1

Assignment 11

Priya Bhatia

Abstract—This document demonstrate how to find the dimension of the subspace.

Download latex-tikz from

https://github.com/priya6971/ matrix_theory_EE5609/tree/master/ Assignment11

1 Problem

Let F be a subfield of the complex numbers. We define n linear functionals on $F^n(n \ge 2)$ by

$$f_k(x_1,, x_n) = \sum_{j=1}^n (k - j)x_j, 1 \le k \le n.$$
 (1.0.1)

What is the dimension of the subspace annihilated by $f_1, f_2, ..., f_n$?

2 Solution

Given	F be a subfield of the complex numbers
	Definition of n linear functionals on $F^n(n \ge 2)$ by $f_k(x_1,, x_n) = \sum_{j=1}^n (k-j)x_j;$ $1 \le k \le n$
To find	The dimension of the subspace annihilated by $f_1, f_2,, f_n$
f_k	$f_k(x_1,, x_n) = \sum_{j=1}^n (k - j) x_j$ $f_k(x_1,, x_n) = k \sum_{j=1}^n x_j - \sum_{j=1}^n j x_j$
	All f_k are linear combinations of the two linear functionals

Vector	The two linear functionals defined below $g_1(x_1,,x_n) = \sum_{j=1}^n x_j$ $g_2(x_1,,x_n) = \sum_{j=1}^n jx_j$
	Dimension of subspace annihilated by $fi's$ is the dimension of the solution space of the system $AX = 0$
	where the i^{th} row is defined by $A_i = (i-1, i-2,, i-n)$
	$A_i = (i - 1, i - 2,, i - n)$ $1 < i < n$
	$1 \le t \le n$
Matrix	AX = 0
	where the i^{th} row is defined by
	$A_i = (i-1, i-2,, i-n)$
	$1 \le i \le n$
	For $i \ge 3$, perform the following elementary
	operations of n linear functionals
	$(a)A_i \longrightarrow (1-i)A_2 + A_i$
	$A_i = (0, i-2, 2(i-2), 3(i-2),, (n-1)(i-2))$
	$(b)A_i \longrightarrow \frac{1}{i-2}A_i$
	$A_i = -A_1$
	$(c)A_i \longrightarrow A_i + A_1$
	$A_i = 0$
	Since, A_1 and A_2 are linearly independent
	Thus, the dimension of the subspace
	annihiliated = $n-2$