import libraries

```
In [1]: import pandas as r
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
```

Exploratory Data Analysis

```
In [2]: d=r.read_csv("/home/placement/Downloads/Advertising.csv")
d
```

Out[2]:

	Unnamed: 0	TV	radio	newspaper	sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
•••					
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

```
In [3]: #splitting the data to predict
        y=d['sales']
        x=d.drop(['sales','Unnamed: 0'],axis=1)
In [4]: #spliting data to create the model
        from sklearn.model selection import train test split
        x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [5]: #Lasso regression model
        from sklearn.linear model import Lasso
        from sklearn.model selection import GridSearchCV
        lasso = Lasso()
        parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]}
        lasso regressor = GridSearchCV(lasso,parameters)
        lasso_regressor.fit(x_train,y_train)
Out[5]:
         ▶ GridSearchCV
         ▶ estimator: Lasso
               ▶ Lasso
In [6]: lasso regressor.best params
Out[6]: {'alpha': 1}
In [7]: lasso=Lasso(alpha=1)
        lasso.fit(x train,y train)
        y pred lasso=lasso.predict(x test)
In [8]: from sklearn.metrics import r2_score #to check the efficiency
        r2 score(y test,y pred lasso)
Out[8]: 0.8589079527148957
```

```
In [9]: from sklearn.metrics import mean_squared_error
lasso_Error=mean_squared_error(y_pred_lasso,y_test)
lasso_Error
```

Out[9]: 3.641439660278575

```
In [10]: results=r.DataFrame(columns=['Actual','Predicted']) #To compare the actual and predicted price
    results['Actual']=y_test
    results['Predicted']=y_pred_lasso
    results=results.reset_index()
    results['Id']=results.index
    results
```

Out[10]:

	index	Actual	Predicted	Id
0	95	16.9	16.523920	0
1	15	22.4	21.058219	1
2	30	21.4	21.624966	2
3	158	7.3	10.745724	3
4	128	24.7	22.188269	4
61	97	15.5	15.301341	61
62	31	11.9	11.472707	62
63	12	9.2	11.035086	63
64	35	12.8	16.702405	64
65	119	6.6	6.955621	65

66 rows × 4 columns

```
In [11]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Actual',data=results.head(5))
sns.lineplot(x='Id',y='Predicted',data=results.head(5))
plt.plot()
```

Out[11]: []

In []: