시계열 분석 및 실습

데이터 1

12171676 컴퓨터공학과 이종법

주제 :

Chemical process concentration readings: Every two hours (n = 197)

최종 분석결과 :

- 모형 : IMA(1,1)

- 파라미터 : $\theta_1 = -0.6994$, no constant

1. Model identification

- 원 시계열 자료를 활용한 해석

해석 :

- (1) 그림 1.을 통해, 시간에 따라 분산이 달라져 비정상 시계열로 추정
- (2) 그림 2.의 ACF가 매우 천천히 감소하는 특징을 보인다.비정상 시계열 추정
- (3) PACF, ACF 모두 7 주기마다 상승하는 특징을 보인다. s=7 Seasonality 추정
- -> 차분을 수행하여, 시계열 정상화 이후에 모형 제시

- 차분 시계열 자료를 활용한 해석

해석 :

- (1) 그림 3.을 통해, 충분히 등분산으로 생각할 수 있다.
- (2) 그림 4. ACF에서 Cut off after lag1 특성이 보인다.
 - -> IMA(1,1)의 특성
- (3) 그림 4. PACF에서 lag 1 이후 sinusoidal decay의 특성을 보인다.
 - -> IMA(1,1)의 특성
- (4) 그림 4. ACF, PACF 모두 주기 7마다 상승하는 것이 관측된다.
 - -> s=7의 계절성
- -> IMA(1,1), ARIMA(0,1,1)(0,0,1) s=7 모형 시도

2. Parameter estimation diagnotics

-IMA(1,1)

파라미터 추정

	coeff	P_value
$ heta_1$	-0.6994	0.000
MSE (residuals)	0.1007	0.000

(표 1.) IMA(1,1) 모형의 파라미터

Integration이 존재하여, 상수항 제거 후 추정.(소프트웨어 권장사항) 표 1.에서 IMA(1,1) 파라미터는 $\theta_1 = -0.6994$, no constant임을 확인.

잔차 진단

Lag	12	24	36	48
Chi-Square	19.78	30.33	49.92	53.64
P-value	0.071	0.17	0.06	0.266

(표 2.) IMA(1,1) 모형의 Box-Pierce Chi-square statistics

표 2.에서 모형의 잔차가 귀무가설을 채택하므로, 잔차는 랜덤이라 할 수 있다.

그림 5.를 통해 잔차가 random임을 확인할 수 있다 하지만, 여전히 7주기마다 상승하는 계절 패턴이 보인다.

- ARIMA(0,1,1)(0,0,1) s=12

파라미터 추정

	coeff	P_value
θ_1	-0.6994	0.000
θ_{s1}	0.1455	0.085
MSE (residuals)	0.0984	0.000

(표 3.) ARIMA(0,1,1)(0,0,1) s=12 모형의 파라미터

표 3.에서 MSE는 적게 나왔지만, 유의수준 5%에서 $\theta_{\rm s1}$ 이 기각할 수 없음을 볼 수 있다.

잔차 진단

Lag	12	24	36	48
Chi-Square	13	24.56	40.2	42.9
P-value	0.37	0.42	0.28	0.68

(표 4.) ARIMA(0,1,1)(0,0,1) s=12 모형의 Box-Pierce Chi-square statistics 표 4.에서 모형의 잔차가 귀무가설을 채택하므로, 잔차는 랜덤이라 할 수 있다.

그림 6.에서 이전에 관측된 7주기의 계절성이 삭제된 것을 볼 수 있다.

- Final Model

Model	MSE	# of parameters
IMA(1,1)	0.1007	1
ARIMA(0,1,1)(0,0,1) s=12	0.0984	2

(표 5.) 최종 모형 비교

표 5.에서 IMA 모형이 MSE가 조금 더 높지만, 유의한 차이는 아니다. 따라서, 모수 절약의 법칙에 따라 IMA(1,1)을 선택한다.

