Folha 5: Transformadas de Laplace e aplicações às EDO

- 1. Para cada uma das funções seguintes, determine $F(s) = \mathcal{L}\{f(t)\}$:
 - (a) $f(t) = 2 \operatorname{sen}(3t) + t 5e^{-t}$;
 - (b) $f(t) = e^{2t}\cos(5t)$;
 - (c) $f(t) = te^{3t}$;
 - (d) $f(t) = \pi 5e^{-t}t^{10}$:
 - (e) $f(t) = (3t 1) \operatorname{sen} t$;
 - (f) $f(t) = (1 H_{\pi}(t)) \operatorname{sen} t$;
 - (g) $f(t) = (t-2)^2 e^{2(t-2)} H_2(t)$
- 2. Para cada uma das funções seguintes, determine $\mathcal{L}^{-1}\{F(s)\}$:
- (a) $F(s) = \frac{2s}{s^2 9}$; (b) $F(s) = \frac{4}{s^7}$; (c) $F(s) = \frac{1}{s^2 + 6s + 9}$;
- (d) $F(s) = \frac{1}{s^2 + s 2}$; (e) $F(s) = \frac{1}{s^2 + 4s + 6}$; (f) $F(s) = \frac{3s 1}{s^2 4s + 13}$
- (g) $F(s) = \frac{4s + e^{-s}}{s^2 + s 2}$; (h) $F(s) = \frac{s}{(s^2 + 4)^2}$.
- 3. Calcule o valor dos seguintes integrais impróprios, usando transformadas de La-

 - (a) $\int_{0}^{+\infty} t^{10} e^{-2t} dt$; (b) $\int_{0}^{+\infty} e^{-3t} t \sin t dt$.
- 4. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função diferenciável. Sabendo que $f'(t) + 2f(t) = e^t$ e que f(0) = 2, determine a expressão de f(t).
- 5. Calcule:
 - (a) $\mathcal{L}\{(t-2+e^{-2t})\cos(4t)\};$
 - (b) $\mathcal{L}^{-1}\left\{\frac{2s-1}{s^2-4s+6}\right\}$;
 - (c) $\mathcal{L}^{-1}\left\{\frac{2s}{(s-1)(s^2+2s+5)}\right\}$.
- 6. Usando transformadas de Laplace mostre que
 - $t^m * t^n = \frac{m! \, n!}{(m+n+1)!} \, t^{m+n+1} \quad (m, n \in \mathbb{N}_0).$
- 7. Determine a solução da equação

$$y'(t) = 1 - \operatorname{sen} t - \int_0^t y(\tau) \, d\tau$$

que satisfaz a condição y(0) = 0.

 $8.\$ Resolva cada um dos seguintes problemas de Cauchy usando transformadas de Laplace.

(a)
$$3x' - x = \cos t$$
, $x(0) = -1$;

(b)
$$\frac{d^2y}{dt^2} + 36y = 0$$
, $y(0) = -1$, $\frac{dy}{dt}(0) = 2$;

(c)
$$y'' + 2y' + 3y = 3t$$
, $y(0) = 0$, $y'(0) = 1$;

(d)
$$y''' + 2y'' + y' = x$$
, $y(0) = y'(0) = y''(0) - 1 = 0$;

(e)
$$y'' + y' = \frac{e^{-t}}{2}$$
, $y(0) = 0 = y'(0)$.

9. Resolva o seguinte problema de valores iniciais recorrendo às transformadas de Laplace:

$$y'' + y = t^2 + 1$$
, $y(\pi) = \pi^2$, $y'(\pi) = 2\pi$.

(Sugestão: Efetuar a substituição definida por $x = t - \pi$).

