In-Class Exercise 2

1. Consider a discrete-time system S with input x[n] and output y[n]. This system is obtained through a series interconnection of a system S_1 followed by another system S_2 . The input and output relationships for S_1 and S_2 are:

$$S_1: y_1[n] = 2x_1[n] + 4x_1[n-1]$$

$$S_2: y_2[n] = x_2[n-2] + \frac{1}{2}x_2[n-3]$$

where $x_1[n]$ and $x_2[n]$ denote inputs and $y_1[n]$ and $y_2[n]$ denote outputs.

- (a) Determine the input-output relationship for system S, i.e., find the equation that relates x[n] and y[n].
- (b) Does the input-output relationship of system S change if we first pass x[n] through S_2 and then S_1 ?

2. Determine whether the following discrete-time system, with input signal x[n] and output signal y[n] is memoryless, invertible, stable, causal, linear, and/or time-invariant:

$$y[n] = ax[n+1] + b, \quad 0 < |a| < \infty, \ 0 < |b| < \infty$$

3. Determine whether the following continuous-time system, with input signal x(t) and output signal y(t) is memoryless, invertible, stable, causal, linear, and/or time-invariant:

$$y(t) = \cos\left[x(t)\right]$$

4. Consider the following discrete-time system, with input signal x[n] and output signal y[n]:

$$y[n] = x[n-1] - y[n-1]$$

where y[n] = 0 for n < 0.

- (a) Determine y[n] when $x[n] = \delta[n]$.
- (b) Determine y[n] when x[n] = u[n].
- 5. Compute the output y[n] if the input is $x[n] = a^n u[n]$ and the linear time-invariant system impulse response is $h[n] = b^n u[n]$ with $|b| \ge 1$. Is the system stable? Why? Is the system causal? Why?

6. Determine $y[n] = x[n] \otimes h[n]$ where x[n] and h[n] are

$$x[n] = \begin{cases} 3, & n = -1 \\ 2, & n = 1 \\ 6, & n = 2 \\ 0, & \text{otherwise} \end{cases}$$

and

$$h[n] = \begin{cases} 2, & n = -1 \\ 4, & n = 0 \\ 7, & n = 1 \\ 0, & \text{otherwise} \end{cases}$$

7. Compute the output y(t) if the input is x(t) = u(t-3) - u(t-5) and the linear time-invariant system impulse response is $h(t) = e^{-3t}u(t)$. Is the system stable? Why? Is the system causal? Why?

8. Compute the impulse response h[n] for a LTI system which is characterized by the following difference equation:

$$y[n] = x[n-1] + 2x[n-2] + 3x[n-3]$$

9. Define the area under a continuous-time signal v(t) as:

$$A_v = \int_{-\infty}^{\infty} v(t)dt$$

Show that if $y(t) = x(t) \otimes h(t)$, then

$$A_y = A_x \cdot A_h$$

10. Denote h[n] as the impulse response of a discrete-time linear time-invariant system. If the system is also memoryless, then determine the form of h[n].

Solution

1(a)

Let w[n] be the after output after passing through S_1 :

$$w[n] = 2x[n] + 4x[n-1]$$

Passing w[n] through S_2 yields:

$$y[n] = w[n-2] + \frac{1}{2}w[n-3]$$

$$= (2x[n-2] + 4x[n-3]) + \frac{1}{2}(2x[n-3] + 4x[n-4])$$

$$= 2x[n-2] + 5x[n-3] + 2x[n-4]$$

1(b)

Let v[n] be the after output after passing through S_2 :

$$v[n] = x[n-2] + \frac{1}{2}x[n-3]$$

Passing w[n] through S_1 yields:

$$y[n] = 2v[n] + 4v[n-1]$$

$$= 2\left(x[n-2] + \frac{1}{2}x[n-3]\right) + 4\left(x[n-3] + \frac{1}{2}x[n-4]\right)$$

$$= 2x[n-2] + 5x[n-3] + 2x[n-4]$$

Realizing that S_1 and S_2 are LTI systems and using the commutative property, we can also understand that there will be no change in the output.

2.

$$y[n] = ax[n+1] + b, \quad 0 < |a| < \infty, \ 0 < |b| < \infty$$

<u>Memoryless</u>

The system is not memoryless because output y[n] at time n does not only depend on x[n] at time n. In fact, y[n] depends on input at time n+1.

Invertibility

The system is invertible. By reorganizing the equation and we see that x[n] can be computed from y[n] using:

$$y[n] = ax[n+1] + b \Rightarrow x[n] = \frac{y[n-1] - b}{a}$$

Stability

If x[n] is bounded, then y[n] = ax[n+1] + b is bounded for bounded a and b. As a result, y[n] is bounded and the system is stable. In a more rigorous manner, we have:

$$|y[n]| = |ax[n+1] + b| \le |a| \cdot |x[n+1]| + |b|$$

where $|x[n+1]| < \infty$ or $|x[n]| < \infty$ must give $|y[n]| < \infty$.

