Lecture 11: Policy Optimization I

Bolei Zhou

The Chinese University of Hong Kong bzhou@ie.cuhk.edu.hk

March 3, 2020

Today's Plan

- Introduction
- 2 Policy-based Reinforcement Learning
- 3 Monte-Carlo Policy Gradient

Value-based RL versus Policy-based RL

f 0 In previous lectures, we focused on value-based RL and had value function approximation with parameter f heta

$$V_{ heta}(s) pprox v^{\pi}(s) \ q_{ heta}(s,a) pprox q^{\pi}(s,a)$$

- **2** A policy is generated directly from the value function using ϵ -greedy or greedy $a_t = \arg\max_a Q(a, s_t)$
- **3** Instead, we can also parameterize the policy function as $\pi_{\theta}(a|s)$ where θ is the learnable policy parameter

RL Diagram in the View of Policy Optimization

• Action from the policy is all we need, then let's optimize the policy directly!

Value-based RL versus Policy-based RL

- Value-based RL
 - 1 to learn value function
 - 2 implicit policy based on the value function
- 2 Policy-based RL
 - 1 no value function
 - 2 to learn policy directly
- 3 Actor-critic
 - 1 to learn both policy and value function

Advantages of Policy-based RL

- Advantages:
 - 1 better convergence properties: we are guaranteed to converge on a local optimum (worst case) or global optimum (best case)
 - 2 Policy gradient is more effective in high-dimensional action space
 - 3 Policy gradient can learn stochastic policies, while value function can't
- ② Disadvantages:
 - 1 typically converges to a local optimum
 - 2 evaluating a policy is inefficient and has high variance

Two Types of Policies

- 1 Deterministic: given a state, the policy returns the action to take
- 2 Stochastic: given a state, the policy returns a probability distribution of the actions (e.g., 40% chance to turn left, 60% chance to turn right)

Example: Rock-Paper-Scissors

- Two-player game
- What is the best policy?
 - 1 A deterministic policy is easily beaten
 - 2 A uniform random policy is optimal (Nash equilibrium)

Example: Aliased Gridworld 1

- The agent cannot differentiate the two grey states (look the same to the agent)
- 2 Considers the following features (for all N, E, S, W) $\psi(s, a) = [\mathbf{1}(\text{wall to N}, a = \text{move E}), \mathbf{1}(\text{wall to S}, a = \text{move W}), ...]$
- 3 If it is value-based RL, value function approximation as:

$$Q_{\theta}(s, a) = f(\psi(s, a), \theta)$$

4 If it is policy-based RL, policy function approximation as:

$$\pi_{\theta}(s, a) = g(\psi(s, a), \theta)$$

Example: Aliased Gridworld 2

- 1 Value-based RL learns a near-deterministic policy, e.g., greedy or ϵ -greedy
- ② Because of the aliasing (the agent cannot differentiate two states), an optimal deterministic policy from value-based RL will either
 - 1 move W in both grey states (shown by red arrows)
 - 2 move E in both grey states
- 3 Either way, 50% chance will get stuck

Example: Aliased Gridworld 3

- Policy-based RL can learn the optimal stochastic policy
- 2 An optimal stochastic policy will randomly move E or W in two grey states

$$\pi_{\theta}({\rm wall~to~N~and~W,~move~E}) = 0.5$$
 $\pi_{\theta}({\rm wall~to~N~and~W,~move~W}) = 0.5$

For any starting point, it will reach the goal state in a few steps with high probability

Objective of Optimizing Policy

- **1** Objective: Given a policy approximator $\pi_{\theta}(s, a)$ with parameter θ , find the best θ
- **2** How do we measure the quality of a policy π_{θ} ?
- 3 In episodic environments we can use the start value

$$J_1(heta) = V^{\pi_{ heta}}(s_1) = \mathbb{E}_{\pi_{ heta}}[v_1]$$

- 4 In continuing environments
 - 1 we can use the average value

$$J_{avV}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) V^{\pi_{\theta}}(s)$$

2 or the average reward per time-step

$$J_{avR}(\theta) = \sum_{s} d^{\pi_{\theta}}(s) \sum_{a} \pi_{\theta}(s, a) R(s, a)$$

where $d^{\pi_{\theta}}$ is stationary distribution of Markov chain for π_{θ}

Objective of Optimizing Policy

The value of the policy is defined as

$$J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t} r(s_{t}, a_{t}^{\tau}) \right]$$

