

17 A 19 DE MAIO

Introdução à ciência de dados e aprendizado de máquina usando Python

Regis Pires Magalhães regis@insightlab.ufc.br

ChatGPT Timeline

Fonte: https://bootcamp.uxdesign.cc/how-chatgpt-really-works-explained-for-non-technical-people-71efb078a5c9

O que GPT-4 pensa sobre o futuro do mercado de trabalho?

DidáticaTech: Nomeie 20 profissões que modelos multimodais como GPT-4 podem substituir no futuro próximo. Faça também uma previsão do percentual de vagas que serão desocupadas em cada profissão pensando em um horizonte de 5 anos. Informe resumidamente as principais características da profissão que permitiram que os modelos de IA tomassem seu papel. Mostre tudo isso em uma tabela com as seguintes colunas: Profissão, % de vagas, Características. Ordene do maior percentual ao menor.

GPT-4: Aqui está uma tabela de 20 profissões que modelos multimodais como GPT-4 podem substituir no futuro próximo, juntamente com a previsão do percentual de vagas desocupadas e as características que permitiram a IA assumir seu papel:

https://didatica.tech/o-que-gpt-4-pensa-sobre-o-futuro-do-mercado-de-trabalho/

Profissão	% de vagas	Características
Atendente de telemarketing	75%	Tarefas repetitivas, script de conversação, resolução de problemas simples
Tradutor	60%	Tradução de idiomas, análise contextual, ajuste a diferentes estilos de escrita
Jornalista	40%	Pesquisa, redação, edição, criação de conteúdo
Assistente administrativo	50%	Tarefas rotineiras, organização, gerenciamento de documentos, comunicação escrita e verbal
Operador de chat	70%	Respostas baseadas em scripts, resolução de problemas, comunicação escrita
Operador de caixa	60%	Transações financeiras, atendimento ao cliente, tarefas repetitivas
Analista de crédito	50%	Avaliação de risco, análise de dados, tomada de decisão baseada em critérios
Escritor de conteúdo	40%	Criação de conteúdo, redação, pesquisa, otimização de palavras-chave
Analista financeiro	35%	Análise de dados, projeções, modelagem financeira, relatórios
Agente de viagens	50%	Pesquisa, planejamento, reservas, atendimento ao cliente
Bibliotecário	35%	Organização, pesquisa, catalogação, gerenciamento de informações
Redator publicitário	30%	Criação de conteúdo, persuasão, marketing, análise de público-alvo
Secretário	50%	Tarefas administrativas, agendamento, comunicação escrita e verbal
Suporte técnico	40%	Resolução de problemas, atendimento ao cliente, conhecimento técnico
Contador	30%	Processamento de dados, cálculos, análise financeira, conformidade tributária
Revisor de texto	40%	Gramática, ortografia, estilo, consistência, edição
Pesquisador de mercado	35%	Coleta de dados, análise, pesquisa, relatórios, identificação de tendências
Planejador de eventos	25%	Organização, pesquisa, logística, comunicação
Assistente pessoal	40%	Tarefas rotineiras, organização, agendamento, pesquisa
Recrutador	30%	Seleção de candidatos, análise de currículos, entrevistas, gerenciamento de processos seletivos

O que GPT-4 pensa sobre o futuro do mercado de trabalho?

DidáticaTech: Agora crie um gráfico parecido, seguindo a mesma lógica, mas em vez de mencionar vagas que serão substituídas, fale sobre profissões que terão um aumento no número de vagas. Mantenha as mesmas colunas, onde na coluna "Características" você vai mencionar as características que esses profissionais deverão ter para assumir tais vagas.

