Middlemen and Liquidity Provision

Bo Hu¹ Makoto Watanabe² Jun Zhang³

1, 3 Fudan University

²KIER, Kyoto University

Fudan Development Institute Nov 27, 2024

Middlemen as a liquidity provider (middlemen finance)

Historically, middlemen and liquidity provision were closely related:

- ➤ Colonial Trade: The Dutch East India Company extended credit to local growers in the form of advanced payments
- Input Financing: Middlemen provide seeds, fertilizers, and farming equipment to small farmers

Nowadays, with advances in financial technologies, middlemen liquidity provision has become more sophisticated:

- Middlemen can engage with a large number of suppliers.
- Middlemen can provide and/or obtain liquidity from suppliers.

An example of middlemen finance

The Co-op Partners with PrimeRevenue to Protect Suppliers Amid Economic Volatility

UK's sixth largest food retailer makes strategic transition to PrimeRevenue platform

Atlanta, GA - Manchester, UK, August 11, 2020 - PrimeRevenue, the leading platform for working capital finance solutions, and The Co-operative Group, today announce a new supply chain finance partnership. Barclays Bank PLC, who introduced The Co-op to PrimeRevenue, will be providing funding on the supply chain finance programme followed by other financial institutions as the programme grows.

Co-op has made the strategic decision to partner with PrimeRevenue for its new supply chain finance offering. Fueled by a highly challenging business climate heightened by the pandemic, the company aims to offer suppliers a simple method of early payment to help with their cash flow without having a detrimental impact to Co-op's own cash position. This is particularly relevant in the current environment where the old adage "cash is king" has never been truer.

How does it work?

- 1. Co-op establishes a funding program together with a FinTech company (*PrimeRevenue*):
 - Co-op invites selected suppliers to the program;
 - Co-op delays payment to the participating suppliers.
- 2. Once joining the program, suppliers can choose between
 - Holding invoices to maturity;
 - Selling unpaid invoices to Barclays Bank for early payment.
- 3. When the invoice is due, Co-op pays the full amount to whoever holds the invoice.

- Middlemen liquidity provision has been widely adopted:
- ▶ Walmart, Amazon, Alibaba, JD.com, Carrefour, Coca Cola,
 - PepsiCo, Unilever, Boeing, Airbus, Ford Motor Company, Nissan, General Electric, Dell, Hewlett-Packard (HP), IBM,

Bosch, Procter & Gamble (P&G), Johnson & Johnson,

Lenovo, Philips, Vodafone, Sony, Samsung, Schneider Electric,

- According to the Wall Street Journal:
- The global middleman/supplier finance market was valued at

Michelin, L'Oreal, Keurig Dr Pepper, etc.

- \$1.8 trillion in 2021.
 - It is growing at an annual rate of 15% 20% (2019–2024).

What is so special about middlemen's liquidity provision?

- The middleman selects suppliers to fund:
 - Which suppliers to take care of?
 - Profitability versus liquidity needs?
 - Outside liquidity vs. inside liquidity
- How do middlemen's retail technologies matter for liquidity provision?
- Welfare implications:
 - Should a middleman provide liquidity to all its suppliers?
 - What is the welfare impact if outside liquidity becomes more expensive?

Related literature

- Middlemen and multi-product intermediaries:
 - Rubinstein & Wolinsky (1987), Suplber (1996), Watanabe (2010), Wong & Wright (2014), Rhodes, Watanabe & Zhou (2021)
 - Liquidity provision is not studied
- Banking and Money
 - Diamond & Dybvig (1983), Berentsen et al. (2007), Gu et al. (2013), Andolfatto et al. (2019)
 - Depositors are ex-ante heterogenous (ex-ante selection) and no incentive to run (not a demand deposit)
- Trade credit
 - Petersen & Rajan (1997), Burkart & Ellingsen (2004), Cunat (2007), Giannetti, Burkart & Ellingsen (2011), Garcia-Appendini & Montoriol-Garriga (2013), Nocke & Thanassoulis (2014)
 - Reallocation of trade credit among suppliers

