

# Applied Machine Learning

Lecture: 3 Multiple Linear Regression

Ekarat Rattagan, Ph.D.



## Outline

- 3.1 Multiple features
- 3.2 Gradient descent for multiple variables
- 3.3 Feature Scaling
- 3.4 Stochastic Gradient Descent
- 3.5 Mini-batch Gradient Descent
- 3.6 Polynomial regression



# 3.1 Multiple features



## Single features (variable)

| Size (feet²)<br>X | <b>Price (\$1000)</b> <i>y</i> |  |
|-------------------|--------------------------------|--|
| 2104              | 460                            |  |
| 1416              | 232                            |  |
| 1534              | 315                            |  |
| 852               | 178                            |  |
| •••               |                                |  |

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$



## Multiple features (variables)

| Size (feet <sup>2</sup> ) | Number of bedrooms | Number of floors | Age of home (years) | Price (\$1000) |
|---------------------------|--------------------|------------------|---------------------|----------------|
| 2104                      | 5                  | 1                | 45                  | 460            |
| 1416                      | 3                  | 2                | 40                  | 232            |
| 1534                      | 3                  | 2                | 30                  | 315            |
| 852                       | 2                  | 1                | 36                  | 178            |
|                           | •••                | •••              |                     |                |

#### Notation:

n =number of features

 $x^{(i)}$ = input (features) of  $i^{th}$  training example.

 $x_j^{(i)}$  = value of feature j in  $i^{th}$  training example.



## Hypothesis

Single variable 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple variables 
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_n x_n$$

## Multivariate linear regression

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n = \theta^T x$$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

$$\theta^T x = \begin{bmatrix} \theta_0, \theta_1, \dots, \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

For mathematical convenient, we define  $x_0^{(i)} = 1$ 



# 3.2 Gradient descent for multiple variables



**Hypothesis:** 
$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \ldots + \theta_n x_n = \theta^T x$$

**Hypothesis:** 
$$h_{\theta}(x) = \theta_{0}x_{0} + \theta_{1}x_{1} + ... + \theta_{n}x_{n} = \theta^{T}x$$
**Cost function:**  $J(\theta_{0}, \theta_{1}, ..., \theta_{n}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$ 

#### **Gradient descent:**

Repeat until convergence  $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)$ 

Simultaneously update for every  $j = 0, \dots, n$ 



## **Gradient Descent for single variable**

**Single variable**, i.e., j = 0 and 1 Repeat until convergence  $\{$ 

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=0}^{n} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=0}^{n} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

}



## Gradient Descent for multiple variables

Multiple variables, i.e., j = 0, 1, ..., n

Repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

•

$$\theta_n := \theta_n - \alpha \frac{1}{m} \sum_{i} (h_{\theta}(x^{(i)}) - y^{(i)}) x_n^{(i)}$$

}



## 3.3 Feature Scaling



## **Feature Scaling**





## Feature scaling

The goal is to transform features to be on a similar scale. This improves the performance and training stability of the model.

ardization 
$$x_i' = \frac{x_i - \mu}{s}$$
score normalization) 
$$x_i = \frac{x_i - \mu}{s}$$

$$x_i' = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$



## 3.4 Stochastic Gradient Descent



### **Stochastic Gradient Descent**

Batch gradient descent 
$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (2)

#### 2.2 Stochastic gradient descent

The stochastic gradient descent (SGD) algorithm is a drastic simplification. Instead of computing the gradient of all m examples, each iteration estimates this gradient on the basis of a single randomly picked example  $x^{(i)}$ :

$$\theta_j := \theta_j - \alpha (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \tag{4}$$

The stochastic process  $\{\theta_j, j=1,2,3,...\}$  depends on the examples randomly picked at each iteration. It is hoped that (4) behaves like its expectation (2) despite the noise introduced by this simplified procedure.

Ref: Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade (pp. 421-436). Springer, Berlin, Heidelberg.

#### **Batch Gradient Descent**

#### **Stochastic Gradient Descent**

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```

- Randomly shuffle (reorder) training examples
- 2. Repeat {  $\text{for } i:=1,\dots,m \}$   $\theta_j:=\theta_j-\alpha(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}$   $\text{(for every } j=0,\dots,n \text{)}$  } }





## Learning schedule

- The solution to reduce the stochastic noise
- To gradually reduce the learning rate

Use learning rates of the form 
$$\alpha_t := \frac{\alpha_0}{(1 + \alpha_0 \lambda t)}$$

Ref: Bottou, L. (2012). Stochastic gradient descent tricks. In Neural networks: Tricks of the trade (pp. 421-436). Springer, Berlin, Heidelberg.



## 3.5 Mini-batch Gradient Descent

#### Mini-batch gradient descent

Batch gradient descent: Use all m examples in each iteration

Stochastic gradient descent: Use 1 example in each iteration

Mini-batch gradient descent: Use b examples in each iteration

Credit: Andrew NG

## Mini-batch gradient descent

```
Say b = 10, m = 1000.
Repeat {
   for i = 1, 11, 21, 31, \dots, 991 {
     \theta_j := \theta_j - \alpha \frac{1}{10} \sum_{k=0}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)}) x_j^{(k)}
              (for every j = 0, \ldots, n)
```

#### **Variants of Gradient Descent**



Credit: Andrew NG



# 3.6 Polynomial regression



## **Housing prices prediction**

$$h_{\theta}(x) = \theta_0 + \theta_1 \times front + \theta_2 \times depth$$



## **Polynomial regression**



$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$= \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$