## ECON-561: Final Project

# Predictive Modeling for Non-Profit organizations

Shaun Levenson | Francisco Mendoza | Andrew Frohner

February 18<sup>th</sup>, 2025

California Lutheran University

**Master of Science in Quantitative Economics** 

## Business Understanding

#### 1. Your organization does not take a profit

- <u>Business Success:</u> depends on direct mail campaigns to solicit donations, yet the current response rate is only 10%, leading to inefficiencies and financial losses.
- <u>Cost Structure & Risk</u>: Outreach is \$2 per recipient -- while the average donation from each responder is \$14.50. Without precise targeting, many mailings result in a net loss of \$0.55 per recipient.
- <u>Strategic Goal</u>: Implement predictive modeling to optimize direct marketing and improve donor targeting, lowering costs and increasing net donation revenue.

#### 2. Marketing Campaign current status

- <u>Current Response Rate</u>: 10% of mail recipients donate, signifying that 90% of mailings do not generate revenue.
- Revenue vs. Cost Imbalance: Due to high marketing costs, sending mail to all potential donors is not cost-effective.
- <u>Data-Driven Opportunity</u>: By analyzing past donor behavior, we can identify high probability donors and focus marketing efforts on them, enhancing ROI.

  <u>California Lutheran</u>

UNIVERSITY

## Data Understanding

## 8,009 Observations in Total

49.75% Training

## Data Understanding - what's in the box?

## 8,009 Observations in Total



## Data Understanding - what's in the box?

# 8,009 Observations in Total 49.75% Training 25.19% Validation 25.06% Test

## Data Understanding - what's in the box?



### **Attribute Categories**

- Demographic
- Financial
- Donation history



## Data Understanding - Target Variables

## **DONR**

#### **Binary Outcome**

- Nominal
- 1 IF person donates
- 0 IF person does not donate

Purposed for Classification



## Data Understanding - Target Variables

DONR DAMT

#### **Binary Outcome**

- Nominal
- 1 IF person donates
- 0 IF person does not donate

Purposed for Classification

#### **Donation Amount**

- Continuous
- Dollar Amount

Purposed for Prediction



## Data Understanding - General Notes

Our data lends insight into *historical engagement* and *prior response behavior* 



## Data Understanding - General Notes

Our data lends insight into *historical engagement* and *prior response behavior* 

#### 1. DAMT could be influenced by outliers

| Summary Statistics    |              |
|-----------------------|--------------|
| Mean                  | 7.21         |
| Std Dev               | 7.36         |
| Std Err Mean          | 0.10         |
| Upper 95% Mean        | 7.40         |
| Lower 95% Mean        | 7.02         |
| N                     | 6002.00      |
| Skewness              | 0.12         |
| N Missing             | 0.00         |
| Median                | 0.00         |
| Skewness<br>N Missing | 0.12<br>0.00 |



- Median < Mean</li>
- Right skewed Distribution



## Data Understanding - General Notes

Our data provides favorable test environment for a classification problem

#### 2. DONR class in balanced in Training & Validation data



 Wei & Dunbrack (2013) found that balanced Training/Validation results in higher TPR, TNR, and AUC metrics.



## Data Understanding

#### 1. Data set allows us to answer...

- **Predict Donor Likelihood:** We can estimate which individuals are most likely to donate by analyzing past donation behavior and demographic factors.
- **Estimate Donation Amounts:** Using regression modeling, we can predict the expected donation amount from identified donors.
- **Segment Donor Profiles:** The dataset allows us to classify donors based on income, past giving history, and demographic features, enhancing targeted marketing strategies.
- **Optimize Marketing Efforts:** The organization can reduce marketing costs and maximize net revenue by identifying high-probability donors.

#### 1. Data set has limits....

- Imbalanced Test Data: While the training and validation sets are balanced, the test set reflects realworld donor response rates ( $\sim$ 10% donors, 90% non-donors), necessitating adjustments in classification modeling.
- **Limited Feature Scope:** The dataset includes demographic and donation history but lacks behavioral data such as engagement with past campaigns, online interactions, or social media activity.
- **Right-Skewed Donation Amounts:** Most donations are small, with a few high-value outliers, necessitating careful handling using transformations or robust regression techniques.
- Potential Data Bias: Features like income and wealth indicators may introduce biases, which could unintentionally exclude potential donors.

  California Lutheran

UNIVERSITY

## Modeling Objectives

#### **Donor Classification**

- 1. <u>Identify predictive power</u>: Use features that hold predictive power for Donor & Non-Donor class
- 2. <u>Discriminate Ethically</u>: avoid prediction using features that could put us at risk biasing in/out a certain demographic or population segment
- 3. <u>Develop sustainable marketing Campaign</u>: Share analytics that will generate a positive payoff under the current cost structure.

## **Donation Amount prediction**

1. Maximize predictive capability



## Modeling Process - Feature selection using Theory

# 1. Asked the question: Does this predictor hold a relationship with response feature?

- Aided in dimension reduction
- Kept circular logic or confusing logic out of the model
- Provided foundation for an initial prediction/classification

## 2. If yes – what direction do you <u>expect</u> its impact to be?

- Propels feature engineering
- Helps uncover non-linearities/interactions
- Provides the analyst with a sense who is donating and how much they generally donate



## Modeling Process DONR- Feature engineering using filter

| Tail     | 0.2 |
|----------|-----|
| Quintile | 3   |
|          |     |

| Quintite | <u> </u>     |              |               |                |                    |
|----------|--------------|--------------|---------------|----------------|--------------------|
| Column   | 10% Quantile | 90% Quantile | Low Threshold | High Threshold | Number of Outliers |
| ter1     | 0            | 1            | -3            | 4              | 0                  |
| ter2     | 0            | 1            | -3            | 4              | 0                  |
| ter3     | 0            | 1            | -3            | 4              | 0                  |
| ter4     | 0            | 1            | -3            | 4              | 0                  |
| ownd     | 0            | 1            | -3            | 4              | 0                  |
| kids     | 0            | 4            | -12           | 16             | 0                  |
| inc      | 2            | 6            | -10           | 18             | 0                  |
| sex      | 0            | 1            | -3            | 4              | 0                  |
| wlth     | 3            | 9            | -15           | 27             | 0                  |
| hν       | 107          | 274          | -394          | 775            | 0                  |
| incmed   | 20           | 74           | -142          | 236            | 3                  |
| incavg   | 32           | 86           | -130          | 248            | 4                  |
| low      | 1            | 33           | -95           | 129            | 0                  |
| npro     | 21           | 102          | -222          | 345            | 0                  |
| gifdol   | 49           | 206          | -422          | 677            | 12                 |
| gifl     | 6            | 42           | -102          | 150            | 76                 |
| gifr     | 5            | 31           | -73           | 109            | 7                  |
| mdon     | 13           | 24           | -20           | 57             | 0                  |
| lag      | 3            | 11           | -21           | 35             | 0                  |
| gifa     | 5.07         | 20.01        | -39.75        | 64.83          | 1                  |

