Finite Element Analysis of Rectangular Slab with Calcpad

Input data

Slab dimensions - a = 6 m, b = 4 m

Thickness - t = 0.1 m

Load - $q = 10 \text{ kN/m}^2$

Modulus of elasticity - E = 35000 MPa

Poisson's ratio - $\nu = 0.15$

Finite element mesh

We will use rectangular finite element with n = 16 DOFs

Number of elements along a and b - $n_a = 6$, $n_b = 4$

Total number of elements - $n_e = n_a \cdot n_b = 6 \cdot 4 = 24$

Total number of joints - $n_i = (n_a + 1) \cdot (n_b + 1) = (6 + 1) \cdot (4 + 1) = 35$

Element dimensions - $a_1 = \frac{a}{n_a} = \frac{6}{6} = 1$, $b_1 = \frac{b}{n_b} = \frac{4}{4} = 1$

Supported joints count - $n_s = 2 \cdot (n_a + n_b) = 2 \cdot (6 + 4) = 20$

Joint coordinates

$$\vec{x}_i = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 \ 2 \ 2 \ 2 \ 3 \ 3 \ 3 \ 3 \ \dots \ 6] \text{ m}$$

$$\vec{y}_j = [0\ 1\ 2\ 3\ 4\ 0\ 1\ 2\ 3\ 4\ 0\ 1\ 2\ 3\ 4\ 0\ 1\ 2\ 3\ 4\ \dots\ 4]$$
 m

Numbers of elements joints

$$transp(e_i) =$$

Supported joints

$$\vec{s}_i = [1 \ 6 \ 11 \ 16 \ 21 \ 26 \ 31 \ 5 \ 10 \ 15 \ 20 \ 25 \ 30 \ 35 \ 2 \ 3 \ 4 \ 32 \ 33 \ 34]$$

Coordinates of elements centers

$$j_e(e) = \operatorname{row}(e_j; e), \ x_c(e) = \frac{\operatorname{sum}\left(\operatorname{extract}\left(\vec{x}_j; j_e(e)\right)\right)}{4}, \ y_c(e) = \frac{\operatorname{sum}\left(\operatorname{extract}\left(\vec{y}_j; j_e(e)\right)\right)}{4}$$

Finite element formulation

Shape functions

Along dimension a

Base functions

$$\Phi_{1a}(\xi) = 1 - \xi^2 \cdot (3 - 2 \cdot \xi)$$

$$\Phi_{2a}(\xi) = \xi \cdot a_1 \cdot (1 - \xi \cdot (2 - \xi))$$

$$\Phi_{3a}(\xi) = \xi^2 \cdot (3 - 2 \cdot \xi)$$

$$\Phi_{4a}(\xi) = \xi^2 \cdot a_1 \cdot (-1 + \xi)$$

First derivatives

$$\Phi'_{1a}(\xi) = -6 \cdot \frac{\xi}{a_1} \cdot (1 - \xi)$$

$$\Phi'_{2a}(\xi) = 1 - \xi \cdot (4 - 3 \cdot \xi)$$

$$\Phi'_{3a}(\xi) = 6 \cdot \frac{\xi}{a_4} \cdot (1 - \xi)$$

$$\Phi'_{4a}(\xi) = -\xi \cdot (2 - 3 \cdot \xi)$$

Second derivatives

$$\Phi''_{1a}(\xi) = -\frac{6}{{a_1}^2} \cdot (1 - 2 \cdot \xi)$$

$$\Phi''_{2a}(\xi) = -\frac{2}{a_1} \cdot (2 - 3 \cdot \xi)$$

$$\Phi''_{3a}(\xi) = \frac{6}{{a_1}^2} \cdot (1 - 2 \cdot \xi)$$

$$\Phi''_{4a}(\xi) = -\frac{2}{a_1} \cdot (1 - 3 \cdot \xi)$$

Along dimension b

Base functions

$$\Phi_{1b}(\eta) = 1 - \eta^2 \cdot (3 - 2 \cdot \eta)$$

$$\Phi_{2h}(\eta) = \eta \cdot b_1 \cdot (1 - \eta \cdot (2 - \eta))$$

$$\Phi_{3b}(\eta) = \eta^2 \cdot (3 - 2 \cdot \eta)$$

$$\Phi_{4h}(\eta) = \eta^2 \cdot b_1 \cdot (-1 + \eta)$$

First derivatives

$$\Phi'_{1b}(\eta) = -6 \cdot \frac{\eta}{h_1} \cdot (1 - \eta)$$

$$\Phi'_{2b}(\eta) = 1 - \eta \cdot (4 - 3 \cdot \eta)$$

$$\Phi'_{3b}(\eta) = 6 \cdot \frac{\eta}{h_1} \cdot (1 - \eta)$$

$$\Phi'_{4h}(\eta) = -\eta \cdot (2 - 3 \cdot \eta)$$

Second derivatives

$$\Phi''_{1b}(\eta) = -\frac{6}{b_1^2} \cdot (1 - 2 \cdot \eta)$$

$$\Phi''_{2b}(\eta) = -\frac{2}{h} \cdot (2 - 3 \cdot \eta)$$

$$\Phi''_{3b}(\eta) = \frac{6}{h_{\bullet}^2} \cdot (1 - 2 \cdot \eta)$$

$$\Phi''_{4b}(\eta) = -\frac{2}{b_1} \cdot (1 - 3 \cdot \eta)$$

For vertical displacements

$$wN_{1,w}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{1b}(\eta)$$

$$N_{2,w}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{1b}(\eta)$$

$$N_{3,w}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{3b}(\eta)$$

$$N_{4,w}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{3b}(\eta)$$

For twist ψ

$$N_{1,\psi}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{2,\psi}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{3,h}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{4h}(\eta)$$

