Next-Next-Gen Notes Object-Oriented Maths

JP Guzman

November 3, 2017

Format: $characteristic((subjects), (dependencies)) \iff (conditions(dependencies)) \land (conditions(subjects))$ Note: All weaker objects automatically induces notions inherited from stronger objects. TODO define || abs cross-product and other missing refs TODO define **args for comparison callbacks, predicate args, norms and or placeholders TODO link thms?

1 Mathematical Analysis

1.0.1 Formal Logic

$\bigg(\forall_{v\in V}\bigg(proposition\Big(\big(P(v),t\big),()\Big)\bigg)\bigg)$ # propositions defined over a set of the lower order logical statements	(10)
$\begin{aligned} quantifier\big(q,(p,V)\big) &\Longleftrightarrow \Big(predicate\big(p,(V)\big)\Big) \wedge \\ & \left(proposition\Big(\big(q(p),t\big),()\Big) \right) \\ & \# \text{ a quantifier takes in a predicate and returns a proposition} \end{aligned}$	(11)
$\begin{aligned} \textit{quantifier} \big(\forall, (p, V) \big) &\Longleftrightarrow \textit{proposition} \bigg(\Big(\land_{v \in V} \big(p(v) \big), t \Big), () \Big) \\ & \# \text{ universal quantifier} \end{aligned}$	(12)
$\begin{aligned} quantifier\big(\exists,(p,V)\big) &\Longleftrightarrow proposition\bigg(\Big(\vee_{v\in V}\big(p(v)\big),t\Big),()\Big) \\ &\# \text{ existential quantifier} \end{aligned}$	(13)
$ \frac{quantifier\big(\exists!,(p,V)\big)}{\Longleftrightarrow} \exists_{x\in V} \bigg(P(x) \land \neg \Big(\exists_{y\in V\setminus \{x\}} \big(P(y)\big)\Big) \bigg) $ # uniqueness quantifier	(14)
$(\operatorname{THM}): \forall_x p(x) \Longleftrightarrow \neg \exists_x \neg p(x)$ $\# \text{ De Morgan's law}$	(15)
$(\text{THM}): \forall_x \exists_y p(x,y) = \forall_x \neg \forall_y \neg p(x,y) \neq \exists_y \forall_x p(x,y) = \neg \forall_y \neg \big(\forall_x p(x,y)\big) = \neg \forall_y \exists_x \neg p(x,y)$ # different quantifiers are not interchangeable	(16)
======== N O T = U P D A T E D ========	(17)
proof=truths derived from a finite number of axioms and deductions	(18)
elementary arithmetics=system with substitutions, and some notion of addition, multiplication, and prime nuumbers for encoding metamathematics	(19)
Gödel theorem \Longrightarrow axiomatic systems equivalent in power to elementary mathematics either has unprovable statements or has contradictions	(20)
$sequenceSet((A)_{\mathbb{N}},(A)) \Longleftrightarrow (Amapinputn)((A)_{\mathbb{N}} = \{A(1),A(2),A(3),\ldots\})$	(21)
TODO: define union, intersection, complement, etc.	(22)
======== N O T = U P D A T E D ========	(23)

1.1 Axiomatic Set Theory

======== N O T = U P D A T E D ========	(24)
ZFC set theory=standard form of axiomatic set theory	(25)
$A \subseteq B = \forall_x x \in A \Longrightarrow x \in B$	(26)
$(A=B)=A\subseteq B\land B\subseteq A$	(27)
$\in \mathbf{basis} \Longrightarrow \{x,y\} = \{y,x\} \land \{x\} = \{x,x\}$	(28)
\in and sets works following the 9 ZFC axioms:	(29)
$\forall_x \forall_y \big(x \in y \veebar \neg (x \in y)\big) \ \# \ \mathrm{E} : \in \mathrm{is} \ \mathrm{only} \ \mathrm{a} \ \mathrm{proposition} \ \mathrm{on} \ \mathrm{sets}$	(30)
$\exists_{\emptyset} \forall_y \neg y \in \emptyset \ \# \ \mathrm{E}$: existence of empty set	(31)
$\forall_x\forall_y\exists_m\forall_uu\!\in\!m\Longleftrightarrow u\!=\!x\!\vee\!u\!=\!y\ \#\ \text{C: pair set construction}$	(32)
$\forall_s \exists_u \forall_x \forall_y (x \in s \land y \in x \Longrightarrow y \in u) \ \# \ \text{C: union set construction}$	(33)
$x\!=\!\{\{a\},\{b\}\}\ \#\ { m from\ the\ pair\ set\ axiom}$	(34)
$u = \cup x = \cup \{\{a\}, \{b\}\} = \{a, b\}$	(35)
$\forall_x \exists !_y R(x,y) \ \# \ ext{functional relation} \ R$	(36)
$\exists_i \forall_x \exists !_y R(x,y) \Longrightarrow y \in i \ \# \ \text{C: image } i \text{ of set } m \text{ under a relation } R \text{ is assumed to be a set}$ $\Longrightarrow \{y \in m \mid P(y)\} \ \# \text{ Restricted Comprehension} \Longrightarrow \{y \mid P(y)\} \ \# \text{ Universal Comprehension}$	(37)
$\forall_{x \in m} P(x) = \forall_x \big(x \in m \Longrightarrow P(x) \big) \text{ $\#$ ignores out of scope} \neq \forall_x \big(x \in m \land P(x) \big) \text{ $\#$ restricts entirety}$	(38)
$\forall_m \forall_n \exists_{\mathcal{P}(m)} \big(n \subseteq m \Longrightarrow n \subseteq \mathcal{P}(m) \big) \ \# \ \text{C: existence of power set}$	(39)
$\exists_{I} \Big(\emptyset \in I \land \forall_{x \in I} \big(\{x\} \in I\big)\Big) \ \# \text{ I: axiom of infinity } ; I = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \ldots\}; I \cong \mathbb{N} \Longrightarrow \mathbb{N} \text{ is a set}$	(40)
$\forall_x \Big((\emptyset \notin x \land x \cap x' = \emptyset) \Longrightarrow \exists_y (\mathbf{set of each e} \in x) \Big) \# \mathbf{C}$: axiom of choice	(41)
$\forall_x x \neq \emptyset \Longrightarrow x \notin x \# F$: axiom of foundation covers further paradoxes	(42)
======== N O T = U P D A T E D ========	(43)

1.2 Classification of sets

```
space((set, structure), ()) \iff structure(set)
                                                        # a space a set equipped with some structure
# various spaces can be studied through structure preserving maps between those spaces
                                                                                                                      (44)
                                                          map(\phi, (A, B)) \iff (\forall_{a \in A} \exists !_{b \in B} (\phi(a, b))) \lor
                                                                                     (\forall_{a \in A} \exists !_{b \in B} (b = \phi(a)))
                                               \# maps elements of a set to elements of another set
                                                                                                                      (45)
                                                          domain(A, (\phi, A, B)) \iff (map(\phi, (A, B)))
                                                                                                                      (46)
                                                       codomain \big(B, (\phi, A, B)\big) \Longleftrightarrow \Big(map \big(\phi, (A, B)\big)\Big)
                                                                                                                      (47)
                                          image(B,(A,q,M,N)) \iff (map(q,(M,N)) \land A \subseteq M) \land
                                                                           \left(B = \{ n \in N \mid \exists_{a \in A} (q(a) = n) \} \right)
                                                                                                                      (48)
                                      preimage(A, (B, q, M, N)) \iff (map(q, (M, N)) \land B \subseteq N) \land
                                                                         \left(A = \{ m \in M \mid \exists_{b \in B} (b = q(m)) \} \right)
                                                                                                                      (49)
                                                       injection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                             \forall_{u,v\in M} (q(u)=q(v) \Longrightarrow u=v)
                                                                          \# every m has at most 1 image
                                                                                                                      (50)
                                                      surjection(q,(M,N)) \iff (map(q,(M,N))) \land
                                                                                      \forall_{n \in N} \exists_{m \in M} (n = q(m))
                                                                       \# every n has at least 1 preimage
                                                                                                                      (51)
                                                 bijection\big(q,(M,N)\big) \Longleftrightarrow \Big(injection\big(q,(M,N)\big)\Big) \land
                                                                                   (surjection(q,(M,N)))
                                                         \# every unique m corresponds to a unique n
                                                                                                                      (52)
                                         isomorphicSets((A,B),()) \iff \exists_{\phi}(bijection(\phi,(A,B)))
                                                                                                                      (53)
                                        infiniteSet(S,()) \iff \exists_{T \subset S} (isomorphicSets((T,S),()))
                                                                                                                      (54)
                                             finiteSet(S,()) \iff (\neg infiniteSet(S,())) \lor (|S| \in \mathbb{N})
                                                                                                                      (55)
         countablyInfinite(S,()) \iff (infiniteSet(S,())) \land (isomorphicSets((S,\mathbb{N}),()))
                                                                                                                      (56)
```

 $uncountably Infinite(S,()) \iff \left(infiniteSet(S,())\right) \land \left(\neg isomorphicSets((S,\mathbb{N}),())\right)$ $inverseMap(q^{-1},(q,M,N)) \iff (bijection(q,(M,N))) \land$ $\left(map\left(q^{-1},(N,M)\right)\right)\wedge$ $\left(\forall_{n\in\mathbb{N}}\exists!_{m\in\mathbb{M}}\left(q(m)=n\Longrightarrow q^{-1}(n)=m\right)\right)$ (58) $mapComposition(\phi \circ \psi, (\phi, \psi, A, B, C)) \iff map(\psi, (A, B)) \land map(\phi, (B, C)) \land$ $\forall_{a \in A} \Big(\phi \circ \psi(a) = \phi(\psi(a)) \Big)$ (59) $equivalence Relation (\sim (\$1,\$2),(M)) \iff (\forall_{m \in M} (m \sim m)) \land$ $(\forall_{m,n\in M}(m\sim n\Longrightarrow n\sim m))\land$ $(\forall_{m,n,p\in M}(m \sim n \land n \sim p \Longrightarrow m \sim p))$ # behaves as equivalences should (60) $equivalenceClass([m]_{\sim},(m,M,\sim)) \iff [m]_{\sim} = \{n \in M \mid n \sim m\}$ # set of elements satisfying the equivalence relation with m(61) $(THM): a \in [m]_{\sim} \Longrightarrow [a]_{\sim} = [m]_{\sim}; [m]_{\sim} = [n]_{\sim} \veebar [m]_{\sim} \cap [n]_{\sim} = \emptyset$

 $quotientSet(M/\sim,(M,\sim)) \iff M/\sim = \{equivalenceClass([m]_\sim,(m,M,\sim)) \in \mathcal{P}(M) \mid m \in M\}$ # set of all equivalence classes (63)

(THM): axiom of choice $\Longrightarrow \forall_{[m]_{\sim} \in M/\sim} \exists_r (r \in [m]_{\sim})$ # well-defined maps may be defined in terms of chosen representative elements r (65)

equivalence class properties

(62)

1.3 Construction of number sets

 $S^0 = id ; n \in \mathbb{N}^* \Longrightarrow S^n = S \circ S^{P(n)}$ (71)addition = $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N} = +(m,n) = m+n = S^n(m)$ (72) $S^x = id = S^0 \Longrightarrow x = \text{additive identity} = 0$ (73) $S^n(x) = 0 \Longrightarrow x = \text{additive inverse} \notin \mathbb{N} \# \text{ git gud smh} - -$ (74) $\mathbb{Z} = \mathbb{N} \times \mathbb{N} / \sim$, s.t.: $(m,n)\sim(p,q)\iff m+q=p+n \# \text{ span } \mathbb{Z} \text{ using differences then group equal differences}$ (75) $\mathbb{N} \hookrightarrow \mathbb{Z} : \forall_{n \in \mathbb{N}} n \to [(n,0)] \# \mathbb{N} \text{ embedded in } \mathbb{Z}$ (76) $+_{\mathbb{Z}} = [(m +_{\mathbb{N}} p, n +_{\mathbb{N}} q)] \ \#$ well-defined and consistent (77) $\operatorname{multiplication} \dots M^x = id \Longrightarrow x = \operatorname{multiplicative} \operatorname{identity} = 1 \dots \operatorname{multiplicative} \operatorname{inverse} \notin \mathbb{N}$ (78) $\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*)/\sim$, s.t.: $(x,y) \sim (u,v) \iff x \cdot v = u \cdot y$ (79)