 $\approx \frac{1}{m} \sum_{m} \sum_{t} r(s_{t,m}, a_{t,m})$

It is the same as the value function we defined in the value-based RL

- 1 τ is a trajectory sampled from the policy function π_{θ}
- 2 The goal of policy-based RL

$$heta^* = rg \max_{ heta} \mathbb{E}_{ au \sim \pi_{ heta}}[\sum_{ au} r(s_t, a_t^{ au})]$$

Objective of Optimizing Policy

- **1** Policy-based RL is an optimization problem that find θ that maximizes $J(\theta)$
- **2** If $J(\theta)$ is differentiable, we can use gradient-based methods:
 - 1 gradient ascend
 - 2 conjugate gradient
 - g quasi-newton
- 3 If $J(\theta)$ is non-differentiable or hard to compute the derivative, some derivative-free black-box optimization methods:
 - Cross-entropy method (CEM)
 - 2 Hill climbing
 - 3 Evolution algorithm

Policy Optimization using Derivative

- **1** Consider a function $J(\theta)$ to be any policy objective function
- 2 Goal is to find parameter θ^* that maximizes $J(\theta)$ by ascending the gradient of the policy,w.r.t parameter θ

$$\Delta \theta = \alpha \nabla_{\theta} J(\theta)$$

- **3** Adjust θ in the direction of the gradient, where α is step-size
- **4** Define the gradient of $J(\mathbf{w})$ to be

$$\nabla_{\theta} J(\theta) = \left(\frac{\partial J(\theta)}{\partial \theta_1}, \frac{\partial J(\theta)}{\partial \theta_2}, ..., \frac{\partial J(\theta)}{\partial \theta_n}\right)^T$$

Policy Optimization using Derivative-free Methods

- **1** Sometimes we cannot compute the derivative, i.e., $\nabla_{\theta}J(\theta)$
- 2 Derivative free methods:
 - 1 Cross Entropy Method (CEM)
 - 2 Finite Difference

Derivative-free Method: Cross-Entropy Method

- **2** Treat $J(\theta)$ as a black box score function (not differentiable)

Algorithm 1 CEM for black-box function optimization

- 1: **for** iter i = 1 to N **do**
- 2: $C = \{\}$
- 3: **for** parameter set e = 1 to N **do**
- 4: sample $\theta^{(e)} \sim P_{\mu^{(i)}}(\theta)$
- 5: execute roll-outs under $\theta^{(e)}$ to evaluate $J(\theta^{(e)})$
- 6: store $(\theta^e, J(\theta^{(e)}))$ in C
- 7: end for
- 8: $\mu^{(i+1)} = \arg\max_{\mu} \sum_{k \in \hat{\mathcal{C}}} \log P_{\mu}(\theta^{(k)})$ where $\hat{\mathcal{C}}$ are the top 10% of \mathcal{C} ranked by $J(\theta^{(e)})$
- 9: end for
- Sexample of CEM for a simple RL problem: https://github.com/metalbubble/RLexample/blob/master/my_learning_agent.py

Approximate Gradients by Finite Difference

- **1** To evaluate policy gradient of $\pi_{\theta}(s, a)$
- **2** For each dimension $k \in [1, n]$
 - **1** estimate kth partial derivative of objective function by perturbing θ by a small amount ϵ in kth dimension

$$\frac{\partial J(\theta)}{\partial \theta_k} pprox \frac{J(\theta + \epsilon u_k) - J(\theta)}{\epsilon}$$

where u_k is unit vector with 1 in kth component, 0 else where

- 4 though noisy and inefficient, but works for arbitrary policies, even if policy is not differentiable.

Computing the Policy Gradient Analytically

- **1** Assume policy π_{θ} is differentiable whenever it is no-zero
- **2** and we can compute the gradient $abla_{ heta}\pi_{ heta}(s,a)$
- 3 Likelihood ratios exploit the following tricks

$$egin{aligned}
abla_{ heta}\pi_{ heta}(s,a) = &\pi_{ heta}(s,a) rac{
abla_{ heta}\pi_{ heta}(s,a)}{\pi_{ heta}(s,a)} \ = &\pi_{ heta}(s,a)
abla_{ heta}\log\pi_{ heta}(s,a) \end{aligned}$$

4 The score function is $\nabla_{\theta} \log \pi_{\theta}(s, a)$

Policy Gradient for One-Step MDPs

- 1 Consider a simple class of one-step MDPs
 - **1** Starting in state $s \sim d(s)$
 - 2 Terminating after one time-step with reward r = R(s, a)
- 2 Use likelihood ratios to compute the policy gradient