$$N_{4,\psi}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{4b}(\eta)$$

Shape functions vector

For rotations
$$\vartheta_x$$

$$N_{1\theta_n}(\xi;\eta) = \Phi_{2\alpha}(\xi) \cdot \Phi_{1h}(\eta)$$

$$N_{1,\theta_{\gamma}}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{2b}(\eta)$$

For rotations ϑ_{v}

$$N_{2,\theta_x}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{1b}(\eta)$$

$$N_{2,\theta_{\nu}}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{2b}(\eta)$$

$$N_{3,\theta_x}(\xi;\eta) = \Phi_{4a}(\xi) \cdot \Phi_{3b}(\eta)$$

$$N_{3,\theta_{\gamma}}(\xi;\eta) = \Phi_{3a}(\xi) \cdot \Phi_{4b}(\eta)$$

$$N_{4,\theta_x}(\xi;\eta) = \Phi_{2a}(\xi) \cdot \Phi_{3b}(\eta)$$

$$N_{4,\theta_{\gamma}}(\xi;\eta) = \Phi_{1a}(\xi) \cdot \Phi_{4b}(\eta)$$

$$\begin{split} N(i;\xi;\eta) &= \mathbf{take} \left(i; N_{1,w}(\xi;\eta); N_{1,\theta_{x}}(\xi;\eta); N_{1,\theta_{y}}(\xi;\eta); N_{1,\psi}(\xi;\eta); \right. \\ & \left. N_{2,w}(\xi;\eta); N_{2,\theta_{x}}(\xi;\eta); N_{2,\theta_{y}}(\xi;\eta); N_{2,\psi}(\xi;\eta); \right. \\ & \left. N_{3,w}(\xi;\eta); N_{3,\theta_{x}}(\xi;\eta); N_{3,\theta_{y}}(\xi;\eta); N_{3,\psi}(\xi;\eta); \right. \\ & \left. N_{4,w}(\xi;\eta); N_{4,\theta_{y}}(\xi;\eta); N_{4,\theta_{y}}(\xi;\eta); N_{4,\psi}(\xi;\eta) \right) \end{split}$$

Constitutive matrix (stress - strain relationship)

$$D = \frac{E \cdot t^3}{12 \cdot (1 - v^2)} \cdot \left[1; v; 0 \mid v; 1; 0 \mid 0; 0; \frac{1 - v}{2}\right] =$$

$$\frac{35000 \cdot 0.1^{3}}{12 \cdot (1 - 0.15^{2})} \cdot \left[1; 0.15; 0 \mid 0.15; 1; 0 \mid 0; 0; \frac{1 - 0.15}{2}\right] = \begin{bmatrix} 2.98 & 0.448 & 0 \\ 0.448 & 2.98 & 0 \\ 0 & 0 & 1.27 \end{bmatrix}$$

Strain-displacement matrix

$$B_{1}(j;\xi;\eta) = take(j;\Phi''_{1a}(\xi)\cdot\Phi_{1b}(\eta);\Phi''_{2a}(\xi)\cdot\Phi_{1b}(\eta);\Phi''_{1a}(\xi)\cdot\Phi_{2b}(\eta);\Phi''_{2a}(\xi)\cdot\Phi_{2b}(\eta);\Phi''_{3a}(\xi)$$

$$\cdot \Phi_{1b}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{1b}(\eta); \Phi''_{3a}(\xi) \cdot \Phi_{2b}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{2b}(\eta); \Phi''_{3a}(\xi)$$

$$\cdot \Phi_{3h}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{3h}(\eta); \Phi''_{3a}(\xi) \cdot \Phi_{4h}(\eta); \Phi''_{4a}(\xi) \cdot \Phi_{4h}(\eta); \Phi''_{1a}(\xi)$$

$$\cdot \Phi_{3b}(\eta); \Phi''_{2a}(\xi) \cdot \Phi_{3b}(\eta); \Phi''_{1a}(\xi) \cdot \Phi_{4b}(\eta); \Phi''_{2a}(\xi) \cdot \Phi_{4b}(\eta)$$

$$B_{2}(j;\xi;\eta) = \mathsf{take}(j;\Phi_{1a}(\xi) \cdot \Phi''_{1b}(\eta);\Phi_{2a}(\xi) \cdot \Phi''_{1b}(\eta);\Phi_{1a}(\xi) \cdot \Phi''_{2b}(\eta);\Phi_{2a}(\xi) \cdot \Phi''_{2b}(\eta);\Phi_{3a}(\xi)$$

