第7章 图论

7-3 路径、回路和连通性

北航计算机学院: 李建欣

Tel: 82339274 (G506)

E-mail: lijx@buaa.edu.cn

http://act.buaa.edu.cn/lijx

10

主要内容

- 1. 图论的基本概念
- 2. 子图和图的运算
- 3. 路径、回路和连通图
- 4. 欧拉图和哈密顿图
- 5. 图的矩阵表示
- 6. 树、有向树和有序树

§ 7.3 路径、回路和连通性

路径、回路和连通性

目的:了解与路径、回路、连通性、分支、非循环图相关的基本概念;掌握求加权路径的算法、判一个图是否有回路、有有回路、有半回路的过程;

重点:路径、回路、连通、分支等重要概念;求加权路径的算法;判回路、有向回路、半回路、循环图;

难点:几种判定方法及其原理。

路径的应用

应用: 无向图的结点和边分别表示城市和连接城市的双轨铁路。

从城市 v_0 到城市 v_n 的 路径 由一个结点和边组成的序列来表示:

$$\mathbf{v}_0 \mathbf{e}_1 \mathbf{v}_1 \mathbf{e}_2 \mathbf{v}_2 \dots \mathbf{v}_{n-1} \mathbf{e}_n \mathbf{v}_n$$

 e_i (1 ≤ i ≤ n)表示连接城市的铁路;

 v_1 , v_2 , ..., v_{n-1} 表示途经的城市。

术语:路径

设 n∈N,

 v_0 , v_1 ..., v_n 是图 G 的结点, e_1 , e_2 , ..., e_n 是图G的边,并且 v_{i-1} 和 v_i 分别是 e_i 的起点和终点(i=1, 2, ..., n),则称序列 $v_0e_1v_1e_2$... $v_{n-1}e_nv_n$ 为图 G 中从 v_0 至 v_n 的路径,n 称为该路径的长度。

- 如果 $v_0 = v_n$,则称该路径为闭的,否则称为开的。
- 如果 e₁, e₂, ..., e_n 互不相同,则称该路径为简单的。
- 如果v₀, v₁, ..., v_n互不相同,则称该路径为基本的。

路径(另一组术语)

- 1、链(chain or walk): 顶点和边交错出现的序列称为链,在序列中边的前后两个顶点正好是边的端点,序列的第一个顶点和最后一个顶点为链的端点,其余的点为内点。
- 2、迹(trail): 边互不相同的链称为迹。 即迹中无重边。
- 3、路(path):内部点互不相同的链称为路。即路中无重点。

例:无向图G

- (1) $v_2 b v_3 d v_4 e v_2 b v_3$
- (2) $V_2 b V_3 c V_3 d V_4$
- $(3) V_3 C V_3 C V_3$
- (4) v₁ g v₃ c v₃变为 一个基本路径?

直观结论: 从路径中去掉闭路径, 能够得到基础路径。

例:有向G

- (1) 1c4b1c4
- (2) *1a1c4*
- (3) *1c4*

路径:一些基本性质

 \square 当 n = 0,路径 v_0 的长度为 0,基本路径。 任何结点到自身总存在路径。

□ v到 v' 存在路径 ⇒ v' 到 v 存在路径?(无向图 √ 有向图 ×)

定理7.3.1

设图 $G = \langle V, E, \Psi \rangle$, $v, v' \in V$ 。如果存在从 $v \subseteq v'$ 的路径,则存在从 $v \subseteq v'$ 的基本路径。

证明: (第二归纳法)

假设当存在从v至v'的长度小于l的路径时,必存在从v至v'的基本路径。

如果从 v 至 v'的路径 $v_0e_1v_1...v_{l-1}e_lv_l$ 不是基本路径,其中 $v_0 = v$, $v_l = v'$,则必有 i 和 j 使 $0 \le i < j \le l$ 且 $v_i = v_j$,故 $v_0e_1v_1...v_ie_{j+1}v_{j+1}...v_{l-1}e_lv_l$ 是从 v 至 v'的长度为 l-(j-i)< l 的路径。根据归纳假设,必存在从 v 至 v'的基本路径。