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[r]$$

$$= \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) r$$

3 The gradient is as

$$\begin{aligned} \nabla_{\theta} J(\theta) = & \sum_{s \in \mathcal{S}} d(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) r \\ = & \mathbb{E}_{\pi_{\theta}} [r \nabla_{\theta} \log \pi_{\theta}(s, a)] \end{aligned}$$

Policy Example: Softmax Policy

- **1** Simple policy model: weight actions using linear combination of features $\phi(s, a)^T \theta$
- 2 Probability of action is proportional to the exponetiated weight

$$\pi_{\theta}(s, a) = \frac{\exp^{\phi(s, a)^T \theta}}{\sum_{b} \exp^{\phi(s, b)^T \theta}}$$

3 The score function is

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \pi_{\theta}(s, a) - \mathbb{E}_{\pi_{\theta}}[\phi(s, .)]$$

Policy Example: Gaussian Policy

- In continuous action spaces, a Gaussian policy can be naturally defined
- **2** Mean is a linear combination of state features $\mu(s) = \phi(s)^T \theta$
- 3 Variance may be fixed σ^2 or can also be parameterized
- 4 Policy is Gaussian, the continuous $a \sim \mathcal{N}(\mu(s), \sigma^2)$
- 6 The score function is

$$abla_{ heta} \log \pi_{ heta}(s,a) = \frac{(a-\mu(s))\phi(s)}{\sigma^2}$$

Policy Gradient for Multi-step MDPs

- **1** Denote a state-action trajectory from one episode as $\tau = (s_0, a_0, r_1, ...s_{T-1}, a_{T-1}, r_T, s_T) \sim (\pi_\theta, P(s_{t+1}|s_t, a_t))$
- 2 Use $R(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ to be the sum of rewards for a trajectory τ
- 3 The policy objective is

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \Big[\sum_{t=0}^{T} R(s_t, a_t) \Big] = \sum_{\tau} P(\tau; \theta) R(\tau)$$

where $P(\tau;\theta)$ denotes the probability over trajectories when executing the policy π_{θ}

4 Then our goal is to find the policy parameter θ

$$\theta^* = \arg\max_{\theta} J(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

Policy Gradient for Multi-step MDPs

1 Our goal is to find the policy parameter θ

$$\theta^* = \underset{\theta}{\operatorname{arg max}} J(\theta) = \underset{\theta}{\operatorname{arg max}} \sum_{\tau} P(\tau; \theta) R(\tau)$$

2 Take the gradient with respect to θ :

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} P(\tau; \theta) R(\tau) \frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)}$$

$$= \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)$$

Policy Gradient for Multi-step MDPs

1 Our goal is to find the policy parameter θ

$$\theta^* = \underset{\theta}{\operatorname{arg max}} J(\theta) = \underset{\theta}{\operatorname{arg max}} \sum_{\tau} P(\tau; \theta) R(\tau)$$

2 Take the gradient with respect to θ :

$$abla_{ heta} J(heta) = \sum_{ au} P(au; heta) R(au)
abla_{ heta} \log P(au; heta)$$

3 Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$abla_{ heta} J(heta) pprox rac{1}{m} \sum_{i=1}^{m} R(au_i)
abla_{ heta} \log P(au_i; heta)$$

Decomposing the Trajectories into States and Actions

1 Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$\nabla_{\theta} J(\theta) pprox \frac{1}{m} \sum_{i=1}^{m} R(\tau_i) \nabla_{\theta} \log P(\tau_i; \theta)$$

2 Decompose $\nabla_{\theta} \log P(\tau; \theta)$

$$\nabla_{\theta} \log P(\tau; \theta) = \nabla_{\theta} \log \left[\mu(s_0) \prod_{t=0}^{T-1} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t) \right]$$

$$= \nabla_{\theta} \left[\log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) + \log p(s_{t+1} | s_t, a_t) \right]$$

$$= \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Likelihood Ratio Policy Gradient

1 Our goal is to find the policy parameter θ

$$\theta^* = \underset{\theta}{\operatorname{arg\,max}} V(\theta) = \underset{\theta}{\operatorname{arg\,max}} \sum_{\tau} P(\tau; \theta) R(\tau)$$

2 Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$\nabla_{\theta} V(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau_i) \nabla_{\theta} \log P(\tau_i; \theta)$$

3 And we have $\nabla_{\theta} \log P(\tau_i; \theta) = \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$

$$abla_{ heta} J(heta) pprox rac{1}{m} \sum_{i=1}^m R(au_i) \sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t^i | s_t^i)$$

