VE401 Probabilistic Methods in Eng. RC 3

CHEN Xiwen

UM-SJTU Joint Institute

March 22, 2020

Table of contents

More About Normal Distribution

Normal Distribution
Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables Continuous Multivariate Random Variables Expectation and Variance The Hypergeometric Distribution

Exercises

Multivariate Random Variables
The Hypergeometric Distribution

More About Normal Distribution Normal Distribution

Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables Continuous Multivariate Random Variables Expectation and Variance The Hypergeometric Distribution

Exercises

Multivariate Random Variables
The Hypergeometric Distribution

Definition. A continuous random variable (X, f_{μ,σ^2}) has the **normal distribution** with mean $\mu \in \mathbb{R}$ and variance $\sigma^2, \sigma > 0$ if the probability density function is given by

$$f_{\mu,\sigma^2} = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2
ight], \qquad x \in \mathbb{R}.$$

Mean, variance and M.G.F.

► Mean.

$$E[X] = \mu$$
.

► Variance.

$$Var[X] = \sigma^2.$$

► <u>M.G.F.</u>

$$m_X: \mathbb{R} o \mathbb{R}, \qquad m_X(t) = \exp\left(\mu t + rac{1}{2}\sigma^2 t^2
ight).$$

Verifying M.G.F.

$$\begin{split} m_X(t) &= \mathsf{E}\left[e^{tX}\right] = \int_{-\infty}^{\infty} \frac{e^{tx}}{\sqrt{2\pi}\sigma} e^{-((x-\mu)/\sigma)^2/2} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{\mu t + \sigma^2 t^2/2} \cdot e^{-\frac{(x-(\mu+\sigma^2t))^2}{2\sigma^2}} \mathrm{d}x \\ &= e^{\mu t + \sigma^2 t^2/2} \underbrace{\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{(x-(\mu+\sigma^2t))^2}{2\sigma^2}} \mathrm{d}x}_{=1} \\ &= e^{\mu t + \sigma^2 t^2/2}. \end{split}$$

Some takeaway from this proof.

► To verify that

$$I := \int_{-\infty}^{\infty} e^{-\frac{(x-b)^2}{a^2}} dx = a\sqrt{\pi},$$

we use

$$I^{2} = \left(\int_{-\infty}^{\infty} e^{-\frac{(x-a)^{2}}{b^{2}}} dx\right)^{2} = \int_{-\infty}^{\infty} e^{-\frac{(x-a)^{2}}{b^{2}}} \cdot e^{-\frac{(y-a)^{2}}{b^{2}}} dx dy.$$

Using parametrization $x = ar \cos \theta + b, y = ar \sin \theta + b$, we have

$$I^{2} = \int_{0}^{\infty} \int_{0}^{2\pi} e^{-r^{2}} \cdot a^{2} r d\theta dr$$
$$= a^{2} \pi \int_{0}^{\infty} 2r e^{-r^{2}} dr = -a^{2} \pi e^{-r^{2}} \Big|_{0}^{\infty} = a^{2} \pi.$$

Some takeaway from this proof.

- ▶ Useful results from normalizing constant of distributions.
 - (i). Normal.

$$\int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \sqrt{2\pi}\sigma.$$

(ii). Gamma.

$$\int_0^\infty x^{\alpha-1}e^{-\beta x}\mathrm{d}x = \frac{\Gamma(\alpha)}{\beta^\alpha}.$$

Transformation of Random Variables

▶ Discrete random variables. Let X be a discrete random variable with probability density function f_X , the probability density function f_Y for $Y = \varphi(X)$ is given by

$$f_Y(y) = \sum_{x \in \varphi^{-1}(y)} f_X(x), \qquad \text{for } y \in \text{ran } \varphi,$$

and 0 otherwise.

Example 1. Let X be a uniform random variable on $\{-n, -n+1, \dots, n-1, n\}$. Then Y = |X| has probability density function

$$f_Y(y) = \begin{cases} \frac{1}{2n+1} & x = 0, \\ \frac{2}{2n+1} & x \neq 0. \end{cases}$$

Transformation of Random Variables

▶ Continuous random variables. Let X be a continuous random variable with density f_X . Let $Y = \varphi \circ X$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is strictly monotonic and differentiable. The density for Y is then given by

$$f_Y(y) = f_X(\varphi^{-1}(y)) \cdot \left| \frac{d\varphi^{-1}(y)}{dy} \right|, \quad \text{for } y \in \text{ran } \varphi$$

and

$$f_Y(y) = 0$$
, for $y \notin \operatorname{ran} \varphi$.

