JURNAL FARMASI UDAYANA

ISSN 2301-7716

STUDI KARAKTERISTIK FISIK AMILUM SINGKONG TERPREGELATINASI DENGAN AMILUM SINGKONG ALAMI DAN *BRAND NAME*

Jemmy A. Prasetia, I.G.N.¹, I Gst.A.P. Deddy Mahardika¹, I.M.A. Gelgel Wirasuta¹ Jurusan Farmasi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Udayana, Bukit Jimbaran 80364, Bali

corresponding author.

E-mail addreses: ngurah jemmy@yahoo.com, Kode Pos: 80364, Telp 08179373361

ABSTRAK

Amilum singkong sebagai eksipien dalam industri farmasi memiliki kekurangan yaitu sifat alir dan kompaktibilitas yang buruk. Untuk memperbaiki kekurangan tersebut maka dilakukan modifikasi amilum dalam bentuk terpregelanitasi dari amilum singkong alami yang diproleh dari pengupasan singkong hingga tahap pengeringan amilum. Dari penelitian ini diharapkan diperoleh informasi terkait dengan karakteristik fisik amilum singkongterpregelatinasi *brand name* dibandingkan dengan amilum singkongterpregelatinasi alami guna memperoleh metode pembuatan yang hemat biaya dan waktu. Penelitian ini dilakukan dengan menggunakan rasio amilum:air (1:1) pada suhu pemanasan 45°C, 50°C, 55°C untuk *partially pregelatinized* dan 80°C, 90°C, 100°C untuk *fully pregelatinized*.

Amilum singkong *brand name* dan alami memberikan hasil uji sifat fisik yang serupa dan sesuai dengan persyaratan. Berdasarkan analisis statistik menunjukan sifat alir dan kompaktibilitas kedua jenis amilum singkong tidak berpengaruh secara signifikan.

Kesimpulan dari penelitian ini menunjukkan bahwa hasil uji sifat fisik amilum singkong pregelatin yang berasal dari amilum singkong alami dan amilum singkong yang memiliki *brand name* memiliki sifat fisik yang sama. Perbandingan sifat fisik kedua amilum tersebut memeperlihatkan bahwa amilum singkong *brand name* mampu memenuhi syarat karakteristik fisik sebagai *raw material* eksepien sediaan farmasi.

Keywords: Amilum singkong, alami, *brand name*, pregelatin, karakteristik fisik.

1. PENDAHULUAN

Penggunaan amilumsebagai bahan pengisi, pengikat, dan penghancur dalam sediaan oral seperti dalam pembuatan tablet memiliki harga yang murah dan *inert* (Hastuti, 2008) (Samsuri, 2008). Amilum singkong sebagai eksipien dalam industri farmasi, memiliki kekurangan yaitu sifat alir dan kompaktibilitas yang buruk jika digunakan sebagai eksipien tablet kempa langsung (Yusuf, 2008). Untuk memperbaiki kekurangan dari amilum singkong tersebut maka dilakukan modifikasi amilum menjadi bentuk pregelnya (Rowe *et al.*, 2003).

Amilum yang umum dimodifikasi adalah amilum alami yang diolah mulai dari pengupasan, penghancuran, perendaman, hingga tahap pengeringan amilum. Pada umumnya modifikasi amilum menjadi bentuk pregelatin dapat dilakukan dengan cara pemanasan amilum membentuk suspensi amilummenghasilkan ukuran granul yang

lebih besar yang mampu memperbaiki sifat alir dan kompaktibilitas tablet yang lebih baik (Hastuti, 2008).

Pada penelitian ini akan dilakukan modifikasi amilum dengan menggunakan amilum singkong yang memiliki *brand name*. Tujuan penelitian ini untuk mengetahui perbandingan karakteristik fisik dari amilum singkong *brand name* dan alami sehingga akan bermanfaat sebagai salah satu alternatif pemilihan *raw material* dalam modifikasi amilum singkong. Pemilihan amilum *brand name* diharapkan mampu untuk menghemat waktu dan biaya proses pembuatan amilum singkong alami.

Untuk mengetahui perubahan sifat fisik amilum perlu dilakukan uji sifat fisik pada amilum yang meliputi uji kelembaban, ujiwaktu alir, kompaktibilitas, dan distribusi ukuran partikel.

2. BAHAN DAN METODE

2.1 Bahan Penelitian

Amilum singkong *brand name* dan alamiyang diperoleh di Kabupaten Badung, Bali dan *aquadest* (PT.Bratachem).