10. Usando transformadas de Laplace, resolva o seguinte sistema de EDOs sujeito às condições indicadas (onde x e y são funções da variável independente t):

$$\begin{cases} x' = 2x - 2y \\ y' = -3x + y \end{cases}, \quad x(0) = 5, \quad y(0) = 0.$$

Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

Folha 5: Soluções

1. (a)
$$\frac{6}{s^2+9} + \frac{1}{s^2} - \frac{5}{s+1}$$
, $s > 0$;

(b)
$$\frac{s-2}{(s-2)^2+25}$$
, $s>2$;

(c)
$$\frac{1}{(s-3)^2}$$
, $s > 3$;

(d)
$$\frac{\pi}{s} - \frac{5 \cdot 10!}{(s+1)^{11}}, \quad s > 0;$$

(e)
$$\frac{6s}{(s^2+1)^2} - \frac{1}{s^2+1}$$
, $s > 0$;

(f)
$$\frac{1}{s^2+1} + \frac{e^{-\pi s}}{s^2+1}$$
, $s > 0$;

(g)
$$e^{-2s} \frac{2!}{(s-2)^3}$$
, $s > 2$.

2. (a)
$$2\cosh(3t) = e^{3t} + e^{-3t}, t \ge 0;$$

(b)
$$\frac{t^6}{180}$$
, $t \ge 0$;

(c)
$$t e^{-3t}$$
, $t \ge 0$;

(d)
$$\frac{1}{3}e^t - \frac{1}{3}e^{-2t}$$
, $t \ge 0$;

(e)
$$\frac{e^{-2t}}{\sqrt{2}}\operatorname{sen}(\sqrt{2}t), \quad t \ge 0;$$

(f)
$$e^{2t} \left(3\cos(3t) + \frac{5}{3}\sin(3t) \right), \quad t \ge 0.$$

(g)
$$\frac{4}{3}e^t + \frac{8}{3}e^{-2t} + \frac{1}{3}H_1(t)e^{t-1} - \frac{1}{3}H_1(t)e^{-2t+2}$$
;

(h)
$$\frac{1}{4} t \operatorname{sen}(2t)$$
.

3. (a)
$$\frac{10!}{2^{11}}$$
; (b) $\frac{3}{50}$.

4.
$$f(t) = \frac{1}{3}e^t + \frac{5}{3}e^{-2t}$$
.

5. (a)
$$\frac{s^2 - 16}{(s^2 + 16)^2} - \frac{2s}{s^2 + 16} + \frac{s + 2}{(s + 2)^2 + 16}, \quad s > 0;$$

(b)
$$e^{2t} \left(2\cos(\sqrt{2}t) + \frac{3}{\sqrt{2}}\sin(\sqrt{2}t) \right), \ t \ge 0.$$

(c)
$$\frac{1}{4}e^t - \frac{1}{4}e^{-t}\cos(2t) + \frac{3}{4}e^{-t}\sin(2t), t \ge 0.$$

6. –

2021/22

7.
$$\left(1 - \frac{t}{2}\right) \operatorname{sen} t$$
.

8. (a)
$$x(t) = \frac{3}{10} \operatorname{sen} t - \frac{1}{10} \cos t - \frac{9}{10} e^{\frac{t}{3}};$$

(b)
$$y(t) = \frac{1}{3} \operatorname{sen}(6t) - \cos(6t);$$

(c)
$$y(t) = t - \frac{2}{3} + \frac{2}{3\sqrt{2}} e^{-t} \operatorname{sen}(\sqrt{2}t) + \frac{2}{3} e^{-t} \cos(\sqrt{2}t);$$

(d)
$$y(x) = \frac{1}{2}(x^2 - 4x + 8) - 2e^{-x}(x + 2);$$

(e)
$$y(t) = \frac{e^{-t}}{2} (e^t - t - 1).$$

9.
$$y(t) = (t - \pi)^2 + 2\pi(t - \pi) + \pi^2 - 1 + \cos(t - \pi) = t^2 - 1 - \cos t$$
.

