통계 기반 데이터 분석 용어 이해하기 (상관분석)

목 차

- 1-1 상관분석
- 1-2 교차분석

실습 1. 상관분석 리서치

- ▶ (1) 상관분석(Correlation Analysis)이란 무엇인지 찾아 적어보자.
- ▶ (2) 상관계수란 무엇인지 찾아서 적어보자.
- ▶ (3) 상관계수가 -1이면 어떤 의미인지, 1이면 어떤 의미인지 0이면 어떤 의미인지 찾아 적어보자.
- ▶ (4) 상관 계수 가설 검정에 사용하는 R에서의 함수는 무엇인가?

1-1 상관분석(Correlation Analysis)

▶ 상관분석(Correlation Analysis)?

가. 확률론과 통계학에서 두 변수 간의 어떤 선형적 관계를 갖고 있는지 분석 하는 방법

나. 두 변수 간의 연관된 정도를 나타낼 뿐 인과관계를 설명하는 것은 아니다.

▶ 상관계수(correlation coefficient)

상관 계수는 몇 가지 유형의 상관 관계를 수치로 측정한 것으로 두 변수 간의 통계적 관계를 의미한다.

▶ 상관계수의 개념

r = X와 Y가 함께 변하는 정도/X와 Y가 각각 변하는 정도 (피어슨의 상관계수)

```
일반적으로 r이 -1.0과 -0.7 사이이면, 강한 음적 선형관계, r이 -0.7과 -0.3 사이이면, 뚜렷한 음적 선형관계, r이 -0.3과 -0.1 사이이면, 약한 음적 선형관계, r이 -0.1과 +0.1 사이이면, 거의 무시될 수 있는 선형관계, r이 +0.1과 +0.3 사이이면, 약한 양적 선형관계, r이 +0.3과 +0.7 사이이면, 뚜렷한 양적 선형관계, r이 +0.7과 +1.0 사이이면, 강한 양적 선형관계 로 해석한다.
```

어떤 분석 방법이 있을까?

- ▶ 피어슨 상관 계수(Pearson correlation coefficient) 두 변수의 관련성을 위해 보편적으로 이용된다. r = X와 Y가 함께 변하는 정도/X와 Y가 각각 변하는 정도
- ▶ 스피어만 상관 계수(Spearman correlation coefficient) 데이터가 서열척도인 경우 즉 자료의 값 대신 순위를 이용하는 경우의 상관계수이다.
- ▶ 크론바흐 알파 계수 신뢰도(Cronbach's alpha)
 - 계수 α 는 검사의 내적 일관성을 나타내는 값이다. 변수들 간의 평균상관관계에 근거해 검사문항들이 동질적인 요소로 구성되어 있는지를 분석하는 것이다.

▶ 양의 상관성, 음의 상관성

값의 범위는 -1 ~ 1 사이이다.

X의 변수 값이 커짐에 따라 Y의 변수 값도 커지는 경우, 양의 관련성이 있다.

X의 변수 값이 커짐에 따라 Y의 변수 값도 작아지는 경우, 음의 관련성이 있다.

▶ 상관 계수

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

▶ 검정 통계량

$$t = \frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

▶ 상관계수의 가설검정(예)

상관계수 r은 모수 $\rho(\text{rho})$ 에 대한 추정치이므로 r을 계산한 후에는 가설검정과정을 거쳐야 한다.

귀무가설 (H_0)

 $H_0: \rho=0$ (X, Y 사이에 관계가 없다)

 $H_0: \rho \leq 0$ (X, Y 사이에 관계가 양의 상관관계가 아니다.)

 $H_0: \rho \ge 0$ (X, Y 사이에 관계가 음의 상관관계가 아니다.)

대립가설 (H_1)

 $H_1: \rho=0$ (X, Y 사이에 관계가 있다)

 $H_1:
ho > 0$ (X, Y 사이에 관계가 양의 상관관계이다.)

 $H_1:
ho < 0$ (X, Y 사이에 관계가 음의 상관관계이다.)

▶ 상관계수의 가설검정(예)

▶ 상관계수의 가설검정(예)

된다.

