Practical Microcontroller Engineering with ARM® Technology

IEEE Press

445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board

Tariq Samad, Editor in Chief

George W. Arnold Vladimir Lumelsky Linda Shafer
Dmitry Goldgof Pui-In Mak Zidong Wang
Ekram Hossain Jeffrey Nanzer MengChu Zhou
Mary Lanzerotti Ray Perez George Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

10.1002/978111998897/fmatter, Downloaded from https://onlinelibra.gov/spin/gov/monitor/ibra.gov/spin/gov/monitor/spin/gov/mon

Practical Microcontroller Engineering with ARM® Technology

Ying Bai

Department of Computer Science and Engineering Johnson C. Smith University Charlotte, North Carolina

Copyright © 2016 by The Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-119-05237-1

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

This book is dedicated to my wife, Yan Wang, and to my daughter, Susan (Xue) Bai.

Contents

Pre	erace xxix	
Acl	knowledgments xxxi	
Tra	ndemarks and Copyrights xxxiii	
Col	pyright Permissions xxxv	
Ab	out the Companion Website xxxix	
Cha	apter 1 Introduction to Microcontrollers and This Book	1
1.1 1.2 1.3 1.4 1.5 1.6	Microcontroller Configuration and Structure 2 The ARM® Cortex®M4 Microcontroller System 3 The TM4C123GH6PM Microcontroller Development Tools and Kits 4 Outstanding Features About This Book 5 Who This Book Is For 5 What This Book Covers 6	
1.7 1.8 1.9	How This Book Is Organized and How to Use This Book 8 How to Use the Source Code and Sample Projects 9 Instructors and Customers Supports 11	
Cha	apter 2 ARM® Microcontroller Architectures	13
2.1 2.2	2.2.1 The Architecture of ARM® Cortex®-M4 MCU 17 2.2.1.1 The ARM® MCU Architecture 17 2.2.1.2 The Architecture of the ARM® Cortex®-M4 Core (CPU) 20 2.2.1.2.1 The Register Bank in the Cortex®-M4 Core 21 2.2.1.2.2 The Special Registers in the Cortex®-M4 Core 22 2.2.1.3 The Architecture of the Floating-Point Registers 25	
2.4	2.3.1 The Memory Map 28 2.3.2 The Stack Memory 29 2.3.3 The Program Models and States 32 2.3.4 The Memory Protection Unit (MPU) 33	

	2.4.4 Respond ar	d Process Exceptions and Interrupts 36
	2.4.5 Exception a	and Interrupt Vector Table 37
2.5	The Debug Archit	
2.6		va [™] C Series ARM® Cortex®-M4 MCU-TM4C123GH6PM 38
	2.6.1 TM4C123G	H6PM Microcontroller Overview 39
	2.6.2 TM4C123G	H6PM Microcontroller On-Chip Memory Map 40
	2.6.2.1 The	System Peripherals 42
		On-Chip Peripherals 42
		rfaces to External Parallel Peripherals 44
		rfaces to External Serial Peripherals 44
		H6PM Microcontroller General-Purpose Input-Output
	(GPIO) Mo	
		System Clock 45
		General Configuration Procedures for GPIO Peripherals 47
	2.6.3.3 Tiva	[™] TM4C123GH6PM GPIO Architecture 47
	2.6.3.3.1	The Port Control Register (GPIOPCTL) 49
	2.6.3.3.2	The Data Control Registers 49
	2.6.3.3.3	
	2.6.3.3.4	
	2.6.3.3.5	The Interrupt Control Registers 51
		The Pad Control Registers 52
	2.6.3.3.7	e
		Initialization and Configuration of TM4C123GH6PM
		O Ports 55
		H6PM Microcontroller System Controls 57
		rice Identification 58
		et Control 59
		The Power-On Reset 60
	2.6.4.2.2	The External Reset 61 The Brown-Out Reset (BOR) 61 The Software Reset 61
	2.6.4.2.3	The Brown-Out Reset (BOR) 61
		The Watchdog Timer Reset 62
		n-Maskable Interrupt Control 63
		ck Control 64
		er System Controls 67
	2.6.4.5.1	
	2.6.4.5.2	•
	2.6.4.5.3	The Deep-Sleep Mode 68
	2.6.4.5.4	The Hibernate Mode 68
	2.6.4.5.5	The System Timer (SysTick) 69
	2.6.4.5.6	System Control Block (SCB) 70
2.7		em Clock Initialization and Configuration 71
2.7		va [™] C Series LaunchPad [™] TM4C123GXL
2.0	Evaluation Board	72
2.8		uBASE ARM® Trainer 77
2.9	Chapter Summary	77
HO	nework 79	

10.10/27/98/11/19/58997/intenter, Downloaded from thttps://onlinelibrary.wiley.com/win/10/10/27/98/11/19/58997/intenter, Downloaded from thttps://onlinelibrary.wiley.com/win-and-conditions) on Wiley Online Library for rules of use; OA article are governed by the applicable Cereative Common Library of the Common Library for rules of use; OA article are governed by the applicable Cereative Common Library of the Commo

Chap	ter	3	ARM ®	Microcontroller	Development Kits
------	-----	---	--------------	-----------------	-------------------------

CH	apier 5 AKN	i wheretonical Development Kits	03
3.1	Overview	and Introduction 83	
3.2	The Entire	e Tiva [™] TM4C123G-based Development System 84	
3.3	Download	and Install Development Suite and Specified Firmware 86	
3.4	Introduction	on to the Integrated Development Environment – Keil® MDK	
	μVersion5	87	
	3.4.1 The	k Keil® MDK-ARM® for the MDK-Cortex-M Family 88	
		neral Development Flow with MDK-ARM® 89	
	3.4.3 Wa	rming Up Keil® MDK Cortex-M Kit with Example Projects 91	
	3.4.4 The	Functions of the Keil® MDK-ARM® μVersion®5 GUI 95	
	3.4.4.1	The File Menu 97	
	3.4.4.2	The Edit Menu 98	
	3.4.4.3	The Project Menu 101	
	3.4.4.4	The Flash Menu 121	
	3.4.4.5	The Debug Menu 121	
	3.4.4.6	The Peripherals Menu 123	
	3.4.4.7	The Tools Menu 124	
	3.4.4.8	The SVCS Menu 125	
	3.4.4.9	The Window Menu 126	
	3.4.4.10	1	
3.5		Software Development Procedure 127	
3.6		ARM®-MDK μVision5 Debugger and Debug Process 128	
		e ARM® µVision5 Debug Architecture 129	
		e ARM® Debug Adaptor and Debug Adaptor Driver 130	
		a [™] C Series LaunchPad [™] Debug Adaptor and Debug Adaptor Driver	132
		e ARM [®] μVersion5 Debug Process 133	
		ARM® Trace Feature 134	
	3.6.5.1		135
		e ARM® Instruction Set Simulator 136	
		e ARM® Programs Running from SRAM 137	
		M® Optimizations 139	
3.7		Vare [™] for C Series Software Suite 140	
	3.7.1 The 3.7.1.1	e TivaWare™ C Series Software Package 142	
	3.7.1.1	The Peripheral Driver Library (DriverLib) 143 The Boot Loader 144	
	3.7.1.2	The Utilities 144	
		aWare [™] C Series for TM4C123G LaunchPad [™] Evaluation Kit 14	15
		TivaWare [™] C Series LaunchPad [™] Evaluation Software	rJ
	3.7.2.1	Package 145	
3.8	The TivaW	Vare [™] for C Series Utilities and Other Supports 147	
 .		ditional Utilities Provided by TivaWare [™] for C Series 148	
	3.8.1.1	The LMFlash Programmer 148	
	3.8.1.2	The UniFlash 149	
	3.8.1.3	The FTDI Drivers 149	
	3.8.1.4	The IQMath Library 149	
	3.8.1.4	· · · · · · · · · · · · · · · · · · ·	

4.5.4

Inline Assembler

204

3.9

Program Examples

151

Homework 152	
Chapter 4 ARM® Microcontroller Software and Instruction Set	155
4.1 Overview and Introduction 155	
4.2 Introduction to ARM® Cortex®-M4 Software Development Structure	156
4.3 Introduction to ARM® Cortex®-M4 Assembly Instruction Set 157	150
4.3.1 The ARM® Cortex®-M4 Assembly Language Syntax 158	
4.3.2 The ARM® Cortex®-M4 Pseudo Instructions 160	
4.3.3 The ARM® Cortex®-M4 Addressing Modes 161	
4.3.3.1 The Immediate Offset Addressing Mode 162	
4.3.3.1.1 Regular Immediate Offset Addressing Mode 162	2
4.3.3.1.2 Pre-Indexed Immediate Offset Addressing Mode	163
4.3.3.1.3 Post-Indexed Immediate Offset Addressing Mode	163
4.3.3.1.4 Regular Immediate Offset Addressing Mode with U	nprivileged
Access 163	1 0
4.3.3.2 The Register Offset Addressing Mode 164	
4.3.3.3 The PC-Relative Addressing Mode 165	
4.3.3.4 Load and Store Multiple Registers Addressing Mode	167
4.3.3.5 PUSH and POP Register Addressing Mode 170	
4.3.3.6 Load and Store Register Exclusive Addressing Mode	170
4.3.3.7 Inherent Addressing Mode 171	
4.3.3.8 Addressing Mode Summary 171	
4.3.4 The ARM® Cortex®-M4 Instruction Set Categories 172	
4.3.4.1 Data Moving Instructions 172	
4.3.4.2 Arithmetic Instructions 174	
4.3.4.3 Logic Instructions 176	
4.3.4.4 Shift and Rotate Instructions 178	
4.3.4.5 Data Conversion Instructions 179	
4.3.4.6 Bit-Field Processing Instructions 182	
4.3.4.7 Compare and Test Instructions 186	
4.3.4.8 Program Flow Control Instructions 187	
4.3.4.9 Saturation Instructions 191	
4.3.4.10 Exception-Related Instructions 193	
4.3.4.11 Sleep Mode Instructions 194	
4.3.4.12 Memory Barrier Instructions 194	
4.3.4.13 Miscellaneous Instructions 195	
4.3.4.14 Unsupported Instructions 196	
4.4 ARM® Cortex®-M4 Software Development Procedures 196	
4.5 Using C Language to Develop ARM® Cortex®-M4 Microcontroller	
Applications 197	
4.5.1 The Standard Data Types Used in Intrinsic Functions 198	
4.5.2 The CMSIS-Core-Specific Intrinsic Functions 200	
4.5.3 The Keil® ARM® Compiler-Specific Intrinsic Functions 202	

