Inhaltsverzeichnis

Einführung

1.1 Inhalt

Übertragung (Speicherung) von Daten: Schutz vor:

- zufälligen oder systematischen (physikalischen bedingten) Störungen
- Abhören, absichtliche Veränderung von Dritten (Kryptologie / Verschlüsselung)

Kryptologie:

- symmetrische Verfahren
- asymmetrische Verfahren (Public-Key Verfahren)
- Authentifizierung
- Signaturen

Codierungstheorie

- Fehlererkennung und Fehlerkorrektur
- lineare Blockcodes
- Decodierverfahren

Kryptologie

2.1 Grundbegriffe und einfache Verfahren

Abbildung 2.1: Schaubild der Kryptologie

2.1.1 Verschlüsselung erfordert

- Verschlüsselungsverfahren, Algorithmus (Funktion)
- Schlüssel k_e (encryption key)

 $E(m, k_e) = c$ E=Verschl.Fkt., m=Klartext, c=Chiffretext $E(m_1, k_e) \neq E(m, k_e)$ für $m_1 \neq m_2$ $D(c, k_d) = m$ $(k_d \text{ zu } k_e \text{ gehöriger Dechiffrierschlüssel!})$

 $k_d = k_e$ (oder k_d leicht aus k_e zu berechnen): <u>symmetrisches Verschl.verf.</u>, ansonsten <u>asymm. Verschl.verf.</u>. Ist k_d nur sehr schwer (oder garnicht) zu k_e berechenbar, so kann k_e veröffentl. werden: Public-Key-Verfahren.

2.1.2 Beispiel für (nicht sicheres) symm. Verfahren

- a) $R = S = \{0, 1, ..., 25\}$ Verfahren: Verschiebechiffre Schlüssel: $i \in \{0, 1, ..., 25\}$ Verfahren $x \in \mathbb{R} \longrightarrow x + i \mod 26 = y$ $y \longmapsto y - i \mod 26 = y$
 - $m = x_1...x_2 \longrightarrow c = (x_1 + i \mod 26)...(x_n + i \mod 26), E(m, i)$ Unsicher, weil Schlüsselmenge klein ist (Brute Force Angriff).

b) R,S, Schlüsselmenge=Menge aller Permutationen von $\{1, ..., 25\} = S_{26}$ Verschl.: Wähle Permuation π

$$x \in \mathbb{R} \longrightarrow \pi(x) = y$$
Entschl.: $y \longrightarrow \pi^{-1}(y) = x$

$$m = x_1 \dots x_r \to c = \pi(x_1) \dots \pi(x_r)$$

$$\begin{pmatrix} 0 & 1 & 2 & \dots & 25 \\ 3 & 17 & 4 & \dots & 13 \end{pmatrix} \longrightarrow \pi(0) = 3, \text{ u.s.w.}$$

Anzahl der Permutationen: $|S_{26}| = 26! \approx 4 \cdot 10^{26} \longrightarrow \text{Brute-Force Angriff}$ nicht mehr möglich!

Warum? Man muss im Schnitt 50% der Permutationen testen. Angenommen man könnte 10¹2 Perm. pro Sekunde testen.

Aufwand: $2 \cdot 10^{14}$ Sekunden $\approx 6.000.000$ Jahre

Trotzdem unsicher!

Grund: Charakteristiches Häufigkeitsverteilung von Buchstaben in natürlichspr. Texten.

Verfahren beinhalten viele Verschlüsselungsmöglichkeiten, abhängig von der Auswahl des Schlüssels.

Verfahren bekannt, aber Schlüssel k_d geheim!

2.1.3 Prinzip von Kerkhoffs (1835-1903)

Sicherheit eines Verschlüsselungsverfahren darf nicht von der Geheimhaltung des Verfahrens, sondern nur von der Geheimhaltung des verwendeten Schlüssels abhängen!

Kryptologie besteht aus Kryptographie (Entwurf) und der Kryptoanalyse (Angriff). Angriffserfolge:

- Schlüssel k_d wird gefunden
- Eine zu der Dechiffrierfunktion $D(\cdot, k_d)$ äquivalente Funktion finden ohne Kenntnis von k_d
- gewisste Chiffretexte werden entschlüsselt

Arten von Angriffen

- Ciphertext-Only Angriff
- Known-Plaintext Angriff
- Chosen-Plaintext Angriff
- Chosen-Ciphertext Angriff

