Generalised Gradient Approximation

Elious

Lets recap some LDA

Assumption: electron density of inhomogenoues system is locally homogenous. The exchange-correlation energy is thus given by:

$$E_{xc}^{LDA} = \int \rho(\mathbf{r}) \epsilon_{xc}^{h}(\rho(\mathbf{r})) d\mathbf{r}$$
 (1)

and

$$E_{xc}^{LSDA} = \int \rho(\mathbf{r}) \epsilon_{xc}^{h}(\rho_{\uparrow}(\mathbf{r}), \rho_{\downarrow}(\mathbf{r})) d\mathbf{r}$$
 (2)

where $\epsilon_{xc}^h(\rho(\mathbf{r})) \to \text{exchange-correlation energy density at } \mathbf{r}$, evaluated by taking the E_{xc} of the uniform gas with density $\rho(\mathbf{r})$

Intuition for LDA

Taken from: W.Koch, M.C. Holthausen, Chemists Guide To DFT

Expectations

Figure 1: LDA should work fine

Expectations

Figure 1: LDA should work fine

Figure 2: LDA should be useless

LDA works considerably well in all the above cases!!!

LDA works considerably well in all the above cases!!!

1. It works nearly perfect for many properties of metals.

LDA works considerably well in all the above cases!!!

- 1. It works nearly perfect for many properties of metals.
- 2. It even predicts molecular properties like equilibrium structures, charge moments etc.

LDA works considerably well in all the above cases!!!

- 1. It works nearly perfect for many properties of metals.
- 2. It even predicts molecular properties like equilibrium structures, charge moments etc.

However, the energy details are not so good for the inhomohenous systems. Comparing with the experiments, the unsigned standard deviation in atomisation energies are:

$$\Delta_{LDA} = 36Kcal/mol(1.56eV) \tag{3}$$

$$\Delta_{HF} = 78Kcal/mol(3.38eV) \tag{4}$$

LDA works considerably well in all the above cases!!!

- 1. It works nearly perfect for many properties of metals.
- 2. It even predicts molecular properties like equilibrium structures, charge moments etc.

However, the energy details are not so good for the inhomohenous systems. Comparing with the experiments, the unsigned standard deviation in atomisation energies are:

$$\Delta_{LDA} = 36Kcal/mol(1.56eV) \tag{3}$$

$$\Delta_{HF} = 78Kcal/mol(3.38eV) \tag{4}$$

But, Why should the LDA even work at all for the inhomogenous system???

Lets find some holes in LDA

$$E_{xc}[\rho] = \frac{1}{2} \iint \frac{\rho(\mathbf{r}_1)\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2)}{|\mathbf{r}_1 - \mathbf{r}_2|} d\mathbf{r}_1 d\mathbf{r}_2$$
 (5)

where

 $\rho(\mathbf{r}_1)d\mathbf{r}_1 \to \text{Probability density of finding an electron in } d\mathbf{r}_1 \text{ near } \mathbf{r}_1$ $\rho_{xc}(\mathbf{r}_1;\mathbf{r}_2)d\mathbf{r}_2 \to \text{Probability density of finding an electron in } d\mathbf{r}_2$ near \mathbf{r}_2 given there is an electron in $d\mathbf{r}_1$ near \mathbf{r}_1 . This is called the **exchange-correlation hole**. We can show

$$\int \rho_{xc}(\mathbf{r}_1; \mathbf{r}_2) d\mathbf{r}_2 = -1 \tag{6}$$

and

$$\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{7}$$

we now define:

$$\rho_{xc}(\textbf{r}_1;\textbf{r}_2) = \rho_x(\textbf{r}_1,\textbf{r}_2) + \rho_c(\textbf{r}_1,\textbf{r}_2) \tag{8} \label{eq:8}$$

The $\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2)$ is factorised as the product:

$$\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2) = \rho(\mathbf{r}_2) f_{xc}(\mathbf{r}_1; \mathbf{r}_2)$$
(9)

here

$$-1 \leqslant f_{xc}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{10}$$

Combining eqn(9 and 10) we can see that the factorisation is just another way of saying that there is **reduction of electron density** from \mathbf{r}_2 . The factor $f_{xc}(\mathbf{r}_1;\mathbf{r}_2)$ is called the pair-correlation factor.

