```
In [14]: # Import the necessary libraries
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

# Loading The Data
file_path = 'C:/Users/faraz/Downloads/Niksun/ml_datasets/War_21st Century_Is

# Read the second sheet (Sheet2) into a DataFrame
df = pd.read_excel(file_path, sheet_name='Data')

df.head()
```

Out[14]:

	Country	Admin1	Admin2	ISO3	Admin2 Pcode	Admin1 Pcode	Month	Year	Events	F
0	Palestine	Gaza Strip	Deir El Balah	PSE	PS0265	PS02	January	2016	1	
1	Palestine	Gaza Strip	Gaza City	PSE	PS0260	PS02	January	2016	1	
2	Palestine	Gaza Strip	Khan Yunis	PSE	PS0270	PS02	January	2016	0	
3	Palestine	Gaza Strip	North Gaza	PSE	PS0255	PS02	January	2016	1	
4	Palestine	Gaza Strip	Rafah	PSE	PS0275	PS02	January	2016	0	

Country: Always "Palestine" (single value).

Admin1: Larger administrative areas (e.g., Gaza Strip).

Admin2: More specific administrative regions (e.g., Gaza City, Rafah).

Month and Year: Temporal data to track changes over time.

Events: Number of targeting events in a particular area and time.

Fatalities: Number of deaths in that area and time.

Data Wrangling

```
In [15]: # Introducing Month of Year for better visualizations
   df['month_of_year'] = df['Month'].str[:3] + '-' + df['Year'].astype(str).str
   df
```

\circ			г	\neg	$\overline{}$	п	
		т.		- 1	-	- 1	
\cup	u	L	L	_	J	Л	

	Country	Admin1	Admin2	ISO3	Admin2 Pcode	Admin1 Pcode	Month	Year	Even
0	Palestine	Gaza Strip	Deir El Balah	PSE	PS0265	PS02	January	2016	
1	Palestine	Gaza Strip	Gaza City	PSE	PS0260	PS02	January	2016	
2	Palestine	Gaza Strip	Khan Yunis	PSE	PS0270	PS02	January	2016	
3	Palestine	Gaza Strip	North Gaza	PSE	PS0255	PS02	January	2016	
4	Palestine	Gaza Strip	Rafah	PSE	PS0275	PS02	January	2016	
1611	Palestine	West Bank	Qalqilya	PSE	PS0120	PS01	May	2024	
1612	Palestine	West Bank	Ramallah and Al Bireh	PSE	PS0130	PS01	May	2024	2
1613	Palestine	West Bank	Salfit	PSE	PS0125	PS01	May	2024	
1614	Palestine	West Bank	Tubas	PSE	PS0105	PS01	May	2024	
1615	Palestine	West Bank	Tulkarm	PSE	PS0110	PS01	May	2024	

1616 rows × 11 columns

```
In [16]: df.isnull().sum()
         df['Fatalities'] = df['Fatalities'].astype(int)
         df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1616 entries, 0 to 1615 Data columns (total 11 columns):

		, .	
#	Column	Non-Null Count	Dtype
0	Country	1616 non-null	object
1	Admin1	1616 non-null	object
2	Admin2	1616 non-null	object
3	IS03	1616 non-null	object
4	Admin2 Pcode	1616 non-null	object
5	Admin1 Pcode	1616 non-null	object
6	Month	1616 non-null	object
7	Year	1616 non-null	int64
8	Events	1616 non-null	int64
9	Fatalities	1616 non-null	int32
10	month_of_year	1616 non-null	object
dtvp	es: int32(1), i	nt64(2), object(8)

memory usage: 132.7+ KB

	Year	total_events	total_fatalities	avg_events	<pre>avg_fatalities</pre>
0	2016	212	34	1.104167	0.177083
1	2017	226	21	1.177083	0.109375
2	2018	1045	70	5.442708	0.364583
3	2019	810	64	4.218750	0.333333
4	2020	614	14	3.197917	0.072917
5	2021	1086	158	5.656250	0.822917
6	2022	1118	52	5.822917	0.270833
7	2023	3876	21155	20.187500	110.182292
8	2024	2701	12539	33.762500	156.737500

Metrics & Visualizations

```
In [48]: # Grouping data by year to show total events
    events_by_year = df.groupby('Year')['Events'].sum()

