Homework 1 for Stochastic Processes (Spring 2021)

Due: March 8th, 2021

Problem 1. (Geometric Distribution) For any $p \in [0, 1]$, a p-coin is the one who gives HEAD with probability p and TAIL with probability 1-p. Recall that we say a random variable X follows the *geometric distribution* with parameter p if X is the number of independent p-coins tossed before the first HEAD comes out. This is in fact an informal definition. What is the probability space (Ω, \mathcal{F}, P) here? Write down the formal definition of X (as a function from Ω to \mathbb{R}) and compute $\Pr[X = k]$ for every $k \ge 0$.

Problem 2. (Monte Carlo Method) Consider the use of Monte Carlo method to estimate the volume of a n-dimensional ball. Let $B_n = \{\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : \forall i \in [n], x_i \in [-1, 1]\}$ be the box such that you can draw points from B_n uniformly at random. Let Ball($\mathbf{0}$, $\mathbf{1}$) be the n-dimensional ball of radius 1 centered at $\mathbf{0}$ and let V denote its volume. Suppose you draw T points in total and the number of points in Ball($\mathbf{0}$, $\mathbf{1}$) is k. Then an unbiased estimator of V is $\hat{V} = \frac{k}{T} \cdot 2^n$.

- 1. Prove that $\mathbf{E}\left[\hat{V}\right] = V$.
- 2. If we want to guarantee that with probability at least 99%, it holds that

$$0.99 \le \frac{\hat{V}}{V} \le 1.01,$$

how large should we choose T?

Problem 3. (Conditional Expectation)

- 1. Let X be a random variable and $f(\cdot): \mathbb{R} \to \mathbb{R}$ be a function. We usually use f(X) to denote the random variable such that $\omega \in \Omega \mapsto f(X(\omega)) \in \mathbb{R}$. Prove that f(X) is always $\sigma(X)$ -measurable.
- 2. Let Y, Y' be two random variables such that $\sigma(Y) = \sigma(Y')$. Prove that $E[X \mid Y] = E[X \mid Y']$.
- 3. This fact you just proved should convince you that the conditional expectation $\mathbf{E}[X \mid Y]$ only depends on the σ -algebra $\sigma(Y)$ (but not the value of Y). Let Ω be the set of outcomes and $X : \Omega \to \mathbb{R}$ be a random variable. Let \mathcal{F} be a σ -algebra on Ω . Can you define the notation $\mathbf{E}[X \mid \mathcal{F}]$?
- 4. (bonus) Let $\mathcal{F}_1, \mathcal{F}_2$ be two σ -algebras such that $\mathcal{F}_1 \subseteq \mathcal{F}_2$ and $X : \Omega \to \mathbb{R}$ be a random variable. Prove that $\mathbf{E} [\mathbf{E} [X \mid \mathcal{F}_1] \mid \mathcal{F}_2] = \mathbf{E} [\mathbf{E} [X \mid \mathcal{F}_2] \mid \mathcal{F}_1] = \mathbf{E} [X \mid \mathcal{F}_1]$.

¹Hint: You can look for keywords like "Chernoff bounds" on internet.