

Machine Learning with Graphs (MLG)

High-order Link Prediction

Can we predict combos of links?

Cheng-Te Li (李政德)

Institute of Data Science
National Cheng Kung University

TANDILA LINE PORTO

chengte@mail.ncku.edu.tw

Canonical networks are everywhere slide, but with a hidden purpose!

Communications

nodes are people/accounts edges show info. exchange

Drug compounds

nodes are substances edge between substances that appear in the same drug

Collaboration

nodes are people/groups edges link entities working together

Physical proximity

nodes are people/animals edges link those that interact in close proximity

Real-world systems are composed of "higher-order" interactions that we often reduce to pairwise ones

Communications

nodes are people/accounts emails often have several recipients, not just one

Drug compounds

nodes are substances drugs are made up of several substances

Collaboration

nodes are people/groups teams are made up of small groups

Physical proximity

nodes are people/animals people often gather in small groups

High-order Link Prediction

Data.

$$t_1$$
: {1, 2, 3, 4}

$$t_2$$
: {1, 3, 5}

$$t_3$$
: {1,6}

$$t_4$$
: {2,6}

$$t_5$$
: {1, 7, 8}

$$t_6$$
: {3,9}

 t_7 : {5,8}

 t_8 : $\{1, 2, 6\}$

 Observe simplices up to some time t

Using this data, we want to predict what groups of > 2 nodes will appear in a simplex in the future

Such structure prediction cannot be considered in classical link prediction

Potential applications

- Novel combinations of drugs for treatments.
- Group recommendation in social networks.
- Team formation

Datasets on High-order Interactions

- 1) Coauthorship in different domains
- 2) Emails with multiple recipients
- 3) Tags on Q&A forums
- 4) Threads on Q&A forums
- 5) Contact/proximity measurements
- 6) Musical artist collaboration
- 7) Substance makeup and classification codes applied to drugs the FDA examines
- 8) U.S. Congress committee memberships and bill sponsorship
- 9) Combinations of drugs seen in patients in ER visits

https://math.stackexchange.com/q/80181

How big are these datasets?

- Not large in terms of #(bytes) to store
- Large in terms of set structure complexity
- 1 size-5 simplex induces 31 subsimplices

Dataset	# nodes	# timestamped simplices		
coauth-DBLP	1.92M	3.70M		
coauth-MAG-Geology	1.26M	1.59M		
coauth-MAG-History	1.01M	1.81M		
music-rap-genius	56.8K	225K		
tags-stack-overflow	50.0K	14.5M		
tags-ask-ubuntu	3.00K	271K		
tags-math-sx	1.63K	822K		
threads-stack-overflow	2.7M	11.3M		
threads-math-sx	176K	720K		
threads-ask-ubuntu	126K	193K		
NDC-substances	5.31K	112K		
NDC-classes	1.16K	49.7K		
DAWN	2.56K	2.27M		
congress-bills	1.72K	261K		
congress-committees	863	679		
email-Eu	998	235K		
email-Enron	143	10.9K		
contact-high-school	327	172K		
contact-primary-school	242	107K		

High-order data → Weighted Projected Graph

 Thinking of higher-order data as a weighted projected graph with "filled-in" structures

Data.

 t_1 : {1, 2, 3, 4}

 t_2 : {1, 3, 5}

 t_3 : {1, 6}

 t_4 : {2, 6}

 t_5 : {1, 7, 8}

 t_6 : {3, 9}

 t_7 : {5,8}

 t_8 : {1, 2, 6}

Pictures to have in mind.

Projected graph W

 W_{ij} : # of simplices containing nodes i and j

An Example on Projected Graph

"Open Triangle" vs. "Closed Triangle"

"Open Triangle"

each pair has been in a simplex together but all 3 nodes have never been in the same simplex

"Closed Triangle"

there is some simplex that contains all 3 nodes

Fraction of Open Triangles

- Lots of variation in the fraction of open triangles vs. edge density
 - Datasets from the same domain are similar

Edge density = #edges / C_2^n

Domain separation also occurs at the local level

- Randomly sample 100 nodes per dataset and measure log of average degree and fraction of open triangles
- Logistic regression model to predict domain (co-authorship, tags, threads, email, contact)
- 75% model accuracy vs. 21% with random guessing

Simplical Closure

- Q1 What are the common ways in which new simplices appear?
- Q2 How do new closed triangles appear?

