Espaces préhilbertiens

Espace préhilbertien réel

Exercice 1 [00504] [correction]

Soient $A, B \in \mathcal{S}_n(\mathbb{R})$. Montrer que $(\operatorname{tr}(AB + BA))^2 \leq 4\operatorname{tr}(A^2)\operatorname{tr}(B^2)$.

Exercice 2 [00505] [correction]

Démonter que la boule unité fermée B d'un espace préhilbertien réel est strictement convexe i.e. que pour tout $x, y \in B$ différents et tout $t \in [0, 1[$ ||(1-t)x+ty|| < 1.

Exercice 3 [00507] [correction]

Soit (e_1, e_2, \dots, e_n) une famille de vecteurs unitaires d'un espace préhilbertien réel E telle que

$$\forall x \in E, ||x||^2 = \sum_{i=1}^{n} (e_i \mid x)^2$$

Montrer que (e_1, e_2, \dots, e_n) constitue une base orthonormée de E.

Exercice 4 [00508] [correction]

Soient E un espace préhilbertien réel et $f, g: E \to E$ telles que

$$\forall x, y \in E, (f(x) \mid y) = (x \mid g(y))$$

Montrer que f et g sont linéaires.

Exercice 5 [00509] [correction]

Soient E un espace préhilbertien réel et $f: E \to E$ une application surjective telle que pour tout $x, y \in E$, on ait

$$(f(x) \mid f(y)) = (x \mid y)$$

Montrer que f est un endomorphisme de E.

Exercice 6 [00510] [correction] Soient x, y deux vecteurs non nuls d'un espace préhilbertien. Etablir :

$$\left\| \frac{x}{\|x\|^2} - \frac{y}{\|y\|^2} \right\| = \frac{\|x - y\|}{\|x\| \|y\|}.$$

Exercice 7 [00511] [correction]

On munit $E = \mathcal{C}([0,1],\mathbb{R})$ du produit scalaire défini par $(f \mid g) = \int_a^b f(t)g(t)dt$. En exploitant le théorème d'approximation uniforme de Weierstrass, établir que l'orthogonal du sous-espace vectoriel F de E formé des fonctions polynomiales est réduit à $\{0\}$.

Exercice 8 [00512] [correction]

Soit E un espace de Hilbert réel.

- a) Montrer que pour $x,y\in E, \ \left\|\frac{x+y}{2}\right\|^2+\left\|\frac{x-y}{2}\right\|^2=\frac{\|x\|^2+\|y\|^2}{2}.$ b) Soit F un sous-espace vectoriel fermé de E et $a\in E$. Montrer qu'il existe $x\in F$
- vérifiant d(a, F) = ||x a||.
- c) Etablir que si H est un hyperplan fermé de E, il existe $a \in E$ vérifiant : $\forall x \in E, x \in H \Leftrightarrow (a \mid x) = 0.$

Exercice 9 [00513] [correction]

Soit E un espace préhilbertien réel.

- a) Etablir que pour tout sous-espace vectoriel F de E, $\bar{F} \subset F^{\perp \perp}$. Désormais, on suppose $E = \mathbb{R}[X]$ muni du produit scalaire défini par $(P \mid Q) = \int_{-1}^{1} P(t)Q(t) dt.$
- b) Montrer que $H=\left\{P\in\mathbb{R}\left[X\right]/\int_{-1}^{1}|t|\,P(t)\,\mathrm{d}t=0\right\}$ est un hyperplan fermé de
- c) Soit $Q \in H^{\perp}$. Etablir que pour tout $P \in \mathbb{R}[X]$,

 $\int_{-1}^{1} P(t)Q(t) dt = \left(\int_{-1}^{1} |t| P(t) dt \right) \left(\int_{-1}^{1} Q(t) dt \right)$

d) Etablir que $H^{\perp} = \{0\}$ et conclure qu'ici l'inclusion $\bar{H} \subset H^{\perp\perp}$ est stricte.

Exercice 10 Mines-Ponts MP [02666] [correction]

Montrer l'existence et l'unicité de $A \in \mathbb{R}_n[X]$ tel que :

$$\forall P \in \mathbb{R}_n [X], P(0) = \int_0^1 A(t)P(t) dt$$

Montrer que A est de degré n.

Exercice 11 X MP [03024] [correction]

On définit sur $\mathbb{R}[X]$ le produit scalaire

$$\langle P \mid Q \rangle = \int_0^1 P(t)Q(t) \, \mathrm{d}t$$

Existe-t-il $A \in \mathbb{R}[X]$ tel que

$$\forall P \in \mathbb{R} [X], P(0) = \langle A \mid P \rangle$$
?

Exercice 12 X MP [03079] [correction]

On définit

$$Q_n(X) = \frac{1}{2^n n!} ((X^2 - 1)^n)^{(n)}$$

- a) Soit $n \ge 1$. Montrer que Q_n possède n racines simples dans]-1,1[.
- b) Montrer que

$$Q_n = X^n + (X^2 - 1)R_n(X)$$

avec $R_n \in \mathbb{R}[X]$. En déduire $Q_n(1)$ et $Q_n(-1)$. c) On pose, pour $(P,Q) \in \mathbb{R}[X]^2$,

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t) dt$$

Montrer que Q_n est orthogonal à $\mathbb{R}_{n-1}[X]$.

d) Calculer $||Q_n||^2$.

Exercice 13 [03081] [correction]

Soit $E = \mathcal{C}([-1,1],\mathbb{R})$ muni du produit scalaire défini par

$$\langle f \mid g \rangle = \int_{-1}^{1} f(t)g(t) dt$$

On pose

$$F = \{ f \in E / \forall t \in [-1, 0], f(t) = 0 \} \text{ et } G = \{ g \in E / \forall t \in [0, 1], g(t) = 0 \}$$

- a) Montrer que $F^{\perp} = G$.
- b) Les sous-espaces vectoriels F et G sont-ils supplémentaires?

Exercice 14 [03157] [correction]

Soit $\mathcal{F} = (x_1, \dots, x_n)$ une famille de $n \ge 2$ vecteurs d'un espace préhilbertien réel. On suppose

$$\forall 1 \leqslant i \neq j \leqslant n, (x_i \mid x_j) < 0$$

Montrer que toute sous famille de n-1 vecteurs de \mathcal{F} est libre.

Exercice 15 [03180] [correction]

Soit S l'ensemble des vecteurs de norme 1 d'un espace préhilbertien réel. Montrer

$$\forall x, y \in S, x \neq y \Rightarrow \forall \lambda \in \mathbb{R} \setminus \{0, 1\}, (1 - \lambda)x + \lambda y \notin S$$

Espace préhilbertien complexe

Exercice 16 [00514] [correction]

On définit une application $\varphi : \mathbb{C}[X] \times \mathbb{C}[X] \to \mathbb{C}$ par

$$\varphi(P,Q) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{P(e^{i\theta})} Q(e^{i\theta}) d\theta$$

- a) Montrer que φ est un produit scalaire hermitien sur $\mathbb{C}[X]$.
- b) Montrer que $(X^k)_{k\in\mathbb{N}}$ est une base orthonormée pour le produit scalaire
- c) Soit $Q = X^n + a_{n-1}X^{n-1} + \cdots + a_0$. Calculer $||Q||^2$.
- d) On pose

$$M = \sup_{|z|=1} |Q(z)|$$

Montrer que $M \geqslant 1$ et étudier le cas d'égalité

Exercice 17 [00515] [correction]

Soient E un espace préhilbertien complexe et $u \in \mathcal{L}(E)$ tel que pour tout $x \in E$,

$$(u(x) \mid x) = 0$$

Montrer que $u = \tilde{0}$.

Exercice 18 [03080] [correction]

On pose

$$H = \left\{ (x_n) \in \mathbb{C}^{\mathbb{N}} / \sum_{n=0}^{+\infty} |x_{n+1} - x_n|^2 < +\infty \right\}$$

Montrer que H est un espace préhilbertien

Espaces euclidiens et hermitiens

Exercice 19 [00516] [correction]

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire défini par

$$(A \mid B) = \operatorname{tr}(^t A B)$$

- a) Montrer que la base canonique $(E_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$ est orthonormée.
- b) Observer que les espaces $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux.
- c) Etablir que pour tout $A \in \mathcal{M}_n(\mathbb{R})$ on a

$$\operatorname{tr}(A) \leqslant \sqrt{n} \sqrt{\operatorname{tr}({}^{t}AA)}$$

et préciser les cas d'égalité.