Initial data contained Outliers



## Modeling Process DONR-Standardization

| Variable        | skewness         | transformation<br>Performed | # of outliers 3x<br>above 80%<br>quintile range | Variable<br>Created |
|-----------------|------------------|-----------------------------|-------------------------------------------------|---------------------|
| <del>wlth</del> | <del>-1.35</del> | <del>Col Standardize</del>  | θ                                               | std_wlth            |
| hv              | 1.539            | Col Standardize             | 0                                               | std_hv              |
| incmed          | 2.05             | Col Standardize             | 3                                               | std_incmed          |
| incavg          | 1.9377           | Col Standardize             | 4                                               | std_incavg          |
| low             | 1.36             |                             | 0                                               |                     |
| gifdol          | 6.54             | Col Standardize             | 12                                              | std_gifdol          |
| gifl            | 7.81             | Col Standardize             | 76                                              | std_gifl            |
| gifr            | 2.62             | Col Standardize             | 7                                               | std_gifr            |
| mdon            | 1.1              | Col Standardize             | 0                                               | std_mdon            |
| lag             | 2.42             | Col Standardize             | 0                                               | std_lag             |
| gifa            | 1.78             | Col Standardize             | 1                                               | std_gifa            |

 Ordinal features were skewed but not standardized

 Variables had moderate skewness



## Modeling Process DONR- Feature engineering

| Wlth  | Count N | 1 | proportion | Weight Assigned |
|-------|---------|---|------------|-----------------|
| 0     | 152     | 1 | 2.532%     | 39.48684211     |
| 1     | 130     | 1 | 2.166%     | 46.16923077     |
| 2     | 149     | 1 | 2.483%     | 40.28187919     |
| 3     | 215     | 1 | 3.582%     | 27.91627907     |
| 4     | 319     | 1 | 5.315%     | 18.81504702     |
| 5     | 303     | 1 | 5.048%     | 19.80858086     |
| 6     | 415     | 1 | 6.914%     | 14.4626506      |
| 7     | 379     | 1 | 6.315%     | 15.83641161     |
| 8     | 2314    | 1 | 38.554%    | 2.59377701      |
| 9     | 1626    | 1 | 27.091%    | 3.691266913     |
| Total | 6002    |   | 100%       |                 |

#### Weighting scheme:

$$\frac{n(wlth(1))}{N} = proportion$$

$$\frac{1}{proportion} = Weight$$

$$weight * Wlth = Adj_wlth$$

 Sample was skewed towards the Wealthier groups



## Modeling Process DONR- Feature engineering

#### Corresponds to

| With (ordinal ranking | Adj_Wlth |
|-----------------------|----------|
| 0                     | 0.000    |
| 1                     | 46.169   |
| 2                     | 80.537   |
| 3                     | 83.749   |
| 4                     | 75.260   |
| 5                     | 99.043   |
| 6                     | 86.776   |
| 7                     | 112.337  |
| 8                     | 20.750   |
| 9                     | 33.221   |

## Before

 With purely measure of Inc relative to average income in the state

| New Ordinal Ranking |                |  |
|---------------------|----------------|--|
| Wlth (former)       | Adj_Wlth (new) |  |
| 0                   | 0.000          |  |
| 8                   | 20.750         |  |
| 9                   | 33.221         |  |
| 1                   | 46.169         |  |
| 4                   | 75.260         |  |
| 2                   | 80.564         |  |
| 3                   | 83.749         |  |
| 6                   | 86.776         |  |
| 5                   | 99.043         |  |
| 7                   | 112.337        |  |

#### **After**

 Wlth measured relative to Income AND sample representation



## Modeling Process DONR- Feature selection

#### **Elastic Net**

|                               |          |           |             | •          | Т                |
|-------------------------------|----------|-----------|-------------|------------|------------------|
|                               |          |           |             |            |                  |
|                               |          |           |             | Odds       | % Probability    |
|                               | Estimate | Std Error | Siginficant | Increase   | they will donate |
| Intercept                     | -3.84459 | 1.055613  |             | 0.021395   | 2%               |
| ter1[0-1]                     | -1.72161 | 0.181053  | *           | 0.178778   | 15%              |
| ter2[0-1]                     | -3.29141 | 0.182388  | *           | 0.037201   | 4%               |
| ter3[0-1]                     | 0.094151 | 0.217178  |             | 1.098726   | 52%              |
| ter4[0-1]                     | 0.050378 | 0.20797   |             | 1.051669   | 51%              |
| ownd[0-1]                     | -4.62713 | 0.239486  | *           | 0.009783   | 1%               |
| kids                          | -3.06992 | 0.133699  | *           | 0.046425   | 4%               |
| inc[2-1]                      | 1.759407 | 0.349403  | *           | 5.808993   | 85%              |
| inc[3-2]                      | 1.643453 | 0.246723  | *           | 5.172999   | 84%              |
| inc[4-3]                      | 1.567659 | 0.198592  | *           | 4.795407   | 83%              |
| inc[5-4]                      | -1.84156 | 0.172634  | *           | 0.158570   | 14%              |
| inc[6-5]                      | -1.54342 | 0.272159  | *           | 0.213650   | 18%              |
| inc[7-6]                      | -1.47603 | 0.415197  |             | 0.228544   | 19%              |
| Adj_Wlth[20.750216-0]         | 5.606004 | 0.691016  | *           | 272.055040 | 100%             |
| Adj_Wlth[33.221403-20.750216] | -0.15365 | 0.135227  |             | 0.857576   | 46%              |
| Adj_Wlth[46.16923-33.221403]  | -4.39029 | 0.466317  | *           | 0.012397   | 1%               |
| Adj_Wlth[75.2602-46.16923]    | 2.806979 | 0.524057  | *           | 16.559820  | 94%              |
| Adj_Wlth[80.56376-75.2602]    | -1.04224 | 0.481665  |             | 0.352663   | 26%              |
| Adj_Wlth[83.74884-80.56376]   | -0.68187 | 0.530634  |             | 0.505669   | 34%              |
| Adj_Wlth[86.7759-83.74884]    | 3.520804 | 0.42231   | *           | 33.811585  | 97%              |
| Adj_Wlth[99.0429-86.7759]     | -1.91535 | 0.35898   | *           | 0.147290   | 13%              |
| Adj_Wlth[112.33691-99.0429]   | 1.702912 | 0.367136  | *           | 5.489913   | 85%              |
| Inc^2                         | -0.03148 | 0.030374  |             | 0.969008   | 49%              |
| sex                           | -0.10392 | 0.115793  |             | 0.901294   | 47%              |
| Kids_Squared                  | 0.374043 | 0.030181  | *           | 1.453600   | 59%              |
| npro                          | -0.001   | 0.0114    |             | 0.998997   | 50%              |
| nor_incmed                    | 0.720405 | 0.076425  | *           | 2.055265   | 67%              |
| Root_npro                     | 0.300079 | 0.168651  |             | 1.349965   | 57%              |

 Penalized Regression used as final test of predictor set



#### **DONR Predictors**

- 14 Total features
- 3 Non-Linear terms
- 3 Indicators
- 2 Ordinal rankings
- 6 Numerical measures

| Ter1, Ter2, Ter3, Ter4 | Nominal    |
|------------------------|------------|
| Kids                   | Continuous |
| Inc                    | Ordinal    |
| Kids <sup>2</sup>      | Continuous |
| Sex                    | Nominal    |
| Adj_Wlth               | Ordinal    |
| Npro                   | Continuous |
| $Inc\_avg^2$           | Continuous |
| Inc_med                | Continuous |
| Ownd                   | Nominal    |
| $\sqrt{npro}$          | Continuous |

