ACCURATE INDIRECT EFFECTS IN MULTILEVEL MEDIATION FOR REPEATED MEASURES DATA

Amanda Sharples and Elizabeth Page-Gould University of Toronto

Mediation

Multilevel Models

Nested (Repeated Measures) Data

Multilevel Mediation

Multilevel Mediation

The Wrong Way to Do Multilevel Mediation

USE FIXED SLOPES TO CALCULATE INDIRECT EFFECT

Why is this Bad?

- The indirect effect is biased.
 - So the total effect is biased too.
- They are biased by how much the random slopes a and b cova

Bauer, Preacher, & Gil (2006); Kenny, Korchmaros, and Bolger (2003)

Bias =
$$COV(a_i, b_i) = \sigma_{ab}$$

Real indirect effect = $(a \times b) + COV(a_i, b_i)$
Real total effect = $(a \times b) + COV(a_i, b_i) + c'$

The Right Way to Do Multilevel Mediation

TAKE RANDOM SLOPES INTO ACCOUNT

Indirect effect = Mean $(a_i \times b_i)$ Total effect = Mean(Indirect effect_i + c'_i)

The Right Way to Do Multilevel Mediation

TAKE RANDOM SLOPES INTO ACCOUNT

Indirect effect = Mean $(a_i \times b_i)$ Total effect = Mean(Indirect effect_i + c'_i)

An OK Way to Do Multilevel Mediation

USE AGGREGATE REPEATED MEASURES FOR EACH PARTICIPAN

(Unbiased) Indirect effect = $a \times b$ (Unbiased) Total effect = Indirect effect + c'

An OK Way to Do Multilevel Mediation

USE AGGREGATE REPEATED MEASURES FOR EACH PARTICIPAN

(Unbiased) Indirect effect = $a \times b$ (Unbiased) Total effect = Indirect effect + c'

How do we determine the robustness of our effects?

• There have been approaches put forward, but...

How do we determine the robustness of our effects?

• There have been approaches put forward, but...

- Bootstrapping is ideal because
 - It does not require the assumption that the random effects are normally distributed.
 - It is already ubiquitous in social psychology (especially in mediation analysis)

Original Sample

Original Sample

Resample 1

Original Sample

Resample 2

Resample 1

Original Sample

Resample 2

Goals of Current Demonstration

- Demonstrate how you can calculate unbiased indirect and total effects in multilevel mediation models.
- Demonstrate how you can use a bootstrapping approach to estimate confidence intervals for your effects.

Research Questions

- Will people rate their target in-group more warmly than target outgroups?
- Can this be explained by greater sympathy toward the target in-group (i.e., an indirect effect).

Method: Sample

- N = 340 (community members)
- 62% female, 38% male
- Age range: 16-75
- Ethnicity: 33% White, 28% East Asian, 28% South Asian, 5% Black, 3% Arab, 2% Latino

Method: Questionnaire

- Demographic information (e.g., ethnicity).
- Sympathy (0 = not at all sympathetic to 10 = very sympathetic) toward 7 target ethnic groups.
- Warmth (0 = cold to 10 = warm) toward 7 target ethnic groups.

Arabic Black East Asian First Nation Latino South Asian White

Method: Questionnaire

Bootstrap Analysis in R:

- Created a function "indirect.mlm"
 - Runs the relevant multilevel models in each resample
 - Multiplies together the <u>random</u> a and b slopes and takes the mean of these products
- Use the "boot" package to do the multilevel mediation

Between-Person Effects:

- Indirect effect = a × b
- Total effect = Indirect effect + c'

Within-Person Effects:

- Unbiased Indirect effect = Mean $(a_i \times b_i)$
- Unbiased Total effect = Mean(Indirect effect_i +


```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID")
```



```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID")
```



```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID")
```



```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID")
```



```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID")
```



```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID")
```



```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID",
between.m=T,
uncentered.x=F)
```



```
boot(data=data.set, R=1000,
strata=ID,
statistic=indirect.mlm,
y="warmth", x="target",
mediator="sympathy", group.id="ID",
between.m=T,
uncentered.x=F)
```


Results (unbiased)

Total effect = -.733 [-.823, -.643]

Results (biased)

Total effect = -.784 [-.871, -.696]

Bias in indirect effect:

Biased: $ab_{within} = -.106 [-.138, -.076]$

Unbiased: $ab_{within} = -.131[-.180, -.103]$

Difference = .025 [.015, .058] = σ_{ab}

Bias in indirect effect:

Biased: $ab_{within} = -.106 [-.138, -.076]$

Unbiased: $ab_{within} = -.131 [-.180, -.103]$

Difference = .025 [.015, .058] =
$$\sigma_{ab}$$

• Difference between biased and unbiased effects is equal to covariance betwee random slopes for paths a and b.

Bias in total effect:

Biased: c = -.784[-.871, -.696]

Unbiased: c = -.733 [-.823, -.643]

Difference = -.052 [-.086, -.020]

Bias in total effect:

Biased: c = -.784 [-.871, -.696]

Unbiased: c = -.733 [-.823, -.643]

Difference = -.052 [-.086, -.020]

Difference between biased and unbiased total effect is equal to

 $ab_{unbiased} - ab_{biased} + \sigma_{ab}$

- Download R script to run this analysis
 - www.page-gould.com/r/indirectmlm

- Download R script to run this analysis
 - www.page-gould.com/r/indirectmlm
- Currently, SPSS doesn't allow you to save random slo in its MIXED procedure.

- Download R script to run this analysis
 - www.page-gould.com/r/indirectmlm
- Currently, SPSS doesn't allow you to save random slo in its MIXED procedure
 - You can't do this analysis in SPSS right now.
 - IBM says this is planned for future release.

- Download R script to run this analysis
 - www.page-gould.com/r/indirectmlm
- Currently, SPSS doesn't allow you to save random slo in its MIXED procedure
 - You can't do this analysis in SPSS right now.
 - IBM says this is planned for future release.
- Good news!
 - We are creating a web application for non-R users

- Download R script to run this analysis
 - www.page-gould.com/r/indirectmlm
- Currently, SPSS doesn't allow you to save random slo in its MIXED procedure
 - You can't do this analysis in SPSS right now.
 - IBM says this is planned for future release.
- Good news!
 - We are creating a web application for non-R users

Take Home Message

- Proof of concept
 - You can bootstrap indirect effects in multilevel mediation analysis.

www.page-gould.com/r/indirectmlm

Thank you!

Co-author

Elizabeth Page-Gould

- Lab and Research Assistants
 - Social Psychophysiology and Quantitative Methods Lab (SPRQL)
- **Funding Sources**
 - Awarded to Sharples:
 - Ontario Graduate
 Scholarship

Awarded to Page-Gould:

- Canada Research Chairs
- Canada Foundation for Innovation
- Connaught Fund New Researcher Award
- Ontario Ministry of Research & Innovation
- Social Sciences and Humanities Research Council (SSHRC) Insight Grants

Questions directed to any speaker?

