Trajectory Planning, Setpoint Generation and Feedforward Design for High Performance Motion Systems

Paul Lambrechts

Senior Application Engineer, The Math Works Benelux.

September 27, 2006

Overview

- (Industrial) motion control
 - Motion control and factory automation;
 - Current methods for feedforward control
 - Performance characteristics for trajectory planning
 - Rigid body feedforward and second order trajectory planning
- Fourth order feedforward and trajectory planning
- Implementation aspects
 - Switching times
 - Discrete time integration and synchronization
 - First order filter implementation
- Simulation and experimental results
- Conclusions

Industrial motion control

- Robots
- Pick-and-place units
- Wafersteppers

Motion Control Tasks:

- Safety, Communication, etc.
- System compensation
- Trajectory planning
- Feedforward control
- Feedback control

CRT Tube Handler

Industrial motion control

- Robots
- Pick-and-place units
- Wafersteppers

Motion Control Tasks:

- Safety, Communication, etc.
- System compensation
- Trajectory planning
- Feedforward control
- Feedback control

Component Mounter

Industrial motion control

- Robots
- Pick-and-place units
- Wafersteppers

Motion Control Tasks:

- Safety, Communication, etc.
- System compensation
- Trajectory planning
- Feedforward control
- Feedback control

300mm Waferstepper

Simple experimental setup:

Rigid-body feedforward

1 DOF rigid-body model

$$m\ddot{x} + b\dot{x} = F \implies F_{\rm ff} = ma + bv$$

x is position, m is (equivalent) mass or inertia, b is viscous damping, F is actuator force and $F_{\rm ff}$ is feedforward force.

Trajectory profiles for rigid-body feedforward

$$F_{\rm ff} = ma + bv$$

Rigid body feedforward: $F_{\rm ff} = ma + bv$

$$F_{\rm ff} = ma + bv$$

Rigid body feedforward: $F_{\rm ff} =$

$$F_{\rm ff} = m_{\rm a} + bv$$

Rigid body feedforward: $F_{\rm ff} = ma + bv$

$$F_{\rm ff} = ma + bv$$

Trajectory planning performance (p2p)

- Timing: minimal trajectory execution time
- Realizability: constrained dynamics (\bar{a} and \bar{v})
- Accuracy: trajectory ends at desired end position (\bar{x})
- Complexity: calculation time
- Reliability: always valid solution
- Implementation: discretization, quantization

Profiles given \bar{a} , \bar{v} and \bar{x} :

1. Forget
$$\bar{v}$$
: $\bar{x}=2 imes \frac{1}{2}\bar{a}t^2 \Rightarrow t_{\bar{a}}=\sqrt{\frac{\bar{x}}{\bar{a}}} \Rightarrow t_{\bar{x}}=2t_{\bar{a}}$

- 2. Calculate maximal velocity: $\hat{v}:=ar{a}\cdot t_{ar{a}}$
- 3. $\hat{v}>ar{v}$?; true: $t_{ar{a}}=rac{ar{v}}{ar{a}}$, false: $t_{ar{a}}=rac{1}{2}t_{ar{x}}$
- 4. $x_{\bar{a}} := 2 \times \frac{1}{2} \bar{a} t_{\bar{a}}^2 \le \bar{x}$
- 5. $t_{ar{v}}=rac{(ar{x}-x_{ar{a}})}{ar{v}}$ $\Rightarrow ar{a},t_{ar{a}},t_{ar{v}}$

Properties of trajectory planning algorithm

- ullet Timing: minimal, determined by $t_{ar{a}}$ and $t_{ar{v}}$
- ullet Realizablity: guaranteed by \bar{a} and \bar{v}
- Accuracy: exact within machine accuracy
- Complexity: low
- Reliability: always valid solution
- Implementation: later

Results of rigid body feedforward:

Extensions of rigid body feedforward

- Smoothing and shaping
 - third order trajectories with rigid body feedforward?
 - filtering of second order trajectories and feedforwards?
- (Approximate) model inversion
 - using second or third order trajectories ?
 - focus on frequency domain properties ?
 - learning techniques ?
- \rightarrow back to basics!

4th order model for motion system

1 DOF 4th order model

 x_1 and x_2 are actuator and load position, m_1 , m_2 masses, b_1 , b_2 viscous damping, k spring stiffness, b_{12} internal viscous damping, F is actuator force.

