Національний технічний університет України «Київський політехнічний інститут»

І. В. Алєксєєва, В. О. Гайдей, О. О. Диховичний, Л. Б. Федорова

ЛІНІЙНА АЛГЕБРА ТА АНАЛІТИЧНА ГЕОМЕТРІЯ ПРАКТИКУМ

Лінійна алгебра та аналітична геометрія. Практикум. (І курс І семестр) / Уклад.: І. В. Алєксєєва, В. О. Гайдей, О. О. Диховичний, Л. Б. Федорова. — К: НТУУ «КПІ», 2013. — 180 с.

Гриф надано Методичною радою HTYУ «КПІ» (протокол № 5 від 22.01.2009)

Навчальне видання Лінійна алгебра та аналітична геометрія Практикум

для студентів І курсу технічних спеціальностей

Укладачі: Алексеева Ірина Віталіївна, канд. фіз-мат. наук, доц.

Гайдей Віктор Олександрович, канд. фіз-мат. наук, доц.

Диховичний Олександр Олександрович, канд. фіз-мат. наук, доц.

Федорова Лідія Борисівна, канд. фіз-мат. наук, доц.

Відповідальний

редактор

О. І. Клесов, д-р фіз.-мат. наук, професор

Рецензенти: С. В. Ефіменко, канд. фіз.-мат. наук, доц.

В. Г. Шпортюк, канд. фіз.-мат. наук, доц.

Зміст

Передмова	6
Розділ 1. ЛІНІЙНА АЛГЕБРА	7
1.1. Матриці	7
1.2. Лінійні дії над стовпцями (рядками)	8
1.3. Лінійні дії над матрицями	9
1.4. Множення матриць	10
1.5. Транспонування матриць	11
1.6. Індуктивне означення визначника	12
1.7. Обчислення визначника	12
1.8. Властивості визначника	14
1.9. Обчислення визначника методом Гауса	15
(за допомогою елементарних перетворень)	15
1.10. Обернення матриць	16
1.11. Лінійна залежність і незалежність стовпців матриці	17
1.12. Ранг матриці	18
1.13. Системи лінійних алгебричних рівнянь	20
1.14. Дослідження розв'язності СЛАР	21
1.15. Методи розв'язання СЛАР	22
1.16. Однорідні і неоднорідні СЛАР	24
Розділ 2. ВЕКТОРНА АЛГЕБРА	25
2.1. Вектори	25
2.2. Дії над векторами	26
2.3. Лінійна залежність (незалежність) векторів	27
2.4. Базис	27
2.5. Координати вектора	28
2.6. Прямокутна декартова система координат	29
2.7. Проекція вектора на вісь	31
2.8. Скалярний добуток векторів	32
2.9. Ортонормований базис	33

4 Зміст

2.10. Застосування скалярного добутку	34
2.11. Орієнтація	34
2.12. Векторний добуток	35
2.13. Мішаний добуток	36
2.14. Застосування векторного і мішаного добутків	36
2.15. Комплексні числа	38
2.16. Полярна система координат	39
2.17. Дії над комплексними числами	
у тригонометричній і показниковій формах	40
Розділ 3. АНАЛІТИЧНА ГЕОМЕТРІЯ	41
3.1. Рівняння ліній і поверхонь	41
3.2. Перетворення систем координат	42
3.3. Площина	43
3.4. Пряма у просторі	44
3.5. Пряма на площині	45
3.6. Взаємне розташування прямих на площині	46
3.7. Взаємне розташування площин	47
3.8. Взаємне розташування прямих у просторі	48
3.9. Взаємне розташування прямої і площини	48
3.10. Кути між лінійними об'єктами	49
3.11. Віддалі між лінійними об'єктами	49
3.12. Еліпс	51
3.13. Гіпербола	52
3.14. Парабола	53
3.15. Еліпс, парабола, гіпербола при перетвореннях систем координа	ат 54
3.16. Лінії 2-го порядку. Інваріанти	55
3.17. Власні числа і власні вектори матриці	55
3.18. Класифікації ліній 2-го порядку	
3.19. Поверхні 2-го порядку	57
3.20. Деякі визначні криві	58

Модуль 1. ЛІНІЙНА АЛГЕБРА	59
1. Матриці	59
2. Визначники	72
3. Ранг матриці	83
4. Системи лінійних алгебричних рівнянь	88
Модуль 2. ВЕКТОРНА АЛГЕБРА	101
5. Вектори	101
6. Скалярне множення векторів.	111
7. Векторне множення векторів	118
8. Комплексні числа	126
Модуль 3. АНАЛІТИЧНА ГЕОМЕТРІЯ	137
9. Геометрія прямої і площини	137
10. Задачі на прямі й площини	146
11. Пряма на площині	165
12. Криві 2-го порядку	170
13. Поверхні 2-го порядку	175
Список використаної і рекомендованої літератури	179

Передмова

Практикум з вищої математики «Лінійна алгебра та аналітична геометрія» ϵ складовою **навчального комплекту** з вищої математики, який містить: конспект лекцій, практикум, збірник індивідуальних домашніх завдань, збірник контрольних та тестових завдань.

Практикум складено на основі багаторічного досвіду викладання математики в НТУУ «КПІ», його зміст відповідає навчальним програмам з вищої математики всіх технічних спеціальностей НТУУ «КПІ» денної та заочної форм навчання і містить такі розділи дисципліни «Вища математика»:

- матриці та визначники;
- системи лінійних алгебричних рівнянь;
- векторна алгебра;
- комплексні числа;
- геометрія прямої і площини;
- криві 2-го порядку;
- поверхні 2-го порядку.

Практикум містить розгорнутий довідковий матеріал, якого потребує свідоме розв'язування задач, широкий спектр розв'язаних навчальних задач, які достатньо розкривають відповідні теоретичні питання, сприяють розвиткові практичних навичок і є зразком належного оформлення розв'язань задач для самостійної роботи, задачі для самостійної роботи в аудиторії та домашнього завдання з відповідями.

Метою практикуму ϵ :

- допомогти в опануванні студентами основ математичного апарату лінійної алгебри та аналітичної геометрії;
- розвинути логічне та аналітичне мислення;
- виробити навички вибору ефективного методу розв'язання задач.

Самостійне розв'язання задач, яке формує основу математичного мислення, передбачає активну роботу з теоретичним матеріалом, використанням конспекту лекцій, посібників та підручників. Деякі з них подано у списку рекомендованої літератури.

У практичній частині використано такі позначення:

- [A.B.C] посилання на клітинку C, у якій уміщено теоретичний факт або формулу, таблиці A.B. з теми A;
- $\textcircled{1}, \textcircled{2}, \textcircled{3}, \dots$ посилання у навчальній задачі на коментар, який уміщено після її розв'язання.

Розділ 1. ЛІНІЙНА АЛГЕБРА

1.1. Матриці

О Матриця. Матрицею A розміром $m \times n$ називають прямокутну таблицю дійсних чисел (елементів матриці)

$$a_{ij}, i = \overline{1, m}, j = \overline{1, n},$$

розташованих у m рядках та n стовпцях і позначають*

$$A_{m\times n}=(a_{ij})_{m\times n}.$$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots / a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$
 j -й стовпець \vec{a}_j

2 Матриця-рядок

$$\overleftarrow{a} = \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

3 *Матриця-стовпець*

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}$$

4 Нульова матриця

$$O_{m \times n} = egin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} m$$
 рядків n стовпців

5 Квадратна матриця n-го порядку

$$A_n = A_{n\times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 побічна діагональ головна діагональ

6 Нижня трикутна матриця

$$\begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ a_{12} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

7 Верхня трикутна матриця

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

^{*} Елемент a_{ij} матриці A розташований в i-му рядку і j-му стовпці.

1.2. Лінійні дії над стовпцями (рядками)

Ф <i>Рівність стовпців.</i> Два стовпці \vec{x} та \vec{y} називають <i>рівними</i> , якщо вони мають: 1) однакову висоту; 2) рівні відповідні елементи.	$ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_k \end{pmatrix} \Leftrightarrow \begin{cases} m = k, \\ x_i = y_i, i = \overline{1, m} \end{cases} $
2 Додавання (віднімання) стовпців. Сумою (різницею) двох стовпців \vec{x} та \vec{y} заввишки m називають стовпець $\vec{x} \pm \vec{y}$ заввишки m , кожен елемент якого дорівнює сумі (різниці) відповідних елементів стовпців \vec{x} та \vec{y} .	$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} \pm \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} x_1 \pm y_1 \\ x_2 \pm y_2 \\ \vdots \\ x_m \pm y_m \end{pmatrix}$
3 Множення стовиця на число. Добутком стовиця \vec{x} заввишки m на дійсне число α називають стовпець $\alpha \vec{x}$ заввишки m , кожен елемент якого дорівнює відповідному елементу стовиця \vec{x} , помноженому на це число.	$\alpha \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_m \end{pmatrix}$

1.3. Лінійні дії над матрицями

О *Рівність матриць.* Дві матриці A та B називають *рівними*, якщо вони:

- 1) однакового розміру;
- 2) мають рівні відповідні елементи.

2 Додавання (віднімання) матриць.

Сумою матриць A та B однакового розміру називають матрицю A+B того самого розміру, елементи якої дорівнюють сумі відповідних елементів матриць A та B.

Різницею матриць A та B однакового розміру називають матрицю A-B того самого розміру, елементи якої дорівнюють різниці відповідних елементів матриць A та B.

$$\left(a_{ij}\right)_{m\times n} \pm \left(b_{ij}\right)_{m\times n} = \left(a_{ij} \pm b_{ij}\right)_{m\times n}$$

$$\begin{split} A_{m\times n} &= B_{k\times l} \Leftrightarrow \\ \Leftrightarrow \begin{cases} m = k, n = l; \\ a_{ij} = b_{ij}, i = \overline{1, m}, j = \overline{1, n} \end{cases} \end{split}$$

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \pm$$

$$\pm \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \cdots & a_{1n} \pm b_{1n} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \cdots & a_{2n} \pm b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} \pm b_{m1} & a_{m2} \pm b_{m2} & \cdots & a_{mn} \pm b_{mn} \end{pmatrix}$$

3 Множення матриці на число.

Добутком матриці A на число α називають матрицю αA , елементи якої дорівнюють добутку елементів матриці A на число α .

$$\alpha \left(a_{ij} \right)_{m \times n} = \left(\alpha a_{ij} \right)_{m \times n}$$

$$\alpha \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \\ = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn} \end{pmatrix}$$

4 Властивості додавання матриць.

$$\bigcirc A + (B + C) = (A + B) + C;$$

$$A + (-A) = O_{m \times n}$$

© Властивості множення матриці на число.

$$\bigcirc 1 \cdot A = A;$$

$$(\alpha + \beta) \cdot A = \alpha \cdot A + \beta \cdot A;$$

1.4. Множення матриць

О Узгоджені матриці. Матрицю A називають узгодженою з матрицею B, якщо кількість стовпців матриці A дорівнює кількості рядків матриці B («довжина» матриці A дорівнює «висоті» матриці B).

2 Добуток рядка на стовпець.

Добутком рядка $\dot{x}=(x_j)_n$ завдовжки n на стовпець $\vec{y}=(y_i)_n$ заввишки n називають число $\dot{x}\cdot \dot{y}$, яке дорівнює сумі добутків елементів рядка на відповідні елементи стовпця.

§ Множення матриць. Добутком матриці $A_{m \times l}$ на матрицю $B_{l \times n}$ називають матрицю C = AB розміром $m \times n$, кожний елемент c_{ij} якої дорівнює добуткові i-го рядка матриці A на j-й стовпець матриці B.

$$(\vec{a}_i)_m \cdot (\vec{b}_j)_n = (c_{ij})_{m \times n} = (\vec{a}_i \cdot \vec{b}_j)_{m \times n}$$

Матриці множать за правилом «рядок на стовпець».

$$c_{ij} = \sum_{k=1}^{l} a_{ik} b_{kj}, i = \overline{1, m}, j = \overline{1, n}$$

4 Схема Фалька множення матриць

$\begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} =$ $= x_1 y_1 + x_2 y_2 + \dots + x_n y_n$

5 Особливості множення матриць.

- ① множення матриць не комутативне $AB \neq BA$;
- ② добуток ненульових матриць може бути нульовою матрицею.

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix};$$

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix};$$

AB

- $\ \, \ \, \boldsymbol{\oplus} \,\, \boldsymbol{A}_{\!\!\! m \times n} \cdot \boldsymbol{E}_{n} \, = \, \boldsymbol{E}_{\!\!\! m} \cdot \boldsymbol{A}_{\!\!\! m \times n} \, = \, \boldsymbol{A};$
- $O_{l\times m}\cdot A_{m\times n}\,=\,O_{l\times n}$

7 Переставні матриці. Якщо матриці A та B справджують співвідношення AB = BA, то їх називають переставними.

Одинична матриця E_n та нульова матриця O_n порядку n переставні з будь-якою квадратною матрицею того ж порядку.

$$② O_n A = A O_n = O_n$$

3 *Натуральний степінь* k квадратної матриці A розуміють як

$$A^k = \underbrace{AA...A}_{k \text{ pasib}}; \ A^0_{n \times n} \stackrel{\text{def}}{=} E_n.$$

9 Матричний многочлен. Якщо

$$f(x) = a_k x^k + ... + a_1 x + a_0$$
, то

многочленом f(A) від матриці A називають матрицю

$$f(A) = a_k A^k + \ldots + a_1 A + a_0 E_n.$$

1.5. Транспонування матриць

1 *Транспонування матриці.* Заміну рядків матриці на її стовпці, а стовпців — на рядки, називають *транспонуванням* матриці.

Матрицю, розміром $n \times m$, яку одержують з матриці A розміром $m \times n$ транспонуванням стовпців (рядків), називають *транспонованою матрицею* до A і позначають A^{T} .

$$a_{ij}^{\mathrm{T}} = a_{ji}, i = \overline{1, m}, j = \overline{1, n}$$

 $\begin{pmatrix} | & | & | \\ \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \\ | & | & | \end{pmatrix}^T =$ $= \begin{pmatrix} - & (\vec{a}_1)^T & - \\ - & (\vec{a}_2)^T & - \\ & \vdots & \\ - & (\vec{a}_n)^T & - \end{pmatrix}$

2 Властивості транспонування матриць.

$$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}};$$

$$\Im (\alpha A)^{\mathrm{T}} = \alpha A^{\mathrm{T}};$$

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$$

© Симетрична і кососиметрична матриця. Матрицю *A* називають симетричною, якщо

$$A^{\mathrm{T}} = A$$

і кососиметричною, якщо

$$A^{\mathrm{T}} = -A.$$

Добуток будь-якої матриці на транспоновану до неї матрицю ϵ симетричною матрицею.

 $^{^*}$ Матрицю A можна помножити саму на себе тоді й лише тоді, коли вона квадратна.

1.6. Індуктивне означення визначника

О Визначник матриці. Визначником (детермінантом) квадратної матриці A називають число $|A|=\det A,$ яке обчислюють за правилом*

① При
$$n = 1$$
:

елемента a_{ij} .

$$|a_{11}| = a_{11}.$$

2 При n > 1:

$$\det A = \sum_{k=1}^{n} (-1)^{1+k} a_{1k} M_{1k},$$

де M_{1k} — визначник матриці порядку (n-1), яку одержано з матриці Aвикреслюванням 1-го рядка та k -го **стовпця****.

2 Доповняльний мінор. Визначник матриці, одержаної викреслюванням з матриці A i-го рядка та j-го стовпця називають доповняльним мінором $^{M}{}_{ij}$

З Алгебричне доповнення. Число

$$A_{ij} = (-1)^{i+j} M_{ij}$$

називають алгебричним доповненням елемента a_{ij} .

 $oldsymbol{4}$ Визначник матриці порядку n ϵ числом, що дорівню ϵ сумі добутків з nелементів матриці, узятих по одному з кожного рядка та кожного стовпця матриці з певним знаком.

1.7. Обчислення визначника

• Обчислення визначника 2-го порядку ① Доповняльні мінори елементів 1-го рядка ② **Ф**ормула обчислення a_{11} $\left| \begin{array}{c} a_{12} \\ - \end{array} \right| = a_{11}a_{22} - a_{12}a_{21}$ a_{21} ③ Схема обчислення = ad - bc

^{*} Визначник для неквадратних матриць не означують.

^{**} Визначник матриці порядку n означують через визначники матриць порядку (n-1).

2 Обчислення визначника 3-го порядку

ОДоповняльні мінори елементів 1-го рядка

$$M_{11} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}; M_{12} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix};$$

$$M_{13} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

② Формула обчислення

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

③ Схема Сарюса

$$= (aei + bfg + cdh) - (ceg + afh + bdi)$$

4 Схема трикутників

 $oldsymbol{3}$ Обчислення визначника порядку n

 \odot Розклад визначника за i -м рядком $(1 \le i \le n)$

$$\det A = \sum_{k=1}^{n} (-1)^{i+k} a_{ik} M_{ik} = \sum_{k=1}^{n} a_{ik} A_{ik}$$

$$\det A = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} M_{kj} = \sum_{k=1}^{n} a_{kj} A_{kj}$$

^{*} Простих схем для визначників порядку 4 і вище не існує.

1.8. Властивості визначника

О <i>Рівноправність рядків та стовпців</i> . Транспонування матриці не змінює її визначника.	$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{vmatrix};$ $\det A = \det A^{T}$
2 Лінійність. Якщо стовпець (рядок) визначника є сумою двох стовпців (рядків), то визначник дорівнює сумі двох відповідних визначників.	$\begin{vmatrix} a_{11} & a_{12} + b_{12} \\ a_{21} & a_{22} + b_{22} \end{vmatrix} = $ $= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & b_{12} \\ a_{21} & b_{22} \end{vmatrix}$
3 <i>Однорідність</i> . Спільний множник стовпця (рядка) можна виносити за знак визначника.	$\begin{vmatrix} a_{11} & ka_{12} \\ a_{21} & ka_{22} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix};$ $\det(kA_n) = k^n \det A$
4 <i>Антисиметричність</i> . Якщо переставити два стовпці (рядки) визначника, то він змінить знак.	$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = - \begin{vmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{vmatrix}$
9 Умови рівності нулеві визначника. Визначник матриці дорівнює нулеві, якщо матриця містить пропорційні стовпці (рядки)*:	$\begin{vmatrix} a_{11} & a_{12} \\ 0 & 0 \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{vmatrix} = $ $= \begin{vmatrix} a_{11} & a_{12} \\ ka_{11} & ka_{12} \end{vmatrix} = 0$
6 Теорема анулювання. Сума добутків елементів стовпця (рядка) визначника на алгебричні доповнення відповідних елементів іншого стовпця (рядка) дорівнює нулеві.	$a_{11}A_{12} + a_{21}A_{22} = 0^{**}$
⊘ Визначник не зміниться, якщо до будь-якого стовпця (рядка) додати інший стовпець (рядок), помножений на деяке число k.	$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} + ka_{11} & a_{22} + ka_{12} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$
8 Визначник добутку двох квадратних матриць дорівнює добуткові визначників цих матриць.	AB = A B

 $^{^*}$ Визначник матриці дорівнює нулеві, якщо матриця містить: 1) нульовий стовпець (рядок); 2) два рівні стовпці (рядки). ** $a_{11}A_{11}+a_{21}A_{21}=\det A$

1.9. Обчислення визначника методом Ґауса (за допомогою елементарних перетворень)

1 Елементарні перетворення матриці. Елементарними перетвореннями матриці називають:

- 1) переставляння стовпців (рядків);
- 2) множення стовпця (рядка) на число, відмінне від нуля;
- 3) додавання до стовпця (рядка) іншого стовпця (рядка), помноженого на деяке число.

2 Дія елементарних перетворень матриці на її визначник:

- 1) переставлення стовпців (рядків) змінює знак визначника;
- 2) помноження стовпця (рядка) на число відмінне від нуля, помножує визначник на це число;
- 3) додавання до стовпця (рядка) іншого стовпця (рядка), помноженого на деяке число не змінює визначника.
- **3** Матриці A та B називають *еквівалентними*, якщо одна з них одержана з іншої скінченною кількістю елементарних перетворень, і позначають $A \sim B$.
- **4** Визначник верхньої (нижньої) трикутної матриці дорівнює добуткові діагональних елементів.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22}...a_{nn}$$

Визначник одиничної матриці дорівнює 1.

$$|E_n| = 1$$

S *Крок методу Гауса.* Мета методу — за допомогою елементарних перетворень звести визначник до трикутного вигляду.

$$\det A = \Delta_n = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \begin{vmatrix} \overline{a}_s \leftarrow \overline{a}_s + \left(-\frac{a_{s1}}{a_{11}}\right) \overline{a}_1, s = \overline{2, n} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & b_{n2} & \dots & b_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots \\ 0 & \Delta_{n-1} \end{vmatrix}$$

Крок методу повторюється для визначника Δ_{n-1} і так далі.

1.10. Обернення матриць

Ф Обернена матриця. Оберненою матрицею до квадратної матриці A порядку n називають матрицю A^{-1} таку, що

$$A^{-1}A = AA^{-1} = E_n.$$

© Критерій оборотності матриці. Квадратна матриця є оборотною тоді й лише тоді, коли вона невироджена $(\det A \neq 0)$.

$$A$$
 — оборотна $\Leftrightarrow \det A \neq 0$

3 Властивості обернення матриць

- 1 Якщо обернена матриця існує, то вона єдина.
- ② Матриці A та A^{-1} взаємообернені й переставні.

- $\mathfrak{O}(A^{-1})^{\mathrm{T}} = (A^{\mathrm{T}})^{-1}$

4 Алгоритм методу приєднаної матриці.

- \bigcirc Обчислюють визначник матриці A.
- $\ \ \,$ Якщо $\det A = 0$, то оберненої до A матриці не існує.

Якщо $\det A \neq 0$, то будують приєднану до A матрицю

$$A^* = \left(A_{ij}\right)^{\mathrm{T}}.$$

 $\ \ \,$ Обернену до $\ \, A \$ матрицю знаходять за формулою

$$A^{-1} = \frac{A^*}{\det A} =$$

$$= \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

порядку
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \det A \neq 0$$

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

6 *Метод Гауса* — *Йордана* (елементарних перетворень)

 $(A\mid E_n)$ — елементарні перетворення рядків розширеної матриці $(E_n\mid A^{-1})$

7 Розв'язання матричного рівняння методом оберненої матриці

(для невироджених матриць <math>A)

$$\begin{split} A_{n\times n}X_{n\times l} &= B_{n\times l} \Rightarrow X = A^{-1}B; \\ X_{m\times n}A_{n\times n} &= B_{m\times n} \Rightarrow X = BA^{-1} \end{split}$$

1.11. Лінійна залежність і незалежність стовпців матриці

• Лінійна комбінація стовпців.

 $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ з коефіцієнтами $\alpha_1, \alpha_2, ..., \alpha_n$ називають стовпець

$$\vec{y} = \alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \ldots + \alpha_n \vec{a}_n.$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \alpha_1 \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} + \ldots + \alpha_n \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}$$

2 Лінійна незалежність системи стовпців. Систему стовпців

 $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ однакової висоти називають *лінійно незалежною*, якщо з рівності

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n = \vec{0}$$

випливає, що

$$\alpha_1=\alpha_2=\ldots=\alpha_n=0.$$

3 Лінійна залежність системи стовпців. Систему стовпців

 $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ однакової висоти називають *лінійно залежною*, якщо існують такі числа $\alpha_1, \alpha_2, ..., \alpha_n$, не рівні одночасно нулеві, що

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \dots + \alpha_n \vec{a}_n = \vec{0}.$$

- **Ф** *Критерій невиродженості квадратної матриці*. Квадратна матриця невироджена тоді й лише тоді, коли її стовпці лінійно незалежні.
- **Э** *Критерій виродженості квадратної матриці.* Квадратна матриця вироджена тоді й лише тоді, коли її стовпці лінійно залежні.

6 Критерії лінійної залежності стовиців

- \bigcirc Система з n>1 стовпців лінійно залежна тоді й лише тоді, коли хоча б один із стовпців є лінійною комбінацією решти стовпців.
- $$\begin{split} \{\vec{x}_1,\vec{x}_2,...,\vec{x}_n,\vec{y}\} &\longrightarrow \text{лінійно залежна} \Leftrightarrow \\ &\Leftrightarrow \vec{y} = \alpha_1\vec{x}_1 + \alpha_2\vec{x}_2 + ... + \alpha_n\vec{x}_n \end{split}$$
- $\ \ \,$ Стовпці $\vec{a}_1,...,\vec{a}_n$ заввишки n лінійно залежні тоді й лише тоді, коли визначник матриці, утвореної стовпцями $\vec{a}_1,...,\vec{a}_n$, дорівнює нулеві.
- $ec{a}_1,...,ec{a}_n$ лінійна залежні \Leftrightarrow $\det A=0$

 $m{\mathfrak{O}}$ Стовпці $\vec{e_i}, i=\overline{1,n},$ одиничної матриці E_n лінійно незалежні.

Будь-який стовпець \vec{a} заввишки n ϵ лінійною комбінацією одиничних стовпців, коефіцієнтами якої ϵ елементи стовпця \vec{a} .

1.12. Ранг матриці

- **О** *Підматриця*. *Підматрицею* порядку k матриці A називають матрицю, утворену з елементів матриці A, які розташовані на перетині вибраних k рядків та k стовпців.
- **2** Визначник підматриці порядку k називають *мінором* порядку k.
- **§** *Ранг матриці. Рангом* матриці *А* називають найбільший з порядків її невироджених підматриць і позначають

 $\operatorname{rang} A$.

Ранг нульової матриці вважають рівним нулеві.

Ф *Базисна підматриця (мінор) матриці.* Невироджену підматрицю матриці, порядок якої дорівнює рангу матриці, називають *базисною*, а її визначник — *базисним мінором*.

Рядки і стовпці матриці A, які містять елементи базисного мінору, називають 6азисними.

- **5** Теорема про базисний мінор.
- Ф Базисні стовпці матриці А лінійно незалежні.
- \bigcirc Кожний стовпець матриці A може бути поданий як лінійна комбінація базисних стовпців.
- **6** *Східчаста матриця*. Ненульовий елемент рядка з найменшим номером називають *лідером рядка*.*

Матрицю називають *cxiдчастою*, якщо вона справджує умови:

- 1) нульові рядки матриці (якщо вони ϵ) розташовані нижче ненульових;
- 2) номери стовпців, у яких стоять лідери рядків, зростають.

- $\begin{pmatrix}
 0 & \blacksquare & * & * & * & * & * \\
 0 & 0 & 0 & \blacksquare & * & * & * \\
 0 & 0 & 0 & 0 & \blacksquare & * & * \\
 0 & 0 & 0 & 0 & 0 & 0 & 0
 \end{pmatrix}$
- — лідери;
- * будь-які елементи

Будь-яку матрицю елементарними перетвореннями можна звести до східчастого вигляду.

7 Зведена східчаста матриця.

Східчасту матрицю називають зведеною (редукованою), якщо:

- 1) всі лідери рядків дорівнюють 1;
- 2) над лідерами стоять 0.

$$\begin{pmatrix}
0 & 1 & * & 0 & 0 & * & * \\
0 & 0 & 0 & 1 & 0 & * & * \\
0 & 0 & 0 & 0 & 1 & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

 $^{^*}$ Всі елементи, які розташовані вліво і вниз від лідера рядка східчастої матриці нульові.

🛭 Властивості рангу матриці.

- ① Ранг матриці дорівнює найбільшій кількості лінійно незалежних рядків (стовпців) матриці.
- ② Ранг східчастої матриці дорівнює кількості ненульових рядків.
- ③ Транспонування матриці, елементарні перетворення матриці та видалення нульових рядків (стовпців) матриці не міняють її рангу.

- Ф Ранги еквівалентних матриць рівні.

9 Алгоритм зведення матриці до східчастого вигляду (прямий хід методу Ґауса).

- ① Якщо матриця нульова, то зупиняються матриця вже має східчастий вигляд.
- ② Знаходять перший зліва стовпець з лідером; переставляючи рядки, переміщують рядок, який містить цей лідер нагору.
- ③ Додаючи до всіх рядків, які розташовані нижче, цей рядок, помножений на відповідні коефіцієнти, дістають під лідером нулі.
- ④ Повторюють кроки 1−3 для решти рядків.

Процес припиняється якщо рядки вичерпано або решта рядків нульові.

Ф Алгоритм перетворення матриці до зведеного східчастого вигляду (метод Ґауса — Йордана).

- ① Зводять матрицю до східчастого вигляду (прямий хід методу Ґауса).
- ② Відкидають нульові рядки (це вже не є елементарним перетворенням).
- ③ Ділячи останній рядок на його лідера, одержують 1.
- ④ Додаючи до решти рядків новий останній рядок, помножений на відповідні коефіцієнти, дістають нулі над 1.
- © Повторюють кроки 1−4 для решти рядків.

Процес припиняється, якщо рядки вичерпано.

13 находження рангу матриці методом Гауса.

- ① Матрицю за допомогою елементарних перетворень зводять до східчастого вигляду.
- ② Кількість ненульових рядків у східчастому вигляді матриці дорівнює її рангові.

1.13. Системи лінійних алгебричних рівнянь

$m{\Phi}$ Система m лінійних алгебричних рівнянь (СЛАР) з n невідомими $x_1, x_2,, x_n$	$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_1, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$
Основна матриця системи*	$A_{m\times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$
Стовпець <i>невідомих</i>	$\vec{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
Стовпець <i>вільних членів</i>	$ec{b}^{'}=egin{pmatrix} b_1\ dots\ b_m \end{pmatrix}$
Розширена матриця системи**	$\tilde{A} = \left(A \mid \vec{b} \right) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix}$
2 Матричний вигляд СЛАР	$ \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} $
3 Векторний вигляд СЛАР	$x_1 \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} + \ldots + x_n \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$

 $^{^*}$ Перший індекс коефіцієнта a_{ij} при змінній вказує на номер рівняння, а другий — на номер невідомої, при якій стоїть цей коефіцієнт.

^{**} Розширена матриця системи повністю задає СЛАР.

1.14. Дослідження розв'язності СЛАР

Ф *Розв'язок СЛАР. Розв'язком СЛАР* називають набір n значень невідомих $x_1=c_1,...,x_n=c_n$, підставлення яких у всі рівняння системи перетворює їх на тотожності. Розв'язок системи записують як стовпець $\vec{c}=(c_j)_n$.

Будь-який розв'язок системи називають її *частинним розв'язком*. Множину всіх частинних розв'язків називають *загальним розв'язком* системи.

2 *Характеристики СЛАР.* СЛАР називають *сумісною* (*розв'язною*), якщо вона має хоча б один розв'язок, і *несумісною* (*нерозв'язною*), якщо вона не має розв'язків.

Сумісну систему називають визначеною, якщо вона має єдиний розв'язок, і невизначеною, якщо вона має більше як один розв'язок.

Дві системи називають *рівносильними*, якщо кожний розв'язок першої системи є розв'язком другої, і навпаки. Усі несумісні системи вважають рівносильними.

3 *Теорема Кронекера* — *Капеллі*. СЛАР *сумісна* тоді й лише тоді, коли ранг основної матриці системи дорівнює рангові розширеної матриці системи.

СЛАР сумісна $\Leftrightarrow \operatorname{rang} A = \operatorname{rang} \tilde{A}$

- ① Якщо ранг розширеної матриці більше за ранг основної матриці системи, то система не має *жодного* розв'язку.
- ② Якщо ранг основної матриці системи дорівнює рангові розширеної матриці і дорівнює кількості невідомих, то система має *єдиний* розв'язок.
- ③ Якщо ранг основної матриці системи дорівнює рангові розширеної матриці, але менший за кількість невідомих, то система має *безліч* розв'язків.

4 *Розв'язати систему* означає:

- 1) з'ясувати, чи ε система сумісною або несумісною;
- 2) якщо система сумісна, то знайти множину її розв'язків.

$oldsymbol{G}$ СЛАР з матрицею $n \times n$:

- 1) $\det A \neq 0 \Rightarrow$ система має єдиний розв'язок;
- 2) $\det A = 0 \Rightarrow$ система не має жодного р

система не має жодного розв'язку або має безліч розв'язків.

1.15. Методи розв'язання СЛАР

О <i>Матричний</i> метод	$A\vec{x} = \vec{b} \Rightarrow \vec{x} = A^{-1}\vec{b}$
(метод <i>оберненої матриці</i>) (для невироджених систем, $\det A \neq 0$)	
№ Метод <i>Крамера</i>(для невироджених систем)	$A\vec{x} = \vec{b} \Rightarrow x_j = \frac{\Delta_j}{\Delta}, j = \overline{1,n},$
$\Delta = \begin{vmatrix} \vec{a}_1 & \cdots & \vec{a}_j & \cdots & \vec{a}_n \end{vmatrix} \neq 0;$	$\Delta_j = \left \vec{a}_1 \right \cdots \left \vec{b} \right \cdots \left \vec{a}_n \right $ членів j -й стовпець матриці A
Матричний метод і метод Крамера засто	осовують лише до квадратних матриць.
3 Елементарними перетвореннями <i>СЛАР</i> називають: 1) переставляння рівнянь; 2) множення обох частин якого-небудь рівняння на число, відмінне від нуля; 3) додавання до рівняння іншого рівняння, помноженого на деяке число.	Елементарні перетворення СЛАР приводять до відповідних елементарних перетворень рядків матриці та розширеної матриці системи. СЛАР, одержані одна з одної елементарними перетвореннями, називають еквівалентними. Еквівалентні СЛАР рівносильні.
4 Алгоритм методу Гауса — Йордана	* (універсальний метод)
0.2	

① Записують розширену матрицю системи.	$ \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{pmatrix} $
② Зводять розширену матрицю до східчастого вигляду (прямий хід	$ \begin{bmatrix} \alpha_{1,k_1} & \dots & \dots \\ \hline 0 & \dots & 0 \end{bmatrix} \alpha_{2,k_2} & \dots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots & \vdots \\ \beta_2 & \vdots & \vdots & \vdots \\ \beta_3 & \vdots & \vdots & \vdots \\ \beta_4 & \vdots & \vdots & \vdots \\ \beta_5 & \vdots & \vdots \\ \beta_5 & \vdots & \vdots & \vdots \\ \beta_5 & \vdots & \vdots \\ \beta_5 & \vdots & \vdots \\ \beta_5 &$
методу Гауса).	
	$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $^{^*}$ Цей метод ще називають методом елементарних перетворень.

③ Досліджують систему на сумісність (теорема Кронекера — Капеллі).	Якщо хоча б один з вільних членів $\beta_i, i = \overline{r+1,m}, \text{ відмінний від нуля, то система несумісна.}$ Якщо ж $\beta_i = 0, i = \overline{r+1,m}, \text{ то система сумісна.}$
④ У разі сумісності, перетворюють східчасту матрицю до зведеного східчастого вигляду.	$ \begin{bmatrix} 1 & \dots & \dots & 0 & & & & 0 & & & \delta_1 \\ 0 & \dots & 0 & 1 & \dots & & & 0 & & & \delta_2 \\ \dots & \dots & \dots & \dots & \dots & \dots & \ddots & & & & \dots \\ 0 & \dots & 0 & 0 & \dots & 0 & & 1 & \dots & \dots & \delta_r \end{bmatrix}. $
⑤ Знаходять розв'язки одержаної систе	ми. Можливі 2 випадки:
1) кількість змінних дорівнює рангові матриці системи $(n=r);$	$\begin{cases} x_1 = \delta_1, \\ x_2 = \delta_2, \\ \dots \\ x_r = \delta_r \end{cases} \Leftrightarrow \vec{x} = \begin{pmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_r \end{pmatrix}$
2) кількість змінних n більше кількості рівнянь r $(n>r)$. Змінні, які відповідають лідерам рядків називають базисними * , а решту змінних — вільними. Надають вільним змінним довільних значень C_1, \dots, C_{n-r} і виражають через них базисні змінні. Нехай y_1, y_2, \dots, y_r — базисні змінні; $y_{r+1}, y_{r+2}, \dots, y_n$ — вільні змінні	$\begin{cases} y_1 = \delta_1 - \gamma_{1,r+1}C_1 - \dots - \gamma_{1,n}C_{n-r}, \\ y_2 = \delta_2 - \gamma_{2,r+1}C_1 - \dots - \gamma_{2,n}C_{n-r}, \\ \dots & \dots & \dots \\ y_r = \delta_r - \gamma_{r,r+1}C_1 - \dots - \gamma_{r,n}C_{n-r}, \\ y_{r+j} = C_j, j = \overline{1,n-r}. \\ \begin{cases} \delta_1 - \sum\limits_{j=1}^{n-r} \gamma_{1,r+j}C_j \\ \dots \\ \delta_r - \sum\limits_{j=1}^{n-r} \gamma_{r,r+j}C_j \\ \dots \\ C_1 \\ \dots \\ C_{n-r} \end{cases} \end{cases}$
© Розв'язання матричного рівняння методом Ґауса — Йордана (для невироджених матриць A)	C_{n-r} C_{n-r} $A_{n imes n} X_{n imes l} = B_{n imes l}$: $A_n imes n imes l$ $A_n imes n imes n imes l$ $A_n imes n imes n imes l$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n imes n imes n imes n$ $A_n imes n im$

 $(E_n \mid X)$

^{*} Кожне рівняння містить лише одну базисну змінну.

1.16. Однорідні і неоднорідні СЛАР

• Однорідні й неоднорідні СЛАР.

СЛАР називають *однорідною*, якщо вільні члени всіх рівнянь нульові, і *неоднорідною*, якщо хоч один з них відмінний від нуля.

Однорідна СЛАР завжди сумісна, бо в неї існує тривіальний розв'язок $\vec{x}=\vec{0}$. Будь-яка лінійна комбінація розв'язків однорідної СЛАР є розв'язком цієї системи.

2 Дослідження однорідної СЛАР.

Якщо ранг матриці $A_{m \times n}$ однорідної СЛАР дорівнює r, то система має n-r лінійно незалежних розв'язків $\vec{e}_1, \vec{e}_2, ..., \vec{e}_{n-r}$, які утворюють фундаментальну систему розв'язків (ΦCP).

Кожний розв'язок однорідної СЛАР лінійно виражається через сукупність розв'язків, які утворюють ФСР цієї системи.

$oldsymbol{3}$ Структура загального розв'язку однорідної СЛАР. Якщо $\{ ec{e}_1, ..., ec{e}_{n-r} \}$

— ФСР однорідної СЛАР, то загальний розв'язок системи ϵ лінійною комбінацією розв'язків $\vec{e}_1,...,\vec{e}_{n-r}$.

$$\begin{split} \vec{x}_{\text{заг. одн.}} &= \\ &= C_1 \vec{e}_1 + C_2 \vec{e}_2 + \ldots + C_{n-r} \vec{e}_{n-r} \end{split}$$

4 Структура загального розв'язку неоднорідної СЛАР. Загальний розв'язок неоднорідної СЛАР дорівнює сумі загального розв'язку відповідної однорідної СЛАР і деякого частинного розв'язку неоднорідної СЛАР.

$$\vec{x}_{ ext{заг. неодн.}} = \vec{x}_{ ext{заг. одн.}} + \vec{x}_{ ext{част. неодн.}}$$

5 Однорідна СЛАР із квадратною матрицею А

 \bigcirc $\det A \neq 0 \Rightarrow$ система має єдиний розв'язок $\vec{x} = \vec{0};$

 $extstyle \det A = 0 \Rightarrow$ система має безліч розв'язків

Однорідна СЛАР має ненульовий розв'язок тоді й лише тоді, коли $\det A = 0$.

^{*} Неоднорідній СЛАР $A\vec{x}=\vec{b}$ відповідає однорідна СЛАР $A\vec{x}=\vec{0}.$

Розділ 2. ВЕКТОРНА АЛГЕБРА

2.1. Вектори

• Геометричний вектор.

Геометричним вектором називають напрямлений відрізок. Першу точку напрямленого відрізка називають початком вектора, а другу — кінцем вектора. Довжиною вектора $\overline{a} = \overline{AB}$ називають довжину відрізка AB і позначають як $|\overline{a}|$.

Э Колінеарність векторів. Вектори називають колінеарними (позначають ||), якщо вони лежать на одній прямій або на паралельних прямих.

Колінеарні вектори * можуть бути:

- 1) однаково-напрямлені (позначають ↑↑)
- 2) протилежно напрямлені (позначають $\uparrow\downarrow$).
- **3** *Компланарність векторів.* Вектори називають *компланарними*, якщо вони лежать в одній або паралельних плошинах**.
- **4** *Нульовий вектор.* Якщо початок і кінець вектора збігаються, то вектор називають *нульовим* і позначають $\overline{0}$. Нульовий вектор вважають колінеарним будь-якому векторові.
- **6** *Протилежні вектори.* Вектори, які мають однакову довжину і протилежно напрямлені, називають *протилежними*.

9 *Одиничний вектор*. Вектор, довжина якого дорівнює одиниці, називають *одиничним*.

^{*} Колінеарність розглядають для двох і більше векторів.

^{**} Компланарність розглядають для трьох і більше векторів.

2.2. Дії над векторами

- **1** Рівність векторів. Два вектори називають рівними, якщо вони колінеарні, однаково напрямлені і мають ту саму довжину.
- **2** Відкладання вектора від точки. Від будь-якої точки можна відкласти вектор, рівний заданому.

3 Додавання (віднімання) векторів

правило паралелограма

правило замикача

різниця векторів

4 Множення вектора на число

 $\lambda \overline{a}$ — вектор:

$$1) |\lambda \overline{a}| = |\lambda| |\overline{a}|;$$

2)
$$\lambda \overline{a} \uparrow \uparrow \overline{a}$$
, якщо $\lambda > 0$, $\lambda \overline{a} \uparrow \downarrow \overline{a}$, якщо $\lambda < 0$

$$(2)$$
 $\lambda \overline{a}\uparrow\downarrow \overline{a},$ якщо $\lambda<0$

9 Властивості лінійних дій над векторами

$$\ \, \Im \, \overline{0} + \overline{a} = \overline{a};$$

- **6** *Орт. Ортом* вектора \overline{a} називають одиничний вектор \overline{a}^0 , який однаково напрямлений з вектором \overline{a} .
- $\textcircled{5} \ 1 \cdot \overline{a} = \overline{a}, \ (-\overline{a}) = (-1) \cdot \overline{a};$

$$\bigcirc \lambda \cdot (\overline{a} + \overline{b}) = \lambda \cdot \overline{a} + \lambda \cdot \overline{b};$$

$$(\lambda + \mu) \cdot \overline{a} = \lambda \cdot \overline{a} + \mu \cdot \overline{a}$$

$$\overline{a}^0 = \frac{1}{\left|\overline{a}\right|} \overline{a}$$

$$\overline{a} = \left| \overline{a} \right| \overline{a}^0$$

2.3. Лінійна залежність (незалежність) векторів

- **Ф** Лінійна комбінація векторів. Лінійною комбінацією векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ з коефіцієнтами $\alpha_1, \alpha_2, ..., \alpha_n$ називають вектор $\overline{b} = \alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + ... + \alpha_n \overline{a}_n$.*
- **2** Лінійна незалежність системи векторів. Система векторів

 $\overline{a}_1,\overline{a}_2,...,\overline{a}_n$ лінійно незалежна, якщо з рівності

$$\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + \dots + \alpha_n \overline{a}_n = \overline{0}$$

випливає, що

$$\alpha_1=\alpha_2=\ldots=\alpha_n=0.$$

3 Лінійна залежність системи векторів. Система векторів

 $\overline{a}_1,\overline{a}_2,...,\overline{a}_n$ лінійно залежна, якщо існують такі числа $\alpha_1,\alpha_2,...,\alpha_n,$ не рівні одночасно нулеві, що

$$\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + \dots + \alpha_n \overline{a}_n = \overline{0}.$$

Ф Геометричний зміст лінійної залежності (незалежності) векторів

- ① Один вектор лінійно залежний (незалежний) тоді й лише тоді, коли він нульовий (ненульовий).
- ② Система із двох векторів лінійно залежна (незалежна) тоді й лише тоді, коли вектори колінеарні (неколінеарні).
- ③ Система із трьох векторів лінійно залежна (незалежна) тоді й лише тоді, коли вони компланарні (некомпланарні).
- ④ На прямій, на площині й у просторі існують лінійно незалежні системи відповідно з одного, двох та трьох векторів.
- ⑤ На прямій, на площині й у просторі будь-які системи відповідно із двох, трьох та чотирьох (і більше) векторів лінійно залежні.

2.4. Базис

- **О** Векторний геометричний простір. Множину геометричних векторів з означеними лінійними діями над векторами називають векторним (геометричним) простором ♥.
- **3** Базис на прямій утворює будь-який ненульовий вектор \overline{e} . Будь-який вектор \overline{a} прямої єдиним чином лінійно виражається через вектор \overline{e} .

$$\overline{e} \qquad \overline{a} = OM$$

$$O \qquad E \qquad M$$

$$\overline{a} = a\overline{e} \qquad \mathbb{V}^1$$

^{*} Вектор \overline{b} лінійно виражається через вектори $\overline{a}_1,\overline{a}_2,...,\overline{a}_n.$

4 Базис на площині утворює будь-яка впорядкована пара неколінеарних векторів \overline{e}_1 та \overline{e}_2 .

Будь-який вектор площини єдиним чином лінійно виражається через вектори базису $\{\overline{e}_1, \overline{e}_2\}$.

© Базис у просторі утворює будь-яка впорядкована трійка некомпланарних векторів $\overline{e}_1, \overline{e}_2$ та \overline{e}_3 .

Будь-який вектор простору єдиним чином лінійно виражається через вектори базису $\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}$.

2.5. Координати вектора

О *Розкладання вектора за базисом.* Співвідношення

 $\overline{x}=x_1\overline{e}_1+x_2\overline{e}_2+x_3\overline{e}_3$ називають розкладом вектора \overline{x} за базисом $\{\overline{e}_1,\overline{e}_2,\overline{e}_3\}$. Числа x_1,x_2,x_3 називають координатами вектора \overline{x} у базисі $\{\overline{e}_1,\overline{e}_2,\overline{e}_3\}$.

2 Вибраний базис встановлює взаємно однозначну відповідність між векторами і їхніми координатними стовпиями:

 $\overline{a} = a_1 \overline{e}_1 + a_2 \overline{e}_2 + a_3 \overline{e}_3$

$$\overline{x} = \overrightarrow{x}_{\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}_{\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}},$$

де $\vec{x}_{\{\overline{e_1},\overline{e_2},\overline{e_3}\}}$ — координатний стовпець вектора $\overline{x}.$

§ Рівність векторів.

Рівним векторам відповідають рівні координати.

 $\overline{x} = \overline{y} \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}_{\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}_{\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}}$

4 Додавання (віднімання) векторів. Додаванню (відніманню) векторів відповідає додавання (віднімання) їх координат.

 $\overline{x} \pm \overline{y} = \begin{pmatrix} x_1 \pm y_1 \\ x_2 \pm y_2 \\ x_3 \pm y_3 \end{pmatrix}_{\{\overline{e_1}, \overline{e_2}, \overline{e_3}\}}$

5 Множення вектора на число. Множенню вектора на число відповідає множення всіх його координат на це число.

$$\lambda \overline{x} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix}_{\{\overline{e_1}, \overline{e_2}, \overline{e_3}\}}$$

5 Умова колінеарності векторів.

Вектори $\overline{x} \neq \overline{0}$ та \overline{y} колінеарні тоді й лише тоді, коли існує таке число λ, що $\overline{y} = \lambda \overline{x}$.

Координати колінеарних векторів у фіксованому базисі пропорційні.

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \overline{x} \parallel \overline{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \Leftrightarrow$$

$$\Rightarrow \begin{array}{c} y_1 - y_2 - y_3 -$$

6 Система векторів $\overline{a}_1,\overline{a}_2,...,\overline{a}_n$ лінійно незалежна тоді й лише тоді, коли система їхніх координатних стовпців $\vec{a}_1, \overline{a}_2, ..., \vec{a}_n$ у вибраному базисі лінійно незалежна.

2.6. Прямокутна декартова система координат

О Радіус-вектор. Радіусом-вектором
точки M (щодо точки O) називають
вектор $\overline{r}_{\!\scriptscriptstyle M}=\overline{OM}$.

2 Кут між векторами. Кутом між векторами $\overline{a}=O\overline{A}$ та $\overline{b}=\overline{OB}$ вважають величину кута АОВ і позначають $(\overline{a}, \overline{b})$.

Перпендикулярність векторів.

Вектори \overline{a} та \overline{b} називають

перпендикулярними, якщо $(\widehat{\overline{a},\overline{b}}) = \frac{\pi}{2}$ і

позначають $\overline{a}\perp \overline{b}$. \bigcirc Система координат на прямій.

Сукупність $\{O; \overline{i}\}$ точки O (початку координат) і базису з одиничного вектора \overline{i} називають ∂ екартовою системою координат на прямій. Пряму, на якій запроваджено систему координат, називають координатною віссю Ох.

Ф ПДСК на площині. Сукупність $\{O; \overline{i}, \overline{j}\}$ точки O (початку координат) і базису з одиничних перпендикулярних векторів \overline{i} та \overline{j} називають прямокутною декартовою системою координат на площині.

1) вісь абсцис $Ox \parallel \overline{i}$;

Осі координат:

- 2) вісь ординат $Oy \parallel \overline{j}$. Площину, на якій запроваджено систему координат, називають координатною площиною Oxy. Координати точки M(x;y) це координати її радіуса-вектора
- **©** ПДСК у просторі. Сукупність $\{O; \overline{i}, \overline{j}, \overline{k}\}$ точки O (початку координат) і базису з одиничних попарно перпендикулярних векторів $\overline{i}, \overline{j}$ та \overline{k} називають прямокутною декартовою системою координат у просторі.

Осі координат:

- 1) вісь абсцис $Ox \parallel \overline{i}$;
- 2) вісь ординат $Oy \parallel \overline{j}$;
- 3) вісь аплікат $Oz \parallel \overline{k}$. Координатні площини: Oxy, Oyz, Oxz. Координати точки M(x;y;z) це координати її радіуса-вектора
- **6** Координати *вектора* з початком $A(x_A;y_A;z_A) \text{ і кінцем } B(x_B;y_B;z_B) \\ \overline{AB} = \overline{r}_{\!B} \overline{r}_{\!A}.$

$$\overline{r}_{M} = \begin{pmatrix} x \\ y \end{pmatrix}_{\{\overline{i},\overline{j}\}}$$

x — абсциса; y — ордината.

	(x)	
$\overline{r}_{M} =$	y	
	$\left(z ight)_{\!\left\{\overline{i},\overline{j},\overline{k} ight\}}$	}

x — абсциса; y — ордината; z — апліката

 $\overline{AB} = \begin{pmatrix} x_B - x_A \\ y_B - y_A \\ z_B - z_A \end{pmatrix}$

$m{Q}$ Координати *точки поділу відрізка* AB з кінцями

$$A(x_{\!\scriptscriptstyle A};y_{\!\scriptscriptstyle A};z_{\!\scriptscriptstyle A}),B(x_{\!\scriptscriptstyle B};y_{\!\scriptscriptstyle B};z_{\!\scriptscriptstyle B}).$$

Кажуть, що точка M поділяє відрізок AB у відношенні $\lambda \neq -1$, якщо виконано співвідношення

$$\overline{AM} = \lambda \overline{MB}.$$

f 8 Координати cepeduhu відрізка AB

$$x = \frac{x_A + \lambda x_B}{1 + \lambda};$$

$$y = \frac{y_A + \lambda y_B}{1 + \lambda};$$

$$z = \frac{z_A + \lambda z_B}{1 + \lambda};$$

$$\lambda \neq -1$$

$$x = \frac{x_A + x_B}{2}, \ y = \frac{y_A + y_B}{2},$$

$$z = \frac{z_A + z_B}{2}$$

2.7. Проекція вектора на вісь

Ф Векторна проекція. Пряму L, на якій вибрано додатний напрям (орієнтацію), називають віссю. Векторною проекцією вектора $\overline{a} = \overline{AB}$ на вісь L з напрямним вектором \overline{s} називають вектор $\overline{a}_L = \overline{A'B'}$.

Додатний напрям осі позначають стрілкою.

Вектор \overline{s} — напрямний вектор осі.

