Hadoop and MapReduce

Dominic Duggan
Stevens Institute of Technology
Based on materials by
A. Haeberlen, Z. Ives, Jimmy Lin

1

HADOOP

What do we need to write?

- A mapper
 - Accepts (key,value) pairs from the input
 - Produces intermediate (key,value) pairs
 - Intermediate pairs shuffled
- A reducer
 - Accepts intermediate (key,value) pairs
 - Produces final (key, value) pairs for the output
- A driver
 - Specifies which inputs to use, where to put the outputs
 - Chooses the mapper and the reducer to use

Input Formats

Format	Кеу Туре	Value Type
TextInputFormat (Default)	File Offset	Text Line
KeyValue InputFormat	Text (up to \t)	RemainingText
SequenceFile InputFormat	User-Defined	User-Defined

5

Output Formats

Format	Description
TextOutputFormat (default)	Key \t Value \n
SequenceFileOutputFormat	Binary Serialized keys and values
NullOutputFormat	Discards Output

The Mapper

Intermediate format

The Reducer

The Driver

```
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.fo.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FooDriver {
    public static void main(String[] args) throws Exception {
        Job job = new Job();
        job.setJarByClass(FooDriver.class);
        FileInputFormat.addInputFath(job, new Path("in"));
        FileOutputFormat.setOutputPath(job, new Path("out"));
        Job.setMapperClass(FooMapper.class);
        job.setMapperClass(FooReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputKeyClass(Text.class);
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
```

HDFS

HDFS

- Master-Worker Architecture
- Single NameNode
- Many (Thousands) DataNodes

11

HDFS Master (NameNode)

- Manages filesystem namespace
- File metadata ("inodes")
- Mapping "inode" to list of blocks and locations
- Authorization and Authentication
- Checkpoint & journal namespace changes

Namenode

1

foo.txt: 3,9,6 bar.data: 2,4 blah.txt: 17,18,19,20 xyz.img: 8,5,1,11 Created abc.txt Appended block 21 to blah.txt Deleted foo.txt Appended block 22 to blah.txt Appended block 23 to xyz.img ...

Name node

fsimage

edits

- State stored in two files: fsimage and edits
 - fsimage: Snapshot of file system metadata
 - edits: Changes since last snapshot

13

Secondary Namenode

- What if the state of the namenode is lost?
- Solution #1: Metadata backups
- Solution #2: Secondary Namenode
 - Has a copy of the metadata
 - Periodically merge edit log with fsimage
 - Lags lead to data loss

Accessing data in HDFS

- HDFS implements a separate namespace
 - Only blocks and block metadata are visible

Accessing data in HDFS

```
$ /usr/local/hadoop/bin/hadoop fs -ls /user/ahae
Found 4 items

-rw-r--r- 1 ahae supergroup 1366 2013-10-08 15:46 /user/ahae/README.txt
-rw-r--r- 1 ahae supergroup 0 2013-10-083 15:35 /user/ahae/input
-rw-r--r- 1 ahae supergroup 0 2013-10-08 15:39 /user/ahae/input2
-rw-r--r- 1 ahae supergroup 212895587 2013-10-08 15:44 /user/ahae/input3
$
```

• Examples:

- hadoop fs -put [file] [hdfsPath] Stores a file in HDFS
- hadoop fs -ls [hdfsPath]List a directory
- hadoop fs -get [hdfsPath] [file] Retrieves a file from HDFS
- hadoop fs -rm [hdfsPath]Deletes a file in HDFS
- hadoop fs -mkdir [hdfsPath]
 Makes a directory in HDFS

17

HDFS Java API

INSTALLING AND RUNNING

19

Prerequisites for Hadoop

- Java 1.6+
- Recommended: create a hadoop user
 - Standard privileges only
- SSH
 - Need ssh key for access to hosts in cluster

```
$ ssh-keygen -t rsa -P ""
$ cat $HOME/.ssh/id_rsa.pub >> \
    $HOME/.ssh/authorized_keys
```

