Instructor(s): Panagiotis E. Souganidis

Agustín Esteva aesteva@uchicago.edu
Due Date: 27/02/25

Problem 1

Let $(u_n) \in H$ and $(t_n) \in (0, \infty)$ such that

$$(t_n u_n - t_m u_m, u_n - u_m) \le 0,$$

(a) Suppose (t_n) is nondecreasing. Prove that (u_n) converges to a limit.

SOLUTION: Consider that

$$|u_n - u_m|^2 = |u_n|^2 + |u_m|^2 - 2(u_n, u_m).$$

Using bilinearity and properties of the inner product, we have that by plugging the above at a convenient spot:

$$\begin{aligned} (t_n u_n - t_m u_m, u_n - u_m) &= (t_n u_n, u_n) - (t_n u_n, u_m) - (t_m u_m, u_n) + (t_m u_m, u_m) \\ &= t_n |u_n|^2 - t_n (u_n, u_m) - t_m (u_n, u_m) + t_m |v_m|^2 \\ &= t_n |u_n|^2 - (t_n + t_m) (u_n, u_m) + t_m |v_m|^2 \\ &= t_n |u_n|^2 - \frac{1}{2} (t_n + t_m) (-|u_n - u_m|^2 + |u_n|^2 + |u_m|^2) + t_m |v_m|^2 \\ &= \frac{1}{2} (t_n - t_m) |u_n|^2 + \frac{1}{2} (t_n + t_m) (|u_n - u_m|^2) - \frac{1}{2} (t_n - t_m) |u_m|^2 \\ &= \frac{1}{2} (t_n - t_m) (|u_n|^2 - |u_m|^2) + \frac{1}{2} (t_n + t_m) (|u_n - u_m|^2) \\ &< 0 \end{aligned}$$

The first term must necessarily be negative since the second is positive, and so

$$(t_n - t_m)(|u_n|^2 - |u_m|^2) \le 0 \tag{1}$$

Since (t_n) is nondecreasing, then for n > m, we have that $t_n - t_m \ge 0$, and thus by (1) we have that

$$|u_n|^2 - |u_m|^2 \le 0 \implies |u_n| \le |u_m|,$$

and so $|u_n|$ is nonincreasing. Moreover, we have that

$$\frac{1}{2}(t_n+t_m)(|u_n-u_m|^2) \le -\frac{1}{2}(t_n-t_m)(|u_n|^2-|u_m|^2) = \frac{1}{2}(t_n-t_m)(|u_m|^2-|u_n|^2) \le \frac{1}{2}t_n(|u_m|^2-|u_n|^2),$$

and so since $t_n \leq t_n + t_m$, we have that

$$|u_n - u_m|^2 \le |u_m|^2 - |u_n|^2$$
.

Letting $n \to \infty$, we see that since $|u_n|$ is nonincreasing and bounded below, that $|u_n| \to L$, and so $|u_n|^2 \to L^2$ Thus, taking letting $m \to \infty$ and letting n = m + 1, we see that

$$|u_n - u_m|^2 \le |u_m|^2 - |u_n|^2 \to L^2 - L^2 = 0,$$

and so $|u_n - u_m|$ is Cauchy. Thus, since $(u_n) \in H$, we have that (u_n) converges.

Assume that (t_n) is non increasing. Then either:

- (i) $|u_n| \to \infty$
- (ii) or (u_n) converges

If $t_n \to t > 0$, show that (u_n) converges.

SOLUTION: Let n > m, then by (1) we have that since $t_n - t_m \le 0$, then $(|u_n|^2 - |u_m|^2) \ge 0 \implies |u_n|^2 \le |u_m|^2$, and so $|u_n|$ is non decreasing. From the above calculations, we have that

$$|u_n - u_m|^2 \le |u_n|^2 - |u_m|^2$$
.

Thus, if $|u_n| \to L \le \infty$, then by the above reasoning, (u_n) converges. If $|u_n| \to \infty$, then evidently $(u_n) \to \infty$.

Suppose $t_n \to t$. As per the hint, we let $v_n = t_n u_n$ and so $s_n = \frac{1}{t_n}$, then

$$(s_n v_n - s_m v_m, v_n - v_m) \le 0,$$

then by the work above, v_n converges and so u_n converges.

