SEMINAR 12

Problema 1. Arătați că inelul \mathbb{Z}_{1001} este izomorf cu un produs direct de corpuri.

Soluție: Se aplică Corolarul 2 din Cursul 12 pentru inelul $A = \mathbb{Z}$, și elementele 7, 11, 13 $\in \mathbb{Z} \setminus \{\pm 1\}$, care sunt prime și deci coprime.

 $1001 = 7 \cdot 11 \cdot 13$ şi deci $\mathbb{Z}_{1001} \simeq \mathbb{Z}_7 \times \mathbb{Z}_{11} \times \mathbb{Z}_{13}$. 7, 11, 13 fiind numere prime rezultă că $\mathbb{Z}_7, \mathbb{Z}_{11}, \mathbb{Z}_{13}$ sunt corpuri.

Problema 2. Arătați că:

- (i) $\widehat{77}$ este element nilpotent în inelul \mathbb{Z}_{847} ,
- (ii) inelul \mathbb{Z}_{847} nu este izomorf cu un produs direct de corpuri.

Soluţie:

(i) 847 = $7 \cdot 11^2$. Problema 5 din Seminar 10 spune că $\hat{x} \in \mathbb{Z}_n$ este nilpotent dacă și numai dacă x se divide cu toți factorii primi ai lui n. 77 = $7 \cdot 11$ se divide cu 7 și 11, factorii primi ai numărului 847. Deci $\widehat{77}$ este nilpotent.

$$\widehat{77}^2 = \widehat{77^2} = \widehat{7^2 \cdot 11^2} = \widehat{7 \cdot 7 \cdot 11^2} = \widehat{7} \cdot \widehat{7 \cdot 11^2} = \widehat{7} \cdot \widehat{0} = \widehat{0}$$
. Deci ordinul de nilpotență este 2.

(ii) Aplicând același Corolar 2 din Curs 12, $\mathbb{Z}_{847} \simeq \mathbb{Z}_7 \times \mathbb{Z}_{121}$, dar \mathbb{Z}_{121} nu este corp ($\widehat{11}$ este nilpotent, $\widehat{11}^2 = \widehat{0}$).

Problema 3. Rezolvați sistemul de congruențe în \mathbb{Z} :

$$x \equiv 3 \pmod{5}, x \equiv 7 \pmod{11}, x \equiv 8 \pmod{13}$$

Soluție: Sistemul de nilpotențe se rezolvă conform algoritmului din Curs 12.

$$a = a_1 \cdot a_2 \cdot a_3 = 5 \cdot 11 \cdot 13 = 715$$
. $b_1 = \frac{a}{a_1} = \frac{715}{5} = 143$, $b_2 = \frac{a}{a_2} = \frac{715}{11} = 65$, $b_3 = \frac{a}{a_3} = \frac{715}{13} = 55$. $b_1 \equiv_5 3$; c_1 inversul lui 3(mod 5) este 2.

 $b_2 \equiv_{11} 10$; c_2 inversul lui $10 \pmod{11}$ este 10.

 $b_3 \equiv_{13} 3$, c_3 inversul lui $3 \pmod{13}$ este 9.

$$x = 143 \cdot 2 \cdot 3 + 65 \cdot 10 \cdot 7 + 55 \cdot 9 \cdot 8 = 9368 \equiv_{715} 73.$$

Deci soluția este $x = 73 + 715k, k \in \mathbb{Z}$.

Se verifică imediat că $73 \equiv 3 \pmod{5}$, $73 \equiv 7 \pmod{11}$ și $73 \equiv 8 \pmod{13}$.

Problema 4. Arătați că numerele

- (i) numerele 2+i, 2-i sunt comaximale în $\mathbb{Z}[i]$,
- (ii) inelul factor $\mathbb{Z}[i]/\langle 5\rangle$ este izomorf cu $\mathbb{Z}_5\times\mathbb{Z}_5$. (folosiți **problema 8** din seminarul 11).