Download Hadoop

- Download from Apache:
 - http://hadoop.apache.org/releases.html#Download
- Install (e.g. in /usr/local)

```
$ cd /usr/local
$ gunzip $HOME/Downloads/hadoop-2.X.X.tar.gz
$ sudo tar xvf $HOME/Downloads/hadoop-2.X.X.tar
$ sudo ln -s hadoop-2.X.X hadoop
$ sudo chown -R hadoop:staff hadoop-2.X.X hadoop
```

21

Setting Your User Profile

- Edit \$HOME/.bash profile
- Add these lines:

Load into current shell

. \$HOME/.bash_profile

Configuring Hadoop: hadoop-env.sh

- Located in \$HADOOP/etc/hadoop/hadoop-env.sh
- Edit to set JAVA_HOME

```
- E.g. on MacOS:
```

```
export JAVA HOME=`/usr/libexec/java home -v 1.7+`
```

23

Manual compilation

Step #1: Put hadoop-core-...jar into classpath:

```
export
CLASSPATH=$CLASSPATH:/path/to/hadoop/hadoop-core-...jar
```

• Step #2: Compile mapper, reducer, driver:

```
javac FooMapper.java FooReducer.java FooDriver.java
```

• Step #3: Package into a JAR file:

```
jar cvf Foo.jar *.class
```

• Alternative: "Export..."/"Java JAR file" in Eclipse

Standalone Operation

One Java process

```
$ mkdir input
$ cp ... input
$ hadoop jar jarfile-name class-name \
   input output program-arguments
$ cat output/*
```

25

Pseudo-Distributed Operation

- One site, one Java process per node
- \$HADOOP_HOME/etc/hadoop/core-site.xml

Pseudo-Distributed Operation

- One site, one Java process per node
- \$HADOOP_HOME/etc/hadoop/hdfs-site.xml

27

Pseudo-Distributed Operation

• Format the file system

```
$ hdfs namenode -format
```

- Start daemons (NameNode and DataNode)
 - \$ start-dfs.sh
 - Log written to \$HADOOP_HOME/logs
 - REST interface for NameNode: http://localhost:50070
- Make HDFS directories

```
$ hdfs dfs -mkdir /user
$ hdfs dfs -mkdir /user/joe
```

Pseudo-Distributed Operation

Copy input files into the Hadoop file system

```
$ hdfs dfs -put ... input
```

Run examples

```
$ hadoop jar jarfile class-name \
    input output arguments
```

Examine output

```
$ hdfs dfs -get output output
$ cat output/*
```

Stop the daemons

```
$ stop-dfs.sh
```

29

Pseudo-Distributed with Yarn

etc/hadoop/mapred-site.xml:

etc/hadoop/yarn-site.xml:

Pseudo-Distributed with Yarn

• Start ResourceManager and NodeManager daemons:

```
$ start-yarn.sh
```

- REST interface for ResourceManager: http://localhost:8088
- Run a MR job
- Stop the daemons:

\$ stop-yarn.sh

31

HADOOP COMPONENTS

Data Flow in Hadoop

- InputFormat
- · Map function
- Partitioner
- Sorting & Merging
- Combiner
- Shuffling
- Merging
- Reduce function
- OutputFormat

Input Format

- Input files and format
 - Defaults provided, e.g., TextInputFormat,
 DBInputFormat, KeyValueTextInputFormat...
- Defines InputSplits
 - Break file into separate tasks
 - Example: one task for each 64MB block
- Factory for RecordReaders
 - RecordReaders read the file into (key,value) pairs
 - TextInputFormat: byte offset in file as key
 - KeyValueInputFormat: key is everything up to first tab

3.

Combiners

- Optional component after mappers
 - Input: All data emitted by mappers on a given node
 - Output passed to the partitioner

- Why is this useful?
 - Word count emits (xyz, 1) pairs for each word xyz
 - Pass (xyz, k) to the reducer

Partitioner

 Which intermediate key-value pairs should go to which reducer

- Defines a partition on the set of KV pairs
 - Number of partitions = number of reducers
- Default partitioner (HashPartitioner): partition based on a hash of the key

37

Output Format

- Counterpart to InputFormat

- Where output is stored
 - Factory for RecordWriter
- Several implementations provided
 - TextOutputFormat (default)
 - DBOutputFormat
 - MultipleTextOutputFormat

– ...

