Partiel du 9 mars 2021 (2 Heures)

Les documents, calculatrices et téléphones portables ne sont pas autorisés. Barème approximatif : 4pts + 6pts + 4pts + 6pts + 5pts

Exercice 1 On se place dans \mathbb{R}^3 muni du produit scalaire usuel et on considère les deux vecteurs $u = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ et $v = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$.

- a. Calculer les normes de u et v ainsi que leur produit scalaire.
- **b.** Trouver le vecteur $w = (x, y, z)^T$ tel que :

$$\begin{cases} x = 2 \\ x + 2y + 2z = 0 \\ 2x + y - 2z = 0 \end{cases}$$

c. La famille $\{u, v, w\}$ est-elle orthonormée ? Orthogonale ? Est-ce une base de \mathbb{R}^3 ?

Exercice 2 On considère l'espace vectoriel \mathbb{R}^4 muni du produit scalaire usuel et on se donne les trois vecteurs

$$x_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad x_2 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 2 \end{pmatrix}, \quad x_3 = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 1 \end{pmatrix}.$$

- 1. Grâce au procédé de Gram-Schmidt donner la famille orthonormée $\{u_1,u_2,u_3\}$ associée à la famille $\{x_1,x_2,x_3\}$.
- **2.** Soit $e = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Calculer $v = e \langle e|u_1\rangle u_1 \langle e|u_2\rangle u_2 \langle e|u_3\rangle u_3$ et justifier que v est orthogonal aux trois vecteurs u_1, u_2, u_3 .
- **3.** En déduire une équation cartésienne de $W = \text{Vect}\{x_1, x_2, x_3\}$.

Exercice 3 On pose $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes muni du produit scalaire définit par

$$\forall (P,Q) \in \mathbb{R}[X]^2, \quad \langle P|Q \rangle = \int_0^1 P(t)Q(t)dt.$$

- 1) Pour tous entiers naturels k et l calculer $\langle X^k | X^l \rangle$.
- 2) La famille $\{1, X, X^2\}$ est elle orthogonale?
- 3) Grâce au procédé de Gram-Schmidt, donner la famille orthogonale $\{V_1,V_2\}$ associée à $\{1,X\}$.
- 4) En déduire une base orthonormée de $F = \text{Vect}\{1, X\}$.

Exercice 4 Soit $(E, \langle | \rangle)$ un espace euclidien et u un vecteur non nul de E. On note $H = (\text{Vect}\{u\})^{\perp}$ et p la projection orthogonale sur H.

- 1) Montrer que pour tout $v \in E$, $p(v) = v \frac{\langle v|u \rangle}{||u||^2} u$.
- 2) On se place désormais dans \mathbb{R}^3 munit du produit scalaire usuel et on note P le plan d'équation cartésienne x-y+z=0
 - a. Donner un vecteur u qui engendre P^{\perp}
 - b. En déduire la matrice de la projection orthogonale sur P dans la base canonique de \mathbb{R}^3 .
 - c. Montrer que la distance du vecteur $v = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ au plan P est atteinte pour le vecteur $\begin{pmatrix} 2/3 \\ 4/3 \\ 2/3 \end{pmatrix}$ de P et vaut $1/\sqrt{3}$.

Exercice 5 On se place dans l'espace vectoriel \mathbb{R}^2 . Pour tous vecteurs $\vec{u}_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $\vec{u}_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ de \mathbb{R}^2 , on pose

$$\langle \vec{u}_1 | \vec{u}_2 \rangle = x_1 x_2 - \frac{1}{2} x_1 y_2 - \frac{1}{2} y_1 x_2 + y_1 y_2.$$

- 1. Montrer que l'application qui à tout $(\vec{u}_1, \vec{u}_2) \in \mathbb{R}^2 \times \mathbb{R}^2$ associe $\langle \vec{u}_1 | \vec{u}_2 \rangle$ est une forme bilinéaire symétrique sur \mathbb{R}^2 .
- 2. Si $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, montrer que

$$\langle \vec{u} | \vec{u} \rangle = \left(x - \frac{1}{2} y \right)^2 + \frac{3}{4} y^2$$

et en déduire que la forme bilinéaire est un produit scalaire sur \mathbb{R}^2 .

- 3. Les vecteurs $\vec{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\vec{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ sont-il orthogonaux dans cet espace euclidien ?
- 4. Trouver un vecteur \vec{k} non nul orthogonal à \vec{i} .

Fin du sujet