WEEK 4 REVIEW

Question #1

Can we subtract numbers using only ripple carry adders?

- No! we need additional gates
- Two's complement is NOT(Y) +1
- C_{in} gives us +1, but we still need to compute NOT(Y)

0

Is this circuit stable or does it oscillate?

oscillates!

Question #3

Is this circuit stable or does it oscillate?

Is this circuit stable or does it oscillate?

- stable! It is
- Q=0
- remains o

0

Q=1 remains 1

Rearrange the circuit...

Latches

We overcome oscillations by combining multiple NAND or NOR gates.

These circuits are called latches.

Question #4

- Complete the truth table
- Don't-care inputs allowed.
- And name the 4 possible
 S,R input combinations

- Complete the truth table
- Don't-care inputs allowed.
- And name the 4 possible S,R input combinations

Summary: SiRi SR latches

Given the input waveforms, sketch the output Ω of an SR latch. Assume Ω was zero initially.

Clocks

A periodic signal that gives timing for our circuit

second. Frequency = the number of pulses occur per

Clocked/Gated latches

- the inputs: Add a new input C that acts like a "gate" over
- If C=0 the latch ignores input
- Maintains state.
- If C=1 the latch is "active"
- Responds to input

Clocked SR latch behaviour

undefined	•ა	H	H	H
S e t	Н	0	Н	Н
Reset	0	Н	0	Ь
hold	Ю Н	0	0	Н
hold	O F	×	×	0
Result	$\mathbf{Q}_{\mathtt{T}+1}$	Ħ	ß	С

D latch

- This design is good!
- Easy to store a bit: just set D to what you want to store.
- Can maintain state as long as C is low
- No weird forbidden inputs.

latch 15 transparent

- Any changes to its inputs are visible to the output when control signal (Clock) is 1.
- Output keeps toggling back and forth.
- We want output to change exactly once per cycle.

Flip-flops

Positive edge: triggered on rising edge of the clock

 Negative edge: triggered on falling edge of the clock

Flip-flops

- For input to propagate to output, it takes each of the latches to be active once.
- First latch changes on "flip".
- Output can only change upon "flop", which is basically the falling edge of the clock signal
- At most one change per clock cycle

Flip-flops

- We have:
- D flip-flops (most common type!)
- SR flip-flops
- T flip-flops (for "toggle")
- JK flip-flops

- flip-flops starts as low (X=0 Y=0). Assuming the Q output of both
- What will the values of ${\mathbb X}$ and ${\mathbb Y}$ be over the next few clock cycles?
- (These are positive edge- triggered)

X

Clock

 \forall

Question #8

- flip-flops starts as low (X=0 Y=0). Assuming the O output of both
- What will the values of X and Y be over the next few clock cycles?
- (These are positive edge- triggered)

D

D

 $\mathcal{Q}_{\mathbb{L}}$

 $Q_{\rm L}$

will the outputs be on Ω_L and Ω_F ? the input waveform below, what Given the circuit on the right and

Initial state for both is zero

Question #9

 \bigcirc

Ø

D

 $Q_{\rm L}$

- will the outputs be on Ω_{L} and Ω_{F} ? the input waveform below, what Given the circuit on the right and
- Initial state for both is zero

Λ

<u>Q</u>

 $\mathcal{Q}_{\mathbb{F}}$

 $Q_{\mathbb{F}}$

 $olimits_{\mathbb{F}}$

 Q_{L}

D