CS506 Notes

Lecture 10: Classification

- Predict a class label using input features (predictors).
- Success depends on correlation between predictors and target class.
- Imperfect prediction is expected due to noise or inadequate features.

• Correlation:

- Use Pearson for linear data; Spearman for ordinal/nonlinear.

• Data Types:

- Nominal: no inherent order (e.g., color).
- Ordinal: ordered, but gaps aren't meaningful (e.g., ratings).

• Model Evaluation:

- Use separate training and testing sets to avoid overfitting.

• K-Nearest Neighbors (KNN):

- Predict using majority class of nearest neighbors.
- Pros: simple, interpretable.
- Cons: slow for large datasets; suffers in high-dimensional space.

Lecture 11: Decision Trees

- Predict class via yes/no paths down a tree.
- Hunt's Algorithm: Recursively split data to create pure subsets.

• Splits:

- Binary (e.g., age ; 30).
- Multi-way (e.g., weather = sunny/rainy/overcast).

- GINI Index: Measures impurity of a node.
- Overfitting:
 - Avoid by early stopping or pruning.

Lecture 12: Model Evaluation

• Confusion Matrix Metrics:

$$\begin{aligned} & \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \\ & \text{Precision} = \frac{TP}{TP + FP} \\ & \text{Recall} = \frac{TP}{TP + FN} \\ & \text{F1 Score} = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \end{aligned}$$

- Validation Methods:
 - Holdout, K-Fold Cross Validation, Leave-One-Out (LOO)
- Ensemble Methods:
 - Combine multiple models to reduce error.
 - **Bagging:** Build models on bootstrap samples (e.g., Random Forest).
 - Boosting: Sequentially train models to correct previous errors.

Lecture 13: Support Vector Machines (SVM)

- Goal: Find the widest possible margin separating classes.
- Decision Boundary: $w^T x + b = 0$
- Regularization Parameter (C):
 - $-\ C>1$: Narrow margin, fewer errors, risk of overfitting.
 - C < 1: Wider margin, tolerant of errors, better generalization.
- Soft Margin: Allows some misclassifications.
- **Kernel Trick:** Transforms data to higher dimensions for linear separation using kernel functions.

Lecture 14: Recommender Systems

- Challenges: Scale, cold start, sparse data.
- Methods:
 - Neighborhood-Based: Recommend based on similar users/items.
 - Content-Based Filtering: Use item features to recommend similar items.
 - Collaborative Filtering: Matrix factorization to discover latent user/item features.

Lecture 15: Linear Regression

- Goal: Fit a linear model $y = X\beta$ to predict target values.
- Assumptions:
 - Linearity, independence, and normality of residuals.
- Methods:
 - Least Squares: Minimize $\sum (y_i \hat{y}_i)^2$.
 - Maximum Likelihood: Maximize $P(Y \mid h)$ assuming Gaussian noise.