SERIE DE TAYLOR

Si f (función univaluada) es analítica en un disco abierto centrado en z_0 de radio R,

entonces en todo punto z de ese disco, f admite la representación en serie de potencias:

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 ; $|z - z_0| < R$

donde

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$
 , $k = 0,1,2,...$

R:radio de convergencia

Si f es **entera**, el radio de convergencia de la serie de Taylor de f centrada en cualquier punto z_0 es infinito.

Singularidad aislada de f

Si existe un entorno de un punto z_0 de una función f en todo el cual f es analítica excepto en z_0 , entonces a z_0 se lo llama punto singular aislado de f.

El radio de convergencia R de la serie de Taylor es la distancia desde su centro z_0 a la singularidad aislada más cercana de f.

Por ejemplo, para la siguiente función

$$f(z) = \frac{1}{z - i}$$

z=i es una singularidad (la única) aislada de f. Entonces la serie de Taylor de f alrededor de $z_0=1$ (por ej.) tendrá un radio de convergencia $R=\sqrt{2}$.

<u>Ejemplo</u>

Desarrolle en serie de Taylor alrededor del punto indicado y dé la región de convergencia.

$$f(z) = cos(z) \qquad , \ z_0 = \frac{\pi}{2}$$

f(z) = cos(z) es entera.

$$f(z) = cos(z)$$
 ; $f\left(\frac{\pi}{2}\right) = 0$

$$f'(z) = -sen(z)$$
 ; $f'(\frac{\pi}{2}) = -1$

$$f^{''}(z) = -\cos(z)$$
 ; $f^{''}(\frac{\pi}{2}) = 0$

$$f'''(z) = sen(z)$$
 ; $f'''(\frac{\pi}{2}) = 1$

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$
 ; $|z - z_0| < R$

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$
, $k = 0,1,2,...$

$$f^{(IV)}(z) = \cos(z)$$
 ; $f^{(IV)}(\frac{\pi}{2}) = 0$

$$f^{(V)}(z) = -sen(z) \qquad ; f^{(V)}\left(\frac{\pi}{2}\right) = -1$$

Como

$$f^{(2k)}\left(\frac{\pi}{2}\right) = 0$$
 y $f^{(2k+1)}\left(\frac{\pi}{2}\right) = (-1)^{k+1}$ $k = 0, 1, 2, ...$

La serie es

$$\cos(z) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} \left(z - \frac{\pi}{2}\right)^{2k+1} \quad \text{v\'alida para} \quad \left|z - \frac{\pi}{2}\right| < \infty$$

SERIE DE MACLAURIN

Cuando $z_0=0$, la serie de Taylor se llama **serie de Maclaurin:**

$$f(z) = \sum_{k=0}^{\infty} \underbrace{\frac{f^{(k)}(0)}{k!}}_{a_k} z^k ; |z| < R$$

Ejemplos

Desarrolle en serie de Maclaurin indicando la región de convergencia.

- a) $f(z) = e^z$
- b) f(z) = cos(z)
- c) f(z) = sen(z)

a) $f(z) = e^z$ función entera

$$f(z) = e^z$$

$$f(z) = e^z$$
 ; $f(0) = 1$

$$f'(z) = e^{z}$$

$$f'(z) = e^z$$
 ; $f'(0) = 1$

$$f^{''}(z) = e^{z}$$

$$f^{''}(z) = e^z$$
 ; $f^{''}(0) = 1$

Luego

$$a_k = \frac{f^{(k)}(0)}{k!} = \frac{1}{k!}$$
 ; $k = 0,1,2,...$

Y la serie de Maclaurin es

$$e^{z} = \sum_{k=0}^{\infty} \frac{1}{k!} z^{k} \quad v \text{ alida } \forall z \in \mathbb{C} \quad (|z| < \infty)$$

