Grundbegriffe der Informatik Aufgabenblatt 13

Matr.nr.:							
Nachname:							
Vorname:							
Tutorium:	ım: Nr.				Name des Tutors:		
Ausgabe:	28. Januar 2015						
Abgabe: 6. Februar 2015, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34 Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.							
		11011:					
Vom Tutor au erreichte Pu		iitii.					
Blatt 13:				/ 20	+2	2	
Blätter 1 – 13	3:		/ :	228	+ 23	3	

Aufgabe 13.1 (2 + 4 + 2 = 8 Punkte)

Der ebenso geniale wie überzeugende Wissenschaftler und Superbösewicht Doktor Meta ist siegestrunken. Er hat vor kurzem seinen Widersacher Theorie-Mann (halb Mensch, halb Turingmaschine) gestellt. Es gelang ihm, Theorie-Mann zu überwältigen und umzuprogrammieren. Er folgt jetzt Doktor Metas Willen. Der pfiffige Informatikstudent Marvin Faulsson (der sich gerade für den GBI-Übungsschein und die Klausur angemeldet hat) muss nun mit Schrecken sehen, wie sein ehemals bester Freund Theorie-Mann Doktor Metas unkonkrete Pläne umsetzt. Doch Marvin hat noch nicht aufgegeben. Er will Theorie-Mann überzeugen, dass noch viel gutes in ihm ist, dass Doktor Meta nicht alles, was gut in ihm war, zerstört hat. Theorie-Manns Handlungen werden von der folgenden Grammatik $G = (\{X\}, \{g, b\}, X, P)$ beschrieben, wobei

$$P = \{ \mathtt{X} o \mathtt{gXb} \mid \mathtt{bXg} \mid \mathtt{XX} \mid \varepsilon \}$$

und g für "Gutes" sowie b für "Böses" steht.

- a) Definieren Sie induktiv die Menge A aller Ableitungsbäume von G.
- b) Zeigen sie durch strukturelle Induktion über die Ableitungsbäume von *G*, dass gilt:

$$\forall w \in L(G) : N_{g}(w) = N_{b}(w).$$

Hinweis: Verwenden Sie, dass es für jedes Wort $w \in L(G)$ einen Ableitungsbaum $A \in \mathcal{A}$ gibt, der eine mögliche Ableitung von w aus X beschreibt, und, dass für jeden solchen Baum A gilt $N_{g}(A) = N_{g}(w)$ sowie $N_{b}(A) = N_{b}(w)$, wobei $N_{g}(A)$ und $N_{b}(A)$ die Anzahl der Knoten in A mit Markierung g bzw. b sei.

c) Geben Sie eine Grammatik G' = (N', T', S', P') an, deren Produktionenmenge entweder aus alle Produktionen von G außer einer besteht oder aus allen Produktionen von G sowie einer zusätzlichen, derart, dass

$$\forall w \in L(G') : N_{\mathsf{g}}(w) > N_{\mathsf{b}}(w).$$

Lösung 13.1

a) Die Menge aller Ableitungsbäume von *G* ist induktiv definiert durch:

ist ein Ableitungsbaum von G.

• Für jeden Ableitungsbaum A von G sind

Ableitungsbäume von G.

• Für jedes Paar von Ableitungsbäumen (A, A') von G ist

$$A \xrightarrow{X} A'$$

ein Ableitungsbaum von G.

- Alles andere ist kein Ableitungsbaum von *G*.
- b) Die zu beweisende Aussage ist äquivalent zu

$$\forall A \in \mathcal{A} : N_{g}(A) = N_{b}(A),$$

Diese Aussage beweisen wir durch strukturelle Induktion über A.

Induktionsanfang: Für den Baum X ist die Anzahl der Knoten mit Mar-

kierung g bzw b jeweils 0, also gleich.

Induktionsschritt: Es seien A und $A' \in A$ so, dass $N_g(A) = N_b(A)$ und $N_g(A') = N_b(A')$.

• Für die Bäume X und X gilt, dass die Anzahl g A b b A g

der Knoten mit Markierung g gerade $N_g(A) + 1$ und jene mit b gerade $N_b(A) + 1$ ist, welche wegen $N_g(A) = N_b(A)$ gleich sind.

• Für den Baum X ist die Anzahl der Knoten mit Mar-A A'

kierung g gerade $N_g(A) + N_g(A')$ und jene mit b gerade $N_b(A) + N_b(A')$, welche wegen $N_g(A) = N_b(A)$ und $N_g(A') = N_b(A')$ gleich sind.

c) Will man eine Produktion weglassen, geht das nur so: G'=(N',T',S',P') mit $N'=\{\mathtt{X}\},\,T'=\{\mathtt{g},\mathtt{b}\},\,S'=\mathtt{X}$ und

$$P' = \{ \mathtt{X} \rightarrow \mathtt{gXb} \mid \mathtt{bXg} \mid \mathtt{XX} \}.$$

In diesem Fall ist $L(G') = \emptyset$ und die Forderung ist erfüllt. Mag man eine Produktion hinzunehmen, geht das zum Beispiel so: G' = (N', T', S', P') mit $N' = \{Y, X\}$, $T' = \{g, b\}$, S' = Y und

$$P' = \{ Y \rightarrow gX, \ X \rightarrow gXb \mid bXg \mid XX \mid \epsilon \}.$$

Dann ist $L(G') = \{g\} \cdot L(G)$.

Aufgabe 13.2 (2 Punkte)

Gegeben sei die nachfolgend dargestellte Turingmaschine T mit Zustandsmenge $Z = \{s_0, s_1, u_0, u_1, r\}$, Anfangszustand s_0 und Bandalphabet $X = \{a, b, \Box\}$:

Die Eingabe sei ein beliebiges Wort $w \in \{a,b\}^+$.

