[따름이 대여량 예측 Al 경진대회]

주최: 단국대학교, 용인시

주관: 데이콘 심승현, 박선홍

목록

- 1. 팀원 및 대회 소개
- 2. 데이터 확인
- 3. 모델링
- 4. 결과 및 아쉬운 점

Part 1 팀원 소개

심승현 Main: 데이터 분석/ 파생변수 생성 Sub: 모델링/ 테스트

박선홍 Main: 모델링/테스트 Sub: 데이터 분석/ 파생변수 생성

Part 1 대회 소개

Part 2 데이터 처리

date	0
precipitation	678
temp_mean	0
temp_highest	0
temp_lowest	0
PM10	67
PM2.5	68
humidity	0
sunshine_sum	5
sunshine_rate	0
wind_mean	0
wind_max	0
rental	0

12개의 X(feature)가 존재, 전부 <u>날씨</u> 관련 데이터

다수의 결측치 확인

<u>결측치 이전 2일 평균으로 대체</u> (데이터 누수 방지)

season feature에서 특히 y와 밀접한 관계가 존재함

서로 영향을 끼치는 (<mark>다중공선성</mark>)이 존재

- 0.8

- 0.6

- 0.2

- 0.0

- -0.2

- -0.4

- -0.6

>>PCA나 파생변수를 만들어 공선성을 제거할 수도 있으나, 딥러닝 모델을 사용할 것이기에 제거 x

Cook's Distance로 이상치 탐색

>>Cook's Distance는 단순선형회귀를 중심으로 이상치를 탐색하므로 이상치로 나온 데이터들을 모두 삭제하지 않고 일부만 반영하여 삭제

스튜언트 잔차로 이상치 탐색

〉〉Residual을 바탕으로 이상치를 탐색하는 스튜언트 잔차를 활용하여 이상치 탐색

Part 2-2 파생변수 생성

파생 변수와 구간화를 통해 점수 상승

1.불쾌지수

공식: 1.8 * 온도 - 0.558 * (1 - 습도) * (1.8 * 온도 - 26) +32

2.체감온도

공식: 13.12 + (0.6215 * 온도) - (11.37 * 풍속^0.16) + (0.3965 * 온도 * 풍속 ^0.16)

3. 강수량/ 기온 / 풍속… 구간화 공식적으로 지정한 기점으로 구간화

Part 2-3 Scaling

sunshine_sum	sunshine_rate	wind_mean		sunshine_sum	sunshine_rate	wind_mean
7.4	61.2	1.6		0.384267	0.921466	-0.903973
7.4	61.2	1.6		0.283363	0.793470	-0.314688
11.1	79.9	2.2		0.459944	0.988511	0.274596
12.0	85.1	1.5	ν			
7.3	72.3	2.7		-0.145477	0.232729	-0.903973
0.2	1.8	2.0		0.359041	0.860516	-0.462010

feature별 단위를 맞춰주기 위해 Scale > 성능향상

Part 3 Modeling

optimizer: adam

k-fold: 3

learning_rate = 0.0001

epoch: 250

Earlystop = 10 batch_size = 1

Part 4-1 결과 및 아쉬운 점

결과

- 다른 팀들과는 다르게 **딥러닝**으로 접근하여 점수를 높임
- 17등 / 94팀 이라는 준수한 성적 달성

아쉬운 점

- 1. 여러 모델들을 앙상블 해보지 못한 점
- 2. 모델 <mark>최적화를</mark> 진행하지 못한 점
- 3. 연도별 증가치를 적용해 보지 못한 점

