Introducción a la Inteligencia Artificial Clase 5

Índice

Clase 5

- 1. Regularización
 - a. Caso general
 - b. Ridge
 - c. Lasso
- 2. Gradient descent
 - a. GD
 - b. GD Estocástico
 - c. GD Mini-Batch
- 3. Entrenamiento de modelos
 - a. Selección de modelos
 - b. Cross-Validation

$$B(f) = E(L(f,\hat{f})) \rightarrow L(f,\hat{f}) = (f-\hat{f})^2 \rightarrow función L2$$

Riesgo ampírico (perelida evadeática)

$$L_{1} = I + \hat{f}$$

$$L_{1} = I + \hat{f}$$

$$L_{2} = I + \hat{f}$$

$$L_{3} = I + \hat{f}$$

$$L_{4} = I + \hat{f}$$

$$L_{5} = \begin{cases} 0 & |f + \hat{f}| \\ 1 & |f + \hat{f}| \end{cases}$$

Con la regularización buscamos minimizar el error ele estimación (Rieseyo émpirica) al mismo tiempo que restringimos ó limitamos el comporta miento ele los parametros (parameter shrinveage) mo nos aquela a clisminair el error ele generalización.

Partimos el $\hat{y} = p_0 + \sum_i p_i t_i m$ $\hat{p} = arg min \sum_i (y_i - p_i - \sum_i p_i t_i)^2$

Vanus a condicion ac:
$$\frac{z}{i} \beta j^z \leq t \quad (\|\beta j\|^2 \leq t)$$

$$9=2$$
 $9=1$ $|\beta_1 + \beta_2| \le t$ $|\beta_2 + \beta_2| \le t$

Rewordennos que B en general tiene curvas de nivel elipticas, esto viene por construcción del estimador. Nosotros vanues a busear el punto dande la restricción corta la elipse.

¿ Como fonciona?

2. plantear y clefinir q.

2. Settear un vector de l's (24 => mão penalidad)

3. optimiromos con un li -> BSS (2; 4) = 114-XB117+211

4. Calcelamos nétoices (bondael de ajuste, colidad de la informoeión) 5. comporanus y elegiuns el mejor.

Regularización - Motivación

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q \\ \text{Término de regularización weight decay"} \longrightarrow \text{w afecta la pérdida}$$

$$w = (\Phi^T \Phi + \lambda I)^{-1} \Phi^T y$$

Maximum A Posteriori como regularización

$$p(w) \sim D(\theta)$$

 $(\mathcal{X},\mathcal{Y})$

$$p(w|\mathcal{X}, \mathcal{Y}) = \frac{p(\mathcal{Y}|\mathcal{X}, w)p(w)}{p(\mathcal{Y}|\mathcal{X})}$$

Actualizar distribución (Posterior)

$$w_{map} = (\Phi^T \Phi + \frac{\sigma^2}{h^2} I)^{-1} \Phi^T y$$

Gaussian prior con varianza b2

Maximum A Posteriori como regularización - Ridge (L2)

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \underbrace{\log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n}_{\text{Conditional log likelihood}} + \underbrace{\log p(\beta)}_{\text{log prior}}$$

I) Gaussian Prior

$$\beta \sim \mathcal{N}(0, \tau^2 \mathbf{I})$$

$$p(eta) \propto e^{-eta^T eta/2 au^2}$$

Gaussian Prior
$$\beta \sim \mathcal{N}(0,\tau^2\mathbf{I}) \qquad p(\beta) \propto e^{-\beta^T\beta/2\tau^2}$$

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|_2^2 \qquad \text{Ridge Regression}$$

$$\mathrm{Ridge Regression}$$

$$\widehat{\beta}_{\text{MAP}} = (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} + \lambda \boldsymbol{I})^{-1} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{Y}$$

Maximum A Posteriori como regularización - LASSO (L1)

$$\widehat{\beta}_{\mathsf{MAP}} = \arg\max_{\beta} \log p(\{Y_i\}_{i=1}^n | \beta, \sigma^2, \{X_i\}_{i=1}^n + \log p(\beta) \}$$
 Conditional log likelihood log prior

II) Laplace Prior

$$\beta_i \stackrel{iid}{\sim} \mathsf{Laplace}(\mathsf{0},t)$$

$$p(eta_i) \propto e^{-|eta_i|/t}$$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_1 \\ \downarrow \\ \text{constant}(\sigma^2, t)$$

Regularización

Regularización

(a) L1 Constraint Diamond

ElasticNet

$$(\alpha \lambda ||\beta||_1 + \frac{1}{2}(1-\alpha)||\beta||_2^2)$$

¿Qué β se reduce más?

