

Sprawozdanie z przedmiotu Programowanie Równoległe i Rozproszone

Google Colab

Wykonał:

Imię i nazwisko Magdalena Paszko

Nr indeksu 76024 Grupa L2

Prowadzący: dr inż. Krzysztof Szerszeń

1. Wprowadzanie

Transfer stylu polega na wygenerowaniu obrazu o tej samej "treści" co obraz bazowy, ale z "stylem" innego obrazu (zazwyczaj artystycznego). Osiąga się to poprzez optymalizację funkcji strat, która składa się z 3 elementów: "utrata stylu", "utrata treści" i "całkowita utrata zmienności":

- > Całkowita utrata zmienności narzuca lokalną ciągłość przestrzenną między pikselami złożonego obrazu, nadając mu wizualną spójność.
- Utrata stylu występuje tam, gdzie głębokie uczenie się utrzymuje to jest definiowane za pomocą głębokiej konwolucyjnej sieci neuronowej. Dokładniej, składa się on z sumy odległości L2 między macierzami Grama reprezentacji obrazu podstawowego i obrazu odniesienia stylu, wyodrębnionych z różnych warstw konwnetu (trenowanego w ImageNet). Ogólną ideą jest przechwytywanie informacji o kolorze / teksturze w różnych skalach przestrzennych (dość dużych skalach określonych przez głębokość rozpatrywanej warstwy).
- > Utrata treści to odległość L2 między cechami obrazu podstawowego (wyodrębnionymi z głębokiej warstwy) a cechami obrazu złożonego, dzięki czemu wygenerowany obraz jest wystarczająco blisko oryginalnego.

2. Analiza algorytmu:

Obrazy wejściowe:

Efekt tych samych paramtrow, lecz inne obrazy wejściowe:

initial_learning_rate=100.0, decay_steps=5, decay_rate=0.96

Obniżając ilość po której tempo uczenia obniża się obraz wyostrza się do jakości podstawowego

initial_learning_rate=100.0, decay_steps=300, decay_rate=2.96


```
def style_loss(style, combination):
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_nrows * img_ncols
return tf.reduce sum(tf.square(S - C)) / (40.0 * (channels ** 2) * (size ** 2))
```

zwiększenie liczby w mianowniku

Analiza kodu : https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/generative/ipynb/neural_style_transfer.ipynb