Plataformas IoT

Arthur H. D. Rodrigues Mestre em Ciência da Computação IME - USP

30 de Junho de 2025

Figura: https://github.com/arthuript/Aula-plataformas-loT

Contents

- 1. Arquitetura Geral de Sistemas IoT
- 2. Plataformas IoT: Conceito e Função
- 3. Exemplos de Plataformas IoT
- 4. Ibirapitanga
- 5. Demonstração Prática

Arquitetura em Camadas da IoT

Camada de middleware

Resumidamente..

- Software intermediário
- "Cola"que liga diferentes componentes num sistema
- Abstrai a complexidade dos dispositivos e da rede
- Intermedia a comunicação entre os dispositivos e as aplicações
- Gerencia dados, dispositivos, serviços e eventos

Camada de middleware

Responsabilidades

- Gerenciamento de dispositivos: Cadastro, autenticação, status
- Comunicação: Interpretação de protocolos (MQTT, CoAP, HTTP...)
- Armazenamento intermediário: Buffer de dados ou cache
- Regras e automações: Lógica de eventos ("se temperatura > 30, enviar alerta")
- APIs: Interface para as aplicações consumirem os dados
- Segurança: Controle de acesso, autenticação, criptografia

Camada de aplicação

Responsabilidades

- **Visualização de dados:** Exibe informações coletadas em gráficos, tabelas, mapas etc. Permite interpretar tendências, valores atuais e históricos.
- Interação com o usuário: Interfaces Web/Mobile para que o usuário possa visualizar dados, configurar alertas, interagir com dispositivos.
- Dashboard personalizável: Criação de painéis de controle com widgets (gráficos, gauges, mapas, botões) para representar o sistema.

Camada de aplicação

Responsabilidades

- **Visualização de dados:** Exibe informações coletadas em gráficos, tabelas, mapas etc. Permite interpretar tendências, valores atuais e históricos.
- Interação com o usuário: Interfaces Web/Mobile para que o usuário possa visualizar dados, configurar alertas, interagir com dispositivos.
- Dashboard personalizável: Criação de painéis de controle com widgets (gráficos, gauges, mapas, botões) para representar o sistema.

Dica

A camada de aplicação é voltada para o ser humano, enquanto a de middleware é mais voltada para o sistema.

Camada de plataforma

Plataforma Aplicacional

Plataforma Aplicacional = camada de middleware + camada de aplicação

O que é uma Plataforma IoT?

- É o ambiente digital que conecta dispositivos IoT à internet e aos usuários
- Gerencia dados, dispositivos, usuários e integrações
- Atua como ponte entre o mundo físico e usuários

Plataforma Aplicacional

Plataforma Aplicacional = camada de middleware + camada de aplicação

A importância da Plataforma

- Centraliza comunicação entre milhares de dispositivos
- Armazena e processa dados em tempo real
- Permite visualização e controle remoto
- Garante segurança, escalabilidade e integração

Plataforma

Sem plataforma, loT é um monte de sensores isolados. É ela quem dá inteligência ao sistema.

Componentes Internos de uma Plataforma

- Broker de mensagens (MQTT, AMQP...)
- Banco de dados (TSDB, NoSQL, SQL)
- Engine de regras
- Módulo de visualização
- Gerenciador de dispositivos
- APIs REST/WebSocket

Tipos de Plataformas IoT

Tipo	Exemplo
Open Source	Ibirapitanga, Interscity, ThingsBoard, Kaa, FIWARE
Cloud Proprietária	AWS IoT, Azure IoT Hub

Ibirapitanga

- Desenvolvida pelo IPT
- No do Pau Brasil em tupi
- ullet Middleware + aplicação
- Microsserviços
- Código aberto*

Abstrações básicas

- Capabilities: Tipos de dados coletados:
 - Temperatura
 - Pressão
 - Velocidade do vento
 - Aceleração, etc.
- Resources: Entidade associada aos dados coletados
 - ESP32
 - Carros
 - Pessoas
 - Barcos

DHT11

• Capabilities: Temperatura e umidade.

• Resource: ESP32

Exemplo: Xenotransplante

- Criação de porcos para desenvolvimento de orgão para transplantes
- Queremos acompanhar o peso dos porcos
- Usamos uma balança para pesar todos os porcos

Exemplo: Xenotransplante

- Criação de porcos para desenvolvimento de orgão para transplantes
- Queremos acompanhar o peso dos porcos
- Usamos uma balança para pesar todos os porcos

Capabilities: Peso

• Resources: Porcos

Arquitetura de microsserviços

- Separa um grande sistema em partes modulares, chamadas de microsserviços
- Cada microsserviço é independente dos demais.
- Os microsserviços se comunicam via rede (API REST em HTTP ou gRPC)

Arquitetura de microsserviços

Exercício

- Acessar plataforma
- Criar uma conta para cada pessoa/grupo
- Registrar capabilities e resources
 - Fazer um script (Python, bash, powershell) que mande dados para a plataforma
 - Programar o ESP32 para mandar dados

