# Введение в численные методы. Нелиныйные уравнения

Баев А.Ж.

Казахстанский филиал МГУ

16 февраля 2019

#### План на семестр

- СЛАУ (точные методы)
- СЛАУ (итерационные методы)
- 🧿 решение нелинейных уравнений
- интерполяция
- аппроксимация
- интегрирование
- дифференцирование

# Линейная алгебра

Дана функция  $f \in C[a,b]$ . Найти решение:

$$f(x) = 0$$

на отрезке [a,b]. Считаем, что корень существует и единственный. Необходимо вычислить корень x с заранее заданной точностью  $\varepsilon$ :

$$|x^*-x|<\varepsilon, f(x)=0.$$

#### Метод деления отрезка пополам

Этот метод также называется «бинарный поиск» или «дихотомия». Пусть

$$f(I)f(r)<0,$$

если I < x < r, где x — корень.

Вычислим значение в середине отрезка  $m=rac{l+r}{2}.$ 

Если f(m) и f(r) одного знака, то  $x^* \in [I;m]$ .

Если f(m) и f(r) разного знака, то  $x^* \in [m;r]$ .

# Метод деления отрезка пополам (пример)

Найдем решение уравнения  $x^2-2=0$  на отрезке [0;2] с точностью arepsilon=0.2 .



Рассмотрим  $f(x) = x^2 - 2$ . Знаки на границах: f(0) = -2 < 0, f(2) = 2 > 0.

- I = 0, r = 2. f(m) = f(1) = -1. Уменьшаем отрезок до [1; 2].
- ② I = 1, r = 2.  $f(m) = f(\frac{3}{2}) = \frac{1}{4}$ . Уменьшаем отрезок до  $[1; \frac{3}{2}]$ .
- $3 \circ I = 1, r = \frac{3}{2}, f(m) = f(\frac{5}{4}) = -\frac{7}{16}.$  Уменьшаем отрезок до  $\left[\frac{5}{4}; \frac{3}{2}\right].$ 
  - $I = \frac{5}{4}$ ,  $r = \frac{3}{2}$ ,  $f(m) = f\left(\frac{11}{8}\right) = -\frac{7}{64}$ . Уменьшаем отрезок до  $\left[\frac{11}{8}; \frac{3}{2}\right]$ .

  - **©** Ответ:  $\frac{23}{16}$  с точностью до 0.2.



# Метод деления отрезка пополам (код)

```
1 := a
r := b
s := f(b)
while |r - 1| > eps
    m := (r + 1) / 2
    if s * f(m) > 0
        1 := m
    else
        r := m
return (1 + r) / 2
```

# Метод деления отрезка пополам (сходимость)

Количество итераций можно определить из неравенства:

$$\frac{b-a}{2^n}\leq \varepsilon.$$

Откуда легко найти количество итераций:

$$n \geq \left[\log_2 \frac{b-a}{\varepsilon}\right].$$

Скорость сходимости «линейная» с параметром  $\frac{1}{2}$ :

$$|x - x_{k+1}| \le \frac{1}{2}|x - x_k|.$$

#### Метод хорд

Дана функцию  $f(x) \in C^2[a,b]$ . Функции f'(x) и f''(x) не изменяет знак на всем отрезке.

Проведем хорду через точки (a; f(a)) и (b; f(b)):

$$\frac{x-a}{b-a}=\frac{y-f(a)}{f(b)-f(a)}.$$

Если f'(x)f''(x) > 0:

$$\begin{cases} x_0 = a, \\ x_{k+1} = b - f(b) \frac{b - x_k}{f(b) - f(x_k)} \end{cases}$$

Если f'(x)f''(x) < 0:

$$\begin{cases} x_0 = b, \\ x_{k+1} = a - f(a) \frac{x_k - a}{f(x_k) - f(a)} \end{cases}$$



# Метод хорд (пример)

Найдем решение уравнения  $x^2-2=0$  на отрезке [0;2] с точностью  $\varepsilon=0.2$ . Так как f'(x)f''(x)>0, итерации слева направо  $(x_0=0)$  с фиксированным правым концом хорд.



