LSTAT 2040 - TP 4

Théorie asymptotique

Exercice 1

Soit X_1, \ldots, X_n un échantillon iid de loi $\operatorname{Exp}(\lambda)$. Prouver que $\hat{\lambda} = \overline{X}_n^{-1}$ est un estimateur consistant pour λ :

- (a) à partir de la définition;
- (b) à partir de la MSE-consistance.

Exercice 2

Soit X_1, \ldots, X_n un échantillon iid de loi $N(\theta, \theta)$ où $\theta > 0$. Trouver deux estimateurs sans biais de θ . Ces estimateurs sont-ils consistants pour θ ?

Exercice 3

Soit X_1, \ldots, X_n un échantillon iid de même loi dont la cdf commune est notée F. Notons également $X_{(n)} := \max(X_1, \ldots, X_n)$ et $X_{(1)} := \min(X_1, \ldots, X_n)$.

(a) Si F est la cdf d'une loi uniforme $Unif(0,\theta)$ pour $\theta > 0$, montrer que

$$Y_n := \frac{n(\theta - X_{(n)})}{\theta} \xrightarrow{d} Y,$$

où $Y \sim \text{Exp}(1)$.

(b) Si F est telle que $\lim_{x\to 0} F(x)/x = \lambda$, pour $0 < \lambda < \infty$, montrer que

$$Z_n := nX_{(1)} \xrightarrow{d} Z,$$

où $Z \sim \text{Exp}(\lambda)$.

Exercice 4

Soit X_1, \ldots, X_n un échantillon iid. Notons $X_{(n)} := \max(X_1, \ldots, X_n)$.

(a) Si $X_1 \sim \text{Beta}(1, \beta)$, donner une valeur de $\nu \in \mathbb{R}$ telle que

$$n^{\nu}\left(1-X_{(n)}\right)$$

convergence en distribution.

(b) Si $X_1 \sim \text{Exp}(1)$, donner une suite réelle $(a_n)_{n \in \mathbb{N}}$ telle que

$$X_{(n)} - a_n$$

convergence en distribution.

Exercice 5

Soit X_1, \ldots, X_n un échantillon iid de distribution Rayleigh (σ) . On considère deux estimateurs pour son paramètre :

$$\hat{\sigma}_1 := \overline{X}_n \sqrt{\frac{2}{\pi}}$$
 et $\hat{\sigma}_2 := \sqrt{\frac{1}{2} \overline{X^2}_n}$.

Notons que pour tout $k \in \mathbb{N}$, on a

$$\mathrm{E}[X_1^k] = \sigma^k 2^{k/2} \Gamma\left(1 + \frac{k}{2}\right)$$

et pour tout $r \in \mathbb{N}$,

$$\Gamma\left(\frac{1}{2} + r\right) = \frac{(2r)!}{4^r r!} \sqrt{\pi}.$$

- (a) Déterminer la distribution asymptotique de $(\overline{X}_n, \overline{X}_n^2)$.
- (b) Déduire la distribution asymptotique de $\hat{\sigma}_1$ et $\hat{\sigma}_2$.
- (c) Calculer l'efficacité relative asymptotique de $\hat{\sigma}_1$ par rapport à $\hat{\sigma}_2$. Quel estimateur est préférable au regard de ce critère ?
- (d) L'estimateur choisi au point précédent est-il asymptotiquement efficace?
- (e) Existe-t-il un estimateur efficace?
- (f) Existe-t-il une fonction du paramètre σ pour laquelle un estimateur efficace existe?

Exercice 6

Soit X_1, \ldots, X_n un échantillon iid de distribution Beta $(1, \beta)$. On considère deux estimateurs pour son paramètre :

$$\hat{\beta}_1 := \frac{1}{\overline{X}_n} - 1$$
 et $\hat{\beta}_2 := \frac{2\overline{X}_n}{\overline{X}_n^2} - 2$.

Notons que pour tout $k \in \mathbb{N}$, on a

$$E[X_1^k] = \prod_{r=0}^{k-1} \frac{1+r}{1+\beta+r}.$$

- (a) Déterminer la distribution asymptotique de $\hat{\beta}_1$.
- (b) Déterminer la distribution asymptotique de $\hat{\beta}_2$.
- (c) Comparer les variances asymptotiques des deux estimateurs proposés. Un des deux estimateurs est-il préférable uniformément en β sur base de ce critère ? Si non, spécifier quel estimateur est préférable en fonction de la valeur de β .
- (d) Un des deux estimateurs est-il asymptotiquement efficace?
- (e) Existe-t-il un estimateur efficace?
- (f) Existe-t-il une fonction du paramètre β pour laquelle un estimateur efficace existe ?

Exercice 7

Soit X_1, \ldots, X_n un échantillon iid de distribution $\mathrm{Be}(\pi)$. On considère l'estimateur suivant pour son paramètre .

$$\hat{\pi} := \overline{X}_n.$$

- (a) Quelle est la distribution asymptotique du vecteur $(\hat{\pi}, \hat{\pi}(1-\hat{\pi}))$?
- (b) Déduire du point précédent la distribution asymptotique de l'estimateur du coefficient de variation donné par $\sqrt{\hat{\pi}(1-\hat{\pi})}/\hat{\pi}$.
- (c) L'estimateur proposé au point (b) est-il asymptotiquement efficace?