Math 357 Galois theory example

April 18, 2024

In these notes we use galois theory to analyze algebraic objects—zeros, field extensions, and groups—arising from the polynomial $f = t^3 - 2 \in \mathbf{Q}[t]$. We start with a summary of the story. We invite the reader to fill in details and justify the assertions before proceeding to following sections, in which we explore the story and logic together.

1 Overview

Let

$$f = t^3 - 2 \in \mathbf{Q}[t]$$

A splitting field for f is $K = \mathbf{Q}(\alpha, \zeta_3)$, where α is a zero of f, and ζ_3 is a zero of $g = t^2 + t + 1 \in \mathbf{Q}[t]$. A basis for K as a \mathbf{Q} -vector space is

$$\mathcal{B}=(1,\alpha,\alpha^2,\zeta_3,\zeta_3\alpha,\zeta_3\alpha^2)$$

The field extension K : **Q** is galois, with galois group

$$Gal(K : \mathbf{Q}) = \langle \sigma, \tau | \sigma^3, \tau^2, (\sigma \tau)^2 \rangle$$

where the automorphisms $\sigma, \tau : K \to K$ are defined by

$$\sigma: \alpha \mapsto \zeta_3 \alpha \qquad \qquad \tau: \alpha \mapsto \alpha$$

$$\zeta_3 \mapsto \zeta_3 \qquad \qquad \zeta_3 \mapsto \zeta_3^2 = -(1 + \zeta_3)$$
(1)

One can use the galois correspondence between subfields and subgroups to enumerate and match all of each. In particular, the subfield $\mathbf{Q}(\zeta_3\alpha)$ corresponds to the subgroup $\langle \sigma^2\tau \rangle$. That is,

$$\mathfrak{F}(\langle \sigma^2 \tau \rangle) = \textbf{Q}(\zeta_3 \alpha) \hspace{1cm} \text{Aut}(K:\textbf{Q}(\zeta_3 \alpha)) = \langle \sigma^2 \tau \rangle$$

2 Subfield-subgroup correspondence

Claim: $\mathcal{F}(\langle \sigma^2 \tau \rangle) = \mathbf{Q}(\zeta_3 \alpha)$.

To prove this claim, we show set containment in both directions. Recall that $\langle \sigma^2 \tau \rangle = \{id_K, \sigma^2 \tau\}$, and the identity map id_K fixes all of K, and hence, in particular, $\mathbf{Q} \subseteq K$. Thus for the fixed-field computations here, it suffices to analyze $\sigma^2 \tau$. (More generally, we need to analyze a set of

generators of the subgroup.) Also recall that, by definition, ζ_3 is a zero of $g=t^2+t+1$, hence also a zero of $(t-1)g=t^3-1$. Explicitly writing out what these zeros mean, we get

$$\zeta_3^2 = -(1 + \zeta_3) \qquad \qquad \zeta_3^3 = 1$$

 (\supseteq) Because $\sigma, \tau \in Gal(K : \mathbf{Q}) = Aut(K : \mathbf{Q})$, they are field homomorphisms. Using this fact and the defining images of σ and τ specified in equation (1), we compute

$$\begin{split} \sigma^2\tau(\zeta_3\alpha) &= \sigma(\sigma(\tau(\zeta_3\alpha))) \\ &= \sigma(\sigma(\tau(\zeta_3)\tau(\alpha))) \\ &= \sigma(\sigma(\zeta_3^2 \cdot \alpha)) \\ &= \sigma(\sigma(\zeta_3)^2\sigma(\alpha)) \\ &= \sigma(\zeta_3^2 \cdot \zeta_3\alpha) = \sigma(\zeta_3^3\alpha) = \sigma(\alpha) \\ &= \zeta_3\alpha \end{split}$$

Alternatively, we can use the same hypotheses to compute where $\sigma^2 \tau$ sends each generator of $K = \mathbf{Q}(\alpha, \zeta_3)$:

$$\sigma^2 \tau(\alpha) = \zeta_3^2 \alpha \qquad \qquad \sigma^2 \tau(\zeta_3) = \zeta_3^2 \tag{2}$$

to conclude that

$$\sigma^2 \tau(\zeta_3 \alpha) = \sigma^2 \tau(\zeta_3) \cdot \sigma^2 \tau(\alpha) = \zeta_3^2 \cdot \zeta_3^2 \alpha = \zeta_3^4 \alpha = \zeta_3 \alpha$$

This shows that $\sigma^2\tau$ fixes the element $\zeta_3\alpha\in K$. Because $\sigma^2\tau\in Gal(K:\mathbf{Q})$, $\sigma^2\tau$ also fixes the base field \mathbf{Q} . Hence $\sigma^2\tau$ fixes $\mathbf{Q}(\zeta_3\alpha)$. That is,

$$\mathbf{Q}(\zeta_3 \alpha) \subseteq \mathcal{F}(\langle \sigma^2 \tau \rangle) \tag{3}$$

(\subseteq) To show the reverse inclusion, let $\beta \in \mathfrak{F}(\langle \sigma^2 \tau \rangle) \subseteq K$. Because $\mathfrak{B} = (1, \alpha, \alpha^2, \zeta_3, \zeta_3 \alpha, \zeta_3 \alpha^2)$ is a **Q**-basis for K, there exist unique $a_{i,j} \in \mathbf{Q}$ such that

$$\begin{split} \beta &= \sum_{\substack{i \in \{0,1\},\\ j \in \{0,1,2\}}} \alpha_{i,j} \zeta_3^i \alpha^j \\ &= \alpha_{0,0} 1 + \alpha_{0,1} \alpha + \alpha_{0,2} \alpha^2 + \alpha_{1,0} \zeta_3 + \alpha_{1,1} \zeta_3 \alpha + \alpha_{1,2} \zeta_3 \alpha^2 \end{split} \tag{4}$$

Because $\sigma^2\tau\in Gal(K:\mathbf{Q})=Aut(K:\mathbf{Q})$, it is a field homomorphism that fixes all elements of \mathbf{Q} . In particular, it fixes each $\alpha_{i,j}$. Using these facts and our computation of $\sigma^2\tau$ on generators of $K:\mathbf{Q}$ in equation (2), we compute

$$\begin{split} \sigma^{2}\tau(\beta) &= \sigma^{2}\tau\left(\sum_{\substack{i \in \{0,1\},\\j \in \{0,1,2\}}} a_{i,j}\zeta_{3}^{i}\alpha^{j}\right) = \sum_{\substack{i \in \{0,1\},\\j \in \{0,1,2\}}} a_{i,j} \cdot (\sigma^{2}\tau(\zeta_{3}))^{i} \cdot (\sigma^{2}\tau(\alpha))^{j} \\ &= a_{0,0} \cdot 1 + a_{0,1} \cdot \sigma^{2}\tau(\alpha) + a_{0,2} \cdot (\sigma^{2}\tau(\alpha))^{2} \\ &\quad + a_{1,0} \cdot \sigma^{2}\tau(\zeta_{3}) + a_{1,1} \cdot \sigma^{2}\tau(\zeta_{3}) \cdot \sigma^{2}\tau(\alpha) + a_{1,2} \cdot \sigma^{2}\tau(\zeta_{3}) \cdot (\sigma^{2}\tau(\alpha))^{2} \\ &= a_{0,0}1 + a_{0,1}\zeta_{3}^{2}\alpha + a_{0,2}\zeta_{3}\alpha^{2} + a_{1,0}\zeta_{3}^{2} + a_{1,1}\zeta_{3}\alpha + a_{1,2}\alpha^{2} \\ &= a_{0,0}1 - a_{0,1}(1 + \zeta_{3})\alpha + a_{0,2}\zeta_{3}\alpha^{2} - a_{1,0}(1 + \zeta_{3}) + a_{1,1}\zeta_{3}\alpha + a_{1,2}\alpha^{2} \\ &= (a_{0,0} - a_{1,0})1 - a_{0,1}\alpha + a_{1,2}\alpha^{2} - a_{1,0}\zeta_{3} + (a_{1,1} - a_{0,1})\zeta_{3}\alpha + a_{0,2}\zeta_{3}\alpha^{2} \end{split}$$
 (5)

By hypothesis, $\beta \in \mathcal{F}(\langle \sigma^2 \tau \rangle)$, so

$$\sigma^2 \tau(\beta) = \beta$$

That is, the right sides of equations (4) and (5) are equal. Because \mathcal{B} is a **Q**-basis (so, in particular, it is linear independent over **Q**), for each basis element, the corresponding coefficients in these equations are equal. This gives a system of six linear equations in **Q**:

$$\begin{aligned} 1: \alpha_{0,0} &= \alpha_{0,0} - \alpha_{1,0} \\ \alpha: \alpha_{0,1} &= -\alpha_{0,1} \\ \alpha^2: \alpha_{0,2} &= \alpha_{1,2} \end{aligned} \qquad \begin{aligned} \zeta_3: \alpha_{1,0} &= -\alpha_{1,0} \\ \zeta_3\alpha: \alpha_{1,1} &= \alpha_{1,1} - \alpha_{0,1} \\ \zeta_3\alpha^2: \alpha_{1,2} &= \alpha_{0,2} \end{aligned}$$

This system of equations implies

$$a_{0,1} = 0$$
 $a_{1,0} = 0$ $a_{1,2} = a_{0,2}$ $a_{0,0}, a_{1,1} \in \mathbf{Q}$

(The final expression simply states that $a_{0,0}$ and $a_{1,1}$ are free parameters.) That is, if $\beta \in \mathcal{F}(\langle \sigma^2 \tau \rangle)$, then β has the form

$$\beta = a_{0,0}1 + a_{1,1}\zeta_3\alpha + a_{0,2}(\alpha^2 + \zeta_3\alpha^2)$$

for some $a_{0,0}$, $a_{1,1}$, $a_{0,2} \in \mathbf{Q}^{1}$.

The first two terms are in $\mathbf{Q}(\zeta_3\alpha)$. What about the last term? Using the relation $\zeta_3^2=-(1+\zeta_3)$, we compute

$$\alpha^2 + \zeta_3 \alpha^2 = (1 + \zeta_3) \alpha^2 = -\zeta_3^2 \alpha^2 = -(\zeta_3 \alpha)^2 \in \mathbf{Q}(\zeta_3 \alpha)$$

Recall that the columns of this matrix are the coefficients of the linear combination with respect to the chosen basis $\mathcal B$ of each basis vector in $\mathcal B$; that is, $M_{\mathcal B}(\sigma^2\tau(\zeta_3^i\alpha^j))$. Given an arbitrary $\beta\in K$, its unique **Q**-linear combination with respect to the basis $\mathcal B$ given in equation (4) writes as the 6×1 matrix (column vector)

$$M_{\mathbb{B}}(\beta) = \begin{pmatrix} \alpha_{0,0} & \alpha_{0,1} & \alpha_{0,2} & \alpha_{1,0} & \alpha_{1,1} & \alpha_{1,2} \end{pmatrix}^t$$

Multiplying $M_{\mathbb{B}}(\sigma^2\tau)$ by $M_{\mathbb{B}}(\beta)$ gives a 6×1 matrix, equal to $M_{\mathbb{B}}(\sigma^2\tau(\beta))$, whose entries are the coefficients in equation (5). Setting this matrix equal to $M_{\mathbb{B}}(\beta)$ gives the six linear equations we listed above.

Note that, in this matrix view, solving

$$M_{\mathcal{B}}(\sigma^2\tau)M_{\mathcal{B}}(\beta) = M_{\mathcal{B}}(\beta)$$

is equivalent to solving

$$(I - M_{\mathcal{B}}(\sigma^2 \tau))M_{\mathcal{B}}(\beta) = 0$$

where I denotes the 6×6 identity matrix. That is, to compute the fixed field of an element of the galois group, we can compute the eigenspace associated to the eigenvalue 1 for that element.

 $^{^1}$ If you like to think in matrices, then we can reinterpret our work here in that language. Having chosen a basis \mathcal{B} for the **Q**-vector space K, we get a matrix $M_{\mathcal{B}}(\sigma^2\tau)$ for the linear transformation $\sigma^2\tau: K \to K$. For our basis $\mathcal{B}=(1,\alpha,\alpha^2,\zeta_3,\zeta_3\alpha,\zeta_3\alpha^2)$, we get

Remember, $\mathbf{Q}(\zeta_3\alpha)$ denotes the field generated by $\zeta_3\alpha$ over \mathbf{Q} . It contains \mathbf{Q} and $\zeta_3\alpha$, and it is closed under the field operations. Thus, in particular, it also contains $(-1)(\zeta_3\alpha)^2$, as we asserted above. The same logic shows that $\beta \in \mathbf{Q}(\zeta_3\alpha)$. Because $\beta \in \mathcal{F}(\langle \sigma^2\tau \rangle)$ was arbitrary, we conclude that $\mathcal{F}(\langle \sigma^2\tau \rangle) \subseteq \mathbf{Q}(\zeta_3\alpha)$. Combining this with equation (3), we conclude that $\mathcal{F}(\langle \sigma^2\tau \rangle) = \mathbf{Q}(\zeta_3\alpha)$, as desired.