Al-Assisted Routability-Driven Placement 报告

代码仓库

https://github.com/kix6lj/DREAMPlace/tree/submit

实现

ML Model

直接使用CircuitNet中提供的RouteNet,训练使用的Loss function为MSELoss, batch大小为16,训练20000 iteration。训练使用的数据为CircuitNet中的训练集以及ISPD contest中的11个design(提供的默认生成训练集的脚本中生成label的方式是对horizontal congestion和vertical congestion取min,与CircuitNet数据生成的脚本不同,所以改成了求和)。

模型最终在训练集上的Loss为0.2917,在测试集上的平均Loss为0.2913。

RouteNet的效果如下图所示,左图为输入的feature map,中间为ground truth,右图为预测结果,在这个实例上,预测的MSE误差为0.23.

DREAMPlace集成

集成进入DREAMPlace中时,使用DREAMPlace提供的density_map_op, rudy_utilization_map_op, pinrudy_utilization_map_op生成输入的feature,将得到的overflow map所有位置加1做为congestion map. Cell inflation使用默认参数,即 max(congestion^{2.5}, 2.5)

实验结果

最终的实验结果如表所示,每一个数据点为(Cong, SHPWL),上面的是实现了routability optimization的结果,下面的是没有实现的结果。在4个hidden test上,实现了routability optimization之后并没有在SHPWL上取得更好的结果,主要原因是HPWL更大了,比如在 mgc_superblue12 上面,使用routability optimization之后可以将congestion score降低2左右,但是由于HPWL更大,跟Cong的基数100乘起来占SHPWL的主要部分,所以在SHPWL会比不用 routability optimization(Cong更高,但是HPWL更小)要差。

Benchmark	HPWL	0.5%	1%	2%	5%
mgc_matrix_mult_c	1.568E+07 1.528E+07	(121.209, 5.717E+09) (121.337, 5.579E+09)	(120.011, 5.661E+09) (120.178, 5.526E+09)	(119.049, 5.615E+09) (119.239, 5.482E+09)	(117.922, 5.562E+0 (118.100, 5.430E+0
mgc_pci_bridge32_b	3.349E+06 3.176E+06	(117.562, 1.184E+09) (117.332, 1.121E+09)	(116.919, 1.178E+09) (116.736, 1.115E+09)	(116.183, 1.170E+09) (116.042, 1.109E+09)	(115.317, 1.162E+0 (115.259, 1.101E+0
mgc_superblue12	2.673E+08 2.572E+08	(129.854, 1.044E+11) (132.478, 1.024E+11)	(128.161, 1.030E+11) (130.500, 1.009E+11)	(126.227, 1.0149E+11) (128.058, 9.908E+10)	(123.321, 9.915E+1 (124.217, 9.611E+1
mgc_superblue16_a	2.674E+08 2.684E+08	(123.704, 9.948E+10) (123.738, 9.989E+10)	(120.838, 9.719E+10) (120.846, 9.756E+10)	(118.373, 9.521E+10) (118.392, 9.559E+10)	(116.322, 9.356E+1 (116.336, 9.393E+1