#### **DONR Predictors**

- 14 Total features
- 3 Non-Linear terms
- 3 Indicators
- 2 Ordinal rankings
- 6 Numerical measures

#### **Notable Exclusions**

- Gift Variables: gifdol | gifr | Mdon | Lag | gifa
- low
- Hv

| Ter1, Ter2, Ter3, Ter4 | Nominal    |
|------------------------|------------|
| Kids                   | Continuous |
| Inc                    | Ordinal    |
| Kids <sup>2</sup>      | Continuous |
| Sex                    | Nominal    |
| Adj_Wlth               | Ordinal    |
| Npro                   | Continuous |
| $Inc\_avg^2$           | Continuous |
| Inc_med                | Continuous |
| Ownd                   | Nominal    |
| $\sqrt{npro}$          | Continuous |

#### **DONR Predictors**

- 14 Total features
- 3 Non-Linear terms
- 3 Indicators
- 2 Ordinal rankings
- 6 Numerical measures

#### **Notable Exclusions**

Gift Variables: gifdol | gifr | Mdon | Lag | gifa

low

Hv



| Ter1, Ter2, Ter3, Ter4 | Nominal    |
|------------------------|------------|
| Kids                   | Continuous |
| Inc                    | Ordinal    |
| Kids <sup>2</sup>      | Continuous |
| Sex                    | Nominal    |
| Adj_Wlth               | Ordinal    |
| Npro                   | Continuous |
| $Inc\_avg^2$           | Continuous |
| Inc_med                | Continuous |
| Ownd                   | Nominal    |
| $\sqrt{npro}$          | Continuous |

#### **DONR Predictors**

- 14 Total features
- 3 Non-Linear terms
- 3 Indicators
- 2 Ordinal rankings
- 6 Numerical measures

#### Risk

 Ownd – could be associated with socioeconomic factors that disproportionately favor wealthier classes

| Ter1, Ter2, Ter3, Ter4 | Nominal    |
|------------------------|------------|
| Kids                   | Continuous |
| Inc                    | Ordinal    |
| Kids <sup>2</sup>      | Continuous |
| Sex                    | Nominal    |
| Adj_Wlth               | Ordinal    |
| Npro                   | Continuous |
| $Inc\_avg^2$           | Continuous |
| Inc_med                | Continuous |
| Ownd                   | Nominal    |
| $\sqrt{npro}$          | Continuous |

Kept in model – because it is effective for modeling class partitioning and just because you own a home does not mean you must be wealthy

## Modeling Process DAMT- Feature engineering

- Squared terms were included to account for potential nonlinearity present in *Kids* and *Wealth*
- If the variable had a skew of greater than 3, the term was logged x+1 to account for individuals with 0s

| Variable | skewness | transformation<br>Performed | Variable<br>Created |
|----------|----------|-----------------------------|---------------------|
| Kids     | 0.39     | ^2                          | Kids^2              |
| Wlth     |          | ^2                          | Wlth^2              |
| gifdol   | 7        | Log(gifdol +1)              | log(gifdol)         |
| gifl     | 8        | Log(gifl +1)                | log(gifl)           |
| gifr     | 3        | Log(gifr +1)                | log(gifr)           |



## Modeling Process DAMT- Feature engineering

#### **Interactions – 8 total**

#### Inc\*Kids

 Higher income families with more children may donate less due to financial strain

#### Wlth\*kids

 Wealthier households with more children may still donate at a high level

#### Inc\*Sex

 If gender influences donation behavior at different income levels, this interaction will capture it

#### Gifa\*Inc

 High income donors with high past gift amounts may donate even more

#### Gifr\*Wlth

 High wealth donors with a high recent gift amount may be repeat high donors

#### Mdon\*Lag

 If a donor took a long gap between their first and second donation, but donated recently, they may be reactivated donors

#### Mdon\*Gifr

- Donors who recently gave a large amount may be high value repeat donors
- Donors who gave a large amount a long time ago may be at risk of discontinuing donations

#### Ter1-4\*Wlth

Regional Wealth Effects

Interaction terms support our model when the effect of 1 predictor varies by another



#### **DAMT Predictors**

- 25 Total features
- 1 Non-Linear terms
- 3 Indicators
- 2 Ordinal rankings
- 6 Numerical measures

- Ter1-4
- Ownd
- Kids
- Kids^2
- Inc with binary for specific income ranges
- Sex
- Wlth with binary for specific wealth ranges
- Hv
- Incmed
- Incavg
- Low
- Npro
- Log(gifdol)
- Log(gifr)
- Mdon
- Lag
- gifa

#### **Interactions Terms**

- Inc\*kids
- Inc\*sex
- Wlth\*kids
- Gifa\*inc
- Gifr\*wlth
- Mdon\*lag
- Mdon\*gifr
- Ter1-4\*wlth

## Modeling - Donor Classification

#### **Selected Models**

- 1. Logistic Regression
- 2. Bootstrap Forest
- 3. Neural Network
- 4. K-Nearest Neighbors

#### Discussion

- Modeling Methodology
- Results
- Potential Profitability



## DONR Classification - Logistic Regression

|                              |          |                  |                |             | Odds           | Change in Odds    |
|------------------------------|----------|------------------|----------------|-------------|----------------|-------------------|
| Term                         | Estimate |                  | Std Error      | Siginficant | Increasing?    | they will dontate |
| Adj_Wlth[20.750216-0]        |          | 5.714            | 0.704          | 4 *         | 303.186        | 100%              |
| Adj_Wlth[86.7759-83.74884]   |          | 3.638            | 0.453          | 1 *         | 38.024         | 97%               |
| Adj_Wlth[75.2602-46.16923]   |          | 3.127            | 0.764          | 4 *         | 22.801         | 96%               |
| inc[2-1]                     |          | 1.789            | 0.383          |             | 5.982          | 86%               |
| Adj_Wlth[112.33691-99.0429]  |          | 1.743            | 0.362          |             | 5.714          | 85%               |
| inc[3-2]                     |          | 1.668            | 0.252          |             | 5.300          | 84%               |
| inc[4-3]                     |          | 1.592            | 0.19           |             | 4.912          | 83%               |
| nor_incmed                   |          | 0.735            | 0.07           |             | 2.086          | 68%               |
| Kids_Squared                 |          | 0.387            | 0.032          |             | 1.473          | 60%               |
| ter1[0]                      |          | -0.875           |                |             | 0.417          | 29%               |
| inc[6-5]                     |          | -1.564<br>-1.668 | 0.290<br>0.099 |             | 0.209<br>0.189 | 17%<br>16%        |
| ter2[0]<br>inc[5-4]          |          | -1.869           | 0.09           |             | 0.169          | 13%               |
| Adj_Wlth[99.0429-86.7759]    |          | -1.974           | 0.349          |             | 0.134          | 12%               |
| ownd[0]                      |          | -2.351           | 0.148          |             | 0.095          | 9%                |
| kids                         |          | -3.142           |                |             | 0.043          | 4%                |
| Adj_Wlth[46.16923-33.221403] |          | -4.705           | 0.729          |             | 0.009          | 1%                |
| Intercept                    |          | -8.901           | 1.039          | 9 *         | 0.000          | 0%                |



## DONR Classification - Logistic Regression

|                              |          |        |           |             | Odds        | Change in Odds    |
|------------------------------|----------|--------|-----------|-------------|-------------|-------------------|
| Term                         | Estimate |        | Std Error | Siginficant | Increasing? | they will dontate |
| Adj_Wlth[20.750216-0]        |          | 5.714  | 0.704     | *           | 303.186     | 100%              |
| Adj_Wlth[86.7759-83.74884]   |          | 3.638  | 0.451     | . *         | 38.024      | 97%               |
| Adj_Wlth[75.2602-46.16923]   |          | 3.127  | 0.764     | . *         | 22.801      | 96%               |
| inc[2-1]                     |          | 1.789  | 0.383     | *           | 5.982       | 86%               |
| Adj_Wlth[112.33691-99.0429]  |          | 1.743  | 0.362     | *           | 5.714       | 85%               |
| inc[3-2]                     |          | 1.668  | 0.252     | *           | 5.300       | 84%               |
| inc[4-3]                     |          | 1.592  | 0.197     | *           | 4.912       | 83%               |
| nor_incmed                   |          | 0.735  | 0.075     | *           | 2.086       | 68%               |
| Kids_Squared                 |          | 0.387  | 0.032     | *           | 1.473       | 60%               |
| ter1[0]                      |          | -0.875 | 0.094     | . *         | 0.417       | 29%               |
| inc[6-5]                     |          | -1.564 | 0.290     | *           | 0.209       | 17%               |
| ter2[0]                      |          | -1.668 | 0.095     | *           | 0.189       | 16%               |
| inc[5-4]                     |          | -1.869 | 0.174     | *           | 0.154       | 13%               |
| Adj_Wlth[99.0429-86.7759]    |          | -1.974 | 0.349     | *           | 0.139       | 12%               |
| ownd[0]                      |          | -2.351 | 0.148     | *           | 0.095       | 9%                |
| kids                         |          | -3.142 | 0.146     | ; *         | 0.043       | 4%                |
| Adj_Wlth[46.16923-33.221403] |          | -4.705 | 0.729     | *           | 0.009       | 1%                |
| Intercept                    |          | -8.901 | 1.039     | *           | 0.000       | 0%                |



## DONR Classification - Logistic Regression

|                             |          |           |             | Odds        | Change in Odds    | İ                     |
|-----------------------------|----------|-----------|-------------|-------------|-------------------|-----------------------|
| Term                        | Estimate | Std Error | Siginficant | Increasing? | they will dontate | İ                     |
| Adj_Wlth[20.750216-0]       | 5.714    | 4 0.70    | 4 *         | 303.186     | 100%              |                       |
| Adj_Wlth[86.7759-83.74884]  | 3.638    | 3 0.45    | 1 *         | 38.024      | 97%               |                       |
| Adj_Wlth[75.2602-46.16923]  | 3.12     | 7 0.76    | 4 *         | 22.801      | 96%               |                       |
| inc[2-1]                    | 1.789    | 0.38      | 3 *         | 5.982       | 86%               |                       |
| Adj_Wlth[112.33691-99.0429] | 1.743    | 3 0.36    | 2 *         | 5.714       | 85%               |                       |
| inc[3-2]                    | 1.668    | 3 0.25    | 2 *         | 5.300       | 84%               |                       |
| inc[4-3]                    | 1.592    | 2 0.19    | 7 *         | 4.912       | 83%               |                       |
| nor_incmed                  | 0.73     | 5 0.07    | 5 *         | 2.086       | 68%               |                       |
| Kids_Squared                | 0.38     | 7 0.03    | 2 *         | 1.473       | 60%               |                       |
| ter1[0]                     | -0.87    | 5 0.09    | 4 *         | 0.417       | 29%               |                       |
| inc[6-5]                    | -1.564   | 4 0.29    | 0 *         | 0.209       | 17%               |                       |
| ter2[0]                     | -1.668   | 0.09      | 5 *         | 0.189       | 16%               | Less impactful to the |
| inc[5-4]                    | -1.869   | 0.17      | 4 *         | 0.154       | 13%               | _                     |
| Adj_Wlth[99.0429-86.7759]   | -1.97    | 4 0.34    | 9 *         | 0.139       | 12%               | someone will Donate   |
| ownd[0]                     | -2.35    | 0.14      | 8 *         | 0.095       | 9%                |                       |
| kids                        | -3.142   | 2 0.14    | 6 *         | 0.043       | 4%                |                       |
| Adj_Wlth[46.16923-33.221403 | ] -4.70  | 5 0.72    | 9 *         | 0.009       | 1%                |                       |
| Intercept                   | -8.90    | 1.03      | 9 *         | 0.000       | 0%                |                       |

This is nice – we can easily SEE which predictors can impact the odds of someone donating



## DONR Classification - Logistic Regression Profitability

| Cost to Mail         | \$2.00  |
|----------------------|---------|
| Profit from Donation | \$12.50 |

Profit Matrix sepcified Classification Threshold .1071

| True Positive Rate      | 100%     | False Positive rate      | 35%       | False Negative          | 0.30%  |
|-------------------------|----------|--------------------------|-----------|-------------------------|--------|
| True Positives          | 996      | False Positives          | 354       | False Negatives         | 3      |
| False Negatives         | 3        | True Negatives           | 665       | True Positives          | 996    |
| Positive Class          | 999      | Negative Class           | 1019      | Positive Class          | 999    |
| P-Threshold             | 0.1071   | P-Threshold              | 0.1071    | P-Threshold             | 0.1071 |
| Expected True Positives | 996      | Expected False Positives | 354       | Expected True Positives | 3      |
| Profit                  | \$12,450 | Profit                   | (\$4,425) | Profit                  | (\$38) |

| Profit Comparison                        |           |
|------------------------------------------|-----------|
| Analytics Model                          |           |
| Profit from correctly Identifying Donors | \$12,450  |
| Loss avoided from Mis-Identifying Donors | (\$4,425) |
| Loss avoided from Not soliciting Donors  | (\$38)    |
| Profit                                   | \$7,988   |
|                                          |           |
| Current Campaign                         |           |
| Profit from Donors                       | \$2,523   |
| Cost from Solicitation                   | \$4,036   |
| Profit                                   | (\$1,514) |
| Profit/Loss over current Campaign >      | \$9,501   |

P threshold = .1071

| Method               | TP | FN | FP |     | TN  | Sensitivity | Specificity | Precision | Accuracy | F1    | мсс    | Profit |
|----------------------|----|----|----|-----|-----|-------------|-------------|-----------|----------|-------|--------|--------|
| Fit Nominal Logistic | 9  | 96 | 3  | 354 | 665 | 0.997       | 0.6526      | 0.7378    | 0.8231   | 0.848 | 0.6902 | 2.417  |

| Specified Profit Matrix |      |       |  |  |  |  |  |
|-------------------------|------|-------|--|--|--|--|--|
| Decision                |      |       |  |  |  |  |  |
| Actual                  | 1    | 0     |  |  |  |  |  |
| 1                       | 12.5 | -12.5 |  |  |  |  |  |
| 0                       | -2   | 1     |  |  |  |  |  |

| Actual | <b>Decision Count</b> |     |
|--------|-----------------------|-----|
| donr   | 1                     | 0   |
| 1      | 996                   | 3   |
| 0      | 354                   | 665 |



## DONR Classification - Logistic Regression Profitability

| Cost to Mail         | \$2.00  |
|----------------------|---------|
| Profit from Donation | \$12.50 |

