

Annamaria lezzi ann.iezzi@stud.uniroma3.it

Università degli Studi di Roma Tre

18 Luglio 2012

Domini almost Dedekind

Annamarıa lezzi

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Piano della presentazione

Domini almost Dedekind

Annamaria lezzi

Introduzione

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazio di ideali

Introduzione

Definizione e proprietà

3 Domini almost Dedekind, domini di Prüfer e domini di Dedekind

• Sia $\{p_i\}_{i=1}^{\infty}$ la successione dei primi in \mathbb{Z} e ω_{p_i} la p_i -esima radice primitiva dell'unità, per ogni i.

- Si consideri il campo $K = \mathbb{Q}(w_{p_1}, w_{p_2}, \dots, w_{p_i}, \dots)$ estensione algebrica infinita di \mathbb{Q} .
- Sia \mathbb{Z}^* la chiusura integrale di \mathbb{Z} in K.

 \downarrow

 \mathbb{Z}^* è un dominio di Prüfer di dimensione uno

Z* NON è un dominio di Dedekind

Domini almost Dedekind

Annamaria lezzi

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Domini almost Dedekind

Annamaria Jezzi

Introduzione

Definizione (proprietà

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazio

- Sia $\{p_i\}_{i=1}^{\infty}$ la successione dei primi in \mathbb{Z} e ω_{p_i} la p_i -esima radice primitiva dell'unità, per ogni i.
- Si consideri il campo $K = \mathbb{Q}(w_{p_1}, w_{p_2}, \dots, w_{p_i}, \dots)$, estensione algebrica infinita di \mathbb{Q} .
- Sia \mathbb{Z}^* la chiusura integrale di \mathbb{Z} in K.

 \downarrow

- \mathbb{Z}^* è un dominio di Prüfer di dimensione uno.
- Z* NON è un dominio di Dedekind

Domini a most

Dedekind

• Sia $\{p_i\}_{i=1}^{\infty}$ la successione dei primi in \mathbb{Z} e ω_{p_i} la p_i -esima

• Si consideri il campo $K = \mathbb{Q}(w_{p_1}, w_{p_2}, \dots, w_{p_i}, \dots),$

radice primitiva dell'unità, per ogni i.

estensione algebrica infinita di Q. • Sia \mathbb{Z}^* la chiusura integrale di \mathbb{Z} in K.

Domini a most Dedekind

• Sia $\{p_i\}_{i=1}^{\infty}$ la successione dei primi in \mathbb{Z} e ω_{p_i} la p_i -esima

• Si consideri il campo $K = \mathbb{Q}(w_{p_1}, w_{p_2}, \dots, w_{p_i}, \dots),$

radice primitiva dell'unità, per ogni i.

estensione algebrica infinita di Q. • Sia \mathbb{Z}^* la chiusura integrale di \mathbb{Z} in K.

Domini a most Dedekind

- Sia $\{p_i\}_{i=1}^{\infty}$ la successione dei primi in \mathbb{Z} e ω_{p_i} la p_i -esima radice primitiva dell'unità, per ogni i.
- Si consideri il campo $K = \mathbb{Q}(w_{p_1}, w_{p_2}, \dots, w_{p_i}, \dots),$ estensione algebrica infinita di Q.
- Sia \mathbb{Z}^* la chiusura integrale di \mathbb{Z} in K.

 \mathbb{Z}^* è un dominio di Prüfer di dimensione uno.

Domini a most Dedekind

- Si consideri il campo $K = \mathbb{Q}(w_{p_1}, w_{p_2}, \dots, w_{p_i}, \dots),$ estensione algebrica infinita di Q.
- Sia \mathbb{Z}^* la chiusura integrale di \mathbb{Z} in K.

 \mathbb{Z}^* è un dominio di Prüfer di dimensione uno.

Z* NON è un dominio di Dedekind.

Gilmer introdusse, in un articolo del 1964, la seguente definizione:

Definizione

Un dominio D è detto almost Dedekind se D_M è un dominio di valutazione noetheriano (DVR), per ogni ideale massimale M di D.

Un dominio almost Dedekind è

integralmente chiuso

• uno-dimensionale

Domini almost Dedekind

Annamarıa lezzi

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Gilmer introdusse, in un articolo del 1964, la seguente definizione:

Definizione

Un dominio D è detto almost Dedekind se D_M è un dominio di valutazione noetheriano (DVR), per ogni ideale massimale M di D.

