Bike Sharing with Multiple Linear Regression

Business Goal:

We are required to model the demand for shared bikes with the available independent variables. It will be used by the management to understand how exactly the demands vary with different features. They can accordingly manipulate the business strategy to meet the demand levels and meet the customer's expectations. Further, the model will be a good way for management to understand the demand dynamics of a new market.

So interpretation is important!

The Steps we will follow in this assignment as follow:

- 1. Reading, understanding and visualising the data
- 2. Preparing the data for modelling(train-test split,rescaling etc)
- 3. Training the model
- 4. Residual analysis
- 5. Predictions and evaluation

Step 1: Reading, understanding the data

Let us first import Numpy and pandas and read the housing dataset

```
In [1]:
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        from sklearn.model selection import train test split
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.metrics import r2 score,mean squared error
        from sklearn.linear_model import LinearRegression
        from sklearn.feature_selection import RFE
        import statsmodels.api as sm
        from statsmodels.stats.outliers influence import variance inflation factor
        import warnings
        warnings.filterwarnings("ignore")
In [2]:
        # Reading the data
        bikedata = pd.read_csv("day.csv")
        bikedata.head()
```

```
Out[2]:
            instant dteday season yr mnth holiday weekday workingday weathersit
                                                                                         temp
                                                                                                 ć
                    01-01-
         0
                                                  0
                                                            6
                                                                       0
                                                                                  2 14.110847
                 1
                                    0
                                          1
                                                                                               18.
                      2018
                    02-01-
                 2
                                    0
                                          1
                                                  0
                                                            0
                                                                                  2 14.902598
                                                                                               17.
                      2018
                    03-01-
         2
                 3
                                                  0
                                                            1
                                                                       1
                                    0
                                          1
                                                                                      8.050924
                                                                                                9.
                      2018
                    04-01-
                                                            2
         3
                                                  0
                                                                       1
                                                                                      8.200000
                                    0
                                          1
                                                                                               10.
                      2018
                    05-01-
                 5
                                                  0
                                                            3
                                                                       1
         4
                                1
                                   0
                                          1
                                                                                  1
                                                                                      9.305237 11.
                      2018
         bikedata.shape
In [3]:
         (730, 16)
Out[3]:
In [4]:
         bikedata.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 730 entries, 0 to 729
         Data columns (total 16 columns):
                           Non-Null Count Dtype
              Column
         ---
              -----
                           _____
                                            ----
          0
              instant
                           730 non-null
                                            int64
          1
              dteday
                           730 non-null
                                            object
              season
                           730 non-null
                                            int64
          2
          3
              yr
                           730 non-null
                                            int64
              mnth
                           730 non-null
                                            int64
          4
          5
              holiday
                           730 non-null
                                            int64
          6
              weekday
                           730 non-null
                                            int64
          7
              workingday
                           730 non-null
                                            int64
          8
              weathersit 730 non-null
                                            int64
          9
              temp
                           730 non-null
                                            float64
              atemp
                           730 non-null
                                            float64
          10
                           730 non-null
                                            float64
          11
              hum
          12
              windspeed
                           730 non-null
                                            float64
          13
                           730 non-null
                                            int64
              casual
          14
              registered
                           730 non-null
                                            int64
                           730 non-null
                                            int64
             cnt
         dtypes: float64(4), int64(11), object(1)
         memory usage: 91.4+ KB
         Dataframe consists of 730 rows and 16 columns
```

bikedata.describe() In [5]:

(Out[5]:		instant	season	yr	mnth	holiday	weekday	workingday	weat
		count	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000	730.000000	730.0
		mean	365.500000	2.498630	0.500000	6.526027	0.028767	2.997260	0.683562	1.3
		std	210.877136	1.110184	0.500343	3.450215	0.167266	2.006161	0.465405	0.5
		min	1.000000	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	1.0
		25%	183.250000	2.000000	0.000000	4.000000	0.000000	1.000000	0.000000	1.0
		50%	365.500000	3.000000	0.500000	7.000000	0.000000	3.000000	1.000000	1.0
		75%	547.750000	3.000000	1.000000	10.000000	0.000000	5.000000	1.000000	2.0
		max	730.000000	4.000000	1.000000	12.000000	1.000000	6.000000	1.000000	3.0
4										•

Data Cleaning

Drop columns that are not useful for data analysis

- instant :as it is the record index
- dteday: as the features of date are alreeady there like yr as year, mnth as month and weekday
- casual and registered : as the are in cnt, because cnt is sum of both the values

```
In [6]: # Dropping instant column as it is merely a index column which has no significance
bikedata.drop(['instant'],axis=1,inplace=True)

# dteday is not useful as month,year and weekday are covering it
bikedata.drop(['dteday'],axis=1,inplace=True)

#Removing casual and registered as cnt is sum of these
bikedata.drop(['casual','registered'],axis=1,inplace=True)
#bikedata.drop(['registered'],axis=1,inplace=True)
```

Checking any null data in provided dataset

0 season 0 yr mnth 0 0 holiday weekday 0 workingday weathersit temp atemp 0 hum windspeed cnt dtype: int64

Out[8]:

data file does not have any null records.

Step 2: Visualising the Data for better understand the data and variables

The most important step - understanding the data.

- If there is some obvious multicollinearity going on, this is the first place to catch it
- Here's where you'll also identify if some predictors directly have a strong association with the outcome variable We'll visualise our data using matplotlib and seaborn.

