

	Complete	Select one:
Back to course General >	Mark 1.00 out of 1.00	a. known statistics b. known parameters c. unknown statistics
Day-01: Introduction to >		d. unknown parameters
Day-03: Probability Dis >		Consider a hippy classification problem Suppose I
Day-04: Inferential Stat >	Question 9 Complete	Consider a binary classification problem. Suppose I have trained a model on a linearly separable training set . and now I get new labelled data point which is
Day-05: Hypothesis Te >	Mark 0.00 out of 1.00	correctly classified by the model, and far away from the decision boundary. If now add this new point to my
Day-06: Introduction to >		earlier training set and re-train, in which cases is the learnt decision boundary likely to change?
Day-07: Exploratory da >		Select one:
Day-08: Predictive Ana >		a. When my model is a perceptron
Day-09: Programming i > Day-10: NumPy and P >		b. When my model is perceptron and logistic Regression
Buy 10. Numin y amu 1		 c. When my model is logistic Regression and Gaussian discriminant Analysis.
		d. When my model is an SVM.
	Question 10 Complete	Data used to optimize the parameter settings of a supervised learner model
	Mark 0.00 out of 1.00	Select one:
		a. Testing b. Validation
		_ c. Verification
		O d. Training
	Question 11	Determine the algorithm which is the best for this
	Complete	problem - Determine the characteristics of successful used car sales person?
	Mark 0.00 out of 1.00	Select one:
		a. Supervised b. Data Query/Retrieval
		c. Un-supervised

	≡ [] Recent ▼	murali krishna	<
 Back to course General Day-01: Introduction to > Day-02: Introduction to > 	Complete Mark 0.00 out of 1.00	Select one: a. centroid b. mean c. signature d. prototype	
 Day-03: Probability Dis > Day-04: Inferential Stat > Day-05: Hypothesis Te > Day-06: Introduction to > Day-07: Exploratory da > Day-08: Predictive Ana > Day-09: Programming i > 	Question 31 Complete Mark 1.00 out of 1.00	This approach is best when we are interested in finding all possible interactions among a set of attributes. Select one: A decision tree B. K. Means algorithm C. genetic learning d. association rules	
10. Day-10: NumPy and P >	Question 32 Complete Mark 0.00 out of 1.00	This supervised learning algorithm technique can process both categorical and numeric input attributes. Select one:	<
	Question 33 Complete Mark 1.00 out of 1.00	This technique associates a conditional probablity value with each data instance Select one: a. Multiple linear Regression b. Linear Regression c. Logistic Regression d. Simple regression	
2	Question 34 Complete Mark 1.00 out of 1.00	This technique uses mean and standard deviation scores to transform real-valued attributes. Select one: D. min-max normalization C. decimal scaling d. logarithmic normalization	

=	Recent ▼	murali krishna
Back to course	Complete	Select one:
Data to course	Mark 1.00 out of 1.00	a. It relates inputs to outputs.
General >		b. It is used for prediction.
Day-01: Introduction to >		c. It may be used for interpretation.
Day-02 : Introduction to >		 d. It discovers causal relationships.
Day-03: Probability Dis >		
Day-04: Inferential Stat >	44	Which statement about outliers is true?
	Question 41	
Day-05: Hypothesis Te >	Complete	Select one: a. Outliers should be part of the training dataset
Day-06: Introduction to >	Mark 1.00 out of 1.00	but should not be present in the test data.
Day-07: Exploratory da >		b. Outliers should be identified and removed from
Day-08: Predictive Ana >		a dataset.
Day-09: Programming i >		 c. Outliers should be part of the test dataset but should not be present in the training data.
, , ,		d. The nature of the problem determines how
Day-10: NumPy and P >		outliers are used.
	Question 42	Which statement is true about the decision tree
	Complete	attribute selection process?
	Mark 0.00 out of 1.00	Select one:
		 a. A categorical attribute may appear in a tree node several times but a numeric attribute may appear at most once.
		b. Numeric and categorical attributes may appear in at most one tree node
		c. Both numeric and categorical attributes may
		appear in several tree nodes.
		 d. A numeric attribute may appear in several tree nodes but a categorical attribute may appear at most once.
	Question 43	Which statement is true about the K-Means algorithm?
	Complete	Select one:
	Mark 1.00 out of 1.00	a. The output attribute must be categorical.
		b. All attribute values must be categorical.
		 c. All attributes must be numeric
		d. Attribute values may be either categorical or numeric.

