RMSTRONG

LABORATORY

COMPLIANCE TESTING OF GRISSOM AIR FORCE BASE CENTRAL HEATING PLANT COAL-FIRED BOILERS 3, 4, AND 5, GRISSOM AIR FORCE BASE, INDIANA

Ramon A. Cintron-Ocasio, Major, USAF, BSC

OCCUPATIONAL AND ENVIRONMENTAL HEALTH DIRECTORATE Brooks Air Force Base, TX 78235-5000

June 1992

Final Technical Report for Period 3-21 February 1992

Approved for public release; distribution is unlimited.

92-17703

92 7 07 007

AIR FORCE SYSTEMS COMMAND BROOKS AIR FORCE BASE, TEXAS 78235-5000 =

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: DTIC, Cameron Station, Alexandria VA 22304-6145.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road,

Springfield VA 22161.

RAMON A. CINTRON-OCASIO, Maj, USAF, BSC Chief, Air Quality and Hazardous Waste

Branch

EDWARD F. MAHER, Col, USAF, BSC

Chief, Bioenvironmental Engineering Division

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0738), Washington, DC 20503

	202-4302, and to the Office of Management and		
1. AGENCY USE ONLY (Leave bla	June 1992	3. REPORT TYPE AND DATE Final 3-21 Februa	
		5. FUI	NDING NUMBERS
7.05550010115.005.005.00			
7. PERFORMING ORGANIZATION I Armstrong Laboratory Occupational and Eng Brooks Air Force Bas	y vironmental Health Dire	REP	FORMING ORGANIZATION ORT NUMBER -TR-1992-0047
9. SPONSORING / MONITORING AC	GENCY NAME(S) AND ADDRESS(ES		ONSORING / MONITORING ENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	12b. D	ISTRIBUTION CODE
	release; distribution	is unlimited.	
13. ABSTRACT (Maximum 200 wor	ds)		
on coal-fired boiler 1992 by the Air Qual to determine complia Pollution Control Bo Regulations. All bothat boilers 3 and 4	esting for particulate rs at the Grissom AFB Clity Function of Armstrance with regard to Indoard, Article 5, Opacitoilers were tested throw met applicable, visib exceeded the particul	entral Heating Plant ong Laboratory. The liana Administration (y Regulations, and Ar ugh the bypass stack. le, and particulate m	during 3-21 February survey was conducted Code, Title 325 Air ticle 6, Particulate Results indicated
14. SUBJECT TERMS			15. NUMBER OF PAGES
Emissions Bypass S Boiler Heating Pla		mpliance Testing rissom	100 16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	111

CONTENTS

			<u>Page</u>
INTRO	ODUCTI	ON	. 1
DISC	JSSION		1
2	Site Do Applica	oundescriptionable Standardsable Standardsng Methods and Procedures	. 2 3
CONCI	LUSION	s	10
RECON	MENDA'	TIONS	10
REFE	RENCES		12
APPEN	IDIXES	:	
	A	Letter of Request	13
	В	Personnel Information	15
	С	State Regulations	17
	D	Plant Operating Logs	35
	E	Coal Analysis	39
	F	Port Locations and Sampling Points	49
	G	Boiler 3 Field Data	51
	Н	Boiler 4 Field Data	61
	I	Boiler 5 Field Data	71
	J	Calibration Data	81
	K	EPA Computer Program Emissions Calculations	85
	L	EPA Method 9 Certification	93 ()
		Justification	n
		By	

iii

FIGURES

Figure		
No.		Page
1	View of Scrubbers and Bypass Stack	4 5
2	Flue Gas Flow Diagram	5
3	Orsat Sampling Train	8
4 5	Orsat Apparatus	8
5	Particulate Sampling Train	9
	TABLES	
Table		
No.		
1	Grissom AFB Heating Plant Boilers Information	3
2	Grissom AFB Emission Survey Results	11

COMPLIANCE TESTING OF GRISSOM AIR FORCE BASE CENTRAL HEATING PLANT COAL-FIRED BOILERS 3, 4, AND 5, GRISSOM AIR FORCE BASE, INDIANA

INTRODUCTION

A source emission testing for particulate and visible emissions was conducted on coal-fired boilers 3, 4, and 5 at the Grissom Air Force Base Central Heating Plant from 3-21 February 1992 by personnel of the Air Quality Function of the Armstrong Laboratory, Bioenvironmental Engineering Division (AL/OEBQ). This survey was requested by 305th Combat Support Group/DE through Headquarters Strategic Air Command/SGPB to determine particulate emission compliance status with regards to Indiana Administrative Code, Title 325 - Air Pollution Control Board, Article 5, Opacity Regulations (325 IAC 5), and Article 6, Particulate Regulations (325 IAC 6). A copy of this request is at Appendix A. Personnel involved with on-site testing are listed in Appendix B.

DISCUSSION

Background

On 7 November 1986, the Director, Air and Radiation Division, U.S. Environmental Protection Agency (EPA), Region V, issued a notice of violation (NOV) to Grissom AFB for violation of 325 IAC 5, Opacity Regulations. The NOV was based on information submitted by the Indiana Department of Environmental Management and the EPA. Observations indicated that oil-fired boiler 1 and coal-fired boilers 3 and 4 (boiler 5 was out of service during the State observations) were out of compliance with respect to visible emissions.

On 18-23 November 1987, the Air Quality Function conducted a stationary source sampling survey for particulate emissions on coal-fired boilers 3 and 4 to determine how emissions compared with State regulations. Both boilers were tested through the bypass stack and scrubbers. Air emissions through the bypass stack were below the standard which was established as 0.80 lb/mmBtu. Boiler 3 emissions through the scrubber were above the standard while boiler 4 emissions through the scrubber were below the standard.

On 4-14 March 1988, a second stationary source sampling was conducted on coal-fired boilers 3 and 5. Boiler 3 was tested through scrubber A and results were below the emission standard of 0.80 lb/mmBtu. Boiler 5 emissions through scrubber A were below the emission standard of 0.60 lb/mmBtu. However, when

boiler 5 was tested through the bypass stack, results exceeded the 0.60 lb/mmBtu standard.

Another source sampling survey for particulate matter and visible emissions was conducted during 29 January 1989 - 15 February 1989 on coal-fired boilers 3, 4, and 5 by the Air Quality Function. Boiler 3 was tested through scrubber B, boiler 4 through scrubber A, and boiler 5 through scrubber B and the bypass. Results showed that boiler 3 emissions through scrubber B and boiler 4 emissions through scrubber A were below the emission standard of 0.80 lb/mmBtu. Boiler 5 emissions through scrubber B and the bypass stack were below the emission standard of 0.60 lb/mmBtu. All visible emissions were below applicable standards.

On 3-13 December 1990, source emission testing for particulate matter and visible emissions was conducted on coalfired boilers 3, 4, and 5 by the Air Quality Function. All boilers were tested through the bypass only. Visible emissions were in compliance with opacity standards. However, all three boilers exceeded the particulate matter standards. These limits were established for boilers 3 and 4 as 0.47 lb/mmBtu when operating at 48 mmBtu/hr and for boiler 5 as 0.37 lb/mmBtu when operating at 78 mmBtu/hr. According to the State of Indiana, the emission limits specified during previous testing were erroneous and new standards were established.

On 14 February 1992, a second NOV was issued to Grissom AFB for violation of Article 6, Particulate Regulations (326 IAC 6-2). The NOV stated that boiler units 3 and 5 exceeded the allowable limit for particulate emissions.

Site Description

The Central Heating Plant operates a total of five boilers for steam production. Steam capacity for each boiler is presented in Table 1.

Coal-fired boilers 3, 4, and 5 are spreader-stoker fired units, each having forced-draft and induced-draft fans and mechanical fly ash collection systems. Each unit is fitted with a steam-operated soot blower to remove fly ash and soot from the heat exchanger tubing. Boiler 5 is also fitted with an economizer to further increase operating efficiency by preheating the feed water using exhaust gas heat.

Air pollution control consists of individual multiclone dust collectors on each boiler and an optional wet scrubber common to the three coal-fired boilers. The multiclone dust collectors on boilers 3, 4, and 5 were manufactured by Western Precipitation Division--Joy Manufacturing Company. The collector on both boiler 3 and 4 is a model 9VM-10 and consists of 36 9-in.

diameter cyclonic collectors operating in parallel. The collector on boiler 5 is a model 9VMU-10 and consists of 48 9-in. diameter cyclonic collectors operating in parallel. Each unit is located in the boiler exhaust duct upstream of the induced-draft fan. Ash collected by the multiclones is carried by gravity to a hopper.

TABLE 1. GRISSOM AFB HEATING PLANT BOILERS INFORMATION

Dailen Na /	Stea		••	
Boiler No./ Manufacturer	Capac <u>(lb/hr)</u>	(mmBtu/hr)	Year <u>Installed</u>	<u>Fuel</u>
1/Springfield Boiler Co	40,000	48	1955	oil
2/Springfield Boiler Co	40,000	48	1955	oil
3/Springfield Boiler Co	40,000	48	1955	coal
4/E. Keeler Co	40,000	48	1960	coal
5/Zurn Ind	65,000	78	1980	coal

The exhaust effluent from each boiler is ducted to a common breeching and can be routed to the wet-scrubber or a bypass stack. The scrubber is a double-alkali flue-gas desulfurization system using soda ash (sodium carbonate) in the scrubbing fluid and lime (calcium hydroxide) slurry for regeneration of the scrubbing liquid. There is no requirement at this time to use the scrubber system because of the low-sulfur coal being used by the plant. The bypass stack has a 5.5-ft diameter and terminates approximately 73 ft above ground level. The bypass stack can be seen in Figure 1. A flue gas flow diagram is shown in Figure 2.

Applicable Standards

The monitoring requirements, opacity regulations, and particulate regulations are defined under 325 IAC 3, 5, and 6, respectively. Article 3 states that emissions test shall be conducted in accordance with procedures and analysis methods specified in Title 40, Code of Federal Regulations, Part 60, Appendix A(1). EPA Methods 1-5 were used for the determination of particulate emissions and Method 9 for visible emissions.

Article 5 states that visible emissions shall not exceed an average of 40% opacity in 24 consecutive readings or 60% opacity

for more than a cumulative total of 15 min (60 readings) in a 6-hr period. When conducting a soot blowing operation, visible emissions may exceed these standards except that visible emissions may not exceed 60% opacity nor shall visible emissions in excess of the standards continue for more than 5 min in any 60-min period.

Under 325 IAC 6, the maximum allowable particulate emission rate from combustion of fuel for indirect heating facilities (either existing and in operation or with permits to construct

Figure 1. View of Scrubbers and Bypass Stack.

prior to the effective date of 325 IAC 6, 26 September 1980) is determined by the following equation:

$$Pt = \frac{C \times a \times h}{76.5 \times Q^{0.75} \times N^{0.25}}$$

Where:

Pt = Pounds of particulate matter emitted per million Btu heat input (lb/mmBtu).

C = Maximum ground level concentration with respect to distance from the point source at the "critical" wind speed for level terrain (50 micrograms per cubic meter - provided in standard).

Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input.

N = Number of stacks in fuel burning operation.

a = Plume rise factor (0.67 is used for Q less than or equal to 1,000 mmBtu/hr heat input).

h = Stack height in feet.

The limits on particulate emissions determined by the equation and values of the variables applicable to this facility are 0.52 lb/mmBtu for boilers 3 and 4 (operating prior to 8 June 1972) and 0.40 lb/mmBtu for boiler 5 (constructed after 8 June 1972). These standards apply when boilers 1 and 2 are operated at 36,000 lb/hr (43.2 mmBtu/hr), boilers 3 and 4 are operated at 34,000 lb/hr (40.8 mmBtu/hr) and boiler 5 is operated at 55,250 lb/hr (66.3 mmBtu/hr). State regulations are presented in Appendix C.

Sampling Methods and Procedures

Boilers 3, 4, and 5 were tested through the bypass stack. Coordination was made with plant personnel to try and operate boiler units 3 and 4 at 34,000 lb/hr of steam (40.8 mmBtu/hr) and boiler unit 5 at 55,250 lb/hr of steam (66.3 mmBtu/hr) during testing. One of the three runs which comprised a complete test included a soot blow. Soot blows are indicated on the field data sheets. Boiler operating logs for the test periods are provided in Appendix D. These logs indicate hourly steam output and coal usage. Laboratory results for the coal analysis are provided in Appendix E. Each coal sample represents an integrated sample collected over a particular 1-hr test run as noted on the analysis sheet.

The 325 IAC 3 requires that all emissions tests be conducted in accordance with the procedures and analysis methods specified in 40 CFR 60, Appendix A, Methods 1-5. Therefore, test methods, equipment, sample train preparations, sampling and recovery, calibration requirements, and quality assurance were done in accordance with the methods and procedures outlined in 40 CFR 60, Appendix A.

Sampling ports were in place on the bypass stack and were located 2 stack diameters upstream from the stack exit and 7 stack diameters downstream from the nearest disturbance (common breeching inlet). Based on a 5.5-ft inside stack diameter, port location, and type of sample (particulate), a total of 12 traverse points were determined for emission evaluation. The sampling time for each sampling run was 60 min, and the sample time per traverse point was 5 min. The illustration showing port locations and sampling points is provided in Appendix F.

Prior to each emission test, a preliminary velocity pressure traverse was accomplished and cyclonic flow was determined (2). For acceptable flow conditions to exist in a stack, the average of the absolute values of the flow angles taken at each traverse point must be less than or equal to 20 degrees. The resulting flow angles in the bypass stack for boilers 3, 4, and 5 complied with the standard.

During each sample run, a flue gas sample for Orsat analysis (measures oxygen, and carbon dioxide for stack gas molecular determination and emissions correction) was taken. Orsat sampling and analysis equipment are shown in Figures 3 and 4. Flue gas moisture content, also needed for determination of gas molecular weight, was determined during particulate sampling.

Particulate samples were collected using the sampling train shown in Figure 5. Sampling results are shown in Appendixes G. H. and I. The train consisted of a buttonhook probe nozzle, heated Incomel probe, heated glass filter, impingers, and pumping and The nozzle was sized prior to each test so that metering device. the gas could be sampled isokinetically; in other words, the velocity at the nozzle tip was the same as the stack gas velocity at each point sampled. Flue gas velocity pressure was measured at the nozzle tip using a Type-S Pitot tube connected to 10-in. inclined-vertical manometer. Type K thermocouples were used to measure flue gas as well as sampling train temperatures. probe was heated to minimize moisture condensation. The heated filter was used to collect particulate materials. The impinger train consisted of the following components.

- 1. First, third and fourth impingers: modified Greenburg-Smith type.
- 2. Second impinger: standard Greenburg-Smith was used as a condenser to collect stack gas moisture. The pumping and

Figure 3. Orsat Sampling Train.

Figure 4. Orsat Apparatus.

Figure 5. Particulate Sampling Train.

metering system was used to control and monitor the sample gas flow. Equipment calibration data is presented in Appendix J.

Particulate emissions calculations were done using "Source Test Calculation and Check Programs for the Hewlett-Packard 41 Calculators" (EPA-340/1-85-018) developed by the EPA Office of Air Quality Planning and Standards, Research Triangle Park, NC (3). This is our standard method for calculating emissions data. Emission calculations from the EPA programs are found in Appendix K.

Visible emissions were determined during each sample run. Visible emissions results are presented in Appendixes G through I.

CONCLUSIONS

Visible emissions averaged less than 40% for all runs except for time periods where soot blows occurred. Soot blows did cause opacity to exceed 60% but not for more than a 5-min period.

Table 2 provides operating parameters for boilers 3, 4, and 5 during testing and the resultant particulate emission rates determined from these tests.

In summary, boilers 3 and 4 met the emission standard of $0.52\ lb/mmBtu$ for particulate matter when operating at $34,000\ lb/hr$ (40.8 mmBtu/hr) and boilers 1 and 2 operating at $36,000\ lb/hr$ (43.2 mmBtu/hr).

Boiler 5 did not meet the emission standard for particulate matter.

RECOMMENDATIONS

Operate boiler units 3 and 4 at 34,000 lb/hr (40.8 mmBtu/hr) in order to meet the particulate matter standard.

We recommend that boiler 5 be fully evaluated and, if necessary, repaired. All aspects of the boiler, including operating conditions, control equipment, and maintenance should be considered.

After action is taken in boiler 5, you may request our services for another evaluation. Armstrong Laboratory will remain active in providing consultant and testing services to Grissom AFB with respect to the heating plant.

TABLE 2. GRISSOM AFB EMISSION SURVEY RESULTS

UNIT NO.	DATE	ப	TIME	RUN NO.	STEAM (1b/h	FLOW COAL HEATING r) VALUE-Btu/lb	COAL 1b/hr	% CO2 FLUE GAS		PM PM-12% CO2 (1b/hr) (1b/mmBtu)	VISIBLE EMISSION
	33 11 11 11 11 11 11 11 11 11 11 11 11 1	9	80	. 丼 c	404	155	L 1	9.	6.6	9.	
n m # #	13 FE	в в 92 в	1254	7 K	33420 33019	11181	3669	% % % % % %	11.88 12.86 Average	0.43 e = 0.52	21.0
	[24	9	84	1 X	37	173	74	7.	17.94		
	11 FE	6	7	7	7	12117	4119	9.2%	15.00	ς,	29
#4		3 92	1443	m	31902	210	54	φ.	13.07		
									Average	e = 0.4	
±		6	+ .1		458	149	86	۲.	3.2	7.	20
	20 FE		1413	2×	\sim	11078	5889	9.8%	51.42	6.	29
	О Б	σ	7	m	415	108	82		49.20	1.01	27
									Averag	e = 0.9	

x - Soot blow

REFERENCES

- 1. "Standards of Performance for New Stationary Sources," Title 40, Part 60, Code of Federal Regulations, July 1, 1989.
- 2. Quality Assurance Handbook for Air Pollution Measurement Systems Volume III, Stationary Source Specific Methods, U.S. Environmental Protection Agency, EPA-600/4-77-027-b, Research Triangle Park, North Carolina, December 1984.
- 3. Source Test Calculation and Check Programs for the Hewlett-Packard 41 Calculators. U.S. Environmental Protection Agency, EPA-340/1-85-018, Research Triangle Park, North Carolina, May 1987.

APPENDIX A

Letter of Request

DEPARTMENT OF THE AIR FORCE

HEADQUARTERS 305TH COMBAT SUPPORT GROUP (SAC)
GRISSOM AIR FORCE BASE INDIANA 46971-5000

REPLY TO

CC

2 7 SEP 1991

SUBJECT

Heat Plant Stack Emissions Testing

то

305 MEDER/CC HO SAC/SGPBRE AL/OEB
IN TURN

- 1. Request the USAF Armstrong Laboratory conduct stack sampling of the Grissom AFB Heat Plant in February 1992. Particulate Matter emission and opacity tests for coal fired boilers 3, 4, and 5 through the by-pass stack is necessary to demonstrate compliance with Indiana Air Pollution Control Board rules. The December 1990 stack testing resulted in particulate matter emission noncompliance for all three boilers.
- 2. Since stack testing was conducted in December 1990, the controls project has been officially completed and the multiclone dust collector cones are being replaced. The new cones will be in place prior to February 1992.
- 3. Cur point of contact is Ms Marlene Seneca, DSN 928-4579, 305 SPTG/DEV.

DANIEL W. GODDARD, Colonel, USAF

Commander

cc: HQ SAC/DEVC

305 AREFW/JA

305 SPTG/DEM

ALMA3 (18-17)

APPENDIX B

Personnel Information

1. Armstrong Laboratory Test Team

Maj Ramon Cintron-Ocasio, Chief, Air Quality and Hazardous Waste Capt Ronald Vaughn, Consultant, Environmental Quality Capt Robert O'Brien, Consultant, Environmental Quality TSgt Kurt Jagielski, Bioenvironmental Engineering Technician Sgt Arturo Buendia, Bioenvironmental Engineering Technician

AL/OEBQ Brooks AFB TX 78235-5000

Phone: DSN 240-3305

Commercial (512) 536-3305

2. Grissom AFB on-site representatives

Lt Ed Laferty 305 Strat Clinic/SGPB

DSN 928-3017

Commercial (317) 689-3017

Lt Col John Peak 305 CSG/DE

Marlene Seneca 305 CSG/DEEV

DSN 928-4592

Commercial (317) 689-4592

Smedley Graham 305 CES/DEMMHZ Jim Williams DSN 928-3253

Commercial (317) 689-3253

APPÉNDIX C
State Regulations

period over which they are limited must be consistent with existing applicable state rules but no longer than twenty-four (24) consecutive hours.

326 IAC 2-4-3 Compliance determination: guidelines

- Sec. 3. (a) Compliance will be determined based on the emission limitations and conditions established in the permits issued in conjunction with the bubble. Compliance tests shall be performed in accordance with the test methods specified in individual rules under this title (326 IACI
- (b) Records must be kept in accordance with sub-section (f) of this section and with 326 IAC 2-4-2(a)(9). These records must be kept for a period of the length of the permit unless the commissioner requires they be kept for a longer period of time
- (c) The owner or operator of an emission source under a bubble shall make available copies of reports to the commissioner or its authorized representatives upon written request, at any reasonable time, which include but are not limited to, the nature, specific emission points, and total quantities of all emission.
- (d) The bubble shall not exempt any owner/operator from complying with any other applicable rule.
- (e) No owner or operator under the bubble is relieved the responsibility for achieving and maintaining a reduction of emissions as expeditiously as practicable. but no later than the compliance date required under the applicable regulation, unless the commissioner grants a later IAC 2-4) the source's permit shall be compliance date.
- (f) VOC emission sources subject to this rule (326 IAC 2-4) shall maintain records which include as a minimum all data and production information necessary to determine compliance of the process, equip- the department and may be enforced by ment, or process line under the bubble. the U.S. EPA as part of the SIP. This shall include, but not be limited to the following:
 - (1) type of VOC materials applied;
 - (2) VOC content of materials applied;
 - (3) amount of VOC material used; and
 - (4) estimated emission rates.

326 IAC 2-4-4 SIP revisions

- Sec. 4. (a) The following types of buband submitted to U.S. EPA as SIP revisions.
- emission limitations for the emission points within the bubble but will have single overall emission limit for each pollu-

tant for the entire hubble.

- (2) Bubbles including fugitive emissions (defined in 326 IAC 2-2-1).
- (3) Bubbles which will include sources that are subject to a federal enforcement action. Federal enforcement action means an order issued under 42 USC. Section 7413(a), a civil action under 42 USC. Section 7413(c), a notice imposing noncompliance penalties under 42 USC, Section 7604.
- (4) Bubbles resulting in extension of compliance dates,
- (5) Bubbles not exempt from discersion modeling under 326 IAC 2-4-2(a)(4)(A)and 326 IAC 2-4-2(a)(4)(B).

326 IAC 2-4-5 Public notice: comment procedure

Sec.5. All bubble submittals shall be subject to public notice and comment procedures as specified in 326 IAC 2-1-5(a)(1) and 326 IAC 2-1-5(a)(3), and in the Clean Air Act, 42 USC, Section 7410(a)(2)(H). All bubble proposals received by the state shall be submitted to the U.S. EPA for its comments. However, only the bubbles submitted to the U.S. EPA pursuant to 326 IAC 2-4-4 shall constitute SIP revisions. All bubbles approved by the commissioner will become effective after they are approved by U.S.

326 IAC 2-4-6 Effect of future emission limitation requirements

Sec. 6. Should a new or more restrictive emission limitation, as required by the board, become applicable to any source included in a bubble under this rule (326 modified to demonstrate reductions in total bubble emissions equal to the reduction required by the new emission standards.