b) f(z) = cos(z) función entera

$$f(z) = \cos(z) \qquad \qquad f(0) = 1$$

$$f(0) = 1$$

$$f'(z) = -sen(z)$$
 ; $f'(0) = 0$

;
$$f'(0) = 0$$

$$f''(z) = -\cos(z)$$
 ; $f''(0) = -1$

$$f''(0) = -1$$

$$f^{'''}(z) = sen(z)$$
 ; $f^{'''}(0) = 0$

;
$$f^{'''}(0) = 0$$

$$f^{(IV)}(z) = cos(z)$$
 ; $f^{(IV)}(0) = 1$

$$f^{(IV)}(0) = 1$$

$$f^{(V)}(z) = -sen(z)$$
 ; $f^{(V)}(0) = 0$

$$f^{(V)}(0) = 0$$

$$f^{(2k)}(0) = (-1)^k$$

Como
$$f^{(2k)}(0) = (-1)^k$$
 y $f^{(2k+1)}(0) = 0$

$$k = 0,1,2,...$$

La serie de Maclaurin es

$$cos(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k} \quad v\'alida \, \forall z \in \mathbb{C} \quad (|z| < \infty)$$

c) f(z) = sen(z) función entera

$$f(z) = sen(z) \qquad ; f(0) = 0$$

$$f'(z) = cos(z) \qquad ; f'(0) = 1$$

$$f''(z) = -sen(z) \qquad ; f''(0) = 0$$

$$f'''(z) = -cos(z) \qquad ; f'''(0) = -1$$

$$f^{(IV)}(z) = sen(z) \qquad ; f^{(IV)}(0) = 0$$

$$f^{(V)}(z) = cos(z) \qquad ; f^{(V)}(0) = 1$$

$$\vdots$$
Como
$$f^{(2k)}(0) = 0 \qquad y \qquad f^{(2k+1)}(0) = (-1)^k$$

$$k = 0,12,...$$

La serie de Maclaurin es

$$sen(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1} \quad valida \, \forall z \in \mathbb{C} \quad (|z| < \infty)$$

Las series de Maclaurin para las funciones enteras cosh(z) y senh(z) son:

$$cosh(z) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} z^{2k} \quad v\'alida \, \forall z \in \mathbb{C} \quad (|z| < \infty)$$

$$senh(z) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} z^{2k+1} \quad v\'alida \ \forall z \in \mathbb{C} \quad (|z| < \infty)$$

Si una función f univaluada no es analítica en un punto z_0 que es una singularidad aislada de f entonces no puede expandirse en una serie de Taylor alrededor de z_0 pero si puede ser representada por una serie de Laurent centrada en z_0 .

SERIE DE LAURENT

Si f (función univaluada) es analítica en el anillo D: $\rho < |z - z_0| < R$, entonces en todo punto $z \in D$, f admite la representación en serie de potencias:

$$f(z) = \underbrace{\sum_{k=0}^{\infty} a_k (z-z_0)^k}_{\substack{Parte\ anal\ itica\ o\ de\ Taylor\ .}} + \underbrace{\sum_{k=1}^{\infty} \frac{b_k}{(z-z_0)^k}}_{\substack{Parte\ principal\ .\ Converge\ para\ |z-z_0| > \rho\ .}}$$

Converge para $\rho < |z-z_0| < R$

Si:

• f es analítica en $|z-z_0| < R$, se demuestra que $b_k=0$, k=1,2,3,..., es decir, la parte principal es cero y que $a_k=\frac{f^{(k)}(z_0)}{k!}$, k=0,1,2,...

Entonces el desarrollo de Laurent se reduce a la serie de Taylor de f centrada en z₀.

- f no estanalítica en z_0 , pero lo esten el resto del disco $|z-z_0| < R$, se puede tomar p=0 y la serie de Laurent de f es válida para el disco abierto de radio R perforado en su centro: $0 < |z-z_0| < R$.
- f es analítica en todo punto exterior al círculo $|z-z_0| \leq \rho$, la serie de Laurent de f es válida para $|z-z_0| > \rho$, o en forma equivalente para $\left|\frac{1}{z-z_0}\right| < \frac{1}{\rho}$.

CLASIFICACIÓN DE PUNTOS SINGULARES AISLADOS

Si $z=z_0$ es un **punto singular aislado** de f, la serie de Laurent de f es:

$$f(z) = \underbrace{\sum_{k=0}^{\infty} a_k (z - z_0)^k}_{Parte \ anal \ itica \ o \ de \ Taylor} + \underbrace{\sum_{k=1}^{\infty} \frac{b_k}{(z - z_0)^k}}_{Parte \ principal}$$

válida para el disco abierto perforado en z_0 : $0 < |z - z_0| \le R$.

