OTIMIZAÇÃO COM RESTRIÇÕES

PROBLEMA
$$f(x)$$
 \leftarrow Função OBJETIVO (FO)

PE PRO-
-CRAMAÇÃO $s.a.$ $h(x) = 0$ \leftarrow RESTRIÇÕES DE IGUALDADE

NÃO LINEAR $g(x) \le 0$ \leftarrow 11 PESIGUALDADE

EXEMPLOS:

1) (PROBLEMA DE PROGRAMAÇÃO CINEAR)

min
$$c^{T}x$$

S.a. $Ax = b$

min
$$\int_{2}^{1} \chi^{T} A \chi + \int_{1}^{T} \chi$$

(A SIMÉTRICA).

s.a.
$$Ax = b$$

 $Cx \le d$

3) min
$$(\chi_1 - 2)^2 + (\chi_2 - 1)^2$$

$$\beta.a.$$
 $\chi_1 + \chi_2 - 2 \leq 0$

$$\chi_1^2 - \chi_2 \leqslant 0$$

$$\chi_1^2 - \chi_2 \leq 0$$

 $\chi^* = (1,1)$ $\nabla g_{\lambda}(1,1)$

NOTAÇÃO:

•
$$\Omega = 3 \times \epsilon R^m$$
; $h(x) = 0$, $g(x) < 0$
 ϵ 0 CONJUNTO VIÁVEC DE PAL.

- · ZE DE É UM PONTO VIÁVEC (PONTO FACTÍVEC).
- · PEFINIÇÕES USLAIS DE MINIMIZADORES LOCAIS/GLOBAIS.

 (SOLUÇÕES ÓTIMAS LOCAIS/GLOBAIS).

OTIMIZAÇÃO IRRESTRITA (min
$$f(x)$$
): $\nabla f(x^*) = 0$.

11

RESTRITA; ADAPTAR $\nabla f(x^*) = 0$...

(CONDIÇÃO NECESSÁRIA DE OTIMALIDADE).

CASO PARTICULAR:

min
$$f(x)$$

s.a. $g_{1}(x) \leq 0$
 $g_{2}(x) \leq 0$
 $g_{3}(x) \leq 0$
 $\nabla g_{1}(x^{*})$
 $\nabla g_{2}(x^{*})$
 $g_{3}(x) \leq 0$
 $g_{3}(x) \leq 0$
 $g_{3}(x) \leq 0$
 $g_{3}(x) \leq 0$

CASO PARTICULAR:

min
$$f(x)$$

s.a. $g_1(x) \leq 0$
 $g_2(x) \leq 0$
 $g_3(x) \leq 0$
 $\nabla g_1(x) \leq 0$
 $\nabla g_2(x^*)$
 $\nabla g_2(x^*)$
 $g_3(x) \leq 0$
 $g_2(x) \leq 0$

* f DECRESCE (LOCALMENTE) NA DIREÇÃO $-\nabla f(\alpha^*)$, DADO QUE $-\nabla f(\alpha^*)$ t' DIREÇÃO DE DESCIDA $\left(-\nabla f(\alpha^*)^T \nabla f(\alpha^*) = -\|\nabla f(\alpha^*)\|^2 \le 0\right)$

* SE CAMINHAMOS NA PIRECTE - DJG+), SAIMOS DO CONJUNTO VIÁTEL []...

-> X* É UM MINIMIZADOR LOCAL ...

* SE CAMINHARMOS EM QUALQUER DIREÇÃO ENTRE $\nabla g_1(z^*)$ E $\nabla g_2(z^*)$, SAIMOS DE Ω . MAS SE CAMINHARMOS EM UMA DIREÇÃO TARA FORA DO CONE FORMADO POR ∇g_1 E ∇g_2 , CONSEGUIMOS DIMINUIR \int COM PONTOS VIÁVEÍS.