10.
$$\begin{cases} x(t) = 2e^{-t} + 3e^{4t} \\ y(t) = 3e^{-t} - 3e^{4t} \end{cases}$$

									1																																			
	- a)	2	21	un (31)	+ 1	- S	e ⁻¹	3	(5)	2 6	2 L	. {u	m (3	£(4.	(5)	+ 1	· { :	+} ((5) -	5 4	£ {	e-+ }	(5)	= 3	2 ×	3 \$ ² + : (\$>	32	(5:	1 5 ² >0)	- 5 ×	5+1	ı) =	52+0	4	1 A2		<u>5</u> 5+1	- 1	5 2	0			
	P)	L.	e2t	COL ((4 5)	} (5	, <i>=</i> (£ {	Ca (511}	(5	-2)	2 (e {	6 ((42)	} (s	- 2)) = (<u>s</u> (s-2)	- 2) ² +5 3) > (2 2	(\$-:	<u>S - 2</u> 2) ² +	25		5 > 2																	
	c)	L {	t e3	13 ((5) -	e d	[+]) (s	-3)	2 4	c {	+} ((\$-3) = _(-1 (s-8	3 2	, s	> 3	3																									
	۵)	L.	π -	5 e	-1 8	10 }	(5) 2	ν.	£ {1}	(5) -	5 6	e {	e-t	(4)	} (s)	T =	* <u>I</u>	- - -	-5	L {	} to	} (5+1)	- (1	5 (20)	- 5>	(5)	0 ! E1) ¹¹	= 1	<u>r</u> -	<u> </u>	(o !	, 5	>0										
	e)																																		} (s)) =	-3 x	\(\frac{4}{5^2}\)	(°)	- s: (s	1 7	h.		
								4	b = (3 × _	-24 5 ² + (5>	1)2	- 5-1 (s	1 1-1 (30)	-	(5 ² 1	<u>\$</u> FI) ²	-	4 5 ² +1	0	\$ >	0																						
	8)	L	{(1-	. н,	₇ (1)	1) M	m (±	-)}((s) = .	e {	Allm	(±)	- H	a CF	nux (n (It)	} (5)	ه: ا	{ su	en (li)}(s)- L	{ H,	(F)	Min	(+)) (s) =	4 5 ² +1	- 12	e.	{-4	w (1	nu ((4-1	π)}	(4) 2	4 5 ² +1 (42e)	4- 0	3 { 1	-1 ₁₁ (W (4	n († -	· #)}	(5) =
									=	{ 3+1 \$>0)	+	e	TS P	<i>{ x</i>	um ((4)	} (S)	0 0	\$ ² (\$:	+1	+ e	πs	x	+12	3	₹÷	- 175 2 + 1	(3>0	5>	0														
	9)	d {		(1):	· lae	(+-2) (+-2)				= e	2 3.	ر 5	}² e² ((f)	*} (5) =	e-2:	5 %	} ۵	\ \t^2\}	(5-:	2) =	e °	5 <u>)</u> (s-:	1	5>3	2																		
2 -	- a)																-1.				. 2	2							31		-21	4		. 21										
	b)) = 3	2 &	1	L {	(OL)	k (3 F) j (5) }	(1)	2 2	COSH	(3)) = (+	2×.	<u>e</u>	2		e.	+ e											
						L-1									{z	{1·	j (6)	} ((l·) = .	61	ş 6	= <u> </u>	6																					
	c)					- (i					-					+}	(5)																											
	d)	F (5) =	52 +	1-5-6	= 2	(5-	1) (1	5+2)	2	5	<u>1</u> 3	-	1 3	2	3	1 ×	5-	-1	1 3	×	4	-	1 3	૯ ક્લ	et }	(5)	- 1 3	B	{e-	nt } ((5)		1		1		1		_	-2 2			
			\$-	4	+	<u>B</u> 5+2	= (A (5-1)	(S+2 (S+	<u>)</u> 1	(5-	<u>) (s</u>	ı <u>)</u> ∔2)	-	As a	<u>- 2 A</u> (5-1)	+ B)	<u>B</u> =	: <u>(</u>)	+B) (5-1	5 &))(5 (-2)	B.												1 5 ² +	5-2	2 = (s	- () (0			

