Agenda today

- Discussion about what makes a good hypothesis
 - from groups of 3
 - formulate a precise hypothesis
 - submit it via menti.com (6568 1361)
- Developing a model of a physiological process

Developing simple Excel models of physiological processes

Dynamic Modelling for Human-centered Systems

Course outline

Previous lecture: what is dynamic modelling?

Current lecture: creating models of

physiological processes

Next lecture: creating models of social

processes

Later: modelling behaviour

Even later: embedding models within

intelligent systems...

domain models

Which processes will we model?

- Food intake of bacterium
- Responses of sea hare on stimuli

- At the same time:
 - rudimentary decision making process
 - neurally-inspired learning process
- Building blocks for other models!

Modelling and Simulation Cycle

situation in the real world

Steps

- 1. Conceptualisation: identification of important concepts and relations
- Formalisation: describe concepts and relations in an unambiguous way
- 3. Simulation: running experiments with models to generate simulations traces
- 4. Evaluation: verify whether the simulations are in line with expectations (properties)

Creating models in practice

- Biological knowledge is basis
- Similar approach for all models in syllabus:
 - study domain literature (syllabus section 1)
 - identify main aspects + relations (syllabus section 2)
 - also "characteristic patterns"
 - create formal representation (syllabus section 3)
 - perform simulations (syllabus section 4)
 - evaluate simulations (syllabus section 5)

Syllabus: Chapter 3

MODELLING FOOD INTAKE BY E-COLI

Modelling decision making

- How does decision making work?
- Complex process
 - much research about patterns
 - psychological experiments
 - decision models
 - underlying mechanism are difficult to study
 - brain imaging only shows activity of brain areas
 - bacterium is simple enough to understand chemical pathways

Bacterial food intake

- E-Coli: bacterium
 - located in intestines
 - consumes glucose or lactose

Behaviour bacte

Assignment

- Which pattern do you see in the behaviour of the bacterium?
- take 1 minute

	0	1	2	3	4	5	6
observa tion	glucose	glucose	lactose	lactose	glucose	glucose	glucose lactose
action		import glucose	import glucose	import lactose	import lactose	import glucose	import glucose

Pattern

- Food intake behaviour:
 - At any point in time
 if it observes that at previous time point glucose is present,
 then it will import glucose
 - At any point in time,
 if it observes that at previous time point –
 lactose is present,
 and that no glucose is present,
 then it will import lactose

Internal mechanism

- Bacterium can "observe" the environment (sensoring) and "decide" about
 - lactose intake, or
 - glucose intake
- Intake of lactose or glucose is controlled by two specific enzymes
- "Lactose intake enzyme" is produced if:
 - chemical substance CRPcAMP is present, and
 - (low) concentration of lactose in cell

Internal mechanism (2)

- Substances in cell:
 - CRPcAMP is *only* present within cell if glucose is
 <0.1 mmol/l outside the cell
 - indicator of absence of glucose
 - a little bit of lactose is present in cell when there is lactose outside the cell (infiltrates)
- The bacterium will grow from both lactose intake as glucose intake

Characteristic patterns

- If a sufficient amount of any food (lactose or glucose) is externally present, then a substantial amount of food will be internally present
- If food is present, then the bacterium will grow
- If lactose is externally present, but not glucose, then lactose is imported,
- If glucose is externally present but not lactose, then glucose is imported,
- If both glucose and lactose are externally present, then glucose is imported but not lactose.

Assignment

- Which concepts do you think are relevant?
- Make a list of concepts
- 3 minutes
- groups of three; I will ask a few of you to come up with suggestions

- Important question:
 - what do we consider as concepts?

Concepts

External state

Internal states reflecting the external state

- •

Internal states for action initiation

Action performance

Internal state showing the effect of actions

Conceptualisation

External state

- glucose externally present
- lactose externally present

Internal states reflecting the external state

- CRPcAMP internally absent (glucose indicator)
- some lactose internally present (lactose indicator)

Internal states for action initiation

- enzyme for glucose import present
- enzyme for lactose import present

Action performance

- glucose import takes place
- lactose import takes place

Internal state showing the effect of actions

- substantial glucose internally present
- substantial lactose internally present
- mass

Assignment

- Which direct relations can be identified between the concepts?
- Draw a diagram with circles for concepts and arrows between concepts if a concept affects another concept.
- 10 minutes
- create powerpoint / google sheet to share

Conceptualisation (2)

"Affects" relations between concepts

Formalisation of concepts

- Variables for every concept
 - glucose externally present:
 - lactose externally present:
 - glucose indicator (no CRPcAMP):
 - lactose indicator:
 - glucose import enzyme:
 - lactose import enzyme:
 - glucose internally present:
 - lactose internally present:
 - mass:

EXTgluc [0/1]
EXTlac [0/1]
glucIND [0/1]
lacIND [0/1]
glucimpENZ [0/1]
lacimpENZ [0/1]
INTgluc [0/1]

INTlac [0/1]

M [real]

Formalisation of relations

- Example relations:
 - From external glucose to glucose indicator
 - $glucIND(t+\Delta t) = EXTgluc(t)$
 - From lactose and glucose indicator to enzyme for lactose import
 - $lacimpENZ(t+\Delta t) = lacIND(t)*(1 glucIND(t))$
 - Effect on mass
 - $M(t+\Delta t) = M(t) + \gamma (INTgluc(t) + INTlac(t))*M(t)$
- Almost logical representation

Formalisation (2)

Dependencies

Simulation experiments

Evaluation

- Characteristic patterns:
 - If a sufficient amount of any food (lactose or glucose) is externally present, then a substantial amount of food will be internally present
 - If food is present, then the bacterium will grow
 - If lactose is externally present, but not glucose, then lactose is imported,
 - If glucose is externally present but not lactose, then glucose is imported,
 - If both glucose and lactose are externally present, then glucose is imported but not lactose.

