MaxEnt (II): Modeling and Decoding

LING 572 Advanced Statistical Methods for NLP January 31, 2019

Outline

- Overview
- The Maximum Entropy Principle
- Modeling**
- Decoding
- Training**

Case study

Modeling

The Setting

- From the training data, collect (x, y) pairs:
 - x in X: observed data
 - y in Y: thing to be predicted (e.g., a class in a classification problem)
 - Ex: In a text classification task
 - x: a document
 - y: the category of the document

Goal: estimate P(y | x)

Basic Idea

Goal: estimate p(y | x)

 Choose p(x, y) with maximum entropy (or "uncertainty") subject to the constraints (or "evidence").

$$H(p) = -\sum_{(x,y)\in X\times Y} p(x,y)\log p(x,y)$$

Outline for Modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

• Forms of P(x, y) and $P(y \mid x)$

Feature function

Definition

A feature function is a binary-valued function of house the second secon

The j in f_j corresponds to a (feature, class) pair (t, c)

$$f_j(x,y) = 1$$
 iff t is present in x and $y = c$.

Ex:

$$f_j(x,y) = \begin{cases} 1 & \text{if } y = \text{Politics & x contains "the"} \\ 0 & \text{o.w.} \end{cases}$$

Weights in NB

	f ₁	f ₂	•••	f_k
C_1				
C ₂				
C _i				

Weights in NB

	f_1	f ₂	•••	f _j
C_1	$P(f_1 \mid c_1)$	$P(f_2 C_1)$	•••	$P(f_j \mid c_1)$
C ₂	$P(f_1 C_2)$			•••
C _i	$P(f_1 C_i)$			$P(f_j \mid c_i)$
				P(f _j c _i)

Each cell is a weight for a particular (class, feat) pair.

Matrix in MaxEnt

	t_1	t ₂	 t _k
C ₁	f_1	f_2	 f _k
C ₂	\mathbf{f}_{k+1}	f_{k+2}	 f _{2k}
C _i	f _{k*(i-1)+1}		f_{k^*i}

Each feature function f_i corresponds to a (feat, class) pair.

Weights in MaxEnt

	t_1	t ₂		t _k
C ₁	λ_1	λ_2		λ_k
		4	4	
C ₂				
C _i				λ_{ki}

Each feature function f_j has a weight λ_j .

Feature function summary

 A feature function in MaxEnt corresponds to a (feat, class) pair.

 The number of feature functions in MaxEnt is approximately |C| * |V|.

 A MaxEnt trainer learns the weights for the feature functions.

The outline for modeling

• Feature function: $f_i(x, y)$

Calculating the expectation of a feature function

• The forms of P(x,y) and $P(y \mid x)$

Expected Return

- **E**x1:
 - Flip a coin
 - if it's heads, you win 100 dollars
 - if it's tails, you lose 50 dollars
 - What is the expected return? P(X=H) * 100 + P(X=T) * (-50)

- **E**x2:
 - If it is x_i, you will receive v_i dollars?
 - What is the expected return?

$$\sum_{i} P(X = x_i) v_i$$

expectation of a function

Let P(X = x) be a distribution of a random variable X. Let f(x) be a function of x.

Let $E_p(f)$ be the expectation of f(x) based on P(x).

$$E_P(f) = \sum_i P(X = x_i) f(x_i)$$

$$\sum_i P(X = x_i) v_i$$

Empirical expectation

- Denoted as : $\widetilde{p}(x)$
- Ex1: Toss a coin four times and get H, T, H, and H.
- The average return: (100-50+100+100)/4 = 62.5
- Empirical distribution: $\widetilde{p}(X=H)=3/4$ $\widetilde{p}(X=T)=1/4$
- Empirical expectation:

$$\frac{3}{4} * 100 + \frac{1}{4} * (-50) = 62.5$$

Model Expectation

Ex1: Toss a coin four times and get H, T, H, and H.