$$\cdot \Phi''_{1b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{1b}(\eta); \Phi_{3a}(\xi) \cdot \Phi''_{2b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{2b}(\eta); \Phi_{3a}(\xi)$$

$$\cdot \Phi''_{3b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{3b}(\eta); \Phi_{3a}(\xi) \cdot \Phi''_{4b}(\eta); \Phi_{4a}(\xi) \cdot \Phi''_{4b}(\eta); \Phi_{1a}(\xi)$$

$$\cdot \Phi''_{3b}(\eta); \Phi_{2a}(\xi) \cdot \Phi''_{3b}(\eta); \Phi_{1a}(\xi) \cdot \Phi''_{4b}(\eta); \Phi_{2a}(\xi) \cdot \Phi''_{4b}(\eta)$$

$$B_{3}(j;\xi;\eta) = 2 \operatorname{take}(j;\Phi'_{1a}(\xi) \cdot \Phi'_{1b}(\eta);\Phi'_{2a}(\xi) \cdot \Phi'_{1b}(\eta);\Phi'_{1a}(\xi) \cdot \Phi'_{2b}(\eta);\Phi'_{2a}(\xi)$$

$$\cdot \Phi'_{2b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{1b}(\eta); \Phi'_{4a}(\xi) \cdot \Phi'_{1b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{2b}(\eta); \Phi'_{4a}(\xi)$$

$$\cdot \Phi'_{2b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{4a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{3a}(\xi) \cdot \Phi'_{4b}(\eta); \Phi'_{4a}(\xi)$$

$$\cdot \Phi'_{4b}(\eta); \Phi'_{1a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{2a}(\xi) \cdot \Phi'_{3b}(\eta); \Phi'_{1a}(\xi) \cdot \Phi'_{4b}(\eta); \Phi'_{2a}(\xi) \cdot \Phi'_{4b}(\eta) \Big)$$

$$B(j;\xi;\eta) = [B_1(j;\xi;\eta); B_2(j;\xi;\eta); B_3(j;\xi;\eta)]$$

$$x_1(e) = \vec{x}_{j,e_{j_{e_1}}}, y_1(e) = \vec{y}_{j,e_{j_{e_1}}}$$

The elements of the stiffness matrix will be calculated by using the equation

$$K_{e,ij} = a_1 \cdot b_1 \cdot \int_0^1 \int_0^1 B_i(\xi;\eta)^T \cdot D \cdot B_j(\xi;\eta) d\xi d\eta$$

Element stiffness matrix

(above the main diagonal only)

$$BTDB_e(i; j; \xi; \eta) = transp(B(i; \xi; \eta)) \cdot D \cdot B(j; \xi; \eta)$$

$$K_e(i;j) = a_1 \cdot b_1 \cdot \int_0^1 \int_0^1 BTDB_e(i;j;\xi;\eta) d\eta d\xi$$

$$Repeat \{Repeat \{K_{e,i,j} = K_e(i;j); j = i...n\}; i = 1...n\} = 0.333$$

$$K_e =$$

Element load vector

$$F_{e,i} = a_1 \cdot b_1 \cdot \int_0^1 \int_0^1 N_i(\xi; \eta)^T \cdot q \ d\xi \ d\eta$$

 $\vec{F}_e = [2.5 \ 0.417 \ 0.417 \ 0.07 \ 2.5 \ -0.417 \ 0.07 \ 2.5 \ -0.417 \ -0.417 \ 0.07 \ 2.5 \ 0.417 \ -0.417 \ -0.07] \, \text{kN}$

Solution

Global stiffness matrix K =

 1×10^{20} 9.78 9.78 2.02 -17.29 -0.827 6.26 0.488 1×10^{20} 0.935 0.15 0.935 0.333 -0.488 0.119 -0.0549 2.02 -0.488 1×10²⁰ -17.29 19.56 -17.29 -0.827 0.488 -0.827 0 0 1×10^{20} 0.488 1.72 0.15 1.87 6.26 -6.26 0.15 -0.0549 -0.119 0.15 0.488 0 0 1.87 0.667 -0.488 0.119 -0.0549 0 0 -0.488 1×10²⁰ 0 -6.26 19.56 0 -17.29 -0.827 19.56 0 0 -0.8270.239 -0.488 0.119 11.46 0 0 1×10^{20} 0 6.26 0.488 1.72 0.15 0 1.87 0 -0.119 0.15 -0.0549 0 1.87 0.667 -0.0549 0 0.488 0 -0.488 0.119 0.15 1×10²⁰ 19.56 -17.29 -0.827 -6.26 0 0 0 0 0 -0.827 0.239 -0.488 0.119 19.56 11.46 0 0 -0.827 0.239 0.488 $1{\times}10^{20}$ 0 6.26 0.488 1.72 0.15 1.87 -6.26 -0.4881.72 0 -0.119 0.15 -0.0549 0.667 0.119 0.15 0.488 0 0 1.87 -0.488 0 0 -17.29 -0.827 -6.26 -0.488 1×10^{20} 0 1×10^{20} 0 0 -0.827 0.239 -0.488 0.119 9.78 -2.47 0 0 0 0 0.488 1.72 0.15 -9.78 -2.47 1×10^{20} 0.935 6.26 0 -0.119 0.15 -0.0549 -2.02 -0.935 : 0 0 0 0 0 ... 0.333-0

Global load vector

 \vec{F} =[2.5 0.417 0.417 0.0694 5 0.833 0 0 5 0.833 0 0 5 0.833 0 0 2.5 0.417 -0.417 -0.0694 ... 0.0694] kN Solution of the system of equations

 $\vec{Z} = \text{clsolve}(K; \vec{F}) = [0 \ 0 \ 0 \ 3.3 \ 0 \ 2.84 \ 0 \ 2.09 \ 0 \ 3.91 \ 0 \ 0 \ 0 \ 2.84 \ 0 \ -2.09 \ 0 \ 0 \ 0 \ -3.3 \ \dots \ 3.3] \ mm$

Results

Joint displacements

$$\mathbf{transp}(W_z) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2.58 & 4.21 & 4.75 & 4.21 & 2.58 & 0 \\ 0 & 3.59 & 5.87 & 6.63 & 5.87 & 3.59 & 0 \\ 0 & 2.58 & 4.21 & 4.75 & 4.21 & 2.58 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \text{mm}$$

$$\begin{bmatrix} 6; 4 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ -0.552 \\ -1.1 \\ -1.66 \\ -2.21 \\ -2.76 \\ -3.31 \\ -3.87 \\ -4.42 \\ -4.97 \\ -5.52 \\ -6.08 \\ -6.63 \end{bmatrix}$$

Maximal value -
$$w\left(\frac{a}{2}; \frac{b}{2}\right) = w\left(\frac{6}{2}; \frac{4}{2}\right) = 6.63 \ mm$$

Bending moments

$$Z_{j}(j) = \operatorname{slice}(\vec{Z}; k_{1} \cdot (j-1) + 1; k_{1} \cdot j)$$

$$Z_{e}(e) = \left[Z_{j}\left(e_{j_{.e,1}}\right); Z_{j}\left(e_{j_{.e,2}}\right); Z_{j}\left(e_{j_{.e,3}}\right); Z_{j}\left(e_{j_{.e,4}}\right)\right]$$

Results for element 15 and joint 18:

$$\vec{Z}_e = Z_e(e) = Z_e(15) = [6.63 \ 0 \ 0 \ 5.87 \ -1.52 \ 0 \ 0 \ 4.21 \ -1.08 \ -3.2 \ 0.84 \ 4.75 \ 0 \ -3.62 \ 0] \ mm$$

$$M_e(x; y) = -D \cdot B\left(\frac{x}{a_1}; \frac{y}{b_1}\right) \cdot Z_e(e)$$

$$\vec{M}_e = M_e(0;0) = [6.28 \ 12.74 \ 0] \, kNm/m$$

Average bending moments at joints, kNm/m - M_i =

$$\begin{bmatrix} 0 & 0.528 & 0.594 & 0.528 & 0 & 0.0845 & 4.11 & 5.45 & 4.11 & 0.0845 & 0.101 & 4.6 & 6.25 & 4.6 & 0.101 & 0.105 & 4.6 & 6.28 & 4.6 & 0.105 & \cdots & 0 \\ 0 & 0.0792 & 0.0892 & 0.0792 & 0 & 0.563 & 5.84 & 7.04 & 5.84 & 0.563 & 0.675 & 9.08 & 11.33 & 9.08 & 0.675 & 0.702 & 10.1 & 12.74 & 10.1 & 0.702 & \cdots & 0 \\ -8.38 & -5.31 & 0 & 5.31 & 8.38 & -6.18 & -4.22 & 0 & 4.22 & 6.18 & -3.05 & -2.13 & 0 & 2.13 & 3.05 & 0 & 0 & 0 & 0 & \cdots & -8.38 \end{bmatrix}$$

Bending moments for the plate

Bending moments - M_χ

$$\mathbf{transp}(Mx) = \begin{bmatrix} 0 & 0.0845 & 0.101 & 0.105 & 0.101 & 0.0845 & 0 \\ 0.528 & 4.11 & 4.6 & 4.6 & 4.6 & 4.11 & 0.528 \\ 0.594 & 5.45 & 6.25 & 6.28 & 6.25 & 5.45 & 0.594 \\ 0.528 & 4.11 & 4.6 & 4.6 & 4.6 & 4.11 & 0.528 \\ 0 & 0.0845 & 0.101 & 0.105 & 0.101 & 0.0845 & 0 \end{bmatrix} kNm/m$$

Maximal value -
$$M_x\left(\frac{a}{2};\frac{b}{2}\right) = M_x\left(\frac{6}{2};\frac{4}{2}\right) = 6.28 \text{ kNm/m}$$

Bending moments - $M_{
m v}$

$$\mathbf{transp}(My) = \begin{bmatrix} 0 & 0.563 & 0.675 & 0.702 & 0.675 & 0.563 & 0 \\ 0.0792 & 5.84 & 9.08 & 10.1 & 9.08 & 5.84 & 0.0792 \\ 0.0892 & 7.04 & 11.33 & 12.74 & 11.33 & 7.04 & 0.0892 \\ 0.0792 & 5.84 & 9.08 & 10.1 & 9.08 & 5.84 & 0.0792 \\ 0 & 0.563 & 0.675 & 0.702 & 0.675 & 0.563 & 0 \end{bmatrix} kNm/m$$

Maximal value -
$$M_y\left(\frac{a}{2};\frac{b}{2}\right) = M_y\left(\frac{6}{2};\frac{4}{2}\right) = 12.74 \text{ kNm/m}$$

Bending moments - $M_{
m XV}$

$$\mathbf{transp}(Mxy) = \begin{bmatrix} -8.38 & -6.18 & -3.05 & 0 & 3.05 & 6.18 & 8.38 \\ -5.31 & -4.22 & -2.13 & 0 & 2.13 & 4.22 & 5.31 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 5.31 & 4.22 & 2.13 & 0 & -2.13 & -4.22 & -5.31 \\ 8.38 & 6.18 & 3.05 & 0 & -3.05 & -6.18 & -8.38 \end{bmatrix} kNm/m$$

Maximal value - $M_{xy}(0;0) = -8.38 \text{ kNm/m}$

Solution with SAP 2000 structural analysis software

Input data

STATIC LOAD CASES

STATIC CASE SELF WT CASE TYPE FACTOR LOAD1 DEAD 0.0000

JOINT DATA

JOINT	GLOBAL-X	GLOBAL-Y	GLOBAL-Z	R	ES.	TRΑ	ΔII	NT:	S	ANGLE-A	ANGLE-B	ANGLE-C
1	-3.00000	-2.00000	0.00000	0	0	1	1	1	0	0.000	0.000	0.000
2	-3.00000	-1.00000	0.00000	0	0	1	1	0	0	0.000	0.000	0.000
3	-3.00000	0.00000	0.00000	0	0	1	1	0	0	0.000	0.000	0.000
4	-3.00000	1.00000	0.00000	0	0	1	1	0	0	0.000	0.000	0.000
5	-3.00000	2.00000	0.00000	0	0	1	1	1	0	0.000	0.000	0.000
6	-2.00000	-2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
7	-2.00000	-1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
8	-2.00000	0.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
9	-2.00000	1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
10	-2.00000	2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
11	-1.00000	-2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
12	-1.00000	-1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
13	-1.00000	0.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
14	-1.00000	1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
15	-1.00000	2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
16	0.00000	-2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
17	0.00000	-1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
18	0.00000	0.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
19	0.00000	1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
20	0.00000	2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
21	1.00000	-2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
22	1.00000	-1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
23	1.00000	0.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
24	1.00000	1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
25	1.00000	2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000

26	2.00000	-2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
27	2.00000	-1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
28	2.00000	0.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
29	2.00000	1.00000	0.00000	0	0	0	0	0	0	0.000	0.000	0.000
30	2.00000	2.00000	0.00000	0	0	1	0	1	0	0.000	0.000	0.000
31	3.00000	-2.00000	0.00000	0	0	1	1	1	0	0.000	0.000	0.000
32	3.00000	-1.00000	0.00000	0	0	1	1	0	0	0.000	0.000	0.000
33	3.00000	0.00000	0.00000	0	0	1	1	0	0	0.000	0.000	0.000
34	3.00000	1.00000	0.00000	0	0	1	1	0	0	0.000	0.000	0.000
35	3.00000	2.00000	0.00000	0	0	1	1	1	0	0.000	0.000	0.000

SHELL ELEMENT DATA

SHELL	JNT-1	JNT-2	JNT-3	JNT-4	SECTION	ANGLE	AREA
1	1	6	2	7	SSEC1	0.000	1.000
2	2	7	3	8	SSEC1	0.000	1.000
3	3	8	4	9	SSEC1	0.000	1.000
4	4	9	5	10	SSEC1	0.000	1.000
5	6	11	7	12	SSEC1	0.000	1.000
6	7	12	8	13	SSEC1	0.000	1.000
7	8	13	9	14	SSEC1	0.000	1.000
8	9	14	10	15	SSEC1	0.000	1.000
9	11	16	12	17	SSEC1	0.000	1.000
10	12	17	13	18	SSEC1	0.000	1.000
11	13	18	14	19	SSEC1	0.000	1.000
12	14	19	15	20	SSEC1	0.000	1.000
13	16	21	17	22	SSEC1	0.000	1.000
14	17	22	18	23	SSEC1	0.000	1.000
15	18	23	19	24	SSEC1	0.000	1.000
16	19	24	20	25	SSEC1	0.000	1.000
17	21	26	22	27	SSEC1	0.000	1.000
18	22	27	23	28	SSEC1	0.000	1.000
19	23	28	24	29	SSEC1	0.000	1.000
20	24	29	25	30	SSEC1	0.000	1.000
21	26	31	27	32	SSEC1	0.000	1.000
22	27	32	28	33	SSEC1	0.000	1.000
23	28	33	29	34	SSEC1	0.000	1.000
24	29	34	30	35	SSEC1	0.000	1.000

SHELL UNIFORM LOADS Load Case LOAD1

SHELL	DIRECTION	VALUE
1	GLOBAL-Z	-10.0000
2	GLOBAL-Z	-10.0000
3	GLOBAL-Z	-10.0000
4	GLOBAL-Z	-10.0000
5	GLOBAL-Z	-10.0000
6	GLOBAL-Z	-10.0000
7	GLOBAL-Z	-10.0000
8	GLOBAL-Z	-10.0000
9	GLOBAL-Z	-10.0000
10	GLOBAL-Z	-10.0000
11	GLOBAL-Z	-10.0000
12	GLOBAL-Z	-10.0000
13	GLOBAL-Z	-10.0000
14	GLOBAL-Z	-10.0000
15	GLOBAL-Z	-10.0000
16	GLOBAL-Z	-10.0000
17	GLOBAL-Z	-10.0000
18	GLOBAL-Z	-10.0000

19	GLOBAL-Z	-10.0000
20	GLOBAL-Z	-10.0000
21	GLOBAL-Z	-10.0000
22	GLOBAL-Z	-10.0000
23	GLOBAL-Z	-10.0000
24	GLOBAL-Z	-10.0000

Results

Displacements, mm

Bending moments - M11, kNm/m

Page 10 of 17

Bending moments - M22, kNm/m

Bending moments - M12, kNm/m

JOINT DISPLACEMENTS

JOINT	LOAD	U3	R1	R2
1	LOAD1	0.0000	0.0000	0.0000
2	LOAD1	0.0000	0.0000	2.685E-03
3	LOAD1	0.0000	0.0000	3.743E-03
4	LOAD1	0.0000	0.0000	2.685E-03
5	LOAD1	0.0000	0.0000	0.0000
6	LOAD1	0.0000	-2.797E-03	0.0000
7	LOAD1	-2.509E-03	-1.927E-03	2.151E-03
8	LOAD1	-3.503E-03	0.0000	3.016E-03
9	LOAD1	-2.509E-03	1.927E-03	2.151E-03
10	LOAD1	0.0000	2.797E-03	0.0000
11	LOAD1	0.0000	-4.588E-03	0.0000
12	LOAD1	-4.122E-03	-3.184E-03	1.070E-03
13	LOAD1	-5.777E-03	0.0000	1.514E-03
14	LOAD1	-4.122E-03	3.184E-03	1.070E-03
15	LOAD1	0.0000	4.588E-03	0.0000
16	LOAD1	0.0000	-5.176E-03	0.0000
17	LOAD1	-4.653E-03	-3.600E-03	0.0000

	18	LOAD1	-6.529E-03	0.0000	0.0000		
		LOAD1		3.600E-03	0.0000		
		LOAD1	0.0000	5.176E-03	0.0000		
		LOAD1	0.0000	-4.588E-03	0.0000		
		LOAD1	-4.122E-03	-3.184E-03	-1.070E-03		
		LOAD1	-5.777E-03	0.0000	-1.514E-03		
			-4.122E-03	3.184E-03	-1.070E-03		
		LOAD1	0.0000	4.588E-03	0.0000		
	26	LOAD1	0.0000	-2.797E-03	0.0000		
	27	LOAD1	-2.509E-03	-1.927E-03	-2.151E-03		
	28		-3.503E-03	0.0000	-3.016E-03		
		LOAD1	-2.509E-03	1.927E-03	-2.151E-03		
		LOAD1		2.797E-03	0.0000		
		LOAD1	0.0000	0.0000	0.0000		
		LOAD1	0.0000		-2.685E-03		
		LOAD1	0.0000		-3.743E-03		
		LOAD1	0.0000		-2.685E-03		
	35	LOAD1	0.0000	0.0000	0.0000		
S H	E L L	ELE	M E N T R	E S U L T A	N T S		
SHEL	L LOAD	JOINT	M11	M22	M12	V13	V23
1	LOAD1						
		1	0.00	0.00	-7.25		-6.699E-01
		6		-4.402E-02	-6.58	-1.10	-6.44
		2	-4.402E-02	-6.603E-03	-6.15	-5.16	-6.699E-01
		7	4.01	5.72	-5.47	-5.16	-6.44
2	LOAD1						
		2	-4.402E-02		-3.87		-2.463E-01
		7	4.01	5.68	-3.62	-6.49	
		3	-3.938E-02		-1.42		-2.463E-01
_	1.0454	8	5.32	6.96	-1.18	-7.81	-1.52
3	LOAD1		2 0205 02	F 007F 02	1 42	7 01	2 4625 61
		3	-3.938E-02		1.42		2.463E-01
		8 4	5.32 -4.402E-02	6.96	1.18 3.87	-7.81	1.52 2.463E-01
		9	4.01	5.68	3.62	-6.49 -6.49	1.52
4	LOAD1		4.01	5.08	3.02	-0.43	1.52
7	LOADI	4	-4.402E-02	-6.603E-03	6.15	-5.16	6.699E-01
		9	4.01	5.72	5.47	-5.16	6.44
		5	0.00	0.00	7.25	-1.10	6.699E-01
		10	-6.603E-03	-4.402E-02	6.58	-1.10	6.44
5	LOAD1		0,000				• • • • • • • • • • • • • • • • • • • •
		6	-6.603E-03	-4.402E-02	-5.11	-6.776E-01	-7.13
		11	-5.610E-03	-3.740E-02		-6.776E-01	-10.31
		7	3.98	5.72	-4.44	-1.22	-7.13
		12	4.52	8.90	-3.07	-1.22	-10.31
6	LOAD1						
		7	3.97	5.68	-2.74	-2.14	-1.81
		12	4.51	8.85	-2.21	-2.14	-3.02
		8	5.27	6.95	-1.15	-2.56	-1.81
		13	6.23	11.33	-6.135E-01	-2.56	-3.02
7	LOAD1					_	
		8	5.27	6.95	1.15	-2.56	1.81
		13	6.23	11.33	6.135E-01	-2.56	3.02
		9	3.97	5.68	2.74	-2.14	1.81
_	1015	14	4.51	8.85	2.21	-2.14	3.02
8	LOAD1		2.00	F 70	A AA	1 22	7 43
		9	3.98	5.72	4.44	-1.22	7.13