In [9]:	bikedata.co	orr()						
Out[9]:	season		yr	mnth	holiday	weekday	workingday	weath
	season	1.000000e+00	-3.279074e- 16	8.310321e-01	-0.010868	-0.003081	0.013762	0.021
	yr	-3.279074e- 16	1.000000e+00	-5.162656e- 16	0.008195	-0.005466	-0.002945	-0.050
	mnth	8.310321e-01	-5.162656e- 16	1.000000e+00	0.018905	0.009523	-0.004688	0.045
	holiday	-1.086804e- 02	8.195345e-03	1.890483e-02	1.000000	-0.101962	-0.252948	-0.034
	weekday	-3.081198e- 03	-5.466369e- 03	9.522969e-03	-0.101962	1.000000	0.035800	0.031
	workingday	1.376178e-02	-2.945396e- 03	-4.687953e- 03	-0.252948	0.035800	1.000000	0.060
	weathersit	2.130636e-02	-5.032247e- 02	4.561335e-02	-0.034395	0.031112	0.060236	1.000
	temp	3.333607e-01	4.878919e-02	2.190833e-01	-0.028764	-0.000168	0.053470	-0.119
	atemp	3.420139e-01	4.721519e-02	2.264302e-01	-0.032703	-0.007539	0.052940	-0.12(
	hum 2.082196e-01		-1.125471e- 01	2.249368e-01	-0.015662	-0.052290	0.023202	0.590
	windspeed	-2.296069e- 01	-1.162435e- 02	-2.080131e- 01	0.006257	0.014283	-0.018666	0.039

2.781909e-01

-0.068764

0.067534

0.062542

4.045838e-01

5.697285e-01

-0.295

Visualising data to find correlation from numerical variables

Let's make pair-plot charts among the numerical variables

```
#Visualizing the numerical variables
In [10]:
           cols = ['temp', 'atemp', 'hum', 'windspeed']
           plt.figure(figsize=(18,4))
           i = 1
           for col in cols:
                plt.subplot(1,4,i)
                sns.boxplot(y=col, data=bikedata)
            35
                                     40
                                                                                       30
            30
                                                              80
                                     35
                                                                                       25
            25
                                     30
                                                              60
                                                                                      g 20
                                    d 25
20
                                                                                      dspuiw
15
                                                              40
            15
                                     15
                                                                                       10
            10
                                                              20
                                     10
```

Checking Correlation with help of pairplots

```
In [11]: plt.figure(figsize = (15,30))
    sns.pairplot(data=bikedata,vars=['cnt', 'temp', 'atemp', 'hum','windspeed'])
    plt.show()
```

<Figure size 1080x2160 with 0 Axes>

In [12]: ### Checking the `Correlation` for Numerical variables with help of Heatmaps

```
In [13]: plt.figure(figsize=(15,10))
    sns.heatmap(bikedata.corr(),cmap="YlGnBu",annot=True)
    plt.show()
```



```
In [14]: num_features = ["temp","atemp","hum","windspeed","cnt"]
  plt.figure(figsize=(15,8),dpi=130)
  plt.title("Correlation betweeen numeric features",fontsize=16)
  sns.heatmap(bikedata[num_features].corr(),annot= True,cmap="mako")
  plt.show()
```


Visualising Categorical Variables

As you might have noticed, there are a few categorical variables as well. Let's make a boxplot for some of these variables.

```
In [15]: cat_features = ["season","weathersit","yr","weekday","mnth","cnt"]
    plt.figure(figsize=(15,8),dpi=130)
```

```
plt.title("Correlation betweeen Categorical features",fontsize=16)
sns.heatmap(bikedata[cat_features].corr(),annot= True,cmap="mako")
plt.show()
```


	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp	hum
0	Spring	2018	Jan	0	Mon	0	Moderate	14.110847	18.18125	80.5833
1	Spring	2018	Jan	0	Tue	0	Moderate	14.902598	17.68695	69.6087
2	Spring	2018	Jan	0	Wed	1	Good	8.050924	9.47025	43.7273
3	Spring	2018	Jan	0	Thu	1	Good	8.200000	10.60610	59.0435
4	Spring	2018	Jan	0	Fri	1	Good	9.305237	11.46350	43.6957
	1 2 3	SpringSpringSpringSpring	Spring 2018Spring 2018Spring 2018Spring 2018Spring 2018	 Spring 2018 Jan Spring 2018 Jan Spring 2018 Jan Spring 2018 Jan 	0 Spring 2018 Jan 0 1 Spring 2018 Jan 0 2 Spring 2018 Jan 0 3 Spring 2018 Jan 0	0 Spring 2018 Jan 0 Mon 1 Spring 2018 Jan 0 Tue 2 Spring 2018 Jan 0 Wed 3 Spring 2018 Jan 0 Thu	0 Spring 2018 Jan 0 Mon 0 1 Spring 2018 Jan 0 Tue 0 2 Spring 2018 Jan 0 Wed 1 3 Spring 2018 Jan 0 Thu 1	0 Spring 2018 Jan 0 Mon 0 Moderate 1 Spring 2018 Jan 0 Tue 0 Moderate 2 Spring 2018 Jan 0 Wed 1 Good 3 Spring 2018 Jan 0 Thu 1 Good	0 Spring 2018 Jan 0 Mon 0 Moderate 14.110847 1 Spring 2018 Jan 0 Tue 0 Moderate 14.902598 2 Spring 2018 Jan 0 Wed 1 Good 8.050924 3 Spring 2018 Jan 0 Thu 1 Good 8.200000	0 Spring 2018 Jan 0 Mon 0 Moderate 14.110847 18.18125 1 Spring 2018 Jan 0 Tue 0 Moderate 14.902598 17.68695 2 Spring 2018 Jan 0 Wed 1 Good 8.050924 9.47025 3 Spring 2018 Jan 0 Thu 1 Good 8.200000 10.60610

```
In [17]: # Visualizing the categorical variables
```

```
In [17]: # Visualizing the categorical variables
#control the size of figure
plt.figure(figsize=(20,12))
plt.subplot(2,3,1)
sns.boxplot(x='season',y='cnt',data=bikedata)

plt.subplot(2,3,2)
sns.boxplot(x='holiday',y='cnt',data=bikedata)

plt.subplot(2,3,3)
sns.boxplot(x='weekday',y='cnt',data=bikedata)

plt.subplot(2,3,4)
sns.boxplot(x='mnth',y='cnt',data=bikedata)
```

```
plt.subplot(2,3,5)
           sns.boxplot(x='weathersit',y='cnt',data=bikedata)
           plt.subplot(2,3,6)
           sns.boxplot(x='yr',y='cnt',data=bikedata)
           plt.show()
            8000
                                                                                     Tue
                                                                                        Wed
                                                                                            Thu
weekday
                                                                             6000
                                                                             4000
                 Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
                                                                                      2018
In [18]:
           # Histogram Data Visualization
           fig, axs = plt.subplots(nrows = 2, ncols =2, figsize = (16,8))
           axs[0, 0].hist(bikedata["temp"], bins = 15)
           axs[0, 0].set_title("Temprature")
           axs[0, 1].hist(bikedata ["atemp"], bins = 15)
           axs[0, 1].set_title("Feels like Temprature")
           axs[1, 0].hist(bikedata["hum"], bins = 15)
           axs[1, 0].set_title("Humidity")
           axs[1, 1].hist(bikedata["windspeed"], bins = 15)
           axs[1, 1].set_title("Windspeed");
                               Temprature
                                                                               Feels like Temprature
           80
                                                              80
           70
                                                              70
           60
                                                              60
                                                              50
           40
                                                              40
           30
                                                              30
           20
                                                              20
           10
                                                              10
                             15
                                   20
                                               30
                                                                                      25
                                                                                            30
                                                                                  Windspeed
                                Humidity
          120
                                                             120
                                                             100
           80
                                                              80
           60
                                                              60
           40
                                                              40
           20
                                                              20
           # Scatter visualization
In [19]:
           fig = plt.figure(figsize = (20, 15))
```

```
fig.add_subplot(221, xlabel ="Temp").scatter(bikedata["temp"], bikedata["cnt"],c="fig.add_subplot(222, xlabel ="Feels Like").scatter(bikedata["atemp"], bikedata["cntfig.add_subplot(223, xlabel ="Humidity").scatter(bikedata["hum"], bikedata["cnt"], fig.add_subplot(224, xlabel ="Windspeed").scatter(bikedata["windspeed"], bikedata["plt.tight_layout();
```


