Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт Высшая школа прикладной математики и вычислительной физики

Лабораторная работа

по дисциплине «Анализ данных с интервальной неопределенностью» на тему «Обработка постоянной. Применение меры совместности к анализу данных»

Выполнил			
студент гр. 5040102/10201	Пестряков Д.Д.	/	/
Руководитель			
доцент, к.фм.н.	Баженов А.Н.	/	/

Оглавление

Постановка задачи	3
Теория и методы	4
Результаты	5
Приложение	9

Постановка задачи

Проводится исследование из области солнечной энергетики. На рис. 1 показана схема установки для исследования фотоэлектрических характеристик.

Схема установки для исследования фотоэлектрических характеристик

Измеряемый сигнал (мВ или мА), поступающий с фотоприемника ФП1 (Канал 1) или фотоприемника ФП2 (Канал 2)

Рис. 1. Схема установки

Калибровка датчика ФП2 производится по эталону ФП1. Зависимость между квантовыми эффективностями датчиков предполагается постоянной для каждой пары наборов измерений

$$QE_1 = \frac{X_1}{X_2} \cdot QE_2 \tag{1}$$

 QE_1 , QE_2 — эталонная эффективность эталонного и исследуемого датчика, X_1 , X_2 , или $\{x_{1i}\}_{i=1}^{200}$, $\{x_{2i}\}_{i=1}^{200}$ — измеренные мощности. Данные датчиков находятся в файлах Channel_1_800nm_0.23.csv и Channel_2_800nm_0.23.csv.

Требуется определить параметры постоянной величины на основе двух выборок $\{x_{1i}\}_{i=1}^{200}, \{x_{2i}\}_{i=1}^{200}$, в частности коэффициент калибровки

$$R_{12} = \frac{X_1}{X_2} \tag{2}$$

при помощи линейной регрессии, интервальных данных и коэффициента Жаккара.

Теория и методы

Представим данные таким образом, чтобы применить понятия статистики данных с интервальной неопределенностью. Один из распространенных способо получения получения интервальных результатов в первичных измерениях — это «обинтерваливание» точечных значений, когда к точечному базовому значению x_{1i} , которое считывается по показаниям измерительного прибора прибавляется интервал погрешности ε

$$X_{1i} = x_{1i} + [-\varepsilon, +\varepsilon] \tag{3}$$

В конкретных измерениях $\varepsilon \sim 10^{-4}$ мВ. Согласно терминологии интервального анализа, рассматриваемая выборка — это вектор интервалов, или интервальный вектор $X_1 = \{X_{1i}\}_{i=1}^{200}$

Интервалы будем строить простым способом. Вначале построим линейную регрессию по известному методу наименьших квадратов в виде $L_1(n) = A_1 \cdot n + B_1$, где n — номер измерения; $L_1(n)$ — прямая, аппроксимирующая экспериментальные измерения $\{x_{1i}\}_{i=1}^{200}$. Отклонение можно вычислить как

$$arepsilon_{1n}=arepsilon+L_1(n)-\overline{x_{1n}}$$
, если интервал ниже прямой $arepsilon_{1n}=arepsilon+\underline{x_{1n}}-L_1(n)$, если интервал выше прямой (4)

Окончательно, интервальные данные представимы в виде:

$$X_{1i} = x_{1i} + \left[-\varepsilon_{1i}, +\varepsilon_{1i} \right] \tag{5}$$

или кратко X_1 — множество всех интервальных данных, построенных по измерениям датчика $\Phi\Pi1$.

Чтобы сделать интервальную величину более константной и в дальнейшем оценить совместность двух выборок экспериментальных измерений, вычтем из интервальных данных линейную зависимость (фактически из концов интервала), получим:

$$X_1' \leftarrow X_1 - A_1 \cdot n \tag{6}$$

Для базовых значений x_{2i} выпоним аналогичные вычисления. Найдем линейную зависимость $L_2(n) = A_2 \cdot n + B_2$, интервалы X_{2i} по формуле (5) и обработанные интервалы X_2' по формуле (6) с соответствующими индексами.

