CS 4650/7650, Parsing algorithms

Jacob Eisenstein

October 3, 2013

she eats sushi with tuna

she t[0, 1, NP]

eats

sushi

with

tuna

$$t[0, 1, NP] = P(NP \rightarrow she)$$

	she	eats	sushi	with	tuna
she	t[0,1,NP]				
eats		t[1, 2, VP]			
sushi			t[2, 3, NP]		
with				t[3, 4, P]	
tuna					t[4, 5, NP]

$$t[0,2,S] = \!\! P(\mathrm{S} \to \mathrm{NP} \ \mathrm{VP}) \otimes t[0,1,NP] \otimes t[1,2,V\!P]$$

$$t[1,3,\mathit{VP}] = P(VP \rightarrow VP \ NP) \otimes t[1,2,\mathit{VP}] \otimes t[2,3,\mathit{NP}]$$

	she	eats	sushi	with	tuna
she	t[0,1,NP] —	t[0, 2, S]			
eats		t[1, 2, VP]	- t[1, 3, VP]		
sushi			t[2,3,NP]	Ø	
with				t[3, 4, P]	
tuna					t[4, 5, NP]

	she	eats	sushi	with	tuna
she	t[0,1,NP] –	-t[0,2,S]			
eats		t[1, 2, VP]	- t[1, 3, VP]		
sushi			t[2, 3, NP]	Ø	
with				t[3, 4, P]	t[3,5, <i>PP</i>]
tuna					t[4, 5, <i>NP</i>]

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] - t[0,3,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP]$$
 sushi
$$t[2,3,NP] \varnothing$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,3,S] = P(S \rightarrow NP \ VP) \otimes t[0,1,NP] \otimes t[1,3,VP]$$

	she	eats	sushi	with	tuna
she	t[0,1,NP]	-t[0,2,S]	t[0,3,S]		
eats		t[1,2,VP]	- t[1,3, VP]		
sushi			t[2,3,NP]	Ø	
with				t[3, 4, P]	t[3,5, <i>PP</i>]
tuna					t[4, 5, <i>NP</i>]

	she	eats	sushi	with	tuna
she	t[0,1,NP]	-t[0,2,S]	t[0,3,S]		
eats		t[1,2,VP]	-t[1, 3, VP]	Ø	
sushi			t[2,3,NP]	Ø	
with				t[3, 4, P] -	t[3,5, <i>PP</i>]
tuna					t[4, 5, <i>NP</i>]

	she	eats	sushi	with	tuna
she	t[0,1,NP]	-t[0,2,S]	t[0,3,S]		
eats		t[1,2,VP]	- t[1, 3, VP]	Ø	
sushi			t[2,3,NP]	Ø	
with				t[3, 4, P] -	t[3, 5, PP]
tuna					t[4, 5, <i>NP</i>]

$$t[2,5,NP] = P(NP \rightarrow NP PP) \otimes t[2,3,NP] \otimes t[3,5,PP]$$

	she	eats	sushi	with	tuna
she	t[0,1,NP]	-t[0,2,S]	t[0,3,S]		
eats		t[1,2,VP]	t[1,3,VP]	Ø	
sushi			t[2,3,NP]	Ø	t[2, 5, NP]
with				t[3, 4, P] -	t[3,5, <i>PP</i>]
tuna					t[4, 5, <i>NP</i>]

	she	eats	sushi	with	tuna
she	t[0,1,NP]	t[0,2,5]	t[0,3,S]	Ø	
eats	;	t[1, 2, VP] -	t[1,3,VP]	Ø	
sushi			t[2,3,NP]	Ø	t[2,5, NP]
with				t[3,4,P] -	t[3,5, PP]
tuna					t[4,5,NP]

	she	eats	sushi	with	tuna
she	t[0,1,NP]	-t[0,2,S]	t[0,3,S]	Ø	
eats		t[1,2,VP]	- t[1,3, VP]	Ø	
sushi			t[2,3,NP]	Ø	t[2,5,NP]
with				t[3, 4, P]	- t[3,5, <i>PP</i>]
tuna					t[4, 5, <i>NP</i>]

	she	eats	sushi	with	tuna
she	t[0,1,NP]	-t[0,2,S]	t[0,3,S]	Ø	
eats		t[1,2,VP]	-t[1,3,VP]	Ø	
sushi			t[2,3,NP]	Ø	t[2, 5, NP]
with				t[3, 4, P]	t[3,5, <i>PP</i>]
tuna					t[4, 5, <i>NP</i>]

