# Lenguaje SQL(Structured Query Lenguage)

Prof. Sergio Sánchez. Primer sesión



#### Modelo Relacional de Codd

El modelo relacional consiste en lo siguiente:

- Colección de objetos o relaciones.
- Conjunto de operadores para actuar en las relaciones.
- Integridad de los datos de precisión y coherencia.

# SQL Structured query lenguage

- Lenguaje estándar ANSI de BDR.
- Eficiente, fácil de aprender y usar.
- Completamente funcional(puede definir, recuperar y manipular datos en las tablas).



# Esquema de ejemplo

Human Resources (HR) Schema



# Data definition lenguage (DDL)

- CREATE
- ALTER
- DROP
- RENAME
- TRUNCATE
- COMMENT

## Objetos de la Base de Datos

#### **Data Defination Language (DDL)**

| Objeto   | Descripción                                                         |  |  |  |
|----------|---------------------------------------------------------------------|--|--|--|
|          | Unidad básica de almacenamiento,                                    |  |  |  |
| TABLE    | compuesta por registros                                             |  |  |  |
| VIEW     | Representación lógica de sub consultas de datos de una o mas tablas |  |  |  |
|          | Generador de valores numéricos                                      |  |  |  |
| SEQUENCE | consecutivos                                                        |  |  |  |
| INDEX    | Mejora el rendimiento de algunas consultas                          |  |  |  |
| SYNONYM  | Da nombre alternativo algún objeto                                  |  |  |  |

#### CREATE table

```
CREATE TABLE [schema.]table (column datatype [DEFAULT expr][, ...]);
```

```
CREATE TABLE dept

(deptno NUMBER(2),

dname VARCHAR2(14),

loc VARCHAR2(13),

create_date DATE DEFAULT SYSDATE);

CREATE TABLE succeeded.
```

```
CREATE TABLE table
[(column, column...)]
AS subquery;
```

# Tipo de datos

| TIPO DE DATO              | DESCRIPCION                                                                                   |  |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| VARCHAR2(size)            | Carácter de variable tamaño                                                                   |  |  |  |
| CHAR(size)                | Carácter de tamaño fijo                                                                       |  |  |  |
| NUMBER(p,s)               | Numérico de tamaño variable                                                                   |  |  |  |
| DATE                      | Valor de fecha y hora                                                                         |  |  |  |
| LONG                      | Carácter de variable tamaño(mas de 2GB)                                                       |  |  |  |
| CLOB                      | Carácter (mas de 4GB)                                                                         |  |  |  |
| RAW and LONG RAW          | Datos binarios                                                                                |  |  |  |
| BLOB                      | Datos binarios (mas de 4GB)                                                                   |  |  |  |
| BFILE                     | Datos binarios en archivos externos(mas de 4GB)                                               |  |  |  |
| ROWID                     | Sistema de números basados en 64-bit representado una dirección única de registro en la tabla |  |  |  |
| TIMESTAMP                 | Fecha con segundos                                                                            |  |  |  |
| INTERVAL YEAR TO<br>MONTH | Intervalos de años y meses                                                                    |  |  |  |
| INTERVAL DAY TO<br>SECOND | Intervalos de días, horas, minutos y segundos                                                 |  |  |  |

#### CONSTRAINT

- NOT NULL
- UNIQUE
- PRIMARY KEY
- FOREIGN KEY
- CHECK

```
CREATE TABLE [schema.] table

(column datatype [DEFAULT expr]

[column_constraint],
...

[table_constraint][,...]);
```

```
column [CONSTRAINT constraint_name] constraint_type,
```

```
column,...
[CONSTRAINT constraint_name] constraint_type
  (column, ...),
```

#### Alter table

Agregar columnas

```
ALTER TABLE table

ADD (column datatype [DEFAULT expr]
[, column datatype]...);
```

Modificar columnas

```
ALTER TABLE table

MODIFY (column datatype [DEFAULT expr]

[, column datatype]...);
```

Borrar columnas

```
ALTER TABLE table
DROP (column [, column] ...);
```

#### Alter Table

```
ALTER TABLE dept80
ADD (job_id VARCHAR2(9));
```

ALTER TABLE dept80 succeeded.

```
ALTER TABLE dept80
MODIFY (last_name VARCHAR2(30));
```

ALTER TABLE dept80 succeeded.

```
ALTER TABLE dept80
DROP COLUMN job_id;
```

ALTER TABLE dept80 succeeded.

#### CONSTRAINT

```
CREATE TABLE employees(

employee_id NUMBER(6)

CONSTRAINT emp_emp_id_pk PRIMARY KEY,

first_name VARCHAR2(20),

...);
```

```
CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk
PRIMARY KEY (EMPLOYEE_ID));
```

```
ALTER TABLE employees

ADD CONSTRAINT pk_emp_id PRIMARY KEY (EMPLOYEE_ID);
```

#### CONSTRAINT

#### Constraint

```
ALTER TABLE <table_name>
ADD [CONSTRAINT <constraint_name>]
type (<column_name>);
```

```
ALTER TABLE emp2
MODIFY employee_id PRIMARY KEY;
```

ALTER TABLE emp2 succeeded.

```
ALTER TABLE emp2
ADD CONSTRAINT emp_mgr_fk
FOREIGN KEY(manager_id)
REFERENCES emp2(employee_id);
```

ALTER TABLE succeeded.

