Esercizio per la pratica della Unit 1 - S1 - L2 Svolto da Gioele Parla

analizzare i seguenti indirizzi IP e determinare i seguenti elementi:

- IP Network
- IP Gateway 'convenzionale'
- IP Broadcast
- Quantità di ottetti per gli host
- Quantità e specificazione degli ottetti per la network

1° indirizzo IP da analizzare: 128.1.6.5/12

CIDR è /12 quindi i primi 12bit sono riservati per identificare la rete e i restanti 20 in questo (assendo 32 in totale) sono riservati per indentificare gli host all'interno della rete. Per calcolare la subnet mask si mettono 12 bit a "1" e i restanti 20 bit a "0": 11111111.11110000.00000000.00000000 e convrtito decimale verrà 255.240.0.0 quindi /12 vuol dire che la subnet mask sarà 255.240.0.0 (o più semplicemente si vede la tabella presente nelle slide della teoria)

IP NETWORK DI 128.1.6.5/12

Per ottenere l'IP network o base di rete dobbiamo intanto convertire il nostro indirizzo IP in binario: 128.1.6.5 sarà 10000000.0000001.00000110.00000101

poi avremo 12 bit a 1 e e il resto a 0 quindi 11111111.11110000.00000000.000000000

quindi facendo poi l'operazione AND 10000000.0000001.00000110.00000101 (indirizzo ip binario) 1111111.11110000.00000000.00000000 (subnet mask)

risultato: 1000000.00000000.00000000.00000000 (reminder per me stesso: il rsultato è cosi perchè solo se entrambi i bit sono 1, il risultato è 1. Altrimenti è 0.) Lo convertiamo a decimale e avremo la base di rete cioè: **128.0.0.0**

IP GATEWAY 'convenzionale'

per gateway convenzionale si fa base di rete +1 per gateway convenzionale alternativo si fa broadcast -1

IP BROADCAST DI 128.1.6.5/12

Per ottenere invece l'IP broadast dobbiamo applicare l'operazione OR (basta che uno dei due bit sia 1, il risultato sarà 1)

10000000.0000001.00000110.00000101 (indirizzo ip binario) 00000000.00001111.11111111111111111 (subnet mask invertita NOT)

OTTETTI PER HOST

32 bit (totali) - 12 (della rete) = 20 bit per gli host 1 ottetto è 8 bit quindi 20 bit occupano: 20 diviso 8 viene 2,5 ottetti (oppure guardare la tabella della teoria guardando la nostra subnest mask)

Quantità e specificazione degli ottetti per la network

128.1.6.5 in binario è

10000000 . 00000001 . 00000110 . 00000101 (composto da 4 ottetti)

i bit che compongono la nostra rete sono 12 quindi

10000000 . 0000 0001 . 00000110 . 00000101

primo ottetto da 8 bit e primi 4 bit del secondo ottetto (totale 12 bit) sono per la rete e i restanti per gli host come detto all'inizio.

2° indirizzo IP da analizzare: 200.1.2.3/24

/24 la subnet maskè è 255.255.255.0 200.1.2.3 è 11001000.0000001.00000010.00000011 255.255.255.0 è 11111111.1111111.1111111.00000000

- **IP Network**: con operazione AND il risultato è: 11001000.0000001.00000010.00000000 cioè **200.1.2.0**
- IP Gateway 'convenzionale' : 200.1.2.1
- **IP Broadcast**: con operazione OR NOT il risultato è 11001000.00000001.00000010.111111111 cioè **200.1.2.255**
- Quantità di ottetti per gli host: 32 bit (totali) 24 (della rete) = 8 bit per gli host
- 1 ottetto è 8 bit quindi 8 bit occupano 1 ottetto
- Quantità e specificazione degli ottetti per la network: i primi 24 bit (3 byte) 3 ottetti sono riservati alla rete, e l'ultimo byte (8 bit) 1 ottetto è per gli host.

3° indirizzo IP da analizzare: 192.192.1.1/22

/22 la subnet maskè è 255.255.252.0 192.192.1.1 è 11000000.11000000.00000001.00000001 255.255.252.0 è 11111111.1111111.11111100.00000000

- IP Gateway 'convenzionale' : 192.192.0.1
- IP Broadcast: con operazione OR NOT il risultato è

11000000.11000000.00000011.11111111 cioè **192.192.3.255**

- Quantità di ottetti per gli host: 32 bit (totali) 22 (della rete) = 10 bit per gli host
 1 ottetto è 8 bit quindi 10 bit occupano 1 ottetto + 2 bit
- Quantità e specificazione degli ottetti per la network: i primi 22bit sono riservati alla rete, e e restanti 10 bit (32-22) per la parte host

4° indirizzo IP da analizzare: 126.5.4.3/9

- IP Network: con operazione AND il risultato è: 01111110.00000000.00000000.00000000 ovvero 126.0.0.0
- IP Gateway 'convenzionale' : 126.0.0.1
- Quantità di ottetti per gli host: 32 bit (totali) 9 (della rete) = 23 bit per gli host 1 ottetto è 8 bit quindi 23 bit occupano 3 ottetti
- Quantità e specificazione degli ottetti per la network: i primi 9 bit riservati alla rete, 23 bit per gli host

5° indirizzo IP da analizzare: 200.1.9.8/24

/24 la subnet maskè è 255.255.255.0 01111110.00000101.00000100.00000011 è 126.5.4.3 11111111.11111111.111111111.00000000 è 255.255.255.0

- **IP Network**: con operazione AND il risultato è: 11001000.0000001.00001001.00000000 ovvero **200.1.9.0**
- IP Gateway 'convenzionale' : 200.1.9.1
- IP Broadcast: con operazione OR NOT il risultato è

11001000.00000001.00001001.11111111 ovvero **200.1.9.255**

- Quantità di ottetti per gli host: 32 bit (totali) 24 (della rete) = 8 bit per gli host
 1 ottetto è 8 bit quindi 8 bit occupano 1 ottetto
- Quantità e specificazione degli ottetti per la network:i primi 24 bit (3 ottetti) sono riservati alla rete. Il quarto ottetto (8 bit) è per gli host.

6° indirizzo IP da analizzare: 172.16.0.4/16

/16 la subnet maskè è 255.255.0.0 10101100.00010000.00000000.00000100 è 172.16.0.4 1111111.11111111.00000000.00000000 è 255.128.0.0

- IP Network: con operazione AND il risultato è: 10101100.00010000.00000000.00000000 ovvero 172.16.0.0
- IP Gateway 'convenzionale' : 172.16.0.1
- IP Broadcast: con operazione OR NOT il risultato

è10101100.00010000.11111111.11111111 ovvero 172.16.255.255

- Quantità di ottetti per gli host: 32 bit (totali) 16 (della rete) = 16 bit per gli host
- Quantità e specificazione degli ottetti per la network: i primi 16 bit (2 ottetti) dell'indirizzo sono dedicati alla parte di rete, e i restanti 16 bit (2 ottetti) alla parte di host.