- A model:
 - Assume a $P_{\text{al}}(x)$ oin
 - P(X=H) = P(X=T) = 1/2

Model expectation:

$$1/2 * 100 + 1/2 * (-50) = 25$$

Some Notation

Training data:

Empirical distribution: $\widetilde{p}(x, y)$

A model: p(x, y)

The jth feature function: $f_j(x, y)$

Empirical expectation of f_j $E_{\widetilde{p}} f_j = \sum_{(x,y) \in X \times Y} \widetilde{p}(x,y) f_j(x,y)$

Model expectation of f_j $E_p f_j = \sum_{(x,y) \in X \times Y} p(x,y) f_j(x,y)$

Empirical expectation**

$$E_{\widetilde{p}} f_j = \sum_{x \in X, y \in Y} \widetilde{p}(x, y) f_j(x, y)$$

$$= \sum_{x \in X, y \in Y} \widetilde{p}(x) \widetilde{p}(y \mid x) f_j(x, y) = \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y)$$

$$= \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} \widetilde{p}(y \mid x) f_j(x, y) = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} \widetilde{p}(y \mid x_i) f_j(x_i, y)$$

$$= \frac{1}{N} \sum_{i=1}^{N} f_i(x_i, y_i)$$

An example

Training data:

$$E_{\widetilde{p}} f_j = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

Raw counts $\sum_{i=1}^{N} f_j(x_i, y_i)$

	t1	t2	t3	t4
c1	1	1	2	1
c2	1	0	0	1
с3	1	0	1	0

An example

Training data:

$$E_{\widetilde{p}} f_j = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

Empirical expectation

	t1	t2	t3	t4
c1	1/4	1/4	2/4	1/4
c2	1/4	0/4	0/4	1/4
c 3	1/4	0/4	1/4	0/4

Calculating empirical expectation

Let N be the number of training instances

for each instance x in the training data
let y be the true class label of x
for each feature t in x
empirical_expect [t] [y] += 1/N

Model expectation**

$$E_p f_j = \sum_{x \in X, y \in Y} p(x, y) f_j(x, y)$$

$$= \sum_{x \in X, y \in Y} p(x) p(y \mid x) f_j(x, y)$$

$$\approx \sum_{x \in X, y \in Y} \widetilde{p}(x) p(y \mid x) f_j(x, y)$$

$$= \sum_{x \in X} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y)$$

$$= \sum_{x \in S} \widetilde{p}(x) \sum_{y \in Y} p(y \mid x) f_j(x, y)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_i) f_j(x_i, y)$$

An example

• Suppose $P(y \mid x_i) = 1/3$

"Raw" counts

Training data:

	t1	t2	t3	t4
c1	3/3	1/3	2/3	2/3
c2	3/3	1/3	2/3	2/3
c3	3/3	1/3	2/3	2/3

$$E_p f_j = \frac{1}{N} \sum_{i=1}^N \sum_{y \in Y} p(y \mid x_i) f_j(x_i, y)$$

An example

- Suppose $P(y \mid x_i) = 1/3$
- Training data:

Model expectation

	t1	t2	t3	t4
c1	3/12	1/12	2/12	2/12
c2	3/12	1/12	2/12	2/12
с3	3/12	1/12	2/12	2/12

$$E_{p} f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Calculating model expectation

$$E_{p} f_{j} = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_{i}) f_{j}(x_{i}, y)$$

Let N be the number of training instances

```
for each instance x in the training data

calculate P(y | x) for every y in Y

for each feature t in x

for each y in Y

model expect [t] [y] += 1/N * P(y | x)
```

Empirical expectation vs. model expectation

$$E_{\widetilde{p}} f_j = \frac{1}{N} \sum_{i=1}^{N} f_j(x_i, y_i)$$

$$E_p f_j = \frac{1}{N} \sum_{i=1}^{N} \sum_{y \in Y} p(y \mid x_i) f_j(x_i, y)$$

Outline for modeling

• Feature function: $f_j(x, y)$

Calculating the expectation of a feature function

• The forms of P(x, y) and $P(y \mid x)^{**}$

Constraints

Model expectation = Empirical expectation

$$E_p f_j = E_{\widetilde{p}} f_j = d_j$$

- Why impose such constraints?
 - MaxEnt principle: Model what is known
 - Maximize the conditional likelihood: see Slides #24-28 in (Klein and Manning, 2003)

The conditional likelihood (**)

 Given the data (X,Y), the conditional likelihood is a function of the parameters ,

$$log P(Y|X,\lambda)$$

$$= log \prod_{(x,y)\in(X,Y)} P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log P(y|x,\lambda)$$

$$= \sum_{(x,y)\in(X,Y)} log \frac{e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}{\sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)}}$$

$$= \sum_{(x,y)\in(X,Y)} (log e^{\sum_{j} \lambda_{j} f_{j}(x,y)} - log \sum_{y\in Y} e^{\sum_{j} \lambda_{j} f_{j}(x,y)})$$

The effect of adding constraints

Bring the distribution closer to the data

Bring the distribution further away from uniform

Lower the entropy

Raise the likelihood of data

Restating the problem

The task: find p* s.t.
$$p^* = \underset{p \in P}{\operatorname{arg max}} H(p)$$

where
$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1,...,k\} \}$$

Objective function: H(p)

Constraints: $\{E_{p} f_{j} = E_{\tilde{p}} f_{j} = d_{j}, j = \{1,...,k\}\}$

Using Lagrange multipliers (**)

Minimize A(p):
$$A(p) = -H(p) - \sum_{j=1}^{k} \lambda_{j} (E_{p} f_{j} - d_{j}) - \lambda_{0} (\sum_{x,y} p(x,y) - 1)$$

$$A'(p) = 0$$

$$\Rightarrow \frac{\delta(\sum_{x,y} p(x,y) \ln p(x,y) - \sum_{j=1}^{k} \lambda_{j} ((\sum_{x,y} p(x,y) f_{j}(x,y)) - d_{j}) - \lambda_{0} (\sum_{x,y} p(x,y) - 1))}{\delta p(x,y)} = 0$$

$$\Rightarrow 1 + \ln p(x,y) - \sum_{j=1}^{k} \lambda_{j} f_{j}(x,y) - \lambda_{0} = 0$$

$$\Rightarrow \ln p(x,y) = (\sum_{j=1}^{k} \lambda_{j} f_{j}(x,y)) + \lambda_{0} - 1$$

$$\Rightarrow p(x,y) = e^{\frac{k}{j+1} \lambda_{j} f_{j}(x,y)} = e^{\frac{k}{j+1} \lambda_{j} f_{j}(x,y)} \text{ where } Z = e^{1 - \lambda_{0}}$$

Questions

$$p^* = \arg\max H(p)$$
 where
$$P = \{p \mid E_p f_i = E_{\widetilde{p}} f_i, j = \{1, ..., k\}\}$$

- Is P empty?
- Does p* exist?
- Is p* unique?
- What is the form of p*?

How can we find p*?

What is the form of p*? (Ratnaparkhi, 1997)

$$P = \{ p \mid E_p f_j = E_{\tilde{p}} f_j, j = \{1,...,k\} \}$$

$$Q = \{ p \mid p(x, y) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x, y)}, \alpha_j > 0 \}$$

Theorem: if $p^{* \in P \cap Q}$ then $p^{*} = \arg \max_{p \in P} H(p)$

Furthermore, p* is unique.

Two equivalent forms

$$p(x,y) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x,y)}$$

$$p(x,y) = \frac{e^{\sum_{j=1}^{k} \lambda_{j} f_{j}(x,y)}}{Z}$$

$$\pi = \frac{1}{Z} \quad \lambda_j = \ln \alpha_j$$

Modeling summary

Goal: find p* in P, which maximizes H(p).

$$P = \{p \mid E_p f_j = E_{\widetilde{p}} f_j, j = \{1,...,k\}\}$$

It can be proved that, when p* exists

- it is unique
- it maximizes the conditional likelihood of the training data
- it is a model in Q, where

$$Q = \{ p \mid p(x) = \pi \prod_{j=1}^{k} \alpha_j^{f_j(x)}, \alpha_j > 0 \}$$

Outline

- Overview
- The Maximum Entropy Principle

- Modeling**
- Decoding
- Training**

Case study: POS tagging

Decoding

$$p(y \mid x) = \frac{e^{\sum_{j=1}^{k} \lambda_{j} f_{j}(x,y)}}{Z}$$
 Z is the

Z is the normalizer.

$\overline{}$	t ₁	t ₂		t _k
C_1	λ_1	λ_2		λ_{k}
			>	
C ₂				
C _i				λ_{ki}

Procedure for calculating P(y | x)

```
Z=0;
for each y in Y
  sum = 0; // or sum = default weight for class y;
  for each feature t present in x
    sum += weight for (t, y);
  result[y] = exp(sum);
  Z += result[y];
for each y in Y
  P(y \mid x) = result[y] / Z;
```

MaxEnt summary so far

- Idea: choose the p* that maximizes entropy while satisfying all the constraints.
- p* is also the model within a model family that maximizes the conditional likelihood of the training data.
- MaxEnt handles overlapping features well.
- In general, MaxEnt achieves good performance on many NLP tasks.
- Next: Training: many methods (e.g., GIS, IIS, L-BFGS).