MECH 6323 - Homework 5

Author: Jonas Wagner

Date: 2022-03-27

Table of Contents

Problem 1	1
Problem 2	4
Problem 3	5
(i) If is stable then the closed loop interconnection is stable if and only if is stable	7
(ii) If is stable then the closed loop interconnection is stable if and only if is stable	
Problem 4	
(a) Provide an interpretation for the uncertainty described by the weight	11
(b)	
Is the nominal system stable?	
What are the gain and phase margins of the nominal loop ?	12
(c)	
Does robustly stabilize all models in based on this condition?	12
(d)	
Construct the uncertain model Phat	
Generate a Bode magnitude plot with 10 samples drawn from the uncertainty set and draw the nominal	
response on	13
the same plot	13
(e)	
Perform the robustness test with robstab	13
Does the result obtained with robstab agree with your conclusions in part (c)?	14

close all
clear
% clc

Problem 1

$$M^{-1}M = I$$

$$\left[egin{array}{ccc} I & -K \ -G_{22} & I \end{array}
ight]^{-1} \quad \left[egin{array}{ccc} I & -K \ -G_{22} & I \end{array}
ight] \; \simeq \; \left[egin{array}{ccc} \mathcal{I} & \mathcal{O} \ \mathcal{O} & \mathcal{I} \end{array}
ight]$$

$$\begin{bmatrix}
A + (B)(-6_{22}) & (A)(-K) + (B)(I) \\
(C)(F) + (D)(-6_{22}) & (C)(-K) + (D)(I)
\end{bmatrix} = \begin{bmatrix}
I & O \\
O & I
\end{bmatrix}$$

$$\begin{bmatrix}
A - BG_{22} & -AK + B \\
C - DG_{22} & -CK + D
\end{bmatrix} = \begin{bmatrix}
I & O \\
O & I
\end{bmatrix}$$

$$B = AK$$

$$L = DC_{22}$$

$$A - AK G_{2A} = I$$

$$D - D G_{2A} = I$$

$$A(I-Kb_{22})=I$$

$$D(I-b_{22}K)=I$$

$$A = (I - K G_{22})^{-1}$$

$$D = (I - G_{22} K)^{-1}$$

$$B = (I - KG_{22})^{-1}K$$

$$V_1$$
 \downarrow U G_{22} \downarrow K V_2 \downarrow V_2 \downarrow V_2

$$u \geq V_1 + K \left(V_{\lambda} + G_{1\lambda} \right)$$

$$Y = V_2 + G_{2\lambda} \left(V_1 + K Y \right)$$

$$u = K u_{aa} u + V_1 + K V_2$$
 $y = G_{22} K y + G_{22} V_1 + V_3$

$$(I - K G_{22}) u = V_1 + K V_2$$

 $(I - G_{22}K) y = G_{22} V_1 + V_2$

$$V = (I - K G_{22})^{-1} \begin{bmatrix} 1 \\ V_2 \end{bmatrix}$$

$$V = (I - G_{22}K)^{-1} \begin{bmatrix} G_{22} \\ V_3 \end{bmatrix}$$

$$V_1$$

$$V_2$$

$$V_3$$

Problem 2

$\mathcal{H}\left(\ b_{\vartheta\vartheta}\ ,\ \ \mathcal{K}\right)$ (a) $(\bar{A},\bar{B},\bar{C},\bar{D})$ is stabilizable and detectable;

(b) (A, B_2, C_2, D_{22}) and (A_K, B_K, C_K, D_K) are stabilizable and detectable.

$$H(G_{aa},K)$$
 $J_{i}^{H}=S_{i}^{G}\cup S_{i}^{K}$

$$\operatorname{Fan} K\left[\begin{pmatrix} k_{i}^{k} \mathbf{I} - A \end{pmatrix} B_{a}\right] = N \qquad \operatorname{Fan} K\left[\begin{pmatrix} k_{i}^{k} \mathbf{I} - A \end{pmatrix} = N \qquad \forall_{i} : \lambda_{i}^{k} \geq 0$$

$$\operatorname{Fan} K\left[\begin{pmatrix} k_{i}^{k} \mathbf{I} - A_{k} \end{pmatrix} B_{k}\right] = N \qquad \operatorname{Fan} K\left[\begin{pmatrix} k_{i}^{k} \mathbf{I} - A_{k} \end{pmatrix} - A_{k}\right] = N \qquad \forall_{i} : \lambda_{i}^{k} \geq 0$$

$$\operatorname{Can} K\left[\begin{pmatrix} k_{i}^{k} \mathbf{I} - A_{k} \end{pmatrix} B_{k}\right] = N \qquad \operatorname{Can} K\left[\begin{pmatrix} k_{i}^{k} \mathbf{I} - A_{k} \end{pmatrix} - A_{k}\right] = N \qquad \forall_{i} : \lambda_{i}^{k} \geq 0$$

$$\begin{aligned} & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - A \right) \right) & \leq & \text{ Fank } \left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d \right) \\ & \leq & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{2i} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - \left[A_{i} - B B^{j} \right] d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right] \right) \\ & = & \text{ Fank } \left(\left(\sum_{i, j}^{K} I - A B^{j} \right) \right) \\ & = & \text{ Fank } \left(\sum_{i, j}^{K} I - \left(A_{i} - B B^{j} \right) d - D_{2i} D_{k} \right)^{-1} \left[C_{2i} - D_{2i} C_{k} \right) \\ & = & \text{ Fank } \left(\sum_{i, j}^{K} I - A B^{j} \right) d - D_{2i} D_{k} \right) \right) \\ & = & \text{ Fank } \left(\sum_{i, j}^{K} I - \left(A_{i} - A B^{j} \right) d - D_{2i} D_{k} d - D_{2i} D_{k} \right) d - D_{2i} D_{k} d - D_{2i} D_{k$$

