R16

Code No: 132AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, August - 2018 MATHEMATICS - III

((Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is computery which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

- 1.a) Find the mean and variance of the probability distribution having pdf, $f(x) = e^{-x}, x > 0.$ [2]
 - b) A fair coin is tossed until a head or consecutive five tails occurs. Find the discrete probability distribution. [3]
 - c) Write the conditions of validity of χ^2 -test.
 - d) Construct sampling distribution of means for the population 3, 7, 11, 15 by drawing samples of size two without replacement. Determine i) μ ii) σ iii) Sampling distribution of means.
 - e) Discuss types of errors of the test of hypothesis. [2]
 - f) Give the graphical interpretation of the bisection method. [3]
 - g) Write the iterative formula for finding $\sqrt[3]{N}$ using method of false position. [2]
 - h) Explain briefly about method of least square. [3]
 - i) Derive Trapezoidal rule for computing integral $\int_a^b f(x)dx$. [2]
 - j) What are the limitations of Taylor's series method?

PART-B

(50 Marks)

[3]

- 2.a) Let $f(x) = 3x^2$, when $0 \le x \le 1$ be the probability density function of a continuous random variable X. Determine a and b such that
 - i) $P(X \le a) = P(X > a)$ ii) P(X > b) = 0.05.
 - b) Probability density function of a random variable \boldsymbol{X} is

$$f(x) = \begin{cases} \frac{1}{2}sinx, 0 \le x \le \pi \\ 0, & elsewhere \end{cases}$$

Find the mean, mode and median of the distribution.

[5+5]

OR

- 3.a) A die is cast until 6 appears. What is the probability that it must be cast more than 5 times?
 - b) The marks obtained in mathematics by 1000 students is normally distributed with mean 78% and standard deviation 11%. Determine:
 - i) What was the highest mark obtained by the lowest 25% students?
 - ii) Within what limit did the middle 90% of the student lie?

[5+5]

- 4.a) Explain why the larger variance is placed in the numerator of the statistic F. Discuss the application of F-test in testing if two variances are homogenous.
- b) A sample of 11 rats from a central population had an average blood viscosity of 3.92 with a standard deviation of 0.61. Estimate the 95% confidence limits for the mean blood viscosity of the population. [5+5]

OR

- 5.a) The mean voltage of a battery is 15 and standard deviation 0.2. Find the probability that four such batteries connected in series will have a combined voltage of 60.8 or more volts.
 - b) Discuss critical region and level of significance with example. [5+5]
- 6.a) Suppose the diameter of motor shafts in a lot have a mean of 0.249 inches and standard deviation if 0.003 inches. The inner diameter of bearings in another lot have a mean of 0.255 inches and standard deviation of 0.002 inches. If a shaft and bearing are selected at random, find the probability that the shaft will not fit inside the bearing. Assume that both dimensions are normally distributed.
- b) A sample of 400 items is taken from a normal population whose mean is 4 and variance 4. If the sample mean is 4.45, can the samples be regarded as a simple sample?

OR

- 7. In a sample of 600 students of a certain college 400 are found to use ball pens. In another college from a sample of 900 students 450 were found to use ball pens. Test whether two colleges are significantly different with respect to the habit of using ball pens? [10]
- 8. Estimate y at x = 5 by fitting a least squares curve of the form $y = \frac{b}{x(x-a)}$ to the following data [10]

х	3.6	4.8	6.0	7.2	8.4	9.6	10.8
y	0.83	0.31	0.17	0.10	0.07	0.05	0.04

OR

- 9. Show that the Gauss-Seidel methods diverge for solving the system of equations 2x + 3y + z = -1; 3x + 2y + 2z = 1; x + 2y + 2z = 6.
- 10. Find the successive approximate solution of the differential equation y' = y, y(0) = 1 by Picard's method and compare it with exact solution.

OR

11. Use Runge-Kutta method of order four to find y when x = 0.6 in steps of 0.2 given that $\frac{dy}{dx} = 1 + y^2$, y(0) = 0. [10]