INTRODUCTION TO PROBABILITY

CARSON JAMES

Contents

1. Basic Probability	2
2. Kolomogorov Extension Theorem	2
3. Probability	3
3.1. Distributions	3
3.2. Independence	6
3.3. L^p Spaces for Probability	9
3.4. Borel Cantelli Lemma	14
4. Probability on locally compact Groups	16
4.1. Action on Probability Measures	16
5. Weak Convergence of Measures	17
6. Concentration Inequalities	18
6.1. Introduction	18
6.2. Sub α -Exponential Random Variables	18
7. Conditional Expectation and Probability	22
7.1. Conditional Expectation	22
7.2. Conditional Probability	23
8. Markov Chains	26
9. Probabilities Induced by Isometric Group Actions	27
9.1. Applications to Bayesian Statistics	27
10. Stochastic Integration	28
11. TODO	29
References	30

1. Basic Probability

2. Kolomogorov Extension Theorem

Show that for each x, $\pi_{st}(x) = \pi_s(x)\pi_t(x)$ and this implies that for each feasible (s, A), (t, B) so that $\pi_{st}-1(A \times B) = \pi_s(A) \cap \pi_t(B)$.

For $u \subset \mathbb{C}^{\mathbb{N}}$, set $\pi_u \mathbb{C}^{\mathbb{N}} = \{x \in \mathbb{C}^{\mathbb{N}} : \text{for each } j \in u^c, x_j = 0\}$. Consider lattice of subspaces of $\pi_u \mathbb{C}^{\mathbb{N}}$, ordered by inclusion indexed by finite subsets $u \subset \mathbb{N}$.

show that if $u \subset v$, then $\mathcal{B}(\pi_u \mathbb{C}^{\mathbb{N}}) = \iota_{u,v}^*(\mathcal{B}(\pi_v \mathbb{C}^{\mathbb{N}}))$ where $\iota_{u,v} : \pi_u \mathbb{C}^{\mathbb{N}} \to \pi_v \mathbb{C}^{\mathbb{N}}$ is inclusion. Equip $(\pi_u \mathbb{C}^{\mathbb{N}}, \mathcal{B}(\pi_u \mathbb{C}^{\mathbb{N}}))$ with measure μ_u such that π_u

with pullback sigma algebra $\iota_{u,v}^*(\mathcal{B}(\pi_v\mathbb{C}^{\mathbb{N}}))$ where $u \subset v$ and $\iota_{u,v} : \pi_u\mathbb{C}^{\mathbb{N}} \to \pi_v\mathbb{C}^{\mathbb{N}}$. Equip each object $(\pi_u\mathbb{C}^{\mathbb{N}}, \mathcal{B}(\pi_u\mathbb{C}^{\mathbb{N}}))$ with measures μ_u satisfying μ_u of in stoch has maximum

3. Probability

3.1. Distributions.

Definition 3.1.1. Let Ω be a set and $\mathcal{P} \subset \mathcal{P}(X)$. Then \mathcal{P} is said to be a π -system on Ω if for each $A, B \in \mathcal{P}$, $A \cap B \in \mathcal{P}$.

Definition 3.1.2. Let Ω be a set and $\mathcal{L} \subset \mathcal{P}(\Omega)$. Then \mathcal{L} is said to be a λ -system on Ω if

- (1) $\mathcal{L} \neq \emptyset$
- (2) for each $A \in \mathcal{L}$, $A^c \in \mathcal{L}$
- (3) for each $(A_n)_{n\in\mathbb{N}}\subset\mathcal{L}$, if $(A_n)_{n\in\mathbb{N}}$ is disjoint, then $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{L}$

Exercise 3.1.3. Let Ω be a set and \mathcal{L} a λ -system on Ω . Then

(1) $\Omega, \varnothing \in \mathcal{L}$

Proof. Straightforward.

Definition 3.1.4. Let Ω be a set and $\mathcal{C} \subset \mathcal{P}(\Omega)$. Put

$$\mathcal{S} = \{ \mathcal{L} \subset \mathcal{P}(\Omega) : \mathcal{L} \text{ is a } \lambda \text{-system on } \Omega \text{ and } \mathcal{C} \subset \mathcal{L} \}$$

We define the λ -system on Ω generated by \mathcal{C} , $\lambda(\mathcal{C})$, to be

$$\lambda(\mathcal{C}) = \bigcap_{\mathcal{L} \in \mathcal{S}} \mathcal{L}$$

Exercise 3.1.5. Let Ω be a set and $\mathcal{C} \subset \mathcal{P}(\Omega)$. If \mathcal{C} is a λ -system and \mathcal{C} is a π -system, then \mathcal{C} is a σ -algebra.

Proof. Suppose that \mathcal{C} is a λ -system and \mathcal{C} is a π -system. Then we need only verify the third axiom in the definition of a σ -algebra. Let $(A_n)_{n\in\mathbb{N}}\subset\mathcal{C}$. Define $B_1=A_1$ and for $n\geq 2$, define $B_n=A_n\cap\left(\bigcup_{k=1}^{n-1}A_k\right)^c=A_n\cap\left(\bigcap_{k=1}^{n-1}A_k^c\right)\in\mathcal{C}$. Then $(B_n)_{n\in\mathbb{N}}$ is disjoint and therefore $\bigcup_{n\in\mathbb{N}}A_n=\bigcup_{n\in\mathbb{N}}B_n\in\mathcal{C}$.

Theorem 3.1.6. (Dynkin's Theorem)

Let Ω be a set.

- (1) Let \mathcal{P} be a π -system on Ω and \mathcal{L} a λ -system on Ω . If $\mathcal{P} \subset \mathcal{L}$, then $\sigma(\mathcal{P}) \subset \mathcal{L}$.
- (2) Let \mathcal{P} be a π -system on Ω . Then $\sigma(\mathcal{P}) = \lambda(\mathcal{P})$

Exercise 3.1.7. Let (Ω, \mathcal{F}) be a measurable space and μ, ν probability measures on (Ω, \mathcal{F}) . Put $\mathcal{L}_{\mu,\nu} = \{A \in \mathcal{F} : \mu(A) = \nu(A)\}$. Then $\mathcal{L}_{\mu,\nu}$ is a λ -system on Ω .

Proof.

- $(1) \varnothing \in \mathcal{L}_{\mu,\nu}.$
- (2) Let $A \in \mathcal{L}_{\mu,\nu}$. Then $\mu(A) = \nu(A)$. Thus

$$\mu(A^c) = 1 - \mu(A)$$
$$= 1 - \nu(A)$$
$$= \nu(A^c)$$

So $A^c \in \mathcal{L}_{\mu,\nu}$.

(3) Let $(A_n)_{n\in\mathbb{N}}\subset\mathcal{L}_{\mu,\nu}$. So for each $n\in\mathbb{N}$, $\mu(A_n)=\nu(A_n)$. Suppose that $(A_n)_{n\in\mathbb{N}}$ is disjoint. Then

$$\mu\left(\bigcup_{n\in\mathbb{N}} A_n\right) = \sum_{n\in\mathbb{N}} \mu(A_n)$$
$$= \sum_{n\in\mathbb{N}} \nu(A_n)$$
$$= \nu\left(\bigcup_{n\in\mathbb{N}} A_n\right)$$

Hence $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{L}_{\mu,\nu}$.

Exercise 3.1.8. Let (Ω, \mathcal{F}) be a measurable space, μ, ν probability measures on (Ω, \mathcal{F}) and $\mathcal{P} \subset \mathcal{F}$ a π -system on Ω . Suppose that for each $A \in \mathcal{P}$, $\mu(A) = \nu(A)$. Then for each $A \in \sigma(\mathcal{P})$, $\mu(A) = \nu(A)$.

Proof. Using the previous exercise, we see that $\mathcal{P} \subset \mathcal{L}_{\mu,\nu}$. Dynkin's theorem implies that $\sigma(\mathcal{P}) \subset \mathcal{L}_{\mu,\nu}$. So for each $A \in \sigma(\mathcal{P})$, $\mu(A) = \nu(A)$.