As per above charts observation

- Highest bike demand during Temprature between (10 to 33) degree
- Highest bike demand during Humidity from (40 to 90)%
- Highest bike demand during Windspeed from (0 to 20) knots

In [20]: bikedata.groupby('weekday').describe()['cnt'].transpose()

Out[20]:	weekday	Fri	Mon	Sat	Sun	Thu	Tue	V
	count	103.000000	105.000000	104.000000	104.000000	104.000000	105.000000	105.000
	mean	4574.893204	4550.542857	4667.259615	4690.288462	4510.663462	4228.828571	4338.123
	std	2030.176095	2196.693009	1939.433317	1874.624870	1826.911642	1872.496629	1793.074
	min	441.000000	627.000000	431.000000	1167.000000	683.000000	605.000000	22.000
	25%	2731.000000	2732.000000	3270.750000	3390.750000	3579.250000	2918.000000	3310.000
	50%	4656.000000	4521.000000	4721.000000	4601.500000	4576.500000	4334.000000	4359.000
	75%	6182.500000	6140.000000	6286.000000	5900.500000	5769.000000	5464.000000	5875.000
	max	8173.000000	8714.000000	7804.000000	8362.000000	7767.000000	8227.000000	7525.000

```
In [21]: plt.figure(figsize = (10, 5))
sns.boxplot(x = 'season', y = 'cnt', hue = 'weathersit', data = bikedata)
```


Step 2: Preparing the Data for Modeling

Encoding:

- Checking unique values from each variables
- creating categorical variables convert to dummy variables
- Splitting data into train and test
- Rescaling of variables

```
bikedata.columns
In [22]:
          Index(['season', 'yr', 'mnth', 'holiday', 'weekday', 'workingday',
Out[22]:
                  'weathersit', 'temp', 'atemp', 'hum', 'windspeed', 'cnt'],
                dtype='object')
          bikedata.nunique() #gives info about unique values present in data
In [23]:
                           4
          season
Out[23]:
                           2
          vr
          mnth
                         12
          holiday
                           2
         weekday
                           7
         workingday
                           2
         weathersit
                           3
          temp
                         498
                         689
          atemp
          hum
                         594
         windspeed
                        649
                         695
          cnt
          dtype: int64
 In [ ]:
 In [ ]:
```

Dropping redudndent variables holiday with workingday and temp with atemp; Hence, dropping the holiday and atemp

#bikedata.drop(['holiday','atemp','yr'],axis=1,inplace=True) #dropping the redundar In [24]: bikedata.drop(['holiday','atemp'],axis=1,inplace=True) #dropping the redundant vari bikedata.head() In [25]: Out[25]: mnth weekday workingday weathersit windspeed season yr temp hum cnt Spring 0 2018 Mon 0 Moderate 14.110847 80.5833 10.749882 985 Jan Spring 2018 Jan Tue 0 Moderate 14.902598 69.6087 16.652113 801 2 Spring 2018 Wed 1 Good 8.050924 43.7273 16.636703 1349 Jan 10.739832 1562 Spring 2018 Jan Thu Good 8.200000 59.0435 Spring 2018 Fri 1 Good 9.305237 43.6957 12.522300 1600 Jan bikedata = bikedata.rename(columns={'mnth': 'month','yr':'year'}) # renaming varial In [26]: bikedata.year.replace({'2018':0,'2019':1},inplace = True) In [27]: bikedata.head() Out[27]: year month weekday workingday season weathersit temp hum windspeed cnt Spring Jan Mon Moderate 14.110847 80.5833 10.749882 985 1 Spring 0 Tue 0 Moderate 14.902598 69.6087 16.652113 801 Jan 0 1 16.636703 1349 2 Spring Jan Wed Good 8.050924 43.7273 Spring 0 Thu 1 Good 8.200000 59.0435 10.739832 1562 Jan 1 0 Fri 9.305237 43.6957 12.522300 1600 Spring Jan Good

Dummy Variables

The Categorical variable season, month, weekday, year and weathersit are converted to dummies variables.

```
In [28]: # creating dummy variables for season
    season = pd.get_dummies(bikedata['season'])
    season.head()
```

Out[28]:		Fall	Spring	Summer	Winter
	0	0	1	0	0
	1	0	1	0	0
	2	0	1	0	0
	3	0	1	0	0
	4	0	1	0	0

Now, we don't need four columns. You can drop the Fall column, as the type of season can be identified with just the last three columns where -

```
100` will correspond to `Spring`010` will correspond to `Summer`001` will correspond to `Winter`
```

