Basic Scheduling Algorithms for Single Machine Problems

Single machine model is the simplest type of scheduling models and a special case of all other environments. It is often found in practice when there is only one service point or a single stage manufacturing.

Algorithms developed for the single machine model provide a basis for design of exact algorithms and heuristics for more complicated machine environments: multi-machine systems can often be decomposed into a number of single stage systems.

In this lecture, we focus on the classical single machine problems with objective functions ΣC_j , $\Sigma w_i C_j$.

1. Minimising total completion time: $1||\Sigma C_i||$

First let us develop an algorithm that finds an optimal schedule for $1||\Sigma C_i|$.

Solve the following instance with n=3 jobs.

Job	p_{j}
1	7
2	2
3	5

To find its solution, let us generate all possible permutations of jobs and compute the completion times for the resulting schedules.

Formulate the rule that solves the problem:

In the example above, the jobs in the optimal schedule are arranged in increasing (non-decreasing) order of their processing times. The rule that sorts the jobs in this order is known as **SPT** (shortest processing time), i.e., the next job to be scheduled will be the job with the smallest processing time.

In general, take n jobs in order (1, 2, ..., n) and compute their completion times:

$$C_{1} = p_{1}$$

$$C_{2} = p_{1} + p_{2}$$

$$\vdots$$

$$C_{n-1} = p_{1} + p_{2} + \dots + p_{n-1}$$

$$C_{n} = p_{1} + p_{2} + \dots + p_{n-1} + P_{n}$$

$$\sum C_{i} = np_{1} + (n-1)p_{2} + \dots + 2p_{n-1} + P_{n}$$

Thus, job 1 contributes np_1 , job 2 contributes $(n-1)p_2$, and so on.

If we want to minimize $\sum C_i$, we want p_1 to be the smallest, p_2 the second smallest, etc.

Thus, to find an optimal solution to problem $1 | | \Sigma C_j|$ we need to sort the jobs in SPT order. As any other sorting, this requires $O(n \log n)$ time.

2. Minimising total weighted completion time: $1||\Sigma w_jC_j|$

Consider $1 \parallel \sum w_i C_i$.

Here

- w_i is the importance of job j,
- $\sum w_i C_i$ characterises the total holding, or inventory costs incurred by the schedule.

We start with the following instance of problem $1|p_j=1|\sum w_jC_j$ with n=3 jobs of unit length.

Job	p_j	w_j
1	1	7
2	1	2
3	1	5

ŀ	ind	an optimal	sequence	

and the optimal value of the objective function _____

If all processing times are equal $(p_j=1)$ then the problem can be solved by ______

For problem $1 \mid \sum w_j C_j$ intuitively we want to combine the rule above with SPT.

It seems logical to sort the jobs in non-decreasing order of the ratios p_j/w_j . We call this rule **WSPT** (weighted SPT) rule or **Smith's rule** due to W.E. Smith who introduced it in 1956.

We can prove

Theorem 1. For
$$1 \parallel \sum w_j C_j$$
, the WSPT rule is optimal.

Proof (adjacent pairwise interchange argument)

Suppose a schedule S, which is not WSPT, is optimal. In this schedule there must be at least two adjacent jobs i and k such that $p_i/w_i > p_k/w_k$. We assume that i precedes k and i starts at time t.

Swapping jobs i and k leads to a schedule S'.

We compare the value of the objective function $F = \sum w_i C_i$ for schedules S and S':

$$F(S) = \sum_{j \neq i,k} w_j C_j + w_i C_i + w_k C_k = \sum_{j \neq i,k} w_j C_j + w_i (t + p_i) + w_k (t + p_i + p_k)$$

$$F(S') = \sum_{j \neq i,k} w_j C_j + w_i C_i' + w_k C_k' = \sum_{j \neq i,k} w_j C_j + w_k (t + p_k) + w_i (t + p_i + p_k)$$

$$F(S') - F(S) = w_i p_k - w_k p_i < 0.$$

This contradicts the optimality of schedule *S* and completes the proof of the theorem.