

第五章语法制导的翻译

陈林

引言

- 使用上下文无关文法引导语言的翻译
 - o CFG的非终结符号代表了语言的某个构造
 - 程序设计语言的构造由更小的构造组合而成
 - 一个构造的语义可以由小构造的含义综合而来
 - 比如:表达式x+y的类型由x、y的类型和运算符+ 决定
 - 。 也可以从附近的构造继承而来
 - 比如: 声明int x;中x的类型由它左边的类型表达 式决定

语法制导定义和语法制导翻译

- 语法制导定义
 - 。 将文法符号和某些属性相关联
 - 并通过语义规则来描述如何计算属性的值
 - $E \rightarrow E_1+T$ $E.code=E_1.code||T.code|| '+'$
 - 属性code代表中缀表达式的逆波兰表示(后缀表示法),规则说明加法表达式的逆波兰表示由两个分量的逆波 兰表示并置,然后加上'+'得到
- 语法制导翻译
 - 在产生式体中加入语义动作,并在适当的时候执行这些语义动作
 - \circ $\mathbf{E} \rightarrow \mathbf{E}_1 + \mathbf{T}$ {print '+';}

语法制导的定义(SDD)

- SDD是上下文无关文法和属性/规则的结合
 - 属性和文法符号相关联,按照需要来确定各个文法符号需要哪些属性
 - 。 规则和产生式相关联
- 对于文法符号X和属性a,用X.a表示分析树中的 某个标号为X的结点的值
- 一个分析树结点和它的分支对应于一个产生式规则,而对应的语义规则确定了这些结点上的属性的取值

分析树和属性值(1)

- 假设我们需要知道一个表达式的类型,以及对应 代码将它的值存放在何处,我们就需要两个属性: type, place
- 产生式规则: E →E₁+T
- 语义规则: (假设只有int/float类型)
 - E.type = if (E₁.type==T.type) T.type else float
 - E.place = newTempPlace(); //返回一个新的内存位置;
- 产生式规则: F →id
 - F.type = lookupIDTable(id.lexValue)->type;
 - F.place = lookupIDTable(id.lexValue)->address;

分析树和属性值(2)

假设a,b,c是已经声明的全局变量,a的类型为FLOAT,b,c的类型为INT

中间未标明的T和F的 type和address都是INT 和&b;

•a+b*c的语法分析树以及属性值

继承属性和综合属性

- **综合属性**(synthesized attribute): 在分析树结点N 上的非终结符号A的属性值由N对应的产生式所关联的 语义规则来定义
 - o 通过N的子结点或N本身的属性值来定义
- **继承属性**(inherited attribute): 结点N的属性值由N的父结点所关联的语义规则来定义
 - o 依赖于N的父结点、N本身和N的兄弟结点上的属性值
- 不允许N的继承属性通过N的子结点上的属性来定义,但是允许N的综合属性依赖于N本身的继承属性
- 终结符号有综合属性(由词法分析获得),但是没有继承属性

SDD的例子

 $F.val = \mathbf{digit}.lexval$

■ 目标: 计算表达式行L的值(属性val)

7) $F \to \mathbf{digit}$

- 计算L的val值需要E的val值
- E的val值又依赖于E和T的val值
- •••
- 终结符号digit有综合属性lexval

- 己知文法:
 - \circ E \rightarrow E T | T
 - \circ T \rightarrow num | num . num

请给出一个SDD,来确定减法表达式的类型。

注: T有综合属性type(属性值分为integer和float两种),E有综合属性type。可以使用函数getType(type_1, type_2)来为减法表达式获取类型。

S属性的SDD

- 只包含综合属性的SDD称为S属性的SDD
 - 每个语义规则都根据产生式体中的属性值来计算头部非终 结符号的属性值
- S属性的SDD可以和LR语法分析器一起实现
 - 栈中的状态可以附加相应的属性值
 - 在进行归约时,按照语义规则计算归约得到的符号的属性值
- 语义规则不应该有复杂的副作用
 - 要求副作用不影响其它属性的求值
 - 没有副作用的SDD称为属性文法

