Ordinamento, algoritmi quadratici	
, -	
Algoritmi e strutture dati	
Ugo de'Liguoro, Andras Horvath	
1	
Commonia	7
Sommario	
 Obiettivi sviluppo di algoritmi di ordinamento di complessità quadratica, 	
verifica della correttezza con invariante e introduzione dell'analisi di complessità	
 Argomenti problema dell'ordinamento (sorting) 	
insertion-sortselection-sort	
	-
2	
Ricerca in vettore non ordinato	
come si cerca un elemento in un vettore non ordinato?	
 dobbiamo esaminare il vettore elemento per elemento quanti confronti servono per cercare un elemento in un vettore di n elementi nel caso peggiore e nel caso migliore? 	
 n nel caso peggiore (elemento non c'è) 1 nel caso migliore (il primo elemento esaminato è quello 	
cercato) • come si procede nel caso in cui il vettore è ordinato?	

Ricerca binaria (dicotomica)

- · algoritmo di ricerca per cercare elementi in vettori ordinati
- l'idea: confrontiamo l'elemento centrale e quello ricercato
 - se sono uguali, allora l'elemento è presente
 - se l'elemento ricercato è più grande, bisogna cercare nella prima meta del vettore
 - se l'elemento ricercato è più piccolo, bisogna cercare nella seconda meta del vettore
- iterando l'idea, in ogni giro o si trova l'elemento o si dimezza la dimensione del problema
- quando la porzione ancora "valida" del vettore contiene un elemento solo, è facile decidere se l'elemento c'è o meno

4

Ricerca binaria (dicotomica)

```
else \begin{split} & m \leftarrow \lfloor (i+j)/2 \rfloor \\ & \text{if } x = A[m] \text{ then} \\ & \text{return } true \\ & \text{else} \\ & \text{if } x < A[m] \text{ then} \\ & \text{return BINSEARCH-RIC}(x,A,i,m-1) \\ & \text{else} & \triangleright A[m] < x \\ & \text{return BINSEARCH-RIC}(x,A,m+1,j) \\ & \text{end if} \\ & \text{end if} \end{split}
```

5

Ricerca in vettore ordinato

- quanti confronti servono con la ricerca binaria nel caso peggiore e nel caso migliore?

 • 1 nel caso migliore (il primo elemento esaminato è quello
- cercato)
- · nel caso peggiore (elemento ricercato non c'è) si dimezza il problema in ogni giro: numero di confronti è all'incirca log_2n (possiamo dimezzare il vettore log_2n volte senza svuotarlo)

Conviene ordinare se bisogna fare tante ricerche.

Problema dell'ordinamento

Ordinamento come problema computazionale:

Input: una sequenza di n numeri a_1, a_2, \ldots, a_n

Output: una permutazione $a_{i_1}, a_{i_2}, \dots, a_{i_n}$ della sequenza in ingresso tale che $a_{i_1} \leq a_{i_2} \leq \dots \leq a_{i_n}$

7

Forza bruta

 $\begin{aligned} & \text{SORTED}(A) \\ & \text{for } i \leftarrow 2 \text{ to } length(A) \text{ do} \\ & \text{ if } A[i-1] > A[i] \text{ then} \\ & \text{ return } false \\ & \text{ end if} \\ & \text{ end for} \\ & \text{ return } true \end{aligned}$

for all A' permutazione di A do if SORTED(A') then return A' end if end for

Il numero di permutazioni di un vettore di *n* elementi distinti sono *n*!

8

Crescita di 2^n ed n!

