richardwu.ca

MATH 247 COURSE NOTES

CALCULUS 3 (ADVANCED)

Spiro Karigiannis • Winter 2018 • University of Waterloo

Last Revision: January 11, 2018

Table of Contents

1	Jan	January 3, 2018		
	1.1	Euclidean space \mathbb{R}^n	1	
	1.2	Euclidean inner product	1	
	1.3	Triangle inequality	2	
	1.4	Norms	3	
	1.5	Angle between two vectors	4	
2	January 5, 2018			
	2.1	Linear maps	4	
	2.2	Operator norm	6	
3	January 8, 2018			
	3.1	Topology of \mathbb{R}^n	8	
	3.2	Open and closed balls	8	
	3.3	Open sets	8	
	3.4	Properties of open sets	10	
	3.5	Closed sets	10	
	3.6	Properties of closed sets	11	
	3.7	Neither open nor closed	12	
	3.8	Interior	12	
	3.9	Closure	12	
4	January 10, 2018			
	4.1	Closure of open ball is closed ball	13	
	4.2	Boundary	14	
	4.3	Characterization of boundary	14	
	4.4	Sequences	15	
	4.5	Uniqueness of limits	16	
	4.6	Neighbourhood	17	

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

1 January 3, 2018

1.1 Euclidean space \mathbb{R}^n

Most postulates and theorems apply to any n-dimensional real vector space with a positive-definite inner product.

$$\mathbb{R}^n = \{x = (x_1, x_2, \dots, x_n); x_j \in \mathbb{R}, j = 1, \dots, n\}$$

Some properties of vectors in \mathbb{R}^n where $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n), \text{ and } t \in \mathbb{R}$:

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$

$$tx = (tx_1, \dots, tx_n)$$

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$s(tx) = (st)x$$

$$t\vec{0} = \vec{0}$$

$$\vec{0}x = \vec{0}$$

$$(t + s)x = tx + sx$$

$$t(x + y) = tx + ty$$

1.2 Euclidean inner product

An important additional structure on \mathbb{R}^n is the natural **Euclidean inner product** (aka the *dot product*).

$$\cdot: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

which can be written as $x \cdot y \in \mathbb{R}$.

Dot products are billinear, symmetric, and positive-definite. Bilinear forms satisfy

$$(x+y) \cdot z = x \cdot z + y \cdot z$$
$$x \cdot (y+z) = x \cdot y + x \cdot z$$
$$(tx) \cdot y = x \cdot (ty) = t(x \cdot y)$$

symmetric denotes

$$x\cdot y=y\cdot x$$

and **positive-definiteness** means $x \cdot x \ge 0$ with equality $\iff x = \vec{0}$.

Definition 1.1. The dot product is defined for $y = (y_1, \dots, y_n)$ and $y = (y_1, \dots, y_n)$

$$x \cdot y := \sum_{k=1}^{n} x_k y_k$$

Definition 1.2. The norm ||x|| of $x \in \mathbb{R}^n$ (induced by some inner product $\langle x, x \rangle = x \cdot x$) is defined as

$$||x||^2 = x \cdot x$$
$$||x||^2 = \sqrt{x \cdot x}$$

1.3 Triangle inequality

Proposition 1.1. Triangle inequality states

$$||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^n$$

To prove the above, we need the Cauchy-Schwarz Inequality.

Theorem 1.1. The Cauchy-Schwarz inequality states that

$$|x \cdot y| \le ||x|| ||y||$$

with equality iff x = ty or y = tx for some $t \in \mathbb{R}$.

Proof. For the equality case, WLOG if x = ty

$$x \cdot y = ty \cdot y = t||y||^2$$

= $|t|||y||^2$
= $||x||||y||$

Let $t \in \mathbb{R}$. Note for all t

$$0 \le ||x - ty||^2 = (x - ty) \cdot (x - ty)$$
$$= x \cdot x - ty \cdot x - tx \cdot y + t^2 y \cdot y$$
$$= ||x||^2 + t^2 ||y||^2 - 2t(x \cdot y)$$

Thus we have

$$at^2 + bt + c \ge 0 \quad \forall t \in \mathbb{R}$$

where $a = ||y||^2$, $b = -2x \cdot y$ and $c = ||x||^2$. Note there can exist at most one root (positive parabola where all values are non-negative). For $at^2 + bt + c = 0$ to have at most one real root (such that t exists), we need $b^2 - 4ac \le 0$ (from the quadratic formula).

$$4(x \cdot y)^{2} \le 4||x||^{2}||y||^{2}$$
$$|x \cdot y| \le ||x|| ||y||$$

If we have equality \exists t_0 such that $at_0^2 + bt_0 + c = 0$ or $||x - t_0y||^2 = 0$ so $x = t_0y$.

