Switching Algebra

Dr. Chandan Karfa

CSE, IIT Guwahati

• Source:

Chapter 3 of Z. Kohavi and N. Jha, Switching and Finite Automata Theory, 3rd Ed., Cambridge University Press, 2010

Introduction

- The analysis and design of combinational switching circuits.
- A combinational switching circuit is that its outputs are functions of only the present circuit inputs.
- Switching algebra is the existence of a two-valued switching variable that can take either of two distinct values, 0 and 1
- if x is a switching variable then
 - x != 0 if and only if x = 1,
 - x != 1 if and only if x = 0.

Switching algebra

• A switching algebra is an algebraic system consisting of the set {0, 1}, two binary operations called OR and AND, denoted by the symbols + and · respectively, and one unary operation called NOT, denoted by a prime also known as complement and a set of postulates.

	AND		OR			NOT		
x	y	$x \cdot y$	x	y	x + y	x	x'	
0	0	0	0	0	0	0	1	
0	1	0	0	1	1	1	0	
1	0	0	1	0	1		'	
1	1	1	1	1	1			

Applications in Combinational Circuits

- Combinational circuit minimization/simplification
- Equivalence of Combinational circuits
- Conversion of one form to another

Basic properties of switching algebra

$$x + x = x, \\ x \cdot x = x$$
 (idempotency).
$$x \cdot y = y \cdot x, \\ (x + y) + z = x + (y + z), \\ (x \cdot y) \cdot z = x \cdot (y \cdot z)$$
 (associativity).
$$x + x' = 1, \\ x \cdot x' = 0$$
 (complementation).
$$x \cdot (y + z) = x \cdot y + x \cdot z, \\ x + y \cdot z = (x + y) \cdot (x + z)$$
 (distributivity).

- Switching algebra is known as the *principle of duality*.
- One statement can be obtained from the other by interchanging the OR and AND operations and replacing the constants 0 and 1 by 1 and 0, respectively.

Switching expressions and its Simplification

- A *switching expression* we mean the combination of a finite number of switching variables and constants (0, 1) by means of switching operations (+, ·, and)
- any switching constant or variable is
- a switching expression, and if T1 and T2 are switching expressions then so are T1.T2, T1 + T2, and T1T2.

Simplification Rules

• absorption law of switching algebra

$$x + xy = x,$$

 $x(x + y) = x$ (absorption).

Simplification

$$x + x'y = x + y,$$

$$x(x' + y) = xy.$$

Consensus theorem

$$xy + x'z + yz = xy + x'z,$$

$$(x + y)(x' + z)(y + z) = (x + y)(x' + z)$$
 (consensus theorem).

Simplification Example

```
x'y'z + yz + xz = z(x'y' + y + x)
= z(x' + y + x)
= z(y + 1)
= z1
= z.
```

De Morgan's theorems

Governing complementation operations

$$(x')' = x$$
 (involution).

De Morgan's theorems for two variables are

$$(x + y)' = x' \cdot y',$$

$$(x \cdot y)' = x' + y'.$$

x	y	x'	y'	x + y	(x + y)'	x'y'
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

 General De Morgan's theorem: The complement of any expression can be obtained by replacing each variable and element with its complement and, at the same time, interchanging the OR and AND operations

$$[f(x_1, x_2, \dots, x_n, 0, 1, +, \cdot)]' = f(x_1', x_2', \dots, x_n', 1, 0, \cdot, +).$$

Switching functions

- A switching function $f(x_1, x_2, ..., x_n)$ is a correspondence that associates an element of the algebra with each of the 2ⁿ combinations of variables $x_1, x_2, ..., x_n$.
- This correspondence is best specified by means of a truth table.

X'Z +	X'Z + XZ' + X'Y'					
x	у	Z	T			
0	0	0	1			
0	0	1	1			
0	1	0	0			
0	1	1	1			
1	0	0	1			
1	0	1	0			
1	1	0	1			
1	1	1	0			

Switching functions

• Complement of a function: If a function f(x1, x2, ..., xn) is specified by means of a truth table, its complement is obtained by complementing each entry in the column headed f. New functions that are equal to the sum f + g and the product fg are obtained by adding or multiplying the corresponding entries in the f and g

columns.

x	у	Z	f	g	f'	f + g	fg
0	0	0	1	0	0	1	0
0	0	1	0	1	1	1	0
0	1	0	1	0	0	1	0
0	1	1	1	1	0	1	1
1	0	0	0	1	1	1	0
1	0	1	0	0	1	0	0
1	1	0	1	1	0	1	1
1	1	1	1	0	0	1	0