2.2 Metode Penelitian

2.2.1 Pembuatan amilum singkong pregelatin

Pembuatan amilum singkong pregelatin dilakukan dengan menggunakan rasio amilum: aquadest yaitu 1:1 dengan suhu pemanasan 45°C, 50°C, 55°C untuk partially pregelatinized dan 80°C, 90°C, 100°C untuk fully pregelatinized, diaduk dengan selama 10 menit hingga amilum tercampur secara homogen. Amilum yang telah terlarut dipanaskan pada suhu pengamatan sambil diaduk selama 10 menit. Massa kental yang terbentuk kemudian dikeringkan dalam oven dengan suhu 60°C selama 24 jam. Setelah kering, amilum lalu diayak dengan ayakan

mesh no 20 hingga dihasilkan amilum singkong terpregelatinasi.

2.2.2 Uji Sifat Fisik Amilum

Uji sifat fisik amilum meliputi uji kelembaban(Voigt, 1995), uji waktu alir(Voigt, 1995), distribusi ukuran partikel(Jenkins dkk., 1957), dan uji kompaktibilitas(Aulton, 1988).

2.2.3 Analisis Data

Hasil uji fisik sifat alir dan kompatibilitas amilum dianalisis secara statistik*Analysis of Variance* (ANOVA) *One-Way*.Uji statistikdengan taraf kepercayaan 95%digunakan untuk melihat nilai signifikan (α) pengaruh variasi suhu yaitu 45 °C, 50 °C, 55 °C untuk *partially pregelatinized* dan 80°C, 90°C, 100 °C untuk *fully pregelatinized* masingmasing jenis amilumterhadap sifat alir dan kompaktibilitas amilum pregelatin yang dihasilkan.

3. HASIL DAN PEMBAHASAN

3.1. Uji Sifat Fisik

Tabel 3.1 Hasil uji sifat fisik amilum singkong partially pregelatinized

Uji Sifat fisik	Amium Singkong		Hasil uji sifat fisik pada suhu			
		Pustaka	Tanpa pemanasan	45°C	50 °C	55°C
Uji kelembaban (%)	Alami	1-5%1	7.57 ± 0.05	6.07 ± 0.27	5.39 ± 0.07	4.63 ± 0.07
	Brand name		7.15 ± 0.09	4.57 ± 0.30	4.52 ± 0.26	4.41 ± 0.50
Uji waktu alir (g/detik)	Alami	>4²	Tidak mengalir	10.55 ± 0.02	12.44 ± 0.10	12.60 ± 0.08
	Brand name		Tidak mengalir	12.22 ± 0.09	12.42 ± 0.12	12.56 ± 0.05
Kompaktibili	_{li} Alami	<23 ²	25.43 ± 0.12	18.27 ± 0.15	16.67 ± 0.15	13.93 ± 0.15
tas (%)	Brand name		24.07 ± 0.12	14.20 ± 0.10	13.97 ± 0.35	13.60 ± 0.30

Keterangan: 1) Depkes RI, 1995; 2) Aulton, 1988

Tabel 3.2 Hasil uji sifat fisik amilum singkong fully pregelatinized

Uji Sifat fisik	Amium Singkong	Pustaka	Hasil uji sifat fisik pada suhu			
			Tanpa pemanasan	80°C	90°C	100°C
Uji kelembaban (%)	Alami	1-5%1	7.57 ± 0.05	3.7 ± 0.02	3.4 ± 0.27	5.22 ± 0.18
	Brand name		7.15 ± 0.09	4.09 ± 0.10	3.35 ± 0.10	5.62 ± 0.16
Uji waktu alir (g/detik)	Alami	>4²	Tidak mengalir	13.17 ± 0.12	13.55 ± 0.03	12.69 ± 0.61
	Brand name		Tidak mengalir	14.46 ± 0.10	13.47 ± 0.05	11.06 ± 0.06
Kompaktibili	Alami	<23 ²	25.43 ± 0.12	12.40 ± 0.10	11.53 ± 0.15	12.30 ± 0.10
tas (%)	Brand name		24.07 ± 0.12	13.17 ± 0.40	10.17 ± 0.15	4.6 ± 0.10