326 IAC 2-4-7 Enforceability

Sec. 7. All bubbles shall be enforced by

ARTICLE 3. MONITORING REQUIREMENTS

- Continuous Monitoring Rule Emissions [Repealed]
- Rule 1.1. Continuous Monitoring of **Emissions**

326 IAC 3-1.1-1 Applicability of rule; bles shall be incorporated in the permits monitoring requirements for applicable pollutants

- Sec. 1. (a) Facilities in the following (1) Bubbles which do not have fixed categories shall continuously monitor and record emissions of air pollutants in accordance with this rule:
 - (1) Fossil fuel-fired steam generators of

greater than two hundred fifty (250) million Btu per hour heat input capacity and after January 1, 1992, of greater than one hundred (100) million Btu per hour heat input capacity shall be monitored for opacity, nitrogen oxide emissions, sulfur dioxide emissions, and oxygen or carbon dioxide as required in clauses (A) through (D) as follows:

- (A) A continuous monitoring system for the measurement of opacity which meets the performance specifications of section 2 of this rule shall be installed, calibrated, operated, and maintained in accordance with the procedures of this rule by the owner or operator, except under one (1) of the following conditions:
- (i) Gaseous fuel is the only fuel c...mbusted
- (ii) Oil or a mixture of gas and oil are the only fuels combusted and the facility is able to comply with 326 IAC 5-1 and 326 IAC 6-2 without utilization of particulate matter collection equipment.
- (iii) A facility owner or operator may petition the commissioner for an administrative waiver from these monitoring requirements if information available to such owner or operator, including facility annual capacity factors, use and proven efficiency of control equipment, emissions testing and self-monitoring, and control equipment operation and maintenance programs indicate that a continuous monitoring system is unnecessary to verify continuous compliance under normal facility operations. Such petition shall be submitted to the commissioner for approval by January 1, 1991. A waiver shall be effective upon written approval by the commissioner. If a facility owner or operator chooses to obtain a waiver by limiting a capacity factor, such capacity factor shall not become effective and enforceable against such facility owner or operator until the waiver is approved and effective. The commissioner shall not approve such waiver for fossil fuel-fired steam generof ators of greater than two hundred fifty (250) million Btu per hour heat input capacity without an enforceable permit condition limiting the annual capacity factor to less than thirty percent (30%). The commissioner may establish conditions in the approval of a waiver to assure compliance with the applicable opacity rule. Failure to continuously meet the requirements for obtaining a waiver or failure to comply with any condition contained in the approval of a waiver shall render void any

waiver issued.

- (B) A continuous monitoring system for the measurement of sulfur dioxide which meets the performance specifications of section 2 of this rule shall be installed, calibrated, operated, and maintained if sulfur dioxide pollution control equipment has been installed or if such a monitor is needed to determine compliance with 326 IAC 12, a construction permit required under 326 IAC 2, or as provided under subsection (e).
- (C) A continuous monitoring system for the measurement of nitrogen oxides which meets the performance specifications of section 2 of this run shall be installed, calibrated, operated, and manualined if nitrogen oxide pollution control equipment has been installed or if such a monitor is needed to determine compliance with 326 IAC 12, a construction permit required under 326 IAC 2, or as provided under subsection (e).
- (D) A continuous monitoring system for the measurement of the percent oxygen or carbon dioxide which meets the performance specifications of section 2 of this rule shall be installed, calibrated, operated, and maintained if measurements of oxygen or carbon dioxide in the flux gas are required to convert either sulfur dioxide or nitrogen oxide continuous monitoring data, or both, to units of the emission limitation for the particular facility.
- (2) Sulfuric acid sources of greater than three hundred (300) tons per day acid production capacity shall install, calibrate, operate, and maintain a continuous monitoring system for the measurement of sulfur dioxide which meets the performance specifications of section 2 of this rule for each sulfuric acid producing facility within such source.
- (3) Petroleum refinery catalyst regenerators for fluid bed catalytic cracking units of greater than twenty thousand (20,000) barrels (eight hundred forty thousand (840,000) gallons) per day fresh feed capacity shall install, calibrate, operate, and maintain a continuous monitoring system for the measurement of opacity which meets the performance specifications of section 2 of this rule for each regenerator within such source.
- (4) Upon a determination by the commissioner that a continuous monitoring system is necessary to determine continuous compliance with the applicable rules

- for opacity and that other inethods of determining compliance have not been effective, a continuous monitoring system for the measurement of opacity shall be installed, calibrated, operated, and maintained in accordance with the procedures of this rule by a facility owner or operator. The continuous monitoring system shall be installed and in operation within one hundred eighty (180) days of notification of a final determination by the commissioner that such system is necessary.
- (5) Upon a determination by the commissioner that a continuous monitoring system is necessary to determine continuous compliance for any facility required to obtain a construction permit pursuant to 326 IAC 2-2 or 326 IAC 2-3, such facility owner or operator shall install a continuous monitoring system as appropriate.
- (b) Any facility which is subject to a new source performance standard, pursuant to 326 IAC 12 or 40 CFR 60*, shall comply with the monitoring and reporting requirements as specified for such new source performance standard and the requirements of this rule.
- (c) Any data collected pursuant to the requirements of this rule may be used for determinations of compliance with the applicable limitations.
- (d) The owner or operator of any facility not specified in subsection (a) may install, calibrate, operate, and maintain systems for the continuous monitoring of emissions. Any data collected and submitted to the department to determine compliance with the requirements of this title shall be collected and submitted pursuant to the requirements of this rule.
- (e) Other monitoring requirements are contained in 326 IAC 2-1-3(h) and 326 IAC 7.
- *Copies of the Code of Federal Regulations (CFR) referenced may be obtained from the Government Printing Office, Washington, D.C. 20402. Copies of pertinent sections are also available at the Department of Environmental Management, Office of Air Management, 105 South Meridian Street, Indianapolis, Indiana 46225.

326 IAC 3-1.1-2 Minimum performance and operating specifications

Sec. 2. Owners and operators of monitoring equipment installed to comply with this rule shall comply with the following

performance specifications and operating requirements:

- (1) The performance specifications set forth in 40 CFR 60, Appendix B*, shall be used to certify monitoring equipment installed pursuant to this rule, except that where reference is made to the "administrator" in 40 CFR 60, Appendix B, the term "commissioner" shall be inserted for the purposes of this rule, and where continuous emissions monitors were installed prior to Warch 1983 for measuring opacity, the performance specifications in 40 CFR 60, Appendix B, 1982 Edition*, shall apply.
- (2) Cycling times include the total time a monitoring system requires to sample, analyze, and record an emission measurement including the following:
- (A) Continuous monitoring systems for measuring opacity shall complete a minimum of one (1) cycle of operation sampling, analyzing, and data recording for each successive ten (10) second period.
- (B) Continuous monitoring systems for measuring oxides of nitrogen, carbon monoxide, carbon dioxide, oxygen, hydrogen sulfide, total reduced sulfur, or sulfur dioxide shall complete a minimum of one (1) cycle of operation (sampling, analyzing, and data recording) for each successive fifteen (15) minute period.
- (3) When the effluents from two (2) or more affected facilities are combined before being released to the atmosphere, the owner or operator may either install a continuous opacity monitoring system on the combined effluent or install a continuous opacity monitoring system comprised of, and capable of combining the signals from. component transmissometers on each effluent stream and shall report the results on the combined effluent as required. When the effluents from two (2) or more affected facilities subject to the same emission standard, other than opacity, are combined before being released to the atmosphere, the owner or operator may report the results as required for each affected facility or for the combined
- (4) Instrument full-scale response (upper limit of concentration measurement range) for all opacity monitoring systems shall be set at one hundred percent (100%) opacity if possible. In all cases, the manufacturer's procedures for calibration shall be followed and may result in an

upscale maximum response of less than one hundred percent (100%). The minimum instrument full-scale response for gaseous monitoring systems shall be set at two hundred percent (200%) of the expected instrument data display output corresponding to the emission limitation for the facility, unless a request for an alternate setting is submitted and approved by the commissioner.

- (5) Locations for installing continuous monitoring systems or monitoring devices which vary from those locations provided under the performance specifications of 40 CFR 60, Appendix B may be approved by the commissioner when the owner or operator can demonstrate that installation at alternative locations will enable accurate and representative measurements.
- (6) Owners or operators of affected facilities shall conduct continuous emission monitoring system performance evaluations, upon request of the commissioner, in order to demonstrate the continuing compliance of the continuous emission monitoring systems with performance specifications. For the purpose of this rule, a performance evaluation shall mean a quantitative and qualitative evaluation of the performance of the continuous emission monitor in terms of the accuracy, precision, reliability, representativeness, and comparability of the data acquired by the monitoring system. The commissioner may request owners or operators of affected facilities to conduct continuous emission monitoring system performance evaluations when the commissioner has reason to believe, based on review of monitoring data, quality assurance data, inspections, or other information, that the continuous emission monitoring system is malfunctioning or may be providing invalid data over an extended period. A written report containing the complete information of such performance evaluations shall be furnished to the department within forty-five (45) days after the test date. The department may conduct performance evaluations of the continuous emission monitoring systems at any time in order to verify the continued compliance of such systems with the performance specifications.

*Copies of the Code of Federal Regulations (CFR) referenced may be obtained from the Government Printing Office, Washington, D.C. 20402. Copies of pertinent sections are also available at the Department of Environmental Management, Office of Air Management, 105 South Meridian Street, Indianapolis, Indiana 46225.

326 IAC 3-1.1-3 Notification; record keeping; reporting

- Sec. 3. (a) Owners or operators of facilities required to install continuous monitoring systems shall prepare a written report of excess emissions for each calendar quarter. The report shall include the operating time of the monitored facilities and a description of the nature and cause of the excess craissions, if known. The averaging periods used for data reporting for opacity measurements shall be six (6) minutes. The averaging periods used for data reporting for gaseous measurements shall be three (3) hour block periods ending at 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00, and 24:00. The required report shall include, as a minimum, the data stipulated in this rule. The quarterly excess emissions report shall be submitted to the department within thirty (30) days following the end of each calendar quarter as follows:
- (1) For opacity measurements, the excess emissions summary shall consist of each six (6) minute average of opacity greater than the applicable capacity limit. For continuous periods of exceedance, the summary shall consist of beginning time, ending time, and the magnitude of the highest six (6) minute opacity average during the period. Average values may be obtained by integration over six (6) minutes or by arithmetically averaging a minimum of six (6) equally spaced, instantaneous, opacity measurements per minute.
- (2) For gaseous measurements, the summary shall consist of emission averages, in units of the applicable standard, for each three (3) hour block period during which the applicable standard was exceeded.
- (3) The date and time identifying each period during which the continuous monitoring system was inoperative or malfunctioning, except for zero (0) and span checks, and the nature of system repair or adjustments shall be reported.
- (4) When no excess emissions have occurred and the continuous monitoring system has not been inoperative, repaired, or adjusted, such information shall be included in the report.
 - (b) When a malfunction of any monitor-

- ing system lasts more than one (1) day, the department shall be notified as soon as practicable but in no event later than two (2) business days after the beginning of such occurrence. Information of the scope and expected duration of the malfunction shall be provided.
- (c) Owners or operators shall maintain a file of all measurements, all continuous monitoring system evaluations, calibration checks, adjustments, and maintenance performed on these systems, and all other data collected either by the continuous monitoring system or as necessary to convert monitoring data to units of the applicable emission limitation, recorded in a permanent form suitable for inspection. The file shall be retained for a period of two (2) years following the date of such measurements, maintenance, reports, and records.
- (d) Owners or operators shall provide written notification to the department as so as practicable but not less than two (2) weeks prior to the following dates:
- (1) The anticipated date for conducting the performance specifications tests or performance evaluations of the continuous emission monitoring systems, as required by the commissioner under Section 2(6) of this rule.
- (2) The anticipated date for planned relocation of a certified monitor or for replacement of a certified monitor with a noncertified monitor.

326 IAC 3-1.1-4 Standard operating procedures

- Sec. 4. (a) The owner or operator of each affected facility under section 1 of this rule or 326 IAC 12, who is required to monitor emissions on a continuous basis, shall submit to the department, by April 1, 1992, complete written continuous emissions monitoring standard operating procedures (SOP). In addition, any revision to the SOP shall be submitted to the department. At a minimum, the SOP shall describe complete step-by-step procedures and operations as follows:
- (1) Calibration procedures shall include calibration error limits and linearity, calibration gas type as applicable, quality, and traceability to the National Bureau of Standards, calibration frequency, criteria for recalibration, and analysis procedures to periodically verify the accuracy of span and calibration standards.
 - (2) Operation procedures shall include

ing daily zero (0), measuring low level (average measurement concentration) and high level drift which meets the requirements of 40 CFR 60, Appendix B, Performance Specification 2, Section 4.2*, and other operating parameter checks indicating correct operational status.

- (3) Preventive maintenance procedures shall include those procedures taken to ensure continuous operation and to minimize malfunctions.
- (4) Quality control and quality assurance procedures shall include calibration and span and zero (0) drift criteria, excessive drift criteria corrective action for excessive drift, precision and accuracy audits, corrective action for accuracy audits failure, data validity criteria, participation in interlaboratory performance audits, and data recording and calculation audits.
- (5) Record keeping and reporting procedures shall include data chain of custody, reporting of instrument precision and accuracy, and reporting of emissions data.
- (b) The commissioner may require a performance evaluation pursuant to section 2(6) of this rule or an emissions test pursuant to 326 IAC 3-2.1 if a facility owner or operator fails to submit a SOP or submits a SOP which fails to take into account the factors provided under subsec-

*Copies of the Code of Federal Regulations (CFR) referenced may be obtained from the Government Printing Office, Washington, D.C. 20402. Copies of pertinent sections are also available at the Department of Environmental Management, Office of Air Management, 105 South Meridian Street, Indianapolis, Indiana 46225.

326 IAC 3-1.1-5 Conversion factors

Sec. 5. (a) Owners or operators of affected facilities shall use the following procedures for converting monitoring data to units of the standard where ne essary:

- (1) For fossil fuel-fired steam generators the following procedures shall be used to convert gaseous emission monitoring data in parts per million (ppm) to pounds per million Btu (lbs./MMBtu) where necessary.
- (A) When the owner or operator of a C_{ws} fossil fuel-fired steam generator elects under this rule to measure oxygen (O2) in the flue gases, the measurements of the pollutant concentration and oxygen shall be on

daily procedures, quantitying and record- a dry basis and the following conversion procedure used:

$$E = CF \frac{(20.9)}{(20.9 - \% O_2)}$$

(B) When the owner or operator elects under this rule to measure carbon dioxide (CO₂) in the flue gases, the measurement of the pollutant concentration and the CO, concentration shall each be on a consistent basis (wet or dry) and the following conversion procedure used:

$$F = CF_c \frac{(100)}{(\% CO_2)}$$

(C) When the owner or operator elects under this rule to measure sulfur dioxide or nitrogen oxides in the flue gases, the measurement of the pollutant concentration and the sulfur dioxide and/or the nitrogen oxides concentration shall each be on a wet basis and the following conversion procedure used, except where wet scrubbers are employed or where moisture is otherwise added to the stack gases:

$$E = C_{ws} F_w - \frac{(20.9)}{(20.9(1-B_{wa})-\%O_{2ws})}$$

(D) When the owner or operator elects under this rule to measure sulfur dioxide or nitrogen oxides in the flue gases, the measurement of the pollutant concentration and the sulfur dioxide and/or the nitrogen oxides concentration shall each be or a wet basis and the following conversion procedure used where wet scrubbers or moisture is otherwise present in the stack gases, provided water vapor content of the stack gas is measured at least once every fifteen (15) minutes at the same point as the pollutant and oxygen measurements are made:

$$E = C_{ws}F$$
 (20.9)
 $(20.9(1-B_{ws})-\%O_{2ws})$

- (E) The values used in the equations under this section are derived as follows:
- = pollutant concentration at stack conditions in grams per wet standard cubic meter (g/wscm) or pounds per wet cubic standard meter

(lbs/wscm), determined by multiplying the average concentration in parts per million (ppm) for each one (1) hour period by $4.15 \times 10^{-5} \text{ M}$ g/wscm per ppm or 2.59 × 10⁻⁹ M lbs/wscm per ppm, where M is pollutant molecular weight in grams per grammole (g/g-mole) or pounds per pound-mole (lb/lb-mole).

- = 64.07 for sulfur dioxide and 46.01 for nitrogen oxides.
- = as above but measured in terms of pounds per dry standard cubic meter (!bs/dscm) or grams per dry standard cubic meter (g/dscm).
- = a factor representing a ratio of the volume of dry flue gases generated to the calorific value of the fuel combusted (F) and a factor representing a ratio of the volume of carbon dioxide generated to the calorific value of the fuel combusted (F_c), respectively. Values of F and Fc are given in 40 CFR 60.45(f)*, as
- a factor representing a ratio of the volume of wet flue gases generated to the calorific value of the fuel combusted. Values of Fw are:
- (i) For anthracite coal as classified according to ASTM D388-88, "Standard Specification for Classification of Coals by Rank"*, F_w = 1.188 wscm per million calories (10,580 wscf per million Btu).
- (ii) For subbituminous and bituminous coal as classified according to ASTM D388-88, $F_w = 1.200$ wscm per million calories (10,680 wscf per million Btu).
- (iii) For liquid fossil fuels including $\frac{(20.9)}{(20.9(1-B_{ws})-\%O_{2ws})} \frac{\text{crude, residual, and distillate oils, } F_w = \\ 1.164 \text{ wscm per million calories } (10,360)$ wscf per million Btu).
 - (iv) For gaseous fossil fuels:
 - (AA) for natural gas, $F_w = 1.196$ wscm per million calories (10,650 wscf per mil-
 - (BB) for propane, $F_u = 1.150$ wscm per million calories (10,240 wscf per million
 - (CC) for butane, $F_w = 1.172$ wscm per

184

million calories (10,430 wscf per million Btu).

 B_{wa} = proportion by volume of water vapor in the ambient air. $\boldsymbol{B_{\text{ws}}}$ = proportion by volume of water vapor in the stack gas.

 $%O_1$, $%CO_2$ = oxygen or carbon dioxide volume (expressed as percent) determined with equipment specified under this rule.

- = poliutant emission. MMBtu.
- (2) For sulfuric acid sources the owner or operator shall:
- (A) establish a conversion factor three (3) times daily according to the procedures of 40 CFR 60.84(b)*
- (B) multiply the conversion factor by the average sulfur dioxide concentration in the flue gases to obtain average sulfur dioxide emissions in pounds per ton (lbs/ton); and
- (C) report the average sulfur dioxide emissions for each three (3) hour period in excess of the emission standard set forth in 326 IAC 7 in the quarterly summary.
- (b) Alternate procedures for computing emission averages that do not require integration of data or alternative methods of converting pollutant concentration measurements to units of the emission standard may be approved by the commissioner if the owner or operator shows that the alternate procedures are at least as accurate as those in this rule.
- * Copies of the American Society for Testing and Materials (ASTM) procedures referenced may be obtained from ASTM, 1916 Race Street, Philadelphia, Pennsylvania 19103 (phone (215) 299-5462). Copies of the Code of Federal Regulations (CFR) referenced may be obtained from the Government Printing Office, Washington, D.C. 20402. Copies of ASTM procedures or pertinent sections of the CFR are also available at the Department of Environmental Management, Office of Air Management, 105 South Meridian Street, Indianapolis, Indiana 46225.

Rule 2.1 Source Sampling Procedures

326 IAC 3-2.1-1 Applicability; test procedures

Sec. 1. This rule applies to any facility emissions testing performed to determine the commissioner.

105 South Meridian Street, Indianapolis, unforeseeable conditions during the test. Indiana 46225.

326 IAC 3-2.1-2 Source test protocols

Sec. 2. (a) When an emissions test is to he performed by any person other than the department, a test protocol form shall be completed and submitted to the department no later than thirty-five (35) days prior to the intended Such test protocol shall be or a form approved by the commissioner or shall contain information equivalent to that required on the form approved by the commissioner.

- (b) After evaluating the completed test protocol form, the accomment may:
 - (1) inspect the test site; or
- (2) require additional conditions. including, but not limited to:
- stack or duct to obtain acceptable test conditions;
- conditions such as interferences, nonsteady or cyclic processes:
- parameter records, operating logs, or agreed to by the source and the charts during the test;
- (D) conditions on control equipment operation to make the operation of control equipment representative of normal operation; and
- (E) the recording of specified control equipment operating parameters during the test.
- (c) If modification to the test methods, analytical methods, operational paratest protocol, the source operator and the sixty (60) days prior to the actual test testing firm shall be notified by letter or cate. Post-test calibrations shall be per-

compliance with applicable emission telephone at least twenty-one (21) days limitations contained in this title, or for prior to the proposed test date. If the any other purpose requiring review and source operator or test firm desires to approval by the commissioner. Emission change any previously submitted protests subject to this rule shall be conducted cedures or conditions, the department in accordance with any applicable shall be notified of such change as soon as procedures and analysis methods specified practicable prior to the intended test date, in 40 CFR 61, Appendix A and 40 CFR and such changes shall not be made unless 61, Appendix B*, unless alternative approved by the commissioner prior to the procedures and methods are approved by test. Reasonable changes in the test protocol that result from emergency *Copies of the Code of Federal conditions during the test shall be Regulations (CFR) referenced may be approved by the department before the obtained from the Government Printing test may proceed if a department staff Office, Washington, D.C. 20402. Copies person is available at the test site. of pertinent sections are also available at Otherwise, post-test approval may be the Department of Environmental granted based on reasonable changes Management, Office of Air Management, resulting from emergency or ressonably

- (d) The department reserves the right to conduct any portion of the reference method tests utilizing equipment supplied by the department. Notice of acceptable test procedures shall be given to the source and its testing representative.
- (e) The source operator shall notify the department of the actual test date at least iwo (2) weeks prior to the date.

326 IAC 3-2.1-3 Emission testing

Sec. 3. (a) Department staff may observe the field test procedures and source operation during the test.

- (b) All emission tests shall be conducted while the facility being tested is operating at ninety-five percent (95%) to one hundred percent (100%) of its permitted (A) reasonable modifications to the operating capacity and under conditions representative of normal operations or under other capacities or conditions (B) additional tests to allow for adverse specified and approved by the commissioner. For the purpose of this rule, capacity means the design capacity of the (C) the keeping of process operating facility or other operating capacities department.
 - (c) Facilities subject to 326 IAC 12, New Source Performance Standards, shall be tested under conditions as specified in the applicable provision for that facility in 40 CFR 60*.
- (d) Calibration results of the various sampling components shall be available the department requires for examination at the test site. The information shall include dates, methods used, data, and results. All components requirmeters, or other matters included in the ing calibration shall be calibrated within

formed on the components within fortyfive (45) days after the actual test date. Components requiring calibration are listed in the federal test methods specified in this rule.

- (e) The department may perform or require the performance of audits of equipment or procedures associated with the test series up to the time of the actual performance of the test, between test runs, or following the test series.
- (f) The original or photocopies of the raw field data generated during the test series shall be provided to the department observer upon request, if such request may be reasonably met under the existing circumstances.

*Copies of the Code of Federal Regulations (CFR) referenced may be obtained from the Government Printing Office, Washington D C 20402. Copies of pertinent sections are also available at the Department of Environmental Management, Office of Air Management, 105 South Meridian Street, Indianapolis, Indiana 46225.

326 IAC 3-2.1-4 Reporting

- Sec. 4. (a) All emission tests for which a protocol was submitted pursuant to section 2 of this rule shall be reported to the department in the form of a test report containing the following information:
- (1) The reported testing methods and results certified as true, accurate, and in compliance with this rule by the person responsible for conducting the emissions
- (2) A description of the facility or facilities being tested, the date and type of tests conducted, the type of process and control equipment utilized, the source name and location, the purpose of the tests, and the test participants and their titles.
- (3) The tabulated data and results of the process weight rate or heat input rate, the referenced or derived conversion factors, the stack gas flow rate, the measured emissions given in units consistent with the applicable emission limitations, the visible emissions observations or six (6) minute average continuous opacity monitor readings, and the average value of emissions from any continuous gaseous emissions monitoring system in units consistent with the applicable emission limitations, if applicable to the pollutant being tested.
- (4) A description of process and control devices, a process flow diagram, maximum

design capacities, a fuel analysis and heat value for heat input rate determinations, process and control equipment operating conditions, a discussion of variations from normal plant operations, and stack height, exit diameter, volumetric flow rate (cubic feet per minute), exit temperature, and exit velocity.

