Lecture 10. The Perceptron

COMP90051 Statistical Machine Learning

Lecturer: Jean Honorio

This lecture

- Perceptron model
 - Introduction to Artificial Neural Networks
 - * The perceptron model
- Perceptron training rule
 - Stochastic gradient descent
- Kernel perceptron

The Perceptron Model

A building block for artificial neural networks, yet another linear classifier

Biological inspiration

- Humans perform well at many tasks that matter
- Originally neural networks were an attempt to mimic the human brain

Artificial neural network

- As a crude approximation, the human brain can be thought as a mesh of interconnected processing nodes (neurons) that relay electrical signals
- Artificial neural network is a network of processing elements
- Each element converts inputs to output
- The output is a function (called activation function) of a weighted sum of inputs

Outline

- In order to use an ANN we need (a) to design network topology and (b) adjust weights to given data
 - * In this subject, we will exclusively focus on task (b) for a particular class of networks called feed forward networks
- Training an ANN means adjusting weights for training data given a pre-defined network topology
- First we will turn our attention to an individual network element, before building deeper architectures

Perceptron model

Compare this model to logistic regression

- x_1, x_2 features/inputs
- w_1, w_2 synaptic weights
- w_0 bias weight
- f activation function

Perceptron is a linear binary classifier

Perceptron is a binary classifier:

Predict class A if $s \ge 0$ Predict class B if s < 0

where $s = w'x = \sum_{j=0}^{m} w_j x_j$

Perceptron is a <u>linear classifier</u>: *s* is a linear function of inputs, and the decision boundary is linear

Exercise: find weights of a perceptron capable of perfect classification of the following dataset

x_1	x_2	y
0	0	Class B
0	1	Class B
1	0	Class B
1	1	Class A

Exercise: find weights of a perceptron capable of perfect classification of the following dataset

$w_1 = 1, w_2 = 1, w_0 = -1.5$
$s = w'x = w_1x_1 + w_2x_2 + w_0$
$s = x_1 + x_2 - 1.5$

x_1	x_2	y	S
0	0	Class B	-1.5
0	1	Class B	-0.5
1	0	Class B	-0.5
1	1	Class A	0.5

art: OpenClipartVectors
 at pixabay.com (CC0)

Mini Summary

- Perceptron
 - Introduction to Artificial Neural Networks
 - * The perceptron model

Next: Perceptron training

Perceptron Training Rule

Gateway to stochastic gradient descent. Convergence guaranteed by convexity.

Loss function for perceptron

- "Training": finds weights to minimise some loss. Which?
- Our task is binary classification. Encode one class as +1 and the other as -1. So each training example is now (x_i, y_i) , where y_i is either +1 or -1
- Recall that, in a perceptron, $s_i = \mathbf{w}' \mathbf{x}_i = \sum_{j=0}^m \mathbf{w}_j \mathbf{x}_{ij}$, and the sign of s_i determines the predicted class: +1 if $s_i > 0$, and -1 if $s_i < 0$
- Consider a single training example.
 - * If y_i and s_i have same sign then the example is classified correctly.
 - * If y_i and s_i have different signs, the example is misclassified

Loss function for perceptron

- The perceptron uses a loss function in which there is no penalty for correctly classified examples, while the penalty (loss) is equal to S_i for misclassified examples*
- Formally:
 - * $L_i(\mathbf{w}) = 0$ if both s_i , y_i have the same sign

对重新bss的 gradient, 太

This can be re-written as $L_i(\mathbf{w}) = \max(0, -s_i y_i)$

^{*} This is similar, but not identical to the SVM's *hinge* loss

Stochastic gradient descent

Randomly shuffle/split all training examples in B batches

Choose initial $\boldsymbol{\theta}^{(1)}$ Iterations over the entire dataset are For t from 1 to T called epochs

- For *b* from 1 to *B*
- Do gradient descent update using data from batch b

Advantage of such an approach: computational feasibility for large datasets true gradient: average over and trainly camples' gradients (** 1532)

