Espaces préhilbertiens réels, Espaces vectoriels euclidiens

Aperçu

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

- 1. Produit scalaire
- 1.1 Définition
- 1.2 Norme euclidienne
- 1.3 Exemples fondamentaux
- 1.4 Identité remarquables
- 1.5 Inégalité de Cauchy-Schwarz et de Minkowski
- 1.6 Distance associée à un produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales

1. Produit scalaire

1.1 Définition

- 1.2 Norme euclidienne
- 1.3 Exemples fondamentaux
- 1.4 Identité remarquables
- 1.5 Inégalité de Cauchy-Schwarz et de Minkowski
- 1.6 Distance associée à un produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonale

D 1 Soient E un \mathbb{R} -espace vectoriel, et $\varphi: E^2 \to \mathbb{R}$. On dit que φ est un **produit scalaire** sur E si φ vérifie les conditions que voici :

- 1. φ est bilinéaire, c'est-à-dire,
 - pour tout $b \in E$, l'application $f(*,b): x \mapsto f(x,b)$ est linéaire,
 - pour tout $a \in E$, l'application $f(a,*): y \mapsto f(a,y)$ est linéaire.
- 2. φ est symétrique, c'est-à-dire

$$\forall x, y \in E, \varphi(y, x) = \varphi(x, y).$$

3. φ est définie positive, c'est-à-dire

$$\forall x \in E, x \neq 0 \implies \varphi(x, x) > 0.$$

On appelle espace préhilbertien réel tout couple (E, φ) où E est un espace vectoriel réel et φ est un produit scalaire sur E.

On appelle espace euclidien tout espace préhilbertien réel de dimension finie.

N

Les produits scalaires sont souvent notés de façon infixe : $\langle x,y\rangle$ pour $\varphi(x,y)$. On utilise également les notations suivantes

$$(x, y), \qquad \langle x | y \rangle, \qquad (x | y), \qquad \langle x, y \rangle, \qquad x \cdot y.$$

E 3 Pour $x = (x_1, x_2) \in \mathbb{R}^2$ et $y = (y_1, y_2) \in \mathbb{R}^2$, on pose

$$\langle x, y \rangle = x_1 y_1 + 2x_2 y_2.$$

On vérifie que c'est un produit scalaire sur \mathbb{R}^2 .

P 4 Premières propriétés

Soit $(E, \langle *, * \rangle)$ un espace préhilbertien réel.

- 1. $\forall x \in E, \langle x, 0_E \rangle = 0$ et $\langle 0_E, x \rangle = 0$.
- 2. Si x est un vecteur tel que

$$\forall y \in E, \langle x, y \rangle = 0$$

on a alors $x = 0_E$.

3. Si x et y sont deux vecteurs tels que

$$\forall z \in E, \langle x, z \rangle = \langle y, z \rangle$$

on a alors x = y.

1. Produit scalaire

- 1.1 Définition
- 1.2 Norme euclidienne
- 1.3 Exemples fondamentaux
- 1.4 Identité remarquables
- 1.5 Inégalité de Cauchy-Schwarz et de Minkowski
- 1.6 Distance associée à un produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales

D 5

On définit la **norme euclidienne** d'un vecteur x de E associée au produit scalaire par

$$\|x\| = \sqrt{\langle x, x \rangle}.$$

On dit qu'un vecteur est unitaire lorsque sa norme est 1.

Si $x \neq 0$, alors

$$u = \frac{x}{\|x\|}$$

est un vecteur unitaire ayant même direction que x. On dit que l'on a «normalisé» le vecteur x.

1. Produit scalaire

- 1.1 Définition
- 1.2 Norme euclidienne

1.3 Exemples fondamentaux

- 1.4 Identité remarquables
- 1.5 Inégalité de Cauchy-Schwarz et de Minkowski
- 1.6 Distance associée à un produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales

Produit scalaire canonique sur \mathbb{R}^n

Il s'agit de la forme bilinéaire définie en posant pour tout $x=(x_1,\dots,x_n)$ et $y=(y_1,\dots,y_n)$ de \mathbb{R}^n

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

et la norme de x est donc le réel

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Cela montre que $\langle x, x \rangle$ est positif et que $\langle x, x \rangle$ est nul si et seulement si $x = 0_{\mathbb{R}^n}$.

Si l'on considère les vecteurs de \mathbb{R}^n dans $\mathcal{M}_{n,1}(\mathbb{R})$, on a avec $X=(x_1,\ldots,x_n)^T$ et $Y=(y_1,\ldots,y_n)^T$

$$\langle X, Y \rangle = \sum_{i=1}^{p} x_i y_i = X^T Y$$

La norme de X est donc le réel

$$||X|| = \sqrt{\langle X, X \rangle} = \sqrt{X^T X} = \sqrt{\sum_{i=1}^p x_i^2}$$

Produit scalaire sur les matrices

Sur $E=\mathcal{M}_{n,p}(\mathbb{R})$. L'espace $\mathcal{M}_{n,p}(\mathbb{R})$ est isomorphe à \mathbb{R}^{np} ; il est donc naturel de prendre comme produit scalaire

$$\langle A,B\rangle = \sum_{\substack{1\leq i\leq n\\1\leq j\leq p}} a_{i,j}b_{i,j}.$$

où $A = (a_{i,j})$ et $B = (b_{i,j})$.