+1		特书	圣	
of	0.20	0.10	0.05	0.01
- 3 + 5	/.533	2.132	2.776	(4.604)

T 통계량 값은 18.206으로 범위 를 벗어나 있다.

ho=0의 귀무가설을 기각하고 대 립가설을 채택한다.

그렇다면 범주형 변수의 관계도 를 구하는 것은 없을까?

▶ 교차분석(cross-tabulation analysis)?

2개의 조사 요인에 대한 자료값을 각각 행과 열로 배열하여 교차되는 항목에 대한 빈도를 나타낸 표를 교차표(cross-tabulation)라 한다.

		열	구매의사	행의 합계	
행			있음(1)	없음(2)	
	지역	1	n_{11}	n_{12}	n_{1j}
	기의	2	n_{21}	n_{22}	n_{21}
	열의	합계	n_{i1}	n_{i2}	n

- ▶ 카이 제곱 분포
- ▶ 카이 제곱 분포와 자유도

▶ 유의수준과 귀무가설 기각

▶ 카이 제곱 검정의 귀무가설과 독립가설

귀무가설 (H_0)

 H_0 : 두 요소가 독립적이다.

대립가설 (H_1)

 H_1 : 두 요소가 독립적이지 않다.

1-2 교차분석(카이제곱 검정)-독립성 검정

열

 H_0 : 지역과 구매의사는 독립적이다.

 H_1 : 지역과 구매의사는 독립적이지 않다.

$$E_{ij}(기대빈도)=\frac{n_{i.}*n_{.j}}{n}$$

독일성 건정의 자유도 Af = (R-1)((-1) = (2-1)(2-1) = 1 R: 행의제수 C: 열리가수
गरप्रम मिर
지역 1* 구에의 수 있는 기억인도 16/×206 = 152
지역 1 * 없음이 기(시킨도 164×206 = 104.
지역 2 × 구애의사 및 등의 기억반도 161×119 = 59.
지역 2 * 구에의사 있음의 기억반도 164×119 = 60.

행		있음(1)	없음(2)		
	지역	1	154	52	206
	^ ¬	2	7	112	119
	열의	합계	161	164	325
		열	구매의사		행의 합계
행			있음(1)	없음(2)	
		1	154	52	206
	지역	기대빈도	102	104	
		2	7	112	119
		기대빈도	59	60	
열의 합계		161	164	325	

구매의사

행의 합계

▶ 독립성 검정을 위한 카이제곱 검정

	열			행의 합계
행		있음(1)	없음(2)	
	1	154	52	206
지역	기대빈도	102	104	
	2	7	112	119
	기대빈도	59	60	
열의 합계		161	164	325

카이제곱 통계량

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

$$\chi^{2} = \frac{(154 - 102)^{2}}{102} + \frac{(52 - 104)^{2}}{104} + \frac{(7 - 59)^{2}}{59} + \frac{(112 - 60)^{2}}{60}$$

$$= 26.509 + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

$$\chi^{2} = \frac{22}{2} \sqrt{9} \sqrt{9} + 26 + 45.831 + 45.067 = 143.407.$$

▶ 독립성 검정을 위한 카이제곱 검정 정리

		Factor 2 Levels						
		1		j		J	Row Total	
Factor 1 Levels	1	0		0		0	R	
	:		:	:	:		:	
	i	0		0		0	R	
	:		:	:	:		:	
	1	0		0		0	R	
Column Total		C		С		С	n	

기대 빈도

$$E = rac{R imes C}{n}$$

$$E_{ij}(기대빈도)=\frac{n_{i.}*n_{.j}}{n}$$

▶ 독립성 검정을 위한 카이제곱 검정 정리

	Factor 2 Levels						
		1		j		J	Row Total
Factor 1 Levels	1	O E		O E		0 E	R
	:		:	:	:	:	:
	i	O E		O E		O E	R
			:	:	:	:	:
	1	O E		O E		O E	R
Column Total	С		С		С	n	

카이제곱 통계량

$$\chi^2 = \Sigma rac{(O-E)^2}{E}$$

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

▶ 도전 문제

	열	심박수	행의 합		
행		Low	High	계	
성별	Girl	11	7	18	
ÖZ	Boy	17	5	22	
열의 합계		28	12	40	

가. 기대빈도를 구해보자.

나. 카이 제곱 통계량을 구해보자.