Билеты к экзамену «Кратные интегралы и теория поля»

Авторы: Примак Евгений

Хоружий Кирилл

От: 15 января 2021 г.

Содержание

Свёрт	ка и приближение функций бесконечно гладкими	3
1	Свёртка функций и её свойства	3
2	Бесконечно гладкие функции с компактным носителем	3
3	Приближение функций бесконечно гладкими	3
Дифф	еренцируемые отображения и криволинейные замены координат	4
4	Дифференцируемые отображения и дифференцирование композиции	4
5	Системы криволинейных координат и теорема об обратном отображении	4
6	Теоремы о системе неявных функций	4
7	Теорема о расщеплении гладкого отображения	5
Дифф	еренциал, гессиан, и исследование функции на экстремум	6
8	Первый и второй дифференциал	6
9	Локальные экстремумы функции и необходимое условие экстремума	6
10	Необходимые и достаточные условия экстремума C^2 функций	6
11	Условные экстремумы и необходимое условие в терминах первых производных	6
12	Необходимые и достаточные условия в терминах вторых производных	7
Векто	ры и дифференциальные формы первой степени	8
13	Вектор, как дифференцирование	8
14	Касательное пространство и дифференциал отображения	8
15	Диф-формы I степени	8
Диф-с	рормы высших степеней	9
16	Определение и свойства диф-форм высших степеней	9
17	Внешнее умножение диф-форм	9
18	Внешнее дифференцирование	9
19	Обратный образ диф-форм	9
Интег	рирование дифференциальных форм	10
20	Интегрирование диф-формы объёма	10
21	Представление диф-формы в каноническом виде	10
22	Поведение интеграла от формы при линейной замене координат	10
23	Гладкое разбиение единицы	10
24	Поведение интеграла от формы при гладкой замене координат	10
25	Формулы гладкой замены переменных в интеграле Лебега от функции	10
Много	образия (с краем) и формула Стокса	11
26	Вложенные многообразия	11
27	* Абстрактное определение гладкого многообразия	11
28	Диф-формы, векторные поля и d на многообразии	11
29		12
30	Ориентируемость многообразия	12
31	Определение интеграла диф-формы по ориентированному многообразию	13
32	Общая формула Стокса	13
33	Частные случаи формулы Стокса	13
34	Потенциал диф-форм	13

 M_{II} K Φ_{II} 3 T_{E} X

Элеме	нты дифференциальной топологии	15
35	Замкнутые и точные формы. Цепные гомотопии	15
36	Когомологии де Рама	15
37	* Когомологии де Рама с компактным носителем	15
38	* Критические и регулярные значения, теорема Сарда	16
39	* Степень гладкого отображения	16
40	* Степень гладкого отображения с помощью интегрирования	17
41	Теорема Брауэра о неподвижной точке	17
42	* Существование нигде не нулевых векторных полей на сфере	17
Дифф	еренцирование и интегрирование векторных полей	18
43	Внутреннее дифференцирование	18
44	Производная Ли и скобка Ли	18
45	Интегрирование векторных полей, как решение диф-уравнений	18
46	Геометрический смысл производной Ли	19
47	Дивергенция векторного поля на многообразии с формой объема	20
Риман	овы и полуримановы многообразия	21
48	Риманова структура на многообразии	21
49	Риманов объём, объём на произведении	21
50	Частные случаи	21
51	Twinkle twinkle little star	22
52	Используем звёздочку	22
53	Ковариантное дифференцирование	22
54	Длина кривой и определение метрики	23
55	Геодезические и параллельный перенос	23
56	* Тензор кривизны Римана и тензор Риччи	23
57	Пространство-время СТО, геодезические и изометрии	24
58	Диф-форма ЭМ поля, уравнения Максвелла	24
59	Риманова структура на сфере	25
60	Риманова структура на гиперболоиде	25
61	Пространство де Ситтера	26
62	Метрика Швацшильда	26
Решен	ия (ВЕТА)	27
1	Свёртка функций и её свойства	27
2	Бесконечно гладкие функции с компактным носителем	27
3	Приближение функций бесконечно гладкими	27
6	Теоремы о системе неявных функций	27
Призр	аки прошлого и настоящего	28
	Прошлого	28
556	Настоящего	28

 Δ_{M} Х $=\Sigma_{\mathrm{M}}$ Т

Свёртка и приближение функций бесконечно гладкими

1 Свёртка функций и её свойства

Def 1.1 (Свертка функции). Свёртку ещё пишут как h = f * g.

$$h(x) = \int_{\mathbb{R}^n} f(x-t)g(t) dt = \int_{\mathbb{R}^n} f(t)g(x-t) dt,$$

Свёртка также ассоциативна: f * (g * h) = (f * g) * h, для функций с конечным интегралом. Чтобы интеграл существовал, можно заметить, что если одна из функций ограничена, а другая имеет конечный интеграл, тогда и свёртка будет ограничена, кроме того:

Thr 1.2. Если f и g имеют конечный интегралы, **то** h = f * g определена почти всюду и верно неравенство

$$\int_{\mathbb{R}^n} |f * g| \, dx < \int_{\mathbb{R}^n} |f| \, dx \cdot \int_{\mathbb{R}^n} |g| \, dx,$$

и равенство:

$$\int_{\mathbb{R}^n} f * g \, dx = \int_{\mathbb{R}^n} f \, dx \cdot \int_{\mathbb{R}^n} g \, dx.$$

Lem 1.3. Если свёртка g * f — **ограничена**, где g — имеет конечный интеграл, $a f u \partial_x f$ — ограничены, **то** возможно дифференцирование под знаком интеграла (239.1), u мы получаем:

$$\frac{\partial (f * g)}{\partial x_i} = \int_{\mathbb{R}^n} \frac{\partial f(x - t)}{\partial x_i} g(t) dt = \frac{\partial f}{\partial x_i} * g.$$

2 Бесконечно гладкие функции с компактным носителем

Возьмём $f \in C^{\infty}$ такую, что $\forall k \ f^{(k)}(0) = 0$. Из неё составим $\varphi \in C^{\infty}$ большую нуля на (-1,1):

$$f(x) = \begin{cases} 0, & x \le 0; \\ e^{-1/x}, & x > 0. \end{cases} \qquad \varphi(x) = f(x+1)f(1-x).$$

Lem 2.1. $\forall \varepsilon > 0 \exists$ бесконечно гладкая $\varphi_{\varepsilon} \colon \mathbb{R}^n \mapsto \mathbb{R}^+, \ \varphi_{\varepsilon}(x) \neq 0 \ \forall x \in U_{\varepsilon}(0), \ \textit{makas umo} \ \int_{\mathbb{R}^n} \varphi_{\varepsilon}(x) \ dx = 1.$

Lem 2.2. $\forall \varepsilon > \delta > 0 \; \exists \; \text{бесконечно гладкая} \; \psi_{\varepsilon,\delta} \colon \mathbb{R}^n \mapsto [0,1], \; \psi_{\varepsilon,\delta}(x) \neq 0 \; \forall x \in U_{\varepsilon}(0) \; u \; \psi_{\varepsilon,\delta}(x) = 1 \; \forall x \in U_{\delta}(0).$

3 Приближение функций бесконечно гладкими

Пусть $\varphi \colon \mathbb{R}^n \to \mathbb{R}$, неотрицательная $\varphi \in C^\infty$, $\varphi \neq 0$ при $|x| \leqslant 1$ и пусть $\int_{\mathbb{R}^n} \varphi(x) \, dx = 1$. Положим $\varphi_k(x) = k^n \varphi(kx)$, у которых так же будут $\int = 1$ и которые $\varphi_k \neq 0$ при $|x| \leqslant 1/k$.

Thr 3.1. Для непрерывной $f: \mathbb{R}^n \to \mathbb{R}$ определим свёртки:

$$f_k(x) = \int_{\mathbb{R}^n} f(x-t)\varphi_k(t) \, dt = \int_{\mathbb{R}^n} f(t)\varphi_k(x-t) \, dt \qquad \leadsto \qquad f_k \in C^\infty, \ f_k \rightrightarrows f \ \ \text{na rownaxmax o} \ \mathbb{R}^n.$$

Thr 3.2. Если f имеет непр. производные до m-го порядка, то производные f_k до m-го порядка равномерно сходятся на компактах κ соответствующим f'.

Thr 3.3. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ и $f \in \mathcal{L}_c$. Тогда свёртки $f * \varphi_k$ с функциями из теоремы 3.1 сколь угодно близко приближают f в среднем.

 $M_{\rm H}$ K $\Phi_{\rm H}$ 3TEX

Дифференцируемые отображения и криволинейные замены координат

4 Дифференцируемые отображения и дифференцирование композиции

Def 4.1. Пусть $U \subset \mathbb{R}^n$ – открытое множество. Отображение $f: U \to \mathbb{R}^m$ называется $\partial u \phi \phi$ еренцируемым в точке $x_0 \in U$, если

$$f(x) = f(x_0) + Df_{x_0}(x - x_0) + o(|x - x_0|), \quad x \to x_0,$$

где $Df_{x_0} \colon \mathbb{R}^n \mapsto \mathbb{R}^m$ – линейное отображение, называемое производной f в точке x_0 .

Def 4.2. Функция f называется непрерывно дифференцируемой на U, если оно дифференцируемо в каждой точке и Df_x непрерывно зависит от x.

Thr 4.3 (Дифференицрование композиции). Если f дифференицируемо в точке x_0 , g дифференицируемо в точке $y_0 = f(x_0)$, то композиция $g \circ f$ дифференицируема в точке x_0 , u $D(g \circ f)_{x_0} = Dg_{y_0} \circ Df_{x_0}$. Или, в координатах

$$\frac{\partial (g \circ f)}{\partial x^i} = \frac{\partial g}{\partial u^j} \frac{\partial f^j}{\partial x^i}.$$

Def 4.4. Производная функции f по направлению $v \in \mathbb{R}^n$ в точке x называется

$$\frac{\partial f}{\partial v} = \lim_{t \to 0} \left(\frac{f(x+tv) - f(x)}{t} \right)$$

Lem 4.5. Если функция дифференцируема в точке x, то в этой точке

$$\frac{\partial f}{\partial v} = Df_x(v).$$

В частности для функционалов, верно что $\partial f/\partial v = df_x(v)$. Более того, выбрав в качестве v базисные векторы e_i , поймём что

$$df = \frac{\partial f}{\partial x^i} x^i,$$

zде dx^i – дифференциалы координатных функций, образующие двойственный базис.

Thr 4.6. Если отображение $f: U \mapsto \mathbb{R}^m$ из открытого $U \subseteq \mathbb{R}^n$ задано в координатах, как $y_i = f_i(x^1, ..., x^n)$, для i = 1, ..., m и f_i имеют непрерывные частные производные на U, то f непрерывно дифференцируемо на U.

5 Системы криволинейных координат и теорема об обратном отображении

Def 5.1. *Криволинейная замена координат* — бесконечно гладкое отображение $\varphi: U \mapsto V$ такое, что φ^{-1} определено и тоже бесконечно гладко.

Lem 5.2. Пусть открытое множество $U \subset \mathbb{R}^n$ выпукло. Для непрерывно дифференцируемого отображения $\varphi \colon U \to \mathbb{R}^m$ найдётся непрерывное отображение $A \colon U \times U \mapsto \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, такое что $\forall x', x'' \in U$

$$\varphi(x'') - \varphi(x') = A(x', x'')(x'' - x')$$

 $u A(x,x) = D\varphi_x$

Thr 5.3 (Теорема об обратном отображении). Если отображение $\varphi \colon U \mapsto \mathbb{R}^n$ непрерывно дифференцируемо в окрестности точки x u его дифференциал $D\varphi_x$ являетсяя невырожденным линейным преобразованием, то это отображение взаимно однозначно отображает некоторую окрестность $V \ni x$ на окрестность $W \ni y$, где $y = \varphi(x)$. Обратное отображение $\varphi^{-1} \colon W \to V$ тоже непрерывно дифференцируемо.

Def 5.4. *Криволинейной системой координат* в окрестности точки $p \in \mathbb{R}^n$ называется набор таких функций, которые явяются координатами гладкого отображения окрестности p на некоторое открытое множество в \mathbb{R}^n с гладким обратным¹ отображением.

6 Теоремы о системе неявных функций

Thr 6.1 (Теорема о неявной функции). Пусть функции f_1, \ldots, f_k непрерывно дифференцируемы в окрестности $p \in \mathbb{R}^n$ и

$$\det\left(\frac{\partial f_i}{\partial x_i}\right) \neq 0$$

 $^{^1}$ По теореме об обратном отображении для проверки системы преобразования достаточно проверить невырожденность $(\partial y_i/\partial x_j)$ в точке p, или линейную независимость dy^i в точке p.

в этой окрестности. Пусть $f_i(p) = y_i, i = 1, ..., k$. Тогда найдётся окрестность точки p вида $U \times V, U \subset \mathbb{R}^k, V \subset \mathbb{R}^{n-k}$, такая что в этой окрестности множество решений системы уравнений

$$\begin{cases} f_1(x) = y_1, \\ \dots \\ f_k(x) = y_k, \end{cases}$$

совпадает с графиком непрерывно дифференцируемого отображения $\varphi\colon V \to U$, заданного в координатах как

$$\begin{cases} x_1 = \varphi_1(y_1, \dots, y_k, x_{k+1}, \dots, x_n), \\ \dots \\ x_k = \varphi_k(y_1, \dots, y_k, x_{k+1}, \dots, x_n), \end{cases}$$

то есть отображения $\mathbb{R}^{n-k} \mapsto \mathbb{R}^k$.

7 Теорема о расщеплении гладкого отображения

Thr 7.1 (Теорема о расщеплении отображения на элементарные). Если отображение φ непрерывно дифференцируемо в окрестности точки $p \in \mathbb{R}^n$ и имеет обратимый $D\varphi_x$, то его можно представить в виде композиции перестановки координат, отображений координат и элементарных отображений, непрерывно дифференцируемо и возрастающим образом меняющих только одну координату $y_i = \psi_i(x_1, \dots, x_n)$.

Thr 7.2. Теоремы об обратном отображении, о неявной функции и о расщеплении отображения дают отображения класса C^k при $k \ge 1$, если исходные отображени были класса C^k .

 $\mathsf{W}_{\mathtt{N}}\mathsf{K}$

Дифференциал, гессиан, и исследование функции на экстремум

8 Первый и второй дифференциал

Lem 8.1. Если dg = 0, то гессиан $d_2g_i = (\partial_i\partial_j g)dx^j$ преобразуется, как квадратичная форма.

Def 8.2. Гессиан H функции f(x) – квадратичная форма

$$H(x) = \partial_i \partial_j f x^i x^j$$

Иногда, гессиан – определитель матрицы Гессе

$$H(f) = \det \begin{bmatrix} \partial_{1,1}f & \partial_{1,2}f & \cdots & \partial_{1,n}f \\ \partial_{2,1}f & \partial_{2,2}f & \cdots & \partial_{2,n}f \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{n,1}f & \partial_{n,2}f & \cdots & \partial_{n,n}f \end{bmatrix}$$

Lem 8.3. Если $df_{x_0} = 0$, то при любой замене координат $x = \varphi(t)$ второй дифференицал в точке $x_0 = \varphi(t_0)$ меняется так:

$$d_2(f \circ \varphi)_{t_0}(\Delta t) = d_2 f_{x_0}(D\varphi_{t_0}(\Delta t)).$$

9 Локальные экстремумы функции и необходимое условие экстремума

Def 9.1. Точка p называется локальным экстремумом функции f, если она является точкой экстремума (максимума или минимума) ограничения f на некоторую окрестность p.

Thr 9.2 (Необходимое условие экстремума).

$$\begin{cases} f \in C^1(U(p)) \\ p - def(9.1) \end{cases} \Rightarrow df_p = 0.$$

10 Необходимые и достаточные условия экстремума ${f C}^2$ функций

Thr 10.1 (Необходимые условия экстремума).

$$\begin{cases} f \in C^2(U(p)) \\ p - def(9.1) \\ df_p = 0 \end{cases} \Rightarrow \begin{bmatrix} d_2 f_p \geqslant 0 - min \\ d_2 f_p \leqslant 0 - max \end{bmatrix}$$

Lem 10.2. Если квадратичная форма Q > 0, то $\exists \varepsilon > 0$: $Q(v) \ge \varepsilon |v|^2$ $(\forall v)$.

Thr 10.3 (Достаточные условия экстремума).

$$\begin{cases} f \in C^2(U(p)) \\ p - def(9.1) \\ df_p = 0 \ u \ d_2 f_p < 0 \end{cases} \Rightarrow p - m$$
очка строгого локального максимума

11 Условные экстремумы и необходимое условие в терминах первых производных

Def 11.1. Условный экстремум f — экстремум ограничения f на множество S, задаваемое системой C^1 уравнений $\varphi_1(x) = \ldots = \varphi_m(x) = 0$.

Забегая вперёд, нам самом деле нам нужно: $\dim \langle d\varphi_1, \dots, d\varphi_m \rangle = m$.

Thr 11.2 (Необходимые условия условного экстремума в терминах первых производных).

$$\begin{cases} f, \varphi_1, \dots, \varphi_m \in C^1(U(p)) \\ \dim \langle d\varphi_1, \dots, d\varphi_m \rangle = m & \mapsto & df_p = \lambda_1 \, d\varphi_{1,p} + \dots + \lambda_m \, d\varphi_{m,p}. \\ p - def(11.1) & \end{cases}$$

12 Необходимые и достаточные условия в терминах вторых производных

Удобно положить: $L(x) = f(x) - \lambda_1 \varphi_1(x) - \ldots - \lambda_m \varphi_m(x)$. Это называется функцией Лагранжа, а λ_i — множители Лагранжа.

Thr 12.1 (Необходимые условия условного экстремума).

$$\begin{cases} f, \varphi_1, \dots, \varphi_m \in C^2(U(p)) \\ \dim \langle d\varphi_1, \dots, d\varphi_m \rangle = m \\ p - def(11.1) \\ v \colon d\varphi_{1,p}(v) = \dots = d\varphi_{m,p}(v) = 0 \end{cases} \mapsto \begin{cases} dL_p = 0 \\ \left[d_2 L_p \geqslant 0 (\text{для минимума}) \\ d_2 L_p \leqslant 0 (\text{для максимума}) \right] \end{cases}$$

Thr 12.2 (Достаточные условия условного экстремума).

(Достаточные условия условного экстремума).
$$\begin{cases} f, \varphi_1, \dots, \varphi_m \in C^2(U(p)) \\ \dim \langle \, d\varphi_1, \dots, \, d\varphi_m \rangle = m \\ dL_p = 0 \\ \varphi_1(p) = \dots = \varphi_m(p) = 0 \\ v(\neq 0) \colon d\varphi_{1,p}(\boldsymbol{v}) = \dots = d\varphi_{m,p}(\boldsymbol{v}) = 0 \\ d_2L(\boldsymbol{v}) > 0 \text{ или } d_2L(\boldsymbol{v}) < 0 \end{cases} \mapsto f \text{ имеет строгий условный экстремум в p.}$$

 $\mathsf{W}_{\mathtt{N}}\mathsf{K}$

Векторы и дифференциальные формы первой степени

13 Вектор, как дифференцирование

Lem 13.1. Всякую гладкую функцию, определенную в некоторой окрестности $x_0 \in \mathbb{R}^n$, в возможно меньшей окрестности x_0 , можно представить с гладкими g_k в виде

$$f(x) = f(x_0) + \sum_{k=1}^{n} g_k(x)(x^k - x_0^k), \qquad g_k \to \partial_k f|_x, \ npu \ x \to x_0.$$

Def 13.2. Определим *касательный вектор* в точке $p \in U$ открытого множества $U \subseteq \mathbb{R}^n$ как \mathbb{R} -линейное отоборражение $X \colon C^{\infty}(U) \mapsto \mathbb{R}$, удовлетворяющее

$$X(fg) = X(f)g(p) + f(p)X(g).$$

 $Kacameльное\ npocmpaнcmeo\ T_pU$ к U в точке p состоит из всех касательных векторов в точке p.

Lem 13.3. Если X – касательный вектор в точке $p \in U$, то для любой окресности $V \ni p, V \subseteq U$, выражение X(f) может зависеть только от значений f в V, а не на всём U.

В силу предыдущих лем мы можем перейти в окрестность, где f представима в виде (13.1), тогда

$$X(f) = X(f(p)) + \sum_{i=1}^{n} X(x_i)\partial_i f|_p + \sum_{i=1}^{n} x_i(p)X(\partial_i f|_p) = \sum_{i=1}^{n} X(x_i) |\partial_i f|_p.$$

Числа $X_i = X(x_i)$ называются координатами касательного вектора в данной криволинейной системе координат, тогда весь вектор в точке p записывается, как $X = X^i \partial_i$.

14 Касательное пространство и дифференциал отображения

Def 14.1. Векторным полем на открытом множестве $U \subseteq \mathbb{R}^n$ называется выбор касательного вектора $X(p) \in T_pU$ для каждой точки $p \in U$, гладко² зависящий от p.

Lem 14.2. Для открытого $U \subseteq \mathbb{R}^n$ всякое \mathbb{R} -линейное отображение $X \colon C^\infty \mapsto C^\infty(U)$, удовлетворяющее правилу Лейбница X(fg) = X(f)g + fx(g) задаётся векторным полем на U.

Def 14.3. Пусть есть вектор $X \in T_pU$, $q = \varphi(p)$, тогда *прямой*³ *образ вектора* $\varphi_*(X)$ определяется по формуле

$$\varphi_*(X)f = X(f \circ \varphi), \qquad \mapsto (\varphi_*X)^i = \frac{\partial \varphi^i}{\partial x^j}X^j \quad \Leftrightarrow \quad \text{переписать в матричном виде.}$$

Def 14.4. Отображение $\varphi: U \mapsto V$ задаёт *гомоморфизм алгебр* (операция, сохраняющая умножение, сложение, и переводящая const в const): $\varphi^*: C^{\infty}(V) \mapsto C^{\infty}(U)$ по формуле

$$\varphi^{**}(f) = f \circ \varphi.$$

вектор даёт дифференцирование алгебры $X\colon C^\infty(U)\mapsto \mathbb{R},$ и тогда $\varphi_*X=X\circ \varphi^*$ тоже дифференцирование алгебры.

15 Диф-формы I степени

Def 15.1. Дифференциальная 1-форма — это ковекторное поле. Иначе, элемент двойственного пространства $(T_pU)^* \equiv T_p^*U$, линейная форма на касательным пространстве, гладко зависящая от p. Дифференциал функции f от векторного поля X это $df(X) \stackrel{\text{def}}{=} Xf$.

Дифференциалы dx_1, \ldots, dx_n дают базис T_p^*U , двойственный к $\partial_1, \ldots, \partial_n$, в смысле $dx^i\partial_j = \delta_j^i$. По этому базису можно разложить любую форму в точке, а применяя это $\forall p \in U \subseteq \mathbb{R}^n$ видим, что $\omega^1 = \alpha_i dx^i$.

При замене координат компоненты ω^1 преобразуются как дифференциалы функции, то есть

$$\alpha = \alpha_j dx^j = \tilde{\alpha}_i dy^i = \underbrace{\tilde{\alpha}_i \partial_j y^i}_{\alpha_i} dx^j, \qquad \mapsto \qquad \alpha_j = \tilde{\alpha}_i \partial_j y^i \quad \Leftrightarrow \quad \text{переписать в матричном виде}.$$

 $^{^2\}Gamma$ ладкая зависимость понимается в смысле гладкой зависимости координат векторного поля $X_i(p)$ в точке p.

 $^{^3}$ Производную отображения arphi в точке p можно определить как $arphi_*\colon T_pU\mapsto T_qV$ при q=arphi(p). Иначе можем обозначать, как $Farphi_p$.

Диф-формы высших степеней

16 Определение и свойства диф-форм высших степеней

Def 16.1. Определим дифференциальную форму степени k на открытом $U \subseteq \mathbb{R}^n$ как кососимметричное отображение наборов из k гладких векторных полей X_1, \ldots, X_k на U в $C^{\infty}(U)$, линейное по каждому аргументу и относительно умножения на бесконечно гладкие функции.

Lem 16.2. Значение выражения $\alpha(X_1, ..., X_k)$ в точке p зависит только от значений векторных полей X_i в точке p.

Пространство диф-форм степени k на $U \subseteq \mathbb{R}^n$ обозначим $\Omega^k(U)$. Интересно, что $\Omega^n(U)$ в фиксированной системе координат выглядит как $C^{\infty}(U)$, но при замене координат ведёт себя иначе.

Свойства диф-форм?

17 Внешнее умножение диф-форм

Def 17.1. Внешнее умножение $\Omega^k(U) \times \Omega^l(U) \mapsto \Omega^{k+l}(U)$, можно определить как

$$\alpha \wedge \beta = \frac{(k+l)!}{k!l!} \text{Alt } (\alpha \otimes \beta) \left[\stackrel{\text{or}}{=} \text{Alt } (\alpha \otimes \beta)\right], \quad \text{ где } \quad \text{Alt } (T(\ldots)) = \frac{1}{(k+l)!} \sum_{\sigma \in \Sigma_{k+l}} \operatorname{sign} \sigma \cdot T(\sigma(\ldots)),$$

при чём $(dx_1 \wedge \ldots \wedge dx_k)(\partial_1, \ldots, \partial_k) = 1.$

Просто так

18 Внешнее дифференцирование

Lem 18.1. На гладких диф-формах на U существует единсвтенный \mathbb{R} -линейный оператор $d: \Omega^k(U) \mapsto \Omega^{k+1}(U)$, удовлетворяющий условиям: 1) d(f) = df; 2) $d^2 = 0$; 3) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge d\beta$ (а-ля правило Лейбница). Более того, операция d определена инвариантно.

Def 18.2. Внешнему дифференцированию 0,1,2-форм в ориентированном \mathbb{R}^3 отвечают соответственнооперации градиента скалярного поля, ротора и дивергенции векторного поля, определнные соотношениями

$$d\omega_f^0 \stackrel{\text{def}}{=} \omega_{\operatorname{grad} f}^1, \qquad d\omega_{\overrightarrow{A}}^1 \stackrel{\text{def}}{=} \omega_{\operatorname{rot} \overrightarrow{A}}^2, \qquad d\omega_{\overrightarrow{B}}^2 \stackrel{\text{def}}{=} \omega_{\operatorname{div} \overrightarrow{B}}^3.$$

Также можно определить ΔA , как

 $\Delta \mathbf{A} = \operatorname{grad} \operatorname{div} \mathbf{A} - \operatorname{rot} \operatorname{rot} A.$

19 Обратный образ диф-форм

Def 19.1 (Обратный образ). Для всякого гладкого отображения $\varphi \colon U \mapsto V$ между открытими подмножествами евклидовых пространств определено отображение пространств дифференциальных форм $\varphi^* \colon \Omega^k(V) \mapsto \Omega^k(U)$, действующее по формуле⁴

$$\varphi^*\alpha(X_1,\ldots,X_k)=\alpha(\varphi_*X_1,\ldots,\varphi_*X_k).$$

Для функции $f \in C^{\infty}(V) = \Omega^{0}(V)$ оказывается $\varphi^{*}f = f \circ \varphi$, что совпадает с замены переменных в функции. Для форм первой степени $\alpha \circ \varphi_{*}$, где $\alpha|_{f(p)}$, а $\varphi_{*}|_{p}$.

Lem 19.2. Взятие обратного образа диф-форм коммутирует с внешним умножением и внешним дифференцированием.

Таким образом взятие обратного образа происходит формально подстановкой 5 выражений новых переменных через старые в коэффициенты формы и в дифференциалы новых переменных.

Task 19.3. Для двух гладких отображений открытых подмножеств евклидова пространства, $\varphi \colon U \mapsto V$ и $\psi \colon V \mapsto W$, имеет место соотношения

$$(\psi \circ \varphi)^* = \varphi^* \circ \psi^*, \qquad (\psi \circ \varphi)_* = \psi_* \circ \varphi_*.$$

⁴Важно заметить, что если левая часть вычисляется в точке $p \in U$, то правая в $\varphi(p)$.

 $^{^{5}}$ Было бы здорово посмотреть на задачи 6.96 и 6.97.

 $\mathsf{M}_{\mathsf{N}}\mathsf{K}$

Интегрирование дифференциальных форм

20 Интегрирование диф-формы объёма

Def 20.1. Диф-форма с *компактным носителем* на \mathbb{R}^n – форма определенная⁶ на всём \mathbb{R}^n и равная 0 за пределами некоторого компакта.

Def 20.2. Для гладкой формы с компактным носителем $\nu = a(x)dx^1 \wedge \ldots \wedge dx^n \in \Omega^n_{\rm c}(U)$ определим в какой-то фиксированной системе координат

$$\int_{U} \nu \stackrel{\text{def}}{=} \int_{U} a(x) \, dx_{1} \dots \, dx_{n}.$$

Lem 20.3. Ecnu $\lambda \in \Omega^{n-1}_c(U)$, $mo^8 \int_U d\lambda = 0$.

21 Представление диф-формы в каноническом виде

Lem 21.1. Пусть $U = \prod_{i=1}^{n} (a_i, b_i)$, где $(a_i, b_i) \ni 0$. Пусть $\varphi \colon \mathbb{R} \mapsto \mathbb{R}^+$ - гладкая функция c компактным носителем, содержащимся e каждом (a_i, b_i) , u c единичным интегралом. Для всякой $v \in \Omega^n_c(U)$ найдётся число I u форма $\lambda \in \Omega^{n-1}_c(U)$, такие что $v = I\varphi(x_1) \dots \varphi(x_n) dx_1 \wedge \dots \wedge dx_n + d\lambda$.

Соп 21.2. Пусть $U = \prod_{i=1}^{n} (a_i, b_i)$ – произведение интервалов. Факторпространство $\Omega_c^n(U)/d\Omega_c^{n-1}(U)$ одномерно. Получается, что всевозможные способы определить интеграл формы $\nu \in \Omega_c^n(U)$ так, чтобы интеграл от $d\lambda$ равнялся нулю, могут отличаться только умножением на константу. Ещё раз.

22 Поведение интеграла от формы при линейной замене координат

Lem 22.1 (Поведение интеграла формы при линейной замене координат). Интеграл дифференциальной формы $\nu \in \Omega^n_c(\mathbb{R}^n)$ при отображении A^* , соответствующем линейному преобразованию $A: \mathbb{R}^n \to \mathbb{R}^n$ меняет или не меняет знак в зависимости от знака определителя $\det A$, то есть

$$\int_{\mathbb{R}^n} A^* \nu = (\operatorname{sign} \det A) \int_{\mathbb{R}^n} \nu.$$

23 Гладкое разбиение единицы

Lem 23.1 (Разбиение единицы в окрестности компакта в \mathbb{R}^n). Для любого открытого покрытия $\{U_{\alpha}\}_{\alpha}$ компакта $K \subseteq \mathbb{R}^n$ найдётся набор неотрицательных гладких функций $\{\rho_{\alpha}\}_{\alpha} : \mathbb{R}^n \mapsto [0,1]$ с компактными носителями $\sup \rho_{\alpha}$ таких, что $\forall \alpha \ \sup \rho_{\alpha} \subset U_{\alpha}$, и только конечное число из них не равно нулю и $\sum_{\alpha} \rho_{\alpha}(x) \equiv 1$ в некоторой окрестности K. Это называется разбиение единицы, подчиненное покрытию.

Task 23.2. Для связной области $U \subset \mathbb{R}^n$ пространство $\Omega^n_{\rm c}(U)/d\Omega^{n-1}_{\rm c}(U)$ одномерно.

24 Поведение интеграла от формы при гладкой замене координат

Thr 24.1 (Поведение интеграла формы относительно гладкой замены координат). Интеграл дифференциальной формы $\nu \in \Omega^n_c(V)$ при отображении φ^* , соответствующем диффеоморфизму $\varphi \colon U \mapsto V$ между областями в \mathbb{R}^n меняет или не меняет знак в зависимости от знака⁹ якобиана J_{φ} , то есть

$$\int_{U} \varphi^* \nu = (\operatorname{sign} J_{\varphi}) \int_{v} \nu.$$

25 Формулы гладкой замены переменных в интеграле Лебега от функции

Con 25.1 (Криволинейная замена переменных в кратном интеграле). При диффеоморфизме¹⁰ $\varphi: U \mapsto V$ для интегрируемой по Лебегу на V функции f имеет место формула

$$\int_{V} f(y) \, dy = \int_{U} f(\varphi(x)) |J_{\varphi}| \, dx.$$

⁶Вообще можно рассматривать $\Omega_c^k(U) \subseteq \Omega_c^k(\mathbb{R}^n)$.

 $^{^7}$ Т.к a(x) – гладкая с компактным носителем, этот интеграл \exists , как повторный интеграл Римана, или как интеграл Лебега.

 $^{^8}$ Таким образом интеграл оказывается определен как линейный функционал на факторпространстве $\Omega_c^n(U)/d\Omega_c^{n-1}(U)$.

 $^{^{9}}$ Так как U и V связны, то знак якоби
ана один и тот же во всех точках области.

 $^{^{10}}$ Вообще достаточно непрерывной дифференцируемости.

Многообразия (с краем) и формула Стокса

26 Вложенные многообразия

Def 26.1. Замкнутое подмножество $M \subseteq \mathbb{R}^N$ называется *вложенным многообразием размерности* n, если $\forall p \in M \ \exists U_{\varepsilon}(p)$ и криволинейная система координат в ней, в которой включение $M \subset \mathbb{R}^N$ в пересечении с некоторой окрестностью нуля.

Яркий пример 11 — работа с условными экстремумами. Если M задаётся гладкими уравнениями $f_1=\ldots=f_{N_n}=0$ и дифференциалы этих уравнений линейно независимы в каждой точке M, то M будет вложенным многообразием размерности n, так как определяющие его функции можно считать частью системы координат $y_{n+1}=f_1,\ldots,y_N=f_{N-n}$ в окрестности каждой точки $p\in M$, и M в такой окрестности выглядит в точности как $\mathbb{R}^n\subset\mathbb{R}^N$ около нуля, а функции y_1,\ldots,y_n задают систему координат в M, пересеченном с окрестностью p.

Def 26.2. Замкнутое подмножество $M \subseteq \mathbb{R}^N$ называется *вложенным многообразием с краем*¹² размерности n, если для $\forall \ p \in M \ \exists U_{\varepsilon}(p)$ и криволинейная система координат в ней, в которой включение $M \subseteq \mathbb{R}^N$ либо превращается в стандартное вложение $\mathbb{R}^n \subset \mathbb{R}^N$, либо превращается в стандартное вложение $(-\infty, 0] \times \mathbb{R}^{n-1} \subset \mathbb{R}^N$, пересеченное с окрестностью 0.

Def 26.3. Из определения M понятно, что $\forall p \in M$ есть окрестность¹³ в многообразие $M \cap U$ и отображение $\varphi \colon M \cap U \mapsto \mathbb{R}^n$, являющееся диффеоморфизмом между $M \cap U$ и $\varphi(M \cap U)$, которое называется *координатной картой* многообразия M.

Def 26.4. Набор карт, районы действия которых в совокупности покрывают всё многообразие, называется *ат*ласом многообразия.

27 * Абстрактное определение гладкого многообразия

Def 27.1 (Абстрактное определение многообразия). *Гладкое п-мерное многообразие* M – хаусдорфово топологическое пространство со счётной базой, покрытое открытыми картами U_i так, что для каждой карты задано отображение $\varphi_i \colon U_i \mapsto \mathbb{R}^n$ являющееся гомеоморфизм на открытое подмножество \mathbb{R}^n , и для пары таких отображений $(\kappa apm) \varphi_i$ и φ_j композиция $\varphi_i \circ \varphi_j^{-1}$ является диффеоморфизмом на своей естественной области определения.

Def 27.2. Гладкое n-мерное многообразие c краем M отличается тем, что некоторые из карт являются не такими, как описано выше, а являются гомеоморфизмами на относительно открытое подмножество полупространства $(-\infty,0]\times\mathbb{R}^{n-1})$, в котором точки из $\{0\}\times\mathbb{R}^{n-1}$ образуют край в этой карте, а замены координат $\varphi_i\circ\varphi_j^{-1}$ переводят край в одной карте в край в другой карте.

28 Диф-формы, векторные поля и d на многообразии

Def 28.1. Дифференциальной формой $\alpha \in \Omega^k(M)$ на многообразии мы будем называть набор диф-форм α_i на образах карт $\varphi_i \colon U_i \mapsto \mathbb{R}^n$, которые обладают свойством

$$(\varphi_i \circ \varphi_j^{-1})^* \alpha_i = \alpha_j$$

на естественной области определения $\varphi_i \circ \varphi_j^{-1}$ в \mathbb{R}^n , для всяких двух карт $\varphi_i, \, \varphi_j.$

Можно неформально сказать, что глобальная форма собирается из локальных форм, если одна локальная форма переходит в другую при замене одной карты на другую, причём делает это именно так, как это происходит в раннее изученном случае, когда многообразие является областью в \mathbb{R}^n .

Достаточно рассматривать набор карт, покрывающих многообразие M. Для в любой другой координатной карте φ соответствующее представление $\alpha \in \Omega^k(\varphi(U))$ будет выглядеть как $\alpha = (\varphi_i \circ \varphi^{-1})^*\alpha_i$ на множестве $\varphi(U \cap U_i)$. По определению диф-формы и (19.3) оказывается

$$(\varphi_j \circ \varphi^{-1})^* \alpha_j = (\varphi_j \circ \varphi^{-1})^* (\varphi_i \circ \varphi_j)^* \alpha_i = (\varphi_i \circ \varphi^{-1})^* \alpha_i.$$

на $\varphi(U \cap U_i \cap U_i)$.

В силу установленной ранее независимости от выбор системы криволинейных координат операции \wedge и d верно определены для форм на многообразиях.

Простой и естественный способ получить диф-форму на $M \subset \mathbb{R}^N$ – ограничить какую-то диф-форму из евклидова пространства, или из окрестности M, или положить $\alpha_i = (\varphi_i^{-1})^* \alpha$ для $\alpha \in \Omega^k(\mathbb{R}^n)$.

 $^{^{11}{\}rm Tak},$ например, любая сфера в \mathbb{R}^n является вложенным многообразием размерности n-1.

 $^{^{12}{\}rm Kpa}$ й ∂M многообразия с краем M сам по себе является (n-1)-мерным многообразием без края.

¹³Относительно открытое подмножество многообразия.

 $\mathsf{W}_{\mathtt{N}}\mathsf{K}$

Касательный вектор к вложенному многообразию $M \subset \mathbb{R}^N$ также можно рассматривать как касательный вектор к \mathbb{R}^N , так как любой вектор X в некоторой точке образа карты φ_i можно перенести в \mathbb{R}^n отображением $(\varphi_i^{-1})_*$.

Для гладкого отображения многообразий корректно определена производная $Df_p \colon T_pM \mapsto T_{f(p)}N$ в каждой точке $p \in M$, которую мы также называли прямым образом вектора φ_* , что и является линейным отображением касательных пространств в точке.

Отображение обратного образа диф-форм $f^* \colon \Omega^k(N) \mapsto \Omega^k(M)$ как

$$f^*\alpha|_p(X_1,\ldots,X_k) = \alpha|_{f(p)}(f_*X_1,\ldots,f_*X_k)$$

Для векторных полей $f_* = (f^{-1})^*$.

29 Гладкие отображения многообразий

- **Def 29.1.** Функция $f: M \to \mathbb{R}$ называется гладкой функцией на многообразии, $f \in C^{\infty}(M)$, если в каждой координатной карте $\varphi: U \mapsto \mathbb{R}^n$ эта функция $(f \circ \varphi^{-1})$ является гладкой функцией на образе $\varphi(U)$.
- **Def 29.2.** Гладкой структурой на топологическом пространстве называется максимальный по включению атлас, с которым пространство становится многообразием.
- **Def 29.3.** Гладким отображением между многообразиями $f: M \mapsto N$ размерностей m и n называется непрерывное отображение, которое в окрестности каждой точки, в достаточно малых координатных картах, выглядит как гладкое отображение из \mathbb{R}^m в \mathbb{R}^n .
- **Def 29.4.** Гладкое обратимое отображение $f: M \mapsto N$ с обратным гладким назовётся диффеоморфизмом многообразий.
- **Task 29.5.** Если взять некоторое *компактное* гладкое многообразие M (область параметров) и гладкое отображение $f: M \mapsto \mathbb{R}^n$, такое, что rg $Df_p = \dim M \ \forall p$, то f(M) будет вложенным многообразием.
- **Lem 29.6.** Для гладкого отображения $f \colon M \mapsto \mathbb{R}^n$ с $\operatorname{rg} Df \equiv m = \dim M$, для всякой $p \in M$ найдётся окрестность $U \ni p$ такая, что f(U) в некоторой криволинейной системе координат в окрестности f(p) является открытым подмножеством стандартно вложенного $\mathbb{R}^m \subseteq \mathbb{R}^n$.

30 Ориентируемость многообразия

Def 30.1. Гладкое многообразие M называется *ориентируемым*, если можно выбрать покрывающий атлас так, что якобианы замен координат между любыми двумя картами атласа будут положительными.

Если в исходном атласе был задан некоторый объект, например векторное поле X, то во всякой новой карте ψ мы тоже будем иметь векторное поле, собранное из прямых образов $(\psi \circ \varphi^{-1})_* X_{\varphi}$ полученных с имеющихся карт φ и образов X_{φ} в них.

- **Def 30.2.** Ориентацией гладкого многообразия M называется атлас с положительными якобианами перехода между картами, максимальный по включению среди всех таких атласов.
- **Lem 30.3.** Связное многообразие либо неориентируемо, либо допускает два класса ориентации.
- **Lem 30.4.** Многообразие M размерности n ориентируемо тогда и только тогда, когда существует дифференциальная форма $\nu \in \Omega^n(M)$, которая ни в одной точку не равна нулю.
- **Lem 30.5.** Многообразие ориентируемо тогда и только тогда, когда на нём не существует противоречивой (дезориентирующей) цепочки карт.
- **Def 30.6.** Для n-мерного ориентированного многообразия с краем M введём ориентацию на его крае ∂M следующим образом. Пусть карта M с координатами x_1, \ldots, x_n соответсвует ориентации M, причём образ отображения карты удовлетворяет неравенству $x_1 \leq 0$, а образ края соответствует равенству $x_1 = 0$. Тогда карта на соответствующей части ∂M из координат x_2, \ldots, x_n по определению объявляется положительной. Если же многообразие в этой карте задано неравенством в другую сторону, $x_1 \geq 0$, то карта x_2, \ldots, x_n на его краю по определению объявляется отрицательной.
- **Lem 30.7.** Предыдущее определение корректно задаёт ориентацию на ∂M .

31 Определение интеграла диф-формы по ориентированному многообразию

Lem 31.1 (Разбиение единицы в окрестности компакта на многообразии). Пусть M – гладкое многообразие, а $K \subseteq M$ – его компактное подмножество. Для любого покрытия $\{U_{\alpha}\}_{\alpha}$ компакта K открытыми множествами найдётся набор неотрицательных гладких функций $\{\rho_{\alpha}\}_{\alpha}$ с компактными носителями $\{\rho_{\alpha}\}_{\alpha}$ с компактными носителями $\{\rho_{\alpha}\}_{\alpha}$ с компактными носителями $\{\rho_{\alpha}\}_{\alpha}$ с компактными $\{\rho_{\alpha}\}_{\alpha}$

$$\forall \alpha \text{ supp } \rho_{\alpha} \subset U_{\alpha},$$

только конечное число из них отлично от нуля и $\sum_{\alpha} \rho_{\alpha}(x) \equiv 1$ в некоторой окрестности K.

Def 31.2. Интеграл дифференциальной формы $\nu \in \Omega^n_{\rm c}(M)$ с компактным носителем по ориентированному *п*-мерному многообразию M определяется с помощью разбиения единицы в окрестности носителя ν

$$\rho_1 + \ldots + \rho_m = 1,$$

подчиненного некоторому набору положительно ориентрированных карт как

$$\int_{M} \nu = \sum_{i} \int_{M} \rho_{i} \nu_{i},$$

где интегралы справа рассматриваются в координатных картах, содержащих носители соответствующих ρ_i .

Lem 31.3. Определение интеграла не зависит от выбора системы положительных карт в данной ориентации и подчиненного им разбиения единциы.

32 Общая формула Стокса

Thr 32.1 (Формула Стокса). Для ориентированного многообразия с краем¹⁴ $(M, \partial M)$ размерности n и формы $\alpha \in \Omega_c^{n-1}(M)$ выполняется

$$\int_{M} d\alpha = \int_{\partial M} \alpha.$$

33 Частные случаи формулы Стокса

 \mathbb{R}^1 . Формула Стокса для ориентированной кривой с началом в точке p и концом в точке q сводится к

$$\int_{\gamma} df = f(q) - f(p).$$

 \mathbb{R}^2 . Для компактного множества $G\subset\mathbb{R}^2$ с гладкой границей, ориентированного так, что при движении по ∂G множество G оказывается слева, верна формула Γ рина

$$\int_{\partial G} P \, dx + Q \, dy = \int_{G} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \wedge dy.$$

 \mathbb{R}^3 . Для компактного множества $G \subset \mathbb{R}^3$ с гладкой границей (край в \mathbb{R}^3) верна формула Гаусса-Остроградского

$$\int_{\partial G} P\,dy \wedge dz + Q\,dz \wedge dx + R\,dx \wedge dy = \int_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right)\,dx \wedge dy \wedge dz.$$

Кривую можно считать не бесконечно гладкой, а всего лишь кусочно непрерывно дифференцируемой, формула всё равно остаётся верной. С помощью предельного перехода также обобщается случай с $\simeq \mathbb{R}^2$ до множества с кусочно C^2 границей.

Вообще формула Стокса верна не только для вложенных двумерных многообразий, но и для всякого образа гладкого отображения $f \colon D \mapsto \mathbb{R}^3$ области $D \subset \mathbb{R}^2$ с кусочно гладкой границей, если интегралы мы понимаем как интегралы обратных образов $f^*(\alpha)$ и $f^*(d\alpha)$ по ∂D и D соответственно. Для практических применений полезно ослабить условие гладкости f до C^2 (в интеграле, в координатном представлении, используются производные f не более чем первого порядка).

34 Потенциал диф-форм

Физический потенциал силового поля в математический терминах означает поиск $f \in C^{\infty}(M)$: $df = \alpha$ для заданной силы $\alpha \in \Omega^1(M)$

Def 34.1. Пусть A – векторное поле в области $D \subset \mathbb{R}^n$. Функция $U \colon D \mapsto \mathbb{R}$ называется *потенциалом поля* A в области D, если в этой области $A = \operatorname{grad} U$. Поле, обладающее потенциалом, называется *потенциальным полем*.

 $^{^{14}}$ край рассматривается с согласованной ориентацией.

 $M_{\rm H}$ K $\Phi_{\rm H}$ 3 $T_{\rm E}$ X

Thr 34.2. Необходимым и достаточным условием наличия потенциала у непрерывной $\alpha \in \Omega^1(M)$, для гладкого M, является независимость $\int_{\gamma} \alpha$ от выбора кусочно-гладкой кривой γ между двумя точками.

Эквивалентно можно потребовать равенства нулю интегралов по всем замкнутым кусочно-гладким кривым.

Lem 34.3 (Необходимое условие потенциальности). *Необходимым условием существования потенциала у* $\alpha \in \Omega^1(M)$ *является* $d\alpha = 0$ $(m.\kappa.$ d(du) = 0).

Lem 34.4. В случае \mathbb{R}^3 по определению $d\omega_{\overrightarrow{A}}^1 = \omega_{\text{rot }\overrightarrow{A}}^2$, поэтому необходимое условие потенциальности поля A переписывается в виде rot A = 0.

Однако этого не достаточно, так например в открытой $U = \mathbb{R}^2 \setminus \{0\}$:

$$\alpha = \frac{x\,dy - y\,dx}{x^2 + y^2} \qquad \leadsto \qquad d\alpha = 0, \qquad \text{ho} \qquad \oint_{S^1} \alpha = 2\pi.$$

Def 34.5. Поле **A** называется *векторным потенциалом* поля **B** в области $D \subset \mathbb{R}^3$, если в этой области выполняется соотношение $B = \operatorname{rot} A$.

Это можно переписать в виде $\omega_{\vec{B}}^2 = d\omega_{\vec{A}}^1$, тогда $\omega_{\text{div}\,\vec{B}}^3 = d\omega_{\vec{B}}^2 = d^2\omega_{\vec{A}}^1 = 0$, то есть необходимое условие div B=0, принято такое поле называть *соленоидальным*.

 Δ_{M} Х $=\Sigma_{\mathrm{M}}$ Т

Элементы дифференциальной топологии

35 Замкнутые и точные формы. Цепные гомотопии

Def 35.1. Диф-форма $\alpha \in \Omega^k(M)$ — замкнутая, если $d\alpha = 0$; α — точная, если $\exists \beta \in \Omega^{k-1}(M)$: $d\beta = \alpha$.

Task 35.2. Если α — точная, а β — замкнутая, **то** $\alpha \wedge \beta$ — точная.

Def 35.3. Отображения $h_0, h_1 : M \mapsto N$ гладко гомотопны, если $\exists h : M \times [0,1] \mapsto N$, такое что $h_0(x) = h(x,0)$ и $h_1(x) = h(x,1)$.

Многообразие $M \times [0,1]$ (цилиндр) является топологическим пространством, которое локально устроено как произведение открытого $U \subset \mathbb{R}^n$ на отрезок. Интересно заметить, что если $\partial M = \emptyset$, то $\partial (M \times [0,1]) = M \times \{0,1\}$.

Def 35.4. М называется стягиваемым в точку $x_0 \in M$ или гомотопным точке, если $\exists h \colon M \times [0,1] \mapsto M$ такое, что h(x,1) = x и $h(x,0) = x_0$. (пример для $\mathbb{R}^n \colon h(x,t) = tx$)

Thr 35.5 (Теорема Пуанкаре). \forall замкнутой $\omega \in \Omega^k(M)$, на стягиваемом в точку M, является точной.

В умных книжках говорят чаще про непрерывные гомотопии, но так как мы работаем с гладкими M, мы будем использовать гладкие гомотопии. Обладая определенной сноровкой можно показать, что если два отображения между многообразиями непрерывно гомотопны, то они и гладко гомотопны.

Станет легче, если свести вопрос к случаю, когда для $\varepsilon > 0$: h(x,t) = h(x,0) при $t < \varepsilon$ и h(x,t) = h(x,1) при $t > 1 - \varepsilon$. Определим новую гомотопию:

$$\varphi(\in C^{\infty}) \colon \mathbb{R} \mapsto [0,1] \colon \begin{cases} \varphi = 0, \ t \leqslant \varepsilon \\ \varphi = 1, \ t \geqslant 1 - \varepsilon \end{cases} \quad \rightsquigarrow \quad h'(x,t) = h(x,\varphi(t)).$$

Thr 35.6 (Цепная гомотопия). **Если** отображения $f_0, f_1 : M \mapsto N$ гладко гомотопны, **то** $\forall \alpha \in \Omega^k(N)$ выполняется для некоторой $H : \Omega^k(N) \mapsto \Omega^{k-1}(M)$:

$$f_1^*\alpha - f_0^*\alpha = H(d\alpha) + d(H(\alpha)).$$

36 Когомологии де Рама

В силу теоремы Пуанкаре (35.5) любая замкнутая форма на многообразии локально точна, однако склеивать их в точную на всём пространство нам будут мешать дырки, как это случалось в задаче из нашего задания. Связь между устройством многообразия и взаимоотношением замкнутых и точных форм на нём описывается группами (ко)гомологий де Рама.

Замкнутые и точные формы на M образуют линейные пространства $Z^k(M)$ и $B^k(M)$ соответственно.

Def 36.1 (Когомологии де Рама). или группа k-мерных когомологий многообразия M:

$$H^k(M) = Z^k(M)/B^k(M)$$
.

Def 36.2. Если формы α_1, α_2 отличаются на точную форму, то говорят, что они гомологичны.

Таким образом если замкнутые α_1, α_2 гомологичны, то они лежат в одном классе когомологии.

По скольку $Z^k(M)$ есть $\operatorname{Ker} d \colon \Omega^k(M) \mapsto \Omega^{k+1}(M)$, а $B^k(M)$ есть $\operatorname{Im} d \colon \Omega^{k-1}(M) \mapsto \Omega^k(M)$, то часто переписывают:

 ${f Def}$ 36.3. Когомологии де ${f Pama}$ гладкого M — это факторпространства

$$H^k_{DR}(M) = \frac{\operatorname{Ker} d \colon \Omega^k(M) \mapsto \Omega^{k+1}(M)}{\operatorname{Im} d \colon \Omega^{k-1}(M) \mapsto \Omega^k(M)}.$$

Lem 36.4 (Лемма Пуанкаре).

$$H^p(\mathbb{R}^k) = 0 \ npu \ p > 0,$$
 $H^p(\mathbb{R}^k) = \mathbb{R} \ npu \ p = 0.$

37 * Когомологии де Рама с компактным носителем

Task 37.1. Для не обязательно компактного многообразия без края M рассмотрим дифференциальные формы с компактным носителем $\Omega_c^*(M)$ и определим когомологии де Рама с компактным носителем:

$$H^k_c(M) = \operatorname{Ker} d \colon \Omega^k_c(M) \mapsto \Omega^{k+1}_c(M) \ / \ \operatorname{Im} \ d \colon \Omega^{k-1}_c(M) \mapsto \Omega^k_c(M).$$

Если $\dim M = n$, M ориентируемо и связно, **то** $H^n_c(M)$ одномерно.

Task 37.2. $H_c^k(\mathbb{R}^n) = 0$ при $k \neq n$, и $H_c^n(\mathbb{R}^n) = \mathbb{R}$.

 $M_{\rm II}$ K $\Phi_{\rm II}$ 3 $T_{\rm E}$ X

38 * Критические и регулярные значения, теорема Сарда

Def 38.1. Точка $p \in M$ называется критической точкой гладкого отображения $f \colon M \mapsto N$, если Df_p не сюръективно. Иначе называется регулярной точкой.

Если для точки $q \in N$ найдётся критическая $p \in M$, такая что q = f(p), то q называется критическим значением отображения. Некритическое значение $q \in N$ назвается регулярным значением.

Def 38.2. Множество лебеговой меры нуль в многообразии M — это множество, пересечение которого с областью определения любой координатной карты M в образе карты имеет меру нуль.

Формула меры образа (25.1) при гладкой замене координат тогда показывает, что множество меры нуль в евкл. пр-ве переходит в множество меры нуль. Значит свойство подмножества X многообразия M иметь лебегову меру нуль достаточно проверить не во всех возможных картах, а лишь в любом атласе, который покрывает M.

39 * Степень гладкого отображения

Def 39.1. Если $f: M \mapsto N$ — гладкое отображение ориентированных многообразий одной и той же размерности, M — компактно, и y — регулярное значение f, степенью отображения в точке y называется: A?

$$\sum_{f(x_i)=y} \operatorname{sign} J f_{x_i}.$$

(число точек в прообразе $f^{-1}(y)$, для которых якобиан $J_{f_x}>0$ за вычетом числа точек в прообразе $f^{-1}(y)$, у которых $J_{f_x}<0$)

В случае отсутствия ориентации хотя бы одного многообразия степень определена по модулю 2 как чётность количества точек в прообразе $f^{-1}(y)$.

Из условия того, что y — регулярное значение, следует, что множество $f^{-1}(y)$ состоит из изолированных точек, то есть это дискретное множество. В случае компактного M число точек $f^{-1}(y)$ должно оказаться конечным, так как дискретное компактное множество конечно. То же будет верно для отображения, для которого прообраз любого компакта компактен, но использовать мы этого уже не будем.

Lem 39.2. Если $f: M \mapsto N$ — гладкое отображение ориентированных многообразий без края одной и той же размерности, многообразие M компактно, и y — регулярное значение f, **то** $\exists U \ni y$ (окр-ть), такая что $\forall y' \in U$ регулярны $u \deg_y f = \deg_{y'} f$.

В случае отсутствия ориентации в M мы просто утверждаем независимость количества точек в $f^{-1}(y')$ от $y' \in U$.

Thr 39.3 (Гомотопическая инвариантность степени отображения). Пусть многообразие M компактное без края, N — не обязательно компактное без края, $h \colon M \times [0,1] \mapsto N$ — гладкая гомотопия, а $y \in N$ такова, что она является регулярным значением для h_0 и h_1 .

Тогда степени отображения h_0 и h_1 в точке у равны. Если оба многообразия ориентированы, то степень считается со знаком, иначе она считается как чётность.

Def 39.4. Семейство диффеоморфизмов $h_t \colon M \mapsto N$ назовём изотопией, если оно гладко зависит от параметра t, то есть даёт гладкое $h \colon M \times [0,1] \mapsto N$.

Lem 39.5. Если многообразие M связное, без края $u \; x, y \in M$, то существует изотопия $h_t \colon M \mapsto M$, такая что $h_0 = id \; u \; h_1(x) = y$.

Con 39.6. При связном N степень $f: M \mapsto$ не зависит от выбора $y \in N$.

Thr 39.7 (Корректность определения степени отображения). Степень отображения $f \colon M \mapsto N$ для связного многообразия без края N и компактного многообразия без края M не зависит от выбора регулярного значения в M. Если оба многообразия ориентированы, то степень считается со знаком, иначе она считается как чётность.

Con 39.8. Пусть $M - \kappa$ омпактное многообразие без края положительной размерности. Тогда тождественное отображение $id: M \mapsto M$ не гомотопно постоянному отображению $M \mapsto M$ в одну точку.

40 * Степень гладкого отображения с помощью интегрирования

Проверить, что всё работает, когда у нас N не компактно, и мы имеем дело с собственным отображением (прообраз компакта — компакт).

Определим степень для таких отображений:

Def 40.1. $f: M \mapsto N$ — собственное и гладкое, M, N — ориентированные и без края, и одной и той же размерности, причём N связно. Тогда для $\omega \in \Omega^n_c(M)$ выполняется:

$$\int_{M} f * \omega = \deg f \cdot \int_{N} \omega.$$

И вот оно эквивалентно, всё как всегда в качестве упражнения, мужайтесь.

Lem 40.2. $f: M \mapsto N$ гладкое отображение ориентированных многообразий с карем одной и той же размерности, причём $f(\partial M) \subseteq \partial N$ и N связно. B этом случае степень f корректно определена: $\deg f = \deg f|_{\partial N}$.

41 Теорема Брауэра о неподвижной точке

Thr 41.1 (Теорема Брауэра о неподвижной токе). Пусть $B \subset \mathbb{R}^n$ — некторый замкрнутый шар. Всякое непрерывное отображения в себя $f \colon B \mapsto B$ имеет неподвижную точку, то есть точку, в которой f(x) = x.

Thr 41.2 (Отсутствие ретракции шара на его границу). Пусть сфера S^{n-1} рассматривается как край шара B^n . Не существует непрерывного отображения $f \colon B^n \mapsto S^{n-1}$, такого что $f|_{S^{n-1}} = id_{S^{n-1}}$.

42 * Существование нигде не нулевых векторных полей на сфере

Здесь про ёжика

 $M_{\rm IM}$ K $\Phi_{
m IM}$ 3 $T_{
m E}$ X

Дифференцирование и интегрирование векторных полей

43 Внутреннее дифференцирование

Def 43.1. Операция *внутреннего умножения* векторного поля на форму как $i_X \alpha(X_2, \dots, X_k) = \alpha(X, X_2, \dots, X_k)$.

- 1. i локальная операция,
- 2. $i_X \mapsto \Omega^k(M) \mapsto \Omega^{k-1}(M)$ линейное отображение;
- 3. Если $\omega_1 \in \Omega^{k_1}(M), \ \omega_2 \in \Omega^{k_2}(M), \ \text{то} \ i_X(\omega_1 \wedge \omega_2) = i_X \omega_1 \wedge \omega_2 + (-1)^{k_1} \omega_1 \wedge i_X \omega_2;$
- 4. Если $\omega \in \Omega^1(M)$, о $i_X\omega = \omega(X)$, а если $f \in \Omega^0(M)$, то $i_Xf = 0$.

Lem 43.2. Если в локальных координатах x_1, \ldots, x^n карты $\varphi \colon \mathbb{R}^n \mapsto U \subset M$ форма ω (точнее $\omega|_U$), то

$$\omega = \frac{1}{k!} a_{i_1,\dots,i_k} \, dx^{i_1} \wedge \dots \wedge dx^{i_k}, \qquad X = X^i \partial_i \qquad \rightarrow \qquad i_X \omega = \frac{1}{(k-1)!} X^i \alpha_{i,i_2,\dots,i_k} \, dx^{i_2} \wedge \dots \wedge dx^{i_k}.$$

44 Производная Ли и скобка Ли

Def 44.1 (Производная Ли диф-формы). *Производная Ли* вдоль векторного поля X на дифференциальных формах определяется, как $L_X = i_X d + d i_X$.

Из этого легко получить, что $L_X(\alpha \wedge \beta) = L_X \alpha \wedge \beta + \alpha \wedge L_X \beta$, и выражения для функций и линейных форм $L_X f = i_X df + d(I_X f) = i_X df = df(X) = X(f),$ $L_X df = i_X d(df) + d(i_X df) = d(X(f)).$

- 1. L_X локальная операция;
- 2. $L_X: \Omega^k(M) \mapsto \Omega^k(M)$ линейное отображение $\forall k$;
- 3. $L_X(\alpha \wedge \beta) = L_X \alpha \wedge \beta + \alpha \wedge L_X \beta$;
- 4. Если $f \in \Omega^0(M)$, то $L_X f = df(X) \stackrel{\text{def}}{=} X f$, а $L_X df = d(X f)$.

Def 44.2 (Производная Ли векторного поля). Потребуем выполнение формулы Лейбница для производной Ли вдоль X значения $\alpha(Y) = i_Y \alpha$, то есть

$$L_X(\alpha(Y)) = L_X(\alpha)(Y) + \alpha(L_XY), \quad \mapsto \quad \alpha(L_XY) = i_X d(i_Y\alpha) - i_Y d(i_X\alpha) - i_Y i_X d\alpha.$$

Подставив $\alpha = \alpha_i dx^i$, и считая, что $\alpha(L_XY) = a_i dx^i(L_XY)$, находим что

$$(L_XY)^i = dx_i(L_XY) = i_x d(i_Y dx^i) - i_Y d(i_X dx^i).$$

Рассматривая это, как дифференцирование функции f, получаем

$$(L_X Y)f = df(L_X Y) = i_X d(i_Y df) - i_Y d(i_X df) = X(Y(f)) - Y(X(f)).$$

Поэтому производная Ли L_XY – это коммутатор векторных полей [X,Y], то есть

$$L_XY = [X, Y] = (X^i \partial_i Y^j - Y^i \partial_i X^j) \partial_i.$$

Lem 44.3 (Тождество Якоби). Для любых трёх гладких векторных полей X, Y, Z всегда верно, что

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0.$$

Таѕк 44.4. Пусть X, Y – векторные поля, f, g – гладкие функции, тогда [fX, gY] = fg[X, Y] - gY(f)X + fX(g)Y.

45 Интегрирование векторных полей, как решение диф-уравнений

Кусочек курса диф-уров

Для диф-уров, при непрерывных первых производных f, в области $U\subseteq\mathbb{R}^n$,

$$\dot{x} = f(x(t), t), \quad f: U \times (t_0 - \varepsilon, t_0 + \varepsilon) \mapsto U \subset \mathbb{R}^n$$

Thr 45.1 (Существование и единственность решений диф-уравнений). Если f непрерывно по всем аргументам и удовлетворяет условию Липшица по x в окрестности $x(t_0)$, то решение c данным начальным условием существует и единственно в некотором диапазоне $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$.

Thr 45.2 (Существование и единственность решений линейного уравнение). Решение линейного уравнения $\dot{x} = A(t)x(t) + b(t)$ с непрерывно зависящими от времени линейным оператором A(t) и вектором b(t), при любом начальном условии $x(t_0)$ существует и единственно на любом промежутку времени, на котором A и b непрерывны.

Thr 45.3 (Непрерывная зависимость решений диф-уравнений от параметров и н.у.). Решим задачу Коши с н.у. $x(t_0) = a \in U$. Если $f(x,t,p)(=\dot{x})$ непрерывна по всем аргументам, удовлетворяет условию Липшица по x в окрестности $x(t_0)$ равномерно по $t \in (t_0 - \varepsilon_0, t_0 + \varepsilon_0)$ и $p \in P$ (некоторое метрическое пространство параметров), а также f равномерно ограничена $\forall p \in P$, то решение существует и единственно в $\forall t \in (t_0 - \varepsilon, t_0 + \varepsilon)$, при значениях a в некоторой окрестности $U(a_0)$ и $\forall p \in P$. Решение непрерывно зависит от $a \in U(a_0)$ и $p \in P$.

Thr 45.4 (Дифференцируемая зависимость решений дифференциальных уравнений от параметров и н.у.). Пусть правая часть диф-уравнения f(x,t,p) непрерывна по времени в $(t_0 - \varepsilon_0, t_0 + \varepsilon_0)$, а её производные по $x \in U$ и параметру p непрерывно зависят от x,t,p в некотором открытом множестве $U \times (t_0 - \varepsilon_0, t_0 + \varepsilon_0) \times P$. Тогда решение задачи Коши непрерывно дифференцируемым образом зависит от начальных условий x_0 и параметра p при значениях времени в некотором диапазоне $(t_0 - \varepsilon, t_0 + \varepsilon)$, $\varepsilon > 0$.

Con 45.5. Если правая часть диф-уравнения непрерывна по времени и т раз непрерывно дифференцируемо зависит от х и параметров, а также её производные порядка не более т по х и параметрам непрерывно зависят от времени, то решение уравнения т раз непрерывно дифференцируемо зависит от параметров и н.у.

Собственно, сам билет

Def 45.6. Дифференциальное уравнение на многообразии M и точки $p \in M$, нахождение такой *интегральной кривой* $\gamma \colon (a,b) \mapsto M$, для которой

$$\gamma'(t) = X_{\gamma(t)},$$

и $\gamma(t_0) = p$ при данном $t_0 \in (a, b)$.

Thr 45.7 (Выпрямление векторного поля). Если векторное поле X в точке $p \in M$ не равно нулю, то в некоторой криволинейной системе координат x_1, \ldots, x_n в окрестности точки p оно может быть приведено κ виду $X = \partial_1$.

Lem 45.8. Пусть X – возможно зависящее от времени векторное поле на многообразии без края M. Тогда для всякого момента времени t_0 и точки $p \in M$ существует интегральная кривая γ , определенная на некотором интервале (не обязательно конечном) $(T_1, T_2) \ni t_0$ и удовлетворяющая условию $\gamma(t_0) = x_0$, максимальная в том смысле, что любая другая интегральная кривая $\tilde{\gamma}$ векторного поля X, удовлетворяющая тому же условию $\tilde{\gamma}(t_0) = p$, является ограничением γ на некоторый интервал $(\tilde{T}_1, \tilde{T}_2) \subseteq (T_1, T_2)$.

Thr 45.9. Пусть X – возможно зависящее от времени векторное поле на многообразии без края M, а $\gamma\colon (T_1,T_2)\mapsto M$ – его максимальная интегральная кривая, не продолжающаяся за пределы интервала (T_1,T_2) . Без ограничения общности, если T_2 конечно, то кривая γ покидает любой компакт при $t\mapsto T_2-0$ в следующем смысле: для всякого компактного $K\subseteq M$ найдётся $T_K\in (T_1,T_2)$, такое что $\gamma(t)\notin K$ при $t>T_K$.

Con 45.10. Для возможно зависящего от времени векторного поля X с компактным носителем на многообразии без края M все интегральные кривые продолжаются по времени неограниченно в обе стороны.

46 Геометрический смысл производной Ли

Решая задачу Коши, можно сопоставить векторному полю с компактным носителем семейства диффеоморфизмов $\varphi_{t,t_0} \colon M \mapsto M$, удовлетворяющее соотношению

$$\frac{d}{dt}\varphi_{t,t_0}(x) = X_{\varphi_{t,t_0},t} \quad \text{ и } \quad \varphi_{t_0,t_0} = \mathrm{id}_M\,.$$

Если векторное поле зависит от времени гладко, то и φ_{t,t_0} будет зависеть от времени гладко. Смысл $\varphi_{t,t_0}(x)$ можно иначе объяснить как нахождение интегральной кривой $\gamma(t)$ векторного поля X с начальным условием $\gamma(t_0) = x$ и определение $\varphi_{t,t_0}(x) = \gamma(t)$.

Thr 46.1. Для возможно зависящего от времени векторного поля X на многообразии без края M и соответствующих ему диффеоморфизмов φ_{t,t_0} выполняется $\varphi_{t_2,t_1} \circ \varphi_{t_1,t_0} = \varphi_{t_2,t_0}$.

Получается, что φ_{t_1,t_0} имеет гладкое обратное отображение, соотвественно является диффеоморфизмом. Рассмотрим отдельно X не зависящее от времени. Тогда если $\gamma(t)$ является решением, то и $\gamma(t+s)$ тоже является решением, как функция от t, тогда

$$\varphi_{t_1,t_0} = \varphi_{t_1+s,t_0+s}, \ \forall s,$$

то есть диффеоморфизм зависит только от разности $t_1 - t_0$, тогда удобно положить $\varphi_t = \varphi_{t,0}$, тогда $\varphi_t \circ \varphi_s = \varphi_{t+s}$. В таком случае говорят, что векторное поле порождает однопараметрическую группу диффеоморфизмов.

 $M_{\rm M}K$ $\Phi_{\rm M}$ 3 $T_{\rm E}X$

Thr 46.2 (геометрический смысл производной Ли). Производная Ли может быть определена с помощью соответствующей полю X однопараметрической группой $\{\varphi_t\}$ диффеоморфизмов для дифференциальной форма α или другого векторного поля Y как поточечный предел

$$L_X \alpha = \lim_{t \to 0} \left(\frac{\varphi_t^* \alpha - \alpha}{t} \right) = \frac{d}{dt} \varphi_t^* \alpha \bigg|_{t=0}, \quad L_X Y = \lim_{t \to 0} \frac{\varphi_t^* Y - Y}{t} = \frac{d}{dt} \varphi_t^* Y \bigg|_{t=0},$$

где обратный образ векторного поля при диффеоморфизме определяется как обратное отображение к прямому образу.

47 Дивергенция векторного поля на многообразии с формой объема

Task 47.1 (теорема о дивергенции). Пусть на многообразии M фиксирована нигде не нулевая форма $\nu \in \Omega^n(M)$ при $n=\dim M$. Интегрирование этой формы задаёт некоторое понятие объема (меры) на многообразии. Тогда дивергенцию векторного поля X относительно этого объема можно определить как

$$\operatorname{Vol} U = \int_{U} \nu, \quad U \subseteq M, \qquad L_{X} \nu = (\operatorname{div}_{\nu} X) \nu = d(i_{X} \nu).$$

Таким образом построили отображение $X \mapsto {\rm div}_{\nu} X$ (скаляр). Получается, что

$$\int_{M} (\operatorname{div}_{\nu} X) \nu = \int_{\partial M} i_{X} \nu.$$

Что позволяет формализовать понятие потока векторного поля через некоторую поверхность.

Thr 47.2 (Геометрический смысл дивергенции). Пусть на ориентированном многообразии M мера определена как интеграл от некоторой всюду ненулевой соответствующей ориентации формы $\nu \in \Omega^n(M)$. Тогда для дивергенции векторного поля X относительно объёма ν и всякого компактного $K \subseteq M$ имеет место формула

$$\int_{K} (\operatorname{div}_{\nu} X) \nu = \frac{d}{dt} \operatorname{vol}_{\nu} \varphi_{t}(K) \bigg|_{t=01,1}$$

где φ_t – coomветствующая однопараметрическая группа диффеоморфизмов.

Физическая интерпретация векторных операторов

div B. Для некоторой точки x области V (V_x – также объём области, r –её диаметр) с заданным полем B, по формуле Стокса и теореме о среднем ($\exists x' \in V(x)$ такая, что)

$$\int_{\partial V} \boldsymbol{B} \cdot d\boldsymbol{\sigma} = \int_{V} \operatorname{div} \boldsymbol{B} \, dV = \operatorname{div} \boldsymbol{B}(x') V_{x}, \qquad \mapsto \qquad \operatorname{div} \boldsymbol{B}(x) \stackrel{\text{def}}{=} \lim_{r \to 0} \left(\frac{\iint_{\partial V(x)} \boldsymbol{B} \cdot d\boldsymbol{\sigma}}{V_{x}} \right).$$

гот A. Возьмём круг $S_i(x)$ с центром в точке x, лежащей в плоскости, \bot к ∂_i , для i=1,2,3. Ориентируем $S_i(x)$ с помощью нормали, в качестве которой возьмём орт ∂_i , пусть r – диаметр $S_i(x)$, тогда по формуле Стокса

$$\oint_{\partial S} \mathbf{A} \cdot d\mathbf{s} = \iint_{S} (\operatorname{rot} \mathbf{A}) \cdot d\mathbf{\sigma}, \quad \mapsto \quad (\operatorname{rot} \mathbf{A})^{i} = \lim_{r \to 0} \left(\frac{\oint_{\partial S_{i}(x)} \mathbf{A} \cdot d\mathbf{s}}{S_{i}(x)} \right)$$

grad f. Посколько $\omega^1_{\operatorname{grad} f}(\boldsymbol{\xi}) = (\operatorname{grad} f \cdot \boldsymbol{\xi}) = df(\boldsymbol{\xi}) = D_{\boldsymbol{\xi}} f$, где $D_{\boldsymbol{\xi}} f$ – производная функции f по вектору $\boldsymbol{\xi}$, то вектор grad f ортогонален поверхностям уровня функции f, указывает в каждой точке направление наиболее быстрого роста значений функции.

Римановы и полуримановы многообразия

48 Риманова структура на многообразии

Def 48.1. Римановой структурой на гладком M называется задание квадратичной формы $g_p > 0$ на касательном пространстве $T_p M$, гладко зависящее от точки p. Полуриманова структура — это задание невырожденной, но не обязательно положительно определённой квадратичной формы.

Будем отождествлять квадратичную форму с симметричным скалярным произведением:

$$g_{i,j} = g\left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right), \qquad g = g_{ij} dx^i \otimes dx^j.$$

На $\forall M$ (гладком) $\exists g$. Достаточно взять локальное конечное разбиение единицы $\{\rho_i\}$, подчинённое картам $\{U_i\}$, в каждой карте построить g_i (например: стандартная риманова структура $\delta_{ij} dx^i \otimes dx^j$) и положить $g = \sum_i \rho_i g_i$. Эта сумма будет локально конечна и в любой точке будет давать g > 0, так как сумма неотрицательно определённых форм, хотя бы одна из которых положительно определена, будет положительно определена.

На вложенном $M \subset \mathbb{R}^N$ можно просто ограничить стандартную риманову структуру с евклидова пространства на его подмногообразие M:

$$i: M \mapsto \mathbb{R}^n, \qquad g = i^* g_0.$$

В таком случае, если локальные координаты M — это u_1, \ldots, u_n , то риманова структура задаётся в координатах как

$$g_{ij} = g_0 \left(\frac{\partial r}{\partial u^i} \cdot \frac{\partial r}{\partial u^j} \right) = \left(\frac{\partial r}{\partial u^i} \cdot \frac{\partial r}{\partial u^j} \right), \tag{10.1}$$

где $g_0, (\cdot)$ — евклидово скалярное произведение.

49 Риманов объём, объём на произведении

Def 49.1. Плотность меры — это функция в каждых локальных координатах, которая при заменах координат преобразуется почти как диф-форма высшего ранга, но умножается при замене координат на модуль якобиана обратной замены, а не на якобиан без модуля. Её интеграл уже не зависит от ориентации.

Lem 49.2 (Формула риманова объёма). Для (полу)римановой структуры д формула

$$\operatorname{vol}_g = \sqrt{|\det g|} \, dx^1 \wedge \ldots \wedge \, dx^n,$$

где $\det g$ подразумевает $\det(g_{ij})$, корректно определяет плотность меры.

В случае ориентированного многообразия vol_g можно считать формой высшей степени, положительной относительно выбранной ориентации.

Для двух римановых многообразий M и N их произведение $M \times N$ можно тоже считать римановым многообразием по формуле

$$g_{M\times N}(X,Y) = g_M(p_*X, p_*Y) + g_N(q_*X, q_*Y),$$

где $p: M \times N \mapsto M$ и $q: M \times N \mapsto N$ — естественные проекции.

В матричном виде на произведении координат $g_{M\times N}$ будет \oplus матриц g_M и g_N . Так как детерминант прямой суммы матриц равен произведению детерминантов исходных, для риманова произведения (напр. борелевских) подмножеств:

$$X \subseteq M, Y \subseteq N : \operatorname{vol}_{M \times N}(X \times Y) = \operatorname{vol}_M X \cdot \operatorname{vol}_N Y.$$

Свойство произведения в некотором смысле обосновывает естественность выбора риманова объёма.

Task 49.3. Евклидова структура на \mathbb{R}^n является произведением n римановых структур прямой \mathbb{R}^1 .

50 Частные случаи

Рассмотрим частный случай риманова объёма — площадь двумерной поверхности в евклидовом пространстве, то есть интеграл от vol_g по этой поверхности. Заметим, что если поверхность задана параметрически и положительно ориентированные параметры на поверхности — (u,v), то для индуцированной с \mathbb{R}^n римановой структуры

$${\rm vol}_g = \sqrt{|r'_u|^2 |r'_v|^2 - (r'_u \cdot r'_v)^2} \, du \wedge \, dv.$$

В трёхмерном случае эту формулу можно продолжить как

$$\mathrm{vol}_g = \sqrt{|r'_u|^2 |r'_v|^2 - (r'_u \cdot r'_v)^2} \, du \wedge \, dv = \left\| [r'_u \times r'_v] \right\| du \wedge \, dv.$$

 $\mathbf{W}_{\mathbf{U}}\mathbf{K}$

51 Twinkle twinkle little star

Def 51.1. Риманова метрика на гладком M — симметричное положительно определённое невырождение тензорное поле $(g_{ij}) \in \mathbb{T}_2^0(M^n)$.

Def 51.2. \sharp : $\mathbb{T}^0_1(M^n) \mapsto \mathbb{T}^1_0(M^n)$ (диез) — операция поднятия индекса: $\alpha_i \mapsto g^{ij}\alpha_i = \alpha^i$.

Def 51.3. $\flat : \mathbb{T}^1_0(M^n) \mapsto \mathbb{T}^0_1(M^n)$ (бемоль) — операция опускания индекса: $v^i \mapsto g_{ij}v^j = v_i$.

Получается, что (полу)риманова структура может рассматриваться как отображение $g: T_pM \otimes T_pM \mapsto \mathbb{R}$. Композиция g и двух поднятий индексов на её аргументов даёт билинейное отображение $\tilde{g}: T_p^*M \otimes T_p^*M \mapsto \mathbb{R}$.

Task 51.4 (Коши-Буняковский). $\alpha(X)^2 \leq g(X,X) \cdot \tilde{g}(\alpha,\alpha)$.

Def 51.5. В присутствии (полу)
римановой структуры g на ориентированном многообрази
и M^n (чтобы vol_g можно было считать элементом
 $\Omega^n(M))$ формула

$$\alpha \wedge *\beta = \tilde{g}(\alpha, \beta) \text{vol}_q, \ \forall \alpha \in \Omega^k(M),$$

корректно определяет линейный оператор *: $\Omega^k(M)\mapsto \Omega^{n-k}(M)$ — звёздочку Ходжа.

Точнее можно сказать, что звёздочка определяется как композиция изоморфизмов в каждой точке:

$$\Omega_p^k(M) \longrightarrow (\Omega_p^k(M))^* \longrightarrow \Omega_p^{n-k}(M).$$

52 Используем звёздочку

Оператор звёздочки является поточечным, то есть линейным относительно умножения на функцию $*(f\alpha) = f(*\alpha)$. Например на \mathbb{R}^3 со стандартной римановой структурой:

$$*1 = dx \wedge dy \wedge dz;$$

$$*dx = dy \wedge dz, \quad *dy = dz \wedge dx, \quad *dz = dx \wedge dy;$$

$$*(dx \wedge dy) = dz, \quad *(dy \wedge dz) = dx, \quad *(dz \wedge dx) = dy;$$

$$*(dx \wedge dy \wedge dz) = 1.$$

Тогда можно определить векторные операторы с помощью введённых терминов:

grad:
$$C^{\infty}(\mathbb{R}^3) \mapsto \mathbb{T}_0^1(\mathbb{R}^3) \longrightarrow \operatorname{grad} f = (df)^{\sharp} \longrightarrow \operatorname{grad} = \sharp d;$$

rot: $\mathbb{T}_0^1(\mathbb{R}^3) \mapsto \mathbb{T}_0^1(\mathbb{R}^3) \longrightarrow \operatorname{rot} \boldsymbol{v} = (*d(\boldsymbol{v}^{\flat}))^{\sharp} \longrightarrow \operatorname{rot} = \sharp *d\flat;$
div: $\mathbb{T}_0^1(\mathbb{R}^3) \mapsto C^{\infty}(\mathbb{R}^3) \longrightarrow \operatorname{div} \boldsymbol{v} = *d(*\boldsymbol{v}^{\flat}) \longrightarrow \operatorname{div} = *d * \sharp.$

Таким образом можем записать лапласиан: $\Delta f = *d*df$. В координатах можем проверить, что это совпадает с операциями, определенными в билете №18.

53 Ковариантное дифференцирование

Def 53.1 (аксиоматическое определение для ковариантной производной от вектора).

- 1. $\nabla_{fX}Y = f\nabla_XY$ (линейность по перовому аргументу)
- 2. $\nabla_X f Y = X(f) Y + f \nabla_X Y$ (правило Лейбница для второго аргумента)
- 3. $\nabla_X Y \nabla_Y X = [X, Y]$ (отсутствие кручения)
- 4. $X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$ (совместимость с (полу)римановой структурой g)

Thr 53.2 (Формула Козюля). Из условий на ковариантное дифференцирование следует формула

$$2g(\nabla_X Y, Z) = X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) + g([X, Y], Z) - g([Y, Z], X) + g([Z, X], Y).$$

Def 53.3 (определение ковариантной производной от форм). Требуем выполнение правила Лейбница для умножения векторных форм первой степени на векторные поля

$$(\nabla_X \alpha)(Y) = \nabla_X (\alpha(Y)) - \alpha(\nabla_X Y) = X(\alpha(Y)) - \alpha(\nabla_X Y).$$

Task 53.4. Условие отсутствия кручения эквивалентно тому, что для форм первой степени выполняется

$$(\nabla_X \alpha)(Y) - (\nabla_Y \alpha)(X) = d\alpha(X, Y).$$

Действительно, $d\alpha(X,Y) = X(\alpha(Y)) - Y(\alpha(X)) - \alpha([X,Y]).$

Task 53.5. Пусть $\nabla_X Y = Z$, тогда

$$Z^k = X^i \partial_i Y^k + \Gamma^k_{ij} X^i Y^j$$
, где $\Gamma_{lij} = \frac{1}{2} \left(\partial_j g_{li} + \partial_i g_{lj} - \partial_l g_{ij} \right)$.

54 Длина кривой и определение метрики

Def 54.1. Длиной кривой в римановом многообразии назовём

$$l(\gamma) = \int_{t_0}^{t_1} \sqrt{g(\dot{\gamma}, \dot{\gamma})} \, dt,$$

что является частным случаем риманова объёма, если мы рассматриваем кривую как вложенное в M одномерное многообразие, с индуцированной римановой структурой.

Def 54.2. Определим *внутреннюю метрику многообразия*, как нижнюю грань длин кривых, соединяющих две данные точки. Таким образом оправдано использование термина pиманова mempuka, хотя g метрикой не является.

Def 54.3. Так как выбор параметризации не меняет длины кривой, а зафиксировать параметризацию хочется, то естественно ввести функционал действия

$$A(\gamma) = \frac{1}{2} \int_{t_0}^{t_1} g(\dot{\gamma}, \dot{\gamma}) dt.$$

Thr 54.4. На римановом многообразии, среди всех параметризацией одной и той же кривой отрезком $[t_0, t_1]$ минимальное действие достигается на параметризации с постоянной скоростью и в этом случае выполняется равенство

$$A(\gamma) = \frac{1}{2} \frac{l(\gamma)^2}{(t_1 - t_0)}.$$

55 Геодезические и параллельный перенос

Здесь будет о сути происходящего от НМУ

 ${f Con~55.1.}~{\it Для}~{\it кривых},~{\it дающих~экстремум~ функционала~ действия},~{\it выполняется~уравнение~геодезической}^{15}$

$$\ddot{\gamma} = \nabla_{\dot{\gamma}} \dot{\gamma} = 0.$$

B координатах уравнение геодезической примет вид $\ddot{\gamma}^k + \Gamma^k_{ij}\dot{\gamma}^i\dot{\gamma}^j = 0.$

Lem 55.2. Уравнение парамлельного переноса векторного поля X вдоль кривой γ : почему?

$$\nabla_{\dot{\gamma}}X = 0 \quad \Leftrightarrow \quad \dot{\gamma}^i \partial_i X^k + \Gamma^k_{ij} \dot{\gamma}^i X^j = 0 \quad \Leftrightarrow \quad \dot{X}^k + \Gamma^k_{ij} \dot{\gamma}^i X^j = 0.$$

Task 55.3. Параллельный перенос векторов из начала кривой в конец является ортогональным (относительно g) оператором.

Вообще, здесь мы используем, что $\dot{\gamma}^i \partial_i \dot{\gamma}^k = \ddot{\gamma}^k$. Иначе уравнение геодезической можно получить напрямую, выписав уравнение Эйлера-Лагранжа в координатах и отсутствие кручения, считая $g_{ij}\dot{\gamma}^i\dot{\gamma}^j=v^2$

$$\frac{\partial(v^2/2)}{\partial x_k} - \frac{d}{dt} \frac{\partial(v^2/2)}{\partial \dot{\gamma}^k} = 0.$$

56 * Тензор кривизны Римана и тензор Риччи

Исследование вариации геодезических, то есть производных семейств геодезических по параметру, естественным образом приводит к понятию *кривизны Римана*.

Def 56.1. Опрелим *тензор кривизны Римана* $(R: X, Y, Z \mapsto T_p M)$, как

$$R_{X,Y}Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]}Z, \qquad R_{\partial_i,\partial_j}\partial_k = R^l_{ijk}\partial_l \quad \Rightarrow \quad (R_{X,Y}Z)^l = R^l_{ijk}X^iY^jZ^k.$$

Thr 56.2. Выражение тензора кривизны Римана является тензором в том смысле, что оно линейно X, Y, Z и при умножении на функцию f векторного поля X, Y, Z всё выражение просто умножается на f.

Важно, что тензор кривизны Римана является поточечной операцией, гладко зависящей от точки. Геометрический смысл тензора кривизны можно понимать так: если два векторных поля X и Y коммутируют, то ковариантная производная третьего векторного поля по этим двум зависит от порядка дифференцирования, и это зависимость как раз выражается тензором кривизны Римана. Написатьь про перенос вектора вдоль параллелограма.

 $^{^{15}}$ Получается, уравнение геодезической, означает постоянство квадрата скорости $g(\dot{\gamma},\dot{\gamma})$.

 $\mathsf{W}_{\mathtt{N}}\mathsf{K}$

Другая интепретация – пусть есть замкнутая γ , край двумерной поверхности S в многообразии M с координатами u,v. Тогда с помощью формулы Грина, считая $X=\partial_u,\ Y=\partial_v$

$$\int_{\gamma} g(\nabla_{\dot{\gamma}} Z, T) dt = \int_{S} g(R_{X,Y} Z, T) du \wedge dv + \int_{S} (g(\nabla_{Y} Z, \nabla_{X} T) - g(\nabla_{X} Z, \nabla_{Y} T)) du \wedge dv.$$

Def 56.3. Формой кривизны Римана называется $R(X,Y,Z,T) = g(R_{X,Y}Z,T)$.

Def 56.4. Важна билинейная форма (тензор ранга (0,2)), которая получается в качестве свёртки тензора кривизны по паре переменных. Выбрав взаимные базисы в касательном пространсвте $\{e_i\}$ и $\{f_i\}$, так что $g(e_i,f_i)=\delta_{ij}$, опредлим *тензор кривизны Риччи*

$$Ric(Y, Z) = \delta^{ij} R(e_i, Y, Z, f_i) = \delta^{ij} g(R_{e_i, Y} Z, f_i),$$

при чем тезнор Риччи не зависит от выбора $\{e_i\}$ и $\{f_i\}$ (свертка тензора инвариантна).

Геометрический смысл тензора Риччи в том, что отношение риманова объема в окрестности точки p к объёму, пришедшему из экспоненциального (?) отображения с касательного пространства, в квадратичном приближении в точке $x \in U(p)$ равно

$$1 - \frac{1}{6} \operatorname{Ric} \left(\exp_p^{-1} x, \exp_p^{-1} x \right) + o(\rho(x, p)^2).$$

57 Пространство-время СТО, геодезические и изометрии

Def 57.1. Пространство-время $CTO \mathbb{R}^{1+3}$ с координатами t, x, y, z и полуримановой структурой

$$q = dt \otimes dt - dx \otimes dx - dy \otimes dy - dz \otimes dz.$$

Векторы v с условием g(v,v)=0 соответствуют движению световых лучей, векторы g(v,v)<0 называются пространственно-подобными, а g(v,v)>0 – времениподобными.

Lem 57.2 (обратное неравенство Коши-Буняковского). $B \mathbb{R}^{1+3}$ для двух времениподобных векторов X, Y выполняется

$$g(X,Y)^2 \geqslant g(X,X) \cdot g(Y,Y).$$

Lem 57.3. Времениподобные прямые максимизируют $\int_{\gamma} \sqrt{|g(\dot{\gamma},\dot{\gamma})|} dt$ (собственное время частицы) среди всех времениподобных кривых, соединяющих две данные точки.

Lem 57.4. Геодезические в пространстве-времени \mathbb{R}^{1+3} – прямые линии, параметризованные с постоянной скоростью в данной системе координат.

Def 57.5. Если рассмотреть афинные преобразования по модулю сдвигов (изометрии), то есть линейные преобразования, сохраняющие g как квадратичную форму, то получится spynna Лоренца, обозначаемая O(1,3).

Тут может быть много забавных свойств группы Лоренца и фактики из ОТО.

58 Диф-форма ЭМ поля, уравнения Максвелла

«Дело может происходить в полуримановом многообразии с сигнатурой 1+3.» В добавок зададим ещё дифформу $\alpha \in \Omega^1(M)$ и рассмотрим вопрос поиска экстремальных кривых естественного функционала

$$A(\gamma) = \int_{t_0}^{t_1} \left(\frac{1}{2} g(\dot{\gamma}, \dot{\gamma}) + \alpha(\dot{\gamma}) \right) dt.$$

Здесь α – 1-форма потенциала, $d\alpha$ – 2-форма электромагнитного поля.

Можно проверить, что уравнение предположительно экстремальной кривой будет отличаться от уравнения геодезической слагаемым, зависящим от α , как $\nabla_{\dot{\gamma}}\dot{\gamma}=\ddot{\gamma}=(i_{\dot{\gamma}\,d\alpha})^{\sharp}$. Это уравнение, с точностью до единиц измерения массы и заряда, в полуримановой метрике CTO соотвествует движению заряда в ЭМ поле $F=d\alpha$.

Само по себе поле F удовлетворяет достаточно простой системе уравнений. Если добавить понятие электрического тока как формы $j \in \Omega^3(M)$, описывающее усредненное движение большого количества зарядов, то можно написать уравнения

$$dF = 0, d(*F) = j,$$

где первое выражает замкнутость F, а второе связь F с током.

Условие j = d(*F) и формула Стокса гарантируют, что интеграл тока по компактным трёхмерным многообразиям без края равен нулю, что называется сохранением заряда.

59 Риманова структура на сфере

Круглая свера \mathbb{S}^n задим уравнением: $x_0^2+x_1^2+\dots x_n^2=1$ в евклидовом \mathbb{R}^{n+1} со стандартной римановой метрикой:

$$g = dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + \ldots + dx^n \otimes dx^n.$$

Для нахождения кривизны рассмотрим стереографическую систему координат на сфере:

$$x = \frac{2u}{1 + u^2 + v^2},$$
 $y = \frac{2v}{1 + u^2 + v^2},$ $x = \frac{1 - u^2 - v^2}{1 + u^2 + v^2}$

Task 59.1. Центральная проекция из полюса сферы $(1,0,0,\ldots,0)$ \mathbb{S}^n на гиперплоскость $\{x_0=0\}$ задаёт систему координат на сфере без одной точки, в которой метрика имеет вид:

$$g = \frac{4 dx^{1} \otimes dx^{1} + 4 dx^{2} \otimes dx^{2} + \ldots + 4 dx^{n} \otimes dx^{n}}{(1 + x_{1}^{2} + \ldots + x_{n}^{2})^{2}}.$$

Практическое применение имеет движение по геодезической на \mathbb{S}^2 , то есть $\nabla_{\dot{\gamma}}Z=0$, означает, что угол между $\dot{\gamma}$ и Z сохраняется. Например при дальних океанских плаваниях важно было держат курс по звездам, двигаясь по так называемой локсодромой.

Thr 59.2. В любой точке сферы \mathbb{S}^n для ортогонального базиса в $T_p\mathbb{S}^n$ выполняется:

$$R_{e_i,e_j}e_k = -e_l R_{e_i,e_j}e_l = e_k$$

при условии, что i=k, j=l, в остальных случаях компоненты римановой кривизны равны нулю. Это означает, что сфера имеет постоянную кривизну 1.

Можно записать значения формы кривизны сферы на произвольных векторах:

$$R(X, Y, Z, T) = g(R_{X,Y}Z, T) = g(X, T)g(Y, Z) - g(X, Z)g(Y, T),$$

на векторах ортонормированного базиса она выполняется, остальные она продолжается по полилинейности.

Тазк 59.3. На единичной двумерной сфере треугольник с внутренними углами α, β, γ имеет $S = \alpha + \beta + \gamma - \pi$.

Task 59.4. Группа O(n+1) даёт всё изометрии \mathbb{S}^n .

60 Риманова структура на гиперболоиде

Можно развить пример со сферой чуть более интересным образом с помощью полуримановой метрики в \mathbb{R}^{n+1} :

$$q = -dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + \ldots + dx^n \otimes dx^n.$$

Зададим ещё гиперповерхность \mathbb{H}^n : $-x_0^2 + x_1^2 + \ldots + x_n^2 = -1$, $x_0 > 0$.

Заметим, что получили ситуацию аналогичную сфере. Группа линейных изометрий \mathbb{R}^{n+1} O(1,n) может перевести любую точку \mathbb{H}^n в любую другую и любой ортогональный базис $T_p\mathbb{H}^n$ в любой другой.

Task 60.1. Группа O(1,n) не меняющая местами связные компоненты гиперболоида — даёт всё изометрии \mathbb{H}^n .

Также можно построить изометричные вложения $\mathbb{H}^2 \subset \mathbb{H}^n$ через любую точку и пару непараллельных касательных векторов в ней и убедиться, что \mathbb{H}^n можно произвольно вращать, оставляя на месте \mathbb{H}^2 как было в случае сферы.

Thr 60.2. В любой точке гиперболического пространства \mathbb{H}^n для ортогонального базиса касательных векторов выполняется:

$$R_{e_i,e_j}e_k = e_l R_{e_i,e_j}e_l = -e_k,$$

при условии, что i = k, j = l в остальных случаях компоненты римановой кривизны равны нулю. Это означает, что гиперболическое пространство имеет постоянную кривизну -1.

Аналогично случаю сферы:

$$R(X, Y, Z, T) = g(R_{X,Y}Z, T) = -g(X, T)g(Y, Z)g(Y, T).$$

Task 60.3 (Координаты Пуанкаре). Центральная проекция из точки $(-1,0,\ldots,0)$ на гиперплоскость $\{x_0=0\}$ задаёт систему координат на гиперболическом пространстве (со значениями в открытом шаре), в котором метрика имеет вид:

$$g = \frac{4 dx^{1} \otimes dx^{1} + 4 dx^{2} \otimes dx^{2} + \ldots + 4 dx^{n} \otimes dx^{n}}{1 - x_{1}^{2} - \ldots - x_{n}^{2}}.$$

61 Пространство де Ситтера

Def 61.1 (Пространство де Ситтера).

Имеем полуриманову метрика в СТО пространства Минковского:

$$g = -dt \otimes dt + dx \otimes dx + dy \otimes dy + dz \otimes dz,$$

Но в задаче из задания мы видели ещё метрики, в которых описывались траектории световых лучей, например: $g = -dt \otimes dt + e^{\alpha t} (dx \otimes dx + dy \otimes dy + dz \otimes dz).$

Это один из вариантов внутренней метрики пространства **де Ситтера**, а в общем случае оно dS^n пишется так:

$$\begin{cases} g = -dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + \ldots + d^n \otimes dx^n \\ -dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + \ldots + d^n \otimes dx^n = \alpha^2. \end{cases}$$

В таком пространстве можно ввести несколько видов метрик:

- 1) Статические координаты 2) Плоское слоение 3) Открытое слоение
- 4) Замкнутое слоение
- 5) Слоение dS^{n-1}
- 6) Конформная метрика

Ехт 61.2 (Плоское слоение).

$$\begin{cases} x^0 = \alpha \sinh\left(\frac{t}{\alpha}\right) + \frac{r^2}{2\alpha}e^{t/\alpha} \\ x^1 = \alpha \cosh\left(\frac{t}{\alpha}\right) - \frac{r^2}{2\alpha}e^{t/\alpha} \end{cases} \Rightarrow g = -dt^2 + e^{2t/\alpha}dy^2, \text{ где } dy^2 = \sum_i dy^i \otimes dy^i.$$

$$x^i = e^{t/\alpha}y^i \ 2 \leqslant i \leqslant n$$

И если приглядеться, плоское слоение и есть метрика из задания.

Из плоского слоения, положив $\zeta = \zeta_{\infty} - \alpha \exp(-t/\alpha)$ можно получить следующую конформную метрику:

$$g = \frac{\alpha^2}{\zeta_{\infty} - \zeta}^2 (dy^2 - d\zeta^2).$$

Про свтетовые лучи в плоском слоении, в удобной плоскости:

$$X=(t,x,0,0)^T$$
 метрика луча светоподобна: $g(X,X)=0$ \Rightarrow $x=\pm \frac{2}{\alpha}\left(1-e^{-\alpha t/2}\right).$

62 Метрика Швацшильда

Def 62.1 (Метрика Шварцшильда).

$$g = -\frac{r-\rho}{r}dt \otimes dt + \frac{r-\rho}{r}dr \otimes dr + r^2(\sin\theta \, d\varphi \otimes d\varphi + d\theta \otimes d\theta).$$

Для упрощения описания световых лучей положим $\theta = \pi/2, \ \varphi = 0$, остается решить уравнение:

$$-\frac{r-\rho}{r}dt^2 + \frac{r}{r-\rho}dr^2 = 0.$$

Решения (ВЕТА)

1 Свёртка функций и её свойства

- 1.2. 1) $f(y)g(x) \in \mathcal{L}$ и по thr. Фубини: $\int |f \cdot g| = \int |f| \cdot \int |g|$;
 - 2) то же верно для f(x-t)g(t), отличие в лин. замене коор-т с det = 1;
 - 3) требуемое равенство напрямую из (1) и (2) замена: x t = y;
 - 4) для неравенства интегрируем по x: $|\int f(x-t)g(t) dt| \leq \int |f(x-t)g(t)| dt$.

2 Бесконечно гладкие функции с компактным носителем

- 2.1. 1) для введённой φ достаточно: $\varphi_{\varepsilon}(x_1,\ldots,x_n) = A\varphi\left(\frac{\sqrt{n}x_1}{\varepsilon}\right)\ldots\varphi\left(\frac{\sqrt{n}x_n}{\varepsilon}\right)$.
 - 2) $\psi(x) = B \int_{-\infty}^{x} \varphi(t) dt$, выбирем $B: \psi(x) \equiv 0 \ \forall x \leqslant 1$ и $\psi(x) \equiv 1 \ \forall x \geqslant -1$;
 - 3) достаточно положить: $\psi_{\varepsilon,\delta}(x)=\psi\left(\frac{\delta+\varepsilon-2|x|}{\varepsilon-\delta}\right)$.

3 Приближение функций бесконечно гладкими

- 3.1. 1) $f_k(x) f(x) = \int_{\mathbb{R}^n} (f(x-t) f(x)) \varphi_k(t) dt$;
 - 2) Пусть f р-но непр. в $U_{\delta}(K\subset\mathbb{R}^n)$ и пусть $|f(x)-f(y)|<\varepsilon$ при $|x-y|<\delta$ там же;
 - 3) Выбирая $k: 1/k < \delta$, тогда $\varphi_k(t) \neq 0$ при $|t| < \delta$ и тогда $|f(x-t) f(x)| < \varepsilon$ при $x \in K$.
 - 4) при $x \in K$ верна р-ная сходимость: $|f_k(x) f(x)| \leqslant \varepsilon \int_{\mathbb{R}^n} \varphi_k(x) \, dx = \varepsilon.$
 - 5) продифференцируем по параметру $\int_{\mathbb{R}^n} f(t)\varphi_k(x-t) dt$;
- 6) производная (5) при $x \in K$ будет зависеть только значений f в $U_{1/k}(K)$, то есть f можно считать интегрируемой при дифференцировании по параметру, что позволяет применять теорему.
- 3.2. По различным $\partial_{x_i} f * \varphi_k(x)$ получим по лемме 1.3, для производных свёрток схожее равенство, с самой f, а значит и p-ную сходимость.

$$\frac{\partial^m (f * \varphi_k)}{\partial x_{i_1} \dots \partial x_{i_m}} = \frac{\partial^m f}{\partial x_{i_1} \dots \partial x_{i_m}} * \varphi_k.$$

3.3. 1) по thr(239.2) f = h + g, где g – эл. ступ., $\int_{\mathbb{R}^n} |h| dx < \varepsilon$;

2) по thr(1.2): $\int_{\mathbb{R}^n} |h * \varphi_k| \, dx < \varepsilon$. То есть, если окажется: $\int_{\mathbb{R}^n} |g - g * f_k| \, dx < \varepsilon$, то

$$\int_{\mathbb{R}^n} \left| f - f * \varphi_k \right| dx \leqslant \int_{\mathbb{R}^n} \left| g - g * \varphi_k \right| dx + \int_{\mathbb{R}^n} \left| h \right| dx + \int_{\mathbb{R}^n} \left| h * \varphi_k \right| dx < 3\varepsilon.$$

- 3) Раскладывая g в сумму х-их χ_P , останется доказать для одной χ_P ;
- 4) $\chi_P \chi_P \varphi_k \neq 0$ только в $U_{1/k}(\partial P)$ и по модулю $\leqslant 1$;
- 5) То есть после интегрирования получим не более $\mu(U_{1/k}(\partial P))$.
- 6) Напрямую можно убедиться, что эта $\mu\mapsto 0$ при $k\mapsto 0$.

6 Теоремы о системе неявных функций

- 6.1. 1. По условию $df_1, \dots, df_k, dx_{k+1}, \dots, dx_n$ линейно независимы. Тогда $f_1, \dots, f_k, x_{k+1}, \dots, x_n$ дают криволинейную систему координат.
 - 2. Тогда старые координаты (НД) выражаются через новые: $x_i = \varphi_i(f_1, \dots, f_k, x_{k+1}, \dots, x_n)$, при чём выберем $x \colon f_i = y_i \mapsto \text{Sol CV}$ содержится в графике отображения $\varphi \colon V \mapsto U$, при достаточно малых $V, U \colon \varphi(V) \subseteq U$.
 - 3. Но график отображения содержится в Sol(CУ), т.к. в точке $p = (y_1, ..., y_k, x_{k+1}, ..., x_n)$ значения $f_i = y_i$, т.к. $\varphi_i(p)$ даст такие $x_1, ..., x_k$, что $f_i(x_i) = y_i$. Q. E. D.

27

 $\mathsf{W}_{\mathtt{N}}\mathsf{K}$

Призраки прошлого и настоящего

239 Прошлого

Thr 239.1 (Дифференцирование под знаком интеграла).

$$f(x,y) \in \mathcal{L}_{c}^{x} \ \forall y \in (a,b)$$

$$f \ \partial u \phi \phi e penuupyema \ no \ y$$

$$\forall x \in X, \forall y \in (a,b) |f'_{y}(x,y)| \leq g(x)$$

$$g \geqslant 0 \colon X \to \mathbb{R}^{+} \in L_{c} \ na \ X$$

$$\longrightarrow \frac{d}{dy} \int_{X} f(x,y) \, dx = \int_{X} f'_{y}(x,y) \, dx.$$

Thr 239.2. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}$ интегрируема по Лебегу с конечным интегралом. Тогда f можно сколь угодно близко приблизить в среднем элементарно ступенчатой функцией.

Thr 239.3 (Неравенство Коши-Буняковского). Пусть функции $f, g: X \mapsto \mathbb{R}$ измеримы по Лебегу и их квадраты $|f|^2$, $|g|^2$ имеют конечные интегралы. Тогда

$$\left(\int_X f(x)g(x)\,dx\right)^2 \leqslant \left(\int_X |f(x)|^2\,dx\right)\cdot \left(\int_X |g(x)|^2\,dx\right).$$

556 Настоящего

Task 556.1 (Замена координат в интеграле для собственных отображений вообще). Пусть гладкое отображение $\varphi \colon \mathbb{R}^n \mapsto \mathbb{R}^n$ является собственным. Тогда

$$\int_{\mathbb{R}^n} \varphi^* \nu = C_{\varphi} \int_{\mathbb{R}^n} \nu, \quad C_{\varphi} \in \mathbb{Z}.$$

Формула Стокса

Lem 556.2 (формула Стокса в узком смысле). Для компактной двумерной поверхности с краем (то есть вложенного двумерного многообразия с краем) $S \subset \mathbb{R}^3$ верна

$$\int_{\partial S} P \, dx + Q \, dy + R \, dz = \int_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \, dy \wedge dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \, dz \wedge dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \wedge dy.$$

Task 556.3. Площадь области, ограниченной замкнутой гладкой кривой без самопересечений $C \subset \mathbb{R}^2$, можно посчитать по формуле:

$$A = \pm \int_C x \, dy,$$

где знак выбирается в зависимости от ориентации кривой.

Task 556.4. Объём области в \mathbb{R}^3 , ограниченной связной вложенной компактной поверхностью без края $S \subset \mathbb{R}^3$, можно посчитать по формуле:

$$A = \pm \int_{S} x \, dy \wedge dz,$$

где знак выбирается в зависимости от ориентации поверхности.

Task 556.5 (Порядок точки относительно кривой). Для замкнутой кусочно-гладкой $\gamma \in \mathbb{R}^2$, не проходящей через начало координат определим порядок начала координат относительно кривой:

$$w(\gamma, 0) - \frac{1}{2\pi} \int_{\gamma} \frac{x \, dy - y \, dx}{x^2 + y^2},$$

и он не меняется при непрерывных деформациях кривой, при которых она не проходит через начало координат.

Task 556.6. Порядок начала координат относительно кривой является целым.

Task 556.7. Порядок начала координат относительно не проходящей через него нечётной кривой является нечётным числом. $(\gamma \colon \mathbb{S}^1 \mapsto \mathbb{R}^2, \ \gamma(-u) = -\gamma(u)).$

Task 556.8. Для замкнутой кривой на плоскости с всюду не нулевой скоростью $\int k(s) ds = 2\pi N, N \in \mathbb{Z}$.

Task 556.9 (Лемма Жордана). Замкнутая кусочно-гладкая кривая $\gamma \subset \mathbb{R}^2$ без самопересечений делит плоскость на две связные части внутреннюю и внешнюю (можно усложнить и сформулировать для непрерывных кривых).

Коммутатор

Для матриц известен коммутатор вида

$$[A, B] = AB - BA.$$

Аналогично для дифференцирования

$$\left[\partial_X,\partial_Y\right]f=\partial_X\partial_Yf-\partial_Y\partial_Xf=X^i\frac{\partial}{\partial u^i}\left(Y^j\frac{\partial f}{\partial u^j}\right)-Y^j\frac{\partial}{\partial u^j}\left(X^i\frac{\partial f}{\partial u^i}\right)=X^i\frac{\partial Y^j}{\partial u^i}\frac{\partial f}{\partial u^i}-Y^j\frac{\partial X^i}{\partial u^j}\frac{\partial f}{\partial u^j}$$

Таким образом

$$[\partial_X, \partial_Y] f = (X^i \partial_i Y^j - Y^i \partial_i X^j) \partial_i f. \tag{36.2}$$

Это, как ни странно, дифференциальный оператор первого порядка. Это значит что есть такое векторное поле [X,Y], что

$$\partial_{[X,Y]} = [\partial_X, \partial_Y] f.$$

Таким образом [X, Y] существует и равен

$$[X,Y] = X^i \partial_i Y^j - Y^i \partial_i X^j. \tag{36.3}$$

Уравнения Эйнштейна

Выпишем уравнение Эйнштейна для гравитационного поля (полуримановой структуры), которое с точностью до единиц измерения в 4-мерном пространстве времени выглядит как

$$Ric - \frac{1}{2}Sg + \Lambda g = T,$$

где $S = \delta^{ij} \mathrm{Ric}\,(e_i, f_j)$ – свёртка (след) тензора Риччи ($g(e_i, f_j) = \delta_{ij}$), скалярная кривизна, отвечающая за искажение объёма окрестности точки по сравнению с объемом из экспоненциального отображения, Λ – космологическая постоянная («темная энергия»), а T – тензор энергии импульса.