Programação Linear Modelagem matemática

Prof. Marcelo de Souza

55MQU – Métodos Quantitativos Universidade do Estado de Santa Catarina

Processo de formulação de problemas

Etapas

- 1. Definir as variáveis de decisão;
 - aquelas cujos valores serão determinados pela solução.
- 2. Determinar a função objetivo;
 - está relacionada com o que se busca (maior lucro, menor custo, menor tempo, etc.).
- 3. Definir o conjunto de restrições.
 - definem soluções viáveis e inviáveis;
 - não esquecer das restrições de não negatividade (i.e. x_i ≥ 0).

Processo de formulação de problemas

Etapas

- 1. Definir as variáveis de decisão;
 - aquelas cujos valores serão determinados pela solução.
- 2. Determinar a função objetivo;
 - está relacionada com o que se busca (maior lucro, menor custo, menor tempo, etc.).
- 3. Definir o conjunto de restrições.
 - definem soluções viáveis e inviáveis;
 - ▶ não esquecer das restrições de não negatividade (i.e. $x_i \ge 0$).

Alguns detalhes

- As restrições são definidas por equações e/ou inequações;
- Mantenha as variáveis do lado esquerdo, e as constantes do lado direito;
- Escreva as restrições respeitando a ordem das variáveis, i.e. x_i antes de x_{i+i} .

Reddy Mikks (mix de produtos) – enunciado

A Reddy Mikks produz tintas para interiores e exteriores com base em duas matérias-primas, M1 e M2. A tabela abaixo apresenta os dados básicos do problema.

	Tonelada de matéria-pri		
	Tinta para exteriores	Tinta para interiores	Máximo diário
Matéria-prima <i>M1</i>	6	4	24
Matéria-prima <i>M2</i>	1	2	6
Lucro/tonelada (\$1000)	5	4	

Uma pesquisa de mercado indica que a demanda diária de tintas para interiores não pode ultrapassar a de tintas para exteriores por mais de 1 t. Além disso, a demanda máxima diária de tinta para interiores é de 2 t.

A Reddy Mikks quer determinar o mix ótimo (o melhor) de produtos de tintas para interiores e exteriores que maximize o lucro total diário.

Reddy Mikks (mix de produtos) – processo de formulação

Variáveis de decisão:

- \triangleright x_1 : produção de tinta para **exteriores** (em toneladas);
- \triangleright x_2 : produção de tinta para **interiores** (em toneladas).

Reddy Mikks (mix de produtos) – processo de formulação

Variáveis de decisão:

- \triangleright x_1 : produção de tinta para **exteriores** (em toneladas);
- \triangleright x_2 : produção de tinta para **interiores** (em toneladas).

Função objetivo:

- **maximiza** $z = 5x_1 + 4x_2$
 - lucro total z: 5/t para x_1 t de tinta de exteriores e 4/t para x_2 t de tinta de interiores.

Reddy Mikks (mix de produtos) - processo de formulação

Variáveis de decisão:

- \triangleright x_1 : produção de tinta para **exteriores** (em toneladas);
- \triangleright x_2 : produção de tinta para **interiores** (em toneladas).

Função objetivo:

- **maximiza** $z = 5x_1 + 4x_2$
 - lucro total z: 5/t para $x_1 t$ de tinta de exteriores e 4/t para $x_2 t$ de tinta de interiores.

Restrições:

- 1. Limite máximo de matéria-prima M1: $6x_1 + 4x_2 \le 24$
- 2. Limite máximo de matéria-prima M2: $x_1 + 2x_2 \le 6$
- 3. Relação entre a produção dos tipos de tinta: $-x_1 + x_2 \le 1$
- 4. Produção máxima de tinta para interiores: $x_2 \le 2$
- 5. Restrições de não-negatividade: $x_1, x_2 \ge 0$

Reddy Mikks (mix de produtos) – modelo/programa linear

Reddy Mikks

Ozark Farms (problema da dieta) – enunciado

A Ozark Farms usa no mínimo 800 kg de ração especial por dia. Essa ração especial é uma mistura de milho e soja com as composições mostradas na tabela abaixo.

	kg por kg c	le ração	
Ração	Proteína	Fibra	Custo (\$/kg)
Milho Soja	0,09 0,60	0,02 0,06	0,30 0,90

Os requisitos nutricionais da ração especial são de no mínimo 30% de proteína e de no máximo 5% de fibra. A Ozark Farms quer determinar a mistura que gera a ração de mínimo custo diário.

Ozark Farms (problema da dieta) – processo de formulação

Variáveis de decisão:

- \triangleright x_1 : kg de **milho** na mistura;
- $ightharpoonup x_2$: kg de **soja** na mistura.