Al coeficiente b_1 se lo llama **residuo** de f en z_0 y se lo **de**nota: $b_1 = Res(f(z), z_0)$.

Si la parte principal tiene:

1. Todos sus coeficientes nulos, a z_0 se lo llama punto singular evitable o removible. En este caso

$$\lim_{z \to z_0} f(z) = L (finito)$$

2. Una cantidad finita no nula de coeficientes no nulos, a z_0 se lo llama **polo**. En este caso

$$\lim_{z \to z_0} f(z) = \infty$$

O sea que en un polo $|f(z)| \to \infty$ cuando $z \to z_0$ desde cualquier dirección.

3. Infinites coeficientes no nulos, a z_0 se lo llama punto singular esencial. En este caso

$$\exists \lim_{z \to z_0} f(z)$$

Forma de la serie de Laurent según el tipo de singularidad aislada de f en $z=z_0$

$$z = z_0$$
 Serie de Laurent

Singularidad evitable $a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$ (todos los $b_k = 0$)

Polo simple $\frac{b_1}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots \quad (con \ b_1 \neq 0)$

Polo de orden n $\frac{b_n}{(z-z_0)^n} + \frac{b_{n-1}}{(z-z_0)^{n-1}} + \cdots + \frac{b_1}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots (con \ b_n \neq 0)$

Singularidad esencial ... $+\frac{b_2}{(z-z_0)^2} + \frac{b_1}{z-z_0} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$ (con infinitos $b_k \neq 0$)

Para obtener la serie de Laurent de una función con frecuencia se utilizan las siguientes

SERIES GEOMÉTRICAS

$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots \qquad y \qquad \frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots$$

$$v = \frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots$$

EJERCICIOS

Para cada una de las siguientes funciones, obtenga la serie de Laurent alrededor de la singularidad indicada, clasifique el tipo de singularidad, dé la región de convergencia de la serie y determine el residuo.

1.
$$f(z) = \frac{sen(z)}{z}$$
 ; $z_0 = 0$

La función $f(z) = \frac{sen(z)}{z}$ no es analítica en z = 0, por lo tanto no puede expandirse en una serie de Maclaurin. Sin embargo, sen(z) es una función entera y su serie de Maclaurin es:

$$\operatorname{sen}(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} \quad \text{v\'alida } \forall z \in \mathbb{C}$$

Dividiendo esta serie de potencias por *z* se obtiene:

$$\frac{sen(z)}{z} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \frac{z^6}{7!} + \cdots , v\'alida \ para \ |z| > 0$$
Serie de Laurent

Como la parte principal de esta serie es cero, $z_0 = 0$ es un punto singular evitable o removible de f.

$$Res(f(z),0) = b_1 = 0$$

Fin del ejercicio.

Ahora, como z=0 es una singularidad removible de f, y ya que

$$\lim_{z \to 0} \frac{sen(z)}{z} = \lim_{z \to 0} \frac{cos(z)}{1} = 1$$

Se puede definir la función

$$f^*(z) = \begin{cases} \frac{sen(z)}{z} & \text{, si } z \neq 0\\ 1 & \text{, si } z = 0 \end{cases}$$

de modo que $f^*(z)$ es analítica en z = 0 y

$$f^*(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!} = 1 - \frac{z^2}{3!} + \frac{z^4}{5!} - \frac{z^6}{7!} + \cdots , v\'{a}lida \ \forall z \in \mathbb{C}$$
Serie de Taylor

2.
$$f(z) = \frac{sen(z)}{z^2}$$
 ; $z_0 = 0$

$$\frac{sen(z)}{z^2} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k-1}}{(2k+1)!} = \underbrace{\frac{1}{z}}_{parte\ principal} \underbrace{-\frac{z}{3!} + \frac{z^3}{5!} - \frac{z^5}{7!} + \cdots}_{parte\ de\ Taylor}, v\'alida\ para\ |z| > 0$$
Serie de Laurent

$z_0 = 0$ es polo simple de f.

$$Res(f(z), 0) = b_1 = 1$$

3.
$$f(z) = e^{3/z}$$
; $z_0 = 0$

Esta función tiene en z=0 una **singularidad esencial** porque $\not\equiv \lim_{z\to z_0} e^{3/z}$ ya que, por ej., para $z\to 0$ por valores reales positivos $e^{3/z}\to \infty$, y para $z\to 0$ por valores reales negativos $e^{3/z}\to 0$.

