

DWF_dp_mult_sat functions

Multiply and Saturate

Version, STAR, and myDesignWare Subscriptions: IP Directory

Description

The DWF_dp_mult_sat function multiplies the two arguments a and b, truncates the upper bits of the result to the width specified by argument p_width and returns a saturated value if an overflow (or underflow) occurs. A dedicated overflow detection is used to improve QoR of the multiplier.

Table 1-1 Function Names

Function Name	Description	
DWF_dp_mult_sat	VHDL unsigned multiply and saturate	
DWF_dp_mult_sat	VHDL signed (two's complement) multiply and saturate	
DWF_dp_mult_sat_uns	Verilog unsigned multiply and saturate	
DWF_dp_mult_sat_tc	Verilog signed (two's complement) multiply and saturate	

Table 1-2 Argument Description

Argument Name	Туре	Width / Values	Description
a	Vector	a_width	Input multiplier
b	Vector	b_width	Input multiplicand
p_width	Integer	≥ 2	Word length of returned value (VHDL only, constant)
DWF_dp_mult_sat	Vector	p_width	Returned value

Table 1-3 Parameter Description (Verilog)

Parameter	Values	Description
a_width	≥ 2	Word length of input a
b_width	≥ 2	Word length of input b
p_width	≥ 2	Word length of returned value

Verilog Include File: DW_dp_mult_sat_function.inc

Functional Description

```
z[p width-1:0] = DWF dp mult sat (a[a width-1:0], b[b width-1:0], p width)
```

Unsigned Multiply and Saturate

```
 \begin{array}{lll} p \, [a\_width+b\_width-1:0] & = \, a \, [a\_width-1:0] & * \, b \, [b\_width-1:0] \\ z \, [p\_width-1:0] & = \, 2^{p\_width}-1 & \text{if } p \, [a\_width+b\_width-1:0] & > \, 2^{p\_width}-1 \\ & = \, p \, [p \, width-1:0] & \text{else} \end{array}
```

Signed Multiply and Saturate

```
 \begin{array}{lll} p \, [a\_width+b\_width-1:0] & = \, a \, [a\_width-1:0] & * \, b \, [b\_width-1:0] \\ z \, [p\_width-1:0] & = \, 2^{p\_width-1} - 1 & \text{if } p \, [a\_width+b\_width-1:0] & > \, 2^{p\_width-1} - 1 \\ & = \, -2^{p\_width-1} & \text{else if } p \, [a\_width+b\_width-1:0] & < \, -2^{p\_width-1} \\ & = \, p \, [p \, width-1:0] & \text{else} \\ \end{array}
```

For more information about the DesignWare datapath functions, refer to the topic titled DesignWare Datapath Functions Overview.

Related Topics

- DesignWare Datapath Functions Overview
- DesignWare Building Block IP User Guide

VHDL Example

```
library IEEE, DWARE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use DWARE.DW_dp_functions.all;
-- DWARE.DW_dp_functions_arith package if IEEE.std_logic_arith is used
entity DWF_dp_mult_sat_test is
   port (a, b, c : in signed(7 downto 0);
        z : out signed(7 downto 0));
end DWF_dp_mult_sat_test;

architecture rtl of DWF_dp_mult_sat_test is
begin
   z <= DWF_dp_mult_sat (a, b, 8) + c;
end rtl;</pre>
```

Verilog Example

```
module DWF_dp_mult_sat_test (a, b, c, z);
input signed [7:0] a, b, c;
output signed [7:0] z;

// Passes the parameters to the function
parameter a_width = 8;
parameter b_width = 8;
parameter p_width = 8;

// add "$SYNOPSYS/dw/sim_ver" to the search path for simulation
`include "DW_dp_mult_sat_function.inc"

assign z = DWF_dp_mult_sat_tc (a, b) + c;
endmodule
```

Copyright Notice and Proprietary Information

© 2022 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Free and Open-Source Software Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are available in the product installation.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. www.synopsys.com