Perceptron training algorithm

Choose initial guess $w^{(0)}$, k=0Value's weight where charges

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Consider example
$$(x_i, y_i)$$

$$\underline{\text{Update}}^*: \mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} - \underline{\eta} \nabla L_i(\mathbf{w}^{(k)})$$

$$k = k+1$$

$$\text{leam'y rate} \qquad \text{spandient of loss.}$$

$$L_i(\mathbf{w}) = \max(0, -s_i y_i)$$

 $s_i = \mathbf{w}' x_i$
 η is learning rate

There is no derivative when $s_i = 0$, but this case is handled explicitly in the algorithm, see next slides

Perceptron training rule

- We have $\nabla L_i(\mathbf{w}) = \mathbf{0}$ when $s_i y_i > 0$
 - * We don't need to do update when sample i is correctly classified i is correctly
- What is $\nabla L_i(\mathbf{w})$ when $s_i y_i < 0$? 福州都 刁野 持续 $\mathbf{v}^{i,\mathbf{k}}$
 - * We need to update when sample i is misclassified
 - * We have $\nabla L_i(\mathbf{w}) = \mathbf{x}_i$ when $\mathbf{y}_i = -1$ and $\mathbf{s}_i > 0$
 - * We have $\nabla L_i(\mathbf{w}) = -\mathbf{x}_i$ when $\mathbf{y}_i = 1$ and $\mathbf{s}_i < 0$

* Thus
$$\nabla L_i(\mathbf{w}) = -y_i x_i$$

• $L_i(\mathbf{w}) = \max(0, -s_i y_i)$

Perceptron training algorithm

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For t from 1 to T (epochs) go through data set genul times-

For i from 1 to N (training examples) go through one total print

Perceptron training algorithm

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Compute $s_i = (w^{(k)})' x_i$

If $s_i y_i \leq 0$: (sample *i* misclassified)

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta y_i \mathbf{x}_i$$

Strictly speaking it should be

 $s_i y_i < 0$ but \leq allows

handling the case $\mathbf{w}^{(k)} = \mathbf{0}$

|k = k + 1|

 $w^{(k)}$ represents the value of w after k updates (useful for theory). If you implement this, just write: $w = w + \eta y_i x_i$

7天保假 Siyiso > W不完全的

19

^{*} We drop the sample index i to have a simpler notation.

Start with zero weights, Consider sample 1 initialize Wat zero:

SI=0

\$619点 SIY1=0=>特合 三種的 o class -1 □ sample 1 class 1 x_1 w = 0

<u>Update</u>

o class -1

class 1

Consider sample 2

<u>Update</u>

o class -1

class 1

Sample 2 is in the wrong side of the decision boundary, then update

$$w = w + yx = w - x$$

^{*} We drop the sample index i to have a simpler notation.

Sample 3 is in the correct side of the decision boundary, no update

Sample 1 is in the correct side of the decision boundary, no update

^{*} We drop the sample index i to have a simpler notation.

Sample 2 is in the wrong side of the decision boundary, then update

^{*} We drop the sample index i to have a simpler notation.

<u>Update</u>

o class -1

class 1

Sample 2 is in the wrong side of the decision boundary, then update

$$w = w + yx = w - x$$

y=-1

st We drop the sample index i to have a simpler notation.

And we continue...

Perceptron training algorithm

Choose initial guess $\mathbf{w}^{(0)}$, k=0

For i from 1 to N (training examples)

Compute
$$s_i = (\mathbf{w}^{(k)})' \mathbf{x}_i$$

If $s_i y_i \leq 0$: (sample i misclassified)
 $\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \eta y_i \mathbf{x}_i$
 $k = k+1$

Convergence Theorem: if the training data is linearly separable, the algorithm is guaranteed to converge to a solution. That is, there exist a finite k such that $L(w^{(k)})$

Perceptron convergence theorem

Assumptions

- * Linear separability: There exists w^* so that $\frac{y_i(w^*)'x_i}{\|w^*\|} \ge \gamma$ for all training data $i=1,\ldots,N$ and some positive γ .
- * Bounded data: $||x_i|| \le R$ for i = 1, ..., N and some finite R.