Definition 3.1.9. Let $F : \mathbb{R} \to \mathbb{R}$. Then F is said to be a **probability distribution** function if

- (1) F is right continuous
- (2) F is increasing
- (3) $F(-\infty) = 0$ and $F(\infty) = 1$

Definition 3.1.10. Let P be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. We define $F_P : \mathbb{R} \to \mathbb{R}$, by

$$F_P(x) = P((-\infty, x])$$

We call F_P the probability distribution function of P.

Exercise 3.1.11. Let (Ω, \mathcal{F}, P) be a probability measure. Then F_P is a probability distribution function.

Proof. (1) Let $x \in \mathbb{R}$ and $(x_n)_{n \in \mathbb{N}} \subset [x, \infty)$. Suppose that $x_n \to x$. Then $(x, x_n] \to \emptyset$ because $\limsup_{n \to \infty} (x, x_n] = \emptyset$. Thus

$$F(x_n) - F(x) = P((x, x_n]) \to P(\emptyset) = 0$$

This implies that

$$F(x_n) \to F(x)$$

So F is right continuous.

- (2) Clearly F_P is increasing.
- (3) Continuity from below tells us that

$$F(-\infty) = \lim_{n \to -\infty} F(n) = \lim_{n \to -\infty} P((-\infty, n]) = 0$$

and continuity from above tell us that

$$F(\infty) = \lim_{n \to \infty} F(n) = \lim_{n \to \infty} P((-\infty, n]) = 1$$

Exercise 3.1.12. Let μ, ν be probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then $F_{\mu} = F_{\nu}$ iff $\mu = \nu$.

Proof. Clearly if $\mu = \nu$, then $F_{\mu} = F_{\nu}$. Conversely, suppose that $F_{\mu} = F_{\nu}$. Then for each $x \in \mathbb{R}$,

$$\mu((-\infty, x]) = F_{\mu}(x)$$

$$= F_{\nu}(x)$$

$$= \nu((-\infty, x])$$

Put $C = \{(-\infty, x] : x \in \mathbb{R}\}$. Then C is a π -system and for each $A \in C$, $\mu(A) = \nu(A)$. Hence for each $A \in \sigma(C) = \mathcal{B}(\mathbb{R})$, $\mu(A) = \nu(A)$. So $\mu = \nu$.

Definition 3.1.13. Let (Ω, \mathcal{F}, P) be a probability space and $X : \Omega \to \mathbb{R}^n$. Then X is said to be a **random vector** on (Ω, \mathcal{F}) if X is \mathcal{F} - $\mathcal{B}(\mathbb{R}^n)$ measurable. If n = 1, then X is said to be a **random variable**. We define

$$L_n^0(\Omega, \mathcal{F}, P) = \{X : \Omega \to \mathbb{R}^n : X \text{ is a random vector}\}$$

and

$$L_n^p(\Omega, \mathcal{F}, P) = \left\{ X \in L_n^0 : \int ||X||^p dP < \infty \right\}$$

Definition 3.1.14. Let (Ω, \mathcal{F}, P) be a probability space and X a random variable on (Ω, \mathcal{F}) . We define the **probability distribution** of $X, P_X : \mathcal{B}(R) \to [0, 1]$, to be the measure

$$P_X = X_*P$$

That is, for each $A \in \mathcal{B}(\mathbb{R})$,

$$P_X(A) = P(X^{-1}(F))$$

We define the **probability distribution function** of $X, F_X : \mathbb{R} \to [0, 1]$, to be

$$F_X = F_{P_X}$$

Definition 3.1.15. Let (Ω, \mathcal{F}, P) be a probability space and X a random variable on (Ω, \mathcal{F}) . If $P_X \ll m$, we define the **probability density** of X, $f_X : \mathbb{R} \to \mathbb{R}$, by

$$f_X = \frac{dP_X}{dm}$$

Exercise 3.1.16. Let (Ω, \mathcal{F}, P) be a probability space and $(X_n)_{n \in \mathbb{N}}$ be a sequence of random variables on (Ω, \mathcal{F}) . Then for each $x \in \mathbb{R}$,

$$\mathbb{P}\bigg(\liminf_{n\to\infty} X_n > x\bigg) \le \liminf_{n\to\infty} P(X_n > x)$$

Proof. Let $\omega \in \left\{ \liminf_{n \to \infty} X_n > x \right\}$. Then $x < \liminf_{n \to \infty} X_n(\omega) = \sup_{n \in \mathbb{N}} \left(\inf_{k \ge n} X_k(\omega) \right)$. So there exists $n^* \in \mathbb{N}$ such that $x < \inf_{k \ge n^*} X_k(\omega)$. Then for each $k \in \mathbb{N}$, $k \ge n^*$ implies that $x < X_k(\omega)$. So there exists $n^* \in \mathbb{N}$ such that for each $k \in \mathbb{N}$, $k \ge n^*$ implies that $\mathbf{1}_{\{X_k > x\}}(\omega) = 1$. Hence $\inf_{k \ge n^*} \mathbf{1}_{\{X_k > x\}}(\omega) = 1$. Thus $\liminf_{n \to \infty} \mathbf{1}_{\{X_k > x\}}(\omega) = \sup_{n \in \mathbb{N}} \left(\inf_{k \ge n} \mathbf{1}_{\{X_k > x\}}(\omega) \right) = 1$. Therefore

 $\omega \in \liminf_{n \to \infty} \{X_k > x\}$ and we have shown that

$$\left\{ \liminf_{n \to \infty} X_n > x \right\} \subset \liminf_{n \to \infty} \{X_k > x\}$$

Then

$$P\left(\liminf_{n\to\infty} X_n > x\right) \le P\left(\liminf_{n\to\infty} \{X_k > x\}\right)$$

$$\le \liminf_{n\to\infty} P(\{X_k > x\})$$

Definition 3.1.17. Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^+(\Omega) \cup L^1$. Define the **expectation of X**, E(X), to be

$$E(X) = \int X \, dP$$

.

3.2. Independence.

Definition 3.2.1. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{C} \subset \mathcal{F}$. Then \mathcal{C} is said to be **independent** if for each $(A_i)_{i=1}^n \subset \mathcal{C}$,

$$P\bigg(\bigcap_{k=1}^{n} A_k\bigg) = \prod_{k=1}^{n} P(A_k)$$

Definition 3.2.2. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{C}_1, \dots, \mathcal{C}_n \subset \mathcal{F}$. Then $\mathcal{C}_1, \dots, \mathcal{C}_n$ are said to be **independent** if for each $A_1 \in \mathcal{C}_1, \dots, A_n \in \mathcal{C}_n, A_1, \dots, A_n$ are independent.

Note 3.2.3. We will explicitly say that for each $i = 1, \dots, n$, C_i is independent when talking about the independence of the elements of C_i to avoid ambiguity.

Definition 3.2.4. Let (Ω, \mathcal{F}, P) be a probability space and X_1, \dots, X_2 random variables on (Ω, \mathcal{F}) . Then X_1, \dots, X_n are said to be **independent** if for each $B_1, \dots, B_n \in \mathcal{B}(\mathbb{R})$, $X_1^{-1}B_1, \dots, X_n^{-1}B_n$ are independent.

Exercise 3.2.5. Let (Ω, \mathcal{F}, P) be a probability space and X_1, \dots, X_n random variables on (Ω, \mathcal{F}) . Then X_1, \dots, X_n are independent iff $\sigma(X_1), \dots, \sigma(X_n)$ are independent.

Proof. Suppose that X_1, \dots, X_n are independent. Let $A_1, \in \sigma(X_1), \dots, A_n \in \sigma(A_n)$. Then for each $i = 1, \dots, n$, there exists $B_i \in \mathcal{B}(\mathbb{R})$ such that $A_i = X_i^{-1}(B_i)$. Then A_1, \dots, A_n are independent. Hence $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Conversely, suppose that $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Let $B_1, \dots, B_n \in \mathcal{B}(\mathbb{R})$. Then for each $i = 1, \dots, n, X_i^{-1}B_i \in \sigma(X_i)$. Then $X_1^{-1}B_1, \dots, X_n^{-1}B_n$ are independent. Hence X_1, \dots, X_n are independent. \square

Exercise 3.2.6. Let (Ω, \mathcal{F}, P) be a probability space, X_1, \dots, X_n random variables on (Ω, \mathcal{F}) and $\mathcal{F}_1, \dots, \mathcal{F}_n \subset \mathcal{F}$ a collection of σ -algebras on Ω . Suppose that for each $i = 1, \dots, n, X_i$ is \mathcal{F}_i -measurable. If $\mathcal{F}_1, \dots, \mathcal{F}_n$ are independent, then X_1, \dots, X_n are independent.

