

Greedy Algorithms

2019년 2학기 한양대학교 컴퓨터소프트웨어학부 임을규

Contents

♦ Introduction

♦ An activity selection problem

♦ Elements of the greedy strategy

♦ Huffman codes

Introduction

◆ A *greedy algorithm* always makes the choice that looks best at the moment.

- ◆ It makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution.
- ◆ It makes the choice *before* the subproblems are solved.

- An activity selection problem
 - To select a maximum-size subset of mutually compatible activities.
 - For example
 - Given n classes and 1 lecture room,
 - to select the maximum number of classes

- A set of *activities*: $S = \{a_1, a_2, ..., a_n\}$
- Each activity a_i has its **start time** s_i and **finish time** f_i .
 - $0 \le s_i < f_i < \infty$

- Activity a_i takes place during $[s_i, f_i]$
- Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i)$ and $[s_j, f_j]$ do not overlap.

• {a3, a9, a11}: mutually compatible activities, not a largest set

• {a1, a4, a8, a11}: A largest set of mutually compatible activities

• {a2, a4, a9, a11}: Another largest subset

♦ Optimal substructure

- S_{ij} denote the set of activities between a_i and a_j and compatible with a_i and a_j .
 - \blacksquare Activities start after a_i finishes and finish before a_j starts.

$$S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le s_j \}$$

• For example, $S_{18} = \{a_4\}$

♦ Optimal substructure

Assume that activities are sorted in increasing order of finish time.

$$f_0 \le f_1 \le f_2 \le \dots \le f_n < f_{n+1}$$

i	1	2	3	4	5	6	7	8	9	10	11
S_i	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14

♦ Optimal substructure

- \blacksquare A_{ij} denote an optimal solution to S_{ij} for $i \le j$.
- If A_{ij} includes a_k , $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$

♦ Optimal substructure

c[i, j]: The number of activities in A_{ij} .

$$c[i,j] = \begin{cases} 0 & \text{if } Sij = \emptyset \\ \max_{\substack{i < k < j \\ a_k \in S_{ij}}} \{c[i,k] + c[k,j] + 1\} & \text{if } Sij \neq \emptyset \end{cases}$$

Greedy algorithm

Consider any nonempty S_{ij} , and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = \min \{f_k : a_k \in S_{ii}\}$.

- 1. Activity a_m is in some A_{ij} .
- 2. The subproblem S_{im} is empty, so the subproblem S_{mj} is the only one to consider.

- lack Activity a_m is in some A_{ij} .
 - a_k : the first finishing activity in A_{ij}
 - If $a_k = a_m$, done.
 - If $a_k \neq a_m$, remove a_k from A_{ij} and add a_m to A_{ij} . The resulting A_{ij} is another optimal solution because $f_m \leq f_k$ and all other activities in A_{ij} start after a_k finishes.

- The subproblem S_{im} is empty, so the subproblem S_{mj} is the only one to consider.
 - S_{im} is empty because a_m has the earliest finish time in S_{ij} .

- Greedy algorithm
 - Select the earliest finishing activity one by one.

Contents

♦ Introduction

- ◆ An activity selection problem
- **♦** Elements of the greedy strategy
- **♦** Huffman codes

- **♦** Greedy-choice property
 - Make the choice *before* the subproblems are solved.
 - Only one subproblem is generated.
- **♦** Dynamic programming
 - Make a choice *after* the subproblems are solved.
 - Several subproblems may be generated.

Greedy vs. Dynamic programming

0-1 knapsack

- A thief robbing a store finds n items.
- The *i*th item is worth v_i dollars and weighs w_i pounds.
- He can carry at most W pounds in his knapsack.
- The n, v_i , w_i , and W are integers.
- Which items should he take?

Fractional knapsack

In this case, the thief can take fractions of items.

♦ Fractional knapsack

- The greedy strategy works.
- Compute the value per pound v_i/w_i for each item.
- Take as much as possible of the item with the greatest value per pound.

♦ 0-1 knapsack

The greedy strategy does not work.

Self-study

Exercise 16.2-1

Exercise 16.2-2

Exercise 16.2-5

Exercise 16.2-7

Contents

♦ Introduction

- ◆ An activity selection problem
- ♦ Elements of the greedy strategy
- **♦** Huffman codes

♦ Huffman Codes

- A widely used technique for compressing data.
- ◆ Consider representing 100,000 characters from {a, b, c, d, e, f}.
 - **3**-bit *fixed-length code* is used in general.
 - It takes 300,000 bits in total

	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101

■ We can reduce the space if *variable-length code* is used.

