Discrete:

$$p(k) = P(X = k)$$

E(X) Var(X)

Bernoulli Bern(p)

$$p(k) = \begin{cases} p & k = 1\\ (1-p) & k = 0 \end{cases}$$

$$p p(1-p)$$

Binomial Bin(n, p)

$$p(k) = (n \ k)p^k(1-p)^{n-k},$$

 $k = 0, \dots, n$

$$np \qquad np(1-p)$$

Poisson $Poi(\lambda)$

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, \dots$$

$$\lambda$$
 λ

Continuous:

$$E(X)$$
 $Var(X)$

Uniform $U(\alpha, \beta)$

$$f(x) = \frac{1}{\beta - \alpha}, \ \alpha \le x \le \beta$$

$$\frac{\beta + \alpha}{2}$$
 $\frac{(\beta - \alpha)^2}{12}$

Normal $N(\mu, \sigma)$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

$$\mu$$
 σ^2

Exponential $Exp(\lambda)$

$$f(x) = \lambda e^{-\lambda x}, x \ge 0$$

$$\frac{1}{\lambda}$$
 $\frac{1}{\lambda^2}$

or using $\beta = \frac{1}{\lambda}$: $f(x) = \frac{1}{\beta} e^{-x/\beta}$

$$f(x) = \frac{1}{\beta} e^{-x/\beta}$$

$$\beta$$
 β^2

Gamma $Ga(\alpha, \beta)$

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} e^{-\beta x} x^{\alpha - 1}, x \ge 0$$

$$\frac{\alpha}{\beta^2}$$

or using
$$\theta = \frac{1}{\beta}$$
: $f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} e^{-x/\theta} x^{\alpha-1}, x \ge 0$

$$\alpha\theta$$
 $\alpha\theta^2$

Chi-square $\chi^2(n)$, = Ga(n/2, 1/2).

$$f(x) = cx^{n/2-1}e^{-x/2},$$

$$c = \frac{1}{2^{n/2}\Gamma(n/2)}, x > 0$$

$$n \hspace{1cm} 2n$$