ECE 202: Linear Circuit Analysis II – Fall 2013

HOMEWORK SET 6: DUE TUESDAY, SEPTEMBER 17,5 PM IN MSEE 180

ALWAYS CHECK THE ERRATA on the web.

Main Topics: The Past, N&M cont. Switching in linear circuits; Switched capacitor circuits.

21. The switch in the circuit of figure below has been in position A for a very long time. At t = 2 s, the switch moves to position B. Calculate $v_c(t)$ for all times $t \ge 0$, given that $i_{in}(t) = 5r(t)$ mA for ALL time. Plot $v_c(t)$ for $0 \le t \le 5$ s in MATLAB.

22-23. Synchronous Buck Converter Circuit: In the circuit below, $R=2 \Omega$, L=250 mH, C=500 mF.

Assume that $v_{in}(t) = 12u(t) \text{ V}$, $i_L(0^-) = 0$, and $v_C(0^-) = 0 \text{ V}$. Suppose further that switch S1 opens at t = 2 s (from position A to B), closes at t = 4 s (from B to A), and opens again at t = 6 s; while switch S2 closes at t = 2 s (from C to D), opens at t = 4 s (from D to C), and closes again at t = 6 s.

- (a) For $0 \le t \le 2$ s, compute the inductor current (from left to right) with the switch closed by first computing $I_L(s)$.
- (b) Compute approximately $i_L(2^-) = i_L(2^+)$.
- (c) Draw the equivalent circuit valid for $2 \le t \le 4$ s.
- (d) Compute $V_C(s)$.
- (e) Compute $v_C(t)$ for $2 \le t \le 4$ s.
- (f) Determine the capacitor voltage for $4 \le t \le 6$ s.
- (g) Determine the capacitor voltage for $6 \le t < 8$ s.
- (h) Plot $v_C(t)$ for $0 \le t \le 8$ sec in MATLAB.

page 2 Spring 13

24. For the circuit below, assume all inductor currents are initially zero, and $v_{in}(t) = 5u(t)$. The circuit switches from A to B at t=1 s; moves back from B to A at t=2 s; and continues in this periodic cycle every 2 seconds. Determine $i_{out}(t)$ for $0 \le t \le 6$ s, and for one 2 s cycle in the limit as $t \to \infty$. **Hint**: after enough cycles, the output also becomes periodic, i.e., $i_{out}(t) = i_{out}(t+2)$.

1