

树结构小结

陈斌 北京大学 gischen@pku.edu.cn

本章总结

- ❖本章介绍了"树"数据结构,我们讨论了如下算法:
- ❖ 用于表达式解析和求值的二叉树
- **❖用于实现ADT Map的二叉查找树BST树**
- ❖ 改进了性能,用于实现ADT Map的平衡 二叉查找树AVL树
- ❖实现了"最小堆"的完全二叉树:二叉堆

ADT Map的实现方法小结

◆我们采用了多种数据结构和算法来实现 ADT Map, 其时间复杂度数量级如下表 所示:

	有序表	散列表	二叉查找树	AVL树
put	O(n)	O(1) -> O(n)	$O(\log_2 n) \rightarrow O(n)$	O(log ₂ n)
get	O(log ₂ n)	O(1) -> O(n)	$O(log_2n) \rightarrow O(n)$	O(log ₂ n)
in	O(log ₂ n)	O(1) -> O(n)	O(log ₂ n) -> O(n)	O(log ₂ n)
del	O(n)	O(1) -> O(n)	O(log ₂ n) -> O(n)	O(log ₂ n)

