Data Analysis for Public Policy Formulas - Autumn 2025

Mean of population (μ): $\mu = \frac{\sum y_i}{n}$

Mean of sample
$$(\bar{y})$$
: $\bar{y} = \frac{\sum y_i}{n}$

Expected value of probability distribution = $\mu = \sum yP(y)$

Mean of difference (2 dependent samples) :
$$\bar{y}_d = \frac{\sum (y_{2_i} - y_{1_i})}{n}$$

Sum of squared deviations (SSD): $SSD = \sum (y_i - \bar{y})^2$

Standard deviation of population dataset
$$(\sigma)$$
: $\sigma = \sqrt{\frac{SSD}{n}}$

Standard deviation of sample dataset (s): $s = \sqrt{\frac{SSD}{n-1}}$

Standard deviation of probability distribution :
$$\sigma = \sqrt{\sum (y - \bar{y})^2} P(y)$$

Standard deviation two independent mean samples when pooling the variance (s_p)

$$: s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Standard deviation of difference in 2 dependent samples $(s_d): s_d = \sqrt{\frac{\sum (\bar{y}_{d_i} - \bar{y}_d)^2}{n-1}}$

Standard deviation of population probability distribution: $\sigma_{\pi} = \sqrt{\pi(1-\pi)}$

Standard deviation of sample probability distribution : $s_{\widehat{\pi}} = \sqrt{\widehat{\pi}(1-\widehat{\pi})}$

Standard error of population mean $(\sigma_{\overline{y}})$: $\sigma_{\overline{y}} = \frac{\sigma}{\sqrt{n}}$

Estimated standard error of sample mean $(se_{\bar{y}})$: $se_{\bar{y}} = \frac{s}{\sqrt{n}}$

Estimated Standard error of the difference in 2 dependent samples: $se_d = \frac{s_d}{\sqrt{n}}$

Standard error of 1-sample probability, Score test - where the null hypothesis is assumed to be true (se_0) : $se_0 = \sqrt{\frac{\pi_0(1-\pi_0)}{n}}$

Standard error of 1-sample probability, Wald-test $(se_{\widehat{\pi}})$: $se_{\widehat{\pi}} = \sqrt{\frac{\widehat{\pi}(1-\widehat{\pi})}{n}}$

Standard error of 2-sample probability (se_0) : $se_0 = \sqrt{\hat{\pi}(1-\hat{\pi})(\frac{1}{n_1}+\frac{1}{n_2})}$ Where $\hat{\pi} = \frac{\# success \ in \ \hat{\pi}_1 + \# success \ in \ \hat{\pi}_2}{\# \ tries \ in \ \hat{\pi}_1 + \# \ tries \ in \ \hat{\pi}_2}$

z-score for population mean or observation: $z = \frac{y - \mu}{\sigma}$

z-score for one sample proportion: $z = \frac{\hat{\pi} - \pi}{se_0}$

z-score for two sample comparison of proportions: $z = \frac{\hat{\pi}_2 - \hat{\pi}_1 - 0}{se_0}$,

t-score for one sample mean : $t = \frac{\bar{y} - \mu_0}{se_{\bar{y}}}$

t-score for two sample comparison of means (unequal variances): $t=\frac{\bar{y}_2-\bar{y}_1-\mu_0}{se}$, where $se=\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}$

t-score for two sample comparison of means (equal/pooled variances):

$$t = \frac{\bar{y}_2 - \bar{y}_1 - \mu_0}{se_p},$$
 where $se_p = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$

where
$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

t-score for two sample comparison of dependent samples: $t = \frac{\bar{y}_d - \mu_o}{se_d}$

Confidence interval : CI = point estimate $CI = point \ estimate \ \pm Critical \ value * se$

Sample size necessary for a given margin of error (M) when estimating population mean: $n = \sigma^2(\frac{z}{M})^2$

Sample size necessary for a given margin of error (M) when estimating proportion: $n = \pi(1 - \pi) \left(\frac{z}{M}\right)^2$

Expected value of cell
$$(f_e): f_e = \frac{(row total * column total)}{sum total}$$

Chi2 test of independence
$$(\chi^2)$$
: $\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e}$, $df = (r - 1)(c - 1)$

Generalized Linear equation : $y = \alpha + \beta x$

Slope
$$(\beta)$$
: $\beta = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$

Intercept (α) : $\alpha = \bar{y} - \beta \bar{x}$

Sum of squared residuals (SSE) : $SSE = \sum (y - \hat{y})^2$

Pearson's r (r):
$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\left[\sum (x_i - \bar{x})^2\right]\left[\sum (y_i - \bar{y})^2\right]}} = \left(\frac{s_x}{s_y}\right)b$$