ЛАБОРАТОРНА РОБОТА № 3

МОДЕЛЮВАННЯ ДИСКРЕТНИХ ВИПАДКОВИХ ВЕЛИЧИН ІЗ ЗАДАНИМ ЗАКОНОМ РОЗПОДІЛУ

Створення генераторів випадкових чисел з довільним, наперед заданим законом розподілу дуже непроста задача. Тому випадкові числа з необхідним законом розподілу отримують не безпосередньо, а шляхом перетворення випадкових чисел, що мають деякий початковий розподіл. До початкового розподілу висувають такі вимоги: простота отримання чисел на ЕОМ; зручність перетворення випадкових чисел у розподіл із заданим законом. Встановлено, що рівномірний закон розподілу достатньою мірою задовольняє цим вимогам. Отже моделювання випадкових процесів з довільним законом розподілу може бути побудоване на використанні датчика випадкових чисел, рівномірно розподілених в інтервалі [0;1].

Розглянемо дискретну випадкову величину X, що приймає n значень $x_1, x_2, ..., x_n$ з ймовірностями $p_1, p_2, ..., p_n$. Ця величина задається таблицею розподілу

X	x_1	x_2	•••	x_n
P	p_1	p_2	•••	p_n

при чому
$$\sum_{i=1}^{n} p_i = 1$$
.

Для моделювання такої дискретної випадкової величини відрізок [0;1] розбивають на n послідовних відрізків Δ_1 , Δ_2 ,..., Δ_n , довжини яких дорівнюють відповідним ймовірностям p_1 , p_2 , ..., p_n , тобто $\Delta_i = p_i$, i = 1, 2, ..., n.

За допомогою рандомного генератора отримують випадкову величину $R\{r_1,r_2,...,r_n\}$, рівномірно розподілену в інтервалі [0;1]. Якщо випадкове число r_k , що формується генератором випадкових чисел, котрі відповідають рівномірному закону розподілу на інтервалі [0; 1], потрапляє до інтервалу Δ_i , то випадкова величина X набуває значення x_i . з імовірністю p_i . Дійсно:

$$P(l_{i-1} < R \le l_i) = \int_{l_{i-1}}^{l_i} f_R(x) dx = p_i,$$

де $l_{i-1} = \sum_{k=1}^{i-1} p_k$, $l_i = \sum_{k=1}^{i} p_k = l_{i-1} + p_i$, $f_R(x)$ – густина розподілу імовірності випадкової величини R:

$$f_{R}(x) = \begin{cases} 1, & x \in [0;1] \\ 0, & x \notin [0;1] \end{cases}$$

Має місце твердження: якщо кожному випадковому числу $r_k \in [0,1]$, яке потрапило в інтервал Δ_i , поставити у відповідність можливе значення x_i з ймовірністю p_i , то величина, яка розігрується буде мати заданий закон розподілу.

Приклад. Змоделювати 8 значень дискретної випадкової величини X, яка задана таблицею розподілу:

X	$x_1 = 3$	$x_2=11$	$x_3 = 24$
P	$p_1=0,25$	$p_2=0,16$	$p_3=0,59$

Розв'язок.

- 1. Розіб'ємо інтервал [0;1] точками з координатами 0,25; 0,25+0,16=0,41 на три часткових інтервали:
- Δ_1 =[0;0,25), Δ_2 =[0,25;0.41), Δ_3 =[0,41;1].
- 2. Згенеруємо за допомогою комп'ютера 8 випадкових чисел $r_k \in [0,1]$, наприклад, $r_1 = 0.10$; $r_2 = 0.37$; $r_3 = 0.08$; $r_4 = 0.99$; $r_5 = 0.12$; $r_6 = 0.66$; $r_7 = 0.31$; $r_8 = 0.85$.
- 3. Випадкове число $r_1 = 0,10$ належить першому частковому інтервалу, тому випадкова величина, яка розігрується прийняла можливе значення $x_1 = 3$. Випадкове число $r_2 = 0,37$ належить другому частковому інтервалу, тому величина, яка розігрується прийняла можливе значення $x_2 = 11$. Аналогічно отримаємо решту можливих значення дискретної випадкової величини X. Pезультат: послідовність змодельованих можливих значень дискретної випадкової величини X така: $\{3; 11; 3; 24; 3; 24; 11; 24\}$.

Перевірка гіпотези про закон розподілу методом гістограм

Нехай в результаті експерименту отримано n значень $x_1, x_2, ..., x_n$ випадкової величини X і всі вони лежать у межах $a < x_i < b$.

Суть перевірки по гістограмі така:

1. Інтервал [a;b] розбивається на L підінтервалів довжин Δ_j . На практиці, як правило, усі підінтервали вибираються однакової довжини. Тоді $\Delta_j = (b-a)/L$, $j = \overline{1,L}$. Число підінтервалів L можна встановити аналітично за формулою Стерджеса: L=1+3,322lgn де n- кількість значень випадкової величини. Нижче наведено таблицю, яка визначає число підінтервалів за об'ємом вибірки n:

n	15-22	23-45	46-90	91-180	181-360	361-710
L	5	6	7	8	9	10

Тоді при генерації послідовності $\{x_i\}$ кожне з чисел x_i потрапляє в один з підінтервалів. Всього в кожен j-й підінтервал потрапляє n_j чисел послідовності $\{x_i\}$, $i=\overline{1,n}$, $(n_j$ називають частотою потраплянь випадкових чисел послідовності $\{x_i\}$ в кожний з підінтервалів), причому $n=\sum_{j=1}^L n_j$. Відносною частотою потрапляння випадкових чисел послідовності $\{x_i\}$ в кожний з підінтервалів називають величину $w_j=n_j/n$.