10.1002/78111908397:finiter, Downloaded from this/cointeithray, wise, com/doi/10.10297811908897 finiter by Holy Angel University, Wise Online Library on [25/03/2025]. Sebe Terms and Conditions, (https://cinchibbury.wise, com/mem-sand-conditions) on Wise Online Library for rules of use; OA articles are governed by the applicable Creative Common License.

10.1002/78111908397:finiter, Downloaded from this/cointeithray, wise, com/doi/10.10297811908897 finiter by Holy Angel Un'eview, Wise, Online Library on [25/03/2025]. Sebe Terms and Conditions, (https://cinchibbury.wise, com/mem-sand-conditions) on Wise Online Library for rules of use; OA articles are governed by the applicable Creative Common License.

	4.5.5 Idiom Recognition 205	
	4.5.6 C Programming Development Guideline and Procedure 206	
	4.5.6.1 Organization of the C Program Files 207	
	4.5.6.2 The Header Files 208	
	4.5.6.3 The Implementation Files 209	
	4.5.6.4 The Application Files 211	
	4.5.6.5 Naming Convention and Definition 211	
	4.5.7 The TivaWare [™] Peripheral Driver Library 213	
	4.5.7.1 The Programming Models 213	
	4.5.7.2 The Direct Register Access Model 214	
	4.5.7.2.1 The Hardware Architecture of the Example Project 214	
	4.5.7.2.2 The Structure and Bit Function of System Control and GPIO	
	Registers 215	
	4.5.7.2.3 The Symbolic Definitions and Macros 218	
	4.5.7.2.4 The Programming Operations for Symbolic Definitions 219	
	4.5.7.2.5 Develop a Sample Project Using the DRA Model 220	
	4.5.7.3 The Peripheral Driver Library and API Functions 224	
	4.5.7.3.1 System Control API Functions 225	
	4.5.7.3.2 GPIO API Functions 229	
	4.5.7.3.3 Develop a Sample Project Using the SD Model 232	
	4.5.7.4 A Comparison Between Two Programming Models 238 4.5.7.5 A Combined Programming Model Example 238	
	4.5.7.5 A Combined Programming Model Example 238 4.5.7.5.1 Create the Header File 239	
	4.5.7.5.1 Create the Header File 239 4.5.7.5.2 Create the C Source File 240	
	4.5.7.5.2 Create the C source File 240 4.5.7.5.3 Include System Header Files and Add Static Library into the	
	Project 241	
	4.5.7.5.4 Compile and Link Project to Create the Image or Executable	
	File 242	
4.6		
	omework 244	
		
Cha	apter 5 ARM® Microcontroller Interrupts and Exceptions	261
5.1	Overview and Introduction 261	
5.2		
	5.2.1 Exception and Interrupt Types 265	
	5.2.2 Exceptions and Interrupts Management 265	
	5.2.3 Exception and Interrupt Processing 268	
	5.2.3.1 Exception and Interrupt Inputs and Pending Status 269	
	5.2.3.2 Exception and Interrupt Vector Table 270	
	5.2.3.3 Definitions of the Priority Levels 271	
5.3	Exceptions and Interrupts in the TM4C123GH6PM Microcontroller System 27.	3
	5.3.1 Local Interrupt Configurations and Controls for GPIO Pins 273	
	5.3.1.1 Initialize and Configure GPIO Interrupt Control Registers 274	
	5.3.2 Local Interrupt Configurations and Controls for GPIO Ports 276	
	5.3.2.1 The NVIC Interrupt Priority-Level Registers 276	
	5.3.2.2 The NVIC Interrupt Set Enable Registers 280	

	5.3.3 Global Interrupt Configurations and Controls 281	
	5.3.4 The Vector Table and Vectors Used in the TM4C123GH6PM MCU	282
	5.3.5 The GPIO Interrupt Handling and Processing Procedure 284	
5.4	Developing GPIO Port Interrupt Projects to Handle GPIO Interrupts 285	
	5.4.1 Two Software Packages Used in the TM4C123GH6PM MCU System	286
	5.4.1.1 The TivaWare [™] Software Package (TWSP) 286	
	5.4.1.1.1 Two Header Files Used in the TM4C123GH6PM MCU	
	System 288	
	5.4.1.1.2 The Register Driver Definition Header File in the TivaWard	e^{TM}
	Software Package 289	
	5.4.1.1.3 The CMSIS Cortex-M4 Peripheral Layer Header File for	
	TM4C123GH6PM 289	
	5.4.1.2 The CMSIS Core Software Package (CMSISCSP) 290	
	5.4.2 Using DRA Programming Model to Handle GPIO Interrupts 290	
	5.4.2.1 Create a New Project GPIOInt and the Header File 291	
	5.4.2.2 Create a New C Code File GPIOInt and Add It into the Project	292
	5.4.2.3 Set Up the Environment to Compile and Link the Project 29	4
	5.4.3 Using CMSIS Core Macros for NVIC Registers to Handle GPIO	
	Interrupts 294	
	5.4.3.1 Popular Data Structures Defined in the CMSIS Core Header File	295
	5.4.3.2 IRQ Numbers Defined in the TivaWare [™] System Header File	297
	5.4.3.3 The NVIC Macros Defined in the TivaWare [™] System Header	
	Files 299	
	5.4.3.4 The NVIC Structure Defined in the CMSIS Core Header File	300
	5.4.3.5 Building Sample Project to Use CMSIS Core Macros for NVIC	
	to Handle Interrupts 302	
	5.4.3.6 Create a New Project NVICInt and Add the C Code File 303	
	5.4.4 Using TivaWare [™] Peripheral Driver Library API Functions to Handle C	SPIO
	Interrupts 306	
	5.4.4.1 NVIC API Functions Defined in the TivaWare™ Peripheral Driv	er
	Library 306	
	5.4.4.2 GPIO Interrupt-Related API Functions in the TivaWare™ Perip	heral
	Driver Library 308	
	5.4.4.3 Building Sample Project to Use Peripheral Driver Library to Han	ndle
	Interrupts 309	
	5.4.4.4 Create a New Project SDInt and Add the C Code File 310	
	5.4.4.5 Configuring the Environments and Run the Project 312	_
	5.4.5 Using CMSIS Core Access Functions to Handle GPIO Interrupts 31	
	5.4.5.1 Building Sample Project to Use CMSIS Core Functions to Handl	e
	Interrupts 314	
	J	14
	5.4.5.3 Configure the Environments and Run the Project 316	
5.5	Comparison Among Four Interrupt Programming Methods 317	
5.6	Chapter Summary 318	
101	mework 319	

10.10/27/811190/S397/futurte, Downloaded from thtps://onlinelibrary.wiley.com/doi/10.10/27/811190/S397/futurte by New Poline Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the appli

	•	
5.1	Overview and	d Introduction 333
5.2	Memory Arc	hitecture in the TM4C123GH6PM MCU System 334
		Random Access Memory (SRAM) 336
	6.2.2 Flash	Memory 336
	6.2.2.1	Basic Operations of the Flash Memory 337
	6.2.2.2	The 32-Word Flash Memory Write Buffer 338
	6.2.2.3	Flash Control Registers 339
	6.2.2.4	Boot Configuration Register (BOOTCFG) 339
	6.2.2.5	Flash Memory Address Register (FMA) 341
	6.2.2.6	Flash Memory Data Register (FMD) 342
	6.2.2.7	Flash Memory Control Register (FMC) 342
	6.2.2.8	Flash Memory Control 2 Register (FMC2) 342
	6.2.2.9	The Flash Write Buffer Valid Register (FWBVAL) 343
	6.2.2.10	Flash Controller Raw Interrupt Status Register (FCRIS) 344
	6.2.2.11	Flash Controller Interrupt Mask Register (FCIM) 346
	6.2.2.12	Flash Controller Masked Interrupt Status and Clear Register
		(FCMISC) 346
	6.2.2.13	Other Control Registers Related to Flash Memory Control 349
		Memory Protection Control 349
	6.2.4 Intern	al Read-Only Memory (ROM) 351
	6.2.4.1	The Boot Loader 352
	6.2.4.2	The TivaWare [™] Peripheral Driver Library 352
	6.2.4.3	The ROM Control Register (RMCTL) 354
	6.2.4.4	The ROM Software Map Register (ROMSWMAP) 354
		ical Erased Programmable Read-Only Memory (EEPROM) 354
	6.2.5.1	EEPROM Initialization and Configuration 356
	6.2.5.2	Most Important Control Registers Used in the EEPROM Module 357
	6.2.5	E \ /
	6.2.5	e \ , /
	6.2.5	
	6.2.5	
	6.2.5	
	6.2.5.3	Other Important Control Registers Used in the EEPROM
		Module 360
5.3		o in TM4C123GH6PM MCU System 361
5.4	Bit-Band Op	
		Iapping Relationship Between the Bit-Band Region and the Bit-Band Alias
	Regio	
		Advantages of Using the Bit-Band Operations 365
		ustration Example of Using Bit-Band Alias Addresses 367
		and Operations for Different Data Sizes 369
		and Operations Built in C Programs 369
5.5		uirements and Memory Properties 370
		ory Requirements 371 ory Access Attributes 372
	U.J.Z IVICIIIC	71.V (ACCOS) (ALLITURIES - 37.4