Keterangan: 1) Depkes RI, 1995; 2) Aulton, 1988

3.1.1. Uji kelembaban (*Moisture Content*)

Moisture Content yang baik untuk eksipien tablet cetak langsung vaitu 1-5%. Hasil dari uji kelembabankedua jenis amilum menunjukkan bahwasemakin tinggi suhu pemanasan persentase kelembabannya semakin rendah karena proses pemanasan mampu mempengaruhihidrogen yang terikat secara intermolekular di rantai amilosa dan rantai cabang amilopektin menjadi semakin lemah. Ikatan hidrogen yang lemah akan menyebabkan air pada permukaan amilum lebih mudah terlepas dari gugus hidroksil pada saat proses pengeringan. Namun ketika suhu pemanasan melewati suhu gelatinasi 68-92°C, suhu 100°C pemanasan pada menyebabkan rusaknya ikatan hidrogen pada amilum yang memudahkan air masuk ke dalam granul dan memungkinkan sedikit melarutnya dan terjadi pertukaran amilosa menuju air sehingga mengurangi jumlah amilosa dalam granul yang menyebabkan kehilangan kemampuan mengembang dan berubah menjadi gel dengan jumlah air yang cukup besar. Hal tersebut mempengaruhi kelembaban amilum meningkat pada suhu pemanasan 100°C (Hapsari, 2008) (Swingkels, 1985).

Pada tabel 3.1 dan 3.2 terlihat bahwa amilum singkong *brand name* memilikipersentase kelembaban yang lebih baik dari amilum singkong alami pada berbagai suhu pemanasan pregelatinasi *fully* pregelatinized dan partially pregelatinized.

3.1.2. Uji sifat alir

Menurut Lachman (2008), pengukuran waktu alir dapat digunakan untuk penentuan

sifat alir amilum.Dari tabel 3.1 dan 3.2 terlihat bahwa amilum singkong tanpa pemanasan tidak mampu mengalir karena amilum singkong memiliki ukuran partikel yang kecil (≤ 180 µm) (Depkes RI, 1995). Amilum singkong pregelatin baik amilum singkong alami dan *brand name* dengan perlakuan variasi suhu pemanasan 45°C, 50°C, 55°C, 80°C, 90°C, dan 100°C rata-rata menunjukan sifat alir yang serupa yaitu sangat baik karena mampu mengalir >10 gram/detik (Aulton, 1988).

Kemampuan mengalir amilum sangat dipengaruhi oleh distribusi ukuran partikel amilum tersebut.Untuk amilum tanpa pemanasan, distribusi ukuran partikelnya sangat sempit hanya tertuju pada satu titik hampir keseluruhan melewati ayakan mesh no. 80.Ukuran partikel yang kecil ini menyebabkan tidak adanya rongga udara antarpartikel, sehingga kemampuan mengalir amilum sangat jelek dan tidak mampu mengalir (Voigt, 1995).

Dari data uji waktu alir dilakukan uji statistik ANOVA yang menunjukkan bahwa perbandingan dari suhu pemanasan yang sama dengan jenis amilum yang berbeda, baik pada amilum singkong alami dan *brand name*pada suhu 50°C, 55°C, dan 90°C menunjukan tidak adanya perbedaan yang signifikan, ini menjelaskan bahwa pada suhu tersebut kedua jenis amilum singkong memiliki karakteristik sifat alir yang serupa.

3.1.3. Uji kompaktibilitas

Distribusi ukuran partikel suatu bahan dapat mempengaruhinilai kompaktibilitas.Dari

tabel 3.1 dan 3.2 terlihat bahwa nilai kompaktibilitas amilum singkong tanpa pemanasan baik *brand name* maupun alamimemiliki nilai kompaktibilitas paling besar dengan ukuran partikel amilum yang kecil.

Amilum singkong pregelatin alami untuk suhu pemanasan 45°C memiliki nilai kompaktibilitas 18,27% termasuk kategori kompaktibilitas yang kurang. Untuk suhu pemanasan 50°C, 55°C, 80°C, 90°C, dan 100°C memiliki nilai kompaktibilitas yang berkisar antara 12%-18% berarti memiliki kompaktibilitas yang baik.

Amilum singkong pregelatin *brand name* untuk suhu pemanasan 45°C, 50°C, 55°C, 80°C, 90°C memiliki nilai kompaktibilitas pada kategori rentang 12%-18% berarti memiliki kompaktibilitas yang baik. Sedangkan amilum pregelatin dengan variasi pemanasan suhu 100°C memiliki nilai kompaktibilitas dalam kategori sangat baik (Aulton, 1988).

