多视图聚类

王 思 为

Email: wangsiwei13@nudt.edu.cn

Github:https://github.com/wangsiwei2010

国防科学技术大学 计算机学院 计算科学系

May 12, 2019

目录

- 1 多视图聚类简介
- 2 基于后期融合最大化的多视图聚类方法
- 3 总结

多视图聚类

- 多视图聚类: 利用多个视图上的信息来弥补单一视图上可能的信息不足的问题
 - 例如对于一个网页而言,它具有多种数据形式:文本,图片, 超链接等等。每种数据形式都可以被用来对网页进行分类, 即每种数据形式都可以被看做该网页的一个视图。
- 多视图的优越性:信息的互补性,使得其潜在的表示能力增强
 - 给多个视图的情况下,我们如何得到最优的聚类结果

- 将所有视图上的特征组合起来做聚类方法,比如 *k*-means 和 谱聚类;
- 借鉴集成学习的思路,将多个聚类结果集成到最终聚类结果

王 思 为

计算科学系

- 中期融合是利用多个视图上得到的不同相似度信息统一到相 似度矩阵上去,:
- 现有的多视图聚类算法:
 - 基于图的(graph-based): 通过融合各个视图上的图得到最 优的图表示
 - 基于子空间的 (subspace learning): 将多个视图上的表示通过 优化目标得到一个潜在的共同空间表示 (low-rank,sparse 等 等)
 - 基于多核的: 将多个核矩阵融合成一个统一的核矩阵
 - 基于非负矩阵分解(NMF)的: 将每个视图的低阶表示对齐 到一个表示上

Fig. 6 General procedure of graph-based clustering.

(a) 王 思 为 多视图聚类

Fig. 9 General procedure of multi-view subspace clustering.

(a)

Figure 2: 基于子空间的多视图聚类

The graphic presentation of the MvCC model.

(a)

Figure 3: 基于非负矩阵分解的多视图聚类

王 思 为 多视图聚类

Fig. 4 General procedure of multi-kernel learning.

(a)

Figure 4: 基于多核的多视图聚类

王 思 为 多视图聚类

- 缺陷: 中期融合的方法时间和空间复杂度相对都比较高,因 为往往需要对相似度矩阵做 SVD 分解,这意味着空间复杂 度为 $\mathcal{O}(mn^2)$, 时间复杂度为 $\mathcal{O}(n^3)$;
- 动机:类似于 ensemble learning 的思想,将若干视图上取得 任务结果做聚类语义上的对齐:
- 这里的聚类结果对应 $\{V_i\}_{i=1}^m$ 所产生的 m 个聚类指示矩阵 $\{\mathbf{H}_{i}\}_{i=1}^{m}$
- novelty: 无监督的无标签性

- 不同聚类结果之间的距离不能简单靠相减计算。
- 假设我们现在有 5 个样本和三个簇。我们从两个视图上得到 了各自视图上的聚类结果如下,

$$\mathbf{H_1} = \left| \begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right| \ \mathbf{H_2} = \left| \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right|$$

■ 尽管数学表达形式不同, 但是聚类结果一致

- 所以我们不能单纯地用数学意义上的范数来评估两个矩阵的 相似性。对于聚类指示矩阵而言,只要能够通过列变换矩阵 得到的新的聚类结果,就可以被看做与原结果等价
- $\blacksquare \mathbf{H_1} = \mathbf{H_2}\mathbf{W_2}$

$$\mathbf{W_2} = \left| \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right|$$

■ 优化目标

$$\min_{\mathbf{H}, \{\mathbf{W}_{\mathbf{p}}\}_{p=1}^{m}} \left\| \mathbf{H} - \frac{1}{m} \sum_{p=1}^{m} \mathbf{H}_{p} \mathbf{W}_{p} \right\|_{\mathbf{F}}^{2},$$

$$s.t. \ \mathbf{H}^{\top} \mathbf{H} = \mathbf{I}_{k}, \mathbf{W}^{\top} \mathbf{W} = \mathbf{I}_{k}.$$
(1)

$$\min_{\mathbf{H}, \{\mathbf{W}_{\rho}\}_{\rho=1}^{m}, \gamma} \left\| \mathbf{H} - \sum_{\rho=1}^{m} \gamma_{\rho} \mathbf{H}_{\rho} \mathbf{W}_{\rho} \right\|_{\mathbf{F}}^{2},$$
s.t.
$$\mathbf{H}^{\top} \mathbf{H} = \mathbf{I}_{k}, \mathbf{W}^{\top} \mathbf{W} = \mathbf{I}_{k}, \gamma^{\top} 1 = 1, \gamma \geq 0.$$