Hadoop daemons

- TaskTracker
 - Runs maps and reduces. One per node.
- JobTracker
 - Accepts jobs; assigns tasks to TaskTrackers
- DataNode
 - Stores HDFS blocks

A single node can run more than one of these!

- NameNode
 - Stores HDFS metadata
- SecondaryNameNode
 - Merges edits file with snapshot; "backup" for NameNode

Fault tolerance

- What if a node fails during a job?
 - JobTracker re-executes the failed node's tasks
- What specifically should be re-executed?
 - Depends on the phase the job was in
 - Mapping phase: Re-execute all maps assigned to failed node
 - Reduce phase: Re-execute all reduces assigned to node
 - Need to re-execute map tasks on the failed node as well!

41

Placement and locality

Which of the replicated blocks should be read?

- If possible, pick the closest one (reduces network load)
- Distance metric takes into account: Nodes, racks, datacenters
- Where should the replicas be put?
 - Tradeoff between fault tolerance and locality/performance

GRAPH ALGORITHMS

43

Beyond average/sum/count

- Networks of relationships and shared features
 - Members of a social network
 - Customers
 - The Web (documents with links)
 - Documents: topics, words, authors, etc.

Thinking about related objects

- Represent related objects as labeled, directed graph
- Entities == nodes
 - Nodes: IDs
- Relationships == edges
 - Edges: values

45

Encoding the data in a graph

- G = (V, E) where V is vertices, E is edges of the form (v_1, v_2) where $v_1, v_2 \in V$
- · Assume we only care about connected vertices
 - Then we can capture a graph simply as the edges
 - ... or as an adjacency list: v_i goes to [v_i, v_{i+1}, ...]

Graph encodings: Adding weights

49

A computation model for graphs

- Perform computations
 - Simple example: Which users are their friends' best friend?
- Method
 - annotating the vertices with additional information
 - propagating the information along the edges

A computation model for graphs

- Example: Am I my friends' best friend?
 - Step #1: Discard irrelevant vertices and edges

51

A computation model for graphs

- Example: Am I my friends' best friend?
 - Step #1: Discard irrelevant vertices and edges
 - Step #2: Annotate each vertex with list of friends

A computation model for graphs

- Example: Am I my friends' best friend?
 - Step #1: Discard irrelevant vertices and edges
 - Step #2: Annotate each vertex with list of friends
 - Step #3: Push annotations along each edge

53

A computation model for graphs

- Example: Am I my friends' best friend?
 - Step #1: Discard irrelevant vertices and edges
 - Step #2: Annotate each vertex with list of friends
 - Step #3: Push annotations along each edge
 - Step #4: Determine result at each vertex

Can we do this in MapReduce?

```
map(key: node, value: list of <otherNode, relType, strength>)
{

}
reduce(key: ____, values: list of ____)
{
}
```

• Using adjacency list representation?

5.

Can we do this in MapReduce?

```
map(key: node, value: <otherNode, relType, strength>)
{

}
reduce(key: ____, values: list of ____)
{
}
```

• Using single-edge data representation?

Generalizing...

- Beyond direct friend relationships
 - Example: How many of my friends' friends (distance-2 neighbors) have me as their best friend's best friend?
- How about distance k>2?
- Requires multiple iterations of MapReduce!

57

Iterative MapReduce

```
copy files from input dir → staging dir 1
(optional: do some preprocessing)
while (!terminating condition) {
  map from staging dir 1
  reduce into staging dir 2
  move files from staging dir 2 → staging dir 1
}
(optional: postprocessing)
move files from staging dir 2 → output dir
```

- Reduce output must be compatible with the map input
 - What can happen if we filter out some information in the mapper or in the reducer?

