Chapter 0 Mathematical Background

Contents

- Overview of course
- Alphabets, Strings, and Languages
- Set Relations and Operations
- Functions and Operations
- Graphs
- Boolean Logic

CS 341: Foundations of CS II

Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102

CS 341: Chapter 0

Overview of Course

- ullet Automata Theory:
 - What is a computer?
- Computability Theory
 - What can and cannot be computed?
- Complexity Theory
 - What can and cannot be computed efficiently?

CS 341: Chapter 0

0-3

Automata Theory

- Finite automata and regular expressions
 - String matching (grep in Unix)
 - Circuit design
 - Communication protocols
- Context-free grammars and pushdown automata
 - Compilers
 - Programming languages
- Turing machines
- Computers
- Algorithms
- Why study different models of computation?

0-4

CS 341: Chapter 0

0-6

0-8

Computability Theory

- There are algorithms to solve many problems.
- But there are some problems for which there is no algorithm.
- These are called **undecidable** problems:
 - Does a program run forever?
 - Is a program correct?
 - Are two programs equivalent?

Complexity Theory

- For a solvable problem, is there an **efficient** algorithm to solve it?
- Some problems can be solved efficiently:
 - \blacksquare Is there a path from A to H with total cost **at most** 20?

- Some problems have no known efficient algorithm:
 - Is there a path from A to H with total cost at least 50?

CS 341: Chapter 0

0-7

0 - 5

Alphabets, Strings, and Languages

Definition: A **set** is an unordered collection of **objects** or **elements**.

- Sets are written with curly braces {}.
- The elements in the set are written within the curly braces.

Definition:

- ullet For any set S, " $x \in S$ " denotes that x is an element of the set S.
- ullet Also, " $y \not\in S$ " denotes that y is not an element of the set S.

Remark: We often specify a set using set notation, e.g.,

$$\{x \mid x \in \mathbb{R}, x^2 - 4 = 0\}$$

- $\bullet \mathcal{R}$ denotes the set of real numbers.
- "|" means "such that"
- Comma means "and"

CS 341: Chapter 0

Sets

Examples:

- The set $\{a, b, c\}$ has elements a, b, and c.
- The sets $\{a, b, c\}$ and $\{b, c, b, a, a\}$ are the same.
 - Order and redundancy do not matter in a set.
- The set $\{a\}$ has element a.
 - \blacksquare $\{a\}$ and a are different things.
 - \blacksquare $\{a\}$ is a set with one element a.
- The set \mathcal{Z} of **integers** is

$$\{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

ullet The set \mathcal{Z}_+ of **nonnegative integers** is

$$\{0, 1, 2, 3, \ldots\}.$$

0 - 12

Sets

Examples:

• The set of **even numbers** is

$$\{0, 2, 4, 6, 8, 10, 12, \ldots\},\$$

which we can also write as $\{2n \mid n = 0, 1, 2, \dots\}$.

- In particular, O is an even number.
- The set of positive even numbers is

$$\{2,4,6,8,10,12,\ldots\}$$

• The set of odd numbers

$$\{1, 3, 5, 7, 9, 11, 13, \ldots\}$$

can also be written as $\{2n+1 | n = 0, 1, 2, ... \}$.

Example: If A is the set $\{2n \mid n = 0, 1, 2, \dots\}$, then $4 \in A$, but $5 \notin A$.

Alphabets

An **alphabet** is a *finite* set of fundamental units (called **letters** or **symbols**).

Remark: We typically denote an alphabet by a capital Greek letter

Examples:

• The alphabet of lower-case Roman letters is

$$\Sigma = \{a, b, c, \dots, z\}.$$

There are 26 lower-case Roman letters.

• The alphabet of **upper-case Roman letters** is

$$\Gamma = \{A, B, C, \dots, Z\}.$$

There are 26 upper-case Roman letters.

CS 341: Chapter 0

Alphabets

• The alphabet of **Arabic numerals** is

$$\Sigma = \{0, 1, 2, \dots, 9\}.$$

There are 10 Arabic numerals.

• In this class we will often use the alphabets

$$\Sigma = \{a, b\},\$$

$$\Sigma = \{0, 1\}.$$

CS 341: Chapter 0

Sequences and Strings

Definition: Sequence of objects is a list of these objects in some order.

- Order and redundancy matter in a sequence, unlike in a set.
- \bullet a, b, c and b, c, b, a, a are different sequences.
- \bullet {a, b, c} and {b, c, b, a, a} are the same set.