# Plotting a simple bar chart
    plt.figure(figsize=(15, 5))
    events_by_year.plot(kind='bar', color='skyblue')
    plt.title('Total Events by Year')
    plt.xlabel('Year')
    plt.ylabel('Total Events')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```



```
In [40]: # Use the existing data from the screenshot (manually inputted from the screenshot)
yearly_metrics = pd.DataFrame({
    'Year': [2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024],
    'total_events': [212, 210, 1045, 456, 610, 218, 1118, 3876, 2701],
    'total_fatalities': [34, 23, 70, 40, 44, 180, 52, 21155, 12539]
})
```

```
# Create a pie chart for 'total_events' and 'total_fatalities'
fig, ax = plt.subplots(1, 2, figsize=(14, 5))

# Pie chart for total events
ax[0].pie(yearly_metrics['total_events'], labels=yearly_metrics['Year'], aut
ax[0].set_title('Total Events by Year')

# Pie chart for total fatalities
ax[1].pie(yearly_metrics['total_fatalities'], labels=yearly_metrics['Year'],
ax[1].set_title('Total Fatalities by Year')

# Display the charts
plt.tight_layout()
plt.show()
```



```
In [18]: # Recreating the 'month of year' column in the format "Jan-16"
         df['month of year'] = df['Month'].str[:3] + '-' + df['Year'].astype(str).str
         # Grouping the data by 'month of year' to get the total events for each mont
         events by month year = df.groupby('month of year')['Events'].sum().reset ind
         # Sorting the data by 'month_of_year' for correct plotting
         events by month year.sort values(by='month of year', inplace=True)
         # Creating a trend line plot
         plt.figure(figsize=(30, 10))
         plt.plot(events by month year['month of year'], events by month year['Events
         plt.xticks(rotation=90)
         plt.xlabel('Month-Year')
         plt.ylabel('Total Events')
         plt.title('Trend of Total Events by Month-Year')
         plt.grid(True)
         # Display the trend line plot
         plt.tight layout()
         plt.show()
```



```
In [19]: import matplotlib.pyplot as plt
         # Create a bar chart instead of pie charts for 'total events' and 'total fat
         fig, ax = plt.subplots(1, 2, figsize=(14, 7))
         # Bar chart for total events
         ax[0].bar(yearly_metrics['Year'], yearly_metrics['total_events'], color='sky
         ax[0].set title('Total Events by Year')
         ax[0].set xlabel('Year')
         ax[0].set ylabel('Total Events')
         # Bar chart for total fatalities
         ax[1].bar(yearly_metrics['Year'], yearly_metrics['total_fatalities'], color=
         ax[1].set title('Total Fatalities by Year')
         ax[1].set xlabel('Year')
         ax[1].set ylabel('Total Fatalities')
         # Display the charts
         plt.tight layout()
         plt.show()
```


In [20]: import matplotlib.pyplot as plt
Grouping the data by 'Admin1' to get the total fatalities by region

```
fatalities_by_region = df.groupby('Admin2')['Fatalities'].sum().reset_index(

# Plotting the total fatalities by region using a bar chart
plt.figure(figsize=(12, 7))
plt.bar(fatalities_by_region['Admin2'], fatalities_by_region['Fatalities'],
plt.xlabel('Region (Admin2)')
plt.ylabel('Total Fatalities')
plt.title('Total Fatalities by Region (Admin2)')
plt.xticks(rotation=45, ha='right')

# Display the plot
plt.tight_layout()
plt.show()
```



```
In [21]: plt.figure(figsize=(10, 6))
   plt.scatter(df['Admin2'], df['Year'], s=df['Fatalities']*10, alpha=0.5, cold
   plt.title('Bubble Chart of Fatalities by Region (Admin2) and Year')
   plt.xlabel('Region (Admin2)')
   plt.ylabel('Year')
   plt.xticks(rotation=90)
   plt.show()
```


Out[22]:		month_of_year	total_events	total_fatalities	avg_events	avg_fatalities
	0	Apr-16	18	1	1.1250	0.0625
	1	Apr-17	15	1	0.9375	0.0625
	2	Apr-18	174	11	10.8750	0.6875
	3	Apr-19	54	1	3.3750	0.0625
	4	Apr-20	50	1	3.1250	0.0625
	96	Sep-19	39	0	2.4375	0.0000
	97	Sep-20	32	1	2.0000	0.0625
	98	Sep-21	57	5	3.5625	0.3125
	99	Sep-22	82	1	5.1250	0.0625
	100	Sep-23	93	7	5.8125	0.4375

