EEE104 – Digital Electronics (I) Lecture 16

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

Synchronous Counters

2

2-Bit Synchronous Binary Counters

- All the flip-flops are clocked by CLK.
- J and K of FF1 are connected to Q₀ output of FF0.

2-Bit Synchronous Binary Counters

3-Bit Synchronous Binary Counters

4-Bit Synchronous Binary Counters

4-Bit Synchronous Decade Counters

Q3 Q2 Q1 Q0								
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					

- Q₀ is always toggled.
- Q₁ is toggled at states 0001, 0011, 0101, 0111.
- Q₂ is toggled at states 0011, 0111.
- Q₃ is toggled at states 0111, 1001.

$$J_0 = K_0 = 1$$

$$J_1 = K_1 = Q_0 \overline{Q}_3$$

$$J_2 = K_2 = Q_0 Q_1$$

$$J_3 = K_3 = Q_0 Q_1 Q_2 + Q_0 Q_3$$

4-Bit Synchronous Decade Counters

IC Synchronous Counters

74HC163 — a 4-bit synchronous binary counter

- *CLR*: synchronous clear
- *LOAD*: synchronous preset
- ENT, ENP: enable
- RCO: ripple clock output, which goes to 1 at count 15

9

IC Synchronous Counters

10

IC Synchronous Counters

74HC160 — a 4-bit synchronous decade counter

- *CLR*: asynchronous clear
- LOAD: synchronous preset
- ENT, ENP: enable
- RCO: ripple clock output, which goes to 1 at count 9

IC Synchronous Counters

11

Up/Down Synchronous Counters

An **up/down counter** is one that is capable of progressing in either direction through a sequence.

CLOCK PULSE	UP	Qz	Q ₁	Q ₀	DOWN
0	1	0	0	0	71
1	1/2	0	0	1	31
2	1/ >	0	1	0	31
3	1 >	0	1	1	31
4	1 >	1	0	0	31
5	1/ 5	1	0	1	31
6	1/6	1	1	0	3/
7	10	1	1	1)/

In count-down mode:

- Q₀ is always toggled.
- Q_1 is toggled at states 110, 100, 010, 000. So $J_1 = K_1 = /Q_0$.
- Q_2 is toggled at states 100, 000. So $J_2 = K_2 = /Q_0/Q_1$

Up/Down Synchronous Counters

$$J_0 = K_0 = 1$$

$$J_1 = K_1 = (Q_0 \cdot \text{UP}) + (\overline{Q}_0 \cdot \text{DOWN})$$

$$J_2 = K_2 = (Q_0 \cdot Q_1 \cdot \text{UP}) + (\overline{Q}_0 \cdot \overline{Q}_1 \cdot \text{DOWN})$$

14

Up/Down Synchronous Counters

An IC Up/Down Decade Counter

74LS190

• D/U: down/up

 $o^{\underline{(13)}} \overline{RCO}$ • *LOAD*: synchronous preset

> MAX/MIN: HIGH when 1001 or 0000 is reached.

• *RCO*: ripple clock output, which is 0 at count 9

15