Corollary 1.1. The triangle inequality

$$||x + y||^2 = (x + y) \cdot (x + y)$$

$$= ||x||^2 + 2x \cdot y + ||y||^2$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

where the last line follows from the Cauchy-Schwarz inequality.

Definition 1.3. The **distance** between two points $x, y \in \mathbb{R}^n$ is defined to be

$$d(x,y) = ||x - y||$$

which satisfies the properties

$$d(x,y) = d(y,x)$$

$$d(x,x) = 0$$

$$d(x,y) \ge 0 \quad \text{with equality iff} \quad x = y$$

so we can restate the triangle inequality as $d(x,y) \leq d(x,z) + d(z,x) \quad \forall x,y,z \in \mathbb{R}^n$.

1.4 Norms

There exists different "natural" norms on \mathbb{R}^n

Definition 1.4. A norm $\|\cdot\|$ on \mathbb{R}^n is a map

$$\|\cdot\|:\mathbb{R}^n\to\mathbb{R}^{\geq 0}$$

such that

- 1. $||x|| = 0 \iff x = \vec{0}$
- 2. ||tx|| = |t|||x||
- 3. ||x + y|| < ||x|| + ||y||

All inner products determine a norm but not all norms are from inner products. We saw that the dot product determines a norm called the Euclidean norm.

$$l^1 \text{ norm } ||x||_1 = \sum_{k=1}^n |x_k|$$

$$||l^p \text{ norm } ||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$

sup norm (aka
$$l^{\infty}$$
 norm) $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$

One can see that l^{∞} norm is a "limit" of l^p norms as $p \to \infty$.

Note the l^2 norm is the Euclidean norm.

Why are norms important? A norm determines a distance. For example

$$d(x,y) = ||x - y||$$

(all norms determine a distance but not all distances are from norms).

Distance is important to define a **limit** which is crucial for differentiability/integrability.

1.5 Angle between two vectors

A corollary to C-S for $x, y \neq \vec{0}$

$$-1 \le \frac{x \cdot y}{\|x\| \|y\|} \le 1$$

Define the angle $\theta \in [0, \pi]$ between x and y to be

$$\cos \theta = \frac{x \cdot y}{\|x\| \|y\|}$$

so we have another definition of the dot product

$$x \cdot y = ||x|| ||y|| \cos \theta$$

We say x, y are **orthogonal** if $\theta = \frac{\pi}{2} \iff x \cdot y = 0$. Why is this the correct definition?

$$||y - x||^2 = (y - x) \cdot (y - x)$$

$$= ||x||^2 + ||y||^2 - 2x \cdot y$$

$$= ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

This aligns with the Law of Cosines $c^2 = a^2 + b^2 - 2ab\cos\theta$.

2 January 5, 2018

2.1 Linear maps

Definition 2.1. A map $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if T takes linear combinations to linear combinations i.e.

$$T(\sum_{k=1}^{N} t_k v_k) = \sum_{k=1}^{N} T(v_k) \quad t_i \in \mathbb{R} \quad v_j \in \mathbb{R}^n$$

We will see linear maps are closely related to differentiability.

Some facts about linear maps: let e_1, \ldots, e_n be the standard basis.

$$x \in \mathbb{R}^n = (x_1, \dots, x_n) = \sum_{k=1}^n x_k e_k$$

Let f_1, \ldots, f_m be the standard basis of \mathbb{R}^m where $f_j = (0, \ldots, 1, \ldots, 0) \in \mathbb{R}^m$.

