Yulu case study

May 14, 2025

#Yulu case study. ##Problem statement: Yulu, India's leading micro-mobility service provider has collected data based on the service it has provided and wants to know the following.

- What independent variables significantly impact the dependent variable.
- How strongly these independent variables impact the output.

```
[5]: #Importing the data from csv file to a pandas data frame import pandas as pd data = pd.read_csv('bike_sharing.csv')

[6]: #Stant of FDA The ment few blocks will be to employe the data to get an
```

[6]: #Start of EDA. The next few blocks will be to explore the data to get and understanding on a high level.
data.head()

```
[6]:
                                                                           atemp
                                     holiday
                                               workingday
                                                           weather
                   datetime
                             season
                                                                    temp
     0 2011-01-01 00:00:00
                                                                          14.395
                                  1
                                           0
                                                        0
                                                                 1
                                                                    9.84
     1 2011-01-01 01:00:00
                                  1
                                           0
                                                        0
                                                                 1
                                                                    9.02
                                                                          13.635
     2 2011-01-01 02:00:00
                                           0
                                                        0
                                                                    9.02
                                                                          13.635
     3 2011-01-01 03:00:00
                                  1
                                           0
                                                        0
                                                                    9.84
                                                                          14.395
     4 2011-01-01 04:00:00
                                  1
                                           0
                                                                    9.84 14.395
```

	humidity	windspeed	casual	registered	count
0	81	0.0	3	13	16
1	80	0.0	8	32	40
2	80	0.0	5	27	32
3	75	0.0	3	10	13
4	75	0.0	0	1	1

- [7]: data.shape
- [7]: (10886, 12)
- [8]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 12 columns):

Column Non-Null Count Dtype

```
10886 non-null
                                      int64
      1
          season
      2
          holiday
                      10886 non-null
                                      int64
      3
          workingday 10886 non-null int64
                      10886 non-null int64
      4
          weather
      5
          temp
                      10886 non-null float64
      6
          atemp
                      10886 non-null float64
      7
          humidity
                      10886 non-null int64
          windspeed
                      10886 non-null float64
                      10886 non-null int64
      9
          casual
      10 registered 10886 non-null int64
      11 count
                      10886 non-null int64
     dtypes: float64(3), int64(8), object(1)
     memory usage: 1020.7+ KB
 [9]: | #Now I am converting categorical attributes to 'category' to check if memory_
      ⇔usage can be optimized.
      #First I am taking the column season and will convert this to categorical.
      #I am keeping datetime as object itself as this I feel is better as is.
 [9]: data['season_cat'] = data['season'].map({1: 'spring', 2: 'summer', 3: 'fall', 4:
       → 'winter'})
      data['season_cat'] = data['season_cat'].astype('category')
[10]: #Performing the below to check if the new column matches the existing column
      data['season_cat'].value_counts()
[10]: season_cat
     winter
                2734
      fall
                2733
                2733
      summer
      spring
                2686
      Name: count, dtype: int64
[11]: data['season'].value_counts()
[11]: season
      4
          2734
      2
           2733
      3
          2733
      1
           2686
      Name: count, dtype: int64
[12]: #As summer and fall had the same count and the order differed I am doing the
      ⇒below to confirm the new column is as expected.
      assert (data['season'].map({1: 'spring', 2: 'summer', 3: 'fall', 4: 'winter'})

    data['season_cat']).all(), "Mismatch found!"
```

