Esercizi geometria analitica nello spazio

Corso di Laurea in Informatica

Docente: Andrea Loi

Correzione

1. Denotiamo con $P_{12}', P_{13}', P_{23}', P_1', P_2', P_3', P'$ i simmetrici di un punto P rispetto ai piani coordinati [xy], [xz], [yz], agli assi coordinati x, y, z e all'origine del sistema di riferimento. Calcolare $P_{12}', P_{13}', P_{23}', P_1', P_2', P_3', P'$ quando P(1, 2, 3).

Soluzione: Il punto P_{12}' sarà, rispetto al piano [xy], dalla parte opposta del punto P ma alla stessa distanza, quindi $P_{12}'(1,2,-3)$. Analogamente si ricava che $P_{13}'(1,-2,3)$ e $P_{23}'(-1,2,3)$. Il punto P_1' , simmetrico di P rispetto alle x, avrà la stessa ascissa del punto P mentre le altre due coordinate avranno segno opposto, ossia $P_1'(1,-2,-3)$. In modo analogo si ottiene $P_2'(-1,2,-3)$ e $P_3'(-1,-2,3)$. Infine si ha P(-1,-2,-3).

- 2. Verificare che i punti A(1,1,1), B(2,-1,3), C(0,1,4) non sono allineati. Soluzione: Considero i due vettori $\boldsymbol{v}=B-A$ e $\boldsymbol{w}=C-A$. I tre punti sono allineati se i vettori \boldsymbol{v} e \boldsymbol{w} sono paralleli tra loro. In questo caso $\boldsymbol{v}=(1,-2,2)$ e $\boldsymbol{w}=(-1,0,3)$ e poiché non sono paralleli segue che i tre punti A,B,C non sono allineati.
- 3. Il baricentro G di un sistema di n punti $A_i(x_i, y_i, z_i)$ ha coordinate:

$$x_G = \frac{1}{n} \sum_{i=1}^n x_i, \ y_G = \frac{1}{n} \sum_{i=1}^n y_i, \ z_G = \frac{1}{n} \sum_{i=1}^n z_i.$$

Calcolare il baricentro G del triangolo di vertici $A_1(1,1,1), A_2(-1,1,2),$ $A_3(0,0,1)$. Calcolare inoltre il baricentro G del quadrilatero di vertici $A_1(1,1,1), A_2(-1,1,2), A_3(0,0,1), A_4(0,0,0).$

Soluzione: Il baricentro G del triangolo di vertici $A_1(1,1,1), A_2(-1,1,2),$ $A_3(0,0,1)$ è $G(0,\frac{2}{3},\frac{4}{3})$, mentre il baricentro del quadrilatero con vertici $A_1(1,1,1), A_2(-1,1,2), A_3(0,0,1), A_4(0,0,0)$ è $G(0,\frac{1}{2},1)$.

4. Scrivere l'equazione del piano α passante per la retta $r: x+y-1=0,\ y-2z=0$ e parallelo alla retta $s: y-z=0,\ 3y-2z+2=0.$ Soluzione: La totalità dei piani passanti per la retta r è rappresentata dall'equazione

$$\lambda(x + y - 1) + \mu(y - 2z) = 0$$

che possiamo scrivere nel seguente modo:

$$\lambda x + (\lambda + \mu)y - 2\mu z - \lambda = 0$$

Tra tutti questi piani cerchiamo quello parallelo alla retta s. Un vettore direzione delle retta s è (1,0,0) (ossia la retta s è parallela all'asse delle x) mentre il vettore $(\lambda,\lambda+\mu,-2\mu)$ è ortogonale al piano cercato. Imponendo che il prodotto scalare tra questi due vettori sia nullo otteniamo $\lambda=0$, che sostituito nell'equazione del fascio di piani ci da l' equazione del piano $\alpha:y-2z=0$.

