PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-284103

(43) Date of publication of application: 15.10.1999

(51)Int.Ci.

H01L 23/28

(21)Application number : **10-086990**

(71)Applicant: FUJI ELECTRIC CO LTD

(22) Date of filing:

31.03.1998

(72)Inventor: YONEZAWA EIICHI

(54) RESIN MOLDED SEMICONDUCTOR DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To form an insulation layer having a uniform thickness between a lead frame and heat sink in a resin molded semiconductor device having the heat sink.

SOLUTION: A mold resin 15 contg. e.g. spherical Al nitride insulator grains 18 of equal diameters is injected between a lead frame with a semiconductor chip 11 bonded thereto and a heat sink 13 so as to keep the space uniformly between the heat sink 13 and lead frame 12, and either or each of the heat sink 13 and lead frame 12 may be recessed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(川)特許出顧公開發号

特開平11-284103

(43)公開日 平成11年(1999)10月15日

(51) Int.CL⁴ H 0 1 L 23/28

識別配号

ΡI

HOIL 23/28

В

審査請求 京請求 菌泉項の数6 OL (全 6 页)

(21)出願番号

(22)出窗日

特顯平10-86990

平成10年(1998) 3月31日

(71)出廢人 000005234

含土电极株式会社

神奈川県川崎市川崎区田辺新田1巻1号

(72) 発明者 米澤 栄一

神奈川県川崎市川崎区田辺新田1番1号

當土電路採式会社内

(74)代理人 弁理士 篠郁 正治

(54) 【発明の名称】 樹脂モールド半導体装置

(57)【要約】

【課題】ヒートシンクを有する樹脂モールド半導体装置 において、リードフレームとヒートシンクとの間に均一 な厚さの絶縁層を形成する。

【解決手段】 半導体チップ11が接合されたリードフレーム12とヒートシンク13との間に、例えば直径の等しい球状の窒化アルミニウムからなる絶縁体粒子18を含んだモールド樹脂15を注入して、ヒートシンク13とリードフレーム12との間隔が、均一に保たれるようにする。ヒートシンク13とリードフレーム12とのいずれか、または両方に쫂みを設けても良い。

11 辛導体チップ

18 フィラー

12 リードフレーム

18 枪探休牧子

18 ヒートシンク

15 モールド模胎

100 紀代日

特闘平11-284103

【特許請求の範囲】

【請求項1】半導体素子と、その半導体素子を接合する ためのチップ領域を有するリードフレームと、放熱機能 を有するヒートシンクとを備えた樹脂モールド半導体装 置において、リードフレームのチップ領域とビートシン クとの間を所定間隔に保つための所定部の寸法が同一な 複数の絶縁体位子を挟むことを特徴とする樹脂モールド 半導体裝置。

1

【詰求項2】リードフレームのチップ領域とヒートシン クとの対向する面のいずれか一方に、 **絶縁体粒子の**所定 10 部の寸法より浅い窪みを有することを特徴とする請求項 1記載の樹脂モールド半導体装置。

【請求項3】リードフレームのチップ領域とヒートシン クとの対向する面の両方に

・絶縁体粒子の所定部の寸法 より浅い窪みを有することを特徴とする請求項1記載の 御脂モールド半導体装置。

【請求項4】絶縁体粒子がほぼ同一直径の球状、回転権 円体状または円筒状であることを特徴とする請求項しな いし3のいずれかに記載の樹脂モールド半導体装置。

【語求項5】絶縁体粒子が高熱伝導セラミクスからなる ことを特徴とする請求項1ないし4のいずれかに記載の 樹脂モールド半導体装置。

【請求項6】絶縁体粒子が窒化アルミニウムあるいは窒 化ケイ素からなることを特徴とする請求項5記載の樹脂 モールド半導体装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体チップを接合し たリードフレームと絶縁されたヒートシンクを有する街 脂モールド半導体装置に関する。

[0002]

【従来の技術】パワーMOSFET、IGBTなどの大 きな電流を扱うパワー半導体素子はインバータ。サーボ モータを始め、各種産業機器、家庭用電気機器などに数 多く利用されている。これらパワー半導体素子に対する 要求は機器の多機能化、高密度化に伴ってますます高度 になり、特に小型化やインテリジェント化が造展してい る.

