

Modely lineárních systémů

doc. Ing. Petr Blaha, PhD.

Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193

Operátor posunutí

Modely s chybou rovnice

Modely s chybou výstupu

Obecný model

Další modely

Úvod

Operátor posunutí

Úvod

Operátor posunutí

Modely s chybou rovnice

Modely s chybou výstupu

Obecný model

Další modely

Pro operátor posunutí dopředu q platí

$$qu(k) = u(k+1) \tag{1}$$

Pro operátor posunutí dozadu q^{-1} platí

$$q^{-1}u(k) = u(k-1) (2)$$

S jejich pomocí lze psát

$$y(k) = b_1 u(k-1) + \dots + b_{n_b} u(k-n_b) =$$

$$= (b_1 q^{-1} + \dots + b_{n_b} q^{-n_b}) u(k) = B(q^{-1}) u(k)$$
 (3)

Zavádí se z důvodu formálního souhlasu se z-transformací Y(z) = B(z)U(z). V rovnici (3) **NELZE** použít B(z).

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Modely s chybou rovnice

Model s chybou rovnice

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Equation Error Model (EEM)

Jedná se o model ve tvaru diferenční rovnice

$$y(k) + a_1 y(k-1) + \ldots + a_{n_a} y(k-n_a) =$$

$$= b_1 u(k-1) + \ldots + b_{n_b} u(k-n_b) + e(k)$$
 (4)

Bílý šum e(k) sem vstupuje jako chyba do diferenční rovnice, odtud název metody.

Zjednodušený zápis pomocí

$$A(q^{-1}) = 1 + a_1 q^{-1} + a_2 q^{-2} + \dots + a_{n_a} q^{-n_a}$$

$$B(q^{-1}) = b_1 q^{-1} + b_2 q^{-2} + \dots + b_{n_b} q^{-n_b}$$

$$A(q^{-1})y(k) = B(q^{-1})u(k) + e(k)$$
(5)

Lineární regrese

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Zápis pomocí lineární regrese

$$\theta = (a_1 \ a_2 \ \dots \ a_{n_a} \ b_1 \ b_2 \ \dots \ b_{n_b})^T$$

$$\varphi = (-y(k-1) \ \dots \ -y(k-n_a) \ u(k-1) \ \dots \ u(k-n_b))^T$$

$$y(k) = \varphi^{T}(k)\theta + e(k) \tag{6}$$

Odhad výstupu

$$\hat{y}(k|\theta) = \varphi^T(k)\theta \tag{7}$$

V případě, že jsou některé koeficienty známé, dostaneme

$$\hat{y}(k|\theta) = \varphi_1^T(k)\theta_1 + \mu(k) \tag{8}$$

ARX model

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Model se také nazývá ARX, kde AR je autoregresní část $A(q^{-1})y(k)$ a X je část s externím vstupem $B(q^{-1})u(k)$.

V praxi není příliš časté, přesto často používané, protože model vede na lineární regresi.

ARMAX model

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Jedná se o model ve tvaru

$$y(k) + a_1 y(k-1) + \dots + a_{n_a} y(k-n_a) =$$

$$= b_1 u(k-1) + \dots + b_{n_b} u(k-n_b) + e(k) + c_1 e(k-1) +$$

$$+ \dots + c_{n_c} e(k-n_c)$$
 (9)

Zjednodušený zápis pomocí

$$C(q^{-1}) = 1 + c_1 q^{-1} + c_2 q^{-2} + \dots + c_{n_c} q^{-n_c}$$

$$A(q^{-1})y(k) = B(q^{-1})u(k) + C(q^{-1})e(k)$$
(10)

MA znamená vážený průměr (moving average), je dán částí $C(q^{-1})e(k)$.

