S.No.: 93

NEC 4101

No. of Printed Pages: 0	6
Following Paper ID and Ro	Il No. to be filled in your Answer Book.
	N 11 -

B. Tech. Examination, 2024-25

(Odd Semester)

BASIC ELECTRONICS ENGINEERING

Time: Three Hours]

[Maximum Marks: 60

Note: - Attempt all questions.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

- (a) What are acceptor and donor impurities?
- (b) What is the effect of temperature on the reverse current of a P-N-junction?
- (c) What do you mean by ripple factor?
- (d) The value of α for a transistor is 0.950. Find the value of β .

[P. T. O.

- (e) Why BJT transistor is called current controlled device?
- (f) What is pinch-off voltage in a JFET?
- (g) What are the characteristic of an ideal op-amp?
- (h) Define I_{CBO}.

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Describe the conditions established by forward and reverse-bias conditions on a PN-junction diode and how the resulting current is affected?
 - (b) A full wave bridge rectifier with 220V, 50 Hz sinusoidal input and turns ratio of 5:1 has a load resistance of 500 Ω. Diode forward resistance is 20 Ω. Determine:
 - (i) Mean or average load current
 - (ii) Rectification efficiency
 - (iii) Ripple factor
 - (c) Explain the basic construction and principle of operation of BJT.

(d) Perform the following subtraction using 1's and 2's - complement method:

$$(42)_{10} - (32)_{10}$$

SECTION-C

- **Note:** Attempt all questions. Attempt any two parts from each questions. $8 \times 5 = 40$
- 3. (a) Determine I, V₁, V₂ and V₀ for the circuit shown in figure:

- (b) Explain the working of centre-tapped full wave rectifier with neat circuit diagram and output waveform.
- (c) Explain the zener breakdown mechanism for the following circuit, find V_L, V_R, I_Z and I_L:

- 4. (a) Explain the input and output characteristic of a transistor in CB configuration. Also derive the relationship between α and β.
 - (b) For a transistor in common emitter configuration, the reverse leakage current is 21 μ A, whereas when the same transistor is connected in common-base configuration it reduces to 1.1 μ A. Calculate values α and β of the transistor.
 - (c) Determine I_D, V_{GS} and V_{DS} for the circuit shown in figure:

5. (a) Draw the circuit diagram of inverting and non-inverting amplifier and also find the expression for output voltage.

(b) Find the output voltage V_0 :

- (c) Simplify the following Boolean expression:
 - (i) $A\overline{B} + \overline{A}B + \overline{A}\overline{B} + AB$
 - (ii) $A\overline{B}C + \overline{A}BC + ABC$
- 6. (a) Draw the equivalent circuit of OR, AND, XOR and XNOR gates using NAND gates only.
 - (b) Find the output voltage V₀:

[P. T. O.

(c) Explain the term SOP and POS related to Boolean function. Also define the universal gates.
