

Прогнозирование цены и направления движения акций с использованием ML и DL.

Маматов Алмаз mamatovalmaz@mail.ru

Описание задачи проекта

Проект посвящён созданию и оценке моделей ML и DL для прогнозирования цены и направления движения акций ПАО «Татнефть» на основе исторических котировок с техническими индикаторами, макроэкономических данных (валюты, нефть, индексы), а также новостного фона с эмбеддингами, рассчитанными моделью RuBERT.

Используются как классические алгоритмы ML (CatBoost, XGBoost), так и современные архитектуры DL (LSTM, GRU, CNN, Temporal Fusion Transformer) и их ансамбли.

Целевые признаки сформированы как для задач классификации (рост/падение), так и для регрессии (прогноз цены), что позволяет комплексно оценить потенциал моделей и выбрать лучшие решения или их комбинации.

- Финансовая выгода прогнозирование динамики акций помогает принимать обоснованные решения, снижать риски и повышать доходность.
- Интеграция текстового анализа учёт новостного фона позволяет получить дополнительную информацию, часто упускаемую алгоритмами, работающими только с числами.
- Развитие ML/DL в финансах проект демонстрирует возможности современных моделей и ансамблей для работы с временными рядами и текстовыми данными.
- Практическая применимость решение можно интегрировать в трейдинговые платформы как дополнительного помощника в принятии решений, дополняющего традиционный анализ и опыт трейдера.

Постановка задачи

В рамках проекта необходимо:

- Собрать и объединить данные: котировки, макроэкономические показатели, новости.
- Обработать их: расчёт индикаторов, эмбеддинги новостей (RuBERT), заполнение пропусков, масштабирование и т.д.
- Сформировать таргеты:
 - классификация: target_5d_dir (через 5 дней);
 - регрессия: target_5d (цена 5 дней).
- Обучить и сравнить модели: CatBoost, XGBoost, LSTM, GRU, CNN, TFT, ансамбли.
- Настроить гиперпараметры (Optuna) для повышения точности.
- Оценить по метрикам (Accuracy, Precision, Recall; RMSE, MAE, MAPE).
- Сформировать выводы и рекомендации для применения.

Часть 1: Сбор и обработка данных

Этап направлен на создание целостного и согласованного набора данных, который объединяет рыночную, макроэкономическую и новостную информацию. Главная цель — сформировать информативный и качественный датафрейм, который можно напрямую использовать для построения и обучения прогнозных моделей.

Блок 1: Подготовка котировок и макроданных

Собраны исторические котировки акций ПАО «Татнефть», а также цены нефти, валютных пар и ключевых фондовых индексов. Источником выступил сервис investing.com, что позволило получить данные за весь доступный период наблюдений. Все ряды приведены к единому временному формату с учётом торговых дней, очищены от дубликатов, пропусков и аномалий. Такая обработка обеспечивает корректность дальнейшего расчёта технических индикаторов и объединение с другими источниками информации.

Блок 2: Расчёт технических и производных признаков

На основе очищенных временных рядов рассчитаны индикаторы тренда (EMA, SMA), волатильности (Bollinger Bands, ATR), торговой активности (OBV, объёмные средние) и других параметров. Цель — отразить в данных не только абсолютные значения цен, но и динамику их изменений, направление движения, уровни перекупленности или перепроданности рынка. Это позволяет моделям улавливать более сложные закономерности, чем при работе только с ценой.

Блок 3: Объединение рыночных данных

Все собранные ряды — акции, нефть, валюты, фондовые индексы — синхронизированы по датам и объединены в единую таблицу. Такой подход даёт возможность моделям анализировать взаимосвязи между инструментами и учитывать, как изменения в одном сегменте (например, курса USD) отражаются на другом (акции компании).

Блок 4: Сбор новостных данных

Чтобы учесть влияние информационного фона на цену акций, собран массив новостей из Telegram-каналов и исторических публикаций с сайта rosinvest.com за период с 2012 по 2025 годы. Отбирались только те материалы, которые имеют отношение к компании, отрасли или макроэкономическим событиям. Это позволяет интегрировать в модель факторы, которые не видны напрямую в ценовых рядах, но могут определять краткосрочную динамику.

