

ECON 202 - MACROECONOMIC PRINCIPLES

Instructor: Dr. Juergen Jung

Towson University

Disclaimer

These lecture notes are customized for the Macroeconomics Principles 202 course at Towson University. They are not guaranteed to be error-free. Comments and corrections are greatly appreciated. They are derived from the Powerpoint© slides from online resources provided by Pearson Addison-Wesley. The URL is: http://www.pearsonhighered.com/osullivan/

These lecture notes are meant as complement to the textbook and not a substitute. They are created for pedagogical purposes to provide a link to the textbook. These notes can be distributed with prior permission.

This version was compiled on: February 29, 2016.

Chapter 6 - Unemployment and Inflation

Unemployment and Inflation - Topics

- 1 Definition of unemployment
- Consumer Price Index
- 3 Inflation

Who is Unemployed?

- Jack having lost his job in a car factory
- 15 year old Mike going to High school
- Homemakers
- Undergrad student at TU looking for a summer job in June
- Person who is serving in the army
- Uncle Bob working 10 hours per month at the local library
- Ski instructor in June in Colorado

Definition of Unemployment

- Labor Force:
 - **■** 16+,
 - non-institutionalized and
 - non-military and
 - able to work
- Labor Force = Employed + Unemployed

Unemployment: Labor Force and Unemployment

Population

Labor Force Participation Rate in 2015

■ The labor force participation rate is the fraction of the population that is over 16 years of age that is in the labor force

labor force participation rate =
$$\frac{\text{labor force}}{\text{population} \ge 16}$$

- The labor force participation rate for this year was 62.8%
- Thee unemployment rate was 5.5%

Four Types of Unemployment

- 1 Frictional Unemployment
- 2 Seasonal Unemployment
- 3 Structural Unemployment
- 4 Cyclical Unemployment

Question Revisited: Who is Unemployed?

- Jack having lost his job in a car factory
- 15 year old Mike going to High school
- Homemakers
- Undergrad student at TU looking for a summer job in June
- Person who is serving in the army
- Uncle Bob working 10 hours per month at the local library
- Ski instructor in June in Colorado

Unemployment Rates around the World

Alternative Measures of Unemployment

Who are the Unemployed in the US

Unemployment and Inflation

The Consumer Price Index and the Cost of Living

■ The CPI index for a given year, say year K, is defined as:

CPI in year
$$K = \frac{\text{cost of basket in year } K}{\text{cost of basket in base year}} \times 100$$

or

$$\text{CPI in current year} = \frac{\text{Price}_{\text{current}} \times \text{Quantity}_{\text{base}}}{\text{Price}_{\text{base}} \times \text{Quantity}_{\text{base}}} \times 100$$

■ This is different from GDP deflator

$$\label{eq:gdp-deflator} \begin{aligned} \mathsf{GDP}\text{-deflator} &= \frac{\mathsf{Nominal}\ \mathsf{GDP}}{\mathsf{Real}\ \mathsf{GDP}} = \frac{\mathsf{Price}_{\mathsf{current}} \times \mathsf{Quantity}_{\mathsf{current}}}{\mathsf{Price}_{\mathsf{base}} \times \mathsf{Quantity}_{\mathsf{current}}} \end{aligned}$$

CPI and **Cost** of **Living**

Example:

- Cost of a market basket in 2014 (the base year) = \$200
- Cost of the same market basket in 2015 = \$250
 - CPI-2014=
 - CPI-2015=

Example:

- Suppose you had \$300 in 2014
- How much would you need to be able to maintain the same standard of living in 2015?

CPI and **Cost** of **Living**

Example:

- Cost of a market basket in 2014 (the base year) = \$200
- Cost of the same market basket in 2015 = \$250
 - CPI-2014= (200/200) x 100 = 100
 - CPI-2015= (250/200) x 100 = 125
- Suppose you had \$300 in 2014
- How much would you need to be able to maintain the same standard of living in 2015?
 - $$300 \times (125/100) = 375

Components of CPI

Inflation Rates

- Inflation rate = percentage rate of change of a price index
- Given a price level measure (GDP Deflator, CPI), the gross inflation rate between period t and period t+s is:

$$\pi = \frac{\text{Price Level at t+s}}{\text{Price Level at t}} \times 100 - 1$$

Historical U.S. Inflation Rates

Historical U.S. Inflation Rates

TABLE 6.2 Prices of Selected Goods, 1940s and 2012		
Item	1940s Price	2012 Price
Gallon of gasoline	\$0.18	\$3.65
Loaf of bread	0.08	3.59
Gallon of milk	0.34	3.49
Postage stamp	0.03	0.45
House	6,550	350,000
Car	800	22,000
Haircut in New York City	0.50	50
Movie tickets in New York City	0.25	12.00
Men's tweed sports jacket in New York City	15	189
Snake tattoo on arm	0.25	80.00

Problems in Measuring Price Changes

- Overstatement due to lack of substitution effects (out of expensive goods in the consumption basket)
- Overstatements due to lack of measuring quality improvements (e.g. Computers)
- Estimates of inflation overstatement range between 0.5% and 1.5%
- Why is that a problem?

Historical US Inflation Rates based on Chain Price Index

TOILET PAPER ON LY TO BE USED IN THIS TOILET **NO CARDBOARD NO CLOTH NO ZIM DOLLARS NO NEWSPAPER**