X-Powers

AXR813 Datasheet

AXP813 Optimized For Multi-Core High-Performance System

Revision 1.0

2014.09.01

Revision History

Revision	Date	Description
Rev 1.0	2014.09.01	Release Version1.0

Declaration

X-Powers cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an X-Powers product. No circuit patent licenses, copyrights, or other intellectual property rights are implied. X-Powers reserves the right to make changes to the specifications and products at any time without notice.

Catalog

1 Overview	12
2 Feature	13
3 Power Management Typical Application	15
4 Ball Map	16
5 Ball Description	17
6 Block Diagram	24
6.1 Power management Block Diagram	24
6.2 Codec Functional Block Diagram	25
6.3 Codec Data Path Diagram	26
7 Absolute Maximum Ratings	27
8 Electrical Characteristics	
9 Analog Performance Characteristics	
10 Typical Power Consumption	
11 Power Management Control and operation	40
11.1 Power on/off and sleep/wakeup	40
11.2 IPS (Intelligent Power Select)	
11.3 BC Detection Module	
11.4 Adaptive PWM Charger	
11.5 Multi-Power Outputs	55
11.6 ADC	
11.7 Fuel Gauge	57
11.8 Interrupt Controller	58
12 Codec Function Description	59
12.1 Power	59
12.2 Clock	59
12.3 PLL	61
12.4 I2S/PCM Interface	62
12.5 Stereo ADC	65
12.6 Stereo DAC	65
12.7 Mixer	65
12.8 Analogue Audio Input Path	67
12.9 Analogue Audio Output Path	68
12.10 Digital Microphone Interface	70
12.11 Audio Jack Detect	71
12.13 Interrupt	72

	12.14 Digital Audio Process for ADC	73
	12.15 Digital Audio Process for DAC	77
	12.16 RTC Module	81
13	TWSI/RSB Interface	82
	13.1 TWSI Interface	82
	13.2 RSB Interface	83
14	Power Management Register	85
	Register List	85
	REG 00H: Power source status	87
	REG 01H: Power mode and Charger status	88
	REG 02H: Power up/down reason register	88
	REG 03H: IC type no.	89
	REG 04-0FH: 12 Data buffers	89
	REG 10H: Output power on-off control 1	89
	REG 12H: Output power on-off control 2	89
	REG 13H: Output power on-off control 3	
	REG 14H: On/Off synchronous control	90
	REG 15H: DLDO1 voltage control	
	REG 16H: DLDO2 voltage control	91
	REG 17H: DLDO3 voltage control	91
	REG 18H: DLDO4 voltage control	91
	REG 19H: ELDO1 voltage control	
	REG 1AH: ELDO2 voltage control	
	REG 1BH: ELDO3 voltage control	
	REG 1CH: FLDO1 voltage control	92
	REG 1DH: FLDO2/3 voltage control	93
	REG 20H: DCDC1 voltage control	93
	REG 21H: DCDC2 voltage control	93
	REG 22H: DCDC3 voltage control	94
	REG 23H: DCDC4 voltage control	94
	REG 24H: DCDC5 voltage control	94
	REG 25H: DCDC6 voltage control	94
	REG 26H: DCDC7 voltage control	95
	REG 27H: DCDC2 /3 /4 /5 /6/7 DVM control	95
	REG 28H: ALDO1 voltage control	96
	REG 29H: ALDO2 voltage control	96
	REG 2AH: ALDO3 voltage control	96
	REG 2CH: BC Module Global Register	96
	REG 2DH: BC Module VBUS Control and Status Register	97

REG 2EH: BC USB Status Register	98
REG 2FH: BC Detect Status Register	99
REG 30H: VBUS path control & Hold voltage setting	99
REG 31H: Power wakeup control & V _{OFF} setting	100
REG 32H: Power Disable, BAT detect and CHGLED pin control	100
REG 33H: Charger Control 1	101
REG 34H: Charger Control 2	101
REG 35H: Charger Control 3	101
REG 36H: POK setting	102
REG 37H: POK Power off activity time setting	102
REG 38H: V _{LTF-charge} setting	102
REG 39H: V _{HTF-charge} setting	103
REG 3AH: ACIN path control	103
REG 3BH: Buck frequency setting	103
REG 3CH: V _{LTF-work} setting.	
REG 3DH: V _{HTF-work} setting	104
REG 40H: IRQ enable 1	104
REG 41H: IRQ enable 2	104
REG 42H: IRQ enable 3	105
REG 43H: IRQ enable 4	105
REG 44H: IRQ enable 5	105
REG 45H: IRQ enable 6	106
REG 48H: IRQ Status 1	106
REG 49H: IRQ Status 2	107
REG 4AH: IRQ Status 3	
REG 4BH: IRQ Status 4	107
REG 4CH: IRQ Status 5	108
REG 4DH: IRQ Status 6	108
REG 58H: TS pin input ADC data, highest 8bit	108
REG 59H: TS pin input ADC data, lowest 4bit	109
REG 5AH: GPADC pin input ADC data, highest 8bit	109
REG 5BH: GPADC pin input ADC data, lowest 4bit	109
REG 78H: Average data bit[11:4] for Battery voltage (BATSENSE)	109
REG 79H: Average data bit[3:0] for Battery voltage (BATSENSE)	110
REG 7AH: Average data bit[11:4] for Battery charge current	110
REG 7BH: Average data bit[3:0] for Battery charge current	110
REG 7CH: Average data bit[11:4] for Battery discharge current	110
REG 7DH: Average data bit[3:0] for Battery discharge current	110
REG 80H: Buck PWM/PFM mode select	111

	REG 81H: Off-Discharge and Output monitor control	111
	REG 82H: ADC Enable	112
	REG 84H: ADC speed setting, TS pin Control	112
	REG 85H: ADC speed setting	113
	REG 8AH: Timer control	113
	REG 8EH: Buck output voltage monitor de-bounce time setting	113
	REG 8FH: IRQ pin, hot-over shut down	114
	REG 90H: GPIO0 (GPADC) control	114
	REG 91H: GPIO0LDO and GPIO0 high level voltage setting	114
	REG 92H: GPIO1 control	115
	REG 93H: GPIO1LDO and GPIO1 high level voltage setting	115
	REG 94H: GPIO signal bit	115
	REG 97H: GPIO pull down control	116
	REG A0H: Real time data bit[11:4] for Battery voltage (BATSENSE)	116
	REG A1H: Real time data bit[3:0] for Battery voltage (BATSENSE)	116
	REG B8H: Fuel Gauge Control	116
	REG B9H: Battery capacity percentage for indication	117
	REG BAH: RDC 1	117
	REG BBH: RDC 0	118
	REG BCH: OCV 1	118
	REG BDH: OCVO	
	REG EOH: Battery maximum capacity	118
	REG E1H: Battery maximum capacity	118
	REG E2H: Coulomb meter counter1	119
	REG E3H: Coulomb meter counter2	119
	REG E4H: OCV Percentage of battery capacity	119
	REG E5H: Coulomb meter percentage of battery capacity	119
	REG E6H: Battery capacity percentage warning level	120
	REG E8H: Fuel gauge tuning control 0	120
	REG E9H: Fuel gauge tuning control 1	120
	REG EAH: Fuel gauge tuning control 2	121
	REG EBH: Fuel gauge tuning control 3	122
	REG ECH: Fuel gauge tuning control 4	122
	REG EDH: Fuel gauge tuning control 5	123
15	Codec Register	124
	Register List	124
	REG 00H_Chip Soft Reset Register	126
	REG 01H_PLL Configure Control 1 Register	126
	REG 02H_PLL Configure Control 2 Register	127

REG 03H_System Clocking Control Register	127
REG 04H_Module Clock Enable Control Register	128
REG 05H_Module Reset Control Register	129
REG 06H_ADDA Sample Rate Configuration Register	129
REG 10H_I2S1 BCLK/LRCK Control Register	130
REG 11H_I2S1 SDOUT Control Register	132
REG 12H_I2S1 SDIN Control Register	133
REG 13H_I2S1 Digital Mixer Source Select Register	135
REG 14H_I2S1 Volume Control 1 Register	135
REG 15H_I2S1 Volume Control 2 Register	136
REG 16H_I2S1 Volume Control 3 Register	137
REG 17H_I2S1 Volume Control 4 Register	137
REG 18H_I2S1 Digital Mixer Gain Control Register	138
REG 20H_I2S2 BCLK/LRCK Control Register	139
REG 21H_I2S2 SDOUT Control Register	 140
REG 22H_I2S2 SDIN Control Register	141
REG 23H_I2S2 Digital Mixer Source Select Register	142
REG 24H_I2S2 Volume Control 1 Register	142
REG 26H_I2S2 Volume Control 2 Register	
REG 28H_I2S2 Digital Mixer Gain Control Register	143
REG 30H_I2S3 BCLK/LRCK Control Register	
REG 31H_I2S3 SDOUT Control Register	145
REG 32H_I2S3 SDIN Control Register	145
REG 33H_I2S3 Signal Path Control Register	145
REG 40H_ADC Digital Control Register	146
REG 41H_ADC Volume Control Register	147
REG 44H_HMIC Control 1 Register	147
REG 45H_HMIC Control 2 Register	148
REG 46H_HMIC Status Register	149
REG 48H_DAC Digital Control Register	149
REG 49H_DAC Volume Control Register	150
REG 4CH_DAC Digital Mixer Source Select Register	150
REG 4DH_DAC Digital Mixer Gain Control Register	151
REG 50H_ADC Analog Control Register	151
REG 51H_ADC Source Select Register	152
REG 52H_ADC Source Boost Control Register	153
REG 53H_Output Mixer & DAC Analog Control Register	154
REG 54H_Output Mixer Source Select Register	154
REG 55H_Output Mixer Source Boost Register	155

REG 56H_Headphone Output Control Register	156
REG 57H_Earpiece Output Control Register	156
REG 58H_Speaker Output Control Register	157
REG 59H_Lineout Control Register	158
REG 80H_ADC DAP Left Status Register	158
REG 81H_ADC DAP Right Status Register	159
REG 82H_ADC DAP Left Channel Control Register	159
REG 83H_ADC DAP Right Channel Control Register	160
REG 84H_ADC DAP Left Target Level Register	161
REG 85H_ADC DAP Right Target Level Register	161
REG 86H_ADC DAP Left High Average Coef Register	161
REG 87H_ADC DAP Left Low Average Coef Register	161
REG 88H_ADC DAP Right High Average Coef Register	162
REG 89H_ADC DAP Right Low Average Coef Register	162
REG 8AH_ADC DAP Left Decay Time Register	162
REG 8BH_ADC DAP Left Attack Time Register	162
REG 8CH_ADC DAP Right Decay Time Register	163
REG 8DH_ADC DAP Right Attack Time Register	163
REG 8EH_ADC DAP Noise Threshold Register	
REG 8FH_ADC DAP Left Input Signal High Average Coef Register	164
REG 90H_ADC DAP Left Input Signal Low Average Coef Register	164
REG 91H_ADC DAP Right Input Signal High Average Coef Register	164
REG 92H_ADC DAP Right Input Signal Low Average Coef Register	165
REG 93H_ADC DAP High HPF Coef Register	165
REG 94H_ADC DAP Low HPF Coef Register	165
REG 95H_ADC DAP Optimum Register	165
REG AOH_DAC DAP Control Register	166
REG A1H_DAC DAP High HPF Coef Register	166
REG A2H_DAC DAP Low HPF Coef Register	166
REG A3H_DAC DAP Left High Energy Average Coef Register	167
REG A4H_DAC DAP Left Low Energy Average Coef Register	167
REG A5H_DAC DAP Right High Energy Average Coef Register	167
REG A6H_DAC DAP Right Low Energy Average Coef Register	167
REG A7H_DAC DAP High Gain Decay Time Coef Register	167
REG A8H_DAC DAP Low Gain Decay Time Coef Register	168
REG A9H_DAC DAP High Gain Attack Time Coef Register	168
REG AAH_DAC DAP Low Gain Decay Time Coef Register	168
REG ABH_DAC DAP High Energy Threshold Register	168
REG ACH_DAC DAP Low Energy Threshold Register	169

REG ADH_DAC DAP High Gain K Parameter Register	169
REG AEH_DAC DAP Low Gain K Parameter Register	169
REG AFH_DAC DAP High Gain Offset Parameter Register	169
REG BOH_DAC DAP Low Gain Offset Parameter Register	169
REG B1H _DAC DAP Optimum Register	170
REG B4H_ADC DAP Enable Register	170
REG B5H_DAC DAP Enable Register	171
REG B8H_SRC1 Control 1 Register	172
REG B9H_SRC1 Control 2 Register	172
REG BAH_SRC1 Control 3 Register	173
REG BBH_SRC1 Control 4 Register	173
REG BCH_SRC2 Control 1 Register	173
REG BDH_SRC2 Control 2 Register	173
REG BEH_SRC2 Control 3 Register	174
REG BFH_SRC2 Control 4 Register	174
REG COH_RTC Analog Control Register	174
REG C1H_CK32K Output Control Register 1	175
REG C2H_CK32K Output Control Register 2	175
REG C3H_CK32K Output Control Register 3	176
REG C6H_RTC Reset Register	177
REG C7H_RTC Control Register	
REG C8H_RTC Seconds Register	
REG C9H_RTC Minutes Register	178
REG CAH_RTC Hours Register	178
REG CBH_RTC Weekdays Register	179
REG CCH_RTC Days Register	179
REG CDH_RTC Months Register	179
REG CEH_RTC Years Register	179
REG CFH_RTC Update Trigger	180
REG DOH_Alarm Interrupt Enable Register	180
REG D1H_Alarm Interrupt Status Register	180
REG D8H_Alarm Seconds Register	181
REG D9H_Alarm Minutes Register	181
REG DAH_Alarm Hours Register	181
REG DBH_Alarm Weekdays Register	182
REG DCH_Alarm Days Register	182
REG DDH_Alarm Months Register	182
REG DEH_Alarm Years Register	183
REG DFH_Alarm Update Trigger	183

REG E0H-EFH RTC General Purpose Register n(n=0-15)	183
16 Package	184

1 Overview

The AXP813 is a high integrated power management and audio Codec integrated circuit available in 11mm x 11mm 218-ball BGA package. The device contains power management, audio codec, USB3.0-compatible Flash Charger, real-time clock(RTC), analog to digital converter(ADC) and hardware DSP.

AXP813 integrates power management subsystem for applications powered by one Li-battery(Li-ion or Li-polymer) ,and which require multiple power rails. The AXP813 provides 21 channels power outputs (including 7-CH Bucks) and multiple channels 12-bit ADC for voltage/current/temperature monitor and integrates protection circuits such as OVP, UVP, OTP, and OCP to ensure the security and stability of the power system. The portion of power management also features a unique E-GaugeTM(Fuel Gauge) system, making power gauge easy and exact.

An IPS™ (Intelligent Power Select) circuit is included to transparently select the type of charger and provide charging with USB3.0-compatible chargers(up to 2.8A charge current), external AC chargers, and Li-battery.

In addition, AXP813 embraces a fast interface for the system to dynamically adjust output voltage and enable power outputs so that the battery life can be extended to the largest extent.

An integrated digital PLL supports a large range of input/output frequencies, and It can generate required audio clocks for codec from standard audio crystal rate such as 22.5792MHz and 24.576MHz, also can be from common reference clock frequencies such as 12MHz, 13MHz and 19.2MHz, and an internal RC oscillator can be used in Free-running Mode, where the application processor can be inactive during voice call application. The 2 ADC and 2 DAC in device use advanced multi-bit delta-sigma modulation technique to convert data between analog and digital. The SNR performance can reach 100 dB A-weight.

A mono, differential BTL drive amplifier is available for driving the handset receiver.

The flexible analogue and digital mixers form a varied signal routing to support a complicated application.

All LDOs and DCDC is controlled through TWSI(2-wire serial interface) or RSB^① (reduced serial bus) to convert voltage. It works only in the slave mode.

The integrated DRC(Dynamic Range Controller) function in AXP813 provide an useful digital sound processing capability in DAC playback path to speaker. It is used to attenuate the peak signals and boost the low-level signals by adjusting the output signal gain in some conditions. The DRC functions can be enable or disable in the playback path.

The integrated AGC(Automatic Gain Controller) function can be used to maintain a constant recording level in ADC record path. The DRC can make an improvement in background noise by setting a programmable Noise Gate to attenuate very low-level input signals.

Note: ① The RSB is independent R&D by x-powers, supports a special protocols with a simplified two wire protocol on a push-pull bus. The transfer speed in AXP813 can be up to 10MHz.

Applications:

• Tablet, Smart phone, DVR, Desktop, Dongle

• UMPC-like, Student Computer

2 Feature

-- 7 Frequency spread Bucks

- ◆ DCDC4: PFM/PWM, 0.5-1.20V, 10mV/step, 1.22-1.30V, 20mV/step, IMAX=3A, DVM
- DCDC7: PFM/PWM, 0.6-1.10V, 10mV/step, 1.12-1.52V, 20mV/step, IMAX=1.8A, DVM
- DCDC6: PFM/PWM, 0.6-1.10V, 10mV/step, 1.12-1.52V, 20mV/step, IMAX=2.5A, DVM
- ◆ DCDC5: PFM/PWM, 0.8-1.12V, 10mV/step, 1.14-1.84V, 20mV/step, IMAX=2.5A, DVM, default set by DC5SET
- ◆ DCDC2: PFM/PWM, 0.5-1.20V, 10mV/step, 1.22-1.30V, 20mV/step, IMAX=3A, DVM,
- ◆ DCDC3: PFM/PWM, 0.5-1.20V, 10mV/step, 1.22-1.30V, 20mV/step, IMAX=3A, DVM,
- ◆ DCDC1: PFM/PWM, 1.6-3.4V, 0.1V/step, 19 steps, IMAX=1.5A
- ◆ DCDC2/3/4:71+5 steps; DCDC6/7:51+21steps; DCDC5:33+37 steps
- ◆ DVM(Dynamic Voltage scaling Management) ramp rate: 2.5mV/us at buck frequency 3MHz

--15 LDOs & Switch

- ◆ RTCLDO: VCC RTC=3V, IMAX=60mA, always enable
- ◆ ALDO1: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=500mA, input is ALDOIN
- ◆ ALDO2: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=300mA, input is ALDOIN
- ◆ ALDO3: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=200mA, input is ALDOIN
- ◆ DLDO1: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps; IMAX=500mA, input is DLDOIN
- ◆ DLDO2: Analog LDO, 0.7-3.4V, 100mV/step; 28 steps; 3.4-4.2V, 200mV/step, 5 steps. IMAX=400mA, input is DLDOIN
- ◆ DLDO3: Analog LDO, 0.7-3.3V, 100mV/step; 27 steps, IMAX=300mA, input is DLDOIN
- ◆ DLDO4: Analog LDO, 0.7-3.3V, 100mV/step; 27 steps, IMAX=500mA, input is DLDOIN
- ◆ ELDO1: Digital LDO, 0.7-1.9V, 50mV/step; 25 steps, IMAX=400mA, input is ELDOIN
- ◆ ELDO2: Digital LDO, 0.7-1.9V, 50mV/step; 25 steps, IMAX=200mA, input is ELDOIN
- ◆ ELDO3: Digital LDO, 0.7-1.9V, 50mV/step; 25 steps, IMAX=200mA, input is ELDOIN
- ◆ FLDO1: Digital LDO, 0.7-1.45V, 50mV/step, 16 steps, IMAX=300mA, input is FLDOIN
- ◆ FLDO2: Digital LDO, 0.7-1.45V, 50mV/step, 16 steps, IMAX=100mA, input is FLDOIN
- ◆ FLDO3: Sink and Source LDO, FLDOIN/2, DCDC5/2, IMAX=30mA, input is FLDOIN, for VREFDQ, default on
- GPIOOLDO: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=100mA, input is ALDOIN
- ◆ GPIO1LDO: Analog LDO, 0.7-3.3V, 100mV/step, 27 steps, IMAX=150mA, input is ALDOIN
- ◆ CHGLED: GND switch for motor or LED, IMAX=100mA
- --TWI/RSB control interface supporting standard and quick slave mode
- --Intelligent Power Select (IPS), VBUS-IPSOUT is 80mΩ typically
- --Adaptive Li battery PWM charger with current total up to 2.8A
- --Battery Fuel Gauge and coulomb counter
- --Power output on/off touch key
- --Internal Temperature sensor and protection
- --Safe and Soft start up
- --2 ADCs and 2 DACs @ 24-bit and inter PLL processing with flexible clocking scheme
- --Up to 100dB SNR during DAC playback path (A 'weight)

- -- Up to 95dB SNR during ADC record path (A 'weight)
- -- Capless stereo headphone driver
 - ◆ Integrated charge pump for 0V reference
 - ♦ 18mW @1.8V
- -- Mono differential earpiece driver
 - ◆ 65 mW/CH (THD+N ≤ -70dB, 160hm Load)
- --Two stereo differential speaker outputs using external amplifier to drive the loud speaker
- --Differential Line output with 1 Vrms full scale output voltage
- -- Mono differential earpiece driver
 - ♦ 65Three differential analog microphone inputs with 30dB~48dB boost amplifier gain
 - ◆ One mono differential or single-ended line-in input
 - ◆ One stereo auxiliary input for external accessory connection
- -- Two low noise analog microphone bias
- --Audio jack insert/ button press detection
- --24-bit 8KHz ~ 192KHz I2S/PCM interface
- --Support Dynamic Range Controller (DRC) adjusting the DAC playback output
- --Support Automatic Gain Control (AGC) adjusting the ADC recording output
- --SRC for synchronisation between audio interface or digital audio data mixing
- --Soft mute circuit for pop noise suppression
- --Support digital microphone interface
- -- RTC and Three clock output

3 Power Management Typical Application

Figure 3-1 shows the typical application of the power management.

Figure 3-1 Power Management

4 Ball Map

Figure 4-1 shows the top pin maps views of the 218-pin BGA package.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
А	EAROUTP	LINEOUTN	LINEINR	MIC2P	MIC1P	AXIR	MIC3N	LDOIN	VDD_CORE	х32ко	IRQ_RTC					
В	EAROUTN	LINEOUTP	LINEINL	MIC2N	MIC1N	AXIL	MIC3P	CKO3_RTC	X32KI	SCK_A						
С	SPORP	AVCC	AGND	VRP	HBIAS	MBIAS	CKO2_RTC	CKO1_RTC	SDA_A			LX6		LX5		
D	SPOLP	SPORN	AGND	GND_A	GND_A	GND_A	GND_A	VCC_RTC_A				LX6		LX5	FLDO3	ELDO2
Е	VRA2	SPOLN	AGND	GND_A	GND_A		GND_A		DLDOIN	DLDO4		DCDC6			FLDO1	ELDO3
F	VEE	HPOUTFB	GND_A	GND_A	GND_A	GND_A	DLDO1	DLDO2		DLDO3	VIN6	DCDC5	VIN5	FLDO2	FLDOIN	ELDOIN
G	CPVEE	HPOUTL	GND_A	GND_A	GND_A	GND_A	GND	PGND6	PGND6	GND	PGND5	PGND5	GND	PGND7	ELDO1	DCDC7
Н	HPOUTR	VPP	GND_A	GND_A	GND_A	GND_A	GND	GND	GND	GND	GND	GND	GND	PGND7	LX7	VIN7
J	DACDAT3	VCC_IO2	LRCK3		SWOUT	SWIN	GND	GND	GND	GND	GND	GND	GND	PGND_CHG	VIN_CHG	VIN_CHG
К	ADCDAT3	BCLK3				DCDC1	PGND1	GND	GND	GND	GND	GND	GND	PGND_CHG	LX_CHG	LX_CHG
L	IRQ_AUDIO	DACDAT2			LX1	VIN1	PGND4	GND	GND	GND	GND	GND	GND	GND	BATSENSE	LOADSENSE
М	ADCDAT2	LRCK2			VIN4	VIN4	PGND4	GND	GND	GND	GND	GND	GND	GND	PWRON	DC5SET
N	BCLK2	VCC_IO1		DCDC4		LX4	GND	GND	GND	GND	GND	GND	GND	GND	ACIN	ACIN
Р	DACDAT1	ADCDAT1		FBGND	GND	LX4	GND	PGND3	PGND3	PGND2	PGND2	GND	GND	GND	PS	PS
R	LRCK1	BCLK1		DM	TS	ALDO1	ALDOIN	LX3	LX3	VIN2	DCDC3	LX2	SDA	SCK	CHGLED	VBUS
Т	MCLK2	MCLK1	DP	ALDO2	ALDO3	VREF	GPIO1	GPI00	VIN3	VIN2	DCDC2	LX2	PWROK	VCC_RTC	N_BATDRV	N_VBUSEN

Figure 4-1 AXP813 Pin Maps

5 Ball Description

Table 5-1 lists the characteristics of the AXP813 Pins.

Table 5-1

Ball	Name	Туре	Condition	Description
G15	ELDO1	0		Output pin of ELDO1
D16	ELDO2	0		Output pin of ELDO2
E16	ELDO3	0		Output pin of ELDO3
E15	FLDO1	0		Output Pin of FLDO1
F15	FLDOIN	PI		FLDO input source
F14	FLDO2	0		Output Pin of FLDO2
D15	FLDO3	0		Output Pin of FLDO3
F13	VIN5	PI		DCDC5 input source
C14	LX5	10		Inductor Pin for DCDC5
D14	LX5	10		Inductor Pin for DCDC5
F12	DCDC5	I		DCDC5 feedback pin
G11	PGND5	G		PGND OF DCDC5
G12	PGND5	G		PGND OF DCDC5
E12	DCDC6	I		DCDC6 feedback pin
C12	LX6	10	> [Inductor Pin for DCDC6
D12	LX6	10		Inductor Pin for DCDC6
F11	VIN6	PI		DCDC6 input source
G8	PGND6	G		PGND Of DCDC6
G9	PGND6	G		PGND Of DCDC6
E10	DLDO4	0		Output Pin of DLDO4
F10	DLDQ3	0		Output Pin of DLDO3
E9	DLDOIN	PI		DLDOIN input source
F8	DLDO2	0		Output Pin of DLDO2
F7	DLDO1	0		Output Pin of DLDO1
J5	SWOUT	РО		Output Pin of The PMOS Switch
J6	SWIN	PI		Input Pin of The PMOS Switch
L6	VIN1	PI		DCDC1 input source
L5	LX1	10		Inductor Pin for DCDC1
К6	DCDC1	I		DCDC1 feedback pin
К7	PGND1	G		PGND Of DCDC1
M5	VIN4	PI		DCDC4 input source
M6	VIN4	PI		DCDC4 input source

Ball	Name	Туре	Condition	Description
N6	LX4	10		Inductor Pin for DCDC4
Р6	LX4	10		Inductor Pin for DCDC4
N4	DCDC4	1		DCDC4 feedback pin
L7	PGND4	G		PGND Of DCDC4
M7	PGND4	G		PGND Of DCDC4
P4	FBGND	G		Feedback pin of PGND2
T3	DP	Ι		Charger detection, USB D+
R4	DM	I		Charger detection, USB D-
R6	ALDO1	0		Output pin of ALDO1
T4	ALDO2	0		Output pin of ALDO2
R5	TS	-		Battery Temperature Sensor Input or an External ADC Input
T5	ALDO3	0		Output pin of ALDO3
R7	ALDOIN	PI		ALDO input source
T6	VREF	0		Internal reference voltage
				General purpose I/O or LDO by REG92H. When it's digital input,
T7	GPIO1	10		the logic high level is 1.5V, and the logic low level is 0.5V
17	Grioi	10		typically. When it's digital output, the logic high level is decided
				by REG93H.
			1	General purpose I/O/ADC input or LDO by REG90H. When it's
Т8	GPIO0			digital input, the logic high level is 1.5V, and the logic low level
.0				is 0.5V typically. When it's digital output, the logic high level is
				decided by REG91H.
R8	LX3	Ю		Inductor Pin for DCDC3
R9	LX3	10		Inductor Pin for DCDC3
T9 *	VIN3	PI		DCDC3 input source
R11	DCDC3	I		DCDC3 feedback pin
P8	PGND3	G		PGND Of DCDC3
P9	PGND3	G		PGND Of DCDC3
R10	VIN2	PI		DCDC2 input source
T10	VIN2	PI		DCDC2 input source
T11	DCDC2	I		DCDC2 feedback pin
R12	LX2	10		Inductor Pin for DCDC2
T12	LX2	Ю		Inductor Pin for DCDC2
P10	PGND2	G		PGND Of DCDC2
P11	PGND2	G		PGND Of DCDC2
T13	PWROK	О		Power Good pin, push-pull output , and pull to VCC_RTC
113	· WINOK	U		internal. PWROK is an active high dedicated output signal.