В различных областях анализа данных используют различные меры сходства множеств, иными словами, коэффициенты сходства. Будем использовать мультимеру Жаккакра, то есть ее модификацию для интервальных данных:

$$JK = \frac{wid(\cap y_i)}{wid(\cup y_i)} \tag{7}$$

Мера Жаккара $-1 \le JK \le 1$ численно характеризует меру совместности интервальных данных. В качестве y_i рассматриваются интервальные данные объединенной выборки $X' = \{X_1', RX_2'\}$. JK — число, получаемое в результате деления пересечения интервалов на их объединение. Заметим, что если при подборе калибровочного множителя R получается JK > 0, то выборка

совместна (имеет положительную меру совместности). Поиск оптимального R_{ont} можно представить так:

$$R_{opt} = arg\left\{\max_{R} JK(X')\right\} \tag{8}$$

 R_{opt} — это аргумент, у которого реализуется данный функционал, максимальная оценка коэффициента калибровки R_{12} из формулы (2). Внешнюю оценку для R_{opt} можно найти разными способами, проще всего путем деления интервалов двух выборок $R=\frac{X_1}{X_2}$, в результате чего получим интервал внешней оценки $[\underline{R},\overline{R}]$ — такой интервал, в котором можно найти R_{opt} , перебирая R с некоторым шагом и вычисляя функционал (8). Интервал, в пределах которого наблюдается JK>0 является внутренней оценкой коэффициента R_{opt} .

Результаты

Программный код написан на языке программирования Python с использованием библиотек MatPlotLib, NumPy и Sklearn.

На Рис.2 представлены экспериментальные данные, измеренные двумя датчиками. На рис. 3 и 4 показаны построенные согласно описанной выше теории интервальные данные и линейная регрессия с коэффициентами $A_1 \approx 3.242 \cdot 10^{-6}$, $B_1 \approx 0.472$, $A_2 \approx 5.454 \cdot 10^{-6}$, $B_2 \approx 0.503$.

Рис. 2. Две выборки экспериментальных данных, измеренным датчиками

Рис. 3. Интервальные данные первой выборки и линейная регрессия

Исходя из Рис. 3 и Рис. 4 можно отметить следующее:

- Данные с канала 1 носят линейно-ступенчатый характер с изломами в первых и последних 20 точках
- Данные с канала 2 имеют кусочно-линейный характер, но с ярко выраженной регрессией, а именно точки примерно с 3 по 100 и с 127 по 175 (что составляет около 75% всех точек) имеют от линейной регрессии малое отклонение
- Для канала 2 прямая линейной регрессии пересекает все интервалы, для канала 1 не пересекает только 2 последних измерения, поэтому их пришлось растянуть

На Рис. 5 представлена гистограмма весов растяжения интервалов 1 канала. Для канала 2 такую не приводим, так как там растяжения не было

Рис. 5. Гистограмма весов растяжения интервалов для 1 канала

На Рис. 6 и Рис. 7 представлена константа и интервалы после вычитания дрейфовой компоненты из регрессии

Рис. 6. Интервалы после вычитания дрейфовой компоненты для канала 1

Рис. 7. Интервалы после вычитания дрейфовой компоненты для канала 2

Можно отметить, что измерения канала 2 визуально имеют более широкий канал совместности, чем измерения канала 1.

Рис. 8. Мера Жаккара для различных R

На Рис. 8 представлено изменение меры Жаккара в зависимости от калибровочного коэффициента R.

Внешняя оценка (округленная до 4 знаков) для R = [0.9377, 0.9385]

Размах внешней оценки равен 0.0008

Внутренняя оценка для R = [0.9384, 0.9385]

Размах внутренней оценки равен 0.0001

То есть, размах внутренней оценки стал в 10 раз меньше. С учетом того, что внутренняя оценка имеет достаточно узкий размах, то это можно считать приемлемым результатом.

Оптимальное R можно взять 0.93842. При этом R мера Жаккара принимает значение 0.02069, что говорит о наличии пересечения, представленного некоторым интервалом.

Приложение

Ссылка на GitHub с реализацией:

DanilPestryakov/intervals_first_lab (github.com)