

Learning Majority rule and non-compensentory sorting

Mustapha AJEGHRIR | Asmae KHALD | Nouamane TAZI

CentraleSupélec – Département Informatique

1^{er} février 2022

Formulation of MR sort : no noise

$$\label{eq:maximize} \begin{split} \text{Maximize} & & \alpha \\ \text{subject to} & \sum_{i \in N} c_{ij}^h + x_j + \varepsilon = \lambda \\ & \sum_{i \in N} c_{ij}^{h-1} = \lambda + y_j \\ & & \alpha \leq x_j, \alpha \leq y_j \\ & & c_{ij}^l \leq w_i \\ & & c_{ij}^l \leq \delta_{ij}^l \\ & & c_{ij}^l \geq \delta_{ij}^l - 1 + w_i \\ & & & M \delta_{ij}^l + \varepsilon \geq g_i(a_j) - b_i^l \\ & & & M (\delta_{ij}^l - 1) \leq g_i(a_j) - b_i^l \\ & & \sum_{i \in N} w_i = 1, \quad \lambda \in [0.5, 1] \\ & & & w_i \in [0, 1] \\ & & & c_{ij}^l \in [0, 1], \delta_{ij}^l \in \{0, 1\} \\ & & x_j, y_j \in \mathbb{R} \\ & & \alpha \in \mathbb{R} \end{split}$$

$$\forall a_j \in C_h, \forall h \in K_{no_end}$$

$$\forall a_j \in C_h, \forall h \in \{2, \dots, k\}$$

$$\forall a_j \in C^*$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall a_i \in C^*$$

Majority rule sorting

Formulation of MR sort : noise

$$\begin{aligned} &\textit{Maximize} \quad \sum_{a_j \in C^*} \gamma_j \\ &\textit{subject to} \sum_{i \in N} c_{ij}^h + \varepsilon \leq \lambda + M(1 - \gamma_j) \\ &\sum_{i \in N} c_{ij}^{h-1} \geq \lambda - M(1 - \gamma_i) \\ &c_{ij}^l \leq w_i \\ &c_{ij}^l \leq \delta_{ij}^l \\ &c_{ij}^l \geq \delta_{ij}^l - 1 + w_i \\ &M\delta_{ij}^l + \varepsilon \geq g_i(a_j) - b_i^l \\ &M(\delta_{ij}^l - 1) \leq g_i(a_j) - b_i^l \\ &\delta_i^{h+1} \geq b_i^h \\ &\sum_{i \in N} w_i = 1, \quad \lambda \in [0.5, 1] \\ &w_i \in [0, 1] \\ &c_{ij}^l \in [0, 1], \delta_{ij}^l \in \{0, 1\} \\ &x_j, y_i \in \mathbb{R} \end{aligned}$$

$$\forall a_j \in C_h, \forall h \in K_{no_end}$$

$$\forall a_j \in C_h, \forall h \in \{2, \dots, k\}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall a_j \in C_h, \forall h \in K, \forall l \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall h \in K_{no_no_end}$$

$$\forall i \in N, \forall h \in K, \forall h \in K, \forall h \in \{h, h-1\} \cap K_{no_end}$$

$$\forall i \in N, \forall h \in K_{no_no_end}$$

$$\forall i \in N, \forall h \in K, \forall h \in K, \forall h \in K, \forall h \in K, \forall h \in K_{no_no_end}$$

$$\forall i \in N, \forall h \in K_{no_no_end}$$

$$\forall i \in N, \forall h \in K, \forall h \in K, \forall h \in K, \forall h \in K, \forall h \in K_{no_no_end}$$

$$\forall i \in N, \forall h \in K_{no_no_end}$$

Data generation method

alternative	criterion 0	criterion 1	criterion 2	criterion 3	class
0	8.02	14.22	9.84	9.03	0
1	8.96	10.78	11.07	9.03	0
2	12.61	10.76	15.98	10.54	2
3	10.13	10.77	9.93	8.92	1

Figure - Example of instances generated

Results: no noise

Generalisation	Predicted Class 0	Predicted Class 1	Predicted Class 2
True Class 0	408	0	0
True Class 1	0	462	0
True Class 2	0	8	122
Reconstruction	Predicted Class 0	Predicted Class 1	Predicted Class 2
1 1000113ti dottori	i redicted Class 0	Fredicted Class 1	Fredicted Class 2
True Class 0	429	0	0
		0 465	0 0

Figure – Confusion matrix for the configuration (n = 3, p = 2, $n_{generated} = 1000$). Inference time : 40s

Results: no noise

Figure – The MR-sort rules are first being inferred over a training split then tested over a testing split. The two splits are being generated by the same rules with only 2 classes (p=1), results are the mean of 5 random runs. In the right we can see the effect of varying the number of elements in the training split $n_{generated}$, in the left we can see the effect of varying the number of criteria

Results: no noise

Figure – Duration of the MR-sort inference over the training split. The split is being generated by the same rules with only 2 classes (p=1), results are the mean of 5 random runs. In the right we can see the effect of varying the number of elements in the training split $n_{generated}$, in the left we can see the effect of varying the number of criteria

Results: noise

Generalisation	Predicted Class 0	Predicted Class 1	Predicted Class 2
True Class 0	80	2	0
True Class 1	3	95	2
True Class 2	0	8	18
Reconstruction	Predicted Class 0	Predicted Class 1	Predicted Class 2
True Class 0	84	3	0
True Class 1	1	90	2
True Class 2	0	1	20

Figure – Confusion matrix for the configuration (n = 3, p = 2, $n_{generated} = 200$, N = 0.1). Inference time : 50s, real errors 12

Reconstruction rate = 97%

SAT Formulation of NCS

$$\begin{split} & \Phi_{\alpha}^{C} = \phi_{\alpha}^{C1} \wedge \phi_{\alpha}^{C2} \wedge \phi_{\alpha}^{C3} \wedge \phi_{\alpha}^{C4} \wedge \phi_{\alpha}^{C5} \wedge \phi_{\alpha}^{C6} \\ & \phi_{\alpha}^{C1} = \bigwedge_{i \in \mathscr{N}, k \in [2, p]} \bigwedge_{x' \succsim_{i} x \in X^{*}} \left(a_{i,k,X'} \vee \neg a_{i,k,X} \right) \\ & \phi_{\alpha}^{C2} = \bigwedge_{i \in \mathscr{N}, k < k' \in [2, p], x \in X^{*}} \left(a_{i,k,X} \vee \neg a_{i,k',X} \right) \\ & \phi_{\alpha}^{C3} = \bigwedge_{B \subset B'} \subseteq \mathscr{N}, k \in [2, p] \quad \left(t_{B',k} \vee \neg t_{B,k} \right) \\ & \phi_{\alpha}^{C4} = \bigwedge_{B \subseteq \mathscr{N}, k < k' \in [2, p]} \left(t_{B,k} \vee \neg t_{B,k'} \right) \\ & \phi_{\alpha}^{C5} = \bigwedge_{B \subseteq \mathscr{N}, k \in [2, p]} \bigwedge_{x \in \alpha^{-1} \left(C^{k-1} \right)} \quad \left(\bigvee_{i \in B} \neg a_{i,k,X} \vee \neg t_{B,k} \right) \\ & \phi_{\alpha}^{C6} = \bigwedge_{B \subseteq \mathscr{N}, k \in [2, p]} \bigwedge_{x \in \alpha^{-1} \left(C^{k} \right)} \quad \left(\bigvee_{i \in B} a_{i,k,X} \vee t_{\mathscr{N} \setminus B,k} \right) \end{split}$$

Max-SAT Formulation of NCS

$$\Phi_{\alpha}^{\widetilde{CS}} = \bigwedge_{B \subseteq \mathscr{N}, k \in [2.p]} \bigwedge_{x \in \alpha^{-1} (C^{k-1})} (\bigvee_{i \in B} \neg a_{i,k,X} \lor \neg t_{B,k} \lor \neg z_X)$$

$$\phi_{\alpha}^{\widetilde{C6}} = \bigwedge_{B \subseteq \mathscr{N}, k \in [2.p]} \bigwedge_{x \in \alpha^{-1} (C^k)} (\bigvee_{i \in B} a_{i,k,X} \lor t_{\mathscr{N} \setminus B,k} \lor \neg z_X)$$

$$\phi_{\alpha}^{\text{goal}} = \bigwedge_{x \in \mathbb{X}^*} z_x$$

We added new variable z

' z ' variables, indexed by an alternative x, represent the set of alternatives properly classified by the inferred model, with the following semantic : $z_x = 1 \Leftrightarrow \alpha^{-1}(x) = NCS_{\omega}(x)$ i.e. the alternative x is properly classified.

Non compensentary sorting

Results: duration

Non compensentary sorting

Results: performance

Results: confusion matrix

Generalisation	Predicted Class 0	Predicted Class 1	Predicted Class 2
True Class 0	330	2	0
True Class 1	0	333	1
True Class 2	0	0	334

Figure – Confusion matrix for the configuration 'coalitions' : [[0], [1], [2]], 'criteria' : [0, 1, 2], μ : 0.1,' n_ground_truth' : 1000,' $n_learning_set'$: 1024,' profiles' : array([[3,1,10],[6,12,16]]) restoration rate = 100%

f1 score, accuracy, recall, precision = 1

Max-SAT Formulation of NCS (single-peaked)

To solve the problem for single-peaked, we only had to change this equation.

$$\phi_{\alpha}^{\textit{C1}} = \bigwedge_{i \in \mathscr{N}, k \in [2, p]} \bigwedge_{x' \succsim_{i} x'' \succsim_{i} x \in X^{*}} \left(a_{i, k, X''} \lor \neg a_{i, k, X} \lor \neg a_{i, k, X'} \right)$$

Conclusion

Our experimental results show that the duration of computation evolve exponentially with respect to the number of criteria for MR-Sort, linearly for Max-Sat, and linearly with respect to the size of the learning set. And the generalization index increases with the size of the learning set and decreases with the addition of number of criteria, all while restoring at least 1-x of the data with x the noise percentage.

