Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved. Figures reproduced with permission from Princeton University Press.

5.1: Diffusion

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Networks and Behavior

- How does network structure impact behavior?
- Simple infections, contagion diffusion
- Opinions, information learning
- Choices, decisions games on networks

Diffusion

- disease
- Ideas basic information (know or not know)
- Buy a product or not (come back to complementarities later...)

Diffusion

Questions and Background

Bass Model – no networks

Bring in interaction structure

S-Shape Adoption

- Diffusion over time and space
 - Griliches economic story: variation in cost effectiveness by geography
- Initial adopters
 - Who are they? High degree? Innovators?
- Increase in speed
 - Word of mouth, observations of neighbors
- Eventual slowdown
 - Saturation

Diffusion: Coleman, Katz, Menzel (1966)

adoption (prescribing) of new drug by doctors: more connected are earlier adopters

Fraction Adopting by:	names by 0 others (36)	named by 1 or 2 others (56)	named by 3+ others (33)
6 months	.31	.52	.70
8 months	.42	.66	.91
10 months	.47	.70	.94
17 months	.83	.84	.97

Griliches (1957): Hybrid Corn Diffusion

Questions:

- Extent of diffusion?
- How does it depend on the particulars of the process as well as the network?
- Time patterns? S-shape?
- Welfare analysis?

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.2: Bass Model

Diffusion

Questions and Background

Bass Model – no networks

Bring in interaction structure

Bass Model

- A benchmark model with no explicit social structure
- Two actions/states/behaviors 0 and 1
- F(t) fraction of the population who have adopted action 1 at time t

Bass Model

- p rate of spontaneous innovation/adoption
- q rate of imitation of adoption
- dF(t)/dt = (p + q F(t))(1-F(t))

Solution:

- p rate of spontaneous innovation/adoption
- q rate of imitation of adoption
- dF(t)/dt = (p + q F(t))(1-F(t))
- $F(t) = (1-e^{-(p+q)t})/(1+qe^{-(p+q)t}/p)$

Getting the S-shape

- Gives S-shape (if q>p) and tends to 1 in the limit
- Initially only p matters, then q takes over
- Eventually change slows as F(t) approaches 1

Getting the S-shape

$$dF(t)/dt = (p + q F(t))(1-F(t))$$

- when F(t) nears 1, dF(t)/dt = 0
- when F(t)=0, dF(t)/dt = p

Getting the S-shape

$$dF(t)/dt = (p + q F(t))(1-F(t))$$

- when F(t) nears 1, dF(t)/dt = 0
- when F(t)=0, dF(t)/dt = p
- when $F(t)=\varepsilon$, $dF(t)/dt = (p + q \varepsilon) (1 \varepsilon)$
- to get initial convexity: need ($p + q \epsilon$) (1- ϵ) > p
- $q(1-\epsilon) > p$ so initially need q > p

Next: Beyond Bass - Component Structure

- Reach of diffusion is bounded by the component structure
- Some players or nodes are immune
- Some links fail to transmit...
- Answers questions of when get diffusion, and its extent (neither answered by simple Bass)

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.3: Diffusion on Random Networks

Diffusion

Questions and Background

Bass Model – no networks

Bring in interaction structure

Random Networks and Diffusion

- Idea, disease, computer virus spreads via connections in the network
- Nodes are linked if one would ``infect'' the other
- Will an infection take hold?

How many nodes/people will it reach?

Questions:

- When do we get diffusion?
- What is the extent of diffusion?
- How does it depend on the particulars of the process as well as the network?
- Who is likely to be infected earliest?

Component Structure

- Reach of contagion is determined by the component structure
- Some players or nodes are immune, Some links fail to transmit...
- What do components look like of those who are susceptible and given links that work

Bearman, Moody, and Stovel's 04 High School Romance

Extent of Diffusion

- Get nontrivial diffusion if someone in the giant component is infected/adopts
- Size of the giant component determines likelihood of diffusion and its extent
- Random network models allow for giant component calculations

Extent of Diffusion

Simple example of such a calculation

Work with Erdos-Renyi random network

How big is the giant component??

