Hypothesis Testing

A statistical hypothesis is a statement about a parameter (or a statistical functional in nonparametric models).

A hypothesis test partitions the parameter space Θ into two disjoint sets Θ_0 and Θ_1 , and produces a decision rule for choosing between

$$H_0: \theta \in \Theta_0$$
 and $H_1: \theta \in \Theta_1$

 ${\cal H}_0$ is called the null hypothesis and ${\cal H}_1$ is called the alternative hypothesis. The possible choices are

- Retain H_0
- Reject H_0 and accept H_1

The decision of whether to reject H_0 is determined by whether the sample $X = (X_1, \dots, X_n)$ falls into a predefined rejection region R.

Usually, the rejection region R has the form

$$R = \{x_1, \dots, x_n : T(x_1, \dots, x_n) > c\}$$

where T is called a test statistic and c is called a critical value.

The idea is to construct R so that the probability of the data falling into it when H_0 is true is small.

Example: Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, and let $\hat{\mu}_n$ and $\hat{\sigma}_n^2$ be the MLEs. If $H_0: \mu=0$, one test statistic we might consider is $T=|\hat{\mu}_n/\hat{\sigma}_n|$, reasoning that if H_0 is true, T will tend to be small.

Note: c is just a placeholder. It usually will depend on n and/or our choice of Θ_0 and Θ_1 .

We evaluate a test using its power function. This is defined by

$$\beta(\theta) = P_{\theta}(X \in R)$$

Ideally, we would like $\beta(\theta)$ to be 0 when $\theta \in \Theta_0$ and 1 when $\theta \in \Theta_1$, but that is typically impossible to achieve.

Qualitatively, a good test has small $\beta(\theta)$ when $\theta \in \Theta_0$ and large $\beta(\theta)$ when $\theta \in \Theta_1$.

However, there are typically tradeoffs between the two, so that the researcher must choose between tests based on what kind of error probabilities he/she is willing to accept. More on this shortly.

Example 1: Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, where σ^2 is known. Consider testing $H_0: \mu = 0$ versus $H_1: \mu \neq 0$, using rejection region

$$R = \{x_1, \dots, x_n : |\bar{X}_n| > c\}$$

Find and plot $\beta(\mu)$.

Example 2: Let $X \sim Bin(5,p)$. Consider testing $H_0: p \leq 1/2$ versus $H_1: p > 1/2$. Consider two different rejection regions:

$$R_1 = \{x : x = 5\}$$

$$R_2 = \{x : x \ge 3\}$$

Plot and compare the corresponding power functions $\beta_1(p)$ and $\beta_2(p)$.

To make the problem of comparing tests better defined, we restrict ourselves to tests of a certain level, and then we try to find a test within that class that has large $\beta(\theta)$ for $\theta \in \Theta_1$.

A test is said to have level α if its size is less than or equal to α . The size of a test is defined to be

$$\alpha = \sup_{\theta \in \Theta_0} \beta(\theta)$$

In words, the size of a test is the largest probability of rejecting H_0 when H_0 is true. This is called a Type I error.

	Retain H_0	Reject H_0
$\overline{\ \ \ }H_0$ true	Correct	Type I error
H_1 true	Type II error	Correct

Since H_0 usually represents a "default" hypothesis, first guaranteeing that the probability of this is small is a scientifically conservative strategy.

Continuation of Example 1: Find the size of the test as a function of c (and possibly other things). What should c be to produce a size α test?

Continuation of Example 2: Consider a rejection region of the form $R = \{x : x \ge c\}$.

- What values of c do we need to consider?
- For each of these, find the size of the corresponding test.
- What c should we choose if we want a probability of Type I error of no more than 10%?

Theorem: Correspondence between point-null tests and confidence sets

1. For each $\theta_0 \in \Theta$, let $A(\theta_0) = R^C(\theta_0)$ be the acceptance region of a level α test of $H_0: \theta = \theta_0$. For each possible sample x_1, \ldots, x_n , define a set $C_n(x_1, \ldots, x_n)$ in Θ by

$$C_n(x_1, \dots, x_n) = \{\theta_0 : x_1, \dots, x_n \in A(\theta_0)\}$$

Then $C_n(X_1,\ldots,X_n)$ is a $1-\alpha$ confidence set for θ_0 . That is, $P_{\theta_0}(\theta_0 \in C_n(X_1,\ldots,X_n)) \geq 1-\alpha$.

2. Let $C_n(X_1,\ldots,X_n)$ be a $1-\alpha$ confidence set. For any $\theta_0\in\Theta$, define

$$A(\theta_0) = \{x_1, \dots, x_n : \theta_0 \in C_n(x_1, \dots, x_n)\}$$

Then $R(\theta_0) = A^C(\theta_0)$ is the rejection region of a level α test of $H_0: \theta = \theta_0$.

Practically speaking, this means that if we already have a $1-\alpha$ confidence interval for θ and we want to test $H_0: \theta = \theta_0$, a level α test is just to reject H_0 if θ_0 falls outside the interval.

Often we can get approximate $1-\alpha$ confidence intervals using an estimator of θ that is asymptotically normal.

Wald Test:

Consider testing $H_0: \theta=\theta_0$ versus $H_1: \theta \neq \theta_0$. Let $\hat{\theta}_n$ be an estimator such that $(\hat{\theta}_n-\theta_0)/\widehat{se}(\hat{\theta}_n) \stackrel{D}{\to} N(0,1)$. The size α Wald test rejects H_0 when $T>z_{\alpha/2}$, where

$$T = \left| \frac{\hat{\theta}_n - \theta_0}{\widehat{se}(\hat{\theta}_n)} \right|$$

We can show that asymptotically, the Wald test has size α , and that it is obtained by inverting the approximate $1 - \alpha$ normal-based CI for θ .

Note that this method is quite general; we just need asymptotic normality. For example

ullet Consider a multi-parameter problem in which $\hat{\theta}_n$ is the MLE and g is an invertible function. Then we can form a Wald test based on

$$\frac{g(\hat{\theta}) - g(\theta_0)}{\widehat{se}(g(\hat{\theta}_n))} \xrightarrow{D} N(0, 1)$$

where $\widehat{se}(g(\hat{\theta}_n))$ is found using the Delta method.

• Consider the case that $\theta = T(F)$ for some unknown distribution F. If T is a linear functional, the plug-in estimator is a mean of iid random variables, so we can use the CLT. In the case of a nonlinear functional, we could approximate $\widehat{se}(\widehat{\theta}_n)$ using the bootstrap.

Examples

- Consider again $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where σ^2 is known. Show that the size α Wald test for $H_0: \mu = 0$ produces a rejection region as in Example 1 above. (Actually the size is exactly α in this case).
- Now suppose that σ^2 is unknown. Construct a size α Wald test for $H_0: \mu = 0$.
- Suppose that $X \sim Bin(m, p_1)$ and $X \sim Bin(n, p_2)$. Construct a size α Wald test for $H_0: p_1 = p_2$.
- Let F(u,v) be the joint distribution of two r.v. U and V. Let $\theta=T(F)=\rho(U,V)$, where ρ denotes the correlation. Describe how to construct a size α Wald test for $H_0: \rho=0$ using the plug-in estimator and the bootstrap.