Definition: A **string over an alphabet** is a **finite** sequence of symbols from the alphabet (written without commas or spaces between the symbols).

Examples:

ullet x, cromulent, embiggen, and kwyjibo are strings over the alphabet

$$\Sigma = \{a, b, c, \dots, z\}.$$

• 0131 is a string over the alphabet $\Sigma = \{0, 1, 2, \dots, 9\}$.

String Length

Definition: The **length** of a string w is the number of symbols in w.

• Sometimes denote length of w by length(w) or |w|.

Example: length(mom) = |mom| = 3.

Definition: The **empty string** or **null string**, denoted by ε , is the string consisting of no symbols, i.e.,

$$|\varepsilon|=0.$$

Kleene Star

Definition: For a given alphabet Σ , let Σ^* denote the set of all possible strings (including ε) over Σ .

Example: If $\Sigma = \{a, b\}$, then

$$\Sigma^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, \ldots \}.$$

CS 341: Chapter 0

String Ordering

Definition: A list of strings w_1, w_2, \ldots over an alphabet Σ is in **string order** (also called **shortlex order**) if

- 1. shorter strings always appear before longer strings, and
- 2. strings of the same length appear in alphabetical order.

Example: If $\Sigma = \{0, 1\}$, the string ordering of the strings in Σ^* is ε , 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...

Remarks:

- Previous editions (before the 3rd) of Sipser's book instead called this **lexicographic order**.
- String ordering is not the same as dictionary ordering. Why?

CS 341: Chapter 0

0-15

Concatenation

Definition: The **concatenation** of strings x and y is the string xy.

Examples:

- If x = cat and y = dog, then xy = catdog and yx = dogcat.
- If $x = \varepsilon$ and y = ab, then xy = ab = yx.
- If $x = \varepsilon$ and $y = \varepsilon$, then $xy = \varepsilon = yx$; i.e., $\varepsilon \varepsilon = \varepsilon$.

CS 341: Chapter 0

0-17

0-18

0 - 20

Definition: For string w, we define w^n for $n \ge 0$ inductively as

- $w^0 = \varepsilon$;
- $w^n = w^{n-1}w$ for any n > 1.

Example: If w = dog, then

$$w^{0} = \varepsilon,$$

$$w^{1} = w^{0}w = \varepsilon dog = dog,$$

$$w^{2} = w^{1}w = dogdog,$$

$$w^{3} = w^{2}w = dogdogdog,$$
:

Example: Can also apply this to a single symbol

- $\bullet a^3 = aaa$
- $\bullet a^0 = \varepsilon$.

Substring

Definition: A substring of a string w is any contiguous part of w.

ullet i.e., y is a substring of w if there exist strings x and z (either or both possibly empty) such that w=xyz.

Examples:

- y=47 is a substring of w=472 since letting $x=\varepsilon$ and z=2 gives w=xyz.
- The string 472 has substrings ε , 4, 7, 2, 47, 72, and 472.
- 42 is not a substring of 472.

CS 341: Chapter 0

0-19

Languages

Definition: A **(formal) language** is a set of strings over an alphabet.

ullet Language typically denoted by capital Roman letter, e.g., A, B, or L.

Examples:

 \bullet Computer languages, e.g., C, C++, or Java, are languages with alphabet

$$\Sigma = \{ a, b, \dots, z, A, B, \dots, Z, , 0, 1, 2, \dots, 9, , \\ >, <, =, +, -, *, /, (,), \dots, , \&, !, \%, |, ', ", \\ :, ;, ^, \{, \}, @, \#, \backslash, ?, \$, ^, ', \langle \mathsf{CR} \rangle, \langle \mathsf{FF} \rangle \}.$$

The rules of syntax define the rules for the language.

 \bullet The set of valid variable names in C++ is a language. What are the alphabet and rules defining valid variable names in C++?

CS 341: Chapter 0

Examples of Languages

Example: Alphabet $\Sigma = \{a\}$.

Language

$$L_0 = \{ \varepsilon, a, aa, aaa, aaaa, ... \}$$

= $\{ a^n | n = 0, 1, 2, 3 ... \}$

Note that

- $a^0 = \varepsilon$, so $\varepsilon \in L_0$.
- there are different ways we can specify a language.

Another language

$$L_1 = \{ a^n | n > 1 \}$$

has $\varepsilon \not\in L_1$.

Examples of Languages

Example: Alphabet $\Sigma = \{a\}$.

