

Academic Year:	2022/2023	Term:	First term	T T
Course Code:	Eective1	Course Title:	VLSI	

Cairo University

Faculty of Engineering

Electronics and Communications Engineering Department – 4th Year

VLSI PROJECT

Name	Sec	BN
عبدالمنعم احمد عبدالمنعم سلام	2	50
منی منصور امین محمد	4	30

Table of Contents

1-Algorithem of modified Bough Wooley 2's complement multiplier	1
2-Block diagram of modified Bough Wooley 2's complement multiplier	2
3-Logic diagram of the cells used	3
4-Simulation of some corner Cases (using Logisim)	4
4.1 Zero X Zero.	
4.2 Max positive X Max positive	
4.3 Max positive X Max negative	
4.4 Max negative X Max positive	
4.5 Max negative X Max negative	

1-Algorithem of modified Bough Wooley 2's complement multiplier

$$P = \sum_{i=0}^{N-2} \sum_{j=0}^{M-2} X_i y_j 2^{i+j} + x_{N-1} y_{M-1} 2^{M+N-2} - (\sum_{i=0}^{N-2} x_i y_{M-1} 2^{i+M-1} + \sum_{j=0}^{M-2} x_{N-1} y_j 2^{j+N-1})$$

Here we have N=5 and M=7.

2-Block diagram of modified Bough Wooley 2's complement multiplier

Figure 1-Multiplier

As shown in Figure 1, We used 7 different cells to optimize in area:

AND

Full Adder

Full Adder with AND

Full Adder with NAND

Half Adder

Half Adder with AND

Half Adder with NAND

3-Logic diagram of the cells used

Figure2-Full Adder

Figure5-Half Adder

Figure3-FA AND

Figure4-FA NAND

Figure6-HA AND

Figure7-HA NAND

4-Simulation of some corner Cases (using Logisim)

4.1 Zero X Zero

Figure8

As shown in Figure 8, X=00000, Y=0000000 and the result P=0000000000000

4.2 Max positive X Max positive

The Max positive $X=2^{N-1}-1=15$ And The Max positive $Y=2^{M-1}-1=63$.

Figure9

As shown in Figure 9, X=01111, Y=0111111 and the result P=001110110001 XY=15*63=945=001110110001

4.3 Max positive X Max negative

The Max positive $X=2^{N-1}-1=15$ And The Max negative $Y=-2^{M-1}=-64$.

Figure 10

As shown in Figure9, X=01111, Y=1000000 and the result P=110001000000 XY=15*-64=-960=110001000000

4.4 Max negative X Max positive

The Max negative $X=-2^{N-1}=-16$ And The Max positive $Y=2^{M-1}-1=63$.

Figure 11

As shown in Figure 9, X=10000, Y=0111111 and the result P=110000010000

XY=-16*63=-1008=110000010000

4.5 Max negative X Max negative

The Max negative $X=-2^{N-1}=-16$ And The Max negative $Y=-2^{M-1}=-64$.

Figure12

As shown in Figure 9, X=10000, Y=1000000 and the result P=010000000000 XY=-16*-64=1024=010000000000