EnsMOD Monte Carlo (EnsMOD-MC)

EnsMOD is used for Omics Sample Outlier Detection

The user can set four threshold parameters:

An overall robust probability value was not calculated for the detected outlier(s)

Monte Carlo Methods

Monte Carlo methods are a broad class of algorithms that rely on repeated random sampling to obtain a numerical result(s).

Monte Carlo methods can be used to robustly solve any problem having a probabilistic interpretation.

Monte Carlo methods tend to follow a particular pattern:

- 1. Define the domain of possible input values
- 2. Generate inputs randomly
- 3. Perform a deterministic computation using each input to produce a result
- 4. Aggregate the results

False Positive Rate (FPR)

		Predicted condition							
	Total population = P + N	Positive (PP)	Negative (PN)						
condition	Positive (P)	True positive (TP), hit	False negative (FN), type II error, miss, underestimation						
Actual	Negative (N)	False positive (FP), type I error, false alarm, overestimation	True negative (TN), correct rejection						

$$FPR = \frac{FP}{TN + FP}$$

If one or more outliers are detected using EnsMOD, then EnsMOD-MC can be used to reanalyze the dataset to estimate the FPR of the outlier detection

EnsMOD-MC does not make any assumptions about the user's dataset (e.g., normal variance is not assumed)

EnsMOD-MC is 100% separate from EnsMOD, and it is available as an open-source, freely available, stand-alone script at https://github.com/niaid/EnsMOD

Use of EnsMOD-MC:

- 1. Delete the outliers detected by EnsMOD from the input dataset
- 2. Optional: Append "_fixed" to the end of column headers to prevent sampling
- 3. Optional: Adjust the number of MC simulations and/or the random seed
- 4. Use exactly the same threshold parameters used for EnsMOD

EnsMOD-MC

- 1. Randomly samples (without replacement) the non-outlier data
- 2. Performs EnsMOD outlier detection (detected outliers are false positives)
- 3. Loops to Step 1 to perform N simulations

$$FPR = \frac{FP}{TN + FP} = \frac{FP}{Loops}$$

Note that
$$P = TP + FN = 0$$

Simulated Proteomics Dataset

S1, S6, S11, S16, S20 = Gaussian random sampling μ = 1,000,000, CV = 30%, N=100 proteins Remaining Samples: CV = 10%

EnsMOD-MC Example: Simulated Proteomics Dataset

Original simulated proteomics dataset used for EnsMOD (s_20 is the simulated outlier).

Simulated proteomics dataset used for EnsMOD_MC. Sample s_20 was deleted, and only the fourth experimental condition (it was s_16, s_17, s_18, s_19, s_20) was shuffled.

	А	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	T
1	s_01_fixed	s_02_fixed	s_03_fixed	s_04_fixed	s_05_fixed	s_06_fixed	s_07_fixed	s_08_fixed	s_09_fixed	s_10_fixed	s_11_fixed	s_12_fixed	s_13_fixed	s_14_fixed	s_15_fixed	s_16	s_17	s_18	s_19	
2	1.74E+06	1.61E+06	1.76E+06	2.10E+06	1.75E+06	1.28E+06	1.48E+06	1.44E+06	1.21E+06	1.31E+06	1.17E+06	9.34E+05	1.08E+06	1.17E+06	1.04E+06	1.20E+06	1.36E+06	1.16E+06	1.27E+06	
3	1.14E+06	1.26E+06	1.21E+06	1.38E+06	9.95E+05	7.07E+05	7.26E+05	6.21E+05	8.27E+05	7.02E+05	1.45E+06	1.43E+06	1.40E+06	1.29E+06	1.37E+06	1.28E+06	1.22E+06	1.35E+06	1.18E+06	
4	9.53E+05	1.06E+06	9.32E+05	8.94E+05	8.20E+05	1.23E+06	1.30E+06	1.34E+06	1.19E+06	1.13E+06	8.15E+05	8.49E+05	8.83E+05	9.52E+05	8.95E+05	1.13E+06	1.08E+06	1.03E+06	1.19E+06	
5	8.94E+05	8.74E+05	8.89E+05	7.87E+05	9.52E+05	1.34E+06	1.45E+06	1.32E+06	1.61E+06	1.46E+06	9.41E+05	9.50E+05	1.00E+06	1.09E+06	8.97E+05	1.04E+06	9.87E+05	9.40E+05	1.03E+06	
6	1 37F+06	1 18F+06	1 5/F+06	1 30F+06	1 18F+06	1 17F+06	1 2/F+06	1 20F+06	9 9/F+05	1 2/F+06	1 23F+06	1 /AF+06	1 //2F+06	1 20F+06	1 02F+06	1 22F+06	1 3/F+06	9 8/F+05	1 10F+06	

EnsMOD-MC Example: Simulated Proteomics Dataset --> Estimated FPR = 0%

```
# Set the number of Mont
# Note that ~1000 or mor
num MC Tests <- 1000
# Set the initial seed f
MC seed <- 90421
# Set the Cophenetic Cor
# The CCC is a measure o
# between the original u
CCC min <- 0.8
# Set the Silhouette Coe
# The SC is a measure of
SC max <- 0.25
# Set the Robust PCA alg
# For normally distribut
iers.
robpca prob <- 0.999
# Set the Robust PCA alg
# For normally distribut
iers.
PcaGrid prob <- 0.999
```


Spleen Phosphoproteomics of Mice with Anthrax

Toxin-, Toxin+, capsule-, capsule-, asymptomatic, lethal abortive infection in 2-4d

Prepared: 5 mice 15 mice 25 mice

Tim	ne	No Injection	Vehicle	ΔSterne	Sterne
0) h	5 mice			
24	ŀ h		5 mice	5 mice	5 mice
48	3 h		5 mice	5 mice	5 mice
72	? h		5 mice	5 mice	1 mouse

The Sterne 72h sample functions as a pseudo-outlier.

Spleens, TiO₂ phospho-enrichment, Label-Free, LTQ-Orbitrap Classic

EnsMOD-MC Example: Anthrax Phosphoproteomics --> Estimated FPR = 1.4%

```
# Set the number of Monte Carlo tests
# Note that ~1000 or more might take mo
num MC Tests <- 500
# Set the initial seed for reproducible
MC seed <- 90421
# Set the Cophenetic Correlation Coeffi
# The CCC is a measure of how faithfull
# between the original unmodeled data;
CCC min <- 0.8
# Set the Silhouette Coefficient (SC) (
# The SC is a measure of how similar an
SC max <- 0.25
# Set the Robust PCA algorithm (robpca)
# For normally distributed data, this \
iers.
robpca prob <- 0.999
# Set the Robust PCA algorithm (PcaGric
# For normally distributed data, this \
iers.
PcaGrid prob <- 0.999
```