	6.5.3 Men	nory Er	ndianness 373	
	6.5.3.1	The	Little Endian Format 374	
	6.5.3.2	The	Big Endian Format 374	
6.6	Memory Sy		rogramming Methods 375	
			unctions Used for Flash Memory Programming 376	
			unctions Used for EEPROM Programming 378	
6.7			rogramming Projects 380	
			ory Programming 380	
	6.7.1.1		gramming Flash Memory for Multiple Words with DRA	
	01,1212		chod (Polled) 380	
	6.7.	.1.1.1	The Operational Sequence of the Programming Flash	
			Memory 380	
	6.7	.1.1.2	The Programming Macros for Flash Memory Registers and	
	0.7.	.1.1.2	Parameters 381	
	6.7	.1.1.3	Build the Project to Program Multiple Words for Flash	
	0.7.	.1.1.0	Memory 382	
	6.7	.1.1.4	Build and Run the Project to Perform Erase and Write	
	0.7.		Operations 386	
	6.7.1.2	Pro	gramming Flash Memory for Multiple Words with the DRA	
	0171112		thod (Interrupt Driven) 388	
	6.7.	.1.2.1	The Erase and Write Interrupts Processing Procedure 389)
		.1.2.2	Special Features Utilized in the Project 390	
		.1.2.3	Build the Project to Program Multiple Words for Flash Memo	rv
	0.7.	.1.2.0	with Interrupts 390	- 1
	6.7	.1.2.4	Set Up the Environment to Build and Run the	
	0.7.	.1.2	Project 396	
	6.7.1.3	Pro	gramming Flash Memory for Buffered Words with the DRA	
	01,1212		shod 397	
	6.7.	.1.3.1	The Buffer Words Programming Procedure 397	
		.1.3.2	Develop the Buffer Words Programming Project	
			DRAFlashBuffer 398	
	6.7.	.1.3.3	Build and Set Up the Environment to Run the Project 400	0
			Programming 401	
	6.7.2.1		cial Features in the EEPROM Programming Process 401	
	6.7.2.2		PROM Programming Operational Sequence 402	
		.2.2.1	Configure and Set Up EEBLOCK and EEOFFSET	
			Registers 403	
	6.7.	.2.2.2	Implement and Update the EEBLOCK and EEOFFSET	
			Registers 404	
	6.7.3 Thre	ee Kind	s of System Header Files in the TM4C123GH6PM MCU	
	Syste		405	
	6.7.3.1		Register Driver Definitions Header File TM4C123GH6PM.h	405
	6.7.3.2		CMSIS Cortex®-M4 Peripheral Hardware Layer Header File	
	2.,		4C123GH6PM.h 406	
	6.7.3.3		tem Header Files for All Internal Peripherals and System Contr	rol
	3.,	•	rices 406	
	6.7.3.4		ble the EEPROM Module in Run Mode and Reset EEPROM	407

6.7.4 Build Example EEPROM Programming Projects 408	
6.7.4.1 Programming EEPROM with the DRA Method (Polling-Driven)	408
6.7.4.1.1 Create the Header File DRAEEPROMPoll.h 408	
6.7.4.1.2 Create the Source File DRAEEPROMPoll.c 409	
6.7.4.1.3 Set Up the Environment to Build and Run the Project 413	
6.7.4.2 Programming EEPROM with the DRA Method	
(Interrupt-Driven) 414	
6.7.4.2.1 Modify the Header File DRAEEPROMInt.h 416	
6.7.4.2.1 Modify the Freder File DRAEEI ROMING. 417	
6.7.4.2.3 Set Up the Environment to Build and Run the Project 419	
· · · · · · · · · · · · · · · · · · ·	
6.8 Chapter Summary 420	
Homework 421	
Chapter 7 ARM® Cortex®-M4 Parallel I/O Ports Programming	433
7.1 Overview and Introduction 433	
7.2 GPIO Module Architecture and GPIO Port Configuration 434	
7.3 GPIO Port Control Registers 437	
7.3.1 GPIO Port Initialization and Configuration 438	
7.4 On-Board Keypad Interface Programming Project 440	
7.4.1 The Keypad Interfacing Programming Structure 441	
	142
7.4.2.1 Create the C Source File DRAKeyPadPoll.c 443	
7.4.3 Set Up the Environment to Build and Run the Project 446	
7.5 Analog-to-Digital Converter Programming Project 446	
7.5.1 ADC Modules in the TM4C123GH6PM MCU System 446	
7.5.2 ADC Module Architecture and Functional Block Diagram 447	
7.5.3 ADC Module Components and Signal Descriptions 448	
7.5.3.1 Analog Input Signals and GPIO Analog Control Registers 449	
	450
7.5.3.1.2 GPIO Digital Enable (GPIODEN) Register 450	
7.5.3.1.3 GPIO Analog Mode Select (GPIOAMSEL) Register 451	
7.5.3.2 Sample Sequencer Controls and Their Control Registers 451	
7.5.3.2.1 ADC Sample Sequencer Input Multiplexer Select (ADCSSMU	JXn)
Register 452	,
7.5.3.2.2 ADC Sample Sequencer Control (ADCSSCTLn) Register	454
	58
7.5.3.2.4 ADC Processor Sample Sequencer Initiate (ADCPSSI)	50
Register 459	
7.5.3.2.5 ADC Sample Sequencer Result FIFO (ADCSSFIFOn)	
Register 460	
7.5.3.3 ADC Module Control Functions and Related Registers 461	
· · · · · · · · · · · · · · · · · · ·	
7.5.3.3.2 ADC Interrupt Request and Handling 463	
7.5.3.3.3 Sampling Events and Trigger Sources 467	
7.5.3.3.4 DMA Operations 470	
7.5.4 Analog-to-Digital Converter 470	

		7.5.4.1	Voltage Reference and Resolutions 471
		7.5.4.2	Differential Input Mode 471
		7.5.4.3	Internal Temperature Sensor 472
	7.5.5		zation and Configuration 473
		7.5.5.1	ADC-Related GPIO Ports Initialization 473
		7.5.5.2	ADC Module Initialization 474
		7.5.5.3	Sample Sequencers Initialization 474
	7.5.6		he Analog-to-Digital Converter Programming Project 475
		7.5.6.1	ADC Module in EduBASE ARM® Trainer 475
		7.5.6.2	Create the ADC Programming Project (Polling-Driven) 476
		7.5.6.3	Create the Source File DRAADCPoll.c 476
	757	7.5.6.4	Set Up the Environment to Build and Run the Project 479
	7.5.7		Module API Functions Provided in the TivaWare [™] Peripheral Driver 480
		Library 7.5.7.1	Configuring and Handling the Sample Sequencers API Functions 481
		7.5.7.1	Configuring and Controlling the Processor Trigger API Functions 481
		7.5.7.2	Configuring and Processing the ADC Interrupt API Functions 483
		7.5.7.3	Build an Example ADC Project Using API Functions 484
7.6	PV		lled DC and Step Motors Programming Project 486
7.0	7.6.1		VM Principle and Implementations 487
	7.6.2		Modules in the TM4C123GH6PM MCU System 487
	7.0.2	7.6.2.1	The PWM Generator Block 488
		7.6.2.1	
		7.6.2.1	
		7.6.2.1	•
		7.6.2.1	1 6
	7.6.3	PWM (Generator Functional Block Diagram 490
		7.6.3.1	PWM Generator Block Control Register (PWMnCTL) 491
		7.6.3.2	PWM Generator Block Load Register (PWMnLOAD) 493
		7.6.3.3	PWM Generator Block Count Register (PWMnCOUNT) 493
		7.6.3.4	PWM Generator Block Comparator A Register (PWMnCMPA) 493
		7.6.3.5	PWM Generator Block Comparator B Register (PWMnCMPB) 494
		7.6.3.6	PWM Generator A Register (PWMnGENA) 494
		7.6.3.7	PWM Generator B Register (PWMnGENB) 495
		7.6.3.8	PWM Generator Dead-Band Control Register (PWMnDBCTL) 496
		7.6.3.9	PWM Generator Dead-Band Rising-Edge Delay Register
			(PWMnDBRISE) 497
		7.6.3.10	PWM Generator Dead-Band Falling-Edge Delay Register
			(PWMnDBFALL) 497
		7.6.3.11	PWM Interrupt and Trigger Enable Register (PWMnINTEN) 498
		7.6.3.12	PWM Raw Interrupt Status Register (PWMnRIS) 498
		7.6.3.13	PWM Interrupt Status and Clear Register (PWMnISC) 499
	7.4	7.6.3.14	PWM Fault Source n Register (PWMFLTSRCn) 501
	7.6.4		Module Architecture and Functional Block Diagram 502
		7.6.4.1	The Control and Status Block 503
		7.6.4.1	
		7.6.4.1	1.2 The PWM Master Control Register (PWMCTL) 504