2 Скалярна проекція. Проекцією

вектора $\overline{a} = \overline{AB}$ на вісь L з напрямним вектором \overline{s} (проекцією вектора на напрям вектора \overline{s}) називають число

$$\operatorname{pr}_{L} \overline{a} = \operatorname{pr}_{\overline{s}} \overline{a} = \\ = \begin{cases} + \left| A'B' \right|, & \overline{A'B'} \uparrow \uparrow \overline{s}, \\ -\left| A'B' \right|, & \overline{A'B'} \uparrow \downarrow \overline{s} \end{cases}$$

3 Обчислення проекції вектора на напрям вектора

$$\operatorname{pr}_{\overline{s}} \overline{a} = \left| \overline{a} \right| \cos(\widehat{\overline{a}, \overline{s}})$$

🛮 Властивості проекції вектора на напрям

$$\mathfrak{I}\operatorname{pr}_{\overline{s}}(\lambda \overline{a}) = \lambda \operatorname{pr}_{\overline{s}} \overline{a};$$

$$\mathfrak{D}$$
 pr $_{\overline{s}}$ $\overline{a}=0$, якщо $\overline{s}\perp\overline{a};$

©
$$\operatorname{pr}_{\overline{s}} \overline{a} > 0$$
, якщо $\overline{s} \uparrow \uparrow \overline{A'B'}$

вектора.

2.8. Скалярний добуток векторів

О Скалярне множення. Скалярним
∂ обутком двох векторів \overline{a} та \overline{b}
називають число, що дорівнює
добуткові довжин цих векторів на
косинус кута між ними і позначають
$(\overline{a},\overline{b}).^*$
Якшо хоча б олин з векторів нульови

 $(\overline{a},\overline{b}\,) = \left|\overline{a}\,\right| \left|\overline{b}\,\right| \cos(\widehat{\overline{a},\overline{b}}\,)$

$$(\overline{a}, \overline{b}) = |\overline{a}| \operatorname{pr}_{\overline{a}} \overline{b} = |\overline{b}| \operatorname{pr}_{\overline{b}} \overline{a}$$

Якщо хоча б один з векторів нульовий, то скалярний добуток вважають рівним нулеві.

2 *Ортогональність векторів.* Вектори \overline{a} та \overline{b} називають *ортогональними*, якщо їх скалярний добуток дорівнює нулеві і позначають $\overline{a} \perp \overline{b}$.

Вектори ортогональні, якщо хоча б
один з векторів нульовий або вони
перпендикулярні.
Нульовий вектор вважають
перпендикулярним до будь-якого

 \overline{b} $\overline{0}$ $\overline{a} \perp \overline{b}$ $\overline{a} \perp \overline{0}$

8 Властивості скалярного добутку

① комутативність скалярного	$(\overline{a},\overline{b})=(\overline{b},\overline{a})$
множення	
② <i>однорідність</i> скалярного множення	$(\alpha \overline{a}, \beta \overline{b}) = \alpha \beta(\overline{a}, \overline{b})$
③ <i>дистрибутивність</i> скалярного	$(\overline{a} + \overline{b}, \overline{c}) = (\overline{a}, \overline{c}) + (\overline{b}, \overline{c}),$
множення	$(\overline{a}, \overline{b} + \overline{c}) = (\overline{a}, \overline{b}) + (\overline{a}, \overline{c})$
④ <i>додатно-визначеність</i> скалярного	$(\overline{a}, \overline{a}) = \left \overline{a} \right ^2 \ge 0,$
добутку	$(u,u)= u \geq 0,$
3 3	$(\overline{a}, \overline{a}) = 0 \Leftrightarrow \overline{a} = \overline{0}$

 $^{^*}$ Ще використовують позначення $\,\overline{a}\cdot\overline{b}\,.$

2.9. Ортонормований базис

- **О***ортонормованість базису.* Базис називають *ортонормованим*, якщо його вектори попарно ортогональні і мають одиничну довжину.

- **2** Скалярний добуток векторів

$$\begin{split} \overline{a} &= a_x \overline{i} \, + a_y \overline{j} \, + a_z \overline{k}, \\ \overline{b} &= b_x \overline{i} \, + b_y \overline{j} \, + b_z \overline{k} \end{split}$$

 $(\overline{a}, \overline{b}) = a_x b_x + a_y b_y + a_z b_z$

в ортонормованому базисі

3 Таблиця *скалярного* множення

(,)	\overline{i}	\overline{j}	\overline{k}
\overline{i}	1	0	0
\overline{j}	0	1	0
\overline{k}	0	0	1

Ф Довжина вектора

$$|\overline{a}| = \sqrt{(a_x)^2 + (a_y)^2 + (a_z)^2}$$

9 3в'язок між координатами і проекціями вектора. Координати вектора в ортонормованому базисі дорівнюють проекціям вектора на координатні осі.

$$\begin{aligned} \operatorname{pr}_{\overline{i}} \, \overline{a} &= a_x \\ \operatorname{pr}_{\overline{j}} \, \overline{a} &= a_y \\ \operatorname{pr}_{\overline{i}} \, \overline{a} &= a_z \end{aligned}$$

- **©** *Напрямні косинуси. Напрямними косинусами* вектора \overline{a} називають косинуси кутів, утворених вектором \overline{a} з векторами базису.
- $\cos \alpha = \frac{a_x}{|\overline{a}|}, \cos \beta = \frac{a_y}{|\overline{a}|}, \cos \gamma = \frac{a_z}{|\overline{a}|}$
- **7** Координати орта вектора

$$\overline{a}^0 = \frac{\overline{a}}{|\overline{a}|} = \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{pmatrix}$$

2.10. Застосування скалярного добутку

О Довжина вектора	$\left \overline{a} \right = \sqrt{(\overline{a}, \overline{a})}$
$m{Q}$ Кут між ненульовими векторами \overline{a} та \overline{b}	$ cos(\widehat{\overline{a}, \overline{b}}) = \frac{(\overline{a}, \overline{b})}{ \overline{a} \overline{b} } \Rightarrow \Rightarrow (\widehat{\overline{a}, \overline{b}}) = \arccos\frac{(\overline{a}, \overline{b})}{ \overline{a} \overline{b} } $
$oldsymbol{\Theta}$ Проекція вектора \overline{b} на напрям вектора \overline{a}	$\operatorname{pr}_{\overline{a}} \overline{b} = \frac{(\overline{a}, \overline{b})}{ \overline{a} }$
Ф <i>Критерій перпендикулярності</i> . Скалярний добуток векторів дорівнює нулеві тоді й лише тоді, коли вектори перпендикулярні.	$(\overline{a}, \overline{b}) = 0 \Leftrightarrow (\widehat{a}, \overline{b}) = \frac{\pi}{2}$ $a_x b_x + a_y b_y + a_z b_z = 0$
$oldsymbol{\mathfrak{S}}$ Робота сили \overline{F} під час переміщення \overline{s}	$ \begin{array}{c c} \overline{F} \\ \hline \varphi & \overline{s} = \overline{BC} \\ B & \overline{F'} & C \end{array} $ $ A = \overline{F} \cos\varphi \cdot \overline{s} = (\overline{F}, \overline{s}) $

2.11. Орієнтація

О Орієнтація на площині. Базис $\{\overline{e}_1, \overline{e}_2\}$ задає додатну (від'ємну) орієнтацію площини, якщо найкоротший перехід від вектора \overline{e}_1 до вектора \overline{e}_2 , відбувається проти руху годинникової стрілки.

2 Права і ліва трійка. Трійку некомпланарних векторів $\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}$ називають правою (лівою), якщо найкоротший перехід від вектора \overline{e}_1 до вектора \overline{e}_2 , відбувається проти руху (за рухом) годинникової стрілки, коли дивитись на них з кінця вектора \overline{e}_3 .

Базис $\{\overline{e}_1,\overline{e}_2,\overline{e}_3\}$, вектори якого утворюють праву трійку, задає *додатну* орієнтацією простору.

2.12. Векторний добуток

- **Ф** Векторне множення. Векторним добутком вектора \overline{a} на \overline{b} називають вектор \overline{c} , який:
- 1) перпендикулярний до векторів \overline{a} та \overline{b} ;
- 2) завдовжки дорівнює добутку довжин векторів на синус кута між ними;
- 3) напрямлений так, що вектори $\overline{a}, \overline{b}$ та \overline{c} утворюють праву трійку. Позначають $\overline{c} = [\overline{a}, \overline{b}].^*$

Векторний добуток колінеарних векторів вважають рівним нульовому

2 Властивості векторного добутку:

① <i>антикомутативність</i> векторного добутку	$[\overline{a}, \overline{b}] = -[\overline{b}, \overline{a}]$		
② <i>однорідність</i> векторного добутку	$[\alpha \overline{a}, \beta \overline{b}] = \alpha \beta [\overline{a}, \overline{b}]$		
③ <i>дистрибутивність</i> векторного добутку	$[\overline{a} + \overline{b}, \overline{c}] = [\overline{a}, \overline{c}] + [\overline{b}, \overline{c}],$ $[\overline{a}, \overline{b} + \overline{c}] = [\overline{a}, \overline{b}] + [\overline{a}, \overline{c}]$		
В Таблиця <i>векторного</i> множення (першим вибирають рядок)	$ \begin{array}{c cccc} [,] & \overline{i} & \overline{j} & \overline{k} \\ \hline \overline{i} & \overline{0} & \overline{k} & -\overline{j} \\ \hline \overline{j} & -\overline{k} & \overline{0} & \overline{i} \\ \hline \overline{k} & \overline{j} & -\overline{i} & \overline{0} \\ \hline [\overline{i}, \overline{j}] = \overline{k} \end{array} $		
Ф Векторний добуток векторів $\overline{a} = a_x \overline{i} + a_y \overline{j} + a_z \overline{k}, \\ \overline{b} = b_x \overline{i} + b_y \overline{j} + b_z \overline{k}$ в ортонормованому базисі	$[\overline{a},\overline{b}] = egin{array}{cccc} \overline{i} & \overline{j} & \overline{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \ \end{pmatrix}$		

векторові.

 $^{^*}$ Ще використовують позначення $\,\overline{a} \times \overline{b}\,.$

2.13. Мішаний добуток

в ортонормованому базисі

О Векторно-скалярне множення. Мішаним добутком векторів $\overline{a}, \overline{b}$ та \overline{c} називають число — скалярний добуток векторного добутку векторів \overline{a} та \overline{b} на вектор \overline{c} і позначають $(\overline{a}, \overline{b}, \overline{c})$.	$([\overline{a},\overline{b}],\overline{c})=(\overline{a},\overline{b},\overline{c}).$
2 Властивості мішаного добутку:	
① у мішаному добутку знаки векторного та скалярного добутків можна міняти місцями	$([\overline{a}, \overline{b}], \overline{c}) = (\overline{a}, [\overline{b}, \overline{c}])$
② циклічне переставляння співмножників не змінює мішаного добутку	$([\overline{a}, \overline{b}], \overline{c}) = ([\overline{c}, \overline{a}], \overline{b}) = ([\overline{b}, \overline{c}], \overline{a})$
③ переставляння двох співмножників змінює знак мішаного добутку	$(\overline{a}, \overline{b}, \overline{c}) = -(\overline{b}, \overline{a}, \overline{c}) =$ $= -(\overline{c}, \overline{b}, \overline{a}) = -(\overline{a}, \overline{c}, \overline{b})$
④ мішаний добуток лінійний за будь- яким множником	$(\alpha \overline{a}_1 + \beta \overline{a}_2, \overline{b}, \overline{c}) =$ $= \alpha(\overline{a}_1, \overline{b}, \overline{c}) + \beta(\overline{a}_2, \overline{b}, \overline{c})$
$\overline{a}=a_{x}\overline{i}+a_{y}\overline{j}+a_{z}\overline{k},$ $\overline{b}=b_{x}\overline{i}+b_{y}\overline{j}+b_{z}\overline{k},$ $\overline{c}=c_{x}\overline{i}+c_{y}\overline{j}+c_{z}\overline{k}$	$(\overline{a},\overline{b},\overline{c}) = egin{array}{ccc} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \ \end{array}$

2.14. Застосування векторного і мішаного добутків

$oldsymbol{\Phi}$ Площа паралелограма (трикутника), побудованого на векторах \overline{a} та \overline{b}	$S_{arpi} = ig \ S_{artriangle} = rac{1}{2}$	·
2 <i>Висота</i> паралелограма (трикутника), опущена на сторону \overline{a}	$h_a = \frac{\left [\overline{a}, \overline{b}] \right }{\left \overline{a} \right }$	\overline{b} h \overline{a}

$oldsymbol{\mathfrak{G}}$ *Критерій колінеарності* векторів \overline{a} та \overline{b} .

Два вектори \overline{a} та \overline{b} колінеарні тоді й лише тоді, коли їхній векторний добуток ϵ нульовим вектором.

$$\begin{array}{c|ccc} \overline{a} \parallel \overline{b} \iff [\overline{a}, \overline{b}] = \overline{0} \\ & \overline{i} & \overline{j} & \overline{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{array} = \overline{0}$$

4 *Момент* \overline{M} сили \overline{F} щодо точки O

 $\overline{M}_O(\overline{F}) = [\overline{OA}, \overline{F}]$

9 *Об'єм* паралелепіпеда (тетраедра) побудованого на векторах $\overline{a}, \overline{b}, \overline{c}$

$$\begin{split} V_{\text{пар}} &= \left| (\overline{a}, \overline{b}, \overline{c}) \right|, \\ V_{\text{тетр}} &= \frac{1}{6} \left| (\overline{a}, \overline{b}, \overline{c}) \right| \end{split}$$

6 *Висота* паралелепіпеда (тетраедра), побудованого на векторах $\overline{a}, \overline{b}, \overline{c}$, на основу, яку утворюють вектори \overline{a} та \overline{b}

$$h = \left| \operatorname{pr}_{\left[\overline{a}, \overline{b}\right]} \overline{c} \right| = \frac{\left| (\overline{a}, \overline{b}, \overline{c}) \right|}{\left| [a, \overline{b}\right] \right|}$$

$m{\partial}$ Взаємне розташування векторів $\overline{a}, \overline{b}$ та \overline{c}

 \bigcirc Якщо $(\overline{a},\overline{b},\overline{c})>0$, то вектори $\overline{a},\overline{b},\overline{c}$ утворюють праву трійку.

 $\$ Якщо $(\overline{a},b,\overline{c})<0$, то вектори $\overline{a},\overline{b},\overline{c}$ утворюють ліву трійку.

 $(\overline{a},\overline{b},\overline{c})>0\Rightarrow\overline{a},\overline{b},\overline{c}$ — права трійка; $(\overline{a},\overline{b},\overline{c})<0\Rightarrow\overline{a},\overline{b},\overline{c}$ — ліва трійка

⊗ Критерій компланарності

векторів $\overline{a}, \overline{b}$ та \overline{c} .

Вектори $\overline{a}, \overline{b}, \overline{c}$ компланарні тоді й лише тоді, коли $(\overline{a}, \overline{b}, \overline{c}) = 0$.

$$\overline{a},\overline{b},\overline{c}$$
 — компланарні \Leftrightarrow \Leftrightarrow $(\overline{a},\overline{b},\overline{c})=0$
$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}=0$$

2.15. Комплексні числа

О Комплексне число. Комплексним числом z називають упорядковану пару дійсних чисел x та y . x — ∂ ійсна частина, $x = \operatorname{Re} z$ y — y явна частина, $y = \operatorname{Im} z^*$	Комплексне число z зображують точкою $M(x;y)$ або радіусомвектором \overline{OM} .
2 Алгебрична форма	z = x + iy
комплексного числа	$i^2 = -1$
8 <i>Рівність</i> комплексних чисел**	$z_1 = z_2 \Leftrightarrow \begin{cases} x_1 = x_2, \\ y_1 = y_2 \end{cases}$
4 Сума (різниця) комплексних чисел	$z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$
9 Добуток комплексних чисел	$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$
6 Натуральний степінь комплексного числа	$z^{n} = \underbrace{z \cdot z \cdots z}_{n}$ $i^{1} = i, \ i^{2} = -1, \ i^{3} = -i, \ i^{4} = 1$
	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$
О Спряжене до комплексного числа	$\overline{z} = x - iy$ $-\overline{z}$ $-\overline{z}$ z $-\overline{z}$
3 <i>Частка</i> комплексних чисел	$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2}$
• Арифметичні дії над комплексними	числами в алгебричній формі можна
проводити як з алгебричними виразами, враховуючи, що $i^2 = -1$.	
Ф Множина комплексних чисел.	Правдиві включення:
Множину всіх комплексних чисел з	$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}\subset\mathbb{R}\subset\mathbb{C}$
означеними рівністю, додаванням і	
множенням називають множиною	
комплексних чисел і позначають \mathbb{C} .	

^{*} Дійна та уявна частини комплексного числа дійсні числа.
** Поняття «більше» та «менше» для комплексних чисел не означують.

2.16. Полярна система координат

• Полярна система координат.

Полярну систему координат задає:

- 1) точка O -*полюс*;
- 2) промінь, орієнтований одиничним вектором \overline{i} ,— *полярна вісь*;
- 3) додатний напрям відліку кутів (проти годинникової стрілки).

Полярні координати:

 ρ — полярний радіус ($\rho \geq 0$);

 ϕ — полярний кут.

2 36'язок між декартовими координатами і полярними координатами

$$\begin{cases} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \end{cases} \Rightarrow x^2 + y^2 = \rho^2;$$

$$\rho = \sqrt{x^2 + y^2}$$

$$\varphi : \begin{cases} \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}}, \\ \sin \varphi = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$

 $\varphi = 0$

§ Головне значення φ_0 полярного кута $(-\pi < \varphi_0 \le \pi; \varphi = \varphi_0 + 2k\pi, k \in \mathbb{Z})$

<i>y</i> •	I	
	\overline{x}	
	r	

$$x > 0, y = 0$$

$$x > 0, y > 0$$

$$\varphi = \arctan \frac{y}{x} = \arccos \frac{x}{\rho}$$

$$\varphi = \frac{\pi}{2}$$

$$\varphi = \pi + \arctan \frac{y}{x} = \arccos \frac{x}{\rho}$$

$$x < 0, y = 0$$

$$\varphi = \pi$$

$$\varphi = -\pi + \arctan \frac{y}{x} = -\arccos \frac{x}{\rho}$$

$$x = 0, y < 0$$

$$\varphi = -\frac{\pi}{2}$$

$$x > 0, y < 0$$

$$\varphi = \arctan \frac{y}{x} = -\arccos \frac{x}{\rho}$$

2.17. Дії над комплексними числами у тригонометричній і показниковій формах

● <i>Тригонометрична (показникова)</i> форма комплексного числа	$z = \rho(\cos\varphi + i\sin\varphi) = \rho e^{i\varphi}$
2 Ейлерова формула	$e^{i\varphi} = \cos\varphi + i\sin\varphi$
	$e^{\pi i} + 1 = 0$
3 <i>Модуль</i> комплексного числа	$\left z\right = \rho = \sqrt{x^2 + y^2}$
	$z\overline{z} = z ^2$
4 <i>Аргумент</i> комплексного числа	$\varphi = \operatorname{Arg} z = \arg z + 2\pi k, k \in \mathbb{Z}$
	$\arg z$ — головне значення $\operatorname{Arg} z$;
	$\arg z \in (-\pi;\pi]$
5 Добуток комплексних чисел	$z_1 z_2 =$
	$= \rho_1 \rho_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)) =$
	$=\rho_1\rho_2e^{i(\varphi_1+\varphi_2)}$
6 Спряження комплексного числа	$\overline{z} = \rho(\cos(-\varphi) + i\sin(-\varphi)) = \rho e^{-i\varphi}$
7 Частка комплексних чисел	$\frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} (\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)) =$
	$=\frac{\rho_1}{\rho_2}e^{i(\varphi_1-\varphi_2)}$
3 Натуральний степінь	$z^n = \rho^n(\cos n\varphi + i\sin n\varphi) =$
комплексного числа	$= \rho^n e^{in\varphi}, n \in \mathbb{N}$
9 <i>Муаврова</i> формула	$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi$
© <i>Корінь</i> з комплексного числа	$\omega_k = \sqrt[n]{z} = \sqrt[n]{\rho}e^{i\frac{\varphi + 2\pi k}{n}} =$
	$= \sqrt[n]{\rho} \left(\cos \left(\frac{\varphi + 2\pi k}{n} \right) + i \sin \left(\frac{\varphi + 2\pi k}{n} \right) \right),$
	k = 0, n - 1
	Всі значення $\sqrt[n]{z}$ розташовані
	у вершинах правильного n -кутника

Розділ З. АНАЛІТИЧНА ГЕОМЕТРІЯ

3.1. Рівняння ліній і поверхонь

$lue{0}$ Рівняння лінії L на площиніst:

- ① неявне $F(x,y) = 0, (x;y) \in D;$
- ② явне $y = f(x), x \in [a; b];$
- $\$ параметричні $\left\{ egin{aligned} x = x(t), \\ y = y(t) \end{aligned} \right. t \in [lpha; eta]$

2 Точка перетину ліній

$$\begin{cases} F_1(x,y) = 0, \\ F_2(x,y) = 0 \end{cases}$$

8 *Рівняння поверхні* Ω^{**} :

- ① неявне F(x, y, z) = 0;
- 2 явне z = f(x, y);
- $\begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} \begin{aligned} x &= x(u,v), \ y &= y(u,v), (u;v) \in D \ z &= z(u,v), \ \end{aligned} \end{gathered}$

$lue{oldsymbol{\Phi}}$ $oldsymbol{P}$ $oldsymbol{B}$ $oldsymbol{\Phi}$ $oldsymbol{\Phi}$ $oldsymbol{\Phi}$ $oldsymbol{\Phi}$ $oldsymbol{\Phi}$ $oldsymbol{\Phi}$

① загальні (переріз двох поверхонь)

$$\begin{cases} F_1(x, y, z) = 0, \\ F_2(x, y, z) = 0; \end{cases}$$

 \mathbb{Q} параметричні $egin{cases} x = x(t), \\ y = y(t), t \in [lpha; eta] \\ z = z(t) \end{cases}$

$$\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$$

^{*} Рівняння лінії може задавати також точку, частину площини і порожню множину.

^{**} Рівняння поверхні може задавати також точку, частину простору і порожню множину.

9 Рівняння поверхні обертання,

утвореної обертанням кривої z = f(y) навколо осі Oz

$$z = f(\sqrt{x^2 + y^2})$$

6 Рівняння циліндричної поверхні,

твірні якої паралельні осі Oz і проходять через напрямну лінію $\Gamma \subset Oxy$, що має рівняння F(x,y) = 0.

$$F(x,y) = 0.$$

3.2. Перетворення систем координат

• Паралельне перенесення

$$\begin{cases} x = x' + a, \\ y = y' + b \end{cases} \Leftrightarrow \begin{cases} x' = x - a, \\ y' = y - b \end{cases}$$

2 Повертання

$$\begin{cases} x = x' \cos \varphi - y' \sin \varphi, \\ y = x' \sin \varphi + y' \cos \varphi \end{cases} \Leftrightarrow \begin{cases} x' = x \cos \varphi + y \sin \varphi, \\ y' = -x \sin \varphi + y \cos \varphi \end{cases}$$

9 Переорієнтування

$$\begin{cases} x = x', \\ y = -y' \Leftrightarrow \begin{cases} x' = x, \\ y' = -y \end{cases}$$

4 Загальне перетворення

$$\begin{cases} x = x' \cos \varphi - y' \sin \varphi + a, \\ y = x' \sin \varphi + y' \cos \varphi + b \end{cases}$$

3.3. Площина

О *Площина. Площину* P повністю визначає точка M_0 цієї площини і

ненульовий вектор
$$\overline{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, який

перпендикулярний до площини і який називають *нормальним* вектором площини.

2 Загальне рівняння площини

$$ax + by + cz + d = 0$$

 $oldsymbol{\Theta}$ Рівняння площини, що проходить через точку M_0 перпендикулярно до вектора \overline{n}^*

 $m{\Phi}$ Рівняння площини, що проходить через точку M_0 паралельно векторам \overline{u} та \overline{v} **

$$(\overline{M_0M},\overline{u},\overline{v})=0$$

⑤ Рівняння площини *у відрізках*

Площина перетинає осі координат у точках $A(\tilde{a};0;0), B(0;\tilde{b};0), C(0;0;\tilde{c}).$

$$\frac{x}{\tilde{a}} + \frac{y}{\tilde{b}} + \frac{z}{\tilde{c}} = 1$$

6 *Нормоване* рівняння площини

$$x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$$

 $\cos \alpha, \cos \beta, \cos \gamma$ — напрямні косинуси нормального вектора площини; p — віддаль від площини до початку координат $(p \geq 0)$

7 Нормувальний множник (множення на який нормує загальне рівняння)

$$\mu = -\frac{\operatorname{sgn} d}{\sqrt{a^2 + b^2 + c^2}}$$

 $^{^*}$ Умова ортогональності векторів $\overline{M_0 M}$ та \overline{n} .

^{**} Умова компланарності векторів $\overline{M_0M}, \overline{u}$ та $\overline{v}.$

3.4. Пряма у просторі

1 Пряма у просторі. Пряму $L(M_0; \overline{s})$ повністю визначає точка $M_0(x_0; y_0; z_0)$ цієї прямої і ненульовий вектор $\overline{s} = \begin{pmatrix} l \\ m \\ n \end{pmatrix},$ що паралельний прямій і який	$\begin{array}{c} L & M_0 & \overline{s} \\ \hline Q & \overline{r_0} & M \\ \hline Q & \overline{r} \\ \hline M \in L(M_0; \overline{s}) \Leftrightarrow \overline{M_0 M} = t \overline{s}, t \in \mathbb{R}, \\ M(x; y; z), M_0(x_0; y_0; z_0) \end{array}$
називають <i>напрямним</i> вектором прямої L .	
2 Векторне параметричне рівняння прямої	$\overline{r} = \overline{r_0} + t\overline{s}, t \in \mathbb{R}$
3 <i>Параметричні</i> рівняння прямої	$\begin{cases} x = x_0 + lt, \\ y = y_0 + mt, t \in \mathbb{R} \\ z = z_0 + nt, \end{cases}$
4 <i>Канонічні</i> рівняння прямої*	$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$ $[\overline{r} - \overline{r}_0, \overline{s}] = \overline{0}$
§ Векторне рівняння прямої	$[\overline{r} - \overline{r}_0, \overline{s}] = \overline{0}$
6 Рівняння прямої, що проходить через дві точки $M_1(x_1;y_1;z_1) {\rm Ta} M_2(x_2;y_2;z_2)$	$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$
Загальні рівняння прямої (Пряму задано перетином двох непаралельних площин)	$\begin{cases} a_1 x + b_1 y + c_1 z + d_1 = 0, \\ a_2 x + b_2 y + c_2 z + d_2 = 0 \end{cases}$

 $^{^*}$ Умова колінеарності векторів $\overline{M_0 M}$ та \overline{s} .

3.5. Пряма на площині

9 *Нормоване* рівняння прямої

э.э. пряма на площин		
$\begin{array}{c} \begin{picture}(20,0) \put(0,0){\line(0,0){150}} \put(0,0){\line(0,$	$\begin{array}{c c} L & M_0 \\ \hline \overline{r_0} & \\ \hline O & \end{array}$	$rac{\overline{s}}{T}$
2 Параметричні рівняння прямої	$\begin{cases} x = x_0 - 1 \\ y = y_0 + 1 \end{cases}$	$t+lt, t \in \mathbb{R}.$
© <i>Канонічне</i> рівняння прямої	$\frac{x-x_0}{l} =$	$=\frac{y-y_0}{m}$
4 Рівняння прямої, що проходить через дві точки $M_1(x_1;y_1)$ та $M_2(x_2;y_2)$	$\frac{x - x_1}{x_2 - x_1} =$	$=\frac{y-y_1}{y_2-y_1}$
© Загальне рівняння прямої		$\overline{r_0}$ M_0 \overline{n}
$\overline{n} = egin{pmatrix} a \\ b \end{pmatrix}$ — нормальний вектор прямої L	ax + by + c = 0	$ \begin{array}{c c} \overline{j} & \overline{r} & M \\ \overline{i} & \overline{i} \end{array} $
$m{\Theta}$ Рівняння прямої, що проходить через точку M_0 перпендикулярно до вектора \overline{n}	$(\overline{M}_0M,$	$\overline{n}) = 0$
№ Рівняння прямої у відрізках	$\frac{x}{\tilde{a}} + \frac{y}{\tilde{b}} = 1$	
Пряма перетинає осі координат у точках $A(\tilde{a};0),\ B(0;\tilde{b})$		\tilde{b} O \tilde{a} α x
3 Рівняння прямої з кутовим коефіцієнтом	y = kx + b	$k = \operatorname{tg} \alpha$

 $\cos \alpha, \cos \beta = \sin \alpha$ — напрямні косинуси нормального вектора прямої; p — віддаль від прямої до початку координат $(p \ge 0)$

 $\frac{|}{x\cos\alpha + y\sin\alpha - p = 0}$

3.6. Взаємне розташування прямих на площині

Прямі $L_1(M_1; \overline{s_1})$ і $L_2(M_2; \overline{s_2})$:		
• перетинні	$\overline{s}_1 \not \mid \overline{s}_2$	L_1 $\overline{\overline{s_2}}$ L_2 $\overline{\overline{s_1}}$
перпендикулярні	$\overline{s}_1 \perp \overline{s}_2$	$\begin{array}{c c} \overline{s_1} & \overline{s_2} \\ \hline & \overline{l_1} \\ \hline & L_1 \end{array}$
🛮 паралельні (різні)	$\overline{s_1} \parallel \overline{s_2} \not \mid \overline{M_1 M_2}$	$\begin{array}{c c} \overline{s_2} \\ \hline L_2 & M_2 & \overline{s_1} \\ \hline L_1 & M_1 \end{array}$
© збіжні	$\overline{s}_{\!\scriptscriptstyle 1} \parallel \overline{s}_{\!\scriptscriptstyle 2} \mid$	$\mid \overline{M_1 M_2}$
Прямі $L_1: a_1x + b_1y + c_1 = 0$ та $L_2: a_2x$	$c + b_2 y + c_2 = 0:$	
• перетинні	$\overline{n}_{\!_1}$)	$\sqrt{\overline{n}_2}$
перпендикулярні	$\overline{n}_1 \perp \overline{n}_2$	
6 паралельні (різні)	$\overline{n}_1 \parallel \overline{n}_2, \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	
6 збіжні	$\overline{n}_1 \parallel \overline{n}_2, \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	
Прямі $L_1: y = k_1 x + b_1$ і $L_2: y = k_2 x + b_1$	- b ₂ :	
👽 перетинні	k_1 =	$\neq k_2$
перпендикулярні	$k_1 k_2 = -1$	
🛭 паралельні (різні)	$k_1 = k_2, b_1 \neq b_2$	
9 збіжні	$k_1 = k_2$	$b_1 = b_2$
© <i>Неповні</i> рівняння прямої $(0 \text{ означає}, що відповідний коефіцієнт нульовий, а \emptyset — відповідний коефіцієнт ненульовий)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\emptyset 0 \emptyset $L \parallel Oy$

3.7. Взаємне розташування площин

Площини $P_1: a_1x + b_1y + c_1z + d_1 = 0$ та $P_2: a_2x + b_2y + c_2z + d_2 = 0$:	
• перетинаються вздовж прямої	$\overline{n}_1 \not \overline{n}_2$
перпендикулярні	$\overline{n}_1 \perp \overline{n}_2$ P_1 \overline{n}_2 \overline{n}_2
2 паралельні (різні)	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}$ $\frac{\overline{n}_2}{\overline{n}_1}$ P_1
3 збіжні	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$
$m{\Phi}$ Рівняння <i>жмутка площин</i> , які проходять через пряму L $ \begin{cases} a_1x+b_1y+c_1z+d_1=0,\\ a_2x+b_2y+c_2z+d_2=0 \end{cases}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

9 *Неповні* рівняння площини (0 означає, що відповідний коефіцієнт нульовий, а \emptyset — відповідний коефіцієнт ненульовий).

a b c d	Висновок	a b c	d	Висновок
0 0 0 Ø	$P = \emptyset$		0	P = Oyz
0 0 Ø 0	P = Oxy			$P \parallel Oyz$
0000	$P \parallel Oxy$			$Oy \subset P$
0 Ø 0 0	P = Oxz	\emptyset 0 \emptyset		
0 Ø 0 Ø	$P \parallel Oxz$	\emptyset \emptyset 0	0	$Oz \subset P$
0 Ø Ø 0	$Ox \subset P$	\emptyset \emptyset 0		
0 Ø Ø Ø	$P \parallel Ox$	ø ø ø	0	$O \in P$

3.8. Взаємне розташування прямих у просторі

Прямі $L_1(M_1; \overline{s_1})$ і $L_2(M_2; \overline{s_2})$:		
• мимобіжні	$(\overline{M_1 M_2}, \overline{s_1}, \overline{s_2}) \neq 0$	
Через мимобіжні прямі не можна провести площину.		
2 перетинні	$(\overline{M_1 M_2}, \overline{s_1}, \overline{s_2}) = 0,$	L
Через перетинні і різні паралельні прямі можна провести єдину площину.	$\overline{s}_1 \not \mid \overline{s}_2$	
© паралельні (різні)	$\boxed{\overline{s_1} \parallel \overline{s_2} \not \mid \overline{M_1 M_2}}$	
Через кожну точку простору проходить одна й лише одна пряма паралельна заданій.		L_1 L_2
4 <i>збіжні</i> (рівняння задають одну й ту саму пряму)	$\overline{s}_1 \parallel \overline{s}_2 \mid$	$\mid \overline{M_1 M_2}$

3.9. Взаємне розташування прямої і площини

Площина $P \perp \overline{n}$ і пряма $L(M_0; \overline{s})$:		
• перетинаються в одній точці	$\overline{n} \not\perp \overline{s}$	\overline{n} \overline{s} $/$ L P M
перпендикулярні	$\overline{n}\parallel \overline{s}$	\overline{n} L \overline{s} D
2 паралельні (без спільних точок)	$\overline{n} \perp \overline{s}, M_0 \not\in P$	\overline{n} M_0 L
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{n} \perp \overline{s}, M_0 \in P$	\overline{n} \overline{s} M_0 L

3.10. Кути між лінійними об'єктами

 $oldsymbol{0}$ Кут між *прямими* $L_1(M_1;\overline{s}_1)$ та $L_2(M_2;\overline{s}_2)$

$$\cos(\widehat{L_1,L_2}) = \cos(\widehat{\overline{s_1},\overline{s_2}}) = \frac{(\overline{s_1},\overline{s_2})}{\left|\,\overline{s_1}\,\right|\,\left|\,\overline{s_2}\,\right|}$$

2 Кут між *прямими* $L_1 \perp \overline{n}_1$ та

 $L_2 \perp \overline{n}_2$ на площині

$$\cos(\widehat{L_1,L_2}) = \cos(\widehat{\overline{n}_1,\overline{n}_2}) = \frac{(\overline{n}_1,\overline{n}_2)}{\left|\,\overline{n}_1\,\right|\,\left|\,\overline{n}_2\,\right|}$$

8 Кут між *прямими* $L_1: y = k_1 x + b_1$

та $L_2: y = k_2 x + b_2$ на площині

$$\operatorname{tg}(\widehat{L_1, L_2}) = \left| \frac{k_2 - k_1}{1 + k_1 k_2} \right|$$

4 Кут між *площинами* $P_1 \perp \overline{n}_1$ та

 $P_2 \perp \overline{n}_2$

$$\cos(\widehat{P_1,P_2}) = \cos(\widehat{\overline{n}_1,\overline{n}_2}) = \frac{(\overline{n}_1,\overline{n}_2)}{\left|\overline{n}_1\right|\left|\overline{n}_2\right|}$$

 $lacksymbol{\circ}$ Кут між *прямою* $L \parallel \overline{s}$ і *площиною*

 $P \perp \bar{n}$

$$\sin(\widehat{L,P}) = \left|\cos(\widehat{\overline{n},\overline{s}})\right| = \frac{\left|(\overline{n},\overline{s})\right|}{\left|\overline{n}\right|\left|\overline{s}\right|}$$

3.11. Віддалі між лінійними об'єктами

 $m{\Phi}$ Віддаль $\emph{від}$ точки M_0 до прямої $L(M'; \overline{s})$

$$d(M_0,L) = \frac{\left| [\overline{M'\!M_0}, \overline{s}] \right|}{\left| \overline{s} \right|}$$

2 Віддаль між *паралельними прямими* $L_1(M_1; \overline{s}_1)$ та $L_2(M_2; \overline{s}_2)$

(віддаль від точки однієї прямої до іншої прямої)

$$d(L_1,L_2) = \frac{\left|\left[\overline{M_1}\overline{M_2},\overline{s_1}\right]\right|}{\left|\left.\overline{s_1}\right.\right|}$$

$oldsymbol{3}$ Віддаль між *мимобіжними прямими* $L_1(M_1; \overline{s}_1)$ та $L_2(M_2; \overline{s}_2)$

$$d(L_1,L_2) = \frac{\left|(\overline{M_1}\overline{M_2},[\overline{s_1},\overline{s_2}])\right|}{\left|[\overline{s_1},\overline{s_2}]\right|}$$

$oldsymbol{\Phi}$ Віддаль від точки M_0 до прямої

$$L:ax+by+c=0$$
 на площині Oxy

$$d(M_0, L) = \frac{\left| ax_0 + by_0 + c \right|}{\sqrt{a^2 + b^2}}$$

$oldsymbol{\mathfrak{G}}$ Віддаль $oldsymbol{\mathit{eid}}$ точки M_0 до площини

$$P: ax + by + cz + d = 0$$

$$d(M_0, P) = \frac{\left| ax_0 + by_0 + cz_0 + d \right|}{\sqrt{a^2 + b^2 + c^2}}$$

Віддалю між паралельними площинами називають віддаль від будь-якої точки однієї площини до іншої площини.

$oldsymbol{6}$ Відхилення **точки** M_0 від

площини

$$P: x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$$

$$\delta(M_0, P) =$$

$$= x_0 \cos \alpha + y_0 \cos \beta + z_0 \cos \gamma - p$$

$$d(M_0, P) = \left| \delta(M_0, P) \right|$$

Початок координат O справджує умову $\delta(O,P) \leq 0$.

$m{O}$ Відхилення точки M_0 від прямої

$$P:x\cos\alpha+y\sin\alpha-p=0$$

на площині Oxy

$$\delta(M_0, L) = x_0 \cos \alpha + y_0 \sin \alpha - p$$
$$d(M_0, L) = \left| \delta(M_0, L) \right|$$

Початок координат O справджує умову $\delta(O,L) \leq 0$.

3.12. Еліпс

О <i>Канонічне</i> рівняння е.	еліпса <i>у ПДСК</i>	
---------------------------------------	----------------------	--

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b > 0$$

$$\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases} t \in [0, 2\pi)$$

3 Характеристики еліпса:

а — велика піввісь;

b — мала піввісь;

$$c = \sqrt{a^2 - b^2};$$

 $2c - \phi$ окусна віддаль;

$$\varepsilon = \frac{c}{a}$$
 — ексцентриситет;

точки $F_{1,2}(\mp c;0)$ — фокуси;

$$r_{1,2}=a\pm arepsilon x$$
 — фокальні радіуси;

прямі
$$x=\pm\frac{a}{\varepsilon}, \varepsilon\neq 0$$
 — директриси;

$$p = \frac{b^2}{a}$$
 — фокальний параметр

Фокальна властивість еліпса.

Еліпс ϵ множиною точок, сума віддалей яких від фокусів стала і більша за віддаль між фокусами.

$$r_1 + r_2 = 2a > 2c$$

9 Фокально-директоріальна властивість еліпса.

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon < 1$$

6 Оптична властивість еліпса.

Якщо помістити в один з фокусів еліпса точкове джерело світла, то всі промені після відбиття від еліпса зійдуться в іншому його фокусі.

7 Рівняння еліпса у *полярній системі координат*

$$\rho = \frac{p}{1 - \varepsilon \cos \varphi},$$
$$\varepsilon < 1$$

$$\begin{cases} x = a \cos t, \\ y = a \sin t, \\ t \in [0; 2\pi) \end{cases}$$

 $x^2 + y^2 = a^2$

3.13. Гіпербола

О *Канонічне* рівняння гіперболи у *ПДСК*

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a, b > 0$$

2 *Параметричні* рівняння гіперболи

$$x = \pm a \operatorname{ch} t,$$

$$y = b \operatorname{sh} t, t \in \mathbb{R}$$

🛢 Характеристики гіперболи:

 $a - \partial i$ йсна піввісь;

b — уявна піввісь;

$$c = \sqrt{a^2 + b^2};$$

 $2c - \phi$ окусна віддаль;

$$\varepsilon = \frac{c}{a}$$
 — ексцентриситет;

точки $F_{1,2}(\mp c;0)$ — фокуси;

$$r_{1,2}=a\pm arepsilon x$$
 — фокальні радіуси;

$$y = \pm \frac{b}{a}x$$
 — асимптоти;

прямі
$$x = \pm \frac{a}{\varepsilon}$$
 — директриси;

$$p=rac{b^2}{a}$$
 — фокальний параметр

• Фокальна властивість гіперболи.

Гіпербола ϵ множиною точок, модуль різниці віддалей яких від фокусів ϵ сталою величиною, меншою за віддаль між фокусами.

$$\left| r_1 - r_2 \right| = 2a < 2c$$

9 Фокально-директоріальна властивість гіперболи.

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon > 1$$

6 Оптична властивість гіперболи.

Якщо помістити в один з фокусів гіперболи точкове джерело світла, то кожний промінь після відбиття від гіперболи начебто виходить з іншого фокуса.

$$\rho = \frac{p}{1 - \varepsilon \cos \varphi},$$
$$\varepsilon > 1$$

3.14. Парабола

О *Канонічне* рівняння параболи у *ПДСК*

$$y^2 = 2px, p > 0$$

2 Характеристики параболи:

$$p$$
 — фокальний параметр;

$$\varepsilon = 1$$
 — ексцентриситет;

$$\frac{p}{2}$$
 — фокусна віддаль;

точка
$$\left(\frac{p}{2};0\right)$$
 — фокус;

точка
$$A(0;0)$$
 — вершина;

$$\begin{array}{c|c}
\hline
-\frac{p}{2} & O & \frac{p}{2} \\
D & & \end{array}$$

пряма
$$x = -\frac{p}{2}$$
 — директриса;

$$r=x+rac{p}{2}$$
 — фокальний радіус

3 Фокально-директоріальна властивість параболи.

Парабола ϵ множиною точок, які рівновіддалені від фокуса і директриси.

$$\frac{r}{d} = \varepsilon = 1$$

4 Оптична властивість параболи.

Якщо помістити у фокус параболи точкове джерело світла, то всі промені, відбиті від параболи, спрямуються паралельно фокальній осі параболи

$$\rho = \frac{p}{1 - \cos \varphi}$$

54

3.15. Еліпс, парабола, гіпербола при перетвореннях систем координат

• Еліпс

(повертання)

(паралельне перенесення)

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, a \ge b > 0,$$

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1, a > b > 0$$

2 Парабола

(повертання, переорієнтування осей)

(паралельне перенесення)

$$y^{2} = -2px, x^{2} = 2py,$$

$$x^{2} = -2py, p > 0,$$

$$(y - y_0)^2 = 2p(x - x_0), p > 0,$$

8 Гіпербола

(повертання, переорієнтування осей)

(паралельне перенесення)

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1, b, a > 0,$$

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1, a, b > 0,$$

3.16. Лінії 2-го порядку. Інваріанти

О Загальне рівняння лінії (геометричного образу) **2-го порядку** в ПДСК

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + +2a_{13}x + 2a_{23}y + a_{33} = 0$$

2 Інваріанти рівняння лінії 2-го порядку

$$J_1 \, = \, a_{11} \, + \, a_{22}, \ \, J_2 \, = \left| \begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix} \right|,$$

$$J_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix},$$

$$a_{21} = a_{12}, a_{31} = a_{13}, a_{32} = a_{23}$$

3 Лінія, що має алгебричне рівняння n-го степеня у ПДСК, у будь-якій іншій ПДСК має також алгебричне рівняння n-го степеня.

3.17. Власні числа і власні вектори матриці

О Характеристичний многочлен матриці A	$\begin{vmatrix} A - \lambda E_n = \\ a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$	
2 Характеристичне рівняння матриці <i>A</i>	$\left A - \lambda E_n\right = 0$	
© Власний вектор і власне число матриці. Ненульовий стовпець \vec{x} називають власним вектором квадратної матриці $A_{n \times n}$, якщо існує таке число λ , що $A\vec{x} = \lambda \vec{x}$. Число λ називають власним числом матриці A , що відповідає власному векторові \vec{x} .	① Власні числа матриці є коренями характеристичного многочлена $\begin{vmatrix} A - \lambda E_n \end{vmatrix}$ цієї матриці. ② Власні вектори є ненульовими розв'язками однорідної СЛАР $(A - \lambda E_n)\vec{x} = \vec{0}.$	
Ф Теорема Гамільтона — Келі	Будь-яка матриця є коренем свого характеристичного рівняння.	

3.18. Класифікації ліній 2-го порядку

$oldsymbol{0}$ Еліптичний тип $J_2>0$

 $J_3 < 0$ еліпс

 $J_3>0$ уявний еліпс

$$J_3=0$$
 точка

2 Гіперболічний тип

$$J_2 < 0$$

 $J_3 \neq 0$ гіпербола

 $J_3 = 0$ пара перетинних прямих

§ Параболічний тип

$$J_2 = 0$$

 $J_3 \neq 0$ парабола

 $J_3 = 0$:

 $(a_{31})^2 - a_{11}a_{33} > 0$ — пара паралельних прямих;

$$(a_{31})^2 - a_{11}a_{33} = 0$$
 — пара збіжних прямих;

 $(a_{31})^2 - a_{11}a_{33} < 0$ — пара уявних

паралельних прямих (порожня множина).

Еліпс, парабола, гіпербола — криві 2-го порядку.

3.19. Поверхні 2-го порядку

Еліпсоїд

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Еліптичний параболоїд

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$

Гіперболічний параболоїд

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$$

Еліптичний циліндр

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Параболічний циліндр

$$y^2 = 2px$$

Гіперболічний циліндр

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Конус

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

Однопорожнинний гіперболоїд

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Двопорожнинний гіперболоїд

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Сфера

$$x^2 + y^2 + z^2 = a^2$$

Гіперболічний параболоїд і однопорожнинний гіперболоїд — лінійчаті поверхні.

3.20. Деякі визначні криві

Спіраль Архімеда

$$\rho = a\varphi$$

a > 1

Логарифмічна спіраль

$$\rho = a^{\varphi}$$

Гіперболічна спіраль

$$\rho = \frac{a}{\varphi}$$

Кардіоїда

$$\rho = 2a(\cos \varphi + 1)$$

Коло
$$x^2 + y^2 = 2ay$$
,

$$\rho = 2a\sin\varphi, a > 0$$

Коло
$$x^2 + y^2 = 2ax$$
,

$$\rho = 2a\cos\varphi, a > 0$$

Трипелюсткова роза

$$\rho = a\sin 3\varphi$$

Трипелюсткова роза

$$\rho = a\cos 3\varphi$$

Лемніската Бернуллі

$$(x^2 + y^2)^2 = a^2(x^2 - y^2),$$

 $\rho = a\sqrt{\cos 2\varphi}$

Кучер Аньєзі

$$y = \frac{8a^3}{x^2 + 4a^2}$$

Астроїда

$$x^{2/3} + y^{2/3} = a^{2/3},$$

$$\begin{cases} x = a\cos^3 t, \\ y = a\sin^3 t, \end{cases} t \in [0; 2\pi)$$

Циклоїда

$$\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t) \end{cases}$$

Модуль 1. ЛІНІЙНА АЛГЕБРА

1. Матриці

Навчальні задачі

1.1. Визначити розмір матриці $A = \begin{pmatrix} 4 & -7 & 5 & 0 \\ -6 & 8 & -1 & 1 \end{pmatrix}$. Виписати всі рядки і стовпці матриці, елементи a_{14} та a_{22} .

Розв'язання. [1.1.1.] Матриця A має розмір 2×4 . ^① Рядки матриці A:

$$ar{a}_1 = (4 - 7 5 0), ar{a}_2 = (-6 8 - 1 1).$$

Стовпці матриці A:

$$\vec{a}_1 = \begin{pmatrix} 4 \\ -6 \end{pmatrix}, \vec{a}_2 = \begin{pmatrix} -7 \\ 8 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} 5 \\ -1 \end{pmatrix}, \vec{a}_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$a_{14} = 0, a_{22} = 8.$$
©

Коментар. 1 Матриця A має два рядки і чотири стовпці.

 $\ \ \,$ Елемент a_{14} розташований у 1-му рядку і 4-му стовпцеві. Елемент a_{22} розташований у 2-му рядку і 2-му стовпцеві.

1.2. Задано матриці:

$$A = \begin{pmatrix} 1 & -3 & -2 \\ 2 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 7 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix}.$$

1.2.1. Визначити при яких значеннях параметрів x та y виконано рівність (x-2)

$$\begin{pmatrix} x & -2 \\ 3 & y \end{pmatrix} = C.$$

Розв'язання. [1.2.1.]
$$\begin{pmatrix} x & -2 \\ 3 & y \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix} \Rightarrow \begin{cases} x = 1, \\ y = 0. \end{cases}$$

1.2.2. Знайти матрицю A + B.

Розв'язання. [1.2.2.]

$$A + B = \begin{pmatrix} 1 & -3 & -2 \\ 2 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 7 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 + 7 & -3 + 1 & -2 + 0 \\ 2 + 0 & 1 + (-1) & 0 + 2 \end{pmatrix} = \begin{pmatrix} 8 & -2 & -2 \\ 2 & 0 & 2 \end{pmatrix}.$$

Коментар. 1 Матриці A та B однакового розміру 2×3 — їх можна додавати і віднімати. Щоб додати матриці A та B (того самого розміру), треба додати їхні відповідні елементи.

1.2.3. Знайти матрицю A - B.

Розв'язання. [1.2.2.]

$$\begin{split} A - B &= \begin{pmatrix} 1 & -3 & -2 \\ 2 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 7 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix} = \\ &= \begin{pmatrix} \frac{6i\partial\text{Himaemo BidnoBidhi елементи}}{2 - 0 & 1 - (-1) & 0 - 2} \end{pmatrix} = \begin{pmatrix} -6 & -4 & -2 \\ 2 & 2 & -2 \end{pmatrix}. \end{split}$$

Коментар. 1 Щоб відняти від матриці A матрицю B (того самого розміру), від кожного елемента матриці A треба відняти відповідний елемент матриці B.

1.2.4. Знайти матрицю A + C.

Розв'язання. [1.2.2.] Оскільки матриця A розміром 2×3 , а матриця C розміром 2×2 , то їх додавати не можна.

1.2.5. Знайти матрицю 3A.

Розв'язання. [1.2.3.]

$$3A = 3 \cdot \begin{pmatrix} 1 & -3 & -2 \\ 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 \cdot 1 & 3 \cdot (-3) & 3 \cdot (-2) \\ 3 \cdot 2 & 3 \cdot 1 & 3 \cdot 0 \end{pmatrix} = \begin{pmatrix} 3 & -9 & -6 \\ 6 & 3 & 0 \end{pmatrix}.$$

Кожен елемент

Коментар. ① Щоб помножити матрицю на число, треба кожен її елемент помножити на це число.

1.3. Задано матриці:

$$A = \begin{pmatrix} 1 & -3 & -2 \\ 2 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 7 & 0 \\ 1 & -1 \\ 0 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix}.$$

1.3.1. Знайти матрицю B^{T} .

Розв'язання. [1.5.1.]

$$B^{T} = \begin{pmatrix} 7 & 0 \\ 1 & -1 \\ 0 & 2 \end{pmatrix}^{T} = \begin{pmatrix} 7 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix}.$$
міняємо рядки

Коментар. 1 Щоб транспонувати матрицю B, треба поміняти її стовпці на рядки і записати їх у тому самому порядку.

1.3.2. Знайти добуток $\vec{a}_1 \cdot \vec{b}_1$.