- drop_first=True as it helps in reducing the extra column created during dummy variable creation. Hence it reduces the correlations created among dummy variables.
- Similar way others variables month , weekday , year and weathersit

```
In [29]: # creating dummy variables for season,month,weekday,year and weathersit variables if
#bikedata = pd.get_dummies(data=bikedata, columns=['season','month','weekday','year
bikedata = pd.get_dummies(data=bikedata, columns=['season','month','weekday','wear
bikedata.head()
```

Out[29]:		year	workingday	temp	hum	windspeed	cnt	season_Spring	season_Summer	seaso
	0	0	0	14.110847	80.5833	10.749882	985	1	0	
	1	0	0	14.902598	69.6087	16.652113	801	1	0	
	2	0	1	8.050924	43.7273	16.636703	1349	1	0	
	3	0	1	8.200000	59.0435	10.739832	1562	1	0	
	4	0	1	9.305237	43.6957	12.522300	1600	1	0	

5 rows × 28 columns

```
In [30]: plt.figure(figsize = (15,30))
    sns.pairplot(data=bikedata,vars=['cnt', 'temp','hum','windspeed'])
    plt.show()
```

<Figure size 1080x2160 with 0 Axes>


```
In [31]: #plt.figure(figsize=(20,15))
    #sns.pairplot(bikedata)
    #plt.show()
```

```
In [32]: plt.figure(figsize=(15,10))
    sns.heatmap(bikedata.corr(),cmap="YlGnBu",annot=True)
    plt.show()
```


Splitting into train and test

Rescaling the Features

Here we have more than one variables. it's extremely import to rescale the variables so that they have a comparable scale. If we don't have comparable scales, then some of the cofficients as obtained by fitting the regression model might be very large or very small as compared to the other coffients. This might become very annoying at the time of model evaluation. So it's advised to use standardization or normalization so that the units of the coefficients obtained are all on the same scale. As you know, there are two common ways of rescaling:

Min-Max scaling (normalisation) => convert data into between 0 and 1

• Standardization(mean-0,sigma-1)

Here, we will use MinMax scaling.

```
In [35]:
          # X is vector
          #normalisation ==> (x- xmin)/(xmax-xmin)
          #standardization ==> (x- mean)/sigma
          bikedata.head()
In [36]:
Out[36]:
                   workingday
                                                 windspeed
             year
                                   temp
                                            hum
                                                              cnt
                                                                  season_Spring
                                                                                season_Summer
          0
                0
                            0 14.110847
                                         80.5833
                                                  10.749882
                                                              985
                                                                              1
                                                                                              0
                0
                               14.902598
                                         69.6087
                                                  16.652113
                                                              801
                                                                              1
          2
                0
                            1
                                8.050924 43.7273
                                                  16.636703 1349
                                                                              1
                                                                                              0
                                8.200000 59.0435
          3
                0
                                                   10.739832 1562
                                                                              1
          4
                0
                            1
                                9.305237 43.6957
                                                  12.522300 1600
                                                                              1
                                                                                              0
         5 rows × 28 columns
          # 1. Instantiate MinMaxScaler object
In [37]:
          scaler = MinMaxScaler()
          num_vars = ['temp', 'hum', 'windspeed', 'cnt']
          df_train[num_vars] = scaler.fit_transform(df_train[num_vars])
          df_train[num_vars].head()
Out[37]:
                            hum windspeed
                  temp
                                                 cnt
          576 0.815169 0.725633
                                    0.264686  0.827658
          426 0.442393 0.640189
                                    0.255342  0.465255
          728 0.245101 0.498067
                                    0.663106 0.204096
          482 0.395666 0.504508
                                    0.188475 0.482973
          111 0.345824 0.751824
                                    0.380981 0.191095
```

In	[38]	:	df	train	num	vars	.describe)
----	------	---	----	-------	-----	------	-----------	--	---

Out[38]:		temp	hum	windspeed	cnt
	count	510.000000	510.000000	510.000000	510.000000
	mean	0.537440	0.650480	0.320883	0.513499
	std	0.225858	0.145846	0.169803	0.224421
	min	0.000000	0.000000	0.000000	0.000000
	25%	0.339853	0.538643	0.199179	0.356420
	50%	0.542596	0.653714	0.296763	0.518638
	75%	0.735215	0.754830	0.414447	0.684710
	max	1.000000	1.000000	1.000000	1.000000

In [39]: df_train.describe()

Out[39]:

	year	workingday	temp	hum	windspeed	cnt	season_Spring	S
count	510.000000	510.000000	510.000000	510.000000	510.000000	510.000000	510.000000	
mean	0.507843	0.676471	0.537440	0.650480	0.320883	0.513499	0.243137	
std	0.500429	0.468282	0.225858	0.145846	0.169803	0.224421	0.429398	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.000000	0.000000	0.339853	0.538643	0.199179	0.356420	0.000000	
50%	1.000000	1.000000	0.542596	0.653714	0.296763	0.518638	0.000000	
75%	1.000000	1.000000	0.735215	0.754830	0.414447	0.684710	0.000000	
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	

8 rows × 28 columns

In [40]: plt.figure(figsize = (15, 15)) #Checking if the variables are highly correlated
sns.heatmap(df_train.corr(), annot = True)
plt.show()