0

datetime

10886 non-null object

```
print("All values correspond correctly!")
     All values correspond correctly!
[13]: \#As, we can see this is as expected. Now I am deleting the original column
       ⇔season
     del data['season']
     data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10886 entries, 0 to 10885
     Data columns (total 12 columns):
                     Non-Null Count Dtype
          Column
     --- -----
                     _____
      0
          datetime
                     10886 non-null object
      1
         holiday
                     10886 non-null int64
      2
          workingday 10886 non-null int64
      3
         weather
                     10886 non-null int64
      4
         temp
                     10886 non-null float64
      5
          atemp
                     10886 non-null float64
         humidity
                     10886 non-null int64
      6
      7
         windspeed 10886 non-null float64
          casual
                     10886 non-null int64
          registered 10886 non-null int64
      10 count
                     10886 non-null int64
      11 season cat 10886 non-null category
     dtypes: category(1), float64(3), int64(7), object(1)
     memory usage: 946.5+ KB
 []: #I can clearly see the reduction in memory usage with this. Now I am checking
       →this for the remaining columns quickly.
[14]: data['holiday'].value_counts()
[14]: holiday
     0
          10575
            311
     Name: count, dtype: int64
[15]: data['holiday_cat'] = data['holiday'].map({1: 'holiday', 0: 'not_a_holiday'})
     data['holiday_cat'] = data['holiday_cat'].astype('category')
[16]: del data['holiday']
     data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10886 entries, 0 to 10885
     Data columns (total 12 columns):
```

```
Column
      #
                       Non-Null Count
                                      Dtype
          ----
                       _____
      0
          datetime
                       10886 non-null
                                      object
      1
          workingday
                       10886 non-null
                                      int64
      2
          weather
                       10886 non-null int64
      3
          temp
                       10886 non-null float64
      4
          atemp
                       10886 non-null float64
                       10886 non-null int64
      5
          humidity
      6
          windspeed
                       10886 non-null float64
          casual
                       10886 non-null int64
      7
      8
                       10886 non-null int64
          registered
      9
          count
                       10886 non-null int64
      10 season_cat
                       10886 non-null category
      11 holiday_cat 10886 non-null
                                      category
     dtypes: category(2), float64(3), int64(6), object(1)
     memory usage: 872.2+ KB
[17]: data.head()
[17]:
                   datetime
                             workingday
                                         weather
                                                  temp
                                                         atemp
                                                                humidity \
        2011-01-01 00:00:00
                                                  9.84 14.395
                                      0
                                               1
                                                                      81
     1 2011-01-01 01:00:00
                                      0
                                               1 9.02 13.635
                                                                      80
     2 2011-01-01 02:00:00
                                               1 9.02 13.635
                                                                      80
                                      0
     3 2011-01-01 03:00:00
                                      0
                                               1 9.84 14.395
                                                                      75
     4 2011-01-01 04:00:00
                                      0
                                                  9.84 14.395
                                                                      75
        windspeed casual
                           registered count season_cat
                                                           holiday_cat
              0.0
                                                 spring not_a_holiday
     0
                        3
                                   13
                                          16
              0.0
                        8
                                   32
     1
                                          40
                                                 spring not_a_holiday
     2
              0.0
                        5
                                   27
                                          32
                                                 spring not_a_holiday
     3
              0.0
                        3
                                                 spring not_a_holiday
                                   10
                                          13
     4
              0.0
                        0
                                    1
                                           1
                                                 spring not_a_holiday
[18]: data['workingday'].value_counts()
[18]: workingday
     1
          7412
     0
          3474
     Name: count, dtype: int64
[19]: data['workingday cat'] = data['workingday'].map({1: 'workingday', 0:11
      data['workingday_cat'] = data['workingday_cat'].astype('category')
     del data['workingday']
     data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10886 entries, 0 to 10885
```

```
Non-Null Count
      #
          Column
                                          Dtype
          _____
                          -----
      0
          datetime
                          10886 non-null
                                          object
                          10886 non-null int64
      1
          weather
      2
                          10886 non-null float64
          temp
      3
          atemp
                          10886 non-null float64
      4
          humidity
                          10886 non-null int64
      5
          windspeed
                          10886 non-null float64
                          10886 non-null int64
      6
          casual
      7
                          10886 non-null int64
          registered
      8
          count
                          10886 non-null int64
      9
          season_cat
                          10886 non-null category
                          10886 non-null
      10 holiday_cat
                                         category
      11 workingday_cat 10886 non-null
                                          category
     dtypes: category(3), float64(3), int64(5), object(1)
     memory usage: 797.9+ KB
[20]: data.shape
[20]: (10886, 12)
[21]: \#For\ weather\ I\ am\ directly\ converting\ this\ to\ categorical\ column\ without
       →mapping to actual, as the actual values are long strings.
      data['weather'] = data['weather'].astype('category')
[22]: data.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10886 entries, 0 to 10885
     Data columns (total 12 columns):
                          Non-Null Count Dtype
          Column
          ----
                          _____
                                          ----
      0
          datetime
                          10886 non-null
                                          object
      1
          weather
                          10886 non-null
                                          category
      2
                          10886 non-null float64
          temp
      3
          atemp
                          10886 non-null float64
      4
                          10886 non-null int64
          humidity
      5
          windspeed
                          10886 non-null float64
      6
                          10886 non-null int64
          casual
      7
          registered
                          10886 non-null int64
      8
          count
                          10886 non-null int64
          season_cat
                          10886 non-null category
      10 holiday_cat
                          10886 non-null
                                          category
      11 workingday_cat 10886 non-null
                                          category
     dtypes: category(4), float64(3), int64(4), object(1)
     memory usage: 723.7+ KB
```

