

Sep 06, 2022

Feeder-free culturing of hPSCs

Hanqin Li¹, Oriol Busquets², Steven Poser², Dirk Hockemeyer¹, Frank Soldner²

¹University of California, Berkeley; ²Albert Einstein College of Medicine

dx.doi.org/10.17504/protocols.io.b4mcqu2w

ABSTRACT

This collection describes the standard procedure of feeder-free culturing of human pluripotent stem cells (hPSCs) using mTeSR-plus or StemFlex

Collection overview

Coating plates

- A. VTN
- B. Matrigel
- C. Geltrex

Adapting hPSCs cultured on MEFs to feeder-free system

Thawing of feeder-free hPSCs

Passaging of feeder-free hPSCs

- A. Accutase
- B. ReLeSR

Freezing of feeder-free hPSCs

- A. Accutase
- B. ReLeSR

General Notes

- Throughout these protocols, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. Until otherwise indicated, feeder-free hPSCs are routinely grown in a humidified cell culture incubator under "low" oxygen conditions. We have successfully maintained hPSCs using either 3% O2 (3% O2, 5% CO2) or 5% O2 (5% O2, 5% CO2) conditions.
- 3. We have routinely maintained feeder-free cells in either mTeSR-plus or StemFlex. However, these two media are not interchangeable. Pick one and stick to it.
- 4. We have routinely maintained feeder-free hPSC cultures on VTN, Matrigel and Geltrex-coated cell culture plates without observing obvious differences.
- 5. We have routinely passaged feeder-free hPSCs using either Accutase (as single cell suspension) or ReLeSR (as cell aggregates) without observing obvious differences.

dx.doi.org/10.17504/protocols.io.b4mcqu2w

COLLECTION CITATION

Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner 2022. Feeder-free culturing of hPSCs. **protocols.io** https://dx.doi.org/10.17504/protocols.io.b4mcqu2w

FUNDERS ACKNOWLEDGEMENT

F

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

KEYWORDS

ASAPCRN

LICENSE

This is an open access collection distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 02, 2022

LAST MODIFIED

Sep 06, 2022

COLLECTION INTEGER ID

57732

MATERIALS TEXT

Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
DPBS w/o	Corning	MT21031CV
Calcium and magnesium (DPBS)		
mTeSR-plus	STEMCELL	100-0276
	Technologies	
StemFlex	Thermo	A3349401
	Fisher	
FB Essence	Avantor	10803-034
Vitronectin	Thermo	A14700
(VTN-N) Recombinant Human	Fisher	
Protein, Truncated		
DMSO	Fisher	BP231-100
	Scientific	
Y-27632	Chemdea	CD0141
Accutase	Thermo	SCR005
	Fisher	
Collagenase type IV	Thermo	17104019
	Fisher	
Styrofoam	Labnet	R8000
microtube freezer box		
Nalgene® Mr. Frosty® Cryo 1°C	Thermo	
Freezing Containers	Fisher	
Matrigel	Corning	CV40234
Geltrex	Fisher	A1413302
	Scientific	
ReLeSR	Stem Cell	05872
	Technologies	
Cell lifter	Corning	3008

ABSTRACT

This collection describes the standard procedure of feeder-free culturing of human pluripotent stem cells (hPSCs) using mTeSR-plus or StemFlex

Collection overview

Coating plates

- A. VTN
- B. Matrigel
- C. Geltrex

Adapting hPSCs cultured on MEFs to feeder-free system

Thawing of feeder-free hPSCs Passaging of feeder-free hPSCs

- A. Accutase
- B. ReLeSR

Freezing of feeder-free hPSCs

- A. Accutase
- B. ReLeSR

General Notes

- Throughout these protocols, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. Until otherwise indicated, feeder-free hPSCs are routinely grown in a humidified cell culture incubator under "low" oxygen conditions. We have successfully maintained hPSCs using either 3% O2 (3% O2, 5% CO2) or 5% O2 (5% O2, 5% CO2) conditions.
- 3. We have routinely maintained feeder-free cells in either mTeSR-plus or StemFlex. However, these two media are not interchangeable. Pick one and stick to it.
- 4. We have routinely maintained feeder-free hPSC cultures on VTN, Matrigel and Geltrex-coated cell culture plates without observing obvious differences.
- We have routinely passaged feeder-free hPSCs using either Accutase (as single cell suspension) or ReLeSR (as cell aggregates) without observing obvious differences.

FILES