Блок 5: Объединение новостных источников

Новости из разных источников сведены в единый хронологический ряд. Такой формат обеспечивает непрерывность новостного потока и упрощает сопоставление его структуры с движением рыночных показателей, что важно для анализа причинно-следственных связей между событиями и изменениями цены.

Блок 6: Преобразование текстов в эмбеддинги

Тексты новостей обработаны моделью RuBERT, которая преобразует их в векторные числовые представления — эмбеддинги. Такой формат позволяет алгоритмам машинного обучения оперировать смысловым содержанием текстов и интегрировать новостной фон в расчёты наравне с числовыми рыночными данными.

Блок 7: Финальное объединение данных

Рыночные, макроэкономические и новостные признаки объединены в единый датафрейм. Все данные синхронизированы по датам, очищены и приведены к единому формату. Итоговый датафрейм содержит как числовые рыночные ряды, так и семантические признаки из новостей, что обеспечивает максимальную полноту входной информации для этапа построения прогнозных моделей.

Часть 2: Выбор и обоснование финальной модели

В этой части решается задача бинарной классификации: предсказать, будет ли цена акции через 5 торговых дней выше текущей.

Рассмотренные подходы:

- ML: CatBoost, XGBoost, LightGBM, ансамбли (Stacking)
- DL: CNN, GRU, LSTM, Temporal Fusion Transformer

Оценка проводилась на отложенной части выборки при хронологическом сплите.

Блок 1: Подготовка данных и валидации

- Все признаки смещены на +5 шагов, чтобы исключить утечки.
- ullet Деление по времени: $\sim 80\%$ train, $\sim 20\%$ test.
- Валидация: хвост train ($\sim 15\%$).
- Баланс классов учтён через scale_pos_weight.
- Классы распределены почти равномерно (около 50/50).

Блок 2: Подбор гиперпараметров (Optuna)

- Целевая функция: минимизация valid logloss.
- Использованы параметры: eta, max_depth, min_child_weight, subsample, colsample bytree, регуляризации λ, α, γ .
- Ранняя остановка: 75 шагов без улучшения.
- Лучший результат достигнут на 659-й итерации (logloss минимален).

Блок 3: Сравнение моделей (тест)

Модель	Accuracy	Precision	Recall	F1
Stacking (XGB+CAT+LGB)	0.7679	0.7729	0.7904	0.7815
CatBoost	0.7872	0.7807	0.8272	0.8033
CNN	0.7720	0.7994	0.7754	0.7872
GRU	0.7406	0.7249	0.8443	0.7801
LightGBM	0.7708	0.7851	0.7762	0.7806
LSTM	0.7031	0.7923	0.6168	0.6936
TFT	0.7683	0.7500	0.6364	0.6885
XGBoost	0.7961	0.8000	0.8159	0.8079

Итог: **XGBoost** показал лучший баланс Accuracy, Precision и F1 при высоком Recall.

Блок 4: Прогноз vs Факт по времени

Большинство прогнозов совпадает с фактом; ошибок заметно меньше и они равномерно распределены по времени.

Блок 5: Матрица ошибок и вероятности

Ошибки FP и FN распределены примерно равномерно — подтверждается баланс Precision и Recall.

Класс 0 сосредоточен в зоне 0.1–0.4, класс 1 — в 0.6–0.9; пересечения около порога 0.5 — источник ошибок.

Блок 6: Точечный прогноз (пример)

Дата: 2025-06-02

Вероятность роста: 0.1164

• Прогноз: падение

• Факт: падение

Прогноз совпал с фактом — модель адекватно реагирует на конкретные даты. Такие проверки удобны для ручной валидации.

Блок 7: Сравнение с исследованиями

В таблице приведены результаты близких исследований по задаче прогноза направления цены.

Работа	Рынок	Гор.	Модель	Результат
Моя (XGBoost)	МОЕХ (тех+макро+новости)	5д	XGBoost	Acc 0.796, F1 0.808
Sadorsky (2021)	ETF золото/серебро	5-20д	RF, Bagging	Acc 0.80-0.90
Basher & Sadorsky (2022)	Bitcoin, золото	5-20д	RF, Bagging	Асс 0.75-0.80 (5д), >0.90 (15д)
Yıldırım et al. (2021)	EUR/USD	5д	Hybrid LSTM	Асс 0.79–0.84 (часть дат)
Хубиев & Семёнов (2025)	MOEX	5д	LSTM, XGB	Acc 0.45-0.52
ВКР НИУ ВШЭ (2025)	МОЕХ (15 акц.)	t+1	LSTM+Boruta	Acc 0.58–0.66

Вывод: XGBoost сопоставим с лучшими ансамблями деревьев и превосходит большинство LSTM на горизонте t+5.