Розв'язання. [1.4.1, 1.4.2.] Рядок \bar{a}_1 завдовжки 3 узгоджений із стовпцем заввишки 3.

$$\vec{a}_1 \cdot \vec{b}_1 \stackrel{\odot}{=} \begin{pmatrix} 1 & -3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} =$$

перемножуємо відповідні елементи і додаємо добутки

$$= 1 \cdot 7 + (-3) \cdot 1 + (-2) \cdot 0 = 4.$$

Коментар. \bigcirc Щоб помножити рядок на узгоджений з ним стовпець, треба перемножити їхні відповідні елементи і добутки додати. Дістаємо квадратну матрицю 1-го порядку, яку ототожнюють з числом — єдиним її елементом.

1.3.3. Знайти матрицю AB.

Розв'язання. [1.4.1, 1.4.3, 1.4.4.]

[Визначаємо можливість множення і розмір добутку.]

$$AB = egin{pmatrix} 1 & -3 & -2 \ 2 & 1 & 0 \end{pmatrix} egin{pmatrix} 7 & 0 \ 1 & -1 \ 0 & 2 \end{pmatrix} \stackrel{\textcircled{\tiny 0}}{=} egin{pmatrix} d_{11} & d_{12} \ d_{21} & d_{12} \end{pmatrix}.$$
матриці множать за правилом "рядок на стовпець"

[Знаходимо елементи добутку.]

$$\begin{split} d_{11} &= \overleftarrow{a}_1 \cdot \overrightarrow{b}_1 = \begin{pmatrix} 1 & -3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} = 4; \\ d_{12} &= \overleftarrow{a}_1 \cdot \overrightarrow{b}_2 = \begin{pmatrix} 1 & -3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} = -1; \\ d_{21} &= \overleftarrow{a}_2 \cdot \overrightarrow{b}_1 = \begin{pmatrix} 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} = 15; \\ d_{22} &= \overleftarrow{a}_2 \cdot \overrightarrow{b}_2 = \begin{pmatrix} 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} = -1. \end{split}$$

$$AB = \begin{pmatrix} 4 & -1 \\ 15 & -1 \end{pmatrix}.$$

[Множення матриць записують ще за схемою Фалька.]

Коментар. ① Матриця A розміром 2×3 узгоджена з матрицею B розміром 3×2 . Добуток D = AB буде матрицею 2×2 .

$$\mathbb{Q}\left(1 \quad -3 \quad -2\right) \cdot \begin{pmatrix} 7\\1\\0 \end{pmatrix} = 1 \cdot 7 + (-3) \cdot 1 + (-2) \cdot 0 = 4.$$

$$\textcircled{4} \begin{pmatrix} 2 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 1 \\ 0 \end{pmatrix} = 2 \cdot 7 + 1 \cdot 1 + 0 \cdot 0 = 15.$$

1.3.4. Знайти матрицю BA.

Розв'язання. [1.4.1, 1.4.4.]

Коментар. \oplus Матриця B розміром 3×2 узгоджена з матрицею A розміром 2×3 . Добуток D = BA буде матрицею 3×3 .

1.3.5. Знайти матрицю AC.

Розв'язання. [1.4.1.]

матриця
$$A$$
 матриця C 2×3 2×2 нерівні

Оскільки матриці A і C — неузгоджені, то добуток AC не існує.

1.3.6. Знайти матрицю C^2 .

Розв'язання. [1.4.8.]

$$C^{2} = \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} -5 & -2 \\ 3 & -6 \end{pmatrix}.$$

Коментар. 1 Квадратну матрицю завжди можна помножити саму на себе. За означенням $C^2 = C \cdot C$.

1.3.7. Знайти матрицю f(C), якщо $f(x) = 2x^2 - x + 3$.

Розв'язання. [1.4.9.]

$$\begin{split} f(C) &= 2C^2 - C + 3E_2 = \\ &= 2 \begin{pmatrix} -5 & -2 \\ 3 & 6 \end{pmatrix} - \begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix} + 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -8 & -2 \\ 3 & 15 \end{pmatrix}. \end{split}$$

Коментар. ① Підставляємо замість x матрицю C, а замість сталої 3 — матрицю $3E_2$ (E_2 — одинична матриця 2-го порядку — того ж порядку, що й матриця C). ② Матрицю C^2 знайдено в задачі 1.3.6.

Задачі для аудиторної і домашньої роботи

1.4. Якого розміру матриця $A = \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$? Чому дорівнюють елементи a_{21} та a_{32} ? Які індекси має елемент d?

1.5. Визначте розмір матриці A, випишіть усі рядки і стовпці матриці й елементи a_{23} та a_{32} :

1)
$$A = \begin{pmatrix} 4 & -7 & 5 \\ -6 & 8 & -1 \end{pmatrix};$$
 2) $A = \begin{pmatrix} -6 & 4 & -1 & 0 \\ -9 & 0 & 1/2 & 2 \end{pmatrix};$
3) $A = \begin{pmatrix} 1 & -2 & 3 \\ -4 & 5 & -6 \\ 7 & -8 & 9 \end{pmatrix};$ 4) $A = \begin{pmatrix} -1 & 0 \\ 3 & 4 \\ -7 & 5 \end{pmatrix}.$

1.6. Визначте які з матриць

$$A = \begin{pmatrix} 3 & -2 \\ 4 & 0 \end{pmatrix}, B = \begin{pmatrix} 5 & 4 & -3 & 2 \\ 0 & 3 & 1 & 3 \\ 7 & -1 & 0 & 4 \end{pmatrix}, C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

є квадратними, і вкажіть порядок кожної квадратної матриці. Які елементи утворюють головну і побічну діагоналі цих матриць?

1.7. Визначте, яка з матриць ϵ верхньою трикутною, нижньою трикутною, діагональною:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -6 & 0 \\ 3 & 4 & 5 \end{pmatrix}, C = \begin{pmatrix} 1 & 4 & -5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{pmatrix}.$$

- **1.8.** Чи будуть одиничними матриці: 1) $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$; 2) $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; 3) $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$? Запишіть одиничну матрицю 4-го порядку.
- 1.9. Визначте, до якого типу належать матриці:

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}, B = \begin{pmatrix} -1 & 2 \\ 0 & 5 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$D = \begin{pmatrix} 2 & 7 & -6 \\ 7 & -1 & 0 \\ -6 & 0 & 3 \end{pmatrix}; F = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, G = (1 \ 2 \ 3).$$

1.10. Визначте, при яких значеннях x, y та z рівні матриці:

1)
$$\begin{pmatrix} 5 & x \end{pmatrix} = \begin{pmatrix} y & -3 \end{pmatrix};$$
 2) $\begin{pmatrix} 6x \\ 25 \end{pmatrix} = \begin{pmatrix} -9 \\ 5y \end{pmatrix};$

3)
$$\begin{pmatrix} 3 & 2x \\ y & -8 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & -8 \end{pmatrix};$$
 4) $\begin{pmatrix} x-1 & 4 \\ y+3 & -7 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ -2 & -7 \end{pmatrix};$

$$5) \begin{pmatrix} x^2 & 1 & z \\ 2 & 3 & x \end{pmatrix} = \begin{pmatrix} -x & 1 & 4 \\ 2 & y & -1 \end{pmatrix}; \qquad 6) \begin{pmatrix} 1 & 4 & 3 \\ x & 2 & 4 \\ 9 & 1 & z \end{pmatrix} = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 2 & 4 \\ y & 1 & 0 \end{pmatrix}.$$

- **1.11.** Чи можна додати дві матриці розмірами 2×3 та 3×1 ? Чи можна від матриці відняти ту саму матрицю? Що дістанемо?
- **1.12.** Для яких матриць означено добуток AB? Чи можна помножити рядок завдовжки n на стовпець заввишки n? Як обчислити елементи матриці AB?
- **1.13.** Чи можна помножити матрицю розміром 2×3 на матрицю такого самого розміру? У якому разі існують добутки AB та BA? У якому разі існує добуток AA?
- **1.14.** Чи правдива тотожність AB = BA? Чи можлива рівність AB = O, якщо A та B ненульові матриці?
- **1.15.** Задано матриці $A_{1\times 3}, B_{4\times 1}, C_{3\times 5}$. Чи існують добутки:
 - 1) AB; 2) AC; 3) BA; 4) CA; 5) ABC?
- **1.16.** Визначте параметри m та n, якщо:

1)
$$A + X_{m \times n} = B_{2 \times 3};$$
 2) $A - X_{m \times n} = B_{3 \times 4};$

3)
$$3X_{m\times n} = A_{4\times 3};$$
 4) $-2X_{m\times n} = A_{2\times 2};$

5)
$$A_{5\times 9}X_{m\times n} = B_{5\times 1};$$
 6) $A_{5\times m}X_{7\times n} = B_{5\times 6};$

7)
$$B_{m \times n} = (A_{3 \times 2})^T$$
; 8) $B_{5 \times n} = (A_{4 \times m})^T$.

- **1.17.** Нехай $A = A_{m \times n}$. Які розміри будуть у матриці A^T ? Вкажіть номери рядка і стовпця на перетині яких стоїть елемент a_{ij} в матриці A^T .
- **1.18.** Чи для кожної матриці існує транспонована матриця? Чому дорівнює матриця $(A^T)^T$? Чи можуть збігатись матриці A та A^T ?

1.19. Задано матриці:

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ -2 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 4 & 0 \\ 5 & 7 \end{pmatrix},$$

$$D = \begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 4 & -1 \end{pmatrix}, L = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 5 & 6 \\ 1 & 4 & 3 \end{pmatrix}, M = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 2 & 1 \\ 3 & 2 & -1 \end{pmatrix}.$$

Знайдіть:

1)
$$\vec{a}_1 + \vec{a}_2, \vec{a}_1 - \vec{a}_2, \vec{a}_2 - \vec{a}_1, 2\vec{a}_1 + 3\vec{a}_2, \alpha \vec{a}_1 + \beta \vec{a}_2;$$

2)
$$\bar{b}_1 + \bar{b}_2, \bar{b}_1 - \bar{b}_2, \bar{b}_2 - \bar{b}_1, 3\bar{b}_2 - 2\bar{b}_1, \alpha\bar{b}_1 + \beta\bar{b}_2;$$

3)
$$A + B, A - B, 2A + 3B, A + C, A - \lambda E_2$$
;

4)
$$C + D, C - D, D - C, D - B, B - \lambda E_2$$
;

5)
$$L + M, 3L - M, L + C, L - \lambda E_3$$
;

6)
$$L - M, 2L + 3M, M - D, M - \lambda E_3$$
;

7)
$$\overleftarrow{a}_1 \cdot \overrightarrow{a}_1, \overrightarrow{a}_1 \cdot \overleftarrow{a}_1, A \overrightarrow{a}_1, \overleftarrow{a}_1 A;$$

8)
$$\vec{b}_1 \cdot \vec{b}_1, \vec{b}_1 \cdot \vec{b}_1, B\vec{b}_1, \vec{b}_1B;$$

9)
$$AB, A^2, A^TB$$
;

10)
$$BA, B^2, AB^T$$
;

11)
$$A^T B^T, (AB)^T;$$

12)
$$B^T A^T, (BA)^T;$$

13)
$$AC, CA, C^TA$$
;

14)
$$BD, DB, D^TB$$
;

15)
$$CC^{T}, C^{T}C, C^{2}, CD;$$

16)
$$DD^{T}, D^{T}D, D^{2}, DC;$$

17)
$$\vec{c}_1 L, L \vec{c}_1, L M, L^2, C L, L C$$
;

18)
$$\vec{d}_1 M, M \vec{d}_1, M L, M^2, D M, M D$$
;

19)
$$\vec{c}_1 L \vec{c}_1$$
, CLA, ACL;

20)
$$\vec{d}_1 M \vec{d}_1$$
, DMB, BDM, MDB.

1.20. Задано матриці $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

Знайдіть матрицю X із рівняння:

1)
$$3A + \frac{1}{2}X = B;$$

$$2) \ 2A - 5X = B.$$

Знайдіть матриці X та Y із системи:

$$3) \begin{cases} X + Y = A, \\ 2X + 3Y = B; \end{cases}$$

$$4) \begin{cases} 2X - 3Y = A, \\ 3X - 2Y = B. \end{cases}$$

1.21. Задано матриці A, B та C. Знайдіть найраціональнішим способом добуток ABC, якщо:

1)
$$A = \begin{pmatrix} 4 & 2 & 9 & -7 \\ 8 & 3 & 11 & 0 \end{pmatrix}, B = \begin{pmatrix} 4 \\ 3 \\ -2 \\ 8 \end{pmatrix}, C = (-1 \ 9 \ 3 \ 6);$$

- 2) $A = \begin{pmatrix} 3 & 12 \\ 4 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 & 3 \\ -2 & 4 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}.$
- **1.22.** Для матриць $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}, B = \begin{pmatrix} -1 & 0 \\ 1 & 4 \end{pmatrix}$ знайдіть найраціональнішим способом:

1)
$$A + B - (A^T + B^T);$$

$$2)\left(-\frac{1}{2}B^T-B\right)^T.$$

1.23. Знайдіть матрицю:

$$1) \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}^3;$$

$$2) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}^{3};$$

3)
$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}^n$$
, $a \in \mathbb{R}, n \in \mathbb{N}$;

4)
$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}^n$$
, $\lambda \in \mathbb{R}$, $n \in \mathbb{N}$.

1.24. Задано многочлен $f(x) = x^2 - 5x - 2$. Знайдіть значення матричного многочлена f(A):

$$1) A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix};$$

$$2) A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix};$$

3)
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}$$
;

$$4) \ A = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 2 & 1 \\ 3 & -3 & 2 \end{pmatrix}.$$

1.25. Переконайтесь, що матриця A справджує рівняння:

1)
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{pmatrix}, A^3 - 9A^2 + 18A = O;$$

2)
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end{pmatrix}, A^3 + 2A^2 - A - 2E_3 = O.$$

1.26. Знайдіть всі матриці, переставні з матрицею:

1)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
; 2) $A = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$.

1.27. Розв'яжіть матричне рівняння:

1)
$$\left(3A^T + 2 \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}\right)^T = \begin{pmatrix} 8 & 0 \\ 3 & 1 \end{pmatrix};$$

2)
$$\left(2A^{T} - 5\begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}\right)^{T} = 4A - 9\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$$
.

Відповіді

1.4. Матриця A розміром 3×2 . $a_{21} = c, a_{32} = f$. $d = a_{22}$.

1.5. 1)
$$2 \times 3, \overline{a}_1 = (4 \quad -7 \quad 5), \overline{a}_2 = (-6 \quad 8 \quad -1),$$

$$\vec{a}_1 = \binom{4}{-6}, \vec{a}_2 = \binom{-7}{8}, \vec{a}_3 = \binom{5}{-1}, a_{23} = -1, a_{32} - \text{ He ichye};$$

2)
$$2 \times 4, \overline{a}_1 = (-6 \ 4 \ -1 \ 0), \overline{a}_2 = (-9 \ 0 \ 1/2 \ 2),$$

$$\vec{a}_1 = \begin{pmatrix} -6 \\ -9 \end{pmatrix}, \vec{a}_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} -1 \\ 1/2 \end{pmatrix}, \vec{a}_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, a_{23} = \frac{1}{2}, a_{32} - \text{ He ichye};$$

3)
$$3 \times 3, \overline{a}_1 = \begin{pmatrix} 1 & -2 & 3 \end{pmatrix}, \overline{a}_2 = \begin{pmatrix} -4 & 5 & 6 \end{pmatrix}, \overline{a}_3 = \begin{pmatrix} 7 & -8 & 9 \end{pmatrix},$$

$$\vec{a}_1 = \begin{pmatrix} 1 \\ -4 \\ 7 \end{pmatrix}, \vec{a}_2 = \begin{pmatrix} -2 \\ 5 \\ -8 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} 3 \\ -6 \\ 9 \end{pmatrix}, a_{23} = -6, a_{32} = -8;$$

$$4) \ 3 \times 2, \overline{a}_1 = (-1 \quad 0), \overline{a}_2 = (3 \quad 4), \overline{a}_3 = (-7 \quad 5), \ \overrightarrow{a}_1 = \begin{pmatrix} -1 \\ 3 \\ -7 \end{pmatrix}, \overrightarrow{a}_2 = \begin{pmatrix} 0 \\ 4 \\ 5 \end{pmatrix},$$

 a_{23} — не існує, $a_{32} = 5$.

- **1.6.** A квадратна матриця порядку 2, головна діагональ: 3,0, побічна діагональ: -2,4; C квадратна матриця порядку 3, головна діагональ: c_{11},c_{22},c_{33} , побічна діагональ: c_{13},a_{22},a_{31} .
- **1.7.** Матриці A, C верхні трикутні; матриці A, B нижні трикутні; матриця A діагональна.
- **1.8.** Матриця C одинична матриця 2-го порядку; матриці A та B не ϵ одиничними.

$$E_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

1.9. A — діагональна матриця; B — верхня трикутна матриця; C — одинична матриця 3-го порядку; D — квадратна матриця; F — матриця-стовпець; G — матриця-рядок.

1.10. 1)
$$x = -3, y = 5$$
; 2) $x = -\frac{3}{2}, y = 5$; 3) $x = -1, y = 1$;

4)
$$x = 1, y = -5$$
; 5) $x = -1, y = 3, z = 4$;

6)
$$x = 2, y = 9, z = 0$$
.

- **1.11.** Матриці розмірами 2×3 та 3×1 додавати не можна. Від матриці можна відняти таку саму матрицю, дістанемо нульову матрицю.
- **1.12.** Добуток AB означено для узгоджених матриць [1.4.1]. Рядок $1 \times n$ можна помножити на стовпець $n \times 1$ [1.4.2]. Елементи матриці AB обчислюють за правилом «рядок на стовпець» [1.4.3].
- **1.13.** Ні, не можна матриці неузгоджені. Коли матриця A розміром $m \times n$, а матриця B розміром $n \times m$. Добуток AA існує для квадратних матриць.
- **1.14.** Ні, не правдива множення матриць некомутатитивне. Рівність AB=O можлива і для ненульових матриць A та B.
- **1.15.** Існують добутки: AC, BA.
- **1.16.** 1) 2×3 ; 2) 3×4 ; 3) 4×3 ; 4) 2×2 ; 5) 9×1 ; 6) 7×6 ; 7) 2×3 ; 8) 5×4 .
- **1.17.** Матриця A^T має розміри $n \times m$. На перетині j -го рядка та i -го стовпця.
- **1.18.** Для кожної матриці існує транспонована. Самій матриці A. Матриці A та A^T можуть збігатись (симетричні матриці).

1.19. 1)
$$\vec{a}_1 + \vec{a}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \vec{a}_1 - \vec{a}_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \vec{a}_2 - \vec{a}_1 = \begin{pmatrix} -2 \\ -2 \end{pmatrix},$$

$$2\vec{a}_1+3\vec{a}_2= \binom{-1}{4}, \alpha\vec{a}_1+\beta\vec{a}_2= \binom{\alpha-\beta}{2\alpha};$$

2)
$$\vec{b_1} + \vec{b_2} = (-1 \quad 4), \vec{b_1} - \vec{b_2} = (3 \quad -2), \vec{b_2} - \vec{b_1} = (-3 \quad 2),$$

$$3\overleftarrow{b_2}-2\overleftarrow{b_1}=\begin{pmatrix}-8&7\end{pmatrix},\alpha\overleftarrow{b_1}+\beta\overleftarrow{b_2}=\begin{pmatrix}\alpha-2\beta&\alpha+3\beta\end{pmatrix};$$

3)
$$A + B = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, A - B = \begin{pmatrix} 0 & -2 \\ 4 & -3 \end{pmatrix}, 2A + 3B = \begin{pmatrix} 5 & 1 \\ -2 & 9 \end{pmatrix},$$

$$A+C-\ \ \text{не існує}, A-\lambda E_2=\begin{pmatrix} 1-\lambda & -1\\ 2 & -\lambda \end{pmatrix};$$

4)
$$C + D = \begin{pmatrix} 4 & 1 \\ 5 & 0 \\ 9 & 6 \end{pmatrix}, C - D = \begin{pmatrix} -2 & 3 \\ 3 & 0 \\ 1 & 8 \end{pmatrix}, D - C = \begin{pmatrix} 2 & -3 \\ -3 & 0 \\ -1 & -8 \end{pmatrix},$$

$$D-B-$$
 не існує, $B-\lambda E_2=egin{pmatrix} 1-\lambda & 1 \ -2 & 3-\lambda \end{pmatrix};$

5)
$$L + M = \begin{pmatrix} 5 & 0 & 0 \\ 3 & 7 & 7 \\ 4 & 6 & 2 \end{pmatrix}, 3L - M = \begin{pmatrix} 7 & 4 & 0 \\ 5 & 13 & 17 \\ 0 & 10 & 10 \end{pmatrix},$$

$$L+C-\text{ не існує}, L-\lambda E_3=\begin{pmatrix} 3-\lambda & 1 & 0\\ 2 & 5-\lambda & 6\\ 1 & 4 & 3-\lambda \end{pmatrix};$$

6)
$$L - M = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 3 & 5 \\ -2 & 2 & 4 \end{pmatrix}, 2L + 3M = \begin{pmatrix} 12 & -1 & 0 \\ 7 & 16 & 15 \\ 11 & 14 & 3 \end{pmatrix},$$

$$M-D-\text{ не існу} \epsilon, M-\lambda E_3 = \begin{pmatrix} 2-\lambda & -1 & 0 \\ 1 & 2-\lambda & 1 \\ 3 & 2 & -1-\lambda \end{pmatrix};$$

7)
$$\overleftarrow{a}_1 \cdot \overrightarrow{a}_1 = -1, \overrightarrow{a}_1 \cdot \overleftarrow{a}_1 = \begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix}, \ A\overrightarrow{a}_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \overleftarrow{a}_1 A = \begin{pmatrix} -1 & -1 \end{pmatrix};$$

8)
$$\vec{b_1} \cdot \vec{b_1} = -1, \vec{b_1} \cdot \vec{b_1} = \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix}, B\vec{b_1} = \begin{pmatrix} -1 \\ -8 \end{pmatrix}, \vec{b_1}B = \begin{pmatrix} -1 & 4 \end{pmatrix};$$

9)
$$AB = \begin{pmatrix} 3 & -2 \\ 2 & 2 \end{pmatrix}, A^2 = \begin{pmatrix} -1 & -1 \\ 2 & -2 \end{pmatrix}, A^TB = \begin{pmatrix} -3 & 7 \\ -1 & -1 \end{pmatrix};$$

10)
$$BA = \begin{pmatrix} 3 & -1 \\ 4 & 2 \end{pmatrix}, B^2 = \begin{pmatrix} -1 & 4 \\ -8 & 7 \end{pmatrix}, AB^T = \begin{pmatrix} 0 & -5 \\ 2 & -4 \end{pmatrix};$$

11)
$$A^T B^T = \begin{pmatrix} 3 & 4 \\ -1 & 2 \end{pmatrix}, (AB)^T = \begin{pmatrix} 3 & 2 \\ -2 & 2 \end{pmatrix};$$

12)
$$B^T A^T = \begin{pmatrix} 3 & 2 \\ -2 & 2 \end{pmatrix}, (BA)^T = \begin{pmatrix} 3 & 4 \\ -1 & 2 \end{pmatrix};$$

13)
$$AC$$
 — не існує, $CA = \begin{pmatrix} 5 & -1 \\ 4 & -4 \\ 19 & -5 \end{pmatrix}$, C^TA — не існує;

14)
$$BD$$
 — не існує, $DB = \begin{pmatrix} 5 & 0 \\ 1 & 1 \\ 6 & 1 \end{pmatrix}$, D^TB — не існує;

15)
$$CC^T = \begin{pmatrix} 5 & 4 & 19 \\ 4 & 16 & 20 \\ 19 & 20 & 74 \end{pmatrix}, C^TC = \begin{pmatrix} 42 & 37 \\ 37 & 53 \end{pmatrix}, C^2, CD$$
 — не існує;

16)
$$DD^T = \begin{pmatrix} 10 & 3 & 13 \\ 3 & 1 & 4 \\ 13 & 4 & 17 \end{pmatrix}, D^TD = \begin{pmatrix} 26 & -7 \\ -7 & 2 \end{pmatrix}, D^2, DC - \text{ He ichye};$$

17)
$$\vec{c}_1 L$$
 — не існує, $L \vec{c}_1 = \begin{pmatrix} 7 \\ 52 \\ 32 \end{pmatrix}$, $L M = \begin{pmatrix} 7 & -1 & 1 \\ 27 & 20 & -1 \\ 15 & 13 & 1 \end{pmatrix}$,

$$L^2 = \begin{pmatrix} 11 & 8 & 6 \\ 22 & 51 & 48 \\ 14 & 33 & 33 \end{pmatrix}, CL - \text{ He ichye}, LC = \begin{pmatrix} 7 & 6 \\ 52 & 46 \\ 32 & 23 \end{pmatrix};$$

18)
$$\vec{d}_1 M$$
 — не існує, $M \vec{d}_1 = \begin{pmatrix} 5 \\ 9 \\ 7 \end{pmatrix}$, $ML = \begin{pmatrix} 4 & -3 & -6 \\ 8 & 15 & 15 \\ 12 & 9 & 9 \end{pmatrix}$,

$$M^2 = egin{pmatrix} 3 & -4 & -1 \\ 7 & 5 & 1 \\ 5 & -1 & 3 \end{pmatrix}, DM - \text{ He ichy} \epsilon, MD = egin{pmatrix} 5 & -2 \\ 9 & -2 \\ 7 & -2 \end{pmatrix};$$

19)
$$\ddot{c}_1 L \vec{c}_1$$
, CLA , ACL — не існує, $LCA = \begin{pmatrix} 19 & -7 \\ 144 & -52 \\ 78 & -32 \end{pmatrix}$;

20)
$$\vec{d}_1 M \vec{d}_1, DMB, BDM$$
 — не існує, $MDB = \begin{pmatrix} 9 & -1 \\ 13 & 3 \\ 11 & 1 \end{pmatrix}$.

1.20. 1)
$$\begin{pmatrix} -6 & -4 \\ -2 & -6 \end{pmatrix}$$
; 2) $\begin{pmatrix} 2/5 & 1/5 \\ 1/5 & 2/5 \end{pmatrix}$; 3) $X = \begin{pmatrix} 3 & 2 \\ 1 & 3 \end{pmatrix}$, $Y = \begin{pmatrix} -2 & -1 \\ -1 & -2 \end{pmatrix}$;

4)
$$X = \begin{pmatrix} -2/5 & 1/5 \\ -3/5 & -2/5 \end{pmatrix}, Y = \begin{pmatrix} -3/5 & -1/5 \\ -2/5 & -3/5 \end{pmatrix}$$

4)
$$X = \begin{pmatrix} -2/5 & 1/5 \\ -3/5 & -2/5 \end{pmatrix}, Y = \begin{pmatrix} -3/5 & -1/5 \\ -2/5 & -3/5 \end{pmatrix}.$$

1.21. 1) $\begin{pmatrix} 52 & -468 & -156 & -312 \\ -19 & 171 & 57 & 114 \end{pmatrix}$; 2) $\begin{pmatrix} 24 \\ 58 \end{pmatrix}$.

1.22. 1)
$$\begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$$
; 2) $\begin{pmatrix} 3/2 & -1 \\ -1/2 & -6 \end{pmatrix}$.

1.23. 1)
$$\begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$$
; 2) $O_{3\times 3}$; 3) $\begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}$; 4) $\begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{pmatrix}$.

1.24. 1)
$$O_{2\times 2}$$
; 2) $\begin{pmatrix} -8 & -2 \\ 1 & -10 \end{pmatrix}$; 3) $\begin{pmatrix} -1 & 1 & -8 \\ -13 & 25 & -1 \\ -16 & 29 & -4 \end{pmatrix}$; 4) $\begin{pmatrix} -6 & 6 & -3 \\ 3 & -11 & -1 \\ -6 & -6 & -11 \end{pmatrix}$.

1.26. 1)
$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$$
, $a, b \in \mathbb{R}$; 2) $\begin{pmatrix} a+b & 5a \\ a & b \end{pmatrix}$, $a, b \in \mathbb{R}$. **1.27.** 1) $\begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix}$; 2) $\begin{pmatrix} 2 & 7 \\ -\frac{9}{2} & -5 \end{pmatrix}$.

2. Визначники

Навчальні задачі

2.1. Для матриці $A = \begin{pmatrix} 3 & -1 & 2 \\ -3 & 1 & 6 \\ 7 & 0 & 4 \end{pmatrix}$ знайти доповняльний мінор та алгебрич-

не доповнення елемента a_{12} .

Розв'язання. [1.6.2, 1.6.3.]

$$M_{12} = \begin{vmatrix} 3 & -1 & 2 \\ -3 & 1 & 6 \\ 7 & 0 & 4 \end{vmatrix} = \begin{vmatrix} -3 & 6 \\ 7 & 4 \end{vmatrix} = (-3) \cdot 4 - 6 \cdot 7 = -12 - 42 = -54;$$
 викреслюємо 1-й рядок і 2-й ставляць за правок і 2-й ставляц

$$A_{12} = (-1)^{1+2} M_{12} = 54.$$

Коментар. 1 Щоб одержати мінор M_{12} елемента a_{12} , треба з матриці A викреслити 1-й рядок і 2-й стовпець.

Визначник одержаної матриці і буде мінором M_{12} .

2.2. Задано матрицю
$$A = \begin{pmatrix} 1 & 3 & 1 \\ -1 & 2 & 0 \\ 1 & 5 & -3 \end{pmatrix}$$
.

2.2.1. Обчислити визначник $\det A$ за означенням.

Розв'язання. [1.6.1.]

$$\begin{vmatrix} 1 & 3 & 1 \\ -1 & 2 & 0 \\ 1 & 5 & -3 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 2 & 0 \\ 5 & -3 \end{vmatrix} + 3 \cdot (-1)^{1+2} \begin{vmatrix} -1 & 0 \\ 1 & -3 \end{vmatrix} + 1 \cdot (-1)^{1+3} \begin{vmatrix} -1 & 2 \\ 1 & 5 \end{vmatrix} =$$

$$= 1 \cdot (-6) - 3 \cdot 3 + 1 \cdot (-7) = -22.$$

2.2.2. Обчислити визначник $\det A$ за схемою Саррюса (трикутників).

Розв'язання. [1.7.2.]

$$\det A = (1 \cdot 2 \cdot (-3) + 3 \cdot 0 \cdot 1 + 1 \cdot (-1) \cdot 5) - (1 \cdot 2 \cdot 1 + 1 \cdot 0 \cdot 5 + 3 \cdot (-1) \cdot (-3)) =$$

$$= -11 - 11 = -22.$$

2.3.1. Обчислити визначник $\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & -1 & 3 \\ 7 & 4 & 0 \end{vmatrix}$, розкладаючи його за 1-м рядком.

Розв'язання. [1.7.3.]

$$\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & -1 & 3 \\ 7 & 4 & 0 \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} =$$

$$= \overline{i}(-1)^{1+1} \begin{vmatrix} -1 & 3 \\ 4 & 0 \end{vmatrix} + \overline{j}(-1)^{1+2} \begin{vmatrix} 2 & 3 \\ 7 & 0 \end{vmatrix} + \overline{k}(-1)^{1+3} \begin{vmatrix} 2 & -1 \\ 7 & 4 \end{vmatrix} =$$

$$= -12\overline{i} + 21\overline{j} + 15\overline{k}.$$

2.3.2 Обчислити визначник
$$\begin{vmatrix} 1 & a & -2 \\ 3 & b & 6 \\ 7 & c & -4 \end{vmatrix}$$
, розкладаючи його за 2-м стовпцем.

Розв'язання. [1.7.3.]

$$\begin{vmatrix} 1 & a & -2 \\ 3 & b & 6 \\ 7 & c & -4 \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{23}A_{23} =$$

$$= a(-1)^{1+2} \begin{vmatrix} 3 & 6 \\ 7 & -4 \end{vmatrix} + b(-1)^{2+2} \begin{vmatrix} 1 & -2 \\ 7 & -4 \end{vmatrix} + c(-1)^{3+2} \begin{vmatrix} 1 & -2 \\ 3 & 6 \end{vmatrix} =$$

$$= 54a + 10b - 12c.$$

2.4. Користуючись властивостями, довести, що

$$\begin{vmatrix} 4\alpha + 2\beta & 4 & 2 \\ 2\alpha + 3\beta & 2 & 3 \\ -\alpha + \beta & -1 & 1 \end{vmatrix} = 0.$$

Розв'язання. [1.8.2, 1.8.3, 1.8.5.]

$$\begin{vmatrix} 4\alpha + 2\beta & 4 & 2 \\ 2\alpha + 3\beta & 2 & 3 \\ -\alpha + \beta & -1 & 1 \end{vmatrix} = \begin{vmatrix} 4\alpha & 4 & 2 \\ 2\alpha & 2 & 3 \\ -\alpha & -1 & 1 \end{vmatrix} + \begin{vmatrix} 2\beta & 4 & 2 \\ 3\beta & 2 & 3 \\ \beta & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1.8.3 \\ 3\beta & -1 & 1 \end{vmatrix}$$

двох визначників, оскільки 1-й стовпець є сумою двох стовпиів

множник 1-го стовпця

множник 1-го стовпця

$$= \alpha \begin{vmatrix} 4 & 4 & 2 \\ 2 & 2 & 3 \\ -1 & -1 & 1 \end{vmatrix} + \beta \begin{vmatrix} 2 & 4 & 2 \\ 3 & 2 & 3 \\ 1 & -1 & 1 \end{vmatrix} = \alpha \cdot 0 + \beta \cdot 0 = 0.$$

Rushayhuk має

Визначник має Визначник має два рівні стовпці

Обчислити визначник $\begin{vmatrix} 1 & 0 & 1 & 0 \\ 3 & 3 & -5 & 1 \\ -2 & 4 & 1 & 1 \\ 2 & 2 & 0 & -1 \end{vmatrix}$ зведенням до трикутного вигляду. 2.5.

Розв'язання. [1.9.2-1.9.5.]

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 3 & 3 & -5 & 1 \\ -2 & 4 & 1 & 1 \\ 2 & 2 & 0 & -1 \\ & \overline{a}_3 \leftarrow \overline{a}_3 + 2\overline{a}_1 \\ 2 & 2 & 0 & -1 \\ & \overline{a}_4 \leftarrow \overline{a}_4 - 2\overline{a}_1 \\ & \overline{a}_{3} \leftarrow \overline{a}_{3} + 2\overline{a}_{1} \\ & \overline{a}_{3} \leftarrow \overline{a}_{3} + 2\overline{a}_{1} \\ & \overline{a}_{4} \leftarrow \overline{a}_{4} - 2\overline{a}_{1} \\ & \overline{a}_{3} \leftarrow \overline{a}_{3} - \overline{a}_{3} \\ & \overline{a}_{4} \leftarrow \overline{a}_{4} - \overline{a}_{4} - 2\overline{a}_{1} \\ & \overline{a}_{3} \leftarrow \overline{a}_{3} - \overline{a}_{3} \\ & \overline{a}_{4} \leftarrow \overline{a}_{4} - \overline{a}_{4} - \overline{a}_{4} \\ & \overline{a}_{5} = \overline{a}_{5} = \overline{a}_{5} \\ & \overline{a}_{$$

Множимо 3-й рядок на відповідний коефіцієнт і віднімаємо його від 4-го рядка

$$= 1 \cdot 3 \cdot \frac{41}{3} \cdot \left(-\frac{65}{41} \right)^{\text{@}} = -65.$$

Коментар. 1 Формуємо 1-й стовпець — додаванням до решти рядків 1-го рядка з відповідними коефіцієнтами, досягаємо нулів під елементом a_{11} (якщо 1-й стовпець нульовий, то і визначник дорівнює нулеві; якщо ж ні, переставленням рядків завжди можна досягнути, щоб 1-й елемент 1-го стовпця був ненульовий (зручніше за все — одиниця)).

Додаємо до 2-го рядка 1-й рядок, помножений на (-3), і записуємо результат у 2-й рядок.

Додаємо до 3-го рядка 1-й рядок, помножений на 2 і записуємо результат у 3-й рядок.

Додаємо до 4-го рядка 1-й рядок, помножений на (-2), і записуємо результат у 4-й рядок.

Перший стовпець трикутної матриці сформований.

② Формуємо 2-й стовпець (l-й рядок не бере участь у перетвореннях).

Додаємо до 3-го рядка 2-й рядок, помножений на $\left(-\frac{4}{3}\right)$, і записуємо результат у 3-й рядок.

Додаємо до 4-го рядка 2-й рядок, помножений на $\left(-\frac{2}{3}\right)$, і записуємо результат у 4-й рядок.

Додаємо до 4-го рядка 3-й рядок, помножений на $\left(-\frac{10}{41}\right)$, і записуємо результат у 4-й рядок.

- 9 Визначник матриці з цілими елементами ε цілим числом (хоча під час обчислення можуть виникати дроби).
- 2.6. Знайти методом приєднаної матриці обернену матрицю до матриці

$$A = \begin{pmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \\ 5 & -7 & 3 \end{pmatrix}.$$

Розв'язання. [1.10.4.]

[**Крок 1.** Обчислюємо визначник матриці A.] $^{\odot}$

$$\det A = \begin{vmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \\ 5 & -7 & 3 \end{vmatrix} = 1 \neq 0.$$

Існує обернена до матриці A.

[Крок 2. Знаходимо алгебричні доповнення A_{ij} елементів a_{ij} матриці.]

$$A_{11} = \begin{vmatrix} -5 & 2 \\ -7 & 3 \end{vmatrix} = -1, A_{12} = -\begin{vmatrix} 4 & 2 \\ 5 & 3 \end{vmatrix} = -2, A_{13} = \begin{vmatrix} 4 & -5 \\ 5 & -7 \end{vmatrix} = -3,$$

$$A_{21} = -\begin{vmatrix} -3 & 1 \\ -7 & 3 \end{vmatrix} = 2, \quad A_{22} = \begin{vmatrix} 2 & 1 \\ 5 & 3 \end{vmatrix} = 1, \quad A_{23} = -\begin{vmatrix} 2 & -3 \\ 5 & -7 \end{vmatrix} = -1,$$

$$A_{31} = \begin{vmatrix} -3 & 1 \\ -5 & 2 \end{vmatrix} = -1, A_{32} = -\begin{vmatrix} 2 & 1 \\ 4 & 2 \end{vmatrix} = 0, \quad A_{33} = \begin{vmatrix} 2 & -3 \\ 4 & -5 \end{vmatrix} = 2.$$

[**Крок 3.** Складаємо приєднану матрицю.] 3

$$A^* = \begin{pmatrix} -1 & -2 & -3 \\ 2 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}^T = \begin{pmatrix} -1 & 2 & -1 \\ -2 & 1 & 0 \\ -3 & -1 & 2 \end{pmatrix}.$$

[**Крок 4.** Знаходимо обернену матрицю A^{-1} .]

$$A^{-1} = \frac{1}{1} \begin{pmatrix} -1 & 2 & -1 \\ -2 & 1 & 0 \\ -3 & -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 2 & -1 \\ -2 & 1 & 0 \\ -3 & -1 & 2 \end{pmatrix}.$$

[Крок 5. Перевіряємо правильність обчислень.] $^{\circ}$

$$A^{-1}A = \begin{pmatrix} -1 & 2 & -1 \\ -2 & 1 & 0 \\ -3 & -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \\ 5 & -7 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Коментар. ① Якщо $\det A = 0$, то для матриці A не існує оберненої. Якщо $\det A \neq 0$, то обернена матриця існує.

② Алгебричні доповнення знаходимо за формулою $A_{ij} = (-1)^{i+j} M_{ij}$.

Мінори M_{ij} дістаємо викреслюванням з визначника i -го рядка та j -го стовпця.

③ Приєднану матрицю знаходимо за формулою

$$A^* = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix}^T.$$

Ф Обернена матрицю знаходимо за формулою

$$A^{-1} = \frac{1}{\det A} A^*.$$

- $\ \ \, \ \ \,$ Досить перевірити рівність $A^{-1}A=E_n.$
- **2.7.** Розв'язати матричні рівняння AX = B, XA = B, де $A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix},$

$$B = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}.$$

Розв'язання. [1.10.7.]

 $\det A = -1 \neq 0.^{\circ}$ Отже, існує матриця

$$A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}.$$

$$AX = B;$$

$$X = A^{-1}B = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ -1 & 3 \end{pmatrix}.$$

$$XA = B;$$

$$X = BA^{-1} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix}.$$

Коментар. 1 Завдяки невиродженості матриці A матричне рівняння можна розв'язати за допомогою оберненої до A матриці.

Задачі для аудиторної і домашньої роботи

- **2.8.** За яким правилом обчислюють визначник квадратної матриці: а) 1-го порядку; б) 2-го порядку; в) 3-го порядку?
- **2.9.** Як зв'язані між собою алгебричне доповнення і мінор заданого елемента? Чому дорівнює доповняльний мінор та алгебричне доповнення еле-

мента
$$a_{12}$$
 матриці $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$?

Задано матрицю A. Обчисліть доповняльні мінори та алгебричні допов-2.10. нення вказаних елементів:

1)
$$A = \begin{pmatrix} 3 & -1 & 2 \\ -3 & 1 & 6 \\ 7 & 0 & 4 \end{pmatrix}, a_{22}, a_{32};$$
 2) $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2 & 7 \\ 1 & -1 & 4 \end{pmatrix}, a_{23}, a_{11}.$

2)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 7 \\ 1 & -1 & 4 \end{bmatrix}, a_{23}, a_{11}.$$

2.11. Обчисліть визначник:

$$1) \begin{vmatrix} -1 & 4 \\ -5 & 2 \end{vmatrix};$$

$$2)\begin{vmatrix} 2 & -1 \\ 3 & -4 \end{vmatrix};$$

3)
$$\begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix}$$
;

$$4) \begin{vmatrix} a+b & a-b \\ a-b & a+b \end{vmatrix};$$

$$5) \begin{vmatrix} 1 & \log_a \frac{1}{b} \\ \log_b a & 1 \end{vmatrix};$$

$$6) \begin{vmatrix} \log_a b & \log_{a^2} b \\ \log_{b^2} a & \log_b a \end{vmatrix};$$

$$\begin{array}{c|cccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array};$$

$$\begin{vmatrix}
1 & 2 & -2 \\
2 & 1 & -1 \\
3 & 1 & 4
\end{vmatrix};$$

$$9) \begin{vmatrix} 1 & 2 & 1 \\ 0 & -1 & 7 \\ 0 & 0 & 10 \end{vmatrix};$$

$$\begin{vmatrix}
1 & 0 & 0 \\
2 & -1 & 0 \\
1 & 7 & 10
\end{vmatrix}.$$

2.12. Знайдіть значення λ , при яких визначник дорівнює нулеві:

$$1)\begin{vmatrix} 1 & \lambda \\ 3 & 5 \end{vmatrix};$$

$$2)\begin{vmatrix} 3-\lambda & 2\\ 2 & -\lambda \end{vmatrix};$$

3)
$$\begin{vmatrix} 1 - \lambda & 2 & 0 \\ 0 & 2 - \lambda & 0 \\ -2 & -2 & -1 - \lambda \end{vmatrix}$$
; 4) $\begin{vmatrix} 11 - \lambda & 2 & -8 \\ 2 & 2 - \lambda & 10 \\ -8 & 10 & 5 - \lambda \end{vmatrix}$.

4)
$$\begin{vmatrix} 11 - \lambda & 2 & -8 \\ 2 & 2 - \lambda & 10 \\ -8 & 10 & 5 - \lambda \end{vmatrix}.$$

2.13. Обчисліть визначники розкладанням за символічним рядком:

$$\begin{vmatrix}
a & b & c \\
1 & 3 & 5 \\
2 & 4 & 6
\end{vmatrix};$$

$$\begin{array}{c|cccc}
a & 1 & 4 \\
b & 2 & 5 \\
c & 3 & 6
\end{array};$$

3)
$$\begin{vmatrix} 2 & -3 & 4 & 1 \\ 4 & -2 & 3 & 2 \\ a & b & c & d \\ 3 & -1 & 4 & 3 \end{vmatrix};$$

$$\begin{vmatrix}
a & 1 & 1 & 1 \\
b & 0 & 1 & 1 \\
c & 1 & 0 & 1 \\
d & 1 & 1 & 0
\end{vmatrix}.$$

- Скільки доданків входить у формулу повного розкладу визначника: 1) 4-2.14. го порядку; 2) 5-го порядку?
- 1) Відомо, що $\det A = 2$. Чому дорівнює $\det A^T$? 2.15.
 - 2) Відомо, що $\det A_{5\times 5}=3.$ Чому дорівнює $\det(2A)$?
 - 3) Наведіть приклад двох таких матриць A та B, що $\det(A+B) = \det A + \det B.$
 - 4) Чи правдиве твердження $\det AB = \det BA$, якщо $AB \neq BA$ для квадратних матриць A та B?
- 2.16. Чому дорівнюють визначники:

1)
$$\begin{vmatrix} a & b & c \\ 0 & 0 & 0 \\ d & e & f \end{vmatrix}$$
; 2) $\begin{vmatrix} a & a & d \\ b & b & e \\ c & c & f \end{vmatrix}$; 3) $\begin{vmatrix} a & b & c \\ 2a & 2b & 2c \\ d & e & f \end{vmatrix}$?

Користуючись властивостями визначника, доведіть, що: 2.17.

$$\begin{vmatrix}
1 & 2 & 3 \\
-1 & 0 & 1 \\
2 & 3 & 4
\end{vmatrix} = \begin{vmatrix}
1 & 0 & 0 \\
-1 & 2 & 4 \\
2 & -1 & -2
\end{vmatrix};$$

$$2) \begin{vmatrix}
1 & -1 & -3 \\
2 & -3 & 4 \\
1 & -1 & 2
\end{vmatrix} = \begin{vmatrix}
0 & 0 & -5 \\
0 & -1 & 0 \\
1 & -1 & 2
\end{vmatrix}.$$

$$\begin{vmatrix}
1 & -1 & -3 \\
2 & -3 & 4 \\
1 & -1 & 2
\end{vmatrix} = \begin{vmatrix}
0 & 0 & -5 \\
0 & -1 & 0 \\
1 & -1 & 2
\end{vmatrix}$$

2.18. Користуючись властивостями визначника, обчисліть визначник:

1)
$$\begin{vmatrix} 131 & 231 \\ -130 & -230 \end{vmatrix}$$

$$2)\begin{vmatrix} 13547 & 13647 \\ 28423 & 28523 \end{vmatrix}$$

2.19. Обчисліть визначники, методом елементарних перетворень:

$$1) \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix};$$

$$2) \begin{vmatrix} 3 & -5 & 1 & 4 \\ 1 & 3 & 0 & -2 \\ -3 & 5 & 2 & 1 \\ -1 & -3 & 5 & 7 \end{vmatrix};$$

$$\begin{vmatrix}
3 & -3 & -2 & -5 \\
2 & 5 & 4 & 6 \\
5 & 5 & 8 & 7 \\
4 & 4 & 5 & 6
\end{vmatrix}$$

7)
$$\begin{vmatrix} \sqrt{2} & \sqrt{3} & \sqrt{5} & \sqrt{3} \\ \sqrt{6} & \sqrt{21} & \sqrt{10} & -2\sqrt{3} \\ \sqrt{10} & 2\sqrt{15} & 5 & \sqrt{6} \\ 2 & 2\sqrt{6} & \sqrt{10} & \sqrt{15} \end{vmatrix};$$

$$\begin{vmatrix}
1 & 2 & 3 & \dots & n \\
-1 & 0 & 3 & \dots & n \\
-1 & -2 & 0 & \dots & n \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -2 & -3 & \dots & 0
\end{vmatrix}$$

$$\begin{vmatrix} 3 & 2 & 2 & \dots & 2 \\ 2 & 3 & 2 & \dots & 2 \\ 2 & 2 & 3 & \dots & 2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 & 2 & 2 & \dots & 3 \end{vmatrix} ;$$

ділиться на 37.

2.21. Доведіть: 1) що добуток двох невироджених матриць ϵ невиродженою матрицею; 2) що добуток двох квадратних матриць, з яких хоча б одна вироджена, ϵ виродженою матрицею.

- **2.22.** Доведіть, що якщо A та B невироджені матриці однакового порядку, то AB і $B^{-1}A^{-1}$ взаємно обернені матриці.
- 2.23. Чи правдиве твердження, що:

1)
$$(2A)^{-1} = \frac{1}{2}A^{-1};$$

2)
$$(AB)^{-1} = A^{-1}B^{-1}$$
?

2.24. Задано матрицю $A = \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix}$. Використовуючи означення оберненої матриці, з'ясуйте, чи є матриця B оберненою матрицею A, якщо:

$$1) B = \begin{pmatrix} 1 & 3 \\ 2 & 8 \end{pmatrix};$$

2)
$$B = \begin{pmatrix} 4 & -1 \\ -3/2 & -1/2 \end{pmatrix}$$
.

- **2.25.** Задано матриці $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}, B=\begin{pmatrix}4&-2\\-3&1\end{pmatrix}$. Знайдіть матриці AB,BA та $A^{-1}.$
- **2.26.** Знайдіть обернену до матриці A, якщо:

1)
$$A^2 - 4A + E_n = O_n$$
;

2)
$$A^3 + 5A^2 - 3A - E_n = O_n$$
.

2.27. Обчисліть $(AB)^{-1}$ та $(\alpha A)^{-1}$, якщо:

1)
$$A^{-1} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, B^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}, \alpha = 5;$$

2)
$$A^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{pmatrix}, B^{-1} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 3 & -5 \\ 2 & -2 & 1 \end{pmatrix}, \alpha = -3.$$

2.28. Знайдіть матрицю, обернену до матриці (якщо вона існує):

$$1) \begin{pmatrix} -1 & 2 \\ -3 & 5 \end{pmatrix};$$

$$2) \begin{pmatrix} 2 & -3 \\ 1 & -4 \end{pmatrix};$$

$$3) \begin{pmatrix} -3 & 1 \\ 15 & -5 \end{pmatrix};$$

$$4) \begin{pmatrix} 0 & 3 \\ -5 & 4 \end{pmatrix};$$

$$5) \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix};$$

$$6) \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix};$$

2.29. Розв'яжіть матричні рівняння:

1)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} X = \begin{pmatrix} 3 & 5 \\ 5 & 9 \end{pmatrix};$$
 2) $\begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix} X = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix};$
3) $X \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ -5 & 6 \end{pmatrix};$ 4) $X \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 9 & 5 \end{pmatrix};$
5) $\begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix} X \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} = \begin{pmatrix} 14 & 16 \\ 9 & 10 \end{pmatrix};$ 6) $\begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} X \begin{pmatrix} -1 & 1/2 \\ 0 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -2 & 4 \end{pmatrix}.$

Відповіді

2.9.
$$A_{ij} = (-1)^{i+j} M_{ij}$$
. $M_{12} = a_{21}$, $A_{12} = -a_{21}$.

2.10. 1)
$$M_{22} = -2, A_{22} = -2, M_{32} = 24, A_{32} = -24;$$

2)
$$M_{23} = -1, A_{23} = 1, M_{11} = A_{11} = 15.$$

2.11. 1) 18; 2)
$$-5$$
; 3) 1; 4) $4ab$; 5) 2; 6) $\frac{3}{4}$; 7) 0; 8) -15 ; 9) -10 ; 10) -10 .

2.12. 1)
$$\lambda = \frac{5}{3}$$
; 2) $\lambda_1 = -1, \lambda_2 = 4$; 3) $\lambda_1 = -1, \lambda_2 = 1, \lambda_3 = 2$;

4)
$$\lambda_1 = -9, \lambda_2 = 9, \lambda_3 = 18.$$

2.13. 1)
$$-2a + 4b - 2c$$
; 2) $6b - 3a - 3c$; 3) $8a + 15b + 12c - 19d$; 4) $2a - b - c - d$.

2.15. 1)
$$\det A = 2$$
; 2) $\det(2A) = 2^5 \cdot 3 = 96$; 3) $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; 4) так, правдиве.

2.16. 0 [1.8.5].

2.19. 1) 160; 2)
$$-140$$
; 3) 90; 4) 27; 5) 1875; 6) 394; 7) $9\sqrt{10}(\sqrt{3} - \sqrt{2})$; 8) $n!$; 9) $2n + 1$; 10) $n(-1)^{n-1}$.

2.25.
$$AB = BA = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}, A^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}.$$

2.26. 1)
$$A^{-1} = -A + 4E_n$$
; 2) $A^{-1} = A^2 + 5A - 3E_n$.

2.27. 1)
$$(AB)^{-1} = \begin{pmatrix} -1 & 3 \\ -1 & 8 \end{pmatrix}$$
, $(5A)^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$;

2)
$$(AB)^{-1} = \begin{pmatrix} 0 & 3 & 4 \\ 4 & 9 & 20 \\ 8 & -6 & -4 \end{pmatrix}$$
, $(-3A)^{-1} = -\frac{1}{3} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{pmatrix}$.

2.28. 1)
$$\begin{pmatrix} 5 & -2 \\ 3 & -1 \end{pmatrix}$$
; 2) $\begin{pmatrix} 4/5 & -3/5 \\ 1/5 & -2/5 \end{pmatrix}$; 3) матриця необоротна; 4) $\begin{pmatrix} 4/15 & -1/5 \\ 1/3 & 0 \end{pmatrix}$;

$$5) \begin{pmatrix} -7/3 & 2 & -1/3 \\ 5/3 & -1 & -1/3 \\ -2 & 1 & 1 \end{pmatrix}; 6) \begin{pmatrix} 1/9 & 2/9 & 2/9 \\ 2/9 & 1/9 & -2/9 \\ 2/9 & -2/9 & 1/9 \end{pmatrix}.$$

2.29. 1)
$$\begin{pmatrix} -1 & -1 \\ 2 & 3 \end{pmatrix}$$
; 2) $\frac{1}{7} \begin{pmatrix} 14 & 24 \\ -7 & -11 \end{pmatrix}$; 3) $\begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix}$; 4) $\frac{1}{2} \begin{pmatrix} -11 & 7 \\ -21 & 13 \end{pmatrix}$; 5) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$; 6) $\begin{pmatrix} 2 & -2 \\ 1 & 3 \end{pmatrix}$.

3. Ранг матриці

Навчальні задачі

3.1. Методом Гауса (елементарних перетворень) знайти ранг матриці

$$A = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 1 & -5 & 1 & -3 \\ 2 & -1 & 5 & 6 \end{pmatrix}.$$

Розв'язання. [1.12.11.]

$$A = \begin{pmatrix} 1 & 1 & 3 & 5 \\ 1 & -5 & 1 & -3 \\ 2 & -1 & 5 & 6 \end{pmatrix} \begin{vmatrix} \overleftarrow{a}_2 \leftarrow \overleftarrow{a}_2 - \overleftarrow{a}_1 \\ \overleftarrow{a}_3 \leftarrow \overleftarrow{a}_3 - 2\overleftarrow{a}_1 \end{vmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 1 & 3 & 5 \\ 0 & -6 & -2 & -8 \\ 0 & -3 & -1 & -4 \end{pmatrix} \begin{vmatrix} & & & \\ \overleftarrow{a}_3 \leftarrow \overleftarrow{a}_3 - \frac{1}{2}\overleftarrow{a}_2 \end{vmatrix} \sim \begin{pmatrix} 1 & 1 & 3 & 5 \\ 0 & -6 & -2 & -8 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B.^{\circ}$$

Матриця B має два ненульових рядки, отже, rang A=2.

Коментар. ① Зводимо матрицю елементарними перетвореннями рядків до східчастого вигляду.

② Ранг східчастої матриці дорівнює кількості її ненульових рядків.

3.2. З'ясувати, чи є система стовпців
$$\vec{a}_1 = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \vec{a}_2 = \begin{pmatrix} 2 \\ -8 \\ 5 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$$
 лі-

нійно незалежною.

Розв'язання. [1.12.11.]

[Крок 1. Записують матрицю із заданими стовпцями.]

$$A = \begin{pmatrix} 2 & 2 & 1 \\ -3 & -8 & -4 \\ 1 & 5 & 3 \end{pmatrix}.$$

[Крок 2. Знаходять ранг матриці.]

$$\begin{vmatrix} 2 & 2 & 1 \\ -3 & -8 & -4 \\ 1 & 5 & 3 \end{vmatrix} \begin{vmatrix} \overline{a}_3 \leftarrow \overline{a}_1 \\ \overline{a}_1 \leftarrow \overline{a}_3 \end{vmatrix} \sim \begin{vmatrix} 1 & 5 & 3 \\ -3 & -8 & -4 \\ 2 & 2 & 1 \end{vmatrix} \begin{vmatrix} \overline{a}_2 \leftarrow \overline{a}_2 + 3\overline{a}_1 \\ \overline{a}_3 \leftarrow \overline{a}_3 - 2\overline{a}_2 \end{vmatrix} \sim$$

$$\sim \begin{vmatrix} 1 & 5 & 3 \\ 0 & 7 & 5 \\ 0 & -8 & -5 \end{vmatrix} \begin{vmatrix} -1 & 5 & 3 \\ \overline{a}_3 \leftarrow \overline{a}_3 + \frac{8}{7}\overline{a}_2 \end{vmatrix} \sim \begin{vmatrix} 1 & 5 & 3 \\ 0 & 7 & 5 \\ 0 & 0 & 5/7 \end{vmatrix} \Rightarrow \operatorname{rang} A = 3.$$

[**Крок 3.** Висновують про лінійну залежність (незалежність) заданих стовнию.] Стовпці $\vec{a}_1, \vec{a}_2, \vec{a}_3$ лінійно незалежні $^{@}$.

Коментар. ① Ранг східчастої матриці дорівнює кількості її ненульових рядків. ② Інший спосіб з'ясувати лінійну незалежність такої системи стовпців (кількість стовпців дорівнює довжині стовпців) це обчислити визначник матриці, утвореної з цих стовпців.

3.3. Знайти методом Ґауса — Йордана обернену матрицю до матриці $\begin{pmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \end{pmatrix}$

$$A = \begin{bmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \\ 5 & -7 & 3 \end{bmatrix}.$$

Розв'язання. [1.10.6, 1.12.10.]

[Крок 1. Дописуючи праворуч від матриці A матрицю E_3 , утворюємо розиирену матрицю.]

$$(A \mid E_3) = \begin{pmatrix} 2 & -3 & 1 & 1 & 0 & 0 \\ 4 & -5 & 2 & 0 & 1 & 0 \\ 5 & -7 & 3 & 0 & 0 & 1 \end{pmatrix}.$$

[Крок 2. Зводимо розишрену матрицю $(A \mid E_3)$ елементарними перетвореннями її рядків до східчастого вигляду (прямий хід методу Ґауса).]

$$B = \begin{pmatrix} 2 & -3 & 1 & 1 & 0 & 0 \\ 4 & -5 & 2 & 0 & 1 & 0 \\ 5 & -7 & 3 & 0 & 0 & 1 \end{pmatrix} \begin{vmatrix} \overleftarrow{b_2} \leftarrow \overleftarrow{b_2} - 2\overleftarrow{b_1} \\ \overleftarrow{b_3} \leftarrow \overleftarrow{b_3} - \frac{5}{2}\overleftarrow{b_1} \end{vmatrix} \sim$$

$$\sim \begin{pmatrix} 2 & -3 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 1/2 & 1/2 & -5/2 & 0 & 1 \end{pmatrix} \begin{vmatrix} 1 & 0 & 0 \\ \overleftarrow{b_3} \leftarrow \overleftarrow{b_3} - \frac{1}{2}\overleftarrow{b_2} \end{vmatrix} \sim$$

$$\sim \begin{pmatrix} 2 & -3 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1/2 & -3/2 & -1/2 & 1 \end{pmatrix}.$$

[Крок 3. Висновуємо про існування оберненої до A матриці.] $\operatorname{rang} A = 3 \Rightarrow$ матриця A невироджена і має обернену.

[**Крок 4.** Зводимо східчасту матрицю елементарними перетвореннями рядків до зведеного східчастого вигляду (зворотний хід методу Гауса).]

$$\begin{vmatrix} 2 & -3 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1/2 & | & -3/2 & -1/2 & 1 \\ \end{vmatrix} \begin{vmatrix} \overline{b_1} & \leftarrow \overline{b_1} - 2\overline{b_3} \\ \overline{b_3} & \leftarrow 2\overline{b_3} \end{vmatrix} \sim$$

$$\begin{vmatrix} 2 & -3 & 0 & | & 4 & 1 & -2 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -3 & -1 & 2 \\ \end{vmatrix} \begin{vmatrix} \overline{b_1} & \leftarrow \overline{b_1} + 3\overline{b_2} \\ \overline{b_1} & \leftarrow \overline{b_1} + 3\overline{b_2} \end{vmatrix} \sim$$

$$\begin{vmatrix} 2 & 0 & 0 & | & -2 & 1 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -3 & -1 & 2 \\ \end{vmatrix} \begin{vmatrix} \overline{b_1} & \leftarrow \frac{1}{2}\overline{b_1} \\ \overline{b_1} & \leftarrow \frac{1}{2}\overline{b_1} \end{vmatrix} \sim$$

$$\begin{vmatrix} 1 & 0 & 0 & | & -1 & 2 & -1 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -3 & -1 & 2 \\ \end{vmatrix} = (E_3 \mid A^{-1}).$$

[Крок 5. Виписуємо обернену матрицю.]

$$A^{-1} = \begin{pmatrix} -1 & 2 & -1 \\ -2 & 1 & 0 \\ -3 & -1 & 2 \end{pmatrix}.$$

[Крок 6. Перевіряємо правильність обчислень.

$$AA^{-1} = \begin{pmatrix} 2 & -3 & 1 \\ 4 & -5 & 2 \\ 5 & -7 & 3 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 & -1 \\ -2 & 1 & 0 \\ -3 & -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

3.4. Розв'язати методом Ґауса — Йордана матричне рівняння SX = T, де

$$S = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 3 & 3 & 2 \end{pmatrix}, T = \begin{pmatrix} 2 & -1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}.$$

Розв'язання. [1.15.5.]

[Крок 1. Дописуючи праворуч від матриці S матрицю T, утворюємо розширену матрицю.]

$$A = (S \mid T) = \begin{pmatrix} 1 & 2 & 1 \mid 2 & -1 \\ 2 & 1 & -1 \mid 1 & 1 \\ 3 & 3 & 2 \mid 2 & 1 \end{pmatrix}.$$

[Крок 2. Зводимо розширену матрицю $A = (S \mid T)$ елементарними перетвореннями її рядків до східчастого вигляду (прямий хід методу Гауса).]

$$\begin{pmatrix} 1 & 2 & 1 & 2 & -1 \\ 2 & 1 & -1 & 1 & 1 \\ 3 & 3 & 2 & 2 & 1 \end{pmatrix} \overleftarrow{a}_2 \leftarrow \overleftarrow{a}_2 - 2\overleftarrow{a}_1 \sim \begin{pmatrix} 1 & 2 & 1 & 2 & -1 \\ 0 & -3 & -3 & -3 & 3 \\ 0 & -3 & -1 & -4 & 4 \end{pmatrix} \overleftarrow{a}_2 \leftarrow -\frac{1}{3} \overleftarrow{a}_2 \sim \\ \sim \begin{pmatrix} 1 & 2 & 1 & 2 & -1 \\ 0 & 1 & 1 & 1 & -1 \\ 0 & -3 & -1 & -4 & 4 \end{pmatrix} \overleftarrow{a}_3 \leftarrow \overleftarrow{a}_3 + 3\overleftarrow{a}_2 \sim \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 2 & -1 & 1 \end{pmatrix}.$$

[Крок 3. Висновуємо про розв'язність матричного рівняння.] $\operatorname{rang} S = \operatorname{rang} A = 3 \Rightarrow$ матричне рівняння розв'язне.

[**Крок 4.** Елементарними перетвореннями рядків перетворимо східчасту матрицю до зведеного східчастого вигляду.]

$$\begin{split} B & \underset{\overleftarrow{b_3}}{\leftarrow} \leftarrow \frac{1}{2} \overleftarrow{b_3} \sim \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 & -1 \\ 0 & 0 & 1 & -1/2 & 1/2 \end{pmatrix} \overleftarrow{b_1} \leftarrow \overleftarrow{b_1} + \overleftarrow{b_2} \\ & \sim \begin{pmatrix} 1 & 0 & 0 & -1/2 & 3/2 \\ 0 & 1 & 0 & 3/2 & -3/2 \\ 0 & 0 & 1 & -1/2 & 1/2 \end{pmatrix}. \end{split}$$

[Крок 5. Записуємо матрицю-розв'язок.]

$$X = \begin{pmatrix} -1/2 & 3/2 \\ 3/2 & -3/2 \\ -1/2 & 1/2 \end{pmatrix}.$$

Задачі для аудиторної і домашньої роботи

- 3.5. Чи може ранг матриці бути рівним нулеві? менше нуля? рівним 2,5?
- **3.6.** Ранг матриці A дорівнює r. Чому дорівнює $\mathrm{rang}(2A)$? $\mathrm{rang}(-A)$? $\mathrm{rang}(0\cdot A)$?
- **3.7.** Чому дорівнює найбільша кількість лінійно незалежних рядків (стовпців) матриці? Чи є небазисний рядок матриці лінійною комбінацією?
- **3.8.** Як може змінитись ранг матриці після транспонування? після приписування до неї ще одного рядка? одного стовпця? Як може змінитись ранг матриці після приписування до неї її першого рядка?
- **3.9.** Знайдіть ранг матриці:

$$1) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 7 & 8 & 9 \end{pmatrix}; \qquad 2) \begin{pmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 0 \end{pmatrix};$$

$$3) \begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{pmatrix};$$

$$4) \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{pmatrix};$$

$$5) \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 2 & 1 & -1 & 2 & -3 \\ 3 & -2 & -1 & 1 & -2 \\ 2 & -5 & 1 & -2 & 2 \end{pmatrix};$$

$$6) \begin{pmatrix} 2 & 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & 1 & -2 \\ 3 & 3 & -3 & -3 & 4 \\ 4 & 5 & -5 & -5 & 7 \end{pmatrix};$$

$$7) \begin{pmatrix} 25 & 31 & 17 & 43 \\ 75 & 94 & 53 & 132 \\ 75 & 94 & 54 & 134 \\ 25 & 32 & 20 & 48 \end{pmatrix};$$

$$8) \begin{pmatrix} 24 & 19 & 36 & 72 & -38 \\ 49 & 40 & 73 & 147 & -80 \\ 73 & 59 & 98 & 219 & -118 \\ 47 & 36 & 71 & 141 & -72 \end{pmatrix}.$$

3.10. Чому дорівнює ранг матриці при різних значеннях λ ?

$$1) \begin{pmatrix} 1 & 3 & -4 \\ \lambda & 0 & 1 \\ 4 & 3 & -3 \end{pmatrix};$$

$$2) \begin{pmatrix} 1 & -1 & 2 \\ 0 & 2 & 1 \\ 3 & \lambda & -1 \end{pmatrix};$$

$$3) \begin{pmatrix} 3 & 1 & 1 & 4 \\ 1 & -2 & 10 & 1 \\ 1 & 7 & 17 & \lambda \\ 2 & 2 & 4 & 3 \end{pmatrix};$$

$$4) \begin{pmatrix} 1 & 2 & -1 & 1 \\ 4 & -1 & 3 & 0 \\ 5 & 1 & \lambda - 1 & 1 \\ 3 & \lambda & 4 & -1 \end{pmatrix}.$$

3.11. Знайдіть методом Ґауса — Йордана обернену матрицю до матриці:

$$1)\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix};$$

$$2) \begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix};$$

$$3) \begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix};$$

$$4) \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix};$$

$$5) \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 2 \\ 4 & 1 & 4 \end{pmatrix};$$

$$6) \begin{pmatrix} 3 & 4 & 2 \\ 2 & -4 & -3 \\ 1 & 5 & 1 \end{pmatrix};$$

$$7) \begin{pmatrix} 3 & 3 & -4 & -3 \\ 0 & 6 & 1 & 1 \\ 5 & 4 & 2 & 1 \\ 2 & 3 & 3 & 2 \end{pmatrix};$$

Відповіді

- 3.5. Ранг може дорівнювати нулеві або натуральному числу.
- **3.6.** $rang(2A) = rang(-A) = r, rang(0 \cdot A) = 0.$
- **3.7.** Рангові матриці. Небазисний рядок є лінійною комбінацією базисних рядків.
- **3.8.** Транспонування не змінює рангу. Приписування ще одного рядка або стовпця можна змінити ранг матриці на одиницю (а може і не змінити). Приписування першого рядка не змінює рангу матриці.
- **3.9.** 1) 3; 2) 2; 3) 3; 4) 2; 5) 3; 6) 2; 7) 3; 8) 3.
- **3.10.** 1) 2, якщо $\lambda = 3$ і 3, якщо $\lambda \neq 3$; 2) 2, якщо $\lambda = -17$ і 3, якщо $\lambda = -17$; 3) 3, якщо $\lambda = 3$ і 4, якщо $\lambda \neq 3$; 4) 3, якщо $\lambda = \pm 3$ і 4, якщо $\lambda \neq \pm 3$.

3.11. 1)
$$\begin{pmatrix} -2 & 1 \ 3/2 & -1/2 \end{pmatrix}$$
; 2) $\begin{pmatrix} 7 & -4 \ -5 & 3 \end{pmatrix}$; 3) $\begin{pmatrix} -7/3 & 2 & -1/3 \ 5/3 & -1 & -1/3 \ -2 & 1 & 1 \end{pmatrix}$;

4)
$$\frac{1}{9} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
; 5) $\begin{pmatrix} -1 & -1/3 & 2/3 \\ 0 & -2/3 & 1/3 \\ 1 & 1/2 & -1/2 \end{pmatrix}$; 6) $\frac{1}{41} \begin{pmatrix} 11 & 6 & -4 \\ -5 & 1 & 13 \\ 14 & -11 & -20 \end{pmatrix}$;

4. Системи лінійних алгебричних рівнянь

Навчальні задачі

4.1. Розв'язати систему
$$\begin{cases} x_1+2x_2+3x_3=3,\\ x_1+3x_2+2x_3=6, & \text{за методом Крамера.}\\ 3x_1+10x_2+8x_3=21 \end{cases}$$

Розв'язання. [1.15.2.]

[**Крок 1.** Записуємо матрицю системи і стовпець вільних членів.] $^{\odot}$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 3 & 10 & 8 \end{pmatrix}, \vec{b} = \begin{pmatrix} 3 \\ 6 \\ 21 \end{pmatrix}.$$

[Крок 2. Обчислюємо визначник матриці системи $\det A$.] $^{@}$

$$\Delta = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 3 & 10 & 8 \end{vmatrix} = 3 \neq 0 \Rightarrow$$
 система має єдиний розв'язок.

[Крок 3. Обчислюємо визначники, що відповідають кожній змінній.]

$$\Delta_1 = \begin{vmatrix} 3 & 2 & 3 \\ 6 & 3 & 2 \\ 21 & 10 & 8 \end{vmatrix} = -9;$$

1-й стовпець Δ замініюємо на стовпець вільних членів

$$\Delta_2 = \begin{vmatrix} 1 & 3 & 3 \\ 1 & 6 & 2 \\ 3 & 21 & 8 \end{vmatrix} = 9;$$

2-й стовпець Δ замініюємо на стовпець вільних членів

$$\Delta_3 = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 6 \\ 3 & 10 & 21 \end{bmatrix} = 0$$

3-й стовпець Δ замініюємо на стовпець вільних членів

[Крок 4. Обчислюємо значення змінних за Крамеровими формулами.]

$$x_1 = \frac{\Delta_1}{\Lambda} = \frac{-9}{3} = -3; \ x_2 = \frac{\Delta_2}{\Lambda} = \frac{9}{3} = 3; \ x_3 = \frac{\Delta_3}{\Lambda} = \frac{0}{3} = 0.$$

[Крок 5. Записуємо розв'язок системи.]

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 0 \end{pmatrix}.$$

Коментар. \odot Матрицю системи формують коефіцієнти при невідомих x_1, x_2, x_3 .

Якщо $\det A \neq 0$, то система має єдиний розв'язок, який можна знайти за формулами Крамера.

Якщо $\det A = 0$, то метод Крамера не застосовний.

4.2.1. Дослідити на сумісність і знайти загальний розв'язок СЛАР $\begin{cases} x_1+2x_2+x_3-x_4+x_5=1,\\ 2x_1+4x_2-x_3-x_5=2. \end{cases}$

Розв'язання. [1.15.4.]

[Крок 1. Записують розширену матрицю системи.]

$$\tilde{A} = \begin{pmatrix} 1 & 2 & 1 & -1 & 1 & 1 \\ 2 & 4 & -1 & 0 & -1 & 2 \end{pmatrix}.$$

[**Крок 2.** Елементарними перетвореннями рядків зводять розширену матрицю до східчастого вигляду.]

$$\begin{pmatrix} 1 & 2 & 1 & -1 & 1 & 1 \\ 2 & 4 & -1 & 0 & -1 & 2 \end{pmatrix} \overleftarrow{a}_2 \leftarrow \overleftarrow{a}_2 - 2\overleftarrow{a}_1 \sim \begin{pmatrix} 1 & 2 & 1 & -1 & 1 & 1 \\ 0 & 0 & -3 & 2 & -3 & 0 \end{pmatrix}.$$

[*Крок 3.* Перевіряють критерій Кронекера — Капеллі.] Оскільки

$$\operatorname{rang} A = \operatorname{rang} \tilde{A} = 2,$$

то система сумісна.

[**Крок 4.** Продовжуючи перетворення, перетворюють матрицю до зведеного східчастого вигляду.]

$$\begin{pmatrix} 1 & 2 & 1 & -1 & 1 & 1 \\ 0 & 0 & -3 & 2 & -3 & 0 \end{pmatrix} \stackrel{\tau}{a}_1 \leftarrow \stackrel{\tau}{a}_1 + \frac{1}{3} \stackrel{\tau}{a}_2 \sim \begin{pmatrix} 1 & 2 & 0 & -1/3 & 0 & 1 \\ 0 & 0 & 1 & -2/3 & 1 & 0 \end{pmatrix}.$$

[Крок 5. Визначають які змінні є базисними, а які вільними $^{\odot}$. Вільним змінним надають довільних значень $C_1, C_2, C_3 \in \mathbb{R}$. Виписують систему, яка відповідає перетвореній розширеній матриці і знаходять з неї базисні змінні $^{\odot}$.]

Змінні x_1 та x_3 — базисні; $x_2=C_1, x_4=C_2, x_5=C_3$ — вільні.

$$\begin{cases} x_1 + 2C_1 - \frac{1}{3}C_2 = 1, \\ x_3 - \frac{2}{3}C_2 + C_3 = 0, \end{cases} \Rightarrow \begin{cases} x_1 = 1 - 2C_1 + \frac{1}{3}C_2, \\ x_3 = \frac{2}{3}C_2 - C_3. \end{cases}$$

[Крок 6. Записують загальний розв'язок системи.]

$$\vec{x} = \begin{pmatrix} 1 - 2C_1 + \frac{1}{3}C_2 \\ C_1 \\ \frac{2}{3}C_2 - C_3 \\ C_2 \\ C_3 \end{pmatrix}, C_1, C_2, C_3 \in \mathbb{R}.$$

Коментар. ① Базисні змінні відповідають лідерам рядків, а решта змінних — вільні. ② Система має безліч розв'язків, оскільки

$$\operatorname{rang} A = 2 = \operatorname{rang} \tilde{A} < n = 5.$$

4.2.2. Дослідити на сумісність і знайти загальний розв'язок СЛАР

$$\begin{cases} 2x_1 - 3x_2 + x_3 = -7, \\ x_1 + 2x_2 - 3x_3 = 14, \\ -x_1 - x_2 + 5x_3 = -18. \end{cases}$$

Розв'язання.

$$\begin{pmatrix} 2 & -3 & 1 & -7 \\ 1 & 2 & -3 & 14 \\ -1 & -1 & 5 & -18 \end{pmatrix} \begin{matrix} \overleftarrow{a}_1 \leftarrow \overleftarrow{a}_2 \\ \overleftarrow{a}_2 \leftarrow \overleftarrow{a}_1 - 2\overleftarrow{a}_2 \\ \overleftarrow{a}_3 \leftarrow \overleftarrow{a}_3 + \overleftarrow{a}_2 \end{matrix} \sim$$

$$\sim \begin{pmatrix} 1 & 2 & -3 & | & 14 \\ 0 & -7 & 7 & | & -35 \\ 0 & 1 & 2 & | & -4 \end{pmatrix} \underbrace{\tilde{a}_2}_{a_3} \leftarrow \underbrace{-\frac{1}{7}\tilde{a}_2}_{7} \sim \begin{pmatrix} 1 & 2 & -3 & | & 14 \\ 0 & 1 & -1 & | & 5 \\ 0 & 0 & 3 & | & -9 \end{pmatrix}.$$

Оскільки $\operatorname{rang} A = \operatorname{rang} \tilde{A} = 3$, то система сумісна.

$$\begin{pmatrix}
1 & 2 & -3 & | & 14 \\
0 & 1 & -1 & | & 5 \\
0 & 0 & 3 & | & -9
\end{pmatrix}
\stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{2}} \leftarrow \overleftarrow{a}_{1} + \overleftarrow{a}_{3}$$

$$\overleftarrow{a}_{2} \leftarrow \overleftarrow{a}_{2} + \frac{1}{3}\overleftarrow{a}_{3} \sim$$

$$\overleftarrow{a}_{3} \leftarrow \frac{1}{3}\overleftarrow{a}_{3}$$

$$\sim \begin{pmatrix}
1 & 2 & 0 & | & 5 \\
0 & 1 & 0 & | & 2 \\
0 & 0 & 1 & | & -3
\end{pmatrix}
\stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{1}} \leftarrow \overleftarrow{a}_{1} - 2\overleftarrow{a}_{2}$$

$$\sim \begin{pmatrix}
1 & 0 & 0 & | & 1 \\
0 & 1 & 0 & | & 2 \\
0 & 0 & 1 & | & -3
\end{pmatrix}.$$

Змінні x_1, x_2, x_3 — базисні $^{\odot}$

$$\begin{cases} x_1 = 1, \\ x_2 = 2, \Leftrightarrow \vec{x} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}. \end{cases}$$

Коментар. О Система має єдиний розв'язок, оскільки

$$\operatorname{rang} A = \operatorname{rang} \tilde{A} = n = 3.$$

4.3. Знайти методом Гауса — Йордана загальний розв'язок та фундаментальну систему розв'язків системи лінійних алгебричних рівнянь

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + x_5 &= 0, \\ x_1 + 3x_2 - 2x_3 + 3x_4 - 4x_5 &= 0, \\ 2x_1 - 5x_2 + x_3 - 2x_4 + 2x_5 &= 0, \\ 4x_1 - 4x_2 - x_5 &= 0. \end{cases}$$

Розв'язання. [1.15.4, 1.16.2, 1.16.3.]

$$\begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 1 & 3 & -2 & 3 & -4 \\ 2 & -5 & 1 & -2 & 2 \\ 4 & -4 & 0 & 0 & -1 \end{pmatrix} \qquad \begin{array}{c} \overleftarrow{a}_2 \leftarrow \overleftarrow{a}_2 - \overleftarrow{a}_1 \\ \overleftarrow{a}_3 \leftarrow \overleftarrow{a}_3 - 2\overleftarrow{a}_1 \\ \overleftarrow{a}_4 \leftarrow \overleftarrow{a}_4 - 4\overleftarrow{a}_1 \end{array} \sim$$

Для однорідної системи можна перетворювати саму матрицю системи, не дописуючи нульового стовпця вільних членів (сумісність системи гарантована).

$$\sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_3} \leftarrow \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} + 2 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_2} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \sim \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \sim \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & -3 & 4 & -5 \\ 0 & 4 & -4 & 4 & -5 \end{pmatrix} \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \leftarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \sim \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \sim \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \rightarrow \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \rightarrow \stackrel{\overleftarrow{a}_1}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \rightarrow \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} - 4 \stackrel{\overleftarrow{a}_2}{\overleftarrow{a}_4} \rightarrow \stackrel{$$

$$\sim \begin{pmatrix} 1 & 0 & 3 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -8 & 4 & -5 \\ 0 & 0 & -8 & 4 & -5 \end{pmatrix} \overleftarrow{a}_3 \leftarrow -\frac{1}{8} \overleftarrow{a}_3 \sim \begin{pmatrix} 1 & 0 & 3 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1/2 & 5/8 \\ 0 & 0 & -8 & 4 & -5 \end{pmatrix} \overleftarrow{a}_4 \leftarrow \overleftarrow{a}_4 + 8 \overleftarrow{a}_3 \sim \begin{pmatrix} 1 & 0 & 0 & 1/2 & -7/8 \\ 0 & 1 & 0 & 1/2 & -5/8 \\ 0 & 0 & 1 & -1/2 & 5/8 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

 $\operatorname{rang} A=r=3;\; x_1,x_2,x_3$ — базисні змінні, $x_4=C_1,x_5=C_2$ — вільні змінні, $C_1,C_2\in\mathbb{R}.$

$$\begin{cases} x_1 + \frac{1}{2}C_1 - \frac{7}{8}C_2 = 0, \\ x_2 + \frac{1}{2}C_1 - \frac{5}{8}C_2 = 0, \Rightarrow \\ x_3 - \frac{1}{2}C_1 + \frac{5}{8}C_2 = 0 \end{cases} \begin{cases} x_1 = -\frac{1}{2}C_1 + \frac{7}{8}C_2, \\ x_2 = -\frac{1}{2}C_1 + \frac{5}{8}C_2, \\ x_3 = \frac{1}{2}C_1 - \frac{5}{8}C_2. \end{cases}$$

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}C_1 + \frac{7}{8}C_2 \\ -\frac{1}{2}C_1 + \frac{5}{8}C_2 \\ \frac{1}{2}C_1 - \frac{5}{8}C_2 \\ C_1 \\ C_2 \end{pmatrix} = C_1 \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} \frac{7}{8} \\ \frac{5}{8} \\ 0 \\ 1 \end{pmatrix} = C_1 \vec{e}_1 + C_2 \vec{e}_2.$$

ΦCP: $\{\vec{e}_1, \vec{e}_2\}$.

4.4. Знайти методом Ґауса — Йордана загальний розв'язок неоднорідної СЛАР і фундаментальну систему розв'язків відповідної однорідної

СЛАР, якщо
$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6, \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4, \\ 9x_1 + 4x_2 + x_3 + 7x_4 = 2. \end{cases}$$

Розв'язання. [1.15.4, 1.16.2, 1.16.3.]

$$\begin{pmatrix} 2 & 7 & 3 & 1 & | & 6 \\ 3 & 5 & 2 & 2 & | & 4 \\ 9 & 4 & 1 & 7 & | & 2 \end{pmatrix} \stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{2}} \leftarrow \stackrel{1}{\overleftarrow{a}_{2}} \stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{1}} \sim \\ \begin{pmatrix} 9 & 4 & 1 & 7 & | & 2 \end{pmatrix} \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} \leftarrow \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \frac{9}{2} \stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{1}} \\ \sim \begin{pmatrix} 1 & 7/2 & 3/2 & 1/2 & | & 3 \\ 0 & -11/2 & -5/2 & 1/2 & | & -5 \\ 0 & -55/2 & -25/2 & 5/2 & | & -25 \end{pmatrix} \stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{2}} \leftarrow \stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{3}} \leftarrow \stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{1}}{\overleftarrow{a}_{2}} \sim \\ \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} \leftarrow \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} = \stackrel{\overleftarrow{a}_{3}}{\overleftarrow{a}_{3}} - \stackrel{\overleftarrow{a}_{3}}{\overleftarrow$$

$$\sim \begin{pmatrix} 1 & 0 & -1/11 & 9/11 & -2/11 \\ 0 & 1 & 5/11 & -1/11 & 10/11 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

 $\operatorname{rang} A=\operatorname{rang} \tilde{A}=2\Rightarrow$ система сумісна; x_1,x_2 — базисні змінні, $x_3=C_1,x_4=C_2$ — вільні, $C_1,C_2\in\mathbb{R}$.

$$\begin{cases} x_1 \, = \, -\frac{2}{11} + \frac{1}{11} C_1 \, - \frac{9}{11} C_2, \\ x_2 \, = \, \frac{10}{11} - \frac{5}{11} C_1 + \frac{1}{11} C_2, \\ x_3 \, = \, C_1, \\ x_4 \, = \, C_2. \end{cases}$$

$$\vec{x} = \begin{pmatrix} -\frac{2}{11} + \frac{1}{11}C_1 - \frac{9}{11}C_2 \\ \frac{10}{11} - \frac{5}{11}C_1 + \frac{1}{11}C_2 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} -\frac{2}{11} \\ \frac{10}{11} \\ 0 \\ 0 \end{pmatrix} + C_1 \begin{pmatrix} \frac{1}{11} \\ -\frac{5}{11} \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -\frac{9}{11} \\ \frac{1}{11} \\ 0 \\ 1 \end{pmatrix};$$

$$\vec{x}_{\text{част. неодн.}} \qquad \vec{e}_1 \qquad \vec{e}_2$$

$$\vec{x} = \vec{x}_{\text{част. неодн.}} + C_1 \vec{e}_1 + C_2 \vec{e}_2$$

ФСР відповідної однорідної системи: $\{\vec{e}_1, \vec{e}_2\}$.

4.5. Визначити значення параметра λ , при якому система $\begin{cases} 2x_1+x_2+2x_3=0,\\ 4x_1-x_2+7x_3=0, \text{ має ненульовий розв'язок і знайти цей розв'язок.}\\ x_1+\lambda x_2+2x_3=0 \end{cases}$

Розв'язання. [1.16.2.]

[Зводимо матрицю системи до східчастого вигляду.]

$$\begin{pmatrix} 2 & 1 & 3 \\ 4 & -1 & 7 \\ 1 & \lambda & 2 \end{pmatrix} \overleftarrow{a}_{1} \leftarrow \overleftarrow{a}_{3} \sim \begin{pmatrix} 1 & \lambda & 2 \\ 4 & -1 & 7 \\ 2 & 1 & 3 \end{pmatrix} \overleftarrow{a}_{2} \leftarrow \overleftarrow{a}_{2} - 4\overleftarrow{a}_{1} \sim$$

$$\sim \begin{pmatrix} 1 & \lambda & 2 \\ 0 & -1 - 4\lambda & -1 \\ 0 & 1 - 2\lambda & -1 \end{pmatrix} \overleftarrow{a}_{2} \leftarrow \overleftarrow{a}_{2} - 2\overleftarrow{a}_{3} \sim$$

$$\sim \begin{pmatrix} 1 & \lambda & 2 \\ 0 & -1 - 4\lambda & -1 \\ 0 & 1 - 2\lambda & -1 \end{pmatrix} \overleftarrow{a}_{3} \leftarrow \overleftarrow{a}_{3} + \frac{1-2\lambda}{3} \overleftarrow{a}_{2} \sim \begin{pmatrix} 1 & \lambda & 2 \\ 0 & -3 & 1 \\ 0 & 0 & -(2+2\lambda)/3 \end{pmatrix}.$$

[З'ясовуємо для яких значень параметра λ ранг матриці менше за кількість невідомих. Тоді однорідна система матиме ненульові розв'язки.] Ранг матриці системи буде менше З (кількості невідомих), коли $2+2\lambda=0 \Leftrightarrow \lambda=-1$.

[Підставляючи знайдене значення параметра, знаходимо загальний розв'язок системи.]

$$\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -1 \\
0 & 0 & 0
\end{pmatrix} \rightarrow
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -1
\end{pmatrix}
\overline{a}_{2} \leftarrow \frac{1}{3}\overline{a}_{2} \sim$$

$$\sim
\begin{pmatrix}
1 & -1 & 2 \\
0 & 1 & -\frac{1}{3}
\end{pmatrix}
\overline{a}_{1} \leftarrow \overline{a}_{1} + \overline{a}_{2} \sim
\begin{pmatrix}
1 & 0 & 5/3 \\
0 & 1 & -1/3
\end{pmatrix}.$$

Змінні x_1, x_2 — базисні; $x_3 = C_1$ — вільна змінна, $C_1 \in \mathbb{R}$.

$$\begin{cases} x_1 + \frac{5}{3}C_1 = 0, \\ x_2 - \frac{1}{3}C_1 = 0, \Leftrightarrow \\ x_3 = C_1 \end{cases} \begin{cases} x_1 = -\frac{5}{3}C_1, \\ x_2 = \frac{1}{3}C_1, \Leftrightarrow \vec{x} = \begin{pmatrix} -\frac{5}{3}C_1 \\ \frac{1}{3}C_1 \\ x_3 = C_1 \end{pmatrix}.$$

Задачі для аудиторної і домашньої роботи

4.6. Запишіть у матричному вигляді систему лінійних алгебричних рівнянь:

1)
$$\begin{cases} x_1 - x_2 = 1, \\ 2x_1 - 2x_2 = 5; \end{cases}$$
2)
$$\begin{cases} 3x + 2y = 5, \\ 6x + 4y = 10; \end{cases}$$
3)
$$\begin{cases} x_1 + 2x_2 = 3, \\ -2x_1 + 3x_2 = 0, \\ -2x_1 - 4x_2 = 1; \end{cases}$$
4)
$$\begin{cases} x_1 - 2x_2 + x_3 = 1, \\ x_2 + x_3 = 2. \end{cases}$$

- **4.7.** Вкажіть який-небудь частинний розв'язок системи 3×4 , якщо стовпець вільних членів СЛАР дорівнює:
 - 1) сумі всіх стовпців її основної матриці;
 - 2) 1-му стовпцю її основної матриці.
- **4.8.** У якому разі СЛАР має єдиний розв'язок? рівно два розв'язки? У якому разі СЛАР має нескінченну кількість розв'язків?
- **4.9.** Нехай $A\vec{x}=\vec{b}$ система n лінійних рівнянь з n невідомими і $\det A=0$. Що можна сказати про кількість розв'язків такої системи?
- **4.10.** На скільки одиниць ранг основної матриці системи може відрізнятись від рангу розширеної? Множини розв'язків систем збігаються. Чи рівні розширені матриці цих систем? Їх ранги?

4.11. Розв'яжіть систему:

$$\begin{cases}
2x_1 - 3x_2 + x_3 = -7, \\
x_1 + 4x_2 + 2x_3 = -1, \\
x_1 - 4x_2 = -5;
\end{cases}$$

$$\begin{cases}
2x - 5y + z = 1, \\
x + y - z = 2, \\
x - 13y + 5z = -4;
\end{cases}$$

$$\begin{cases}
2x - y + z = -2, \\
x - 3y - 2z = 3;
\end{cases}$$

$$\begin{cases}
2x - 3y - 2z = 3;
\end{cases}$$

$$\begin{cases}
2x - 3x_2 + x_3 = 2, \\
3x_1 - 2x_2 + 6x_3 = -7, \\
2x_1 + x_2 - x_3 = -5;
\end{cases}$$

$$\begin{cases}
x + 2y - 4z = 1, \\
2x + y - 5z = -1, \\
x - y - z = -2;
\end{cases}$$

$$\begin{cases}
x_1 + x_2 + x_3 = 3, \\
2x_1 - x_2 + x_3 = 2, \\
x_1 + 4x_2 + 2x_3 = 5.
\end{cases}$$

- **4.12.** Скільки базисних невідомих може мати сумісна СЛАР з матрицею $A_{m \times n}$, rang A = r? Скільки вільних змінних може мати така СЛАР?
- **4.13.** Яка множина розв'язків системи, якщо прямий хід методу Ґауса приводить матрицю системи до трикутного вигляду і всі елементи головної діагоналі відмінні від нуля? Сумісна чи несумісна система, якщо розширена матриця системи після k-го кроку методу Ґауса містить рядок, усі елементи якого, крім останнього, дорівнюють нулеві?
- **4.14.** Дослідіть на сумісність і знайдіть, у разі сумісності, загальний розв'язок системи:

$$\begin{cases} 3x_1 - 2x_2 - 5x_3 + x_4 = 3, \\ 2x_1 - 3x_2 + x_3 + 5x_4 = -3, \\ x_1 + 2x_2 - 4x_4 = -3, \\ x_1 - x_2 - 4x_3 + 9x_4 = 22, \end{cases}$$
 2)
$$\begin{cases} x_1 + x_2 - 6x_3 - 4x_4 = 6, \\ 3x_1 - x_2 - 6x_3 - 4x_4 = 2, \\ 2x_1 + 3x_2 + 9x_3 + 2x_4 = 6, \\ 3x_1 + 2x_2 + 3x_3 + 8x_4 = -7; \end{cases}$$
 3)
$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6, \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4, \\ 9x_1 + 4x_2 + x_3 + 7x_4 = 2; \end{cases}$$
 4)
$$\begin{cases} 3x_1 - 5x_2 + 2x_3 + 4x_4 = 2, \\ 7x_1 - 4x_2 + x_3 + 3x_4 = 5, \\ 5x_1 + 7x_2 - 4x_3 - 6x_4 = 3; \end{cases}$$
 5)
$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + 3x_5 = 2, \\ 2x_1 - 4x_2 + 3x_3 - 2x_4 + 6x_5 = 5, \\ 3x_1 - 6x_2 + 4x_3 - 3x_4 + 9x_5 = 7; \end{cases}$$

$$6) \begin{cases} 3x_1 + 2x_2 + x_3 + 3x_4 + 5x_5 = 0, \\ 6x_1 + 4x_2 + 3x_3 + 5x_4 + 7x_5 = 0, \\ 9x_1 + 6x_2 + 5x_3 + 7x_4 + 9x_5 = 0, \\ 3x_1 + 2x_2 + 4x_4 + 8x_5 = 0. \end{cases}$$

- Нехай k найбільше число лінійно незалежних розв'язків однорідної 4.15. СЛАР. Виразіть k через розміри $m \times n$ і ранг r матриці системи. У якому випадку k = 0?
- Чи може однорідна СЛАР бути несумісною? Сформулюйте критерій то-4.16. го, щоб однорідна СЛАР мала лише тривіальний розв'язок? мала нетривіальний розв'язок?
- Відомо, що однорідна СЛАР має 10 вільних змінних. Скільки розв'язків 4.17. містить кожна ФСР цієї системи?
- Чи існує така СЛАР, що $(1;2;3)^T$ її розв'язок, а $(-1;-2;-3)^T$ ні? 4.18. Якщо існує, що можна сказати про всі такі системи?
- Що можна сказати про множину розв'язків системи $A\vec{x} = \vec{0}$, якщо: 4.19.

a)
$$\det A \neq 0$$
;

$$6) \det A = 0?$$

- Система $A\vec{x} = \vec{0}$ має єдиний розв'язок. Що можна сказати про множину 4.20. розв'язків системи $A\vec{x} = \vec{b} \ (\vec{b} \neq \vec{0})$?
- Неоднорідна система $A\vec{x} = \vec{b}$ має нескінченну множину розв'язків. Що 4.21. можна сказати про множину розв'язків системи $A\vec{x} = \vec{0}$?
- Неоднорідну систему $A\vec{x}=\vec{b}$ має єдиний розв'язок. Що можна сказати 4.22. про множину розв'язків системи $A\vec{x} = \vec{0}$?
- Знайдіть фундаментальну систему розв'язків і загальний розв'язок системи: 4.23.

1)
$$\begin{cases} x_1 + 2x_2 - x_3 = 0, \\ 2x_1 + 9x_2 - 3x_3 = 0; \end{cases}$$

2)
$$\begin{cases} x_1 - 2x_2 - 3x_3 = 0, \\ -2x_1 + 4x_2 + 6x_3 = 0; \end{cases}$$

$$3) \begin{cases} 3x_1 + 2x_2 + x_3 = 0, \\ 2x_1 + 5x_2 + 3x_3 = 0, \\ 3x_1 + 4x_2 + 2x_3 = 0, \end{cases}$$

4)
$$\begin{cases} 2x_1 - 3x_2 + 4x_3 = 0. \\ x_1 + x_2 + x_3 = 0, \\ 3x_1 - 2x_2 + 2x_3 = 0; \end{cases}$$

$$5) \begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0; \end{cases} 6) \begin{cases} 2x_1 - 4x_2 + 5x_3 + 3x_4 = 0, \\ 3x_1 - 6x_2 + 4x_3 + 2x_4 = 0, \\ 4x_1 - 8x_2 + 17x_3 + 11x_4 = 0. \end{cases}$$

6)
$$\begin{cases} 2x_1 - 4x_2 + 5x_3 + 3x_4 = 0, \\ 3x_1 - 6x_2 + 4x_3 + 2x_4 = 0, \\ 4x_1 - 8x_2 + 17x_3 + 11x_4 = 0. \end{cases}$$

4.24. Знайдіть загальний розв'язок неоднорідної системи лінійних алгебричних рівнянь за допомогою фундаментальної системи розв'язків відповідної однорідної системи і частинного розв'язку неоднорідної системи:

$$\begin{cases} x_1 + x_2 - 2x_3 = 0, \\ x_1 - x_3 + x_4 = 1, \\ x_1 - x_2 + 2x_4 = 2, \\ x_2 - x_3 - x_4 = -1; \end{cases}$$
 2)
$$\begin{cases} x_1 + x_2 - x_3 + 3x_4 = 2, \\ x_1 - x_2 - 3x_3 + x_4 = 4, \\ 2x_1 - x_2 - 5x_3 + 3x_4 = 7, \\ x_1 - 2x_3 + 2x_4 = 3; \end{cases}$$

3)
$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + 2x_5 = 1, \\ 2x_1 + x_2 - 3x_3 + x_5 = 3, \\ x_1 - x_3 + x_4 - x_5 = 2, \\ x_1 - 2x_2 + x_3 + 5x_4 - 7x_5 = 4; \end{cases}$$

$$\begin{cases} 2x_1 + 3x_2 + 4x_3 - 6x_4 = 2, \\ 2x_1 - 3x_2 + 4x_3 - 4x_4 - 4x_5 = 0, \\ 2x_1 + 6x_2 + 4x_3 - 7x_4 + 2x_5 = 3, \\ 4x_1 + 3x_2 + 8x_3 - 11x_4 - 2x_5 = 3, \\ 4x_3 - 3x_4 - x_5 = 2. \end{cases}$$

4.25. З'ясуйте для яких значень параметра p система має єдиний розв'язок:

1)
$$\begin{cases} x + py - z = 1, \\ x + 10y - 6z = p, \\ 2x - y + pz = 0; \end{cases}$$
 2)
$$\begin{cases} x + 4y - 2z = -p, \\ 3x + 5y - pz = 3, \\ px + 3py + z = p. \end{cases}$$

4.26. Дослідіть на сумісність і знайдіть загальні розв'язки систем залежно від значень параметра λ :

1)
$$\begin{cases} \lambda x_1 - 4x_2 = 2, \\ x_1 - \lambda x_2 = -1; \end{cases}$$
 2)
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0, \\ x_1 + \lambda x_2 + x_3 = 0, \\ x_1 + x_2 + \lambda x_3 = 0; \end{cases}$$

3)
$$\begin{cases} \lambda x_1 + x_2 + x_3 + x_4 = 1, \\ (\lambda + 1)x_1 + (\lambda + 2)x_2 + 2x_3 + 2x_4 = 4, \\ \lambda x_2 - \lambda x_3 = -1, \\ x_1 + x_2 + x_3 + x_4 = 1. \end{cases}$$

4.27. Розв'яжіть матричні рівняння:

1)
$$\begin{pmatrix} 2 & -3 \\ 4 & -6 \end{pmatrix} X = \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix};$$
 2) $\begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix} X = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix};$ 3) $X \begin{pmatrix} 3 & -5 \\ 9 & -15 \end{pmatrix} = \begin{pmatrix} 9 & -15 \\ 6 & -10 \end{pmatrix};$ 4) $\begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & 3 \\ 1 & -3 & -2 \end{pmatrix} X = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}.$

- **4.28.** 1. Знайдіть невідомі коефіцієнти многочлена $f(x) = ax^2 + bx + c$, який справджує умови: f(-2) = -8, f(1) = 4, f(2) = 4.
 - 2. Знайдіть невідомі коефіцієнти многочлена $f(x) = ax^3 + bx^2 + c$, який справджує умови: f(-1) = 3, f(1) = 1, f(2) = -15.
- **4.29.** Розв'яжіть нелінійну систему $\begin{cases} xy^2z^3 = 2, \\ x^2y^2z^4 = 1, \\ x^2yz = 2. \end{cases}$

Відповіді

4.6. 1)
$$\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
; 2) $\begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$; 3) $\begin{pmatrix} 1 & 2 \\ -2 & 3 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$; 4) $\begin{pmatrix} 1 & -2 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. **4.7.** 1) $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$; 2) $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

- **4.8.** [1.15.3]. Система не може мати рівно два розв'язки.
- 4.9. Система має безліч розв'язків або не має жодного.
- **4.10.** Не більше як на одиницю. Якщо множини розв'язків системи збігаються, то ранги розширених матриць рівні, а самі матриці можуть і не бути рівними.

4.11. 1)
$$(-1;1;-2)^T$$
; 2) $(-3;2;1)^T$; 3) $\left(\frac{11}{7} + \frac{4}{7}C_1; \frac{3}{7} + \frac{3}{7}C_1; C_1\right)^T$; 4) $\left(-1 + 2C_1; 1 + C_1; C_1\right)^T$; 5) \varnothing ; 6) \varnothing .

- **4.12.** Базисних змінних r, вільних змінних n-r.
- 4.13. Система має єдиний розв'язок. Система не має жодного розв'язку.

4.14. 1)
$$\left(-1;3;-2;2\right)^T$$
; 2) $\left(0;2;\frac{1}{3};-\frac{3}{2}\right)^T$;

$$3)\left[-\frac{2}{11}+\frac{1}{11}C_{1}-\frac{9}{11}C_{2};\frac{10}{11}-\frac{5}{11}C_{1}+\frac{1}{11}C_{2};C_{1};C_{2}\right]^{T};\ 4)\ \varnothing;$$

$$5)\;(1+2C_1+C_2-3C_3;C_1;1;C_2;C_3)^T;\;6)\left(-\frac{2}{3}C_1-\frac{4}{3}C_2-\frac{8}{3}C_3;C_1;C_2+3C_3;C_2;C_3\right)^T.$$

4.15.
$$k = n - r$$
. $k = 0$, якщо $n = r$.

4.20. СЛАР
$$A\vec{x} = \vec{b}$$
 має єдиний розв'язок.

4.21. СЛАР
$$A\vec{x} = \vec{0}$$
 має нескінченну кількість розв'язків.

4.22. СЛАР
$$A\vec{x} = \vec{0}$$
 має єдиний розв'язок $\vec{0}$.

4.23. 1)
$$C_1\vec{e}_1, \vec{e}_1 = (3;1;5)^T;$$

2)
$$C_1\vec{e}_1 + C_2\vec{e}_2, \vec{e}_1 = (2;1;0)^T, \vec{e}_2 = (3;0;1)^T;$$

5)
$$C_1\vec{e}_1 + C_2\vec{e}_2, \vec{e}_1 = (8; -6; 1; 0)^T, \ \vec{e}_2 = (-7; 5; 0; 1)^T;$$

$$6) \ C_1 \vec{e}_1 + C_2 \vec{e}_2, \vec{e}_1 = \left(2; 1; 0; 0\right)^T, \ \vec{e}_2 = \left(\frac{2}{7}; 0; -\frac{5}{7}; 1\right)^T.$$

4.24. 1)
$$\vec{x} = \vec{x}_{\text{\tiny YH}} + C_1 \vec{x}_1 + C_2 \vec{x}_2, \vec{x}_{\text{\tiny YH}} = \left(1; -1; 0; 0\right)^T, \vec{x}_1 = \left(1; 1; 1; 0\right)^T, \vec{x}_2 = \left(-1; 1; 0; 1\right)^T;$$

$$2) \ \vec{x} = \vec{x}_{\text{\tiny YH}} + C_1 \vec{x}_1 + C_2 \vec{x}_2, \vec{x}_{\text{\tiny YH}} = \left(\ 3; -1; 0; 0 \right)^T, \vec{x}_1 = \left(\ 2; -1; 1; 0 \right)^T, \vec{x}_2 = \left(\ -2; -1; 0; 1 \right)^T; \vec{x}_3 = \left(\ -2; -1; 0; 1 \right)^T; \vec{x}_4 = \left(\ 2; -1; 1; 0 \right)^T, \vec{x}_5 = \left(\ -2; -1; 0; 1 \right)^T; \vec{x}_7 = \left(\ 2; -1; 1; 0 \right)^T, \vec{x}_8 = \left(\ -2; -1; 0; 1 \right)^T; \vec{x}_8$$

3)
$$\vec{x} = \vec{x}_{\text{\tiny HH}} + C_1 \vec{x}_1 + C_2 \vec{x}_2 + C_3 \vec{x}_3$$

$$\vec{x}_{_{\mathbf{H}\mathbf{H}}} = \left(\,2; -1; 0; 0; 0\,\right)^{T}, \vec{x}_{1} \,= \left(\,1; 1; 1; 0; 0\,\right)^{T}, \vec{x}_{2} \,= \left(\,-1; 2; 0; 1; 0\,\right)^{T}, \vec{x}_{3} \,= \left(\,1; -3; 0; 0; 1\right)^{T};$$

4)
$$\vec{x} = \vec{x}_{\text{\tiny YH}} + C_1 \vec{x}_1 + C_2 \vec{x}_2$$

$$\vec{x}_{\text{\tiny YH}} = \left(-\frac{1}{2}; \frac{1}{3}; \frac{1}{2}; 0; 0\right)^T, \vec{x}_1 = \left(1; \frac{1}{3}; \frac{3}{4}; 1; 0\right)^T, \vec{x}_2 = \left(\frac{1}{2}; -\frac{2}{3}; \frac{1}{4}; 0; 1\right)^T.$$

4.25. 1)
$$\mathbb{R} \setminus \{-5,3\}$$
; 2) $\mathbb{R} \setminus \{-1,-7\}$.

