

PHYSICS

Chapter 4

3th

SECONDARY

FUERZAS

Fuerza cantidad física que podemos encontrar en todas p

¿CÓMO SURGEN LAS FUERZAS?

Las fuerzas surgen en las interacciones.

INTERACCIÓN: Acción mutua entre dos cuerpos

LAS INTERACCIONES PUEDEN SER:

A CONTACTO

Existe un punto de contacto

A DISTANCIA

No hay contacto

Interacciona con la Tierra

Interacciona con el imán

TERCERA LEY DE NEWTON

En toda interacción surgen dos fuerzas denominadas de Acción y Reacción, que presentan igual módulo, son colineales de orientaciones opuestas y actúan en

cuerpos diferentes por lo cual no se anulan.

FUERZAS MAS USUALES

Fuerza de Gravedad

- $\cdot \overrightarrow{Fa}$ Debido a la atracción que ejerce la tierra a los cuerpos que están en su entorno.
- Actúa
 i el centro de gravedad (C.G.) de los cuerpos.

Siempre se grafica vertical apuntando al centro de la

En una person<u>a</u>

$$\overrightarrow{F_g} = m \cdot \overrightarrow{g}$$

 $m{m}$: masa (en kg)

 $ec{m{g}}$: aceleración de la gravedad

Fuerza de Tensión (\overrightarrow{T})

- · Surge en las cuerdas al tensionarla oponiéndose a su deformación.
- · Se realiza un corte imaginario, y se grafica del cuerpo hacia el corte.

Fuerza Normal $(\overrightarrow{F_N})$

- Surge en el contacto entre superficies.
- · Se grafica hacia el cuerpo en dirección perpendicular a las superficies.

Fuerza Elástica $(\overrightarrow{F_e})$

· En cuerpos elásticos deformados como resortes, ligas, entre otros.

De la ley de Hooke

K: Constante de rigidez del resorte X: Deformación

DIAGRAMA DE CUERPO LIBRE (D.C.L.)

- · Es la representación grafica de todas las fuerzas que actúan sobre un cuerpo.
- Para realizar un correcto D.C.L. debemos seguir los siguientes pasos, presta atención...

Realice el diagrama de cuerpo libre del tronco

Realice el diagrama de cuerpo libre del bloque.

3

Realice el diagrama de cuerpo libre del bloque si el resorte está estirado.

Realice el diagrama de cuerpo libre de la barra si el resorte está comprimido.

5

Realice el diagrama de cuerpo libre de la polea ideal y del bloque.

RESOLUCIÓ N

DCL de la polea ideal:

DCL del bloque:

Realice el diagrama de cuerpo libre del nudo A y del bloque.

RESOLUCIÓ N

DCL del bloque

Realice el diagrama de cuerpo libre de cada polea ideal y del bloque.

RESOLUCIÓ N

DCL de la polea ideal (1):

DCL de la polea ideal (2):

DCL del bloque:

En un partido clásico del fútbol español, el cual estaba empatado, al final se marcó un tiro libre. El delantero realizó el tiro y dejó parado al portero, pero el balón chocó en el travesaño, como se observa en la figura.

DCL del balón:

Se agradece su colaboración y participación durante el tiempo de la clase.

