# 第5章 存储器技术

- 存储器概述
- 半导体随机存储器
- 高速缓冲存储技术
- 虚拟存储技术

## ● 存储器概述

存放程序和数据。

根据存储器件的性能及使用方法不同,存储器有不同分类方法。

## ■功能分类

1) 内存储器(亦称主存储器)

存取速度和CPU处理速度相当;存储器容量受到地址总线的限制;CPU可通过三总线(地址、数据、控制)直接对它进行访问;主要采用半导体存储器。

2) 外存储器(亦称辅助存储器)

存取速度比CPU处理速度慢;存储器容量不受地址总线的限制;CPU必须通过专用的I/0接口进行访问;主要采用光、磁介质存储器。

3) 高速缓冲存储器

存储内容为主存副本,速度快,不计入计算机存储系统的总容量。

## ● 存储器概述

#### ■ 存取方式分类

- 1) 随机存取存储器
- 2) 只读存储器
- 3) 闪速存储器
- 4) 顺序存储器
- 5) 直接存取存储器

#### ■ 存储介质分类

- 1) 磁芯存储器
- 2) 半导体存储器
- 3) 磁表面存储器
- 4) 光存储器

#### ■ 信息可保存性

非永久性、永久性

#### ■ 串并行存取方式

并行、串行



#### ■存储器的主要技术指标

1. 速度 通常用存取时间或存取周期表示

存取时间:访问时间,启动一次存储器存取操作到完成该操作所经历的时间。

存取周期:存储周期或读写周期,对存储器进行连续两次存取操作所需要的最小时间间隔。

2. 存储容量 常用存储有多少个存储单元,每个存储单元又有多少个二进制位来表示,也就是说存储容量由二部分组成:

存储容量 = 存储单元数 \* 每单元位数 如: 256 \* 4 1024 \* 4 (1K \* 4)

- 3. 存储带宽 单位时间内存储器所存取的信息量,位/秒,或字节/秒为单位,如B:带宽,F:存储器频率,D:存储器数据线位数 B=F×D/8
- 4. 存储器的可靠性 通常用平均故障时间衡量

#### ■ 存储器的基本结构框架

内部组成一般可分为存储体、地址译码器、读写控制电路三大部分。



#### ■ 存储系统的层次结构



#### ■半导体随机存储器

#### 1. 静态SRAM存储单元电路



图 5.4 SRAM 存储元的电路原理图和逻辑结构框图



图 5.5 SRAM 存储单元连接结构框图

### 静态RAM的特点:

- 1)只要电源接通所存储的信息就不会丢失;
- 2)不要刷新电路;
- 3)容量较动态RAM为小。

#### 2. 静态SRAM存储基本存储阵列



#### 3. 存储器芯片的逻辑结构



#### 4. 典型芯片 6116 (2K×8)



| A7 | P24-2<br>P24-1<br>D24-2<br>D24-1<br>SO24-2<br>SO24-4 | 24 |
|----|------------------------------------------------------|----|
|----|------------------------------------------------------|----|

| Name      | Description       |
|-----------|-------------------|
| Ao - A10  | Address Inputs    |
| VOo - VO7 | Data Input/Output |
| ČŠ        | Chip Select       |
| WE        | Write Enable      |
| ŌĒ        | Output Enable     |
| Vcc       | Power             |
| GND       | Ground            |

## 6116的运行方式

| Mode    | <del>CS</del> | ŌĒ | WE | I/O     |
|---------|---------------|----|----|---------|
| Standby | н             | х  | Х  | High-Z  |
| Read    | L             | L  | н  | DATAout |
| Read    | L             | Н  | н  | High-Z  |
| Write   | L             | х  | L  | DATAN   |

#### ■动态DRAM存储器

1. 动态RAM存储单元电路



#### 动态RAM的特点:

- 1)每隔大约2ms必须对数据进行刷新,否则所存储的信息 就会丢失;
- 2)要有刷新电路;
- 3)容量较静态RAM为大。

#### 2. 动态DRAM存储阵列



图 5.9 1M×4b DRAM 结构图和逻辑图

#### DRAM刷新控制:

- 1)时序功能;
- 2)地址处理功能;
- 3)仲裁功能。

## 3 DRAM的刷新

- 1)集中式刷新
- 2)分散式刷新
- 3)异步刷新



### 4 典型芯片 2164 (64K×1)



#### ■ 只读存储器(ROM)

#### 1 掩膜ROM基本原理



#### 2 PROM基本原理



每一位三级管的发射极上串接一个熔丝,把字选线和位线连通(表示0),编程时加入大电流把熔丝烧断(表示1)。

#### 3 EPROM基本原理

可多次编程,紫外线可檫除。



当浮栅上无电荷时, D、S 间不导通, 位线输出为1。



 $V_{CC}$ 

#### ■ EPROM典型芯片 2732 (4KX8)



#### 2732A的方式选择



| 引脚   |    |                            |          |                                 |
|------|----|----------------------------|----------|---------------------------------|
| 方式   | CE | OE/v <sub>pp</sub>         | $V_{CC}$ | $\mathbf{O}_0$ — $\mathbf{O}_7$ |
| 读    | L  | L                          | +5V      | 输出                              |
| 输出禁止 | L  | Н                          | +5V      | 高阻                              |
| 待用   | Н  | X                          | +5V      | 高阻                              |
| 编程   |    | $\mathbf{V}_{\mathtt{PP}}$ | +5V      | 输入                              |
| 编程   | Н  | $\mathbf{V}_{PP}$          | +5V      | 高阻                              |
| 禁止   |    |                            |          |                                 |
| 检验   | L  | $\mathbf{V}_{\mathtt{PP}}$ | +5V      | 输出                              |

待用: 在待用方式下工作电流从125mA降为35mA。 编程: 在数据地址稳定后,/CE端加入宽度为50ms的脉冲。

#### ■ 存储器与CPU的连接要考虑的问题

- 1. 总线的负载能力;
- 2. CPU与存储器的速度配合;
- 3. 存储器容量、地址的分配和片选;
- 4. 数据线和控制线的连接。

#### ■ 主存储器容量的扩展

● 位扩展

存储芯片每个单元的数据位不能满足存储器需要的位数,进行位扩展,容量没有增加。

#### • 字扩展

存储器容量的扩展,地址的扩展。

#### 1. 线选法

线选法即直接将地址线高位接往某存贮芯片的片选端,低位地址 接芯片内地址线

特点:线路简单,可用于较小的微机系统中,不能充分利用系统的存贮器空间,地址空间不连续,给编程带来了一定的困难



#### 2. 全译码法

N条低位地址线接存贮器芯片的地址端,进行片内存贮单元寻址; CPU地址总线中剩下的高位地址线全部接往地址译码器的输入端,译码后作为各芯片的片选信号,实现对存贮芯片的片选。

特点: 需用译码器, 电路复杂, 应用于存贮芯片较多时; 地址空间连续



#### 3. 部分译码法

地址线高位进行译码产生片选信号时,有的地址线未参加译码,这些地址线在需要时可直接与芯片片选信号相连,以对芯片进行线选。

部分译码法常用的典型译码器为74LSl38(或Intel8205),即3—8译码器。它有3个输入端,3个控制端及8个输出端。







一个8位微机系统的存储器子系统

| 3-6                | A19 | A <sub>18</sub> | A <sub>17</sub> | A <sub>16</sub> | A <sub>15</sub> | A14 | A <sub>13</sub> | A <sub>12</sub> | A <sub>11</sub> | A <sub>10</sub> | Ag         | A <sub>8</sub> | A <sub>7</sub> | A <sub>6</sub> | A <sub>5</sub> | A <sub>4</sub> | A <sub>3</sub> | A <sub>2</sub> | Aı | A   |
|--------------------|-----|-----------------|-----------------|-----------------|-----------------|-----|-----------------|-----------------|-----------------|-----------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----|-----|
|                    | Gı  | 8               | G               | 2A              |                 | C   | В               | A               | 9               |                 |            |                |                |                | 2              |                |                |                |    |     |
| EPROM1             | 1   | 1               | 1               | 1               | 1               | 0   | 0               | 0               | 0               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | 0   |
|                    | 1   | 1               | 1               | 1               | 1               | 0   | 0               | 0               | 1               | 1               | 1          | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1  | 1   |
| EPROM2             | 1   | 1               | 1               | 1               | 1               | 0   | 0               | 1               | 0               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | 0   |
| A. I               | 1   | 1               | 1               | 1               | 1               | 0   | 0               | 1               | 1               | 1               | 1          | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1  | 1   |
| EPROM3             | 1   | 1               | 1               | 1               | 1               | 0   | 1               | 0               | 0               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | . 0 |
| A- 2               | 1   | 1               | 1               | 1               | 1               | 0   | 1               | 0               | 1               | 1               | 1          | 1 -            | 1              | 1              | 1              | 1              | 10             | <b>A1</b>      | 1  | 1   |
| EPROM4             | 1   | 1               | 1               | 1               | 1               | 0   | 1               | 1               | 0               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | 0   |
| 3 - T              | 1   | 1               | 1               | 1               | 1               | 0   | 1               | 1               | 1               | 1               | 1          | <b>1</b> -     | _1             | 1              | 1              | 1              | 10             | 1              | 1  | 1   |
| SRAM1              | 1   | 1               | 1               | 1               | 1               | 1   | 0               | 0               | 0               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | 0   |
| 10%1.              | 1   | 1               | 1               | 1               | 1               | 1   | 0               | 0               | 0               | 1               | 1          | 1,             | 1              | 1              | 1              | 1              | 1              | 1              | 1  | 1   |
| SRAM2              | 1   | 1               | 1               | 1               | 1               | 1   | 0               | 0               | 1               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | C   |
| 4-6                | 1   | 1               | 1<              | 1               | 1               | 1   | 0               | 0               | 1               | 1               | 1          | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1  | 1   |
| SRAM3              | 1   | 1               | 1               | 1               | 1               | 1   | 0               | 1               | 0               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 0  | O   |
| <b>超出8 片 216</b> - | 1   | 1               | 1               | 11              | 1               | 1   | 0               | 1               | 0               | 21              | <b>1</b> e | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1  | 1   |
| SRAM4              | 1   | 1               | 1               | 1               | 1               | 1   | 0               | 1               | 1               | 0               | 0          | 0              | 0              | 0              | 0              | 0              | 0              | 0              | 26 | C   |
| THE REPORT OF THE  | 1   | 1               | 1               | 1               | 1               | 1   | 0               | 1               | 1               | 1               | i          | 1              | 1              | 1              | 1              | 1              | 1              | 1              | 1  | 1   |

#### 存储器芯片的地址范围为:

EPROM1: F8000H----F8FFFH

EPROM2: F9000H----F9FFFH

EPROM3: FA000H---FAFFFH

EPROM4: FB000H---FBFFFH

SRAM1: FC000H---FC7FFH

SRAM2: FC800H---FCFFFH

SRAM3: FD000H---FD7FFH

SRAM4: FD800H---FDFFFH

例: CPU具有16条地址线,16条双向数据线,控制总线中与主存有关信号: MREQ,R/W。主存按字编址,其地址空间分配如下:0~1FFFH为系统程序区,由EPROM芯片组成;从2000H起共24KB地址空间为用户程序区;最大4KB地址空间为系统程序工作区。现有如下芯片:

EPROM:  $4KB \times 8b$ ,  $8K \times 8b$ 

SRAM:  $16K \times 1b$ ,  $2K \times 8b$ ,  $4K \times 8b$ ,  $8K \times 8b$ 

- (1) 请选择适当芯片,按要求设计主存储器。
- (2) 可选用3-8译码器, 画出主存储器与总线逻辑连线图。

#### 主存空间分配及选用的存储芯片

| 地址空间          | 空间功能    | 可选用的存储类型 |
|---------------|---------|----------|
| 0000H~1FFFH   | 系统程序区   | EPROM    |
| 2000H~7FFFH   | 用户程序区   | SRAM     |
| 8000H~EFFFH   | 保留      |          |
| 0F000H~0FFFFH | 系统程序工作区 | SRAM     |



# ■ 高速缓存技术



■ Cache基本原理 程序的局部性原理

#### ■ Cache的管理

- 映射方式 直接映射、全相联、组相联
- 替换策略 最不经常使用、最近最少使用、随机替换

#### ■ Cache和主存间的映射

- 1) 命中、不命中、命中率
- Cache命中(hit)
  - CPU欲访问的数据已在缓存中,即可直接访问Cache
- Cache不命中 (miss)
  - CPU欲访问的数据不在Cache内,此时需将该数所在的主存整个子 块一次调入Cache
- 命中率是指CPU要访问的信息已在Cache内的比率。通常用命中率来衡量Cache的效率
- 2) Cache效率

Cache的容量和块长是影响Cache效率的重要因素。

Cache容量越大,命中率越高。

- Cahce容量达到一定值时,命中率不会因容量的增大而明显提高
- Cache容量大,成本增加

#### ■ Cache的读数操作流程



#### ■ Cache的写操作

- 防止数据丢失的一致性问题(命中时)
  - 写直达法(全写) 每次写入Cache的同时,也写入主存。
  - 写回法 执行写操作时,信息只写入Cache;当Cache块被替换时,先将该块内容写回主存,然后再调入新页。
  - <mark>缓冲通写式(写一次)</mark> 信息只写入主存,主存和Cache之间有一个缓冲器
- 不命中:被修改的单元根本不在Cache内,此时写操作只能对主存进行
- 比较
  - 写回法的开销是在块替换时的回写时间,而写直达法则在每次写入时,都要附加一个比写Cache长得多的写主存时间。
  - 写直达法的开销大一些,但其一<mark>致性</mark>保持的要好一些。

#### ■ Cache的写操作

- 防止数据过时的一致性问题
  - 总线监视 cache控制器监视地址总线,如有写入地址块在cache中,使其 无效
  - 硬件监视 外加硬件电路监视已经映像到cache中的主存块。
  - 局部禁止高速缓存法 主存中一块特殊区域,该区域中内容不能取到cache中。
  - Cache清除法 cache已更新数据写回主存时,清除cache中所有数据。

# ■ 虚拟存储技术

虚拟存储器是指程序使用的逻辑存储空间,它可以比物理存储器大的多,其对应的地址叫虚拟地址,也叫逻辑地址。

虚拟存储器机制由主存储器、辅助存储器和存储管理部件共同组成。

虚似存储器的功能与特点

- ①虚拟存储器是"主存一一外存"层次;
- ②使计算机的存取容量达到辅存的容量;
- ③使计算机存储速度接近主存的速度;
- ④使计算机整个存储系统的成本接近辅存的成本。

主存外存层次的基本信息传送单位可采用三种不同的方案: 段、页或段页, 这就形成了页式虚拟存储器、段式虚拟存储器、段页式虚拟存储器。

#### 虚拟存储器与一般的主存--辅存系统的本质区别

- (1) 虚拟存储器允许人们使用比主存容量大得多的地址空间来访问主存,非虚拟存储器最多只允许人们使用主存的整个空间,一般只允许使用操作系统分配的主存中的某一部分空间。
- (2) 虚拟存储器每次访问主存时必须进行虚、实变换,而非虚拟存储器系统则不必变换。

#### 虚拟存储器与CACHE区别

- (1) 主存/CACHE的访问"时间比"较小,典型的为10:1,每次传送的页较小;辅存/主存的访问"时间比"较大,典型的为100:1一1000:1,每次传送的页较大;
- (2) CACHE未命中期间,处理器不改变任务,仍被等待从内存取数的进程占用;虚存中页故障时可处理其他任务。