REFERENCE DATA

Solid VOLUME **O**THER

 $V = \frac{1}{3}\pi r^2 h \qquad L = cl$ Right circular cone V = volume L = lateral area

r = radiusc = circumference of base

h = heightl =slant height

 $V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$ V = volumeSphere r = radius

S = surface area

 $V = \frac{1}{3}Bh$ Pyramid V = volumeB =area of base

h = height

PRACTICE TEST 1

MATH LEVEL IIC

50 Questions • Time—60 Minutes

- 1. The number of roots of the equation $9 + \sqrt{x-3} = x$, is
 - **(A)** 0
 - **(B)** 1
 - **(C)** 2
 - **(D)** 3
 - (\mathbf{E}) ∞
- **2.** The operation \Box is defined as $a \Box b = a^b b^a$. What is the approximate value of $\left(\frac{1}{2}\right)^3 \Box (3)^{\frac{1}{2}}$?
 - (A) 2.36
 - **(B)** 1.93
 - **(C)** .47
 - **(D)** -.75
 - **(E)** -1.04
- 3. If $f(x) = 3x^2 5x 4$ then f(-2x) is equal to
 - (A) 2f(-x)
 - **(B)** -f(x)
 - (C) 4f(x)
 - **(D)** -4f(x)
 - **(E)** none of these

- **4.** If $P = Ke^{-xt}$, then x equals
 - $(\mathbf{A}) \quad \frac{\log K}{t \log e \log P}$
 - **(B)** $\frac{P}{Ke^t}$
 - (C) $\frac{Pe^t}{K}$
 - $\mathbf{(D)} \quad \frac{\log K \log P}{t \log e}$
 - (E) none of these
- 5. The vertices of a triangle are the intersections of the lines whose equations are y = 0, x = 3y, and 3x + y = 7. This triangle is
 - (A) isosceles
 - (B) equilateral
 - (C) right
 - (D) acute
 - (E) obtuse
- **6.** The area bounded by the closed curve whose equation is $x^2 6x + y^2 + 8y = 0$ is
 - (A) 12π
 - **(B)** 25π
 - **(C)** 36π
 - **(D)** 48π
 - (E) cannot be determined
- 7. The ratio of the diagonal of a cube to the diagonal of a face of the cube is
 - **(A)** $2:\sqrt{3}$
 - **(B)** $3:\sqrt{6}$
 - **(C)** $3:\sqrt{2}$
 - **(D)** $\sqrt{3}:1$
 - **(E)** $\sqrt{6}:3$
- **8.** A regular octagon is inscribed in a circle of radius 1. Find a side of the octagon.
 - **(A)** $\sqrt{2}$
 - **(B)** $\frac{\sqrt{3}}{2}$
 - **(C)** $\sqrt{2+\sqrt{2}}$
 - **(D)** $\sqrt{2-\sqrt{2}}$
 - (E) none of these
- **9.** Two circles of radii 3 inches and 6 inches have their centers 15 inches apart. Find the length in inches of the common internal tangent.
 - (A) 8"
 - **(B)** 10"
 - **(C)** 12"
 - **(D)** 14"
 - **(E)** 15"

