Некоторые задачи, связанные с разделимостью гармоник

Ельник Сергей Игоревич, гр. 422

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Некруткин В.В. Рецензент: к.ф.-м.н., доц. Голяндина Н.Э.

Санкт-Петербург 2015г.

Постановка задачи: ряды

Рассматриваемые ряды:

• Сигнал: $f_n = A\cos(2\pi\omega_1 n); \quad \omega_1 \in (0, 1/2).$

• Помеха: $e_n = \cos(2\pi\omega_2 n); \ \omega_2 \in (0, 1/2), \ \omega_2 \neq \omega_1.$

ullet Наблюдаемый ряд: $x_n = f_n + \delta e_n$.

Постановка задачи: SSA, восстановление сигнала

Basic SSA. Цель: восстановление сигнала f_n .

• Вложение:

$$1 < L < N$$
 — длина окна, $K = N - L + 1$ $X_N = (x_0, x_1, \dots, x_{N-1}) \longleftrightarrow \mathbf{H}(\delta) = [X_1 : X_2 : \dots : X_K],$ где $X_i = (x_{i-1}, \dots, x_{i+L-2})^{\mathrm{T}}.$

- ullet Сингулярное разложение: $\mathbf{H}(\delta) = \mathbf{H}_1 + \mathbf{H}_2 + \mathbf{H}_3 + \mathbf{H}_4.$
- ullet Группировка: $\widetilde{\mathbf{H}}(\delta) = \mathbf{H}_1 + \mathbf{H}_2$.
- ullet Диагональное усреднение: $\widetilde{\mathrm{F}}_N(\delta) = \mathcal{S}\widetilde{\mathbf{H}}(\delta).$

Максимальная ошибка восстановления исходного сигнала:

$$\|\widetilde{\mathbf{F}}_N(\delta) - \mathbf{F}_N\|_{\max} = \max_{0 \le n \le N-1} |\widetilde{f}_n(\delta) - f_n|.$$

Постановка задачи: сходимость и выбор параметров

Проблемы.

• Практика — ошибки восстановления стремятся к нулю при $L,K o \infty$ и $|\delta| < A.$ Не доказано.

Задача — доказать сходимость при некоторых (возможно, более сильных) ограничениях.

• Есть практические рекомендации по выбору L, K, чтобы ошибки восстановления были меньше. Строгого обоснования нет.

Задача — обосновать.

Теория возмущений: основные обозначения

- ullet $\mathbf{F}_N = (f_0, \dots, f_{N-1})$ сигнал: $f_n = \sum_{k=1}^d a_k f_{n-k}$;
- ${f H}$ траекторная (ганкелева) матрица сигнала размерности L imes K, где N = K + L 1;
- $\min(L, K) > d = \operatorname{rank} \mathbf{H}$;
- \mathbb{U}_0 собственное подпространство, соответствующее нулевому собственному числу;
- ullet \mathbb{U}_0^{\perp} ортогональное дополнение \mathbb{U}_0 ; $\dim \mathbb{U}_0^{\perp} = d$;
- ullet \mathbf{P}_0^\perp ортогональный проектор на $\mathbb{U}_0^\perp.$

Теория возмущений: основные обозначения

- $E_N = (e_0, \dots, e_{N-1})$ помеха;
- ${
 m F}_N(\delta) = {
 m F}_N + \delta {
 m E}_N$ возмущенный сигнал, δ формальный параметр возмущения;
- $\mathbf{H}(\delta) = \mathbf{H} + \delta \mathbf{E}$;
- $\mathbb{U}_0^\perp(\delta)$ линейное пространство, натянутое на d главных сингулярных векторов SVD матрицы $\mathbf{H}(\delta)$;
- $\mathbf{P}_0^\perp(\delta)$ ортогональный проектор на $\mathbb{U}_0^\perp(\delta)$.

Связь теории возмущения с SSA

В. В. Некруткин (2010)

- f H сумма d первых элементарных матриц сингулярного разложения ${f H}(\delta)={f H}+\delta{f E}.$
- $oldsymbol{ ilde{\mathrm{F}}}_N(\delta) = \mathcal{S}\widetilde{\mathbf{H}}$ восстановленный сигнал.