【0003】パワーMOSFET、IGBTなどの半遮 体装置では、半導体素子を安定に動作させるため、半導 40 体素子で発生した熱を効率良く放熱することが必要とな る。そのため、放熱用のヒートシンクを設けて、半導体 素子で発生した熱を効率良く移動させることを可能にし ている。特に、多数の半導体素子を一体に組み立てたい わゆる半導体モジュールでは、半導体素子とヒートシン クとの間を絶嫌しなければならない場合がある。

【0004】比較的大型の半導体モジュールではセラミ ック墓板を用いて、半導体素子と底面に設けたヒートシ ンクとの間を絶縁し、かつ伝熱機能をもたせることもあ

導体モジュールでは全体を樹脂モールドする際の樹脂 で、半導体素子とヒートシンクとの間の絶縁と伝熱とを 兼ねることが多い。

2

【0005】図6は、そのような半導体モジュールの例 の断面図である。62はリードフレームであり、その上 に半導体チップ61がはんだ61 aで電気的に接合され ている。半導体チップ62が接合されたリードフレーム 62のチョブ領域62aと、ヒートシンク63とはモー ルド樹脂65と同じ薄い絶縁層65aで絶縁されてい

[0006]

【発明が解決しようとする課題】上記の構成の樹脂モー ルド半導体装置では絶縁層658の構成がポイントとな る。絶縁層65aの第一の役割はまずリードフレーム6 2とヒートシング63の間の絶縁を確保することであ る。この絶縁耐力は樹脂層の厚さにほぼ比例する。たと えば600V耐圧の場合、実用的にはり、1mm以上の 厚さが必要とされている。

【0007】役割の第二は、半導体チップ61での発熱 20 をヒートシンク63を通じて外部に放熱する際の熱伝導 層となることである。一般に放熱の性能は放熱の困難さ を示す熱抵抗で表わされる。この熱抵抗は放熱材料の厚 さに比例し、熱伝導率と放熱面論に反比例する。過當、 樹脂材料の熱圧導率は金属に比べて2~3ヶ夕小さい (金属、セラミクス:数十W/m.K以上に対し、樹脂:0. 数W/m.K程度)ので、半導体チップ61-リードフレー ム62-総縁層65a-ヒートシンク63-外気の順で 伝熱する図6の放熱経路では、絶縁層65aの熱抵抗が 圧倒的に大きく、放熱性能は絶縁層65aの熱抵抗に依 30 存すると言っても過言ではない。

【0008】このため、モールド勧脂65にはガラス系 やセラミック系のフィラーを数十%混入して熱圧導率を 上げるのが普通である。また、絶縁層65aの厚さは絶 縁性能を損なわない範囲で、できるだけ薄くする必要が あり、0.2~0、3 mmあるいはそれ以下の厚さが求 められる。また、この絶縁層の厚さの精度が悪いと絶縁 性能、熱抵抗のばらつきが大きくなり、製品仕様を満た すことができなくなるので、厚さの領度確保が重要であ

【0009】リードフレーム62の形状は、半導体装置 の機能にもよるが、複雑な形状を有しているため一般的 にエッチングや打ち抜きによって形成され、半導体素子 71を搭載するチップ領域62aに比べ端子部分62ヵ ではその幅が非常に狭いことが多い。その結果、樹脂封 止用の金型にヒートシンク63と一定のスキマを確保し つつリードフレーム62をセットするが、 リードフレー ム62は蟾子部分62トのみが支えられた不安定な状態 で金型に固定されるため、リードフレーム62自身の自 重でたわんでしまい、勧脂封止の際、リードフレーム6 るが、セラミック基板はコストが高いことから小型の半 50 2のチップ領域62aとヒートシンク63との間を一定

