CODE

8.4.1.9 Combining the results of a gravity load analysis with the results of a lateral load analysis shall be permitted.

COMMENTARY

Fig. R8.4.1.8—Examples of the portion of slab to be included with the beam under 8.4.1.8.

R8.4.2 Factored moment

8.4.2 Factored moment

8.4.2.1 For slabs built integrally with supports, M_u at the support shall be permitted to be calculated at the face of support.

8.4.2.2 Factored slab moment resisted by the column

- **8.4.2.2.1** If gravity, wind, earthquake, or other loads cause a transfer of moment between the slab and column, a fraction of M_{sc} , the factored slab moment resisted by the column at a joint, shall be transferred by flexure in accordance with 8.4.2.2.2 through 8.4.2.2.5.
- **8.4.2.2.2** The fraction of factored slab moment resisted by the column, $\gamma_f M_{sc}$, shall be assumed to be transferred by flexure, where γ_f shall be calculated by:

$$\gamma_f = \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{b_1}{b_2}}}$$
 (8.4.2.2.2)

8.4.2.2.3 The effective slab width b_{slab} for resisting $\gamma_f M_{sc}$ shall be the width of column or capital plus a distance on each side in accordance with Table 8.4.2.2.3.

R8.4.2.2 Factored slab moment resisted by the column

R8.4.2.2.1 This section is concerned primarily with slab systems without beams.

R8.4.2.2.3 Unless measures are taken to resist the torsional and shear stresses, all reinforcement resisting that part of the moment to be transferred to the column by flexure should

