HCMC UNIVERSITY OF TECHNOLOGY

Faculty of Transportation Engineering

SOCIALIST REPUBLIC OF VIETNAM

Independence – Freedom – Happiness

SUMMARY OF THESIS/CAPSTONE PROJECT SEMESTER 242

1. Thesis/Capstone pr	oject title: Design a Magnet	o – Powered Capacitor Discharge Ignition
System.		
2. Advisor's fullname:	Ph.D Tran Dang Long	
3. Student's fullname:	Nguyen Quoc Kiet	- ID: 1952802
4. Thesis content:		
4.1. Type:	☑ A product design	☐ A technical evaluation
	☐ A scientific research	☐ Other:

4.2. Objectives & Technical requirements:

a. Objectives: Design and build algorithm of CDI (Capacitor Discharge Ignition) ignition system using magneto - powered.

b. Technical requirements:

> Functions:

- CDI ignition system uses magnetic energy, no auxiliary power required.
- Flywheel speed range: 500 2500 RPM.
- The ignition timing must be controlled according to the desired ignition angle, which can be changed by using potentiometer.
- User interface: Display the ignition advance angle and flywheel speed.
- Input signal: Receive pulse signal from Hall effect sensor (1 pulse/revolution). Capable of filtering noise and accurately measuring time.

> Techniques:

- Reverse voltage protection.
- Protect high voltage pulses from spreading back to the microcontroller.
- Ability to resist electromagnetic interference from the ignition system.

Efficiencies and Durability:

- Compact size, suitable for mini racing car installation.
- Power-efficient design.
- Low maintenance cost, robust operation in small engines environments.

4.3. Core problems to be solved & Solving ideas/methods:

Problem 1: Accurately measure flywheel speed in real time

Solution: Use a Hall sensor mounted near the flywheel to detect magnet signal. Use an Arduino microcontroller and Input Capture Interrupt to calculate the time between two consecutive pulses → from there calculate RPM.

Problem 2: Precise ignition timing control according to desired ignition angle

Solution: Calculate the time delay between the moment the signal from the Hall sensor is detected and the ignition timing.

Use Timer/Counter in Arduino Uno to generate control pulse to trigger SCR at the right time.

Problem 3: Algorithm diagrams according to the correct sequence of embedded system design.

Solution:

Figure 1: V-Model

4.4. Works to be done & Results:

		Required results	
No.	Works to be done	(Ex: specific data, equations, models, diagrams, parameters, charts, findingsmust be achieved)	Final results
1	Define objective and requirements of systemSelect power supplied for CDI	 Design and build algorithm control of Capacitor Discharge Ignition system using magneto - powered. Ignition type magneto of small engine. 	- Done: 100% - Figure 2
2	General layout design: Create system block diagram: Include magneto, capacitor, SCR, spark plug, ignition coils, signal conditioning, Hall sensor, microcontroller.	- Defined function of each block and their interconnections	- Done (100%) - Figure 3
3	Detailed design: + Hardware & Firmware design + SCR trigger + Timing diagram + Algorithm/Work-flows + State machine + Coding	Full electrical schematicAlgorithm flowchartsPreliminary code	- Done: 100% - Equation 1, 2 - Table 1,2 - Figure 4, 5, 6
4	Unit testing: Test individual modules: + Capacitor charging/discharging time + Speed signal from Hall sensor + Ignition signal	- Speed signals, Ignition signal - Oscilloscope waveform screenshots (Ignition pulses, speed pulses)	- Done: 100% - Figure 7
5	System testing: - Integrate hardware and software:	- Compare measured RPM with spark timing.	- Done: 100% - Figure 8,9

No.	Works to be done	Required results (Ex: specific data, equations, models, diagrams, parameters, charts, findingsmust be achieved)	Final results
	- Verify ignition at correct timing based on RPM		
6	Actual system: - Test the entire design system	- Stability and spark strength assessment	- Done: 100% - Figure 10
7	General implementation: - Assemble complete circuit - Demonstrate working prototype	 Working system with variable speed input Correctly timing ignition pulses	- Done: 90% - Figure 11

