PGPDSBA Online FEB A 2021

greatlearning
Power Ahead

Pavan Kumar R Naik

PGP-DSBA Online

Feb A 2021

27/06/2021

Table of Contents

Conten	its
Proble	m 1: Clustering
Q1.1. F	Read the data, do the necessary initial steps, and exploratory data analysis
Γ	Data Visualization EDA
E	Boxplot to check outliers
(Dbservation (EDA)
Q1.2. [Oo you think scaling is necessary for clustering in this case? Justify
	Summary of the Data post doing the scaling:
	pply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe
!	Summary of cluster grouped dataset
(Observation
	pply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results ly. Interpret and write inferences on the finalized clusters.
ŀ	Head of dataset with Silhouette samples and K-Means cluster:
ľ	Insights
	escribe cluster profiles for the clusters defined. Recommend different promotional strategies for different s
(Cluster profile:
i	Insights
F	Promotional strategies for each cluster:
Problei	m 2: CART-RF-ANN
Q2.1. F	Read the data, do the necessary initial steps, and exploratory data analysis
Γ	Data Visualization EDA
E	Boxplot to check outliers
E	Boxplot of the dataset post handling outliers
О	observation (EDA)
	ata Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural
1	nference:
(CART Decision Tree
F	Random Forest
١	MLP Classifier (Artificial Neural Network)
	erformance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plo and get ROC_AUC score, classification reports for each model
(CART Decision Tree
F	Random Forest
ı	MLP Classifier (Artificial Neural Network)
Q2.4. F	inal Model: Compare all the models and write an inference which model is best/optimized
(CART Decision Tree performance matrix
F	Random Forest performance matrix
ļ	Artificial Neural Network performance matrix
(Comparison of the performance metrics from the 3 models
F	ROC Curve for the 3 models
Q2.5. lı	nference: Based on the whole Analysis, what are the business insights and recommendations
	nference

List of Figures

Fig 1.1. Sweet viz Univariate analysis	05
Fig 1.2. Sweet viz Multivariate analysis	06
Fig 1.3. Boxplot (Bank Marketing)	06
Fig 1.4. Default Dendrogram	08
Fig 1.5. Dendrogram using Ward link	08
Fig 1.6. Elbow curve	10
Fig 1.7. Scatter plot for 3 clusters	12
Fig 2.1. Sweet viz Univariate analysis	15
Fig 2.2. Sweet viz Multivariate analysis	16
Fig 2.3. Boxplot (Insurance)	17
Fig 2.4. Boxplot post handling outliers (Insurance)	17
Fig 2.5. Optimization metric (CART)	19
Fig 2.6. Best optimized parameters (CART)	19
Fig 2.7. Decision tree (Best optimized parameters)	20
Fig 2.8. Optimization metric (RF)	20
Fig 2.9. Best optimized parameters (RF)	20
Fig 2.10. Optimization metric (ANN)	20
Fig 2.11. Best optimized parameters (ANN)	21
Fig 2.12. Confusion Matrix (CART Train data)	21
Fig 2.13. Confusion Matrix (CART Test data)	21
Fig 2.14. ROC curve (CART Train data)	22
Fig 2.15. ROC curve (CART Test data)	22
Fig 2.16. Confusion Matrix (RF Train data)	23
Fig 2.17. Confusion Matrix (RF Test data)	23
Fig 2.18. ROC curve (RF Train data)	23
Fig 2.19. ROC curve (RF Test data)	24
Fig 2.20. Confusion Matrix (ANN Train data)	24
Fig 2.21. Confusion Matrix (ANN Test data)	24
Fig 2.22. ROC curve (ANN Train data)	25
Fig 2.23. ROC curve (ANN Test data)	25
Fig 2.24. ROC curve All 3 models (Train Data)	28
Fig 2.25. ROC curve All 3 models (Test Data)	28

List of Tables

Table 1. Dataset Sample (Bank Marketing)	04
Table 2. Dataset Summary (Bank Marketing)	04
Table 3. Type of Variables (Bank Marketing)	04
Table 4. Scaled Data Summary (Bank Marketing)	07
Table 5. Dataset with cluster	09
Table 6. Summary with cluster	09
Table 7. Dataset head with Silhouette and K-Means	11
Table 8. Cluster profile (Describe)	11
Table 9. Dataset Sample (Insurance)	14
Table 10. Dataset Summary (Insurance)	14
Table 11. Type of Variables (Insurance)	14
Table 12. Type of Variables (Insurance post removing duplicates)	16
Table 13. Head of dataset (Insurance post conversion of variables)	18
Table 14. Head of independent variables	18
Table 15. Head of Dependent variable	18
Table 16. Head of Trained data (Independent variables)	18
Table 17. Head of Test data (Independent variables)	19
Table 18. Head of Train labels (Dependent variable)	19
Table 19. Head of Test labels (Dependent variable)	19
Table 20. Performance matrix (CART – Train set)	26
Table 21. Performance matrix (CART – Test set)	26
Table 22. Performance matrix (RF – Train set)	26
Table 23. Performance matrix (RF – Test set)	27
Table 24. Performance matrix (ANN – Train set)	27
Table 25. Performance matrix (ANN – Test set)	27
Table 26. Performance matrix (All three models)	27