Ordinamento per inserimento

- l'idea per ordinare il vettore A[1..n]:
 quando la parte A[1..i 1] è già ordinato
 si può inserire l'elemento A[i] nella parte ordinata tramite scambi:

 - scambis: $seah[i] \ge A[i-1]$ allora A[1..i] è ordinato e ci si ferma, altrimenti si scambia A[i] con A[i-1] \circ se $A[i-1] \ge A[i-2]$ allora A[1..i] è ordinato e ci si ferma, altrimenti si scambia A[i-1] con A[i-2] \circ se $A[i-2] \ge A[i-3]$ allora A[1..i] è ordinato e ci si ferma, altrimenti si scambia A[i-2] con A[i-3]
- dopo gli scambi A[1..i] è ordinato
 per partire abbiamo che A[1..1] è ordinato
 si inserisce nella parte ordinata prima A[2], poi A[3], ... e infine A[n]

10

Simulazione

• simuliamo l'idea con A=(5,4,7,3,6,6) (4,5,7,3,6,6) (4,5,3,7,6,6) (4,3,5,7,6,6) (3,4,5,7,6,6) (3,4,5,6,7,6) (3,4,5,6,7,6)

11

Ordinamento per inserimento A[1..n]A[1..i-1], parte ordinata

16

Ordinamento per inserimento

```
{\tt Insertion-Sort}(A)
for i \leftarrow 2 to length(A) do \triangleright inserisce A[i] in A[1..i-1]
\begin{array}{l} j \leftarrow i \\ \text{while } j > 1 \text{ and } A[j-1] > A[j] \text{ do} \\ \text{scambia } A[j-1] \text{ con } A[j] \\ j \leftarrow j-1 \\ \text{end while} \\ \text{end for} \\ \text{return } A \end{array}
```

- Insertion-Sort(A) termina per ogni A?
- · La sequenza che restituisce è ordinata?
- · Quanto tempo impiega in funzione di n = length(A)?

La terminazione è assicurata dal fatto che sia il for che il while sono cicli limitati.

17

Correttezza dell'algoritmo

```
Insertion-Sort(A)
                                                                  Insertion-Sort è
for i \leftarrow 2 to length(A) do
\Rightarrow \text{ inserisce } A[i] \text{ in } A[1..i-1]
j \leftarrow i
                                                                 sua verifica.
     while j > 1 and A[j-1] > A[j] do scambia A[j-1] \cos A[j]
     j \leftarrow j-1 end while
                                                                  esterno?
end for
return A
                                                                 A[1..i-1] è ordinato.
 A[1..n]
      A[1..i-1] è ordinato
```

iterativo con due cicli, usiamo invarianti per la

L'invariante del ciclo

Correttezza dell'algoritmo Dimostrazione dell'invariante esterno: A[1..i-1] è ordinato: inizializzazione: prima di eseguire il ciclo per la prima volta i = 2 con i = 2 l'invariante diventa A[1..1] è ordinato e questo è vero

19

Dimostrazione dell'invariante esterno: A[1..i-1] è ordinato: • mantenimento: • dobbiamo dimostrare che "A[1..i-1] ordinato \Rightarrow A[1..i'-1] ordinato" dove i'=i+1• se A[i] viene inserito correttamente in A[1..i-1], allora l'invariante viene mantenuto • dipende dalla correttezza del ciclo interno

20

Correttezza dell'algoritmo

- Invariante del ciclo interno?
- osserviamo la situazione con un j generico

 verde: elemento che era nella posizione i prima di eseguire il ciclo interni

- abbiamo già eseguiti degli scambi
- rosso: elemento da confrontare con verde
- invariante:
 - A[1..j-1] e A[j..i] sono ordinati
 - ciascun elemento in A[1..j-1] è minor uguale di tutti gli elementi di A[j+1..i]

Correttezza dell'algoritmo

- dimostriamo l'invariante: A[1..j-1] e A[j..i] sono ordinati e ciascun elemento in A[1..j-1] è minor uguale di tutti gli elementi di A[j+1..i] (abbrev.: $A[1..j-1] \le$ A[j + 1..i])
- inizializzazione: con j = i l'invariante diventa: A[1...i-1] e A[i...i] (vettore di singolo elemento) sono ordinati
 - ciascun elemento in A[1..i-1] è minor uguale di tutti gli elementi di $A[i+1...i] = \emptyset$
- quindi j=i l'invariante si riduce a: A[1..i-1] è ordinato
- e questo è garantito dal invariante esterno

