Juhyung Lee

[Linkedin] [Github] [Google Scholar] [Website]

Email: juhyung.lee@outlook.com Mobile: +1-213-245-9356

Research Interests

- AI Solutions for Wireless Communication Systems
- On-Device AI/LLM Communication

EXPERIENCE

Nokia

Sunnyvale, CA, USA

Santa Clara, CA, USA

Aug. 2024 - Present

Principal Researcher, AI/ML

AI/ML for WiFi

• Develop AI solutions for WiFi, including an LLM Assistant to streamline standardization (e.g., IEEE 802.11)

University of Southern California

Los Angeles, CA, USA

Postdoctoral Researcher, Wireless Devices and Systems Group (Head: <u>Prof. Andreas Molisch</u>) Apr. 2022 - Aug. 2024

Site-Specific Channel Modeling for RAN Optimization $[\underline{\mathsf{Github}}]$

- \circ Developed an fast ($\sim 1 \text{ [msec]}$) and accurate (RMSE $\sim -14 \text{ [dB]}$) Digital Twin Network simulation [1, 2]
- Designed Radio Access Network (e.g., O-RAN) optimization methods for Mobility Management, Localization, and Automatic AP (e.g., O-RU, WiFi) deployment
- o Tested with UMi (3GPP TR-38.901) and site-specific RT (WirelessInsite, SionnaRT) channels

On-Device AI/LLM Communication [Github]

- Fine-tuned a pre-trained LLM (BART) as a neural lossy source coder in end-to-end Link-Level Simulation, integrating with 5G-NR PHY functions [3, 4]
- o Developed a compression & quantization method for AI-to-AI comm.; Tested in Sionna with 5G-NR setup

Samsung Research America

Dallas, USA

AI/Wireless Senior Research Engineer

Dec. 2023 - Jan. 2024 (Seasonal)

Generative Model for Channel Feedback Compression in mMIMO System [Github]

• Developed a low-complexity generative model for mMIMO channel prediction and designed a channel feedback (e.g., DMRS, SRS) compression scheme based on 3GPP TR-38.843

Korea University

Seoul, Korea

Research Professor, Research Institute for Information & Communication

Sep. 2021 - Feb. 2023

Reinforcement Learning-based PHY/MAC Access Protocol Design for LEO Satellite Networks

• Designed and tested 3GPP-compatible PHY/MAC access protocols for mobility management (e.g., handover [5], RACH [6, 7]) in System-Level Simulation (3GPP TR-38.821).

SKILLS

- Programming: Python, C/C++, MATLAB, PyTorch, Tensorflow, Verilog, Swift
- ML Methodologies: LLM (LLaMA3, Phi-3, BART, QLoRA), Generative (Diffusion, VAE), Computer Vision (DeepLabV3+, CNN), Time Series (Transformer, RNN), Reinforcement Learn. (PPO, A3C, DQN)
- Tool & Library: Link- & System-Level Sim. (MATLAB-5G, Sionna), Ray-Tracing (WirelessInSite, SionnaRT)

EDUCATION

Korea University

Seoul, Korea

Ph.D. in Electrical and Computer Eng. (Awarded by Research Excellence)

Mar. 2016 - Aug. 2021

- RAN Optimization: Developed DRL-based radio resource scheduling [8, 9, 10], initial access [6], handover [5], and beam management [11] for high-mobility networks
- o [Demo] Radio-over-FSO (RoFSO): Developed a RoFSO system integrating 802.11 RF USRP and laser-based optical transceivers; Demonstrated ∼20 [Gbps] transmission over with ∼100 [m] outdoor [demo-1] [demo-2]

Korea University

Seoul, Korea

B. Eng. in Electrical and Electronic Eng. (Awarded by National Sci. & Tech. Scholarship) Mar. 2011 – Feb. 2016

- A Scalable and Generalizable Large-Scale Channel Prediction (aka. Digital Twin Networks) [Github]
 - Built a channel measurement dataset using Ray-Tracing simulations (WirelessInsite, Sionna-RT) on real maps (e.g., USC, UCLA, and Boston area)
 - Implemented a supervised-learning framework, using Computer Vision techniques, to predict radio maps in mmWave/THz communications [1, 12]
 - \circ 1st-rank in IEEE ICASSP Radio Map Prediction Challenge [2], with the highest accuracy (RMSE ~ -14 [dB])
 - \circ Achieved ~ 31 [dB] RMSE gain compared to UMi channel model (3GPP TR-38.901)
- LLM-based Context-Aware Handover (Mobility Management)
 - Developed a context-aware handover method using LLM (e.g., LLaMA3, Phi-3), fine-tuned with context data (e.g., signal strength, speed, location).
 - Achieved 93 % prediction accuracy in Zero-Shot Learning, outperforming legacy handover methods.
- Generative Model for Channel Feedback Compression [Github]
 - \circ Designed a novel low complexity Generative Model (e.g., Diffusion, VQ-VAE) for channel feedback compression
 - Demonstrated high channel feedback compression efficiency ($\sim \frac{1}{8}$), retaining up to NMSE ~ -15 [dB]

Honors and Awards

- 1st-Rank, IEEE ICASSP Signal Processing Grand Challenges, Jun. 2023 [2]
- Best Paper Award, IEEE ICTC, Oct. 2022 [13]
- Best Paper Award, IEEE ICTC, Oct. 2021 [14]
- Grand Prize, Graduate Research Excellence Award, Korea University, Feb. 2021
- Travel Grant, IEEE GLOBECOM, Dec. 2020;
- Bronze Prize, IEEE Seoul Section Student Paper Award, Dec. 2020
- Best Paper Award, Korea Institute of Commun., and Info. Sciences, Feb. 2020
- Full Tuition Scholarship (B. Eng.), National Science & Technology Scholarship, Korea, 2011