- (5) A description of sampling methods used, a brief discussion of the analytical procedures with justifications for any variance from reference method procedures, a specification of the number of sampling points, time per point, and total sampling time per run, a cross-sectional diagram showing sampling points, a diagram showing stack dimensions, sampling location and distance from the nearest flow disturbance upstream and downstream of the sampling points, and a diagram of the sampling train.
- (6) The sampling and analytical procedures utilized, results and calculations in units consistent with the applicable emission limitation with one (1) complete calculation using actual data for each type of test performed, raw production data signed by the source official, photocopies of all actual field data, a laboratory report with the chain of custody shown, copies of all calibration data, applicable rules and regulations showing emission limitations, for particulate matter tests, copies of visible emissions evaluations or opacity monitor readings, and, for gaseous pollutant tests, copies of any continuous gaseous emissions monitoring system readings.
- (b) All emission test reports must be received by the department within forty-five (45) days of the completion of the testing. An extension may be granted by the commissioner, if the source submits to the department a reasonable written explanation for the requested extension within five (5) days prior to the end of the initial forty-five (45) day period.

326 IAC 3-2.1-5 Specific testing procedures; particulate matter; sulfur dioxide; nitrogen oxides; volatile organic compounds

- Sec. 5. (a) Particulate matter tests shall be conducted in accordance with the following procedures:
- (1) 40 CFR 60, Appendix A, Method 5, 5A, 5B, 5C, 5D, 5E, or 5F*, as applicable, or other procedures approved by the commissioner, shall be used.
 - (2) Visible emissions (VE) evaluations

shall be performed in conjunction with a particulate emissions test by a qualified observer in accordance with the procedures contained in 326 IAC 5-1-4. VE readings shall be continuously recorded for at least thirty (30) minutes per hour of sampling time for each sampling repetition. A waiver from this requirement may be granted by the on-site department staff person provided that adverse conditions exist which would invalidate the VE readings Facilities equipped with continuous opacity monitors may submit the instantaneous or six (6) minute integrated readings of such monitors during the sampling period, in lieu of performing VE evaluations, provided:

- (A) the monitoring system meets the performance specifications as specified in 40 CFR 60, Appendix B*; and
- (B) the monitor readings submitted with the test include a zero (0) and span calibration check at the beginning and end of each test.
- (3) At least three (3) repetitions of the test shall be performed under consistent facility operating conditions, unless otherwise allowed by the commissioner. In addition, for boiler emissions testing, at least one (1) of the three (3) repetitions shall be conducted during a normal sootblowing cycle which is consistent with frequency and duration normally experienced.
- (4) Only those fuels representative of fuel quality during normal operations shall be combusted.
- (5) During each of the repetitions, each sampling point shall be sampled for a minimum of two (2) minutes.
- (6) The total test time per repetition shall be no less than sixty (60) minutes.
- (7) The total sample volume per repetition shall be no less than thirty (30) dry standard cubic feet (dscf).
- (8) The total particulate weight collected from the sampling nozzle, probe, cyclone (if used), filter holder (front half), filter, and connecting glassware shall be reported to the department. Particulate analysis of the impinger catch is not required, unless specified by the commissioner.
- (b) Sulfur dioxide tests shall be conducted in accordance with the following procedures:
- (1) 40 CFR 60, Appendix A, Method 6, 6A, or 6C, or 8°, as applicable, or other procedures approved by the commissioner, shall be used.

- (2) samples, each of 40 CFR 50, Appendix A, Method 6, 6A, or 6C, or three (3) repetitions of 40 CFR 60, Appendix A, Method 8, performed under identical facility operating conditions, shall constitute a test. For boiler emissions testing, only those fuels representative of fuel quality during normal operations shall be combusted.
- (3) During each of the repetitions for 40 CFR 60, Appendix A, Method 8, each sampling point shall be sampled for a minimum of two (2) minute:
- (4) The total test time per repetition shall be:
- (A) 40 CFR 50, Appendix A, Method 6, 6A, or 6C: a minimum of twenty (20) minutes per run with a thirty (30) minute interval between each run; or
- (B) 40 CFR 60, Appendix A, Method 8: a minimum of sixty (60) minutes per run.
- (5) The total sample volume per repetition under 40 CFR 60, Appendix A, Method 8, shall be no less than forty (40) dry standard cubic feet (dscf).
- (c) Nitrogen oxide tests shall be conducted in accordance with the following procedures
- (1) 40 Cf P 60, Appendix A, Method 7, 7A, 7B, 7C, or /L, as applicable, or other procedures approved by the commissioner, shall be used.
- (2) At least three (3) repetitions of four (4)Asamples each shall constitute a test.
- (d) Volatile organic compounds (VOC) emissions tests shall be conducted in accordance with the following procedures:
- (1) 40 CFR 60, Appendix A, Method 25*, or other procedures approved by the commissioner, shall be used for the total nonmethane organic emissions.
- (2) At least three (3) samples shall be collected and analyzed.
- (3) The total test time per repetition shall be a minimum of sixty (60) minutes.

*Copies of the Code of Federal Regulations (CFR) referenced may be obtained from the Government Printing Office. Washington, D.C. 20402. Copies of pertinent sections are also available from the Department of Environmental Management, Office of Air Management, 105 South Meridian Street, Indianapolis, Indiana 46225.

Rule 3. Fuel Sampling and Analysis **Procedures**

326 IAC 3-3-1 Applicability

Sec. 1. This rule applies to any fuel

(2) At least three (3) repetitions of the sampling and analysis performed after tained for increments composited into a ance with the emission limitations specified in 326 IAC 7.

326 IAC 3-3-2 Coal sampling and analysis methods

- Sec. 2. (a) Owners or operators of coal sampling systems for sources with total coal-fired capacity greater than or equal to one thousand five hundred (1,500) million Btu per hour actual heat input shall follow procedures specified in ASTM D2234-89, "Standard Methods for Coilection of a Gross Sample of Coal"*, unless otherwise provided in section 3 of this rule. The coal sampling system shall also meet the following requirements:
- (1) The coal sample acquisition point shall be at a location where representative samples of the total coal flow to be combusted by the facility or facilities may be obtained. A single as-bunkered sampling station may be used to represent the coal to be combusted by multiple facilities using the same stockpile feed system.
- (2) The increment collection method shall be I-A-1, I-B-1, or I-C-1 under Table 1, ASTM D2234-89
- (3) The opening of the sampling device shall be at least two and one-half (2.5) times the top-size of the coal and not less than one and one-quarter (1.25) inches.
- (4) The sampling device shall have sufficient capacity to completely retain or entirely pass the increment without loss or spillage.
- (5) The velocity with which the crossstream cutting instrument travels through the stream shall not exceed eighteen (18) inches per second. This velocity requirement shall not apply to a swing arm sampler or to a sampler whose cutter opening is perpendicular to the stream of coal. Owners or operators of all coal sampling systems shall detail the proper operating procedures in the standard operating pro-5 of this rule.
- (6) Increments obtained during the sampling period shall be protected from changes in composition to maintain the integrity of constituent characteristics required to convert sample sulfur content to units of the applicable emission standard.
- (7) A comparison of weight or volume of collected sample with that of the total flow of coal shall be conducted at a minimum of once every two (2) weeks to assure a constant sampling ratio is main- Bomb Calorimeter", or ASTM D3286-85,

- February 15, 1992, to determine compli-sample representing a single twenty-four (24) hour period.
 - (8) A routine inspection of the sampling system shall be established to meet requirements and guidelines specified in ASTM D4702-87, "Guide for Inspecting Mechanical Coal Sampling Systems that Use Cross-Cut Sample Cutters for Conformance with Current ASTM Methods"*.
 - (9) Composite samples shall be collected for acalysis at a minimum of once per thenty-four (24) hour period.
 - (b) Owners or operators of coal sampling systems for sources with total coalfired capacity between one hundred (100) and one thousand five hundred (1,500) million Pha per hour actual heat input shall either comply with requirements specified in subsection (a), section 3 of this rule, or shall meet the following minimum requirements:
 - (1) The coal sample acquisition point shall be at a location where representative samples of the total coal flow to be combusted by the facility or facilities may be obtained. A single as-bunkered or asburned sampling station may be used to represent the coal to be combusted by multiple facilities wing the same stockpile feed system.
 - (2) Coal shall be sampled at least three (3) times per day and at least once per eight (8) hour period.
 - (3) Minimum sample size shall be five hundred (500) grams.
 - (4) Samples shall be composited and analyzed at the end of each calendar month.
 - (c) Coal samples shall be prepared for analysis in accordance with procedures specified in ASTM D2013-86, "Standard Method of Preparing Coal Samples for Analysis"*. The preparation of samples shall meet the following requirements:
- (1) Samples shall be prepared in accedures document required under section cordance with Procedure A or Procedure B. ASTM D2013-86.
 - (2) Sample preparation shall be checked at weekly intervals by performing a split sample of the twenty-four (24) hour composite sample and preparing and analyzing these two (2) identically.
 - (d) The heat content of coal samples shall be determined in accordance with procedures specified in ASTM D2015-85, Standard Test Method for Gross Calorific Value of Solid Fuel by the Adiabatic

"Standard Test Method for Gross Caloniic Value of Coal and Coke by the Isothermal Jacket Bomb Cajorimeter"*. The restandardization requirements in Section 11 of both methods shall be followed. Precision requirements for repeatability shall be verified per Section 16.1.1 of both methods at a minimum of once per week.

- (e) The sulfur content of coal samples shall be determined in accordance with procedures specified in ASTM D3177-84, "Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke", or ASTM D4239-85, "Standard Test Methods for Sulfur in the Analysis Sample of Coal and Coke Using High Temperature Tube Furnace Combustion Methods"*. Precision requirements for repeatability shall be verified per Section 13, ASTM D3177-84, or Section 18, ASTM D4239-85, at a minimum of once per week. The laboratory that performs the analysis shall participate in an interlab audit program using coal samples supplied by the department.
- (f) Compliance with the provisions of this section is required by February 15. 1992, unless a source owner or operator demonstrates that modifications to the coal sampling and analysis procedures at a source are necessary to meet the requirements of this section. The commissioner may extend such compliance date to no later than December 31, 1992.

*Copies of the American Society for Testing and Materials (ASTM) procedures referenced may be obtained from differences ASTM, 1916 Race Street, Philadelphia, Pennsylvania 19103 (phone (215) 299-5462). Copies are also available at the Department of Environmental Management, Office of Air Management, 105 South Meridian Street, Indianapolis, Indiana 46225

326 IAC 3-3-3 Alternative coal sampling and analysis

Sec. 3. (a) As an alternative to coal sampling and analysis procedures in section 2 of this rule, a source owner or operator may use manual or other non-ASTM automatic sampling and analysis procedures upon a demonstration, submitted to the commissioner for approval, that such procedures provide sulfur dioxide emission estimates representative either of estimates based on coal sampling and analysis procedures per section 2 of this rule or of continuous emissions monitor(1) or more of the following methods:

(1) A source owner or operator may submit documentation of procedures and results of a stopped-belt bias test or other comparisons between a sampling system meeting the requirements of section 2 of this rule and those methods and procedures proposed by the source owner or operator. A stopped-belt bias test and a sampling system meeting the requirements of section 2 of this rule shall be considered reference method systems. A comparison shall utilize a series of at least twenty-five (25) reference method system samples paired with nonreference method system samples and avalyzed for the percent of sulfur content to determine the presence of significant systemic error. The detection of significant systemic error shall be based on the application of a statistical test (ttest) to determine if there is a difference between the reference and nonreference systems at the ninety-five percent (95%) confidence level, according to the following formula:

$$t = \frac{\overline{d} \setminus n}{\widehat{S}d}$$

t = calculated t value

d = average difference between paired

Sd= standard deviation of the

n = number of paired data sets

The calculated t value is compared to the t value in the standard statistical t tables at the ninetv-five percent (95%) probability and the appropriate degrees of freedom (n - 1). If the calculated t value is greater than or equal to the table t, then the systems are not comparable. Certain coals with low variability may detect an small bias, which may be acceptable as decided on a case-by-case basis. The above method tests for positive and negative bias. Provisions for testing only for a negative bias that would cause a source to report less than actual values may be acceptable if supported by statistical tests. Upon request, the department shall provide written guidance to a source owner or operator as to the procedures to be followed in conducting this comparison.

(2) Other procedures may be acceptable

ing. The demonstration may consist of one if submitted to the commissioner for

(b) The demonstration provided in subsection (a)(1) or (a)(2) shall be repeated upon any significant change to the coal sampling procedures or upon notification by the commissioner that a new demonstration is necessary. If the commissioner has reason to doubt that the alternative sampling and analysis procedures are comparable to methods and procedures provided in section 2 of this rule, based on inspections, monitoring, quality assurance data, or other information, the commissioner may notify the owner or operator that the demonstration shall be repeated. Written notification of the request shall be made to the source owner or operator allowing at least sixty (60) days to schedule the demonstration.

326 IAC 3-3-4 Fuel oil sampling; analysis methods

Sec. 4. (a) Sampling and analysis of the sulfur content of fuel oil shall be performed in accordance with the following ASTM procedures*:

(1) Collection of fuel oil samples shall be conducted according to:

(A) ASTM D4057-83, "Standard Practice for Manual Sampling of Petroleum and Petroleum Products"; or

(B) ASTM D4177-82, "Standard Method for Automatic Sampling of Petroleum and Petroleum Products"

(2) Determination of sulfur content shall be conducted according to:

(A) ASTM D129-84, "Standard Test Method for Sulfur in Petroleum Products (General Bomb Method)"

(B) ASTM D1266-87, "Standard Test Method for Sulfur in Petroleum Products (Lamp Method)";

(C) ASTM D1552-83, "Standard Test Method for Sulfur in Petroleum Products (High-Temperature Method)"; or

(D) ASTM D2622-87, "Standard Test Method for Sulfur in Petroleum Products (X-Ray Spectrographic Method)"

- (3) Determination of heat content shall be conducted according to ASTM D240-85, "Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter".
- (b) An owner or operator may, with the prior approval of the commissioner, modify the procedures specified in subsection (a), use alternate equivalent procedures, or rely upon equivalent sampling and anal-

Rule 2. Incinerators

326 IAC 4-2-1 Applicability of rule

Sec. 2. All incinerators shall: lishes standards for the use of incinerators which emit regulated pollutants. This rule (326 IAC 4-2) does not apply to incinerators in residential units consisting of four (4) or fewer families. All other incinerators are subject to this rule (326 IAC 4-2).

326 IAC 4-2-2 Stationary incinerators Sec. 2. All incinerators shall:

- (1) Consist of primary and secondary chambers or the equivalent;
- (2) Be equipped with a primary burner unless burning wood products:
- (3) Comply with 326 IAC 5-1 and 326 IAC 2:
- (4) Be maintained properly as specified by the manufacturer and approved by the commissioner;
- (5) Be operated according to the manufacturer's recommendations and only burn waste approved by the commissioner:
- (6) Comply with other state and, or local rules or ordinances regarding installation and operation of incinerators:
- (7) Be operated so that emissions of hazardous material including, but not limited to, viable pathogenic bacteria, dangerous chemicals or gases, or noxious odors are prevented;
- (8) Not emit particulate matter in excess of:
- (A) Incinerators with a maximum refuse-burning capacity of two hundred (200) or more pounds per hour: threetenths (0.3) pounds of particulate matter per one thousand (1,000) pounds of dry exhaust gas at standard conditions corrected to fifty percent (50%) excess air: or
- (B) All other incinerators: five-tenths (0.5) pounds of particulate matter per one thousand (1.000) pounds of dry exhaust gas at standard conditions corrected to fifty percent (50%) excess air; and
- (9) Not create a nuisance or a fire hazard.

If any of the above result, the burning shall be terminated immediately.

326 IAC 4-2-3 Portable incinerators [Repealed]

ARTICLE 5. OPACITY REGULATIONS

Rule 1. Opacity Limitations 326 IAC 5-1-1 Applicability of rule

Sec. 1. (a) This rule (326 IAC 5-1) shall apply to all visible emissions (not including condensed water vapor) emitted cy or from any facility or source except those sources or facilities for which specific visible emission limitations are established by 326 IAC 11, 326 IAC 12, or 326 IAC 6.

- (1) The requirements of 326 IAC 5-1-2(a)(1) shall apply to sources or facilities located in attainment areas for particulate matter, designated in 326 IAC 1-4.
- (2) The requirements of 326 IAC 5-1-2(a)(2) shall apply to sources or facilities located in nonattainment areas for particulate matter as designated in 326 IAC 1-4.

326 IAC 5-1-2 Visible emission limitations

- Sec. 2. (a) Visible emissions from any source or facility shall not exceed any of the following limitations. Unless otherwise stated, all visible emissions shall be observed in accordance with the procedures set forth in 326 IAC 5-1-4:
- (1) Sources or facilities of visible emissions located in attainment areas for particulate matter shall meet the following limitations:
- (A) Visible emissions shall not exceed, an average of forty percent (40%) opacity in twenty-four (24) consecutive readings.
- (B) Visible emissions shall not exceed sixty percent (60%) opacity for more than a cumulative total of fifteen (15) minutes (sixty (60) readings) in a six (6) hour period.
- (2) Sources or facilities of visible emissions located in nonattainment areas shall meet the following limitations:

- (A) Visible emissions shall not exceed, an average of thirty percent (30%) oracity in twenty-four (24) readings.
- (B) Visible emissions shall not exceed sixty percent (60%) opacity for more than a cumulative total of fifteen (15) minutes (sixty (60) readings) in a six (6) hour period.
- (3) Sources and facilities of visible emissions located in both attainment or nonattainment areas, for which an alternate visible emission limitation has been established pursuant to 326 IAC 5-1-5(b), shall comply with said limitations in lieu of the limitations set forth in subsection (a)(1) and (a)(2) of this section.

326 IAC 5-1-3 Temporary exemptions

Sec. 3. (a) Boiler startup and shutdown: When building a new fire in a boiler, or shutting down a boiler, visible emissions may exceed the applicable opacity limit established in 326 IAC 5-1-2(a); however, visible emissions shall not exceed an average of sixty percent (60%) opacity and emissions in excess of the applicable opacity limit shall not continue for more than ten (10) continuous minutes on one (1) occasion in any twenty-four (24) hour period.

- (b) Cleaning boilers: When removing ashes from the fuel bed or furnace in a boiler or blowing tubes, visible emissions may exceed the applicable opacity limit established in 326 IAC 5-1-2(a) however, visible emissions shall not exceed sixty percent (60%) opacity and visible emissions in excess of the applicable opacity limit shall not continue for more than five (5) continuous minutes on one (1) occasion in any sixty (60) minute period. Such emissions shall not be permitted on more than three (3) occasions in any twelve (12) hour period.
- (c) Facilities not temporarily exempted by subsections (a) and (b) of this section may be granted special temporary exemptions by the commissioner of the same duration and type authorized therein provided that the facility proves to the satisfaction of the commissioner that said ex-

emptions are needed and that during periods of startup and shutdown, owners and operators shall, to the extent practicable, maintain and operate any affected facility including air pollution control equipment in a manner consistent with good air pollution control practice for minimizing emissions. Determination of whether acceptable operating and maintenance procedures are being used will be based on information available to the commissioner, which may include, but is not limited to, monitoring results, opacity observations, review of operating and maintenance procedures and inspection of the source

(d) Sources or facilities not exempted through subsections (a), (b), or (c) of this section may also be granted special exemptions by the commissioner, provided that the source or facility owner or operator proves to the satisfaction of the commissioner that said exemption is justifiable. Said exemption(s) may be of longer duration and may apply to other types of facilities not provided for in subsections (a) or (b) of this section.

326 IAC 5-1-4 Compliance determination

- Sec. 4. (a) Determination of visible emissions from sources or facilities to which this rule (326 IAC 5-1) applies may be made in accordance with subdivisions (1) or (2) below:
- (1) Determination of visible emissions by means of a qualified observer shall be made according to the following:
- (A) Position: The qualified observer shall stand at a distance sufficient to provide a clear view of the emissions with the sun, if visible, oriented in the 140° sector to his back. Consistent with maintaining the above requirement, the observer shall, as much as possible, make his observations from a position such that his line of vision is approximately perpendicular to the direction of the visible emissions (plume where applicable), and when observing opacity of emissions from rectangular outlets (e.g., monitors, open baghouses, noncircular stacks), approximately perpendicular to the longer axis of the outlet. The observer's line of sight should not include more than one (1) plume at a time when multiple stacks are involved, and in any case the observer should make his observations with his line of sight perpendicular to the longer axis of such a set of

multiple stacks (e.g., stub stacks on baghouses).

- (B) Field records: The observer shall record the name of the plant, emission location, type of facility, observer's name and affiliation, and the date on a field data sheet. Time, estimated distance to the emission location, approximate wind direction, estimated wind speed, description of the sky conditions (presence and color of clouds), and visible emissions (plume where applicable) background are recorded on a field data sheet at the time opacity readings are initiated and completed.
- (C) Observations: Opacity observation shall be made at the point of greatest opacity in that portion of the visible emissions, (plume where applicable) where condensed water vapor is not present. The observer shall not look continuously at the visible emissions, (plume where applicable) but instead shall observe the visible emissions, (plume where applicable) momentarily at fifteen (15) second intervals.
- (D) Recording observations: Opacity observations shall be recorded to the nearest five percent (5%) at fifteen (15) second intervals on an observational record sheet. A minimum of twenty-four (24) observations shall be recorded. Each momentary observation shall be deemed to represent the average opacity of emissions for a fifteen (15) second period.
- (E) Determination of opacity as an average of twenty-four (24) consecutive observations: Opacity shall be determined as an average of twenty-four (24) consecutive observations recorded at fifteen (15) second intervals. Divide the observations recorded on the record sheet into sets of twenty-four (24) consecutive observations. A set is composed of any twenty-four (24) consecutive observations. Sets need not be consecutive in time and in no case shall two (2) sets overlap. For each set of twenty-four (24) observations, calculate the average by summing the opacity of the twenty-four (24) observations and dividing this sum by twenty-four (24). Record the average opacity on a record sheet. For the purpose of determining an alternative visible emission limit in accordance with 326 IAC 5-1-5(b) following, an average of twenty-four (24) consecutive readings or more may be used to calculate the alternate visible emissions limit.
 - (F) Determination of opacity as a cu-

mulative total of fifteen (15) minutes: For emissions from intermittent sources, opacity shall be determined in accordance with clause (A), (B), (C), and the first sentence of (D). Each momentary observation shall be deemed to represent the average opacity of emissions for a fifteen (15) second period. All readings greater than the specified limit in 326 IAC 5-1-2 shall be accumulated as fifteen (15) second segments for comparison with the limit.

- (G) Attached steam plumes: When condensed water vapor is present within the plume as it emerges from the emission outlet opacity observations shall be made beyond the point in the plume at which condensed water vapor is no longer visible. The observer shall record the approximate distance from the emission outlet to the point in the plume at which the observations are made.
- (H) Detached steam plumes: When water vapor in the plume condenses and becomes visible at a distinct distance from the emission outlet, the opacity of emissions should be evaluated at the emission outlet prior to the condensation of water vapor and the formation of the steam plume.
- (2) Determination of compliance with visible emission limitations established in this rule (326 IAC 5-1) may also be made in accordance with a source's or facility's continuous monitoring equipment, for any source or facility in compliance with the requirements of 326 IAC 3-1.
- (b) If the compliance determination procedures set forth in subsections (a)(1) and (a)(2) of this section results in any conflict in visible emission readings, the determination made in accordance with subsection (a)(2) of this section shall prevail for the purpose of compliance, provided that it can be shown that the continuous monitor has met the performance specifications as set forth in the 40 CFR 60, specifically Performance Specification

326 IAC 5-1-5 Violations

Sec. 5. (a) A violation of this rule (326 IAC 5-1) shall constitute prima facie evidence of a violation of other applicable particulate emission control regulations. A violation of any such rule may be refuted by a performance test conducted in accordance with subsection (b) of this section. Such test shall refute the mass emission violation only if the source is shown to

be in compliance with the allowable mass emission limit. An exceedance of the allowable opacity emission limit will not be treated as a violation if, during the test aescribed in subsection (b) of this section, the source demonstrates compliance with the allowable mass emission limit while simultaneously having visible emissions more than or equal to the reading at which the exceedance was originally observed.

