4.2 손실함수

도입

• 제대로 예측됐는지 판단하는 기준은 무엇일까?

신경망

Input(784) \rightarrow weight1 (784x50) \rightarrow node(50) \rightarrow weight2(50x100) \rightarrow node(100) \rightarrow weight(100x10) \rightarrow output (1x10)

- 신경망이 제대로 된 성능을 지니고 있는지 평가 하는 방법은 무엇일까?
 - 。 제대로 값을 예측 하면됨
 - 。 측정의 기준은?

예

```
y=[0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0]
t=[0 , 0, 1, 0, 0, 0, 0, 0, 0, 0]
```

- y는 소프트 맥스 함수의 출력이다.
- t는 원-핫 인코딩 방식을 이용한 표기법이다.
- 실제로 위와 같은 결과물에 대한 손실을 구해보자.

손실함수

4.2 손실함수

손실함수란 신경망 성능의 '나쁨'을 나타내는 지표로, 현재의 신경망이 훈련 데이터를 얼마나 잘 처리하지 '못'하느냐를 나타낸다.

- 비용함수 (Cost Function) 이라고도 불린다.
- 손실에는 그만큼의 비용이 발생하기 때문

Loss/Cost Function 이란?

Loss function.

Loss
$$\rightarrow$$
 Lost function.

ABBIXABLE \rightarrow ABBIX \rightarrow

MSE(Mean Squared Error)

- ullet 가장 기본적인 손실함수 $MSE=rac{1}{2}\Sigma_k(y_k-t_k)^2$
- y_k 는 신경망의 출력(신경망이 추정한값)
- t_k 는 정답 레이블
- k는 데이터의 차원 수
- $\frac{1}{2}$ 는 크게 의미없는 숫자 같지만 추후 미분을 위해 존재한다.

4.2 손실함수

Cross Entropy Error

- $E = -\Sigma_k t_k \log y_k$
- log는 밑이 e인 자연로그(ln)이다.
- y_k 는 신경망 출력
- t_k 는 정답 레이블 (정답에 해당하는 인덱스의 원소만 1이고 나머지는 0인 원-핫 인코딩 사용)
- $ullet t_k = 1$ (즉, 정답)일때만 자연 로그를 계산하는 식이다.
- 맨앞이 음수처리된 이유는 신경망의 출력값이 0~1 사이의 값이기때문에 양수로 만들어 주기 위해서 이다.
- 예
 - 。 정답 레이블 '2'
 - 신경망 출력 '0.6'
 - \circ 교차엔트로피 오차는 -log 0.6=0.51
 - \circ 같은 조건에서 신경망 출력이 '0.1'이라면 -log 0.1 = 2.30이 된다.
 - 신경망의 결과값이 정답에 가깝게 나타날경우 (1에 가까운 숫자) 오차 값이 줄어들고,0에 가깝게 나타날수록 오차는 커진다.

4.2 손실함수

Cross Entropy Error. \Rightarrow disch disc with the probability of the set of the s

결론

- 손실함수의 값이 최소화 되면 가장 좋은 예측이라고 할수 있다.
- 어떻게? 미분을 통해서