Data columns (total 12 columns):

```
[23]: data.shape
[23]: (10886, 12)
[24]: data.head()
[24]:
                    datetime weather
                                       temp
                                              atemp
                                                     humidity windspeed
         2011-01-01 00:00:00
                                       9.84
                                             14.395
                                                                       0.0
                                                            81
                                                                                 3
      1 2011-01-01 01:00:00
                                       9.02
                                             13.635
                                                            80
                                                                       0.0
                                                                                 8
      2 2011-01-01 02:00:00
                                       9.02
                                             13.635
                                                            80
                                                                       0.0
                                                                                 5
      3 2011-01-01 03:00:00
                                       9.84
                                                                       0.0
                                    1
                                             14.395
                                                            75
                                                                                 3
      4 2011-01-01 04:00:00
                                    1
                                       9.84 14.395
                                                            75
                                                                       0.0
                                                                                 0
                                          holiday_cat
                                                          workingday_cat
         registered
                     count season_cat
      0
                                spring not_a_holiday not_a_workingday
                 13
                         16
      1
                 32
                         40
                                spring not_a_holiday
                                                        not_a_workingday
      2
                 27
                         32
                                spring not_a_holiday
                                                        not_a_workingday
      3
                 10
                         13
                                spring not_a_holiday
                                                        not_a_workingday
      4
                  1
                          1
                                spring not_a_holiday
                                                        not_a_workingday
 []: #not going to make any changes to temp, atemp, humidity, windspeed, casual, \Box
       ⇔registered and count
 []: #With this we can see that the data now takes less memory compared to initially.
       \rightarrowwhen imported.
[25]: data.isnull().sum()
[25]: datetime
                         0
      weather
                         0
                         0
      temp
      atemp
                         0
      humidity
                         0
      windspeed
                         0
      casual
                         0
                         0
      registered
      count
                         0
      season_cat
                         0
      holiday_cat
                         0
      workingday_cat
      dtype: int64
 []: #Can see that there are no missing values in this dataset
[26]: data.describe()
```

	temp ate		humidity windspeed		casual \	
count	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	
mean	20.23086	23.655084	61.886460	12.799395	36.021955	
std	7.79159	8.474601	19.245033	8.164537	49.960477	
min	0.82000	0.760000	0.000000	0.000000	0.000000	
25%	13.94000	16.665000	47.000000	7.001500	4.000000	
50%	20.50000	24.240000	62.000000	12.998000	17.000000	
75%	26.24000	31.060000	77.000000	16.997900	49.000000	
max	41.00000	45.455000	100.000000	56.996900	367.000000	
	registered	count				
count	10886.000000	10886.000000				
mean	155.552177	191.574132				
std	151.039033	181.144454				
min	0.000000	1.000000				
25%	36.000000	42.000000				
50%	118.000000	145.000000				
75%	222.000000	284.000000				
max	886.000000	977.000000				
	mean std min 25% 50% 75% max count mean std min 25% 50% 75%	count 10886.00000 mean 20.23086 std 7.79159 min 0.82000 25% 13.94000 50% 20.50000 75% 26.24000 max 41.00000 mean 155.552177 std 151.039033 min 0.000000 25% 36.000000 50% 118.000000 75% 222.000000	count 10886.00000 10886.00000 mean 20.23086 23.655084 std 7.79159 8.474601 min 0.82000 0.760000 25% 13.94000 16.665000 50% 20.50000 24.24000 75% 26.24000 31.060000 max 41.00000 45.455000 registered count count 10886.000000 10886.00000 mean 155.552177 191.574132 std 151.039033 181.144454 min 0.000000 42.00000 25% 36.000000 42.000000 50% 118.000000 145.000000 75% 222.000000 284.000000	count 10886.00000 10886.00000 10886.00000 mean 20.23086 23.655084 61.886460 std 7.79159 8.474601 19.245033 min 0.82000 0.760000 0.000000 25% 13.94000 16.665000 47.000000 50% 20.50000 24.240000 62.000000 75% 26.24000 31.060000 77.000000 max 41.00000 45.455000 100.00000 mean 155.552177 191.574132 191.574132 std 151.039033 181.144454 1000000 25% 36.000000 42.000000 50% 118.000000 145.000000 75% 222.000000 284.000000	count 10886.00000 10886.00000 10886.00000 10886.00000 mean 20.23086 23.655084 61.886460 12.799395 std 7.79159 8.474601 19.245033 8.164537 min 0.82000 0.760000 0.000000 0.000000 25% 13.94000 16.665000 47.000000 7.001500 50% 20.50000 24.240000 62.000000 12.998000 75% 26.24000 31.060000 77.000000 16.997900 max 41.00000 45.455000 100.00000 56.996900 registered count count 10886.000000 100.00000 56.996900 mean 155.552177 191.574132 54.000000 56.996900 25% 36.000000 42.000000 62.000000 62.000000 62.000000 50% 118.000000 145.000000 62.000000 62.000000 62.000000 62.000000 62.000000 62.000000 62.000000 62.000000 62.000000	count 10886.00000 10886.000000 10886.000000 10886.000000 10886.000000 mean 20.23086 23.655084 61.886460 12.799395 36.021955 std 7.79159 8.474601 19.245033 8.164537 49.960477 min 0.82000 0.760000 0.000000 0.000000 0.000000 0.000000 25% 13.94000 16.665000 47.000000 7.001500 4.000000 50% 20.50000 24.240000 62.000000 12.998000 17.000000 75% 26.24000 31.060000 77.000000 16.997900 49.000000 max 41.00000 45.455000 100.00000 56.996900 367.000000 mean 155.552177 191.574132 54 151.039033 181.144454 18.000000 42.000000 25% 36.000000 42.000000 284.000000 284.000000 284.000000

