We may use the difficulty of discrete logarithms to encrypt communication.

Question (Public key system, Diffie-Helman key exchange)

Alice wants to encrypt a message so that only Bob can decrypt it, not Eve.

1. Alice chooses a large ($\sim 2^{2048}$) prime p such that $\varphi(\varphi(p))$ also has a large prime factor, and finds a primitive root g modulo p. Publishes (p,g), which is the *public key*.

- 1. Alice chooses a large ($\sim 2^{2048}$) prime p such that $\varphi(\varphi(p))$ also has a large prime factor, and finds a primitive root g modulo p. Publishes (p,g), which is the *public key*.
- 2. Alice chooses a private key a and computes $A := g^a \pmod p$. Bob chooses a private key b and computes $B := g^b \pmod p$.

Then they exchange \underline{A} and \underline{B} (through any channel, probably intercepted by Eve).

3. Alice computes $B^a \pmod p$ and Bob computes $A^b \pmod p$, both are $\equiv g^{ab} \pmod p$. This is their common secret key S.

- 3. Alice computes $B^a \pmod{p}$ and Bob computes $A^b \pmod{p}$, both are $\equiv g^{ab} \pmod{p}$. This is their common secret key S.
- 4. Now Alice and Bob can encrypt their communication using the secret key *S*.

- 3. Alice computes $B^a \pmod{p}$ and Bob computes $A^b \pmod{p}$, both are $\equiv g^{ab} \pmod{p}$. This is their common secret key S.
- 4. Now Alice and Bob can encrypt their communication using the secret key *S*.
- 5. Eve may know (p, g, A, B). Can Eve find out what S is? This is very hard since finding a (resp. b) from A (resp. B) is difficult.

Some remarks:

• A Sophie Germain prime is a prime q such that p := 2q + 1 is also a prime. Note that $\varphi(p) = 2q$. Hence, when q is large, p would be a safe prime for the public key system.

Some remarks:

- A Sophie Germain prime is a prime q such that p := 2q + 1 is also a prime. Note that $\varphi(p) = 2q$. Hence, when q is large, p would be a safe prime for the public key system.
- The primality testing is fast, so generating a public key wouldn't cost too much time.

Some remarks:

- A Sophie Germain prime is a prime q such that p := 2q + 1 is also a prime. Note that $\varphi(p) = 2q$. Hence, when q is large, p would be a safe prime for the public key system.
- The primality testing is fast, so generating a public key wouldn't cost too much time.
- Alice needs to compute $g^a \pmod{p}$ and $B^a \pmod{p}$, while Bob needs to compute $g^b \pmod{p}$ and $A^b \pmod{p}$. These are modular exponential problems, and we can solve them effectively using binary exponentiation algorithms.

Example 4.8.1

Alice wants to encrypt communication with Bob using Diffie-Helman key exchange. Suppose the public key is (467, 2).

If the private keys of Alice and Bob are a = 22 and b = 33 respectively. What are A, B and the secret key S?

	2	2^2	2^4	2^8	2^{16}	2^{32}	2 64	2^{128}	2^{256}
modulo 467	2	4	16	256	156	52	369	264	113

	2	2^2	2^4	2^8	2 ¹⁶	2 ³²	2 64	2^{128}	2^{256}
modulo 467	2	4	16	256	156	52	369	264	113

1.
$$A \equiv g^a \pmod{p} \equiv 2^{22} = 2^{2+4+16} \equiv 4 \cdot 16 \cdot 156 \equiv 177 \pmod{467}$$
,

1.
$$A \equiv g^a \pmod{p} \equiv 2^{22} = 2^{2+4+16} \equiv 4 \cdot 16 \cdot 156 \equiv 177 \pmod{467}$$
,

2.
$$B \equiv g^b \pmod{p} \equiv 2^{33} = 2^{1+32} \equiv 2 \cdot 52 \equiv 104 \pmod{467}$$
,

1.
$$A \equiv g^a \pmod{p} \equiv 2^{22} = 2^{2+4+16} \equiv 4 \cdot 16 \cdot 156 \equiv 177 \pmod{467}$$
,

2.
$$B \equiv g^b \pmod{p} \equiv 2^{33} = 2^{1+32} \equiv 2 \cdot 52 \equiv 104 \pmod{467}$$
,

3.
$$S \equiv A^b \equiv B^a \equiv g^{ab} \pmod{p}$$

 $\equiv 2^{22 \cdot 33} \equiv 2^{260} = 2^{4+256} \equiv 16 \cdot 113 \equiv 30 \pmod{467}$.