Lecture

Boolean Algebra and Logic Simplification

Boolean Algebra

- Variable: A variable is a symbol usually an uppercase letter used to represent a logical quantity.
 - A variable can have a 0 or 1 value.

- Complement: A complement is the inverse of a variable and is indicated by a bar over the variable.
 - Complement of variable X is X*
 - If X = 0 then $X^* = 1$ and if X = 1 then $X^* = 0$
- Literal: A Literal is a variable or the complement of a variable. X and X* are literals

Boolean Addition & Multiplication

- Boolean Addition performed by OR gate
- Sum Term describes Boolean Addition
- Boolean Multiplication performed by AND gate
- Product Term describes Boolean Multiplication

Boolean Addition

Sum of literals

$$A + B$$
 $A + \overline{B}$ $\overline{A} + \overline{B} + C$

- Sum term = 1 if any literal = 1
- Sum term = 0 if all literals = 0

Boolean Multiplication

Product of literals

```
A.B A.\overline{B} \overline{A}.\overline{B}.C
```

- Product term = 1 if all literals = 1
- Product term = 0 if any one literal = 0

Laws, Rules & Theorems of Boolean Algebra

- Commutative Law for addition and multiplication
- Associative Law for addition and multiplication
- Distributive Law
- Rules of Boolean Algebra
- Demorgan's Theorems

Commutative Law

Commutative Law for Addition
A + B = B + A

Commutative Law for MultiplicationA.B = B.A

Associative Law

Associative Law for Addition A + (B + C) = (A + B) + C

Associative Law

Associative Law for Multiplication
 A.(B.C) = (A.B).C

Distributive Law

$$A.(B + C) = A.B + A.C$$

Rules of Boolean Algebra

1.
$$A + 0 = A$$

2.
$$A + 1 = 1$$

3.
$$A.0 = 0$$

$$A. A.1 = A$$

$$A + A = A$$

$$6. A + \overline{A} = 1$$

7.
$$A.A = A$$

8.
$$A._{A} = 0$$

$$9. = A$$

11.
$$A + \overline{A}B = A + B$$

$$(A+B).(A+C)$$

= A+B.C

Demorgan's Theorems

First Theorem

$$\overline{A.B} = \overline{A} + \overline{B}$$

Second Theorem

$$\overline{A + B} = \overline{A}.\overline{B}$$

Demorgan's Theorems

Any number of variables

$$\overline{X.Y.Z} = \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{X + Y + Z} = \overline{X.Y.Z}$$

Combination of variables

$$\overline{(A + B.C).(A.C + B)} = \overline{(A + B.C)} + \overline{(A.C + B)}$$

$$= \overline{A.(B.C)} + \overline{(A.C).B} = \overline{A.(B + C)} + \overline{(A + C).B}$$

$$= \overline{A.B} + \overline{A.C} + \overline{A.B} + \overline{B.C}$$

$$= \overline{A.B} + \overline{A.C} + \overline{B.C}$$

Boolean Analysis of Logic Circuits

- Boolean Algebra provides concise way to represent operation of a logic circuit
- Complete function of a logic circuit can be determined by evaluating the Boolean expression using different input combinations

Boolean Analysis of Logic Circuits

- From the expression, the output is a 1 if variable D = 1 and $(AB + \overline{C}) = 1$
- $(AB + \overline{C})^{=1}$ if AB=1 or C=0

Boolean Analysis of Logic Circuits

Inputs				Output	Inputs				Output
Α	В	С	D	F	Α	В	С	D	F
0	0	0	0	0	1	0	0	0	0
0	0	0	1	1	1	0	0	1	1
0	0	1	0	0	1	0	1	0	0
0	0	1	1	0	1	0	1	1	0
0	1	0	0	0	1	1	0	0	0
0	1	0	1	1	1	1	0	1	1
0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1	1

Simplification using Boolean Algebra

Simplification using Boolean Algebra

Simplified Circuit

Standard forms of Boolean Expressions

- Sum-of-Products form (Sum of Minterm)
 - When two or more product terms are summed by Boolean addition, the result is a Sum-of-Product or SOP expression
- Product-of-Sums form (Product of Maxterm)
 - When two or more sum terms are multiplied by Boolean multiplication, the result is a Product-of-Sum or POS expression

Standard forms of Boolean Expressions

Sum-of-Products form

Product-of-Sums form

$$(\overline{A} + B)(A + \overline{B} + C)$$

 $(\overline{A} + \overline{B} + \overline{C})(C + \overline{D} + E)(\overline{B} + C + D)$
 $(A + B)(A + \overline{B} + C)(\overline{A} + C)$

Implementation of SOP expression

Implementation of POS expression

Conversion of general expression to SOP form

$$AB + B(CD + EF) = AB + BCD + BEF$$

$$(A + B)(B + C + D) = AB + AC + AD + B + BC + BD$$

$$= AC + AD + B$$

$$\overline{(A + B) + C} = \overline{(A + B)C} = (A + B)\overline{C} = A\overline{C} + B\overline{C}$$