 $\mathbb{Z} \hookrightarrow \mathbb{Q} \forall_{q \in \mathbb{Q}} q \rightarrow [(q, 1)] ; \dots \{x \mid x^2 = 2\} \notin \mathbb{Q}$ (80)

 $\mathbb{R} = \mathbf{almost\ homomorphisms\ on\ } \mathbb{Z}/\!\sim \ \# \ \mathrm{http://blog.sigfpe.com/2006/05/defining-reals.html} \tag{81}$

1.4 Topology

 $topology(\mathcal{O},(M)) \Longleftrightarrow (\mathcal{O} \subseteq \mathcal{P}(M)) \land \\ (\emptyset, M \in \mathcal{O}) \land \\ ((F \in \mathcal{O} \land |F| < |\mathbb{N}|) \Longrightarrow \cap F \in \mathcal{O}) \land \\ (C \subseteq \mathcal{O} \Longrightarrow \cup C \in \mathcal{O}) \\ \text{$\#$ topology is defined by a set of open sets which provide the characteristics needed to define continuity, etc.} \\ \text{$\#$ arbitrary unions of open sets always result in an open set} \\ \text{$\#$ open sets do not contain their boundaries and infinite intersections of open sets may approach and} \\ \text{$\#$ induce boundaries resulting in a closed set (83)} \\ \text{$topologicalSpace}((M,\mathcal{O}),()) \Longleftrightarrow topology(\mathcal{O},(M)) \ (84)} \\ \text{$open(S,(M,\mathcal{O})) \Longleftrightarrow (topologicalSpace((M,\mathcal{O}),())) \land \\ (S \subseteq M) \land (S \in \mathcal{O})} \\ \text{$\#$ an open set do not contains its own boundaries} \ (85)}$

 $closed\big(S,(M,\mathcal{O})\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ (S\subseteq M) \land \big(S\in\mathcal{P}(M)\setminus\mathcal{O}\big)$ # a closed set contains the boundaries an open set (86)

$$clopen(S, (M, \mathcal{O})) \iff (closed(S, (M, \mathcal{O}))) \land (open(S, (M, \mathcal{O})))$$
 (87)

 $neighborhood(U,(a,\mathcal{O})) \iff (a \in U \in \mathcal{O})$ # another name for open set containing a (88)

$$M = \{a, b, c, d\} \land \mathcal{O} = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\} \Longrightarrow$$

$$\left(open(X, (M, \mathcal{O})) \iff X = \{\emptyset, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, M\}\right) \land$$

$$\left(closed(Y, (M, \mathcal{O})) \iff Y = \{\emptyset, \{a, b, d\}, \{c, d\}, \{a, b\}, \{d\}, M\}\right) \land$$

$$\left(clopen(Z, (M, \mathcal{O})) \iff Z = \{\emptyset, \{a, b\}, \{c, d\}, M\}\right) \tag{89}$$

$$chaoticTopology(M) = \{0, M\}$$
; $discreteTopology = \mathcal{P}(M)$ (90)

1.5 Induced topology

$$metric\Big(d\big(\$1,\$2\big),(M)\Big) \Longleftrightarrow \left(map\Big(d,\Big(M\times M,\mathbb{R}_0^+\Big)\Big)\right)$$

$$\Big(\forall_{x,y\in M}\big(d(x,y)=d(y,x)\big)\Big) \wedge$$

$$\Big(\forall_{x,y\in M}\big(d(x,y)=0\Longleftrightarrow x=y\big)\Big) \wedge$$

$$\Big(\forall_{x,y,z}\Big(\big(d(x,z)\leq d(x,y)+d(y,z)\big)\Big)\Big)$$
behaves as distances should (91)

$$metricSpace((M,d),()) \iff metric(d,(M))$$
 (92)

$$openBall \big(B, (r, p, M, d)\big) \Longleftrightarrow \Big(metricSpace\big((M, d), ()\big)\Big) \land \big(r \in \mathbb{R}^+, p \in M\big) \land \big(B = \{q \in M \mid d(p, q) < r\}\big)$$
(93)

$$\begin{split} & metricTopology\big(\mathcal{O},(M,d)\big) \Longleftrightarrow \Big(metricSpace\big((M,d),()\big)\Big) \land \\ & \Big(\mathcal{O} = \{U \in \mathcal{P}(M) \,|\, \forall_{p \in U} \exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \land B \subseteq U\Big)\}\Big) \end{split}$$

every point in the neighborhood has some open ball that is fully enclosed in the neighborhood (94)

$$metricTopologicalSpace((M, \mathcal{O}, d), ()) \iff metricTopology(\mathcal{O}, (M, d))$$
 (95)

$$limitPoint(p,(S,M,d)) \iff (S \subseteq M) \land \forall_{r \in \mathbb{R}^+} \left(openBall(B,(r,p,M,d)) \cap S \neq \emptyset\right)$$
every open ball centered at p contains some intersection with S (96)

$$interiorPoint\big(p,(S,M,d)\big) \Longleftrightarrow (S \subseteq M) \land \bigg(\exists_{r \in \mathbb{R}^+} \Big(openBall\big(B,(r,p,M,d)\big) \subseteq S \Big) \bigg)$$

```
# there is an open ball centered at p that is fully enclosed in S
                                                                                                                                                                                                                                                                                                                                                                                                  (97)
                                                                                                                   closure(\bar{S},(S,M,d)) \iff \bar{S} = S \cup \{limitPoint(p,(S,M,d)) | p \in M\}
                                                                                                                                                                                                                                                                                                                                                                                                  (98)
                                                                                                             dense\big(S,(M,d)\big) \Longleftrightarrow (S \subseteq M) \land \bigg( \forall_{p \in M} \Big( p \in closure\big(\bar{S},(S,M,d)\big) \Big) \bigg)
                                                                                                                                                                \# every of point in M is a point or a limit point of S
                                                                                                                                                                                                                                                                                                                                                                                                  (99)
                                                                                                                                                         eucD(d,(n)) \iff (\forall_{i \in \mathbb{N} \land i \leq n} (x_i \in \mathbb{R})) \land \left(d = \sqrt[2]{\sum_{i=1}^n x_i^2}\right)
                                                                                                                                                                                                                                                                                                                                                                                             (100)
                                                                                                                                               metricTopology \Big( standardTopology, \Big( \mathbb{R}^n, eucD \big( d, (n) \big) \Big) \Big)
                                                                                                                          ==== N O T = U P D A T E D =======
                                                         L1: \forall_{p \in U = \emptyset}(...) \Longrightarrow \forall_p ((p \in \emptyset) \Longrightarrow ...) \Longrightarrow \forall_p ((\mathbf{False}) \Longrightarrow ...) \Longrightarrow \emptyset \in \mathcal{O}_{standard}
                                                                                                                                                                                        L2: \forall_{p \in \mathbb{R}^n} B(r, p, \mathbb{R}^n, d) \subseteq \mathbb{R}^n \Longrightarrow M \in \mathcal{O}_{standard}
                                                                          L4: C \subseteq \mathcal{O}_{standard} \Longrightarrow \forall_{U \in C} \forall_{p \in U} \exists_{r \in \mathbb{R}^+} (B_r(p) \subseteq U \subseteq \cup C) \Longrightarrow \cup C \in \mathcal{O}_{standard}
                                                                                                                                                         L3: U, V \in \mathcal{O}_{standard} \Longrightarrow p \in U \cap V \Longrightarrow p \in U \land p \in V \Longrightarrow
                                                                                                                                                                                                      \exists_{r \in \mathbb{R}^+} B(r, p, \mathbb{R}^n, d) \land \exists_{s \in \mathbb{R}^+} B(s, p, \mathbb{R}^n, d) \Longrightarrow
                                                                                                                                       B(min(r,s), p, \mathbb{R}^n, eucD) \subseteq U \land B(min(r,s), q, \mathbb{R}^n, d) \subseteq V \Longrightarrow
                                                                                                                                                             B(min(r,s), p, \mathbb{R}^n, eucD) \in U \cap V \Longrightarrow U \cap V \in \mathcal{O}_{standard}
                                                                                                                                                                                                                                                                     # natural topology for \mathbb{R}^d
                                                                                                                                                         \# could fail on infinite sets since min could approach 0
                                                                                                                                                   = N O T = U P D A T E D =========
                                                                                                                                                                                                                                                                                                                                                                                             (101)
                 subsetTopology(\mathcal{O}|_{N},(M,\mathcal{O},N)) \iff topology(\mathcal{O},(M)) \land (N \subseteq M) \land (\mathcal{O}|_{N} = \{U \cap N \mid U \in \mathcal{O}\})
                                                                                                                                                                                                                                                              \# crops open sets outside N
                                                                                                                                                                                                                                                                                                                                                                                             (102)
                                                                                                          (THM): subsetTopology(\mathcal{O}|_N, (M, \mathcal{O}, N)) \land topology(\mathcal{O}|_N, (N)) \Leftarrow
                                                                                                           ===== N O T = U P D A T E D ========
                                                                                                                                                                                              L1: \emptyset \in \mathcal{O} \Longrightarrow U = \emptyset \Longrightarrow \emptyset \cap N = \emptyset \Longrightarrow \emptyset \in \mathcal{O}|_{N}
                                                                                                                                                                         L2: M \in \mathcal{O} \Longrightarrow U = M \Longrightarrow M \cap N = N \Longrightarrow N \in \mathcal{O}|_{N}
                                       L3: S, T \in \mathcal{O}|_N \Longrightarrow \exists_{U \in \mathcal{O}} (S = U \cap N) \land \exists_{V \in \mathcal{O}} (T = V \cap N) \Longrightarrow S \cap T = (U \cap N) \cap (V \cap N)
                                                                                                                                                                                                             =(U\cap V)\cap N\wedge U\cap V\in\mathcal{O}\Longrightarrow S\cap T\in\mathcal{O}|_{N}
                                                                                                                                                                                                                                                                   L4: TODO: EXERCISE
                                                                                                                    (103)
productTopology\Big(\mathcal{O}_{A\times B}, \big((A,\mathcal{O}_A),(B,\mathcal{O}_B)\big)\Big) \Longleftrightarrow \Big(topology\big(\mathcal{O}_A,(A)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B,(B)\big)\Big) \wedge \Big(topology\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big(\mathcal{O}_B,(B)\big
                                                                                                                                                       (\mathcal{O}_{A\times B} = \{(a,b)\in A\times B \mid \exists_S(a\in S\in\mathcal{O}_A)\exists_T(b\in T\in\mathcal{O}_B)\})
                                                                                                                                                                                                                                                  # open in cross iff open in each
                                                                                                                                                                                                                                                                                                                                                                                             (104)
```

1.6 Convergence

$$sequence (q,(M)) \Longleftrightarrow map(q,(\mathbb{N},M)) \quad (105)$$

$$sequence Converges To((q,a),(M,\mathcal{O})) \Longleftrightarrow (topological Space((M,\mathcal{O}),())) \land (sequence(q,(M))) \land (a \in M) \land (\forall_{U \in \mathcal{O}|a \in U} \exists_{N \in \mathbb{N}} \forall_{n > N} (q(n) \in U))$$
each neighborhood of a has a tail-end sequence that does not map to outside points (106)

(THM): convergence generalizes to: the sequence $q: \mathbb{N} \to \mathbb{R}^d$ converges against $a \in \mathbb{R}^d$ in \mathcal{O}_S if:
$$\forall_{r > 0} \exists_{N \in \mathbb{N}} \forall_{n > N} (||q(n) - a|| < \epsilon) \text{ $\#$ distance based convergence} \qquad (107)$$

