

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/21

Paper 2 AS Level Structured Questions

October/November 2017

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)	units of <i>F</i> : kgms ⁻²	C1
	units of ρ : kg m ⁻³ and units of v : m s ⁻¹	C1
	units of K : kg m s ⁻² /[kg m ⁻³ (m s ⁻¹) ²] = m ²	A1
1(b)(i)	$K\rho = 1.5/33^2$	C1
	$= 1.38 \times 10^{-3}$	A1
	$F_{\rm D} = 1.38 \times 10^{-3} \times 25^2 \text{ or } F_{\rm D} / 1.5 = 25^2 / 33^2$	
	$F_{\rm D} = 0.86 \rm N$	
1(b)(ii)	a = (1.5 - 0.86) / (1.5 / 9.81) or $a = 9.81 - [0.86 / (1.5 / 9.81)]$	C1
	$a = 4.2 \mathrm{m s^{-2}}$	A1
1(c)	initial acceleration is g/9.81 (ms ⁻²)/acceleration of free fall	B1
	acceleration decreases	B1
	final acceleration is zero	B1

Question	Answer	Marks
2(a)	$30 \mathrm{ms^{-1}} = 108 \mathrm{kmh^{-1}}$	B1
	or $100 \mathrm{km} \mathrm{h}^{-1} = 28 \mathrm{m} \mathrm{s}^{-1}$	
	and so exceeds speed limit	
2(b)	acceleration = gradient or $\Delta v/(\Delta)t$ or $(v-u)/t$	C1
	e.g. acceleration = (24 – 20) / 12 [other points on graph line may be used]	A1
	$= 0.33 \mathrm{ms^{-2}}$	
2(c)	distance travelled by Q = $\frac{1}{2} \times 12 \times 30$ (= 180 m)	C1
	distance travelled by P = $\frac{1}{2} \times (20 + 24) \times 12 (= 264 \text{ m})$	C1
	distance between cars = 264 – 180	A1
	= 84 m	
2(d)	$30 - 24 = 6 \mathrm{ms^{-1}}$	C1
	'extra' time T = 84/6 (= 14 s)	
	or	
	180 + 30T = 264 + 24T	
	'extra' time $T = 84/6$ (= 14 s)	
	t = 12 + 14 = 26 s	A1

Question	Answer	Marks
3(a)(i)	in a stationary wave energy is not transferred or in a progressive wave energy is transferred	B1
3(a)(ii)	in a stationary wave (adjacent) particles are in phase or in a progressive wave (adjacent) particles are out of phase/have a phase difference/not in phase	B1
3(b)(i)	(position where) maximum amplitude	B1
3(b)(ii)	distance = 0.10 m	B1
3(b)(iii)	1. $\lambda = 0.60/1.5$ = 0.40 m	A1
	$2. v = f\lambda$	C1
	f = 340/0.40 = 850 Hz	A1
3(b)(iv)	$\lambda = 2 \times 0.60 \text{ or } \lambda = 3 \times 0.40 \text{ or } f = 850/3$	C1
	f = 280 (283) Hz	A1

Question	Answer	Marks
4(a)	(strain =) extension / <u>original</u> length	B1
4(b)(i)	$E = \sigma/\varepsilon$	C1
	maximum stress = $2.1 \times 10^{11} \times 4.0 \times 10^{-4}$	A1
	$= 8.4 \times 10^7 \text{Pa}$	
4(b)(ii)	σ = F/A	C1
	minimum area = $8.0 \times 10^3 / 8.4 \times 10^7$	A1
	$= 9.5 \times 10^{-5} \text{m}^2$	

Question	Answer	Marks
5(a)	$I_1 + I_2 = I_3$ [any subject]	B1
5(b)	$E_1 + E_3 = I_1R_1 + I_3R_3 + I_3R_4$ [any subject]	B1
5(c)	$E_1 - E_2 = I_1 R_1 - I_2 R_2$ [any subject]	B1

October/November

2017

Question	Answer	Marks
6(a)	force per unit positive charge	B1
6(b)(i)	$E_{\rm K} = \frac{1}{2}mv^2$	C1
	$2.4 \times 10^{-16} = \frac{1}{2} \times 1.7 \times 10^{-27} \times v^2$	A1
	$v = 5.3 \times 10^5 \mathrm{ms^{-1}}$	
6(b)(ii)	work done = 2.4×10^{-16} J	A1
6(b)(iii)	W = Fs	C1
	$F = 2.4 \times 10^{-16} / 15 \times 10^{-3}$	A1
	$= 1.6 \times 10^{-14} \mathrm{N}$	
6(b)(iv)	V = Fd/Q	C1
	$ \begin{array}{c} \text{or} \\ V = W/Q \end{array} $	
	or $E = V/d$ and $E = F/Q$	
	$V = (1.6 \times 10^{-14} \times 15 \times 10^{-3})/1.6 \times 10^{-19} \text{ or } 2.4 \times 10^{-16}/1.6 \times 10^{-19}$	C1
	= 1500 V	A1
6(b)(v)	straight line with positive gradient starting at the origin and going as far as $x = 15 \mathrm{mm}$	B1

© UCLES 2017 Page 6 of 8

Question	Answer	Marks
7(a)	(the ohm is) volt / ampere	B1
7(b)(i)	$R = \rho L/A$	C1
	ratio = $[\rho L/(\pi d^2/4)]/[0.028\rho \times 7.0L/\{\pi (14d)^2/4\}] = 1000$ or ratio = $14^2/(0.028 \times 7) = 1000$	A1
7(b)(ii)	same current (in connecting and filament wires) and the lamp/filament (wire) has greater resistance	B1
7(b)(iii)	$P = V^2/R$ or $P = VI$ or $P = I^2R$	C1
	(for filament wire) $R = 12^2/6.0$ or $R = 6.0/0.50^2$ or $R = 12/0.50$	C1
	(for filament wire) $R = 24\Omega$	A1
	(for connecting wire) $R = 24 / 1000$	
	$= 2.4 \times 10^{-2} \Omega$	
7(b)(iv)	resistance of connecting wire increases	B1
	current in circuit/lamp/filament (wire) decreases or potential difference across lamp/filament (wire) decreases	M1
	(so) resistance of lamp/filament (wire) decreases	A1

© UCLES 2017 Page 7 of 8

Question	Answer	Marks
8(a)	(quark structure is) up, down, down/udd	B1
	up/u has charge + ² /₃(e), down/d has charge – ¹ /₃(e)	C1
	$+\frac{2}{3}e^{-\frac{1}{3}e} = 0$	A1
8(b)	charge: p +1.6(0) × 10 ⁻¹⁹ (C) or +e $\frac{\beta^{-}}{\nu}$ -1.6(0) × 10 ⁻¹⁹ (C) or -e $\frac{\beta^{-}}{\nu}$ zero/0	B1
	mass: p 1.67×10^{-27} (kg)/1.7 × 10^{-27} (kg) $\frac{\beta^{-}}{\nu}$ 9.1(1) × 10^{-31} (kg) very small/zero/0	B1