Profit Matrix sepcified Classification Threshold .1071

| True Positive Rate      | 100%     | False Positive rate      | 35%       | False Negative          | 0.30%  |
|-------------------------|----------|--------------------------|-----------|-------------------------|--------|
| True Positives          | 996      | False Positives          | 354       | False Negatives         | 3      |
| False Negatives         | 3        | True Negatives           | 665       | True Positives          | 996    |
| Positive Class          | 999      | Negative Class           | 1019      | Positive Class          | 999    |
| P-Threshold             | 0.1071   | P-Threshold              | 0.1071    | P-Threshold             | 0.1071 |
| Expected True Positives | 996      | Expected False Positives | 354       | Expected True Positives | 3      |
| Profit                  | \$12,450 | Profit                   | (\$4,425) | Profit                  | (\$38) |

| Profit Comparison                        |           |
|------------------------------------------|-----------|
| Analytics Model                          |           |
| Profit from correctly Identifying Donors | \$12,450  |
| Loss avoided from Mis-Identifying Donors | (\$4,425) |
| Loss avoided from Not soliciting Donors  | (\$38)    |
| Profit                                   | \$7,988   |
|                                          |           |
| Current Campaign                         |           |
| Profit from Donors                       | \$2,523   |
| Cost from Solicitation                   | \$4,036   |
| Profit                                   | (\$1,514  |
| Profit/Loss over current Campaign >      | \$9,501   |

#### Notes:

- Average Probability for Donor Class 54%
- Average Probability for Non-Donor Class 46%

#### **Potential Drawbacks:**

- Model struggles to predict non-Donors
- Specified Profit matrix allows for easier entry into
   Donor class not optimal for Profit



## DONR Classification -Logistic Regression Profitability

| Cost to Mail            | \$2.00   | Optimal Classification Threshold .4777 |           |                         |         |                                          |           |
|-------------------------|----------|----------------------------------------|-----------|-------------------------|---------|------------------------------------------|-----------|
| Profit from Donation    | \$12.50  |                                        |           |                         |         |                                          |           |
| True Positive Rate      | 92%      | False Positive rate                    | 14%       | False Negative          | 7.51%   | Profit Comparison                        |           |
| True Positives          | 924      | False Positives                        | 141       | False Negatives         | 75      | Analytics Model                          |           |
| False Negatives         | 75       | True Negatives                         | 878       | True Positives          | 924     | Profit from correctly Identifying Donors | \$11,550  |
| Positive Class          | 999      | Negative Class                         | 1019      | Positive Class          | 999     | Loss avoided from Mis-Identifying Donors | (\$1,763) |
| P-Threshold             | 0.4777   | P-Threshold                            | 0.4777    | P-Threshold             | 0.4777  | Loss avoided from Not soliciting Donors  | (\$938)   |
| Expected True Positives | 924      | Expected False Positives               | 141       | Expected True Positives | 75      | Profit                                   | \$8,850   |
| Profit                  | \$11,550 | Profit                                 | (\$1,763) | Profit                  | (\$938) |                                          |           |
|                         |          |                                        |           |                         |         | Current Campaign                         |           |
|                         |          |                                        |           |                         |         | Profit from Donors                       | \$2,523   |
|                         |          |                                        |           |                         |         | Cost from Solicitation                   | \$4,036   |
|                         |          |                                        |           |                         |         | Profit                                   | (\$1,514) |

Defining Stricter entry criteria via Predicted

Probability generates higher profit.



Profit/Loss over current Campaign > \$10,364

## DONR Classification - Bootstrap Forest



## DONR Classification - Bootstrap Forest



#### **Model Structure**

 Accommodative of large data set and large predictor set



## DONR Classification - Bootstrap Forest



#### **Model Structure**

- Accommodative of large data set and large predictor set
- Introduces Variation into the data set



## DONR Classification - Bootstrap Forest



## DONR Classification - Bootstrap Forest





# DONR Classification - Bootstrap Forest Profitability

| Cost to Mail            | \$2.00   | Optimal Clas             | sification Th | reshold .4745           |         |                                          |           |
|-------------------------|----------|--------------------------|---------------|-------------------------|---------|------------------------------------------|-----------|
| Profit from Donation    | \$12.50  |                          |               |                         |         |                                          |           |
| True Positive Rate      | 99%      | False Positive rate      | 33%           | False Negative          | 1.40%   | Profit Comparison                        |           |
| True Positives          | 985      | False Positives          | 333           | False Negatives         | 14      | Analytics Model                          |           |
| False Negatives         | 14       | True Negatives           | 686           | True Positives          | 985     | Profit from correctly Identifying Donors | \$12,313  |
| Positive Class          | 999      | Negative Class           | 1019          | Positive Class          | 999     | Loss avoided from Mis-Identifying Donors | (\$4,163) |
| P-Threshold             | 0.2227   | P-Threshold              | 0.2227        | P-Threshold             | 0.2227  | Loss avoided from Not soliciting Donors  | (\$175)   |
| Expected True Positives | 985      | Expected False Positives | 333           | Expected True Positives | 14      | Profit                                   | \$7,975   |
| Profit                  | \$12,313 | Profit                   | (\$4,163)     | Profit                  | (\$175) |                                          |           |
| 2018                    |          |                          |               |                         |         | Current Campaign                         |           |
|                         |          |                          |               |                         |         | Profit from Donors                       | \$2,523   |
|                         |          |                          |               |                         |         | Cost from Solicitation                   | \$4,036   |
|                         |          |                          |               |                         |         | Profit                                   | (\$1,514) |
|                         |          |                          |               |                         |         | Profit/Loss over current Campaign >      | \$9,489   |
| Cost to Mail            | \$2.00   | Profit Matrix sepcifie   | ed Classifica | ation Threshold .1071   |         | , ,                                      |           |
| Profit from Donation    | \$12.50  |                          |               |                         |         |                                          |           |
|                         |          |                          |               |                         |         |                                          |           |
| True Positive Rate      | 99%      | False Positive rate      | 45%           | False Negative          | 0.50%   | Profit Comparison                        |           |
| True Positives          | 994      | False Positives          | 455           | False Negatives         | 5       | Analytics Model                          |           |
| False Negatives         | 6        | True Negatives           | 564           | True Positives          | 994     | Profit from correctly Identifying Donors | \$12,413  |
| Positive Class          | 999      | Negative Class           | 1019          | Positive Class          | 999     | Loss avoided from Mis-Identifying Dono   | (\$5,688) |
| P-Threshold             | 0.1071   | P-Threshold              | 0.1071        | P-Threshold             | 0.1071  | Loss avoided from Not soliciting Donors  | (\$63)    |
| Expected True Positives | 993.006  | Expected False Positives | 455           | Expected True Positives | 5       | Profit                                   | \$6,663   |
| Profit                  | \$12,413 | Profit                   | (\$5,688)     | Profit                  | (\$63)  |                                          |           |

#### **Takeaway**

Model is classifying all participants with predicted probability >47.4%
 as a Donor



\$2,523

\$4,036

(\$1,514)