Transformation of Random Variables

▶ Continuous random variables. Let X be a continuous random variable with density f_X . Let $Y = \varphi \circ X$, where $\varphi : \mathbb{R} \to \mathbb{R}$ is strictly monotonic and differentiable. The density for Y is then given by

$$f_Y(y) = f_X(\varphi^{-1}(y)) \cdot \left| \frac{d\varphi^{-1}(y)}{dy} \right|, \quad \text{for } y \in \text{ran } \varphi$$

and

$$f_Y(y) = 0$$
, for $y \notin \operatorname{ran} \varphi$.

For multivariate random variables, $\mathbf{Y} = \varphi \circ \mathbf{X}$, we have

$$f_{\mathbf{Y}}(y) = f_{\mathbf{X}} \circ \varphi^{-1}(y) \cdot |\det D\varphi^{-1}(y)|,$$

where $D\varphi^{-1}$ is the Jacobian of φ^{-1} .

From RC2 Part 1: Connections of Discrete Distributions

▶ Bernoulli → Binomial. $X_1, ..., X_n$ are independent random variables,

$$X_i \sim \mathsf{Bernoulli}(p) \quad \Rightarrow \quad X = X_1 + \dots + X_n \sim \mathsf{B}(n,p).$$

▶ Binomial \rightarrow Binomial. X_1, \dots, X_k are independent random variables,

$$X_i \sim B(n_i, p) \quad \Rightarrow \quad X = X_1 + \cdots + X_k \sim B(n, p),$$

where $n = n_1 + \cdots + n_k$.

▶ Geometric \rightarrow Negative binomial. $X_1, ..., X_r$ are independent random variables,

$$X_i \sim \mathsf{Geom}(p) \quad \Rightarrow \quad X = X_1 + \cdots + X_r \sim \mathsf{NB}(r, p).$$

From RC2 Part 1: Connections of Discrete Distributions

Negative binomial \rightarrow Negative binomial. X_1, \dots, X_n are independent random variables,

$$X_i \sim \mathsf{NB}(r_i, p) \quad \Rightarrow \quad X = X_1 + \cdots + X_n \sim \mathsf{NB}(r, p),$$

where $r = r_1 + \cdots + r_n$.

▶ Poisson → Poisson. $X_1, ..., X_n$ are independent random variables,

$$X_i \sim \mathsf{Poisson}(k_i) \quad \Rightarrow \quad X = X_1 + \dots + X_n \sim \mathsf{Poisson}(k),$$

where $k = k_1 + \cdots + k_n$.

From RC2 Part 1: Connections of Discrete Distributions

Negative binomial \rightarrow Negative binomial. X_1, \dots, X_n are independent random variables,

$$X_i \sim \mathsf{NB}(r_i, p) \quad \Rightarrow \quad X = X_1 + \dots + X_n \sim \mathsf{NB}(r, p),$$
 where $r = r_1 + \dots + r_n$.

Poisson \rightarrow Poisson. X_1, \dots, X_n are independent random variables,

$$X_i \sim \mathsf{Poisson}(k_i) \quad \Rightarrow \quad X = X_1 + \dots + X_n \sim \mathsf{Poisson}(k),$$

where
$$k = k_1 + \cdots + k_n$$
.

Digression. A Second Look into Connections of Distributions — s3.pdf.

Sum of Normal Distributions

Theorem. If the random variables X_1, \ldots, X_k are independent and if X_i has the normal distribution with mean μ_i and variances σ_i^2 , where $i = 1, \ldots, k$, then the sum

$$X = X_1 + \cdots + X_k$$

follows the normal distribution with

$$\mu = \mu_1 + \dots + \mu_k, \qquad \sigma^2 = \sigma_1^2 + \dots + \sigma_k^2.$$

Sum of Normal Distributions

Theorem. If the random variables X_1, \ldots, X_k are independent and if X_i has the normal distribution with mean μ_i and variances σ_i^2 , where $i = 1, \ldots, k$, then the sum

$$X = X_1 + \cdots + X_k$$

follows the normal distribution with

$$\mu = \mu_1 + \dots + \mu_k, \qquad \sigma^2 = \sigma_1^2 + \dots + \sigma_k^2.$$