Ozark Farms (problema da dieta) – processo de formulação

Variáveis de decisão:

- \triangleright x_1 : kg de **milho** na mistura;
- \triangleright x_2 : kg de **soja** na mistura.

Função objetivo:

- **minimiza** $z = 0.3x_1 + 0.9x_2$
 - ightharpoonup custo total z: \$0,30/kg para x_1 kg de milho e \$0,90/kg para x_2 kg de soja.

Ozark Farms (problema da dieta) – processo de formulação

Variáveis de decisão:

- \triangleright x_1 : kg de **milho** na mistura;
- \triangleright x_2 : kg de **soja** na mistura.

Função objetivo:

- **minimiza** $z = 0.3x_1 + 0.9x_2$
 - ightharpoonup custo total z: \$0,30/kg para x_1 kg de milho e \$0,90/kg para x_2 kg de soja.

Restrições:

- 1. Produção mínima: $x_1 + x_2 \ge 800$
- 2. Requisito de proteína: $0.09x_1 + 0.6x_2 \ge 0.3(x_1 + x_2)$: $0.21x_1 0.3x_2 \le 0$
- 3. Requisito de fibra: $0.02x_1 + 0.06x_2 \le 0.05(x_1 + x_2)$: $0.03x_1 0.01x_2 \ge 0$
- 4. Restrições de não-negatividade: $x_1, x_2 \ge 0$

Ozark Farms (problema da dieta) – modelo/programa linear

Ozark Farms

minimiza
$$z = 0.3x_1 + 0.9x_2$$

sujeito a $x_1 + x_2 \ge 800$
 $0.21x_1 - 0.3x_2 \le 0$
 $0.03x_1 - 0.01x_2 \ge 0$
 $x_1, x_2 \ge 0$

Formulação genérica de problemas

Em geral, os elementos associados a problemas de otimização são dinâmicos. Por exemplo:

- Produção varia conforme encomendas de clientes.
- Contratação de funcionários varia de acordo com candidaturas.
- ▶ Valor de venda de mercadoria depende da demanda de mercado.
- Limite de produção definido pela matéria-prima recebida do fornecedor.

Formulação genérica de problemas

Em geral, os elementos associados a problemas de otimização são dinâmicos. Por exemplo:

- Produção varia conforme encomendas de clientes.
- Contratação de funcionários varia de acordo com candidaturas.
- ▶ Valor de venda de mercadoria depende da demanda de mercado.
- Limite de produção definido pela matéria-prima recebida do fornecedor.

Neste caso, devemos construir modelos genéricos.

- Número variável de variáveis de decisão, restrições e dados.
- O modelo se ajusta a uma instância concreta do problema.
- Analogia: classes e objetos em POO.

Reddy Mikks genérico

Consideremos o seguinte cenário para o problema Reddy Mikks:

- ▶ Variados **tipos de tinta**, com respectivos **lucros/tonelada**.
- Variadas matérias-primas, com respectivos limites diários.
- Matéria-prima necessária para produção de cada tipo de tinta.
- Demanda diária máxima de produção de cada tipo de tinta.

Reddy Mikks genérico

Consideremos o seguinte cenário para o problema Reddy Mikks:

- ▶ Variados **tipos de tinta**, com respectivos **lucros/tonelada**.
- Variadas matérias-primas, com respectivos limites diários.
- Matéria-prima necessária para produção de cada tipo de tinta.
- Demanda diária máxima de produção de cada tipo de tinta.

Etapas para a construção do modelo genérico:

- 1. Definir os dados do problema;
 - introduzindo variáveis matemáticas para grandezas dinâmicas.
- 2. Definir as variáveis de decisão e a função objetivo;
- 3. Construir as restrições.
 - agrupando restrições, quando necessário.

Reddy Mikks genérico

Dados:

- n tipos de tinta e m matérias-primas;
- ▶ L_i é o lucro da tinta $i \in \{1,2,...,n\}$;
- ▶ P_i é a produção máxima diária da tinta $i \in \{1,2,...,n\}$;
- $ightharpoonup E_j$ é a quantidade máxima (estoque) da matéria-prima $j \in \{1,2,\ldots,m\}$;
- $ightharpoonup Q_{ij}$ é a quantidade da matéria-prima $j \in \{1,2,\ldots,m\}$ ao produzir a tinta $i \in \{1,2,\ldots,n\}$.

Reddy Mikks genérico

Dados:

- n tipos de tinta e m matérias-primas;
- ▶ L_i é o lucro da tinta $i \in \{1,2,...,n\}$;
- ▶ P_i é a produção máxima diária da tinta $i \in \{1,2,...,n\}$;
- $ightharpoonup E_j$ é a quantidade máxima (estoque) da matéria-prima $j \in \{1,2,\ldots,m\}$;
- $ightharpoonup Q_{ij}$ é a quantidade da matéria-prima $j \in \{1,2,\ldots,m\}$ ao produzir a tinta $i \in \{1,2,\ldots,n\}$.

Variáveis de decisão: x_i : produção de tinta do tipo $i \in \{1, 2, ..., n\}$.

Reddy Mikks genérico

Dados:

- n tipos de tinta e m matérias-primas;
- ▶ L_i é o lucro da tinta $i \in \{1,2,...,n\}$;
- ▶ P_i é a produção máxima diária da tinta $i \in \{1,2,...,n\}$;
- $ightharpoonup E_j$ é a quantidade máxima (estoque) da matéria-prima $j \in \{1,2,\ldots,m\}$;
- $\qquad \qquad Q_{ij} \text{ \'e a quantidade da mat\'eria-prima } j \in \{1,2,\ldots,m\} \text{ ao produzir a tinta } i \in \{1,2,\ldots,n\}.$

Variáveis de decisão: x_i : produção de tinta do tipo $i \in \{1, 2, ..., n\}$.

Função objetivo: maximiza $\sum_{i=1}^{n} L_i x_i$

Reddy Mikks genérico

Dados:

- n tipos de tinta e m matérias-primas;
- ▶ L_i é o lucro da tinta $i \in \{1,2,...,n\}$;
- ▶ P_i é a produção máxima diária da tinta $i \in \{1,2,...,n\}$;
- $ightharpoonup E_j$ é a quantidade máxima (estoque) da matéria-prima $j \in \{1,2,\ldots,m\}$;
- $\qquad \qquad Q_{ij} \text{ \'e a quantidade da mat\'eria-prima } j \in \{1,2,\ldots,m\} \text{ ao produzir a tinta } i \in \{1,2,\ldots,n\}.$

Variáveis de decisão: x_i : produção de tinta do tipo $i \in \{1, 2, ..., n\}$.

Função objetivo: maximiza $\sum_{i=1}^{n} L_i x_i$

Restrições:

- Produção máxima de cada tinta: $x_i \le P_i$, $i \in 1,2,\ldots,n$
- Limite de cada matéria-prima: $\sum_{i=1}^n Q_{ij} x_i \le E_j \quad , \ j \in \{1,2,\ldots,m\}$
- ▶ Restrições de não-negatividade: $x_i \ge 0$, $i \in \{1, 2, ..., n\}$

Reddy Mikks genérico

$\label{eq:reddy Mikks} \begin{array}{ll} \text{Reddy Mikks} \\ \\ \text{maximiza} & \sum_{i=1}^n L_i x_i \\ \\ \text{sujeito a} & x_i \leq P_i & , i \in \{1,2,\ldots,n\} \\ \\ & \sum_{i=1}^n Q_{ij} x_i \leq E_j & , j \in \{1,2,\ldots,m\} \\ \\ & x_i \geq 0 & , i \in \{1,2,\ldots,n\} \end{array}$

Ozark Farms genérico

Dados:

- m ingredientes;
- n nutrientes;
- Q é a quantidade mínima de ração;
- $ightharpoonup c_i$ é o custo do ingrediente $i \in [m]$;
- $ightharpoonup m_j$ é o mínimo (kg) do nutriente $j \in [n]$;
- ▶ M_j é o máximo (kg) do nutriente $j \in [n]$;
- ▶ A_{ij} é quanto do nutriente $j \in [n]$ há no ingrediente $i \in [m]$.

Variáveis de decisão:

▶ x_i : quantidade do ingrediente $i \in [m]$.

Ozark Farms genérico

Dados:

- m ingredientes;
- n nutrientes;
- Q é a quantidade mínima de ração;
- $ightharpoonup c_i$ é o custo do ingrediente $i \in [m]$;
- $ightharpoonup m_j$ é o mínimo (kg) do nutriente $j \in [n]$;
- ▶ M_j é o máximo (kg) do nutriente $j \in [n]$;
- ▶ A_{ij} é quanto do nutriente $j \in [n]$ há no ingrediente $i \in [m]$.

Variáveis de decisão:

▶ x_i : quantidade do ingrediente $i \in [m]$.

Ozark Farms maximiza sujeito a $\sum_{i=1}^{m} x_i \ge Q$ $\sum A_{ij}x_i \geq m_j \quad , j \in [n]$ $\sum_{i=1}^{n} A_{ij} x_i \le M_j \quad , j \in [n]$, i ∈ [m] $x_i \ge 0$