[]: #From the above statistical summary of numerical columns we can see that there

→ are outliers in casual user count by the difference in the mean and median.

#Although not much difference there is a difference in the mean and median of

→ registered and count as well.

[27]: data.describe(include=['object', 'category'])

[27]:			datetime	weather	season_cat	holiday_cat	workingday_cat
	count		10886	10886	10886	10886	10886
	unique		10886	4	4	2	2
	top	2011-01-01	00:00:00	1	winter	not_a_holiday	workingday
	freq		1	7192	2734	10575	7412

- []: # From the above statistical summary of categorical columns we can see that there are more datapoints for weather 1

 # i.e. 1: Clear, Few clouds, partly cloudy, partly cloudy, which makes sense of egiven that more rides are to be expected during a clear weather.

 # Also, as can be seen the season with top data points is winter probably of indicating that the rides are taken when the weather is pleasant the holiday cat: Here we see that the top count is for not a holiday probably of indicating that the rides are used by employees who the set of the first and last miles of office commute after a public transit the workingday cat: same conclusion as above can be said of this as well
- []: #Univariate Analysis

[]: #From these plots it can be seen that casual, registered and count columns have outliers as seen before in the statistical summary.

#But here we can also see the outliers being present in windspeed column as well.

```
[29]: #Plotting a bar chart for categorical columns
import matplotlib.pyplot as plt

weather_counts = data['weather'].value_counts()

plt.figure(figsize=(8, 6))
plt.bar(weather_counts.index, weather_counts.values)
plt.xlabel('Weather Condition')
plt.ylabel('Number of Records')
plt.title('Distribution of Weather Conditions')
plt.show()
```



```
[30]: data['weather'].value_counts()
```

Name: count, dtype: int64

```
[]: # • weather:

# • 1: Clear, Few clouds, partly cloudy, partly cloudy

# • 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

# • 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light

• Rain + Scattered clouds

# • 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

#Considering the above mapping, and the value counts along with the

• visualization it is seen that the datapoints are more for weather type 1, 

• followed by 2

# and then we have 3 and 4, but these are very less compared to 1 and 2
```

```
[31]: import matplotlib.pyplot as plt

weather_counts = data['season_cat'].value_counts()

plt.figure(figsize=(8, 6))
 plt.bar(weather_counts.index, weather_counts.values)
 plt.xlabel('Season')
 plt.ylabel('Number of Records')
 plt.title('Distribution of Season')
 plt.show()
```


[]: #from the visual as well as the above summary it is seen that all the seasons \sqcup \hookrightarrow have almost equal datapoints

```
[33]: import matplotlib.pyplot as plt

weather_counts = data['holiday_cat'].value_counts()

plt.figure(figsize=(8, 6))
plt.bar(weather_counts.index, weather_counts.values)
plt.xlabel('Holiday')
plt.ylabel('Number of Records')
plt.title('Distribution of holiday')
plt.show()
```



```
[]: #We see there are more data points for not_a_holiday compared to holiday, □
→indicating more usage during working days
```

```
[34]: import matplotlib.pyplot as plt
weather_counts = data['workingday_cat'].value_counts()
```

```
plt.figure(figsize=(8, 6))
plt.bar(weather_counts.index, weather_counts.values)
plt.xlabel('Working day')
plt.ylabel('Number of Records')
plt.title('Distribution of working day')
plt.show()
```



```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 10886 entries, 0 to 10885
     Data columns (total 12 columns):
          Column
                          Non-Null Count Dtype
                          -----
          datetime
                          10886 non-null datetime64[ns]
      0
                          10886 non-null category
      1
          weather
                          10886 non-null float64
      2
          temp
      3
          atemp
                          10886 non-null float64
      4
          humidity
                          10886 non-null int64
      5
          windspeed
                          10886 non-null float64
      6
          casual
                          10886 non-null int64
      7
                          10886 non-null int64
          registered
      8
          count
                          10886 non-null int64
                          10886 non-null category
          season_cat
      10 holiday_cat
                          10886 non-null category
      11 workingday_cat 10886 non-null
                                          category
     dtypes: category(4), datetime64[ns](1), float64(3), int64(4)
     memory usage: 723.7 KB
[37]: #Count vs datetime(hour extracted from this)
     import matplotlib.pyplot as plt
     data['hour'] = data['datetime'].dt.hour
     plt.figure(figsize=(12, 6))
     plt.hist(data['hour'], bins=24, weights=data['count'], edgecolor='black', u
       \Rightarrowalpha=0.7)
     plt.title('Histogram of User Count by Hour of the Day')
     plt.xlabel('Hour of the Day')
     plt.ylabel('User Count')
     plt.xticks(range(0, 24))
     plt.tight_layout()
     plt.show()
```


