Statistical Machine Learning Finding Minima Algorithms

Horacio Gómez-Acevedo Department of Biomedical Informatics University of Arkansas for Medical Sciences

March 28, 2022

UAMS

Case n=1

Let's suppose we have a real valued function which is smooth $f: \mathbb{R} \to \mathbb{R}$. Then, we can approximate the function in a vicinity of x = c by the so-called Taylor expansion

$$f(x) = f(c) + \frac{df}{dx}(c)(x-c) + \frac{1}{2!} \frac{d^2f}{dx^2}(c)(x-c)^2 + \frac{1}{3!} \frac{d^3f}{dx^3}(c)(x-c)^3 + \cdots$$

Notice that when x is very close to c, then $(x-c)^p$ for $p\geq 3$ starts getting exceedingly small. Then, we write

$$f(x) \approx f(c) + \frac{df}{dx}(c)(x-c) + \frac{1}{2!}\frac{d^2f}{dx^2}(c)(x-c)^2$$

If at the point x = c the function reaches a (local) minimum, then f'(c) = 0.

Case n > 2

Let's suppose we have a real valued function which is smooth $f: \mathbb{R}^n \to \mathbb{R}$. Then, we can approximate the function in a vicinity of x=c by the so-called Taylor expansion

$$f(\mathbf{x}) = f(\mathbf{c}) + \sum_{i} \frac{\partial f}{\partial x_{i}}(c)(x_{i} - c_{i}) + \frac{1}{2!} \sum_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(c)(x_{i} - c_{i})(x_{j} - c_{j}) +$$
+ higher order terms
$$\approx f(\mathbf{c}) + (\mathbf{x} - \mathbf{c})^{T} \nabla f(\mathbf{c}) + \frac{1}{2} (\mathbf{x} - \mathbf{c})^{T} H_{f}(\mathbf{c})(\mathbf{x} - \mathbf{c})$$

Where $H_f(\mathbf{c})$ is the **Hessian matrix** defined as

$$H_f(\mathbf{c}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(\mathbf{c}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{c}) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{c}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{c}) & \frac{\partial^2 f}{\partial x_2 \partial x_2}(\mathbf{c}) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{c}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{c}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{c}) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n}(\mathbf{c}) \end{pmatrix}$$

Minimum Condition

For the case n=1, the point x=c if f'(c)=0 and f''(c)<0, then the function f has a **local minimum** at c. For the case when $n\geq 2$, if $\nabla f(\mathbf{c})=0$ and that H_f satisfies for points close to \mathbf{c}

$$v^T H_f v > 0 \ \forall v \in \mathbb{R}^n - \{0\}$$

Then, \mathbf{c} is a **local minimum** of f.

Directional Derivatives

The measure of the instantaneously rate of change of a function at a point in a given direction. Let $f: \mathbb{R}^2 \to \mathbb{R}$ a differentiable function and v a unitary vector in \mathbb{R}^n (i.e., ||v|| = 1).

$$\frac{\partial f}{\partial v}(x^0) = \lim_{t \to 0^+} \frac{f(x^0 + tv) - f(x^0)}{t}$$
$$= v^T \nabla f(x^0) = \langle \nabla f(x^0), v \rangle$$

We can write our approximation as

$$f(x^0 + \eta v) - f(x^0) = \eta \langle \nabla f(x^0), v \rangle + \text{ higher order terms}$$

Gradient Descent Algorithm

It can be proven that the largest change in the function \boldsymbol{f} is approximately equal to

$$f(x^0 + \eta v) - f(x^0) = -\eta \|\nabla f(x^0)\|$$

where η is the **learning rate**

The algorithm build iteratively a sequence (x^n) of vectors that will approach to the (hopefully) global minimum x^* as follows :

- \triangleright Choose an initial point x^0 in the basin of attraction of x^*
- Construct

$$x^{n+1} = x^n - \eta \frac{\nabla f(x^n)}{\|\nabla f(x^n)\|}$$

Changing the learning rate

Figure ***

AdaGrad

In 2011, Duchi et al. described a modified version of the gradient descent called **Adaptive Gradient**.

