Course 3

Regular Languages

Why?

- 1. Search engine succes of Google
- 2. Unix commands
- 3. Programming languages new feature

Remember

• Grammar

• Finite automaton

$$G=(N,\Sigma,P,S)$$

$$M = (Q, \Sigma, \delta, q_0, F)$$

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow w \}$$

$$L(M)=\{ w \in \Sigma^* \mid (q_0,w) \vdash (q_f,\varepsilon), q_f \in F \}$$

Remember: Regular grammars

• G = (N, Σ, P, S) right linear grammar if

 $\forall p \in P: A \rightarrow aB \text{ or } A \rightarrow b, \text{ where } A,B \in N \text{ and } a,b \in \Sigma$

- $G = (N, \Sigma, P, S)$ regular grammar if
 - G is right linear grammar and
 - A $\rightarrow \varepsilon \notin P$, with the exception that S $\rightarrow \varepsilon \in P$, in which case S does not appear in the rhs (right hand side) of any other production
- $L(G) = \{w \in \Sigma^* \mid S^* = > w\}$ right linear language

Regular languages / sets

Theorem 1: For any regular grammar $G=(N, \Sigma, P, S)$ there exists a FA $M=(Q, \Sigma, \delta, q_0, F)$ such that L(G) = L(M)

```
Proof: construct M based on G
Q = N \cup \{K\}, K \notin N
q_0 = S
F = \{K\} \cup \{S \mid \text{if } S \rightarrow \varepsilon \in P\}
```

$$\delta$$
: if A \rightarrow aB \in P then δ (A,a) = B if A \rightarrow a \in P then δ (A,a) = K

```
Prove that L(G) = L(M) (w \in L(G) \Leftrightarrow w \in L(M)):

S \stackrel{*}{\Rightarrow} w \Leftrightarrow (S, w) \stackrel{*}{\vdash} (qf, \varepsilon)

w = \varepsilon : S \stackrel{*}{\Rightarrow} \varepsilon \Leftrightarrow (S, \varepsilon) \stackrel{*}{\vdash} (S, \varepsilon) - \text{true}

w = a_1 a_2 \dots a_n : S \stackrel{*}{\Rightarrow} w \Leftrightarrow (S, w) \stackrel{*}{\vdash} (K, \varepsilon)

S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \dots \Rightarrow a_1 a_2 \dots a_{n-1} A_{n-1} \Rightarrow a_1 a_2 \dots a_{n-1} a_n

S \Rightarrow a_1 A_1 \text{ exists if } S \Rightarrow a_1 A_1 \text{ and then } \delta(S, a_1) = A_1

A_1 \Rightarrow a_2 A_2 : \delta(A_1, a_2) = A_2 \dots

A_{n-1} \Rightarrow a_n : \delta(A_{n-1}, a_n) = K

(S, a_1 a_2 \dots a_n) \vdash (A_1, a_2 \dots a_n) \vdash (A_2, a_3 \dots a_n) \vdash \dots \vdash (A_{n-1}, a_n) \vdash (K, \varepsilon), K \in F
```

Theorem 2: For any FA M=(Q, Σ , δ , q₀,F) there exists a regular grammar G=(N, Σ , P, S) such that L(G) = L(M)

```
P: if \delta(q,a) = p then q \rightarrow ap \in P
 Proof: construct G based on M
                                                                                                                if p \in F then q \rightarrow a \in P
N = Q
                                                                                                                if q_0 \in F then S \rightarrow \varepsilon
S = q_0
Prove that L(M) = L(G) (w \in L(M) \Leftrightarrow w \in L(G)):
P(i): q \stackrel{i+1}{\Rightarrow} x \Leftrightarrow (q,x) \stackrel{i}{\vdash} (q_f, \varepsilon), q_f \in F -prove by induction
Apply P: q_0 \stackrel{i+1}{\Rightarrow} w \Leftrightarrow (q_0,w) \stackrel{i}{\vdash} (q_f, \varepsilon), q_f \in F
If i=0: q \Rightarrow x \Leftrightarrow (q,x) \stackrel{\mathbf{0}}{\vdash} (q_f, \varepsilon) (x = \varepsilon, q = q_f) q \Rightarrow \varepsilon \Leftrightarrow q_0 \rightarrow \varepsilon, q_0 \in F
Assume ∀ k≤i P is true
q \stackrel{i+1}{\Rightarrow} x \Leftrightarrow (q,x) \stackrel{i}{\vdash} (q_f, \varepsilon)
For q \in N apply "\Rightarrow": q \Rightarrow ap \Rightarrow ax
If q \Rightarrow ap then \delta(q,a) = p; if p \stackrel{i}{\Rightarrow} ax then (p,x) \stackrel{l^{-1}}{\vdash} (q_f, \varepsilon), qf \in F
```

