Artin Algebra

Zixun Xiong

February 2023

Contents

1	Intr	roduction	2
	1.1	Theorem	2
	1.2	Corollary	2
	1.3	Proposition	2
	1.4	Theorem	2
	1.5	Box	2
	1.6	Definition	2
2	Gro	oups	3
	2.1	Groups and subgroups	3
		2.1.1 group	3
		2.1.2 permutation	3
		2.1.3 symmetric group	4
		2.1.4 Subgroup	4

1 Introduction

	TNI.						
1.1	Theorem						
Th	eorem						
$_{ m this}$	s is						
1.2	Corollary						
Corollary							
1.3	Proposition						
Pro	oposition						
1.4	Theorem						
Ler	mma						
1.5	Box						
1.6	Definition						
Definition							

2 Groups

2.1 Groups and subgroups

2.1.1 group

Group

A group is a set together with a law of composition that has the following properties:

- $\forall a, b, c \in G, (ab)c = a(bc)$
- $\exists 1 \in G, \forall a \in G, \text{ s.t. } a1 = 1a = a$
- $\forall a \in G, \exists b \in G, \text{ s.t.}, ab = ba = 1$

order of group it's the number of elements it contains.

$$|G| = number of elements$$

Here are some intuition for associative law:

$$T \xrightarrow{f} T \xrightarrow{g} T \xrightarrow{h} T \longleftrightarrow g \circ f$$

Law of Cancellation

a, b,
$$c \in G$$
, if $ab = ac$ or $ba = ca$, then $b = c$ if $ab = b$ or $ba = b$, then $a = 1$

It needs to be mentioned that a must be invertible.

2.1.2 permutation

permutation

A permutation of a set S is a bijective map p from a set S to itself:

$$p: S \to S$$

for example, p is a permutation over set $\{1, 2, 3, 4\}$:

i	1	2	3	4	5
p(i)	3	5	4	1	2

Since p(3) = 4, P(4) = 1, p(1) = 3, we have $(3 \ 4 \ 1)$. Similarly, we have $(2 \ 5)$. Thus we can write P as $(2 \ 5)$, $(3 \ 4 \ 1)$.

The product of 2 perturbations can be written as: $qp = [(1 \ 4 \ 5 \ 2)] \circ [(2 \ 5)(3 \ 4 \ 1)] = (3 \ 5 \ 1)$. (hint: $qp(3) = q(3) \circ p(3)$, for p 3 \rightarrow 4, for q 4 \rightarrow 5, thus for pq, 3 \rightarrow 5)

2.1.3 symmetric group

symmetric group

The group of permutations of the set of indices $\{1,2,\cdots n\}$, denoted by S_n

Attention, a symmetric group is a group of mapping, working on a set of mapping.

In S_2 , one of elements(2!) must be 1, then we call it $\{1, g\}$, then we have a table gg, 1g g1 g1 g1 only gg is not defined. Assume gg = g, then according to law of cancellation, we have g = 1, it's forbidden, thus we only have gg = 1.

In S_3 , let $x = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 2 \end{pmatrix}$, then we have:

$$x^3 = 1$$
 $y^2 = 1$ $yx = x^2y$ $xy = yx^2$ (1)

thus we can eliminate some perturbations and get all of them in a distinctive way:

$$S_3 = \{1, x, x, x^2, y, xy, x^2y\}$$
 (2)

This is an important example, since $xy \neq yx$, it's the smallest group whose law of composition is not commutative.

2.1.4 Subgroup

subgroup

A subset H of group G is a subgroup if it has the following properties:

• Closure: If a and b are in H, then ab are in H

• Identity: 1 is in H

• Inverse: if a is in H then a^-1 is in H