A Machine Learning Minimal Residual Method for Solving Quantities of Interest of Parametric PDEs

Ignacio Brevis, Ignacio Muga, David Pardo, Oscar Rodríguez, and Kristoffer G. van der Zee

Engineering and Physical Sciences Research Council

Problem definition

We want:

- Solve parametric families of PDEs
- High precision in terms of a Quantity of Interest (QoI)
- Employing coarse meshes in Finite Elements

We consider the abstract variational formulation: Given $\lambda \in \Lambda \subset \mathbb{R}^p$, find $q(u) \in \mathbb{R}$ such that

$$\begin{cases} u \in \mathbb{U} \text{ solves:} \\ B_{\lambda}u = \ell_{\lambda} \in \mathbb{V}^{*}, \end{cases} \Leftrightarrow \begin{cases} u \in \mathbb{U} \text{ solves:} \\ b_{\lambda}(u, v) = \ell_{\lambda}(v), \quad \forall v \in \mathbb{V}. \end{cases}$$

We will use:

- Minimal-residual (MinRes) finite elements
- Artificial neural networks

Introduction to the method (weighted-MinRes)

Given discrete conforming trial $\mathbb{U}_n := \operatorname{span}\{\varphi_1, \ldots, \varphi_n\} \subset \mathbb{U}$, and test $\mathbb{V}_m \subset \mathbb{V}$ spaces such that dim $\mathbb{V}_m > \dim \mathbb{U}_n$, we want to find a discrete solution

$$u_n := \underset{w_n \in \mathbb{U}_n}{\operatorname{argmin}} \|\ell_{\lambda} - B_{\lambda} w_n\|_{(\mathbb{V}_m)^*}, \quad \text{(MinRes method)}$$

To solve the above problem is equivalent to solve the following saddle point problem:

Find
$$(r_m, u_n) \in \mathbb{V}_m \times \mathbb{U}_n$$
 such that:

$$(r_m, v_m)_{\mathbb{V}} + b_{\lambda}(u_n, v_m) = \ell_{\lambda}(v_m), \quad \forall v_m \in \mathbb{V}_m,$$

$$b_{\lambda}(w_n, r_m) = 0, \qquad \forall w_n \in \mathbb{U}_n.$$
(1)

What we do:

We modify the MinRes method by introducing a weighted inner product

 $(\cdot\,,\cdot\,)_{\mathbb{V}} \longrightarrow (\cdot\,,\cdot\,)_{\mathbb{V},\omega}$ in the V space [1]

Example: $H_0^1(\Omega)$

$$(r, v)_{\mathbb{V}, \omega} = \sum_{k=1}^{K} \omega_k \underbrace{\int_{\Omega_k} \nabla r(x) \cdot \nabla v(x) \, dx}_{G_k}$$

We seek for the coefficients $\omega := (\omega_1, \ldots, \omega_m)$, such that solving the system (1)

$$\left[\frac{G_{\omega}|B_{\lambda}}{B_{\lambda}^{\top}|0} \right] \left[\frac{\alpha}{\beta} \right] = \left[\frac{L_{\lambda}}{0} \right], \quad \text{with } G_{\omega} = \sum_{k=1}^{K} \omega_{k} G_{k}.$$

delivers $u_n(x) := \sum_{i=1}^n \beta_i(\omega) \varphi_i(x)$ as a good approximation for the QoI q(u).

Obs: See [2] for an extension to Galerkin and least-squares formulations.

Artificial neural networks

We train a neural network nn_{θ} to learn the inner-product piecewise constant.

Training set

$$\{\lambda^{(1)},\lambda^{(2)},\dots\lambda^{(N_s)}\}$$

$$\{q(u_{\lambda^{(1)}}),q(u_{\lambda^{(2)}}),\ldots q(u_{\lambda^{(N_s)}})\}$$

Loss function

$$\mathcal{L}(\theta) := \frac{1}{N_s} \sum_{i=1}^{N_s} \frac{1}{2} \left| \frac{q(u_{\lambda^{(i)}}) - q(u_{n,\lambda^{(i)}}(\theta))}{q(u_{\lambda^{(i)}})} \right|^2$$

Ex: Diffusion with two parameters (dim $U_n = 4$)

Ex: Advection with parametric rhs (dim $U_n = 1$)

References

- [1] I. Brevis, I. Muga, and K. G. van der Zee, A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations, Comput. Math. Appl., 95 (2021), pp. 186–199.
- [2] I. Brevis, I. Muga, and K. G. van der Zee, Neural control of discrete weak formulations: Galerkin, least-squares and minimal-residual methods with quasi-optimal weights, Comput. Methods Appl. Mech. Engrg., 402 (2022), p. 115716.