Solutie:

- (i) Arătăm că idealele generate de cele elemente sunt comaximale.
- $(2+i)\cdot (-1) + (2-i)(1+i) = -2-i + (2+1+2i-i) = -2-i + 3+i = 1$. Deci cele două ideale generate de (2+i) și (2-i) sunt comaximale.
- (ii) Aplicăm Corolar 1 din Cursul 12 pentru inelul $\mathbb{Z}[i]$ şi elementele (2+i), (2-i) şi obţinem $\mathbb{Z}[i]/(2+i)(2-i)\mathbb{Z}[i] \simeq \mathbb{Z}[i]/(2+i)\mathbb{Z}[i] \times \mathbb{Z}[i]/(2-i)\mathbb{Z}[i]$.
 - (2+i)(2-i) = 5 și izomorfismul de mai sus se scrie

$$\mathbb{Z}[i]/<5> \simeq \mathbb{Z}[i]/<(2+i)> \times \mathbb{Z}[i]/<(2-i)>$$

SEMINAR 12

Pentru a termina trebuie să demonstrăm că cele dpuă inele factor din membrul drept sunt fiecare izomorfe cu \mathbb{Z}_5 . În Problema 8 din Seminar 11 am arătat că $\mathbb{Z}[i]/<(2-i)>\simeq \mathbb{Z}_5$.

Similar vom demonstra că $\mathbb{Z}[i]/\langle (2+i) \rangle \simeq \mathbb{Z}_5$.

Considerăm $\alpha : \mathbb{Z}[i] \longrightarrow \mathbb{Z}_5, \alpha(a+bi) = a-2b.$

• Arătăm că α este morfism.

$$\alpha((a+bi)+(c+di)) = \alpha((a+c)+(b+d)i) = (a+c)-2(b+d) = (a-2b)+(c-2d) = (a-2b)+(c-2d)+(a-2d)$$

$$\alpha((a+bi)\cdot (c+di)) = \alpha((ac-bd) + (ad+bc)i) = (ac-bd) - 2(ad+bc) = (ac+4bd) - 2(ad+bc)$$
 (în $\mathbb{Z}_5, -1 \equiv_5 4$) = $(a-2b)(c-2d) = (a-2b)\cdot (c-2d) = \alpha(a+bi)\cdot \alpha(c+di)$. $\alpha(0) = \hat{0}, \alpha(1) = \hat{1}.$

- α este surjectiv pentru că $(\forall)\hat{a} \in \mathbb{Z}_5$, $(\exists)a + 0i \in \mathbb{Z}[i]$ a.î. $\alpha(a + 0i) = \hat{a}$.
- $Ker(\alpha) = <(2+i)>$.

"
$$\subseteq$$
 " Fie $a + bi \in \mathbb{Z}[i] \Leftrightarrow \widehat{a - 2b} = \widehat{0} \in \mathbb{Z}_5 \Leftrightarrow a - 2b = 5k, k \in \mathbb{Z} \Leftrightarrow a = 2b + 5k.$

Deci un element arbitrar din Ker(f) este de forma $(2b+5k)+bi, b, k \in \mathbb{Z}$. Pentru a arăta incluziunea trebuie să vedem că $(5k+2b)+bi \in (2+i)$, adică trebuie să găsim $m, n \in \mathbb{Z}$ a.î. $(5k+2b)+bi=(m+ni)(2+i) \Leftrightarrow (5k+2b)+bi=(2m+n)+(-m+2n)i$.

Sistemul $\left\{ \begin{array}{lll} 2m-n&=&5k+2b\\ m+2n&=&b \end{array} \right.$. Înmulțim cu 2 prima ecuație și adunăm cele două ecuații.

Obţinem m = 2k + b. Introducând în a doua ecuaţie obţinem n = -k.

Deci $(5k + 2b) + bi = ((2k + b) - ki)(2 + i) \in \{2 + i\}$.

" \supseteq " Este suficient să verificăm că $2+i\in \mathrm{Ker}(\alpha)$. $\alpha(2+i)=\widehat{2-2\cdot 1}=\widehat{2-2}=\widehat{0}$.

Din teorema fundamentală de izomorfism pentru inele rezultă că $\mathbb{Z}[i]/<2-i>\simeq \mathbb{Z}_5.$

Deci $\mathbb{Z}[i]/<5>\simeq\mathbb{Z}_5\times\mathbb{Z}_5$.

Problema 5. Aplicați Lema Chineză a Resturilor pentru idealele $I=<2,1+\sqrt{-5}>$, $J=<3,1+\sqrt{-5}>$ în inelul $\mathbb{Z}[\sqrt{-5}]$ pentru a deduce că inelul factor $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>$ este izomorf cu $\mathbb{Z}_2\times\mathbb{Z}_3$.