Build model using RFE

Dividing into X and Y sets for the model building

```
Out[43]: [('year', True, 1),
           ('workingday', True, 1),
           ('temp', True, 1),
           ('hum', True, 1),
           ('windspeed', True, 1),
           ('season_Spring', True, 1),
           ('season_Summer', False, 2),
           ('season_Winter', True, 1),
           ('month_Aug', False, 3),
           ('month_Dec', False, 2),
           ('month_Feb', False, 3),
           ('month_Jan', False, 2),
           ('month_Jul', True, 1),
           ('month Jun', False, 3),
           ('month_Mar', False, 3),
           ('month_May', False, 3),
           ('month_Nov', False, 2),
           ('month_Oct', False, 3),
           ('month_Sept', True, 1),
           ('weekday_Mon', True, 1),
           ('weekday_Sat', False, 3),
           ('weekday_Sun', False, 3),
           ('weekday_Thu', False, 3),
           ('weekday_Tue', True, 1),
           ('weekday_Wed', False, 3),
           ('weathersit_Good', True, 1),
           ('weathersit_Moderate', True, 1)]
          col = X_train.columns[rfe.support_]
In [44]:
          col
          Index(['year', 'workingday', 'temp', 'hum', 'windspeed', 'season_Spring',
Out[44]:
                  season_Winter', 'month_Jul', 'month_Sept', 'weekday_Mon',
                 'weekday_Tue', 'weathersit_Good', 'weathersit_Moderate'],
                dtype='object')
         X_train.columns[~rfe.support_]
In [45]:
         Index(['season_Summer', 'month_Aug', 'month_Dec', 'month_Feb', 'month_Jan',
Out[45]:
                 'month_Jun', 'month_Mar', 'month_May', 'month_Nov', 'month_Oct',
                 'weekday_Sat', 'weekday_Sun', 'weekday_Thu', 'weekday_Wed'],
                dtype='object')
```

Building model using statsmodel for the detailed statistics

```
In [46]: # Generic function to calculate VIF of variables

def calculateVIF(df):
    vif = pd.DataFrame()
    vif['Features'] = df.columns
    vif['VIF'] = [variance_inflation_factor(df.values, i) for i in range(df.shape[:
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return vif

In [47]: # Generic function to create a model with help of stats api
    def buildModelWithStats(df):
        #import statsmodels.api as sm
        X_train_lm = sm.add_constant(df)
        lm = sm.OLS(y_train,X_train_lm).fit() # Running the linear model
        #Let's see the summary of our linear model
```

print(lm.summary())
return lm

In [48]: # Creating x_test dataframe with RFE selected variables
X_train_rfe = X_train[col]

In [49]: calculateVIF(X_train_rfe)

Out[49]:

	Features	VIF
3	hum	25.82
1	workingday	20.91
2	temp	18.99
11	weathersit_Good	15.21
12	weathersit_Moderate	9.23
9	weekday_Mon	5.48
10	weekday_Tue	5.35
4	windspeed	4.50
5	season_Spring	3.08
6	season_Winter	2.23
0	year	2.09
7	month_Jul	1.40
8	month_Sept	1.20

In [50]: # bu

build a model with all variables buildModelWithStats(X_train_rfe)

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least So Wed, 12 Oct 23: nonr	cnt OLS quares 2022 19:50 510 496 13	R-squared: Adj. R-squared F-statistic: Prob (F-statis Log-Likelihood AIC: BIC:	d: stic): d:	0.843 0.839 204.7 9.38e-190 510.91 -993.8 -934.5	
====						
0.0751	coef	std er	r t	P> t	[0.025	
0.975]						
const	-0.0144	0.05	2 -0.276	0.783	-0.117	
0.088						
year	0.2308	0.00	8 28.455	0.000	0.215	
0.247 workingday	0.1028	0.02	6 4.001	0.000	0.052	
0.153	0.1020	0.02	4.001	0.000	0.032	
temp	0.4776	0.03	1 15.613	0.000	0.418	
0.538						
hum	-0.1482	0.03	8 -3.938	0.000	-0.222	-
0.074	0 1697	0.02		0.000	0.210	
windspeed 0.119	-0.1687	0.02	5 -6.616	0.000	-0.219	_
season_Spring	-0.1080	0.01	5 -7.280	0.000	-0.137	-
0.079						
season_Winter	0.0558	0.01	2 4.528	0.000	0.032	
0.080	0.0700	0.04	. 4 574	0.000	0.442	
month_Jul 0.045	-0.0782	0.01	7 -4.571	0.000	-0.112	-
month_Sept	0.0591	0.01	5 3.829	0.000	0.029	
0.089	01000	0.07	3,025	0,000	0.025	
weekday_Mon	0.1125	0.02	7 4.146	0.000	0.059	
0.166						
weekday_Tue	0.0601	0.02	7 2.203	0.028	0.006	
<pre>0.114 weathersit_Good</pre>	0.2499	0.02	6 9.482	0.000	0.198	
0.302	0.2433	0.02	J. 402	0.000	0.150	
weathersit_Moderate	0.1921	0.02	5 7.694	0.000	0.143	
0.241						
			======== Durbin-Watson:			
Omnibus: Prob(Omnibus):			Jarque-Bera (:		2.033 156.410	
Skew:			Prob(JB):	, ·	1.09e-34	
Kurtosis:			Cond. No.		30.3	
=======================================	========	======	========	=======	=========	

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Out[50]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x2897e754130>

Removing the hum variable is insignificant in presence of other variables; can be dropped

```
In [51]: X_train_new = X_train_rfe.drop(["hum"], axis = 1)
```

In [52]: calculateVIF(X_train_new)

Out[52]:

	Features	VIF				
1	1 workingday					
10	weathersit_Good	15.21				
2	temp	14.88				
11	weathersit_Moderate	8.71				
8	weekday_Mon	4.71				
9	weekday_Tue	4.51				
3	windspeed	4.48				
4	season_Spring	2.79				
0	year	2.07				
5	season_Winter	1.85				
6	month_Jul	1.38				
7	month_Sept	1.20				

Rebuilding the model without month_November

In [53]: # building model with Stats model
buildModelWithStats(X_train_new)