Exercice 20 [00517] [correction]

Soit a un vecteur normé d'un espace vectoriel euclidien E. Pour tout $\alpha \in \mathbb{R}$, on considère l'endomorphisme $f_{\alpha} : x \mapsto x + \alpha(a \mid x)a$.

- a) Préciser la composée $f_{\alpha} \circ f_{\beta}$. Quelles sont les f_{α} bijectives?
- b) Déterminer les éléments propres de f_{α} .

Exercice 21 [00518] [correction]

Soient a,b deux vecteurs unitaires d'un espace vectoriel euclidien E et

$$f: x \to x - (a \mid x)b$$

- a) A quelle condition la fonction f est-elle bijective?
- b) Exprimer $f^{-1}(x)$ lorsque c'est le cas.
- c) A quelle condition l'endomorphisme f est-il diagonalisable?

Exercice 22 [00519] [correction]

Montrer que dans \mathbb{R}^3 euclidien : $a \wedge (b \wedge c) = (a \mid c)b - (a \mid b)c$. (on pourra utiliser les coordonnées de a,b,c dans une base où elles comportent un maximum de 0) Trouver les valeurs propres et vecteurs propres de $f(x) = a \wedge (a \wedge x)$ où a est un vecteur unitaire puis reconnaître f.

Exercice 23 Mines-Ponts PC [00520] [correction]

Soient $x_1, x_2, ..., x_{n+2}$ des vecteurs d'un espace vectoriel euclidien de dimension $n \in \mathbb{N}^{\star}$.

Montrer qu'il est impossible que

$$\forall i \neq j, (x_i \mid x_j) < 0$$

On pourra commencer par les cas n = 1 et n = 2

Exercice 24 [00521] [correction]

Soient E un espace hermitien et (e_1, \ldots, e_n) une famille orthonormée vérifiant

$$\forall x \in E, \sum_{k=1}^{n} |(e_k \mid x)|^2 = ||x||^2$$

Montrer que (e_1, \ldots, e_n) est une base orthonormée de E.

Exercice 25 [00523] [correction]

Soit f un endomorphisme d'un espace vectoriel euclidien E tel que

$$\forall x \in E, (f(x) \mid x) = 0$$

Comparer $\ker f$ et $\operatorname{Im} f$.

Exercice 26 Centrale MP [02396] [correction]

Soit $(E, \langle | \rangle)$ un espace euclidien et $u \in \mathcal{L}(E)$ tel que $\mathrm{tr}(u) = 0$.

- a) Montrer qu'il existe $x \in E \setminus \{0\}$ tel que $\langle u(x) \mid x \rangle = 0$.
- b) Montrer qu'il existe une base orthonormée de E dans laquelle la matrice de u est à diagonale nulle.

Exercice 27 Mines-Ponts MP [02733] [correction]

Soient $c \in \mathbb{R}$, $(E, \langle ., . \rangle)$ un espace euclidien de dimension $n \geq 2, v_1, ..., v_n$ des vecteurs unitaires de E deux à deux distincts tels que :

$$\forall (i,j) \in \{1,\ldots,n\}^2, i \neq j \Rightarrow \langle v_i, v_j \rangle = c$$

Déterminer une condition nécessaire et suffisante sur c pour que (v_1, \ldots, v_n) soit nécessairement liée.

Projections orthogonales

Exercice 28 [00524] [correction]

Soient E un espace vectoriel euclidien muni d'une base orthonormée $\mathcal{B} = (e_1, \dots, e_n)$ et F un sous-espace vectoriel de E muni d'une base orthonormée (x_1, \dots, x_n) . Montrer

$$\operatorname{Mat}_{\mathcal{B}}(p_F) = \sum_{k=1}^{p} X_k^{\ t} X_k$$

où X_k est la colonne des composantes de x_k dans \mathcal{B} .

Exercice 29 [00530] [correction]

[Formule de Parseval]

On suppose que $(e_n)_{n\in\mathbb{N}}$ est une famille orthonormale d'un espace préhilbertien E telle que $V = \text{Vect}(e_n)_{n\in\mathbb{N}}$ soit dense dans E. Montrer que pour tout $x \in E$,

$$||x||^2 = \sum_{n=0}^{+\infty} |(e_n | x)|^2$$

Exercice 30 Centrale MP [02408] [correction]

On se place dans l'espace euclidien E.

1) Soit p un projecteur de E.

Etablir l'équivalence des conditions suivantes :

- (i) p est un projecteur orthogonal,
- (ii) $\forall x \in E, ||p(x)|| \le ||x||,$
- (iii) p est autoadjoint.
- 2) Soient p et q deux projecteurs orthogonaux.
- a) Montrer que $p \circ q \circ p$ est autoadjoint.
- b) Montrer que

$$(\operatorname{Im} p + \ker q)^{\perp} = \operatorname{Im} q \cap \ker p$$

c) Montrer que $p \circ q$ est diagonalisable.

Exercice 31 [02732] [correction]

Soient p et q des projecteurs orthogonaux d'un espace euclidien E.

- a) Montrer que $p \circ q \circ p$ est diagonalisable et que ses valeurs propres sont comprises entre 0 et 1.
- b) Déterminer $(\operatorname{Im} p + \ker q)^{\perp}$
- c) En déduire que $p \circ q$ est diagonalisable et que ses valeurs propres sont comprises entre 0 et 1.

Exercice 32 [01331] [correction]

Soient A et B dans $S_2(\mathbb{R})$ telles que $A^2 = A$ et $B^2 = B$.

- a) La matrice AB est-elle diagonalisable?
- b) Encadrer les valeurs propres de AB.

Distance à un sous-espace vectoriel

Exercice 33 [00526] [correction]

[Déterminant de Gram]

Soit E un espace préhilbertien réel. Pour (u_1, \ldots, u_p) famille de vecteurs de E, on note $G(u_1, \ldots, u_p)$ la matrice de $\mathcal{M}_p(\mathbb{R})$ dont le coefficient d'indice (i, j) est $(u_i \mid u_j)$.

a) Montrer que la famille (u_1, \ldots, u_p) est libre si, et seulement si,

$$\det G(u_1,\ldots,u_p)\neq 0$$

b) Montrer que si (e_1, \ldots, e_p) est une base d'un sous-espace vectoriel F de E alors pour tout $x \in E$,

$$d(x,F) = \sqrt{\frac{\det G(e_1,\ldots,e_p,x)}{\det G(e_1,\ldots,e_p)}}$$

Exercice 34 [00527] [correction]

- a) Montrer que $(P \mid Q) = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$ définit un produit scalaire sur $\mathbb{R}_2[X]$.
- b) Calculer $d(X^2, P)$ où $P = \{aX + b/(a, b) \in \mathbb{R}^2\}$

Exercice 35 Mines-Ponts MP [02734] [correction]

Calculer le minimum de $\int_0^1 (t^3 - at^2 - bt - c)^2 dt$, a, b, c parcourant \mathbb{R} .

Exercice 36 [00529] [correction]

On définit une application $\varphi: \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$ par

$$\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$$

- a) Montrer que φ définit un produit scalaire sur $\mathbb{R}[X]$.
- b) Calculer $\varphi(X^p, X^q)$.
- c) Déterminer

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} e^{-t} (t^2 - (at+b))^2 dt$$

Exercice 37 Mines-Ponts MP [02736] [correction]

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire rendant orthonormé la base canonique, dont on note $\|\cdot\|$ la norme associée. Soit J la matrice de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont égaux à 1.

Si $M \in \mathcal{M}_n(\mathbb{R})$, calculer $\inf_{(a,b)\in\mathbb{R}^2} ||M - aI_n - bJ||$.

Exercice 38 Mines-Ponts MP [02735] [correction]

Calculer

$$\inf \left\{ \int_0^1 t^2 (\ln t - at - b)^2 dt, (a, b) \in \mathbb{R}^2 \right\}$$

Exercice 39 Mines-Ponts MP [01332] [correction]

Soient $n \in \mathbb{N}^*$, $E = \mathbb{R}_n[X]$ et $\langle , \rangle : (P, Q) \in E^2 \mapsto \langle P, Q \rangle = \int_0^{+\infty} P(t)Q(t)\mathrm{e}^{-t}\,\mathrm{d}t$

a) Justifier la définition de \langle , \rangle et montrer qu'il s'agit d'un produit scalaire.