Ошибка восстановления траекторной матрицы:

$$\Delta_{\delta}(\mathbf{H}) = \widetilde{\mathbf{H}} - \mathbf{H} = \left(\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp}\right)\mathbf{H}(\delta) + \delta\mathbf{P}_{0}^{\perp}\mathbf{E}.$$

Максимальная ошибка восстановления исходного сигнала:

$$\|\widetilde{\mathbf{F}}_N(\delta) - \mathbf{F}_N\|_{\max} = \max_{0 \le n \le N-1} |\widetilde{f}_n(\delta) - f_n| = \max_{0 \le n \le N-1} |\mathcal{S}(\Delta_{\delta}(\mathbf{H}))_{[n]}|.$$

Нас интересует близость исходного и восстановленного сигналов при увеличении длины ряда $N \to \infty.$

Известная оценка для $\left\|\mathbf{P}_0^{\perp}(\delta)-\mathbf{P}_0^{\perp}\right\|$

- ullet μ_{\min} и μ_{\max} собственные числа матрицы $\mathbf{H}\mathbf{H}^{\mathrm{T}}$;
- ullet \mathbf{S}_0 псевдообратная матрица к $\mathbf{H}\mathbf{H}^{\mathrm{T}}$,
- $\mathbf{A}^{(2)} = \mathbf{E}\mathbf{E}^{\mathrm{T}}$, $\mathbf{B}(\delta) = \delta(\mathbf{H}\mathbf{E}^{\mathrm{T}} + \mathbf{E}\mathbf{H}^{\mathrm{T}}) + \delta^{2}\mathbf{A}^{(2)}$

Теорема (В. В. Некруткин, 2010)

Если $\delta_0>0$ и $\|\mathbf{B}(\delta)\|/\mu_{\min}<1/4$ для любого $\delta\in(-\delta_0,\delta_0)$, тогда

$$\left\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\right\| \le C \frac{\left\|\mathbf{S}_0\mathbf{B}(\delta)\mathbf{P}_0\right\|}{1 - 4\|\mathbf{B}(\delta)\|/\mu_{\min}}.$$

Следствие

Для случая двух гармоник при $L,\,K o\infty$

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| = O(L^{-1}) + O(K^{-1}).$$

Постоянная и гармоника: быстрая сходимость

Предложение (Н. Притыковская, 2011)

Пусть $f_n=1$ и $e_n=\cos(2\pi\omega n)$ с $\omega\in(0,1/2)$. Тогда существуют такие последовательности $L,K\to\infty$, что

$$\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| \le C(\delta_0) |\delta| \frac{1}{\sin \pi \omega} (K^{-2} + |\delta|L^{-2}).$$

при $|\delta| < \delta_0$.

Идея: L и K — знаменатели рациональных аппроксимаций ω (цепные дроби).

Результат: быстрая сходимость

Сигнал и шум: $f_n = A\cos(2\pi\omega_1 n), e_n = \cos(2\pi\omega_2 n), \omega_1 \neq \omega_2$.

Теорема

Существуют такие последовательности $L,K\to\infty$, $\delta_0>0$ и такая постоянная $C(\delta_0)$, что при $|\delta|<\delta_0$

$$\|\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp}\| \leq C(\delta_{0})|\delta| \left(\frac{1}{\sin(\pi(\omega_{1} + \omega_{2}))} + \frac{1}{|\sin(\pi(\omega_{1} - \omega_{2}))|}\right) \cdot \left(K^{-3/2} + |\delta|C_{7}L^{-3/2}\right).$$

Было: $O(L^{-1}) + O(K^{-1})$.

Идея выбора последовательностей L,K: совместное приближение

Используется результат Кронекера:

Предложение

Если хотя бы одно из вещественных чисел $\alpha_1, \ldots, \alpha_m$ иррационально, то неравенствам

$$\left| \alpha_i - \frac{p_i}{q} \right| < q^{-1 - 1/m}, \quad i = 1, \dots, m,$$

удовлетворяет бесконечное множество совокупностей чисел $p_1, \ldots p_m \in \mathbb{Z}$ и $q \in \mathbb{N}$.

$$m = 2; \quad \alpha_1 = \omega_1 + \omega_2, \quad \alpha_2 = |\omega_1 - \omega_2|; \quad q = L, K.$$

Точность аппроксимации сигнала

• Ошибка восстановления траекторной матрицы

$$\Delta_{\delta}(\mathbf{H}) = \widetilde{\mathbf{H}} - \mathbf{H} = \left(\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp}\right)\mathbf{H}(\delta) + \delta\mathbf{P}_{0}^{\perp}\mathbf{E}. \tag{1}$$