のスキマで保つことは非常に困難であり、時にはヒート シンク63とが接触してしまうことがある。

【0010】仮に、リードフレーム62とヒートシンク 63との間のスキマを一定に保てたとしても、モールド 樹脂65を流し込んだ際に、モールド樹脂65の流れに よりリードフレーム62が変形して、変形した一部がヒ ートシンク63と接触しないまでも、耐圧が低下すると いうこともある。図7は、リードフレームとヒートシン **クとの間のスキマを一定に保つための工夫をした。樹脂** モールド半導体装置の断面図である。

【0011】半導体チップ?1をそれぞれ接合したリー ドフレーム72の適当な位置に、巾の狭いテープ78が 巻回されている。この状態でヒートシンク73の上に押 し付けるとテープ78の厚さ分の間陰が作られる。テー プ78の巻回方向に平行に樹脂を流し込むことにより、 間隙部にも樹脂が充填され絶縁層75aが形成される。

【0012】しかし、この構造では、テープ78の趣面 でのモールド樹脂75の密着姓に問題があり、モールド 樹脂?5が剥削しやすい。また、テープ78の近傍にボ 強度は誘電率のほぼ逆比で高くなり、絶縁破壊を生じや すくなるという問題があった。このように、リードフレ ームとヒートシンクとの間を狭い一定の間隔に保ちなが ち、樹脂封止することが困難であり、この問題に鑑み本 発明の目的は、リードフレームとヒートシンクとの間を 均一な所定間隔に保つことができ、しかも製造の容易な 樹脂モールド半導体装置を提供することにある。

[0013]

【課題を解決するための手段】上記の問題を解決するた め本発明は、半導体素子と、その半導体素子を接合する 30 る。モールド樹脂15は金型のキャビティ105内で、 ためのチップ領域を有するリードフレームと、放熱機能 を有するヒートシンクとを備えた勧脂モールド半導体装 置において、リードフレームのチップ領域とヒートシン クとの間を所定間隔に保つための所定部の寸法が同一な 複数の絶縁体粒子を挟むものとする。

【0014】絶縁体粒子の所定部とは、例えば球、回転 精円体や円筒の直径、偏平な円板の厚さ等安定に静止し た状態での高さになる部分である。そのようにすれば、 絶縁体粒子の同一な寸法によって、リードフレームのチ ップ領域とヒートシンクとの間を所定間隔に保つことが 40 できる。リードフレームのチップ領域とヒートシンクと の対向する面のいずれか一方に、または両方に、絶縁体 粒子の所定部の寸法より浅い窪みを有するものとするこ とができる。

【0015】そのようにすれば、絶縁体粒子と窪みの深 さとの差によって、リードフレームとヒートシンクとの 間のすき間の厚さを決定することができる。絶縁体粒子 がほぼ同一直径の球状、回転楕円体状または円筒状であ ることが良い。そのようにすれば、二つ以上の絶縁体粒 子が重なる確率は極めて低い。

【0016】絶縁体粒子体が窒化アルミニウムあるいは 窒化ケイ素等の高熱伝導セラミクスからなるものとすれ は、熱放散に有利である。

[0017]

【発明の実施の形態】以下図面を参照しながら本発明の 実施の形態を説明する。

[実施例1] 図1は、本発明第一の実施例の制脂モール ド半導体装置の断面図である。 ヒートシンク13上に、 窒化アルミニウムからなる直径の等しい球状の絶縁体粒 10 子18を含んだ樹脂15を介して半導体チップ11が接 台されたリードフレーム12が配置されている。言い後 えると、リードフレーム12とヒートシンク13との間 は、絶縁体粒子18によって平行に保たれ、その陰間は モールド樹脂15によって充填されて絶縁層15aとな っている。勿論モールド樹脂15は熱伝導を増大させる ためのガラス質のフィラー16を含んでいる。

