

Systèmes d'Exploitation

Didier Verna EPITA

Généralités

Scheduling

Opérations

Communication

Multithreading

Systèmes d'Exploitation Gestion des processus

Didier Verna

didier@lrde.epita.fr http://www.lrde.epita.fr/~didier

Table des matières

Systèmes d'Exploitation

Didier Verna

Généralités

Scheduling

Opérations

Communication

Multithreading

1 Généralités

2 Ordonnancement des processus

3 Opérations sur les processus

4 Communication entre processus

Multithreading

Programme vs. Processus

Systèmes d'Exploitation Didier Verna

Généralités Scheduling

Opérations

Communication

Multithreading

- Un programme est une suite d'instructions (objet statique)
- Un processus est un programme en exécution (objet dynamique : programme + contexte)
- Contexte : Espace d'adresses (exécutable, zone de données, pile), registres (PC, SP), d'autres informations.
- Mode d'exécution
 - Exécution simultanée de copies d'un même programme.
 - Exécution simultanée de la même copie d'un même programme (« réentrance »).
 - Cas intermédiaires : partager seulement le code, les données en lecture seule.

Bloc de contrôle d'un processus (PCB)

Systèmes d'Exploitation Didier Verna

Généralités

Scheduling

Opérations

Communication

Multithreading

Structure de sauvegarde du contexte d'exécution d'un processus (UNIX: « U-Structure »)

Gestion des processus

- État : prêt, en exécution etc.
- Registres : PC, PSW etc.
- ▶ Identité : PID, parent, groupe etc.
- Ordonnancement : priorité, comptabilité etc.

Gestion de la mémoire

Zones d'accès : pointeurs de pile, tas, texte etc.

Gestion des fichiers

- E/S: fichiers ouverts etc.
- Répertoires : répertoire courant, racine etc.
- Identité : utilisateur, groupe etc.

États d'un processus

Un processeur ne peut exécuter qu'un seul processus à la fois

Systèmes d'Exploitation

EPITA

Généralités

Scheduling

Opérations

Communication

Multithreading

Principe de l'ordonnancement

Systèmes d'Exploitation

Généralités

Scheduling

- |------

Communication

Multithreading

Opérations

Le système maintient :

- une table de processus,
- une file d'attente des processus prêts,
- des files d'attente de processus bloqués (ex. par périphérique).

Types d'ordonnanceurs

Systèmes d'Exploitation Didier Verna

LFIIA

Généralités

Scheduling Opérations

Communication

Multithreading

Long terme

Présélection des tâches spoolées sur disque et mise en mémoire (traitement par lots). S'exécute très peu souvent.

Court terme

Sélection des processus à exécuter parmi les processus prêts (en temps partagé). S'exécute très souvent.

Moyen terme

Gestion de la mémoire auxiliaire (en temps partagé).

« Swapping ».

NB: swapping : se servir du disque dur pour stocker les processus à la place de la ram (~ 1000 x plus lent)

Commutation de contexte

Systèmes d'Exploitation Didier Verna

_....

Généralités

Scheduling

Opérations

Communication
Multithreading

Échange des données concernant les processus (PCB) au moment du dispatching.

- Surcharge de travail pour le processeur.
- Vitesse liée à la complexité du système, la quantité de registres, l'existence d'instructions matérielles *etc.*
- Goulot d'étranglement pour les systèmes modernes (Cf. les threads).

Création de processus

Systèmes d'Exploitation Didier Verna

Généralités

Scheduling

Opérations

Communication

Multithreading

- Nature: processus interactifs, tâches de fond (background), démons etc. (UNIX: ps).
- Causes: Initialisation système, création par un autre processus, requête utilisateur etc. (UNIX: fork).
- **Types**: clônage du processus parent, nouvelle tâche (UNIX: exec).

Terminaison de processus

Systèmes d'Exploitation Didier Verna

Généralités

Scheduling Opérations

Communication

Multithreading

■ Terminaison (a)normale volontaire
UNIX:exit.

■ Terminaison anormale involontaire

Bugs : Division par 0, accès mémoire illégal *etc.*). Possibilité de paramétrer le comportement (signaux UNIX).

■ Terminaison normale involontaire UNIX: kill.

Processus Coopératif

Systèmes d'Exploitation Didier Verna

Généralités

Scheduling

Opérations

Communication

Multithreading

Création

- Efficacité : répartition du travail en sous-tâches parallèles
- Modularité : répartition du travail en sous-tâches logiques

Terminaison

- Synchronisation: bloquage et attente de la terminaison du fils (UNIX: wait).
- ► Communication : renvoi d'une valeur de terminaison.
- Exception : zombies.

Hiérarchies de processus

Association permanente entre parent et enfant

Systèmes d'Exploitation Didier Verna

_....

Généralités Scheduling

Opérations

Communication

Multithreading

Windows

Pas de hiérarchie. Le « process handle » peut circuler.

UNIX

- Arborescence sous init.
- Notion de « groupe de processus » (Unix : setpgid). Réception des signaux par groupe.

■ Terminaison en cascade

Un processus ne peut pas survivre à son parent.

Exception : orphelins (orphan). Cf. nohup.

Communication inter-processus aka IPC

Systèmes d'Exploitation Didier Verna

Généralités

Scheduling

Opérations

Communicatio

Multithreading

Contexte

- Les processus coopératifs ont besoin de communiquer
- Solution 1 : mémoire partagée
- Solution 2 : envoi de message

Problématique

- Comment établir une liaison ?
- Combien de processus par liaison?
- Combien de liaison par processus ?
- etc.

