Complex Machine Learning Models and Keras - Part 1

1. CNN (Convolution Neural Network) model

I decided to start with a CNN model because, although known to be better in the spatial and visual realms, it can run quickly and handle a larger amount of data.

I have run the model using different parameters and activation type.

```
epochs = 30
batch_size = 16
n_hidden = 64

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='sigmoid')) # Options: sigmoid, tanh, softmax, relu
```

- The smaller the batch size, the longer it takes to get the output for each epoch. 16 seems to be a good number.
- With "tanh" activation and 64 hidden layers, the loss gets stable at 31,63 and the accuracy increases up to 51,6%. The model can only recognise 5 out of 15 stations.
- With the same parameters, "sigmoid" can only recognise 1 weather station. The accuracy is around 12% and the loss grows exponentially.
- Softmax activation gives very similar results in terms of accuracy and loss than "sigmoid" with this number of hidden layers, but it can regognise 13 out of 15 stations.
- With the same parameters, "relu" activation gives stable accuracy (64,4%) and loss ('nan') after the first epoch. The model can recognise only 1 station though.

→ So far "softmax" activation seems to make the model recognise the highest number of stations. Let's see what happens when we increase the number of hidden layers up to 128:

```
epochs = 30
batch_size = 16
n_hidden = 128

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax')) # Options: sigmoid, tanh, softmax, relu
```

- The higher the number of layers, the longer it takes to get the output for each epoch.
- The accuracy slightly decreases from 14% to 11%, while the loss grows exponentially after each epoch.
- The model can recognise 13 out of 15 stations.
- When the number of layers is increased up to 256, the model can recognise all 15 weather stations. The accuracy stays low: 12,3%.

```
epochs = 30
batch_size = 32
n = 256
timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])
model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(16, activation='relu'))
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax')) # Options: sigmoid, tanh, softmax, relu
Epoch 1/30
538/538 - 2s - 4ms/step - accuracy: 0.0918 - loss: 4257.5908
Epoch 2/30
538/538 - 1s - 2ms/step - accuracy: 0.1213 - loss: 42290.4258
Epoch 3/30
538/538 - 1s - 2ms/step - accuracy: 0.1281 - loss: 153432.8438
Epoch 4/30
538/538 - 1s - 2ms/step - accuracy: 0.1345 - loss: 335217.5938
Epoch 5/30
538/538 - 1s - 2ms/step - accuracy: 0.1353 - loss: 637794.0000
Epoch 6/30
538/538 - 1s - 2ms/step - accuracy: 0.1421 - loss: 1031150.1250
Epoch 7/30
538/538 - 1s - 2ms/step - accuracy: 0.1409 - loss: 1569855.6250
Epoch 8/30
538/538 - 2s - 3ms/step - accuracy: 0.1373 - loss: 2190171.7500
Epoch 9/30
538/538 - 1s - 3ms/step - accuracy: 0.1389 - loss: 2903206.0000
Epoch 10/30
538/538 - 2s - 4ms/step - accuracy: 0.1404 - loss: 3745978.7500
Epoch 11/30
538/538 - 1s - 2ms/step - accuracy: 0.1391 - loss: 4753507.5000
Epoch 12/30
538/538 - 1s - 2ms/step - accuracy: 0.1372 - loss: 5916840.0000
Epoch 13/30
538/538 - 1s - 2ms/step - accuracy: 0.1366 - loss: 7022730.0000
Epoch 14/30
538/538 - 1s - 2ms/step - accuracy: 0.1346 - loss: 8415674.0000
Epoch 15/30
538/538 - 1s - 2ms/step - accuracy: 0.1358 - loss: 10039291.0000
```

