Matemática Discreta

Ano Lectivo 2014/2015

Folha de exercícios nº6 Recorrência e funções geradoras

- 1. Uma colónia de morcegos é contada a cada dois meses. As quatro primeiras contagens são 1.200, 1.800, 2.700 e 4.050. Se esta taxa de crescimento continuar, qual será a 6ª contagem? Escreva e resolva uma relação de recorrência que modele este problema.
- 2. Uma experiência é executada lançando-se um dado até que apareçam 2 números pares. Determine uma relação de recorrência para o número de experiências que terminam no *n*-ésimo lançamento ou antes.
- 3. Seja a_n o número de sequências (x_1, \ldots, x_n) de comprimento n tais que $x_i \in \{0, 1, 2\}$ para todo $1 \le i \le n$, e que não contêm dois zeros consecutivos.
 - (a) Determine $a_1 \in a_2$.
 - (b) Defina a sucessão $(a_n)_n$ por uma relação de recorrência.
- 4. Suponha que um par de coelhos tem o primeiro par de descendentes após dois meses de estarem juntos e que, posteriormente, no final de cada mês têm mais um par de descendentes. Começando com um par de coelhos, deduza uma relação de recorrência para o número c_n de pares de coelhos que nasceram nos primeiros n meses.
- 5. Resolva as seguintes relações de recorrência:
 - (a) $a_n = a_{n-1} + 12n^2$, $n \ge 1$, com $a_0 = 5$;
 - (b) $a_n 4a_{n-1} + 4a_{n-2} = 1 + n + 2^n + 3^n, n \ge 2$, com $a_0 = 0$ e $a_1 = 1$;
 - (c) $a_{n+2} = a_{n+1} a_n$, $n \ge 0$, com $a_0 = 0$, $a_1 = 1$.
- 6. Seja $p(x) = 2x^2 + x$. Determine uma fórmula fechada para o cálculo da soma $S_n = \sum_{i=1}^n p(i)$ começando por estabelecer uma relação de recorrência apropriada.
- 7. Determine as constantes p, q e r na relação de recorrência $a_n + pa_{n-1} + qa_{n-2} = r$, $n \ge 2$, sabendo que a solução geral é da forma $a_n = c_1 2^n + c_2 3^n + 4$.
- 8. Sendo p_n o número de partições de um conjunto de cardinalidade n em dois subconjuntos não vazios, deduza uma relação de recorrência para p_n e encontre a respectiva solução.
- 9. Usando transformações adequadas, resolva as seguintes relações de recorrência não lineares:
 - (a) $a_n = na_{n-1} + n!$, com condição inicial $a_0 = 2$;
 - (b) $na_n (5n 5)a_{n-1} = 0$, com condição inicial $a_1 = 10$;
 - (c) $a_n^2 + a_{n-2}^2 = 3$, para $n \ge 2$, $a_0 = 0$, $a_1 = 1$ (assume-se $a_n > 0$, $\forall n \in \mathbb{N}_0$);
 - (d) $a_n^3 = a_{n-1}^2, n \ge 2, a_1 = 2$ (assume-se que $a_n \ge 0, \forall n \in \mathbb{N}$);
 - (e) $a_n = 2(a_{n-1} + 2(a_{n-2} + \cdots + 2(a_1 + 2a_0)^2 \cdots)^2)^2$, com condição inicial $a_0 = 2$.
- 10. Seja h(k,n) o número de possibilidades de colocação de k pacientes numa sala de espera com n cadeiras em linha, de tal forma que os pacientes não se sentam em cadeiras vizinhas, deduza uma relação de recorrência para h(k,n).
- 11. Defina a função geradora para a sucessão $(a_n)_{n\in\mathbb{N}}$, onde a_n é o número de soluções inteiras da equação $x_1+x_2+x_3+x_4=n$, nos casos em que

- (a) $0 \le x_1 \le 5$, $0 \le x_2 \le 3$, $2 \le x_3 \le 8$, $0 \le x_4 \le 4$;
- (b) $0 \le x_i \le 8$, para $i = 1, 2, 3, 4, x_1$ é par e x_2 é impara
- 12. (a) Use uma função geradora para modelar o número de diferentes resultados numa eleição para eleger o delegado de uma turma com 27 alunos, dos quais 4 são candidatos? Qual é o coeficiente dessa função geradora que nos dá a resposta?
 - (b) Suponha que cada aluno que é candidato vota em si próprio. Neste caso qual é a função geradora e o coeficiente desejado?
 - (c) Suponha que nenhum candidato recebe a maioria dos votos. Repita a alínea (a).
- 13. Calcule o número de possibilidades de troca de 50 euros em notas de 20 euros, 10 euros e 5 euros e moedas de 2 euros e 1 euro, sabendo que dispõe no máximo de cinco moedas de 1 euro, cinco moedas de 2 euros e cinco notas de 5 euros (não havendo qualquer limitação em relação às restantes notas).
- 14. Determine o número de soluções inteiras não negativas da equação

$$3a + 2b + 4c + 2d = r$$
.