L属性的SDD

■ 每个属性

- o 要么是综合属性
- 要么是继承属性,且产生式 $A \rightarrow X_1X_2 \cdots X_n$ 中计算 X_i . a的规则只能使用
 - A的继承属性
 - X_i左边的文法符号X_j的继承属性或综合属性
 - X_i自身的继承或综合属性,且这些属性之间的依赖 关系不形成环

语法分析树上的SDD求值(1)

- 实践中很少先构造语法分析树再进行SDD求值
- 但在分析树上求值有助于翻译方案的可视化,便于 理解
- 注释语法分析树
 - 包含了各个结点的各属性值的语法分析树
- 步骤:
 - 对于任意的输入串,首先构造出相应的分析树。
 - 给各个结点(根据其文法符号)加上相应的属性值
 - 按照语义规则计算这些属性值即可

语法分析树上的SDD求值(2)

- 按照分析树中的分支对应的文法产生式,应用相应的语义规则计算属性值
- 计算顺序问题:
 - o 如果某个结点N的属性a为 $f(N_1.b_1,N_2.b_2,...,N_k.b_k)$,那么我们需要先算出 $N_1.b_1,N_2.b_2,...,N_k.b_k$ 的值。
- 如果我们可以给各个属性值排出计算顺序,那么这个 注释分析树就可以计算得到
 - o S属性的SDD一定可以按照自底向上的方式求值
- 下面的SDD不能计算
 - \circ A \rightarrow B
- A.s=B.i;

B.i=A.s+1;

注释语法分析树的例子

产生式	语义规则		
1) $L \to E \mathbf{n}$	L.val = E.val		
$2) E \to E_1 + T$	$E.val = E_1.val + T.val$		L.val = 19
$3) E \to T$	E.val = T.val		
$4) T \to T_1 * F$	$T.val = T_1.val \times F.val$		E.val = 19 n
$5) T \to F$	T.val = F.val		
$6) F \to (E)$	F.val = E.val	E.val = 15	+ $T.val = 4$
7) $F \to \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$		
		T.val = 15	F.val = 4
	T.val = 0	3 *	F.val = 5 digit. $lexval = 4$
■ 3*5+4n	F.val = 1	3 dig	$\mathbf{it}.lexval = 5$

digit.lexval = 3

适用于自顶向下分析的SDD

■ 左递归文法无法直接用自顶向下方法处理

	产生式		
1)	$L \to E \mathbf{n}$		
2)	$E \rightarrow E_1 + T$		
3)	$E \to T$		
4)	$T \rightarrow T_1 * F$		
5)	T o F		
6)	$F \rightarrow (E)$		
7)	$F o \mathbf{digit}$		

适用于自顶向下分析的SDD

○ 计算 3*5所用注释语法树

- 消除左递归之后,我们无法直接使用属性val进行处理
 - 比如规则: $T \rightarrow FT'$ $T' \rightarrow *FT'$
 - o T对应的项中,第一个因子对应于F,而运算符却在T'中
 - o 需要继承属性来完成这样的计算

	产生式	语义规则		PRODUCTION
1)	$L \to E \mathbf{n}$	L.val = E.val	1)	$T \to F T'$
2)	$E \to E_1 + T$	$E.val = E_1.val + T.val$,	
3)	$E \to T$	E.val = T.val	2)	ml ml
4)	$T \to T_1 * F$	$T.val = T_1.val \times F.val$	2)	$T' \to *F T_1'$
5)	$T \to F$	T.val = F.val		
6)	$F \rightarrow (E)$	F.val = E.val	3)	$T' o \epsilon$
7)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$	4)	E dimit
			4)	$F o \mathbf{digit}$

适用于自顶向下分析的SDD

	产生式	语义规则
1)	$T \to F T'$	$T'.inh = F.val \ T.val = T'.syn$
2)	$T' \to *F T_1'$	$T_1'.inh = T'.inh imes F.val$ $T'.syn = T_1'.syn$ $T'.syn = T'.inh$
3)	$T' \to \epsilon$	T'.syn = T'.inh
4)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

