Loop-Shaping Controller Design from Input-Output Data

Kostas Tsakalis, ASU

Sachi Dash, Honeywell HTC

- Control-Oriented ID: Uncertainty description compatible with the controller design method. (Loop-Shaping for available insight & computations.)
- Linear-model estimation: Coprime factor uncertainty (forward and feedback)
- Controller Design: Loop-Shaping (S&T)
- Final Result: Quick design & implementation, Performance, Reliability

The Application: Control of Paper Machines

• Inputs:

- Stock Flow
- Dryer temperatures (set-points to the local PID's)
- Machine speed set-point

• Outputs:

- Dry weight
- Moistures
- Machine speed

Disturbances:

- Operators change set-points in other loops to maintain overall product quality.
- Feed consistency, especially after paper breaks (re-circulation).
- Other nonlinear effects

Figure 1. Paper Machine Schematic

Generalities: System ID

- System Identification: Nominal Model and Uncertainty Description
- Control-Oriented ID: Uncertainty description compatible with the controller design method.
- Our choice: Loop-Shaping (available insight, computations) based on sensitivity and complementary sensitivity targets.
- Nominal Model: MISO equation error, yielding a linear estimation model

$$y = N(\theta)[u] + D(\theta)[y] + e = w^T\theta$$

- Estimated parameters include initial conditions; this is important to handle inputoutput sets that begin on a transient.
- Left factorization and a coprime factor description of uncertainty:
 - Handling of low frequency perturbations and changes in unstable modes.
 - Indicates required low-frequency sensitivity roll-off (disturbance attenuation)
 - "Easy" computation of target loop properties

Figure 2. Structure of Parameter Estimator

Generalities: Uncertainty Description

- Error Sources: Plant Input and Plant Output processed by "perturbation" subsystems (uncertainty)
- Uncertainty bound computation and target loop selection: Minimization of a robust stability condition

$$\sigma$$
 [U_s C S M^{-1} W_E] σ [Δ_N] + σ [Y_s S M^{-1} W_E] σ [Δ_M] < 1

- Controller-independent approximations
- Input-output scaling and whitening to handle disparate channel-bandwidths and measurement units.

Figure 2. Structure of Identification Uncertainty

Identification 1

- Honeywell's high-fidelity simulator (TDC3000)
- Perform Identification
 - $y = N(\theta)[u] + D(\theta)[y] + e$
- Simulate Id'd system clockwise from top left:
 - dry weight
 - size-press moisture
 - reel moisture
 - machine speed
- Nominal plant: M⁻¹N, (M=I-D)

Identification 2

- Identified plant singular values
 - Eigenvalue spread: 0.57 5
 - RHP transmission zeros:
 0.95, 2.1, 2.4, 1.7+/-2j, 4.3
- Main interactions
 - Stock flow moisture
 - Machine speed moisture and dry weight

- Target selection (T & S)
 - approx. per-channel contributions
- Uncertainty constraints (more critical in moisture channels)
- RHP zeros constraints (more critical in dry-weight)
- Final check through robust stability condition
- Achievable specs determined within a few iterations.

- Weighted sensitivity minimization (standard software)
- A computational alternative: Glover-McFarlane

$$\min_{K} \left\| \frac{KSM^{-1}}{SM^{-1}} \right\|_{H_{\infty}}$$

M, N = ncf(G)

- Plant-Controller augmentation
 - S&T approximate loop-shaping
 - Avoids g-iteration but increases dimensionality
 - Fairly efficient with scalar targets
- Other alternatives, 2-DOF compensators (Open)
- Controller Implementation
 - Observers to substitute missing measurements
 - Anti-windup modifications

$$\min_{K} \left\| W_{T}^{-1} \Theta_{n}^{-1} \Theta_{m} M_{o} T M_{o}^{-1} \right\|_{H}$$

- Controller singular values
 - Reduction to remove unnecessary modes (low/high frequencies)

- Nominal Step responses in four directions.
 - Some coupling between channels remains due to RHP zeros

- Robust stability condition
- Tests with different controllers
- Closed-loop confidence: effective mult. uncertainty for scaled and un-scaled output

$$\begin{split} & \delta_{CL,e} < \{\sigma \left[\ S \ M^{\text{-}1} \ W_{_E} \ \right] \ \sigma \left[\ U_{_S} \ C \ S \ \right] \ \sigma \left[\ T^{\text{-}1} \ \right] \ \sigma \left[\Delta_{_N} \right] + \sigma \left[\ Y_{_S} \ S \ M^{\text{-}1} \ W_{_E} \ \right] \ \sigma \left[\Delta_{_M} \right] \ \} \ \alpha \ \kappa(Y_{_S}) \\ & \alpha = (1 - \sigma \left[\ U_{_S} \ C \ S \ M^{\text{-}1} \ W_{_E} \ \right] \ \sigma \left[\Delta_{_N} \right] - \sigma \left[\ Y_{_S} \ S \ M^{\text{-}1} \ W_{_E} \ \right] \ \sigma \left[\Delta_{_M} \right] \)^{\text{-}1;} \ \kappa(Y_{_S}) = \sigma(Y_{_S}) \ \sigma(Y_{_S}^{\text{-}1}) \end{split}$$

Controller Evaluation 1

- Step responses at nominal steady-state (identified)
- Reasonably smooth control activity
- Overall behavior assessment: excellent

- Small error definitions:
 - dry weight ~ 0.1 (lb)
 - moisture ~0.1 0.2 (%)
 - higher for reel moisture

CDC December 1999

Controller Evaluation 2

- Consistency Disturbance

 (unreasonably large) at t=40.

 Quick recovery without excessive errors.
- Steady-state transition to a new operating point under closed-loop control. (Normally done in open loop)
- Overall behavior assessment: excellent

Controller Evaluation 3

• Step responses at new operating condition

- More coupling appears but still within acceptable limits
- Overall behavior assessment: very good

Conclusions

- Approach: "Coprime factor" uncertainty estimation
 - Flexible and reasonable framework (theoretically, computationally)
 - Compatible with established loop-shaping controller design
- Controller Performance
 - Excellent disturbance attenuation properties (sensitivity minimization)
 - Reliability (minimal iterations, work well the first time)
- Controller design
 - Quick design turn-around time
 - Very quick refinements!
 - Fast execution cycle
- Simulation results
 - Full first-principles, Nonlinear, High fidelity, but still a simulator
 - Preliminary results with real plant data support the same conclusions