Canonical forms: Sum of Products

- How to represent a function uniquely?
- Minterm: A product term that contains each of the n variables as factors in either complemented or uncomplemented form is called a minterm
- 2ⁿ possible minterms f
- Sum of products (SoP): The sum of all minterms derived from those rows for which the value of the function is 1.
- The SoP is the canonical representation of function

Decimal code	x	y	z	f
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Canonical forms: Product of Sums

- A sum term that contains each of the n variables in either a complemented or an uncomplemented form is called a maxterm.
- An expression formed of the product of all maxterms for which the function takes on the value 0 is called a canonical product of sums or conjunctive normal expression
- In each maxterm, a variable *xi* appears in uncomplemented form if it has the value 0 in the corresponding row in the truth table, and it appears in complemented form if it has the value 1.

Decimal				
code	x	У	Z	f
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Canonical forms

Sum of Products

$$f(x, y, z) = x'y'z' + x'yz' + x'yz + xyz' + xyz.$$

$$f(x, y, z) = \sum (0, 2, 3, 6, 7)$$

Decimal				C	
code	х	У	Z	J	
0	0	0	0	1	
1	0	0	1	0	
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	
5	1	0	1	0	
6	1	1	0	1	
7	1	1	1	1	

Product of Sums

$$f(x, y, z) = (x + y + z')(x' + y + z)(x' + y + z').$$

$$f(x, y, z) = \prod (1, 4, 5),$$

Converting to Canonical Form using Shannon's Expansion Theorem

• One way of obtaining the canonical forms of any switching function is by means of Shannon's expansion theorem repeatedly.

$$f(x_1, x_2, \dots, x_n) = x_1 \cdot f(1, x_2, \dots, x_n) + x_1' \cdot f(0, x_2, \dots, x_n)$$

$$f(x_1, x_2, \dots, x_n) = [x_1 + f(0, x_2, \dots, x_n)] \cdot [x_1' + f(1, x_2, \dots, x_n)].$$

 Now apply the expansion theorem with respect to variable x2 to each of the two terms

$$f(x_1, x_2, \dots, x_n) = x_1 x_2 f(1, 1, x_3, \dots, x_n) + x_1 x_2' f(1, 0, x_3, \dots, x_n) + x_1' x_2 f(0, 1, x_3, \dots, x_n) + x_1' x_2' f(0, 0, x_3, \dots, x_n).$$

 The expansion of the function about the remaining variables yields the disjunctive normal form (SoP)

Converting to SoP form

- A simpler and faster procedure for obtaining the canonical sum-ofproducts form of a switching function.
 - Examine each term; if it is a minterm, retain it, and continue to the next term.
 - In each product that is not a minterm, check the variables that do not occur, for each x_i that does not occur, multiply the product by $(x_i + x'_i)$.
 - Multiply out all products and eliminate redundant terms.

Example Determine the canonical sum-of-products form for T(x, y, z) = x'y + z' + xyz. Applying rules 1–3, we obtain T = x'y + z' + xyz= x'y(z + z') + (x + x')(y + y')z' + xyz= x'yz + x'yz' + xyz' + xyz' + x'yz' + x'yz' + xyz= x'yz + x'yz' + xyz' + xyz' + xy'z' + xyz.

How to convert SoP to PoS and vice versa?

- Option 1: Using Truth Table method
- Option 2: Use involution theorem (x')' = x

Example Find the canonical product-of-sums form for the function

$$T(x, y, z) = x'y'z' + x'y'z + x'yz + xyz + xy'z + xy'z'.$$

Using the involution theorem,

$$T = (T')' = [(x'y'z' + x'y'z + x'yz + xyz + xy'z + xy'z')']'.$$

The complement T' consists of those minterms that are not contained in the expression for T, i.e.,

$$T = [x'yz' + xyz']'$$

= $(x + y' + z)(x' + y' + z)$.

Functional properties

- Two switching functions are equivalent if and only if their canonical sum of products forms are identical.
- A factor a_i is set to 1 (0) if the corresponding minterm is (is not) contained in the canonical form of the function.

$$f(x_1, x_2, \dots, x_n) = a_0 x_1' x_2' \cdots x_n' + a_1 x_1' x_2' \cdots x_n + \dots + a_r x_1 x_2 \cdots x_n.$$

