Лабораторная работа №5.5.1 Измерение коэффициента ослабления потока γ -лучей в веществе и определение энергии

Рожков А. В.

7 октября 2025 г.

Цель работы: С помощью сцинтилляционного счётчика измеряются линейные коэффициенты ослабления потока γ -лучей в свинце, железе и алюминии; по их величине определяются энергия γ -квантов.

В работе используются: сцинтилляционный счётчик, образцы из свинца, железа и алюминия.

1 Теоретические сведения

 γ -лучи возникают при переходе возбужденных ядер из одного энергетического состояния в другое, более низкое. Энергия γ -квантов обычно заключена между несколькими десятками килоэлектронвольт и несколькими миллионами электрон-вольт. Гамма-кванты не несут электрического заряда, их масса равна нулю. Проходя, через вещество, пучок γ -квантов постепенно ослабляется. Ослабление происходит по экспоненциальному закону, который может быть записан в следующих формах:

$$I = I_0 e^{-\mu l},\tag{1}$$

$$I = I_0 e^{-\mu' m_1}, (2)$$

где I, I_0 – интенсивности прошедшего и падающего излучений; l – длина пути, пройденного пучком γ -лучей; m_1 - масса, пройденного вещества, приходящиеся на единицу площади; μ и μ' – коэффициенты ослабления потока в веществе.

Ослабление потока γ -лучей, происходящее при прохождении среды, связано с тремя эффектами: фотоэлектрическим поглощением, комптоновским рассеянием и с генерацией электрон-позитронных пар.

1.1 Фотоэффект

Происходит при столкновении γ -квантов с электронами внутренних электронных оболочек. В результате квант поглощается и получается электрон и ион вещества.

Вероятность этого события:

$$dP_f = \sigma_f n_1 dl$$

где n_1 — плотность внутренних электронов, σ_f — площадь поперечного сечения фотоэлектрического поглощения (вероятность фотоэффекта на 1 электрон).

Оценочная формула:

$$\sigma_f \propto \frac{Z^5}{(\hbar\omega)^{3.5}}$$

Рис. 1: Зависимость сечения фотоэффекта от энергии γ -квантов

1.2 Эффект Комптона

Это упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах).

Вероятность данного процесса определяется энергией γ -квантов. В области высоких энергий, когда $h\omega\gg mc^2$, сечение вычисляется по формуле:

$$\sigma_k = \pi r^2 \frac{mc^2}{h\omega} \left(\ln \frac{2h\omega}{mc^2} + \frac{1}{2} \right),\,$$

где $r \simeq 2.8 \cdot 10^{-13} \ {\rm cm}$ — классический радиус электрона.

Сечение σ_k рассчитано на один свободный электрон и с увеличением энергии фотонов убывает значительно медленнее, чем сечение фотоэффекта.

Комптоновский коэффициент ослабления μ_k связан с σ_k так же, как μ_f в случае фотоэффекта. В отличие от фотоэффекта, комптоновское рассеяние не приводит к поглощению γ -кванта, а только уменьшает его энергию.

1.3 Процесс образования электрон-позитронных пар

При достаточно высокой энергии гамма-кванта наряду с фотоэффектом и эффектом Комптона может происходить третий вид взаимодействия гамма-квантов с веществом – образование электрон-позитронных пар.

Пороговая энергия, необходимая для образования пары:

$$E_{\rm nop} \approx 2mc^2 = 1,022 \; {\rm MэB}$$

Для наблюдения эффекта требуются высокие энергии. Например, 4.7 МэВ для Pb.

1.4 Итого

В случае опытов, поставленных в хорошей геометрии, при прохождении γ -лучей через вещество меняет только количество, но не энергия γ -квантов в пучке, так что коэффициент μ , характеризующий поглощение γ -квантов в веществе, не зависит от длины пути. Обозначим через -dN число γ -квантов, выбывших их пучка на пути dl. Это число пропорционально имеющемуся их числу N и пройденному пути dl. Следовательно,

$$-dN = \mu N \, dl. \tag{3}$$

Интегрируя уравнение (3) от нулевой толщины до заданной, получим

$$N = N_0 e^{-\mu l}. (4)$$

Вообще говоря, в плохой геометрии, когда рассеянные под небольшими углами γ -кванты остаются в пучке, их спектр с прохождением вещества меняется, поэтому формула (2) неприменима. Однако в этом случае она работает лучше, чем можно было ожидать.

Для определения коэффициента ослабления нужно, таким образом, измерить толщину образца l, число падающих частиц N_0 и число частиц N, прошедших через образец за фиксированное время.

2 Экспериментальная установка

Схема установки, используемой в работе, показана на рис. 2.

