DIGITAL IMAGE PROCESSING

Digital Image Fundamentals: Session 2

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology Sri City, Andhra Pradesh

Today's Lecture

- Image sampling and quantization image interpolation
- Relationship between pixels

- Interpolation: Process of using known data to estimate unknown values e.g., zooming, shrinking, rotating, and geometric correction
- Interpolation (or *resampling*): an imaging method to increase (or decrease) the number of pixels in a digital image.

Note: Some digital cameras use interpolation to produce a larger image than the sensor captured or to create digital zoom

Nearest Neighbor Interpolation

Bilinear Interpolation

Bicubic Interpolation

Example

Example

Example

Neighbourhood

Adjacency

Connectivity

Paths

Regions and

A. Adjacency

Let V be the set of intensity values.

- a. 4-adjacency: Two pixels p and q with values from V are 4-adjacent if q is in the set N₄(p).
- b. 8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in the set N₈(p).

- c. m-adjacency: Two pixels p and q with values from V are m-adjacent if
 - i. q is in the set $N_4(p)$, or
 - ii. q is in the set $N_D(p)$ and the set $N_4(p) \cap N_4(p)$ has no pixels whose values are from V.

Distance Measure

Given pixels p, q and z with coordinates (x, y), (s, t), (u, v) respectively, the distance function D has following properties:

a.
$$D(p, q) \ge 0$$
 $[D(p, q) = 0, iff p = q]$

b.
$$D(p, q) = D(q, p)$$

c.
$$D(p, z) \le D(p, q) + D(q, z)$$

Distance Measure

The following are the different Distance measures:

Euclidean Distance :

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

City Block Distance:

$$D_4(p, q) = |x-s| + |y-t|$$

Chess Board Distance:

$$D_8(p, q) = max(|x-s|, |y-t|)$$

		2		
	2	1	2	
2	1	0	1	2
	2	1	2	
		2		

2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Next Class

- Digital Image Fundamentals
 - Mathematical Operations in DIP

Thank you: Question?