王思为 多视图聚类

后期融合算法

- 后期融合通过每个视图下得到的聚类的结果,通过不同的聚 类结果融合成最终的最优结果
- 我们是通过列变换对齐的,只要满足聚类的性质,这种对齐 就可以被应用到其他领域的聚类算法上

我们的方法: MVC-LFA(Late Fusion Alignment)

■ 我们提出了基于后期融合最大化的多视图方法(ijcai-19)

Late Fusion Alignment

■ 考虑 *k*-means 的优化目标:

$$\min_{\mathbf{H}^*} \operatorname{Tr}(\mathbf{X}\mathbf{X}^{\mathrm{T}}) - \operatorname{Tr}(\mathbf{H}^{*\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{H}^*),$$

s.t. $\mathbf{H}^* \in \mathbb{R}^{n \times k}, \mathbf{H}^{*\mathrm{T}}\mathbf{H}^* = \mathbf{I}_{\mathbf{k}},$ (3)

- **X** 和 **H*** 分别是数据矩阵和聚类结果矩阵。我们通过对 Eq.(3) 中的 **XX**^T 进行 SVD 分解来得到最后的划分矩阵 **H***。
- 当对应到多视图数据 $\mathbf{X} = \sum_{p=1}^{m} \beta_p \mathbf{H}_p \mathbf{W}_p$ 时,优化过程很复杂。

■ 贡献一: 我们首先证明了 Eq.(3) 中的优化目标等价于最大化后期融合之间的对齐 $Tr(\mathbf{H}^{*T}\mathbf{X})$ 。

Proof.

```
因为 \mathbf{P} = \mathbf{H}^{*T}\mathbf{X}, 我们可以得到 \mathrm{Tr}^2(\mathbf{H}^{*T}\mathbf{X}) \leq k \cdot \mathrm{Tr}(\mathbf{H}^{*T}\mathbf{X}\mathbf{X}^T\mathbf{H}^*). 因此, \mathrm{Tr}(\mathbf{X}\mathbf{X}^T) - \mathrm{Tr}(\mathbf{H}^{*T}\mathbf{X}\mathbf{X}^T\mathbf{H}^*) \leq 2k - \mathrm{Tr}(\mathbf{H}^{*T}\mathbf{X}\mathbf{X}^T\mathbf{H}^*) \leq 2k - \frac{1}{k}\mathrm{Tr}^2(\mathbf{H}^{*T}\mathbf{X}).
```


MVC-LFA 优化目标

■ 根据上面的结论,我们提出了一种简单但是高效的多视图聚 类算法:

$$\max_{\mathbf{H}^*, \{\mathbf{W}_{\rho}\}_{\rho=1}^m, \beta} \operatorname{Tr}(\mathbf{H}^{*T}\mathbf{X}) + \lambda \operatorname{Tr}(\mathbf{H}^{*T}\mathbf{M}),$$
s.t. $\mathbf{H}^{*T}\mathbf{H}^* = \mathbf{I}_k, \mathbf{W}_{\rho}^{T}\mathbf{W}_{\rho} = \mathbf{I}_k,$

$$\sum_{\rho=1}^{m} \beta_{\rho}^{2} = 1, \beta_{\rho} \geq 0, \mathbf{X} = \sum_{\rho=1}^{m} \beta_{\rho} \mathbf{H}_{\rho} \mathbf{W}_{\rho},$$
(4)

■ 贡献二: 我们从理论上说明了算法的收敛性:

Proof.

因为我们的优化方法采用了轮替优化法,当中每一步都是最优解,所以我们只需证明我们的算法有一个上界即可。注意到 $\forall p,q,\operatorname{Tr}[(\beta_p\mathbf{H}_p\mathbf{W}_p)^T(\beta_q\mathbf{H}_q\mathbf{W}_q)] \leq \operatorname{Tr}[(\mathbf{H}_p\mathbf{W}_p)^T(\mathbf{H}_q\mathbf{W}_q)] \leq \frac{1}{2}(\operatorname{Tr}[(\mathbf{H}_p\mathbf{W}_p)^T(\mathbf{H}_p\mathbf{W}_p)] + \operatorname{Tr}[(\mathbf{H}_q\mathbf{W}_q)^T(\mathbf{H}_q\mathbf{W}_q)]) = k.$ $\operatorname{Tr}(\mathbf{H}^{*T}\mathbf{X}) \leq \frac{1}{2}(\operatorname{Tr}[\mathbf{H}^{*T}\mathbf{H}^*] + \operatorname{Tr}[\mathbf{X}^T\mathbf{X}]) = \frac{1}{2}(\operatorname{Tr}[\mathbf{H}^{*T}\mathbf{H}^*] + \operatorname{Tr}(\sum_{p,q=1}^{m}(\beta_p\mathbf{H}_p\mathbf{W}_p)^T(\beta_q\mathbf{H}_q\mathbf{W}_q))) \leq \frac{k}{2}(m^2+1).$ 同时,the $(\mathbf{H}^{*T}\mathbf{M}) \leq \frac{1}{2}(\operatorname{Tr}[\mathbf{H}^{*T}\mathbf{H}^*] + \operatorname{Tr}[\mathbf{M}^T\mathbf{M}]) = k.$

■ 实验数据

Table 1: Datasets used in our experiments.

