Tarea 1: Visión Computacional

Ernesto Antonio Reyes Ramírez ernesto.reyes@cimat.mx

25 de Enero de 2023

1. Problemas

Problema 1. Demuestra que dada una matriz A, el vector v que minimiza la norma $||Av||^2$ bajo el supuesto de que ||v|| = 1 es el vector propio de A^TA asociado al valor propio más pequeño.

Demostración. Dado que A^TA es una matriz simétrica, existe una base ortonormal $\{v_i\}_{i=1}^n$ de vectores propios de A^TA , con $\{\lambda_i\}_{i=1}^m$ los valores propios ordenados de manera ascendente. Supongamos, bajo un reordenamiento, que v_1 es el vector propio asociado al menor valor propio λ_1 . Notemos que,

$$||Av_1||^2 = (Av_1)^T (Av_1),$$

= $v_1^T A^T A v_1,$
= $v_1^T \lambda_1 v_1,$
= $\lambda_1 v_1^T v_1,$
= $\lambda_1.$

Sea w un vector tal que ||w||=1. Como $\{v_i\}_{i=1}^n$ es una base existen $\{\alpha_i\}_{i=1}^n$ tales que,

$$w = \sum_{i=1}^{n} \alpha_i v_i.$$

Como los $\{v_i\}_{i=1}^n$ son ortonormales, tenemos que por el teorema de pitágoras:

$$\begin{split} 1 &= ||w||^2 \\ &= ||\sum_{i=1}^n \alpha_i v_i||^2 \\ &= \sum_{i=1}^n ||\alpha_i v_i||^2 \\ &= \sum_{i=1}^n |\alpha_i|^2 ||v_i||^2 \\ &= \sum_{i=1}^n \alpha_i^2 \end{split}$$

Entonces,

$$\begin{aligned} ||Aw||^2 &= w^T A^T A w, \\ &= w^T A^T A (\sum_{i=1}^n \alpha_i v_i), \\ &= \sum_{i=1}^n \alpha_i w^T A^T A v_i, \\ &= \sum_{i=1}^n \alpha_i w^T (\lambda_i v_i), \\ &= \sum_{i=1}^n \alpha_i \lambda_i w^T v_i. \end{aligned}$$

Notemos que,

$$w^t v_i = \sum_{j=1}^n \alpha_j v_j^T v_i$$
$$= \alpha_i$$

esto ya que los $\{v_i\}_{i=1}^n$ son ortonormales. Retomando lo anterior,

$$||Aw||^2 = \sum_{i=1}^n \alpha_i \lambda_i \alpha_i$$

$$= \sum_{i=1}^n \alpha_i^2 \lambda_i$$

$$\geq \sum_{i=1}^n \alpha_i^2 \lambda_1$$

$$= \lambda_1 \sum_{i=1}^n \alpha_i^2$$

$$= \lambda_1$$

$$= ||Av_1||^2.$$

Por lo tanto v_1 minimiza $||Av||^2$ en el círculo unitario.

Problema 2. Considere la siguiente matriz de 3×3 :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- En la base canónica de \mathbb{R}^3 , da la expresión analítica de la función a(x,y,z) correspondiente a la matriz A.
- $\partial Qu\'e$ es el Ker(a)? $\partial Cu\'al$ es su dimensión? Da una base de este subespacio.
- ¿Qué es el Im(a)? ¿Cuál es su dimensión? Da una base de este subespacio.
- Muestra que la base de vectores de Im(a) son vectores propios de A. ¿Cuáles son sus valores propios?
- ¿Cuál es el rango de A?
- ¿Cuál es la matriz asociada a la transformación lineal a ∘ a?
- lacktriangledown Representa A en una forma diagonalizable: $A=QDQ^{-1}$. ¿Cuáles deberían ser Q,D?

Demostración. \blacksquare Sea $(x,y,z) \in \mathbb{R}^3$ y $a: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal asociada a A. Entonces,

$$a(x,y,z) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \begin{pmatrix} x+y+z \\ x+y+z \\ x+y+z \end{pmatrix}$$

$$= (x+y+z) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + (x+y+z) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + (x+y+z) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

■ Por definición,

$$Ker(a) = \{(x, y, z) \in \mathbb{R}^3 : a(x, y, z) = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} x + y + z \\ x + y + z \\ x + y + z \end{pmatrix} = \mathbf{0}\}$$

$$= \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}$$

$$= \{(x, y, z) \in \mathbb{R}^3 : z = -x - y\}$$

$$= \{(x, y, -x - y) : x, y \in \mathbb{R}\}$$

$$= \{(x, 0, -x) + (0, y, -y) : x, y \in \mathbb{R}\}$$

$$= \{x(1, 0, -1) + y(0, 1, -1) : x, y \in \mathbb{R}\}$$

Notemos de lo anterior que los vectores $\{(1,0,-1),(0,1-1)\}$ generan a Ker(a). De modo que probemos que son linealmente independientes. Supongamos que $a(1,0,-1)+b(0,1,-1)=\mathbf{0}$, entonces

$$(a, b, -a - b) = \mathbf{0}.$$

De este modo a = b = 0 lo cual implica que los vectores son linealmente independientes y por tanto una base para el Ker(a). Concluimos que dim(Ker(a)) = 2.

