МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

Лабораторная работа 1 по дисциплине «Математический анализ»

Выполнили: Ежов Дмитрий Александрович гр. J3113 ИСУ 471242, Трифонов Василий Максимович гр. J3113 ИСУ 467758, Соловьев Матвей Михайлович гр. J3113 ИСУ 467551,

Отчет сдан: 15.01.2025

Оглавление

1.	Задание 1	. 1
	1.1. Теорема 1	. 1
	1.1.1. Доказательство	. 1
	1.2. Аналитический этап	. 2
	1.3. Практический этап	. 4
2.	Задача 2	. 5
	2.1. Аналитический этап	. 5
	2.2. Практический этап	. 5

1. Задание 1

1.1. Теорема 1

Пусть функция f(x) кусочно-непрерывна на отрезке [a,b] и унимодальна на каждом отрезке, где она непрерывна. Тогда функция достигает минимума в точке $x_0in[a,b]$. Пусть точки c < d принадлежат [a,b]. Если f(c)l = f(d), то $x_0in[a,d]$, иначе $x_0in[c,b]$.

1.1.1. Доказательство

1. Разбор условий задачи

- Унимодальность f(x) означает, что существует точка или интервал $[\alpha, \beta]$, такие что:
 - 1. f(x) строго убывает на $[a, \alpha]$ (если $a < \alpha$);
 - 2. f(x) строго возрастает на $[\beta, b]$ (если $\beta < b$);
 - 3. f(x) достигает минимального значения на интервале $[\alpha, \beta]$.
- Для строго унимодальной функции $\alpha = \beta$, и это точка глобального минимума x_0 .
- Кусочная непрерывность f(x) на [a,b] означает, что:
 - 1. f(x) непрерывна на всех своих подотрезках;
 - 2. Минимум на любом подотрезке достигается (по теореме Вейерштрасса).

2. Сужение интервала

Рассмотрим точки $c,d \in [a,b]$, такие что c < d. Покажем, как определить интервал, содержащий точку минимума x_0 , в зависимости от значений f(c) и f(d).

- Случай 1: $f(c) \le f(d)$.
 - 1. Минимум x_0 не может находиться правее d, так как f(x) возрастает на [d,b] из унимодальности.
 - 2. Следовательно, $x_0 in[a, d]$.
- Случай 2: f(c) > f(d).
 - 1. Минимум x_0 не может находиться левее c, так как f(x) убывает на [a,c] из унимодальности.
 - 2. Следовательно, $x_0 \in [c, b]$.

Таким образом, исходный интервал [a,b] можно сократить в зависимости от соотношения f(c) и f(d).

3. Достижимость минимума

- 1. Кусочная непрерывность f(x) гарантирует, что минимум на каждом непрерывном подотрезке достигается (теорема Вейерштрасса).
- 2. Унимодальность обеспечивает, что глобальный минимум на [a,b] совпадает с минимумом на интервале $[\alpha,\beta]$, где f(x) убывает слева от α и возрастает справа от β .

4. Заключение

- При сравнении f(c) и f(d):
 - 1. Если $f(c) \leq f(d)$, то $x_0 \in [a, d]$.
 - 2. Если f(c) > f(d), то $x_0 \in [c, b]$.
- Повторное применение этого правила позволяет сужать интервал неопределённости до любой заданной точности.

Таким образом, теорема доказана.

1.2. Аналитический этап

- 1. **Выбор функции** Выберем функцию средней сложности, например: $f(x) = x^3 3x^2 + 4$.
- 2. **Определение унимодальности** Установим интервал, на котором функция унимодальна. Например, на [0,3] функция строго убывает, а затем возрастает.
- 3. **Нахождение локальных экстремумов** Найдем производную f'(x) и решим уравнение f'(x)=0: $f'(x)=3x^2-6x$. Корни: x=0 и x=2. Определим тип экстремумов:
 - x = 0: локальный максимум (проверяется по второму производному или изменению знака).
 - x=2: локальный минимум.
- 4. **Определение экстремальных значений** Вычислим значения функции в точках экстремумов и на концах интервала:
 - f(0) = 4,
 - f(2) = 2,
 - f(3) = 4.

Минимальное значение на интервале: f(2) = 2.