THEN $(q,ax) \stackrel{i}{\vdash} (q_f, \varepsilon)$, $qf \in F$

Regular sets

Definition: Let Σ be a finite alphabet. We define <u>regular sets</u> over Σ recursively in the following way:

- 1. ϕ is a regular set over Σ (empty set)
- 2. $\{\boldsymbol{\varepsilon}\}$ is a regular set over $\boldsymbol{\Sigma}$
- 3. {a} is a regular set over Σ , \forall a \in Σ
- 4. If P, Q are regular sets over Σ , then PUQ, PQ, P* are regular sets over Σ
- 5. Nothing else is a regular set over Σ

Regular expressions

Definition: Let Σ be a finite alphabet. We define <u>regular expressions</u> over Σ recursively in the following way:

- 1. ϕ is a regular expression denoting the regular set ϕ (empty set)
- 2. ε is a regular expression denoting the regular set $\{\varepsilon\}$
- **3.** a is a regular expression denoting the regular set $\{a\}$, \forall $a \in \Sigma$
- 4. If p,q are regular expression denoting the regular sets P, Q then:
 - p+q is a regular expression denoting the regular set PUQ,
 - pq is a regular expression denoting the regular set PQ,
 - p* is a regular expression denoting the regular set P*
- 5. Nothing else is a regular expression

Remarks:

Examples

- 1. $p^+ = pp^*$
- 2. Use paranthesis to avoid ambiguity
- 3. Priority of operations: *, concat, + (from high to low)
- 4. For each regular set we can find at least one regular exp to denote it (there is an infinity of reg exp denoting them)
- 5. For each regular exp, we can construct the corresponding regular set
- 6. 2 regular expressions are equivalent iff they denote the same regular set

Algebraic properties of regular exp

Let α , β , γ be regular expressions.

1.
$$\alpha + \beta = \beta + \alpha$$

2.
$$\boldsymbol{\phi}^* = \boldsymbol{\varepsilon}$$

3.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

4.
$$\alpha(\beta\gamma) = (\alpha\beta)\gamma$$

5.
$$\alpha (\beta + \gamma) = \alpha \beta + \alpha \gamma$$

6.
$$(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$$

7.
$$\alpha \varepsilon = \varepsilon \alpha = \alpha$$

8.
$$\phi \alpha = \alpha \phi = \phi$$

9.
$$\alpha^* = \alpha + \alpha^*$$

$$10.(\alpha^*)^* = \alpha^*$$

$$11.\alpha + \alpha = \alpha$$

$$12.\alpha + \Phi = \alpha$$

Reg exp equations

• Normal form:
$$X = aX + b$$

• Solution:
$$X = a*b$$

$$a a * b + b = (aa * + \varepsilon)b = a * b$$

• System of reg exp equations:

$$\begin{cases} X = a_1 X + a_2 Y + a_3 \\ Y = b_1 X + b_2 Y + b_3 \end{cases}$$

Solution: Gauss method (substitution)

Prop:Regular sets are right linear languages

Lemma 1: ϕ , $\{\varepsilon\}$, $\{a\}$, $\forall a \in \Sigma$ are right linear languages

Proof: constructive

i. $G = (\{S\}, \Sigma, \Phi, S)$ – regular grammar such that $L(G) = \Phi$

ii. $G = (\{S\}, \Sigma, \{S \rightarrow \varepsilon\}, S) - \text{regular grammar such that } L(G) = \{\varepsilon\}$

iii. $G = (\{S\}, \Sigma, \{S \rightarrow a\}, S) - regular grammar such that L(G) = \{a\}$

Lemma 2: If L_1 and L_2 are right linear languages then: $L_1 \cup L_2$, L_1L_2 and L_1^* are right linear languages.

Proof: constructive

 L_1, L_2 right linear languages => $\exists G_1, G_2$ such that

$$G_1 = (N_1, \Sigma, P_1, S_1)$$
 and $L_1 = L(G_1)$

$$G_2 = (N_2, \Sigma, P_2, S_2)$$
 and $L_2 = L(G_2)$

assume
$$N_1 \cap N_2 = \emptyset$$

i.
$$G_3 = (N_3, \Sigma, P_3, S_3)$$

$$N_3 = N_1 U N_2 U \{S_3\}$$

$$P_3 = P_1U P_2U \{S_3 \rightarrow S_1 \mid S_2\}$$

$$\{S_3 \rightarrow \alpha_1 \mid S_1 \rightarrow \alpha_1 \in P_1\} \cup \{S_3 \rightarrow \alpha_2 \mid S_2 \rightarrow \alpha_2 \in P_2\}$$