Proof (sketch). Using M.G.F., we have

$$egin{aligned} m_X(t) &= \prod_{i=1}^k m_{X_i}(t) = \prod_{i=1}^k \exp\left(\mu_i t + rac{1}{2}\sigma_i^2 t^2
ight) \ &= \exp\left[\left(\sum_{i=1}^k \mu_i
ight) t + rac{1}{2}\left(\sum_{i=1}^k \sigma_i^2
ight) t^2
ight], \qquad t \in \mathbb{R}. \end{aligned}$$

Quotient of Normal Distributions

Theorem. Suppose that random variables X and Y are independent and that each has the standard normal distribution. Then U=X/Y has the Cauchy distribution with probability density function given by

$$f_U(u)=\frac{1}{\pi(1+u^2)}, \qquad u\in\mathbb{R}.$$

Quotient of Normal Distributions

Theorem. Suppose that random variables X and Y are independent and that each has the standard normal distribution. Then U=X/Y has the Cauchy distribution with probability density function given by

$$f_U(u)=rac{1}{\pi(1+u^2)}, \qquad u\in\mathbb{R}.$$

Proof (sketch). Let V=Y, excluding Y=0, the transformation from (X,Y) to (U,V) is one-to-one. Then X=UV,Y=V and

$$J = \det \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = v.$$

Quotient of Normal Distributions

Theorem. Suppose that random variables X and Y are independent and that each has the standard normal distribution. Then U=X/Y has the *Cauchy distribution* with probability density function given by

$$f_U(u)=\frac{1}{\pi(1+u^2)}, \qquad u\in\mathbb{R}.$$

Proof (sketch, continued). Then the joint density function is given by

$$f_{UV}(u,v) = f_{XY}(uv,v)|v| = \frac{|v|}{2\pi} \exp\left(-\frac{1}{2}(u^2+1)v^2\right).$$

Then the marginal of U is calculated as

$$f_U(u) = \int_{-\infty}^{\infty} f_{UV}(u, v) dv = \frac{1}{\pi(u^2 + 1)}, \quad u \in \mathbb{R}.$$

Standardizing Normal Distribution

Suppose $X \sim \text{Normal}(\mu, \sigma^2)$. Then

$$Z = \frac{X - \mu}{\sigma} \sim \mathsf{Normal}(0, 1),$$

where the normal distribution with mean μ and variance σ^2 is the **standard normal distribution**. Furthermore, the cumulative distribution function of X is given by

$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right), \quad F^{-1}(p) = \mu + \sigma\Phi^{-1}(p),$$

where Φ is the cumulative distribution function for the standard normal distribution function.

More About Normal Distribution

Normal Distribution

Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables
Continuous Multivariate Random Variables
Expectation and Variance
The Hypergeometric Distribution

Exercises

Multivariate Random Variables
The Hypergeometric Distribution

Common Applications of Normal Distribution

Suppose a random variable X follows normal distribution $N(\mu, \sigma)$, where μ and σ are known. At current stage, applications usually include the following.

- 1. Given some value x_0 , find the probability of $P[X \le x_0]$ or $P[X \ge x_0]$.
 - (a). Standardize X as $Z = (X \mu)/\sigma$, find z_0 .
 - (b). Find $P[X \le x_0] = P[Z \le z_0], P[X \ge x_0] = 1 P[Z \ge z_0].$
- 2. Given some probability p, find the corresponding x_0 such that $P[X \le x_0] = p$ or $P[X \ge x_0] = p$.
 - (a). Find z_0 from table such that $P[Z \le z_0] = p$ or $P[Z \le z_0] = 1 p$.
 - (b). Calculate $x_0 = \sigma z_0 + \mu$.
- 3. "Three-sigma" rule.

$$P[-3\sigma < X - \mu < 2\sigma] = 0.997.$$

The Chebyshev's Inequality

Theorem. Let X be a random variable, then for $k \in \mathbb{N} \setminus \{0\}$ and c > 0,

$$P[|X| \ge c] \le \frac{\mathsf{E}[|X|^k]}{c^k}.$$

As another version of this inequality, suppose X has mean μ and standard deviation σ , and let m>0,

$$P[|X - \mu| \ge m\sigma] \le \frac{1}{m^2},$$

or equivalently,

$$P[-m\sigma < X - \mu < m\sigma] \ge 1 - \frac{1}{m^2}.$$

Note. This yields another (looser) version of σ , 2σ , 3σ rule for normal distribution.

