HUMANA-MAYS ANALYTICS

Round 1 Submission

Abstract

This document reports the problem statement, analytical approach for problem solving and results from quantitative analyses performed to determine if a patient is going to have an AMI

Analytical Approach

Problem Statement: Given a population of Medicare Advantage members continuously enrolled in the previous year and with no indication of an AMI, can you predict who is most likely to have an AMI in the next 3 months?

Problem Definition: All the information (all the columns/variables) that was available for Medicare Advantage members was split into three buckets – **Patient Attributes, Medical History and Insurance Coverage.** Using research, hypotheses were formulated that stated the impact of factors from the three buckets on chances of a person likely to have an AMI in the next 3 months.

Summary: We cleaned the data and removed observations where there were missing values. We also checked the distribution to understand what constitutes as abnormal values for a variable and if there is any outlier removal required to perform for those cases. Next, we did basic EDAs and formulated/validated hypothesis.

As the problem required for us to predict customer who are at potential risk of heart loss, we looked at various techniques like (Classification) gradient boosting, logistic regression but after looking at preliminary results decided to go ahead with Random forest.

We divided our dataset in test and train (randomly keeping AMI flag 1s same) and took a part of the data to train the model. The results were encouraging and later we decided to optimize the threshold to give equal weightage to 0s and 1s in the predictor(AMI flag).

This is what the result we are getting on Train and Test data.

		Final Model						
	Actual							
cted		0	1					
dic	0	49131	751					
Predi	1	27682	1351					

Correct Predictions	50482
True positives %(TPR)	64%
True Negative % (TNR)	64%
Positive Predicted Values	5%
Negative Predicted Values	98%

		Actual	
te		0	1
edic	0	8509	0
Pre	1	26	233

Correct Predictions	8742
True positives %(TPR)	100%
True Negative % (TNR)	100%
Positive Predicted Values	90%
Negative Predicted Values	100%

Data Cleaning: Univariate analysis was performed on all the variables to check if the variables to check their distributions, missing and null values. Appropriate measures were taken to treat the missing values.

Hypothesis Testing: Comparing proportions of members with an existing AMI flag and members with no AMI flag helped in confirming to certain hypotheses

Data Modeling: The cleaned dataset along with the list of variables selected from hypotheses testing were taken as inputs for data modeling. Random Forest classification technique was used to arrive at the flags for members who are most likely to have an AMI

Problem Definition

Below is the list of all the hypotheses that were created for the three buckets.

Category	Hypothesis Description	Variables Impacted
Patient		
Attributes	Risk of Heart Disease increases with age	AGE
Patient	Men have higher risk of heart disease than females till	
Attributes	age of 60, After that both have same	SEX_CD
Patient		
Attributes	Higher BMI will have higher chances of heart attack	EST_BMI_DECILE
Patient	Tends to Struggle with Medical Language Decile; Lower	
Attributes	the decile lower chances of heart attack	DECILE_STRUGGLE_MED_LANG
	Educated people are less likely to have heart attack as	
Patient	they will read the sideeffects on prescriptions if any are	
Attributes	there	EDUCATION_LEVEL

Patient Attributes	People with higher income have higher chances of heart attack	Census % Below Poverty Line ,Census % Above Poverty Line ,Z4 Home Value ,Estimated Net Worth ,Estimated Income
Patient Attributes	People living in metros have hisher risk of heart attack	POPULATION_DENSITY_CENTILE_US,POPUL ATION_DENSITY_CENTILE_ST
Medical History	Higher the Medical Risk and Rx risk higher the chances of getting an heart attack	RECON_MA_RISK_SCORE_NBR;RECON_RX_ RISK_SCORE_NBR
Medical History	If patient has diabetes then there is higher risk of heart attack	DIABETES
Medical History	Type I diabetes is more dangerous and increases risk of heart attack	Diab_Type
Medical History	If patient has renal disease then there is higher risk of heart attack	ESRD_IND
Medical History	Higher the hospital visits higher the risk of heart attack	CON_VISIT_XX_QYY
Medical History	Higher the medical/Rx score higher the chances of heart attack	
Medical History	Certain Prescription drug classes increase heart attack risk more than others-Anti-depressants	RX_THER_AA_YR2017
Insurance Coverage	Customers enrolled for medicare/medicaid have higher risk of heart attack	
Insurance Coverage	Customers taken both Prescription and medical insurance plan has higher risk of heart attack	
Insurance Coverage	Coverage type also increases chances of heart attack	
Insurance Coverage	Members enrolled in CDC are less likely to get diabetes or Hearth attack	CDC