Dataset	#Samples	#Views	#Classes
Flower17	1360	7	17
ProteinFold	694	12	27
Flower102	8189	4	102
Caltech	1530	25	102
CCV	6773	3	20

■实验结果

Table 2: ACC, NMI and purity comparison of different clustering algorithms on five benchmark data sets.

Datasets A-I	A-MKKM	SB-KKM	MKKM	OKKC	CSRC	MKC-LKA	MKKM-MR	ONKC	Proposed			
	A-IVININI	3D-KKIVI	[huang2012multiple]	[Yu2012Optimized]	[kumar2011co]	[Li2016Multiple]	[Liu2016Multiple]	[liu2017optimal]				
	ACC(%)											
Flower17	51.03	42.06	45.37	44.85	51.76	60.69	59.69	60.88	62.16			
ProteinFold	30.69	34.58	27.23	37.10	35.59	39.34	36.89	37.90	41.49			
Flower102	27.29	33.13	21.96	22.32	38.60	40.84	40.24	37.32	44.16			
Caltech	35.56	33.14	34.77	33.92	34.38	36.06	35.82	35.32	38.39			
CCV	19.74	20.08	18.01	20.54	23.06	23.49	22.47	24.18	27.56			
	NMI(%)											
Flower17	50.19	45.14	45.35	45.85	53.19	57.27	57.11	58.58	60.79			
ProteinFold	40.96	42.33	37.16	40.75	45.66	47.55	45.13	46.93	49.96			
Flower102	46.32	48.99	42.30	43.28	54.95	57.60	57.27	58.13	60.48			
Caltech	59.90	59.07	59.64	57.22	58.35	60.98	60.18	60.41	62.65			
CCV	17.16	17.73	15.52	16.28	18.89	17.11	18.62	18.24	20.59			
Purity(%)												
Flower17	51.99	44.63	46.84	45.00	53.68	61.79	60.03	61.64	63.32			
ProteinFold	37.18	41.21	33.86	39.91	42.07	45.97	43.80	45.24	48.85			
Flower102	32.28	38.74	27.61	28.12	45.04	48.21	46.39	47.64	50.44			
Caltech	37.12	35.10	37.25	36.27	35.95	38.08	37.65	39.08	41.28			
CCV	23.98	23.48	22.25	24.17	26.80	22.93	25.69	23.34	30.71			

我们的方法: MVC-LFA(Late Fusion Alignment)

■ 实验结果验证了我们所提出的优化目标的有效性

我们的方法: MVC-LFA(Late Fusion Alignment)

■ 时间上从 $\mathcal{O}(n^3)$ 降到了 $\mathcal{O}(n)$

19 年下半年计划

- 将 IJCAI 的内容扩展到 TKDE 上,目前文章已经写完了, 仍需要补充实验 (ensemble learning, 其余的多视图聚类方法)
- 一些新的 idea
 - 扩展: 系数约束是 ℓ_2 的(我们并不想要稀疏的解),而将约束调整为 ℓ_1 后,可以考虑增加 diversity-induced 的惩罚项。
 - 核矩阵之间的相似度度量: hilbert-schmidt independence criterion(HSIC)

ICCV 审稿

Figure 1: A flow diagram of our proposed method. We dynamically construct a graph for each view at each iteration, perform spectral clustering to obtain the partition for each view, and integrate the basic partitions to generate the final clustering result.

ICCV 审稿

$$\min_{Z^{s},F_{s},Y} \sum_{s} \underbrace{\|X^{s} - X^{s}Z^{s}\|_{F}^{2} + \alpha \|Z^{s}\|_{F}^{2}}_{\text{graph construction}} + \underbrace{\beta Tr(F_{s}^{T}L^{s}F_{s})}_{\text{spectral clustering}} + \underbrace{\gamma w_{s} \|YY^{T} - F_{s}F_{s}^{T}\|_{F}^{2}}_{\text{partition fusion}}$$

$$s.t. \quad F_{s}^{T}F_{s} = I, Z^{s} \geq 0, Y^{T}Y = I. \tag{9}$$

王 思 为

■谢谢大家

王 思 为 多 视 图 聚 类