5. Sia r la retta intersezione dei due piani, non paralleli, α : ax + by + cz + d = 0 e α' : a'x + b'y + c'z + d' = 0.

Dimostrare che le componenti di un vettore direttore $\boldsymbol{v}=(l,m,n)$ della retta r sono date da:

$$l = \left| egin{array}{c} b & c \\ b' & c' \end{array}
ight|, \; m = - \left| egin{array}{c} a & c \\ a' & c' \end{array}
ight|, \; n = \left| egin{array}{c} a & b \\ a' & b' \end{array}
ight|.$$

Soluzione: Ricordando che il vettore $\boldsymbol{w}=(a,b,c)$ è ortogonale al

piano α e che il vettore $\mathbf{w'} = (a', b', c')$ è ortogonale al piano α' , si ha che un vettore della retta r è $\mathbf{v} = \mathbf{w} \wedge \mathbf{w'}$, perché la retta r è contenuta in entrambi i piani, perciò le sue componenti (l, m, n) sono date da:

$$l = \left| egin{array}{ccc} b & c \ b' & c' \end{array}
ight|, \ m = - \left| egin{array}{ccc} a & c \ a' & c' \end{array}
ight|, \ n = \left| egin{array}{ccc} a & b \ a' & b' \end{array}
ight|,$$

come dovevamo dimostrare.

6. Scrivere l'equazione cartesiana del piano α passante per $P_0(1,2,3)$ e contenente la retta r: x=2, y=1-t, z=3t+1.

Soluzione: Per prima cosa scriviamo la retta r come intersezione di due piani. Osserviamo che la retta r è contenuta nel piano β di equazione x=2 (si vede dall'espressione parametrica di r), per ottenere l'equazione di un altro piano contenente la retta r ricavo il parametro t dall'equazione y=1-t, ossia t=1-y e lo sostituisco nell'equazione z=3t+1 ottenendo il piano β' di equazione 3y+z-4,=0. Quindi la retta r può essere rappresentata nel seguente modo:

$$\begin{cases} x = 2, \\ 3y + z - 4 = 0. \end{cases}$$

L'equazione del fascio proprio di piani contenente la retta r è:

$$\lambda(x-2) + \mu(3y + z - 4) = 0$$

Sostituendo le coordinate del punto P_0 nell'equazione del fascio troviamo $\lambda=5\mu,$ scegliendo poi $\mu=1$ ricaviamo che α ha equazione: 5x+3y+z-14=0

7. Dato il punto $P_0(1,2,-1)$ ed il piano $\alpha: x+y-z+1=0.$ Determinare l'equazione del piano α' passante per P_0 e parallelo ad α . **Soluzione:** Il piano α' è parallelo ad α , quindi è ortogonale al vettore (1,1,-1) ed ha equazione cartesiana x+y-z+d=0. Imponendo che il punto P_0 appartenga al piano α troviamo che il termine noto d=-4, perció α : x+y-z-4=0.

- 8. Scrivere le equazioni cartesiane e le equazioni parametriche della retta passante per i punti A e B nei seguenti casi:
 - (a) A(1,1,0), B(1,1,-1);
 - (b) A(0,0,0), B(1,2,0);
 - (c) A(-1,1,1), B(2,2,2).

Soluzione:

- (a) Prendiamo come vettore direzione della retta $\boldsymbol{v}=B-A=(0,0,-1)$, le equazioni parametriche della retta per A e per B sono: $x=1,\,y=1,\,z=-t$, mentre le equazioni cartesiane sono: $x=1,\,y=1$;
- (b) Prendiamo come vettore direzione della retta $\boldsymbol{v}=B-A=(1,2,0)$, le equazioni parametriche sono: $x=u,\,y=2u,\,z=0$. Dalle equazioni parametriche segue che le equazioni cartesiane della retta sono: $2x-y=0,\,z=0$;
- (c) Prendiamo come vettore direzione della retta $\boldsymbol{v}=B-A=(3,1,1)$, le equazioni parametriche della retta per A e per B sono: $x=-1+3t,\,y=1+t,\,z=1+t,\,\,\text{mentre le equazioni}$ cartesiane sono: $y-z=0,\,x-3y+4=0.$
- 9. Determinare i parametri direttori e dare una rappresentazione parametrica delle seguenti rette:

(a)
$$x = y = \frac{z+1}{2}$$
;

- (b) $\frac{x+1}{2} = \frac{y}{2} = \frac{z-1}{3}$;
- (c) x 2y + z 1 = 0, x + 3y 2z + 2 = 0.

