## Diets and PC ratios



### Diets and PC ratios





#### **Line Random Effects**

• For a given trait, for each lab, we have a linear mixed effect model:

• Extraction of Line random effects, which are the deviations from the model intercept

180.

173.

179.

179.

| > head(line,     | _randor         | m_effect        | ts)             |             |                 |             |             |        |
|------------------|-----------------|-----------------|-----------------|-------------|-----------------|-------------|-------------|--------|
| \$CCRT_F_Vie     |                 |                 |                 |             |                 |             |             |        |
| # A tibble:      | 168 x           | 8               |                 |             |                 |             |             |        |
| Model            | Trait           | Lab             | Sex             | Population  | Line            | Estimate    | SE          |        |
| <chr></chr>      |                 | <chr></chr>     |                 | <chr></chr> | <chr>&gt;</chr> | <db1></db1> | <dbl></dbl> |        |
| 1 lmer_pop       |                 |                 |                 | AK          | AK1             | 145.        | 126.        |        |
| 2 lmer_pop       | CCRT            | Vieira          | F               | AK          | AK10            | -128.       | 126.        |        |
| 3 lmer_pop       | CCRT            | Vieira          | F               | AK          | AK11            | -38.9       | 125.        |        |
| 4 lmer_pop       | CCRT            | Vieira          | F               | AK          | AK12            | -158.       | 126.        |        |
| 5 lmer_pop       | CCRT            | Vieira          | F               | AK          | AK13            | -104.       | 130.        |        |
| 6 lmer_pop       | CCRT            | Vieira          | F               | AK          | AK14            | 177.        | 125.        |        |
| 7 lmer_pop       | CCRT            | Vieira          | F               | AK          | AK15            | 157.        | 136.        |        |
| 8 lmer_pop       | CCRT            | Vicira          | F               | AK          | AK16            | -161.       | 126.        |        |
| 9 lmer_pop       | CCRT            | Vieira          | F               | AK          | AK17            | -68.3       | 126.        |        |
| 10 lmer_pop      | CCRT            | Vieira          | F               | AK          | AK18            | -221.       | 125.        |        |
| # with 150       | B more          | rows            |                 |             |                 |             |             |        |
| \$CCRT_F_Mens    | sch_lme         | er_pop          |                 |             |                 |             |             |        |
| # A tibble:      | 166 x           | 8               |                 |             |                 |             |             |        |
| Model.           | Trait           | Lab             | Sex             | Population  | Line            | Estimate    | SE          |        |
| < <i>chr&gt;</i> | <chr>&gt;</chr> | <chr>&gt;</chr> | <chr>&gt;</chr> | <chr></chr> | <chr>&gt;</chr> | <db1></db1> | <db1></db1> |        |
| 1 lmer_pop       | CCRT            | Mensch          | F               | AK          | AK1             | 198.        | 172.        |        |
| 2 lmer_pop       | CCRT            | Mensch          | F               | AK          | AK10            | -272.       | 172.        |        |
| 3 lmer_pop       | CCRT            | Mensch          | F               | AK          | AK11            | -77.3       | 171.        |        |
| 4 lmer_pop       | CCRT            | Mensch          | F               | AK          | AK12            | -139.       | 171.        | Linear |
| 5 lmer_pop       | CCRT            | Mensch          | F               | AK          | AK13            | -80.2       | 172.        |        |
| 6 lmer_pop       | CCRT            | Mensch          | F               | AK          | AK14            | -52.3       | 180.        | Linear |
| 7 lmer pop       | CCRT            | Mensch          | F               | AK          | AK15            | -75.1       | 172.        | Linear |

AΚ

AK

AK

8 lmer\_pop CCRT Mensch F

9 lmer\_pop CCRT Mensch F

10 Lmer\_pop CCRT Mensch F

# ... with 156 more rows

AK16

AK17

AK18

- Available as .rds or .csv file
- Can be used to compute H

LinearModelsPop/all\_models\_line\_random\_effects\_list.rds
LinearModelsPop/all\_models\_line\_random\_effects.csv
Code/031\_linear\_models\_pop\_lines\_estimates.R