Un dominio almost Dedekind è:

integralmente chiu

μπο-dimensionale

Domini almost Dedekind

lezzi

Intro du zion e

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Gilmer introdusse, in un articolo del 1964, la seguente definizione:

Definizione

Un dominio D è detto almost Dedekind se D_M è un dominio di valutazione noetheriano (DVR), per ogni ideale massimale M di D.

Un dominio almost Dedekind è:

- integralmente chiuso;
- uno-dimensionale

Domini almost Dedekind

Annamarıa lezzi

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Gilmer introdusse, in un articolo del 1964, la seguente definizione:

Definizione

Un dominio D è detto **almost Dedekind** se D_M è un dominio di valutazione noetheriano (DVR), per ogni ideale massimale M di D.

Un dominio almost Dedekind è:

- integralmente chiuso;
- uno-dimensionale.

Domini almost Dedekind

Annamaria lezzi

Introduzione

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di

Annamaria lezzi

Introduzione

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di

Annamaria lezzi

Introduzione

Definizione e

Domini almost Dedekind domini di Prüfer e domini di

Annamaria lezzi

Introduzione

Definizione e

Domini almost Dedekind domini di Prüfer e domini di

Annamaria lezzi

Intro du zion e

Definizione e

Domini almost Dedekind domini di Prüfer e domini di

Annamaria Jezzi

Introduzione

Definizione e

Domini almost Dedekind domini di Prüfer e domini di

Proprietà

Domini almost Dedekind

lezzi

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazio: di ideali

Teorema

Sia D un dominio. Le seguenti affermazioni sono equivalenti:

- (i) D è almost Dedekind.
- (ii) Ogni ideale di D con radicale un ideale primo è una potenza del suo radicale.
- (iii) Se I, J, H sono ideali non nulli di D tali che IH = JH, allora I = J, ovvero D soddisfa la legge di cancellazione per ideali.

Domini almost Dedekind e domini di Prüfer

Domini almost Dedekind

Annamaria lezzi

Introduzione

Definizione e proprietà

Caratterizziamo i domini almost Dedekind all'interno della classe dei domini di Prüfer:

Teorema

Sia D un dominio di Prüfer. Le seguenti affermazioni sono equivalenti:

- (i) D è un dominio almost Dedekind.
- (ii) D ha dimensione uno ed è privo di ideali massimali idempotenti.
- (iii) $\bigcap_{n=1}^{\infty} I^n = (0)$ per ogni ideale proprio I di D.

Proprietà (#) e domini di Prüfer

Per caratterizzare in modo completo i domini di Dedekind all'interno della classe dei domini almost Dedekind introduciamo la proprietà (#):

Definizione

Sia D un dominio. D gode della **proprietà** (\sharp), se per Δ_1 e Δ_2 , sottoinsiemi distinti di Max(D), vale che

$$\bigcap_{M\in\Delta_1}D_M\neq\bigcap_{M\in\Delta_2}D_M.$$

Teorema

Sia D un dominio di Prüfer di dimensione uno. D ha la proprietà (‡) se e solo se ogni elemento non nullo e non invertibile di D appartiene a un numero finito di ideali massimali.

Domini almost Dedekind

HILIOGUZIONE

Definizione e proprietà

Domini
almost
Dedekind,
domini di
Prüfer e
domini di
Dedekind

Proprietà (#) e domini di Prüfer

Per caratterizzare in modo completo i domini di Dedekind all'interno della classe dei domini almost Dedekind introduciamo la proprietà (#):

Definizione

Sia D un dominio. D gode della **proprietà** (\sharp), se per Δ_1 e Δ_2 , sottoinsiemi distinti di Max(D), vale che

$$\bigcap_{M\in\Delta_1}D_M\neq\bigcap_{M\in\Delta_2}D_M.$$

Teorema

Sia D un dominio di Prüfer di dimensione uno. D ha la proprietà (‡) se e solo se ogni elemento non nullo e non invertibile di D appartiene a un numero finito di ideali massimali.

