1. Objective

Extend Michael Thompson's LEGO investment strategy by predicting which 2019 sets offer the greatest "value potential"—the gap between what a set "should" cost (according to our model) and its actual retail price.

2. Methodology

We began with the same cleaned 2018–19 dataset we used for descriptive work, then:

- 1. Filtered to just 2019 releases (using the "Release Month (US)" \rightarrow year).
- 2. Binned retail prices into four ranges: \$19.99–\$29.99, \$34.99–\$69.99, \$74.99–\$99.99, and \$100 +.
- 3. Built two pipelines:
- o Linear Regression (standard-scale numeric + one-hot categorical → LinearRegression)
- o Random Forest (same preprocessing → RandomForestRegressor)
- 4. 5-fold cross-validation to compare out-of-sample R² and RMSE.
- 5. Hold-out test split (80/20) for a final unbiased evaluation.
- 6. Residual diagnostics on the RF hold-out predictions.
- 7. Partial Dependence Plot on Weight to illustrate marginal effect.
- 8. Feature Importances from RF.
- 9. Value Potential computed as PredictedPrice RetailPrice, identifying top/bottom two within each Theme, Subtheme, and Price Range.

3. Model Specification

Linear Regression equation (intercept + β_i ·feature_i):

Predicted Price = -1.24 + 0.048·PieceCount + 12.3·(Weight lb) + ... + 5.8·IsCollectorTheme Adjusted R² = 0.944, indicating that 94.4% of price variation is explained when accounting for model complexity.

4. Predictive Results & Visuals

Cross-Validation RMSE Comparison

Cross Validation R² Comparison

Linear Regression achieved a mean R² of 0.948 (\pm 0.021) with RMSE \approx \$11.9 (\pm \$3.5). Random Forest was slightly lower: R² \approx 0.907 (\pm 0.028), RMSE \approx \$16.7 (\pm \$5.3).

Model	CV R ² Mean	CV R ² Std	CV RMSE Mean (USD)	CV RMSE Std (USD)	Test R ²	Test RMSE (USD)
Linear Regression	0.948	0.021	11.93	3.52	0.95	10.16
Random Forest	0.907	0.028	16.67	5.31	0.957	9.42

- Cross-Validation (5-fold) shows Linear Regression slightly higher average R² and lower RMSE than Random Forest.
- **Hold-out Test Set** flips that: RF edges LR on unseen data $(0.957 \text{ vs } 0.950 \text{ R}^2, 9.42 \text{ vs } 10.16 \text{ RMSE})$.
- Although LR generalizes very well in cross validation, RF wins when we lock aside a true test set. That, plus RF's superior ability to capture non-linearities (e.g. weight effects), makes it our preferred final model for predicting "fair" set prices.

Hold-Out Test Metrics

Model	Test R ²	Test RMSE (USD)
Linear Regression	0.95	10.16
Random Forest	0.957	9.42

On the unseen 20% test set, Random Forest edged out linear:

RF Predicted vs. Actual and RF Residuals vs. Predicted

A tight cluster around the 45° line confirms good overall fit; no dramatic systematic bias. Residuals are roughly centred around zero across the price range, with a few outliers at the high end—suggesting occasional under- or over-prediction on very large sets.

Partial Dependence: Price vs. Weight

Heavier sets generally command higher prices, with a steeper slope above ~2 lb, highlighting weight as a key driver after accounting for other features.

Top 10 Feature Importances (RF)

- 1. Weight (lb.)
- 2. PriceRange_100+
- 3. Piece Count
- 4. Price Range \$19.99-\$29.99

Categorical price-range indicators and physical dimensions dominate, confirming our domain intuition.

Value Potential (Top/Bottom 2 by Price Range)

• Underpriced sets: Most pronounced in the 19.99–29.99and19.99–29.99and100+ ranges, with predicted values exceeding retail by \$25–30.

• Overpriced sets: Slight negative value potential in mid-range tiers (34.99–34.99–99.99).

5. Key Insights & Recommendations

Insights

- Model selection: Random Forest outperforms Linear Regression on unseen data.
- Weight is critical: The steep marginal effect above 2 lbs underscores its importance in pricing.
- Value potential: Focus on the lowest (\$19.99–\$29.99) and highest (\$19.99–\$29.99) and highest (\$100+) price tiers for maximum returns.
- Model limitations: Monitor residuals for large sets, where predictions are less reliable.

Recommendations for Michael

- Target underpriced sets in the \$19.99–\$29.99 and \$19.99–\$29.99 and \$100+ ranges (see Figure 10).
- Prioritize weight and piece count when evaluating new 2020–21 sets.
- Automate annual retraining with a hold-out test set to maintain accuracy as LEGO's pricing evolves.