Weak Law of Large Numbers. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with mean μ and variance σ^2 . Then for any $\varepsilon > 0$,

$$P\left[\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|\geq\varepsilon\right]\xrightarrow{n\to\infty}0.$$

Weak Law of Large Numbers. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with mean μ and variance σ^2 . Then for any $\varepsilon > 0$,

$$P\left[\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|\geq\varepsilon\right]\xrightarrow{n\to\infty}0.$$

Law of Large Numbers. Let A be a random outcome (random event) of an experiment that can be repeated without the outcome influencing subsequent repetitions. Then the probability P[A] of this event occurring may be approximated by

$$P[A] \approx \frac{\text{number of times } A \text{ occurs}}{\text{number of times experiment is perforred}}.$$

Note. Approximate mean $\mu = p = P[A]$ of Bernoulli distribution.

Weak Law of Large Numbers. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with mean μ and variance σ^2 . Then for any $\varepsilon > 0$,

$$P\left[\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|\geq\varepsilon\right]\xrightarrow{n\to\infty}0.$$

Proof. Using properties of expectation and variance,

$$\begin{split} \mathsf{E}\left[\frac{X_1+\dots+X_n}{n}-\mu\right] &= \frac{\mathsf{E}[X_1]+\dots+\mathsf{E}[X_n]}{n}-\mathsf{E}[\mu] = 0,\\ \mathsf{Var}\left[\frac{X_1+\dots+X_n}{n}-\mu\right] &= \frac{\mathsf{Var}[X_1]+\dots+\mathsf{Var}[X_n]}{n^2}+\mathsf{Var}[\mu] = \frac{\sigma^2}{n},\\ &\Rightarrow \quad \mathsf{E}\left[\left(\frac{X_1+\dots+X_n}{n}-\mu\right)^2\right] = \frac{\sigma^2}{n}. \end{split}$$

Weak Law of Large Numbers. Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with mean μ and variance σ^2 . Then for any $\varepsilon > 0$,

$$P\left[\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|\geq\varepsilon\right]\xrightarrow{n\to\infty}0.$$

Proof (continued). Applying the Chebyshev's inequality with k=2 to

$$X = \frac{X_1 + \dots + X_n}{n} - \mu,$$

we have

$$P\left[\left|\frac{X_1+\ldots+X_n}{n}-\mu\right|\geq\varepsilon\right]\leq\frac{\sigma^2}{n\varepsilon^2}\xrightarrow{n\to\infty}0.$$

Normal Approximation of Binomial Distribution

Suppose S_n is the number of successes in a sequence of n i.i.d. Bernoulli trials with probability of success 0 .

It satisfies that

$$\lim_{n\to\infty} P\left[a<\frac{X-np}{\sqrt{np(1-p)}}\leq b\right] = \frac{1}{2\pi}\int_a^b e^{-x^2/2}\mathrm{d}x.$$

▶ For y = 0, ..., n,

$$P[X \le y] = \sum_{x=0}^{y} \binom{n}{x} p^x (1-p)^{n-x} \approx \Phi\left(\frac{y+1/2-np}{\sqrt{np(1-p)}}\right),$$

where we require that

$$np > 5$$
 if $p \le \frac{1}{2}$ or $n(1-p) > 5$ if $p > \frac{1}{2}$.

More About Normal Distribution

Normal Distribution
Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables

Continuous Multivariate Random Variables Expectation and Variance The Hypergeometric Distribution

Exercises

Multivariate Random Variables
The Hypergeometric Distribution

Discrete Multivariate Random Variables

Definition. Let S be a sample space and Ω a countable subset of \mathbb{R}^n . A **discrete multivariate random variable** is a map

$$\mathbf{X}: S \to \Omega$$

together with a function $f_{\mathbf{X}}:\Omega\to\mathbb{R}$ with the properties that

- (i). $f_{\mathbf{X}}(x) \geq 0$ for all $x = (x_1, \dots, x_n) \in \Omega$ and
- (ii). $\sum_{x \in \Omega} f_{\mathbf{X}}(x) = 1,$

where $f_{\mathbf{X}}$ is the *joint density function* of the random variable \mathbf{X} .

Discrete Multivariate Random Variables

Definition.

▶ *Marginal density* f_{X_k} for X_k , k = 1, ..., n:

$$f_{X_k}(x_k) = \sum_{x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n} f_{\mathbf{X}}(x_1,\ldots,x_n).$$

Independent multivariate random variables:

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Conditional density of X_1 conditioned on X_2 :

$$f_{X_1|X_2}(x_1) := \frac{f_{X_1X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$
 whenever $f_{X_2}(x_2) > 0$.

