Эффект Холла в полупроводниках (3.3.4)

Стеценко Георгий, Б02-312

1 Цель работы

Измерение подвижности и концентрации носителей заряда в полупроводниках.

2 Теоретические сведения

Эффект Холла

Во внешнем магнитном поле \vec{B} на заряды действует сила Лоренца $\vec{F} = q\vec{E} + q\vec{u} \times \vec{B}$. Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с \vec{E} . Возникновение попречного току электрического поля в образце, помещённом во внешнее магнитное поле, называют эффектом Холла.

Мостик Холла

Для исследования завиисимости проводимости среды от магнитного поля используют т.н. мостик Холла. В данной схеме (см. рисунок ??) ток вынуждают течь по оси x вдоль плоской пластинки (ширина пластинки a, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, "прибивает" носители заряда к краям образца, что создаёт холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно $U_{\perp} = E_{y}a$, где

$$E_y = \frac{j_x B}{nq}.$$

Рис. 1: Схема мостика Холла

Плотность тока, текущего через образец, равна $j_x = \frac{I}{ah}$, где I – полный ток, ah – поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{nah}I = R_H \frac{B}{h}I,\tag{1}$$

где константу

$$R_H = \frac{1}{na} \tag{2}$$

называют постоянной Холла. Знак постоянной Холла определяется знаком заряда носителей.

Продольная напряжённость электрического поля равна

$$E_x = \frac{j_x}{\sigma_0},\tag{3}$$

и падение напряжения $U_{\parallel}=E_x l$ вдоль пластинки определяется омическим сопротивлением образца $R_0=rac{l}{\sigma_0 ah}$:

$$U_{\parallel} = IR_0.$$

Интересно отметить, что немотря на то, что тензор проводимости явно зависит от B, продольное сопротивление образца в данной геометрии от магнитного поля не зависит.

3 Методика измерений

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр или миллитесламетр; источник питания (1,5 V), образцы легированного германия.

Рис. 2: Установка

В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания.

Градуировка магнита проводится при помощи тесламетра, помещаемого напрямую в зазор электромагнита.

Образец из легированного германия, смонтированный в специальном держателе, подключается к батарее ($\approx 1,5$ В). При замыкании ключа K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим

падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом – их разности. В этом случае ЭДС Холла U_{\perp} может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре. Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла: $U_{\perp} = U_{34} \pm U_{0}$. При таком способе измерения нет неообходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку U_{\perp} можно определить характер проводимости – электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля. Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по очевидной формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al},\tag{4}$$

где L_{35} – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

Ход работы

Параметры образца германия, используемого в работе: толщина $a=2.2~{\rm mm}$, ширина $l=2.5~{\rm mm}$, расстояние между контактами 3 и 5 $L_{35}=3.0~{\rm mm}$.

4 Результаты измерений

4.1 Калибровка электромагнита

Измерим зависимость магнитной индукции от силы тока, подаваемой на обмотки электромагнита:

I, A	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	
B, mT	110	207	306	408	501	596	686	756	
$\sigma(I)$, mA	1	2	3	4	5	6	7	8	
$\sigma(B)$, mT	6	10	15	21	25	30	34	38	
<i>I</i> , A	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.58	
B, mT	823	879	926	961	992	1018	1042	1059	
$\sigma(I)$, mA	9	10	11	12	13	14	15	16	
$\sigma(B)$, mT	41	44	46	48	50	51	52	53	

Таблица 1: Результаты калибровки

Рис. 3: Градуировочная кривая B(I)

Аппроксимируем полученные точки полиномом 4 степени (приведён на рисунке). Хоть и видно что глобально он плохо описывает зависимость (за пределами самой большой по току точке), интерполирует наши точки он прекрасно.

Для оценки погрешности измерения B возьмём чисто инструментальную погрешность – $\varepsilon(B)=5\%$.

4.2 Измерение ЭДС Холла

Теперь приведем результаты измерений ЭДС Холла. В табличном виде они находятся в mабл. 3 в приложении. Здесь же будет приведён исключительно график зависимости ЭДС Холла от магнитной индукции с учетом градуировки.

Рис. 4: Зависимость ЭДС Холла от величины магнитной индукции

Для удобства сведём полученные результаты (угловые коэффициенты) в единую таблицу.