One-Time-Pad und perfekte Sicherheit

```
Lauftextverschlüsselung Alphabet \mathbb{Z}_k = \{0, 1, \dots, k-1\} In \mathbb{Z}_k kann man addieren und multiplizieren mit mod \, k. Klartext x_1, x_2, \dots, x_n Schlüsselwort k_1, k_2, \dots, k_n x_1 + k_1 \, mod \, k, x_n + k_n \, mod \, k \leftarrow \text{Chiffretext} Mit natürlichsprachlichen Texten ist das Verfahren unsicher. \mathbb{Z}_2 = \{0, 1\}, 1 \oplus 1 = 0 = 0 \oplus 0, 0 \oplus 1 = 1 = 1 \oplus 0 \Rightarrow XOR Klartext in \mathbb{Z}_2^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{Z}_2\} Schlüssel: Zufallsfolge über \mathbb{Z}_2 der Länge n. m Klartext, k Zufallsfolge (beide Länge n) c = m \oplus k, (x_1, \dots, x_n) \oplus (k_1, \dots, k_n) := (x_1 \oplus k_1, \dots, x_n \oplus k_n)
```

3.1 One-Time-Pad

Schlüssel k darf nur einmal verwendet werden!

$$m_1 \oplus k = c_1, m_2 \oplus k = c_2, c_1 \oplus c_2 = m_1 \oplus k \oplus m_2 \oplus k = m_1 \oplus m_2$$

Wieder nur Lauftext → unsicher!

 m_1 und m_2 lässt sich ermitteln.

Zufallsfolge der Länge n: eigentlich unsinniger Begriff. Da jedes Bit unabhängig von anderen mit Wahrscheinlichkeit $\frac{1}{2}$ erzeugt wird (Output einer binär symmetrischen Quelle)

Jede Folge der Länge n ist gleich wahrscheinlich (Wahrscheinlichkeit $\frac{1}{2}n$ One-Time-Pad ist perfekt sicher.

3.2 Perfekte Sicherheit

Ein Verschlüsselungsverfahren ist perfekt sicher, falls gilt: Für jeden Klartext m und jedem Chiffretext c (der festen Länge n)

pr(m|c) = pr(m)

 $pr(m|c) \rightarrow$ A-posteriori-Wahrscheinlichkeit (Wahrscheinlichkeit, dass m Klartext, wenn c empfangen wurde)

 $pr(m) \rightarrow A$ -priori-Wahrscheinlichkeit

Beispiel: Substitutionschiffre aus Kapitel 2.

n = 5, m = HALLO, pr(m) > 0

Ang:c = QITUA wird empfangen, $LL \neq TU \rightarrow pr(m|c) = 0$

nicht perfekt sicher.

One-Time-Pad ist perfekt sicher.

(Bayes'sche Formel) $m \oplus k$

Jede Folge c lässt sich mit geeignetem k in der Form $c = m \oplus k$ erhalten.

Wähle $k = m \oplus c, m \oplus k = m \oplus m \oplus c = c$

Bei gegebenem m und zufällige gewählten Schlüssel k ist jeder Chiffretext gleichwertig.

Symmetrische Blockchiffre

4.1 Blockchiffre

Zerlege Klartext in Blöcke (Strings) der Länge *n*. Jeder Block wird einzeln verschlüsselt (in der Regel wieder in einem Block der Länge *n*). Gleiche Blöcke werden gleich verschlüsselt.

Wieviele Blockchiffren der Länge n gibt es?

Alphabet
$$\mathbb{Z}_2 = \{0, 1\}$$

$$|\{(0,\ldots,0),(0,\ldots,1),\ldots,(1,\ldots,1)\}|=2^n$$

Block

Blockchiffre = Permuation der 2^n Blöcke.

 $(2^n)!$ Blockchiffre

Wenn alle verwendet werden:

Schlüssel = Permuation der 2^n Blöcke

$$(x_{1,1},\ldots,x_{1,n},x_{2,1},\ldots,x_{2,n},\ldots)$$
 $n \cdot 2^n$ Bit

Zur Speicherung eines Schlüssels werden $n \cdot 2^n$ Bit benötigt.

Zum Beispiel:

$$n = 64, 64 \cdot 2^{64} = 2^{70} \approx 1$$
 ZetaByte ≈ 1 Milliarde Festplatten à 1 TB

Illusional!

Konsequenz: Verwende Verfahren, wo nur ein kleiner Teil der Permutation als Schlüssel verwendet wird und so sich die Schlüssel dann in kürzerer Fom darstellt.

Affin-lineare Chiffre

5.1 Vorbemerkung

5.1.1 $n \times m$ -Matrix

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix}$$

$$1 \times n = \text{Zeilenvektor} = (a_1, \dots, a_m)$$

$$n \times 1 = \text{Spaltenvektor} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

z.B. $a_{ij} \in \mathbb{R}$, $a_{ij} \in \mathbb{Z}$ oder $a_{ij} \in R$, RRing $n \times m$ -Matrix A,B

$$\begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1m} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nm} \end{pmatrix} := \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1m} + b_{1m} \\ \vdots & & \vdots \\ a_{n1} + b_{n1} & \dots & a_{nm} + b_{nm} \end{pmatrix}$$

$$A = n \times m, \ B = m \times k, \ A \cdot B \begin{pmatrix} c_{1l} & \dots & c_{1k} \\ \vdots & & \vdots \\ c_{m1} & \dots & c_{mk} \end{pmatrix} = n \times k$$

$$c_{1l} = (a_{i1} \cdot b_{ij}) + (a_{i2} \cdot b_{2j}) + \dots + (a_{im} \cdot b_{mj})$$

 $(A + B) \cdot C = A \cdot B + B \cot C$

Im Allgemeinem: $A \cdot B \neq B \cdot A$

5.1.2 Quadritsche Matrix $(n \times n)$

$$E_n = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$
$$A = n \times n, \ A \cdot E_n = E_n \cdot A = A$$

 $An \times n$ -Matrix über kommutativen Ring R mit Eins.