The $\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2)$ is factorised as the product:

$$\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2) = \rho(\mathbf{r}_2) f_{xc}(\mathbf{r}_1; \mathbf{r}_2)$$
(9)

here

$$-1 \leqslant f_{xc}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{10}$$

Combining eqn(9 and 10) we can see that the factorisation is just another way of saying that there is **reduction of electron density** from \mathbf{r}_2 . The factor $f_{xc}(\mathbf{r}_1; \mathbf{r}_2)$ is called the pair-correlation factor. We should note that:

The $\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2)$ is factorised as the product:

$$\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2) = \rho(\mathbf{r}_2) f_{xc}(\mathbf{r}_1; \mathbf{r}_2)$$
(9)

here

$$-1 \leqslant f_{xc}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{10}$$

Combining eqn(9 and 10) we can see that the factorisation is just another way of saying that there is **reduction of electron density** from \mathbf{r}_2 . The factor $f_{xc}(\mathbf{r}_1; \mathbf{r}_2)$ is called the pair-correlation factor. We should note that:

1. The XC-hole is non-spherical as it depends on $\rho(\textbf{r}_2)$ which is usually non-uniform.

The $\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2)$ is factorised as the product:

$$\rho_{xc}(\mathbf{r}_1; \mathbf{r}_2) = \rho(\mathbf{r}_2) f_{xc}(\mathbf{r}_1; \mathbf{r}_2)$$
(9)

here

$$-1 \leqslant f_{xc}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{10}$$

Combining eqn(9 and 10) we can see that the factorisation is just another way of saying that there is **reduction of electron density** from \mathbf{r}_2 . The factor $f_{xc}(\mathbf{r}_1; \mathbf{r}_2)$ is called the pair-correlation factor. We should note that:

- 1. The XC-hole is non-spherical as it depends on $\rho(\textbf{r}_2)$ which is usually non-uniform.
- 2. For LDA XC-hole is spherical as $\rho(\mathbf{r}_2)$ is uniform.

Intuition for XC-hole

Exchange hole

Exchange (Fermi) hole: We can show that for the Kohn-sham system $\rho_{xc}(\mathbf{r}_1;\mathbf{r}_2)$ arises due to *Pauli-repulsion* of same spin electrons and from there

$$\rho_{\mathsf{x}}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{11}$$

and

$$\int \rho_{x}(\mathbf{r}_{1};\mathbf{r}_{2})d\mathbf{r}_{2} = -1 \tag{12}$$

Exchange hole

Exchange (Fermi) hole: We can show that for the Kohn-sham system $\rho_{xc}(\mathbf{r}_1;\mathbf{r}_2)$ arises due to *Pauli-repulsion* of same spin electrons and from there

$$\rho_{\mathsf{x}}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{11}$$

and

$$\int \rho_{x}(\mathbf{r}_{1};\mathbf{r}_{2})d\mathbf{r}_{2} = -1 \tag{12}$$

1. From eqn(11) the hole is negative everywhere \rightarrow an electron of a spin σ won't allow another electron of the same spin to occupy its orbital.

Exchange hole

Exchange (Fermi) hole: We can show that for the Kohn-sham system $\rho_{xc}(\mathbf{r}_1;\mathbf{r}_2)$ arises due to *Pauli-repulsion* of same spin electrons and from there

$$\rho_{\mathsf{X}}(\mathbf{r}_1; \mathbf{r}_2) \leqslant 0 \tag{11}$$

and

$$\int \rho_{x}(\mathbf{r}_{1};\mathbf{r}_{2})d\mathbf{r}_{2} = -1 \tag{12}$$

- 1. From eqn(11) the hole is negative everywhere \rightarrow an electron of a spin σ won't allow another electron of the same spin to occupy its orbital.
- 2. Also since its negative everywhere \rightarrow it must be responsible for the self-interaction correction.

We are now left with the **Correlation (Coulomb) hole** which mainly arises due to $1/r_{ij}$ nature of the coulomb repulsion

$$\int \rho_c(\mathbf{r}_1; \mathbf{r}_2) d\mathbf{r}_2 = 0 \tag{13}$$

So it's positive in some regions and negative in some regions thus integrating out to zero...???

We are now left with the **Correlation (Coulomb) hole** which mainly arises due to $1/r_{ij}$ nature of the coulomb repulsion

$$\int \rho_c(\mathbf{r}_1; \mathbf{r}_2) d\mathbf{r}_2 = 0 \tag{13}$$

So it's positive in some regions and negative in some regions thus integrating out to zero...???

We can think of this like

We are now left with the **Correlation (Coulomb) hole** which mainly arises due to $1/r_{ij}$ nature of the coulomb repulsion

$$\int \rho_c(\mathbf{r}_1; \mathbf{r}_2) d\mathbf{r}_2 = 0 \tag{13}$$

So it's positive in some regions and negative in some regions thus integrating out to zero...???

