India

Regional Mathematical Olympiad

2003

- 1 Let ABC be a triangle in which AB = AC and $\angle CAB = 90^{\circ}$. Suppose that M and N are points on the hypotenuse BC such that $BM^2 + CN^2 = MN^2$. Prove that $\angle MAN = 45^{\circ}$.
- 2 If n is an integer greater than 7, prove that $\binom{n}{7} \lceil \frac{n}{7} \rceil$ is divisible by 7.
- 3 Let a, b, c be three positive real numbers such that a+b+c=1. prove that among the three numbers a-ab, b-bc, c-ca there is one which is at most $\frac{1}{4}$ and there is one which is at least $\frac{2}{9}$.
- [4] Find the number of ordered triples (x, y, z) of non-negative integers satisfying (i) $x \le y \le z$ (ii) $x + y + z \le 100$.
- [5] Suppose P is an interior point of a triangle ABC such that the ratios

$$\frac{d(A,BC)}{d(P,BC)}, \frac{d(B,CA)}{d(P,CA)}, \frac{d(C,AB)}{d(P,AB)}$$

are all equal. Find the common value of these ratios. d(X, YZ) represents the perpendicular distance fro X to the line YZ.

- 6 Find all real numbers a for which the equation $x^2a 2x + 1 = 3|x|$ has exactly three distinct real solutions in x.
- 7 Consider the set $X = \{1, 2 \dots 10\}$. Find two disjoint nonempty sunsets A and B of X such that
 - a) $A \cup B = X$;
 - b) $\prod_{x \in A} x$ is divisible by $\prod_{x \in B} x$, where $\prod_{x \in C} x$ is the product of all numbers in C;
 - c) $\prod_{\substack{x \in A \\ x \in R}} x$ is as small as possible.