101 rows \times 5 columns

```
In [30]: location_metrics = df.groupby(['Admin1', 'Admin2']).agg(
          total_events=('Events', 'sum'),
          total_fatalities=('Fatalities', 'sum'),
          avg_events=('Events', 'mean'),
          avg_fatalities=('Fatalities', 'mean')
).reset_index()

print(location_metrics)
```

```
Admin2 total_events total_fatalities \
               Admin1
                                                     994
           Gaza Strip
                              Deir El Balah
                                                                      6995
       1
           Gaza Strip
                                  Gaza City
                                                     1442
                                                                     11625
       2
           Gaza Strip
                                 Khan Yunis
                                                    1009
                                                                      5869
                                                                      5970
       3
           Gaza Strip
                                North Gaza
                                                     841
       4
           Gaza Strip
                                      Rafah
                                                     680
                                                                      3394
       5
           West Bank
                                    Al Quds
                                                     785
                                                                        33
       6
            West Bank
                                 Bethlehem
                                                     476
                                                                        20
       7
                                                                        42
            West Bank
                                                     1269
                                    Hebron
       8
            West Bank
                                      Jenin
                                                     343
                                                                        23
       9
            West Bank
                                    Jericho
                                                     166
                                                                        6
       10
            West Bank
                                     Nablus
                                                     1383
                                                                        46
            West Bank
       11
                                   Qalqilya
                                                     394
                                                                        6
       12
            West Bank Ramallah and Al Bireh
                                                    1059
                                                                        33
       13
                                                     431
                                                                        17
            West Bank
                                     Salfit
       14
            West Bank
                                      Tubas
                                                     150
                                                                        3
       15
            West Bank
                                    Tulkarm
                                                     266
                                                                        25
           avg events avg fatalities
       0
             9.841584
                           69.257426
       1
            14.277228
                           115.099010
       2
             9.990099
                            58.108911
       3
             8.326733
                            59.108911
       4
             6.732673
                            33.603960
       5
             7.772277
                            0.326733
       6
             4.712871
                            0.198020
       7
            12.564356
                            0.415842
       8
            3.396040
                            0.227723
       9
            1.643564
                            0.059406
       10
            13.693069
                            0.455446
       11
            3.900990
                            0.059406
       12
            10.485149
                            0.326733
       13
            4.267327
                            0.168317
       14
             1.485149
                            0.029703
       15
             2.633663
                            0.247525
In [31]: # Creating a correlation heatmap between 'Events' and 'Fatalities'
         correlation data = df[['Events', 'Fatalities']]
         # Calculating the correlation matrix
         correlation matrix = correlation data.corr()
         # Plotting the heatmap
         plt.figure(figsize=(8, 6))
         sns.heatmap(correlation matrix, annot=True, cmap="coolwarm", vmin=-1, vmax=1
         plt.title('Correlation Heatmap: Events and Fatalities')
         plt.show()
         print("Here is the correlation heatmap between Events and Fatalities. It sho
```


Here is the correlation heatmap between Events and Fatalities. It shows a po sitive correlation of 0.84, indicating that as events increase, fatalities t end to increase as well.

```
import seaborn as sns
import matplotlib.pyplot as plt

# Creating a pivot table to show the total events across regions (Admin1) ar
events_pivot = df.pivot_table(values='Events', index='Admin1', columns='Year

# Plotting the heatmap for total events across regions and years
plt.figure(figsize=(12, 8))
sns.heatmap(events_pivot, annot=True, cmap="Blues", linewidths=0.5, linecolc

plt.title('Total Events Heatmap by Region (Admin1) and Year')
plt.xlabel('Year')
plt.ylabel('Region (Admin1)')

# Display the heatmap
plt.tight_layout()
plt.show()
```



```
import seaborn as sns
import matplotlib.pyplot as plt

# Creating a pivot table to show the total fatalities across regions (Admin1 fatalities_pivot = df.pivot_table(values='Fatalities', index='Admin2', colum

# Plotting the heatmap for total fatalities across regions and years plt.figure(figsize=(10, 8)) sns.heatmap(fatalities_pivot, annot=True, cmap="Reds", linewidths=0.5, linec plt.title('Total Fatalities Heatmap by Region (Admin2) and Year') plt.xlabel('Year') plt.xlabel('Year') plt.ylabel('Region (Admin2)')

# Display the heatmap plt.tight_layout() plt.show()
```

Total Fatalities Heatmap by Region (Admin2) and Year									_			
	Al Quds -	5	0	3	4	3	0	1	16	1		
	Bethlehem -	1	3	1	5	2	0	5	1	2		- 7000
	Deir El Balah -	1	0	8	17	0	7	4	3.5e+03	3.4e+03		
	Gaza City -	6	1	6	14	0	54	4	7.9e+03	3.7e+03		- 6000
	Hebron -	10	1	1	5	0	6	2	12	5		
	Jenin -	0	0	0	0	2	3	2	6	10		- 5000
(2	Jericho -	1	1	0	1	0	1	0	2	0		
Region (Admin2)	Khan Yunis -	2	0	14	1	0	11	2	3.2e+03	2.6e+03		- 4000
yion (/	Nablus -	1	2	2	2	2	5	1	23	8		
æ	North Gaza -	1	3	15	8	0	49	16	4.6e+03	1.2e+03		- 3000
	Qalqilya -	0	0	0	1	0	0	3	2	0		
	Rafah -	1	4	9	5	0	14	0	1.8e+03	1.5e+03		- 2000
R	amallah and Al Bireh -	2	5	5	1	3	4	4	4	5		2000
	Salfit -	2	0	5	0	1	2	6	1	0		- 1000
	Tubas -	0	1	0	0	0	1	0	1	0		1000
	Tulkarm -	1	0	1	0	1	1	2	13	6		
		2016	2017	2018	2019	2020	2021	2022	2023	2024		- 0

Year

This notebook was converted to PDF with convert.ploomber.io