Proof. For each $i=1,\cdots,n,\ \sigma(X_i)\subset\mathcal{F}_i$. So $\sigma(X_1),\cdots,\sigma(X_n)$ are independent. Hence X_1,\cdots,X_n are independent. \square

Exercise 3.2.7. Let (Ω, \mathcal{F}, P) be a probability space and $\mathcal{C}_1, \dots, \mathcal{C}_n \subset \mathcal{F}$. Suppose that for each $i = 1, \dots, n$, \mathcal{C}_i is a π -system and $\mathcal{C}_1, \dots, \mathcal{C}_n$ are independent, then $\sigma(\mathcal{C}_1), \dots, \sigma(\mathcal{C}_n)$ are independent.

Proof. Let $A_2 \in \mathcal{C}_2$. Define $\mathcal{L} = \{A \in \mathcal{F} : P(A \cap A_2) = P(A)P(A_2)\}$. Then

- (1) $\Omega \in \mathcal{L}$
- (2) If $A \in \mathcal{L}$, then

$$P(A^{c} \cap A_{2}) = P(A_{2}) - P(A_{2} \cap A)$$

$$= P(A_{2}) - P(A_{2})P(A)$$

$$= (1 - P(A))P(A_{2})$$

$$= P(A^{c})P(A_{2})$$

So $A^c \in \mathcal{L}$

(3) If $(B_n)_{n\in\mathbb{N}}\subset\mathcal{L}$ is disjoint, then

$$P\left(\left[\bigcup_{n\in\mathbb{N}}B_n\right]\cap A_2\right) = P\left(\bigcup_{n\in\mathbb{N}}B_n\cap A_2\right)$$

$$= \sum_{n\in\mathbb{N}}P(B_n\cap A_2)$$

$$= \sum_{n\in\mathbb{N}}P(B_n)P(A_2)$$

$$= \left[\sum_{n\in\mathbb{N}}P(B_n)\right]P(A_2)$$

$$= P\left(\bigcup_{n\in\mathbb{N}}A_n\right)P(A_2)$$

So
$$\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{L}$$
.

Thus \mathcal{L} is a λ -system. Since $\mathcal{C}_1 \subset \mathcal{L}$ is a π -system, Dynkin's theorem tells us that $\sigma(\mathcal{C}_1) \subset \mathcal{L}$. Since $A_2 \in \mathcal{C}_2$ is arbitrary $\sigma(\mathcal{C}_1)$ and \mathcal{C}_2 are independent. The same reasoning implies that $\sigma(\mathcal{C}_1)$ and $\sigma(\mathcal{C}_2)$ are independent. Let $A_2 \in \mathcal{C}_1, \dots, A_n \in \mathcal{C}_n$ We may do the same process with

$$\mathcal{L} = \left\{ A \in \mathcal{F} : P\left(A \cap \left(\bigcap_{i=2}^{n} A_i\right)\right) = P(A) \prod_{i=2}^{n} P(A_i) \right\}$$

and conclude that $\sigma(\mathcal{C}_1), \mathcal{C}_2, \cdots, \mathcal{C}_n$ are independent. Which, using the same reasoning would imply that $\sigma(\mathcal{C}_1), \cdots, \sigma(\mathcal{C}_n)$ are independent.

Exercise 3.2.8. Let (Ω, \mathcal{F}, P) be a probability space, X_1, \dots, X_n random variables on (Ω, \mathcal{F}) . Then X_1, \dots, X_n are independent iff for each $x_1, \dots, x_n \in \mathbb{R}$,

$$P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i)$$

Proof. Suppose that X_1, \dots, X_n are independent. Then $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Let $x_1, \dots, x_n \in \mathbb{R}$. Then for each $i = 1, \dots, n$, $\{X_i \leq x_i\} \in \sigma(X_i)$. Hence

 $P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i)$. Conversely, suppose that for each

$$x_1, \dots, x_n \in \mathbb{R}, P(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n P(X_i \le x_i). \text{ Define } \mathcal{C} = \{(-\infty, x] : x \in \mathbb{R}\}.$$

Then $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{C})$. For each $i = 1, \dots, n$, define $\mathcal{C}_i = X_i^{-1}\mathcal{C}$. Then for each $i = 1, \dots, n$, \mathcal{C}_i is a π -system and

$$\sigma(C_i) = \sigma(X^{-1}(C))$$

$$= X_i^{-1}(\sigma(C))$$

$$= X_i^{-1}(\mathcal{B}(\mathbb{R}))$$

$$= \sigma(X_i)$$

By assumption, C_1, \dots, C_n are independent. The previous exercise tells us that $\sigma(X_1), \dots, \sigma(X_n)$ are independent. Then X_1, \dots, X_n are independent.

Exercise 3.2.9. Let Let (Ω, \mathcal{F}, P) be a probability space and X_1, \dots, X_n random variables on (Ω, \mathcal{F}) . Define $X = (X_1, \dots, X_n)$. If X_1, \dots, X_n are independent, then

$$P_X = \prod_{i=1}^n P_{X_i}$$

.

Proof. Let $A_1, \dots, A_n \in \mathcal{B}(\mathbb{R})$. Then

$$P_X(A_1 \times \dots \times A_n) = P(X \in A_1 \times \dots \times \in A_n)$$

$$= P(X_1 \in A_1, \dots, X_n \in A_n)$$

$$= P(X_1 \in A_1) \dots P(X_n \in A_n)$$

$$= P_{X_1}(A_1) \dots P_{X_n}(A_n)$$

$$= \prod_{i=1}^n P_{X_i}(A_1 \times \dots \times A_n)$$

Put

$$\mathcal{P} = \{A_1 \times \cdots \times A_n : A_1 \in \mathcal{B}(R), \cdots, A_n \in \mathcal{B}(R)\}$$

Then \mathcal{P} is a π -system and

$$\sigma(\mathcal{P}) = \mathcal{B}(R) \otimes \cdots \otimes \mathcal{B}(R) = \mathcal{B}(\mathbb{R}^n)$$

A previous exercise then tells us that $P_X = \prod_{i=1}^n P_{X_i}$

Exercise 3.2.10. Let Let (Ω, \mathcal{F}, P) be a probability space, X_1, \dots, X_n random variables on (Ω, \mathcal{F}) and $f_1, \dots, f_n : \mathbb{R} \to \mathbb{R} \in L^0$. Suppose that $f_1 \circ X_1, \dots, f_n \circ X_n \in L^+(\Omega)$ or $f_1 \circ X_1, \dots, f_n \circ X_n \in L^1(\Omega)$. If X_1, \dots, X_n are independent, then

$$E(f_1(X_1)\cdots f_n(X_n)) = \prod_{i=1}^n E(f_i(X_i))$$

Proof. Define the random vector $X: \Omega \to \mathbb{R}^n$ by $X = (X_1, \dots, X_n)$ and $g: \mathbb{R}^n \to \mathbb{R}$ by $g(x_1, \dots, x_n) = f_1(x_1) \dots f_n(x_n)$. Suppose that for each $i = 1, \dots, n, f_i \in L^+(\mathbb{R})$. Then $g \in L^+(\mathbb{R}^n)$ and by change of variables,

$$E(f_1(X_1)\cdots f_n(X_n)) = E(g(X))$$

$$= \int_{\Omega} g \circ X \, dP$$

$$= \int_{\mathbb{R}^n} g(x) \, dP_X(x)$$

$$= \int_{R^n} g(x) d \prod_{i=1}^n P_{X_i}(x)$$

$$= \prod_{i=1}^n \int_{\mathbb{R}} f_i(x) dP_{X_i}(x)$$

$$= \prod_{i=1}^n \int_{\Omega} f_i \circ X dP$$

$$= \prod_{i=1}^n E(f_i(X_i))$$

If for each $i = 1, \dots, n$, $f_i \in L^1(\mathbb{R}, P_{X_i})$, then following the above reasoning with |g| tells us that $g \in L^1(\mathbb{R}^n, P_X)$ and we use change of variables and Fubini's theorem to get the same result.