$$t[1,5,VP] = (P(VP \rightarrow VP NP) \otimes t[1,2,VP] \otimes t[2,5,NP])$$

$$t[1,5,VP] = (P(\text{VP} \rightarrow \text{VP NP}) \otimes t[1,2,VP] \otimes t[2,5,NP])$$

$$\oplus (P(\text{VP} \rightarrow \text{VP PP}) \otimes t[1,3,VP] \otimes t[3,5,PP])$$

	she	eats	sushi	with	tuna
she	t[0,1,NP]	t[0,2,S]	t[0,3,S]	Ø	
eats		t[1, 2, VP]	- t[1, 3, VP]	Ø	t[1,5, VP]
sushi			t[2,3,NP]	Ø	t[2,5,NP]
with				t[3, 4, P]	- t[3,5, <i>PP</i>]
tuna					t[4, 5, <i>NP</i>]

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,5,S] = P(\mathrm{S} \to \mathrm{NP}\ \mathrm{VP}) \otimes t[0,1,\mathit{NP}] \otimes t[1,5,\mathit{VP}]$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,5,S] = P(\mathrm{S} \to \mathrm{NP}\ \mathrm{VP}) \otimes t[0,1,\mathit{NP}] \otimes t[1,5,\mathit{VP}]$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,5,S] = P(\mathrm{S} \to \mathrm{NP} \ \mathrm{VP}) \otimes t[0,1,\mathit{NP}] \otimes t[1,5,\mathit{VP}]$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,5,S] = P(\mathrm{S} \to \mathrm{NP} \ \mathrm{VP}) \otimes t[0,1,\mathit{NP}] \otimes t[1,5,\mathit{VP}]$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,5,S] = P(\mathrm{S} \to \mathrm{NP} \ \mathrm{VP}) \otimes t[0,1,\mathit{NP}] \otimes t[1,5,\mathit{VP}]$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,5,S] = P(S \to NP \ VP) \otimes P(NP \to she)$$
$$\otimes P(VP \to VP \ NP) \otimes t[1,2,VP] \otimes t[2,5,NP]$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$t[0,5,S] = P(S \to NP \ VP) \otimes P(NP \to she)$$

$$\otimes P(VP \to VP \ NP) \otimes P(VP \to eats) \otimes P(NP \to NP \ PP)$$

$$\otimes t[2,3,NP] \otimes t[3,5,PP]$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$\begin{split} t[0,5,S] = & P(\mathrm{S} \to \mathrm{NP} \ \mathrm{VP}) \otimes P(\mathrm{NP} \to \mathrm{she}) \\ & \otimes P(\mathrm{VP} \to \mathrm{VP} \ \mathrm{NP}) \otimes P(\mathrm{VP} \to \mathrm{eats}) \otimes P(\mathrm{NP} \to \mathrm{NP} \ \mathrm{PP}) \\ & \otimes P(\mathrm{NP} \to \mathrm{sushi}) \\ & \otimes P(\mathrm{PP} \to \mathrm{P} \ \mathrm{NP}) \otimes t[3,4,P] \otimes t[4,5,NP] \end{split}$$

she eats sushi with tuna
$$t[0,1,NP] - t[0,2,S] \qquad t[0,3,S] \qquad \varnothing \qquad t[0,5,S]$$
 eats
$$t[1,2,VP] - t[1,3,VP] \qquad \varnothing \qquad t[1,5,VP]$$
 sushi
$$t[2,3,NP] \qquad \varnothing \qquad t[2,5,NP]$$
 with
$$t[3,4,P] - t[3,5,PP]$$
 tuna

$$\begin{split} t[0,5,S] = & P(\mathrm{S} \to \mathrm{NP} \ \mathrm{VP}) \otimes P(\mathrm{NP} \to \mathrm{she}) \\ & \otimes P(\mathrm{VP} \to \mathrm{VP} \ \mathrm{NP}) \otimes P(\mathrm{VP} \to \mathrm{eats}) \otimes P(\mathrm{NP} \to \mathrm{NP} \ \mathrm{PP}) \\ & \otimes P(\mathrm{NP} \to \mathrm{sushi}) \\ & \otimes P(\mathrm{PP} \to \mathrm{P} \ \mathrm{NP}) \otimes P(\mathrm{P} \to \mathrm{with}) \otimes P(\mathrm{NP} \to \mathrm{tuna}) \end{split}$$