【0018】図2は、この樹脂モールド半導体装置のモ ールド工程の断面図である。まず設定する空隙厚と同一 径の絶縁体粒子18をモールド樹脂15中に浪せて置 イドを生じ易いが、ボイドが生じると、ボイド内の電界 20 く。通常、モールド樹脂15には熱圧導率の改善や増置 材として例えば酸化けい素のフィラー16が混ぜられて いるが、絶縁体粒子18の直径はこれらのフィラー16 より大きくなくてはならない。上金型101と下金型1 02からなる金型に、ヒートシンク13と、半導体チッ プ11をはんだ11aで接合したリードフレーム12と をセットする。モールド樹脂15の充填前には、リード フレーム12とヒートシング13とのすき間19は設定 値より若干大きく開けておく。この状態で絶縁体粒子1 8を含んだモールド樹脂15を充填口104から注型す すき間19と半導体チップ11の上側とに別れて流動す る。モールド樹脂がすき間19内に充填されて、まだ固 化しないうちに、押さえビン106を下げてリードフレ ーム12を押し下ける。絶縁体粒子18は、直径が同一 で、かつ他のフィラー16の大きさより大きいため、リ ードフレーム12とヒートシンク13とのすき間19は 球形粒子18の直径に等しく設定される。その後、押さ えピン106を引き抜き、モールド樹脂15を硬化させ る.

> 【0019】とのような方法で、リードフレーム12と ヒートシンク13との間の距離が精度良く保たれるの で、厚さを設定する別手段は何ら必要なく、モールド樹 脂15を充填するだけで、均一な薄い絶縁層15aをも つ樹脂モールド半導体装置とすることができる。本実施 例では、絶縁体粒子18の直径は0.15mmとした が、これは半導体チップ11の耐圧と、熱伝導の設計値・ によって、適当な大きさのものを選択すればよい。放熱 の点からは小さいものが良いが、耐圧を考えると、大き い方が良い。これらの兼ね合いから、絶縁層の厚さは、 50 絶縁体粒子18の直径によって自由に調節できる。

とし 磨となる。 L-M 【0.0.2.6

【0020】本実施例では、絶縁体粒子18を球形としたが、かならずしも球形である必要はなく、二つ以上が重なる確率の小さい形状であれば良い。そのような形状としては、回転指円体状、または長さが短い円筒状や多角形筒状がある。 夏に、面取りした、四面体、立方体、他の正多面体などでもよい。 密度が小さければ、 偏平な板状でも良いかも知れない。

【0021】また絶縁体並子18の材料は、熱伝導率の 大きい材料であれば放熱効率向上のためによく、本実施 例の変化アルミニウムの他には塩化珪素等が良い。

[実施例2] 図3は、本発明第二の実施例の樹脂モール ド半導体装置の部分断面図である。この例ではヒートシンク33に、絶縁体粒子38の直径より深さの浅い半球状の経み40を設けたものである。すき間39の設定値は、絶縁体粒子38の直径と確み40との深さの差で決められる。

【0022】この場合はヒートシンク33の各半球状の 窪み40に窒化アルミニウムからなる球形の総線体粒子 38を入れ、押さえピンでリードフレーム32を押し て、すき聞39の厚さを設定値にした後、モールド樹脂 20 35を充填する。充填するモールド樹脂35は、通常の フィラー36のみを含んでいれば良い。モールド樹脂3 5は絶縁体粒子38に接しながら流動し、すき間39内 に充填され、均一な絶縁層となる。

【0023】との実施例では、絶縁体粒子38の数は空隙39の厚さを決めるに必要な数、すなわちリードフレーム32の一つの島あたり数個程度で良いためコスト的に有利になる。また、実施例1に比べて、絶縁体粒子38の大きさより狭い隙間の設定が容易にできる。しかも絶縁体粒子38の大きさに限定されず、自由な数値を取 30りろる利点がある。

【0024】場合によっては、リードフレーム32側に 絶縁体粒子38の直径より浅い窪み40を設けてもよい。

[実施例3] 図4は、本発明第三の実施例の衛脂モール ド半導体装置の断面図である。この例では、設定するす き間49の厚さより大きな直径の粒子を用いるのは実施 例2と同じであるが、ヒートシンク43に設けられた窪 み50の形状が半球状ではない。

【0025】すなわち、ヒートシンク43に、絶縁体粒 46子48を入れるための複数の一定深さの四角形の窓み5 (が設けられている。四角形の大きさは絶縁粒子48の直径よりかなり大きいものとする。この場合もヒートシンク43の各径み50に、絶縁体粒子48を入れ、押えピンでリードフレーム42を押してリードフレーム42とヒートシンク43との間のすき間49の厚さを設定値にした後、フィラー46を含んだ制脂45を充填する。すき間49の設定値は絶縁体粒子48の直径と径み50の深さの差で決まる。モールド制脂45は絶縁体粒子48に接しながら流動し、すき間49内に充填されて絶縁 50

