Механические колебания и волны

1.5.1 Гармонические колебания

Определение:

Гармонические колебания - колебания, при которых физическая величина (например, смещение, скорость) изменяется со временем по закону синуса или косинуса. Это простейший вид периодических колебаний.

Описание:

График гармонических колебаний представляет собой синусоиду.

Уравнение гармонических колебаний (смещение):

- $x(t) = A \cdot \cos(\omega t + \phi)$ или $x(t) = A \cdot \sin(\omega t + \phi)$, где
 - ullet x(t) смещение тела от положения равновесия в момент времени t
 - А амплитуда колебаний
 - ω циклическая частота
 - \bullet t время
 - ullet ϕ начальная фаза

1.5.2 Амплитуда и фаза колебаний

Амплитуда (А):

Максимальное отклонение колеблющегося тела от положения равновесия.

- Характеризует "размах" колебаний
- Измеряется в единицах смещения (например, метрах)

Фаза колебаний ($\omega t + \phi$):

Определяет состояние колебательной системы в конкретный момент времени.

Начальная фаза (ϕ) :

Значение фазы в начальный момент времени (t=0).

- Определяет положение тела в момент начала отсчета времени
- Измеряется в радианах

1.5.3 Период колебаний

Определение:

Период колебаний (Т) - время, за которое совершается одно полное колебание.

Формулы:

- $T = \frac{1}{\nu}$ $T = \frac{2\pi}{\omega}$

где:

- ν частота колебаний
- ω циклическая частота

Единица измерения:

секунда (с).

1.5.4 Частота колебаний

Определение:

Частота колебаний (ν) - количество полных колебаний, совершаемых в единицу времени.

Формулы:

- $\nu = \frac{1}{T}$ $\nu = \frac{\omega}{2\pi}$

где:

- \bullet T период колебаний
- ω циклическая частота

Циклическая частота:

 $\omega = 2\pi\nu$

Единица измерения:

герц (Γ ц). 1 Γ ц = 1 колебание в секунду.

1.5.5 Свободные колебания (математический и пружинный маятники)

Определение:

Свободные колебания - колебания, происходящие под действием внутренних сил системы после однократного вывода системы из состояния равновесия.

Математический маятник:

Идеализированная система, состоящая из материальной точки, подвешенной на невесомой нерастяжимой нити, совершающей колебания под действием силы тяжести.

Формула периода:

$$T=2\pi\cdot\sqrt{rac{l}{g}},$$
 где:

- \bullet l длина нити
- д ускорение свободного падения

Примечание:

Эта формула справедлива только для малых углов отклонения.

Пружинный маятник:

Система, состоящая из тела, прикрепленного к пружине, которая совершает колебания под действием силы упругости.

Формула периода:

$$T=2\pi\cdot\sqrt{rac{m}{k}},$$
 где:

- m масса тела
- k жесткость пружины

1.5.6 Вынужденные колебания

Определение:

Вынужденные колебания - колебания, которые происходят под действием внешней периодической силы.

Пример:

Колебания качелей, которые кто-то постоянно подталкивает.

Отличие от свободных:

Внешняя сила компенсирует потери энергии на трение. Частота вынужденных колебаний равна частоте внешней силы.

1.5.7 Резонанс

Определение:

Резонанс - явление резкого возрастания амплитуды вынужденных колебаний, когда частота внешней силы близка к собственной частоте колебательной системы.

Условие резонанса:

Частота внешней силы ($\nu_{\text{внеш}}$) \approx собственной частоте ($\nu_{\text{соб}}$).

Примеры:

Раскачивание качелей, разрушение мостов под действием ветра, работа радиоприемников.

Опасность:

Резонанс может привести к разрушению системы, если амплитуда колебаний становится слишком большой.

1.5.8 Длина волны

Определение:

Волна - распространение колебаний в пространстве.

Длина волны (λ) :

Расстояние между двумя ближайшими точками волны, колеблющимися в одинаковой фазе (например, между двумя соседними гребнями или впадинами).

Формулы:

- $\lambda = v \cdot T$
- $\lambda = \frac{v}{\nu}$

где:

- v скорость распространения волны
- Т период колебаний
- ν частота колебаний

Единица измерения:

метр (м).

1.5.9 Звук

Определение:

Звук - механические колебания, распространяющиеся в упругой среде (газе, жидкости, твердом теле) и воспринимаемые органами слуха.

Характеристики звука:

- **Частота:** Определяет высоту звука (высокие частоты высокий звук, низкие частоты низкий звук)
- Амплитуда: Определяет громкость звука (большая амплитуда громкий звук, малая амплитуда тихий звук)
- Скорость: Зависит от среды, в которой распространяется звук. В воздухе при нормальных условиях $\approx 340~\mathrm{m/c}$

Звуковые волны:

Продольные волны (колебания частиц среды происходят вдоль направления распространения волны).