Language

$$L_2 = \{ a, aaa, aaaaa, aaaaaaa, ... \}$$

= $\{ a^{2n+1} | n = 0, 1, 2, 3, ... \}$

Example: Alphabet $\Sigma = \{0, 1, 2, ..., 9\}.$

Language

$$L_3 = \{$$
 any string of symbols that does not start with symbol "0" $\}$ = $\{ \varepsilon, 1, 2, 3, \dots, 9, 10, 11, \dots \}$

Examples of Languages

Example: Let $\Sigma = \{a, b\}$, and we can define a language L consisting of all strings that begin with a followed by zero or more b's; i.e.,

$$L = \{ a, ab, abb, abbb, \dots \}$$

= \{ ab^n | n = 0, 1, 2, \dots \}.

Is L the language of strings beginning with a?

Definition: The set \emptyset , which is called the **empty set**, is the set consisting of no elements.

Remarks:

- $\varepsilon \notin \emptyset$ since \emptyset has no elements.
- $\emptyset \neq \{ \varepsilon \}$ since \emptyset has no elements.

CS 341: Chapter 0

0-23

Set Relations and Operations

Definition: If S and T are sets, then $S \subseteq T$ (S is a **subset** of T) if $x \in S$ implies that $x \in T$.

 \bullet Each element of S is also an element of T.

Examples:

- Suppose $S = \{ab, ba\}$ and $T = \{ab, ba, aaa\}$.
 - Then $S \subseteq T$.
 - But $T \not\subseteq S$.
- $\bullet \ \mathsf{Suppose} \ S = \{\, ba, \, ab \,\} \ \mathsf{and} \ T = \{\, aa, \, ba \,\}.$
 - $\blacksquare \ \ \mathsf{Then} \ S \not\subseteq T \ \mathsf{and} \ T \not\subseteq S.$

CS 341: Chapter 0

Equal Sets

Definition: Two sets S and T are **equal**, written S = T, if $S \subseteq T$ and $T \subseteq S$.

Examples:

- Suppose $S = \{ab, ba\}$ and $T = \{ba, ab\}$.
 - $\blacksquare \text{ Then } S \subseteq T \text{ and } T \subseteq S.$
 - \bullet So S = T.
- Suppose $S = \{ab, ba\}$ and $T = \{ba, ab, aaa\}$.
 - Then $S \subseteq T$, but $T \not\subseteq S$.
 - So $S \neq T$.

Union

Definition: The **union** of two sets S and T is

$$S \cup T = \{ x \mid x \in S \text{ or } x \in T \}$$

 \bullet $S \cup T$ consists of all elements in S or in T (or in both).

Examples:

- If $S = \{ab, bb\}$ and $T = \{aa, bb, a\}$,
 - $\bullet \text{ then } S \cup T = \{ ab, bb, aa, a \}.$
- If $S = \{a, ba\}$ and $T = \emptyset$,
 - $\blacksquare \text{ then } S \cup T = S.$
- If $S = \{a, ba\}$ and $T = \{\varepsilon\}$,
 - $\blacksquare \text{ then } S \cup T = \{ \varepsilon, a, ba \}.$

0-27

CS 341: Chapter 0

Set Subtraction

Definition: The **difference** of two sets S and T is

$$S - T = \{ x \mid x \in S, x \notin T \}.$$

Examples:

- Suppose $S = \{a, b, bb, bbb\}$ and $T = \{a, bb, bab\}$.
 - $\blacksquare \text{ Then } S T = \{ b, bbb \}.$
 - What is T S ?
- Suppose $S = \{ab, ba\}$ and $T = \{ab, ba\}$.
 - Then $S T = \emptyset$.

Intersection

Definition: The intersection of two sets S and T is

$$S \cap T = \{ x \mid x \in S \text{ and } x \in T \},\$$

 \bullet $S \cap T$ consists of elements that are in both S and T.

Definition: Sets S and T are **disjoint** if $S \cap T = \emptyset$.

Examples:

CS 341: Chapter 0

- Suppose $S = \{ab, bb\}$ and $T = \{aa, bb, a\}$.
 - $\blacksquare \text{ Then } S \cap T = \{bb\}.$
- Suppose $S = \{ab, bb\}$ and $T = \{aa, ba, a\}$.
 - Then $S \cap T = \emptyset$, so S and T are disjoint.

CS 341: Chapter 0

Complement

Definition: The **complement** of a set S is

$$\overline{S} = \{ x \mid x \notin S \}.$$

 $\bullet \overline{S}$ is the set of all elements under consideration that are *not* in S.