Таблица 2: Зависимость крутизны зависимости ЭДС Холла к индукции от полного тока

I, mA	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00
k, mV/T	0.0574	0.0766	0.0952	0.1154	0.1354	0.1542	0.1731	0.1915

Рис. 5: Зависимость крутизны зависимости ЭДС Холла от тока через образец

Из рис. 5 найдем коэффициент Холла, используя (1):

$$R_H/a = (0.193 \pm 0.011) \frac{V}{A \cdot T}$$

$$R_H = (4.25 \pm 0.24) \cdot 10^{-4} \frac{\text{V} \cdot \text{m}}{\text{A} \cdot \text{T}}$$

Из (2) находим концентрацию носителей заряда:

$$n = \frac{1}{R_h \cdot e} = 1.47 \cdot 10^{22} \text{ m}^{-3} = 1.47 \cdot 10^{16} \text{ cm}^{-3}$$

Зная направление намотки катушки и знак эффекта Холла, понимаем, что германий легирован донорной добавкой (электронная проводимость).

Найдём так же проводимость образца по формуле (4):

$$\sigma = \frac{100~\text{mA} \cdot 3.0~\text{mm}}{1.752~\text{mV} \cdot 2.2~\text{mm} \cdot 2.5~\text{mm}} = 31100~(\Omega \cdot \text{m})^{-1}$$

а из этого получим подвижность электронов

$$\mu = \sigma/(en) = (13.2 \pm 0.8) \text{ m}^2/\text{V/s} = (132 \pm 8) \cdot 10^3 \text{ cm}^2/\text{V/s}$$

5 Вывод

В работе удалось пронаблюдать эффект Холла, определить тип проводимости образца и найти подвижность и концентрацию носителей заряда с хорошей точностью ($\sim 7\%$).

6 Приложение

Таблица 3: Результаты измерения для 2 пункта

0.30 mA 0.40 r		mA	0.50 mA		0.60 mA		$0.70 \mathrm{mA}$		0.80 mA		$0.90~\mathrm{mA}$		1.0 mA		
I, A	$U_{\perp}, \mu V$	I, A	$U_{\perp}, \mu V$	I, A	$U_{\perp}, \mu V$	I, A	$U_{\perp}, \mu V$	I, A	$U_{\perp}, \mu V$	I, A	$U_{\perp}, \mu V$	I, A	$U_{\perp}, \mu V$	I, A	$U_{\perp}, \mu V$
0.0	-7	0.0	-10	0.0	-13	0.0	-17	0.0	-20	0.0	-22	0.0	-25	0.0	-28
0.1	-2	0.1	-2	0.1	-5	0.1	-7	0.1	-8	0.1	-9	0.1	-10	0.1	-12
0.2	3	0.2	4	0.2	4	0.2	3	0.2	5	0.2	5	0.2	7	0.2	6
0.3	9	0.3	12	0.3	13	0.3	15	0.3	18	0.3	21	0.3	22	0.3	24
0.4	15	0.4	19	0.4	22	0.4	25	0.4	30	0.4	35	0.4	38	0.4	42
0.5	20	0.5	26	0.5	31	0.5	37	0.5	43	0.5	49	0.5	55	0.5	62
0.6	25	0.6	33	0.6	39	0.6	47	0.6	56	0.6	63	0.6	72	0.6	78
0.7	30	0.7	39	0.7	47	0.7	57	0.7	67	0.7	77	0.7	85	0.7	94
0.8	34	0.8	45	0.8	56	0.8	65	0.8	78	0.8	88	0.8	99	0.8	109
0.9	38	0.9	51	0.9	63	0.9	75	0.9	87	0.9	100	0.9	111	0.9	123
1.0	42	1.0	56	1.0	68	1.0	81	1.0	95	1.0	108	1.0	121	1.0	134
1.1	45	1.1	60	1.1	72	1.1	87	1.1	102	1.1	117	1.1	131	1.1	144
1.2	47	1.2	63	1.2	76	1.2	91	1.2	108	1.2	123	1.2	137	1.2	152
1.3	49	1.3	65	1.3	79	1.3	95	1.3	112	1.3	128	1.3	145	1.3	158
1.4	51	1.4	67	1.4	83	1.4	99	1.4	117	1.4	133	1.4	149	1.4	164
1.5	52	1.5	70	1.5	85	1.5	102	1.5	120	1.5	137	1.5	154	1.5	170