Data Cleaning:

Final data has 87,683 rows which we got after removing observations from original dataset (100k records)

Key Observations:

- 1. Imputations were done for the following variables: <enter variables>
- 2. About 12,000 rows which had no values in almost all the columns were removed
- 3. The final dataset consists of 2335 out of 2726 members with AMI_FLAG = 1

Hypothesis Testing:

Below are some of the hypotheses that were tested before selecting variables and running the model.

1. Age Groups vs Average % of AMI occurrence:

AMI Flag	Average of AGE
0	72.70159549
1	75.22707263

AMI Flag/ Age Groups	40-49	50-59	60-69	70-79	80-89	90-95
0	99%	98%	98%	97%	96%	94%
1	1%	2%	2%	3%	4%	6%

Although the average age is same is for both affected (by AMI) and not affected; when we check across age the incident rate increases with age which suggests that chances of AMI incidence increases with higher range.

2. Gender

AMI Flag	F	М
0	55476	41771
1	1292	1431
Total	56768	43202
% AMI Flag=1	2.3%	3.3%

For cases <60 age

AMI Flag	F	М
0	5090	4626
1	78	130
Total	5168	4756
% AMI Flag=1	1.5%	2.7%

Males have higher risk of heart attack for both cases of age groups.

3. BMI

AMI Flag	0	1	2	3	4	5	6	7	8	9
0	6295	8000	10860	11609	8032	11342	9030	7550	8055	4707

1	204	281	329	342	224	300	261	167	153	80
%AMI Flag=1	3.1%	3.4%	2.9%	2.9%	2.7%	2.6%	2.8%	2.2%	1.9%	1.7%

Higher BMI increases chances of heart attack.

4. Medical Language Decile

AMI Flag	0	1	2	3	4	5	6	7	8	9
0	3257	3556	4067	4885	5613	6435	7807	9193	11733	16244
1	70	76	74	114	142	165	204	242	346	562
	2.1%	2.1%	1.8%	2.3%	2.5%	2.6%	2.6%	2.6%	2.9%	3.5%

There is not much evidence to say that people having difficulty in understanding of medical language faces higher risk of heart attack.

Data Modeling

Variables that came out significant

Running the Random Forest classification model gave us the following variables in their order of importance towards the AMI occurrence.

Inferences about the variables->

- 1) **RECON_RX_RISK_SCORE_NBR** –(Rx Risk Score calculated by CMS) This came out significant and tells what is the risk of the patients starting on prescription drugs. Drugs also result in higher chances of Heart attack
- 2) Age- It came out positive as with higher age the chances of heart attack increases
- 3) **Rx_THER_58_YR2016** which is the Rx for antidepressant came out significant. Since they are known to increase blood pressure resulting in heart attack
- **4) RECON_MA_RISK_SCORE_NBR** -Medical Risk Score calculated by CMS; This came out significant as this is proxy for the patients who may be at risk and will likely be getting a medical treatment including heart surgery
- 5) RX_THER_94_YR2016-DIAGNOSTIC PRODUCTS- As per our understanding this could be capturing patients who have asked to buy some diagnostic product-Heart rate monitor etc which suggests early symptoms of heart attack

Other conditions in the order of Importance-

Condition Code	Conditions
04	OTHER CIRCULATORY
31	RISK BEHAVIORS
25	DIGESTIVE
06	MALIGNANT NEOPLASMS
08	DIABETES
19	SENSE ORGANS
17	CEREBROVASCULAR
33	V-CODES
32	SIGNS AND SYMPTOMS
10	GENITO-URINARY SYSTEM
21	MUSCULOSKELETAL AND CONNECTIVE TISSUE
24	RESPIRATORY
26	DISEASES OF SKIN AND SUBCUTANEOUS TISSUE
05	DISEASES OF BLOOD AND BLOOD-FORMING ORGANS
23	INFECTIONS
09	ENDOCRINE
01	CORONARY ARTERY DISEASE
02	CONGESTIVE HEART FAILURE