Soluţie: Pentru a aplica LCR trebuie să demonstăm că $I+J=\mathbb{Z}[\sqrt{-5}]$. Avem $2\cdot (-1)+3\cdot 1=1$. Deci I și J sunt comaximale.

Din LCR rezultă că $\mathbb{Z}[\sqrt{-5}]/(I \cap J) \simeq \mathbb{Z}[\sqrt{-5}]/I \times \mathbb{Z}[\sqrt{-5}]/J$.

Trebuie să arătăm că: $I \cap J = <1+\sqrt{-5}>$, $\mathbb{Z}[\sqrt{-5}]/I \simeq \mathbb{Z}_2$ și $\mathbb{Z}[\sqrt{-5}]/J \simeq \mathbb{Z}_3$.

- $I \cap J = <1 + \sqrt{-5} >$.
- " \supseteq " $1 + \sqrt{-5} \in I$, $1 + \sqrt{-5} \in J \Rightarrow <1 + \sqrt{-5} > \subseteq I \cap J$.
- " \subseteq " Fie $u \in I \cap J$. $u = 2p + (1 + \sqrt{-5})q; p, q \in \mathbb{Z}[\sqrt{-5}]$ şi $u = 3s + (1 + \sqrt{-5})t; s, t \in \mathbb{Z}[\sqrt{-5}]$. Deci $u = 2(a + b\sqrt{-5}) + (1 + \sqrt{-5})(c + d\sqrt{-5}); a, b, c, d \in \mathbb{Z}$ şi

 $u = 3(x + y\sqrt{-5}) + (1 + \sqrt{-5})(z + w\sqrt{-5}); x, y, z, w \in \mathbb{Z}.$

Făcând calculele și adunând termenii asemenea va rezulta sistemul

$$\begin{cases} 2a+c-5d = 3x+z-5w \\ 2b+c+d = 3y+z+w \end{cases}$$

Scădem ecuația a doua din prima și obținem $2(a-b)-6d=3(x-y)-6w\Leftrightarrow 2(a-b)=3[(x-y)+2(d-w)]$, toate numerele fiind în \mathbb{Z} . De aici $(a-b)=3k, k\in\mathbb{Z}$, deci a=3k+b.

Am obținut $u = 2(3k + b + b\sqrt{-5}) + (1 + \sqrt{-5})q = 6k + 2b(1 + \sqrt{-5}) + (1 + \sqrt{-5})q = (1 + \sqrt{-5})(1 - \sqrt{-5})k + 2b(1 + \sqrt{-5}) + (1 + \sqrt{-5})q = (1 + \sqrt{-5})[(1 - \sqrt{-5})k + 2b + q]$. Paranteza dreaptă reprezintă un element din $\mathbb{Z}[\sqrt{-5}]$.

Deci am arătat că $u \in <1+\sqrt{-5}>$.

SEMINAR 12 3

•
$$\mathbb{Z}[\sqrt{-5}]/I \simeq \mathbb{Z}_2$$
.

Considerăm morfismul $\beta: \mathbb{Z}[\sqrt{-5}] \longrightarrow \mathbb{Z}_2, \beta(a+b\sqrt{-5}) = \widehat{a+b}$. Trebuie arătat că β este morfism surjectiv de inele și $\operatorname{Ker}(\beta) = I$.

$$\frac{\beta((a+b\sqrt{-5})+(c+d\sqrt{-5})) = \beta((a+c)+(b+d)\sqrt{-5}) = (a+c)+(b+d) = (a+b)+(c+d) = (a+b)+(c+d)+(c+d) = (a+b)+(c+d)+(c+d) = (a+b)+(c+d)$$

 $\beta((a+b\sqrt{-5})\cdot(c+d\sqrt{-5})) = \beta((ac-5bd)+(ad+bc)\sqrt{-5}) = (ac-5bd)+(ad+bc) = (-5\equiv_2 1) = (ac+bd)+(ad+bc) = a(c+d)+b(c+d) = (a+b)(c+d) = (a+b)\cdot(c+d) = \beta(a+b\sqrt{-5})\cdot\beta(c+d\sqrt{-5}).$

 $\beta(0) = \hat{0}, \beta(1) = \hat{1}$ ceea ce implică şi faptul că β este surjectiv.

 $Ker(\beta) = I$.