More About Normal Distribution

Normal Distribution
Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables

Continuous Multivariate Random Variables

Expectation and Variance

The Hypergeometric Distribution

Exercises

Multivariate Random Variables
The Hypergeometric Distributio

Definition. Let S be a sample space. A *continuous multivariate* $random\ variable$ is a map

$$X: S \to \mathbb{R}^n$$

together with a function $f_{\mathbf{X}}: \mathbb{R}^n \to \mathbb{R}$ with the properties that

(i).
$$f_{\mathbf{X}}(x) \geq 0$$
 for all $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and

(ii).
$$\int_{\mathbb{R}^n} f_{\mathbf{X}}(x) = 1,$$

where f_X is the *joint density function* of the random variable X.

Definition.

▶ *Marginal density* f_{X_k} for X_k , k = 1, ..., n:

$$f_{X_k}(x_k) = \int_{\mathbb{R}^{n-1}} f_{\mathbf{X}}(x_1, \dots, x_n) dx_1 \dots dx_{k-1} dx_{k+1} \dots dx_n.$$

Independent multivariate random variables:

$$f_{\mathbf{X}}(x_1,\ldots,x_n)=f_{X_1}(x_1)\cdots f_{X_n}(x_n).$$

Conditional density of X_1 conditioned on X_2 :

$$f_{X_1|X_2}(x_1) := \frac{f_{X_1X_2}(x_1, x_2)}{f_{X_2}(x_2)}$$
 whenever $f_{X_2}(x_2) > 0$.

Visualization. Joint probability density function $f_{XY}(x,y)$ (left) and conditional density function $f_{X|Y}(x|y_0)$ (right).

Q. How to determine the joint probability density function and cumulative distribution function of a single variable from a joint cumulative distribution function?

Q. How to determine the joint probability density function and cumulative distribution function of a single variable from a joint cumulative distribution function?

C.D.F. For continuous random variables X_1, \ldots, X_n , the joint cumulative distribution function is then given by

$$P[X_1 \leq a_1, \dots, X_n \leq a_n] = \int_{-\infty}^{a_1} \dots \int_{-\infty}^{a_n} f_{\mathbf{X}}(x) dx_1 \dots dx_n.$$

Example 2. Suppose X and Y are random variables that take values in the intervals $0 \le X \le 2$ and $0 \le Y \le 2$. Suppose the joint cumulative distribution function for $x \in [0,2], y \in [0,2]$ is given by

$$F(x,y) = \frac{1}{16}xy(x+y).$$

What are the joint density function and cumulative distribution of X?

Example 2. Suppose X and Y are random variables that take values in the intervals $0 \le X \le 2$ and $0 \le Y \le 2$. Suppose the joint cumulative distribution function for $x \in [0,2], y \in [0,2]$ is given by

$$F(x,y) = \frac{1}{16}xy(x+y).$$

What are the joint density function and cumulative distribution of X?

Solution (i). For $x \in [0, 2], y \in [0, 2]$,

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y} = \frac{1}{8}(x+y),$$

and thus

$$f_{XY}(x,y) = \begin{cases} \frac{1}{8}(x+y) & 0 \le x \le 2, 0 \le y \le 2\\ 0 & \text{otherwise.} \end{cases}$$

Example 2. Suppose X and Y are random variables that take values in the intervals $0 \le X \le 2$ and $0 \le Y \le 2$. Suppose the joint cumulative distribution function for $x \in [0,2], y \in [0,2]$ is given by

$$F(x,y) = \frac{1}{16}xy(x+y).$$

What are the joint density function and cumulative distribution of X?

Solution (ii). Since for y > 2, F(x,y) = F(x,2), then by letting $y \to \infty$, we obtain

$$F_X(x) = \begin{cases} 0 & x < 0, \\ \frac{1}{8}x(x+2) & 0 \le x \le 2, \\ 1 & x > 2. \end{cases}$$

More About Normal Distribution

Normal Distribution
Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables
Continuous Multivariate Random Variables

Expectation and Variance

The Hypergeometric Distribution

Exercises

Multivariate Random Variables
The Hypergeometric Distribution

Expectation

Discrete.

