6.172
Performance
Engineering
of Software
Systems

LECTURE 14

Caching and Cache-Efficient Algorithms

Julian Shun

SPEED LIMIT

CACHE HARDWARE

Multicore Cache Hierarchy

Fully Associative Cache

To find a block in the cache, the entire cache must be searched for the tag. When the cache becomes full, a block must be evicted to make room for a new block. The replacement policy determines which block to evict.

Direct-Mapped Cache

address

bits

tag	set	offset
w – $\lg \mathcal{M}$	$\lg(\mathcal{M}/\mathcal{B})$	$\operatorname{Ig} \mathcal{B}$

To find a block in the cache, only a single location in the cache need be searched.

Set-Associative Cache

address

bits

tag	set	offset
w – $\lg(\mathcal{M}/k)$	$lg(\mathcal{M}/k\mathcal{B})$	$\operatorname{Ig} \mathcal{B}$

To find a block in the cache, only the k locations of its set must be searched.

Taxonomy of Cache Misses

Cold miss

The first time the cache block is accessed.

Capacity miss

 The previous cached copy would have been evicted even with a fully associative cache.

Conflict miss

 Too many blocks from the same set in the cache. The block would not have been evicted with a fully associative cache.

Sharing miss

- Another processor acquired exclusive access to the cache block.
- True-sharing miss: The two processors are accessing the same data on the cache line.
- False-sharing miss: The two processors are accessing different data that happen to reside on the same cache line.

Conflict Misses for Submatrices

Assume:

- Word width w = 64.
- Cache size $\mathcal{M} = 32K$.
- Line (block) size $\mathcal{B} = 64$.
- k=4-way associativity.

Conflict misses can be problematic for caches with limited associativity.

address

bits

tag	set	offset
$w - \lg(\mathcal{M}/k)$	$g(\mathcal{M}/k\mathcal{B})$	$\operatorname{Ig} \mathcal{B}$
51	7	6

Analysis

Look at a column of submatrix A. The addresses of the elements are

$$x, x+2^{15}, x+2\cdot2^{15}, ..., x+31\cdot2^{15}$$
.

They all fall into the same set!

Solutions

Copy A into a temporary 32×32 matrix, or pad rows.

SPEED LIMIT

IDEAL-CACHE MODEL

Ideal-Cache Model

Parameters

- Two-level hierarchy.
- Cache size of M bytes.
- Cache-line length of B bytes.
- Fully associative.
- Optimal, omniscient replacement.

Performance Measures

- work W (ordinary running time)
- cache misses Q

How Reasonable Are Ideal Caches?

"LRU" Lemma [ST85]. Suppose that an algorithm incurs Q cache misses on an ideal cache of size 𝒯. Then on a fully associative cache of size 2𝒯 that uses the least-recently used (LRU) replacement policy, it incurs at most 2Q cache misses. ■

Implication

For asymptotic analyses, one can assume optimal or LRU replacement, as convenient.

Software Engineering

- Design a theoretically good algorithm.
- Engineer for detailed performance.
 - Real caches are not fully associative.
 - Loads and stores have different costs with respect to bandwidth and latency.

Cache-Miss Lemma

Lemma. Suppose that a program reads a set of r data segments, where the ith segment consists of s_i bytes, and suppose that

$$\sum_{\mathrm{i}=1}^{\mathrm{r}}\mathrm{s_{\mathrm{i}}}=\mathrm{N}<\mathcal{M}/\mathrm{3}$$
 and $\mathrm{N/r}\geq\mathcal{B}$.

Then all the segments fit into cache, and the number of misses to read them all is at most $3N/\mathcal{B}$.