T 6 Vérifier que

$$\langle A, B \rangle = \sum_{\substack{1 \le i \le n \\ 1 \le j \le p}} a_{i,j} b_{i,j} = \operatorname{Tr} \left(A^T B \right).$$

Produits scalaires sur les polynômes

Sur $E = \mathbb{R}_n[X]$,

$$\langle P, Q \rangle = \sum_{i=0}^{n} p_i q_i \qquad \qquad \text{où } P = \sum_{i=0}^{n} p_i X^i \text{ et } Q = \sum_{i=0}^{n} q_i X^i. \tag{1}$$

$$\langle P, Q \rangle = \sum_{i=0}^{n} P(i)Q(i)$$
 (2)

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t) \, \mathrm{d}t.$$
 (3)

T 7 Justifier que nous avons bien défini des produits scalaires sur $\mathbb{R}_n[X]$.

Produit scalaire fonctionnel

On peut définir sur le \mathbb{R} -espace vectoriel $E=\mathscr{C}([a,b],\mathbb{R})$ un produit scalaire en posant

$$\langle f, g \rangle = \int_a^b f(t)g(t) dt.$$

La linéarité, symétrie et positivité ne pose aucun problème. Le seul point non trivial est le caractère défini de cette forme bilinéaire (donc celui sur lequel on vous attend) ; on a absolument besoin de la continuité des fonctions en jeu.

Si $\int_a^b f^2(t) dt = 0$, la fonction f^2 , continue et à priori positive, est nécessairement nulle sur [a, b]; il en est donc de même de f.

Produit scalaire associé à une base

E étant un \mathbb{R} -espace vectoriel de dimension n, la donnée d'une base $\mathscr{B}=(e_1,\ldots,e_n)$ permet de définir un produit scalaire noté $\langle *,* \rangle_{\mathscr{B}}$ en posant pour tout couple de vecteurs $x=\sum_{i=1}^n x_1e_i$ et $y=\sum_{i=1}^n y_ie_i$,

$$\langle x, y \rangle_{\mathscr{B}} = \sum_{x=1}^{n} x_i y_i.$$

Ainsi, tout \mathbb{R} -espace vectoriel de dimension finie peut être muni d'un produit scalaire.

1. Produit scalaire

- 1.1 Définition
- 1.2 Norme euclidienne
- 1.3 Exemples fondamentaux
- 1.4 Identité remarquables
- 1.5 Inégalité de Cauchy-Schwarz et de Minkowski
- 1.6 Distance associée à un produit scalaire
- 2. Familles orthogonales
- Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonale

P 8 Soient $(E, \langle *, * \rangle)$ un espace préhilbertien réel, x, y des vecteurs de E et λ, μ des nombres réels.

- 1. $||x|| = 0 \iff x = 0_E$.
- $2. \|\lambda x\| = |\lambda| \|x\|.$
- 3. $||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$.
- 4. $||x y||^2 = ||x||^2 2\langle x, y \rangle + ||y||^2$.
- 5. $||x||^2 ||y||^2 = \langle x + y, x y \rangle$.
- 6. Identité du parallélogramme :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

7. Identité de polarisation :

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$$

= $\frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$

1. Produit scalaire

- 1.1 Définition
- 1.2 Norme euclidienne
- 1.3 Exemples fondamentaux
- 1.4 Identité remarquables
- 1.5 Inégalité de Cauchy-Schwarz et de Minkowski
- 1.6 Distance associée à un produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5 Calculs en base orthonormale
- 6. Matrices orthogonales

T 9 Inégalité de Cauchy-Schwarz

Soit x et y deux vecteurs de E, alors $\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$, soit

$$\left| \langle x, y \rangle \right| \le \|x\| \, \|y\|,\tag{4}$$

l'égalité ayant lieu si et seulement si x et y sont colinéaires.

De plus, on a l'égalité $\langle x,y\rangle = \|x\| \|y\|$ si et seulement si x et y sont colinéaires et de même sens, c'est-à-dire s'il existe un nombre réel $\lambda \geq 0$ tel que $y = \lambda x$ ou $x = \lambda y$.

 $D\'{e}monstration.$ Les résultats demandés sont évidents si $y=0_E.$ Si $y\neq 0_E$, on considère la fonction $p:\mathbb{R}\to\mathbb{R}$

$$p(t) = ||x + ty||^2 = ||x||^2 + 2t\langle x, y \rangle + t^2 ||y||^2.$$

La fonction polynômiale p est de degré 2 car $||y|| \neq 0$; étant à valeurs dans \mathbb{R}_+ , son discriminant est ≤ 0 , c'est-à-dire

$$\langle x, y \rangle^2 - \|x\| \|y\| \le 0,$$

d'où encore l'inégalité voulue.