## Compound Line Random Effects

Meta subgroup analysis using Line random effects and SE

```
> names(compound_line_estimates)
[1] "CCRT_lmers_line_compound_random_effects"
[2] "CSM_lmers_line_compound_random_effects"
[3] "DT_lmers_line_compound_random_effects"
[4] "Dia_glmers_line_compound_random_effects"
[5] "DW_lmers_line_compound_random_effects"
[6] "Fec_lmers_line_compound_random_effects"
[7] "HSM_lmers_line_compound_random_effects"
[8] "LS_lmers_line_compound_random_effects"
[9] "LA_lmers_line_compound_random_effects"
[10] "Pgm_lmers_line_compound_random_effects"
[11] "SR_lmers_line_compound_random_effects"
[12] "TL_lmers_line_compound_random_effects"
[13] "Via_lmers_line_compound_random_effects"
[14] "WA_lmers_line_compound_random_effects"
```

Available as .rds

```
$TL_lmers_line_compound_random_effects
  Trait Population Line Sex
                                 Value
                                              SE
                                                        LLM
                                                                  ULM N_lab
    TL
                YE YE11
                          F -10.816928 15.334328 -40.87166 19.237802
    TL
                YE YE13
                          F -20.726401 7.153683 -34.74736 -6.705440
    TL
                YE YE14
                              5.477799 8.243586 -10.67933 21.634930
    TL
                YE YE15
                            12.239491 14.620498 -16.41616 40.895140
    TL
                YE YE19
                          F -9.779857 6.102303 -21.74015 2.180437
     TL
                YE YE20
                          F -10.487864 24.074131 -57.67229 36.696567
$Via_lmers_line_compound_random_effects
  Trait Population Line Sex
                                  Value
                                                SE
                                                             LLM
                                                                         ULM N_lab
   Via
                YE YE11
                         NA -0.19596069 0.06784032 -0.328925286 -0.06299610
   Via
                             0.09203542 0.04853051 -0.003082638
   Via
                YE YE14
                             0.07527087 0.05299681 -0.028600957
                                                                 0.17914270
   Via
                YE YE15
                             0.04933949 0.02984901 -0.009163493
                                                                  0.10784247
   Via
                YE YE19
                             0.08953395 0.02984901
                                                    0.031030963
                                                                  0.14803693
   Via
                         NA -0.09798811 0.03159802 -0.159919102 -0.03605712
$WA_lmers_line_compound_random_effects
 Trait Population Line Sex
                                 Value
                                             SE
                                                       LLM
                                                                  ULM N_lab
  WA_L
                YE YE11
                             46.640000 55.86200
                                                 -62.84751 156.12751
  WA_L
                YE YE13
                          F 17.143930 26.49719
                                                 -34.78960
                                                            69.07746
  WA_L
                YE YE14
                          F -65.873089 18.73525 -102.59350 -29.15268
  WA_L
                YE YE15
                             57.879528 11.83451
                                                  34.68432
                                                            81.07474
  WA_L
                            16.404288 30.05408
                                                 -42.50062
                YE YE19
                                                            75.30920
                                                                          2
  WA_L
                YE YE20
                              5.933351 26.91392
                                                 -46.81697 58.68367
```

LinearModelsPop/all\_models\_line\_compound\_random\_effects\_list.rds Code/041\_meta\_analyses\_pop\_lines\_estimates.R