- 5. **Выбор метода оптимизации** Выбираем метод золотого сечения, так как он эффективно сокращает интервал неопределенности.
- 6. Доказательство сходимости метода Метод золотого сечения сходится, так как на каждой итерации длина интервала уменьшается пропорционально числу $\varphi = \frac{3-\sqrt{5}}{2}$. Условие завершения достигается, когда длина интервала становится меньше ε .
- 7. Оценка числа итераций Для интервала [0,3] и заданной точности $\varepsilon=0.01$, количество итераций определяется формулой: $n=\left[\log_{\varphi}\left(\frac{\varepsilon}{b_0-a_0}\right)\right]$, где $\varphi\approx0.618$.
- 8. Исследование на других интервалах Рассмотрим работу метода на интервалах, где функция f(x) не является унимодальной. Это важно для проверки устойчивости алгоритма и его поведения в случае, если входные данные нарушают условия задачи.

Пример 1: Интервал с двумя локальными экстремумами Возьмем функцию $f(x) = x^4 - 6x^2 + 5$ на интервале [-3,3]. На этом интервале функция имеет два локальных минимума $(x \approx -1.73)$ и один локальный максимум (x = 0).

- 1. Применим метод золотого сечения. Метод будет сужать интервал, приближаясь к одному из локальных минимумов, в зависимости от начальных условий. Это связано с тем, что метод оптимизации учитывает только значения f(y) и f(z) на текущем интервале, не имея информации о глобальной структуре функции.
- 2. Вывод: Алгоритм будет корректно сходиться к минимуму, если начальный интервал охватывает один из локальных минимумов. Если интервал включает оба минимума, то результат зависит от расположения точек анализа y и z.

Пример 2: Интервал с отсутствием унимодальности Рассмотрим функцию $f(x) = \sin(x)$ на интервале $[0,4\pi]$. На этом интервале функция имеет множество локальных экстремумов (минимумы в точках $x=\pi,3\pi$ и максимумы в точках $x=2\pi,4\pi$).

- При применении метода: Алгоритм будет "зацикливаться" между локальными минимумами и максимумами, так как длина интервала уменьшается, но не гарантирует нахождение глобального минимума.
- 2. Вывод: Для функций с несколькими экстремумами метод золотого сечения может давать ошибочные результаты или не сходиться к глобальному минимуму. Это подчеркивает важность выбора интервалов, где функция унимодальна.

9. Дополнительные задания для алгоритма золотого сечения

• Доказательство выбор точек образует золотое сечение

Метод золотого сечения делит интервал неопределённости в пропорции золотого сечения. Золотое сечение определяется как отношение, при котором длина большей части к меньшей равна длине всего отрезка к большей:

$$\varphi = \frac{b-a}{x-a} = \frac{x-a}{b-x}$$

где

$$\varphi = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

Доказательство:

1. Определение точек y_k и z_k :

Точки на текущем интервале вычисляются как: $y_k = a_k + (1-\varphi) \cdot (b_k - a_k), \ z_k = a_k + \varphi \cdot (b_k - a_k),$ где a_k и b_k — границы интервала на k-й итерации.

2. Свойства деления:

После вычисления значений $f(y_k)$ и $f(z_k)$ выбирается новый интервал:

- Если $f(y_k) \leq f(z_k)$, то $\left[a_{\{k+1\}}, b_{\{k+1\}}\right] = [a_k, z_k].$
- Если $f(y_k) > f(z_k)$, то $\left[a_{\{k+1\}}, b_{\{k+1\}}\right] = [y_k, b_k].$
- 3. Сохранение пропорции:

На каждой итерации новый интервал сокращается в пропорции φ . Формулы для y_k и z_k гарантируют, что интервал остаётся в пропорции золотого сечения.

Алгоритм сохраняет пропорцию золотого сечения, так как точки y_k и z_k вычисляются с использованием числа $\varphi.$

• Погрешность метода золотого сечения

Формула погрешности

На каждой итерации длина интервала неопределённости уменьшается в φ раз:

$$L_{\{k+1\}}=arphi\cdot L_k$$
, где $L_k=b_k-a_k$. После n итераций длина интервала: $L_n=arphi^n\cdot L_0$, где $L_0=b_0-a_0$ — начальная длина интервала. Погрешность метода определяется как половина длины интервала: $arepsilon_n=\frac{L_n}{2}=\frac{arphi^n\cdot L_0}{2}$.

