# This Page Is Inserted by IFW Operations and is not a part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

#### IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

#### Mouse PAR34 mature VH amino acid sequence (SEQ ID NO:2)

| E | I | Q | L | Q | Q | S | G | P       | E | L | V | K  | P | G | Α | S | V | K | V |
|---|---|---|---|---|---|---|---|---------|---|---|---|----|---|---|---|---|---|---|---|
| s | С | K | Α | s | G | Y | Α | F       | T | N | Y | N_ | M | Y | W | V | K | Q | s |
| н | G | K | s | L | E | W | I | G       | Y | I | D | P  | Y | Y | G | D | P | G | Y |
| s | Q | K | F | ĸ | G | K | Α | ${f T}$ | L | Т | V | D  | K | s | s | s | T | Α | Y |
| M | Н | L | N | s | L | T | s | E       | D | s | Α | V  | Y | Y | С | Α | R | R | G |
| N | F | P | v | v | R | D | Y | W       | G | 0 | G | Т  | Т | L | Т | V | S | S |   |

#### Mouse PAR34 mature VL amino acid sequence (SEQ ID NO:3)

```
Т
                            S
                                 G
                                   E R V
                 S
                   s
                        Y
 I K M
               Ρ
                                   Q Q K P
                            S
                                 F
 T C
                                    V P S
                                 D G
                   R A
G K S
           Т
               Ι
                            ΤI
                 Q D
                      Y
                                 S S L E Y
                        S
   S
           G
             S
               G
                   Q Y D
                          EFPYT FGG
E D M
      G
        I
           Y
             Y
               С
          I K
```

#### Mouse PAR80 mature VH Region Amino Acid Sequence (SEQ ID NO:4)

| Е | V | 0 | L | Q | Q | S | G | Α       | E | L            | V | R | S | G | Α | S | V | K | L          |
|---|---|---|---|---|---|---|---|---------|---|--------------|---|---|---|---|---|---|---|---|------------|
| s | С | T | Α | s | G | F | N | I       | K | D            | Y | Y | I | H | W | V | K | Q | R          |
|   |   |   |   |   | E |   |   |         |   |              |   |   |   |   |   |   |   |   |            |
| A | P | N | F | Q | G | R | Α | ${f T}$ | M | Т            | Α | D | T | S | S | N | Т | Α | Y          |
| L | 0 | L | s | s | L | Т | s | E       | D | $\mathbf{T}$ | Α | V | Y | Y | C | Y | G | G | <u>T</u> . |
| I |   |   |   |   |   |   |   |         |   |              |   |   |   |   |   |   |   |   |            |

### Mouse PAR80 mature VL Region Amino Acid Sequence (SEQ ID NO: 5)

| 0 | Α | v | v    | $\mathbf{T}$ | Q | E | s | Α | L | Т | ${f T}$ | S | P | G | E | T | V | T        | L. |
|---|---|---|------|--------------|---|---|---|---|---|---|---------|---|---|---|---|---|---|----------|----|
| T | C | R | s    | s            | T | G | A | V | T | T | s       | N | S | A | N | W | V | Q        | E  |
| к | P | D | Н    | L            | F | Т | G | L | I | G | G       | T | I | N | R | v | P | G        | V  |
| P | A | R | F    | s            | G | s | L | I | G | D | K       | A | A | L | T | I | T | G        | Α  |
| 0 | т | E | D    | E            | Α | I | Y | F | С | A | L       | W | Y | S | N | Н | W | <u>v</u> | F  |
| - |   |   | - Tr |              |   |   |   | _ |   |   |         |   |   |   |   |   |   |          |    |

The CDRs based on the definition of Kabat are bolded and underlined.

| AR               |  |
|------------------|--|
| ın /             |  |
| Iuman            |  |
| Hu               |  |
| st]              |  |
| <b>Agains</b>    |  |
| Ag               |  |
| þ,               |  |
| ate              |  |
| ner              |  |
| Gene             |  |
|                  |  |
| ğ                |  |
| Antibodies       |  |
| M                |  |
|                  |  |
| On               |  |
| 20               |  |
| <b>Tonoclona</b> |  |
|                  |  |
| 0                |  |
| ane              |  |
| ুব               |  |

