Nesterov

December 1, 2017

1 Nesterov Method

2 Simulation

Choose y = 0.5 * x ** 2 as the function to be minimized.

Plot the orbits of the continuous Nesterov system for times (0, 20) with a truncated normal distribution of points over the interval (-1, 1).

```
In [4]: fig, ax = plt.subplots()
ax.scatter(positions, velocities)
ax.set_xlabel('Positions'); ax.set_ylabel('Velocities');
```


3 KDE

Perform kernel density estimation on the Nesterov orbits to get a density that can be used to check if the orbits obey the heat equation.

```
In [5]: density = np.empty((positions.shape[0], positions.shape[1]))
    samples = np.linspace(minpos, maxpos, points)
    for i in range(positions.shape[1]):
        kde = KernelDensity(bandwidth=(200 * (max(positions[:, i]) - min(positions[:, i]))
        kde.fit(positions[:, i][:, np.newaxis])
        density[:, i] = np.exp(kde.score_samples(samples[:, np.newaxis]))
    #
         delta = pdist(positions[:, i][:, np.newaxis]).min()
         samples[:, i] = np.hstack((np.linspace(minpos, min(positions[:, i]) - 21 * delta,))
    #
                                     np.array([min(positions[:, i]) - (20 - j) * delta for
    #
                                     np.sort(positions[:, i]),
                                    np.array([max(positions[:, i]) + (j + 1) * delta for j)
                                     np.linspace(max(positions[:, i]) + 21 * delta, maxpos,
         samples[:, i].sort()
```

4 Numerical Derivatives

Compute the numerical derivatives needed to check if either the heat or wave equation is satisfied by using central differences.

4.1 Numerical Derivatives at One Time

Plot the results of the numerical derivatives at all positions for a fixed time.

Save the data to export to matlab for movie generation.

```
In [8]: savemat('NesterovData', {'positions' : positions, 'velocities' : velocities, 'densitySatistics' : d2dx2density' : d2dx2density, 'ddtdensity' : ddtdensity, 'd2dx
```