- (b) The owner or operator of a source or facility which believes it can operate in compliance with the applicable mass emission limitation, but exceeds the limits specified in 326 IAC 5-1-2, may submit a written petition to the commissioner requesting that an alternate opacity limitation be established pursuant to the following provisions. Additionally, if the commissioner has issued a notice of violation to an owner or operator of a source or facility for violation of the applicable opacity limitation, such owner or operator may, propose in notice of violation resolution, to disprove said violation by establishing an alternate opacity limit pursuant to the following provisions. This alternate limit shall be based upon a mass emission performance test conducted according to a method designated by the commissioner. and a visible emission test conducted simultaneously, according to 326 IAC 5-1-4. Where the commissioner determines there is no acceptable test method available, a request for an alternate visible emission limit shall be denied.
- (i) The alternate emission limit shall be equal to that level of opacity at which the source or facility will be able, as indicated by the performance and opacity tests, to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation. However, the commissioner shall also reserve the right to determine the alternate visible emissions limit in the following manner:
- (A) If a performance test of a source or facility demonstrates:
- (i) that said source or facility is in compliance with the allowable mass emissions limit (as defined in 326 IAC 1-2) at the time that the test is done; and
- (ii) simultaneously, said source's or facility's test demonstrates that the allowable opacity emission limit is being exceeded, then, the enforceable opacity limitation shall be equal to that level of opacity at which the source or facility will

and opacity tests to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation.

- (B) If a performance test of a source or facility demonstrates:
- (i) that said source or facility is in compliance with the allowable mass emission limit, and the test mass emission rate is within ten percent (10%) of the allowable emissions limit for that source or facility; and
- (ii) simultaneously, said source's or facility's test demonstrates that the opacity observed is below the allowable opacity emission limit, the enforceable opacity limitation shall be equal to that level of opacity at which the source or facility will be able, as indicated by the performance and opacity tests, to meet the opacity standard at all times during which the source or facility is meeting the mass emission limitation.
- (C) If a performance test of a source or facility demonstrates:
- (i) that said source or facility is in compliance with the allowable mass emission limit, and the test mass emission rate is less than ninety percent (90%) of the allowable emissions limit; and
- (ii) simultaneously, said source's or facility's test demonstrates that the opacity observed is below the allowable opacity emission limit, the enforceable opacity limitation shall remain the existing allowable opacity emission limitation for that source or facility
- (2) Compliance with 326 IAC 6-1, 326 IAC 6-2, 326 IAC 6-3, and 326 IAC 11-1, and other applicable rules must be demonstrated by the performance test.
- (3) The commissioner may require a performance test in any case where it is necessary to determine the compliance status for a facility. However, the commissioner will not request a performance test for any facility which is known to be in compliance with the allowable opacity limitation.
- (4) All alternate visible emission limits shall be established on a source or facilityspecific basis. No limitation for any facility or source shall be established by reference to a similar or identical facility or source
- (5) The owner or operator of the source or facility shall notify the commissioner at

- be able as indicated by the performance least fifteen (15) days prior to conducting a test for the purposes of demonstrating an alternate visible emission limit.
 - (6) A staff member who is a qualified observer, approved by the commissioner or other consultant approved by the commissioner shall be present during any performance tests.
 - (7) The cost of the performance test shall be at the expense of the owner or operator.
 - (8) Any afternate visible emission fimit established for any source or facility shall not become effective until said limitation is established in the applicable operating permit. Said limitation will be incorporated, by amendment, into the operating permit for said source or facility and submitted to the U.S. EPA as a SIP revision.
 - (9) Where a visible emission limitation is based upon a new source performance standard, any new limitation must comply with the provisions of said standard.

326 IAC 5-1-6 Compliance schedule

Sec. 6. Sources newly subject to more stringent limitations on August 27, 1280. by 326 IAC 5-1-2 shall comply with the compliance schedule of 326 IAC 6-1.

326 IAC 5-1-7 State implementation plan revisions

Sec. 7. Any exemptions given or provisions granted to this rule (326 IAC 5-1) by the commissioner under 326 IAC 5-1-3(c), 326 IAC 5-1-3(d), or 326 IAC 5-1-5(b), shall be submitted to the U.S. EPA as a SIP revision.

ARTICLE 6. PARTICULATE RULES

Rule 1. Nonattainment Area Limitations

326 IAC 6-1-1 Applicability of rule

Sec. 1. Sources or facilities specifically listed in 326 IAC 6-1-7 shall comply with the limitations contained therein. Sources or facilities that are (1) located in the nonattainment counties listed in 326 IAC 6-1-7, (2) but which sources or facilities are not specifically listed in 326 IAC 6-1-7, and (3) have the potential to emit one hundred (100) tons or more of particulate matter per year or have actual emissions of ten (10) tons or more of particulate matter per year, shall comply with the limitations of 326 IAC 6-1-2.

limitations; fuel combustion steam generators, asphalt concrete plant, grain elevators, foundaries, mineral aggregate operations; modification by commissioner

not limited by subsections (b) through (g) of this section shall not allow or permit discharge to the atmosphere of any gases which contain particulate matter in excess of 0.07 gram per dry standard cubic meter handling, storing, and weighing hot aggre-(g dscm) (0.03 grain per dry standard gate; systems for loading, transferring. cubic foot (dscf)) Where this limitation is and storing mineral filler; sestems for mixmore stringent than the applicable limita- ing asphalt concrete; and the loading. tions of subsections (b) through (g) of this section, for facilities in existence prior to the applicability dates, or of a size not limitations for those facilities shall be dedures set forth in subsection (h) of this unless such gases are limited to: section.

- No person shall operate a fossil fuel combustion steam generator (any furnace or boiler used in the process of burning solid, liquid, or gaseous fuel or any combination thereof for the purpose of producing steam have transfer) so as to discharge or cause to be discharged any gases unless such gases are limited to
- (1) A particulate matter content of no greater than 0.18 grams per million calories (0.10 pounds per million Btu) for solid fuel fired generators of greater than sixtythree million (63,000,000) kilocalories (keal) per hour heat input (two hundred fifty (250) million Btu);
- (2) A particulate matter content of no eighty-eight thousand one greater than 0.63 grams per million calories (0.35 pounds per million Btu) for solid fuel fired generators of equal to or greater than 6.3 but less than or equal to sixtythree million (63,000,000) kcal per hour heat input (twenty-five (25) but less than or equal to two hundred fifty (250) million Btu):
- (3) A particulate matter content of no greater than 1.08 grams per million calories (0.6 pounds per million Btu) for solid fuel fired generators of less than 6.3 million keal per hou heat input (twenty-five and cubic meter (dsem)(0.03 grain per dry (25) million Btu)
- greater than 0.27 grams per million keal commenced prior to January 13, 1977 (0.15 pounds per million Btu) for all liquid fuel fired steam generators
- greater than 01 grains per dry standard housekeeping and maintenance is defined

326 IAC 6-1-2 Particulate emission cubic foot for all gaseous fuel-fired steam generators.

- (c) Asphalt concrete plants: The requirements of this provision shall apply to any asphalt concrete plant (any facility Sec. 2. (a) General sources: Facilities used to manufacture asphalt concrete by heating and drying aggregate and mixing with asphalt cement). An asphalt concrete plant is deemed to consist only of the following: driers, systems for screening. transfer, and storage avstems associated with emission control systems.
- (1) No person shall operate the affected applicable to said subsections, emission facilities of an asphalt concrete plant which existed on or prior to June 11, 1973. termined by the commissioner and will be so as to discharge or cause to be disestablished in accordance with the proce- charged into the atmosphere any gases
 - (A) A particulate matter content of no (b) Fuel combustion steam generators: greater than 230 mg per dscm (0.10 grain
 - (d) Grain Elevators: No person shall operate a grain elevator (a grain elevator is defined as any plant or installation at which grain is unloaded, handled, cleaned, dried, stored or loaded) without meeting the provisions of this subsection. Subdivision (1) of this subsection shall apply to any grain storage elevator located at any grain processing source which has a permanent grain storage capacity of thirtyfive thousand two hundred (35,200) cubic meters (one (1) million U.S. bushels) and any grain terminal elevator which has a permanent grain storage capacity of (88,100) cubic meters (two and one-half (2.5) million U.S. bushels). All grain elevators subject to this rule (326 IAC 6-1) shall comply with the requirements of subdivision (2) of this section.
- (1) No owner or operator subject to the provisions of this subpart shall cause to be discharged into the atmosphere from any affected facility except a grain dryer any process emission unless such emissions are limited to a particulate matter content of no greater than 0.07 gram per dry standstandard cubic foot (dscf)) for said facili-(4) A particulate matter content of no ties for which construction or modification
- (2) Grain elevators subject to this subdivision shall provide for good housekeeping (5) A particulate matter content of no and good maintenance procedures. Good

as those practices which would be followed by a prudent management in controlling, regulating, and maintaining clean and safe conditions of buildings, conditions and grounds. In particular, these practices are required to minimize the opportunity for particulate matter to become airborne and leave the property

- (A) Good housekeeping practices shall be conducted in the following areas of operations:
- (i) Areas to be swept and maintained clean in appearance shall include at a minimum: general grounds, yard and other open areas; floors decks, hopper areas. loading areas, dust collectors, and all such areas of dust or waste concentrations; and grain driers with respect to accumulated particulate matter.
- (ii) Cleanings or other collected waste material shall be handled and disposed of in such a manner that the area does not generate fugitive dust.
- (iii) Dust from driveways, access roads, and other areas of travel shall be controlled.
- (iv) Accidental spills and other accumulations shall be cleaned up as soon as possible but no later than completion of the day's operation.
- (B) Good equipment maintenance will be those procedures which eliminate or minimize emissions from equipment or a system caused by:
 - (i) Malfunctions.
 - (ii) Breakdowns.
 - (iii) Improper adjustment.
- (iv) Operation above rated or designed
- (v) Not following designed operating specifications.
- (vi) Lack of good preventive maintenance care.
- (vii) Lack of critical and proper spare replacement parts on hand.
- (viii) Lack of properly trained and experienced personnel.
- (C) To insure the above good housekeeping and maintenance procedures, emissions from the affected areas, operations, equipment and systems shall not exceed twenty percent (20%) opacity as determined pursuant to 326 IAC 5-1.
- (e) Foundries: Grev iron foundries shall be limited by the provisions of this subsection.
- (1) No owner or operator of a grey iron foundry shall cause, allow or permit from

Rule 2 Participate Emission Limitations for Sources of Indirect Heating

326 IAC 6-2-1 Applicability

Sec. 1. This rule (326 IAC 6-2) establishes limitations for sources of indirect heating:

- (a) Particulate emissions from the combustion of fuel for indirect heating from all facilities located in Lake, Porter, Marion, Boone, Hamilton, Hendricks, Johnson, Morgan, Shelby, and Hancock Counties which were existing and in operation or which received permit to construct prior to September 21, 1983, shall be limited by 326 IAC 6 2-2.
- (b) Particulate emissions from the combustion of fuel for indirect heating from all facilities not specified in subsection (a) of this section which were existing and in operation or which received permits to construct prior to September 21, 1983 shall be limited by 326 IAC 6-2-3.
- (c) Particulate emissions from the combustion of fuel for indirect heating from all facilities receiving permits to construct on or after September 21, 1983 shall be limited by 325 IAC 6-2-4.
- (d) If any limitation established by this rule (326 IAC 6-2) is inconsistent with applicable limitations contained in 526 IAC 6-1, then the limitations contained in in the specified counties shall be limited 326 IAC 6-1 prevail.

$$Pt = \frac{0.87}{Q^{0.16}}$$

Where:

- Pt = Pounds of particulate matter emitted per million Btu (lb-mmBtu) heat input.
- Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility's operation permit application, except when some lower capacity is contained in the facility's operation permit, in which case, the capacity specified in the operation permit shall be used.

For Q less than 10 mmBtu/hr, Pt shall not exceed 0.6. For Q greater than or equal to 10,000 mmBtu/hr, Pt shall not exceed 0.2. Figure 1 may be used to estimate allowable emissions.

- (e) If any limitation established by this rule (326 IAC 6-2) is inconsistent with applicable limitations contained in 326 IAC 12, New Source Performance Standards, then the limitations contained in 326 IAC 12 prevail.
- (f) If any limitation established by this rule (326 IAC 6-2) is inconsistent with a limitation contained in a facility's construction or operation permit as issued pursuant to 326 IAC 2. Permit Review Regulations, then the limitations contained in the source's current permits
- (g) If any limitation established by this rule (326 IAC 6-2) is inconsistent with a limitation required by 326 IAC 2. Permit Review Regulations, to prevent a violation of the ambient air quality standards set forth in 326 IAC-1-4, then the limitations required by 326 IAC 2 prevail.
- (h) The addition of a new facility at a source does not affect the limitations of the existing facilities unless such changes in the limitations are required by the provisions of 326 IAC 2 or 326 IAC 6-1.

326 IAC 6-2-2 Emission limitations for facilities specified in 326 IAC 6-2-1(a)

Sec. 2. (a) Particulate emissions from existing indirect heating facilities located by the following equation:

- (b) The emission limitations for those indirect heating facilities which were existing and in operation on or before June 8, 1972, shall be calculated using the equation contained in subsection (a) of this section where: Q shall reflect the total source capacity on June 8, 1972. The resulting Pt is the emission limitation for each facility existing on that date and will not be affected by the addition of any subsequent facility. The particulate emissions from all of the facilities which were in existence on June 8, 1972, may be allocated in any way among these facilities provided that they will not result in a significantly greater air quality impact level at any receptor than that which would result if the particulate emissions from each of these facilities were limited to Pt; and provided that the emission limitations for each facility are specified in its operation permit. Significant impact levels are defined in 326 IAC 2-3(d).
- (c) The emission limitations for those indirect heating facilities which began operation after June 8, 1972, and before September 21, 1983, and those facilities which receive permits to construct prior September 21, 1983 shall be calculated using the equation contained in subsection (a) of this section where: Q includes the capacity for the facility in question and the capacities for those facilities which were previously constructed or received prior permits to construct. The limitations for all previously permitted facilities do not change. The O and Pt for each facility at a source which begins operation or receives a construction permit during this time period will be different.

326 IAC 6-2-3 Emission limitations for facilities specified in 326 IAC 6-2-1(b)

Sec. 3. (a) Particulate emissions from indirect heating facilities existing and in operation before September 21, 1983, shall be limited by the following equation:

$$Pt = \frac{C X a X h}{76.5 X Q^{0.75} X N^{0.25}}$$

Where:

- C = Maximum ground level concentration with respect to distance from the point source at the "critical" wind speed for level terrain. This shall equal 50 migrograms per cubic meter (μ/m^3) for a period not to exceed a sixty (60) minute time period.
- Pt = Pounds of particulate matter emitted per million Btu heat input (lb/mmBtu).
- Q = Total source maximum operating capacity rating in million Btu per hour (mmBtwhr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility's operation permit application, except when some lower capacity is contained in the facility's operation permit; in which case, the capacity specified in the operation permit shall be used.
- N = Number of stacks in fuel burning operation.
- a = Plume rise factor which is used to make allowance for less than theoretical plume rise. The value 0.67 shall be used for Q less than or equal to 1,000 mmBtu/hr heat input. The value 0.8 shall be used for Q greater than 1,000 mmBtu/hr heat input.
- h = Stack height in feet. If a number of stacks of different heights exist, the average stack height to represent "N" stacks shall be calculated by weighing each stack height with its particulate matter emission rate as follows:

$$h = \frac{\sum_{i=1}^{N} H_i X pa_i X Q}{\sum_{i=1}^{N} pa_i X Q}$$

$$= \sum_{i=1}^{N} pa_i X Q$$

Where:

pa = the actual controlled emission rate in lb/mmBtu using the emission factor from AP-42 or stack test data. Stacks constructed after January 1, 1971, shall be credited with GEP stack height only. GEP stack height shall be calculated as specified in 326 IAC 1-7.

(b) The emission limitations for those indirect heating facilities which were existing and in operation on or before June 8, 1972, shall be calculated using the equation contained in subsection (a) of this section where: Q, N, and h shall include the parameters for all facilities in operation on June 8, 1972. The resulting Pt is the emission limitation for each facilits existing on that date and will not be affected by the addition of any subsequent facility. The particulate emissions from all of the facilities which were in existence on June 8, 1972 may be allocated in any way among these facilities provided that they will not result in a significantly greater air quality impact level at any receptor than that which would result if the particulate emissions from each of these facilities were limited to Pt; and provided that the

emission limitations for each facility are this time period will be different. specified in its operation permit. Significant impact levels are defined in 326 IAC 2-3-2(d).

(c) The emission limitations for those indirect heating facilities which began operation after June 8, 1972, and before September 21, 1983, and those facilities which receive permits to construct prior to to September 21, 1983, shall be calculated using the equation contained in subsection (a) of this section where: Q, N, and h shall include the parameters for the facility in question and for those facilities which were previously constructed or received prior permits to construct. The limitations for all previously permitted facilities do not change. The Q, N, h, and Pt for each facility at a source which begins operation or receives a construction permit during

(d) Particulate emissions from all facilities used for indirect heating purposes which were existing and in operation on or before June 8, 1972, shall in no case exceed 0.8 lb/mmBtu heat input.

(e) Particulate emissions from any facility used for indirect heating purposes which has 250 mmBtu/hr heat input or less and which began operation after June 8, 1972, shall in no case exceed 0.6 lb/mmBtu heat input.

326 IAC 6-2-4 Emission limitations for facilities specified in 326 IAC 6-2-1(c)

Sec. 4. (3) Particulate emissions from indirect heating facilities constructed after September 21, 1983 shall be limited by the following equation:

$$Pt = \frac{1.09}{Q^{0.26}}$$

Where.

- Pounds of particulate matter emitted per million Btu (lb/mm Btu) heat input.
- Q = Total source maximum operating capacity rating in million Btu per hour (mmBtu/hr) heat input. The maximum operating capacity rating is defined as the maximum capacity at which the facility is operated or the nameplate capacity, whichever is specified in the facility's permit application, except when some lower capacity is contained in the facility's operation permit; in which case, the capacity specified in the operation permit shall be used.

For Q less than 10 mmBtu/hr, Pt shall not exceed 0.6. for Q greater than or equal to 10,000 mmBtu/hr, Pt shall not exceed 0.1. Figure 2 may be used to estimate allowable emissions.

(b) As each new indirect heating facility is added to a plant Q will increase. As a result, the emission limitation for each progressively newer facility will be more stringent until the total plant capacity reaches 10,000 mmBtu/hr after which the emmission limit for each newer facility will be 0.1 lb/mmBtu heat input. The rated capacities for facilities regulated by 326 IAC 12, New Source Performance Standards, shall be included when calculating Q for subsequent facilities.

APPENDIX D

Plant Operating Logs

TIME	STEAM FLOW	COAL PPH
0100	23200	2,578
0200	22147	2,460
0300	21604	2,400
0400	22038	2,449
0500	21947	2,439
0600	23236	2,582
0700	29360	3,162
0800	34046	3,783
0900	32695	3,633
1000	33420	3,713
1100	33023	3,669
1200	33019	3,669
1300	32420	3,602
1400	32272	3,586
1500	32527	3,614
1600	33865	3,763
1700	34070	3,786
1900	34050	3,783
1900	33605	3,734
2000	33498	3,722
2100	33602	3,734
2200	33745	3,749
2300	33333	3,704
2400	21910	2,434

SMEDLEY A. GRAHAM WS-10 DAFC. PLANT FOREMAN

JAMES R. WILLIAMS WS-07 ASSISTANT FOREMAN france to Miams

Sudja Dre

T:ME	STEAM FLOW	COAL PPH
0100	17414	1,935
0200	18431	2,048
0300	19212	2,135
0400	19552	2,172
0500	19081	2,120
0600	12913	1,435
0700	10901	1,211
9800	16620	1,845
0900	33714	3,746
1000	37900	4,211
1100	38488	4,276
1200	37070	4,119
:300	35101	3,900
1400	31902	3,545
:500	30390	3,377
1600	27406	3,045
1700	27557	3,062
1800	26972	2,997
1900	26797	2,977
2000	27037	3,004
2100	26967	2,996
220)	27341	3,038
2300	26693	2,966
2400	18143	2,016

SMEDLEY A. GRAHAM WS-10 DAFC.

PLANT FOREMAN.

37

JAMES R. WILLIAMS WS-07

ASSISTANT FOREMAN

37

BOILER #5

TIME.	STEAM FLOW	COAL PPH	20 Feb 92
0100	56314	6,055	
0200	56384	6,063	
0300	57005	6,130	
0400	56218	6,045	
0500	55676	5,987	
0600	55711	5,990	
0700	56305	6,054	
0800	55074	5,922	
0900	55505	5,942	
1000	54821	5,894	
1100	54580	5,869	
1200	54339	5,843	
1300	53878	5,793	
1400	54769	5,889	
1500	53040	5,705	
1600	54066	5,814	
1700	54152	5,823	
1300	55162	5,931	
1900	54466	5,856	
2000	51852	5,575	
Z100	53481	5,745	
2200	54560	5,867	
2300	56662	60934	
2400 / / //	59112	6,356	Asing
MEDLEY AL GRAHI FLANT FOREMAN	AM WS-10 DAFC.	JAMES R. WILL ASSISTANT FOR	IAMS WE-07 EMAN

APPENDIX E

Coal Analysis

Branch Code	44	
	31415	
Lab. No		
Date Rec 1	02/22/92	
Date Sampled		
Sampled By	YOURSELVES	

SAMPLE DENTIFICATION ___

CAN #4467 BOILER #3 RUN #1 02/13/92

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Recid	10.73	7.30	30.77	51.20	11551	0.75
Dry Basis		8.18	34.47	57.35	12939	0.84
Л-A-Free					14092	

Respectfully Submitted.

40

MAD

Branch Code	44	
Lab. No	31414	
	02/22/92	
Date Sampled		
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION ____

CAN #2819 BOILER #3 RUN #2 02/13/92

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U., 'LB.	% Sulfur
As Recid.	11.13	7.36	30.03	51.48	11346	0.89
Dry Basis		8.28	33.79	57.93	12767	1.01
M-A-Free					13920	

Respectfully Submitted.

41

nch Code	44	
No	31413	
	02/22/92	
noted By	YOURSELVES	

AMPLE IDENTIFICATION _____

CAN #4120 BOILER #3 RUN #3 02/13/92

	³ Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./L.B.	% Sulfur
s Recid	11.89	7.66	29.42	51.03	11181	0.83
ry Basis		8.69	33.39	57.92	12690	0.94
-A-Free					13898	

Respectfully Submitted,

42

MARK M. SMITH

FOR YOUR PROTECTION THIS DOCUMENT HAS BEEN PRINTED ON CONTROLLED PAPER STOCK NOT VALID IF ALTERED

Branch Code	44	
Lat. No.	412	
Date Recid	02/22/92	
Sampled By	YOURSELVES	

SAMPLE IDENTIFICATION ____

CAN #2030 BOILER #4 RUN #1 02/11/92

	% Moisture	% Ash	% Voiatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Rec'd.	8.36	7.75	30.50	53.39	11738	0.66
Dry Basis		8.46	33.28	58.26	12808	0.72
M-A-Free					13992	

Respectfully Submitted, _

43

Branch Code	44	
Cab. No	31411	
	02/22/92	
Sampled By	YOURSELVES	

SAMPLE DENTIFICATION ____

CAN #1284 BOILER #4 RUN #2 02/11/92

	% Moisture	°⁄₃ Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Rec d	6.07	8.00	32.05	53.88	12117	0.90
Dry Basis		8.52	34.12	57.36	12900	0.95
M-A-Free					14101	

Respectfully Submitted.