On pose $F = \{P \in E, P(0) = 0\}$. On cherche à déterminer d(1, F). On note (P_0, \ldots, P_n) l'orthonormalisée de Schmidt de $(1, X, \ldots, X^n)$.

- b) Calculer $P_k(0)^2$.
- c) Déterminer une base de F^{\perp} que l'on exprimera dans la base (P_0, \ldots, P_n) . En déduire $d(1, F^{\perp})$ et d(1, F).

Corrections

Exercice 1 : [énoncé]

Sur $\mathcal{M}_n(\mathbb{R})$, on définit un produit scalaire par $(A \mid B) = \operatorname{tr}({}^t AB)$.

Pour $A, B \in \mathcal{S}_n(\mathbb{R})$, $\operatorname{tr}(AB + BA) = 2(A \mid B)$ et l'inégalité de Cauchy-Schwarz fournit la relation demandée.

Exercice 2 : [énoncé]

Par l'inégalité triangulaire $||(1-t)x+ty|| \le (1-t)||x||+t||y|| \le 1$. De plus s'il y a égalité alors ||x|| = 1, ||y|| = 1 et les vecteurs (1 - t)x et ty sont positivement liés. Les vecteurs x et y étant unitaires et positivement liés ils sont égaux, ce qui est exclu.

Exercice 3 : [énoncé]

Pour $j \in \{1, ..., n\}$,

$$\|e_j\|^2 = \sum_{i=1}^n (e_i \mid e_j)^2$$

donc $(e_i \mid e_j) = 0$ pour tout $i \neq j$. Ainsi la famille (e_1, e_2, \dots, e_n) est orthonormée. Si la famille (e_1, e_2, \dots, e_n) n'est pas une base, on peut déterminer $e_{n+1} \in E$ tel que $(e_1, e_2, \dots, e_n, e_{n+1})$ soit libre. Par le procédé d'orthonormalisation de Schmidt, on peut se ramener au cas où

$$e_{n+1} \in \operatorname{Vect}(e_1, \dots, e_n)^{\perp}$$

Mais alors

$$||e_{n+1}||^2 = \sum_{i=1}^{n} (e_i \mid e_{n+1})^2 = 0$$

ce qui est contradictoire.

Par suite la famille (e_1, e_2, \dots, e_n) est une base orthonormée.

Exercice 4: [énoncé]

Aisément

$$(f(\lambda x + \lambda' x') \mid y) = \dots = (\lambda f(x) + \lambda' f(x') \mid y)$$

et comme ceci vaut pour tout y on peut conclure à la linéarité de f. Idem pour g.

Exercice 5 : [énoncé]

Aisément $(f(\lambda x + \lambda' x') \mid f(y)) = (\lambda f(x) + \lambda' f(x') \mid f(y))$ donc $f(\lambda x + \lambda' x') - (\lambda f(x) + \lambda' f(x')) \in (\operatorname{Im} f)^{\perp} = \{o\} \text{ d'où la linéarité de } f.$

Exercice 6 : [énoncé]

$$\left\| \frac{x}{\|x\|^2} - \frac{y}{\|y\|^2} \right\|^2 = \frac{1}{\|x\|^2} - 2\frac{(x|y)}{\|x\|^2 \|y\|^2} + \frac{1}{\|y\|^2} = \left(\frac{\|x-y\|}{\|x\| \|y\|} \right)^2$$

Exercice 7 : [énoncé]

Soit $f \in F^{\perp}$. Puisque f est continue sur le segment [a, b], par le théorème d'approximation uniforme de Weierstrass : $\forall \varepsilon > 0, \exists P \in \mathbb{R}[X], \|f - P\|_{\infty,[a,b]} \leq \varepsilon$.

On a alors $||f||^2 = \int_a^b f^2 = \int_a^b f(f-P) + \int_a^b fP = \int_a^b f(f-P)$ avec $\left| \int_{a}^{b} f(f-P) \right| \leq (b-a) \|f\|_{\infty} \|f-P\|_{\infty} \leq (b-a) \|f\|_{\infty} \varepsilon.$

En faisant tendre ε vers 0, on obtient $\|f\|^2 = 0$ donc f = 0. Ainsi $F^{\perp} \subset \{0\}$ puis $F^{\perp} = \{0\}.$

Exercice 8: [énoncé]

- a) C'est l'identité du parallélogramme.
- b) $d(a, F) = \inf \{ ||x a|| / x \in F \}$. Considérons une suite (x_n) d'éléments de F réalisant la borne inférieure : $||x_n - a|| \to d(a, F)$.

En appliquant l'identité du parallélogramme à $x=x_n-a$ et $y=x_m-a$, on obtient $\left\| \frac{x_n + x_m}{2} - a \right\|^2 + \frac{1}{4} \left\| x_n - x_m \right\|^2 = \frac{\|x_n - a\|^2 + \|x_m - a\|^2}{2}$.

Or
$$\frac{x_n + x_m}{2} \in F$$
 donc $\left\| \frac{x_n + x_m}{2} - a \right\| \ge d(a, F)$ puis $\frac{1}{4} \left\| x_n - x_m \right\|^2 \le \frac{\left\| x_n - a \right\|^2 + \left\| x_m - a \right\|^2}{2} - d(a, F)^2$.

$$\frac{1}{4} \|x_n - x_m\|^2 \leqslant \frac{\|x_n - a\|^2 + \|x_m - a\|^2}{2} - d(a, F)^2.$$

Sachant que $||x_n - a|| \to \overline{d}(a, F)$, on peut affirmer que la suite (x_n) est de Cauchy. Par suite celle-ci converge et, puisque F est fermé, sa limite x_{∞} vérifie $x_{\infty} \in F$ et $||x_{\infty}-a||=d(a,F).$

- c) Puisque $H \neq E$, il existe $y \in E \backslash H$. Soit alors $x \in H$ vérifiant
- d(y, H) = ||x y||. Pour tout $z \in H$, on a $||(x + \lambda z) y||^2 \ge ||x y||^2$ donc $2\lambda(x-y\mid z)+\lambda^2\|z\|^2\geqslant 0$ pour tout $\lambda\in\mathbb{R}$. On en déduit que $(x-y\mid z)=0$ puis

que $a = x - y \in H^{\perp}$ avec $a \neq 0$ car $y \notin H$.

Ainsi, on dispose d'un vecteur a vérifiant $\forall x \in H$, $(a \mid x) = 0$ i.e. H et Vect(a)orthogonaux.

De plus, puisque H est un hyperplan et que $a \notin H$, on a $H \oplus \text{Vect}(a) = E$. H et Vect(a) sont donc supplémentaires orthogonaux et par suite $H = Vect(a)^{\perp}$. Corrections

Exercice 9 : [énoncé]

- a) On sait $F \subset F^{\perp \perp}$ et $F^{\perp \perp}$ fermé donc $\bar{F} \subset F^{\perp \perp}$.
- b) H est le noyau de la forme linéaire $\varphi: P \mapsto \int_{-1}^{1} |t| P(t) dt$. En vertu de l'inégalité de Cauchy-Schwarz, $|\varphi(P)| \leq ||P||$ et donc φ est continue. Par suite H est un hyperplan fermé.
- c) Pour $P \in \mathbb{R}[X]$, on observe que $R = P \int_{-1}^{1} |u| P(u) du$ appartient à H. La relation $(R \mid Q) = 0$ donne la relation voulue.
- d) La relation précédente donne $\int_{-1}^{1} \left(Q(t) |t| \int_{-1}^{1} Q(u) du \right) P(t) dt = 0$ pour tout $P \in \mathbb{R}[X]$. Par suite $Q(t) = |t| \int_{-1}^{1} Q(u) du$ ce qui n'est possible que si $\int_{-1}^{1} Q(u) du = 0$ et Q = 0.

Ainsi $H^{\perp}=\{0\}$ puis $H^{\perp\perp}=E$ alors que $\bar{H}=H\neq E.$

Exercice 10: [énoncé]

 $(P,Q) \mapsto \int_0^1 P(t)Q(t) dt$ est un produit scalaire sur $\mathbb{R}_n[X]$ et l'application $P \mapsto P(0)$ y est une forme linéaire donc il existe un unique polynôme $A \in \mathbb{R}_n[X]$ tel que cette forme linéaire corresponde au produit scalaire avec A. Si deg A < n alors pour P = XA, $\int_0^1 tA(t)^2 dt = 0$. Or $t \mapsto tA(t)^2$ est continue positive donc A = 0 ce qui est absurde.

Exercice 11 : [énoncé]

Supposons l'existence d'un tel polynôme A.

Pour $P_n = (1 - X)^n$, on obtient $1 = \int_0^1 A(t)(1 - t)^n dt$.

$$\left| \int_0^1 A(t)(1-t)^n \, \mathrm{d}t \right| \le \|A\|_{\infty} \int_0^1 (1-t)^n \, \mathrm{d}t = \frac{\|A\|_{\infty}}{n+1} \to 0$$

il y a donc une absurdité.

Exercice 12: [énoncé]

a) 1 et -1 sont racines de multiplicité n du polynôme $(X^2 - 1)^n$. 1 et -1 sont donc racines des polynômes

$$(X^2-1)^n$$
, $((X^2-1)^n)'$,..., $((X^2-1)^n)^{(n-1)}$

En appliquant le théorème de Rolle, on peut alors montrer par récurrence sur $k \in \{0, ..., n\}$ que $\left((X^2 - 1)^n\right)^{(k)}$ possède au moins k racines dans l'intervalle]-1, 1[.

En particulier Q_n possède au moins n racines dans]-1,1[, or deg $Q_n=n$ donc il n'y a pas d'autres racines que celles-ci et elles sont simples.

b) Raisonnons par récurrence sur $n \in \mathbb{N}$.

Pour n = 0, c'est immédiat.

Supposons la propriété établie au rang $n \ge 0$.

$$Q_{n+1}(X) = \frac{1}{2^{n+1}(n+1)!} \left(2(n+1)X(X^2-1)^n \right)^{(n)}$$

Par la formule de Leibniz

$$Q_{n+1}(X) = \frac{1}{2^n n!} \left(X \left((X^2 - 1)^n \right)^{(n)} + nX \left((X^2 - 1)^n \right)^{(n-1)} \right)$$

1 et -1 sont racines du polynôme $\left((X^2-1)^n\right)^{(n-1)}$ et donc celui-ci peut s'écrire $(X^2-1)S(X).$

En exploitant l'hypothèse de récurrence, on obtient

$$Q_{n+1}(X) = X^{n+1} + X(X^2 - 1)R_n(X) + 2nX(X^2 - 1)S(X) = X^{n+1} + (X^2 - 1)R_{n+1}(X)$$

Récurrence établie

c) Par intégration par parties successives et en exploitant l'annulation en 1 et -1 des polynômes

$$(X^2-1)^n, ((X^2-1)^n)', \dots, ((X^2-1)^n)^{(n-1)}$$

on obtient

$$\int_{-1}^{1} P(t)Q_n(t) dt = \frac{(-1)^n}{2^n n!} \int_{-1}^{1} P^{(n)}(t)(t^2 - 1)^n dt$$

En particulier, si $P \in \mathbb{R}_{n-1}[X]$,

$$\int_{-1}^{1} P(t)Q_n(t) \, \mathrm{d}t = 0$$

d) Par la relation qui précède

$$\int_{-1}^{1} (Q_n(t))^2 dt = \frac{1}{2^n n!} \int_{-1}^{1} Q_n^{(n)}(t) (1 - t^2)^n dt$$

Puisque le polynôme $(X^2-1)^n$ est unitaire et de degré 2n

$$[(X^2-1)^n]^{(2n)} = (2n)!$$
 et $Q_n^{(n)} = \frac{(2n)!}{2^n n!}$

Corrections

De plus, par intégration par parties successives

$$\int_{-1}^{1} (1 - t^2)^n dt = \int_{0}^{1} (1 - t)^n (1 + t)^n dt = \frac{2^{2n+1} (n!)^2}{(2n+1)!}$$

Au final

$$\|Q_n\|^2 = \frac{2}{(2n+1)}$$

Exercice 13 : [énoncé]

a) Soient $f \in F$ et $g \in G$.

$$\langle f \mid g \rangle = \int_{-1}^{1} f(t)g(t) dt = \int_{-1}^{1} 0 dt = 0$$

Les sous-espaces vectoriels F et G sont orthogonaux et donc $G \subset F^{\perp}$. Inversement, soit $g \in F^{\perp}$.

Montrons que, pour tout $x \in [0, 1], g(x) = 0.$

Par l'absurde, supposons $g(x) \neq 0$ pour un $x \in]0,1[$ et, quitte à considérer la fonction -g, supposons g(x) > 0. Par continuité de g, il existe $\alpha > 0$ tel que

$$[x-\alpha, x+\alpha] \subset]0,1[$$
 et $q(t) > 0$ sur $[x-\alpha, x+\alpha]$

Considérons alors la fonction f définie par le schéma.

La fonction f appartient à F et la fonction produit fg est continue, positive mais n'est pas la fonction nulle donc

$$\int_{-1}^{1} f(t)g(t) \, \mathrm{d}t > 0$$

C'est absurde car on a supposé $g \in F^{\perp}$.

On a donc pour tout $x \in]0,1[,g(x)=0$ puis par continuité, g(x)=0 pour tout $x \in [0,1]$.

Ainsi $g \in G$ et finalement $F^{\perp} = G$.

b) Si les sous-espaces vectoriels étaient supplémentaires alors toutes fonctions continues sur [-1,1] est somme d'une fonction de F et d'une fonction de G et est donc une fonction s'annulant en G. C'est absurde.

Les sous-espaces vectoriels F et G ne sont donc par supplémentaires.

Exercice 14: [énoncé]

Raisonnons par récurrence sur $n \ge 2$.

Pour n=2 la propriété est immédiate car aucun vecteur ne peut être nul. Supposons la propriété établie au rang $n \ge 2$.

Soit (x_1, \ldots, x_{n+1}) une famille de vecteurs vérifiant

$$\forall 1 \leqslant i \neq j \leqslant n+1, (x_i \mid x_j) < 0$$

Par projection orthogonale sur le sous-espace vectoriel de dimension finie $D = \operatorname{Vect} x_{n+1}$, on peut écrire pour tout $i \in \{1, \dots, n\}$

$$x_i = y_i + \lambda_i x_{n+1}$$

avec y_i un vecteur orthogonal à x_{n+1} et $\lambda_i < 0$ puisque $(x_i \mid x_{n+1}) < 0$. On remarque alors

$$(x_i | x_j) = (y_i | y_j) + \lambda_i \lambda_j ||x_{n+1}||^2$$

et on en déduit

$$\forall 1 \leqslant i \neq j \leqslant n, (y_i \mid y_j) < 0$$

Par hypothèse de récurrence, on peut affirmer que la famille (y_2, \ldots, y_n) est libre et puisque ses vecteurs sont orthogonaux au vecteur x_{n+1} non nul, on peut aussi dire que la famille $(y_2, \ldots, y_n, x_{n+1})$ est libre. Enfin, on en déduit que la famille $(x_2, \ldots, x_n, x_{n+1})$ car cette dernière engendre le même espace que la précédente et est formée du même nombre de vecteurs.

Par permutation des indices, ce qui précède vaut pour toute sous-famille formée de n vecteurs de la famille initiale $(x_1, \ldots, x_n, x_{n+1})$. Récurrence établie.

Exercice 15 : [énoncé]

Soient $x, y \in S$ avec $x \neq y$ et $\lambda \in \mathbb{R}$. On a

$$\|(1-\lambda)x + \lambda y\|^2 = \lambda^2 + 2\lambda(1-\lambda)(x \mid y) + (1-\lambda)^2$$

qui est une expression polynomiale en λ dont le coefficient du second degré est

$$2 - 2(x \mid y)$$

Puisque les vecteurs x et y sont distincts et de même norme, ils ne peuvent être positivement liés et donc

$$(x \mid y) < ||x|| \, ||y|| = 1$$

Par suite

$$2 - 2(x \mid y) > 0$$

Ainsi la quantité $\|(1-\lambda)x + \lambda y\|^2$ est une expression polynomiale du second degré exactement. Puisque celle-ci prend la valeur 1 pour $\lambda = 0$ et pour $\lambda = 1$, elle ne peut reprendre la valeur 1 pour aucune autre valeur λ et ceci permet de conclure.

Exercice 16: [énoncé]

a) $\varphi(Q, P) = \overline{\varphi(P, Q)}$ et $Q \mapsto \varphi(P, Q)$ linéaire : clair.

$$\varphi(P,P) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| P(e^{i\theta}) \right|^2 d\theta \geqslant 0 \text{ et } \varphi(P,P) = 0 \Rightarrow \forall \theta \in [-\pi,\pi], P(e^{i\theta}) = 0 \text{ donc}$$

$$\forall z \in U, P(z) = 0.$$

Puisque P admet une infinité de racines, P = 0.

b) Soient $k, \ell \in \mathbb{N}$. $\varphi(X^k, X^\ell) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(\ell-k)\theta} d\theta = \delta_{\ell,k}$.

c) $\varphi(Q,Q) = 1 + |a_{n-1}|^2 + \dots + |a_0|^2$ car $(1,X,X^2,\dots,X^n)$ est une famille orthonormée.

d) $\varphi(Q,Q) = \frac{1}{2\pi} \int_{-\pi}^{\pi} |Q(e^{i\theta})|^2 d\theta \leqslant M^2 \text{ or } \varphi(Q,Q) \geqslant 1 \text{ donc } M \geqslant 1.$

Si M=1 alors $a_{n-1}=\ldots=a_0=0$ et $Q=X^n$. Réciproque immédiate.

Exercice 17: [énoncé]

Soient $x, y \in E$. $(u(x + y) \mid x + y) = (u(x) \mid y) + (u(y) \mid x) = 0$ et $(u(x + iy) \mid x + iy) = i(u(x) \mid y) - i(u(y) \mid x) = 0$ donc $(u(x) \mid y) = -(u(x) \mid y)$ puis $(u(x) \mid y) = 0$.

Comme ceci vaut pour tout $y \in E$, on obtient u(x) = 0 pour tout $x \in E$.

Exercice 18: [énoncé]

On sait que

$$\ell^2(\mathbb{N}, \mathbb{C}) = \left\{ (u_n) \in \mathbb{C}^{\mathbb{N}} / \sum_{n=0}^{+\infty} |u_n|^2 < +\infty \right\}$$

est un espace de préhilbertien pour le produit scalaire

$$\langle u \mid v \rangle = \sum_{n=0}^{+\infty} \bar{u}_n v_n$$

Considérons alors l'application $\Delta: \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$ qui à une suite $x = (x_n) \in \mathbb{C}^{\mathbb{N}}$ associe

$$\Delta(x) = (x_{n+1} - x_n)_{n \in \mathbb{N}}$$

On vérifie aisément que Δ est une application linéaire et que son noyau est égal à l'espace des suites constantes.

Puisque

$$H = \Delta^{-1} \left(\ell^2(\mathbb{N}, \mathbb{C}) \right)$$

H est l'image réciproque d'un sous-espace vectoriel par une application linéaire et donc H est un sous-espace vectoriel de $\mathbb{C}^{\mathbb{N}}$; c'est donc un \mathbb{C} -espace vectoriel. Pour $x, y \in H$, posons

$$\varphi(x,y) = \langle \Delta(x) \mid \Delta(y) \rangle + \overline{x_0} y_0$$

L'application φ est évidemment sesquilinéaire hermitienne.

$$\varphi(x,x) = \|\Delta(x)\|_{2}^{2} + |x_{0}|^{2} \ge 0$$

Di $\varphi(x,x)=0$ alors

$$\|\Delta(x)\|_2 = 0$$
 et $|x_0| = 0$

Par suite x est une suite constante et puisque son terme initial est nul, c'est la suite nulle.

Finalement φ est un produit scalaire hermitien sur H et donc H est un espace préhilbertien complexe.

Exercice 19: [énoncé]

- a) $(E_{i,j} | E_{k,\ell}) = \text{tr}(E_{j,i}E_{k,\ell}) = \text{tr}(\delta_{i,k}E_{j,\ell}) = \delta_{i,k}\delta_{j,\ell}$.
- b) Pour $A \in \mathcal{S}_n(\mathbb{R})$ et $B \in \mathcal{A}_n(\mathbb{R})$,

$$(A \mid B) = \operatorname{tr}({}^{t}AB) = \operatorname{tr}(AB) = -\operatorname{tr}(A^{t}B) = -\operatorname{tr}({}^{t}BA) = -(B \mid A)$$

donc $(A\mid B)=0$ et l'orthogonalité des espaces. Leur supplémentarité est connue.

c) L'inégalité de Cauchy-Schwarz donne

$$|(I_n \mid A)| \leqslant ||I_n|| \, ||A||$$

d'où

$$\operatorname{tr}(A) \leqslant \sqrt{n} \sqrt{\operatorname{tr}({}^{t}AA)}$$

avec égalité si, et seulement si, $\operatorname{tr}(A) \geqslant 0$ et (A, I_n) liée, i.e. $A = \lambda I_n$ avec $\lambda \geqslant 0$.

Exercice 20 : [énoncé]

- a) $f_{\alpha} \circ f_{\beta} = f_{\alpha+\beta+\alpha\beta}$.
- Si $\alpha = -1$ alors $a \in \ker f_{\alpha}$ et donc f_{α} n'est pas bijective.
- Si $\alpha \neq -1$ alors, pour $\beta = -\frac{\alpha}{1+\alpha}$, $f_{\beta} \circ f_{\alpha} = f_{\alpha} \circ f_{\beta} = f_{0} = \text{Id d'où la bijectivit\'e de } f_{\alpha}$.
- b) Tout vecteur non nul orthogonal à a est vecteur propre associé à la valeur propre 1.

Tout vecteur non nul colinéaire à a est vecteur propre associé à la valeur propre $1+\alpha$.

Pour une raison de dimension, il ne peut y avoir d'autres vecteurs propres.

Exercice 21 : [énoncé]

a) L'application f est linéaire.

Si $x \in \ker f$ alors $x = (a \mid x)b$ donc $(a \mid x) = (a \mid x)(a \mid b)$.

Si $(a \mid x) \neq 0$ alors $(a \mid b) = 1$ et donc b = a.

Par contraposée si $a \neq b$ alors $(a \mid x) = 0$ et x = 0 donc f bijective.

En revanche si a = b alors $a \in \ker f$ et f n'est pas bijective.

b) Supposons $a \neq b$. Si y = f(x) alors $y = x - (a \mid x)b$ puis

 $(a \mid y) = (a \mid x)(1 - (a \mid b))$ et donc

$$x = y + \frac{(a \mid y)}{1 - (a \mid b)}b$$

$$f(x) = \lambda x \Leftrightarrow (a \mid x)b = (1 - \lambda)x$$

Soit λ une valeur propre. Il existe $x \neq 0$ tel que $f(x) = \lambda x$ donc $(a \mid x)b = (1 - \lambda)x$ puis $(a \mid x)(a \mid b) = (1 - \lambda)(a \mid x)$ ce qui donne $(a \mid x) = 0$ (qui implique $\lambda = 1$ avec $E_{\lambda}(f) = \{a\}^{\perp}$) ou $\lambda = 1 - (a \mid b)$.

Si $(a \mid b) = 0$: $\lambda = 1$ est seule valeur propre et l'espace propre associé est l'hyperplan de vecteur normal a.

L'endomorphisme n'est alors pas diagonalisable.

Si $(a \mid b) \neq 0$: $\lambda = 1$ et $\lambda = 1 - (a \mid b)$ sont valeurs propres et puisque $E_1(f)$ est un hyperplan, l'endomorphisme est diagonalisable.

Exercice 22 : [énoncé]

Soient u un vecteur unitaire tel que $a \in \text{Vect} u$ et v un vecteur unitaire orthogonal à v tel que $b \in \text{Vect}(u, v)$. Il suffit ensuite de travailler dans $(u, v, u \land v)$. Soit $x \neq 0$.

$$f(x) = \lambda x \Leftrightarrow (\lambda + 1)x = (a \mid x)a$$

Si x est orthogonal à a alors x est vecteur propre associé à la valeur propre -1. Sinon x est vecteur propre si, et seulement si, x est colinéaire à a. Or f(a) = 0 donc a, puis x, est vecteur propre associé à la valeur propre 0.

On reconnaît en f l'opposé de la projection orthogonale sur le plan de vecteur normal a.

Exercice 23 : [énoncé]

Cas n = 1.

Supposons disposer de vecteurs x_1, x_2, x_3 tels que

$$\forall i \neq j, (x_i \mid x_j) < 0$$

Puisque $x_1 \neq 0$, (x_1) est une base de E.

Cela permet d'écrire $x_2 = \lambda x_1$ et $x_3 = \mu x_1$.

 $(x_2 \mid x_1) < 0$ et $(x_3 \mid x_1) < 0$ donne $\lambda < 0$ et $\mu < 0$ mais alors

$$(x_2 \mid x_3) = \lambda \mu \|x_1\|^2 > 0!$$

Cas n=2.

Supposons disposer de vecteurs $x_1, ..., x_4$ tels que

$$\forall i \neq j, (x_i \mid x_j) < 0$$

 x_1 étant non nul on peut écrire

$$\forall i \geqslant 2, x_i = \lambda_i x_1 + y_i$$

avec $y_i \in \{x_1\}^{\perp}$ et $\lambda_i < 0$.

Oı

$$\forall i \neq j \geq 2, (x_i \mid x_j) = \lambda_i \lambda_i + (y_i \mid y_j) < 0$$

donc $(y_i \mid y_i) < 0$.

 y_2, y_3, y_4 se positionnant sur la droite $\{x_1\}^{\perp}$, l'étude du cas n=1 permet de conclure.

Cas général.

Par récurrence sur $n \ge 1$.

Pour n = 1: ci-dessus

Supposons la propriété établie au rang $n \ge 1$.

Supposons disposer de vecteurs $x_1, ..., x_{n+3}$ tels que

$$\forall i \neq j, (x_i \mid x_j) < 0$$

à l'intérieur d'un espace vectoriel euclidien de dimension n+1. x_1 étant non nul on peut écrire

$$\forall i \geqslant 2, x_i = \lambda_i x_1 + y_i$$

avec $y_i \in \{x_1\}^{\perp}$ et $\lambda_i < 0$.

On a

$$\forall i \neq j \geqslant 2, (x_i \mid x_j) = \lambda_i \lambda_j + (y_i \mid y_j) < 0$$

donc $(y_i \mid y_i) < 0$.

 $y_2,...,y_{n+2}$ se positionnant sur le sous-espace vectoriel $\{x_1\}^{\perp}$ qui est de dimension n, l'hypothèse de récurrence permet de conclure.

Récurrence établie.

Exercice 24: [énoncé]

Soit $x \in \text{Vect}(e_1, \dots, e_n)^{\perp}$. On a

$$||x||^2 = \sum_{k=1}^n |(e_k \mid x)|^2 = 0$$

donc $\operatorname{Vect}(e_1, \dots, e_n)^{\perp} = \{0\}$ puis $\operatorname{Vect}(e_1, \dots, e_n) = E$. Par suite (e_1, \dots, e_n) est génératrice et c'est bien entendu une famille libre donc une base de E.

Exercice 25: [énoncé]

 $\forall x, y \in E, (f(x+y) \mid x+y) = 0, \text{ or } (f(x+y) \mid x+y) = (f(x) \mid x) + (f(y) \mid y) + (f(x) \mid y) + (f(y) \mid x) = (f(x) \mid y) + (f(y) \mid x).$ So $x \in \ker f$ along $\forall y \in F$ $(x \mid f(y)) = -(f(x) \mid y) = 0$ done $x \in (\operatorname{Im} f)^{\perp}$. Aim

Si $x \in \ker f$ alors $\forall y \in E, (x \mid f(y)) = -(f(x) \mid y) = 0$ donc $x \in (\operatorname{Im} f)^{\perp}$. Ainsi $\ker f \subset (\operatorname{Im} f)^{\perp}$.

De plus par le théorème du rang il y égalité des dimensions donc $\ker f = (\operatorname{Im} f)^{\perp}$.

Exercice 26 : [énoncé]

a) Soit (e_1, \ldots, e_n) une base orthonormée de E. tru = 0 donne

$$\sum_{i=1}^{n} \langle e_i \mid u(e_i) \rangle = 0$$

Si $\dim E=1:\operatorname{ok}$

Si dim E > 1, il existe $i \neq j$ tel que $\langle e_i \mid u(e_i) \rangle \geqslant 0$ et $\langle e_j \mid u(e_j) \rangle \leqslant 0$. L'application $t \mapsto \langle u(te_i + (1-t)e_j) \mid te_i + (1-t)e_j \rangle$ est continue, à valeurs réelles et change de signe, en vertu du théorème des valeurs intermédiaires, elle s'annule et donc il existe $t \in [0,1]$ tel que pour $x = te_i + (1-t)e_j$, $\langle u(x) \mid x \rangle = 0$. De plus, l'indépendance de e_i et e_j assure $x \neq 0$.

b) Il existe ε_1 vecteur unitaire tel que

$$\langle \varepsilon_1 \mid u(\varepsilon_1) \rangle = 0$$

On complète celui-ci en une base orthonormée $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$. La matrice de u dans cette base est de la forme

$$\left(\begin{array}{cc} 0 & \star \\ \star & A \end{array}\right)$$

avec $\operatorname{tr} A=0$. Considérons alors u' l'endomorphisme de $E'=\operatorname{Vect}(\varepsilon_2,\ldots,\varepsilon_n)$ de matrice A dans la base $(\varepsilon_2,\ldots,\varepsilon_n)$. Puisque $\operatorname{tr} u'=\operatorname{tr} A=0$, un principe de récurrence permet de former une base orthonormée $(\varepsilon_2',\ldots,\varepsilon_n')$ de E' dans laquelle u' est représenté par une matrice de diagonale nulle. La famille $(\varepsilon_1,\varepsilon_2',\ldots,\varepsilon_n')$ est alors une base orthonormée solution du problème posé.

Exercice 27: [énoncé]

On remarque que

$$\langle v_i \mid \lambda_1 v_1 + \cdots + \lambda_n v_n \rangle = c\lambda_1 + \cdots + c\lambda_{i-1} + \lambda_i + c\lambda_{i+1} + \cdots + c\lambda_n.$$

Considérons la matrice
$$A = \begin{pmatrix} 1 & (c) \\ & \ddots \\ (c) & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Supposons la famille (v_1, \ldots, v_n) libre.

Si $X = {}^t(x_1 \dots x_n) \in \ker A$ alors en posant $u = x_1v_1 + \dots + x_nv_n$ on a $\forall 1 \leq i \leq n, \langle v_i, u \rangle = 0$.

On en déduit $u \in \text{Vect}(v_1, \dots, v_n)^{\perp}$ et donc u = 0.

Ainsi $x_1 = \ldots = x_n = 0$ et donc la matrice A est inversible.

Inversement, supposons la matrice A inversible.

Si $\lambda_1 v_1 + \cdots + \lambda v_n = 0$ alors pour $X = {}^t (\lambda_1 \dots \lambda_n)$, AX = 0 donc X = 0 puis $\lambda_1 = \dots = \lambda_n = 0$ et donc la famille (v_1, \dots, v_n) est libre.

Enfin, puisque det $A = (1 + (n-1)c)(1-c)^{n-1}$, la condition nécessaire et suffisante cherchée est $c \neq 1$ et $c \neq -1/(n-1)$.

Exercice 28 : [énoncé]

 $p_F(x) = \sum_{k=1}^{p} (x_k \mid x) x_k \text{ donc } p_F(e_i) = \sum_{k=1}^{n} ({}^t X_k E_i) x_k \text{ en notant } E_i = \text{Mat}_{\mathcal{B}}(e_i).$

Puisque tX_kE_i est un réel, $\operatorname{Mat}_{\mathcal{B}}(p_F(e_i)) = \sum_{k=1}^n X_k{}^tX_kE_i$ puis

$$\operatorname{Mat}_{\mathcal{B}}(p_F) = \sum_{k=1}^{p} X_k^t X_k \operatorname{car}(E_1 \mid \dots \mid E_n) = I_n.$$

Exercice 29 : [énoncé]

On sait déjà $\sum_{n=0}^{+\infty} |(e_n \mid x)|^2 \leq ||x||^2$ en vertu de l'inégalité de Bessel. Pour tout $\varepsilon > 0$, il existe $y \in V$ tel que $||x - y|| \leq \varepsilon$. y est une combinaison linéaire des

 $(e_n)_{n\in\mathbb{N}}$ donc il existe $N\in\mathbb{N}$ tel que $y\in\mathrm{Vect}(e_0,\ldots,e_N)$ et donc $\varepsilon\geqslant \|x-y\|\geqslant \|x-p(x)\|$ avec p(x) le projeté de x sur $\mathrm{Vect}(e_0,\ldots,e_N)$

c'est-à-dire $p(x) = \sum_{n=0}^{N} (e_n \mid x)e_n$. Par suite $|||x|| - ||p(x)||| \le ||x - p(x)|| \le \varepsilon$ donne

$$||x|| \le ||p(x)|| + \varepsilon = \sqrt{\sum_{n=0}^{N} |(e_n \mid x)|^2} + \varepsilon \le \sqrt{\sum_{n=0}^{+\infty} |(e_n \mid x)|^2} + \varepsilon \text{ puis quand } \varepsilon \to 0,$$

on obtient $||x|| \le \sqrt{\sum_{n=0}^{+\infty} |(e_n | x)|^2}$ et finalement $||x||^2 = \sum_{n=0}^{+\infty} |(e_n | x)|^2$.