Figure 2: The figure ignition magneto of lawn mower

Figure 3: The figure general layout design

Figure 4: Wiring diagram

Figure 5: Timing diagram

Event	0	1	2	3	4	5
Time	Start Program	First Falling edge	Next Falling edge	Delay timeout T_{delay}	Timeout ΔT_{ign}	Every 1ms
Work	- Declare variables, I/O - Set up Timer 0 - Set up Timer 1 - Setup Time2	- Update: $n_2 = Timer1$ - Timer 2 = T_{delay} - CAPT_flag = 1	$\begin{array}{l} \text{- CAPT_flag = 0} \\ \text{- } T_{cycle} = \frac{(\Delta N + x \times \text{MAX}) \times 64}{16 \text{MHz}} \\ \text{- Calculation speed} \\ \text{- Update } n_1 = n_2 \\ \text{- } T_{delay} = \frac{T_{cycle} \times \theta_{delay}}{360} \end{array}$	- PB9 = 0 - ΔT_{ign} = 200 μs	- PB9 = 1	-Display_flag = 1 -Display on LCD

Table 1: The table for describe the event and work of timing diagram

Equation for calculation flywheel speed:

$$\Delta N = n_2 - n_1 \tag{1}$$

Speed =
$$\frac{60 \times \text{F_CPU}}{\text{prescaler} \times (\Delta N + x \times \text{MAX})}$$
 (2)

Where:

Speed: engine speed (rpm)

T_{cvcle}: the period of hall sensor signal.

Prescaler: frequency divider (= 64);

F_CPU: clock speed of Arduino (= 16 MHz)

 n_1 : count value of Timer/Counter 1 at the rising edge of the hall sensor signal.

 n_2 : count value of Timer/Counter1 at the next rising edge of the hall sensor signal.

 ΔN : count value of Timer/Counter1 that counted from n_1 to n_2

x: number of overflow.

	$oldsymbol{ heta}$	T (s)	N (Ticks)
Cycle	360°	$T_{cycle} = \frac{60}{Speed}$	$N_{cycle} = \frac{F \times T_{cycle}}{prescale}$
lgn	$ heta_{ign}$	$T_{ign} = \frac{T_{cycle} \times \theta_{ign}}{360}$	$N_{ign} = \frac{F \times T_{ign}}{prescale}$
delay	$\theta_{delay} = \theta_0 - \theta_{ign}$	$T_{delay} = \frac{T_{cycle} \times \theta_{delay}}{360}$	$N_{ign_delay} = \frac{F \times T_{delay}}{prescale}$

Table 2: The table for calculate ignition delay

Figure 6: Main algorithm

Page 8/12

Figure 7: The figure osilloscope waveform speed signal, SCR pulse

Figure 8: The value of speed on the LCD in real time

Figure 9: Compare measured speed with spark timing

Figure 10: Spark plug ignition when system is operating

Figure 11: Realistic model of CDI ignition system using magneto - powered

4.5. Requested products:

✓ Technical report	☑ Poster	☐ Scientific paper
□ Software	d Firmware	□ Numerical model
☐ General layout drawings	□ Detailed drawing	☐ Assembly drawings
□ Others:		

4.6. Scope of Thesis/Capstone project:

- Design a algorithm advance ignition angle control.
- Measure flywheel speed from hall sensor signal.
- Generation a simulate speed sensor signal and ignition advance angle control signal 0-60° before TDC on the Proteus.

4.7. Tasks of each team member:

No.	Member's full name	Works assigned
1	Nguyễn Quốc Kiệt	 Design a Magneto – Powered Capacitor Discharge Ignition System. Build algorithm control of CDI ignition system. Simulation speed sensor signal and ignition advance angle on Proteus.

Student: Nguyễn Quốc Kiệt - **ID:** 1952802 - **Signature:**

Date (dd/mm/yyyy): 29/05/2025

ADVISOR