3.3. L^p Spaces for Probability.

Note 3.3.1. Recall that for a probability space (Ω, \mathcal{F}, P) and $1 \leq p \leq q \leq \infty$ we have $L^q \subset L^p$ and for each $X \in L^q$, $||X||_p \leq ||X||_q$. Also recall that for $X, Y \in L^2$, we have that $||XY||_1 \leq ||X||_2 ||X||_2$.

Definition 3.3.2. Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^2$. Define the **variance** of X, Var(X), to be

$$Var(X) = E(\left[\left(X - E(X)\right)^{2}\right)$$

.

Definition 3.3.3. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. Define the

Definition 3.3.4. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. Define the **covariance of** X **and** Y, Cov(X, Y), to be

$$Cov(X,Y) = E([X - E(X)][Y - E(Y)])$$

Exercise 3.3.5. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. Then the covariance is well defined and $Cov(X, Y)^2 \leq Var(X)Var(Y)$

Proof. By Holder's inequality,

$$|Cov(X,Y)| = \left| \int (X - E(X))(Y - E(Y)) dP \right|$$

$$\leq \int |(X - E(X))(Y - E(Y))| dP$$

$$= ||(X - E(X))(Y - E(Y))||_1$$

$$\leq ||X - E(X)||_2 ||(Y - E(Y))||_2$$

$$= \left(\int |X - E(X)|^2 dP \right)^{\frac{1}{2}} \left(|Y - E(Y)|^2 \right)^{\frac{1}{2}}$$

$$= Var(X)^{\frac{1}{2}} Var(Y)^{\frac{1}{2}}$$

So $Cov(X,Y)^2 \leq Var(X)Var(Y)$.

Exercise 3.3.6. Let (Ω, \mathcal{F}, P) be a measure space and $X, Y \in L^2$. Then

- (1) Cov(X,Y) = E(XY) E(X)E(Y)
- (2) If X, Y are independent, then Cov(X, Y) = 0
- (3) $Var(X) = E(X^2) E(X)^2$
- (4) for each $a, b \in \mathbb{R}$, $Var(aX + b) = a^2Var(X)$.
- (5) Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

Proof.

(1) We have that

$$Cov(X,Y) = E \Big[(X - E(X))(Y - E(Y)) \Big]$$

$$= E(XY - E(Y)X - E(X)Y + E(X)E(Y))$$

$$= E(XY) - E(X)E(Y) - E(X)E(Y) + E(X)E(Y)$$

$$= E(XY) - E(X)E(Y)$$

(2) Suppose that X, Y are independent. Then E(XY) = E(X)E(Y). Hence

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$
$$= E(X)E(Y) - E(X)E(Y)$$
$$= 0$$

(3) Part (1) implies that

$$Var(X) = Cov(X, X)$$
$$= E(X^{2}) - E(X)^{2}$$

(4) Let $a, b \in \mathbb{R}$. Then

$$Var(aX + b) = E[(aX + b)^{2}] - E(aX + b)^{2}$$

$$= E[a^{2}X^{2} + 2abX + b^{2}] - (aE(X) + b)^{2}$$

$$= a^{2}E(X^{2}) + 2abE(X) + b^{2} - (a^{2}E(X)^{2} + 2abE(X) + b^{2})$$

$$= a^{2}(E(X^{2}) - E(X)^{2})$$

$$= a^{2}Var(X)$$

(5) We have that

$$\begin{split} Var(X+Y) &= E[(X+Y)^2] - E[X+Y]^2 \\ &= E[X^2 + 2XY + Y^2] - (E(X) + E[Y])^2 \\ &= E(X^2) + 2E[XY] + E[Y^2] - (E(X)^2 + 2E(X)E[Y] + E[Y]^2) \\ &= (E(X^2) - E(X)^2) + (E[Y^2] - E[Y]^2) + 2(E[XY] - E(X)E[Y]) \\ &= Var(X) + Var(Y) + 2Cov(X, Y) \end{split}$$

Definition 3.3.7. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^2$. The **correlation** of **X** and **Y**, Cor(X, Y), is defined to be

$$Cor(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Exercise 3.3.8.

Exercise 3.3.9. Jensen's Inequality:

Let (Ω, \mathcal{F}, P) be a probability space, $X \in L^1$ and $\phi : \mathbb{R} \to \mathbb{R}$. If ϕ is convex, then

$$\phi(E(X)) \le E[\phi(X)]$$

Proof. Put $x_0 = E(X)$. Since ϕ is convex, there exist $a, b \in \mathbb{R}$ such that $\phi(x_0) = ax_0 + b$ and for each $x \in \mathbb{R}$, $\phi(x) \ge ax + b$. Then

$$E[\phi(X)] = \int \phi(X) dP$$

$$\geq \int [aX + b] dP$$

$$= a \int X dP + b$$

$$= aE(X) + b$$

$$= ax_0 + b$$

$$= \phi(x_0)$$

$$= \phi(E(X))$$

Exercise 3.3.10. Markov's Inequality: Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^+$. Then for each $a \in (0, \infty)$,

$$P(X \ge a) \le \frac{E(X)}{a}$$

Proof. Let $a \in (0, \infty)$. Then $a\mathbf{1}_{\{X \geq a\}} \leq X\mathbf{1}_{\{X \geq a\}}$. Thus

$$aP(X \ge a) = \int a\mathbf{1}_{\{X \ge a\}} dP$$
$$= \int X\mathbf{1}_{\{X \ge a\}} dP$$
$$\le \int X dP$$
$$= E(X)$$

Therefore

$$P(X \ge a) \le \frac{E(X)}{a}$$

.

Exercise 3.3.11. Chebychev's Inequality: Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^2$. Then for each $a \in (0, \infty)$,

$$P(|X - E(X)| \ge a) \le \frac{Var(X)}{a^2}$$

Proof. Let $a \in (0, \infty)$. Then

$$P(|X - E(X)| \ge a) = P((X - E(X))^2 \ge a^2)$$

$$\le \frac{E[(X - E(X))^2]}{a^2}$$

$$= \frac{Var(X)}{a^2}$$

Exercise 3.3.12. Chernoff's Bound: Let (Ω, \mathcal{F}, P) be a probability space and $X \in L^2$. Then for each $a, t \in (0, \infty)$,

$$P(X \ge a) \le e^{-ta} E[e^{tX}]$$

Proof. Let $a, t \in (0, \infty)$. Then

$$P(X \ge a) = P(tX \ge ta)$$
$$= P(e^{tX} \ge e^{ta})$$
$$\le e^{-ta}E[e^{tX}]$$

Exercise 3.3.13. Weak Law of Large Numbers: Let (Ω, \mathcal{F}, P) be a probability space $(X_i)_{i \in \mathbb{N}} \subset L^2$. Suppose that $(X_i)_{i \in \mathbb{N}}$ are iid. Then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E[X_1]$$

Proof. Put $\mu = E[X_1]$ and $\sigma^2 = Var(X_1)$. Then

$$E[\frac{1}{n}\sum_{i=1}^{n} X_{i}] = \frac{1}{n}\sum_{i=1}^{n} E[X_{i}]$$

$$= \frac{1}{n}\sum_{i=1}^{n} \mu$$

$$= \mu$$

and

$$Var(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n^2}Var(\sum_{i=1}^{n}X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^{n}Var(X_i)$$
$$= \frac{1}{n^2}\sum_{i=1}^{n}\sigma^2$$
$$= \frac{\sigma^2}{n}$$

Let $\epsilon > 0$. Then

$$P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E[X_{1}]\right| \geq \epsilon\right) = P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mu\right| \geq \epsilon\right)$$

$$= P\left(\left|\frac{1}{n}\sum_{i=1}^{n}X_{i} - E\left(\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]\right| \geq \epsilon\right)\right)$$

$$\leq \frac{Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)}{\epsilon^{2}}$$

$$= \frac{\sigma^{2}/n}{\epsilon^{2}}$$

$$= \frac{\sigma^{2}}{n\epsilon^{2}} \to 0$$

So

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} E[X_1]$$

3.4. Borel Cantelli Lemma.

Exercise 3.4.1. Borel Cantelli Lemma:

Let (Ω, \mathcal{F}, P) be a probability space and $(A_n)_{n \in \mathbb{N}} \subset \mathcal{F}$.