PATENTS

- [USA #2 pending] **J.-H. Lee** and Y.-C. Ko, "Deep reinforcement learning-based random access method for low earth orbit satellite network and terminal for the operation", US20230189353A1 (06/15/2023)
- [USA #1 pending] J.-M. Kim, **J.-H. Lee**, and Y.-C. Ko, "Apparatus based on wireless optical communication", US20230083544A1 (03/16/2022)
- [Korea #3] B.-H. Lee, J.-H. Lee, and Y.-C. Ko, "Minimum transmission rate maximization using power control and association in ground base station-to-UAV communication", 10-2508442 (03/06/2023)
- [Korea #2] J.-M. Kim, **J.-H. Lee**, and Y.-C. Ko, "Apparatus based on wireless optical communication", 10-2506809 (03/02/2023)
- [Korea #1] J.-H. Lee, J. Lee, "Method and apparatus for uploading or downloading file based on tag," 10-2014-0128406 (01/26/2016)

Professional References

- Prof. Andrea F. Molisch: Professor (IEEE & AAAS Fellow), University of Southern California, molisch@usc.edu
- Dr. Hao Chen: Manager, Samsung Research America, hao.chen1@samsung.com
- Prof. Young-Chai Ko: Professor, Korea University, koyc@korea.ac.kr

SELECTED PUBLICATIONS [LINK FOR FULL-LIST]

- [1] J.-H. Lee* and A. F. Molisch, "A scalable and generalizable pathloss map prediction," *IEEE Trans. Wireless Commun.*, 2024. [paper] [code].
- [2] J.-H. Lee*, A. F. Molisch, and et al., "PMNet: Large-scale channel prediction system for radio map prediction challenge," in *IEEE International Conf. on Acoustics, Speech and Signal Processing (ICASSP)*, Jun. 2023. [1st-Rank in ML Competition] [code].
- [3] J.-H. Lee*, D.-H. Lee, J. Lee, and J. Pujara, "Integrating pre-trained language model with physical layer communications," *IEEE Trans. Wireless Commun.*, 2024. [paper] [code].
- [4] J.-H. Lee*, D.-H. Lee, E. Sheen, T. Choi, and J. Pujara, "Seq2seq-sc: End-to-end semantic communication systems with pre-trained language model," in Asilomar Conf. on Signals, Systems, and Computers, pp. 1–4, 2023. [paper] [code].
- [5] J.-H. Lee*, A. F. Molisch, and et al., "Handover protocol learning for LEO satellite networks: Access delay and collision minimization," *IEEE Trans. Wireless Commun.*, 2024. [paper].
- [6] J.-H. Lee*, H. Seo, J. Park, M. Bennis, and Y.-C. Ko, "Learning emergent random access protocol for LEO satellite networks," *IEEE Trans. Wireless Commun.*, vol. 22, no. 1, pp. 257–269, 2023. [paper].
- [7] J.-H. Lee*, H. Seo, J. Park, M. Bennis, Y.-C. Ko, and J. Kim, "Random access protocol learning in LEO satellite networks via reinforcement learning," in *Proc. IEEE Vehicular Technology Conf. (VTC)*, pp. 1–5, 2022. [Invited Paper].
- [8] J.-H. Lee*, J. Park, M. Bennis, and Y.-C. Ko, "Integrating LEO satellites and multi-UAV reinforcement learning for hybrid FSO/RF non-terrestrial networks," *IEEE Trans. Veh. Technol.*, pp. 1–16, 2022.
- [9] J.-H. Lee*, J. Park, M. Bennis, and Y.-C. Ko, "Integrating LEO satellite and UAV relaying via reinforcement learning for non-terrestrial networks," in *Proc. IEEE Global Commun. Conf. (GLOBECOM)*, (Taipei, Taiwan), pp. 1–6, 2020. [Travel Grant].
- [10] J.-H. Lee*, K.-H. Park, Y.-C. Ko, and M.-S. Alouini, "Spectral-efficient network design for high-altitude platform station networks with mixed rf/fso system," *IEEE Trans. Wireless Commun.*, vol. 21, no. 9, pp. 7072–7087, 2022.
- [11] Y. Lee, J.-H. Lee*, and Y.-C. Ko, "Beamforming optimization for IRS-assisted mmWave V2I communication systems via reinforcement learning," *IEEE Access*, Jun. 2022.
- [12] J.-H. Lee*, A. F. Molisch, and et al., "PMNet: Robust pathloss map prediction via supervised learning," in *Proc. IEEE Global Commun. Conf. (GLOBECOM)*, pp. 1–6, 2023.
- [13] J.-H. Lee*, A. F. Molisch, and et al., "Reinforcement learning empowered massive IoT access in LEO-based non-terrestrial networks," in *Proc. IEEE Int. Conf. on Inf. and Commun. Techn. Conv.*, Oct. 2022. [Best Paper Award].
- [14] J.-H. Lee* and Y.-C. Ko, "Optimization for LEO satellite-ground integrated networks via deep reinforcement learning," in *Proc. IEEE Int. Conf. on Inf. and Commun. Techn. Conv.*, Oct. 2021. [Best Paper Award].