Size of the Giant Component:

- How big is the giant component when there is one?
- Size of the giant component when 1/n

[know that if p << 1/n all isolated, and if log(n)/n <<p then all path connected]

Poisson p=.01, 50 nodes

Poisson p=.03, 50 nodes

.02 is the threshold for emergence of cycles and a giant component

Poisson p=.05, 50 nodes

Poisson p=.10, 50 nodes

.08 is the threshold for connection

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.4: Giant Component Poisson Case

Calculating the Size of the Giant Component

- q is fraction of nodes in largest component
- look at any node: chance it is in the giant component is q
- chance that this node is outside of the giant component is the chance that all of its neighbors are outside of the giant component

Calculating the Size of the Giant Component

- Probability that a node is outside of the giant component = 1-q
 - = probability that all of its neighbors are outside
 - = (1-q)d where d is the node's degree

Giant Component Size

 So, probability 1-q that a node is outside of the giant component is

$$1-q = \sum (1-q)^d P(d)$$

Where P(d) is the chance that the node has d neighbors

Solve for q...

Giant Component Size: Poisson Case

Solve
$$1-q = \sum (1-q)^d P(d)$$

when
$$P(d) = [(n-1)^d / d!] p^d e^{-(n-1)p}$$

Giant Component Size: Poisson Case

Solve
$$1-q = \sum (1-q)^{d} P(d)$$

when
$$P(d) = [(n-1)^d / d!] p^d e^{-(n-1)p}$$

so
$$1-q = e^{-(n-1)p} \sum [(1-q)(n-1)p]^d / d!$$

Useful Approximations

Taylor series approximation:

$$e^{x} = 1 + x + x^{2}/2! + x^{3}/3! ...$$

= $\sum x^{d} / d!$

$$[f(x) = f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! ...]$$

Giant Component Size: Poisson Case

Solve
$$1-q = \sum (1-q)^d P(d)$$

when $P(d) = [(n-1)^d / d!] p^d e^{-(n-1)p}$

so
$$1-q = e^{-(n-1)p} \sum [(1-q)(n-1)p]^d / d!$$

= $e^{-(n-1)p} e^{(n-1)p(1-q)}$
= $e^{-q(n-1)p}$

or
$$-\log(1-q)/q = (n-1)p = E[d]$$

Giant Component Size:

$$-\log(1-q)/q = E[d]$$

Who is infected?

- Probability of being in the giant component:
- 1-(1-q)^d increasing in d
- More connected, more likely to be infected

(more likely to be infected at any point in time...)

Extensions:

 Immunity: delete a fraction of nodes and study the giant component on remaining nodes

Probabilistic infection

 Random infection: have some links fail, just lower p

Contagion with Immunity and Link Failure

- Some node is initially exposed to infection
- π of the nodes are immune naturally
- only some links result in contagion fraction f
- What is the extent of the infection?

Consider a random network on n nodes

- Delete fraction π of the nodes
- Delete fraction 1-f of the links
- If starts at a node in giant component of the remaining network, then the giant component of that network is the extent of the infection; otherwise negligible

- Let q be the fraction of nodes of the remaining network in its giant component
- $q(1-\pi)$ is the probability of a nontrivial contagion
- Conditional on a contagion it infects $q(1-\pi)$ of the original nodes
- q solves $-\log(1-q)/q = (n-1)p(1-\pi)f$

Infected Fraction of Nodes:

Implications:

- Infection can fail if π is high enough or f or p are low enough
- High π immunization, low virulence
- Low f low contagiousness
- Low p low contact among population

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.5: SIS Model

SIS Model

- An extensively studied model in epidemiology
- Allows nodes to change behaviors back and forth over time
- Model of catching some recurring diseases, who to vote for, etc.