| I allel o      | A ALICI OI INTORNOMINI INTERPORTO CONTRA DE LA ALICA DE LA CALICA DEL CALICA DE LA CALICA DEL CALICA DE LA CALICA DE LA CALICA DEL CALICA DE LA CALICA DEL CALICA DE LA CALICA DEL CALICA DE LA CALICA D |                                         |                                         | 0       |        |                                         |        |                  | INHIRI | TION OF | INHIBITION OF AR-MEDIATED | ATED         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|---------|--------|-----------------------------------------|--------|------------------|--------|---------|---------------------------|--------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |         |        |                                         |        | INHIBITION       | PRC    | )LIFERA | PROLIFERATION (µg/ml)     | ml)          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         | BINDING | ING    |                                         |        | OF AR-EGFR       | 3T3    | 3       | HEKU                      | Kn           |
| ANTI-          | idini Oor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR                                      | Surface                                 | TOT     | нв всв | Cyno                                    | Murine | INTER-<br>ACTION | IC50%  | %062I   | IC50%                     | %06DI        |
| BODY           | 150-1 YE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +++++++++++++++++++++++++++++++++++++++ | ##                                      | 101     | -      | ++                                      | +++    | ++               | 0.13   | 1.3     | 0.35                      | >3           |
| DAD 5          | 1gO1, Λ<br>1πG1 λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ‡                                       | ‡                                       | -       |        | Ð                                       | +++    | +                | 8.0    | 7.2     | QN                        | <del>N</del> |
| PAR15          | 1gC1, λ<br>IσG1, λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ‡                                       | +                                       |         | •      | +++++++++++++++++++++++++++++++++++++++ | ++++   | ++               | 0.11   | 0.71    | .2                        | ζ,           |
| PAR19          | IgG2b, K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                                       | ‡                                       |         | ı      | QN                                      | •      | ‡                | 5.9    | >10     | <u>R</u>                  | Ð            |
| PAR22          | IgG1. λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +++                                     | +                                       | 1       |        | ND<br>ND                                | ++     | +                | 8.9    | >10     | Q2                        | 2            |
| PAR23          | leG1. λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ‡                                       | ‡                                       |         | •      | ND                                      | +      | +                | 1.7    | 6.9     | 2                         | 8            |
| PAR26          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ‡                                       | ‡                                       | 1       | •      | ND                                      | •      | ++               | >10    | >10     | ×3                        | χ.           |
| PAR29          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +++                                     | +++++++++++++++++++++++++++++++++++++++ | '       | 1      | Œ                                       | +++    | <b>+</b><br>+    | 0.0    | >10     | 2                         | Q.           |
| DAP31          | InG7h 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ++                                      | ‡                                       | '       | •      | ++                                      | ‡<br>‡ | ‡                | 0.7    | 1.9     | .07                       | ×3           |
| DAD 24         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ++                                      | +                                       | ,       | •      | ++                                      | +++    | ++               | 0.072  | 0.71    | .041                      | 2.95         |
| PAPAG<br>PAPAG | $\bot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +                                       | ‡                                       |         | 1      | Ð                                       | +++    | ND<br>ON         | 4.1    | >10     | 1.7                       | ×3           |
| DADAG          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ‡                                       | +                                       |         | •      | S                                       | +++    | ON.              | 9.0    | >10     | QN.                       | ND           |
| PARSI          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ++                                      | ‡                                       |         |        | Ð                                       | ‡      | ND               | 4      | >10     | QN                        | N<br>ON      |
| DARG7          | InG7h K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +++                                     | ‡                                       | •       | ,      | +++                                     | ,      | QN               | >10    | >10     | χ,                        | 23           |
| 04070          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ++                                      | ‡                                       |         |        | QQ                                      |        | QN               | 2.8    | >10     | QN                        | N<br>N       |
| DADAO          | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | ‡                                       |         |        | ‡                                       |        | QN               | 0.072  | 0.42    | 0.2                       | 2.8          |
| DAR81          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +++                                     | ‡                                       |         |        | QX                                      | ,      | ND               | 3.9    | >10     | N<br>ON                   | ON           |
| PAR84          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++                                      |                                         | '       | •      | ‡                                       | ,      | ND               | 0.51   | 8.0     | 0.48                      | >3           |
| TONIC          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 11 17 1                                 |         |        |                                         |        |                  |        |         |                           |              |

BINDING – direct binding as detected by ELISA
INHIBITION OF AR-EGFR INTERACTION – ability to inhibit AR binding to A431 (human EGFR+ epidermoid carcinoma)
INHIBITION of PROLIFERATION – inhibition of proliferation of 3T3 (murine) cells to 100 ng exogenous human AR, or HEKn (human) cells to endogenously produced AR

ND – not determined; IC50% is the amount of the antibody needed to accomplish 50% inhibition; IC90% is the amount of the antibody needed to accomplish 90% inhibition



FIG. 3



FIG. 4



FIG. 5



FIG. 6



FIG. 7

## cDNA (SEQ ID NO:8) and amino acid (SEQ ID NO:9) sequences for the signal peptide and heavy chain variable region of the PAR34 antibody.