Let $K \subset H$ be a closed convex set and let $f \in H$. If $u = P_K f$, then show that for any $v \in K$

$$|v - u|^2 \le |v - f|^2 - |f - u|^2$$

deduce that

$$|v - u| \le |v - f|$$

and give a geometric interpretation.

SOLUTION: Consider that

$$|v - u|^2 = |v - f + f - u|^2$$

$$= (v - f + f - u, v - f + f - u)$$

$$= (v - f, v - f) + 2(v - f, f - u) + (f - u, f - u)$$

$$= |v - f|^2 + |f - u|^2 + 2(v - f, f - u)$$

$$= |u - f|^2 + |v - f|^2 + 2(f - u, v - f)$$

$$= |u - f|^2 + |v - f|^2 + 2(f - u, v - u + u - f)$$

$$= |u - f|^2 + |v - f|^2 + 2(f - u, v - u) - 2(f - u, f - u)$$

$$= |u - f|^2 + |v - f|^2 + 2(f - u, v - u) - 2|f - u|^2$$

$$= |v - f|^2 - |f - u|^2 + 2(f - u, v - u)$$

$$\leq |v - f|^2 - |f - u|^2$$

Suppose not for the second part, then

$$|v-u| > |v-f| \implies |v-u|^2 > |v-f|^2 \implies |v-u|^2 > |v-f|^2 - |f-u|^2$$

which is a contradiction. A geometric interpretation:

(a) Let (K_n) be a nonincreasing sequence of closed convex sets in H such that $\bigcap_n K_n \neq \emptyset$. Prove that for every $f \in H$ the sequence $u_n = P_{K_n} f$ converges (strongly) to a limit and identify the limit.

SOLUTION: There really is only one natural candidate for the limit. We claim that

$$u_n \to u, \quad u = P_{K_{\infty}} f.$$

Where $K_{\infty} = \bigcap_{n=1}^{\infty} K_n$. We know that K_{∞} is is closed since it is the intersection of closed sets, and we know it is convex since the intersection of nested convex sets is convex. We have that since

$$K_1 \supset K_2 \cdots$$

then since $\bigcap K_n \subset K_n$ for any $n, u \in K_n$ for all n. Let $d_n = |f - u_n|$. Since $K_{n+1} \subset K_n$, and each K_n is closed, then

$$d_n = \inf_{v \in K_n} |f - v| \le \inf_{v \in K_{n+1}} |f - v| = d_{n+1} \le \dots \le \inf_{v \in K_{\infty}} |f - v| = d.$$

Thus, d_n is monotonic increasing and bounded above, and thus converges to some $d_n \to L$.

Apply the parallelogram law to $a = f - u_n$ and $b = f - u_m$, then

$$\left| \frac{f - u_n + f - u_m}{2} \right|^2 + \left| \frac{u_n - u_m}{2} \right|^2 = \frac{1}{4} |(f - u_n) + (f - u_m)|^2 + \frac{1}{4} |u_n - u_m|^2 = \frac{1}{4} (d_n + d_m)^2 + \frac{1}{4} |u_n - u_m|^2$$

is equal to

$$\frac{1}{2}(|d_n|^2 + |d_m|^2).$$

Thus, we have that since $d_n \geq 0$ for any n, then

$$|u_n - u_m|^2 = 2|d_n|^2 + 2|d_m|^2 - (d_n + d_m)^2 = |d_n|^2 + 2d_n d_m + |d_m|^2 = (d_m - d_n)^2.$$

Thus, since (d_n) converges, then it is Cauchy and thus

$$|u_n - u_m| < d_m - d_n \to 0,$$

and so (u_n) is Cauchy in a Hilbert space and thus converges to some u. We claim that $u \in K_{\infty}$. Since $(u_n) \in K_1$ for all n and K_1 is closed, we have that $u \in K_1$, similarly, since $(u_n) \in K_2$ for all n except for possible u_1 , then $u \in K_2$. Because this holds for all n, then $u \in K_{\infty}$. Similarly, we have that $|f - u_1| \leq |f - v|$ for all $v \in K_{\infty}$, and $|f - u_2| \leq |f - v|$ for all $v \in K_{\infty}$, and taking the limit we see that $|f - u| \leq |f - v|$ for all $v \in K_{\infty}$.