4th order feedforward

Equations of motion:

$$\begin{cases} m_1 \ddot{x}_1 = -b_1 \dot{x}_1 - k(x_1 - x_2) - b_{12}(\dot{x}_1 - \dot{x}_2) + F \\ m_2 \ddot{x}_2 = -b_2 \dot{x}_2 + k(x_1 - x_2) + b_{12}(\dot{x}_1 - \dot{x}_2) \end{cases}$$

Laplace transform and substitution:

$$F = \frac{q_1 s^4 + q_2 s^3 + q_3 s^2 + q_4 s}{b_{12} s + k} \cdot x_2 \begin{cases} q_1 = m_1 m_2 \\ q_2 = (m_1 + m_2) b_{12} + m_1 b_2 + m_2 b_1 \\ q_3 = (m_1 + m_2) k + b_1 b_2 + (b_1 + b_2) b_{12} \\ q_4 = (b_1 + b_2) k \end{cases}$$

Feedforward force calculation:

$$F_{\rm ff} = \frac{1}{b_{12}s + k} \cdot \{q_1 d + q_2 j + q_3 a + q_4 v\}$$

Trajectory profiles for 4th order feedforward

$$F_{\rm ff} = \frac{q_1 d + q_2 j + q_3 a + q_4 v}{b_{12} s + k}$$

4th order feedforward:

$$F_{\rm ff} = \frac{q_1 d + q_2 j + q_3 a + q_4 v}{b_{12} s + k}$$

4th order trajectory planner?

- Point-to-point move (all derivatives zero at start and end)
- Given: displacement \bar{x} and bounds \bar{d} , $\bar{\jmath}$, \bar{a} and \bar{v}
- Performance criteria!?

4th order trajectory specification:

4th order calculations

$$d(t) = d_0$$

$$j(t) = d_0 t + j_0$$

$$a(t) = \frac{1}{2}d_0t^2 + j_0t + a_0$$

$$v(t) = \frac{1}{6}d_0t^3 + \frac{1}{2}j_0t^2 + a_0t + v_0$$

$$x(t) = \frac{1}{24}d_0t^4 + \frac{1}{6}j_0t^3 + a_0t^2 + v_0t + x_0$$

4th order planning calculate $t_{\bar{d}}$

 $t_{ar{d}}$ only depends on $ar{d}$ and $ar{x}$

$$\Rightarrow \qquad t_{\bar{d}} = \sqrt[4]{\frac{\bar{x}}{8\bar{d}}}$$

$$ar{v}$$
 violated: $t_{ar{d}} = \sqrt[3]{rac{ar{v}}{2ar{d}}}$

$$ar{a}$$
 violated: $t_{ar{d}}=\sqrt{rac{ar{a}}{ar{d}}}$

$$ar{\jmath}$$
 violated: $t_{ar{d}}=rac{ar{\jmath}}{ar{d}}$

4th order planning final $t_{\bar{d}}$

Note:

- No bounds violated
- ullet Final $t_{ar{d}}$ always \leq first $t_{ar{d}}$
- ullet Consequently: \bar{x} not reached

4th order planning calculate $t_{\bar{\jmath}}$

Add periods of constant jerk until \bar{x} is reached again

$t_{\bar{\imath}}$ follows from:

$$t_{\bar{\jmath}}^3 + (5t_{\bar{d}})t_{\bar{\jmath}}^2 + (8t_{\bar{d}}^2)t_{\bar{\jmath}} + (4t_{\bar{d}}^3 - \frac{\bar{x}}{2\bar{d}t_{\bar{d}}}) = 0$$

$$\bar{v}$$
 violated: $t_{\bar{\jmath}}^2 + 3t_{\bar{d}}t_{\bar{\jmath}} + 2t_{\bar{d}}^2 - \frac{\bar{v}}{\bar{d}t_{\bar{\jmath}}} = 0$

$$ar{a}$$
 violated: $t_{ar{\jmath}} = rac{ar{a}}{ar{\jmath}} - t_{ar{d}}$

4th order planning final $t_{\bar{d}}$ and $t_{\bar{\jmath}}$

Note:

- No bounds violated
- Final $t_{\bar{\jmath}}$ always \leq first $t_{\bar{\jmath}}$
- ullet Consequently: \bar{x} not reached

