7 Markov Chains

For the Markov chain, the past and **the future are conditionally independent**. For the special case of random walk on an undirected network, the network structure is the key to determining the stationary distribution.

We can picture a Markov chain intuitively by imagining a system with *states* and someone randomly wandering around from state to state.

For many interesting Markov chains, the *stationary* distribution of the chain helps us understand how the chain will behave in the long run.

7.1 Markov property and transition matrix

A sequence of RVs X_0, X_1, X_2, \ldots evolving over time. This is called a *stochastic process*.

Markov chains have a form of one-step dependence, allowing to do beyond IIDs bust still have very convenient structure.

Markov chains widely used for simulations of complex distributions, via algorithms known as *Markov chain Monte Carlo (MCMC)*.

Markov chains live in both space and time: the set of possible states X_n is called *state time*, and index n represents evolution of the process over *time*. The state space of can be discrete or continuous, and time can also be discrete or continuous. We will focus on *discrete-state*, *discrete-time* Markov Chains with a *finite* state space.

Markov Chain

A sequence of RVs X_0, X_1, X_2, \ldots taking values in *state space* $\{1, 2, \ldots, M\}$ is called *Markov chain* \forall $n \geq 0$,

$$P(X_{n+1}=j|X_n=i,X_{n-1}=i-1,\ldots,X_0=i_0)=P(X_{n+1}=j|X_n=i)$$

 $P(X_{n+1} = j | X_n = j)$ is called the *transition probability*. from state i to state j. This Markov chain is time - homogeneous, which means that

$$P(X_{n+1}=j|X_n=j)$$
 is the same $\forall n$.

We can describe the probabilities of moving from state to state using a matrix called *translation matrix* whose i, j entry is probability of going from i-th to j-th state in a single step.

Translation matrix

Let X_0, X_1, X_2, \ldots be a Markov chain $\{1, 2, \ldots, M\}$ and let $q_{ij} = P(X_{n+1} = j | X_n = i)$ be transition probability from state i to state j. The matrix $Q = (q_{ij})$ is the *transition matrix* of the chain. Q is nonnegative and each row sums to 1.

Example: Rainy-sunny Markov chain

If today is rainy, tomorrow it will be rainy with P=1/3 and sunny with P=2/3. If today is sunny, tomorrow it will be rainy with P=1/2 and sunny with P=1/2.

Let X_n be the weather on day n and $X_0, X_1, X_2, ...$ is a Markov chain on the state space $\{R, S\}$. Translation matrix of this chain is:

$$\begin{array}{ccc}
R & S \\
R & \left(\begin{array}{ccc}
1/3 & 2/3 \\
1/2 & 1/2
\end{array}\right)$$

Also we can represent this chain as graph:

And what if tomorrow's weather depends on today's and yesterday's weather? To illustrate it, we can create a new Markov chain. Let $Y_n = (X_{n-1}, X_n) \ \forall n \geq 1$. Then Y_1, Y_2, \ldots is a Markov chain on the state space $\{(R, R)(R, S), (S, R), (S, S)\}$.

Translation matrix of this chain is:

	(R,R)	(R,S)	(S,R)	(S, S)
(R,R)	$\int 0$	1	0	0
(R,S)	0	0	1/2	1/2
(S,R)	1/3	2/3	0	0
(S, S)	$\int_{-\infty}^{\infty} 0$	0	1	0 /

This Markov chain may be represented as the following graph:

Similarly, we can build a chain on n-order dependencies.

N-step transition probability

The n-step transition probability $q_{ij}^{(n)}$ from i to j is the probability of being at j exactly n steps after being at i.

$$q_{ij}^{(n)} = P(X_n = j | X_0 = i).$$

Of course,

$$q_{ij}^{(n)} = \sum_k q_{ik} q_{kj}.$$

The n-th power of the transition matrix gives the n-step transition probabilities $q_{ij}^{(n)}$ is the (i,j)-th entry of Q^n .