Внешний курс. Блок 3: Криптография на практике

Дисциплина: Основы информационной безопасности

Ибатулина Дарья Эдуардовна, НКАбд-01-22

Содержание

1	Цель работы															
2		полнение блока 3: Криптография на практике														
	2.1	Введение в криптографию	6													
	2.2	Цифровая подпись	8													
	2.3	Электронные платежи	11													
	2.4	Блокчейн	13													
3	Выв	ОДЫ	16													

Список иллюстраций

2.1	Вопрос 4.1.1					 	•									6
2.2	Вопрос 4.1.2					 										7
2.3	Вопрос 4.1.3	•				 										7
2.4	Вопрос 4.1.4					 										8
2.5	Вопрос 4.1.5	•				 										8
2.6	Вопрос 4.2.1					 										9
2.7	Вопрос 4.2.2					 										9
2.8	Вопрос 4.2.3					 										10
2.9	Вопрос 4.2.4					 										11
2.10	Вопрос 4.2.5					 										11
2.11	Вопрос 4.3.1					 										12
2.12	Вопрос 4.3.2					 										12
2.13	Вопрос 4.3.3					 										13
2.14	Вопрос 4.4.1					 										13
2.15	Вопрос 4.4.2					 										14
2.16	Вопрос 4.4.3			 		 										15

Список таблиц

1 Цель работы

Пройти третий блок курса "Основы кибербезопасности", выполнить тестовые задания к нему.

2 Выполнение блока 3: Криптография на практике

2.1 Введение в криптографию

В асимметричной криптографии (её еще называют криптографией с открытым ключом) у каждой из сторон есть пара ключей: открытый ключ и секретный ключ (рис. [2.1]).

Рис. 2.1: Вопрос 4.1.1

Важное свойство криптографической хэш-функций, то, что делает её криптографической – это стойкость к коллизиям. Криптографическая хэш-функция берет на вход произвольный объем данных, то есть какие-то биты и выдает на выходе фиксированную строку, например длины п. Важно, что, как правило, функция сжимает данные: она берет большой набор данных и выдаёт потом ма-

ленькое фиксированное значение. Кроме того, криптографическая хэш-функция эффективно вычисляется (рис. [2.2]).

Рис. 2.2: Вопрос 4.1.2

Отмечены алгоритмы цифровой подписи (рис. [2.3]).

Рис. 2.3: Вопрос 4.1.3

К шифротексту, который мы сгенерировали с помощью ключа для какогото сообщения, мы еще добавляем код аутентификации сообщения. Это также симметричный примитив, который берет на вход какой-то ключ (это должен быть другой ключ, не тот, с которого мы шифровали) и сообщение и выдает код аутентификации сообщения (рис. [2.4])

Рис. 2.4: Вопрос 4.1.4

Использую определение обмена ключами Диффи-Хэллмана для ответа на данный вопрос (рис. [2.5]).

Рис. 2.5: Вопрос 4.1.5

2.2 Цифровая подпись

По определению цифровой подписи протокол ЭЦП относится к протоколам с публичным ключом (рис. [2.6]).

Рис. 2.6: Вопрос 4.2.1

Rаждая машина запускает процедуру Verify, которая берет на вход само обновление, подпись и открытый ключ разработчика (рис. [2.7]).

Рис. 2.7: Вопрос 4.2.2

цифровая подпись предназначена, во-первых, для обеспечения целостности сообщения, иными словами, если сообщение в процессе передачи было изменено, то подпись этого измененного сообщения будет проверена некорректно, то есть при проверке корректности подписи мы узнаем о том, что сообщение было изменено. Во-вторых, цифровая подпись обеспечивает аутентификацию сообщения, то есть мы можем установить принадлежность подписи владельцу, иными словами, никто другой не смог бы поставить такую подпись под этим сообщением. Ну и последнее, третье – это неотказ от авторства, то есть как только подпись

подписана, подписавший её человек не может отказаться от того факта, что он ее подписал. Конечно, в случае кражи секретного ключа, с помощью которого подписывается сообщение, формируется подпись, о корректной безопасности цифровой подписи никакой речи быть не может, поскольку секретный ключ украден. Поэтому, электронная подпись не обеспечивает конфиденциальности (рис. [2.8]).

