PART 2 The BREAK

Castryck & Decru (2022)

in SIDH/SIKE the secrets are φ and ψ

we are given $\deg \varphi$, $\deg \psi$ and *precisely* $\varphi(P), \psi(P) \text{ for the points } P \in E_0$ of order $\deg \varphi + \deg \psi$

Kani's lemma directly applies! Knowing Φ gives us φ , ψ .

PROBLEM!

degree of Φ is then $\deg \varphi + \deg \psi$ making Φ difficult/impossible to compute in practice...

Solution!

use knowledge of $\operatorname{End}(E_0)$ to modify the square so that Φ is of degree 2^n , then compute Φ easily

PART 2 The BREAK

Castryck & Decru (2022)

in SIDH/SIKE the secrets are ϕ and ψ

we are given $\deg \varphi$, $\deg \psi$ and precisely $\varphi(P), \psi(P)$ for the points $P \in E_0$ of order $\deg \varphi + \deg \psi$

Kani's lemma directly applies! Knowing Φ gives us φ , ψ .

PROBLEM!

degree of Φ is then $\deg \varphi + \deg \psi$ making Φ difficult/impossible to compute in practice...

Solution!

use knowledge of $\operatorname{End}(E_0)$ to modify the square so that Φ is of degree 2^n , then compute Φ easily

Robert (2022)

generalize Kani's lemma: don't just embed 1D into 2D, embed into 4D or 8D! Then Φ easy to compute and we don't need $\operatorname{End}(E_0)$

