Guide for Launching the Aerial Delivery Robot

Launch Steps

T#	Purpose	Computer	Command
T1	Livox Driver	Lattepanda	roslaunch livox_ros_driver2 msg_MID360.launch
T2	Localization	Lattepanda	roslaunch fast_lio_localization localization_mid360.launch map:=/home/grvc/catkin_ws/src/FAST_LIO/PCD/scans.pcd
тз	Initialization	Lattepanda	rosrun fast_lio_localization publish_initial_pose.py 0 0 0 0 0 0 sudo chmod 666 /dev/ttyUSB0 roslaunch mavros apm3.launch
Т4	Target Point Publisher	Local	export ROS_MASTER_URI=http://192.168.0.234:11311 export ROS_IP=192.168.0.171 roslaunch target_point_publisher run.launch
Т5	LiCAS euROBIN Configuration	RPi4	<pre>sudo nano /sys/bus/serial//ttyUSB0/latency_timer sudo nano /sys/bus/serial//ttyUSB1/latency_timer sudo ./LiCAS_A1 /dev/usart_LiCAS_A1_euROBIN_Left /dev/usart_LiCAS_A1_euROBIN_Right</pre>
Т6	ArUco Parcel Detection	RPi4	./Aruco_Parcel_Marker 4 3 1
Т7	ADROM Navigation	Local	cd ~/Documents/euROBIN/ADROM/build/Main ./ADROM
T8	Ground Control Station	Local	./gcs 192.168.0.166 22000
Т9	Image Display	Local	./VisualFeedback_Display 28001
T10	MAVROS Setpoint Monitoring	Local	export ROS_MASTER_URI=http://192.168.0.234:11311 export ROS_IP=192.168.0.171 rostopic echo /mavros/setpoint_position/local
T11	Global Pose Monitoring	Local	export ROS_MASTER_URI=http://192.168.0.234:11311 export ROS_IP=192.168.0.171 rostopic echo /global_pose

INSTALLATION AND DESCRIPTION:

Clone repository to get all the required software:

```
cd ~
git clone https://github.com/JorgePogue37/eurobin_grvc_software.git
```

T1: Livox Driver

Purpose: Enables communication between ROS and Livox LiDAR devices using Livox SDKs.

Installation

1. Install Livox SDK from the Official Repository:

```
cd ~
git clone https://github.com/Livox-SDK/Livox-SDK.git
cd Livox-SDK
mkdir build && cd build
cmake .. && make -j
sudo make install
```

2. Install Livox SDK2 from the Official Repository:

```
cd ~
git clone https://github.com/Livox-SDK/Livox-SDK2.git
cd Livox-SDK2
mkdir build && cd build
cmake .. && make -j
sudo make install
```

3. Copy the Livox ROS Drivers to your ROS workspace:

```
cp -r ~/eurobin_grvc_software/On\ Board\ Lattepanda/Livox_ROS_Driver ~/catkin_ws/src
cp -r ~/eurobin_grvc_software/On\ Board\ Lattepanda/Livox_ROS_Driver2 ~/catkin_ws/src
```

4. Build the workspace:

```
cd ~/catkin_ws
catkin_make
```

5. Configure MID360_config.json in Livox ROS Driver2 with the appropriate rotation values for your setup.

Usage

Launch the Livox Driver:

T2: FAST-LIO Localization

Purpose: Runs the FAST-LIO Localization node to estimate the robot's position using a pre-generated map.

Prerequisites: Generating the Map

- 1. Copy FAST-LIO from the repository:
 - cp -r ~/eurobin_grvc_software/0n\ Board\ Lattepanda/FAST_LIO ~/catkin_ws/src
- 2. Build FAST-LIO:

cd ~/catkin_ws
catkin_make

- 3. Generate the map:
 - Launch the Livox Driver:

roslaunch livox_ros_driver2 msg_MID360.launch

• Run the FAST-LIO mapping node:

roslaunch fast_lio mapping_mid360.launch

• Transfer the map and generate a 2D map for the path generator:

scp grvc@192.168.0.234:~/catkin_ws/src/FAST_LIO/PCD/scans.pcd ~/eurobin_grvc_software/GCS/Not\ ROS/Generate2dmap/files
cd ~/eurobin_grvc_software/GCS/Not\ ROS/Generate2dmap/
./generatemap2d.sh

Installation

- 1. Copy FAST-LIO_LOCALIZATION from the repository:
 - cp -r ~/eurobin_grvc_software/On\ Board\ Lattepanda/FAST_LIO_LOCALIZATION ~/catkin_ws/src
- 2.Copy pose_publisher from the repository:
 - cp -r ~/eurobin_grvc_software/On\ Board\ Lattepanda/pose_publisher ~/catkin_ws/src
- 3. Build the workspace:

cd ~/catkin_ws
catkin_make

NOTE:

- Do not modify the mid360.yaml in this package (It has to be modified in FAST_LIO but not in FAST_LIO_LOCALIZATION); altering
 it will cause positioning errors to accumulate over time.
- The localization output will be rotated based on the LiDAR's orientation. This can be corrected in the pose_publisher
 package by modifying its source code to apply the counter-rotation needed to align the output correctly.

