Resumo: Árvore Geradora Mínima, Algoritmo de Kruskal e de Prim

Árvore (Tree)

- Definição:
 - Uma árvore é um grafo acíclico e conexo.
- Teorema 1:
 - Uma árvore tem um caminho entre qualquer par de vértices.
 - Formalmente: $\forall u, v \in V, \exists \operatorname{path}(u, v)$.
- Conceitos:
 - Um vértice de grau 1 é chamado de folha.
 - Em alguns contextos, vértices de grau 0 também podem ser considerados folhas.
 - Um vértice com o grau maior que 1 é chamado de vértice interno.
- Teorema 2:
 - Toda árvore com pelo menos dois vértices possui pelo menos duas folhas.
- Teorema 3:
 - Toda árvore com $|V| \ge 1$ tem exatamente |V| 1 arestas, ou seja: |E| = |V| 1.

Árvore Geradora (Spanning Tree)

- Definição:
 - Uma árvore geradora é um subgrafo que é uma árvore e contém todos os vértices do grafo original e um subconjunto de arestas que preserva a conectividade.
 - Formalmente: $T = (V, E'), E' \subset E$.
- Algoritmo construtivo:
 - 1. Comece com um grafo conexo.
 - 2. Remova arestas de ciclos até não haver mais ciclos.
 - O subgrafo restante será uma árvore geradora.
- Teorema:
 - Um grafo conexo com |V| vértices e |V|-1 arestas é uma árvore.
- Conceitos:
 - Branch: aresta presente na árvore geradora.
 - Chord: aresta que n\u00e3o faz parte da \u00e1rvore geradora, mas est\u00e1 no grafo original.

Floresta (Forest)

Definição:

- Uma floresta é um grafo acíclico, em que cada componente conexo é uma árvore.
 - Uma floresta é uma **coleção de árvores**.
- Teorema:
 - Uma floresta com n vértices e k componentes conexos (ou árvores) possui exatamente n-k arestas.
 - Formalmente: |E| = |V| |CC|, onde |CC| = k é o número de componentes conexos.

Floresta Geradora (Spanning Forest)

- Definição:
 - Uma floresta geradora é uma coleção de árvores geradoras, uma para cada componente conexo de um grafo desconexo.

Árvore Geradora Mínima (Minimum Spanning Tree - MST)

- Objetivo:
 - Encontrar uma árvore geradora com o menor custo total de arestas.
- Instância:
 - Grafo não direcionado G=(V,E) com função de custo $w:E o\mathbb{R}^+.$
- Solução:
 - Subconjunto de arestas $T\subseteq E$ tal que (V,T) é árvore e minimiza o custo total: $\sum_{e\in T} w(e).$

Algoritmos para Árvore Geradora Mínima

Algoritmo de Kruskal

- Ideia:
 - Constrói a MST adicionando as arestas de menor peso uma a uma, desde que não formem ciclos.
- Descrição matemática:
 - Dado um grafo conexo não direcionado G=(V,E) com pesos $w:E \to \mathbb{R}^+$, o algoritmo busca um subconjunto $T\subseteq E$ tal que:
 - (V,T) é uma árvore,
 - |T| = |V| 1,
 - ullet e $\sum_{e\in T}w(e)$ é minimizado.
- Algoritmo:
 - 1. Inicialize $T = \emptyset$ (subconjunto de arestas da MST).

- 2. Ordene as arestas E em:
 - 1. Ordem monotonicamente crescente de peso, se todos os pesos forem diferentes.
 - 2. Ordem não decrescente de peso, se houver pesos iguais.
- 3. Para cada aresta $e_i = (u, v)$ na ordem:
 - Se u e v estão em componentes distintos (não conectados em T):
 - Adicione e_i a T.
 - Caso contrário, ignore e_i (pois formaria ciclo).
 - 1. Pare quando |T| = |V| 1.

Para verificar componentes disjuntos, utiliza-se a estrutura **Union-Find (Disjoint Set Union - DSU)**.

