Plan

- Determinant
- Determinants of Elementary Matrices
- Laplace Expansion Theorem
- Cramer's Rule
- Subspaces Associated with Matrices
- Rank Nullity Theorem
- The Fundamental Theorem of Invertible Matrices

Definition

Let $A = [a_{ij}]$ be an $n \times n$ matrix.

• If A = [a], determinant of A is defined as det(A) = a.

Definition

Let $A = [a_{ij}]$ be an $n \times n$ matrix.

• If A = [a], determinant of A is defined as det(A) = a.

• If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then we define $det(A) = ad - bc$.

Definition

Let $A = [a_{ij}]$ be an $n \times n$ matrix.

- If A = [a], determinant of A is defined as det(A) = a.
- If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then we define det(A) = ad bc.
- Let A_{ij} be the submatrix of A obtained by deleting the i-th row and the j-th column of A.

Definition

Let $A = [a_{ii}]$ be an $n \times n$ matrix.

- If A = [a], determinant of A is defined as det(A) = a.
- If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then we define det(A) = ad bc.
- Let A_{ij} be the submatrix of A obtained by deleting the *i*-th row and the *j*-th column of A.
- In general, det(A) is defined recursively as follows:

$$\det(A) = a_{11}\det(A_{11}) - a_{12}\det(A_{12}) + \ldots + (-1)^{1+n}a_{1n}\det(A_{1n}).$$

• Sometimes det(A) is also denoted by |A|.

- Sometimes det(A) is also denoted by |A|.
- We define $det(A_{ij})$ to be the (i, j)-minor of A.

- Sometimes det(A) is also denoted by |A|.
- We define $det(A_{ij})$ to be the (i, j)-minor of A.
- The number $C_{ij} = (-1)^{i+j} \det(A_{ij})$ is called the (i,j)-cofactor of A.

- Sometimes det(A) is also denoted by |A|.
- We define $det(A_{ij})$ to be the (i, j)-minor of A.
- The number $C_{ij} = (-1)^{i+j} \det(A_{ij})$ is called the (i,j)-cofactor of A.
- Thus we can write

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j}) = \sum_{j=1}^{n} a_{1j} C_{1j}.$$

 $\bullet \ \, \mathsf{Take} \; \mathsf{a} \; \mathsf{matrix} \; A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}.$

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j}.$$

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| = 0$$

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

● Take a matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

Expand each of them.

• Take a matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

• Expand each of them. Do you get 12 terms?

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| = 0$$

$$\sigma_{11} \sigma_{11} \sigma_{11} \sigma_{11} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{12} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{14}$$

• Expand each of them. Do you get 12 terms? Do you get a term $(...)\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$?

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

$$\sigma_{11} \sigma_{11} \sigma_{11} \sigma_{11} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{12} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{14} \sigma_{15} \sigma_{15}$$

• Expand each of them. Do you get 12 terms? Do you get a term $(...)\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$? Do you get this matrix twice?

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

$$\sigma_{11} \sigma_{11} \sigma_{11} \sigma_{11} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{12} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{14}$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\ldots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

$$\sigma_{11} \sigma_{11} \sigma_{11} \sigma_{11} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{14} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{14}$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\ldots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\frac{\sigma_{12}a_{12}}{\sigma_{12}a_{12}}$

• Take a matrix
$$A = \begin{bmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = 1$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\ldots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\sigma_{12}a_{12}$

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\ldots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\frac{\sigma_{12}a_{12}}{\sigma_{12}a_{12}}$

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

$$\sigma_{11} \, \hat{\sigma}_{11} \, \hat{\sigma}_{11} \, \hat{\sigma}_{12} \, \quad \hat{\sigma}_{22} \, \quad \hat{\sigma}_{23} \, \quad \hat{\sigma}_{24} \, \\ \hat{\sigma}_{32} \, \quad \hat{\sigma}_{33} \, \quad \hat{\sigma}_{34} \, \quad \hat{\sigma}_{12} \, \hat{\sigma}_{12} \, \hat{\sigma}_{12} \, \quad \hat{\sigma}_{13} \, \quad \hat{\sigma}_{33} \, \quad \hat{\sigma}_{34} \, \\ \hat{\sigma}_{41} \, \quad \hat{\sigma}_{43} \, \quad \hat{\sigma}_{44} \, \quad \hat{\sigma}_{13} \, \hat{\sigma}_{13} \, \quad \hat{\sigma}_{31} \, \quad \hat{\sigma}_{22} \, \quad \hat{\sigma}_{24} \, \\ \hat{\sigma}_{31} \, \quad \hat{\sigma}_{32} \, \quad \hat{\sigma}_{34} \, \quad \hat{\sigma}_{14} \, \hat{\sigma}_{14} \, \hat{\sigma}_{14} \, \quad \hat{\sigma}_{42} \, \quad \hat{\sigma}_{43} \, \\ \hat{\sigma}_{41} \, \quad \hat{\sigma}_{42} \, \quad \hat{\sigma}_{44} \, \quad \hat{\sigma}_{14} \, \hat{\sigma}_{14} \, \quad \hat{\sigma}_{42} \, \quad \hat{\sigma}_{43} \, \\ \hat{\sigma}_{41} \, \quad \hat{\sigma}_{42} \, \quad \hat{\sigma}_{43} \, \quad \hat{\sigma}_{44} \, \quad \hat{\sigma}_{$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\ldots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\sigma_{12}a_{12} = \sigma_{12}a_{23}$

• Take a matrix
$$A = \begin{bmatrix} a_{11} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\sigma_{12}a_{12} = \sigma_{12}a_{23}$

$$\bullet \text{ Take a matrix } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \text{. Put } \sigma_{ij} = (-1)^{i+j} \text{. Then } |A| =$$

$$\sigma_{11} \sigma_{11} \sigma_{11} \sigma_{11} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{12} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{14}$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\ldots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\frac{\sigma_{12}a_{12}}{\sigma_{12}a_{23}}$ +

• Take a matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

$$\sigma_{11} = \frac{1}{11} =$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\frac{\sigma_{12}a_{12}}{\sigma_{12}a_{23}}$ +

• Take a matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\sigma_{12}a_{12} = \sigma_{12}a_{23} + \sigma_{13}a_{13} = \sigma_{12}a_{22}$

• Take a matrix
$$A = \begin{bmatrix} 2 & 3 & & & \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

$$\sigma_{11}\sigma_{11}\sigma_{11}\sigma_{11}\sigma_{12}\sigma_{13}\sigma_{22}\sigma_{33}\sigma_{34}\sigma_{34}\sigma_{34}\sigma_{12}\sigma_{12}\sigma_{12}\sigma_{12}\sigma_{33}\sigma_{34}\sigma_{41}\sigma_{12}\sigma_{12}\sigma_{33}\sigma_{41}\sigma_{43}\sigma_{43}\sigma_{44}\sigma_{13}\sigma_{13}\sigma_{41}\sigma_{13}\sigma_{22}\sigma_{34}\sigma_{1$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$? Do you get this matrix twice?
- So, the coefficient of $\begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix}$ is $\frac{\sigma_{12}a_{23}}{a_{23}} + \frac{\sigma_{13}a_{13}}{a_{12}a_{22}} = (-1)^{1+2+2+3} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$.

• Take a matrix
$$A = \begin{bmatrix} 2 & 3 & & & \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

$$\sigma_{11} \stackrel{1}{\text{ol}}_{11} \stackrel{1}{\text{ol}}_{12} = \stackrel{1}{\text{ol}}_{23} = \stackrel{2}{\text{ol}}_{23} = \stackrel{2}{\text{ol}}_{24} + \sigma_{12} \stackrel{1}{\text{ol}}_{21} = \stackrel{2}{\text{ol}}_{21} = \stackrel{2}{\text{ol}}_{23} = \stackrel{2}{\text{ol}}_{24} + \sigma_{13} \stackrel{1}{\text{ol}}_{21} = \stackrel{2}{\text{ol}}_{22} = \stackrel{2}{\text{ol}}_{24} + \sigma_{14} \stackrel{1}{\text{ol}}_{14} = \stackrel{2}{\text{ol}}_{14} = \stackrel{2}$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- $\bullet \text{ So, the coefficient of } \begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix} \text{ is } \qquad \qquad \begin{matrix} \sigma_{12} a_{12} & \sigma_{12} a_{23} & + & \sigma_{13} a_{13} & \sigma_{12} a_{22} = (-1)^{1+2+2+3} \\ a_{22} & a_{23} \end{vmatrix}.$
- The coefficient of $|A_{1,2|1,3}| = \begin{vmatrix} a_{32} & a_{34} \\ a_{42} & a_{44} \end{vmatrix}$ is $(-1)^{1+2+1+3} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$.

● Take a matrix
$$A = \begin{bmatrix} 1 \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = 1$

$$\sigma_{11} \sigma_{11} \sigma_{11} \sigma_{11} \sigma_{12} \sigma_{13} \sigma_{13} \sigma_{14} \sigma_{14} \sigma_{12} \sigma_{12} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{13} \sigma_{14} \sigma_{14}$$

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- $\bullet \text{ So, the coefficient of } \begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix} \text{ is } \qquad \qquad \sigma_{12} a_{12} \qquad \sigma_{12} a_{23} \ + \ \sigma_{13} a_{13} \ \sigma_{12} a_{22} = (-1)^{1+2+2+3} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}.$
- The coefficient of $|A_{1,2|1,3}| = \begin{vmatrix} a_{32} & a_{34} \\ a_{42} & a_{44} \end{vmatrix}$ is $(-1)^{1+2+1+3} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$.
- In general, the coefficient of $|A_{1,2|i,j}|$ in the double expansion of |A| is $(-1)^{1+2+i+j}\begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$.

● Take a matrix
$$A = \begin{bmatrix} 2 & 3 & \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
. Put $\sigma_{ij} = (-1)^{i+j}$. Then $|A| = (-1)^{i+j}$.

- Expand each of them. Do you get 12 terms? Do you get a term $\left(\dots\right)\begin{vmatrix}a_{31}&a_{34}\\a_{41}&a_{44}\end{vmatrix}$? Do you get this matrix twice?
- $\bullet \text{ So, the coefficient of } \begin{vmatrix} a_{31} & a_{34} \\ a_{41} & a_{44} \end{vmatrix} \text{ is } \qquad \qquad \underbrace{\sigma_{12}a_{22}}_{\sigma_{12}a_{23}} \ + \ \underbrace{\sigma_{13}a_{13}}_{\sigma_{12}a_{22}} \ \underbrace{\sigma_{12}a_{23}}_{\sigma_{22}a_{23}} \end{vmatrix}.$
- The coefficient of $|A_{1,2|1,3}| = \begin{vmatrix} a_{32} & a_{34} \\ a_{42} & a_{44} \end{vmatrix}$ is $(-1)^{1+2+1+3} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$.
- ullet In general, the coefficient of $|A_{1,2|i,j}|$ in the double expansion of |A| is $(-1)^{1+2+i+j}\begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix}$.
- Hence $|A| = \sum\limits_{i < j} (-1)^{1+2+i+j} \begin{vmatrix} a_{1i} & a_{1j} \\ a_{2i} & a_{2j} \end{vmatrix} |A_{1,2|i,j}|.$

• If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).

- If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).
- (By Induction) If B is obtained by interchanging any two consecutive rows of A, then det(B) = -det(A).

- If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).
- (By Induction) If B is obtained by interchanging any two consecutive rows of A, then det(B) = -det(A).
- If B is obtained by interchanging any two rows of A, then det(B) = -det(A).

- If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).
- (By Induction) If B is obtained by interchanging any two consecutive rows of A, then det(B) = -det(A).
- If B is obtained by interchanging any two rows of A, then det(B) = -det(A).
- If A has a zero row then det(A) = 0.

Result (Properties of Determinants)

- If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).
- (By Induction) If B is obtained by interchanging any two consecutive rows of A, then det(B) = -det(A).
- If B is obtained by interchanging any two rows of A, then det(B) = -det(A).
- If A has a zero row then det(A) = 0.
- If A has two identical rows then det(A) = 0.

Result (**Properties of Determinants**)

- If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).
- (By Induction) If B is obtained by interchanging any two consecutive rows of A, then det(B) = -det(A).
- If B is obtained by interchanging any two rows of A, then det(B) = -det(A).
- If A has a zero row then det(A) = 0.
- If A has two identical rows then det(A) = 0.
- If B is obtained by multiplying a row of A by k, then det(B) = kdet(A).

Result (**Properties of Determinants**)

- If B is obtained by interchanging the first two rows of A, then det(B) = -det(A).
- (By Induction) If B is obtained by interchanging any two consecutive rows of A, then det(B) = -det(A).
- If B is obtained by interchanging any two rows of A, then det(B) = -det(A).
- If A has a zero row then det(A) = 0.
- If A has two identical rows then det(A) = 0.
- If B is obtained by multiplying a row of A by k, then det(B) = kdet(A).
- If B is obtained by adding a multiple of one row of A to another row, then det(B) = det(A).

Let *E* be an $n \times n$ elementary matrix and *A* be any $n \times n$ matrix. Then

 $0 \det(E) = -1, k \text{ or } 1.$

Let *E* be an $n \times n$ elementary matrix and *A* be any $n \times n$ matrix. Then

- $0 \det(E) = -1, k \text{ or } 1.$
- $oldsymbol{2}$ det(EA) = det(E)det(A).

Let *E* be an $n \times n$ elementary matrix and *A* be any $n \times n$ matrix. Then

- $0 \det(E) = -1, k \text{ or } 1.$
- $2 \det(EA) = \det(E)\det(A).$
- **3** E^t is also an elementary matrix and $det(E) = det(E^t)$.

Let *E* be an $n \times n$ elementary matrix and *A* be any $n \times n$ matrix. Then

- $0 \det(E) = -1, k \text{ or } 1.$
- $2 \det(EA) = \det(E)\det(A).$
- **3** E^t is also an elementary matrix and $det(E) = det(E^t)$.

• A square matrix A is invertible if and only if $det(A) \neq 0$.

- A square matrix A is invertible if and only if $det(A) \neq 0$.
- Let A be an $n \times n$ matrix. Then $det(kA) = k^n det(A)$.

- A square matrix A is invertible if and only if $det(A) \neq 0$.
- Let A be an $n \times n$ matrix. Then $det(kA) = k^n det(A)$.
- Let A and B be two n × n matrices. Then det(AB) = det(A)det(B).

- A square matrix A is invertible if and only if $det(A) \neq 0$.
- Let A be an $n \times n$ matrix. Then $det(kA) = k^n det(A)$.
- Let A and B be two n × n matrices. Then det(AB) = det(A)det(B).
- If the matrix A is invertible then $det(A^{-1}) = \frac{1}{det(A)}$.

- A square matrix A is invertible if and only if $det(A) \neq 0$.
- Let A be an $n \times n$ matrix. Then $det(kA) = k^n det(A)$.
- Let A and B be two n × n matrices. Then det(AB) = det(A)det(B).
- If the matrix A is invertible then $det(A^{-1}) = \frac{1}{det(A)}$.
- \bigstar A matrix A is said to be singular or non-singular according as $\det(A) = 0$ or $\det(A) \neq 0$.

• The determinant of a triangular matrix is the product of the diagonal entries. That is, if $A = [a_{ij}]$ is an $n \times n$ triangular matrix then $det(A) = a_{11}a_{22} \dots a_{nn}$.

- The determinant of a triangular matrix is the product of the diagonal entries. That is, if $A = [a_{ij}]$ is an $n \times n$ triangular matrix then $det(A) = a_{11}a_{22} \dots a_{nn}$.
- If R is in row echelon form having a zero row, then det(R) = 0 = det(R^t).

- The determinant of a triangular matrix is the product of the diagonal entries. That is, if $A = [a_{ij}]$ is an $n \times n$ triangular matrix then $det(A) = a_{11}a_{22} \dots a_{nn}$.
- If R is in row echelon form having a zero row, then det(R) = 0 = det(R^t).
- For any square matrix A, $det(A^t) = det(A)$.

- The determinant of a triangular matrix is the product of the diagonal entries. That is, if $A = [a_{ij}]$ is an $n \times n$ triangular matrix then $det(A) = a_{11}a_{22} \dots a_{nn}$.
- If R is in row echelon form having a zero row, then det(R) = 0 = det(R^t).
- For any square matrix A, $det(A^t) = det(A)$.
- ★ Thus a determinant can be expanded column-wise.

- The determinant of a triangular matrix is the product of the diagonal entries. That is, if $A = [a_{ij}]$ is an $n \times n$ triangular matrix then $det(A) = a_{11}a_{22} \dots a_{nn}$.
- If R is in row echelon form having a zero row, then det(R) = 0 = det(R^t).
- For any square matrix A, $det(A^t) = det(A)$.
- ★ Thus a determinant can be expanded column-wise.
- ★ All the previous results based on row-wise expansion of determinant are also valid for column-wise expansion.

Result (Laplace Expansion Theorem)

The determinant of an $n \times n$ matrix $A = [a_{ij}]$, where $n \ge 2$, can be computed as

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in} = \sum_{j=1}^{n} a_{ij}C_{ij},$$

(this is the cofactor expansion along the i-th row),

Result (Laplace Expansion Theorem)

The determinant of an $n \times n$ matrix $A = [a_{ij}]$, where $n \ge 2$, can be computed as

$$det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \ldots + a_{in}C_{in} = \sum_{j=1}^{n} a_{ij}C_{ij},$$

(this is the cofactor expansion along the i-th row),

and also as

$$det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + \ldots + a_{nj}C_{nj} = \sum_{i=1}^{n} a_{ij}C_{ij},$$

(this is the cofactor expansion along the j-th column).

 If B is obtained by interchanging any two columns of A, then det(B) = -det(A).

- If B is obtained by interchanging any two columns of A, then det(B) = -det(A).
- If A has a zero column then det(A) = 0.

- If B is obtained by interchanging any two columns of A, then det(B) = -det(A).
- If A has a zero column then det(A) = 0.
- If A has two identical columns then det(A) = 0.

- If B is obtained by interchanging any two columns of A, then det(B) = -det(A).
- If A has a zero column then det(A) = 0.
- If A has two identical columns then det(A) = 0.
- If B is obtained by multiplying a column of A by k, then det(B) = kdet(A).

- If B is obtained by interchanging any two columns of A, then det(B) = -det(A).
- If A has a zero column then det(A) = 0.
- If A has two identical columns then det(A) = 0.
- If B is obtained by multiplying a column of A by k, then det(B) = kdet(A).
- If B is obtained by adding a multiple of one column of A to another column, then det(B) = det(A).

Definition

Let A be an $n \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^n$. Then $A_i(\mathbf{b})$ denotes the matrix obtained by replacing the i-th column of A by \mathbf{b} . That is, if $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n]$, then $A_i(\mathbf{b}) = [\mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_{i-1} \ \mathbf{b} \ \mathbf{a}_{i+1} \ \dots \ \mathbf{a}_n]$.

Definition

Let A be an $n \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^n$. Then $A_i(\mathbf{b})$ denotes the matrix obtained by replacing the i-th column of A by \mathbf{b} . That is, if $A = [\mathbf{a_1} \ \mathbf{a_2} \ \dots \ \mathbf{a_n}]$, then $A_i(\mathbf{b}) = [\mathbf{a_1} \ \mathbf{a_2} \ \dots \ \mathbf{a_{i-1}} \ \mathbf{b} \ \mathbf{a_{i+1}} \ \dots \ \mathbf{a_n}]$.

Result (Cramer's Rule)

Let A be an $n \times n$ invertible matrix and let $\mathbf{b} \in \mathbb{R}^n$. Then the unique solution $\mathbf{x} = [x_1, x_2, \dots, x_n]^t$ of the system $A\mathbf{x} = \mathbf{b}$ is given by

$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}$$
 for $i = 1, 2, \dots, n$.