• Proof sketch (for $\eta = 1$)

- * Assumes $w^{(0)} = 0$ to
 - Establish that $(w^*)'w^{(k)} \ge k\gamma ||w^*||$
 - Establish that $\|\mathbf{w}^{(k)}\|^2 \le kR^2$
- * Note that $1 \ge \cos(w^*, w^{(k)}) = \frac{(w^*)'w^{(k)}}{\|w^*\|\|w^{(k)}\|} \ge \frac{k\gamma\|w^*\|}{\|w^*\|\sqrt{kR}}$
- * Take the left-most and right-most equations $1 \ge \frac{k\gamma \|w^*\|}{\|w^*\|\sqrt{k}R}$
- * Rearranging we get $k \le \frac{R^2}{v^2}$

Pros and cons of perceptron learning

- If the data is linearly separable, the perceptron training algorithm will converge to a correct solution
 - * There is a formal proof ← good!
 - * It will converge to some solution (separating boundary), one of infinitely many possible ← bad!
- However, if the data is not linearly separable, the training will fail completely rather than give some approximate solution
 - * Ugly 🟻

Basic setup

Start with random weights

^{*} We drop the sample index i to have a simpler notation.

Consider training example 1

o class -1

class 1

$$y(0.2x_1 + 0.0x_2 - 0.1) = -0.1 \le 0$$

$$w_1 \leftarrow w_1 - \eta x_1 = 0.1$$

$$w_2 \leftarrow w_2 - \eta x_2 = -0.1$$

$$w_0 \leftarrow w_0 - \eta = -0.2$$

^{*} We drop the sample index i to have a simpler notation.

Update weights

- o class -1
- class 1

^{*} We drop the sample index i to have a simpler notation.

Consider training example 2

o class -1

class 1

$$y(0.1x_1 - 0.1x_2 - 0.2) = -0.1 \le 0$$

$$w_1 \leftarrow w_1 + \eta x_1 = 0.3$$

$$w_2 \leftarrow w_2 + \eta x_2 = 0.0$$

$$w_0 \leftarrow w_0 + \eta = -0.1$$

^{*} We drop the sample index i to have a simpler notation.

Update weights

class 1

^{*} We drop the sample index i to have a simpler notation.

Further examples

o class -1

class 1

$$y(0.3x_1 - 0.0x_2 - 0.1) = 0.35 > 0$$

3rd point: correctly classified

4th point: incorrect, update etc.

^{*} We drop the sample index i to have a simpler notation.

Further examples

Eventually, all the data will be correctly classified (provided it is linearly separable)

^{*} We drop the sample index i to have a simpler notation.

Mini Summary

- Perceptron loss function
- Stochastic gradient descent
- Perceptron training rule
 - * Perceptron convergence theorem

Next: Kernel perceptron

Kernel Perceptron

Another example of a kernelizable learning algorithm (like the SVM).

Perceptron training rule: Recap

Compute
$$s_i = (w^{(k)})' x_i$$

If $s_i y_i \le 0$: (sample i misclassified)

$$w^{(k+1)} = w^{(k)} + \eta y_i x_i$$

$$k = k+1$$

Suppose weights are initially set to $\mathbf{w}^{(0)} = \mathbf{0}$ Suppose the algorithm misclassifies sample 1, 7, 29, and 1 again

First update:
$$\mathbf{w}^{(1)} = \eta y_1 x_1$$
Second update: $\mathbf{w}^{(2)} \doteq \eta y_1 x_1 + \eta y_7 x_7 + \eta y_{29} x_{29}$
Third update: $\mathbf{w}^{(3)} = \eta y_1 x_1 + \eta y_7 x_7 + \eta y_{29} x_{29}$
Third update: $\mathbf{w}^{(4)} = 2\eta y_1 x_1 + \eta y_7 x_7 + \eta y_{29} x_{29}$ etc.