- **10.** The graph of the equation $y = 5 \cos 3x$ has a period, in radians, of
 - $(\mathbf{A}) \quad \frac{2\pi}{3}$
 - **(B)** $\frac{2\pi}{}$
 - (C) 3π
 - **(D)** 5
 - **(E)** 4
- **11.** If $2^x = 8^{y+1}$ and $9^y = 3^{x-9}$ then y equals
 - (A) 3
 - **(B)** 6
 - **(C)** 9
 - **(D)** 12
 - **(E)** 21
- **12.** Express in terms of an inverse function the angle formed at the intesection of the diagonals of a cube.
 - (A) $\sin^{-1} 2/3$
 - **(B)** $\cos^{-1} 2/3$
 - (C) $tan^{-1} 1/3$
 - **(D)** $\sin^{-1} 1/3$
 - **(E)** $\cos^{-1} 1/3$
- **13.** If $y = \frac{10^{\log x}}{x^2}$, for x > 0, then
 - (A) y varies directly with x
 - **(B)** y is independent of x
 - (C) y varies as the square of x
 - **(D)** $(xy)^2 = 3$
 - **(E)** y varies inversely with x
- **14.** If $\log_r 6 = m$ and $\log_r 3 = n$, then $\log_r \left(\frac{r}{2}\right)$ is equal to
 - $(\mathbf{A}) \quad \frac{1}{2} \log_2 r$
 - **(B)** 1-m-n
 - (C) $1 \log_{10} 2$
 - **(D)** $\frac{r}{2}$
 - **(E)** 1 m + n
- 15. The inequality $-x^2 + x 10 < -2x^2 4$ is satisfied if
 - (A) x < -3
 - **(B)** |x| < 3
 - (C) -3 < x < 2
 - **(D)** -2 < x < 3
 - **(E)** x < -3 or x > 2

- **16.** The contrapositive of the sentence $\sim p \rightarrow q$ is equivalent to
 - (A) $p \rightarrow \sim q$
 - **(B)** $q \rightarrow \sim p$
 - (C) $q \rightarrow p$
 - **(D)** $\sim p \rightarrow \sim q$
 - **(E)** $\sim q \rightarrow p$
- **17.** A point moves so that its distance from the origin is always twice its distance from the point (3, 0). Its locus is
 - (A) a circle
 - (B) an ellipse
 - (C) a hyperbola
 - (D) a straight line
 - (E) a parabola
- **18.** The function f is defined as $f = \{(x, y) \mid y = \frac{2x+1}{x-3} \text{ where } x \neq 3\}.$

Find the value of *K* so that the inverse of *f* will be

$$f^{-1} = \{(x, y) \mid y = \frac{3x+1}{x-K} \text{ where } x \neq K\}.$$

- **(A)** 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5
- **19.** Find the sum of the reciprocals of the roots of the equation $x^2 + px + q = 0$.
 - $(\mathbf{A}) \quad -\frac{p}{q}$
 - **(B)** $\frac{q}{p}$
 - (C) $\frac{p}{q}$
 - **(D)** $-\frac{q}{p}$
 - (E) p+q
- **20.** A cube 4 inches on each side is painted red and cut into 64 1-inch cubes. How many 1-inch cubes are painted red on two faces only?
 - **(A)** 8
 - **(B)** 12
 - **(C)** 16
 - **(D)** 24
 - (E) 32

262 Part VI

- **21.** The set $\{x/|x-L| \le K\}$ is the same for all $K \ge 0$ and for all L, as
 - (A) $\{x/0 < x < L + K\}$
 - **(B)** $\{x/L K < x < L + K\}$
 - (C) $\{x/|L-K| < x < |L+K|\}$
 - **(D)** $\{x/|L-x| > K\}$
 - **(E)** $\{x/-K < x < L\}$
- **22.** Write $\left[\sqrt{2}\left(\cos 30^{\circ} + i \sin 30^{\circ}\right)\right]^{2}$ in the form a + bi.
 - **(A)** $2 + i\sqrt{3}$
 - **(B)** $\frac{3}{2} + \frac{1}{2}i$ **(C)** $1 i\sqrt{3}$

 - **(D)** $\frac{3}{2} \frac{1}{2}i$
 - **(E)** $1+i\sqrt{3}$
- 23. What is the approximate magnitude of 8 + 4i?
 - **(A)** 4.15
 - **(B)** 8.94
 - **(C)** 12.00
 - **(D)** 18.64
 - **(E)** 32.00
- **24.** $\tan \frac{A}{2} + \cot \frac{A}{2}$ is equivalent to
 - (A) $2 \sin A$
 - **(B)** 2 sec A
 - (C) $2\cos A$
 - (D) $2 \csc A$
 - (E) $2 \tan A$
- **25.** Find the coordinates of the center of a circle whose equation is $x^2 + y^2 4x 2y = 75$.
 - **(A)** (4, 1)
 - **(B)** (1, 4)
 - **(C)** (2, 1)
 - **(D)** (1, 2)
 - **(E)** (3, 1)