G₃ – right linear language and

$$L(G_3) = L(G_1) \cup L(G_2)$$

ii.
$$G_4 = (N_4, \Sigma, P_4, S_4)$$

$$N_4 = N_1 U N_2$$
; $S_4 = S_1$

$$P_4 = \{A \rightarrow aB \mid if A \rightarrow aB \in P_1\} U$$

 $\{A \rightarrow aS_2 \mid if A \rightarrow a \in P_1\} U P_2$

G₄ – right linear language and

$$L(G_4) = L(G_1) L(G_2)$$

iii.
$$G_5 = (N_5, \Sigma, P_5, S_5)$$

//IDEA: concatenate L₁ with itself

$$N_4 = N_1 U \{S_5\};$$

$$P_{5} = P_{1} \cup \{S_{5} \rightarrow \boldsymbol{\varepsilon}\} \cup \{S_{5} \rightarrow \boldsymbol{\alpha}_{1} | S_{1} \rightarrow \boldsymbol{\alpha}_{1} \in P_{1}\} \cup \{A \rightarrow aS_{1} | if A \rightarrow a \in P_{1}\}$$

G₅ – right linear language and

$$L(G_5) = L(G_1)^*$$

Theorem: A language is a regular set if and only if is a right linear language

Proof:

- => Apply lemma 1 and lemma 2
- <= construct a system of regular exp equations where:
- Indeterminants nonterminals
- Coefficients terminals
- Equation for A: all the possible rewritings of A

Example: $G=(\{S,A,B\},\{0,1\}, P, S)$

P:
$$S \rightarrow 0A \mid 1B \mid \epsilon$$

 $A \rightarrow 0B \mid 1A$
 $B \rightarrow 0S \mid 1$

$$\begin{cases} S = 0A + 1B + \epsilon \\ A = 0B + 1A \\ B = 0S + 1 \end{cases}$$

Regular exp = solution corresponding to S

Theorem: A language is a regular set if and only if is accepted by a FA

Proof:

- => Apply lemma 1 and lemma 2 (to follow, similar to RG)
- <= construct a system of regular exp equations where:
- Indeterminants states
- Coefficients terminals
- Equation for A: all the possibilities that put the FA in state A
- Equation of the form: X=Xa+b => solution X=ba*

$$\begin{cases} q_1 = q_3 0 + \mathbf{\epsilon} \\ q_2 = q_1 0 + q_1 1 + q_2 0 + q_3 0 \\ q_3 = q_2 1 \end{cases}$$

Regular exp = union of solutions corresponding to final states

Lemma 1': $\boldsymbol{\phi}$, $\{\boldsymbol{\varepsilon}\}$, $\{a\}$, $\forall a \in \Sigma$ are accepted by FA

Reg exp	FA
Φ	$M = (Q, \Sigma, \delta, q_{0,} \boldsymbol{\Phi})$
ε	$M = (Q, \Sigma, \Phi, q_{0}, \{q_{0}\})$
a,∀a∈ Σ	$M = (\{q_0, q_1\}, \Sigma, \{\delta(q_0, a) = q_1\}, q_{0,} \{q_1\})$

Lemma 2':If L_1 and L_2 are accepted by a FA then: $L_1 \cup L_2$, $L_1 L_2$ and L_1^* are accepted by FA

Proof:

$$M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$$
 such that $L_1 = L(M_1)$
 $M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ such that $L_2 = L(M_2)$

$$\begin{split} \mathsf{M}_3 &= (\mathsf{Q}_3, \, \pmb{\Sigma}, \, \delta_3, \, \mathsf{q}_{03}, \, \mathsf{F}_3) \\ \mathsf{Q}_3 &= \mathsf{Q}_1 \, \mathsf{U} \, \mathsf{Q}_2 \, \mathsf{U} \, \{ \mathsf{q}_{03} \} \\ \mathsf{F}_3 &= \mathsf{F}_1 \, \mathsf{U} \, \mathsf{F}_2 \, \mathsf{U} \, \{ \mathsf{q}_{03} \mid \text{ if } \mathsf{q}_{01} \in \mathsf{F}_1 \text{ or } \mathsf{q}_{02} \in \mathsf{F}_2 \} \\ \delta_3 &= \delta_1 \, \mathsf{U} \, \delta_2 \, \mathsf{U} \, \{ \delta_3(\mathsf{q}_{03}, \mathsf{a}) = \mathsf{p} \mid \exists \delta_1(\mathsf{q}_{01}, \mathsf{a}) = \mathsf{p} \} \, \mathsf{U} \\ \{ \delta_3(\mathsf{q}_{03}, \mathsf{a}) = \mathsf{p} \mid \exists \delta_2(\mathsf{q}_{02}, \mathsf{a}) = \mathsf{p} \} \end{split}$$

