Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант<u>29</u>

Виконав студент	г <u>III-15 Рибалка Ілля Сергійович</u>		
-	(шифр, прізвище, ім'я, по батькові)		
Помовінув			
Перевірив			
	(прізвище, ім'я, по батькові)		

Лабораторна робота 3

Дослідження ітераційних циклічних алгоритмів

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 29

Наближено (із заданою точністю є) обчислити інтеграл $\int\limits_0^\pi Ln(2+Sinx)dx$, використовуючи формулу прямокутників:

$$\int_{a}^{b} f(x)dx \approx h \cdot (f(x_1) + f(x_2) + ... + f(x_n)), \text{ де h} = (b - a) / n, x_i = a + i \cdot h - h/2.$$

1. Постановка задачі

Обчислити інтеграл з заданою точністю (ϵ та n) за допомогою ітераційного циклу, що викону ϵ дію суми.

2. Побудова математичної моделі

Змінна	Тип	Ім'я	Призначення
Точність є	Натуральне	acur	Вхідні дані
Точність обчислення	Натуральне	n	Вхідні дані
Змінна h	Дійсне	h	Проміжні дані
Лічильник	Натуральне	i	Проміжні дані
Змінна х	Дійсне	x	Проміжні дані
Функція f(x)	Дійсне	fx	Проміжні дані
Сума функцій $f(x_{i})$	Дійсне	sumfx	Проміжні дані
Результат	Дійсне	result	Проміжні, Вихідні дані

Кількість знаків після коми задано натуральним числом acur, округлення задамо функцією round(число, movність). Інтеграл задано на проміжку $[0;\pi]$, через це, в програмі буде використано число $\pi \approx 3,14159...$ Точність n вводиться з клавіатури, за допомогою неї вираховується змінна $h=\frac{\pi-0}{n}=\frac{\pi}{n}$, наступними діями є знаходження змінної $x_i=0+i\cdot h-\frac{h}{2}=i\cdot h-\frac{h}{2}$, і підстановка її в функцію f(x)=Ln(2+Sinx). В функції використовується логарифм натуральний (log(i)), який в основі має число $e\approx 2,71828...$, також в функції використано синус числа x (sin(x)), що відповідає точці ординат на графіку синуса.

Основи програмування – 1. Алгоритми та структури даних

Результатом є змінна *result* що знаходиться за формулою $result = h \cdot \sum_{i=1}^{n} f(x_i)$, суму в коді замінено на цикл де лічильник $i \leq n$, результатом цієї дії є проміжна змінна *sumfx*.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми. *Крок 1*. Визначимо основні дії.

Крок 2. Деталізуємо дію введення початкового значення sumfx та i, i знаходження h.

Крок 3. Деталізуємо крок знаходження sumfx за рахунок циклу.

Крок 4. Деталізуємо тіло циклу.

Крок 5. Деталізуємо дію знаходження змінної result, і її виведення.

Псевдокод

крок 1

початок

Введення acur, n

Введення sumfx, i

Розрахунок h

Знаходження sumfx

Розрахунок result

Виведення result

кінець

крок 2

початок

Введення acur, n

sumfx = 0

i = 1

h = pi / n

Знаходження sumfx

Розрахунок result

Виведення result

кінець

крок 3

```
початок
Введення acur, n
sumfx = 0
i = 1
h = pi / n
для i <= n повторити
       Розрахунок х
       Розрахунок fx
       Розрахунок sumfx
       i = i + 1
все повторити
Розрахунок result
Виведення result
кінець
крок 4
початок
Введення acur, n
sumfx = 0
i = 1
h = pi / n
для i <= n повторити
       x = i * h - h / 2
       fx = \log(2 + \sin(x))
       sumfx = sumfx + fx
       i = i + 1
все повторити
Розрахунок result
Виведення result
кінець
крок 5
початок
Введення acur, n
sumfx = 0
i = 1
h = pi / n
для i <= n повторити
       x = i * h - h / 2
       fx = \log(2 + \sin(x))
       sumfx = sumfx + fx
       i = i + 1
все повторити
result = h * sumfx
Виведення round(result, acur)
```

Блок-Схема

кінець

Основи програмування – 1. Алгоритми та структури даних

Основи програмування – 1. Алгоритми та структури даних

Тестування

Блок	Дія
	Початок
1	$\varepsilon = 4$
2	n=3
3	sumfx = 0
4	i = 1
5	h = 1.04719
6.1	i = 1, x = 0.52359, fx = 0.91629, sumfx = 0.91629
6.2	i = 2, x = 1.57079, fx = 1.09861, sumfx = 2.01490
6.3	i = 3, x = 2.61799, fx = 0.91629, sumfx = 2.93119
7	result = 3.06953
8	Виведення 3.0695
	Кінець

Висновок

Я дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій. Було створено алгоритм для розв'язання заданого інтегралу з введеними точностями. Цей алгоритм було протестовано на точності обчислень 3, та 4 знаками після коми, результатом слугувало число 3.0695.