L'égalité $|\langle x,y\rangle|=\|x\|\|y\|$ signifie que p a un discriminant nul, donc p s'annule une fois et une seule sur $\mathbb R$. Il existe donc un nombre réel t_0 tel que $p(t_0)=0$, c'est-à-dire tel que $\|x+t_0y\|=0$, ou encore tel que $x+t_0y=0$. Cela prouve l'avant dernier résultat. Enfin, si $\langle x,y\rangle=\|x\|\|y\|$, on vient de voir que $x=-t_0y$; donc

$$||x|| ||y|| = \langle x, y \rangle = -t_0 ||y||^2;$$

or ce nombre est positif si et seulement si t_0 est ≤ 0 ; cela prouve que x et y sont colinéaires et de même sens. La réciproque est immédiate.

T 10 Inégalité de Minkowski

Quels que soient les vecteurs x et y de E,

$$||x + y|| \le ||x|| + ||y||,$$

l'égalité ayant lieu si et seulement si x et y sont colinéaires et de même sens.

T 11 Quels que soient les vecteurs x et y de E,

$$|||x|| - ||y||| \le ||x|| + ||y||.$$

Plus généralement, on a

$$||x|| - ||y|| \le ||x \pm y|| \le ||x|| + ||y||.$$

1. Produit scalaire

- 1.1 Définition
- 1.2 Norme euclidienne
- 1.3 Exemples fondamentaux
- 1.4 Identité remarquables
- 1.5 Inégalité de Cauchy-Schwarz et de Minkowski
- 1.6 Distance associée à un produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales

D 12 On définit la **distance euclidienne** de deux vecteurs x, y (ou de deux points...) de E en posant

$$d(x, y) = ||y - x||.$$

P 13 Quels que soient les vecteurs x, y, z de E,

- 1. d(x, y) = d(y, x).
- 2. $d(x, y) \ge 0$.
- 3. $d(x, y) = 0 \iff x = y$.
- 4. $d(x, z) \le d(x, y) + d(y, z)$ (inégalité triangulaire).

- 1. Produit scalaire
- 2. Familles orthogonales
- 2.1 Vecteurs orthogonaux
- 2.2 Famille orthogonale
- 2.3 Bases orthogonales Bases orthonormales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

- 1. Produit scalaire
- 2. Familles orthogonales
- 2.1 Vecteurs orthogonaux
- 2.2 Famille orthogonale
- 2.3 Bases orthogonales Bases orthonormales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

D 14 Les vecteurs x et y de E sont **orthogonaux** pour $\langle *, * \rangle$, et on note $x \perp y$, lorsque

$$\langle x, y \rangle = 0.$$

T 15 Égalité de Pythagore

Deux vecteurs x et y de E sont orthogonaux si et seulement si

$$||x + y||^2 = ||x||^2 + ||y||^2$$
.

1. Propriété des losanges :

$$||x|| = ||y|| \iff x + y \perp x - y.$$

2. Propriété des rectangles :

$$||x + y|| = ||x - y|| \iff x \perp y.$$

- 1. Produit scalaire
- 2. Familles orthogonales
- 2.1 Vecteurs orthogonaux
- 2.2 Famille orthogonale
- 2.3 Bases orthogonales Bases orthonormales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

D 17 Une famille (x_1, \ldots, x_n) d'éléments de E est **orthogonale** si

$$\forall (i,j) \in [[1,n]]^2, i \neq j \implies \langle x_i, x_j \rangle = 0$$

Si de plus, les vecteurs x_i sont unitaires, on dit que la famille est **orthonormale** (ou **orthonormée**), ce qui revient à écrire

$$\forall (i,j) \in [[1,n]]^2, \langle x_i, x_j \rangle = \delta_{ij}.$$

Cette définition s'étend de manière naturelle aux familles quelconques de vecteurs de E.

L'égalité de Pythagore se généralise aux familles orthogonales finies.

P 18 $Si(x_1,...,x_n)$ est une famille orthogonale,

$$||x_1 + x_2 + \dots + x_n||^2 = ||x_1||^2 + ||x_2||^2 + \dots + ||x_n||^2.$$

Toutefois, la réciproque est fausse.

T 19 Trouver une famille de trois vecteurs x, y, z non orthogonale telle que

$$||x + y + z||^2 = ||x||^2 + ||y||^2 + ||z||^2.$$

T 20 Toute famille orthogonale de E constituée de vecteurs non nuls est libre. En particulier, une famille orthonormale est libre.

- 1. Produit scalaire
- 2. Familles orthogonales
- 2.1 Vecteurs orthogonaux
- 2.2 Famille orthogonale
- 2.3 Bases orthogonales Bases orthonormales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

D 21 On appelle base orthogonale de E toute base de E qui est aussi une famille orthogonale.

On appelle base orthonormale de E toute base de E qui est aussi une famille orthonormale.

P 22 Si E est un espace vectoriel euclidien de dimension n et $\mathscr{B} = (e_1, \ldots, e_n)$ est une famille orthonormale de n vecteurs, alors \mathscr{B} est une base orthonormale de E.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 3.1 Orthogonal d'une partie ; sous-espaces vectoriels orthogonaux
- 3.2 Supplémentaire orthogonal
- 3.3 Projecteurs et symétries orthogonales
- 3.4 Distance d'un vecteur à un sous-espace
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 3.1 Orthogonal d'une partie ; sous-espaces vectoriels orthogonaux
- 3.2 Supplémentaire orthogona
- 3.3 Projecteurs et symétries orthogonales
- 3.4 Distance d'un vecteur à un sous-espace
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

D 23 Soient A et B deux parties de E. On dit que A et B sont **orthogonales** si tout vecteur de A est orthogonal à tout vecteur de B c'est-à-dire

$$\forall x \in A, \forall y \in B, \langle x, y \rangle = 0.$$

D 24 Soit A une partie de E, on appelle sous-espace orthogonal de A et on note A^{\perp} l'ensemble des vecteurs de E qui sont orthogonaux à tous les vecteurs de A.

$$A^{\perp} = \{ x \in E \mid \forall y \in A, \langle x, y \rangle = 0 \}$$

E 25 Dans $E = \mathbb{R}^3$ euclidien canonique, soit $a = (\alpha, \beta, \gamma)$ un vecteur non nul, alors $\{a\}^{\perp}$ est le plan vectoriel d'équation $\langle a, (x, y, z) \rangle = 0$, c'est-à-dire

$$P: \alpha x + \beta y + \gamma z = 0.$$

Pour $a \in A$, il est usuel de noter a^{\perp} au lieu de $\{a\}^{\perp}$. On a alors $a^{\perp} = \ker(a, *)$.

- 1. $E^{\perp} = \{ 0_F \} \text{ et } \{ 0_F \}^{\perp} = E.$
- 2. $A \perp B \iff A \subset B^{\perp} \iff B \subset A^{\perp}$.
- 3. $A \subset (A^{\perp})^{\perp}$.
- 4. $A \subset B \implies B^{\perp} \subset A^{\perp}$.
- 5. $A \cap A^{\perp} = \{ 0_E \}.$

 $[^]a$ ll n'y a pas forcément égalité, même lorsque A est un sous-espace vectoriel.

T 27 Pour toute partie $A \subset E$, A^{\perp} est un sous-espace vectoriel de E égal à $(\operatorname{Vect} A)^{\perp}$.

C 28 Soit $F = \text{Vect} \{ x_1, \dots, x_p \}$ et $G = \text{Vect} \{ y_1, \dots, y_q \}$ deux sous-espaces vectoriels de E. Alors

$$F \perp G \iff \forall i \in [[1, p]], \forall j \in [[1, q]], \langle x_i, y_i \rangle = 0.$$

E 29 Dans
$$E = \mathbb{R}^3$$
 euclidien canonique, soit $u = (1, 2, -1)$ et $v = (1, 0, 1)$. On pose $S = \text{Vect}(u, v)$. Pour $a = (x, y, z) \in E$,

$$a \in S^{\perp} \iff \langle a, u \rangle = 0 \text{ et } \langle a, v \rangle = 0$$

$$\iff \begin{cases} x + 2y - z &= 0 \\ x + z &= 0 \end{cases}$$

$$\iff \begin{cases} x + 2y - z &= 0 \\ -2y + 2z &= 0 \end{cases}$$

$$\iff \begin{cases} x &= -z \\ y &= z \end{cases}$$

$$\iff \exists t \in \mathbb{R}, (x, y, z) = t(-1, 1, 1).$$

Finalement,

$$S^{\perp} = \text{Vect} \{ (-1, 1, 1) \}.$$

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 3.1 Orthogonal d'une partie ; sous-espaces vectoriels orthogonaux
- 3.2 Supplémentaire orthogonal
- 3.3 Projecteurs et symétries orthogonales
- 3.4 Distance d'un vecteur à un sous-espace
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

T 31 et définition

Soient E est un espace préhilbertien réel et F un sous-espace vectoriel de E. S'il existe un sous-espace vectoriel $G \subset E$ tel que

$$E = F \oplus G$$

et

$$F \perp G$$
,

alors $G = F^{\perp}$; on l'appelle supplémentaire orthogonal de F.

On note $E=F \oplus G$; le symbole d'orthogonalité au dessus de l'opération de somme directe signifie que l'on a une décomposition orthogonale de l'espace E.

Démonstration. Supposons $E = F \overset{\perp}{\oplus} G$. Alors $G \subset F^{\perp}$. Inversement, soit $x \in F^{\perp}$, il existe $(y,z) \in F \times G$ tel que x=y+z, alors $y=x-z \in F \cap F^{\perp}$, donc $y=0_E$ et $F^{\perp} \subset G$.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 3.1 Orthogonal d'une partie ; sous-espaces vectoriels orthogonaux
- 3.2 Supplémentaire orthogona
- 3.3 Projecteurs et symétries orthogonales
- 3.4 Distance d'un vecteur à un sous-espace
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des novaux et images de matrices

- D 32 Soient E un espace préhilbertien réel.
 - Un projecteur p de E est dit **orthogonal** si son image et son noyau sont orthogonaux. Dans ces conditions, on dira que p est le **projecteur orthogonal** de E sur le sous-espace $F = \operatorname{Im} p$.
 - Une symétrie s de E est dite **orthogonale** si $\ker (s \operatorname{Id}_E)$ et $\ker (s + \operatorname{Id}_E)$ sont orthogonaux.
 - 1. Si p est un projecteur orthogonal, $E = \ker p \oplus \operatorname{Im} p$.
 - 2. Si p est un projecteur, la symétrie $s=2p-\mathrm{Id}_E$ est orthogonale si, et seulement si p l'est. (On a $\ker (s-\mathrm{Id}_E)=\mathrm{Im}\, p$ et $\ker (s+\mathrm{Id}_E)=\ker p$.)
 - 3. Si p est un projecteur, $q = \operatorname{Id}_E p$ est un projecteur, il est orthogonal si, et seulement si p l'est : $\ker q = \operatorname{Im} p$ et $\ker p = \operatorname{Im} q$.

Les propriétés suivantes sont celles des projections et des symétries.

P 33 Soient E un espace préhilbertien réel, F un sous-espace vectoriel de E tel que $E = F \overset{\perp}{\oplus} F^{\perp}$.

Notons p_F le projecteur orthogonal sur F et s_F la symétrie orthogonal par rapport à F . Alors

1.
$$p_F(x) = y \iff (y \in F \text{ et } x - y \in F^{\perp}).$$

- 2. Im $p_F = F$ et ker $p_F = F^{\perp}$.
- 3. $p_F(x) = x \iff x \in F$.
- 4. $p_F(x) = 0_E \iff x \in F^{\perp}$.
- 5. $s_F(x) = x \iff x \in F$.
- 6. $s_F(x) = -x \iff x \in F^{\perp}$.

7.
$$p_F + p_{F^{\perp}} = \operatorname{Id}_E$$
.

8.
$$s_F + \text{Id}_E = 2p_F$$
.

9.
$$p_F \circ p_F = p_F$$
.

10.
$$s_F \circ s_F = \mathrm{Id}_E$$
.

11.
$$s_{F^{\perp}} = -s_F$$
, c'est-à-dire $s_F \circ s_{F^{\perp}} = s_{F^{\perp}} \circ s_F = -\operatorname{Id}_E$.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 3.1 Orthogonal d'une partie ; sous-espaces vectoriels orthogonaux
- 3.2 Supplémentaire orthogona
- 3.3 Projecteurs et symétries orthogonales
- 3.4 Distance d'un vecteur à un sous-espace
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

D 34 Soient A une partie non vide d'un espace euclidien E et $x \in E$. On définit la **distance** de x à A en posant

$$d(x, A) = \inf \{ d(x, y) \mid y \in A \} = \inf \{ ||x - y|| \mid y \in A \}.$$

Souvent, on cherche s'il existe un point $a \in A$ réalisant le minimum de ces distances, c'est-à-dire tel que

$$||x - a|| = \operatorname{d}(x, A).$$

En général, la réponse à cette question est négative. Lorsqu'un tel a existe, il constitue une **meilleure approximation** de x dans A.

T 35 Soient E un espace préhilbertien réel et $F \subset E$ un sous-espace vectoriel de E admettant un supplémentaire orthogonal. Pour tout $x \in E$,

$$d(x, F) = ||x - p_F(x)|| = \sqrt{||x||^2 - ||p_F(x)||^2},$$

 p_F étant le projecteur orthogonal sur F ; de plus

$$\forall y \in F, d(x, F) = d(x, y) \iff y = p_F(x).$$

Autrement dit, il existe un unique vecteur $y \in F$ tel que d(x, F) = ||x - y||, à savoir $y = p_F(x)$.