Example:

- Let S be set of strings over alphabet $\Sigma = \{a, b\}$ that begin with symbol b.
- ullet Then \overline{S} is set of strings over Σ that do not begin with symbol b, i.e.,

$$\overline{S} = \Sigma^* - S$$
.

- ullet \overline{S} is **not** the set of strings over Σ that begin with the symbol a
 - ullet $\varepsilon \in \overline{S}$ and ε does not begin with a.

0-32

Concatenation

Definition: The concatenation (or product) of sets S and T is $S \circ T = \{ xy \mid x \in S, y \in T \}.$

Remarks:

- ullet $S\circ T$ is the set of strings that can be split into 2 parts
 - lacksquare first part of string is in S, and
 - lacksquare second part is in T.
- Sometimes write ST rather than $S \circ T$ to denote concatenation.

Concatenation

Recall

$$S \circ T = \{ xy \mid x \in S, y \in T \}.$$

Examples:

- \bullet If $S=\{\,a,\,aa\,\}$ and $T=\{\,\varepsilon,\,a,\,ba\,\}$, then $S\circ T\,=\,\{\,a,\,aa,\,aba,\,aaa,\,aaba\,\},$ $T\circ S\,=\,\{\,a,\,aa,\,aaa,\,baa,\,baaa\,\}.$
 - $aba \in S \circ T$, but $aba \not\in T \circ S$.
 - Thus, $S \circ T \neq T \circ S$.
- If $S = \{ab, ba\}$ and $T = \emptyset$, then $S \circ T = T \circ S = \emptyset.$

CS 341: Chapter 0

Cardinality

Definition: The cardinality |S| of a set S is number of elements in S.

Definition:

- A set S is **finite** if $|S| < \infty$.
- ullet If S is not finite, then S is **infinite**.

Examples:

- Suppose $S = \{ \varepsilon, bba \}$ and $T = \{ a^n | n \ge 1 \}$.
 - Then |S| = 2 and $|T| = \infty$.
- \bullet If $S = \emptyset$, then |S| = 0.

CS 341: Chapter 0

Cardinality of Union

Fact: If S and T are any 2 sets such that $|S\cap T|<\infty$, then

$$|S \cup T| = |S| + |T| - |S \cap T|.$$

In particular, if $S \cap T = \emptyset$, then $|S \cup T| = |S| + |T|$.

0 - 36

Definition: Sequence of objects is a list of these objects in some order.

• Sometimes sequences are written within parentheses.

Example: The sequence 7, 2, 7, 8 may be written as (7, 2, 7, 8).

Example: The sequence $(7, 2, 7, 8) \neq (2, 8, 7)$

• Order and redundancy matter in a sequence (but they don't in a set).

Definition: Finite sequences are called **tuples**.

• A k-tuple has k elements in the sequence.

Examples:

- (43, 2, 7871) is a 3-tuple, which is also called a **triple**.
- (9, 23) is a 2-tuple, which is also called a **pair**.

Cartesian Product

Definition: The Cartesian product (or cross product) of two sets S and T is the set of pairs

$$S \times T = \{ (x, y) | x \in S, y \in T \}.$$

Examples: Suppose $S = \{a, ba, bb\}$ and $T = \{\varepsilon, ba\}$.

- $S \times T = \{ (a, \varepsilon), (a, ba), (ba, \varepsilon), (ba, ba), (bb, \varepsilon), (bb, ba) \}.$
- For example, the pair $(a, ba) \in S \times T$.
- $T \times S = \{ (\varepsilon, a), (\varepsilon, ba), (\varepsilon, bb), (ba, a), (ba, ba), (ba, bb) \}.$
- $(ba, a) \in T \times S$, but $(ba, a) \notin S \times T$, so $T \times S \neq S \times T$.
- Concatenation is not the same as Cartesian product:

$$S \circ T = \{ a, aba, ba, baba, bb, bbba \} \neq S \times T.$$

CS 341: Chapter 0

Cartesian Product

Example: For $\mathcal{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, $\mathcal{Z} \times \mathcal{Z} = \{(x, y) \mid x \in \mathcal{Z}, y \in \mathcal{Z}\}$

Remark: $|S \times T| = |S| \cdot |T|$. Why?

Remark: Can also define Cartesian product of more than 2 sets.

Definition: The **Cartesian product** (or **cross product**) of k sets S_1, S_2, \ldots, S_k is the set

$$S_1 \times S_2 \times \dots \times S_k$$

= \{ (x_1, x_2, \dots, x_k) | x_i \in S_i \text{ for } i = 1, 2, \dots, k \}

of k-tuples.

