Agrégation Interne

Exercices sur les endomorphismes diagonalisables

On rappelle que si E est un ensemble à $n \geq 2$ éléments et r un entier compris entre 2 et n, un r-cycle est une permutation $\sigma \in \mathcal{S}(E)$ qui permute circulairement r éléments de E et laisse fixe les autres, c'est-à-dire qu'il existe une partie $\{x_1, \cdots, x_r\}$ de E telle que :

$$\begin{cases} \forall k \in \{1, \dots, r-1\}, \ \sigma(x_k) = x_{k+1} \\ \sigma(x_r) = x_1 \\ \forall x \in E \setminus \{x_1, \dots, x_r\}, \ \sigma(x) = x \end{cases}$$

 $\{x_1, \dots, x_r\}$ est le support de σ et on note $\sigma = (x_1, \dots, x_r)$.

Un r-cycle est d'ordre r dans le groupe $(\mathcal{S}(E), \circ)$ et deux r-cycles sont conjugués dans $\mathcal{S}(E)$.

Exercice 1 À tout entier $n \geq 2$ et toute permutation $\sigma \in \mathcal{S}_n$, on associe la matrice de permutation $P_{\sigma} \in \mathcal{M}_n(\mathbb{C})$ définie comme la matrice de passage de la base canonique $\mathcal{B} = (e_k)_{1 \leq k \leq n}$ de \mathbb{C}^n à la base $\mathcal{B}_{\sigma} = (e_{\sigma(k)})_{1 \leq k \leq n}$.

Pour cet exercice, σ est le cycle $\sigma = (1, 2, \dots, n)$ et on note P pour P_{σ} .

- 1. Montrer que $P^n = I_n$ et en déduire que P est diagonalisable.
- 2. Déterminer le polynôme minimal et le polynôme caractéristique de P.
- 3. Déterminer les valeurs propres et vecteurs propres associés de P.
- 4. Montrer que, pour tout cycle γ d'ordre n dans S_n , la matrice de permutation P_{γ} est diagonalisable et préciser ses valeurs propres.
- 5. On se donne des nombres complexes a_0, a_1, \dots, a_{n-1} et on leur associe la matrice :

$$A = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_2 & a_1 \\ a_1 & \ddots & \ddots & a_3 & a_2 \\ a_2 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_{n-1} \\ a_{n-1} & \cdots & a_2 & a_1 & a_0 \end{pmatrix} = ((a_{i-j \bmod n}))_{1 \le i, j \le n}$$

Montrer que $A = \sum_{k=0}^{n-1} a_k A^k$, puis que A est diagonalisable en précisant ses valeurs propres.

6. Diagonaliser dans $\mathcal{M}_n(\mathbb{R})$ la matrice :

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & -1 \\ -1 & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ -1 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

et calculer son rayon spectral $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$, où $\operatorname{Sp}(A)$ est l'ensemble des valeurs propres de A

1

Exercice 2 Diagonaliser dans $\mathcal{M}_n(\mathbb{R})$ la matrice :

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}$$

pour $n \geq 3$ (il peut être judicieux de calculer $\ker(A)$, $\operatorname{Tr}(A)$ et $\operatorname{Tr}(A^2)$).

Exercice 3 On désigne, pour $n \geq 2$, par $\mathcal{D}_n(\mathbb{C})$ l'ensemble des matrices diagonalisables dans $\mathcal{M}_n(\mathbb{C})$ et par $\mathcal{D}'_n(\mathbb{C})$ le sous-ensemble de $\mathcal{D}_n(\mathbb{C})$ formé des matrices ayant n valeurs propres distinctes dans \mathbb{C} .

L'espace $\mathcal{M}_n(\mathbb{C})$ est muni d'une norme quelconque.

