What you should be doing

- Assignment 2- We will discuss in lab today some of the missing concepts for questions 1 and 2. Work on it today
- Read Chapter 2 Notes
- Assignment 3 due Friday. Start it today, finish Thursday
- Assignment 4 due November 6. Get started on it today

Exploratory Empirical Analyses

- Objective is to reduce the complexity (dimensionality) within a large data set
- What is a value commonly observed?
- How much variability is there among all the values?
- What are extreme cases that have been observed?

Exploring Data: What is the Objective?

- Summarizing some of the typical characteristics of the data
- How often are critical thresholds for specific applications reached?
 - Road temperature below freezing point
 - Hot, dry, windy conditions potentially leading to wildfires
- Approach to be used will depend on what is considered important to know to address the objective

So, it's really cold here

And, it's really cold in Peter Sinks this week

		10-31		10-30		10-29		10-28		10-27	
		Max/	Min/	Max/	Min/	Max/	Min/	Max/	Min/	Max/	Min
		Time	Time	Time	Time	Time	Time	Time	Time	Time	Time
PSINK	UTAH CLIMATE	-17	-22	13	-44	14	-38	13	-34	19	-28
Peter Sinks	CENTER	1:30	7:45	16:15	03:00	03:00	00:00	10:45	07:15	02:45	00:00
	8164 ft		1	1		1					

Why?

- Record situations provide cases to understand physical processes
- What makes it unusual?
- Why here/there?
- Why now/recently/before?
- What other unusual things are happening at the same time?
- Shift from exploratory to inferential analysis
- Public perception of extremes: is global warming over?

Peter Sinks

Bottom vs. Top of Peter Sinks

3000 feet in horizontal distance 270 feet in vertical distance

1999: Peter Sinks Experiment

What did we learn?

Fig. 4. Time series of (a) air temperature from towers T1-T5 on the east sidewall, (b) wind speed at tower T5 near the top of the east sidewall, and (c) net radiation Q^* and sensible heat flux Q_H at site EB1 on the basin floor. Experimental periods are indicated.

FIG. 6. Schematic diagram of the buildup of the CAP over the basin center during the evening transition period. The CAP is composed of two sublayers, the CPSL and the CIL. The black dots indicate the top of the CPSL at each sounding time. Dashed lines are potential temperature profiles, where θ_i is the well-mixed late-afternoon sounding and θ_f is the sunrise sounding.

What else is happening

- Wildfires in CA
- Windstorm in AK
- Large-scale weather features

500mb Geopotential Height (m) Composite Mean 10/25/19 10/26/19 10 /27/19 10 /28/19 10 /29/19

Great Salt Lake Level

Great Salt Lake Level

Lake Level Histograms

Empirical Cumulative Distribution Function Lake Level

Boxplots

Time Series

Transforming Data

Anomalies: departure from long-term mean

Transforming Data

 Anomaly relative to arbitrary definition of climate normal (1981-2010) mean

Transforming data

Removing climatological seasonal cycle

Transforming data

- Removing climatological seasonal cycle
- Computing standardized (nondimensional) anomalies

CDF of Monthly Standardized Anomalies

Transforming Data

 Low pass filter: keep slow variations, remove fast ones

Filter characteristics

Figure 2.10. Example of original and median smoother (red line) and running mean smoother (blue line).

What you should be doing

- Assignment 2- We will discuss in lab today some of the missing concepts for questions 1 and 2. Work on it today
- Read Chapter 2 Notes
- Assignment 3 due Friday. Start it today, finish Thursday
- Assignment 4 due November 6. Get started on it today