(b) Let (K_n) be a nondecreasing sequence of nonempty closed convex sets in H. Prove that for every $f \in H$ the sequence $u_n = P_{K_n} f$ converges (strongly) to a limit and identify the limit.

SOLUTION: Since $K_1 \subset K_2 \cdots$, then either $\bigcup K_n = H$ or $\bigcup K_n = K_\infty \neq H$. Suppose the first case, then $f \in H$, and so $f \in K_n$ for some n, and thus $P_{K_n}f = f$ Since $K_n \subset K_m$ for all $m \geq n$, then $P_{K_m} = f$ for all $m \geq n$, and thus $u_n \to f$.

Consider the second case now, then either $f \in K_{\infty}$, in which case we revert back to the first case, or $f \notin K_{\infty}$. If the latter, then consider that $d_n = P_{K_n} f$ is a decreasing sequence bounded below by 0, and thus converges to a limit. By the reasoning above, we have that (u_n) converges to some u. We claim that $u = P_{\overline{K_{\infty}}} f$, where $\overline{K_{\infty}}$ is obviously closed. To see that $\overline{K_{\infty}}$ convex, it suffices to notice that $\bigcup K_n$ is convex (since the closure of a convex set is convex). Since $u_n \in K_m$ for all m > n, which implies $u \in \overline{K_{\infty}}$. Moreover, let $v \in \overline{K_{\infty}}$, then either $v \in K_n$ for some n or $v \in LP(\bigcup K_n)$. Suppose the former, then

$$|f - u| \le |f - u_n| \le |f - v| \quad \forall v \in K_n.$$

Now suppose the latter, then there exist some $(v_n) \in \bigcup K_n$ such that $v_n \to v$. But we have that for any n,

$$|f - u| \le |f - v_n| \implies |f - u| \le \liminf_{n \to \infty} |f - v_n| = |f - v|,$$

the conclusion from both of these cases is that while we first showed that $u_n \to u$, now this shows that $u = P_{K_{\infty}} f$

(c) Let $\varphi: H \to \mathbb{R}$ be a continuous function that is bounded from below and let K_n be as above in part (b). Prove that the sequence $\alpha_n = \inf_{K_n} \varphi$ converges and identify the limit.

SOLUTION: Consider that $\alpha_n = \inf\{\varphi(x) \mid x \in K_n\}$. Thus, if n < m, then $K_n \subseteq K_m$, and thus $\alpha_n \ge \alpha_m$. Thus, (α_n) is non-increasing and bounded below, and so we let

$$\alpha_n \to \alpha_\infty$$

and claim that

$$\alpha_{\infty} = \inf_{\bigcup_{n=1}^{\infty} K_n} \varphi.$$

Let $u \in \overline{\bigcup K_n}$, then by part (b), we have that $u_n = P_{K_n}u \to u$. Thus, since $\alpha_n(x) \le \varphi(x)$ for any $x \in K_n$, then since $u_n \in K_n$, we have that $\alpha_n(u_n) \le \varphi(u_n)$. Since both are continuous, we have that $\alpha_n(u) \le \varphi(u)$ for all n, and so $\alpha_\infty(u) \le \varphi(u)$. Because this holds for any $u \in K_\infty$, then

$$\alpha_{\infty} \le \inf_{\bigcup K_n} \varphi$$

Since for any n, we have that $K_n \subset \overline{\bigcup}_{i=1}^{\infty} K_i$, then $\alpha_n \geq \alpha_{\infty}$, and so

$$\alpha_{\infty} \ge \inf_{\bigcup_{n=1}^{\infty} K_n} \varphi.$$

Let $F: H \to \mathbb{R}$ be convex and C^1 . Let $K \subset H$ be convex and let $u \in H$. Show the following are equivalent:

- (i) $F(u) \le F(v)$, $\forall v \in K$
- (ii) $(F'(u), v u) \ge 0$ $\forall v \in K$.