La serie de Laurent de la función $e^{3/z}$ se obtiene a partir de la serie de Maclaurin de e^z :

$$e^{z} = \sum_{k=0}^{\infty} \frac{1}{k!} z^{k} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \cdots, \quad valida \ \forall z \in \mathbb{C}$$

reemplazando z por $\frac{3}{z}$ con $z \neq 0$:

$$e^{3/z} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{3}{z}\right)^k = \underbrace{1}_{parte\ de\ Taylor} + \underbrace{\frac{3}{2}}_{parte\ principal} + \underbrace{\frac{3^2}{2!} \frac{3^3}{2!} \frac{3^3}{2!} + \cdots}_{parte\ principal}, \quad v\'alida\ para\ |z| > 0$$
Serie de Laurent

$z_0 = 0$ es punto singular esencial de f.

$$Res(f(z), 0) = b_1 = 3$$

4.
$$f(z) = \frac{z}{(z+1)(z+2)}$$

;
$$z_0 = -2$$

La serie centrada en $z_0 = -2$ va a tener potencias enteras negativas y no negativas de z + 2.

Haciendo $u = z + 2 \implies z = u - 2$

$$\frac{z}{(z+1)(z+2)} = \frac{u-2}{(u-2+1)u}$$
$$= \frac{u-2}{(u-1)u}$$
$$= \left(\frac{2-u}{u}\right)\left(\frac{1}{1-u}\right)$$

usando la serie geométrica

$$= \left(\frac{2-u}{u}\right) \underbrace{1 + u + u^2 + u^3 + \cdots}_{v \text{ alida para}} |u| < 1$$

La serie entre corchetes converge para $|u| < 1 \implies |z+2| < 1$. Luego de hacer la multiplicación

$$= \frac{(2u-1)\left[1 + u + u^2 + u^3 + \cdots\right]}{1 + u + u^2 + u^3 + \cdots}, \quad u \neq 0$$

$$= \frac{2}{u} + 2 + 2u + 2u^2 + \cdots - 1 - u - u^2 - u^3 - \cdots$$

$$= \frac{2}{u} + 1 + u + u^2 + \cdots$$

La serie resultante converge a f para $0 < |u| < 1 \Rightarrow 0 < |z+2| < 1$.

$$\frac{z}{(z+1)(z+2)} = \underbrace{\frac{\sum_{z+2}^{b_1}}{z+2}}_{parte\ principal} + \underbrace{1 + (z+2) + (z+2)^2 + (z+2)^3 + \cdots}_{parte\ de\ Taylor}$$

$$\frac{z}{(z+1)(z+2)} = \frac{2}{z+2} + \sum_{k=0}^{\infty} (z+2)^k$$

$$v\'{a}lida\ para\ 0 < |z+2| < 1$$

$z_0 = -2$ es polo simple de f.

La serie entre corchetes converge $\forall u$. Luego de hacer la multiplicación la serie resultante será válida $\forall u \neq 0 \Rightarrow \forall z \neq 1$.

$$= \frac{e^2}{u^3} + \frac{2e^2}{u^2} + \frac{(2)^2 e^2}{2! u} + \frac{(2)^3 e^2}{3!} + \frac{(2)^4 e^2}{4!} u + \cdots$$

$$\frac{e^{2z}}{(z-1)^3} = \underbrace{e^{2z}}_{b_3} \frac{1}{(z-1)^3} + \underbrace{\frac{2e^2}{(z-1)^2} + \underbrace{\frac{(2)^2 e^2}{2!}}_{parte\ principal}}_{parte\ principal} + \underbrace{\frac{(2)^3 e^2}{3!} + \underbrace{\frac{(2)^4 e^2}{4!}}_{parte\ de\ Taylor}}_{parte\ de\ Taylor}$$

$z_0 = 1$ es polo de tercer orden de f.

$$Res(f(z), 1) = b_1 = 2e^2$$

Expanda f(z) en una serie de Taylor o Laurent, según corresponda, válida para la región indicada.