Блок 8: Итоговый вывод по части 2

- Финальная модель для бинарной классификации (t+5) **XGBoost**.
- Достигает Accuracy ≈ 0.80 и F1 ≈ 0.81 на тесте.
- Ошибки FP и FN сбалансированы; распределение вероятностей чётко разделяет классы.
- Модель устойчива: не переобучается, стабильна при хронологическом сплите.
- Простая в эксплуатации: быстро обучается, легко интегрируется в пайплайн, интерпретируема по признакам.
- По сравнению с исследованиями XGBoost демонстрирует результат, сопоставимый с лучшими ансамблями деревьев и выше большинства решений на LSTM.
- Подходит как практическая модель-прототип для применения в реальной торговой системе.

Часть 3: Выбор и обоснование финальной модели

В этой части решается задача регрессии: предсказать цену акции ПАО «Татнефть» через 5 торговых дней.

Рассмотренные подходы:

ML: CatBoost, XGBoost

• DL: CNN, GRU, LSTM, Temporal Fusion Transformer (TFT)

Оценка проводилась на отложенной части выборки при хронологическом сплите. По метрикам (MAE, RMSE, MAPE) финальной выбрана модель **TFT**.

Блок 1: Подготовка данных для регрессии

На данном этапе исходный датафрейм преобразован для решения задачи прогнозирования цены через 5 торговых дней с использованием TFT.

Основные шаги:

- формирование целевой переменной target_5d;
- очистка и переименование признаков;
- удаление неполных наблюдений;
- масштабирование входных данных (кроме date и target 5d);
- сохранение итогового датафрейма в CSV.

Итог: подготовлен нормализованный набор данных, соответствующий входным требованиям TFT.

Блок 2: Формирование календарных признаков

Для адаптации данных к требованиям TFT добавлены календарные и служебные переменные.

Основные шаги:

- генерация индекса времени time_idx;
- разложение даты: год, квартал, месяц, день, день недели;
- индикаторы: выходной, начало/конец месяца, день года;
- задание идентификатора временного ряда group id;
- финальное упорядочивание и сохранение в CSV.

Итог: получен структурированный датафрейм, полностью совместимый с входным форматом TFT.

Блок 3: Финальная подготовка данных для TFT

На завершающем этапе данные были приведены к формату, требуемому библиотекой pytorch-forecasting. Выполнено разделение признаков на статические, временные известные заранее и временные неизвестные. Для обеспечения корректного обучения реализован хронологический сплит на обучающую и валидационную выборки, после чего данные преобразованы в объект TimeSeriesDataSet, автоматически управляющий нормализацией и структурой входных последовательностей.

Блок 4: Инициализация и обучение TFT

На данном этапе выполняется построение и обучение модели **Temporal Fusion Transformer** на подготовленных данных. Архитектура и параметры модели задаются автоматически из структуры датафрейма, с последующей настройкой ключевых гиперпараметров (скорость обучения, размер скрытых слоёв, число голов внимания, dropout и др.).

Для обеспечения устойчивости обучения применяются:

- RMSE как функция потерь и MAE как дополнительная метрика;
- колбэки ранней остановки и сохранения наилучшей версии модели;
- контроль градиентов и ограничение числа эпох.

В результате модель обучается на $train_loader$ с контролем качества на val_loader , автоматически сохраняя оптимальный чекпойнт по метрике val_loss , который далее используется для тестирования и прогнозов.

Блок 5: Скользящее тестирование TFT

Для оценки прогноза использовано **скользящее тестирование** с окном длиной 90 дней: на каждом шаге модель обучается на последних наблюдениях и предсказывает цену акции через 5 торговых дней.