Some important details about the example on the previous slide:

- ► The cells in the CKY table can hold more than one non-terminal.
 - ▶ For example, we could have t[i, j, NP] and t[i, j, VP].
 - The example was constructed to avoid this, to make it easier to show.
- ▶ In the final computation, we implicitly assume $\oplus = \max$ or \lor . If $\oplus = +$, we are adding probabilities, and we would need to consider both ways of deriving $\mathbf{x}_{1:5}$ from VP.

move	stack	input
init	{}	She eats sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	{ She }	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks
shift	$\{ NP, eats, \}$	sushi with chopsticks

move	stack
init	{}
shift	{ She }
reduce	{ NP }
shift	{ NP, eats, }
reduce	$\{ NP, V \}$

input

She eats sushi with chopsticks eats sushi with chopsticks eats sushi with chopsticks sushi with chopsticks sushi with chopsticks

move	stack
init	{}
shift	{ She }
reduce	{ NP }
shift	{ NP, eats, }
reduce	{ NP, V }
shift	{ NP, V, sushi }

input

She eats sushi with chopsticks eats sushi with chopsticks eats sushi with chopsticks sushi with chopsticks sushi with chopsticks with chopsticks

move	stack
init	{}
shift	$\{ She \}$
reduce	$\{ NP \}$
shift	$\{ NP, eats, \}$
reduce	$\{ NP, V \}$
shift	$\{ NP, V, sushi \}$
reduce	$\{ NP, V, NP \}$

input

move	stack
init	{}
shift	$\{ She \}$
reduce	{ NP }
shift	$\{ NP, eats, \}$
reduce	$\{ NP, V \}$
shift	$\{ NP, V, sushi \}$
reduce	$\{ NP, V, NP \}$
reduce	$\{ NP, VP \}$

input

move	stack
init	{}
shift	$\{ She \}$
reduce	{ NP }
shift	$\{ NP, eats, \}$
reduce	{ NP, V }
shift	$\{ NP, V, sushi \}$
reduce	$\{ NP, V, NP \}$
reduce	$\{ NP, VP \}$
S,R	$\{ NP, VP, P \}$

input

move	stack
init	{}
shift	$\{ She \}$
reduce	{ NP }
shift	$\{ NP, eats, \}$
reduce	$\{ NP, V \}$
shift	$\{ NP, V, sushi \ \}$
reduce	$\{ NP, V, NP \}$
reduce	$\{ NP, VP \}$
S,R	$\{ NP, VP, P \}$
S,R	$\{ NP, VP, P, NP \}$

input

move	stack
init	{}
shift	{ She }
reduce	{ NP }
shift	{ NP, eats, }
reduce	{ NP, V }
shift	$\{ NP, V, sushi \}$
reduce	$\{ NP, V, NP \}$
reduce	$\{ NP, VP \}$
S,R	$\{ NP, VP, P \}$
S,R	{ NP, VP, P, NP }
reduce	{ NP, VP, PP }

input

move	stack
init	{}
shift	{ She }
reduce	{ NP }
shift	{ NP, eats, }
reduce	{ NP, V }
shift	{ NP, V, sushi }
reduce	$\{ NP, V, NP \}$
reduce	$\{ NP, VP \}$
S,R	$\{ NP, VP, P \}$
S,R	{ NP, VP, P, NP }
reduce	{ NP, VP, PP }
reduce	{ NP, VP }

input

}
}
}

input

move	stack	input
init	{}	She eats sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	{ She }	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	{ She }	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks
shift	{ NP, eats }	sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks
shift	$\{ NP, eats \}$	sushi with chopsticks
reduce	$\{ NP, V \}$	sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	{ She }	eats sushi with chopsticks
reduce	$\{ NP \}$	eats sushi with chopsticks
shift	$\{ NP, eats \}$	sushi with chopsticks
reduce	$\{ NP, V \}$	sushi with chopsticks
reduce	{ S }	sushi with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks
shift	$\{ NP, eats \}$	sushi with chopsticks
reduce	$\{ NP, V \}$	sushi with chopsticks
reduce	{ S }	sushi with chopsticks
shift	$\{ S, sushi \}$	with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks
shift	$\{ NP, eats \}$	sushi with chopsticks
reduce	$\{ NP, V \}$	sushi with chopsticks
reduce	{ S }	sushi with chopsticks
shift	$\{\mathsf S,sushi\ \}$	with chopsticks
reduce	$\{ S, NP \}$	with chopsticks

