Feuille d'exercices 2 : suites de fonctions

Exercice 1. Etudier la convergence simple et la convergence uniforme des suites de fonctions $(f_n)_{n\geq 1}$, $(g_n)_{n\geq 1}$, $(h_n)_{n\geq 1}$ et $(k_n)_{n\geq 1}$ suivantes définies sur les intervalles I spécifiés. Trouver des intervalles sur lesquels il y a convergence uniforme.

$$f_n(x) = \frac{x}{x+n} \operatorname{sur} \mathbb{R}_+, \quad g_n(x) = xne^{-xn} \operatorname{sur} \mathbb{R}_+, \quad h_n(x) = (\sin x)^n \operatorname{sur} \mathbb{R}_+;$$

la fonction $k_n : \mathbb{R} \to \mathbb{R}$ est continue, définie pour tout $n \ge 1$ par $k_n(x) = 0$ si $x \le -1/n$, $k_n(x) = 1$ si $x \ge 1/n$, avec k_n affine sur l'intervalle [-1/n, 1/n].

Exercice 2.

Pour $n \in \mathbb{N}$, on définit les fonctions c_n et s_n , de \mathbb{R} dans \mathbb{R} , par $c_n(x) = \cos(nx)$ et $s_n(x) = \sin(nx)$. Quels sont les domaines de convergence simple des suites de fonctions $(c_n)_{n\geq 0}$ et $(s_n)_{n\geq 0}$? (indication : on pourra penser à utiliser les formules $\cos(a+b) = \cdots$ et $\sin(a-b) = \cdots$)

Exercice 3. Soit $n \in \mathbb{N}^*$. On pose, pour $x \in \mathbb{R}$, $f_n(x) = 0$ si $|x - \frac{1}{2}| \ge \frac{1}{n}$, $f_n(\frac{1}{2}) = 1$, et on prolonge f_n de manière affine sur $[\frac{1}{2} - \frac{1}{n}, \frac{1}{2}]$ et $[\frac{1}{2}, \frac{1}{2} + \frac{1}{n}]$, de sorte qu'elle soit continue.

- 1. Tracer le graphe de f_n et donner une formule pour $f_n(x)$ en fonction de x.
- 2. Étudier la convergence de $(f_n)_{n\geq 1}$ sur [0,1], puis la convergence de la suite $\left(\int_0^1 f_n(x) dx\right)_{n\geq 1}$.
- 3. Même question lorsque les fonctions f_n sont définies sur [0,1] par :
 - a) $f_n(x) = 0$ si $x \in [0, \frac{1}{n}[, f_n(x) = \frac{1}{x}$ si $x \in [\frac{1}{n}, 1]$.
 - b) $f_n(x) = n \text{ si } x \in]0, \frac{1}{n}], f_n(x) = 0 \text{ si } x \in \{0\} \cup]\frac{1}{n}, 1].$

Exercice 4. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{n}\sin(nx)$.

- 1. Étudier la convergence de la suite de fonctions $(f_n)_{n\geq 1}$.
- 2. Étudier la convergence de la suite $(f'_n)_{n\geq 1}$ des dérivées. Que peut-on constater?

Exercice 5. Pour tout $n \in \mathbb{N}^*$, on définit la fonction $f_n : \mathbb{R} \to \mathbb{R}$ par $f_n(t) = \sqrt{t^2 + \frac{1}{n}}$.

- 1. Étudier la convergence simple et uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ sur \mathbb{R} .
- 2. Étudier la convergence simple et uniforme de la suite de fonctions $(f'_n)_{n\geq 1}$ sur \mathbb{R} .

Exercice 6. Lemme de Pólya

Soit $(f_n)_{n\geq 0}$ une suite de fonctions continues sur [a,b] et convergeant uniformément sur [a,b] vers une fonction f.

Soit $(x_n)_{n\geq 0}$ une suite de points de [a,b] convergeant vers l.

Montrer que la suite $(f_n(x_n))_{n\geq 0}$ tend vers f(l).

Peut-on supprimer l'hypothèse de convergence uniforme?

Exercice 7. Soit $(f_n)_{n\geq 0}$ la suite de fonctions définies sur \mathbb{R} par $f_n(x) = \frac{2^n x}{1 + n 2^n x^2}$.

Etudier la convergence simple de cette suite.

Montrer de plusieurs façons qu'il n'y a pas convergence uniforme sur \mathbb{R} .

Montrer qu'il y a convergence uniforme sur tout ensemble du type $I_a =]-\infty, -a] \cup [a, +\infty[$ où a > 0.

Exercice 8. Trouver une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues de \mathbb{R} dans \mathbb{R} , telle que :

- (i) pour tout entier n, l'intégrale impropre $\int_{-\infty}^{+\infty} f_n$ converge (i.e. est finie);
- (ii) la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur \mathbb{R} vers une fonction f;
- (iii) l'intégrale impropre $\int_{-\infty}^{+\infty} f$ converge (i.e. est finie);
- (iv) $\int_{-\infty}^{+\infty} f_n$ ne tende pas vers $\int_{-\infty}^{+\infty} f$ quand n tend vers $+\infty$.

Exercice 9. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies sur [0,1] par $f_n(x) = \sin(x^n(1-x))$.

- 1) Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$.
- 2) Étudier la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$.
- 3) Qu'en déduit-on pour la suite numérique $(I_n)_{n\in\mathbb{N}}$, où $I_n = \int_0^1 f_n(t) dt$?
- 4) Est-ce que la suite des dérivées $(f'_n)_{n\in\mathbb{N}}$ converge simplement?
- 5) Est-ce que cette suite $(f'_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1]?

Exercice 10.

On considère la suite $(f_n)_{n\in\mathbb{N}^*}$ de fonctions définies sur \mathbb{R} par $f_n(x) = \arctan(x/n)$.

- 1) Montrer que la suite des dérivées $(f'_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} mais que la suite $(f_n)_{n\in\mathbb{N}^*}$ ne converge pas uniformément sur \mathbb{R} .
- 2) Sur quels domaines la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ converge-t-elle uniformément?