2. Над кожним з підінтервальних розбиттів будується прямокутник, площа якого дорівнює частоті потрапляння n_j , в цей підінтервал. Висота кожного прямокутника дорівнює частоті n_j , поділеній на Δ_j . Отриману ступінчасту лінію називають *гістограмою*. Таким чином, гістограма є графічним зображенням залежності частоти потрапляння елементів вибірки від відповідного інтервалу групування.

Знаходження числових характеристик послідовностей випадкових чисел

Нехай в результаті експерименту отримана скінчена послідовність $\{x_i\}$, i=1,2,...,n змодельованих значень випадкової величини X. Таку скінчену послідовність називають вибіркою з випадкового процесу. Для вибірки вводяться поняття вибіркового математичного очікування \overline{x}_n і вибіркової дисперсії σ_n^2 :

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

$$\sigma_n^2 = \frac{1}{n} \cdot \sum_{i=1}^n \left(x_i - \overline{x}_n \right)^2.$$

Значення \overline{x}_n і σ_n^2 , при відносно великих n, можна прийняти в якості оцінок математичного очікування $M\{X\}$ і дисперсії $D\{X\}$ величини X, тобто, $M\{X\} = \overline{x} \cong \overline{x}_n$, $D\{X\} = \sigma^2 \cong \sigma_n^2$. Наближені рівності стають точними в межі, коли $n \to \infty$. Вибіркове середньоквадратичне відхилення σ_n дорівнює квадратному кореню з вибіркової дисперсії $\sigma_n = \sqrt{\sigma_n^2}$.

Порядок виконання роботи

1. Змоделювати послідовність із n=100 значень дискретної випадкової величини X, заданої одним із варіантів в таблиці 1. Номер варіанту дорівнює порядковому номеру студента у списку академічної групи.

T. ~	- T	
Таолиця	l – Таблиця	розподілів

Варіант	Таблиця розподілів							
1	x_i	5	7	17	19	21	25	55
	p_i	0.01	0.05	0.3	0.3	0.3	0.02	0.02
2	x_i	1	3	7	10	15	18	23
	p_i	0.1	0.05	0.02	0.05	0.25	0.33	0.2
3	x_i	2	3	5	12	21	33	44
	p_i	0.1	0.15	0.2	0.05	0.02	0.33	0.15
4	x_i	5	8	13	16	21	24	29
	p_i	0.1	0.02	0.25	0.15	0.35	0.03	0.1

5	x_i	2	3	5	8	11	15	20
	p_i	0.1	0.15	0.25	0.05	0.05	0.3	0.1
6	χ_i	1	8	17	23	37	42	50
	p_i	0.01	0.15	0.05	0.25	0.5	0.02	0.02
7	χ_i	1	4	12	16	25	33	37
	p_i	0.05	0.25	0.25	0.15	0.13	0.1	0.07
8	χ_i	1	10	15	23	29	38	42
	p_i	0.02	0.05	0.1	0.28	0.23	0.22	0.1
9	χ_i	2	3	7	12	19	23	30
	p_i	0.04	0.15	0.2	0.25	0.2	0.15	0.01
10	χ_i	1	5	7	14	21	26	31
	p_i	0.34	0.28	0.16	0.15	0.05	0.01	0.01
11	χ_i	3	5	8	14	27	29	35
	p_i	0.02	0.07	0.1	0.19	0.19	0.2	0.23
12	χ_i	7	16	28	33	39	46	56
	p_i	0.01	0.05	0.07	0.1	0.17	0.25	0.35
13	χ_i	5	6	8	13	19	26	36
	p_i	0.05	0.07	0.2	0.23	0.17	0.23	0.05
14	χ_i	3	9	18	23	29	27	45
	p_i	0.05	0.14	0.2	0.22	0.17	0.14	0.08
15	χ_i	13	16	28	33	39	47	52
	p_i	0.08	0.14	0.25	0.16	0.25	0.09	0.03
16	χ_i	1	6	8	13	19	24	27
	p_i	0.09	0.1	0.21	0.17	0.23	0.15	0.05
17	χ_i	4	6	10	14	16	20	24
	p_i	0.04	0.1	0.1	0.27	0.33	0.13	0.03
18	χ_i	2	6	12	16	22	26	32
	p_i	0.02	0.14	0.24	0.27	0.2	0.1	0.03
19	χ_i	3	6	9	13	19	27	31
	p_i	0.04	0.12	0.22	0.28	0.2	0.1	0.04

20	x_i	1	3	8	11	19	29	33
	p_i	0.02	0.26	0.18	0.32	0.16	0.02	0.04

- 2. Визначити вибіркове математичне сподівання та вибіркову дисперсію отриманої дискретної випадкової величини та порівняти їх з теоретичними значеннями.
- 3. Побудувати частотну таблицю 2 (кількість інтервалів не менше 10), вивести її на екран.

Таблиця 2 – Частотна таблиця

Інтервал	Частота потрапляння	Відносна частота потрапляння
Δ_1	n_1	w_1
Δ_2	n_2	w_2
Δ_L	n_L	w_L

- 4. Побудувати гістограму та оцінити за її допомогою закон розподілу випадкової величини X.
 - 5. Повторити виконання роботи для n=1000. Порівняти результати.