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks
reduce	$\{ NP \}$	eats sushi with chopsticks
shift	$\{ NP, eats \}$	sushi with chopsticks
reduce	$\{ NP, V \}$	sushi with chopsticks
reduce	{ S }	sushi with chopsticks
shift	$\{\mathsf S,sushi\ \}$	with chopsticks
reduce	{ S, NP }	with chopsticks
S,R	$\{ S, NP, P \}$	chopsticks

move	stack
init	{}
shift	{ She }
reduce	{ NP }
shift	$\{ NP, eats \}$
reduce	$\{ NP, V \}$
reduce	{ S }
shift	$\{ S, sushi \}$
reduce	{ S, NP }
S,R	{ S, NP, P }
S,R	{ S, NP, P, NP }

input

move	stack
init	{}
shift	$\{ She \}$
reduce	{ NP }
shift	$\{ NP, eats \}$
reduce	$\{ NP, V \}$
reduce	{ S }
shift	$\{ S, sushi \}$
reduce	{ S, NP }
S,R	$\{ S, NP, P \}$
S,R	{ S, NP, P, NP }
R	$\{ S, NP, PP \}$

input

move	stack
init	{}
shift	$\{ She \}$
reduce	$\{ NP \}$
shift	{ NP, eats }
reduce	$\{ NP, V \}$
reduce	{ S }
shift	{ S, sushi }
reduce	{ S, NP }
S,R	{ S, NP, P }
S,R	{ S, NP, P, NP }
R	{ S, NP, PP }
R	{ S, NP }

input

move	stack	input
init	{}	She eats sushi with chopsticks
shift	$\{ She \}$	eats sushi with chopsticks
reduce	{ NP }	eats sushi with chopsticks
shift	$\{ NP, eats \}$	sushi with chopsticks
reduce	$\{ NP, V \}$	sushi with chopsticks
reduce	{ S }	sushi with chopsticks
shift	$\{\mathsf S,sushi\}$	with chopsticks
reduce	{ S, NP }	with chopsticks
S,R	$\{ S, NP, P \}$	chopsticks
S,R	$\{ S, NP, P, NP \}$	
R	$\{ S, NP, PP \}$	
R	$\{ S, NP \}$	

We're stuck! Now we have to backtrack.

Dependency parsing is used in many real-world applications, like question answering (Cui et al, 2005):

Dependency parsing is used in many real-world applications, like question answering (Cui et al, 2005):

Dependency parsing is used in many real-world applications, like question answering (Cui et al, 2005):

Question answering works by searching for statements which match well against the query.

- ▶ In the surface form of the question, produce and % are six words apart.
- ▶ But in the dependency parse, they're adjacent.

Projectivity

In projective dependency parsing, there are no crossing edges.

Crossing edges are rare in English:

Projectivity

In projective dependency parsing, there are no crossing edges.

Crossing edges are rare in English:

They are more common in other languages, like Czech:¹

¹figure from (Nivre 2007)

Projective dependency parsing

- The Eisner algorithm is similar to CKY.
- ▶ But it keeps four tables instead of 1!
 - ▶ scores of **incomplete** subtrees from *i* to *j*, headed to the left
 - scores of incomplete subtrees from i to j, headed to the right
 - scores of complete subtrees from i to j, headed to the left
 - \blacktriangleright scores of **complete** subtrees from i to j, headed to the right
- ▶ Our goal is to produce a complete tree from 0 to *N*.
- Complete subtrees can combine into an incomplete tree, if they are heading in opposite directions.
 - ▶ E.g. $[a \rightarrow b]$ $[c \leftarrow d]$ becomes $([a \rightarrow b] \rightarrow [c \leftarrow d])$,
 - lacktriangle where square brackets like [a
 ightarrow b] indicate a complete tree
 - ▶ and round brackets like $(x \rightarrow y)$ indicate an incomplete tree
- Incomplete subtrees can subsume complete subtrees heading in the same direction.
 - ▶ E.g. $(a \rightarrow b)[c \rightarrow d]$ becomes $[[a \rightarrow b] \rightarrow [c \rightarrow d]]$
- See my "Eisner Algorithm Worksheet" for the specific recurrences

