Dr D. Sinden

Calculus and Linear Algebra for Graduate Students MDE-MET-01

Assignment Sheet 1. Released: September 18, 2024

Due: September 28, 2024

1. [5 points] If $\mathbf{v} + \mathbf{w} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\mathbf{v} - \mathbf{w} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$, compute and draw \mathbf{v} and \mathbf{w} .

- 2. [5+5+5+5 points] Describe geometrically all linear combinations of the following collections of vectors. In each case your answer should be one of the following: a line, a plane, or all of \mathbb{R}^3 .
- 3. [5+5 points] The vectors a_1, a_2, \ldots, a_n are in an m-dimensional space \mathbb{R}^m , and a linear combination $c_1 \boldsymbol{a_1} + \cdots + c_n \boldsymbol{a_n}$ is the zero vector.
 - (a) Write that statement at the matrix level, that is use the matrix A with the a vectors in its columns and use the column vector $c = (c_1, \ldots, c_n)$.
 - (b) Write that statement at the scalar level, i.e. use subscripts and summation notation to add up numbers. The column vector a_j has components $a_{1j}, a_{2j}, \ldots, a_{mj}$.

4. [5+5 points]

- (a) What is the sum of the twelve vectors that go from the center of a clock to the hours 1:00, 2:00, ...,
- (b) Assume that the distance from the center of the clock to the hours is equal to 1. What is the sum of the twelve vectors that start at 6:00 (at the bottom) and go to the hours 1:00, 2:00, ..., 12:00?
- 5. [5 points] Solve, by any method, the system of linear equations:

$$4x + 12y - 16z = 1$$

 $12x + 40y + -38z = 2$
 $-16x - 38y + 90z = 3$.