• Ошибка восстановления временного ряда

$$\|\widetilde{\mathbf{F}}_N(\delta) - \mathbf{F}_N\|_{\max} = \max_{0 \le n \le N-1} |\widetilde{f}_n(\delta) - f_n| \le \max_{\substack{1 \le i \le L \\ 1 \le j \le K}} |\Delta_{\delta}(\mathbf{H})_{[i,j]}|.$$

Исследование обоих слагаемых в сумме (1).

f Aнализ слагаемого ${f P}_0^ot {f E}$

Предложение

 \bullet Если $L, K \to \infty$, то

$$\left\|\mathbf{P}_0^{\perp}\mathbf{E}\right\|_{\max} = O(L^{-1}).$$

• Существует такая последовательность $L \to \infty$, что при $K \to \infty$

$$\left\|\mathbf{P}_0^{\perp}\mathbf{E}\right\|_{\max} = O(L^{-3/2}).$$

Анализ слагаемого $\left(\mathbf{P}_0^{\perp}(\delta)-\mathbf{P}_0^{\perp} ight)\mathbf{H}(\delta)$

- ullet Если $\|{f P}_0^{\perp}(\delta) {f P}_0^{\perp}\|\|{f H}(\delta)\| o 0$, то результат получен.
- Вообще говоря, это условие не выполняется.
- ullet При выборе последовательностей $L,K o\infty$

$$\|\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp}\|\|\mathbf{H}(\delta)\| = \left(\frac{1}{\sin(\pi(\omega_{1} + \omega_{2}))} + \frac{1}{|\sin(\pi(\omega_{1} - \omega_{2}))|}\right) \cdot \left(O(L^{1/2}K^{-1}) + O(L^{-1}K^{1/2})\right).$$

Итоговый результат

Сигнал и помеха: $f_n = A\cos(2\pi\omega_1 n), \ e_n = \cos(2\pi\omega_2 n), \ \omega_1 \neq \omega_2.$

Теорема

Если $\omega_1 \notin \mathbb{Q}$ или $\omega_2 \notin \mathbb{Q}$, то при $|\delta| < \delta_0$ можно выбрать такие последовательности $L \asymp N$ и $K \asymp N$, что

$$\|\widetilde{\mathbf{F}}_{N}(\delta) - \mathbf{F}_{N}\|_{\max} = \left(\frac{1}{\sin(\pi(\omega_{1} + \omega_{2}))} + \frac{1}{|\sin(\pi(\omega_{1} - \omega_{2}))|}\right) O(N^{-1/2}).$$

Вычислительный эксперимент

$$A = 3$$
, $\omega_1 = \pi - 3$, $\omega_2 = e - 2.6$;
 $f_n = A\cos(2\pi\omega_1 n)$, $e_n = \cos(2\pi\omega_2 n)$;
 $N = 59, \dots, 4999$; $L = K = (N+1)/2$.

Рис. : Ошибки восстановления и рациональной аппроксимации

Основные результаты

- Доказан результат о сходимости ошибок восстановления сигнала при специальном выборе последовательностей $L,\,K$ в случае, когда и сигнал, и помеха являются гармониками.
- Подтверждены практические рекомендации по выбору $L,\,K,\,$ при которых уменьшается ошибка восстановления аппроксимация $\omega_1,\,\omega_2.$
- Рациональная аппроксимация $\omega_1 \pm \omega_2$ приводит к лучшим результатам, чем аппроксимация $\omega_1,\,\omega_2.$

Вычислительный эксперимент

$$A = 3$$
, $\omega_1 = \pi - 3$, $\omega_2 = e - 2.6$;
 $f_n = A\cos(2\pi\omega_1 n)$, $e_n = \cos(2\pi\omega_2 n)$;
 $N = 59, \dots, 4999$; $L = K = (N+1)/2$.

Таблица: Частоты малых ошибок восстановления при хороших рациональных приближениях

NRE LMAE	$m{0.05};\omega_{1,2}$	$\boxed{ 0.05; \omega_1 \pm \omega_2 }$
0.1	0.4274	0.4677
0.15	0.5968	0.7097
0.2	0.7177	0.9274

NRE — нормированная максимальная ошибка восстановления сигнала.

LMAE — нормированная максимальная ошибка рациональной аппроксимации.

