Составление таблицы истинности

Вариант: 9 Значения функции истинны: 3 < (x1x2x3 + x4x5) < 8 Значения функции d: (x3x4) = 0

Таблица 1: истинности

N	$X_1 X_2 X_3 X_4 X_5$	x1x2x3	$(x1x2x3)_{10}$	x4x5	$(x4x5)_{10}$	(+)	x3x4	$(x3x4)_{10}$	f
0	00000	000	0	00	0	0	00	0	d
1	00001	000	0	01	1	1	00	0	d
2	00010	000	0	10	2	2	01	1	0
3	00011	000	0	11	3	3	01	1	0
4	00100	001	1	00	0	1	10	2	0
5	00101	001	1	01	1	2	10	2	0
6	00110	001	1	10	2	3	11	3	0
7	00111	001	1	11	3	4	11	3	1
8	01000	010	2	00	0	2	00	0	d
9	01001	010	2	01	1	3	00	0	d
10	01010	010	2	10	2	4	01	1	1
11	01011	010	2	11	3	5	01	1	1
12	01100	011	3	00	0	3	10	2	0
13	01101	011	3	01	1	4	10	2	1
14	01110	011	3	10	2	5	11	3	1
15	01111	011	3	11	3	6	11	3	1
16	10000	100	4	00	0	4	00	0	d
17	10001	100	4	01	1	5	00	0	d
18	10010	100	4	10	2	6	01	1	1
19	10011	100	4	11	3	7	01	1	1
20	10100	101	5	00	0	5	10	2	1
21	10101	101	5	01	1	6	10	2	1
22	10110	101	5	10	2	7	11	3	1
23	10111	101	5	11	3	8	11	3	0
24	11000	110	6	00	0	6	00	0	d
25	11001	110	6	01	1	7	00	0	d
26	11010	110	6	10	2	8	01	1	0
27	11011	110	6	11	3	9	01	1	0
28	11100	111	7	00	0	7	10	2	1
29	11101	111	7	01	1	8	10	2	0
30	11110	111	7	10	2	9	11	3	0
31	11111	111	7	11	3	10	11	3	0

Таблица 2: Канонический вид KDNF f =

 $\overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X2} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X5} \vee \overline{X1} \cdot \overline{X3} \cdot \overline{X4} \cdot \overline{X3} \cdot \overline{X4$

 $\begin{array}{l} \text{KKNF} \ f = (X1 \lor X2 \lor X3 \lor \overline{X4} \lor X5)(X1 \lor X2 \lor X3 \lor \overline{X4} \lor \overline{X5})(X1 \lor X2 \lor \overline{X3} \lor X4 \lor X5)(X1 \lor X2 \lor \overline{X3} \lor X4 \lor \overline{X5})(X1 \lor X2 \lor \overline{X3} \lor X4 \lor \overline{X5})(X1 \lor X2 \lor \overline{X3} \lor \overline{X4} \lor \overline{X5})(X1 \lor \overline{X2} \lor \overline{X3} \lor \overline{X4} \lor \overline{X5})(\overline{X1} \lor \overline{X2} \lor \overline{X3} \lor \overline{X4} \lor \overline{X5})(\overline{X1} \lor \overline{X2} \lor \overline{X3} \lor \overline{X4} \lor \overline{X5})(\overline{X1} \lor \overline{X2} \lor \overline{X3} \lor \overline{X4} \lor \overline{X5}) \\ \hline X5)(\overline{X1} \lor \overline{X2} \lor \overline{X3} \lor \overline{X4} \lor \overline{X5})(\overline{X1} \lor \overline{X2} \lor \overline{X3} \lor \overline{X4} \lor \overline{X5})(\overline{X1} \lor \overline{X2} \lor \overline{X3} \lor \overline{X4} \lor \overline{X5}) \end{array}$

