БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

Протокол №	от	_Председатель
Протокол №	от	_Председатель
Протокол №	от	_Председатель
Протокол №	OT	_Председатель
Протокол №	ОТ	Председатель

Дисциплина

«Теория вероятностей и математическая статистика»

Задания для проведения практической работы №9

НАИМЕНОВАНИЕ РАБОТЫ: Нахождение вероятности попадания случайных величин, имеющих нормальное распределение, в заданный интервал.

ЦЕЛЬ РАБОТЫ: сформировать умения и навыки по нахождению вероятностей попадания непрерывных случайных величин в заданный интервал.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1.1. Нормальное распределение.
- 1.2. Нахождения вероятностей попадания непрерывных случайных величин в указанный интервал.

2. Работа в аудитории

2.1. Решение типовых заданий

Задание №1. Математическое ожидание нормально распределенной случайной величины m = 10, а среднее квадратическое отклонение -2. Найти вероятность того, что в результате испытания X примет значение из интервала (12: 14).

Решение:

Воспользуемся формулой вероятности попадания случайной величины x, подчиненной нормальному закону распределения, на заданный интервал (α, β) :

$$P(\alpha < x < \beta) = \Phi\left(\frac{\beta - m}{\sigma}\right) - \Phi\left(\frac{\alpha - m}{\sigma}\right).$$

В нашем случае,

$$P(12 < x < 14) = \Phi\left(\frac{14 - 10}{2}\right) - \Phi\left(\frac{12 - 10}{2}\right) = \Phi(2) - \Phi(1) = 0,4772 - 0,3413 = 0,1359.$$

Ответ: 0,1359.

Задание №2. Коробки с шоколадом упаковываются автоматически: средний вес коробки равен 0,5 кг, а его среднее квадратичное отклонение равно 0,1 кг. Найти практически возможный максимальный вес одной коробки, если масса коробок подчиняется нормальному закону распределения.

Решение:

Так как, интервалом практически возможных значений случайной величины x, распределенной по нормальному закону, будет интервал $(m-3\sigma;m+3\sigma)$.

Следовательно, максимальный вес одной коробки равен $m+3\sigma=0.5+3\cdot0.1=0.8$.

Ответ: 0,8.

2.2. Выполните задания

Уровень І

Задание №1. Рост мужчины определенной возрастной группы распределен по нормальному закону с математическим ожиданием a и средним квадратическим отклонением σ . Какую долю костюмов в общем объеме производства следует предусмотреть для роста $(k_1 - k_2)$?

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	180	175	176	168	182	178	186	173	171	169	172	176	179	159	168
σ	9	8	4	7	5	6	3	4	5	7	5	7	8	6	4
k_1	176	170	182	164	176	170	182	170	164	164	170	170	176	158	164
k_2	182	176	188	170	182	176	188	176	170	170	176	176	182	164	170

Уровень II

Задание №2. Среднее квадратическое отклонение случайной величины, распределенной по нормальному закону, равно σ , а математическое ожидание равно a. Найти границы, в которых с вероятностью 0,95 следует ожидать значение случайной величины

	№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	а	20	25	16	40	30	45	24	60	50	25	35	30	18	40	30
Ī	δ	2	3	2	3	2	4	2	5	4	3	4	4	2	3	3

Задание №3. Вес пойманной рыбы подчиняется нормальному закону распределения с параметрами a и σ . Найти вероятность того, что вес одной рыбы будет: a) от k_1 до k_2 г; б) не более k_2 г.; в) больше k_1 г.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
а	400	375	425	320	450	300	350	420	500	380	280	350	410	400	340
σ	20	25	25	20	30	15	30	25	40	25	20	20	45	35	25
k_1	200	250	300	150	300	200	180	230	350	120	100	150	180	120	200
k_2	350	300	400	250	400	250	250	400	450	280	150	300	380	340	250

Уровень III

Задание №4. Линия связи обслуживает n абонентов. Каждый абонент разговаривает в среднем t минут. Сколько каналов должна иметь линия связи, чтобы с практической достоверностью можно было утверждать, что не произойдет ни одной потери вызова?

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	1000	500	400	600	1000	500	800	400	1000	500	600	700	400	600	800
t	6	3	6	3	5	6	4	3	4	5	6	4	5	4	6

Уровень IV. Составьте и решите задачу, в которой необходимо определить вероятность непрерывной случайной величины, имеющей нормальное распределение.

Контрольные вопросы:

- 1. Какое распределение случайной величины называют нормальным?
- 2. Как найти вероятность попадания случайной величины в заданный промежуток?

Литература

Гусак А.А. Теория вероятностей: справ. Пособие к решению задач / А.А. Гусак, Е.А. Бричикова. — 6-е изд. — Минск: ТетраСистемс, 2007. — с.184 — 201.

Преподаватель В.П. Кошелева