# Compound Line Random Effects

| Α          | В    | C          | D          | E          | F          | G       | H          | I          | J          | K          | L          | M          | N       |
|------------|------|------------|------------|------------|------------|---------|------------|------------|------------|------------|------------|------------|---------|
| Population | Line | CCRT_F     | CCRT_M     | CSM_F      | CSM_M      | DT_P_NA | DT_A_F     | DT_A_M     | Dia_F      | DW_F       | DW_M       | Fec_F      | HSM_F   |
| YE         | YE11 | 53.0641854 | 72.9789158 | 0.05398182 | 0.01776748 | 8.883   | 8.3701117  | 8.09428207 | -0.9533221 | -0.042     | -0.0306563 | -2.8254114 | -50.514 |
| YE         | YE13 | 148.676957 | -39.93508  | 0.07860655 | -0.0103264 | -3.037  | 1.56313746 | -0.5259658 | -0.4981122 | -0.001708  | 0.00803846 | 3.60735162 | 18.240  |
| YE         | YE14 | 15.6207099 | -42.595593 | -0.1762043 | -0.1441712 | -7.534  | -0.6058377 | -3.6920659 | -0.1247468 | -0.0186139 | 0          | -0.2043627 | 2.      |
| YE         | YE15 | -288.70045 | -57.757253 | 0.05929856 | 0.13886894 | -1.067  | -2.0532984 | -2.170096  | -0.2597218 | -0.0042393 | 0.00315913 | 4.56993762 | 11.2059 |
| YE         | YE19 | -198.69035 | 29.5239598 | 0.04949772 | 0.08558157 | 12.518  | -5.5970928 | -3.4554175 | 0.94520264 | -0.0284268 | -0.033     | -1.1682558 | 29.836  |
| YE         | YE20 | -102.90266 | -23.984809 | 0.04596698 | -0.0658653 | -1.316  | -1.7886742 | -2.6900389 | 0.18867529 | -0.0026667 | -0.0071106 | -23.40982  | -30     |
| YE         | YE21 | 48.2800635 | -64.89814  | -0.0470011 | -0.1089041 | 0.202   | 1.16729184 | 0.52338386 | -0.1636767 | 0.03070251 | -0.0035354 | -24.909913 | 35.8785 |
| YE         | YE22 | 83.6421647 | -0.8205234 | 0.08738479 | 0.07690667 | -13.606 | -2.4141112 | -0.1849657 | 0.12276955 | -0.0131377 | -0.0118071 | 15.8060897 | -26.342 |
| ) YE       | YE23 | 87.3341173 | 274.171235 | -0.0802169 | 0.1458     | 2.115   | -1.1894572 | 1.50668375 | 0.16785239 | 0.00583611 | -0.0146292 | 11.020823  | -29.41  |
| YE         | YE24 | -136.88193 | -99.528443 | -0.1400098 | -0.189171  | -9.356  | 5.32960458 | 4.73465054 | -0.1190572 | 0.00866667 | 0.01282016 | 27.3555912 | 16.3777 |
| YE YE      | YE26 | -78.126182 | -97.621155 | 0.02700852 | 0.00295856 | 9.047   | 1.69803206 | 5.32576731 | -0.1636074 | -0.0117233 | 0.00176088 | -19.472386 | 1.7758  |
| YE YE      | YE27 | -173.93107 | 24.9297106 | -0.0721138 | -0.03708   | 4.284   | -1.045399  | -3.4439305 | 0.20313225 | 0.02611005 | 0.03386138 | -10.472459 | -29.    |
| YE         | YE33 | 97.7926068 | 0.88354981 | -0.0222047 | 0.02022423 | 16.15   | 3.73381983 | 6.18720133 | 0.87577443 | 0.05467667 | 0.00829923 | 5.58438918 | -14.468 |
| YE         | YE40 | 64.9200364 | -1.2625743 | -0.0820241 | 0.10842055 | -10.227 | -2.87909   | -4.4437307 | -1.2835315 | -0.0207186 | -0.0027331 | 45.0746945 | -35.306 |