- a) Für welche Eingabewörter hält *T* an?
- b) In welchen Zuständen kann T für eine Eingabe anhalten?
- c) Welches Wort steht für Eingabe w auf dem Band, wenn T anhält?
- d) Geben Sie eine Funktion f an mit Time $_T \in \Theta(f)$.

Lösung 13.2

- a) für alle
- b) nur in den Zuständen s_0 und s_1

Erläuterung (war nicht verlangt): In Zustand u_0 ist zwar auch kein Übergang spezifiziert, falls das aktuell gelesene Symbol ein Blank wäre, aber das kann auch nie passieren: Nach u_0 kommt T nur nach einem Schritt nach links, nachdem sie vorher über mindestens ein Nicht-Blank gefahren ist.

- c) $a^{N_a(w)}b^{N_b(w)}$, d.h. "die a und b werden sortiert".
- d) $f: \mathbb{N}_+ \to \mathbb{N}_+ : n \mapsto n^2$

Erläuterung (war nicht gefordert): Z. B. für Eingaben der Form b^k a fährt die TM in mehreren "Runden" vom Anfang des Wortes bis zum a und schiebt es dann eine Position nach links. Das macht in den ersten n/2 Runden jeweils mindestens n/2 Schritte. Also ist Time $_T \in \Omega(f)$.

Andererseits wird in jeder Runde jedes a, das "noch nicht am Ziel" ist, diesem eine Position näher gerückt, und für kein a muss das öfter als n mal gemacht werden. Also ist $\mathrm{Time}_T \in \mathrm{O}(f)$.

Aufgabe 13.3 (7 + 3 = 10 Punkte)

a) Geben Sie graphisch eine Turing-Maschine T mit dem Eingabealphabet $A = \{0,1\}$ und höchstens 13 Zuständen an, die die Abbildung $f \colon A^* \to A^*$ berechnet, welche induktiv definiert ist durch

$$\begin{split} f(\varepsilon) &= \varepsilon, \\ \forall v \in A^1 \cup A^2 \cup A^3 \cup A^4 : f(v) &= v \cdot \mathrm{repr}_2(\left(\sum_{i=0}^{|v|-1} \mathrm{num}_2(v_i)\right) \bmod 2), \\ \forall v \in A^4 \ \forall w \in A^+ : f(v \cdot w) &= f(v) \cdot f(w). \end{split}$$

Hinweis: Es gibt eine solche Turing-Maschine mit 11 Zuständen.

b) Geben Sie die Zeit- sowie die Raumkomplexität der Turing-Maschine T asymptotisch an, das heißt, in der Form $\Theta(g)$ für eine geeignete Funktion $g \colon \mathbb{N}_0 \to \mathbb{N}_0$? Begründen Sie Ihre Antwort.

Lösung 13.3

a)

b) Die Zeitkomplexität ist $\Theta(n \mapsto n^2)$.

Begründung: Es sei $n \in \mathbb{N}_0$ die Länge des Eingabewortes. Um das erste x einzufügen und wieder dorthin zurück zu gehen, macht die Turing-Maschine etwa (n+(n-4))-viele Schritte; für das zweite x etwa ((n-4)+(n-8))-viele Schritte; und so weiter. Insgesamt werden $\lceil n/4 \rceil$ -viele x

eingefügt. Zusammen ergibt das

$$(2n-4) + (2n-12) + (2n-20) + \cdots$$

$$= \sum_{k=1}^{\lceil n/4 \rceil} 2n - (4+8k)$$

$$= \lceil n/4 \rceil \cdot 2n - \lceil n/4 \rceil \cdot 4 - 8 \sum_{k=1}^{\lceil n/4 \rceil} k$$

$$= \lceil n/4 \rceil \cdot 2n - \lceil n/4 \rceil \cdot 4 - 8 \frac{\lceil n/4 \rceil \cdot (\lceil n/4 \rceil + 1)}{2}$$

$$= \lceil n/4 \rceil \cdot 2n - \lceil n/4 \rceil \cdot 4 - 4 \lceil n/4 \rceil \cdot (\lceil n/4 \rceil + 1)$$

$$= \lceil n/4 \rceil \cdot 2n - \lceil n/4 \rceil \cdot 8 - \lceil n/4 \rceil^{2}$$

$$\in \Theta(n \mapsto \frac{n^{2}}{2} - 2n - \frac{n^{2}}{16})$$

$$= \Theta(n \mapsto \frac{7n^{2}}{16} - 2n)$$

$$= \Theta(n \mapsto n^{2}).$$

Für die Berechnung der Korrekturbits wird ein Lauf über das Wort mit den eingefügten x benötigt. Dieses Wort hat die Länge $n + \lceil n/4 \rceil$. Die Turing-Maschine benötigt dafür also $\Theta(n \mapsto n)$ -viele Schritte.

Die Raumkomplexität ist $\Theta(n \mapsto n)$.

Begründung: Jedes Eingabewort der Größe n wird um $\lceil n/4 \rceil$ -viele Korrekturbits vergrößert und während der Berechnung werden keine weiteren Speicherstellen auf dem Band benötigt.

*Aufgabe 13.4 (1+1=2 Extrapunkte)

Es seien A und B zwei endliche Mengen. Wieviele partielle Abbildungen $f: A \dashrightarrow B$ gibt es? Begründen Sie Ihre Antwort.

Lösung 13.4

Es sind $(|B|+1)^{|A|}$. Der Wert entsteht dadurch, dass man für jedes der |A| vielen Argumente unabhängig voneinander einen von |B| vielen Funktionswerten auswählen kann oder die Möglichkeit "undefiniert". Und verschiede solche Auswahlen führen auch stets zu verschiedenen partiellen Funktionen.