Ways that New Simplices Appear

Groups of nodes go through trajectories until finally reaching a "simplicial closure event"

$$t_1: \{1, 2, 3, 4\}$$

 $t_2: \{1, 3, 5\}$
 $t_3: \{1, 6\}$
 $t_4: \{2, 6\}$
 $t_5: \{1, 7, 8\}$
 $t_6: \{3, 9\}$
 $t_7: \{5, 8\}$
 $t_8: \{1, 2, 6\}$

We focus on simplicial closure on 3 nodes

Ways that New Simplices Appear

Groups of nodes go through trajectories until finally reaching a "simplicial closure event"

Bin weighted edges into "weak" and "strong ties" in projected graph W_{ij} : # of simplices containing nodes i and j

- Weak ties: $W_{ij} = 1$ (one simplex contains i and j)
- Strong ties: $W_{ij} \ge 2$ (at least two simplices contain i and j)

How do new closed triangles appear?

Analyzing the temporal dynamics in aggregate!

Coauthorship data of scholars publishing in history W_{ij} = # of simplices containing nodes i and j

Simplicial closure depends on structure in projected graph

• First 80% of the data (in time) → record configurations of triplets not in closed triangle

Remainder of data → find fraction that are now closed triangles

Increased edge density increases closure probability.

Increased tie strength increases closure probability.

Tension between edge density and tie strength.

Increased edge density increases closure probability.

Increased simplicial tie strength increases closure probability.

Tension b/w edge density simplicial tie strength.

High-order Link Prediction

- Observe simplices up to some time t
- Using this data, the goal is to predict what groups
 of > 2 nodes will appear in a simplex in the future

Insights from Structural Analysis

 Structural analysis tells us what we should be looking at for prediction

1) Edge density matters!

→ Focus our attention on predicting which open triangles become closed triangles (intelligently reduce search space)

2) Tie strength matters!

→ Various ways of incorporating this information

Feature Engineering for Open Triangles

- Extracting features on first 80% of data
- Four classes of score functions s(i, j, k)
- 1) Functions of W_{ij} , W_{jk} , W_{ki}
 - arithmetic mean, geometric mean, etc.

- 2) Look at common neighbors of the three nodes
 - Generalized Jaccard, Adamic-Adar, etc.
- 3) Use "whole-network" similarity scores on projected graph
 - Sum of PageRank or Katz scores amongst edges
- 4) Learn from data
 - Train a logistic regression model with features
- After computing scores, predict that open triangles with highest scores will be closed triangles in final 20% of data

(1) Functions of W_{ij} , W_{jk} , W_{ki}

- 1. Arithmetic mean $s(i, j, k) = (W_{ij} + W_{ik} + W_{jk})/3$
- 2. Geometric mean $s(i, j, k) = (W_{ij}W_{ik}W_{jk})^{1/3}$
- 3. Harmonic mean $s(i,j,k) = 3/(W_{ij}^{-1} + W_{ik}^{-1} + W_{jk}^{-1})$
- 4. Generalized mean $s(i,j,k) = m_p(W_{ij},W_{jk},W_{ik}) = (W_{ij}^p + W_{jk}^p + W_{ik}^p)^{1/p}$

 W_{ij} = # of simplices containing nodes i and j

(2) s(i, j, k) is a function neighbors

1. Number of common neighbors of all 3 nodes

$$s(i,j,k) = |N(i) \cap N(j) \cap N(k)|$$

2. Generalized Jaccard coefficient

$$s(i,j,k) = \frac{|N(i) \cap N(j) \cap N(k)|}{|N(i) \cup N(j) \cup N(k)|}$$

3. Preferential attachment $s(i, j, k) = |N(i)| \cdot |N(j)| \cdot |N(k)|$

$$N(i) = \{j, k, l, m, x, y, z\}$$

$$N(j) = \{i, k, l, m, r\}$$

$$N(k) = \{i, j, l, m\}$$

2023/3/21 Prof. Cheng-Te Li @ NCKU

(3) s(i, j, k) is built from "whole-network" similarity scores on edges

$$s(i,j,k) = S_{ij} + S_{ji} + S_{jk} + S_{kj} + S_{ik} + S_{ji}$$

1. PageRank (unweighted or weighted)

$$S = (I - \alpha W D_W^{-1})^{-1}$$

$$S = (I - \alpha A D_A^{-1})^{-1}$$

2. Katz (unweighted or weighted)

$$S = (I - \beta W)^{-1} - I$$

$$S = (I - \beta A)^{-1} - I$$

$$A = \min(W, 1)$$

$$D_W = diag(W1)$$

$$D_A = diag(A1)$$

(4) s(i, j, k) is learned from data

- 1) Split data into training and validation sets
- 2) Compute features of (i, j, k) from previous ideas using training data
- 3) Throw features + validation labels into machine learning blender → learn model
- 4) Re-compute features on combined training + validation → apply model on the data