Hasil uji ANOVA menunjukkan bahwa perbandingan antara amilum singkong *brand name* maupun alami pada suhu pemanasan 50°C tidak terdapat perbedaan yang signifikan (P >0,05), ini berarti pada suhu pemanasan 50°C amilum singkong *brand name* maupun

alami memiliki sifat kompaktibilitas yang sama dan pada suhu lainnya nilai kompaktibilitas kedua jenis amilum memiliki kompaktibilitas yang semakin baik seiring dengan bertambahnya suhu pemanasan

3.1.4. Uji distribusi ukuran partikel

Uji distribusi ukuran partikel bertujuan untuk mengetahui pendistribusian ukuran amilum dan diharapkan tidak menghasilkan distribusi ukuran partikel yang luas karena akan mempengaruhi mempengaruhi sifat alir amilum. Hasil uji distribusi ukuran partikel amilum singkong pregelatin alami dan*brand name* ditunjukkan seperti gambar 3.1.

Dari gambar 3.1terlihat bahwa kedua jenis amilum memiliki distribusi ukuran partikel yang serupa dimana seiring dengan meningkatnya suhu pemanasan menghasilkan distribusi amilum yang semakin sempitpada mesh no. 40. Hal ini sesuai dengan penggolongan serbuk menurut Ansel (2005), amilum singkong pregelatin tergolong serbuk kasar yang mampu terayak pada mesh no. 20. Amilum singkong pregelatin memiliki ukuran amilum yang lebih besar karena adanya penambahan air dan pemanasan pada saat proses pregelatinasi.

Gambar 3.1 Distribusi ukuran partikel amilum*brand name*

4. KESIMPULAN

Hasil uji sifat fisik amilum singkong pregelatin yang berasal dari amilum singkong

Jurnal Farmasi Udayana Vol 5, No 2, 7-11

alami dan amilum singkong yang memiliki brand name memiliki sifat fisik yang sama. Perbandingan sifat fisik kedua amilum tersebut memeperlihatkan bahwa amilum singkong brand name mampu memenuhi syarat karakteristik fisik sebagai raw material eksepien sediaan farmasi.

UCAPAN TERIMA KASIH

Terima kasih kepada laboran laboratorium farmasetika dasar Jurusan Farmasi Universitas Udayana, serta semua pihak yang turut membantu dalam menyelesaikan penelitian ini.

DAFTAR PUSTAKA

- Ansel, H. C. 2005. *Pengantar Bentuk Sediaan Farmasi*. Edisi Keempat. Jakarta: UI-Press. Hal: 203-216.
- Aulton, M.E. 1988. *Pharmaceutic The Science of Dosage Form Design*. Hongkong: ELBS. Pp: 356-370.
- Depkes RI. 1995. Farmakope Indonesia. Edisi IV. Jakarta: Departemen Kesehatan Republik Indonesia. Hal: 107.
- Fudholi, A. 1983. *Metodologi Formulasi dalam Kompresi Direk*. Jakarta: Kongres XI ISFI. Hal: 98-105.
- Hapsari, T. P. (2008). Pengaruh Pregelatinasi Terhadap Karakteristik Tepung Singkong. *Primordia*. Vol. 4 (2): 92-105.
- Hastuti, M. 2008. Pengaruh Perbedaan Suhu dalam Metode PembuatanAmilum Singkong Pregelatinasi Terhadap Sifat FisikTablet Chlorpheniramin Maleat secara Kempa Langsung (skripsi). Surakarta: Universitas Muhahammadiyah Surakarta.
- Jenkins. 1957. Scoville's The Art Of Compounding.9th Edition. London: The Blankiston Division MC Graw Hiill Book Company. Pp: 257.
- Lachman, L., H. A. Lieberman dan J. L. Kanig. 2008. *Teori dan Praktek Farmasi Industri*, Edisi Ketiga. Jakarta: UI Press. Hal: 101-246.
- Rowe, R.C., Sheskey, P.J., and Weller, P.J., 2003. *Handbook of Pharmaceutical Excipients*, Fourth edition. London: The Pharmaceutical Press.
- Samsuri, B. 2008. *Penggunaan Pragelatinisasi Literatur* (skripsi). Jakarta: Universitas Indonesia.

- Swingkels, J.J.M. 1985. Sourceof Strach, Its Chemistry and Physics: Beynum, G.M.A.V., J.A. Roles (ed). 1985. Strach Convertion Technology. New York and Bassel: Marcel Dekker. Pp: 15-46, 74-78
- Voigt, R. 1995. Buku Pelajaran Teknologi Farmasi. Yogyakarta: Gajah Mada University Press. Hal: 116-189.
- Yusuf, H., A. Radjaram dan D. Setyawan. 2008.Modifikasi Pati Singkong Pregelatin sebagai Bahan Pembawa Cetak Langsung (skripsi). Surabaya: Universitas Airlangga.