Ball	Name	Туре	Condition	Description
				PWROK asserts when all voltage rails to the SOC that are
				supposed to be on
R14	SCK	,	2.2ΚΩ	Clock pin for serial interface, need a 2.2KΩ Pull High.
K14	SCK	I	Pull High	
R13	SDA	10	2.2ΚΩ	Data pin for serial interface, need a 2.2KΩ Pull High.
KID	SDA	10	Pull High	
T14	VCC_RTC	0		Output pin of VCC_RTC
R16	VBUS	PI		VBUS input
T15	N_BATDRV	0		BAT to PS extern PMOS driver
T16	N_VBUSEN	10		VBUS-PS Path Control pin
R15	CHGLED	0		Charger status indication
P15	PS	PO		System power source
P16	PS	РО		System power source
N15	ACIN	PI		ACIN input
N16	ACIN	PI		ACIN input
M15	PWRON	1		Power On-Off key input, Internal 100k pull high to VINT pin
M16	DC5SET	I		Setting DCDC5 default Output Voltage, this pin must tied to GND/VCC_RTC or floating.
L16	LOADSENSE	I	*	PWM Charger Current Sense Resistance Positive Input
L15	BATSENSE			PWM Charger Current Sense Resistance Negative Input
K15	LX_CHG	10		Inductor Pin for PWM Charger
K16	LX_CHG	10		Inductor Pin for PWM Charger
J15	VIN_CHG	1		Charger input source
J16	VIN_CHG	I		Charger input source
J14	PGND_CHG	G		PGND Of Charger
K14	PGND_CHG	G		PGND Of Charger
H15	LX7	10		Inductor Pin for DCDC7
H16	VIN7	PI		DCDC7 input source
G16	DCDC7	I		Feedback to DCDC7
G14	PGND7	G		PGND Of DCDC7
H14	PGND7	G		PGND Of DCDC7
F16	ELDOIN	PI		ELDO input source
G7	GND	G		GND Of Power Management
G10	GND	G		GND Of Power Management
G13	GND	G		GND Of Power Management
H7	GND	G		GND Of Power Management
Н8	GND	G		GND Of Power Management

Ball	Name	Туре	Condition	Description
Н9	GND	G		GND Of Power Management
H10	GND	G		GND Of Power Management
H11	GND	G		GND Of Power Management
H12	GND	G		GND Of Power Management
H13	GND	G		GND Of Power Management
J7	GND	G		GND Of Power Management
J8	GND	G		GND Of Power Management
19	GND	G		GND Of Power Management
J10	GND	G		GND Of Power Management
J11	GND	G		GND Of Power Management
J12	GND	G		GND Of Power Management
J13	GND	G		GND Of Power Management
К8	GND	G		GND Of Power Management
К9	GND	G		GND Of Power Management
K10	GND	G		GND Of Power Management
K11	GND	G		GND Of Power Management
K12	GND	G		GND Of Power Management
K13	GND	G		GND Of Power Management
L8	GND	G	*	GND Of Power Management
L9	GND	G		GND Of Power Management
L10	GND	G		GND Of Power Management
L11	GND	G		GND Of Power Management
L12	GND	G		GND Of Power Management
L13	GND	G		GND Of Power Management
M8	GND	G		GND Of Power Management
M9	GND	G		GND Of Power Management
M10	GND	G		GND Of Power Management
M11	GND	G		GND Of Power Management
M12	GND	G		GND Of Power Management
M13	GND	G		GND Of Power Management
M14	GND	G		GND Of Power Management
N7	GND	G		GND Of Power Management
N8	GND	G		GND Of Power Management
N9	GND	G		GND Of Power Management
N10	GND	G		GND Of Power Management
N11	GND	G		GND Of Power Management

Ball	Name	Туре	Condition	Description
N12	GND	G		GND Of Power Management
N13	GND	G		GND Of Power Management
N14	GND	G		GND Of Power Management
P5	GND	G		GND Of Power Management
P7	GND	G		GND Of Power Management
P12	GND	G		GND Of Power Management
P13	GND	G		GND Of Power Management
P14	GND	G		GND Of Power Management
T2	MCLK1	1		I2S interface master input clock 1
P1	SDIN1	1		First I2S interface serial data input
P2	SDOUT1	0		First I2S interface serial data output
R2	BCLK1	1/0		First I2S interface serial bit clock
R1	LRCK1	1/0		First I2S interface synchronous clock
T1	MCLK2	I		I2S interface master input clock 2
L2	SDIN2	I		Second I2S interface serial data input
M1	SDOUT2	0		Second I2S interface serial data output
N1	BCLK2	1/0		Second I2S interface serial bit clock
N2	LRCK2	1/0		Second 125 interface synchronous clock
J1	SDIN3	I	*	Third I2S interface serial data input
K1	SDOUT3	0		Third I2S interface serial data output
K2	BCLK3	1/0		Third I2S interface serial bit clock
J3	LRCK3	1/0		Third I2S interface synchronous clock
C9	SDA A	I/O		TWSI interface serial data(Open-drain) Of Codec
	337_^	7,0		RSB interface serial data Of Codec
B10	SCK_A	1		TWSI interface serial clock input Of Codec
D10	Jen J	'		RSB interface serial clock input Of Codec
L1	IRQ_AUDIO	0		IRQ for accessory insert and button detect(Open-drain)
A11	IRQ_RTC	0		IRQ for RTC alarm interrupt(Open-drain)
В9	X32KI	I		The external oscillator input signal
A10	X32KO	0		The external oscillator output signal
C8	CKO1_RTC	0		RTC 32.768 KHz clock output(Push-pull)
C7	CKO2_RTC	0		RTC 32.768 KHz clock output(Open-drain)
B8	CKO3_RTC	0		RTC 32.768 KHz clock output(Open-drain)
A5	MIC1P	I		Positive differential input for MIC1
B5	MIC1N	I		Negative differential input for MIC1
A4	MIC2P	I		Positive differential input for MIC2

Ball	Name	Туре	Condition	Description
B4	MIC2N	I		Negative differential input for MIC2
В7	MIC3P/	I		Analog Positive differential input for MIC3
Б/	DMICCLK	0		Digital microphone clock output
A7	MIC3N/	1		Negative differential input for MIC3
A7	DMICDAT	0		Digital microphone data input
В3	LINEINL	I		Left single-end or differential input for LINE-IN
А3	LINEINR	I		Right single-end or differential input for LINE-IN
В6	AXIL	I		Auxiliary left Channel input
A6	AXIR	I		Auxiliary right Channel input
G2	HPOUTL	0		Headphone amplifier left channel output
H1	HPOUTR	0		Headphone amplifier right channel output
D1	SPOLP	0		Differential positive output to speaker1 amplifier
E2	SPOLN	0		Differential negative output to speaker1 amplifier
C1	SPORP	0		Differential positive output to speaker2 amplifier
D2	SPORN	0		Differential negative output to speaker2 amplifier
A1	EAROUTP	0		Earpiece amplifier positive differential output
B1	EAROUTN	0		Earpiece amplifier negative differential output
B2	LINEOUTP	0		Positive output for LINE-OUT
A2	LINEOUTN	0	*	Negative output for LINE-OUT
C6	MBIAS	0		First bias voltage output for main microphone
C5	HBIAS	0		Second bias voltage output for headset microphone
F2	HPOUTFB			Pseudo differential headphone ground reference
E1	VRA2	0		Internal reference voltage
C4	VRP	0		Internal reference voltage
C2	AVCC	Р		Analog power
C3	AGND	G		Analog ground
D3	AGND	G		Analog ground
E3	AGND	G		Analog ground
H2	VPP	Р		Analog power for headphone charge pump
G1	CPVEE	Р		Charge pump negative decoupling Pin
F1	VEE	Р		Headphone PA negative voltage input
A9	VDD_CORE	Р		Digital power for digital core
N2	VCC_IO1	Р		Digital power for digital I/O buffer(I2S1&I2S2)
J2	VCC_IO2	Р		Digital power for digital I/O buffer(I2S3)
A8	LDOIN	Р		Input power for Audio_LDO
D8	VCC_RTC_A	Р		Input power for RTC_LDO

AX	P813 Optimized For Multi-Core	e High-Performance System

Ball	Name	Туре	Condition	Description
D4	GND_A	G		GND Of Codec
D5	GND_A	G		GND Of Codec
D6	GND_A	G		GND Of Codec
D7	GND_A	G		GND Of Codec
E4	GND_A	G		GND Of Codec
E5	GND_A	G		GND Of Codec
E7	GND_A	G		GND Of Codec
F3	GND_A	G		GND Of Codec
F4	GND_A	G		GND Of Codec
F5	GND_A	G		GND Of Codec
F6	GND_A	G		GND Of Codec
G3	GND_A	G		GND Of Codec
G4	GND_A	G		GND Of Codec
G5	GND_A	G		GND Of Codec
G6	GND_A	G		GND Of Codec
Н3	GND_A	G		GND Of Codec
H4	GND_A	G		GND Of Codec
H5	GND_A	G		GND Of Codec
Н6	GND_A	G		GND Of Codec

6 Block Diagram

6.1 Power management Block Diagram

Figure 6-1 shows the block diagram of the power management.

Figure 6-1 Power Management Block Diagram

6.2 Codec Functional Block Diagram

Figure 6-2 shows the block diagram of the codec.

Figure 6-2 Codec Block Diagram

6.3 Codec Data Path Diagram

Figure 6-3 shows the codec data path diagram.

Figure 6-3 Codec Data Path Diagram

7 Absolute Maximum Ratings

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Table 7-1 specifies the absolute maximum ratings over the operating junction temperature range of commercial and extended temperature devices. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this standard may damage to the device.

Table 7-1

SYMBOL	DESCRIPTION	VALUE	UNITS
VBUS	Input Voltage Range	-0.3 to 11	V
V _{RIO1}	Voltage Range on pins PWROK	-0.3 to 5.5	V
V _{RIO2}	Voltage Range on pins SCK, SDA, GPIO0, GPIO1,	-0.3 to IPSOUT+0.3	V
V _{RIO3}	Voltage Range on pin PWRON	-0.3 to 2.1	V
LDO_IN	LDO Input power for Audio CODEC	-0.3 to 3.63	V
VDD_CORE	Digital power for Audio digital core, it can be generate by inner LDO	-0.3 to 1.32	V
VCC_IO1	Digital power for digital I/O buffer (I2S1&I2S2)	-0.3 to 3.63	V
VCC_IO2	Digital power for digital I/O buffer (I2S1&I2S3)	-0.3 to 3.63	V
CPVDD	Analog power for headphone charge pump	-0.3 to 2.0	V
VCC_RTC	LDO Input power for RTC	-0.3 to 3.63	V
VIO_RTC	Digital power for RTC digital core, it can be generate by inner LDO	-0.3 to 1.32	V
T _j	Operating Junction Temperature Range	125	$^{\circ}$ C
T _A	Operating Temperature Range	-20 to 85	°C
Ts	Storage Temperature Range	-40 to 150	°C
T _{LEAD}	Maximum Soldering Temperature (at leads, 10sec)	260	°C
V _{ESD}	Maximum ESD stress voltage, Human Body Model	>2000	V
P _b	Internal Power Dissipation	2700	mW

8 Electrical Characteristics

All AXP813 modules are used under the operating Conditions contained in Table 8-1.

Table 8-1

SYMBOL	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNITS
ACIN					•	
V _{IN}	ACIN Input Voltage		3.5		7	V
I _{OUT}	V _{OUT} Current Available		1500	1500	4000	mA
V _{UVLO}	ACIN Under Voltage Lockout			3.5		V
V _{OUT}	IPSOUT Output Voltage		2.9		5.0	V
R _{ACIN}	Internal Ideal Diode On Resistance	ACIN to IPSOUT		94		mΩ
VBUS						
V _{IN}	VBUS Input Voltage		3.5		7	V
I _{OUT}	V _{OUT} Current Available		100	500	4000	mA
V_{UVLO}	VBUS Under Voltage Lockout			3.5		V
V _{OUT}	IPSOUT Output Voltage		2.9		5.0	V
R _{VBUS}	Internal Ideal Diode On Resistance	VBUS to IPSOUT		125		mΩ
Battery Charg	ger					
V_{TRGT}	BAT Charge Target Voltage		4.1	4.2	4.35	V
I _{CHRG}	Charge Current		200	1200	2800	mA
I _{TRKL}	Trickle Charge Current Ratio to I _{CHRG}	I _{CHRG} = 0.2A - 2.8A		10%		
V _{TRKL}	Trickle Charge Threshold Voltage			3.0		V
ΔV_{RECHG}	Recharge Battery Threshold Voltage	Threshold Voltage Relative to V _{TARGET}		-100		mV
T _{TIMER1}	Charger Safety Timer Termination Time	Trickle Mode	40	50	70	min
T _{TIMER2}	Charger Safety Timer Termination Time	CC Mode	360	480	720	min
I _{END}	End of Charge Indication Current Ratio to I _{CHRG}	CV Mode	10%	10%	20%	mA
I _{TOLER}	The tolerance of charge current	I _{CHRG} = 0.2A - 2.8A	±3%	±5%	±10%	
V _{TOLER}	The tolerance of charge target voltage				±0.5%	
NTC					•	

		AAP613 Optimized For IVIC	iiii-coi e	ingn-rei	joirnance 3	ystem
$V_{LTF-work}$	Cold Temperature Fault Threshold Voltage For Battery Work		0	3.226	3.264	V
$V_{HTF-work}$	Hot Temperature Fault Threshold Voltage For Battery Work		0	0.282	3.264	V
$V_{LTF-charge}$	Cold Temperature Fault Threshold Voltage For Battery Charge		0	2.112	3.264	V
$V_{HTF-charge}$	Hot Temperature Fault Threshold Voltage For Battery Charge		0	0.397	3.264	V
Off Mode Cu	rrent	,	1	•	•	
I _{BATOFF}	OFF Mode Current	BAT=3.7V		40		μΑ
виск				l		
f _{osc}	Oscillator Frequency	Default		3		MHz
L	Inductor value			1.0		μН
DCDC4			*			
I _{VIN4}	Input Current	PFM Mode I _{DCDC4} =0		40		μА
	Switch Current Limit of PMOS	PWM Mode		3900		mA
I _{DCDC4}	Available Output Current	PWM Mode		3000		mA
V _{DCDC4}	Output Voltage		0.5	0.9	1.3	V
C _{OUT4}	Output capacitor value		10	10	110	μF
DCDC7					•	
I _{VIN7}	Input Current	PFM Mode I _{DCDC7} =0		40		μΑ
	Switch Current Limit of PMOS	PWM Mode		2300		mA
I _{DCDC7}	Available Output Current	PWM Mode		1800		mA
V _{DCDC7}	Output Voltage		0.6	OFF	1.52	V
C _{OUT7}	Output capacitor value		10	10	66	μF
DCDC6		•		·		
I _{VIN6}	Input Current	PFM Mode I _{DCDC6} =0		40		μА
	Switch Current Limit of PMOS	PWM Mode		3000		mA
I _{DCDC6}	Available Output Current	PWM Mode		2500		mA
V_{DCDC6}	Output Voltage		0.6	0.9	1.52	V
C _{OUT6}	Output capacitor value		10	10	66	μF
DCDC5				•	•	

		ANI 613 Optimized i	or marer core			,
I _{VIN5}	Input Current	PFM Mode I _{DCDC5} =0		40		μΑ
	Switch Current Limit of PMOS	PWM Mode		3000		mA
I _{DCDC5}	Available Output Current	PWM Mode		2500		mA
V _{DCDC5}	Output Voltage		0.8	1.24V	1.84	V
C _{OUT5}	Output capacitor value		10	10	66	μF
DCDC2						
		PFM Mode				
I _{VIN2}	Input Current	I _{DCDC2} =0		50		μΑ
	Switch Current Limit of PMOS	PWM Mode		3900		mA
I _{DCDC2}	Available Output Current	PWM Mode		3000		mA
V _{DCDC2}	Output Voltage		0.5	0.9	1.3	V
C _{OUT2}	Output capacitor value		10	10	132	μF
DCDC3			A .		U	
		PFM Mode		-53		
I _{VIN3}	Input Current	I _{DCDC3} =0		50		μΑ
	Switch Current Limit of PMOS	PWM Mode		3900		mA
I _{DCDC3}	Available Output Current	PWM Mode		3000		mA
V _{DCDC3}	Output Voltage		0.5	0.9	1.3	V
C _{OUT3}	Output capacitor value	\	10	10	132	μF
DCDC1			•			
	Janua Constant	PFM Mode		40		
I _{VIN1}	Input Current	I _{DCDC1} =0		40		μΑ
	Switch Current Limit of PMOS	PWM Mode		2000		mA
I _{DCDC1}	Available Output Current	PWM Mode		1500		mA
V	Output Voltage		1.6	3.3	3.4	V
V _{DCDC1}	(3.3V for AXP813D)		1.0	5.5	5.4	V
C _{OUT1}	Output capacitor value		10	10	66	μF
RTCLDO (alv	ways on)					
V_{RTCLDO}	Output Voltage	I _{RTCLDO} =1mA		1.8		V
I _{RTCLDO}	Output Current			60		mA
ALDO1						
V _{ALDO1}	Output Voltage	I _{ALDO1} =1mA	0.7	1.8	3.3	V
I _{ALDO1}	Output Current			500		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO1} =3V,f=1kHz		70		dB

		ANI 013 Optimized for IVI		· · · · g · · · · · ·	,	/
e _N	Output Noise,20Hz-80KHz	V _{ALDO1} =1.8V,I _{ALDO1} =10mA		40		μVRMS
ALDO2						
V_{ALDO2}	Output Voltage	I _{ALDO2} =1mA	0.7	1.8	3.3	V
I _{ALDO2}	Output Current			300		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO2} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{ALDO2} =1.8V,I _{ALDO2} =10mA		40		μVRMS
ALDO3			•			
V _{ALDO3}	Output Voltage	I _{ALDO1} =1mA	0.7	3.0	3.3	V
I _{ALDO3}	Output Current			200		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{ALDO3} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{ALDO3} =1.8V,I _{ALDO3} =10mA		_40		μVRMS
DLDO1					V	
V _{DLDO1}	Output Voltage	I _{DLDO1} =1mA	0.7	OFF	3.3	V
I _{DLDO1}	Output Current			500		mA
IQ	Quiescent Current	1011		60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO1} =3V, f=1kHz		70		dB
e _N	Output Noise,20Hz-80KHz	V _{DLDO1} =1.8V,I _{DLDO1} =10mA		40		μVRMS
DLDO2				•		1
V_{DLDO2}	Output Voltage	I _{DLDO2} =1mA	0.7	OFF	4.2	V
I _{DLDO2}	Output Current			400		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO2} =3V, f=1kHz		70		dB
•	Output Noise,20Hz-80KHz	\/ -1.9\/ -10mA		40		μVR
e _N	Output Noise, 20H2-80KH2	V _{DLDO2} =1.8V,I _{DLDO2} =10mA		40		MS
DLDO3						
V_{DLDO3}	Output Voltage	I _{DLDO3} =1mA	0.7	OFF	3.3	V
I _{DLDO3}	Output Current			300		mA
IQ	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO3} =3V, f=1kHz		70		dB
e_N	Output Noise,20Hz-80KHz	V _{DLDO3} =1.8V,I _{DLDO3} =10mA		40		μVR
-1V	Caspat Holocyzonia Contra	ישנוטט ביסיקוענוטטן ביסיקוען				MS
DLDO4				T	T	
V_{DLDO4}	Output Voltage	I _{DLDO4} =1mA	0.7	OFF	3.3	V

		AXP813 Optimized For IVI	uiti-core	Tilgii-Fei	joinnance sy	Stem
I _{DLDO4}	Output Current			500		mA
I_Q	Quiescent Current			60		μΑ
PSRR	Power Supply Rejection Ratio	V _{DLDO4} =3V, f=1kHz		70		dB
e_N	Output Noise,20Hz-80KHz	V _{DLDO4} =1.8V,I _{DLDO4} =10mA		40		μVR MS
ELDO1		1		-	l	1
V	Output Voltage	1 - 1 m A	0.7	OFF	1.0	V
V _{ELDO1}	(1.8V for AXP813D)	I _{ELDO1} =1mA	0.7	OFF	1.9	V
I _{ELDO1}	Output Current			400		mA
I_Q	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO1} =1.2V, f=1kHz		65		dB
ELDO2						
V _{ELDO2}	Output Voltage	I _{ELDO2} =1mA	0.7	OFF	1.9	V
I _{ELDO2}	Output Current			200	V	mA
IQ	Quiescent Current	,	K	35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO2} =1.2V, f=1kHz		65		dB
ELDO3	·	1011				
V _{ELDO3}	Output Voltage	I _{ELDO3} =1mA	0.7	OFF	1.9	V
I _{ELDO3}	Output Current			200		mA
I_Q	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{ELDO3} =1.2V, f=1kHz		65		dB
FLDO1						
V _{FLDO1}	Output Voltage	I _{FLDO1} =1mA	0.7	OFF	1.45	V
I _{FLDO1}	Output Current			300		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{FLDO1} =1.2V, f=1kHz		65		dB
FLDO2				•		
V _{FLDO2}	Output Voltage	I _{FLDO2} =1mA	0.7	0.9	1.45	V
I _{FLDO2}	Output Current			100		mA
IQ	Quiescent Current			35		μΑ
PSRR	Power Supply Rejection Ratio	V _{FLDO2} =1.2V, f=1kHz		65		dB
FLDO3						
			0	.5*V _{DCDC5} (d	lefault)	
V_{FLDO3}	Output Voltage	I _{FLDO3} =1mA		Or		V
				0.5*V _{FLD}	OIN	
I _{FLDO3}	Output Current			30		mA

			-			-	
ΙQ	Quiescent Current				35		μΑ
GPADC			•		•		•
V	Output Valtage		REG90H[2:0]=011,	0.7	OFF	2.2	.,
V_{GPIO0LDO}	Output Voltage		I _{GPIO0LDO} =1mA	0.7	OFF	3.3	V
I _{GPIO0LDO}	Output Current		REG90H[2:0]=011		100		mA
IQ	Quiescent Current		REG90H[2:0]=011		35		μΑ
PSRR	Power Supply Rejection Ra	tio	REG90H[2:0]=011		65	65	
rann	rower supply Rejection Ra		V _{GPADC} =3V, f=1kHz		05		dB
GPIO1				_			
$V_{GPIO1LDO}$	Output Voltage		REG92H[2:0]=011,	0.7	OFF	3.3	V
- GPIOILDO	- Catput voltage		I _{GPIO1LDO} =1mA	0.7	011	3.3	<u> </u>
I _{GPIO1LDO}	Output Current		REG92H[2:0]=011		150		mA
IQ	Quiescent Current		REG92H[2:0]=011		35		μΑ
PSRR	Power Supply Rejection Ra	Power Supply Rejection Ratio			65		dB
_			V _{GPIO1} =3V, f=1kHz	R			
CHGLED	T					T	T
R _{CHGLED}	Internal Ideal Resistance		Supply Voltage is 0.3V		2		Ω
TWSI					1	1	1
V_{CC}	Input Supply Voltage	•		1.8	3.3		V
Addr	TWSI Slave Address (7 bits)				0x34		
f_{SCK}	Clock Operating Frequency				400		kHz
V_{IL}	SCK/SDA Logic Low Voltage		SDA is Open drain pin			0.3*V _{CC}	V
V_{IH}	SCK/SDA Logic Low Voltage	SCK/SDA Logic Low Voltage		0.7*V _{CC}			٧
t _f	Clock Data Fall Time	Clock Data Fall Time			60		ns
t _r	Clock Data Rise Time		2.2Kohm Pull High		100		ns
VINT	1			1			•
V _{INT}	Internal power supply for lo	ogic circuit			1.8		V
Related IO: F	PWRON			I	Į.	•	
R _{pull-up}	Internal resister to VINT			50	100		ΚΩ
V _{IL}	Logic Low Voltage				0.5		V
V _{IH}	Logic High Voltage				1.3	2.1	V
Related IO: I	RQ	I		I	I	1	1
V _{IL}	Logic Low Voltage	ric Low Voltage IRQ is open drain output pin, pull up to				0.3	V
V _{IH}	Logic High Voltage IO power (V _{II}			0.7*V _{IO}		V _{IO}	V
Related IO: F	PWROK	I		<u> </u>	<u>I</u>	1	1
V _{IL}	Logic Low Voltage	PWROK is p	ush-pull output pin, pull up			0.3	V
AXP813 Datash			X-Powers Limited. All Rights R	Pasaryod			33

		,	•	··		,		
V_{IH}	Logic High Voltage to V _{RTCLDO} internal			0.7* V _{RTCLDO}		V _{RTCLDO}	V	
Related IO: GP	PADC	•		ı				
V _{IL}	Logic Low Voltage			0.5		V		
V _{IH}	Logic High Voltage	REG90H[2:0]=010, c	digital input		1.3		V	
V _{IL}	Logic Low Voltage	REG90H[2:0]=000, c	drive low			0.3	٧	
V	Lasia Hisb Valtasa	REG90H[2:0]=001, drive high		0.7	3.3	2.2	V	
V _{IH}	Logic High Voltage	(high level set by R	EG91H)	0.7	3.3	3.3	V	
Related IO: GP	PIO1							
V_{IL}	Logic Low Voltage		digital input		0.5		V	
V _{IH}	Logic High Voltage	REG92H[2:0]=010, c	ngitai iriput		1.3		٧	
V _{IL}	Logic Low Voltage	REG92H[2:0]=000, c	drive low			0.3	٧	
V _{IH}	REG92H[2:0]=001, c		drive high	0.7	3.3	_ 3.3_	V	
V _{IH}	Logic High Voltage	(high level set by R	EG93H)	0.7	3.3	3.3	V	
Codec Power S	Supply Input			X				
LDO_IN	LDO Input power for Audio	CODEC		1.35	1.8/1.5	3.63	V	
VDD_CORE	Digital power for Audio digital core, it can be			1.08	1.2	1.32	V	
	generate by inner LDO							
VCC_IO1	Digital power for digital I/C			1.8/3.3	3.63	V		
VCC_IO2	Digital power for digital I/C			1.8/3.3	3.63	V		
CPVDD	Analog power for headphone charge pump			1.2	1.8	1.98	V	
VCC_RTC	LDO Input power for RTC			1.35	1.8/3.3	3.63	V	
VIO_RTC	Digital power for RTC dig	ital core, it can be		1.08	1.2	1.32	V	
	generate by inner LDO							
GND,AGND	Ground reference				0		V	
Codec Static C	haracteristics			1	I	T	ı	
V _{IN}	Input Voltage Range			-0.3		VCCIO1+0.3	V	
						VCCIO2+0.3		
V _{IH}	High Level Input Voltage		VCCIO=3.0v	2.4		3.6	V	
in Tilgii Level iliput voituge			VCCIO=1.8V	1.4 1.98		1.98		
V _π Low Level Input Voltage		VCCIO=3.0v	-0.3		0.7	V		
11.	Low Level Input voltage		VCCIO=1.8V	-0.3		0.7	-	
V _{OH}	High Level Input Voltage		VCCIO=3.0v	2.7		NA	V	
ОН	nigh Level hiput voltage		VCCIO=1.8V	1.5		NA		
V	${ m v}_{\scriptscriptstyle m OL}$ Low Level Input Voltage		VCCIO=3.0v	NA		0.4	V	
OL			VCCIO=1.8V	NA		0.4		

I _{oz}	Tri-state Output Leakage Current	 TBD	TBD	TBD	uA
C IN	Input Capacitance	 NA	NA	5	pF
C _{OUT}	Output Capacitance	 NA	NA	5	pF

9 Analog Performance Characteristics

Table 9-1 summarizes the analog performance characteristics of AXP813.