OU SEJA1

$$\nabla f(\alpha^{*}) + \mu_{1} \nabla g_{1}(\alpha^{*}) + \mu_{2} \nabla g(\alpha^{*}) + \mu_{3} \nabla g_{5}(\alpha^{*}) = 0,$$

$$\mu_{1} \geq 0, \quad \mu_{2} \geq 0, \quad \mu_{3} \geq 0,$$

$$\mu_{1} g_{1}(\alpha^{*}) = 0, \quad \mu_{2} g_{2}(\alpha^{*}) = 0, \quad \mu_{3} g_{3}(\alpha^{*}) = 0.$$

$$(*)$$

NA FIGURA,
$$g_1(x^*) = g_2(x^*) = 0$$
 (PARTICIPAM DA DESCRICAD

DE x^*) E $g_3(x^*) < 0$ (NA) DARTICIPA).

$$I(x^*) = \frac{1}{3}i$$
; $g_i(x^*) = 0$?: conjunto pos indices

This restrictes the Design

Attives an x^* .

(*) PODE SER ESCRITO COMO:

$$\left\{ \begin{array}{l} \nabla f(x^*) + \sum_{i=1}^{p} \mu_i \ \nabla g_i(x^*) = 0 \\ \\ \mu \geq 0 \\ \\ \mu_i \ g_i(x^*) = 0 \end{array} \right. \ \, \forall \ i \qquad \left. \right\} \ \, \text{ComplementariDADE} \ .$$

01/

$$\begin{cases} \nabla f(x^*) + \sum_{i \in T(x^*)} \mu_i \nabla g_i(x^*) = 0 \\ \mu_i \ge 0, & i \in T(x^*) \end{cases}$$

$$M=2$$

Ph(xx) 2 **

$$h(x) = 0$$

$$-\nabla f(a^*) = \lambda \nabla h(a^*), \quad \lambda \in \mathbb{R}$$

$$m=3$$

$$\frac{\nabla h_{1}(\alpha^{*})}{2} \frac{\nabla h_{1}(\alpha^{*})}{h_{2}(\alpha)} = 0$$

$$\frac{\nabla h_{2}(\alpha^{*})}{2} \frac{h_{3}(\alpha)}{h_{4}(\alpha)} = 0$$

$$\frac{\nabla h_{1}(\alpha^{*})}{2} \frac{\nabla h_{1}(\alpha^{*})}{\partial x} \in \nabla h_{2}(\alpha^{*})$$

$$-\nabla f(x^*) = \lambda_1 \nabla h_1(x^*) + \lambda_2 \nabla h_2(x^*), \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

OUNTANDO TUDO...

$$\left\{
\nabla f(\alpha^*) + \sum_{i=1}^{m} \lambda_i \nabla h_i(\alpha^*) + \sum_{j=1}^{p} \mu_j \nabla g_j(\alpha^*) = 0 \right.$$

$$\left\{
\mu \geqslant 0 \right.$$

$$\mu_j g_j(\alpha^*) = 0$$

$$\left\{
\forall j
\right.$$

À E M SÃO OS MULTIPLICADORES DE LAGRANCE.

ESSAS SAU AS CONDIÇÕES DE KARUSH-KUHN-TUCKER (KKT)

OBS: QUANDO NÃO HÁ RESTRIÇÕES, AS CONDIÇÕES KKT SE REDUZEM À $\nabla f(x^*) = 0$.

EXEMPLO: min
$$(x_1 - 2)^2 + (x_2 - 1)^2$$
 (f)

S.a. $x_1 + x_2 - 2 \le 0$ (g₁)

 $x_1^2 - x_2 \le 0$ (g₂)

KKT:

$$\begin{bmatrix} 2(x_{1}-2) \\ 2(x_{2}-1) \end{bmatrix} + \mu_{1} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \mu_{2} \begin{bmatrix} 2x_{1} \\ -1 \end{bmatrix} = 0$$

$$(1)$$

$$\mu_{*} > 0$$
, $\mu_{2} > 0$ (2)

(2)
$$\in$$
 (3) VALEM. DE (1), OBTEMOS $X = (2, 1)$.

$$P_1 = 0$$
, $P_2 > 0$.

$$\frac{\text{CASO} \quad 3: \quad \mu_{A} > 0, \quad \mu_{A} = 0}{\left(\text{VAI DAR ERRADO} : \left(\text{FASA!} \right) \right)}$$

ESSE CASO ADMITE A SOLUÇÃO Z#=(1,1).

CONPICTES DE KARUSH-KUHN-TUCKER (KKT) (CONTINUAÇÃO).