Projective dependency parsing: The Eisner Algorithm

- ► ROOT She gave him the ball
- ▶ ROOT (She \leftarrow gave) (gave \rightarrow him) (the \leftarrow ball)
- $\blacktriangleright \ [\ \mathsf{ROOT} \] \ [\mathsf{She} \leftarrow \mathsf{gave}] \ [\mathsf{gave} \rightarrow \mathsf{him}] \ [\mathsf{the} \leftarrow \mathsf{ball}]$

ROOT she gave him the ball

Projective dependency parsing: The Eisner Algorithm

- ► ROOT She gave him the ball
- ▶ ROOT (She \leftarrow gave) (gave \rightarrow him) (the \leftarrow ball)
- ▶ [ROOT] [She \leftarrow gave] [gave \rightarrow him] [the \leftarrow ball]

ROOT she gave him the ball

 $\bullet \ ([ROOT] \rightarrow [She \leftarrow gave]) \ ([gave \rightarrow him] \rightarrow [the \leftarrow ball])$

ROOT she gave him the ball

ROOT she gave him the ball

Projective dependency parsing: The Eisner Algorithm

- ► ROOT She gave him the ball
- ▶ ROOT (She \leftarrow gave) (gave \rightarrow him) (the \leftarrow ball)
- $\blacktriangleright \ [\ \mathsf{ROOT} \] \ [\mathsf{She} \leftarrow \mathsf{gave}] \ [\mathsf{gave} \rightarrow \mathsf{him}] \ [\mathsf{the} \leftarrow \mathsf{ball}]$

 $\blacktriangleright \ (\ [\ \mathsf{ROOT} \] \to [\mathsf{She} \leftarrow \mathsf{gave}]) \ ([\mathsf{gave} \to \mathsf{him}] \to [\mathsf{the} \leftarrow \mathsf{ball}])$

ROOT she gave him the ball

- $\blacktriangleright \ \ (\ [\ \mathsf{ROOT}\] \to [\mathsf{She} \leftarrow \mathsf{gave}])\ [[\mathsf{gave} \to \mathsf{him}] \to [\mathsf{the} \leftarrow \mathsf{ball}]]$
- $\blacktriangleright \ \ [(\ [\ \mathsf{ROOT}\] \to [\mathsf{She} \leftarrow \mathsf{gave}]) \to [[\mathsf{gave} \to \mathsf{him}] \to [\mathsf{the} \leftarrow \mathsf{ball}]]]$

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

incomplete					incomp	lete		
\leftarrow	plastic	cup	holders	$\overset{-}{\longrightarrow}$	plastic	cup	holders	
ROOT				ROOT				
plastic				plastic				
cup				cup				
	complete				complete			
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders	
ROOT				ROOT				
plastic				plastic				
cup				cup			<u> </u>	
cup				cup	1 	1 2 7 1	<u> </u>	

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

incomplete					incomp	lete		
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders	
ROOT	$-\infty$			ROOT				
plastic		2		plastic				
cup			4	cup				
complete					complete			
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders	
ROOT				ROOT				
plastic				plastic				
cup				cup				

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

	incomp	lete		incomplete			
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$			ROOT	1		
plastic		2		plastic		-1	
cup			4	cup			-1
	compl	ete		complete			
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT				ROOT			
plastic				plastic			
cup				cup			

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

:e	incomplete				lete	incomp	
up holders	cup	plastic	\rightarrow	holders	cup	plastic	\leftarrow
		1	ROOT			$-\infty$	ROOT
-1	-1		plastic		2		plastic
-1			cup	4			cup
=	complete				ete	compl	
up holders	cup	plastic	\rightarrow	holders	cup	plastic	\leftarrow
			ROOT			$-\infty$	ROOT
			plastic		2		plastic
* > 4 			cup	4			cup
			→ ROOT plastic	holders	cup	plastic	← ROOT plastic