SIS Model

- Nodes are infected or susceptible
- Probability that get infected is proportional to number of infected neighbors with rate v>0, plus spontaneous ε
- get well randomly in any period at rate $\delta > 0$
- Let ρ be the percent infected

SIS Model

- Start with benchmark where all players mix with even probabilities
- Randomly meet an individual each period
- Large Markov chain
- Steady state mean-field: dp/dt = 0

Mean-Field

$$d\rho/dt = (1-\rho)(v\rho+\epsilon) - \rho\delta = 0$$

$$ρ = [(ν-δ-ε)+ ((ν-δ-ε)^2 + 4 εν)^{1/2}] / 2ν$$

"Mean-Field" drop ε

$$d\rho/dt = (1-\rho)v\rho - \rho\delta$$

$$(1-\rho)v\rho - \rho\delta = 0$$

Two solutions:

$$\rho = 1 - \delta/v \quad \text{(if >0)}$$

$$\rho = 0$$

Implications:

•
$$\rho = 1 - \delta/v$$

- If $\delta > v$ then recover faster than get sick, no infection stays
- Otherwise, infection stays at some level, for low recovery rates can lead to large infections

Where's the network?

so far uniformly random interaction

missing heterogeneity in degree

missing local patterns

we can at least address the first concern...

Explore Degree Distribution Influence

- random matching with d_i matches for node i
- ρ(d) fraction of nodes of degree d infected
- θ fraction of randomly chosen neighbors infected

Chance that meet an infected node

- P(d) fraction of nodes that have d meetings
- More likely to meet someone who has high d
- likelihood of meeting node of degree d is P(d) d /E[d]
- So likelihood of meeting infected node is:

$$\theta = \sum \rho(d) P(d) d / E[d]$$

Mean Field: Pastor-Satorras and Vespignagi 2000

• $\theta = \Sigma \rho(d) P(d) d / E[d]$ fraction of infected neighbors/random partners

• Steady state: for each d $0 = d\rho(d) / dt = (1 - \rho(d)) v\theta d - \rho(d) \delta$

Steady state: for each d

$$0 = d\rho(d) / dt = (1 - \rho(d)) v\theta d - \rho(d) \delta$$

$$\rho(d) = \lambda \theta d / (\lambda \theta d + 1)$$
 where $\lambda = v/\delta$

$$\rho(d) = \lambda \theta d / (\lambda \theta d + 1)$$
 where $\lambda = v/\delta$

$$\theta = \sum \rho(d) P(d) d / E[d]$$

$$= \sum P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

 Steady state infection rate of people you meet is the solution to

$$\theta = H(\theta) = \sum P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

Steady state infection rate of people you meet is the solution to

$$\theta = H(\theta) = \sum P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

What can we say about how this depends on the `network structure'?

How does infection rate of neighbors θ depend on P(d), E(d)?

Steady state infection rate of people you meet is the solution to

$$\theta = H(\theta) = \sum P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

See what $H(\theta)$ looks like and how it depends on P(d), E[d] etc.

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.6: Solving the SIS Model

•

Solving

Steady state infection rate of people you meet is the solution to

$$\theta = H(\theta) = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

See what $H(\theta)$ looks like and how it depends on P(d), E[d] etc.

Properties of H

• $H(\theta) = \sum P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$

Properties of H

- $H(\theta) = \sum P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$
- $H'(\theta) = \sum P(d) \lambda d^2 / [(\lambda \theta d + 1)^2 E[d]] > 0$ so H is increasing

Properties of H

- $H(\theta) = \sum P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$
- $H'(\theta) = \sum P(d) \lambda d^2 / [(\lambda \theta d + 1)^2 E[d]] > 0$ so H is increasing
- H"(θ) = -2 Σ P(d) λ^2 d³/[($\lambda\theta$ d + 1)³ E[d]] < 0 so H is strictly Concave

Nonzero Steady State: Lopez-Pintado (08) Look at H'(0):

$$H'(\theta) = \sum P(d) \lambda d^2 / [(\lambda \theta d + 1)^2 E[d]]$$

$$H'(0) = \sum P(d) \lambda d^2 / E[d]$$
$$= \lambda E[d^2]/E[d]$$

(recall
$$\lambda = v/\delta$$
)

Theorem: Conditions for Steady State of Mean-Field SIS Process

There exists a nonzero steady-state if and only if $\lambda > E[d]/E[d^2]$

So need infection/recovery rate to be high enough relative to average degree divided by second moment (roughly variance)

Conditions for Steady State

Iff $\lambda > E[d]/E[d^2]$ have a nonzero steady state

In a **regular network**, need $\lambda > 1/E[d]$

In a **E-R network**, need $\lambda > 1/(1+E[d])$

In a **power-law network**, E[d²] diverges – always have a nonzero steady state

Ideas:

- High degree nodes are more prone to infection
- Serve as conduits
- Higher variance, more such nodes to enable infection

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.7: Solving the SIS Model

•

$$\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

$$1 = \sum P(d) \lambda d^2 / [(\lambda \theta d + 1) E[d]]$$

$$\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

$$1 = \sum P(d) \lambda d^2 / [(\lambda \theta d + 1) E[d]]$$

Regular: $1 = \lambda E[d]/(\lambda \theta E[d] + 1)$; $\theta = 1-1/(\lambda E[d])$;

$$\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

$$1 = \sum P(d) \lambda d^2 / [(\lambda \theta d + 1) E[d]]$$

Regular:
$$1 = \lambda E[d]/(\lambda \theta E[d] + 1)$$
; $\theta = 1-1/(\lambda E[d])$;

 θ is increasing in $\lambda E[d]$ Need $\lambda E[d] > 1$

$$\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

$$1 = \sum P(d) \lambda d^2 / [(\lambda \theta d + 1) E[d]]$$

Power: P(d) =
$$2d^{-3}$$
 $\theta = 1/(\lambda(e^{1/\lambda}-1))$;

neighbor infection rate for power distribution

 $\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$

How does the right side shift with P(d)?

$$\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

How does the right side shift with P(d)?

 $\lambda\theta d^2 / [(\lambda\theta d + 1) E[d]]$ is increasing in d

 $\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$

How does the right side shift with P(d)?

 $\lambda\theta d^2 / [(\lambda\theta d + 1) E[d]]$ is increasing in d

If P' first order stochastic dominates P, then rhs increases at every $\boldsymbol{\theta}$

$$\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$$

How does the right side shift with P(d)?

 $\lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$ is convex in d

 $\theta = \Sigma P(d) \lambda \theta d^2 / [(\lambda \theta d + 1) E[d]]$

How does the right side shift with P(d)?

 $\lambda\theta d^2 / [(\lambda\theta d + 1) E[d]]$ is convex in d

If P' is a mean-preserving spread of P, then rhs increases at every θ

Ideas:

- Mean preserving spread more high degree nodes and low degree nodes
- Higher degree nodes are more prone to infection
- Neighbors are more likely to be high degree
- So, either first order stochastic dominance, or mean-preserving spreads in P increase θ

What about Average?

 infection rate of neighbors is not the same as infection rate of the population

Theorem JR (2007): If P' is a mean preserving spread of P, then the highest steady state $\theta' > \theta$, but the corresponding $\rho' > \rho$ if λ is low, while $\rho' < \rho$ if λ is high

Steady States

Proof

$$0 = d\rho(d) / dt = (1 - \rho(d)) v\theta d - \rho(d) \delta$$

Expecting over d:

$$0 = v\theta E[d] - \Sigma P(d) \rho(d) v\theta d - \rho \delta$$
$$= v\theta E[d] - v\theta^2 E[d] - \rho \delta$$

$$\rho = \lambda \theta \ E[d] \ (1-\theta)$$
 rhs is increasing in θ iff $\theta < 1/2$ θ is increasing in λ

SIS Diffusion Model

Simple and tractable model

Bring in relative meeting rates

Can order infections by properties of "network"

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.8:Fitting a Diffusion Model to Data