Table 9-1

	1	Table 9-1			1			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UINT		
DAC Output Path	DAC to Headphone on HPOUTL or HPOUTR(R=10kΩ)							
Performance	FScale Output Level	0dB 1KHz		0.9		Vrms		
	SNR(A-weighted)	0dB 1KHz		100		dB		
	THD+N(NO-Aweigh t)	OdB 1KHz		-84		dB		
	Crosstalk (L/R)	0dB 1KHz		-88/-88		dB		
	DAC to Headphone on HPOUTL or HPOUTR(R=16Ω)							
	FScale Output Level	OdB 1KHz		0.5		Vrms		
	SNR(A-weighted)	0dB 1KHz		99		dB		
	THD+N(P0=15mW)	0dB 1KHz		-81		dB_		
	THD+N(P0=5mW)	0dB 1KHz		-82		dB		
	Crosstalk (L/R)	0dB 1KHz		-82/-82		dB		
	DAC to Headphone	on HPOUTL or HPOUTR(I	R=32Ω)					
	FScale Output Level	0dB 1KHz		0.7		Vrms		
	SNR(A-weighted)	OdB 1KHz		100		dB		
	THD+N(P0=15mW)	0dB 1KHz		-83		dB		
	THD+N(P0=5mW)	0dB 1KHz		-83		dB		
	Crosstalk (L/R)	OdB 1KHz		-86/-86		dB		
	DAC to Earpiece Driver on EAROUTP and EAROUTN(R=16Ω)							
. ())	FScale Output Level	0dB 1KHz		1.0		Vrms		
1	SNR(A-weighted)	0dB 1KHz		100		dB		
	THD+N(P0=12mW)	0dB 1KHz		-81		dB		
	DC Offset at load	0dB 1KHz		2		mV		
	DAC to SPK signal on SPKOUTLP and SPKOUTLN(R=10KΩ)							
	FScale Output Level	0dB 1KHz		1.8		Vrms		
	SNR(A-weighted)	0dB 1KHz		102		dB		
	THD+N	0dB 1KHz		-82		dB		
	DC Offset at load	0dB 1KHz		0.7		mV		
	DAC to LINEOUT signal on LINEOUTP and LINEOUTN(R=10KΩ)							
	FScale Output Level	0dB 1KHz		0.9		Vrms		
	SNR(A-weighted)	0dB 1KHz		98		dB		
<u> </u>	•		•	•		•		

AXP813

AXP813 Optimized For Multi-Core High-Performance System

	, , , , , ,	813 Optimized For IVI		· · · · · · · · · · · · · · · · · · ·	0	-,
	THD+N	0dB 1KHz		-81		dB
	DC Offset at load	0dB 1KHz		0.5		mV
ADC Input Path	MIC1 /2/3to ADC via	a ADC mixer				
Performance	FScale Input Level	0dB Gain 1KHz		0.5		Vrms
	SNR(A-weighted)	-1dB 1KHz, 0dB Gain		96		dB
	THD+N	-1dB 1KHz, 0dB Gain		-85		dB
	SNR(A-weighted)	30mV,1KHz, 30dB		81		dB
	- (Gain				
	THD+N	30mV,1KHz, 30dB Gain		-76		dB
	SNR(A-weighted)	30mV,1KHz, 39dB Gain		81		dB
	THD+N	30mV,1KHz, 39dB Gain		-76		dB
	SNR(A-weighted)	10mV,1KHz, 48dB Gain		73		dB
	THD+N	10mV,1KHz, 48dB Gain		-72		dB
	LINEIN to ADC via A	DC mixer				
	FScale Input Level	OdB 1KHz		0.9		Vrms
	SNR(A-weighted)	1KHz		93		dB
	THD+N	1KHz		-85		dB
	Crosstalk (L/R)	1KHz		-85/-85		dB
	AXIIN to ADC via AD	C mixer	1	T	T	Γ
	FScale Input Level	0dB 1KHz		0.9		Vrms
	SNR(A-weighted)	1KHz		92		dB
	THD+N	1KHz		-82		dB
	Crosstalk (L/R)	1KHz		-88/-88		dB
Bypass Path	MIC1/2/3 to Headp	hone via output mixer				
Performance	FScale Input Level	0dB Gain 1KHz		0.5		Vrms
	SNR(A-weighted)	-1dB 1KHz, 0dB Gain		98		dB
	THD+N	-1dB 1KHz, 0dB Gain		-91		dB
	SNR(A-weighted)	30mV,1KHz, 30dB Gain		83		dB
	THD+N	30mV,1KHz, 30dB Gain		-78		dB
	SNR(A-weighted)	30mV,1KHz, 39dB Gain		83		dB
	THD+N	30mV,1KHz, 39dB Gain		-79		dB
	SNR(A-weighted)	10mV,1KHz, 48dB Gain		74		dB
	THD+N	10mV,1KHz, 48dB		-73		dB
	1	unuright © 2014 V Downer				37

	Gain		
LINEIN to Headphon	e via output mixer		
FScale Input Level	0dB 1KHz	1	Vrms
SNR(A-weighted)	-1dB 1KHz	98	dB
THD+N(-1dBFS)	-1dB 1KHz	-92	dB
Crosstalk (L/R)	-1dB 1KHz	-89/-89	dB
AXIIN to Headphone	via output mixer		
FScale Input Level	0dB 1KHz	1	Vrms
SNR(A-weighted)	-1dB 1KHz	102	dB
THD+N(-1dBFS)	-1dB 1KHz	-93	dB
Crosstalk (L/R)	-1dB 1KHz	-88/-88	dB

10 Typical Power Consumption

Default Test Conditions:

 $\verb|LDOIN=CPVDD=1.5V|, \verb|AVCC=3.0V|, \verb|VCC-IO1=VCC-IO2=1.8V|, \verb|VCC-RTC=3.0V|$

Table 10-1 summarizes the typical power consumption of AXP813.

Table 10-1

OPERATING MODE	TEST CONDITIONS	LDOIN	AVCC	VCC-IO 1	VCC-IO 2	CPVDD	VCC-RT C
RTC only							
LDO enabled	LDOIN,VCC-RTC supplies,	1.8V	3V	1.8V	3V	1.8V	3V
XTAL enabled	32.768KHz clock, three output enable	0uA	0uA	0uA	0uA	0uA	12uA
Standby							
LDO enabled	All supplies present,	1.8V	3V	1.8V	3V	1.8V	3V
XTAL enabled	No clocks supply, Default register settings	73uA	62uA	0uA	OuA	OuA	12uA
Music Playback to Headphone(32Ω load)							
AIF1 to DAC to	fs=44.1KHz, SYSCLK=MCLK=24.576	1.8V	3V	1.8V	3V	1.8V	3V
HPOUT(stereo)	MHz, 24bit I2S,Slave mode	1.5mA	4.1mA	0.013m A	0mA	2.4mA	12uA
Voice record to	AIF1						
MIC1 to ADC	fs=44.1KHz, SYSCLK=MCLK=24.576	1.8V	3V	1.8V	3V	1.8V	3V
to AIF1(mono)	MHz, 24bit I2S,Slave mode	1.4mA	4.5mA	0.023m A	0mA	0mA	12uA
Analog-Analog	Analog-Analog Voice Path (eg. Analog Voice call)						
Mic1 to Lineout,	fs=8 kHz, SYSCLK=MCLK=24.576	1.8V	3V	1.8V	3V	1.8V	3V
Lineout, Linein to Hp,	MHz	0.75mA	4.1mA	0mA	0mA	2.0mA	12uA

11 Power Management Control and operation

When AXP813 works, the TWSI or RSB(More detail to see TWSI/RSB Interface), and this interface can be used by HOST to access and adjust AXP813's working status.

Note that the external power hereinafter is VBUS or ACIN input.

11.1 Power on/off and sleep/wakeup

AXP813 has power off and power on status. When at off state, all voltage outputs are turned off except VCC_RTC ,IPSOUT and charger. At this time if powered by battery, the total power consumption is typically 40uA.

11.1.1 Power on/off sources

Power on source

Below are the 2 power up sources supported by AXP813 in mechanical off state:

- 1. Charger insertion (including ACIN and VBUS insertion)
- 2. 2. Power on key pressed

Power off source

Below are the few sources that can trigger power down of AXP813:

- 1. ALDOIN $< V_{OFF}$ (indicating IPSOUT too low)
- 2. Faulty condition
- 3. Power on key pressed

Power on from charger insertion

The AXP813 should be able to start the boot sequence from a charger insertion. A charger insertion is detected from a rising voltage on the ACIN/VBUS node. If 4.1V< ACIN/VBUS < 7.0V, the charger will start charging immediately and autonomously.

Power on from power key pressed

POK----Power On Key

The Power On Key(POK) can be connected between PWRON pin and GND of AXP813. AXP813 can automatically identify the status and then correspond respectively.

The AXP813 should be able to start the boot sequence from a power on key pressed. The AXP813 has a configurable timer to detect the power on key hold time. Power on key signal in AXP813 is referred as POK. Once falling edge is detected on POK, AXP813 timer will start counting the hold time. POK signal has to be low for at least 32ms for it to be considered a valid signal. If the power on key hold time exceeds the timer threshold (ONLEVEL determined by REG36H [7:6]), the AXP813 will continue to boot. Otherwise the AXP813 will remain off.

Power off from ALDOIN< VOFF

AXP813 will constantly monitor voltage level of ALDOIN which is connected to IPSOUT. When VALDOIN < V_{OFF} (default is 2.9V, set in REG 31H[2:0]), AXP813 will force shutdown. There will be 500us de-bounce circuit for ALDOIN detection and adjusted hysteresis voltage to prevent false trigger. After force shutdown occurred, AXP813 will remain off and wait for power on event to boot up.

V_{OFF} and the compensated hysteresis voltage as below:

Table 11-1

V _{OFF} condition	VX condition (Hysteresis)
V _{OFF} <=3.0V	0.3V
V _{OFF} = 3.1V	0.2V
V _{OFF} = 3.2V or 3.3V	0.1V

Power off due to faulty condition

AXP813 will force shutdown once faulty event happened. Faulty event includes VBUS>7V, AXP813 internal temperature exceeds warning level3 (set in REG 8FH [2]) and buck output drop more than 15% than the targeted output voltage (set in Reg 81H).

Power off by power on key pressed

Once power on key pressed, POK signal assert low and need to remain low for 32ms to be considered valid. AXP813 has configurable timer to detect power on key hold time. If POK remain low for less than IRQLEVEL (set in REG 36H [5:4]), POKSIRQ will be set. For POK hold time > IRQLEVEL, POKLIRQ will be set. Typically, the system uses POKLIRQ to allow user to express their demands for Host shutdown.

If POK remain low for more than OFFLEVEL (set in REG 36H [1:0]), POKOIRQ will be issued. After IRQ issued, AXP813 will wait for a period of time before it force shutdown (set in REG36H[3]). The AXP813 can be turned on automatically (set in REG36[2]). The waiting period is programmable from 0s to 70s(set in REG37H[2:0]).

If POK width is more than 16s, then AXP813 will force shutdown immediately. This feature can be set in REG 8FH [3]. When AXP813 force shutdown, VCC_RTC will be shut off for 2 seconds, with 1K resistor to pull VCC_RTC to ground and then it will turn back on.

Figure 11-1

11.1.2 Sleep and wakeup

To switch from power on mode to sleep mode, several power outputs should be disable. After that, REG31[3] can be used to control whether following sources can be used to trigger wakeup.

- 1. ACIN connection/disconnection(REG40[6:5] is set to 1)
- 2. VBUS connection/disconnection(REG40[3:2] is set to 1)
- 3. POK press-long-key(REG44[3] is set to 1)
- 4. POK negative edge(REG44[5] is set to 1)
- 5. Battery low power warning Level 2(REG43[1:0] are set to 1)
- 6. Detection of positive/negative edge when GPIO[1:0] functions input(REG4C[1:0],REG90[7:6] and REG92[7:6] are set to 1)
 - 7. Software wakeup(REG31[5] is set to 1)
 - 8. IRQ wakeup(REG8F[7] is set to 1)
 - 9. Charging or Chager Done(REG41[3:2] are set to 1)

After wakeup is triggered, each power outup can be restored to default state in right power on sequence.

Here is the Sleep/Wakeup control process:

Figure 11-2

11.2 IPS (Intelligent Power Select)

AXP813 has Intelligent Power Select (IPS) to select the appropriate source to power the system. The output of IPS, IPSOUT will then be used as power source for downstream regulators and battery charger.

11.2.1 IPS overview

Figure 11-3 shows the input power sources of IPS.

Figure 11-3 Input Power Sources of IPS

- o If only Li- Battery is available, and no external power input, Li- Battery is used for power input;
- o If external power is available (ACIN or VBUS), it is preferred in power supply
- o If both ACIN and VBUS are available but not short together, then ACIN is preferred in power supply
- o If both ACIN and VBUS are available and short together,
- o If Li- Battery is available, it will "Seamlessly" switch to Li- Battery once external power is removed
- If the current is still insufficient, charge current will be reduced to zero, and Battery is used for one of power sources

11.2.2 IPSOUT source selection

There are two power source, ACIN source is channeled to IPSOUT when REG 3AH[7] is set to 0 (default). For whatever reason, if ACIN source need to be disconnected from IPSOUT, set REG 3AH[7] to 1. VBUS source is channeled to IPSOUT when REG 30H[7] is set to 0 (default). For whatever reason, if VBUS source need to be disconnected from IPSOUT, set REG 30H[7] to 1. Note that when BC Detection module is detecting, REG 2CH[2] = 1, VBUS to IPSOUT channel is OFF. We can shorted ACIN and VBUS together to Reduce power path Resistor, and AXP813 can auto detect it and report it in REG00H[1].

Table 11-2

REG 3AH	Description	R/W	Default
Bit 7	ACIN path select control when ACIN valid	RW	0
	0: ACIN path selected		
	1: ACIN path not selected		

VBUS Select Setting

Table 11-3

REG 30H[7]	REG 2CH[2]	VBUS_SEL
0	0	1
1	X	0
X	1	0

Table 11-4

REG 30H	Description	R/W	Default
Bit 7	VBUS path select control (VBUS_SEL) when VBUS valid 0: VBUS path selected 1: VBUS path not selected	RW	0

Table 11-5

REG 2CH	Description		Default
Bit 2	BC_status (BC Detection status)	RW	0
	1: Detecting, this bit is set when BC Detection start		
	0: Detection complete		

Input Source Select Setting

Table 11-6

VBUS_SEL	REG 00H[6]	REG 00H[4]	REG 00H[1]	IPSOUT from
×	0	0	×	VSYS
×	1	×	0	ACIN
0	0	1	×	VSYS
1	0	1	0	VBUS
1	0	1	1	VBUS
0	1	1	1	VSYS

×	1	0	1	ACIN
1	1	1	1	ACIN+VBUS

Table 11-7

REG 00H	Description		Default
Bit6	Indication ACIN can be used or not	R	0
Bit4	Indication VBUS can be used or not	R	0

11.2.3 ACIN current/voltage limitation

ACIN input power source has minimum hold voltage (VHOLD) setting and current limit setting. When the input source voltage drops below its VHOLD setting, it is considered as not having sufficient power. IPS will limit the current draw automatically so that the input source voltage is hold to this minimum level.

ACIN VHOLD is set as max of VBAT+0.15V or 3AH[5:3] whereas ACIN current limit can be set through REG 3AH[2:0].

VHOLD minimum voltage value can be set through the REG3AH:

Table 11-8

5	V _{HOLD} setting bit 2	000: 4.0V; 001: 4.1V; 010: 4.2V	RW	0
4	V _{HOLD} setting bit 1	011: 4.3V; 100: 4.4V; 101: 4.5V	RW	0
3	V _{HOLD} setting bit 0	110: 4.6V; 111: 4.7V	RW	0

VBUS current limit is set by REG3AH[2:0]:

Table 11-9

2:0	VBUS current I	imit select when	VBUS Current lin	nited mode is enable	RW	000
	000-1500mA	001-2000mA	010-2500mA	011-3000mA		
	100-3500mA	101-4000mA	110-4000mA	111-4000mA		

11.2.4 VBUS current/voltage limitation

VBUS input power source has minimum hold voltage (VHOLD) setting and current limit setting. When the input source voltage drops below its VHOLD setting, it is considered as not having sufficient power. IPS will limit the current draw automatically so that the input source voltage is hold to this minimum level.

VBUS VHOLD is set as max of VBAT+0.15V or 30H[5:3] whereas VBUS current limit can be set through REG 35H[7:4].

VHOLD minimum voltage value can be set through the REG30H:

Table 11-10

5	V _{HOLD} setting bit 2	000: 4.0V; 001: 4.1V; 010: 4.2V	RW	1
4	V _{HOLD} setting bit 1	011: 4.3V; 100: 4.4V; 101: 4.5V	RW	0
3	V _{HOLD} setting bit 0	110: 4.6V; 111: 4.7V	RW	0

VBUS current limit is set by REG35H[7:4]:

Table 11-11

7:4	VBUS current li	VBUS current limit select when VBUS Current limited mode is enable			RW	0001
	0000-100mA	0001-500mA	0010-900mA	0011-1500mA		
	0100-2000mA	0101-2500mA	0110-3000mA	0111-3500mA		
	1xxx-4000mA					

For the case of battery charger detection enabled, once the USB charger detection is completed, VBUS current limit will be guided by the result of the detection. Subject to the type of USB charger detected, the current limit set in REG 35H[7:4] will be auto updated by the value set in REG 30H[1:0]. For example, if the BC detection result indicates SDP, the current limit in REG 35H[7:4] will be set to 500mA (900mA if it is USB 3). If the detected USB charger is CDP or DCP, the current limit in REG 35H[7:4] will then be updated according to the setting in REG 30H[1:0].

Table 11-12

REG 2FH[7:5]	Current limit	Description
SDP	500mA	USB connected. After communication, CPU can identify
Other	REG30H[1:0]	USB3.0, then change the current limit to 900mA

VBUS with the BC detection:

AXP813 has battery charger detection module that capable of detecting type of USB charger plug onto the port. Below is the battery charger detection flow.

Figure 11-4

When REG 2CH[0] is set to 1, battery charger detection module will start to operate. Upon completion of the BC detection (REG 2CH[2] = 0), AXP813 will automatically update the detection result onto REG 2FH[7:5]. If the BC detection result indicate SDP, the current limit will be set to 500mA (900mA if it is USB 3) or else the current limit will follow the setting in REG 30H[1:0].

11.2.4 ACIN input overvoltage protection

ACIN to IPSOUT path have a regulator, target of 5.0V, Figure 11-12 shows the regulator of ACIN to IPSOUT.

Table 11-12

Input power	IPSOUT	CHGLED	Contents
>7V	5V	Floating	AXP813 shutdown
>6.3V	5V	2Hz toggle	Work normally
>5.06V	5V	Charge LED	
<5.06	Vin-0.06V	Charge LED	
<3.5V	Vin-0.06V	Charge LED	Invalid

11.2.5 VBUS input overvoltage protection

VBUS to IPSOUT path have a regulator, target of 5.0V, Table 11-13 shows the regulator of VBUS to IPSOUT.

IPSOUT Input power **CHGLED Contents** >7V 5V AXP813 shutdown **Floating** >6.3V 5V Work normally 2Hz toggle >5.06V 5V Charge LED < 5.06 Vin-0.06V Charge LED <3.5V Vin-0.06V Charge LED Invalid

Table 11-13

11.2.6 ACIN insertion power up condition

The AXP813 will start the boot sequence at the point of ACIN insertion. A ACIN insertion is detected from a rising voltage on the ACIN node as long as it is larger than 4.1V. The existence of ACIN is stored in REG 00H[7]. The charger will start charging immediately and automatically.

11.2.7 VBUS insertion power up condition

The AXP813 will start the boot sequence at the point of VBUS insertion. A VBUS insertion is detected from a rising voltage on the VBUS node as long as it is larger than 4.1V. The existence of VBUS is stored in REG 00H[5]. The charger will start charging immediately and automatically.

11.3 BC Detection Module

This section is primarily based on battery charging specification, for more information please refer to BC rev1.2 specifications. AXP813 is compatible with BC rev1.2 and can identify SDP/CDP/DCP except ACA. The AXP813 can detect the device type without software activity.

Table 11-14

Device	Description	Compatible
SDP	Standard Downstream Port	AXP813 can identify
CDP	Charging Downstream Port	AXP813 can identify
DCP	Dedicated Charging Port	AXP813 can identify
ACA	Accessory Charger Adapter	AXP813 can't identify

Please refer to REG36H for detailed information.

11.4 Adaptive PWM Charger

The AXP813 battery charger solution has two charging modes that it can be in. It is specifically designed to charge Li Ion or Li Polymer type batteries. The two modes are 1) Pre Charge Mode and 2) Fast Charge Mode. The delineation between these two modes is based on the battery voltage level of VTRKL which is set at 3.0V.

When battery voltage, VBATSENSE is between 0V to 3.0V (VTRKL), the charger is in Pre Charge Mode where charging current is limited to a value of ITRKL (10% of ICHRG, default value is 120mA). This mode of operation is intended to prevent damage to the battery. Once VBATSENSE ≥ VTRKL, the charger will enter Fast Charge Mode. The Fast Charge Mode can be subdivided into two phases, namely the constant current phase (CC) and the constant voltage phase (CV). The CC phase takes place when VBATSENSE is in between VTRKL and VTRGT. It will charge with constant ICHRG. When VBATSENSE reach VTRGT, charger will operate at CV phase. At this phase, charger will charge with constant voltage of VTRGT.

Figure 11-5

VTRGT is programmed in REG 33H[6:5] and ICHRG is in REG 33H[3:0] whereas VTRKL is fixed at 3V and ITRKL is set as 10% of ICHRG.

11.4.2 Charging start and stop

When VBATSENSE is between 0V to 3.0V (VTRKL), the charge operation will start when VBUS insert and REG 33H[7] is set to 1. The charging operation will cease when VBATSENSE is > VTRGT-0.1V and charging current < 10% of ICHRG.

11.4.3 Timeout activity

Refer to REG 34H, there are 2 timers that can be programmed as charging expire time, REG 34H[7:6] for Pre Charge and REG 34H[1:0] for Fast Charge Mode. When the actual charge current is less than 20% of the ICHRG, the timer will automatically hold. When the timer expired, charger will no longer charge with programmed charging current. Instead, it will turn into safe mode. Under safe mode, charger will always charge the battery with 5mA until VBATSENSE > VTRGT - 0.1V. When the charger exits from safe mode, it will assert the IRQ. The safe mode status is reflected in REG 01H[3] and SOC can get the mode status through this bit.

Table 11-15

REG 34H	Description			Default
Bit				
7	Pre-charge Timer length setting 1	00: 40 minutes; 01: 50 minutes;	RW	0
6	Pre-charge Timer length setting 0	10: 60 minutes; 11: 70 minutes.	RW	1
1	Fast charge maximum time setting 1	00: 6 hours; 01: 8 hours;	RW	0
0	Fast charge maximum time setting 0	10: 10 hours; 11: 12 hours.	RW	1

Table 11-16

REG 01H	Description	R/W	Default
Bit3	Indicate battery active mode	R	
	0-charger is not in battery active mode		
	1-charger is in battery active mode		

There are two ways to reset or exit from safe mode. One is plug out and re-insert the input power source or toggle charger enable bit.

11.4.4 CHGLED activity

AXP813 provides CHGLED pin. The LED connected to this pin can be used to indicate charger status and input power sources over voltage alarm. There are two Charge LED modes that can be configured through REG 34H[4] if REG 32H[3] is set to 1. Table 11-17,11-18,11-19 show the definition of charge LED mode, pin control, indicator.

Table 11-17

REG 34H	Description	R/W	Default
Bit 4	CHGLED Mode select when REG 32H[3] is 1	RW	0
	0: Type A; 1: Type B		

Table 11-18

REG 32H	Description		R/W	Default
Bit 5-4	CHGLED pin control	00: Hi-Z	RW	00
	01: 25% 0.5Hz toggle			
	10: 25% 2Hz toggle			
		11: drive low		
Bit 3	CHGLED pin control	0: controlled by REG 32H[5:4]	RW	0

1: controlled by Charger	
--------------------------	--

Table 11-19

CHGLED pin	Mode A	Mode B
Z (tri-state)	Not charging	Not charging due to
		1. no external power source or
		2. external power source is
		insufficient and battery is
		discharging
25% duty 1Hz (Z/Low)	Abnormality alarm due to	Charging
	1. charger timeout or	
	2. IC temperature > warning	
	level 2)	
25% duty 4Hz (Z/Low)	Overvoltage alarm (VBUS > 6.3V)	Alarm due to
		1. VBUS > 6.3V or
		2. charger timeout or
		3. IC temperature > warning
		level 2)
Low	Charging	Not charging due to battery is fully
		charged

11.4.5 Battery detection

When the VBATSENSE<2.2V, AXP813 judge it as battery is not present. When VBATSENSE goes higher than 2.2V, it indicates battery present or is inserted. For the case of battery insertion or removal, IRQ will be asserted. Battery presence status is indicated in REG01H[5] and the battery detection function can be set by REG 32H[6]. When charger insert, AXP813 will send a pulse to detect battery is present or not per 16 seconds.

11.4.6 Temperature protection

AXP813 has built in thermal protection for the IC itself with 3 levels of warning. Each warning level has 6.8°C different in threshold compare to the next level and each warning level has hysteresis gap of 13.6°C. Table 11-20 ,11-21,11-22 and 11-23 are the charger responses with respect to each thermal warning level.

Table 11-20

Warning	AXP813 Response
	Once the IC temperature exceeds this level, charger will charge at minimum charging current.
Level 1	When IC temperature drops below hysteresis limit, charger will automatically go back to its
	original charging state.

	If IC temperature continue to rise and exceeds this level, charger will continue to charge at	
Level 2	minimum charging current. Charge LED will provide indication according to Table 9-31 . If IRQ is	
	enabled in REG43H[7], IRQ will be asserted and its status can be read from REG 01H[7].	
Level 3	If IC temperature exceeds this level, all the behavior is the same as level 2 but if REG8FH[2] is	
Level 3	set to 1, IC will automatically shut down.	

Table 11-21

REG 43H	Description	R/W	Default
Bit			
7	7 The AXP813 temperature over the warning level 2 IRQ (OTIRQ) enable		0

Table 11-22

REG 01H	Description	R/W	Default
Bit			
7	7 Indication AXP813 die over temperature or not		0
	0: not over temperature; 1: over temperature		

Table 11-23

REG 8FH	Description	R/W	Default
Bit 2	The AXP813 shut down or not when Die temperature is over the warning	RW	0
	level 3		
	0-not shut down		
	1-shut down		

Beside built in IC thermal protection, AXP813 has the capability to sense one external thermal sensor (for battery temperature) through TS pin.

Figure 11-6 shows block diagram of battery temperature measurement.

Figure 11-6

AXP813 has built in current source that can be used to inject to external thermal sensor thru TS pin for temperature reading. This current source has 4 level of current which can be programmed through REG 84H[5:4]. By default, the current source will only be injected when ADC is going to read the temperature

data. The ADC to read TS pin input is enabled by setting REG 82H[0] to 1. However the current source switch can be programmed to always OFF or ON or only ON when charger is charging through REG 84H[1:0]. Table 11-24,11-25 list the bit definition of REG84H and REG82H.

Table 11-24

REG 84H	Description			Default
Bit				
5-4	Current source from TS pin control:		RW	11
	00: 20uA; 01: 40uA; 10: 60uA; 11: 80ı	00: 20uA; 01: 40uA; 10: 60uA; 11: 80uA		
1-0	Current source from TS pin on/off	Current source from TS pin on/off 00: off		10
	enable bit [1:0]	enable bit [1:0] 01: on when charging battery, off		
		when not charging		
		10: on in ADC phase and off when		
	out of the ADC phase, for power			
		saving		
		11: always on		

Table 11-25

REG 82H	Descr	ription	R/W	Default
Bit				
0	TS pin input to ADC enable	0: off, 1: on	RW	0

When the current source is injected to thermal sensor (NTC), it will create a voltage drop across NTC and this voltage will be read by 12 bits ADC thru TS pin. The 12 bits code output of the ADC will then be stored in REG 58H (HSB 8) & REG 59H (LSB 4). The relation of TS pin voltage to 12 bits ADC output code is as below:

12 bits ADC output code = $R_NTC(\Omega) * REG 84[5:4](\mu A) / (0.8 * 10^3)$.

Table 11-26 is the example by using 10K NTC from Murata (NCP15XH103F03R).

Table 11-26

Towns (°Cl	D NTC (O)	TC Dip Valtage (V)	12 bits ADC output code		
Temperature (°C)	R_NTC (Ω)	TS Pin Voltage (V)	REG 58H[7:0]	REG 59H[3:0]	
-10	40260	3.221	FВн	АН	
0	26490	2.119	A5H	8H	
25	10000	0.800	3Ен	8H	
40	5840	0.467	24н	7H	
45	4924	0.394	1Ен	СН	
55	3550	0.284	16н	3H	

There are 2 battery over temperature (OTP) and 2 under temperature (UTP) thresholds can be set to protect the battery by either controlling the charger or shutdown the system. The first level OTP & UTP thresholds are programmed by REG 38H & REG 39H. The second level OTP & UTP threshold are programmed by REG 3CH & REG 3DH. When battery temperature is higher or lower than the first level OTP or UTP threshold, IRQ is asserted, charger will stop charging and REG 01H[6] change to 0 to reflect the status. When battery temperature is higher or lower than the second level OTP or UTP threshold, IRQ is asserted. System may or may not shutdown subject to SW decision. There is a hysteresis of 460.8 mV(refer

to TS pin voltage) for UTP threshold, and there is a hysteresis of 57.6 mV for OTP threshold. Every time when the battery temperature comes out from first level over or under temperature, IRQ is asserted. Charger restores the original charging state and REG 01H[6] change to 1. In normal case, first level of OTP & UTP thresholds should be set within the second level OTP & UTP thresholds.

Using TS pin current source and obtain TS pin data of the table 11-27:

Table 11-27

Usage condition	setting	Key point		
Don't need temperature protection	TS = GND, REG 84H[1:0] = 00,	TS work as GPADC		
	(default 00), REG84H[2] = 1			
Temperature protection when in charger	REG 84H[1:0] = 01	Current source on when		
		charging		
Temperature protection when in charging and	REG 84H[1:0] = 10			
discharging				
TS for GPADC or GPIO	REG 84H[1:0] = 11 when need current			
	source			
	REG 84H[1:0] = 00 when not need			
	current source			

Logic Table:

Table 11-28

REG84H[2] Function	REG82H[0] ADC Enable	REG84H[1:0] Current	Work mode	IRQ	Note
0	0	XX	TS	NO	
0	1	00	TS	NO	
0	1	01	TS	IRQ when in Charging	all IRQ work
0	1	10/11	TS	IRQ all times	
1	0	xx	GPADC	NO	TS function disable

11.5 Multi-Power Outputs

DCDC1-7 are dual mode (PFM / PWM), by default is auto switch mode. All Buck and PWM charger are synchronized with frequency of 3MHz (with spread spectrum option), hence small value external inductors and capacitors components can be used.