Domini almost Dedekind

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Domini almost Dedekind e domini di Dedekind

Domini a most

Dedekind

Teorema

Sia D un dominio almost Dedekind. Le seguenti affermazioni sono equivalenti:

- (i) D è un dominio di Dedekind.
- (ii) D ha la proprietà (♯).
- (iii) Ogni elemento non nullo e non invertibile di D è contenuto in un numero finito di ideali massimali, ovvero D ha il carattere di finitezza.
- (iv) D è noetheriano.

Annamaria

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Annamaria

Intro du zion e

Definizione

Domini almost Dedekind, domini di Prüfer e domini di

SP-domini

Definizione

Un dominio D è un **SP-dominio** se ogni ideale è prodotto di ideali radicali.

Un dominio di Dedekind è un SP-dominio.

Teorema (Vaughan-Yeagy, 1978)

Un SP-dominio è un dominio almost Dedekind.

Domini almost Dedekind

lezzi

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di Dedekind

SP-domini

Definizione

Un dominio D è un **SP-dominio** se ogni ideale è prodotto di ideali radicali.

Un dominio di Dedekind è un SP-dominio.

Teorema (Vaughan-Yeagy, 1978)

Un SP-dominio è un dominio almost Dedekind.

Domini almost Dedekind

lezzi

Intro du zion e

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazion

SP-domini

Definizione

Un dominio *D* è un **SP-dominio** se ogni ideale è prodotto di ideali radicali.

Un dominio di Dedekind è un SP-dominio.

Teorema (Vaughan-Yeagy, 1978)

Un SP-dominio è un dominio almost Dedekind.

Domini almost Dedekind

lezzi

Introduzione

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di Dedekind

Annamaria

Intro du zion e

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di Dedekind

Annamaria

Intro du zion e

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di Dedekind

Domini almost Dedekind e SP-domini

Domini almost Dedekind

Annamaria lezzi

Intro du zion e

Definizione e

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazio di ideali

Teorema (Olberding, 2005)

Le seguenti affermazioni sono equivalenti per un dominio almost Dedekind D:

- (i) D è un SP-dominio.
- (ii) D è privo di ideali massimali critici.
- (iii) Se A è un ideale proprio finitamente generato di D, allora rad(A) è un ideale finitamente generato di D.
- (iv) Ogni ideale principale proprio di D è prodotto di ideali radicali.

Fattorizzazione di ideali finitamente generati

Domini almost Dedekind

Annamaria lezzi

Intro du zion e

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazio di ideali

Problema

Dato un dominio almost Dedekind D con $\operatorname{Max}(D)=\{P_{\alpha}|\alpha\in A\}$, sotto quali ipotesi D possiede un insieme fattorizzante, ovvero una famiglia di ideali finitamente generati $\mathcal{J}=\{J_{\alpha}|\alpha\in A\}$ di D tale che $J_{\alpha}D_{P_{\alpha}}=P_{\alpha}D_{P_{\alpha}}$, per ogni α , $J_{\alpha}\neq J_{\beta}$, se $\alpha\neq\beta$, e che ogni ideale frazionario non nullo finitamente generato di D possa essere fattorizzato come prodotto finito di potenze di ideali della famiglia \mathcal{J} ?

Fattorizzazione di ideali finitamente generati

Domini almost Dedekind

Annamaria |ezzi

Introduzione

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazio di ideali

Teorema (Loper-Lucas, 2003)

Sia D un dominio almost Dedekind tale che ogni ideale primo abbia grado sharp finito. Allora D possiede un insieme fattorizzante. In particolare, ogni dominio almost Dedekind di grado sharp finito possiede un insieme fattorizzante.

Problema aperto

Esiste un insieme fattorizzante per ogni dominio almost Dedekind?

Fattorizzazione di ideali finitamente generati

Domini almost Dedekind

Annamaria lezzi

Intro du zion e

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di

Fattorizzazio di ideali

Teorema (Loper-Lucas, 2003)

Sia D un dominio almost Dedekind tale che ogni ideale primo abbia grado sharp finito. Allora D possiede un insieme fattorizzante. In particolare, ogni dominio almost Dedekind di grado sharp finito possiede un insieme fattorizzante.

Problema aperto

Esiste un insieme fattorizzante per ogni dominio almost Dedekind?

lezzi

Introduzione

Definizione e proprietà

Domini almost Dedekind, domini di Prüfer e domini di Dedekind

Fattorizzazion di ideali

Grazie a tutti per l'attenzione!