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

incomp	lete			incomp	lete	
plastic	cup	holders	\rightarrow	plastic	cup	holders
$-\infty$			ROOT	1		
	2		plastic		-1	
		4	cup			-1
compl	ete			compl	ete	
plastic	cup	holders	\rightarrow	plastic	cup	holders
$-\infty$			ROOT	1		
	2		plastic		-1	
		4	cup			-1
	$\begin{array}{c} \text{plastic} \\ -\infty \end{array}$	$ \begin{array}{c c} -\infty & 2 \\ \hline & complete \\ \hline & plastic & cup \\ & -\infty & \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

incomplete

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

	incomp	lete			incomp	piete	
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$	$-\infty$		ROOT	1		
plastic		2	4	plastic		-1	
cup			4	cup			-1
	compl	ete		complete			
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$			ROOT	1		
plastic		2		plastic		-1	
cup			4	cup			-1
					4 D > 4 D >	4 = 7 4	<u> </u>

incomplete

incomplete

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

	incomp	nete			incomp	nete		
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders	
ROOT	$-\infty$	$-\infty$		ROOT	1	3		
plastic		2	4	plastic		-1	3	
cup			4	cup			-1	
	compl	ete			complete			
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders	
ROOT	$-\infty$			ROOT	1			
plastic		2		plastic		-1		
cup			4	cup			-1	
					4 1 1 4 1 1	4 = > 4	<u>₹</u>	

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

	incomplete			incomplete				
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders	
ROOT	$-\infty$	$-\infty$		ROOT	1	3		
plastic		2	4	plastic		-1	3	
cup			4	cup			-1	
	compl	0±0		complete				
	compi	ete			compi	ete		
\leftarrow	plastic	cup	holders	${\rightarrow}$	plastic	cup	holders	
\leftarrow ROOT			holders	o ROOT			holders	
	plastic	cup	holders 6	ightarrowROOT			holders	
ROOT	plastic	$-\infty$				cup	holders	

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

	incomplete				incomplete				
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders		
ROOT	$-\infty$	$-\infty$		ROOT	1	3			
plastic		2	4	plastic		-1	3		
cup			4	cup			-1		
				complete					
	compl	ete			compl	ete			
	compl plastic	ete cup	holders	${\longrightarrow}$	compl plastic	ete cup	holders		
← ROOT			holders	o ROOT	<u> </u>		holders		
`	plastic	cup	holders 6	ightarrow ROOT plastic	<u> </u>	cup	holders		
ROOT	plastic	$-\infty$			<u> </u>	cup 3			

incomplete

	ROOT	plastic	cup	holders
ROOT		1	1	1
plastic	$-\infty$		-1	-1
cup	$-\infty$	2		-1
holders	$-\infty$	0	4	
	plastic cup	$\begin{array}{ccc} ROOT & & \\ plastic & -\infty & \\ cup & -\infty & \end{array}$	$\begin{array}{ccc} ROOT & & 1 \\ plastic & -\infty & \\ cup & -\infty & 2 \end{array}$	$\begin{array}{c cccc} ROOT & & 1 & 1 \\ plastic & -\infty & & -1 \\ cup & -\infty & 2 & \end{array}$

	mcomp	ricte			mcomp	rictc	
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$	$-\infty$	$-\infty$	ROOT	1	3	
plastic		2	4	plastic		-1	3
cup			4	cup			-1
	complete				compl	ete	
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$	$-\infty$		ROOT	1	3	
plastic		2	6	plastic		-1	3
cup			4	cup			-1
						4 = 1 4	= > = 9

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

	incomp	lete			incomp	lete	
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$	$-\infty$	$-\infty$	ROOT	1	3	7
plastic		2	4	plastic		-1	3
cup			4	cup			-1
	complete			·			•
	compl	ete			compl	ete	
${\leftarrow}$	plastic	ete cup	holders	${\longrightarrow}$	compl plastic	ete cup	holders
← ROOT			holders	$\overset{\longrightarrow}{ROOT}$	<u> </u>		holders
`	plastic	cup	holders 6	ightarrow ROOT	<u> </u>	cup	holders
ROOT	plastic	cup			<u> </u>	cup 3	

incomplete

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

	шсоппр	ricte			шсошь	nete	
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$	$-\infty$	$-\infty$	ROOT	1	3	7
plastic		2	4	plastic		-1	3
cup			4	cup			-1
	complete				compl	ete	
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders
ROOT	$-\infty$	$-\infty$	$-\infty$	ROOT	1	3	
plastic		2	6	plastic		-1	3
cup			4	cup			-1
						4 = 1 4	= P = ♥ Q