GPT-4: Aqui está uma tabela de profissões que podem experimentar um aumento no número de vagas devido ao avanço da IA e as características que esses profissionais devem possuir:

Profissão	% de aumento	Características
Engenheiro de Machine Learning	60%	Conhecimento em algoritmos de aprendizado, estatística, programação, análise e manipulação de dados
Cientista de dados	50%	Análise de dados, estatística, visualização de dados, programação, machine learning
Especialista em segurança cibernética	40%	Conhecimento em redes, criptografia, detecção de intrusão, legislação, ética
Desenvolvedor de IA	45%	Conhecimento em algoritmos, aprendizado de máquina, programação, sistemas de IA
Designer de experiência do usuário (UX)	35%	Design, psicologia, pesquisa, prototipagem, testes, análise de dados, empatia
Gerente de projetos de IA	30%	Gerenciamento de projetos, liderança, conhecimento em IA, comunicação, planejamento
Analista de ética em IA	25%	Conhecimento em IA, ética, filosofia, política, comunicação, legislação
Treinador de IA	20%	Conhecimento em IA, psicologia, pedagogia, comunicação, empatia, técnicas de treinamento
Especialista em conformidade de IA	20%	Conhecimento em IA, legislação, ética, política, conformidade, comunicação
Consultor de transformação digital	30%	Conhecimento em tecnologia, estratégia, inovação, mudança organizacional, liderança

Machine learning ⊆ artificial intelligence

ARTIFICIAL INTELLIGENCE

Design an intelligent agent that perceives its environment and makes decisions to maximize chances of achieving its goal.

Subfields: vision, robotics, machine learning, natural language processing, planning, ...

MACHINE LEARNING

Gives "computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

SUPERVISED LEARNING

Classification, regression

UNSUPERVISED LEARNING

Clustering, dimensionality reduction, recommendation

REINFORCEMENT LEARNING

Reward maximization

Types of machine learning

Labeled data Supervised Learning Direct feedback > Predict outcome/future No labels/targets Unsupervised Learning No feedback Find hidden structure in data Decision process Reinforcement Learning Reward system Learn series of actions

Binary classification

Supervised Learning: Classification

Observation #	Input image (X)	Label (Y)
1		"dog"
2		"cat"
3		"dog"

N		"dog"

test set

training set

1	???
2	???

Supervised Learning: Regression

Observation #	Years of Higher Education (X)	Income (Y)
1	4	\$80,000
2	5	\$91,500
3	0	\$42,000
4	2	\$55,000
N	6	\$100,000

test set

training set

1	4	???
2	6	???

Income

Income

Clustering

Exploratory data analysis technique that allows to organize a pile of information into meaningful subgroups (clusters) without having any prior knowledge of their group memberships.

Each cluster defines a group of objects that share a certain degree of similarity but are more dissimilar to objects in other clusters.

Clustering

Clustering can be applied to organizing unlabeled data into three distinct groups based on the similarity of their features x_1 and x_2 .

For example, it allows marketers to discover customer groups based on their interests, in order to develop distinct marketing programs.

Dimensionality reduction

Nonlinear dimensionality reduction applied to compress a 3D Swiss Roll onto a new 2D feature subspace:

Reinforcement learning

Reward can be defined as win or lose at the end of the game.

Reinforcement learning

Aprendizagem não supervisionada

Unsupervised task - anomaly detection

Semisupervised learning

Some algorithms can deal with partially labeled training data, usually a lot of unlabeled data and a little bit of labeled data.

Feature 2

Semisupervised learning

Photo-hosting services, such as Google Photos:

Unsupervised learning (clustering)

• Once you upload all your family photos to the service, it automatically recognizes that the same person A shows up in photos 1, 5, and 11, while another person B shows up in photos 2, 5, and 7.

Supervised learning

• Tell the system who these people are. Just one label per person, and it is able to name everyone in every photo, which is useful for searching photos.

Machine Learning

Deep Learning

Deep Learning

Image, automatically annotated by Deep Learning.