$$y \in \mathbb{R}^m = (y_1, \dots, y_n) = \sum_{k=1}^m y_k f_k$$

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be linear and let

$$y = \sum_{e=1}^{m} y_{l} f_{l} = T(x) = T(\sum_{k=1}^{n} x_{k} e_{k})$$

$$= \sum_{k=1}^{n} x_{k} T(e_{k})$$

$$= \sum_{k=1}^{n} x_{k} (\sum_{l=1}^{m} A_{lk} f_{l})$$

$$= \sum_{k=1}^{n} (\sum_{l=1}^{m} A_{lk} x_{k}) f_{l}$$

By uniqueness of the expansion of a vector in terms of a basis $(f_i$ s) we conclude that

$$y_l = \sum_{k=1}^n A_{lk} x_k \quad l = 1, \dots, m$$

or in matrix form

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} A_{11} & \dots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \dots & A_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

We've shown that any linear map $T: \mathbb{R}^n \to \mathbb{R}^m$ is necessarily matrix multiplication

$$y = T(x) = A \cdot x$$

for some unique $m \times n$ matrix A (with respect to some bases in \mathbb{R}^n and \mathbb{R}^m). The rule of matrix multiplication is automatic from the composition of linear maps. Let

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$S: \mathbb{R}^m \to \mathbb{R}^p$$

$$y = T(x) = A \cdot x \quad m \times n$$

$$z = S(y) = B \cdot y \quad p \times m$$

Therefore $S \circ T : \mathbb{R}^n \to \mathbb{R}^p$ is linear.

$$(S \circ T)(\sum t_k v_k) = S(T(\sum_k t_k v_k))$$

$$= S(\sum_k x_k T(v_k))$$

$$= \sum_k x_k S(T(v_k))$$

$$= \sum_k t_k (S \circ T)(v_k)$$

So we have

$$z_{l} = \sum_{j=1}^{m} B_{lj} y_{j} = \sum_{j=1}^{m} B_{lj} (\sum_{i=1}^{n} A_{ji} x_{i})$$
$$= \sum_{i=1}^{n} (\sum_{j=1}^{m} B_{lj} A_{ji}) x_{i}$$
$$= \sum_{i=1}^{n} C_{li} x_{i}$$

where

$$z = (S \circ T)(x) = C \cdot x \quad p \times n$$

Recall the space $L(\mathbb{R}^n, \mathbb{R}^m)$ of linear maps from \mathbb{R}^n to \mathbb{R}^m is itself a finite dimensional real vector space of dimension nm (isomorphic to \mathbb{R}^{nm}).

$$T \in L(\mathbb{R}^n, \mathbb{R}^m) \iff A \in M_{m \times n}(\mathbb{R})$$

where $M_{m\times n}(\mathbb{R})$ is the space of real $m\times n$ matrices. There is a unique 1-1 correspondence between T and A (as shown before).

2.2 Operator norm

Note one can define norm on matrices. The natural Euclidean norm for matrix A can be defined as

$$||A||_2 = \sqrt{\sum_{i=1,\dots,m;j=1,\dots,n} (A_{ij})^2}$$

Definition 2.2. The operator norm is defined for a $T: \mathbb{R}^n \to \mathbb{R}^m$ linear map as

$$||T||_{op} = \inf\{C > 0, ||T(x)|| \le C||x|| \quad \forall x \in \mathbb{R}^n\}$$

We need to show this norm is

- 1. Well-defined
- 2. $\|\cdot\|_{op}$ is a norm
- 1. Show well-defined

$$T(x) = A \cdot x \quad A \quad m \times n$$

$$\begin{bmatrix} A_{11} & \dots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \dots & A_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} A_1 \cdot x \\ \vdots \\ A_m \cdot x \end{bmatrix} = T(x)$$

So the norm is

$$||T(x)||^{2} = (A_{1} \cdot x)^{2} + \ldots + (A_{m} \cdot x)^{2}$$

$$\leq ||A_{1}||^{2} ||x||^{2} + \ldots + ||A_{m}||^{2} ||x||^{2}$$

$$= (||A_{1}||^{2} + \ldots + ||A_{m}||^{2}) ||x||^{2}$$
C-S

Case 1 Assume $||A_1||^2 + \ldots + ||A_m||^2 = 0$.

$$||A_1||^2 + \ldots + ||A_m||^2 = 0 \iff A = 0_{m \times n}$$

$$\iff T = 0 \in L(\mathbb{R}^n, \mathbb{R}^m)$$

Then $T(x) = 0 \quad \forall x \text{ so } ||T(x)|| \leq C||x|| \text{ holds } \forall C > 0, \text{ thus the infimum of positive real numbers } (0) \text{ implies } ||T||_{op} = 0.$

Case 2 Assume $||A_1||^2 + \ldots + ||A_m||^2 > 0$.