Graph algorithms and MapReduce

- Multiple map/reduce stages processing one "wave" at a time
 - Iterative MapReduce
 - Chains of map/reduce

59

PATH-BASED ALGORITHMS

Path-based algorithms

- Compute information about the paths (sets of paths) between nodes
 - Edges may be annotated with cost, distance, or similarity
- Examples:
 - Shortest path from one node to another
 - Minimum spanning tree (minimal-cost tree connecting all vertices in a graph)
 - Steiner tree (minimal-cost tree connecting certain nodes)
 - Topological sort (node in a DAG comes before all nodes it points to)

61

Single-Source Shortest Path (SSSP)

- Given directed graph where each edge (u,v) has cost dist(u,v)
- Given a start node s
- Compute min cost path from s to each other node

SSSP: Intuition

 The shortest path follows the principle of optimality: the last step (u,v) makes use of the shortest path to u

```
bestDistance(v) {
  if (v == source) {
    return distance 0
  } else {
    du = min{ bestDistance(u) + dist(u,v) | u adjacent to v}
    return du
  }
}
```

63

SSSP: Intuition

 The shortest path follows the principle of optimality: the last step (u,v) makes use of the shortest path to u

SSSP: Solution

• Traditional approach: Dijkstra's algorithm

```
V: vertices, E: edges, S: start node
foreach v in V
                                Initialize length and
  dist_S_to[v] = infinity
                                last step of path
  predecessor[v] = nil
                                to default values
spSet = {}
0 := V
                                   Update length and
while (Q not empty) do
                                   path based on edges
  u := Q.removeNodeClosestTo(S) radiating from u
  spSet := spSet + {u}
  foreach v in V where (u,v) in E
    if (dist_S_To[v] > dist_S_To[u] + dist(u,v)) {
      dist_S_To[v] = dist_S_To[u] + dist(u,v)
      predecessor[v] = u
```


Q = {} spSet = {a,b,c,d,s} dist_S_To: {(a,8), (b,9), (c,5), (d,7)} predecessor: {(a,c), (b,a), (c,s), (d,c)}

71

SSSP: How to parallelize?

- Dijkstra single route at a time
 - No real parallelism

- Alternatively:
 - "radiate" from the origin
 - one "edge hop distance" at a time

SSSP: Revisiting the inductive definition

```
bestDistance(v) {
  if (v == source) {
    return distance 0
  } else {
    du = min{ bestDistance(u) + dist(u,v) | u adjacent to v}
    return du
  }
}
```

- Dijkstra's algorithm
 - Select min u (prunes certain points)
- Instead look at all potential u's
 - Compute iteratively
 - "frontier set" of u nodes

73

SSSP: MapReduce formulation

Map Input: x → ...{<z, d1>} y → ...{<z,d2>}

Map Output: $z \rightarrow \{\langle x, dx+d1 \rangle\}$ $z \rightarrow \{\langle y, dy+d2 \rangle\}$

Reduce: pick min of {dx+d1, dy+d2}

Reduce Output: $z \rightarrow dz$, x or y, ...

SSSP: MapReduce formulation

The shortest path we have found so far from the this is the next source to nodelD has length ∞ ... and here is the adjacent list for nodelD list for nodelD

- init:
 - For each node, node ID $\rightarrow \langle \infty, -, \{ \langle \text{succ-node-ID,edge-cost-} \} \rangle$
- map;
 - take node ID → <distance, next, {<succ-node-ID,edge-cost>}>
 - For each succ-node-ID:
 This is a new path from the source to succ-node-ID the source to succ-node-ID the source to succ-node ID → {< node ID, distance + edge-cos that we just discovered (not necessarily shortest)</p>
 - emit node ID → <distance, next, {<succ-node-ID,edge-cost>}>
- reduce:
 - distance := min cost from a predecessor; next := that predec.
 - emit node ID → <distance, next, {<succ-node-ID,edge-cost>}>
- · Repeat until no changes
- · Postprocessing: Remove adjacency lists

75

Iteration 0: Base case

mapper: (a,<s,10>) (c,<s,5>) edges

reducer: (a,<10, ...>) (c,<5, ...>)

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,9>) (b,<a,11>)

(b,<c,14>) (d,<c,7>) edges

reducer: (a,<8, ...>) (c,<5, ...>) (b,<11, ...>) (d,<7, ...>)

77

Iteration 2

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,9>) (b,<a,11>) (b,<c,14>) (d,<c,7>)