SOLUTION: $(a \mapsto b)$ Suppose $F(u) \leq F(v)$, then if we let v' = tu + (1-t)v, where $v \in K$, we have that since K is convex, $v' \in K$, and thus

$$F(u) \le F(v') = F((1-t)u + tv),$$

and so

$$0 \le \frac{F(u + t(u - v)) - F(u)}{t} \xrightarrow{t \to 0} F'_{u - v}(u) = (F'(u), u - v)$$

 $(b \mapsto a)$ We claim that a continuously differentiable function is convex if and only if its graph lies above all its tangents. That is, since $u \in H$, then^a

$$F(v) \ge F(u) + F'(u) \cdot (v - u).$$

By assumption, we have that

$$F(v) - F(u) > (F'(u), (v - u)) > 0 \implies F(v) > F(u)$$

 $^a\mathrm{MVT}$

Let $G \subset H$ be a linear subspace of a Hilbert space H; G is equipped with the norm of H. Let F be a Banach space. Let $S: G \to F$ be a bounded linear operator. Prove that there exists a bounded linear operator $T: H \to F$ that extends S and such that

$$||T||_{\mathcal{L}(H,F)} = ||S||_{\mathcal{L}(G,F)}.$$

SOLUTION: Since \overline{G} is a closed linear subspace, then $P_{\overline{G}}: H \to \overline{G}$ is a continuous function since for any $f_1, f_2 \in H$, we have that

$$||P_{\overline{G}}f_2 - P_{\overline{G}}f_2|| \le ||f_1 - f_2||.$$

Define $\overline{S}: \overline{G} \to F$ as an extension of S such that if $v \in \overline{G} \setminus G$ and $(v_n) \in G$ with $v_n \to v$, then

$$\overline{S}(v) = \lim_{n \to \infty} S(v_n).$$

If $v \in G$, then let $\overline{S}(v) = S(v)$. To show that \overline{S} is continuous, let $s_1, s_2 \in \overline{G}$, such that $||s_1 - s_2|| \le \epsilon$, then for n large enough, we have that if $s_n^1 \to s_1$ and $s_n^2 \to s_2$, then by continuity:

$$||s_n^1 - s_n^2|| \le ||s_n^1 - s_1|| + ||s_1 - s_2|| + ||s_2 - s_n^2|| < \delta \implies ||S(s_n^1) - S(s_n^2)|| < \frac{\epsilon}{3}$$

Since $S(s_n^1) \to \overline{S}(s_1)$ and $S(s_n^2) \to \overline{S}(s_2)$, then

$$\|\overline{S}(s_1) - \overline{S}(s_2)\| \le \|\overline{S}(s_1) - S(s_n^1)\| + \|S(s_n^1) - S(s_n^2)\| + \|S(s_n^2 - \overline{S}(s_n^2))\| < \epsilon,$$

and thus \overline{S} is continuous. \overline{S} is clearly linear by the linearity of limits. Since the composition of continuous functions is continuous, then

$$T = \overline{S} \circ P_{\overline{G}} : H \to F$$

extends S and is a bounded linear operator.

Consider that since $T = \overline{S} \circ P_{\overline{G}}$, then since for any ||x|| = 1, we have that $||P_{\overline{G}}|| = 1$

$$\|T\| \leq \|\overline{S}\| \|P_{\overline{G}}\| = \|S\| \|P_{\overline{G}}\| \leq \|S\|.$$

The other inequality is clear since T is just an extension of S.

Let $M, N \subset H$ be two closed linear subspaces. Assume that (u, v) = 0 for all $u \in M$, and $v \in N$. Show that M + N is closed.

SOLUTION: Suppose $f \in H$ with $(u_k) \in M + N$ such that $u_k \to f$. Since $(u_k) \in M + N$, then there exist $m_k \in M$ and $n_k \in N$ such that $m_k + n_k = u_k \to f$. Thus, for any k, we have that

$$||m_k + n_k||^2 = ||m_k||^2 + ||n_k||^2 + 2(m_k, n_k) = ||m_k||^2 + ||n_k||^2 \ge ||m_k||^2 \ge 0.$$

That is,

$$||m_k + n_k|| \ge ||m_k|| \ge 0,$$

and so m_k is bounded (since $m_k + n_k$ converges and is thus bounded). Thus, there exists some convergent subsequence $m_{k_i} \to m$. Since m is closed, we have that $m \in M$.

Consider now that

$$n_{k_i} = u_{k_i} - m_{k_i} \to f - m,$$

where again, $f - m \in N$ by the closedness of N. Thus, $f = f - m + m \in M + N$, and we are done.