Causality

It is not causal because y[n] depends on future input, namely, x[n+1].

Linearity

The system outputs for $x_1[n]$ and $x_2[n]$ are:

$$y_1[n] = ax_1[n+1] + b$$
 and $y_2[n] = ax_2[n+1] + b$

Consider $x_3[n] = cx_1[n] + dx_2[n]$, its system output is then:

$$y_{3}[n] = ax_{3}[n+1] + b$$

$$= a(cx_{1}[n+1] + dx_{2}[n+1]) + b$$

$$= acx_{1}[n+1] + adx_{2}[n+1] + b$$

$$= c(ax_{1}[n+1] + b) + d(ax_{2}[n+1] + b) + b - bc - bd$$

$$\neq cy_{1}[n] + dy_{2}[n]$$

As a result, this system is not linear.

<u>Time-invariance</u> First, we have:

$$y[n - n_0] = ax[n - n_0 + 1] + b$$

Consider $x_1[n] = x[n - n_0]$, its system output is

$$y_1[n] = ax_1[n+1] + b$$

= $ax[n-n_0+1] + b$
= $y[n-n_0]$

Hence the system is time-invariant.

3.

$$y(t) = \cos\left[x(t)\right]$$

<u>Memoryless</u>

The system is memoryless because the output y(t) at time t only depends on x(t) at time t.

Invertibility

The system is not invertible. By reorganizing the equation and we see that x(t) cannot be computed from y(t) because there are infinite possibilities of x(t)

$$x(t) = \cos^{-1}(y(t)) + 2n\pi, \quad n = \cdots, -1, 0, 1, \cdots$$

Stability

If x(t) is bounded, then $y(t) = \cos[x(t)]$ must be bounded because $1 \ge |\cos[x(t)]|$.

Causality

It is causal because y(t) at time t depends on x(t) up to time t.

Linearity

The system outputs for $x_1(t)$ and $x_2(t)$ are:

$$y_1(t) = \cos[x_1(t)]$$
 and $y_2(t) = \cos[x_2(t)]$

Consider $x_3(t) = ax_1(t) + bx_2(t)$, its system output is then:

$$y_3(t) = \cos [x_3(t)]$$

= $\cos [ax_1(t) + bx_2(t)]$
= $a \cos [x_1(t)] + b \cos [x_2(t)]$
= $ay_1(t) + by_2(t)$

As a result, this system is not linear.

<u>Time-invariance</u> First, we have:

$$y(t - t_0) = \cos\left[x(t - t_0)\right]$$

Consider $x_1(t) = x(t - t_0)$, its system output is

$$y_1(t) = \cos [x_1(t)]$$

$$= \cos [x(t - t_0)]$$

$$= y(t - t_0)$$

Hence the system is time-invariant.

4(a)

When $x[n] = \delta[n]$ and using y[-1] = 0, we start with n = 0:

$$y[0] = \delta[-1] - y[-1] = 0$$

$$y[1] = \delta[0] - y[0] = 1$$

$$y[2] = \delta[1] - y[1] = -1$$

$$y[3] = \delta[2] - y[2] = 1$$

We may deduce the general form of y[n] as:

$$y[n] = (-1)^{n-1}u[n-1]$$

4(b)

When x[n] = u[n] and using y[-1] = 0, we start with n = 0:

$$y[0] = u[-1] - y[-1] = 0$$

$$y[1] = u[0] - y[0] = 1$$

$$y[2] = u[1] - y[1] = 0$$

$$y[3] = u[2] - y[2] = 1$$

We may deduce the general form of y[n] as:

$$y[n] = \begin{cases} 1, & n = 1, 3, 5, \dots \\ 0, & \text{otherwise} \end{cases}$$

5. Using (3.11), we have:

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

$$= \sum_{m=-\infty}^{\infty} a^m u[m]b^{m-n}u[n-m]$$

$$= \sum_{m=0}^{\infty} a^m b^{m-n}u[n-m]$$

$$= \sum_{k=n}^{\infty} a^{n-k}b^k u[k], \quad k=n-m$$

$$= a^n \sum_{k=-\infty}^{n} (a^{-1}b)^k u[k]$$

Since u[k] = 0 for k < 0, y[n] = 0 for n < 0.

For $n \ge 0$, we then have:

$$y[n] = a^{n} \sum_{k=0}^{n} (a^{-1}b)^{k}$$

$$= a^{n} \frac{1 - (a^{-1}b)^{n+1}}{1 - a^{-1}b}$$

$$= \frac{a^{n+1} - b^{n+1}}{a - b}$$

Combining the results, we have:

$$y[n] = \frac{a^{n+1} - b^{n+1}}{a - b} u[n]$$

Since $\sum_{n=-\infty}^{\infty} |h[n]| = \sum_{n=0}^{\infty} |b| = \infty$, the system is not stable. Moreover, the system is causal because h[n] = 0 for n < 0.

6.

Using (3.11) again, we have:

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

= $x[-1]h[n+1] + x[1]h[n-1] + x[2]h[n-2]$

Try n = -2:

$$y[-2] = x[-1]h[-1] + x[1]h[-3] + x[2]h[-4] = 3 \cdot 2 = 6$$

Try n = -1:

$$y[-1] = x[-1]h[0] + x[1]h[-2] + x[2]h[-3] = 3 \cdot 4 = 12$$

Try n = 0:

$$y[-1] = x[-1]h[1] + x[1]h[-1] + x[2]h[-2] = 3 \cdot 7 + 2 \cdot 2 = 25$$

Compute y[n] for other values of n and combine the results, we get:

$$y[n] = \begin{cases} 6, & n = -2\\ 12, & n = -1\\ 25, & n = 0\\ 20, & n = 1\\ 38, & n = 2\\ 42, & n = 3\\ 0, & \text{otherwise} \end{cases}$$

7. Using the convolution for continuous-time case, we have:

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau = \int_{-\infty}^{\infty} e^{-3\tau}u(\tau) \left[u(t-3-\tau) - u(t-5-\tau) \right] d\tau$$
$$= \int_{0}^{\infty} e^{-3\tau}u(t-3-\tau)d\tau - \int_{0}^{\infty} e^{-3\tau}u(t-5-\tau)d\tau$$

Let the first and second components be $y_1(t)$ and $y_2(t)$ such that $y(t) = y_1(t) - y_2(t)$.

$$y_1(t) = \int_0^\infty e^{-3\tau} u(t - 3 - \tau) d\tau, \quad \lambda = t - 3 - \tau$$

$$= \int_{t-3}^{-\infty} e^{-3(t-3-\lambda)} u(\lambda) d(-\lambda)$$

$$= \int_{-\infty}^{t-3} e^{-3(t-3-\lambda)} u(\lambda) d\lambda$$

When t-3<0 or t<3, the integral will only involve the zero part of $u(\lambda)$ because $u(\lambda)=0$ for $\lambda<0$. Hence $y_1(t)=0$ for t<3. For t>3, we have:

$$y_1(t) = \int_0^{t-3} e^{-3(t-3-\lambda)} d\lambda = e^{-3(t-3)} \int_0^{t-3} e^{3\lambda} d\lambda$$

$$= e^{-3(t-3)} \cdot \frac{1}{3} e^{3\lambda} \Big|_0^{t-3} = e^{-3(t-3)} \cdot \frac{1}{3} \left(e^{3(t-3)} - 1 \right) = \frac{1}{3} \left(1 - e^{-3(t-3)} \right)$$

That is,

$$y_1(t) = \frac{1}{3} \left(1 - e^{-3(t-3)} \right) u(t-3)$$

Similarly, $y_2(t)$ is:

$$y_2(t) = \frac{1}{3} \left(1 - e^{-3(t-5)} \right) u(t-5)$$

Combining the results yields:

$$y(t) = \frac{1}{3} \left(1 - e^{-3(t-3)} \right) u(t-3) - \frac{1}{3} \left(1 - e^{-3(t-5)} \right) u(t-5)$$

or

$$y(t) = \begin{cases} 0, & t < 3\\ \frac{1}{3} \left(1 - e^{-3(t-3)} \right) u(t-3), & 3 < t < 5\\ \frac{1}{3} \left(e^{-3(t-5)} - e^{-3(t-3)} \right), & t > 5 \end{cases}$$

Since $\int_{-\infty}^{\infty} |h[t]| dt = \int_{0}^{\infty} e^{-3t} dt < \infty$, the system is stable. Moreover, the system is causal because h(t) = 0 for t < 0.

8. Using (3.12), we have:

$$y[n] = \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

= $\cdots h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + h[3]x[n-3] + \cdots$

It is seen that only h[1], h[2] and h[3] are nonzero. That is, the impulse response is:

$$h[n] = \delta[n-1] + 2\delta[n-2] + 3\delta[n-3]$$

9.

$$A_{y} = \int_{-\infty}^{\infty} y(t)dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau dt$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)h(\lambda)d\tau d(\lambda+\tau), \quad \lambda = t-\tau$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(\tau)h(\lambda)d\tau d\lambda$$

$$= \left(\int_{-\infty}^{\infty} x(\tau)d\tau\right) \left(\int_{-\infty}^{\infty} h(\lambda)d\lambda\right)$$

$$= A_{x} \cdot A_{x}$$

10.

Let x[n] and y[n] be the system input and output, respectively. Expanding the convolution formula yields:

$$y[n] = x[n] \otimes h[n] = \sum_{m = -\infty}^{\infty} h[m]x[n - m]$$

$$= \cdots h[-2]x[n + 2] + h[-1]x[n + 1] + h[0]x[n] + h[1]x[n - 1] + h[2]x[n - 2] + \cdots$$

If the system is memoryless, y[n] at time n only depends on x[n] at the same time, implying that

$$y[n] = x[n] \otimes h[n] = h[0]x[n]$$

That is, $h[n] = K\delta[n]$ where K = h[0] is a constant.