- 15. Resolva as equações seguintes utilizando o método da função geradora:
 - (a) $a_n = na_{n-1}, n \ge 2$, com condição inicial $a_1 = 1$;
 - (b) $a_n = a_{n-1} + n, n \ge 1$, com condição inicial $a_0 = 1$.
- 16. Determine as funções geradoras das seguintes sucessões:
 - (a) $b_n = nk^n$, para $n \in \mathbb{N}_0$;
 - (b) $c_n = k + 2k^2 + 3k^3 + \dots + nk^n$, para $n \in \mathbb{N}_0$;
 - (c) $a_n = C_1 a_{n-1} + C_2 a_{n-2}$, com $a_0 = -1$ e $a_1 = 2$, onde $a_1 = 2$, onde $a_2 = 2$.
- 17. Determine as sucessões associadas às seguintes funções geradoras:
 - (a) $g(x) = (2+x)^4$;
 - (b) $g(x) = \frac{2}{(1-x)(1-2x)}$.
- 18. Considere a relação de recorrência $u_n 2u_{n-1} = 4^n$, $n \ge 1$, $u_0 = 1$.
 - (a) Mostre que a função geradora da sucessão (u_n) é $f(x) = \frac{1}{(1-2x)(1-4x)}$
 - (b) Determine uma fórmula não recursiva para u_n , $n \ge 0$.
- 19. (a) Escreva a função geradora ordinária $a_0 + a_1x + a_2x^2 + \cdots$ como uma função racional para a sucessão dos números naturais $a_n = n$.
 - (b) Mostre que a função racional $f(x) = \frac{x(x+1)}{(1-x)^3}$ é a função geradora da sucessão definida por $a_n = n^2$.
 - (c) Seja $(a_n)_{n\in\mathbb{N}_0}$ definida por $a_0=0, a_1=\alpha$ e

$$a_n = a_{n-2} - n^2, \ n \ge 2.$$

Obtenha a função geradora ordinária desta sucessão como soma de funções racionais. Use as respostas das questões anteriores.

- (d) Obtenha uma fórmula fechada para a sucessão dada na alínea anterior.
- 20. Resolva a equação de recorrência $a_n = 6a_{n-1} 9a_{n-2} + 4$, com $a_0 = 1$ e $a_1 = 4$. (2º Teste e Exame Final, 28 de Junho de 2013.)
- 21. Suponha que uma equação de recorrência linear homogénea tem como raízes características 1 e 3 com multiplicidade um, e 2 com multiplicidade dois.

2

- (a) Explicite a equação de recorrência.
- (b) Determine a solução geral desta equação de recorrência linear homogénea.

(Exame de Recurso, 16 de Julho de 2013.)

22. Resolva a equação de recorrência $a_n=3a_{n-1}$, para $n\geq 1$, com condição inicial $a_0=2$, utilizando uma função geradora.

(Exame de Recurso, 16 de Julho de 2013.)

23. Resolva o sistema de equações de recorrência

$$\begin{cases} a_n = 3a_{n-1} + 2b_{n-1} \\ b_n = a_{n-1} + b_{n-1} \end{cases}$$

com condições iniciais $a_0 = b_0 = 1$.

24. Determine, em função de n, o termo geral da sucessão $(u_n)_{n\geq 0}$, definida recursivamente por

$$u_n = u_{n-1} + n^2$$
, para todo $n \ge 1$, com $u_0 = 2$.

25. Utilizando o método da função geradora da sucessão $(u_n)_n$, calcule u_n em função de n, sabendo que

$$u_{n+1} = 3u_n - 1$$
, para todo $n \ge 0$, com $u_0 = 1$.

26. Sabendo que a função geradora ordinária da sucessão $(a_n)_n$ é definida por $f(x) = \frac{x+1}{(x-1)^3}$, determine a_n em função de n.