DYNAMIC PROGRAMMING

Analysis of Algorithm

Punjab University College of Information Technology (PUCIT) University of the Punjab, Lahore, Pakistan.

Credit

 These notes contain material from Chapter 15 of Cormen, Leiserson, Rivest, and Stein (3rd Edition).

Dynamic Programming

- Dynamic programming, like the divide-and-conquer method
- Divide and conquer is used for disjoint subproblems however dynamic programming is for overlap subproblems
- Here "Programming" refers to a tabular method, not to writing computer code.
- A dynamic-programming algorithm solves each subsubproblem just once and then saves its answer in a table, thereby avoiding the work of recomputing the answer every time it solves each subsubproblem

Dynamic Programming (Cont.)

When developing a dynamic-programming algorithm, we follow a sequence of four steps:

- Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.

Rod Cutting Problem

Given a rod of length n inches and a table of prices p_i for i = 1,2,...n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Note that if the price p_n for a rod of length n is large enough, an optimal solution may require no cutting at all.

length i	1	2	3	4	5	6	7	8	9	10
price p _i									24	- 1

Rod Cutting Problem (Cont.)

If an optimal solution cuts the rod into k pieces, for some $1 \le k \le n$, then an optimal decomposition:

$$n = i_1 + i_2 + \dots + i_k$$

provides maximum corresponding revenue

$$r_n = p_{i_1} + p_{i_2} + \cdots + p_{i_k}$$
.

Rod Cutting Problem (Cont.)

For our sample problem, we can determine the optimal revenue figures r_i , for i = 1, 2, ..., 10, by inspection, with the corresponding optimal decompositions

```
r_1 = 1 from solution 1 = 1 (no cuts), r_2 = 5 from solution 2 = 2 (no cuts), r_3 = 8 from solution 4 = 2 + 2, r_5 = 13 from solution 5 = 2 + 3, r_6 = 17 from solution 6 = 6 (no cuts), r_7 = 18 from solution 7 = 1 + 6 or 7 = 2 + 2 + 3, r_8 = 22 from solution 8 = 2 + 6, r_9 = 25 from solution 9 = 3 + 6, r_{10} = 30 from solution 10 = 10 (no cuts).
```

More generally, we can frame the values r_n for $n \ge 1$ in terms of optimal revenues from shorter rods:

$$r_n = \max(p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1)$$
 (15.1)

simpler version of the above equation: $r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$.

Rod Cutting Problem (Cont.)

Recursive top-down implementation

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))

6 return q

1 0 0 0
```

In general, this recursion tree has **2**ⁿ nodes and **2**ⁿ⁻¹ leaves which gives us intuition:

$$T(n)=2^n$$

length	1	2	3	4
p[length]	5	3	2	1

Dynamic programming solution: Top down approach

return q

```
MEMOIZED-CUT-ROD (p, n)
   let r[0..n] be a new array
2 for i = 0 to n
        r[i] = -\infty
   return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
                                               Remember traditional method
    if r[n] \geq 0
                                               CUT-ROD(p,n)
         return r[n]
                                               1 if n == 0
3 if n == 0
                                                    return 0
                                               3 \quad q = -\infty
     q = 0
                                               4 for i = 1 to n
                                                    q = \max(q, p[i] + \text{CUT-ROD}(p, n - i))
    else q = -\infty
                                               6 return q
        for i = 1 to n
             q = \max(q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r))
   r[n] = q
```

Dynamic programming solution: Bottom-up approach

BOTTOM-UP-CUT-ROD (p, n)1 let r[0..n] be a new array 2 r[0] = 03 for j = 1 to n4 $q = -\infty$ 5 for i = 1 to j6 $q = \max(q, p[i] + r[j - i])$ 7 r[j] = q8 return r[n]

Remember traditional method

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max(q, p[i] + \text{CUT-Rod}(p, n - i))

6 return q
```

Lets dry run for n =4 using the following price table

length	1	2	3	4
p[length]	5	3	2	1

Dynamic programming solution: Bottom-up approach also prints cut

EXTENDED-BOTTOM-UP-CUT-ROD(p, n)

```
let r[0..n] and s[0..n] be new arrays
 r[0] = 0
 3 for j = 1 to n
 4 q = -\infty
  5 for i = 1 to j
            if q < p[i] + r[j-i]
               q = p[i] + r[j - i]
               s[i] = i
        r[j] = q
 10
    return r and s
PRINT-CUT-ROD-SOLUTION (p, n)
  (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)
2 while n > 0
3 print s[n]
  n = n - s[n]
```

In our rod-cutting example, the call EXTENDED-BOTTOM-UP-CUT-ROD (p, 10) would return the following arrays:

$\frac{i}{r[i]}$ $s[i]$	0	1	2	3	4	5	6	7	8	9	10
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]	0	1	2	3	2	2	6	1	2	3	10

length i	1	2	3	4	5	6	7	8	9	10
length i price p _i	1	5	8	9	10	17	17	20	24	30