Boolean Algebra

Madiba Hudson-Quansah

February 2024

CONTENTS

PAGE 13_

CHAPIER I	BOOLEAN FUNCTIONS	PAGE 2
1.1	Introduction Product (AND) 2 Product (CD) 2 Complementation (MCT) 2	2
	Boolean Product (AND) $-2 \cdot$ Boolean Sum (OR) $-2 \cdot$ Complementation (NOT) -3	
1.2	Boolean Expressions and Functions	3
	Complement of a Boolean function -4	
1.3	Boolean Identities	4
	Law of Double Complement $-4 \cdot \text{Idempotent Laws} - 4 \cdot \text{Identity Laws} - 4 \cdot \text{Domination Laws} -$	4 • Commutative Laws
	$-4 \cdot$ Associative Laws $-4 \cdot$ Distributive Laws $-4 \cdot$ De Morgan's Laws $-4 \cdot$ Absorption Laws $-4 \cdot$ Absorption Laws $-4 \cdot$ De Morgan's Laws $-4 \cdot$	5 • Unit Property − 5 •
	Zero Property — 5	
1.4	Duality	5
1.5	Exercises	6
Chapter 2	Representing Boolean Functions	Page 8
2.1	Sum of Products Expansion	8
2.1	2.1.0.1 Sum of Products / Disjunctive normal form (DNF)	· · · · · · · · · · · · · · · · · · ·
	Product of Sums Expansion / Conductive Normal Form (CNF) – 9	
2.2	Exercises	9
2.3	Boolean Circuits	12

CHAPTER 3

Exercises

Chapter 1

Boolean Functions

1.1 Introduction

Boolean Algebra provides the operations and rules for working with the set $\{0,1\}$. The three operations that will be discussed are the:

- Boolean sum (**OR**) 0 + 1 = 1
- Boolean product (AND) $0 \cdot 1 = 0$
- Complementation (**NOT**) $\overline{0} = 1$

1.1.1 Boolean Product (AND)

Definition 1.1.1: Boolean Product

The Boolean product of two variables x and y is denoted by $x \cdot y$ and is defined by the following values:

$$1 \cdot 1 = 1$$

$$1 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$0 \cdot 0 = 0$$

1.1.2 Boolean Sum (OR)

Definition 1.1.2: Boolean Sum

The Boolean sum of two variables x and y is denoted by x + y and is defined by the following values:

$$1 + 1 = 1$$

$$1 + 0 = 1$$

$$0 + 1 = 1$$

$$0 + 0 = 0$$

1.1.3 Complementation (NOT)

Definition 1.1.3: Complementation

The complement of a variable x is denoted by \overline{x} and is defined by the following values:

$$\overline{1} = 0$$

$$\overline{0} = 1$$

Example 1.1.1

Question 1

Find the value of $1 \cdot 0 + \overline{(0+1)}$

Solution:

$$1 \cdot 0 + \overline{(0+1)} = 1 \cdot 0 + \overline{1}$$
$$= 0 + \overline{1}$$
$$= 0 + 0$$
$$= 0$$

Example 1.1.2

Question 2

Translate $1 \cdot 0 + \overline{(0+1)} = 0$, into a logical equivalence.

Solution:

$$T \wedge F \vee \neg (F \vee T) \equiv F$$

1.2 Boolean Expressions and Functions

Let $B = \{0, 1\}$, then $B^n = \{(x_1, x_2, ..., x_n) \mid x_i \in B \text{ for } 1 \le i \le n\}$ is the set of all possible n-tuples of 0's and 1's. The variable x is a *Boolean variable*.

Definition 1.2.1: Boolean variable

A variable that can take on the values 0 or 1.

Definition 1.2.2: Boolean Function

A function $f: B^n \to B$ is called a *Boolean function* of degree n. I.e. takes n inputs and returns a single output.

Example 1.2.1

The function F(x, y) = x from the set of ordered pairs of Boolean variables to the set $\{0, 1\}$, has a degree of 2.

1.2.1 Complement of a Boolean function

Definition 1.2.3: Complement of a Boolean function

The complement of a Boolean function F is denoted by \overline{F} and is defined by:

$$\overline{F}(x_1, x_2, \dots, x_n) = \overline{F(x_1, x_2, \dots, x_n)}$$

1.3 Boolean Identities

1.3.1 Law of Double Complement

$$\overline{\overline{x}} = x$$

1.3.2 Idempotent Laws

$$x + x = x$$
$$x \cdot x = x$$

1.3.3 Identity Laws

$$x + 0 = x$$
$$x \cdot 1 = x$$

1.3.4 Domination Laws

$$x + 1 = 1$$
$$x \cdot 0 = 0$$

1.3.5 Commutative Laws

$$x + y = y + x$$
$$xy = yx$$

1.3.6 Associative Laws

$$x + (y + z) = (x + y) + z$$
$$x (yz) = (xy) z$$

1.3.7 Distributive Laws

$$x + yz = (x + y)(x + z)$$
$$x(y + z) = xy + xz$$

1.3.8 De Morgan's Laws

$$\frac{\overline{(xy)} = \overline{x} + \overline{y}}{\overline{(x+y)} = \overline{x} \cdot \overline{y}}$$