$$\mathsf{E}[X_k] = \sum_{x_k} x_k f_{X_k}(x_k) = \sum_{x \in \Omega} x_k f_{\mathbf{X}}(x),$$

and for continuous function $\varphi: \mathbb{R}^n \to \mathbb{R}$,

$$\mathsf{E}[\varphi \circ \mathbf{X}] = \sum_{x \in \Omega} \varphi(x) f_{\mathbf{X}}(x).$$

Continuous.

$$\mathsf{E}[X_k] = \int_{\mathbb{R}} x_k f_{X_k}(x_k) \mathrm{d}x_k = \int_{\mathbb{R}^n} x_k f_{\mathbf{X}}(x) \mathrm{d}x,$$

and for continuous function $\varphi: \mathbb{R}^n \to \mathbb{R}$,

$$\mathsf{E}[\varphi \circ \mathbf{X}] = \int_{\mathbb{D}^n} \varphi(x) f_{\mathbf{X}}(x) \mathrm{d}x.$$

Covariance and Covariance Matrix

Definition. For a multivariate random variable \mathbf{X} , the *covariance matrix* is given by

$$\mathsf{Var}[\boldsymbol{\mathsf{X}}] = \begin{pmatrix} \mathsf{Var}[X_1] & \mathsf{Cov}[X_1, X_2] & \cdots & \mathsf{Cov}[X_1, X_n] \\ \mathsf{Cov}[X_1, X_2] & \mathsf{Var}[X_2] & \ddots & \vdots \\ \vdots & \ddots & \ddots & \mathsf{Cov}[X_{n-1}, X_n] \\ \mathsf{Cov}[X_1, X_n] & \cdots & \mathsf{Cov}[X_{n-1}, X_n] & \mathsf{Var}[X_n] \end{pmatrix},$$

where the *covariance* of (X_i, X_j) is given by

$$Cov[X_i, X_j] = E[(X_i - \mu_{X_i})(X_j - \mu_{X_j})] = E[X_i X_j] - E[X_i]E[X_j],$$

and

$$\mathsf{Var}[\mathsf{CX}] = \mathsf{CVar}[\mathsf{X}]\mathsf{C}^T, \qquad \mathsf{C} \in \mathsf{Mat}(n \times n; \mathbb{R}).$$

Covariance and Independence

Let X, X_1, \ldots, X_n and Y be random variables.

- ▶ X and Y are independent \Rightarrow Cov[X, Y] = 0, while the converse is **not** true.
- ▶ Var[X+Y] = Var[X]+Var[Y]+2Cov[X, Y], and more generally,

$$Var[X_1 + \dots + X_n] = Var[X_1] + \dots + Var[X_n] +$$

$$+ 2 \sum_{i < j} Cov[X_i, X_j],$$

if
$$Var[X_i] < \infty$$
 for $i = 1, \ldots, n$.

Covariance and Independence

Example 3. Suppose the random variable X can take only three values -1, 0, and 1, and each of these values has the same probability. Also, let random variable Y satisfy $Y = X^2$. Then X and Y are apparently dependent, while

$$\mathsf{E}[XY] = \mathsf{E}[X^3] = \mathsf{E}[X] = 0,$$

and thus

$$Cov[X, Y] = E[XY] - E[X]E[Y] = 0.$$

Pearson Correlation Coefficient

Definition. The **Pearson coefficient of correlation** of random variables X and Y is given by

$$\rho_{XY} := \frac{\mathsf{Cov}[X, Y]}{\sqrt{\mathsf{Var}[X]\mathsf{Var}[Y]}}.$$

Note. Instead of independence, the correlation coefficient actually measures the the extent to which X and Y are <u>linearly</u> dependent, which is not the only way of being dependent. Properties.

- (i). $-1 \le \rho_{XY} \le 1$,
- (ii). $|
 ho_{XY}|=1$ iff there exist $eta_0,eta_1\in\mathbb{R}$ such that

$$Y = \beta_0 + \beta_1 X.$$

The Fisher Transformation

Definition. Let \tilde{X} and \tilde{Y} be standardized random variables of X and Y, then the *Fisher transformation* of ρ_{XY} is given by

$$\ln\left(\sqrt{\frac{\mathsf{Var}[\tilde{X}+\tilde{Y}]}{\mathsf{Var}[\tilde{X}-\tilde{Y}]}}\right) = \frac{1}{2}\ln\left(\frac{1+\rho_{XY}}{1-\rho_{XY}}\right) = \mathsf{Arctanh}(\rho_{XY}) \in \mathbb{R}.$$

We say that X and Y are

- **positively correlated** if $\rho_{XY} > 0$, and
- ▶ negatively correlated if $\rho_{XY} < 0$.