1.7 Continuity

$$\begin{array}{c} continuous(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}_{M}),()\big)\Big) \land \\ \\ \Big(topologicalSpace\big((N,\mathcal{O}_{N}),()\big)\Big) \land \Big(\forall_{V \in \mathcal{O}_{N}}\Big(preimage\big(A,(V,\phi,M,N)\big) \in \mathcal{O}_{M}\Big)\Big) \\ \\ \# \ preimage \ of \ open \ sets \ are \ open \end{array}$$

$$\begin{array}{c} homeomorphism(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})) \Longleftrightarrow \Big(inverseMap\Big(\phi^{-1},(\phi,M,N)\Big)\Big) \\ \\ \Big(continuous\big(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})\big)\Big) \land \Big(continuous\Big(\phi^{-1},(N,\mathcal{O}_{N},M,\mathcal{O}_{M})\big)\Big) \\ \\ \# \ structure \ preserving \ maps \ in \ topology, \ ability \ to \ share \ topological \ properties \end{array}$$

$$\begin{array}{c} isomorphicTopologicalSpace\Big(\big((M,\mathcal{O}_{M}),(N,\mathcal{O}_{N})\big),(\big)\Big) \Longleftrightarrow \\ \\ \exists_{\phi}\Big(homeomorphism\big(\phi,(M,\mathcal{O}_{M},N,\mathcal{O}_{N})\big)\Big) \end{array}$$

$$(110)$$

1.8 Separation

$$T0Separate \big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y} \exists_{U\in\mathcal{O}}\Big(\big(x\in U\land y\notin U\big)\lor \big(y\in U\land x\notin U\big)\Big)\Big) \\ \# \ \text{each pair of points has a neighborhood s.t. one is inside and the other is outside} \ \ (111)$$

$$T1Separate\big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\Big(\big(x\in U\land y\notin U\big)\land \big(y\in V\land x\notin V\big)\Big)\Big) \\ \# \ \text{every point has a neighborhood that does not contain another point} \ \ \ (112)$$

$$T2Separate\big((M,\mathcal{O}),()\big) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land \\ \Big(\forall_{x,y\in M\land x\neq y}\exists_{U,V\in\mathcal{O}\land U\neq V}\big(U\cap V=\emptyset\big)\Big) \\ \# \ \text{every point has a neighborhood that does not intersect with a nhbhd of another point - Hausdorff space} \ \ \ (113)$$

1.9 Compactness

$$openCover(C, (M, \mathcal{O})) \iff \Big(topologicalSpace((M, \mathcal{O}), ())\Big) \land (C \subseteq \mathcal{O}) \land (\cup C = M)$$
collection of open sets whose elements cover the entire space (115)

$$finiteSubcover\left(\widetilde{C},(C,M,\mathcal{O})\right) \Longleftrightarrow \left(\widetilde{C} \subseteq C\right) \land \left(openCover\left(C,(M,\mathcal{O})\right)\right) \land \\ \left(openCover\left(\widetilde{C},(M,\mathcal{O})\right)\right) \land \left(finiteSet\left(\widetilde{C},()\right)\right) \\ \# \text{ finite subset of a cover that is also a cover}$$
 (116)

$$compact((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace\big((M,\mathcal{O}),()\big)\Big) \land$$

$$\Big(\forall_{C\subseteq\mathcal{O}}\Big(openCover\big(C,(M,\mathcal{O})\big) \Longrightarrow \exists_{\widetilde{C}\subseteq C}\Big(finiteSubcover\big(\widetilde{C},(C,M,\mathcal{O})\big)\Big)\Big)\Big)$$
every covering of the space is represented by a finite number of nhbhds (117)

$$compactSubset(N,(M,\mathcal{O})) \iff \left(compact((M,\mathcal{O}),())\right) \land$$

$$\left(subsetTopology(\mathcal{O}|_{N},(M,\mathcal{O},N))\right) \land \left(compact((N,\mathcal{O}|_{N}),())\right)$$
(118)

$$bounded(N,(M,d)) \iff \left(metricSpace((M,d),()) \right) \land (N \subseteq M) \land$$

$$\left(\exists_{r \in \mathbb{R}^+} \forall_{p,q \in n} \left(d(p,q) < r \right) \right)$$
(119)

(THM) Heine-Borel thm.:
$$metricTopologicalSpace((M, \mathcal{O}_d, d), ()) \Longrightarrow$$

$$\forall_{S\subseteq M} \left(\left(closed(S, (M, \mathcal{O}_d)) \wedge bounded(S, (M, \mathcal{O}_d)) \right) \iff compactSubset(S, (M, \mathcal{O}_d)) \right)$$
when metric topologies are involved, compactness is equivalent to being closed and bounded (120)

1.10 Paracompactness

$$\begin{aligned} openRefinement\Big(\widetilde{C},(C,M,\mathcal{O})\Big) &\Longleftrightarrow \Big(openCover\big(C,(M,\mathcal{O})\big)\Big) \wedge \Big(openCover\Big(\widetilde{C},(M,\mathcal{O})\big)\Big) \wedge \\ \Big(\forall_{\widetilde{U} \in \widetilde{C}} \exists_{U \in C} \Big(\widetilde{U} \subseteq U\Big)\Big) \end{aligned}$$

a refined cover can be constructed by removing the excess nhbhds and points that lie outside the space (121)

$$(THM): finiteSubcover \Longrightarrow openRefinement$$
 (122)

$$locallyFinite(C,(M,\mathcal{O})) \iff \left(openCover(C,(M,\mathcal{O}))\right) \land$$
$$\forall_{p \in M} \exists_{U \in \mathcal{O}|p \in U} \left(finiteSet(\{U_c \in C | U \cap U_c \neq \emptyset\},())\right)$$

each point has a neighborhood that intersects with only finitely many sets in the cover (123)

1.11 Connectedness and path-connectedness

$$connected((M,\mathcal{O}),()) \Longleftrightarrow \Big(topologicalSpace((M,\mathcal{O}),())\Big) \land \Big(\neg \exists_{A,B \in \mathcal{O} \backslash \emptyset} \big(A \cap B \neq \emptyset \land A \cup B = M\big)\Big)$$

$$\# \text{ if there is some covering of the space that does not intersect} \qquad (130)$$

$$(THM): \neg connected\Big(\Big(\mathbb{R} \backslash \{0\}, subsetTopology\Big(\mathcal{O}_{standard}|_{\mathbb{R} \backslash \{0\}}, (\mathbb{R}, standardTopology, \mathbb{R} \backslash \{0\})\Big)\Big), ()\Big)$$

$$\iff \Big(A = (-\infty, 0) \in \mathcal{O}_{standard}|_{\mathbb{R} \backslash \{0\}}\Big) \land \Big(B = (0, \infty) \in \mathcal{O}_{standard}|_{\mathbb{R} \backslash \{0\}}\Big) \land \Big(A \cap B = \emptyset) \land \Big(A \cup B = \mathbb{R} \backslash \{0\}\Big) \qquad (131)$$

$$(THM): connected\Big((M, \mathcal{O}), ()\big) \iff \forall_{S \in \mathcal{O}}\Big(clopen\Big(S, (M, \mathcal{O}) \implies (S = \emptyset \lor S = M\big)\Big)\Big) \qquad (132)$$

$$pathConnected\Big((M, \mathcal{O}), ()\big) \iff \Big(subsetTopology\Big(\mathcal{O}_{standard}|_{[0,1]}, (\mathbb{R}, standardTopology, [0,1])\Big)\Big) \land$$

$$\left(\forall_{p,q\in M}\exists_{\gamma}\left(continuous\left(\gamma,\left([0,1],\mathcal{O}_{standard}|_{[0,1]},M,\mathcal{O}\right)\right)\wedge\gamma(0)=p\wedge\gamma(1)=q\right)\right) \tag{133}$$

$$(THM): pathConnected \Longrightarrow connected$$
 (134)

1.12 Homotopic curve and the fundamental group

======== N O T = U P D A T E D ========	(135)
$homotopic(\sim, (\gamma, \delta, M, \mathcal{O})) \Longleftrightarrow (map(\gamma, ([0, 1], M)) \land map(\delta, ([0, 1], M))) \land (\gamma(0) = \delta(0) \land \gamma(1) = \delta(1)) \land$	
$(\exists_{H} \forall_{\lambda \in [0,1]}(continuous(H,(([0,1] \times [0,1],\mathcal{O}_{standard^{2}} _{[0,1] \times [0,1]}),(M,\mathcal{O})) \wedge H(0,\lambda) = \gamma(\lambda) \wedge H(1,\lambda) = \delta(\lambda))))$ # H is a continuous deformation of one curve into another	(136)
$homotopic(\sim) \Longrightarrow equivalenceRelation(\sim)$	(137)
$loopSpace(\mathcal{L}_p, (p, M, \mathcal{O})) \Longleftrightarrow \mathcal{L}_p = \{ map(\gamma, ([0, 1], M)) continuous(\gamma) \land \gamma(0) = \gamma(1) \})$	(138)
$concatination(\star, (p, \gamma, \delta)) \iff (\gamma, \delta \in loopSpace(\mathcal{L}_p)) \land $ $(\forall_{\lambda \in [0, 1]}((\gamma \star \delta)(\lambda) = \begin{cases} \gamma(2\lambda) & 0 \leq \lambda < 0.5 \\ \delta(2\lambda - 1) & 0.5 \leq \lambda \leq 1 \end{cases}))$	(139)
$\int_{0}^{(\sqrt{\lambda} \in [0,1]((\sqrt{\lambda}))} \int_{0}^{(\sqrt{\lambda})} \delta(2\lambda - 1) 0.5 \le \lambda \le 1$	
$group((G, \bullet), ()) \Longleftrightarrow (map(\bullet, (G \times G, G))) \land (\forall_{a,b \in G} (a \bullet b \in G)) (\forall_{a,b,c \in G} ((a \bullet b) \bullet C = a \bullet (b \bullet c)))$	
$(\exists_{\boldsymbol{e}}\forall_{a\in G}(\boldsymbol{e}\bullet\boldsymbol{a}=\boldsymbol{a}=\boldsymbol{a}\bullet\boldsymbol{e}))\wedge$ $(\forall_{a\in G}\exists_{a^{-1}}(\boldsymbol{a}\bullet\boldsymbol{a}^{-1}=\boldsymbol{e}=\boldsymbol{a}^{-1}\bullet\boldsymbol{a}))$	
# characterizes symmetry of a set structure	(140)
$isomorphic(\cong,(X,\odot),(Y,\ominus))) \Longleftrightarrow \exists_f \forall_{a,b \in X} (bijection(f,(X,Y)) \land f(a \odot b) = f(a) \ominus f(b))$	(141)
$fundamentalGroup((\pi_{1,p}, \bullet), (p, M, \mathcal{O})) \iff (\pi_{1,p} = \mathcal{L}_p / \sim) \land (map(\bullet, (\pi_{1,p} \times \pi_{1,p}, \pi_{1,p}))) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [B] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B])) \land (\forall_{A,B \in \pi_{1,p}} ([A] \bullet [A] = [A \star B]$	
$(group((\pi_{1,p},ullet),()))$ # an equivalence class of all loops induced from the homotopic equivalence relation	(142)
$fundamental Group_1 \not\cong fundamental Group_2 \Longrightarrow topological Space_1 \not\cong topological Space_2$	(143)
there exists no known list of topological properties that can imply homeomorphisms	(144)
CONTINUE @ Lecture 6: manifolds	(145)
======== N O T = U P D A T E D ========	(146)