Nous verrons que se résultat s'applique dès que F est de dimension finie.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 4.1 Algorithme de Gram-Schmidt
- 4.2 Existence de bases orthonormées dans un espace euclidien
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 4.1 Algorithme de Gram-Schmidt
- 4.2 Existence de bases orthonormées dans un espace euclidien
- Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

T 36 Soient E un espace préhilbertien réel, (v_1, \ldots, v_p) une famille **libre** de vecteurs de E. Il existe une et une seule famille orthonormale (u_1, \ldots, u_p) telle que

$$\forall k \in [\![1,p]\!], \operatorname{Vect}(u_1,\ldots,u_k) = \operatorname{Vect}(v_1,\ldots,v_k) \qquad \quad et \qquad \quad \langle u_k,v_k \rangle > 0.$$

Cette famille peut être construite de proche en proche par l'algorithme de Gram-Schmidt

$$u_1 = \frac{v_1}{\|v_1\|}$$

puis pour $i \ge 1$,

$$w_{i+1} = v_{i+1} - \sum_{k=1}^{l} \langle u_k, v_{i+1} \rangle u_k$$
$$u_{i+1} = \frac{w_{i+1}}{\|w_{i+1}\|}.$$

D 37 La famille (u_1, \ldots, u_p) obtenue par ce procédé est appelée orthonormalisée de Gram-Schmidt de la famille (v_1, \ldots, v_p) .

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \qquad \qquad v_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix}, \qquad \qquad v_3 = \begin{pmatrix} 4 \\ -2 \\ 2 \\ 0 \end{pmatrix}.$$

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 4.1 Algorithme de Gram-Schmidt
- 4.2 Existence de bases orthonormées dans un espace euclidien
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

- Dans l'algorithme de Gram-Schmidt, si l'on part d'une base (v_1,\ldots,v_n) , on obtient une base orthonormale (v_1,\ldots,v_n) .
- T 39 Tout espace vectoriel euclidien possède une base orthonormale.

T 40 Théorème de la base orthonormale incomplète

R

Soient E est un espace vectoriel euclidien et (v_1,\ldots,v_p) une famille orthonormale de E. Il existe des vecteurs v_{p+1},\ldots,v_n dans E tels que la famille (v_1,\ldots,v_n) soit une base orthonormale de E.

Ainsi, lorsque E est de dimension finie, tout sous-espace vectoriel de E admet un supplémentaire orthogonal. Nous généraliserons ce résultat un peu plus tard.

Démonstration. La famille $\mathscr{F}=(v_1,\ldots,v_p)$ est libre, donc, d'après le théorème de la base incomplète, il est possible de trouver de vecteurs v_{p+1},\ldots,v_n dans E tels que la famille $\mathscr{B}=(v_1,\ldots,v_p,v_{p+1},\ldots,v_n)$ soit une base de E. On peut alors appliquer l'algorithme de Gram-Schmidt à \mathscr{B} pour obtenir une base orthonormale \mathscr{B}' de E. Remarquons simplement que par ce procédé, les premiers vecteurs v_1,\ldots,v_p de \mathscr{B} restent inchangés puisqu'ils forment déjà une famille orthonormale.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 5.1 Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormale
- 5.2 Projection orthogonale sur un sous-espace de dimension finie
- 5.3 Distance d'un vecteur à un sous-espace
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 5.1 Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormale
- 5.2 Projection orthogonale sur un sous-espace de dimension finie
- 5.3 Distance d'un vecteur à un sous-espace
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

- 1. \mathcal{B} est une base orthonormale de E.
- 2. $\forall x \in E, \forall i \in [[1, n]], x_i = \langle e_i, x \rangle$.
- 3. $\forall x \in E, ||x||^2 = \sum_{i=1}^n x_i^2$.
- 4. $\forall (x, y) \in E^2, \langle x, y \rangle = \sum_{i=1}^n x_i y_i$.

C 42 Soient E est un espace vectoriel euclidien $\mathscr{B} = (e_1, \dots, e_n)$ une base orthonormale de E. Étant donnés deux vecteurs x et y de coordonnées $X = (x_1, \dots, x_n)^T$ et $Y = (y_1, \dots, y_n)^T$, on a

$$\langle x, y \rangle = X^T Y = \sum_{i=1}^n x_i y_i$$
, en particulier, $||x|| = X^T X = \sum_{i=1}^n x_i^2$.

C 43 Soient E est un espace vectoriel euclidien $\mathscr{B} = (e_1, \dots, e_n)$ une base orthonormale de E. Pour tout vecteur $x \in E$,

$$x = \sum_{i=1}^{n} \langle e_i, x \rangle e_i.$$

On en déduit l'égalité de Parseval

$$||x||^2 = \sum_{i=1}^n \langle e_i, x \rangle^2.$$
 (Parseval)

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 5.1 Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormale
- 5.2 Projection orthogonale sur un sous-espace de dimension finie
- 5.3 Distance d'un vecteur à un sous-espace
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

$$E = F \overset{\perp}{\oplus} F^{\perp} \qquad \qquad \text{et} \qquad \qquad \left(F^{\perp}\right)^{\perp} = F.$$

Soit (e_1,\ldots,e_p) est une base orthonormale de F, le projeté orthogonal de x sur F est donnée par

$$p_F(x) = \sum_{i=1}^p \langle e_i, x \rangle e_i.$$

C 45 Sous les même hypothèses, la projection orthogonale de x sur F^{\perp} est donnée par

$$p_{F^{\perp}}(x) = x - \sum_{i=1}^{p} \langle e_i, x \rangle e_i.$$

C 46 Soient E est un espace vectoriel euclidien et F un sous-espace vectoriel de E. Alors

$$E = F \stackrel{\perp}{\oplus} F^{\perp}, \qquad \dim F + \dim F^{\perp} = \dim E, \qquad (F^{\perp})^{\perp} = F.$$

De plus, si (e_1, \ldots, e_p) est une base orthonormale de F et (e_{p+1}, \ldots, e_n) est une base orthonormale de F^{\perp} , alors (e_1, \ldots, e_n) est une base orthonormale de E.