4.26. 1) при $\lambda = 2$ система несумісна, при $\lambda = -2$ система сумісна з з. р. $\left(-2C_1 - 1; C_1\right)^T$,

при
$$\lambda \neq \pm 2$$
 єдиний розв'язок $\left(\frac{2}{\lambda - 2}; \frac{1}{\lambda - 2}\right)^T$;

2) при $\lambda=-2$ з. р. — $C_1\left(1;1;1\right)^T$, при $\lambda=1$ з. р. — $\left(-C_1-C_2;C_1;C_2\right)^T$, при $\lambda\neq 1$ та $\lambda\neq -2$ лише тривіальні.

3) при
$$\lambda(\lambda-1)\neq 0$$
 $\left(0;\frac{2}{\lambda};\frac{3}{\lambda};1-\frac{5}{\lambda}\right)^T$, при $\lambda=0$ — \varnothing , при $\lambda=1$ $\left(-4-C_1;2;3;C_1\right)^T$;

4.27. 1)
$$\varnothing$$
; 2) $\frac{1}{7} \begin{pmatrix} 14 & 24 \\ -7 & -11 \end{pmatrix}$; 3) $\begin{pmatrix} 3 - 3\alpha & \alpha \\ 2 - 3\beta & \beta \end{pmatrix}$; 4) \varnothing

4.28. 1)
$$a = -1, b = 3, c = 2;$$
 2) $a = -1, b = -3, c = 5.$

4.29.
$$x=1,y=4,z=rac{1}{2}$$
 (злогарифмуйте рівняння системи).

Модуль 2. ВЕКТОРНА АЛГЕБРА

5. Вектори

Навчальні задачі

5.1.1. Вектори $\overline{AD},\overline{BE}$ та \overline{CF} — медіани ΔABC . Довести, що $\overline{AD}+\overline{BE}+\overline{CF}=\overline{0}.$

Розв'язання. [2.2.2, 2.2.3.]

$$\overline{AD} = \overline{AB} + \overline{BD} = \overline{AB} + \frac{1}{2}\overline{BC};$$

$$\overline{BE} = \overline{BC} + \overline{CE} = \overline{BC} + \frac{1}{2}\overline{CA};$$

$$\overline{CF} = \overline{CA} + \overline{AF} = \overline{CA} + \frac{1}{2}\overline{AB}.$$

Рис. до зад. 5.1.1

Додаємо рівності:

$$\overline{AD} + \overline{BE} + \overline{CF} = \frac{3}{2} \left(\overline{AB} + \overline{BC} + \overline{CA} \right) = \frac{3}{2} \cdot \overline{0} = \overline{0}.$$

Коментар. ① Використовуємо правило трикутника додавання векторів.

- ② За означенням медіани (D середина сторони BC) і множення вектора на число.
- ③ За правилом замикача.
- **5.1.2.** M точка перетину медіан ΔABC , O довільна точка простору. Довести, що

$$\overline{OM} = \frac{1}{3} \left(\overline{OA} + \overline{OB} + \overline{OC} \right).$$

Рис. до зад. 5.1.2

Розв'язання. [2.2.2, 2.2.3.]

$$\overline{OM} = \overline{OA} + \overline{AM} = \overline{OA} + \frac{2}{3}\overline{AD};$$

$$\overline{OM} = \overline{OB} + \overline{BM} = \overline{OB} + \frac{2}{3}\overline{BE};$$

$$\overline{OM} = \overline{OC} + \overline{CM} = \overline{OC} + \frac{2}{3}\overline{CF}.$$

Додаємо рівності:

$$3\overline{OM} = \overline{OA} + \overline{OB} + \overline{OC} + \frac{2}{3} \left(\overline{AD} + \overline{BE} + \overline{CF}\right) = \overline{OA} + \overline{OB} + \overline{OC}.$$

$$\overline{OM} = \frac{1}{3} (\overline{OA} + \overline{OB} + \overline{OC}).$$

Коментар. ① Використовуємо правило трикутника додавання векторів.

- ② За властивістю медіан трикутника (вони поділяються спільною точкою перетину у відношенні 2:1) і множення вектора на число.
- **5.2.** Яку умову мають справджувати ненульові вектори \overline{a} та \overline{b} , щоб виконувалась рівність $|\overline{a}+\overline{b}|=|\overline{a}-\overline{b}|$?

Розв'язання. [2.2.2.]

Побудуймо на векторах \overline{a} та \overline{b} , відкладених від точки O, паралелограм OADB .

Тоді

$$\overline{OD} = \overline{a} + \overline{b}, \ \overline{BA} = \overline{a} - \overline{b}.$$

Рис. до зад. 5.2

Рівність

$$\left| \overline{a} + \overline{b} \right| = \left| \overline{a} - \overline{b} \right|$$

означає, що довжини діагоналей паралелограма рівні. Отже, цей паралелограм є прямокутником і вектори \overline{a} та \overline{b} перпендикулярні.

5.3. Задано: ΔABC , $\overline{AM}=\alpha \overline{AB}$, $\overline{AN}=\beta \overline{AC}$. Знайти при яких значеннях α та β вектори \overline{MN} та \overline{BC} — колінеарні.

Розв'язання. [2.4.4, 2.5.5.]

Виражаємо вектори BC та MN через пару неколінеарних векторів $\overline{AB}, \overline{AC},$ які утворюють базис у множині всіх векторів площини:

$$\begin{split} \overline{BC} &= \overline{AC} - \overline{AB} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}_{\{\overline{AB}, \overline{AC}\}}; \\ \overline{MN} &= \overline{AN} - \overline{AM} = \beta \overline{AC} - \alpha \overline{AB} = \begin{pmatrix} -\alpha \\ \beta \end{pmatrix}_{\{\overline{AB}, \overline{AC}\}}. \end{split}$$

3 колінеарності векторів BC та MN випливає, що

$$\frac{-1}{-\alpha} = \frac{1}{\beta} \Leftrightarrow \alpha = \beta.$$

5.4. У просторі задано вектори
$$\overline{a}=\begin{pmatrix} 4\\-1\\2 \end{pmatrix}$$
 та $\overline{b}=\begin{pmatrix} -9\\0\\3 \end{pmatrix}$. Знайдіть вектори $-\overline{a}$ та $2\overline{a}-3\overline{b}$.

Розв'язання. [2.5.4.]

$$-\overline{a} = (-1)\overline{a} = -\begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \\ -2 \end{pmatrix};$$

$$2\overline{a} - 3\overline{b} = 2\begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix} - 3\begin{pmatrix} -9 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 4 - 3 \cdot (-9) \\ 2 \cdot (-1) - 3 \cdot 0 \\ 2 \cdot 2 - 3 \cdot 3 \end{pmatrix} = \begin{pmatrix} 35 \\ -2 \\ -5 \end{pmatrix}.$$

Коментар. ① Лінійним діям над векторами відповідають лінійні дії над їхніми стовпцями координат у фіксованому базисі.

5.5 З'ясуйте для яких значень l та m колінеарні вектори $\overline{a} = \begin{pmatrix} l \\ -2 \\ 5 \end{pmatrix}$ та

$$\overline{b} = \begin{pmatrix} 1 \\ m \\ -3 \end{pmatrix}?$$

Розв'язання. [2.5.5.]

$$\overline{a} \parallel \overline{b} \Leftrightarrow \frac{l}{1} = \frac{-2}{m} = \frac{5}{-3} \Leftrightarrow \begin{cases} -3l = 5, \\ 5m = 6 \end{cases} \Leftrightarrow l = -\frac{5}{3}, m = \frac{6}{5}.$$

Вектори колінеарні для $l = -\frac{5}{3}, m = \frac{6}{5}$.

5.6. З'ясуйте, для яких значень
$$\lambda$$
 вектори $\overline{a} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \overline{b} = \begin{pmatrix} -3 \\ 1 \\ -2 \end{pmatrix}, \overline{c} = \begin{pmatrix} \lambda \\ 1 \\ 8 \end{pmatrix}$ компланарні?

Розв'язання. [2.5.6, 2.3.4.]

[Крок 1. Записуємо матрицю з координатних стовпців.]

$$A = \begin{pmatrix} 2 & -3 & \lambda \\ 1 & 1 & 1 \\ 3 & -2 & 8 \end{pmatrix}.$$

[**Крок 2.** Знаходимо ранг матриці методом Ґауса $^{\odot}$.]

$$A = \begin{pmatrix} 2 & -3 & \lambda \\ 1 & 1 & 1 \\ 3 & -2 & 8 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 3 & -2 & 8 \\ 2 & -3 & \lambda \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & -5 & 5 \\ 0 & -5 & \lambda - 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 \\ 0 & -5 & 5 \\ 0 & 0 & \lambda - 7 \end{pmatrix}.$$

Для того щоб $\operatorname{rang} A < 3$ необхідно, щоб

$$\lambda - 7 = 0 \Leftrightarrow \lambda = 7.$$

Вектори компланарні, якщо $\lambda = 7$.

Коментар. 1 Вектори $\overline{a}, \overline{b}$ та \overline{c} компланарні тоді й лише тоді, коли ранг матриці, утвореної їхніми координатними стовпцями буде менший 3 або матриця вироджена.

5.7. Задано вектори
$$\overline{a} = \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix}, \overline{b} = \begin{pmatrix} 2 \\ 2 \\ -5 \end{pmatrix}, \ \overline{c} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \ \overline{l} = \begin{pmatrix} 5 \\ 4 \\ -5 \end{pmatrix}.$$
 Перевіри-

ти, що вектори $\overline{a}, \overline{b}, \overline{c}$ утворюють базис у просторі і знайти координати вектора \overline{l} у базисі $\{\overline{a}, \overline{b}, \overline{c}\}.$

Розв'язання. [2.4.5, 2.5.1, 2.5.6.]

[Записуємо СЛАР у векторному вигляді.] $^{\odot}$

$$x_{1} \begin{pmatrix} 4 \\ 1 \\ -1 \end{pmatrix} + x_{2} \begin{pmatrix} 2 \\ 2 \\ -5 \end{pmatrix} + x_{3} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \\ -5 \end{pmatrix}.$$

I спосіб.

[Крок 1. Записуємо розширену матрицю системи.]

$$\tilde{A} = \begin{pmatrix} 4 & 2 & -1 & 5 \\ 1 & 2 & 1 & 4 \\ -1 & -5 & 1 & -5 \end{pmatrix}.$$

[Крок 2. Зводимо її до східчастого вигляду.]

$$\tilde{A} = \begin{pmatrix} 4 & 2 & -1 & 5 \\ 1 & 2 & 1 & 4 \\ -1 & -5 & 1 & -5 \end{pmatrix} \otimes \dots \sim \begin{pmatrix} 1 & 2 & 1 & 4 \\ 0 & -3 & 2 & -1 \\ 0 & 0 & -9 & -9 \end{pmatrix}.$$

[Крок 3. Висновуємо про лінійну незалежність (залежність) векторів $\overline{a}, \overline{b}, \overline{c}$.] Оскільки $\operatorname{rang} A = 3$, то вектори $\overline{a}, \overline{b}, \overline{c}$ — лінійно незалежні і утворюють базис серед усіх векторів простору.

[Крок 4. 3a допомогою зворотного ходу методу Ґауса знаходимо координати вектора \overline{l} у базисі $\{\overline{a},\overline{b},\overline{c}\}$.]

$$\begin{pmatrix} 1 & 2 & 1 & | & 4 \\ 0 & -3 & 2 & | & -1 \\ 0 & 0 & -9 & | & -9 \end{pmatrix} \sim \dots \sim \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = 1, \\ x_2 = 1, \Leftrightarrow \\ x_3 = 1 \end{cases}$$

$$\Leftrightarrow \overline{l} = \overline{a} + \overline{b} + \overline{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}_{\{\overline{a}, \overline{b}, \overline{c}\}} .$$

II спосіб.

[Крок 1. Записуємо матрицю системи.]

$$\begin{pmatrix} 4 & 2 & -1 \\ 1 & 2 & 1 \\ -1 & -5 & 1 \end{pmatrix}.$$

[Крок 2. Обчислюємо її визначник.]

$$\Delta = \begin{vmatrix} 4 & 2 & -1 \\ 1 & 2 & 1 \\ -1 & -5 & 1 \end{vmatrix} = 27 \neq 0.$$

[Крок 3. Висновуємо про лінійну незалежність векторів $\overline{a}, \overline{b}, \overline{c}$.] Оскільки матриця невироджена, то вектори $\overline{a}, \overline{b}, \overline{c}$ — лінійно незалежні і утворюють базис серед усіх векторів простору.

[Крок 4. Розв'язуємо систему за правилом Крамера.]

$$\Delta_1 = \begin{vmatrix} 5 & 2 & -1 \\ 4 & 2 & 1 \\ -5 & -5 & 1 \end{vmatrix} = 27;$$

$$\Delta_2 = \begin{vmatrix} 4 & 5 & -1 \\ 1 & 4 & 1 \\ -1 & -5 & 1 \end{vmatrix} = 27;$$

$$\Delta_3 = \begin{vmatrix} 4 & 2 & 5 \\ 1 & 2 & 4 \\ -1 & -5 & -5 \end{vmatrix} = 27.$$

$$x_1 = \frac{\Delta_1}{\Delta} = \frac{27}{27} = 1; \ x_2 = \frac{\Delta_2}{\Delta} = \frac{27}{27} = 1; \ x_2 = \frac{\Delta_3}{\Delta} = \frac{27}{27} = 1.$$

[Крок 5. Записуємо відповідь.]

$$\overline{l} = \overline{a} + \overline{b} + \overline{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}_{\{\overline{a}, \overline{b}, \overline{c}\}}$$

Коментар. ① Для того щоб трійка векторів $\overline{a}, \overline{b}, \overline{c}$ тривимірного простору утворювала базис простору, необхідно й досить, щоб вона була лінійно незалежною. Отже, щоб ранг матриці A утвореної з їхніх координатних стовпців, дорівнював трьом (матриця була невиродженою).

Тоді вектор \overline{l} однозначно розкладається за базисом $\{\overline{a},\overline{b},\overline{c}\}$:

$$x_1\overline{a} + x_2\overline{b} + x_3\overline{c} = \overline{l}.$$

Оскільки лінійним діям над векторами відповідає лінійні дії над їхніми координатами (координатними стовпцями), то

$$x_1 \vec{a} + x_2 \vec{b} + x_3 \vec{c} = \vec{l}$$
.

Дістали СЛАР, записану у векторному вигляді.

Дослідити лінійну незалежність стовпців $\vec{a}, \vec{b}, \vec{c}$ і розв'язати СЛАР можна, застосовуючи до системи метод Ґауса — Йордана або метод Крамера.

- ② Зведення матриці до східчастого вигляду див. у зад. **3.3.**
- **5.8.** Задано дві точки $A_1(1;2;0)$ та $A_2(4;6;-3)$. Знайти координати вектора $\overline{a}=\overline{A_1A_2}$.

Розв'язання. [2.6.6.]

$$\overline{a} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{pmatrix} = \begin{pmatrix} 4 - 1 \\ 6 - 2 \\ -3 - 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ -3 \end{pmatrix}.$$

Коментар. О Щоб знайти координати вектора, віднімаємо від координат кінця вектора координати початку.

5.9. Задано три послідовних вершини паралелограма: A(1;-2;3), B(3;2;1), C(6;4;4). Знайти його четверту вершину.

Розв'язання. Нехай вершина D(x;y;z). Оскільки ABCD — паралелограм, то $\overline{BC}=\overline{AD}$.

Знаходимо координати векторів \overline{BC} та \overline{AD} :

$$\overline{BC} = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, \ \overline{AD} = \begin{bmatrix} x - 1 \\ y + 2 \\ z - 3 \end{bmatrix}.$$

3 рівності векторів BC та AD випливає, що

$$\begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} x - 1 \\ y + 2 \\ z - 3 \end{pmatrix} \stackrel{[2.5.3]}{\Leftrightarrow} \begin{cases} x - 1 = 3, \\ y + 2 = 2, \Rightarrow \\ z - 3 = 3 \end{cases} \begin{cases} x = 4, \\ y = 0, \Rightarrow D(4;0;6). \\ z = 6 \end{cases}$$

5.10. Задано дві вершини $A(1;3;5),\ B(-1;2;1)$ паралелограма ABCD і точка перетину його діагоналей E(1;0;1). Знайдіть дві інших вершини паралелограма.

Розв'язання. [2.6.7.]

Оскільки $1 \neq \frac{1}{2}(1-1) = 0$, то точка E — не ϵ серединою відрізка AB. Отже, A та B — суміжні вершини. Точка C поділя ϵ відрізок AE зовнішнім чином у відношенні $\lambda = -2$:

$$\begin{array}{l} z_C &= 2x_E - x_A = 1; \\ y_C &= 2y_E - y_A = -3; \\ z_C &= 2z_E - z_A = -3. \end{array}$$

Отже, C(1;-3;-3), D(3;-2;1). [Координати точки D знаходять так само.]

Задачі для аудиторної і домашньої роботи

- **5.11.** Скільки різних векторів задають усілякі впорядковані пари точок, утворені з вершин: 1) трикутника; 2) паралелограма?
- **5.12.** Чому дорівнює сума векторів AB + BC + CA, якщо A, B і C вершини трикутника?
- **5.13.** Задано тетраедр ABCD. Знайдіть суми векторів:

1)
$$\overline{AD} + \overline{CB} + \overline{DC}$$
;

$$2) \overline{AB + BC + DA + CD}.$$

5.14. На рисунку зображені вектори $\overline{a}, \overline{b}, \overline{c}$. Який з цих векторів є сумою? різницею решти?

- **5.15.** Нехай $|\overline{a}| = |\overline{b}|$. Чи випливає з цього, що $\overline{a} = \overline{b}$?
- **5.16.** За початок усіх векторів завдовжки r, узято точку A. Де розташовані кінці цих векторів?
- **5.17.** Відомо, що $\frac{|AC|}{|CB|} = \frac{3}{4}$. Виразіть вектор \overline{AC} через \overline{AB} , якщо $\overline{AC} \uparrow \downarrow \overline{AB}$.
- **5.18.** Відомо, що $\overline{a} \neq \overline{0}$ і $\overline{b} = \lambda \overline{a}$. Яким має бути число λ , щоб виконувалась умова:

1)
$$\overline{a} \uparrow \uparrow \overline{b} i |\overline{b}| = 1;$$

2)
$$\overline{a} \uparrow \downarrow \overline{b} i |\overline{b}| = 1$$
.

- **5.19.** Виразити вектор \overline{BA} через вектор \overline{AB} .
- **5.20.** Виразити вектор \overline{a} через колінеарний з ним одиничний вектор \overline{e} .
- **5.21.** У трикутнику ABC вектор $\overline{AB}=\overline{m}$ і вектор $\overline{AC}=\overline{n}$. Побудуйте вектор: 1) $\frac{\overline{m}+\overline{n}}{2}$; 2) $\frac{\overline{m}-\overline{n}}{2}$.
- **5.22.** У трикутнику ABC задано $\overline{AB}=\overline{a},\ \overline{AC}=\overline{b},$ точка M середина сторони BC. Виразіть вектор $\overline{c}=\overline{AM}$ через вектори \overline{a} та \overline{b} .
- **5.23.** У трикутнику ABC M точка перетину медіан трикутника, $\overline{AM}=\overline{a},$ $\overline{AC}=\overline{b}.$ Розкладіть вектори $\overline{p}=\overline{AB}$ та $q=\overline{BC}$ за векторами \overline{a} та $\overline{b}.$
- **5.24.** На стороні AD паралелограма ABCD відкладено вектор $\overline{a} = \overline{AK}$ завдовжки $\left|\overline{AK}\right| = \frac{1}{5} \left|\overline{AD}\right|$, а на діагоналі AC вектор $\overline{b} = \overline{AL}$ завдовжки $\left|\overline{AL}\right| = \frac{1}{6} \left|\overline{AC}\right|$. Доведіть, що вектори $\overline{p} = \overline{KL}$ та $\overline{q} = \overline{LB}$ колінеарні.
- **5.25.** У трикутнику ABC: $\overline{AM} = \alpha \overline{AB}$ і $\overline{AN} = \beta \overline{AC}$. Виразити вектори \overline{AB} та \overline{AC} через неколінеарні вектори $\overline{a} = \overline{MN}$ та $\overline{b} = \overline{BC}$.
- **5.26.** Задано три некомпланарних вектори $\overline{a}, \overline{b}$ та \overline{c} :
 - 1) доведіть, що вектори $\overline{a}+2\overline{b}-\overline{c},\ 3\overline{a}-\overline{b}+\overline{c},\ -\overline{a}+5\overline{b}-3\overline{c}$ компланарні;
 - 2) знайдіть значення λ , при якому вектори $\lambda \overline{a} + \overline{b} + \overline{c}$, $\overline{a} + \lambda \overline{b} + \overline{c}$, $\overline{a} + b + \lambda \overline{c}$ компланарні;
 - 3) знайдіть значення λ та μ , за яких вектори $\lambda \overline{a} + \mu \overline{b} + \overline{c}$ та $\overline{a} + \lambda \overline{b} + \mu \overline{c}$ колінеарні.
- **5.27.** Задано вектори $\overline{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \overline{b} = \begin{pmatrix} -5 \\ -1 \end{pmatrix}, \overline{c} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Знайдіть координати векторів:

1)
$$2\overline{a} + 3\overline{b} - \overline{c}$$
; 2) $16\overline{a} + 5\overline{b} - 9\overline{c}$.

5.28. Задано вектори
$$\overline{a}=\begin{pmatrix} -3\\0\\2 \end{pmatrix}, \overline{b}=\begin{pmatrix} -1\\-4\\5 \end{pmatrix}$$
. Знайдіть вектори $-\overline{b}, 2\overline{a}+\overline{b}$.

5.29. З'ясуйте, чи ϵ система векторів, заданих координатами в деякому базисі, лінійно залежною:

1)
$$\overline{a}_1 = (1;2;3)^T, \overline{a}_2 = (3;6;9)^T;$$
 2) $\overline{a}_1 = (4;-2;6)^T, \overline{a}_2 = (6;-3;9)^T;$

3)
$$\overline{a}_1 = (2; -3; 1)^T$$
, $\overline{a}_2 = (3; -8; 5)^T$, $\overline{a}_3 = (1; -4; 3)^T$;

4)
$$\overline{a}_1 = (5;4;3)^T$$
, $\overline{a}_2 = (3;3;2)^T$, $\overline{a}_3 = (8;1;2)^T$.

5.30. Переконайтесь, що $\{\overline{e}_1, \overline{e}_2\}$ — базис у множині всіх векторів на площині. Знайдіть розклад вектора \overline{a} за базисом $\{\overline{e}_1, \overline{e}_2\}$, якщо:

1)
$$\overline{e}_1 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
, $\overline{e}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\overline{a} = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$; 2) $\overline{e}_1 = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$, $\overline{e}_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$, $\overline{a} = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$.

5.31. У базисі $\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}$ задано вектори:

$$\begin{split} \overline{a}_1 &= (6;6;2)^T, \quad \overline{a}_2 = (4;0;5)^T, \quad \overline{a}_3 = (2;0;0)^T, \quad \overline{a}_4 = (0;4;0)^T, \\ \overline{a}_5 &= (6;-6;0)^T, \quad \overline{a}_6 = (0;0;7)^T, \quad \overline{a}_7 = (0;3;-4)^T, \quad \overline{a}_8 = (0;-1;0)^T, \\ \overline{a}_9 &= (2;3;-1)^T, \overline{a}_{10} = (0;10;13)^T. \end{split}$$

Вкажіть вектори: 1) колінеарні \overline{e}_1 , \overline{e}_2 , \overline{e}_3 ; 2) компланарні векторам \overline{e}_1 та \overline{e}_2 , \overline{e}_1 та \overline{e}_3 , \overline{e}_2 та \overline{e}_3 ?

5.32. Переконайтесь, що $\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}$ — базис у множині всіх векторів у просторі. Знайдіть розклад вектора \overline{a} за базисом $\{\overline{e}_1, \overline{e}_2, \overline{e}_3\}$, якщо:

1)
$$\overline{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \overline{e}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \overline{e}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \overline{a} = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix};$$

2)
$$\overline{e}_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$$
, $\overline{e}_2 = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}$, $\overline{e}_3 = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$, $\overline{a} = \begin{pmatrix} 8 \\ 10 \\ 0 \end{pmatrix}$.

5.33. З'ясуйте, при яких значеннях
$$l$$
 та m вектори $\overline{a} = \begin{pmatrix} 1 \\ l \\ -1 \end{pmatrix}$ та $\overline{b} = \begin{pmatrix} 2 \\ -4 \\ m \end{pmatrix}$ колінеарні?

5.34. З'ясуйте, при якому значенні
$$\lambda$$
 вектори $\overline{a} = \begin{pmatrix} 1 \\ 7 \\ -2 \end{pmatrix}, \overline{b} = \begin{pmatrix} -1 \\ -5 \\ 4 \end{pmatrix}, \overline{c} = \begin{pmatrix} 1 \\ 3 \\ \lambda \end{pmatrix}$ компланарні?

- На матеріальну точку діють дві сили $\overline{F}_1=2\overline{a}$ і $\overline{F}_2=3\overline{b}$, де 5.35. $\overline{a} = (5; -2; 3)^T, \overline{b} = (1; 0; 4)^T$. Знайдіть рівнодійну цих сил.
- Знайдіть координати векторів MN і NM, якщо: 5.36.

1) M(1;1), N(2;5);

2) M(2;9), N(1;4):

3) M(0:1:2), N(1:5:7):

4) M(2:9:10), N(0:2:4).

- Вектор $\overline{a}=(3;1;-5)^T$ відкладено від точки M(-2;7;1). Знайдіть коор-5.37. динати кінця вектора.
- Відрізок з кінцями в точках A(3;-2) і B(6;4) поділено на три рівних 5.38. частини точками C, D. Знайдіть координати точок поділу.
- Відрізок з кінцями в точках A(-2;5;13) і B(6;17;-7) поділено точками 5.39. C, D, E на чотири рівних частини. Знайдіть координати точок поділу.
- Задано вершини A(3;-4;7), B(-5;3;-2), C(1;2;-3) паралелограма 5.40. ABCD. Знайдіть координати вершини D, що протилежна вершині B.

Відповіді

5.13. 1) AB; 2) $\overline{0}$.

5.15. Hi, не випливає [2.2.1].

5.17. $\overline{AC} = -3\overline{AB}$.

5.19. $\overline{BA} = -\overline{AB} = (-1)\overline{AB}$.

5.22. $\overline{c} = \frac{1}{2}\overline{a} + \frac{1}{2}\overline{b}$.

5.24. LB = 5KL.

5.26. 2)
$$\lambda \in \{1,-2\}$$
; 3) $\lambda = \mu = 1$.

5.28.
$$-\overline{b} = (1;4;-5)^T, 2\overline{a} + \overline{b} = (-7;-4;9)^T.$$

5.29. 1)—3) лінійно залежна; 4) лінійно незалежна.

5.30. 1)
$$\overline{a} = -\frac{4}{5}\overline{e_1} - \frac{2}{5}\overline{e_2}$$
; 2) $\overline{a} = \overline{e_1} - \overline{e_2}$.

5.12. $\overline{0}$.

5.14. $\overline{b} = \overline{a} + \overline{c}$, $\overline{c} = \overline{b} - \overline{a}$, $\overline{a} = \overline{b} - \overline{c}$.

5.16. На колі з центром у точці A радіусом r.

5.18. 1) $\lambda = \frac{1}{|\overline{a}|}$; 2) $\lambda = -\frac{1}{|\overline{a}|}$.

5.20. $\overline{a} = |\overline{a}|\overline{e}$.

5.23. $\overline{p} = 3\overline{a} - \overline{b}, \overline{q} = 2\overline{b} - 3\overline{a}.$

5.25. $\overline{AB} = \frac{\beta \overline{b} - \overline{a}}{\alpha - \beta}, \overline{AC} = \frac{\alpha \overline{b} - \overline{a}}{\alpha - \beta}.$

5.27. 1) $(-12;-2)^T$; 2) $(0;0)^T$.

5.31. $\overline{a}_3 \parallel \overline{e}_1; \overline{a}_4, \overline{a}_8 \parallel \overline{e}_2; \overline{a}_6 \parallel \overline{e}_3$. Вектори $\overline{a}_3, \overline{a}_4, \overline{a}_5, \overline{a}_8$ компланарні векторам \overline{e}_1 та e_2 ; вектори $\overline{a}_2, \overline{a}_3, \overline{a}_6$ компланарні векторам \overline{e}_1 та \overline{e}_3 ; вектори $\overline{a}_4, \overline{a}_6, \overline{a}_7, \overline{a}_{10}$ компланарні векторам \overline{e}_2 та \overline{e}_3 .

5.32. 1)
$$\overline{a} = 2\overline{e}_1 - \overline{e}_2 - \overline{e}_3$$
; 2) $\overline{a} = 2\overline{e}_2 + 2\overline{e}_3$.

5.33.
$$l = -2; m = -2.$$

5.34.
$$\lambda = -6$$
.

5.35.
$$\overline{F}_1 + \overline{F}_2 = (13; -4; -6)^T$$
.

5.36. 1)
$$\overline{MN} = (1;4)^T$$
; 2) $\overline{MN} = (-6;5)^T$; 3) $\overline{MN} = (1;4;5)^T$; 4) $\overline{MN} = (-2;-7;-6)^T$.

5.37.
$$N(1;8;-4)$$
.

5.38.
$$C(4;0)$$
 i $D(5;2)$.

5.39.
$$C(0;8;8), D(2;11;3), E(4;14;-2).$$

5.40.
$$D(9;-5;6)$$
.

6. Скалярне множення векторів

Навчальні задачі

6.1. Спростити $(\overline{a} + \overline{b}, \overline{a} - \overline{b})$.

Розв'язання. [2.8.3.]

$$(\overline{a} + \overline{b}, \overline{a} - \overline{b}) = (\overline{a}, \overline{a}) + (\overline{b}, \overline{a}) - (\overline{a}, \overline{b}) - (\overline{b}, \overline{b}) =$$

$$= (\overline{a}, \overline{a}) - (\overline{b}, \overline{b}) = |\overline{a}|^2 - |\overline{b}|^2.$$

6.2. Довести, що вектори \overline{a} та \overline{b} перпендикулярні тоді й лише тоді, коли $|\overline{a}+\overline{b}\>|=|\overline{a}-\overline{b}\>|$.

Розв'язання. [2.10.1, 2.10.4.]

$$\begin{aligned} \left| \overline{a} + \overline{b} \right| &= \left| \overline{a} - \overline{b} \right|^{\left[2.10.1 \right]} \Leftrightarrow \\ \Leftrightarrow \sqrt{\left(\overline{a} + \overline{b}, \overline{a} + \overline{b} \right)} &= \sqrt{\left(\overline{a} - \overline{b}, \overline{a} - \overline{b} \right)}^{\left[2.8.3 \right]} \Leftrightarrow \\ \Leftrightarrow \left(\overline{a}, \overline{a} \right) + \left(\overline{a}, \overline{b} \right) + \left(\overline{b}, \overline{a} \right) + \left(\overline{b}, \overline{b} \right) = \\ &= \left(\overline{a}, \overline{a} \right) - \left(\overline{a}, \overline{b} \right) - \left(\overline{b}, \overline{a} \right) + \left(\overline{b}, \overline{b} \right) \Leftrightarrow \left(\overline{a}, \overline{b} \right) = 0 \Leftrightarrow \overline{a} \perp \overline{b}. \end{aligned}$$

6.3. Задано вектори $\overline{a}=-\overline{m}+6\overline{n}$ і $\overline{b}=3\overline{m}+4\overline{n}$, де $\left|\overline{m}\right|=2;$ $\left|\overline{n}\right|=5;$ $(\overline{\overline{m}},\overline{n})=\frac{2\pi}{3}.$

6.3.1. Знайти $(\overline{a}, \overline{b})$.

Розв'язання.

$$(\overline{a}, \overline{b}) = (-\overline{m} + 6\overline{n}, 3\overline{m} + 4\overline{n}) =$$

$$= -3(\overline{m}, \overline{m}) + 14(\overline{m}, \overline{n}) + 24(\overline{n}, \overline{n}) =$$
[2.8.1]

$$= -3 \left| \overline{m} \right|^2 + 14 \left| \overline{m} \right| \left| \overline{n} \left| \cos(\widehat{m}, \overline{n}) + 24 \left| \overline{n} \right|^2 =$$

$$= -3 \cdot 2^2 + 14 \cdot 2 \cdot 5 \cdot \left(-\frac{1}{2} \right) + 24 \cdot 5^2 = 518.$$

6.3.2. Знайти $|\overline{b}|$.

Розв'язання. [2.10.1.]

$$\begin{split} \left| \overline{b} \right| &= \sqrt{(\overline{b}, \overline{b})} = \sqrt{(3\overline{m} + 4\overline{n}, 3\overline{m} + 4\overline{n})} = \\ &= \sqrt{9(\overline{m}, \overline{m}) + 24(\overline{m}, \overline{n}) + 16(\overline{n}, \overline{n})} = \\ &= \sqrt{9 \left| \overline{m} \right|^2 + 24 \left| \overline{m} \right| \left| \overline{n} \left| \cos(\widehat{\overline{m}, \overline{n}}) + 16 \left| \overline{n} \right|^2} = \sqrt{316}. \end{split}$$

6.3.3. Знайти $\operatorname{pr}_{\overline{b}}(4\overline{a}-5\overline{b}).$

Розв'язання. [2.7.5, 2.10.3.]

$$\operatorname{pr}_{\overline{b}}(4\overline{a} - 5\overline{b}) \stackrel{[2.7.5]}{=} 4 \operatorname{pr}_{\overline{b}} \overline{a} - 5 \operatorname{pr}_{\overline{b}} \overline{b} \stackrel{[2.10.3]}{=} 4 \frac{(\overline{a}, \overline{b})}{|\overline{b}|} - 5 |\overline{b}|.$$

[Із задачі 6.3.1] $(\overline{a}, \overline{b}) = 518$. [Із задачі 6.3.2] $|\overline{b}| = \sqrt{316}$.

$$\operatorname{pr}_{\overline{b}}(4\overline{a} - 5\overline{b}) = \frac{4 \cdot 518}{\sqrt{316}} - 5\sqrt{316} = \frac{492}{\sqrt{316}} = \frac{246}{\sqrt{79}}.$$

6.3.4. Знайти $\cos(2\overline{b} - \overline{a}, 4\overline{\overline{b}})$.

Розв'язання. [2.10.2.]

Нехай

$$\overline{c} = 2\overline{b} - \overline{a} = 7\overline{m} + 2\overline{n}, \overline{d} = 4\overline{b} = 12\overline{m} + 16\overline{n}.$$

$$\cos(\overline{c}, \overline{d}) = \frac{(\overline{c}, \overline{d})}{|\overline{c}| |\overline{d}|}.$$

$$(\overline{c}, \overline{d}) = (7\overline{m} + 2\overline{n}, 12\overline{m} + 16\overline{n}) =$$

$$= 84(\overline{m}, \overline{m}) + 136 |\overline{m}| |\overline{n}| \cos(\overline{m}, \overline{n}) + 32(\overline{n}, \overline{n}) = 456,$$

$$|\overline{c}| = \sqrt{(7\overline{m} + 2\overline{n}, 7\overline{m} + 2\overline{n})} =$$

$$= \sqrt{49(\overline{m}, \overline{m}) + 28 |\overline{m}| |\overline{n}| \cos(\overline{m}, \overline{n}) + 4(\overline{n}, \overline{n})} = \sqrt{156},$$

$$|\overline{d}| = \sqrt{(12\overline{m} + 16\overline{n}, 12\overline{m} + 16\overline{n})} =$$

$$= \sqrt{144(\overline{m}, \overline{m}) + 384 |\overline{m}| |\overline{n}| \cos(\overline{m}, \overline{n}) + 256(\overline{n}, \overline{n})} = \sqrt{5056}.$$

$$\cos(2\overline{b} - \overline{a}, 4\overline{b}) = \frac{456}{\sqrt{788736}} = \frac{57}{2\sqrt{3081}}.$$

6.4. Задано вектори
$$\overline{a}_1=\begin{pmatrix} -1\\2\\0 \end{pmatrix}, \overline{a}_2=\begin{pmatrix} 3\\1\\1 \end{pmatrix}, \overline{a}_3=\begin{pmatrix} 2\\0\\4 \end{pmatrix}$$

6.4.1. Знайти $|\bar{a}_1|, \bar{a}_1^0$.

Розв'язання. [2.9.4, 2.9.7.]

$$\begin{split} \left| \, \overline{a}_1 \, \right|^{[2.9.4]} &= \sqrt{(-1)^2 + 2^2 + 0^2} = \sqrt{5}; \\ \overline{a}_1^{0} &= \frac{1}{\left| \, \overline{a}_1 \, \right|} \, \overline{a}_1 = \begin{pmatrix} -\frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix}. \end{split}$$

6.4.2. Обчислити $\cos(\widehat{\overline{a_1},\overline{j}}),\cos(\widehat{\overline{a_1},\overline{k}}).$

Розв'язання. [2.9.6.]

$$\cos(\widehat{\overline{a_1},\overline{j}}) = \frac{2}{\sqrt{5}}, \cos(\widehat{\overline{a_1},\overline{k}}) = 0.$$

6.4.3. Знайти координати вектора $\bar{a} = \bar{a}_1 - 3\bar{a}_2 + \frac{1}{2}\bar{a}_3$.

Розв'язання. [2.5.4.]

$$\overline{a} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} - \begin{pmatrix} 9 \\ 3 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -9 \\ -1 \\ -1 \end{pmatrix}.$$

6.4.4. Знайти $\operatorname{pr}_{\overline{i}} \overline{a}, \operatorname{pr}_{\overline{i}} \overline{a}, \operatorname{pr}_{\overline{k}} \overline{a}.$

Розв'язання. [2.9.5.]

$$\operatorname{pr}_{\overline{i}} \overline{a} = -9, \operatorname{pr}_{\overline{i}} \overline{a} = -1, \operatorname{pr}_{\overline{k}} \overline{a} = -1.$$

6.5. Задано вектори $\overline{a}=\lambda\overline{i}+3\overline{j}+4\overline{k}$ та $\overline{b}=4\overline{i}+\lambda\overline{j}-7\overline{k}$. Для якого значення λ ці вектори перпендикулярні?

Розв'язання. [2.9.2, 2.10.4.]

$$\overline{a} \perp \overline{b} \Leftrightarrow (\overline{a}, \overline{b}) = 0;$$

$$(\overline{a}, \overline{b}) = \lambda \cdot 4 + 3 \cdot \lambda + 4 \cdot (-7) = 7\lambda - 28 = 0 \Leftrightarrow \lambda = 4.$$

- **6.6.** Задано точки A(-5;1;6), B(1;4;3) і C(6;3;9).
- **6.6.1.** Знайти модуль вектора $\overline{a} = 4\overline{AB} + \overline{BC}$.

Розв'язання. [2.9.4.]

[Знаходимо координати векторів AB та BC.]

$$\overline{AB} = \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix}, \overline{BC} = \begin{pmatrix} 5 \\ -1 \\ 6 \end{pmatrix}.$$

$$\overline{a} = 4\overline{AB} + \overline{BC} = 4 \begin{pmatrix} 6 \\ 3 \\ -3 \end{pmatrix} + \begin{pmatrix} 5 \\ -1 \\ 6 \end{pmatrix} = \begin{pmatrix} 29 \\ 11 \\ -6 \end{pmatrix}$$

$$|4\overline{AB} + \overline{BC}|^{[2.9.4]} = \sqrt{29^2 + 11^2 + (-6)^2} = \sqrt{998}.$$

6.6.2. Знайти скалярний добуток векторів \overline{a} та \overline{BC} .

Розв'язання. [2.9.2.]

$$\overline{a} = \begin{pmatrix} 29\\11\\-6 \end{pmatrix}, \overline{b} = \overline{BC} = \begin{pmatrix} 5\\-1\\6 \end{pmatrix}.$$

$$(\overline{a}, \overline{b}) \stackrel{[2.9.2]}{=} 29 \cdot 5 + 11 \cdot (-1) + (-6) \cdot 6 = 98.$$

6.6.3. Знайти проекцію вектора BC на вектор AB. **Розв'язання.** [2.10.3.]

$$\operatorname{pr}_{\overline{AB}} \overline{BC} \stackrel{[2.10.3]}{=} \frac{(\overline{BC}, \overline{AB})}{|\overline{AB}|}.$$

$$(\overline{BC}, \overline{AB}) \stackrel{[2.9.2]}{=} 5 \cdot 6 + (-1) \cdot 3 + 6 \cdot (-3) = 9;$$

$$|\overline{AB}|^{[2.9.4]} = \sqrt{6^2 + 3^2 + (-3)^2} = \sqrt{54},$$

$$\operatorname{pr}_{\overline{AB}} \overline{BC} = \frac{9}{\sqrt{54}} = \frac{3}{\sqrt{6}}.$$

6.6.4. Знайти координати точки M, що поділяє відрізок AB у відношенні 1:3. **Розв'язання.** [2.6.7.]

$$\lambda = \frac{1}{3}.$$

$$\begin{cases} x_M = \frac{-5 + \frac{1}{3} \cdot 1}{1 + \frac{1}{3}} = -\frac{7}{2}, \\ y_M = \frac{1 + 4 \cdot \frac{1}{3}}{1 + \frac{1}{3}} = \frac{7}{4}, \quad \Rightarrow M\left(-\frac{7}{2}; \frac{7}{4}; \frac{21}{4}\right). \\ z_M = \frac{6 + \frac{1}{3} \cdot 3}{1 + \frac{1}{3}} = \frac{21}{4} \end{cases}$$

Задано вершини трикутника A(3;2;-3), B(5;1;-1) та C(1;-2;1). Знай-6.7. діть внутрішній кут при вершині A.

Розв'язання. [2.10.2.]

Кут при вершині A — це кут між векторами AB та AC.

$$\cos \angle BAC \stackrel{[2.10.2]}{=} \frac{(\overline{AB}, \overline{AC})}{\left|\overline{AB}\right| \left|\overline{AC}\right|}.$$

[Знаходимо координати векторів AB та AC.]

$$\overline{AB} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}, \overline{AC} = \begin{pmatrix} -2 \\ -4 \\ 4 \end{pmatrix}.$$

[Знаходимо довжини векторів AB та AC]

$$\left| \overline{AB} \right|^{[2.9.4]} = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{9} = 3;$$
$$\left| \overline{AC} \right| = \sqrt{2^2 + (-4)^2 + 4^2} = \sqrt{36} = 6.$$

[Знаходимо (AB, AC).]

$$(\overline{AB}, \overline{AC})^{[2.9.2]} = 2 \cdot (-2) + (-1) \cdot (-4) + 2 \cdot 4 = 8.$$

[Знаходимо косинус кута між векторами і сам кут.]

$$\cos \angle BAC = \frac{8}{3 \cdot 6} = \frac{4}{9} \Rightarrow \angle BAC = \arccos \frac{4}{9}.$$

Від точки O відкладено два вектори $\overline{a}=OA$ та $\overline{b}=OB$. Знайти будь-6.8. який вектор OM, який напрямлений уздовж бісектриси кута AOB.

Розв'язання. [2.2.5.]

Знайдімо орти $\overline{a}^0 = \frac{\overline{a}}{\left|\overline{a}\right|}$ та $\overline{b}^0 = \frac{\overline{b}}{\left|\overline{b}\right|}$ і на них, як на сторонах побудуймо ромб. Діагональ ромба — шуканий вектор $OM = \overline{a}^0 + \overline{b}^0$

Рис. до зад. 6.8

Задачі для аудиторної і домашньої роботи

6.9. Обчисліть скалярний добуток векторів $(\overline{a}, \overline{c})$, якщо $|\overline{a}| = 8, |\overline{c}| = 5$ та:

$$1)\ \widehat{(\overline{a},\overline{c})} = \frac{\pi}{3};$$

2)
$$(\widehat{\overline{a},\overline{c}}) = \frac{\pi}{2};$$

3)
$$\overline{a} \uparrow \downarrow \overline{c}$$
;

4)
$$\overline{a} \uparrow \uparrow \overline{c}$$
.

6.10. Знаючи, що $|\overline{a}| = 2, |\overline{b}| = 5, (\widehat{\overline{a}}, \overline{b}) = \frac{\pi}{3}$, обчисліть:

1)
$$(\overline{a}, \overline{b});$$

$$(\overline{a}, \overline{a});$$

3)
$$(\overline{a} + \overline{b}, \overline{a} + \overline{b})$$
;

4)
$$(2\overline{a} - \overline{b}, 3\overline{a} + 4\overline{b}).$$

6.11. Обчисліть довжину діагоналей паралелограма побудованого на векторах:

1).
$$\overline{a}=\overline{p}-3\overline{q},\ \overline{b}=5\overline{p}+2\overline{q},$$
 якщо $\left|\overline{p}\right|=2\sqrt{2},\left|\overline{q}\right|=3$ і $(\widehat{\overline{p},\overline{q}})=\frac{\pi}{4};$

2)
$$\overline{a}=2\overline{m}+\overline{n},\ \overline{b}=\overline{m}-2\overline{n},$$
 якщо $\left|\overline{m}\right|=\left|\overline{n}\right|=1$ і $(\widehat{\overline{m},\overline{n}})=\frac{\pi}{3}.$

6.12. Чи зміниться скалярний добуток векторів, якщо до одного із множників додати вектор, перпендикулярний до другого множника?

6.13. Визначте кут між векторами \overline{a} і \overline{b} , якщо $\left|\overline{a}\right|=1, \left|\overline{b}\right|=2$ і $(\overline{a}-\overline{b})^2+(\overline{a}+2\overline{b})^2=20.$

6.14. Обчисліть
$$\operatorname{pr}_{\overline{a}+\overline{b}}(2\overline{a}-\overline{b})$$
, якщо $\left|\overline{a}\right|=\left|\overline{b}\right|=1$ і $(\widehat{\overline{a}},\overline{\overline{b}})=\frac{2\pi}{3}$.

6.15. $\left|\overline{a}_1\right|=3, \left|\overline{a}_2\right|=5$. Визначте, при якому значенні α вектори $\overline{a}_1+\alpha\overline{a}_2$ та $\overline{a}_1-\alpha\overline{a}_2$ ортогональні.

6.16. Задано вектори $\overline{a}_1 = (4;-2;-4)^T$ та $\overline{a}_2 = (6;-3;2)^T$. Обчисліть:

1)
$$(\overline{a}_1, \overline{a}_2);$$

$$2) (2\overline{a}_1 - 3\overline{a}_2, \overline{a}_1 + 2\overline{a}_2);$$

3)
$$(\overline{a}_1 - \overline{a}_2, \overline{a}_1 - \overline{a}_2);$$

4)
$$|2\overline{a}_1 - \overline{a}_2|$$
;

5)
$$\operatorname{pr}_{\overline{a}_1} \overline{a}_2$$
;

6)
$$\operatorname{pr}_{\overline{a}_0} \overline{a}_1$$
.

7) напрямні косинуси вектора \overline{a}_1 ;

8)
$$\operatorname{pr}_{\overline{a}_1 + \overline{a}_2}(\overline{a}_1 - 2\overline{a}_2);$$

9)
$$\cos(\widehat{\overline{a_1},\overline{a_2}})$$
.

Знайдіть координати вектора \overline{a} , якщо відомі його кути з векторами $\overline{i},\overline{j}$ 6.17. та \overline{k} і $|\overline{a}|$:

1)
$$\alpha = \frac{\pi}{3}, \beta = \frac{\pi}{4}, \gamma = \frac{\pi}{3}, |\overline{a}| = 4;$$
 2) $\alpha = \frac{3\pi}{4}, \beta = \frac{\pi}{3}, \gamma = \frac{\pi}{3}, |\overline{a}| = 8.$

- Задано вектор $\bar{a} = (6;7;-6)^T$. Знайдіть: 6.18.
 - 1) довжину вектора \overline{a} ;
- 2) координати орта \overline{a}^0 ;
- 3) напрямні косинуси вектора \bar{a} ;
- 4) проекції вектора \bar{a} на осі координат.
- 6.19. Знайдіть віддаль між точками A та B:
 - 1) A(-1;2), B(5;10);

- 2) A(3;-2), B(3;3);
- 3) A(4;-2;3), B(4;5;2);
- 4) A(-3;1;-1), B(-1;1;-1).
- 6.20. Знайдіть кут φ між векторами:
 - 1) $\overline{a} = (1:2)^T \cdot \overline{b} = (2:4)^T :$
- 2) $\overline{a} = (1;2)^T, \overline{b} = (4;2)^T;$
- 3) $\overline{a} = (1;-1;-1)^T, \overline{b} = (2;0;2)^T;$ 4) $\overline{a} = (1;3;1)^T, \overline{b} = (-2;3;0)^T.$
- Знайдіть довжини сторін і кути трикутника з вершинами A(-1;-2;4), 6.21. B(-4;-2;0) та C(3;-2;1).
- 1. Який кут утворюють одиничні вектори \overline{s} та \overline{t} , якщо відомо, що век-6.22. тори $\overline{p} = \overline{s} + 2\overline{t}$ та $\overline{q} = 5\overline{s} - 4\overline{t}$ — ортогональні?
 - 2. Знайдіть таке число λ , щоб вектори $\overline{a}=\overline{i}+5\overline{j}-6\overline{k}$ $\overline{b} = 2\overline{i} - \overline{j} + \lambda \overline{k}$ були ортогональні.
- Обчисліть роботу, яку виконує сила $\bar{F} = (4;5;2)$, коли точка, до якої во-6.23. на прикладена, рухаючись прямолінійно, перемістилась з положення A(3;-7;1) у положення B(6;-1;-2).
- Знайдіть вектор \overline{x} , якщо: $\overline{x} \parallel \overline{a} = (1;1;1)^T$, $(\overline{x},\overline{a}) = 3$. 6.24.
- 1. Знайдіть вектор \overline{x} завдовжки $|\overline{x}|=15$, колінеарний векторові 6.25. $\overline{a}=\overline{i}-2\overline{j}-2\overline{k}$, що утворює з ортом \overline{j} гострий кут.
 - 2. Знайдіть вектор \bar{x} завдовжки $|\bar{x}| = 50$, колінеарний векторові $\overline{a} = 6\overline{i} - 8\overline{j} - \frac{15}{2}\overline{k}$, що утворює з ортом \overline{k} гострий кут.

- **6.26.** Знайдіть ненульовий вектор, колінеарний бісектрисі кута A трикутника ABC, якщо $\overline{AB} = (4;0;3)^T$, $\overline{AC} = (1;2;2)^T$.
- **6.27.** Знайдіть вектор \overline{x} , напрямлений уздовж бісектриси кута між векторами $\overline{a}=7\overline{i}-4\overline{j}-4\overline{k}$ і $\overline{b}=-2\overline{i}-\overline{j}+2\overline{k}$, якщо $|\overline{x}|=5\sqrt{6}$.

Відповіді

6.11. 1) 15,
$$\sqrt{593}$$
; 2) $\sqrt{7}$, $\sqrt{13}$.

6.13.
$$\frac{2\pi}{3}$$

6.14.
$$\frac{1}{2}$$
.

6.15.
$$\alpha = \pm \frac{3}{5}$$
.

6.16. 1) 22; 2)
$$-200$$
; 3) 41; 4) $\sqrt{105}$; 5) $\frac{11}{3}$; 6) $\frac{22}{7}$;

7)
$$\cos \alpha = \frac{2}{3}$$
, $\cos \beta = -\frac{1}{3}$, $\cos \gamma = -\frac{2}{3}$; 8) $-\frac{84}{\sqrt{129}}$; 9) $\frac{11}{21}$.

6.17. 1)
$$(2; 2\sqrt{2}; 2)^T; 2) (-4\sqrt{2}; 4; 4)^T.$$

6.18. 1)
$$\left| \overline{a} \right| = 11; \ 2)-3$$
) $\overline{a}^0 = \begin{pmatrix} \frac{6}{11} \\ \frac{7}{11} \\ -\frac{6}{11} \end{pmatrix} = \begin{pmatrix} \cos \alpha \\ \cos \beta \\ \cos \alpha \end{pmatrix}; \ 4) \text{ pr}_{\overline{i}} \ \overline{a} = 6, \text{pr}_{\overline{j}} \ \overline{a} = 7, \text{pr}_{\overline{k}} \ \overline{a} = -6.$

6.19. 1) 10; 2) 5; 3)
$$5\sqrt{2}$$
; 4) 2.

6.20. 1) 0; 2)
$$\arccos \frac{4}{5}$$
; 3) $\frac{\pi}{2}$; 4) $\arccos \frac{7}{\sqrt{143}}$.

6.21.
$$|\overline{AB}| = 5, |\overline{BC}| = 5\sqrt{2}, |\overline{AC}| = 5, \ \hat{A} = \frac{\pi}{2}, \hat{B} = \hat{C} = \frac{\pi}{4}.$$

6.22. 1.
$$\frac{\pi}{3}$$
. 2. $\lambda = -\frac{1}{2}$.

6.24.
$$\overline{x} = (1;1;1)^T$$
.

6.25. 1.
$$\overline{x} = -5\overline{i} + 10\overline{j} + 10\overline{k}$$
. 2. $\overline{x} = -24\overline{i} + 32\overline{j} + 30\overline{k}$.

6.26.
$$17\overline{i} + 10\overline{j} + 19\overline{k}$$
..

6.27.
$$\frac{5}{3}(\overline{i}-7\overline{j}+2\overline{k}).$$

7. Векторне множення векторів

Навчальні задачі

7.1. Спростити вираз $[\overline{a} - \overline{b}, \overline{a} + \overline{b}]$.

Розв'язання. [2.12.2.]

$$[\overline{a} - \overline{b}, \overline{a} + \overline{b}] = [\overline{a}, \overline{a}] + [\overline{a}, \overline{b}] - [\overline{b}, \overline{a}] - [\overline{b}, \overline{b}] = 2[\overline{a}, \overline{b}].$$

Коментар. \bigcirc Векторний добуток антикомутативний і $[\overline{a}, \overline{a}] = \overline{0}$.

7.2. Знайти площу паралелограма, побудованого на векторах $\overline{a}=2\overline{p}-\overline{q}$ та $\overline{b}=3\overline{p}+2\overline{q}$, якщо відомо, що $\left|\overline{p}\right|=3, \left|\overline{q}\right|=4, (\widehat{\overline{p},\overline{q}})=\frac{\pi}{3}.$

Розв'язання. [2.14.1.]

$$\begin{split} S_{\square} &= \left| \left[\overline{a}, \overline{b} \right] \right| = \left| \left[2\overline{p} - \overline{q}, 3\overline{p} + 2\overline{q} \right] \right|^{[2.12.2]} = \\ &= \left| 6[\overline{p}, \overline{p}] - 3[\overline{q}, \overline{p}] + 4[\overline{p}, \overline{q}] - 2[\overline{q}, \overline{q}] \right|^{[2.12.2]} = \left| 3[\overline{p}, \overline{q}] + 4[\overline{p}, \overline{q}] \right| = \\ &= 7 \left| \left[\overline{p}, \overline{q} \right] \right|^{[2.12.1]} = 7 \left| \overline{p} \right| \left| \overline{q} \right| \sin(\widehat{\overline{p}, \overline{q}}) = 7 \cdot 3 \cdot 4 \sin \frac{\pi}{3} = 42\sqrt{3}. \end{split}$$

7.3. Знайдіть векторний добуток вектора $\overline{a}=2\overline{i}+3\overline{j}-\overline{k}$ на вектор $\overline{b}=\overline{i}-\overline{j}+3\overline{k}$.

Розв'язання. [2.12.4.]

[Записуємо координати векторів \overline{a} та \overline{b} .]

$$\overline{a} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}, \overline{b} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}.$$

$$[\overline{a}, \overline{b}] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & 3 & -1 \\ 1 & -1 & 3 \end{vmatrix} = \overline{i} \begin{vmatrix} 3 & -1 \\ -1 & 3 \end{vmatrix} - \overline{j} \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} + \overline{k} \begin{vmatrix} 2 & 3 \\ 1 & -1 \end{vmatrix} = 8\overline{i} - 7\overline{j} - 5\overline{k}.$$

7.4. Вектор \overline{x} ортогональний до векторів $\overline{a}=(2;3;-1)^T$ та $\overline{b}=(1;-1;3)^T$, утворює з вектором \overline{i} тупий кут. Знаючи, що $\left|\overline{x}\right|=\sqrt{138}$, знайти координати вектора \overline{x} .

Розв'язання. [2.12.1.]

Оскільки ненульовий вектор \overline{x} ортогональний до ненульових векторів \overline{a} та \overline{b} , то він колінеарний їх векторному добутку $\Leftrightarrow \overline{x} = \lambda[\overline{a}, \overline{b}].$

[Векторний добуток векторів \overline{a} на вектор \overline{b} знайдено в зад. 7.3.]

$$[\overline{a}, \overline{b}]^{[2.12.4]} = 8\overline{i} - 7\overline{j} - 5\overline{k}.$$

$$\overline{x} = \lambda[\overline{a}, \overline{b}] = 8\lambda\overline{i} - 7\lambda\overline{j} - 5\lambda\overline{k} = \begin{pmatrix} 8\lambda \\ -7\lambda \\ -5\lambda \end{pmatrix}.$$

[Обчислюємо довжину вектора \overline{x} .]

$$\left| \overline{x} \right|^{[2.9.4]} = \sqrt{138\lambda^2} = \sqrt{138} \left| \lambda \right|.$$

[Справджуємо умову задачі про довжину вектора.]

$$\sqrt{138} \left| \lambda \right| = \sqrt{138} \Leftrightarrow \lambda_{1,2} = \pm 1 \Leftrightarrow \overline{x}_{1,2} = \begin{pmatrix} \pm 8 \\ \mp 7 \\ \mp 5 \end{pmatrix}.$$

[Справджуємо умову задачі про напрямок вектора.]

Оскільки вектор \overline{x} утворює тупий кут з вектором \overline{i} , то $\cos(\widehat{\overline{x},\overline{i}})<0$, і шуканим є вектор з від'ємною першою координатою.

Шуканий вектор $\bar{x} = (-8, 7, 5)^T$.

7.5. На векторах $\overline{a} = 2\overline{i} - 2\overline{j} - 3\overline{k}$ та $\overline{b} = 4\overline{i} + 6\overline{k}$ побудовано трикутник. Знайти його площу й висоту опущену на сторону, що збігається з вектором \overline{a} .

Розв'язання. [2.14.1, 2.14.2.]

$$S_{\scriptscriptstyle \triangle} \stackrel{[2.14.1]}{=} \frac{1}{2} \Big| [\overline{a}, \overline{b}\,] \Big|; \quad h_a \stackrel{[2.14.2]}{=} \frac{\left| [\overline{a}, \overline{b}\,] \right|}{\left| \overline{a}\, \right|}.$$

[Знаходимо векторний добуток вектора \overline{a} на вектор \overline{b} .]

$$\begin{bmatrix} \overline{a}, \overline{b} \end{bmatrix}^{[2.12.4]} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 2 & -2 & -3 \\ 4 & 0 & 6 \end{vmatrix}^{[1.7.2]} =$$

$$= \overline{i} \begin{vmatrix} -2 & -3 \\ 0 & 6 \end{vmatrix} - \overline{j} \begin{vmatrix} 2 & -3 \\ 4 & 6 \end{vmatrix} + \overline{k} \begin{vmatrix} 2 & -2 \\ 4 & 0 \end{vmatrix} = -12\overline{i} - 24\overline{j} + 8\overline{k}.$$

[Обчислюємо довжину вектора $[\overline{a},\overline{b}]$.]

$$\begin{split} \left| \left[\overline{a}, \overline{b} \right] \right|^{[2.9.4]} &= \sqrt{(-12)^2 + (-24)^2 + 8^2} = 28. \\ S_{\Delta} &= \frac{1}{2} \cdot 28 = 14. \end{split}$$

[Обчислюємо довжину вектора \bar{a} .]

$$\left| \overline{a} \right| = \sqrt{2^2 + (-2)^2 + (-3)^2} = \sqrt{13}$$

$$h_{\overline{a}} = \frac{28}{\sqrt{13}}.$$

7.6. Знайти об'єм і висоту, опущену на основу, утворену векторами \overline{a} та \overline{b} , паралелепіпеда, побудованого на векторах

$$\overline{a} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \overline{b} = \begin{pmatrix} 9 \\ 5 \\ -6 \end{pmatrix}; \overline{c} = \begin{pmatrix} 11 \\ 7 \\ -15 \end{pmatrix}.$$

Розв'язання. [2.14.5, 2.14.6, 2.13.1.]

$$\begin{split} V_{\text{nap}} &= \left| (\overline{a}, \overline{b}, \overline{c}) \right|, \quad h_{\overline{a}, \overline{b}} \stackrel{[2.14.6]}{=} \frac{\left| (\overline{a}, \overline{b}, \overline{c}) \right|}{\left| [a, \overline{b}] \right|}. \\ & [\overline{a}, \overline{b}] \stackrel{[2.12.4]}{=} \left| \begin{array}{ccc} \overline{i} & \overline{j} & \overline{k} \\ 1 & 1 & -1 \\ 9 & 5 & -6 \end{array} \right| = \overline{i} \left| \begin{array}{ccc} 1 & -1 \\ 5 & -6 \end{array} \right| - \overline{j} \left| \begin{array}{ccc} 1 & -1 \\ 9 & -6 \end{array} \right| + \overline{k} \left| \begin{array}{ccc} 1 & 1 \\ 9 & 5 \end{array} \right| = -\overline{i} - 3\overline{j} - 4\overline{k}. \\ & \left| \left[\overline{a}, \overline{b} \right] \right| \stackrel{[2.9.4]}{=} \sqrt{(-1)^2 + (-3)^2 + (-4)^2} = \sqrt{26}. \end{split}$$

[Обчислюємо мішаний добуток за означенням.]

$$(\overline{a}, \overline{b}, \overline{c})^{[2.13.1]} = ([\overline{a}, \overline{b}], \overline{c}) =$$

$$= (-\overline{i} - 3\overline{j} - 4\overline{k}, 11\overline{i} + 7\overline{j} - 15\overline{k})^{[2.9.2]} = 28.$$

$$V_{\text{nap}} = |28| = 28; \ h = \frac{28}{\sqrt{26}}.$$

- 7.7. З'ясувати, для яких значень параметра α вектори $\overline{a}=2\overline{i}+5\overline{j}+7\overline{k},$ $\overline{b}=\overline{i}+\overline{j}-\overline{k},$ $\overline{c}=\overline{i}+2\overline{j}+\alpha\overline{k}$:
- 1) компланарні; 2) утворюють праву трійку; 3) утворюють ліву трійку. **Розв'язання.** [2.14.7, 2.14.8.]

[Обчислюємо мішаний добуток векторів $\overline{a}, \overline{b}, \overline{c}$.]

$$\Delta = (\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} 2 & 5 & 7 \\ 1 & 1 & -1 \\ 1 & 2 & \alpha \end{vmatrix} = 2 \begin{vmatrix} 1 & -1 \\ 2 & \alpha \end{vmatrix} - 5 \begin{vmatrix} 1 & -1 \\ 1 & \alpha \end{vmatrix} + 7 \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2(\alpha + 2) - 5(\alpha + 1) + 7 = 6 - 3\alpha.$$

Вектори $\overline{a},\overline{b},\overline{c}$ компланарні, якщо

$$\Delta = 6 - 3\alpha = 0 \Rightarrow \alpha = 2.$$

Вектори $\overline{a}, \overline{b}, \overline{c}$ утворюють праву трійку, якщо

$$\Delta = 6 - 3\alpha > 0 \Rightarrow \alpha < 2.$$

Вектори $\overline{a}, \overline{b}, \overline{c}$ утворюють ліву трійку, якщо

$$\Delta = 6 - 3\alpha < 0 \Rightarrow \alpha > 2.$$

7.8. Силу $\overline{F}=\overline{i}-2\overline{j}+4\overline{k}$ прикладено до точки A(1;2;3). Знайти момент цієї сили щодо точки O(3;2;-1).

Розв'язання. [2.14.4.]

$$\bar{M}_O(\overline{F}) \stackrel{[2.14.4]}{=} [\overline{OA}, \overline{F}].$$

Знайдімо вектор

$$\overline{OA} = \begin{pmatrix} 1 - 3 \\ 2 - 2 \\ 3 - (-1) \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 4 \end{pmatrix}.$$

$$\overline{M}_O(\overline{F}) = [\overline{OA}, \overline{F}]^{[2.12.4]} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ -2 & 0 & 4 \\ 1 & -2 & 4 \end{vmatrix} = 8\overline{i} + 12\overline{j} + 4\overline{k}.$$

Задачі для аудиторної і домашньої роботи

7.9. Задано:
$$\left| \overline{a}_1 \right| = 1, \left| \overline{a}_2 \right| = 2$$
 та $\widehat{(\overline{a}_1, \overline{a}_2)} = \frac{2\pi}{3}$. Обчисліть:

1)
$$|[\overline{a}_1, \overline{a}_2]|;$$

2)
$$|[2\overline{a}_1 + \overline{a}_2, \overline{a}_1 + 2\overline{a}_2]|;$$

3)
$$\left| \left[\overline{a}_1 + 3\overline{a}_2, 3\overline{a}_1 - \overline{a}_2 \right] \right|$$

7.10. Яку умову мають справджувати вектори \overline{a}_1 та \overline{a}_2 , щоб були колінеарними вектори:

1)
$$\overline{a}_1 + \overline{a}_2$$
 ta $\overline{a}_1 - \overline{a}_2$;

2)
$$3\overline{a}_1 + \overline{a}_2$$
 ta $\overline{a}_1 - 3\overline{a}_2$.

7.11. Чи зміниться векторний добуток, якщо до одного із множників додати вектор, колінеарний другому множнику?

- **7.12.** 1. Обчисліть площу трикутника, побудованого на векторах $\overline{p}=\overline{a}-2\overline{b}$ та $\overline{q}=3\overline{a}+2\overline{b}$, якщо $\left|\overline{a}\right|=\left|\overline{b}\right|=5,\ (\widehat{\overline{a},\overline{b}})=\frac{\pi}{4}.$
 - 2. Обчисліть площу паралелограма, побудованого на векторах $\overline{p}=6\overline{a}-3\overline{b}$ та $\overline{q}=3\overline{a}+2\overline{b}$, якщо $\left|\overline{a}\right|=4,\left|\overline{b}\right|=5,$ $\widehat{(\overline{a},\overline{b})}=\frac{\pi}{6}.$
- **7.13.** Задано: $\left|\overline{a}\right|=2, \left|\overline{b}\right|=5, (\widehat{\overline{a},\overline{b}})=\frac{\pi}{6}$. Виразіть через вектори \overline{a} та \overline{b} одиничний вектор \overline{c}^0 ортогональний до векторів \overline{a} та \overline{b} і такий, що:

1) трійка $\overline{a}, \overline{b}, \overline{c}^0$ — права;

2) трійка $\overline{a}, \overline{b}, \overline{c}^0$ — ліва.

7.14. Задано вектори $\overline{a}_1 = (3;-1;2)^T$ та $\overline{a}_2 = (1;2;-1)^T$. Знайдіть координати векторів:

1) $[\overline{a}_1, \overline{a}_2];$

2) $[2\overline{a}_1 + \overline{a}_2, \overline{a}_2];$

3) $[2\overline{a}_1 - \overline{a}_2, 2\overline{a}_1 + \overline{a}_2].$

- **7.15.** Обчисліть площу трикутника з вершинами A(1;1;1), B(2;3;4) та C(4;3;2).
- **7.16.** 1. У трикутнику з вершинами $A(1;-1;2),\ B(5;-6;2)$ та C(1;3;-1) знайдіть висоту $h=\left|\overline{BD}\right|.$
 - 2. Знаючи вектори $\overline{AB}=-3\overline{i}-2\overline{j}+6\overline{k}$ та $\overline{BC}=-2\overline{i}+4\overline{j}+4\overline{k}$ знайдіть довжину висоти \overline{AD} трикутника ABC.
- **7.17.** Знайдіть, для яких значень α і β вектор $\alpha \overline{i} + 3\overline{j} + \beta \overline{k}$ буде колінеарний векторові $[\overline{a}; \overline{b}]$, якщо $\overline{a} = (3; -1; 1)^T$, $\overline{b} = (1; 2; 0)^T$.
- **7.18.** Знайдіть координати вектора \overline{x} , якщо він ортогональний до векторів $\overline{a}_1 = (4;-2;-3)^T$ та $\overline{a}_2 = (0;1;3)^T$, утворює з ортом \overline{j} тупий кут і $\left|\overline{x}\right| = 26$.
- **7.19.** Знайдіть координати вектора \overline{x} , якщо він ортогональний до векторів $\overline{a}_1=(2;-3;1)^T$ та $\overline{a}_2=(1;-2;3)^T$ і також справджує умову $(\overline{x},\overline{i}+2\overline{j}-7\overline{k})=10.$
- **7.20.** Сила $\overline{F}=2\overline{i}-4\overline{j}+5\overline{k}$ прикладена до точки A(4;-2;3). Знайдіть момент цієї сили щодо точки O(3;2;-1).

- **7.21.** Вектори $\overline{a}_1, \overline{a}_2, \overline{a}_3$ утворюють праву трійку, взаємно перпендикулярні та $\left|\overline{a}_1\right| = 4, \; \left|\overline{a}_2\right| = 2, \; \left|\overline{a}_3\right| = 3.$ Обчисліть $(\overline{a}_1, \overline{a}_2, \overline{a}_3).$
- **7.22.** Одиничні вектори $\overline{a}, \overline{b}, \overline{c}$ утворюють ліву трійку; та $(\overline{\overline{a}}, \overline{\overline{b}}) = \frac{\pi}{6}; \ \overline{c} \perp \overline{a},$ $\overline{c} \perp \overline{b}$. Обчисліть $(\overline{a}, \overline{b}, \overline{c})$.
- **7.23.** Чому дорівнює: 1) $([\overline{i}, \overline{j}], \overline{k})$; 2) $(\overline{a}, \overline{b}, \overline{a})$?
- **7.24.** Нехай вектори $\overline{a}, \overline{b}, \overline{c}$ утворюють праву трійку. Яку трійку утворюють вектори:
 - 1) \overline{b} , \overline{a} , \overline{c} ; 2) \overline{b} , \overline{c} , \overline{a} ; 3) \overline{c} , \overline{b} , \overline{a} ?
- **7.25.** Встановіть, якою (правою чи лівою) є трійка $\overline{a}, \overline{b}, \overline{c},$ якщо:

1)
$$\overline{a} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
, $\overline{b} = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$, $\overline{c} = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$; 2) $\overline{a} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\overline{b} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\overline{c} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$.

- **7.26.** Задано вектори $\overline{a}_1=(1;-1;3)^T,\ \overline{a}_2=(-2;2;1)^T$ та $\overline{a}_3=(3;-2;5)^T.$ Обчисліть $(\overline{a}_1,\overline{a}_2,\overline{a}_3)$. Яка орієнтація трійок:
 - 1) $\overline{a}_1, \overline{a}_2, \overline{a}_3;$ 2) $\overline{a}_2, \overline{a}_1, \overline{a}_3;$ 3) $\overline{a}_3, \overline{a}_1, \overline{a}_2$?
- **7.27.** Встановіть, чи компланарні вектори $\overline{a}, \overline{b}, \overline{c},$ якщо:

$$1)\overline{a} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \overline{b} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}, \overline{c} = \begin{pmatrix} 1 \\ 9 \\ -11 \end{pmatrix}; \quad 2) \ \overline{a} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}, \overline{b} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \overline{c} = \begin{pmatrix} 3 \\ -4 \\ 7 \end{pmatrix}.$$

- **7.28.** Для якого значення λ вектори $\overline{a}, \overline{b}, \overline{c}$ будуть компланарні?
 - 1) $\overline{a} = (\lambda; 3; 1)^T, \overline{b} = (5; -1; 2)^T, \overline{c} = (-1; 5; 4)^T;$
 - 2) $\overline{a} = (1;2\lambda;1)^T, \overline{b} = (1;\lambda;0)^T, \overline{c} = (0;\lambda;1)^T.$
- **7.29.** З'ясуйте лінійну залежність (незалежність) векторів $\overline{a}, \overline{b}, \overline{c},$ якщо:

1)
$$\overline{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\overline{b} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$, $\overline{c} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$; 2) $\overline{a} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$, $\overline{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $\overline{c} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$.

7.30. З'ясуйте, чи лежать в одній площині точки:

1)
$$A(3;3;2), B(7;1;5), C(1;1;2)$$
 Ta $D(3;-1;4)$;

2)
$$A(2;3;-1), B(1;2;5), C(0;3;1)$$
 та $D(3;2;3)$.

7.31. Знайдіть об'єм паралелепіпеда, побудованого на заданих векторах:

1)
$$\overline{a} = 3\overline{i} + 4\overline{j}, \overline{b} = \overline{k} - 3\overline{j}, \overline{c} = 2\overline{j} + 5\overline{k};$$

2)
$$\overline{a} = 2\overline{i} + \overline{j} + 3\overline{k}, \overline{b} = 3\overline{i} + \overline{j} + 2\overline{k}, \overline{c} = \overline{i} + 3\overline{j} + \overline{k}.$$

7.32. Знайдіть висоту $h = \left| \overline{DE} \right|$ тетраедра з вершинами в точках:

1)
$$A(1;1;1), B(2;0;2), C(2;2;2)$$
 ra $D(3;4;-3)$;

2)
$$A(1;2;1), B(3;0;-2), C(5;2;7)$$
 та $D(-6;-5;8)$.

Відповіді

7.9. 1)
$$\sqrt{3}$$
: 2) $3\sqrt{3}$: 3) $10\sqrt{3}$.

7.10. 1)–2)
$$\overline{a}_1 \parallel \overline{a}_2$$
.

7.12. 1.
$$50\sqrt{2}$$
. 2. 210.

7.13. 1)
$$\frac{1}{5}[\overline{a}, \overline{b}]; 2) - \frac{1}{5}[\overline{a}; \overline{b}].$$

7.14. 1)
$$(-3;5;7)^T$$
; 2) $(-6;10;14)^T$; 3) $(-12;20;28)^T$.

7.15.
$$2\sqrt{6}$$
.

7.16. 1. 5. 2.
$$\frac{8\sqrt{5}}{3}$$
.

7.17.
$$\alpha = -6, \beta = 21.$$

7.18.
$$(-6; -24; 8)^T$$
.

7.19.
$$(7;5;1)^T$$
.

7.20.
$$-4\overline{i} + 3\overline{j} + 4\overline{k}$$
.

7.22.
$$-\frac{1}{2}$$
.

7.25. 1) правою,
$$(\overline{a},\overline{b},\overline{c})=5$$
 ; 2) лівою, $(\overline{a},\overline{b},\overline{c})=-4$.

7.26. 1) ліва,
$$(\overline{a}_1, \overline{a}_2, \overline{a}_3) = -7$$
; 2) права; 3) ліва.

7.28. 1)
$$\lambda = -3;\ 2)$$
 за будь-якого $\lambda.$

7.29. 1) лінійно залежні; 2) лінійно незалежні,
$$(\overline{a}, \overline{b}, \overline{c}) = -5$$
.

7.32. 1)
$$3\sqrt{2}$$
; 2) 11.

8. Комплексні числа

Навчальні задачі

8.1. Знайти $z_1+z_2, z_1z_2, z_2-z_1, \frac{z_1}{z_2},$ якщо $z_1=4+5i,\ z_2=3-2i.$

Розв'язання. [2.15.]

$$\begin{split} z_1 + z_2 &= 7 + 3i; \quad z_1 - z_2 &= 1 + 7i; \\ z_1 z_2 &= (4 + 5i)(3 - 2i) = 12 + 15i - 8i + 10 = 22 + 7i; \\ \frac{z_1}{z_2} &= \frac{\left(4 + 5i\right)\left(3 + 2i\right)^{[2.15.5]}}{\left(3 - 2i\right)\left(3 + 2i\right)} = \frac{12 + 15i + 8i - 10}{9 + 4} = \frac{2}{13} + \frac{23}{13}i. \end{split}$$

8.2. Знайти дійсні розв'язки рівняння (2x + y) + (x + 3y)i = 3 - i. **Розв'язання.** [2.15.3.]

$$(2x+y) + (x+3y)i = 3 - i \Leftrightarrow \begin{cases} 2x + y = 3, \\ x + 3y = -1 \end{cases} \Leftrightarrow \begin{cases} x = 2, \\ y = -1. \end{cases}$$

8.3.1. Зобразити у тригонометричній та показниковій формі число z=-1+i. *Розв'язання.* [2.17.1.]

z = x + iy = -1 + i.

Число записано в алгебричній формі:

8.3.2. Зобразити у тригонометричній та показниковій формі число $z=1+\cos 2+i\sin 2.$

Розв'язання.

$${
m Re}\,z=1+\cos2>0, {
m Im}\,z=\sin2>0.$$
 число розташовано у 1-й чверті $\left|z\right|^{[2.17.3]}=\sqrt{(1+\cos2)^2+\sin^22}=\sqrt{2+2\cos2}=\sqrt{4\cos^21}=2\cos1.$

$$\arg z = \frac{\sin 2}{1 + \cos 2} = \arctan \frac{2 \sin 1 \cdot \cos 1}{2 \cos^2 1} = \arctan \tan 1 = 1.$$

$$z = 2 \cos 1 \cdot (\cos 1 + i \sin 1) = 2 \cos 1 \cdot e^i.$$

8.4.1. Знайти алгебричну форму числа $(-1 - i\sqrt{3})^{12}$.

Розв'язання. [2.17.8.]

[Записуємо число $z=-1-i\sqrt{3}$ у тригонометричній формі [2.19.1].] $x=-1<0, y=-\sqrt{3}<0\Rightarrow \\ \text{число розташоване у 3-й чверті} \\ \left|z\right|=\sqrt{(-1)^2+(-\sqrt{3})^2}=\sqrt{4}=2;$ $\arg z= \arctan\left(\frac{-\sqrt{3}}{-1}\right)-\pi=\frac{\pi}{3}-\pi=-\frac{2\pi}{3}.$

[Застосовуємо формулу піднесення до степеня.]

$$\begin{split} z^{12} &= 2^{12} \bigg(\cos \bigg(12 \cdot \bigg(-\frac{2\pi}{3} \bigg) \bigg) + i \sin \bigg(12 \cdot \bigg(-\frac{2\pi}{3} \bigg) \bigg) \bigg) = \\ & \text{модуль підносимо до степеня, аргумент множимо на степінь} \\ &= 2^{12} (\cos (-8\pi) + i \sin (-8\pi)) = 2^{12} (\cos 0 + i \sin 0) = 2^{12} = 4096. \end{split}$$

8.4.2. Знайти алгебричну форму числа $((1+i\sqrt{3})(2-2i))^4$.

Розв'язання.

[Записуємо числа
$$z_1=1+i\sqrt{3},\ z_2=2-2i\ y$$
 тригонометричній формі.]
$$\operatorname{Re} z_1=1>0, \operatorname{Im} z_1=\sqrt{3}>0;$$

$$\left|z_1\right|=\sqrt{1^2+(\sqrt{3})^2}=2; \varphi_1=\operatorname{arctg}\sqrt{3}=\frac{\pi}{3};$$

$$z_1=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right).$$

$$\operatorname{Re} z_2=2>0, \operatorname{Im} z_2=-2<0;$$

$$\left|z_2\right|=\sqrt{2^2+(-2)^2}=2\sqrt{2};$$

$$\varphi_2=\operatorname{arctg}\frac{-2}{2}=-\frac{\pi}{4}=-\frac{\pi}{4};$$

$$z_2=2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right).$$

 $[\mathit{Обчислюємо\ добуток\ } z_1z_2\ y\ тригонометричній\ формі.]$

$$\begin{split} z_1 z_2 &= 2 \bigg(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \bigg) \cdot 2 \sqrt{2} \bigg(\cos \bigg(-\frac{\pi}{4} \bigg) + i \sin \bigg(-\frac{\pi}{4} \bigg) \bigg) = \\ & \text{модулі перемножуємо, аргументи додаємо} \\ &= 4 \sqrt{2} \bigg(\cos \bigg(\frac{\pi}{3} - \frac{\pi}{4} \bigg) + i \sin \bigg(\frac{\pi}{3} - \frac{\pi}{4} \bigg) \bigg) = 4 \sqrt{2} \bigg(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \bigg). \end{split}$$

[Застосовуємо формулу піднесення до степеня.]

$$((1+i\sqrt{3})(2-2i))^4 \stackrel{[2.17.8]}{=} \left(4\sqrt{2}\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)\right)^4 =$$

$$= (4\sqrt{2})^4 \left(\cos\frac{4\pi}{12} + i\sin\frac{4\pi}{12}\right) = 1024 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) =$$

$$= 1024 \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 512 + 512\sqrt{3}i.$$

8.4.3. Знайти алгебричну форму числа $\left(\frac{1+i\sqrt{3}}{2-2i}\right)^{10}$.

Розв'язання. [2.17.7.]

[Використовуємо тригонометричну форму чисел $1+i\sqrt{3}$ та 2-2i із зад. 8.4.2. Ділимо комплексні числа у тригонометричній формі.] Користуючись результатом попереднього пункту, маємо

$$\begin{split} \frac{z_1}{z_2} &= \frac{2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}{2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)} = \\ &= \frac{1}{\sqrt{2}}\left(\cos\left(\frac{\pi}{3} + \frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{3} + \frac{\pi}{4}\right)\right) = \frac{1}{\sqrt{2}}\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right). \end{split}$$

[Застосовуємо формулу піднесення до степеня.]

$$\left(\frac{1+i\sqrt{3}}{2-2i}\right)^{10} = \left(\frac{1}{\sqrt{2}}\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)\right)^{10} \stackrel{[2.17.8]}{=}$$

$$= \frac{1}{32}\left(\cos\frac{70\pi}{12} + i\sin\frac{70\pi}{12}\right) = \frac{1}{32}\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = \frac{\sqrt{3}}{64} - \frac{i}{64}.$$

8.5.1. Знайти всі значення $\sqrt[4]{-1}$ і зобразіть їх на комплексній площині. *Розв'язання.* [2.17.10.]

[Записуємо число -1 у тригонометричній формі.]

$$-1 = \cos \pi + i \sin \pi$$
.

[Записуємо спільну формулу для значень кореня.]

$$\sqrt[4]{-1} \stackrel{[2.17.10]}{=} \omega_k = \cos\frac{\pi + 2\pi k}{4} + i\sin\frac{\pi + 2\pi k}{4}, k = \overline{0, 3}.$$

[Виписуємо всі окремі значення кореня.]

$$\begin{split} \omega_0 &= \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2};\\ \omega_1 &= \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2};\\ \omega_2 &= \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2};\\ \omega_3 &= \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}. \end{split}$$

[Зображуємо знайдені значення на комплексній площині, використовуючи полярну систему координат.]

Рис. до зад. 8.5.1

8.5.2. Знайти всі значення $\sqrt[5]{i}$ і зобразіть їх на комплексній площині.

Розв'язання. [2.17.10.]

[Записуємо число i у тригонометричній формі [2.17.1].]

$$\text{Re } z = 0, \text{Im } z = 1 > 0.$$

$$|z| = \sqrt{0^2 + 1^2} = 1$$
; $\arg z = \frac{\pi}{2}$; $i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$.

[Записуємо спільну формулу для значень кореня.]

$$\sqrt[5]{\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}} = \omega_k^{[2.17.10]} = \cos\left(\frac{\pi}{10} + \frac{2\pi k}{5}\right) + i\sin\left(\frac{\pi}{10} + \frac{2\pi k}{5}\right), k = \overline{0, 4}.$$

[Виписуємо всі окремі значення кореня.]

$$\begin{split} \omega_0 &= \cos\frac{\pi}{10} + i\sin\frac{\pi}{10}, \omega_1 = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}, \\ \omega_2 &= \cos\frac{9\pi}{10} + i\sin\frac{9\pi}{10}, \end{split}$$

$$\begin{split} \omega_3 &= \cos \frac{13\pi}{10} + i \sin \frac{13\pi}{10}, \\ \omega_4 &= \cos \frac{17\pi}{10} + i \sin \frac{17\pi}{10}. \end{split}$$

[Зображуємо знайдені значення на комплексній площині, використовуючи полярну систему координат.]

Рис. до зад. 8.5.2

8.6.1. Зобразити на площині С множини точок, що справджують умову |z-1|=3.

Розв'язання. [2.15.1, 2.17.3.]

[Використовуємо геометричний зміст умови.]

 $\big\{z\in\mathbb{C}\mid \big|z-1\big|=3\big\}$ — множина точок, віддалених від точки z=1 на віддаль 3 — це коло з центром у точці z=1 і радіусом 3.

[Зображуємо розв'язок.]

8.6.2. Зобразити на площині С множини точок, що справджують умову |z+i| = |z-i|.

Розв'язання. [2.15.1, 2.17.3.]

І спосіб (геометричний).

[Використовуємо геометричний зміст умови.]

 $\{z\in\mathbb{C}\mid \left|z+i\right|=\left|z-i\right|\}$ — множина точок рівновіддалених від точок $\,z_1^{}\,=\,-i\,$ та $\,z_2^{}\,=\,i\,$ — пряма, яка перпендикулярна до відрізка $z_1 z_2$ і проходить через його середину. [Зображуємо розв'язок.]

II спосіб (аналітичний).

Рис. до зад. 8.6.2

Нехай $z = x + iy, x, y \in \mathbb{R}$.

$$|z+i| = |x+i(y+1)|^{[2.17.2]} \sqrt{x^2 + (y+1)^2};$$

$$|z-i| = |x+i(y-1)| = \sqrt{x^2 + (y-1)^2}.$$

$$|z+i| = |z-i| \Leftrightarrow \sqrt{x^2 + (y+1)^2} = \sqrt{x^2 + (y-1)^2} \Leftrightarrow$$

$$\Leftrightarrow x^2 + (y+1)^2 = x^2 + (y-1)^2 \Leftrightarrow y = 0.$$

[Зображуємо розв'язок.]

8.6.3. Зобразити на площині С множини точок, що справджують умову $\left(\left|z\right| \le 1\right) \land \left(\frac{\pi}{3} < \arg z \le \frac{\pi}{2}\right).$

Розв'язання. [2.17.4.]

[Використовуємо геометричний зміст умови.]

$$\left\{z\in\mathbb{C}\mid\left(\left|z\right|\leq1\right)\wedge\left(\frac{\pi}{3}<\arg z\leq\frac{\pi}{2}\right)\right\}-\text{ множина точок, розташованих усередині круга з межею }\left|z\right|=1\colon\ x^2+y^2=1$$

Рис. до зад. 8.6.3

8.7. З'ясувати геометричний зміст співвідношень:

1)
$$|z - z_0| = a;$$

2)
$$|z - z_0| < a;$$

3)
$$|z - z_0| > a$$
;

4)
$$\arg z = \alpha$$
;

5) Re
$$z = a$$
;

6) Im
$$z = b$$
.

Розв'язання. [2.15.1, 2.17.3, 2.17.4.]

1) Множиною точок, віддаль яких від точки z_0 дорівнює $a, \, \epsilon$ коло з центром у точці z_0 радіусом a .

2) Нерівність описує внутрішність круга з центром у точці z_0 радіусом a .

3) Нерівність описує зовнішність круга з центром у точці $\,z_0\,$ радіусом $\,a\,.$

 $\operatorname{Im} z$

O Re z

Рис. до зад. 8.7.1)

Рис. до зад. 8.7.2)

Рис. до зад. 8.7.3)

4) Рівняння задає промінь, що виходить з початку координат під кутом α з додатним напрямом дійсної осі.

5) Вертикальна пряма x = a.

6) Горизонтальна пряма y = b.

8.8. Розв'язати рівняння $z^3 + z - 2 = 0 \ (z \in \mathbb{C}).$

Розв'язання.

[Π ідбираємо дійсний корінь рівняння. $^{\circ}$]

Число z = 1 — корінь рівняння.

[Застосовуємо схему Горнера.[©]]

$$\frac{\begin{vmatrix} 1 & 0 & 1 & -2 \\ 1 & 1 & 1 & 2 & 0 \end{vmatrix}}{1 \begin{vmatrix} 1 & 1 & 2 & 0 \end{vmatrix}}$$

$$\begin{bmatrix} z_1 & = 1, \\ \vdots & \vdots & \vdots \\ z_n & = 1, \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$(z-1)(z^2+z+2) = 0 \Leftrightarrow \begin{bmatrix} z_1 = 1, \\ z^2+z+2 = 0. \end{bmatrix}$$

[Розв'язуємо квадратне рівняння.]

$$\begin{split} z^2 + z + 2 &= 0; \\ D &= 1 - 8 = -7; \\ \sqrt{-7} &= \sqrt{7(\cos \pi + i \sin \pi)} = \sqrt{7} \left(\cos \frac{\pi + 2\pi k}{2} + i \sin \frac{\pi + 2\pi k}{2} \right), k = 0, 1; \\ \sqrt{-7} &= \pm i \sqrt{7} \Rightarrow z_{2,3} = \frac{-1 \pm i \sqrt{7}}{2}. \end{split}$$

[Записуємо відповідь.]

$$z_1\,=\,1, z_{2,3}\,=\,\frac{-1\pm\,i\sqrt{7}}{2}\,.$$

Коментар. ① Кубічне рівняння з дійсними коефіцієнтами завжди має принаймні один дійсний корінь, який ε дільником вільного члена рівняння.

 ${ \mathfrak D}$ Або ділимо многочлен z^3+z-2 на многочлен (z-1) у стовпчик.

Задачі для аудиторної і домашньої роботи

8.9. Знайдіть дійсні числа x та y з рівняння:

1)
$$(2x + y) + (x + 3y)i = 3 - i;$$
 2) $(x - 5y) + (x - 2y)i = -17 - 8i.$

8.10. Знайдіть
$$z_1+z_2, z_1z_2, z_2-z_1, \frac{z_1}{z_2},$$
 якщо $z_1=\sqrt{2}-\sqrt{3}i,\ z_2=\sqrt{2}+\sqrt{3}i.$

8.11. Обчисліть:

1)
$$(1+5i)(-2+3i);$$
 2) $(1-2i)^2;$
3) $\frac{1+2i}{1-2i};$ 4) $-\frac{4i}{2-i}.$

8.12. Зобразіть комплексні числа точками комплексної площини:

1)
$$2 + i$$
; 2) $2 - i$;
3) $-3 + 2i$; 4) $-2 - 3i$;
5) $-1 + 0i$; 6) $0 - 3i$.

8.13. Назвіть комплексне число, спряжене з заданим. Зобразіть задане та спряжене числа точками площини:

1) 1 - i; 2) 5; 3) 2i; 4) 2 + 3i; 5) 5i - 4; 6) 0.

8.14. Обчисліть:

1)
$$\frac{1}{i^3}$$
;

2)
$$i^4 + i^{14} + i^{24} + i^{34} + i^{44}$$
;

3)
$$i + i^2 + i^3 + ... + i^n, n > 4$$
;

4)
$$i \cdot i^2 \cdot i^3 \cdot \cdots i^{50}$$
.

- 8.15. Запишіть число у тригонометричній і показниковій формах:
 - 1) 1;

2) -1;

3) *i*;

4) -i:

5) 1 + i;

6) -1 + i;

7) -1 - i;

8) 1 - i:

9) $\sqrt{3} - i$:

10) $-\frac{1}{2} - \frac{\sqrt{3}}{2}i;$

 $11) - \cos\frac{\pi}{7} + i\sin\frac{\pi}{7};$

12) $1 + \cos \alpha + i \sin \alpha$;

- 13) $\sin \varphi + i \cos \varphi$.
- **8.16.** Обчисліть:
 - 1) $5(\cos 10^{\circ} + i \sin 10^{\circ}) \cdot 2(\cos 80^{\circ} + i \sin 80^{\circ});$

2)
$$2\left(\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}\right) \cdot 6\left(\cos\frac{6\pi}{7} + i\sin\frac{6\pi}{7}\right);$$

3)
$$\frac{\cos 140^{\circ} + i \sin 140^{\circ}}{\cos 50^{\circ} + i \sin 50^{\circ}};$$

4)
$$\frac{5(\cos 109^{\circ} + i \sin 109^{\circ})}{3(\cos 49^{\circ} + i \sin 49^{\circ})}$$
.

8.17. Зобразіть на площині множини чисел, модуль ρ та аргумент ϕ яких справджують умову:

1)
$$\rho = 1, \varphi = \frac{\pi}{3};$$

2)
$$\rho = 3$$
;

3)
$$\rho \leq 3$$
;

4)
$$\rho > 3$$
;

5)
$$2 < \rho < 3$$
;

6)
$$\varphi = \frac{\pi}{4}$$
;

7)
$$0 \le \varphi \le \frac{\pi}{6}$$
;

8)
$$0 < \varphi < \pi$$
.

8.18. Зобразіть на площині множини чисел, які справджують умову:

1)
$$\text{Re } z > 0$$
;

2) Im
$$\leq 2$$
;

3)
$$|\text{Re } z| < 1;$$

4)
$$\left| \operatorname{Im} z \right| \ge 2$$
;

5)
$$|z| \le 1$$
;

6)
$$|z+3-2i| > 1$$
;

7)
$$|z+1| = |z-1|$$
;

8)
$$|z+1| \ge |z-1|$$
;

9)
$$|z+1| = |z-i|$$
;

10)
$$|z+1| \le |z-i|$$
.

8.19. Обчисліть:

1)
$$(1+i)^{25}$$
;

$$2) \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i \right)^{200};$$

$$3) \left(\frac{1 + \sqrt{3}i}{1 - i} \right)^{20};$$

$$4) \left(\frac{-1 + \sqrt{3}i}{1+i} \right)^{24}.$$

8.20. Знайдіть усі значення коренів:

1)
$$\sqrt[3]{1}$$
;

2)
$$\sqrt[4]{i}$$
;

3)
$$\sqrt{3+4i}$$
:

4)
$$\sqrt[3]{-2+2i}$$
:

5)
$$\sqrt[6]{\frac{1-i}{\sqrt{3}+i}};$$

6)
$$\sqrt[4]{\frac{-1+i}{1-i\sqrt{3}}}$$
.

8.21. Розв'яжіть рівняння у множині комплексних чисел:

1)
$$z^2 + 2z + 5 = 0$$
;

2)
$$4z^2 - 2z + 1 = 0$$
;

3)
$$z^3 - 6z + 9 = 0$$
;

4)
$$z^3 - 6z + 4 = 0$$
.

8.22. Розв'яжіть систему лінійних рівнянь:

$$1) \begin{cases} (3-i)z_1 + (4+2i)z_2 = 1+3i, \\ (4+2i)z_1 - (2+3i)z_2 = 7; \end{cases} \\ 2) \begin{cases} (2+i)z_1 + (2-i)z_2 = 6, \\ (3+2i)z_1 + (3-2i)z_2 = 8. \end{cases}$$

8.23. Перетворіть на добуток:

1)
$$\sin \varphi + \sin 2\varphi + \sin 3\varphi + ... + \sin n\varphi$$
;

2)
$$\cos \varphi + \cos 2\varphi + \cos 3\varphi + ... + \cos n\varphi$$
.

Відповіді

8.9. 1)
$$x = 2, y = -1$$
; 2) $x = -2, y = 3$.

8.10.
$$z_1 + z_2 = 2\sqrt{2}, z_1 z_2 = 5, \ z_2 - z_1 = 2\sqrt{3}i, \frac{z_1}{z_2} = -\frac{1 + 2\sqrt{6}i}{5}.$$

8.11. 1)
$$-17 - 7i$$
; 2) $-3 - 4i$; 3) $-\frac{3}{5} + \frac{4}{5}i$; 4) $\frac{4}{5} - \frac{8}{5}i$.

8.14. 1)
$$i$$
; 2) 1; 3) 0, якщо $n=4k$, i , якщо $n=4k+1$, $i-1$, якщо $n=4k+2$, -1 , якщо $n=4k+3$; 4) $-i$.

8.15. 1)
$$\cos 0 + i \sin 0$$
; 2) $\cos \pi + i \sin \pi$; 3) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$; 4) $\cos \left(-\frac{\pi}{2}\right) + i \sin \left(-\frac{\pi}{2}\right)$;

5)
$$\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)$$
; 6) $\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)$; 7) $\sqrt{2} \left(\cos \frac{5\pi}{4} + i \sin \frac{5\pi}{4}\right)$;

8)
$$\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right)$$
; 9) $2\left(\cos\left(-\frac{\pi}{6}\right)+i\sin\left(-\frac{\pi}{6}\right)\right)$;

$$10) \ \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}; 11) \ \cos\frac{6\pi}{7} + i\sin\frac{6\pi}{7}; \ 12) \ 2\cos\frac{\alpha}{2}\Big(\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}\Big), \ \text{якщо} \ \cos\frac{\alpha}{2} \geq 0,$$

$$-2\cos\frac{\alpha}{2}\Big(\cos\Big(\pi + \frac{\alpha}{2}\Big) + i\sin\Big(\pi + \frac{\alpha}{2}\Big)\Big), \ \text{якщо} \ \cos\frac{\alpha}{2} < 0; \ 13) \ \cos\Big(\frac{\pi}{2} - \varphi\Big) + i\sin\Big(\frac{\pi}{2} - \varphi\Big).$$

8.16. 1)
$$10i$$
; 2) -12 ; 3) i ; 4) $\frac{5}{6} + \frac{5}{2\sqrt{3}}i$.

8.17. 1) точка $M\left(1;\frac{\pi}{3}\right)$; 2) коло радіусом 3 з центром у т. O; 3) круг радіусом 3 із центром у т. O; 4) зовнішні точки круга; 5) кільце без своїх меж; 6) промінь із т. O; 7) кут; 8) верхня відкрита півплощина.

- 8.18. 1) відкрита півплощина, праворуч від уявної осі;
- 2) півплощина, розташовану нижче горизонтальної прямої $y=2;\,3)$ вертикальна смуга;
- 4) зовнішність горизонтальної смуги;
- 5) круг радіусом 1 із центром у т. O;
- 6) зовнішність круга радіусом 1 із центром у т. -3 + 2i;
- 7) уявна вісь;
- 8) права півплощина;
- 9) бісектриса 2-ї та 4-ї чверті;
- 10) півплощина $x + y \le 0$.

8.19. 1)
$$2^{12}(1+i)$$
; 2) $\frac{1}{2}(-1+i\sqrt{3})$; 3) $2^{9}(1-i\sqrt{3})$; 4) 2^{12} .

8.20. 1)
$$\cos \frac{2\pi k}{3} + i \sin \frac{2\pi k}{3}, k = 0, 1, 2;$$
 2) $\cos \frac{1+4k}{8}\pi + i \sin \frac{1+4k}{8}\pi, k = \overline{0,3};$

3)
$$2+i,-2-i;$$
 4) $\sqrt{2}\left(\cos\frac{8k+3}{12}\pi+i\sin\frac{8k+3}{12}\pi\right),\ k=0,1,2;$

5)
$$\frac{1}{\sqrt[12]{2}} \left(\cos \frac{24k+19}{72} \pi + i \sin \frac{24k+19}{72} \pi \right), \ k = \overline{0,5};$$

6)
$$\frac{1}{\sqrt[8]{2}} \left(\cos \frac{13 + 24k}{48} \pi + i \sin \frac{13 + 24k}{48} \pi \right), \ k = \overline{0, 3}.$$

8.21. 1)
$$-1 \pm 2i$$
; 2) $\frac{1}{4} \pm \frac{\sqrt{3}}{4}i$; 3) $-3, \frac{3 \pm i\sqrt{3}}{2}$; 4) $2, -1 \pm \sqrt{3}$.

8.22. 1)
$$z_1 = 1, z_2 = i$$
; 2) $z_1 = 2 + i, z_2 = 2 - i$.

8.23. 1)
$$\frac{\sin\frac{(n+1)\varphi}{2}\sin\frac{n\varphi}{2}}{\sin\frac{\varphi}{2}}$$
; 2)
$$\frac{\sin\frac{n\varphi}{2}\cos\frac{(n+1)\varphi}{2}}{\sin\frac{\varphi}{2}}$$
.

Модуль 3. АНАЛІТИЧНА ГЕОМЕТРІЯ

9. Геометрія прямої і площини

Навчальні задачі

Задано пряму $L: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-4}{-5}$. Знайти координати напрямно-9.1. го вектора \overline{s} і точку M_0 , що належить прямій.

Розв'язання. [3.4.1, 3.4.4.]

Задані рівняння є канонічними рівняннями прямої. Отже, числа, що стоять у знаменниках дробів — це координати напрямного вектора прямої

$$\bar{s} = \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}.$$

Точка, через яку проходить пряма, має координати $M_0(1;2;4)$.

9.2. Записати канонічні й параметричні рівняння прямої L, що проходить через точку $M_0(1;-1;0)$ паралельно вектору $\overline{a}=(-2;5;-6)^T$.

Оскільки вектор \overline{a} ненульовий, то його можна взяти за напрямний вектор шуканої прямої.

Нехай точка $M(x;y;z) \in L$. належить прямій L.

Рис. до зад. 9.2

[Підставляючи координати точки M_0 і координати вектора \overline{s} в канонічні [3.4.4] і параметричні [3.4.3] рівняння, дістаємо: Канонічні рівняння прямої

$$L: \frac{x-1}{-2} = \frac{y+1}{5} = \frac{z}{-6};$$

Параметричні рівняння прямої

$$L: \begin{cases} x = 1 - 2t, \\ y = -1 + 5t, \ t \in \mathbb{R}. \\ z = -6t, \end{cases}$$

Коментар. ① Стислий загальний розв'язок задачі:

$$\begin{cases} L \parallel \overline{a} \neq \overline{0} \Rightarrow \overline{a} = \overline{s}(L), \\ M(\overline{r}) \in L(M_0; \overline{a}) \end{cases} \Leftrightarrow L : \overline{r} - \overline{r_0} \parallel \overline{a} \Leftrightarrow L : \overline{r} = \overline{r_0} + t\overline{a}, t \in \mathbb{R}.$$

9.3. Записати канонічні й параметричні рівняння прямої L, яка проходить через точки $M_1(3;3;3), M_2(4;5;6)$.

Розв'язання. [3.4.6.]

Нехай точка $M(x;y;z)\in L$. Тоді [підставляючи у формулу [3.4.6] координати точок M_1 та M_2 дістаємо] $^{\oplus}$

канонічні рівняння прямої

$$L: \frac{x-3}{1} = \frac{y-3}{2} = \frac{z-3}{3};$$

[підставляючи координати точки M_1 і напрямного вектора $\overline{s}(L)=(1;2;3)^T$ дістаємо]

параметричні рівняння прямої

$$L: \begin{cases} x = 3 + t, \\ y = 3 + 2t, \ t \in \mathbb{R}. \\ z = 3 + 3t, \end{cases}$$

Коментар. \bigcirc Напрямним вектором шуканої прямої $L \in$ ненульовий вектор

$$\overline{M_1M_2} = \overline{r_2} - \overline{r_1} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \overline{s}(L).$$

Для знаходження канонічних і параметричних рівнянь використано умову колінеарності векторів $\overline{M_1M}$ і $\overline{M_1M_2}$.

9.4. Записати рівняння прямої L, яка проходить через точку $M_0(7;-3;1)$ паралельно прямій $L_1:\frac{x}{-2}=\frac{y+7}{3}=\frac{z-1}{0}$.

Розв'язання. [3.4.4.]

3 рівняння прямої L_1 випливає, що напрямний вектор

$$\overline{s}_{\!\scriptscriptstyle 1}(L_{\!\scriptscriptstyle 1}) = \begin{pmatrix} -2\\3\\0 \end{pmatrix}\!.$$

Оскільки пряма L паралельна прямій $L_{\!\scriptscriptstyle 1},$ то за її напрямний вектор можна взяти напрямний вектор прямої $L_{\!\scriptscriptstyle 1}$:

$$\overline{s}(L) = \overline{s}_1(L_1) = \begin{pmatrix} -2\\3\\0 \end{pmatrix}.$$

Нехай точка $M(\overline{r}) \in L$. Тоді (див. зад. **9.2**)

$$\overline{r}-\overline{r_0}=egin{pmatrix} x-7 \ y+3 \ z-1 \end{pmatrix}$$
колінеарний $\overline{s_1}=egin{pmatrix} -2 \ 3 \ 0 \end{pmatrix}$ \Leftrightarrow

канонічне рівняння прямої

$$L: \frac{x-7}{-2} = \frac{y+3}{3} = \frac{z-1}{0}.$$

Знайти нормальний вектор площини 3x - 2y + 5z - 1 = 0. 9.5.

Розв'язання. [3.3.2.]

Задане рівняння є загальним рівнянням площини.

Нормальний вектор площини

$$\overline{n} = \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix}^{\oplus}.$$

Коментар. 1 Коефіцієнти при змінних у загальному рівнянні є координатами нормального вектора цієї площини. Нормальний вектором площини буде і будь-який вектор $\lambda \overline{n}, \lambda \neq 0$.

Записати рівняння площини P, що проходить через точку $M_0(1;-3;2)$ 9.6. перпендикулярно до вектора $\overline{a} = (4;0;5)^T$.

Розв'язання. [3.3.3]

Розв изиния. [3.3.3] Оскільки вектор \overline{a} перпендикулярний до площини P, то його можна взяти за нормальний вектор площини $M_{\overline{a}}$ $P: \overline{n}(P) = \overline{a}.$

Рис. до зад. 9.6

Нехай точка $M(\overline{r}) = M(x; y; z) \in P$. Тоді

[підставляючи у рівняння [3.3.3] координати точки M_0 і вектора \overline{a} , дістаємо]

$$4(x-1) + 0(y+3) + 5(z-2) = 0 \Leftrightarrow$$
 $P: 4x + 5z - 14 = 0.$
шукане рівняння площини

Коментар. ① Стислий загальний розв'язок задачі:

$$\begin{split} P \perp \overline{a} & \neq \overline{0} \Leftrightarrow \overline{a} = \overline{n}(P); \\ M(\overline{r}) & \in P(M_0; \overline{a}) \Leftrightarrow \overline{r} - \overline{r_0} \perp \overline{a} \Leftrightarrow \\ & \Leftrightarrow P : (\overline{r} - \overline{r_0}, \overline{a}) = 0. \end{split}$$

9.7. Записати рівняння площини P, яка проходить через точку $M_0(2;-1;1)$ паралельно площині $P_1: x-4y+5z-1=0$.

Розв'язання. [3.3.2, 3.3.3.]

Оскільки площина $P \parallel P_1$, то за нормальний вектор площини P можна взяти нормальний вектор площини P_1 :

$$n_1$$
 M P M_0 M

$$\overline{n}(P) = \overline{n}_1(P_1) = \begin{pmatrix} 1 \\ -4 \\ 5 \end{pmatrix}.$$

Нехай точка $M(\overline{r})\in P$. Площину P, що проходить через точку $M_0(\overline{r_0})$ перпендикулярно до вектора \overline{n}_1 задає рівняння (див. зад. **9.6**)

$$(\overline{r}-\overline{r_0},\overline{n}_1)=0 \ \Leftrightarrow \ 1(x-2)-4(y+1)+5(z-1)=0.$$

Рівняння шуканої площини

$$P: x - 4y + 5z - 11 = 0.$$

9.8 Записати рівняння площини P, яка проходить через точку $M_0(2;0;-5)$, паралельно двом векторам $\overline{u}=(1;2;0)^T$ та $\overline{v}=(0;-1;3)^T$.

Розв'язання. [3.3.1. 3.3.4.1

Вектори \overline{u} та \overline{v} — не колінеарні, бо $\frac{2}{-1} \neq \frac{0}{3}$.

Нехай точка

$$M(\overline{r}) = M(x; y; z) \in P.$$

Рис. до зад. 9.8

Оскільки точка $M_0(\overline{r_0}) = M_0(2;0;-5) \in P$, то вектори

$$\overline{r}-\overline{r_0}=egin{pmatrix} x-2\\y\\z+5 \end{pmatrix},\overline{u}=egin{pmatrix} 1\\2\\0 \end{pmatrix},\overline{v}=egin{pmatrix} 0\\-1\\3 \end{pmatrix}$$
 — компланарні \Leftrightarrow

$$\Leftrightarrow (\overline{r} - \overline{r_0}, \overline{u}, \overline{v}) = 0 \Leftrightarrow \begin{vmatrix} z - 2 & y & z + 5 \\ 1 & 2 & 0 \\ 0 & -1 & 3 \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow (x - 2) \cdot 6 - y \cdot 3 + (z + 5) \cdot (-1) = 0;$$

$$P : 6x - 3y - z - 17 = 0.$$

Коментар. ① Стислий загальний розв'язок задачі:

$$M(\overline{r})\in P\Leftrightarrow \overline{r}-\overline{r_0},\overline{u},\overline{v}$$
 — компланарні $\Leftrightarrow P:(\overline{r}-\overline{r_0},\overline{u},\overline{v})=0.$

За нормальний вектор площини P можна взяти вектор $\overline{n}(P)=[\overline{u},\overline{v}].$

9.9. Записати рівняння площини P, що проходить через пряму $L: \frac{x-1}{-3} = \frac{y+3}{8} = \frac{z}{-1}$ паралельно вектору $\overline{a} = (1;0;3)^T$.

Розв'язання. [3.4.1.]

3 рівняння прямої L і умови задачі випливає, що точка $M_0(1;-3;0) \in P$ і напрямний вектор прямої

$$\overline{s}(L) = (-3;8;-1)^T$$

паралельний площині P.

Вектори \overline{s} та \overline{a} — неколінеарні, бо $\frac{-3}{1} \neq \frac{8}{0}$.

Нехай точка $M(\overline{r}) \in P$. Площину P, яка проходить через точку M_0 паралельно векторам \overline{a} та \overline{s} задає рівняння (див. зад. **9.8**)

$$(\overline{r} - \overline{r_0}, \overline{a}, \overline{s}) = 0 \Leftrightarrow \begin{vmatrix} z - 1 & y + 3 & z \\ 1 & 0 & 3 \\ -3 & 8 & -1 \end{vmatrix} = 0 \Leftrightarrow (x - 1) \cdot (-24) - (y + 3) \cdot 8 + z \cdot 8 = 0; \\ -24x - 8y + 8z = 0.$$

Рівняння шуканої площини

$$P: 3x + y - z = 0.$$

9.10. Записати рівняння площини P, що проходить через точки $M_1(2;-1;3), M_2(1;1;1)$ паралельно вектору $\overline{a}=(7;4;0)^T.$

Розв'язання. [3.3.1, 3.3.4.]

Вектори

$$\overline{M_1 M_2} = \overline{r_2} - \overline{r_1} = \begin{pmatrix} 1 - 2 \\ 1 - (-1) \\ 1 - 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix} \text{ Ta } \overline{a} = \begin{pmatrix} 7 \\ 4 \\ 0 \end{pmatrix} - \dots$$

неколінеарні, бо $-\frac{1}{7} \neq \frac{2}{4}$.

Нехай точка $M(\overline{r})\in P$. Площину P, яка проходить через точку M_1 паралельно векторам $\overline{M_1M_2}=\overline{r_2}-\overline{r_1}$ та \overline{a} задає рівняння (див. зад. **9.8**)

$$(\overline{r} - \overline{r_1}, \overline{r_2} - \overline{r_1}, \overline{a}) = 0 \Leftrightarrow \begin{vmatrix} z \cdot 12 \cdot 3 \\ -1 & 2 & -2 \\ 7 & 4 & 0 \end{vmatrix} = 0 \Leftrightarrow \Leftrightarrow (x - 2) \cdot 8 - (y + 1) \cdot 14 + (z - 3) \cdot (-18) = 0; \\ 8x - 14y - 18z + 24 = 0.$$

Рівняння шуканої площини

$$P: 4x - 7y - 9z + 12 = 0.$$

9.11. Записати рівняння площини P, що проходить через три різні точки $M_1(2;3;1), M_2(-1;2;5)$ та $M_3(3;0;1).$

Розв'язання. [3.3.4.]

Вектори

$$\overline{r}_2-\overline{r}_1=\overline{M_1M_2}=\begin{pmatrix} -3\\-1\\4 \end{pmatrix} \text{ ta i } \overline{r}_3-\overline{r}_1=\overline{M_1M_3}=\begin{pmatrix} 1\\-3\\0 \end{pmatrix}$$

— неколінеарні, бо $\frac{-3}{1}\neq \frac{-1}{-3}$ (тобто точки M_1,M_2,M_3 не лежать на одній прямій).

Нехай $M(\overline{r})\in P$. Площину P, яка проходить через точку M_1 паралельно векторам $\overline{M_1M_2}=\overline{r_2}-\overline{r_1}$ та $\overline{M_1M_3}=\overline{r_3}-\overline{r_1}$, задає рівняння (див. зад. **9.8**)

$$(\overline{r} - \overline{r_1}, \overline{r_2} - \overline{r_1}, \overline{r_3} - \overline{r_1}) = 0 \Leftrightarrow \begin{vmatrix} x - 2 & y - 3 & z - 1 \\ -3 & -1 & 4 \\ 1 & -3 & 0 \end{vmatrix} = 0 \Leftrightarrow \Leftrightarrow (x - 2) \cdot 12 - (y - 3)(-4) + (z - 1) \cdot 10 = 0.$$

Рівняння шуканої площини

$$P: 6x + 2y + 5z - 23 = 0.$$

9.12. Знайти рівняння площини у відрізках і зобразити площину в ПДСК, якщо її загальне рівняння 3x - 6y + 4z - 12 = 0.

Розв'язання. [3.3.5.]

[Перетворюємо рівняння площини: перенесимо вільний член рівняння праворуч і ділимо обидві частини рівняння на нього, записуючи коефіцієнти при x,y,z у знаменники.]

$$3x - 6y + 4z = 12 \Leftrightarrow \frac{x}{4} + \frac{y}{-2} + \frac{z}{3} = 1.$$

3 одержаного рівняння площини у відрізках випливає, що площина перетинає осі координат у точках A(4;0;0), B(0;-2;0) і C(0;0;3).

Рис. до зад. 9.12

9.13.1. З'ясувати, чи ϵ рівняння площини 4x - 6y - 12z - 11 = 0 нормованим. Якщо ні, то знормувати його.

Розв'язання. [3.3.7, 3.3.6.][®]

$$-11 < 0;$$

$$|(4;-6;-12)^T| = \sqrt{16+36+144} = \sqrt{196} = 14 \neq 1.$$

Рівняння не є нормованим, оскільки нормальний вектор площини не одиничний. Знормуємо рівняння, помноживши його на $\mu=\frac{1}{14}$:

$$\frac{2}{7}x - \frac{3}{7}y - \frac{6}{7}z - \frac{11}{14} = 0.$$

Коментар. ① У нормованому рівнянні коефіцієнти при x,y і z є координатами одиничного нормального вектора, а вільний член має бути від'ємним.

9.13.2. З'ясувати, чи ϵ рівняння площини $\frac{3}{7}x - \frac{6}{7}y + \frac{2}{7}z + 3 = 0$ нормованим.

Якщо ні, то знормувати його:

Розв'язання.

$$3 > 0; \left| \left(\frac{3}{7}; -\frac{6}{7}; \frac{2}{7} \right)^T \right| = \frac{\sqrt{9+36+4}}{7} = \frac{\sqrt{49}}{7} = 1.$$

Рівняння не є нормованим, оскільки вільний член додатний. Знормуємо його, помноживши на $\mu = -1$:

$$-\frac{3}{7}x + \frac{6}{7}y - \frac{2}{7}z - 3 = 0.$$

Задачі для аудиторної і домашньої роботи

- **9.14.** Запишіть канонічні і параметричні рівняння прямої, що проходить через точку $M_0(2;0;-5)$ паралельно:
 - 1) вектору $\bar{a} = (2; -3; 5)^T;$
- 2) вектору $\bar{a} = (0;1;2)^T$;

3) oci Ox;

4) oci *Oy*;

5) прямій
$$\frac{x-1}{5} = \frac{y+2}{2} = \frac{z+1}{-1}$$
;

6) прямій
$$x = -2 + t, y = 2t, z = 1 - \frac{1}{2}t.$$

9.15. Запишіть канонічні і параметричні рівняння прямої, що проходить через точки M_1 і M_2 :

1)
$$M_1(1;-2;1), M_2(3;1;-1);$$
 2) $M_1(3;-1;0), M_2(1;0;-3).$

2)
$$M_1(3;-1;0), M_2(1;0;-3).$$

- Установіть, які з точок $M_1(3;4;7),\ M_2(2;0;4), M_3(0;-5;1),\ M_4(-1;3;-2)$ 9.16. належать прямій x = 2 + t, y = 1 + 3t, z = 5 + 2t.
- 9.17. Вкажіть нормальний вектор площини:

1)
$$-x + 2y - 7z + 5 = 0$$
;

2)
$$3x + z - 11 = 0$$
.

Запишіть загальне рівняння площини, що проходить через точку M_0 , 9.18. паралельно векторам \overline{a}_1 та \overline{a}_2 , якщо:

1)
$$M_0(1;1;1), \overline{a}_1 = (0;1;2)^T, \overline{a}_2 = (-1;0;1)^T;$$

2)
$$M_0(0;1;2), \overline{a}_1 = (2;0;1)^T, \overline{a}_2 = (1;1;0)^T.$$

Запишіть рівняння площини, що проходить через точки $\,M_1\,$ і $\,M_2\,$ пара-9.19. лельно вектору \overline{a} , якщо:

1)
$$M_1(1;2;0), M_2(2;1;1), \overline{a} = (3;0;1)^T;$$

2)
$$M_1(1;1;1), M_2(2;3;-1), \overline{a} = (0;-1;2)^T$$
.

Запишіть рівняння площини, що проходить через точки $\,M_1, M_2\,$ і $\,M_3$: 9.20.

1)
$$M_1(1;2;0), M_2(2;1;1), M_3(3;0;1);$$

2)
$$M_1(1;1;1), M_2(0;-1;2), M_3(2;3;-1).$$

9.21. Запишіть рівняння площини, що проходить через точки:

1)
$$M_1(1;-3;2), M_2(-2;1;4), \parallel Ox;$$

2)
$$M_1(-2;1;-3), M_2(1;-3;-4), ||Oy;$$

3)
$$M_1(4;-1;1), M_2(0;-2;-3), \parallel Oz.$$

- Запишіть рівняння площини, що проходить: 9.22.
 - 1) через вісь Ox і точку $M_1(-1;1;-3);$
 - 2) через вісь Oy і точку $M_2(1;-2;5);$
 - 3) через вісь Oz і точку $M_3(2;3;-4)$.

- 9.23. Запишіть рівняння площини, що проходить через точку:
 - 1) $M_1(-2;3;-1)$ паралельно площині Oxy;
 - 2) $M_2(4;-1;5)$ паралельно площині Oxz;
 - 3) $M_3(-3;-2;2)$ паралельно площині Oyz.
- Запишіть нормоване рівняння площини: 9.24.

1)
$$5y - 12z + 26 = 0$$
;

2)
$$x + \sqrt{2}y + z - 10 = 0$$
.

- Перевірте, які з точок A(-1;2;3), B(1;-2;1), C(0;1;2), D(3;0;3)9.25. E(5;-7;11) лежать на площині 2x-3y+z-9=0.
- Знайдіть довжини відрізків, що відтинає від координатних площин пло-9.26. щина:

1)
$$2x + 3y - 9z + 18 = 0$$
;

2)
$$x - 2y + 5z - 20 = 0$$
.

Знайдіть об'єм тетраедра, який відтинає від координатного кута площина: 9.27.

1)
$$3x - 2y + z - 12 = 0$$
;

2)
$$x + 2y - 5z + 10 = 0$$
.

Як розташовано щодо системи координат Охуг площина: 9.28.

1)
$$3y + 2z - 1 = 0$$
;

2)
$$2x + y - 5z = 0$$
;

3)
$$2x - y - 1 = 0$$
,

4)
$$2x + y = 0$$
;

5)
$$x + z = 0$$
;

6)
$$3y - 4z = 0$$
;

7)
$$2x + 3 = 0$$
;

8)
$$z + 4 = 0$$
.

Відповіді

9.14. 1)
$$\frac{x-2}{2} = \frac{y}{-3} = \frac{z+5}{5}$$
,
$$\begin{cases} x = 2+2t, \\ y = -3t, & t \in \mathbb{R}; \\ z = -5+5t, \end{cases}$$

2)
$$\frac{x-2}{0} = \frac{y}{1} = \frac{z+5}{2}$$
, $\begin{cases} x = 2, \\ y = t, \\ z = -5 + 2t, \end{cases}$

3)
$$\frac{x-2}{1} = \frac{y}{0} = \frac{z+5}{0}$$
, $\begin{cases} x = 2+t, \\ y = 0, & t \in \mathbb{R}; 4 \end{cases}$ $\frac{x-2}{0} = \frac{y}{1} = \frac{z+5}{0}$, $\begin{cases} x = 2, \\ y = t, & t \in \mathbb{R}; \\ z = -5, \end{cases}$

3)
$$\frac{x-2}{1} = \frac{y}{0} = \frac{z+5}{0}$$
, $\begin{cases} x = 2+t, \\ y = 0, & t \in \mathbb{R}; 4 \end{cases} \frac{x-2}{0} = \frac{y}{1} = \frac{z+5}{0}$, $\begin{cases} x = 2, \\ y = t, & t \in \mathbb{R}; \\ z = -5, \end{cases}$
5) $\frac{x-2}{5} = \frac{y}{2} = \frac{z+5}{-1}$, $\begin{cases} x = 2+5t, \\ y = 2t, & t \in \mathbb{R}; 6 \end{cases} \frac{x-2}{1} = \frac{y}{2} = \frac{z+5}{-1/2}$, $\begin{cases} x = 2+t, \\ y = 2t, & t \in \mathbb{R}. \\ z = -5 - \frac{1}{2}t, \end{cases}$

9.15. 1)
$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-1}{-2}$$
, $\begin{cases} x = 1+2t, \\ y = -2+3t, t \in \mathbb{R}; \\ z = 1-2t \end{cases}$

2)
$$\frac{x-3}{-2} = \frac{y+1}{1} = \frac{z}{-3}$$
, $\begin{cases} x = 3 - 2t, \\ y = -1 + t, t \in \mathbb{R}. \\ z = -3t, \end{cases}$

9.16.
$$M_1, M_3$$
.

9.17. 1)
$$\overline{n}_1 = (-1;2;-7)^T;2)$$
 $\overline{n}_2 = (3;0;1)^T.$

9.18. 1)
$$x - 2y + z = 0$$
; 2) $x - y - 2z + 5 = 0$.

9.19. 1)
$$x - 2y - 3z + 3 = 0$$
; 2) $2x - 2y - z + 1 = 0$.

9.20. 1)
$$x + y - 3 = 0$$
; 2) $2x - y - 1 = 0$.

9.21. 1)
$$y - 2z + 7 = 0$$
; 2) $x + 3z + 11 = 0$; 3) $x - 4y - 8 = 0$.

9.22. 1)
$$3y + z = 0$$
; 2) $5x - z = 0$; 3) $3x - 2y = 0$.

9.23. 1)
$$z + 1 = 0$$
; 2) $y + 1 = 0$; 3) $x + 3 = 0$.

9.24. 1)
$$-\frac{5}{13}y + \frac{12}{13}z - 2 = 0$$
; 2) $\frac{1}{2}x + \frac{\sqrt{2}}{2}y + \frac{1}{2}z - 5 = 0$.

9.26. 1)
$$|a| = 9, |b| = 6, |c| = 2;$$
 2) $|a| = 20, |b| = 10, |c| = 4.$

9.27. 1) 48; 2)
$$\frac{50}{3}$$
.

- **9.28.** 1) паралельна осі Ox; 2) проходить через початок координат; 3) паралельна осі Oz;
- 4) проходить через вісь Oz; 5) проходить через вісь Oy; 6) проходить через вісь Ox;
- 7) паралельна площині Oyz; 8) паралельна площині Oxy.

10. Задачі на прямі й площини

Навчальні задачі

10.1. Записати рівняння площини P, яка проходить через точку $M_0(1;-1;0)$ перпендикулярно до прямої $L: \frac{x-2}{1} = \frac{y+1}{2} = \frac{z-1}{2}$.

Розв'язання. [3.4.4, 3.3.2.]

Оскільки площина $P \perp L$, то за нормальний вектор площини P можна взяти напрямний вектор прямої L:

$$\overline{n}(P) = \overline{s}(L) = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}.$$

Рис. до зад. 10.1

Нехай точка $M(\overline{r}) \in P$. Площину P, що проходить через точку $M_0(\overline{r_0})$ перпендикулярно до вектора \overline{s} задає рівняння (див. зад. **9.6**)

$$(\overline{r} - \overline{r_0}, \overline{s}) = 0 \Leftrightarrow 1(x-1) - 2(y+1) + 3z = 0.$$

Рівняння шуканої площини

$$P: x - 2y + 3z - 3 = 0.$$

10.2. Записати рівняння площини P, яка проходить через пряму $L_1: \begin{cases} x=2-3t,\\ y=4, & \text{паралельно прямій } L_2: \frac{x-1}{0}=\frac{y+2}{1}=\frac{z-3}{2}.\\ z=-t+1, \end{cases}$

Розв'язання. [3.4.4, 3.3.4.]

3 рівнянь прямих L_1 та L_2 випливає, що точка $M_1(2;0;1)\in P$ та напрямні вектори прямих L_1 та L_2

Рис. до зад. 10.2

Вектори \overline{s}_1 та \overline{s}_2 — неколінеарні, бо $\frac{0}{1} \neq \frac{-1}{2}$.

Нехай $M(\overline{r})\in P$. Площину P, яка проходить через точку M_1 паралельно векторам \overline{s}_1 та \overline{s}_2 задає рівняння (див. зад. **9.8**):

$$(\overline{r} - \overline{r_1}, \overline{s_1}, \overline{s_2}) = 0 \Leftrightarrow \begin{vmatrix} z - 1 \\ -3 & 4 & -1 \\ 0 & 1 & 2 \end{vmatrix} = 0 \Leftrightarrow \Leftrightarrow (x - 2) \cdot 9 - y \cdot (-6) + (z - 1) \cdot (-3) = 0.$$

Рівняння шуканої площини

$$P: 3x + 2y - z - 5 = 0.$$

10.3. Записати канонічні й параметричні рівняння прямої L, яка проходить через точку $M_0(1;-4;3)$ перпендикулярно до площини P:3x-y+5=0 .

Розв'язання. [3.4.4, 3.3.2.]

Оскільки пряма L перпендикулярна до площини P, то за напрямний вектор шуканої прямої L можна взяти нормальний вектор площини P:

$$\overline{s}(L) = \overline{n}(P) = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}.$$

Нехай точка $M(\overline{r}) \in L$. Тоді (див. зад. **9.2**)

$$\overline{r}-\overline{r_0}=egin{pmatrix} x-1\y+4\z-3 \end{pmatrix}$$
 колінеарний $\overline{n}=egin{pmatrix} 3\-1\0 \end{pmatrix}$ \Leftrightarrow

Рис. до зад. 10.3

$$\Leftrightarrow L: \frac{x-1}{3} = \frac{y+4}{-1} = \frac{z-3}{0} \Leftrightarrow \begin{cases} x = 1+3t, \\ y = -4-t, \ t \in \mathbb{R}. \\ z = 3, \end{cases}$$

10.4 Знайти точку перетину прямої $L: \begin{cases} x=7+5t, \\ y=4+t, & \text{i} & \text{площини} \\ z=5+4t \end{cases}$

$$P: 3x - y + 2z - 5 = 0.$$

Розв'язання. ^①

3 рівнянь площини P і прямої L випливає, що

$$\overline{n}(P) = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \ \overline{s}(L) = \begin{pmatrix} 5 \\ 1 \\ 4 \end{pmatrix}.$$

Рис. до зад. 10.4

Вектори \overline{n} та \overline{s} — не перпендикулярні [2.10.4], оскільки $3 \cdot 5 + (-1) \cdot 1 + 2 \cdot 4 = 22 \neq 0$.

Отже, площина P і пряма L перетинаються в одній точці, координати якої знайдімо із системи:

$$\begin{cases} P: 3x - y + 2z - 5 = 0. \\ x = 7 + 5t, \\ y = 4 + t, \\ z = 5 + 4t \end{cases} \Leftrightarrow 3(7 + 5t) - (4 + t) + 2(5 + 4t) - 5 = 0; \\ 22t + 22 = 0; t = -1.$$

[Підставляючи знайдене значення параметра t=-1 у параметричні рівняння прямої, дістаємо координати точки перетину.]

$$P \cap L = M^* : \begin{cases} x = 7 + 5 \cdot (-1) = 2, \\ y = 4 + (-1) = 3, & \Leftrightarrow M^*(2; 3; 1). \\ z = 5 + 4 \cdot (-1) = 1; \end{cases}$$

Коментар. ① Стислий загальний розв'язок задачі:

Площина $P \perp \overline{n}$ і пряма $L \parallel \overline{s}$ перетинатимуться лише в одній точці, якщо

$$P \not\mid L \Leftrightarrow \overline{n} \not\preceq \overline{s} \Leftrightarrow (\overline{n}, \overline{s}) \neq 0.$$

$$\begin{cases} M^*(\overline{r}^*) \in L, \\ M^*(\overline{r}^*) \in P \end{cases} \Leftrightarrow \begin{cases} \overline{r}^* = \overline{r}_0 + t\overline{s}, \\ (\overline{r}^* - \overline{r}_1, \overline{n}) = 0 \end{cases} \Leftrightarrow$$

$$\Leftrightarrow (\overline{r}_0 + t\overline{s} - \overline{r}_1, \overline{n}) = 0 \Rightarrow t(\overline{s}, \overline{n}) + (\overline{r}_0 - \overline{r}_1, \overline{n}) = 0;$$

$$t = \frac{(\overline{r}_1 - \overline{r}_0, \overline{n})}{(\overline{s}, \overline{n})} \Rightarrow \overline{r}^* = \overline{r}_0 + \frac{(\overline{r}_1 - \overline{r}_0, \overline{n})}{(\overline{s}, \overline{n})} \overline{s}.$$

Знайти проекцію точки $M_0(1;0;1)$ на площину P:4x+z+12=0.

10.5. Знайти проскцие **Розв'язання.** [Крок 1.] Пряма L, яка проектує точку M_0 на площину P передости по P, а отже має параметричні рівняння (див.

Рис. до зад. 10.5

$$L: \begin{cases} x = 1 + 4t, \\ y = 0, \\ z = 1 + t. \end{cases}$$

[Крок 2.] Знайдімо точку M' — проекцію точки M_0 — точку перетину прямої L і площини P (див. зад. **10.4**):

$$M': \begin{cases} 4x + z + 12 = 0, \\ x = 1 + 4t, \\ y = 0, \\ z = 1 + t \end{cases} \Leftrightarrow M'(-3;0;0).$$

10.6. Знайти проекцію точки
$$M_0(2;-1;3)$$
 на пряму $L: \begin{cases} x=3t, \\ y=5t-7, \\ z=2t+2. \end{cases}$

Розв'язання.

[*Крок 1.*] Площина P, що проектує точку M_0 на пряму L, має рівняння (див. зад. **10.1**):

$$(\overline{r} - \overline{r_0}, \overline{s}) = 0 \Leftrightarrow$$
$$\Leftrightarrow 3x + 5y + 2z - 7 = 0.$$

Рис. до зад. 10.6

[Крок 2.] Знайдімо точку M' — проекцію точки M_0 — точку перетину прямої L і площини P (див. зад. 10.5):

$$\begin{cases} P: 3x + 5y + 2z - 7 = 0, \\ x = 3t, \\ y = 5t - 7, \\ z = 2t + 2 \end{cases} \Leftrightarrow M'(3; -2; 4).$$

10.7. Записати рівняння прямої L, яка проходить через точку $M_0(5;2;4)$ пер-

пендикулярно до прямої
$$L_1: \begin{cases} x=2+3t, \\ y=-1+4t, t \in \mathbb{R}. \\ z=2t, \end{cases}$$

Розв'язання.

[Крок 1.] Знайдімо проекцію точки M_0 на пряму L_1 (див. зад. 10.6).

Рівняння площини P, яка проектує точку M_0 на пряму L_1 :

$$P: 3x + 4y + 2z - 31 = 0.$$

Проекція точки $\,M_0\,$ на пряму $\,L_1\,$ — точка $\,M'\,$:

Рис. до зад. 10.7

$$\begin{cases} 3x + 4y + 2z - 31 = 0, \\ x = 2 + 3t, \\ y = -1 + 4t, \\ z = 2t. \end{cases} \Leftrightarrow M'(5;3;2).$$

[*Крок 2.*] Проведімо пряму L через точки M_0 та M' (див. зад. **9.3**):

$$L: \frac{x-5}{0} = \frac{y-2}{1} = \frac{z-4}{-2}.$$

Знайти точку, що симетрична точці $M_1(2;-5;7)$ 10.8. шодо прямої $L: \frac{x-5}{1} = \frac{y-4}{3} = \frac{z-6}{2}.$

Розв'язання. ^①

[*Крок 1.*] Знайдімо проєкцію точки M_1 на пряму L — точку M_1' (див. зад. **10.6**):

$$M_1'(3;-2;2).$$

 $M_1'(3;-2;2).$ [Крок 2.] Точка M_2 поділяє відрізок M_1M_1' у відношенні M_2 M_1 M_2 $\lambda = -2$ [2.6.7], отже,

$$\overline{r_2} = 2\overline{r_1'} - \overline{r_1} \Leftrightarrow$$

Рис. до зад. 10.8

$$\Leftrightarrow \overline{r_2} = 2 \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ -3 \end{pmatrix} \Leftrightarrow M_2(4;1;-3).$$

Коментар. 1 Точку M_2 таку, що $\left|M_1'M_2\right| = \left|M_1M_1'\right|$ називають симетричною точці M_1 щодо прямої L, де M' — проекція точки M_1 на пряму L.

Знайти точку, що симетрична точці $M_1(1;3;-4)$ щодо P: 3x + y - 2z = 0.

Розв'язання. ^①

[Крок 1.] Знайдімо проекцію точки M_1 на площину P — точку M_1' (див. зад. **10.5**):

$$M_1$$
 M_1
 M_2

$$M_1'(-2;2;-2).$$

[*Крок 2.*] Точка M_2 поділяє відрізок $M_1 M_1'$ у відношенні Рис. до зад. 10.9 $\lambda = -2$, отже,

$$\overline{r_2} = 2\overline{r_1'} - \overline{r_1} \Leftrightarrow$$

$$\overline{r_2} = 2 \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} -5 \\ 1 \\ 0 \end{pmatrix} \Leftrightarrow M_2(-5;1;0).$$

Коментар. \odot Точку M_2 називають симетричною точці M_1 щодо площини P,якщо $\left|M_1'M_2\right| = \left|M_1M_1'\right|$, де M' — проекція точки M_1 на площину P.

10.10. Записати рівняння спільного перпендикуляра L до мимобіжних прямих:

$$L_1: \frac{x-6}{1} = \frac{y-1}{2} = \frac{z-10}{-1},$$

$$L_2: \frac{x+4}{-7} = \frac{y-3}{2} = \frac{z-4}{3}.$$

Розв'язання. [3.8.1.] $^{\odot}$

3 рівнянь прямих L_1 та L_2 випливає, що точка $M_1(6;1;10)\in L_1$ та точка $M_2(-4;3;4)\in L_2$ і напрямні вектори прямих

$$\overline{s}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \overline{s}_2 = \begin{pmatrix} -7 \\ 2 \\ 3 \end{pmatrix}.$$

[Переконаймося, що прямі $L_{\!1}$ та $L_{\!2}$ — мимобіжні.]

$$\overline{M_{1}M_{2}} = \overline{r_{2}} - \overline{r_{1}} = \begin{pmatrix} -10 \\ 2 \\ -6 \end{pmatrix};$$

$$[\overline{s_{1}}, \overline{s_{2}}] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 2 & -1 \\ -7 & 2 & 3 \end{vmatrix} = \overline{i} \cdot 8 - \overline{j} \cdot (-4) + \overline{k} \cdot 16 = \begin{pmatrix} 8 \\ 4 \\ 16 \end{pmatrix}.$$

$$(\overline{r_{2}} - \overline{r_{1}}, \overline{s_{1}}, \overline{s_{2}}) = (\overline{r_{2}} - \overline{r_{1}}, [\overline{s_{1}}, \overline{s_{2}}]) =$$

$$(-10) \cdot 8 + 2 \cdot 4 + (-6) \cdot 16 = -168 \neq 0.$$

Отже, прямі $L_{\!1}$ та $L_{\!2}$ — мимобіжні.

[*Крок 1.*] За нормальний вектор площини P, яка проходить через пряму $L_1(M_1; \overline{s_1})$ паралельно прямій $L_2(M_2; \overline{s_2})$, візьмімо вектор

$$[\overline{s}_1, \overline{s}_2] = \begin{pmatrix} 8\\4\\16 \end{pmatrix}.$$

або колінеарний йому вектор

$$\overline{n}(P) = \frac{1}{4} [\overline{s}_1, \overline{s}_2] = \begin{pmatrix} 2\\1\\4 \end{pmatrix}.$$

[Крок 2.] Площину P_1 , яка містить пряму L_1 і перпендикулярна до площини $P \perp \overline{n}(P)$ задамо рівнянням

$$(\overline{r} - \overline{r_1}, \overline{s_1}, \overline{n}) = 0 \Leftrightarrow \begin{vmatrix} x - 6 & y - 1 & z - 10 \\ 1 & 2 & -1 \\ 2 & 1 & 4 \end{vmatrix} = 0 \Leftrightarrow$$
$$\Leftrightarrow (x - 6) \cdot 9 - (y - 1) \cdot 6 + (z - 10) \cdot (-3) = 0;$$
$$P_1 : 3x - 2y - z - 6 = 0.$$

[Крок 3.] Площину P_2 , яка містить пряму L_2 і перпендикулярна до площини $P\perp \overline{n}(P)$ задамо рівнянням

$$(\overline{r} - \overline{r_2}, \overline{s_2}, \overline{n}) = 0 \Leftrightarrow \begin{vmatrix} x+4 & y-3 & z-4 \\ -7 & 2 & 3 \\ 2 & 1 & 4 \end{vmatrix} = 0 \Leftrightarrow \Leftrightarrow (x+4) \cdot 5 - (y-3) \cdot (-34) + (z-4) \cdot (-11) = 0;$$

$$P_2 : 5x + 34y - 11z - 38 = 0.$$

[Крок 4.] Шукану пряму L — спільний перпендикуляр до прямих L_1 та L_2 — задамо перетином двох площин P_1 та P_2 :

$$L: \begin{cases} 3x - 2y - z - 6 = 0, \\ 5x + 34y - 11z - 38 = 0. \end{cases}$$

Коментар. ① Можлива така схема розв'язання цієї задачі.

[Крок 1.] За нормальний вектор площини P, яка проходить через пряму $L_1(M_1; \overline{s}_1)$ паралельно прямій $L_2(M_2; \overline{s}_2)$ (див. зад. 10.2 та Коментар до зад. 9.8) візьмімо вектор

$$\overline{n}(P) = [\overline{s}_1, \overline{s}_2].$$

[Крок 2.] Площину P_1 , яка містить пряму L_1 і перпендикулярна до площини $P\perp[\overline{s}_1,\overline{s}_2]$ задамо рівнянням

$$(\overline{r} - \overline{r_1}, \overline{s_1}, [\overline{s_1}, \overline{s_2}]) = 0.$$

[Крок 3.] Площину P_2 , яка містить пряму L_2 і перпендикулярна до площини $P\perp[\overline{s}_1,\overline{s}_2]$ задамо рівнянням

$$(\overline{r} - \overline{r_2}, \overline{s_2}, [\overline{s_1}, \overline{s_2}]) = 0.$$

[Крок 4.] Шукану пряму L — спільний перпендикуляр до прямих L_1 та L_2 — задамо перетином двох площин P_1 та P_2 :

$$\begin{cases} (\overline{r} - \overline{r_1}, \overline{s_1}, [\overline{s_1}, \overline{s_2}]) = 0, \\ (\overline{r} - \overline{r_2}, \overline{s_2}, [\overline{s_1}, \overline{s_2}]) = 0. \end{cases}$$

Вектор $[\overline{s}_1, \overline{s}_2]$ — напрямний вектор прямої L, а оскільки

$$\overline{s}_1 \perp [\overline{s}_1, \overline{s}_2], \overline{s}_2 \perp [\overline{s}_1, \overline{s}_2],$$

то прямі L та L_1 — перетинаються в точці N_1 , а прямі L та L_2 в точці $N_2 \neq N_1$. Пряма $L = N_1 N_2$ — спільний перпендикуляр до прямих L_1, L_2 .

10.11. Записати рівняння площини P, яка рівновіддалена від двох площин: $P_1: x-z-5=0,\ P_2: 3x+5y+4z=0.$

Розв'язання. [3.11.5] ^①

Знайдімо множину точок, рівновіддалених від площин P_1 та P_2 .

$$d(M, P_1) = \frac{\left|x - z - 5\right|}{\sqrt{1^2 + 0^2 + (-1)^2}} = \frac{\left|x - z - 5\right|}{\sqrt{2}};$$

$$d(M, P_2) = \frac{\left|3x + 5y + 4z\right|}{\sqrt{3^2 + 5^2 + 4^2}} = \frac{\left|3x + 5y + 4z\right|}{5\sqrt{2}}.$$

$$d(M, P_1) = d(M, P_2) \Leftrightarrow \frac{\left|x - z - 5\right|}{\sqrt{2}} = \frac{\left|3x + 5y + 4z\right|}{5\sqrt{2}};$$

$$5\left|x - z - 5\right| = \left|3x + 5y + 4z\right|;$$

$$5(x - z - 5) = \pm(3x + 5y + 4z);$$

$$\left[5x - 5z - 25 = 3x + 5y + 4z,$$

$$5x - 5z - 25 = -3x - 5y - 4z.$$

Отже, оскільки площини P_1 та P_2 — не паралельні, дістанемо рівняння двох «бісекторіальних» площин:

$$P': 2x - 5y - 9z - 25 = 0,$$

$$P'': 8x + 5y - z - 25 = 0.$$

Коментар. 1 Стислий загальний розв'язок задачі: Знайдімо множину точок M:

$$\begin{split} d(M,P_1) &= d(M,P_2) \Leftrightarrow \\ \Leftrightarrow \left| (\overline{r},\overline{n}_1^0) - p_1 \right| &= \left| (\overline{r},\overline{n}_2^0) - p_2 \right| \Leftrightarrow \\ \Leftrightarrow \left(\overline{r},\overline{n}_1^0 \right) - p_1 &= \pm ((\overline{r},\overline{n}_2^0) - p_2) \Leftrightarrow \\ &\Leftrightarrow (\overline{r},\overline{n}_1^0) - p_1 = \pm ((\overline{r},\overline{n}_2^0) - p_2) \Leftrightarrow \\ \left| (\overline{r},\overline{n}_1^0) - \frac{p_1 + p_2}{2} = 0, \qquad \overline{n}_1^0 = \overline{n}_2^0, \\ (\overline{r},\overline{n}_1^0) - \frac{p_1 - p_2}{2} = 0, \qquad \overline{n}_1^0 = -\overline{n}_2^0, \\ \left| (\overline{r},\overline{n}_1^0 - \overline{n}_2^0) - p_1 + p_2 = 0, \qquad \overline{n}_1^0 \not\mid \overline{n}_2^0. \\ \left| (\overline{r},\overline{n}_1^0 + \overline{n}_2^0) - p_1 - p_2 = 0, \qquad \overline{n}_1^0 \not\mid \overline{n}_2^0. \end{split}$$

10.12. Через пряму $L: \begin{cases} 3x - y + 2z + 9 = 0, \\ x + z - 3 = 0 \end{cases}$ провести площину паралельну осі Ox.

Розв'язання. [3.7.4.]

Запишімо рівняння жмутка площин, що проходять через пряму L:

$$\alpha(3x - y + 2z + 9) + \beta(x + z - 3) = 0;$$

$$(3\alpha + \beta)x - \alpha y + (2\alpha + \beta)z + (9\alpha - 3\beta) = 0.$$

Площина буде паралельна осі Ox, коли $3\alpha + \beta = 0$ [3.4.10]. Звідки $\beta = -3\alpha$. Отже, рівняння шуканої площини:

$$\alpha(3x - y + 2z + 9) - 3\alpha(x + z - 3) = 0 \Rightarrow y + z - 18 = 0.$$

10.13. Визначити двогранні кути, які утворюють площини:

$$P_1: 6x + 3y - 2z = 0, P_2: x + 2y + 6z - 12 = 0.$$

Розв'язання. [3.11.4.]

Нормальні вектори заданих площин P_1 та P_2 мають координати:

$$\overline{n}_1 = \begin{pmatrix} 6 \\ 3 \\ -2 \end{pmatrix} \mathbf{i} \ \overline{n}_2 = \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}.$$

Знайдімо довжини цих векторів:

$$\begin{aligned} \left| \overline{n}_{1} \right| &= \sqrt{6^{2} + 3^{2} + (-2)^{2}} = \sqrt{36 + 9 + 4} = \sqrt{49} = 7; \\ \left| \overline{n}_{2} \right| &= \sqrt{1^{2} + 2^{2} + 6^{2}} = \sqrt{1 + 4 + 36} = \sqrt{41}. \\ \cos(\widehat{P_{1}, P_{2}}) &= \frac{(\overline{n}_{1}, \overline{n}_{2})}{\left| \overline{n}_{1} \right| \left| \overline{n}_{2} \right|} = \frac{6 \cdot 1 + 3 \cdot 2 + (-2) \cdot 6}{7 \cdot \sqrt{41}} = \\ &= \frac{0}{7\sqrt{41}} = 0 \Rightarrow \varphi = \frac{\pi}{2}. \end{aligned}$$

10.14. Записати рівняння площини P, яка проходить через точку $M_0(2;-1;1)$ перпендикулярно до площин

$$P_1: x+y+5z-9=0$$
 to $P_2: 2x+y+2z+1=0$.

Розв'язання. [2.12.1, 3.3.3.]

Шукана площина перпендикулярна до площин P_1 та P_2 . Отже, її нормальний вектор \overline{n} перпендикулярний до їхніх нормальних векторів $\overline{n}_1=(1;1;5)^T$ і $\overline{n}_2=(2;1;2)^T$.

Тоді $\overline{n}(P) = [\overline{n}_1, \overline{n}_2]$. Знайдімо його координати:

$$\begin{split} \overline{n} &= [\overline{n}_1, \overline{n}_2] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 1 & 1 & 5 \\ 2 & 1 & 2 \end{vmatrix} = \\ &= \overline{i}(2-5) - \overline{j}(2-10) + \overline{k}(1-2) = -3\overline{i} + 8\overline{j} - \overline{k} = \begin{pmatrix} -3 \\ 8 \\ -1 \end{pmatrix}. \end{split}$$

Площину з нормальним вектором $\overline{n}=(-3;8;-1)^T,$ яка проходить через точку $M_0(2;-1;1)$ задає рівняння [3.3.3]

$$(\overline{r}-\overline{r}_{\hspace{-.1em}0},\overline{n})=0 \Leftrightarrow -3(x-2)+8(y+1)-1(z-1)=0.$$

Рівняння шуканої площини

$$P: -3x + 8y - z + 15 = 0.$$

10.15. Знайти віддаль від точки $M_0(1;2;-3)$ до площини 5x-3y+z+14=0. З'ясувати, в одному чи різних підпросторах щодо заданої площини розташована точка M_0 і початок системи координат.

Розв'язання. [3.11.5, 3.11.6.]

$$\begin{split} d(M_0,P) &= \frac{\left|ax_0 + by_0 + cz_0 + d\right|}{\sqrt{a^2 + b^2 + c^2}} = \\ &= \frac{\left|5 \cdot 1 - 3 \cdot 2 + 1 \cdot (-3) + 14\right|}{\sqrt{5^2 + (-3)^2 + 1^2}} = \frac{\left|5 - 6 - 3 + 14\right|}{\sqrt{35}} = \frac{10}{\sqrt{35}}. \end{split}$$

 ${\bf 3}$ 'ясуймо знак відхилення точки M_0 від площини:

$$\delta(M_0,P) \stackrel{[3.11.6]}{=} \frac{ax_0 + by_0 + cz_0 + d}{-\operatorname{sgn} d \cdot \sqrt{a^2 + b^2 + c^2}} = \frac{5 - 6 - 3 + 14}{-\sqrt{35}} = -\frac{10}{\sqrt{35}} < 0.$$

Від'ємний знак відхилення вказує на те, що точка M_0 і початок системи координат належать одному півпростору щодо заданої площини.

10.16. Знайти кут між прямими

$$L_1: \frac{x}{1} = \frac{y-1}{-2} = \frac{z}{3} \text{ Ta } L_2: \begin{cases} 3x+y-5z+1 = 0, \\ 2x+3y-8z+3 = 0. \end{cases}$$

Розв'язання. [3.10.1.]

Знайдімо напрямні вектори прямих:

$$\overline{s}_{1} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}; \quad \overline{s}_{2} = [\overline{n}_{1}, \overline{n}_{2}] = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 1 & -5 \\ 2 & 3 & -8 \end{vmatrix} = \begin{pmatrix} 7 \\ 14 \\ 7 \end{pmatrix}$$

(у подальшому зручніше взяти йому колінеарний вектор $\overline{s}_2' = (1;2;1)^T$).

$$\widehat{\cos(\widehat{L_1,L_2})}^{[3.10.1]} = \frac{(\overline{s_1},\overline{s_2'})}{\left|\overline{s_1}\right|\left|\overline{s_2'}\right|} = \frac{1 \cdot 1 - 2 \cdot 2 + 3 \cdot 1}{\sqrt{14}\sqrt{6}} = \frac{1 - 4 + 3}{\sqrt{14}\sqrt{6}} = 0.$$

Отже, $\varphi = \frac{\pi}{2}$, тобто прямі перпендикулярні.

10.17. Задано точки $A_1(1;0;-1), A_2(0;2;3), A_3(1;1;1)$ та $A_4(3;-3;0).$

10.17.1. Записати рівняння площини $A_1A_2A_3$.

Розв'язання.

Знайдімо координати векторів:

$$\begin{array}{c} A_{1}A_{2} = \\ = \overline{r_{2}} - \overline{r_{1}} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}, \end{array}$$

Рис. до зад. 10.17

$$\overline{A_1 A_3} = \overline{r_3} - \overline{r_1} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \overline{A_1 A_4} = \overline{r_4} - \overline{r_1} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}.$$

Площину $A_1A_2A_3$ задає рівняння (див. зад. **9.11**)

$$\begin{split} (\overline{r} - \overline{r_1}, \overline{r_2} - \overline{r_1}, \overline{r_3} - \overline{r_1}) &= 0 \Leftrightarrow \begin{vmatrix} x - 1 & y & z + 1 \\ -1 & 2 & 4 \\ 0 & 1 & 2 \end{vmatrix} = 0 \Leftrightarrow \\ \Leftrightarrow (x - 1) \cdot 0 - y \cdot (-2) + (z + 1) \cdot (-1) = 0; \\ A_1 A_2 A_3 : 2y - z - 1 = 0. \end{split}$$

10.17.2. Записати рівняння прямої A_1A_2 .

Розв'язання.

Пряму A_1A_2 задає рівняння (див. зад. **9.3**)

$$\overline{r} - \overline{r_1} \parallel \overline{r_2} - \overline{r_1} \Leftrightarrow A_1 A_2 : \frac{x-1}{-1} = \frac{y}{2} = \frac{z+1}{4}.$$

10.17.3. Записати рівняння прямої $A_4 M$, яка перпендикулярна до площини $A_1 A_2 A_3$.

Розв'язання. [3.4.4, 3.4.5.]

Оскільки пряма A_4H перпендикулярна до площини $A_1A_2A_3$, то за напрямний вектор прямої A_4H можна взяти нормальний вектор площини $A_1A_2A_3$:

$$\overline{s}(A_4H) = \overline{n}(A_1A_2A_3) = \begin{pmatrix} 0\\2\\-1 \end{pmatrix}.$$

Пряму A_4H , що проходить через точку A_4 паралельно вектору $\overline{s}(A_4H)$, задає рівняння (див. зад. **9.1**)

$$\overline{r} - \overline{r_4} \parallel \overline{s}(A_4 H) \Leftrightarrow A_4 H : \frac{x-3}{0} = \frac{y+3}{2} = \frac{z}{-1}.$$

10.17.4. Записати рівняння прямої A_3N , яка паралельна прямій A_1A_2 .

Розв'язання. [3.4.4.]

Оскільки пряма A_3N паралельна прямій A_1A_2 , то за напрямний вектор прямої A_3N можна взяти напрямний вектор прямої A_1A_2 :

$$\overline{s}(A_3N)=\overline{s}(A_1A_2)=\begin{pmatrix} -1\\2\\4 \end{pmatrix}.$$

Пряму A_3N , що проходить через точку A_3 паралельно вектору $\overline{s}(A_3N)$, задає рівняння (див. зад. **9.1**)

$$\overline{r} - \overline{r}_3 \parallel \overline{s}(A_3N) \Leftrightarrow A_3N : \frac{x-1}{-1} = \frac{y-1}{2} = \frac{z-1}{4}.$$

10.17.5. Записати рівняння площини, що проходить через точку A_4 перпендикулярно до прямої A_1A_2 .

Розв'язання.

Рівняння площини P, що проходить через точку A_4 перпендикулярно до прямої A_1A_2 , задає рівняння (див. зад. **9.6**):

$$\begin{split} (\overline{r} - \overline{r}_{\!\!4}, \overline{s}(A_{\!\!1}A_{\!\!2})) &= 0 \Leftrightarrow \\ \Leftrightarrow -1(x-3) + 2(y+3) + 4(z-0) &= 0; \\ P: -x + 2y + 4z + 9 &= 0. \end{split}$$

10.17.6. Обчислити синус кута між прямою A_1A_4 і площиною $A_1A_2A_3$.

Розв'язання. [3.10.5]

3 рівнянь прямої A_1A_4 та площини $A_1A_2A_3$ випливає, що напрямний вектор A_1A_4 і нормальний вектор площини $A_1A_2A_3$ такі:

$$\overline{s}(A_1 A_4) = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \ \overline{n}(A_1 A_2 A_3) = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}.$$

$$\sin(\widehat{A_1 A_4}, \widehat{A_1 A_2 A_3}) \stackrel{[3.10.5]}{=} \frac{|(\overline{n}, \overline{s})|}{|\overline{n}||\overline{s}|} =$$

$$= \frac{|0 \cdot 2 + 2 \cdot (-3) - 1 \cdot 1|}{\sqrt{0^2 + 2^2 + (-1)^2} \sqrt{2^2 + (-3)^2 + 1^2}} = \frac{|-7|}{\sqrt{5}\sqrt{14}} = \sqrt{\frac{7}{10}}.$$

10.17.7. Обчислити косинус кута між координатною площиною Oxy і площиною $A_1A_2A_3$.

Розв'язання. [3.10.4.]

Нормальні вектори площин Oxy та $A_1A_2A_3$

$$\overline{n}(Oxy) = \overline{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ \overline{n}(A_1 A_2 A_3) = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}.$$

$$\cos(\overline{Oxy}, \overline{A_1 A_2 A_3}) \stackrel{[3.10.4]}{=} \frac{|(\overline{n}_1, \overline{n}_2)|}{|\overline{n}_1| |\overline{n}_2|} =$$

$$= \frac{|0 \cdot 0 + 0 \cdot 2 - 1 \cdot 1|}{\sqrt{0^2 + 0^2 + 1^2} \sqrt{0^2 + 2^2 + (-1)^2}} = \frac{|-1|}{\sqrt{1}\sqrt{5}} = \frac{1}{\sqrt{5}}.$$

Задачі для аудиторної і домашньої роботи

- **10.18.** Дослідіть взаємне розташування площин. У разі якщо вони паралельні, то знайдіть віддаль $d(P_1,P_2)$ між площинами, якщо вони перетинні, то знайдіть косинує кута між ними:
 - 1) $P_1: -x + 2y z + 1 = 0$, $P_2: y + 3z 1 = 0$;
 - 2) $P_1: 2x y + z 1 = 0$, $P_2: -4x + 2y 2z 1 = 0$;
 - 3) $P_1: x-y+1=0, P_2: y-z+1=0;$
 - 4) $P_1: 2x y z + 1 = 0$, $P_2: -4x + 2y + 2z 2 = 0$.
- **10.19.** Запишіть рівняння площин, що поділяють навпіл кути, утворені площинами P_1 і P_2 , якщо:
 - 1) $P_1: x 3y + 2z 5 = 0$, $P_2: 3x 2y z + 3 = 0$;
 - 2) $P_1: 2x y + 5z 3 = 0$, $P_2: 2x 10y + 4z 2 = 0$.

10.20. Запишіть рівняння площини, рівновіддаленої від площин P_1 і P_2 , якщо:

1)
$$P_1: 4x - y - 2z - 3 = 0$$
, $P_2: 4x - y - 2z - 5 = 0$;

2)
$$P_1: 5x - 3y + z + 3 = 0$$
, $P_2: 10x - 6y + 2z + 7 = 0$.

10.21. На віддалі k одиниць від площини P проведіть площину, паралельну їй:

1)
$$k = 5, P : x - 2y + 2z - 14 = 0$$
;

2)
$$k = 3, P : 3x - 6y - 2z + 14 = 0.$$

10.22. Доведіть, що прямі паралельні, і знайдіть віддаль між ними:

1)
$$x = 1 - 2t, y = 3t, z = -2 + t$$
 та

$$x = 7 + 4t', y = 5 - 6t', z = 4 - 2t';$$

2)
$$x=2t, y=0, z=-2t$$
 to $\begin{cases} x+y+z-3=0, \\ x-y+z-1=0. \end{cases}$

10.23. Доведіть, що прямі збігаються:

1)
$$x = 8 + 3t, y = 7 - 2t, z = 11 + t$$
 та

$$x = 5 - 6t', y = 9 + 4t', z = 10 - 2t';$$

2)
$$x=-t, y=-4-5t, z=3+3t$$
 to
$$\begin{cases} 4x+y+3z-5=0, \\ 7x-2y-z-5=0. \end{cases}$$

10.24. Доведіть, що прямі перетинаються, і знайдіть координати точок перетину:

1)
$$x = -3t, y = 2 + 3t, z = 1$$
 та

$$x = 1 + 5t', y = 1 + 13t', z = 1 + 10t';$$

2)
$$x = -2 + 3t, y = -1, z = 4 - t$$
 Ta
$$\begin{cases} 2y - z + 2 = 0, \\ x - 7y + 3z - 17 = 0. \end{cases}$$

10.25. Установіть, чи лежить пряма L у площині P, не має з площиною P спільних точок або перетинає в деякій точці й тоді знайдіть точку перетину:

1)
$$L: \frac{x-1}{2} = \frac{y+3}{-1} = \frac{z+2}{5}$$
, $P: 4x+3y-z+3=0$;

2)
$$L: \frac{x-7}{5} = \frac{y-4}{1} = \frac{z-5}{4}, P: 3x-y+2z-5=0;$$

3)
$$\frac{x+1}{2} = \frac{y-3}{4} = \frac{z}{5}$$
, $P: x-3y+2z-5 = 0$.

10.26. Знайдіть кут між прямими:

1)
$$L_1: \frac{x+1}{1} = \frac{y-1}{1} = \frac{z+2}{-1}$$
 to $L_2: \frac{x+5}{6} = \frac{y}{3} = \frac{z-1}{2};$

2)
$$L_1: \frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$$
 to $L_2: \begin{cases} 3x + y - 5z = 0, \\ 2x + 3y - 8z + 1 = 0. \end{cases}$

- **10.27.** Задано пряму $L: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{0}$ і точку $M_0(0;1;2) \not\in L$ (перевірте!).
 - 1) Запишіть рівняння площини, що проходить через пряму L і точку M_0 ;
 - 2) запишіть рівняння площини, що проходить через точку M_0 перпендикулярно до прямої L;
 - 3) запишіть рівняння перпендикуляра, опущеного з точки $\,M_0\,$ на пряму $\,L;$
 - 4) обчисліть віддаль $d(M_0, L)$;
 - 5) знайдіть проекцію точки $\,M_0^{}\,$ на пряму $\,L.$
- **10.28.** Задано площину P: x+y-z+1=0 і пряму $l: \frac{x-1}{0}=\frac{y}{2}=\frac{z+1}{1},$ причому $L \not\subset P.$
 - 1) Обчисліть $\widehat{\sin(P,L)}$ і координати точки перетину прямої і площини;
 - 2) запишіть рівняння площини, що проходить через пряму L перпендикулярно до площини P;
 - 3) запишіть рівняння проекції прямої L на площину P.
- **10.29.** Переконайтесь, що прямі L_1 та L_2 належать одній площині, і запишіть рівняння цієї площини, якщо:

1)
$$L_1: \frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-5}{4}, \ L_2: \frac{x-7}{3} = \frac{y-2}{2} = \frac{z-1}{-2};$$

$$2) \ L_1: \frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}, \ L_2: \frac{x-1}{3} = \frac{y-2}{2} = \frac{z+3}{-2}.$$

- **10.30.** Для прямих L_1 і L_2 :
 - а) доведіть, що прямі мимобіжні;
 - б) запишіть рівняння площини, що проходить через пряму L_2 паралельно прямій L_1 ;
 - в) обчисліть віддаль між прямими;
 - г) запишіть рівняння спільного перпендикуляра до прямих $L_{\!1}$ та $L_{\!2},$ якщо:

1)
$$L_1: \frac{x+7}{3} = \frac{y+4}{4} = \frac{z+3}{-2}, \ L_2: \frac{x-21}{6} = \frac{y+5}{-4} = \frac{z-2}{-1};$$

2)
$$L_1: \frac{x-6}{3} = \frac{y-3}{-2} = \frac{z+3}{4}, \ L_2: \frac{x+1}{3} = \frac{y+7}{-3} = \frac{z-4}{8}.$$

10.31. Знайдіть точку симетричну точці A щодо прямої L, якщо:

1)
$$A(4;3;10), L: \frac{x-1}{2} = \frac{y-2}{4} = \frac{z-3}{5};$$

2)
$$A(-3;1;-1), L: \begin{cases} 4x - 3y - 13 = 0, \\ y - 2z + 5 = 0. \end{cases}$$

10.32. Знайдіть точку, симетричну точці A щодо площини P:

1)
$$A(6;-5;5), P: 2x-3y+z-4=0;$$

2)
$$A(-3;1;-9), P: 4x-3y-z-7=0.$$

10.33. Знайдіть проекцію прямої L на площину P:3x-2y-z+15=0, якщо:

1)
$$L: x = 1 + 2t, y = 3 + t, z = 2 + t;$$

2)
$$L: x = 1 + t, y = 3 + t, z = 2 + t$$
.

10.34. За яких значень параметрів A і D пряма L лежить у площині

1)
$$L: \frac{x-3}{4} = \frac{y-1}{-4} = \frac{z+3}{1}$$
, $P: Ax + 2y - 4z + D = 0$;

2)
$$L: \frac{x-2}{3} = \frac{y+1}{2} = \frac{z-3}{-2}, \ P: Ax + y - 2z + D = 0.$$

10.35. За якого значення параметра a площина P: ax+2y-z+5=0 паралельна прямій $\frac{x}{2}=\frac{y-1}{3}=\frac{z+2}{5}$?

- **10.36.** За якого значення m пряма L: x = -1 + 3t, y = 2 + mt, z = -3 2t не має з площиною P: x + 3y + 3z 2 = 0 спільних точок?
- **10.37.** За яких значень параметрів a і b площини P: ax + by 9z 1 = 0 перпендикулярна до прямої $\frac{x}{2} = \frac{y+1}{6} = \frac{z-3}{3}$?
- **10.38.** За якого значення параметра a площини $P_1: x+ay+z-1=0$ та $P_2: ax+9y+\frac{a^3}{9}z+3=0\colon$
 - 1) перетинаються;

2) паралельні;

- 3) збіжні.
- **10.39.** За яких значень параметра a пряма $L: \frac{x}{1} = \frac{y}{a} = \frac{z-2}{-1}$:
 - 1) перетинає площину $P: 3a^2x + ay + z 4a = 0;$
 - 2) паралельна цій площині;
- 3) лежить у цій площині.
- **10.40.** За яких значень a прямі

$$L_1: \frac{x-1}{a} = \frac{y-1}{1} = \frac{z-(a-2)^2}{a}$$
 to $L_2: \frac{x}{1} = \frac{y}{a} = \frac{z}{1}$:

1) перетинаються;

2) мимобіжні;

3) паралельні;

- 4) збіжні.
- **10.41.** Задано площину P і точку M_0 . Запишіть рівняння площини P', що проходить через точку M паралельно площині P, і обчисліть віддаль $\rho(P,P')$, якщо:
 - 1) P: -2x + y z + 1 = 0, M(1;1;1);
 - 2) P: x y 1 = 0, M(1;1;2).
- **10.42.** Через лінію перетину площин $P_1: x+y-z+5=0$ та $P_2: 2x+y+z-3=0$

проведіть площину:

- 1) що проходить через точку $M_0(-1;3;4);$
- 2) паралельну до осі Oy;
- 3) перпендикулярну до площини 3x y + 2z 11 = 0.

10.43. За яких значень
$$l$$
 і m площини $P_1:2x-y+3z-1=0,$ $P_2:x+2y-z+m=0$ та $P_3:x+ly-6z+10=0$ перетинаються:

1) в одній точці;

- 2) уздовж прямої;
- 3) уздовж паралельних прямих?
- **10.44.** Доведіть, що площини $P_1: x-2y+3z-13=0$,

$$P_2: 5x + y - z - 11 = 0$$
 та $P_3: 3x + 5y - 7z + 15 = 0$

проходять через одну й ту саму пряму.

- 10.45. Запишіть параметричні рівняння прямих:
 - 1) x + y + 2z 3 = 0, x y + z 1 = 0;
 - 2) x + 2y + 4z 7 = 0, 2x + y z 5 = 0.
- 10.46. Запишіть канонічні рівняння прямих:

1)
$$\begin{cases} 5x + y + z = 0, \\ 2x + 3y - 2z + 5 = 0; \end{cases}$$
 2)
$$\begin{cases} 3x - 2y + z - 2 = 0, \\ 4x + y - 3z - 2 = 0. \end{cases}$$

Відповіді

10.18. 1)
$$\cos \alpha = -\frac{1}{2\sqrt{15}}$$
; 2) $d = \frac{3}{2\sqrt{6}}$; 3) $\cos \alpha = -\frac{1}{2}$; 4) $d = 0$.

10.19. 1)
$$4x - 5y + z - 2 = 0$$
 Ta $2x + y - 3z + 8 = 0$;

2)
$$3x - 6y + 7z - 4 = 0$$
 Ta $x + 4y + 3z + 2 = 0$.

10.20. 1)
$$4x - y - 2z - 4 = 0$$
; 2) $20x - 12y + 4z + 13 = 0$.

10.21. 1)
$$x - 2y + 2z + 1 = 0$$
, $x - 2y + 2z - 29 = 0$;

2)
$$3x - 6y - 2z + 35 = 0$$
, $3x - 6y - 2z - 7 = 0$.

10.22. 1)
$$\sqrt{\frac{1277}{14}}$$
; 2) $\sqrt{3}$.

10.25. 1)
$$L \subset P$$
; 2) $A(2;3;1)$; 3) $L \parallel P$.

10.26. 1)
$$\cos(\widehat{L_1, L_2}) = \frac{\sqrt{3}}{3}$$
; 2) $(\widehat{L_1, L_2}) = \frac{\pi}{2}$.

10.27. 1)
$$x - 2y + z = 0$$
; 2) $2x + y - 1 = 0$; 3)
$$\begin{cases} x - 2y + z = 0, \\ 2x + y - 1 = 0 \end{cases}$$
 aбо

$$\frac{x}{-1} = \frac{y-1}{2} = \frac{z-2}{5}; 4) \frac{18}{\sqrt{30}}; 5) M'_0\left(\frac{3}{5}; -\frac{1}{5}; -1\right).$$

10.28. 1)
$$\frac{1}{\sqrt{15}}$$
, $M_0(1;-6;-4)$; 2) $3x - y + 2z - 1 = 0$; 3)
$$\begin{cases} x + y - z + 1 = 0, \\ 3x - y + 2z - 1 = 0. \end{cases}$$

10.29. 1)
$$2x - 16y - 13z + 31 = 0$$
; 2) $6x - 20y - 11z + 1 = 0$.

10.30. 1)
$$4x + 3y + 12z - 93 = 0$$
, 13,
$$\begin{cases} 54x - 44y - 7z + 181 = 0, \\ -45x - 76y + 34z + 497 = 0; \end{cases}$$
2) $4x + 12y + 3z + 76 = 0$,
$$\frac{127}{13}$$
,
$$\begin{cases} 53x - 7y - 44z - 429 = 0, \\ 105x - 23y - 48z + 136 = 0. \end{cases}$$

2)
$$4x + 12y + 3z + 76 = 0$$
, $\frac{127}{13}$,
$$\begin{cases} 53x - 7y - 44z - 429 = 0, \\ 105x - 23y - 48z + 136 = 0. \end{cases}$$

10.31. 1)
$$B(2;9;6); 2) B(5;-7;3).$$

10.32. 1)
$$B(-2;7;1);$$
 2) $B(1;-2;-10)$

10.33. 1)
$$\begin{cases} 3x - 2y - z + 15 = 0, \\ x + 5y - 7z - 2 = 0; \end{cases}$$
 2)
$$\begin{cases} 3x - 2y - z + 15 = 0, \\ x + 4y - 5z - 3 = 0. \end{cases}$$

10.34. 1)
$$a = 3, d = -23$$
; 2) $a = -2, d = 11$.

10.35.
$$a = -2$$
.

10.36.
$$m = 1$$
.

10.37.
$$a = -6, b = -18.$$

10.38. 1)
$$a \neq \pm 3$$
; 2) $a = 3$; 3) $a = -3$.

10.39. 1)
$$a \neq \pm \frac{1}{2}$$
; 2) $-\frac{1}{2}$; 3) $\frac{1}{2}$.

10.40. 1)
$$a = 3$$
; 2) $a \neq \pm 1$, $a \neq 3$; 3) $a = -1$; 4) $a = 1$.

10.41. 1)
$$2x - y + z - 2 = 0, d = \frac{1}{\sqrt{6}}$$
; 2) $x - y = 0, d = \frac{1}{\sqrt{2}}$.

10.42. 1)
$$4x + y + 5z - 19 = 0$$
; 2) $x + 2z - 8 = 0$; 3) $x + y - z + 5 = 0$.

10.43. 1)
$$l \neq 7$$
; 2) $l = 7, m = 3$; 3) $l = 7, m \neq 3$.

10.45. 1)
$$x = 2 + 3t, y = 1 + t, z = -2t;$$

2)
$$x = 5 - 2t, y = -3 + 3t, z = 2 - t$$
.

10.46. 1)
$$\frac{x}{-5} = \frac{y+1}{12} = \frac{z-1}{13}$$
; 2) $\frac{x-1}{5} = \frac{y-1}{13} = \frac{z-1}{11}$.

11. Пряма на площині

Навчальні задачі

- Задано точки A(-1;-3), B(2;4), C(3;-1).
- **11.1.1.** У трикутнику ABC записати рівняння медіани AM у відрізках.

Розв'язання. [3.5.3, 3.5.7.]

Знайдімо координати точки M — середини відрізка BC :

$$\begin{cases} x_M = \frac{3+2}{2} = \frac{5}{2}; \\ y_M = \frac{-1+4}{2} = \frac{3}{2} \end{cases} \Leftrightarrow M\left(\frac{5}{2}; \frac{3}{2}\right).$$

Рис. до зад. 11.1

є напрямним вектором медіани. Запишімо канонічне рівняння прямої AM [3.5.3]

$$\frac{x+1}{7/2} = \frac{y+3}{9/2} \Leftrightarrow \frac{x+1}{7} = \frac{y+3}{9}.$$

Перетворімо це рівняння, щоб одержати рівняння прямої у відрізках:

$$\frac{x}{7} - \frac{y}{9} = \frac{4}{21} \Leftrightarrow \frac{3x}{4} - \frac{7y}{12} = 1 \Leftrightarrow \frac{x}{4/3} + \frac{y}{-12/7} = 1.$$

11.1.2. У трикутнику ABC записати нормоване рівняння висоти CD. **Розв'язання.** [3.5.6, 3.5.10.]

Вектор $\overline{AB}=(3;7)^T$ є нормальним вектором прямої CD. Запишімо рівняння прямої, що проходить через точку C(3;-1) перпендикулярно до вектора $\overline{AB}=(3;7)^T$:

$$(\overline{AB},\overline{CD})=0 \Leftrightarrow 3(x-3)+7(y+1)=0 \Leftrightarrow CD:3x+7y-2=0.$$

Знормуємо загальне рівняння, помноживши його на множник [3.5.9]

$$\mu = \frac{1}{\sqrt{3^2 + 7^2}} = \frac{1}{\sqrt{58}}$$

і одержимо нормоване рівняння висоти

$$CD: \frac{3}{\sqrt{58}}x + \frac{7}{\sqrt{58}}y - \frac{2}{\sqrt{58}} = 0.$$

11.2. Задано вершини трикутника $ABC: A(2;-2), B(3;-5), \ C(5;7).$

11.2.1. Знайдіть рівняння прямої AB.

Розв'язання. [3.5.4]

$$AB: \frac{x-2}{1} = \frac{y+2}{-3} \Leftrightarrow AB: 3x + y - 4 = 0.$$

Рис. до зад. 11.2

11.2.2. Знайдіть рівняння висоти CH.

Розв'язання. [3.5.3, 3.5.6.]

Висота CH перпендикулярна до прямої AB, отже, за нормальний вектор прямої CH можна взяти напрямний вектор прямої AB:

$$\overline{n}(CH) = \overline{s}(AB) = \begin{bmatrix} 1 \\ -3 \end{bmatrix}.$$

Пряму CH, що проходить через точку C перпендикулярно до вектора $\overline{n}(CH)$, задає рівняння [3.5.6]

$$\begin{split} &(\overline{r}-\overline{r}_{\!C},\overline{n}(CH))=0 \Leftrightarrow \\ \Leftrightarrow &(x-5)\cdot 1+(y-7)\cdot (-3)=0;\\ CH:x-3y+16=0. \end{split}$$

11.2.3. Знайдіть рівняння медіани AM.

Розв'язання. [2.6.8.]

Точка M — середина сторони BC — має координати:

$$\begin{cases} x_M = \frac{x_B + x_C}{2} = \frac{3+5}{2} = 4, \\ y_M = \frac{y_B + y_C}{2} = \frac{-5+7}{2} = 1 \end{cases} \Leftrightarrow M(4;1).$$

Проведімо медіану AM через точки A та M:

$$\frac{x-2}{4-2} = \frac{y+2}{1+2} \Rightarrow AM : \frac{x-2}{2} = \frac{y+2}{3}.$$

11.2.4. Знайдіть точку N перетину медіани AM і висоти CH.

Розв'язання.

Координати точки N перетину медіани AM та висоти CH знайдімо із системи

$$\begin{cases} \frac{x-2}{2} = \frac{y+2}{3}, \\ x-3y+16 = 0 \end{cases} \Rightarrow N\left(\frac{62}{7}; \frac{58}{7}\right).$$

11.2.5. Знайдіть рівняння прямої, що проходить через вершину C паралельно стороні AB.

Розв'язання. [3.5.3.]

За напрямний вектор прямої CF, яка паралельна прямій AB, можна взяти

$$\overline{s}(CF) = \overline{s}(AB) = \begin{pmatrix} 1 \\ -3 \end{pmatrix}.$$

Пряму CF, що проходить через точку C паралельно прямій AB, задає рівняння

$$CF: \frac{x-5}{1} = \frac{y-7}{-3}.$$

11.2.6. Знайдіть віддаль від точки C до прямої AB .

Розв'язання. [3.11.4]

$$d(C,AB) = \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}} = \frac{\left|3 \cdot 5 + 7 - 4\right|}{\sqrt{3^2 + 1^2}} = \frac{18}{\sqrt{10}}.$$

Задачі для аудиторної і домашньої роботи

11.3. Запишіть загальне рівняння прямої L, і знайдіть віддаль від початку координат до прямої:

1)
$$L: M_0(-1;2) \in L, \overline{n} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \perp L;$$
 2) $L: M_0(2;1) \in L, \overline{n} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \perp L;$

3)
$$L: M_0(-1;2) \in L, \overline{s} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \parallel L;$$
 4) $L: M_0(1;0) \in L, \overline{s} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \parallel L;$

5)
$$M_1(1;2), M_2(-1;0) \in L;$$
 6) $M_1(1;1), M_2(1;-2) \in L.$

- **11.4.** Задано загальне рівняння прямої 12x 5y 65 = 0. Запишіть для цієї прямої:
 - 1) рівняння з кутовим коефіцієнтом; 2) рівняння у відрізках;
 - 3) нормоване рівняння.
- **11.5.** Нехай A(1;-1), B(-2;1), C(3;5) вершини трикутника. Запишіть рівняння перпендикуляра, який спущено з вершини A на медіану, проведену з вершини B.
- **11.6.** а) Обчисліть віддаль $d(M_0; L)$ від точки M_0 до прямої L;
 - б) запишіть рівняння прямої L', що проходить через точку M_0 перпендикулярно до прямої L;
 - в) запишіть рівняння прямої L'', що проходить через точку M_0 паралельно прямій L, якщо:

1)
$$L: -2x + y - 1 = 0, M_0(-1, 2);$$
 2) $L: 2y + 1 = 0, M_0(1, 0).$

- **11.7.** Дослідіть взаємне розташування прямих. Якщо прямі паралельні, то знайдіть віддаль $d(L_1,L_2)$ між прямими; якщо прямі перетинні, то знайдіть косинус кута $\widehat{(L_1,L_2)}$ і точку перетину прямих:
 - 1) $L_1: -2x + y 1 = 0, L_2: 2y + 1 = 0;$

2)
$$L_1: \frac{x-1}{-2} = \frac{y}{1}, L_2: \frac{x+2}{1} = \frac{y}{0};$$

3)
$$L_1: x + y - 1 = 0, L_2: 2x + 2y + 1 = 0;$$

4)
$$L_1: x + y - 1 = 0, L_2: \frac{x}{2} = \frac{y+1}{-2};$$

5)
$$L_1: -x + 2y + 1 = 0, L_2: 2x - 4y - 2 = 0.$$

- **11.8.** Задано вершини трикутника ABC.
 - а) Напишіть рівняння боку AB;
 - б) напишіть рівняння висоти CD і обчисліть її довжину h = |CD|;
 - в) знайдіть кут φ між висотою CD і медіаною BM;
 - г) напишіть рівняння бісектрис L_1 та L_2 внутрішнього і зовнішнього кутів при вершині A, якщо:

1)
$$A(1;2), B(2;-2), C(6;1);$$

2)
$$A(2;-2), B(6;1), C(-2;0).$$

11.9. Запишіть рівняння прямої L', що проходить через точку A(-3;4) і паралельна прямій L і прямої L'', що проходить через точку A і перпендикулярна до прямої L:

1)
$$L: x - 2y + 5 = 0;$$

2)
$$L: \frac{x-1}{2} = \frac{y+2}{3};$$

3)
$$x = 2$$
:

4)
$$y = -1$$
;

5)
$$x = 3 + t, y = 4 - 7t$$
.

- **11.10.** За яких значень параметра a прямі $L_1: ax-4y-6=0$ та $L_2: x-ay-3=0$:
 - 1) перетинаються;

2) паралельні;

- 3) збіжні?
- **11.11.** Через точку перетину прямих $L_1: x+2y-1=0$ і $L_2: 2x+y-4=0$ проведіть пряму:
 - 1) що проходить через точку $M_0(-1;3);$
 - 2) паралельну осі Oy;
 - 3) перпендикулярну до прямої $L_3: x-2y+11=0.$
- **11.12.** Знайдіть точку B симетричну точці:
 - 1) A(1;2) щодо прямої L:3x-y+9=0;
 - 2) A(10;10) щодо прямої L:3x+4y-20=0.

11.13. Через точку $M_0(5;-1)$ під кутом $\frac{\pi}{4}$ до прямої l:5x+2y-11=0 проведено пряму L'. Знайдіть її рівняння.

Відповіді

11.3. 1)
$$x + y - 1 = 0, d = \frac{1}{\sqrt{2}}$$
; 2) $x - 2 = 0, d = 2$; 3) $x + 3y - 5 = 0, d = \frac{5}{\sqrt{10}}$;

4)
$$-x + 1 = 0, d = 1$$
; 5) $x - y + 1 = 0, d = \frac{1}{\sqrt{2}}$; 6) $x - 1 = 0, d = 1$.

11.4. 1)
$$y = \frac{12}{5}x - 13;$$
 2) $\frac{x}{65/12} + \frac{y}{-13} = 1;$ 3) $\frac{12}{13}x - \frac{5}{13}y - 5 = 0.$

11.5.
$$4x + y - 3 = 0$$
.

11.6. 1)
$$d = \frac{3}{\sqrt{5}}, L' : \frac{x+1}{-2} = \frac{y-2}{1}, L'' : -2(x+1) + (y-2) = 0;$$

2)
$$d = \frac{1}{2}, L' : \frac{x-1}{0} = \frac{y}{2}, L'' : 2y = 0.$$

11.7. 1)
$$M_0\left(-\frac{3}{4}; -\frac{1}{2}\right), \cos(\widehat{L_1, L_2}) = \frac{1}{\sqrt{5}};$$
 2) $M_0(1; 0), \cos(\widehat{L_1, L_2}) = \frac{2}{\sqrt{5}};$

3)
$$d(L_1, L_2) = \frac{3}{2\sqrt{2}}$$
; 4) $d(L_1, L_2) = \sqrt{2}$; 5) $L_1 \equiv L_2$.

11.8. 1)
$$\frac{x-1}{1} = \frac{y-2}{-4}, \frac{x-6}{-4} = \frac{y-1}{-1}, \ h = \frac{19}{\sqrt{17}}, \cos \varphi = \frac{19}{\sqrt{17 \cdot 58}};$$

2)
$$\frac{x-2}{4} = \frac{y+2}{3}, \frac{x+2}{3} = \frac{y}{-4}, h = 4, \cos \varphi = \frac{1}{\sqrt{10}}.$$

11.9. 1)
$$L': x - 2y + 11 = 0, L'': 2x + y + 2 = 0;$$

2)
$$L': \frac{x+3}{2} = \frac{y-4}{3}, L'': \frac{x+3}{-3} = \frac{y-4}{2}$$
; 3) $L': x = -3, L'': y = 4$;

4)
$$L': y = 4, L'': x = -3;$$

5)
$$L': x = -3 + t, y = 4 - 7t, L'': x = -3 + 7t, y = 4 + t.$$

11.10. 1)
$$a \neq \pm 2$$
; 2) $a = -2$; 3) $a = 2$.

11.11. 1)
$$11x + 10y - 19 = 0$$
; 2) $3x - 7 = 0$; 3) $2x + y - 4 = 0$.

11.12. 1)
$$B(-5;4);$$
 2) $B(-2;-6).$

11.13.
$$3x + 7y - 8 = 0, 7x - 3y - 38 = 0.$$

12. Криві 2-го порядку

Навчальні задачі

12.1. Знайти осі, вершини, фокуси і ексцентриситет еліпса $4x^2 + 9y^2 - 36 = 0$.

Розв'язання. [3.12.3.]

Перетворімо рівняння $4x^2 + 9y^2 - 36 = 0$:

$$\frac{x^2}{9} + \frac{y^2}{4} = 1 \Leftrightarrow \frac{x^2}{3^2} + \frac{y^2}{2^2} = 1.$$

3 одержаного канонічного рівняння еліпса маємо, що осі еліпса (a=3,b=2)

$$2a = 6, 2b = 4;$$

вершини еліпса

$$A_1(-3;0), A_2(3;0), B_1(0;-2), B_2(0;2).$$

Далі знаходимо

$$c = \sqrt{a^2 - b^2} = \sqrt{9 - 4} = \sqrt{5}.$$

Отже, фокуси $F_1(-\sqrt{5},0), F_2(\sqrt{5},0)$ і ексцентриситет $\varepsilon = \frac{c}{a} = \frac{\sqrt{5}}{3}$.

12.2. Записати рівняння гіперболи, фокуси якої розміщені на осі абсцис симетрично щодо початку координат, якщо відомо рівняння асимптот $y=\pm \frac{4}{3}x$ і віддаль між фокусами 2c=20.

Розв'язання. [3.13.3.]

Розміщення фокусів є канонічним, отже, рівняння гіперболи

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

У цьому разі рівняння асимптот $y=\pm \frac{b}{a}x$ і $c^2=a^2+b^2$. З умов задачі випливає, що

$$c = 10, \frac{b}{a} = \frac{4}{3}.$$

Розв'язуючи систему щодо параметрів a і b:

$$\begin{cases} \frac{b}{a} = \frac{4}{3}, \\ a^2 + b^2 = 100 \end{cases}$$

маємо a = 6, b = 8. Тоді шукане рівняння гіперболи

$$\frac{x^2}{36} - \frac{y^2}{64} = 1.$$

12.3. Визначити яку криву задає рівняння у ПДСК $5x^2 - 4y^2 + 30x + 8y + 21 = 0$. Вказати канонічну систему і записати канонічне рівняння цієї кривої.

Розв'язання. [3.15.1-3.15.3.]

У рівнянні

$$5x^2 - 4y^2 + 30x + 8y + 21 = 0$$

вилучимо повні квадрати змінних x і y:

$$5(x+3)^2 - 4(y-1)^2 = 20 \Leftrightarrow \frac{(x+3)^2}{4} - \frac{(y-2)^2}{5} = 1.$$

Отже, це рівняння гіперболи з центром у точці O(-3;2), тобто, ПДСК у якій записано рівняння не канонічна. Паралельним перенесенням осей [3.2.1]

$$\begin{cases} x' = x + 3, \\ y' = y - 2, \end{cases}$$

дістаємо канонічну ПДСК O'x'y', у якій гіпербола матиме рівняння

$$\frac{x'^2}{2^2} - \frac{y'^2}{(\sqrt{5})^2} = 1.$$

Рис. до зад. 12.3

12.4. Початок ПДСК переносять у точку O'(3;-1) і повертають осі на кут $\varphi=\frac{\pi}{6}.$ Знайти нові координати точки A, якщо її старі координати були A(3;4).

Розв'язання. [3.2.4.]

1. За формулами перетворень маємо координати точки A(x';y') у перенесеній системі O'xy.

$$\begin{cases} x' = x - 3 = 3 - 3 = 0, \\ y' = y - (-1) = 4 - (-1) = 5. \end{cases}$$

2. За формулами перетворень маємо координати точки A(x'';y'') у повернутій системі координат O'x''y'':

Рис. до зад. 12.5

$$\begin{cases} x'' = x' \cos \frac{\pi}{6} + y' \sin \frac{\pi}{6} = 0 \cdot \frac{\sqrt{3}}{2} + 5 \cdot \frac{1}{2} = \frac{5}{2}, \\ y'' = -x' \sin \frac{\pi}{6} + y' \cos \frac{\pi}{6} = -0 \cdot \frac{1}{2} + 5 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}. \end{cases}$$

Отже, у новій системі координат $A\left(\frac{5}{2}; \frac{5\sqrt{3}}{3}\right)$.

12.5. Визначити яку криву задає у ПДСК рівняння

$$9x^2 - 4xy + 6y^2 + 16x - 8y - 2 = 0.$$

Знайти її канонічне рівняння і побудувати відповідну канонічну систему координат.

Розв'язання. [3.16–3.18.] ^①

[Крок 1. Записуємо квадратичну форму геометричного образу 2-го порядку.]

$$Q(x,y) = 9x^2 - 4xy + 6y^2$$

[**Крок 2.** Записуємо матрицю квадратичної форми, враховуючи, що $-4=2a_{12}=2a_{21}$.]

$$A = \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix}.$$

[**Крок 3.** Знаходимо власні числа матриці A як корені характеристичного многочлена матриці.]

$$\begin{vmatrix} 9 - \lambda & -2 \\ -2 & 6 - \lambda \end{vmatrix} = 0 \Leftrightarrow$$

$$\Leftrightarrow \lambda^2 - 15\lambda + 50 = 0 \Leftrightarrow \lambda_1 = 5; \ \lambda_2 = 10.$$

[**Крок 4.** Знаходимо власні вектори матриці A, що відповідають власним числам.] $\lambda = 5$:

$$\begin{pmatrix} 4 & -2 \\ -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1/2 \end{pmatrix} \Rightarrow \alpha_{11} - \frac{1}{2}\alpha_{12} = 0; \ \alpha_{11} = \frac{1}{2}\alpha_{12}.$$

$$\vec{z}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}; |\vec{z}_1| = \sqrt{1^2 + 2^2} = \sqrt{5} \Rightarrow$$

$$\Rightarrow \vec{e}_1 = \frac{\vec{z}_1}{|\vec{z}_1|} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{pmatrix}.$$

 $\lambda = 10$:

[Крок 5. Записуємо матрицю перетворення координат і саме перетворення:]

$$H = \begin{pmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{pmatrix};$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = H \begin{pmatrix} x' \\ y' \end{pmatrix} \Leftrightarrow \begin{cases} x = \frac{1}{\sqrt{5}}x' - \frac{2}{\sqrt{5}}y'; \\ y = \frac{2}{\sqrt{5}}x' + \frac{1}{\sqrt{5}}y'. \end{cases}$$

[Крок 6. Переходимо до нових координат у рівнянні кривої.]

$$5x'^2 + 10y'^2 - 8\sqrt{5}y' - 2 = 0.$$

$$5x^{2} + 10\left(y^{2} - \frac{2}{\sqrt{5}}\right)^{2} - 10 = 0.$$

[Крок 7. Застосовуємо паралельне перенесення.]

Підставляючи співвідношення

$$\begin{cases} x' = x'', \\ y' = y'' + \frac{2}{\sqrt{5}}, \end{cases}$$

в рівняння еліпса, дістаємо канонічне рівняння еліпса

$$\frac{x''^2}{2} + \frac{y''^2}{1} = 1.$$

[Крок 8. Записуємо формули переходу від старої системи координат до нової.]

$$\begin{cases} x = \frac{1}{\sqrt{5}}x'' - \frac{2}{\sqrt{5}}y'' - \frac{4}{5}, \\ y = \frac{2}{\sqrt{5}}x'' + \frac{1}{\sqrt{5}}y'' + \frac{2}{5}. \end{cases}$$

Формули задають перенесення початку координат у точку

 $O''\left(-\frac{4}{5};\frac{2}{5}\right)$ і повертання на кут $\arctan 2$.

Рис. до зад. 12.6

Коментар. ^① Тип кривої можна визначити за допомогою інваріантів.

$$J_2 = \begin{vmatrix} 9 & -2 \\ -2 & 6 \end{vmatrix} = 50 > 0; \ J_3 = \begin{vmatrix} 9 & -2 & 8 \\ -2 & 6 & -4 \\ 8 & -4 & -2 \end{vmatrix} = -500 < 0.$$

Отже, крива ϵ еліпсом [3.18.1].

Задачі для аудиторної і домашньої роботи

12.6. Визначте, яку криву задає рівняння і зобразіть її:

1)
$$4x^2 + 3y^2 - 8x + 12y - 32 = 0$$
;

2)
$$16x^2 - 9y^2 - 64x - 54y - 161 = 0$$
;

3)
$$4x^2 - 8x + 7 - y = 0$$
; 4) $5x^2 + 5y^2 - 10x + 20y + 22 = 0$.

Вкажіть канонічну систему. Запишіть канонічне рівняння цієї кривої, її характеристики і нарисуйте криву.

12.7. Зведіть рівняння кривих до канонічного вигляду і зобразіть їх:

1)
$$5x^2 + 4xy + 8y^2 - 32x - 56y + 80 = 0$$
;

2)
$$5x^2 + 4xy + 8y^2 - 32x - 56y + 116 = 0$$
;

3)
$$5x^2 + 4xy + 8y^2 - 32x - 56y + 152 = 0$$
;

4)
$$6xy + 8y^2 - 12x - 26y + 11 = 0$$
;

5)
$$6xy + 8y^2 - 12x - 26y + 29 = 0$$
;

6)
$$6xy + 8y^2 - 12x - 26y + 20 = 0$$
;

7)
$$9x^2 + 12xy + 16y^2 - 40x + 30y = 0$$
;

8)
$$9x^2 - 24xy + 16y^2 - 20x + 110y - 50 = 0$$
;

9)
$$x^2 + 4xy + 4y^2 - 4x - 8y + 3 = 0$$
.

Відповіді

12.6. 1) еліпс,
$$O'(1;-2), \frac{x'^2}{12} + \frac{y'^2}{16} = 1; 2$$
) гіпербола, $O'(2;-3), \frac{x'^2}{9} - \frac{y'^2}{16} = 1;$

3) парабола,
$$O'(1;3), x'^2 = \frac{1}{4}y'; 4)$$
 коло, $O'(1;-2), x'^2 + y'^2 = \frac{3}{5}.$

12.7. 1) еліпс,
$$\frac{x'^2}{9} + \frac{y'^2}{4} = 1$$
; 2) точка, $4x'^2 + 9y'^2 = 0$;

3)
$$\varnothing$$
, $4x'^2 + 9y'^2 = -36$;

4) гіпербола,
$$\frac{x'^2}{1} - \frac{y'^2}{9} = 1$$
; 5) гіпербола, $-\frac{x'^2}{1} + \frac{y'^2}{9} = 1$;

- 6) пара перетинних прямих $9x'^2 y'^2 = 0$;
- 7) парабола, $x'^2 = -2y'$; 8) парабола, $(x'-2)^2 = -2(y'-3)$;
- 9) пара паралельних прямих x + 2y 3 = 0, x + 2y 1 = 0.

13. Поверхні 2-го порядку

Навчальні задачі

13.1. Визначити тип поверхні, яку задає рівняння $x^2 + y^2 + z^2 - x + 2y + 1 = 0$ і побудувати її у старій ПДСК.

Розв'язання. [3.19.]

Вилучімо повні квадрати за x та y:

$$\left(x^{2} - x + \frac{1}{4}\right) - \frac{1}{4} + (y^{2} + 2y + 1) - 1 + z^{2} + 1 = 0 \Leftrightarrow \left(x - \frac{1}{2}\right)^{2} + (y + 1)^{2} + z^{2} = \frac{1}{4}.$$

Перенесімо початок координат у точку $O'\left(\frac{1}{2};-1;0\right)$. В новій системі координат:

$$\begin{cases} x' = x - \frac{1}{2}, \\ y' = y + 1, \\ z' = z \end{cases}$$

рівняння поверхні набуде канонічного вигляду:

$$x'^2 + y'^2 + z'^2 = \frac{1}{4}.$$

Рис. до зад. 13.1

Рівняння у декартових координатах задає сферу радіусом $\frac{1}{2}$.

13.2. Визначити переріз конуса $x^2 + y^2 - 2z^2 = 0$ площиною y = 2.

Розв'язання. [3.19, 3.1.4.]

Виключімо y із системи двох рівнянь

$$\begin{cases} x^2 + y^2 - 2z^2 = 0, \\ y = 2. \end{cases}$$

Одержимо рівняння

$$x^{2} + 4 - 2z^{2} = 0; \quad \frac{z^{2}}{2} - \frac{x^{2}}{4} = 1.$$

Отже, перерізом конуса і площини є гіпербола, яка лежить у площині y=2 і має дійсну вісь, що паралельна осі Oz та уявну вісь, що паралельна осі Ox.

13.3. Знайти рівняння поверхні, одержаної обертанням прямої $\begin{cases} x + 2y = 4, \\ z = 0 \end{cases}$

навколо осі *Ox*. **Розв'язання. [3.1.5.]**

Поверхнею обертання ϵ конус із вершиною в точці A(4;0;0).

Нехай довільна точка шуканої поверхні M має координати X,Y,Z. Їй відповідає на даній прямій точка B(x;y;0). Точки M і B лежать в одній площині, яка перпендикулярна до осі обертання OX. Тоді

$$X = x, Y^2 + Z^2 = y^2$$
.

Підставляючи значення x та y в рівняння даної прямої, дістаньмо рівняння шуканої поверхні обертання:

$$X + 2\sqrt{Y^2 + Z^2} = 4$$

або

$$Y^2 + Z^2 = \frac{(X-4)^2}{4}.$$

Рис. до зад. 13.3

Звести канонічного 13.5. ДО рівняння поверхні вигляду $x^2 - y^2 - 4x + 8y - 2z = 0.$

Розв'язання. [3.1.5.]

Згрупуємо члени, що містять x і y:

$$(x^2 - 4x) - (y^2 - 8y) = 2z.$$

Доповнимо до повних квадратів вирази в дужках:

$$(x^{2} - 4x + 4) - (y^{2} - 8y + 16) = 2z + 4 - 16 \Leftrightarrow$$
$$\Leftrightarrow (x - 2)^{2} - (y - 4)^{2} = 2(z - 6).$$

Паралельно перенесімо осі координат, узявши за новий початок координат точку O'(2;4;6):

$$x = x' + 2, y = y' + 4, z = z' + 6$$

Дістаємо рівняння

$$x'^2 - y'^2 = 2z',$$

яке означує гіперболічний параболоїд. Система O'x'y'z' — канонічна ПДСК.

Задачі для аудиторної і домашньої роботи

- 13.7. Запишіть рівняння сфери, якщо
 - 1) сфера має центр C(5; -3; 7) і радіус R = 2;
 - 2) сфера має центр C(4;-4;-2) і проходить через початок координат.
- Побудуйте конус $x^2 + (y h)^2 z^2 = 0$, визначте його вершину і на-13.8. прямну лінію у площині z = h.
- 13.9. Встановіть, які геометричні образи визначаються рівнянням:

1)
$$x + 5 = 0$$
;

$$2)x - 3y + 5z - 7 = 0;$$

3)
$$(x-1)^2 + (y+2)^2 + z^2 = 9;$$
 4) $x^2 + \frac{y^2}{2} + 3z^2 = 0;$

$$4)x^2 + \frac{y^2}{2} + 3z^2 = 0$$

5)
$$x^2 + y^2 + 9z^2 + 1 = 0$$
;

6)
$$x^2 + y^2 - z^2 - 2y + 2z = 0$$
;

7)
$$x^2 + 2y^2 + 2z^2 - 4y + 4z + 4 = 0$$
;

8)
$$x^2 + y^2 - z^2 - 2x - 2y + 2z + 2 = 0$$
;

9)
$$x^2 + y^2 - 6x + 6y - 4z + 18 = 0$$
;

10)
$$9x^2 - z^2 - 18x - 18y - 6z = 0$$
.

Відповіді

13.7. 1)
$$(x-5)^2 + (y+3)^2 + (z-7)^2 = 4$$
; 2) $(x-4)^2 + (y+4)^2 + (z+2)^2 = 36$.

13.8.
$$(0;h;0)$$
;
$$\begin{cases} x^2 + (y-h)^2 = h^2, \\ z = h. \end{cases}$$

- **13.9.** 1) площина x = -5, паралельна площині Oyz;
- 2) площина з нормальним вектором $\bar{n} = (1; -3; 5)^T$;
- 3) сфера радіусом 3 з центром у точці C(1; -2; 0);
- 4) точка O(0;0;0);
- 5) порожня множина;
- 6) конус $x^2 + (y-1)^2 (z-1)^2 = 0$ з вершиною в точці C(0;1;1);
- 7) точка O(0;1;-1);
- 8) двопорожнинний гіперболоїд із канонічним рівнянням $x'^2 + y'^2 z'^2 = -1;$
- 9) параболоїд обертання з канонічним рівнянням $x'^2 + y'^2 = 4z';$
- 10) гіперболічний параболоїд з канонічним рівнянням $\frac{x'^2}{1} \frac{z'^2}{9} = 2y'$.

Список використаної і рекомендованої літератури

Підручники і посібники

- 1. Jurlewicz T., Skoczylas Z. Algebra liniowa 1. Definicje, twierdzenia, wzory. Wrocław: Oficyna Wydawnicza GiS, 2003. 163 str. ISBN 83-89020-14-9.
- 2. Lay D. C. Linear Algebra and its Applications, 3rd updated edition. Addison Wesley, 2005.-576 pp., ISBN: 0-321-28713-4.
- 3. Meyer C. D. Matrix analysis and applied linear algebra. SIAM, 2000. 718 p. ISBN 0898714540.
- 4. *Беклемишев Д. В.* Курс аналитической геометрии и линейной алгебры [Текст]: учеб. / Д. В. Беклемишев. М.: Физматлит, 2005. 307 с. ISBN 978-5-9221-0691-7.
- 5. Buuqa математика [Текст]: підручник. У 2 кн. Кн. 1 / Г. Й. Призва, В. В. Плахотник, Л. Д. Гординський та ін.; за ред. Г. Л. Кулініча. К.: Либідь, 2003. 400 c. ISBN 966-06-0229-4.
- 6. Вся высшая математика: учеб. / М. Л. Краснов, А. И. Киселев, Г. И. Макаренко и др. Т. 1. М.: Эдиториал УРСС, 2010. 336 с. ISBN 978-5-354-01237-4.
- 7. Дубовик В. П. Вища математика: навч. посіб. / В. П. Дубовик, І. . Юрик. К: А. С. К., 2006. 647 с. ISBN 966-539-320-0.
- 8. Жевняк Р. М. Высшая математика. Аналитическая геометрия и линейная алгебра. Дифференциальное исчисление / Р. М. Жевняк, А. А. Карпук. Мн.: Вышэйш. шк., 1992. 384 с.
- 9. *Ильин В. А.* Аналитическая геометрия: учеб. / В. А. Ильин, Э. Г. Позняк. М.: Физматлит, 2007. 224 с. ISBN 978-5-9221-0511-8.
- 10. *Канатников А. Н.* Аналитическая геометрия: учеб. / А. Н. Канатников, А. П. Крищенко; под ред. В. С. Зарубина и А. П. Крищенко. М.: Академия, 2009. 208 с. ISBN 278-5-7695-4580-1.
- 11. *Канатников А. Н.* Линейная алгебра: учеб. / А. Н. Канатников, А. П. Крищенко; под ред. В. С. Зарубина и А. П. Крищенко. М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. 336 с. ISBN 5-7038-1754-4.
- алгебра 12. Лінійна та аналітична геометрія: посібн. Х. П. Ю. Рудавський, Π. Π. Костробій, Луник, Д. В. Уханська, ДУ «Львівська політехніка», 1999. — 262 с.
- 13. Овчинников П. П. Вища математика: підручник. У 2 ч. Ч. 1 / П. П. Овчинников, Ф. П. Яремчук, В. М. Михайленко. К.: Техніка, 2003. 600 с. ISBN: 966-575-055-0.
- 14. Π исьменный Д. Конспект лекций по высшей математике. Полный курс / Д. Письменный. М.: Айрис-Пресс, 2008. 608 с. ISBN 978-5-8112-3118-8, 978-5-8112-3480-6.
- 15. Элементы линейной алгебры и аналитической геометрии / Р. Ф. Апатенок, A. M. Маркина, Н. В. Попова, В. Б. Хейнман; под ред. Р. Ф. Апатенок. Мн., Вышэйш. шк., 1986. 272 с.
- 16. Шипачев В. С. Курс высшей математики / В. С. Шипачев. М. Оникс, 2009. 608 с. ISBN 978-5-488-02067-2.

Задачники і розв'язники

- 17. Jurlewicz T., Skoczylas Z. Algebra liniowa 1. Przykłady i zadania Wrocław: Oficyna Wydawnicza GiS, 2003. 167 str. ISBN 83-89020-15-7.
- 18. *Апатенок Р. Ф.* Сборник задач по линейной алгебре и аналитической геометрии [Текст] / Р. Ф. Апатенок, А. М. Маркина, В. Б. Хейнман; под ред. В. Т. Воднева. Мн.: Вышэйш. шк., 1990. 288 с. ISBN 5-339-00329-9.
- 19. *Барковський В. В.* Вища математика для економістів: навч. посібник / В. В. Барковський, Н. В. Барковська. К.: ЦУЛ, 2010. 417 с. ISBN 978-966-364-991-7.
- 20. Беклимишева Л. А. Сборник задач по аналитической геометрии и линейной алгебре [Текст]: учебн. пособие / Л. А. Беклимишева, А. Ю. Петрович, И. А. Чубаров; под. ред. Д. В. Беклемишева. М.: Физматлит, 2001. 496 с. ISBN 5-9221-0010-6.
- 21. Бортаковский А. С. Аналитическая геометрия в примерах и задачах: учеб. пособие / А. С. Бортаковский, А. В. Пантелеев. М.: Высш. шк., 2005. 496 с. ISBN 5-06-004761-X.
- 22. *Бутузов В. Ф.* Линейная алгебра в вопросах и задачах: учеб. пособие / В. Ф. Бутузов, Н. Ч. Крутицкая, А. А. Шишкин; под ред. В. Ф. Бутузова. СПб.: Лань, 2008. 256 с. ISBN 978-5-8114-0846-7.
- 23. Герасимчук В. С. Вища математика. Повний курс у прикладах і задачах: навч. посіб. [Ч.1]. Лінійна й векторна алгебра. Аналітична геометрія. Вступ до математичного аналізу. Диференціальне числення функцій однієї та багатьох змінних. Прикладні задачі / В. С. Герасимчук, Г. С. Васильченко, В. І. Кравцов. К.: Книги України ЛТД, 2009. 578 с. ISBN 978-966-2331-03-5.
- 24. Збірник задач з аналітичної геометрії та векторної алгебри: навч. посіб. / В. В. Булдигін, В. А. Жук, С. О. Рущицька, В. В. Ясінський. К.: Вища шк., 1999. 192 с. ISBN: 5-11-004614-X.
- 25. *Клепко В. Ю.* Вища математика в прикладах і задачах: навч. посібн. / В. Ю. Клепко, В. Л. Голець. К.: ЦУЛ, 2009. 592 с. ISBN 978-966-364-928-3.
- 26. *Клетеник Д. В.* Сборник задач по аналитической геометрии / Д. В. *Клетеник*. М., Профессия, 2003. 200 с. ISBN: 5-93913-037-2.
- 27. Pезниченко C. B. Аналитическая геометрия в примерах и задачах (Алгебраические главы) [Текст]: учебн. пособие для вузов / C. B. Pезниченко. M.: U3-во $M\Phi T U$, 2001. 576 c. ISBN 5-89155-062-8.
- 28. *Сборник* задач по математике для втузов. В 4 ч. Ч. 1: учеб. пособие / Под общ. ред. А. В. Ефимова и А. С. Поспелова. М.: Физматлит, 2001. 288 с. ISBN 5-94052-034-0.
- 29. *Студентські* математичні олімпіади. Збірник задач / В. В. Булдигін, В. А. Кушніревич, О. С. Шкабара, В. В. Ясінський. К.: НТУУ «КПІ», 2002. 176 с.