Problem 1: Clustering:

A leading bank wants to develop a customer segmentation to give promotional offers to its customers. They collected a sample that summarizes the activities of users during the past few months. You are given the task to identify the segments based on credit card usage.

Q1.1. Read the data, do the necessary initial steps, and exploratory data analysis.

Solution:

Sample of Dataset:

	spending	advance_payments	$probability_of_full_payment$	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping
0	19.94	16.92	0.8752	6.675	3.763	3.252	6.550
1	15.99	14.89	0.9064	5.363	3.582	3.336	5.144
2	18.95	16.42	0.8829	6.248	3.755	3.368	6.148
3	10.83	12.96	0.8099	5.278	2.641	5.182	5.185
4	17.99	15.86	0.8992	5.890	3.694	2.068	5.837

Table 1. Dataset Sample (Bank Marketing)

Summary of Dataset:

	spending	$advance_payments$	$probability_of_full_payment$	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping
count	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000	210.000000
mean	14.847524	14.559286	0.870999	5.628533	3.258605	3.700201	5.408071
std	2.909699	1.305959	0.023629	0.443063	0.377714	1.503557	0.491480
min	10.590000	12.410000	0.808100	4.899000	2.630000	0.765100	4.519000
25%	12.270000	13.450000	0.856900	5.262250	2.944000	2.561500	5.045000
50%	14.355000	14.320000	0.873450	5.523500	3.237000	3.599000	5.223000
75%	17.305000	15.715000	0.887775	5.979750	3.561750	4.768750	5.877000
max	21.180000	17.250000	0.918300	6.675000	4.033000	8.456000	6.550000

Table 2. Dataset Summary (Bank Marketing)

Type of Variables:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210 entries, 0 to 209
Data columns (total 7 columns):
# Column
                                    Non-Null Count Dtype
   spending
                                                    float64
0
                                    210 non-null
1
   advance_payments
                                    210 non-null
                                                    float64
   probability_of_full_payment
current_balance
2
                                    210 non-null
                                                    float64
                                    210 non-null
                                                    float64
    credit_limit
                                    210 non-null
                                                     float64
                                    210 non-null
                                                     float64
    min_payment_amt
5
6 max_spent_in_single_shopping 210 non-null dtypes: float64(7)
                                                     float64
memory usage: 11.6 KB
```

Table 3. Type of Variables (Bank Marketing)

Data Visualization: EDA using sweet viz to visualize the summary for each variable as well to underrated data –

Fig 1.1. Sweet viz Univariate analysis

Fig 1.2. Sweet viz Multivariate analysis

Boxplot to check the outliers:

Fig 1.3. Boxplot (Bank Marketing)

Observation (EDA):

- There are 7 variables and 210 records
- No missing record based
- All the variables float data type
- There are no missing values
- There are no duplicate rows
- While comparing the max, min, avg and 5-point summary data appears not to have the outliers
- Data range differs from variable to variable. Ex. Spending column has data value range between 10 and 21 whereas min_payment_amt column has value range between 0.76 and 8.45
- Strong positive correlation between:
 - i. spending & advance_payments
 - ii. advance_payments & current_balance
 - iii. credit_limit & spending
 - iv. spending & current_balance
 - v. credit_limit & advance_payments
 - vi. max_spent_in_single_shopping current_balance

Q1.2. Do you think scaling is necessary for clustering in this case? Justify.

Solution:

Yes, The Scaling is required

The data set contains different range of values. Clustering uses sort of distance measure (ex: Euclidean distance) to determine if the data belong to particular class. So if there is a difference in range of values of data between variables It will affect the clustering determination as Higher weightage variable may get more preference. Hence scaling is required in clustering. In this data also we need to do clustering because there is difference in range of values between columns. For ex. spending mean is 14.8 whereas probability of full payment mean is 0.8709. Scaling needs to be done as the values of the variables are different.

I have used z score to standardize the data to relative same scale -3 to +3.

Summary of the Data post doing the scaling:

	spending	advance_payments	$probability_of_full_payment$	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping
count	2.100000e+02	2.100000e+02	2.100000e+02	2.100000e+02	2.100000e+02	2.100000e+02	2.100000e+02
mean	9.148766e-16	1.097006e-16	1.260896e-15	-1.358702e-16	-2.790757e-16	5.418946e-16	-1.935489e-15
std	1.002389e+00	1.002389e+00	1.002389e+00	1.002389e+00	1.002389e+00	1.002389e+00	1.002389e+00
min	-1.466714e+00	-1.649686e+00	-2.668236e+00	-1.650501e+00	-1.668209e+00	-1.956769e+00	-1.813288e+00
25%	-8.879552e-01	-8.514330e-01	-5.980791e-01	-8.286816e-01	-8.349072e-01	-7.591477e-01	-7.404953e-01
50%	-1.696741e-01	-1.836639e-01	1.039927e-01	-2.376280e-01	-5.733534e-02	-6.746852e-02	-3.774588e-01
75%	8.465989e-01	8.870693e-01	7.116771e-01	7.945947e-01	8.044956e-01	7.123789e-01	9.563941e-01
max	2.181534e+00	2.065260e+00	2.006586e+00	2.367533e+00	2.055112e+00	3.170590e+00	2.328998e+00

Table 4. Scaled Data Summary (Bank Marketing)

Q1.3 Apply hierarchical clustering to scaled data. Identify the number of optimum clusters using Dendrogram and briefly describe them

Solution:

Default Dendrogram without any optimization and using wardlink:

Fig 1.4. Default Dendrogram

Fig 1.5. Dendrogram using Ward link

The optimum clusters are chosen based on the maximum distance between the vertical segments of the dendrogram. Three clusters are formed.

Head of the dataset with cluster:

	spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping	cluster
0	19.94	16.92	0.8752	6.675	3.763	3.252	6.550	1
1	15.99	14.89	0.9064	5.363	3.582	3.336	5.144	3
2	18.95	16.42	0.8829	6.248	3.755	3.368	6.148	1
3	10.83	12.96	0.8099	5.278	2.641	5.182	5.185	2
4	17.99	15.86	0.8992	5.890	3.694	2.068	5.837	1
5	12.70	13.41	0.8874	5.183	3.091	8.456	5.000	2
6	12.02	13.33	0.8503	5.350	2.810	4.271	5.308	2
7	13.74	14.05	0.8744	5.482	3.114	2.932	4.825	3
8	18.17	16.26	0.8637	6.271	3.512	2.853	6.273	1
9	11.23	12.88	0.8511	5.140	2.795	4.325	5.003	2

Table 5. Dataset with cluster

Summary of the Cluster grouped Dataset:

•				
cluster		1	2	3
spending	count	70.000000	67.000000	73.000000
	mean	18.371429	11.872388	14.199041
	std	1.381233	0.735848	1.230930
	min	15.380000	10.590000	11.230000
	25%	17.330000	11.250000	13.500000
	50%	18.720000	11.830000	14.330000
	75%	19.137500	12.450000	15.030000
	max	21.180000	13.370000	16.630000