[]: #From this we see that the usage is more at 8 AM and then at 16,17,18,19 hours, $_$ $_$ which is the start and end of the working hours

```
[38]: import matplotlib.pyplot as plt
      import pandas as pd
      data['month_year'] = data['datetime'].dt.to_period('M').dt.to_timestamp()
      month_year_counts = data.groupby('month_year')['count'].sum()
      month_range = pd.date_range(start=month_year_counts.index.min(),
                                  end=month_year_counts.index.max(),
                                  freq='MS')
      month_year_counts = month_year_counts.reindex(month_range, fill_value=0)
      plt.figure(figsize=(12, 6))
      month_year_counts.plot(kind='line', marker='o', color='b', linestyle='-',__
       ⇒linewidth=2, markersize=6)
      plt.title('Month-Year vs Count of Users')
      plt.xlabel('Month-Year')
      plt.ylabel('Total Count of Users')
      plt.xticks(rotation=45)
      plt.tight_layout()
      plt.grid(True)
      plt.show()
```


[]: #From the above plot we can see that there is no regular pattern in the countum of total users.

#It goes to a peak of 90,000+ in July 2011 and then falls to a low of 60,000 inum Jan 2012

#From here it again raises to a new peak of 120,000 in Sep 2012 and thenum appears to fall to 100,000 in Dec 2012. We do not have data after this #to check if the down trend continues.

[39]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10886 entries, 0 to 10885
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	datetime	10886 non-null	datetime64[ns]
1	weather	10886 non-null	category
2	temp	10886 non-null	float64
3	atemp	10886 non-null	float64
4	humidity	10886 non-null	int64
5	windspeed	10886 non-null	float64
6	casual	10886 non-null	int64
7	registered	10886 non-null	int64
8	count	10886 non-null	int64
9	season_cat	10886 non-null	category
10	holiday_cat	10886 non-null	category
11	workingday_cat	10886 non-null	category
12	hour	10886 non-null	int32
13	month_year	10886 non-null	datetime64[ns]

dtypes: category(4), datetime64[ns](2), float64(3), int32(1), int64(4)
memory usage: 851.2 KB

```
[40]: #season vs count
import matplotlib.pyplot as plt

plt.figure(figsize=(8, 6))
data.groupby('season_cat')['count'].sum().plot(kind='bar', color='skyblue')

plt.title('Season vs Count of Users')
plt.xlabel('Season')
plt.ylabel('Total Count of Users')

plt.tight_layout()
plt.show()
```

<ipython-input-40-7324de861110>:6: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

data.groupby('season_cat')['count'].sum().plot(kind='bar', color='skyblue')

[]: #From this plot we can see that count of users are more in fall followed by \Box \Box summer and winter. The user count is least in spring

```
[41]: #holiday vs count
import matplotlib.pyplot as plt

holiday_counts = data.groupby('holiday_cat')['count'].sum()

plt.figure(figsize=(8, 6))
holiday_counts.plot(kind='bar', color='lightcoral')

plt.title('Holiday vs Count of Users')
plt.xlabel('Holiday Status')
plt.ylabel('Total Count of Users')

plt.tight_layout()
plt.show()
```

<ipython-input-41-c80966273551>:4: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

holiday_counts = data.groupby('holiday_cat')['count'].sum()


```
[]: #From this it is clear that there are more users when it is not a holiday, and \Box \Box users are very few in a holiday
```

```
[42]: #workingday vs count
import matplotlib.pyplot as plt

holiday_counts = data.groupby('workingday_cat')['count'].sum()

plt.figure(figsize=(8, 6))
holiday_counts.plot(kind='bar', color='lightcoral')

plt.title('Workingday vs Count of Users')
plt.xlabel('workingday Status')
plt.ylabel('Total Count of Users')

plt.tight_layout()
plt.show()
```

<ipython-input-42-ad32c1c871e6>:4: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future

default and silence this warning.
holiday_counts = data.groupby('workingday_cat')['count'].sum()


```
[]: #From this it is clear that user count is more on a workingday when compared to a non-working day. However, the count of users on #a non-working day is approx 50% of the user count on a working day
```

```
[43]: #weather vs count
import matplotlib.pyplot as plt

holiday_counts = data.groupby('weather')['count'].sum()

plt.figure(figsize=(8, 6))
holiday_counts.plot(kind='bar', color='skyblue')

plt.title('Weather vs Count of Users')
plt.xlabel('Weather Status')
plt.ylabel('Total Count of Users')

plt.tight_layout()
plt.show()
```