22

Correttezza dell'algoritmo

- dimostriamo l'invariante: A[1..j-1] e A[j..i] sono ordinati e $A[1..j - 1] \le A[j + 1..i]$
- mantenimento: bisogno dimostrare che "se l'invariante vale
- prima allora vale anche dopo l'esecuzione del ciclo" il ciclo si esegue solo se $j>1 \land A[j-1]>A[j]$ se il ciclo si esegue allora si scambiano A[j-1] e A[j] e A[j]viene decrementato (j' = j - 1), implicazioni:
 - A[1..j-1] è ordinato $\Rightarrow A[1..j'-1] = A[1..j-2]$ è
 - A[j..i] è ordinato \wedge A[1..j 1] \leq A[j + 1..i] \wedge A[j 1] > A[j] \Rightarrow A[j'..i] = A[j 1..i] è ordinato

23

Correttezza dell'algoritmo

- dimostriamo l'invariante: A[1..j-1] e A[j..i] sono ordinati e $A[1..j - 1] \le A[j + 1..i]$
- mantenimento: bisogno dimostrare che "se l'invariante vale
- prima allora vale anche dopo l'esecuzione del ciclo" il ciclo si esegue solo se j>1 \land A[j-1]>A[j] se il ciclo si esegue allora si scambiano A[j-1] e A[j] e A[j]
 - se it toto is esegue altora si scambiano $A[j-1] \in A[$ viene decrementato (j'=j-1), implicazioni:

 $A[1..j-1] \le A[j+1..i] \land A[j-1] > A[j] \Rightarrow A[1..j'-1] \le A[j'+1..i]$ ovvero

 $A[1..j-1] \le A[j+1..i] \land A[j-1] > A[j] \Rightarrow A[1..j-2] \le A[j..i]$

Correttezza dell'algoritmo

- invariante interno: A[1..j-1] e A[j..i] sono ordinati e $A[1..j-1] \leq A[j+1..i]$
- all'uscita dal ciclo interno abbiamo $j=1 \vee A[j-1] \leq A[j]$
- in ogni caso all'uscita l'invariante implica che $A[1\mathinner{.\,.} i]$ è
- ordinato quindi abbiamo dimostrato che se prima di eseguire il ciclo interno A[1..i-1] è ordinato allora dopo l'esecuzione del ciclo interno A[1..i] è ordinato

25

Correttezza dell'algoritmo

- invariante esterno: A[1..i-1] è ordinato
 all'uscita dal ciclo interno abbiamo i = n + 1
- dunque all'uscita l'invariante implica che A[1..n] è ordinato
 quindi abbiamo dimostrato che l'algoritmo è corretto

26

Il tempo di calcolo di Insert-Sort

Quanto tempo impiega?

Dipende dalla dimensione dall'ingresso, n = length(A).

Il tempo di calcolo di Insert-Sort

		costo	num. volte
1.	for $i \leftarrow 2$ to $length(A)$	c_1	n
2.	$j \leftarrow i$	c_2	n-1
3.	while $j > 1$ and $A[j-1] > A[j]$	c_3	$\sum_{i=2}^{n} t_i$
4.	scambia $A[j-1]$ con $A[j]$	c_4	$\sum_{i=2}^{n} (t_i - 1)$
5.	$j \leftarrow j-1$	c_5	$\sum_{i=2}^{n} (t_i - 1)$
prima '	: l'esecuzione prevede assegnare un valor volta e $i + 1$ successivamente) e controlla rollo viene eseguito con $i=2,3,,length$	re se i si	$a \leq length(A);$
$t_i = 1$	n. esecuzioni del test del $\mathbf{while} = \left\{ \begin{array}{l} \mathbf{v} \\ \mathbf{v} \end{array} \right.$	i ne	l caso migliore

28

Il tempo di calcolo di Insert-Sort

Con $t_i = i$, caso peggiore: $T_{ins}(n) = c_1 n + c_2 (n-1) + c_3 \sum_{i=2}^n i + c_4 \sum_{i=2}^n (i-1) + c_5 \sum_{i=2}^n (i-1)$ = $(c_1+c_2)n - c_2 + c_3 \sum_{i=2}^{n} i + (c_4+c_5) \sum_{i=2}^{n} (i-1)$ $\sum_{i=2}^{n} i = 2 + 3 + \dots + n = \frac{n+2}{2}(n-1) = \frac{n^2 + n - 2}{2}$ $\sum_{i=2}^{n} (i-1) = 1 + 2 + \dots + (n-1) = \frac{n}{2}(n-1) = \frac{n^2 - n}{2}$ $T_{ins}(n) = \frac{c_3 + c_4 + c_5}{2} n^2 + \left(c_1 + c_2 + \frac{c_3 - c_4 - c_5}{2}\right) n - (c_2 + c_3)$ $=an^2+bn+c$ Nel caso peggiore Insert-Sort ha complessità temporale quadratica.

