CHAPTER - 24 PRACTICAL CHEMISTRY

- KAl(SO₄), .12H₂O or K₂SO₄.Al₂(SO₄), .24H₂O
- Fe²⁺ can undergo hydrolysis. So while preparing aqueous solution of FeSO₄, dilute sulphuric acid is added to prevent hydrolysis of FeSO₄
- 3. 1 pH decreases gradually as NH4OH is a weak base
- 4. 3 Phenolphthalein dissociates in basic medium to produce pink colour
- 5. 1 In acidic medium, methyl orange exists in the quinonoid form
- 6. 1 Flame test for metals

The colour imparted to the flame are:

Ba → apple green

Ca → brick red

Sr→Crimson red

Cu → Green flame with blue centre

- 3 S⁻ dil.H₂SO₄ → H₂S ↑ (rotten egg smell)
- Griess-llosvay test confirms the presence of NO₂ by forming a red azo dye
- In the chromyl chloride test, a little amount of salt is mixed with an equal amount of solid K₂Cr₂O₇ and conc.H₂SO₄ is added to it.
- 10. 3 $SO_3^{2-} \xrightarrow{dil.H_2SO_4} SO_2 \uparrow (turns acidified K_2Cr_2O_7 green)$
- 11. 4 $CuSO_4 + borax \xrightarrow{\text{nonlu min ous} \atop \text{flame}} Cu(BO_2)_2 + SO_3$ Cupric metaborate
 Rive-arrogn
- 12. 2 $Cu^{2+} \rightarrow Group II A$ $Fe^{3+} \rightarrow Group III$ $Zn^{2+} \rightarrow Group IV$ $Ba^{2+} \rightarrow Group V$
- 13. 2 $K_1HgI_4 \rightarrow Nessler's reagent$
- 4 Zn²⁺ belongs to group-IV, thus group reagent is H₂S + NH₄OH
- Group-III cations precipitate as hydroxide (Al(OH)₃ and Fe(OH)₃)
- 16. 1 $X = PbCrO_4$ (yellow ppt); $Y = Na_2 [Pb(OH)_4]$
- 17. 1 A is copper sulphide

$$CuS + HNO_3 \longrightarrow Cu(NO_3)_2 + NO + S + H_2O$$

 $S + HNO_3 \xrightarrow{\text{Heat for}} H_2SO_4 + NO$

Thus, solution turns blue due to formation of CuSO₄

Brilliant STUDY CENTRE

18. 1
$$2\text{CuSO}_4 + \text{K}_2 \left[\text{Fe}(\text{CN}_6) \right] \longrightarrow \text{Cu}_2 \left[\text{Fe}(\text{CN})_6 \right] + 2\text{K}_2 \text{SO}_4$$

19. 3
$$Ni^{2+} + 2DMG - H \xrightarrow{2NH_4OH} \left[Ni(DMG)_2 \right] + 2H_2O^*$$
Brilliant red ppt.(neutral complex)

20. 2
$$\operatorname{ZnCl}_2 + \operatorname{K}_2 \left[\operatorname{Fe}(\operatorname{CN})_6 \right] \longrightarrow \operatorname{Zn}_2 \left[\operatorname{Fe}(\operatorname{CN})_6 \right]$$

- Since the second stage of titration consumed 5 mL of 0.1 N HCl, the original mixture should have contained 0.5 mmol of Na₂CO₃
- 22. 5 $FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2O \longrightarrow Fe^{2+} + 2NH_4^+ + 2SO_4^{2-} + 6H_2O$ Thus, total no.of ions produced = 5 mol

23. 2
$$H_2O_2 + K_2CrO_4 \xrightarrow{H^*} CrO_5$$
 (Blue)

Structure of
$$CrO_5$$
 is O
 Cr
 O
 Cr
 O

- 24. 3 Brown ring complex is, $\left[\text{Fe} \left(\text{H}_2 \text{O} \right)_5 \left(\text{NO} \right) \right]^{2+}$
 - Oxidation state of Fe is +1, thus Fe has three unpaired electrosn (d7 configuration)
- 25. 3 Acids 3, 4 and 5 can react with NaHCO₃, thus dissolve due to salt formation

Ag NO₃
$$\xrightarrow{\text{Nocl aq}}$$
 Ag cl L

Pb NO₃ $\xrightarrow{\text{""" Pbcl_3 L}}$

(2)

Ag cl + 2N 2 5 2 3 $\xrightarrow{\text{Nog}}$ No₃ (Ag (523)₂) + Nocl

Pbcl₃ + 2k 5 $\xrightarrow{\text{Pbcl_3 L}}$ Ag (4lbc)

(dot)

31. A 32. B 33. C

Brilliant STUDY CENTRE

BCD Has is soluble in aqua-regia AC Mg (NH4) po4 is a white precepitate

74600