Data augmentation for deep learning based accelerated MRI reconstruction with limited data

Zalan Fabian, Reinhard Heckel, Mahdi Soltanolkotabi
ICML2021

Challenges of DL in medical imaging

Deep learning models are extremely data-hungry

- Data collection for medical tasks is challenging:
 - 1. **Cost**: expensive instruments, time of experts

2. **Time**: long acquisition time (MRI: 60 mins / scan)

3. **Health**: ionizing radiation exposure (CT, PET)

4. **Data curation**: patient confidentiality, data compatibility

How do we train with limited data?

MRI reconstruction

Data augmentation in classification: straightforward

Data augmentation in MRI reconstruction: non-trivial

1. Output is **not** invariant to transformations

2. Distribution shift due to noise

MRAugment pipeline

Results on various datasets

fastMRI knees

single-coil

Stanford 2D FSE

Stanford 3D FSE knees

Robustness experiments

Unseen scanners

2% train	no DA	DA
$3T \rightarrow 3T$	0.8646	0.9049
$3T \rightarrow 1.5T$	0.8241	0.8551
$1.5T \rightarrow 3T$	0.8174	0.8913

100% train	no DA	DA
$3T \rightarrow 3T$	0.9177	0.9185
$3T \rightarrow 1.5T$	0.8686	0.8690
$1.5T \rightarrow 3T$	0.9043	0.9062

Unseen anatomies

Hallucinations

MRAugment