E 47 Soient E un espace euclidien, ω un vecteur *unitaire* et H l'hyperplan orthogonal à ω .

1. La projection orthogonale sur $D = \mathbb{R}\omega$ est l'endomorphisme de E

$$p_D: x \mapsto \langle \omega, x \rangle \omega.$$

2. La projection orthogonale sur H est l'endomorphisme de E

$$p_H: x \mapsto x - \langle \omega, x \rangle \omega.$$

3. La symétrie orthogonale par rapport à $D=\mathbb{R}\omega$ est l'endomorphisme de E

$$s_D: x \mapsto 2\langle \omega, x \rangle \omega - x.$$

4. La symétrie orthogonale par rapport à H est l'endomorphisme de E

$$s_H: x \mapsto x - 2\langle \omega, x \rangle \omega.$$

D 48

- La symétrie orthogonale par rapport à la droite D s'appelle encore **retournement** d'axe D ou **demi-tour** d'axe D.
- La symétrie orthogonale par rapport à l'hyperplan H s'appelle encore **réflexion** d'hyperplan H.

Pour les curieux, une affinité dont la base est un hyperplan s'appelle une transvection.

Dans l'algorithme de Gram-Schmidt,

R

$$w_{i+1} = v_{i+1} - \sum_{k=1}^{i} \langle u_k, v_{i+1} \rangle u_k$$

est en fait le projeté orthogonal de v_{i+1} sur l'orthogonal de Vect { v_1,\ldots,v_i } = Vect { u_1,\ldots,u_i } dans Vect { v_1,\ldots,v_i,v_{i+1} }. On a donc

$$w_{i+1} = v_{i+1} - p_{\text{Vect}\{v_1, \dots, v_i\}}(v_{i+1}).$$

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 5.1 Expression des coordonnées, du produit scalaire et de la norme dans une base orthonormale
- 5.2 Projection orthogonale sur un sous-espace de dimension finie
- 5.3 Distance d'un vecteur à un sous-espace
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices

C 49 Soient E un espace préhilbertien réel et $F \subset E$ un sous-espace vectoriel de dimension finie. Si (e_1, \ldots, e_n) est une base orthonormale de F, alors

$$d(x, F)^{2} = \|x - p_{F}(x)\|^{2} = \|x\|^{2} - \|p_{F}(x)\|^{2} = \|x\|^{2} - \sum_{i=1}^{p} \langle e_{i}, x \rangle^{2}.$$
 (5)

et
$$d(x, F^{\perp})^2 = ||p_F(x)||^2 = \sum_{i=1}^{P} \langle e_i, x \rangle^2$$
. (6)

Soient E un espace euclidien, ω un vecteur *unitaire*, $D = \mathbb{R}\omega$ et H l'hyperplan orthogonal à ω .

$$d(x, H) = |\langle \omega, x \rangle|$$
 et $d(x, D)^2 = ||x||^2 - \langle \omega, x \rangle^2$

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 6.1 Définition
- 6.2 Caractérisations des matrice orthogonales
- 6.3 Matrice de changement de base orthonormée
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 6.1 Définition
- 6.2 Caractérisations des matrice orthogonales
- 6.3 Matrice de changement de base orthonormée
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

D 51 Soit P une matrice carrée d'ordre n. On dit que P est un matrice orthogonale lorsque

$$P^T P = P P^T = I_n,$$

c'est-à-dire, si P a pour inverse P^T .

N L'ensemble des matrices orthogonales de type (n,n) est noté $\mathbf{O}_n(\mathbb{R})$ ou $\mathbf{O}(n)$ et est appelé groupe orthogonal réel de degré n.

P 52 $\mathbf{O}_n(\mathbb{R})$ est un sous-groupe de $\mathbf{GL}_n(\mathbb{R})$.

E 53 La matrice

$$P = \begin{pmatrix} 3/5 & 4/5 \\ -4/5 & 3/5 \end{pmatrix}$$

est une matrice orthogonale.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 6.1 Définition
- 6.2 Caractérisations des matrice orthogonales
- 6.3 Matrice de changement de base orthonormée
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

L 55 Soit $M \in \mathcal{M}_{n,p}(\mathbb{R})$. La matrice $M^TM \in \mathcal{M}_p(\mathbb{R})$ est la matrice dont le terme général d'indice (i,j) est le produit scalaire canonique des colonnes de M d'indices i et j. En notant $M = (C_1, \ldots, C_p)$, on a

$$\forall i, j \in [[1, p]], (M^T M)[i, j] = C_i^T C_j = \langle C_i, C_j \rangle.$$

- 1. M est orthogonale.
- 2. M^T est orthogonale.
- 3. Les colonnes de M forment une base orthonormale de \mathbb{R}^n muni de sa structure euclidienne canonique.
- $4. M^T M = I_n.$
- 5. M est inversible et $M^{-1} = M^T$.
- 6. $MM^T = I_n$.
- 7. Les lignes de M forment une base orthonormale de \mathbb{R}^n muni de sa structure euclidienne canonique.