定理7.3.2

n 阶图中的基本路径的长度小于 n。

(因为基本路径中的结点互不相同,即最多仅含 n 个结点,所以所经过的边数必定小于 n。)

设图 $G = \langle V, E, \Psi \rangle$, V_1 , $V_2 \in V$ 。 若存在从 V_1 至 V_2 的路径,则称在G中从 V_1 可达 V_2 , 否则称在G 中从 V_1 不可达 V_2 。

对于图 G 的结点 v,用 R(v) 表示从 v 可达的全体结点的集合。

13

М

可达集(reachable set)的概念用于安全性证明。

❖ 无向图: 若从 v_1 可达 v_2 , 则从 v_2 必可达 v_1 。

❖ 有向图:从 v₁ 可达 v₂ 不能保证从 v₂ 必可达 v₁。

定理7.3.3

设图 $G = \langle V, E, \Psi \rangle$, $v_1, v_2 \in V$ 。 从 v_1 可达 v_2 iff 存在从 v_1 至 v_2 的基本路径。

距离

设图 $G = \langle V, E, \Psi \rangle$, $v_1, v_2 \in V$ 。

i) 若从 v₁ 可达 v₂ ,

 $\mathsf{K} \mathsf{V}_1 \cong \mathsf{V}_2$ 的 测地线: $\mathsf{K} \mathsf{V}_1 \cong \mathsf{V}_2$ 的路径中长度最短者;

从 $v_1 \subseteq v_2$ 的<mark>距离</mark>:从 $v_1 \subseteq v_2$ 的测地线长度,记作 d (v_1, v_2) 。

ii) 若从 v₁ 不可达 v₂ , d (v₁, v₂) = ∞ , 并且规定:

$$\infty + \infty = \infty$$
; $\forall n \in \mathbb{N}$, $\infty > n$, $n + \infty = \infty + n = \infty$.

直径

图 G = 〈V, E, Ψ〉的直径定义为 $\max_{v,v' \in V} d(v,v')$ 。

图 7.3-3 图中节点的可达性

$$R(v_1)$$
 $R(v_2)$
 $R(v_3)$
 $R(v_4)$
 $R(v_5)$
 $R(v_6)$
 $d(v_1, v_2)$
 $d(v_2, v_1)$
 $d(v_5, v_6)$

м

加权图

- 设图 G = 〈V, E, Ψ 〉且W: E → R+(R+是正实数集),
 则称〈G, W〉为加权图;
 - □ ∀ e∈ E , 称 W (e) 为边 e 的加权长度,路径中所有 边的加权长度之和称为该路径的加权长度。
 - □ 从结点v至结点 v'的路径中, 加权长度最小的称为从 v 至 v'的 最短路径。
 - □若从v可达v',则称从v至 v'的最短路径的加权长度为从v至v'的加权距离;
 - 若从 v 不可达 v′,则称从 v 至 v′的加权距离为 ∞。

re.

戴克斯特拉 (Dijkstra)

- · 艾兹格·W·迪科斯彻(Edsger Wybe Dijkstra, 1930年5月11日~2002年8月6日)
- · <u>荷兰</u>人。 计算机科学家,毕业就职于荷兰 Leiden大学,早年钻研<u>物理及数学</u>,而后 转为计算学。
- 1972年获得图灵奖

100

戴克斯特拉 (Dijkstra)

- 1 提出 "goto有害论";
- 2 提出信号量和pv原语;
- 3 解决了"哲学家聚餐"问题;
- 4 Dijkstra最短路径算法和银行家算法的创造者;
- 5 第一个Algol 60编译器的设计者和实现者;
- 6 THE操作系统的设计者和开发者;
- 与D. E. Knuth并称为我们这个时代最伟大的计算机科学家的人。
- 与癌症抗争多年,于2002年8月6日在荷兰 Nuenen自己的家中去世,享年72岁

