Profiling is a form of dynamic program analysis that measures the space/time complexity of a program to aid program optimization. It could be implemented in H.W.

FPGA: No fabrication needed, limited routing resource.

ASIC: Cell-based Design flow

-Use pre-designed logic cells known as standard cells and micro-Cells e.g microcontroller.

Full- Custom Design Flow
- Dos:

- Design everything Uby yourself.

Cell based Design Flow.

Specification Development & System models

RTL code development & Functional Verification

Synthesis & Timing Verification

Physical Synthesis / Place and Route / Physical Verification

Prototype / Build and Test.

1 Design a Calculator Specify I/o 1. + 2. - 3. x 4.4 ... RTL Code Write RTL code Pre-Sim Make sure the calc. is working Condence neverilong, iron, Synopsys Verdi (nWove) Choose suitable components from standard cell library Run synthesis by Design Compiler Optimize result and generate

Gate-level Neelist Netlist Gote-Sim Check correctness after adding timing info. Floorplan Decide each Components position Placement Place transistor in best position Cadence innovas too | ---Routing Connect ports from different modules Layout Post-Sim Check correctness after a ding timing information Verification Check all function work and no violation Layout versus schematics (LVS) Tape Out

Continuous Assignment -> for wire assignments. Procedural Assignment -> for reg assignments. Unsigned / Signed Mix Operation. - If there's one unsigned operator, the operation would be regarded as unsigned. brire [2:0] a, mod 1; wire [2:0] a; wire Signed [2:0] mod!;
assign mod! = a % 7

x

S

(us) assign mod = a % 7 wire signed [2:0] as Wire signed [2:0] a, mod 1; wire [2:0] mod 1; assign mod | = a % 7; \uparrow s s s sassign mod 1 = a % 7 s, (s)

13 May he emonous.

rst

Sequential Circuits not only depe	ends on the current input values, but also
on preceding input values.	ends on the current input values, but also
Latch: level sensitive, edge trig	gered
EN TIME	
Q m	
O Flip- Flop: Edge triggered	
a rap rap s couge mageries	
Synchronous Reset.	
•	Pro:
always @(pusedge clk) hegin if (reset) (= 0;	Glitch filtering from reset comb. logic
if (reset) (< 0;	^
else C∈ afi;	Con:
end	- Can't be reset without clk.
a+1	- May need pulse stretcher - Lorger Area / Incress Critical Porth
at p	Lorger / Irem / Drureds Critical 1-100
· Asynchronous Reset.	
always @(posedge clk or posedge if(reset) C € 0;	rst) begin Pro: Reset indep. clock signal Reset is immediate
else (a+1;	Less Area
end.	Can: Noisy Resteline could coase unwanted reset
atl >> D-FF >C clk asyn rst.	
Clk Pasyn rst.	- Metastability.
- A-H	

```
For Loop in Verilug.
- Duplicate same function
- Very useful for doing reset and iterated operation.
 reg [3:0] temp;
 integer ; ;
always @ (posedge clk) begin
                                                     always @ (posedge clk)begin
  for (i = 0 s i < 3 s i = i + 1) begin : for - name =
                                                     temp[o] & 1'bo;
   temp[i] = 1'bo;
                                                     temp[2] <= 1'bo;
end.
Generale in Venly:
module A();
endmodule
module B();
  genvar i;
                                             module A();
                                             endmodule
 generate

for (i=0; i<3; i=i+1) begin
                                            module A();
    A u4 (-..);
 end
                                            endmodule
endgenerate
end module.
                                            module A();
                                            endmodule
```

Mealy machine
- Dutput depend on the current state and input.
- If input changes, ontput also changes.

Pro: Less # of States needed Con: More H.W required for implementation

Moore machine

- The outputs depend on the current state only.
- Inputs affect outputs but not immediately.

Pro: Safer, Output changes at clock edge Con: More States required.

