CS 109 Quiz 4 (31 points):

1. $[10 \ points]$ True or False (2 points correct, 1 point blank, 0 points guess). Note that true means always true.

For all parts, suppose X_1 , ... X_n are iid (independent and identically distributed) Ber(p).

- a. $(\sum_{i=1}^n X_i) \sim Bin(n, p)$.
- b. $X_1^2 \sim Ber(p^2)$.
- c. $X_1X_2 \sim Ber(p^2)$.
- d. Let $Y_i = X_i X_{i+1}$ for i = 1, ..., n-1. Then, $(\sum_{i=1}^{n-1} Y_i) \sim Bin(n-1, p^2)$.
- e. Let $Y_i = X_i X_{i+1}$ for i = 1, ..., n-1. Then, $E[\sum_{i=1}^{n-1} Y_i] = (n-1)p^2$.
- 2. [21 points] Definitions (3 points each).
 - a. Cite the Chain Rule. $Pr(A \cap B \cap C) =$.
 - b. A formula for $f_{X|Y}(x|y)$ in terms of $f_{Y|X}(y|x)$.
 - c. E[g(X)] for a continuous random variable X.
 - d. A formula for $\Pr(a \le X \le b, c \le Y \le d)$ depending on the joint cdf $F_{X,Y}$. (Hint: has 4 terms, draw a picture)
 - e. Joint PDF of X, W given joint PDF $f_{W,X,Y,Z}$: $f_{X,W}(x,w) = ...$
 - f. The PMF and expectation of a Geo(p) random variable.
 - g. The variance of a Ber(p) random variable.

- 1. You are playing table tennis, and the score is tied at 20-20 (called a deuce). The game continues until someone wins by two points. You win a point with probability p, independently of other points. What is the probability you win the game?
- 2. You have been hooked on the popular trading card game, Digimon, and are trying to collect all n distinct cards. Each pack you buy has one random card, each equally likely, and costs \$8. How much money can Digimon Co expect to extort from you?

3.

- a. Show that if $X \sim Exp(\lambda)$, then for any $s, t \ge 0$, P(X > s + t | X > t) = P(X > s). That is, that the exponential distribution is **memoryless**.
- b. Suppose X and Y are iid $Exp(\lambda)$, and let Z = X + Y. This is like the waiting time until the second event, similar to a negative binomial distribution. We would write $Z \sim Gamma(2, \lambda)$. What is $F_Z(z)$?
- 4. Let $X \sim Unif(0,1)$. At each time step t = 1,2,...,T, you draw $Y_t \sim Unif(0,1)$ and compare it to X. You stop at time T when $Y_t > X$ for the **first** time. What is E[T]?
- 5. Consider a continuous joint distribution, (X, Y), where $X \in [0,1]$ is the proportion of the time until the midterm that you actually study for it, and $Y \in [0,1]$ is your percentage score on the exam. Set up but **DO NOT EVALUATE** any of your answers. Take care in setting up the limits of integration. The joint PDF is:

$$f_{X,Y}(x,y) = \begin{cases} ce^{-(y-x)}, & x,y \in [0,1] \text{ and } y \ge x \\ 0, & y < x \end{cases}$$

- a. Sketch the joint range $\Omega_{X,Y}$, and interpret it in English.
- b. Write an expression that we could evaluate to find c.
- c. Write an expression for the marginal PDF $f_Y(y)$. Carefully define it $\forall y \in \mathbb{R}$.
- d. Write an expression that we could evaluate to find $P(Y \ge 0.9)$.
- e. Write an expression that we could evaluate to find E[Y].
- f. Write an expression that we could evaluate to find $f_{X|Y}(x|y)$.
- g. Are *X* and *Y* independent?