Вычисления:

$$x_{k+1} = 2 - 2 * \frac{2 - x_k}{2 - f(x_k)}.$$

$$x_0 = 0, f(x_0) = -2.$$

$$x_1 = 2 - 2 * \frac{2 - x_0}{2 - f(x_0)} = 1.$$

$$\begin{array}{c|c}
x \\
3 & x_1 = 1, f(x_1) = -1. \\
x_2 = 2 - 2 * \frac{2 - x_1}{2 - f(x_1)} = \frac{4}{3}.
\end{array}$$

$$x_1 = \frac{4}{3}, \ f(x_1) = -\frac{2}{9}.$$

$$x_3 = 2 - 2 * \frac{2 - x_2}{2 - f(x_2)} = \frac{7}{5}.$$

**①** Ответ:  $\frac{7}{5}$  с точностью до 0.2.

# Метод хорд (код)

```
f(x) — исходную функцию,
f1(x) — производная (вычисленная аналитически),
f2(x) — вторая производная (вычисленная аналитически).
m := (r + 1) / 2
if f1(m) * f2(m) > 0
    xnew := a
    fb := f(b)
    dο
         xold := xnew
         xnew := b - fb * (b - xold) / (fb - f(xold))
    while | xold - xnew | > eps
else
    xnew := b
    fa := f(a)
    dο
         xold := xnew
         xnew := a - fa * (xold - a) / (f(xold) - fa)
    while | xold - xnew | > eps
```

Нелиныйн

# Метод хорд (сходимость)

Скорость сходимости «линейная», то есть, существует такая 0 < L < 1, что:

$$|x-x_{k+1}| \le L|x-x_k|.$$

Дана функцию  $f(x) \in C^2[a,b]$ . Функции f'(x) и f''(x) не изменяет знак на всем отрезке.

Проведем касательную к графику через точку  $(x_k; f(x_k))$ . Уравнение соответствующей прямой:

$$y = f'(x_k)(x - x_k) + f(x_k).$$

Найдем точку пересечения хорды и с осью абсцисс (y=0). Откуда легко получить формулу для вычисления корня методом касательных:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Если f'(x)f''(x) > 0 на всем отрезке [a;b], то  $x_0 = b$ , а иначе  $x_0 = a$ .

12/19

# <u>Метод</u>касательных (пример)

Найдем решение уравнения  $x^2-2=0$  на отрезке [0;2] с точностью  $\varepsilon=0.2$ . Так как f'(x) = 2x > 0 и f''(x) = 2 > 0 итерации справа налево  $(x_0 = 2)$ .



Вычисления:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

- $\begin{array}{c}
  x \\
  x_0 = 2, f(x_0) = 2, f'(x_0) = 4. \\
  x_1 = x_0 \frac{f(x_0)}{f'(x_0)} = \frac{3}{2}.
  \end{array}$ 

  - $x_1 = \frac{3}{2}, f(x_1) = \frac{1}{4}, f'(x_1) = 3.$ 
    - $x_2 = x_1 \frac{f(x_1)}{f'(x_2)} = \frac{17}{12}$
  - $\left| \frac{17}{12} \frac{3}{2} \right| = \frac{1}{12} < 0.2$
  - **9** Ответ:  $\frac{17}{12}$  с точностью до 0.2.

# Метод касательных (код)

Скорость сходимости «квадратичная», то есть, существует такой 0 < L < 1, что:

$$|x-x_{k+1}| \le L|x-x_k|^2.$$



#### Theorem

Пусть в некоторой окрестности корня х\* выполнены следующие условия:

$$|f'(x)| \geqslant m_1 > 0$$

$$|f''(x)| \leqslant M_2$$

$$\frac{M_2}{2m_1}|x_0 - x^*| \leqslant q < 1$$

где  $x_0$  — начальное приближение. Тогда итерационный метод Ньютона

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

сходится и справедлива оценка:

$$|x_n - x^*| \le Cq^{2^n}$$

Нелиныйн



#### Доказательство.

Разложим f(x) в ряд Тейлора в окрестности точки  $x_k$ 

$$f(x) = f(x_k) + (x - x_k)f'(x_k) + \frac{(x - x_k)^2}{2}f''(\xi)$$

Подставим вместо x корень уравнения  $f(x^*) = 0$ .

$$0 = f(x_k) + (x^* - x_k)f'(x_k) + \frac{(x^* - x_k)^2}{2}f''(\xi)$$

 $\Pi$ одставим  $x_{k+1}$ .

$$x_{k+1} - x^* = \frac{(x^* - x_k)^2}{2f'(x_k)}f''(\xi)$$



## Метод простой итерации

Итерационный процесс

$$x_{k+1} = \varphi(x_k)$$

где  $\varphi(x) = x + \rho(x)f(x)$ ,  $\rho(x)$  постоянного знака.

#### Theorem

Пусть  $x^*$  — корень уравнения  $\varphi(x)=x$  и функция  $\varphi(x)$  удовлетворяет на отрезке [a,b] условию Липшица

$$|\varphi(x_1)-\varphi(x_2)|\leqslant L|x_1-x_2|$$

с константой L < 1. Тогда при любом выборе  $x_0$  итерационный процесс сходится к  $x^*$ .



#### Литература

Подробно с методами можно ознакомить в книге [1, стр. 138] и [2, стр. 130]



Калиткин Н.Н. Численные методы. - Спб.: БХВ-Петербург, 2014.



Самарский А.А., Гулин А.В. Численные методы. - М.: Наука, 1989.