

Times: Friday 2020-02-07 at 09:30 to 10:20

Duration: 50 minutes Exam ID: 4449268

Sections: STAT 341 LEC 001 Instructors: Nathaniel Stevens

Examination Test Winter 2020 STAT 341

Special Materials

Candidates may bring only the listed aids.

· Calculator - Pink Tie

Instructions:

- You have 50 minutes to complete this test.
- This test consists of 6 questions and 8 pages (including this cover page).
- Page 8 contains additional space for rough work. DO NOT use this page for anything that you would like to have marked.
- Numeric answers should be rounded to four decimal places (unless the answer is exact to fewer than four decimal places).
- Incorrect answers may receive partial credit if your work is shown. An incorrect answer with no work shown will receive 0 points.

Question	Points
Q1	4
Q2	6
Q3	4
Q4	3
Q5	5
Q6	8
Total	30

•	Please identify	vourself by	signing h	ere:	

1. [4 points] Consider the population $\mathcal{P} = \{y_1, \dots, y_N\}$ and the attribute $a(\mathcal{P})$.

(a) [1 point] What	t does it mean for $a(\mathcal{P})$ to be location	-scale equivariant?	
(b) [3 points] Support therefore locate	pose that the attribute $a(\mathcal{P})$ is location-scale equivariant.	n equivariant and scale equiv	variant. Show that $a(\mathcal{P})$ is

- 2. [6 points] This question concerns sensitivity analysis.
 - (a) [1 points] Given a population $\mathcal{P} = \{y_1, \dots, y_{N-1}\}$ and an attribute $a(\mathcal{P})$, define the sensitivity curve for the attribute.

(b) [5 points] Consider the population above and assume N is odd (i.e., N=2m+1). The order statistics in this case are $y_{(1)} \le y_{(2)} \le \cdots \le y_{(N-1)}$ and the median can be written as

$$a(\mathcal{P}) = a(y_1, \dots, y_{N-1}) = \frac{y_{(m)} + y_{(m+1)}}{2}$$

i. [3 points] Derive the median's sensitivity curve.

ii. [1 point] Sketch this sensitivity curve.

iii. [1 point] From this curve, what do you conclude about the median's resistance to outliers in y?

3.	[4 points] Consider	the population	$\mathcal{P} = \{y_1, \dots$	$.,y_N\},$	and the	following t	two a	ttributes	that	measure	its s	pread.
	The first a	ttribute is	the standard de	eviation defi	ned as								

$$a_1(\mathcal{P}) = \sqrt{\frac{\sum_{u \in \mathcal{P}} (y_u - \overline{y})^2}{N}}$$

and the second attribute is the interdecile range (the difference between the first and ninth deciles)

$$a_2(\mathcal{P}) = Q_y(0.9) - Q_y(0.1)$$

where $Q_y(p)$ is the $100 \times p\%$ quantile of the population.

(a) [1 point] Define the breakdown point for a population attribute.

(b) [2 points] Determine the breakdown point for both attributes $a_1(\mathcal{P})$ and $a_2(\mathcal{P})$. Provide rationale for your answer.

(c) [1 point] Given your answers in part (b), which attribute is more robust (i.e., resistent to outliers) and why?

- 4. [3 points] Wayne Gretzky "The Great One" is a Canadian former professional ice hockey player. He played 20 seasons in the National Hockey League (NHL) and he is considered to be the greatest hockey player ever. Below is a quantile plot of the N=894 goals he scored during his time in the NHL. In particular, we examine the times (in seconds) at which the goals occurred in a sixty-minute game.
 - (a) [1 point] Using this plot provide an estimate of the interquartile range.

(b) [1 points] Using your answer from (a) together with the Freedman-Diaconis Rule, explain why when creating a histogram of these data, 10 bins would be a sensible choice.

(c) [1 point] Using the axes below, construct a histogram for these data using 10 bins. (Hint: Consider concentration boxes and the connection between quantile plots and histograms.)

5.	[5 points] This question concerns the implicitly defined attribute $\theta \in \mathbb{R}^k$ in population \mathcal{P} .
	(a) [1 point] Provide the objective function-based definition of $\widehat{\boldsymbol{\theta}}$. Define any notation that you use.
	(b) [1 point] Provide the system of equations-based definition of $\hat{\theta}$. Define any notation that you use.
	(c) [3 points] In point form, describe the batch-stochastic gradient descent algorithm. Define any notation that you use.

[1 point] The ratio of two scale equivariant attributes is a scale invariant attribute.i. Trueii. False
[1 point] A relative-frequency histogram (where the height of each bar reflects the proportion of data lying in the bin) is replication invariant.i. Trueii. False
[1 point] When evaluating a population attribute, the notions of <i>influence</i> and <i>sensitivity</i> are the same. i. True ii. False
[1 point] Consider the population $\mathcal{P} = \{y_1, \dots, y_N\}$. Suppose that a histogram of this data is left-skewed (i.e. negatively skewed). If we wanted to use a power transformation to make the histogram more symmetric, we should use a power that is less than 1. i. True ii. False
[1 point] Compared to batch-sequential gradient descent, batch-stochastic gradient descent is less senstive to outliers in the data. i. True ii. False
[1 point] Consider the objective function $\rho(\theta)=2\theta^2-5\theta+3$. Stochastic gradient descent would be a useful technique for determining $ \operatorname*{argmin}_{\theta\in\mathbb{R}}\rho(\theta) $ i. True ii. False
II. Paise
[1 point] In objective function-minimization problems, the Newton-Raphson algorithm can be viewed as a form of gradient descent. i. True ii. False
[1 point] Iteratively reweighted least squares is a root-finding algorithm.i. Trueii. False

This space is left for rough work

STAT 341 Winter 2020 Test	
© 2020 University of Waterloo	