Today's talk

- 1. A one-period benchmark model
- 2. Endogenous liquidity holdings of middleman
- 3. Welfare analysis
- 4. Suppliers have access to outside money market

1. The Benchmark Model

Agents

- A mass of suppliers:
 - Each produces a unique and indivisible good
 - ▶ Constant marginal costs, $c \in [\underline{c}, \bar{c}]$, differ among suppliers
 - c is publicly observable
- A mass of consumers:
 - Unit demand for each good with *common* utility $u > \bar{c}$
- One middleman:
 - access to the retail and the finance technology (see below)

Endowments

- ► There is a *numeraire* good (used as a payment)
- Consumers have enough endowment of numeraire
- ▶ Middleman has an endowment $L \ge 0$
- Suppliers have no endowment

Retail market

- Suppliers can trade directly with consumers
- Suppliers can meet all consumers, trade bilaterally
- Trade surplus is split equally:

$$p - c = (u - c)/2$$

► Trade may not occur due to liquidity shocks

Liquidity shocks

- Supplier (with no initial endowment) finance does not matter in frictionless world:
 - Revenue can be used to finance production costs c
- Supplier finance matters when:
 - Disparity exists in the timing between production and trade
 - A liquidity shock prevents suppliers from receiving revenue before production

Liquidity shocks

- ► There are two sub-periods: early and late
 - Production is possible only in the early sub-period
- Suppliers may match with consumers early or late
 - With probability 1λ : a supplier matches with consumers early, c can be covered using retail revenue
 - With probability λ: a supplier matches with consumers late, c
 CANNOT be covered using retail revenue (i.e., liquidity shock)

Liquidity shocks

No trade occurs because of limited retail technologies possessed by suppliers

- Display/advertisement: Consumers buy only after inspection
 & Display can be early or late
- Delivery/inventory : Consumers pay only after delivery & Delivery can be early or late
- Production-to-Order: Order and payment by consumers could occur early if communicated well

Ex ante heterogeneity of suppliers

► Each supplier is indexed by

$$(\lambda, c) \in \Omega = [0, 1] \times [\underline{c}, \overline{c}],$$

where λ is the probability of liquidity shock, c is marginal cost

• (λ, c) is publicly observable, following a distribution C.D.F. G, P.D.F. g > 0 on Ω

Intermediation mode

Middleman observes (λ, c) , and selects suppliers into one of the intermediation modes:

- Middleman mode (acting only as a middleman)
- Middleman–Finance mode (acting both as a middleman and liquidity provider)

Note: acting only as a liquidity provider is strictly dominated given middleman's advantage of matching technologies (see below)

Middleman mode (M)

- Middleman sells on behalf of suppliers
 - Middleman's probability of a liquidity shock: $m\lambda$
 - m < 1 represents middleman's relative matching advantage over the original suppliers (Rubinstein and Wolinsky 1987)
 - Better advertisement technologies to facilitate early display
 - ▶ Better inventory technologies to facilitate early delivery
 - Better communication technologies with consumers that facilitate production to order
- ▶ Middleman gives a TILI offer to a selected supplier (λ, c) :
 - ▶ Transfer a reward $f_M(\lambda, c)$ immediately after consumers pay
 - Production costs have to be covered by suppliers themselves

Middleman-Finance mode (F)

- Middleman sells on behalf of suppliers
- Middleman delays payments to suppliers (till the end of the period) and meanwhile provides liquidity support
- ▶ Middleman gives a TILI offer to a selected supplier (λ, c) :
 - ▶ Transfer a reward $f_F(\lambda, c)$ at the end of the period
 - Production costs c are covered by middleman

Middleman's offers:

$$\{q(\lambda,c),f_{M}(\lambda,c),f_{F}(\lambda,c)\}_{(\lambda,c)\in\Omega}$$

where $q(\lambda,c)=1$ implies Middleman–Finance mode, while $1-q(\lambda,c)=1$ implies Middleman mode

Timing

- 1. Middleman announces contracts and invites suppliers
- 2. Suppliers decide whether to accept or not
- 3. Liquidity shocks are realized, middleman pays f_M or c to suppliers, suppliers produce, and trade occurs in the retail market
- 4. Middleman pays supplier f_F

Suppliers' participation decision

Rewards to suppliers, f_j , j = M, F, must satisfy their participation constraint:

Supplier's Expected Payoff
$$_{j}(\lambda, c) \geq \underbrace{(1-\lambda)\frac{u-c}{2}}_{\text{direct selling}},$$

where

Expected Payoff_M
$$(\lambda, c) = (1 - m\lambda)(f_M(\lambda, c) - c)$$
,
Expected Payoff_F $(\lambda, c) = f_F(\lambda, c)$.

Profits in Middleman mode

▶ Profit contribution by a supplier (λ, c) :

$$\pi_M(\lambda,c) = (1-m\lambda)\left(p-f_M(\lambda,c)\right)$$

$$= (1-m)\lambda\frac{u-c}{2} > 0 \ \ \text{since} \ m < 1$$

There is no liquidity constraint here.

Profits and liquidity in Middleman-Finance mode

- In F mode, suppliers contribute both profit and liquidity.
- ▶ Profit contribution by a supplier (λ, c) :

$$\pi_{F}(\lambda, c) = p - c - f_{F}(\lambda, c) - k$$
$$= \lambda \frac{u - c}{2} - k$$

Liquidity contribution by a supplier (λ, c) (at the time of production):

$$\theta_F(\lambda, c) = (1 - m\lambda)p - c = (1 - m\lambda)(u + c)/2 - c$$

Profit maximization

► The middleman's profit maximization problem:

$$\max_{q(\cdot)} \int_{\Omega} \Big((1-q(\lambda,c)) \pi_{\mathit{M}}(\lambda,c) + q(\lambda,c) \pi_{\mathit{F}}(\lambda,c) \Big) dG$$

subject to the liquidity constraint:

$$\underbrace{\int_{\Omega} q(\lambda, c)\theta_{F}(\lambda, c)dG}_{\text{total liquidity}} + L \geq 0,$$

where initial liquidity holding $L \ge 0$ (exogenous for now)

Profit-maximizing selection policy

The middleman's problem can be solved using the Lagrangian:

$$\mathcal{L} = \int_{\Omega} \left[\pi_{M}(\cdot) + q(\cdot) \Big(\Delta \pi(\cdot) + \mu \theta_{F}(\cdot) \Big) \right] dG(\lambda, c)$$

where $\Delta \pi \equiv \pi_F - \pi_M$

- ho $\mu \geq 0$: Lagrange multiplier of the liquidity constraint
 - The shadow value of liquidity
- ► The optimal selection rule is:

$$q(\lambda, c, \mu) = \begin{cases} 1 & \text{if } \Delta \pi(\lambda, c) + \mu \theta_F(\lambda, c) \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

Figure: Incremental profit $\Delta\pi\equiv\pi_{\it F}-\pi_{\it M}$

$$\Delta\pi(\lambda,c) = m\lambda(u-c)/2 - k$$

Figure: Liquidity $\theta_F(\lambda, c)$

$$\theta_F(\lambda, c) = (1 - m\lambda)(u + c)/2 - c$$

Proposition (Profit-based liquidity cross-subsidization)

Middleman finance optimally selects suppliers from

▶ Region A: positive profit and positive liquidity contributions

$$\Delta\pi(\lambda, c) \ge 0$$
, $\theta_F(\lambda, c) \ge 0$

► Region B: positive profit and negative liquidity

$$\Delta\pi(\lambda,c) > 0$$
, $\theta_F(\lambda,c) < 0$, $-\pi/\theta_F \ge \mu$

