SMART FARM PV SYSTEM SIMULATOR MANUAL

This application is intended for simulating various microgrid setup involving PV arrays, battery bank, and diesel generator. It gives information about the practical/commercial implication of various setups. The application is written in Python.

Advantage of using this application include:

- Open source. The program can be modified for further research/commercial purposes.
- Lightweight
- The instructions are straightforward. Can be easily used

I. PROGRAM LOGIC

- For every hour of the year,
 - o Calculate the user's electric load demand
 - o Generate the solar irradiance and the PV array energy production
- After choosing a control mode involving PV array, battery bank and diesel generator,
 - Calculate diesel generator loading and fuel use
 - Compute batter bank's state of charge
 - o Calculate excess solar energy (or diesel generator) power
 - Calculate capacity shortage in case of lack of power supply
 - Calculate potential earnings (for PV-Genset setup)

II. PV ARRAY – BATTERY – DIESEL GEN CONTROL MODES

- Control Mode 1: Battery Grid Former, Genset Cycle Charging (DC Coupled)
 - o The battery bank serves as the power source of the system
 - The PV array charges the battery bank
 - o Diesel generator acts as a backup source for the battery bank
 - If the battery bank state of charge is low, the diesel generator charges the battery bank as well as supplies the electric load
 - o If the battery bank is at full capacity, the diesel generator is switched off
- Control Mode 2: Mixed Master, Genset Cycle Charging (AC Coupled)
 - o The battery bank and diesel generator are used interchangeably as the main power source
 - The diesel generator only operates whenever the battery bank state of charge is low or if the power rating of user electric load demand exceeds battery bank rating
- Control Mode 3: Mixed Master, Genset Load Following (AC Coupled)
 - The principle is the same as mode 2, however the diesel generator is not used for charging the battery bank

- Control Mode 4: Genset Grid Former, Battery Ramp Control
 - o The diesel generator and the PV array (grid tied) are used as main power source
 - Battery bank is used for ramp control for compensating scenarios such as variation of PV array output.

III. AVAILABLE PV ARRAY- BATTERY – DIESEL GEN SETUP

Type 1: DC-coupled PV Array and Diesel Generator Set

Type 2: AC-coupled PV Array and DC-coupled Diesel Generator Set

Type 3: DC-coupled PV Array and AC-coupled Diesel Generator Set

Type 4: AC-coupled PV Array and AC-coupled Diesel Generator Set

Table 1: Control Mode for Solar Power Plant Setup

Control Mode	Grid Former	Diesel Generator Coupling	Control Strategy
1	Battery Bank	DC (Type 1 and 2)	Battery Dominant,
			Genset Backup
2	One Main Source	AC (Type 3 and 4)	Battery Dominant,
			Genset Backup
3	One Main Source	AC (Type 3 and 4)	Battery Dominant,
			Genset for charging only
4	Diesel Generator	AC (Type 3 and 4)	Genset Dominant
			Battery for ramp control

IV. USER INTERFACE

A. Setup Tab

Figure 1: User Interface for Setup Tab

Hybrid System Configuration

- o Allows user to choose the components in power system
 - Genset (Diesel Generator)
 - PV-Genset
 - PV-Battery

- PV-Battery-Genset
- Control Mode
 - Allows user to choose the strategy for controlling the system configuration (see PV ARRAY-BATTERY-DIESEL GEN CONTROL MODES)

B. Loads Tab

Figure 2: User Interface for Loads Tab

- User Electric Load Data Deviation
 - Introduce variation of user's electric load consumption
- Hourly User Electric Load Demand Data
 - Summer (kW): Variation of user's electric load in summer months
 - Rainy (kW): Variation of user's electric load in rainy months

C. Solar PV Tab

Figure 3: User Interface for Solar PV Tab

Meteorological Data

- Represent the monthly data of meteorological parameters considered
 - Clear Index monthly clearness indices of the PV site
 - Amb Temp monthly average ambient temperature of the PV site

Solar PV System

- PV Array DC Output Peak power/DC capacity of the PV array (Wp)
- o PV system coupling coupling of the PV array to the system (AC for grid-tied, DC for offgrid)
- PV inverter AC output rated AC capacity of inverter (for AC coupled system)
- Power Temperature Coefficient- found from PV panel datasheet (module temperature derating factor)
- Environmental derating factor- constant considering dirt and soiling of PV panels
 - 1.0 Clean
 - 0.95- Moderate Soiling
 - 0.9 Heavy soiling
- Manufacturer Tolerance Factor assigned constant for tolerances in PV power output (0.95)
- Inverter/SCC efficiency conversion efficiency of inverter (AC coupled) or solar charge controller (DC Coupled)

Solar PV Configuration

- o Tilt Angle tilt angle of PV array measured in degrees
- o Azimuth Angle Azimuth of the PV array measured in degrees
 - 0 degree South facing
 - 180 degrees north facing
 - 90 degrees west facing
 - -90 degrees east facing
- Albedo another term for ground reflectance. Consider the ground around the PV array
 - 0.04- Fresh Asphalt
 - 0.17 Bare soil
 - 0.25 Green grass
 - 0.4- Desert sand
 - 0.8 0.9 Fresh snow

D. Battery Tab

Figure 4: User Interface for Battery Tab

Battery Configuration

- Battery Bank # Number of battery banks connected in parallel
- Nominal Capacity Nominal capacity of a battery bank rated in Ah
- Nominal Voltage- Nominal voltage of a battery bank rated in Vdc

Battery Discharge Characteristics

 Data points used for estimating battery charge/discharge characteristics. These data points can be found on the battery data sheet

Battery Charge Parameters

- Battery converter/inverter efficiency
 - Conversion efficiency of battery converter or inverter
- o Battery initial state of charge- initial SOC of the battery at the start of simulation
- Battery minimum state of charge- Battery SOC at end of discharge
- Cycle charging SOC setpoint battery SOC at which point cycle charging is finished

Battery Ramp Control Parameters (applicable to mode 4 only)

- o PV output setpoint for ramp control Desired PV output
 - If PV output < Setpoint, battery will discharge
 - PV output > setpoint, battery will charge
- o Ramp control start time hour of the day for ramp-control mode to start
- o Ramp control stop time hour of the day for ramp-control mode to stop

E. Genset Tab

Figure 5: User Interface for Genset Tab

- Generator #: Number of diesel generator connected in parallel
- o Nominal Capacity nominal capacity of each diesel generator rated in kW
- Minimum generator loading minimum load connected in diesel generator
- o Specific fuel consumption measured average fuel consumption (liters/kW)
- AC/DC charger efficiency conversion efficiency of diesel generator battery (for DC coupled systems only)

F. Simulation Tab

Figure 6: User Interface for Simulation Tab

- o Run Button- runs the simulation
- Clear Button clears the simulation window
- Plot Button provides the plot of simulation result