٨

Estimating Models

- Banerjee, Chandrasekhar, Duflo, Jackson (2013) Study of Diffusion:
- Map network structure via surveys, observe behavior
- Model diffusion and fit the model from observed networks and behaviors

Questions

- What determines behavior:
 - Pure access to information (no strategic effects)?
 - Complementarities (strategic affects)?
- Are non-participants important in diffusion?
 - Model information passing by participants (usual contagion)
 - Information passing by non-participants too

Estimate structural models of diffusion and behavior

Modeling diffusion:

- Know the set of initially informed nodes
- Informed nodes (repeatedly) pass information randomly to their neighbors over discrete times
- Once informed (just once), nodes choose to participate depending on their characteristics and their neighbors' choices

Background

75 rural villages in Karnataka, relatively isolated from microfinance initially

- BSS entered 43 of them and offered microfinance
- We surveyed villages before entry, observed network structure and various demographics
- Tracked microfinance participation over time

Background: 75 Indian Villages – Networks

- ``Favor'' Networks:
 - both borrow and lend money
 - both borrow and lend kero-rice
- "Social" Networks:
 - both visit come and go
 - friends (talk together most)
- Others (temple, medical help...)

Borrow:

Borrow:

Kero-Come

Medic

Data also include

- Microfinance participation by individual, time
- Number of households and their composition
- Demographics: age, gender, subcaste, religion, profession, education level, family...
- Wealth variables: latrine, number rooms, roof,
- Self Help Group participation rate, ration card, voting
- Caste: village fraction of ``higher castes'' (GM/FC and OBC, remainder are SC/ST)

Standard Peer-effects analysis:

Let p_i be prob i participates

- $Log(p_i/(1-p_i))$
 - $= b_0$
 - + b_{char} characteristics_i
 - + b_{Peer} frac_i friends participate

Standard Peer-effects analysis:

Let p_i be prob i participates

- $Log(p_i/(1-p_i))$
 - $= b_0$
 - + b_{char} characteristics_i
 - + 2.5*** frac_i friends participate

Standard Peer-effects analysis:

Let p_i be prob i participates

- $Log(p_i/(1-p_i))$
 - $= b_0$
 - + b_{char} characteristics_i
 - + 2.5*** frac_i friends participate

frac 0 to 1 increases $p_i/(1-p_i)$ by factor 12.2, frac .1 to .3 increases $p_i/(1-p_i)$ by factor 1.65,

Modeling behavior/information diffusion:

- Use network information for diffusion, not just who friends are:
 - People who hear about microfinance randomly pass to friends – diffusion in network
 - Once hear, decide whether to participate – friends might matter

Participation Decision

- Once informed, make choice of whether to participate
- Choice allowed to depend on personal characteristics and fraction of informed neighbors who participate
 - Complementarity?
 - Substitution?

Choice Decision

Let p_i be i's choice of whether to participate

- $Log(p_i/(1-p_i))$
 - $= b_0$
 - + b_{char} characteristics_i
 - + b_{Peer} frac_i informing friends participating

Modeling behavior/information diffusion:

- Probability of passing to a given individual:
 - q^N if did Not participate
 - q^P if did Participate

Information Passing Leaders

Passing: Different Probabilities

New Nodes Decide

Estimation technique:

- Estimate b₀, b_{char}, from initially informed (saves on computation size of grid)
- q^N, q^P, b_{peer} For each choice of parameters, simulate on the actual networks of the villages for time period proportional to number of trimesters in data for village (3 to 8 times)
- Choose parameters to best match simulated participation rates and various moments to observed moments (GMM)

Estimated parameters:

• Information significant, peer/endorse effect not

	qN	qP	b-peer	qN - qP
Diffusion	0.05***	0.55***	-0.20	-0.50***
and peer	[0.01]	[0.13]	[0.16]	[0.13]

Estimated parameters:

Information significant, peer/endorse effect not

	qN	qΡ	b-peer	qN - qP
Diffusion	0.05***	0.55***	-0.20	-0.50***
and peer	[0.01]	[0.13]	[0.16]	[0.13]

just peer!:

2.5***

Network Effects:

- Significant information passing parameters
- Information passing depends on whether participate: more likely if participate
- Slight complementarities, but insignificant

Information Passing

- What fraction of eventual informed agents are accounted for by information passing of nonparticipants?
- Hold all else constant, but rerun the model with q^N=0
- See what happens to information and participation rates

Information Passing

Median for model as fit:

Informed 85.8% Participation 20.7%

Median for model re-setting $q^N = 0$ Informed 58.9% Participation 13.8%

Results from Fitting Models of Diffusion:

- Significant information passing parameters
- Insignificant, limited Peer Effects
- Information passing depends on whether participate: more likely if participate
- Nonparticipants play a substantial role (1/3 of total)

Conclusions

Models of diffusion can help us disentangle effects

- Important for policy
 - Enhance information spreading?
 - Help overcome/enhance peer influences
- Relate back to network structure
 - homophily
 - degree distribution, clustering ...

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.8b Application: Financial Contagions

٨

Explore Contagions

Simple model of Elliott, Golub Jackson 13:

Companies are linked to each other via various contracts: debts, promised deliveries, equity,

That exposes each company to others' investments and values

First, let us see how to use networks to model exposures

Explore Contagions

An organization has direct investments:

Fraction c_i of value accrues directly to them

Fraction 1-c_i is owed to others

Also hold obligations of d_i other organizations:

Have claims to those other organizations' investments

Model

• {1, ..., n}: Organizations (countries, firms, banks...)

• p_i : price of investments of organization i

Cross Holdings:

• $C_{ii} = 0$: (don't own yourself)

• $\hat{C}_{ii} = 1 - \sum_{j} C_{ji}$: fraction of org *i* privately held

Value of an Organization

book value:

$$V_i = pi + \sum_j C_{ij} V_j$$

direct asset holdings

crossholdings

Value of an Organization

$$V_i = p_i + \sum_j C_{ij} V_j$$

$$V = p + CV$$

Leontief
$$V = (I - C)^{-1} p$$
 calculation of book value

Value of an Organization

Book value:

$$V = (I - C)^{-1} p$$

Market value – value to final (private) investors.

$$v_{i} = \hat{C}_{ii}V_{i}$$

$$v = \hat{C}(I - C)^{-1} p$$

$$v = A p$$

Value of an Organization

Book value:

$$V = (I - C)^{-1} p$$

Market value – value to final (private) investors.

$$v_{i} = \hat{C}_{ii}V_{i}$$

$$v = \hat{C}(I - C)^{-1} p$$

$$v = A p$$

 A_{ij} :

fraction of the investments owned by org *j* that ultimately accrue to private shareholders of *i*

- Two organizations: n = 2
- Each owns half of the other: $m{C} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}$

Implied holdings by private investors:

$$\widehat{\boldsymbol{C}} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$$

- Two organizations: n=2
- Each owns half of the other: $extbf{\emph{C}} = egin{bmatrix} 0 & 0.5 \ 0.5 & 0 \end{bmatrix}$

Final investors' claims on assets:

$$\widehat{C} = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$$
 $A = \widehat{C} (I - C)^{-1} = \begin{bmatrix} 2/3 & 1/3 \\ 1/3 & 2/3 \end{bmatrix}$

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.8c Application: Financial Contagions

٨

Explore Contagions

Simple model of Elliott, Golub Jackson 13:

An organization has direct investments:

Fraction c_i of value accrues directly to them Fraction 1- c_i is owed to others

Also hold obligations of d_i other organizations:

Have claims to those other organizations' investments

Simulation Setup

• n=100 organizations

- Random network g with $Pr(g_{ij} = 1) = d/(n-1)$
- d = expected # other organizations that an organization cross holds (d = level of diversification)
- Fraction c of org cross-held (evenly split among those holding it), 1-c held privately (c = level of integration)
- So, claim i has on j: $C_{ij} = cg_{ij}/d_j$