1 It do not need to know the dynamics model!

Understanding Score Function Gradient Estimator

1 Consider the generic form of $E_{ au \sim \pi_{ heta}}[R(au)]$ as

$$\nabla_{\theta} \mathbb{E}_{x \sim p(x;\theta)}[f(x)] = \mathbb{E}_{x}[f(x)\nabla_{\theta} \log p(x;\theta)]$$

- 2 The above gradient can be understood as:
 - **1** Shift the distribution p through its parameter θ to let its future samples x achieve higher scores as judged by f(x)
 - 2 The direction of $f(x)\nabla_{\theta}\log p(x;\theta)$ pushes up the log probability of the sample, in proportion to how good it is

Comparison to Maximum Likelihood

- 1 Policy gradient estimator: $\nabla_{\theta} J(\theta) \approx \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t,m}|s_{t,m}) \right) \left(\sum_{t=1}^{T} r(s_{t,m}, a_{t,m}) \right)$
- 2 Maximum likelihood estimator: $\nabla_{\theta} J_{ML}(\theta) \approx \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t,m} | s_{t,m}) \right)$
- Interpretation: good action is made more likely, bad action is made less likely

Comparison to Maximum Likelihood

$$\nabla_{\theta} J(\theta) \approx \frac{1}{m} \sum_{i=1}^{m} R(\tau_i) \nabla_{\theta} \log P(\tau_i; \theta)$$

If going up the hill leads to higher reward, change the policy parameters to increase the likelihood of trajectories that move higher

Large Variance of Policy Gradient

1 We have the following approximate update

$$abla_{ heta} J(heta) pprox rac{1}{m} \sum_{i=1}^m R(au_i) \sum_{t=0}^{T-1}
abla_{ heta} \log \pi_{ heta}(a_t^i | s_t^i)$$

- Unbiased but very noisy
- 3 Two fixes:
 - Use temporal causality
 - 2 Include a baseline

Reduce Variance of Policy Gradient using Causality

- **1** Previously $\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau}\Big[\Big(\sum_{t=0}^{T-1} r_t\Big)\Big(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)\Big)\Big]$
- 2 We can derive the gradient estimator for a single reward term $r_{t'}$ as

$$abla_{ heta} \mathbb{E}_{ au}[r_{t'}] = \mathbb{E}_{ au}\Big[r_{t'} \sum_{t=0}^{t'}
abla_{ heta} \log \pi_{ heta}(a_t|s_t)\Big]$$

3 Summing this formula over t, we obtain

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R] = \mathbb{E}_{\tau} \Big[\sum_{t'=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Big] \\ &= \mathbb{E}_{\tau} \Big[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \sum_{t'=t}^{T-1} r_{t'} \Big] \\ &= \mathbb{E}_{\tau} \Big[\sum_{t=0}^{T-1} G_{t} \cdot \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Big] \end{split}$$

Reduce Variance of Policy Gradient using Causality

Therefore we have

$$abla_{ heta} \mathbb{E}_{ au \sim \pi_{ heta}}[R] = \mathbb{E}_{ au} \Big[\sum_{t=0}^{T-1} G_t \cdot
abla_{ heta} \log \pi_{ heta}(a_t|s_t) \Big]$$

- 2 $G_t = \sum_{t'=t}^{T-1} r_{t'}$ is the return for a trajectory at step t
- 3 Causality: policy at time t' cannot affect reward at time t when t < t'
- 4 Then we can have the following estimated update

$$abla_{ heta}\mathbb{E}[R] pprox rac{1}{m} \sum_{i=1}^{m} \sum_{t=0}^{T-1} G_t^{(i)} \cdot
abla_{ heta} \log \pi_{ heta}(a_t^i | s_t^i)$$

REINFORCE: A Monte-Carlo policy gradient algorithm

1 The algorithm simply samples multiple trajectories following the policy π_{θ} while updating θ using the estimated gradient

```
REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)  \begin{aligned} &\text{Input: a differentiable policy parameterization } \pi(a|s, \pmb{\theta}) \\ &\text{Initialize policy parameter } \pmb{\theta} \in \mathbb{R}^{d'} \\ &\text{Repeat forever:} \\ &\text{Generate an episode } S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T, \text{ following } \pi(\cdot|\cdot, \pmb{\theta}) \\ &\text{For each step of the episode } t = 0, \dots, T-1 \text{:} \\ &G \leftarrow \text{return from step } t \\ &\pmb{\theta} \leftarrow \pmb{\theta} + \alpha \gamma^t G \nabla_{\pmb{\theta}} \ln \pi(A_t | S_t, \pmb{\theta}) \end{aligned}
```