(b,<d,13>) (d,<b,15>) edges

reducer: (a,<8>) (c,<5>) (b,<11>) (d,<7>)

CLUSTERING

Learning (clustering / classification)

- Group related entities
 - Clustering: based on similarity
 - Classification: based on putting them into a semantically meaningful class
- · Both are instances of machine learning

81

The k-clustering Problem

- Given: A set of items in a n-dimensional feature space
 - Example: data points from survey, people in a social network
- Goal: Group the items into k "clusters"

Approach: k-Means

- Let m_1 , m_2 , ..., m_k be representative points for each of our k clusters
 - Specifically: the centroid of the cluster
- Initialize m₁, m₂, ..., m_k to random values in the data
- For t = 1, 2, ...:
 - Map each observation to the closest mean

$$S_i^{(t)} = \left\{ x_j : \left\| x_j - m_i^{(t)} \right\| \le \left\| x_j - m_{i*}^{(t)} \right\|, i* = 1, ..., k \right\}$$

— Assign the m_i to be a new centroid for each set $m_i^{(t+1)} = \frac{1}{\left|S_i^{(t)}\right|} \sum_{x_j \in S_i^{(t)}} x_j$

$$m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x$$

83

A simple example (1/4)

k-Means in MapReduce

- Map #1:
 - Input: node ID → <position, centroid ID, {centroid IDs and positions}>
 - Compute nearest centroid; emit centroid ID → <node ID, position>
- Reduce #1:
 - Recompute centroid position from positions of nodes in it
 - Emit centroidID → <node IDs, positions> and for all other centroid IDs, emit otherCentroidID → centroid(centroidID,X,Y)
 - Each centroid will need to know where all the other centroids are

k-Means in MapReduce

- Map #2:
 - Pass through values to Reducer #2
- Reduce #2:
 - For each node in the current centroid, emit node ID → <position, centroid ID, {centroid IDs and positions}>
 - Input for the next map iteration
 - Also, emit <X, <centroid ID, position>>
 - This will be the 'result'
- Repeat until no change

89

CLASSIFICATION

Classification

- Suppose we want to learn what is spam (or interesting, or ...)
 - Predefine a set of classes with semantic meaning
 - Train an algorithm to look at data and assign a class
 - Based on giving it some examples of data in each class
 - ... and the sets of features they have

91

A simple example

• Look at the keywords in the email's title:

```
Message(1, "Won contract")

Message(2, "Won award")

Message(3, "Won the lottery")

Message(4, "Unsubscribe")

Message(5, "Millions of customers")

Message(6, "Millions of dollars")
```

 What is probability message "Won Millions" is p(spam|containsWon,containsMillions)

= p(spam) p(containsWon,containsMillions |spam) p(containsWon,containsMillions)

Bayes'
Theorem

Classification using Naïve Bayes

- Basic assumption: Probabilities of events are independent
- Under this assumption,

 $\frac{p(spam)\;p(containsWon,containsMillions\mid spam)}{p(containsWon,containsMillions)}$

= <u>p(spam)</u> <u>p(containsWon | spam)</u> <u>p(containsMillions | spam)</u> p(containsWon) p(containsMillions)

= 0.5 * 0.67 * 0.33 / (0.5 * 0.33) = 0.67

 Train a learner (compute the above probabilities) using MapReduce?

93

Train the learner

- p(spam)
 - Count how many spam emails there are Easy
 - Count total number of emails

Easy

- p(containsXYZ | spam)
 - Count how many spam emails contain XYZ

- Count how many spam emails there are

Easy

- p(containsXYZ)
 - Count how many emails contain XYZ overall

- Count total number of emails

Easy

Training a Naïve Bayes Learner

```
map 1:

takes messageId → <class, {words}>
emits <word, class> → 1

reduce 1:
```

– emits <word, class> → count

Count how many emails in the class contain the word (modified WordCount)

- map 2:
 - takes messageId → <class, {words}>
 - emits word \rightarrow 1
- reduce 2:
 - emits word → totalCount

Count how many emails contain the word overall (WordCount)

95

PAGERANK

Link analysis

- Search engine challenge
 - Problem: how to prioritize pages?
- Idea: Hyperlinks encode human judgment
 - Intra-domain links: internal navigation
 - Inter-domain links: confer authority?
- Idea: Boost the rank of pages with lots of inbound links?