$$\begin{pmatrix} A + B + c & (A + B + c) &$$


```
1 \Rightarrow 1 = -\frac{2}{3} + \frac{1}{3} + \frac{2}{3} \left( \frac{2^{-1}}{3} \left\{ \frac{5+1}{(5+1)^2 + 2} \right\} (t) - \frac{2^{-1}}{3} \left\{ \frac{1}{(5+1)^2 + 3} \right\} (t) \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e^{-\frac{1}{3}} \mu m \left( \sqrt{3} \frac{1}{3} \right) + \frac{1}{3\sqrt{2}} e
                                            (-3) y = -2 + 1 + 2 (e^{-\frac{1}{2}} ca (\sqrt{5}t) - \frac{1}{\sqrt{2}} e^{-\frac{1}{2}} um (\sqrt{5}t) + \frac{4}{2\sqrt{5}} e^{-\frac{1}{2}} um (\sqrt{5}t) / 2)
                                              (3) y = -2 + \frac{1}{2} + \frac{2}{3} e^{-\frac{1}{3}} (0) (52t) - \frac{2}{3} e^{-\frac{1}{3}} xm (52t) + \frac{1}{3} e^{-\frac{1}{3}} xm (52t) (3)
                                              y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 + 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 0
y = 1 - 2 = 
                                                                                    \frac{A_5+B}{5^2} + \frac{(4+D)}{5^2+25+3} + \frac{(6+D)}{5^2+25+3} + \frac{(6+D)}{5^2} = \frac{A_5^3+2A_5^2+3A_5+B_5^2+3B+(6^3+D5^2+(2A+B+D))5^2+(3A+2B)5+3B}{5^2(5^2+25+3)}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    52 (52+ 25+3)
                                                                                              \left(\begin{array}{c} A+C=0 \\ \end{array}\right) \left(\begin{array}{c} C=-A \\ \end{array}\right) \left(\begin{array}{c} C=\frac{9}{3} \end{array}\right)
                                                                                                      2A+B+D=0 1=> { 2A+D=-1 1=> } D=1
                                                                                                    3A+2B=0 /3A=-2 /A=-2
1=> 53 & { 4 } (6) - 5 4 (0) - 54 (0) - 4" (0) +2 (52 { 4 } (5) - 54 (0) - 4" (0)) + 5 & { 4 } 4 (5) - 4 (0) = 1 (5)
                                              1 => 53 & { 4} (5) - 1 + 252 & { 4} (5) + 5 & { 4} (5) = 1 (5) (5) + 252 + 5) & { 4} (6) = 1 + 1 (5) & { 4} (6) = 1 + 52 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50 (5) + 50
                                                 (=) \quad \psi = \mathcal{L}^{-1} \left\{ \frac{1+5^2}{5^2(5^2+25+1)} \right\} (x) \quad (=) \quad \psi = \mathcal{L}^{-1} \left\{ \frac{45^2-25+1}{5^3} + \frac{-45-6}{5^2+25+1} \right\} (x) \quad (=) \quad (=
                                                  f = 3 \quad \sqrt{\frac{1}{5}} \left( \frac{1}{5} \right) \left( \frac{1}{5
                                                    (=) 4=4-2x+1=x2-4ex (a) +4exx-6exx (=) 4=4-2x+1=x2-4exx (=) 4=1 (x2-4x+8)-2ex (x+2)
                                                                                  \frac{As^2 + Bs + C}{s^3} + \frac{Ds + F}{s^3(s^2 + 3s + C)} + \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} + \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (Ds + F)s^3}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1) + (as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 2s + 1)} = \frac{(as^2 + Bs + C)(s^2 + 2s + 1)}{s^3(s^2 + 
                                                                                      = (A+D) 5 + (3A+B+E) 5 + (A+3B+C) 5 + (B+2C) 5 + (
5 (5 + 5 + 1)
                                                                                                  A+D=0
                                                                                                      2A + B + E = 0
                                                                                                          A+ 2B+ C= 1 (=) \ A= 4
                                                                                                          B+2C=0 | B=-2
```

2)
$$q^{-1}q^{-1} = \frac{e^{-1}}{e^{-1}}$$
 (i) $\frac{1}{e^{-1}} \left\{ q^{-1}$

D= 4

E = 0

(=2

A+D=0

C=2

A+C=1 (=) \ A=-1

