

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТІ	ЕТ «Информатика и системы управления»	
КАФЕПРА	«Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа № 2 По курсу «Моделирование»

Тема Функции распределения и функции плотности распределения случайных величин

Студент Громова В.П. (вариант 6)

Группа ИУ7-71Б

Преподаватель Рудаков И.В.

Москва. 2020 г.

Задание лабораторной работы

Реализовать программу для построения графиков функции распределения и функции плотности распределения для следующих распределений:

- равномерное распределение;
- нормальное распределение.

Теоретическая часть

Равномерное распределение.

Случайная величина имеет непрерывное равномерное распределение на отрезке [a, b], где а и b ϵ R, если её функция плотности $f_X(x)$ имеет вид:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, x \in [a, b] \\ 0, \text{иначе} \end{cases}$$
 (1)

Интегрируя (1), получаем функцию распределения:

$$F_X(x) = \begin{cases} 0, x < a \\ \frac{x - a}{b - a}, a \le x < b \\ 1, x > b \end{cases}$$

Нормальное распределение.

Случайная величина имеет нормальное распределение с параметрами m и σ^2 , где m — математическое ожидание и σ^2 — дисперсия, если её функция плотности $f_X(x)$ имеет вид:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

Функция распределения:

$$F_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(x-m)^2}{2\sigma^2}} dx$$

Результаты работы

На рисунках 1 и 2 представлены результаты работы программы для равномерного и нормального распределений соответственно.

Рисунок 1. Равномерное распределение при заданных a = 3, b = 7

Рисунок 2. Нормальное распределение при заданных m = 7, $\sigma^2 = 1.21$