2 Мак Класки для 1 покрытия

Z	0X111	010XX	100XX	10X0X	10XX0	1XX00	01XX1	01X1X	XX00XX																						
\geq	-	2	ಣ	4	ಸ	9	7	∞	6																						
	1-92-63-4																														
K^3	XX00XX																														
Z	П																														
	Λ	>	>	Λ		>			>																						
	1-62-4	$1-9\ 3-5$	2-123-8	4-205-15	6 - 167 - 13	6-268-15	$9-21\ 10-18$	$9-23\ 11-19$	$9-26\ 12-20$	$10-24\ 11-22$	$11-27\ 12-25$	13 – 30 14 – 29	$16-31\ 17-29$																		
K^2	X00X0	X000X	XX000	XX001	010XX	X100X	100XX	10X0X	1X00X	10XX0	1XX00	$\overline{01XX1}$	01X1X																		
Z	-	2	ಣ	4	က	9	7	∞	6	10	11	12	13																		
	Λ	Λ	Λ	Λ	Λ	>	Λ	Λ	Λ	Λ	Λ	>	>	>	>	^	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	>	Λ	Λ		>	^	Λ
	1-2	1–3	1-4	2-5	2-2	3–5	3–6	3–10	4-7	4–8	4–9	4-10	5–12	5-13	5–18	6 - 12	6 - 14	7-15	7–16	7–18	8-15	8-17	9-16	9–17	9–19	10 - 18	10 - 19	11-20	12–20	13-20	14-20
K^1	X0000	0X000	X0000	0X001	X0001	0100X	010X0	X1000	1000X	100X0	10X00	1X000	$\overline{010X1}$	01X01	X1001	0101X	01X10	100X1	10X01	1X001	1001X	10X10	1010X	101X0	1X100	1100X	11X00	0X1111	01X11	011X1	0111X
Z	П	2	ಚ	4	ည	9	7	∞	6	10	П	12	13	14	15					20		22	23	24	25	26	27	28	53	30	31
	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	Λ	>	>	>	Λ	>	>	>	>	۸	Λ	Λ											
K^0	00000	00001	01000	10000	01001	01010	10001	10010	10100	11000	00111	01011	01101	01110	10011	10101	10110	11001	11100	01111											
N	1	2	က	4	55	9	7	_∞	6	10	11	12	13	14	15	16	17	18	19	20									_		

Таблица 3: Таблица с покрытиями

	0	0	0	0	0	0	1	1	1	1	1	1
	0	1	1	1	1	1	0	0	0	0	0	1
	1	0	0	1	1	1	0	0	1	1	1	1
	1	1	1	0	1	1	1	1	0	0	1	0
	1	0	1	1	0	1	0	1	0	1	0	0
0X111	(*)					*						
010XX		*	*									
100XX							*	(*)				
10X0X									*	(*)		
10XX0							*		*		(*)	
1XX00									*			(*)
01XX1			*	(*)		*						
01X1X		*	*		(*)	*						
XX00X												

3 Ядро покрытия

$$T = \left\{ \begin{array}{c} 01X1X \\ 100XX \\ 1XX00 \\ 10XX0 \\ 10X0X \\ 0X111 \\ 01XX1 \end{array} \right\}$$

Все вершины покрыты ядром покрытия

4 Покрытия

Минимальное покрытие

$$C_{min}(f) = \begin{cases} 01X1X \\ 100XX \\ 1XX00 \\ 10XX0 \\ 10X0X \\ 0X111 \\ 01XX1 \end{cases}$$
$$S^{a} = 22$$
$$S^{b} = 29$$

 $f = \overline{X_1} \cdot X_2 \cdot X_4 \vee X_1 \cdot \overline{X_2} \cdot \overline{X_3} \vee X_1 \cdot \overline{X_4} \cdot \overline{X_5} \vee X_1 \cdot \overline{X_2} \cdot \overline{X_5} \vee X_1 \cdot \overline{X_2} \cdot \overline{X_5} \vee X_1 \cdot \overline{X_2} \cdot \overline{X_4} \vee \overline{X_1} \cdot X_3 \cdot X_4 \cdot X_5 \vee \overline{X_1} \cdot X_2 \cdot X_5$

5 Мак Класки для 0 покрытия

Z	1X111	XX000	X0X00	00000	00XX00	110XX	11XX1	11X1X	XX00XX																						
Z	Н	2	ಣ	4	ည	9	7	∞	6																						
	3-10 4-9 7-8																														
K^3	XX00XX																														
Z	П																														
			Λ	>			Λ	>	Λ	>																					
	1-10 2-6	$1-12\ 3-7$	1-154-8	1-185-9	$2-13\ 3-11$	3-164-14	4-195-17	8-21 9-20	15-22 17-20	18–22 19–21	22–26 23–24	24-30 25-29	26-31 27-29																		
K^2	XX000	X0X00	0X00X	X000X	00XX00	0XX00	XX000	$\overline{XX001}$	X100X	1X00X	$\overline{110XX}$	$\overline{11XX1}$	11X1X																		
Z	-	2	က	4	5	9	7	∞	6	10	11	12	13																		
	Λ	Λ	Λ	>	Λ	Λ	Λ	Λ	Λ	>	>	Λ	Δ	>	Λ	>	^	>	Λ	Λ	>	>	Λ	Λ	>	Λ	Λ		Λ	^	>
	1–2	1–3	1-4	1–5	1–6	2-2	2–8	2–10	2–12	3–7	3-6	4-8	4–9	4–11	5-10	5–11	5-13	6–12	6–13	10-14	12–14	13–14	13-15	14-17	14–18	15-17	15 - 19	16-20	17–20	18–20	19–20
K^1	X0000	000X0	00X00	0X000	X0000	000X1	00X01	0X001	X0001	0001X	00X10	0010X	001X0	0X100	0100X	01X00	X1000	1000X	1X000	$\overline{X1001}$	1X001	1100X	110X0	110X1	11X01	1101X	11X10	<u>1X1111</u>	11X11	111X1	1111X
Z	_	2	က	4	ಬ	9	7	∞	6	10	П	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	53	30	31
	>	>	>	>	>	^	>	>	>	>	>	>	>	>	>	>	>	>	>	>											
K_0	00000	00001	00010	00100	01000	10000	00011	00101	00110	01001	01100	10001	11000	11001	11010	101111	11011	111101	111110	111111											
Z		2	က	4	ည	9	7	∞	6	10	П	12	13	14	15	16	17	18	19	20											

Таблица 4: Таблица с покрытиями

	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$	0 1 1	1 0 1	$\begin{array}{ c c } 1 \\ 1 \\ 0 \\ \end{array}$	1 1 0	1 1 1	1 1 1	1 1 1 1 1
	0	$egin{pmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{array}{ c c c }\hline 1 \\ 1 \end{array}$	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
1X111							(*)					*
$\overline{000XX}$	*	(*)										
00X0X			*	(*)								
00XX0	*		*		(*)							
0XX00			*			(*)						
110XX								*	*			
11XX1									*	(*)		*
11X1X								*	*		(*)	*
XX00X												

6 Ядро покрытия

$$T = \left\{ \begin{array}{c} 000XX\\ 00X0X\\ 11XX1\\ 11XX1\\ 0XX00\\ 1X111\\ 00XX0 \end{array} \right\}$$

Все вершины покрыты ядром покрытия

7 Покрытия

Минимальное покрытие

$$C_{min}(\overline{f}) = \begin{cases} 000XX \\ 00X0X \\ 11XX1 \\ 11XX1 \\ 0XX00 \\ 1X111 \\ 00XX0 \end{cases}$$
$$S^{a} = 22$$
$$S^{b} = 29$$

Этому покрытию соответствует МКНФ следующего вида: $f = (X_1 \vee X_2 \vee X_3) \cdot (X_1 \vee X_2 \vee X_4) \cdot (\overline{X_1} \vee \overline{X_2} \vee \overline{X_5}) \cdot (\overline{X_1} \vee \overline{X_2} \vee \overline{X_4}) \cdot (X_1 \vee X_4 \vee X_5) \cdot (\overline{X_1} \vee \overline{X_3} \vee \overline{X_4} \vee \overline{X_5}) \cdot (X_1 \vee X_2 \vee X_5)$

	x	$_{4}x_{5}$;	x_4x_5	,)			
x_2x_3	00	01	11	10		00	01	11	10		
00	d	d			00	d	d	1	1		
01			1		01	1	1		1		
11		1	1	1	11	1					
10	d	d	1	1	10	d	d				
	x_1	=0			$x_1 = 1$						