- 1. Montrer que $\mathcal{D}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.
- 2. Montrer que l'ensemble $\mathcal{D}_2(\mathbb{R})$ des matrices diagonalisables de $\mathcal{M}_2(\mathbb{R})$ n'est pas dense dans $\mathcal{M}_2(\mathbb{R})$.
- 3. Déduire le théorème de Cayley-Hamilton de la densité de $\mathcal{D}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$.
- 4. L'ensemble $\mathcal{D}_n(\mathbb{C})$ est-il ouvert dans $\mathcal{M}_n(\mathbb{C})$?
- 5. On munit l'espace $\mathbb{C}[X]$ des polynômes à coefficients complexes de la norme définie par :

$$\forall P = \sum_{k=0}^{m} a_k X^k \in \mathbb{C}[X], \ \|P\| = \max_{0 \le k \le m} |a_k|$$

(a) Soient, pour $n \ge 1$ fixé, $(P_k)_{k \in \mathbb{N}}$ une suite de polynômes dans $\mathbb{C}_n[X]$ avec $P_k = \sum_{j=0}^m a_j^{(k)} X^j$

$$et P = \sum_{j=0}^{m} a_j X^j \ dans \ \mathbb{C}_n [X].$$

Montrer que la suite $(P_k)_{k\in\mathbb{N}}$ converge vers P dans $(\mathbb{C}_n[X], \|\cdot\|)$ si, et seulement si, chaque suite $(a_j^{(k)})_{k\in\mathbb{N}}$ converge vers a_j dans \mathbb{C} , pour j compris entre 1 et n.

(b) Soient, pour $n \ge 1$ fixé, $(P_k)_{k \in \mathbb{N}}$ une suite de polynômes unitaires de degré n qui converge dans $(\mathbb{C}_n[X], \|\cdot\|)$ vers un polynôme unitaire P de degré n.

Montrer qu'on peut alors écrire que :

$$\forall k \in \mathbb{N}, \ P_k(X) = \prod_{i=1}^n \left(X - \lambda_i^{(k)}\right)$$

$$P(X) = \prod_{i=1}^{n} (X - \lambda_i)$$

où, pour tout entier i compris entre 1 et n, $\left(\lambda_i^{(k)}\right)_{k\in\mathbb{N}}$ est une suite de nombre complexes qui converge vers λ_i .

6. Montrer que $\mathcal{D}_{n}'\left(\mathbb{C}\right)$ est ouvert dans $\mathcal{M}_{n}\left(\mathbb{C}\right)$ puis que c'est l'intérieur de $\mathcal{D}_{n}\left(\mathbb{C}\right)$.

Exercice 4

- 1. Soient E un \mathbb{K} -espace vectoriel de dimension $n \geq 1$ et $(u_i)_{i \in I}$ une famille d'endomorphismes de E diagonalisables (l'ensemble I ayant au moins deux éléments). Montrer qu'il existe une base commune de diagonalisation dans E pour la famille $(u_i)_{i \in I}$ si, et seulement si, ces endomorphismes commutent deux à deux.
- 2. Soit (G,\cdot) un groupe tel que tout élément de G soit d'ordre au plus égal à 2.
 - (a) Montrer que G est commutatif.
 - (b) On suppose de plus que G est fini. Montrer qu'il existe un entier $p \ge 0$ tel que $\operatorname{card}(G) = 2^p$.
- 3. Soient K un corps de caractéristique différente de 2 et n un entier naturel non nul.
 - (a) Montrer que si G est un sous-groupe multiplicatif fini de $GL_n(\mathbb{K})$ tel que tout élément de G soit d'ordre au plus égal à 2, alors G est commutatif de cardinal inférieur ou égal à 2^n .
 - (b) En déduire que pour $(n,m) \in (\mathbb{N}^*)^2$ les groupes multiplicatifs $GL_n(\mathbb{K})$ et $GL_m(\mathbb{K})$ sont isomorphes si, et seulement si, n=m.
- 4. On rappelle que si G est un groupe dont tous les éléments sont d'ordre fini, son exposant est $\max_{g \in G} \theta(g)$, où $\theta(g)$ désigne l'ordre de g dans le groupe G. Décrire les sous-groupes commutatifs d'exposant $r \geq 1$ de $GL_n(\mathbb{C})$.