■ Probemos mediante doble contención que Im(a) es igual a $\{p(1,1,1): p \in \mathbb{R}\}$. Sea $\mathbf{q} \in Im(a)$, de modo que existe $(x,y,z) \in \mathbb{R}^3$ tal que $\mathbf{q} = a(x,y,z)$. Entonces,

$$\mathbf{q} = a(x, y, z)$$

$$= \begin{pmatrix} x + y + z \\ x + y + z \\ x + y + z \end{pmatrix}$$

$$= (x + y + z) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Por lo que $Im(a) \subset \{p(1,1,1) : p \in \mathbb{R}\}$. Sea $t(1,1,1) \in \{p(1,1,1) : p \in \mathbb{R}\}$. Notemos que,

$$a(p,0,0) = (p+0+0, p+0+0, p+0+0)$$
$$= (p, p, p)$$
$$= p(1, 1, 1).$$

Así que se cumple la otra contención y en conclusión $Im(a) = \{p(1,1,1) : p \in \mathbb{R}\}$. De lo anterior se sigue que (1,1,1) es un vector que genera a Im(a), y al ser único, tenemos que $\{(1,1,1)\}$ es precisamente una base de Im(a). En conclusión dim(Im(a)) = 1.

■ La base de Im(a) es $\{(1,1,1)\}$. Entonces,

$$A(1,1,1)^T = (1+1+1,1+1+1,1+1+1)$$

= (3,3,3)
= 3(1,1,1)

Por lo que (1,1,1), base de Im(a), es un vector propio de A asociado al valor propio 3. Para calcular sus valores propios vamos a calcular el polinomio caracteristico de A:

$$\begin{split} p(x) &= \det(A - xI) \\ &= \begin{vmatrix} 1 - x & 1 & 1 \\ 1 & 1 - x & 1 \\ 1 & 1 & 1 - x \end{vmatrix} \\ &= (1 - x)[(1 - x)^2 - 1] - [1 - x - 1] + [1 - 1 + x] \\ &= (1 - x)(1 - 2x + x^2 - 1) + x + x \\ &= (1 - x)(x^2 - 2x) + 2x \\ &= x^2 - x^3 - 2x + 2x^2 + 2x \\ &= -x^3 + 3x^2 \\ &= -x^2(x - 3) \end{split}$$

Por lo que los valores propios de A son x = 3 y x = 0.

- El rango de A es la dimensión del espacio imagen de la trnadformación lineal asociada a él. Por lo que rank(A) = dim(Im(a)) = 1.
- Para obtener la matriz asociada a $a \circ a$ vamos a considerar la base canónica $\{e_1, e_2, e_3\}$ de \mathbb{R}^3 y evaluarla en nuestra transformación lineal. De este modo,

$$(a \circ a)(e_1) = a(a(1,0,0))$$

$$= a(1+0+0,1+0+0,1+0+0)$$

$$= a(1,1,1)$$

$$= (1+1+1,1+1+1,1+1+1)$$

$$= (3,3,3)$$

$$(a \circ a)(e_2) = a(a(0,1,0))$$

$$= a(0+1+0,0+1+0,0+1+0)$$

$$= a(1,1,1)$$

$$= (1+1+1,1+1+1,1+1+1)$$

$$= (3,3,3)$$

$$(a \circ a)(e_3) = a(a(0,0,1))$$

$$= a(0+0+1,0+0+1,0+0+1)$$

$$= a(1,1,1)$$

$$= (1+1+1,1+1+1,1+1+1)$$

$$= (3,3,3)$$

Por lo tanto la matriz asociada a $a \circ a$ es:

$$\begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix}$$

 \blacksquare Q y D son las siguientes:

$$Q = \begin{pmatrix} -1 & -1 & 1\\ 1 & 0 & 1\\ 0 & 1 & 1 \end{pmatrix}$$

у

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

las cuales satisfacen que:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix} = QDQ^{-1}$$

Problema 3. Considera una matriz R de rotación 2D con angulo θ :

- ¿Cuál es el polinomio característico de R?
- ¿Cuáles son sus valores propios?

Demostración. ■ Por definición,

$$R = \begin{pmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{pmatrix}$$

De modo que su polinomio característico será:

$$p(x) = det(A - xI)$$

$$= \begin{vmatrix} cos\theta - x & -sin\theta \\ sin\theta & cos\theta - x \end{vmatrix}$$

$$= (cos\theta - x)^2 - (sin\theta)^2$$

$$= cos^2\theta - 2xcos\theta + x^2 + sin^2\theta$$

$$= x^2 - 2xcos\theta + 1$$

Resolviendo mediante fórmula general obtenemos que las raíces del polinomio son:

$$x = \cos \theta + i \sin \theta$$
 y $x = \cos \theta - i \sin \theta$.

Estos serán precisamente los valores propios de R.

