← Ergodicity, differentiability, continuity

Quiz, 5 questions

1 point
1.
Let W_t be a Brownian Motion considered at integer time points $t=0,1,2,$ Choose the ergodic processes:
none of above
$lacksquare X_t = Ct + W_t$, where C is a non-zero constant
$X_t = \xi t + W_t$, where $\xi \sim N(0,1)$ and ξ is independent of W_t .
1
point
2. Let $X_t=\cos(\omega t+\theta)$ be a stochastic process and $\theta\sim$ Unif[0, 2π], $\omega=\pi/10$. Is this process ergodic? Is it stationary?
It is non-ergodic and weakly stationary
It is ergodic and non-stationary
It is ergodic and weakly stationary
none of above
1
point
3. Let $X_t=arepsilon_t+\xi\cos(\pi t/12)$, $t=1,2,$ and $arepsilon_1,arepsilon_2,$ be a sequence of i.i.d. random variables. Is the process X_t stationary and ergodic?
$lacksquare X_t$ is weakly stationary and ergodic
$oxed{X_t}$ is weakly stationary and non-ergodic
none of above
1
point
4. Assume that for a process X_t it is known that $\mathbb{E}\left[X_t ight]=lpha+eta t$, $\mathrm{cov}(X_t,X_{t+h})=e^{-h\lambda}$,
for all $h\geq 0$, $t>0$, and some constants $\lambda>0$, $lpha,eta$. Is the process X_t stationary and ergodic?
none of above
$igwedge X_t$ is non-stationary and ergodic
$lacksquare X_t$ is weakly stationary and ergodic
$oxed{X}_t$ is weakly stationary and non-ergodic

point

Submit Quiz