29

Il tempo di calcolo di Insert-Sort

Con $t_i = 1$, caso migliore: $T_{ins}(n) = c_1 n + c_2 (n-1) + c_3 \sum_{i=2}^n 1 + c_4 \sum_{i=2}^n (1-1) + c_5 \sum_{i=2}^n (1-1)$ $= (c_1+c_2)n - c_2 + c_3 \sum_{i=2}^{n} 1$ $\sum_{i=2}^{n} \, 1 = 1 + 1 + \dots + 1 = n-1$ $T_{ins}(n) = (c_1 + c_2 + c_3)n - (c_2 + c_3) = dn + e$

Nel caso migliore Insert-Sort ha complessità temporale lineare.

30

L'idea dell'algoritmo: • assumiamo che la parte sinistra del vettore sia ordinato e quella a destra contiene elementi maggiori-uguali • graficamente: A[1..n] i tutti gli elementi di questa parte sono maggiori-uguali di quelli nella parte ordinata, abbrev.: A[1..i-1] ≤ A[i..n] • cerchiamo l'elemento minimo in A[i..n] e lo seambiamo con A[i] • così la parte ordinata si allarga (la disordinata diminuisce)

Ordinamento per selezione

```
\begin{split} & \text{Select-Sort}(A) \\ & \text{for } i \leftarrow 1 \text{ to } length(A) - 1 \text{ do} \\ & \qquad \qquad \triangleright n = length(A) \\ & \qquad \qquad k \leftarrow i \\ & \text{for } j \leftarrow i + 1 \text{ to } length(A) \text{ do} \\ & \qquad \qquad \text{if } A[k] > A[j] \text{ then} \\ & \qquad \qquad k \leftarrow j \\ & \qquad \qquad \text{end if} \\ & \qquad \qquad \text{end if} \\ & \qquad \qquad \text{end for} \\ & \qquad \qquad \text{scambia } A[i] \text{ con } A[k] \\ & \qquad \qquad \text{end for} \\ & \qquad \qquad \text{return } A \end{split}
```

32

31

Ordinamento per selezione

- A[1..i-1] è ordinato
 se x è in A[i..n] ed y è in A[1..i-1] allora x ≥ y
- A[1..n]

Inizializzazione:

- con i=1 la porzione A[1..i-1] è vuota
 dunque la proposizione espressa dall'invariante non può che
- dunque la proposizione espressa dall'invariante non puo ch valere

Ordinamento per selezione

- dobbiamo dimostrare che "se vale prima allora vale anche dopo"
 come ipotesi possiamo assumere che prima di eseguire il corpo del ciclo interno
- ciclo interno $M[1..i-1] \ \ \text{o} \ \ \text{o} \ \ \text{d} \ \ \text{i} \ \ \text{d} \ \$

A[1..n]

34

Ordinamento per selezione

Invariante del ciclo interno:

• A[k] è minimo in A[i..j-1]

A[1..n]

Inizializzazione:

• con k=i e j=i+1 l'invariante si riduce a "A[i] è minimo in A[i..i]" e questo è evidente che sia vero

35

Ordinamento per selezione

Invariante del ciclo interno:

• A[k] è minimo in A[i..j-1]

A[1..n]

Mantenimento:

- come ipotesi induttiva assumiamo che l'invariante vale prima di eseguire il ciclo
 il corpo del ciclo aggiorna la posizione del massimo se A[k]>A[j], e, in ogni caso, incrementa j
 dunque l'invariante viene mantenuto

Ordinamento per selezione

Invariante del ciclo interno:

- A[k] è minimo in A[i.j-1]
 quando si esce dal ciclo j=n+1 quindi A[k] è minimo in A[i..n] dunque il minimo si trova correttamente

Invariante del ciclo esterno:

- A[1 .. i − 1] è ordinato
- A[1...l-1] e orument A[1...l-1] allora $x \ge y$ quando si esce dal ciclo i-n quindi A[i...n-1] è ordinato e A[n] è maggiore uguale di qualunque elemento di A[1...n-1], dunque il vettore è ordinato e l'algoritmo è corretto

A[1n]	!
-------	---

i	k		j	

37

Complessità di Select-Sort

- come nel caso si Insert-Sort possiamo contare per ogni riga quante volte viene eseguito
 caso migliore: il minimo si trova sempre all'inizio della parte
- non ordinata (k non viene mai aggiornato)
 caso peggiore: la parte non ordinata in realtà è ordinata
- decrescente e quindi k viene aggiornato dopo ogni confronto in tutti e due i casi la funzione $T_{set}(n)$ (il costo di eseguire Select-Sort) è un polinomio di secondo grado
- questo succede perché j in ogni caso deve arrivare in fondo delle parte non ordinata

Sia nel caso migliore sia nel caso peggiore Select-Sort ha complessità temporale quadratica.

38

Insertion-Sort vs Select-Sort

```
\begin{aligned} & \text{Insertion-Sort}(A) \\ & \text{for } i \leftarrow 2 \text{ to } length(A) \text{ } \mathbf{do} \\ & \quad \triangleright \text{ inserisce } A[i] \text{ in } A[1..i-1] \\ & \quad j \leftarrow i \end{aligned}
\label{eq:constraint} \begin{array}{l} -\max_{j \in \ i \ i} A[1,i-1] \\ j \in \ i \ \\ \text{while } j > 1 \text{ and } A[j-1] > A[j] \text{ do} \\ \text{scambia } A[j-1] \text{ con } A[j] \\ j \in j-1 \\ \text{end while} \\ \text{end for } \\ \text{return } A \end{array}
```

Select-Sort(A)
$$\begin{split} & \text{SELECT-SONY}(A) \\ & \text{for } i-1 \text{ to } length(A)-1 \text{ do} \\ & k-i = l-1 \text{ to } length(A) \text{ do} \\ & \text{ for } j = l-1 \text{ to } length(A) \text{ do} \\ & \text{ if } A[k] > A[j] \text{ then} \\ & \text{ end } \text{ for} \\ & \text{ end } \text{ for } \\ & \text{ senthin } A[i] \text{ con } A[k] \\ & \text{ end for} \\ & \text{ red for } \\ \end{aligned}$$

 $C^{min}(n)$ = n. confronti nel caso migliore $C^{max}(n) =$ n. confronti nel caso peggiore $S^{min}(n) \quad = \quad {\rm n. \ spostamenti \ nel \ caso \ migliore}$ $S^{max}(n)$ = n. spostamenti nel caso peggiore

Insertion-Sort vs Select-Sort

40

Alberi di decisione

Un albero rappresenta le esecuzioni di un algoritmo:

- i nodi interni rappresentano decisioni da prendere
- le foglie rappresentano possibili uscite (output)
- i rami rappresentano particolari esecuzioni (secondo il risultato decisione)

L'albero di decisione che minimizza l'altezza fornisce un confine inferiore al numero di decisioni necessarie nel caso peggiore.

41

L'albero per l'ordinamento di 3 el.

Il problema dell'ordinamento

Nel caso dell'ordinamento:

- n! foglie (un ordinamento è una permutazione)
- i nodi interni rappresentano confronti

In un albero binario per avere k foglie ci vogliono almeno log_2k livelli.

Nel caso dell'ordinamento (sorting) il numero dei confronti deve essere dunque maggiore di (usando la formula di Stirling per approssimare n!):

$$\log_2 n! \approx \log_2 \left(\sqrt{2\pi n} \left(n/e \right)^n \right) = \log_2 \sqrt{2\pi n} + n \log_2 (n/e) \approx n \log_2 n$$