	14	4.52	8.90	3.07	-1.22	10.31
	10		-4.402E-02	5.11	-6.776E-01	7.13
	15		-3.740E-02	3.74	-6.776E-01	10.31
9	LOAD1	J.010L 0J	J.740L 02	3.74	0.7702 01	10.51
9		F (10F 02	2 7405 02	2 12	1 101F 01	10.20
	11		-3.740E-02	-2.13	-2.181E-01	-10.30
	16		-3.577E-02	-7.767E-01	-2.181E-01	-11.30
	12		8.91	-1.92	-2.197E-01	-10.30
	17	4.53	9.91	-5.589E-01	-2.197E-01	-11.30
10	LOAD1					
	12	4.52	8.85	-1.10	-5.303E-01	-3.04
	17	4.53	9.86	-5.411E-01	-5.303E-01	-3.47
	13		11.33	-5.763E-01	-5.303E-01	-3.04
	18		12.76	-1.303E-02	-5.303E-01	-3.47
11		0.22	12.70	-1.3036-02	-3.3636-61	-3.47
11	LOAD1	6 22	44 22	E 763E 04	E 202E 04	2.04
	13		11.33	5.763E-01	-5.303E-01	3.04
	18		12.76	1.303E-02	-5.303E-01	3.47
	14	4.52	8.85	1.10	-5.303E-01	3.04
	19	4.53	9.86	5.411E-01	-5.303E-01	3.47
12	LOAD1					
	14	4.53	8.91	1.92	-2.197E-01	10.30
	19		9.91	5.589E-01	-2.197E-01	11.30
	15		-3.740E-02	2.13	-2.181E-01	10.30
	20		-3.577E-02	7.767E-01	-2.181E-01	
4.5		-5.365E-03	-3.3//E-02	7.7676-01	-2.1816-01	11.30
13	LOAD1					
	16		-3.577E-02	7.767E-01	2.181E-01	-11.30
	21		-3.740E-02	2.13	2.181E-01	-10.30
	17	4.53	9.91	5.589E-01	2.197E-01	-11.30
	22	4.53	8.91	1.92	2.197E-01	-10.30
14	LOAD1					
	17	4.53	9.86	5.411E-01	5.303E-01	-3.47
	22		8.85	1.10	5.303E-01	-3.04
	18		12.76	1.303E-02	5.303E-01	-3.47
	23	6.22	11.33	5.763E-01	5.303E-01	-3.04
15	LOAD1					
	18		12.76	-1.303E-02	5.303E-01	3.47
	23	6.22	11.33	-5.763E-01	5.303E-01	3.04
	19	4.53	9.86	-5.411E-01	5.303E-01	3.47
	24	4.52	8.85	-1.10	5.303E-01	3.04
16	LOAD1					
	19	4.53	9.91	-5.589E-01	2.197E-01	11.30
	24		8.91	-1.92	2.197E-01	10.30
	20		-3.577E-02	-7.767E-01	2.181E-01	11.30
	25	-5.610E-03	-3.740E-02	-2.13	2.181E-01	10.30
17	LOAD1					
	21		-3.740E-02	3.74	6.776E-01	-10.31
	26	-6.603E-03	-4.402E-02	5.11	6.776E-01	-7.13
	22	4.52	8.90	3.07	1.22	-10.31
	27	3.98	5.72	4.44	1.22	-7.13
18	LOAD1					
	22	4.51	8.85	2.21	2.14	-3.02
	27		5.68	2.74	2.14	-1.81
	23		11.33	6.135E-01	2.56	-3.02
	28	5.27	6.95	1.15	2.56	-1.81
19	LOAD1					
	23		11.33	-6.135E-01	2.56	3.02
	28	5.27	6.95	-1.15	2.56	1.81
	24	4.51	8.85	-2.21	2.14	3.02
	29		5.68	-2.74	2.14	1.81
20	LOAD1				·	_
	·					