advance_payments	count	70.000000	67.000000	73.000000
	mean	16.145429	13.257015	14.233562
	std	0.599277	0.353348	0.600399
	min	14.860000	12.410000	12.630000
	25%	15.737500	13.000000	13.850000
	50%	16.210000	13.270000	14.280000
	75%	16.557500	13.520000	14.670000
	max	17.250000	13.950000	15.460000
probability_of_full_payment	count	70.000000	67.000000	73.000000
	mean	0.884400	0.848072	0.879190
	std	0.014767	0.020311	0.017373
	min	0.845200	0.808100	0.833500
	25%	0.874700	0.834400	0.868000
	50%	0.883950	0.849100	0.879600
	75%	0.898225	0.861100	0.892300
	max	0.910800	0.888300	0.918300
current_balance	count	70.000000	67.000000	73.000000
	mean	6.158171	5.238940	5.478233
	std	0.245926	0.136087	0.240882
	min	5.709000	4.899000	4.902000
	25%	5.979250	5.142500	5.351000
	50%	6.148500	5.236000	5.504000
	75%	6.312000	5.329000	5.658000
coodit limit	max	6.675000	5.541000	6.053000
credit_limit	count	70.000000	67.000000	73.000000
	mean std	3.684629 0.174909	2.848537 0.142565	3.226452 0.179454
	min	3.268000	2.630000	2.719000
	25%	3.554250	2.731000	3.129000
	50%	3.693500	2.833000	3.221000
	75%	3.804750	2.967000	3.371000
	max	4.033000	3.232000	3.582000
min_payment_amt	count	70.000000	67.000000	73.000000
	mean	3.639157	4.949433	2.612181
	std	1.208271	1.170672	1.118413
	min	1.472000	3.082000	0.765100
	25%	2.845500	4.117000	1.791000
	50%	3.629000	4.857000	2.504000
	75%	4.459250	5.470500	3.136000
	max	6.682000	8.456000	6.685000
max_spent_in_single_shopping	count	70.000000	67.000000	73.000000
-	mean	6.017371	5.122209	5.086178
	std	0.251132	0.156953	0.275904
	min	5.443000	4.794000	4.519000
	25%	5.877000	5.002000	4.872000
	50%	5.981500	5.091000	5.097000
	75%	6.187750	5.247000	5.220000
	max	6.550000	5.491000	5.879000

Table 6. Summary with cluster

Observation:

- We for cluster grouping based on the dendrogram, 3 or 4 looks good. Did the further analysis, and based on the dataset had gone for 3 group cluster solution based on the hierarchical clustering
- Also in real time, there could have been more variables value captured tenure,
 BALANCE_FREQUENCY, balance, purchase, instalments of purchase, others.
- And three group cluster solution gives a pattern based on high/medium/low spending with max_spent_in_single_shopping (high value item) and probability_of_full_payment (payment made)

Q1.4 Apply K-Means clustering on scaled data and determine optimum clusters. Apply elbow curve and silhouette score. Explain the results properly. Interpret and write inferences on the finalized clusters.

Solution:

K-Means inertia for Cluster 2 = 659.171

K-Means inertia for Cluster 3 = 430.658

K-Means inertia for Cluster 4 = 371.581

K-Means inertia for Cluster 5 = 326.306

Elbow curve range between clusters 1 to 10:

TIG 1.0. LIDOW CUIVE

Silhouette score = 0.40072

Head of dataset with Silhouette samples and K-Means cluster:

spending	advance_payments	probability_of_full_payment	current_balance	credit_limit	min_payment_amt	max_spent_in_single_shopping	Clus_kmeans	sil_width
19.94	16.92	0.8752	6.675	3.763	3.252	6.550	0	0.573699
15.99	14.89	0.9064	5.363	3.582	3.336	5.144	2	0.366386
18.95	16.42	0.8829	6.248	3.755	3.368	6.148	0	0.637784
10.83	12.96	0.8099	5.278	2.641	5.182	5.185	1	0.512458
17.99	15.86	0.8992	5.890	3.694	2.068	5.837	0	0.362276

Table 7. Dataset head with Silhouette and K-Means

Insights:

Using the elbow curve, we conclude that optimal number of clusters using K Means clustering is 3.

If we choose more than three clusters there is no vast changes within cluster sum of squares or inertia. i.e., the feature difference between clusters will be less and hence the model accuracy will be affected.

Q1.5 Describe cluster profiles for the clusters defined. Recommend different promotional strategies for different clusters.

Solution:

Cluster profile:

Clus_kmeans		0	1	2
spending	count	67.000000	72.000000	71.000000
	mean	18.495373	11.856944	14.437887
	std	1.277122	0.714801	1.056513
	min	15.560000	10.590000	12.080000
	25%	17.590000	11.255000	13.820000
	50%	18.750000	11.825000	14.430000
	75%	19.145000	12.395000	15.260000
advance navments	max count	67.000000	13.340000	16.440000
advance_payments	mean	16.203433	13.247778	14.337746
	std	0.546439	0.355208	0.525706
	min	14.890000	12.410000	13.150000
	25%	15.855000	12.992500	14.030000
	50%	16.230000	13.250000	14.390000
	75%	16.580000	13.482500	14.760000
	max	17.250000	13.950000	15.270000
probability of full payment	count	67.000000	72.000000	71.000000
. , , , , , , , ,	mean	0.884210	0.848253	0.881597
	std	0.014917	0.019953	0.015502
	min	0.845200	0.808100	0.852700
	25%	0.874650	0.835000	0.871300
	50%	0.882900	0.848600	0.881900
	75%	0.898050	0.861475	0.893350
	max	0.910800	0.888300	0.918300
current_balance	count	67.000000	72.000000	71.000000
	mean	6.175687	5.231750	5.514577
	std	0.237807	0.141795	0.225266
	min	5.718000	4.899000	4.984000
	25%	6.011500	5.139250	5.380000
	50% 75%	6.153000	5.225000	5.541000
	max	6.328000	5.337250	5.689500
credit_limit	count	67.000000	72.000000	71.000000
Credit_IIIIIC	mean	3.697537	2.849542	3.259225
	std	0.166014	0.138689	0.154766
	min	3.387000	2.630000	2.936000
	25%	3.564500	2.738500	3.155000
	50%	3.719000	2.836500	3.258000
	75%	3.808000	2.967000	3.378000
	max	4.033000	3.232000	3.582000
min_payment_amt	count	67.000000	72.000000	71.000000
	mean	3.632373	4.742389	2.707341
	std	1.211052	1.354711	1.176440