戴克斯特拉(Dijkstra)算法

- 1959年,最短路径算法
- ■应用产假
 - □ 单源路径计算 (Single-source shortest paths problem)
 - □(连通)有权(有向)图
 - □边的权值非负数
- 贪心算法(Greedy Algorithm)

戴克斯特拉(Dijkstra)算法

- ■初始化
 - □设置两个集合
 - T---已设置权值集
 - V-T---未设置权值节点集
 - □初始化
 - λ(s) ← 0 , 其余为∀ v∈ V { s } , λ(v) ← ∞
- ■算法流程
 - □循环:n次
 - 选择T中最小权值点u
 - 对所有V-T中e=(u, v),更新λ(v)= min {λ(v), λ(u)+w(e)}

.

戴克斯特拉(Dijkstra)算法

算法(求从结点 s 至 t 的加权距离) Single-source shortest paths problem

1) $\lambda(s)$ ← 0 , $\exists \forall v \in V - \{s\}$, $\lambda(v)$ ← ∞

距离数组λ(v)

- 2) T ← V;
- 3) 任取 u ∈ { u' | 若 v'∈T , 则 λ(u') ≤ λ(v') } ;
- 4) 如果 u = t , 则 算法结束。
- 5) 对于以 u 为起点的每条边 e , 如果 e 的终点 v∈T 并且 $\lambda(v) > \lambda(u) + W(e)$, 则 $\lambda(v) \leftarrow \lambda(u) + W(e)$;
- 6) T ← T { u } , 且 转向 3)。

当算法结束时 , λ(t) 即为从 s 至 t 的加权距离。

例子 (加权距离)

当前点 \ λ \ 结点	1	2	3	4
	0	∞	∞	∞
1	/	1	0.5	8
3	/	0.9	/	1.5
2	/	/	/	1.4
4				

从 1 到 4 的加权距离为 1.4。

M

思考题

- 如何修改算法,以便输出最短路径?
 - 更新λ时,同时记录min{λ(v)},是通过那个 λ(u)+w(u, v)得到的
- 如何记录最短路条数?
 - □如果 $\lambda(v) = \lambda(u) + w(e)$,则 num(v) + = num(u);
 - □如果 $\lambda(v) > \lambda(u) + w(e)$,则 $\lambda(v) = \lambda(u) + w(e)$,且 num(v)=num(u)

м

戴克斯特拉(Dijkstra)算法

算法(求从结点 s 至 t 的加权距离)

- 1) $\lambda(s)$ ← 0 , $\exists \forall v \in V \{s\}$, $\lambda(v)$ ← ∞ ; $\{p \leftarrow \#\}$
- 2) T ← V;
- 3) 任取 u ∈ { u' | 若 v'∈T , 则 λ(u') ≤ λ(v') } ;
- 4) 如果 u = t , 则 { p ← p t # } , 算法结束。
- 5) 对于以 u 为起点的每条边 e , 如果 e 的终点 v∈T 并且 λ(v) >λ(u) + W(e) , 则λ(v) ←λ(u) + W(e) ;
- 6) T←T-{u},{p←pu⇒},且转向3)。

当算法结束时,λ(t)即为从 s 至 t 的加权距离。

p 即为从 s 至 t 的最短路径。

最短路径算法扩展

- ■放松最短路条件
 - □任意值,即可能存在负数,可能有圈
 - □任意两点之间的最短路?
- ■其他算法
 - □任意权值、单源:Bellman-Ford
 - □任意权值、任意两点:Folyd-Warshall

无向图的连通

如果无向图 G 的任意两个结点都互相可达,则称G是连通的; 否则称G是 非连通的。

无向图 $G = \langle V, E, \Psi \rangle$ 是连通的 , iff $\forall v \in V$, 皆有 R(v) = V

有向图的基础图

设有向图 $G = \langle V , E , \Psi \rangle$, 定义 $\Psi' : E \rightarrow \{ \{v_1 , v_2\} \mid v_1 \in V \land v_2 \in V \}$ 如下: 对任意 $e \in E$ 和 v_1 , $v_2 \in V$, 若 $\Psi(e) = \langle v_1 , v_2 \rangle$, 则 $\Psi'(e) = \{ v_1 , v_2 \}$ 这时,称无向图 $G' = \langle V , E , \Psi' \rangle$ 为有向图 G 的基础图。

所有有向边改为无向边

有向图 ———————————有向图的基础图

有向图的连通

设 G 是有向图。

- i) 如果 G 中任意两结点都互相可达,则称 G 是强连通的;
- ii) 如果对于 G 的任意两结点,必有一个结点可达另一结点,则称 G 是单向连通的;
- iii) 如果 G 的基础图是连通的,则称 G 是弱连通的。

实例

例判断下列图的连通性。

强连通的

单向连通的

弱连通的

实例

(d)

图 7.3.4 有向图的连通性

极大子图

设 G'是图 G 的具有某性质 P 的子图 , 并且对于 G 的具有 该性质的任意子图 G'' , 只要 $G' \subseteq G''$ 就有 G' = G'' ,则称 G'相对于该性质 是 G 的极大子图。

无向图 G 的极大连通子图称为 G 的分支。

有向图的分支

设G是有向图。

- i) G 的极大强连通子图称为 G 的强分支。
- ii) G 的极大单向连通子图称为 G 的单向分支。
- iii) G 的极大弱连通子图称为 G 的弱分支。

定理7.3.4

- ❖ 连通无向图恰有一个分支。
- ❖ 非连通无向图有一个以上分支。

强连通(单向连通,弱连通)有向图恰有一个强分支(单向分支,弱分支)。非强连通(非单向连通,非弱连通)有向图有一个以上强分支(单向分支,弱分支)。

图 7.3-3 图中节点的可达性

半路径

设 G'是有向图 $G = \langle V, E, \Psi \rangle$ 的基础图 G'中的路径称为 G 中的半路径。 正向边 反向边

有向图 G 中的路径一定是 G 中的半路径, 但 G 中的半路径未必是 G 中的路径。

连通关系,连通分支

- 1.连通关系 R={<u,v>| u,v ∈ V且u~v}是 V上的等价关系。
- 2.**连通分支**: V关于 R的等价类的导出子图。
 称 $V/R = \{V_1, V_2, ..., V_k\}$, $G[V_1]$, $G[V_2]$, ..., $G[V_k]$ 为 G的连通分支 ,连通分支数记作 W(G) = m。

连通图实例

例:下列图哪些是连通图?连通分支数是多少?

连通图,W=1

非连通图,W=3

回路、半回路、有向回路

回路: 连通2度正则图;

半 回 路:基础图是回路的有向图;

有向回路:每个结点的出度和入度均为 1 的弱连通

有向图;

回路(半回路,有向回路)的长度:

回路 (半回路,有向回路)中边的数目。

部分概念关系图

定理7.3.6

设图 G = 〈V , E , Ψ〉 , v ∈ V。

G 是回路或有向回路 当且仅当

G 的阶与边数相等,

并且在 G 中存在这样一条从v到v的闭路径,使得除了v在该闭路径中出现两次外,其余结点和每条边都在该闭路径中恰出现一次。

м

证明:充分性显然,必要性:

- i) 证明 G 的阶与边数相等。
- Θ G是回路或有向回路

$$\therefore \sum_{v \in V} d_G(v) = 2 |V|$$

$$\Theta \quad \sum_{v \in V} d_G(v) = 2 \mid E \mid$$

- ii) 对G的阶用第一归纳法。
- 当G是1阶有向回路,则G只有一个自圈e,vev是一个闭路径。

当n阶回路必要性成立,设G为n+1阶有向回路

$$\Psi(e_{n+1}) = \langle v_{n}, v \rangle$$

存在闭路径

$$ve_1v_1e_2v_2...v_{n-1}e_nv_ne_{n+1}v$$

- □ 如果回路 (有向回路, 半回路) C 是图 G 的子图, 则称 G 有回路 (有向回路, 半回路) C。
- □ 没有回路的无向图和没有半回路的有向图称为 非循环图。

٠,

判断一个图是否有回路、有有向回路、有半回路?

判断一个图是否为非循环图?

定理7.3.7

如果有向图 G 有子图 G'满足:对于 G'的任意结点 $v_{G'}$ +(v) > 0,则 G 有有向回路。

定理7.3.8

如果有向图 G 有子图 G'满足:对于 G'中的任意结点 v , $d_{G'}^{-}(v) > 0$,则 G 有有向回路。

证明:设 $G' = \langle V', E', \Psi' \rangle$, $v_0 e_1 v_1 ... v_{n-1} e_n v_n$ 是 G' 中最 长的基本路径。

由于 $d_{G_{n}}^{-1}(v_{0}) > 0$,必可找到 $e \in E'$ 和 $v \in V'$,使 $v \in V_{0}e_{1}v_{1}...v_{n-1}e_{n}v_{n}$ 是G'中的简单路径,且 $v = v_{i}(0 \le i \le n)$ 。

G的以 { v_0 , ... , v_i } 为结点集合 , 以 {e , e_1 , ... , e_i }为边集合的子图是有向回路。

 $v_0e_1v_1...v_{n-1}e_nv_n$ 是最长的基本路径

50

W-过程

判断一个有向图是否有有向回路的方法: W—过程 从G中去掉 v 和与之关联的边得到有向图 G-{v}的过程 (其中 v 是有向图结点, $d_{G'}$ -(v)=0 或 $d_{G'}$ +(v)=0)。

- G 有有向回路 当且仅当 G {v} 有有向回路;
- 若 n 阶有向图 G 没有有向回路,则经过 n-1 次W—过程得到 平凡图。

定理7.3.9

图 G不是 非循环图 iff

G 有子图 G'满足:对于G'的任意结点v, d_{G'}(v) > 1。

(证明方法与定理7.3.8类似)

类似方法:G₀ , G₁ , ... , G_m , 其中0≤m≤n-1 , $G_0 = G$, $G_{i+1} = G_i - \{v_i\}$ (其中 $d_{G_i}(v_i) \le 1$)。 若Gm是平凡图,则G是非循环图,否则不然。

P135

(d)

(e)

(f)

(g)

思考题

设 G 为 n 阶简单无向图

- 1) 若 G 的任意两个结点的度数之和大于等于 n 1 , 则 G 是连通的。
- 若对G的任意结点 ν ,
 皆有d_G(ν) ≥ (n 1) / 2 , 则 G 是连通的。

思考题

设 G为 n 阶简单无向图,且G有k个分支,m条边,

$$\text{III} \ m \leq \frac{1}{2}(n-k)(n-k+1)$$

练习: 最短路径

- V={a,b, c, d, e, z}
- E={<a,b,4>,<a,d,2>,<b,c,3>,<b,e,3
 >,<c,z,2>,<d,e,3>,<e,z,1>}

- * 若d_o(u)==0 并且(u,v,d) ∈E,则h'(v)=min{h(v),h(u)+d}
- $d'_{o}(v) = d'_{o}(v) 1$

	d _o (u)	a	b	c	d	e	Z
0	a	0	$+\infty$	$+\infty$	$+\infty$	$+\infty$	$+\infty$
1	b,d		4	$+\infty$	2	$+\infty$	$+\infty$
2	c,e			7	2	7/5	$+\infty$
3	Z					5	9/6
4							9
h(x)		0	4	7	2	5	6

