31269: Business Requirements Modeling

Week 8 Lecture:

Object Oriented Models - Class Modelling

Object Oriented Modelling

Last Half: Structured Analysis

- ☑ What info do we need; where to get it?

This Half: Object Oriented Analysis

- Use Case Modelling

- State and Event Modelling

Objectives

- Appreciate how Object Oriented (OO) modelling techniques can help to understand the working of business systems
- Discover why system specifications are important and how OO modeling can be used to specify systems and user requirements
- Use object oriented system analysis techniques to develop a system model (Class Diagram/Model)

Topics

Components of a Class Diagram

Relationship between Classes

Rules for Class Diagram

Class Diagram

- ➤ A Class Diagram is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, operations (or methods), and the relationships among classes/objects.
- The class diagram is the main building block of object oriented modelling.
- It is used both for general conceptual modelling of the application, and for detailed modelling translating the models into programming code.
- Class diagram is not only used for visualizing, describing and documenting different aspects of a system but also for constructing executable code of the software application.

Class Diagram – Example 1

Class Diagram Example 2

Class Diagram Example 3

Class

- A class is an abstract definition of an object.
- A class is a plan or a blueprint from which one or more objects can be created. Whereas an object represents real world things, both tangible and intangible.
- A class is a description of a set of objects that share the same:
 - Attributes
 - Operations
 - ► Relationships
- Graphically, a class is rendered as a rectangle, usually including its name, attributes, and operations in separate, designated compartments.

Class

- A class is comprised of attributes and operations (methods) that manipulate these attributes.
- Real-world objects share two characteristics: They all have state (attributes/fields) and behavior (methods/operations).

Class Name
Attributes
Operations

Classes

Figure 18.1 An example of a UML class. A class is depicted as a rectangle consisting of the class name, attributes, and methods.

Attributes/fields

 Attributes: Attributes describe the characteristics or are a description of a class. In the class diagram, attributes appear in the second compartment just below the name-compartment.

Person

name : String

address : String

birthdate: Date

age : Int

- •A class stores its **state** in attributes and the keyword to identify attributes from a specification is **'has'**, indicating what a class has.
- You can specify the data type for each attribute.

Class Operations/Methods

Operations describe the **behavior** of a class and they appear in the third compartment.

Person

name : String

address : String

birthdate: Date

age : Int

eat()
sleep()
work()
play()

- They are actions that can be carried out by, or on, a class/object and the keyword to identify methods from a specification is 'can', indicating what an object can do.
- You can specify an operation by stating its signature: listing the name, type, and default value of all parameters.

Relationships

- There are four kinds of relationships between classes:
 - Associations
 - Aggregation
 - **Composition**
 - **▶** Generalisations

Associations

- An association is a relationship between classes that indicates meaningful and interesting connection.
- An association is represented as a bold unbroken line between two classes.
- Example: "A Person works for a Company"
- To clarify its meaning, an association may be named.
 - ➤ The name is represented as a label placed midway along the association line.
 - Usually a verb or a verb phrase.

Associations Multiplicity

Multiplicity

- An indication of how many objects may participate in the given relationship.
- Multiplicity is shown at the ends of an association.

Person 1..* works for 1 Company

- A person works for one company.
- A company has one or more people working in it.

Common Multiplicity

Multiplicity Indicators

Multiplicity Indicators

Exactly one	1
Zero or more	(0*)
One or more	1*
Zero or one	01
Specified range	24
Exactly three, five or eight	3,5,8

Aggregation and Composition Relationships

Aggregation and Composition relationship between classes is a special form of association that models a whole-part relationship between the whole and its parts.

Aggregation

- A special form of association that models a whole-part relationship between an aggregate (the whole) and its parts.
 - Models a "is a part of" relationship.

Aggregation

- Aggregation is a "has a" temporary structural relationship (weak association).
- Consists of a whole and its parts
- Examples:
 - Library has Books
 - Subject has Students
 - Constituency has Voters
- If the whole is removed, the part may still exist.
 - e.g. If Library is closed/removed, the Books may still exist
 - e.g. If Subject is closed/removed, the Students still exist
- Represented by a hollow white diamond at the end of the line that is not filled in, points to the class that holds the other class.

Composition

- A strong form of relationship.
- Shown with a filled-in black diamond at the end of a line.
- The whole has a responsibility for the parts.
- If the whole is removed, the parts are also removed.
- The life time of the part is dependent upon the whole.
 - ► The composite must manage the creation and destruction of its parts. Water is a part-of a Pond. (Pond is a composition of water)

Composition vs Aggregation

(A and B are classes)

- There is a whole part relationship between classes/objects in both.
- ► The distinction between aggregation and composition relationship depends on context of the problem.
- ► For example: **Composition:** Water is a part-of a Pond. (Pond is a composition of water) **Aggregation:** Pond has ducks and fishes (Pond aggregates ducks and fishes)
- Example2:
 Composition (Person, Heart, Hand), "sub objects" (Heart, Hand) will be destroyed as soon as Person is destroyed (dead).
- Aggregation (City, Tree, Car) "sub objects" (Tree, Car) may NOT be destroyed when City is destroyed.
- ► The bottom line is, composition stresses on **mutual existence**, and in aggregation, this property is NOT required.

Generalization Relationships

- ➤ A *generalization* relationship connects a subclass (child class) to its superclass (parent class).
- It denotes an inheritance of attributes and behavior from the superclass to the subclass and indicates a specialization in the subclass of the more general superclass.

Generalisation/Specialisation Relationships

Figure 18.22 A gen/spec diagram is a refined form of a class diagram.

Summary of Relationships between classes

Steps in Developing a Class Diagram

- Identify Classes
 - Nouns, concepts, place, people
 - E.g. Subject, Teacher, Administrator, Enrolment
- Identify Attributes
 - Possessive phrases; look for the word "has"
 - E.g. Student's name, id, code of the course
- Identify Operations/Methods
 - Verbs, verbal phrases; look for the word "can"
 - E.g. Student can enrol in a Subject
- Identify Relationships between classes
 - Association, composition, aggregation and generalisation
- Define Multiplicities

What do we have at this stage?

- Use Cases
 - Use case diagram
 - Scenarios/Use Case Narratives

Agreed by the users or their representatives

Class Diagram: (Where to from here?)

- User Stories (two weeks ago)
- Use Case Diagram (last week)
- Use Case Scenarios or Narratives (last week)
- Class Diagram (one diagram for the whole system)

Read the use case narratives for all use cases and identify Classes and its attributes and methods.

Exercise

- ► Ticketing System Example from last lecture
- ► Relate to Assignment 2

Use Case Diagram for Ticketing System

Steps in drawing a Class Diagram for Buy Ticket Use Case Narrative

- Refer the Buy Ticket use case narrative from last lecture, available in week 7 folder.
- Read the narrative and follow the following 3 steps:
 - ► Find Classes/Objects (look for nouns)
 - ► Identify attributes and methods for each class
 - Identify the relationship and multiplicities between classes.

Buy Ticket Use Case Narrative – from Week 7 Lecture

Buy Ticket Use Case Narrative

Use Case ID	UC101: Buy Ticket		
User Story	As a passenger, I want to buy a ticket via Online Ticketing System so that I		
	can travel from one city to another city in Australia.		
Goal	Buy a ticket online for traveling from one destination to another destination.		
Priority	Н		
Actors	Primary Actor – Passenger		
	Secondary Actor – Credit Card System, Printing System		
Pre-conditions	, , ,		
	The passenger has a valid credit card.		
Post-conditions	The passenger has successfully bought the ticket via the Online Ticketing		
	System.		
Trigger The passenger launches the Online Ticketing (OT) system via the			
	browser.		
Main Flow	The (OT) system displays the OT system landing page and displays		
	the hyperlink to list the available tickets i.e. departure, destination,		
	types, dates and fare.		
	The passenger clicks on the hyperlink to list the available tickets.		
	2. The passenger cheks on the hyperlink to list the available tickets.		
	The OT system displays the available tickets to select from.		
	4. The passenger selects the desired ticket and presses the "Buy Ticket"		
	button.		
	5. The OT system displays the "Pay Fare" page for the selected ticket		
	and requests for payment.		
	6. The passenger chooses to "Pay via Credit Card".		
	o. The passenger chooses to Fay via Credit Card .		
	7. The OT system asks the passenger to enter their credit card details.		
	The of System asia the passenger to enter their creat said asians.		
	The passenger submits the credit card details.		
	The OT system checks the credit card number format and processes		
	the credit card details via the "Credit Card System".		
	Please see "UC102: Pay via Credit Card" for credit card payment		
	processing details.		
	40. The OT sustains accessfully received the maximum to the WO-124		
	10. The OT system successfully receives the payment via the "Credit		

Exercise – Draft Class Diagram for Ticketing System

Homework: Identify the missing associations, attributes and methods for each class in the above diagram.

Summary

- Classes
- Types
- Relationships
- Application Example

- Assignment 2 Hint: Convert ERD into Class Diagram
- So far you should have finished your User Stories and Use Case Narratives for assignment 2.
- Read the narratives and identify Classes and its attributes and methods.

Assignment 2 – Released Now

- Object Oriented Requirements Analysis and Specification Report – 18 Marks
- Same Case Study as Assignment 1: Customer Onboarding System (COS) for Epic Video
- Functional and non-functional requirements
 - Functional requirements using:
 - User Story Map
 - User Stories and Use Cases (narratives)
 - Sequence Diagram
 - Data Requirements using:
 - Class Diagram
 - State Transition Diagram
 - Non-functional requirements:
 - User Interface requirements using wireframes
 - Security requirements
 - ▶ Performance requirements

Assignment 2 Template: Template adapted in

	7.331811111CITE 2 Terriplate. Terriplate adapt		
	this subject		
1.	DOCUMENT MANAGEMENT	3.2.1 Use Case: Name of the Use Case	
1.1	REVISION HISTORY	3.2.2 Use Case:	
1.2	INTENDED AUDIENCE	3.3 SEQUENCE DIAGRAMS	
1.3	REFERENCE DOCUMENTS		
1.4	GLOSSARY	4. DATA REQUIREMENTS	
		4.1 CLASS DIAGRAM	
2.	INTRODUCTION	4.2 State Transition Diagram	
2.1	DOCUMENT PURPOSE		

PROJECT PURPOSE

PROJECT SCOPE

2.3.1 In Scope

2.3.2 Out of Scope

2.3

3.1

3.2

2.4 **ASSUMPTIONS**

FUNCTIONAL REQUIREMENTS

USER STORY MAP

USER STORIES AND USE CASES

NON-FUNCTIONAL REQUIREMENTS

USER INTERFACE REQUIREMENTS 5.2 **SECURITY REQUIREMENTS**

5.3 PERFORMANCE REQUIREMENTS

6. **BIBLIOGRAPHY**

7. **APPENDICES**

Conclusion

- This Week's Workshop
 - Quiz 6 Use Case Modelling (3 marks) and
 - ➤ Tasks Class Modelling

- Next Week's Lecture
 - Interaction Modelling
- Next Week's Workshop
 - Quiz 7 Class Modelling (3 marks) and
 - Tasks Interaction Modelling