	min	1.472000	1.502000	0.765100
	25%	2.848000	4.032250	1.951000
	50%	3.619000	4.799000	2.640000
	75%	4.421000	5.463750	3.332000
	max	6.682000	8.456000	6.685000
max_spent_in_single_shopping		67.000000	72.000000	71.000000
	mean	6.041701	5.101722	5.120803
	std	0.229566	0.184012	0.269558
	min 25%	5.484000	4.519000	4.605000
	50%	5.879000 6.009000	5.001000	4.958500 5.132000
	75%	6.192500	5.223500	5.263500
	max	6.550000	5.491000	5.879000
sil_width	count	67.000000	72.000000	71.000000
212_02001	mean	0.468772	0.397473	0.339816
	std	0.153712	0.159526	0.165898
	min	0.029792	0.002713	0.005457
	25%	0.419827	0.314599	0.234095
	50%	0.523482	0.453462	0.371077
	75%	0.574340	0.515146	0.479615
	max	0.639285	0.587277	0.554103

Table 8. Cluster profile (Describe)

Fig 1.7. Scatter plot for 3 clusters

Insights:

- The average spending of cluster 0 is 11000, cluster 1 is 18000 and cluster 2 is 14000
- The average amount of advance payment of cluster 0 is 1300, cluster 1 is 1600 and cluster 2 is 1400
- The average probability of full payment of cluster 0 is 84%, cluster 1 is 88% and cluster 2 is 88%
- The average current balance of cluster 0 is 5200, cluster 1 is 6100 and cluster 2 is 5500
- The average credit limit of cluster 0 is 28000, cluster 1 is 36000 and cluster 2 is 32000
- The average amount of minimum payment amount of cluster 0 is 4700, cluster 1 is 3600 and cluster 2 is 2700
- The average amount of maximum spent in single shopping for cluster 0 is 5100, cluster 1 is 6000 and cluster 2 is 5100

Promotional strategies for each cluster:

Group 1: Cluster 0 -

The credit limit, advanced payment and the probability of full payment is least compared to other two clusters.

To improve their probability of full payment as well as to increase the advance payments, recommendation is to provide the gift vouchers to make more advance payments which will result in reduction not paying i.e., increase the probability of full payment.

Group 2: Cluster 1-

Maximum credit limits, average full payment record with maximum spending compared to other clusters.

Giving reward points might increase their purchases and maximum max_spent_in_single_shopping is high for this group, so can be offered discount/offer on next transactions upon full payment. Give loan against the credit card, as they are customers with good repayment record. Tie up with luxury brands, which will drive more one time maximum spending.

Group 3: Cluster 2 -

Average full payment history and having medium credit limit with medium values for most of the other variables

They are potential target customers who are paying bills and doing purchases and maintaining comparatively good credit score. So, we can increase credit limit or can lower down interest rate. Promote premium cards/loyalty cars to increase transactions. Increase spending habits by trying with premium ecommerce sites, travel portal, travel airlines/hotel, as this will encourage them to spend more.

Problem 2: CART-RF-ANN

An Insurance firm providing tour insurance is facing higher claim frequency. The management decides to collect data from the past few years. You are assigned the task to make a model which predicts the claim status and provide recommendations to management. Use CART, RF & ANN and compare the models' performances in train and test sets.

Q2.1. Read the data, do the necessary initial steps, and exploratory data analysis

Solution:

Sample of Dataset:

	Age	Agency_Code	Туре	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
0	48	C2B	Airlines	No	0.70	Online	7	2.51	Customised Plan	ASIA
1	38	EPX	Travel Agency	No	0.00	Online	34	20.00	Customised Plan	ASIA
2	39	CWT	Travel Agency	No	5.94	Online	3	9.90	Customised Plan	Americas
3	38	EPX	Travel Agency	No	0.00	Online	4	26.00	Cancellation Plan	ASIA
4	33	JZI	Airlines	No	6.30	Online	53	18.00	Bronze Plan	ASIA

Table 9. Dataset Sample (Insurance)

Summary of Dataset:

	Age	Commision	Duration	Sales
count	3000.000000	3000.000000	3000.000000	3000.000000
mean	38.091000	14.529203	70.001333	60.249913
std	10.483518	25.481455	134.053313	70.733954
min	8.000000	0.000000	-1.000000	0.000000
25%	32.000000	0.000000	11.000000	20.000000
50%	38.000000	4.630000	26.500000	33.000000
75%	42.000000	17.235000	63.000000	69.000000
max	84.000000	210.210000	4580.000000	539.000000

Table 10. Dataset Summary (Insurance)

Type of Variables:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 10 columns):
                 Non-Null Count Dtype
# Column
---
    -----
                  -----
0 Age
                  3000 non-null
                                 int64
    Agency_Code 3000 non-null
                                object
                  3000 non-null
                                 object
    Type
    Claimed
                  3000 non-null
                                 object
    Commision
                  3000 non-null
                                 float64
    Channel
                  3000 non-null
                                 object
    Duration
                 3000 non-null
                                 int64
                  3000 non-null
                                 float64
    Sales
    Product Name 3000 non-null
                                 object
   Destination
                3000 non-null
                                 object
dtypes: float64(2), int64(2), object(6)
memory usage: 234.5+ KB
```

Table 11. Type of Variables (Insurance)

Data Visualization: EDA using sweet viz to visualize the summary for each variable as well to underrated data –

Fig 2.1. Sweet viz Univariate analysis

Fig 2.2. Sweet viz Multivariate analysis

We have 139 number of duplicates, data post removing the duplicates and by keeping the last updated duplicates:

```
Removing duplicates <class 'pandas.core.frame.DataFrame'>
Int64Index: 2861 entries, 0 to 2999
Data columns (total 10 columns):
     Column
                      Non-Null Count
                                        Dtype
                                        int64
 0
     Age
                      2861 non-null
     Agency_Code
                                        object
 1
                      2861 non-null
                                        object
object
     Type
Claimed
                      2861 non-null
                      2861 non-null
 3
                                        float64
      Commision
                      2861 non-null
     Channel
                      2861 non-null
                                        object
     Duration
                      2861 non-null
                                        int64
     Sales
                      2861 non-null
                                        float64
 8
     Product Name
                      2861 non-null
                                        object
     Destination
                      2861 non-null
                                        object
dtypes: float64(2), int64(2), object(6)
memory usage: 245.9+ KB
```

Table 12. Type of Variables (Insurance post removing duplicates)

Boxplot to check the outliers:

Fig 2.3. Boxplot (Insurance)

Boxplot of the dataset post handling the outliers:

Fig 2.4. Boxplot post handling outliers (Insurance)

Observation (EDA):

- We have 9 independent variables and 1 target variable with no missing values
- Dataset had 139 duplicates and outliers which have been removed and handled
- Scaling might be required for some models as the difference in scale of data between the variables
- There is high categorical correlation between Agency code, Type, commission and product name variables
- There is high numerical correlation between Commission and Sales Variables

Q2.2 Data Split: Split the data into test and train, build classification model CART, Random Forest, Artificial Neural Network

Solution:

Data split -

Head of dataset post conversion of object variables into categorical codes:

	Age	Agency_Code	Type	Claimed	Commision	Channel	Duration	Sales	Product Name	Destination
0	48.0	0	0	0	0.70	1	7.0	2.51	2	0
2	39.0	1	1	0	5.94	1	3.0	9.90	2	1
3	36.0	2	1	0	0.00	1	4.0	26.00	1	0
4	33.0	3	0	0	6.30	1	53.0	18.00	0	0
5	45.0	3	0	1	15.75	1	8.0	45.00	0	0

Table 13. Head of dataset (Insurance post conversion of variables)

Head of Independent variables (extracted from above dataset):

	Age	Agency_Code	Type	Commision	Channel	Duration	Sales	Product Name	Destination
0	48.0	0	0	0.70	1	7.0	2.51	2	0
2	39.0	1	1	5.94	1	3.0	9.90	2	1
3	36.0	2	1	0.00	1	4.0	26.00	1	0
4	33.0	3	0	6.30	1	53.0	18.00	0	0
5	45.0	3	0	15.75	1	8.0	45.00	0	0

Table 14. Head of independent variables

Head of Dependent variable:

Name: Claimed, dtype: int8

Table 15. Head of Dependent variable

Head of Trained data after splitting (Independent variables):

	Age	Agency_Code	Type	Commision	Channel	Duration	Sales	Product Name	Destination
1347	21.0	3	0	11.55	1	65.0	33.0	0	0
2362	35.0	0	0	15.60	1	22.0	39.0	0	0
947	39.0	0	0	63.21	1	367.0	230.0	4	0
218	51.0	0	0	63.21	1	367.0	230.0	4	0
2340	28.0	2	1	0.00	1	3.0	10.0	1	0

Table 16. Head of Trained data (Independent variables)

Head of Test data after splitting (Independent variables):

	Age	Agency_Code	Type	Commision	Channel	Duration	Sales	Product Name	Destination
684	19.0	0	0	6.00	1	12.0	15.0	0	0
231	27.0	1	1	17.82	1	16.0	29.7	2	1
1729	27.0	0	0	63.21	1	367.0	230.0	4	0
1005	36.0	2	1	0.00	1	5.0	73.0	1	0
848	58.0	0	0	5.25	1	51.0	21.0	0	0

Table 17. Head of Test data (Independent variables)

Head of Train labels (dependent variable):

```
1347 0
2362 0
947 1
218 1
2340 0
Name: Claimed, dtype: int8
```

Table 18. Head of Train labels (Dependent variable)

Head of Test labels (dependent variable):

```
684 0
231 0
1729 0
1005 0
848 1
Name: Claimed, dtype: int8
```

Table 19. Head of Test labels (Dependent variable)

Inference:

The insurance dataset is split in the ratio of 70:30. i.e., 70% of data for training and 30% of data for testing. We used random state 1 to make sure the split remains the same even if the code runs multiple times as long as there is no change in the original csv data.

<u>CART Decision Tree</u> –

Optimization metrics used:

Fig 2.5. Optimization metric (CART)

Best optimized parameters:

```
{'max_depth': 3, 'min_samples_leaf': 20, 'min_samples_split': 100}

Fig 2.6. Best optimized parameters (CART)
```

Decision tree with best optimized parameters:

Fig 2.7. Decision tree (Best optimized parameters)

Random Forest -

Optimization metrics used:

Fig 2.8. Optimization metric (RF)

Best optimized parameters:

```
'(max_depth=8, min_samples_leaf=20, min_samples_split=100, n_estimators=101)
```

Fig 2.9. Best optimized parameters (RF)

MLP Classifier (Artificial Neural Network) -

Optimization metrics used:

Fig 2.10. Optimization metric (ANN)

Best optimized parameters:

```
{'activation': 'relu',
  'hidden_layer_sizes': (300, 300, 300),
  'max_iter': 10000,
  'solver': 'adam',
  'tol': 0.1}
```

Fig 2.11. Best optimized parameters (ANN)

Data is split into train and test for three different models namely Decision Tree, Random Forest and Artificial Neural Network is built.

Q2.3 Performance Metrics: Comment and Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score, classification reports for each model.

Solution:

CART Decision Tree -

- Accuracy score (Train data): 0.7707292707292708
- Accuracy score (Test data): 0.7671711292200233
- Confusion Matrix (Train data):

Fig 2.12. Confusion Matrix (CART Train data)

Confusion Matrix (Test data):

```
array([[503, 97],
[103, 156]], dtype=int64)
```

Fig 2.13. Confusion Matrix (CART Test data)

- ROC_AUC score (Train data): 0.8007
- ROC_AUC score (Test data): 0.7869

• ROC curve (Train data):

Fig 2.14. ROC curve (CART Train data)

• ROC curve (Test data):

Fig 2.15. ROC curve (CART Test data)

Random Forest -

- Accuracy score (Train data): 0.7922077922077922
- Accuracy score (Test data): 0.7729918509895227
- Confusion Matrix (Train data):

```
array([[1196, 151],
        [ 265, 390]], dtype=int64)
```

Fig 2.16. Confusion Matrix (RF Train data)

Confusion Matrix (Test data):

```
array([[508, 92],
[103, 156]], dtype=int64)
```

Fig 2.17. Confusion Matrix (RF Test data)

- ROC_AUC score (Train data): 0.8359
- ROC_AUC score (Test data): 0.8013
- ROC curve (Train data):

Fig 2.18. ROC curve (RF Train data)

ROC curve (Test data):

Fig 2.19. ROC curve (RF Test data)

MLP Classifier (Artificial Neural Network) -

- Accuracy score (Train data): 0.7707292707292708
- Accuracy score (Test data): 0.7671711292200233
- Confusion Matrix (Train data):

```
array([[1151, 196],
        [ 263, 392]], dtype=int64)
```

Fig 2.20. Confusion Matrix (ANN Train data)

Confusion Matrix (Test data):

Fig 2.21. Confusion Matrix (ANN Test data)

- ROC_AUC score (Train data): 0.8082
- ROC_AUC score (Test data): 0.7903

• ROC curve (Train data):

Fig 2.22. ROC curve (ANN Train data)

ROC curve (Test data):

Training and Test set results are almost similar, and with the overall measures high, the model is a good model.

