SISTEMI OPERATIVI e LABORATORIO DI SISTEMI OPERATIVI (A.A. 11-12) – 12 SETTEMBRE 2012

IMPORTANTE:

- 1) Fare il login sui sistemi in modalità Linux usando il proprio **username** e **password**, attivare syncexam.sh e passare in modalità testuale.
- 2) I file prodotti devono essere collocati in un sottodirettorio (che deve essere nella directory studente_XXX) che deve essere creato e avere nome ESAME12Set12-1-1. FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.
- 3) Il tempo a disposizione per la prova è di **120 MINUTI** per lo svolgimento di tutto il compito e di **75 minuti** per lo svolgimento della sola parte C.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere due parametri: il primo deve essere il **nome assoluto di un direttorio** che identifica una gerarchia (**G**) all'interno del file system e il secondo deve essere considerato un singolo carattere alfabetico (*maiuscolo* o *minuscolo*) (**C**). Il programma deve cercare nella gerarchia **G** specificata tutti i direttori che contengono file che hanno nel loro contenuto istanze del carattere **C**, sia maiuscolo che minuscolo: ad esempio se il secondo parametro è il carattere alfabetico 'A', si devono cercare tutti i direttori che contengono file che hanno nel loro contenuto almeno una istanza del carattere 'A' e/o del carattere 'a'. Si riporti il nome assoluto di tali direttori sullo standard output. In ognuno di tali direttori trovati, si deve invocare la parte in C, passando come parametri i nomi degli **N** file trovati (**F0, F1, ... FN-1**) che soddisfano la condizione precedente e il carattere **C**.

La parte in C accetta un numero variabile N+1 di parametri (maggiore o uguale a 3) che rappresentano i primi N nomi di file (F0, F1, ... FN-1), mentre l'ultimo rappresenta un singolo carattere alfabetico (C) (da controllare). Il processo padre deve generare N processi figli (P0 ... PN-1) ognuno dei quali è associato ad uno dei file Fi. Ogni processo figlio Pi deve leggere i caratteri del file associato Fi, cercando le occorrenze del carattere alfabetico C o in maiuscolo o in minuscolo, sempre fino alla fine: a parte il processo P0, la decisione se cercare la versione maiuscola o minuscola del carattere C viene comunicata dal processo precedente. Infatti i processi figli devono attenersi inizialmente a questo schema di comunicazione a pipeline*: il figlio P0 comunica con il figlio P1 che comunica con il figlio P2 etc. fino al figlio PN-2 che comunica con il figlio PN-1: in particolare, il processo P0 cerca la prima occorrenza del carattere C in maiuscolo o in minuscolo e appena trovata, comunica al processo P1 di cercare il carattere complementare di C, CC; quindi, P1 cerca la prima occorrenza del carattere CC e appena trovata, comunica al processo P2 di cercare il carattere complementare di CC, CCC; etc. Terminata questa fase di comunicazione a pipeline, ogni processo cerca tutte le ulteriori occorrenze del carattere C nella versione cercata in precedenza. Al temine della ricerca, ogni processo figlio deve comunicare al processo padre una struttura dati che deve contenere 2 campi, cx e occx: cx deve essere il carattere cercato e occx un long int che rappresenta il numero di occorrenze di cx. Per ogni figlio, il padre ha il compito di stampare su standard output, rispettando l'ordine dei file, i campi delle strutture ricevute con l'indicazione del file Fi cui si riferiscono. Al termine, ogni processo figlio Pi deve ritornare al padre il carattere cx e il padre deve stampare su standard output il PID di ogni figlio e il valore ritornato.

^{*} Volendo per questo tipo di interazione si possono usare i segnali.