

Gymnasium Athenaeum Stade

Jannes Ruder, Johann Wischner

Quantencomputer, Algorithmen und das OAM

Jugend forscht - Fachgebiet: Technik Regionalwettbewerb Lüneburg 2025 Projektbetreuende: Dr. Hans-Otto Carmesin

1. Einleitung

Quantencomputer sind eine revolutionäre Technologie, die die Grenzen der klassischen Informatik überschreiten. Basierend auf den Prinzipien der Quantenmechanik versprechen sie, komplexe Probleme zu lösen, die für traditionelle Computer nahezu unlösbar sind. Herkömmliche Computer können bis zu 10^13 Schaltereignisse pro Sek. erreichen, wohingegen Quantencomputer 10^15 mal schneller als elektronische Computer sind. Dies liegt zum einen an dem Aspekt der Superpositionen von den Qubits, der Lichtgeschwindigkeit in optischen Quantencomputern und der Verschränkung. Auch das OAM spielt hierbei eine bedeutende Rolle, da es Licht mit topologischer Ladung ungleich 0 erzeugen kann. Um nun aber rechnen zu können nutzen wir ein universelles Set an logischen Gattern, welches schon im Vorläuferprojekt genutzt wurde.

<u> 2. Ziele</u>

Unsere Ziele waren:

- Das Projekt umweltfreundlicher zu gestalten
- Algorithmen auf unseren Quantencomputer rechnen zu lassen
- Eine theoretische Darstellung vom Deutsch-Jozsa-Algorithmus zu entwickeln
- Zu beweisen, dass unser universelles Set auch auf optischen Quantencomputern mit Laserlicht laufen kann
- Die Umsetzung der OAM basierten Qubits
- Die kostengünstigere Gestaltung von Quantencomputern

3. Algorithmen

3.1. Deutsch-Algorithmus

Der Deutsch-Algorithmus ist ein Algorithmus, mit welchem wir die schnelle Verarbeitung des Quantencomputers vorführen. Ziel ist es festzustellen, ob eine binäre Funktion konstant (immer 0 oder immer 1) oder balanciert (gleich viele 0 und 1 im Ergebnis, wie z.B.: f(x) = 0 oder f(x) = 1) ist. Ein klassischer Computer benötigt zwei Abfragen (f(x) und f(y)), um dies zu prüfen. Ein Quantencomputer löst das Problem mit nur einer Abfrage, indem er die Zustände $|0\rangle$ und $|1\rangle$ in Superposition versetzt, also $|+\rangle$, und so ausreichend Informationen gleichzeitig sammelt.

3.2. Deutsch-Jozsa-Algorithmus

Der Deutsch-Jozsa-Algorithmus ist eine Erweiterung des Deutsch-Algorithmus auf n Qubits (n stellt die Anzahl der Speicherplätze dar). Er hat dasselbe Ziel eine Funktion auf konstant oder balanciert zu überprüfen. Es handelt sich also um eine Verallgemeinerung des Problems. Ein klassischer Computer bräuchte im schlimmsten Fall (n÷ 2)+ 1 Funktionsauswertungen: also die Hälfte der möglichen Speicherplätze plus eins, um sicher festzustellen, ob die Funktion konstant oder balanciert ist. Ein Quantencomputer benötigt wieder nur eine Funktionsauswertung.

4. De RO Beweis

Der Beweis von Nicolas De RO, aus dem Jahr 2021, ermöglichte es uns, mithilfe von Linearer Algebra zu beweisen, dass unsere Gatter praktisch auf einem Quantencomputer mit Laserlicht jede unitäre Abbildung im Hilbertraum ausführen können. Der Hilbertraum ist ein

gezeigt, dass der Beweis auch für Laserlicht anwendbar ist.

Vektorraum, in dem Quantenzustände als Vektoren beschrieben werden. Dazu haben wir

5. OAM basierte Qubits

Die Abbildung zeigt Wellenfronten für verschiedene topologische Ladungen I(0,1,3) in einer Strecke von 2 lambda. Wir verwenden ein Qubit mit den zuständen I=1 und I=-1.

6. Umweltfreundlichkeit

Durch 3D Druckverfahren mit PLA, können wir Bauteile einfacher und umweltfreundlicher herstellen. Auch verbraucht unser Quantencomputer verhältnismäßig weniger Strom, da wir passive Gatter benutzen, was ihn wesentlich umweltfreundlicher als herkömmliche Computer macht, welche aktive Gatter benutzen.

7. Kostengünstigere Gestaltung

Im vergangenen Jahr haben wir auch an der kostengünstigeren Gestaltung des Quantencomputers gearbeitet. Durch die Möglichkeit 3D Drucker zu nutzen konnten wir Bauteile für wenige Cents herstellen, welche im Normalfall bis in den dreistelligen Euro Bereich reichen. Auch der niedrigere Stromverbrauch senkt Kosten, welche bei herkömmlichen Computern anfallen.

8. Ergebnis und Zielerreichung

Wir haben...

- Den Quantencomputer umweltfreundlicher gestaltet
- Algorithmen auf unseren Quantencomputer rechnen lassen
- eine theoretische Darstellung des Deutsch-Jozsa-Algorithmus entwickelt
- bewiesen, dass unser universelles Set auch auf optischen Quantencomputern mit Laserlicht laufen kann und dabei weiterhin universell ist
- gezeigt, dass wir OAM basierte Qubits umsetzen können mit Laserlicht
- den Quantencomputer kostengünstiger gestaltet

8.1. Diskussion

Wie mit dem De Ro Beweis bewiesen, ist es uns möglich, Laserlicht für Quantencomputer zu nutzen. Einen großen Vorteil dabei bietet die Rechengeschwindigkeit und die Energieeffizienz, da Laserlicht viel weniger Energie beim Rechnen benötigt als elektronische Computer. Darüber hinaus haben wir experimentell den Deutsch-Algorithmus und das OAM (Orbital Angular Momentum) erfolgreich umgesetzt. Die Berechnung mit Quantengattern ist somit bei optischen Computern möglich, wobwei der Einsatz von Laserlicht zum Rechnen bereit für praktische Anwendungen ist.

8.2. Ausblick

In der Zukunft kann, durch Schnittstellen zwischen Quantencomputern und herkömmlichen Computern (beispielsweise in einem PC), die Quantenmechanik genutzt werden wie zum Beispiel als Rechenkarte im Computer, also als QPU (Quantum Processing Unit). Die von uns erarbeiteten ökonomischen und ökologischen Vorteile können dazu beitragen, die Technologie künftig einer breiteren Öffentlichkeit zugänglich zu machen.

<u>Literatur</u>

- Wikipedia, Orbital angular momentum of light. Wikipedia, 2024, 30.12.2024,
- Padgett, Miles John / Allen, Les: The angular momentum of light: Optical spanners and the rotational frequency shift. Optical and Quantum Electronics, 1999, 30.12.2024,
- IBM Development Team, Q: Circuit Library. IBM, 2021, 17.01.2025,
- Roy, Pradosh: Quantum Logic Gates. Research Gate, 2020, 10.01.2025,
- Defi Ro, Nicolas: Universel Sets of Gates in Quantum Computing. Research Gate, 2021, 01.02.2025,
 Merritt Rick: What is a QPU? Nvidia, 2022, 31.01.2025.