Regularización

Gradiente Descendente

Implementación de Gradiente Descendente

Solucion analitica

$$\min_{W} \|Y - XW\|_2^2$$

$$W = (X^T X)^{-1} X^T Y$$

Implementación de Gradiente Descendente

Solución numérica

$$\min_{W} \|Y - XW\|_{2}^{2} \implies \min_{W} \sum_{i} (y_{i} - X_{i} \cdot W)^{2}$$

$$W \longleftarrow W - \alpha \nabla \left(\sum_{i} (y_i - X_i \cdot W)^2 \right)$$
 leaving cale

Gradiente Descendente

Gradiente Descendente

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Implementación de Gradiente Descendente

Solución numérica

$$\nabla_w J(w) = \nabla_w \left(\sum_i (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - X_i W)^2 \right)$$

$$= \sum_i \left(\nabla_w (y_i - (x_{i1} w_1 + x_{i2} w_2 + \dots + x_{im} w_m))^2 \right)$$

$$= \sum_i \left(-2(y_i - \hat{y}_i) x_{ij} \right) \quad \forall j \in (1 \dots m)$$

Implementación de Gradiente Descendente

Solución numérica

$$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$$

Gradient Descent algorithm

for epoch in n_epochs:

- compute the predictions for all the samples
- compute the error between truth and predictions
- compute the gradient using all the samples
- update the parameters of the model

Implementación de Gradiente Descendente Estocástico

Solución numérica

$$\nabla \left((y_i - f_W(X_i))^2 \right)$$

Stochastic Gradient Descent algorithm

for epoch in n_epochs:

- shuffle the samples
- for sample in n_samples:
 - compute the predictions for the sample
 - compute the error between truth and predictions
 - compute the gradient using the sample
 - update the parameters of the model

Implementación de Gradiente Descendente Estocástico

Solución numérica

Implementación de Gradiente Descendente Mini-Batch

Solución numérica

$$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right)$$

Mini-Batch Gradient Descent algorithm

for epoch in n_epochs:

- shuffle the batches
- for batch in n_batches:
 - compute the predictions for the batch
 - compute the error for the batch
 - compute the gradient for the batch
 - update the parameters of the model

\Big)

Comparativa de gradientes

	Gradient Descent	Stochastic Gradient Descent	Mini-Batch Gradient Descent
Gradient	$\nabla \left(\sum_{\text{all samples}} (y_i - f_W(X_i))^2 \right)$	$\nabla \left((y_i - f_W(X_i))^2 \right)$	$\nabla \left(\sum_{\text{batch samples}} (y_i - f_W(X_i))^2 \right)$
Speed	Very Fast (vectorized)	Slow (compute sample by sample)	Fast (vectorized)
Memory	O(dataset)	O(1)	O(batch)
Convergence	Needs more epochs	Needs less epochs	Middle point between GD and SGD
Gradient Stability	Smooth updates in params	Noisy updates in params	Middle point between GD and SGD

Entrenamiento de modelos - Cross-Validation

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Entrenamiento de modelos - Selección

Selección de modelos

Entrenamiento de modelos - Cross-Validation

Cross-Validation

Entrenamiento numérico del modelo seleccionado - Obtención de parámetros

Entrenamiento de modelos - Hiper parámetros

Selección de los hiper parámetros

Grid Search

Random Search

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig
- A visual explanation for regularization of linear models Terence Parr
- A Complete Tutorial on Ridge and Lasso Regression in Python Aarshay Jain