Definition: $S^k = \underbrace{S \times S \times \cdots \times S}_{k \text{ times}}$

CS 341: Chapter 0

CS 341: Chapter 0

Cartesian Product

Example:

Suppose

$$S_1 = \{ab, ba, bbb\},\$$

 $S_2 = \{a, bb\},\$
 $S_3 = \{ab, b\}.$

Then

$$S_1 \times S_2 \times S_3 = \{ (ab, a, ab), (ab, a, b), (ab, bb, ab), (ab, bb, b), (ba, a, ab), (ba, a, ab), (ba, bb, ab), (ba, bb, b), (bbb, a, ab), (bbb, a, b), (bbb, bb, b) \}.$$

• Note that the 3-tuple $(ab, a, ab) \in S_1 \times S_2 \times S_3$.

0 - 40

Power Set

Definition: The **power set** $\mathcal{P}(S)$ of a set S is

$$\mathcal{P}(S) = \{ A \mid A \subseteq S \}.$$

• $\mathcal{P}(S)$ is the set of all possible **subsets** of S.

Example: If $S = \{a, bb\}$, then

$$\mathcal{P}(S) = \{ \emptyset, \{a\}, \{bb\}, \{a, bb\} \}.$$

Fact: If $|S| < \infty$, then

$$|\mathcal{P}(S)| = 2^{|S|},$$

i.e., there are $2^{|S|}$ different subsets of S. Why?

Example

Example: If $S = \{a, bb\}$, then

$$S^{(0)} = \{ \varepsilon \},\$$

CS 341: Chapter 0

$$S^{(1)} = \{a, bb\},\$$

$$S^{(2)} = \{aa, abb, bba, bbbb\},\$$

Example: If $S = \emptyset$, then

$$S^{(0)} = \{\varepsilon\},$$

 $S^{(k)} = \emptyset$, for all $k \ge 1$.

Repeated Concatenations of a Set

Definition: Given a set S of strings, we define $S^{(k)}$ for $k \ge 0$ as

$$S^{(0)} = \{ \varepsilon \}$$
 and $S^{(k)} = S^{(k-1)} \circ S$ for $k \ge 1$.

Remarks:

CS 341: Chapter 0

 \bullet Can show (by induction) that for $k \geq 1$,

$$S^{(k)} = \underbrace{S \circ S \circ \cdots \circ S}_{k \text{ times}}$$

= $\{ w_1 w_2 \cdots w_k \mid w_i \in S, \ \forall \ i = 1, 2, \dots, k \}.$

- \bullet $S^{(k)}$ is the set of strings formed by concatenating k strings from S, where we allow repetition.
- Note that $S^{(1)} = S$.

CS 341: Chapter 0

Kleene Star Closure S^*

Definition: The (Kleene star) closure of a set of strings S is

$$S^* = \bigcup_{k=0}^{\infty} S^{(k)} = S^{(0)} \cup S^{(1)} \cup S^{(2)} \cup S^{(3)} \cup \cdots$$

Remarks:

- S^* is the set of all strings formed by concatenating zero or more strings from S, where we may use the same string more than once.
- In set notation,

$$S^* = \{ w_1 w_2 \cdots w_k \mid k \geq 0 \text{ and } w_i \in S \text{ for all } i = 1, 2, \dots, k \},$$

where the concatenation of k=0 strings is the empty string ε .

 \bullet $S \subseteq S^*$.

Examples of Kleene Star Closure

Example: If $S = \{ba, a\}$, then

 $S^* = \{ \varepsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, \dots \}.$

If $x \in S^*$, can bb ever be a substring of x?

Example: If $\Sigma = \{a, b\}$, then

$$\Sigma^* = \{ \varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, \ldots \},\$$

which is all possible strings over the alphabet Σ .

Example: If $S = \emptyset$, then $S^* = \{ \varepsilon \}$.

Example: If $S = \{ \varepsilon \}$, then $S^* = \{ \varepsilon \}$.

CS 341: Chapter 0 0-43

Proof that $S^{**} \subseteq S^*$

To show 1, need to prove that any string $w \in S^{**}$ is also in S^* .

- Since $w \in S^{**}$, can write w as a concatenation of zero or more strings from S^* .
 - $w = w_1 w_2 \cdots w_k$ for some $k \ge 0$, where each $w_i \in S^*$.
- Each string $w_i \in S^*$ can be written as a concatenation of zero or more strings from S.
- ullet Thus, the original string w can be written as a concatenation of zero or more strings from S.
- Since S^* is the collection of all strings that are concatenation of zero or more strings from S, this implies that the original string $w \in S^*$.
- Therefore, $w \in S^{**}$ implies $w \in S^*$, so $S^{**} \subseteq S^*$.

. C** _

$$S^{**} = S^*$$

Remark: $S^{**} = (S^*)^*$, so S^{**} is the set of strings formed by concatenating strings from S^* .

Fact: $S^{**} = S^*$ for any set S of strings.

Proof. The way we will prove this is by showing two things:

- $1. S^{**} \subseteq S^*$
- 2. $S^* \subseteq S^{**}$.

To show part 2,

- \bullet for any set A, we know that $A \subseteq A^*$.
- Hence, letting $A = S^*$, we see that $S^* \subseteq S^{**}$.

CS 341: Chapter 0

Positive Closure S^+

Definition: If S is a set of strings, then the **positive closure** of S is

$$S^{+} = S^{(1)} \cup S^{(2)} \cup S^{(3)} \cup \cdots$$

= $\{ w_1 w_2 \cdots w_k \mid k \ge 1 \text{ and each } w_i \in S \}.$

• S^+ is the set of all strings formed by concatenating *one or more* strings from S.

Example: If $\Sigma = \{a\}$, then

$$\Sigma^+ = \{a, aa, aaa, \dots\} \neq \Sigma^*.$$

Example: If $S = \{a, ba\}$, then

$$S^+ = \{a, aa, ba, aaa, aba, baa, aaaa, aaba, \dots\} \neq S^*.$$

Example: If $S = \{ \varepsilon, a, ba \}$, then

$$S^+ = \{ \varepsilon, a, aa, ba, aaa, aba, baa, aaaa, aaba, \dots \} = S^*.$$

Functions and Operations

Definition: A function (or operator, operation, or mapping) f maps each element in a domain D to a *single* element in a range R.

ullet We denote this by f:D o R.

Remarks:

- If f is a function whose output is b when the input is a, we write f(a) = b.
- \bullet We say that the mapping f
 - \blacksquare defined on the domain D
 - R-valued mapping.
- ullet A **real-valued function** has range $R\subseteq\mathcal{R}$, where \mathcal{R} denotes the set of real numbers.

Examples of Functions

Examples:

ullet We can define a function $f:\mathcal{Z}\to\mathcal{Z}$ as

$$f(x) = x^2 - 5.$$

Note that f(3) = f(-3) = 4.

• Integer addition has function $g: \mathcal{Z} \times \mathcal{Z} \to \mathcal{Z}$ with

$$g(x,y) = x + y.$$

• If Σ is an alphabet, then we can define $f: \Sigma^* \to \mathcal{Z}_+$ such that for any string $w \in \Sigma^*$,

$$f(w) = |w|,$$

which is the length of w.

• Let Σ be an alphabet. Then we can define **concatenation** as the function $f: \Sigma^* \times \Sigma^* \to \Sigma^*$ with

$$f(x,y) = xy$$

CS 341: Chapter 0 0-47

Closed Under an Operation

Let A be some collection of objects.

Definition: We say that A is **closed under operation** f if applying f to members of A always returns a member of A.

Examples:

- $\mathcal{N} = \{1, 2, 3, \ldots\}$ is closed under addition.
- $\mathcal N$ is not closed under subtraction since $4,7\in\mathcal N$, but $4-7=-3\not\in\mathcal N$.
- $L_1 = \{ a^n \mid n = 1, 2, 3, \dots \}$ is closed under concatenation.
- Is $L_2 = \{ a^{2n+1} | n = 0, 1, 2, \dots \}$ closed under concatenation?

CS 341: Chapter 0 0-48

String Reversal

Definition: For any string w, the **reverse** of w, written as reverse(w) or $w^{\mathcal{R}}$. is the same string of symbols written in reverse order.

• If $w = w_1 w_2 \cdots w_n$, where each w_i is a symbol, then $w^{\mathcal{R}} = w_n w_{n-1} \cdots w_1$.

Examples:

- $(cat)^{\mathcal{R}} = tac$ and $\varepsilon^{\mathcal{R}} = \varepsilon$.
- The set $A = \{0, 11, 01, 10\}$ is closed under reversal since if $w \in A$, then $w^{\mathcal{R}} \in A$.
- Let B be the set of strings over $\Sigma = \{0, 1, 2, \dots, 9\}$ such that the first symbol is not 0.
 - Note that $10 \in B$, but $(10)^{\mathcal{R}} = 01 \notin B$.
 - \blacksquare Thus, B is not closed under reversal.

0-51

CS 341: Chapter 0

0-50

0-52

Palindrome

Definition: Over the alphabet $\Sigma = \{a, b\}$, the language **PALINDROME** is defined as

$$\begin{array}{l} \textbf{PALINDROME} = \{\, w \in \Sigma^* \, | \, w = w^{\mathcal{R}} \, \} \\ = \{\, \varepsilon, \, a, \, b, \, aa, \, bb, \, aaa, \, aba, \ldots \, \} \end{array}$$

Remark:

- Strings $abba, a \in \mathsf{PALINDROME}$,
 - but their concatenation *abbaa* is not in **PALINDROME**.
- Thus. **PALINDROME** is not closed under concatenation.

Defining Functions

Remark: Sometimes we define a function using a table.

Example: Consider function $f:\{0,1,2,3,4\} \rightarrow \{0,1,2,3,4\}$ as

$$\begin{array}{c|cc}
n & f(n) \\
\hline
0 & 1 \\
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 0
\end{array}$$

Note that $f(n) = (n+1) \mod 5$.

- \bullet a mod b returns the remainder after dividing a by b.
- Example: $5 \mod 7 = 5$, and $15 \mod 7 = 1$.

CS 341: Chapter 0

Example of Function

Example: Let $A = \{ ROCK, PAPER, SCISSORS \}$ and $B = \{ TRUE, FALSE \}$. Consider the function

beats :
$$A \times A \rightarrow B$$

defined by the table

beats	ROCK	PAPER	SCISSORS
ROCK	FALSE	FALSE	TRUE
PAPER	TRUE	FALSE	FALSE
SCISSOR	FALSE	TRUE	FALSE

- Then *beats* defines the game Rock-Paper-Scissors.
- For example,

beats(ROCK, SCISSORS) = TRUE, beats(ROCK, PAPER) = FALSE. CS 341: Chapter 0

k-ary Functions

Definition: When the domain of a function f is $A_1 \times A_2 \times \cdots \times A_k$ for some sets A_1, A_2, \ldots, A_k ,

- input to function f is k-tuple $(a_1, a_2, \dots, a_k) \in A_1 \times A_2 \times \dots \times A_k$,
- we call each a_i an **argument** to f.

Definition: A function f with k arguments is a k-ary function.

• k is called the **arity** of f.

Definition: A unary function has arity k = 1.

• e.g.,
$$f(x) = 3x + 4$$
 or $f(w) = |w|$.

Definition: A **binary** function has arity k = 2

• e.g., beats is a binary function.

0-55

0-56

Predicates and Relations

Definition: A **predicate** or **property** is a function whose range is $\{TRUE, FALSE\}$,

• e.g., beats is a property.

Definition: A property whose domain is a set $A \times \cdots \times A$ of k-tuples is called a **relation**, a k-ary relation, or a k-ary relation on A.

Definition: A 2-ary relation is a binary relation,

• e.g., beats is a binary relation.

Remark: If R is a binary relation, aRb means aRb = TRUE.

Example: For the binary relation "<", we have 2 < 5 = TRUE.

Predicates

Remark:

- Sometimes more convenient to describe predicates with sets instead of functions.
- \bullet Sometimes write predicate $P:D\rightarrow\{\,\mathsf{TRUE},\,\mathsf{FALSE}\,\}$ as
 - \blacksquare (D,S), where $S = \{ a \in D \mid P(a) = \mathsf{TRUE} \}$,
 - lacksquare or just S when domain D is obvious.
- For example, *beats* can be written as $\{ (\mathsf{ROCK}, \mathsf{SCISSORS}), \ (\mathsf{PAPER}, \mathsf{ROCK}), \ (\mathsf{SCISSORS}, \mathsf{PAPER}) \}$ which is the set $\{ (x,y) \mid (x,y) \in D \text{ and } xRy \text{ (i.e., } x \text{ beats } y) \}.$

CS 341: Chapter 0

Reflexive, Symmetric and Transitive Relations

Definition: A binary relation R is

- **reflexive** if for every x, xRx;
- symmetric if for every x and y, xRy if and only if yRx;
- transitive if for every x, y, and z, xRy and yRz implies xRz.

Definition: A binary relation is an **equivalence relation** if it is reflexive, symmetric, and transitive.