 $\{C>0, \|T(x)\|\leq C\|x\| \quad \forall x\in\mathbb{R}^n\}$ is non-empty because $\sqrt{\|A_1\|^2+\ldots+\|A_m\|^2}$ is in there. By the completeness of \mathbb{R} , $\|T\|_{op}$ exists and is ≥ 0 .

- 2. We've shown $||T||_{op}$ exists and is ≥ 0 for all $T \in L(\mathbb{R}^n, \mathbb{R}^m)$. It remains to shown $||T||_{op}$ is a norm:
 - (a) $||T||_{op} = 0$ only for the zero map
 - (b) $\|\lambda T\|_{op} = |\lambda| \|T\|_{op} \quad \forall \lambda \in \mathbb{R}$
 - (c) $||T + S||_{op} \le ||T||_{op} + ||S||_{op}$

To see this, we note that since

$$||T||_{op} = \inf\{C > 0, ||T(x)|| \le C||x|| \quad \forall x \in \mathbb{R}^n\}$$

 \exists a decreasing sequence $c_k \geq 0$ such that $||T(x)|| \leq c_k ||x|| \quad \forall x \in \mathbb{R}^n$ and $\lim_{k \to \infty} c_k = ||T||_{op}$. Take limit as $k \to \infty$ of the predicate in $||T||_{op}$.

$$||T(x)|| \le (\lim_{k \to \infty} c_k) ||x||$$
$$||T(x)|| \le ||T||_{op} ||x||$$

So we have

$$||T||_{op} = 0 \Rightarrow ||T(x)|| \le 0 \quad \forall x$$
$$\Rightarrow T(x) = 0 \quad \forall x$$
$$\Rightarrow T = 0 \in L(\mathbb{R}^n, \mathbb{R}^m)$$

which proves (a).

$$\|\lambda T\|_{op} = |\lambda| \|T\|_{op}$$

follows from

$$||(\lambda T)(x)|| = ||\lambda(T(x))||$$
$$= |\lambda||T(x)|| \quad \forall x$$

If
$$\lambda = 0$$
, $\lambda T = 0 \Rightarrow ||\lambda T||_{op} = 0 = |\lambda|||T||_{op}$.

If $\lambda \neq 0$

$$\|\lambda T\|_{op} = \inf\{C > 0, \|(\lambda T)(x)\| \le C\|x\|\}$$

$$= \inf\{C > 0, |\lambda| \|T(x)\| \le C\|x\|\}$$

$$= \inf\{C > 0, \|T(x)\| \le \frac{C}{|\lambda|} \|x\|\}$$

$$= |\lambda| \inf\{\tilde{C} > 0, \|T(x)\| \le \tilde{C}\|x\|\}$$

$$= |\lambda| \|T\|_{op}$$

$$\tilde{C} = \frac{C}{\lambda}$$

which proves (b). (c) is similar.

3 January 8, 2018

3.1 Topology of \mathbb{R}^n

Topology is the study of **closeness** in a space.

3.2 Open and closed balls

Definition 3.1. Let $x \in \mathbb{R}^n$ and r > 0. The **open ball** at radius r centred at x is denoted

$$B_r(x) = \{ y \in \mathbb{R}^n \mid ||x - y|| < r \}$$

It consists of all points in \mathbb{R}^n whose distance from x is strictly less than r.

Figure 3.1: Open balls in R, R^2 , and R^3 .

In R, $B_r(x) = (x - r, x + r)$. In R^3 , $B_r(x)$ is the *interior* of a sphere of radius r centred at x.

Definition 3.2. Let $x \in \mathbb{R}^n$, r > 0. The closed ball of radius r > 0 centred at x is denoted

$$\overline{B_r(x)} = \{ y \in \mathbb{R}^n \mid ||x - y|| \le r \}$$

Remark 3.1. The notation will be explained in the following class/section. Note that

$$\overline{B_r(x)} = B_r(x) \cup \{\text{points exactly at distance } r\}$$

For n = 1, $\overline{B_r(x)} = [x - r, x + r]$.