- (1) If $\sum_{n\in\mathbb{N}} P(A_n) < \infty$, then $P(\limsup_{n\to\infty} A_n) = 0$. (2) If $(A_n)_{n\in\mathbb{N}}$ are independent and $\sum_{n\in\mathbb{N}} P(A_n) = \infty$, then $P(\limsup_{n\to\infty} A_n) = 1$

Proof.

(1) Suppose that $\sum_{n\in\mathbb{N}} P(A_n) < \infty$. Recall that

$$\limsup_{n \to \infty} A_n = \left\{ \omega \in \Omega : \sum_{n \in \mathbb{N}} 1_{A_n}(\omega) = \infty \right\}$$

Then

$$\infty > \sum_{n \in \mathbb{N}} P(A_n)$$

$$= \sum_{n \in \mathbb{N}} \int 1_{A_n} dP$$

$$= \int \sum_{n \in \mathbb{N}} 1_{A_n} dP$$

Thus $\sum_{n\in\mathbb{N}} 1_{A_n} < \infty$ a.e. and $P(\limsup_{n\to\infty} A_n) = 0$. (2) Suppose that $(A_n)_{n\in\mathbb{N}}$ are independent and $\sum_{n\in\mathbb{N}} P(A_n) = \infty$.

Exercise 3.4.2. Let (Ω, \mathcal{F}, P) be a probability space and $(X_n)_{n \in \mathbb{N}} \subset L^0$ and $X \in L^0$.

- (1) If for each $\epsilon > 0$, $\sum_{n \in \mathbb{N}} P(|X_n X| \ge \epsilon) < \infty$, then $X_n \to X$ a.e.
- (2) If $(X_n)_{n\in\mathbb{N}}$ are independent and there exists $\epsilon > 0$ such that $\sum_{n\in\mathbb{N}} P(|X_n X| \ge \epsilon) = \infty$, then $X_n \not\to X$ a.e.

Proof.

(1) For $\epsilon > 0$ and $n \in \mathbb{N}$, set $A_n(\epsilon) = \{\omega \in \Omega : |X_n(\omega) - X(\omega)| \ge \epsilon\}$. Suppose that for each $\epsilon > 0$, $\sum_{n \in \mathbb{N}} P(|X_n - X| \ge \epsilon) < \infty$. The Borel-Cantelli lemma implies that for each $m \in \mathbb{N}$,

$$P(\limsup_{n\to\infty} A_n(1/m)) = 0$$

Let $\omega \in \Omega$. Then $X_n(\omega) \not\to X(\omega)$ iff

$$\omega \in \bigcup_{m \in \mathbb{N}} \limsup_{n \to \infty} A_n(1/m)$$

So

$$P(X_n \not\to X) = P\bigg(\bigcup_{m \in \mathbb{N}} \limsup_{n \to \infty} A_n(1/m)\bigg)$$

$$\leq \sum_{m \in \mathbb{N}} P(\limsup_{n \to \infty} A_n(1/m))$$

$$= 0$$

Hence $X_n \to X$ a.e.

(2)

4. Probability on locally compact Groups

Note 4.0.1. In this section, familiarity with Haar measure will be assumed. This section is intended as a continuation of section 7 of [3].

4.1. Action on Probability Measures.

Note 4.1.1. We recall some notation from section 7.1 of [3].

- $l_g \in \text{Homeo}(G), \ l_g(x) = gc$ $L_g \in \text{Sym}(L_0(G)), \ L_g f = f \circ l_g^{-1}$ We continue from section 7

Note 4.1.2. The next exercise generalizes the notion of a scale-family.

Exercise 4.1.3. Let (Ω, \mathcal{F}, P) be a probability space, G a locally compact group, μ a left Haar measure on $G, X \in L_G^0$ and $g \in G$. If $P_X \ll \mu$, then $f_{gX} = L_g f_X$.

Proof. Suppose that $P_X \ll \mu$. Let $A \in \mathcal{B}(G)$. Then

$$P_{gX}(A) = P(gX \in A)$$

$$= P(X \in g^{-1}A)$$

$$= P_X(g^{-1}A)$$

$$= P_X(l_g^{-1}(A))$$

$$= l_{g_*}P_X(A)$$

$$= g \cdot P_X(A)$$

The previous exercise tells us that $f_{gX} = L_g f_X$.

5. Weak Convergence of Measures

6. Concentration Inequalities

6.1. Introduction.

Exercise 6.1.1. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^0_{\mathbb{R}}(\Omega, \mathcal{F}, P)$. Then for each $s, t \in \mathbb{R}$,

$$P(X + Y \ge s + t) \le P(X \ge s) + P(Y \ge t)$$

Proof. For $Z \in L^0_{\mathbb{R}}(\Omega, \mathcal{F}, P)$ and $t \in \mathbb{R}$, define $A_Z^t \in \mathcal{F}$ by

$$A_Z^t = \{ \omega \in \Omega : Z(\omega) \ge t \}$$

Let $s, t \in \mathbb{R}$. Since $(A_X^s)^c \cap (A_Y^t)^c \subset (A_{X+Y}^{s+t})^c$, we have that $A_{X+Y}^{s+t} \subset A_X^s \cup A_Y^t$. Then

$$\begin{split} P(X+Y \geq s+t) &= P(A_{X+Y}^{s+t}) \\ &\leq P(A_X^s) + P(A_Y^t) \\ &= P(X \geq s) + P(Y \geq t) \end{split}$$

Exercise 6.1.2. Let (Ω, \mathcal{F}, P) be a probability space and $X, Y \in L^+(\Omega, \mathcal{F}, P)$. Then for each $s, t \geq 0$,

$$P(XY \ge st) \le P(X \ge s) + P(Y \ge t)$$

Proof. For $Z \in L^0_{\mathbb{R}}(\Omega, \mathcal{F}, P)$ and $t \in \mathbb{R}$, define define $A_Z^t \in \mathcal{F}$ by

$$A_Z^t = \{\omega \in \Omega : Z(\omega) \ge t\}$$

Let $s,t \in \mathbb{R}$. Since $(A_X^s)^c \cap (A_Y^t)^c \subset (A_{XY}^{st})^c$, we have that $A_{XY}^{st} \subset A_X^s \cup A_Y^t$. Then

$$\begin{split} P(XY \geq st) &= P(A_{XY}^{st}) \\ &\leq P(A_X^s) + P(A_Y^t) \\ &= P(X \geq s) + P(Y \geq t) \end{split}$$

6.2. Sub α -Exponential Random Variables.

Definition 6.2.1. Let (Ω, \mathcal{F}, P) be a probability space, $X \in L^0(\Omega, \mathcal{F}, P)$ and $\alpha > 0$. Then X is said to be **sub** α -exponential if there exist M, K > 0 such that for each $t \geq 0$,

$$P(|X| \ge t) \le Me^{-Kt^{\alpha}}$$

Exercise 6.2.2. Let (Ω, \mathcal{F}, P) be a probability space, $X \in L^0(\Omega, \mathcal{F}, P)$ and $\alpha > 0$. Then the following are equivalent:

- (1) X is sub α -exponential
- (2) there exists K > 0 such that for each $p \ge 1$, $||X||_p \le Kp^{1/\alpha}$
- (3)
- (4)

Proof.

