Problem 4: Eigenvalue finding

a) Check problem4_a.py

eigenvalue: 2.13307

eigenvector:

[[0.49742503]

[-0.8195891]

[-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector:

[[0.49742503]

[-0.8195891]

[-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector:

[[0.49742503]

[-0.8195891]

[-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector:

[[0.49742503]

[-0.8195891]

[-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector:

[[0.49742503]

[-0.8195891]

[-0.28432735]]

eigenvalue: 2.13307

eigenvector: [[0.49742503] [-0.8195891] [-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector: [[0.49742503] [-0.8195891] [-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector: [[0.49742503] [-0.8195891] [-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector: [[0.49742503] [-0.8195891] [-0.28432735]]

number of iterations: 25

eigenvalue: 2.13307

eigenvector: [[0.49742503] [-0.8195891] [-0.28432735]]

b) Check problem4_b.py

eigenvalue: 0.578933

eigenvector: [[0.0431682]

[0.35073145]

[-0.9354806]]

number of iterations: 6

eigenvalue: 0.578933

eigenvector:

[[0.0431682]

[0.35073145]

[-0.9354806]]

number of iterations: 6

eigenvalue: 0.578933

eigenvector:

[[0.0431682]

[0.35073145]

[-0.9354806]]

number of iterations: 6

eigenvalue: 0.578933

eigenvector:

[[0.0431682]

[0.35073145]

[-0.9354806]]

number of iterations: 6

eigenvalue: 0.578933

eigenvector:

[[0.0431682]

[0.35073145]

[-0.9354806]]

eigenvalue: 0.578933

eigenvector: [[0.0431682] [0.35073145] [-0.9354806]]

number of iterations: 6

eigenvalue: 0.578933

eigenvector: [[0.0431682] [0.35073145] [-0.9354806]]

number of iterations: 6

eigenvalue: 0.578933

eigenvector: [[0.0431682] [0.35073145] [-0.9354806]]

number of iterations: 6

eigenvalue: 0.578933

eigenvector: [[0.0431682] [0.35073145] [-0.9354806]] number of iterations: 6

eigenvalue: 0.578933 eigenvector: [[0.0431682] [0.35073145] [-0.9354806]]

- c) This two method result in different eigenvalues and hence different eigenvectors in this case. And the Rayleigh quotient iteration converge much faster than the inverse iteration.
- d) Check problem4 d.py

eigenvalues:

```
[7.28799214+0.j 2.13307448+0.j 0.57893339+0.j]
```

eigenvectors:

```
[[ 0.86643225  0.45305757  0.20984279]
```

[0.49742503 -0.8195891 -0.28432735]

[-0.0431682 -0.35073145 0.9354806]]

Inverse iteration:

relative error in eigenvalue:2.08192079078e-16

relative error in eigenvector: 1.87148797241e-13

Rayleigh quotient iteration:

relative error in eigenvalue:1.917704268e-16

relative error in eigenvector: 5.92859355033e-17

e) Check problem4_e.py

Inverse iteration:

Eigenvalue

[[2.13307448]]

Eigenvector

[[-0.49742503]

[0.8195891]

[0.28432735]]

Number of iterations 11

Rayleigh quotient iteration:

Eigenvalue

[[2.13307448]]

Eigenvector

[[0.49742503]

[-0.8195891]

[-0.28432735]]

Number of iterations 7

The output Eigenvalue are almost the same and the Eigenvector have only the difference of sign.

Rayleigh quotient iteration converge faster than Inverse iteration.