10.10/27/98/11/19/58997/intenter, Downloaded from thttps://onlinelibrary.wiley.com/win/10/10/27/98/11/19/58997/intenter, Downloaded from thttps://onlinelibrary.wiley.com/win-and-conditions) on Wiley Online Library for rules of use; OA article are governed by the applicable Cereative Common Library of the Common Library for rules of use; OA article are governed by the applicable Cereative Common Library of the Commo

		5.4.1.3	The PWM Timer Base Synchronous Register (PWMSY)	NC) 50	14
		5.4.1.4	The PWM Status Register (PWMSTATUS) 505	505	
		5.4.1.5	The PWM Peripheral Properties Register (PWMPP)	505	
	7.6.4.2		Output Control Block 505	505	
		5.4.2.1	The PWM Output Enable Register (PWMENABLE)	505	
		5.4.2.2	The PWM Output Inversion Register (PWMINVERT)	506	
		5.4.2.3		506	
	7.	5.4.2.4	The PWM Fault Condition Value Register (PWMFAULT 507	IVAL)	
	7.	5.4.2.5	The PWM Enable Update Register (PWMENUPD)	507	
	7.6.4.3	The	Interrupt Control Block 507		
	7.	5.4.3.1	The PWM Interrupt Enable Register (PWMINTEN)	508	
	7.	5.4.3.2	The PWM Raw Interrupt Status Register (PWMRIS)	509	
	7.	5.4.3.3	The PWM Interrupt Status and Clear Register (PWMIS	SC) 50!	9
	7.6.5 PW	M Mod	ule Components and Signal Descriptions 509		
	7.6.5.1	PW	M Signal Description 510		
	7.6.5.2		chronization Methods 511		
	7.6.5.3		lt Conditions 512		
		M Mod	ule Initialization and Configuration 513		
	7.6.6.1		alize and Configure the Clock Source for PWM Module	and GPIO)
		Por	<u> </u>		
	7.6.6.2		alize and Configure GPIO Ports and Pins Related to PW	VМ	
	7.0.0.2		dules 513	, 1,11	
	7.6.6.3		alize and Configure the PWM Module and Generators	514	
			e e e e e e e e e e e e e e e e e e e	15	
			cample PWM Programming Project 516	IJ	
	7.6.8.1		ate a PWM Application Project DRAPWM 517		
	7.6.8.2			520	
77			1		
7.7			nctions in the TivaWare™ Peripheral Driver Library	521	
			ules and Generators Configuration and Set Up Control		
		nctions	521		
			ut Control Functions 523		
			rupt and Fault Control Functions 523		
7.8	Chapter S	-	525		
Ho	mework :	527			
Cha	apter 8 ARN	I [®] Cort	ex®-M4 Serial I/O Ports Programming	54	7
8.1	Overview	and Intr	oduction 547		
8.2			chitecture and GPIO Port Configuration 548		
8.3			I Interface (SSI) 551		
0.5			ous and Synchronous Communication Protocols and Dat	a	
		ming	552	ш	
		_	is Serial Interface Architecture and Functional Block Diag	ram 55	5
			onous Data Transmission Format and Frame 556	iaiii 33	J
	8.3.3.1		as Instruments [™] Synchronous Serial Frame 558		
	8.3.3.2		escale SPI Frame 558		
	0.5.5.2	1.100	Socie Stritaine 330		

8.3.3.3 MICROWIRE Frame 559
8.3.4 SSI Module Components and Signal Descriptions 560
8.3.4.1 SSI Control Signals and GPIO SSI Control Registers 560
8.3.4.2 SSI Module Bit Rate Generation and Clock Control 562
8.3.4.3 SSI Module Control/Status and FIFO Control 564
8.3.4.3.1 SSI Control 1 Register (SSICR1) 564
8.3.4.3.2 SSI Status Register (SSISR) 565
8.3.4.3.3 SSI Data Register (SSIDR) 565
8.3.4.3.4 FIFO Operations 566
8.3.4.4 SSI Module Interrupt and DMA Control 567
8.3.4.4.1 SSI Interrupt Mask Register (SSIIM) 568
8.3.4.4.2 SSI Raw Interrupt Status Register (SSIRIS) 569
8.3.4.4.3 SSI DMA Control Register (SSIDMACTL) 569
8.3.4.5 SSI Module Transmit/Receive Logic Control 570
8.3.4.6 SSI Modules Initialization and Configurations 570
8.3.4.6.1 SSI-Module-Related GPIO Ports Initialization 570
8.3.4.6.2 SSI Module Initialization and Configuration 571
8.3.4.6.3 SSI Module Clock Source and Bit Rate Initialization and
Configuration 571
8.3.5 Build the On-Board LCD Interface Programming Project 572
8.3.5.1 SSI Module Interface for the LCD in EduBASE ARM® Trainer 572
8.3.5.2 The Serial Shift Register 74VHCT595 573
8.3.5.3 The LCD Module TC1602A and LCD Controller SPLC780 574
8.3.5.3.1 Interfacing Control Signals Between the MCU and the
SPLC780 576
8.3.5.3.2 Control and Interface Programming for SPLC780 578
8.3.5.3.3 LCD Programming Instruction Structure and Sequence 580
8.3.5.4 Build the Example LCD Interfacing Project 583
8.3.5.4.1 Create a Direct Register Access LCD Project DRALCD 584
8.3.5.4.2 Create the Header File DRALCD.h 584
8.3.5.4.3 Create the C Source File DRALCD.c 585
8.3.5.4.4 Set Up the Environment to Build and Run the Project 589
8.3.6 Build On-Board 7-Segment LED Interface Programming Project 589
8.3.6.1 Structure of 7-Segment LEDs 589
8.3.6.2 SSI Module Interface for the 7-Segment LED in the EduBASE ARM®
Trainer 590
8.3.6.3 Build the Example LED Interfacing Project 592
8.3.6.3.1 Create a Direct Register Access LED Project DRALED 593
8.3.6.3.2 Create the C Source File DRALED.c 593
8.3.6.3.3 Set Up the Environment to Build and Run the Project 595
8.3.7 Build Digital-to-Analog Converter Programming Project 595
8.3.7.1 SSI Module Interface for the DAC-MCP4922 in the EduBASE ARM®
Trainer 595 8.3.7.2 The Operations and Programming for MCP4022 DAC 506
8.3.7.2 The Operations and Programming for MCP4922 DAC 596
8.3.7.3 The Analog-to-Digital Converter TLC-548 598 8.3.7.4 Build the Example DAC Interfacing Project 599
8.3.7.4.1 Create a Direct Register Access DAC Project DRADAC 600

	8.3.7.4.2	Create the Header File DRADAC.h 600
	8.3.7.4.3	Create the C Source File DRADAC.c 600
	8.3.7.4.4	Set Up the Environment to Build and Run the Project 603
		nctions Provided by TivaWare [™] Peripheral Driver Library 604
		SSI Module Initialization and Configuration Functions 604
		SSI Module Control and Status Functions 605
		SSI Module Data Processing Functions 606
		SSI Module Interrupt Source and Processing Functions 607
		d an Example Project to Interface Serial Peripherals Using the SSI dule 608
	8.3.8.5.1	Create a New Software Driver Model Project SDLCD 608
	8.3.8.5.2	Create the Header File SDLCD.h 608
	8.3.8.5.3	Create the C Source File SDLCD.c 608
8.4		ircuit (I2C) Interface 611
	_	Bus Configuration and Operational Status 612
		e Architecture and Functional Block Diagram 613
		e Data Transfer Format and Frame 614
		e Operational Sequence 614
	8.4.4.1 I2C	Module Works in the Master Transmit Mode 614
	8.4.4.2 I2C	Module Works in the Master Receive Mode 616
	8.4.4.3 I2C	Module Works in the Slave Transmit and Receive Modes 616
	8.4.5 I2C Module	e Major Operational Components and Control Signals 618
	8.4.6 I2C Module	e Running Speeds (Clock Rates) and Interrupts 620
		Module High-Speed Mode 621
	8.4.6.2 I2C	Module Interrupts Generation and Processing 621
	8.4.6.2.1	I2C Master Interrupts 622
	8.4.6.2.2	I2C Slave Interrupts 622
		ce Control Signals and GPIO I2C Control Registers 622
		e Control Registers and Their Functions 623
		Module Master Control Registers 623
	8.4.8.1.1	I2C Master Slave Address Register (I2CMSA) 623
	8.4.8.1.2	I2C Master Control/Status Register (I2CMCS) 624
	8.4.8.1.3	I2C Master Data Register (I2CMDR) 624
	8.4.8.1.4 8.4.8.1.5	I2C Master Timer Period Register (I2CMTPR) 624 I2C Master Configuration Register (I2CMCR) 625
	8.4.8.1.6	I2C Master Configuration Register (I2CMCR)I2C Master Clock Low Timeout Count Register
	0.4.0.1.0	(I2CMCLKOCNT) 625
	8.4.8.1.7	I2C Master Bus Monitor Register (I2CMBMON) 626
	8.4.8.1.8	I2C Master Interrupt Mask Register (I2CMIMR) 626
	8.4.8.1.9	I2C Master Raw Interrupt Status Register (I2CMRIS) 626
	8.4.8.1.10	I2C Master Masked Interrupt Status Register (I2CMMIS) 626
	8.4.8.1.11	I2C Master Interrupt Clear Register (I2CMICR) 627
		Module Slave Control Registers 627
	8.4.8.2.1	I2C Slave Own Address Register (I2CSOAR) 627
	8.4.8.2.2	I2C Slave Control Status Register (I2CSCSR) 627
	8.4.8.2.3	I2C Slave Data Register (I2CSDR) 628
	84824	I2C Slave Own Address 2 Register (I2CSOAR2) 628

	8.4.8.2.5 I2C Slave ACK Control Register (I2CSACKCTL) 628
	8.4.8.2.6 I2C Slave Interrupt Mask Register (I2CSIMR) 629
	8.4.8.2.7 I2C Slave Raw Interrupt Status Register (I2CSRIS) 629
	8.4.8.2.8 I2C Slave Masked Interrupt Status Register (I2CSMIS) 629
	8.4.8.2.9 I2C Slave Interrupt Clear Register (I2CSICR) 629
	8.4.9 I2C Module Initializations and Configurations 630
	8.4.9.1 Initializations and Configurations for the I2C-Related GPIO Pins 630
	8.4.9.2 Initializations and Configurations for the I2C Module 630
	8.4.10 Build an Example I2C Module Project 631
	8.4.10.1 The BQ32000 Real Time Clock (RTC) 631
	8.4.10.2 The Interface Between the BQ32000 and EduBASE ARM®
	Trainer 633
	8.4.10.3 Create a DRA Model I2C Project DRAI2C 634
	8.4.10.4 Create the Source File DRAI2C 634
	8.4.10.5 Set Up the Environment to Build and Run the Project 638
	8.4.11 I2C API Functions Provided by TivaWare [™] Peripheral Driver Library 639
	8.4.11.1 Master Operations 639
	8.4.11.2 I2C Module Status and Initialization API Functions 640
	8.4.11.3 I2C Module Sending and Receiving Data API Functions 641
8.5	Universal Asynchronous Receivers/Transmitters (UARTs) 642
	8.5.1 Asynchronous Serial Communication Protocols and Data Framing 642
	8.5.2 Asynchronous Serial Interface Architecture and Functional Block
	Diagram 643
	8.5.3 UART Module Operations and Control Registers 645
	8.5.3.1 Transmit/Receive Logic and Data Transmission and Receiving 645
	8.5.3.2 UART Modem Handshake Support 645
	8.5.3.3 UART FIFO Operations 647
	8.5.3.4 UART Interrupts and DMA Control 648
	8.5.3.5 UART Serial IR (SIR) Support 649
	8.5.3.6 9-Bit UART Mode 649
	8.5.3.7 UART Module Clock Control and Baud Rate Generation
	Registers 650
	8.5.3.8 UART Module Control/Status and FIFO Control Registers 651
	8.5.3.8.1 UART Control Register (UARTCTL) 651
	8.5.3.8.2 UART Line Control Register (UARTLCRH) 653
	8.5.3.8.3 UART Receive Status/Error Clear Register
	(UARTRSR/UARTECR) 653
	8.5.3.8.4 UART Data Register (UARTDR) 654
	8.5.3.8.5 UART Flag Register (UARTFR) 655
	8.5.3.9 UART Module Interrupt and DMA Control Registers 655
	8.5.3.9.1 UART Interrupt FIFO Level Select (UARTIFLS) Register 656
	8.5.3.9.2 UART Raw Interrupt Status (UARTRIS) Register 656
	8.5.3.9.3 UART Interrupt Mask (UARTIM) Register 656 8.5.3.9.4 UART Masked Interrupt Status (UARTMIS) Register 657
	1 , ,
	8.5.3.9.5 UART Interrupt Clear Register (UARTICR) 657 8.5.3.9.6 UART DMA Control (UARTDMACTL) Register 657
	8.5.4 LIART Module Control Signals and Related GPIO Pins 658

	8.5.5	UART	Module Initializations and Configurations 659	
	8	8.5.5.1	Initialize and Configure the UART-Related GPIO Ports and Pins	659
	8	8.5.5.2	Initialize and Configure Clock Source and Baud Rate for the UAR	Γ
			Module 659	
	8	8.5.5.3	Initialize and Configure the UART Module 660	
	8.5.6	Build a	an Example UART Module Project 660	
	8	8.5.6.1	Create a New UART Module Project DRAUART 661	
	5	8.5.6.2	Create a New C Source File 661	
	8	8.5.6.3	Set Up the Environment to Build and Run the Project 664	
	8.5.7	The U.	ART API Functions Provided by the TivaWare [™] Peripheral Driver	
		Library	y 664	
	8	8.5.7.1	Clock Source for the Baud Rate Generator API Functions 665	
	8	8.5.7.2	Configure and Control the UART Modules API Functions 666	
	8	8.5.7.3	UART Send and Receive Data API Functions 667	
	8	8.5.7.4	UART Interrupt Handling API Functions 667	
8.6	Cha	pter Sumr	mary 668	
Но	mewor	k 669		
Ch	apter 9	ARM®	Cortex®-M4 Timer and USB Programming	691
9.1	Ove	erview and	Introduction 691	
9.2	Ger	neral-Purp	ose Timers 692	
	9.2.1	The G	PTM Architecture and Functional Block Diagram 693	
	9.2.2		eneral-Purpose Timer Module Components 694	
	9	9.2.2.1	Prescaler Registers 695	
	9	9.2.2.2	Match Registers 695	
	9	9.2.2.3	Shadow Registers 695	
	9.2.3	The Go	eneral-Purpose Timer Module Operational Modes 695	
	9	9.2.3.1	One-Shot and Periodic Timer Mode 696	
	9	9.2.3.2	Periodic Snapshot Timer Mode 698	
	9	9.2.3.3	Wait-for-Trigger Mode 699	
	9	9.2.3.4	Real-Time Clock Timer Mode 699	
	9	9.2.3.5	Input Edge-Count Mode 699	
	9	9.2.3.6	Input Edge-Time Mode 700	
	9	9.2.3.7	PWM Mode 702	
	9	9.2.3.8	DMA Mode 703	
	9	9.2.3.9	Synchronizing GP Timer Blocks 703	
	9	9.2.3.10	Concatenated Modes 703	
	9.2.4	The Go	eneral-Purpose Timer Module Registers 704	
	9	9.2.4.1	Timer A Control Register Group 704	
		9.2.4.1	1.1 GPTM Configuration Register (GPTMCFG) 705	
		9.2.4.1	1.2 GPTM Control Register (GPTMCTL) 705	
		9.2.4.1	1.3 GPTM Timer A Mode Register (GPTMTAMR) 705	
		9.2.4.1		05
		9.2.4.1)6
		9.2.4.1	1.6 GPTM Timer A Prescale Register (GPTMTAPR) 707	

9.3

	9.2.4.1	,
	9.2.4.1	1 0 1
	9.2.4.2	Timer A Status Register Group 708
	9.2.4.2	
	9.2.4.2	
	9.2.4.2	2 (
	9.2.4.3	Timers A and B Interrupt and Configuration Register Group 709
	9.2.4.3	
	9.2.4.3	1 ,
	9.2.4.3	1 0 1
	9.2.4.3	
	9.2.4.3	
	9.2.4.3	
9.2.5		eneral-Purpose Timer Module GPIO-Related Control Signals 712
9.2.6		eneral-Purpose Timer Module Initializations and Configurations 713
	9.2.6.1	Initialization and Configuration for One-Shot/Periodic Timer
	0.2.6.2	Mode 714
	9.2.6.2	Initialization and Configuration for Input Edge-Count Mode 714
	9.2.6.3	Initialization and Configuration for Input Edge-Time Mode 715
	9.2.6.4	Initialization and Configuration for Real-Time Clock (RTC) Mode 716
	9.2.6.5	
9.2.7		Initialization and Configuration for PWM Mode 716 n Example General Purpose Timer Project 717
9.2.7		r Implementations on GPTM Modules 718
9.2.0	9.2.8.1	Input Edge-Count Implementations 719
	9.2.8.2	Input Edge-Time Implementations 721
	9.2.8.3	PWM Implementations 723
9.2.9		PI Functions Used for General-Purpose Timer Module 727
7.2.7	9.2.9.1	The API Functions Used for GPTM Module Configurations and
	7.2.7.1	Controls 727
	9.2.9.2	The API Functions Used for GPTM Module Contents and Related
		Operations 727
	9.2.9.3	The API Functions Used for GPTM Module Interrupt Handling 730
	9.2.9.4	An Implementation of Using Timer API Functions to Measure PWM
		Pulses 731
Wa	atchdog Tin	ners 732
9.3.1	The Wa	atchdog Timer Architecture and Functional Block Diagram 734
9.3.2	The Wa	atchdog Timer Operational Sequence and Timing Access 735
9.3.3	The Wa	atchdog Timer Registers 735
	9.3.3.1	The Watchdog Module Control and Content Registers 735
	9.3.3.1	
	9.3.3.1	
	9.3.3.1	
	9.3.3.1	
	9.3.3.1	
	9.3.3.2	The Watchdog Module Interrupt Handling Registers 737
	9.3.3.2	2.1 Watchdog Raw Interrupt Status Register (WDTRIS) 737

10.10/27/811190/S397/futurte, Downloaded from thtps://onlinelibrary.wiley.com/doi/10.10/27/811190/S397/futurte by New Poline Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the applicable Cereative Common License and Conditions) on Wiley Online Diarry (rerules of use; O.A article are governed by the appli

