Introduction to the Theory of Computation

CSC236H

Non-deterministic Finite State Automata (NFA's) – Review

A Nondeterministic Finite Automaton (NFA) \mathcal{N} is a quintuple $\mathcal{N} = \langle Q, \Sigma, \delta, q_0, F \rangle$ where:

- Q is the **set of states** in \mathcal{N} ;
- Σ is the **alphabet** of symbols used by \mathcal{N} ;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to \mathcal{P}(Q)$ is the transition function;
- $q_0 \in Q$ is the **initial state** of \mathcal{N} ;
- $F \subseteq Q$ is the set of accepting states of \mathcal{N} .

- A string $w \in \Sigma^*$ is accepted by \mathcal{N} , if and only if at least one of the possible states in which the automaton could be after processing input w is an accepting state.
- The language accepted (or recognised) by an NFA \mathcal{N} , denoted $\mathcal{L}(\mathcal{N})$, is the set of all strings accepted by \mathcal{N} .

Non-deterministic Finite State Automata (NFA's) – ϵ -transitions

Equivalence of the Three Representations of Regular Languages

Theorem. Let L be a language. The following three statements are equivalent:

- 1. There is a regular expression that denotes L.
- 2. There is a DFA that accepts L.
- 3. There is an NFA that accepts L.

Proof. (Optional) See Lemma 7.18, Theorems 7.22, and Theorems 7.23 in the Course Notes.

Definition. A language is **regular** if and only if it is denoted by some **regular expression**; or, equivalently, if and only if it is accepted by a **DFA**, or, equivalently, if and only if it is accepted by an **NFA**.

Why NFA's?

- There are languages that can be accepted by an NFA that are much smaller than the smallest DFA that accepts the same language.
- Conceptual simplicity of NFA's.

Example: Let $L = \{x \in \{0,1\}^* : x = y1z, \text{ for some } y,z \in \{0,1\}^* \text{ s.t. } |z| = 3\}.$

That is, L consists of all strings with at least 4 symbols, where the 4th symbol from the end is 1.

- The smallest DFA that accepts L has ${f 16}$ states.
- There's an NFA with **5** state which accepts *L*.

Converting NFA's to DFA's (Optional)

- There is an algorithm (subset construction) for converting an NFA $\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$ to a DFA $\hat{\mathcal{M}}=(\hat{Q},\Sigma,\hat{\delta},\hat{q_0},\hat{F})$ that accepts the same language as \mathcal{M} .
 - 1. $\hat{Q} = \mathcal{P}(Q)$.
 - 2. $\hat{q_0}$: the set of all states reachable from the initial state of $\mathcal M$ via ϵ -transitions.
 - 3. \hat{F} : all states that contain an accepting state of \mathcal{M} .
 - 4. Let $a \in \Sigma$, $\hat{q} \in \hat{Q}$, and suppose \hat{q} is associated with $\{q_1,...,q_n\} \in \mathcal{P}(Q)$. To compute $\hat{\delta}(\hat{q},a)$, identify all states in Q that can be reached from $\{q_1,...,q_n\}$ by reading a:
 - Let $r = \{\}.$
 - Do the following steps for each $q_i \in \{q_1, ..., q_n\}$:
 - $-r = r \cup \delta(q_i, a).$
 - for each $q' \in \delta(q_i,a)$ identify the set of states which can be reach by a ϵ -transition, call it $\mathcal{E}(q')$. Then, $r=r \cup \mathcal{E}(q')$.

Lemma 7.18 in the Course Notes.

Tips for Designing NFA's

- Find a regular expression for the given language.
- Draw NFA's for sub-expressions that do not include *.
- Draw NFA's for sub-expressions contain *.
- Connect the NFA's corresponding to the sub-expressions.
- Might need to add some ε-transitions to make sure all strings in the given language are accepted.

IMPORTANT: the above steps are not a generic procedure for designing NFA's.

They only provide some guidelines which make designing NFA's easier.

Tips for Designing NFA's - Example

Let $L = \{x \in \{0,1\}^* : x = y1z, \text{ for some } y,z \in \{0,1\}^* \text{ s.t. } |z| = 3\}.$

That is, L consists of all strings with at least 4 symbols, where the 4th symbol from the end is 1.

Give an NFA which accepts L.

Tips for Designing NFA's – Example

 $L=\{x\in\{0,1\}^*: x \text{ contains some substring of length 4 whose first and last characters are the same}\}.$

Give an NFA which accepts ${\cal L}.$

Non-Regular Languages

Definition. A language is **regular** if and only if it is denoted by some **regular expression**; or, equivalently, if and only if it is accepted by a **DFA**, or, equivalently, if and only if it is accepted by an **NFA**.

- When is a language not regular?
 - DFA's/NFA's have fixed, finite states (memory).
 - If recognizing a language requires unfixed or unlimited memory (states), it cannot be represented by any DFA/NFA. Hence it's not regular.

Non-Regular Languages

Examples: $L = \{0^n 1^n : n \in \mathbb{N}\} = \{\epsilon, 01, 0011, 000111, \ldots\}$ is **not** regular.

For a contradiction, assume that L is regular. Then, there is a DFA that accepts L. Suppose the DFA has k states.

Now, consider the behaviour of the DFA on input string $0^{k+1}1^{k+1}$:

Proving Regularity by Closure Properties

Theorem. Regular languages are closed under complementation, union, intersection, concatenation and the Kleene star operation.

That is, if L and L' are two regular languages, then so are all of the following: $\bar{L}, L \cup L', L \cap L', L \circ L', L^{\circledast}$.

Proof:

(Proof Idea: Consider the DFA's/NFA's/Regular Expressions that represent L and L'. For each of the above five operations, show that a DFA/NFA/Regular Expression can be constructed based on the DFA's/NFA's/Regular Expressions representing L and L'.) Prove that if L is regular then $L' = \{xy : x \in L \text{ and } y \notin L\}$ is also regular.

Let $\mathcal{M}=(Q,\Sigma,\delta,q_0,F)$ and $\mathcal{M}'=(Q',\Gamma,\delta',q_0',F')$ be DFA's that accept L and L' respectively.

Proving Regularity by Closure Properties

If L is a regular language over $\Sigma=\{a,b\}$, show that language $L'=\{w:w=x1 \text{ for some } x\in L\}$ is also regular.

Proof Idea: Use the DFA for L to construct a DFA for L'.

Proving Non-Regularity by Closure Properties

Disprove the following statement:

If $L_1 \cup L_2$ is regular and L_1 is regular, then L_2 is regular.