- There are 2^n coefficients, each of which can have two values, 0 and 1. Hence, thus there exist $2^n(2^n)$ switching functions of n variables.
- Functions with 2 variables are of our interests

$$f(x, y) = a_0 x' y' + a_1 x' y + a_2 x y' + a_3 x y.$$

Table 3.6 List of switching functions f(x, y) of two variables, x and y

a_3	a_2	a_1	a_0	f(x, y)	Name of function	Symbol
0	0	0	0	0	Inconsistency	
0	0	0	1	x'y'	NOR	$x \downarrow y^a$
0	0	1	0	x'y		
0	0	1	1	x'	NOT	x'
0	1	0	0	xy'		
0	1	0	1	\mathbf{y}'		
0	1	1	0	x'y + xy'	EXCLUSIVE-OR	$x \oplus y$
					(modulo-2 addition)	
0	1	1	1	x' + y'	NAND	$x y^b$
1	0	0	0	xy	AND	$x \cdot y$
1	0	0	1	xy + x'y'	Equivalence	$x \equiv y$
1	0	1	0	у		
1	0	1	1	x' + y	Implication	$x \rightarrow y$
1	1	0	0	X		
1	1	0	1	x + y'	Implication	$y \rightarrow x$
1	1	1	0	x + y	OR	x + y
1	1	1	1	1	Tautology	

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>xF</i>	$F = x \cdot y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	<i>xF</i>	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	xF	F = x'	x F 0 1 1 0
Buffer	<i>x</i> —— <i>F</i>	F = x	x F 0 0 1 1
NAND	<i>xF</i>	F = (xy)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
NOR	<i>x</i>	F = (x + y)'	x y F 0 0 1 0 1 0 1 0 0 1 1 0
Exclusive-OR (XOR)	<i>x y F</i>	$F = xy' + x'y$ $= x \oplus y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive-NOR or equivalence	<i>x</i>	$F = xy + x'y'$ $= (x \oplus y)'$	x y F 0 0 1 0 1 0 1 0 0 1 1 1

XOR

• It assigns value 1 to two arguments if and only if they have complementary values; that is, $A \oplus B = 1$ if either A or B is 1 but not when both A and B are 1.

$$A \oplus B = B \oplus A \qquad (commutativity),$$

$$(A \oplus B) \oplus C = A \oplus (B \oplus C)$$

$$= A \oplus B \oplus C \qquad (associativity),$$

$$(AB) \oplus (AC) = A(B \oplus C) \qquad (distributivity).$$

$$\begin{cases} A \oplus C = B, \\ B \oplus C = A, \\ A \oplus B \oplus C = 0. \end{cases}$$

Functionally complete operations

- A set of operations is said to be *functionally complete* (or *universal*) if and only if every switching function can be expressed entirely by means of operations from this set.
- Every switching function can be expressed in a canonical sum-ofproducts form, where each expression consists of a finite number of switching variables
- {+, ·, '} is clearly functionally complete.
- Other functionally complete sets: {+, '}, {., '}, {NAND}, {NOR}

Example Prove that the NOR operation is functionally complete.

A common method for proving the completeness of an operation is to show that it is capable of generating each operation of a set that is already known to be functionally complete, for example, $\{+,'\}$ or $\{\cdot,'\}$.

Since $x \downarrow y = x'y'$ (see Table 3.6), then

$$x \downarrow x = x'x' = x',$$

$$(x \downarrow y) \downarrow (x \downarrow y) = (x'y')' = x + y.$$

Boolean algebras

- A Boolean algebra B is a set of elements a, b, c, \ldots , together with two binary operations, + and \cdot , that satisfy the **idempotent**, **commutative**, **absorption**, and associative laws and are mutually distributive.
- B contains two bounds, 0 and 1, which are the **least and greatest elements**, respectively; B **is closed under** + and . .
- The A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique element of S.
- B has a unary operation of complementation that assigns to every element its complement. The complement a of any element a in B is unique.

Basic properties of switching algebra

```
x + x = x, \\ x \cdot x = x (idempotency). x \cdot y = y \cdot x, \\ (x + y) + z = x + (y + z), \\ (x \cdot y) \cdot z = x \cdot (y \cdot z) (associativity). x + x' = 1, \\ x \cdot x' = 0 (complementation). x \cdot (y + z) = x \cdot y + x \cdot z, \\ x + y \cdot z = (x + y) \cdot (x + z) (distributivity).
```

- Switching algebra is known as the *principle of duality*.
- One statement can be obtained from the other by interchanging the OR and AND operations and replacing the constants 0 and 1 by 1 and 0, respectively.

Relation between switching algebra and Boolean algebra?

Boolean algebras

- In 1854, George Boole developed an algebraic system now called Boolean algebra
- In 1938, Claude E. Shannon introduced a two-valued Boolean algebra called switching algebra
- The switching algebra is two-valued Boolean algebra.
 - Closed under + and . . And each element has unique complement element.

+	0	1		0	1	
0 1			0 1			