3.3 Open sets

Definition 3.3. A subset $U \subseteq \mathbb{R}^n$ is called an **open set** (or open) iff $\forall x \in U, \exists r > 0$ (r depends on x) such that $B_r(x) \subseteq U$.

(Informally: a subset U is open if for every $x \in U$, all points sufficiently close to x are also in U).

Figure 3.2: One can form an open ball for every point x in an open set U.

Example 3.1. Set that is not open

• $[0,1] \subseteq \mathbb{R}$. Note: $\not\exists r > 0$ for x=1 such that $B_r(x) \subseteq [0,1]$.

Sets that are open

- \mathbb{R}^n since $x + \epsilon \in \mathbb{R}^n$ by definition.
- \varnothing (vacuous: satisfied trivially \varnothing has no points).

Proposition 3.1. An open ball is an open set.

Figure 3.3: An open ball is an open set (see proof below).

Proof. Let $U = B_r(x)$ and $y \in U = B_r(x)$. We need to find some $\epsilon > 0$ such that $B_{\epsilon}(y) \subseteq U$. Let d = ||x - y|| < r since $y \in U = B_r(x)$.

Suppose $z \in B_{\epsilon}(y)$ thus $||y - z|| < \epsilon$.

We thus have

$$||z - x|| \stackrel{\triangle}{\le} ||z - y|| + ||y - x|| < \epsilon + d = r$$

So $B_{\epsilon}(y) \subseteq U$ hence U is open.

We can construct more from open sets.

3.4 Properties of open sets

Lemma 3.1. 1. Let $U_{\alpha} \subseteq \mathbb{R}^n$ be open $\forall \alpha \in A$ (countably or uncountably many), then

$$\bigcup_{\alpha \in A} U_{\alpha}$$

is open.

2. Let U_1, \ldots, U_k be open (must be finite number of sets). Then

$$\bigcap_{j=1}^{k} U_j$$

is open.

Informally, arbitrary unions of open sets are open. Finite intersections of open sets are open.

Proof.

1. We want to show $\bigcup_{\alpha \in A} U_{\alpha}$ is open.

Let $x \in \bigcup_{\alpha \in A} U_{\alpha}$ so \exists some $\alpha_0 \in A$ such that $x \in U_{\alpha_0}$ (holds since union of sets).

But U_{α_0} is open so $\exists r > 0$ such that $B_r(x) \subseteq U_{\alpha_0} \subseteq \bigcup_{\alpha \in A} U_{\alpha}$.

2. Show $x \in \bigcap_{j=1}^k U_j$ so $x \in U_j$ for all j = 1, ..., k. Each U_j is open so $\forall j, \exists \epsilon_j > 0$ such that $B_{\epsilon_j}(x) \subseteq U_j$.

Let
$$\epsilon = \min\{\epsilon_1, \dots, \epsilon_k\} > 0$$
. $\forall j$ we have $B_{\epsilon}(x) \subseteq B_{\epsilon_j}(x) \subseteq U_j$ hence $B_{\epsilon}(x) \supseteq \bigcap_{j=1}^k U_j$.

Remark 3.2. Arbitrary (e.g. nonfinite) intersections of open sets need not be open (the min. of infinite numbers is not well defined. An infimum of positive numbers need not be > 0 i.e. it could be 0).

Even intersection of countably infinite sets may not be open. Suppose $U_k = (0, 1 + \frac{1}{k}) \subseteq \mathbb{R}$ $\forall k \in \mathbb{N}$. Note that $\bigcap_{k=1}^{\infty} U_k = (0, 1]$ is not open.

3.5 Closed sets

Definition 3.4. A subset $F \subseteq \mathbb{R}^n$ is called **closed** if $F^c = \mathbb{R} \setminus F$ is open (note: this definition is based on open's definition).

Proposition 3.2. A closed ball $\overline{B_r(x)} = \{y \in \mathbb{R}^n \mid ||y - x|| \le r\}$ is a closed set.

Figure 3.4: A closed ball is a closed set (see proof below).

