

Recurrences II

Jurij Volčič Institut for Matematiske Fag

Outline

Solving recurrences using

- Recursion-tree method
- Master theorem

Reading: CLRS 4.4. and 4.5

Recap

Goal: solve a given recurrence.

$$\begin{split} f_0 &= 1, \quad f_1 = 1 \\ f_n &= f_{n-1} + f_{n-2} \end{split} \qquad \begin{split} T_1 &= \Theta(1) \\ T_n &= T_{\lfloor n/2 \rfloor} + T_{\lceil n/2 \rceil} + \Theta(n) \end{split}$$

Last lecture:

- Backtracking method
- Guess + Induction
- A method for homogeneous linear recurrences

Today: solve recurrences of the form $T_n = \alpha T_{n/b} + f(n)$ by

- Recursion-tree method
- Master method

What does the recursion tree method get us?

- We will be a bit sloppy when using the tree method.
- The recursion tree method yields a guess.
- Verify the guess e.g. by induction.

Applying the recursion-tree method (example)

Goal: Find a good asymptotic upper bound for T(n), where

$$\begin{cases} T(1), T(2), T(3) \in \Theta(1) \\ T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2) & \text{for } n \geqslant 4 \end{cases}$$

Simplifying assumptions:

- Assume that n is a power of 4. This lets us drop | |
- Replace the Θ s with c' and cn^2 , respectively.

Converting a recurrence into a tree

$$\begin{cases} T(1)=T(2)=T(3)=c'\\ T(n)=3T(n/4)+cn^2 & \text{ for } n\geqslant 2 \end{cases}$$

- Each node represents a recursive call (label is the incurred cost)
- Children represent the recursive calls made

Warm-up

- Find the level cost at levels 0,1,2
- Determine the number of vertices at level k

- Find the level cost at level k
- Find the height of the tree
- Find the number of leaves

Finding the total cost T(n)

Finite geometric progression $(q \neq 1)$

$$1+q+q^2+...+q^{h-1}=\frac{1-q^h}{1-q}$$

Cont'd

$$cost(k) = 3^k \cdot c \cdot (\tfrac{n}{4^k})^2, \quad h = \text{log}_4 \, n, \quad \ell = n^{\text{log}_4 \, 3}$$

Recursion tree method: overview

- Draw the recursion tree.
- 2 Find the level costs and the height.
- 3 Add up the level costs to get the total cost T(n).

Total: $O(n^2)$

Checking the guess¹ using induction

$$\begin{cases} T(1), T(2), T(3) \in \Theta(1) \\ T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2) & \text{for } n \geqslant 4 \end{cases}$$

Thm. For some d > 0, we have $T(n) \le dn^2$ for all $n \ge 1$.

Proof. (by strong induction on n)

Base case: $T(1) = c_1, T(2) = c_2, T(3) = c_3.$

Need that $c_1 \leqslant d \cdot 1^2, \, c_2 \leqslant d \cdot 2^2, \, c_3 \leqslant d \cdot 3^2$

Need to choose $d \geqslant \max\{c_1, c_2/4, c_3/9\}$

Induction step:

Assume $T(n) \leqslant dn^2$ for all $n \in \{1, 2, ..., m\}$, where $m \geqslant 3$.

Need to show: $T(m+1) \le d(m+1)^2$

 $^{{}^{1}}T(\mathfrak{n})$ is $O(\mathfrak{n}^2)$

Cont'd

$$\begin{split} &d\geqslant \text{max}\{c_1,c_2/4,c_3/9\},\\ &T(n)\leqslant dn^2 \text{ for } n\leqslant m \implies T(m+1)\leqslant d(m+1)^2 \end{split}$$

Recursion tree: another example

DIY recursion tree

$$\begin{cases} T(1) = \Theta(1) \\ T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n) & \text{for } n \geqslant 2 \end{cases}$$

- Draw the recursion tree.
 - Recall: we can afford to be a bit sloppy!
- 2 Find the level costs.
- 3 Add up the level costs to get the total cost.
- 4 Check the guess using induction.
- Draw the recursion tree.
- Find the level costs. To this end, find
 - number of vertices at level k.
 - the problem size at level k
 - height of the tree
- 3 Add up the level costs to get the total cost T(n).

Master theorem

Master theorem: warm up

We will use Master theorem to solve recurrence relations of the form:

$$T_{n} = aT_{n/b} + f(n) \tag{1}$$

We will need to compare the asymptotic order of growth of $n^{\log_b(\mathfrak{a})}$ vs $f(\mathfrak{n})$

Q: How many leaves does the recursion tree for (1) have?

Master theorem

Let
$$a\geqslant 1, b>1, f(n):\mathbb{N}\to\mathbb{R}^+$$
 and consider a recurrence
$$T_1,\dots,T_{b-1}=\Theta(1)$$

$$T_n=\alpha T_{n/b}+f(n) \qquad \qquad (n\geqslant b)$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

- 1 If $f(n) = O(n^{\log_b \alpha \epsilon})$ for some $\epsilon > 0$, then $T_n = \Theta(n^{\log_b \alpha})$
- 2 If $f(n) = \Theta(n^{log_b a})$, then $T_n = \Theta(n^{log_b a} \log n)$
- $\textbf{ If } n^{\log_b \alpha + \epsilon} = O(f(n)) \text{ for some } \epsilon > 0 \text{, and if } \alpha f(n/b) \leqslant c f(n) \\ \text{ for some } c < 1 \text{ and all sufficiently large } n \text{, then } T_n = \Theta(f(n))$

Notes

- $n^{log_b a}$ is the number of leaves in the recursion tree.
- Master theorem does not cover all possible cases.

Examples

$$\begin{split} T_n &= 2T_{n/2} + \Theta(n) \\ T_n &= 10T_{n/3} + n^2 + 2 \\ T_n &= 2T_{n/2} + n\log_2 n \end{split}$$

Upper bounding the n^{th} term with induction

$$\begin{split} f_0 &= 1, \quad f_1 = 1 \\ f_n &= f_{n-1} + f_{n-2} \end{split} \qquad (n \geqslant 2) \end{split}$$

Thm. We have $f_n \leqslant \left(\frac{5}{3}\right)^n$ for all $n \geqslant 0$.

Proof. (by strong induction on n)

Base case:
$$1 = f_0 \leqslant \left(\frac{5}{3}\right)^0 = 1 \checkmark$$

$$1 = f_1 \leqslant \left(\frac{5}{3}\right)^1 = \frac{5}{3} \checkmark$$

Inductive step: Assume $f_j \leqslant \left(\frac{5}{3}\right)^j$ for all $j \leqslant k$.

Need to show:
$$f_{k+1} \leq \left(\frac{5}{3}\right)^{k+1} \quad (k \geq 1)$$

Test yourself

You should be able to:

- Use recursion tree method to produce a guess for the asymptotic runtime of simple recursions
- Use induction to verify your guess
- Apply Master Theorem to recurrences and recognize cases when it cannot be applied.