Рис. 2.8: Вопрос 4.2.3

Что касается усиленной квалифицированной подписи, эта подпись уже имеет юридическую силу, она, как правило, равнозначна рукописной. Для того, чтобы получить такую подпись, вам нужно пойти со своим паспортом и с другими данными в сертификационный центр, который должен быть аккредитован конкретным министерством. Такие подписи используются на Госуслугах, в государственном документообороте. Для отправки налоговой отчетности в ФНС используется усиленная квалифицированная электронная подпись (рис. [2.9]).

Рис. 2.9: Вопрос 4.2.4

Сертификат подписывается с помощью электронной подписи уже доверенной стороной, удостоверяющим центром, тем центром, который имеет лицензию министерства (рис. [2.10]).

Рис. 2.10: Вопрос 4.2.5

2.3 Электронные платежи

На данный момент существуют такие платежные системы, как: Visa, MasterCard, МИР (рис. [2.11]).

Рис. 2.11: Вопрос 4.3.1

Основные категории вещей, которые мы можем доказать: 1) то, что я знаю – это либо пароль, либо PIN-код, либо в случае онлайн-платежей это секретный код, 2) конкретно в онлайн-платежах мы еще используем второй фактор – это то, чем я владею, например, телефон, именно поэтому нам часто приходит код, который вы должны подтвердить или вбить в ваш браузер, 3) другой фактор аутентификации – это свойства, например, биометрия, опечаток пальца, сетчатки глаза, 4) четвертый фактор аутентификации – локация (рис. [2.12]).

Рис. 2.12: Вопрос 4.3.2

При онлайн платежах используется многофакторная аутентификация банкомэмитентом (выпустившим карту), чтобы удостовериться, что транзакцию совершает именно владелец карты или счета, а не злоумышленник (рис. [2.13]).

Рис. 2.13: Вопрос 4.3.3

2.4 Блокчейн

Proof-of-Work, или PoW, (доказательство выполнения работы) — это алгоритм достижения консенсуса в блокчейне; он используется для подтверждения транзакций и создания новых блоков. С помощью PoW майнеры конкурируют друг с другом за завершение транзакций в сети и за вознаграждение. Пользователи сети отправляют друг другу цифровые токены, после чего все транзакции собираются в блоки и записываются в распределенный реестр, то есть в блокчейн. Следовательно, в доказательстве работы криптографической хэш-функции используется такое ее свойство, как сложность нахождения прообраза (рис. [2.14]).

Рис. 2.14: Вопрос 4.4.1

В основе любого блокчейна, в частности биткоина, лежит консенсус – соглашение, в терминах криптовалют консенсус - это некая публичная структура данных или ledger (переводится с английского как «бухгалтерская книга»), где просто содержится история всех переводов, хранится список того, кто что кому заплатил, в какое время. Почему консенсус? Потому что эта публичная структура, и бухгалтерский учет должен обеспечивать четыре основных свойства. Первое - это постоянство, то есть когда-либо добавленНые данные не должны быть удалены из этой структуры. Второе - это сам консенсус, то есть все участники видят одни и те же данные и соглашаются с одним и теми же данными, исключением могут быть последние пары блоков, то есть последние изменения в этом блокчейне, в этой публичной структуре данных. Третье - это живучесть, это означает, что мы можем добавлять новые транзакции, когда хотим, мы можем осуществлять платежи, когда хотим. И последнее четвертое свойство - это открытость, то есть любой человек может быть участником блокчейна. Это справедливо не для всех блокчейнов, для биткоина это справедливо. Значит, выбираем все 4 свойства (рис. [2.15]).

Рис. 2.15: Вопрос 4.4.2

Допустим, у нас вами есть в блокчейне 3 участника, которые обмениваются друг с другом транзакциями. Важно то, что у каждого участника есть свой секретный ключ, и своим секретным ключом мы всегда будем подтверждать какую-то

транзакцию. Важно то, что этот ключ у нас секретный, мы его используем для подписи. Подпись — это и есть подтверждение моей транзакции. Мы с вами разбирали в одной из лекций, как работает электронная цифровая подпись, у этого примитива есть секретный и открытый ключи, и наш секретный ключ - это то, что позволяет нам совершать транзакции от нашего лица. Тогда ответ - цифровая подпись (рис. [2.16]).

Рис. 2.16: Вопрос 4.4.3

3 Выводы

Я прошла третий блок курса, узнала много нового о криптографии, цифровых подписях и технологии блокчейн, а также освежила в памяти знания о том, как работают переводы криптовалюты с точки зрения безопасности транзакций.