 $L(M_3) = L(M_1) U L(M_2)$

$$\begin{aligned} \mathsf{M}_4 &= (\mathsf{Q}_4, \boldsymbol{\Sigma}, \, \delta_4, \, \mathsf{q}_{04}, \, \mathsf{F}_4) \\ \mathsf{Q}_4 &= \mathsf{Q}_1 \, \mathsf{U} \, \mathsf{Q}_2; \qquad \mathsf{q}_{04} = \mathsf{q}_{01} \\ \mathsf{F}_3 &= \mathsf{F}_2 \, \mathsf{U} \, \{\mathsf{q} \in \mathsf{F}_1 \mid \text{if } \mathsf{q}_{02} \in \mathsf{F}_2\} \\ \delta_3(\mathsf{q},\mathsf{a}) &= \delta_1(\mathsf{q},\mathsf{a}), \, \text{if } \mathsf{q} \in \mathsf{Q}_1\text{-}\mathsf{F}_1 \\ \delta_1(\mathsf{q},\mathsf{a}) \, \mathsf{U} \, \delta_2(\mathsf{q}_{02},\mathsf{a}) \, \text{if } \mathsf{q} \in \mathsf{F}_1 \\ \delta_2(\mathsf{q},\mathsf{a}), \, \text{if } \mathsf{q} \in \mathsf{Q}_2 \end{aligned}$$

 $L(M_3) = L(M_1)L(M_2)$

$$\begin{aligned} \mathsf{M}_5 &= (\mathsf{Q}_5, \, \pmb{\Sigma}, \, \delta_5, \, \mathsf{q}_{05}, \, \mathsf{F}_5) \\ \mathsf{Q}_5 &= \mathsf{Q}_1; \qquad \mathsf{q}_{05} = \mathsf{q}_{01} \\ \mathsf{F}_5 &= \mathsf{F}_1 \, \mathsf{U} \, \{ \mathsf{q}_{01} \} \\ \delta_5(\mathsf{q}, \mathsf{a}) &= \delta_1(\mathsf{q}, \mathsf{a}), \, \text{if } \mathsf{q} \in \mathsf{Q}_1 \text{-} \mathsf{F}_1 \\ \delta_1(\mathsf{q}, \mathsf{a}) \, \mathsf{U} \, \delta_1(\mathsf{q}_{01}, \mathsf{a}) \, \, \text{if } \mathsf{q} \in \mathsf{F}_1 \end{aligned}$$

$$L(M_3) = L(M_1)^*$$

Pumping Lemma

- Not all languages are regular
- How to decide if a language is regular or not?

• Idea: pump symbols

Example: $L = \{0^n1^n \mid n \ge 0\}$

Theorem: (Pumping lemma, Bar-Hillel)

Let L be a regular language. $\exists p \in N$, such that if $w \in L$ with |w| > p, then w = xyz, where 0 < |y| < = p and $xy^iz \in L$, $\forall i \geq 0$

Proof

```
L regular => \exists M = (Q,\Sigma,\delta, q<sub>0</sub>, F) such that L= L(M)

Let |Q| = p

If w \in L(M): (q<sub>0</sub>,w) \not\models (q<sub>f</sub>,\varepsilon), q<sub>f</sub>\inF process at least p+1 symbols and |w|>=p
```

$$\Rightarrow \exists q_1 \text{ that appear in at least 2 configurations}$$

 $(q_0,xyz) \not\vdash (q_1,yz) \not\vdash (q_1,z) \not\vdash (q_f, \varepsilon), q_f \in F \Rightarrow 0 <= |y| <= p$

Proof (cont)

```
(q_0,xy^iz) \vdash^* (q_1,y^iz)
                       +^* (q_1, y^{i-1}z)
                       ⊢* ...
                       + (q<sub>1</sub>,yz)
                       +^* (q_1, z)
                       +^*(q_f, \varepsilon), q_f \in F
So, if w=xyz \in L then xy^iz \in L, for all i>0
If i=0: (q_0,xz) \stackrel{*}{\vdash} (q_1,z) \stackrel{*}{\vdash} (q_f,\varepsilon), q_f \in F
```

Example: $L = \{0^n1^n \mid n >= 0\}$

Suppose L is regular => w= xyz = $0^{n}1^{n}$

Consider all possible decomposition =>

Case 1.
$$y = 0^k$$

$$xyz = 0^{n-k}0^k1^n$$
; $xy^iz = 0^{n-k}0^{ik}1^n \notin L$

Case 2.
$$y = 1^k$$

$$xyz = 0^{n}1^{k}1^{n-k}$$
; $xy^{i}z = 0^{n}1^{ik}1^{n-k} \notin L$

Case 3. $y = 0^k 1^l$

$$xyz = 0^{n-k}0^k1^l1^{n-l}; xy^iz = 0^{n-k}(0^k1^l)^i1^{n-l} \notin L$$

Case 4. $y = 0^k 1^K$

$$xyz = 0^{n-k}0^k1^k1^{n-k}$$
; $xy^iz = 0^{n-k}0^k1^k0^k1^k...1^{n-l} \notin L$

=> L is not regular