"
$$\supseteq$$
 " $\beta(2) = \hat{2} = \hat{0}, \beta(1 + \sqrt{-5}) = \widehat{1+1} = \hat{2} = \hat{0}.$

" \subseteq " Fie $a+b\sqrt{-5} \in \text{Ker}(\beta) \Leftrightarrow \widehat{a+b} = \widehat{0} \Leftrightarrow a+b=2k \Leftrightarrow a=-b+2k$. Deci un element arbitrar din $\text{Ker}(\beta)$ este de forma $-b+2k+b\sqrt{-5}=-2b+2k+b+b\sqrt{-5}=2(-b+k)+(1+\sqrt{-5})b \in I$. Din teorema fundamentală de izomorfism pentru inele obținem $\mathbb{Z}[\sqrt{-5}]/I \simeq \mathbb{Z}_2$.

•
$$\mathbb{Z}[\sqrt{-5}]/J \simeq \mathbb{Z}_3$$
.

Considerăm morfismul $\gamma: \mathbb{Z}[\sqrt{-5}] \longrightarrow \mathbb{Z}_3, \gamma(a+b\sqrt{-5}) = \widehat{a+2b}.$

Se demonstrează ca și mai sus că γ este morfism surjectiv de inele și $\operatorname{Ker}(\gamma) = J$.

$$\gamma((a+b\sqrt{-5})\cdot(c+d\sqrt{-5})) = \gamma((ac-5bd)+(ad+bc)\sqrt{-5}) = (ac-5bd)+2(ad+bc) = (-5\equiv_3 1\equiv_3 4) = (ac+4bd)+2(ad+bc) = a(c+2d)+2b(c+2d) = (a+2b)(c+2d) = (a+2b)(c+2d) = (a+2b)(c+2d) = \gamma(a+b\sqrt{-5})\cdot\gamma(c+d\sqrt{-5}).$$

Problema 6. Găsiți un idempotent netrivial în inelul $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>$.

Soluție: În problema precedentă am arătat că $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>\simeq \mathbb{Z}_2\times\mathbb{Z}_3$. Un idemponent netrivial în $\mathbb{Z}_2\times\mathbb{Z}_3$ este $(\hat{1},\overline{0})$. Elementul corespunzător perechii $(\hat{1},\overline{0})$ în $\mathbb{Z}[\sqrt{-5}]/<1+\sqrt{-5}>$ este 3.

Să vedem că este idempotent.

 $3^2 = 9 = 3 + 6$. Dar $6 \equiv_{1+\sqrt{-5}} = 0 (6 = (1 + \sqrt{-5})(1 - \sqrt{-5}))$. Deci $3^2 \equiv_{1+\sqrt{-5}} 3$, adică clasa lui 3 este idempotent.

Problema 7. Aplicați Lema Chineză a Resturilor pentru idealele $I = \langle X \rangle, J = \langle X - 1 \rangle$ în inelul $\mathbb{Z}[X]$ pentru a deduce că inelul factor $\mathbb{Z}[X]/\langle X^2 - X \rangle$ este izomorf cu $\mathbb{Z} \times \mathbb{Z}$.

Soluție: I și J sunt comaximale pentru că $X \cdot 1 + (X - 1) \cdot (-1) = X - X + 1 = 1$. Folosind Corolar 1 din Curs 12 obținem

$$\mathbb{Z}[X]/X(X-1)\mathbb{Z}[X] \simeq \mathbb{Z}[X]/X\mathbb{Z}[X] \times \mathbb{Z}[X]/(X-1)\mathbb{Z}[X]$$

. Trebuie să arătăm izomorfismele $\mathbb{Z}[X]/X\mathbb{Z}[X]\simeq\mathbb{Z}$ și $\mathbb{Z}[X]/(X-1)\mathbb{Z}[X]\simeq\mathbb{Z}.$

•
$$\mathbb{Z}[X]/ < X > \simeq \mathbb{Z}$$
.

Considerăm aplicația $\delta : \mathbb{Z}[X] \longrightarrow \mathbb{Z}, \ \delta(f(X)) = f(0), \ \text{unde } f(X) \in \mathbb{Z}[X].$

Dacă $f(X) = \sum_{i=0}^{n} a_i X^i$, atunci $\delta(f(X)) = a_0$. δ este morfism de inele.

$$\delta(f(X) + g(X)) = \delta(\sum_{i=0}^{n} a_i X^i + \sum_{i=0}^{p} b_i X^i) = \delta(\sum_{i=0}^{\max{\{n,p\}}} (a_i + b_i) X^i) = a_0 + b_0 = \delta(f(X)) + \delta(g(X))$$

$$\delta(f(X)\cdot g(X)) = \delta(\sum_{i=0}^{n+p}(\sum_{h+k=i}a_hb_k)X^i) = a_0b_0 = \delta(f(X))\delta(g(X)).$$

Pentru orice polinom constant c, $\delta(c) = c$. Acest lucru arată că δ este surjectiv. Pentru $\forall c \in \mathbb{Z}, \exists c \in \mathbb{Z}[X]$ a.î. $\delta(c) = c$.