6)

Variables	IncNodePurity
RECON_RX_RISK_SCORE_NBR	1.387156387
AGE	1.275650543
RX_THER_58_YR2016	0.828211307
RECON_MA_RISK_SCORE_NBR	0.798822619
RX_THER_94_YR2016	0.674285492
CON_VISIT_04	0.666630063
CON_VISIT_31	0.632774481
CON_VISIT_25	0.628225748
CON_VISIT_06	0.6170933
CON_VISIT_08	0.534064689
RX_THER_37_YR2016	0.525810601

CON MIST 40	0.504040604
CON_VISIT_19	0.521913634
CON_VISIT_17	0.436847059
RX_THER_44_YR2016	0.412851309
CON_VISIT_33	0.401067854
RX_THER_33_YR2016	0.399424224
PREDIABETES	0.398748498
CON_VISIT_32	0.391487936
RX_THER_36_YR2016	0.386682553
RX_THER_85_YR2016	0.384296328
RX_THER_32_YR2016	0.340967153
RX_THER_65_YR2016	0.330373921
RX THER 27 YR2016	0.32909819
CON VISIT 10	0.29920717
COL GAP	0.270083774
CV CAD	0.262896618
RX_THER_97_YR2016	0.259849817
RX THER 57 YR2016	0.258355452
RX_THER_24_YR2016	0.246676504
CON VISIT 21	0.230036344
RX THER 42 YR2016	
	0.220687866
RX_THER_49_YR2016	0.21681947
HYPERTENSION	0.214619408
CON_VISIT_24	0.212774825
RX_THER_66_YR2016	0.210196442
RX_THER_39_YR2016	0.206739696
SEX_CD	0.188112225
RX_THER_12_YR2016	0.179272446
RX_THER_72_YR2016	0.179220763
RX_THER_34_YR2016	0.168041981
RX_THER_30_YR2016	0.164063669
RX_THER_16_YR2016	0.150248211
RES_COPD	0.148487509
CON_VISIT_26	0.138500197
RX_THER_17_YR2016	0.134593676
Diab_Complications	0.11097297
RX_THER_22_YR2016	0.109361394
CON VISIT 05	0.094037284
CON VISIT 23	0.091539596
CON VISIT 09	0.08792881
RX THER 82 YR2016	0.066762511
CV CHF	0.060439848
CV HDZ	0.055114416
RX THER 52 YR2016	0.050983881
RX THER 02 YR2016	0.047060563
CON VISIT 01	0.039688251
ARTH	0.032490141
CDC	0.029744317

RX_THER_11_YR2016	0.028171722
CDC_HBAPOOR_GAP	0.027829746
CDC_EYE_GAP	0.025371934
RX_THER_03_YR2016	0.02229694
CON_VISIT_02	0.007333333
OSTEO	0.001777778
RX_THER_21_YR2016	0.001714286
RX_THER_60_YR2016	0.001666667

Model Technique

After trying Gradient Boosting classification and logistic regression, we final went ahead with Random Forest as this would be able to capture variation in the data and would be much faster than GBM.

Model validation

Final Results

We took 10% of the Cleaned data to train the data due to resource constraint and following is the result we are getting on train data

	Actual	
cte	0	1
di O	8509	0
i 1	26	233

Correct Predictions	8742
True positives %(TPR)	100%
True Negative % (TNR)	100%
Positive Predicted Values	90%
Negative Predicted Values	100%

When we use the same model and optimize threshold to give equal weightage to 1s and 0s, we get this result. The results give accuracy of 64% but can capture both 0s and 1s with reasonable accuracy unlike previous models. This will help us identify the customers at risk of heart attack and shape our strategy accordingly.

		Final Model Results(Test Data)				
		Actual				
cted		0	1			
edic	0	49,131	751			
Pre	1	27,682	1,351			

Correct Predictions	50,482
True positives %(TPR)	64%
True Negative % (TNR)	64%
Positive Predicted Values	5%
Negative Predicted Values	98%

These results can be further improved by taking larger sample as train data which we couldn't do because of RAM constraints and running more iterations to get right set of variables.