The Exercise

- One asset per organization (their investments), starts at value 1
- Pick one organization's investment to devalue to 0
- If an organization's value
 drops below θ of its starting value, it fails.
- Look at resulting cascade

Diversification and Contagion: 93% threshold, c=.5

Degree: Expected # of cross-holdings

Diversification and Contagion: Various Thresholds

Degree: Expected # of cross-holdings

Intuition

Diversification: Dangerous Middle Levels

- Low diversification:
 - fragmented network, no widespread contagion
- Medium diversification
 - Connected network, contagion is possible
 - Exposure to only a few others makes it easy to spread
- High diversification
 - Little exposure to any single other organization
 - Failures do not spread

Integration: .93 Threshold

Degree: Expected # of cross-holdings

Integration: .93 Threshold

Degree: Expected # of cross-holdings

Integration

- Low integration: little exposure to others, failures don't trigger others
- Middle integration: exposure to others substantial enough to trigger contagion
- High integration: difficult to get a first failure –
 failure of own assets does not trigger failure

Analysis

- Analyze richer networks
- Understand indirect holdings and how valuations/devaluations spread
- Understand effects of diversification, integration, size of shocks, correlation of shocks, heterogeneity in networks!...

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

5.9:Diffusion Summary

Lessons:

- Thresholds/``Phase Transitions'':
 - low density no contagion
 - middle density some probability of infection,
 part of population infected reach most of
 population even with average degree around 3...
 - high density sure infection and all infected
- Degree affects who is infected and when

General Points

- Diffusion modeling
 - Important to model both information and peer effects:
 - Not simply an infection model: nonparticipants communicate - Distinguishes such models from epidemiology
- Need more studies that identify the details of what matters in interactions: information, learning, complementarities/substitution, peer pressure, ...

Diffusion

- Network structure matters
- Tractable, and simulations can go a long way to offering predictions
- experiment with changes in network structure...

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Week 5 Wrap

- Adoption curves: s-shapes of diffusion
- S-shape: combination of imitation/complementarities and eventual saturation
- Initial contagion:
 - Depends on density and variance: high degree nodes serve as hubs and enable diffusion
- Extent of diffusion
 - relates to component structure, density beyond one friend, (homophily...)
- Diffusion modeling
 - Can help dissect peer effects
 - underlies many relations: sheds light on financial contagions...

Week 5: References in order mentioned

- Griliches, Z. (1957) "Hybrid Corn: An Exploration in the Economics of Technological Change," Econometrica 25(4):501–522.
- Coleman, J.S., E. Katz, and H. Menzel (1966) Medical Innovation: A Diffusion Study, Indianapolis, Ind.: Bobbs-Merrill.
- Bass, F.M. (1969) "A New Product Growth Model for Consumer Durables," Management Science 15:215–227.
- Bearman, P., J. Moody, and K. Stovel (2004) "Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks," Chicago, University of Chicago, manuscript.
- Bailey, N.T.J. (1975) The Mathematical Theory of Infectious Diseases, London: Griffin.
- Pastor-Satorras, R., and A. Vespignani (2000) "Epidemic Spreading in Scale-Free Networks," *Physical Review Letters 86:3200–3203*.
- Lopez-Pintado D. 2008. Diffusion in complex social networks. Games and Economic Behavior 62(2): 573-90
- Jackson M.O., Rogers B.W. 2007b. Relating network structure to diffusion properties through stochastic dominance. B.E. Press Journal of Theoretical Econ.omics 7(1): 1 – 13
- Banerjee, A., A.G. Chandrasekhar, E.Duflo, M.O. Jackson D <u>"The Diffusion of Microfinance"</u> Science, 26 July 2013: Vol. 341 no. 6144, DOI: 10.1126/science.1236498.
- Elliott, M.L., B. Golub and M.O. Jackson (2012) "Financial Networks and Contagion," SSRN working paper 2175056