#### Constraint

```
ALTER TABLE emp2 ADD CONSTRAINT emp_dt_fk
FOREIGN KEY (Department_id)
REFERENCES departments (department_id) ON DELETE CASCADE;
```

ALTER TABLE Emp2 succeeded.

```
ALTER TABLE emp2 ADD CONSTRAINT emp_dt_fk
FOREIGN KEY (Department_id)
REFERENCES departments (department_id) ON DELETE SET NULL;
```

ALTER TABLE Emp2 succeeded.

#### Constraint

ALTER TABLE emp2
DROP CONSTRAINT emp mgr fk;

ALTER TABLE Emp2 succeeded.

ALTER TABLE dept2
DROP PRIMARY KEY CASCADE;

ALTER TABLE dept2 succeeded.

ALTER TABLE emp2
DISABLE CONSTRAINT emp\_dt\_fk;

ALTER TABLE Emp2 succeeded.

ALTER TABLE emp2
DROP COLUMN employee\_id CASCADE CONSTRAINTS;

ALTER TABLE Emp2 succeeded.

#### Renombrar columnas

ALTER TABLE marketing RENAME COLUMN team\_id TO id;

ALTER TABLE marketing succeeded.

ALTER TABLE marketing RENAME CONSTRAINT mktg\_pk
TO new\_mktg\_pk;

ALTER TABLE marketing succeeded.

#### Crear un índice con create table

```
CREATE TABLE NEW_EMP

(employee_id NUMBER(6)

PRIMARY KEY USING INDEX

(CREATE INDEX emp_id_idx ON

NEW_EMP(employee_id)),

first_name VARCHAR2(20),

last_name VARCHAR2(25));
```

CREATE TABLE succeeded.

Crear un índice simple

```
CREATE INDEX upper_dept_name_idx
ON dept2(UPPER(department_name));
```

CREATE INDEX succeeded.

### Borrar un índice

DROP INDEX index;

DROP INDEX upper\_dept\_name\_idx;

DROP INDEX upper\_dept\_name\_idx succeeded.

### DROP table

DROP TABLE dept80;

DROP TABLE dept80 succeeded.

#### CREATE VIEW

```
CREATE [OR REPLACE] [FORCE | NOFORCE] VIEW view
[(alias[, alias]...)]
AS subquery
[WITH CHECK OPTION [CONSTRAINT constraint]]
[WITH READ ONLY [CONSTRAINT constraint]];
```

```
CREATE VIEW empvu80

AS SELECT employee_id, last_name, salary

FROM employees

WHERE department_id = 80;

CREATE VIEW succeeded.
```

```
CREATE VIEW salvu50

AS SELECT employee_id ID_NUMBER, last_name NAME,
salary*12 ANN_SALARY

FROM employees
WHERE department_id = 50;

CREATE VIEW succeeded.
```

```
SELECT *
FROM salvu50;
```

|   | A | ID_NUMBER | ■ NAME  | A | ANN_SALARY |
|---|---|-----------|---------|---|------------|
| 1 |   | 124       | Mourgos |   | 69600      |
| 2 |   | 141       | Rajs    |   | 42000      |
| 3 |   | 142       | Davies  |   | 37200      |
| 4 |   | 143       | Matos   |   | 31200      |
| 5 |   | 144       | Vargas  |   | 30000      |

### **DROPVIEW**

DROP VIEW view;

DROP VIEW empvu80;

DROP VIEW empvu80 succeeded.

### SEQUENCE

```
CREATE SEQUENCE sequence

[INCREMENT BY n]

[START WITH n]

[{MAXVALUE n | NOMAXVALUE}]

[{MINVALUE n | NOMINVALUE}]

[{CYCLE | NOCYCLE}]

[{CACHE n | NOCACHE}];
```

```
CREATE SEQUENCE dept_deptid_seq
INCREMENT BY 10
START WITH 120
MAXVALUE 9999
NOCACHE
NOCYCLE;
CREATE SEQUENCE succeeded.
```

### SEQUENCE

```
ALTER SEQUENCE dept_deptid_seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;
ALTER SEQUENCE dept_deptid_seq succeeded.
```

#### **INDEX**

```
CREATE [UNIQUE] [BITMAP] INDEX index
ON table (column[, column]...);
```

```
CREATE INDEX emp_last_name_idx
ON employees(last_name);
CREATE INDEX succeeded.
```

DROP INDEX index;

### SYNONYN

```
CREATE [PUBLIC] SYNONYM synonym FOR object;
```

CREATE SYNONYM d\_sum
FOR dept\_sum\_vu;

CREATE SYNONYM succeeded.

# GRACIAS