

Verkehrszeichenerkennung als Teil des autonomen Fahrens

Philipp Dingfelder, Valentin Müller, Max Bernauer January 25, 2023

Agenda

Use Case

Teil des autonomen Fahrens

2

Datenbasis

Traffic Sign Recognition, Traffic Sign Detection

30

Umsetzung und Ergebnisse

Traffic Sign Recognition, Traffic Sign Detection

Demo

Live-Demo

Fazit und kritische Reflektion

Zusammenfassung, Herausforderungen, Ausblick

Datenbasis

Datenbasis Vorstellung der Datensets

GTSDB - German Traffic Sign **Detection** Benchmark (900)

Datenbasis

Klassenverteilung GTSRB

Data Augmentation => mehr Daten / andere Perspektiven

Umsetzung und Ergebnisse

Umsetzung & Ergebnisse Überblick

Detection YOLOv7

Umsetzung

Traffic Sign Recognition – Vereinfachtes VGG16 Model

- TensorFlow
- Multiclass-Classification
- Angepasste VGG16 Architektur
- Data Augmentation Teil der Modellpipeline

Ergebnisse

Traffic Sign Recognition – Vereinfachtes VGG16 Model

Umsetzung Traffic Sign Detection – YOLOv7 Model

- Modell für real-time
 Object Detection
 - 5 FPS to 160 FPS
 - 56.8% AP
- Erkennung verschiedener Klassen möglich
- Transfer Learning mit fine-tuning

Training Traffic Sign Detection – YOLOv7 Model

Ergebnisse Traffic Sign Detection – YOLOv7 Model

PR-Kurve des Testdatensatzes

Beispielhafter Output

Umsetzung & Ergebnisse

Zusammenführung der Modelle

Demo

Fazit und kritische Reflektion

Fazit und kritische Reflektion Herausforderungen und Ausblick

Herausforderungen

- Anpassung der Modelle an die Datenkomplexität
- Object Detection hoher Aufwand
 - Wenig Daten (900 Bilder)
 - Neues Framework / wenige Beispiele
 - YOLOv7 Output
- Kombination der Modelle

Lösungen

- Data Preparation
- Classification, nach Nutzung einfacheres Modell
- Imbalanced data kein Problem

Ausblick

- Live-Input durch Kamera
- Integration mit anderen Komponenten des autonomen Fahrens

Q&A

Thank you.

Contact information:

Philipp Dingfelder dingfpil@schaeffler.com

Valentin Müller valentin.mueller@sap.com

Max Bernauer m.bernauer@sap.com

Bildquellen

Titelbild: SAP Image Library

Startseite: SAP Image Library

Alle Piktogramme: SAP Image Library

Abbildungen Slide 5: Eigene Abbildungen

Abbildung Slide 6: Eigene Abbildung

Abbildung VGG16 Architektur: Medium - VGG-Net Architecture Explained https://miro.medium.com/max/1400/1*VPm-hHOM14OisbFUU4cL6Q.png

Abbildung vereinfachte VGG16 Architektur: Eigene Abbildung

Ergebnisse vereinfachte VGG16 Architektur: Eigene Abbildungen

Abbildung YOLOv7 Architektur: Wang, Chien-Yao; Bochkovskiy, Alexey; Liao, Hong-Yuan Mark (2022): YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Online verfügbar unter https://arxiv.org/pdf/2207.02696. Figure 9

Training YOLOv7: Eigene Abbildungen

Ergebnisse YOLOv7: Eigene Abbildungen

Alle Links wurden am 23.01.2023 um 15:30 zuletzt abgerufen.