§6.2 Orthogonal Sets

A set of vectors in \mathbb{R}^n is an orthogonal set if each pair of distinct vectors from the set is orthogonal.

If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence a basis for the subspace spanned by S.

Proof: If
$$\mathbf{0} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$
 for some scalars c_1, \dots, c_p , then $0 = \mathbf{0} \cdot \mathbf{u}_1$ $= (c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$ $= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1) + \dots + c_p(\mathbf{u}_p \cdot \mathbf{u}_1)$ $= c_1(\mathbf{u}_1 \cdot \mathbf{u}_1)$

since \mathbf{u}_1 is orthogonal to $\mathbf{u}_2, \dots, \mathbf{u}_p$. Because \mathbf{u}_1 is nonzero, $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero and so $c_1 = 0$. It follows that c_2, \dots, c_p must be zero as well. Hence S is linearly independent.

An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Let $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights in the linear combination $\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$ are given by $c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$ $(j = 1, \dots, p)$.

<u>Proof</u>: The orthogonality of $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ implies that

$$\mathbf{y} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$
$$= c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1).$$

Since $\mathbf{u}_1 \cdot \mathbf{u}_1$ is not zero, the previous equation can be solved for c_1 . The argument can be extended to find c_j for j=2,...,p.

Let \mathbf{u} be a nonzero vector in \mathbb{R}^n . We want to decompose a vector \mathbf{y} in \mathbb{R}^n into the sum of two vectors, one a multiple of \mathbf{u} and the other orthogonal to \mathbf{u} . That is, $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}} = \alpha \mathbf{u}$ for some scalar α and \mathbf{z} is some vector orthogonal to \mathbf{u} . Now $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to \mathbf{u} if and only if $0 = (\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u})$. It follows that $\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$ and $\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$. The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto \mathbf{u} , and the vector \mathbf{z} is called the component of \mathbf{y} orthogonal to \mathbf{u} .

This projection is determined by the subspace L spanned by \mathbf{u} (the line through \mathbf{u} and $\mathbf{0}$). Sometimes $\hat{\mathbf{y}}$ is called the orthogonal projection of \mathbf{y} onto L and we write $\hat{\mathbf{y}} = \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$.

Note that the point identified with $\hat{\mathbf{y}}$ is the closest point of L to \mathbf{y} , and the distance from \mathbf{y} to L is the length of the perpendicular line segment from \mathbf{y} to the orthogonal projection $\hat{\mathbf{y}}$, that is, $\|\mathbf{y} - \hat{\mathbf{y}}\|$.

A set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal set if it is an orthogonal set of unit vectors. If W is the subspace spanned by such a set, then $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for W.