## **PROIECT VU-METRU**

**Student: Plesa Diana Simona** 

**Grupa: 2127** 

Sa se proiecteze un circuit electronic care sa indice pe un afisaj cu LED-uri nivelul semnalului audio dintr-o banda de frecventa specificata (VU-metru). Circuitul este alimentat de la tensiunea ±VCC. LED-urile trebuie sa fie de culori diferite pentru fiecare domeniu specificat.

### Date de proiectare

| Amplitudinea  | Banda de frecventa [Hz] |      | VCC | Semnalizari |
|---------------|-------------------------|------|-----|-------------|
| semnalului de | fmin                    | fmax |     |             |
| intrare [uV]  |                         |      |     |             |
| 880           | 200                     | 8500 | 12  | 4           |

#### Schema bloc



### **Etape proiectare**

- 1) Amplificatorul
- 2) Filtru
- 3) Circuit de detectie a paragurilor
- 4) Led-urile

#### 1. Amplificatorul

Tensiunea de intrare este foarte mica de aceea semnalul trebuie amplificat.

#### DIMENSIONARE COMPONENTE (Prima amplificare)

AO are RN(reactie negativa) =>  $v_D = 0$ 

$$V_D = V^+ - V^ V^- = \frac{R1}{R1 + R2} * V_{out1}$$
 $\dot{z} > V_I - \frac{R1}{R1 + R2} * V_{out1} = 0 \Rightarrow V_I = \frac{R1}{R1 + R2} * V_{out1}$ 
 $V^+ = V_I$ 

$$A_{v} = \frac{Vout1}{vI} = 1 + \frac{R2}{R1}$$

Semnalul este amplificat datorita celor 2 rezistente!

Aleg 
$$V_{out1}$$
 = 50 mV

$$\Rightarrow A_{v} = \frac{Vout1}{vI} = \frac{50m}{0,88m} = 56,8 \approx 57$$

$$A_{v} = 1 + \frac{R2}{R1} \implies \frac{R2}{R1} = 56 \implies R2 = 56R1$$

Daca 
$$R1 = 1 \text{ k}\Omega \Rightarrow R2 = 56 \text{ k}\Omega$$

### SHEMA ELECTRICA



Amplificator neinversor cu reactie negativa pentru prima etapa de amplificare

Voff = 0 (nu exista componenta continua)

VAMPL = 880u (amplitudinea semnalului de intrare)

FREQ = 200 (frecventa minima din banda de frecvente)



Profil de simulare (analiza in timp pentru a putea vizualiza formele de unda ale semnalului de intrare/iesire)

### Semnalul de intrare



| Trace Color | Trace Name | Y1       | Y2    | Y1 - Y2  |
|-------------|------------|----------|-------|----------|
|             | X Values   | 6.1712m  | 0.000 | 6.1712m  |
| CURSOR 1,2  | V(in)      | 871.551u | 0.000 | 871.551u |
|             |            |          |       |          |

Valoarea amplitudinii semnalului de intrare

### Semnalul de iesire dupa prima amplificare



Valoarea amplitudinii semnalului de iesire dupa prima amplificare

Deoarece tensiunea de intrare este foarte mica mai avem nevoie 2 de amplificari!

#### **DIMENSIONARE COMPONENTE (A doua amplificare)**

Dimensionam rezistentele R3 si R3.

AO are RN 
$$\Rightarrow$$
  $v_D = 0$ 

$$V_D = V^+ - V^ V^- = \frac{R3}{R3 + R4} * V_{out2}$$
 $V^- = V_{out1} - \frac{R3}{R3 + R4} * V_{out2} = 0 \implies V_{out1} = \frac{R3}{R3 + R4} * V_{out2}$ 
 $V^+ = V_{out1}$ 

$$A_v = \frac{Vout2}{Vout2} = 1 + \frac{R4}{R3}$$

Amplificarea este data de cele 2 rezistente!

Aleg Vout2 = 5V

$$A_{v} = \frac{Vout2}{Vout1} = \frac{5}{50*10^{-3}} = 100$$

$$A_{v} = 1 + \frac{R4}{R3}$$

$$= > 100 = 1 + \frac{R4}{R3} = > 1 + \frac{R4}{R3} = 1 = > R4 = 100*R3$$

Daca  $R3 = 1 \text{ k}\Omega \Rightarrow R4 = 99 \text{ k}\Omega$ 

Am pus o rezistenta de 100 k $\Omega$  in loc de cea de 99k.