1.13 Measure theory

$$sigma Algebra(\sigma,(M)) \Leftrightarrow (M \neq \emptyset) \land (\sigma \subseteq P(M)) \land (M \in \sigma) \land (\forall A \subseteq \sigma$$

$$standardSigma(\sigma_s, ()) \iff \left(borelSigmaAlgebra\left(\sigma_s, \left(\mathbb{R}^d, standardTopology\right)\right)\right)$$
 (157)

$$lebesgueMeasure(\lambda, ()) \iff \left(measure(\lambda, (\mathbb{R}^d, standardSigma)) \right) \land$$

$$\left(\lambda \left(\times_{i=1}^d ([a_i, b_i)) \right) = \sum_{i=1}^d \left(\sqrt[2]{(a_i - b_i)^2} \right) \right)$$
natural measure for \mathbb{R}^d (158)

$$\begin{aligned} measurableMap\big(f,(M,\sigma_{M},N,\sigma_{N})\big) &\iff \Big(measurableSpace\big((M,\sigma_{M}),()\big)\Big) \wedge \\ \Big(measurableSpace\big((N,\sigma_{N}),()\big)\Big) \wedge \Big(\forall_{B \in \sigma_{N}}\Big(preimage\big(A,(B,f,M,N)\big) \in \sigma_{M}\Big)\Big) \\ & \# \text{ preimage of measurable sets are measurable} \end{aligned} \tag{159}$$

$$pushForwardMeasure(f \star \lambda_{M}, (f, M, \sigma_{M}, \mu_{M}, N, \sigma_{N})) \iff \left(measureSpace((M, \sigma_{M}, \mu_{M}), ())\right) \land \left(measurableSpace((N, \sigma_{N}), ())\right) \land \left(measurableMap(f, (M, \sigma_{M}, N, \sigma_{N}))\right) \land \left(\forall_{B \in N} \left(f \star \lambda_{M}(B) = \mu_{M} \left(preimage(A, (B, f, M, N))\right)\right)\right) \land \left(measure(f \star \lambda_{M}, (N, \sigma_{N}))\right)$$
natural construction of a measure based primarily on measurable map (160)

$$nullSet\big(A,(M,\sigma,\mu)\big) \Longleftrightarrow \Big(measureSpace\big((M,\sigma,\mu),()\big)\Big) \land (A \in \sigma) \land \big(\mu(A) = 0\big) \tag{161}$$

$$almostEverywhere(p,(M,\sigma,\mu)) \Longleftrightarrow \Big(measureSpace((M,\sigma,\mu),())\Big) \wedge \Big(predicate(p,(M))\Big) \wedge \Big(\exists_{A \in \sigma} \Big(nullSet(A,(M,\sigma,\mu)) \Longrightarrow \forall_{n \in M \setminus A} \Big(p(n)\Big)\Big)\Big)$$
the predicate holds true for all points except the points in the null set (162)

1.14 Lebesque integration

$$simpleTopology(\mathcal{O}_{simple}, ()) \iff \mathcal{O}_{simple} = subsetTopology(\mathcal{O}|_{\mathbb{R}_{0}^{+}}, (\mathbb{R}, standardTopology, \mathbb{R}_{0}^{+}))$$
 (163)

$$simpleSigma(\sigma_{simple}, ()) \iff borelSigmaAlgebra(\sigma_{simple}, (\mathbb{R}_{0}^{+}, simpleTopology))$$
 (164)

$$simpleFunction\big(s,(M,\sigma)\big) \Longleftrightarrow \left(\frac{measurableMap}{s} \left(s, \left(M, \sigma, \mathbb{R}_0^+, simpleSigma \right) \right) \right) \land \\ \left(\frac{finiteSet}{s} \left(\frac{image}{s} \left(B, \left(M, s, M, \mathbb{R}_0^+ \right) \right), () \right) \right) \right)$$

if the map takes on finitely many values on \mathbb{R}_0^+ (165)

$$characteristicFunction(X_A, (A, M)) \iff (A \subseteq M) \land \begin{pmatrix} map(X_A, (M, \mathbb{R})) \end{pmatrix} \land$$

$$\begin{pmatrix} \forall_{m \in M} \begin{pmatrix} X_A(m) = \begin{pmatrix} 1 & m \in A \\ 0 & m \notin A \end{pmatrix} \end{pmatrix}$$
 (166)

$$\left(\text{THM}\right) : simpleFunction\left(s,(M,\sigma_{M})\right) \Longrightarrow \left(finiteSet\left(image\left(Z,\left(M,s,M,\mathbb{R}_{0}^{+}\right)\right),()\right)\right) \land \left(characteristicFunction\left(X_{A},(A,M)\right)\right) \land \left(\forall_{m \in M}\left(s(m) = \sum_{z \in Z} \left(z \cdot X_{preimage\left(A,\left(\{z\},s,M,\mathbb{R}_{0}^{+}\right)\right)}(m)\right)\right)\right)$$
(167)

 $exStandardSigma(\overline{\sigma_s},()) \iff \overline{\sigma_s} = \{A \subseteq \overline{\mathbb{R}} \mid A \cap R \in standardSigma\}$

ignores $\pm \infty$ to preserve the points in the domain of the measurable map (168)

$$nonNegIntegrable \big(f,(M,\sigma)\big) \Longleftrightarrow \Bigg(\frac{measurableMap}{measurableMap} \bigg(f, \bigg(M,\sigma, \overline{\mathbb{R}}, \underbrace{exStandardSigma} \bigg) \bigg) \bigg) \wedge \\ \bigg(\forall_{m \in M} \big(f(m) \geq 0\big) \bigg) \ \, (169)$$

$$nonNegIntegral\left(\int_{M}(fd\mu),(f,M,\sigma,\mu)\right) \Longleftrightarrow \left(measureSpace\left((M,\sigma,\mu),()\right)\right) \land \\ \left(measureSpace\left(\left(\overline{\mathbb{R}},exStandardSigma,lebesgueMeasure\right),()\right)\right) \land \\ \left(nonNegIntegrable(f,(M,\sigma))\right) \land \left(\int_{M}(fd\mu) = \sup(\left\{\sum_{z \in Z}\left(z \cdot \mu\left(preimage\left(A,\left(\{z\},s,M,\mathbb{R}_{0}^{+}\right)\right)\right)\right)\right) \mid \\ \forall_{m \in M}(s(m) \leq f(m)) \land simpleFunction(s,(M,\sigma)) \land finiteSet\left(image\left(Z,\left(M,s,M,\mathbb{R}_{0}^{+}\right)\right),()\right)\})) \\ \# \text{ lebesgue measure on } z \text{ reduces to } z \text{ (170)}$$

$$explicitIntegral \iff \int (f(x)\mu(dx)) = \int (fd\mu)$$
alternative notation for lebesgue integrals (171)

$$(\text{THM}): \textit{nonNegIntegral} \left(\int (fd\mu), (f, M, \sigma, \mu) \right) \wedge \textit{nonNegIntegral} \left(\int (gd\mu), (g, M, \sigma, \mu) \right) \Longrightarrow$$

$$(\text{THM}) \text{ Markov inequality: } \left(\forall_{z \in \mathbb{R}_0^+} \left(\int (fd\mu) \geq z \cdot \mu \left(\textit{preimage} \left(A, \left([z, \infty), f, M, \overline{\mathbb{R}} \right) \right) \right) \right) \right) \wedge$$

$$\left(\textit{almostEverywhere} \left(f = g, (M, \sigma, \mu) \right) \Longrightarrow \int (fd\mu) = \int (gd\mu) \right)$$

$$\left(\int (fd\mu) = 0 \Longrightarrow \textit{almostEverywhere} \left(f = 0, (M, \sigma, \mu) \right) \right) \wedge$$

$$\left(\int (fd\mu) \leq \infty \Longrightarrow \textit{almostEverywhere} \left(f < \infty, (M, \sigma, \mu) \right) \right)$$

$$(172)$$

(THM) Mono. conv.:
$$\left((f)_{\mathbb{N}} = \{ f_n \mid \land measurableMap \bigg(f_n, \bigg(M, \sigma, \overline{R}, exStandardSigma \bigg) \bigg) \land 0 \leq f_{n-1} \leq f_n \} \right) \land$$

$$\left(map \bigg(f, \bigg(M, \overline{\mathbb{R}} \bigg) \bigg) \right) \land \left(\forall_{m \in M} \bigg(f(m) = \sup \big(f_n(m) \mid f_n \in (f)_{\mathbb{N}} \big) \big) \right) \Longrightarrow \left(\lim_{n \to \infty} \left(\int_M (f_n d\mu) \right) = \int_M (f d\mu) \right)$$

$$\# \text{ lengths now depend on } M, \sigma \text{ and limits can be pulled in or out of an integral } (173)$$

$$(\text{THM}): nonNegIntegral} \bigg(\int (fd\mu), (f, M, \sigma, \mu) \bigg) \wedge nonNegIntegral \bigg(\int (gd\mu), (g, M, \sigma, \mu) \bigg) \Longrightarrow \\ \bigg(\forall_{\alpha \in \mathbb{R}_0^+} \bigg(\int \big((f + \alpha g) d\mu \big) = \int (fd\mu) + \alpha \int (gd\mu) \bigg) \bigg) \bigg)$$

integral acts linearly and commutes finite summations (174)

$$(\text{THM}): \left((f)_{\mathbb{N}} = \{ f_n \mid \land measurableMap \left(f_n, \left(M, \sigma, \overline{R}, exStandardSigma \right) \right) \land 0 \leq f_n \} \right) \Longrightarrow \left(\int \left(\left(\sum_{n=1}^{\infty} (f_n) \right) d\mu \right) = \sum_{n=1}^{\infty} \left(\int (f_n d\mu) \right) \right)$$

 $\# \sum_{n=1}^{\infty} f_n$ can be treated as $\lim_{n\to\infty} \sum_{i=1}^n f_n$ since $f_n \ge 0$ and it commutes with integral from monotone conv. (175)

$$integrable(f,(M,\sigma)) \Longleftrightarrow \left(measurableMap\Big(f,\Big(M,\sigma,\overline{\mathbb{R}},exStandardSigma\Big)\Big)\right) \land \\ \left(\forall_{m\in M}\Big(f(m)=max\big(f(m),0\big)-max\big(0,-f(m)\big)\Big)\right) \land \\ \left(measureSpace(M,\sigma,\mu) \Longrightarrow \left(\int \Big(max\big(f(m),0\big)d\mu\Big) < \infty \land \int \Big(max\big(0,-f(m)\big)d\mu\Big) < \infty \right)\right) \\ \# \text{ extra condition prevents the occurrence of the indeterminate } \infty - \infty \tag{176}$$

$$integral\left(\int (fd\mu), (f, M, \sigma, \mu)\right) \Longleftrightarrow \left(nonNegIntegral\left(\int (f^+d\mu), \left(max(f, 0), M, \sigma, \mu\right)\right)\right) \land \left(nonNegIntegral\left(\int (f^-d\mu), \left(max(0, -f), M, \sigma, \mu\right)\right)\right) \land \left(integrable(f, (M, \sigma))\right) \land \left(\int (fd\mu) = \int (f^+d\mu) - \int (f^-d\mu)\right)$$
arbitrary integral in terms of nonnegative integrals (177)

 $(\text{THM}): \left(map(f, (M, \mathbb{C})) \right) \Longrightarrow \left(\int (fd\mu) = \int \left(Re(f)d\mu \right) - \int \left(Im(f)d\mu \right) \right) \tag{178}$

$$(\text{THM}): \operatorname{integral}\left(\int (fd\mu), (f, M, \sigma, \mu)\right) \wedge \operatorname{integral}\left(\int (gd\mu), (g, M, \sigma, \mu)\right) \Longrightarrow \left(\operatorname{almostEverywhere}\left(f \leq g, (M, \sigma, \mu)\right) \Longrightarrow \int (fd\mu) \leq \int (gd\mu)\right) \wedge \left(\forall_{m \in M}\left(f(m), g(m), \alpha \in \mathbb{R}\right) \Longrightarrow \int \left((f + \alpha g)d\mu\right) = \int (fd\mu) + \alpha \int (gd\mu)\right)$$
(179)