Proof. A single segment s_i incurs at most $s_i/\mathcal{B}+2$ misses, and hence we have

$$\sum_{i=1}^{r} s_i/\mathcal{B} \quad 2 = N/\mathcal{B} \quad 2r$$

$$= N/\mathcal{B} \quad 2r\mathcal{B})/\mathcal{B}$$

$$= N/\mathcal{B} \quad 2N/\mathcal{B} \quad 2N/\mathcal{B}$$

$$= 3N/\mathcal{B}.$$

Tall Caches

Tall-cache assumption

 $\mathcal{B}^2 < c \mathcal{M}$ for some sufficiently small constant $c \le 1$.

Example: Intel Xeon E5-2666 v3

- Cache-line length = 64 bytes.
- L1-cache size = 32 Kbytes.

What's Wrong with Short Caches?

Tall-cache assumption

 $\mathcal{B}^2 < c\mathcal{M}$ for some sufficiently small constant $c \leq 1$.

An $n \times n$ submatrix stored in row-major order may not fit in a short cache even if $n^2 < c\mathcal{M}$!

Submatrix Caching Lemma

Lemma. Suppose that an $n \times n$ submatrix A is read into a tall cache satisfying $\mathcal{B}^2 < c\mathcal{M}$, where $c \le 1$ is constant, and suppose that $c\mathcal{M} \le n^2 < \mathcal{M}/3$. Then A fits into cache, and the number of misses to read all A's elements is at most $3n^2/\mathcal{B}$.

Proof. We have $N = n^2$, $n = r = s_i$, $\mathcal{B} \le n = N/r$, and $N < \mathcal{M}/3$. Thus, the Cache-Miss Lemma applies.

CACHE ANALYSIS OF MATRIX MULTIPLICATION

Multiply Square Matrices

```
void Mult(double *C, double *A, double *B, int64_t n) {
  for (int64_t i=0; i < n; i++)
    for (int64_t j=0; j < n; j++)
     for (int64_t k=0; k < n; k++)
        C[i*n+j] += A[i*n+k] * B[k*n+j];
}</pre>
```

Analysis of work

$$W(n) = \Theta(n^3)$$
.

Assume row major and tall cache

Case 1

 $n > c\mathcal{M}/\mathcal{B}$.

Analyze matrix B. Assume LRU.

 $Q(n) = \Theta(n^3)$, since matrix B misses on every access.

```
void Mult(double *C, double *A, double *B, int64_t n) {
  for (int64_t i=0; i < n; i++)
    for (int64_t j=0; j < n; j++)
    for (int64_t k=0; k < n; k++)
        C[i*n+j] += A[i*n+k] * B[k*n+j];
}</pre>
```

Assume row major and tall cache

Case 2

 $c'\mathcal{M}^{1/2} < n < c\mathcal{M}/\mathcal{B}$.

Analyze matrix B. Assume LRU.

 $Q(n) = n \cdot \Theta(n^2/\mathcal{B}) = \Theta(n^3/\mathcal{B})$, since matrix B can exploit spatial locality.

```
void Mult(double *C, double *A, double *B, int64_t n) {
   for (int64_t i=0; i < n; i++)
      for (int64_t j=0; j < n; j++)
      for (int64_t k=0; k < n; k++)
            C[i*n+j] += A[i*n+k] * B[k*n+j];
}</pre>
```

Assume row major and tall cache

Case 3

 $n < c' \mathcal{M}^{1/2}$.

Analyze matrix B. Assume LRU.

 $Q(n) = \Theta(n^2/B)$, since everything fits in cache!

Swapping Inner Loop Order

```
void Mult(double *C, double *A, double *B, int64_t n) {
  for (int64_t i=0; i < n; i++)
    for (int64_t k=0; k < n; k++)
    for (int64_t j=0; j < n; j++)
        C[i*n+j] += A[i*n+k] * B[k*n+j];
}</pre>
```

Assume row major and tall cache

Analyze matrix B. Assume LRU.

 $Q(n) = n \cdot \Theta(n^2/\mathcal{B}) = \Theta(n^3/\mathcal{B})$, since matrix B can exploit spatial locality.

SPEED LIMIT PER ORDER OF 6.172

TILING

Tiled Matrix Multiplication

Analysis of work

• Work W(n) = $\Theta((n/s)^3(s^3))$ = $\Theta(n^3)$.

Tiled Matrix Multiplication

Analysis of cache misses

- Tune s so that the submatrices just fit into cache \Rightarrow s = $\Theta(\mathcal{M}^{1/2})$.
- Submatrix Caching Lemma implies $\Theta(s^2/B)$ misses per submatrix.
- Q(n) = $\Theta((n/s)^3(s^2/\mathcal{B}))$ = $\Theta(n^3/(\mathcal{BM}^{1/2}))$. Remember
- Optimal [нкв1].

Tiled Matrix Multiplication

Analysis of cache misses

- Tune \ddot{s} so that the submatrices just fit into cache $\Rightarrow s = \Theta(\mathcal{M}^{1/2})$.
- Submatrix Caching Lemma implies $\Theta(s^2/B)$ misses per submatrix.

this!

- Q(n) = $\Theta((n/s)^3(s^2/B))$ = $\Theta(n^3/(BM^{1/2}))$. Remember
- Optimal [нкв1].

Two-Level Cache

Two-Level Cache

Three-Level Cache

SPEED LIMIT

DIVIDE & CONQUER

Recursive Matrix Multiplication

Divide-and-conquer on $n \times n$ matrices.

8 multiply-adds of $(n/2) \times (n/2)$ matrices.

Recursive Code

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
             int64_t n, int64_t rowsize) {
  if (n == 1)
                                       Coarsen base case to
   C[0] += A[0] * B[0]:
  else {
                                        overcome function-
    int64_t d11 = 0;
                                           call overheads.
    int64_t d12 = n/2;
    int64_t d21 = (n/2) * rowsize;
    int64_t d22 = (n/2) * (rowsize+1);
   Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
    Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
   Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
```

Recursive Code

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
              int64_t n, int64_t rowsize) {
  if (n == 1)
   C[0] += A[0] * B[0]:
  else {
    int64_t d11 = 0;
                                                        21
                                                             22
    int64_t d12 = n/2;
    int64_t d21 = (n/2) * rowsize;
                                                      rowsize
    int64_t d22 = (n/2) * (rowsize+1);
    Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
    Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
    Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
} }
```

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
              int64_t n, int64_t rowsize) {
  if (n == 1)
    C[0] += A[0] * B[0];
  else {
    int64_t d11 = 0;
    int64_t d12 = n/2;
    int64_t d21 = (n/2) * rowsize;
    int64_t d22 = (n/2) * (rowsize+1);
    Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
    Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
    Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
} }
```

$$W(n) = 8W(n/2) + \Theta(1)$$

$$= \Theta(n^3)$$

$$W(n) = 8W(n/2) + \Theta(1)$$

recursion tree W(n)

$$W(n) = 8W(n/2) + \Theta(1)$$

$$W(n) = 8W(n/2) + \Theta(1)$$

$$W(n) = 8W(n/2) + \Theta(1)$$

Note: Same work as looping versions.

$$W(n) = \Theta(n^3)$$

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
              int64_t n, int64_t rowsize) {
  if (n == 1)
    C[0] += A[0] * B[0];
  else {
    int64_t d11 = 0;
    int64_t d12 = n/2;
    int64_t d21 = (n/2) * rowsize;
    int64_t d22 = (n/2) * (rowsize+1);
    Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize),
    Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    Rec_Mult(C+d22, A+d21, B+d12, n/2, powsize);
    Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
} }
```

Submatrix Caching Lemma

$$Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) & \text{if } n^2 < c\mathcal{M} \text{ for suff. small const } c \leq 1, \\ 8Q(n/2) + \Theta(1) & \text{otherwise.} \end{cases}$$

$$Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \le 1, \\ 8Q(n/2) + \Theta(1) \text{ otherwise.} \end{cases}$$

recursion tree Q(n)

$$Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \le 1, \\ 8Q(n/2) + \Theta(1) \text{ otherwise.} \end{cases}$$

$$Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \le 1, \\ 8Q(n/2) + \Theta(1) \text{ otherwise.} \end{cases}$$

$$Q(n) = \begin{cases} \Theta(n^2/\mathcal{B}) \text{ if } n^2 < c\mathcal{M} \text{ for suff. small const } c \le 1, \\ 8Q(n/2) + \Theta(1) \text{ otherwise.} \end{cases}$$

Same cache misses as with tiling!

$$Q(n) = \Theta(n^3/\mathcal{BM}^{1/2})$$

Efficient Cache-Oblivious Algorithms

- No voodoo tuning parameters.
- No explicit knowledge of caches.
- Passively autotune.
- Handle multilevel caches automatically.
- Good in multiprogrammed environments.

Matrix multiplication

The best cache-oblivious codes to date work on arbitrary rectangular matrices and perform binary splitting (instead of 8-way) on the largest of i, j, and k.

Recursive Parallel Matrix Multiply

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
              int64_t n, int64_t rowsize) {
  if (n == 1)
    C[0] += A[0] * B[0];
  else {
    int64_t d11 = 0;
    int64_t d12 = n/2;
    int64_t d21 = (n/2) * rowsize;
    int64_t d22 = (n/2) * (rowsize+1);
    cilk_spawn Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
    cilk_sync;
    cilk_spawn Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
    cilk_sync;
} }
```

Cilk and Caching

Theorem. Let Q_P be the number of cache misses in a deterministic Cilk computation when run on P processors, each with a private cache of size \mathcal{M} , and let S_P be the number of successful steals during the computation. In the ideal–cache model, we have

$$Q_P = Q_1 + O(S_P \mathcal{M}/\mathcal{B})$$
,

where \mathcal{M} is the cache size and \mathcal{B} is the size of a cache block.

Proof. After a worker steals a continuation, its cache is completely cold in the worst case. But after \mathcal{M}/\mathcal{B} (cold) cache misses, its cache is identical to that in the serial execution. The same is true when a worker resumes a stolen subcomputation after a cilk_sync. The number of times these two situations can occur is at most $2S_P$. \blacksquare $S_P = O(PT_{\infty})$ in expectation

MORAL: Minimizing cache misses in the serial elision essentially minimizes them in parallel executions.

Recursive Parallel Matrix Multiply

```
// Assume that n is an exact power of 2.
void Rec_Mult(double *C, double *A, double *B,
              int64_t n, int64_t rowsize) {
  if (n == 1)
    C[0] += A[0] * B[0];
  else {
    int64_t d11 = 0;
    int64_t d12 = n/2;
    int64_t d21 = (n/2) * rowsize;
    int64_t d22 = (n/2) * (rowsize+1);
    cilk_spawn Rec_Mult(C+d11, A+d11, B+d11, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d21, A+d22, B+d21, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d12, A+d11, B+d12, n/2, rowsize);
    Rec_Mult(C+d22, A+d22, B+d22, n/2, rowsize);
    cilk_sync;
    cilk_spawn Rec_Mult(C+d11, A+d12, B+d21, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d21, A+d21, B+d11, n/2, rowsize);
    cilk_spawn Rec_Mult(C+d12, A+d12, B+d22, n/2, rowsize);
    Rec_Mult(C+d22, A+d21, B+d12, n/2, rowsize);
    cilk_sync;
} }
```

```
Span: T_{\infty}(n) = 2T_{\infty}(n/2) + \Theta(1)
= \Theta(n)
```

Cache misses:
$$Q_p = Q_1 + O(S_p \mathcal{M}/\mathcal{B})$$

= $\Theta(n^3/\mathcal{B}\mathcal{M}^{1/2}) + O(Pn \mathcal{M}/\mathcal{B})$

Summary

- Associativity in caches
- Ideal cache model
- Cache–aware algorithms
 - Tiled matrix multiplication
- Cache-oblivious algorithms
 - Divide-and-conquer matrix multiplication
- Cache efficiency analysis in Homework 8