### Exercises

- 1. What are preorder, postorder and inorder traversals of the following binary tree.
- 2. Is it a BST



# 2. Assume that the *inorder* traversal of a binary tree is

CGAHFDEIBJ

and its *postorder* traversal is

GCHFAIEJBD

Draw this binary tree.

• Is this a binary tree search tree?



# Convert the infix to pre and post fix

- ((A + B) \* (C + D)) Has paranthesis
- (((A+B)\*C)-((D+E)/F))

# Identifyme

```
int IM (Node u)
                                                int IM (Node u)
    if (u == nil)
                                                   if (u == nil)
        return -1;
                                                         return 0;
     return 1 + max(IM(u.left), IM(u.right));
                                                    return 1 + IM(u.left) + IM(u.right);
TRANSPLANT(T, u, v)
                                                int Identifyme(Node u)
     if u.p == NIL
                                                         int d = 0;
        T.root = v
                                                         while (u != r)
     elseif u == u.p.left
                                                                   u = u.parent;
        u.p.left = v
                                                                   d++;
     else u.p.right = v
                                                         return d;
     if v != NIL
         v.p = u.p
 Non recursive functions:
                                                    Traverse
 1. Size
                                                2. Search
                                                Successor and Predessor
 2. Height
    Minimum and Maximum in BST
                                                   Delete item in tree using transplant
```

### Fill in the blanks

- A perfect binary tree of height h has nodes
- A perfect binary tree with n nodes has height
- A perfect binary tree with height h has leaf nodes
- The height of a complete binary tree with n nodes is
- A perfect n-ary tree of height h has nodes

$$n = \sum_{k=0}^{h} N^{k} = \frac{N^{h+1} - 1}{N - 1}$$

A perfect n-ary tree with n nodes has height

$$h = \log_N \left( n(N-1) + 1 \right) - 1$$

# Background

Run times depend on the height of the trees

As was noted in the previous section:

- The best case height is  $\Theta(\ln(n))$
- The worst case height is  $\Theta(n)$

The average height of a randomly generated binary search tree is actually  $\Theta(\ln(n))$ 

# Requirement for Balance

We want to ensure that the run times never fall into  $O(\ln(n))$ 

### Requirement:

• We must maintain a height which is  $\Theta(\ln(n))$ 

To do this, we will define an idea of balance

# Examples

For a perfect tree, all nodes have the same number of descendants on each side



Perfect binary trees are balanced while linked lists are not

# Examples

This binary tree would also probably not be considered to be "balanced" at the root node



# Examples

How about this example?

The root seems balanced, but what about the left sub-tree?



### Definition for Balance

We must develop a quantitative definition of *balance* which can be applied

### Balanced may be defined by:

- Height balancing: comparing the heights of the two sub trees
- Null-path-length balancing: comparing the null-path-length of each of the two sub-trees (the length to the closest null sub-tree/empty node)
- Weight balancing: comparing the number of null sub-trees in each of the two sub trees

It is mathematically proved that if a tree satisfies the definition of balance, its height is  $\Theta(\ln(n))$ 

# Height balancing trees

**AVL** trees





(a)

(b)

### Red-Black Trees

### Red-black trees maintain balance by

All nodes are colored red or black (0 or 1)

### Requirements:

The root must be black

 All children of a red node must be black

 Any path from the root to an empty node must have the same number of black nodes



# 4.9 Veight-Balanced Trees

The ratios of the empty nodes at the root node are 5/10 and 5/10



# 4.9 Veight-Balanced Trees

The ratios of the empty nodes at this node are 2/5 and 3/5



# 4.9 Veight-Balanced Trees

The ratios of the empty nodes at this node, however, are 4/5 and 1/5



# **AVL** Trees

### **AVL Trees**

- An AVL tree is a binary search tree with a balance condition.
- AVL is named for its inventors: Adel'son-Vel'skii and Landis
- AVL tree approximates the ideal tree (completely balanced tree).
- AVL Tree maintains a height close to the minimum.

#### **Definition:**

An AVL tree is a binary search tree such that for any node in the tree, the height of the left and right subtrees can differ by at most 1.

**Figure 19.21** 

Two binary search trees: (a) an AVL tree; (b) not an AVL tree (unbalanced nodes are darkened)



20

Figure 19.22 Minimum tree of height *H* 



- An AVL tree is a balanced binary tree
- To understand balance we need to understand the notion of Tree Height



• By default, nodes with no children have a height of 0.



But, we must also understand the concept of Sub-trees



Also empty sub-trees have a Height of -1



- Anyway, the AVL Balance Property is as follows...
- For ALL nodes, the Height of the Left and Right Sub-trees can only differ by 1.



$$|L.height - R.height| \le 1$$

- Wouldn't this be a better Balance property?
- For ALL nodes, the Height of the Left and Right Sub-trees must be equal!



 For ALL nodes, the Height of the Left and Right Sub-trees must be equal!



- For ALL nodes, the Height of the Left and Right Sub-trees must be equal!
- Strict Balance Conditions are too restrictive.

















No



• Did this fix the problem?













# Correcting Imbalance

- 1. After every insertion
- Check to see if an imbalance was created.
  - All you have to do backtrack up the tree
- 3. If you find an imbalance, correct it.
- 4. As long as the original tree is an AVL tree, there are only 4 types of imbalances that can occur.

### Properties

- The depth of a typical node in an AVL tree is very close to the optimal log N.
- Consequently, all searching operations in an AVL tree have logarithmic worst-case bounds.
- An update (insert or remove) in an AVL tree could destroy the balance. It must then be rebalanced before the operation can be considered complete.
- After an insertion, only nodes that are on the path from the insertion point to the root can have their balances altered.

# Rebalancing

- Suppose the node to be rebalanced is X. There are 4 cases that we might have to fix (two are the mirror images of the other two):
  - 1. An insertion in the left subtree of the left child of X,
  - 2. An insertion in the right subtree of the left child of X,
  - 3. An insertion in the left subtree of the right child of X, or
  - 4. An insertion in the right subtree of the right child of X.
- Balance is restored by tree rotations.

# Balancing Operations: Rotations

- Case 1 and case 4 are symmetric and requires the same operation for balance.
  - Cases 1,4 are handled by single rotation.
- Case 2 and case 3 are symmetric and requires the same operation for balance.
  - Cases 2,3 are handled by double rotation.

# Single Rotation

- A single rotation switches the roles of the parent and child while maintaining the search order.
- Single rotation handles the outside cases (i.e. 1 and 4).
- We rotate between a node and its child.
  - Child becomes parent. Parent becomes right child in case 1, left child in case 4.
- The result is a binary search tree that satisfies the AVL property.

Figure 19.23
Single rotation to fix case 1: Rotate right



49

Figure 19.26
Symmetric single rotation to fix case 4: Rotate left



(a) After rotation

(b) Before rotation

**Figure 19.25** 

Single rotation fixes an AVL tree after insertion of 1.



(a) Before rotation

(b) After rotation

### Example

- Start with an empty AVL tree and insert the items 3,2,1, and then 4 through 7 in sequential order.
- Answer:



# Analysis

- One rotation suffices to fix cases 1 and 4.
- Single rotation preserves the original height:
  - The new height of the entire subtree is exactly the same as the height of the original subtree before the insertion.
- Therefore it is enough to do rotation only at the first node, where imbalance exists, on the path from inserted node to root.
- Thus the rotation takes O(1) time.
- Hence insertion is O(logN)

#### **Double Rotation**

- Single rotation does not fix the inside cases (2 and 3).
- These cases require a *double* rotation, involving three nodes and four subtrees.

Figure 19.28
Single rotation does not fix case 2.



55

#### Left-right double rotation to fix case 2

Lift this up: first rotate left between  $(k_1, k_2)$ , then rotate right between  $(k_3, k_2)$ 



(a) Before rotation

(b) After rotation

### Left-Right Double Rotation

- A left-right double rotation is equivalent to a sequence of two single rotations:
  - 1<sup>st</sup> rotation on the original tree:
     a *left* rotation between X's left-child and grandchild
  - 2<sup>nd</sup> rotation on the new tree:
     a right rotation between X and its new left child.

**Figure 19.30** 

Double rotation fixes AVL tree after the insertion of 5.



(a) Before rotation

(b) After rotation

#### Right-Left double rotation to fix case 3.



(a) Before rotation

(b) After rotation

# Example

Insert 16, 15, 14, 13, 12, 11, 10, and 8, and 9 to the previous tree obtained in the previous single rotation example.