44

nch Code	44	
. No	31410	
e Recid	02/22/92	
e Sampled		
npled By	YOURSELVES	

AMPLE IDENTIFICATION _____

CAN #4606 BOILER #4 RUN #3 02/11/92

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
Rec'd.	5.81	8.06	32.03	54.10	12107	0.95
y Basis		8.56	34.00	57.44	12854	1.01
A-Free					14057	

Respectfully Submitted,

45

inch Code	44	
a No	31418	
	02/22/92	
npled By	YOURSELVES	

305 CSG/DEMPH

BLDG. 223 - HEAT PLANT ATTN: MR. JIM WILLIAMS

GRISSOM AFB, IN 46971-5320

AMPLE IDENTIFICATION

CAN #1756 BOIDER #5 RUN #1 02/20/93

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
Recid	13.15	7.12	32.19	47.54	11495	0.61
y Basis		8.20	37.07	54.73	13235	0.70
A-Free					14417	

Respectfully Submitted.

46

5	44	
Branch Code	31417	
Lab No		
	02/22/92	
Date Recid		
Date Sampled		
,	YOURSELVES	
Sampled By		

SAMPLE IDENTIFICATION _____

CAN #4234 BOILER #5 RUN #2 02/20/92

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
As Rec'd.	14.45	7.74	29.37	48.44	11078	0.74
Dry Basis		9.05	34.33	56.62	12949	0.87
M-A-Free					14238	

Respectfully Submitted. ____

47

nch Code	44	
No	31416	
	02/22/92	
e Sampled		
npled By	YOURSELVES	

AMPLE IDENTIFICATION

CAN #4997 BOILER #5 RUN #3 02/20/92

	% Moisture	% Ash	% Volatile	% Fixed Carbon	B.T.U./LB.	% Sulfur
Recid.	16.62	6.34	33.87	43.17	11085	1.34
y Basis		7.61	40.62	51.77	13295	1.61
A-Free					14390	

Respectfully Submitted, ____

/

APPENDIX F

Port Locations and Sampling Points

DETERMINATION OF MINIMUM NUMBER OF TRAVERSE POINTS

Stack ID: BYPASS Stack diameter at ports: 5.5 (ft)

Distance A (ft) 11.5 (duct diameters) 2.1

Recommended number of traverse points as determined by

distance A: 12

Distance B (ft) 39.5 (duct diameters) 7.2

Recommended number of traverse points as determined by

distance B: 12

Number of traverse points used: 12

APPENDIX G

Boiler 3 Field Data

	AIR POL	LUTION PARTICU	LATE ANA	LYTICAL	L DATA	
GYISSUM 1	AFB, IN	13 Feb	92		RUN HUMBER	e)
Heating NUMBER	+ - Bldg #.	223	Journe M	мвея /2, # ј		
ı		PARTIC	ULATES			
	ITEM	FINAL W		INIT	IAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		0.62	28	0	.2887	0.3341
ACETONE WASHIN Hall Filter)		103.57	788	2I 103.	4908	0.0880
BACK HALF (If nee	eded)					
		Total W	eight of Partic	culates Coll	ected	0.4221 a
II		WAT	ER	1		
	ITEM	FINAL W		INIT	IAL WEIGHT	WEIGHT WATER
IMPINGER 1 (H20)		228	228		00	28
IMPINGER 2 (H20)	209	209		00	9	
IMPINGER 3 (Dry)		21	<u> </u>		_	- 5-
IMPINGER 4 (SIIIca	Gel)	208.2	208.2		00	8.2
		Total We	eight of Water	Callected		45.7 am
11		GASES	(Dry)			
ITEM	ANALYSIS	ANALYSIS 2	ANAL	.YSIS 3	ANALYSIS 4	AVERAGE
VOL % CO ₂	7. 6	7.6	フ	7		7.6
VOL % 02	12.1	12.2	12.	L		12.2
VOL % CO						
VOL % N2						
		Vol % N2 = (100% - %	co ₂ . % o ₂ .	% CO)		

	AIR POL	LUTION PARTICU	LATE ANALYTIC	CAL DATA	
Grissum F	FB	13 Feb 9		RUN NUMBER	
	Int-Blog #2		Boiles #	3	
1.		PARTIC		NITIAL WEIGHT	WEIGHT PARTICLES
	ITEM	(2)	i i	(g m)	(gm)
FILTER NUMBER		. 534		. 2860	0.2505
ACETONE WASHIN Half Filter)	IGS (Probe, Frant	100.32	29 10	0.2643	0.0586
BACK HALF (if ne	eded)				
		Total W	eight of Particulates (Collected	O.3091
11.		WAT			
	ITEM	FINAL W		NITIAL WEIGHT (倉市)	WEIGHT WATER (gm)
IMPINGER 1 (H20)		226		200	26
IMPINGER 2 (H20)		205		200	5
IMPINGER 3 (Dry)		۷.1		_	0.5
IMPINGER 4 (SIIIca	Gel)	206.9	206.9 20		6.9
			ight of Water Collecti	od	38.4 am
1111.		GASES			——————————————————————————————————————
"> ITEM	ANALYSIS	ANALYSIS 2	ANALYSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2	7.7	7-8	7. 8		7.8
VOL % 02	/2-1	12.2	12.2		12.2
VOL % CO					
VOL % N ₂					
		Vel % N ₂ = (100% - %)	CO ₂ - % O ₂ - % CO)		
OFUL FORM SO					

	AIR POL	LUTIO	ON PARTICU	LATE ANA	LYTICAL	DATA	
BASE	(1 T.1	DATE				RUN NUMBER	****
	FB, IN		Feb 92	···		3	
Heating Plan	+ - Blog #		BOIL	IMBER Leg #3			
1.			PARTIC	JLATES			
	ITEM	~	FINAL W		INIT	IAL WEIGHT (gm)	WEIGHT PARTICLES
FILTER NUMBER		~	.543	5		875	0.2560
ACETONE WASHING Half Filter)	S (Probe, Front		97.624	′/	8 97. 5	608	0.0633
BACK HALF (if need	led)						
			Total We	eight of Partic	culates Coll	ected	0.3193 am
и.		-	WATER				
	ITEM		FINAL WEIGHT (gm)		INITIAL WEIGHT (@m)		WEIGHT WATER (#m)
IMPINGER 1 (H20)	IMPINGER 1 (H20)			214		0	14
IMPINGER 2 (H20)			210 20		<u>0</u>	10	
IMPINGER 3 (Dry)			0	0 -		-	-
IMPINGER 4 (SIIIca G	ol)		209.7		20	D	9.7
<u>.</u>			Total Weight of Water Collected			33.7 am	
111.	1	γ	GASES	T			
· ' , ITEM	ANALYSIS 1		ANALYSIS 2	ANAL	YSIS 3	ANALYSIS 4	AVERAGE
VOL % CO ₂	7.0		7.0	7.	0		7.0
VOL % 02	13-1		13-0	13.0	2		13.0
VOL % CO							
VOL % N ₂							
		Vol %	N ₂ = (100% - %)	co ₂ . % o ₂ .	% CO)		

2 2 2 2 2		Ī		PART	ICULATE SA	RTICULATE SAMPLING DATA SHEET	SHEET					
-	Boi Ich		SCHEMATIC OF STACK CROSS SECTION	:K CROSS S	ECTION	EQUATIONS				AMBIENY YEMP	TEMP	
DATE	857 (e) 41.	11				OR = OF + 460					3 0	40
~	() L			a Motor		L	r		1	STATION PRESS	PRESS	
PLANT	g		,	ر ر ر		H = 5130	5130 F & Cp. A 2	Ta			29.082	th Hg
Heating	p plant		_				ີ ວໍ	Ts .		HEATER	اءٍ	
BASE	1	T	<u>></u>			Pre P.	P. tot check	101	1		てしるケイ	-5- OF
6r135014	n AFB	-	<u>,c</u>				the state of the state of	,) ,	1 H.	PROBE H	PROBE HEATER SETTING	17.
SAMPLE BOX NUMBER	UMBER					, , , , , , , , , , , , , , , , , , ,	\ . \ \ \ . \ \ \ \ \ \ \ \ \ \ \ \ \ \	. 5		0 + 1		, ,
M5 150 80V N.		1	_,				Train check at Disthylok	at 7 in Hg	10K			t,
**************************************	X J					pert pi	rifut chark - sk	٠ أر	1	HOZZLE	NOZZLE AREA (A) diq	
Qw/Qn		Ī			-	_				و	4.0	Ta 9/ 4
3			Lessy suches	-		stat.	L Aressure	57/0-2	-		78.0	
			THE STANK	9.9	10.11.0=5.5	OHE		> -`	700	DRY GAS	DRY GAS FRACTION (Fd)	6
TRAVERSE	SAMPLING	MATIC	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GASN	GAS METER TEMP	-	SAMPLE	
NUMBER	(@1u)	PRESSURE (in Hat)	(°F)	(Ts) (oR)	HE AD (Vp)	PRESS.	SAMPLE VOLUME	N (S	AVG (Tg)	OUT	BOX	OUTLET
I A	(5680) 0	7.7	115		0.013	0.73	365 0 47	43	+		(45)	(PF)
7	3	- 1	170		8400	1.43		42			140	***
* 2	70		200		U. C 3 2	1 4 7		->+	3	L.	イバゲ	7
,		- (2 × 7		3500	1.52		47	J	1 ~ +		> <
6	25	2	7 23		<u>س</u> د	-1		48,		43	253	34
	30	7	- 63		0.0 + >	1 0 9		48	7	7	258	35
		•					581, 535			+		
9	1580) 08	~	90		8.00	1.05		<i>ע</i> י		+	, 63	
7	, 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	, t	150		0.02	1, 32		41,1		1	1	
7 3	07	4.5	107		- 1	1.43		4,		1/4	7 7 7	
	2,0	2.1	7 7 7	+	-a] -	1.70		47		41	25.6	3 6
Þ	7.1	5.0	. 11	+	- اد	(9)		47		75	7.54	35
	6.4		1 1		0.0	-1.76	401 00g	× 7		+	757	3.6
					1		J		+	+		
		Ts=	578		41	E 1.33		1,2	44			
				V F575	カミカチョ		17	-				
						Ta'la' 121.	35.762			+		
1									-	+		
DEHL FORM	8~ •								1	1	7	

				PARTICULATE S	SAMPLING DATA	SHEET				
RUN NUMBER	S OK	7	SCHEMATIC OF STACK CROSS SECTION	:	NOIT A HOW			TAGRIET	AUBIEUT YEUS	
ہ		٦ ٦							A T	-
DATE	73.7. 77 7.	1	r		OR = OF + 460	0			7 /	4o
*	Fel in	-,- ,-		•	-	,		2	2000	
PLANT	1			D Meter	H = 5130		Tm Vp	1 4 5 7	. 1 2	In Hg
Heating	7.4.7		(V00		· ~ }	·.			
BASE	j		<u></u>		bre 6.	VOI USERS TO END	とっし	PROBE	HEATER SETTIN	9 () OF
	1 11		8		fre Trai	pro Train their at is in his	- 1	Ĭ,	ナイドナ	ージシャ
100 37 Luce						<i>,</i>		PROBE	LENGTH	
200		1	<u>ب</u>		post train	in chick at	1 612 Hy K	Ę		- L
3	Z = 2				+0+00	- 1)26/2 - 10 + 0 + 0 + 0 4 0 0	٠	NOZZLE	AREA (M) d	
Ow/Om							<u></u>		P. 0	446 **
								ر ر	770	
ರೆ		21	2 4500		1,444,6	ryessure =	571.0-	2 2	1	
		MMJ	579.9	1, H, O = 5.5	AHE	= 1,951 Y	= Lout	DRY	DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	METATIC	STACK TEMP		ORIFICE	GAS	GAS METER	TEMP	CAMBIE	
NUMBER		PRESSURE	(OF) (Ts)	S) HEAD	DIFF.	SAMPLE	N AVG	OUT	BOX	OUTLET
	(mim)	(m nash	\dashv	_	(H)	(cu ft)	(oF) (Tm)		TEMP	TEMP
56	72.01	3 2	9 6	0616	0.93	401. 202	5	-	707	
	^	2.5	165		0.93		54	17	4.5.7	**
*	(0)	۲. ۶	7.5.7	0 0 18	0.8L		44	5	6:0	4
, ,	13	3.0	287	0.025	1.10		1.5	カカ	1 4 7	200
4.	70	7.7	7 87	5700	99.0		2.5	47	177	38
q	2.5	1.5	787	0.00	14.0		,/9	1,5	749	37
	30					Chr 5/1:			-	
X		1	ı.	ſ						
2	20 (11/10)	1-7	\$ \$	0,0/0	0.6/	776 317	6.5	3.6	746	36
1	\$\$		166	5/00	0.80		7 9	127	イング	3.7
	2 2 3	\$ 0	797	0.02	1.05		7.9	5%	252	3.7
,,,,	20	× ×	707	- 1	135		, i	5.4	2 60	30
	100	3 3	4.5.6	4	7.43		ر ک	59	177	3.9
1	, ,	\$: \$	477	0.025	1.13	- 1	9 9	9 9	765	8.8
	٥					431 583				
			7.5.7		Į,		ľ			
		4		6	76.0 240		1m = 5/k			
			7	18 C 2 - 12 7 18						1
				+	T. 11 1/2	196.981	-			(
					-		+	 		7
				+			+	1	1	1
							-	1		
DEHL FORM	18 T8									

				PART	ICULATE SAN	TICULATE SAMPLING DATA SHEET	SHEET				
RUN NUMBER	BURES	SCHEMA	TIC OF STA	SCHEMATIC OF STACK CROSS SECTION	ECTION	EQUATIONS			AMBIE		
5 DATE	85% Capacity	子				OR = OF + 460			STAT	3 5	чo
~	Fol 42)		•		-	5130-FG-Co.A 2 7	£		27083	# S
PLANT Mand	+ 17/0			7 × × × × ×			·	T. Vp	HEAT	HEATER BOX TEMP	'
BASE			<u>_</u>	-		ive rite	10+120E	- °K	98089	PROBE HEATER SETTING	2,
6 + 1550 AFD	AFD		<u> </u>			p. 0 Tr.	THE CARRY.	check of 15 inly	X	レグア	7.51
SAMPLE BOX N	UNBER					fr. + Tr	· Train check at 8.514 Hs-	t8.5.4#	Y	PROBE LENGTH	\$
METER BOX NUMBER	MBER	\ 	_			+ 15 + Cod	potot capek -	to to	NOZZLE	AREA	, z
Qw/Qm									ථ	0.776	
			,	•		4	21 22 22 24	0-14		0.84	
S		72	HW1 = 29.4	1	11.02 5.5	OHE	1367	1 1.004		DRY GAS FRACTION (Fd)	•
TRAVERSE	SAMPLING	MCNATIC	STACK	STACK TEMP	VELOCITY	ORIFICE	GAS	GAS METER	ER TEMP	SAMPLE	MPINGER
POINT		PRESSURE (in H20)	(OF)	(Ts) (°R)	HEAD (Vp)	PRESS.	SAMPLE		AVG OUT	BOX	OUTLET
1 A	(4:11) 0	5 2	×0		0.0	0.0	(m m)	(Ja)	(4) 7 (4) 7 (4) 7	(Jo) 7	(J.)
7	٤.	40	140		0.02	1.09		»;+	27		3.9
~	10	ک و	192		0.03	18.1		80	44	サーバ	38
71	15	دي	2.77		0 038	1.67		<i>{</i> 5	47.	757	3.0
\ \ \	27	7.3	- 1		-1	1.31		25.	1		to
•	7.0	2.	2 7		0.015	0)",	201 0717	()	5	253	07
	2						1				
1 8	[0881] 78	۲,۶	. 0		5100	0.870	マッ/なかか	200	<i>b</i> 7	7 5 6	36
7	35	5.5	170		0.028	1.45		13	44	2 50	3.6
7 7	70	10	41			1.54		2.3	4 4	7.5.7	36
4	50	2 .	7 7 7		26 1 0 8 1 9 8	1 2 7		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	t :	8-7.5	7,
9	ۆر	6. 6	187		4	1.74		71.7	֓֞֜֞֜֞֜֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֟֓֓֓֓֓֟֓֓֓֓֟	157	0 %
	6.3						467.566		2	-	2.8
		- 1	1		4.0	6 1		V 1			
			1		14164:			E			
						Till Val	35.374				
									-		
								<u> </u>	1		
OEHL FORM	76 18										

OMPANY NAME	L + 2	1. +	, ,	ERVATIO:	N DATE 92		START	TIME	END TI	ME 'J Y
Grissom HFB - M	exling 11	4m /	SEC		1	-	1 .	10 /		
CVISION AFB - M GVISION AFB - M STREET ANDRESS Blog # 223			LUM	0	15	30	45		COMMEN	TS
0102 # 223			1	15	20	20	0 د			
	STATE :	ZIP	2	20	20	20	20			
Grissam AFB	STATE	75971]		1		i			
HONE (KEY CONTACT)	SOURCE ID	NUMBER	1	20	20	20	20	 		
			1 4	15	15	20	20	<u> </u>		
ROCESS EQUIPMENT		OPERATING MODE	5	15	20	20	20			
Box/e # 3		85%	6	25	20	20	20			
ONTROL ECUIPMENT	•	OPERATING MODE	7	i		Ī				_
By- PASS			!├	20	120	20	120			
ESCRIBE EMISSION POINT			8	15	20	15	15			
- tar STACK			9	15	15	15	20	ļ		
			10		15.	1	15			
EIGHT ABOVE GAOUND LEVEL	HEIGHT REL	ATIVE TO OBSERVER		20	i					·
100	Sien po		''-	15	15	20	20			
STANCE FROM OBSERVER	1	FROM OBSERVER	12	20	20	20	20			
21 150 End	Start 10	€ End	13	20	15	20	20			
ESCRIBE EMISSIONS			14	20	15	20	20			
an lofting	End	AOPLET PLUME	15							
	1	_		20	15	20	ا: ر			
an GRAY END	CITY WAS DETE	AMINED	16	20	20	20	20	<u> </u>		
art	End		17	15	15	20	20	!		
ESCRIBE PLUME BACKGROUND			18	25	20	25	20			
art 5 Xy	End		19				10	Sant	Blow	(0822)
CKCROUND COLOR	SKY CONDIT		 	40	60	40				(,0,000)
no speed	Stantowner	End End	20	20	25	20	20			
	San NZ		21	15	20	20	20			
at 7 End	WET BULB T		22	ا سور	20	20	20			-
art 19 End .		80	23	i			i			
L SOURCE LA	YOUT SKETCH	Draw North Arrow		20	20	151	15			
Sounce Da	^		24	20	20	25	30			
	\mathcal{O}		25	30	25	10	30			
-d h	Anss O		26	70	15	15	2.0			
. 01	>		 	20		_	20			
	Emission F	Paint	27	15	15	15	15			
~ p			28	15	15	15	15			
			29	15	15	20	15			
			30	,,		15	20			
	1			20	1C AME PR		<u> 1</u>			· -
, 1			1 11/	iven's n I <i>mon</i>	MENTH		Tron.	- Ocasio	, .	
معلميه المستعمد	Observer's P	Pasitian			GNATUR		~ ~~ ~	<u> </u>	DATE	/
			K	m 6	1 7	- C	ح_		13/2	N92
, i	40° 		1 1	IZATION	/	1/ni	(/)			
Sun Loc	ition Line		CEATIF	4 5 KD	y CAR	5/UC	VW.		DATE	
DITIONAL INFORMATION				ZXA)	Air	Cont	tol L	Sand	18 Oct	91
	· ·			<u> </u>	• • • •					, - ,

VISIBLE EMISSION OBSERVATION FORM No. START TIME CASERVATION DATE END THE COMPANY NAME AFB 15 86 1030 1100. 92 COVISSON 45 15 a COMMENTS 15 15 20 20 20 20 STATE . צדוב _TN 46971 Grissom з. 1 D 20 SOURCE ID NUMBER PHONE (KEY CONTACT) 4 15 OPERATING MODE 20 PROCESS EQUIPMENT 85% Boile #3 6 15 OPERATING MODE CONTROL EQUIPMENT 7 Nary 8 ESCRIBE EMISSION PORT 20 9 20 20 10 20 15. HEIGHT RELATIVE TO CESERVER IEIGHT ABOVE GROUND LEVEL 11 20 20 Sian 100 (00 20 DIRECTION FROM DESERVER 12 15 20 ISTANCE FROM OBSERVER Start NW TI 150' 20 13 20 20 ESCRIBE EMISSIONS 14 20 25 20 an 10-100 End IF WATER DROPLET PLUME 15 20 MISSION COLOR 20 Detached G Tran End Attached 🗇 16 15 20 20 OINT IN THE PLUME AT WHICH OPACITY WAS DETERMINED 17 20 Il some stand 20 0 18 15 ESCRIBE PLUME BACKGROUND 5 K 9 Fnd 19 20 20 20 SKY CONDITIONS ACKGROUND COLOR Stan overcast 10 an 9/47 WIND DIRECTION IND SPEED 15 San E 24 End WET BULB TEMP RH, percent 20 IBIENT TEMP 86 28 20 20 Draw North Arro SCURCE LAYOUT SKETCH 20 25 20 25 20 26 20 27 سوبز 15 2.0 Emission Point 15 28 15 15 29 20 20 20 30 KAMON ORGANIZATION Sun Location Line CERTIFIED BY

TIONAL INFORMATION

		AIDIBLE	EMISSION	UESE	nva n		INI		No.	3	
Grisson Hfb- He	atii, pl	last			Feb	P DATE		START	TIME	END TIL	-
THEET ADDRESS	<u>-</u> -	.,		LIIN	0	15	30	45		COMMENT	rs
				1	15	20	20	20	stea	५ अग्रज्ञ	
TY_ ACK	STATE	ZII		2	15	20	20	20	from	044 5	Hocks
Grissom ASB	JN SOURCE ID		46971	3 ·	15	20	20	20	mised	with by	٠ محصور
HONE (KEY CONTACT)	300/102 15] _ •	20	20	20	20	SAOK	sul	<i>.</i>
ROCESS EQUIPMENT			NG MODE	5	20	25	20	25	inter	and u	1.4.
Boller # 3		OPERATION NO.	-2 ·	6	25	10	30	سو د	011	it re	· maly
ONTROL EQUIPMENT	İ	-	-	7	20	20	25	20			
ESCRIBE EMISSION POINT		·		В	20	20	20	20	-		
by yess - stark				9	20	20	20	20	-		
				10							
EIGHT ABOVE GROUND LEVEL	HEIGHT REL	ATIVE TO C	BSERVER	11	20	20	20	30			
100'	Start	End			20	20	20	20			
STANCE FROM OBSERVER	DIRECTION F			12	25	20	ن ۾	20	 		
и 200 End	Stan No	בריקי ברום		13	15	15	15	20			
SCRIBE EMISSIONS	End			14	15	15	20	20			
	IF WATER DE	OPLET PL	NWE	15	20	10	20	20			
INT IN THE PLUME AT WHICH OPACH	Attached 🗆	71.44.CD	Detached G	16	20	20	20	20			
, , , , , , ,	End	HMINED		17	20	20	20	20			
SCRIBE PLUME BACKGROUND				18							
	End			19	20	20	20	20			
CKCROUND CCLOR	SKY CONDITI			 	20	20	20	20			
ND SPEED	Sian DIRECT			20	20	20	20	20		 -	
in I Kent End	Sian NW			21	20	20	20	20			
BIENT TEMP	WET BULB TE		RH, percent	22	20	20	15	20			
int 33 End ·				23	20	15	15	15			
SOURCE LAYO	OUT SKETCH	D	raw North Arrow	24	15	15	15	15			
5 contas				25	15	15	20	15			
				26					,,		
					20	15	20	20		`	
	Enission P	oint		27	20	15	20	15			
\sim \cup \mid	10		7	28	15	20	20	15			
		\nearrow		29	15	15	20	15			
9.45		x	ļ	30	20	20	15	15			
hartony	. ~			OBSE	MER'S N	AME (PR		1			• -
stavis	Opsetvers Pa	noiliea	}		MON	ENATUR		con-	Ussi	DATE	
			}	CBSE	/ /.	7		7	·	13 Feb	92
h 140			_		IZATJON	,	1 /2.	- 1 1)			
. Son Location	on Line			HIM	TED BY	, Lab	100	EBQ.	`,	DATE -	
ITIONAL INFORMATION					45 A	Per C	entro	1 B	pard	18 Oc	T91