1.
$$f(z) = \frac{z}{(z-1)(z-2)}$$

- **a)** |z| < 1
- **b)** 1 < |z| < 2
- **c)** |z| > 2

$$f(z) = \frac{z}{(z-1)(z-2)}$$

$$= z \left[\frac{1}{\underbrace{(z-1)(z-2)}_{fracciones} \text{ simples}} \right]$$

$$=z\left[-\frac{1}{z-1},\frac{1}{z-2}\right]$$

$$= 2\left[\frac{1}{1-z} - \frac{1}{2-z}\right]$$

$$= z \left[\frac{1}{1-z} - \frac{1}{2\left(1-\frac{z}{2}\right)} \right]$$

$$= z \left[\frac{1}{1-z} \right] - \frac{z}{2} \left[\frac{1}{1-\frac{z}{2}} \right]$$

Fracciones simples

$$\frac{1}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{z-2}$$

$$\frac{1}{(z-1)(z-2)} = \frac{A(z-2) + B(z-1)}{(z-1)(z-2)}$$

$$A(z-2) + B(z-1) = 1$$

$$si z = 1 \implies A = -1$$

$$si z = 2 \implies B = 1$$

$$\frac{1}{(z-1)(z-2)} = -\frac{1}{z-1} + \frac{1}{z-2}$$

$$= [z + z^2 + z^3 + z^4 + \cdots] - \left[\frac{z}{2} + \left(\frac{z}{2}\right)^2 + \left(\frac{z}{2}\right)^3 + \left(\frac{z}{2}\right)^4 + \cdots\right]$$

$$\frac{z}{(z-1)(z-2)} = \sum_{k=1}^{\infty} z^k - \sum_{k=1}^{\infty} \frac{z^k}{2^k}$$
$$= \sum_{k=1}^{\infty} \left(1 - \frac{1}{2^k}\right) z^k \quad ; \ |z| < 1$$
Serie de Taylor

b) 1 < |z| < 2

$$f(z) = \frac{z}{(z-1)(z-2)}$$

$$= z \left[-\frac{1}{z-1} + \frac{1}{z-2} \right]$$

$$= z \left[-\frac{1}{z \left(1 - \frac{1}{z}\right)} - \frac{1}{2 \left(1 - \frac{z}{2}\right)} \right]$$

$$= z \left[-\frac{1}{z \left(1 - \frac{1}{z}\right)} - \frac{1}{2 \left(1 - \frac{z}{2}\right)} \right]$$

$$= -\frac{1}{1 - \frac{1}{z}} - \frac{z}{2} \left(\frac{1}{1 - \frac{z}{2}} \right)$$
 ya que $z \neq 0$

$$= - \left[\underbrace{1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots}_{valida\ para\ \left|\frac{z}{z}\right| < 1\ o\ bien\ para\ \left|z\right| < 2}_{z} \right] - \frac{z}{2} \left[\underbrace{1 + \frac{z}{z} + \left(\frac{z}{z}\right)^2 + \left(\frac{z}{z}\right)^3 + \cdots}_{z} \right]$$

$$\frac{z}{(z-1)(z-2)} = -\sum_{k=0}^{\infty} \frac{1}{z^k} - \sum_{k=0}^{\infty} \left(\frac{z}{2}\right)^{k+1}; \quad 1 < |z| < 2$$
Serie de Laurent

c)
$$|z| > 2$$

$$f(z) = \frac{z}{(z-1)(z-2)}$$
$$= z \left[-\frac{1}{z-1} + \frac{1}{z-2} \right]$$

$$= z \left[-\frac{1}{z \left(1 - \frac{1}{z} \right)} + \frac{1}{z \left(1 - \frac{2}{z} \right)} \right]$$

$$= -\frac{1}{1 - \frac{1}{z}} + \frac{1}{1 - \frac{2}{z}} \text{ ya que } z \neq 0$$