All Buck and LDO have current limiting protection function. When the load current exceeds the current limit, the output voltage will drop. Meanwhile, all of the Buck output voltage will be monitored. If the Buck output voltage is 15% lower than the set value and BUCK 85% low voltage turn off AXP813 function (REG 81H) is enabled, AXP813 will automatically force a shutdown and PWROK pin becomes low.

Buck output voltage monitor de-bounce time setting is available at REG 8EH[7:6].

DCDC2-7 has DVM enable option. In DVM mode, when there is a change in the output voltage, BUCK will change to the new targeted value step by step. If the application does not require use of any Buck, the LX pin can be left floating while VIN and PGND need to be connected. AXP813 will automatically detect this state to turn off the Buck.

Table 11-29

X-Powers	Input	Default Voltage	Max Current Default State		Application
DCDC4	IPSOUT	0.9V	3A	on	GPU
DCDC7	IPSOUT	-	1.8A	off	-
DCDC6	IPSOUT	0.9V	2.5A	on	SYS
DCDC5	IPSOUT	1.24V	2.5A	on	DRAM
DCDC2	IPSOUT	0.9V	3A	on	CPUA
DCDC3	IPSOUT	0.9V	3A	on	CPUB
DCDC1	IPSOUT	3.3V	1.5	on	VCC-IO
ELDO1	IPSOUT	-	0.4A	off	DVDD-CSI-R
ALDO3	IPSOUT	3.0V	0.2A	on	AVCC
FLDO1	>1.2V	-	0.3A	off	HSIC
FLDO2	>1.2V	0.9V	0.1A	on	CPUS
FLDO3	>1.2V	-	0.03A	off	-
RTCLDO	IPSOUT	1.8V	60mA	Always on	RTC

VCC_RTC input from IPSOUT. As long as any of the VBUS or ACIN or BAT power exists, It will not power down. VCC RTC is fixed at 1.8V.

11.6 ADC

AXP813 has a 12Bit SAR ADC. The ADC input range is 0V to 2.0475V, with is 0.5mV/step. Voltage and current ADC has sampling frequency option of 800/400/200/100Hz. The relationship between input signal and data is listed table 11-30:

Table 11-30

Channel function	000Н	STEP	FFFH	Condition
BAT voltage (BATSENSE)	0mV	1.1mV	4.5045V	Power On
Current offset	0mA	1mA	4.095A	Charging or power on
BAT discharge current	0mA	1mA	4.095A	Power on
Internal temperature				Charging or Power on
BAT charge current	0mA	1mA	4.095A	Charging or Power on
TS pin input	0mV	0.8mV	3.276V	Charging or Power on
GPIO0 pin input	0mV	0.8mV	3.276V	Power On

Current ADC measured the current through the 10mohm resistor between BATSENSE and LOADSENSE. For internal temperature, internal logic will do the ADC data comparison with register set warning level for sending over-temperature alarm or shutdown. To identify the battery current direction, the charge current and discharge current value will be compare base on status of charger enable, battery present and VBUS present indication.

11.7 Fuel Gauge

The Fuel Gauge comprises 3 modules – Rdc calculation module; OCV (Open Circuit Voltage) and Coulomb counter module; and calibration module. The Fuel Gauge system is able to export information about battery to application such as Battery capacity percentage (REG B9H), Battery Voltage (REG 78H, REG 79H), Battery charging current (REG 7AH, REG 7BH), Battery discharge current (REG 7CH, REG 7DH), Battery maximum capacity (REG E0H, REG E1H), Battery Rdc value (REG BAH, REG BBH). The Fuel Gauge can be enabled or disabled via REG B8H. The Battery low warning can be set in REG E6, and IRQ (REG 4BH) will be sent out to alert the platform when the battery capacity percentage is lower than the warning level set in REG E6H.

Once a default battery is selected for a particular design, it is highly recommended to calibrate the battery to achieve better Fuel Gauge accuracy. The calibration procedure is documented in separate Application Guide – **AXP813 Battery Calibration Application Guide**. Once the calibration data are available, user can write the calibration info to the following register – REG COH – DFH (OCV percentage table) on each boot. Or user can choose not to do the calibration and use the default OCV percentage value. Additionally, the Fuel Gauge system is capable to learn the battery characteristic on each Full charge cycle. Information such as Battery Maximum capacity (REG EOH, REG E1H) and Rdc (REG BAH, REG BBH) will be updated automatically over time.

OCV Percentage is showed by Table 11-31.

Table 11-31

Reg Address	Percent	ocv
	0	2.9920
CO	RW(H)	3.1328
C1	RW(H)	3.2736
C2	RW(H)	3.3440
C3	RW(H)	3.4144
C4	RW(H)	3.4848
C5	RW(H)	3.5552
C6	RW(H)	3.5904
C7	RW(H)	3.6080
C8	RW(H)	3.6256
C9	RW(H)	3.6432
CA	RW(H)	3.6608
СВ	RW(H)	3.6960
CC	RW(H)	3.7312
CD	RW(H)	3.7664
CE	RW(H)	3.8016
CF	RW(H)	3.8192

AXP813
AXP813 Optimized For Multi-Core High-Performance System

D0	RW(H)	3.8368
D1	RW(H)	3.8544
D2	RW(H)	3.8720
D3	RW(H)	3.9072
D4	RW(H)	3.9424
D5	RW(H)	3.9776
D6	RW(H)	4.0128
D7	RW(H)	4.0480
D8	RW(H)	4.0832
D9	RW(H)	4.1184
DA	RW(H)	4.1360
DB	RW(H)	4.1536
DC	RW(H)	4.1888
DD	RW(H)	4.224
DE	RW(H)	4.2592
DF	DF RW(H) 4.29 ⁴	
	100	4.3296

11.8 Interrupt Controller

AXP813 Interrupt Controller monitors such as low power, bad battery, PWRON pin signal, over temperature, GPIO input edge signals such as trigger events. When the events occur, corresponding IRQ status will be set to 1, and will drive IRQ pin (NMOS open drain) asserted low. When host detect triggered IRQ signal, host will scan through the trigger events and respond accordingly. Meanwhile, Host will reset the IRQ status by writing "1" to status bit. Host will always check every IRQ status from time to time and only will take effect with respective relevant enabled IRQ bit only.

The input edge IRQ of GPIO will only functions when GPIO pin is set as Digital input, and the function will take effect when input edge IRQ is enable. The input will go through about 1ms of de-bounce and corresponding IRQ will trigger when detect rising and falling edge. Rising, falling, or both edge triggering is control by corresponding IRQ register bit.

8bits event timer will issue timeout IRQ. Clearing IRQ doesn't start counter.

12 Codec Function Description

12.1 Power

There are a Power-Reset circuit in AXP813 used to reset all the circuit and register to a standby state after power up. The Power-Reset circuit make all the supply power need no specific timing. All the supply voltages are illustrated in the figure 12-1.

Figure 12-1

VDD-CORE is 1.2V for audio digital core power generated from LODIN pin, which also can be direct supplied from VDD-CORE pin. VDD-IO1 is digital I/O power for I2S1 and I2S2. VDD-IO2 is digital I/O power for I2S3. AVCC is for analog power. CPVDD for charge pump power. VIO-RTC is RTC digital core power generated from VCC-RTC.

When the AXP813 is not working, it need to set the supply properly to prevent power leakage. There are two settings to select. It's best to power off all the supply. The other is to make sure AVCC and CPVDD both power on.

At the setting of the table 12-1, AXP813 has the best performance.

TODIC 12 1							
LDOIN	VDD_CORE	AVCC	CPVDD	VCC-IO1	VCC-IO2	VCC_RTC	VIO_RTC
1.5~~3.3 V	1.2 V	3 V	1.8 V	1.8/3.3 V	1.8/3.3 V	1.8/3.3 V	1.2 V
Supplied	N/A	Supplied	Supplied	Supplied	Supplied	Supplied	N/A

Table 12-1

12.2 Clock

The system clock(SYSCLK) of AXP813 must be 512*fs(fs=48KHz or 44.1KHz). So the system should arrange the divider to generate 24.576MHz for audio clock series of 48KHz or 22.5792MHz for series of 44.1KHz. SYSCLK can be selected from I2S1CLK or I2S2CLK which derived from MCLK1, MCLK2 or PLL. MCLK1 and

^{*} VDD_CORE and VIO_RTC generated by internal LDO.

MCLK2 are always provided externally while the PLL reference clock can be select from MCLK1, MCLK2, BCLK1, BCLK2.

I2S1CLK is the reference of the first I2S clocking zone. I2S2CLK is the reference of the second I2S clocking zone. The third I2S only support master mode. Its clocking zone must be synchronized with either of the I2SnCLK(n=1,2). In master mode, LRCK and BCLK are derived internally from I2SnCLK. In slave mode, LRCK and SCLK are supplied externally and BCLK can be used as the PLL input reference.

SYSCLK is the reference of ADC, DAC, DVC, MIXER, AGC and DRC module. If SRC1 or SRC2 is used, SYSCLK must be set by PLL, then the SRCnCLK is auto provided for SRC module. If all the relevant module above is not used, the SYSCLK needn't be configured.

There are also an internal Oscillator to generate a clock signal for direct-path mode. In this mode, the oscillator supply clock to charge pump, adjustment circuit, headphone detect circuit .In direct-path case, no external clock need .

Figure 12-2

12.3 PLL

A Phase-Locked Loop(PLL) is used to provide a flexible input clock range from 128KHz to 24MHz. The source of the PLL can be set to MCLK1, MCLK2, BCLK1 or BCLK2 by setting register. The PLL output is always used to provide the system clock(SYSCLK) of AUDIO codec when 24.576MHz or 22.5792MHz can not be provided from MCLK.

The PLL transmit formula as below:

FOUT = (FIN * N) / (M * (2K+1)); $(N = N_i + 0.2*N_f)$

Table 12-2,12-3 show clock setting of SYSCLK.

Table 12-2 clock setting for SYSCLK=24.576 MHz

FIN	М	N	К	FOUT		
128K	1	576	1	24.576M		
192K	1	384	1	24.576M		
256K	1	288	1	24.576M		
384K	1	192	1	24.576M		
			1	24.576M		
6M	25	307.2	1	24.576M		
13M	42	238.2	1	24.576M		
19.2M	25	96	1	24.576M		

Table 12-3 clock setting for SYSCLK=22.5792 MHz

FIN	M	N	К	FOUT
128K	1	529.2	1	22.5792M
192K	1	352.8	1	22.5792M
256K	1	264.6	1	22.5792M
384K	1	176.4	1	22.5792M
		•••	1	22.5792M
6M	38	429	1	22.5789M
13M	19	99	1	22.5789M
19.2M	25	88.2	1	22.5792M

12.4 I2S/PCM Interface

There are three I2S/PCM interfaces which can be configured as master mode or slave mode in AXP813. The three I2S/PCM interfaces provide flexible connectivity with multiple processors (e.g. Application processor, Baseband processor and Wireless transceiver).

Interface I2S1 and I2S2 can be configured as Master or Slave, the third interface I2S3 operates in Master mode and supports PCM mode only.

In the general case, the digital audio interface uses four pins as below:

- BCLK: Bit clock for data synchronization
- LRCK: Left/Right data alignment clock
- SDOUT: output data for ADC data
- SDIN: input data for DAC data

I2S1 and I2S2 audio interface support four different data formats as below. But I2S3 supports PCM short mode only. On the first digital audio interface I2S1, TDM is available for all four format and AXP813 can use it to transmit or receive up to four channel data on timeslot0 and timeslot1 simultaneously.

- I2S mode
- Left justified mode
- Right justified mode
- PCM short mode

Below diagrams (from Figure 12-3 to 12-11) show the timing diagram of I2S/PCM.

I2S Justified mode

Figure 12-3 I2S Justified mode

Left Justified mode

Figure 12-4 Left Justified mode

Right Justified mode

Figure 12-5 Right Justified mode

Pcm mode A(BCLK_INV=0)

Figure 12-6 PCM mode A(LRCK_INV=0)

Pcm mode B(BCLK_INV=1)

Figure 12-7 PCM mode B(LRCK_INV=1)

Pcm mode A(BCLK_INV=0)

Figure 12-8 PCM mode A mono(LRCK_INV=0)

Pcm mode B(BCLK_INV=1)

Figure 12-9 PCM mode B mono(LRCK_INV=1)

I2S TDM mode

Figure 12-10 I2S TDM mode

PCM TDM mode

Figure 12-11 PCM TDM mode

12.5 Stereo ADC

The stereo ADC is used for recording stereo sound. The sample rate of the stereo ADC can not be independent of DAC sample rate. In other words, the stereo ADC and DAC must work at a same sample rate. The sample rate is configured by the register ADDA_FS_I2S1 or ADDA_FS_I2S2 depending on which I2SnCLK selected as the system clock(SYSCLK).

In order to save power, the left and right analog ADC part can be enabled/disabled separately by setting register ADC_APC_CTRL Bit15 & Bit11. The digital ADC part can be enabled/ disabled by ADC_DIG_CTRL Bit15.

The volume control of the stereo ADC is set via register ADC_APC_CTRL Bit14:12 & ADC_APC_CTRL Bit10:8.

12.6 Stereo DAC

The stereo DAC sample rate is the same as the stereo ADC. The sample rate is configured by the register ADDA_FS_I2S1 or ADDA_FS_I2S2 depending on which I2SnCLK selected as the system clock(SYSCLK). In order to save power, the left and right DAC can be enabled/disabled separately by setting register OMIXER_DACA_CTRL Bit15:14. The digital DAC part can be enabled/ disabled by DAC_DIG_CTRL Bit15.

12.7 Mixer

The Codec supports three series of mixers for all function requirements

- 2 channels DAC Output mixers
- 2 channels ADC Record mixers
- Digital mixers

12.7.1 DAC Output Mixers

The output mixer is used to drive analog output, including headphone, earpiece, speaker, lineout. The following signals can be mixed into the output mixer:

- LINEINL/R
- AXIL/R
- MIC1P/N,MIC2P/N
- Stereo DAC output

12.7.2 ADC Record Mixers

The ADC record mixer is used to mix analog signals as input to the Stereo ADC for recording. The following signals can be mixed into the output mixer:

- LINEINL/R
- AXIL/R
- MIC1P/N,MIC2P/N

Stereo DAC output

12.7.3 Digital Mixers

The digital mixers are provided for digital audio data mixing on four I2S1 output paths, two I2S2 output paths and two paths to the stereo DAC. It's separately controlled by the register I2S1_MXR_SRC, I2S2_MXR_SRC and DAC_MXR_SRC. Figure 12-12 show the block diagram of digital mixers.

Figure 12-12 Digital Data Path

12.8 Analogue Audio Input Path

The Codec supports five Analogue Audio Input paths:

- LINEINL/R
- AXIL/R
- MIC1P/N,MIC2P/N,MIC3P/N

12.8.1 Microphone Input

MICIN1P/N, MICIN2P/N, MIC3INP/N provide differential input that can be mixed into the ADC record mixer, or DAC output mixer. MICIN is high impedance, low capacitance input suitable for connection to a wide range of differential microphones of different dynamics and sensitive. There are only two microphone pre-amplifiers for the 3 differential microphone inputs. MICIN1P/N are input to the first pre-amplifier, MICIN2P/N & MICIN3P/N are selected to input the 2nd pre-amplifier by the register ADC_SRCBST_CTRL bit7. Each microphone preamplifier has a separate enable bit, ADC_SRCBST_CTRL Bit15 & Bit11. The gain for each pre-amplifer can be set independently using MIC1BOOST, MIC2BOOST. MBIAS provide reference voltage for electret condenser type(ECM) microphones.

Figure 4 Suggested External Microphone Input Drawing

Figure 12-13 Suggested External Microphone Input

12.8.2 AXIL/R Input

Auxiliary inputs AXIL and AXIR provide 2-channel stereo single-ended input that can be mixed into the DAC output mixer and ADC record mixer. The inputs are high impedance and low capacitance, thus ideally suited to receiving line level signals from external audio equipment or audio FM module.

Both auxiliary inputs include programmable volume level adjustments and ADC input mute. The scheme is illustrated below. Passive RF and active Anti_Alias filters are also incorporated within the auxiliary inputs. These prevent high frequencies aliasing into the audio band, otherwise degrading performance.

The gain between the AXI inputs and the ADC is logarithmically adjustable from -9dB to 12dB in 1.5dB step by the register AXI_PREG set. The ADC Full Scale input is 1.0Vrms at AVCC =3.0volts. Any voltage greater than full scale will possibly overload the ADC and cause distortion. Note that the full scale input tracks directly with AVCC.

Figure 2 AXI input Schematic

Figure 12-14 AXI Input Schematic

12.8.3 LINEINL/R Input

LINEINL/R provide one-channel mono differential input or stereo single-ended input that can be mixed into the ADC record mixer or the stereo output mixer. The inputs are suited to receiving line level signals such as external audio equipment or baseband module .

When the linein input is set as differential signal input LINEINL-LININR to the ADC or to DAC mixer, the linein gain is logarithmically adjustable from -9dB to 12dB in 1.5dB step by the register LINEIN_DIFF_PREG set.

12.9 Analogue Audio Output Path

The Codec supports five Analogue Audio Output paths:

- HPOUTL/R, HPOUTFB
- SPOLP/N
- SPORP/N
- EAROUTP/N
- LINEOUTP/N

12.9.1 Headphone Output

HPOUTL/R provides two-channel single-ended output to headphone driver. The HPOUTL/R PA input source can be selected from output mixer or directly from DAC by register HPOUT_CTRL Bit15 & Bit14 set. It also can be muted by register HPOUT_CTRL Bit13 & Bit12 set. The headphone PA power up or down by register HPOUT_CTRL Bit11 set.

HPOUTL/R can drive a 16R or 32R headphone load without DC capacitors by using Charge Pump to generate the negative rails. HPOUTFB is the ground loop noise rejection feedback. HBIAS provides reference voltage for electret condenser type(ECM) microphones. Audio jack insert/ button press detection function is also provided through measuring the HBIAS current.

Figure 12-15 Suggested Headphone Output Application

HPOUTL/R volumes can be independently adjusted under software control using the HP_VOL[5:0] of the headphone output control registers. The adjustment is logarithmic with an 64dB rang in 1dB step from 0dB to -62dB. The headphone outputs can be muted by writing codes 0x0 to HP_VOL[5:0] bits.

There are a DC offset cancellation circuit to remove the headphone output DC offset for preventing POP noise in AXP813. The function can be enabled or disabled by the register HP_DCRM_EN. This bit must be set 0xf before headphone PA enabled, and this bit must be set 0x0 before headphone PA disabled.

A zero cross detect circuit is provided at the input to the headphones under the control of the ZCROSS_EN bit . Using these controls the volume control values are only updated when the input signal to the gain stage is close to the analogue ground level. This minimizes and audible clicks and zipper noise as the gain values are changed or the device muted.

12.9.2 Earpiece Output

EAROUTP/N provides one differential output to drive handset receiver. The EAROUTP/N input source can be selected from left DAC, right DAC, left output mixer or right output mixer. The earpiece volume controlled by the register ERPOUT_CTRL Bit4:0 set. The volume control is logarithmic with an 43.5dB rang in 1.5dB step from -43.5dB to 0dB. The earpiece PA power up or down by register ERPOUT_CTRL Bit5set.

12.9.3 Speaker Output

SPOLP/N, SPORP/N provides two differential output without internal speaker amplifier. Using external amplifier, a stereo speakers can be implemented. The SPOLP/N input source can be selected from left output mixer or (left+right) output mixer. The SPORP/N input source can be selected from right output mixer or (left+right) output mixer. So in mono speaker application, The best choice for SPOLP/N or SPORP/N input source is selected from (left+right) output mixer avoiding sound loss. The volume control is logarithmic with an 43.5dB rang in 1.5dB step from -43.5dB to 0dB. The left and right speaker output buffer can independently power up or down by register SPKOUT_CTRL Bit11 & Bit7 set.

12.9.4 Line Output

LINEOUTP/N provides one differential BTL output to drive line level signals to external audio equipment or baseband module .The LINEOUTP/N input source can be selected from MIC1 pre-amplifier output, MIC2 pre-amplifier output, left output mixer or right output mixer. The volume control is logarithmic with an 10.5dB rang in 1.5dB step from -4.5dB to 6dB. The LINEOUT output buffer power up or down by register LOUT_CTRL Bit4 set.

12.10 Digital Microphone Interface

AXP813 supports a stereo digital micriphone interface. The DMICCLK/ DMICDAT pins are multiplexed on the MIC3P/MIC3N pins. The circuit share decimation filter with audio ADC. And DMICCLK can be output 128fs (fs= ADC sample rate).

Digital Microphone power usually falls between the range 1.6V-3.6V, typical 1.8V. And the Clock frequency is between the the range 1.0MHz-3.25MHz, typical 2.4MHz.

Digital Microphone Block Diagram as the figure 12-16:

Figure 12-16 Digital Microphone Block Diagram

Digital Microphone timing as the figure 12-17:

Figure 12-17 Digital Microphone timing

Digital Microphone application as the figure 12-18:

Figure 12-18 Digital Microphone Application

12.11 Audio Jack Detect

The microphone bias output pin HBIAS provide a low noise reference voltage suitable for biasing electrets type microphones and the associated external resistor biasing network. Hbias is designed to drive headset microphone, and a bias current detect function is provided for external accessory detection by measuring the Hbias current. In some application, it's used to detect the insertion/removal of a audio jack and the button press. These events will cause a significant change in bias current flow, which can be detected and used to generate a signal to the processor.

When HBIAS current detect is enabled, 5 bit ADC will send out sample data at 16/32/64/128Hz clock rate. Digital logic trigger an interrupt event controlled by register setting when the data is changed.

The digital circuit generate five IRQ signals that can be disabled by register, the data from ADC can be read from register HMIC_STATUS Bit12:8.

IRQ Timing Diagram shows in figure 12-19:

Figure 12-19 HBIAS Detect IRQ Timing Diagram

12.13 Interrupt

The Interrupt circuits in AXP813 generate an Interrupt (IRQ) event to enable the detection of audio jack status. The Interrupt pin IRQ_AUDIO is open-drain. It's usually drives a high level voltage via the external pull-up resistor while it output a low level when the IRQ is active.

It supports the following triggered events illustrated in the figure 12-20:

Figure 12-20 Interrupt trigger Diagram

12.14 Digital Audio Process for ADC

Figure 12-21 shows the DAP System Block Diagram For ADC.

Figure 12-21 ADC DAP System Block

Figure 12-22 shows DAP for ADC Data Flow:

Figure 12-22 ADC DAP Data Flow

12.14.1 High Pass Filter

The High Pass Filter (HPF, –3dB cutoff < 1Hz) remove DC offset from ADC recording data. The HPF can also be bypassed.

Figure 12-23 HPF Characteristic in DAP

12.14.2 Auto Gain Control

The automatic gain control(AGC) can be enabled in the digital recording path of AXP813. It automatically adjusts the ADC recording volume gain to a target volume level.

Figure 12-24 AGC Response Characteristic

The ADC Digital Part includes automatic gain control (AGC) for ADC recording. AGC can be used to maintain a nominally-constant output level when recording speech. As opposed to manually setting the PGA gain, in the AGC mode, the circuitry automatically adjusts the PGA gain as the input signal becomes overly loud or weak, such as when aperson speaking into a microphone moves closer to or farther from the microphone. The AGC algorithm has several programmable parameters, including target gain, attack and decay time constants, noise threshold, and max PGA applicable, that allow the algorithm to be fine-tuned for any particular application. The algorithm uses the absolute average of the signal (which is the average of the absolute value of the signal) as a measure of the nominal amplitude of the output signal. Because the gain can be changed at the sample interval time, the AGC algorithm operates at the ADC sample rate. The AGC programs to a wide range of attack and decay skew time from 32/fs to

2^15*32/fs.

When noise cancellation used in system, the AGC should be implement by soft because of no hardware noise cancellation. The AGC process should be after noise cancellation process.

The AGC Control Parameters

•Target level represents the nominal output level at which the AGC attempts to hold the ADC output signal level. The ADC allows programming of different target levels, which can be programmed from -1dB to -30dB relative to a full-scale signal. Because the ADC reacts to the signal absolute average and not to peak levels, it is recommended that the target level be set with enough margins to avoid clipping at the occurrence of loud sounds.

•Attack skew time determine show quickly the AGC circuitry reduces the PGA gain when the output signal level exceeds the target level due to increase in input signal level. A wide range of attack-time programmability is supported in terms of number of samples (i.e., number of ADC sample-frequency clock cycles).

•Decay skew time determine show quickly the PGA gain is increased when the output signal level falls below the target level due to reduction in input signal level. A wide range of decay time programmability is supported in terms of number of samples (i.e., number of ADC sample-frequency clock cycles).

•Noise threshold is a reference level. If the input speech average value falls below the noise threshold, the AGC considers it as asilence and hence brings down the gain to 0dB in steps of 0.5dB every sample period and sets the noise-threshold flag. The gain stay sat 0dB unless the input speech signal average is es above the noise threshold setting. This ensures that noise is not amplified in the absence of speech. Noise threshold level in the AGC algorithm is programmable from –30dB to –90dB of full-scale. This operation includes hysteresis and debounce to avoid the AGC gain from cycling between high gain and 0dB when signals are near the noise threshold level. The noise (or silence) detection feature can be entirely disabled by the user.

•Max PGA applicable allows the designer to restrict the maximum gain applied by the AGC. This can be used for limiting PGA gain in situations where environmental noise is greater than the programmed noise threshold. Microphone input Max PGA applicable can be programmed from 0dB to 40dB in steps of 0.5dB. ·Hysteresis, as the name suggests, determines a window around the noise threshold which must be exceeded to detect that the recorded signal is indeed either noise or signal. If initially the energy of the recorded signal is greater than the noise threshold, then the AGC recognizes it as noise only when the energy of the recorded signal falls below the noise threshold by a value given by hysteresis. Similarly, after the recorded signal is recognized as noise, for the AGC to recognize it as a signal, its energy must exceed the noise threshold by a value given by the hysteresis setting. In order to prevent the AGC from jumping between noise and signal states, (which can happen when the energy of recorded signal is close to the noise threshold) a non-zero hysteresis value should be chosen. The hysteresis feature can also be disabled. •Debounce time (noise and signal) determines the hysteresis in time domain for noise detection. The AGC continuously calculates the energy of the recorded signal. If the calculated energy is less than the set noise threshold, then the AGC does not increase the input gain to achieve the target level. However, to handle audible artifacts which can occur when the energy of the input signal is close to the noise threshold, the AGC checks if the energy of the recorded signal is less than the noise threshold for a time greater than the noise debounce time. Similarly, the AGC starts increasing the input-signal gain to reach the target level when the calculated energy of the input signal is greater than the noise threshold. Again, to avoid audible artifacts when the input-signal energy is close to noise threshold, the energy of the input signal must continuously exceed the noise threshold value for the signal-debounce time. If the debounce times are kept small, then audible artifacts can result by rapid enabling and disabling the AGC function. At the same

time, if the debounce time is kept too large, then the AGC may take time to respond to changes in levels of input signal swith respect to the noise threshold. Both noise and signal-debouncet ime can be disabled.

♦ The AGC Output Information

- •TheAGC noise-threshold flag is a read-only flag indicating that the input signal has levels lower than the noise threshold, and thus is detected as noise (or silence). In such a condition, the AGC applies a gain of 0 dB.
- •Gain applied by AGC is a read-only register setting which gives a real-time feed back to the system on the gain applied by the AGC to the recorded signal. This, a long with the target setting, can be used to determine the input signal level. In a steady-state situation TargetLevel (dB) = GainAppliedbyAGC(dB) +Input SignalLevel(dB) When the AGC noise threshold flag is set, then the status of gain applied by AGC is not valid.
- •The AGC saturation flag is a read-only flag indicating that the ADC output signal has not reached its target level. However, the AGC is unable to increase the gain further because the required gain is higher than the maximum allowed PGA gain. Such a situation can happen when the input signal has low energy and the noise threshold is also set low. When the AGC noise threshold flag is set, the status of AGC saturation flag should be ignored.
- •The ADC saturation flag is a read-only flag indicating an overflow condition in the ADC channel. On overflow, the signal is clipped and distortion results. This typically happens when the AGC target level is kept high and the energy in the input signal increases faster than the attack time.

The AGC signal level detect

Figure 12-25 AGC Signal level detect

• An AGC low-pass filter is used to help determine the average level of the input signal. This average level is compared to the programmed detection levels in the AGC to provide the correct functionality. This low-pass filter is in the form of a first-order IIR filter. The transfer function of the filter implemented for signal level detection is given by

$$H(z) = \frac{\alpha}{1 - (1 - \alpha)z^{-1}}$$

Where: Coefficient α (3.24 format) is 26-bit 2s complement and will determine the time window over which average level to be made. The parameter is computed by.

$$\alpha = 1 - e^{-2.2Ts/ta}$$

Default time window is 108.8963 *Ts.

The AGC Characteristics

Figure 12-26 AGC Module Characteristic

12.15 Digital Audio Process for DAC

Figure 12-27 shows the DAP System Block Diagram For DAC.

