

# The Balance between Excitation and inhibition in the Brain

Lin Xiaohan



- Rate Coding vs. Temporal Coding
  - Rate coding: information is conveyed via the average rate of spikes;
    - Neurons → integrator
  - **Temporal coding**: the precise timing of spikes conveys information.
    - Neurons → coincidence detector



#### The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs

Softky & Koch 1993

William R. Softky1.2 and Christof Koch2

<sup>1</sup>Division of Physics, Mathematics, and Astronomy and <sup>2</sup>Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125

Independent, random EPSPs induce highly regular firing patterns, inconsistent with experimental findings; Concluded neurons were coincidence detectors.

(a) Counts of 300 EPSPs



LIF neuron

(b) Coincidence of 35 EPSPs in 1m



**Experimental data** 



#### The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs

Softky & Koch 1993

William R. Softky1.2 and Christof Koch2

<sup>1</sup>Division of Physics, Mathematics, and Astronomy and <sup>2</sup>Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125

Independent, random EPSPs induce highly regular firing patterns, inconsistent with experimental findings; Concluded neurons were coincidence detectors.

(a) Counts of 300 EPSPs



(b) Coincidence of 35 EPSPs in 1m



LIF neurons (and all integrator models) are wrong!

LIF neuron

**Experimental data** 



#### The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs

Softky & Koch 1993

William R. Softky1.2 and Christof Koch2

<sup>1</sup>Division of Physics, Mathematics, and Astronomy and <sup>2</sup>Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125

Independent, random EPSPs induce highly regular firing patterns, inconsistent with experimental findings; Concluded neurons were coincidence detectors.

(a) Counts of 300 EPSPs



(b) Coincidence of 35 EPSPs in 1m



LIF neurons (and all integrator models) are wrong!

Or are they?

LIF neuron

**Experimental data** 



#### The Highly Irregular Firing of Cortical Cells Is Inconsistent with Temporal Integration of Random EPSPs

Softky & Koch 1993

William R. Softky1.2 and Christof Koch2

<sup>1</sup>Division of Physics, Mathematics, and Astronomy and <sup>2</sup>Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125

Independent, random EPSPs induce highly regular firing patterns, inconsistent with experimental findings; Concluded neurons were coincidence detectors.



#### **Centeral Limit Theorem**







We need to take inhibition into account.

Noise, neural codes and cortical organization

Michael N Shadlen and William T Newsome

(Shadlen & Newsome 1994)

Stanford University School of Medicine, Stanford, USA

Membrane potential undergoes a random walk under balanced EPSPs and IPSPs.



We need to take inhibition into account.

Noise, neural codes and cortical organization

Michael N Shadlen and William T Newsome

(Shadlen & Newsome 1994)

Stanford University School of Medicine, Stanford, USA

Membrane potential undergoes a random walk under balanced EPSPs and IPSPs.







# Sanity Check



#### **Biological Constraints**

Resting membrane potential  $\sim -70 \text{mV}$ Spike threshold  $\sim -55 \text{mV}$ Average EPSPs  $\sim -0.55 \text{mV}$ 

About 30 EPSPs can initiate an action potential.

 $\begin{array}{lll} \text{Number of cortical neuron contacts} & \sim 4000 \\ \text{Excitatory synapses ratio} & \sim 85\% \\ \text{Spontaneous activity in cortex} & \sim 3 \text{ Hz} \\ \text{Neuron membrane time constant } \tau & \sim 10 \text{ ms} \\ \end{array}$ 

A neuron receives about 100 EPSPs per  $\tau$  on average.

Coincidence detector model would need  $\tau \sim 1ms$  to avoid the accumulation of EPSP on membrane potential.

Random-walk model is more biologically plausible.



### **Simulation Time**

irregular\_inconsistent\_integrator\_Softky\_Koch\_1993.ipynb
random\_walk\_Shadlen\_Newsome\_1994.ipynb



### Talk is cheap, what about experimental evidence?



# **Turning on and off recurrent balanced cortical activity**

(Shu et al., 2003)

#### Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA





#### Patch clamp





# **Turning on and off recurrent balanced cortical activity**

(Shu et al., 2003)

Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA





Patch clamp 

Voltage clamp 
Current clamp





# **Turning on and off recurrent balanced cortical activity**

(Shu et al., 2003)

Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA





Patch clamp { Voltage clamp Current clamp



PSCs: input currents from other neurons



# **Turning on and off recurrent balanced cortical activity**

(Shu et al., 2003)

Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA





Patch clamp { Voltage clamp Current clamp



PSCs: input currents from other neurons



# **Turning on and off recurrent balanced cortical activity**

(Shu et al., 2003)

Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA





 $R = V_{mem}/I_{inj}$  G = 1/R

Extracellular Medium



#### Equivalent circuit of a neuron

$$I=C_mrac{\mathrm{d}V_m}{\mathrm{d}t}+g_K(V_m-V_K)+g_{Na}(V_m-V_{Na})+g_l(V_m-V_l)$$

**HH** model



# **Turning on and off recurrent balanced cortical activity**

(Shu et al., 2003)

Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA





11/17/23

The conductance of excitatory channels (e.g.  $Na^+$ ) and inhibitory channels (e.g.  $K^+$ ,  $Cl^-$ ) change together.

EPSCs and IPSCs are highly correlated, and thus balanced, in a single neuron.

17



#### **Turning on and off recurrent** balanced cortical activity

(Shu et al., 2003)

In vitro conductance

Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA



Neocortical Network Activity *In Vivo* Is Generated through a Dynamic Balance of Excitation and Inhibition

Bilal Haider, Alvaro Duque, Andrea R. Hasenstaub, and David A. McCormick Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Conne

In vivo

(Haider et al., 2006)





#### **Turning on and off recurrent** balanced cortical activity

(Shu et al., 2003)

In vitro conductance

Yousheng Shu, Andrea Hasenstaub & David A. McCormick

Neocortical Network Activity *In Vivo* Is Generated through a Dynamic Balance of Excitation and Inhibition

Bilal Haider, Alvaro Duque, Andrea R. Hasenstaub, and David A. McCormick Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Conne

In vivo

(Haider et al., 2006) Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street,



New Haven, Connecticut 06510, USA

#### Conductance for E/I currents is strongly correlated, both in vitro and in vivo





0.2 0.3 0.4



11/17/23

19



**Unit: Seconds** 

But neuronal dynamics operate at the time scale of ms.

Does the balance exist at finer time scales?





**Unit: Seconds** 

But neuronal dynamics operate at the time scale of ms.

Does the balance exist at finer time scales?

$$R = V_{mem}/I_{inj}$$
  $G = 1/R$ 



**Equivalent circuit of a neuron** 



**Unit: Seconds** 

But neuronal dynamics operate at the time scale of ms.

Does the balance exist at finer time scales?

Capacitors (of the membrane)
 prevent measuring conductances at
 finer time scales.

$$R = V_{mem}/I_{inj}$$
  $G = 1/R$ 



**Equivalent circuit of a neuron** 



**Unit: Seconds** 

But neuronal dynamics operate at the time scale of ms.

Does the balance exist at finer time scales?

- Capacitors (of the membrane)
   prevent measuring conductances at
   finer time scales.
- Cannot simualtaneously measure EPSCs and IPSCs.

$$R = V_{mem}/I_{inj}$$
  $G = 1/R$ 



**Equivalent circuit of a neuron** 



Published: 30 March 2008

## Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities

Michael Okun & Ilan Lampl ⊡

in vivo

Paired patch clamp recording

Nature Neuroscience 11, 535–537 (2008) | Cite this article

Neighboring neurons receive similar inputs.



|        | Neuron 1 | Neuron 2 |
|--------|----------|----------|
| Exp. 1 | EPSCs    | IPSCs    |
| Exp. 2 | IPSCs    | EPSCs    |



Published: 30 March 2008

## Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities

Michael Okun & Ilan Lampl ⊡

in vivo

Paired patch clamp recording

Nature Neuroscience 11, 535-537 (2008) | Cite this article

Neighboring neurons receive similar inputs.



**Clamp** reversal position of the control of the con

Membrane potential

reversal potential of inhibition  $\sim -75 mV$ 

**Neuron 1** 

Increase reflect EPSCs

Neuron 2

reversal potential of depolarization

QX-314 added to prevent firing

Decrease reflect

**IPSCs** 



Published: 30 March 2008

## Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities

in vivo

Paired patch clamp recording

Nature Neuroscience 11, 535–537 (2008) | Cite this article

Neighboring neurons receive similar inputs.



#### **Neuron 1**

**Clamp** reversal potential of **Voltage** inhibition  $\sim -75mV$ 

Membrane Increase reflect potential EPSCs

#### Neuron 2

reversal potential of depolarization QX-314 added to prevent firing

Decrease reflect IPSCs



Published: 30 March 2008

## Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities

Michael Okun & Ilan Lampl ⊡

Nature Neuroscience 11, 535-537 (2008) | Cite this article







**Unit: miliseconds** 







Published: 30 March 2008

## Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities

E/I currents are tightly correlated with short delay.

Michael Okun & Ilan Lampl

**Tight balance** 

Nature Neuroscience 11, 535–537 (2008) | Cite this article









EPSCs and IPSCs (between neighboring cells) are tightly correlated.

**Unit: miliseconds** 



### Take a break.



#### Chaos in Neuronal Networks with Balanced **Excitatory and Inhibitory Activity**

C. van Vreeswijk and H. Sompolinsky (Science, 1996)

Sparse connectivity  $1 \ll K/N \ll 1$ 

Strong connection strength  $J_{kl}^{ij} \sim O(1)$ 

Threshold  $\sim O(\sqrt{K})$ 





 $\mathsf{E}_\mathsf{E}$ 

Εı

External



#### **Linear Encoding**



Chaotic Balanced State in a Model of Cortical Circuits

C. van Vreeswijk

(neural comp., 1998)

H. Sompolinsky

Racah Institute of Physics and Center for Neural Computation, Hebrew University, Jerusalem, 91904 Israel

#### **Neuron dynamics**

Mean activity  $\boldsymbol{m}_k^i(t)$ 

$$\sigma_k^i(t) = \Theta\left(u_k^i(t)\right) \quad \Theta(.)$$
 Heaviside function

$$m_k^i(t) \equiv <\sigma_k^i(t)>$$

$$\mathbf{u}_{k}^{i}(t) = \sum_{l=1}^{2} \sum_{j=1}^{N_{l}} J_{kl}^{ij} \sigma_{l}^{j}(t) + u_{k}^{0} - \theta_{k}, \quad k = E, I$$

$$J_{EE} = J_{IE} = 1$$
  $J_E \equiv -J_{EI}; J_I \equiv -J_{II}$ 

Mean-field analysis



$$u_E = (Em_0 + m_E - J_E m_I)\sqrt{K} - \theta_E$$
  
$$u_I = (Im_0 + m_E - J_I m_I)\sqrt{K} - \theta_I$$

#### **Linear Encoding**



#### Mean-field results

$$u_E = (Em_0 + m_E - J_E m_I)\sqrt{K} - \theta_E$$
  
$$u_I = (Im_0 + m_E - J_I m_I)\sqrt{K} - \theta_I$$

Balanced state **necessary** condition: 0 < m < 1 even when K is large

$$Em_0 + m_E - J_E m_I = O\left(1/\sqrt{K}\right)$$

$$Im_0 + m_E - J_I m_I = O\left(1/\sqrt{K}\right)$$

$$K \to \infty$$

$$m_E = \frac{J_I E - J_E I}{J_E - J_I} m_0 \equiv A_E m_0$$

$$m_I = \frac{E - I}{J_E - J_I} m_0 \equiv A_I m_0$$
Linear encoding

<u>Linear encoding property</u> resulted from **linear** summation of E&I current, regardless of channel and activation non-linearity. (i.e. works for Hodgkin–Huxley model as well)

