

馬達模型模擬

機電系統原理與實驗

國立台灣大學 機械工程學系

Target

- ◆ 利用Simulink建立直流馬達數學模型
- ◆ 了解馬達模型
- ◆ 對直流馬達模型進行回授控制

Outline

- Open loop
- Closed loop

馬達模型模擬 Open loop

馬

馬達模型係數

- □ Va:電樞電壓
- □ Ra:電樞電阻
- □ eb:反電動勢
- □ J:轉動慣量
- □ ω:角速度
- □ K_b: 反電動勢常數
- □ i:電樞電流
- □ La:電樞電感
- □ B:摩擦係數
- □ T_q:轉矩
- K_t:轉矩常數

直流馬達簡易模型

建立數學模型

□ 由以下關係式建立數學模型

•
$$V_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + e_{b(t)}$$

- $e_b(t) = K_b\omega(t)$
- $T_q(t) = K_t i_a(t)$
- $T_q(t) = J \frac{d\omega(t)}{dt} + B\omega(t)$

□ 將上列各項取拉式轉換 整理合併

- $V_a(s) = (R_a + L_a s)I_a(s) + K_b\omega(s)$
- $T_q(s) = K_t I_a(s) = (Js + B)\omega(s)$
- $I_a(s) = \frac{J_{s+B}}{K_t} \omega(s)$

□ 整理後得到馬達轉移函數為

$$\square \quad \frac{\omega(s)}{V_a(s)} = \frac{K_t}{(R_a + L_a s)(J s + B) + K_b K_t}$$

□製成方塊圖

- □ 開啟 motor_OpenLoopResp.slx
- □ Load 馬達參數 (parameters_10.4volt.mat)
- □ 按下Run,從SCOPE查看模擬結果

- □ 切換輸入
- □ 觀察不同輸入的響應

馬達模型模擬 Closed loop

建立模型

□ 加入PID 進行回授控制

- □ 開啟 motor_ClosedLoopCtrl.slx
- □ Load 馬達參數 (parameters_10.4volt.mat)
- □ 按下Run,從scope查看模擬結果

□切換輸入

□ Step 和 Sine wave 輸入設定

Step

Sine wave

Block Parameters: Sine Wave	×
Sine Wave	
Output a sine wave:	
O(t) = Amp*Sin(Freq*t+Phase) + Bias	
Sine type determines the computational technique used. The parameters in the two types are related through:	es
Samples per period = 2*pi / (Frequency * Sample time)	
Number of offset samples = Phase * Samples per period / (2*pi)	
Use the sample-based sine type if numerical problems due to running for large times (e.g. overflow in absolute time) occur.	
Parameters	
Sine type: Time based	•
Time (t): Use simulation time	•
Amplitude:	
16000	:
Bias:	
0	:
Frequency (rad/sec):	
pi	1
Phase (rad):	
0	:
Sample time:	
0	:
✓ Interpret vector parameters as 1-D	
OK Cancel Help Appl	у

□可以嘗試調整PID參數

Block Parameters: PID Controller	×
PID 1dof (mask) (link)	
This block implements continuous- and discrete-time PID control algor reset, and signal tracking. You can tune the PID gains automatically us	
Controller: PID ▼	Form: Parallel
Time domain:	Discrete-time settings
● Continuous-time	Sample time (-1 for inherited): -1
O Discrete-time	Sample time (1 for interfect).
▼ Compensator formula	
$P+I\frac{1}{s}$	$+D\frac{N}{1+N\frac{1}{s}}$
	te Attributes
Controller parameters	
Source: internal	*
Proportional (P): 0.0000001	<u> </u>
Integral (I): 0	[]
Derivative (D): 0	
✓ Use filtered derivative	
Filter coefficient (N): 100	
- Automated tuning	
Select tuning method: Transfer Function Based (PID Tuner App)	▼ Tune
☑ Enable zero-crossing detection	
	OK Cancel Help Apply

補充

Notice

- □ 馬達參數是額外建立的
- □ 在使用simulink檔案前,請先在matlab的Comment Window輸入load('parameters_10.4volt.mat'),將馬達參數讀進Workspace中

Workspace		
Name 🔺	Value	Size
⊞ B	1.4130e-05	1x1
 J	3.3000e-06	1x1
 Kb	0.0448	1x1
	0.0412	1x1
La	0.0534	1x1
₩ Ra	30	1x1
∏ Va	10.4000	1x1
	Name A B J Kb Kt La Ra	Name Value B 1.4130e-05 J 3.3000e-06 Kb 0.0448 Kt 0.0412 La 0.0534 Ra 30

補充

- 馬達響應圖除了直接從scope查看,也可以從 matlab的 workspace中取得數據再自行繪圖
- □ 變數名稱為 Out
- out.simout

◆ Time: 時間

◆ Data1: 輸入訊號

◆ Data2: 輸出訊號

Workspace		•
Name 🔺	Value	
ans	911x2 double	
∐ B	1.4130e-05	
 J	3.3000e-06	
∐ Kb	0.0448	
∐ Kt	0.0412	
La	0.0534	
🛍 out	1x1 SimulationOutp	
	30	
	10.4000	

	out × out.simout × out.simout						
out.simou							
ime series n	ime series name:						
Time	Data:1	Data:2					
0	0	0					
0.1300	0	0					
0.2600	0	0					
0.3900	0	0					
0.5200	0	0					
0.6500	0	0					
0.7800	0	0					
0.9100	0	0					
1.0000	0	0					
1	32000	0					
1.0000	32000	9.8144e-27					
1.0028	32000	6.0713e-04					
1.0056	32000	0.0037					
1.0108	32000	0.0170					
1.0172	32000	0.0467					
1.0247	32000	0.0971					
1.0301	32000	0.1420					
1.0354	32000	0.1934					
1.0419	32000	0.2632					
1.0492	32000	0.3502					
1.0558	32000	0.4358					
1.0612	32000	0.5095					
1.0663	32000	0.5811					
1.0721	32000	0.6677					
1.0792	32000	0.7760					
1.0864	32000	0.8891					
1.0923	32000	0.9851					
1.0973	32000	1.0676					
1,1026	32000	1.1563					

Simulink Library

- ◆ 利用Search找到自己要用的東西
- ◆ Transfer fun. / constant / add 已足夠建立一簡單系統

補充

Saturation:

考慮到實際上L298N輸出電壓 上限,因此在輸出電壓設置 saturation 馬達角度和encoder count轉換: encoder 轉一圈 32000 count