Let $C \subset H$ be a nonempty closed convex set and suppose $T: C \to C$ is a non-linear contraction such that for any $u, v \in C$,

$$|Tu - Tv| \le |u - v|$$

(a) Let $(u_n) \in C$ such that $u_n \rightharpoonup u$ and $(u_n - Tu_n) \rightarrow f$. Prove that

$$u - Tu = f$$

SOLUTION: Let $g: C \to H$ such that g(v) = v - Tv. Since T is continuous (since it is a contraction), then g is continuous. Since C is convex and strongly closed, then C is weakly closed, and so $u_n \rightharpoonup u \in C$.

$$||u - u_n||^2 \ge ||Tu - Tu_n||^2$$

$$= ||(g(u_n) - g(u) - u_n + u||^2$$

$$= ||(g(u_n) - g(u)) + (u - u_n)||^2$$

$$= ||g(u_n) - g(u)||^2 + ||u - u_n||^2 + 2(g(u_n) - g(u), (u - u_n))$$

and so

$$0 \ge ||g(u_n) - g(u)||^2 + 2(g(u_n) - g(u), (u - u_n))$$

Consider $\varphi: C \to \mathbb{R}$ defined by

$$\varphi(v) = (g(v) - g(u), u - v).$$

Then $\varphi \in C^*$ since the inner product is bilinear and thus $\varphi(u_n) \to \varphi(u)$, and so

$$2\varphi(u_n) = (g(u_n) - g(u), (u - u_n)) \to (g(u) - g(u), (u - u)) = \varphi(u) = 0.$$

Thus, for large enough n, we have that $||g(u_n) - g(u)||^2 \le 0$, and so $g(u_n) = g(u)$, but this then implies that

$$u_n - Tu_n = u - Tu,$$
 $n \text{ large}$

(b) If C is bounded with $T(C) \subset C$, then T has a fixed point.

Solution: As per the hint, fix $a \in C$ and consider $T_{\epsilon}: C \to C$

$$T_{\epsilon}(u) = (1 - \epsilon)Tu + \epsilon a.$$

Consider that for any $u, v \in C$,

$$|T_{\epsilon}u - T_{\epsilon}v| = |(1 - \epsilon)Tu + \epsilon a - (1 - \epsilon)Tv + \epsilon a| = (1 - \epsilon)|Tu - Tv| \le (1 - \epsilon)|u - v|.$$

Thus, T_{ϵ} is a contraction and C is Banach (closed subset of a Hilbert space), and Banach contraction principle tells us that for all $1 > \epsilon > 0$, T_{ϵ} has a fixed point at some p_{ϵ} . Thus,

$$p_{\epsilon} = (1 - \epsilon)Tp_{\epsilon} + \epsilon a$$

Consider letting $\epsilon = \frac{1}{n}$ for each n, then

$$p_{\frac{1}{n}} = (1 - \frac{1}{n})Tp_{\frac{1}{n}} + \frac{1}{n}a = Tp_{\frac{1}{n}} - \frac{1}{n}Tp_{\frac{1}{n}} + \frac{1}{n}a,$$

and so as $n \to \infty$,

$$p_{\frac{1}{n}} - Tp_{\frac{1}{n}} \to 0.$$

Since $(p_{\frac{1}{n}}) \in C$ and C is bounded and closed and convex, then we claim that C is compact in the weak topology. Consider that since H is reflexive, then B_E is weakly compact, and thus there exists some K such that $C \subset KB_E$, where KB_E is weakly compact. Since C is convex and strongly closed, then it is weakly closed, and thus C is weakly compact. Thus, there exists some subsequence $(p_{\frac{1}{n_k}}) \rightharpoonup p_0$, where $p_0 \in C$. Note that we still have that

then by part 1, we have that $p_{\frac{1}{n_k}} - Tp_{\frac{1}{n_k}} \to 0$. By part 1, we have that

$$p_0 - Tp_0 = 0 \implies p_0 = Tp_0.$$

Let $D \subset H$ be a subset such that the linear space spanned by D is dense in H. Let $(E_n)_{n\geq 1}$ be a sequence of closed subspaces in H that are mutually orthogonal. Assume that

$$\sum_{n=1}^{\infty} |P_{E_n} u|^2 = |u|^2 \quad \forall u \in D$$
 (2)

Prove that H is the Hilbert sum of the E_n 's.

Solution: Let $E = \operatorname{span} \bigcup E_n$.

We know that for any $v \in H$, if $v_k = P_{E_k}v$, then if $S_n = \sum_{k=1}^n P_{E_k}$, we have that

$$S_n \to S = P_{\overline{E}}v.$$

Thus, by Parseval's identity, we have that

$$\sum_{k=1}^{\infty} |v_k|^2 = |P_{\overline{E}}v|^2 \tag{3}$$

Now let $u \in D$, combining (2) and (3), we see that $|u|^2 = |P_{\overline{E}}u|^2$. First, we note that if M is a closed subspace of a Hilbert space H and $f \in H$, then

$$f = P_M f + P_{M^{\perp}} f.$$

To see this, consider that $M \cap M^{\perp} = \{0\}$ and $M + M^{\perp} = H$, then

$$f = P_M f + (f - P_M f) = P_M f + P_{M^{\perp}} f.$$

Thus, since $u \in D \subset H$ and \overline{E} is a closed subspace, then by orthogonality

$$u = P_{\overline{E}}u + P_{\overline{E}^{\perp}}u \implies |u|^2 = |P_{\overline{E}}u|^2 + |P_{\overline{E}}u|^2 + 2|(P_{\overline{E}}u, P_{\overline{E}^{\perp}}u)| = |P_{\overline{E}}u|^2 + |P_{\overline{E}^{\perp}}u|^2$$

From our conclusion above, we see that

$$0 = |P_{\overline{E}^{\perp}}u|^2 \implies P_{\overline{E}^{\perp}}u = 0.$$

Because this holds for any $u \in D$, and D is dense in H, then $\overline{E}^{\perp} = \{0\}$, and so $\overline{E} = H$.

(a) Suppose H is separable. Let $V \subset H$ be a linear subspace that is dense in H, then V contains an orthonormal basis of H.

SOLUTION: Since H is separable and $V \subset H$, then V is separable. Let (v_n) be a countably dense subset of V, and let $F_k = \operatorname{span}\{v_1, \dots, v_k\}$. F_k is finite and $\bigcup F_k$ is dense in V. Since F_1 is finite, then for any $x \in F_1$, $x = x_1 e_1$, where $||e_1|| = 1$. Thus, take e_1 . If $F_2 \neq F_1$, then let $u_2 \in F_2 \setminus F_1$, and define

$$e_2 = \frac{u_2 - (u_2, e_1)e_1}{\|u_2 - (u_2, e_1)e_1\|},$$

and so

$$(e_1, e_2) = (e_1, \frac{u_2 - (u_2, e_1)e_1}{\|u_2 - (u_2, e_1)e_1\|}) = \frac{1}{\|u_2 - (u_2, e_1)e_1\|}[(e_1, u_2) - (u_2, e_1)(e_1, e_1)] = 0.$$

Continue this process, then (e_n) is a an orthonormal basis of V, and since $\overline{V} = H$, then

$$\overline{\operatorname{span}\{e_1,\ldots\}} = V \implies \overline{\operatorname{span}\{e_1,\ldots\}} = H,$$

and so (e_n) is an orthonormal basis of H.

(b) Let (e_n) be an orthonormal sequence in H such that $(e_i, e_j) = \delta_{ij}$. Prove there exists some orthonormal basis of H that contains $\bigcup_{i=1}^{\infty} e_n$.

Solution: Consider $E_k = \operatorname{span}\{e_1, \dots, e_k\}$. Define F_k as above, then if

$$\overline{E} = \overline{\bigcup_{k=1}^{\infty} E_k} \neq \bigcup F_k = F,$$

we let $w_k \in F \setminus \overline{E}$, then let k be such that $w \in F_k$ but $w \notin F_{k-1}$.

Define e'_1 such that

$$e_1' = \frac{w_k - \sum_{j=1}^{k-1} (w_k, e_j) e_j}{\|w_k - \sum_{j=1}^{k-1} (w_k, e_j) e_j\|}.$$

Then for any $e_i \in E$, we have that by the same reasoning as the first problem, $(e_i, e'_1) = 0$. Then redefine $E = (e_n) \cup e'_1$ which is an orthonormal sequence in H. Continue this procedure until $\overline{E} = F$, and then E is an orthonormal basis of H containing $\bigcup e_n$.

12