Characterizing Performance loss from mapping general purpose applications onto GPU architecture

Archit Gupta, Sohum Datta

CONTROL DIVERGENCE

GPU ARCHITECTURE

^{**}Architecture of GPGPU-SIM (developed by Tor Aamodt at University of British Columbia)

- SIMD architecture Originates from vector supercomputers
 - Mainly oriented towards graphics processing where a single set of operations need to be applied on a massive set of data. Eg: Adjusting screen brightness
- Some of the characteristics of a modern day GPU
 - Bare minimum execution pipelines (in-order, w/o branch prediction, lock-step execution of multiple threads etc)
 - Large number of lightweight cores (SMs) with large register files, capable of switching context every cycle
- Lock-step execution of thread groups (called warps) leads to control hazards, referred to as branch divergence

Branch divergence consumes a significant portion of the GPU execution time

^{**}Analyzing GPU workloads for control dependent inefficiencies in the GPGPU architecture - Nehal Bhandari, Archit Gupta

CHARACTERIZING BRANCHES

INTRINSIC AND EXTRINSIC BRANCHES

```
__global__ void
BFS_kernel( ... )
  if(threadIdx.x < NUM\_BIN){
    q.reset(threadIdx.x, blockDim);
  _syncthreads();
  tid = blockIdx.x*THREADS_PER_BLOCK
                 \dots + threadIdx.x;
      tid < no_of_nodes)
    visit_node(q1[tid], threadIdx.x
        & MOD_OP, q, overflow,
        g_color , g_cost , gray_shade );
  _syncthreads();
  if(threadIdx.x == 0){
    shift = atomicAdd(tail,tot_sum);
  __syncthreads();
```

Which branches are intrinsic and which are extrinsic?

Branches can be intrinsic to an algorithm

Intrinsic Branches

Extrinsic Branches

Performance Impact

CPU codes gives us the intrinsic branches

Intrinsic branches in CPU code is related to the CUDA code to point out the intrinsic control. Any other branches/controls present in the CUDA code are extrinsic.

Locate the extrinsic branches in the GPU code

Some branches are the result of mapping an algorithm onto a GPU, called extrinsic branches.

They arise because a general purpose program is run an a GPU.

Map branches in simulated binaries to High-level code

Extrinsic branches in CUDA code is traced to compiled code and is instrumented to measure performance loss due to their divergence.

^{**}NVIDIA CUDA Compiler NVCC v7.5 Documentation (http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc)
****CUDA-sim Functional Simulation Engine, GPGPU-sim v3.x