The Adjoint of a Matrix: Let $A = [a_{ij}]$ be an $n \times n$ matrix and let C_{ij} be the (i, j)-cofactor of A. Then the adjoint of A, denoted adj(A), is defined as

$$adj(A) = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix} = [C_{ij}]^{t}.$$

The Adjoint of a Matrix: Let $A = [a_{ij}]$ be an $n \times n$ matrix and let C_{ij} be the (i, j)-cofactor of A. Then the adjoint of A, denoted adj(A), is defined as

$$adj(A) = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix} = [C_{ij}]^{t}.$$

Result

Let A be an $n \times n$ invertible matrix. Then $A^{-1} = \frac{1}{\det(A)}$.adj(A).

The Adjoint of a Matrix: Let $A = [a_{ij}]$ be an $n \times n$ matrix and let C_{ij} be the (i, j)-cofactor of A. Then the adjoint of A, denoted adj(A), is defined as

$$adj(A) = \begin{bmatrix} C_{11} & C_{21} & \dots & C_{n1} \\ C_{12} & C_{22} & \dots & C_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ C_{1n} & C_{2n} & \dots & C_{nn} \end{bmatrix} = [C_{ij}]^{t}.$$

Result

Let A be an $n \times n$ invertible matrix. Then $A^{-1} = \frac{1}{\det(A)} .adj(A)$.

Exercise

Use the adjoint method to find the inverse of the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{array} \right].$$

Definition

Let A be an $m \times n$ matrix.

The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$.

Definition

Let A be an $m \times n$ matrix.

1 The null space of A, denoted $\operatorname{null}(A)$, is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system Ax = 0. In other words,

$$\mathsf{null}(A) = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$$

Definition

Let A be an $m \times n$ matrix.

- The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, null(A) = $\{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$
- The column space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A.

Definition

Let A be an $m \times n$ matrix.

- The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, null(A) = { $\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}$ }
- The column space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.

Definition

Let A be an $m \times n$ matrix.

- The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, null(A) = { $\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}$ }
- The column space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A.

Definition

Let A be an $m \times n$ matrix.

- The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, null(A) = $\{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$
- The column space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A. In other words, $row(A) = \{\mathbf{x}^T A \mid \mathbf{x} \in \mathbb{R}^m\}$
 - [Here, elements of row(A) are row vectors. How can they be elements of \mathbb{R}^n ?

Definition

Let A be an $m \times n$ matrix.

- The null space of A, denoted null(A), is the subspace of \mathbb{R}^n consisting of the solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. In other words, null(A) = $\{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\}$
- The column space of A, denoted col(A), is the subspace of \mathbb{R}^m spanned by the columns of A. In other words, $col(A) = \{A\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$.
- The row space of A, denoted row(A), is the subspace of \mathbb{R}^n spanned by the rows of A. In other words, $row(A) = \{\mathbf{x}^T A \mid \mathbf{x} \in \mathbb{R}^m\}$
 - [Here, elements of row(A) are row vectors. How can they be elements of \mathbb{R}^n ? In strict sense, $row(A) := col(A^T)$.]

• Let B be a matrix that is row equivalent to the matrix A. Then row(B) = row(A).

- Let B be a matrix that is row equivalent to the matrix A. Then row(B) = row(A).
- For any matrix A, row(A) = row(RREF(A)).

- Let B be a matrix that is row equivalent to the matrix A. Then row(B) = row(A).
- For any matrix A, row(A) = row(RREF(A)).
- For any A, the non-zero rows of RREF(A) forms a basis of row(A).

- Let B be a matrix that is row equivalent to the matrix A.
 Then row(B) = row(A).
- For any matrix A, row(A) = row(RREF(A)).
- For any A, the non-zero rows of RREF(A) forms a basis of row(A).

Suppose A and B are row-equivalent. Are col(A) and col(B) equal?

- Let B be a matrix that is row equivalent to the matrix A.
 Then row(B) = row(A).
- For any matrix A, row(A) = row(RREF(A)).
- For any A, the non-zero rows of RREF(A) forms a basis of row(A).

Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No.

- Let B be a matrix that is row equivalent to the matrix A.
 Then row(B) = row(A).
- For any matrix A, row(A) = row(RREF(A)).
- For any A, the non-zero rows of RREF(A) forms a basis of row(A).

Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

- Let B be a matrix that is row equivalent to the matrix A.
 Then row(B) = row(A).
- For any matrix A, row(A) = row(RREF(A)).
- For any A, the non-zero rows of RREF(A) forms a basis of row(A).

Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Suppose A and B are row-equivalent. Do col(A) and col(B) have same dimension?

- Let B be a matrix that is row equivalent to the matrix A.
 Then row(B) = row(A).
- For any matrix A, row(A) = row(RREF(A)).
- For any A, the non-zero rows of RREF(A) forms a basis of row(A).

Suppose A and B are row-equivalent. Are col(A) and col(B) equal? No. Take $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Suppose A and B are row-equivalent. Do col(A) and col(B) have same dimension? Yes. We will see soon.

Let A be a given matrix and let R be the reduced row echelon form of A.

Use the non-zero rows of R to form a basis for row(A).

- Use the non-zero rows of R to form a basis for row(A).
- Solve the leading variables of Rx = 0 in terms of the free variables, set the free variables equal to parameters, substitute back into x, write the result as a linear combination of k vectors (where k is the number of free variables). These k vectors form a basis for null(A).

- Use the non-zero rows of R to form a basis for row(A).
- Solve the leading variables of Rx = 0 in terms of the free variables, set the free variables equal to parameters, substitute back into x, write the result as a linear combination of k vectors (where k is the number of free variables). These k vectors form a basis for null(A).
- 3 A basis for $row(A^t)$ will also be a basis for col(A).

- Use the non-zero rows of R to form a basis for row(A).
- Solve the leading variables of Rx = 0 in terms of the free variables, set the free variables equal to parameters, substitute back into x, write the result as a linear combination of k vectors (where k is the number of free variables). These k vectors form a basis for null(A).
- 3 A basis for $row(A^t)$ will also be a basis for col(A).
- Or, Use the columns of A that correspond to the columns of R containing the leading 1's to form a basis for col(A).

Example

Find bases for the row space, column space and null space of the following matrix:

$$A = \left[\begin{array}{rrr} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 4 & 6 & 2 \end{array} \right],$$

Example

Find bases for the row space, column space and null space of the following matrix:

$$A = \left[\begin{array}{ccc} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 4 & 6 & 2 \end{array} \right], \quad \textit{RREF}(A) = \left[\begin{array}{ccc} 1 & 0 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{array} \right].$$

Example

Find bases for the row space, column space and null space of the following matrix:

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 4 & 6 & 2 \end{bmatrix}, \quad RREF(A) = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Result

Let $R = [\mathbf{b_1} \ \mathbf{b_2} \ \dots \ \mathbf{b_n}]$ be the reduced row echelen form of a matrix $A = [\mathbf{a_1} \ \mathbf{a_2} \ \dots \ \mathbf{a_n}]$ of rank r. Let $\mathbf{b_{j_1}}, \mathbf{b_{j_2}}, \dots, \mathbf{b_{j_r}}$ be the columns of R such that $\mathbf{b_{j_k}} = \mathbf{e_k}$ for $k = 1, \dots, r$. Then $\{\mathbf{a_{j_1}}, \mathbf{a_{j_2}}, \dots, \mathbf{a_{j_r}}\}$ is a basis for col(A).

The row space and the column space of a matrix A have the same dimension, and dim(row(A)) = dim(col(A)) = rank(A).

The row space and the column space of a matrix A have the same dimension, and dim(row(A)) = dim(col(A)) = rank(A).

Result

For any matrix A, we have $rank(A^t) = rank(A)$.

The row space and the column space of a matrix A have the same dimension, and dim(row(A)) = dim(col(A)) = rank(A).

Result

For any matrix A, we have $rank(A^t) = rank(A)$.

Nullity: The nullity of a matrix A is the dimension of its null space, and is denoted by nullity(A).

The row space and the column space of a matrix A have the same dimension, and dim(row(A)) = dim(col(A)) = rank(A).

Result

For any matrix A, we have $rank(A^t) = rank(A)$.