데이터 2

12171676 컴퓨터공학과 이종법

주제 :

Monthly series of unemployed females between ages 16 and 19 in US from January 1961 to October 2002. (n = 500)

최종 분석결과 :

- 모형 : ARIMA(0,1,1)(0,0,1)s=12

– 파라미터 : $\theta_1 = \!\! -0.5744, \theta_{\mathrm{s}1} = \!\! -0.2315$, no constant

3. Model identification

- 원 시계열 자료를 활용한 해석

해석:

- (1) 그림 7.을 통해. 시간에 따라 분산이 달라져 비정상 시계열로 추정
- (2) 그림 8.의 ACF가 매우 천천히 감소하는 특징을 보인다. 비정상 시계열 추정
- (3) 그림 8.의 PACF Lag5 이후 sinusoidal decay 관측
- (4) 그림 8.의 PACF에서 S=12에서 상승하는 특징을 보인다. s=12 Seasonality 추정
- -> 차분을 수행하여. 시계열 정상화 이후에 모형 제시

- 차분 시계열 자료를 활용한 해석

해석:

- (1) 그림 9.을 통해, 충분히 등분산으로 생각할 수 있고, 시간에 따른 평균, 분산 차이가 없어 보인다.
 - (2) 그림 10. ACF에서 Cut off after lag1 특성이 보인다.
 - -> IMA(1,1)의 특성
 - (3) 그림 10. PACF에서 lag 1 이후 sinusoidal decay의 특성을 보인다.
 - -> IMA(1,1)의 특성
 - (4) 그림 10. ACF, PACF 모두 주기 12마다 상승하는 것이 관측된다.
 - -> s=12의 계절성
 - -> IMA(1,1), ARIMA(0,1,1)(0,0,1) s=12 모형 시도

4. Parameter estimation diagnotics

-IMA(1,1)

파라미터 추정

	coeff	P_value
θ_1	-0.6007	0.000
MSE (residuals)	1324.66	0.000

(표 6.) IMA(1,1) 모형의 파라미터

Integration이 존재하여, 상수항 제거 후 추정.(소프트웨어 권장사항) 표 6.에서 IMA(1,1) 파라미터는 $\theta_1 = -0.6007$, no constant임을 확인.

잔차 진단

Lag	12	24	36	48
Chi-Square	22.29	52.99	65.45	80.71
P-value	0.0344	0.0006	0.002	0.002

(표 7.) IMA(1,1) 모형의 Box-Pierce Chi-square statistics

표 7.에서 모형의 잔차가 귀무가설을 기각하므로, 잔차는 랜덤이라 할 수 없다.

그림 11.를 통해 검정 결과와 달리, 잔차가 random인 것처럼 추정된다. 하지만, 여전히 12주기마다 상승하는 계절 패턴이 보인다.

- ARIMA(0,1,1)(0,0,1) s=12

파라미터 추정

	coeff	P_value
θ_1	-0.5774	0.000
θ_{s1}	-0.2315	0.000
MSE (residuals)	1280.2005	0.000

(표 8.) ARIMA(0,1,1)(0,0,1) s=12 모형의 파라미터

표 8.에서 IMA보다 MSE도 적게 나왔으며, 검정 결과 모두 기각함을 볼 수 있다.

잔차 진단

Lag	12	24	36	48
Chi-Square	13.4	34.48	47.2	60.8
P-value	0.3407	0.076	0.1	0.1

(표 9.) ARIMA(0,1,1)(0,0,1) s=12 모형의 Box-Pierce Chi-square statistics 표 9.에서 모형의 잔차가 귀무가설을 채택하므로, 잔차는 랜덤이라 할 수 있다.

그림 12.에서 이전에 관측된 12주기의 계절성이 삭제된 것을 볼 수 있다.

- Final Model

Model	MSE	# of parameters
IMA(1,1)	1324.6617	1
ARIMA(0,1,1)(0,0,1) s=12	1280.2005	2

(표 10.) 최종 모형 비교

표 10.에서 계절 ARIMA 모형이 MSE가 더 낮으며, 잔차도 랜덤을 만족하므로 더 적합한 모형이라고 할 수 있다.