Figure 12-28 shows DAP for DAC Data Flow:

AXP813

AXP813 Optimized For Multi-Core High-Performance System

Figure 12-28 DAC DAP Data Flow

12.15.1 High Pass Filter

The DAP has individual channel high pass filter that can be enabled and disabled. The filter cutoff frequency is less than 1Hz.

$$H(z) = \frac{1 - z^{-1}}{1 - az^{-1}}$$

12.15.2 Dynamic Range Control

The dynamic range control(DRC) can be enabled in the digital playback path of AXP813. It automatically adjusts the wide volume gain to flatten volume level .Figure 12-29 shows DRC Response characteristic.

Figure 12-29 DRC Response Characteristic

The DRC supports the main feature shows in figure 12-30.:

Note: The address is the coefficient ram address

Figure 12-30 DRC Block and Register Control

- Adjustable threshold, offset, and compression levels
- Programmable energy coefficient, attack, and decay time constants
- Transparent compression: Compressors can attack fast enough to avoid apparent clipping before engaging, and decay times can be set slow enough to avoid pumping.

DRC parameter setting

Numbers formatted as N.M numbers means that there are N bits to the left of the decimal point including the sign bit and M bits to the right of the decimal point. For example, Numbers formatted 3.24 means that there are 3 bits at the left of the decimal point and 24 bits at the right decimal point.

Energy Filter

The Energy Filter is to estimate of the RMS value of the audio data stream into DRC, and has two parameters, which determine the time window over which RMS to be made. The parameter is computed

by
$$\alpha = 1 - e^{-2.2Ts/ta}$$

Figure 12-31 Energy Filter Structure

Compression Control

This element has three parameters (T, K, O), which are all programmable, and the computation will be explained as below:

T parameter (Threshold Parameter Computation)

The threshold is the value that determines the signal to be compressed or not. When the signal's RMS is larger than the threshold, the signal will be compressed. The value of threshold input to the coefficient register is computed by

$$Tin = -\frac{T_{dB}}{6.0206}$$

There, T_{dB} must less than zero, the positive value is illegal.

For example, it desired to set the T=-30dB, then $T_{in} = -\frac{30}{6.0206} = 4.982$, and the 8.24 format of the Tin is 0x04FB 9ED0.

K parameter (Slope Parameter Computation)

The K is the slope within compression region. For example, a n:1 compression means that an output increase 1dB as RMS input increase n dB. The k input to the coefficient register is computed by

$$k = \frac{1}{n} - 1$$

There, n is from 1 to 50, and must be integer.

For example, for n=5, the $k=\frac{1}{5}-1=-0.8$, and the 3.23 format of the k is 0x733_3333

O parameter (Offset Parameter Computation)

The O is the offset of the compression static curve. The offset input to the coefficient register is computed

by
$$O_{in} = 10^{O/20}$$

There, O is -24dB to 24dB.

For example, it desired to set O=6dB, then $O_{in} = 10^{6/20} = 1.995$, and the 5.24 format of the O_{in} is 0x1FE_C982.

Gain Smooth Filter

The Gain Smooth Filter is to smooth the gain and control the ratio of gain increase and decrease. The decay time and attack is shown in Figure 12-32. The structure of the Gain Smooth filter is also the Alpha filter, so the rise time computation is the same as the Energy filter which is

$$\alpha = 1 - e^{-2.2 T s/t}$$

Figure 12-32 Smooth Filter Characteristic

12.16 RTC Module

There are a real time clock(RTC) module in AXP813 for calendar usage. The RTC module provides second, minute, hour, weekday, day, month, and year information as well as alarm wakeup. The external 32.768kHz crystal oscillator is need to provide a low power, accurate reference.

The RTC fans out three 32.768 kHz outputs CKO1_RTC, CKO2_RTC, and CKO3_RTC derived from external oscillator, while the source also can be configured as 4MHz frequency dividing output from ADDA oscillator. The outputs are controlled by register CK32K_OUT_CTRLx(x=1,2,3). The first output CKO1_RTC is push-pull pin connected with AP, the CKO2_RTC and CKO3_RTC outputs are open-drain pins for other components such as baseband, or wifi module.

The general purpose registers e0h-efh are used for storing data, since the RTC domain is always power-on. Figure 12-33 shows the block diagram of the RTC:

Figure 12-33 RTC Block Diagram

13 TWSI/RSB Interface

AXP813 can support two series control interface protocol for writing to or readback from registers on SCK and SDA pins . One is TWSI interface, the other is RSB interface. RSB is top-priority for higher efficiency and lower power consumption. When using TWSI interface, there are two slave address,7'H34 is for Power Management and 7'H1A is for Codec, and when using RSB interface, there are two slave address too,15'H01D1 is for Power Management and 15'H0744 is for Codec.

13.1 TWSI Interface

TWSI is a 2-wire (SCK/SDA) half-duplex serial communication interface, supporting only slave mode. SCK is used for clock and SDA is for data. SCK clock supports up to 400 KHz rate and SDA data is a open drain structure.

A master controller initiates the transmission by sending a "start" signal, which is defined as a high-to-low transition at SDA while SCK is high. The first byte transferred is the slave address. It is a 7-bit chip address followed by a R/W bit. If accessing the registers of Codec, the chip address must be 0011010x, if accessing the registers of Power Management, the chip address must be 0111000x. The R/W bit indicates the slave data transfer direction. Once an acknowledge bit is received, the data transfer starts to proceed on a byte-by-byte basis in the direction specified by the R/W bit. The master can terminate the communication by generating a "stop" signal, which is defined as a low-to-high transition at SDA while SCK is high.

Figure 13-1 TWSI Interface

The formats of "write" and "read" instructions are shown in figure 13-2.

Figure 13-2 TWSI Read and Write

13.2 RSB Interface

RSB interface supports a special protocols with a simplified two wire protocol on a push-pull bus. So the transfer speed can be up to 10MHz and the performance will be improved much. AXP813 works only in slave mode.

RSB support multi-slaves. It uses CK as clock and uses CD to transmit command and data. The Bus Topology is showed in figure 13-3.:

Figure 13-3 RSB Bus Topology

The start bit marks the beginning of a transaction with the slave device. When CK is high, a change from high to low on CD is defined as a start condition. This start condition notifies the selected device to start a transfer.

Figure 13-4 Start signal

RSB protocol uses parity bit to check the correction of every byte, The checked object is the 7, 8 or 15 bit in front of the parity bit.

ACK bit is the acknowledgement from device to host, The ACK is active low. When device finds the parity bit is error, it will not send ACK to host, so host can know that an error happens in the transaction.

Figure 13-5 Parity bit

Set run-time slave address(RTSADDR) command. It is used to set run time slave address(RTSADDR) for different devices in the same system. There are 15 devices in a system at most. The RTSADDR can be selected from the command code set and a device 's RTSADDR can be modified many times by using set run-time slave address command.

Figure 13-6 RTSADDR command

Read command is used to read data from device. It has byte, half word and word operation. When devices receives the command, they shall check if the command's RTSADDR matches their own RTSADDR. The AXP813 Datasheet V1.0 Copyright © 2014 X-Powers Limited. All Rights Reserved. 83

device's RTSADDR is setted by set run-time slave address(RTSADDR) command.

Figure 13-7 Read command

Write command is used to write data to the devices. It has byte, half word and word operation. When devices receive the command, they shall check if the command's RTSADDR matches their own RTSADDR. The device's RTSADDR is setted by set run-time slave address(RTSADDR) command.

Figure 13-8 Write command

14 Power Management Register

Note: hereinafter, "system reset" means that the Register will be reset when the AXP813 power off, and "power on reset" means that the Register will be reset when IPSOUT voltage drop below 2.1V .

Register List

Address	Description	R/W	Default
00	Power source status	R	
01	Power mode and Charger status	R	
02	Power up/down reason register	RW	
03	IC type number	R	51H
04-0F	12 Data buffers	RW	00H
10	Output power on-off control 1	RW	XXH
12	Output power on-off control 2	RW	08H
13	Output power on-off control 3	RW	9CH
14	On/Off synchronous control	RW	48H
15	DLDO1 voltage control	RW	16H
16	DLDO2 voltage control	RW	16H
17	DLDO3 voltage control	RW	16H
18	DLDO4 voltage control	RW	1AH
19	ELDO1 voltage control	RW	00H
1A	ELDO2 voltage control	RW	00H
1B	ELDO3 voltage control	RW	00H
1C	FLDO1 voltage control	RW	OBH
1D	FLDO2/3 voltage control	RW	OBH
20	DCDC1 voltage control	RW	02H
21	DCDC2 voltage control	RW	B2H
22	DCDC3 voltage control	RW	XXH
23	DCDC4 voltage control	RW	B2H
24	DCDC5 voltage control	RW	XXH
25	DCDC6 voltage control	RW	B2H
26	DCDC7 voltage control	RW	B2H
27	DCDC4/2/3/4/5 DVM control	RW	XCH
28	ALDO1 voltage control	RW	17H
29	ALDO2 voltage control	RW	17H
2A	ALDO3 voltage control	RW	1AH
2C	BC Module Global Register	RW	00H
2D	BC Module VBUS Control and Status Register	RW	30H
2E	BC USB Status Register	RW	00H
2F	BC Detect Status Register	R	20H
30	VBUS path control & Hold voltage setting	RW	21H

31	Dower walkeup central 9 V cetting	DVA	0011
	Power wakeup control & V _{OFF} setting	RW	03H
32	Power Disable, BAT detect and CHGLED pin control	RW	4XH
33	Charger Control 1	RW	CXH
34	Charger Control 2	RW	45H
35	Charger Control 3	RW	18H
36	POK setting	RW	59H
37	POK Power off activity time setting	RW	00H
38	V _{LTF-charge} setting	RW	A5H
39	V _{HTF-charge} setting	RW	1FH
3A	Reserved	RW	XXH
3B	BUCK frequency setting	RW	08H
3C	V _{LTF-work} setting	RW	FCH
3D	V _{HTF-work} setting	RW	16H
3E	Reserved	RW	XXH
40	IRQ enable 1	RW	D8H
41	IRQ enable 2	RW	FFH
42	IRQ enable 3	RW	FFH
43	IRQ enable 4	RW	03H
44	IRQ enable 5	RW	7CH
45	IRQ enable 6	RW	00H
48	IRQ Status 1	RW	00H
49	IRQ Status 2	RW	00H
4A	IRQ Status 3	RW	00H
4B	IRQ Status 4	RW	00H
4C	IRQ Status 5	RW	00H
4D	IRQ Status 6	R	00H
58	TS pin input ADC data, highest 8bit	R	00H
59	TS pin input ADC data, lowest 8bit	R	00H
5A	GPIO0 pin input ADC data, highest 8bit	R	00H
5B	GPIO0 pin input ADC data, lowest 8bit	R	00H
78	Average data bit[11:4] for Battery voltage (BATSENSE)	R	00H
79	Average data bit[3:0] for Battery voltage (BATSENSE)	R	00H
7A	Average data bit[11:4] for Battery charge current	R	00H
7B	Average data bit[3:0] for Battery charge current	R	00H
7C	Average data for Battery discharge current highest 8 bit	R	00H
7D	Average data for Battery discharge current lowest 4 bit	R	00H
80	BUCK PWM/PFM mode select	RW	80H
81	Off-Discharge and Output monitor control	RW	FFH
82	ADC Enable	RW	E1H
84	ADC speed setting, TS pin Control	RW	F2H
85	ADC speed setting	RW	вон
8A	Timer control	RW	00H
8E	Buck output voltage monitor de-bounce time setting	RW	00H/00H/40H

AXP813

AXP813 Optimized For Multi-Core High-Performance System

	AXI 013 Optimized for Main-core riigh-	<u> </u>	
8F	IRQ pin, hot-over shut down	RW	00H
90	GPIO0(GPADC) control	RW	07H
91	GPIO0LDO and GPIO0 high level voltage setting	RW	1AH
92	GPIO1 control	RW	07H
93	GPIO1LDO and GPIO1 high level voltage setting	RW	1AH
94	GPIO signal bit	R	00H
97	GPIO pull down control	RW	00H
9A	Run time Sleep power up sequence 1	RW	00H
9B	Run time Sleep power up sequence 2	RW	00H
9C	Run time Sleep power down sequence 1	RW	00H
9D	Run time Sleep power down sequence 2	RW	00H
9E	Power rail mode in Sleep state	RW	00H
A0	Real time data bit[11:4] for Battery voltage (BATSENSE)	R	00H
A1	Real time data bit[3:0] for Battery voltage (BATSENSE)	R	00H
B8	Fuel Gauge Control	RW	E8H
В9	Battery capacity percentage for indication	R	64H
BA	RDC 1	RW	80H
BB	RDC 0	RW	5DH
ВС	OCV 1	R	00H
BD	OCV 0	R	хон
E0	Battery maximum capacity	RW	00H
E1	Battery maximum capacity	RW	00H
E2	Coulomb meter counter	RW	00H
E3	Coulomb meter counter	RW	00H
E4	OCV Percentage of battery capacity	R	64H
E5	Coulomb meter percentage of battery capacity	R	64H
E6	Battery capacity percentage warning level	RW	АОН
E8	Fuel gauge tuning control 0	RW	00H
E9	Fuel gauge tuning control 1	RW	00H
EA	Fuel gauge tuning control 2	RW	00H
EB	Fuel gauge tuning control 3	RW	00H
EC	Fuel gauge tuning control 4	RW	00H
ED	Fuel gauge tuning control 5	RW	00H

REG 00H: Power source status

Bit	Description	R/W
7	ACIN presence indication	R
	0- ACIN not presence (VBUS<3.5V)	
	1- ACIN presence (VBUS>4.1V)	
6	Indication of ACIN valid (ACIN_Val)	R
5	VBUS presence indication	R
	0- VBUS not presence (VBUS<3.5V)	

	1- VBUS presence (VBUS>4.1V)	
4	Indication of VBUS valid (VBUS_Val)	R
3	VBAT>3.5V or not	R
2	Indication Battery current direction	R
	0: Battery discharge	
	1: Charging battery	
1	Indication ACIN and VBUS are shorted or not on PCB,IN_SHORT status	R
0	STARTUP_TRIGGER: indicate the startup trigger is VBUS or not	R
	0: startup trigger is not VBUS; 1: startup trigger is VBUS	

REG 01H: Power mode and Charger status

Bit	Description	R/W
7	Indication AXP813 die over temperature or not	R
	0-not over temperature; 1-over temperature	
6	Charging indication	R
	0-Charger is not charging or charging is done; 1-Charger is charging	
5	Battery presence indication	R
	0-No Battery is connected to AXP813; 1-Battery is connected	
4	REG 01H[5] valid flag	R
	0- REG 01H[5] is invalid	
	1- REG 01H[5] is valid	
	Indicate whether Battery detected or not yet	
3	Indicate battery safe mode	R
	O-charger is not in battery safe mode; 1-charger is in battery safe mode	
2:0	Reserved	R

REG 02H: Power up/down reason register

Reset: Power on reset

Bit	Description	R/W	Default
7	Power on key override was the shutdown reason, write 1 to clear	R/W	0
6	SOC initiated cold off was the shutdown reason, write 1 to clear	R/W	0
5	AXP813 UVLO threshold was the shutdown reason, write 1 to clear	R/W	0
4	Cold reset was the start up reason, write 1 to clear	R/W	0
3	SOC initiated Global Reset was the start up reason,	R/W	0
	write 1 to clear		
2	Battery insertion was the start up reason, write 1 to clear,	R/W	0
	write 1 to clear		
1	Charger insertion was the start up reason, write 1 to clear	R/W	0

0	Power on key was the start up reason, write 1 to clear	R/W	0
---	--	-----	---

REG 03H: IC type no

Default: 51H

Bit	Description	R/W
5-4	Reserved	R
7-6&	IC type No.	R
3-0	010001: IC is AXP813	
	Others: Reserved	

REG 04-0FH: 12 Data buffers

Default: 00H

Reset: Power on reset

Note: As long as one of the external powers, batteries or backup batteries exists, this data will be reserved

and free from the startup and shutdown influence.

REG 10H: Output power on-off control 1

Default: 3FH Reset: system reset

Bit	Description		R/W	Default
7_	Reserved			
6	DCDC7 on-off control	0-off; 1-on	RW	0
5	DCDC6 on-off control	0-off; 1-on	RW	1
4	DCDC5 on-off control	0-off; 1-on	RW	1
3	DCDC4 on-off control	0-off; 1-on	RW	1
2	DCDC3 on-off control	0-off; 1-on	RW	1
1	DCDC2 on-off control	0-off; 1-on	RW	1
0	DCDC1 on-off control	0-off; 1-on	RW	1

REG 12H: Output power on-off control 2

Default: 00H

Reset: system reset

Bit	Description	R/W	Default
-----	-------------	-----	---------

AXP813

AXP813 Optimized For Multi-Core High-Performance System

7	Reserved			
6	DLDO4 on-off control	0-off; 1-on	RW	0
5	DLDO3 on-off control	0-off; 1-on	RW	0
4	DLDO2 on-off control	0-off; 1-on	RW	0
3	DLDO1 on-off control	0-off; 1-on	RW	0
2	ELDO3 on-off control	0-off; 1-on	RW	0
1	ELDO2 on-off control	0-off; 1-on	RW	0
0	ELDO1 on-off control	0-off; 1-on	RW	0

REG 13H: Output power on-off control 3

Default: E8H Reset: system reset

Bit	Description	<u> </u>	R/W	Default
7	ALDO3 on-off control	0-off; 1-on	RW	1
6	ALDO2 on-off control	0-off; 1-on	RW	1
5	ALDO1 on-off control	0-off; 1-on	RW	1
4	FLDO3 on-off control	0-off; 1-on	RW	0
3	FLDO2 on-off control	0-off; 1-on	RW	1
2	FLDO1 on-off control	0-off; 1-on	RW	0
1-0	Reserved			

REG 14H: On/Off synchronous control

Default: 00H Reset: system reset

Bit	Description	R/W	Default
7	Reserved		
6	DCDC2 & 3 poly-phase control	RW	0
	0: no poly-phase		
	1: dual phase		
5	DCDC5 & 6 change to poly-phase Buck	RW	0
	0: DCDC5 & 6 is independent, not poly-phase Buck		
	1: DCDC5 3 & 6 is poly-phase Buck		
4-0	Reserved		

REG 15H: DLDO1 voltage control

Default: 16H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved		
4-0	voltage setting Bit 4-0, default is 2.9V	RW	16H
	0.7V-3.3V, 100mV/step		

REG 16H: DLDO2 voltage control

Default: 16H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 2.9V	RW	10110
	0.7V-3.4V, 100mV/step		
	3.4V-4.2V, 200mV/step		

REG 17H: DLDO3 voltage control

Default: 16H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 2.9V	RW	10110
	0.7V-3.3V, 100mV/step		

REG 18H: DLDO4 voltage control

Default: 1AH Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.3V	RW	11010

O 71	/_2 2\/	100m	v/sten

REG 19H: ELDO1 voltage control

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	00000
	0.7-1.9V, 50mV/step		

REG 1AH: ELDO2 voltage control

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	00000
	0.7-1.9V, 50mV/step		

REG 1BH: ELDO3 voltage control

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	00000
	0.7-1.9V, 50mV/step		

REG 1CH: FLDO1 voltage control

Default: OBH Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	RW	000

3-0	voltage setting Bit 3-0, default is 1.25V	RW	1011
	0.7-1.45V, 50mV/step		

REG 1DH: FLDO2/3 voltage control

Default: 04H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4	FLDO3 voltage setting	RW	0
	0:DCDC5 / 2 1:FLDOIN/2		
3-0	FLDO2 voltage setting Bit 3-0, default is 0.9V	RW	0100
	0.7-1.45V, 50mV/step		

REG 20H: DCDC1 voltage control

Default: 11H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, 1.6-3.4V, 100mV/step, default is 3.3V	RW	10001

REG 21H: DCDC2 voltage control

Default: A8H Reset: System reset

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 0.9V	RW	0101000
	0.50-1.20V: 10mV/step		
	1.22-1.30V: 20mV/step		

REG 22H: DCDC3 voltage control

Default: A8H Reset: System reset

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 1.0V	RW	0101000
	0.50-1.20V: 10mV/step		
	1.22-1.30V: 20mV/step		

REG 23H: DCDC4 voltage control

Default: A8H Reset: System reset

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 1.0V	RW	0101000
	0.50-1.20V: 10mV/step 1.22-1.30V: 20mV/step		

REG 24H: DCDC5 voltage control

Default: A6H Reset: System reset

Bit	Description	R/W	Default			
7	DVM finished or not status bit	R	1			
	0: not finished 1: finished					
6-0	voltage setting Bit 6-0	RW	DCDC5SET is tied to :	GND	VINT	Floating
	0.80-1.12V: 10mV/step		Type 0	1.5V	1.36V	1.24V
	1.14-1.84V: 20mV/step		Type 1	0.9V	1.8V	1.0V

Note: type 0 or 1 set by OTP

REG 25H: DCDC6 voltage control

Default: 9EH Reset: System reset

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 1.0V	RW	0011110
	0.60-1.10V: 10mV/step		
	1.12-1.52V: 20mV/step		

REG 26H: DCDC7 voltage control

Default: A8H Reset: System reset

Bit	Description	R/W	Default
7	DVM finished or not status bit	R	1
	0: not finished 1: finished		
6-0	voltage setting Bit 6-0, default is 1.0V	RW	0101000
	0.60-1.10V: 10mV/step		
	1.12-1.52V: 20mV/step		

REG 27H: DCDC2 /3 /4 /5 /6/7 DVM control

Default: FCH Reset: System reset

Description	R/W	Default
DCDC7 DVM on-off control	RW	1
0: disable; 1: enable		
DCDC6 DVM on-off control	RW	1
0: disable; 1: enable		
DCDC5 DVM on-off control	RW	1
0: disable; 1: enable		
DCDC4 DVM on-off control	RW	1
0: disable; 1: enable		
DCDC3 DVM on-off control	RW	1
0: disable; 1: enable		
DCDC2 DVM on-off control	RW	1
0: disable; 1: enable		
Reserved		
	DCDC7 DVM on-off control 0: disable; 1: enable DCDC6 DVM on-off control 0: disable; 1: enable DCDC5 DVM on-off control 0: disable; 1: enable DCDC4 DVM on-off control 0: disable; 1: enable DCDC3 DVM on-off control 0: disable; 1: enable DCDC2 DVM on-off control 0: disable; 1: enable DCDC2 DVM on-off control 0: disable; 1: enable	DCDC7 DVM on-off control 0: disable; 1: enable DCDC6 DVM on-off control 0: disable; 1: enable DCDC5 DVM on-off control 0: disable; 1: enable DCDC4 DVM on-off control 0: disable; 1: enable DCDC3 DVM on-off control 0: disable; 1: enable DCDC3 DVM on-off control 0: disable; 1: enable DCDC2 DVM on-off control 0: disable; 1: enable DCDC2 DVM on-off control 0: disable; 1: enable

REG 28H: ALDO1 voltage control

Default: OBH Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0	RW	01011
	0.7-3.3V, 100mV/step, default is 1.8V		

REG 29H: ALDO2 voltage control

Default: OBH Reset: System reset

Bit	Description		R/W	Default
7-5	Reserved	1011	RW	000
4-0	voltage setting Bit 4-0, default is 1.8V 0.7-3.3V, 100mV/step	20	RW	01011

REG 2AH: ALDO3 voltage control

Default: 17H Reset: System reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	voltage setting Bit 4-0, default is 3.0V	RW	1AH
	0.7-3.3V, 100mV/step		

REG 2CH: BC Module Global Register

Default: 00H

Reset: bit7 is system reset, bit[6:0] Power On reset

Bit	Description	R/W	Default	l
-----	-------------	-----	---------	---

	DCD_SEL		
İ	DCD Detect Select		
7	Software writes 1 to this bit to select DCD Detection during BC Detect.	RW	0
	DCD_TIMEOUT_CTL		
1	DCD Timeout Control		
1	Software writes these fields to configure the DCD timeout value.		
1	When the DCD_SEL is set, the BC Module read the MultValldBc if pin contact has been		
İ	detected or the time defined on these fields has been expired .		
1	When the DCD_SEL is not set, he BC Module read the MultValldBc if the time defined on		
1	these fields has been expired .		
İ	00: 300ms 01: 100ms		
6-5	10: 500ms 11: 900ms	RW	0
<u></u>	Vlgc_Com_Sel		
İ	Vigc Compare Select		
İ	Software writes 1 to this bit to choose the Vlgc compare during Primary Detect when the		
İ	ID pin is float.		
İ	When this bit is set, the BC Module is optionally allowed to compare D- with Vlgc beside		
İ	the Vdp_src comparing. The BC Module determine that it is attached to a DCP or CDP if		
İ	D- is greater than Vdat_ref, but less than Vlgc. Otherwise, the BC Module determine that		
İ	it is attached to a SDP, which may actually be a SDP, or a PS2 port, or a proprietary		
4	charge.	RW	0
1	DBP_Timeout_CTL		
İ	DBP Hardware Timeout Control		
İ	If this bit is set, the BC Module would clear the DB_Perform bit on the BC_USB_Sta_R		
İ	register after Tsvld_con_wkb when the DB_Perform bit is set.		
3	Note: Tsvld_con_wkb = 45min	RW	0
İ	BC_status		
İ	BC Detection status		
	Detection finish or not		
	1:Detecting, when starting BC Detect, set this bit		
2	0:Detect finish	RW	0
1	Reserved	RW	0
	RS		
	Run/Stop		
İ	Software writes 1 to this bit to start the BC Module operation. A transition from a zero to		
İ	a one would cause the reset on the BC Module logic.		
0	If this bit = 1,when VBUS low go high, BC detection start automatically	RW	0

REG 2DH: BC Module VBUS Control and Status Register

Default: 30H

Reset: Power On reset

Bit	Description	R/W	Default
-----	-------------	-----	---------

AXP813

AXP813 Optimized For Multi-Core High-Performance System

7	Reserved	R	0
	Indicate the first power on status		
	Software write 1 to this bit to indicate not first time power on		
	If Battery not present, and this bit is 0,the VBUS current limit set to 3A,for the F/W		
6	update in factory	RW	0
	DP/DM floating Detection enable		
	0:disable		
5	1:enable	RW	1
	DP/DM pull down enable		
	0:disable		
4	1:enable	RW	1
	RID detect enable		
	0:disable		
	1:enable		
	1,VBUS presence and REG_2C[0]=1,RID was enabled automatically,do not depend on this		
	bit;		
3	2,VBUS presence or in power on state,set this bit to 1 will enable RID detect	RW	0
2-0	Reserved	RW	0

REG 2EH: BC USB Status Register

Default: 40H

Reset: Reset by the VBUS negative edge

Bit	Description	R/W	Default
	DB_Perform	1,7,11	Deraute
	Dead Battery Perform		
	Both BC Module and software write 1 to this bit to perform unconfig DBP clause and		
7		RW	0
/	clean it to 0 to stop the unconfig DBP clause.	KVV	0
	Dead battery detect enable bit (Reset: power on reset)		
	0:disable		
6	1:enable	RW	1
5	Reserved		
	USB_Mode		
	USB Speed Mode Flag		
	This bit is used in good battery state. It is set by the USB driver to indicate the USB speed		
	mode for the power manage.		
	0: High-Speed, Full-Speed or Low-Speed Mode		
4	1: Super-Speed Mode	RW	0
	Dev_Bus_State		
	Device Bus State Flag		
	These fields are used in good battery state. They are set by the USB driver to indicate the		
	USB bus state for the power manage.		
	000b: attached, physical signal pin contact		

	001b: connected, attached and when the downstream terminal is valid			Ī
	010b: suspended			
	011b: configured			
3-0	100b-111b: reserved	RW	0	l

REG 2FH: BC Detect Status Register

Default: 00H

Reset: Reset by the VBUS negedge

Bit			Description		R/W	Default
	BC_Result					
	BC Detect	Result				
	These field	hese fields indicate the result of BC Detect performance. These fields should be used by				
	the BC Mo	the BC Module when the BC_Per bit of the BC_GLOBAL_R register transaction from 1 to 0.				_
	Value	Meaning	Descriptor	\ \ \ \		
	000b	Reserved	1			
	001b	SDP	The insert port is Standard Downstream Port			
	010b	CDP	The insert port is Charging Downstream Port			
	011b	DCP	The insert port is Dedicated Charging Port			
	100b	Reserved	/			
	101b	Reserved	/			
	110b	Reserved				
7-5	111b	Reserved	1		R	001
4-0	Reserved				R	00000

REG 30H: VBUS path control & Hold voltage setting

Default: 01H

Reset: Bit [7] & bit [2] reset signal is System reset, and Bit [6:3] & bit [1:0] reset signal is Power on reset

Bit	Description		R/W	Default
7	VBUS path select control (VBUS_SEL) when VBUS valid		RW	0
	0: VBUS path select ed			
	1: VBUS path Not selected			
6	Reserved			
5	V _{HOLD} setting bit 2	000: 4.0V; 001: 4.1V; 010: 4.2V	RW	0
4	V _{HOLD} setting bit 1	011: 4.3V; 100: 4.4V; 101: 4.5V	RW	0

AXP813

AXP813 Optimized For Multi-Core High-Performance System

3	V _{HOLD} setting bit 0	110: 4.6V; 111: 4.7V	RW	0
2	Reserved		RW	0
1-0	Current limit default when BC1.2 detection result is	non SDP :	RW	01
	00: 900mA			
	01: 1500mA			
	10: 2000mA			
	11: 2500mA			

REG 31H: Power wakeup control & VOFF setting

Default: 03H

Reset: Bit 3 reset signal is system reset, Bit [7-4] and Bit [2-0] reset signal is Power on reset

Bit	Description		R/W	Default
7	PWROK drive low or not when Power wake up	and REG 31_[3]=1	RW	0
	0: not drive low 1: drive low in wake up perio	d		
6	Reserved			0
5	Soft Power wakeup, Write 1 to this bit, the out	out power will be waked up, then this bit	RW	0
	will clear itself			
4	Control bit for IRQ output and wakeup trigger v	vhen REG 31_[3] is 1	RW	0
	0: IRQ pin is masked and IRQ can wakeup AW16	660 when REG 31_[3] is 1		
	1: IRQ pin is normal and IRQ can't wakeup AW1	.660 when REG 31_[3] is 1		
3	Enable bit for the function that output power b	e waked up by IRQ source, or IRQ pin, or	RW	0
	REG 31_[5], etc. write 1 to this bit will clear itse	elf		
	0: function is disable			
	1: function is enable			
2	V _{OFF} setting bit 2	000-2.6V; 001-2.7V; 010-2.8V;	RW	0
1	V _{OFF} setting bit 1	011-2.9V; 100-3.0V; 101-3.1V;	RW	1
0	V _{OFF} setting bit 0	110-3.2V; 111-3.3V	RW	1

REG 32H: Power Disable, BAT detect and CHGLED pin control

Default: 43H

Reset: Bit 7 reset signal is system reset, and Bit [6:0] reset signal is Power on reset

Bit	Description		R/W	Default
7	Reserved			
6	Battery detection function control: 0-disable; 1-enable		RW	1
5-4	CHGLED pin control 00: Hi-Z F		RW	00
		01: 25% 0.5Hz toggle		
		10: 25% 2Hz toggle		
		11: drive low		
3	CHGLED pin control	0: controlled by REG 32H[5:4]	RW	0

AXP813

AXP813 Optimized For Multi-Core High-Performance System

		1: controlled by Charger		
2	Reserved		RW	0
1-0	control bit for Delay time between PWROK signal and power good time		RW	11
	00: 8ms; 01: 16ms; 10: 32ms; 11: 64ms			

REG 33H: Charger Control 1

Default: C5H

Reset: Bit [7] reset is system reset, Bit [6:0] reset is power on reset

Bit	Description	R/W	Default
7	Charger enable control	RW	1
	0-disable, 1-enable		
6-5	Charger target voltage setting	RW	10
	00: 4.10V; 01: 4.15V; 10: 4.2V; 11: 4.35V		
4	Charger end condition setting:	RW	0
	0-when I _{CHARGE} <10% I _{CHG} , Charge is done;		
	1-when I _{CHARGE} <20% I _{CHG} , Charge is done;		
3-0	Charge Current setting	RW	0101
	200mA-2.8A, 200mA/step, default is 1200mA, 14steps, 1110-1111 reserved.		

REG 34H: Charger Control 2

Default: 45H

Reset: Power on reset

Bit	Description		R/W	Default
7	Pre-charge Timer length setting 1	00: 40 minutes; 01: 50 minutes;	RW	0
6	Pre-charge Timer length setting 0	10: 60 minutes; 11: 70 minutes.	RW	1
5	Charger output turn off or not when charging	g is end & the AXP813 is on state	RW	0
	0: turn off; 1: do not turn off			
4	CHGLED Type select when REG 32_[3] is 1		RW	0
	0: Type A; 1: Type B			
3	reserved		RW	0
2	reserved		RW	1
1	Fast charge maximum time setting 1 00: 6 hours; 01: 8 hours;		RW	0
0	Fast charge maximum time setting 0	10: 10 hours; 11: 12 hours.	RW	1

REG 35H: Charger Control 3

Default: 18H

Reset: [7:4] is VBUS negedge reset , others Power on reset

Bit	Description		Default	
7-4	VBUS current limit select when VBUS Current limited mode is enable		0001	
	0000-100mA 0001-500mA 0010-900mA 0011-1500mA			
	0100-2000mA 0101-2500mA 0110-3000mA 0111-3500mA			
	1xxx-4000mA			
3	Charger temperature loop enable	RW	1	
	0: disable 1:enable			
2-0	Reserved			

REG 36H: POK setting

Default: 59H

Reset: Bit 3 is reset by system reset, the others is reset by Power on reset

Bit	Description		R/W	Default
7	ONLEVEL setting 1	00: 128ms; 01: 1s;	RW	0
6	ONLEVEL setting 0	10: 2s; 11: 3s.	RW	1
5	IRQLEVEL setting 1	00: 1s; 01: 1.5s;	RW	0
4	IRQLEVEL setting 0	10: 2s; 11: 2.5s.	RW	1
3	Enable bit of the function which will shut down the AXP	813 when POK is larger than	RW	1
	OFFLEVEL			
	0-disable; 1-enable			
2	The AXP813 auto turn on or not when it shut down after off I	evel POK	RW	0
	0: not turn on; 1: auto turn on			
1	OFFLEVEL setting 1	00: 4s; 01: 6s;	RW	0
0	OFFLEVEL setting 0	10: 8s; 11: 10s.	RW	1

REG 37H: POK Power off activity time setting

Default: 00H

Reset: Power on reset

Bit	Description		Default
7-3	Reserved		
2-0	Power off activity time setting	R/W	000
	0/10/20/30/40/50/60/70 S		

REG 38H: V_{LTF-charge} setting

Default: A5H

Reset: Power on reset

Bit	Description		R/W	Default
7-0	V _{LTF-charge} setting, M	V _{LTF-charge} setting, M M*10H, M=A5H:2.112V;range is 0V-3.264V F		A5H

REG 39H: V_{HTF-charge} setting

Default: 1FH

Reset: Power on reset

Bit	Description		R/W	Default
7-0	V _{LHF-charge} setting, N	N*10H, N=1FH:0.397V;range is 0V-3.264V	RW	1FH

REG 3AH: ACIN path control

Default: 80H

Reset: Power on reset, bit7 is system reset

Bit	Description	R/W	Default
7	ACIN path select control (VBUS_SEL) when VBUS valid	RW	1
	0: ACIN path Not selected		
	1: ACIN path selected		
6	Reserved		
5-3	000:4.0V 001:4.1V 010:4.2V 011 4.3V	RW	000
	100:4.4V 101:4.5V 110:4.6V 111:4.7V		
2-0	000:1500mA 001:2000mA 010:2500mA 011:3000mA	RW	000
	100:3500mA 101:4000mA 110:4000mA 111:4000mA		

REG 3BH: Buck frequency setting

Default: 08H

Reset: Power on reset

Bit	Description	R/W	Defaul	
			t	
7	7 Buck and PWM charger frequency spread enable		0	
	0: disable; 1: enable			
6	Buck and PWM charger frequency spread range control	RW	0	
	0: 50KHz; 1: 100KHz			
5	Reserved			
4	DCDC4/5 mode select	RW	0	

AXP813

AXP813 Optimized For Multi-Core High-Performance System

	0:Always PWM 1:PSM/PWM Auto switch			
3-0	Buck frequency setting bit 3-0	f _{OSC} : 3MHz *(1+ (8-N) *0.04)	RW	1000
		N=08: 3MHz		
		Every step f _{OSC} error is ±5%		

REG 3CH: V_{LTF-work} setting

Default: FCH

Reset: Power on reset

Bit	Description	Description		Default
7-0	V _{LTF-work} setting, M	M*10H, M=FCH:3.226V;range is 0V-3.264V	RW	FCH

REG 3DH: V_{HTF-work} setting

Default: 16H

Reset: Power on reset

Bit	Description		R/W	Default
7-0	V _{HTF-work} setting, N	N*10H, N=16H:0.282V;range is 0V-3.264V	RW	16H

REG 40H: IRQ enable 1

Default: D8H

Reset: Power on reset

Bit	Description	R/W	Default
7	Same as bit4	RW	1
6	Same as bit3	RW	1
5	Same as bit2	RW	0
4	VBUS over voltage IRQ enable	RW	1
3	VBUS from low go high IRQ enable	RW	1
2	VBUS from high go low IRQ enable	RW	0
1-0	Reserved		

REG 41H: IRQ enable 2

Default: FFH

Reset: Power on reset

AXP813

AXP813 Optimized For Multi-Core High-Performance System

Bit	Description	R/W	Default
7	Battery append IRQ enable	RW	1
6	Battery absent IRQ enable	RW	1
5	Battery maybe bad IRQ enable	RW	1
4	Quit battery safe mode IRQ enable	RW	1
3	Charger is charging IRQ enable	RW	1
2	Battery charge done IRQ enable	RW	1
1-0	Reserved		

REG 42H: IRQ enable 3

Default: FFH

Reset: Power on reset

Bit	Description	R/W	Default
7	Battery over temperature in charge mode IRQ (CBTOIRQ) enable	RW _	1
6	Quit Battery over temperature in charge mode IRQ (QCBTOIRQ) enable	RW	1
5	Battery under temperature in charge mode IRQ (CBTUIRQ) enable	RW	1
4	Quit Battery under temperature in charge mode IRQ (QCBTUIRQ) enable	RW	1
3	Battery over temperature in work mode IRQ (WBTOIRQ) enable	RW	1
2	Quit Battery over temperature in work mode IRQ (QWBTOIRQ) enable	RW	1
1	Battery under temperature in work mode IRQ (WBTUIRQ) enable	RW	1
0	Quit Battery under temperature in work mode IRQ (QWBTUIRQ) enable	RW	1

REG 43H: IRQ enable 4

Default: 03H

Reset: Power on reset

Bit	Description	R/W	Default
7	The AXP813 temperature over the warning level 2 IRQ (OTIRQ) enable	RW	0
6-3	Reserved		
2	GPADC(GPIO0) ADC convert finished IRQ enable	RW	0
1	Enable bit for IRQ which indicate battery capacity ratio being lower than warning level	RW	1
	1, (WL1IRQ); normally, for low power warning requisition		
0	Enable bit for IRQ which indicate battery capacity ratio being lower than warning level	RW	1
	2, (WL2IRQ); normally, for power off requisition		

REG 44H: IRQ enable 5

Default: 7CH

Reset: System reset

AXP813

AXP813 Optimized For Multi-Core High-Performance System

Bit	Description	R/W	Default
7	Event timer timeout IRQ enable	RW	0
6	POK positive edge IRQ (POKPIRQ) enable	RW	1
5	POK negative edge IRQ (POKNIRQ) enable	RW	1
4	POK short time active IRQ (POKSIRQ) enable	RW	1
3	POK long time active IRQ (POKLIRQ) enable	RW	1
2	POK off time active IRQ (POKOIRQ) enable	RW	1
1	GPIO1 input edge IRQ enable	RW	0
0	GPIO0 input edge IRQ enable	RW	0

REG 45H: IRQ enable 6

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-2	Reserved		
	BC_USB_ChngInEn	RW	0
	BC USB Status Change Interrupt Enable		
	BC_USB_ChngEvnt Interrupt Enable.		
1	BC Detection result changed or not		
	MV_ChngIntEn	RW	0
0	Rid MV_ChngEvnt Interrupt Enable.		

REG 48H: IRQ Status 1

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	Same as bit4, write 1 to it or VBUS drop to normal will clear it	RW	0
6	Same as bit3, write 1 to it or VBUS from high go low will clear it	RW	0
5	Same as bit2, write 1 to it or VBUS from low go high will clear it	RW	0
4	VBUS over voltage IRQ, write 1 to it or VBUS drop to normal will clear it	RW	0
3	VBUS from low go high IRQ, write 1 to it or VBUS from high go low will clear it	RW	0
2	VBUS from high go low IRQ, write 1 to it or VBUS from low go high will clear it	RW	0
1-0	Reserved	RW	0

REG 49H: IRQ Status 2

Default: 00H

Reset: power on reset

Bit	Description	R/W	Default
7	Battery append IRQ, write 1 to it or Battery remove will clear it	RW	0
6	Battery absent IRQ, write 1 to it or Battery append will clear it	RW	0
5	Battery maybe bad IRQ, write 1 to it or AXP813 quit battery safe mode will clear it	RW	0
4	Quit battery safe mode IRQ, write 1 to it or The AXP813 enter battery- safe mode	RW	0
	will clear it		
3	Charger is charging IRQ, write 1 to it or charging is stop will clear it	RW	0
2	Battery charge done IRQ, write 1 to it or charger restart charging will clear it	RW	0
1-0	Reserved		

REG 4AH: IRQ Status 3

Default: 00H

Reset: power on reset

Bit	Description	R/W	Default
7	CBTOIRQ, write 1 to it or Battery temperature drop to normal will clear it	RW	0
6	QCBTOIRQ, write 1 to it or Battery over temperature will clear it	RW	0
5	CBTUIRQ, write 1 to it or Battery temperature rise to normal will clear it	RW	0
4	QCBTUIRQ, write 1 to it or Battery under temperature will clear it	RW	0
3	WBTOIRQ, write 1 to it or Battery drop to temperature will clear it	RW	0
2	QWBTOIRQ, write 1 to it or Battery over temperature will clear it	RW	0
1	WBTUIRQ, write 1 to it or Battery rise to temperature will clear it	RW	0
0	QWBTUIRQ, write 1 to it or Battery under temperature will clear it	RW	0

REG 4BH: IRQ Status 4

Default: 00H

Reset: Bit [7] reset is power on reset, Bit [6:0] reset is system reset

Bit	Description	R/W	Default
7	OTIRQ, write 1 to it or IC temperature drop to normal will clear it	RW	0
6-3	Reserved	RW	0
2	GPADC(GPIO0) ADC convert finished IRQ, write 1 will clear it	RW	0
1	IRQ which indicate battery capacity ratio being lower than warning level 1, (WL1IRQ);	RW	0
	write 1 to it or system power rise up to warning level 1 will clear it		

0	IRQ which indicate battery capacity ratio being lower than warning level 2, (WL2IRQ);	RW	0
	write 1 to it or system power rise up to warning level 2 will clear it		

REG 4CH: IRQ Status 5

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7	Event timer timeout IRQ, write 1 will clear it	RW	0
6	POKPIRQ, write 1 to it will clear it	RW	0
5	POKNIRQ, write 1 to it will clear it	RW	0
4	POKSIRQ, write 1 to it will clear it	RW	0
3	POKLIRQ, write 1 to it will clear it	RW	0
2	POKOIRQ, write 1 to it will clear it	RW	0
1	GPIO1 input edge IRQ, write 1 will clear it	RW _	0
0	GPIO0 input edge IRQ, write 1 will clear it	RW	0

REG 4DH: IRQ Status 6

Default: 00H

Reset: Reset by VBUS negedge

Bit	Description	R/W	Default
7-2	Reserved		
	BC_USB_ChngEvnt		
•	BC USB Status Change Event		
	This bit indicates that there is a change in the BC_USB_Sta_R register. When this bit		
	is 1, and the interrupt on the BC_Charge_ChngInEn		
	is 1, the BC Module will issue an interrupt to the controller.		
1	This bit and associated interrupt is clean by writing '1'.	R	0
	MV_ChngEvnt		
	MultValIdBc Multi-Valued input changed Event		
	This bit indicates that there is a change in the value of MultValIdBc field. When this		
	bit is 1, and the interrupt on the MV_ChngIntEn is 1, the BC Module will issue an		
	interrupt to the controller.		
0	This bit and associated interrupt is clean by writing '1'.	R	0

REG 58H: TS pin input ADC data, highest 8bit

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-0	TS pin input ADC data highest 8bits, Default is Battery temperature	R	00

REG 59H: TS pin input ADC data, lowest 4bit

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	TS pin input ADC data lowest 4bits,Default is Battery temperature	R	00

REG 5AH: GPADC pin input ADC data, highest 8bit

Default: 00H Reset: System reset

Bit	Description			R/W	Default
7-0	GPADC pin input ADC data, highest 8bit			R	00

REG 5BH: GPADC pin input ADC data, lowest 4bit

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	GPADC pin input ADC data, lowest 4bit	R	00

REG 78H: Average data bit[11:4] for Battery voltage (BATSENSE)

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery voltage (BATSENSE)	R	00

REG 79H: Average data bit[3:0] for Battery voltage (BATSENSE)

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Average data bit[3:0] for Battery voltage (BATSENSE)	R	00

REG 7AH: Average data bit[11:4] for Battery charge current

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery charge current	R	00

REG 7BH: Average data bit[3:0] for Battery charge current

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00
3-0	Average data bit[3:0] for Battery charge current	R	00

REG 7CH: Average data bit[11:4] for Battery discharge current

Default: 00H

Reset: System reset

Bit	Description	R/W	Default
7-0	Average data bit[11:4] for Battery discharge current	R	00

REG 7DH: Average data bit[3:0] for Battery discharge current

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-4	Reserved	R	00

3-0	Average data bit[3:0] for Battery discharge current	R	00
-----	---	---	----

REG 80H: Buck PWM/PFM mode select

Default: 80H Reset: system reset

Bit	Description					R/W	Default
7	BUCK output over v	oltage turn off AXP	813 function	n enable:		R/W	1
	0-disable; 1-enable						
	Suggest set this bit to 0 when performing Vrun going down to Vsleep						
	DCDC2/DCDC3/ 0.5~1.13V, 33.3%; 1.14~1.3V, 25%						
	DCDC4						
	DCDC7/DCDC6	0.6~1.36V, 33.3%	; 1.37~1	.52V, 25%			
	DCDC5	0.8~1.11V, 33.3%	; 1.12~1	.43V, 29%;	1.44~1.84V, 21.2%		
	DCDC1	1.6~2.3V, 21%;	2.4~3.	1V, 17.6%;	3.2~3.4V, 11%		
6	DCDC7 PFM/PWM	control: 0: auto	switch	1: always	s PWM	RW	0
5	DCDC6 PFM/PWM	control: 0: auto	switch	1: always	s PWM	RW	0
4	DCDC5 PFM/PWM	control: 0: auto	switch	1: always	s PWM	RW	0
3	DCDC4 PFM/PWM	control: 0: auto	switch	1: PSM/F	PWM	RW	0
	When this bit is set	as '1', refer to REG	BB bit [4] for	BUCK mod	e select		
1	DCDC3 PFM/PWM	control: 🔎 0: auto	switch	1: PSM/F	PWM	RW	0
	When this bit is set	as '1', refer to REG	3B bit [4] for	BUCK mod	e select		
1	DCDC2 PFM/PWM	control: 0: auto	switch	1: PSM/F	PWM	RW	0
	When this bit is set	as '1', refer to REG	BB bit [4] for	BUCK mod	e select		
0	DCDC1 PFM/PWM	control: 0: auto	switch	1: always	s PWM	RW	0

REG 81H: Off-Discharge and Output monitor control

Default: 80H

Bit	Description	R/W	Default
7	Internal off-Discharge enable for Buck & LDO	RW	1
	0-disable; 1-enable		
6	DCDC7 85% Low voltage turn off AXP813 function enable:	RW	0
	0-disable; 1-enable;		
5	DCDC6 85% Low voltage turn off AXP813 function enable:		0
	0-disable; 1-enable;		
4	DCDC5 85% Low voltage turn off AXP813 function enable:	RW	0
	0-disable; 1-enable;		
3	DCDC4 85% Low voltage turn off AXP813 function enable:	RW	0

	0-disable; 1-enable;		
1	DCDC3 85% Low voltage turn off AXP813 function enable:	RW	0
	0-disable; 1-enable;		
1	DCDC2 85% Low voltage turn off AXP813 function enable:	RW	0
	0-disable; 1-enable;		
0	DCDC1 85% Low voltage turn off AXP813 function enable:	RW	0
	0-disable; 1-enable;		

REG 82H: ADC Enable

Default: E1H

Reset: Power on reset

Bit	Description		R/W	Default
7	BAT voltage ADC enable	0: off, 1: on	RW	1
6	BAT current ADC enable	0: off, 1: on	RW	1
5	Die temperature ADC enable	0: off, 1: on	RW	1
4	GPIO0 ADC enable	0: off, 1: on	RW	0
3-1	Reserved			
0	TS pin input to ADC enable	0: off, 1: on	RW	1

REG 84H: ADC speed setting, TS pin Control

Default: F2H

				ı
Bit	Description		R/W	Default
7-6	Current source from	GPIO0 pin control:	RW	11
	00: 20uA; 01: 40uA	; 10: 60uA; 11: 80uA		
5-4	Current source from	n TS pin control:	RW	11
	00: 20uA; 01: 40uA	; 10: 60uA; 11: 80uA		
3	reserved		RW	0
2	TS pin function select:			0
	0-TS pin is the battery temperature sensor input and will affect the charger			
	1-TS pin is an Exter	nal input for ADC and do not affect the charger		
1-0	Current source	00: off	RW	10
	from TS pin	01: on when charging battery, off when not charging		
	on/off 10: on in ADC phase and off when out of the ADC phase, for			
	enable bit [1:0]	power saving		
		11: always on		

REG 85H: ADC speed setting

Default: BOH

Reset: power on reset

Bit	Description		R/W	Default
7	TS/GPIO0 ADC speed setting bit 1	100×2 ⁿ	RW	1
6	TS/GPIO0 ADC speed setting bit 0	So Fs=25, 50,	RW	0
		100, 200Hz		
5	Vol/Cur ADC speed setting bit 1	100×2 ⁿ	RW	1
4	Vol/Cur ADC speed setting bit 0	So Fs=100, 200,	RW	1
		400, 800Hz		
3	Reserved			
2	GPIO0 ADC work mode		RW	0
	1:output current			
	0:not output current			
1-0	Reserved		RW	00

REG 8AH: Timer control

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7	Timer time out status	RW	0
	It indicate that timer time out when this bit from low go high		
	Write this bit to 1, will clear the status and the timer		
6-0	Set threshold of the timer	RW	0000000
	Write these 7 bits to all 0, will disable the timer		

REG 8EH: Buck output voltage monitor de-bounce time setting

Default: 40H

Bit	Description		Default
7-6	Buck output voltage monitor de-bounce time setting,		01
	00-62us; 01-124us; 10-186us; 11-248us		
5-0	Reserved	RW	00

REG 8FH: IRQ pin, hot-over shut down

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	Reserved	RW	0
6-4	Reserved		
3	The function control that 16s' POK trigger power on reset: 0-disable; 1-enable	RW	0
2	The AXP813 shut down or not when Die temperature is over the warning level 3		0
	0-not shut down; 1-shut down		
1	Voltage recovery enable bit when AXP813 wakeup from REG31H[3]=1		0
	0: recovery to the vboot		
	1: not recovery to the vboot		
0	Reserved	RW	0

REG 90H: GPIO0 (GPADC) control

Default: 07H Reset: system reset

Bit	Description	AU	R/W	Default
7	Enable GPIO0 Positive edge trigger	r IRQ or wake up when GPIO0 is digital input	RW	0
	0: disable; 1: enable			
6	Enable GPIO0 Negative edge trigge	er IRQ or wake up when GPIOO is digital input	RW	0
	0: disable; 1: enable			
5-3	Reserved		RW	0
2	GPIO0 pin function control bit 2	000: drive low	RW	1
		001: drive high		
1	GPIO0 pin function control bit 1	010: digital input, trigger point is about 1.2V	RW	1
		011: low noise LDO on		
0	GPIO0 pin function control bit 0	100: low noise LDO off	RW	1
		101-111: Floating, if ADC enable, then work as		
		ADC input mode		

REG 91H: GPIO0LDO and GPIO0 high level voltage setting

Default: 1AH Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved		

4	-0	GPIO0LDO and GPIO0 High level voltage setting bit 4-0		11010
		From 0.7 to 3.3V, 100mV/step, 11011-11111 reserved		

REG 92H: GPIO1 control

Default: 07H Reset: system reset

Bit	Description		R/W	Default
7	Enable GPIO1 Positive edge trigger I	RQ or wake up when GPIO1 is digital input	RW	0
	0: disable; 1: enable			
6	Enable GPIO1 Negative edge trigger	IRQ or wake up when GPIO1 is digital input	RW	0
	0: disable; 1: enable			
5-3	Reserved			
2	GPIO1 pin function control bit 2	000: drive low	RW	1
		001: drive high		
1	GPIO1 pin function control bit 1	010: digital input, trigger point is about	RW	1
		1.2V		
0	GPIO1 pin function control bit 0	011: low noise LDO on	RW	1
		100: low noise LDO off		
		101-111: Floating		

REG 93H: GPIO1LDO and GPIO1 high level voltage setting

Default: 1AH
Reset: system reset

Bit	Description	R/W	Default
7-5	Reserved	RW	000
4-0	GPIO1LDO and GPIO1 High level voltage setting bit 4-0	RW	11010
	From 0.7 to 3.3V, 100mV/step, 11011-11111 reserved		

REG 94H: GPIO signal bit

Default: 00H Reset: system reset

Bit	Description	R/W	Default
7-2	Reserved		
1	This bit reflect the logic level of the GPIO1 pin when configured as digital input	R	0
0	This bit reflect the logic level of the GPIO0 pin when configured as digital input	R	0

REG 97H: GPIO pull down control

Default: 00H Reset: system reset

Bit	Description	R/W	Default
7-2	Reserved		
1	GPIO1 Pull down control in digital input mode	RW	0
	0: off 1: on		
0	GPIO0 Pull down control in digital input mode	RW	0
	0: off 1: on		

REG A0H: Real time data bit[11:4] for Battery voltage (BATSENSE)

Default: 00H Reset: System reset

Bit	Description	Y		R/W	Default
7-0	Real time data bit[11:4] for Battery voltage (BATSENSE)			R	00

REG A1H: Real time data bit[3:0] for Battery voltage (BATSENSE)

Default: 00H Reset: System reset

Bit	Description	R/W	Default
7-4	Real time data bit[3:0] for Battery voltage (BATSENSE)	R	00
3-0	Reserved	R	00

REG B8H: Fuel Gauge Control

Default: E8H

Bit	Description	R/W	Default
7	fuel gauge enable control(including OCV and coulomb meter)	RW	1
	0-Disable		
	1-Enable		
6	Coulomb meter enable control	RW	1
	0-Disable		

AXP813 Optimized For Multi-Core High-Performance System

	1-Enable		
5	Battery maximum capacity calibration enable control	RW	1
	0-Disable		
	1-Enable		
4	Battery maximum capacity calibration status	R	0
	0: Not calibrating		
	1: Is calibrating		
3	OCV-SOC curve calibration enable control	RW	1
	0-Disable		
	1-Enable		
	Suggest set this bit as 0		
2	OCV-SOC curve calibration status	R	0
	0-Not calibrating		
	1-Is calibrating		
1-0	Reserved	RW	0

REG B9H: Battery capacity percentage for indication

Default: 64H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if battery capacity percentage for indication is valid: 0-Not valid 1-Is valid	R	0
6-0	Battery capacity percentage for indication	R	64H

REG BAH: RDC 1

Default: 80H

Reset: Bit [7] & [4-0] reset is power on reset

Bit	Description	R/W	Default
7	RDC calculation control; 0: disable; 1: enable	RW	1
6	RDC was right detected or not flag:	R	0
	1-Y		
	0-N		
5	RDC has detected or not during this power on time:	R	0
	1-Y		
	0-N		
4-0	RDC value HSB 5 bit	RW	00000

REG BBH: RDC 0

Default: 5DH

Reset: power on reset

Bit	Description	R/W	Default
7-0	RDC value LSB 8bit	RW	5DH

REG BCH: OCV 1

Default: 00H

Reset: power on reset

Bit	Description	R/W	Default
7-0	OCV HSB 8bit	R	00H

REG BDH: OCV0

Default: 00H

Reset: power on reset

Bit	Description	R/W	Default
7-4	Reserved		
3-0	OCV LSB 4bit	R	0000

REG EOH: Battery maximum capacity

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if battery maximum capacity is valid:	R/W	0
	0-Not valid		
	1-Is valid		
6-0	battery maximum capacity bit[14:8]	RW	00H

REG E1H: Battery maximum capacity

Default: 00H

Reset: Power on reset

AXP813 Datasheet V1.0

Bit	Description	R/W	Default
7-0	battery maximum capacity bit[7:0](Unit: 1.456mAh)	RW	00H

REG E2H: Coulomb meter counter1

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if coulomb meter counter is valid:	RW	0
	0-Not valid 1-Is valid		
6-0	Coulomb meter counter[14:8]	RW	00H

REG E3H: Coulomb meter counter2

Default: 00H

Reset: Power on reset

Bit	Description		R/W	Default
7-0	Coulomb meter counter[7:0] (Unit: 1.456mAh)		RW	00H

REG E4H: OCV Percentage of battery capacity

Default: 64H

Reset: Power on reset

Bit	Description	R/W	Default
7	Indicating if OCV percentage of battery capacity is valid 0-Not valid 1-is valid	R	0
6-0	OCV percentage of battery capacity	R	64H

REG E5H: Coulomb meter percentage of battery capacity

Default: 64H

Bit	Description	R/W	Default
7	Indicating if coulomb meter percentage of battery capacity is valid:	R	0
	0-Not valid 1-Is valid		
6-0	Coulomb meter percentage of battery capacity	R	64H

