

CS224

Lab 4
Section 2
Arman Engin Sucu
21801777

PART 1

a)

Location	Machine Instruction	Assembly Language Equivalent			
00	0x20020005	addi \$v0, \$zero, 5			
04	0x2003000c	addi \$v1, \$zero, 12			
08	0x2067fff7	addi \$a3, \$v1, -9			
0c	0x00e22025	or \$a0, \$a3, \$v0			
10	0x00642824	and \$a1, \$v1, \$a0			
14	0x00a42820	add \$a1, \$a1, \$a0			
18	0x10a7000a	beq \$a1, \$a3, 10			
1c	0x0064202a	slt \$a0, \$v1, \$a0			
20	0x10800001	beq \$a0, \$zero, 1			
24	0x20050000	addi \$a1, \$zero, 0			
28	0x00e2202a	slt \$a0, \$a3, \$v0			
2c	0x00853820	add \$a3, \$a0, \$a1			
30	0x00e23822	sub \$a3, \$a3, \$v0			
34	0xac670044	sw \$a3, 68(\$v1)			
38	0x8c020050	lw \$v0, 80(\$zero)			
3c	0x08000010	j 0x0000010			
40	0x001f6020	add \$t4, \$zero, \$ra			
44	0x0c000012	jal 0x0000012			
48	0xac020054	sw \$v0, 84(\$zero)			
4c	0x00039042	srl \$s2, \$v1, 1			
50	0x03E00008	jr \$ra			

e)

- i) It corresponds to data in the rt register
- ii) Writedata undefined for some of the early instructions, since at the begining the value for registers can not be known. After writing datas to the registers, writedata(rt) value can be known.
 - iii) readdata only assigned for lw instruction, therefore, it is defined for only lw.
- iv) It corresponds to aluot, however, for a R type instruciton dataadr corresponds to value that will be writen to rd register
- v) dataaddress becomes undefined for add \$t4, \$zero, \$ra, since \$ra does not have any value in that time, therefore, aluout is undefined(dataadress).

g)

- i) To support srlv additional changes are needed in ALU and imem.
- ii) The module needs to be modified is ALUControl. I would modify it by changing $ALU_{[2:0]}$ to $ALU_{[3:0]}$, since to make ALU shift left there needs to be opened more room on ALU instructions.

PART 2

a)

subi: IM[PC]

RF[rt] ← RF[rs] – SignExtended(immediate)

PC ← PC + 4

b)

subi instruction exactly the same with addi instruction except add instruction makes add in the alu, therefore, subi needs to make sub in the alu. This difference can be handled by ALUControl which is 110 for subtract. For those reasons no need any additional changes on the datapath. Moreover, the path fort he subi is showed in black:

Instruction	Opcode	RegWrite	RegDst	ALUSrcB	Branch	MemWrite	MemToReg	ALU Op	Jump
subi	001100	1	00	1	0	0	00	01	0