Terminology and notations

Iris dataset

150 samples and four features:

$$X = \begin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_4^{(1)} \\ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & x_4^{(2)} \\ \vdots & \vdots & \vdots & \vdots \\ x_1^{(150)} & x_2^{(150)} & x_3^{(150)} & x_4^{(150)} \end{bmatrix}$$

Row vector:

$$\mathbf{x}^{(i)} = \begin{bmatrix} x_1^{(i)} & x_2^{(i)} & x_3^{(i)} & x_4^{(i)} \end{bmatrix}$$

Column vector:

$$\boldsymbol{x}_{j} = \begin{bmatrix} x_{j}^{(1)} \\ x_{j}^{(2)} \\ \vdots \\ x_{j}^{(150)} \end{bmatrix}$$

Roadmap for building machine learning systems

Ecossistema Python

(and many, many more)

StatsModels Statistics in Python

PyTables

IP[y]: **IPython**

Students -

T

GitHub Student Developer Pack

Learn to ship software like a pro. There's no substitute for hands-on experience. But for most students, real world tools can be cost-prohibitive. That's why we created the GitHub Student Developer Pack with some of our partners and friends.

Sign up for Student Developer Pack

About DataCamp

DataCamp helps companies and individuals make better use of data. Our users build data fluency while learning from the world's top data scientists.

Benefit

Free 3-month individual subscription for students.

https://education.github.com/pack

Datacamp

Career Tracks

Our career tracks are hand-picked by industry experts. You will learn all you need to start a new career in the data science field.

Which technology should I choose?

Datacamp

Grupo de Práticas

Ciência de Dados Prática / GEAM

- Grupo de Estudos em Aprendizagem de Máquina
 - https://t.me/joinchat/B74i-BMgvXniaMTf6PJCeQ
 - http://bit.ly/cdpgithub
 - http://bit.ly/cdpvideos
 - https://bit.ly/geam-videos-insight

Canal InsightLab no YouTube

- https://bit.ly/videosinsight
- Curso de Imersão em Ciência de Dados
 - http://bit.ly/curso-icd

Plataforma Kaggle

- Início em 2010.
- Março de 2022 mais de 9 milhões de usuários.
 - https://www.kaggle.com/regispires/unique-kaggle-users/
- Maior e mais diversa comunidade de dados do mundo.
- Competições geralmente atraem mais de mil equipes e indivíduos.
- 3.500 submissões de soluções de competições por dia.
- Competidores altamente qualificados.
- Março/2017 Google anunciou a aquisição do Kaggle.
- Diversos níveis de problemas.

Overview

https://www.kaggle.com/c/titanic

Description

Evaluation

Frequently Asked Questions

Tutorials

Start here if...

You're new to data science and machine learning, or looking for a simple intro to the Kaggle prediction competitions.

Competition Description

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships.

One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.

https://www.kaggle.com/titericz

Giba

Senior Data Scientist at NVIDIA RAPIDS Curitiba, State of Paraná, Brazil Joined 11 years ago · last seen in the past day

in https://rapids.ai/

Followers 11521 Following 32

Home

Competitions (259)

Datasets (20)

Code (120)

Discussion (1,025)

Followers (11,521)

Contact User

Follow User

Current Rank
13
of 201,789

Highest Rank
1

of 201,789

PetFinder.my - Pawpu...

• a year ago
Top 1%

Santander Value Predi...

Top 1%

1st

Of 446

Melbourne University ...

Melbourne University ...

• 6 years ago

Top 1%

1st

of 477

Notebooks Grandmaster Current Rank Highest Rank 65 23 of 275,377 21 29 19 The Property by Giba 389 5 years ago votes Better XGB Baseline 378 4 months ago votes Building and Visualizin... 218 4 years ago votes

Discussion Grandmaster Current Rank Highest Rank 50 6 of 342.124 113 127 537 Data Scientist Hero 534 7 years ago 1st PLACE - WINNER ... 481 8 years ago 1st Place Removed So... 390 3 years ago

O'REILLY®

Python para Análise de Dados

Tratamento de dados com pandas, NumPy e Jupyter

powered by

Wes McKinney

MCKINNEY, Wes; Python Para Análise de Dados: Tratamento de Dados com Pandas, NumPy e Jupyter. 3^a Ed. Novatec, 2023.

GÉRON, Aurélien; **Mãos à Obra: Aprendizado de Máquina com Scikit-Learn, Keras & TensorFlow:** Conceitos, Ferramentas e Técnicas para a Construção de Sistemas Inteligentes. 2ª Ed. Alta Books, 2021.

PARTE I - Os conceitos básicos do aprendizado de máquina

- 1. O Cenário do Aprendizado de Máquina
- 2. Projeto de Aprendizado de Máquina Ponta a Ponta
- 3. Classificação
- 4. Treinando Modelos
- 5. Máquinas de Vetores de Suporte
- 6. Árvores de Decisão
- 7. Aprendizado Ensemble e Florestas Aleatórias (Bagging, Random Forests, Boosting, Stacking)
- 8. Redução de Dimensionalidade (PCA, Kernel PCA, LLE)
- 9. Técnicas de Aprendizado Não Supervisionado (Clusterização, Misturas de gaussianas)

PARTE II - Redes Neurais e Aprendizado Profundo

- 10. Introdução às Redes Neurais Artificiais com a Biblioteca Keras
- 11. Treinando Redes Neurais Profundas
- 12. Modelos Customizados e Treinamento com a Biblioteca TensorFlow
- 13. Carregando e Pré-processando Dados com a TensorFlow
- 14. Visão Computacional Detalhada das Redes Neurais Convolucionais
- 15. Processamento de Sequências Usando RNNs e CNNs
- 16. Processamento de Linguagem Natural com RNNs e Mecanismos de Atenção
- 17. Aprendizado de Representação e Aprendizado Gerativo com Autoencoders e GANs
- 18. Aprendizado por Reforço
- 19. Treinamento e Implementação de Modelos TensorFlow em Larga Escala

EXPERT INSIGHT **Python** Machine Learning Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2 Third Edition - Includes TensorFlow 2, **GANs, and Reinforcement Learning**

Sebastian Raschka & Vahid Mirjalili

RASCHKA, Sebastian; MIRJALILI, Vahid. <u>Python Machine</u> <u>Learning</u>, 3rd Ed. Packt Publishing, 2019.

- 1. Giving Computers the Ability to Learn from Data
- Training Simple Machine Learning Algorithms for Classification
- 3. A Tour of Machine Learning Classifiers Using Scikit-Learn
- 4. Building Good Training Sets Data Preprocessing
- 5. Compressing Data via Dimensionality Reduction
- 6. Learning Best Practices for Model Evaluation and Hyperparameter Optimization
- 7. Combining Different Models for Ensemble Learning
- 8. Applying Machine Learning to Sentiment Analysis
- 9. Embedding a Machine Learning Model into a Web Application
- 10. Predicting Continuous Target Variables with Regression Analysis
- 11. Working with Unlabeled Data Clustering Analysis
- 12. Implementing a Multilayer Artificial Neural Network from Scratch
- 13. Parallelizing Neural Network Training with TensorFlow
- 14. Going Deeper The Mechanics of TensorFlow
- 15. Classifying Images with Deep Convolutional Neural Networks
- 16. Modeling Sequential Data using Recurrent Neural Networks
- 17. Generative Adversarial Networks for Synthesizing New Data
- 18. Reinforcement Learning for Decision Making in Complex Environments

RASCHKA, Sebastian; MIRJALILI, Vahid. Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python, 1st Ed. Packt Publishing, 2022.

CHOLLET, François; **Deep Learning with Python**. 2nd Ed. Manning Publications, 2021.

- 1. What is Deep Learning?
- 2. The Mathematical Building Blocks of Neural Networks
- 3. Introduction to Keras and Tensorflow
- 4. Getting Started with Neural Networks: Classification And Regression
- 5. Fundamentals of Machine Learning
- 6. The Universal Workflow of Machine Learning
- 7. Working With Keras: A Deep Dive
- 8. Introduction To Deep Learning For Computer Vision
- 9. Advanced Computer Vision
- 10. Deep Learning For Timeseries
- 11. Deep Learning For Text
- 12. Generative Deep Learning
- 13. Best Practices For The Real World
- 14. Conclusions

https://www.deeplearningbook.com.br/