4 SEMINAR 12

 $\delta(X) = 0 \Rightarrow < X > \subset \operatorname{Ker}(\delta).$

Fie $f(X) \in \text{Ker}(\delta)$, deci $\delta(f(X)) = 0 \Leftrightarrow f(0) = 0 \Leftrightarrow X \mid f(X) \Leftrightarrow f(X) = X \cdot g(X)$, cu $g(X) \in \mathbb{Z}[X] \Leftrightarrow f(X) \in X > 0$. Deci $\text{Ker}(\delta) \subset X > 0$.

Din teorema fundamentală de izomorfism obținem $\mathbb{Z}[X]/\langle X \rangle \simeq \mathbb{Z}$.

• $\mathbb{Z}[X]/ < X - 1 > \simeq \mathbb{Z}$.

Se consideră aplicația $\tau : \mathbb{Z}[X] \longrightarrow \mathbb{Z}, \tau(f(X)) = f(1).$

- Fie $c \in \mathbb{Z}$, în acest caz $\tau(c) = c$. Deci τ este surjectiv.
- $\tau(f(X) \cdot g(X)) = \tau(\sum_{k=0}^{n+p} (\sum_{i+j=k} a_i b_j) X^k) = \sum_{k=0}^{n+p} (\sum_{i+j=k} a_i b_j) = (a_0 + a_1 + \ldots + a_n) (b_0 + b_1 + \ldots + b_p) = f(1)g(1) = \tau(f(X))\tau(g(X)).$
 - $Ker(\tau) = < X 1 >$.

 $"\supset"\tau(X-1)=1-1=0\Rightarrow (X-1)\in \mathrm{Ker}(\tau)\Leftrightarrow < X-1>\subset \mathrm{Ker}(\tau).$

Din teorema fundamentală de izomorfism rezultă că $\mathbb{Z}[X]/\langle X-1\rangle \simeq \mathbb{Z}$.

Problema 8. Arătați că inelul factor $\mathbb{Z}[X]/< X^2-1>$ nu este izomorf cu $\mathbb{Z}\times\mathbb{Z}$.

Soluție: În inelul factor $\overline{X^2} = \overline{1}$, deci în acest inel factor polinoamele au cel mult grad 1. Voi lucra cu clase modulo $< X^2 - 1 >$, fără a mai folosi notația bar.

 $\mathbb{Z} \times \mathbb{Z}$ are patru idempotenți (0,0),(1,0),(0,1),(1,1).

Fie $a + bX \in \mathbb{Z}[X] / < X^2 - 1 >$.

Este idempotent dacă verifică relația $(a+bX)^2=a+bX\Leftrightarrow a^2+2abX+b^2=a+bX\Leftrightarrow \begin{cases} a^2+b^2=a\\ 2ab=b \end{cases}$. A doua ecuație este b(2a-1)=0, cu $a,b\in\mathbb{Z}.$ Deci $a\neq\frac{1}{2},$ de unde singura posibilitate este b=0.

Prima ecuație devine $a^2 - a = 0$, adică $a \in \{0, 1\}$. Deci idempotenții din $\mathbb{Z}[X]/\langle X^2 - 1 \rangle$ sunt 0 și 1. Deci $\mathbb{Z}[X]/\langle X^2 - 1 \rangle$ are numai doi idempotenți față de $\mathbb{Z} \times \mathbb{Z}$ care are patru.

Deci inelele nu pot fi izomorfe.

Avem $\mathbb{Z}[X]/\langle X^2-1 \rangle \simeq A = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x-y \text{ par}\}$ izomorfism care se demonstrează folosind aplicația $\tau: \mathbb{Z}[X] \longrightarrow A, \ \tau(f(X)) = (f(1),f(-1))$. Se demonstrează similar ca în **problema 7** că τ este morfism de inele, este surjectiv și $\operatorname{Ker}(\tau) = \langle X^2-1 \rangle$.