Performance Comparison

Table 3. Open triangle closure prediction performance based on eight models: harmonic, geometric, and arithmetic means of the three edge weights; three-way Adamic-Adar coefficient (A-A); preferential attachment (PA); Katz similarity; personalized PageRank similarity (PPR); and a feature-based supervised logistic regression model (Log. reg.)

		Harmonic	Geometric	Arithmetric					
random	Dataset	mean	mean	mean	A-A	PA	Katz	PPR	Log. reg.
1.68e-03	coauth-DBLP	1.49	1.59	1.50	1.60	0.74	1.51	1.83	3.37
7.16e-04	coauth-MAG-history	1.69	2.72	3.20	5.82	2.49	3.40	1.88	6.75
3.35e-03	coauth-MAG-geology	2.01	1.97	1.69	2.71	0.97	1.74	1.26	4.74
6.82e-04	music-rap-genius	5.44	6.92	1.98	2.10	2.15	2.00	2.09	2.67
1.84e-04	tags-stack-overflow	13.08	10.42	3.97	6.63	2.74	3.60	1.85	3.37
1.08e-03	tags-math-sx	9.08	8.67	2.88	6.34	2.81	2.71	1.55	13.99
1.08e-03	tags-ask-ubuntu	12.29	12.64	4.24	7.51	5.63	4.15	2.54	7.48
1.14e-05	threads-stack-overflow	23.85	31.12	12.97	3.19	3.89	11.54	4.06	1.53
5.63e-05	threads-math-sx	20.86	16.01	5.03	23.32	7.46	4.86	1.18	47.18
1.31e-04	threads-ask-ubuntu	78.12	80.94	29.00	30.82	6.62	32.31	1.51	9.82
1.17e-03	NDC-substances	4.90	5.27	2.90	5.97	4.46	2.93	1.83	8.17
6.72e-03	NDC-classes	4.43	3.38	1.82	0.99	2.14	1.34	0.91	0.62
8.47e-03	DAWN	4.43	3.86	2.13	4.77	1.45	2.04	1.37	2.86
6.99e-04	congress-committees	3.59	3.28	2.48	5.04	1.31	2.59	3.89	7.67
1.71e-04	congress-bills	0.93	0.90	0.88	0.66	0.55	0.78	1.07	107.19
1.40e-02	email-Enron	1.78	1.62	1.33	0.87	0.83	1.28	3.16	0.72
5.34e-03	email-Eu	1.98	2.15	1.78	1.37	1.55	1.79	1.75	3.47
2.47e-03	contact-high-school	3.86	4.16	2.54	2.00	1.13	2.53	2.41	2.86
2.59e-03	contact-primary-school	5.63	6.40	3.96	3.21	0.94	4.02	4.31	6.91

Performance is AUC-PR relative to the random baseline, i.e., relative to the fraction of open triangles that close. The top performance number for each dataset is in boldface type.

Lessons Learned

- Predicting pretty well on most datasets
 - 4x to 107x better than random in MAP
 - Note: only predicting on open triangles
- Thread co-participation and co-tagging on stack exchange are consistently easy to predict
- Simply averaging W_{ij} , W_{jk} , W_{ki} consistently performs well

How about Generalized Mean?

 Generalized means of edges weights are often good predictors of new 3-node simplices appearing

26

Opportunities

[for your final project]

https://github.com/arbenson/ScHoLP-Tutorial

- 1) Higher-order data is pervasive! We have ways to represent data, and higher-order link prediction is a general framework for comparing models and methods
- 2) Develop fancy features/embeddings to outperform our baselines
- 3) Why does generalized mean between harm. and geom. work well?
- 4) Computation is more challenging and complex for 4-node patterns