• Число итераций для заданной точности

Если требуется точность ε , то n определяется из условия: $L_n=2\cdot \varepsilon$. Подставляя $L_n=\varphi^n\cdot L_0$: $\varphi^n\cdot L_0=2\cdot \varepsilon$. Решая относительно n:

$$n = \frac{\ln\left(\frac{2 \cdot \varepsilon}{L_0}\right)}{\ln(\varphi)}$$

_

Вывод

- 1. Алгоритм сохраняет пропорцию золотого сечения на каждой итерации благодаря точному выбору точек y_k и z_k .
- 2. Погрешность уменьшается экспоненциально, и минимальное количество итераций для точности ε можно вычислить как:

$$n = \frac{\ln\left(\frac{2 \cdot \varepsilon}{L_0}\right)}{\ln(\varphi)}.$$

Общий вывод по анализу:

- Алгоритм успешно работает для строго унимодальных функций, где на интервале присутствует только один экстремум.
- Для функций с несколькими экстремумами или отсутствием унимодальности метод может сходиться к локальному, а не глобальному минимуму.
- Чтобы избежать ошибок, необходимо либо ограничить начальный интервал унимодальными участками, либо использовать дополнительные проверки глобальной структуры функции.

1.3. Практический этап

Написан в solution1.py

2. Задача 2

2.1. Аналитический этап

- 1. Выбор функций Возьмём две функции, у которых можно доказать существование корней:
 - $f_1(x) = x^2 4$.
 - $f_2(x) = \sin(x) 0.5$.

2. Нахождение корней

• Для первой функции $f_1(x)$:

Решим уравнение $x^2 - 4 = 0$. Корни: x = -2 и x = 2.

• Для второй функции $f_2(x)$:

Рассмотрим отрезок $[0, 2\pi]$. Уравнение $\sin(x) - 0.5 = 0$ имеет корни:

$$x_1 = \arcsin(0.5) = \frac{\pi}{6} \text{ if } x_2 = \pi - \frac{\pi}{6} = \frac{5\pi}{6}.$$

- 3. Доказательство существования корней
 - Для $f_1(x)$: На отрезке [-3,3] функция $f_1(x)$ принимает значения разного знака: $f_1(-3)=5, f_1(0)=-4$. По теореме Больцано корень существует.
 - Для $f_2(x)$: На отрезке $[0,2\pi]$ значения функции $\sin(x)-0.5$ изменяются от -0.5 до 1. Применяя теорему о промежуточных значениях, доказываем существование корней.

2.2. Практический этап

См подробнее в solution2.py

- 1. Реализация алгоритма нахождения корня Используем метод половинного деления:
 - Зададим начальный интервал [a, b] и точность $\varepsilon > 0$.
 - Повторяем до тех пор, пока длина интервала $b-a>\varepsilon$:
 - Находим середину интервала $c = \frac{a+b}{2}$.
 - Если f(c) = 0 или длина интервала меньше ε , возвращаем c.
 - Иначе обновляем интервал:
 - Если $f(a) \cdot f(c) < 0$, то b = c.
 - Иначе a = c.
- 2. **Критерий остановки** Алгоритм завершается, когда длина интервала становится меньше ε .
- 3. Изучение числа итераций Для функции $f_1(x)$ на интервале [-3,3] при $\varepsilon=0.01$ потребуется:

$$n = \left[rac{\log_2(b-a)}{arepsilon}
ight] = \left[\log_2\!\left(rac{6}{0.01}
ight)
ight] pprox 10$$
 итераций.

Для функции $f_2(x)$ на интервале [0,2pi]: аналогично вычисляем.

4. **Среднеквадратичное отклонение (СКО)** Реализуем вычисление СКО для результатов, используя формулу:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - x^2)}$$

5. **Модификация программы** Если корень отсутствует, выводим сообщение об ошибке и проверяем границы интервала. Например:

Если $f(a) \cdot f(b) > 0$, то корень отсутствует на заданном интервале.