## cDNA (SEQ ID NO:10) and amino acid (SEQ ID NO:11) sequences for the signal peptide and light chain variable region of the PAR34 antibody.



## Alignment of the VH region amino acid sequences of PAR34 (SEQ ID NO:2), HuPAR34 (SEQ ID NO:12), and the human germline DP-3/JH4 segments (SEQ ID NO:13).

|          |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   |    | 3  | 30           |
|----------|-----|---|---|---|---|---|----------|--------------|-------------------------|---|---|---|----------|--------------|--------------|---|---|---|---|---|----|---|---|---|---|---|----|----|--------------|
| PAR34    | ΕI  | Q | L | Q | Q | S | G        | Р            | E                       | L | V | K | Р        | G            | Α            | s | V | K | V | s | С  | K | Α | s | G | Y | Α  | F  | $\mathbf{T}$ |
| HuPAR34  | E V |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   |    |    |              |
| DP-3     | EV  | Q | L | V | Q | S | G        | Α            | E                       | V | K | K | Ρ        | G            | A            | Т | V | K | Ι | S | С  | K | V | s | G | Y | Т  | F  | Т            |
|          |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   |    |    |              |
|          |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   |    | 6  | 50           |
| PAR34    | N Y | N | M | Y | W | V | K        | Q            | S                       | Н | G | K | s        | L            | $\mathbf{E}$ | W | Ι | G | Y | I | D  | P | Y | Y | G | D | Р  | G  | Y            |
| HuPAR34  | N Y | N | М | Y | W | V | <u>R</u> | Q            | Α                       | Р | G | K | G        | L            | Е            | W | I | G | Y | I | D  | Р | Y | Y | G | D | P  | G  | Y            |
| DP-3     |     | - | - | - | W | V | Q        | Q            | Α                       | Ρ | G | K | G        | $\mathbf{L}$ | E            | W | М | G | - | - | -  | - | - | - | - |   | -  | -  | -            |
|          |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   |    |    |              |
|          |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   |    | 9  | 90           |
| PAR34    | s Q | K | F | K | G | K | Α        | $\mathbf{T}$ | L                       | Т | V | D | K        | S            | S            | s | T | Α | Y | М | Н  | L | N | S | L | Т | s  | Ε  | D            |
| HuPAR34  | S Q | K | F | K | G | K | A        | Т            | $\overline{\mathbf{r}}$ | Т | V | D | <u>K</u> | S            | T            | S | Т | Α | Y | М | E  | L | S |   |   |   |    | E  |              |
| DP-3     |     |   | - | - | _ | R | V        | Т            | I                       | Т | Α | D | Т        | s            | Т            | D | Т | Α | Y | M | E  | L | S | S | L | R | S  | E  | D            |
|          |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   |    |    |              |
|          |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   |    |   |   |   |   |   | 1: | 19 |              |
| PAR34    | S A | v | Y | Y | С | Α | R        | R            | G                       | N | F | P | Y        | Y            | F            | D | Y | W | G | Q | G  | Т | Т | L | T | V | S  | S  |              |
| HuPAR34  | ТА  | v | Y | Y | С | Α | R        | R            | G                       | N | F | P | Y        | Y            | F            | D | Y | W | G | Q | G  | Т | L | V | Т | V | S  | S  |              |
| DP-3/JH4 |     |   |   |   |   |   |          |              |                         |   |   |   |          |              |              |   |   |   |   |   | G. |   |   |   |   |   | S  |    |              |

## Alignment of the VL region amino acid sequences of PAR34 (SEQ ID NO:3), HuPAR34 (SEQ ID NO:14), and the human germline L1 and JK4 segments (SEQ ID NO:15).