APPENDIX H

Boiler 4 Field Data

	AIR POLL	LUTION PARTICUL	ATE ANALYTIC	AL DATA	
BASE	101 -1	DATE		RUN NUMBER	· · · · · · · · · · · · · · · · · · ·
	IFB, IN			1	
Healing NUMBER	t - Bld #22	ر	SOURCE NUMBER Boiler	4 (85%	:/
· · · · · · · · · · · · · · · · · · ·		PARTICU	JLATES	***************************************	
	ITEM	FINAL W(HITIAL WEIGHT (gm)	WEIGHT PARTICLES
FILTER NUMBER		.652	7 0,	2910	0.3617
ACETONE WASHIN Half Filter)	GS (Probe, Front	105-69	81 100 100	5. 6033 •2543	0.0948
BACK HALF (If nee	oded)				
		Total We	light of Particulates C	ollected	0.4565 ac
ı .		WAT	ER		
	ITEM	FINAL WE	l l	IITIAL WEIGHT (pm)	WEIGHT WATER (4m)
IMPINGER 1 (H20)		22 4		200	26
IMPINGER 2 (H20)		212		200	12
IMPINGER 3 (Dry)		Z 1			1
IMPINGER 4 (Silica	Gel)	208.	9 :	00	8.9
-		Total We	ight of Water Collecte	d	47.9
II		GASE5	(Dry)		
ITEM	ANALYSIS 1	ANALYSIS 2	ANALYSIS 3	ANALYSIS 4	AVERAGE
VOL % CO ₂	8.7	8.6	8.7		8.7
VOL % 02	11.2	11.2	11.2		11.2
VOL % CO					
VOL % N2					
*		Val % N ₂ = (100% - % (CO ₂ - % O ₂ - % CO)		

OEHL FORM 20

	AIR POLL	UTION PARTICUL	ATE ANA	LYTICAL	DATA	
GIISSOM AF	B, IN	11 Feb 7			RUN NUMBER	
Heating Pla	nt - Aly #	227		MBER 50	iler 4	
1.		PARTICU	LATES			
	ITEM	FINAL WE		INIT	AL WEIGHT (gm)	WEIGHT PARTICLES
FILTER NUMBER		•610	(-886	0.3218
ACETONE WASHING Hall Filter)	S (Probe, Front	94.58.	58	94. - /03 .	5230 4900	0.0628
BACK HALF (If need	ded)					
		Total We	ight of Partic	ulates Colle	octed	0.3846 gm
11.		WAT	ER			
	ITEM	FINAL WE		INIT	AL WEIGHT (gm)	WEIGHT WATER (gm)
IMPINGER 1 (H20)		237		2	00	37
IMPINGER 2 (H20)		208		2	00	8
IMPINGER 3 (Dry)		0			_	O
IMPINGER 4 (Silica (Gel)	208.	4		8.4	8.4
-		Total We	ight of Water	Collected		53.4
III.	ANALYSIS	GASES ANALYSIS 2		YSIS	ANALYSIS	AVERAGE
VOL % CO2	9.3	9.1	9.1			9. 2
VOL % 0 ₂	10.7	10.8	10.	7		10.7
VOL % CO						
VOL % N ₂						•
		Val % N2 = (100% - %	CO ₂ - % O ₂ -	% CO)		

	AIR POL	LUTION PARTICUI	LATE ANAI	LYTICAL	DATA	
GIISSOM A	FB, IN	11 Feb 91			RUN NUMBER	
Heating Man	t- Blog # 22	د?	SOURCE NUM	BER	oiler 4	
١,		PARTIC	JLATES			_
	ITEM	FINAL W		INIT	IAL WEIGHT (gen)	WEIGHT PARTICLES (gm)
FILTER NUMBER		0.563	0		877	0.2753
ACETONE WASHING Half Filter)	S (Probe, Front	98.52	78	17 <u>F</u> +03.	98.4662 6894	0.0616
BACK HALF (if need	ded)					
		Total We	ight of Partice	ulates Colle	ected	0.3369 em
11.		WAT	ER			
	ITEM	FINAL WE	1	INIT	IAL WEIGHT	WEIGHT WATER (gm)
IMPINGER 1 (H20)		219		2	00	39
IMPINGER 2 (H20)		206			00	6
(MPINGER 3 (Dry)		۷ ا			_	1
IMPINGER 4 (Silica C	Gel)	208.9	7	۽ ۾	00	8.9
-	-	Total We	ight of Water (Callected		54.9 em
111.		GASES	(Dry)			
ITEM	ANALYSIS 1	ANALYSIS 2	ANAL 3	YSIS I	ANALYSIS 4	AVERAGE
VOL% CO2	8.9	9.0	8.	8		8.9
VOL % 0 ₂	10.9	10.8	10.	9		10.9
VOL % CO						
VOL % N ₂	ne i Selle					
		Vol % N ₂ = (100% - % (co ₂ - % o ₂ - 9	6 CO)		

				PART	ICULATE SAI	PARTICULATE SAMPLING DATA SHEET	SHEET					
RON NOMBER	Dr. 10r +		SCHEMATIC OF STACK CROSS SECTION	CK CROSS SI	CTION	EQUATIONS				ALBIERY YEAR	ENB	
ત	9:7 Canuc	171										
DATE	-	 		j.		OR = OF + 460	•				57	9 9
- L	アクロ・コン			מ איני ב		L	٢			STATION PRESS	PRESS	
PLANT	- (T	(Y		H = 5130	2 V.4	Im			₹ 05	3 in He
Hortin	n 1/ant		5				— ი	Ts . L		HEATER	HEATER BOX TEMP	
BASE	1	T	þ 🕶			prepitat whock	1	とろ			ケイナがせて	46
(1)	4.50		}				7		-	PROBE H	EATER SETTIN	
SAUPLE BOX NUMBER	TUMBER	7				17x (17a)	No - OH WILL BY SELD WAY	1.12.49			イナルナイ	~ا
						Prit Tive	Print Trush shale + 1000 H.	77	į	PROBE LENGTH	ENGTH	-
2000		7					2 4 3	6, 116	 S		`S ₇	+1
	CMDEX					prit pit	Mitor Chick	7	-!	NOZZLE	NOZZLE ARFA (A)	ŧ
Ow/Om		1						! s		 	יי עמנ	
, ,									<u>1-</u>	S		84 II
į		_		٠.	_	•		,		•	700	
3			3	. (Static	static prossure = "0	-0.108	_1_	7.00	T 9 70	
		7 8	MWI = 29.	~°	1.0=5.5	DHA	1367=	700 1= 1/N		\$	FRACTION (FG)	
TRAVERSE	9	MATATIC	STACK TEMP	TEMP	VELOCITY	ORIFICE	GAS	GAS M	GAS METER TEMP	-		
NUMBER	(min)	(in H.m.)	(OF)	(Ts)	HEAD	DIFF.	SAMPLE	Z	AVG	1	BOX	IMPINGER
-		(200		(oR)	(da)	H.	VOLUME (2u ft)	(P.)	(Tell)	- (a)	TEMP	TEMP
6	0 (/2/3/	1. 9	40		0.022	127	770 051	7.7	+			
	2	2.1	275		0,000	1.30		1 75		1	2000	
3	0)	۲. ۶	~ 0 %		3 826	//: -		-	1	1	121	2 5
3	15	3,0	123			27 ~		0 5	7	145	2 56	35
\$	7	3 -	326		0 20	, , ,		1,4		7	194	37
9	ムイ	3.7	» = ~			4.56		23	7	37	257	38
	3.0			-	3	1.25		77	-7	46	6カ7	3.8
		,		 			308 588		-			
8	(1511) 15	- ~										
7	1	200	93		1	0,86	368 588	671	,	17	250	3.2
~	7	24	1 37,7	1	0.000	0.49		21	7.	- 8 +	447	88
3	U7	01	1,,,			1.35		٠: لا	8	-	141	29
-1~	77	7	740		3	1.5%		5.5	7		277	60
	200	4	354	1	6.0.35	1.45		9.5	7	12		40
2	7	4	075		0.025	ラナ ー		57	1	╀	6715	
	02						326. 132		1	+	- 10	2
		•							-	+		
		7,5	12 67		V	SE 1 = 1		1	9 11	+	+	
				P3Fs =	4. 7308			+	# 1	+		
	1					Total V	1536017		+	+	+	
									+	+	1	
			 						+	+		
			 	1					-	$\frac{1}{1}$		
OFH! FOR	10			1					+	+		
MAY 78												

|--|

MED A NOITAVESSED NOISSION FORM AFB - Heating Plant -223 Grissom 46471 IN PHONE (KEY CONTACT) SOURCE ID NUMBER PROCESS FOUIPMENT OPERATING MODE Boiler # 4 85% CONTROL EQUIPMENT OPERATING MODE Var CESCRIBE EMISSION POINT, By pass stack HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER Start 100' 100' DISTANCE FROM OBSERVER DIRECTION FROM OBSERVER

Sian 250' Stan west DESCRIBE EMISSIONS

EMISSION COLOR IF WATER DROPLET PLUME Stan 174 1 End ATTACHED DETERMINED
Stan 2 fat Abour Stack End Detached [

DESCRIBE PLUME BACKGROUND Stan 6 Ky BACKCROUND COLOR SKY CONDITIONS SUM GLAL WIND DIRECTION Start 1/0 (NW) End Stan 7 Kaots End AMBIENT TEMP RH, percent 94% Siart 35

SOURCE LAYOUT SKETCH with Plume Sun Wind by/ASS **Emission Point** Observer's Position Sun Location Line

ADDITIONAL INFORMATION

		33E	_	ON DA	TE 9 Z			STA			E) TI:		
		EC	0	- 1	15	30	,	45		Ė	7_		ا د		29 18N1		<u>/</u>
1	1	_	13	- 1,		20	,	20	,	-							_
1	2		15		5	15		13									
1	3		15	. 1	5	15		15						_			
	4		10	/	5	15	\Box	15									_
7	5		20	1	5-	15	-	15	-								
ł	5		15	- 1	5	15	.]	15	-								
	7		10	1/	5	15	-	10									
1	. 8	\perp	10	1/	5	15	$\cdot \downarrow$	15									_
	9		15	1	0	15	1	10	1								
	10	1	10	10	2.	10	1	10	1								
	11	1	10	10	2	10	1	10	1								
	12	1	15	1	0	10		15	1								
1	13	1	10	<u> / / </u>		10	1	15	1								_
-	14	1	15	15		15	1	10	\downarrow								
	15	\downarrow	15	1/0	2	10	+	10	1								
ŀ	16	+-	10	10	-	10	ŀ	10	\downarrow								_
1	17	+	15	115	1	15	1	10	1								
F	18	+-	15	15	Ť	15	亡	20	+								<u>`</u>
-	19	1	10	115	- i	15	1	10	1								_
ŀ	20	1	10	15	\top	20	 	15	╀								_
ŀ	22	1	<u>'5</u>	10	1	10	i	10	 					<u></u>	,		
ŀ	23	 	10	25		55	 	60	}		00	+		9%	~		_
_	24		10	35	\top	20	1	-	<u>Y</u>								-
-	25	Г	0	10	T	10		0	-								_
	26		0	10	T	0		0	-								_
_	27			15	1	0		0			·						_
	28		<u> </u>		T	7		0									_
_	29		5	10	7	5		0									-
_	30	L. 13	_	10	T	0		\neg									-
0	2559			AME (P		=	_						=			<u> </u>	=
	K	A	MON	· #.		CI	~ i	ren	-	- (<u> </u>	181	•				

lex A,

COMPANY NAME			ERVATIO			START	-	END THE
Grisan AF6- 1	Yeating Plant		Fel-	92	:	12	14	1234
COMPANY MANE Grisan AF6- 1 STREET ADDRESS Old # 223		SEC	0	15	30	45		COMMENTS
VION II][•	20	20	20	25		
CITY AC	STATE ZIP	2	125	30	25	10	}	
Grissum AFB	IN 46971]	25	20	15	15		
PHONE (KEY CONTACT)	SOURCE ID NUMBER	11-	7		15		 	
		┵├──	10	10	ī	15	 	
PROCESS EQUIPMENT	OPERATING MODE	5	15	20	120	20	 	
Bolla #4 CONTROL ECUIPMENT	OPERATING MODE	6	20	20	25	20		
. N'are	1] 7	20	20	20	25	<u> </u>	
CESCRIBE EMISSION POINT		0	20	20	15	10		
By pass stack		9	20	20	25	20		
		10	25	1	•			
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER	┧├	123	25		25		
100'	Start /00 End	<u> </u>	20	25	20	25		
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER	12	20	25	25	25		
San 156 End	Stan Worthwhitens	13	20	25	25	25	_	_
DESCRIBE EMISSIONS		14	20	20	20	20		
Start EMISSION COLOR	FIND DROPLET PLUME	15	25	20	20	20		
Start GLAS End POINT IN THE PLUME AT WHICH OPAG	Attached Detached Detached Detached Detached Detached Detached Detached Detached	15	25					
, ,		17	 	20	25	25		
Stan 1' Above stack	End	<u> </u>	30	25	20	20		
DESCRIBE PLUME BACKGROUND		18	20	20	15	15		
BACKGROUND COLOR	ENT CONDITIONS	19	20	20	15	20		
'	Start outcast End	20	1.	20	10	20		
WIND SPEED	WIND DIRECTION	1├	20					
SIAN J KNOW END	Start North End	21	30	35	10	10		
AMBIENT TEMP	WET BULB TEMP RH, percent 96%	22	25	20	25	25		
Start 3 8 End		23	20	20	10	30		
with a	YOUT SKETCH Draw North Arrow	24	25	40	25	25		
Plume Sun 💠	Serubba,	25	20	20	20	15		
Wind -		26			20	20		
		27	20	EQ	-			
9 As las	X Emission Point		40	15	10	75		
60116		28	10	25	35	40		
.0/		29	40	35	35	70		
		30	30	35	35	40		
		Oase	IVER'S N					•
	Observer's Position	11 1	non A		intio	n C	casio	
	OSA TO STOSHION		YER'S SI			0		DATE
	10.	· ·	on (1		n	"		11 Feb 92
-			HIZATION MS/rum	· /	burat	tom.	DEBQ	•
Sun Loca	tion Line		TED BY	7	01		,	DATE OF
ADDITIONAL INFORMATION		1 Tou	a. A.	i. (0. 1101	l Do	and	18 Oct 91

		V.D.300						NO.	. S
COMPANY NAME				SERVATIO			- (TIME	END TIME
COMPANY MAME Gressom AFB- H STREET ADDRESS Blog # 223	catiè Pl	an T	11 11	Feb	92		1_/	440	1510
CANSTON 1/10			SE	=				T	
SIMEET ACUMESS			LIIM) •	15	30	45	1	COMMENTS
Dlog # 205			┪├──		1 .	1	Ť	 	
			11-1	15	20	15	10	 	
	STATE	1 ZIP	7 2	15	10	15	15	1	
CITY AEA	TN	46971	1			7	+		
Grissom AFB	SOURCE ID		- 1 - 3	15	10	15	15	<u> </u>	
PHONE (KEY CONTACT)	SOURCE ID	HOWGEN	4	15	10	15	15	1	
	<u>-!</u>		}	+->	10	+	 	 	
PROCESS EQUIPMENT		OPERATING MODE	7 5	110	110	10	10	<u> </u>	
801 les #4		85%	6	1	1.0	Ī	1	1	
CONTROL ECUIPMENT		OPERATING MODE] 	10	15	10	10	 	
None	-	-	7	10	10	10	15	ļ	
			7 8	1	1 .		1		
CESCRIBE EMISSION POPIT			11	15	15	15	5		
By-PASS STACK			9	10	10	10	15		
			11-	 	1		i	 	
			10	15	15.	115	20		
HEIGHT ABOVE GROUND LEVEL	ſ	ATIVE TO OBSERVER	11	20	20	20	20		
100'	Sian /00		}}	120	120	120	-		
DISTANCE FROM OBSERVER	į.	ROM OBSERVER	12	20	20	20	20		
San /50 End	Stan NW	End	13	15	20	15	20		
			1	 	120		20		
DESCRIBE EMISSIONS	End		14	15	10	15	20		
EMISSION COLOR		OPLET PLUME	15	120	15	15	15		-
		~ · · · · · ·	 	120	1-/-	1-13	12		
SUR 9/04 En	TY WAS DETE	AMINED	16	10	5	5	10		
sian 2' above stack	End		17	10	15	15	20		
			18	1		1			
DESCRIBE PLUME BACKGROUND			''	10	20	15	10	 _	
Start 5 Kg	SKY CONDITI	ONE	19	10	نورا	15	20		
BACKGROUND CCLOR		,							
Sun 9144 Er	Start D		20	15	15	20	20		
VANO SPEED	WIND DIRECT	10N 4/	21	20	20	15	20		
Start // QVOT) End	Sian New		<u> </u>	i	•	/-			
AMBIENT TEMP	WET BULB TE	RH, percent	22	15	15	15	15		
Start 35 Env			23	20	20	20	20		
Stick SOURCE LAY	OUT SKETCH	Draw North Arrow				i			
with C		\mathbf{a}	24	25	25	10	20		
Phime .		scrybly (25	20	15	20	25		
Wind -)	- <u></u> -				-		
Was - 13 h	m' ())	26	30	15	25	20		
Loller V	Emission Po	pint	27	25	20	20	25		
145	,	Ţ	 						
() (•		28	25.	25	20	35		
9/	•	ł	29	40	50	50	10		
. /		}	1				-		
<u> </u>]	30	10	10	30	25		
	LL	İ	OBSEP	PER'S N	AME JPR	C/ (TAI	4	n	
<u></u>	Abserver's Po	nit.aa	KA	_ נתנומו	\mathcal{H}_{\cdot}	Cia	Tran-	(JCASI	<u> </u>
		חסיייני		R'S S	GNATUR		2		DATE
	1		1 K	m/1					11 tel 92
140	•		ORGAN	IZATION	,	7	1	1 sino	DATE 11 Feb 42
Sun Location	on Line		Hr	ns Tron	, 4	boish	09/	OEBO	
				ED DY	1	01	1 8	, , I	DATE OF OF
LODITIONAL INFORMATION		()	1ex	12 /	for a	antro	1 P	ond !	18 out 7'
		,			-				

APPENDIX I
Boiler 5 Field Data

	AIR POL	LUTION PARTICU	LATE ANA	LYTICA	L DATA	,
Grissum A	IFB, IN	20 Feb 92	2		RUN NUMBER	
HEATing Plan	t- Bldg #.	223	SOURCE NO		85 %	
I.		PARTIC	ULATES	,		
	ITEM	FINAL W		TIME	TIAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER		0.59	72		2861	0-3111
ACETONE WASHINGS Hall Filler)	i (Probe, Front	94.813	51	94.	4824	0.3327
BACK HALF (If needs	ed)					
		Total We	light of Partic	ulates Cell	ected	0.6438
11.		WAT	ER			
	TEM	FINAL W		INIT	IAL WEIGHT (#m)	WEIGHT WATER (dm)
IMPINGER 1 (H20)		132		2	00	32
IMPINGER 2 (1120)		206		,	00	6
IMPINGER 3 (Dry)		0		_	-	0
IMPINGER 4 (SIIIca Oe	ol)	20 6.7		20	, 0	6.7
. =		Tatal We	ight of Water	Collected		44.7
111.		GASES	(Dry)		·	
ITEM	ANALYSIS 1	ANALYSIS 2	AHAL	212Y	ANALYSIS 4	AVERAGE
VOL % CO2	10.0	10-2	10.	0		10 - /
VOL % 02	9.8	9.7	9.8	·		9.8
VOL 1 CO						
VOL % N ₂						
		Vel % N2 = (100% - % C	:02.%02.1	c 0)		

	AIR PO	LLUTI	ON PARTICU	LATE AN	LYTICA	L DATA	
Grissom A	FB, IN	DATE		z		RUN NUMBER	
OLLIS CALC MANDED	ent - Blog #			SOURCE N		85%	
1.			PARTIC	ULATES			
	ITEM		FINAL Y	VEIGHT	INIT	IAL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER			0.65	60	0.	2908	0.3652
ACETONE WASHIN Half Pilter)	GS (Ptobe, Front	<i>\$</i>	102.72	17	© 102.	3179	0.4038
BACK HALF (If not	eded)						
				eight of Parti	culates Cell	ected	0.7690
11.				TER	Γ		
	ITEM		FINAL W		INIT	IAL WEIGHT	WEIGHT WATER (#m)
IMPINGER 1 (H20)			232		2	00	32
IMPINGER 2 (H20)			206		2	00	6
IMPINGER 3 (Dry)			0		(פ	0
IMPINGER 4 (SIIIca	O•I)		207.4		20	0	7.4
			Total We	light of Water		45.7 am	
111.			GASES	(D+y)		,	
ITEM	ANALYSIS		ANALYSIS 2	ANAL	. YSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2	9.8		9.8	9.	8		9.8
VOL % 02	10.2		0.2	10.	2		102
VOL % CO							
VOL % N2							
		Val %	N ₂ = (100% - %	CO ₂ - % O ₂ -	% CO)		

	AIR PO	LLUTI	ON PARTICU	LATE ANA	LYTICA	L DATA	
BASE	AFB, IN	DATE		•_		RUN NUMBER	
		ــــــــــــــــــــــــــــــــــــــ	o Feb 9	SOURCE NI	MOED	3	
Heating Man	t - Bldg #2	23		,		- 85%	
•			PARTIC	ULATES	·····		
	ITEM		FINAL Y		INI	TIAL WEIGHT (dm)	WEIGHT PARTICLES
FILTER NUMBER			0-624	4	0.	2845	0.3399
ACETONE WASHIN Hall Piller)	IGS (Probe, Front	ı	95.21	93	94,	8270	0.3923
BACK HALF (if no	eded)						
			Total W	eight of Porti	culates Col	fected	0-7322 em
l			WAT	ER			
· · · · · · · · · · · · · · · · · · ·	ITEM	·····	FINAL W		INIT	TIAL WEIGHT (#m)	WEIGHT WATER (@m)
IMPINGER I (H20)			232		۾ ا	00	3 2
IMPINGER 2 (1120)			202		20	00	2
IMPINGER 3 (Dry)			0		6	2	0
IMPINGER 4 (SIIIca	Qel)		206.9		2	00	6.9
			Total We	ight of Water	Collected		40.9
•			GASES	(Dry)			
ITEM	ANALYSIS 1		ANALYSIS	ANAL	.YSI\$ 3	ANALYSIS 4	AVERAGE
VOL % CO2	9. z		9.0	9.0	2		9.1
VOL % 02	10.8	/	0.8	10.8	, 		10.8
VOL % CO							
VOL % N2					· · · · · · · · · · · · · · · · · · ·		
		Vol %	N ₂ = (100% - %)	02.802.	% CO)		