| YE         | YE41 | 9.781      | 22.92      | 0.16697696 | 0.05755854 | -4.091  | -1.960327  | -0.2094857 | 0.13477785 | -0.0123667 | -0.0024679 | -11.450277 | 6.      |
| YE         | YE48 | 156.901856 | 25.0694627 | -0.0587706 | -0.0284596 | -3.676  | 1.40569602 | 3.69569341 | -1.0725051 | -0.0429447 | -0.0125564 | 7.31828572 | -5.3928 |
| YE YE      | YE49 | 128.013007 | 48.5204115 | 0.02915708 | 0.00740161 | -2.471  | -2.5166647 | -0.407535  | 0.77342569 | -0.0149433 | -0.0008178 | -29.092    | 32.     |
| YE YE      | YE51 | 254.758162 | 71.8889339 | -9.17E-05  | 0.01748085 | 1.391   | -4.9520747 | -6.3939605 | -0.3689207 | 0.00626432 | -0.0008271 | -2.9656271 | 15.6883 |
| YE         | YE69 | 3.70658263 | 1.754      | 0.11426693 | 0.09327664 | -1.583  | 2.42815581 | 2.57665363 | -0.739334  | 0.01378905 | 0.02132661 | -3.4697875 | 22.7271 |
| YE         | YE80 | -147.41489 | -100.72081 | 0.01824337 | -0.1241227 | 3.374   | -0.276535  | -1.4919007 | -0.5782927 | 0.04930835 | 0.02020336 | 14.0243256 | 12.7409 |
| 2 RE       | RE1  | -96.537    | -123.9     | 0.01588604 | 0.000729   | NA      | -6.2353994 | -5.9829962 | NA         | 0.021      | 0.009      | -13.007045 | NA      |
| RE .       | RE10 | 41.4385426 | -62.569208 | -0.0032159 | 0.05996171 | 10.717  | 2.80451621 | 0.87457786 | -0.2845651 | -0.0156825 | 0.01058738 | 2.14995514 | -77.080 |
| RE         | RE11 | 120.181485 | -4.095284  | 0.00447688 | 0.01092585 | 8.18    | 4.35189108 | 3.80403237 | -0.3031735 | -0.0180085 | -0.0064085 | 28.8959006 | 16.217  |
| RE         | RE12 | 30.2156548 | -4.2415373 | 0.03995015 | 0.02879053 | -13.904 | -5.6211701 | -4.7589123 | -0.6681261 | 0.00578348 | -0.0143056 | -30.91737  | -10.852 |
| RE         | RE13 | 37.839339  | 24.4019613 | 0.09053915 | 0.01273667 | 13.994  | 8.47089953 | 3.76488042 | 0.27137021 | 0.03641121 | 0.02516279 | -10.931523 | -6.9692 |
| RE .       | RE15 | 231.615324 | 56.3762043 | 0.11494904 | 0.02687225 | -15.446 | -5.5663528 | -1.6147629 | -0.3832038 | -0.0342206 | -0.0146348 | -11.848426 | -48.627 |
| RE .       | RE16 | -47.792937 | 70.2061649 | 0.09262797 | -0.0191542 | 3.599   | -2.475154  | -2.8004292 | -0.2825327 | 0.01458879 | -0.002651  | 35.0934074 | -43.270 |
| RE         | RE17 | 91.3989809 | 49.3930501 | -0.1282585 | -0.1198548 | 28.181  | 5.45979315 | 7.25860731 | -1.0800662 | -0.0163848 | -0.0080918 | -10.662635 | 4.67196 |
| RE         | RE18 | -149.04413 | 11.0149956 | 0.08979294 | 0.08913415 | -2.112  | -2.4876575 | -3.4962342 | 0.08240425 | -0.0042944 | -0.0191399 | -12.412359 | 15.7852 |
| RE         | RE2  | -93.56999  | -3.2499653 | 0.03666688 | -0.0243381 | -4.32   | 1.89842401 | 4.80103665 | 0.1228182  | 0.06088632 | 0.03434021 | 6.32320028 | 29.1414 |
| DE         | DES  | 70 5624500 | 0.0272004  | 0.00000045 | 0.11500010 | 13.57   | 4 2202720  | 0.35311361 | 0.00000511 | 0.00034530 | 0.00374    | 20 120020  | 24 (22  |

LinearModelsPop/all\_models\_line\_compound\_random\_effects.csv Code/041\_meta\_analyses\_pop\_lines\_estimates.R