9.3.3.2.2 Watchdog Masked Interrupt Status Register (WDTMIS) 737
9.3.3.2.3 Watchdog Interrupt Clear Register (WDTICR) 737
9.3.3.2.4 Watchdog Timer Software Reset Register (SRWD) 738
9.3.4 The Watchdog Timer Module Initializations and Configurations 738
9.3.5 Build an Example Watchdog Timer Project 739
9.3.6 The API Functions Used for Watchdog Timer Modules 739
9.3.6.1 The API Functions Used to Configure and Control the Watchdog
Timers 740
9.3.6.2 The API Functions Used to Handle Interrupts of the Watchdog
Timers 742
9.3.6.3 An Implementation Example of Using API Functions to Control the
Watchdog Timer 743
9.4 Universal Serial Bus (USB) Controller 743
9.4.1 The Hardware Configuration of the USB Devices 744
9.4.2 The USB Components and Operational Sequence 745
9.4.3 The Serial Interface Protocol of the USB Communications 747 9.4.4 The USB Interface Used in the Embedded System 748
9.4.4 The USB Interface Used in the Embedded System 748 9.4.5 The USB in the TM4C123GH6PM MCU System 749
9.4.5.1 USB Working as a Device 749
9.4.5.1.1 IN Transactions as a Device 750
9.4.5.1.2 OUT Transactions as a Device 751
9.4.5.1.3 Other Device Functions 752
9.4.5.2 USB Working as a Host 754
9.4.5.2.1 IN Transactions as a Host 755
9.4.5.2.2 OUT Transactions as a Host 755
9.4.5.2.3 Transactions Scheduling 756
9.4.5.2.4 Other Host Functions 756
9.4.5.3 The OTG Mode 757
9.4.5.3.1 Using OTG to Start a Session 758
9.4.5.3.2 Using OTG to Perform Detecting Activity 759
9.4.5.3.3 Using OTG to Perform Host Negotiation 759
9.4.5.4 The USB Module Functional Block Diagram 759
9.4.5.5 The USB Module Control Signals 760
9.4.6 The USB Registers 761
9.4.6.1 USB Host-Related Registers 762
9.4.6.2 USB Device-Related Registers 763
9.4.6.3 USB Host/Device-Related Registers 764 9.4.6.4 USB FIFO-Related Registers 765
9.4.6.5 USB-Interrupt-Related Registers 771
9.4.7 The USB Initializations and Configurations 774
9.4.7.1 Enable and Clock the USB Controller and Related GPIO Ports and
Pins 774
9.4.7.2 USB Control Pins Configurations 774
9.4.7.3 Endpoint Configurations 775
9.4.8 A USB Implementation Example Project 775
9.4.9 The USB API Functions Provided by the TivaWare™ Peripheral Driver
Library 780

xxiv Contents	
9.4.9.1 The USBClock and USBMode API Functions 781	
9.4.9.2 The USBDev API Functions 781	
9.4.9.3 The USBHost API Functions 783	
9.4.9.4 The USBEndpoint API Functions 784	
9.4.9.5 The USBFIFO API Functions 786	
9.4.9.6 The USBInterrupt API Functions 786	
9.4.9.7 The USBOTG API Functions 788	
9.4.10 Build a USB Implementation Example Project Using the API Functions	788
9.5 Chapter Summary 788	
Homework 790	
Chapter 10 ARM® Cortex®-M4 Other Peripherals Programming	805
10.1 Overview and Introduction 805	
10.2 The Controller Area Network (CAN) 805	
10.2.1 CAN Standard Frame 806	
10.2.2 CAN Extended Frame 807	
10.2.3 Detecting and Signaling Errors 808	
10.2.4 The CAN Functional Block Diagram in the TM4C123GH6PM System	809
10.2.5 The CAN Components and Operational Procedures 810	
10.2.5.1 CAN Initialization and Configuration Process 811	
10.2.5.2 Transmit Message Objects 812	
10.2.5.3 Receive Message Objects 815	
10.2.5.4 Handle CAN Module Interrupts 817	
10.2.5.5 CAN Module Operational Modes 818	
10.2.5.6 CAN Clock and Baud Rate Configuration 819	
10.2.5.6.1 Calculate the Bit Time Parameters and Configure the CANB	ΙΤ
Register 821	
10.2.6 The CAN Module Registers 823	
10.2.6.1 The CAN Global Control and Status Registers 823	
10.2.6.1.1 The CAN Global Control Register (CANCTL) 823	
10.2.6.1.2 The CAN Global Status Register (CANSTS) 824	
10.2.6.1.3 The CAN Error Counter Register (CANERR) 825	
10.2.6.1.4 The CAN Bit Timing Register (CANBIT) 825	
10.2.6.1.5 The CAN Test Register (CANTST) 826	
10.2.6.1.6 The CAN Baud Rate Prescaler Extension Register	
(CANBRPE) 826	
10.2.6.1.7 The CAN Interrupt Register (CANINT) 827	

The CAN Interface 1 Registers

10.2.6.2.1 CAN IF1 Command Request Register (CANIF1CRQ)

10.2.6.2.2 CAN IF1 Command Mask Register (CANIF1CMSK)

10.2.6.2.3 CAN IF1 Message Control Register (CANIF1MCTL)

10.2.6.2.4 CAN IF1 Mask 1 Register (CANIF1MSK1)

10.2.6.2.5 CAN IF1 Mask 2 Register (CANIF1MSK2) 8. 10.2.6.2.6 CAN IF1 Arbitration 1 Register (CANIF1ARB1)

10.2.6.2.7 CAN IF1 Arbitration 2 Register (CANIF1ARB2)

828

10.2.6.2

10.10027811199.8897.fmmter, Dewnloaded from https://ointeithethy.avivel.com/doi/10.10027811908897.fmmter by Holy Angel University, Wiey Online Library or [2503/2025]. See the Terms and Conditions (https://ointeithethy.avivel.com/brms-and-conditions) on Wiley Online Library for rules of use; as a governed by the applicable Centive Common Licenses

828

828

830

831

832

831

10.1002/78111908397:finiter, Downloaded from this/cointeithray, wise, com/doi/10.10297811908897 finiter by Holy Angel Un'eview, Wise, Online Library on [25/03/2025]. Sebe Terms and Conditions, (https://cinchibbury.wise, com/mem-sand-conditions) on Wise Online Library for rules of use; OA articles are governed by the applicable Creative Common License.

10.2.6.2.8 CAN IF1 Data A1, CAN IF1 Data A2, CAN IF1 Data B1,	
CAN IF1 Data B2 (CANIF1DA1-CANIF1DA2,	
CANIF1DB1~CANIF1DB2) Registers 832	
10.2.6.3 The CAN Message Object Registers 833	
10.2.7 The CAN Module Interfacing and External Control Signals 833	
10.2.8 The CAN API Functions Provided by TivaWare [™] Peripheral Driver	
Library 834	
10.2.8.1 Special Data Structures and Enumerations Used in the CAN	
Programming 834	
10.2.8.2 CAN Module Initialization and Configuration Functions 835	
10.2.8.3 CAN Module Message Setting and Processing Functions 836	
10.2.8.4 CAN Module Interrupt Configuration and Handle Functions 83	8
10.2.9 A CAN Module Implementation Example Project 838	
10.2.9.1 Build a Simple CAN Self-Test Project 839	
10.2.9.2 Build the Header File for the CAN Project CANLoopBack 840	
10.2.9.3 Build the Source File for the CAN Project CANLoopBack 841	
10.2.9.4 Set Up the Environment to Build and Run the Project 846	
10.3 The Quadrature Encoder Interface (QEI) 847	
10.3.1 Introduction to Quadrature Encoder 847	
10.3.2 The Working Principle of the Increment Rotary Encoder 849	
10.3.3 The Increment Rotary Encoder Applied in the Closed-Loop Control	
System 850 10.2.4 The Ingressort Potenti Encoder Applied in the TM4C122CHEPM MCH.	
10.3.4 The Increment Rotary Encoder Applied in the TM4C123GH6PM MCU System 851	
10.3.5 The QEI Module Registers 852	
10.3.5.1 QEI Control and Status Registers 852	
10.3.5.1 QEI Control and Status Registers 652 10.3.5.2 QEI Position Control Registers 854	
10.3.5.3 QEI Velocity Control Registers 855	
10.3.5.4 QEI Interrupt Processing Registers 855	
10.3.6 The QEI Interfacing Signals and Related GPIO Pins 856	
10.3.7 The QEI Initialization and Configuration Process 856	
10.3.8 QEI API Functions Provided by the TivaWare [™] Peripheral Driver	
Library 857	
10.3.8.1 QEI Configuration and Enable API Functions 858	
10.3.8.2 QEI Position Capture API Functions 858	
10.3.8.3 QEI Velocity Capture API Functions 859	
10.3.8.4 QEI Interrupt Handling API Functions 859	
10.3.9 An Implementation of Using Rotary Encoder for a Closed-Loop Control	
System 860	
10.3.9.1 Calibration of the Rotary Encoder 861	
10.3.9.2 Build the Floating Chart for the Motor Closed-Loop Control	
System 867	
10.3.9.3 Build the Closed-Loop Control Program Based on the Floating	
Chart 869	
10.4 The Continuous and Discrete PID Closed-Loop Control System 871	
10.4.1 Identify the Dynamic Model for the Motor Plant 873	
10.4.1.1 Format the Input and Output Data for the DC Motor 874	

