01204211 Discrete Mathematics Lecture 7a: Languages and regular expressions¹

Jittat Fakcharoenphol

August 19, 2025

What is computation? ' ชิดเจน"

Models of computations

Definition

Tonce pt

Languages = specifications Lsot 400 string { " nello" , " ekitike" } { "1+1=2", "15+31= 46", } ("2","3","5","7","11",.... } set vo n. 1001: {0,00,000,0000,.... }

Z CN TH {(a, b, c) | a,b,ce IN, a+b=c}

· lymrus symbols = {0,19

1 E 12 sting.

2 a-x whisting on x 121

bur: a E &

Formal definition: strings

Intuitively, a string is a *finite* sequence of <u>symbols</u>. However, to be able to formally prove properties of strings we need a precise definition.

Let a finite set Σ be the <u>alphabet</u>. (E.g., for bit strings, $\Sigma = \{0, 1\}$; for digits, $\Sigma = \{0, 1, \dots, 9\}$; for English string $\Sigma = \{a, b, \dots, z\}$.) The following is a recursive definition of strings.

Recursive definition of strings

A string w over alphabet Σ is either

- ▶ the empty string ε , or
- $ightharpoonup a \cdot x$ where $a \in \Sigma$ and x is a string.

The set of all strings over alphabet Σ is denoted by Σ^* .

Review: more recursive definitions

Lengths

For a string w, let |w| be the length of w defined as

$$|w| = \left\{ \begin{array}{ll} 0 & \text{when } w = \varepsilon \\ 1 + |x| & \text{when } w = a \cdot x \end{array} \right.$$

Concatenation

For strings w and z, the concatenation $w \cdot z$ is defiend recursively as

$$w \cdot z = \left\{ \begin{array}{ll} z & \text{when } w = \varepsilon \\ a \cdot (x \cdot z) & \text{when } w = a \cdot x \end{array} \right.$$

Review: proving facts about strings

Lemma 1

For strings w and x, $|w \cdot x| = |w| + |x|$.

Proof.

Induction Hypothosis: and win string
$$y \in Y = |y| + |x|$$
.

$$|y \cdot x| = |y| + |x|$$

Formal languages

A formal language is a set of strings over some finite alphabet Σ . Examples: $\{1, 10, 100, 1000, 10000, 10000, 10000, 1001, 1101,$

Careful...

And ε is not a language.

£ 5,0,00,000,0000,... B={a, an, the} [on 1 | n > 0 }] C= f hunson, thaksin, prayuth, inkst { E, 01, 0011, 000111,... AUB U C p 154 24.1247.3 B. C = { ahunsen, anhuse, -Admarent. <ロト <部 > < 重 > < 重 > の < ②

How to describe languages?

decomposition

LU

Combining languages

If A and B are languages over alphabet Σ .

- ▶ Basic set operations: $A \cup B$, $A \cap B$, $\bar{A} = \Sigma^* \setminus A$.
- ightharpoonup Concatenation: $A \cdot B$.

Note the Kleene closure of Kleene star:
$$A^*$$
.

Shing $W \in A^*$ with A^* w

closure or Kleene star: A^* .

String $W \in A^*$ with $A^* = \{ \epsilon, q, an, the \}$ 1. $W = \epsilon$.

2. $W = \chi \cdot y$ with $\chi \in A$ with $\chi \in A$ with $\chi \in A^*$

Examples

Regular languages

$$\begin{cases} 3 \cdot \{hell \cdot\} = \emptyset \\ 4 \cdot \{c, d, a\} \\ = \{ac, ad, aa\} \end{cases}$$

Definition: regular languages

A language L is regular if and only if it satisfies one of the following conditions:

- ► *L* is empty;
- ightharpoonup L contains one string (can be the empty string ε);
- ightharpoonup L is a union of two regular languages;
- ightharpoonup L is the concatenation of two regular languages; or
- ightharpoonup L is the Kleene closure of a regular language.

$$\begin{cases}
\frac{1}{2} = \{0,1\} \\
\frac{1}{2}$$

Regular expressions

Let
$$\Sigma = \{0, 1\}$$
. Consider

```
((\{01\} \cup (\{1\} \cdot (\{0\} \cup \{10\}))) \cup (\{00\} \cdot (\{1\})^*)) \cdot ((\{0\} \cdot \{0\}) \cdot \{1\})
```

Regular language

$$((\{01\} \cup (\{1\} \cdot (\{0\} \cup \{10\}))) \cup (\{00\} \cdot (\{1\})^*)) \cdot ((\{0\} \cdot \{0\}) \cdot \{1\}))$$

is represented as

$$(01+1(0+10)+00(1)^*)001$$

001+10+00*

Regular expressions

- omit braces around one-string sets
- \triangleright use + instead of \cup
- omit •
- \triangleright follow the precedence: Kleene star operator *, (implicitly), and +.

Remark: + and \cdot are associative, i.e., (A+B)+C=A+(B+C) and $(A \cdot B) \cdot C = A \cdot (B \cdot C).$

Regular expressions: examples 1 Strings ที่ คาทางกำง 060000000 (b) Strings the (0+1)*000000000 {0,13* (0+1)*010(0+) (0+1)*0(0+1)*1 Subsequence

Regular expressions: examples 2 All strings over $\{0,1\}$ except 010 $0^* + 1^* + 1(0+1)^* + 00(0+1)^*$ $+ 011(0+1)^* + 010(0+1)(0+1)^*$ models machine o regular expressions state automata +1*(0*+00*1*)

Subexpressions

01+111

regular expression w long Wilson & +: 6644 longry of non empty.