Algoritmo de Prim

- Ideia:
 - Começa com um único vértice e expande a árvore, a cada passo, com a aresta de menor custo que conecta um novo vértice.
- Descrição matemática:
 - A cada iteração, o algoritmo mantém um subconjunto $S \subseteq V$ de vértices já conectados, e adiciona a aresta de menor peso entre S e $V \setminus S$.
- Algoritmo:
 - 1. Escolha um vértice arbitrário $s \in V$ para iniciar.
 - 2. Inicialize $S = \{s\}$ e $T = \emptyset$.
 - 3. Enquanto $S \neq V$:
 - Encontre a aresta de menor peso (u, v) tal que $u \in S$ e $v \notin S$:
 - $ullet \ (u,v) = rg \min_{(x,y) \, \in \, \mathrm{cut}(S)} w(x,y).$
 - Adicione v a S e a aresta (u, v) a T.
 - 4. Ao final, (V,T) será a MST.

Usualmente implementado com uma **fila de prioridade (heap)** para otimizar a seleção da aresta de menor peso.

Algoritmo Reverse-Delete

Ideia:

- Começa com todas as arestas do grafo e remove as de maior peso, desde que a conectividade n\u00e3o seja perdida.
- Descrição matemática:
 - Arestas são removidas de E em ordem decrescente de peso, mantendo sempre o grafo conexo. O subconjunto final $T \subseteq E$ forma a MST.
- Algoritmo:
 - 1. Inicialize T=E.
 - 2. Ordene as arestas em:
 - 1. Ordem monotonicamente decrescente de peso, se todos os pesos forem diferentes.
 - 2. Ordem não crescente de peso, se houver pesos iguais.
 - 3. Para cada aresta $e_i = (u, v)$ na ordem:
 - Remova temporariamente e_i de T.
 - Se $(V, T \setminus \{e_i\})$ continua conectado:
 - Remova e_i permanentemente.
 - Caso contrário, mantenha e_i.
 - 4. Ao final, T será uma árvore geradora mínima.

Esse algoritmo é menos eficiente que Kruskal e Prim, pois exige verificar conectividade após cada remoção (pode exigir busca em profundidade ou largura repetidamente).

Observações Gerais

- Para tratar o caso de arestas com pesos repetidos, é possível aplicar uma pequena perturbação aleatória nos pesos.
- Qualquer algoritmo que inclui arestas com base na propriedade do corte e exclui arestas com base na propriedade do ciclo produzirá uma MST correta.
 - Propriedade do Corte:
 - Dado um corte qualquer $S \subset V$, a **menor aresta** que cruza o corte (ou seja, que conecta S a $V \setminus S$) está presente em **toda MST**.
 - Propriedade do Ciclo:
 - Em qualquer ciclo do grafo, a aresta de maior peso não pertence a nenhuma MST.
- Se todas as arestas possuem pesos distintos, a MST gerada é única, e todos os algoritmos corretos retornarão a mesma solução.
 - Porém, se houver arestas com pesos iguais, é possível que diferentes algoritmos (ou diferentes execuções de um mesmo algoritmo) resultem em MSTs distintas, embora todas tenham o mesmo custo total mínimo.

 A diferença ocorre porque empates nas escolhas podem levar a diferentes estruturas, especialmente em presença de ciclos.

Árvore de Stainer (Stainer Tree)

- Definição
 - Dado:
 - Um grafo **não direcionado e conexo** G=(V,E) com pesos associados às arestas: $w:E\to\mathbb{R}^+$.
 - Um subconjunto de vértices terminais $T \subseteq V$.
 - Objetivo do problema da árvore de Steiner:
 - É encontrar um subgrafo em forma de árvore H = (V', E') de G, tal que:
 - $T \subseteq V' \subseteq V$,
 - H é conexo,
 - O custo total das arestas de H (isto é, $\sum_{e \in E'} w(e)$) seja mínimo.
 - Ou, encontrar um subgrafo com algum critério de otimização.
 - Os vértices em $V'\setminus T$ são chamados de **pontos de Steiner**, são vértices **adicionados** à solução para conectar os terminais com menor custo.
- Comparação com MST:

Árvore Geradora Mínima (MST)	Árvore de Steiner
Conecta todos os vértices do grafo	Conecta apenas um subconjunto $T\subset V$
Não adiciona vértices extras	Pode adicionar vértices auxiliares (Steiner)
Algoritmos eficientes como Kruskal e Prim	Problema NP-difícil, exige aproximação ou busca exata
Custo total mínimo sobre todos os vértices	Custo mínimo para conectar apenas os terminais

- Complexidade:
 - O problema da árvore de Steiner em grafos gerais é NP-difícil.
 - Nenhuma solução é conhecida para o problema da árvore de Steiner em grafos.