Exercice 30 : [énoncé]

a) (i)⇒(ii) par le théorème de Pythagore.

(ii) \Rightarrow (i) Supposons (ii). Pour $x \in \text{Im} p$ et $y \in \ker p$, $p(x + \lambda y) = x$ donc

$$||x||^2 \leqslant ||x + \lambda y||^2$$

puis

$$0 \leqslant 2\lambda(x \mid y) + \lambda^2 \|y\|^2$$

Cette relation devant être valable pour tout $\lambda \in \mathbb{R}$, on a $(x \mid y) = 0$.

Par suite Im p et ker p sont orthogonaux et donc p est une projection orthogonale. (i) \Rightarrow (iii) car en décomposant x et y on observe

$$(p(x) | y) = (p(x) | p(y)) = (x | p(y))$$

(iii) \Rightarrow (i) car Im $p = \text{Im}p^* = (\ker p)^{\perp}$.

b) α) $(p \circ q \circ p)^* = p \circ q \circ p$ car $p^* = p$ et $q^* = q$.

 β) $(\operatorname{Im} p + \ker q)^{\perp} = (\operatorname{Im} p)^{\perp} \cap (\ker q)^{\perp} = \ker p \cap \operatorname{Im} q$.

 γ) $p \circ q \circ p$ est autoadjoint donc diagonalisable. De plus Imp est stable par $p \circ q \circ p$ donc il existe donc une base (e_1, \ldots, e_r) de Imp diagonalisant l'endomorphisme induit par $p \circ q \circ p$. On a alors $(p \circ q \circ p)(e_i) = \lambda_i e_i$ avec $\lambda_i \in \mathbb{R}$. Or $e_i \in \text{Im} p$ donc $p(e_i) = e_i$ puis

$$(p \circ q)(e_i) = \lambda_i e_i$$

On complète cette famille de vecteurs propres de $p \circ q$ par des éléments de $\ker q$ pour former une base de $\operatorname{Im} p + \ker q$. Sur ces vecteurs complétant, q est nul donc $p \circ q$ aussi.

Enfin, on complète cette dernière famille par des éléments de $\operatorname{Im} q \cap \ker p$ pour former une base de E. Sur ces vecteurs complétant, $p \circ q$ est nul car ces vecteurs sont invariants par q et annule p. Au final, on a formé une base diagonalisant $p \circ q$.

Exercice 31 : [énoncé]

a) Rappelons que les projections orthogonales sont autoadjointes.

On a $(p \circ q \circ p)^* = p^* \circ q^* \circ p^* = p \circ q \circ p$ donc $p \circ q \circ p$ est un endomorphisme autoadjoint; on en déduit qu'il est diagonalisable.

Soit λ une valeur propre de $p \circ q \circ p$ et x un vecteur propre associé, $x \neq 0$. D'une part $(p \circ q \circ p(x) \mid x) = \lambda ||x||^2$.

D'autre part $(p \circ q \circ p(x) \mid x) = (q \circ p(x) \mid p(x)) = (q^2 \circ p(x) \mid p(x)) = ||q(p(x))||^2$. Or puisque p et q sont des projections orthogonales

 $0 \le \|q(p(x))\|^2 \le \|p(x)\|^2 \le \|x\|^2.$

Par suite $\lambda \geqslant 0$ et $\lambda \leqslant 1$.

b) $(\operatorname{Im} p + \ker q)^{\perp} = (\operatorname{Im} p)^{\perp} \cap (\ker q)^{\perp} = \ker p \cap \operatorname{Im} q$.

c) De plus $\operatorname{Im} p$ est stable par l'endomorphisme diagonalisable $p \circ q \circ p$, il existe donc une base (e_1, \dots, e_r) de $\operatorname{Im} p$ diagonalisant l'endomorphisme induit par $p \circ q \circ p$. On a alors $(p \circ q \circ p)(e_i) = \lambda_i e_i$ avec $\lambda_i \in \mathbb{R}$. Or $e_i \in \operatorname{Im} p$ donc $p(e_i) = e_i$ puis $(p \circ q)(e_i) = \lambda_i e_i$. On complète cette famille de vecteurs propres de $p \circ q$ par des éléments de $\ker q$ pour former une base de $\operatorname{Im} p + \ker q$. Sur ces vecteurs complétant, q est nul donc $p \circ q$ aussi. Enfin, on complète cette dernière famille par des éléments de $\operatorname{Im} q \cap \ker p$ pour former une base de E. Sur ces vecteurs complétant, $p \circ q$ est nul car ces vecteurs sont invariants par q et annule p. Au final, on a formé une base diagonalisant $p \circ q$.

Enfin, par l'étude qui précède, les valeurs propres de $p \circ q$ non nulle sont valeurs propres de $p \circ q \circ p$ donc comprises entre 0 et 1.

Exercice 32 : [énoncé]

Notons que les matrices A et B sont des matrices de projections orthogonales car symétriques et idempotentes.

Les cas $A = O_2$ et $A = I_2$ sont immédiats. De même pour les cas $B = O_2$ et $B = I_2$.

On suppose dans la suite ces cas exclus et on travaille donc sous l'hypothèse supplémentaires

$$rgA = rgB = 1$$

a) Si $\text{Im}B = \ker A$ alors $AB = O_2$ est donc AB est diagonalisable.

Si $\text{Im}B = \ker A$ alors en passant à l'orthogonal $\text{Im}A \neq \ker B$.

Les droites $\operatorname{Im} A$ et $\ker B$ étant distinctes dans le plan, elles sont supplémentaires. Considérons une base (X_1,X_2) adaptée à la supplémentarité de $\operatorname{Im} A$ et $\ker B$. $ABX_1=A(BX_1)\in\operatorname{Im} A$ donc on peut écrire $ABX_1=\lambda X_1$ car $\operatorname{Im} A=\operatorname{Vect} X_1$. $ABX_2=0$ car $BX_2=0$.

Ainsi la base (X_1, X_2) diagonalise la matrice AB.

b) Il s'agit ici essentiellement d'encadrer la valeur λ introduite dans l'étude précédente quand ${\rm Im} B \neq {\rm ker}\, A.$

On a

$$\lambda \|X_1\|^2 = (\lambda X_1 \mid X_1) = (ABX_1 \mid X_1)$$

Puisque $X_1 \in \text{Im} A$, on peut écrire $X_1 = AU$ et alors

$$(\lambda X_1 \mid X_1) = (ABAU \mid AU)$$

Puisque A est symétrique

$$(ABAU \mid AU) = (BAU \mid A^2U)$$

Puisque $A^2 = A$

$$(BAU \mid A^2U) = (BAU \mid AU)$$

Enfin en procédant de façon semblable

$$(BAU \mid AU) = (B^2AU \mid AU) = (BAU \mid BAU) = ||BX_1||^2$$

Au final

$$\lambda \|X_1\|^2 = \|BX_1\|^2$$

Or B correspond à une projection orthogonale donc $||BX_1||^2 \le ||X_1||^2$ et on peut affirmer

$$\lambda \in [0,1]$$

Exercice 33 : [énoncé]

a) Si la famille (u_1, \ldots, u_p) est liée alors il existe $(\lambda_1, \ldots, \lambda_p) \neq (0, \ldots, 0)$ tel que $\sum_{i=1}^{p} \lambda_i u_i = o$ et on observe alors $\sum_{i=1}^{n} \lambda_i L_i = 0$ en notant L_1, \ldots, L_n les lignes de la matrice $G(u_1, \ldots, u_p)$. On conclut $\det G(u_1, \ldots, u_p) = 0$.

