\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & * \end{bmatrix}$$

$$T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-3,k-1)$$

1.9. Ricorrenza locale Grafo $P_2^{(1)} \times F_7^{(1)}$.

$$F(x) = \frac{(-3 - 3x - x^2)}{(-1 + x + 2x^2 + x^3)}.$$
 schema
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & * \end{bmatrix}$$

$$T(n,k) = T(n-1,k) + 2T(n-2,k-1) + T(n-3,k-2)$$