- 26. From two ships due east of a lighthouse and in line with its foot, the angles of elevation of the top of the lighthouse are x and y, with x > y. The distance between the ships is m. The distance from the lighthouse to the nearer ship is
 - $(\mathbf{A}) \quad \frac{m \sin x \cos y}{\sin (x y)}$
 - $\mathbf{(B)} \quad \frac{m \cos x \sin y}{\sin(x-y)}$
 - (C) $\frac{\cos x \sin y}{m \sin(x+y)}$
 - **(D)** $m \cot x \sin y$
 - (E) $m \sec x \cos y$
- 27. What is the probability of getting 80% or more of the questions correct on a 10-question true-false exam merely by guessing?
 - **(A)** $\frac{1}{16}$
 - **(B)** $\frac{5}{32}$
 - (C) $\frac{3}{16}$ (D) $\frac{7}{32}$

 - **(E)** $\frac{7}{128}$
- **28.** The expression $\frac{3-4i}{5+3i}$ is equivalent to
 - **(A)** $\frac{27-29i}{34}$
 - **(B)** $\frac{27-29i}{16}$
 - (C) $\frac{3-29i}{34}$

 - **(E)** 15 8i
- **29.** Evaluate $\lim_{n\to\infty} \frac{3n^2}{n^2 + 10,000n}$.
 - **(A)** 0
 - **(B)** 1
 - **(C)** 2
 - **(D)** 3
 - (\mathbf{E}) ∞

- **30.** If $w = w_0 e^{-kt}$, find the approximate value of t when w = 7, $w_0 = 50$, and k = 3.4.
 - (A) .52
 - **(B)** .54
 - **(C)** .56
 - **(D)** .58
 - **(E)** .60
- **31.** Find the cube root of 27 (cos $30^{\circ} + i \sin 30^{\circ}$) that, when represented graphically, lies in the second quadrant.
 - (A) $3 (\cos 10^{\circ} + i \sin 10^{\circ})$
 - **(B)** $3 (\cos 170^{\circ} + i \sin 170^{\circ})$
 - (C) $3 (\cos 100^{\circ} + i \sin 100^{\circ})$
 - **(D)** $3 (\cos 130^{\circ} + i \sin 130^{\circ})$
 - (E) $3 (\cos 150^{\circ} + i \sin 150^{\circ})$
- **32.** If $y = \frac{\pi}{5}$, find the value of $2 \cos \pi \sin (\pi y) \sin \left(\frac{3}{2}\pi + y\right)$.
 - $(\mathbf{A}) \quad \cos\frac{2}{5}\pi$
 - **(B)** $-\cos\frac{2}{5}\pi$
 - (C) $\sin \frac{2}{5}\pi$
 - **(D)** $-\sin\frac{2}{5}\pi$
 - **(E)** $\tan \frac{2}{5}\pi$
- **33.** Figure 33 is a graph of which of the following?
 - **(A)** $x^2 + y^2 = 9$
 - **(B)** |x| = 3 and |y| = 3
 - (C) |x + y| = 3
 - **(D)** |x| + |y| = 3
 - **(E)** x y = 3