Tiempto) (I.H.) anwoning subexpression 5 40 W, on S 755 p, 8 Dilling

Cocc 1: U=Ø - "

Case 2: W= x 100 x 102 show

Case 3: W=S+T IN SET in Vegex

(nce 4; W= 5.T - -.

Case 5: w = st 10 5 idr vegen noneomphy

Regex is everywhere

Proofs about regular expressions - structural induction

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof. 000! 25105

Let R be a <u>regular expression</u> that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$. \times / $\mathcal{I}_{\mathcal{L}}$ $\mathcal{I}_{\mathcal{L}}$ $\mathcal{I}_{\mathcal{L}}$

60000 assumption on R Til O, R ANDININO MORE DINA

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language.

Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language.

Case 1: $R = \emptyset$.

Case 2: R is a single string.

Junited, Rolling honemphy languary A'd strong 1 is

Every regular expression that does not use the symbol \emptyset represents a non-empty language.

Proof.

Let R be a regular expression that does not use the symbol \emptyset . We prove by (structural) induction that R represents a non-empty language. $L(R) \neq \emptyset$ Induction hypothesis: Every subexpression of R that does not use the symbol \emptyset represents a non-empty language. $L(S) \neq \emptyset$

Case 2: R is a single string.

Goal: R In hon-empty language. **Proof.** (cont.2/4)Case 3: R = S + T for some regular expressions S and T. . baronn S 60: T Bu subexpression ro R juman premis 1.5 Yala P 60, R 7210 p alloin Sur, T 7210 p on I.H. 600, O T 2. S mus non-empto unguase - 2n I.H 40 82 170/2) S 661: T UNL 3. T 4200 4. T 660-6 non empty language] anger LADON R IIm luige A'il unom no

L(S) + 4, L(T) + Ø 5 R Im lange of under S boar T boar &, @ - Idson R bbons langer d'il m/(R)/651 union vo language s'im me SET TiTrin P line law is non emply langery of boncolow R 0/2 1/4/0621LG 1908 L(R) = L(S) U L(T), 610; L(S) # 0 L(R) # 0 = 1000 HD

Proof. (cont.3/4)

Case 4: $R = S \cdot T$ for some regular expressions S and T.

- WO AN S GO; T DY SUBEXPT TO R, SET 7727 P

- 770 I.H. allowin L(S) + p, L(T) + p

- Idborn
$$L(R) = L(S) \cdot L(T)$$

668; JUNSAND XELCS) NO UNSAND YELCT)

1:7677 XY E $L(S) \cdot L(T)$ HIND

 $I(R) \neq \emptyset$

Proof. (cont.4/4)

Case 5: $R = S^*$ for some regular expression S.

buson
$$\varepsilon \in S^*$$
,

orange $L(R) \neq \emptyset$.

Proof. (cont.4/4)

Case 5: $R = S^*$ for some regular expression S.

In every case, the language L(R) is non-empty.

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

How regular lange (R)
$$\frac{1}{100}$$

I.H. Live your subset r (B) $\frac{1}{2}$
 $\frac{1}{2}$

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression.

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular expression R' such that L(R) = L(R') and R' does not contain \emptyset .

Every non-empty regular language is represented by a regular expression that does not use the symbol \emptyset .

Let R be a regular expression. We prove that if $L(R) \neq \emptyset$, then there exists a regular expression R' such that L(R) = L(R') and R' does not contain \emptyset . We prove by induction. What should the induction hypothesis be?

I.H. asturing subexpression
$$S$$
 400 R , if $L(S) \neq \emptyset$, and S' \Re' $L(S') = L(S)$ 660: S' 7224 \emptyset .

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

What are the cases that we have to consider?

I.H.: For every subexpression S of R, if $L(S) \neq \emptyset$, there exists an \emptyset -free regular expression S' such that L(S) = L(S').

What are the cases that we have to consider?

- ► $R = \emptyset$, /then $L(R) \neq \emptyset$ m λ .
- ightharpoonup R is a single string.
- R = S + T for some regular expressions \underline{S} and \underline{T} .
- $ightharpoonup R = S \cdot T$ for some regular expressions S and T.
- $ightharpoonup R = S^*$ for some regular expression S.

$$\frac{(Case 1) L(s) \neq \emptyset, L(\tau) \neq \emptyset}{s' s' bbn; T' n'ij = \emptyset}$$

$$\frac{(bn) L(s') = L(s)}{L(T) = L(T)}$$

Cuez:
$$L(5)=\emptyset$$
, $L(T)=\emptyset$,
 $A: \overline{A}: \overline{A}: L(S)=\emptyset$, $L(S)=0$

◆ロト ◆御 ト ◆注 ト ◆注 ト 注 り へ ()

(E-ex1-6) For string w, the reversal w^R is defined recursively as follows:

$$w^R = \left\{ \begin{array}{ll} \varepsilon & \text{if } w = \varepsilon \\ x^R \bullet a & \text{if } w = ax \text{ for some symbol } a \text{ and some string } x \end{array} \right.$$

For a language L, the reversal of L is defined as

$$L^R = \{ w^R \mid w \in L \}.$$

You may assume the following facts.

- $ightharpoonup L^* \cdot L^* = L^*$ for every language L.
- $(w^R)^R = w$ for every string w.
- $(x \cdot y)^R = y^R \cdot x^R$ for all strings x and y.

Prove that $(L^R)^* \subseteq (L^*)^R$.