Verification: Demonstrate the functional correctness of a design.
Verification: Demonstrate the functional correctness of a design. Testing: Verify the design is manufacturing correctly.
Stages of Verification:
Stages of Verification: - Preliminary Verification -> Specification (ex. Output =0 after 15t)
- Broad - Spectrum verification -> Test Pattern (ex. Random test)
- Corner-case verification -> Special test pattern (ex. Boundary).
Pattern:
Directed Testing -> Check what you know
Directed Testing -> Check what you know Random Testing -> Find what you don't know.
J ,
Pattern:
Broad-Spectrum Corner-case Difficle to reach
Preliminary Verification -> Verification -> Verification -> Verification -> Verification
o at rst
Broadly Constrained Narrowly Constrained
Directed Randomization Randomization Directed,
integer SEED = 123; Signed
reg [3.0] number; (7)
reg [3:0] number; (7) number = \$ random () % 'd7;
↑
ά α

Stratified	Event	Queue	ə+	Verilog
				(1

\$\tec 03 p. 24.

Active Events	Blocking Assignments $a = b + C$ Evaluate RHS of nonblocking assignments $a \in b + C$ Continuous assignments assign $a = b + C$ \$ display command execution \$ further command execution
\bigvee	
Inactive Events	Zero-delaj # 0 blocking assignments #0 a=b+C
Nonblocking Events	Update LITS of nonblocking assignments alebte
Monitor Events	\$ monitor command execution \$ strobe command execution
	2 421.00 C COMMIGNION TRECUTION
Ver; log PLI Events Programming Language Interfo	\$fsdbDumpfile() \$fsdbDumpvars()
Londrania rocati	
Asynchronous reset: - clock signal should be forced to C force clk = 0 release clk	before reset signal is given.
torce clk = 0 release clk	; `
	Λ
timescale; specifies the unit of mea	surement for time and the degree of precoun-
'timescale	Dela-, Time Dela,
lons/Ins	
lons / Ins	#5.738 57 ns
lons/lons	# 5.5 60 ns

lons/100ps #5.738

57.4 ns

Contamination delay

The minimum amount of time from an input changes until any output starts to change

Clk-to-Q Contamination delay (tccg)

Logic Contamination delay (tcd)

Propagation delay
The maximum amount of time from input changes until all output reaches steady

· ClK-to-Q propagation delay (tpcg)
· Logic propagation delay (tpd)

Setup Time Criteron

Setup Time Check:

- data Required Time: Toyde + Tskew - tsetup
- data arrival Time: tpcg + tpd
- Slack = data required time - data arrival time.

Hold Time Criterion

- data required time = tskew + thold

- data arrival time = toog + tod.

Slack = data arrival time - does required time

Pipelining doesn't help latency of single task, but throughput of entire.
Pipeline rate are limited by the slowest stage.

IP (Intellectual Property)

- Hard IP: GDSII Format, high performance but technology dependent.
 Firm IP: Netlist resource, less used.
 Soft IP: RTL design, regumes verification.

Lec 05 SRAM - Read/Write Data only - Memory has less area than registers - Memory is slower than registers. - Only one address SRAM. D[7:0] - Memory

CEN: Chip enable negative OGN: Output enable negative WEN: Write enable negative

To avoid critical path causing timing violations: Add registers after the hard macro.

8 1 Q[7:0]

Memory Compiler. 64 words, 2 bit, Mux -wid=16 ロく・> words/mux_width

=> MUX_width x bit = words + mux_width

Develop HDL files. Specify Libraries. DSynthetic Lib: additional DW lib for optimization @ Link lib: list of libs Design Compiler could use to resolve design ref. .lib 3 Target lib: Includes timing.

link-library synthetic-library target-library Read Design read-file, read-sverilog
analyze-f, elaborate Develop Pesign Environment Define the environment in which the design is experted to operate in by specifying operating conditions, wire load models, system interfere. Set-drue

Set-drue

Set-local

Set-wire-load-model

Set-fanont-load-Before APR, wire load models can be used to estimate cgp. resis. and area overhead, top, enclosed, segmented.

Set Design Constraints

Design Rule Constraints
-reflects technological - specific constraints. must hold

- set_ideal_network [clk, rst-n]

Design optimization Constraints.

- User defines speed (timing) and area optimization goals for the design compiler.

- Create - clock