More About Normal Distribution

Normal Distribution
Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables Continuous Multivariate Random Variables Expectation and Variance

The Hypergeometric Distribution

Exercises

Multivariate Random Variables
The Hypergeometric Distribution

Definition. A random variable (X, f_X) with parameters $N, n, r \in \mathbb{N} \setminus \{0\}$ where $r, n \leq N$ and $n < \min\{r, N-r\}$ has a **hypergeometric distribution** if the density function is given by

$$f_X(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}.$$

Interpretation.

- $f_X(x)$ is the probability of getting x balls in drawing n balls from a box containing N balls, where r of them are red.
- This can be formulated as obtaining x successes in n identical but **not** independent Bernoulli trials, each with probability of success $\frac{r}{N}$.

Expectation.

$$\mathsf{E}[X] = \mathsf{E}[X_1 + \dots + X_n] = n \frac{r}{N}.$$

Variance.

$$Var[X] = Var[X_1 + \dots + X_n]$$

$$= Var[X_1] + \dots + Var[X_n] + 2 \sum_{i < j} Cov[X_i, X_j]$$

$$= n \frac{r}{N} \frac{N - r}{N} \frac{N - n}{N - 1}.$$

The binomial distribution may be used to approximate the hypergeometric distribution if n/N is small.

Calculation of mean and variance. Transform to Bernoulli trials (X_1, \ldots, X_n) .

► The Bernoulli trials are identical with $p_k = \frac{r}{N}$, i.e.,

$$P[X_1 = 1] = \frac{r}{N},$$

$$P[X_2 = 1] = P[X_2 = 1 | X_1 = 1]P[X_1 = 1] + P[X_2 = 1 | X_1 = 0]P[X_1 = 0]$$

$$= \frac{r - 1}{N - 1} \cdot \frac{r}{N} + \frac{r}{N - 1} \frac{N - r}{N}$$

$$= \frac{r}{N},$$

and so on.

Calculation of mean and variance. Transform to Bernoulli trials (X_1, \ldots, X_n) .

- ► $E[X_k] = p_k = \frac{r}{N}$, $Var[X_k] = p_k(1 p_k)$.
- ► For variance,

$$Var[X] = \sum_{k=1}^{n} Var[X_k] + 2 \sum_{i < j} Cov[X_i, X_j],$$

where

$$Cov[X_i, X_j] = \frac{E[X_i X_j] - E[X_i]E[X_j]}{E[X_i, X_j]} = p_{ij} = \frac{r}{N} \cdot \frac{r-1}{N-1}, \qquad i \neq j.$$

Closeness of Binomial and Hypergeometirc Distributions

Theorem. Suppose Y has a binomial distribution with parameters $n \in \mathbb{N} \setminus \{0\}$ and $p, 0 . Let <math>\{X_k\}$ be a sequence of hypergeometric random variables with parameters N_k , n, r_k such that

$$\lim_{k\to\infty} N_k = \infty, \quad \lim_{k\to\infty} r_k = \infty, \quad \lim_{k\to\infty} \frac{r_k}{N_k} = p.$$

Then for each fixed n and each $x = 0, \ldots, n$,

$$\lim_{k\to\infty}\frac{P[Y=x]}{P[X_k=x]}=1.$$

A proof of this theorem can be found in s3.pdf.

Example 4. Consider a group of T persons, and let a_1, \ldots, a_T be the heights of these T persons. Suppose that n persons are selected from this group at random without replacement, and let X denote the sum of heights of these n persons. Determine the mean and variance of X.

Example 4. Consider a group of T persons, and let a_1, \ldots, a_T be the heights of these T persons. Suppose that n persons are selected from this group at random without replacement, and let X denote the sum of heights of these n persons. Determine the mean and variance of X.

Solution. Let X_i be the height of the i-th person selected. Then $X = X_1 + \cdots + X_n$. Since X_i is equally likely to have any one of the T values,

$$\mathsf{E}[X_i] = \frac{1}{T} \sum_{i=1}^T a_i = \mu, \quad \mathsf{Var}[X_i] = \frac{1}{T} \sum_{i=1}^T (a_i - \mu)^2 = \sigma^2.$$

Therefore, $E[X] = n\mu$, and

$$Var[X] = \sum_{i=1}^{n} Var[X_i] + 2 \sum_{i < j} Cov[X_i, X_j].$$

How to calculate $Cov[X_i, X_i]$?

