Ejercicio 1

Se nos pidió diseñar e implementar una maquina de estados capaz de controlar la activación de dos bombas B1 y B2 (simulando su encendido con un LED) que deben mantener el nivel de agua de un depósito que dispone de dos sensores S e I, colados en la parte superior e inferior del depósito, respectivamente. La operatoria de la máquina sigue las siguientes reglas:

- Si el agua ha superado un sensor, su valor de salida será: 1.
- Si el deposito estuviera lleno (I=S=1) no se activaría ninguna bomba.
- Si el deposito estuviera vacío (I=S=0) se activarían ambas bombas.
- Si el deposito estuviera lleno por la mitad (I=1, S=0) se activaría la ultima bomba en no activarse.

Se nos solicitó tener en cuenta las siguientes consideraciones para la implementación de la maquina de estados:

- Implementar la solución utilizando tanto una maquina de Mealy como de Moore.
- Muestre claramente el diagrama de estados y transiciones.
- Respaldar el diseño con una simulación en Verilog.

Implementación Maquina de Moore

Diagrama de Estados y Transiciones

Se comenzó por la implementación de la máquina de estados de Moore, para ello, se comenzó por realizar un diagrama de estados y transiciones que describa la maquina de estados. Para lo cual se listará primero a las entradas, estados y salidas posibles, y se hará una breve descripción para una mejor comprensión del diagrama.

Entradas:

Vacío: Configuración de entrada S=0, I=0, que indica que el depósito se encuentra vacío.

Medio: Configuración de entrada S=0, I=1, que indica que el depósito esta lleno por la mitad.

Lleno: Configuracion de entrada S=1, I=1, que indica que el depósito se encuentra lleno.

Estados:

Ninguna: Estado que indica que ninguna bomba esta encendida.

Una Sola: Estado que indica que solo una bomba se encuentra encendida.

Ambas: Estado que indica que ambas bombas se encuentran encendidas.

Salidas:

 $b_1 = 0$ y $b_2 = 0$: Esta configuración de salida no enciende ninguna bomba.

 $b_1 = 1, b_2 = 0$ o $b_1 = 0, b_2 = 1$: Solo se enciende una de las bombas que controla el circuito.

 $b_1=1$ y $b_2=1$: Esta configuración de salida enciende las dos bombas.

A continuación se presenta el diagrama de estados y transiciones, a partir del cual se diseñó la maquina de estados:

Figura 1: Diagrama de estados y transiciones

Al contar con 3 estados diferentes, mi maquina de estados necesitará como mínimo dos Flip-Flop's para almacenar el estado actual. Los tres estados posibles se codifican a traves de dos variables y_1 e y_0 , de esta forma, tendremos las siguientes configuraciones:

Estado	y_1y_0
Ninguna	00
Una Sola	01
Ambas	11

Habiendo definido los estados del diseño, se procedió a completar la correspondiente tabla de asignación de estados:

Estado Actual	Próximo Estado (Y_1Y_0)			Salida
(y_1y_0)	SI = 00	SI = 01	SI = 11	(b_1b_2)
00	11	01	00	00
01	11	01	00	01 o 10 (Alternado)
11	11	01	00	11

Cuadro 1: Tabla de asignación de estados

A partir del Cuadro 1 se confeccionó el Cuadro 2, que implementa la tabla de verdad que determina el próximo estado (Y_1Y_0) en función del estado anterior (y_1y_0) y las entradas (SI).

y_1y_0SI	Y_1	Y_0
0000	1	1
0001	0	1
0010	X	X
0011	0	0
0100	1	1
0101	0	1
0110	X	X
0111	0	0
1000	X	X
1001	X	X
1010	X	X
1011	X	X
1100	1	1
1101	0	1
1110	X	X
1111	0	0

Cuadro 2: Tabla de verdad cambio de estado

Se determinó que es estado SI=10 no es una combinación posible, ya que indicaría que el agua ha superado el sensor superior pero no el inferior, lo cual es incompatible con el modelo del deposito, e indicaría un error en los sensores. Como el manejo de errores en el sensores excede los requisitos de la consigna es que se determinó que no son combinaciones posibles y las salidas correspondientes a estas configuraciones se determinaron como 'don't care'

La simplificación mediante Mapas de Karnaugh arrojó los siguientes resultados:

$$Y_1 = \overline{S}.\overline{I} = \overline{I+S}$$

$$Y_0 = \overline{S} = \overline{S + S}$$

Se observa que el 'próximo estado' no depende del estado actual, sino solamente de las entradas. Se escriben como una negación de suma para luego implementar mediante una compuerta NOR.

Implementación

Figura 2: Diagrama Esquemático de la Máquina de Estados

La Figura 2 muestra el circuito implementado. Las salidas de los Flip-Flop's D almacenan el estado actual de la maquina de de estados, mientras que toda la lógica a la salida de estos Flip-Flop's controla las salidas de la máquina. Se implementó un Flip-Flop JK en modo Toggle para alternar la activación de las bombas cuando solo una de ellas debe activarse. Como se observa, el clock de este Flip-Flop esta controlado por la señal $\overline{UnoSolo}$, la cual valdrá 0 cuando la máquina se encuentre en el estado 'Uno Solo' y valdrá 1 en caso contrario. Cada vez que se produzca una transición del estado 'Uno Solo' hacia otro estado, se invertirán las salidas del Flip-Flop JK. Las salidas Q y \overline{Q} de este Flip-Flop sirven a una de dos entradas de dos multiplexores distintos. La entrada restante esta alimentada por la señal \overline{Ambas} , la cual valdrá 0 cuando la máquina se encuentre en el estado 'Ambas'. La señal de selección de ambos multiplexores está controlada por la señal $\overline{UnaSola}$, presentada anteriormente. Así se logra que se alternen las bombas cuando solo una debe encenderse y que se enciendan o apaguen ambas juntas cuando corresponda. Lo que sucede es que la linea de selección de los multiplexores determinan si las bombas tienen el mismo estado o estados complementarios.

Implementación Maquina de Mealy

Diagrama de Estados y Transiciones

Al igual que en el proceso de diseño de la máquina de estados de Moore, el primer paso fue determinar los estados