\$8,176

Current Campaign

Profit from Donors
Cost from Solicitation

Profit/Loss over current Campaign >

Profit

# DONR Classification - Bootstrap Forest Profitability

| Cost to Mail            | \$2.00   | Optimal Classification Threshold .4745 |               |                         |         |                                          |           |
|-------------------------|----------|----------------------------------------|---------------|-------------------------|---------|------------------------------------------|-----------|
| Profit from Donation    | \$12.50  |                                        |               |                         |         |                                          |           |
|                         |          | I=                                     |               | T                       |         |                                          |           |
| True Positive Rate      | 99%      | False Positive rate                    | 33%           | False Negative          | 1.40%   | Profit Comparison                        |           |
| True Positives          | 985      | False Positives                        | 333           | False Negatives         | 14      | Analytics Model                          |           |
| False Negatives         | 14       | True Negatives                         | 686           | True Positives          | 985     | Profit from correctly Identifying Donors | \$12,313  |
| Positive Class          | 999      | Negative Class                         | 1019          | Positive Class          | 999     | Loss avoided from Mis-Identifying Donors | (\$4,163) |
| P-Threshold             | 0.2227   | P-Threshold                            | 0.2227        | P-Threshold             | 0.2227  | Loss avoided from Not soliciting Donors  | (\$175)   |
| Expected True Positives | 985      | Expected False Positives               | 333           | Expected True Positives | 14      | Profit                                   | \$7,975   |
| Profit                  | \$12,313 | Profit                                 | (\$4,163)     | Profit                  | (\$175) |                                          |           |
| 2018                    |          |                                        |               |                         |         | Current Campaign                         |           |
|                         |          |                                        |               |                         |         | Profit from Donors                       | \$2,523   |
|                         |          |                                        |               |                         |         | Cost from Solicitation                   | \$4,036   |
|                         |          |                                        |               |                         |         | Profit                                   | (\$1,514) |
|                         |          |                                        |               |                         |         | Profit/Loss over current Campaign >      | \$9,489   |
| Cost to Mail            | \$2.00   | Profit Matrix sepcifi                  | ed Classifica | tion Threshold .1071    |         |                                          |           |
| Profit from Donation    | \$12.50  |                                        |               | _                       | •       |                                          |           |

| True Positive Rate      | 99%      | False Positive rate      | 45%       | False Negative          | 0.50%  |
|-------------------------|----------|--------------------------|-----------|-------------------------|--------|
| True Positives          | 994      | False Positives          | 455       | False Negatives         | 5      |
| False Negatives         | 6        | True Negatives           | 564       | True Positives          | 994    |
| Positive Class          | 999      | Negative Class           | 1019      | Positive Class          | 999    |
| P-Threshold             | 0.1071   | P-Threshold              | 0.1071    | P-Threshold             | 0.1071 |
| Expected True Positives | 993.006  | Expected False Positives | 455       | Expected True Positives | 5      |
| Profit                  | \$12,413 | Profit                   | (\$5,688) | Profit                  | (\$63) |

| Profit Comparison                        |           |
|------------------------------------------|-----------|
| Analytics Model                          |           |
| Profit from correctly Identifying Donors | \$12,413  |
| Loss avoided from Mis-Identifying Dono   | (\$5,688) |
| Loss avoided from Not soliciting Donor:  | (\$63)    |
| Profit                                   | \$6,663   |
|                                          |           |
| Current Campaign                         |           |
| Profit from Donors                       | \$2,523   |
| Cost from Solicitation                   | \$4,036   |
| Profit                                   | (\$1,514) |
| Profit/Loss over current Campaign >      | \$8,176   |

### **Takeaway**

• Using model to solicit people with >47% chance of being a Donor will generate \$9.5K more profit than the current campaign







- Dual activation functions
  - TanH bounds signal in 1<sup>st</sup>
     hidden layer
  - Linear sends "full" signal to output layer





- Node count chosen via modelers discretion.
  - Tuning Feature suggested Node counts of 8 and 9 respectively citing "explained variation" (R<sup>2</sup> metric)
  - 3 and 3 node count provided competitive results.





- Mitigate Overfitting Risk
  - Increased learning rate because of possible collinearity of predictors
  - Penalization applied/chosen from profiler revealing that a few predictors dictate the model's prediction
  - Allowance of multiple (but not excessive epochs)





- Transform covariates because our data was *standardized* 
  - Model will be reading skewed data if not addressed here.



## DONR Classification - Neural Net results

| Training               |          |
|------------------------|----------|
| Measures               | Value    |
| Generalized RSquare    | 0.802068 |
| Entropy RSquare        | 0.663767 |
| RASE                   | 0.2685   |
| Mean Abs Dev           | 0.148177 |
| Misclassification Rate | 0.101657 |
| -LogLikelihood         | 928.5048 |
| Sum Freq               | 3984     |

| Validation             |          |
|------------------------|----------|
| Measures               | Value    |
| Generalized RSquare    | 0.767227 |
| Entropy RSquare        | 0.617958 |
| RASE                   | 0.282816 |
| Mean Abs Dev           | 0.159152 |
| Misclassification Rate | 0.10555  |
| -LogLikelihood         | 534.3518 |
| Sum Freq               | 2018     |
|                        |          |

#### **Classification**

- Model appears to generalize well
- Model is 89% accurate
- P-threshold is <u>realistic</u>: **58.6%**

| Actual | Predicted Count |      |      |  |  |
|--------|-----------------|------|------|--|--|
| donr   |                 | 0    | 1    |  |  |
|        | 0               | 1758 | 231  |  |  |
|        | 1               | 174  | 1821 |  |  |

| Actual | Predicted Count |     |     |  |  |
|--------|-----------------|-----|-----|--|--|
| donr   |                 | 0   | 1   |  |  |
|        | 0               | 884 | 135 |  |  |
|        | 1               | 78  | 921 |  |  |

| Actual | Predicted Rate |       |       |  |  |
|--------|----------------|-------|-------|--|--|
| donr   |                | 0     | 1     |  |  |
|        | 0              | 0.884 | 0.116 |  |  |
|        | 1              | 0.087 | 0.913 |  |  |

| Actual | Predicted Rate |       |       |  |  |
|--------|----------------|-------|-------|--|--|
| donr   | Ι              | 0     | 1     |  |  |
|        | 0              | 0.868 | 0.132 |  |  |
|        | 1              | 0.078 | 0.922 |  |  |

| Method | TP | FN  | FP | TN  |     | Sensitivity | Specificity | Precision | Accuracy | F1   | MCC    |
|--------|----|-----|----|-----|-----|-------------|-------------|-----------|----------|------|--------|
| Neural |    | 915 | 84 | 133 | 886 | 0.9159      | 0.8695      | 0.8731    | 0.8925   | 0.89 | 0.7859 |



# DONR Classification - Neural Net Profitability

| Cost to Mail         | \$2.00  |
|----------------------|---------|
| Profit from Donation | \$12.50 |

Optimal Classification Threshold .5861

| True Positive Rate      | 90%      | False Positive rate      | 11%       | False Negative          | 9.61%     |
|-------------------------|----------|--------------------------|-----------|-------------------------|-----------|
| True Positives          | 903      | False Positives          | 115       | False Negatives         | 96        |
| False Negatives         | 96       | True Negatives           | 904       | True Positives          | 903       |
| Positive Class          | 999      | Negative Class           | 1019      | Positive Class          | 999       |
| P-Threshold             | 0.2227   | P-Threshold              | 0.2227    | P-Threshold             | 0.2227    |
| Expected True Positives | 903      | Expected False Positives | 115       | Expected True Positives | 96        |
| Profit                  | \$11,288 | Profit                   | (\$1,438) | Profit                  | (\$1,200) |