CS 341: Chapter 0

Example:

- Let $\mathcal{N} = \{0, 1, 2, \ldots\}$.
- For fixed positive integer k, define relation \equiv_k on $\mathcal{N} \times \mathcal{N}$ as follows:
- for $a, b \in \mathcal{N}$, $a \equiv_k b$ iff a b is a multiple of k.
- i.e., $a \equiv_k b$ iff (a b) = rk, for some $r \in \mathcal{Z}$.
- $\bullet \equiv_k$ defines the standard "modulo k" relation.
- Prove that this is an equivalence relation.

\equiv_k is an Equivalence Relation

- Recall: $a \equiv_k b$ iff (a b) = rk, for some $r \in \mathcal{Z}$.
- **Reflexive**: Show that $x \equiv_k x$.
 - $\forall x \in \mathcal{N}, x x = 0 = 0k.$
 - Since $0 \in \mathcal{Z}$, this shows that $x \equiv_k x$.
 - Therefore, \equiv_k is reflexive.
- Symmetric: Show that $x \equiv_k y \Rightarrow y \equiv_k x$.
 - Consider $x, y \in \mathcal{N}$ such that $x \equiv_k y$.
 - Therefore (x y) = zk for some $z \in \mathcal{Z}$ by definition.
 - But this means (y x) = -zk.
 - \blacksquare Since $-z \in \mathcal{Z}$ as well, this shows that $y \equiv_k x.$
 - Therefore, \equiv_k is symmetric.

 \equiv_k is an Equivalence Relation

- **Transitive**: Show that $x \equiv_k y$ and $y \equiv_k z$ imply $x \equiv_k z$.
 - Suppose $x \equiv_k y$ and $y \equiv_k z$.
 - Then (x y) = ik for some $i \in \mathcal{Z}$.
 - Also, (y-z) = jk for some $j \in \mathcal{Z}$.
 - Thus, (x y) + (y z) = ik + jk.
 - But (x y) + (y z) = (x z) and ik + jk = (i + j)k.
 - \bullet $(i+j) \in \mathcal{Z}$ since $i \in \mathcal{Z}$ and $j \in \mathcal{Z}$.
 - So (x-z) = (i+j)k.
 - Hence, $x \equiv_k z$.
 - Therefore, \equiv_k is transitive.
- ullet Since \equiv_k is reflexive, symmetric, and transitive, it is an equivalence relation.

CS 341: Chapter 0

0-59

Graphs

Definition: A directed graph is a set of **nodes** (or **vertices**) and directed **edges** (or **arcs**).

- In a graph G that contains nodes i and j, the pair (i, j) represents a directed edge from node i to node j.
- An undirected graph has undirected edges.

CS 341: Chapter 0

Example of Directed Graph

- Graph G = (V, E), where
 - lacksquare V is the set of nodes of G
 - \blacksquare $E \subseteq V \times V$ is the set of edges.
- For the graph below,

$$V = \{1, 2, 3\},\$$

$$E = \{ (1,2), (1,3), (2,3), (3,2), (3,3) \},$$

$$G = (\{1,2,3\}, \{(1,2), (1,3), (2,3), (3,2), (3,3)\}).$$

CS 341: Chapter 0

Boolean Logic

- Boolean logic is a mathematical system built around two values: TRUE and FALSE.
- Sometimes TRUE and FALSE are written as 1, 0.
- You should be familiar with
 - \blacksquare conjunction (AND), denoted by \land
 - disjunction (OR), denoted by ∨
 - \blacksquare negation, denoted by \neg
 - exclusive or (XOR), denoted by ⊕
 - \blacksquare equality operator (\leftrightarrow)
 - \blacksquare implication operator (\rightarrow)
 - distributive laws

Some Properties of Boolean Logic

• The implication operator has the following **truth table**:

x	y	$x \to y$	$(\neg x) \lor y$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

- \bullet This means that an implication $x \to y$ is always true if x is false.
- The implication operator can be rewritten as "(not x) or y".

CS 341: Chapter 0 0-63

Summary of Chapter 0

- A language is a set of strings.
- Kleene-star operation:

$$S^* = \{ w_1 w_2 \cdots w_k | k \ge 0 \text{ and each } w_i \in S \}.$$

- Set operations and relations: subsets, union, equality, intersection, subtraction, complement, concatenation, cardinality, Cartesian product, power set
- Functions, k-ary functions, predicates, relations
- ullet Set S is closed under a function f if applying f to elements in S always results in something in S.
- Graphs
- Boolean logic