OLS Regression Results

=======================================		======		=======	=======	========	
Dep. Variable:		cnt	R-squ	ared:		0.838	
Model:		OLS	Adj.	R-squared:		0.834	
Method:	Least S	quares	F-sta	tistic:		214.3	
Date:	Wed, 12 Oc	t 2022	Prob	(F-statist	ic):	1.26e-187	
Time:	23	:19:50	Log-L	ikelihood:		503.06	
No. Observations:		510	AIC:			-980.1	
Df Residuals:		497	BIC:			-925.1	
Df Model:		12					
Covariance Type:	non	robust					
=======================================		======		=======	=======	========	===
====							
	coef	std e	err	t	P> t	[0.025	
0.975]							
	0 1354	0.0	242	2 167	0.003	0.210	
const	-0.1354	0.0	943	-3.167	0.002	-0.219	-
0.051	0 2244	0.0	200	20 661	0.000	0.210	
year	0.2344	0.0	808	28.661	0.000	0.218	
0.250	0 1024	0.0	226	2 067	0.000	0.053	
workingday	0.1034	0.6	026	3.967	0.000	0.052	
0.155	0.4493	0.0	930	14.895	0.000	0.390	
temp 0.509	0.4493	0.0	050	14.095	0.000	0.590	
windspeed	-0.1404	0 0	925	-5.657	0.000	-0.189	
0.092	-0.1404	0.0	723	-3.037	0.000	-0.105	
season_Spring	-0.1118	aa	915	-7.441	0.000	-0.141	_
0.082	0.1110	0.0	,1,5	/ •	0.000	0.141	
season_Winter	0.0468	0.6	912	3.808	0.000	0.023	
0.071						****	
month_Jul	-0.0711	0.0	917	-4.120	0.000	-0.105	_
0.037							
month_Sept	0.0559	0.0	916	3.573	0.000	0.025	
0.087							
weekday_Mon	0.1148	0.6	928	4.171	0.000	0.061	
0.169							
weekday_Tue	0.0578	0.6	928	2.089	0.037	0.003	
0.112							
weathersit_Good	0.2907	0.6	925	11.824	0.000	0.242	
0.339							
weathersit_Moderate	0.2091	0.6	925	8.381	0.000	0.160	
0.258							
					========		
Omnibus:				n-Watson:	·	2.027	
Prob(Omnibus):		0.000	Jarqu	ie-Bera (JB	5):	162.995	
Skew:		-0.644				4.04e-36	
Kurtosis:		5.452				24.6	
=======================================		_======			=======	========	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Out[53]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x2897e36f5b0>

Removing the workingday variable is insignificant in presence of other variables due to high VIF value; can be dropped

```
In [54]: X_train_new = X_train_new.drop(["workingday"], axis = 1)
In [55]: calculateVIF(X_train_new)
```

Out[55]:

	Features	VIF
1	temp	12.25
9	weathersit_Good	11.51
10	weathersit_Moderate	6.38
2	windspeed	4.25
3	season_Spring	2.56
0	year	2.07
4	season_Winter	1.70
5	month_Jul	1.38
7	weekday_Mon	1.22
8	weekday_Tue	1.21
6	month_Sept	1.20

Rebuilding the model without month_January

In [56]:

#building mode with stats model buildModelWithStats(X_train_new)

OLS Regression Results

	UL3 ========	=======	========	======			
Dep. Variable: Model: Method: Date:	Least S Wed, 12 Oc	t 2022	R-square Adj. R-s F-statis Prob (F-	quared: tic: statist	cic):	0.833 0.829 225.6 1.84e-185	
Time: No. Observations:	23	519:50 510	Log-Like AIC:	linooa	;	495.11 -966.2	
Df Residuals:		498	BIC:			-915.4	
Df Model: Covariance Type:	non	11 Irobust					
=======================================	:=======	======	======	======			====
====	coef	std e	err	t	P> t	[0.025	
0.975]				-	1-1	L	
const 0.037	-0.0303	0.0	934 -0	.889	0.375	-0.097	
year	0.2349	0.0	08 28	.308	0.000	0.219	
0.251 temp	0.4502	0.0	31 14	.711	0.000	0.390	
0.510							
windspeed 0.093	-0.1425	0.0)25 -5	.661	0.000	-0.192	-
season_Spring	-0.1148	0.0	15 -7	.539	0.000	-0.145	-
0.085 season_Winter	0.0435	0.0	12 3	.497	0.001	0.019	
0.068 month_Jul	-0.0704	0.0	117 - <i>4</i>	.024	0.000	-0.105	_
0.036	0.0704	0.0		.027	0.000	0.103	
month_Sept 0.083	0.0521	0.0)16 3	.289	0.001	0.021	
weekday_Mon 0.038	0.0154	0.0	12 1	.332	0.184	-0.007	
weekday_Tue	-0.0415	0.0	12 -3	.468	0.001	-0.065	-
0.018 weathersit_Good	0.2860	0.0	25 11	.478	0.000	0.237	
<pre>0.335 weathersit_Moderate 0.256</pre>		0.0		.153	0.000	0.157	
Omnibus:		77 . 949	Durbin-W			1.986	
Prob(Omnibus):		0.000		•	3):	209.347	
Skew: Kurtosis:		-0.755 5.752	Prob(JB) Cond. No			3.47e-46 18.2	
=======================================	:=======				.=======		
Notes: [1] Standard Errors pecified.	assume that	: the cov	ariance m	atrix d	of the errors	s is correct	ly s

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x2897edcbc40> Out[56]:

> Removing the weekday_Mon variable is insignificant due to high p-value; can be dropped

```
X_train_new = X_train_new.drop(["weekday_Mon"], axis = 1)
In [57]:
         calculateVIF(X_train_new)
In [58]:
```

Out[58]:	Fea

	Features	VIF
1	temp	12.24
8	weathersit_Good	11.47
9	weathersit_Moderate	6.35
2	windspeed	4.23
3	season_Spring	2.56
0	year	2.07
4	season_Winter	1.70
5	month_Jul	1.38
6	month_Sept	1.20
7	weekday_Tue	1.18

In [59]: # building model with stats model buildModelWithStats(X_train_new)