Epoch 16/30									
538/538 - 1s	-	2ms/step	– a	ccuracy:	0.1353	-	loss:	1170133	6.0000
Epoch 17/30		2ms /s+on			0 1227		1	1251261	0 0000
538/538 - 1s Epoch 18/30	-	2ms/step	– a	iccuracy:	0.1327	_	loss:	13213010	0.0000
538/538 - 2s	_	3ms/sten	– a	ccuracy:	0.1313	_	loss:	1558282	7 . 0000
Epoch 19/30		311137 3 CCP		iccuracy.	0.1313			1550202	, , 0000
538/538 - 2s	_	3ms/step	– a	ccuracy:	0.1327	_	loss:	1763196	4.0000
Epoch 20/30				,					
538/538 - 2s	-	3ms/step	– a	ccuracy:	0.1297	-	loss:	1980697	0.0000
Epoch 21/30							_		
538/538 - 2s	-	3ms/step	– a	ccuracy:	0.1313	-	loss:	2227333	2.0000
Epoch 22/30		2	_		0 1260		1	2405020	4 0000
538/538 - 1s Epoch 23/30	_	2ms/step	- a	iccuracy:	0.1200	_	toss:	24858384	4.0000
538/538 - 3s	_	5ms/sten	_ a	ccuracy:	0 1243	_	1055.	2771602	8 0000
Epoch 24/30		311137 3 CCP		iccuracy.	011243			27710020	010000
538/538 - 1s	_	2ms/step	– a	ccuracy:	0.1238	_	loss:	3056992	4.0000
Epoch 25/30		•		•					
538/538 - 3s	-	5ms/step	– a	ccuracy:	0.1213	-	loss:	33929096	6.0000
Epoch 26/30		_					_		
538/538 - 2s	-	5ms/step	– a	ccuracy:	0.1220	-	loss:	37048356	6.0000
Epoch 27/30		2 (-+	_		0 1107		1	4041614	4 0000
538/538 - 1s Epoch 28/30	-	2ms/step	– a	iccuracy:	0.1197	_	loss:	40416144	4.0000
538/538 - 1s	_	2mc/sten	_ a	occuracy:	0 1224	_	1000	4406607	2 0000
Epoch 29/30		21113/3 CCP	- 0	iccuracy.	0.1224			44000377	2.0000
538/538 - 1s	_	2ms/step	– a	ccuracv:	0.1231	_	loss:	4777854	4.0000
Epoch 30/30									
538/538 - 1s	-	2ms/step	– a	ccuracy:	0.1228	-	loss:	51947708	8.0000
180/180				- 1s 3ms/	sten				
	BAS	EL BELGE	RADE			LT	DUSS	ELDORF	HEATHRO
True									
BASEL		2	68			78		248	6
BELGRADE		0	89	-	7	4		78	
BUDAPEST		0	15		9	3		21	
DEBILT		0	2		0	0		14	

180/180			1s 3ms,	/sten						
Pred	BASEL BE	ELGRADE	BUDAPE		BILT	DUSSE	LD0RF	HEATHROW	KASSEL	\
True										
BASEL	2	68	8	64	78		248	61	200	
BELGRADE	0	89		77	4		78	1	6	
BUDAPEST	0	15		9	3		21	0	0	
DEBILT	0	2		0	0		14	0	0	
DUSSELD0RF	0	0		1	0		5	0	0	
HEATHROW	0	6		2	3		13	0	1	
KASSEL	0	1		0	0		1	0	0	
LJUBLJANA	0	4		0	1		8	0	0	
MAASTRICHT	0	0		0	2		2	0	1	
MADRID	0	28		50	10		35	4	4	
MUNCHENB	0	1		0	1		1	0	0	
0SL0	0	2		0	0		0	0	0	
STOCKHOLM	0	2		0	0		1	0	0	
VALENTIA	0	0		0	0		0	0	0	
Pred	LJUBLJANA	A MAAST	RICHT I	MADRID	MUN	CHENB	0SL0	SONNBLICK	\	
True	110			202		443	445	_		
BASEL	1183		1	303		413	115	6		
BELGRADE	642	_	0	20		142	9	0		
BUDAPEST DEBILT	120 49		0	9		18 11	3 0	0		
DUSSELDORF	16		0 0	1		4	2	0 0		
HEATHROW	36	-	0	8		9	1	0		
KASSEL	30	-	0	0		9	1	0		
LJUBLJANA	34		0	8		1	2	0		
MAASTRICHT	2	-	0	0		2	0	0		
MADRID	134	_	0	139		28	11	0		
MUNCHENB	13.	-	0	139		1	1	0		
OSLO		2	0	0		1	0	0		
STOCKHOLM		2	0	0		0	0	0		
VALENTIA	Č		0	0		0	0	0		
AVECIALITY		•	Ü	U		U	U	U		