$$= - \begin{bmatrix} v\'alida \ para \ \left|\frac{1}{z}\right| < 1 \ o \ bien \ para \ |z| > 1 \\ 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \cdots \end{bmatrix} + \begin{bmatrix} v\'alida \ para \ \left|\frac{2}{z}\right| < 1 \ o \ bien \ para \ |z| > 2 \\ 1 + \frac{2}{z} + \left(\frac{2}{z}\right)^2 + \left(\frac{2}{z}\right)^3 + \cdots \end{bmatrix}$$

$$\frac{z}{(z-1)(z-2)} = -\sum_{k=0}^{\infty} \frac{1}{z^k} + \sum_{k=0}^{\infty} \left(\frac{2}{z}\right)^k$$
$$= \sum_{k=0}^{\infty} (2^k - 1) z^{-k} ; |z| > 2$$

Serie de Laurent (sólo con parte principal)

2.
$$f(z) = \frac{1}{(z-1)^2(z-3)}$$
 ; $0 < |z-1| < 2$

$$|z-1| < 2$$

$$\frac{1}{(z-1)^2(z-3)} = \frac{1}{(z-1)^2(-2+(z-1))}$$

$$= \frac{-1}{(z-1)^2 2 \left[1 - \left(\frac{z-1}{2}\right)\right]}$$

$$= \frac{-1}{2(z-1)^2} \left[\frac{1}{1 - \left(\frac{z-1}{2}\right)} \right] = \frac{-1}{2(z-1)^2} \left[\underbrace{1 + \frac{z-1}{2} + \left(\frac{z-1}{2}\right)^2 + \left(\frac{z-1}{2}\right)^3 + \cdots}_{v\'alida\ para\ \left|\frac{z-1}{2}\right| < 1\ o\ bien\ para\ |z-1| < 2} \right]$$

Luego de multiplicar, la serie resultante es válida para 0 < |z - 1| < 2.

$$= -\frac{1}{2(z-1)^2} - \frac{1}{2^2(z-1)} - \frac{1}{2^3} - \frac{(z-1)}{2^4} - \cdots$$

$$\frac{1}{(z-1)^2(z-3)} = \sum_{k=0}^{\infty} \frac{(-1)(z-1)^{k-2}}{2^{k+1}} \quad ; \quad 0 < |z-1| < 2$$
Serie de Laurent

3.
$$f(z) = \frac{8z+1}{z(1-z)}$$
 ; $0 < |z| < 1$

$$\frac{8z+1}{z(1-z)} = \left(8 + \frac{1}{z}\right) \left(\frac{1}{1-z}\right) ; z \neq 0$$

$$= \left(8 + \frac{1}{z}\right) \left(\frac{v\text{álida para } |z| < 1}{1+z+z^2+z^3+\cdots}\right), z \neq 0$$

Luego de multiplicar la serie resultante es válida para 0 < |z| < 1.

$$= 8 + 8z + 8z^{2} + 8z^{3} + \dots + \frac{1}{z} + 1 + z + z^{2} + \dots$$

$$= \frac{1}{z} + 9 + 9z + 9z^{2} + \dots$$

$$\frac{8z+1}{z(1-z)} = \frac{1}{z} + \sum_{k=0}^{\infty} 9z^k; \ 0 < |z| < 1$$
Serie de Laurent

4.
$$f(z) = \frac{7z-3}{z(z-1)}$$
 ; $0 < |z| < 1$

$$\frac{7z-3}{z(z-1)} = \frac{3-7z}{z(1-z)} = \left(\frac{3-7z}{z}\right) \left(\frac{1}{1-z}\right)$$

$$= \left(\frac{3}{z}-7\right) \left(\frac{v\text{álida para } |z|<1}{1+z+z^2+z^3+\cdots}\right), z \neq 0$$

Luego de multiplicar, la serie resultante es válida para 0 < |z| < 1.

$$= \frac{3}{z} + 3 + 3z + 3z^{2} + \dots - 7 - 7z - 7z^{2} - 7z^{3} - \dots$$
$$= \frac{3}{z} - 4 - 4z - 4z^{2} - \dots$$

$$\frac{7z-3}{z(z-1)} = \frac{3}{z} - \sum_{k=0}^{\infty} 4z^k; \ 0 < |z| < 1$$