97

Problem: Popularity ≠ relevance! Team "A-Team" Sports page Yahoo Wikipedia Cheesy TV Hollywood directory "Series to page shows page Recycle" page Shouldn't links from Yahoo and Wikipedia "count more"?

Other applications

- How do we measure the "impact" of a researcher? (#papers? #citations?)
- Who are the most "influential" individuals in a social network? (#friends?)
- Which programmers are writing the "best" code? (#uses?)
- ...

99

- Imagine a contest for The Web's Best Page
 - Initially, each page has one vote
 - A page votes for all pages it links to
 - A page's vote is split vote equally between endorsed pages
 - Voting proceeds in rounds
 - In each round, each page has the number of votes it received in the previous round

PageRank

- Each page i is given a rank x_i
- Goal: Assign the x_i such that the rank of each page is governed by the ranks of the pages linking to it:

Random Surfer Model

- Random surfer starts on a random page and, in each step:
 - with probability d, clicks on a random link
 - with probability 1-d, jumps to a random page
 - Ignoring links on page
- PageRank of a page: the fraction of steps the surfer spends on that page
 - Transition matrix can be interpreted as a Markov Chain

102

Iterative PageRank (simplified)

Initialize all ranks to be equal, e.g.:

$$x_i^{(0)} = \frac{1}{n}$$

Iterate until convergence

$$x_i^{(k+1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(k)}$$

No need to decide how many levels to consider!

103

Example: Step 0

Initialize all ranks to be equal

$$x_i^{(0)} = \frac{1}{n}$$

Example: Convergence

107

Naïve PageRank Algorithm Restated

- Let
 - N(p) = number outgoing links from page p
 - B(p) = number of back-links to page p

$$PageRank(p) = \sum_{b \in B(p)} \frac{1}{N(b)} PageRank(b)$$

- Each page b distributes its importance to all of the pages it points to (so we scale by 1/N(b))
- Page p's importance is increased by the importance of its back set

Linear Algebra formulation

- Create an m x m matrix M to capture links:
 - $M(i, j) = 1 / n_j$ if page i is pointed to by page j and page j has n_j outgoing links = 0 otherwise
 - Initialize all PageRanks to 1, multiply by M repeatedly until all values converge:

$$\begin{bmatrix} PageRank(p_1') \\ PageRank(p_2') \\ ... \\ PageRank(p_m') \end{bmatrix} = M \begin{bmatrix} PageRank(p_1) \\ PageRank(p_2) \\ ... \\ PageRank(p_m) \end{bmatrix}$$

- Computes principal eigenvector via power iteration

109

Example

Running for multiple iterations:

Total rank sums to number of pages

Stopping the Hog

Running for multiple iterations:

... though does this seem right?

113

Improved PageRank

- · Remove out-degree 0 nodes
- Add decay factor d to deal with sinks

$$PageRank(p) = (1 - d) + d\sum_{b \in B_p} \frac{1}{N(b)} PageRank(b)$$

- Typical value: d=0.85
- "Random surfer" Intuition:
 - Surfer occasionally stops following link sequence and jumps to new random page, with probability 1 - d

PageRank on MapReduce

- Inputs
 - page → <currentWeightOfPage, {adjacency list}>
- Map
 - Page p "propagates" 1/N_p of its d * weight(p) to the destinations of its out-edges (think like a vertex!)
- Reduce
 - p-th page sums the incoming weights and adds (1-d), to get its weight'(p)
- Iterate until convergence

115

PageRank on MapReduce

- Iterate until convergence
 - Common practice: run some fixed number of times, e.g., 25x
 - Alternatively: Test after each iteration with a second MapReduce job, to determine the maximum change between old and new weights

Conclusions

- Common kinds of algorithms used on the Web
 - Path analysis
 - Clustering and classification
 - Link analysis
- Straightforward, often iterative, MapReduce formulation