We can think of this like

1. Due to $1/r_{ij}$, at the region near any electron, the other electron will be repelled the highest(the hole is negative in this region) and thus it will be sent to a far away region \rightarrow piling up density in other region i.e. the hole is positive in this region.

We are now left with the **Correlation (Coulomb) hole** which mainly arises due to $1/r_{ij}$ nature of the coulomb repulsion

$$\int \rho_c(\mathbf{r}_1; \mathbf{r}_2) d\mathbf{r}_2 = 0 \tag{13}$$

10/21

So it's positive in some regions and negative in some regions thus integrating out to zero...???

We can think of this like

- 1. Due to $1/r_{ij}$, at the region near any electron, the other electron will be repelled the highest(the hole is negative in this region) and thus it will be sent to a far away region \rightarrow piling up density in other region i.e. the hole is positive in this region.
- 2. Since this is due to $1/r_{ij}$, ρ_c will also be responsible for the electron-electron cusp in the many-electron wavefunction.

Intuition for X and C-hole

1. **Exchange hole :** Two electrons of same spin cannot occupy the same room *aka* **Pauli's exclusion Principle**

- 1. **Exchange hole :** Two electrons of same spin cannot occupy the same room *aka* **Pauli's exclusion Principle**
- 2. **Correlation hole :** Two electrons can live in the same room but they have to follow social-distancing norms.

- 1. **Exchange hole :** Two electrons of same spin cannot occupy the same room *aka* **Pauli's exclusion Principle**
- Correlation hole: Two electrons can live in the same room but they have to follow social-distancing norms.
- 3. eqn(5) shows that E_{xc} is actually the energy of attraction of an electron density with its hole \rightarrow the better our model hole represents the exact hole, the better it will represent the E_{xc}

- 1. **Exchange hole :** Two electrons of same spin cannot occupy the same room *aka* **Pauli's exclusion Principle**
- Correlation hole: Two electrons can live in the same room but they have to follow social-distancing norms.
- 3. eqn(5) shows that E_{xc} is actually the energy of attraction of an electron density with its hole \rightarrow the better our model hole represents the exact hole, the better it will represent the E_{xc}

Question1: Why does LDA perform well even for inhomogenous densities?

Question1: Why does LDA perform well even for inhomogenous densities?

Answer: LDA is for homogenous electron gas \rightarrow nicely represents some of the exact properties of holes defined above:

- 1. The sum rules are satisfied
- 2. The cusp condition of the correlation is satisfied
- 3. $n_x(\mathbf{r}_2; \mathbf{r}_1) \leq 0$ everywhere

Question1: Why does LDA perform well even for inhomogenous densities?

Answer: LDA is for homogenous electron gas \rightarrow nicely represents some of the exact properties of holes defined above:

- 1. The sum rules are satisfied
- 2. The cusp condition of the correlation is satisfied
- 3. $n_x(\mathbf{r}_2; \mathbf{r}_1) \leq 0$ everywhere

Question2: What is the problem with LDA?

Question1: Why does LDA perform well even for inhomogenous densities?

Answer: LDA is for homogenous electron gas →nicely represents some of the exact properties of holes defined above:

- 1. The sum rules are satisfied
- 2. The cusp condition of the correlation is satisfied
- 3. $n_x(\mathbf{r}_2; \mathbf{r}_1) \leq 0$ everywhere

Question2: What is the problem with LDA?

Answer: LDA is for homogenous electron gas→tends to homogenise the properties for inhomogenous systems.Eg: It leads to overbinding in molecules.

1. Atoms have a highly inhomogenous electron density

- 1. Atoms have a highly inhomogenous electron density
- 2. Molecules have a relatively more homogenous

- 1. Atoms have a highly inhomogenous electron density
- Molecules have a relatively more homogenouselectron density compared to atoms as electrons are now more delocalised around two(or more atoms) but still its inhomogenous
- 3. LDA best approximates homogenous electron density

- 1. Atoms have a highly inhomogenous electron density
- Molecules have a relatively more homogenouselectron density compared to atoms as electrons are now more delocalised around two(or more atoms) but still its inhomogenous
- 3. LDA best approximates homogenous electron density
- 4. LDA tends to homogenise the electron density more in the molecule

Overbinding in LDA - A step by step guide

- 1. Atoms have a highly inhomogenous electron density
- Molecules have a relatively more homogenouselectron density compared to atoms as electrons are now more delocalised around two(or more atoms) but still its inhomogenous
- 3. LDA best approximates homogenous electron density
- 4. LDA tends to homogenise the electron density more in the molecule
- 5. More bonding character in molecule than should be present