Analytical solution

Cylindrical stiffness -
$$D = \frac{E \cdot t^3}{12 \cdot (1 - v^2)} = \frac{35000 \,\text{MPa} \cdot (0.1 \,\text{m})^3}{12 \cdot (1 - 0.15^2)} = 2983.8 \,\text{kNm}$$

$$\alpha = \frac{a}{b} = \frac{6 \text{ m}}{4 \text{ m}} = 1.5, \ \alpha_2 = \alpha^2 = 1.5^2 = 2.25$$

$$q_0 = \frac{16 \cdot q}{\pi^2} = \frac{16 \cdot 10 \,\text{kN/m}^2}{3.14^2} = 16.21 \,\text{kN/m}^2$$

Auxiliary functions

$$k(n) = 2 \cdot n + 1, \ k_2(n) = 4 \cdot n \cdot (n+1) + 1$$

$$A(m;n) = k_2(m) + \alpha_2 \cdot k_2(n) = A_1(m;n) = \frac{1}{A(m;n)^2}$$

$$B(m;n) = k_2(m) + \nu \cdot \alpha_2 \cdot k_2(n) => B_1(m;n) = \frac{B(m;n)}{A(m;n)^2}$$

$$C(m;n) = v \cdot k_2(m) + \alpha_2 \cdot k_2(n) = C_1(m;n) = \frac{C(m;n)}{A(m;n)^2}$$

$$S_a(m;x) = \frac{\sin\left(\frac{k(m) \cdot \pi}{a} \cdot x\right)}{k(m)}, \quad S_b(n;y) = \frac{\sin\left(\frac{k(n) \cdot \pi}{b} \cdot y\right)}{k(n)}$$

Deflections

$$w(x;y) = \frac{q_0 \cdot \left(\frac{a}{\pi}\right)^4}{D} \cdot \sum_{m=0}^{N} S_a(m;x) \cdot \sum_{n=0}^{N} A_1(m;n) \cdot S_b(n;y)$$

Bending moments

$$M_x(x;y) = q_0 \cdot \left(\frac{a}{\pi}\right)^2 \cdot \sum_{m=0}^{N} S_a(m;x) \cdot \sum_{n=0}^{N} B_1(m;n) \cdot S_b(n;y)$$

$$M_{y}(x;y) = q_{0} \cdot \left(\frac{a}{\pi}\right)^{2} \cdot \sum_{m=0}^{N} S_{a}(m;x) \cdot \sum_{n=0}^{N} C_{1}(m;n) \cdot S_{b}(n;y)$$

$$k_1(n) = 2 \cdot n$$

$$M_{xy}(x;y) = -q_0 \cdot \left(\frac{a}{\pi}\right)^2 \cdot (1-\nu) \cdot \alpha \cdot \sum_{m=0}^{N} \cos\left(\frac{k(m) \cdot \pi \cdot x}{a}\right) \cdot \sum_{n=0}^{N} A_1(m;n) \cdot \cos\left(\frac{k(n) \cdot \pi \cdot y}{b}\right)$$

Principal bending moments

$$M_{max}(x;y) = \frac{M_x(x;y) + M_y(x;y)}{2} + \sqrt{\frac{\left(M_x(x;y) - M_y(x;y)\right)^2}{4} + M_{xy}(x;y)^2}$$

$$M_{min}(x;y) = \frac{M_x(x;y) + M_y(x;y)}{2} - \sqrt{\frac{\left(M_x(x;y) - M_y(x;y)\right)^2}{4} + M_{xy}(x;y)^2}$$

Results

Deflections, mm

Maximum value -
$$w\left(\frac{a}{2}; \frac{b}{2}\right) = w\left(\frac{6 \text{ m}}{2}; \frac{4 \text{ m}}{2}\right) = 6.63 \text{ mm}$$

Bending moments - M_χ , kNm/m

Maximum value -M_x $\left(\frac{a}{2}; \frac{b}{2}\right) = M_x \left(\frac{6 \text{ m}}{2}; \frac{4 \text{ m}}{2}\right) = 6.22 \text{ kNm/m}$

Bending moments - $M_{
m y}$, ${
m kNm/m}$

Maximum value - $M_y(\frac{a}{2}; \frac{b}{2}) = M_y(\frac{6 \text{ m}}{2}; \frac{4 \text{ m}}{2}) = 12.31 \text{ kNm/m}$

Bending moments - $M_{\rm xy}$, kNm/m

Maximum value - M_{xy} (0 m; 0 m) = -8.3 kNm/ m

Comparison of the results

	Analytical	FEA Calcpad	FEA SAP 2000
w, mm	6,627	6,629	6,529
Mx, kNm/m	6,231	6,275	6,22
My, kNm/m	12,315	12,744	12,76
Mxy, kNm/m	8,329	8,378	7,25

Difference, %

	Analytical	FEA Calcpad	FEA SAP 2000
w, mm	0,00%	0,03%	-1,48%
Mx, kNm/m	0,00%	0,71%	-0,18%
My, kNm/m	0,00%	3,48%	3,61%
Mxy, kNm/m	0,00%	0,59%	-12,95%