南京邮电大学 2014/2015 学年第一学期

《线性代数与解析几何》期末试卷(A)

院(系)			班级			学号			姓名		
题号	_	11	=	四	五	六	七	八	九	总 分	
得分											
得 分 一.填空题 (每小题 4 分,共 20 分)											
	1. 设 $\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2$ 均是四维列向量,且四阶行列式 $ \alpha_1,\alpha_2,\alpha_3,\beta_1 =m$,										
$\left lpha_{1},lpha_{2},eta_{2},lpha_{3} ight =n$,则行列式 $\left lpha_{3},lpha_{2},lpha_{1},eta_{1}+eta_{2} ight =$											
2. 设方阵 A 满足 $A^2 + A - 4I = 0$,其中 I 为单位矩阵,则 $(A - I)^{-1} = $											
3. 设 $A = \begin{pmatrix} 1 & 2 & -2 \\ 0 & t & 3 \\ 3 & -1 & 1 \end{pmatrix}$, B 为三阶非零矩阵, 且 $AB = 0$, 则 $t = $											
4. 空间曲线 $ \begin{cases} x^2 + y^2 + z^2 = 36 \\ x^2 + y^2 = 2x \end{cases} $ 在 xoz 平面上的投影曲线 方程为											
5. 若四阶方阵 A 与 B 相似,矩阵 A 的特征值为 $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$,则 $ B^{-1} - I =$											
二.选择题 (每小题 4 分, 共 20 分)											
1. 设 A, B 为 n 阶矩阵,则必有 ()											
$(A) (A+B)^2 = A^2 + 2AB + B^2 (B) (A+B)^T = A^T + B^T$											
(<i>C</i>)	(A+B)	$(C)^{-1} = A^{-1}$	$A^{-1} + B^{-1}$		(D)	$(AB)^*$	$=A^*B^*$				
为 r,则									(拒阵 A 的秩)	
` '						` /				有唯一解 有无穷多解	
3. 设向量		α_2, α_3	ま性 モラ	 美,则下	下列线性	相关的	向量组	是	()	

(A)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$$
 (B) $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$

B)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$

(C)
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$
 (D) $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$

(D)
$$\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$$

4. 设直线
$$L$$
:
$$\begin{cases} x+3y+2z+1=0\\ 2x-y-10z+3=0 \end{cases}$$
 及平面 π : $4x+2y+z-2=0$,则 ()

- (A) L 与 π 平行 (B) L 与 π 垂直 (C) L 在 π 上 (D) L 与 π 斜交

5. 若二次型
$$f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$$
 正定,则 a 的取值范围是 ()

$$(A)$$
 $(-2,2)$

(A)
$$(-2,2)$$
 (B) $(-\frac{1}{3},\frac{1}{3})$ (C) $(-3,3)$ (D) $(-\frac{1}{2},\frac{1}{2})$

$$(D) \left(-\frac{1}{2}, \frac{1}{2}\right)$$

三、(本题 10 分) 设
$$AB = A + 2B$$
, 其中 $A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$, 求矩阵 B .

解 因为AB = A + 2B,(A - 2I)B = A,所以 $B = (A - 2I)^{-1}A$

$$(A-2I:I) = \begin{pmatrix} 2 & 2 & 3 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ -1 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 6 & 5 & 1 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & -4 & -3 \\ 0 & 1 & 0 & 1 & -5 & -3 \\ 0 & 0 & 1 & -1 & 6 & 4 \end{pmatrix}$$

所以
$$B = \begin{pmatrix} 1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4 \end{pmatrix} \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -8 & -6 \\ 2 & -9 & -6 \\ -2 & 12 & 9 \end{pmatrix}$$

四、(本题 10 分) 求向量组
$$\alpha_1 = (6,4,1,-1,2)^T$$
, $\alpha_2 = (1,0,2,3,-4)^T$, $\alpha_3 = (1,4,-9,-16,22)^T$ 的秩和它的一个极大线性无关组,并用该极大线

 $\alpha_3 = (1, 4, -9, -16, 22)^T$ 的秩和它的一个极大线性无关组,并用该极大线性

无关组表示其余向量.

得 分

五、(本题 10 分) 在平面 $\pi: x+2y-z=20$ 上作一直线 Γ , 使直线 Γ 过另一直线 $L: \frac{x-1}{6} = \frac{y}{10} = \frac{z}{7}$ 与平面 π 的交点,且 Γ 与L垂直,求直线 Γ 的方程.

得 分

六、(本题 12 分) 已知方程组 $\begin{cases} x_1+x_2+k \ x_3=4 \\ x_1-x_2+2x_3=-4 \end{cases}$,问 k 为何值时,方程组有 $-x_1+kx_2+x_3=k^2$

唯一解? 无解? 有无穷多解? 并在方程组有无穷多解时写出通解.

得 分

矩阵 Q.

七、(本题 12 分) 若二次型 $f(x_1,x_2,x_3) = -x_1^2 + 2x_2^2 - x_3^2 + 2kx_1x_3$ 经正交变换 x = Qy 可以化成标准形 $2y_1^2 + 2y_2^2 - 4y_3^2$,求参数 k(k > 0) 及一个合适的正交

得 分

八、(本题 6 分)设 A 为 $m \times n$ 实矩阵,I 为 n 阶单位矩阵,已知矩阵 $B = \lambda I + A^T A$,试证:当 $\lambda > 0$ 时矩阵 B 为正定矩阵.