Soluzione:

- (a) Per ottenere una rappresentazione parametrica della retta, per prima cosa la si scrive come intersezione di due piani, ottenendo: x y = 0, $y \frac{z+1}{2} = 0$. Poi si sceglie una variabile da porre uguale al parametro, ad esempio x = t e sostituendola nelle equazioni cartesiane della retta si ottiene la rappresentazione parametrica: x = t, y = t, z = 2t 1. Un vettore direzione della retta è $\mathbf{v} = (1, 1, 2)$.
- (b) Scriviamo la retta come intersezione di due piani: x-y+1=0, 3y-2z+2=0. Ponendo x=u otteniamo la rappresentazione parametrica: x=u, y=1+u, $z=\frac{3}{2}u+\frac{1}{2}$. Un vettore direzione della retta è $\boldsymbol{v}=(2,2,3)$.
- (c) Ponendo x=t otteniamo la rappresentazione parametrica: $x=t,\,y=3t\,,\,z=5t+1.$ Un vettore direzione della retta è ${\boldsymbol v}=(1,3,5).$
- 10. Scrivere come intersezione di due piani le rette r e s aventi le seguenti equazioni parametriche: r: x = 1 2t, y = 1 + t, z = 2 3t, s: x = 1 u, y = 3, z = 2 + 3u.

Soluzione: Per poter scrivere una retta come intersezione di due piani si ricava il parametro da un'equazione dell'espressione parametrica e si sostituisce nelle restanti due che rappresentano i due piani cercati.

Per la retta r otteniamo: x + 2y - 3 = 0, 3y + z - 1 = 0.

Per la retta s otteniamo: y = 3, 3x + z - 5 = 0.

11. Determinare la posizione reciproca delle seguenti coppie di rette:

- (a) r: x + y + z = 0, x = 0, s: x = 0, x 2y = 1;
- (b) r: x = 1 + t, y = t, z = -t, s: x = 1 + u, y = u, z = -2 + u;
- (c) r: x+y+z-1 = 0, x-y = 0, s: x = t, y = 1+t, z = -t;
- (d) r: x = 2+t, y = -1-t, z = 4+3t, s: x = 3+u, y = 2+u, z = 4+u.

Soluzione:

(a) Entrambe le rette appartengono al piano di equazione x=0 perció le rette sono complanari. Vediamo ora se sono parallele oppure se sono incidenti. considerando il sistema:

$$\begin{cases} x = 0 \\ x + y + z = 0 \\ x - 2y = 1 \end{cases}$$

otteniamo che le rette sono incidenti nel punto $P(0,-\frac{1}{2},\frac{1}{2}).$

(b) Date due rette r ed s, passanti per i punti $P_r(x_r, y_r, z_r)$ e $P_s(x_s, y_s, z_s)$ e aventi direzione $\boldsymbol{v}_r = (l_r, m_r, n_r)$ e $\boldsymbol{v}_s = (l_s, m_s, n_s)$ rispettivamente, esse sono complanari se e solo se

$$\begin{vmatrix} x_r - x_s & y_r - y_s & z_r - z_s \\ l_r & m_r & n_r \\ l_s & m_s & n_s \end{vmatrix} = 0,$$

altrimenti sono sghembe. In questo caso si ha: $P_r(1,0,0)$, $P_s(1,0,-2)$, $v_r=(1,1,-1)$ e $v_s=(1,1,1)$, da cui

$$\begin{vmatrix} 0 & 0 & 2 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} = 0,$$

segue che le rette r e s sono complanari,
inoltre poiché non sono parallele sono incidenti esattamente nel punto P(2,1,-1).

(c) La retta r ha rappresentazione parametrica: x=u,y=u,z=1-2t, quindi $P_r(0,0,1),$ $P_s(0,1,0),$ $v_r=(1,1,-2)$ e $v_s=(1,1,-1),$ da cui

$$\begin{vmatrix} 0 & -1 & 1 \\ 1 & 1 & -2 \\ 1 & 1 & -1 \end{vmatrix} \neq 0,$$

segue che le rette r e s sono sghembe.

