Einfürung in die Algebra Hausaufgaben Blatt Nr. 1

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 27, 2023)

Problem 1. Sei G eine Gruppe mit neutralem Element 1. Für jedes Element $g \in G$ gelte $g^2 = 1$. Zeigen Sie, dass G dann abelsch ist.

Proof.

Lemma 1. Sei $a, b \in G$. Dann gilt $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.

$$abb^{-1}a^{-1} = a(bb^{-1})a^{-1} = aa^{-1} = 1$$

Es gilt, für jede $g \in G$, dass $g = g^{-1}$, weil gg = 1 (per Definition). Deswegen gilt

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba.$$

Problem 2. Sei K ein endlicher Körper mit $q \in \mathbb{N}^*$ Elementen.

- (a) Zeigen Sie, dass es genau $\prod_{k=0}^{n-1} (q^n q^k)$ geordnete Basen des K-Vektorraums K^n gibt. Unter einer geordneten Basis des K-Vektorraums K^n verstehen wir hierbei ein n-Tupel (b_1, \ldots, b_n) linear unabhängiger Vektoren $b_1, \ldots, b_n \in K^n$.
- (b) Nutzen Sie Teilaufgabe (a), um nachzuweisen, dass die Gruppe $GL_n(K)$ aus Beispiel 2.4 (d) die Ordnung $\prod_{k=0}^{n-1} (q^n q^k)$ besitzt.

Problem 3. Wir betrachten die komplexen (2×2) -Matrizen

$$E := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad I := \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \qquad J := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad K := \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

Zeigen Sie, dass die Menge $Q_8 := \{\pm E, \pm I, \pm J, \pm K\}$ zusammen mit der Matrixmultiplikation eine nicht-abelsche Gruppe der Ordnung 8 bildet. Man nennt Q_8 auch die Quaternionengruppe der Ordnung 8.

Hinweis: Ein paar konkrete Matrixmultiplikationen werden Sie bei dieser Aufgabe ausrechnen müssen. Versuchen Sie, deren Anzahl gering zu halten und möglichst viel aus Ihren bereits durchgeführten Rechnungen zu schließen.

Proof. Wir zeigen zuerst, dass Q_8 under \cdot abgeschlossen ist. Wir wissen von der Linearen Algebra, dass EM = M für alle Matrizen M. Das heißt, dass E ein neutrales Element ist. Wir wissen auch, dass (-E)M = -M. Ich betrachte einige wichtige Matrixmultiplikationen:

$$I^2 = J^2 = K^2 = -E.$$

Daraus folgt, dass $x^{-1} = -x$, für $Q_8 \ni x \neq \pm E$. Für x = -E ist $x^{-1} = x$. Jede $x \in G$ ist daher invertierbar. Es gilt auch

$$IJ = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = K$$

$$JK = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} = I$$

$$KI = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = J$$

Von daraus folgt, dass Q_8 under Matrixmultiplikation abgeschlossen ist. Deswegen ist Q_8 eine Gruppe. Es ist nicht abelsche. Sei $a,b \in \{\pm I,\pm J,\pm K\}$, $a \neq \pm b$, und daher $ab \in \{\pm I,\pm J,\pm K\}$

$$ab = -(ab)^{-1} = -b^{-1}a^{-1} = -(-b)(-a) = -ba.$$

Problem 4. Sei G eine Gruppe der Ordnung 4. Zeigen Sie, dass G abelsch ist.

Proof. Sei $G = \{1, a, b, c\}$. Nehme an, dass G nicht abelsch ist. ObdA können wir annehmen, dass $ab \neq ba$. Wir betrachten dann drei Fälle:

1. ab = a oder ab = b (obdA nehme an, ab = a).

Es gilt dann

$$(ba)b = b(ab) = ba.$$

Daraus folgt b = 1, ein Widerspruch.

- 2. ab = 1. Es folgt aus die eindeutigkeit des Inverses, dass ba = 1, auch ein Widerspruch.
- 3. ab=c. Erinnern Sie sich daran, dass $ba\neq 1$, sonst gibt es ein Widerspruch wie im vorherigen Fall. Es gilt auch $ba\neq c$, weil $ab\neq ba$. Nehme obdA an, dass ba=a. Es gilt dann

$$bab = ab = bc$$
.

Es gilt auch

$$bc = bab = b^2c$$
.

Deswegen ist b = 1, noch ein Widerspruch.