Sistemas Operacionais

Revisão de conceitos básicos sobre Hardware

Estrutura da CPU (2)

 Executado desde o momento em que o computador é ligado até quando o desligamos

Pipeline

- A execução de uma única instrução pode ser dividida em vários estágios:
 - Busca instrução
 - Decodifica instrução
 - Calcula operandos
 - Busca operandos
 - Executa instruções
 - Escreve resultados
- Se uma instrução está no estágio "Busca de operandos", outras partes do processador que executam outros estágios não fazem nada.
- Não é um conceito novo !!! (Década de 70)

Pipeline (2)

- Pode-se encarar a execução de uma instrução como uma linha de montagem.
- Desta forma a Busca Antecipada é um pipeline com 2 estágios.
- Para obter um maior desempenho, um maior número de estágios é necessário.
- O ideal é que os estágios possuam custos computacionais iguais.
- Existem instruções que não precisam dos 6 estágios
 - Mas são tratadas como se precisassem

Temporização do Pipeline

Expr. Condicional em um Pipeline

Problemas do Pipeline

- Uma instrução depende de um valor de uma instrução que ainda não acabou de ser executada
- Interrupções
- Desvios condicionais
 - Não se sabe qual instrução será a próxima a ser executada
- Estratégias
 - Múltiplos Fluxos
 - Antecipação de busca da instrução-alvo do desvio
 - Memória de laço de repetição
 - Previsão de desvio

Complex Instruction Set Computer Computador com Conjunto Complexo de Instruções

- Despesas em software excedem despesas em hardware
- Linguagens cada vez mais complexas
- Levam à:
 - Grande conjunto de instruções
 - Mais modos de endereçamento
 - Implementação em hardware de comandos de alto nível
 - Ex: CASE (switch) no minicomputador VAX

O Próximo Passo - RISC

- Reduced Instruction Set Computer
 - Computador com um Conjunto Reduzido de Instruções
- Principais características
 - Grande número de registradores de propósito geral
 - Conjunto de instruções limitados e ximples
 - Enfase em otimizar o pipeline

RISC – Características

- Uma instrução por ciclo
- Operações somente entre registradores
- Poucos modos de endereçamento
- Poucos tipos de instruções
- Unidade de controle extremamente otimizada (portas lógicas)
- Maior esforço de compilação
- Programas ocupam mais espaço
- Maior número de registradores
- Clock major

Comparação dos processadores

	CISC		RISC		Superescalar	
IBM	DEC VAX	Intel	Motorola	MIPS	IBM	Intel
370/168	11/780	486	88000	R4000	RS/6000	80960
1973	1978	1989	1988	1991	1990	1989
No. de instruções 208 303 235 51 94 184 62						
Registradores de propósito geral						

23-256

O que é Superescalar?

- Máquinas capazes de executar instruções sobre escalares de maneira mais rápida (1987)
 - Escalares → Inteiros e endereços de memória
- Instruções comuns podem ser iniciadas e executadas independentemente
 - Vários pipelines
 - Maioria das instruções envolvem escalares
- Técnica igualmente aplicável à processadores RISC e CISC
- Na prática → RISC

Execução Superscalar

Tipos de Memórias Externas

- Disco Magnético
 - RAID
 - Removível
- Ótico
 - CD-ROM
 - CD-Gravável (WORM)
 - CD-R/W
 - DVD
- Fita Magnética

Layout do Disco

Velocidade

Não depende do dispositivo de disco magnético.
Somente do sistema operacional e

das condições de uso.

Velocidade (2)

- Tempo de Busca
 - Posicionar a cabeça de leitura na trilha correta
- Atraso Rotacional
 - Esperando dado "rodar" para baixo da cabeça
- Tempo de Acesso = Tempo de Busca + Atraso
- Taxa de Transferência

RAID

- Redundant Array of Independent Disks
 - Conjunto Redundante de Discos Independentes
- 6 níveis mais comuns
- Não é uma hierarquia
 - O nível 3 não é necessáriamente melhor que o 2
- Conjunto de discos físicos vistos como um só pelo sistema operacional

RAID (2)

Dados distribuídos pelos discos físicos

Pode-se armazenar dados de paridade

Acesso em paralelo aos discos

 Substituir discos de grande capacidade (caros) por vários de menor capacidade (mais baratos)

Entrada e Saída

- O uso de módulos de E/S
- Três tipos de E/S
 - Programada
 - Dirigida por interrupção
 - De acesso direto à memória (DMA)
- O que são:
 - Canais de E/S
 - Processadores de E/S

Problemas de Entrada/Saída

- Imensa variedade de dispositivos
 - Cada um operando com uma capacidade diferente
 - Em velocidades diferentes
 - Em formatos diferentes
- Todos são mais lentos que a CPU e a RAM
 - Então não é bom colocar o dispositivo diretamente no barramento.
- Para resolver isso, usam-se módulos de E/S

Módulo de Entrada/Saída (2)

 Conecta um ou mais dispositivos ao barramento

- Lembre-se que:
 - CPU e Memória também estão conectadas ao barramento.

Módulo de Entrada/Saída (3)

Módulo de F/S

Funções do Módulo de E/S

- Controle e Temporização de Dispositivos
 - Ex: Movimentação do cabeçote do disco rígido
- Comunicação com a CPU
 - Responde a requisições da CPU
- Comunicação com os Dispositivos
 - Traduz requisições CPU para sinais e tensões
- Detecção de erros
- Armazenamento temporário de informações
 - Para permitir a sincronização

Técnicas de Entrada e Saída

As técnicas de uso dos dispositivos são as seguintes:

- Mapeada em Memória
 - PC-XT / AT-286
- Programada
 - Antiga
- Dirigida por Interrupção
 - Ainda usada
- Direct Memory Access (DMA)
 - Muito eficiente para vários tipos de dispositivos