Si det
$$G(u_1, \ldots, u_p) = 0$$
 alors il existe $(\lambda_1, \ldots, \lambda_p) \neq (0, \ldots, 0)$ tel que $\sum_{i=1}^n \lambda_i L_i = 0$

et on obtient alors que le vecteur $\sum_{i=1}^{n} \lambda_i u_i$ est orthogonal à tout u_j c'est donc un vecteur commun à $Vect(u_1, \ldots, u_p)$ et à son orthogonal, c'est le vecteur nul. On conclut que la famille (u_1, \ldots, u_n) est liée.

b) x = u + n avec $u \in F$ et $n \in F^{\perp}$. En développant $\det G(e_1, \dots, e_p, x)$ selon la dernière colonne:

$$\det G(e_1, \dots, e_p, u + n) = \det G(e_1, \dots, e_p, u) + \begin{vmatrix} G(e_1, \dots, e_p) & 0 \\ \star & ||n||^2 \end{vmatrix}$$

or $\det G(e_1,\ldots,e_n,u)=0$ car la famille est liée et donc

$$\det G(e_1, \dots, e_p, x) = ||n||^2 \det G(e_1, \dots, e_p)$$

avec ||n|| = d(x, F).

Exercice 34: [énoncé]

a) Sans difficulté, notamment parce qu'un polynôme de degré ≤ 2 possédant trois racines est nul.

b)
$$d(X^2, P) = ||X^2 - \pi||$$
 avec $\pi = aX + b$ projeté orthogonal de X^2 sur P . $(X^2 - \pi \mid 1) = (X^2 - \pi \mid X) = 0$ donne le système

$$\begin{cases} 3a + 3b = 5 \\ 5a + 3b = 9 \end{cases}$$

Après résolution

$$\begin{cases} a = 2 \\ b = -1/3 \end{cases}$$

et après calcul

$$d = \sqrt{2/3}$$

Exercice 35 : [énoncé]

En introduisant sur $\mathbb{R}[X]$ le produit scalaire : $(P \mid Q) = \int_0^1 P(t)Q(t)dt$, la quantité cherchée est $m = d(X^3, \mathbb{R}_2[X])^2 = ||X^3 - p(X^3)||^2$ avec p la projection orthogonale sur $\mathbb{R}_2[X]$.

 $p(X^3) = a + bX + cX^2$ avec $(p(X^3) \mid X^i) = (X^3 \mid X^i)$ pour i = 0, 1, 2. La résolution du système ainsi obtenu donne a = 1/20, b = -3/5 et c = 3/2. $m = ||X^3 - p(X^3)||^2 = (X^3 - p(X^3) | X^3) = \frac{1}{2800}$

Exercice 36: [énoncé]

a) symétrie, bilinéarité et positivité : ok

Si $\varphi(P,P) = 0$ alors $\int_0^{+\infty} P^2(t) e^{-t} dt = 0$ donc (fonction continue positive d'intégrale nulle) $\forall t \in \mathbb{R}^+, P(t) = 0.$

Comme le polynôme P admet une infinité de racines, c'est le polynôme nul.

b) Par intégration par parties, $\int_0^{+\infty} t^n e^{-t} dt = n! \operatorname{donc} \varphi(X^p, X^q) = (p+q)!$

c)
$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} e^{-t} (t^2 - (at+b))^2 dt = d(X^2, \mathbb{R}_1[X])^2 = ||X^2 - \pi||^2$$
 avec

 $\pi = aX + b$ le projeté orthogonal de X^2 sur $\mathbb{R}_1[X]$.

$$(X^{2} - \pi \mid 1) = (X^{2} - \pi \mid X) = 0 \text{ donne } \begin{cases} a + b = 2 \\ 2a + b = 6 \end{cases}, \begin{cases} a = 4 \\ b = -2 \end{cases} \text{ puis }$$

$$\inf_{(a,b) \in \mathbb{R}^{2}} \int_{0}^{+\infty} e^{-t} (t^{2} - (at + b))^{2} dt = 4.$$

Exercice 37 : [énoncé]

Le cas n=1 étant évident, on suppose désormais $n \ge 2$.

La quantité cherchée est m = d(M, Vect(I, J)) = ||M - p(M)|| avec p la projection orthogonale sur Vect(I, J).

p(M) = aI + bJ avec (p(M) | I) = (M | I) = tr(M) et $(p(M) | J) = (M | J) = \sigma$ avec σ la somme des coefficients de M.

La résolution de ce système donne
$$a = \frac{n \operatorname{tr}(M) - \sigma}{n(n-1)}$$
 et $b = \frac{\sigma - \operatorname{tr}(M)}{n(n-1)}$.
 $m^2 = \|M - p(M)\|^2 = (M - p(M) \mid M) = \|M\|^2 - \frac{(n-1)\operatorname{tr}(M)^2 + (\operatorname{tr}(M) - \sigma)^2}{n(n-1)}$.

Exercice 38 : [énoncé]

En introduisant l'espace E des fonctions réelles f continues sur]0,1] telles que $t \mapsto (tf(t))^2$ soit intégrable et en munissant cet espace du produit scalaire

$$(f \mid g) = \int_0^1 t^2 f(t)g(t) dt$$

la quantité cherchée est : $m=d(f,F)^2$ avec $f:t\mapsto \ln t$ et $F=\mathrm{Vect}(f_0,f_1)$ où $f_0(t)=1$ et $f_1(t)=t$.

 $m = ||f - p(f)||^2$ avec p la projection orthogonale sur F.

p(f)(t) = a + bt avec $(p(f) \mid f_0) = (f \mid f_0)$ et $(p(f) \mid f_1) = (f \mid f_1)$.

La résolution du système ainsi obtenu donne a = 5/3 et b = -19/12.

 $m = ||f - p(f)||^2 = (f - p(f) | f) = 1/432.$

Exercice 39 : [énoncé]

a) Pour $P, Q \in E$, la fonction $t \mapsto P(t)Q(t)e^{-t}$ est définie et continue par morceaux sur $[0, +\infty[$ et vérifie

$$t^2 P(t) Q(t) e^{-t} \xrightarrow[t \to +\infty]{} 0$$

On peut donc affirmer que cette fonction est intégrable sur $[0, +\infty[$ ce qui assure la bonne définition de \langle , \rangle .

On vérifie aisément que $\langle \, , \rangle$ est une forme bilinéaire symétrique positive. Si $\langle P,P\rangle=0$ alors par nullité de l'intégrale d'une fonction continue positive

$$\forall t \in [0, +\infty[, P(t)]^2 e^{-t} = 0$$

On en déduit que le polynôme P admet une infinité de racines et donc P=0.

b) Pour $k \ge 1$ ou k = 0, on peut affirmer que les polynômes P_k et P'_k sont orthogonaux.

Par une intégration par parties

$$0 = \int_0^{+\infty} P_k'(t) P_k(t) e^{-t} dt = \frac{1}{2} \left[P_k(t)^2 e^{-t} \right]_0^{+\infty} + \frac{1}{2} \int_0^{+\infty} P_k(t)^2 e^{-t} dt$$

On en déduit

$$P_k(0)^2 = \|P_k\|^2 = 1$$

c) F est un hyperplan (car noyau de la forme linéaire non nulle $P \mapsto P(0)$). Son orthogonal est donc une droite vectorielle. Soit Q un vecteur directeur de celle-ci. On peut écrire

$$Q = \sum_{k=0}^{n} \langle P_k, Q \rangle P_k$$

Or

$$\langle P_k, Q \rangle = \langle P_k - P_k(0), Q \rangle + P_k(0) \langle 1, Q \rangle$$

Puisque le polynôme $P_k - P_k(0)$ est élément de F, il est orthogonal à Q et l'on obtient

$$\langle P_k, Q \rangle = P_k(0) \langle 1, Q \rangle$$

ce qui permet d'écrire

$$Q = \lambda \sum_{k=0}^{n} P_k(0) P_k \text{ avec } \lambda = \langle 1, Q \rangle \neq 0$$

On en déduit

$$d(1, F^{\perp}) = \frac{|\langle 1, Q \rangle|}{\|Q\|} = \frac{1}{\sqrt{\sum_{k=0}^{n} P_k(0)^2}} = \frac{1}{\sqrt{n+1}}$$

Enfin par Pythagore

$$||1||^2 = d(1, F)^2 + d(1, F^{\perp})^2$$

et l'on obtient

$$d(1,F) = \sqrt{\frac{n}{n+1}}$$

Figure 1 – La fonction f