<ipython-input-43-846b840c02ab>:4: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

holiday_counts = data.groupby('weather')['count'].sum()


```
[118]: # • weather:

# • 1: Clear, Few clouds, partly cloudy, partly cloudy

# • 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

# • 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light

□ Rain + Scattered clouds

# • 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

# As expected the count of users follow the order 1 → 2 → 3 → 4, where 1 is

□ the highest and 4 is the least with almost nigligible count
```

[128]: #Checking for co-relation between temp and count #For this I am checking if the data is normal

[44]: import scipy.stats as stats

```
stat_temp, p_value_temp = stats.shapiro(data['temp'])
     stat_count, p_value_count = stats.shapiro(data['count'])
     print(f"Shapiro-Wilk test for temp: p-value = {p_value_temp}")
     print(f"Shapiro-Wilk test for count: p-value = {p_value_count}")
     if p value temp < 0.05:
         print("Reject the null hypothesis for temp: temp is not normally_
     ⇔distributed.")
     else:
         print("Fail to reject the null hypothesis for temp: temp is normally ⊔

→distributed.")
     if p_value_count < 0.05:</pre>
         print("Reject the null hypothesis for count: count is not normally⊔

→distributed.")
     else:
         print("Fail to reject the null hypothesis for count: count is normally ⊔
      ⇔distributed.")
    Shapiro-Wilk test for temp: p-value = 4.4416921644612106e-36
    Shapiro-Wilk test for count: p-value = 5.369837893115507e-68
    Reject the null hypothesis for temp: temp is not normally distributed.
    Reject the null hypothesis for count: count is not normally distributed.
    /usr/local/lib/python3.10/dist-packages/scipy/stats/_axis_nan_policy.py:531:
    UserWarning: scipy.stats.shapiro: For N > 5000, computed p-value may not be
    accurate. Current N is 10886.
      res = hypotest fun out(*samples, **kwds)
[]: #both count and temp are not normal according to shapiro test. However as the
      \hookrightarrow data is more than 5K, I am checking using a qq-plot
```

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
stats.probplot(data['temp'], dist="norm", plot=plt)
plt.title('Q-Q Plot for temp')

plt.subplot(1, 2, 2)
stats.probplot(data['count'], dist="norm", plot=plt)
```

```
plt.title('Q-Q Plot for count')
plt.tight_layout()
plt.show()
```


[]: #Again both these are not normal, so using Spearman's rank correlation.

```
[46]: import scipy.stats as stats

spearman_corr, p_value = stats.spearmanr(data['temp'], data['count'])

print(f"Spearman Correlation Coefficient: {spearman_corr}")
print(f"P-value: {p_value}")

if p_value < 0.05:
    print("The correlation is statistically significant.")
else:
    print("The correlation is not statistically significant.")</pre>
```

 ${\tt Spearman~Correlation~Coefficient:~0.40798939475098117}$

P-value: 0.0

The correlation is statistically significant.

[]: #We can see that temperature and count are positively correlated

```
[]: #As count is not normal, using Spearmann test itself for the remaining ...
       ⇔continuous variables
[47]: import scipy.stats as stats
      spearman_corr, p_value = stats.spearmanr(data['atemp'], data['count'])
      print(f"Spearman Correlation Coefficient: {spearman_corr}")
      print(f"P-value: {p_value}")
      if p_value < 0.05:</pre>
          print("The correlation is statistically significant.")
      else:
          print("The correlation is not statistically significant.")
     Spearman Correlation Coefficient: 0.4065617539204584
     P-value: 0.0
     The correlation is statistically significant.
 []: \#From\ this\ we\ can\ see\ that\ the\ feeling\ temperature\ in\ Celsius\ is\ positively
       ⇔correlated to count of users
[48]: import scipy.stats as stats
      spearman_corr, p_value = stats.spearmanr(data['humidity'], data['count'])
      print(f"Spearman Correlation Coefficient: {spearman_corr}")
      print(f"P-value: {p_value}")
      if p_value < 0.05:</pre>
          print("The correlation is statistically significant.")
      else:
          print("The correlation is not statistically significant.")
     Spearman Correlation Coefficient: -0.35404912201756106
     P-value: 0.0
     The correlation is statistically significant.
 []: #From this we can see that the humidity is negatively correlated to count of \Box
       \hookrightarrow users
```

