Semaine 15 - Applications linéaires

Valentin De Bortoli email : valentin.debortoli@gmail.com

E est un espace vectoriel sur $\mathbb C$ dans tous les exercices qui suivent.

1 Des projecteurs

Soit p et q deux endomorphismes de E.

- 1 Montrer que si $p \circ q = p$ et $q \circ p = q$ alors ce sont deux projecteurs de même noyau.
- **2** On suppose que p et q sont deux projecteurs. Montrer que si $p \circ q = q \circ p$ alors $p \circ q$ est un projecteur. Quel est son noyau? Son image?
- 3 On suppose que p et q sont deux projecteurs. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$. Quel est son noyau? Son image?

2 Endomorphismes de carré nul

Soit u un endomorphisme de E tel qu'il existe un projecteur p avec $u = p \circ u - u \circ p$.

- 1 Montrer que $u(\ker p) \subset \operatorname{Im} p$ et $\operatorname{Im} p \subset \ker u$.
- 2 En déduire $u^2 = 0$.
- 3 Que peut-on dire de la réciproque?

3 Carré, noyau et image

Soit u un endomorphisme de E.

- 1 Montrer que $\operatorname{Im} u \cap \ker u = \{0\} \iff \ker u = \ker u^2$.
- 2 Montrer que $E = \text{Im}u + \text{ker}u \iff \text{Im}u = \text{Im}u^2$.

4 Introduction à la réduction

Soit u un endomorphisme de E tel que $u^2 - 3u + 2Id = 0$.

- 1 Montrer que u est inversible et que son inverse est un polynôme en u.
- Montrer que $\ker(u \operatorname{Id})$ et $\ker(u 2\operatorname{Id})$ sont des sous-espaces supplémentaires de E.

5 Trois endomorphismes

Soient (f, g, h) trois endomorphismes de E tels que $f \circ g = h$, $g \circ h = f$ et $h \circ f = g$.

- 1 Montrer que f, g et h ont même noyau et même image.
- 2 Montrer que $f^5 = f$.
- **3** En déduire que l'image et le noyau de f sont supplémentaires.

6 Deux endomorphismes

Soient (f,g) deux endomorphismes de E tels que $g \circ f \circ g = g$ et $f = f \circ g \circ f$.

- 1 Montrer que $\operatorname{Im} f$ et $\ker g$ sont supplémentaires.
- **2** Montrer que $f(\operatorname{Im} g) = \operatorname{Im} f$.

7 Drapeaux

Soit u un endomorphisme de E.

- 1 Montrer que $\forall k \in \mathbb{N}$, $\ker u^k \subset \ker u^{k+1}$. Conjecturer et prouver une propriété similaire sur $\operatorname{Im} u^k$.
- **2** On suppose qu'il existe $p \in \mathbb{N}$ tel que $\ker u^n = \ker u^{n+1}$. Montrer que pour tout $p \in \mathbb{N}, \ p \geq n \implies \ker u^p = \ker u^{p+1}$.
 - **3** En déduire que pour ce n, $keru^n$ et Imu^n sont en somme directe.

8 Anneau de Boole

Soit $(A, +, \times)$ un anneau de Boole, c'est-à-dire un anneau tel que tout élément est idempotent $(x^2 = x)$.

- 1 $\forall (x,y) \in A^2, \ xy + yx = 0$. En déduire que x + x = 0 et que l'anneau est commutatif.
- **2** Montrer que la relation binaire définie par $x \leq y \Leftrightarrow yx = x$ est une relation d'ordre.
- 3 Montrer que $\forall (x,y) \in A^2$, xy(x+y)=0 et en déduire qu'un anneau de Boole intègre ne peut contenir que deux éléments.

9 Sous-corps des rationnels

Soit k un sous corps des rationnels, \mathbb{Q} .

1 Montrer que $k = \mathbb{Q}$.

10 Inversibles d'un anneau

Soit (a,b) deux éléments d'un anneau $(A,+,\times)$.

- 1 Montrer que si 1 ab est inversible alors 1 ba l'est aussi.
- 2 Montrer que si ab est inversible et b n'est pas un diviseur de 0 alors a et b sont inversibles.