IN.5022 — Concurrent and Distributed Computing

Graph Algorithms: Distributed Shortest Path

Prof. P. Felber

pascal.felber@unine.ch

Agenda

- Graph algorithms
- Distributed shortest path
 - Chandy-Misra's algorithm
 - Support for negative weights/cycles

Graph algorithms

- Graph algorithms are at the core of distributed systems and networks: a "topology" can be represented by a graph
 - Internet routing relies on routers (vertices) interconnected via communication links (edges)
 - "Virtual" networks (e.g., social, Web) are also graphs
- Many problems can be solved using graph algorithms
 - Routing: shortest path computation
 - Broadcasting: spanning tree computation
 - Streaming: maximum flow computation
 - Robustness: disjoint paths computation
 - And more...

Shortest path in directed weighted graphs

- In a directed weighted graph G(V,E), what is the shortest distance L_i from a specific vertex v₁ to all other vertices v_i along the weighted edges of the graph?
 - Direct applicability to network routing, navigation systems, planning of itineraries...
 - Basic algorithm based on exploration [Dijkstra, 1959]
 - Algorithm for distributed shortest path computation [Chandy-Misra, 1982]

Example: Chandy-Misra's shortest path [1982]

- Distributed algorithm for shortest path
 - Refinement of the Bellman-Ford algorithm to compute ARPANET routes in the 60s-70s
 - Assumes a static network topology of nodes with asynchronous message passing
 - Each vertex v_j is an independent process p_j
 - Edges have weights (cost of communication)
 - Processes exchange message along edges
 - Process p_1 (vertex v_1) initiates computation
 - Each process $p_{j>1}$ can compute the shortest path (minimal cost) to the source node p_1

https://citeseerx.ist.psu.edu/...
...viewdoc/summary?doi=10.1.1.104.8179

Algorithm: model

- Consider a graph G=(V,E) representing a network of processes
 - Processes p_j and p_k are neighbours if the edge (v_j, v_k) or (v_k, v_j) exists in G
 - Process p_j only knows its successor neighbours N_j and the weight w_{jk} for each outgoing edge (v_i, v_k)
 - The best knowledge of node j about its distance to node 1 via the shortest path is denoted by d_i
 - We initially assume no negative edges

Algorithm: state

- Each process p_i maintains local state
 - d_j initially = ∞
 Best known distance from p₁ computed so far by p_i at this point
 - pred_j initially = \(\perp \) (i.e., undefined)
 Predecessor node from which d_j was received, i.e., next to last vertex on the shortest path from p₁ to p_j computed so far
 - num_j initially = 0
 Number of non-acknowledged messages sent by this process (ACKs needed to ensure termination and handle "negative cycles")

Algorithm: basic principle

- Processes incrementally compute their distance from the source p₁
- When $p_{i>1}$ receives distance d from p_i
 - If d is smaller than the best known distance d_j computed so far ...

...then update best known distance d_i...

...remember parent $pred_i = p_i$ along path...

- ...and send new distance $d_k = d_j + w_{jk}$ to each successor neighbour p_k
- Otherwise do nothing
- Initially: p_1 sends w_{1k} to each $p_k \in N_1$

Algorithm: adding ACKs (termination)

- At source p₁
 - Set num_1 to $|N_1|$ after sending initial message to all successors
 - Upon receiving ACK, decrement num₁ and, if 0, terminate protocol (phase II) by propagating STOP message
- At non-source p_i
 - Increment num; after sending new distance to each successor pk
 - Upon receiving new distance from p_i , if smaller than d_j send ACK to previous pred_i before updating it, otherwise send ACK to p_i
 - Upon receiving ACK, decrement num; and, if 0, send ACK to pred;
- Each distance message gets one ACK (immediate or delayed)

Pseudo-code: state and initialisation

- Distance d decreases from
 ∞ until converging to the shortest path
- Initially parent node pred on shortest path is undefined and there are no missing ACKs yet (num = 0)
- Variable s is the new (possibly shorter) distance received via incoming edge

```
program shortest path
define
  d, s: distance % s: new distance received
  pred : process
  num : integer
  N : set of processes
                               % N: successors
initially
  d = \infty
  pred = \bot
  num = 0
```

Pseudo-code: source p₁

- The source process p₁ initiates the protocol
- Upon receiving new distance, simply send ACK (source cannot get better distance with non-negative weights)
- Source keeps track of missing ACKs and, when reaching 0, initiates phase II (propagate STOP message)

```
% Program for process p_1 (source) \forall p_k \in N : \text{send } \{w_{1k}, 1\} \text{ to } p_k  num := |N| do \Rightarrow \{s, i\} \Rightarrow \text{send } ACK \text{ to } p_i  % p_1 just acks \Rightarrow ACK \Rightarrow \text{num } := \text{num } -1 \text{ % one less } ack \text{ to } go \Rightarrow \text{num } = 0 \Rightarrow \forall p_k \in N : \text{send STOP to } p_k, \text{ exit } od
```