		ROOT	plastic	cup	holders
_	ROOT		1	1	1
Edge weights:	plastic	$-\infty$		-1	-1
	cup	$-\infty$	2		-1
	holders	$-\infty$	0	4	

incomplete			incomplete					
\leftarrow	plastic	cup	holders	\rightarrow	plastic	cup	holders	
ROOT	$-\infty$	$-\infty$	$-\infty$	ROOT	1	3	7	
plastic		2	4	plastic		-1	3	
cup			4	cup			-1	
complete				complete				
	compl	ete			compl	ete		
	compl plastic	ete cup	holders	${\longrightarrow}$	compl plastic	ete cup	holders	
← ROOT			$-\infty$	ightarrow ROOT	<u> </u>		holders 7	
← ROOT plastic	plastic	cup		ightarrow oROOT	<u> </u>	cup	holders 7 3	
	plastic	$-\infty$	$-\infty$		<u> </u>	cup 3	7	

Arc-factored dependency parsing algorithms

- ▶ The Eisner algorithm produces projective dependency parses.
- ► Non-projective dependency parsing can be viewed as maximum spanning tree.
- A slightly modified version of Chu-Liu-Edmonds can then be applied.
- ► The next few slides are from Joakim Nivre and Ryan McDonald.

 $\triangleright x = \text{root John saw Mary}$

► Find highest scoring incoming arc for each vertex

▶ If this is a tree, then we have found MST!!

- ▶ If not a tree, identify cycle and contract
- ▶ Recalculate arc weights into and out-of cycle

- Outgoing arc weights
 - Equal to the max of outgoing arc over all vertexes in cycle
 - $\,\blacktriangleright\,$ e.g., John \to Mary is 3 and saw \to Mary is 30

► Incoming arc weights

- Equal to the weight of best spanning tree that includes head of incoming arc, and all nodes in cycle
- ▶ root \rightarrow saw \rightarrow John is 40 (**)
- ▶ root \rightarrow John \rightarrow saw is 29

Theorem

The weight of the MST of this contracted graph is equal to the weight of the MST for the original graph

▶ Therefore, recursively call algorithm on new graph

▶ This is a tree and the MST for the contracted graph!!

▶ Go back up recursive call and reconstruct final graph

► This is the MST!!

Chu-Liu-Edmonds Code

```
Chu-Liu-Edmonds(G_x, w)
       Let M = \{(i^*, j) : j \in V_x, i^* = \arg \max_{i'} w_{ii} \}
       Let G_M = (V_x, M)
       If G_M has no cycles, then it is an MST: return G_M
 3
       Otherwise, find a cycle C in G_M
 5.
       Let \langle G_C, c, ma \rangle = \text{contract}(G, C, w)
       Let G = \text{Chu-Liu-Edmonds}(G_C, w)
 6.
       Find vertex i \in C such that (i', c) \in G and ma(i', c) = i
 7.
 8.
       Find arc (i'', i) \in C
       Find all arc (c, i''') \in G
 9.
       G = G \cup \{(ma(c, i'''), i''')\}_{\forall (c, i''') \in G} \cup C \cup \{(i', i)\} - \{(i'', i)\}
10.
11.
       Remove all vertices and arcs in G containing c
12
       return G
```

 $Reminder: w_{ij} = \arg\max_k w_{ij}^k$

Summary of dependency parsing algorithms

- ▶ The Eisner algorithm for projective dependency parsing is $\mathcal{O}(N^3)$
- ▶ MST for non-projective dependency parsing is also $\mathcal{O}(N^3)$, but Tarjan's algorithm is $\mathcal{O}(N^2)$.
- ▶ We can also apply shift-reduce to dependency parsing, with complexity $\mathcal{O}(N)$ but we're not guaranteed to get the best-scoring parse.
- All of these algorithms depend on the arc-factoring assumption:

$$\psi(G, \mathbf{x}) = \sum_{\langle i \to j \rangle \in G} \psi(i \to j, \mathbf{x})$$

where $\psi(i \to j, \mathbf{x})$ can be a log-probability or an inner productive of weights and features.

Second-order dependency parsing relaxes the arc-factoring assumption.