1.3.9 Absorption Laws

$$x + xy = x$$
$$x(x + y) = x$$

1.3.10 Unit Property

$$x + \overline{x} = 1$$

1.3.11 Zero Property

$$x\overline{x} = 0$$

1.4 Duality

Definition 1.4.1: Dual

The dual of a Boolean expression is obtained by replacing the **AND** operation with **OR** and the **OR** operation with **AND**, and interchanging 1s and 0s.

Example 1.4.1

Question 3

Find the duals of x(y+0) and $\overline{x} \cdot 1 + (\overline{y} + z)$

Solution:

$$x(y+0) = x + (y \cdot 1)$$

$$\overline{x} \cdot 1 + (\overline{y} + z) = (\overline{x} + 0) \cdot (\overline{y}z)$$

The dual of a boolean function F is the function representing the dual of the expression representing F, denoted by F^d

Definition 1.4.2: Duality Principle

An identity between functions represented by boolean expressions remains valid when the duals of both sides of the expression are taken.

Example 1.4.2

Question 4

Construct an identity from the absorption law x(x + y) = x by taking duals

Solution:

$$x(x+y) = x$$

$$Let F(x,y) = x(x+y) \text{ and } G(x) = x$$

$$F(x,y) = G(x)$$

$$F^{d}(x,y) = G^{d}(x)$$

$$F^{d}(x,y) = x + xy$$

$$G^{d}(x) = x$$

$$x + xy = x$$

1.5 Exercises

Question 5

Show that these identities hold

$$1. \ x \oplus y = (x+y)(xy)$$

2.
$$x \oplus y = (x\overline{y}) + (\overline{x}y)$$

Solution:

x	у	\overline{x}	\overline{y}	x + y	$\overline{(xy)}$	$x\overline{y}$	$\overline{x}y$	$x \oplus y$	$(x+y) \overline{(xy)}$	$(x\overline{y}) + (\overline{x}y)$
1	1	0	0	1	0	0	0	0	0	0
1	0	0	1	1	1	1	0	1	1	1
0	0	1	1	0	1	0	1	0	0	0
0	1	1	0	1	1	0	0	1	1	1

Question 6

Show that you obtain De Morgan's Laws for propositions when you transform De Morgan's Laws for boolean algebra into logical equivalences

Solution:

$$\overline{(xy)} = \overline{x} + \overline{y}$$
Let x be p and y be q

$$\neg (p \land q) = \neg p \lor \neg q$$

$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$

$$\neg (p \lor q) = \neg p \land \neg q$$

Question 7

Show that in a boolean algebra, the Idempotent laws $x \lor v = x$ and $x \land x = x$ hold for every element x

Solution:

$$x = x \lor 0$$

$$= x \lor (x \land \neg x)$$

$$= (x \lor x) \land (x \lor \neg x)$$

$$= (x \lor x) \land 1$$

$$= x \lor x$$

By First Identity Law
By Second Complement Law
By First Distributive Law
By First Complement Law
By Second Identity Law

Chapter 2

Representing Boolean Functions

2.1 Sum of Products Expansion

Definition 2.1.1: Literal

A variable or its complement.

Definition 2.1.2: Minterm

A product of literals in which each variable appears exactly once. I.e. the minterm of boolean variables x_1, x_2, \ldots, x_n is a boolean product $y_1 \cdot y_2 \cdot \ldots \cdot y_n$, where

$$y_i = x_i \text{ or } y_i = \overline{x_i}$$

I.e. $y_1 \cdot y_2 \cdot \ldots \cdot y_n$ is a minterm in of the variables x_1, x_2, \ldots, x_n

2.1.0.1 Sum of Products / Disjunctive normal form (DNF)

Form a product (using logical and) term for each row in the truth table where the function is 1. Then sum (using logical or) all the terms together.

x	у	z	F(x,y,z)	G(x,y,z)
1	1	1	0	0
1	1	0	0	1
1	0	1	1	0
1	0	0	0	0
0	1	1	0	0
0	1	0	0	1
0	0	1	0	0
0	0	0	0	0

Example 2.1.1

Question 8

Find Boolean expressions that represent the functions, using the truth table above.

- 1. F(x, y, z)
- 2. G(x, y, z)

Solution:

1. First we look for the rows where F is 1. There is only one row, row 3. Then we determine the minterm for this row which is $x\overline{y}z$. Then we boolean sum all the found minterms to derive the function's boolean expression but since there is only one minterm the result is simply

$$F(x,y,z) = x\overline{y}z$$

2. We repeat the same process for the function G, and as there are two rows where G is 1 we will have two minterms, $xy\overline{z}$ and $\overline{x}y\overline{z}$, making the boolean expression

$$G(x, y, z) = xy\overline{z} + \overline{x}y\overline{z}$$

Example 2.1.2

Question 9

Find the sum-of-products of the expansion for the function $F(x, y, z) = (x + y)\overline{z}$

Solution:

$$F(x, y, z) = (x + y)\overline{z}$$

$$= x\overline{z} + y\overline{x}$$

$$= x1\overline{z} + y1\overline{z}$$

$$= x(y + \overline{y})\overline{z} + y(x + \overline{x})\overline{z}$$

$$= xy\overline{z} + x\overline{y}\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$

$$= xy\overline{z} + xy\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$

$$= xy\overline{z} + xy\overline{z} + xy\overline{z} + \overline{x}y\overline{z}$$

By Second Distributive Law
By Second Identity Law
By First Unit Property Law
By Second Distributive Law
By Second Commutative Law
By First Idempotent Law

$$\therefore F(x,y,z) = xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z}$$

2.1.1 Product of Sums Expansion / Conductive Normal Form (CNF)

A product of sums expansion is the dual of a sum of product expansion.

Example 2.1.3

 $F(x, y, z) = xy\overline{z} + x\overline{y}\overline{z} + \overline{x}y\overline{z}$ can be expressed as a product of sums expansion

$$F(x,y,z) = (x+y+\overline{z})\cdot(x+\overline{y}+\overline{z})\cdot(\overline{x}+y+\overline{z})$$

2.2 Exercises

Ouestion 10

Use truth tables to prove the domination laws for Boolean.

Solution: Conclusion: x + 1 = 1 from column 2 and 4 and $x \cdot 0 = 0$ from column 3 and 5.

x	1	0	x + 1	$x \cdot 0$
1	1	0	1	0
0	1	0	1	0

Question 11

The Boolean operator \oplus , called **XOR** is defined by $1 \oplus 1 = 0, 1 \oplus 0 = 1$

- 1. $x \oplus x$
- 2. $x \oplus \overline{x}$

Solution:

1.

$$x \oplus x$$

When
$$x = 1$$

$$1 \oplus 1 = 0$$

When
$$x = 0$$

$$0 \oplus 0 = 0$$

$$x \oplus x = 0$$

2.

$$x \oplus \overline{x}$$

When
$$x = 1$$

$$1 \oplus \overline{1}$$

$$1 \oplus 0 = 1$$

When
$$x = 0$$

$$0 \oplus \overline{0}$$

$$0 \oplus 1$$

$$0 \oplus 1 = 1$$

$$x \oplus \overline{x} = 1$$

Question 12

Prove the absorption law x + xy = x using the other boolean identities

Solution:

$$x + xy = x \cdot 1 + xy$$
$$= x (1 + y)$$
$$= x \cdot 1$$

$$= x$$

By Second Identity Law By Second Distributive Law By First Domination Law By Second Identity Law

$$x(x + y) = (x + 0)(x + y)$$
$$= x + 0 \cdot y$$
$$= x + 0$$
$$= x$$

By First Identity Law By First Distributive Law By Second Domination Law By First Identity Law

Question 13

Find the sum of products expansion of these Boolean functions

- 1. F(x, y) = x + y
- 2. F(x,y) = xy
- 3. F(x, y) = 14. F(x, y) = y

Solution:

1.

$$F(x,y) = x + y$$

$$= x \cdot 1 + y \cdot 1$$

$$= x \cdot (y + \overline{y}) + y \cdot (x + \overline{x})$$

$$= xy + x\overline{y} + xy + \overline{x}y$$

$$= xy + xy + x\overline{y} + \overline{x}y$$

$$= xy + x\overline{y} + \overline{x}y$$

By Second Identity Law By Unit Property By Second Distributive Law By First Commutative Law By First Idempotent Law

2.

$$F(x,y) = xy$$

$$= x(y+y)$$

$$= xy$$

By First Idempotent Law

3.

$$F(x,y) = 1$$

$$= x + \overline{x}$$

$$= x \cdot 1 + \overline{x} \cdot 1$$

$$= x \cdot (y + \overline{y}) + \overline{x} \cdot (y + \overline{y})$$

$$= xy + x\overline{y} + \overline{x}y + \overline{x}y$$

By Unit Property By Second Identity Law By Unit Property By Second Distributive Law 4.

$$F(x,y) = y$$

$$= y + y$$

$$= y \cdot 1 + y \cdot 1$$

$$= y \cdot (x+1) + y \cdot (x+1)$$

$$= xy + y + xy + y$$

$$= xy + xy + y + y$$

$$= xy + y$$

$$= xy + y \cdot 1$$

$$= xy + y \cdot (x + \overline{x})$$

$$= xy + xy + y\overline{x}$$

$$= xy + y\overline{x}$$

By First Idempotent Law
By Second Identity Law
By First Domination Law
By Second Distributive Law
By First Commutative Law
By First Idempotent Law
By Second Identity Law
By Unit Property Law
By Second Distributive Law
By First Idempotent Law

Question 14

Find the sum of products and the product of sums expansion of the Boolean function F(x, y, z) that equals 1 if and only if

- 1. xy = 0
- 2. x + y = 0
- 3. xyz = 0

Solution:

x	у	Z	xy	F(x,y,z)	x + y	F(x,y,z)	xyz	F(x,y,z)
1	1	1	1	0	1	0	1	0
1	1	0	1	0	1	0	0	1
1	0	0	0	1	1	0	0	1
1	0	1	0	1	1	0	0	1
0	1	1	0	1	1	0	0	1
0	0	0	0	1	0	1	0	1
0	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1

- 1. DNF $x\overline{yz} + x\overline{y}z + \overline{x}yz + \overline{x}y\overline{z} + \overline{x}\overline{y}z + \overline{x}y\overline{z}$ CNF - $(\overline{x} + \overline{y} + \overline{z}) \cdot (\overline{x} + \overline{y} + z)$
- 2. DNF $\overline{xyz} + \overline{xy}z$

CNF -
$$(x + y + z) \cdot (x + y + \overline{z}) \cdot (x + \overline{y} + \overline{z}) \cdot (x + \overline{y} + z) \cdot (\overline{x} + y + z) \cdot (\overline{x} + y + \overline{z})$$

2.3 Boolean Circuits

$$\overline{\left(\overline{x}yz\right)}\left(\overline{x}+y+\overline{z}\right)$$

Chapter 3

Exercises

Question 15

- 1. Use a truth table to express the values of the Boolean function F(x,y,z) = x + yz2. Using the result from (1) write F(x,y,z) in conjunctive normal form 3. Using the result from (1) write F(x,y,z) in disjunctive normal form

- 4. Using Boolean identities, write F(x, y, z) in disjunctive normal form

Solution:

	x	у	Z	yz	x + yz	F(x,y,z)
	1	1	1	1	1	1
	1	1	0	0	1	1
	1	0	1	0	1	1
1.	1	0	0	0	1	1
	0	1	1	1	1	1
	0	1	0	0	0	0
	0	0	1	0	0	0
	0	0	0	0	0	0

2.

$$F\left(x,y,z\right)=\left(x+\overline{y}+z\right)\cdot\left(x+y+\overline{z}\right)\cdot\left(x+y+z\right)$$

3.

$$F(x,y,z) = xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz$$

4.

$$F\left(x,y,z\right) = x + yz$$

$$= x1 + y1z \qquad \text{Second Identity Law}$$

$$= x \cdot \left(y + \overline{y}\right) + yz \cdot \left(x + 1\right) \qquad \text{First Domination Law}$$

$$= xy + x\overline{y} + yzx + yz \cdot \left(x + \overline{x}\right) \qquad \text{Unit Property}$$

$$= xy + x\overline{y} + yzx + yz \cdot \left(x + \overline{x}\right) \qquad \text{Unit Property}$$

$$= xy + x\overline{y} + yzx + yzx + yz\overline{x} \qquad \text{Second Distributive Law}$$

$$= xy + x\overline{y} + yzx + yzx + yz\overline{x} \qquad \text{Second Identity Law}$$

$$= xy + x\overline{y} + yzx + yzx + yz\overline{x} \qquad \text{Second Identity Law}$$

$$= xy + xy\overline{y} + xy\overline{y} + xy\overline{y} + xyz + yzx + yz\overline{x} \qquad \text{Unit Property}$$

$$= xyz + xy\overline{z} + xy\overline{y} + xy\overline{y} + xyz + xyz + xyz + \overline{x}yz \qquad \text{Second Distributive Law}$$

$$= xyz + xyz + xyz + xy\overline{z} + xy\overline{z} + xy\overline{y} + xy\overline{y} = xyz \qquad \text{First Commutative Law}$$

$$= xyz + xy\overline{z} + xy\overline{z} + xy\overline{z} + xy\overline{z} + xy\overline{z} = xyz \qquad \text{First Commutative Law}$$

Hence $F(x, y, z) = xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz$

Question 16

Construct circuits from inverters, AND gates, and OR gates to produce these outputs.

- 1. $\overline{x} + y$ 2. $xyz + \overline{xyz}$

Solution:

2.

