Math 142: Section 11.2 - Notes

1 Calculus with Parametric Equations

Tangents and Areas A parametrized curve x = f(t) and y = g(t) is differentiable at t if f and g are differentiable at t.

Parametric Formula for dy/dx If all three derivatives exist and $dx/dt \neq 0$,

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}.$$

If parametric equations define y as a twice-differentiable function of x, we can apply the above formula to the function dy/dx = y' to calculate d^2y/dx^2 as a function of t:

Parametric Formula for d^2y/dx^2 If the equations x = f(t), y = g(t) define y as a twice-differentiable function of x, then at any point where $dx/dt \neq 0$ and y' = dy/dx,

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}.$$

Example 1 Find the tangent to the curve

$$x = \sec t$$
, $y = \tan t$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$,

at the point $(\sqrt{2}, 1)$, where $t = \pi/4$.

FIGURE 11.12 The curve in Example 1 is the right-hand branch of the hyperbola $x^2 - y^2 = 1$.

Example 1 (cont.)

Example 2 Find d^2y/dx^2 as a function of t if $x = t - t^2$ and $y = t - t^3$.

Example 3 Find the area enclosed by the astroid

$$x = \cos^3 t, \qquad \qquad y = \sin^3 t, \qquad \qquad 0 \le t \le 2\pi.$$

Figure 11.13 The astroid in Example 3.

Length of a Parametrically Defined Curve Let C be a curve given parametrically by the equations

$$x = f(t),$$
 $y = g(t),$ $a \le t \le b.$

Such a curve is called a _____

FIGURE 11.14 The smooth curve C defined parametrically by the equations x = f(t) and y = g(t), $a \le t \le b$. The length of the curve from A to B is approximated by the sum of the lengths of the polygonal path (straight line segments) starting at $A = P_0$, then to P_1 , and so on, ending at $B = P_n$.

FIGURE 11.15 The arc $P_{k-1}P_k$ is approximated by the straight line segment shown here, which has length $L_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2}$.

Definition: If a curve C is defined parametrically by x = f(t) and y = g(t), $a \le t \le b$, where f' and g' are continuous and not simultaneously zero on [a, b], and C is traversed exactly once as t increases from t = a to t = b,

then the _____ is the definite integral

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt.$$

Example 4 Using the definition, fund the length of the circle of radius r defined parametrically by

$$x = r \cos t,$$
 $y = r \sin t,$ $0 \le t \le 2\pi.$

Example 5 Find the length of the astroid

$$x = \cos^3 t,$$

$$x = \cos^3 t, \qquad \qquad y = \sin^3 t, \qquad \qquad 0 \le t \le 2\pi.$$

$$0 < t < 2\pi$$
.