2018

| Profit Comparison                        |           |
|------------------------------------------|-----------|
| Analytics Model                          |           |
| Profit from correctly Identifying Donors | \$11,288  |
| Loss avoided from Mis-Identifying Donors | (\$1,438) |
| Loss avoided from Not soliciting Donors  | (\$1,200) |
| Profit                                   | \$8,650   |
|                                          |           |
| Current Campaign                         |           |
| Profit from Donors                       | \$2,523   |
| Cost from Solicitation                   | \$4,036   |
| Profit                                   | (\$1,514) |
| Profit/Loss over current Campaign >      | \$10,164  |

### Takeaway

Using model to solicit people with >50%
 chance of being a Donor will generate \$10K
 more profit than the current campaign



## DONR Classification - K-Nearest

|    |        | Trair        | ning           |              |    |       |         |                   |                    |
|----|--------|--------------|----------------|--------------|----|-------|---------|-------------------|--------------------|
|    |        | Misc         | classification |              |    |       |         | Misclassification |                    |
| K  | Count  | RSquare Rate | Misclas        | ssifications | K  | Count | RSquare | Rate              | Misclassifications |
| 1  | L 3984 | 1 27%        | 0.202          | 805          | 1  | 2018  | 23%     | 0.219             | 442                |
| 2  | 2 3984 | 1 33%        | 0.220          | 878          | 2  | 2018  | 32%     | 0.218             | 439                |
| 3  | 3984   | 1 36%        | 0.184          | 732          | 3  | 2018  | 35%     | 0.184             | 371                |
| 4  | 1 3984 | 1 38%        | 0.188          | 747          | 4  | 2018  | 37%     | 0.195             | 394                |
| 5  | 3984   | 40%          | 0.178          | 708          | 5  | 2018  | 38%     | 0.177             | 358                |
| 6  | 3984   | 40%          | 0.178          | 709          | 6  | 2018  | 39%     | 0.178             | 359                |
| 7  | 7 3984 | 41%          | 0.179          | 712          | 7  | 2018  | 40%     | 0.167             | 336                |
| 8  | 3984   | 41%          | 0.179          | 712          | 8  | 2018  | 41%     | 0.166             | 335 *              |
| 9  | 3984   | 41%          | 0.176          | 703          | 9  | 2018  | 40%     | 0.169             | 342                |
| 10 | 3984   | 41%          | 0.175          | 697 *        | 10 | 2018  | 42%     | 0.173             | 350                |
| 11 | L 3984 | 42%          | 0.177          | 706          | 11 | 2018  | 42%     | 0.173             | 350                |
| 12 | 2 3984 | 42%          | 0.176          | 701          | 12 | 2018  | 42%     | 0.177             | 357                |
| 13 | 3984   | 43%          | 0.180          | 717          | 13 | 2018  | 41%     | 0.178             | 359                |
| 14 | 1 3984 | 43%          | 0.180          | 716          | 14 | 2018  | 41%     | 0.186             | 376                |
| 15 | 3984   | 43%          | 0.181          | 721          | 15 | 2018  | 41%     | 0.178             | 360                |

| Metrics     |       |
|-------------|-------|
| Sensitivity | 0.944 |
| Specificity | 0.726 |
| Accuracy    | 0.834 |
| Precision   | 0.772 |
| F1          | 0.849 |
| MCC         | 0.686 |

#### Take note of:

- Competitive classification capability for Donors
- Shortcomings
  - Adding new predictors will require a lot more data.
  - No insight into *which* predictor is more/less useful (non-parametric model)
  - May struggle outside this particular test environment.



# DONR Classification - K-Nearest

| Cost to Mail         | \$2.00  |
|----------------------|---------|
| Profit from Donation | \$12.50 |

#### No P-Value Threshold Specified

| True Positive Rate      | 94%      | False Positive rate      | 27%       | False Negative          | 5.61%   |
|-------------------------|----------|--------------------------|-----------|-------------------------|---------|
| True Positives          | 943      | False Positives          | 279       | False Negatives         | 56      |
| False Negatives         | 56       | True Negatives           | 740       | True Positives          | 943     |
| Positive Class          | 999      | Negative Class           | 1019      | Positive Class          | 999     |
| P-Threshold             | -        | P-Threshold              | 0.2227    | P-Threshold             | 0.2227  |
| Expected True Positives | 943      | Expected False Positives | 279       | Expected True Positives | 56      |
| Profit                  | \$11,788 | Profit                   | (\$3,488) | Profit                  | (\$700) |

| _ |   |                                          |           |
|---|---|------------------------------------------|-----------|
|   |   | Profit Comparison                        |           |
|   |   | Analytics Model                          |           |
|   |   | Profit from correctly Identifying Donors | \$11,788  |
|   |   | Loss avoided from Mis-Identifying Dono   | (\$3,488) |
|   |   | Loss avoided from Not soliciting Donors  | (\$700)   |
|   |   | Profit                                   | \$7,600   |
|   |   |                                          |           |
|   |   | Current Campaign                         |           |
| ı |   | Profit from Donors                       | \$2,523   |
|   |   | Cost from Solicitation                   | \$4,036   |
|   |   | Profit                                   | (\$1,514) |
|   |   | Profit/Loss over current Campaign >      | \$9,114   |
| + | _ | 7.0                                      | . ,       |



# Modeling - Donation Amount Prediction

- 1. Neural Network
- 2. XGBoost
- 3. Bootstrap Forest
- 4. Linear Regression

## **Neural Network**





## **XGBoost**



# **Bootstrap Forest**





# **Linear Regression**





# DAMT Prediction - Model Comparison

# **Model Comparison**

#### **Neural Network**

| Measures       | Value     |
|----------------|-----------|
| RSquare        | 0.9274883 |
| RASE           | 4.1016141 |
| Mean Abs Dev   | 1.9141827 |
| -LogLikelihood | 4727.0397 |
| SSE            | 33949.295 |
| Sum Freq       | 2018      |

#### **XGBoosted Tree**

| Measure     | Value  |
|-------------|--------|
| RSquare     | 0.6816 |
| Correlation | 0.8268 |
| RMSE        | 4.1533 |
| MAE         | 2.7363 |

### **Bootstrap Forest**

|            | <b>RSquare</b> | RASE      | N    |
|------------|----------------|-----------|------|
| Training   | 0.858          | 2.7820214 | 3984 |
| Validation | 0.679          | 4.1530079 | 2018 |

### **Linear Regression**

| Source         | RSquare | RASE   | Freq |
|----------------|---------|--------|------|
| Training Set   | 0.6227  | 4.5318 | 3984 |
| Validation Set | 0.5881  | 4.7022 | 2018 |