MINIMIZAÇÃO IRRESTRITA: min f(x).

$$\rightarrow \chi^* \xi' MINIMIZADOR \implies \nabla f(\chi^*) = 0$$
.

$$\rightarrow \nabla f(x^*) = 0 \Rightarrow \chi^* \in MinimizATOR.$$

$$(P. \in \times., f(x) = -x^{2}, x^{*} = 0).$$

$$\rightarrow \mathcal{L} = \begin{cases} \mathcal{L} & \text{CONVEXA} \\ \nabla \mathcal{L}(\chi^*) = 0 \Rightarrow \chi^* \in \text{MINIMIZATOR}. \end{cases}$$

OBJETIVO: VERIFICAR ESSAS AFIRMAÇÕES PARA OTIMIZAÇÃO RESTRITA (KKT).

min
$$f(x)$$

s.a. $h(x)=0$
 $g(x) \leq 0$.

 $\chi^* \in KKT$ SE $\in VIÁVEC$ $(h(\chi^*)=0, g(\chi^*) \leq 0)$
 E SE EXISTEM $\mu \in R^P \in \lambda \in R^m$ This QUE
$$\begin{cases} \nabla f(\chi^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\chi^*) + \sum_{j=1}^p \mu_j \nabla g_j(\chi^*) = 0 \\ \mu_j \geqslant 0, \forall j \end{cases}$$

$$\mu_j g_j(\chi^*) = 0, \forall j$$

SE Z* É MINIMIZATOR DE PUL, ENTAD X* É KKT ???

EXEMPLO 1: min x $s.a. x^2 \leq 0$.

 $\chi^* = 0$ é o único minimizator, PADO QUE É O ÚNICO PONTO VIÁVEL.

 $\frac{KKT}{}: \qquad 1 + \mu 2x = 0 \quad , \quad \mu > 0 \quad , \quad \mu x^2 = 0 \quad .$

PARA X*=0, A PRIMEIRA EQUAÇÃO NÃO VALE PARA
QUALQUER M30. OU SEJA, X*=0 NÃO E KKT.

RESPOSTA: NAO

O QUE FALTA PARA χ^* SER KKT SEMPRE ?

NO EXEMPCO, A PERIVAPA DA RESTRIÇÃO $g(\chi) = \chi^*$ É NULA

EM χ^* ...

O PROBLEMA É QUE "OS GRADIENTES DAS RESTRIÇÕES h(z) = 0 E DAS RESTRIÇÕES DE DESIGNANDADE $g_j(z) \le 0$ ATIVAS EM $x^* (g_j(z^*) = 0)$ SÃO $L \cdot D$.

EXEMPLO 2: min 7,

 $\beta.o. \quad \chi_2 - \chi_1^3 \leq 0$ $-\chi_2 - \chi_1^3 \leq 0$

 $\chi_2 - \chi_1^3 \leq 0$ REGIÃO VIÁVEL -7fG+) $-\chi_{2}-\chi_{3}^{3} \leq 0$

$$\chi^* = (0,0)$$
 E 0 MINIMIZADOR.

$$g_{2}(0,0)=0$$
 $g_{1} \in g_{2} \text{ SAD ATIVAS EM (0,0)}.$

$$\nabla f(o,0) + \mu_1 \nabla g_1(o,0) + \mu_2 \nabla g_2(o,0) = 0 , \quad \mu_1, \mu_2 \geq 0$$

$$\mu_1 g_1(o,0) = \mu_2 g_2(o,0) = 0$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \mu_{1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \mu_{2} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} , \quad \mu_{1}, \mu_{2} \geqslant 0$$

$$\stackrel{\cancel{E}}{\in} \text{ imPossiveL} \Longrightarrow \chi^{\cancel{E}} = (0,0) \quad NAD \stackrel{\cancel{E}}{\in} \text{ KKT}.$$

DEFINICAD: UM PONTO VIÁVEL X* É REGULAR SE OS CRAPIENTES

 $\nabla h_i(\alpha^*)$, $\forall i$ \in $\nabla g_j(\alpha^*)$, $\forall j$ $\forall AL$ QLE $g_j(\alpha^*)=0$ $\leq AD$ $\angle .I.$.

TEOREMA: SEJA X* UM MINIMIZADOR DE PNL. SE X* É
REGULAR, ENTAD É X* É KKT.

