1 Ejercicio 24

El ejercicio pide describir distintas regiones en coordenadas polares. Recordemos que las coordenadas polares (r, θ) de un punto están relacionadas con las coordenadas rectanculares (x, y) por las ecuaciones:

$$x = rcos \theta \tag{1}$$

$$y = rsen \theta \tag{2}$$

$$r^2 = x^2 + y^2 \tag{3}$$

1.1 Ejercicio 24-1

En esta región, θ barre todo el plano salvo el primer cuadrante por lo que $\frac{\pi}{2} \le \theta \le 2\pi$.

Por otro lado, r describe la distancia desde el origen hasta cualquier punto contenido en el disco de radio 9, por lo que $0 \le r \le 9$. Luego, la región está dada por:

$$R = \left\{ (r, \theta) \in \mathbf{R}^2 : \frac{\pi}{2} \le \theta \le 2\pi, \ 0 \le r \le 9 \right\}$$

Figure 1:

1.2 Ejercicio 24-3

Los lados iguales del tríangulo están dados por las rectas y=x y y=-x. Teniendo en cuenta las Ecs. (1) y (2) se tiene que:

$$y = x$$

$$sen \theta = cos \theta$$

$$\theta = \frac{\pi}{4}$$
(4)

Así mismo,

$$y = -x$$

$$sen \theta = -cos \theta$$

$$\theta = \frac{3\pi}{4}$$
(5)

De esta forma, $\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}$. Por otro lado, la variable r se mueve desde 0 hasta la recta y=1, reescribiendo esta igualdad en coordenadas polares se tiene que:

$$rsen \theta = 1$$

$$r = csc \theta \tag{6}$$

Por lo que $0 \le r \le \csc \theta$. Notar que aquí nos quedó que el valor máximo de r no es constante sino que depende de θ , y esto es razonable ya que la distancia del origen a la recta horizontal, varía (la longitud del segmento rojo, por ejemplo, es distinta a la del azul). Luego,

$$R = \left\{ (r, \theta) \in \mathbf{R}^2 : \frac{\pi}{4} \le \theta \le \frac{3\pi}{4}, \ 0 \le r \le \csc \theta \right\}$$

Figure 2:

1.3 Ejercicio 24-5

Este caso es un poco diferente y se debe a que si bien el r mínimo vale siempre 1, la restricción para r máximo varía según si nos encontramos en la parte 1 o 2 de la región (ver figura 3).

• Región 1

Los segmentos azules están delimitados por la ecuación y = 2, de la que se desprende que:

$$rsen \theta = 2$$

$$r = 2csc \theta \tag{7}$$

Por lo que $1 \le r \le 2csc \theta$

• Región 2 Los segmentos rojos están delimitados por la ecuación $x=2\sqrt{3}$, de la que se tiene:

$$r\cos\theta = 2\sqrt{3}$$

$$r = 2\sqrt{3}\sec\theta \tag{8}$$

Por lo que $1 \le r \le 2\sqrt{3} \sec \theta$

Luego, igualando los lados derechos de las Ecs. (7) y (8) se tiene:

$$2\csc\theta = 2\sqrt{3} \sec\theta$$

$$\frac{1}{\sqrt{3}} = \tan\theta$$

$$\theta = \frac{\pi}{6}$$
(9)

Esto valor corresponde al de θ máximo para la región 2 y al de θ mínimo para la región 1.

En conclusión,

- Para la región 1: $R_1=\left\{(r,\theta)\ \in\ \mathbf{R}^2: \frac{\pi}{6}\leq \theta\leq \frac{\pi}{2},\ 1\leq r\leq 2csc\ \theta\right\}$
- Para la región 2: $R_2 = \{(r,\theta) \in \mathbf{R}^2 : 0 \le \theta \le \frac{\pi}{6}, \ 1 \le r \le 2\sqrt{3}sec \ \theta\}$

Y la región total R es $R_1 \cup R_2$.

Figure 3: