Algoritmusok és adatszerkezetek II. Geometriai algoritmusok

Szegedi Tudományegyetem

Alapfogalmak

Definíció

A
$$P_3 = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix}$$
 pontot $P_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ és $P_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$ pontok **konvex kombináció**jának nevezzük, amennyiben $x_3 = (1 - \alpha)x_1 + \alpha x_2$, valamint $y_3 = (1 - \alpha)y_1 + \alpha y_2$ teljesül valamely $0 < \alpha < 1$ -ra

Definíció

 $\overline{P_1P_2}$ szakasz a P_1 és P_2 pontokból konvex kombinációinak halmaza

Megjegyzés

Ha a pontok sorrendje is számít, irányított szakaszról beszélünk, és $\overrightarrow{P_1P_2}$ módon jelöljük

 $\vec{\mathbf{p}}$ -vel \overrightarrow{OP} -t, vagyis az O origóból a P-be menő irányított szakaszt (vektort) jelöljük

A keresztszorzat

$P_1 \times P_2$ keresztszorzata

$$\det\left(\begin{bmatrix}x_1 & x_2\\ y_1 & y_2\end{bmatrix}\right) = x_1y_2 - x_2y_1 = P_1 \times P_2 = -P_2 \times P_1$$

Megjegyzés

A keresztszorzat valójában háromdimenziós fogalom: egy $\overrightarrow{\mathbf{p_1}}$ -re és $\overrightarrow{\mathbf{p_2}}$ -re merőleges, velük jobbsodrású rendszert alkotó vektor, melynek hossza $|x_1y_2-x_2y_1|$.

A keresztszorzat

$P_1 \times P_2$ keresztszorzata

$$\det\left(\begin{bmatrix}x_1 & x_2\\ y_1 & y_2\end{bmatrix}\right) = x_1y_2 - x_2y_1 = P_1 \times P_2 = -P_2 \times P_1$$

Megjegyzés

A keresztszorzat valójában háromdimenziós fogalom: egy $\overrightarrow{\mathbf{p_1}}$ -re és $\overrightarrow{\mathbf{p_2}}$ -re merőleges, velük jobbsodrású rendszert alkotó vektor, melynek hossza $|x_1y_2-x_2y_1|$.

Más megfogalmazásban $\overrightarrow{p_1} \times \overrightarrow{p_2} = \|\overrightarrow{p_1}\| \|\overrightarrow{p_2}\| \sin(\theta) \hat{\mathbf{n}}$, ahol θ a $\overrightarrow{p_1}$ és $\overrightarrow{p_2}$ által bezárt szög, valamint $\hat{\mathbf{n}} \perp \overrightarrow{p_1}$ és $\hat{\mathbf{n}} \perp \overrightarrow{p_2}$

Forgásirány

Keresztszorzat mint előjeles terület

 $P_1 \times P_2$ megadja az O, P_1 , P_2 , $P_1 + P_2$ koordinátákkal rendelkező paralelogramma előjeles területét

- $P_1 \times P_2 < 0 \Rightarrow P_1$ -ből jobbra fordulva érjük el P_2 -t
- $P_1 \times P_2 > 0 \Rightarrow P_1$ -ből balra fordulva érjük el P_2 -t
- $P_1 \times P_2 = 0 \Rightarrow P_1$ és P_2 kollineáris

Merre fordul a következő szakasz?

- $\overline{P_0P_1}$ és $\overline{P_1P_2}$ szakaszokat folyamatosan bejárva merre kell fordulni P_1 pontban?
- Az előzőekben lényegében az origó viselkedett P₀-ként

Merre fordul a következő szakasz?

- $\overline{P_0P_1}$ és $\overline{P_1P_2}$ szakaszokat folyamatosan bejárva merre kell fordulni P_1 pontban?
- ullet Az előzőekben lényegében az origó viselkedett P_0 -ként

Ötlet: tegyünk úgy, mintha P_0 lenne az origó

$$(P_1 - P_0) \times (P_2 - P_0) = \det \left(\begin{bmatrix} x_1 - x_0 & x_2 - x_0 \\ y_1 - y_0 & y_2 - y_0 \end{bmatrix} \right)$$

• Szemléletesen: P_1 -ből és P_2 -ből P_0 -t kivonva P_0 központúvá tesszük a koordinátarendszerünket

Szakasz átfogása

Átfogó szakasz

Egy $\overline{P_1P_2}$ szakasz átfog egy egyenest, ha a P_1 pont az egyenes egyik oldalára, P_2 pont pedig a másik oldalára esik

Szakasz átfogása

Átfogó szakasz

Egy $\overline{P_1P_2}$ szakasz átfog egy egyenest, ha a P_1 pont az egyenes egyik oldalára, P_2 pont pedig a másik oldalára esik

Átfedés meglétének eldöntése

Egy (kevéssé hatékony) lehetőség, ha az egyenes egyenletét kiszámolva döntünk P_1 és P_2 relatív helyzetéről Támaszkodjunk helyette a forgásirányokra!

Egymást metsző szakaszok

Szükségesség

 \overline{CD} úgy metszheti \overline{AB} szakaszt, ha \overline{CD} átfogja az \overline{AB} szakaszra illeszkedő egyenest.

Egymást metsző szakaszok

Szükségesség

 \overline{CD} úgy metszheti \overline{AB} szakaszt, ha \overline{CD} átfogja az \overline{AB} szakaszra illeszkedő egyenest.

Metszés vizsgálata

```
Forgásirány (P1, P2, P3) {
   return (P2.x-P1.x)*(P3.y-P1.y) - (P3.x-P1.x)*(P2.y-P1.y)
METSZŐSZAKASZOK(A, B, C, D) {
   d1 = Forgásirány(A, B, C)
   d2 = Forgásirány(A, B, D)
   d3 = Forgásirány(C, D, A)
   d4 = Forgásirány (C, D, B)
   return d1 * d2 < 0 és d3*d4 < 0
```


Metszés vizsgálata

```
Forgásirány (P1, P2, P3) {
   return (P2.x-P1.x)*(P3.y-P1.y) - (P3.x-P1.x)*(P2.y-P1.y)
METSZŐSZAKASZOK(A, B, C, D) {
                                    Ezzel csak "valódi" metszéseket
   d1 = Forgásirány(A, B, C)
                                    találunk meg, a szakaszra illeszkedő
   d2 = Forgásirány(A, B, D)
                                    végpontú szakaszt nem kezeltük így
   d3 = Forgásirány(C, D, A)
   d4 = Forgásirány (C, D, B)
   return d1 * d2 < 0 és d3*d4 < 0
```


Metsző szakaszpár keresése

- Adott szakaszok n elemű halmaza, és tudni szeretnénk, hogy van-e köztük egymást metsző szakaszpár
- Nyers erővel $\binom{n}{2} = O(n^2)$
- Bizonyos egyszerűsítő feltételezések mellett $O(n \log(n))$ is megoldható
 - y tengellyel párhuzamos szakaszokat nem kezelünk
 - Adott szakaszok között nincs 3 egy pontban metsző

Metsző szakaszpár keresése – söprés

Söprés

Söprés során egy képzeletbeli függőleges *söprő egyenes* halad át geometriai objektumok halmazán (általában balról jobbra)

Két szakasz összehasonlítása adott x koordináta mentén

 s_1 szakasz fölötte van s_2 -nek x-nél $(s_1 \succ_x s_2)$, ha s_1 y-koordinátája nagyobb s_2 y-koordinátájánál adott x-koordináta mentén.

Metsző szakaszpár keresése – söprés

Söprés

Söprés során egy képzeletbeli függőleges *söprő egyenes* halad át geometriai objektumok halmazán (általában balról jobbra)

Két szakasz összehasonlítása adott x koordináta mentén

 s_1 szakasz fölötte van s_2 -nek x-nél $(s_1 \succ_x s_2)$, ha s_1 y-koordinátája nagyobb s_2 y-koordinátájánál adott x-koordináta mentén.

Példák

 $\overline{GH} \succ_4 \overline{EF}$, de $\overline{EF} \succ_8 \overline{GH}$

Szakaszpár metszése a söprő egyenes szemszögéből

• Bármely adott x értékre a \succ_x reláció az x-nél lévő söprő egyenest metsző szakaszok teljes rendezése

Kulcsészrevétel

Ha \exists egymást metsző szakaszpár $\Rightarrow \exists$ söprő egyenes, mely mentén való rendezés esetén azok egymás után következnek

- A söprő egyenes mozgatása
 - Elég a szakaszvégpontokban a be,-és kilépő szakaszok alapján összehasonlításokat végezni
- Kétféle adathalmazt kell kezelni a keresés során
 - Söprő egyenes állapotleírása
 - Esetpontok rendezett listája

Szakaszpár metszése – állapotleírás és esetpontok

- A söprő egyenes állapotleírása a szakaszok adott egyenes menti
 teljes rendezési reláció szerinti rendezését tartalmazza
- A söprő egyenes állapotleírásában változás csak esetpontokban (=szakaszvégpontokban) történik
- Esetpontok rendezése
 - Kovertikális (azonos x-koordinátájú) szakaszvégpontok esetén a bal/belépő végpontokat a jobb/kilépő végpontok elé soroljuk
- Elegendő azt vizsgálni csupán, hogy a
 - belépő szakaszok metszik-e megelőzőjüket/rákövetkezőjüket
 - kilépő szakaszok megelőzője és rákövetkezője metszi-e egymást

Szakaszpár metszése – állapotleírás és esetpontok

- A söprő egyenes állapotleírása a szakaszok adott egyenes menti
 teljes rendezési reláció szerinti rendezését tartalmazza
- A söprő egyenes állapotleírásában változás csak esetpontokban (=szakaszvégpontokban) történik
- Esetpontok rendezése
 - Kovertikális (azonos x-koordinátájú) szakaszvégpontok esetén a bal/belépő végpontokat a jobb/kilépő végpontok elé soroljuk
- Elegendő azt vizsgálni csupán, hogy a
 - belépő szakaszok metszik-e megelőzőjüket/rákövetkezőjüket
 - kilépő szakaszok megelőzője és rákövetkezője metszi-e egymást

Fontos

A mindenkori állapotleírást kiegyensúlyozott keresőfában tároljuk

Metsző szakaszpár keresése

```
VAN-E-METSZŐ-SZAKASZPÁR(S) { // T az állapotleírás fája
  L = S-beli szakaszvégpontok rendezett listája
  for p in L
  do
    if p egy s szakasz bal végpontja {
      BESZÚR(T,s)
      if MEGELŐZ(T,s) vagy RÁKÖVET(T,s) metszi s-et {
        return TGAZ
    }
    if p egy s szakasz jobb végpontja {
      if Megelőz(T,s) metszi Rákövet(T,s)-t {
        return TGAZ
      TÖRÖL(T,s)
  return HAMIS
```

Metsző szakaszpár keresésének futási ideje

- Állapotleírás T kiegyensúlyozott fájának létrehozása O(1)
- Szakaszvégpontok rendezése $O(n \log n)$
- for ciklus "hossza" legfeljebb 2n = O(n)
- Megelőz, illetve Rákövet metódusok végrehajtása $O(\log n)$

Metsző szakaszpár keresésének futási ideje

- Állapotleírás T kiegyensúlyozott fájának létrehozása O(1)
- Szakaszvégpontok rendezése $O(n \log n)$
- for ciklus "hossza" legfeljebb 2n = O(n)
- ullet Megelőz, illetve Rákövet metódusok végrehajtása $O(\log n)$
- \Rightarrow Összességében $O(n \log n)$

Konvex burok definíciója

Konvex burok

Q ponthalmaz konvex burka az a legkisebb P konvex poligon, amelyre Q minden pontja vagy P határán van, vagy a belsejében.

Q konvex burkát CH(Q)-val jelöljük. $CH(Q) \subseteq Q$ pontjait Q extrém pontjainak. Jelöljük a továbbiakban |Q|-t n-nel.

CH gyakorlati felhasználása

- Objektumok ütközésének elkerülése: vegyük akadályok koordinátáit, ezek CH-a képezze az elkerülendő régiót
- Agglomeratív klaszterezés: gépi tanuló eljárás, melynek célja vektorokkal leírt megfigyelések homogén részsokaságainak kialakítása

Konvex burok meghatározásának elvi algoritmusa

Tétel

P pont csak abban az esetben extrém pontja Q-nak, ha az a Q-ból kialakítható háromszögek mindegyikén kívül esik, vagy annak egy csúcsa.

- Egy csúcs extrém voltának eldöntése $\binom{n-1}{3} = O(n^3)$
- Mivel n csúcs van, így az elvi algoritmus $O(n^4)$ futási idejű

Konvex burok meghatározása hatékonyan

- Különféle megközelítések léteznek
 - 1 Növekményes módszer: "balról jobbra" számítjuk ki a CH-t
 - Oszd-meg-és-uralkodj: CH számítása a pontok részhalmazára, majd ezek egyesítése
 - 6 Eltávolító és kereső módszer
- n pont esetében többnyire $O(n \log n)$ futási idejű algoritmusok, de vannak O(nh), illetve $O(n \log h)$ algoritmusok is¹

¹h a CH-ban lévő csúcsok száma

Konvex burok meghatározása hatékonyan

- Különféle megközelítések léteznek
 - 1 Növekményes módszer: "balról jobbra" számítjuk ki a CH-t
 - ② Oszd-meg-és-uralkodj: CH számítása a pontok részhalmazára, majd ezek egyesítése
 - Eltávolító és kereső módszer
- n pont esetében többnyire $O(n \log n)$ futási idejű algoritmusok, de vannak O(nh), illetve $O(n \log h)$ algoritmusok is¹

Megjegyzés

Egy O(nh) algoritmusnak nyilván csak $h < \log n$ esetén van haszna

Konvex burok – Graham-féle pásztázás

```
GRAHAM-PÁSZTÁZÁS(S) {
  PO = minimális x-koordinátájú Q-beli pont (több ilyen
  esetén válasszuk az y-koordináta szerint is minimálisat)
  P = PolárszögSzerintRendez(Q)
  S = VermetLétesít()
  VEREMBE(PO, S)
  VEREMBE(P1, S)
  VEREMBE(P2, S)
  for i=3 to m {
    while Legfelső-Alatti(S), Legfelső(S) és Pi nem
           fordul balra {
      VEREMBŐL(S)
    Verembe(Pi, S)
  return S
```

Polárszög szerinti rendezés

Pontok helyzetének polárkoordinátákkal történő megadása

P pontot (x,y) koordinátapár helyett egy referenciaponttól vett távolság és egy referenciairánnyal bezárt szög párosaként adjuk meg

- A refereciaponttól számított $\frac{\Delta y}{\Delta x}$ eltérések szerinti sorrend adja a pontok polárszög szerinti rendezését
 - Azonos hányadossal rendelkező pontok közül azt soroljuk előbbre, amelyik a referenciaponthoz közelebb található²

Megjegyzés

A valóságban a vektor hosszának és forgásszögének kiszámítása költséges és numerikusan sem jó ötlet (sqrt és szögfüggvény miatt)

 $^{^2}$ Kivéve, ha $\Delta x=0$, mert akkor a másodlagos rangsorolást fordítva végezzük

Polárszög szerinti rendezés a gyakorlatban

- Numerikus hibák mérséklése és a 0-val való osztás elkerülésére
 - a forgásszöget a pontszorzattal számoljuk
 - a vektor hossza helyett a négyzetét számoljuk
 - Emlékeztetőül: $\| \vec{p} \|_2 = \| \overrightarrow{OP} \|_2 = \sqrt{\sum_{i=1}^d P[i]^2}$
 - Bármilyen összehasonlító rendezést (pl. gyorsrendezés) tudunk használni a forgásirányokra támaszkodva

```
pontok lista rendezése R referenciapont mentén
```

```
Collections.sort(pontok, (A, B) ->
  return (int) Math.signum(FORGÁSIRÁNY(R, A, B));
);
```


Zárt nem metsző poligon

 A pontokat a polárszöges rendezés sorrendjében összekötve megkapjuk a pontok által alkotott zárt, nem metsző poligont

Zárt nem metsző poligon

 A pontokat a polárszöges rendezés sorrendjében összekötve megkapjuk a pontok által alkotott zárt, nem metsző poligont

A pontok polárszög szerinti rendezésével nyert sorrendben történő összekötése nem feltétlen eredményez konvex poligont

Graham-féle pásztázás példa

- Kezdetben: S = [A, E, F]
 - Forgásirány(E,F,H), Veremből(S), Forgásirány(A,E,H), Verembe(S, H)
 - Forgásirány(E,H,C), Verembe(S, C)
 - Forgásirány(H,C,G), Veremből(S), Forgásirány(E,H,G), Verembe(S, G)
 - Forgásirány(H,G,D), Verembe(S,D)
 - Forgásirány(G,D,B), Verembe(S,B)
- Végezetül: S = [A, E, H, G, D, B]

CH meghatározása Jarvis meneteléssel

- Ajándékcsomagolás elvén működik O(nh) időben
- Kezdésnek válasszuk ki a legbaloldalibb pontot
- Amíg vissza nem érünk a kezdőpontba, válasszuk ki a legutolsónak választott ponttól leginkább balra eső pontot (vagyis azt a pontot, amelytől minden további ponthoz jobbra fordulásra van szükség)
- A Jarvis-féle menetelés folyamatosan bővíti CH(Q)-t (egy iterációban O(n) próbát tesz), "vakvágányoktól mentes"
 - A Graham-féle pásztázás minden csúcsot potenciálisan CH(Q)-beliként kezel

Jarvis menetelése illusztrálva

The execution of jarvis's March

CH(Q) várható mérete

• Négyzeten/körlapon 2d-ben véletlenszerűen elhelyezkedő ponthalmaznak átlagosan $O(\log n)/O(n^{1/3})$ elemű a CH-ja

Ne feledjük!

Legrosszabb esetben CH(Q) = n is teljesülhet

Legtávolabbi pontpár megtalálása

- n elemű ponthalmazban találjuk meg azon (P_i, P_j) pontpárt, melyek a legtávolabb fekszenek egymástól
 - P_i és P_j pontok távolságát euklideszi értelemben véve $d(P_i, P_j) = \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$
- Nyers erővel ez is $\binom{n}{2} = O(n^2)$ összehasonlítás lenne

Észrevétel

A ponthalmaz legtávolabbi pontpárja a CH-on található csúcspárok valamelyike kell legyen

A legtávolabbi pontpár a CH-on lesz

- Az észrevétel indirekt módon bizonyítható
 - Tegyük föl, hogy P_i és P_j pontok közötti távolság maximális, és $P_i \in CH(Q), P_i \notin CH(Q)$
 - Vegyünk egy P_i középpontú $\|\overline{P_iP_j}\|$ sugarú gömböt \Rightarrow egyetlen $P_k \in Q$ pont sem eshet a gömbön kívül

A legtávolabbi pontpár a CH-on lesz

- Az észrevétel indirekt módon bizonyítható
 - Tegyük föl, hogy P_i és P_j pontok közötti távolság maximális, és P_i ∈ CH(Q), P_i ∉ CH(Q)
 - Vegyünk egy P_i középpontú $\|\overline{P_iP_j}\|$ sugarú gömböt \Rightarrow egyetlen $P_k \in Q$ pont sem eshet a gömbön kívül, máskülönben nem (P_i, P_j) alkotná a legtávolabbi pontpárt $\Rightarrow P_i \in CH(Q)$, ami viszont ellentmondás

Legtávolabbi pontpár megtalálása – forgatásos söprés

 Átellenes (párhuzamos egyenesekre illeszkedő) csúcsokat keresünk, és ezeket görgetjük végig: O(h)

Legközelebbi pontpár megtalálása

- Adott n elemű P ponthalmazra mi az a $(P_i, P_j) \in P \times P$ pontpár, ami a legközelebb helyezkedik el egymáshoz?
- Nyers erővel szintén $\binom{n}{2} = O(n^2)$
- Oszd meg és uralkodj eljárással $O(n \log(n))$ is megoldható

Legközelebbi pontpár megtalálása – oszd meg és uralkodj

- Ha legfeljebb 3 pont maradt, akkor használjuk a nyers erő módszerét
- Egyébként hajtsuk végre a következőket
 - Vegyük azt az I egyenest, ami két egyenlő részre vágja a pontokat $(P_L$ és $P_R)$
 - A P_L és P_R -beli pontok közül rekurzívan határozzuk meg a legközelebbi pontpár közötti távolságot $d = \min(d_L, d_R)$
 - Döntsük el, hogy találni-e olyan (P_i, P_j) pontpárt, melyre $P_i \in P_L$ és $P_j \in P_R$, továbbá távolságuk d' < d

Legközelebbi pontpár megtalálása – illusztráció

Legközelebbi pontpár megtalálása – illusztráció

Jó hír

Elegendő az y koordináta alapján vett rendezés szerinti 7 rákövetkező ponttal összevetni az S-beli pontokat

Legközelebbi pontpár megtalálásának hatékonysága

- A pontok x és y koordináta szerinti előrendezésével kezdünk
 O(n log n)
- A rekurzív lépés során $T(n) = 2 * T(\frac{n}{2}) + O(n)$ művelet
 - Előrendezés nélkül a rekurzív lépés $T(n) = 2 * T(\frac{n}{2}) + O(n \log n)$ műveletigényű lenne, a teljes eljárás mester módszerrel kapott műveletigénye pedig $O(n \log^2 n)$ -re nőne
- Az eljárás több szempontból is hasonlít az összefésülő rendezés működéséhez

Legközelebbi szomszéd(ok) meghatározása

Probléma

Adott ponthoz találjuk meg a hozzá legközelebb eső ponto(ka)t

Felhasználása

Gépi tanulás: k-legközelebbi osztályozó, klaszterező eljárások

k-d fák hatékonysága

k-d fák

n pont esetén a k-d fák fő műveletei átlagos esetben $O(n \log n)$ műveletigényűek

- Hatékonysága statikus ponthalmaz esetén garantált
- Egy k-d fa módosítása (beszúrás/törlés) a kiegyensúlyozottságának megtartása mellett nem triviális

k-d fák illusztrációja

- A fa minden szintje a pontok váltakozó koordináták mentén történő megfelezését szolgálják
 - A fa egy csúcsa ossza ketté a részfában található pontokat az adott szintre vonatkozó dimenzió mentén
 - A fa kiegyensúlyozott lesz, mivel a részfák olyan féltereket definiálnak, amelyeket a mediánok mentén hozunk létre

k-d fában való keresés

- Keressük meg azt a félteret, ahova a lekérdezett pont esik
- A már megtalált legkisebb távolság alapján sok részfa vizsgálata kiküszöbölhető

Összefoglalás

- A geometriai algoritmusok számos gyakorlati probléma megoldása során felmerülnek
- Nagy méretű inputok esetén fontos, hogy a négyzetes (vagy annál is rosszabb) futási idejű algoritmusoknál hatékonyabbakat használjunk

