What is claimed is:

- 1 1. A mobile communicator comprising:
- a search receiver to search for a base station using a search window size that
- adapts over time based on a changing channel condition between the base station and
- 4 the mobile communicator.
- 1 2. The mobile communicator of claim 1, wherein:
- said search receiver uses a first search window size to search for the base station
- during normal operation and changes to a second, larger search window size to search
- 4 for the base station when received energy is detected outside of said first search
- 5 window size for the base station.
- 1 3. The mobile communicator of claim 2, wherein:
- said first search window size is selected to encompass a majority of possible
- delay spread conditions between the base station and the mobile communicator.
- 1 4. The mobile communicator of claim 1, wherein said search receiver includes:
- a searcher having a variable size search window; and
- a search window size controller to control the search window size of the
- 4 searcher, said search window size controller to occasionally change the search window
- size of the searcher to a full search window size for use in determining a present
- 6 channel condition between the base station and the mobile communicator.
- 1 5. The mobile communicator of claim 4, wherein:
- 2 said search window size controller determines a subsequent search window size
- 3 for the searcher based on the present channel condition.
- 1 6. The mobile communicator of claim 4, wherein:
- said full search window size is related to an expected worst case delay spread in
- the channel between the base station and the mobile communicator.

. 7	7D1 1.11		-1-: 4	1
1 /	The mobile con	amiinicator of	ciaim 4	wherein.
. ,.		initiality at the state of the	Clumin T	, ** 1101 0111.

- said search window size controller estimates a delay spread of the channel
- between the base station and the mobile communicator and determines a subsequent
- search window size for the searcher based on the estimated delay spread.
- 1 8. The mobile communicator of claim 7, wherein:
- 2 said search window size controller determines a smallest search window size
- that encompasses all significant paths within the estimated delay spread of the channel.
- 1 9. The mobile communicator of claim 7, wherein:
- said search window size controller selects the subsequent search window size
- from a plurality of predetermined search window sizes.
- 1 10. The mobile communicator of claim 4, comprising:
- a quality measure unit to determine a quality measure for the base station using
- an output of the searcher.
- 1 11. The mobile communicator of claim 1, wherein:
- said search receiver searches for multiple base stations using corresponding
- 3 search window sizes that adapt over time based on changing channel condition between
- 4 each corresponding base station and the mobile communicator.
- 1 12. A method for searching for a base station from a mobile communicator,
- 2 comprising:
- searching for the base station using a search window; and
- adapting a size of the search window over time based on a changing channel
- 5 condition between the base station and the mobile communicator.

1	13.	The method of claim 12, wherein:	
2		adapting a size of the search window includes:	
3		occasionally searching for the base station using a full search window	
4		size; and	
5		changing the search window size based on a result of one or more full	
6		search window searches.	
1	14.	The method of claim 12, wherein:	
2		adapting a size of the search window includes:	
3		estimating a delay spread of a channel between the base station and the	
4		mobile communicator; and	
5		selecting a smallest search window size that encompasses the estimated	
6		delay spread.	
1	15.	The method of claim 12, wherein:	
2		adapting a size of the search window includes:	
3		determining whether receive energy has been detected outside a first	
4		search window size; and	
5		changing the size of the search window to the first search window size	
6		when receive energy has not been detected outside said first search window	
7		size.	
1	16.	A method for searching for a base station from a mobile communicator,	
2	comp	rising:	
3		searching for the base station using a first search window size;	
4		occasionally checking for significant received energy outside of said first search	
5	wind	ow size for the base station; and	
6		searching for the base station for a predetermined period using a second search	
7	wind	ow size that is greater than said first search window size when significant received	

- 8 energy is detected outside of said first search window size during occasionally
- 9 checking.
- 1 17. The method of claim 16, wherein:
- 2 occasionally checking for significant received energy outside of said first search
- window size includes searching for the base station using a full search window size that
- 4 is greater than said first search window size.
- 1 18. The method of claim 17, wherein:
- said first search window size is a size that is expected to encompass a majority
- of possible delay spread conditions in a channel between the base station and the
- 4 mobile communicator; and
- said full search window size is a size that is expected to encompass a worst case
- 6 delay spread condition in the channel between the base station and the mobile
- 7 communicator.
- 1 19. The method of claim 17, wherein:
- 2 said second search window size is equal to said full search window size.
- 1 20. The method of claim 17, wherein:
- 2 said second search window size is less than or equal to said full search window
- 3 size.
- 1 21. The method of claim 16, wherein:
- 2 occasionally checking includes checking at regular intervals.
- 1 22. The method of claim 16, wherein:
- 2 occasionally checking includes estimating a delay spread for the channel
- between the base station and the mobile communicator; and

- said second search window size is determined based upon the estimated delay spread.
- 1 23. A mobile communicator that is programmed to search for one or more base
- 2 stations using the method of claim 16.
- 1 24. A method for searching for a base station from a mobile communicator,
- 2 comprising:
- first searching for the base station using a large search window size;
- determining a new search window size to search for the base station based on a
- 5 result of said first searching; and
- second searching for the base station using the new search window size.
- 1 25. The method of claim 24, wherein:
- second searching includes searching for the base station using the new search
- window size for a first time duration.
- 1 26. The method of claim 25, further comprising:
- repeating first searching, determining, and second searching after said first time
- 3 duration has elapsed.
- 1 27. The method of claim 26, further comprising:
- adapting a length of said first time duration over time based on a predetermined
- 3 criterion.
- 1 28. The method of claim 24, wherein:
- determining a new search window size includes selecting one of a plurality of
- 3 predetermined search window sizes.

2

stations using the method of claim 24.