# Semnalul de iesire dupa a doua amplificare



Valoarea amplitudinii semnalului de iesire dupa a doua amplificare

## **DIMENSIONARE COMPONENTE (A treia amplificare)**

Dimensionam rezistentele R18 si R19.

AO are RN  $\Rightarrow$   $v_D = 0$ 

$$V_D = V^+ - V^ V^- = \frac{R18}{R18 + R19} * V_{out3}$$
 $V^+ = V_{out2}$ 
 $V^- = \frac{R18}{R18 + R19} * V_{out3} = 0 \implies V_{out2} = \frac{R18}{R18 + R19} * V_{out3}$ 

$$A_v = \frac{Vout3}{Vout2} = 1 + \frac{R19}{R18}$$

Amplificarea este data de cele 2 rezistente!

Aleg Vout3 = 10V

$$A_{v} = \frac{Vout3}{Vout2} = \frac{10}{5} = 2$$

$$A_{v} = 1 + \frac{R19}{R18}$$

$$\Rightarrow 2 = 1 + \frac{R19}{R18} \Rightarrow \frac{R19}{R18} = 1 \Rightarrow R19 = 1*R18$$



Amplificator neinversor cu reactie negativa pentru a treia etapa de amplificare

# SHEMA ELECTRICA



Intregul circuit de amplificare format din 3 AO neinversoare cu RN

Semnalul de iesire dupa a treia amplificare



| Trace Color | Trace Name | Y1      | Y2        | Y1 - Y2 |
|-------------|------------|---------|-----------|---------|
|             | X Values   | 3.7973m | 0.000     | 3.7973m |
| CURSOR 1,2  | V(out2)    | ∘10.172 | -167.022m | -10.005 |

Valoarea amplitudinii semnalului de iesire dupa a doua amplificare

- ✓ Tensiunea de intrare este de 12V => la iesire circuitul nu poate avea un semnal mai mare de 12V!
- $\checkmark$  Dupa dimensionare si proiectare la iesire vor fi 10V.

#### 2. Filtru

Semnalul amplificat trebuie filtrat in functie de banda de frecvente  $\Rightarrow$  filtru trece banda fmin =  $f_i$  = 200Hz

$$fmax = f_s = 8500Hz$$

 $\Rightarrow$  Banda de frecvente = 8500 – 200 = 8300Hz

Dimensionez R<sub>5</sub> si R<sub>6</sub>.

Fie  $C_1 = 50nF$ , iar  $C_2 = 220pF$ 

$$f_{min} = \frac{1}{2\pi R_5 C_1} = R_5 = \frac{1}{2\pi C_1 f_{min}}$$

$$R_5 = \frac{1}{6,28*50*10^{-9}*200} = \frac{1}{6,28*0,5*10^2*10^{-9}*20*10} = \frac{10^6}{62,8}$$

$$R_5 = 0.015 * 10^6 => R_5 = 15 \text{k}\Omega$$

$$f_{max} = \frac{1}{2\pi R_6 C_2} = R_6 = \frac{1}{2\pi C_2 f_{max}}$$

$$R_6 = \frac{1}{6,28*220*10^{-12}*8500} = \frac{1}{6,28*0,22*10^3*10^{-12}*85*10^2} = \frac{10^7}{117,436}$$

$$R_6 = 0.085 * 10^6 = R_6 = 85 \text{k}\Omega$$

Deoarece nu exista rezistenta de 85k voi folosi 2 rezistente in serie. Una de 82k si una de 3k.

## Schema electrica



Filtru trece banda

| Measurement                     | Value     |  |
|---------------------------------|-----------|--|
| Bandwidth_Bandpass_3dB(V(out3)) | 8.31093k  |  |
| Cutoff_Highpass_3dB(V(out3))    | 201.76446 |  |
| Cutoff_Lowpass_3dB(V(out3))     | 8.51269k  |  |

Banda de frecvente a semnalului dupa amplificare si filtrare



Profil de simulare AC Sweep (pentru a vizualiza banda de frecvente a semnalului)

## Amplificator + filtru



## Semnalul amplificat nefiltrat (verde) si semnalul amplificat filtrat (rosu)



## 3. Circuit de detectie a pragurilor

I. 
$$0V - 2.5V$$

$$v_D = v^+ - v^-$$

$$v^{-} = 0$$

$$v^{+} = V_{cc} = 12V$$



Comparator neinversor pentru primul prag

II. 2.5V – 5V  

$$v^{+} = V_{cc} = 12V$$

$$v^{-} = 2.5V$$

$$v^{-} = \frac{R_{10}}{R_{10} + R_{9}} * V_{cc}$$

$$=> 2.5 = \frac{R_{10}}{R_{10} + R_{9}} * 12$$

$$\frac{R_{10}}{R_{10} + R_{9}} * 4.8 = 1 \Rightarrow 4.8*R_{10} = R_{10} + R_{9} \Rightarrow 3.8*R_{10} = R_{9}$$

Daca  $R_{10} = 1 k\Omega$ 

$$\Rightarrow$$
 R<sub>9</sub> = 3.8 k $\Omega$ 



Comparator neinversor pentru al doilea prag

$$v^{+} = V_{cc} = 12V$$
 $v^{-} = 5V$ 
 $v^{-} = \frac{R_{13}}{R_{13} + R_{12}} * V_{cc}$ 
 $=> 5 = \frac{R_{13}}{R_{13} + R_{12}} * 12$ 

$$\frac{R_{10}}{R_{10} + R_9} * 2.4 = 1 \Rightarrow 2.4 * R_{13} = R_{13} + R_{12} \Rightarrow 1.4 * R_{13} = R_{12}$$

Daca  $R_{13} = 1 k\Omega$ 

$$\Rightarrow$$
 R<sub>12</sub> = 1.4 k $\Omega$ 



Comparator neinversor pentru al treilea prag

$$v^+ = V_{cc} = 12V$$

$$v^{-} = 7.5V$$

$$v^{-} = \frac{R_{16}}{R_{16} + R_{15}} * V_{cc}$$

$$=> 7.5 = \frac{R_{16}}{R_{16} + R_{15}} * 12$$

$$\frac{R_{16}}{R_{16} + R_{15}} * 1.6 = 1 \Rightarrow 1.6 * R_{16} = R_{16} + R_{15} \Rightarrow 0.6 * R_{16} = R_{15}$$

Daca  $R_{15} = 1 k\Omega$ 

$$\Rightarrow$$
 R<sub>16</sub> = 0.6 k $\Omega$ 



Comparator neinversor pentru al patrulea prag



Profil de simulare

## Semnalele de iesire ale pragurilor



## Semnalul de iesire dupa fiecare prag





Circuitul de detectie a pragurilor

#### 4. Led-uri



Profil de simularea (la toate led-urile la fel doar fisierul.lib este specific fiecarui led)

#### i. Led rosu

$$V_{dc} = 9V$$
 $I_{LED} = 20 mA$ 

$$R = \frac{V_R}{I_{LED}} = \frac{V_1 - V_p}{I_{LED}} = \frac{10V - 2V}{20mA} = 400\Omega$$

Pentru ca nu exista rezistenta cu valoarea de 400 voi pune una de 390  $\Omega$ .

.MODEL REDLed D + IS=2.5920E-9 + N=5 + RS=7.0169



### Caracteristica cu plotdigitizer



#### **Caracteristica in Orcad**



### ii. Led verde

$$V_{dc} = 9V$$
 $I_{LED} = 20 mA$ 

$$R = \frac{V_R}{I_{LED}} = \frac{V_1 - V_p}{I_{LED}} = \frac{10V - 2.1V}{20mA} = 395\Omega$$

Pentru ca nu exista rezistenta cu valoarea de 395 voi pune una de 390  $\Omega$ .

.MODEL GREENLed D + IS=155.15E-18 + N=2.0804 + RS=15.318



### Caracteristica cu plotdigitizer



#### **Caracteristica in Orcad**



### iii. Led albastru

$$V_{dc} = 9V$$
 $I_{LED} = 20 \ mA$ 

$$R = \frac{V_R}{I_{LED}} = \frac{V_1 - V_p}{I_{LED}} = \frac{10V - 3.3V}{20mA} = 335\Omega$$

Pentru ca nu exista rezistenta cu valoarea de 335 voi pune una de 330  $\Omega$ .

.MODEL BLUELed D + IS=9.0310E-12 + N=5 + RS=1.7176E-6



### Caracteristica cu plotdigitizer



#### **Caracteristica in Orcad**



# iv. Led galben

$$V_{dc} = 9V$$
 $I_{LED} = 20 \ mA$ 

$$R = \frac{V_R}{I_{LED}} = \frac{V_1 - V_p}{I_{LED}} = \frac{10V - 2.1V}{20mA} = 395\Omega$$

Pentru ca nu exista rezistenta cu valoarea de 395 voi pune una de 390  $\Omega$ .





#### Caracteristica cu plotdigitizer



#### **Caracteristica in Orcad**



### 5. Circuitul final



Profil de simulare