1.15 Vector space and structures

$$vectorSpace ((V,+,\cdot),()) \Longleftrightarrow \Big(map \big(+, (V \times V,V) \big) \Big) \wedge \Big(map \big(\cdot, (\mathbb{R} \times V,V) \big) \Big) \wedge \\ \big(\forall_{v,w \in v} (v+w=w+v) \big) \wedge \\ \big(\forall_{v,w,x \in v} \big((v+w) + x = v + (w+x) \big) \Big) \wedge \\ \big(\exists_{\boldsymbol{o} \in V} \forall_{v \in V} (v+\boldsymbol{o} = v) \big) \wedge \\ \big(\forall_{v,v} \exists_{-v \in V} \big(v + (-v) = \boldsymbol{o} \big) \big) \wedge \\ \big(\forall_{a,b \in \mathbb{R}} \forall_{v \in V} \big(a(b \cdot v) = (ab) \cdot v \big) \Big) \wedge \\ \big(\forall_{a,b \in \mathbb{R}} \forall_{v \in V} \big((a+b) \cdot v = a \cdot v + b \cdot v \big) \Big) \wedge \\ \big(\forall_{a,b \in \mathbb{R}} \forall_{v,w \in V} \big(a \cdot (v+w) = a \cdot v + a \cdot w \big) \big) \\ \big(\forall_{a \in \mathbb{R}} \forall_{v,w \in V} \big(a \cdot (v+w) = a \cdot v + a \cdot w \big) \big) \\ \# \text{ behaves similar as vectors should i.e., additive, scalable, linear distributive}$$
 (181)

$$\begin{split} innerProduct\big(\langle\$1,\$2\rangle,(V,+,\cdot)\big) &\Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \wedge \Big(map\big(\langle\$1,\$2\rangle,(V\times V,\mathbb{R})\big)\Big) \wedge \\ &\qquad \qquad \Big(\forall_{v,w\in V}\big(\langle v,w\rangle = \langle w,v\rangle\big)\Big) \wedge \\ &\qquad \qquad \Big(\forall_{v,w,x\in V}\forall_{a,b\in\mathbb{R}}\big(\langle av+bw,x\rangle = a\langle v,x\rangle + b\langle w,x\rangle\big)\Big) \wedge \\ &\qquad \qquad \Big(\forall_{v\in V}\big(\langle v,v\rangle\big) \geq 0\Big) \wedge \Big(\forall_{v\in V}\big(\langle v,v\rangle\big) = 0 \Longleftrightarrow v = \textbf{0}\Big) \end{split}$$

the sesquilinear or 1.5 linear map inner product provides info. on distance and orthogonality (182)

$$innerProductSpace\Big((V,+,\cdot,\langle\$1,\$2\rangle),()\Big) \iff innerProduct\big(\langle\$1,\$2\rangle,(V,+,\cdot)\big)$$
 (183)

$$vectorNorm(||\$1||, (V, +, \cdot)) \iff \left(vectorSpace((V, +, \cdot), ())\right) \land \left(map(||\$1||, (V, \mathbb{R}_0^+))\right) \land \left(\forall_{v \in V} (||v|| = 0 \iff v = \mathbf{0})\right) \land \left(\forall_{v \in V} \forall_{s \in \mathbb{R}} (||sv|| = |s|||v||)\right) \land \left(\forall_{v, w \in V} (||v + w|| \le ||v|| + ||w||)\right)$$
magnitude of a point in a vector space (184)

$$normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \wedge \Big(vectorNorm\big(||\$1||,(V,+,\cdot)\big)\Big) \tag{185}$$

$$vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \land \\ \Big(metric\Big(d\big(\$1,\$2\big),(V)\Big) \lor \Big(map\Big(d,\Big(V\times V,\mathbb{R}_0^+\Big)\Big)\Big) \\ \Big(\forall_{x,y\in V}\Big(d(x,y)=d(y,x)\big)\Big) \land \\ \Big(\forall_{x,y\in V}\Big(d(x,y)=0\Longleftrightarrow x=y\big)\Big) \land \\ \Big(\forall_{x,y,z\in V}\Big(\big(d(x,z)\le d(x,y)+d(y,z)\big)\Big)\Big) \Big) \\ \# \text{ behaves as distances should} \qquad (186)$$

$$metricVectorSpace\Big(\Big(V,+,\cdot,d\big(\$1,\$2\big)\Big),()\Big) \Longleftrightarrow \Big(vectorSpace\big((V,+,\cdot),()\big)\Big) \land \\ \Big(vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big)\Big) \tag{187}$$

$$innerProductNorm\Big(||\$1||, (V, +, \cdot, \langle\$1, \$2\rangle)\Big) \Longleftrightarrow \Big(innerProductSpace\Big((V, +, \cdot, \langle\$1, \$2\rangle), ()\Big)\Big) \land \\ \Big(\forall_{v \in V}\Big(||v|| = \sqrt[2]{\langle v, v \rangle}\Big) \Longrightarrow vectorNorm\big(||\$1||, (V, +, \cdot)\big)\Big)$$
(188)

$$normInnerProduct\Big(\langle\$1,\$2\rangle, \big(V,+,\cdot,||\$1||\big)\Big) \Longleftrightarrow \Big(normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big)\Big) \land \\ \Big(\forall_{u,v\in V}\Big(2||u||^2+2||v||^2=||u+v||^2+||u-v||^2\Big)\Big) \land \\ \Big(\forall_{v,w\in V}\Big(\langle v,w\rangle=\frac{||v+w||^2-||v-w||^2}{4}\Big) \Longrightarrow innerProduct\Big(\langle\$1,\$2\rangle,(V,+,\cdot)\Big)\Big)$$
(189)

$$normMetric\Big(d\big(\$1,\$2\big),\big(V,+,\cdot,||\$1||\big)\Big) \Longleftrightarrow \Big(normedVectorSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big)\Big) \land \\ \Big(\forall_{v,w\in V}\big(d(v,w)=||v-w||\big) \Longrightarrow vectorMetric\Big(d\big(\$1,\$2\big),(V,+,\cdot)\Big)\Big) \qquad (190)$$

$$metricNorm\Big(||\$1||, \Big(V, +, \cdot, d\big(\$1, \$2\big)\Big)\Big) \Longleftrightarrow \Big(metricVectorSpace\Big(\Big(V, +, \cdot, d\big(\$1, \$2\big)\Big), ()\Big)\Big) \land \\ \Big(\forall_{u,v,w \in V} \forall_{s \in \mathbb{R}} \Big(d\big(s(u+w), s(v+w)\big) = |s|d(u,v)\Big)\Big) \land \\ \Big(\forall_{v \in V} \big(||v|| = d(v, \mathbf{0})\big) \Longrightarrow vectorNorm\big(||\$1||, (V, +, \cdot)\big)\Big)$$
(191)

$$orthogonal \Big((v, w), \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Longleftrightarrow \Big(innerProductSpace \Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), () \Big) \Big) \wedge$$

$$(v, w \in V) \wedge \big(\langle v, w \rangle = 0 \big)$$
the inner product also provides info. on orthogonality (192)

$$normal\Big(v, \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Longleftrightarrow \Big(innerProductSpace\Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), ()\Big) \Big) \land (v \in V) \land \big(\langle v, v \rangle = 1\big)$$

(THM) Cauchy-Schwarz inequality:
$$\forall_{v,w \in V} (\langle v, w \rangle \leq ||v|| ||w||)$$
 (194)

$$basis((b)_n, (V, +, \cdot, \cdot)) \Longleftrightarrow \left(vectorSpace((V, +, \cdot), ())\right) \land \left(\forall_{v \in V} \exists_{(a)_n \in \mathbb{R}^n} \left(v = \sum_{i=1}^n (a_i b_i)\right)\right)$$
(195)

$$orthonormal Basis\Big((b)_n, \big(V, +, \cdot, \langle \$1, \$2 \rangle\big)\Big) \Longleftrightarrow \Big(inner Product Space\Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle\big), ()\Big)\Big) \wedge \\ \Big(basis\Big((b)_n, (V, +, \cdot)\Big)\Big) \wedge \Bigg(\forall_{v \in (b)_n} \Big(normal\Big(v, \big(V, +, \cdot, \langle \$1, \$2 \rangle\big)\Big)\Big)\Big) \wedge \\ \Big(\forall_{v \in (b)_n} \forall_{w \in (b)_n \setminus \{v\}} \Big(orthogonal\Big((v, w), \big(V, +, \cdot, \langle \$1, \$2 \rangle\big)\Big)\Big)\Big) \Big)$$
 (196)

1.16 Subvector space

$$subspace((U,\circ),(V,\circ)) \Longleftrightarrow \left(space((V,\circ),())\right) \land (U \subseteq V) \land \left(space((U,\circ),())\right)$$

$$(197)$$

$$subspaceSum(U+W,(U,W,V,+)) \Longleftrightarrow \left(subspace((U,+),(V,+))\right) \land \left(subspace((W,+),(V,+))\right) \land \left(U+W=\{u+w \mid u \in U \land w \in W\}\right)$$

$$(198)$$

$$subspaceDirectSum\big(U\oplus W,(U,W,V,+)\big) \Longleftrightarrow \big(U\cap W=\emptyset\big) \wedge \Big(subspaceSum\big(U\oplus W,(U,W,V,+)\big)\Big) \tag{199}$$

$$orthogonalComplement \Big(W^{\perp}, \big(W, V, +, \cdot, \langle \$1, \$2 \rangle \big) \Big) \Longleftrightarrow$$

$$\left(subspace \Big(\big(W, +, \cdot, \langle \$1, \$2 \rangle \big), \Big(innerProductSpace \Big(\big(V, +, \cdot, \langle \$1, \$2 \rangle \big), () \Big) \Big) \right) \right) \wedge$$

$$\left(W^{\perp} = \left\{ v \in V \mid w \in W \land orthogonal \Big((v, w), \big(V, +, \cdot, \langle \$1, \$2 \rangle \big) \right) \right\} \right)$$
 (200)

$$orthogonal Decomposition \left(\left(W, W^{\perp} \right), \left(W, V, +, \cdot, \langle \$1, \$2 \rangle \right) \right) \Longleftrightarrow \\ \left(orthogonal Complement \left(W^{\perp}, \left(W, V, +, \cdot, \langle \$1, \$2 \rangle \right) \right) \right) \wedge \left(subspace Direct Sum \left(V, \left(W, W^{\perp}, V, + \right) \right) \right)$$
 (201)

(THM) if V is finite dimensional, then every vector has an orthogonal decomposition: (202)

1.17 Banach and Hilbert Space

$$\begin{aligned} \operatorname{cauchy}\Big((s)_{\mathbb{N}}, \Big(V, d\big(\$1, \$2\big)\Big)\Big) &\Longleftrightarrow \left(\operatorname{metricSpace}\Big(\Big(V, d\big(\$1, \$2\big)\Big), ()\Big)\right) \wedge \big((s)_{\mathbb{N}} \subseteq V\big) \\ & \left(\forall_{\epsilon > 0} \exists_{N \in \mathbb{N}} \forall_{m, n \geq N} \big(d(s_m, s_n) < \epsilon\big)\right) \end{aligned}$$

distances between some tail-end point gets arbitrarily small (203)

$$complete\bigg(\Big(V,d\big(\$1,\$2\big)\Big),()\bigg) \Longleftrightarrow \Bigg(\forall_{(s)_{\mathbb{N}} \subseteq V} \exists_{s \in V} \bigg(cauchy\bigg((s)_{\mathbb{N}},\Big(V,d\big(\$1,\$2\big)\Big)\bigg) \Longrightarrow \lim_{n \to \infty} \big(d(s,s_n)\big) = 0\Bigg)\Bigg)$$

or converges within the induced topological space

in complete spaces, the weaker notion of cauchy is enforced to be equivalent to convergence (204)

$$banachSpace\Big(\big(V,+,\cdot,||\$1||\big),()\Big) \Longleftrightarrow \Big(normMetric\Big(d\big(\$1,\$2\big),\big(V,||\$1||\big)\Big)\Big) \land \Big(complete\Big(V,d\big(\$1,\$2\big)\big),()\Big)$$
 # a complete normed vector space (205)

$$hilbertSpace\Big(\big(V,+,\cdot,\langle\$1,\$2\rangle\big),()\Big) \Longleftrightarrow \Big(innerProductNorm\Big(||\$1||,\big(V,+,\cdot,\langle\$1,\$2\rangle\big)\Big)\Big) \land \\ \Big(normMetric\Big(d\big(\$1,\$2\big),\big(V,||\$1||\big)\Big)\Big) \land \Big(complete\Big(V,d\big(\$1,\$2\big)\Big),()\Big) \\ \# \text{ a complete inner product space}$$
 (206)