#### **Linear Encoding**



#### Mean-field results

$$u_E = (Em_0 + m_E - J_E m_I)\sqrt{K} - \theta_E$$
  
$$u_I = (Im_0 + m_E - J_I m_I)\sqrt{K} - \theta_I$$

Balanced state **necessary** condition: 0 < m < 1 even when K is large

$$Em_0 + m_E - J_E m_I = O(1/\sqrt{K})$$
  

$$Im_0 + m_E - J_I m_I = O(1/\sqrt{K})$$

$$K \to \infty$$

$$Em_{0} + m_{E} - J_{E}m_{I} = O(1/\sqrt{K})$$

$$Im_{0} + m_{E} - J_{I}m_{I} = O(1/\sqrt{K})$$

$$K \to \infty$$

$$m_{E} = \frac{J_{I}E - J_{E}I}{J_{E} - J_{I}}m_{0} \equiv A_{E}m_{0}$$

$$m_{I} = \frac{E - I}{J_{E} - J_{I}}m_{0} \equiv A_{I}m_{0}$$

s.t. 
$$m_E > 0$$
,  $m_I > 0$ 

$$\frac{E}{I} > \frac{J_E}{J_I} > 1$$

$$J_E > 1$$

**Necessary condition for EI balance** 

#### **Fast Response**



Dynamics of  $m_k^i(t)$  (Ginzhurg & Sompolinsky, 1994)

$$\tau_k \frac{d}{dt} m_k^i(t) = -m_k^i(t) + \Theta\left(u_k^i(t)\right)$$

Rewriting  $u_k^i(t)$ 

$$\Theta\left(u_k^i(t)\right) = F_k(m_E, m_I) = \sum_{n_E, n_I = 0}^{\infty} p_E(n_E) p_I(n_I) \Theta\left(\sqrt{K} J_{k0} m_0 + \sum_{l} \frac{J_{kl}}{\sqrt{K}} n_l - \theta_k\right)$$

 $p_l(n_l)$  the prob. of receiving  $n_l$  spikes from population l.

$$p_l(n) = \sum_{s=n}^{\infty} \frac{K^s}{s!} e^{-K} {s \choose n} m_l^n (1 - m_l)^{s-n} = \frac{(m_l K)^n}{n!} e^{-m_l K}$$

The prob. of s contacts with pop. l

Out of *s* contacts, only *n* are active

Poisson distribution with rate  $m_l \boldsymbol{K}$ 

**↓** 

Gaussian distribution  $\mathcal{N}(m_l K; m_l K)$ 

#### **Fast Response**



#### **Perturbation analysis**

Linearize around the fixed point  $m_k$ 

$$\delta m_k(t) = m_k(t) - m_k$$

$$\tau_k \frac{d}{dt} \delta m_k(t) = -\delta m_k(t) + \sqrt{K} \sum_{l=1,2} f_{kl} \delta m_l(t)$$

Sol. 
$$\delta m_k(t) = \delta m_{k,1} \exp(\lambda_1 t) + \delta m_{k,2} \exp(\lambda_2 t)$$
  $\lambda_1, \lambda_2 \sim \mathcal{O}(\sqrt{K})$ 

Setting 
$$Re(\lambda_1) < 0$$
,  $Re(\lambda_2) < 0$ 

Gives  $\tau_k < \tau$ 

The precise value of  $\tau$  has a complicated dependence on the system parameters.

When  $au_k < au$ , perturbation will decay extremely fast on the order of  $\mathcal{O}(1/\sqrt{K})$ 

### **Fast Response**



#### **Perturbation analysis**

 $\tau_k < \tau$  The precise value of  $\tau$  has a complicated dependence on the system parameters.

When  $au_k < au$ , perturbation will decay extremely fast on the time scale of  $\mathcal{O}(1/\sqrt{K})$ 



Fast response to external changing stimulus



# Summary



- The historical background of the EI balance model.
  - Rate coding vs. temporal coding;
  - Neurons as integrator vs. as coincidence detector.
- Experimental evidence
  - Patch clamp experiments, both in vitro and in vivo.
  - Paired patch clamp → tight balance
- Theorectical EI balance model
  - Irregular spike pattern
  - Linear encoding
  - Fast response