```
[49]: import scipy.stats as stats
      spearman_corr, p_value = stats.spearmanr(data['windspeed'], data['count'])
      print(f"Spearman Correlation Coefficient: {spearman_corr}")
      print(f"P-value: {p_value}")
      if p value < 0.05:
          print("The correlation is statistically significant.")
      else:
          print("The correlation is not statistically significant.")
     Spearman Correlation Coefficient: 0.1357773747113304
     P-value: 5.9015220272171205e-46
     The correlation is statistically significant.
 []: #From this we can see that the windspeed is positively correlated to count of \Box
       \hookrightarrow users
 []: #Hypothesis Testing:
      #To check if Working Day has an effect on the number of electric cycles rented
[58]: data.head()
[58]:
                   datetime weather temp
                                            atemp
                                                   humidity windspeed
                                                                        casual
      0 2011-01-01 00:00:00
                                  1 9.84 14.395
                                                          81
                                                                    0.0
                                                                              3
      1 2011-01-01 01:00:00
                                  1 9.02 13.635
                                                          80
                                                                    0.0
                                                                              8
      2 2011-01-01 02:00:00
                                  1 9.02 13.635
                                                          80
                                                                    0.0
                                                                              5
      3 2011-01-01 03:00:00
                                  1 9.84 14.395
                                                         75
                                                                    0.0
                                                                              3
      4 2011-01-01 04:00:00
                                  1 9.84 14.395
                                                         75
                                                                    0.0
                                                                              0
         registered count season_cat
                                         holiday_cat
                                                        workingday_cat hour
      0
                               spring not_a_holiday not_a_workingday
                 13
                        16
      1
                 32
                        40
                               spring not_a_holiday not_a_workingday
                                                                            1
      2
                 27
                        32
                               spring not_a_holiday not_a_workingday
                                                                            2
      3
                 10
                        13
                               spring not_a_holiday not_a_workingday
                                                                            3
                               spring not_a_holiday not_a_workingday
                  1
                         1
        month_year
      0 2011-01-01
      1 2011-01-01
      2 2011-01-01
      3 2011-01-01
      4 2011-01-01
```

```
[59]: #Plotting a qq plot to check if the data is normal

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
stats.probplot(working_day_data, dist="norm", plot=plt)
plt.title('Q-Q Plot for working_day_data')

plt.subplot(1, 2, 2)
stats.probplot(non_working_day_data, dist="norm", plot=plt)
plt.title('Q-Q Plot for non_working_day_data')

plt.tight_layout()
plt.show()
```


[]: #From these plots we can see that these datasets are not normal. So, I will plot a 2 sample t-test and a K-W test as well to check if these ware significantly differnt or same.

```
[60]: from scipy.stats import ttest_ind
      t_stat, p_value = ttest_ind(working_day_data, non_working_day_data,_
       ⇔equal_var=False)
      print(f"T-Statistic: {t_stat}")
      print(f"P-Value: {p_value}")
      if p_value < 0.05:</pre>
          print("The difference in means is statistically significant.")
      else:
          print("The difference in means is not statistically significant.")
     T-Statistic: 1.2362580418223226
     P-Value: 0.21640312280695098
     The difference in means is not statistically significant.
 []: #t-test says these 2 sets do not have a significant different means, or these
       → are not statistically different.
 []: #However, let me do a K-W test to check if we come to the same conclusion
[61]: from scipy.stats import kruskal
      k_stat, p_value = kruskal(working_day_data, non_working_day_data)
      print(f"Kruskal-Wallis Statistic: {k_stat}")
      print(f"P-Value: {p_value}")
      if p_value < 0.05:</pre>
          print("The difference between the distributions is statistically⊔
       ⇔significant.")
      else:
          print("The difference between the distributions is not statistically⊔
       ⇔significant.")
     Kruskal-Wallis Statistic: 0.0016182887191034687
     P-Value: 0.9679113872727798
     The difference between the distributions is not statistically significant.
```

- []: #Even a K-W test between these two comes to the same conclusion. So, these 2_{\sqcup} ⇔sets are not different statistically. #Therefore we can conclude that Working Day has NO effect on the number of \Box ⇔electric cycles rented.
- []: # ANNOVA to check if No. of cycles rented is similar or different in different # 1. weather