 $(THM): hilbertSpace \Longrightarrow banachSpace$ (207)

$$separable \big((V,d), () \big) \Longleftrightarrow \bigg(\exists_{S \subseteq V} \Big(dense \big(S, (V,d) \big) \wedge countably Infinite \big(S, () \big) \Big) \bigg)$$

needs only a countable subset to approximate any element in the entire space (208

$$(\operatorname{THM}): \operatorname{\textit{hilbertSpace}}\left(\left(\left(V,+,\cdot,\langle\$1,\$2\rangle\right),()\right),()\right) \Longrightarrow \\ \left(\exists_{(b)_{\mathbb{N}}\subseteq V} \left(\operatorname{\textit{orthonormalBasis}}\left((b)_{\mathbb{N}},\left(V,+,\cdot,\langle\$1,\$2\rangle\right)\right) \wedge \operatorname{\textit{countablyInfinite}}\left((b)_{\mathbb{N}},()\right)\right) \Longleftrightarrow \\ \operatorname{\textit{separable}}\left(\left(V,\sqrt{\langle\$1-\$2,\$1-\$2\rangle}\right),()\right)\right)$$

separability in hilbert spaces is equivalent to the existence of a countable orthonormal basis (209)

1.18 Matrices, Operators, and Functionals

$$linearOperator(L,(V,+_{V},\cdot_{V},W,+_{W},\cdot_{W})) \iff \left(map(L,(V,W))\right) \wedge \left(vectorSpace((V,+_{V},\cdot_{V}),())\right) \wedge \left(vectorSpace((V,+_{V},\cdot_{V}),(),())\right) \wedge \left(vectorSpace((V,+_{V},\cdot_{V}),(),()\right) \wedge \left(vectorSpace((V,+_{V},\cdot_{V},\cdot_{V}),(),()\right) \wedge \left(vectorSpace((V,+_{V},\cdot_{V},\cdot_{V}),(),()\right) \wedge \left(vectorSpace((V,+_{V},\cdot_{V},\cdot_{V}),(),()\right) \wedge \left(vectorSpace((V,+_{V},\cdot_{V},\cdot_{V}$$

 $\left(normedVectorSpace\Big(\big(V,+_{V},\cdot_{V},||\$1||_{V}\big),()\Big)\right)\wedge \left(normedVectorSpace\Big(\big(W,+_{W},\cdot_{W},||\$1||_{W}\big),()\Big)\right)\wedge \left(normedVectorSpace\Big(\big(W,+_{W},\cdot_{W},||\$1||_{W}\big),()\Big)\right)$

$$\left(||L|| = \sup\left(\left\{\frac{||Lf||_W}{||f||_V} \,|\, f \in V\right\}\right) = \sup\left(\left\{||Lf||_W \,|\, f \in V \land ||f|| = 1\right\}\right)\right) \quad (212)$$

$$boundedMap\Big(L, \big(V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) \Longleftrightarrow$$

$$\Big(mapNorm\Big(||L||, \big(L, V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) < \infty\Big) \quad (213)$$

$$\neg boundedMap\Big(L, \big(V, +_{V}, \cdot_{V}, ||\$1||_{V}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\Big) \Longleftarrow (U \subset V) \land \left(\infty = mapNorm\Big(||L||_{U}, \big(L, U, +_{U}, \cdot_{U}, ||\$1||_{U}, W, +_{W}, \cdot_{W}, ||\$1||_{W}\big)\right) \leq ||L||\right) \quad (214)$$

$$extensionMap\Big(\widehat{L},(L,V,D,W)\Big) \Longleftrightarrow (D \subseteq V) \land \Big(linearOperator\big(L,(D,+_D,\cdot_D,W,+_W,\cdot_W)\big)\Big) \land \\ \Big(linearOperator\big(\widehat{L},(V,+_V,\cdot_V,W,+_W,\cdot_W)\big)\Big) \land \Big(\forall_{d \in D}\Big(\widehat{L}(d) = L(d)\Big)\Big) \quad (215)$$

$$adjoint\Big(L^{T}, \big(L, V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big) \Longleftrightarrow \Big(hilbertSpace\Big(\big(V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}\big), ()\Big)\Big) \wedge \Big(hilbertSpace\Big(\big(W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big), ()\Big)\Big) \wedge \Big(linearOperator\big(L, (V, +_{V}, \cdot_{V}, W, +_{W}, \cdot_{W})\big)\Big) \wedge \Big(\forall_{v \in V} \forall_{w \in W}\Big(\Big(\langle Lv, w \rangle_{W} = \langle v, L^{T}w \rangle_{V}\Big) \vee \Big((Lv)^{T}w = v^{T}L^{T}w\Big)\Big)\Big)$$

$$\# \text{ target operator that acts similar to the domain operator} \tag{216}$$

$$selfAdjoint\Big(L, \big(V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big) \Longleftrightarrow$$

$$L = adjoint\Big(L^{T}, \big(L, V, +_{V}, \cdot_{V}, \langle \$1, \$2\rangle_{V}, W, +_{W}, \cdot_{W}, \langle \$1, \$2\rangle_{W}\big)\Big)$$

$$\# \text{ also a generalization of symmetric matrices} \qquad (217)$$

$$matrix(L,(n,m)) \iff \left(linearOperator(L,(\mathbb{R}^m,+_m,\cdot_m,\mathbb{R}^n,+_n,\cdot_n))\right)$$

$$\# \text{ rows=dimensions, cols=vectors} \quad (218)$$

$$eigenvector\big(v,(L,V,+,\cdot)\big) \Longleftrightarrow \Big(linearOperator\big(L,(V,+,\cdot,V,+,\cdot)\big)\Big) \wedge \Big(\exists_{\lambda \in \mathbb{R}}\big(L(v) = \lambda v\big)\Big) \quad (219)$$

$$eigenvalue \left(\lambda, (v, L, V, +, \cdot)\right) \Longleftrightarrow \left(eigenvector \left(v, (L, V, +, \cdot)\right)\right) \quad (220)$$

$$identityOperator(I,(A)) \iff (matrix(A,(n,n))) \land (AI = IA = A) \quad (221)$$

$$inverseOperator(A^{-1},(A)) \iff (A^{-1}A = identityOperator(I,(A)))$$
gauss-jordan elimination: $E[A|I] = [I|E] = [I|A^{-1}]$ (222)

$$(THM): (AB)^{-1}(AB) = I = B^{-1}A^{-1}AB$$
 (223)

$$transposeOperator\Big(A^T,(A)\Big) \Longleftrightarrow \bigg(\Big(A^T\Big)_{m,n} = (A)_{n,m}\bigg) \vee \underbrace{adjoint}\Big(A^T,(A)\Big) \quad (224)$$

$$symmetricOperator(A,()) \Longleftrightarrow \left(A = transposeOperator(A^T,(A))\right) \lor \left(selfAdjoint(A,())\right) \quad (225)$$

(THM):
$$(AB)^T = B^T A^T \wedge (A^T)^{-1} = (A^{-1})^T$$
 (226)

$$triangular Operator (A, ()) \Longleftrightarrow \left(matrix (A, (n, n)) \right) \land \left(\forall_{x < n} \forall_{0 < i < x} (A_{i, i} = 0) \right) \quad (227)$$

$$decomposeLU\big(LU(A),(A)\big) \Longleftrightarrow \Big(matrix\big(A,(n,n)\big)\Big) \land \Big(\exists_E \Big(EA = triangular Operator\big(U,()\big)\Big)\Big) \land \Big(LU(A) = E^{-1}U = A\Big)$$

lower triangle are all 0; useful for solving linear equations (228)

$$Img\big(Img(A),(A)\big) \Longleftrightarrow \Big(matrix\big(A,(n,m)\big)\Big) \land \big(Img(A) = \{Av \in \mathbb{R}^n \mid v \in \mathbb{R}^m\}\big)$$

the column space; not always a subspace since A can map to a set not containing θ (229)

$$Ker\big(Ker(A),(A)\big) \Longleftrightarrow \Big(matrix\big(A,(n,m)\big)\Big) \wedge \big(Ker(A) = \{v \in \mathbb{R}^m \,|\, Av = \mathbf{0} \in \mathbb{R}^n\}\big)$$

the null or solution space; always a subspace due to linearity $Av + Aw = \mathbf{0} = A(v + w)$ (230)

(THM) general linear solution:
$$(Ax_p = b) \land (x_n \in Ker(A)) \Longrightarrow (Ax_p + Ax_n = b + 0 = A(x_p + x_n) = b)$$
 (231)

$$independent Operator \big(A,()\big) \Longleftrightarrow \Big(matrix \big(A,(n,m)\big) \Big) \wedge \Big(\neg \exists_{v \in \mathbb{R}^m \backslash \mathcal{O}_m} (Av = 0) \Longleftrightarrow Ker(A) = \{\mathcal{O}_m\} \Big)$$

also equivalent to invertible operator (232)

$$dimensionality(N,(A)) \Longleftrightarrow \left(matrix(A,(n,m))\right) \land \left(N = \inf\left(\{|(b)_n| | basis((b)_n,(A))\}\right)\right) \quad (233)$$

$$rank(r,(A)) \iff \left(matrix(A,(n,m))\right) \land \left(dimensionality(r,(A))\right)$$
 (234)

$$(\mathrm{THM}): \Big(matrix \big(A, (n,m) \big) \Big) \Longrightarrow \Big(dimensionality \big(Ker(A) \big) = n - rank \big(r, (A) \big) \Big)$$

number of free variables (235)

$$transposeNorm\big(||x||,()\big) \Longleftrightarrow \Big(||x|| = \sqrt{x^T x}\Big) \quad (236)$$