Q2.4. Final Model: Compare all the models and write an inference which model is best/optimized.

Solution:

CART Decision Tree performance matrix-

• Training set:

	precision	recall	f1-score	support
0 1	0.81 0.67	0.86 0.58	0.84 0.62	1347 655
accuracy macro avg weighted avg	0.74 0.76	0.72 0.77	0.77 0.73 0.77	2002 2002 2002

Table 20. Performance matrix (CART – Train set)

Testing set:

	precision	recall	f1-score	support
0	0.83	0.84	0.83	600
1	0.62	0.60	0.61	259
accuracy			0.77	859
macro avg	0.72	0.72	0.72	859
weighted avg	0.77	0.77	0.77	859

Table 21. Performance matrix (CART – Test set)

Random Forest performance matrix-

• Training set:

	precision	recall	f1-score	support
0	0.82	0.89	0.85	1347
1	0.72	0.60	0.65	655
accuracy			0.79	2002
macro avg	0.77	0.74	0.75	2002
weighted avg	0.79	0.79	0.79	2002

Table 22. Performance matrix (RF – Train set)

• Testing set:

	precision	recall	f1-score	support
0	0.83	0.85	0.84	600
1	0.63	0.60	0.62	259
accuracy			0.77	859
macro avg	0.73	0.72	0.73	859
weighted avg	0.77	0.77	0.77	859

Table 23. Performance matrix (RF – Test set)

Artificial Neural Network performance matrix-

• Training set:

	precision	recall	f1-score	support
0	0.81	0.85	0.83	1347
1	0.67	0.60	0.63	655
accuracy			0.77	2002
macro avg	0.74	0.73	0.73	2002
weighted avg	0.77	0.77	0.77	2002

Table 24. Performance matrix (ANN – Train set)

Testing set:

	precision	recall	f1-score	support
0	0.83	0.83	0.83	600
1	0.61	0.62	0.62	259
accuracy			0.77	859
macro avg	0.72	0.72	0.72	859
weighted avg	0.77	0.77	0.77	859

Table 25. Performance matrix (ANN – Test set)

Comparison of the performance metrics from the 3 models:

	Cart Train	Cart Test	Random Forest Train	Random Forest Test	Neural Network Train	Neural Network Test
Accuracy	0.77	0.77	0.79	0.77	0.77	0.76
AUC	0.80	0.78	0.84	0.80	0.81	0.79
Recall	0.58	0.60	0.60	0.60	0.60	0.62
Precision	0.67	0.62	0.72	0.63	0.67	0.61
F1 Score	0.62	0.61	0.65	0.62	0.63	0.62

Table 26. Performance matrix (All three models)

ROC Curve for the 3 models on the Training data:

Fig 2.24. ROC curve All 3 models (Train Data)

ROC Curve for the 3 models on the Testing data:

Fig 2.25. ROC curve All 3 models (Test Data)

CONCLUSION: Selecting the RF model, as it has better accuracy, precision, recall, f1 score better than other two CART & ANN

Q2.5. Inference: Based on the whole Analysis, what are the business insights and recommendations

Inference:

I strongly recommended we collect more real time unstructured data and past data if possible.

This is understood by looking at the insurance data by drawing relations between different variables such as day of the incident, time, age group, and associating it with other external information such as location, behavior patterns, weather information, airline/vehicle types, etc.

- Streamlining online experiences benefitted customers, leading to an increase in conversions, which subsequently raised profits.
- As per the data 90% of insurance is done by online channel.
- Other interesting fact, is almost all the offline business has a claimed associated, need to find why?
- Need to train the JZI agency resources to pick up sales as they are in bottom, need to run
 promotional marketing campaign or evaluate if we need to tie up with alternate agency.
- Also based on the model we are getting 80%accuracy, so we need customer books airline tickets or plans, cross sell the insurance based on the claim data pattern.
- Other interesting fact is more sales happen via Agency than Airlines and the trend shows the claim are processed more at Airline. So, we may need to deep dive into the process to understand the workflow and why?

Key performance indicators (KPI) The KPI's of insurance claims are:

- Reduce claims cycle time
- Increase customer satisfaction
- Combat fraud
- Optimize claims recovery
- Reduce claim handling costs Insights gained from data and AI-powered analytics could expand
 the boundaries of insurability, extend existing products, and give rise to new risk transfer
 solutions in areas like a non-damage business interruption and reputational damage

Thanks & regards, Pavan Kumar R Naik