GIS - sprawozdanie 3

Autorzy:

Marcin Dzieżyc Mateusz Statkiewicz

Prowadzący:

prof. dr hab. Jacek Wojciechowski

Temat:

Opracowanie generatora modeli grafowych różnego typu sieci.

Cel projektu:

Celem projektu jest opracowanie generatora różnego typu sieci, potrafiącego wyświetlić wygenerowane sieci. Program będzie generował sieci losowe, euklidesowe, bezskalowe i sieci malego świata. Dodatkowo będzie sprawdzał spójność sieci.

Założenia początkowe:

Sieci generowane przez program będą grafami nieskierowanymi, z określonymi wagami krawędzi.

Wykorzystane biblioteki:

• graphviz (libgvc):

http://www.graphviz.org/ - API definiowania i plotowania grafów

Algorytmy zastosowane w projekcie:

• generowanie losowej sieci (algorytm Erdosa-Renyiego)

Algorytm losujący graf na podstawie niezależnego prawdopodobieństwa wyboru danej krawędzi ze zbioru krawędzi grafu pełnego o n wierzchołkach (w odróżnieniu od generatora losującego z prawdopobobieństwem równomiernym graf o n wierzchołkach i m krawędziach spośród wszystkich możliwych o tych parametrach). Generator pobiera na wejściu liczbę wierzchołków oraz prawdopodobieństwo wyboru poszczególnych krawędzi. Każdy możliwy do wygenerowania graf o tych parametrach będzie mógł pojawić się na wyjściu z prawdopodobieństwem zgodnym z rozkładem Bernoulliego. Wagi poszczególnych krawędzi losowane będą z rozkładem jednostajnym z przedziału [0,1].

• generowanie sieci euklidesowej

Na wejściu generatora tej sieci znajdą sie 3 argumenty:

- → liczba wierzchołków sieci;
- → bok kwadratu, na którym rozmieszczone bedą wierzchołki;
- → promień, który będzie określał maksymalną odległość wierzchołków połączonych krawędzią;

Algorytm polega na wylosowaniu odpowiedniej liczby punktów wewnątrz kwadratu o danym boku. Następnie krawędzie tworzone są między wierzchołkami, których odległość jest mniejsza od zadanego promienia. Aby zapewnić spełnienie nierówności trójkąta krawędzi mają wagi odpowiadające odległości między wierzchołkami, które łączą.

generowanie sieci małego świata (algorytm Wattsa-Strogatza)

Na wejściu generatora tej sieci znajdą sie 3 argumenty:

- → liczba wierzchołków sieci::
- → początkowa liczba sąsiadów każdego wierzchołka;
- → prawdopodobieństwo przestawienia krawędzi;

Algorytm polega na utworzeniu pierścienia, w którym każdy z wierzchołków jest połączony krawędziami z daną liczbą sąsiadów. Kolejny krok to wymiana wierzchołków krawędzi z zadanym prawdopodobieństwem.

• generowanie sieci bezskalowej (algorytm Barabasi-Albert)

Algorytm budujący sieć bezskalową iteracyjnie dodając nowe wierzchołki oraz łącząc je z resztą sieci w oparciu o model Barabasiego-Alberta. Prawdopodobieństwo wyboru krawędzi zależy wprost proporcjonalnie od stopnia przeciwległego wierzchołka krawędzi, co skutkuje kumulacją krawędzi w pojedynczych wierzchołkach w miarę rozrastania się grafu. Sieć taka charakteryzować się będzie rozkładem stopni wierzchołków postaci $P(k) \sim k^{\Lambda}(y)$, gdzie P(k) to ułamek wierzchołków stopnia k w sieci, zaś y jest parametrem charakterystycznym sieci, zwykle z przedziału [2,3].

• sprawdzanie spójności grafu (algorytm DFS)

Rekurencyjne sprawdzenie czy wszystkie wierzchołki należą do spójnego grafu. Rozpoczynając od dowolnego wierzchołka, oznacz go jako odwiedzony i przejdź do wszystkich sąsiednich, które nie zostały wcześniej oznaczone.

Struktury danych

Złożoność obliczeniowa

Dla każdego generatora złożoność obliczeniowa wynosi O(n²), gdzie n - liczba wierzchołków lub, w przypadku sieci małego świata, liczba generowanych krawędzi.

Czas wykonywania

Czas generacji sieci, jak i sprawdzania spójności jest wyświetlany użytkownikowi. Pomiary czasu zostały wykonane w przypadku wygenerowania spójnych sieci. Czasy wywołań przedstawia tabelka (czasy w sekundach):

typ sieci	Euklidesowa	Losowa	Małego Świata	Bezskalowa
parametry	r=0.6	p=0.3	n=4, p=0.6	m0=3, m=2
v=10	0.00011	0.000054	0.000144	0.000083
parametry	r=0.4	p=0.4	n=10, p=0.6	m0=5, m=4
v=100	0.003673	0.004628	0.003036	0.001222
parametry	r=0.2	p=0.6	n=50, p=0.6	m0=10, m=6
v=1000	0.199363	1.053605	0.209740	0.035874

Testy

W ramach testów poprawnościowych zaimplementowano procedurę analizującą rozkład stosunku liczby wierzchołków o zadanym stopniu do liczby wszystkich węzłów sieci danego rodzaju. Zamieszczone poniżej zostały przykładowo wygenerowane rozkłady (wraz z parametrami podanymi do generatora).

Rozkład sieci losowej (1000 wierzchołków, prawdopodobieństwo wyboru 0.5)

Rozkład sieci euklidesowej (Liczba wierzchołków 200, promień okręgu 0.5)

Rozkład sieci bezskalowej (Liczba wierzchołków 200, początkowa sieć 5 wierzchołków, liczba sąsiadów 3)

Rozkład sieci małego świata (Liczba wierzchołków 200, początkowa liczba sąsiadów 5, prawdopodobieństwo zmiany 0.5)

Wnioski

Osiągane wyniki testów poprawnościowych potwierdziły oczekiwania wywodzące się z naukowych opisów algorytmów oraz modeli wykorzystanych do generacji sieci o zadanym typie i parametrach. Złożoność obliczeniowa nie odbiegała znacząco od przewidywanej złożoności pesymistycznej O(n²).

Literatura

- → A. Reka, A.L. Barabasi, *Statistical mechanics of complex networks. Review of Modern Physics* Vol. 74, January 2002.
- → J.Wojciechowski, K.Pieńkosz, *Grafy i sieci*, PWN 2013.