Nullity: The nullity of a matrix A is the dimension of its null space, and is denoted by nullity(A).

Result (Rank Nullity Theorem)

Let A be an $m \times n$ matrix. Then

$$rank(A) + nullity(A) = n.$$

Result (Fundamental Theorem of Invertible Matrices: II)

Result (Fundamental Theorem of Invertible Matrices: II) Let A be an $n \times n$ matrix. Then the following statements are

Let A be an $n \times n$ matrix. Then the following statements are equivalent.

Result (Fundamental Theorem of Invertible Matrices: II)

Let A be an $n \times n$ matrix. Then the following statements are equivalent.

- A is invertible.
- \triangle A^t is invertible.
- **3** $A\mathbf{x} = \mathbf{b}$ has a solution for every \mathbf{b} in \mathbb{R}^n .
- **4** $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- **3** $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- **1** The reduced row echelon form of A is I_n .
- The rows of A are linearly independent.
- The columns of A are linearly independent.

11. nullity(A) = 0.

- 11. nullity(A) = 0.
- 12. The column vectors of A span \mathbb{R}^n .

- 11. nullity(A) = 0.
- 12. The column vectors of A span \mathbb{R}^n .
- **13**. The column vectors of *A* form a basis for \mathbb{R}^n .

- 11. nullity(A) = 0.
- 12. The column vectors of A span \mathbb{R}^n .
- **13**. The column vectors of *A* form a basis for \mathbb{R}^n .
- **14.** The row vectors of *A* span \mathbb{R}^n .

- 11. nullity(A) = 0.
- 12. The column vectors of A span \mathbb{R}^n .
- **13**. The column vectors of *A* form a basis for \mathbb{R}^n .
- **14**. The row vectors of *A* span \mathbb{R}^n .
- **15**. The row vectors of *A* form a basis for \mathbb{R}^n .

Show that the vectors $[1,2,3]^t$, $[-1,0,1]^t$ and $[4,9,7]^t$ form a basis for \mathbb{R}^3 .

Show that the vectors $[1,2,3]^t$, $[-1,0,1]^t$ and $[4,9,7]^t$ form a basis for \mathbb{R}^3 .

Result

Let A be an $m \times n$ matrix. Then

Show that the vectors $[1,2,3]^t$, $[-1,0,1]^t$ and $[4,9,7]^t$ form a basis for \mathbb{R}^3 .

Result

Let A be an $m \times n$ matrix. Then

 \bigcirc rank(A^tA) = rank(A).

Show that the vectors $[1,2,3]^t$, $[-1,0,1]^t$ and $[4,9,7]^t$ form a basis for \mathbb{R}^3 .

Result

Let A be an $m \times n$ matrix. Then

- \bullet rank(A^tA) = rank(A).
- 2 The $n \times n$ matrix $A^t A$ is invertible if and only if rank(A) = n.

Let A, B, T, S be matrices, where T are S are invertible.

If TA and AS are defined, then rank(TA) = rank(A) = rank(AS).

Let A, B, T, S be matrices, where T are S are invertible.

- If TA and AS are defined, then rank(TA) = rank(A) = rank(AS).
- ② If AB is defined then $rank(AB) \le min\{rank(A), rank(B)\}$.

Let A, B, T, S be matrices, where T are S are invertible.

- If TA and AS are defined, then rank(TA) = rank(A) = rank(AS).
- ② If AB is defined then $rank(AB) \le min\{rank(A), rank(B)\}$.
- ③ If A + B is defined then $rank(A + B) \le rank(A) + rank(B)$.

Let A, B, T, S be matrices, where T are S are invertible.

- If TA and AS are defined, then rank(TA) = rank(A) = rank(AS).
- ② If AB is defined then $rank(AB) \le min\{rank(A), rank(B)\}$.
- If A + B is defined then $rank(A + B) \le rank(A) + rank(B)$.

Result

Let A be an $n \times n$ matrix of rank r, where $1 \le r < n$. Show that there exist elementary matrices E_1, \ldots, E_p and F_1, \ldots, F_q such that $E_1 \ldots E_p A F_1 \ldots F_q = \begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$.