Transfer reactions with Be-Li isotopes near the drip-line

LISE Workshop 2024

M. Lozano-González, A. Matta, B. Fernández-Domínguez, J. Lois-Fuentes, F. Delaunay on behalf on the E748 collaboration

IGFAE-USC and LPC-Caen

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

"Li is a neutron-rich nuclei displaying a 2n halo structure.

Overview of the exotic Be-Li region

Be and Li isotopes close to the neutron drip line have been extensively studied due to their exotic properties.

Two prime examples can be showcased:

¹¹Be presents parity inversion: g.s has **positive** parity when negative expected.

I. Talmi and I. Unna, PRL 4 (1960).

Recently gathered information

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in 9,11 Li(d, 3 He) 8,10 He reactions.

A. Matta et al., PRC 92 (2015).

Possible explanations:

• Role of the many-body interactions.

Recently gathered information

During the MUST2 @ RIKEN campaign, an unexpected **reduction** of the cross-section was observed in $^{9,11}\text{Li}(d, ^3\text{He})^{8,10}\text{He}$ reactions.

Possible explanations:

- Role of the many-body interactions.
- Overestimation of the nuclear overlap ^{9,11}Li|^{8,10}He⟩.

Collect more $d\sigma/d\Omega$ data!

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

• 10 Be(d, t) 9 Be: Benchmark reaction. n-occupancy in $p_{3/2}$.

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- 10 Be(d, t) 9 Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- ¹⁰Be(d, t) ⁹Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.
- 12Be(d, t)11Be: higher orbital $p_{1/2}$.

E748 at GANIL during the MUST2@LISE campaign. Neutron and proton removal reactions from ^{10,12}Be beams have been performed to probe key nuclei:

- ¹⁰Be(d, t) ⁹Be: Benchmark reaction. n-**occupancy** in $p_{3/2}$.
- 10 Be(d, 3 He) 9 Li: $p_{3/2}$ proved but on the proton side.
- ¹²Be(d, t) ¹¹Be: higher orbital $p_{1/2}$.
- 12Be(d, 3He)11Li: same p-orbital as before.

Experimental setup for E748

Traditional **solid target** experiment @ D6. Below a sketch of the setup:

Analysis at a glance

A **common** procedure is employed in all the reactions. Different gates are applied in a sequential manner, as follows:

1. **Heavy ID**: Only distinction in *Z*: separation of Be from Li residuals, but not along isotopic chain.

Analysis at a glance

A **common** procedure is employed in all the reactions. Different gates are applied in a sequential manner, as follows:

 Light ID: Using only stopped particles in Si layer, but low TOF resolution. Separation of t-3He attained with kinematics!

Missing mass technique: $E_{\text{beam}} + (E, \theta)_{\text{Lab}} \rightarrow \mathbf{E_x}$

Serves as a test of the analysis, allowing us to ascertain the **normalization** factors N_t and N_h .

- Modern models (Haixia and DA1p) adjust better the minimum.
- Overall agreement in magnitude.

Error in **efficiency**Proton **contamination** at low *E*

Elastic: ${}^{10}\text{Be}(d,d){}^{10}\text{Be}$

Cross-section for the 1st excited state is also achievable.

- DWBA: potential deformed in both Coulomb and nuclear parts
- Using $B(E_2)$ from other experiments
- Same error as before?

To be further investigated.

$$\Rightarrow C^2S = 0.270(22)$$
 with Daehnick

Neutron removal: ¹⁰Be(d, t) ⁹Be

Only the **ground state** is accessible. Angular distributions are determined in the interval $\theta_{CM} \in [5, 20]^{\circ}$.

- DWBA with DAEHNICK (d) and PANG (t) OMPs
- **Best fit** is $\ell = 1$ with j = 3/2

$$\Rightarrow C^2S = 1.522(44)$$

Neutron removal: ¹⁰Be(d, t) ⁹Be

Another measurement is available in D.L Auton Nucl. Phys. A (1970). A reanalysis with our model is executed:

- No errors could be extracted from paper
- Poor quality at large θ_{CM}
- $C^2S = 1.951(54)$

Agreement with our results

E748 can be compared with a recent experiment carried out at the Acculinna facility. For the E_x :

Our experiment @ 30 AMeV

E. Y. Nikolskii et al. @ 42 AMeV

Recently published: NIMPR B 541 (2023)

Angular distributions for the **ground state** are extracted:

Our experiment, $\theta_{CM} \in [6, 14]^{\circ}$

Again
$$\ell = 1 \implies 3/2^-$$
.
 $C^2S = 1.80(11)$

Acculinna one, $\theta_{CM} \in [3, 13]^{\circ}$

Original publication: $C^2S = 1.74$

Angular distributions for the **ground state** are extracted:

Our experiment, $\theta_{CM} \in [6, 14]^{\circ}$

Again
$$\ell = 1 \implies 3/2^-$$
.
 $C^2S = 1.80(11)$

Reanalyis of Acculinna's data

$$\ell = 1 \implies C^2S = 2.679(45)$$

Investigate **input parameters**
in the models!

A first excited state is also accesible.

RESULTS OOO⊕OOO

- **Best fit** is $\ell = 1$
- Assuming j = 1/2
- Spectroscopic factor: 0.185(36)

Elastic: 12 Be(d, d) 12 Be

Yet another validation method of the normalization.

- Same behaviour as for ¹⁰Be
- Normalization fine for this beam also

Clearly the same systematic error

Elastic: 12 Be $(d, d)^{12}$ Be

Cross-section for the 1st excited state is also achievable.

• Same procedure as before

To be further investigated. $\Rightarrow C^2S = \text{0.519(30)} \text{ with }$ Daehnick

Challenging channels: ¹²Be(d, t)¹¹Be

- Strong inhibition of the ground state
- Why? Related to parity inversion in ¹¹Be?

Challenging channels: 12 Be(d, 3He) 11 Li

- Low cross-section
- Subject to **contamination**: hard to disentangle A = 3

$$\Rightarrow C^2S = 0.510(85)$$
 with Daehnick

Conclusions and outlook

We investigated several proton and neutron pick-up reactions on ^{10,12}Be:

	Channel	Status	Pending
10Be	(d,d) (d,t) (d, 3He)	Normalization OK Completed Completed	Requires study C^2S matches other measures. Two new C^2S
12Be	(d,d) (d,t) (d,3He)	Normalization OK Puzzled Needs clean	Same as ¹⁰ Be ? New C ² S

Conclusions and outlook

Future prospects

Solve discrepancies in **elastic** channels

Reduce contamination in ³He PID

Compare with **shell model** calculations

Thanks for your attention!	
And special thanks to the E748 collaboration.	

Csl on or off?

So far, studied excited states are compressed in the DSSD layer:

Beam ID

Using Caviar to CATS1 TOF and energy loss in IC

For ¹⁰Be

Kinematic lines

For ¹⁰Be beam

For ¹²Be beam