【0026】実施例2では程み40に絶縁体粒子38を入れ、窪みでない元の表面部分33aには絶縁体粒子38が乗ちないようにするのに、注意が必要であるが、この実施例では、窪み50が広いので、窪み50に球状粒子48を入れるのは容易である。そして、窪みでない元の表面部分43aは狭いので、その上に球状粒子48が最る確率は小さく、偶然乗ったとしても、直ぐ両側の窪

【0027】この場合も、リードフレーム42側に絶縁体位子48の直径より浅い程みを設けてもよい。

み50に落ちる。従って、リードフレーム42とヒート

10 シング43とのすき間49は一定に保たれる。

[実施例4] 図5は、本発明第四の実施例の樹脂モールド半導体装置の部分断面図である。ヒートシンク53とリードフレーム52の双方に窪み60aと60bとを設けた例である。ここではヒートシンク53側の窪み60aはほぼ半球状とし、リードフレーム52側の窪み60bはそれより浅く形成している。

【0028】・絶縁体粒子58は最初ヒートシンク53側の程み60aに置き位置を固定される。次にリードフレーム52の種み60bを絶縁体粒子58に合わせて置いた後、モールド樹脂55を充填する。この例は、これまでの実施例に比べて、すき間59の厚さの設定だけでなく、ヒートシンク53とリードフレーム52の相対的位置決めの機能も果たすことができる。

【0029】この場合もまた、絶縁体粒子58の大きさより狭いすき間59の設定が容易にできる、しかも絶縁体粒子58の大きさに限定されず、自由な数値を取りうる利点がある。更に、この場合についても、ヒートシンク53とリードフレーム52の相対的位置決めの機能は失うが、絶縁体粒子の直径より大きな径みを設け、絶縁体粒子を入れやすくした例も考えられる。

[0030]

【発明の効果】以上説明したように本発明によれば、樹脂モールド半導体装置において、リードフレームのチップ領域とヒートシンクとの間に例えば直径が均一な球状の絶縁体粒子を挟むことによって、リードフレームのチップ領域とヒートシンクとの間が均一な所定間隔に保たれた樹脂モールド半導体装置とすることができ、しかも製造が容易である。

【0031】特に、窒化アルミニウムあるいは窒化ケイ 素等の高熱伝導セラミクスを使用することにより、通常 のフィラーのみ充塡した場合に比べて樹脂層の熱伝導率 を向上させることができる。

【図面の簡単な説明】

【図1】本発明実施例1の樹脂モールド半導体装置の断面図

【図2】 本発明実施例1の樹脂モールド半導体装置の樹脂モールド工程における断面図

【図3】本発明実施例2の樹脂モールド半導体装置の断

(5) 特開平11-284103 7 図面 *16.36,46,56 フィラー 【図4】本発明実施例3の樹脂モールド半導体装置の断 18.38,48,58 絕緣体粒子 19.39,49,59 すき間 【図5】本発明実施例4の樹脂モールド半導体装置の断 33a, 43a 元の衰面部分 40.50、60a、60b 窪み 【図6】従来の樹脂モールド半導体装置の断面図 62a チップ領域 【図7】従来の別の樹脂モールド半導体装置の断面図 62b 揣子部分 【符号の説明】 78 テーブ 11.61,71 半導体チップ 101 上金型 11a, 61a ハンダ 102 下金型 12. 32, 42, 52. 62, 72 104 リードフレーム 樹脂注入口 13. 33, 43, 53. 63, 73 ヒートシンク 105 キャビティ 15. 35, 45, 55. 65, 75 106 押さえ棒 15a, 65a, 75a 絶縁層 [図1] [図2] o 12 19 11 半導体チップ 10 フィザー 18 格城体粒子 [図4] [図3] [図7] 33

(6) 特闘平11-284103

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

OTHER: