

ETC5523: Communicating with Data

Data tables

Lecturer: Emi Tanaka

Department of Econometrics and Business Statistics

cwd.numbat.space

(I) Aim

- Recall and understand the motivations of various common tables that present statistical information
- Learn guidelines for communicating data with tables
- Make data tables with R

Why

- Your choice of statistical tables to present should consider the motivation of your audience
- You need to be aware of the common convention of how to present information in tables

El Some common tables

Descriptive summary statistics tables

```
1 library(tidyverse)
2 mtcars %>%
3    select(mpg, wt, vs, cyl) %>%
4    glimpse()

Rows: 32
Columns: 4
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8, ...
$ wt <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.4...
$ vs <dbl> 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, ...
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8, ...
```

	4 (N=11)	6 (N=7)	8 (N=14)	Overall (N=32)
mpg				
Mean (SD)	26.7 (4.51)	19.7 (1.45)	15.1 (2.56)	20.1 (6.03)
Median [Min, Max]	26.0 [21.4, 33.9]	19.7 [17.8, 21.4]	15.2 [10.4, 19.2]	19.2 [10.4, 33.9]
wt				
Mean (SD)	2.29 (0.570)	3.12 (0.356)	4.00 (0.759)	3.22 (0.978)
Median [Min, Max]	2.20 [1.51, 3.19]	3.22 [2.62, 3.46]	3.76 [3.17, 5.42]	3.33 [1.51, 5.42]
vs				
0	1 (9.1%)	3 (42.9%)	14 (100%)	18 (56.3%)
1	10 (90.9%)	4 (57.1%)	0 (0%)	14 (43.8%)

Regression results tables

		fit1			fit2	
Characteristic	Beta	95% CI ¹	p-value	Beta	95% CI ¹	p-value
wt	-3.3	-4.9, -1.7	<0.001	-3.2	-4.7, -1.7	<0.001
VS	0.86	-2.5, 4.2	0.6			
cyl						
4	_	_		_	_	
6	-3.9	-7.1, -0.67	0.020	-4.3	-7.1, -1.4	0.005
8	-5.1	-10, -0.10	0.046	-6.1	-9.5, -2.7	<0.001
¹ CI = Confidence	Interv	al				

What statistics to present?

- This depends on what you want to convey and your audience.
- There are two key purposes of the table:
 - 1. display information; and
 - 2. communicate information.
- In general, tables tend to be about display of information and graphs are preferred for communication.
- However, if precision matters then tables can be better at communicating this than graphs.

Descriptive summary statistics

- The main goal is to give a numerical summary to give a "feel" of what the data contains. These generally should convey:
 - variables in the data,
 - the number of observations for each variable,
 - missing values (if any),
 - the distribution, e.g. in the form of five number of summaries or counts/percentages for categorical variables.

Descriptive summary statistics

• For numerical variables, you may have a **correlation table** which displays the correlation coefficients of every pair of variables. Because it is symmetrical, you can omit out the upper triangle.

Variables	Mean	SD	1.	2.
1. Miles per gallon	20.09	6.03		
2. Weight	3.22	0.98	-0.87	
3. Horsepower	146.69	68.56	-0.78	0.66

Descriptive summary statistics

You may have cross-tabulations (also called contingency tables)

cyl/gear	3	4	5	Total
4	3.1% (1)	25.0% (8)	6.2% (2)	34.4% (11)
6	6.2% (2)	12.5% (4)	3.1% (1)	21.9% (7)
8	37.5% (12)	0.0% (0)	6.2% (2)	43.8% (14)
Total	46.9% (15)	37.5% (12)	15.6% (5)	100.0% (32)

Regression results

- Or more generally, the important numerical characteristics of your model. This may include:
 - parameter estimates of your model,
 - the standard error or confidence/credible interval of your estimates,
 - model fit quality, e.g., AIC, BIC and so on.
- You see often the inclusion of -value, usually from the significance test of the corresponding variable p and some indicate the significance level by the amount of *.
- It is important to *convey the uncertainty* for the estimates or predictions from your model.

Regression results

• There is also what is called the **ANOVA table** that shows the variation according to different sources.

1 glimpse(ToothGrowth)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
supp	1	205.350	205.35000	15.571979	0.0002312
factor(dose)	2	2426.434	1213.21717	91.999965	0.0000000
supp:factor(dose)	2	108.319	54.15950	4.106991	0.0218603
Residuals	54	712.106	13.18715		

Communication considerations for tables

Numerical precision

• Select an appropriate precision for your goal and audience:

	Weight		
Car brand	5 d.p.	2 d.p.	0 d.p.
Mazda RX4	2.61937	2.62	3
Mazda RX4 Wag	2.87518	2.88	3
Datsun 710	2.31916	2.32	2
Hornet 4 Drive	3.21660	3.21	3

Numerical precision

• Display trailing zeroes to match selected precision of the column:

Trailing zeroes				
Yes	No			
0.233	0.233			
0.320	0.32			
0.400	0.4			
0.343	0.343			

Numerical precision

Change and display units as appropriate:

Car brand	Weight (lbs)	Weight (1000 lbs)	Weight (kg)	Weight (g)	Weight (mg)
Mazda RX4	2620	2.620	1188	1190000	1,188,000,000
Mazda RX4 Wag	2875	2.875	1304	1300000	1,304,000,000
Datsun 710	2320	2.320	1052	1050000	1,052,000,000
Hornet 4 Drive	3215	3.215	1458	1460000	1,458,000,000

Show comma every 3 digits (or other marks as needed).
 E.g. 1000000 is harder to read than 1,000,000.

```
1 scales::comma(c(439024, 4900343), accuracy = 1000)
[1] "439,000" "4,900,000"
```

三 Column 三 alignment 三

- Spanner labels are usually aligned in center.
- Right-align numbers
- Left-align texts

Car brand			Horsepower		
Left	Center	Right	Left	Center	Right
Mazda RX4	Mazda RX4	Mazda RX4	110	110	110
Mazda RX4 Wag	Mazda RX4 Wag	Mazda RX4 Wag	110	110	110
Datsun 710	Datsun 710	Datsun 710	93	93	93
Hornet 4 Drive	Hornet 4 Drive	Hornet 4 Drive	110	110	110

Labels within tables

 It is possibly obvious, but tables designed as final product (e.g. in report) should have polished labels

Valiant

Hornet Sportabout

- For columns, the unit may be written in the column header label
- You shouldn't label the unit within the table

	V	
Car brand	Weight (1000 lbs)	Displacement (cubic inches)
Mazda RX4	2.620	160
Mazda RX4 Wag	2.875	160
Datsun 710	2.320	108
Hornet 4 Drive	3.215	258
Hornet Sportabout	3.440	360
Valiant	3.460	225

car	wt	disp
Mazda RX4	2620 lbs	160 cubic inches
Mazda RX4 Wag	2875 lbs	160 cubic inches
Datsun 710	2320 lbs	108 cubic inches
Hornet 4 Drive	3215 lbs	258 cubic inches

3440 lbs

3460 lbs

360 cubic inches

225 cubic inches

X

Texts accompanying tables

- Besides the contents of table, a table may be accompanied with: *table header*, *caption*, *footnotes* and/or *source notes*.
- The conventions of how and what to write will depend on your audience and medium of report
- Generally if you are communicating information, your caption should:
 - summarise the take-away message, in other words, why should the audience care about this table?
 - give context of the table (e.g. "means that the virus is more infectious") $R_0 > 1$

Making tables with R

I How to make tables in R?

- There are many packages that make table in R, including ones that wrangle the data for you to make specialised table output. E.g. knitr::kable, kableExtra, formattable, gt, DT, pander, xtable, stargazer.
- You can read the documentation for each packages to make the table you want (I mainly use knitr::kable, kableExtra and DT).
- Whatever package you use, it's important that you understand the output and how it works with the medium you are trying to display the table.

Table in Markdown

In markdown file:

First Header	Second Header
Content Cell	Content Cell
Content Cell	Content Cell

Possible display:

First Header	Second Header		
Content Cell	Content Cell		
Content Cell	Content Cell		

Table in HTML & PDF

HTML → Web browser

```
1 
2 <thead>
3 
4 First Header Second Header
5 
6 </thead>
7 
8 
9 Content Cell Content Cell
10 
11 
12 Content Cell Content Cell
13 
14 
15
```

LaTeX → PDF

```
1 \begin{tabular}{cc}
2 \hline
3 First Header & Second Header\\
4 \hline
5 Content Cell & Content Cell\\
6 Content Cell & Content Cell\\
7 \hline
8 \end{tabular}
```

- HTML is for HTML output
- LaTeX is for PDF output
- Most HTML elements do not work in LaTeX and vice versa.

Parts of a gt Table TITLE **TABLE HEADER SUBTITLE** SPANNER COLUMN LABEL **STUB** COLUMN COLUMN STUBHEAD LABEL **HEAD** COLUMN COLUMN **LABELS** LABEL LABEL LABEL **ROW GROUP LABEL ROW LABEL** CELL **CELL** CELL **TABLE STUB BODY ROW LABEL** CELL **CELL** CELL CELL **CELL** CELL SUMMARY LABEL **FOOTNOTES TABLE FOOTER SOURCE NOTES**

Source: https://gt.rstudio.com/

```
1 library(gt)
2 df <- select(head(mtcars), wt, disp, cyl)</pre>
```

```
1 library(gt)
2 df <- select(head(mtcars), wt, disp, cyl)
3 gt(df)

wt disp cyl
2.620 160 6
2.875 160 6
2.320 108 4</pre>
```

3.215 258 6

3.440 360 8

3.460 225 6

```
1 library(gt)
2 df <- select(head(mtcars), wt, disp, cyl)
3 gt(df) %>%
4 tab_header(title = "Motor Trend Car Road Tests",
5 subtitle = "Design and performance of 1973-74 automobile models")
```

Motor Trend Car Road Tests

Design and performance of 1973-74 automobile models

cyl	disp	wt
6	160	2.620
6	160	2.875
4	108	2.320
6	258	3.215
8	360	3.440
6	225	3.460

```
1 library(gt)
2 df <- select(head(mtcars), wt, disp, cyl)
3 gt(df) %>%
4 tab_header(title = "Motor Trend Car Road Tests",
5 subtitle = "Design and performance of 1973-74 automobile models") %>%
6 tab_source_note(md("Source: 1974 *Motor Trend* US magazine"))
```

Motor Trend Car Road Tests

Design and performance of 1973-74 automobile models

	wt	disp	cyl	
	2.620	160	6	
	2.875	160	6	
	2.320	108	4	
	3.215	258	6	
	3.440	360	8	
	3.460	225	6	
Source: 1974 Motor Trend US magazine				

```
1 library(gt)
2 df <- select(head(mtcars), wt, disp, cyl)
3 gt(df) %>%
4 tab_header(title = "Motor Trend Car Road Tests",
5 subtitle = "Design and performance of 1973-74 automobile models") %>%
6 tab_source_note(md("Source: 1974 *Motor Trend* US magazine")) %>%
7 cols_label(
8 wt = html("Weight<br>(1000lbs)"),
9 disp = html("Displacement<br>(inch<sup>3</sup>)"),
10 cyl = html("Number of<br/>br>cylinders")
11 )
```

Motor Trend Car Road Tests

Design and performance of 1973-74 automobile models

Number of cylinders	Weight (1000lbs)
6	2.620
6	2.875
4	2.320
4	2.320 E7 urce: 1974 Mo

MONASH University

Motor Trend Design and performance	d Car Road Test of 1973-74 automobil			
3.215	258	6		
3.440	360	8		
3.460	225	6		
Source: 1974 Motor Trend US magazine				

Case study: interactive tables with DT

show 4 ventries											Sea	rch:		
	mpg 🖣	cyl∮	disp 🖣	hp 🕏	drat 🖣	wt 🏺	qs	sec 🖣	VS [♦]	•	am 🕈	gea	nr \$	carb
Mazda RX4	21	6	160	110	3.9	2.62	16	5.46	0		1		4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17	7.02	0		1		4	4
Datsun 710	22.8	4	108	93	3.85	2.32	18	3.61	1		1		4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19	9.44	1		0		3	1
howing 1 to 4 of 32 entries						Previous	1	2	3	4	5	•••	8	Next

When do you make tables over plots?

- When you want to show exact values or the accuracy of the values are important to convey.
- You can combine plots with tables!

⊞ Case study heatmap table with **formattable**

```
1 library(formattable)
2 mtcars %>%
3  select(mpg, disp, wt, hp) %>%
4  cor() %>%
5  as.data.frame() %>%
6  rownames_to_column("Variables") %>%
7  formattable(list(area(col = 2:5) ~ color_tile("#F5B7B1", "#7DCEA0")))
```

Variables	mpg	disp	wt	hp
mpg	1.0000000	-0.8475514	-0.8676594	-0.7761684
disp	-0.8475514	1.000000	0.8879799	0.7909486
wt	-0.8676594	0.8879799	1.000000	0.6587479
hp	-0.7761684	0.7909486	0.6587479	1.0000000
		ETC5523 Week 5B		MONASI

E Case study: inline plots with sparkline

- Sparkline refers to a small chart drawn without axes or coordinates.
- This will be out of scope for this unit.

Stock Sparkline		Boxplot
x	^	⊢
У	<i>~</i> ↓	

Week 5B Lesson

Summary

- You saw various common tables that present information and the motivation behind it
- We went through some guidelines for best way to communicate with tables

Resources

- kableExtra documentation
- Introduction to Creating gt Tables
- DT documentation
- gtsummary for summary tables
- modelsummary for regression tables