ANO: 10° ANO DATA: FEV

TEMA: DIVISÃO EUCLIDIANA DE POLINÓMIOS. REGRA DE RUFFINI. TEOREMA DE RESTO.

TIPO: FICHA DE TRABALHO N.º 2

LR MAT EXPLICAÇÕES

1. Determina, na forma reduzida, os polinómios quociente e resto da divisão inteira de A(x) por B(x), sendo:

1.1
$$A(x) = x^2 + 2x - 3$$
 e $B(x) = x - 1$;

1.2
$$A(x) = -x^3 + 4x^2 - 7$$
 e $B(x) = x - 3$;

1.3
$$A(x) = 4x^3 - 5x + 1$$
 e $B(x) = 2x^2 + 3$;

1.4
$$A(x) = 4x^4 - 5x^3 + x^2 - x - 3$$
 e $B(x) = 3x^2 - 3x + 2$

2. Recorrendo à regra de Ruffini, determina o quociente e o resto das seguintes divisões inteiras:

2.1
$$(3x^2 - 4x - 5)$$
: $(x + 3)$

$$2.2 (-x^4 + 2x^2 - 1) : (x - 2)$$

$$2.3(x^3-1):(x-1)$$

$$2.4 (4x^3 + 3x^2 - 2) : \left(x + \frac{3}{4}\right)$$

$$2.5 \left(\frac{3}{2}x^3 - 3x - 1\right) : \left(x - \frac{5}{3}\right)$$

$$2.6 (2x^2 - x + 2) : (2x - 4)$$

$$2.7 (2x^3 - x^2 + 2) : (2x + 3)$$

3. Determina o valor de $t \in \mathbb{R}$ sabendo que o resto da divisão inteiro de $2x^4 + tx^3 + x - 2$ por x - 3 é 1.

4. Sem efetuar a divisão, determina o resto das seguintes divisões inteiras:

4.1
$$(3x^2 - 5x - 6) : (x - 3)$$

4.2
$$(x^4 - 2x^3 - 3x - 1) : (x + 1)$$

4.3
$$(x^3 + x - 2) : (x + \frac{2}{3})$$

4.4
$$(-x^2 - x - 2) : (2x + 1)$$

5. Considera o polinómio $P(x) = -2x^3 - 10x^2 + kx + 16$, com $k \in \mathbb{R}$.

Determina o valor de k de modo que P(x):

- 5.1 seja divisível por x 1;
- 5.2 tenha -2 como raiz;
- 5.3 seja divisível por $x + \frac{1}{2}$.

6. Considera o polinómio $P(x) = (x - a)(x^2 + kx + 6)$, com $a, k \in \mathbb{R}$.

6.1 Qual é o resto da divisão inteira de P(x) por x - a?

- 6.2 Sendo $a \neq -6$, determina o valor de k para o qual -6 é raiz de P(x).
- 7. Considera o polinómio $A(x) = 2x^3 10x^2 mx + 15$.

Determina o valor de m para o qual:

- 7.1) A(x) é múltiplo de x 5.
- 7.2) o resto da divisão de A(x) por x + 2 é 33.
- 8. Considera o polinómio $P(x) = x^3 2x^2 + mx + n \ (m, n \in \mathbb{R}).$

Determina os valores de m e n sabendo que:

- P(x) é divisível por x + 3;
- o resto da divisão inteira de P(x) por $x 1 \neq 28$.
- 9. Considera o polinómio $P(x) = x^2 + bx + c$, com $b, c \in \mathbb{R}$.

Determina os valores de b e c para os quais P(x) é divisível por x-1 e x+2.

10. Considera o polinómio $P(x) = x^4 - (k+1)x^2 + 3kx - 2$.

Determina o valor de k de modo que:

- 10.1) o resto da divisão de P(x) por x + 1 seja -2.
- 10.2) P(x) seja divisível por x 2.
- 11. Seja $n \in \mathbb{N}$. Prova que:
 - 11.1) $x^n 1$ é divisível por x 1
 - 11.2) $x^n + x$ é divisível por x + 1 se n par.
- 12. Considera o polinómio: $P(x) = x^4 + ax^3 3x + b$.

Determina a e b de forma que P(x) seja divisível por $x^2 - 1$.

- 13. De um polinómio A(x) de quarto grau, sabe-se que:
 - A(1) = 0
 - o grau de multiplicidade de todas as suas raízes é dois
 - o resto da divisão por x + 1 é igual a 8
 - o polinómio A(x) não tem termo independente

O polinómio A(x), na forma reduzida, é:

(A)
$$3x^4 - 2x^3 + 2x^2 + x$$

(B)
$$2x^4 - 4x^3 + 2x^2 + 2$$

(C)
$$2x^4 - 4x^3 + 2x^2$$

(D)
$$3x^4 - 2x^3 + 2x^2 + 2$$

14. Considera o polinómio do 3.º grau $P(x) = x^3 + ax^2 + bx - 2$, com $a, b \in \mathbb{R}$. Sabe-se que:
• $P(x)$ é divisível por $x-2$;
• o resto da divisão de $P(x)$ por $x-1$ é igual a -1 .

Os valores reais de a e b são, respetivamente:

(A)
$$-3 e 2$$

(C)
$$-3 e 3$$

15. Considera o polinómio
$$P(x) = x^{2n} + x^{2n-1} + x + 1$$
, com $n \in \mathbb{N}$.

Qual das seguintes proposições é verdadeira?

(A)
$$P(1) = 0, \forall n \in \mathbb{N}$$

(B)
$$\exists n \in \mathbb{N} : P(1) = 0$$

(C)
$$P(-1) = 0, \forall n \in \mathbb{N}$$

(D)
$$\exists n \in \mathbb{N} : P(-2) = 0$$

16. O polinómio
$$x^n + a^n$$
, com $n \in \mathbb{N}$ e $a \in \mathbb{R}$ é divisível por $x + a$:

(A) se
$$n$$
 for par

(B) se
$$n$$
 for impar

(C) para todo o
$$n \in \mathbb{N}$$

(D) para
$$n \ge 3$$