- Пусть m(буква открытого текста) это Случайная величина распределенная на ${\mathcal M}$
- Пусть с(буква шифр текста) это Случайная величина распределенная на $\mathcal C$
- \bullet Пусть k(буква ключа) это Случайная величина распределенная на ${\mathcal K}$

Лемма 1

Случайная величина $\mathcal X$ распределенная на множестве A, Случайная величина $\mathcal Y$ распределенная на множестве B. $f:B\to C$ тогда случайная величина $\mathcal Z=\mathrm{f}(\mathcal Y)$ распределенная на множестве C. При этом $\mathcal X,\mathcal Y$ - независимы

Тогда \mathcal{X}, \mathcal{Z} - независимы

Д-ВО

Берём \forall пару $(a, c) \in A \times C$.

4

$$P(\mathcal{X} = a, \mathcal{Z} = c) =$$

$$P(\mathcal{X} = a, f(\mathcal{Y}) = c) =$$

$$\Sigma_{b \in B: f(b) = c} P(\mathcal{X} = a, \mathcal{Y} = b) =$$

[т.к Х и Ү независимы] =

$$\Sigma_{b \in B: f(b) = c} P(\mathcal{X} = a) \cdot P(\mathcal{Y} = b) =$$

$$P(\mathcal{X} = a) \cdot \Sigma_{b \in B: f(b) = c} P(\mathcal{Y} = b) =$$

$$P(\mathcal{X} = a) \cdot P(\mathcal{Z} = c)$$

Лемма 2

Пусть $\Sigma = \{0,1,2,...|\Sigma|\}$ т.е мы просто пронумеровали все буквы. Здесь $|\Sigma|$ - это мощность алфавита

Пусть

- \mathcal{X} равномерно распределена на Σ (это множество чисел, т.е X это число)
- ullet распределена на Σ
- \mathcal{X}, \mathcal{Y} независимы

Тогда $\mathcal{Z} = (\mathcal{X} + \mathcal{Y})\%|\Sigma|$ - тоже равномерно распределена на Σ

д-во

$$\begin{split} & \angle P(t=(\mathcal{X}+\mathcal{Y})\%|\Sigma|) = \\ & \Sigma_{s\in\Sigma}P(\mathcal{Y}=S,X=(t-s)\%|\Sigma|) = \\ & [\text{Т.к X и Y независимы}] \\ & \Sigma_{s\in\Sigma}P(\mathcal{Y}=S)\cdot P(X=(t-s)\%|\Sigma|) = \\ & \text{Т.к X - распределена равномерно, то } P(X=(t-s)\%|\Sigma|) = \frac{1}{l} \\ & \frac{1}{l}\cdot \Sigma_{s\in\Sigma}P(\mathcal{Y}=s) = \\ & \frac{1}{l} \end{split}$$

Лемма 3

Пусть

- \mathcal{X} равномерно распределена на Σ (это множество чисел, т.е X это число)
- ullet распределена на Σ
- \mathcal{X}, \mathcal{Y} независимы

Тогда
$$P(\mathcal{X}=\mathcal{Y})=\frac{1}{l}=\frac{1}{|\Sigma|}$$

Д-ВО

$$\begin{split} &P(\mathcal{X}=\mathcal{Y}) = \\ &\Sigma_{s \in \Sigma} P(\mathcal{X}=s,\mathcal{Y}=s) = \\ &\Sigma_{s \in \Sigma} P(\mathcal{X}=s) \cdot P(\mathcal{Y}=s) = \\ &\frac{1}{|\Sigma|} \cdot \Sigma_{s \in \Sigma} P(\mathcal{Y}=s) = \\ &\frac{1}{|\Sigma|} \end{split}$$

Лемма 4

 m_i, m_i, k_i, k_i - случайные величины распределенные на Σ

- $c_i = (m_i + k_i)\%|\Sigma|$
- $\bullet \ c_j = (m_j + k_j)\% |\Sigma|$
- k_i, k_j равномерно распределены на Σ
- m_i не зависит k_i, k_j, m_j
- m_j не зависит k_i, k_j, m_i

