GE23131-Programming Using C-2024

Status	Finished
Started	Monday, 13 January 2025, 7:32 PM
Completed	Monday, 13 January 2025, 7:38 PM
Duration	5 mins 58 secs

Question **1**

Correct

Marked out of 1.00

▼ Flag question

A binary number is a combination of 1s and 0s. Its nth least significant digit is the nth digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit.

Example

number = 23

- Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s): int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

 $0 \le \text{number} < 2^{31}$ **Input Format for Custom Testing** Input from stdin will be processed as follows and passed to the function. The only line contains an integer, number. Sample Case 0 Sample Input 0 STDIN Function $32 \rightarrow number = 32$ **Sample Output 0** 0 **Explanation 0** Convert the decimal number 32 to binary number: $32_{10} = (100000)_2$. The value of the 4th index from the right in the binary representation is 0. Sample Case 1

Sample Input 1

STDIN Function
----77 → number = 77

1

Explanation 1

- Convert the decimal number 77 to binary number: $77_{10} = (1001101)_2$.
- The value of the 4th index from the right in the binary representation is 1.

Answer: (penalty regime: 0 %)

Reset answer

```
1 🔻
 2
     * Complete the 'fourthBit'
 3
    * The function is expected
 4
     * The function accepts INTE
 5
 6
7
   int fourthBit(int number)
8
9 🔻
10
        return(number>>3)&1;
11
```

	Test	Expected	Got
~	<pre>printf("%d", fourthBit(32))</pre>	0	0
~	<pre>printf("%d", fourthBit(77))</pre>	1	1
4			•
Passed	d all tests! 🗸		

Marked out of 1.00

▼ Flag question

positive integer values that evenly divide into a number) and then return the pth element of the list, sorted ascending. If there is no pth element, return 0.

Example

$$n = 20$$

$$p = 3$$

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

Returns:

int: the long integer value of the pth integer factor of n or, if there is no factor at that index, then 0 is returned

Constraints

$$1 \le n \le 10^{15}$$

$$1 \le p \le 10^9$$

Input Format for Custom Testing

The first line contains an integer n, the number to factor.

The second line contains an integer p, the 1-based index of the factor to return.

Sample Case 0

Sample Input 0

STDIN Function 10 \rightarrow n = 10 3 \rightarrow p = 3

Sample Output 0

5

Explanation 0

Factoring n = 10 results in $\{1, 2, 5, 10\}$. Return the $p = 3^{rd}$ factor, 5, as the answer.

Sample Case 1

Sample Input 1

STDIN Function
$$10 \rightarrow n = 10$$

$$5 \rightarrow p = 5$$

Sample Output 1

0

Explanation 1

There are only 4 factors and p = 5, therefore 0 is returned as the answer.

Sample Case 2

Sample Input 2

```
STDIN Function

1 \rightarrow n = 1

1 \rightarrow p = 1
```

Sample Output 2

1

Explanation 2

Factoring n = 1 results in $\{1\}$. The p = 1st factor of 1 is returned as the answer.

Answer: (penalty regime: 0 %)

Reset answer

```
2
     * Complete the 'pthFactor'
 3
4
   * The function is expected
    * The function accepts foll
 5
     * 1. LONG_INTEGER n
 6
 7
     * 2. LONG_INTEGER p
8
9
10
    long pthFactor(long n, long
11 🔻 {
        long j=0;
12
13 🔻
        for(long i=1;i<=n;i++){</pre>
14 ▼
           if(n%i==0){
15
                j++;
16 •
                if(j==p){
17
                    return i;
18
                }
19
           }
20
21
        return 0;
22
```