If C(x) denotes the cost function $(x \in \mathbb{R}^N)$, then the gradient vector $g_t = \nabla C(x(t))$. Let G_t denote the $N \times N$ matrix

$$G_t = \sum_{j=1}^t g_i g_i^T$$

and consider the update

$$x(t+1) = x(t) - \eta G_t^{-1/2} g_t$$

Since $G_t^{-1/2}$ is computationally impractical in high dimension, the update can be done using only the diagonal elements of the matrix

$$x(t+1) = x(t) - \eta \operatorname{diag}(G_t)^{-1/2} g_t$$

AdaGrad (cont)

The diagonal elements of G_t can be calculated by

$$(G_t)_{jj} = \sum_{k=1}^t (g_{kj})^2$$

where

$$g_j g_j^T = \begin{pmatrix} g_{j1} \\ \vdots \\ g_{jN} \end{pmatrix} (g_{j1}, \dots, g_{jN}) = \begin{pmatrix} (g_{j1})^2 & \cdots & \cdots \\ \vdots & \ddots & \vdots \\ \cdots & \cdots & (g_{jN}+)^2 \end{pmatrix}$$

RMSProp

The **Root Mean Square Propagation** or RMSProp is a variant of the gradient descent method with adaptive learning rate, which is obtained when the gradient is divided by a running average of its magnitude.

Let C(x) denote the cost function, and $g_t \nabla C(x(t))$ is the gradient evaluated at time step t. Then, the running average is defined recursively by

$$v(t) = \gamma v(t-1) + (1-\gamma)g_{t-1}^2,$$

where $\gamma \in (0,1)$ is called the **forgetting factor**, and the vector g_{t-1}^2 denotes the element-wise square of the gradient g_{t-1} . It can be shown that v(t) can be expressed as

$$v(t) = \gamma^t v(0) + (1 - \gamma) \sum_{j=1}^t \gamma^{t-j} g_j^2$$

RMSProp

The minimum of the cost function $x^* = \arg\min_x C(x)$ is obtained by the approximation sequence $(x(t))_{t\geq 1}$ defined as

$$x(t+1) = x(t) - \eta \frac{g_t}{\sqrt{|v(t)|}}$$

where η is the learning rate.

One interpretation of v is that it represents an estimation of the (uncentered) variance of the gradient.

Adam

The **Adaptive Moment Estimation** or Adam is another adaptive learning method.

Fact

Recall that for a random variable X the first and second moments are defined as $\mathbb{E}(X)$ and $\mathbb{E}(X^2)$ respectively.

The objective is to minimize the expectation of the cost function. Namely, we look for the minimum value x^* that satisfies

$$x^* = \operatorname{arg\ min}_x \mathbb{E}(C(x))$$

In this case, we consider two exponential decay rates for the moment estimates $\beta_1,\beta_2\in[0,1)$, and the moments updates

$$m(t) = \beta_1 m(t-1) + (1-\beta_1)g_t$$

$$v(t) = \beta_2 v(t-1) + (1-\beta_2)(g_t)^2$$

where
$$m(0) = v(0) = 0$$
.

Adam (cont)

We can write

$$m(t) = (1 - \beta_1) \sum_{j=1}^{t} \beta_1^{t-j} g_j$$
 $v(t) = (1 - \beta_2) \sum_{j=1}^{t} \beta_2^{t-j} (g_j)^2$

Then, if we assume that the first and second moments are stationary we get

$$\mathbb{E}(m(t)) = (1 - \beta_1^t)\mathbb{E}(g_t)$$
$$\mathbb{E}(v(t)) = (1 - \beta_2^t)\mathbb{E}(g_t)^2$$

Therefore, the bias-corrected moments are

$$\widehat{m}(t) = rac{m(t)}{1 - eta_1^t}$$
 $\widehat{v}(t) = rac{v(t)}{1 - eta_2^t}$

Adam (cont)

Finally, the recursive formula becomes

$$x(t+1) = x(t) - \eta \frac{\widehat{m}(t)}{\sqrt{|\widehat{v}(t)|} + \varepsilon}$$

the $\varepsilon > 0$ is a small scalar used to prevent division by zero.

References

Materials and some of the pictures are from (Calin, 2019).

Calin, O. (2019). Deep Learning Architectures. Springer Series in the Data Sciences. Springer. ISBN: 978-3-030-36723-7.

I have used some of the graphs by hacking TiKz code from StakExchange, Inkscape for more aesthetic plots and other old tricks of TFX