



### Széchenyi István Egyetem Gépészmérnöki, Informatikai és Villamosmérnöki Kar Informatika Tanszék

## BEADANDÓ FELADAT KIBERFIZIKAI RENDSZEREK C. TÁRGYBÓL

Szimuláció készítése Scilab segítségével

Ihász Viktor Mérnökinformatikus BSc





# $\begin{tabular}{l} {\sf Kiberfizikai\ rendszerek\ (GKLB\_INTM003) - Ihász\ Viktor,\ GGL3R3}\\ {\bf 2020} \end{tabular}$

### **Tartalomjegyzék**

| 1. Feladatleírás                | .3 |
|---------------------------------|----|
| 2. Bevezető                     |    |
| 3. Állapotegyenletek levezetése |    |
| 4. Scilab modell megvalósítása  |    |
| 5. Kapott eredmények bemutatása |    |





#### 1. Feladatleírás

Adott egy rendszer komplex frekvencia-tartománybeli átviteli függvénye. A függvényből a megfelelő matematikai műveletek segítségével meg kell határozni a rendszer állapottér modelljét. Végül, a kapott állapottér modellt le kell szimulálni a Scilab nevezetű szimulációs eszközzel és kiértékelni a kapott eredményeket. A rendszert egy egységugrás táplálja.

#### 2. Bevezető

A kiosztott feladatban kapott átviteli függvényem:

$$W(p) = \frac{-p^2 - 0.4}{0.06p(p+6)^2}$$

Először a kapott függvényt megfelelő formára kell alakítani, hogy valamely tanult módszerrel a rendszer állapottér modellje meghatározható legyen belőle.

A kapott függvény megfelelő formára történő átalakítását követően elvégzem a szükséges matematikai műveleteket, pl. Z(p) segéd függvénnyel való szorzást, Inverz-Laplace transzformációt.

Miután megkaptam a differenciál-egyenleteket, azt követően felírom az állapot változókat, majd az állapot-egyenleteket és felírom azokat mátrixos formába.

A végén az alábbi formában kapok egy fő-egyenletet és egy kimeneti egyenletet:

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

Végezetül a szimulációt összeállítom és lefuttatom Scilabban.

### 3. Állapotegyenletek levezetése

Adott az alábbi rendszer átviteli függvény:

$$W(p) = \frac{-p^2 - 0.4}{0.06p(p+6)^2}$$

Ebben a formában az egyik tanult módszerrel sem lehet meghatározni az állapottéregyenleteket, ezért előbb át kell alakítani.

A nevezőben található négyzetes szorzat elvégzését követően az alábbi formát kapjuk:

$$W(p) = \frac{-p^2 - 0.4}{0.06p * (p^2 + 12p + 36)}$$





Ezt követően a nevezőben lévő szorzás műveleteket elvégzem, majd megkapom az átviteli függvény végső formáját:

$$W(p) = \frac{-p^2 - 0.4}{0.06p^3 + 0.72p^2 + 2.16p}$$

A számlálóban található polinom miatt szükség lesz a Z(p) segédfüggvény bevezetésére:

$$\frac{Y(p)}{U(p)} = \frac{-p^2 - 0.4}{0.06p^3 + 0.72p^2 + 2.16p} * \frac{Z(p)}{Z(p)}$$

Elvégzem a Z(p)-vel való szorzást:

$$\frac{Y(p)}{U(p)} = \frac{-p^2 Z(p) - 0.4Z(p)}{0.06p^3 Z(p) + 0.72p^2 Z(p) + 2.16p Z(p)}$$

A következő lépés a tanult módszerek alapján a kimeneti és bemeneti egyenletek felírása:

$$Y(p) = -p^2 Z(p) - 0.4Z(p)$$

$$U(p) = 0.06p^3Z(p) + 0.72p^2Z(p) + 2.16pZ(p)$$

A kimeneti és bemeneti egyenletek felírását követően, elvégzem az inverz-Laplace transzformációt a kapott egyenleteken:

$$-\ddot{z}-0.4z=v$$

$$0.06\ddot{z} + 0.72\ddot{z} + 2.16\dot{z} = u$$

A rendszer állapot-változóit meghatározom a kapott kimeneti és bemeneti egyenletekből:

$$x_1 = z$$

$$x_2 = \dot{z}$$

$$x_3 = \ddot{z}$$

Ezek után az állapot egyenleteket felírom. A bemeneti egyenletből megkapjuk az x<sub>3</sub> deriváltját:

$$\dot{x}_1 = \dot{z} = x_2$$

$$\dot{x}_2 = \ddot{z} = x_3$$





Bemeneti egyenlet:

$$0.06\dot{x}_3 + 0.72x_3 + 2.16x_2 = u$$

Rendezve a bemeneti egyenletet:

$$\dot{x}_3 = -\frac{2,16}{0,06}x_2 - \frac{0,72}{0,06}x_3 + \frac{1}{0,06}u$$

Kimeneti egyenlet:

$$y = -x_3 - 0.4x_1$$

A kimeneti és bemeneti egyenletek alapján felírom a mátrixos formát:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -\frac{2,16}{0,06} & -\frac{0,72}{0,06} \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{0,06} \end{bmatrix} * \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$y = \begin{bmatrix} -0.4 & 0 & -1 \end{bmatrix} * \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} * u$$

### 4. Scilab modell megvalósítása

Az állapottér egyenletek alapján összeállítom a szimulációs modellt a Scilabban az alábbiak szerint:







A bemeneti gerjesztő jel egy egységugrás jel, melynek végértéke 5, felfutási ideje 0,5 másodperc.



Az első összegző blokknak 3 bemenete van, egy pozitív és kettő negatív.



A második összegző blokknak kettő negatív bemenete van.



A két összegző blokkban a nullával szorzott ágak nem kerültek bekötésre.

A következő lépés a grafikon paramétereinek beállítása. Az X tengely nagyságát 10-re, míg az Y tengely határait -5 és 5 értékre állítottam.







Az időzítő paraméter beállításainál a kezdő időt változatlanul hagyom, míg az időzítőt 0,1 ms-ra állítom.



Végül a szimulációs idő beállításait az alábbi ábra mutatja:



A hagyományos szimulációs modell mellett összeállítottam az egyszerűsített szimulációs modellt is, az alábbiak szerint:



Az összetett szimuláció paraméterezései ugyanúgy kerültek beállításra, mint a hagyományos szimulációnál:







| <u>.</u> | Set CSCOPE block parameters             |                    |
|----------|-----------------------------------------|--------------------|
|          | Curve style: Color>0   mark<0           | 1 3 5 7 9 11 13 15 |
|          | Output window number (-1 for automatic) | -1                 |
|          | Output window position                  |                    |
|          | Output window sizes                     | [600;400]          |
|          | Ymin                                    | -5                 |
|          | Ymax                                    | 5                  |
|          | Refresh period                          | 10                 |
|          | Buffer size                             | 20                 |
|          | Accept herited events 0/1               | 0                  |
|          | Name of Scope (label&Id)                |                    |
|          |                                         |                    |

| , the | Set CLOCK_c block parameters                      |        |  |
|-------|---------------------------------------------------|--------|--|
|       | Event dock generator                              |        |  |
|       | Do not start if 'Initialisation Time' is negative |        |  |
|       | Period                                            | 0.0001 |  |
|       | Initialisation Time                               | 0.1    |  |
|       |                                                   |        |  |

| Final integration time               | β.0E01                          |
|--------------------------------------|---------------------------------|
| Real time scaling                    | 0.0E00                          |
| Integrator absolute tolerance        | 1.0E-06                         |
| Integrator relative tolerance        | 1.0E-06                         |
| Tolerance on time                    | 1.0E-10                         |
| Max integration time interval        | 1.00001E05                      |
| Solver kind                          | Sundials/CVODE - BDF - NEWTON ▼ |
| Maximum step size (0 means no limit) | 0.0E00                          |
| Set Context                          |                                 |





A kész állapottér doboz paraméterezéseit az alábbi ábra szerint állítottam be:



A szimulációk paraméterezését követően lefuttatom a modelleket és kiértékelem.

### 5. Kapott eredmények bemutatása

Mindkét szimuláció esetében ugyanazt az ábrát kapom.

Hagyományos szimuláció:









Egyszerűsített szimuláció:





A rendszer 0,5 másodpercnél kezd el futni a gerjesztő jel hatására a negatív tartományban körülbelül mínusz 5-ig. Ezt követően elkezd felfutni mínusz 1-ig, végül pedig egy lassabb lecsengés követi egészen 0-ig.