Proof. Let $F = B_r(x)$ and

$$F^{c} = (\overline{B_{r}(x)})^{c} = \{ y \in \mathbb{R}^{n} \mid ||y - x|| > r \}$$

Let $y \in \overline{B_r(x)}^c$: need to find $\epsilon > 0$ such that $B_{\epsilon}(y) \subseteq F^c$. Let d = ||x - y|| > r and let $\epsilon = d - r > 0$. If $z \in B_{\epsilon}(y)$, then

$$\begin{split} \|x-y\| &\overset{\triangle}{\leq} \|x-z\| + \|z-y\| \\ d &\leq \|x-z\| + \|z-y\| \\ \|x-z\| &\geq d - \|z-y\| \\ > d - \epsilon = r \end{split}$$

Hence $z \in F^c$ so $B_{\epsilon}(y) \subseteq F^c$, thus F^c is open and by definition F is closed.

3.6 Properties of closed sets

Lemma 3.2. Note: this lemma is the inverse of the equivalent for open sets.

- 1. If F_1, \ldots, F_k is closed, then $\bigcup_{j=1}^k F_j$ is closed.
- 2. If F_{α} is closed $\forall \alpha \in A$, then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed.

Finite unions of closed sets are closed. Arbitrary intersections of closed sets are closed.

Proof. By De Morgan's laws

$$\left(\bigcup_{j=1}^{k} F_{j}\right)^{c} = \bigcap_{j=1}^{k} (F_{j})^{c}$$
$$\left(\bigcap_{\alpha \in A} F_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} (F_{\alpha})^{c}$$

11

3.7 Neither open nor closed

A subset V of \mathbb{R}^n need not be either open or closed. It can be open, closed, neither or both!

Example 3.2. Examples of non-exclusive open or closed sets are

- $(0,1] \subseteq \mathbb{R}$ neither
- \mathbb{R}^n , \varnothing are open and closed

3.8 Interior

Sometimes a set is neither open or closed, but there are always **natural open (interior) and closed (closure)** sets which can be associated to any subset of \mathbb{R}^n .

Definition 3.5. Let $A \subseteq \mathbb{R}^n$ (could be \emptyset).

$$A^o = \int (A)$$
 interior of A
$$= \bigcup_{\substack{V \subseteq A \\ V \text{ open in } \mathbb{R}^n}} V$$
 union of **all** open subsets of \mathbb{R}^n that are contained in A

Remark 3.3. 1. A^o is open (arbitrary union of open sets) and $A^0 \subseteq A$

- 2. if V is any open subset of \mathbb{R}^n that is contained in A, then $V \subseteq \mathbb{A}^o$ (\mathbb{A}^o is the largest open subset of \mathbb{R}^n that is contained in A)
- 3. A is open iff $A^o = A$

Proof. Forwards:

A is open and $A \subseteq A$ thus A must be a V in the union, but since all $V \subseteq A$ then $A^o = A$.

Backwards:

$$A^o = A$$
. Since A^o is open, A is open.

3.9 Closure

Definition 3.6.

$$\overline{A} = cl(A)$$
 closure of A

$$= \bigcap_{\substack{F \supseteq A \\ F \text{closed in } \mathbb{R}^n}} F \qquad \text{intersection of all closed subsets of } \mathbb{R}^n \text{ that contains } A$$

Remark 3.4. 1. \overline{A} is closed (arbitrary intersection of closed sets) and $\overline{A} \supseteq A$

- 2. if F is any closed subset of \mathbb{R}^n that contains A, then $F \supseteq \overline{A}$ (\overline{A} is the smallest closed set of \mathbb{R}^n containing A)
- 3. A is closed iff $\overline{A} = A$

4 January 10, 2018

4.1 Closure of open ball is closed ball

Proposition 4.1. The closure of the open ball $B_{\epsilon}(x)$ is the closed ball $\overline{B_{\epsilon}(x)}$ (hence the notation).

Proof. Remember

$$\overline{B_{\epsilon}(x)} = \{ y \in \mathbb{R}^n \mid ||y - x|| \le \epsilon \}$$

Let A =is closure of $B_{\epsilon}(x)$.

Let $F = \{ y \in \mathbb{R}^n \mid ||x - y|| \le \epsilon \}.$

We want to show A = F.

We know F is closed and $F \supset B_{\epsilon}(x)$, so F contains A = the closure of $B_{\epsilon}(x)$ (any closed set containing another set is in the intersection of the closure) or

$$F \supset A \supset B_{\epsilon}(x)$$

Suppose $F \neq A$, then $\exists y \in F$ with $y \notin A \Rightarrow y \notin B_{\epsilon}(x)$ so

$$||x - y|| = \epsilon$$

(it's sandwiched between the closed ball ($\leq \epsilon$) and the open ball ($< \epsilon$), so it must hold with equality with ϵ).