REG E6H: Battery capacity percentage warning level

Default: A0H

Reset: Power on reset

Bit	Description	R/W	Default
7-4	Warning level 1: Warning threshold, 5-20%, 1% per step	RW	1010
3-0	Warning level 2: Shutting down threshold, 0-15%, 1% per step	RW	0000

REG E8H: Fuel gauge tuning control 0

Default: 00H

Reset: Power on reset

Bit	Description	R/W_	Default
7-3	Reserved		
2-0	Battery capacity percentage for indication update minimum interval	RW	0
	000-30s		
	001-60s		
	010-120s		
	011-164s		
	100-immediately update when changed		
	101-5s		
	110-10s		
	111-20s		

REG E9H: Fuel gauge tuning control 1

Default: 00H

Bit	Description	R/W	Default
7-6	OCV Percentage calibrate the Coulomb meter percentage, maximum time interval	RW	0
	00-60s		
	01-120s		
	10-15s		
	11-30s		
5-3	Wait for the stability for charge when in RDC calculation	RW	0
	000-180s		
	001-240s		
	010-300s		
	011-600s		

AXP813 Optimized For Multi-Core High-Performance System

	100-30s		
	101-60s		
	110-90s		
	111-120s		
2-0	Wait for the stability for discharge when in RDC calculation	RW	0
	000-180s		
	001-240s		
	010-300s		
	011-600s		
	100-30s		
	101-60s		
	110-90s		
	111-120s		

REG EAH: Fuel gauge tuning control 2

Default: 00H

Bit	Description	R/W	Default
7-6	OCV Percentage Debounce setting(only when the change continuous the same	RW	0
	direction as more than N times, then the ocv percentage increase or decrease)N:		
	00-4 01-8		
	10-1		
	11-2		
5-4	Coulomb meter Percentage Debounce setting(only when the change continuous the	RW	0
	same direction as more than N times, then the ocv percentage increase or decrease)N:		
	00-4		
	01-8		
ı	10-1		
	11-2		
3	Battery maximum capacity calibration start condition:	RW	0
	0-OCV percentage < (REG E6H[3:0] + 3)		
l'	1-OCV percentage < (REG E6H[3:0] + 6)		
2	Battery maximum capacity calibration end condition 0	RW	0
	0-OCV percentage ≥ 95%		
l'	1-OCV percentage = 100%		
1	Battery maximum capacity calibration end condition 1	RW	0
	0-wait for charge finished		
	1-do not wait for charge finished		
0	Battery maximum capacity calibration end condition 2	RW	0
	(wait Nms for the charge finished indication signal after REG 01H[6] clear to 0,N:		
	0-68 1-120		

REG EBH: Fuel gauge tuning control 3

Default: 00H

Reset: Power on reset

Bit	Description	R/W	Default
7	When charge status bit REG 01H[6] = 1,the percentage of indication can be decrease or	RW	0
	not		
	0-decrease enable		
	1-decrease disable		
6-4	When REG 01H[6] = 1, percentage of indication decrease hysteresis(N) setting	RW	0
	000-4%		
	001-5%		
	010-6%		
	011-7%		
	100-0%		
	101-1%		
	110-2%		
	111-3%		
3	Calculation RDC current condition setting	RW	0
	0-≥300mA		
	1-≥150mA		
2-0	Calibrate RDC percentage changed threshold setting	RW	0
	000-4%		
	001-5%		
	010-6%		
	011-7%		
	100-0%		
*	101-1%		
	110-2%		
	111-3%		
	calibration: Δ OCVPCT > N		

REG ECH: Fuel gauge tuning control 4

Default: 00H

Bit	Description	R/W	Default
7	ADC current data include offset0 or not(For debug)	RW	0
	0-Enable		
	1-Disable		

AXP813 Optimized For Multi-Core High-Performance System

6	ADC current data offset0 smooth control(For debug)	RW	0
	0-Enable		
	1-Disable		
5	RDC re-calculate when AXP813 power on for power off	RW	0
	0-Disable		
	1-Enable		
4-3	The minimum battery voltage for RDC calculation	RW	00
	00-3.5V		
	01-3.6V		
	10-3.7V		
	11-3.4V		
2-0	Coulomb counter calibration threshold, relative with REG_E6_[3:0]	RW	000
	000-REG_E6H[3:0]+7(default)		
	001-REG_E6H[3:0]+8		
	010-REG_E6H[3:0]+9		
	011-REG_E6H[3:0]+10		
	100-REG_E6H[3:0]+3		
	101-REG_E6H[3:0]+4		
	110-REG_E6H[3:0]+5		
	111-REG_E6H[3:0]+6		

REG EDH: Fuel gauge tuning control 5

Default: 00H

Bit	Description	R/W	Default
7	OCV percentage relative with the charge/discharge rate control	RW	0
	0-Disable 1-Enable		
6	Update time when rate > 0.5C	RW	0
	0 -30S		
	1-15S		
5-4	Update time when rate < 0.5C and rate > 0.1C	RW	00
	00-60S		
	01-75S		
	10-30S		
	11-45S		

3-2	Update time when rate < 0.1C	RW	00
	00-120S		
	01-180S		
	10-240\$		
	11-60S		
1-0	Fixed update time	RW	00
	00-30S		
	01-45S		
	10-60S		
	11-15S		

15 Codec Register

Register List

Register Name	Offset	Description
CHIP_AUDIO_RST	00H	Chip Soft Reset
PLL_CTRL1	02H	PLL Configure Control 1
PLL_CTRL2	03H	PLL Configure Control 2
SYSCLK_CTRL	04H	System Clocking Control
MOD_RST_CTRL	05H	Module Clock Enable Control
ADDA_SR_CTRL	06H	ADDA Sample Rate Configuration
I2S1LCK_CTRL	10H	I2S1 BCLK/LRCK Control
I2S1_SDIN_CTRL	11H	I2S1 SDIN Control
I2S1_SDOUT_CTRL	12H	I2S1 SDOUT Control
I2S1_DIG_MIXER	13H	I2S1 Digital Mixer Control
I2S1_VOL_CTRL1	14H	I2S1 Volume Control 1
I2S1_VOL_CTRL2	15H	I2S1 Volume Control 2
I2S1_VOL_CTRL3	16H	I2S1 Volume Control 3
I2S1_VOL_CTRL4	17H	I2S1 Volume Control 4
I2S1_MXR_GAIN	18H	I2S1 Digital Mixer Gain Control
I2S2_CLK_CTRL	20H	I2S2 BCLK/LRCK Control
I2S2_SDIN_CTRL	21H	I2S2 SDIN Control
I2S2_SDOUT_CTRL	22H	I2S2 SDOUT Control
I2S2_DIG_MIXER	23H	I2S2 Digital Mixer Control
I2S2_VOL_CTRL1	24H	I2S2 Volume Control 1
I2S2_VOL_CTRL2	26H	I2S2 Volume Control 2
I2S2_MXR_GAIN	28H	I2S2 Digital Mixer Gain Control
I2S3_CLK_CTRL	30H	I2S3 BCLK/LRCK Control
I2S3_SDIN_CTRL	31H	I2S3 SDIN Control
AVD012 Datashoot V1 0		with © 2014 V Dowers Limited All Pights Poserved 124

AXP813 Optimized For Multi-Core High-Performance System

	And 019 Optimized for Walti Core riight respondance system				
I2S3_SDOUT_CTRL	32H	I2S3 SDOUT Control			
I2S3_SGP_CTRL	33H	I2S3 Signal Path Control			
ADC_DIG_CTRL	40H	ADC Digital Control			
TBD					
RTC_CTRL_REG	B0'h	RTC Control Register			
RTC_RESET_REG	B1'h	RTC Reset Register			
ALM_INT_ENA_REG	B2'h	Alarm Interrupt Enable Register			
ALM_INT_STA_REG	B3'h	Alarm Interrupt Status Register			
RTC_SEC_REG	B4'h	RTC Seconds Register			
RTC_MIN_REG	B5'h	RTC Minutes Register			
RTC_HOU_REG	B6'h	RTC Hours Register			
RTC_WEE_REG	B7'h	RTC Weekdays Register			
RTC_DAY_REG	B8'h	RTC Days Register			
RTC_MON_REG	B9'h	RTC Months Register			
RTC_YEA_REG	BA'h	RTC Years Register			
ALM_SEC_REG	C3'h	Alarm Seconds Register			
ALM_MIN_REG	C4'h	Alarm Minutes Register			
ALM_HOU_REG	C5'h	Alarm Hours Register			
ALM_WEE_REG	C6'h	Alarm Weekdays Register			
ALM_DAY_REG	C7'h	Alarm Days Register			
ALM_MON_REG	C8'h	Alarm Months Register			
ALM_YEA_REG	C9'h	Alarm Years Register			
RTC_GP_REGn	D0'h	RTC General Purpose Register n(n = 0,1,231)			

REG 00H_Chip Soft Reset Register

Default: 0x0101			Register Name: CHIP_AUDIO_RST
Bit	Read/Write	Default	Description
15:0	D/M 00101	Writing to this register resets all register to their default state.	
15.0	R/W	0x0101	Reading from this register will indicate device type and version.

REG 01H_PLL Configure Control 1 Register

Default: 0x0141			Register Name: PLL_CTRL1
Bit	Read/Write	Default	Description
			DPLL_DAC_BIAS
15:14	R/W	0x0	00: min
			11: max
			PLL_POSTDIV_M
			PLL Post-Divider Factor M
13:8	R/W	0x1	Factor=0, M=64
13.0	N/ VV	OXI	Factor=1, M=1
			Factor=63, M=63
7	R/W	0x0	Reserved
			Close_loop.
6	R/W	0x1	1: work as a PLL.
		•	0: work as a free running VCO at a pre-fixed frequency.
			INT
			Integ[5:0], the loop bandwidth config.
			0: works as free running mode.
5:0	R/W	0x1	1: small bandwidth, need more time to lock.
			63: large bandwidth, need less time to lock, but may result in failing.

REG 02H_PLL Configure Control 2 Register

Default: 0x0000			Register Name: PLL_CTRL2
Bit	Read/Write	Default	Description
			PLL_EN
			PLL Enable
15	R/W	0x0	0: Disable
			1: Enable
			The PLL output FOUT= FIN*N/(M*(2K+1)), N=N_i+N_f;
			PLL Locked status
14	R	0x0	0: Not locked or not enabled
			1: Enabled and locked
	R/W	0x0	PLL_PREDIV_NI
			PLL Integer Part of Pre-Divider Factor N.
13:4			Factor=0, N_i=0;
15.4	17, 77		Factor=1, N_i=1;
			Factor=1023, N_i=1023;
3	/	/	1
			PLL_POSTDIV_NF
			PLL Fractional Part of Pre-Divider Factor N.
2:0	R/W	0x0	Factor=0, N_f=0*0.2;
	Ny VV	•	Factor=1, N_f=1*0.2;
1		,	Factor=7, N_f=7*0.2;

REG 03H_System Clocking Control Register

Default:	Default: 0x0000		Register Name: SYSCLK_CTRL
Bit	Read/Write	Default	Description
			PLLCLK_ENA
15	R/W	0x0	PLLCLK Enable
13	N/ VV	UXU	0: Disable
			1: Enable
14	R/W	0x0	Reserved
			PLLCLK_SRC
			PLL Clock Source Select
13:12	R/W C	0x0	00: MCLK1
15.12		0.00	01: MCLK2
			10: BCLK1
			11: BCLK2
		0x0	I2S1CLK_ENA
11	R/W		I2S1CLK Enable
	II Ny W		0: Disable
			1: Enable

AXP813 Optimized For Multi-Core High-Performance System

10	R/W	0x0	Reserved
			I2S1CLK_SRC
			I2S1CLK Source Select
9:8	R/W	0x0	00: MLCK1
			01: MLCK2
			1X: PLL
			I2S2CLK_ENA
7	R/W	0x0	I2S2CLK Enable
/	K) W	UXU	0: Disable
			1: Enable
6	R/W	0x0	Reserved
			I2S2CLK_SRC
			I2S2CLK Source Select
5:4	R/W	0x0	00: MLCK1
			01: MLCK2
			1X: PLL
			SYSCLK_ENA
3	R/W	0x0	SYSCLK Enable
3	K) W	UXU	0: Disable
			1: Enable
2:1	R/W	0x0	Reserved
			SYSCLK_SRC
0	R/W	0x0	System Clock Source Select
0		UXU	0: I2S1CLK
İ			1: I2S2CLK

REG 04H_Module Clock Enable Control Register

Default: 0x0000			Register Name: MOD_CLK_ENA
Bit	Read/Write	Default	Description
			Module clock enable control
			0-Clock disable
			1-Clock enable
			BIT15-I2S1
	D/M	00	BIT14-I2S2
			BIT13-I2S3
15:0			BIT12-Reserved
15.0	R/W	0x0	BIT11-SRC1
			BIT10-SRC2
			BIT9-Reserved
			BIT8-Reserved
			BIT7-HPF & AGC
			BIT6-HPF & DRC
			BIT5-Reserved

		BIT4-Reserved
		BIT3-ADC Digital
		BIT2-DAC Digital
		BIT1-Reserved
		BITO-Reserved

REG 05H_Module Reset Control Register

Default:	0x0000		Register Name: MOD_RST_CTRL
Bit	Read/Write	Default	Description
			Module reset control
			0-Reset asserted
			1-Reset de-asserted
			BIT15-I2S1
			BIT14-I2S2
			BIT13-I2S3
			BIT12-Reserved
			BIT11-SRC1
			BIT10-SRC2
15:0	R/W	0x0	BIT9-Reserved
			BIT8-Reserved
			BIT7-HPF & AGC
			BIT6-HPF & DRC
		,	BIT5-Reserved
			BIT4-Reserved
			BIT3-ADC Digital
			BIT2-DAC Digital
			BIT1-Reserved
			BITO-Reserved

REG 06H_ADDA Sample Rate Configuration Register

Default:	0x0000		Register Name: I2S_SR_CTRL
Bit	Read/Write	Default	Description
			ADDA_FS_I2S1
			ADDA Sample Rate synchronised with I2S1 clock zone
			0000: 8KHz
			0001: 11.025KHz
15:12	R/W	0x0	0010: 12KHz
			0011: 16KHz
			0100: 22.05KHz
			0101: 24KHz
			0110: 32KHz

AXP813 Optimized For Multi-Core High-Performance System

			AXF813 Optimized for Walti-core riigii-Ferjormance System
			0111: 44.1KHz
			1000: 48KHz
			1001: 96KHz
			1010: 192KHz
			Other: Reserved
			ADDA_FS_I2S2
			ADDA Sample Rate synchronised with I2S2 clock zone
			0000: 8KHz
			0001: 11.025KHz
			0010: 12KHz
			0011: 16KHz
11.0	D // A/	0.0	0100: 22.05KHz
11:8	R/W	0x0	0101: 24KHz
			0110: 32KHz
			0111: 44.1KHz
			1000: 48KHz
			1001: 96KHz
			1010: 192KHz
			Other: Reserved
			SRC1_ENA
			SRC1 Enable. SRC1 Performs sample rate conversion of digital audio
3	R/W	0x0	input to the AC100.
			0: Disable
			1: Enable
		,	SRC1_SRC
2	D //A/	0x0	From which the input data will come.
2	R/W	UXU	0: I2S1 DAC Timeslot 0
			1: I2S2 DAC
			SRC2_ENA
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		SRC2 Enable. SRC2 Performs sample rate conversion of digital audio
1	R/W	0x0	output from the AC100.
1			0: Disable
			1: Enable
			SRC2_SRC
	D /\A/	0.0	To which the converted data will be output.
0	R/W	0x0	0: I2S1 ADC Timeslot 0
			1: I2S2 ADC

REG 10H_I2S1 BCLK/LRCK Control Register

Default: 0x0000			Register Name: I2S1LCK_CTRL
Bit	Read/Write	Default	Description
15	15 0.0	I2S1_MSTR_MOD	
13	R/W	0x0	I2S1 Audio Interface mode select

AXP813 Optimized For Multi-Core High-Performance System

	1		AAP613 Optimized For Multi-Core High-Perjormance System
			0 = Master mode
			1 = Slave mode
			I2S1_BCLK_INV
14	R/W	0x0	I2S1 BCLK Polarity
1	.,	one -	0: Normal
			1: Inverted
			I2S1_LRCK_INV
13	R/W	0x0	I2S1 LRCK Polarity
	I TO VV	OXO	0: Normal
			1: Inverted
			I2S1_BCLK_DIV
			Select the I2S1CLK/BCLK1 ratio
			0000: I2S1CLK/1
			0001: I2S1CLK/2
			0010: I2S1CLK/4
			0011: I2S1CLK/6
			0100: I2S1CLK/8
			0101: I2S1CLK/12
40.0	5 /1		0110: I2S1CLK/16
12:9	R/W	0x0	0111: I2S1CLK/24
			1000: I2S1CLK/32
			1001: I2S1CLK/48
			1010: I2S1CLK/64
			1011: I2S1CLK/96
		•	1100: I2S1CLK/128
			1101: I2S1CLK/192
			1110: Reserved
			1111: Reserved
	- W - 1		I2S1_LRCK_DIV
			Select the BCLK1/LRCK ratio
			000: 16
			001: 32
8:6	R/W	0x0	010: 64
			011: 128
			100: 256
			1xx: Reserved
			I2S1_WORD_SIZ
			I2S1 digital interface word size
_	- 6		00: 8bit
5:4	R/W	0x0	01: 16bit
			10: 20bit
		11: 24bit	
	,		I2S1_DATA_FMT
3:2	R/W	0x0	I2S digital interface data format
	<u> </u>	<u> </u>	

			00: I2S mode
			01: Left mode
			10: Right mode
			11: DSP mode
		0x0	DSP_MONO_PCM
1	D (M)		DSP Mono mode select
1	R/W		0: Stereo mode select
			1: Mono mode select
	R/W	0x0	I2S1_TDMM_ENA
0			I2S1 TDM Mode enable
0			0: Disable
			1: Enable

REG 11H_I2S1 SDOUT Control Register

Default: 0x0000			Register Name: I2S1_SDOUT_CTRL
Bit	Read/Write	Default	Description
			I2S1_ADCL0_ENA
15	R/W	0x0	I2S1 ADC Timeslot 0 left channel enable
15	N/ VV	UXU	0: Disable
			1: Enable
			I2S1_ADCRO_ENA
14	R/W	0x0	I2S1 ADC Timeslot 0 right channel enable
14	Tty VV	UNU	0: Disable
			1: Enable
			I2S1_ADCL1_ENA
13	R/W	0x0	I2S1 ADC Timeslot 1 left channel enable
13	10,00	0x0	0: Disable
	11,		1: Enable
			I2S1_ADCR1_ENA
12	R/W		I2S1 ADC Timeslot 1 right channel enable
12		OXO	0: Disable
			1: Enable
			I2S1_ADCL0_SRC
			I2S1 ADC Timeslot 0 left channel data source select
11:10	R/W	0x0	00: I2S1_ADCL0
11.10	.,	ONO	01: I2S1_ADCR0
			10: (I2S1_ADCL0+ I2S1_ADCR0)
			11: (I2S1_ADCL0+ I2S1_ADCR0)/2
			I2S1_ADCRO_SRC
	R/W		I2S1 ADC Timeslot 0 right channel data source select
9:8		0x0	00: I2S1_ADCR0
			01: I2S1_ADCL0
			10: (I2S1_ADCL0+I2S1_ADCR0) Converight © 2014 X Powers Limited, All Pights Poserved. 132

AXP813 Optimized For Multi-Core High-Performance System

			11: (I2S1_ADCL0+I2S1_ADCR0)/2
			I2S1_ADCL1_SRC
			I2S1 ADC Timeslot 1 left channel data source select
	2 / 1 / 2		00: I2S1_ADCL1
7:6	R/W	0x0	01: I2S1_ADCR1
			10: (I2S1_ADCL1+I2S1_ADCR1)
			11: (I2S1_ADCL1+I2S1_ADCR1)/2
			I2S1_ADCR1_SRC
			I2S1 ADC Timeslot 1 right channel data source select
5:4	R/W	0x0	00: I2S1_ADCR1
3.4	K/ VV	UXU	01: I2S1_ADC1L
			10: (I2S1_ADCL1+I2S1_ADCR1)
			11: (I2S1_ADCL1+I2S1_ADCR1)/2
		0x0	I2S1_ADCP_ENA
3	R/W		I2S1 ADC Companding enable(8-bit mode only)
3	K/W		0: Disable
			1: Enable
		0x0	I2S1_ADCP_SEL
2	R/W		I2S1ADC Companding mode select
2	IX/ VV	UXU	0: A-law
			1: u-law
			I2S1_SLOT_SIZ
			Select the slot size(only in TDM mode)
1:0	R/W	0x0	00: 8
1.0	R/W	UXU	01: 16
			10:32
			11: Reserved

REG 12H_I2S1 SDIN Control Register

Default:	0x0000		Register Name: I2S1_SDIN_CTRL
Bit	Read/Write	Default	Description
			I2S1_DACL0_ENA
15	R/W	0x0	I2S1 DAC Timeslot 0 left channel enable
13	N/ VV	OXO	0: Disable
			1: Enable
		0x0	I2S1_DACRO_ENA
14	R/W		I2S1 DAC Timeslot 0 right channel enable
14	IX/ VV		0: Disable
			1: Enable
		0x0	I2S1_DACL1_ENA
13	R/W		I2S1 DAC Timeslot 1 left channel enable
13	11/ VV		0: Disable
			1: Enable

AXP813 Optimized For Multi-Core High-Performance System

		1	AAF613 Optimized For Walti-Core High-Perjormance System
	R/W	0x0	I2S1_DACR1_ENA
12			I2S1 DAC Timeslot 1 right channel enable
			0: Disable
			1: Enable
			I2S1_DACL0_SRC
			I2S1 DAC Timeslot 0 left channel data source select
11.10	D /\A/	0.0	00: I2S1_DACL0
11:10	R/W	0x0	01: I2S1_DACR0
			10: (I2S1_DACL0+I2S1_DACR0)
			11: (I2S1_DACL0+I2S1_DACR0)/2
			I2S1_DACR0_SRC
			I2S1 DAC Timeslot 0 right channel data source select
	5 / 14		00: I2S1_DACR0
9:8	R/W	0x0	01: I2S1_DACL0
			10: (I2S1_DACL0+I2S1_DACR0)
			11: (I2S1_DACL0+I2S1_DACR0)/2
			I2S1_DACL1_SRC
			I2S1 DAC Timeslot 1 left channel data source select
	- 6		00: I2S1_DACL1
7:6	R/W	0x0	01: I2S1_DACR1
			10: (I2S1_DACL1+I2S1_DACR1)
			11: (I2S1_DACL1+I2S1_DACR1)/2
			I2S1_DACR1_SRC
		•	I2S1 DAC Timeslot 1 right channel data source select
		•	00: I2S1 DACR1
5:4	R/W	0x0	01: I2S1 DACL1
			10: (I2S1 DACL1+I2S1 DACR1)
			11: (I2S1 DACL1+I2S1 DACR1)/2
			I2S1_DACP_ENA
			I2S1 DAC Companding enable(8-bit mode only)
3	R/W	0x0	00: Disable
			01: Enable
			I2S1_DACP_SEL
			I2S1 DAC Companding mode select
2	R/W	0x0	0: A-law
			1: u-law
1	R/W	0x0	Reserved
	,		I2S1_LOOP_ENA
			I2S1 loopback enable
0	R/W	0x0	0: No loopback
			1: Loopback(SDOUT1 data output to SDOUT1 data input)
			1. Loopback(300011 data output to 300011 data input)

REG 13H_I2S1 Digital Mixer Source Select Register

Default: 0x0000			Register Name: I2S1_MXR_SRC
Bit	Read/Write	Default	Description
			I2S1_ADCL0_MXL_SRC
			I2S1 ADC Timeslot 0 left channel mixer source select
			0: Disable 1: Enable
15:12	R/W	0x0	Bit15: I2S1_DAOL data
			Bit14: I2S2_DACL data
			Bit13: ADCL data
			Bit12: I2S2_DACR data
			I2S1_ADCR0_MXR_SRC
			I2S1 ADC Timeslot 0 right channel mixer source select
			0: Disable 1: Enable
11:8	R/W	0x0	Bit11: I2S1_DAOR data
			Bit10: I2S2_DACR data
			Bit9: ADCR data
			Bit8: I2S2_DACL data
			I2S1_ADCL1_MXR_SRC
			I2S1 ADC Timeslot 1-left channel mixer source select
7:6	R/W	0x0	0: Disable 1: Enable
			Bit7: I2S2_DACL data
			Bit6: ADCL data
5:4	R/W	0x0	Reserved
			12S1_ADCR1_MXR_SRC
	,		I2S1 ADC Timeslot 1 right channel mixer source select
3:2	R/W	0x0	0: Disable 1: Enable
			Bit3: I2S2_DACR data
			Bit2: ADCR data
1:0	R/W	0x0	Reserved

REG 14H_I2S1 Volume Control 1 Register

Default: 0xA0A0			Register Name: I2S1_VOL_CTRL1
Bit	Read/Write	Default	Description
		0xA0	I2S1_ADCL0_VOL
	R/W		I2S1 ADC Timeslot 0 left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
15:8			0x00: Mute
15.6			0x01: -119.25dB
			0x9F = -0.75dB
			0xA0 = 0dB

			0xA1 = 0.75dB
			0xFF = 71.25dB
			I2S1_ADCR0_VOL
			I2S1 ADC Timeslot 0 right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

REG 15H_I2S1 Volume Control 2 Register

Default: 0xA0A0			Register Name: I2S1_VOL_CTRL2
Bit	Read/Write	Default	Description
			I2S1_ADCL1_VOL
			I2S1 ADC Timeslot 1 left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
	W N		0xA1 = 0.75dB
			0xFF = 71.25dB
			I2S1_ADCR1_VOL
			I2S1 ADC Timeslot 1 right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

REG 16H_I2S1 Volume Control 3 Register

Default	: 0xA0A0		Register Name: I2S1_VOL_CTRL3
Bit	Read/Write	Default	Description
			I2S1_DACL0_VOL
			I2S1 DAC Timeslot 0 left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
			I2S1_DACR0_VOL
			I2S1 DAC Timeslot 0 right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
		\	
	1		0xFF = 71.25dB

REG 17H_I2S1 Volume Control 4 Register

Default:	0xA0A0		Register Name: I2S1_VOL_CTRL4
Bit	Read/Write	Default	Description
			I2S1_DACL1_VOL
			I2S1 DAC Timeslot 1 left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
7:0	R/W	0xA0	I2S1_DACR1_VOL

	I2S1 DAC Timeslot 1 right channel volume
	(-119.25dB To 71.25dB, 0.75dB/Step)
	0x00: Mute
	0x01: -119.25dB
	0x9F = -0.75dB
	0xA0 = 0dB
	0xA1 = 0.75dB
	0xFF = 71.25dB

REG 18H_I2S1 Digital Mixer Gain Control Register

Default:	0x0000		Register Name: I2S1_MXR_GAIN
Bit	Read/Write	Default	Description
15:12	R/W	0x0	I2S1_ADCLO_MXR_GAIN I2S1 ADC Timeslot 0 left channel mixer gain control 0: 0dB 1: -6dB Bit15: I2S1_DAOL data Bit14: I2S2_DACL data Bit13: ADCL data Bit12: I2S2_DACR data
11:8	R/W	0x0	I2S1_ADCR0_MXR_GAIN I2S1 ADC Timeslot 0 right channel mixer gain control 0: 0dB 1:-6dB Bit11: I2S1_DA0R data Bit10: I2S2_DACR data Bit9: ADCR data Bit8: I2S2_DACL data
7:6	R/W	0x0	I2S1_ADCL1_MXR_GAIN I2S1 ADC Timeslot 1 left channel mixer gain control 0: 0dB 1: -6dB Bit7: I2S2_DACL data Bit6: ADCL data
5:4	R/W	0x0	Reserved
3:2	R/W	0x0	I2S1_ADCR1_MXR_GAIN I2S1 ADC Timeslot 1 right channel mixer gain control 0: 0dB 1: -6dB Bit3: I2S2_DACR data Bit2: ADCR data
1:0	R/W	0x0	Reserved

REG 20H_I2S2 BCLK/LRCK Control Register

Default: 0x0000			Register Name: I2S2_CLK_CTRL
Bit	Read/Write	Default	Description
			I2S2_MSTR_MOD
4.5	5.044	0.0	I2S2 Audio Interface mode select
15	R/W	0x0	0 = Master mode
			1 = Slave mode
			I2S2_BCLK_INV
	- 4		I2S2 BCLK Polarity
14	R/W	0x0	0: Normal
			1: Inverted
			I2S2_LRCK_INV
	- 6		I2S2 LRCK Polarity
13	R/W	0x0	0: Normal
			1: Inverted
			I2S2_BCLK_DIV
			Select the I2S2CLK/BCLK2 ratio
			0000: I2S2CLK/1
			0001: I2S2CLK/2
			0010: I2S2CLK/4
			0011: I2S2CLK/6
			0100: I2S2CLK/8
		•	0101: I2S2CLK/12
			0110: I2S2CLK/16
12:9	R/W	0x0	0111: I2S2CLK/24
			1000: I2S2CLK/32
	V		1001: I2S2CLK/48
			1010: I2S2CLK/64
			1011: I2S2CLK/96
-			1100: I2S2CLK/128
			1101: I2S2CLK/192
			1110: Reserved
			1111: Reserved
			I2S2_LRCK_DIV
			Select the BCLK2/LRCK2 ratio
			000: 16
	- 6.		001: 32
8:6	R/W	0x0	010: 64
			011: 128
			100: 256
			1xx: Reserved
			I2S2_WORD_SIZ
5:4	R/W	0x0	I2S2 digital interface world length
AVD813 Datasheet V1 0		<u> </u>	Converget © 2014 X-Powers Limited All Rights Reserved 139