4th order planning calculate $t_{\bar{a}}$

Add periods of constant acceleration until \bar{x} reached

 $t_{\bar{a}}$ follows from:

$$\begin{aligned} &\{t_{\bar{d}}^2 + t_{\bar{d}}t_{\bar{\jmath}}\} \ t_{\bar{a}}^2 + \\ &\{6t_{\bar{d}}^3 + 9t_{\bar{d}}^2t_{\bar{\jmath}} + 3t_{\bar{d}}t_{\bar{\jmath}}^2\} \ t_{\bar{a}} + \\ &\{8t_{\bar{d}}^4 + 16t_{\bar{d}}^3t_{\bar{\jmath}} + 10t_{\bar{d}}^2t_{\bar{\jmath}}^2 + 2t_{\bar{d}}t_{\bar{\jmath}}^3 - \frac{\bar{x}}{\bar{d}}\} = 0 \end{aligned}$$

$$ar{v}$$
 violated: $t_{ar{a}}=rac{ar{v}-2ar{d}t_{ar{d}}^3-3ar{d}t_{ar{d}}^2t_{ar{\jmath}}-ar{d}t_{ar{d}}t_{ar{\jmath}}^2}{ar{d}t_{ar{d}}^2+ar{d}t_{ar{d}}t_{ar{\jmath}}}$

4th order planning final $t_{\bar{d}}$, $t_{\bar{\jmath}}$ and $t_{\bar{a}}$

Note:

- No bounds violated
- Final $t_{\bar{a}}$ always \leq first $t_{\bar{a}}$
- ullet Consequently: $ar{x}$ not reached

For final step: determine obtained position $x_{\bar{a}}$

4th order planning calculate $t_{\bar{v}}$

Final step: add period of constant velocity until \bar{x} reached

$$t_{\bar{v}} = \frac{\bar{x} - x_{\bar{a}}}{\bar{v}}$$

Finished: trajectory completely determined by 5 parameters!

(Further) Implementation aspects

- Switching times
- Discrete time integration and synchronization
- First order filter implementation

Implementation

Switching times:

Round off intervals up to multiple of sampling time T_s .

Correct by reducing \bar{d} to appropriate value.

Switching times synchronization

Make sure that each interval is a multiple of the sampling time T_s

Example:

$$t_{\bar{d}} = \sqrt[4]{\frac{\bar{x}}{8\bar{d}}}$$

$$t'_{\bar{d}} = \operatorname{ceil}\left(\frac{t_{\bar{d}}}{T_s}\right) \times T_s$$

Correct \bar{d}

$$\bar{d}' = \frac{\bar{x}}{8t'_{\bar{d}}^4}$$

Note that with $t'_{\bar{d}} \geq t_{\bar{d}}$ we must have $\bar{d}' \leq \bar{d}$

4th order feedforward in discrete time?

Implementation

Discrete time integration:

Synchronization of profiles is required!

Synchronization of profiles

Delay:

d with $2T_s$,

 \jmath with $1\frac{1}{2}T_s$,

 \boldsymbol{a} with T_s ,

v with $\frac{1}{2}T_s$.

 $ightarrow rac{1}{2}T_s$?

First order filter implementation

Transfer function:

$$y = \frac{\frac{T_s}{2k_{12} + cT_s}(z+1)}{z - \frac{2k_{12} - cT_s}{2k_{12} + cT_s}} u$$

Digital 4th order feedforward

Bound selection

- Velocity:
 - back EMF smaller than power supply voltage
 - motor or gearbox specification (temperature)
- Acceleration:
 - maximum power supply or motor current
 - mechanical restrictions
- Jerk:
 - power amplifier rise time
 - mechanical restrictions
- Derivative of jerk upper bound: $\frac{3}{7}$

Experimental setup:

Experimental setup:

Experimental setup:

Simulation results

Robustness against variations in additional parameters

 m_{I}

Simulation results

Effect of order of feedforward

Simulation results

Discrete time vs. continuous time

Measured results

Conclusions

- Superior performance of 4th order vs. rigid-body feedforward
- Algorithm no problem for state-of-the-art motion controllers
- Especially feedforward of djerk effective (for electro-mechanical motion systems)
- Complete derivation (also for third order) available
- Simulink toolbox 'motion' available
- Experimental verification using MATLAB, Simulink and Real-Time Workshop