Schéma

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Blokové schéma ARMAX modelu

$$\theta = \begin{pmatrix} a_1 & \dots & a_{n_a} & b_1 & \dots & b_{n_b} & c_1 & \dots & c_{n_c} \end{pmatrix}^T$$

Pseudolineární regrese

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

 $\mathsf{ARMAX} \,\, \mathsf{model} \,\,$

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Vyjdeme z (10), kde nahradíme e(k) odhadem, tedy chybou predikce $\varepsilon(k|\theta) = y(k) - \hat{y}(k|\theta)$.

$$A(q^{-1})y(k) = B(q^{-1})u(k) + C(q^{-1})[y(k) - \hat{y}(k|\theta)]$$

$$C(q^{-1})\hat{y}(k|\theta) = B(q^{-1})u(k) + [C(q^{-1}) - A(q^{-1})]y(k)$$

$$\hat{y}(k|\theta) = \frac{B(q^{-1})}{C(q^{-1})}u(k) + [1 - \frac{A(q^{-1})}{C(q^{-1})}]y(k)$$

Predikci získáme vyfiltrováním vstupu u(k) a výstupu y(k) filtrem, jehož jmenovatelem je $C(q^{-1})$. Prediktor můžeme popsat také rovnicí

$$\hat{y}(k|\theta) = B(q^{-1})u(k) + [1 - A(q^{-1})]y(k) + [C(q^{-1}) - 1]\varepsilon(k|\theta)$$

Pokračování

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Vektor pozorování

$$\varphi(k,\theta) = (-y(k-1)\dots - y(k-n_a) \ u(k-1)\dots$$
$$\dots u(k-n_b) \ \varepsilon(k-1|\theta)\dots \varepsilon(k-n_c|\theta))^T$$

Odhad se dá zapsat ve tvaru

$$\hat{y}(k|\theta) = \varphi^T(k,\theta)\theta \tag{11}$$

Ikdyž je zde podobnost s lineární regresí, jedná se ve skutečnosti o nelineární regresi, z důvodu nelineárního působení θ ve vektoru $\varphi^T(k,\theta)$. Abychom zdůraznili tuto skutečnost, nazýváme rovnici **pseudolineární regrese** - **PLR**.

Další modely s chybou rovnice

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Místo modelování chyby rovnice jako MA ji můžeme modelovat jako AR. Získáme tak model ARARX

$$A(q^{-1})y(k) = B(q^{-1})u(k) + \frac{1}{D(q^{-1})}e(k)$$
 (12)

kde $D(q^{-1})=1+d_1q^{-1}+d_2q^{-2}+\cdots+d_{n_d}q^{-n_d}$ Ještě obecněji ji můžeme modelovat jako ARMA proces, čímž získáme výsledný model **ARARMAX**

$$A(q^{-1})y(k) = B(q^{-1})u(k) + \frac{C(q^{-1})}{D(q^{-1})}e(k)$$
(13)

S tímto modelem můžeme vytvořit jakýkoliv model s chybou rovnice.

ARARMAX

Úvod

Modely s chybou rovnice

EEM

Lineární regrese

ARX model

ARMAX model

Schéma

PLR

Pokračování

Další modely

ARARMAX

Modely s chybou výstupu

Obecný model

Další modely

Blokové schéma ARARMAX modelu

Společným rysem modelů s chybou rovnice je člen $A(q^{-1})$ ve jmenovateli deterministické i stochastické části.

Modely s chybou rovnice

Modely s chybou výstupu

OEM

Pokračování

PLR

Pokračování

Model Box-Jenkins

Obecný model

Další modely

Modely s chybou výstupu

Model s chybou výstupu

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

OEM

Pokračování

PLR

Pokračování

Model Box-Jenkins

Obecný model

Další modely

Output Error Model (OEM)

$$y(k) = \frac{B(q^{-1})}{F(q^{-1})}u(k) + e(k)$$
(14)

Bílý šum e(k) zde vstupuje na výstup systému (chyba měření), odtud název metody.

w(k) je nezašuměný výstup.