Problema 4. Una transformación afín en el plano 2D es cualquier transformación cuya matriz asociada tiene la siquiente forma:

$$M = \begin{pmatrix} A & t \\ 0 & 1 \end{pmatrix}$$

 $con\ A$ una matriz invertible de 2×2 . Demuestra que paralelismo es conservada bajo este tipo de transformaciones.

Demostración. Sean $l_1 : [a, b, c]$ y $l_2 : [d, e, f]$ dos rectas en coordenadas homogéneas que son paralelas. Recordemos que precisamente las transformaciones afines mandan líneas en líneas, por lo que $M(l_1)$ y $M(l_2)$ son nuevamente líneas. Dado que l_1 y l_2 son líneas paralelas tenemos que estas se intersectan en un punto al infinito, digamos $P = (x, y, 0)^T$. Por lo que nos resta probar M envía $(x, y, 0)^T$ también a un punto al infinito. Entonces,

$$M \cdot P = \begin{pmatrix} a_{11} & a_{12} & t_1 \\ a_{21} & a_{22} & t_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \\ 0 \end{pmatrix}$$

Como el punto anterior tiene su tercera coordenada igual a cero tenemos que es un punto al infinito. Por lo que concluimos que las transformaciones afines preservan el paralelismo.

Problema 5. Vimos en clase como los ángulos de Euler pueden ser usados para representar rotaciones 3D. Investiga como los cuaterniones unitarios pueden ser usados para el mismo propósito. En particular investiga:

- lacksquare Cómo se puede transformar un punto $m{p}$ 3D con un cuaternión unitario.
- Cómo se puede deducir la matriz de rotación 3D R a partir del cuaternión unitario.
- ¿Cuáles son los beneficios de usar los cuaterniones unitarios?

Demostración. Los cuaterniones son una extensión de los números reales añadiendo las unidades imaginarias i, j, k las cuales satisfacen que,

$$i^2 = j^2 = k^2 = ijk = -1.$$

Matemáticamente se puede expresar de la siguiente manera:

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}\$$

La suma entre cuaterniones se realiza coordenada a coordenada. El producto se realiza multiplicando componente a componente y siguiendo las reglas entre las unidades imaginarias.

Si q = a + bi + cj + dk es un cuaternión su conjugado se define como

$$q^* = a - bi - cj - dk$$

La norma de un cuaternión se define como

$$||q|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

Un cuaternión unitario es aquel que tiene norma uno. Estos además satisfacen que se pueden escribir de una forma particular. Sea $q = q_0 + \mathbf{q}$ un cuaternión unitario, donde q_0 es la parte real y \mathbf{q} la parte imaginaria. Entonces,

$$q = \cos \theta + \mathbf{u} \sin \theta$$

donde $\mathbf{u} = \mathbf{q}/||\mathbf{q}|| \text{ y } \theta \in [0, \pi].$

■ Para aplicarle una rotación de un ángulo θ y en una dirección \mathbf{u} a un punto $\mathbf{p} \in \mathbb{R}^3$ realizamos la siguiente operación utilizando el cuaternión unitario $q = \cos \theta + \mathbf{u} \sin \theta$:

$$q\mathbf{p}q^* = (q_0^2 - ||\mathbf{q}||^2)\mathbf{p} + 2(\mathbf{q} \cdot \mathbf{p})\mathbf{q} + 2q_0(\mathbf{q} \times \mathbf{p}).$$

En el producto de la izquierda estamos pensando a \mathbf{p} como un cuaternión con parte real cero y realizamos el producto definido de cuaterniones.

■ Si $q = q_r + q_i i + q_j j + q_k k$ es el cuaternión unitario por el cual vamos a realizar la rotación, entonces la matriz de rotación R está dada por:

$$R = \begin{pmatrix} 1 - 2(q_j^2 + q_k^2) & 2(q_i q_j - q_k q_r) & 2(q_i q_k + q_j q_r) \\ 2(q_i q_j + q_k q_r) & 1 - 2(q_i^2 - q_k^2) & 2(q_j q_k - q_i q_r) \\ 2(q_i q_k - q_j q_r) & 2(q_j q_k + q_i q_r) & 1 - 2(q_i^2 + q_j^2) \end{pmatrix}$$

- Para rotar mediante cuaterniones lo hacemos con los que son unitarios, y por ejemplo ver que uno satisface eso es sencillo, solo calcular su norma $\sqrt{a^2 + b^2 + c^2 + d^2}$ y ver que sea 1. Mientras que si utilizamos una matriz para que cumpla que es de rotación debemos verificar que es ortogonal, lo cual es más costoso.
 - Para representar un quaternion solo necesitamos 4 variables donde almacenar sus datos. Mientras que para una matriz de rotación R necesitamos 9 variables, una por cada entrada.
 - Es muy sencillo pasar de un cuaternión a una matriz de rotación R, por lo que es mejor trabajar desde un inicio con cuaterniones y si en algún caso necesitaramos utilizar la matriz de rotación R el cambió sería sencillo. Esta sería una estrategia óptima.