Overbinding in LDA - A step by step guide

- 1. Atoms have a highly inhomogenous electron density
- Molecules have a relatively more homogenouselectron density compared to atoms as electrons are now more delocalised around two(or more atoms) but still its inhomogenous
- 3. LDA best approximates homogenous electron density
- 4. LDA tends to homogenise the electron density more in the molecule
- 5. More bonding character in molecule than should be present
- 6. Exchange energy of the molecule is too negative ightarrow Overbinding

Overbinding in LDA - the process

Idea:

1. Divergence from uniformity of the electron density is due to perturbation to the system

Idea:

- 1. Divergence from uniformity of the electron density is due to perturbation to the system
- 2. Perturb the homogenous system with little distortions in the potential.

Idea:

- 1. Divergence from uniformity of the electron density is due to perturbation to the system
- 2. Perturb the homogenous system with little distortions in the potential.
- 3. Attempt a solution by taylor expansion of density around the homogenous electron density

Idea:

- 1. Divergence from uniformity of the electron density is due to perturbation to the system
- 2. Perturb the homogenous system with little distortions in the potential.
- 3. Attempt a solution by taylor expansion of density around the homogenous electron density

So we can try:

$$\rho^{inh}(\mathbf{r}) \to \rho^{h}(\mathbf{r}) \left[1 + \nabla \rho^{h}(\mathbf{r}')|_{\mathbf{r}'=\mathbf{r}} + \mathcal{O}(\nabla^{2} \rho^{h}(\mathbf{r})) \right]$$
(14)

Idea:

- 1. Divergence from uniformity of the electron density is due to perturbation to the system
- 2. Perturb the homogenous system with little distortions in the potential.
- 3. Attempt a solution by taylor expansion of density around the homogenous electron density

So we can try:

$$\rho^{\textit{inh}}(\textbf{r}) \rightarrow \rho^{\textit{h}}(\textbf{r}) \left[1 + \nabla \rho^{\textit{h}}(\textbf{r'})|_{\textbf{r'}=\textbf{r}} + \mathcal{O}(\nabla^2 \rho^{\textit{h}}(\textbf{r})) \right] \tag{14}$$

and what's done in GE is:

$$E_{xc}^{GE}(\rho) \to \int \rho \epsilon_{xc}(\rho) d\mathbf{r} + \int C_{xc} \rho \frac{|\nabla \rho|}{\rho^{\frac{4}{3}}} + \dots$$
 (15)

Expectations: Since it's a Taylor series expansion around uniform density \rightarrow should perform well for small gradients in density.

Expectations: Since it's a Taylor series expansion around uniform density \rightarrow should perform well for small gradients in density.

Reality: Performance significantly reduced compared to LDA

Expectations: Since it's a Taylor series expansion around uniform density \rightarrow should perform well for small gradients in density.

Reality: Performance significantly reduced compared to LDA

But why?

Expectations: Since it's a Taylor series expansion around uniform density \rightarrow should perform well for small gradients in density.

Reality: Performance significantly reduced compared to LDA

But why?

1. Sum-rules(eqn(6) and eqn(12)) are broken

Expectations: Since it's a Taylor series expansion around uniform density \rightarrow should perform well for small gradients in density.

Reality: Performance significantly reduced compared to LDA

But why?

- 1. Sum-rules(eqn(6) and eqn(12)) are broken
- 2. XC-hole is not restricted to be negative for any pair $(\mathbf{r}_1; \mathbf{r}_2)$ which is in strict violation to eqn(7) and eqn(11)

Expectations: Since it's a Taylor series expansion around uniform density \rightarrow should perform well for small gradients in density.

Reality: Performance significantly reduced compared to LDA

But why?

- 1. Sum-rules(eqn(6) and eqn(12)) are broken
- 2. XC-hole is not restricted to be negative for any pair $(\mathbf{r}_1; \mathbf{r}_2)$ which is in strict violation to eqn(7) and eqn(11)

Due to the breaking of the above universal conditions of exact holes \rightarrow The relationship between on-top hole and its extension is lost \rightarrow the E^{GE}_{xc} (which represents the attraction between an electron density and its hole) will now have inconsistent behaviour.