|         |   |   |   |   |   |   |   |   |   |   |   |   |   |              |   |              |              |   |   |              |   |              |   |   |   |   |   |   | 3        | 0 |
|---------|---|---|---|---|---|---|---|---|---|---|---|---|---|--------------|---|--------------|--------------|---|---|--------------|---|--------------|---|---|---|---|---|---|----------|---|
| PAR34   | D | I | K | М | Т | Q | S | Р | s | s | М | Y | Α | s            | L | G            | E            | R | V | Т            | I | $\mathbf{T}$ | С | K | Α | S | Q | D | I        | N |
| HuPAR34 | D | 1 | Q | М | T | Q | s | P | s | s | L | s | Α | s            | V | G            | D            | R | V | $\mathbf{T}$ | I | Т            | С | K | Α | S | Q | D | I :      | N |
| L1      | D | Ι | Q | M | Т | Q | S | P | S | S | L | S | Α | S            | V | G            | D            | R | V | Т            | Ι | Т            | С | - | - | - | - | - | -        | - |
|         |   |   |   |   |   |   |   |   |   |   |   |   |   |              |   |              |              |   |   |              |   |              |   |   |   |   |   |   | 6        | 0 |
| PAR34   | s | Y | L | s | W | F | Q | Q | K | P | G | K | s | P            | K | $\mathbf{T}$ | L            | I | Y | R            | A | N            | R | L | V | D | G | V | P        | S |
| HuPAR34 | s | Y | L | s | W | F | Q | Q | K | Ρ | G | K | Α | P            | K | T            | $\mathbf{L}$ | I | Y | R            | Α | N            | R | L | V | D | G | V | P        | S |
| L1      | - | - | - | - | W | F | Q | Q | K | P | G | K | A | P            | K | S            | L            | Ι | Y | -            | - | -            | - | - | - | - | G | V | P        | S |
|         |   |   |   |   |   |   |   |   |   |   |   |   |   |              |   |              |              |   |   |              |   |              |   |   |   |   |   |   | 9        | 0 |
| PAR34   | R | F | s | G | s | G | s | G | Q | D | Y | s | L | т            | I | s            | s            | L | E | Y            | E | D            | М | G | I | Y | Y | С | <u>L</u> | Q |
| HuPAR34 | R | F | s | G | s | G | s | G | Q | D | Y | Т | L | $\mathbf{T}$ | I | s            | s            | L | Q | P            | E | Ď            | F | Α | T | Y | Y | С | <u>L</u> | Q |
| L1      | R | F | s | G | s | G | s | G | T | D | F | Т | L | Т            | Ι | S            | S            | L | Q | P            | Ε | D            | F | Α | Т | Y | Y | С | -        | - |
|         |   |   |   |   |   |   |   |   |   |   |   |   |   |              |   | 10           | 07           |   |   |              |   |              |   |   |   |   |   |   |          |   |
| PAR34   | Y | D | E | F | P | Y | T | F | G | G | G | Т | K | L            | E | I            | K            |   |   |              |   |              |   |   |   |   |   |   |          |   |
| HuPAR34 | Y | D | Е | F | P | Y | T | F | G | G | G | Т | K | V            | E | I            | K            |   |   |              |   |              |   |   |   |   |   |   |          |   |
| Jk4     | = | _ | - | - | - | - | - | F | G | G | G | T | K | V            | E | Ι            | K            |   |   |              |   |              |   |   |   |   |   |   |          |   |

Nucleotide sequence (SEQ ID NO:16) and deduced amino acid sequence (SEQ ID NO:17) of the heavy chain variable region (including the signal peptide sequence) of HuPAR34 in the mini exon.



Nucleotide sequence (SEQ ID NO:18) and deduced amino acid sequence (SEQ ID NO:19) of the light chain variable regi n (including the signal peptide sequence) of HuPAR34 in the mini exon.