Figure 4.1: The closure of an open ball is the corresponding closed ball.

A is closed and $y \notin A$ so A^c is open and $y \in A^c$. So $\exists \delta > 0$ such that $B_{\delta}(y) \subseteq A^c$. Let t > 0 with $t < \min\{\delta, \epsilon\}$.

Let

$$z = y + t \frac{(x-y)}{\|x-y\|}$$

(add t unit vectors from y to x). Note that

$$||z - y|| = t < \delta$$

so $z \in B_{\delta}(y) \subseteq A^c$.

Also

$$x - z = x - y - t \frac{(x - y)}{\|x - y\|}$$
$$= (\|x - y\| - t) \frac{(x - y)}{\|x - y\|}$$

where the left term is the norm of the vector and the right term is the unit vector.

Thus

$$||x - z|| = |||x - y|| - t| = |\epsilon - t| = \epsilon - t < \epsilon$$

So $z \in B_{\epsilon}(x) \subseteq A$, but we assumed $z \in A^c$ which is a contradiction. So we must have F = A.

Remark 4.1. There is a much simpler proof of this using sequences and limit points.

4.2 Boundary

Definition 4.1. Let $A \subseteq \mathbb{R}^n$. We define the **boundary** of A denoted $\partial A = bd(A)$ to be

$$\partial A = bd(A) = \{ x \in \mathbb{R}^n \mid B_{\epsilon}(x) \cap A \neq \emptyset, B_{\epsilon}(x) \cap A^c \neq \emptyset \quad \forall \epsilon > 0 \}$$

That is, $x \in \partial A$ iff every open ball centred at x contains a point in A and a point in A^c . Clearly

$$\partial B_{\epsilon}(x) = \{ y \in \mathbb{R}^n \mid ||y - x|| = \epsilon \}$$
$$= \partial (\overline{B_{\epsilon}(x)})$$

4.3 Characterization of boundary

Proposition 4.2. Let $A \subseteq \mathbb{R}^n$: then

$$\partial A = \overline{A} \setminus A^o$$
$$= cl(A) \setminus int(A)$$

Proof. The following two claims and proofs revolve around complements of sets and how if set A intersect a set B is the empty set, then A is a subset of B^c .

Claim 1

$$x \in \overline{A} \iff B_{\epsilon}(x) \cap A \neq \emptyset \quad \forall \epsilon > 0$$

Proof. Forwards:

Suppose $x \in \overline{A}$ but $\exists \epsilon_0 > 0$ $B_{\epsilon}(x) \cap A = \emptyset$.

So
$$B_{\epsilon}(x) \subseteq A^c \Rightarrow (B_{\epsilon}(x))^c \supset A$$
.

Since $(B_{\epsilon}(x))^c$ is closed, then $(B_{\epsilon}(x))^c \supset \overline{A}$ (by remark (2) after closure definition).

So $\overline{A} \cap B_{\epsilon}(x) = \emptyset$, but $x \in B_{\epsilon}(x) \Rightarrow x \notin \overline{A}$, which is a contradiction.

Backwards:

We prove the contrapositive

$$x \notin \overline{A} \Rightarrow B_{\epsilon}(x) \cap A = \emptyset \quad \forall \epsilon > 0$$

Assume $x \notin \overline{A} \Rightarrow x \in (\overline{A})^c$ which is open, so $\exists \epsilon_0 > 0$ such that $B_{\epsilon_0}(x) \subseteq (\overline{A})^c$. Therefore $B_{\epsilon_0}(x) \cap \overline{A} = \emptyset$ (where $\overline{A} \supset A$), which proves our claim).

Claim 2

$$x \notin A^o \iff B_{\epsilon}(x) \cap A^c \neq \emptyset \quad \forall \epsilon > 0$$

Proof. Forwards:

Suppose $x \notin A^o$. Assume (for contradiction) $\exists \epsilon_0 > 0$ such that

$$B_{\epsilon_0}(x) \cap A^c = \varnothing \Rightarrow B_{\epsilon_0}(x) \subseteq A$$

(nothing in A^c , thus all in A).