(MIN. + REGULARIDATE => KKT)

OBS: É POSSÍVEL ENFRAQUECER A HIPOTESE PE REGULARIDADE.

EXEMPCO: min
$$(\chi_1 - 1)^2 + (\chi_2 - 2)^2$$

$$8.a. \quad \chi_1 + \chi_2 - 2 \leq 0$$

$$\chi_1^2 - \chi_2 \leq 0$$

$$\begin{bmatrix} -2 \\ 0 \end{bmatrix} + \mu_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \mu_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 0 , \mu_1, \mu_2 \gg 0$$

$$\mu_{A}\left(\chi_{A}^{+}+\chi_{2}^{+}-2\right)=0, \quad \mu_{2}\left(\left(\chi_{A}^{+}\right)^{2}-\chi_{2}^{+}\right)=0.$$

A SOLUÇÃO DE
$$(*)$$
 $\not\in$ $y_n = \frac{2}{3}$, $y_n = \frac{2}{3}$.

OBSERVE QUE OS GRADIENTES
$$\nabla g_n(x^*) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in \nabla g_n(x^*) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 SAD L.I.'S $(g_n \in g_2 \text{ SAD ATIVAS EM } x^*)$

$$\nabla_{g_2}(\chi^+) = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad SAD \quad \angle .I. S \quad \left(g_1 \notin g_2 \quad SAD \quad ATIVAS \notin \chi^+ \right)$$

KKT & CONVEXIDADE

PNL: min f(x)8.a. h(x)=0 $g(x) \leq 0$

PNL CONVEXO: JE 9; SÃO CONVEXAS,
h: SÃO LINEARES

TEOREMA (KKT É SUFICIENTE PARA OTIMALIDADE EM PROBLEMAS CONLEXOS)

SEJA UN PNL CONVEXO. SE Z* É KKT ENTAD Z* É UN MINIMIZADOR (GLOBAL).

iDEIA DA PROVA (EXERCÍCIO).

$$\nabla \psi(x^*) + \sum_{i=1}^{m} \lambda_i \nabla h_i(x^*) + \sum_{j=1}^{m} \mu_j \nabla g_j(x^*) = 0 , (*)$$

$$\mu_{j} \gg 0$$
, $\forall j$, ε $\mu_{j} g_{j}(x^{*}) = 0$, $\forall j$.

- 2) MULTIPLIQUE POR $(x-x^*)$, ONDE $x \in un$ PONTO VIÁVE (QUALQUER.
- 3) USE O FATO QUE $3(x)-3(x^*)$ > $\nabla_3(x^*)^{\mathsf{T}}(x-x^*)$ QUANDO 3 & CONVEXA.
- 4) USE A VIABILIDATE DE X E X* PARA CONCLUIR QUE f(x) > f(x*)

Pl: min
$$\sqrt{x}$$

s.a. $Ax-b=0$
 $Cz-d \leq 0$

$$\frac{KKT}{\mu} = 0$$

$$\mu > 0$$

$$\mu^{T}((\chi - d) = 0)$$

ESSE SISTEMA KKT É RELATIVAMENTE SIMPLES. O ÚNICO COMPLICADOR É A CONDIÇÃO $\mu^{T}(Cx-d)=0$.

DBS.: SE NÃO HÁ DESIGNANDADES,

min $v^{T}z$ s.a. Az = b,

ENTAD KKT É MLITO SIMPLES:

 $N + A^T \lambda = 0$ (UM SISTEMA LINEAR EM λ).

INSERINDO FOLGAS, PL PODE SER ESCRITO COMO

min $v^{\dagger}x$ s.a. Ax = b, x > 0.

KKT:
$$\begin{cases} w + A^{T} \lambda - \mu = 0 \\ \mu > 0 \\ \mu^{T} x = 0 \end{cases}$$

$$(Ax = b, x > 0)$$

$$M = w + A^{T} \lambda > 0$$

$$M^{T} x = 0$$

$$(A + A^{T} \lambda)^{T} x = 0$$

MÉTOPO INSPIRADO NESSE SISTEMA KKT: MÉTOPO DOS PONTOS INTERIORES (CPLEX, GUROBI ET (...)