Accumulating updates: Data enters via dot products

- Weights always take the form $\mathbf{w} = \sum_{j=1}^{N} \alpha_j y_j x_j$, where α some coefficients $\mathbf{w} = \sum_{j=1}^{N} \alpha_j y_j x_j$, where α some coefficients $\mathbf{w} = \sum_{j=1}^{N} \alpha_j y_j x_j$, where α some coefficients $\mathbf{w} = \sum_{j=1}^{N} \alpha_j y_j x_j$, α some coefficients α summation of how many α large α when it was a combact α is based on Recall that prediction for a new point α is based on
- sign of $\mathbf{w}'\mathbf{x}$
- Substituting \mathbf{w} we get $\mathbf{w} \mathbf{x} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i' \mathbf{x}$
- The dot product $x_i'x$ can be replaced with a kernel \aleph

Kernelised perceptron training rule

Set $\alpha = 0$

For t from 1 to T (epochs)

For i from 1 to N (training example 初期 1 to N (training examples) 1 to N (

Compute
$$s_i = \sum_{j=1}^{N} \alpha_j y_j x_j' x_i$$
 kernel

If
$$s_i y_i \leq 0$$
: (sample i misclassified)
$$\alpha_i \leftarrow \alpha_i + \eta$$

 $(\eta > 0$ is called *learning rate*)

Kernelised perceptron training rule

Set $\alpha = 0$

For t from 1 to T (epochs)

For i from 1 to N (training examples)

Mini Summary

- Accumulating weight updates leads to linear combinations of data
- Predictions are dot products with data
- Can replace these with kernel evaluations
- Leads to kernel perceptron with kernel training rule

Next time: Deep learning

47 Sup
$$(E_{g}(z) - hZ_{h}^{n}(x)) \leq 2R_{h}(g) + \frac{hz_{h}}{hz_{h}}$$
 $(E_{g}(z) - hZ_{h}^{n}(x)) \leq 2R_{h}(g) + \frac{hz_{h}}{hz_{h}}$
 $(E_{g}(z) - hZ_{h}^{n}(y)) \leq 2R_{h}(g) + \frac{hz_{h}}{hz$

Bounded difference property:

\[
\begin{align*}
\be

how to apply to binary classification?

Lemma: [M+ Lemma3.4]

Let \mathcal{H} : faith family of functions $\lambda \rightarrow \{1, t\} = y$ G: lass function $G: [g:] \rightarrow \{0,1], (xy) \rightarrow [h \otimes \pm y: h \in H]$ $\vdots \times xy$ $Z_1 = (x_1y_1), \dots, Z_n = (x_n, y_n)$ Then $R = 1 \dots Z_n = (x_n, y_n)$ Proof See [Mt]

Simple Grollary Rn(G)==Kn(H) Theorem 11 tamily of function Px diston X With.h.p 71-5 our gr, for all het simultaneoshy let 96G be associated to h i.e g (x,y)= Thosphy Then R(h): Eq(Z) $\widehat{R}(h) = \widehat{hZ}_{i-1}^{n} q(Z_{i})$ $4emma: 2R_{Z_{1}} - 2hG = \widehat{R}_{X_{1}} - 2hG = \widehat{R}_{X_{1}}$ $2R_{n}G = \widehat{R}_{n}G = \widehat{R}_{$

if m=1

[2u]: if m=1 (1-et set). d=0

$$\prod_{H} (1) \stackrel{\angle}{=} (m)$$

$$\boxed{P_{1}(m) = \frac{d}{2}(m)}$$

$$\boxed{P_{1}(m) = \frac{d}{2}(m)}$$

$$\boxed{P_{1}(m) = \frac{d}{2}(m)}$$

$$\boxed{P_{2}(m) = \frac{d}{2}(m)}$$

assume for some midz | we have m'th' Tenfd.

and $\prod_{h'(m')} \leq \overline{P}_{d'}(m') = \sum_{i=0}^{\infty} {m' \choose i}$ injustive step?

where H=H restricted to m'=m-1 (HEHGS subset). 1 = dr(CH')=dord-1

Consider: labellings induced by H on any set S= (x, ... Xm) W log let S= {x1, -..., xm-1}. = S\{Xm} the set of hypothesic restricted to Sq

let Hibe

Hashatter sets, Hi shatter a sets

Hi shatter a set = Then so bes H.

Nychrotes Sets, Hi shatter a set of the shatter a set = Then so bes H.

Nychrotes Sets, Hi shatter a set = Then so bes H.