Exercice 5 \mathbb{K} est un corps algébriquement clos et n est un entier naturel non nul. On considère A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ et on introduit l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$:

$$\Phi_{AB}: M \mapsto AM + MB$$

- 1. On supposant que A est diagonalisable et que B = 0, établir que $\Phi_{A,B}$ est diagonalisable.
- 2. On supposant A et B diagonalisables, établir que $\Phi_{A,B}$ est diagonalisable.

3.

(a) Montrer que pour toutes matrices A, B dans $\mathcal{M}_n(\mathbb{K})$, on a:

$$\operatorname{Spec} (\Phi_{A,B}) = \operatorname{Spec} (A) + \operatorname{Spec} (B)$$
$$= \{ \alpha + \beta \mid \alpha \in \operatorname{Spec} (A), \beta \in \operatorname{Spec} (B) \}.$$

- (b) Montrer que l'égalité $\Phi_{A,B} = 0$ avec A, B dans $\mathcal{M}_n(\mathbb{K})$ équivaut à dire que A = -B est une matrice scalaire.
- (c) Montrer que si $\Phi_{A,B}$ est diagonalisable, alors A et B le sont (on pourra utiliser la décomposition de Dunford-Schwarz).
- 4. Lorsque A et B sont diagonalisables, déterminer les éléments propres de $\Phi_{A,B}$ en fonction de ceux de A et de ${}^{t}B$.

Exercice 6 Soient α, β dans \mathbb{K} et $A_{\alpha,\beta} = ((a_{ij}))_{1 \leq i,j \leq n}$ la matrice d'ordre n supérieur ou égal à 3 définie par :

$$\forall i \in \{1, 2, \dots, n\}, \begin{cases} a_{ii} = \beta, \\ a_{ij} = \alpha \text{ si } j \in \{1, 2, \dots, n\} - \{i\}. \end{cases}$$

- 1. Calculer le polynôme caractéristique $P_{\alpha,\beta}$ et les valeurs propres avec leur multiplicité de la matrice $A_{\alpha,\beta}$.
- 2. Calculer le polynôme minimal $\pi_{\alpha,\beta}$ de la matrice $A_{\alpha,\beta}$ et montrer que $A_{\alpha,\beta}$ est diagonalisable.

- 3. Dans le cas où la matrice $A_{\alpha,\beta}$ est inversible, calculer son inverse.
- 4. Calculer $A_{\alpha,\beta}^k$ pour tout entier naturel k.

Exercice 7 On rappelle qu'une matrice complexe $A \in \mathcal{M}_n(\mathbb{C})$ est dite normale si $A^*A = AA^*$.

- 1. Montrer qu'une matrice complexe normale se diagonalise dans une base orthonormée.
- 2. Montrer qu'une matrice hermitienne [resp. unitaire] se diagonalise dans une base orthonormée.
- 3. Montrer qu'une matrice complexe $A \in \mathcal{M}_n(\mathbb{C})$ est normale si et seulement si il existe un polynôme P à coefficients complexes tel que $A^* = P(A)$.
- 4. Soit $A \in GL_n(\mathbb{C})$, montrer qu'il existe deux matrices unitaires U, V et une matrice diagonale D à coefficients réels strictement positifs telles que $A = UDV^*$ (décomposition singulière de la matrice A).
- 5. Soient A et B deux matrices hermitiennes positives dans $\mathcal{M}_n(\mathbb{C})$. Montrer que :

$$0 \le \operatorname{Tr}(AB) \le \operatorname{Tr}(A)\operatorname{Tr}(B)$$

6. Montrer que le sous groupe $U_n(\mathbb{C})$ de $GL_n(\mathbb{C})$ formé des matrices unitaires est connexe par arcs.