Wann existiert Matrix A^{-1} (Inverse Matrix) mit $A^{-1} \cdot A = A \cdot A^{-1} = E_n$?

$$det(A) \in R$$
 Determinante von A
 2×2 -Matrix $det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{21} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

A besitzt inverse Matrix $\Leftrightarrow det(A)$ in R ein inverses besitzt

(z.B. R Körper, $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_p, \ det(A) \neq 0$

$$A^{-1} = \begin{pmatrix} \frac{1}{\det(A)} \cdot b_{11} & \dots & \frac{1}{\det(A)} \cdot b_{1m} \\ \vdots & & \vdots \\ \frac{1}{\det(A)} \cdot b_{n1} & \dots & \frac{1}{\det(A)} \cdot b_{nm} \end{pmatrix}$$

 $A_{ji} = (n-1) \times (n-1)$ -Matrix, die aus A durchstreichen der j-ten Zeile und i-ten Spalte entsteht.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad A^{-1} = \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

$$R=\mathbb{Z}_k\left\{0,1,\ldots,k\right\}$$

Addition und Multiplikation in $\mathbb{Z}_k(\oplus, \odot)$

normale Add. und Mult. mit mod k

Secret Sharing

Geheimnis wird auf mehrere Teilnehmer verteilt (Teilgeheimnisse), so dass gewisse Teilmengen der Teilnehmer das Geheimnis mit ihren Teilgeheimnissen rekonstruieren können, die anderen nicht.

$$T = \{t_1, \dots, t_n\}, k < n \pmod{\text{Teilnehmer}}$$

Jede Teilmenge von T mit mindestens k Teilnehmer sollen Geheimnis rekonstruieren können, Teilmengen von T mit weniger als k Teilnehmer nicht.

6.1 (k, n) - Schwellenwertsysteme

1979 Shamir (How to share a secret)

6.1.1 Konstruktion

Vereinbarung von großer Primzahl p, mindestens $p \ge n + 1$

$$g \in \mathbb{Z}_p = \{0, \dots, p-1\}$$

6.1.2 Verteilung der Teilgeheimnisse

Dealer wählt zufällig
$$a_1, \ldots, a_{k-1} \in \mathbb{Z}_p, a_{k-1} \neq 0, k$$
 = Schwelle $f(x) = g + a_1x + \ldots + a_{k-1}x^{k-1} \in \mathbb{Z}_p[x]$ $(a_1, \ldots, a_{k-1} \text{ hält er geheim, natürlich auch g})$

Dealer wählt zufällig $x_1, \ldots, x_n \in \mathbb{Z}_p$ (paarweise verschieden). Teilnehmer t_i erhält als Teilgeheimnis $(x_i, f(x_i))$ (Punkt auf Polynom) Bei x = 0 hast du g.

Rekonstruktion(sversuch) des Geheimnisses

k Teilnehmer $(x_{i_1}, f(x_{i_1})), \dots, (x_{i_k}, f(x_{i_k}))$

Durch diese Punkte ist f eindeutig bestimmt, z.B. durch Lagrange-Interpol.:

$$f(x_{i_i}) = g_{i_i}$$

$$f(x) = \sum_{j=1}^{k} g_{i_j} \cdot \frac{(x - x_{i_1}), \dots, (x - x_{i_{j-1}})(x - x_{i_{j+1}}), \dots, (x - x_{i_k})}{(x_{i_j} - x_{i_1}), \dots, (x_{i_j} - x_{i_{j-1}})(x_{i_j} - x_{i_{j+1}}), \dots, ((x_{i_j} - x_{i_k})}$$

$$f(0) = g$$

$$g = \sum_{j=1}^{k} g_{i_j} \prod_{l=j} \frac{x_{i_l}}{(x_{i_l} - x_{i_j})}$$
Rei mehr als k Tailnehmer selbe Ergebnis

Bei mehr als k Teilnehmer selbe Ergebnis.

Weniger als k Teilnehmer (k'): Anderes Polynom wegen weniger Punkte, also warscheinlich anderer g.

Erzeugen Polynom vom Grad $\leq k' - 1$

Für alle $k \in \mathbb{Z}_p$ existiert gleich viele Polynome vom Grad $\leq k'-1$ durch die vorgegebene k' Punkte, die bei h durch y-Achse gehen.