Pokračování

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

OEM

Pokračování

PLR

Pokračování

Model Box-Jenkins

Obecný model

Další modely

Chování modelu popisují rovnice

$$w(k) + f_1 w(k-1) + \dots + f_{n_f} w(k-n_f) =$$

$$= b_1 u(k-1) + \dots + b_{n_b} u(k-n_b) \quad (15)$$

$$y(k) = w(k) + e(k) \tag{16}$$

Model můžeme zapsat jako

$$y(k) = \frac{B(q^{-1})}{F(q^{-1})}u(k) + e(k)$$

kde
$$F(q^{-1}) = 1 + f_1 q^{-1} + f_2 q^{-2} + \dots + f_{n_f} q^{-n_f}$$

Pseudolineární regrese

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

OEM

Pokračování

PLR

Pokračování Model Box-Jenkins

Obecný model

Další modely

Vektor parametrů

$$\theta = (b_1 \quad b_2 \quad \cdots \quad b_{n_b} \quad f_1 \quad f_2 \quad \cdots \quad f_{n_f})$$

Protože w(k) nemůže být pozorováno, je počítáno a proto závisí na θ

$$w(k,\theta) + f_1 w(k-1,\theta) + \dots + f_{n_f} w(k-n_f,\theta) =$$

$$= b_1 u(k-1) + \dots + b_{n_b} u(k-n_b) \quad (17)$$

Odhad výstupu je dán $\hat{y}(k|\theta) = w(k,\theta)$ je generován pouze z minulých vstupů

Pokračování

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

OEM

Pokračování

PLR

Pokračování

Model Box-Jenkins

Obecný model

Další modely

Vektor pozorování

$$\varphi(k,\theta) = (u(k-1)\dots u(k-n_b) - w(k-1,\theta)\dots$$
$$\dots - w(k-n_f,\theta))^T$$

Vzorec pro pseudolineární regresi

$$\hat{y}(k|\theta) = \varphi^{T}(k,\theta)\theta \tag{18}$$

je formálně stejný jako (11) pro ARMAX model.

Model Box-Jenkins

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

OEM

Pokračování

PLR

Pokračování

Model Box-Jenkins

Obecný model

Další modely

Jedná se o zobecnění modelu s chybou výstupu. Porucha zde nevstupuje jako bílý šum, ale obarvená filtrem $\frac{C(q^{-1})}{D(q^{-1})}$

$$y(k) = \frac{B(q^{-1})}{F(q^{-1})}u(k) + \frac{C(q^{-1})}{D(q^{-1})}e(k)$$
(19)

Blokové schéma

Modely s chybou rovnice

Modely s chybou výstupu

Obecný model

Obecná struktura modelu Speciální případy

Další modely

Obecný model

Obecná struktura modelu

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

Obecný model

Obecná struktura modelu

Speciální případy

Další modely

Následující rovnicí lze popsat všechny probrané modely

$$A(q^{-1})y(k) = \frac{B(q^{-1})}{F(q^{-1})}u(k) + \frac{C(q^{-1})}{D(q^{-1})}e(k)$$
 (20)

Většinou je tento model příliš obecný. Některé z polynomů se položí rovny 1.

Další možný zápis zahrnuje dopravní zpoždění

$$A(q^{-1})y(k) = q^{-n_k} \frac{B(q^{-1})}{F(q^{-1})} u(k) + \frac{C(q^{-1})}{D(q^{-1})} e(k)$$
 (21)

Speciální případy

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

Obecný model

Obecná struktura modelu

Speciální případy

Další modely

Použité polynomy	Název modelu
В	FIR (konečná impulsní charakteristika)
AB	ARX
ABC	ARMAX
AC	ARMA
ABD	ARARX
ABCD	ARARMAX
BF	OE (chyba výstupu)
BFCD	BJ (Box-Jenkins)

Modely s chybou rovnice

Modely s chybou výstupu

Obecný model

Další modely

Další typy modelů

Další modely

Další typy modelů

Úvod

Modely s chybou rovnice

Modely s chybou výstupu

Obecný model

Další modely

Další typy modelů

- spojité
- s ortogonálními funkcemi (Laguerre ovy polynomy)
- ve stavovém prostoru
- s rozprostřenými parametry
- vícerozměrové
- s časově proměnnými parametry