2 Classic paper: Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning: introduces REINFORCE algorithm

Reducing Variance Using a Baseline

1 The original update

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R] = \mathbb{E}_{\tau} \Big[\sum_{t=0}^{T-1} \frac{\mathsf{G}_{t}}{\mathsf{G}_{t}} \cdot \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Big]$$

- **1** $G_t = \sum_{t'=t}^{T-1} r_{t'}$ is the return for a trajectory which might have high variance
- 2 We subtract a baseline b(s) from the policy gradient to reduce variance

$$abla_{ heta}\mathbb{E}_{ au\sim\pi_{ heta}}[R] = \mathbb{E}_{ au}\Big[\sum_{t=0}^{T-1} ig(extit{ extit{G}}_t - extit{ extit{b}}(extit{s}_t) ig) \cdot
abla_{ heta} \log \pi_{ heta}(extit{a}_t | extit{s}_t) \Big]$$

3 A good baseline is the expected return

$$b(s_t) = \mathbb{E}[r_t + r_{t+1} + ... + r_{T-1}]$$

Reducing Variance Using a Baseline

$$\nabla_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \frac{\left(G_{t} - b(s_{t}) \right)}{\left(G_{t} - b(s_{t}) \right)} \cdot \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$

- 1 Interpretation: increase the logprob of action a_t proportional to how much returns G_t are better than the expected return
- 2 We can **prove** that baseline b(s) can reduce variance, without changing the expectation:

$$\mathbb{E}_{\tau}\Big[\nabla_{\theta}\log \pi_{\theta}(a_t|s_t)b(s_t)\Big]=0, \tag{1}$$

$$E_{\tau} \Big[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) (G_t - b(s_t)) \Big] = E_{\tau} \Big[\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) G_t \Big]$$
 (2)

$$Var_{\tau}\Big[\nabla_{\theta}\log \pi_{\theta}(a_t|s_t)(G_t - b(s_t))\Big] < Var_{\tau}\Big[\nabla_{\theta}\log \pi_{\theta}(a_t|s_t)G_t\Big]$$
 (3)

Thus subtracting a baseline is unbiased in expectation but reduces variance

Vanilla Policy Gradient Algorithm with Baseline

procedure Policy Gradient(α)

Initialize policy parameters θ and baseline values b(s) for all s, e.g. to 0 for iteration = 1,2,... do

Collect a set of m trajectories by executing the current policy π_{θ} for each time step t of each trajectory $\tau^{(i)}$ do

Compute the return $G_t^{(i)} = \sum_{t'=t}^{T-1} r_{t'}$

Compute the advantage estimate $\hat{A}_t^{(i)} = G_t^{(i)} - b(s_t)$

Re-fit the baseline to the empirical returns by updating \mathbf{w} to minimize

$$\sum_{i=1}^{m} \sum_{t=0}^{T-1} \|b(s_t) - G_t^{(i)}\|^2$$

Update policy parameters θ using the policy gradient estimate \hat{g}

$$\hat{g} = \sum_{i=1}^{m} \sum_{t=0}^{T-1} \hat{A}_{t}^{(i)} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)} | s_{t}^{(i)})$$

with an optimizer like SGD $(\theta \leftarrow \theta + \alpha \cdot \hat{g})$ or Adam **return** θ and baseline values b(s)

Practical Implementation of the Algorithm

- 1 In practice we usually do not compute the gradients $\sum_t \hat{A}_t \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$ individually
- 2 Instead, we accumulate data from current batch as

$$L(\theta) = \sum_{t} \hat{A}_{t} \log \pi_{\theta}(a_{t}|s_{t};\theta)$$

- **3** Then the policy gradient estimator $\hat{g} = \nabla_{\theta} L(\theta)$
- 4 We also could have a joint loss with value function approximation as

$$L(\theta, \mathbf{w}) = \sum_{t} \left(\hat{A}_{t} \log \pi_{\theta}(a_{t}|s_{t}; \theta) - ||b(s_{t}) - \hat{R}_{t}||^{2} \right)$$

5 Then solve this using auto diff

Concluding Remark

- Derive the policy gradient by yourself to get a deeper understanding!!!
- 2 Next lecture will be on actor-critic policy gradient and some variants