Pred	STOCKHOLM	VALENTIA
True BASEL	103	37
BELGRADE	24	0
BUDAPEST	16	0
DEBILT	4	0
DUSSELDORF	0	0
HEATHROW	3	0
KASSEL	1	0
LJUBLJANA	3	0
MAASTRICHT	0	0
MADRID	15	0
MUNCHENB	0	0
0SL0	0	0
STOCKHOLM	1	0
VALENTIA	1	0

2. RNN (Recurrent Neural Network) / LSTM model

Again I have run the model using different parameters and activation types.

```
epochs = 30
batch_size = 16
n_hidden = 32

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='sigmoid')) # Don't use relu here!
```

- It takes longer to run the LSTM model in comparison to the CNN.
- With these parameters, "sigmoid" provides a very low accuracy (5%) and a loss of 20,20. The model is able to recognise 2 out of 15 stations.
- With "tanh" activation, the model takes even longer to run, and it gets an accuracy of 4,37% and a loss of 23,95. It can recognise 6 out of 15 stations.
- With "softmax" activation, the model is even slower, and it gets an accuracy of 5,29% and a loss of 17,00. It can recognise 5 out of 15 stations.
- → So far "tanh" activation seems to make the model recognise the highest number of stations. Let's see what happens when we increase the number of hidden layers up to 64:

```
epochs = 30
batch_size = 16
n_hidden = 64

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='tanh')) # Don't use relu here!
```

- The accuracy increases up to 7,62% with a loss of 24.56. The model can recognise 5 out of 15 stations.
- → Let's see what happens when Conv1D and MaxPooling layers are added:

```
epochs = 30
batch_size = 16
n_hidden = 64

timesteps = len(X_train[0])
input_dim = len(X_train[0][0])
n_classes = len(y_train[0])

model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(MaxPooling1D())
model.add(LSTM(n_hidden, input_shape=(timesteps, input_dim)))
model.add(Dropout(0.5))
model.add(Dense(n_classes, activation='tanh')) # Don't use relu here!
```

```
Epoch 15/30
1076/1076 - 4s - 4ms/step - accuracy: 0.1417 - loss: 24.1993
Epoch 16/30
1076/1076 - 5s - 4ms/step - accuracy: 0.0420 - loss: 24.6426
Epoch 17/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0454 - loss: 24.5047
Epoch 18/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0280 - loss: 24.5542
Epoch 19/30
1076/1076 - 4s - 4ms/step - accuracy: 0.1158 - loss: 24.7097
Epoch 20/30
1076/1076 - 5s - 5ms/step - accuracy: 0.1292 - loss: 24.3296
Epoch 21/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0662 - loss: 24.3983
Epoch 22/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0372 - loss: 24.5850
Epoch 23/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0289 - loss: 24.6177
Epoch 24/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0542 - loss: 24.6508
Epoch 25/30
1076/1076 - 5s - 5ms/step - accuracy: 0.1007 - loss: 24.4422
Epoch 26/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0795 - loss: 23.9892
Epoch 27/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0389 - loss: 24.4042
Epoch 28/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0560 - loss: 24.1619
Epoch 29/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0672 - loss: 24.2516
Epoch 30/30
1076/1076 - 4s - 4ms/step - accuracy: 0.0996 - loss: 24.9123
```

180/180			1s 3ms/step
Pred	LJUBLJANA	0SL0	STOCKHOLM
True			
BASEL	12	3656	14
BELGRADE	0	1092	0
BUDAPEST	0	213	1
DEBILT	0	82	0
DUSSELDORF	0	29	0
HEATHROW	0	82	0
KASSEL	0	11	0
LJUBLJANA	0	61	0
MAASTRICHT	0	9	0
MADRID	0	458	0
MUNCHENB	0	8	0
0SL0	0	5	0
STOCKHOLM	0	4	0
VALENTIA	0	1	0

- The accuracy improves to 9,96% while the loss remains similar (24,91). The model can now recognise 3 out of 15 stations.
- When the number of hidden layers increases to 128, the accuracy reaches 10,2% and the model can recognise only 1 station. Adding more hidden layers doesn't seem to improve the model effectively.

In conclusion, we can state that by employing a RNN model:

- It takes longer to run the model compared to CNN.
- Tanh activation gets better results.
- The accuracy rate improves when adding Conv1D and MaxPooling layers, but in general it's lower than the level achieved by CNN.
- The level of losses is much lower than CNN.
- The model doesn't get to recognise all 15 weather stations.