Usage

1. Source the workspace:

source ~/catkin_ws/devel/setup.sh

2. Launch localization:

roslaunch fast_lio_localization localization_mid360.launch map:=/home/grvc/catkin_ws/src/FAST_LIO/PCD/scans.pcd

3. Publish the initial pose:

rosrun fast_lio_localization publish_initial_pose.py 0 0 0 0 0 0

T3: MAVROS

Purpose: Starts MAVROS for flight control.

Installation:

1. Install the mavros package:

sudo apt install ros-\$ROS_DISTRO-mavros ros-\$ROS_DISTRO-mavros-extras sudo cp ~/eurobin_grvc_software/MAVROS_launcher/apm3.launch /opt/ros/\$ROS_DISTRO/share/mavros/launch/

Usage:

1. Update serial port permissions:

sudo chmod 666 /dev/ttyUSB0

2. Launch MAVROS:

roslaunch mavros apm3.launch

T4: Target Point Publisher

Purpose: Publishes target points for the robot to navigate to.

Installation

1. Copy the Target Point Publisher from the repository:

```
cp -r ~/eurobin_grvc_software/GCS/targetpoint_publisher ~/catkin_ws/src
```

2. Copy pcd_map_viewer from the repository:

```
cp -r ~/eurobin_grvc_software/GCS/ROS/pcd_map_viewer ~/catkin_ws/src
```

3. Build the workspace:

```
cd ~/catkin_ws
catkin_make
```

Usage

1. Set ROS environment variables for the Ground Control Station (GCS):

```
export ROS_MASTER_URI=http://192.168.0.234:11311 export ROS_IP=192.168.0.171
```

2. Launch the publisher:

```
roslaunch target_point_publisher run.launch
```

T5: LiCAS euROBIN Configuration

 $\label{purpose:configures} \textbf{Purpose:} \ \ \textbf{Configures} \ \ \textbf{and} \ \ \textbf{launches} \ \ \textbf{the LiCAS} \ \ \textbf{arms} \ \ \textbf{system}.$

Installation:

1. Build the LiCAS program

```
git clone https://github.com/JorgePogue37/eurobin_grvc_software.git
cd ~/eurobin_grvc_software/On\ Board\ Raspberry/LiCAS_A1_euROBIN
mkdir build
cd build
make
```

2. Apply rules for the usbs of the LiCAS system

sudo cp ~/eurobin_grvc_software/On\ Board\ Raspberry/99-usb-serial.rules /etc/udev/rules.d/

Usage:

1. Configure latency timers (change the values from 16 to 1):

```
sudo nano /sys/bus/serial/.../ttyUSB0/latency_timer
sudo nano /sys/bus/serial/.../ttyUSB1/latency_timer
```

2. Start the LiCAS system:

```
cd ~/eurobin_grvc_software/On\ Board\ Raspberry/LiCAS_A1_euROBIN
sudo ./LiCAS_A1 /dev/usart_LiCAS_A1_euROBIN_Left /dev/usart_LiCAS_A1_euROBIN_Right
```

T6: ArUco Parcel Detection

Purpose: Detects parcels using ArUco markers.

Installation

1. Clone your repository if not already done:

```
cd ~
git clone https://github.com/JorgePogue37/eurobin_grvc_software.git
```

2. Navigate to the Aruco Parcel Detection program:

```
cd ~/eurobin_grvc_software/On\ Board\ Raspberry/Aruco_Parcel_Detection
mkdir build
cd build
cmake ..
make
```

Usage

1. Launch the program from the build folder:

```
cd ~/eurobin_grvc_software/On\ Board\ Raspberry/Aruco_Parcel_Detection/build/Main
./Aruco_Parcel_Detection 4 3 1
```

T7: ADROM Navigation

Purpose: Provides advanced navigation and path planning.

Installation

1. Navigate to the ADROM Navigation folder:

```
cd ~/eurobin_grvc_software/GCS/Not\ ROS/ADROM
mkdir build
cd build
cmake ..
make
```

2. Install whisper cpp for voice recognition:

```
cd ~
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
mkdir build
cd build
cmake ..
make
```

Usage

1. Launch the program from the build folder:

```
cd ~/eurobin_grvc_software/GCS/Not\ ROS/ADROM/build/Main
./ADROM
```

T8: LiCAS Ground Control Station (GCS)

Purpose: Control station for managing robot operations.

Installation

1. Navigate to the GCS program folder:

```
cd ~/eurobin_grvc_software/LiCAS_GCS/Not\ ROS/GCS
mkdir build
cd build
cmake ..
make
```

Usage

1. Launch the program from the build folder, specifying the IP and port:

```
cd ~/eurobin_grvc_software/LiCAS_GCS/Not\ ROS/GCS
./gcs 192.168.0.166 22000
```

T9: Image Display

Purpose: Displays visual feedback from the robot.

Installation

1. Navigate to the **Image Display** folder:

```
cd ~/eurobin_grvc_software/GCS/Not\ ROS/VisualFeedback_Display
mkdir build
cd build
cmake ..
make
```

Usage

1. Launch the program from the build folder, specifying the port:

```
cd ~/eurobin_grvc_software/GCS/Not\ ROS/VisualFeedback_Display/build
./VisualFeedback_Display 28001
```