README.md

study-5g-prj

I would like to study the book from Dr. Yang Xuezhi.

chap 1

极限,柯西,函数的极限,

空心邻域,

极限定义的思想,以及它所体现的数学的严密逻辑。

n弄懂公式的意义, 经过多次的思考训练, 建立起条件反射。

chap 2

2.4 连续

$$\lim_{x \to x_0} f(x) = f(x_0)$$

 $x->x0\lim f(x)=f(x0)$

左连续、右连续

2.5 导数

斜率, 变量的变化除以自变量的变化, 就是直线的斜率,

导数, 微积分的基础概念。

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

1 of 2

 $f'(x0) = \Delta x \rightarrow 0 \lim \Delta x f(x0 + \Delta x) - f(x0)$

2.6 微分

微分等于导数乘以自变量的微分

$$dy = f'(x)dxf'(x) = \frac{dy}{dx}$$

dy = f'(x)dxf'(x) = dxdy

导数也叫做微商,

2.7 积分

黎曼,德国数学家。黎曼函数,黎曼积分,黎曼引理。黎曼流形,黎曼映射订立,黎曼-希尔伯特问题,黎曼思路回环矩阵和黎曼曲面。

极限存在 $\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 黎曼可积 $\int_a^b f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i$ 极限存在 $\lambda \to 0$ lim $i=1 \ge n f(\xi_i) \Delta x_i$ 数量可积 $\int_a^b f(x) dx = \lambda \to 0$ lim $i=1 \ge n f(\xi_i) \Delta x_i$

使子区间[x_{i-1}, x_i][x_{i-1}, x_i]中的子区间的宽度逼近于零,这时候子区间内的所有点实际上收缩为一个点。

$$\int_{a}^{b} f(x)dx = A$$

 $\int ab f(x) dx = A$

黎曼可积比连续的条件要弱。