Summary

- Food intake by bacteria can be modelled numerically
 - extensions with role of DNA and mRNA are possible
 - = see reader

Syllabus: Chapter 4

NEURAL MECHANISM FOR LEARNING

Aplysia

- Aplysia is a sea hare that is often used to do experiments.
 - for example, it performs classical conditioning: learning to move upon a siphon touch.

Aplysia

 The siphon is a spot on the back of the animal.

Behaviour Before Learning Phase

- Initially the following behaviour is shown:
 - a tail shock leads to a response (moving: contraction)
 - a light touch on its siphon is insufficient to trigger such a response

Behaviour After a Learning Phase

- It turns out that after a number of trials the behaviour has changed (adapted behaviour):
 - the animal also responds (moving) on the siphon touch

Training Aplysia

- Protocol for training an Aplysia:
 - a number of trials
 - in each trial:
 - the subject is touched lightly on its siphon
 - then, shocked on its tail
 - as a consequence it responds

Neural Mechanism: Siphon Touch

Neural Mechanism: Tail Shock

Neural Mechanism: Learning

Neural Mechanism: Learned Siphon Touch Response

- If both SN2 and IN are activated simultaneously, this changes the synapse between SN2 and MN:
- It makes that in this synapse more neurotransmitter is produced if SN2 is activated.
- After a number of times this leads to the new situation that also activation of SN2 leads to activation of MN.

Modeling Aplysia learning

- Conceptualization
- Simplification: no intermediate neuron IN

Assignment

- Which concepts do you think are relevant?
- Make a list of concepts
- 3 minutes
- groups of three; I will ask a few of you to come up with suggestions

- Important question:
 - what do we consider as concepts?

Concepts

- tail shock
- siphon touch
- contraction
- sensory neuron SN1 is activated
- sensory neuron SN2 is activated
- motoneuron MN is activated

Relations

Sensory processes

- A tail shock affects activation of SN1
- A siphon touch affects activation of SN2

Action generation

- Activation of SN1 affects activation of MN
- Activation of SN2 together with a certain strength of synapse S2 affects activation of MN
- Activation of MN affects contraction

Adaptation

 Simultaneous activation of MN and SN2 affects the strength of synapse S2 between SN2 and MN by increasing it

Relations between concepts

- Initially a contraction occurs after a shock, but no reaction upon a siphon touch
- After a training period of a number of trials (each of a siphon touch followed by a tail shock), contraction will take place after any siphon touch
- During a training period the strength of the synapse increases and eventually reaches a maximal strength

Concepts (2)

- tail shock (*TailShock*)
- siphon touch (SiphonTouch)
- contraction (Contraction)
- sensory neuron SN1 is activated (ASN1)
- sensory neuron SN2 is activated (ASN2)
- motoneuron MN is activated (AMN)
- the synapse S1 between SN1 and MN has a certain strength (S1)
- the synapse S2 between SN2 and MN has a certain strength (S2)

Formalization

- Concepts:
 - events and neuron activation: [0/1]
 - synapse strength: integer
- Relations
 - From tail shock to activation of SN1
 - ASN1(t+∆t) = max(TailShock(t), TailShock(t-∆t), TailShock(t-2∆t))
 - From siphon touch to activation of SN2
 - ASN2(t+∆t) = max(SiphonTouch(t), SiphonTouch(t-∆t), SiphonTouch(t-2∆t))

Formalization (2)

- From activation of MN to contraction
 - $Contraction(t+\Delta t) = AMN(t)$
- From activation of SN1 or SN2 to activation of MN

•
$$AMN(t+\Delta t) = 1$$
 if $ASN1(t) = 1$ or:
 $S2(t) = 4$ and $ASN2(t) = 1$
 O else

 Adjustment of the synapse strength based on simultaneous activation of MN and SN2

•
$$S2(t+\Delta t) = S2(t) + 1$$
 if $S2(t) < 4$ and $AMN(t) = ASN2(t) = 1$ else

Simulations

Discussion

- Assumptions and choices in the model
 - The adjustments of the synapse strength are linear: every trial the same increase, until a maximum is reached.
 - There is no decay of synapse strength.
 - Activations of neurons last three time steps.
 - In a training period the stimuli (siphon touch and tail shock) are presented at two successive time steps.

Discussion (2)

Variations:

- Faster or slower learning.
- Activation of the motoneuron MN by sensory neuron SN2 can take place in case the strength of the synapse connecting them is above a certain threshold, not at a maximum value.
- The adjustments of the synapse strength can be taken not linear but bounded by a maximum.
- Decay of synapse strength can be incorporated.
- The activation periods of neurons may be taken to last longer or shorter than three time steps.
- In a training period the time difference between the two stimuli (tail shock and siphon touch) can be varied.