Nama : ELMO ALLISTAIR H

NPM : 12118220

Kelas: 2KA17

1. Metode Bisection

Prinsip metade bisection addlah menguning area fungsi pada interval X = [a,b] atau pada interval X = [a,b] atau pada interval x batas bawah a atau batas atas b. Selan Jutnya interval tersebut terus menerus dibagi 2 hingga Sexecil mungkin, sehingga nilai yang dicari dapat ditentukan dengan tingkat taleransi tertentu.

(Ilustrasi)

KELEBIHAN	ICEKURANGAN	
·Selalu menemukan akar (solusi) Yang dican (Selalu konvergen)	· Hanya dapat dilakukan apabila ada akor Persamaan Pada Interval Yang diberikan	

Motode Newton - Raphson

Meruparan metade Penyelesaian non-linier dengan menggunakan Pendekatan satu titik awal dan mendekatinya dengan memperhatikan slope atau Gradien.

Titik persamaan dinyataran dengan Persamaan:

$$X_{n+1} = X_n - \frac{f(x_n)}{f(x_n)}$$

KELEBIHAN	KEKURANGAN	
· Konvergensı xang dihasilikan Cepat	· Tidak selalu menemukan akar · Kemungkinan sulit dalam men- cari f'(xn) · Penerapan harga aubl Sulit	

Nama: ELMO ALLISTAIR H

NPM : 12118220

Kelas: 2KA17

2.
$$f(x) = x^3 - 3x^2 + 2$$

 $a = -1$
 $b = 4$
 $P_n : a_n + (\frac{b_n - a_n}{2})$

No	an	ba	Po	f(Pr)
1	$f(-1)^{2} - 3(-1)^{2} + 2$ $= -1 - 3 + 2$ $= -2$	f(4) = 43-3(4)2+2 = 64-48+2 = 18	P(n) = 1+(4-(-1)) = 1,5	f(1,r): 1,r3_3(1,r)2 +2 =3,375-6,7r +2
2	1,5 f(1,0 = -1,375	4 f(4) = 18	P(n) = 1, \(\frac{4-1,\(\gamma\)}{2}\) = 1, \(\sigma + 1, 2\) = 2, \(\frac{2}{7}\)	f(2,71) = 2,75 ³ -3(2,71)+3 = 20,796 -27,687+2 = 0,1093
3	1, C f(1,C) = -1,375	2,75 f(2,75) = 0,1093	P(n) = 1,5 (275-1,5) = 1,5+0,625 = 2,125	f(2,125) = 2,1253-3(2,125]+2 = 9,595-13,546+2 = -1,9511