Pseudo-code: regular nodes p_{i>1}

- Non-source process p_j gets new distance s from p_i
 - If better, we switch parent
 - Send ACK to previous parent
 - Update pred and d
 - Propagate new distances and update missing ACKs as needed
 - If worse, just send ACK
- Upon ACK, decrement num
- If no missing ACK, send ACK once to parent (termination)

```
% Program for process p_j \neq p_1
do
\gg \{s,i\} AND s < d \rightarrow \% new s \notin rom p_i: better
  if num > 0 \rightarrow
     send ACK to pred % ack before switching
  fi
  pred := i
                            % switch to new parent
  d := s
  \forall p_k \in N : send \{d+w_{jk}, j\} \text{ to } p_k
  num := num + |N|
\gg \{s,i\} AND s \ge d \rightarrow send ACK to p_i
                                                  % worse
» ACK → num := num - 1
\Rightarrow num = 0 AND pred ≠ \bot \Rightarrow send ACK to pred
\Rightarrow STOP \Rightarrow \forall p_k \in N : send STOP to p_k, exit
```

Complete pseudo-code of algorithm

```
program shortest path
define
                                                   do
  d, s: distance % s: new distance received » \{s,i\} AND s < d \rightarrow % new s from p_i: better
  pred : process
  num : integer
  N: set of processes % N: successors
                                                    fi
initially
  d = \infty, pred = \perp, num = 0
% Program for process p_1 (source)
\forall p_k \in N : send \{w_{1k}, 1\} \text{ to } p_k
num := |N|
do
» \{s,i\} → send ACK to p_i % p_i just acks » STOP → \forall p_k \in N : send STOP to p_k, exit
» ACK → num := num - 1 % one less ack to go
» num = 0 → \forall p_k \in N : send STOP to p_k, exit
od
```

```
% Program for process p_i \neq p_1
  if num > 0 \rightarrow
    send ACK to pred % ack before switching
  d := s
  \forall p_k \in N : send \{d+w_{jk}, j\} \text{ to } p_k
  num := num + |N|
\gg \{s,i\} AND s \ge d \rightarrow send ACK to p_i \% worse
>> ACK → num := num - 1
\gg num = 0 AND pred \neq \perp \rightarrow send ACK to pred
```

Why does it work (without negative weights)?

- Intuitively... [correctness]
 - The best-known distance d at each process p_i only decreases
 - Whenever a node learns about a better distance, it informs its neighbours, hence providing them with possibly shorter paths
 - A node will change parent only if it receives a shorter path
 - When a node stops receiving new paths, d is the shortest distance from p_1 to p_j and its parent is the next to last node on that path
- Intuitively... [termination]
 - A node sends ACK when it has no outstanding ACKs downstream or when discarding a parent (if path is worse or before switching)
 - Hence each distance message sent will result in exactly one ACK

Supporting negative weights

- Negative weights can create negative cycles that decrease the distance
 - The shortest path will become negative and ultimately tend toward -∞
 - The challenge is to detect such cycles
- The Chandy-Misra algorithm exploits properties of ACKs (and distances)
 - In cycles, shorter distances are continuously sent without being acknowledged (num > 0)
 - Outside the cycle, all processes (incl. p₁) eventually have num = 0

Supporting negative weights

- Principle: a cycle is detected by the source in 2 cases
 - 1. The source p_1 receives a negative path: p_1 is in a negative cycle (num₁ > 0)
 - 2. If the source initiates phase II with all ACKs received ($num_1 = 0$) and some node p_i has missing ACKs: p_i is in a negative cycle but not p_1

The case of p_i receiving a negative path is subsumed by case 2

 Negative weights are not a problem if they do not create negative cycles (why?)

Adapting the algorithm for negative cycles

- Phase II propagates 2 types of messages
 - STOP ("Over?" in [CM82]): source starts phase II, nodes must check for negative cycles
 - CYCLE ("Over—" in [CM82]): negative cycle was detected
 - Nodes set d to $-\infty$ to indicate that cycle was found (avoid re-propagation)
- Source initiates phase II with STOP or CYCLE (if detected)
- When receiving STOP (node p_{i>1})
 - If num = 0 and $d \neq -\infty$, propagate STOP
 - If num > 0 and $d \neq -\infty$, set $d = -\infty$ and propagate CYCLE
- When receiving CYCLE (node p_{i>1})
 - If $d \neq -\infty$, set $d = -\infty$ and propagate CYCLE

Example

- Source starts phase II with regular STOP message
 - Normal propagation of STOP until encountering the cycle (B,D,E) at D
 - Node D detects cycles and switch to propagation of CYCLE message
 - Nodes only propagate CYCLE messages if they did not already (i.e., if d is not -∞)
- If source detects cycle in phase I (by receiving a negative shorter path) it immediately propagates CYCLE in phase II

Summary

- Graph algorithms are ubiquitous in distributed systems
 - Application to all types of network problems (not just "physical")
 - Classical model: vertices are processes, edges are channels
- A fundamental problem: distributed shortest path
 - Chandy-Misra algorithm [1982]
 - Simple version without termination (Bellman-Ford)
 - Adding termination
 - Handling negative cycles
 - Implementation in Erlang/Elixir is a direct mapping of pseudo-code