Ergo $x \in (A^o)^c$ and $B_{\epsilon_0}(x) \subseteq A^o$ (since $B_{\epsilon_0}(x)$ is a closed set contained in A - remark (2) after interior definition).

So $B_{\epsilon_0}(x) \cap (A^o)^c = \emptyset$ but $x \in B_{\epsilon_0}(x) \cap (A^o)^c$ which is a contradiction.

Backwards:

(Contrapositive): suppose $x \in A^o$. A^o is open so $\exists \epsilon > 0$ such that

$$B_{\epsilon_0}(x) \subseteq A^o \subseteq A$$

so
$$B_{\epsilon_0}(x) \cap A^c = \emptyset$$
.

Putting the claims together:

$$x \in \overline{A} \iff B_{\epsilon}(x) \cap A \neq \emptyset \quad \forall \epsilon > 0$$

$$x \in (A^{o})^{c} \iff B_{\epsilon}(x) \cap A \neq \emptyset \quad \forall \epsilon > 0$$

$$x \in \partial A \iff (1) + (2)$$

$$\iff x \in \overline{A} \cap (A^{o})^{c} = \overline{A} \setminus A^{o}$$

$$(1)$$

4.4 Sequences

Definition 4.2. Let (x_k) be a sequence of points in $\mathbb{R}^n, k \in \mathbb{N}$. We say (x_k) converges to a point $x \in \mathbb{R}^n$ iff for any $\epsilon > 0$, $\exists N \in \mathbb{N}$ (N depends on ϵ in general)

$$k \ge N \Rightarrow ||x_k - x|| < \epsilon$$

(i.e. for any $\epsilon > 0$, all the elements of sequence x_k after some k = N are within ϵ of x).

Figure 4.2: All points after k = N for a converging sequence is within ϵ .

If (x_k) converges to x, we denote

$$\lim_{k \to \infty} x_k = x$$

where x is **the limit** of x_k .

4.5 Uniqueness of limits

Lemma 4.1. Suppose $\lim_{k\to\infty} x_k = x$ and $\lim_{k\to\infty} x_k = y$. Then x = y (i.e. a sequence may not converge, but if it does the limit is unique).

Figure 4.3: Sketch of proof with $x \neq y$ (see below).

Proof. Suppose $x \neq y$, so $||x - y|| = \epsilon > 0$. Since (x_k) converges to x, $\exists N_1 \in N$ such that $k \geq N_1$ and

$$||x_k - x|| < \frac{\epsilon}{2}$$

Similarly for $y \exists k \geq N_2$.

Suppose $k \ge \max\{N_1, N_2\}$. Then

$$||x - y|| \stackrel{\triangle}{\leq} ||x - x_k|| + ||x_k - y||$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

So x = y by contradiction.

4.6 Neighbourhood

Definition 4.3. Let $x \in \mathbb{R}^n$. A subset $U \in \mathbb{R}^n$ is called a **neighbourhood (n'h'd)** of x if $\exists \epsilon_0 > 0$ such that $B_{\epsilon_0}(x) \subseteq U$.

Figure 4.4: U is a neighbourhood of x since there exists an open set B of x contained in U.

(Equivalently, U is a n'h'd of $x \iff U$ contains an open set containing x.)

of x such that B is contained in U.

Definition 4.4. An open n'h'd of x is any open set containing x. (A set is an open n'h'd of x if it contains x and all points sufficiently close to x).

Lemma 4.2. Let (x_k) be a sequence in \mathbb{R}^n . Suppose $\lim_{k\to\infty} x_k$ exists and equal $x\in\mathbb{R}^n$. Then any n'h'd of x contains all x_k 's for k sufficiently large, i.e. if U is a n'h'd of x, $\exists N\in\mathbb{N}$ (N depends on U) such that

$$k \ge N \Rightarrow x_k \in U$$

Proof. U is a n'h'd of x so $\exists \epsilon_0 > 0$ such that $B_{\epsilon}(x) \subseteq U$. Since $\lim_{k \to \infty} x_k = x$, $\exists N \in N$ such that $k \ge N \Rightarrow ||x_k - x|| < \epsilon_0$ so $x_k \in B_{\epsilon}(x) \subseteq U \quad \forall k \ge \mathbb{N}$.