10	0.4.1.2 Identify the DC Motor Dynamic Model with Identification Toolbox [™] 876	
10.4.2	Toolbox [™] 876 Design the PID Controller Using the MATLAB® Control System	
10.4.2	Toolbox [™] 878	
10.4.3	Simulate the PID Control System Using the MATLAB® SIMULINK®	881
10.4.4	Build the Control Software to Implement the PID Controller 883	001
	Fuzzy Logic Closed-Loop Control System 887	
10.5.1	The Fuzzification Process 887	
10.5.2	Design of Control Rules 889	
10.5.3	The Defuzzification Process 889	
10.5.4	Apply the Fuzzy Logic Controller to the DC Motor Control System	891
10.5.5	Build the Fuzzy Logic Control Project Fuzzy-Control 894	
	0.5.5.1 Create the Header File Fuzzy-Control.h 894	
	0.5.5.2 Create the C Source File Fuzzy-Control.c 895	
	0.5.5.3 Set Up Environments to Build and Run the Project 898	
	Analog Comparators 899	
10.6.1	The Analog Comparator Architecture and Functional Block Diagram	899
10.6.2	• •	399
10.6.3	The Voltage Reference Registers Used in the Analog Comparator	
	Modules 900	
10.6.4	The Interrupt Processing Registers Used in the Analog Comparator	
	Modules 903	
10.6.5	The Input and Output Control Signals Used in the Analog Comparator	rs 903
10.6.6	The Initialization and Configuration Process for the Analog Comparato	
10.6.7	Build a Project to Test the Functions of the Analog Comparator Modul	le 904
10.6.8	Set Up the Environments to Build and Run the Project 907	
10.7 Chap	oter Summary 908	
Homework	909	
Chapter 11	ARM® Floating Point Unit (FPU)	927
11.1 Over	rview and Introduction 927	
11.2 Three	e Types of the Floating-Point Data 928	
11.2.1	The Half-Precision Floating-Point Data 928	
11.2.2	The Single-Precision Floating-Point Data 930	
11.2.3	The Double-Precision Floating-Point Data 932	
11.3 The l	FPU in the Cortex®-M4 MCU 934	
11.3.1	The Architecture of the Floating-Point Registers 934	
11.3.2	The FPU Operational Modes 937	
11.4 Imple	ementing the Floating-Point Unit 938	
11.4.1	Floating-Point Support in CMSIS-Core 938	
11.4.2	Floating-Point Programming in the TM4C123GH6PM MCU System	939
11	1.4.2.1 FPU in the Direct Register Access Model 940	
	1.4.2.2 FPU in the Software Driver Model 942	
11.4.3	An FPU Example Project Using the Direct Register Access Model	942
11.5 Chap	oter Summary 946	
Homework	946	

12.1 Overview and Introduction 951
12.2 Implementation of the MPU 952
12.2.1 Memory Regions, Types, and Attributes 953
12.2.2 MPU Configuration and Control Registers 953
12.2.2.1 The MPU Type Register (MPUTYPE) 954
12.2.2.2 The MPU Control Register (MPUCTRL) 954
12.2.2.3 The MPU Region Number Register (MPUNUMBER) 956
12.2.2.4 MPU Region Base Address Register (MPUBASE) 956
12.2.2.5 The MPU Region Attribute and Size Register (MPUATTR) 957
12.3 Initialization and Configuration of the MPU 959
12.4 Building A Practical Example MPU Project 960
12.4.1 Create a New DRA Model MPU Project DRAMPU 960
12.4.2 Set Up the Environment to Build and Run the Project 963
12.5 The API Functions Provided by the TivaWare [™] Peripheral Driver Library 964
12.5.1 The MPU Set Up and Status API Functions 965
12.5.1.1 The API Function MPURegionSet() 966
12.5.2 The MPU Enable and Disable API Functions 967
12.5.3 The MPU Interrupt Handler Control API Functions 968
12.6 Chapter Summary 969
Homework 970

Index 975

About the Author 987

Preface

The ARM® Cortex®-M4 MCU is one of the most popular and updated microcontrollers widely implemented in education, industrial, and manufacturing fields in recent years. Because of their relatively simple structure and powerful functions, the ARM® Cortex®-M4 MCU systems have been applied in more and more applications in our real world, including automatic controls, intelligent controls, industrial controls, and academic implementations.

The advantages of using an ARM® Cortex®-M4 microcontroller include but are not limited to the following:

- The ARM® Cortex®-M4 MCU is a 32-bit microcontroller, and it can work independently as a single controller to provide real-time and multifunction controls to effectively and easily control most real objectives in our world.
- The internal bus system used in Cortex®-M4 MCU is 32-bit, and it is based on the so-called Advanced Microcontroller Bus Architecture (AMBA) standard. The AMBA standard provides efficient operations and low power cost on the hardware.
- The main bus interface between the MCU and external components is the Advanced Highperformance Bus (AHB), which provide interfaces for memory and system bus, as well as peripheral devices.
- A Nested Vectored Interrupt Controller (NVIC) is used to provide all supports and managements to the interrupt responses and processing to all components in the system.
- The Cortex®-M4 MCU also provides standard and extensive debug features and helps to enable users to easily check and trace their program with breakpoints and steps.
- The TM4C123GXL EVB provides fundamental and basic peripherals and interfaces to enable users to conveniently communicate to other parallel or serial peripherals via GPIO Ports to perform specific control tasks and functions.
- The EduBASE ARM® Trainer provides the most popular I/O devices, such as 4-LED, a 4-bit DIP switch, four 7-segment LEDs, a 4×4 keypad working as an input keyboard, a 16×2 LCD connected to the LCD Controller HD44780 to work as an output displaying device, two H-Bridge motor drivers, three analog input sensors, a CAN protocol and other peripheral interfaces. All of these I/O devices and interfaces provide great flexibility to enable users to design and build advanced and professional control units applied in our real world.
- The integrated development environment Keil® ARM-MDK μVersion®5 provides an integrated development environment to enable users to easily create, compile, build, and run professional application projects to control and coordinate the entire control system to perform a desired task in short period of time.

The author of this book tries to provide a complete package to cover all components and materials related to ARM® Cortex®-M4 microcontroller systems, including hardware

xxx Preface

and software as well as practical application notes with real examples. All example projects in the book have been compiled, built, and tested. To help students to master the main techniques and ideas, five appendices are provided to facilitate the students to overcome some possible learning curves.

Any questions or comments regarding this book are welcome.

Charlotte, North Carolina

YING BAI

10.1002/78111908897.fmtner, Downloaded for https://onlinelibrity.unively.com/doi/10.100278111908897.mater by Holy Angel University. Wiley Online Erbary on [2503/2025]. See the Terms and Conditions (https://onlinelibrity.wiley.com/terms-and-conditions) on Wiley Online Erbary for rules of use. OA article are governed by the applicable Centive Common Sciences and Conditions of the Common Sciences and Conditions on Wiley Online Erbary wiley.

Acknowledgments

The first and most special thanks go to my wife, Yan Wang; I could not finish this book without her sincere encouragements and supports.

Many thanks should be given to the editor Mary Hatcher, who made this book available to the public. You could not find this book on the market without her deep perspective and hard work. The same thanks are extended to the editing team for this book. Without their contributions, it would have been impossible for this book to have been published.

Acknowledgments should also be extended to the following book reviewers for their valuable opinions to the book:

- Dr. Jiang (Linda) Xie, Professor, Department of Electrical and Computer Engineering, University of North Carolina at Charlotte
- Dr. Xiaohong Yuan, Associate Professor, Department of Computer Science, North Carolina A&T State University
- Dr. Daoxi Xiu, Application Analyst Programmer, North Carolina Administrative Office of the Courts
- Dr. Dali Wang, Associate Professor, Department of Physics and Computer Science, Christopher Newport University

Last but not least, thanks should be given to all the people who have supported me while writing this book.

YING BAI

Trademarks and Copyrights

- ARM®, Cortex®, Keil® and μ Vision® are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere.
- ARM7TM, ARM9TM and ULINKTM are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.
- MATLAB® is a trademark and product of The MathWorks, Inc.
- MATLAB Simulink® is a trademark and product of The MathWorks, Inc.
- MATLAB System Identification Toolbox[™] is a trademark and product of The MathWorks, Inc.
- MATLAB System Control Toolbox[™] is a trademark and product of The MathWorks, Inc.
- MATLAB Fuzzy Logic Toolbox[™] is a trademark and product of The MathWorks, Inc.
- Texas InstrumentsTM is a trade mark of the Texas Instruments Incorporated.
- TivaTM is a trademark and product of the Texas Instruments Incorporated.
- TivaWareTM is a trademark and product of the Texas Instruments Incorporated.
- LaunchPadTM is a trademark and product of the Texas Instruments Incorporated.
- Code Composer StudioTM is a trademark and product of the Texas Instruments Incorporated.
- Stellaris[®] is a trademark and product of the Texas Instruments Incorporated.

Copyright Permissions

All copyright permitted Figures and Tables used in this book are listed below based on the different venders and companies.

Table I lists the copyright permitted Figures and Tables originated by the Texas Instruments Incorporated and used in this book. All those Figures and Tables have been permitted to be re-printed in this book under the copyright permissions of the Texas Instruments Incorporated.

Table I. Copyright Permitted Figures and Tables by Texas Instruments Incorporated.