On prendra garde au fait que si les colonnes (ou les lignes) d'une matrice forment une famille orthogonale, la matrice n'est pas forcément orthogonale!

$$M = \frac{1}{3} \begin{pmatrix} -2 & 2 & 1\\ 2 & 1 & 2\\ 1 & 2 & -2 \end{pmatrix}$$

est une matrice orthogonale.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 6.1 Définition
- 6.2 Caractérisations des matrice orthogonales
- 6.3 Matrice de changement de base orthonormée
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien

T 58 Soit E un espace vectoriel euclidien et $\mathcal{B} = (e_1, \dots, e_n)$ une base orthonormée de E. Soit $S = (w_1, w_2, ..., w_p)$ une famille de p vecteurs de E. La matrice des coordonnées de la famille S relativement à la base $\mathcal B$ est donnée par

$$\operatorname{Coord}_{\mathcal{B}}(w_1, w_2, \dots, w_p) = \begin{pmatrix} \langle e_1, w_1 \rangle & \langle e_1, w_2 \rangle & \dots & \langle e_1, w_p \rangle \\ \langle e_2, w_1 \rangle & \langle e_2, w_2 \rangle & \dots & \langle e_2, w_p \rangle \\ \vdots & \vdots & & \vdots \\ \langle e_n, w_1 \rangle & \langle e_n, w_2 \rangle & \dots & \langle e_n, w_p \rangle \end{pmatrix} = \left(\langle e_i, w_j \rangle \right)_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}}^{1 \leq i \leq n}.$$

- **T 59** Soit E un espace vectoriel euclidien et $\mathcal{B}=(e_1,\ldots,e_n)$ une base orthonormée de E. Une base \mathcal{B}' est orthonormée si, et seulement si la matrice de passage de \mathcal{B} à \mathcal{B}' est orthogonale.
- D 60 Deux matrices carrées $A, B \in \mathcal{M}_n(\mathbb{R})$ sont **orthogonalement semblables** s'il existe une matrice $P \in \mathbf{O}(n)$ telle que $P^TAP = D$.
 - Une matrice carrée $A\in \mathcal{M}_n(\mathbb{R})$ est **orthogonalement diagonalisable** s'il existe une matrice diagonale D de $\mathcal{M}_n(\mathbb{K})$ et une matrice $P\in \mathbf{O}(n)$ telle que $P^TAP=D$.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalite
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien
- 9. Exemples de familles orthogonales de polynômes

T 61 Soit $M \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors

$$\ker (M^T) = \operatorname{Im}(M)^{\perp}$$
 et $\operatorname{Im}(M^T) = \ker (M)^{\perp}$.

T 62 Pour tout matrice $A \in \mathcal{M}_n(\mathbb{R})$,

- 1. $\operatorname{Sp}(A) \subset \mathbb{R}_+$.
- 2. $\ker(A^T A) = \ker(A)$.
- 3. $\operatorname{rg}(A^T A) = \operatorname{rg}(A)$.
- 4. Im $(A^T A) = \ker(A)^{\perp}$.

T 63 Soit A une matrice (n,p) de rang p. Alors la matrice $P = A(A^TA)^{-1}A^T$ est la matrice canoniquement associée au projecteur orthogonal de \mathbb{R}^n sur $\mathrm{Im}(A)$.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien
- 9. Exemples de familles orthogonales de polynômes

T 64 Soit E un espace vectoriel euclidien. Étant donnée une forme linéaire f sur E, c'està-dire $f \in \mathcal{L}(E,\mathbb{R})$, il existe un vecteur ω et un seul dans E tel que $f = \langle \omega, * \rangle$, c'est-à-dire

$$\forall x \in E, f(x) = \langle \omega, x \rangle.$$

Plus précisément, l'application

est un isomorphisme.

 \triangle Ce théorème est faux lorsque E est un espace vectoriel préhilbertien réel de dimension infinie.

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalité
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien
- 9. Exemples de familles orthogonales de polynômes

- 1. Produit scalaire
- 2. Familles orthogonales
- 3. Orthogonalit
- 4. Algorithme de Gram-Schmidt
- 5. Calculs en base orthonormale
- 6. Matrices orthogonales
- 7. Orthogonal des noyaux et images de matrices
- 8. Représentation des formes linéaires sur un espace euclidien
- 9. Exemples de familles orthogonales de polynômes