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101
Variable-length codeword	0	101	100	111	1101	1100

- Shorter codewords for frequent characters.
- **224,000** bits in total
 - \bullet $(45 \cdot 1 + 13 \cdot 3 + 12 \cdot 3 + 16 \cdot 3 + 9 \cdot 4 + 5 \cdot 4) \cdot 1000$ bits

- **◆** Encoding and decoding of variable-length code
 - \blacksquare Encoding abc : 0.101.100
 - Decoding 001011101
 - 0.0.101.1101: aabe

	a	b	С	d	е	f
Variable-length codeword	0	101	100	111	1101	1100

- Decoding 001 when a: 0 b: 01 c: 1
 - 001: aac or ab
 - The codeword 0 for a is a prefix of the codeword 01 for b.

♦ Prefix codes

No codeword is a prefix of some other codeword.

	а	b	С	d	е	f
Variable-length codeword	0	101	100	111	1101	1100

♦ Prefix codes

■ 3-bit fixed-length code is also a prefix code.

- The left tree is a *full binary tree* while the right one is not.
 - Every node is either leaf or has two children
 - A full binary tree for alphabet C has |C| leaves and |C|-1 internal nodes.

- lack The cost of tree T
 - \blacksquare f(c): frequency of a character c
 - $d_T(c)$: length of the codeword for c

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

An optimal code is represented by a full binary tree.

```
HUFFMAN (C)
1 n = |C|
Q = C
3 for i = 1 to n - 1
4 allocate a new node z
     z.left = x = EXTRACT-MIN(Q)
   z.right = y = EXTRACT-MIN(Q)
   z.freq = x.freq + y.freq
    INSERT(Q, z)
   return EXTRACT-MIN(Q)
```

◆ Huffman invented a greedy algorithm that constructs an optimal prefix code called an *Huffman code*.

	a	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

f: 5 e: 9 c: 12 b: 13 d: 16 a: 45

- Running time: O(nlgn)
 - Build min heap: O(n)
 - Merge: *n*-1 times
 - Each merge requires two minimum selection: $O(\lg n)$

♦ Correctness

Lemma 16.2

- Let C be an alphabet in which each character $c \in C$ has frequency f[c].
- Let x and y be two characters in C having the lowest frequencies.
- Then there exists an optimal prefix code for C in which the codewords for x and y have the same length and differ only in the last bit.

♦ Proof

■ **Idea**: take an arbitrary optimal prefix code tree *T* and modify it and to make a tree representing another optimal prefix code such that the characters *x* and *y* appear as sibling leaves of maximum depth in the new tree.

- lack The cost of tree T
 - \blacksquare f(c): frequency of a character c
 - $d_T(c)$: length of the codeword for c

$$B(T) = \sum_{c \in C} f(c)d_T(c)$$

♦ *Lemma 16.3*

- Let x and y be two characters in a given alphabet C with minimum frequency.
- Let C' be the alphabet C with characters x, y removed and character z added, so that $C' = C \{x, y\} \cup \{z\}$; define f for C' as for C, except that f[z] = f[x] + f[y].
- Let T' be any tree representing an optimal prefix code for the alphabet C'.
- Then the optimal prefix code tree T for C can be obtained from T' by replacing the leaf node for z with an internal node having x and y as children.

- **♦** Proof
 - Show B(T) = B(T') + f[x] + f[y]
 - For each $c \in C$ $\{x, y\}$, we have $d_T(c) = d_{T'}(c)$, and hence $f[c]d_T(c) = f[c]d_{T'}(c)$.
 - Since $d_T(x) = d_T(y) = d'(z) + 1$, we have
 - $f[x]d_{T}(x) + f[y]d_{T}(y) = (f[x] + f[y])(d_{T'}(z) + 1)$ From which we conclude that B(T) = B(T') + f[x] + f[y]or, equivalently B(T') = B(T) f[x] f[y].

♦ Proof

- Suppose T does not represent an optimal prefix code for C.
- There exists T'' such that $B(T'') \le B(T)$.
- By Lemma 16.2, there exists T'' having x and y as siblings.
- Let T''' be the tree T'' with the common parent of x and y replaced by a leaf z with frequency f[z] = f[x] + f[y].
- Then, B(T''') = B(T'') f[x] f[y] < B(T) - f[x] - f[y] = B(T')
 - **→** Contradiction
- \blacksquare T must represent an optimal prefix code for the alphabet C.

Self-study

- **Exercise 16.3-3 (16.3-2 in the 2nd ed.)**
 - Fibonacci number definition is in p. 59 (p. 56 in the 2nd ed.)
- **Exercise 16.3-7 (16.3-6 in the 2nd ed.)**

