UNIVERSITY OF TORONTO FACULTY OF ARTS AND SCIENCES AUGUST 2013 EXAMINATIONS MAT301H1Y - GROUPS & SYMMETRIES

INSTRUCTOR: PATRICK ROBINSON DURATION: 3 HOURS NO AIDS ALLOWED

Total: 90 points, 6 questions + 1 Bonus, 2 pages

(1) [7 points] Consider the groups $G = (\mathbb{R}, +)$, the real numbers under addition, and $H = (\mathbb{R}^+, \times)$, the positive real numbers under multiplication. Prove that G and H are isomorphic.

Hint: Think back to previous math courses, and maps you know taking addition to multiplication, or vice versa.

- (2)(a) [7 points] Let $G = \{x \in \mathbb{R} \mid x \neq (-1)\}$. For any $x, y \in G$, define $x \star y = x + y + xy$, using regular addition and multiplication of real numbers. Prove or disprove that (G, \star) is a group.
- (b) [5 points] Let H, K be any groups such that H is simple (i.e.: the only normal subgroups of H are $\{e\}$ and H). Let $\varphi: H \to K$ be a nontrivial homomorphism of groups. Prove that φ is injective.
- (3) Consider \mathbb{R}^n as the set of $n \times 1$ column vectors of real numbers. Let $GL(n,\mathbb{R})$ act on \mathbb{R}^n via left matrix multiplication.
 - (a) [8 points] Determine the orbits of the action.
- (b) [10 points] Pick a point in each orbit, and determine what its stabiliser is, up to isomorphism. (note: try to pick the points cleverly to make your analysis much easier)
 - (c) [4 points] Is this group action free? Is it transitive? Justify.
- (4) Let $G = \mathbb{R}^* \oplus \mathbb{R}^*$, where \mathbb{R}^* is the nonzero real numbers as a group under multiplication. Fix two integers $n, m \in \mathbb{Z}$, and define a map $\varphi : G \to \mathbb{R}^*$ by $\varphi(x, y) = x^m y^n$
 - (a) [8 points] Prove that φ is an homomorphism.
- (b) [12 points] Let $H = \{(x, x^2) \mid x \in \mathbb{R}^*\} \subset G$. Prove H is a subgroup of G, and prove G/H is isomorphic to \mathbb{R}^* . (Hint: the first isomorphism theorem is supremely useful here)

(5)(a) [6 points] Find an element of order 20 in A_{11}

- (b) [7 points] Let $\alpha, \beta \in S_{10}$ be $\alpha = (1,3,5,7,9)(2,4,6)(8,10)$ (we use commas to separate the elements since we have some with 2 digits), $\beta = (1,5,6)(2,5,4)(3,5,9)$. Compute $|\alpha^2\beta^2|$, and $|\beta\alpha\beta^{-1}|$
- (c) [8 points] Using the same α as in part (b), determine all the m such that α^m is a 5-cycle. (Hint: don't use brute force)
- (6) [8 points] For $(8) \leq \mathbb{Z}$, $(48) \leq \mathbb{Z}$, prove (8)/(48) is isomorphic to \mathbb{Z}_6 .

BONUS QUESTION: [7 marks]

Definition 1. A groupoid is an object comprised of two sets, and a number of maps. The first set X is called the *object space*; the second set Γ , which is called the *set of arrows*. A way to visualise this is to imagine the objects X are a bunch of points sitting in the plane, and Γ is a set of arrows between them (note: not necessarily all possible arrows). We have the following structure maps:

(1) Two maps, $s: \Gamma \to X$, $t: \Gamma \to X$, called the *source* and *target* maps, respectively. If we're imagining arrows between points, then for some arrow $g \in \Gamma$ with s(g) = x, t(g) = y for $x, y \in X$, then g is an arrow from x to y:

$$\bullet_x \xrightarrow{g} \bullet_y$$

- (2) A product map, defined for elements $g, h \in G$ such that s(g) = t(h) (if two elements satisfy this, we say they are composable). The product takes the elements (g, h) and assigns another element $g \circ h \in \Gamma$, satisfying the conditions
 - $s(g \circ h) = s(h), t(g \circ h) = t(g)$
 - The map is associative: if $g, h, k \in \Gamma$ such that s(g) = t(h), and s(h) = t(k), we have $g \circ (h \circ k) = (g \circ h) \circ k$.

A way to visualise this product is $\bullet_x \xrightarrow{h} \bullet_y \xrightarrow{g} \bullet_z$, so $g \circ h$ is the arrow you get from x to z by composing these arrows.

We also have two important kinds of arrows: for every $x \in X$, there is an element of Γ called the *identity at x*, denoted 1_x or id_x which satisfies $s(1_x) = t(1_x) = x$, and $g \circ 1_x = g$, $1_x \circ h = h$ for all $g, h \in \Gamma$ for which these products are defined. For any arrow $g \in G$ with s(g) = x, t(g) = y, we also have the *inverse* arrow g^{-1} which goes from y to x, such that $g^{-1} \circ g = 1_x$, $g \circ g^{-1} = 1_y$.

An important thing to note is that if two arrows share the same sources and targets, it does not mean they are the same arrow.

QUESTION: Let Γ be a groupoid over X. Fix some point $x \in X$. Let

$$G_x = \{ q \in \Gamma \mid s(q) = t(q) = x \}$$

all of the arrows which start at x and end at x. Prove that G_x is a group. (note: not many part marks will be given for incomplete solutions)