OEHL FORM 20

				PART	ICULATE SAI	RTICULATE SAMPLING DATA SHEET	SHEET					
RUN NUMBER	Boiler S	,	TIC OF STA	SCHEMATIC OF STACK CROSS SECTION	ECTION	EQUATIONS				AMBIENT TEMP	TEMP	
DATE	85% 60	copacity.	_			OR = OF + 460					·	34 %
3 1	1-66 9)			コンクストロ		_	Ļ			STATION PRESS	0	
PLANT /			<u> </u>	V	-	н = 5130	5130-F4 Cp. A	The Vo		HEATER	^].	> T In Hg
Rating	ng plant	T	<u>}</u>			Fie p. to	7 2 /2	<i>Y</i>			トイタナ	757
brissom	n AFB	-	2			bes Tru	Truin check of 8514 Ho- OF	8.5.4 Hg	- 0 ir	PROBE	PROBE HEATER SETTING	1
SAMPLE BOX NUMBER	UMBER	1				Post P.	rost rilot chork - ok	, K	•	PROBE	PROBE LENGTH	57.
METER BOX NUMBER	MBER	T				Past Tr	Post Train Lack it right - OK	1 1-11	12-06		NOZZLE ABEA (A) d. d	
Qw/Qm						· ·		1 1 1 1 1 1 1 1	٠ د	ئ	0.3	178 anti
ථ		1	ralnes used	nsce		static	static pressure:	2 . 0. (35	150	3	0.84	
		¥	MWd = 30.0	(c)	. H, v ≥ 6.0	2 He=	1.951	4.2 1. oby	700	DRY GA	DRY GAS FRACTION (Fd)	
TRAVERSE	SAMPLING	ATATIC	STACK	STACK TEMP	VELOCITY	ORIFICE	GAS	GAS	GAS METER TEMP	٩	SAMPLE	MPINGER
NUMBER	,	(in Hag)	(0F)	(Ts) (°R)	HEAD (Vp)	PRESS.	SAMPLE VOLUME (cu ft)	N- (9.6)	AVG (Tm) (OD)	out 65	BOX	OUTLET
A	0 (1:69)	5,7	114		0,032	0.55	14 449	7.77	╁╌	777	77.7	(E) (S)
7	. اما		250		0, 0, 70	1,07		35		メン	1 7 7	39
73	e)	2.0	2 2 2		0. 6.75	0 / 1		49		17/21	441	3.6
4	07	16	1 2 7		0000	7.1.		1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		39
9	7.	3.0	7 % 7		2000	18.0		7	1	1,7	7 2 3	~
	3.6						709, 788					3 7
8	36 (1146)	, ~	100		4.00	111	2.5 740					
7		3,1	144		0.00	\$00	101. (11				183	39
~ 2	40	3.8	787		0.071	1.04		50		4,2	トルト	679
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ 2	0 7	2 2 3		0.0.0	117		32		3/5	~ 46	202
9	35	1-4	7 2 7		0000	4.11				7	7 47	17
	60	4	-		0.0	1.07	715316	53		47	747	07
		1	,			!						
		18.5	263			AH = 0.98		بع	4.8			
				1 5 1 3	6. 6. 501	T. 1. 1.01=	30.85					
DEHL FORM	18											

				PAR	1111	SAMPLING DATA SHEET	SHEET					
RUN NUMBER		Be. 10 F F SCHEMATIC OF STACK CROSS SECTION	CTIC OF STA	CEK CROSS	ECTION	EQUATIONS			F	AMBIENT TEMP	TEMP	
DATE	25.7	5.5% Capac				OR = OF + 460	~			!	M	90 PF
<i>p</i> 7	1:0 / ail			D.Y.	DMotor	L	r		<u> </u>	STATION PRESS	PRESS	
PLANT				₹ ∀ /	$\lambda v_{i'}$	H = 5130	2 V.4	Tm			29. 337	in Hg
Heating	ny Plant		_	_				Ts .	<u></u>	HEATER	EMP	
BASE)**\) «2		pre pito	Pitot Chack - OK	Š		A SHORE	PROBE HEATER SETTING	do
brissom AFB	7 AFB							7			' 'Y ' ' ' ' ' ' ' ' ' '	, U
SAMPLE BOX N	JMBER	1	7			No Tra	Train Check al 10,3 1719 6K	91 10,5 1		PROBE LENGTH	5	
STOR SOLVERS	0 3 0 7					tick find	What i how to	1 %			مل	±#
~							Truin wack at binHy	+ binH	· CF	NOZZLE	NOZZLE ABEA (4) W. M.	3
E ()									_1	Cp	7	0
3		-	Values used	posn		, tatic	TO BY PSINKE	11	-0,135	j	0.84	
		۷	MULJ = 36,0	c, v 7,	H, U= 6, U	DHE	= 1.951	اد . نخ	+ 100 -	DRY GAS	GAS FRACTION (Fd)	
TRAVERSE	ي	WASTIC	STACK	STACK TEMP	VELOCITY	ORIFICE	GAS	GASK	GAS METER TEMP		SAMPLE	
NUMBER	TINE (Bin)	PRESSURE (in H20)	(°F)	(Ts) (0R)	HEAD (Vp)	PRESS.	SAMPLE	ž	AVG (Tm)	out	BOX	OUTLET
P 1	0 (1913)	1.4	165		245	(n) 0	7 (2 (3)		+	(e.F.)	(9)	(de)
1	ر ا		714		0,055	.1 - 1		Ľ		7	1777	200
~	ρ)	3.0	507		0.070	707		47	,	23	1	3.9
3/2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•			0081	1.18		4 7	בן	44	139	3.9
) l	* .	1 2 3			- 1) (7	カカ	2 4 7	40
	30	7.7	777		0.060	88		7.5	-7	777	243	40
		,							+	+		
1 8	30 (1455)	٠,٠	225		0,000	0.63	741 364	はぐ]3	777	7 3 %	7
7	3 2	3.0	2 % 3		0.000	0,77		84	7	15		7.2
~ 3	3/2		37.		x) 0 0	0,97		50	1	76	235	39
~	20		7 2 7		0 079	1.16			1	77		39
9	25	4	3,1		76 5 0			へへつ	+	7 2	2.37	39
	6 0		- 6		흿		786 686) ×	+	77	434	40
										+		
		Ti	7 60			1 6.0 =		1,7	47			
				1747	= 6.8100	ľ			-			
						Tutal Val	30.864		+			
										+		
										H		
DEHL FORM	=								1	1		

PARTICULATE SAMPLING DATA SHEET	

		40 of	3.0 V	Au III	**************************************		1,1		<u>_</u>	2.2	378			Fd)	S S S S S S S S S S S S S S S S S S S	OUTLET	(PF)	40	40	7,4	14	770			3.9	39	4°	73		 							
	AMBIENT TEMP	A PION BRACE	11	TEMP	7 7 877	PROBE HEATER SETTING	41	-	Οŋ	NOZZLE MREA (A)	0.	73		AS FRACTION (Fd)	SAMPLE	BOX	(9F)		1	.1	. 1	277	2		877	235	457	547	1.	17-4							
	AMBIEI		<u>,</u>	HEATE		Ц.		PROBE		NOZZL		ර		DRY GAS	ЕМР	OUT	(0F)	7	37	× 1		7 7 7			44	77	75.75	11.	1,	3							
							19-0K						-0.135	1,004	GAS METER TEMP	S (E)	(oR)															77					
			Ę	T. Vp	1 27	; +	16.7						()	۱۱ ۲	gA	ž	(P)	2	1	107	30	50		1	4	7	4	10	1,		•	741	\downarrow	1	1		
SHEET			5130.Fd.Co.A 3	 ც	2,00°		in check at 16:4149-						Stutic prossyre	1.36.1 =		SAMPLE	- [750,700					772,451	- 1	772.451					787.668	2	 - -	- 1	30.168			
PARTICULATE SAMPLING DATA SHEET	EQUATIONS	OR = OF + 460			pre pilet	•	fre Irain					,		9	ORIFICE	DIFF.		700	0.14	711	60 /	0.95		•	0.0	***	200	- / 0	(.c.		-	1 = 0.96		Toral 1/1/3			
TICULATE SAI	SECTION		<u>.</u>										į	7, 14,0=6.0	VELOCITY	HEAD (Vp)	2000	0.07	3,75	, .	3 175	5.665		7,70		0.122	0 671	0.075	0.000	-		4	- 6. 78/4				
PAR	CK CROSS	•	a Apter										4500	30.0	TEMP	(Ts) (oR)																	16.7				
	SCHEMATIC OF STACK CROSS SECTION			<u></u>	<u>></u> د	e 		7					72/201 2	18,1 1	STACK	(oF)	37.	2 7	13.4	183	285	7.8.1		06/		なっ、	787	234	150		<u>_h</u>	_		<u> </u>			
ſ		ا ﴿			_		1								STATIC	(in H80)	7 6	1	7 2	, ,	30.	3.0		5	3.0	3 5	4.0	+	4.4		15	14					
¢	~ 10'05 4 10'05		Feb az	Hoof '40 Die. +	hm) . 61.	E ATB	MBER		4858							(min)	0 (/20/		0)	(5-	70	77	50	10 (1744)		40	45	50		00		+				+	18
92	× ×		107	, Jood	BASE	6r,5504	SAMPLE BOX NUMBER		METER BOX NUMBER	**	Qw/Qm		ೆ		TRAVERSE	NUMBER	Ø-	7	~	7	6	9		1 8	1	•	٠-ر	\	4							+	OEHL FORM

COMPANY A 1115	/ 0, ,		CSSS	AVATIO:	STAD P		START		END TIME
Coxisson AFB- He	extina Mant		20	o Fe	6 9	2	11	10	1140
COMPANY MAME OYISSOM AFB- HE STREET ADDRESS Bldg #22)			SEC	0	1	1	45		COMMENTS
Diag + 22)			1	10	200	20	20		
			<u> </u>	1		1	120		
Grissom AFB	STATE ZIP	46971	2		20	ì	20		
PHONE (KEY CONTACT)	SOURCE ID HUMBER			1/2	I	1 20"	I		-
	<u> </u>		4	20	20	20	20		
PROCESS EQUIPMENT	OPERATIN	IG MODE	5	20	25	20	15	<u> </u>	
Boiler #5	8 PPERATIN	IG MODE	6	15	15	20	15		
. None			7	15	15	20	20		
CESCRIBE EMISSION POINT STEEL STACK - by			8	15	20	15	20		
STEEL STACK- by	PASS		9	20	20	15	15		
			10	15	15.	20	15		
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO O	BSEAVER	11	15	15	20	20		
DISTANCE FROM OBSERVER	DIRECTION FROM OBSE	1	12	20	20	20	15		
Start /50 End	Start NET End		13	15	15	20	20		
DESCRIBE EMISSIONS			14	20	210	20			
SIAN JAMAIN SMISSION COLOR	End	JWE	15	20	20	20	20		
Start Gray End POINT IN THE PLUME AT WHICH OPAC	Attached 🗆	Detached G	16	20	20	20	20		
SIAN Two feet above stall	TY WAS DETERMINED		17	20	20	20	20		
DESCRIBE PLUME BACKGROUND			18	15	20	20	20		
Start S.K.	End		19	20	20	20	20		
BACKGROUND COLOR	SKY CONDITIONS SUM OVERENT END		20	20	20	20	20		
Start 9/124 End	WIND DIRECTION		21		20				
Start 10 Kasti End	Start 540 End	RH, percent		20		20	20		
Stan 3 9 End .	AVEL BOCK TEXAS		22	20	20	10	20	 	
SECK SOURCE LAY	YOUT SKETCH OF	raw North Arrow	23	20	20	20	20		
Plume	0			20	20	20	20		
Sun 💠	$\overline{\bigcirc}$		25	15	20	15	15		
	7	_	26	15	20	20	20		
	Emission Point		27	20	20	20	20	_	····
	,	1	28	20	20	20	20	<u> </u>	
. 0	•		29	20	20	20	10		
$\mathcal{O}_{\mathcal{O}}$			30	20	20	20	20		<u> </u>
			· //	NER'S N			to	Ocasio	
	Guoserver's Position			WER'S S			7	V 10431B	DATE
14	0.1		OBGAN	IZATION			7		antel 12
Sun Loca	ion Line	>	- A	as Tio	m L	ab ,	1 OE	BQ	
ADDITIONAL INFORMATION				TED DY	1.	Ca, Ti	1/	Kan 1	DATE 15 Wet 91
FIGURE HAT OF MAR HOTE		1 1	Tex	1) /	FIR	11 plan	11 8	xan	1 10 000 71

		AIRIBLE EVIIZATOM	UCJE.	NVAIN	אירים	1.7191		No.	2 .
COMPANY NAME	1 11	/	Cas	ERVATIO:	N DATE		START	TIME	END TIME
Grissom AFB - Hear	ting Man	1		o Fe	6 92	<u> </u>	1 / 5	115	1445
STREET ACORESS			SEC	0	15	30	45		COMMENTS
Bldg #223			LIIN		-	 	┼──		
				20	20	20	10		
	STATE	ZIP	2	20	20	20	20		
Grissom AFS		46971	3	1	i		 	<u> </u>	
PHONE (KEY CONTACT)	SOURCE ID I		l	20	20	20"	 		
			•	20	20	20	20		
PROCESS EQUIPMENT		OPERATING MODE	5	20	20	20	20		
Boiler #5		85%	6	20	15	20	20		
COT HOL EQUIPMENT		OPERATING MODE	 	1		<u> </u>	20		···
. None			7	20	20	20	20	<u> </u>	·
CESCRIBE EMISSION POINT			8	20	20	20	15		
CESCRIBE EMISSION POINT Steel STACK- by PAS	<i>'</i>		9	20	20	20	20		
,			10		<u> </u>				·····
	PEIGHT BEI	ATIVE TO OBSERVER	ļ 	10	20.	20	20		
HEIGHT ABOVE GROUND LEVEL	Start / CC		11	15	15	20	15		
DISTANCE FROM OBSERVER		ROM OBSERVER	12	15	20	20	20		
Sau /)'0' End	Start NA	7 End	13			20	15		
DESCRIBE EMISSIONS			}	20	20		175		
Sian FARRIY	End		14	20	20	20	20		
EMISSION COLOR	IF WATER DA	OPLET PLUME	15	20	20	20	20		
Start Gray End	Attached 🗆	Detached G	16	15	15	20	20		
POINT IN THE PLUME AT WHICH OPAC		MINED	17						
sin 2' Abor stal	End		 ''	15	20	20	20	·	
DESCRIBE PLUME BACKGROUND			18	15	20	20	20		
Start S X 4 BACKGROUND CCLOR	SKY CONDITION	ONS	19	40	60	40	40	(soot	blow
Start gray End	Start OVA		20		60	40		7	
WIND SPEED	WIND DIRECT							+	
Start /5 End	San SW	End	21	25	20	20	20	<u>/</u>	
AMBIENT TEMP	WET BULB TE	MP RH, percent	22	20	20	15	20		
Start 39 End	<u> </u>		23	20	20	20	20		
SECK SOURCE LAY	OUT SKETCH	Draw North Arrow	24			i			
with C	0			20	20	15	20		
Sun 💠			25	20	20	20	20		
Wind tiniW	\circ		26	30	20	10	20		
1	2	1	27	i	20	20	io l		
∤	Emission Po		\vdash	20	-0				
\sim			28	20	20	20	20		
\cup . \cup .			29	20	20	20	20		
\cap			30	20	20	20	20		 -
\smile		İ							
		į	1 1	WER'S N	H.			Versio	
	Observer's Po	noilie		WER'S S			<u>-</u>		DATE (1
	·		Ki	6	Ex	<u>_</u>	7		20 Tels
14	0•-			IZATION	/	/ -		DEBO	
Sun Locat	on Line			15 Trans	LAU	1011/2	ry / (- 100 - 100 ·	DATE
ADDITIONAL INFORMATION			CEATT	AS A	مريا	of.		Sand !	18 Oct
		ľ	<u> </u>	m> ///	<u> </u>	34/12	<u> </u>	<u> </u>	

COMPANY NAME			ERVATIO			1	TIME	END TIME
Grissom AFB- HEA	Ting Vlant	SEC		97		-	,	1735
STREET ADDRESS BILLS # 223	, 	LUM	0	15	30	45		COMMENTS
		1	20	120	20	20		
	STATE . ZIP	2	20	20	20	20		
GISSOM AFB	IN 46911	3 ·		1	 			
PHONE (KEY CONTACT)	SOURCE ID NUMBER	4	20	20	20	20		
PROCESS EQUIPMENT	OPERATING MODE	5	20	20	20	20		
Boila #5	1 85%	6	20	120	20	20		
CONTROL ECUIPMENT	OPERATING MODE	7	25	20	20	20		
CESCRIBE EMISSION POINT	,	6	20	20	20	20		
Steel Stack - 6, pm	ί (· · · · · · · · · · · · · · · · · ·	9		20	20	20		
) J J J J J J J J J J J J J J J J J J J		10	20	 		;		
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER	11	20	10.	20	20		
(60	Size (46 End	12	15	20	20	25		
DISTANCE FAOM OBSERVER Start) 0 0 End	Sian Northing End	13	25	10	20	20		
DESCRIBE EMISSIONS		 	20	20	20	20		
	End	14	25	25	25	20		
SUM FAMALA	ATTACHED TO DETACHED G	15	25	25	30	20		
SING FINE PLUME AT WHICH OPACE	Affached C Detached C TY WAS DETERMINED	16	20	20	20	20		
sian 2' above stack	End	17	25	25	25	25		
DESCRIBE PLUME BACKGROUND		18	30	25	25	20		•
Stan 5 Kg	End —	19	25	25	25	30		
BACKGROUND COLOR	SIZE OFFICE END	20		20		10		
Start gray End	WIND DIRECTION	 	25		25	1		
Start 15 Keets End	Siart Sw End	21	25	25	25	10		
AMBIENT TEMP	WET BULB TEMP RH, percent	22	25	25	25	25		 _
Start 40 End ·	OUT SKETCH Draw North Arrow	23	10	25	30	25		
Stock with Surveyers	OUT SKETCH Draw North Arrow	24	25	25	10	25		
sun 💠 🔘		25	25	25-	30	10		
Wind -		26	25	25	25	25		
<i>(</i> x	Emission Point	27	30	30	30	ir		<u>,</u>
i I	0 9 % ()	28	10.	30	20	25		
		29	30	30	30	30	·	·
trut	5 treet	30	25	25	25	25		<u>-</u>
	Emport.	OBSE	NER'S N	AME IPR	INT) -	1	0	
	Observer's Pasitian		MU	H. GNATUR		70m	CASIO	
·	force		n d	1	کے ج	7	•	20 fel 92
140	5 year	ORGAN	IZATION		/ +	! /	DEBQ	
Sun Local	n Line ·		TED OF	LAL	127.10	11/0	1000	DATE Of
ADDITIONAL INFORMATION		Tex		in Co	entrol	So	acd	18 Oct 41

APPENDIX J

Calibration Data

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

Barometric	pressure	$P_{b} = \frac{19}{100}$	<u>13/3</u> in.	Hg C	alibrate	d by _	Mau	yhn/0'.	Brien
	Gas v	volume	Т	emperat	ure]
Orifice	Wet test	Dry gas	Wet test		gas met	er			
manometer	meter	meter	meter	Inlet	Outlet	Avg			Ì
setting (ΔΗ),	(V _v),	(v_d) ,	(t _w),	(r _d),	(t _d),	(t _d),	(Θ),	V	ΔH@
Me in H20	ft ³	ft ³	°F	°F	°F	°F	min	Yi	in. H
4.0 0.5	5	5 .015	7/ 70	70 72	70 69	70.5	12.88	0.947	1.90
1.0	5	5,013	72 72,5	77 79	71	75.5	9.079	1. 00 i	1.883
.9 1.5	10	10.042	75 74.5 74	81 84.5	74 76	80,25	15.179	1.003	1.976
.9 2.0	10	10,036	75 75	98 90.5	78 79.5	8 5. ü	13./63	1.005	1.755
5.0 3.0	10	10.103		96 94.5	84 82.5	88.5	10.739	1.023	1.967
4.0	10	10,122	74 74	96 95	84 85		9.459		2.00
							Avg	1.004	1 45

ΔH, in. H ₂ O	ΔH 13.6	$Y_{i} = \frac{V_{w} P_{b}(t_{d} + 460)}{V_{d}(P_{b} + \frac{\Delta H}{13.6}) (t_{w} + 460)}$	$\Delta H@_{i} = \frac{0.0317 \ \Delta H}{P_{b} (c_{d} + 460)}$	$\left[\frac{(z_{\omega} + 460) \odot}{v_{\omega}}\right]^{2}$
0.5	0.0368	Y: = (5)(29.313)(70.5+460) (5.015)(29.313+26)(70+460)	148; = (0.0317)(5)] 29.313(70.5+460)	(70+460)(12.88)]2
1.0	0.0737	Y; = (5) (29.313) (75.5+460 (5.013) (29.313+196.) (77.5+460)	AHE: (0.0317)(1.0)	(725 · 46) (9.079)]Z
1.5	0.110	Y; = (10)(79.313)(80.75+460)	1 (A A 317 (1 5)	(74.5+460X15.179) 2
2.0	0.147	Y; = (10)(29.313)(85+460)		(75+460X13.163)72
3.0	0.221	Y = (10)(79.313)(15.3160) (10.103)(79.313+336)(74.5+460)	AHE; 0.0317(30) [(74.5+460(10.789)) ²
4.0	0.294	Y:= (10)(79.313)(90+460) (10.122)(79.313+256)(74+460)		(74+460X9.459)72

 $^{^{\}rm a}$ If there is only one thermometer on the dry gas meter, record the temperature under $t_{\rm d}^{\rm a}$.

Quality Assurance Handbook M4-2.3A (front side)

POSTTEST BRY GAS METER CALIBRATION DATA FORM (English units)

Plant Pretest Y 7.004/	$V_{a} = V_{b$			
Plant Pretest	, Y	2710"	1.0149	12101
	Vacuum setting, in. Hg	1.1	11.9	611
m 1	Time (0), min	12,91	16.03	16.10
McLer box number 3 Dry gas meter number	Average (t _d),	200	83.75	85,5 16.10 11.9
Meter bo By gas me	gas me Llet do	18 (5.5)	72 87 675 79 80	88 885 83 82.5
Dı	Temperature t Dry Inlet Ou (t _d), (t	86.55.5	87 67.5	88 SES
Date 12 15/2014 92.	To Wet test meter (t _w), oF	2 (4	22 72	12 72
Dat (e. P _b = 29.0	y gas cler V _d), fl	989 Z	10.038	860.01
Test numbers Barometric pressure, $P_{\rm b} = 29.085 \rm Jm.~Hg$	Gas volume Wet Lest Dr meter m (Vw), (10	01	10
Test i Barome	Orifice manometer setting, (AH), in. H ₂ 0	\'\ >	1.3	1.3

 $^{\mathrm{a}}$ If there is only one thermometer on the dry gas meter, record the temperature under $^{\mathrm{t}}_{\mathrm{d}}.$

 $t_{d_j} = \text{Temperature of the inlet gas of the dry gas meter, }^{\text{o}F}.$ $t_{d_o} = \text{Temperature of the outlet gas of the dry gas meter, }^{\text{o}F}.$ $V_{\text{w}}=$ Gas volume passing through the wet test meter, ft 3 , $V_{d}=$ Gas volume passing through the dry gas meter, ft 3 . $t_{\rm w}=$ Temperature of the gas in the wet test meter, $^{\rm o}{\rm F}.$

 t_d = Average temperature of the gas in the dry gas meter, obtained by the average of t_d and t_d , of. ΔM = Pressure differential across orifice, in $M_2^{0.1}$

 $Y_1=Ratio$ of accuracy of wet lest meter to dry gas meter for each run. Y=Average ratio of accuracy of wet lest meter to dry gas meter for all three runs; tolerance = pretest $Y \pm 0.05 Y$

 $P_{\rm b}$ = Barometric pressure, in. Hg.

0 = Time of calibration run, min.