Минимальное покрытие

$$C_{min}(f) = \begin{cases} 01X1X\\ 100XX\\ 1XX00\\ 10XX0\\ 10X0X\\ 0X111\\ 01XX1 \end{cases}$$
$$S^{a} = 22$$
$$S^{b} = 29$$

Этому покрытию соответствует МДНФ следующего вида: $f = \overline{X_1} \cdot X_2 \cdot X_4 \vee X_1 \cdot \overline{X_2} \cdot \overline{X_3} \vee X_1 \cdot \overline{X_4} \cdot \overline{X_5} \vee X_1 \cdot \overline{X_2} \cdot \overline{X_5} \vee X_1 \cdot \overline{X_2} \cdot \overline{X_4} \vee \overline{X_1} \cdot X_3 \cdot X_4 \cdot X_5 \vee \overline{X_1} \cdot X_2 \cdot X_5$

Минимальное покрытие

$$C_{min}(\overline{f}) = \begin{cases} 000XX\\ 00X0X\\ 11XX1\\ 11X1X\\ 0XX00\\ 1X111\\ 00XX0 \end{cases}$$
$$S^{a} = 22$$
$$S^{b} = 29$$

Этому покрытию соответствует МКНФ следующего вида:

$$f = (X_1 \vee X_2 \vee X_3) \cdot (X_1 \vee X_2 \vee X_4) \cdot (\overline{X_1} \vee \overline{X_2} \vee \overline{X_5}) \cdot (\overline{X_1} \vee \overline{X_2} \vee \overline{X_4}) \cdot (X_1 \vee X_4 \vee X_5) \cdot (\overline{X_1} \vee \overline{X_3} \vee \overline{X_4} \vee \overline{X_5}) \cdot (X_1 \vee X_2 \vee X_5)$$

8 Минимизация булевых функций

$$f = (X_1 \vee X_2 \vee X_3) \cdot (X_1 \vee X_2 \vee X_4) \cdot (\overline{X_1} \vee \overline{X_2} \vee \overline{X_5}) \cdot (\overline{X_1} \vee \overline{X_2} \vee \overline{X_4}) \cdot (X_1 \vee X_4 \vee X_5) \cdot (\overline{X_1} \vee \overline{X_3} \vee \overline{X_4} \vee \overline{X_5}) \cdot (X_1 \vee X_2 \vee X_5)$$

$$f = (X_1 \vee X_2 \vee (X_3 \cdot X_4)) \cdot (\overline{X_1} \vee \overline{X_2} \vee (\overline{X_5} \cdot \overline{X_4})) \cdot (X_1 \vee X_5 \vee (X_2 \cdot X_4)) \cdot (\overline{X_1} \vee \overline{X_3} \vee \overline{X_4} \vee \overline{X_5})$$

$$(S_Q = 29)$$

$$(S_Q = 23)$$

9 Синтез комбинационной схемы в булевом базисе

$$T = 3t$$

$$S_Q = 22$$

10 Синтез комбинационной схемы в сокращенном булевом базисе (И-HE)

 $f = ((\overline{X_5}|\overline{X_4}|X_1)|(X_5|X_4|X_3|\overline{X_1})|((\overline{X_4}|\overline{X_5})|X_2|\overline{X_1})|((X_5|X_3|X_4)|\overline{X_2}|X_1))$

$$T = 3t$$

$$S_Q = 22$$

11 Синтез комбинационной схемы в универсальном базисе (И-НЕ) с ограничением на число входов

$$f=(\overline{(((\overline{(\overline{X_5}|\overline{X_4})}|X_1)|(\overline{(\overline{(X_5|X_4)}|X_3)}|\overline{X_1}))}|(\overline{((\overline{X_4}|\overline{X_5})|X_2)}|\overline{X_1}))|(\overline{((\overline{(X_5|X_3)}|X_4)|\overline{X_2})}|X_1))$$

$$T = 10t$$

$$S_Q = 46$$