## DAMT Prediction - Model Selection

### **Neural Network**

- Neural network had the lowest RASE and highest R<sup>2</sup>
- Returns an average predicted donation amount of \$10.48
- Less than the average donation amount from the initial problem
- Likely due to the models struggling to predict who donates on its own
- May not be a problem for predicting lower than the average because:
  - Planning for more conservative predictions allows for better cash flow handling by ensuring liquidity
  - And allows for upside surprises in the case of exceeded expectations

| Mean           | 10.482498 |
|----------------|-----------|
| Std Dev        | 4.7530772 |
| Std Err Mean   | 0.2026719 |
|                | 40.00000  |
| Upper 95% Mean | 10.880003 |
| Lower 95% Mean | 10.084391 |
| N              | 550       |
| N Missing      | 2         |
|                |           |

| 100.0% | maximum  | 16.354828 |
|--------|----------|-----------|
| 99.5%  |          | 16.311546 |
| 97.5%  |          | 16.176484 |
| 90.0%  |          | 15.750464 |
| 75.0%  | quartile | 14.388443 |
| 50.0%  | median   | 12.088546 |
| 25.0%  | quartile | 5.9137316 |
| 10.0%  |          | 2.6883805 |
| 2.5%   |          | 1.687637  |
| 0.5%   |          | 1.3809455 |
| 0.0%   | minimum  | 1.3132042 |





## **Implement Campaign using Analytics**

- 1. <u>Donor classification</u>: Distribute mail to those our Neural Network model says have <u>at least a 58% probability</u> of being a Donor
- 2. <u>Donation Amount:</u> Apply Neural Network model to predict donation amounts in the Donor class

**Business Benefit**: Minimizes wasted mailers & refines donation forecasts for allocating future budgets.



## **ROI & Campaign Benefits**

- Reduced Mailing Costs
  - Exclude 50+% of individuals with low donation probability
- Higher Accuracy
  - 89.5% classification success → fewer misses on potential donors
  - RMSE  $\sim$ 4.1 for amounts  $\rightarrow$  improved revenue forecasts
- Revenue Stability
  - Under-predicting top donors means upside if actuals exceed predictions



## **Further Analytics through Donor Segmentation**

- **Purpose:** Combine donation likelihood (DONR) with predicted gift amounts (DAMT)
  - Exclude 50+% of individuals with low donation probability
- Approach:
  - Sort donors by territory, wealth, income, kids, etc.
  - Data-driven thresholds yield color-coded personas for marketing focus



### Persona Blue

#### **Profile**

- High wealth rating (WLTH≥7), moderate income (INC=4-5), homeowner
- Neural Net DONR Probability ~70–80%

#### **DAMT:**

• \$20–\$25 predicted (far above the \$2 cost)

#### **Business Case:**

 Fewer mailers, significant average gift → robust ROI

### Persona Yellow

#### **Profile**

- Possibly territory 2/3, moderate wealth/income, stable home
- DONR Probability ~60-70%

#### **DAMT:**

\$5-\$10 each, but higher frequency of giving

#### **Business Angle:**

 Frequent smaller gifts → cumulative annual total is substantial

### Persona Green

#### **Profile**

- Mid-level income (INC=3-4), territory 4, 1-2 kids
- DONR Probability ~65-75% (Neural Net)

#### **DAMT:**

• \$12–\$18 typical donation

#### Value:

 Reliable mid-tier donor base, easy net profit margin



# Next Steps - Deployment

### 1. Score Everyone

- Neural Net classification for DONR
- Retain only those > X% threshold

### 2. Estimate Gift (DAMT)

• Neural Net regression → budgeting & planning

## 3. Tailor Marketing

Personalize mailers for Persona Blue, Green, or Yellow

#### 4. Monitor & Retrain

Keep track of actual donation rates/amounts; update models every cycle



## Final Takeaways

## **Modeling Insight:**

- <u>Neural Net</u> outperforms other classifiers for DONR (~89.5% accuracy).
- Neural Net also excels in DAMT (~0.927 R2, RMSE ~4.1).

## Campaign improvement has Two-Step solution:

- Identify donors (DONR)
- Predict amounts (DAMT)

## **Build upon your Analytics**

<u>Personas</u> help refine marketing strategies and mailers.

**Conclusion**: From a –\$0.55 baseline to a **positive** margin per piece, this data-driven approach significantly increases fundraising efficiency and ROI



### References

- Garcia, John. "Week 5 Overview." Foundation of Analytics. K Nearest Neighbors, 10 Dec. 2024, Westlake Village, Hub101.
- Garcia, John. "Week 8 Overview." Foundation of Analytics. K Nearest Neighbors, 7 Jan. 2025, Westlake Village, Hub101.
- Garcia, John. "Week 7 Overview." Foundation of Analytics. K Nearest Neighbors, 17 Dec. 2024, Westlake Village, Hub101.
- ML Explainer Chatbot. (2025). Response to "Why does my profit Matrix not give me the optimal P-threshold" prompt.
   Garcia, John, California Lutheran University, 10 Feb 2025.
- Wei, Qiong, and Roland L. Dunbrack. "The role of balanced training and testing data sets for binary classifiers in bioinformatics." *PLoS ONE*, vol. 8, no. 7, 9 July 2013, https://doi.org/10.1371/journal.pone.0067863.
- SHMUELI, Galit, et al. "7,9,10,11." Machine Learning for Business Analytics, Concepts, Techniques and Applications with JMP Pro, 2nd ed., vol. 1, Machine Learning for Business Analytics, Concepts, Techniques and Applications with JMP Pro, Hoboken, NJ, 2023, pp. 147–311.



## DONR Classification - Neural Net without Ownd

| Training               |          |
|------------------------|----------|
| Measures               | Value    |
| Generalized RSquare    | 0.741781 |
| Entropy RSquare        | 0.58623  |
| RASE                   | 0.300013 |
| Mean Abs Dev           | 0.184774 |
| Misclassification Rate | 0.126506 |
| -LogLikelihood         | 1142.622 |
| Sum Freq               | 3984     |
|                        |          |

| Actual | Predicted Count |      |      |  |
|--------|-----------------|------|------|--|
| donr   |                 | 0    | 1    |  |
|        | 0               | 1725 | 264  |  |
|        | 1               | 240  | 1755 |  |

| Actual | Predicted Rate |       |       |  |
|--------|----------------|-------|-------|--|
| donr   |                | 1     |       |  |
|        | 0              | 0.867 | 0.133 |  |
|        | 1              | 0.12  | 0.88  |  |

| Validation             |          |
|------------------------|----------|
| Measures               | Value    |
| Generalized RSquare    | 0.698828 |
| Entropy RSquare        | 0.535679 |
| RASE                   | 0.313796 |
| Mean Abs Dev           | 0.196042 |
| Misclassification Rate | 0.1333   |
| -LogLikelihood         | 649.433  |
| Sum Freq               | 2018     |

| Actual | Predicted Count |     |     |  |
|--------|-----------------|-----|-----|--|
| donr   |                 | 0   | 1   |  |
|        | 0               | 867 | 152 |  |
|        | 1               | 117 | 882 |  |

| Actual | Predicted Rate |       |       |  |  |
|--------|----------------|-------|-------|--|--|
| donr   |                | 0     | 1     |  |  |
|        | 0              | 0.851 | 0.149 |  |  |
|        | 1              | 0.117 | 0.883 |  |  |

| Mod | del S | tru | cture |
|-----|-------|-----|-------|
|     |       |     |       |

- Model still generalized well, but loses 2% accuracy
- Probability threshold: **51.9%**

| Method | TP | FN   | FP  | TN  |      | Sensitivity | <b>Specificity</b> | Precision A | ccuracy F1 |        | MCC   |
|--------|----|------|-----|-----|------|-------------|--------------------|-------------|------------|--------|-------|
| Neural |    | 1744 | 251 | 251 | 1738 | 0.8742      | 0.8738             | 0.8742      | 0.874      | 0.8742 | 0.748 |