Fig. 33

- **34.** What is the degree measure of the second quadrant angle θ for which $8 \sin^2 \theta + 6 \sin \theta = 9$?
 - **(A)** 48.6°
 - **(B)** 101.6°
 - **(C)** 121.4°
 - **(D)** 131.4°
 - **(E)** 172.8°
- **35.** Find the set of values satisfying the inequality $\left| \frac{10-x}{3} \right| < 2$.
 - **(A)** 4 < x < 16
 - **(B)** -4 > x > -16
 - (C) 4 > x > -16
 - **(D)** x < 16
 - **(E)** x > 4
- **36.** If the circle $(x-1)^2 + (y-3)^2 = r^2$ is tangent to the line 5x + 12y = 60, the value of r is
 - **(A)** $\sqrt{10}$
 - **(B)** $\frac{19}{13}$
 - **(C)** $\frac{13}{12}$
 - **(D)** $\frac{60}{13}$
 - **(E)** $2\sqrt{3}$
- **37.** In a coordinate system in which the *y*-axis is inclined 60° to the positive *x*-axis, find the distance *PQ* between the points P(-3, 7) and Q(6, -5).
 - **(A)** $\sqrt{117}$
 - **(B)** 15
 - (C) $\sqrt{189}$
 - **(D)** $\sqrt{333}$
 - **(E)** $\sqrt{108}$
- **38.** What is the remainder when $3x^4 2x^3 + 3x^2 2x + 1$ is divided by x 3?
 - **(A)** 70
 - **(B)** 102
 - **(C)** 200
 - **(D)** 211
 - **(E)** 241
- **39.** For what positive value(s) of *K* will the graph of the equation 2x + y = K be tangent to the graph of the equation $x^2 + y^2 = 45$?
 - **(A)** 5
 - **(B)** 10
 - **(C)** 15
 - **(C)** 20
 - **(E)** 25

Part VI 266

- **40.** What positive value(s) of x, less than 360°, will give a minimum value for $4 2 \sin x \cos x$?

 - (A) $\frac{\pi}{4}$ only (B) $\frac{5\pi}{4}$ only
 - (C) $\frac{\pi}{2}$ and $\frac{5\pi}{2}$

 - (D) $\frac{3\pi}{2}$ (E) $\frac{\pi}{4}$ and $\frac{5\pi}{4}$
- **41.** Express in radians the period of the graph of the equation $y = \frac{1}{3}(\cos^2 x \sin^2 x)$.
 - (A)
 - **(B)** π

 - (D) 2π
 - (E) 3π
- **42.** For what value of m is $4x^2 + 8xy + my^2 = 9$ the equation of a pair of straight lines?
 - **(A)** 0
 - **(B)** 1
 - **(C)**
 - **(D)**
 - **(E)**
- **43.** Two roots of the equation $4x^3 px^2 + qx 2p = 0$ are 4 and 7. What is the third root?
 - $\frac{11}{27}$ **(A)**
 - $\frac{11}{13}$ **(B)**
 - **(C)** 11
 - **(D)**
 - **(E)** $-\frac{22}{27}$

44. In figure 44, what is the approximate area of parallelogram DAWN?

- (A) 11.57
- **(B)** 13.64
- **(C)** 14.63
- **(D)** 17.25
- **(E)** 20.00

45. If $\log_{6.2} x = e$, what is the approximate value of x?

- **(A)** 142.54
- **(B)** 173.82
- **(C)** 227.31
- **(D)** 386.42
- **(E)** 492.75

46. If $x = 1 - e^t$ and $y = 1 + e^{-t}$, find y in terms of x.

- $(\mathbf{A}) \quad y = x$
- **(B)** y = 1 x
- (C) $y = \frac{x-1}{x}$ (D) $y = \frac{x}{x+1}$
- **(E)** $\quad y = \frac{2-x}{1-x}$

47. Find the value of $\log_8(\sqrt[3]{.25})$.

268 Part VI

- **48.** If two sides of a parallelogram are 6 and 8 and one diagonal is 7, what is the length of the other diagonal?
 - **(A)** $\sqrt{123}$
 - **(B)** $\sqrt{11}$
 - **(C)** $\sqrt{131}$
 - **(D)** $\sqrt{151}$
 - **(E)** 9
- **49.** When $5x^{13} + 3x^{10} K$ is divided by x + 1, the remainder is 20. The value of K is
 - **(A)** −22
 - **(B)** -12
 - **(C)** 8
 - **(D)** 28
 - **(E)** 14
- **50.** What is the smallest possible value of x (in degrees) for which $\cos x \sin x = \frac{1}{\sqrt{2}}$?
 - (A) 5°
 - **(B)** 12°
 - **(C)** 15°
 - **(D)** 18°
 - **(E)** 30°

STOP

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON THIS TEST ONLY. DO NOT WORK ON ANY OTHER TEST IN THIS BOOK.