作业

习题7.3

3、5、6、10、11、12、13、15

如何定义连通度

- <mark>问题</mark>:如何定量地比较无向图的连通性的 强与弱?
- 点连通度:为了破坏连通性,至少需要删除多少个顶点?
- 边连通度:为了破坏连通性,至少需要删除多少条边?
- "破坏连通性"是指"变得更加不连通"。

点割集的定义

定义设无向图 G=<V,E> 为连通图,若有点集 $V_1\subset V$,使图 G删除了 V_1 的所有结点后,所得 的子图是不连通图,而删除了 V_1 的任意真子集后,所得到的子图仍是连通图,则称 V_1 是 V_2 的一个点割集。若某一个结点构成一个点割集,则称该结点为割点。

形式化为:

若 $W(G-V_1)>W(G)$ 且∀ $V\subset V_1$, W(G-V)=W(G), 则称 V_1 为 G的点割集. 若{ V_1 为点割集,则称 V_2 为点割点.

实例1

■ 例1求下图的割点

连通图,W=1

非连通图,W=2

因此s是割点。

实例2

例2 在下图所示的图中,找出点割集和割

点割集: $\{v_1,v_4\}$, $\{v_6\}$, $\{v_5\}$,

割点: v₆, v₅

v₂、v₃与v₇不在任何点割集中。

м

无向图的点连通度

定义 设*G*是无向图 , $k(G) = min\{|V_1| | V_1 \neq G$ 的点割集}是 G的点连通度 , 也称作连通度。

几点说明:

- 1.连通度k(G)表示为了产生一个不连通图所需要删除的点的最少数目。
- 2. 非连通图的连通度等于0,存在割点的连通 图的连通度为1,*n*阶完全图的连通度为*n*-1。
- 3.连通度 *k*(*G*)表示图 *G*的连通程度 , *k*(*G*)大表示连通性强 , 即需要删除更多的点才能使图从连通变为非连通。

边割集

定义设无向图G=<V,E>为连通图,若有边集 $E_1\subset E$,使图G删除了 E_1 的所有结点后,所得 的子图是不连通图,而删除了 E_1 的任意真子集后,所得到的子图仍是连通图,则称 E_1 是 G的一个边割集。若某一个结点构成一个点割集,则称该结点为割边(或桥)。

更一般定义为:

若 $W(G-E_1)>W(G)$ 且∀ $E\subset E_1$, W(G-E')=W(G), 则称 E_1 为G的边割集. 若{e}为点割集, 则称e为割边.

实例3

例3 在下图所示的图中,举出边割集和桥的例子。

边割集: $\{e_1,e_2\}$, $\{e_3,e_4,e_5\}$, $\{e_1,e_3,e_5,e_6\}$, $\{e_7\}$, $\{e_8\}$ 等

割边: e_7 , e_8

边连通度

定义 设G是无向图, $\lambda(G)=min\{|E_1||E_1$ 是G的 边割集}是G的边连通度。

几点说明:

- 1.边连通度*λ*(*G*)是为了产生一个不连通图所需要删除的边的最少数目。
- 2. 非连通图的边连通度等于0,存在桥的连通图的边连通度为1,平凡图的边连通度为0。
- 3.边连通度 λ (G)表示图G的边连通程度 , λ (G)大表示边连通性强 , 即需要删除更多的边才能使图从连通变为非连通。

点连通度与边连通度的比较

定理对于任何一个图G,有

$$k(G) \le \lambda(G) \le \delta(G)$$

证明 若G不连通,则 $k(G) = \lambda(G) = 0$,故上式成立。

若G连通,

证明 $\lambda(G) \leq \delta(G)$

如果**G**是平凡图,则 λ (**G**)=0 ≤ δ (**G**)

若G是非平凡图,因为每个结点的所有关联边 必含一个边割集,所以 $\lambda(G) \leq \delta(G)$ 。