Особенности реализации:

- загрузка обученной TFT из сохранённого чекпойнта;
- формирование скользящих окон на основе полного ДФ;
- прогноз только на будущем периоде (2025 год и далее);
- сбор и анализ ошибок (MAE, RMSE, MAPE), формирование итогового датафрейма.

Качество прогноза (ручной подбор vs Optuna)

Подход	MAE	RMSE	MAPE
Ручной подбор	18.25	22.37	2.63%
Optuna	23.99	29.02	3.41%

Вывод: ручная настройка обеспечивает более точные прогнозы и меньший уровень ошибок, тогда как автоматическая оптимизация через Optuna приводит к излишнему сглаживанию динамики и росту ошибок что показано далее на графиках.

Прогноз vs Факт и распределение ошибок

Рис. 3 – Прогноз vs Факт (Optuna)

Рис. 4 – Прогноз vs Факт (ручной подбор)

Вывод: при ручной настройке модель лучше отслеживает динамику, ошибки локализованы и меньше по абсолютной величине.

Итоговый вывод по скользящему тестированию TFT

- Ручная настройка гиперпараметров обеспечивает более низкие ошибки (MAE \approx 18, RMSE \approx 22, MAPE \approx 2.6%), что делает модель применимой на горизонте **t+5**.
- Автоматическая оптимизация через Optuna приводит к сглаживанию динамики и росту ошибок (MAPE > 3.4%).
- Графический и табличный анализ подтверждает: при ручной настройке модель ближе следует за фактической ценовой динамикой и допускает меньше крупных отклонений.

Заключение: модель TFT с ручным подбором гиперпараметров является оптимальным вариантом для прогноза цен акций ПАО «Татнефть» на горизонте 5 торговых дней.

Блок 6: Точечный прогноз TFT на заданную дату

На примере прогноза цены акции ПАО «Татнефть» на дату **06.06.2025** проверена работа обученной модели. Модель использует последние 90 наблюдений, календарные признаки формируются автоматически.

Фактическая цена: 639.10 ₽

- Ручная настройка гиперпараметров: прогноз 676.85 ₽, ошибка 37.75 ₽ (5.91%).
- Оptuna (автопоиск): прогноз 592.70 ₽, ошибка 46.40 ₽ (7.26%).

Вывод: обе модели ошиблись больше, чем в среднем по скользящему тестированию, однако при ручной настройке ошибка ниже. Точечные проверки удобны для валидации и позволяют убедиться в устойчивости модели на конкретных датах.

Сравнение с исследованиями

Цель: определить оптимальную модель для прогноза цен акций на горизонте t+5.

Рынок	Гор.	Модель	Метрики	Результат
МОЕХ (ак-	t+5	TFT	MAE/RMSE/MAPE	18.25 / 22.37 /
ции, индика-	1	'		2.63%
торы, макро,	1 '	'		
новости)	1	'		
S&P 500	1–20	TFT, LSTM	RMSE / MAPE	TFT < LSTM, MAPE
1	1	'		~3–5%
NYSE, MOEX,	1–15	CNN, LSTM,	RMSE	CNN/GRU: 30-40;
FOREX	1	GRU		гибриды <30
S&P 500	t+1	LSTM vs RF	RMSE / R ²	LSTM RMSE ∼25; RF
1	1	'		лучше
NYSE	1–5	TFT + новости	RMSE / MAPE	TFT + FinBERT >
1 '	1 '	'		LSTM, DeepAR
	МОЕХ (ак- ции, индика- торы, макро, новости) S&P 500 NYSE, MOEX, FOREX S&P 500	МОЕХ (ак- ции, индика- торы, макро, новости) S&P 500 1–20 NYSE, MOEX, FOREX S&P 500 t+1	МОЕХ (ак- ции, индика- торы, макро, новости) S&P 500 1–20 TFT, LSTM NYSE, MOEX, FOREX S&P 500 t+1 LSTM vs RF	МОЕХ (ак- ции, индика- торы, макро, новости) t+5 TFT MAE/RMSE/MAPE S&P 500 1–20 TFT, LSTM RMSE/MAPE NYSE, MOEX, FOREX 1–15 CNN, LSTM, GRU RMSE S&P 500 t+1 LSTM vs RF RMSE/R

Краткий анализ исследований

Lim & Zohren (2021) Показано, что TFT устойчивее LSTM на горизонтах > 5 дней и обладает преимуществом интерпретируемости.

Sezer et al. (2020) Обзор 150+ работ и эксперименты на NYSE, MOEX, FOREX. Гибриды CNN+LSTM показали RMSE < 30, лучше отдельных моделей.

Fischer & Krauss (2018) Сравнение LSTM и RF на S&P 500 (t+1). LSTM RMSE ~ 25 , но ансамбли деревьев оказались стабильнее.

Díaz Berenguer et al. (2024) TFT в сочетании с новостями (FinBERT) превзошёл LSTM и DeepAR. Подтверждена ценность учёта новостного фона и причинности.

В Итоговый вывод

Моя модель Temporal Fusion Transformer (ручная настройка) на горизонте t+5 показала метрики: MAE \approx 18, RMSE \approx 22, MAPE \approx 2.6%.

В сравнении с исследованиями:

- TFT подтверждает устойчивость и интерпретируемость (Lim & Zohren, Díaz Berenguer et al.);
- Ошибки моей модели (RMSE \sim 22) меньше, чем у большинства классических LSTM/GRU (RMSE 25-40, MAPE 3-5%);
- Результаты сопоставимы или лучше зарубежных исследований, что подтверждает конкурентоспособность подхода для МОЕХ.

Заключение: финальная модель **TFT с ручной настройкой гиперпараметров** является оптимальным выбором для прогноза цен акций на горизонте 5 торговых дней.

Направления улучшения модели (1/4)

Работа с признаками (feature engineering)

- Более строгая фильтрация слабозначимых признаков позволит снизить уровень шума и уменьшить риск переобучения.
- Увеличение числа информативных признаков:
 - Технические индикаторы: Chaikin Money Flow (СМF), Money Flow Index (МFI), Williams %R, Momentum, Keltner Channels, Ichimoku Cloud.
 - Макроэкономические ряды: индекс потребительских цен (СРІ), индекс деловой активности (РМІ), торговый баланс, уровень безработицы, индекс доверия инвесторов.
 - **Кросс-рыночные факторы**: динамика фондовых индексов (S&P 500, RTS, MOEX), золото, газ, акции конкурентов (Лукойл, Роснефть).
- Важным шагом остаётся оценка важности признаков (например, SHAP, permutation importance), чтобы выявить реально значимые переменные.

Направления улучшения модели (2/4)

Оптимизация гиперпараметров и архитектуры

- Качество временных моделей сильно зависит от параметров: encoder_length, hidden_size, batch_size, число слоёв.
- Их точная настройка может заметно повысить результаты.
- Проблема: ограничение видеопамяти (ошибки ООМ), что требует осторожного выбора размеров модели и параметров обучения.

Направления улучшения модели (3/4)

Использование агрегированных эмбеддингов новостей

- Вместо простого усреднения эмбеддингов можно применять агрегирование с учётом важности слов (attention) или по тональности.
- Такой подход позволяет отражать именно «финансовый сигнал» новости и усиливает вклад текстовых данных в прогноз.

Направления улучшения модели (4/4)

Изменение логики применения модели (бинарная классификация)

- Повышение порога классификации (например, до 0.8) позволит выдавать сигналы только при высокой уверенности.
- Зона неопределённости (0.4–0.6) может трактоваться как «нет сигнала».
- Такой подход ближе к реальной торговой логике, где надёжность прогноза важнее частоты сигналов.

План развития проекта

. Дальнейшее улучшение качества

• Доработка признаков, гиперпараметров и архитектуры моделей для повышения точности и устойчивости прогнозов.

2. Расширение охвата прогнозов

- Прогноз не только на 5 дней, но также на 1 день и 30 дней.
- Подключение большего числа акций Московской биржи (например, Лукойл, Роснефть) для проверки переносимости модели.

3. Вывод модели в продакши

- Реализация автоматического пайплайна: загрузка котировок и новостей, предобработка, генерация признаков.
- Регулярное обновление модели или её перетренировка по мере накопления новых данных.
- Автоматическая генерация торговых сигналов и интеграция в интерфейс (дашборд с визуализацией и метриками).
- Возможность backtesting и сравнения прогнозов с фактическими результатами в реальном времени.