(d) Abbiamo: $P_r(2, -1, 4), P_s(3, 2, 4), \boldsymbol{v}_r = (1, -1, 3) e \boldsymbol{v}_s = (1, 1, 1),$ da cui

$$\begin{vmatrix}
-1 & -3 & 0 \\
1 & -1 & 3 \\
1 & 1 & 1
\end{vmatrix} \neq 0,$$

segue che le rette r e s sono sghembe.

12. Trovare la distanza del punto $P_0(1,1,0)$ dalla retta r:x+y=0,x-z=0.

Soluzione: Per determinare la distanza di un punto P da una retta r, si calcola la distanza di P dal punto H, intersezione della retta r col piano per P ortogonale ad r.

La rappresentazione parametrica di r è: x=t, y=-t, z=t mentre il piano α , ortogonale ad r e passante per il punto P_0 , ha equazione: x-y+z=0. Il punto H, intersezione tra la retta r ed il piano α si ottiene da r per t=0, ossia H(0,0,0). La distanza del punto P_0 dalla retta r è:

$$d(P_0, r) = d(P_0, H) = \sqrt{2}.$$

13. Calcolare la distanza tra le rette r : 2x+z=0, x-y=0, s : x=t, y=1+t, z=-t.

Soluzione: La rappresentazione parametrica della retta r è: x =

u,y=u,z=-2u, vediamo quale è la posizione reciproca delle rette r ed s. Abbiamo $P_r(0,0,0),~P_s(0,1,0),~v_r=(1,1,-2)$ e $v_s=(1,1,-1)$, da cui

$$\begin{vmatrix} 0 & -1 & 0 \\ 1 & 1 & -2 \\ 1 & 1 & -1 \end{vmatrix} \neq 0,$$

segue che le rette r e s sono sghembe. In questo caso la distanza tra le due rette può essere calcolata come la distanza di un punto qualunque P di s dal piano α passante per r e parallelo ad s. Il fascio proprio contente la retta r ha equazione: $\lambda(2x+z)+, \ mu(x-y)=0$,. Imponendo che il piano del fascio sia parallelo ad s si ottiene: $2\lambda + \mu - \mu - \lambda = \lambda = 0$. Il piano α ha quindi equazione cartesiana:

$$x - y = 0.$$

Prendiamo il punto $P(0,1,0) \in s$ la distanza tra le due rette è:

$$d/(r,s) = (P,\alpha) = \frac{1}{\sqrt{2}}.$$

14. Determinare centro e raggio della sfera di equazione:

$$x^2 + y^2 + z^2 - 2y - 6z + 1 = 0.$$

Trovare, inoltre l'equazione del piano tangente ad S nel punto $P_0(0, 1, 0)$.

Soluzione: Scrivendo l'equazione della sfera nel seguente modo:

$$x^2 + (y - 1)^2 + (z - 3)^2 = 9$$

ricaviamo che il centro della sfera è C(0,1,3), mentre il raggio è R=3. Il piano tangente alla sfera nel punto P_0 è passante per il punto P_0 e ortogonale al vettore $C-P_0$ ed ha perció equazione: z=0. 15. Trovare centro e raggio della circonferenza σ intersezione della sfera S dell'esercizio precedente con il piano $\pi:x+y+z-1=0.$

Soluzione: Il centro C_1 della circonferenza σ è l'intersezione tra il piano α e la retta r ortogonale ad esso passante per il centro C(0,1,3) della sfera. La retta ha rappresentazione parametrica: x=t,y=1+t,z=3+t, sostituendo questi valori nell'equazione di α otteniamo il valore del parametro t relativo al punto C_1 , ossia

$$t + 1 + t + 3 + t - 1 = 0 \implies t = -1$$

quindi $C_1(-1,0,2)$. Per quanto riguarda il raggio r di σ , esso si ottiene dal Teorema di Pitagora, da:

$$r = \sqrt{R^2 - \overline{CC_1}^2} = \sqrt{6}$$