

QUAD DATA LINE SCHOTTKY BUS TERMINATOR

Features

- Low Forward Voltage Drop
- Fast Switching
- Very High Density
- Ultra-Small Surface Mount Package
- PN Junction Guard Ring for Transient and **ESD Protection**
- Provide transient protection for high-speed data lines in accordance with: IEC61000-4-2 (ESD) 15kV (Air), 8kV (Contact) IEC61000-4-4 (EFT) 80A (tp = 5/50 ns) IEC61000-4-5 (Lightning) Class 3

SOT-363									
Dim	Min	Max							
Α	0.10	0.30							
В	1.15 1.35								
С	2.00	2.20							
D	0.65 N	Nominal							
F	0.30	0.40							
Н	1.80	2.20							
J	_	0.10							
K	0.90	1.00							
L	0.25 0.40								
M	0.10	0.25							
α	0°	8°							
All Dimensions in mm									

Mechanical Data

- Case: SOT-363, Molded Plastic
- Case material UL Flammability Rating 94V-0
- Moisture sensitivity: Level 1 per J-STD-020A
- Terminals: Solderable per MIL-STD-202, Method 208
- Polarity: See Diagram
- Weight: 0.006 grams (approx.)
- Marking Code: KST (See Page 2)

Maximum Ratings @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit		
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _R WM V _R	30	V		
Forward Continuous Current (Note 1)	I _{FM}	200	mA		
Non-Repetitive Peak Forward Surge Current @ t < 1.0s	I _{FSM}	600	mA		
Power Dissipation (Note 1)	P_d	200	mW		
Thermal Resistance Junction to Ambient Air (Note 1)	$R_{\theta JA}$	625	°C/W		
Operating Temperature Range	Tj	-55 to +125	°C		
Storage Temperature Range	T _{STG}	-65 to +125	°C		

Electrical Characteristics @ T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Reverse Breakdown Voltage (Note 2)	$V_{(BR)R}$	30	_	_	V	$I_R = 100 \mu A$
Forward Voltage (Note 2)	V _F	V _F 350 I _F : 550 mV I _F : 550 I _F : 550 mV I _F : 550 I _F		$\begin{array}{l} I_F = 0.1 \text{mA, tp} < 300 \mu \text{S} \\ I_F = 1.0 \text{mA, tp} < 300 \mu \text{S} \\ I_F = 10 \text{mA, tp} < 300 \mu \text{S} \\ I_F = 30 \text{mA, tp} < 300 \mu \text{S} \\ I_F = 100 \text{mA, tp} < 300 \mu \text{S} \\ \end{array}$		
Reverse Current (Note 2)	I _R	_	_	2	μА	V _R = 25V
Total Capacitance (Note 3)	C _T	_	10.0	_	pF	$V_R = 0, f = 1.0MHz$
Reverse Recovery Time	t _{rr}	_	_	5.0	ns	$I_F = I_R = 10 \text{mA},$ $I_{rr} = 0.1 \text{ x } I_R, R_L = 100 \Omega$

Notes: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

- 2. Short duration test pulse used to minimize self-heating effect.
- 3. At $V_R = 0V$, DL(X) to V_{CC} or GND.

Ordering Information (Note 4)

Device	Packaging	Shipping			
QSBT40-7	SOT-363	3000/Tape & Reel			

Notes: 4. For Packaging Details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information

KST = Product Type Marking Code YM = Date Code Marking Y = Year ex: N = 2002

M = Month ex: 9 = September

Date Code Key

Year	2	001	2002	2003	20	2004 2005		2006		2007	2008		2009	
Code		М	N	Р	F	3	S	Т		U	V		W	
Month		Jan	Feb	March	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Codo		- 1	2	2	1		6	7	Ω	0	0	N	D	