```
# 2. season
[63]: #Extracting the count data for each weather
      import pandas as pd
      weather_groups = data.groupby('weather')['count'].apply(list)
      weather_1 = weather_groups[1]
      weather_2 = weather_groups[2]
      weather_3 = weather_groups[3]
      weather_4 = weather_groups[4]
     <ipython-input-63-80ce8d67a68d>:3: FutureWarning: The default of observed=False
     is deprecated and will be changed to True in a future version of pandas. Pass
     observed=False to retain current behavior or observed=True to adopt the future
     default and silence this warning.
       weather_groups = data.groupby('weather')['count'].apply(list)
[69]: from scipy.stats import f_oneway
      anova_result = f_oneway(weather_1, weather_2, weather_3, weather_4)
      print("ANOVA Test Result:")
      print(f"F-statistic: {anova result.statistic}")
      print(f"P-value: {anova_result.pvalue}")
     ANOVA Test Result:
     F-statistic: 65.53024112793271
     P-value: 5.482069475935669e-42
 []: #As the p-value is very less this implies that at least one weather category's,
       →mean count differs significantly from the others.
 []: #Let me check if these data are normal
[70]: #Plotting a gg plot to check if the data is normal
      import numpy as np
      import matplotlib.pyplot as plt
      import scipy.stats as stats
      plt.figure(figsize=(12, 6))
      plt.subplot(1, 2, 1)
      stats.probplot(weather_1, dist="norm", plot=plt)
```

plt.title('Q-Q Plot for weather_1')

plt.tight_layout()

plt.show()


```
[]: #This shows that weather1 is not normal. Since one of them is not normal, I amunot checking for the others.
```

[]: #Let me again run a K-W test and see if we can come to the same conclusion

```
[71]: from scipy.stats import kruskal

k_stat, p_value = kruskal(weather_1, weather_2, weather_3, weather_4)

print(f"Kruskal-Wallis Statistic: {k_stat}")
print(f"P-Value: {p_value}")

if p_value < 0.05:</pre>
```

Kruskal-Wallis Statistic: 205.00216514479087

P-Value: 3.501611300708679e-44

The difference between the distributions is statistically significant.

[]: #Even with K-W test we come to the same conclusion, i.e. that at least one \square weather category's mean count differs significantly from the others.

```
[]: #2. Season
```

```
[73]: season_groups = data.groupby('season_cat')['count'].apply(list)

spring_counts = season_groups['spring']
fall_counts = season_groups['fall']
winter_counts = season_groups['winter']
summer_counts = season_groups['summer']
```

<ipython-input-73-8ff7ab73009a>:1: FutureWarning: The default of observed=False
is deprecated and will be changed to True in a future version of pandas. Pass
observed=False to retain current behavior or observed=True to adopt the future
default and silence this warning.

season_groups = data.groupby('season_cat')['count'].apply(list)

ANOVA Test Result:

F-statistic: 236.94671081032106 P-value: 6.164843386499654e-149

[]: #Again the very low p-value suggests that at least one season's mean count differs significantly from the others.

```
[76]: #Plotting a qq plot to check if the data is normal
```

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
stats.probplot(spring_counts, dist="norm", plot=plt)
plt.title('Q-Q Plot for spring_counts')

plt.tight_layout()
plt.show()
```



```
[ ]: \#Let\ me\ again\ run\ a\ K-W\ test\ and\ see\ if\ we\ can\ come\ to\ the\ same\ conclusion
[78]: from scipy.stats import kruskal
      kw_result = kruskal(spring_counts, fall_counts, winter_counts, summer_counts)
      print("Kruskal-Wallis Test Result:")
      print(f"H-statistic: {kw_result.statistic}")
      print(f"P-value: {kw_result.pvalue}")
     Kruskal-Wallis Test Result:
     H-statistic: 699.6668548181988
     P-value: 2.479008372608633e-151
 []: #Even a K-W test gives a low p-value indicating that at least one season's mean
       →count differs significantly from the others.
 []: # Chi-square test to check if Weather is dependent on the season
[80]: import pandas as pd
      from scipy.stats import chi2_contingency
      contingency_table = pd.crosstab(data['weather'], data['season_cat'])
      chi2_stat, p_value, dof, expected = chi2_contingency(contingency_table)
      print(f"Chi-Square Statistic: {chi2_stat}")
      print(f"P-value: {p value}")
      print(f"Degrees of Freedom: {dof}")
      print(f"Expected Frequencies Table:\n{expected}")
      if p_value < 0.05:</pre>
          print("The result is significant. Weather and Season are dependent.")
      else:
          print("The result is not significant. Weather and Season are independent.")
     Chi-Square Statistic: 49.15865559689363
     P-value: 1.5499250736864862e-07
     Degrees of Freedom: 9
     Expected Frequencies Table:
     [[1.80559765e+03 1.77454639e+03 1.80559765e+03 1.80625831e+03]
      [7.11493845e+02 6.99258130e+02 7.11493845e+02 7.11754180e+02]
      [2.15657450e+02 2.11948742e+02 2.15657450e+02 2.15736359e+02]
      [2.51056403e-01 2.46738931e-01 2.51056403e-01 2.51148264e-01]]
     The result is significant. Weather and Season are dependent.
```

[]: #The low p-value of Chi-square test confirms that weather is dependent on the \square \hookrightarrow season