Тогда

$$P(c_i=c_j) = \begin{cases} \Sigma_{s \in \Sigma} P^2(M=s) & \text{если } k_i=k_j \\ \frac{1}{|\Sigma|} & \text{если } k_i \ k_j \text{ не зависимы} \end{cases}$$

Д-ВО

1 случай, когда $k_i = k_j$

$$P(c_i = c_i) =$$

$$P(m_i = m_i) =$$

$$\Sigma_{s \in \Sigma} P(m_i = s, m_i = s) =$$

$$\Sigma_{s \in \Sigma} P(m_i = s) \cdot P(m_j = s) =$$

 $P(m_i=s)P(m_j=s)$ - это вероятности, что некоторая буква открытого текста m принимает значение s

$$\Sigma_{s \in \Sigma} P^2(M = s)$$

 ${f 2}$ случай, когда k_i k_j не зависимы

$$P(c_i=c_j) = P(m_i + k_i = m_j + k_j (mod(|\Sigma|))) =$$

$$P(c_i=c_j) = P(m_i=m_j+k_j-k_i(mod(|\Sigma|))) =$$

- 1. Случайные величины (m_i) и $(m_j+k_j-k_i)$ не зависимы по **ЛЕММЕ** 1
- 2. $m_j+k_j-k_i(mod(|\Sigma|))$ равномерно распределена по **ЛЕММЕ 2**, т.к m_j и k_j-k_i независимые случайные величины
- 3. Можно воспользоваться **ЛЕММОЙ 3**

 $\frac{1}{|\Sigma|}$

ОПР

Пусть Σ - некоторый конечный алфавит. Тогда **индексом совпадения** для слова $w=w_1w_2...w_n$ называют

$$IC(w) = \Sigma_{i=1}^{|\Sigma|} \frac{F_i(F_n-1)}{n(n-1)}$$

Где:

Если по-простому то $\mathrm{IC}(w)$ это доля пар совпадающих букв из слова w

Также можно сказать, что IC(w) - это вероятность того, что 2 случайно выбранные буквы из слова w окажутся одинаковыми

Пример

• $IC(математика) = \frac{3+1+1}{C_{10}^2} = \frac{1}{9}$

Теорема об индексе совпадений в криптограмме (Главная теорема билета)

- Пусть \sim это эквивалентность на $\{1,2,\dots n\}$
- ullet $\mathcal{K}=\Sigma^n$ Множество ключей это цепочки длины п
- $\bullet \ \mathcal{M} = \Sigma^n$
- $\mathcal{C} = \Sigma^n$
- $U \subseteq \mathcal{K}$ такое что:

$$\begin{array}{l} -i\sim j\Rightarrow k_i=k_j \\ -i\nsim j\Rightarrow k_i,k_j \ {
m независимы} \end{array}$$

- с = $c_1...c_n$ где $c_i = (m_i + k_i)\%|\Sigma|$
- $\mathbf{k} = k_1...k_n$
- $m = m_1...m_n$

Тогда

$$M[IC(c)|k \in U] =$$

$$P(c_i = c_i | k \in U) =$$

$$|\sim| \langle n\cdot \frac{1}{n(n-1)}\cdot \Sigma_{i\in\Sigma} p_i^2 + \bar{|\sim|}\cdot \frac{1}{n(n-1)}\cdot \frac{1}{\Sigma}$$

Где * p_i = Р(буква открытого текста = i) * $|\bar{\sim}|$ - дополнение отношения \sim * $|\sim|\backslash n$ - выкидываем рефлексивные пары, т.е пары (x,x)