$$(THM): P = P^T = P^2 \quad (237)$$

$$\begin{aligned} & \textit{orthogonalVectors} \left((x,y), () \right) \Longleftrightarrow \left(||x||^2 + ||y||^2 = ||x+y||^2 \right) \Longleftrightarrow \\ & \left(x^T x + y^T y = (x+y)^T (x+y) = x^T x + y^T y + x^T y = y^T x \right) \Longleftrightarrow \end{aligned}$$

```
\left(0 = \frac{x^T x + y^T y - \left(x^T x + y^T y\right)}{2} = \frac{x^T y + y^T x}{2} = x^T y\right) \Longleftrightarrow \left(0 = \sum_{i} (x_i y_i) \vee \int \left(x(u)y(u)du\right)\right)
                                                                                                    # vector and functional orthogonality
orthogonal Operator\Big(Q, \left(V, +, \cdot, \langle \$1, \$2 \rangle\right)\Big) \Longleftrightarrow \\ \left(orthonormal Basis\Big(Q^T, \left(V, +, \cdot, \$1^T, \$2\right)\right)\right) \lor \left(Q^TQ = I\right)
                           (\text{THM}): \underbrace{orthogonalOperator}\left(Q,\left(V,+,\cdot,\langle\$1,\$2\rangle\right)\right) \Longrightarrow \left(Q^TQQ^{-1} = IQ^{-1} = Q^T = Q^{-1}\right)
                                 orthogonal Projection(P_Ab,(A,b)) \iff \left(matrix(A,(n,m))\right) \land \left(matrix(b,(m,1))\right) \land
                                                                                           \left(\exists_{c\in\mathbb{R}^m}\left(A^T(b-P_Ab)=0=A^T(b-Ac)\right)\Longleftrightarrow\right)
                                                 A^T b = A^T A c \iff c = \left(A^T A\right)^{-1} A^T b \iff P_A b = A c = \left(A\left(A^T A\right)^{-1} A^T\right) b
                                                                                              \# A, A^T may not necessarily be invertible (241)
                                                 (THM): independent Operator(A,()) \Longrightarrow independent Operator(A^TA,())
                                       eigenvectors(X,(A,V,+,\cdot,||\$1||)) \iff (normedVectorSpace((V,+,\cdot,||\$1||),())) \land
                                                                                   (X = \{v \in V \mid ||v|| = 1 \land eigenvector(v, (A, V, +, \cdot))\})
                                                     det(det(A), (A, V, +, \cdot, ||\$1||)) \iff (eigenvectors(X, (A, V, +, \cdot, ||\$1||))) \wedge
                                                                                            (det(A) = \prod_{x \in X} (eigenvalue(\lambda, (x, A, V, +, \cdot))))
                                                                                 # DEFINE; exterior algebra wedge product area??
                                                         tr(tr(A), (A, V, +, \cdot, ||\$1||)) \iff (eigenvectors(X, (A, V, +, \cdot, ||\$1||))) \land
                                                                                             (tr(A) = \sum_{x \in V} (eigenvalue(\lambda, (x, A, V, +, \cdot))))
                                                                                                                                           # DEFINE (245)
                                                                               (THM): independent Operator(A, ()) \iff det(A) \neq 0
                                       (THM): A = A^T = A^2 \Longrightarrow Tr(A) = dimensionality(N, (A)) \# counts dimensions
                           diagonalOperator(A,()) \iff (symmetricOperator(A,())) \land (triangularOperator(A,()))
                                                                                                                                                              (248)
                           characteristicEquation((A - \lambda I)x = 0, (A)) \iff (Ax = \lambda x \implies Ax - \lambda x = (A - \lambda I)x = 0) \land
                                                               (x \! \neq \! \boldsymbol{0} \Longrightarrow \underbrace{eigenvalue}(0, (x, A - \lambda I) \Longrightarrow \prod = 0 = \det(A - \lambda I)))
                                                                                                                    # characterizes eigenvalues
                eigenDecomposition(S\Lambda S^{-1}, (A, V, +, \cdot, ||\$1||)) \iff (S \subseteq (eigenvectors(X, (A, V, +, \cdot, ||\$1||))^T)) \land
                                          (diagonal Operator(\Lambda, ())\{1\}^n = (\lambda)_n = \{\lambda \in \mathbb{R} \mid s \in S^T \land eigenvalue(\lambda, s, A, V)\})
```

```
(independentOperator(S,()) \Longrightarrow \exists_{S^{-1}}(AS = S\Lambda \Longrightarrow A = S\Lambda S^{-1})) (250)
                        (THM): eigenDecomposition(S\Lambda S^{-1}, (A, V, +, \cdot, ||\$1||)) \Longrightarrow A^2 = (A)(A) = S\Lambda S^{-1}S\Lambda S^{-1} = S\Lambda^2 S^{-1}
      (\text{THM}): spectral Decomposition(Q\Lambda Q^T, (A, V, +, \cdot, ||\$1||)) \Longleftrightarrow (symmetric Operator(A, ()) \land A = \overline{A}^T) \Longrightarrow
 (\exists_Q(eigenDecomposition(Q\Lambda Q^{-1},(A,V,+,\cdot,\$1^T\$1)) \land orthogonalOperator(Q,(V,+,\cdot,\$1^T\$2)) \land (\lambda)_n \in \mathbb{R}^n))
                                                                              # if symmetric and eigenvalues are real, then there exists orthonormal eigenbasis
                                                                                                                        hermitian Adjoint(A^H, (A)) \iff (A^H = \overline{A}^T) \iff (\langle A, A \rangle = \overline{A}^T A \in \mathbb{R})
                                                                                                                                                                                                                                               # complex analog to adjoint
                                                                                                                                                                                                                                                                                                                                          (253)
                                                                                                                                                                                                                hermitianOperator(A,()) \iff A = A^H
                                                                                                                                                                                                         # complex analog to symmetric operator (254)
                                                                                                                                                                                                   unitaryOperator(Q^{H}Q,(Q)) \iff Q^{H}Q = I
                                                                                                                                                                                                       \# complex analog to orthogonal operator (255)
                                                                                                        positiveDefiniteOperator(A, (V, +, \cdot, ||\$1||)) \iff (\forall_{x \in V \setminus \{o\}}(x^T A x > 0)) \lor
                                                                                                                  (\forall_{x \in eigenvectors(X,(A,V,+,\$1^T\$1))}(eigenvalue(\lambda,(x,A,V,+,\cdot)) \Longrightarrow \lambda > 0))
     # acts like a positive scalar where any vector only scales and cannot reflect against its perpendicular axis
                                               (THM): positive Definite Operator(A^TA) \iff \forall_{x \in V \setminus \{\boldsymbol{o}\}} (x^T A^T A x = (Ax)^T (Ax) = ||Ax|| > 0)
                                                                                       semiPositiveDefiniteOperator(A,(V,+,\cdot,||\$1||)) \Longleftrightarrow (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0)) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0)) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0)) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0)) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0)) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0)) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0)) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit{\textbf{0}} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit\textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit\textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit\textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit\textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textit\textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textbf{0} \}}(x^TAx \geq 0))) \vee (\forall_{x \in V \backslash \{ \textbf{0} \}}
                                                                                                                  (\forall_{x \in eigenvectors(X, (A, V, +, \$1^T\$1))}(eigenvalue(\lambda, (x, A, V, +, \cdot)) \Longrightarrow \lambda \geq 0))
                                                                                                                                                                                                                                     # acts like a nonnegative scalar
                                                                                                  (THM): symmetricOperator(A^TA) \iff (A^TA = (A^TA)^T = A^TA^{TT} = A^TA)
                                                                                                                                                                                                                                                                                                                                           (259)
                                  similar Operators((A,B),()) \iff (matrix(A,(n,n))) \land (matrix(B,(n,n))) \land (\exists_M (B=M^{-1}AM))
(\text{THM}): (similar Operators((A,B),()) \land Ax = \lambda x) \Longrightarrow (\exists_M (M^{-1}Ax = \lambda M^{-1}x = M^{-1}AMM^{-1}x = BM^{-1}x))
                                                                                              # similar operators have the same eigenvalues but M^{-1} shifted eigenvectors
                                                                                              SVD, AV eq USigma, A orthonormspace eq orthonormcolspace diaglambda
                                                                                                   orthonormal basis that A maps to orthonormal basis scaled by eigenvalues (262)
                                                  singular Value Decomposition(Q\Sigma R^T,(A)) \iff (orthogonal Operator(Q,(V,+,\cdot,\$1^T\$2))) \land
                               (orthogonal Operator(R, (V, +, \cdot, \$1^T\$2))) \land (semiPositive Definite Operator(\Sigma, (V, +, \cdot, \$1^T\$1))) \land
                                                                                                      (AV = U\Sigma) \wedge (A = U\Sigma V^{-1} = U\Sigma V^T) \wedge (A^T A = V\Sigma^T U^T U\Sigma V^T = V\Sigma^T \Sigma V^T)
                                                                                                                                                                                                     let V be normed eigende comp CONTHERE
     compactMap\big(L,(V,+_{V},\cdot_{V},W,+_{W},\cdot_{W})\big) \Longleftrightarrow \bigg(boundedMap\big(L,\big(V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\big)\bigg)\bigg) \wedge \\
```

$$\left(\forall_{v \in V} \left(openBall\left(B, \left(1.0, v, V, d_{V}(\$1, \$2)\right)\right)\right) \Longrightarrow \left(CompactSubset\left(closure\left(\overline{L(B)}, image\left(L(B), (B, L, V, W)\right), W, d_{W}(\$1, \$2)\right), (W, \mathcal{O}_{W})\right)\right)\right)$$
(264)
$$\left(THM) \text{ Spectral thm.:}$$

$$\left(selfAdjoint\left(L, \left(V, +, \cdot, \langle \$1, \$2 \rangle, V, +, \cdot, \langle \$1, \$2 \rangle\right)\right)\right) \wedge \left(compactMap\left(L, \left(V, +, \cdot, V, +, \cdot\right)\right)\right) \Longrightarrow \left(\exists_{(e)_{\mathbb{N}} \subseteq V} \left(orthonormalBasis\left((e)_{\mathbb{N}}, \left(V, +, \cdot, \langle \$1, \$2 \rangle\right)\right)\right) \wedge \forall_{e_{n} \in (e)_{\mathbb{N}}} \left(eigenvector\left(e_{n}, (L, V, +, \cdot)\right)\right)\right)\right) \Longrightarrow \left(\exists_{(\lambda)_{\mathbb{N}} \subseteq \mathbb{R}^{n}} \forall_{e_{n} \in (e)_{\mathbb{N}}} \exists_{\lambda_{n} \in (\lambda)_{\mathbb{N}}} \left(eigenvalue\left(\lambda_{n}, (e_{n}, L, V, +, \cdot)\right) \wedge \lim_{n \to \infty} (\lambda_{n} = 0) \wedge L = \sum_{n=1}^{\infty} \left(\lambda_{n} e_{n} e_{n}^{T}\right)\right)\right) \right)$$

$$\# \text{ TODO intuition} \quad (265)$$

1.19 Function spaces

$$curLp(\mathcal{L}^{p}, (p, M, \sigma, \mu)) \iff (p \in \mathbb{R}) \land (1 \leq p < \infty) \land$$

$$\left(\mathcal{L}^{p} = \{ map(f, (M, \mathbb{R})) \mid measurableMap(f, (M, \sigma, \mathbb{R}, standardSigma)) \land \int (|f|^{p}d\mu) < \infty \} \right)$$

$$vecLp(\mathcal{L}^{p}, (+, \cdot, p, M, \sigma, \mu)) \iff \left(curLp(\mathcal{L}^{p}, (p, M, \sigma, \mu)) \right) \land \left(\forall_{f,g \in \mathcal{L}^{p}} \forall_{m \in M} ((f+g)(m) = f(m) + g(m)) \right) \land$$

$$\left(\forall_{f \in \mathcal{L}^{p}} \forall_{s \in \mathbb{R}} \forall_{m \in M} ((s \cdot f)(m) = (s)f(m)) \right) \land \left(vectorSpace((\mathcal{L}^{p}, +, \cdot), ()) \right)$$

$$(266)$$

$$integralNorm(\wr \wr \$1 \wr \wr, (+, \cdot, p, M, \sigma, \mu)) \iff \left(vecLp(\mathcal{L}^p, (+, \cdot, p, M, \sigma, \mu))\right) \land \left(map\left(\wr \wr \$1 \wr \wr, \left(\mathcal{L}^p, \mathbb{R}_0^+\right)\right)\right) \land \left(\forall_{f \in \mathcal{L}^p} \left(0 \leq \wr \wr f \wr \wr = \left(\int \left(|f|^p d\mu\right)\right)^{1/p}\right)\right)$$
(268)

$$(\text{THM}): integralNorm(\wr \wr \$1 \wr \wr, (+, \cdot, p, M, \sigma, \mu)) \Longrightarrow$$

$$\left(\forall_{f \in \mathcal{L}^p} \Big(\wr \wr f \wr \wr = 0 \Longrightarrow almostEverywhere \Big(f = \mathbf{0}, (M, \sigma, \mu) \Big) \Big) \right)$$
not an expected property from a norm (269)