Example 4. Consider a group of T persons, and let a_1, \ldots, a_T be the heights of these T persons. Suppose that n persons are selected from this group at random without replacement, and let X denote the sum of heights of these n persons. Determine the mean and variance of X.

Solution (approach 1). Knowing that

$$E[X_iX_j] = \frac{2}{T(T-1)} \sum_{i < j} a_i a_j,$$

and

$$Var[X_i] = \frac{1}{T} \sum_{i=1}^{T} (a_i - \mu)^2 = \frac{1}{T} \sum_{i=1}^{T} (a_i^2 - 2\mu a_i + \mu^2)$$

$$= \frac{1}{T} \left[\left(\sum_{i=1}^{T} a_i^2 \right) - 2T\mu^2 + T\mu^2 \right]$$

$$= \frac{1}{T} \sum_{i=1}^{T} a_i^2 - \mu^2.$$

Example 4. Consider a group of T persons, and let a_1, \ldots, a_T be the heights of these T persons. Suppose that n persons are selected from this group at random without replacement, and let X denote the sum of heights of these n persons. Determine the mean and variance of X.

Solution (approach 1). Then

$$Cov[X_i, X_j] = \frac{2}{T(T-1)} \sum_{i < j} a_i a_j - \frac{1}{T^2} \left(\sum_{i=1}^T a_i \right)^2$$

$$= \frac{1}{T^2(T-1)} \left[2T \sum_{i < j} a_i a_j - (T-1) \left(\sum_{i=1}^T a_i^2 + 2 \sum_{i < j} a_i a_j \right) \right]$$

$$= \frac{1}{T^2(T-1)} \left[\left(\sum_{i=1}^T a_i \right)^2 - \sum_{i=1}^T a_i^2 - (T-1) \sum_{i=1}^T a_i^2 \right]$$

$$= \frac{1}{T^2(T-1)} \left[T^2 \mu^2 - T^2 \sigma^2 - T^2 \mu^2 \right] = -\frac{\sigma^2}{T-1}.$$

Example 4. Consider a group of T persons, and let a_1, \ldots, a_T be the heights of these T persons. Suppose that n persons are selected from this group at random without replacement, and let X denote the sum of heights of these n persons. Determine the mean and variance of X.

Solution (approach 2). Because $Cov[X_i, X_j]$ does not depend on i, j as long as $i \neq j$, we have

$$Var[X] = n\sigma^2 + n(n-1)Cov[X_1, X_2].$$

Knowing that Var[X] = 0 for n = T, we have

$$\operatorname{Cov}[X_1, X_2] = -\frac{1}{T - 1}\sigma^2 \quad \Rightarrow \quad \operatorname{Var}[X] = n\sigma^2 - \frac{n(n - 1)}{T - 1}\sigma^2$$
$$= n\sigma^2 \left(\frac{T - n}{T - 1}\right).$$

More About Normal Distribution

Normal Distribution
Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables
Continuous Multivariate Random Variables
Expectation and Variance
The Hypergeometric Distribution

Exercises

Multivariate Random Variables

The Hypergeometric Distribution

Exercises

Exercise 1. Suppose Y is the rate (calls per hour) at which calls arrive at a switchboard. Let X be the number of calls during a two-hour period. Suppose the joint probability density function is given by

$$f_{XY}(x,y) = \left\{ egin{array}{ll} \displaystyle rac{(2y)^x}{x!} e^{-3y} & ext{for } y > 0 ext{ and } x = 0,1,\ldots, \\ 0 & ext{otherwise.} \end{array}
ight.$$

- (i). Verify that f is a proper joint probability density function.
- (ii). Find P[X = 0].

More About Normal Distribution

Normal Distribution
Applications of Normal Distribution

Multivariate Random Variables

Discrete Multivariate Random Variables
Continuous Multivariate Random Variables
Expectation and Variance
The Hypergeometric Distribution

Exercises

Multivariate Random Variables

The Hypergeometric Distribution

Exercises

Exercise 2. Suppose that X_1 and X_2 are independent random variables, so that

$$X_1 \sim B(n_1, p), \qquad X_2 \sim B(n_2, p).$$

For each fixed value of $k(k = 1, 2, ..., n_1 + n_2)$, prove that the conditional distribution of X_1 given that $X_1 + X_2 = k$ is hypergeometric with parameters $n_1 + n_2, k, n_1$.

Thanks for your attention!