OLS Regression Results

	OLS	s Regress	sion K	esults			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Wed, 12 00 23 nor	3:19:51 510 499 10 nrobust	Adj. F-st Prob Log- AIC: BIC:			0.832 0.829 247.6 2.75e-186 494.20 -966.4 -919.8	
0.975]	coef			t			
const 0.040	-0.0273	0.6	34	-0.802	0.423	-0.094	
year	0.2346	0.6	800	28.259	0.000	0.218	
0.251 temp 0.509	0.4493	0.6	31	14.674	0.000	0.389	
windspeed	-0.1410	0.6	925	-5.603	0.000	-0.191	-
<pre>0.092 season_Spring 0.085</pre>	-0.1147	0.6	15	-7.528	0.000	-0.145	-
season_Winter 0.068	0.0438	0.6)12	3.522	0.000	0.019	
month_Jul 0.035	-0.0698	0.6	18	-3.986	0.000	-0.104	-
month_Sept 0.083	0.0522	0.6	916	3.291	0.001	0.021	
weekday_Tue 0.021	-0.0443	0.6	12	-3.760	0.000	-0.067	-
weathersit_Good 0.335	0.2859	0.6	925	11.462	0.000	0.237	
weathersit_Moderate 0.256	0.2062	0.6	925	8.140	0.000	0.156	
Omnibus: Prob(Omnibus):		73.106 0.000		in-Watson: µue-Bera (JB)		1.985 205.558	
Skew:		-0.694			•	2.31e-45	
Kurtosis:		5.784		l. No.		18.1	
=======================================	=======			:=======	=======		
Notes: [1] Standard Errors pecified. <statsmodels.regress< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>y S</td></statsmodels.regress<>							y S
Removing the weathe	rsit_Good	variable i	s insig	nificant due to	high VIF	compare with	
other variables; can be	dropped						

Out[59]:

```
In [60]: X_train_new = X_train_new.drop(["weathersit_Good"], axis = 1)
In [61]: calculateVIF(X_train_new)
```

Out[61]: **Features** VIF 1 temp 4.67 2 windspeed 3.94 0 year 2.05 3 season_Spring 1.64 8 weathersit_Moderate 1.49 season_Winter 1.37 4 5 month_Jul 1.35 6 month_Sept 1.19 7 weekday_Tue 1.17

In [62]: # building model with stats model
buildModelWithStats(X_train_new)

OLS Regression Results

	Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Solved, 12 Octobrian 23	cnt OLS quares t 2022 :19:51 510 500 9	R-sq Adj. F-st Prob Log- AIC: BIC:	uared: R-squared: atistic: (F-statist Likelihood:	ic):	0.788 0.784 206.7 3.15e-162 434.60 -849.2 -806.9	==
	<pre> 0.975]</pre>	coef	std 6	err	t	P> t	[0.025	
	 const 0.302	0.2488)27	9.233	0.000	0.196	
	year 0.258 temp 0.527	0.2400 0.4591		909	25.795 13.357	0.000	0.2220.392	
	windspeed 0.114 season_Spring	-0.1697 -0.1100)28)17	-6.033 -6.431	0.000 0.000	-0.225 -0.144	-
	0.076 season_Winter 0.059	0.0316)14	2.272	0.024	0.004	
	month_Jul 0.036 month_Sept	-0.0742 0.0421	0.6 0.6		-3.774 2.369	0.000 0.018	-0.113 0.007	-
	0.077 weekday_Tue 0.012	-0.0377		913	-2.854	0.004	-0.064	-
	weathersit_Moderate 0.047 =======	-0.0662 	0.6	910	-6.737	0.000	-0.086 =====	-
	Omnibus: Prob(Omnibus): Skew: Kurtosis:		37.442 0.000 -1.191 7.281	Jarq Prob Cond	. No.		1.979 510.174 1.65e-111 14.1	
Out[62]:	Notes: [1] Standard Errors pecified. <statsmodels.regress< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>S</th></statsmodels.regress<>							S
	Removing the season with other variables; ca	_		nsignif	icant due to l	nigh p-valu	e compare	
In [63]:	<pre>X_train_new = X_trai</pre>	n_new.drop(["seasoı	n_Wint	er"], axis	= 1)		
In [64]:	calculateVIF(X_train	_new)						

Out[64]:		Features	VIF
	1	temp	4.67
	2	windspeed	3.73
	0	year	2.03
	3	season_Spring	1.52
	7	weathersit_Moderate	1.47
	4	month_Jul	1.33
	5	month_Sept	1.19
	6	weekday_Tue	1.15

In [65]: # building model with stats model
buildModelWithStats(X_train_new)

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Least Sq Wed, 12 Oct	cnt OLS uares 2022	R-squared: Adj. R-squared: F-statistic: Prob (F-statist: Log-Likelihood: AIC: BIC:	ic):	0.786 0.783 229.9 2.60e-162 431.98 -846.0 -807.9	
Covariance Type:		obust				
 0.975]	coef			P> t	[0.025	
const 0.329	0.2871	0.0	13.594	0.000	0.246	
year 0.259	0.2406	0.0	25.760	0.000	0.222	
temp 0.474	0.4172	0.0	14.324	0.000	0.360	
windspeed 0.122	-0.1771	0.0	-6.311	0.000	-0.232	-
season_Spring 0.106	-0.1332	0.0	-9.676	0.000	-0.160	-
month_Jul 0.036	-0.0747	0.0	-3.786	0.000	-0.113	-
month_Sept 0.077	0.0418	0.0	2.338	0.020	0.007	
weekday_Tue	-0.0367	0.0	-2.764	0.006	-0.063	-
weathersit_Moderate 0.048	-0.0671	0.0		0.000	-0.087	-
Omnibus: Prob(Omnibus): Skew: Kurtosis:	12	4.410 0.000	Durbin-Watson: Jarque-Bera (JB Prob(JB): Cond. No.		2.000 428.005 1.15e-93 11.1	

<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x2897f2927f0> Out[65]:

> Removing the month_Sept variable is insignificant due to high p-value compare with other variables; can be dropped

```
X_train_new = X_train_new.drop(["month_Sept"], axis = 1)
In [66]:
         calculateVIF(X_train_new)
In [67]:
```

Features VIF 1 4.25 temp 2 windspeed 3.68 0 year 2.03 3 season_Spring 1.51 6 weathersit_Moderate month_Jul 1.28 5 weekday_Tue 1.15

Out[67]:

In [68]: # building model with stats model
buildModelWithStats(X_train_new)