$$\begin{split} Lp\Big(L^p,\big((+,\cdot,p,M,\sigma,\mu)\big)\Big) &\Longleftrightarrow \Big(integralNorm\big(\wr\wr\$1\wr\wr,(+,\cdot,p,M,\sigma,\mu)\big)\Big) \land \\ & \left(L^p = quotientSet\bigg(\mathcal{L}^p/\sim,\bigg(\mathcal{L}^p,\big(\wr\wr\$1+\big(-\$2\big)\wr\wr=0\big)\Big)\bigg)\bigg)\right) \end{split}$$

functions in L^p that have finite integrals above and below the x-axis (270)

$$(\text{THM}): banachSpace\bigg(\Big(Lp\big(L^p,(+,\cdot,p,M,\sigma,\mu)\big),+,\cdot,\wr \$1\wr \wr\Big),()\bigg) \quad (271)$$

$$(\text{THM}): \frac{hilbertSpace}{4} \left(\left(\frac{Lp(L^p, (+, \cdot, 2, M, \sigma, \mu)), +, \cdot, \frac{\wr \wr \$1 + \$2 \wr \wr^2 - \wr \wr \$1 - \$2 \wr \wr^2}{4} \right), () \right) \quad (272)$$

$$curL\Big(\mathcal{L},\big(V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\big)\Big) \Longleftrightarrow \Big(banachSpace\Big(\big(W,+_{W},\cdot_{W},||\$1||_{W}\big),()\Big)\Big) \land \\ \Big(normedVectorSpace\Big(\big(V,+_{V},\cdot_{V},||\$1||_{V}\big),()\Big)\Big) \land \\ \Big(\mathcal{L} = \{f \mid boundedMap\Big(f,\big(V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\big)\}\}\Big) \quad (273)$$

$$(\text{THM}): banachSpace\left(\left(curL\left(\mathcal{L},\left(V,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\right)\right),+,\cdot,mapNorm\right),()\right) \quad (274)$$

(THM): $||L|| \ge \frac{||Lf||}{||f||}$ # from choosing an arbitrary element in the mapNorm sup (275)

$$(\text{THM}): \left(\operatorname{cauchy} \left((f)_{\mathbb{N}}, (\mathcal{L}, +, \cdot, \operatorname{mapNorm}) \right) \Longrightarrow \operatorname{cauchy} \left((f_n v)_{\mathbb{N}}, (W, +_W, \cdot_W, ||\$1||_W) \right) \right) \Longleftrightarrow \\ \left(\forall_{\epsilon' > 0} \forall_{v \in V} \left(||f_n v - f_m v||_W = ||(f_n - f_m)v||_W \le ||f_n - f_m|| \cdot ||v||_V \right) < \epsilon \cdot ||v||_V = \epsilon' \right) \\ \text{$\#$ a cauchy sequence of operators maps to a cauchy sequence of targets} \tag{276}$$

(THM) BLT thm.:
$$\left(\left(\operatorname{dense}\left(D,(V,\mathcal{O},d_{V})\right)\wedge\operatorname{boundedMap}\left(A,\left(D,+_{V},\cdot_{V},||\$1||_{V},W,+_{W},\cdot_{W},||\$1||_{W}\right)\right)\right)\Longrightarrow \\ \left(\exists !_{\widehat{A}}\left(\operatorname{extensionMap}\left(\widehat{A},(A,V,D,W)\right)\right)\wedge||\widehat{A}||=||A||\right)\right)\Longleftrightarrow \\ \left(\forall_{v\in V}\exists_{(v)_{\mathbb{N}}\subseteq D}\left(\lim_{n\to\infty}(v_{n}=v)\right)\right)\wedge\left(\widehat{A}v=\lim_{n\to\infty}(Av_{n})\right) \tag{277}$$

1.20 Probability Theory

0 (278)

1.21 Underview

	(279)
$curve-fitting/explaining \neq prediction$	(280)
$ill-defined problem+solution space constraints \Longrightarrow well-defined problem$	(281)
$x~\#~{ m input}~;~y~\#~{ m output}$	(282)
$S_n = \{(x_1, y_1), \dots, (x_n, y_n)\} \# \text{ training set}$	(283)

$f_S(x)\!\sim\!y$ # solution	(284)
$each(x,y)\!\in\!p(x,y)$ # training data x,y is a sample from an unknown distribution p	(285)
$V(f(x),y) = d(f(x),y) \;\#\; ext{loss function}$	(286)
$I[f] \! = \! \int_{X imes Y} \! V(f(x),y) p(x,y) dx dy \; \# \; ext{expected error}$	(287)
$I_n[f] = \frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) \# \text{ empirical error}$	(288)
$probabilisticConvergence(X,()) \Longleftrightarrow \forall_{\epsilon>0} \lim_{n \to \infty} Pxn - x \leq \epsilon = 0$	(289)
I-Ingeneralization error	(290)
$well-posed \!:=\! exists, unique, stable; elseill-posed$	(291)

2 Machine Learning

2.0.1 Overview

X # input ; Y # output ; $S(X,Y)$ # dataset	(292)
learned parameters = parameters to be fixed by training with the dataset	(293)
hyperparameters = parameters that depends on a dataset	(294)
validation = partitions dataset into training and testing partitions, then evaluates the accuracy of the parameters learned from the training partition in predicting the	
outputs of the testing partition $\#$ useful for fixing hyperparameters	(295)
cross-validation=average accuracy of validation for different choices of testing partition	(296)
$\mathbf{L1} \!=\! \mathbf{scales}$ linearly; $\mathbf{L2} \!=\! \mathbf{scales}$ quadratically	(297)
$d\!=\!{ m distance}\!=\!{ m quantifies}$ the the similarity between data points	(298)
$d_{L1}(A,B) = \sum_{p} A_p - B_p \ \# \text{ Manhattan distance}$	(299)
$d_{L2}(A,B) = \sqrt{\sum_p (A_p - B_p)^2} \ \# \ { m Euclidean \ distance}$	(300)
kNN classifier=classifier based on k nearest data points	(301)

$s\!=\! { m class\ score}\!=\! { m quantifies\ bias\ towards\ a\ particular\ class}$	(302)
$s_{linear} = f_{c \times 1}(x_{n \times 1}, W_{c \times n}, b_{c \times 1}) = W_{c \times n}x_{n \times 1} + b_{c \times 1} \# \text{ linear score function}$	(303)
$l \! = \! \mathrm{loss} \! = \! \mathrm{quantifies}$ the errors by the learned parameters	(304)
$l\!=\!rac{1}{ c_i }\sum_{c_i}l_i$ # average loss for all classes	(305)
$l_{SVM_i} = \sum_{y_i \neq c_i} \max(0, s_{y_i} - s_{c_i} + 1) \ \# \ \text{SVM hinge class loss function:}$ # ignores incorrect classes with lower scores including a non-zero margin	(306)
$l_{MLR_i} \!=\! -\log\!\left(\!rac{e^{s_{c_i}}}{\sum_{y_i} e^{y_i}} ight) \# ext{ Softmax class loss function}$	()
# lower scores correspond to lower exponentiated-normalized probabilities	(307)
R=regularization=optimizes the choice of learned parameters to minimize test error	(308)
λ # regularization strength hyperparameter	(309)
$R_{L1}(W) = \sum_{W_i} W_i \; \# \; ext{L1 regularization}$	(310)
$R_{L2}(W)\!=\!\sum_{W_i}\!W_i{}^2$ # L2 regularization	(311)
$L'\!=\!L\!+\!\lambda R(W)$ # weight regularization	(312)
$ abla_W L = \overrightarrow{\frac{\partial}{\partial W_i}} L = ext{loss gradient w.r.t. weights}$	(313)
$\frac{\partial L_E}{\partial W_I} = \frac{\partial L_L}{\partial W_I} \frac{\partial L_E}{\partial L_L} \# \text{ loss gradient w.r.t. input weight in terms of external and local gradients}$	(314)
$s\!=\!{f forward\ API}$; $rac{\partial L_L}{\partial W_I}\!=\!{f backward\ API}$	(315)
$W_{t+1}\!=\!W_t\!-\! abla_{W_t}L$ # weight update loss minimization	(316)
TODO:Research on Activation functions, Weight Initialization, Batch Normalization	(317)
review 5 mean var discussion/hyperparameter optimization/baby sitting learning	(318)

TODO loss L or l \ref{loss}

3 Glossary

bounded

openRefinement chaoticTopology normedVectorSpace Img discreteTopology locallyFinite vectorMetric Ker topology paracompact metricVectorSpace independent Operator topologicalSpace openRefinement innerProductNormdimensionality open locallyFinite normInnerProductrank transposeNormclosed paracompact normMetric clopen connected metricNorm orthogonalVectors neighborhood orthogonalOperator pathConnected orthogonal chaoticTopology connected normal orthogonalProjection discreteTopology pathConnected eigenvectors hasis sigmaAlgebra orthonormalBasis det metric measurableSpace metricSpace vectorSpace ${\it measurable Set}$ openBall innerProduct diagonalOperator innerProductSpace characteristicEquation metricTopology measure metricTopologicalSpace vectorNormeigenDecomposition measureSpace limitPoint finiteMeasurenormedVectorSpace spectral DecompositioninteriorPoint generated Sigma AlgebrahermitianAdjoint vectorMetricborelSigmaAlgebra closure metricVectorSpace hermitianOperator dense standardSigma innerProductNorm unitaryOperator lebesgueMeasure normInnerProductpositive Definite OperatoreucD measurableMap standardTopology normMetric semiPositive Definite OperatorsubsetTopology pushForwardMeasure metricNorm similar Operators productTopology similar Operators nullSet orthogonal metric almostEverywhere normal singular Value DecompositionsigmaAlgebra compact Map metricSpace hasis measurableSpace openBall orthonormalBasis linearOperator measurableSetdenseMap metricTopology subspace metric Topological SpacesubspaceSummapNormmeasure subspaceDirectSumlimitPoint measureSpace boundedMap interiorPoint finiteMeasure orthogonalComplement extensionMap orthogonalDecomposition closure generatedSigmaAlgebra adjoint borelSigmaAlgebra subspace selfAdjoint dense standardSigma subspaceSum eucD matrix standardTopology lebesgueMeasure subspaceDirectSum eigenvector measurableMapsubsetTopology orthogonal Complementeigenvalue pushForwardMeasure orthogonal DecompositionproductTopology identityOperator sequence nullSet cauchy inverseOperator sequence Converges ToalmostEverywhere complete transposeOperatorsequence simpleTopology banachSpace symmetric Operator hilbertSpace sequence Converges TosimpleSigma triangularOperator decomposeLU continuous simpleFunction separable characteristicFunction homeomorphism cauchy Img isomorphicTopologicalSpace exStandardSigma complete Ker nonNegIntegrablebanachSpace independent Operator continuous homeomorphism nonNegIntegral hilbertSpace dimensionality isomorphic Topological Space explicitIntegral separable rank T0Separate integrable linearOperator transposeNorm T1Separate integral denseMaporthogonal VectorsT2Separate simpleTopology mapNorm orthogonalOperator T0Separate simpleSigma boundedMap orthogonalProjection T1Separate simpleFunction extensionMap eigenvectors T2Separate characteristicFunction adjoint det openCover exStandardSigma selfAdjoint finiteSubcover nonNegIntegrable diagonalOperator matrix nonNegIntegralcharacteristicEquation compact eigenvector compactSubsetexplicitIntegral eigenvalue eigenDecomposition bounded integrable identityOperator spectralDecomposition openCover integral inverse OperatorhermitianAdjoint finite SubcovervectorSpace transpose OperatorhermitianOperator compact innerProduct symmetric Operator unitaryOperator compactSubset innerProductSpace triangular Operator positiveDefiniteOperator

decomposeLU

semiPositiveDefiniteOperator

vectorNorm

similarOperatorscurLpcurLLpsimilarOperatorsvecLpcurLpcurLsingularValueDecompositionintegralNormvecLpcompactMapLpintegralNorm