

PREDICCIÓN INTELIGENTE DE PRECIOS EN AIRBNB MADRID

Predice, compara y encuentra el precio justo

MÁSTER EN DATA SCIENCE

Presentado por:

Katherine López Ramírez

CONTENIDO

Contenidos del Proyecto

01. Contexto y justificación	3
02. Objetivo del proyecto	4
03. análisis de datos	5 - 6
04. Comparación de Modelos	7 - 10
05. Visualización y aplicación	11 -12
06. Tecnologías utilizadas	13
07. Conclusiones	14
08 Futuras meioras	15

CONTEXTO Y JUSTIFICACIÓN

Bienvenidos al Proyecto

- Crecimiento del turismo en Madrid y auge de Airbnb.
- Problema: fijar precios óptimos en un mercado competitivo.
- Oportunidad: un modelo de predicción de precios que ayuda a anfitriones a ajustar tarifas según zona y estacionalidad, a turistas a encontrar mejores opciones de alojamiento y a inversores a tomar decisiones estratégicas.

OBJETIVO DEL PROYECTO

General: Analizar y predecir los precios de alojamientos en Airbnb Madrid según ubicación y estacionalidad, usando Machine Learning.

Específicos:

- Desarrollar un modelo de Machine Learning que prediga precios con precisión
- Facilitar comparaciones por meses y barrios
- Generar insights útiles para anfitriones, viajeros e inversores

ANÁLISIS DE DATOS

Contenidos del Proyecto

- Fuente: Inside Airbnb
- 25.000 alojamientos, 9M registros de calendario
- Procesamiento: limpieza, detección de outliers, integración de estacionalidad.
- Variables clave: ubicación, tipo de alojamiento, reseñas, disponibilidad, precio mensual promedio

LIMPIEZA Y PREPARACIÓN

- Eliminación de nulos y outliers extremos (> 12.000 €)
- Normalización de variables del host y reseñas
- Creación de la variable de estacionalidad (precio promedio mensual por barrio)

Antes Despues

COMPARACIÓN DE MODELOS

- CatBoost → MAE: 19,75 €, RMSE: 28,81 €, R²: 0,731
- **XGBoost** → MAE: 15,91 €, RMSE: 23,04 €, R²: 0,828
- Random Forest → MAE: 12,90 €, RMSE: 18,99 €, R²: 0,883

Encodings aplicados

- CatBoost: maneja categorías de forma nativa.
- XGBoost: requiere Target Encoding para convertir categorías en valores numéricos representativos.
- Random Forest: funciona mejor con Ordinal Encoding, evitando la alta cardinalidad y manteniendo buen rendimiento.

Conclusión: Cada encoding se eligió según las necesidades del algoritmo. Entre todos, Random Forest destaca por ofrecer el mejor rendimiento, estabilidad y robustez, siendo la opción final para el proyecto.

RESULTADOS

Optimización de hiperparámetros

- Predicción por mes: precios ajustados a la estacionalidad.
- Comparativa de barrios: identifica zonas más económicas o caras respecto al elegido.
- Métricas finales optimizadas:

Train: $R^2 = 0.991$, MAE = 3.9 €

Test: $R^2 = 0.975$, MAE = 6.3 €

CV (5 folds): $R^2 \approx 0.969 \pm 0.001$

IInterpretación

- MAE ≈ 6 € → predicciones altamente precisas.
- $R^2 \approx 0.98 \rightarrow$ el modelo explica casi toda la variabilidad de los precios.
- Métricas train/test muy cercanas → modelo equilibrado, sin sobreajuste.
- Validación cruzada estable → resultados consistentes y generalizables.

INTERPRETACIÓN DEL MODELO RANDOM FOREST OPTIMIZADO

- Puntos muy ajustados a la diagonal.
- $R^2 = 0.975 \rightarrow \text{explica el } 97,5\% \text{ de la variabilidad.}$
- MAE ≈ 6.3 € → predicciones muy precisas.

Importancia de variables

- room_type → más influyente.
- **Ubicación y reputación** → barrio y reseñas de localización.
- Factores extra → reseñas, disponibilidad y nº habitaciones.

Desempeño por barrios

- Mayor error en zonas premium (Jerónimos,
- Lista, Goya, Recoletos).

 Indica que la dispersión de precios en áreas exclusivas dificulta la predicción.

VISUALIZACIÓN Y APLICACIÓN PRÁCTICA

- Comparativa de precios por meses (estacionalidad).
- Alternativas de barrios más caros y más baratos.
- Mapa interactivo con predicciones por zona.

MAPA DE BARRIOS

TECNOLOGÍAS UTILIZADAS

PYTHON

Lenguaje principal de desarrollo.

PANDAS & NUMPY

Limpieza, unión y manipulación de datos.

SEABORN

Visualización de datos y análisis exploratorio.

SCIKIT-LEARN

Preprocesamiento, métricas y validación de modelos.

XGBOOST, **RANDOM FOREST**

Modelos de predicción y comparación.

STREAMLIT

Interfaz interactiva para mostrar resultados de forma práctica.

CONCLUSIONES

- El modelo ofrece predicciones sólidas y útiles para el mercado de Airbnb en Madrid.
- Apoya la toma de decisiones de anfitriones, viajeros e inversores.
- Es replicable en otras ciudades \rightarrow potencial de escalabilidad
- El proyecto demuestra viabilidad de integrarse en soluciones comerciales de gestión de precios.

FUTURAS MEJORAS

- Integración con APIs en tiempo real → actualizar precios dinámicamente.
- Incorporar factores externos → eventos, turismo internacional, economía.
- **3** Extender análisis a otros mercados \rightarrow replicar en más ciudades.

CIERRE

"CONVERTIR DATOS EN DECISIONES INTELIGENTES PARA UN TURISMO MÁS COMPETITIVO"

MUCHAS GRACIAS