Liam Hardiman December 7, 2018

260A - Homework 4

Problem 1. Let E and F be two Banach spaces, and let $T \in \mathcal{L}(E, F)$. Prove that $\mathrm{Im}(T)$ is closed if and only if there exists a constant C > 0 such that

$$\operatorname{dist}(x, \ker T) \le C \cdot ||Tx||, \quad \forall x \in E.$$

Proof. First suppose that the given inequality holds for some C > 0. Let Tx_n be a convergent sequence in the image of T. Then the sequence of $x_n + \ker T$'s converges in the quotient $E/\ker T$ by the given inequality. Since T is continuous, $\ker T$ is closed and the quotient $E/\ker T$ is complete. Thus, $x_n + \ker T$ converges to some $x + \ker T$. By continuity, Tx_n then converges to Tx, which is in the image of T. Thus, the image of T is closed.

Conversely, suppose that Im(T) is closed.

Problem 5. Let X, Y, and Z be three Banach spaces with norms $\|\cdot\|_X$, $\|\cdot\|_Y$, and $\|\cdot\|_Z$. Assume that $X \subseteq Y$ with compact injection and that $Y \subseteq Z$ with continuous injection. Prove that for any $\epsilon > 0$ there exists $C_{\epsilon} \geq 0$ such that

$$||u||_Y \le \epsilon ||u||_X + C_\epsilon ||u||_Z$$

for all $u \in X$.

Proof. Suppose the proposition were false: that for some ϵ and for every $C \geq 0$ there exists a u_C such that

$$||u_C||_Y > \epsilon ||u_C||_X + C||u_C||_Z$$

for all $x \in X$. Set C = n and let u_n be a sequence in X such that the above equality holds, i.e.

$$||u_n||_Y > \epsilon ||u_n||_X + n||u_n||_Z. \tag{1}$$

We can assume without loss of generality that the sequence u_n has norm 1 in X, since replacing u_n with $\frac{u_n}{\|u_n\|_X}$ gives the same inequality after multiplying through by $\|u_n\|_X$. By the compactness of the injection of X into Y, we have that u_n has a convergent subsequence in Y. Without loss of generality, assume then that u_n converges in Y. Rearranging (1) gives

$$n||u_n||_Z < ||u_n||_Y - \epsilon ||u_n||_X \le ||u_n||_Y$$

$$\iff \|u_n\|_Z < \frac{1}{n} \|u_n\|_Y.$$

Since u_n converges in Y, the right-hand side of the above inequality must go to zero. Since Y continuously embeds into Z and u_n converges in Y, we must have that u_n converges to zero in both Y and Z. But then the left-hand side of (1) will tend to 0 and the right-hand side will tend to ϵ : a contradiction.

We conclude that the proposition is true.

In class we showed (using the Arzela-Ascoli theorem) that $C^1([0,1])$ compactly embeds into C([0,1]). We also have that C([0,1]) continuously embeds into $L^1([0,1])$ by $\int_0^1 |f| \, dx \leq \|f\|_{\infty}$. By the proposition we then have that for all $\epsilon > 0$ there is some C_{ϵ} with

$$\max_{x \in [0,1]} |f(x)| \le \epsilon \cdot \max_{x \in [0,1]} |f'(x)| + C_{\epsilon} ||f||_{L^{1}}$$

for all
$$f \in C^1([0,1])$$
.