	COMPUTER SCI		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING		
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26	
Course Coordin	nator Name	ne Dr. Vairachilai Shenbagavel			
Instructor(s) Name		Srinivas Komakula			
Course Code	23CA201SE402	Course Titl	e Explainable AI	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24		
Date and Day of Assignment	28-07-2025	Time(s)	09:00AM -05:0	0PM	
Duration	2 Hours	Applicable t Batches	23CSBTB36		

Assignment Number: 01

Q. No.	Question	Expected Time to complete
1	Smart Gym – Fitness App	

Context:

Smart Gym uses daily push notifications to increase user workout sessions.

Push Notifications Sent	Workout Sessions
(x)	(y)
1	25
2	35
3	42
1	28
2	38

Objective:

Analyze the effect of push notifications on daily workout sessions for Smart Gym by performing Linear Regression and interpreting SHAP values.

Requirements:

1. Perform Linear Regression Analysis

- Use the given dataset where:
 - Independent Variable (x): Push Notifications Sent
 - **Dependent Variable (y):** Workout Sessions

2. Calculate the Baseline Value

o Compute the mean of all workout sessions (y values).

3. Calculate SHAP Values

- o For each record, calculate the difference between the **predicted value** and the **baseline**.
- o This difference is the **SHAP value**, attributed to the number of push notifications sent.

4. Compute Final Prediction

- Use the **linear regression model** to calculate predicted workout sessions for each x value.
- o Confirm that:

Final Prediction=Baseline+SHAP Value\text{Final Prediction} = \text{Baseline} + \text{SHAP Value} Final Prediction=Baseline+SHAP Value

5. Interpret the Results

- o Explain how the number of push notifications influenced each predicted workout count.
- o Compare the predicted value to the actual value for each row.
- o Identify **underproduction** or **overproduction**, and provide reasoning.

Deliverables:

A notebook or document containing:

- Linear regression implementation with coefficients
- Baseline (mean of y)
- Table of SHAP values and predictions
- Explanation of how each input influenced the prediction
- Comparison of predicted vs actual values, with over/under prediction notes
- Summary analysis covering:
 - Accuracy of the model
 - o Trend analysis
 - o SHAP interpretation insights

Q. No.	Question	Expected Time to complete
2	FitFuel – Brand Awareness Campaign using Multiple Linear Regression and SHAP Analysis	

Objective:

Analyze how gym collaborations and influencer posts contribute to the brand awareness score using Multiple Linear Regression and explain the model outputs using SHAP value interpretation.

Given Dataset:

Gym Collabs (x1)	Influencer Posts (x2)	Awareness Score (y)
2	5	70
1	3	55
3	4	80
0	2	40
2	1	50

Tasks:

0

0

0

1. Perform Multiple Linear Regression Analysis

o Use Gym Collaborations and Influencer Posts as independent variables

Use Awareness Score as the dependent variable

2. Calculate the Baseline Value

Compute the mean of all awareness scores

3. Calculate SHAP Values

o Calculate SHAP Value

o Distribute SHAP contributions between Gym Collabs and Influencer Posts based on model coefficients

4. Compute Final Prediction for Each Record

• Use the regression equation

Verify: Prediction = Baseline + SHAP (Gym Collabs) + SHAP (Influencer Posts)

5. Interpret the Results

o For each data point, describe how gym collaborations and influencer posts contributed to the predicted awareness score

- o Compare prediction to actual score
- o Note whether the model overpredicted or underpredicted and provide reasoning

Q. No.	Question	Expected Time to complete
3	Regression with Diabetes Dataset	

Objective:

Understand how patient features influence disease progression using Multiple Linear Regression and

SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
- Use all available features from the Diabetes dataset as independent variables.
- Fit a Multiple Linear Regression model to predict disease progression.
- 2. Calculate the Baseline Value
- Compute the **mean** of the target variable (disease progression scores) from the training data.
- This will serve as the **baseline prediction**.
- 3. Calculate SHAP Values
- Apply SHAP to compute **feature contributions** to each prediction.
- Use model coefficients to proportionally attribute the difference from the baseline to each feature.
 - 4. Compute Final Prediction for Each Record
 - For every test record, verify that:

Prediction = Baseline + SHAP(Feature1) + SHAP(Feature2) + ... + SHAP(Featuren)

- 5. Interpret the Results
- For each patient record:
- Explain how each feature contributed to the predicted disease progression.
- o Compare the **predicted value** vs the **actual observed value**.
- o Comment on whether the model **overpredicted or underpredicted** and **why**, based on SHAP values

Q. No.	Question	Expected Time to complete
4	Regression with Student Performance Dataset	

Objective:

Investigate how student background and behavior influence final exam scores using Multiple Linear Regression and SHAP value analysis.

Tasks

- 1. Perform Multiple Linear Regression Analysis
- Use all relevant student attributes (e.g., study time, parental education, absences, etc.) as independent variables.
 - Fit a regression model to predict the **final exam score**.
 - 2. Calculate the Baseline Value
 - Compute the **mean of the final exam scores** from the training set.
 - This serves as the **baseline prediction** (expected value).
 - 3. Calculate SHAP Values
- Use SHAP to compute the contribution of each student attribute to the final exam score prediction.
 - Distribute the prediction deviation from the baseline among the features.
 - 4. Compute Final Prediction for Each Record
 - For each student record, confirm:

Predicted Score = Baseline + SHAP(Feature1) + SHAP(Feature2) + ... + SHAP(Featuren)

- 5. Interpret the Results
- For every prediction:
- Explain how different features (e.g., study time, failures, health) impacted the exam score.
 - o Compare predicted score to actual score.
 - o Comment on overprediction or underprediction and possible reasons behind it.