CSCE 326 Assignment 3

Due: March 29, 2019 by class time on BeachBoard

Goals

- 1- To practice basic kernel programming
- 2- To enhance the understanding of virtual memory

Details

Implement a system call int readAddr(void *p). Given a user space virtual address p, return the information about this address.

- 1- Is p already allocated/valid or not?
- 2- If yes, what is the start and end addresses of the virtual memory area containing p.
- 3- Is that virtual memory area readable, writable, and/or executable?
- 4- As shown below, you should iterate through every address in the user address space at an interval of PAGE SIZE * 1024. Finally, print the number of valid/invalid addresses.

You should make use of the mm field in task_struct. Specifically, mm is of type mm_struct, which contains a field mmap pointing to a list of nodes, each describing a virtual memory area (VMA) vm_area_struct. A VMA describes a range of virtual address space and the allowed access operations (VM_READ, VM_WRITE, VM_EXEC, etc.) in user space.

Tips

To obtain PAGE SIZE and TASK SIZE, please refer to the code below

Submission

Your submission should include the code (the kernel code modification should be submitted as a kernel patch), a readme file describing your design, how to compile / use your code and the contribution in the case of group programming, and a report which consists of the following parts:

- What are the APIs used to allocate memory in Linux user space, and when to use which.
- When an address p is dereferenced, you may encounter SIGSEGV. Describe how the system recognizes p is an invalid address and triggers a SIGSEGV. Hint: your answer should involve TLB, page table, and VMA.
- What information is saved at /proc/\$pid/maps?