 \bullet (1) \Longrightarrow (2):

Choose $C_{\alpha} > 0$ such that for each $x \geq \alpha^{-1}$, $\Gamma(x) \leq C_{\alpha}x^{x}$. Since X is sub α -exponential, there exist $M, K_{0} > 0$ such that for each $t \geq 0$, $P(|X| \geq t) \leq Me^{-Kt^{\alpha}}$. Set $K = \max(M\alpha^{-1}C_{\alpha}, 1)2K_{0}^{-1/\alpha}\alpha^{-1/\alpha}$. Let $p \geq 1$. Then $p\alpha^{-1} \geq \alpha^{-1}$

$$\begin{split} \|X\|_p^p &= E(|X|^p) \\ &= \int_0^\infty P(|X|^p \ge t) dt \\ &= \int_0^\infty P(|X| \ge t^{1/p}) dt \\ &\le \int_0^\infty M e^{-K_0 t^{\alpha/p}} dt \\ &= M p \alpha^{-1} \int_0^\infty u^{p/\alpha - 1} e^{-K_0 u} du \\ &= M p \alpha^{-1} \Gamma(p/\alpha) K_0^{-p/\alpha} \\ &\le M p \alpha^{-1} C_\alpha (p \alpha^{-1})^{p/\alpha} K_0^{-p/\alpha} \end{split}$$

Therefore

$$||X||_{p} \leq (M\alpha^{-1}C_{\alpha})^{1/p} p^{1/p} K_{0}^{-1/\alpha} \alpha^{-1/\alpha} p^{1/\alpha}$$

$$\leq \max(M\alpha^{-1}C_{\alpha}, 1) 2K_{0}^{-1/\alpha} \alpha^{-1/\alpha} p^{1/\alpha}$$

$$= Kp^{1/\alpha}$$

 \bullet (2) \Longrightarrow (3):

Definition 6.2.3. Let $\psi:[0,\infty)\to[0,\infty)$. Then ψ is said to be an **Orlicz function** if

- (1) ψ is convex
- (2) ψ is increasing
- (3) $\psi(x) \to \infty \text{ as } x \to \infty$
- (4) $\psi(0) = 0$

Definition 6.2.4. Let (Ω, \mathcal{F}, P) be a probability space and $\psi : [0, \infty) \to [0, \infty)$ and Orlicz function. We define the **Orlicz** ψ -norm, denoted $\|\cdot\|_{\psi} : L^0(\Omega, \mathcal{F}, P) \to [0, \infty]$, by

$$||X||_{\psi} = \inf\{t > 0 : E[\psi(|X|/t)] \le 1\}$$

We define the **Orlicz** ψ -space, denoted $L^{\psi}(\Omega, \mathcal{F}, P)$, by

$$L^{\psi}(\Omega, \mathcal{F}, P) = \{ X \in L^{1}(\Omega, \mathcal{F}, P) : ||X||_{\psi} < \infty \}$$

Exercise 6.2.5. Let (Ω, \mathcal{F}, P) be a probability space and $\psi : [0, \infty) \to [0, \infty)$ an Orlicz function. Then L^{ψ} is a vector space and $\|\cdot\|_{\psi} : L^{\psi} \to [0, \infty)$ is a norm. **Hint:** note that

• for s, t > 0,

$$\frac{|X|}{s+t} + \frac{|Y|}{s+t} = \frac{s}{s+t} \frac{|X|}{s} + \frac{t}{s+t} \frac{|Y|}{t}$$

• ψ is star-shaped, i.e. for each $x, t \ge 0$ and $f(tx) \le tf(x)$.

Proof. For $X \in L^0(\Omega, \mathcal{F}, P)$, define $A_X \in \mathcal{F}$ by

$$A_X = \{t > 0 : E[\psi(|X|/t)] \le 1\}$$

Let $X, Y \in L^{\psi}(\Omega, \mathcal{F}, P)$ and $\lambda \in \mathbb{C}$. Since $||X||_{\psi} < \infty$ and $||Y||_{\psi} < \infty$, we have that $A_X \neq \emptyset$ and $A_Y \neq \emptyset$,

(1) **subadditivity:** Let $\epsilon > 0$. Then there exists $s \in A_X$ and $t \in A_Y$ such that $s < \inf A_X + \epsilon/2$ and $t < \inf A_Y + \epsilon/2$. Since is convex and increasing, we have that

$$\psi\left(\frac{|X+Y|}{s+t}\right) \le \psi\left(\frac{|X|}{s+t} + \frac{|Y|}{s+t}\right)$$

$$= \psi\left(\frac{s}{s+t} \frac{|X|}{s} + \frac{t}{s+t} \frac{|Y|}{t}\right)$$

$$\le \frac{s}{s+t} \psi\left(\frac{|X|}{s}\right) + \frac{t}{s+t} \psi\left(\frac{|Y|}{t}\right)$$

Therefore,

$$E\left[\psi\left(\frac{|X+Y|}{s+t}\right)\right] \le \frac{s}{s+t} E\left[\psi\left(\frac{|X|}{s}\right)\right] + \frac{t}{s+t} E\left[\psi\left(\frac{|Y|}{t}\right)\right]$$
$$\le \frac{s}{s+t} + \frac{t}{s+t}$$
$$\le 1$$

Hence $s + t \in A_{X+Y}$. Thus $A_{X+Y} \neq \emptyset$. Since $s < \inf A_X + \epsilon/2$ and $t < \inf A_Y + \epsilon/2$, we have that

$$||X + Y||_{\psi} = \inf A_{X+Y}$$

$$\leq s + t$$

$$< \inf A_X + \inf A_Y + \epsilon$$

$$= ||X||_{\psi} + ||Y||_{\psi} + \epsilon$$

Since $\epsilon > 0$ is arbitrary, $||X + Y||_{\psi} \le ||X||_{\psi} + ||Y||_{\psi}$. So $X + Y \in L^{\psi}(\Omega, \mathcal{F}, P)$

(2) absolute homogeneity: Suppose that $\lambda = 0$. Then for each t > 0,

$$E[\psi(|\lambda X|/t)] = E[\psi(0)]$$

$$= E[0]$$

$$= 0$$

$$\leq 1$$

Thus

$$\|\lambda X\|_{\psi} = 0$$
$$= |\lambda| \|X\|_{\psi}$$

Suppose that $\lambda \neq 0$. Since for each t > 0,

$$\psi\left(\frac{|X|}{t}\right) = \psi\left(\frac{|\lambda X|}{|\lambda|t}\right)$$

we have that for each t > 0, $t \in A_X$ iff $|\lambda|t \in A_{\lambda X}$. Therefore $A_{\lambda X} = |\lambda|A_X$ and

$$\|\lambda X\|_{\psi} = \inf A_{\lambda X}$$
$$= |\lambda| \inf A_{X}$$
$$= |\lambda| \|X\|_{\psi}$$

So $|\lambda X| \in L^{\psi}(\Omega, \mathcal{F}, P)$.

(3) **positive definiteness:** Note that since ψ is increasing, for each $t_0 > 0$, $t_0 \in A_X$ implies that $[t_0, \infty) \subset A_X$. Suppose that $||X||_{\psi} = 0$. Then $(0, \infty) \subset A_X$. Jensen's inequality implies that for each t > 0,

$$\psi\left(\frac{E|X|}{t}\right) \le E\left[\psi\left(\frac{|X|}{t}\right)\right] < 1$$

For the sake of contradiction, suppose that E|X|>0. Since $\psi(x)\to\infty$ as $x\to\infty$, Choose x>0 such that $\psi(x)>1$. Set t=E|X|/x. Then t>0 and

$$1 < \psi(x)$$

$$= \psi\left(\frac{E|X|}{t}\right)$$

$$\leq 1$$

which is a contradiction. Hence E|X| = 0. Thus X = 0 a.s.

Exercise 6.2.6. Let (Ω, \mathcal{F}, P) be a probability space and $\psi : [0, \infty) \to [0, \infty)$ an Orlicz function. Then $L^{\psi}(\Omega, \mathcal{F}, P)$ is a Banach space.

Proof.

7. CONDITIONAL EXPECTATION AND PROBABILITY

7.1. Conditional Expectation.

Exercise 7.1.1. Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} a sub σ -algebra of \mathcal{F} and $X \in L^1(\Omega, \mathcal{F}, P)$. Define $P_{\mathcal{G}} = P|_{\mathcal{G}}$ and $Q : \mathcal{G} \to [0, \infty)$ by $Q(G) = \int_G X dP$. Then $Q \ll P_{\mathcal{G}}$.

Proof. Let $G \in \mathcal{G}$. Suppose that $P_{\mathcal{G}}(G) = 0$. By definition, P(G) = 0. So Q(G) = 0 and $Q \ll P_{\mathcal{G}}$.

Definition 7.1.2. Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} a sub σ -algebra of \mathcal{F} and $X, Y \in L^1(\Omega, \mathcal{F}, P)$. Then Y is said to be a **conditional expectation of** X **given** \mathcal{G} if

- (1) Y is \mathcal{G} -measurable
- (2) for each $G \in \mathcal{G}$,

$$\int_{G} Y \, dP = \int_{G} X \, dP$$

Since (2) implies that conditional expectations of X given \mathcal{G} are equal $P_{\mathcal{G}}$ -a.e., we write $Y = E(X|\mathcal{G})$.

Note 7.1.3. Let (Ω, \mathcal{F}, P) be a probability space, (S, \mathcal{S}) a measurable space, $X \in L^1(\Omega, \mathcal{F}, P)$ and $Y \in L^0_S(\Omega, \mathcal{F})$. We typically write E(X|Y) instead of $E(X|Y^*\mathcal{S})$.

Exercise 7.1.4. Existence of Conditional Expectation:

Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} a sub σ -algebra of \mathcal{F} and $X \in L^1(\Omega, \mathcal{F}, P)$. Define Q and $P_{\mathcal{G}}$ as in the previous exercise. Define $Y = dQ/dP_{\mathcal{G}}$. Then Y is a conditional expectation of X given \mathcal{G} .

Proof. The Radon-Nikodym theorem implies that Y is \mathcal{G} -measurable. Since Q is finite, so is |Q|. Since $d|Q| = |Y| dP_{\mathcal{G}}$, we have that $Y \in L^1(\Omega, \mathcal{G}, P_{\mathcal{G}})$. An exercise in section 3.3 of [3], implies that for each $G \in \mathcal{G}$

$$\int_{G} Y dP = \int_{G} Y dP_{\mathcal{G}}$$
$$= Q(G)$$
$$= \int_{G} X dP$$

Definition 7.1.5. Let (Ω, \mathcal{F}, P) be a probability space, (S, \mathcal{S}) a measurable space, $X \in L^1(\Omega, \mathcal{F}, P)$ and $Y \in L^0_S(\Omega, \mathcal{F})$. Let $\phi \in L^0(Y(\Omega), \mathcal{S} \cap Y(\Omega))$. Then ϕ is said to be a **conditional expectation function of** X **given** Y if for each $B \in \mathcal{S} \cap Y(\Omega)$,

$$\int_{Y^{-1}(B)} X \, dP = \int_B \phi \, dP_Y$$

To denote this, we write $\phi(y) = E[X|Y = y]$.

Exercise 7.1.6. Existence of Conditional Expectation Function:

Let (Ω, \mathcal{F}, P) be a probability space, (S, \mathcal{S}) a measurable space, $X \in L^1(\Omega, \mathcal{F}, P)$ and $Y \in L^0_S(\Omega, \mathcal{F})$. Suppose that for each $y \in S$, $\{y\} \in \mathcal{S}$. Then there exists $\phi \in L^0(Y(S), \mathcal{S} \cap Y(\Omega))$ such that ϕ is a conditional expectation function of X given Y.

Hint: Doob-Dynkin lemma

Proof. Since $E[X|Y] \in L^0(\Omega, Y^*S)$, the Doob-Dynkin lemma implies that there exists $\phi \in L^0(Y(\Omega), S \cap Y(\Omega))$ such that $\phi \circ Y = E(X|Y)$. Let $B \in S \cap Y(\Omega)$. Then

$$\int_{B} \phi \, dP_Y = \int_{Y^{-1}(B)} \phi \circ Y \, dP$$

$$= \int_{Y^{-1}(B)} E(X|Y) \, dP$$

$$= \int_{Y^{-1}(B)} X \, dP$$

7.2. Conditional Probability.

Definition 7.2.1. Let (A, \mathcal{A}) be a measurable space, (B, \mathcal{B}, P_Y) a probability space and $Q: B \times \mathcal{A} \to [0, 1]$. Then Q is said to be a **stochastic transition kernel from** (B, \mathcal{B}, P) **to** (A, \mathcal{A}) if

- (1) for each $E \in \mathcal{A}$, $Q(\cdot, E)$ is \mathcal{B} -measurable
- (2) for P-a.e. $b \in B$, $Q(b,\cdot)$ is a probability measure on (A, A)

Definition 7.2.2. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0(\Omega, \mathcal{F}, P)$ and $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$. Then Q is said to be a **conditional probability distribution of** X **given** Y if

- (1) Q is a stochastic transition kernel from $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), P_Y)$ to $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$
- (2) for each $A, B \in \mathcal{F}$,

$$\int_{B} Q(y, A)dP_{Y}(y) = P(X \in A, Y \in B)$$

Note 7.2.3. It is helpful to connect this notion of conditional probability with the elementary one by writing $Q(y, A) = P(X \in A|Y = y)$. If $P_Y \ll \mu$, then property (2) in the definition becomes

$$P(X \in A, Y \in B) = \int_{B} Q(y, A) dP_{Y}(y)$$
$$= \int_{B} P(X \in A | Y = y) f_{Y}(y) d\mu(y)$$

as in a first course on probability.

Exercise 7.2.4. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0$ and $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$. Suppose that for each $A \in \mathcal{F}$, $Q(\cdot, A)$ is $\mathcal{B}(\mathbb{R}^n)$ -measurable, for P_Y -a.e. $y \in \mathbb{R}^n$, $P_{X|Y}(y, \cdot)$ is a probability measure on (Ω, \mathcal{F}) and $Q(Y, A) = P(X \in A|Y)$ a.e. Then Q is a conditional probability of X given Y.

Proof. By assumption, for each $A \in \mathcal{F}$, $Q(\cdot, A)$ is $\mathcal{B}(\mathbb{R}^n)$ -measurable and for P_Y -a.e. $y \in \mathbb{R}^n$, $Q(y, \cdot)$ is a probability measure on (Ω, \mathcal{F}) . Let $A, B \in \mathcal{F}$. Then

$$\int_{B} Q(y, A)dP_{Y}(y) = \int_{Y^{-1}(B)} Q(Y(\omega), A)dP(\omega)$$

$$= \int_{Y^{-1}(B)} P(X \in A|Y)dP$$

$$= \int_{Y^{-1}(B)} E[1_{X^{-1}(A)}|Y]dP$$

$$= \int_{Y^{-1}(B)} 1_{X^{-1}(A)}dP$$

$$= \int 1_{X^{-1}(A)} 1_{Y^{-1}(B)}dP$$

$$= \int 1_{X^{-1}(A)\cap Y^{-1}(B)}dP$$

$$= P(X \in A, Y \in B)$$

So Q is a conditional probability distribution of X given Y.

Definition 7.2.5. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0$ and μ a σ -finite measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Suppose that $P_X, P_Y \ll \mu$. Then $P_{X,Y} \ll \mu^2$. Let $f_X = dP_X/d\mu$, $f_Y = dP_Y/d\mu$ and $f_{X,Y} = dP_{X,Y}/d\mu^2$. Define $f_{X|Y} : \mathbb{R}^n \times \mathbb{R}^n$ by

$$f_{X|Y}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_Y(y)}, & y \in \text{supp } Y \\ 0, & y \notin \text{supp } Y \end{cases}$$

Then $f_{X|Y}$ is called the **conditional probability density of** X **given** Y.

Exercise 7.2.6. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^0$ and μ a σ -finite measure on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. Suppose that $P_X, P_Y \ll \mu$. Define $Q : \mathbb{R}^n \times \mathcal{F} \to [0, 1]$ by

$$Q(y,A) = \int_{A} f_{X|Y}(x,y) d\mu(x)$$

Then Q is a conditional probability distribution of X given Y.

Proof. By the Fubini-Tonelli Theorem, for each $A \in \mathcal{F}$, $Q(\cdot, A)$ is $\mathcal{B}(\mathbb{R}^n)$ -measurable and for P_Y -a.e. $y \in \mathbb{R}^n$, $Q(y, \cdot)$ is a probability measure on (Ω, \mathcal{F}) . Let $A, B \in \mathcal{F}$. Then

$$\begin{split} \int_{B} Q(y,A) dP_{Y}(y) &= \int_{B} \left[\int_{A} f_{X|Y}(x,y) d\mu(x) \right] dP_{Y}(y) \\ &= \int_{B \cap \text{supp } Y} \left[\int_{A \cap \text{supp } Y} \frac{f_{X,Y}(x,y)}{f_{Y}(y)} d\mu(x) f_{Y}(y) \right] d\mu(y) \\ &= \int_{B \cap \text{supp } Y} \left[\int_{A} f_{X,Y}(x,y) d\mu(x) \right] d\mu(y) \\ &= P(X \in A, Y \in B \cap \text{supp } Y) \\ &= P(X \in A, Y \in B) \end{split}$$

Theorem 7.2.7. Let (Ω, \mathcal{F}, P) be a probability space, $X, Y \in L_n^1(\Omega, \mathcal{F}, P)$. Suppose that $\operatorname{Im} X \in \mathcal{B}(\mathbb{R}^n)$. Then there exists a conditional probability distribution of Y given X.

8. Markov Chains

Definition 8.0.1. Let (Ω, \mathcal{F}, P) be a probability space and $(X_n)_{n \in \mathbb{N}_0} \in L_n^0$. Then $(X_n)_{n \in \mathbb{N}_0}$ is said to be a **homogeneous Markov chain** if for each $A \in \mathcal{F}$ and $n \in \mathbb{N}$, $P(X_n \in A|X_1, \dots, X_{n-1}) = P(X_1 \in A|X_0)$ a.e.

9. Probabilities Induced by Isometric Group Actions

9.1. Applications to Bayesian Statistics.

Exercise 9.1.1. Let $(\mathcal{X}, \mathcal{A})$ be a measurable space (Θ, d) a metric space, G a group, ϕ : $G \times \Theta \to \Theta$ an isometric group action. Suppose that d is a metric on Θ/G . Let

- H_p^{Θ} be the Hausdorff measure on Θ , $\mu_{\mathcal{X}}$ a measure on \mathcal{X} ,
- p a denisty on Θ and for each $\theta \in \Theta$, $p(\cdot|\theta)$ a density on \mathcal{X} .
- $\theta_0 \in \Theta$ and for $j \in \mathbb{N}$, $X_i \sim p(x|\theta_0)$

Suppose that μ_{Θ} is G-invariant, p is G-invariant and continuous on Θ and for each $x \in \mathcal{X}$, $p(x|\cdot)$ is G-invariant and continuous on Θ . For $n \in \mathbb{N}$, set $p(\cdot|X^{(n)}) \propto f(X_1,\ldots,X_n|\cdot)p(\cdot)$. Define the posterior measure $P_{\Theta|X^{(n)}}: \mathcal{B}(\Theta) \to [0,1]$ by

$$dP_{\Theta|X^{(n)}}(\theta) = p(\theta|X^{(n)}) dH_p^{\Theta}(\theta)$$

Then there exists a density $\bar{p}(\cdot|X^{(n)})$ on Θ/G such that

$$d\bar{P}_{\Theta|X^{(n)}}(\theta) = \bar{p}(\theta|X^{(n)}) d\bar{H}^{\Theta}(\theta)$$

Proof. Clear from previous work.

Exercise 9.1.2. Let $(\mathcal{X}, \mathcal{A})$ be a measurable space (Θ, d) a metric space, G a group, ϕ : $G \times \Theta \to \Theta$ an isometric group action. Suppose that \bar{d} is a metric on Θ/G . Let

- H_p^{Θ} be the Hausdorff measure on Θ , $\mu_{\mathcal{X}}$ a measure on \mathcal{X} , p a denisty on Θ and for each $\theta \in \Theta$, $p(\cdot|\theta)$ a density on \mathcal{X} .
- $\theta_0 \in \Theta$ and for $j \in \mathbb{N}$, $X_i \sim p(x|\theta_0)$

Suppose p is G-invariant and continuous on Θ and for each $x \in \mathcal{X}$, $p(x|\cdot)$ is G-invariant and continuous on Θ . For $n \in \mathbb{N}$, set $p(\cdot|X^{(n)}) \propto f(X_1,\ldots,X_n|\cdot)p(\cdot)$. Define the posterior measure $P_{\Theta|X^{(n)}}: \mathcal{B}(\Theta) \to [0,1]$ by

$$dP_{\Theta|X^{(n)}}(\theta) = p(\theta|X^{(n)}) dH_p^{\Theta}(\theta)$$

Suppose that $(P_{\Theta|X^{(n)}})_{n\in\mathbb{N}}$ concentrates on $\bar{\theta}_0\subset\Theta$ a.s. or in probability. Then $(\bar{P}_{\Theta|X^{(n)}})_{n\in\mathbb{N}}$ concentrates a.s. or in probability on $\{\bar{\theta_0}\}\subset\Theta/G$ (i.e. is consistent a.s. or in probability)

Proof. Let $V \in \mathcal{N}_{\bar{\theta}_0}$. Then $\pi^{-1}(V) \in \mathcal{N}_{\bar{\theta}_0}$. By definition,

$$\bar{P}_{\Theta|X^{(n)}}(V^c) = P_{\Theta|X^{(n)}}(\pi^{-1}(V^c))$$

$$= P_{\Theta|X^{(n)}}(\pi^{-1}(V)^c)$$

$$\xrightarrow{\text{a.s.}/P} 0$$

Note 9.1.3. Some examples of G-invariant priors would be the uniform distribution, or $N_n(0,\sigma^2 I)$ on \mathbb{R}^n when acted on by O(n). An example of a G-invariant likelihood would be $f(A|Z) \sim \text{Ber}(ZZ^T)$ as in a latent position random graph model where $Z \in \mathbb{R}^{n \times d}$ is the parameter is invariant under right multiplication by $U \in O_d$.

10. STOCHASTIC INTEGRATION

Exercise 10.0.1. Let (Ω, \mathcal{F}, P) be a probability space, X a set \mathcal{A}_0 an algebra, $\mu_0 : \mathcal{A}_0 \to \mathbb{C}$ and $B : \mathcal{A}_0 \to L^2(\Omega, \mathcal{F}, P)$. Suppose that

- (1) $B(\varnothing) = 0$
- (2) for each $E, F \in \mathcal{A}_0$, if $E \cap F = \emptyset$, then $B(E \cup F) = B(E) + B(F)$
- (3) $E(B(E)B(F)^*) = \mu_0(E \cap F)$

Then

- (1) for each $E \in \mathcal{A}_0$, $\mu_0(E) = E(|B(E)|^2)$.
- (2) for each $E \in \mathcal{A}_0$, $0 \le \mu_0(E) < \infty$
- (3) for each $E, F \in \mathcal{A}_0$, if $E \cap F = \emptyset$, then $\mu_0(E \cup F) = \mu_0(E) + \mu_0(F)$

Proof.

- (1) Clear
- (2) Clear
- (3) Let $E, F \in \mathcal{A}_0$. Suppose that $E \cap F = \emptyset$. Then

$$E(B(E)B(F)^*) = \mu_0(E \cap F)$$

$$= \mu_0(\varnothing)$$

$$= E(|B(\varnothing)|^2)$$

$$= E(0)$$

$$= 0$$

This implies that

$$\mu_0(E \cup F) = E(|B(E \cup F)|^2)$$

$$= E(|B(E) + B(F)|^2)$$

$$= E(|B(E)|^2) + E(|B(F)|^2) + 2\text{Re}E(B(E)B(F)^*)$$

$$= \mu_0(E) + \mu_0(F) + 0$$

$$= \mu_0(E) + \mu_0(F)$$

Definition 10.0.2. Let (Ω, \mathcal{F}, P) be a probability space, X a set \mathcal{A}_0 an algebra, $\mu_0 : \mathcal{A}_0 \to [0, \infty)$ a premeasure and $B : \mathcal{A}_0 \to L^2(\Omega, \mathcal{F}, P)$. Suppose that

- $(1) B(\varnothing) = 0$
- (2) for each $E, F \in \mathcal{A}_0$, if $E \cap F = \emptyset$, then $B(E \cup F) = B(E) + B(F)$
- (3) $E(B(E)B(F)^*) = \mu_0(E \cap F)$

Then B is said to be a stochastic premeasure with sturcture μ_0

11. TODO

Incorporate vector measures to have conditional expectations of Banach space valued functions given a σ -algebra

REFERENCES

- Introduction to Analysis
 Introduction to Group Theory
 Introduction to Measure and Integration