Region C: negative profit and positive liquidity

$$\Delta\pi(\lambda,c) < 0$$
, $\theta_F(\lambda,c) > 0$, $-\pi/\theta_F \le \mu$

Figure: Profit-based liquidity cross-subsidization

Determination of μ

The liquidity constraint determines $\mu = \mu(L)$:

$$\int_{\Omega} q(\lambda, c, \mu) \theta_{F}(\lambda, c) dG + L = 0$$

- $\mu(L)=0$: liquidity does not matter for selecting suppliers; selection is solely based on $\Delta\pi(\lambda,c)$
- ho $\mu(L) > 0$: liquidity cross-subsidization, strictly decreases in L
- $\mu(0)$: the liquidity value at L=0, or shadow price of the first marginal unit of liquidity

2. Endogenous liquidity holdings

A monetary approach (Lagos and Wright, 2005)

Day Night

Retail market Walrasian market (benchmark model)

- Day market (the benchmark model)
 - Fiat money is used as a medium of exchange
 - Suppliers must pay for production costs using fiat money
- Night market (Walrasian)
 - Middleman and consumers can "earn" fiat money by producing a "general good"

Discount factor across periods: β

- lacksquare 1 unit of fiat money worth ϕ_t units of general good: $L_t = \phi_t I_t$.
- Assume that suppliers live for one period (for now)

Liquidity holdings

▶ Middleman chooses $I(\equiv L/\phi)$ money to hold:

$$\max_{l \geq 0} \ \left\{ -\phi_{t-1} \mathit{l} + \beta \mathit{V}_t(\mathit{l}) \right\} \ \Rightarrow \ \phi_{t-1} \geq \beta \mathit{V}_t'(\mathit{l})$$

The middleman's value:

$$V_{t}(I) = \left\{ \phi_{t}I + \max_{q(\lambda,c)} \int_{\Omega} q(\lambda,c) \Delta \pi(\lambda,c) dG, \text{ s.t. } \Theta + \phi_{t}I \ge 0 \right\}$$

$$\Rightarrow V'_{t}(I) = \phi_{t} \left(1 + \mu(L) \right)$$

• Euler equation: $\phi_{t+1} \ge \beta \phi_t (1 + \mu(L))$, or equivalently

$$i \geq \mu(L)$$

Proposition (Monetary equilibrium with middleman and finance)

For $i \in (0, \overline{i}]$, there exists a unique monetary equilibrium with middleman' intermediation and finance described by $q(\lambda, c, \mu)$, $f_j(\lambda, c)$, j = M, F, shadow value of liquidity:

$$\mu = \min\{\mu(0), i\},\$$

and middleman's liquidity holdings $L \ge 0$, which is strictly decreasing in $i \in (0, \mu(0))$, satisfying:

$$\begin{cases} \mu(L) = i & \text{if } i < \mu(0); \\ L = 0 & \text{if } i \ge \mu(0). \end{cases}$$

Characterization of monetary equilibrium

- ▶ The liquidity value $\mu = \min\{\mu(0), i\}$ is jointly shaped by
 - ▶ Richness of suppliers' liquidity: $\mu(0)$
 - Cost of outside market liquidity: i
- ightharpoonup As $i \to 0$, middleman finance features $\mu \to 0$
 - ▶ All suppliers with $\pi > 0$ are selected
- As *i* increases from 0 to $\mu(0)$, *L* decreases
- For $i \ge \mu(0)$, middleman holds L = 0
 - Middleman finance solely relies on liquidity from suppliers
 - Insensitive to funding costs

Characterization of monetary equilibrium

The slope of selection curve $(\Delta \pi + i\theta = 0)$ can be positive or negative

