

planetmath.org

Math for the people, by the people.

every proposition is equivalent to a proposition in DNF

 ${\bf Canonical\ name} \quad {\bf Every Proposition Is Equivalent To A Proposition In DNF}$

Date of creation 2013-03-22 15:06:58 Last modified on 2013-03-22 15:06:58

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 10

Author rspuzio (6075) Entry type Theorem Classification msc 03B05 **Theorem.** Given any proposition, there exists a proposition in disjunctive normal form which is equivalent to that proposition.

Proof. Any two propositions are equivalent if and only if they determine the same truth function. Therefore, if one can exhibit a mapping which assigns to a given truth function f a proposition in disjunctive normal form such that the truth function of this proposition is f, the theorem follows immediately.

Let n denote the number of arguments f takes. Define

$$V(f) = \{X \in \{T, F\}^n | f(X) = T\}$$

For every $X \in \{T, F\}^n$, define $L_i(X): \{T, F\}^n \to \{T, F\}$ as follows:

$$L_i(X)(Y) = \begin{cases} Y_i & X_i = T \\ \neg Y_i & X_i = F \end{cases}$$

Then, we claim that

$$f(Y) = \bigwedge_{X \in V(f)} \bigvee_{i=1}^{n} L_i(X)(Y)$$

On the one hand, suppose that f(Y) = T for a certain $Y \in \{T, F\}^n$. By definition of V(f), we have $Y \in V(f)$. By definition of L_i , we have

$$L_i(Y)(Y) = \begin{cases} Y_i & Y_i = T \\ \neg Y_i & Y_i = F \end{cases}$$

In either case, $L_i(Y)(Y) = T$. Since a conjunction equals T if and only if each term of the conjunction equals T, it follows that $\bigvee_{i=1}^{n} L_i(Y)(Y) = T$. Finally, since a disjunction equals T if and only if there exists a term which equals T, it follows the right hand side equals equals T when the left-hand side equals T.

On the one hand, suppose that f(Y) = F for a certain $Y \in \{T, F\}^n$. Let X be any element of V(f). Since $Y \notin V(f)$, there must exist an index i such that $X_i \neq Y_i$. For this choice of i, $Y_i = \neg X_i$ Then we have

$$L_i(X)(Y) = \begin{cases} \neg X_i & X_i = T \\ \neg \neg X_i & X_i = F \end{cases}$$

In either case, $L_i(X)(Y) = F$. Since a conjunction equals F if and only if there exists a term which evaluates to F, it follows that $\bigvee_{i=1}^{n} L_i(X)(Y) = F$

for all $X \in V(f)$. Since a disjunction equals F if and only if each term of the conjunction equals F, it follows that the right hand side equals equals F when the left-hand side equals F.