Содержание

Задачи		2
Задача 6А.	Максимальный поток минимальной стоимости [0.05 sec, 256 mb]	2
Задача 6В.	В поисках невест [0.1 sec, 256 mb]	3
Задача 6С.	Задача о назначениях [1.5 sec, 256 mb]	4
Задача 6D.	Максимальный поток [0.1 sec, 256 mb]	5
Гробы		6
Задача 6Е.	Максимальное паросочетание [3 sec, 256 mb]	6
Задача 6F.	Кредитные операции 2 [0.1 sec, 256 mb]	7

В некоторых задачах большой ввод и вывод. Пользуйтесь быстрым вводом-выводом.

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу.

Задачи

Задача 6A. Максимальный поток минимальной стоимости [0.05 sec, 256 mb]

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Формат входных данных

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100$, $0 \le m \le 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Формат выходных данных

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает $2^{63} - 1$. Гарантируется, что в графе нет циклов отрицательной стоимости.

Примеры

stdin	stdout
4 5	12
1 2 1 2	
1 3 2 2	
3 2 1 1	
2 4 2 1	
3 4 2 3	

Подсказка по решению

В этой задаче достаточно несколько раз пустить Форд-Беллмана...

Задача 6В. В поисках невест [0.1 sec, 256 mb]

Однажды король Флатландии решил отправить k своих сыновей на поиски невест. Всем известно, что во Флатландии n городов, некоторые из которых соединены дорогами. Король живет в столице, которая имеет номер 1, а город с номером n знаменит своими невестами.

Итак, король повелел, чтобы каждый из его сыновей добрался по дорогам из города 1 в город n. Поскольку, несмотря на обилие невест в городе n, красивых среди них не так много, сыновья опасаются друг друга. Поэтому они хотят добраться до цели таким образом, чтобы никакие два сына не проходили по одной и той же дороге (даже в разное время). Так как король любит своих сыновей, он хочет, чтобы среднее время сына в пути до города назначения было минимально.

Формат входных данных

В первой строке входного файла находятся числа n, m и k — количество городов и дорог во Флатландии и сыновей короля, соответственно ($2 \le n \le 200, 1 \le m \le 2000, 1 \le k \le 100$). Следующие m строк содержат по три целых положительных числа каждая — города, которые соединяет соответствующая дорога и время, которое требуется для ее прохождения (время не превышает 10^6). По дороге можно перемещаться в любом из двух направлений, два города могут быть соединены несколькими дорогами.

Формат выходных данных

Если выполнить повеление короля невозможно, выведите на первой строке число -1. В противном случае выведите на первой строке минимальное возможное среднее время (с точностью 5 знаков после десятичной точки), которое требуется сыновьям, чтобы добраться до города назначения, не менее чем с пятью знаками после десятичной точки. В следующих k строках выведите пути сыновей, сначала число дорог в пути, и затем номера дорог в пути в том порядке, в котором их следует проходить. Дороги нумеруются, начиная с единицы, в том порядке, в котором они заданы во входном файле.

stdin	stdout
5 8 2	3.00000
1 2 1	3 1 5 6
1 3 1	3 2 7 8
1 4 3	
2 5 5	
2 3 1	
3 5 1	
3 4 1	
5 4 1	

Задача 6С. Задача о назначениях [1.5 sec, 256 mb]

Дана целочисленная матрица C размера $n \times n$. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка и сумма значений в выбранных ячейках было минимальна.

Формат входных данных

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Формат выходных данных

В первую строку выходного файла выведите одно число — искомая минимизуруемая величина. Далее выведите n строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

stdin	stdout
3	3
3 2 1	2 1
1 3 2	3 2
2 1 3	1 3

Задача 6D. Максимальный поток [0.1 sec, 256 mb]

Вам задан ориентированный граф G. Каждое ребро имеет некоторую пропускную способность. Найдите максимальный поток между вершинами 1 и n.

Формат входных данных

Первая строка входного файла содержит n и m — число вершин и ребер в графе ($2 \leqslant n \leqslant 500, 1 \leqslant m \leqslant 10\,000$). Последующие строки описывают ребра. Каждое ребро задается тремя числами: начальная вершина ребра, конечная вершина ребра и пропускная способность ребра. Пропускные способности не превосходят 10^9 .

Формат выходных данных

Выведите величину максимального потока между вершинами 1 и n. Далее для каждого ребра выведите величину потока, текущую по этому ребру.

stdin	stdout
4 5	3.0
1 2 1	1.0
1 3 2	2.0
3 2 1	1.0
2 4 2	2.0
3 4 1	1.0

Гробы

Задача 6E. Максимальное паросочетание [3 sec, 256 mb]

Дан двудольный граф. У каждой вершины графа есть вес. Вес ребра—сумма весов его концов. Вес паросочетания—сумма весов рёбер, входящих в паросочетание. Нужно найти паросочетание максимального веса. Заметим, это паросочетание может содержать сколько угодно рёбер, единственное условие—вес паросочетания должен быть максимальным.

Напомним, что паросочетанием в двудольном графе называется набор рёбер этого графа такой, что никакие два ребра набора не имеют общих вершин.

Формат входных данных

В первой строке заданы размеры долей n и m ($1 \le n, m \le 5000$) и количество рёбер e ($0 \le e \le 10000$). Вторая строка содержит n целых чисел от 0 до 10000 — веса вершин первой доли. Третья строка содержит m целых чисел от 0 до 10000 — веса вершин второй доли. Следующие e строк содержат рёбра графа. Каждое ребро описывается парой целых чисел a_i b_i , где $1 \le a_i \le n$ — номер вершины первой доли и $1 \le b_i \le m$ — номер вершины второй доли.

Формат выходных данных

В первой строке выведите w — максимальный вес паросочетания. Во второй строке выведите k — количество рёбер в паросочетании максимального веса. В следующей строке выведите k различных чисел от 1 до e — номера рёбер в паросочетании. Если максимальных по весу паросочетаний несколько, разрешается вывести одно любое.

stdin	stdout
4 3 3	3
2 0 9 9	1
1 0 9	3
1 2	
2 1	
1 1	
3 2 4	8
1 2 3	2
1 2	4 2
1 1	
2 1	
2 2	
3 2	

Задача 6F. Кредитные операции 2 [0.1 sec, 256 mb]

Дана квадратная матрица a_{ij} из неотрицательных целых чисел. Найти такие целые неотрицательные $x_i, y_j \colon \forall i, j \ x_i + y_j \geqslant a_{ij}$ и при этом $\sum x_i + \sum y_j$ минимальна. В записи $a_{ij} \colon i$ номер строки ячейки, j номер столбца ячейки.

Формат входных данных

На первой строке число $n \ (1 \le n \le 100)$.

Следующие n строк содержат матрицу $n \times n$ из целых чисел от 0 до 10^6 .

Формат выходных данных

На первой строке вектор x. На второй строке вектор y.

stdin	stdout
4	2 0 1 2
5 8 4 3	3 6 3 2
3 6 2 1	
4 6 4 1	
4 3 5 4	