		_	ion Res				
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Sq Wed, 12 Oct 23:	cnt R-squared: OLS Adj. R-squared: Least Squares F-statistic: Wed, 12 Oct 2022 Prob (F-statistic): 23:19:51 Log-Likelihood: 510 AIC: 502 BIC: 7 nonrobust				0.784 0.781 259.7 2.33e-162 429.22 -842.4 -808.6	
	coef	std e		t			==
 const 0.328	0.2860	0.0	21	13.485	0.000	0.244	
year 0.259	0.2401	0.0	109	25.597	0.000	0.222	
temp 0.487	0.4305	0.0	29	15.002	0.000	0.374	
windspeed 0.127	-0.1827	0.0	28	-6.506	0.000	-0.238	
season_Spring 0.107	-0.1339	0.0	14	-9.686	0.000	-0.161	
month_Jul 0.045	-0.0832	0.0	19	-4.274	0.000	-0.122	
weekday_Tue 0.011	-0.0375	0.0	13	-2.816	0.005	-0.064	
weathersit_Moderate 0.047	-0.0662	0.0	10	-6.686	0.000	-0.086	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	-:	 6.176 0.000 1.034 6.742		•): 	1.979 388.330 4.73e-85 11.0	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Out[68]: <statsmodels.regression.linear_model.RegressionResultsWrapper at 0x2897e32cd30>

Removing the weekday_Tue variable is insignificant due to high p-value compare with other variables; can be dropped

```
X_train_new = X_train_new.drop(["weekday_Tue"], axis = 1)
          calculateVIF(X_train_new)
In [70]:
Out[70]:
                      Features
                              VIF
          1
                              4.19
                         temp
          2
                              3.67
                    windspeed
                         year 2.03
          0
          3
                  season_Spring 1.51
            weathersit Moderate
                              1.47
                     month_Jul 1.28
In [71]: # building model with stats model
          X_train_lm = sm.add_constant(X_train_new)
          lm = sm.OLS(y_train,X_train_lm).fit() # Running the linear model
          #Let's see the summary of our linear model
          print(lm.summary())
```

Dep. Variable:

OLS Regression Results

R-squared:

cnt

```
Model:
                         OLS Adj. R-squared:
                                                     0.778
                Least Squares F-statistic:
Method:
                                                     297.6
               Wed, 12 Oct 2022 Prob (F-statistic): 6.56e-162
Date:
Time:
                     23:19:51 Log-Likelihood:
                                                   425.22
No. Observations:
                         510
                            AIC:
                                                    -836.4
Df Residuals:
                         503 BIC:
                                                    -806.8
Df Model:
                          6
Covariance Type:
                   nonrobust
______
                  coef std err
                                   t P>|t| [0.025
0.975]
                 0.2784 0.021 13.145 0.000
                                                  0.237
const
0.320
year
                 0.2400
                        0.009
                                25.415
                                          0.000
                                                   0.221
0.259
                 0.4335
                         0.029
                                                   0.377
                                 15.017
                                          0.000
temp
0.490
                          0.028
                                          0.000
windspeed
                -0.1822
                                 -6.446
                                                  -0.238
0.127
season_Spring
               -0.1333
                          0.014
                                 -9.577
                                          0.000
                                                  -0.161
0.106
                          0.020 -4.355
month_Jul
                -0.0853
                                          0.000
                                                  -0.124
0.047
weathersit_Moderate -0.0648 0.010
                                 -6.512
                                          0.000
                                                  -0.084
______
                     113.218 Durbin-Watson:
Omnibus:
                                                     1.968
                      0.000 Jarque-Bera (JB):
                                                   368.211
Prob(Omnibus):
Skew:
                      -1.016 Prob(JB):
                                                   1.11e-80
Kurtosis:
                       6.633 Cond. No.
                                                      10.9
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.

Residual Analysis of the train data

So, now to check if the error terms are also normally distributed (which is infact, one of the major assumptions of linear regression), let us plot the histogram of the error terms and see what it looks like.

```
In [73]: y_train_cnt = lm.predict(X_train_lm)

In [74]: # Plot the histogram of the error terms
fig = plt.figure()
sns.distplot((y_train - y_train_cnt), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)  # Plot heading
plt.xlabel('Errors', fontsize = 18)  # X-label
```

Out[74]: Text(0.5, 0, 'Errors')

Making Predictions

Applying the scaling on the test sets

```
In [75]: num_vars = ['temp', 'hum','windspeed','cnt']
    df_test[num_vars] = scaler.transform(df_test[num_vars])
```

Dividing into X_test and y_test

```
In [76]: y_test = df_test.pop('cnt')
X_test = df_test

In [77]: # Now let's use our model to make predictions.
# Creating X_test_new dataframe by dropping variables from X_test
X_test_new = X_test[X_train_new.columns]

# Adding a constant variable
X_test_new = sm.add_constant(X_test_new)
In [78]: # Making predictions
y_pred = lm.predict(X_test_new)
```

R-Squared value for train predictions

```
In [79]: #Print R-squared Value
    r2_score(y_train,y_train_cnt)
Out[79]: 0.7801873103743808
```

Prediction of values on test dataset

```
In [80]: #Print R-squared Value
    r2_score(y_test,y_pred)
Out[80]: 0.7722148714221881
```

Model Evaluation

```
In []:
In [81]: # Plotting y_test and y_pred to understand the spread.
fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20) # Plot heading
plt.xlabel('y_test', fontsize=18) # X-label
plt.ylabel('y_pred', fontsize=16) # Y-label
```

Out[81]: Text(0, 0.5, 'y_pred')

y_test vs y_pred


```
round(lm.params,4)
In [82]:
          const
                                  0.2784
Out[82]:
                                  0.2400
          year
                                  0.4335
          temp
         windspeed
                                 -0.1822
          season_Spring
                                 -0.1333
          month_Jul
                                 -0.0853
          weathersit_Moderate
                                 -0.0648
          dtype: float64
```

We can see that the equation of our best fitted line is:

```
cnt = 0.2784 + 0.2400 \times \text{year} + 0.4335 \times \text{temp} - 0.1822 \times \text{windspeed} - 0.1333 \times \text{season\_Spring} - 0.0853 \times \text{month\_Jul} - 0.0648 \times \text{weathersit\_Moderate}
```

Demand of bikes depend on year, temp, windspeed, season spring, July month, weathersit moderate

Conclusion: Year, Temp and windspeed more dominating features for contributing significatly towards the Bike share

```
In [ ]:
```