K-MEANS CHEAT SHEET

Loading Data from sklearn

Import sklearn datasets and the specific data you want to use	<pre>from sklearn.datasets import load_data data_name = load_data()</pre>
Turn that data into a pandas DataFrame	<pre>import pandas as pd df = pd.DataFrame(data_name.data,</pre>

Create X

You choose what features of the data frame	<pre>X = df[["column name1", "column name2"]]</pre>
to include for your clusters.	

Creating your model

Import your model and then initialize it. In this case, name is the name of the model. This is helpful for using the model to predict.	<pre>from sklearn.cluster import KMeans name = KMeans(n_clusters = K)</pre>
Use your defined X to create the prediction. y will store the data for the clusters.	y = name.fit_predict(X)

Evaluating with Silhouette Score

Silhouette score evaluates on a range of -1 to 1, where 1 is optimal. 0 represents overlapping clusters, and negative values indicate a wrong assignment for data in clusters. Remember, pame represents the	<pre>from sklearn.metrics import silhoutte_score score = silhoutte_score(X, name.labels_, metric='euclidean'))</pre>
clusters. Remember, name represents the name of your model.	<pre>print(score)</pre>

Predicting

Given a data point, this will tell you which cluster said point would be assigned to. Remember, name represents the name of your model.	<pre>x_to_predict = [[.],[.]] # 2D array prediction = name.predict(x_to_predict) print(prediction)</pre>
Example for homework 3.1	<pre>x_to_predict = [[6,2], [6,6], [6,5], [7,6], [5,3]] # must be a 2D array prediction = kmeans1.predict(x_to_predict) print(prediction)</pre>

(Difficult) Visualizing for two-dimensional clusters-More features requires advanced visualizations

^{*} Remember, name represents the name of your model.