Math 635 Lecture 19

Thomas Cohn

3/5/21

The Variantional Point of View of Geodesics

This material is covered in Do Carmo, chapter 9 §2, and in parts of Lee Riemannian Manifolds, chapters 6 and 10.

Throughout these notes, let M be a Riemannian manifold, $p, q \in M$, and a > 0.

Defn: $\Omega_{pq}^a = \{c : [0,a] \to M \mid c \text{ is continuous and piecewise } C^1, c(0) = p, c(a) = q\}$. In this case, piecewise C^1 means $\forall c$, there's a partition $0 = t_0 < t_1 < \dots < t_N = a$ such that $\forall i, c|_{[t_i,t_{i+1}]}$ is C^1 . In other words, c is C^1 on (t_i,t_{i+1}) , and the one sided limits

$$\lim_{t \to t_i^-} \frac{dc}{dt} \quad \lim_{t \to t_{i+1}^+} \frac{dc}{dt}$$

exist.

Defn: We define two functionals on this space.

$$c \mapsto L(c) = \int_0^a \left| \left| \frac{dc}{dt} \right| \right| dt$$

1. From Lee: The length functional $L:\Omega^a_{pq}\to\mathbb{R}$ $c\mapsto L(c)=\int_0^a\left|\left|\frac{dc}{dt}\right|\right|\,dt$ Any minima of L, if one exists, corresponds to shortest paths between p and q.

2. From Do Carmo: The energy functional $E:\Omega^a_{pq}\to\mathbb{R}$

$$c \mapsto E(c) = \frac{1}{2} \int_0^a \left| \left| \frac{dc}{dt} \right| \right|^2 dt$$

Lemma: $\forall c \in \Omega_{na}^a$, $L(c)^2 \leq 2aE(c)$, with equality iff $||\dot{c}||$ is constant.

Proof: Use the Cauchy-Shwarz inequality for functions on [0,a]: If $f,g:[0,1]\to\mathbb{R}$, then

$$\left(\int_{0}^{a} fg \, dt\right)^{2} \leq \left(\int_{0}^{a} f^{2} \, dt\right) \left(\int_{0}^{a} g^{2} \, dt\right)$$

Given a path c, apply Cauchy-Schwarz to $f = \left| \left| \frac{dc}{dt} \right| \right|$, with $g \equiv 1$. \square

Cor: Suppose $\gamma \in \Omega_{pq}^a$ is a minimizing geodesic. Then $\forall c \in \Omega_{pq}^a$, $E(\gamma) \leq E(c)$, with equality iff c is a minimizing geodesic.

Proof: $||\dot{\gamma}||$ is constant, so $E(\gamma) = \frac{1}{2a}L(\gamma)^2 \le \frac{1}{2a}L(c)^2 \le E(c)$. Thus, if $E(\gamma) = E(c)$, then everything must be equal, so $L(\gamma) = L(c)$, so c is a minimizing path, so c is a geodesic. \square

We want to look for minimizers of E. This is a hard problem, and in fact, the may not exist.

The idea of the calculus of variations is to differentiate E, and then look for critical points. This is crazy, because Ω_{pq}^a is not a manifold. But one can still define variations of $\gamma \in \Omega_{pq}^a$. Colloquially, these are smooth paths in Ω_{pq}^a that pass through γ .

Defn: Let $\gamma \in \Omega_{pq}^a$. A proper variation (or pinned variation) of γ is

$$f: (-\varepsilon, \varepsilon) \times [0, a] \to M$$

such that

- (i) $f(0,t) = \gamma(t)$
- (ii) There is a partition $0 = t_0 < t_1 < \dots < t_N = a$ such that $\forall i, \ f|_{(-\varepsilon,\varepsilon) \times [t_i,t_{i+1}]}$ is C^1 . (iii) $\forall s, \ f(s,0) = p$ and f(s,a) = q. That is, $\forall s \in (-\varepsilon,\varepsilon), \ (t \mapsto f(s,t)) \in \Omega^a_{pq}$. In this sense, $s \mapsto (t \mapsto f(s,t))$ is a "smooth" curve in Ω_{pq}^a , passing through γ at t=0.

Conditions (i) and (ii) are what make it a variation; condition (iii) makes it proper/pinned.

Defn: For f a proper variation of γ , $\forall t$, $V(t) = \partial_s f(0,t) \in T_{\gamma(t)}M$ is the <u>variation field</u> of the variation. So $V \in \Gamma_{\gamma}(TM)$.

Observe: Because the variation is proper, we must have V(0) = 0.

Lemma: Given any $V \in \Gamma_{\gamma}(TM)$ s.t. V(0) = 0, V(a) = 0, there exists a proper variation f whose variation field is V.

Proof: Let $f(s,t) = \exp_{\gamma(t)}(sV(t))$. We need $|s| < \varepsilon$ to be nonzero, but because of the compactness of the curve, we can construct a finite subcover, so that |s| > 0. \square

Idea: Differentiate the energy E w.r.t. a given variation of $\gamma \in \Omega^a_{pq}$. Computation: Let f as above, a proper variation of $\gamma \in \Omega^a_{pq}$. Define

$$E(s_0) = \frac{1}{2} \int_{0}^{a} ||\partial_t f(s, t)||^2 dt = E(f|_{s=s_0})$$

Then compute

$$\frac{dE}{ds} = \frac{1}{2} \int_{0}^{a} \frac{d}{ds} \left\langle \partial_{t} f, \partial_{t} f \right\rangle dt$$

$$= \frac{1}{2} \int_{0}^{a} 2 \left\langle \frac{D}{ds} \partial_{t} f, \partial_{t} f \right\rangle dt$$

$$= \int_{0}^{a} \left\langle \frac{D}{dt} \partial_{s} f, \partial_{t} f \right\rangle dt$$
(integration by parts)
$$= \left[\left\langle \partial_{s} f, \partial_{t} f \right\rangle \right]_{t=0}^{t=a} - \int_{0}^{a} \left\langle \partial_{s} f, \frac{D}{dt}, \partial_{t} f \right\rangle dt$$

Where the integration by parts succeeds because

$$\frac{d}{dt} \left\langle \partial_s f, \partial_t f \right\rangle = \left\langle \frac{D}{dt} \partial_s f, \partial_t f \right\rangle + \left\langle \partial_s f, \frac{D}{dt} \partial_t f \right\rangle$$

Note that we have to adjust the term outside of the integral due to corners, but the boundary terms will all appear in a similar form. We conclude with

$$\frac{d}{ds}E(0) = -\int_{0}^{ds} \left\langle \underbrace{V(t)}_{\partial_{s}f|_{s=0}}, \frac{D}{dt} \frac{d\gamma}{dt} \right\rangle dt - \underbrace{\sum_{i} \left\langle V(t_{i}), \underbrace{\Delta\dot{\gamma}(t_{i})}_{=\frac{d\gamma}{dt}(t_{i}^{+}) - \frac{d\gamma}{dt}(t_{i}^{-})}_{\text{corner terms}} \right\rangle}_{\text{corner terms}}$$

which is the first variation formula.

Now, choose

$$V(t) = \begin{cases} \frac{D}{dt} \frac{d\gamma}{dt} & t \in (t_i, t_{i+1}) \text{ for some } i \\ V(t_i) & t = t_i \text{ for some } i \end{cases}$$

We conclude that if $\gamma \in \Omega_{pq}^a$ is a critical point of E in the sense that for all variations f, E'(0) = 0, then γ is a geodesic!

Next time, we'll use the second derivative test. This is where curvature will appear!