При недостаточно хорошей геометрии в результаты опытов могут вкрасться существенные погрешности. В установке всегда имеется конечная вероятность того, что γ -квант провзаимодействует в поглотителе несколько раз до того, как попадёт в детектор (рис. 3). Чтобы уменьшить число таких случаев, сцинтилляционный счётчик расположен на большом расстоянии от источника γ -квантов,

Рис. 2: Блок-схема установки, используемой для измерения коэффициентов ослабления коэффициентов γ -лучей: И — источник γ -лучей; Рb — свинцовый контейнер с коллиматорным каналом; П — набор поглотителей; С — сцинтиллятор — кристалл NaI(TI); Ф - формирователь-выпрямитель

а поглотители имеют небольшие размеры. Поглотители устанавливаются на некотором расстоянии друг от друга, чтобы испытавшие комптоновское рассеяние и выбывшие из прямого потока кванты с меньшей вероятностью могли в него вернуться.

Рис. 3: Схема рассеяния γ -квантов в поглотителе

3 Ход работы

В начале работы убедились, что установка детектирует γ -лучи. Для этого провели несколько измерений убирая и возвращая свинцовую пробку.

3.1 Измерение интенсивности фона и источника без препятствий

$$I = \frac{N}{t}; \qquad \qquad \sigma_I = \frac{\sigma_N}{t}$$

$$N_{\text{фон}} = 6000 \pm 1000;$$
 $t_{\text{фон}} = 180c;$ $I_{\text{фон}} = 33 \pm 6c^{-1}$ $I_{0} = 120800 \pm 1000;$ $t_{0} = 10c;$ $I_{0} = 12050 \pm 100c^{-1}$

3.2 Измерение длины образцов

Измерили длины образцов при помощи штангенциркуля в том порядке, в котором добавляли при дальнейших измерениях. Рассчитали суммарные длины. Погрешность по формуле $\sigma_{\sum \ell} = \sqrt{\sum {\sigma_{\ell_i}}^2}$. Результаты в таблице 1.

Pb		Fe		Al	
ℓ , mm	$\sum \ell$, mm	ℓ , mm	$\sum \ell$, mm	ℓ , mm	$\sum \ell$, mm
4.80 ± 0.10	4.80 ± 0.10	10.10 ± 0.10	10.10 ± 0.10	20.10 ± 0.02	20.10 ± 0.02
5.00 ± 0.10	9.8 ± 0.1	10.10 ± 0.10	20.2 ± 0.1	20.22 ± 0.02	40.32 ± 0.03
5.00 ± 0.10	14.8 ± 0.2	10.00 ± 0.10	30.2 ± 0.2	20.00 ± 0.02	60.32 ± 0.03
5.00 ± 0.10	19.8 ± 0.2	10.00 ± 0.10	40.2 ± 0.2	20.12 ± 0.02	80.44 ± 0.04
4.50 ± 0.10	24.3 ± 0.2	9.90 ± 0.10	50.1 ± 0.2	20.30 ± 0.02	100.74 ± 0.04
4.90 ± 0.10	29.2 ± 0.2	10.00 ± 0.10	60.1 ± 0.2	20.00 ± 0.02	120.74 ± 0.05
4.60 ± 0.10	33.8 ± 0.3	10.30 ± 0.10	70.4 ± 0.3	20.00 ± 0.02	140.74 ± 0.05
4.70 ± 0.10	38.5 ± 0.3	10.30 ± 0.10	80.7 ± 0.3	20.20 ± 0.02	160.94 ± 0.06
5.20 ± 0.10	43.7 ± 0.3	10.10 ± 0.10	90.8 ± 0.3	20.00 ± 0.02	180.94 ± 0.06

Таблица 1: Результаты измерений длин образцов и суммарных длин препятствий

3.3 Исследования поглощения γ -лучей

Измерили число частиц, попадающих в счётчик за некоторое время, в зависимости от суммарной толщины препятствий. Исследовались 3 материала: свинец, железо и алюминий. Результаты в таблице 2.

	Pb			Fe			Al	
$N * 10^{3}$	t, c	$\sum \ell$, mm	$N * 10^{3}$	t, c	$\sum \ell$, mm	$N * 10^{3}$	t, c	$\sum \ell$, mm
130.8 ± 1.0	20	4.80 ± 0.10	135.8 ± 1.0	20	10.10 ± 0.10	157.3 ± 1.0	20	20.10 ± 0.02
124.0 ± 1.0	30	9.8 ± 0.1	126.1 ± 1.0	30	20.2 ± 0.1	221.7 ± 1.0	40	40.32 ± 0.03
140.7 ± 1.0	60	14.8 ± 0.2	108.0 ± 1.0	45	30.2 ± 0.2	147.6 ± 1.0	40	60.32 ± 0.03
126.9 ± 1.0	90	19.8 ± 0.2	112.1 ± 1.0	80	40.2 ± 0.2	99.7 ± 1.0	40	80.44 ± 0.04
102.2 ± 1.0	120	24.3 ± 0.2	103.6 ± 1.0	120	50.1 ± 0.2	102.9 ± 1.0	60	100.74 ± 0.04
96.6 ± 1.0	180	29.2 ± 0.2	93.6 ± 1.0	180	60.1 ± 0.2	106.1 ± 1.0	90	120.74 ± 0.05
66.3 ± 1.0	180	33.8 ± 0.3	59.5 ± 1.0	180	70.4 ± 0.3	99.3 ± 1.0	120	140.74 ± 0.05
42.7 ± 1.0	180	38.5 ± 0.3	38.8 ± 1.0	180	80.7 ± 0.3	105.8 ± 1.0	180	160.94 ± 0.06
27.8 ± 1.0	180	43.7 ± 0.3	26.6 ± 1.0	180	90.8 ± 0.3	75.8 ± 1.0	180	180.94 ± 0.06