FIG. 14

#### Oligonucleotide primers used for the synthesis of the HuPAR34 VH gene.

```
Oligonucleotide 1 (SEQ ID NO:20)
5'-CTAGCCACGCGTCCACCATGGAATGGAGTGGATCTTTCTCTTCCTCCTGTCAGGAACTACAGGTGTCCACTCTG-3'
Oligonucleotide 2 (SEQ ID NO:21)
5'-TTCACAGAAGCCCCAGGCTTCTTCACCTCAGCTCCAGACTGCACCAGCTGGACCTCAGAGTGGACACCTGTAGTTCC-3'
Oligonucleotide 3 (SEQ ID NO:22)
Oligonucleotide 4 (SEQ ID NO:23)
Oligonucleotide 5 (SEQ ID NO:24)
5'-GGATATATTGATCCTTACTATGGTGATCCTGGCTACAGCCAGAAGTTCAAGGGCAAGGCCACATTGAC-3'
Oligonucleotide 6 (SEQ ID NO:25)
5'-TGTCCTCAGACCTCAGGCTGCTGAGCTCCATGTAGGCTGTGCTGGTGGACTTGTCAACAGTCAATGTGGCCTTGCCTTG-3'
Oligonucleotide 7 (SEQ ID NO:26)
\verb| 5'-GCAGCCTGAGGTCTGAGGACACTGCAGTCTATTACTGTGCAAGACGTGGCAACTTCCCGTACTACTTTGACTACTGGGG-3'| \\
Oligonucleotide 8 (SEQ ID NO:27)
\verb§5'-GACTCGTCTAGAGGTTGTGAGGACTCACCTGATGAGACTGTGACAAGGGTGCCTTGGCCCCAGTAGTCAAAGTAGTACG-3'
Oligonucleotide 9 (SEQ ID NO:28)
5'-CTAGCCACGCGTCCACCATG-3'
Oligonucleotide 10 (SEQ ID NO:29)
5'-GACTCGTCTAGAGGTTGTGAG-3'
```

#### Oligonucleotide primers used for the synthesis of the HuPAR34 VL gene.

```
Oligonucleotide 1 (SEQ ID NO:30)
5'-CTAGCCACGCGTCCACCATGAGGACCCCTGCTCAGTTTCTTGGTATCTTGTTGCTCTGGTTTCCTGGTATC-3'
Oligonucleotide 2 (SEQ ID NO:31)
\verb|5'-CAACAGATGCAGACAGGGAAGATGGAGACTGGGTCATCTGGATGTCACATTTGATACCAGGAAACCAGAGCAAC-3'|
Oligonucleotide 3 (SEQ ID NO:32)
5'-CTTCCCTGTCTGCATCTGTTGGAGACAGGGTCACTATCACTTGCAAAGCAAGTCAGGACATTAATAGC-3'
Oligonucleotide 4 (SEQ ID NO:33)
\texttt{5'-GATCAGGGTCTTAGGAGCTTTCCCTGGTTTCTGCTGGAACCAGCTTAAATAGCTATTAATGTCCTGACTTGC-3'}
Oligonucleotide 5 (SEQ ID NO:34)
5'-GAAAGCTCCTAAGACCCTGATCTATCGTGCAAACAGATTGGTAGATGGGGTCCCATCAAGATTCAGTGGCAGTGGATC-3'
Oligonucleotide 6 (SEQ ID NO:35)
{\tt 5'-CCTCAGGCTGCAGGCTACTGATGGTGAGAGTATAATCTTGCCCAGATCCACTGCACTGAATCTTG-3'}
Oligonucleotide 7 (SEQ ID NO:36)
{\tt 5'-CAGTAGCCTGCAGCCTGAGGATTTCGCAACTTATTATTGTCTACAGTATGATGAGTTTCCGTACACGTTCGGAGG-3'}
Oligonucleotide 8 (SEQ ID NO:37)
5'-GACTCGTCTAGAAGGAAAGTGCACTTACGTTTTATTTCCACCTTGGTCCCTCCTCCGAACGTGTACGGAAAC-3'
Oligonucleotide 9 (SEQ ID NO:38)
5'-CTAGCCACGCGTCCACCATG-3'
Oligonucleotide 10 (SEQ ID NO:39)
5'-GACTCGTCTAGAAGGAAAG-3'
```

γ.

FIG. 17

# Binding of Biotinylated MuPAR34 to Amphiregulin



FIG. 18



## IC<sub>50</sub>(μg/ml)\*

- HuPAR34
- 0.055
- **-**→ PAR34

٠,

- 0.025
- □ Humanized IgG1control
- MurinelgG2b control
- ▼ Media Control
- ▲ Mab225

FIG. 19

HUMAN PSORIATIC SKIN/SCID MOUSE TRANSPLANT MODEL

EFFECT OF HUPAR34 ON NORMAL SKIN GRAFT



TRANSPLANTED NORMAL SKIN + CONTROL ANTIBODY

**TRANSPLANTED NORMAL SKIN** + HuPAR34

FIG. 20



FIG. 21

## **Cell Counts - Keratinocytes**



Control: KBM

Ab A: Control Antibody Ab B: anti-amphiregulin antibody

### **Cell Counts - Fibroblasts**



### **Procollagen production - Fibroblasts**



Control: KBM

Ab A: Control Antibody

Ab B: anti-amphiregulin antibody

FIG. 23