Quality Assurance Handbook M5-2.4A

APPENDIX K

EPA Computer Program Emissions Calculations

	XRO	M "MET	4 5°	1 1	J. E.M., 540
	RUN HUNBER			1 1	🤄 RUN NU
	ONE, BOILER 3,	13 FEE	3 92		THO, BO
	14		RUN		11 14
	METER BOX Y?		KOII		METER
			B1117	1	III. IER I
		949	RUH		SECTION AND ADDRESS OF THE PARTY OF THE PART
	DELTA H?				🥕 🤈 DELTA I
	1.3	360	RUN	1 ,	
	BAR PRESS ?			:	BAR PRE
	29.0	978	RUN		٠,
	METER VOL ?	00.7	1.611	1	METER V
			5 101	11	HEIER T
		628	Killi		
	MTR TEMP F?				MTR TEN
	44.8	906	PUN		
	% OTHER GAS			1	% OTHER
	REMOVED BEFORE			,	REMOVED
				· .	DRY GAS
	DRY GAS METER				כאני ואם
			Billi		
	STATIC HOH IN	?		i	STATIC
	1	259	RUH	:	
	STACK TEMP.				STACK T
		999	DHIN		
		000	KUN		MI HOTI
	ML. WATER ?				ML. WAT
	45. 7	966	RUH		
	IMP. % HOH = 5	ς		7	IMP. %
	10r. 4 nun - 3	. J			4111 1 1
				ı	% HOH =5
	% HGH=5.5				
	½ CO2?			1	% COZ ?
	7.6	Jee	RUN	: 1	•
	% OXYGEN?				% OXYGE
	12.8	AAA	RUN		
	% CO ?				% CQ ?
		1999	DHY	i.	
		מטטו	KUH		MOL UT
`	MOL HT OTHER?				MOL HT
1	MNd =29.70		KIIH		MWd =29
	MW WET=29.86			!	MN NET=
	\				
	SORT PSTS ?			,	SORT PS1
	. 4.4	371	RUH	1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	TIME MIN ?				TIME HIN
		998	RUN	15.	A Commence
		900	KUIT	100	
	HOZZLE DIA ?			1	NUZZLE
	47 . 4		BUH	100	100
	STK DIA INCH ?			1 16	STK DIA
	66.0	800	RUN	301	3747
	* VOL MTR STD			1 3	100
	STK PRES ABS			35	UNIX MT
			11		TANK IN
	VOL HOH GAS			1	STK PR
	・ % MOISTURE =				VOL HO
	MOL DRY GAS	= 0.945	i	3	A NOIS
	% NITROGEN =	80.20		15.4	WE HOL DR
	MOL HT DRY =			7	Z ITR
	MOL HT WET =				HOL HI
			1/	1 1	
	VELOCITY FPS		10	1	NOL HT
	STACK AREA =				**************************************
:	🌉 STACK-ACFN 🚊				ZV STACK A
	* STACK DSCFM	= 10,99	15.	1 3	A.STRCK P
	% ISOKINETIC	³= 99.	97	1.0	WANGE !
•	***	, P		1	A TEOL
		₹		1.74	
		ntc.		1/13	5472.4
	END OF FIELD D	H H -			Mark Control
•		•			END OF FI

31.50 m 41	S AUDOM . A	PTIL PERSON
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	XROM, 1	METH 22 💢
RUN NUMB	ER SHIPPE	4
THO, BOI	LER 3. 13.	FFR 92
100		A 0111
rai in the second and	· · · · · · · · · · · · · · · · · · ·	RUN
METER BO	X Y?	
1	1.0040	RUN .
7 DELTA H?	16	74.1.
DELLIN IL		
	.9200	RUN
BAR PRES	S ?	
٠.	29.0830	RUN
METER VO		KUN
DETEK YU		-1,4
	30.3310	RUN
MTR TEMP	F2	•
	54.0000	DHH
. ATUES	34.0000	KUH
% OTHER (
REMOVED 8	BEFORE	
DRY GAS A	IFTER 2	* *
21() 2110 1		Bull
	0.0000	RUN
STATIC HO)H IN ? " -	1.5
	1250	RUN
STACK TEN	10	NOI
	227.0000	RUN
ML. HATER	?	
		RUN
		KUN
IMP. 2 HC	94 = 5.6	
· · · · · ·	,	
% HOH =5.6	•	
% COZ?		La Maria
	7. 7999-	PIIN
	/. /nnr~	
% OXNGEN		k üld
% OXYGEN		
		RUN
% CO ?		
	12.2000	RUN
% CO ?	12.2000 0.0000	
	12.2000 0.0000	RUN RUN
% CO ?	12.2008 0.0000 HER?	RUN
% CO ? MOL NT OT MNd =29.7	12.2000 0.0000 HER?	RUN RUN
% CO ?	12.2000 0.0000 HER?	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29	12.2000 0.0000 HER?	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SQRT PSTS	12.2008 0.0000 HER? 2	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29	12.2008 0.0000 HER? 2	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SQRT PSTS	12.2008 0.0000 HER? 2	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2008 0.0000 HER? 2	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
% CO ? MOL NT OT MNd =29.7 MN NET=29 SORT PSTS	12.2000 0.0000 HER? 2 .06	RUN RUN
MOL MT OT MMd =29.7 MM WET=29 SORT PSTS TIME MIN MOZZLE-DIA STK DIA IN VOLSMIR	12.2008 0.0000 HER? 2 .06 3.5733 (60.0000) (10.776) 65.0000 STD = 30	RUN RUN
MOL MT OT MMd =29.7 MM MET=29 SORT PSTS TIME MIN MOZZLE-DIF STK DIA IN VOLSMTR STK PRES VOL HOH	12.2000 0.0000 HER? 2 .06 .3.5733 (60.0000 	RUN RUN
MOL MT OT MMd =29.7 MN MET=29 SORT PSTS TIME MIN VOCANTE VOCANTE VOCANTE VOCANTE VOCANTE	12.2008 0.0000 HER? 2.06 3.5733 60.0000 60.0000 STD = 30 RES = 5559	RUN RUN
MOL MT OT MMd =29.7 MN MET=29 SORT PSTS TIME MIN VOCANTE VOCANTE VOCANTE VOCANTE VOCANTE	12.2008 0.0000 HER? 2.06 3.5733 60.0000 60.0000 STD = 30 RES = 5559	RUN RUN
MOL MT OT MMd =29.7 MM MET=29 SORT PSTS TIME MIN MOZZLE-DIV STK DIA IN VOL MTR STK PRES VOL HOH CMOISTU	12.2000 0.0000 HER? 2.06 3.5733 60.0000 1.2 4960 1.2 510 510 22 1.3 1.3 1.3 1.3 1.3 1.3 1.3	RUN RUN
MOL MT OT MMd =29.7 MM MET=29 SORT PSTS TIME MIN MOZZLE DIV STK DIA IN VOLSMIR STK PRES VOL HOH MOL DRY 2 LITROG	12.2000 0.0000 HER? 2 .06 3.5733 60.0000 1.1 4960 66.0000 STD = 20 RE1 57 9 LU = 80	RUN RUN
MOL NT OT MND = 29.7 MN NET=29 SORT PSTS TIME NIN NOZZLE-DIV STK DIA IN STK PRES YOU HOH A HOISTU	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000 STD = 0.000 RE = 5.59 LRS = 0.000 RY = 29.7	RUN RUN
MOL MT OT MMd =29.7 MM MET=29 SORT PSTS TIME MIN MOZZLE DIV STK DIA IN VOLSMIR STK PRES VOL HOH MOL DRY 2 LITROG	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000 STD = 0.000 RE = 5.59 LRS = 0.000 RY = 29.7	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL NT OT MND = 29.7 MN NET=29 SORT PSTS TIME NIN NOZZLE-DIV STK DIA IN STK PRES YOU HOH A HOISTU	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2.06 3.5733 (60.0000 CH. 1960 (CH. 2000) STD = 2000 RE = 5199 LOS = 1000 RY = 29.77 ET = 29.00	RUN RUN
MOL NT OT MND = 29.7 MN NET=29 SORT PSTS TIME HIN NOZZLE DIV STK DIA IN VOLSMIR STK PRES VOL HOH ANDISTU MOL DRY X ITROG MOL NT N VELOCITY BETACK ARI STRIK ACC LESCE DSI LESCE IN	12.2000 0.0000 HER? 2 .06 .3.5733 .60.0000 .61.2000 .61.20000 .62.2000 .63.2000 .	RUN RUN
MOL HT OT MHd =29.7 MH HET=29 SORT PSTS TIME MIN HOZZLE DIV STK DIA IN VOL MIT STK PRES VOL HOH ANDE DRY 2 ITROG MOL HT H	12.2000 0.0000 HER? 2 .06 .3.5733 .60.0000 .61.2000 .61.20000 .62.2000 .63.2000 .	RUN RUN

```
XROM -METH 5-
  RUN HUMBER
  THREE, BOILER 3
   13 FEB 92
                       RUN
  METER BOX: Y?
             1.0040
                       RUN
  DELTA H?
             1.2900
                       RUN
  BAR PRESS ?
            29.0830
                       RUN
  METER VOL ?
            35.3790
                       RUN
  MTR TEMP F?
                      RIIN
            51.0000
  % OTHER GAS
 REMOVED BEFORE
 DRY GAS METER ?
            0.9999
                      RUN
 STATLC HOH IN ?
             -.1250
                      RUN
 STACK TEMP.
          227.0000
                      RUN
 ML. WATER ?
           33.7000
                      RUN
 IMP. % + 000 = 4.2
 % HOH=4.2
 % CO2
            7,0000
                      RUN
 ONYGER?
           13.0000
                      RUN
% CO ?
           0.0000
                     RUH
MOL MT OTHER?
MNd =29.64
                     RUH
MW WET=29.15
SORT PSTS ?
                    . RUN
TIME HIN?
          60.0000
HOZZLE DIA ?
     4960 RUN.
STK DIA INCH ? 🚜 🚉 🗝
          66.0000 - RUN
* VOL MTR STD = 35.792
  JTK PRES ABS = 29.07
 YOL HOH GAS = 1..59
 4 MOISTURE = 4.24 3
 MOL DRY GAS = 0.958
 % NITROGEN = 80.00%
 MOL WT DRY = 29.64.
 MOL NT HET = 29.15"
 VELOCITY FPS = 10.69
```

STACK AREA = 23.76 STACK ACFM = 15,241. * STACK DSCFM = 10.877. ½ ISOKINETIC = 96.96

END OF FIELD DATA

A CONTRACTOR		وجمالت يستشمم الأميار المسيد
XROM MASSFLO	XROM -MASSFLOr	XROM -MASSFLO:
RUN NUMBER 1.8000 RUN	RUM NUMBER 2.0000 RUM	RUN NUMBER 3.0000 RUN
VOL MTR STD ? 36.8910 PUH STRCK DSCFM ? 10.995.0000 PUH ERONT 1/2 MG ? 422.1000 RUN BACK 1/2 MG ? RUN	VOL MTR STD ? - 30.5280 RUN - STACK DSCFM ? - 8.872.0000 RUN - FRONT 1/2 MG ? - 309.1000 RUN - BACK 1/2 MG ? - RUN	VOL MTR STD ? 35.7920 RUN STACK DSCFM ? 10.899.0000 RUN FRONT 1/2 MG ? 319.3000 RUN BACK 1/2 MG ?
F GR/DSCF = 0.1765 F MG/MMM = 404.0563 F LB/HR = 16.6406 F KG/HR = 7.5482	F GR/DSCF = 0.1563 F MG/MMM = 357.5589 E LB/HR = 11.8823 F KG/HR = 5.3898	F GR/DSCF = 0.1377 F MG/MMM = 315.0358 F LB/HR = 12.8611 F KG/HR = 5.8338

XROM *ME	TH 5-	XROM *METH 5*	XROM *METH 5
RUN HUMBER		RUN HUMBER	
BOILER 4, RUN 1	ţ	BOILER 4, RUN 2	BOILER 4, RUH 3
	RUN	RUN	. RU
METER BOX Y?	i	METER BOX Y?	METER BOX Y?
	RUN	1.0040 RUN	1.9040 RU
1.0048	RUH	DELTA H?	DELTA H?
DELTA H?	81111		1.3900 3 RU
1.4800	KAR	1.3500 RUN	
BAR PRESS ?		BAR PRESS ?	BAR PRESS ?
30.2300	Kiih ,	₹ 0. 2300 RUN	30.2300 RU
METER VOL 9		METER VOL ?	METER VOL ?
37.6890	RUS	36.0670 RUN	36.3280 Rui
MTR TEMP F?	11.2.1	MTR TEMP F2	HTR TEMP F?
	Dille	49.0000 RUN	45.0000 RUI
47.0000	RUN		
COTHER GAS		4 OTHER GAS	% OTHER GAS
REMOVED BEFORE		REMOVED BEFORE	REMOVED BEFORE
DRY GAS METER ?		DRY GAS METER ?	DRY GAS METER ?
	Kfiri	RUN	RUN
CTOTIC HOW THE	NO.	STATIC HOH IN ?	STATIC HOH IN ?
STATIC HOH IN ?	BILL		
1089	RUH	1080 RUN	
STACK TEMP.		STACK TEMP.	STACK TEMP.
268.0999	RUN	267.0000 RUH	276.9909 RUN
HL. NATER ?		ML. WATER ?	ML. WATER ?
47.9000	RUH	53.4000 RUN	54.9000 RUN
		IMP. % HOH = 6.2	IMP. % HOH = 6.3
IMP. % HOH = 5.3	ļ		111 1 110H - 010
. uou-5 7	į	% HOH=6.2	% HOH=6.3
k HOH=5.3	i	% CO2?	ራ CO2?
K CO2?	•	9.2000 RUN	
0.7682		7.2000 KUN 7.0XYGEN?	8.9000 RUN
% OXYGEN?			4 OXYGEN?
11.2000	RUH	10.7000 RUN	10.9000 RUN
; CO ?		% CO ?	* CO ?
. 00 :	RUN	RUH	PIIN
10L NT OTHER?	RVH	MOL NT OTHER?	MOL NT OTHER?
	OHL	MWd =29.90 RUN	MHd =29.86 RUN
MWd =29.84	RUH		MW HET=29.12
MN WET=29.21		MW WFT=29.16	V - 1
SORT PSTS 7	4	SORT PSTS ?	SORT PSTS ?
4.9146		4.7303 RUN	4.8359 4 RUN
	N.V.	TIME MIN?	TIME MIN ?
TIME MIN ?	BUU	60.0000 RUN	60.0000 📆 RUN
60.8900	RUN		WO77 E DIO 2 WEEK WAY
HOZZLE DIA ?		HOZZLE DIA ?	HOZZLE DIA ?
.4960	RUH -	. 4968 RUN	4960 X RUN
STK DIA INCH?		STK DIA INCH-	STK DIA INCH ?
66.0000	RUN '	66.0000 🤼 RUN	66.0000 RUN
- 00.000	15.64	the state of the s	1000
	050	* VOL MTR STD = 38.077	* VOL MTP STD = 79 440 *
VOL MTR STD = 39.		STK PRES ABS = 30.22	STK PRES ABS = 30.22
STK PRES ABS = 30		JIN TREO HOS = 30.66	
VOL HOH GRS = 2.2		VOL HOH GAS = 2.51	VOL HOH GAS = 2.58
% MOISTURE = 5.34		% MOISTURE = 6.19	2 MOISTURE = 6.27 東海
MOL DRY GAS = 0.9		MOL DRY GAS = 0.938	MOL DRY GAS = 8.937
% NITROGEN = 30.1		2 NITROGEN = 80.10	2 NITROGEN = 80.28
		MOL HT DRY = 29.90	MOL NT DRY = 29.86
MOL HT DRY = 29.8		MOL HT HET = 29.16	MOL NT NET = 29.12
MOL HT WET = 29.2			
VELOCITY FPS = 11	.88	VELOCITY FPS = 11.44	VELOCITY FPS = 11.71
STACK AREA = 23.7	f	STACK AREA = 23.76	(STACK FREA = 23.76)
STACK ACFM = 16,9		STACK ACFM = 16.31°.	STACK ACFM = 16,688.
* STACK DSCFM = 11.		STACK ACFM = 16.31°. * STACK DSCFM = 11.226. % ISOKINETIC = 100.15	* STACK/DSCFN = 11,335.44
		% ISOKINETIC = 100.15	A Z ISOKINETIC = 4100.71
2 ISOKINETIC = 9	7.00	٠ (الرب المرب	
		يع المراب	カヤイフル ころがなる こうごう 多温を変数
•	;		10 19 19 19 19 19 19 19 19 19 19 19 19 19
: EHD OF FIELD (****	; !	END OF FIELD DATA	END OF FIELD DATA

XROM "MASSFLO"

MROM "MASSELO"

RUN NUMBER		RUN NUMBER ∮BOILER 4, RUN 2		XROM -MASSE	LOr
BOILER 4) RUN 1	<u>.</u>		RIPE	RUN HUMBER	
MOE WIF ETT	₽U!.	VOL MTR STE 7		BOILER 4) RUN 3	SÜH
STACK BESEM	# Q · ·	38.977 STACK DSCFW 1	R (3%)	VOL NTR STD ?	
11,873.00 FRONT 1/2 MG 2	RHN -	11,226.00	8 0%	38.66 38.66 38.66	RUh
454.50	PIR	FRONT 1-2 MG 2 384.60	ទីប៊ីប	11,335.00	PUN
9800 172 MG 7 0.00	Ī	BACK 1/3 MG ? 0.00	2 98	FRONT 1/2 MG ? 	pui.
		2102		BACK 1/2 MG ? 0.00 ∣	RUN
5 GR/DSCF = 0.19		F GR/DSCF = 0.16	i		
F NG/MMM = 403.43 F LB/HR = 17.94	;	F MG/MMM = 356,69 F LB/HF = 15,00		F GR/DSCF = 0.13	
F KG/HR = 8,14		F KG/HR = 6.80		F MG/MMM = 307.74 F LB/HR = 13.07	
	,		•	F KG/HR = 5.93	

				XROM *M	ETH 51
KROM "MET	TH 5"	XROM "NE	ETP 5"	RUN NUMBER	
RUN NUMBER		RUN NUMBER		THREE, BOILER 5	1
ONE, BOILER 5, 20 FE		TWO, BOILER 5, 20 P	F EB 92	20 FEP 92	
	B)IH		RIIH		RÜN
METER BOX Y?		METER BOX Y?		METER BOX Y?	KQ.
1,9048	RUH	1.0040	RUH		4
	11 2	DELTA H?	(· 2·	1.0040	RUN
DELTA H?	OTHE		nu.	DELTA H?	
.9800	RUP	.9700	RU);	.9600	RUN
BAR PRESS ?		BAR FRESS ?		BAR PRESS ?	# pr
29.3390	Kilit:	29.3390	RUH	29, 3390	RUE 🔼
METER VOL ?		METER VOL ?		METER VOL 2	N.V.D
30.8500	RITH	30.8640	PIII		
	*, ***		terior.	30.7630	RUH
HTR TEMP F?	B1111	NTR TEMP F?	Bitti	MTR TEMP F?	
48.0000	RUH	47.0000	RUH	46.0000	RUK &
% OTHER GAS		% OTHER GAS		% OTHER GAS	
REMOVED BEFORE		REMOVED BEFORE		REMOVED BEFORE	
DRY GAS METER ?		DRY GAS METER ?			
	R11%		nim	DRY GAS METER ?	4
0.0000	E/14/4	9.9999	RUN	9.0000	PUN
STATIC HOH IN ?		STATIO HOH IN ?		STATIC HOH IN ?	
1350	Sill:	1350	PUN	1350	RUM 🕽
STACK TEMP.		STACK TEMP.		STACK TEMP.	PUN RUN PUN PUN PUN PUN PUN PUN PUN PUN PUN P
263,0000	p(p)	260,0000	RUS	- · · · · · · · · · · · · · · · · · · ·	
	r .: ·		1. D. c	259.0000	RUE 💢
ML. WATER ?		ML. WATER 7		ML. HATER ?	
44.7000	₽ (#)	45,4860	PUH	40,9000	RUN 🔣
IMP. % HOH = 6.2		IMP. % HOH = 6.3		IMP. % HOH = 5.7	
Tue * 4 non - 6:5		2,1,1		100 - 511	新
		5 HOH-2 7		5 1160 F 3	
% HOH=6.2		% HOH=6.3		% HOH=5.7	
7 002?		N 0027		% CO2?	N.
10,1000	2101	9.8000	Riti	9,1096	PHILIP
4 OXYGEH?	•	<pre>2 OXYGEH?</pre>		% OXYGEN?	
	610.	19,2000	RUH		
9.8000	₿ſûr:		k (ii)	10.8000	Kiha
% CO ?		4 (0 ?		% CO ?	
9.6989	EIII:	9.0000	RUN	9.800 <u>0</u>	RUM
MOL WY OTHERS		MOL HT OTHER?		MOL WY OTHER?	
MWd =30.01	PIJN	MILL 00 00	RIIH	MWd =29.89	RUN
	i Qir	MWd =29.98			VOW
MW WFT=29.26		MM_WET=29.22		MW WET=29.21	
SQRT PSTS ?	DUN	SORT PSTS 7		SORT PSTS 7	
6.8592	Billit	6.8109	RUN	6.7816	PUP
TIME MIN ?		TIME MIN ?		TIME HIH ?	1 .
60,0000	Súit	60,0000	RUH	69.0000	RUN
HOZZLE DIA ?		NOZZLE DIA ?	הטיו		KON .
	2014			HOZZLE DIA ?	
.3780 	k.1.	.3789	Mile	.3780	RUH
STK DIA INCH ?	•	STR DIA INCH?		STK DIA INCH ?	
66. ମଣ୍ଡଣ	Bihi	66.0000	PUN	66.8000	RUN :
				••••	{ ,
* VOL MIR SID = 31.	645	* VOL MTR STD = 31.	721	- HOL MID CIR - 71 6	
STK PRES ABS = 29				* VOL MTR STP = 31.6	
		STK PRES ABS = 29		STK PRES ABS = 29.	
VOL HOH GAS = 2.1		YOL HOH GAS = 2.1		VOL HOH GAS = 1.93	3
% MOISTURE = 6.23		% MOISTURE = 6.31		% MOISTURE = 5.73	į A.,
MOL DRY GAS = 0.9	138	MOL DRY GAS = 0.9	37	MOL DRY GAS = 0.94	
% NITROGEN = 80.1	Ð	% HITROGEN = 80.0		% NITROGEN = 80.16	. ,
MOL HT DRY = 30.0					
MOL HT HET = 29.2		MOL HT DRY = 29.9		MOL HT DRY = 29.89	
		MOL NT HET = 29.2		MOL NT WET = 29.21	
VELOCITY FPS = 16		VELOCITY FPS = 16	.71	VELOCITY FPS = 16.	.64
STACK AREA = 23.7		STACK AREA = 23.70	6	STACK AREA = 23.76	
STACK ACFM = 23,9	33.	STACK ACFM = 23,8		STACK ACFM = 23.7	
* STACK DSCFM = 16,		* STACK DSCFM = 16.0			
% ISOKINETIC = 1				* STACK DSCFM = 16,0	
4 TOWNSTOCKE - 1	· · · · · · · · · · · · · · · · · · ·	% ISOKINETIC = 10	00.5¢	% ISOKINETIC = 10	ดด์ คอ
END OF FIELD DATA		END OF FIELD DATA			
Tree or Section Control		THE ALL LICEN FALL		END OF FIELD DATA	k i

XFOM TMASSFLO		WROM "MASSELO	XROM *MASSFLO		
RUN HUMBER		RUN HUMBER	RUN HUNBER		
1.0000	PI	2.0000 FUU	3,0000 RUN		
VOL MIR SID ?		VOL MTR STO ?	VOL MTR STD ?		
31.6450	9 11()	31,7210 RUN	31.6840 FUN		
STACK DSCFM 7		STACK DOCEM ?	STACK DSCFM 2		
16,068,0988	ន ្ទារ	16.039.0000 RCS	16,096.0000 PUM		
FRONT 1/2 Mg o		FRONT 1/2 MG 7	FRONT 1/2 MG ?		
643,8000	9 448)	769,0000 Filt	732.2000 FUU		
BRCK 1/2 MG ?		BACK 1/2 MG 3	BACK 1/2 MG ?		
	Bûd	E ffet	EUN.		
F GR/DSCF = 0.3140		F GR/DSCF = 0.3741	F GR/DSCF = 0.3566		
F MG/MMM = 718,443		F MG/NNM = 856.1037	F NG/MMM = 816.0873		
F LB/HR = 43.2400	-	F LB/HR = 51.4230	F LB/HP = 49,2024		
F KG/HR = 19,6177		F KG/HR = 23.3292	F KG/HF = 22,3182		

APPENDIX L

EPA Method 9 Certification

The Texas Air Control Board Certifies That

RAMON A. CINTRON-OCASIO

Has completed a course conducted by The Texas Air Control Board and has met the requirements for evaluating visible emissions.

October 18, 1991 Date Cartified April 17, 1992

This Certificate Expires.

Certifying Officer Des