Лабораторная работа № 7

Хеширование

Цель работы: изучить принципов построения хеш-функций, обладающих равномерным распределением, исследовать статистические свойства хеш-функций, закрепить навыки структурного программирования.

Общие сведения

Известно, что использование ключей в качестве индекса в массиве обеспечивает высокую производительность операций поиска, добавления, удаления элементов, при этом предполагается, что ключи соответствуют диапазону индексов. Однако такими благоприятными свойствами обладают далеко не все ключи.

Хеширование — это способ хранения данных, при котором на основании значений ключей элементов вычисляются значения хеш-функции — индексы, которые используются для поиска, добавления, удаления элементов из хеш-таблиц (специализированных контейнеров, основанных на массивах или других аналогичных структурах).

Основной задачей хеш-функций (и соответственно алгоритмов, лежащих в их основе), является получение из входных значений ключей (в общем случае имеющих произвольное распределение и диапазон значений) «случайных» индексов, равномерно распределенных в заданном диапазоне значений.

Для оценки качества функций может использоваться статистическая оценка хи-квадрат:

$$\chi^2 = \frac{M}{N} \sum_{i=0}^{M-1} \left(F_i - \frac{N}{M} \right)^2,$$

где N – количество ключей, M – размер хеш-таблицы, F_i – количество ключей с хеш-значением i.

Если хеш-значения являются случайными, то значения этой функции статистического распределения для N>cM должно быть равно $\mathrm{M}\pm\sqrt{M}\,\mathrm{c}$ вероятностью 1-1/c. Необходимо отметить, что требования оценки хи-квадрат являются достаточно жесткими, и не всегда удается добиться того, чтобы хешфункция удовлетворяла этим требованиям.

Задание

- 1. Разработать и реализовать функцию, осуществляющую хеширование данных (тип данных определяется вариантом).
- 2. Разработать и реализовать функцию-генератор, осуществляющую формирование значений ключей в соответствии с заданным типом данных. Генерируемые ключи должны быть уникальны.
- 3. Исследовать статистические свойства разработанной хеш-функции при заданных размерах хеш-таблицы и количестве ключей.
- 4. Составить отчет, в котором привести листинг хеш-функции, гистограммы распределений индексов, формируемых хеш-функцией (для двух значений размера хеш-таблицы) и выводы по работе (дать оценку зависимости от размера таблицы и от природы исходных данных если таковые имеются; оценить качество разработанной хеш-функции).

Варианты заданий

No	Тип данных	Размеры хеш-	Примечание
112	тин данных	таблицы и количество	примечание
		· ·	
1	at-mat Bata	ключей	п
1	struct Date {	$M_1 = 256$	Диапазон изменения Year равен
	<pre>int Day; int Month;</pre>	$M_2 = 257$	[1920; 2008]. Величина распределена по
	<pre>int Month; int Year;};</pre>	K = 2000	нормальному закону с максимумом в
	-		1970.
2	struct AutoNumber {	$M_1 = 512$	В качестве значений массива
	<pre>char Letter[3];</pre>	$M_2 = 511$	используются буквы русского алфавита
	<pre>int Number; };</pre>	K = 10000	в нижнем регистре, кроме й , ы , ъ , ь . ¹
3	struct Address {	$M_1 = 64$	Диапазоны изменения Building и
	int Building;	$M_2 = 67$	Apartment равны соответственно
	<pre>int Apartment; };</pre>	K = 500	[1; 10] и [1; 80].
4	struct Date {	$M_1 = 64$	Диапазон изменения Year равен
	int Month;	$M_2 = 67$	[1972; 1992].
	<pre>int Year; };</pre>	K = 200	[2572, 2552].
5	struct Address {	$M_1 = 512$	В качестве значений поля Street
	char * Street;	$M_2 = 511$	использовать названия улиц города
	<pre>int Building; };</pre>	K = 2000	Сургута (см. приложение А).
6	struct Card {	$M_1 = 16$	Диапазоны изменения Suit и Value
	int Suit;	$M_2 = 17$	равны соответственно [0; 3] и [0; 12].
	<pre>int Value; };</pre>	K = 50	
7	struct Person {	$M_1 = 512$	В качестве значений Surname
'	<pre>char * Surname; };</pre>	$M_2 = 511$	использовать фамилии, приведенные в
	-	K = 2000	приложении Б.
8	struct Book {	$M_1 = 1024$	Диапазоны изменения Year и Pages
	int Year;	$M_1 = 1024$ $M_2 = 1031$	равны соответственно [2000; 2008] и
	<pre>int Pages; };</pre>	K = 5000	[100; 600].
9	struct Rect {	$M_1 = 128$	
9	double Width;	$M_1 = 128$ $M_2 = 127$	Поля Width и Height могут принимать
	double Height};	_	значения из ряда 0,2; 0,4; 4,0.
10	struct Chess {	K = 300	
10	char Letter;	$M_1 = 16$	
	int Digit};	$M_2 = 17$	
	THE DIGIC,	K = 50	

 $^{^{1}}$ В этом и других вариантах, в случае, если вероятность значений поля не оговаривается, считать, что значения из указанного (или предполагаемого) диапазона равновероятны.