\leftarrow Graded quiz on Tangent Lines to Functions, Exponents and Logarithms \leftarrow $_{^{\rm obs \, mis + 50 \, mn}}$

Date 7 juin 23:59 PDT

Continuer à apprendre 100% ✓ Félicitations I Vous avez réussi I rous atusse 75 te or plus fous atusse 75 te or plus

Graded quiz on Tangent Lines to Functions, Exponents and Logarithms and Logarithms 100%

ower 1 to exponential form, using 7 as the factor. (17) (17) (29) (29) (20) (3	1/1 point		1/1 point	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. Convext $\frac{1}{49}$ to exponential form, using 7 as the factor.	 covers The rule for a factor to a Negative apprecent is to divide by the same factor to a positive exportent with the same absolute value. 	2. All by-year fine distance light travels in a viccuum in one yearl is 5, 400 rellion meters. Epress is coemific roadion. © 9400 x 10° meters. © 0.46 x 10° meters. © 9.40 x 10° meters. © 9.40 x 10° meters.	\checkmark corres 9, 460 is (9.4 \times 10²) meters and one trillion meters is 10³² meters. (9.4 \times 10² (10³²) = 9.4 \times 10³°, A kilometer is 1000 meters.

$10')(10^{12}) = 9.4 \times 10^{19}$. A kilometer is 1000 meters.	3. Simpley $(x^\beta)(y^2)(x^{-10})(y^{-2})$	(y^{-2})	$\bigcirc (x^{-40})(y^{-6})$	(%)	²)(y)	\checkmark correct By the DMsion and Negative Powers Rule, this is $\left(x^{(k-10)}\right)\left(y^{(3-2)}\right)$	
	Simplify	$\bigcirc \ (x)(y^{-2})$	0	\bigcirc $(x^2)(y)$	\odot $(x^{-2})(y)$	> "	
	mi						

1/1 point

 $\log_2 \frac{39x}{(r-z_1)}$