■ 注意: T'的属性inh实际上继承了相应的*号的左运算分量。

3*5的注释分析树

注意观察inh属性是如何传递的

	产生式	语义规则
1)	T o F T'	T'.inh = F.val $T.val = T'.syn$
2)	$T' \to *F T'_1$	$T_1'.inh = T'.inh \times F.val$ $T'.syn = T_1'.syn$
3)	$T' \to \epsilon$	T'.syn = T'.inh
4)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

SDD的求值顺序

- 在对SDD的求值过程中,如果结点N的属性a依赖于结点M₁的属性a₁,M₂的属性a₂,···。那么我们必须先计算出M_i的属性,才能计算N的属性a
- 使用依赖图来表示计算顺序
- 显然,这些值的计算顺序应该形成一个偏序关系。 如果依赖图中出现了环,表示属性值无法计算

依赖图

- 描述了某棵特定的分析树上各个属性实例之间的信息流(计算顺序)
 - o 从实例 a_1 到实例 a_2 的有向边表示计算 a_2 时需要 a_1 的值(必须先计算 a_2 ,再计算 a_1)
- 对于标号为X的分析树结点N,和X关联的每个属性 a都对应依赖图的一个结点N.a
- 结点N对应的产生式的语义规则通过X. c计算了A. b的值,且在分析树中X和A分别对应于 N_1 和 N_2 ,那么从 N_1 . c到 N_2 . b有一条边

依赖图的例子

语义规则

- 3*2的注释分析树;
- $T \rightarrow FT' \{T.val = T'.syn; T'.inh = F.val;\}$
 - 边e1、e2

可能的计算顺序:	$1) T \to F T'$	T'.inh = F.val $T.val = T'.syn$
- 1,2,3,4,5,6,7,8.9	$2) T' \to *F T_1'$	$T_1'.inh = T'.inh \times F.val$
$T 9 val \qquad \qquad e2$	3) $T' \to \epsilon$	$T'.syn = T'_1.syn$ T'.syn = T'.inh
	4) $F \rightarrow \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$
F 3 val $e1$ inh 5 T' 8 syn		

产生式

属性值的计算顺序

- 各个属性的值需要按照依赖图的拓扑顺序计算
 - 如果依赖图中存在环,则属性计算无法进行
- 给定一个SDD, 很难判定是否存在一棵分析 树, 其对应的依赖图包含环
- 怎样的SDD可以和以前所介绍的语法分析结 合在一起?

属性值的计算顺序

- 特定类型的SDD一定不包含环,且有固定排序模式
 - o S属性的SDD
 - o L属性的SDD
- 对于这些类型的SDD, 我们可以确定属性的计算顺序, 且可以把不需要的属性(及分析树结点) 抛弃以提高效率
- 这两类SDD可以很好地和我们已经研究过的语法分析相结合

S属性的SDD

- 每个属性都是综合属性
- 都是根据子构造的属性计算出父构造的属性
- 在依赖图中,总是通过子结点的属性值来计算父结点的属性值。可以和自顶向下、自底向上的语法分析过程一起计算
 - 。 自底向上
 - 在构造分析树的结点的同时计算相关的属性(此时其子结点的属性必然已经计算完毕)
 - 。 自顶向下
 - 递归下降分析中,可以在过程A()的最后计算A的属性(此时 A调用的其他过程(对应于子结构)已经调用完毕)

在分析树上计算SDD

■ 按照后序遍历的顺序计算属性值即可 postorder(N)

```
for(从左边开始,对N的每个子结点C)
postorder(C);
//递归调用返回时,各子结点的属性计算完毕
对N的各个属性求值;
```

■ 在LR分析过程中,我们实际上不需要构造 分析树的结点

L属性的SDD

- 每个属性
 - 要么是综合属性
 - 要么是继承属性,且产生式 $A \to X_1 X_2 \cdots X_n$ 中计算 X_i . a的规则只能使用
 - A的继承属性
 - X_i左边的文法符号X_i的继承属性或综合属性
 - X_i自身的继承或综合属性,且这些属性之间的依赖关系不形成环
- 特点
 - o 依赖图的边
 - 继承属性从左到右,从上到下
 - 综合属性从下到上
 - 在扫描过程中,计算一个属性值时,和它相关的依赖属性 都已经计算完毕

具有受控副作用的语义规则

- 属性文法没有副作用,但增加了描述的复杂度
 - 比如语法分析时如果没有副作用,标识符表就必须 作为属性传递
 - 可以把标识符表作为全局变量,然后通过副作用函数来添加新标识符
- 受控的副作用
 - 不会对属性求值产生约束,即可以按照任何拓扑顺 序求值,不会影响最终结果
 - o 或者对求值过程添加简单的约束

受控副作用的例子

- $L \rightarrow E$ n print (E. val)
 - o 通过副作用打印出E的值
 - 总是在最后执行,而且不会影响其它属性的求值
- 变量声明的SDD中的副作用
 - o addType将标识符的类型信息加入到标识符表中
 - o 只要标识符不被重复声明,标识符的类型信息总是正确的

	产生式	语义规则
1)	$D \to T L$	L.inh = T.type
2)	$T \to \mathbf{int}$	T.type = integer
3)	$T o \mathbf{float}$	T.type = float
4)	$L \to L_1$, id	$L_1.inh = L.inh$
		$addType(\mathbf{id}.entry, L.inh)$
5)	$L \to \mathbf{id}$	$addType(\mathbf{id}.entry, L.inh)$

语法制导翻译的应用例子

抽象语法树的构造

■基本类型和数组类型的L属性定义

构造抽象语法树的SDD

- 抽象语法树
 - 每个结点代表一个语法结构;对应于一个运算符
 - · 结点的每个子结点代表其子结构;对应于运算分量
 - 表示这些子结构按照特定方式组成了较大的结构
 - 可以忽略掉一些标点符号等非本质的东西
- 语法树的表示方法
 - 每个结点用一个对象表示
 - o 对象有多个域
 - 叶子结点中只存放词法值
 - 内部结点中存放了op值和参数(通常指向其它结点)

构造简单表达式的语法树的SDD

■ 属性E. node指向E对应的语法树的根结点

	产生式	语义规则
1)	$E \to E_1 + T$	$E.node = \mathbf{new} \ Node('+', E_1.node, T.node)$
2)	$E \to E_1 - T$	$E.node = \mathbf{new} \ Node('-', E_1.node, T.node)$
3)	E o T	E.node = T.node
4)	$T \rightarrow (E)$	T.node = E.node
5)	$T o \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}.entry)$
6)	$T o \mathbf{num}$	$T.node = \mathbf{new} \ Leaf(\mathbf{num}, \mathbf{num}.val)$

表达式语法树的构造过程

■ 输入:

■ 步骤:

- o p1=new Leaf(id, entry_a)
- o p2=new Leaf(num, 4);
- o p3=new Node('-', p1,p2);
- o p4=new Leaf(id, entry c):
- o p5=new Node('+', p3,p4);

自顶向下方式处理的L属性定义(1)

	产生式	语义规则
1)	$E \to T E'$	E.node = E'.syn E'.inh = T.node
2)	$E' \to + T E'_1$	$E'_1.inh = \mathbf{new} \ Node('+', E'.inh, T.node)$ $E'.syn = E'_1.syn$
3)	$E' \rightarrow -T E'_1$	$E'_1.inh = \mathbf{new} \ Node('-', E'.inh, T.node)$ $E'.syn = E'_1.syn$
4)	$E' o \epsilon$	E'.syn = E'.inh
5)	$T \rightarrow (E)$	T.node = E.node
6)	$T o \mathbf{id}$	$T.node = \mathbf{new} \ Leaf(\mathbf{id}, \mathbf{id}.entry)$
7)	$T \rightarrow \mathbf{num}$	T.node = new $Leaf($ num , num . $val)$

■ 在消除左递归时,按照规则得到此SDD

自顶向下方式处理的L属性定义(2)

- 对于这个SDD,各属性值的计算过程实际上和原来S属性 定义中的计算过程一致
- 继承属性可以把值从一个结构传递到另一个并列的结构; 也可把值从父结构传递到子结构
- 抽象语法树和分析树不一致时,继承属性很有用

类型结构

■ 简化的类型表达式的语法

 \circ T \rightarrow B C B \rightarrow int | float

 \circ $C \rightarrow [num] C \mid \varepsilon$

■ 生成类型表达式的SDD

产生式	语义规则
$T \rightarrow B C$	T.t = C.t
	C.b = B.t
$B \rightarrow \mathbf{int}$	B.t = integer
$B \rightarrow \mathbf{float}$	B.t = float
$C \rightarrow [$ num $] C_1$	$C.t = array(\mathbf{num}.val, C_1.t)$
	$C_1.b = C.b$
$C \rightarrow \epsilon$	C.t = C.b

类型的含义

- 类型包括两个部分: T → B C
 - o 基本类型 B
 - o 分量 C
- 分量形如[3][4]
 - o 表示3X4的二维数组
- int [3][4]
- 数组构造算符array
 - o array(3, array(4, int))表示抽象的3X4的二 维数组

类型表达式的生成过程

输入: int [2][3]

array

array

integer

产生式	语义规则
$T \rightarrow B C$	T.t = C.t
	C.b = B.t
$B \rightarrow \mathbf{int}$	B.t = integer
$B \rightarrow \mathbf{float}$	B.t = float
$C \rightarrow [\mathbf{num}] C_1$	$C.t = array(\mathbf{num}.val, C_1.t)$
	$C_1.b = C.b$ $C.t = C.b$
$C \rightarrow \epsilon$	C.t = C.b

● 令S.val为下面文法由S生成的二进制数的值(例如,对于输入101.101,S.val=5.625):

 $S \rightarrow L.L$

 $S \rightarrow L$

 $L \rightarrow LB$

 $L \rightarrow B$

 $B \rightarrow 0$

 $B \rightarrow 1$

按语法制导翻

产生式	语义规则
s·→s	print(S.val)
$S \rightarrow L_1.L_2$	S.val:= L_1 .val+ L_2 .val/ $2^{L2.length}$
s→L	S.val:=L.val
$L \rightarrow L_1B$	L.val:=L ₁ .val*2+B.val
	L.length:=L ₁ .length+1
L→B	L.val:=B.val
5	L.length:=1
B → 0	B.val:=0
B → 1	B.val:=1

语法制导的翻译方案

- 语法制导的翻译方案(SDT)是在产生式体中嵌入程序片断(语义动作)的上下文无关文法
- SDT的基本实现方法
 - 。 建立语法分析树
 - 。 将语义动作看作是虚拟的结点
 - 从左到右、深度优先地遍历分析树,在访问 虚拟结点时执行相应动作

在语法树上实现SDT


```
L \rightarrow E \mathbf{n} { print(E.val); } A1

E \rightarrow E_1 + T { E.val = E_1.val + T.val; } A2

E \rightarrow T { E.val = T.val; } A3

T \rightarrow T_1 * F { T.val = T_1.val \times F.val; } A4

T \rightarrow F { T.val = F.val; } A5

F \rightarrow (E) { F.val = E.val; } A6

F \rightarrow \mathbf{digit} { F.val = \mathbf{digit}.lexval; } A7
```

- 语句3*4*5的分析树如右
- DFS可知动作执行顺序
 - \circ A7₁, A5, A7₂, A4₁, A7₃, A4₂, A2
 - 注意,一个动作的不同实例所访问的 属性值属于不同的结点

可在语法分析过程中实现的SDT

- 实现SDT时,实际上并不会真的构造语法 分析树,而是在分析过程中执行语义动作
- 即使基础文法可以应用某种分析技术,仍可能因为动作的缘故导致此技术不可应用
- ■用SDT实现两类重要的SDD
 - o 基本文法是LR的,SDD是S属性的
 - o 基本文法是LL的,SDD是L属性的

可在语法分析过程中实现的SDT

- 判断是否可在分析过程中实现
 - 。 将每个语义动作替换为一个独有的标记非终结符号; 每个标记非终结符号M的产生式为M→ ε
 - o 如果新的文法可以由某种方法进行分析,那么 这个SDT就可以在这个分析过程中实现
 - o 注意: 这个方法没有考虑变量值的传递等要求

判断SDT可否用特定分析技术实现例子

$$\blacksquare L \to E n M_1$$

$$E \rightarrow E+T M_2$$

$$E \rightarrow T M_3$$

$$M_1 \rightarrow \epsilon$$

$${
m M}_2
ightarrow {
m \epsilon}$$

$$M_3 \rightarrow \epsilon$$

后缀翻译方案

- 后缀SDT: 所有动作都在产生式最右端的 SDT
- 文法可以自底向上分析且SDD是S属性的, 必然可以构造出后缀SDT
- 构造方法
 - 将每个语义规则看作是一个赋值语义动作
 - 将所有的语义动作放在规则的最右端

后缀翻译方案的例子

■ 实现桌上计算器的后缀SDT

注意动作中对属性值的引用

- 我们允许语句引用全局变量,局部变量,文法符号的属性
- 文法符号的属性只能被赋值一次

后缀SDT的语法分析栈实现

- 可以在LR语法分析的过程中实现
 - o 归约时执行相应的语义动作
 - o 定义用于记录各文法符号的属性的union结构
 - o 栈中的每个文法符号(或者说状态)都附带一个 这样的union类型的值
 - 在按照产生式A→XYZ归约时,Z的属性可以在栈 顶找到,Y的属性可以在下一个位置找到,X的属 性可以在再下一个位置找到

栈顶

X	Y	Z
X.x	Y.y	Z.z
		A

状态/文法符号 综合属性

分析栈实现的例子

- 假设语法分析栈存放在一个被称为stack 的记录数组中,下标top指向栈顶
 - o stack[top]是这个栈的栈顶
 - o stack[top-1]指向栈顶下一个位置
 - o 如果不同的文法符号有不同的属性集合,我们可以使用union来保存这些属性值
 - 归约时能够知道栈顶向下的各个符号分别是什么, 因此我们也能够确定各个union中究竟存放了什么 样的值

后缀SDT的栈实现

产生式	语义动作	注意: stack[top-i]
L o E n	$\{ print(stack[top-1].val); \\ top = top-1; \}$	和文法符号的对应
$E \to E_1 + T$ $E \to T$	$\{ \begin{array}{l} stack[top-2].val = stack[top-2], \\ top = top-2; \end{array} \}$	top-2].val + stack[top].val;
	(4 0]
$ T \to T_1 * F $	$\{ egin{array}{ll} stack[top-2].val = stack[top-2].val = stack[top-2]. \end{array} \}$	$top-2$]. $vai \times stack[top].vai;$
$T \to F$	• • • • • • • • • • • • • • • • • • • •	
F o (E)	$\{ stack[top-2].val = stack[top$	top-1].val;
$F o \mathbf{digit}$	$top = top - 2; $ }	

■ 这个SDT中没有局部变量,不会产生和局部变量有关的问题

产生式内部带有语义动作的SDT

- 动作左边的所有符号(以及动作)处理完成后,就立刻执行这个动作
 - \circ B \rightarrow X {a} Y
 - 。 自底向上分析时,在X出现在栈顶时执行动作 a
 - 自顶向下分析时,在试图展开Y或者在输入中 检测到Y的时刻执行a

产生式内部带有语义动作的SDT

- 不是所有的SDT都可以在分析过程中实现
 - 后缀SDT以及L属性对应的SDT可以在分析时完成

对于一般的SDT,可以先建立分析树(语义动作作为虚拟的结点),然后进行前序遍历并执行动作

digit { print(5); }

digit { print(3); }

```
\rightarrow E n
       E \rightarrow \{ print('+'); \} E_1 + T
       T \rightarrow \{ print('*'); \} T_1 * F
                                                                                                                \mathbf{n}
       T \rightarrow F
                                                                  \{ \operatorname{print}('+'); \}
6)
       F \rightarrow (E)
                     digit { print(digit.lexval); }
     移入/规约 冲突:
            \text{M}_2 \rightarrow \epsilon
                                                          { print("*"); }
                                                                                                             digit
                                                                                                                     \{ print(4); \}
            M_{\Delta} \rightarrow \epsilon
            移入数字
```


消除左递归时SDT的转换

- 如果动作不涉及属性值,可以把动作当作 终结符号进行处理,然后消左递归
- 原始的产生式
 - \circ E \rightarrow E₁+T {print('+');}
 - \circ E \rightarrow T
- 转换后得到
 - \circ E \rightarrow T R
 - \circ R \rightarrow + T {print ('+');} R
 - \circ R \rightarrow ε

消除左递归时SDT的一般转换形式

- 假设只有单个递归产生式,且该左递归非终结符只有单个属性 $A \rightarrow A_1 Y \{A.a = g(A_1.a, Y.y)\}$
 - $A \rightarrow X \{A.a = f(X.x)\}$

■ 消除左递归

$$\begin{array}{cccc} A & \rightarrow & X R \\ R & \rightarrow & Y R \mid \epsilon \end{array}$$

(b)

(a)

消除左递归时SDT的一般转换形式

$$\begin{array}{cccc} A & \rightarrow & A_1 \ Y \ \{A.a = g(A_1.a, Y.y)\} \\ A & \rightarrow & X \ \{A.a = f(X.x)\} \end{array}$$

$$A \to X \{R.i = f(X.x)\} R \{A.a = R.s\}$$

 $R \to Y \{R_1.i = g(R.i, Y.y\} R_1 \{R.s = R_1.s\}$
 $R \to \epsilon \{R.s = R.i\}$

L属性定义的SDT

- 将L属性的SDD转换为SDT
 - 将每个语义规则看作是一个赋值语义动作
 - 将赋值语义动作放到相应产生式的适当位置
 - 计算A的继承属性的动作插入到产生式体中对应的 A的左边
 - 如果A的继承属性之间具有依赖关系,则需要对计算动作进行排序
 - 计算产生式头的综合属性的动作在产生式的最右 边

L属性的SDT实例


```
S 
ightarrow \mathbf{while} \left( \begin{array}{ll} C \, \right) S_1 & L1 = new(); \\ L2 = new(); \\ S_1.next = L1; \\ C.false = S.next; \\ C.true = L2; \\ S.code = \mathbf{label} \parallel L1 \parallel C.code \parallel \mathbf{label} \parallel L2 \parallel S_1:code \end{array}
```

■ 继承属性:

- o next: 语句结束后应该跳转到的标号
- o true、false: C为真/假时应该跳转到的标号
- 综合属性code表示代码

将SDD转换为SDT

- 语义动作
 - o (a) L1=new(); L2=new(): 计算临时值
 - o (b) C. false = S. next; C. true = L2: 计算C的继 承属性
 - o (c) S_1 . next = L1: 计算 S_1 的继承属性
 - o (d) S. code= ···: 计算S的综合属型
- 根据放置语义动作的规则得到如下SDT
 - o (b) 在C之前; (c) 在S1之前; (d) 在最右端
 - o (a)可以放在最前面

```
S \rightarrow \mathbf{while} ( { L1 = new(); L2 = new(); C.false = S.next; C.true = L2; } 
 C ) { S_1.next = L1; } { S.code = \mathbf{label} \parallel L1 \parallel C.code \parallel \mathbf{label} \parallel L2 \parallel S_1.code; }
```


L属性的SDD的实现

- 使用递归下降的语法分析器
 - o 每个非终结符号对应一个函数
 - o 函数的参数接受继承属性
 - o 返回值包含了综合属性
- 在函数体中
 - o 首先选择适当的产生式
 - o 使用局部变量来保存属性
 - 对于产生式体中的终结符号,读入符号并获取其(经词法分析得到的)综合属性
 - 对于非终结符号,使用适当的方式调用相应函数,并 记录返回值

递归下降法实现L属性SDD的例子


```
string S(label next) {
     string Scode, Ccode; /* 存放代码片段的局部变量 */
     label L1, L2; /* 局部标号*/
     if(当前输入== 词法单元while) {
           读取输入;
           检查 '('是下一个输入符号,并读取输入;
           L1 = new();
           L2 = new();
           Ccode = C(next, L2);
           检查 ')' 是下一个输入符号,并读取输入;
           Scode = S(L1);
           return("label" \parallel L1 \parallel Ccode \parallel "label" \parallel L2 \parallel Scode);
     else /* 其他语句类型 */
```


边扫描边生成属性(1)

- 当属性值的体积很大时,对属性值进行运算的效率很低
 - o 比如code (代码)可能是一个上百K的串,对其进行并置等 运算会比较低效
- 可以逐步生成属性的各个部分,并增量式添加到最终的属性值中
- 条件:
 - o 存在一个主属性,且主属性是综合属性
 - 在各产生式中,主属性是通过产生式体中各个非终结符号的主属性连接(并置)得到的,同时还会连接一些其它的元素
 - 各非终结符号的主属性的连接顺序和它在产生式体中的顺序相同

边扫描边生成属性(2)

- 基本思想
 - 只需要在适当的时候"发出"非主属性的元素,即把这些元素拼接到适当的地方
- 举例说明
 - 假设我们在扫描一个非终结符号对应的语法结构时,调用相应的函数,并生成主属性
 - \circ S \rightarrow while (C) S₁
 - S. code = Label | L1 | C. code | Label | L2 | S₁. code
 - \circ 处理S时,先调用C,再调用S(对应于S₁)
 - o 如果各个函数把主属性打印出来,我们处理while语句时,只需要先打印Label L1,再调用C(打印了C的代码),再打印Label L2,再调用S(打印S₁的代码)
 - o 对于这个规则而言,只需要打印Label L1和Label L2,当然, 我们要求C和S的语句在相应情况下跳转到L1和L2


```
S \rightarrow \mathbf{while} ( { L1 = new(); L2 = new(); C.false = S.next; C.true = L2; } 
 C ) { S_1.next = L1; } 
 S_1 { S.code = \mathbf{label} \parallel L1 \parallel C.code \parallel \mathbf{label} \parallel L2 \parallel S_1.code; }
```

```
S \rightarrow while ( {L1=new(); L2=new(); C. false = S. next; C. true = L2; print("label", L1); } C ) {S<sub>1</sub>. next = L1; print("label", L2); } S<sub>1</sub>
```

■ 前提是所有的非终结符号的SDT规则都这么做

边扫描边生成属性的例子


```
void S(label next) {
     label L1, L2; /* 局部标号 */
     if ( 当前输入 == 词法单元 while ) {
          读取输入;
          检查 '('是下一个输入符号,并读取输入:
          L1 = new();
          L2 = new();
          print("label", L1);
          C(next, L2);
          检查 ')' 是下一个输入符号, 并读取输入;
          print("label", L2);
          S(L1);
    else /* 其他语句类型 */
```


习题

$$\begin{array}{cccc}
L & \rightarrow & E \mathbf{n} \\
E & \rightarrow & E_1 + T \\
E & \rightarrow & T \\
T & \rightarrow & T_1 * F \\
T & \rightarrow & F \\
F & \rightarrow & (E) \\
F & \rightarrow & \mathbf{digit}
\end{array}$$

- 1. 能否给出:
 - o 求值的SDD
 - 将输入表达式翻译成前缀表达式的SDD
 - o 将输入表达式翻译成后缀表达式的SDD?
 - o 所给的SDD是S属性(或L属性)的吗?
- 2. 能否给出相应的SDT?
- 3. 所给出的SDT能够在LL或LR分析过程中实现吗?
- 4. 能否给出实现SDD的递归下降方法?