Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа №3 (Моделирование системы диагностирования, построенной с использованием структурных инвариантов)

Дисциплина: Идентификация и диагностика СУ Вариант №12

Выполнил студент гр. 13541/1			Смирнов М.И. Сабонис С.С.	
Руководитель	(подпись)			
		٠٠ ;	,,	2017 г

Содержание

Задание	3
Решение	5
1. Осуществить построение структурных инвариантов	5
1.1 Разность одноименных параметров различных ИК	5
1.2 Разность параметров отдельных каналов и следующей статистики: среднее арифметическое	3
1.3 Разность параметров отдельных каналов и следующей статистики: порядковое среднее	3
2. Провести моделирование системы в режиме функционирования с дефектом. построить графики сигналов в ик	5
2.1 Сдвиг (изменение среднего уровня систематической погрешности) в одном из каналов	5
2.2 Изменение уровня шумов (увеличение дисперсии) в одном из каналов	10
Вывод	1

Задание

1. Осуществить построение структурных инвариантов, заданных в следующем виде:

- 1) разность одноименных параметров различных ИК;
- 2) разность параметров отдельных каналов и следующей статистики: среднее арифметическое.
- 3) разность параметров отдельных каналов и следующей статистики: порядковое среднее.
- 2. Провести моделирование системы в режиме нормального функционирования, построить графики сигналов в ИК.
 - 3. Определить следующие типы дефектов:
 - 1) Сдвиг (изменение среднего уровня систематической погрешности) в одном из каналов;
 - 2) Изменение уровня шумов (увеличение дисперсии) в одном из каналов.

Ввести три уровня для каждого дефекта: малый, средний и большой; определить величины дефектов для каждого уровня. Провести моделирование системы в режиме функционирования с дефектом. Построить графики сигналов в ИК.

4. Сформулировать выводы о проделанной работе, оформить отчет.

Решение

1. Осуществить построение структурных инвариантов

Сигнал в ИК представляет собой последовательность независимых случайных величин, распределенных нормально с нулевым математическим ожиданием и единичной дисперсией.

1.1 Разность одноименных параметров различных ИК

$$\Delta_{12} = y_1(t) - y_2(t);$$
 $\Delta_{13} = y_1(t) - y_3(t);$ $\Delta_{23} = y_2(t) - y_3(t)$

Оценки инвариантов:

1.2 Разность параметров отдельных каналов и следующей статистики: среднее арифметическое

$$\Delta_j = y_j - \frac{1}{3} \sum_{i=1}^3 y_i$$

$$\sum_{i=1}^{2} \frac{1}{0} \sum_{i=1}^{3} y_i$$

$$\sum_{i=1}^{3} y_i$$

$$\sum_{i=1}^{3$$

1.3 Разность параметров отдельных каналов и следующей статистики: порядковое среднее

$$\Delta_j = y_j - median[y_1, y_2, y_3]$$

2. Провести моделирование системы в режиме функционирования с дефектом. построить графики сигналов в ик

2.1 Сдвиг (изменение среднего уровня систематической погрешности) в одном из каналов

2.1.1 Малый сдвиг M = 1, D = 1

Разность одноименных параметров различных ИК:

Разность параметров отдельных каналов и порядкового среднего:

2.1.2 Средний сдвиг M = 2, D = 1.

Разность одноименных параметров различных ИК:

2.1.3 Большой сдвиг M = 4, D = 1

Разность одноименных параметров различных ИК:

Разность параметров отдельных каналов и порядкового среднего:

2.2 Изменение уровня шумов (увеличение дисперсии) в одном из каналов 2.2.1 Малый шум $M=0,\,D=1.5$

Разность одноименных параметров различных ИК:

Разность параметров отдельных каналов и среднего арифметического:

Разность параметров отдельных каналов и порядкового среднего:

2.2.2 Средний шум M = 0, D = 2

t

Разность одноименных параметров различных ИК:

2.2.3 Большой шум M = 0, D = 4

Разность одноименных параметров различных ИК:

Разность параметров отдельных каналов и порядкового среднего:

Вывод

В данной работе исследовались методы выявления ошибки с помощью структурных инвариантов.

Все методы могут быть применимы для выявления дефектов, а также позволяют определить характер дефекта.