Таблица 2: Результаты измерений числа частиц, попавших в счётчик, в зависимости от суммарной длины препятствий

Из уравнения (4) ожидается экспоненциальный характер поглощения. Построим графики и определим линейные коэффициенты поглощения μ .

По оси абсцисс отложим суммарную длину препятствия, по оси ординат $ln \frac{I_0 - I_{\text{фон}}}{I - I_{\text{фон}}}$. Коэффициент наклона прямой и будет равен μ .

Результаты представлены в таблице 3.

	Pb	Fe	Al
μ , cm ⁻¹	1.071 ± 0.008	0.524 ± 0.003	0.193 ± 0.001

Таблица 3: Линейные коэффициенты поглощения μ

Определим μ' , который зависит от массы пройденного вещества на единицу площади, из следующих соображений:

$$\mu' m_1 = \mu \ell \Rightarrow \mu' = \mu \frac{\ell}{m_1} = \frac{\mu}{\rho},$$
 $\sigma_{\mu'} = \frac{\sigma_{\mu}}{\rho}$

Результаты в таблице 4.

Рис. 4: Зависимость интенсивности прошедшего излучения от длины препятствий для свинца

Рис. 5: Зависимость интенсивности прошедшего излучения от длины препятствий для железа

3.4 Определение энергии фотона по коэффициенту поглощения

По данной таблице 5 определим среднюю энергию фотона. Для этого аппроксимируем зависимость $\frac{1}{E}(\mu)$ кривой $y=ax^2+bx+c$. Итоговые коэффициенты в таблице 6, график на рис. 7.

Рис. 6: Зависимость интенсивности прошедшего излучения от длины препятствий для алюминия

	Pb	Fe	Al
ρ , Γ/cm^3	11.35	7.87	2.7
$\mu' * 10^{-3}, \text{ cm}^2/\Gamma$	94.3 ± 0.7	66.6 ± 0.4	71.4 ± 0.4

Таблица 4: Линейные коэффициенты поглощения μ'

По полученным кривым получим значения энергий фотонов (таблица 7). Погрешность по формуле:

$$E = \frac{1}{a\mu^2 + b\mu + c} \qquad \sigma_E = \frac{\sqrt{(2ax + b)^2 \sigma_\mu^2 + (\mu^2)^2 \sigma_a^2 + (\mu)^2 \sigma_b^2 + \sigma_c^2}}{(a\mu^2 + b\mu + c)^2}$$

4 Вывод

В работе изучено поглощение γ -лучей в свинце, железе и алюминии. Экспериментально получены коэффициенты поглощения материалов. По коэффициентам получена средняя энергия γ -лучей источника.

Источником служил ^{137}Cs , энергия γ -кванта для которого равна 0.662 МэВ. Рассчитанное значение в пределах погрешности совпадает.

F. MaR	μ , cm ⁻¹			
$E_{\text{фотон}}, \text{МэВ}$	Pb	Fe	Al	
0.4	2.63	0.74	0.25	
0.5	1.83	0.662	0.228	
0.6	1.42	0.606	0.21	
0.7	1.17	0.563	0.196	
0.8	1.01	0.528	0.184	
0.9	0.891	0.498	0.175	
1.0	0.806	0.472	0.166	
1.1	0.74	0.45	0.158	

Таблица 5: Табличные значения энергий фотонов и коэффициентов поглощений для трёх материалов

Рис. 7: Аппроксимация табличных значений

	Pb	Fe	Al
a	68 ± 3	4.8 ± 0.2	-0.21 ± 0.01
b	-10 ± 1	-0.3 ± 0.3	1.55 ± 0.05
c	0.9 ± 0.1	0.04 ± 0.07	-0.11 ± 0.03

Таблица 6: Коэффициенты аппроксимации

	Pb	Fe	Al	Среднее
E, МэВ	0.7 ± 0.2	0.81 ± 0.11	0.76 ± 0.04	0.77 ± 0.11

Таблица 7: Средняя энергия γ -лучей по коэффициентам поглощения

	Pb	Fe	Al	
$\mu, \text{ cm}^{-1}$	1.071 ± 0.008	0.524 ± 0.003	0.193 ± 0.001	Среднее
$\mu' * 10^{-3}, \text{ cm}^2/\Gamma$	94.3 ± 0.7	66.6 ± 0.4	66.6 ± 0.4	
E, МэВ	0.7 ± 0.2	0.81 ± 0.11	0.76 ± 0.04	0.77 ± 0.11

Таблица 8: Результаты работы