Problem statement:1

Given a set S of n points on a line (unsorted), find two points whose distance is smallest.

Bruce-force:

- ▶ Pick two of *n* points and compute the distance
- ▶ Cost: $\Theta(n^2)$

¹Section 33.4 of [CLRS, 3rd edition] provides an algorithm for finding the closest pair of points in 2-dimension, i.e., on a plane.

Algorithm 1

- 1. Sort the points
- 2. Perform a linear scan

Cost:
$$\Theta(n \lg n) + \Theta(n) = \Theta(n \lg n)$$

Remark: Unfortunately, Algorithm 1 cannot be extended to the 2-dimension case.

Algorithm 2 (Divide-and-Conquer):

1. Divide the set S by some point mid (say, median) into two sets S_1 and S_2 , with the property:

$$p < q$$
 for all $p \in S_1$ and $q \in S_2$

2. Conquer: finds the closest pair recursively on S_1 and S_2 , separately, gives us two pairs of points

$$\{p_1, p_2\}$$
 and $\{q_1, q_2\}$,

the closest pair in S_1 and S_2 , respectively. .

3. Combine: the closest pair in the set S is

$$d = \min\{|p_1 - p_2|, |q_1 - q_2|\}$$
 or $d' = |p_3 - q_3|$,

where $p_3 \in S_1$ and $q_3 \in S_2$.

- 1. both p_3 and q_3 must be within distance d of mid if $\{p_3, q_3\}$ is to have a distance smaller than d.
- 2. How many points of S_1 can lie in (mid d, mid]? Answer: at most one
- 3. How many points of S_2 can lie in [mid, mid + d)? Answer: at most one
- 4. Therefore, the number of pairwise comparisons that must be made between points in different subsets is thus at most one.
- 5. We can certainly find the points in the intervals (mid-d, mid] and [mid, mid+d) in linear time O(n).
- 6. Algorithm 2 complexity:

$$T(n) = 2T(\frac{n}{2}) + \Theta(n) = \Theta(n \lg n).$$

```
Pseudocode<sup>2</sup>
ClosestPair(S)
if |S| = 2, then
   d = |S[2] - S[1]|
else
   if |S| = 1
      d = infty
   else
      m = median(S)
      construct S1 and S2
      d1 = ClosestPair(S1)
      d2 = ClosestPair(S2)
      p = max(S1)
      q = min(S2)
      d = min(d1, d2, q-p)
   end if
end if
return d
```

²The idea of Algorithm 2 can be extended to the 2-d case, see Section 33.4 of [CLRS, 3rd edition]