Brute Force method

Idea:

1. Parts in GE which violate $\rho_{xc} \leqslant 0 \to Just$ set them to 0

Brute Force method

Idea:

- 1. Parts in GE which violate $\rho_{xc} \leqslant 0 \rightarrow \text{Just}$ set them to 0
- 2. To make sure the **sum rules**(eqn(6) and eqn(12)) are obeyed \rightarrow truncate the XC-holes such that $h_{\scriptscriptstyle X}$ and $h_{\scriptscriptstyle C}$ contain 1 and 0 electron charges respectively

Brute Force method

Idea:

- 1. Parts in GE which violate $\rho_{xc} \leqslant 0 \rightarrow \text{Just}$ set them to 0
- 2. To make sure the **sum rules**(eqn(6) and eqn(12)) are obeyed \rightarrow truncate the XC-holes such that h_{\times} and h_{c} contain 1 and 0 electron charges respectively

So we have

$$E_{xc}^{GE}[\rho] + XC_{properties} \rightarrow E_{xc}^{GGA}[\rho]$$
 (16)

where E_{xc}^{GGA} is the Generalised Gradient Approximation

$$E_{XC}^{GGA}[\rho] = \int \rho(\mathbf{r}) \varepsilon_{xc}^{h}(\rho(\mathbf{r})) (1 + \mu s^{2} + \mathcal{O}(s^{4})) d\mathbf{r}$$
 (17)

where μ is a parameter and s is the dimensionless quantity:

$$s = \frac{|\nabla \rho(\mathbf{r})|}{\rho^{\frac{4}{3}}(\mathbf{r})} \tag{18}_{18/2}$$

There are two approches to calculate the parameter μ :

There are two approaches to calculate the parameter μ :

1. Semi-Emperical: Eq(17) is derived in a way that μ can be extracted by fitting to the experimental data. Eg B88 (by Becke 1988, later additions by Lee, Yang and Parr - BLYP) uses exact exchange energies of rare gas atoms He through Rn, to get

$$\mu^{BLYP} = 0.2743 \tag{19}$$

There are two approaches to calculate the parameter μ :

1. Semi-Emperical: Eq(17) is derived in a way that μ can be extracted by fitting to the experimental data. Eg B88 (by Becke 1988, later additions by Lee,Yang and Parr - BLYP) uses exact exchange energies of rare gas atoms He through Rn, to get

$$\mu^{BLYP} = 0.2743 \tag{19}$$

 Non-emperical: Eq(17) is rigorously derived by putting more universal contraints. Eg PBE (Perdew, Burke, Ernzerhof 1996) found

$$\mu^{PBE} = 0.2195 \tag{20}$$

There are two approches to calculate the parameter μ :

1. Semi-Emperical: Eq(17) is derived in a way that μ can be extracted by fitting to the experimental data. Eg B88 (by Becke 1988, later additions by Lee,Yang and Parr - BLYP) uses exact exchange energies of rare gas atoms He through Rn, to get

$$\mu^{BLYP} = 0.2743 \tag{19}$$

 Non-emperical: Eq(17) is rigorously derived by putting more universal contraints. Eg PBE (Perdew, Burke, Ernzerhof 1996) found

$$\mu^{PBE} = 0.2195 \tag{20}$$

LDA v/s GGA →Atomisation energies(in eV)

System	$\Delta E^{ m UHF}$	$\Delta E^{ m LSD}$	ΔE^{PW91}	$\Delta E^{ m PBE}$	$\Delta E^{ m expt}$
H_2	84	113	105	105	109
LiH	33	60	53	52	58
CH_4	328	462	421	420	419
NH_3	201	337	303	302	297
OH	68	124	110	110	107
H_2O	155	267	235	234	232
HF	97	162	143	142	141
Li ₂	3	23	20	19	24
LiF	89	153	137	136	139
Be_2	-7	13	10	10	3
C_2H_2	294	460	415	415	405
C_2H_4	428	633	573	571	563
HCN	199	361	326	326	312
CO	174	299	269	269	259
N_2	115	267	242	243	229
NO	53	199	171	172	153
O_2	33	175	143	144	121
F_2	-37	78	54	53	39
P_2	36	142	120	120	117
Cl ₂	17	81	64	63	58
Mean abs. error	71.2	31.4	8.0	7.9	

Taken from: *GGA made simple*, John P. Perdew, Kieron Burke, Matthias Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

References

- CECAM summer school(2017) video lectures by Levy, Perdew, Kieron Burke https://www.youtube.com/channel/UCfLssAro7SMxgaeKTNFFeeA
- 2. ABC of DFT, Kieron Burke
- 3. A Chemist's Guide to Density Functional Theory, Wolfram Koch, Max C. Holthausen
- 4. Electronic Structure Calculations for Solids and Molecules-Theory and Computational Methods, Jorge Kohanoff
- GGA made simple John P. Perdew, Kieron Burke, Matthias Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)