問題 1 以下の問いに答えよ。

(1). $(a,b)=(a',b')\rightarrow a=a'\wedge b=b'$ を示せ。

......

順序対の定義

$$(a,b) = \{\{a,a\},\{a,b\}\}, \quad (a',b') = \{\{a',a'\},\{a',b'\}\}$$
 (1)

外延性公理

$$(a,b) = (a',b') \leftrightarrow \forall x (x \in (a,b) \leftrightarrow x \in (a',b'))$$
 (2)

 $x \in (a,b) \leftrightarrow x \in (a',b')$ より $\{a,a\} \in (a',b') = \{\{a',a'\},\{a',b'\}\}$ である。 これより $\{a,a\} = \{a',a'\}$ または $\{a,a\} = \{a',b'\}$ である。

 $\{a,a\}=\{a',a'\}$ の場合

対集合は次で定義される。

$$\{a, a\} = \{x : x = a \lor x = a\}, \quad \{a', a'\} = \{x : x = a' \lor x = a'\}$$
 (3)

これにより $\{a,a\}=\{a',a'\}$ であるなら a=a' であることがわかる。 $\{a,a\}=\{a',a'\}$ より $\{a,b\}=\{a',b'\}$ であり、a=a' であるので、 $\{a,b\}=\{a,b'\}$ である。

同様に考えると b = b' となる。

つまり、次が得られる。

$$a = a' \wedge b = b' \tag{4}$$

.....

 $\{a,a\} = \{a',b'\}$ の場合

外延性公理より

$$\forall x (x \in \{a, a\} \leftrightarrow x \in \{a', b'\}) \tag{5}$$

であるので、 $a=a'\wedge a=b'$ であることがわかる。 $\{a,b\}=\{a',a'\}$ であるから、同様に考えて $a=a'\wedge b=a'$ である。 つまり、次が得られる。

$$a = a' \land a = b' \land b = a' \tag{6}$$

ここから次が得られる。

$$b = b' \tag{7}$$

	$a = a' \wedge b = b' \tag{8}$
	である。
(2).	$((a,b)) \stackrel{=}{=} \{\{a\}, \{\emptyset,b\}\}$ について (1) と同様の事実は成り立つか?
	((a,b)) = ((a',b')) とする。 外延性公理より次が成り立つ。
	$\forall x (x \in \{\{a\}, \{\emptyset, b\}\}) \leftrightarrow x \in \{\{a'\}, \{\emptyset, b'\}\}) $ $\tag{9}$
	$\{a\}=\{a'\}$ の場合
	$\{a\}=\{a'\}$ より $a=a'$ が得られる。
	また、 $\{\emptyset,b\}=\{\emptyset,b'\}$ より、 $b=b'$ または $b=\emptyset\wedge b'=\emptyset$ となる。
	$\{a\}=\{\emptyset,b'\}$ の場合
	$\{a\}=\{\emptyset,b'\}$ より $a=\emptyset\wedge a=b'$ である。
	同様に $\{\emptyset,b\}=\{a'\}$ より $a'=\emptyset\land b=a'$ である。
	$a=\emptyset \wedge b'=\emptyset \wedge a'=\emptyset \wedge b=\emptyset$ である。
	これらより (1) と同様に $a=a'\wedge b=b'$ が得られる。
 問題 2	具合 $A \neq \emptyset$ について以下の問いに答えよ。
(1).	$(\mathcal{P}(A);\Delta,\cap,\emptyset,A)$ は指標 2 の可換環であることを示せ。
(2).	環に関する性質 P を一つ選んで (1) の環が性質 P をみたすような A を特徴付
	けよ.
問題3($\mathbb{Q},<)\simeq(\mathbb{Q}\lceil 0,<)$ は成り立つか?

問題	4	以	下を示せ。
	(1)		整列集合の自己同型写像は恒等写像に限る。
	(2)		全順序集合 (ℤ, <) の自己同型写像は無数に存在する。
問題	5	全	順序集合 $(\mathbb{Z},<),(\mathbb{Q},<),(\mathbb{R},<)$ について次の補題と同様の主張は成り立つか?
			補題
			$(A;<)$ を整列集合とする。 A の真部分集合 X が下に閉 $(x < y \in X \rightarrow x \in X)$
			ならば、 $x \in A$ が存在して $X = A[x$ である。
	_		