3.1.1) Let $\varphi: G \to H$ be a homomorphism and let $E \leq H$. Prove that $\varphi^{-1}(E) \leq G$. If $E \triangleleft H$ prove that $\varphi^{-1}(E) \triangleleft G$. Deduce that $\ker \varphi \triangleleft G$

Proof

Notice that since E is a subgroup of H, then $\mathbb{1}_H \in E$, and it is clear that $\varphi(\mathbb{1}_G) = \mathbb{1}_H$ meaning that $\mathbb{1}_G \in \varphi^{-1}(E)$.

3.1.3) Let A be an abelian group and $B \leq A$. Prove that A/B is abelian. Give an example of a non-abelian group G containing a proper normal subgroup N such that G/N is abelian.

3.1.4) Prove that in the quotient group G/N, $(gN)^{\alpha} = g^{\alpha}N$ for all $\alpha \in \mathbb{Z}$

3.1.5) Use the preceding exercise to prove that the order of the element gN in G/N is n, where n is the smallest positive integer such that $g^n \in N$. Give an example to show that the order of gN in G/N may be strictly smaller than the order of g in G.

3.1.24) Prove that if $N \subseteq G$ and H is any subgroup of G then $N \cap H \subseteq H$.

3.1.36) Prove that if G/Z(G) is cyclic then G is abelian.[If G/Z(G) is cyclic with generator xZ(G), show that every element of G can be written in the form x^az for some integer $a \in \mathbb{Z}$ and some element $z \in Z(G)$.]

3.2.1) Which of the following are permissible orders for subgroups of a group of order 120: 1, 2, 5, 7, 9, 15, 60, 240? For each permissible order give the corresponding index.

3.2.4) Show that if |G| = pq for some primes p and q (not necessarily distinct) then either G is abelian or Z(G) = 1.

3.2.8) Prove that if H and K are finite subgroups of G whose orders are relatively prime then $H \cap K = 1$.