- Positively–sloped selection curve:
 - $i < i_0$ (some $i_0 \in (0, \overline{i})$: Profits are relatively more important than liquidity for middleman finance
 - ▶ Hence, upward sloping, just like $\Delta \pi = 0$ curve
- Negatively–sloped selection curve:
 - $i \ge i_0$: Liquidity is relatively more important than profits for middleman finance
 - ► Hence, downward sloping, just like $\theta_F = 0$ curve

Positively-sloped selection curve

Negatively-sloped selection curve

2.1 Matching efficiency and Middleman finance

Effects of changes in matching efficiency m

$$\Delta\pi(\lambda,c) = m\lambda(u-c)/2 - k$$

$$\theta_F(\lambda,c) = (1-m\lambda)(u+c)/2 - c$$

▶ If the selection curve is upward-sloping, middleman finance shrinks as *m* decreases

► If the selection curve is downward-sloping, middleman finance expands as *m* decreases

Proposition (Matching advantage and middleman finance)

- ▶ If the selection curve is upward-sloping ($i < i_0$), then the middleman finance shrinks as m decreases
- ▶ If the selection curve is downward-sloping ($i \ge i_0$), then the middleman finance expands as m decreases

3. Nominal Interest Rate and Welfare

Welfare

Incremental total surplus for middleman fiance:

$$\Delta v(\lambda, c) = m\lambda(u - c) - k.$$

Note

- Whenever middleman profits are positive $\Delta\pi(\lambda,c)=m\lambda(u-c)/2-k>0$, adding finance leads to $\Delta v(\lambda,c)>0$ for any given set of suppliers
- Middleman finance is welfare improving

Figure: Middleman finance is welfare improving

Marginal deviation from i = 0, Uniform distribution

Proposition (Non-zero nominal interest rates)

Suppose $\mu(0) > 0$, and (λ, c) follows a uniform distribution. There exists $m^* > 0$ and $k^* > 0$ such that if $m < m^*$ or $k < k^*$, marginally increasing i from i = 0 improves welfare.

- As *i* increases, finance mode excludes suppliers with positive $\Delta \pi(\lambda, c)$ and includes suppliers with positive $\theta_F(\lambda, c)$
- Overall, trading volume increases when C is sufficiently higher than
- Graphically, if either m or k is smaller, D also becomes smaller

Figure: Marginal suppliers as i increases from i = 0

Figure: Marginal suppliers as i increases from i = 0

Figure: Welfare is non-monotonic in i under uniform distribution of (λ, c)

Figure: Welfare increases in \emph{i} under Beta distributions of $\emph{\lambda}$ and \emph{c}

4. Suppliers' access to outside market liquidity

Suppliers' money holding

- ▶ Discount factor of suppliers: $\beta^s \in (0, \beta]$
- A supplier needs to hold a real balance of $z^s = c$ in the previous night market. It is profitable if

$$\beta^{s} \left[\frac{\lambda(u-c)}{2} + c \right] \ge \frac{\phi}{\phi_{+}} c,$$

or equivalently

$$c < c^s(\lambda, i^s) \equiv \frac{\lambda}{\lambda + 2i^s} u.$$

Figure: Suppliers' money holdings coexist with middleman liquidity program

Proposition

Suppose suppliers can access the money market at an effective interest of $i^s > i$. Then there exists $i < i^s < \overline{i}^s$ such that:

- For $i^s \leq \underline{i}^s$, suppliers with $c \leq c^s(\lambda, i^s)$ hold money for liquidity needs, and middleman finance is inactive
- For $i^s \geq \overline{i}^s$, no supplier holds money, and middleman finance is active
- ► For $i^s \in (\underline{i}^s, \overline{i}^s)$, suppliers with $c \leq c^s(\lambda, i^s)$ holds money while middleman finance is active

Takeaways

- Middleman finance: pools liquidity from suppliers and funds suppliers for liquidity needs.
- Middleman finance features profit-based liquidity cross-subsidization.
- Middleman finance mitigates costs of market liquidity.
- Middleman finance is affected by middleman's matching efficiency.
- Welfare is non-monotonic in nominal interest rates.