Computer Networks Lab (KCS-653)			
Course Outcome (CO) Bloom's Knowledge L		Bloom's Knowledge Leve	el (KL)
At the end of course , the student will be able to			
CO 1	Simulate different network topologies.		K ₃ ,K ₄
CO 2	Implement various framing methods of Data Link Layer.		K ₃ ,K ₄
CO 3	Implement various Error and flow control techniques.		K ₃ ,K ₄
CO 4	Implement network routing and addressing techniques.		K ₃ , K ₄
CO 5	Implement transport and security mechanisms		K ₃ , K ₄

DETAILED SYLLABUS

- 1. Implementation of Stop and Wait Protocol and Sliding Window Protocol.
- 2. Study of Socket Programming and Client Server model
- 3. Write a code simulating ARP /RARP protocols.
- 4. Write a code simulating PING and TRACEROUTE commands
- 5. Create a socket for HTTP for web page upload and download.
- 6. Write a program to implement RPC (Remote Procedure Call)
- 7. Implementation of Subnetting.
- 8. Applications using TCP Sockets like
 - a. Echo client and echo server b. Chat c. File Transfer
- 9. Applications using TCP and UDP Sockets like d. DNS e. SNMP f. File Transfer
- 10. Study of Network simulator (NS) and Simulation of Congestion Control Algorithms using NS
- 11. Perform a case study about the different routing algorithms to select the network path with its optimum and economical during data transfer. i. Link State routing ii. Flooding iii. Distance vector
- 12. To learn handling and configuration of networking hardware like RJ-45 connector, CAT-6 cable, crimping tool, etc.
- 13. Configuration of router, hub, switch etc. (using real devices or simulators)
- 14. Running and using services/commands like ping, traceroute, nslookup, arp, telnet, ftp, etc.
- 15. Network packet analysis using tools like Wireshark, tcpdump, etc.
- 16. Network simulation using tools like Cisco Packet Tracer, NetSim, OMNeT++, NS2, NS3, etc.
- 17. Socket programming using UDP and TCP (e.g., simple DNS, data & time client/server, echo client/server, iterative & concurrent servers)

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner It is also suggested that open source tools should be preferred to conduct the lab (C, C++, Java, NS3, Mininet, Opnet, TCP Dump, Wireshark etc.