Chapter	Figures and Tables	Page
Chapter 2	Figure 2.14: Block diagram of TM4C123GH6PM MCU. Figure 2.17: Function block diagram of Analog/Digital GPIO control. Figure 2.20: The TM4C123GXL evaluation board. Figure 2.21: The functional block diagram of the LaunchPad board. Table 2.3: Exception and interrupt types and priority numbers. Table 2.8: GPIO Pins with special considerations.	39 48 73 76 36 58
Chapter 4	Figure 4.34: An example of using mask byte to do data reading and writing.	230
Chapter 5	Figure 5.6: An example of the NVIC Priority Level Register PRI0.	276
Chapter 6	Figure 6.3: Bit field and function on BOOTCFG Register. Figure 6.4: Bit field and function on FMA Register. Figure 6.5: Bit field and function on the FMC Register. Figure 6.6: Bit field and function on the FMC2 Register. Figure 6.7: Bit field and function on FCRIS Register. Figure 6.8: Bit field and function on FCIM Register. Figure 6.9: Bit field and function on FCMISC Register. Figure 6.11: The functional block diagram of the EEPROM. Figure 6.12: The bit field values and related functions in the EEDONE register. Figure 6.13: The bit field values and related functions in the EEPROT register.	339 341 342 343 344 346 347 355 358
Chapter 7	Figure 7.12: The bit fields for the ADCSSMUX0 register. Figure 7.13: The bit fields for the ADCSSMUX1, 2 registers. Figure 7.14: The bit fields for the ADCSSMUX3 register. Figure 7.15: The bit fields for the ADCSSCTL0 register. Figure 7.16: The bit fields for the ADCSSCTL1, 2 registers. Figure 7.17: The bit fields for the ADCSSCTL3 register. Figure 7.32: PWM Count-Down and Count Up/Down modes. Figure 7.33: An example of using the count-up/down mode to generate PWM outputs. Figure 7.34: The output PWM signals generated by Dead-Band generator.	452 453 454 455 456 458 488 489 490

Table I (Continued)

Chapter	Figures and Tables	Page
	Figure 7.35: The detailed block diagram for the PWM Generator block.	491
	Figure 7.36: Bit fields in the PWM generator control register.	492
	Figure 7.37: Bit fields in the PWM generator A register.	494
	Figure 7.41: Architecture and functional block diagram of PWM module.	503
	Figure 7.42: Bit fields in the Run-Mode Clock Configuration (RCC)	504
	register.	504
	Figure 8.4: Functional block diagram of the SSI module.	
	Figure 8.5: Operational timing sequence of the TI synchronous serial	556
	frame.	558
	Figure 8.6: The operational sequence for Freescale SPI frame $(SPO = SPH = 0)$.	559
	Figure 8.7: The operational sequence for Freescale SPI frame	339
	(SPO = 0 , SPH = 1).	559
	Figure 8.8: The operational sequence for MACROWIRE frame.	560
	Figure 8.11: The bit field and functions of the SSICR0 Register.	563
	Figure 8.42: The I2C bus configuration and status.	612
Chapter 8	Figure 8.43: The definition of START and STOP conditions.	612
	Figure 8.44: The functional block diagram of each I2C module.	613
	Figure 8.45: The I2C data transfer format and frame.	614
	Figure 8.46: The operational sequence of the master working in the	
	transmit mode.	615
	Figure 8.47: The operational sequence of the master working in the receive	617
	mode.	617
	Figure 8.48: The operational sequence of the I2C module working in the slave mode.	618
	Figure 8.62: The functional block diagram for one UART module.	644
	Figure 8.65: Bit configurations of the UARTCTL register.	652
	Figure 9.1: The architecture and block diagram of one GPTM block.	693
	Figure 9.3: An example of using a count-down timer to detect input edge	0,5
	events.	700
Chapter 9	Figure 9.4: An example of using the count-down mode timer to detect the	
onaprer y	edge time.	701
	Figure 9.5: An example of using Timer A to generate a PWM signal.	703
	Figure 9.20: The functional block diagram of the watchdog modules.	734
	Figure 9.27: Functional block diagram of the USB module.	760
	Figure 10.2: A typical standard CAN frame format.	807
	Figure 10.3: Functional block diagram of the CAN modules.	809
Chantar 10	Figure 10.5: A normal CAN bit time configuration.	820
Chapter 10	Figure 10.25: Functional block diagram of the QEI Modules.	851
	Figure 10.26: The inversion and swapping logic circuit.	852
	Figure 10.63: Architecture and functional block diagram of the Analog	900
	Comparator modules.	700

Table II lists the copyright permitted Figures and Tables originated by the ARM Limited and used in this book. All those Figures and Tables have been reproduced with permission from ARM Limited. Copyright © ARM Limited.

Table II. Copyright Permitted Figures and Tables by ARM Limited.

Chapter	Figures and Tables	Page
Chapter	Figure 3.4: The components included in the MDK Core.	1 age
	Figure 3.5: Components in the Software Packs.	
	Figure 3.9: The opened Keil® MDK-ARM µVersion® 5.1 suite.	87
	Figure 3.11: The opened Hello World project.	88
	Figure 3.12: The opened source file hello.c.	92
	Figure 3.13: Rebuild the hello project.	93
	Figure 3.14: The building result of the hello project.	94
	Figure 3.15: The debugging result of the hello world project.	95
	Figure 3.16: The opened MDK-ARM IDE.	95
	Figure 3.17: The opened Device Database wizard.	96
	Figure 3.18: The detailed information for the device TM4C123GH6PM.	97
	Figure 3.19: The License Management wizard.	98
	Figure 3.20: An example of the Configuration submenu.	99 99
	Figure 3.22: The Select Device for Target wizard.	100
	Figure 3.23: The Manage Run-Time Environment wizard. Figure 3.24: The selected components in the Manage Run-Time	103
	Environment wizard.	103
	Figure 3.25: The new project wizard.	103
Chapter 3	Figure 3.26: The Add New Item to Group wizard.	104
	Figure 3.28: The finished codes for the source file MyProject.c.	105
	Figure 3.29: Add a header file MyProject.h into the project.	106
	Figure 3.31: The finished header file MyProject.h.	108
	Figure 3.32: The project building process.	108
	Figure 3.33: The finished debugger checking wizard.	109
	Figure 3.34: The download process for our project.	110
	Figure 3.35: The debug process for our project.	111
	Figure 3.36: The Components, Environment, Books wizard.	111
	Figure 3.37: The Manage Run-Time Environment wizard for our sample	112 114
	project. Figure 3.38: Functions provided by the Options for Target Project wizard.	114
	Figure 3.39: The Target option for the sample project MyProject.	114
	Figure 3.40: The Output option for the sample project MyProject.	116
	Figure 3.41: The Listing option for the sample project MyProject.	116
	Figure 3.42: The Debug option for the sample project MyProject.	117
	Figure 3.43: The Utilities option for the sample project MyProject.	117
	Figure 3.44: The opened Settings wizard.	119
	Figure 3.45: An example of using System Viewer for TIMER0 device.	119
	Figure 3.46: The Nested Vectored Interrupt Controller configuration	120
	dialog.	123
	Figure 3.50: A debug example for our sample project MyProject.	125
	Figure 3.51: The optimization wizard for our sample project.	134
	Figure 3.52: An example of using the code optimization under the Target tab.	139 141
Chapter 4	Figure 4.38: The finished Options wizard.	236
	Figure 6.26: The running result of the project DRAFlash.	387
Chapter 6	Figure 6.27: The 1-KB erased flash memory block (0x1000~0x13FF).	388

Table II (Continued)

Chapter	Figures and Tables	Page
	Figure 6.32: The running result of the DRAFlashInt project.	397
	Figure 6.34: The running result of the project DRAFlashBuffer.	400
	Figure 6.38: The 18 read-out data stored in the data array prData[].	414
	Figure 6.42: The read back data stored in the prData[] array.	420
Chapter 8	Figure 8.74: Running result of the project DRAUART.	664
	Figure 8.75: Running result of the project Lab8_5.	685
	Figure 8.76: Running result of the project Lab8_6.	689
Chapter 11	Figure 11.6: The FPU is automatically used in MDK-ARM µ	
	Version 5 IDE.	939
	Figure 11.11: The running result of the project DRAFPU.	945

Table III list the copyright permitted Figures and Tables originated by the Math-Works, Inc. and used in this book. All those Figures and Tables have been permitted to be re-printed in this book under the copyright permissions of the MathWorks, Inc.

10.10029781119058397.fmatter, Downloaded from https://onlinelibrary.wiley.com/doi/10.10029781119058397.fmatter by Holy Angel University, Wiley Online Library on [2503/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029781119058397.fmatter by Holy Angel University, Wiley Online Library on [2503/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/doi/10.10029781119058397.fmatter.)

Chapter	Figures and Tables	Page
Chapter 10 Chapter 11	Figure 10.38: The MATLAB Script file getMData.m. Figure 10.39: Load the data array mdata.dat into the MATLAB Workspace. Figure 10.40: The opened Identification Toolbox and Import data wizard. Figure 10.41: The modified data array mdatad in the identification Toolbox. Figure 10.42: The opened Process Models wizard. Figure 10.43: The identified model responses and analysis. Figure 10.44: Commands used to set transfer function of the DC motor and start PID tuner. Figure 10.45: The opened PID Tuner and the tuning result. Figure 10.46: The opened SIMULINK window. Figure 10.47: The finished SIMULINK bock connections.	875 876 876 877 878 879 880 880 881 882 883
	1	

About the Companion Website

This book is accompanied by a companion website: http://www.wiley.com/go/armbai The website includes:

- Class Projects
- Appendix A
- Appendix B
- Appendix C
- Appendix D
- Appendix E

If you are an instructor and adopted this book for your course, please email ieeeproposals@wiley.com to get access to the instructor files for this book.