Communication directe

Nommage explicite du destinataire ou de l'émetteur

Systèmes d'Exploitation Didier Verna

Généralités

Scheduling Opérations

Communication

Multithreading

Caractéristiques

- Liaison automatique créée par le système
- Une seule paire de processus par liaison
- Liaison uni ou bidirectionnelle

Modes

Liaison symétrique

```
send (P, msq); recv (P, msq);
```

Liaison asymétrique

```
send (P, msg); recv (id, msg);
```

Problèmes

- Nécessité de connaître les noms des processus
- Problème en cas de changement de nom

Communication indirecte

Envoi et réception sur des ports

Systèmes d'Exploitation

Didier Verna EPITA

Généralités

Scheduling Opérations

•

Communicatio

Multithreading

Caractéristiques

- Liaison établie à condition que les processus partagent un même port
- Plus de deux processus par liaison
- Liaison uni ou bidirectionnelle

Mode

▶ send (A, msg); recv (A, msg);

Problèmes

 Réceptions multiples sur un même port (se restreindre à deux processus, limiter les types d'accès en lecture ou écriture etc.)

Bufferisation

Caractérisation de la capacité d'une liaison

Systèmes d'Exploitation Didier Verna

_....

Généralités

Scheduling Opérations

Communication

Multithreading

Modes

- Capacité nulle : Aucun message en attente. Nécessité d'une synchronisation pour échanger des messages (« rendez-vous » / « hand shaking »).
- Capacité limitée : L'émetteur peut être retardé si le buffer est plein.
- Capacité infinie : L'émetteur n'est jamais retardé.

Synchronisation

- Pour des capacités non nulles, la communication est asynchrone (un émetteur ne sait pas si son message est reçu)
- Synchronisation possible par « acquittement » (acknowledgement)
- Synchronisation possible en rendant send bloquant jusqu'à l'arrivée d'un accusé de réception

Cas pathologiques

Systèmes d'Exploitation Didier Verna

Généralités

Scheduling Opérations

Communicatio

Multithreading

Terminaison : P attend (ou envoie) un message de (ou vers) un processus terminé. Le système doit le terminer ou lui notifier le problème.

Messages perdus :

- Vérification sous la responsabilité de l'émetteur
- Renvoi (ou notification à l'émetteur) sous la responsabilité du système
- Détection par temporisation
- Pas de détection
- Messages bruités : (bitflip) idem Détection par contrôle de parité

NB:

Contrôle de parité: xxxx xxx0 ou xxxx xxx1 selon la parité de l'octet

Qu'est-ce que le multithreading?

Systèmes d'Exploitation Didier Verna

21117

Généralités Scheduling Opérations

Communication

Multithreading

Problèmes

- Fournir un parallélisme intra-processus
- Amoindrir le coût de la commutation de contexte

Solution

- ► Thread / LWP (Light Weight Processus) : état, registres (dont PC) et pile. Partage des autres ressources.
- ▶ Tâche / HWP (High Weight Processus) : ensemble de threads. Processus traditionnel = tâche à un seul thread.

Fonctionnement

- Identique à celui des processus : création, terminaison, notion d'état etc.
- Problèmes nouveaux : concurrence d'accès aux ressources partagées (synchronisation) etc.

Threads utilisateur

Systèmes d'Exploitation Didier Verna

_....

Généralités Scheduling Opérations

Communication

Multithreading

Principe

- Implémentés par une bibliothèque en espace utilisateur
- Une table de threads par processus

Avantages

- Utilisable au dessus d'un système non multithreadé
- Commutation de contexte très rapide (pas de « kernel trapping »)
- Algorithmes d'ordonnancement personalisables

Inconvénients

- Besoin d'appels systèmes non bloquants
 Wrappers utilisant select
- Threads monopolisant le CPU yield + requête d'alarme
- L'intérêt des threads réside justement là où il y a souvent bloquage. Mais le noyau est là pour ça!

Threads noyau

Systèmes d'Exploitation Didier Verna

_....

Généralités

Scheduling Opérations

Communication

Multithreading

Principe

- Une table de threads en plus de la table de processus
- Tout appel bloquant est implémenté par appel système

Avantages

- Facilité de conception des applications
- Pas de nécessité de procédures supplémentaires non bloquantes

Inconvénients

- Coût de gestion des threads (recyclage)
- Coût des appels bloquant (interruptions)

Approches hybrides (ex. Solaris 2)

Systèmes d'Exploitation

Didier Verna EPITA

Généralités

Scheduling

Opérations

Communication

Multithreading

Scheduler activation

- « upcall » vers l'ordonnanceur logiciel (userland) quand un thread se (dé)bloque
- Rupture avec le modèle en couches

Transition vers le multithreading Des problèmes nouveaux

Systèmes d'Exploitation Didier Verna

LFIIA

Généralités Scheduling

Opérations

Communication

Multithreading

- Variables globales (programmes ou système)
 - Les interdire
 - Fournir des valeurs locales par thread (ex. errno)
- Signaux : qui les récupère ?
- Réentrance des fonctions (bibliothèques systèmes)
 - mettre des drapeaux d'exclusion mutuelle (attention au parallélisme),
 - réécrire les bibliothèques.