Problem 3

- · Closed-loop stability means that all elements of $H(G_{29}, K)$ are stable,
- Matrix Mis Stable itt
- p Matnix multiplicity maintains stability of eigen values it all eigen values are stable
- (i) If K is stable then the closed loop interconnection is stable if and only if $G_{22}(I-KG_{22})^{-1}$ is stable.

(ii) If G_{22} is stable then the closed loop interconnection is stable if and only if $K(I-G_{22}K)^{-1}$ is stable.

622 gfa6/e => H stable (I - 62 K) Gastable A K(I-GazK) Stable (I - bak) stable, K stable, [I-622K] Stuble => (I-16622) Stable 162 1 K stable => (I - K Gaz) 1 K stable =) (I-GagK) 60g stable i. H Stable H stable => (I - K Gaz) K Stable Gan 5 44 6/2 / (I - KG29) - (523 St46) 6-22 (I - 6-22 K) 5+016/p

Problem 4

Consider the standard negative feedback loop with the nominal plant dynamics $P(s) = \frac{2}{s+1}$ and controller K(s) = 20.

Assume the "true" dynamics lie within the following multiplicative uncertainty set:

$$\mathcal{M} := \{ \widehat{P} = P(1 + W_u \Delta) : ||\Delta||_{\infty} < 1 \text{ and } \Delta \text{ stable} \}$$

Assume the uncertainty weight is $W_u(s) = \frac{2s+1}{s+10}$.

$$P = tf([1], [1 1])$$

P =

1 -----

Continuous-time transfer function.

bode(P)

$$K = tf([20], [1])$$

K =

Static gain.

```
Wu = tf([2 1], [1 10])
```

Wu =

2 s + 1

s + 10

Continuous-time transfer function.

bode(Wu)

(a) Provide an interpretation for the uncertainty described by the weight W_u .

A frequency dependent uncertainty that describes the modeling inacuracies of the system for frequencies increasing from

(b)

Is the nominal system stable?

closed_nom_stable = logical

L =

20

L = P * K

What are the gain and phase margins of the nominal loop L = PK?

```
s + 1
  Continuous-time transfer function.
  [Gm_L, Pm_L, Wcg_L, Wcp_L] = margin(L);
  disp(['Gain Marigin: ', num2str(Gm_L)])
  Gain Marigin: Inf
  disp(['Phas Marigin: ', num2str(Pm_L)])
  Phas Marigin: 92.8663
(c)
The robust stability condition for this type of multiplicative uncertainty is stated as:
K stabilizes all \hat{P} \in \mathcal{M} if and only if ||W_uT||_{\infty} \leq 1.
  T = feedback(L,1)
  T =
      20
    s + 21
  Continuous-time transfer function.
  WuT = Wu * T
  WuT =
      40 s + 20
    s^2 + 31 + 210
  Continuous-time transfer function.
  WuT_norm = norm(WuT, 'inf')
  WuT_norm = 1.2911
Does robustly stabilize all models in based on this condition?
```

No. Since $||W_uT||_{\infty} = 1.2911 > 1$, the robust stability condition is not satisfied.

(d)

Construct the uncertain model Phat

```
Delta = ultidyn('Delta', [1 1]);
Phat = P * (1 + Wu * Delta);
```

Generate a Bode magnitude plot with 10 samples drawn from the uncertainty set and draw the nominal response ${\cal P}$ on

the same plot.

```
pblm4_d = figure();
hold on
bodemag(Phat)
bodemag(P)
legend
```


(e)

Perform the robustness test with robstab

```
Lhat = Phat * K;
That = feedback(Lhat,1);
opts = robOptions('Display','on','Sensitivity','on');
[stabmarg, destabunc, report] = robstab(That, opts);
```

Computing peak... Percent completed: 100/100 System is not robustly stable for the modeled uncertainty.

- -- It can tolerate up to 77.3% of the modeled uncertainty.
- -- There is a destabilizing perturbation amounting to 77.5% of the modeled uncertainty.
- -- This perturbation causes an instability at the frequency 14.5 rad/seconds.
- -- Sensitivity with respect to each uncertain element is: 100% for Delta. Increasing Delta by 25% decreases the margin by 25%.

Does the result obtained with robstab agree with your conclusions in part (c)?

Yes. The system is not robustly stable becouse a destabilizing pertubation exists with 77.5% model uncertainty at frequency 14.5 rad/s.