Dinamik Sistemler ve Kontrole Giriş

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı

Dr. Öğr. Üyesi İşık İlber Sırmatel sirmatel.github.io

Konu listesi

- 1. Giriş ve tanımlar
- 2. Teori
- 3. Dinamik sistemlere örnekler
- 4. Yöntem sınıfları
- 5. Uygulamalar

Bölüm 1

Giriş ve tanımlar

Dinamik sistemler ve kontrol - Tanımlar

dinamik sistemler: hareket eden sistemler

kontrol: sistemlerin istenen şekilde davranmasını sağlamak

otomatik kontrol: dinamik sistemlerde otonom davranış tasarımı

Kontrol uygulamalarına örnekler (1/2)

taşıtlar

robotlar

elektrikli/elektronik cihazlar

ulaşım sistemleri

altyapı ağları

kimyasal tesisler

Kontrol uygulamalarına örnekler (2/2)

humanoid robot

otonom araç

quadrotor

endüstriyel robot

quadruped robot

uçurtma-dinamo

Kontrol uygulama alanları

Kaynak: Otomatik Kontrol Bölümü, Lund Üniversitesi, İsveç

Kontrol - Örnek: Oda sıcaklığı

Kontrol sistemlerinin yapısı

Bölüm 2

Teori

Bir boyutlu fark denklemi

$$x(k+1) = ax(k)$$
 $x(0) = x_0$
 $x \in \mathbb{R}$ $k \in \mathbb{Z}$ $a \in \mathbb{R}$ $x_0 \in \mathbb{R}$

benzetim:

$$x(1) = ax(0)$$

 $x(2) = ax(1)$
 $x(3) = ax(2)$
.

İki boyutlu fark denklemi

$$x(k+1) = Ax(k) x(0) = x_0$$

$$x \in \mathbb{R}^n k \in \mathbb{Z} A \in \mathbb{R}^{n \times n} x_0 \in \mathbb{R}^n$$

benzetim:

$$x(1) = Ax(0)$$

$$x(2) = Ax(1)$$

$$x(3) = Ax(2)$$

:

$$A = \begin{bmatrix} 0.12 & -0.53 \\ 0.53 & 0.66 \end{bmatrix}$$

örnek 1:
$$x(k+1) = Ax(k)$$
 $A = \begin{bmatrix} 0.38 & -0.19 \\ 0.19 & 0.96 \end{bmatrix}$

özdeğerler: $\lambda_1=0.4559$ $\lambda_2=0.8917$

$$|\lambda_i| < 1$$
 $(i = \{1, 2\}) \Rightarrow$ asimptotik kararlı

örnek 2:
$$x(k+1) = Ax(k)$$
 $A = \begin{bmatrix} 0.70 & -0.25 \\ 0.25 & 0.95 \end{bmatrix}$

özdeğerler:
$$\lambda_1=0.83+0.22j$$
 $\lambda_2=0.83-0.22j$

$$|\lambda_i| < 1 \ (i = \{1, 2\}) \Rightarrow$$
 asimptotik kararlı

örnek 3:
$$x(k+1) = Ax(k)$$
 $A = \begin{bmatrix} 0.95 & -0.29 \\ 0.29 & 0.95 \end{bmatrix}$

özdeğerler:
$$\lambda_1=0.95+0.29j$$
 $\lambda_2=0.95-0.29j$

$$|\lambda_i| = 1$$
 ($i = \{1, 2\}$) \Rightarrow (marjinal) kararlı

örnek 4:
$$x(k+1) = Ax(k)$$
 $A = \begin{bmatrix} 1.29 & -0.34 \\ 0.34 & 0.95 \end{bmatrix}$

özdeğerler:
$$\lambda_1=1.12+0.29j$$
 $\lambda_2=1.12-0.29j$

$$|\lambda_i| > 1$$
 $(i = \{1, 2\}) \Rightarrow \text{kararsız}$

Kontrol ile kararlılaştırma

örnek 5:
$$x(k+1) = Ax(k) + Bu(k), \qquad u(k) = -Kx(k)$$

$$A = \begin{bmatrix} 1.29 & -0.34 \\ 0.34 & 0.95 \end{bmatrix} \qquad B = \begin{bmatrix} 0.34 \\ 0.05 \end{bmatrix} \qquad K = \begin{bmatrix} 3.1 & 0.61 \end{bmatrix}$$

Bölüm 3

Dinamik sistemlere örnekler

Çeşitli disiplinlerden örnekler

Figure 3.13: Schematic diagrams for different disciplines

Mekanik denge sistemleri

Figure 3.6: Balance systems

Araç hareketi için bisiklet modeli

Figure 3.17: Vehicle steering dynamics

Avcı-av sistemleri

Figure 3.7: Predator versus prey

Hava taşıtlarında vektörlü itki

Figure 3.18: Vectored thrust aircraft

İnternette çok aşamalı ağ sistemi

Figure 1.8: A multitier system for services on the Internet

Termoakışkan sistemleri

Figure 3.19: Two thermofluid systems

Tedarik zinciri

Figure 1.9: Supply chain dynamics

Biyolojik devreler

Figure 3.25: Biological circuitry

Karayolu trafiği

Figure 3.9: A simple model for a traffic light

Bölüm 4

Yöntem sınıfları

Kontrol sistemi (oda sıcaklığı)

Kontrol sistemi (genel)

Dinamik benzetim (simulation)

verilenler: dinamik model (A, B), başlangıç koşulu x(0), giriş yörüngesi ($u(0),\ldots,u(K-1)$)

problem: durum yörüngesini $(x(1),\ldots,x(K))$ hesaplamak

bağlantılar: Dynamical system, Dynamical system simulation

Geribeslemeli kontrol (feedback control)

verilenler: dinamik model (A, B), tasarım belirtimleri (design specifications) (kararlılık, başarım, dayanıklılık vb.)

problem: kontrolörü ($F_c(\cdot)$ fonksiyonunu) tasarlamak

bağlantılar: Control system, Closed-loop controller, PID controller, Model predictive control, Control theory

Durum kestirme (state estimation)

verilenler: dinamik model (A, B, C), gürültülerin (w(k), v(k)) istatistikleri

problem: durum kestiriciyi ($F_{se}(\cdot)$ fonksiyonunu) tasarlamak

bağlantılar: State observer, Kalman filter, Extended Kalman filter, Moving horizon estimation, Estimation theory

Sistem tanıma (system identification)

verilenler: ölçüm yörüngesi $(y(0),\ldots,y(K))$, giriş yörüngesi $(u(0),\ldots,u(K))$, gürültülerin (w(k),v(k)) istatistikleri

problem: dinamik modeli ve/veya parametrelerini hesaplamak

bağlantılar: System identification, Nonlinear system identification, Grey box model, Estimation theory

Diğer bazı yöntem sınıfları

- ightharpoonup yörünge planlama (*trajectory planning*): dinamik model biliniyor. problem: istenen koşulları sağlayan durum yörüngesini ($x(1),\ldots,x(K)$) hesaplamak
 - bağlantılar: Trajectory optimization, Motion planning
- ► tasarım optimizasyonu (design optimization) problemi: tasarım belirtimlerini sağlayan dinamik modeli ve/veya parametrelerini hesaplamak
 - bağlantılar: Design optimization, Multidisciplinary design optimization

Uygulamalar

Bölüm 5

Araç hız sabitleme kontrolü

Figure 4.1: Block diagram of a cruise control system for an automobile

Feedback Systems: An Introduction for Scientists and Engineers,

Karl J. Åström, Richard M. Murray

Yük trenlerinde hız kontrolü

Figure 1.20: Freight train trip optimizer

İnternet sıkışıklık (congestion) kontrolü

Figure 4.12: Internet congestion control

Atomsal kuvvet mikroskobu

Figure 4.14: Atomic force microscope

İnsülin-glukoz dinamikleri

Figure 4.19: Insulin-glucose dynamics

Gürültü bastırma

Figure 5.20: Headphones with noise cancellation

Otonom araçta ağ bağlantılı kontrol

Figure 1.23: DARPA Grand Challenge. "Alice," Team Caltech's entry in the 2005 and 2007 competitions and its networked control architecture

Karayolu trafiği akış kontrolü