Д-ВО

$$P(c_i=c_j|k\in U)=\Sigma_{(i,j)P(c_i=c_j|k\in U,i,j)\cdot P(i,j)}=$$

- P(i,j) вероятность выбрать і и ј позиции вместе
- суммируем по всем парам (i,j)
- P(i,j) это вероятность одинакова для всех пар (i,j) и равна $\frac{1}{n(n-1)}$

$$\tfrac{1}{n(n-1)} \cdot \Sigma_{(i,j)} P(c_i = c_j | k \in U, i,j) =$$

- Теперь разделяем пары на 2 кучки:
 - пары из отношения \sim
 - пары из отноешения ≁

$$\textstyle \frac{1}{n(n-1)} \cdot \Sigma_{(i,j) \in \sim} P(c_i = c_j | k \in U, i,j) \, + \, \frac{1}{n(n-1)} \cdot \Sigma_{(i,j) \in \sim} P(c_i = c_j | k \in U, i,j) = 1$$

- Если пары из отношения \sim , то ключи одинаковые, тогда по **ЛЕММЕ** 4 $P(c \ i=c \ j|k \boxtimes U, i, j) = \sum_{s \in \Sigma} P^2(M=s)$
- Если пары из отношения \nsim , то ключи независимые, тогда по **ЛЕММЕ 4** $P(c_i=c_j|k\in U,i,j)=\frac{1}{|\Sigma|}$

$$\tfrac{1}{n(n-1)}\cdot \Sigma_{(i,j)\in \sim} \bigl(\Sigma_{s\in \Sigma}(p_s^2)\bigr) \,+\, \tfrac{1}{n(n-1)}\cdot \Sigma_{(i,j)\in \sim} \bigl(\tfrac{1}{|\Sigma|}\bigr) =$$

• иначе

$$\frac{|\sim| \backslash n}{n(n-1)} \cdot \Sigma_{i \in \Sigma} p_i^2 \, + \, \frac{|\bar{\sim}|}{n(n-1)} \cdot \frac{1}{\Sigma}$$

Для шифра виженера мы выбираем такое $U\subseteq\mathcal{K}$ что : * $i\sim j \Longleftrightarrow p|(j-i)$ т.е отношение волна связывает все пары букв на расстоянии кратном длине ключа

Пусть для простоты $\mathbf{p}|\mathbf{n}$, т.е $\mathbf{n}=p\cdot k$

Отношение \sim разбивает множество $\{1,2,...n\}$ на р классов, в каждом из которых по k элементов

```
т.е разбиение \sim = { \{1, p+1, 2p+1, ...\}, \{2, p+2, 2p+2, ...\}, ... \{p, 2p, 3p, ...\} }
```

буквы в одном классе шифруются одной и той же буквой ключа

$$\not\preceq \mid \sim \mid \setminus n = p \cdot k \cdot (k-1) =$$
где

- р кол-во классов
- k кол-во элементов в классе
- k-1 кол-во пар в одном классе

Тогда
$$\mid \stackrel{-}{\sim} \mid = n(n-1) - pk(k-1) =$$

- Преобразуем выражения, сделав замену $[k=\frac{n}{p}]$
- $|\sim| \setminus n = p \cdot \frac{n}{p} \cdot (\frac{n}{p} 1) = \frac{n(n-p)}{p}$
- $\bullet \ \mid \overset{-}{\sim} \mid = n(n-1) \tfrac{n(n-p)}{p} = \tfrac{n^3(p-1)}{p}$

🛇 можем преобразовать ф-лу из теоремы 🛇

$$|\sim| \backslash n \cdot \frac{1}{n(n-1)} \cdot \Sigma_{i \in \Sigma} p_i^2 + |\overset{-}{\sim}| \cdot \frac{1}{n(n-1)} \cdot \frac{1}{\Sigma} =$$

$$\frac{n-p}{p(n-1)}\cdot \Sigma_{i\in\Sigma}p_i^2\,+\,\frac{n(p-1)}{p(n-1)}\cdot\frac{1}{|\Sigma|}$$