AXP813 Optimized For Multi-Core High-Performance System

		00: 8bit
		01: 16bit
		10: 20bit
		11: 24bit
		I2S2_DATA_FMT
		I2S digital interface data format
D /\A/	0x0	00: I2S mode
K/W		01: Left mode
		10: Right mode
		11: DSP mode
R/W	0x0	I2S2_MONO_PCM
		I2S2 Mono PCM mode select
		0: Stereo mode select
		1: Mono mode select
R/W	0x0	Reserved
	·	R/W 0x0

REG 21H_I2S2 SDOUT Control Register

[Default: 0x0000			Register Name: I2S2_SDOUT_CTRL
E	Bit	Read/Write	Default	Description
1	15	R/W	0x0	I2S2_ADCL_EN I2S2 ADC left channel enable 0: Disable 1: Enable
1	14	R/W	0x0	I2S2_ADCR_EN I2S2 ADC right channel enable 0: Disable 1: Enable
1	13:12	R/W	0x0	Reserved
	11.10	R/W	0x0	I2S2_ADCL_SRC I2S2 ADC left channel data source select 00: I2S2_ADCL 01: I2S2_ADCR 10: (I2S2_ADCL+I2S2_ADCR) 11: (I2S2_ADCL+I2S2_ADCR)/2
Ç	9:8	R/W	0x0	I2S2_ADCR_SRC I2S2 ADC right channel data source select 00: I2S2_ADCR 01: I2S2_ADCL 10: (I2S2_ADCL+I2S2_ADCR) 11: (I2S2_ADCL+I2S2_ADCR)/2
7	7:4	R/W	0x0	Reserved
3	3	R/W	0x0	I2S2_ADCP_ENA I2S2 ADC Companding enable(8-bit mode only)

			00: Disable
			01: Enable
	R/W	0x0	I2S2_ADCP_SEL
			I2S2 ADC Companding mode select
2			0: A-law
			1: u-law
1:0	/	/	/

REG 22H_I2S2 SDIN Control Register

Default:	0x0000		Register Name: I2S2_SDIN_CTRL
Bit	Read/Write	Default	Description
			I2S2_DACL_ENA
15	D /\A/	0,40	I2S2 DAC left channel enable
15	R/W	0x0	0: Disable
			1: Enable
			I2S2_DACR_ENA
14	R/W	0x0	I2S2 DAC right channel enable
14	N/ VV	UXU	0: Disable
			1: Enable
13:12	R/W	0x0	Reserved
			I2S2_DACL_SRC
			I2S2 DAC left channel data source select
11:10	R/W	0x0	00: I2S2_DACL
11.10	I I V VV	OXO	01: I2S2_DACR
			10: (12S2_DACL+I2S2_DACR)
			11: (I2S2_DACL+I2S2_DACR)/2
			I2S2_DACR_SRC
			I2S2 DAC right channel data source select
9:8	R/W	0x0	00: I2S2_DACR
3.0		OXO	01: I2S2_DACL
			10: (I2S2_DACL+I2S2_DACR)
			11: (I2S2_DACL+I2S2_DACR)/2
7:4	R/W	0x0	Reserved
			I2S2_DACP_ENA
3	R/W	0x0	I2S2 DAC Companding enable(8-bit mode only)
	1,711	one -	00: Disable
			01: Enable
			I2S2_ DACP_SEL
2	R/W	0x0	I2S2 DAC Companding mode select
_	1.7 vv		0: A-law
			1: u-law
1	R/W	0x0	Reserved

	R/W	0x0	I2S2_LOOP_EN
			I2S2 loopback enable
U R/VV	K/VV		0: No loopback
			1: Loopback(SDOUT2 data output to SDOUT2 data input)

REG 23H_I2S2 Digital Mixer Source Select Register

Default: 0x0000			Register Name: I2S2_MXR_SRC
Bit	Read/Write	Default	Description
			I2S2_ADCL_MXR_SRC
			I2S2 ADC left channel mixer source select
			0: Disable 1:Enable
15:12	R/W	0x0	Bit15: I2S1_DA0L data
			Bit14: I2S1_DA1L data
			Bit13: I2S2_DACR data
			Bit12: ADCL data
			I2S2_ADCR_MXR_SRC
			I2S2 ADC right channel mixer source select
			0: Disable 1:Enable
11:8	R/W	0x0	Bit11: I2S1_DAOR data
			Bit10: I2S1_DA1R data
			Bit9: I2S2_DACL data
			Bit8: ADCR data
7:0	R/W	0x0	Reserved

REG 24H_I2S2 Volume Control 1 Register

Default: 0xA0A0			Register Name: I2S2_VOL_CTRL1
Bit	Read/Write	Default	Description
1			I2S2_ADCL_VOL
			I2S2 ADC left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
			I2S2_ADCR_VOL
7:0	R/W	0xA0	I2S2 ADC right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)

	0x00: Mute
	0x01: -119.25dB
	0x9F = -0.75dB
	0xA0 = 0dB
	0xA1 = 0.75dB
	0xFF = 71.25dB

REG 26H_I2S2 Volume Control 2 Register

Default: 0xA0A0			Register Name: I2S2_VOL_CTRL2
Bit	Read/Write	Default	Description
			I2S2_DACL_VOL
			I2S2 DAC left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
			l2S2_DACR_VOL
	_ `		I2S2 DAC right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
1			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

REG 28H_I2S2 Digital Mixer Gain Control Register

Default: 0x0000			Register Name: I2S2_MXR_GAIN
Bit	Read/Write	Default	Description
			I2S2_ADCL_MXR_GAIN
15:12	R/W	0x0	I2S2 ADC left channel mixer gain control
			0: 0dB 1: -6dB

			Bit15: I2S1_DAOL data
			Bit14: I2S1_DA1L data
			Bit13: I2S2_DACR data
			Bit12: ADCL data
			I2S2_ADCR_MXR_GAIN
			I2S2 ADC right channel mixer gain control
			0: 0dB 1: -6dB
11:8	R/W	0x0	Bit11: I2S1_DAOR data
			Bit10: I2S1_DA1R data
			Bit9: I2S2_DACL data
			Bit8: ADCR data
7:0	R/W	0x0	Reserved

REG 30H_I2S3 BCLK/LRCK Control Register

Default: 0x0000			Register Name: I2S3_CLK_CTRL
Bit	Read/Write	Default	Description
15	R/W	0x0	Reserved
14	R/W	0x0	I2S3_BCLK_INV I2S3 BCLK Polarity 0: Normal
			1: Inverted 12S3_LRCK_INV
13	R/W	0x0	12S3_ERCK_INV 12S3 LRCK Polarity 0: Normal 1: Inverted
12:6	R/W	0x0	Reserved
5:4	R/W	0x0	I2S3_WORD_SIZ I2S3 digital interface world length 00: 8bit 01: 16bit 10: 20bit 11: 24bit
3:2	R/W	0x0	Reserved
1:0	R/W	0x0	I2S3_CLOC_SRC I2S3 BCLK/LRCK source control 0: BCLK/LRCK Come from I2S1 1: BCLK/LRCK Come from I2S2 2: BCLK/LRCK is generated by I2S3, and the source clock is I2S1CLK 3: Reserved

REG 31H_I2S3 SDOUT Control Register

Default	: 0x0000		Register Name: I2S3_SDOUT_CTRL
Bit	Read/Write	Default	Description
15:4	R/W	0x0	Reserved
			I2S3_ADCP_ENA
3	R/W	0x0	I2S3 ADC Companding enable
3	K/ VV		00: Disable
			01: Enable
		0x0	I2S3_ ADCP_SEL
2	R/W		I2S3 ADC Companding mode select
2	N/ VV		0: A-law
			1: u-law
1:0	R/W	0x0	Reserved

REG 32H_I2S3 SDIN Control Register

Default:	0x0000		Register Name: I2S3_SDIN_CTRL
Bit	Read/Write	Default	Description
15:4	R/W	0x0	Reserved
3	R/W	0x0	I2S3_DACP_ENA I2S3 DAC Companding enable(8-bit mode only) 00: Disable 01: Enable
2	R/W	0x0	I2S3 DACP_SEL I2S3 DAC Companding mode select 00: u-law 01: A-law
1	R/W	0x0	Reserved
0	R/W	0x0	I2S3_LOOP_ENA I2S3 loopback enable 0: No loopback 1: Loopback(SDOUT3 data output to SDOUT3 data input)

REG 33H_I2S3 Signal Path Control Register

Default: 0x0000			Register Name: I2S3_SGP_CTRL
Bit	Read/Write	Default	Description
15:12	R/W	0x0	Reserved
			I2S3_ADC_SRC
11:10	R/W	0x0	I2S3 PCM output source select
			00: None

			01: I2S2_ADCL
			10: I2S2_ADCR
			11: Reserved
			I2S2_DAC_SRC
	D/M	0x0	I2S2 DAC input source select
9:8			00: (I2S2_ADCL+ I2S2_ADCR)
9.0	R/W		01: Left input from I2S3_DAC; Right input from I2S2_ADCR
			10: Left input from I2S2_ADCL; Right input from I2S3_DAC
			11: Reserved
7:0	R/W	0x0	Reserved

REG 40H_ADC Digital Control Register

Default:	0x0000		Register Name: ADC_DIG_CTRL
Bit	Read/Write	Default	Description
			ENAD
15	D /\A/	00	ADC Digital part enable
15	R/W	0x0	0: Disable
			1: Enable
			ENDM
1.4	D /\A/	0x0	Digital microphone enable
14	R/W	UXU	0: Analog ADC mode
			1: Digital microphone mode
		,	ADFIR32
13	R/W	0x0	Enable 32-tap FIR filter
15	N/ VV		0: 64-tap
			1: 32-tap
12:4	R/W	0x0	Reserved
			ADOUT_DTS
			ADC Delay Time For transmitting data after ENAD
3:2	R/W	0x0	00:5ms
3.2	N/ VV	UXU	01:10ms
			10:20ms
			11:30ms
			ADOUT_DLY
1	R/W	0.0	ADC Delay Function enable for transmitting data after ENAD
1	IN/ VV	0x0	0: Disable
			1: Enable
0	R/W	0x0	Reserved

REG 41H_ADC Volume Control Register

Default	:: 0xA0A0		Register Name: ADC_VOL_CTRL
Bit	Read/Write	Default	Description
			ADC_VOL_L
			ADC left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB
			ADC_VOL_R
			ADC left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	
	1		0xFF = 71.25dB

REG 44H_HMIC Control 1 Register

Default:	Default: 0x0000		Register Name: HMIC_CTRL1
Bit	Read/Write	Default	Description
15:12	R/W	0x0	HMIC_M
15.12	K/ VV	UXU	debounce when Key down or key up
11:8	R/W	0x0	HMIC_N
11.0	N/ VV	UXU	debounce when earphone plug in or pull out
	7 R/W	0x0	HMIC_DATA_IRQ_MODE
7			Hmic Data Irq Mode Select
/			0: Hmic data irq once after key down
			1: Hmic data irq from key down, util key up
		0x0	HMIC_TH1_HYSTERESIS
6:5	R/W		Hmic Hysteresis Threshold1
0.5	0.5 N/W 0X0		00: no Hysteresis
			01: Pull Out when Data <= (Hmic_th2-1)

AXP813

AXP813 Optimized For Multi-Core High-Performance System

			10: Pull Out when Data <= (Hmic_th2-2)
			11: Pull Out when Data <= (Hmic_th2-3)
			HMIC_PULLOUT_IRQ_EN
4	R/W	0x0	Hmic Earphone Pull out Irq Enable
			00: disable 11: enable
			HMIC_PLUGIN_IRQ_EN
3	R/W	0x0	Hmic Earphone Plug in Irq Enable
			00: disable 11: enable
			HMIC_KEYUP_IRQ_EN
2	R/W	0x0	Hmic Key Up Irq Enable
			00: disable 11: enable
			HMIC_KEYDOWN_IRQ_EN
1	R/W	0x0	Hmic Key Down Irq Enable
			00: disable 11: enable
			HMIC_DATA_IRQ_EN
0	R/W	0x0	Hmic Data Irq Enable
			0: disable 1: enable

REG 45H_HMIC Control 2 Register

Default: 0x0000			Register Name: HMIC_CTRL2
Bit	Read/Write	Default	Description
			HMIC_SAMPLE_SELECT
		1	Down Sample Setting Select
15:14	R/W	0x0	00: Down by 1, 128Hz
13.14	10,00	U.C	01: Down by 2, 64Hz
			10: Down by 4, 32Hz
			11: Down by 8, 16Hz
	, ,		HMIC_TH2_HYSTERESIS
13	R/W	0x0	Hmic Hysteresis Threshold2
			0: no Hysteresis
			1: Key Up when Data <= (Hmic_th2-1)
12:8	R/W	0x0	HMIC_TH2
			Hmic_th2 for detecting Key down or Key up.
			HMIC_SF
			Hmic Smooth Filter setting
7:6	R/W	0x0	00: by pass
	•		01: (x1+x2)/2
			10: (x1+x2+x3+x4)/4
			11: (x1+x2+x3+x4+ x5+x6+x7+x8)/8
_	- 6		KEYUP_CLEAR
5	R/W	0x0	Key Up Irq Pending bit auto clear when Key Down Irq
		0: don't clear 1: auto clear	
4:0	R/W	0x0	HMIC_TH1

REG 46H_HMIC Status Register

Default: 0x0000			Register Name: HMIC_STATUS
Bit	Read/Write	Default	Description
15:13	R/W	0x0	Reserved
12.0	D	0.40	HMIC_DATA
12:8	R	0x0	HMIC Average Data
7:5	R/W	0x0	Reserved
			HMIC_PULLOUT_PENDING
4	R/W	0x0	Hmic Earphone Pull out Irq pending bit, write 1 to clear
4	N/ VV	UXU	0: No Pending Interrupt
			1: Pull out Irq Pending Interrupt
	D // M		HMIC_PLUGIN_PENDING
3		00	Hmic Earphone Plug in Irq pending bit, write 1 to clear
3	R/W	0x0	0: No Pending Interrupt
			1: Plug in Irq Pending Interrupt
			HMIC_KEYUP_PENDING
2	R/W	0x0	Hmic Key Up Irq pending bit, write 1 to clear
2	K/ VV		0: No Pending Interrupt
			1: Key up Irq Pending Interrupt
			HMIC_KEYDOWN_PENDING
1	R/W	0x0	Hmic Key Down Ira pending bit, write 1 to clear
1	K/ VV	UXU	0: No Pending Interrupt
			1: Key down Irq Pending Interrupt
	R/W		HMIC_DATA_PENDING
0		0.0	Hmic Data Irq pending bit, write 1 to clear
		0x0	0: No Pending Interrupt
			1: Data Irq Pending Interrupt

REG 48H_DAC Digital Control Register

Default: 0x0000			Register Name: DAC_DIG_CTRL
Bit	Read/Write	Default	Description
		0x0	ENDA.
15	D /\A/		DAC Digital Part Enable
15	R/W		0: Disabe
			1: Enable
	R/W	0x0	ENHPF
14			HPF Function Enable
14			0: Enable
			1: Disable

1			DATID22
13		0x0	DAFIR32
	R/W		Enable 32-tap FIR filter
	11,7 00	UNO	0: 64-tap
			1: 32-tap
12	R/W	0x0	Reserved
			MODQU
11:8	R/W	0x0	Internal DAC Quantization Levels
11.0	IX/ VV		Levels=[7*(21+MODQU[3:0])]/128
			Default levels=7*21/128=1.15
7:0	R/W	0x0	Reserved

REG 49H_DAC Volume Control Register

Default:	0xA0A0		Register Name: DAC_VOL_CTRL
Bit	Read/Write	Default	Description
			DAC_VOL_L
			DAC left channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
15:8	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
	`		0xFF = 71.25dB
			DAC_VOL_R
			DAC right channel volume
			(-119.25dB To 71.25dB, 0.75dB/Step)
			0x00: Mute
			0x01: -119.25dB
7:0	R/W	0xA0	
			0x9F = -0.75dB
			0xA0 = 0dB
			0xA1 = 0.75dB
			0xFF = 71.25dB

REG 4CH_DAC Digital Mixer Source Select Register

Default:	0x0000		Register Name: DAC_MXR_SRC
Bit Read/Write Default		Default	Description
15:12	R/W	0x0	DACL_MXR_SRC

			AXI 613 Optimized For Walti-core riigh-i erjormance System
			DAC left channel mixer source select
			0: Disable 1:Enable
			Bit15: I2S1_DAOL
			Bit14: I2S1_DA1L
			Bit13: I2S2_DACL
			Bit12: ADCL
			DACR_MXR_SRC
			DAC right channel mixer source select
			0: Disable 1:Enable
11:8	R/W	0x0	Bit11: I2S1_DAOR
			Bit10: I2S1_DA1R
			Bit9: I2S2_DACR
			Bit8: ADCR
7:0	R/W	0x0	Reserved

REG 4DH_DAC Digital Mixer Gain Control Register

Default:	0x0000		Register Name: DAC_MXR_GAIN
Bit	Read/Write	Default	Description
15:12	R/W	0x0	DACL_MXR_GAIN DAC left channel mixer gain control 0: 0dB 1: -6dB Bit15: I2S1_DA0L Bit14: I2S1_DA1L Bit13: I2S2_DACL Bit12: ADCL
11:8	R/W	0x0	DACR_MXR_GAIN DAC right channel mixer gain control 0: 0dB 1: -6dB Bit11: I2S1_DA0R Bit10: I2S1_DA1R Bit9: I2S2_DACR Bit8: ADCR
7:0	R/W	0x0	Reserved

REG 50H_ADC Analog Control Register

Default:0x3340			Register Name: ADC_APC_CTRL
Bit	R/W	Default	Description
			ADCREN
15	R/W	0x0	ADC Right channel Enable
			0: Disable; 1: Enable
14:12	R/W	0x3	ADCRG

	ı	AXP813 Optimizea For Wulti-Core High-Performance System
		ADC Right channel input Gain control
		From -4.5dB to 6dB, 1.5dB/step, default is 0dB
		ADCLEN
R/W	0x0	ADC Left channel Enable
		0: Disable; 1: Enable
		ADCLG
R/W	0x3	ADC Left channel input Gain control
		From -4.5dB to 6dB, 1.5dB/step, default is 0dB
		MBIASEN
R/W	0x0	Master microphone BIAS Enable
		0: Disable; 1: Enable
		MMIC_BIAS_CHOPPER_EN
R/W	0x1	Main MICrophone BIAS chopper Enable
		0: Disable; 1: Enable
		MMIC_BIAS_CHOPPER_CKS
		Main MICrophone BIAS chopper Clock select
D /\A/	0v0	00: 250k
11,7 VV	OXO	01: 500k
		10: 1Meg
		11: 2Meg
/	/	1
		HBIASMOD
R /\/	0v0	HBIAS&ADC working mode
IV, VV	OXO	0: HBIAS is enabled only when with load
		1: HBIAS is enabled when HBIASEN write 1
		HBIASEN
R/W	0x0	Headset microphone BIAS Enable
		0: Disable; 1: Enable
		HBIASADCEN
R/W	0x0	Headset microphone BIAS Current sensor & ADC Enable
7		0: Disable; 1: Enable
	R/W R/W R/W R/W / R/W	R/W 0x3 R/W 0x0 R/W 0x1 R/W 0x0 / / R/W 0x0 R/W 0x0

REG 51H_ADC Source Select Register

Default:0x0000			Register Name: ADC_SRC
Bit	R/W	Default	Description
15:14	/	/	/
			RADC_MIXMUTE
			Right ADC Mixer Mute Control:
			0: Mute; 1:On
13:7	R/W	0x0	Bit 13: MIC1 Boost stage
			Bit 12: MIC2 Boost stage
			Bit 11: LINEINL-LINEINR
			Bit 10: LINEINR

			Bit 9: AUXINR
			Bit 8: Right output mixer
			Bit 7: Left output mixer
			LADC_MIXMUTE
			Left ADC Mixer Mute Control:
	R/W	0x0	0: Mute; 1:On
			Bit 6: MIC1 Boost stage
6:0			Bit 5: MIC2 Boost stage
			Bit 4: LINEINL-LINEINR
			Bit 3: LINEINL
			Bit 2: AUXINL
			Bit 1: Left output mixer
			Bit 0: Right output mixer

REG 52H_ADC Source Boost Control Register

Default:	0x4444		Register Name: ADC_SRCBST_CTRL
Bit	R/W	Default	Description
			MIC1AMPEN
15	R/W	0x0	MIC1 boost AMPlifier ENable
			0: Disable; 1: Enable
			MIC1BOOST
14:12	R/W	0x4	MIC1 boost amplifier Gain control
			0dB when 000, and from 30dB to 48dB when 001 to 111
			MIC2AMPEN
11	R/W	0x0	MIC2 boost AMPlifier ENable
			0: Disable; 1: Enable
		1	MIC2BOOST
10:8	R/W	0x4	MIC2 boost amplifier Gain control
			0dB when 000, and from 30dB to 48dB when 001 to 111
1			MIC2SLT
7	R/W	0x0	MIC2 Source select
			0: MIC2; 1: MIC3
			LINEIN_DIFF_PREG
6:4	R/W	0x4	LINEINL-LINEINR differential signal pre-amplifier gain control
			-12dB to 9dB, 3dB/step, default is 0dB
3	/	/	/
			AXI_PREG
2:0	R/W	0x4	AXI pre-amplifier gain control
			-12dB to 9dB, 3dB/step, default is 0dB

REG 53H_Output Mixer & DAC Analog Control Register

Default:0x0f80			Register Name: OMIXER_DACA_CTRL
Bit	R/W	Default	Description
			DACAREN
15	R/W	0x0	Internal DAC Analog Right channel Enable
15	K/VV	UXU	0:Disable
			1:Enable
			DACALEN
14	R/W	0x0	Internal DAC Analog Left channel Enable
14	IN/ VV	UXU	0:Disable
			1:Enable
			RMIXEN
13	R/W	0x0	Right Analog Output Mixer Enable
13	IN/ VV	UXU	0:Disable
			1:Enable
			LMIXEN
12	R/W	0x0	Left Analog Output Mixer Enable
12	11, 00	OXO	0:Disable
			1:Enable
			HP_DCRM_EN
			Headphone DC offset remove function enable
			0:Disable
11:9	R/W	0xf	1:Enable
			To remove the headphone buffer DC offset, this bit must be set 0xf
			before headphone PA enabled, and this bit must be set 0x0 before
			headphone PA disabled
7:0	R/W	0x80	Reserved

REG 54H_Output Mixer Source Select Register

Default:	0x0000		Register Name: OMIXER_SR
Bit	R/W	Default	Description
15:14	/	/	/
			RMIXMUTE
			Right Output Mixer Mute Control
			0-Mute, 1-On
			Bit 13: MIC1 Boost stage
13:7	R/W	0x0	Bit 12: MIC2 Boost stage
			Bit 11: LINEINL-LINEINR
			Bit 10: LINEINR
			Bit 9: AUXINR
			Bit 8: DACR

			Bit 7: DACL
			LMIXMUTE
			Left Output Mixer Mute Control
			0-Mute, 1-On
			Bit 6: MIC1 Boost stage
6:0	R/W	0x0	Bit 5: MIC2 Boost stage
0.0	IN VV	UXU	Bit 4: LINEINL-LINEINR
			Bit 3: LINEINL
			Bit 2: AUXINL
			Bit 1: DACL
			Bit 0: DACR

REG 55H_Output Mixer Source Boost Register

Default:	Default:0x56DB		Register Name: OMIXER_BST1_CTRL
Bit	R/W	Default	Description
15:14	R/W	0x1	HBIASSEL HMICBIAS voltage level select 00: 1.88V 01: 2.09V 10: 2.33V
13:12	R/W	0x1	11: 2.50V MBIASSEL MMICBIAS voltage level select 00: 1.88V 01: 2.09V 10: 2.33V 11: 2.50V
11:9	R/W	0x3	AXG AXin to L or R output mixer Gain control From -4.5dB to 6dB, 1.5dB/step, default is 0dB
8:6	R/W	0x3	MIC1G MIC1 to L or R output mixer Gain Control From -4.5dB to 6dB, 1.5dB/step, default is 0dB
5:3	R/W	0x3 MIC2 to L or R output mixer Gain Control From -4.5dB to 6dB, 1.5dB/step, default is 0dB	
2:0	R/W	0x3	LINEING LINEINL/R to L/R output mixer Gain Control From -4.5dB to 6dB, 1.5dB/step, default is 0dB

REG 56H_Headphone Output Control Register

Default:	0x0001		Register Name: HPOUT_CTRL	
Bit	R/W	Default	Description	
15	R/W	0x0	RHPS	
			Right Headphone Power Amplifier (PA) Input Source Select	
			0: DACR	
			1: Right Analog Mixer	
14	R/W	0x0	LHPS	
			Left Headphone Power Amplifier (PA) Input Source Select	
			0: DACL	
			1: Left Analog Mixer	
13	R/W	0x0	RHPPA_MUTE	
			All input source to Right Headphone PA mute, including Right Output	
			mixer and Internal DACR:	
			0:Mute, 1: On	
12	R/W	0x0	LHPPA_MUTE	
			All input source to Left Headphone PA mute, including Left Output mixer	
			and Internal DACL:	
			0:Mute, 1: On	
11	R/W	0x0	HPPA_EN	
			Right & Left Headphone Power Amplifier Enable	
			0: Disable	
			1: Enable	
10	/		/	
9:4	R/W	0x0	HP_VOL	
			Headphone Volume Control, (HPVOL): Total 64 level, from 0dB to -62dB,	
			1dB/step, mute when 000000	
	77		HPPA_DEL	
) '		Headphone delay time when start up	
3:2	R/W	0x0	00: 4ms	
	.,, .,	o no	01: 8ms	
			10: 16ms	
			11: 32ms	
			HPPA_IS	
1:0	R/W	0x1	Headphone PA output stage current select	
			00 is minimum, 11 is maximum	

REG 57H_Earpiece Output Control Register

Default:0x8200			Register Name: ERPOUT_CTRL	
Bit	R/W	Default	Description	
15	R/W	0x1	Reserved	

14:12	R/W	0x0	/	
			EAR_RAMP_TIME	
			Earpiece ramp time select	
12.11			00: 256ms	
12:11	R/W	0x0	01: 512ms	
			10: 640ms	
			11: 768ms	
			ESPA_OUT_CURRENT	
10:9	R/W	0x1	Earpiece output stage current set	
			00 is minimum, 11is maximum	
8:7	R/W	0x0	ESPSR	
			Earpiece input source select	
			00: DACR	
			01: DACL	
			10: Right Analog Mixer	
			11: Left Analog Mixer	
6	R/W	0x0	ESPPA_MUTE	
			All input source to Earpiece PA mute, including Left Output mixer and	
			Internal DACL:	
			0:Mute, 1: On	
5	R/W	0x0	ESPPA_EN	
			Earpiece Power Amplifier Enable	
			0: Disable	
			1. Enable	
4:0	R/W	0x0	ESP_VOL	
		X	Earpiece Volume Control, Total 31 level, from 0dB to -43.5dB,	
			1.5dB/step, mute when 00000 & 00001	

REG 58H_Speaker Output Control Register

Default:0	Default:0x0880		Register Name: SPKOUT_CTRL
Bit	R/W	Default	Description
15:13	R/W	0x0	Reserved
			RSPKS
12	R/W	0x0	Right speaker input source select
12	N/ VV	UXU	0: MIXR
			1: MIXL+MIXR
			RSPKINVEN
11	11 R/W 0x1		Right speaker negative output enable
			0: Disable; 1: Enable
10	/	/	1
			RSPK_EN
9	R/W	0x0	Right Speaker Enable
			0: Disable; 1: Enable

			LSPKS				
8	R/W	0x0	Left speaker input source select				
0	IN/ VV		0: MIXL				
			1: MIXL+MIXR				
			LSPKINVEN				
7	R/W	0x1	Left speaker negative output enable				
			0: Disable; 1: Enable				
6	/	/	/				
	5 R/W 0x0		LSPK_EN				
5			Left Speaker Enable				
			0: Disable; 1: Enable				
			SPK_VOL				
4.0	R/W	0x0	Right & Left speaker VOLume control				
4:0			Total 31 level, from 0dB to -43.5dB, 1.5db/step, mute when				
			00000&00001				

REG 59H_Lineout Control Register

Default:0	Default:0x8060		Register Name: LOUT_CTRL
Bit	R/W	Default	Description
15:8	R/W	0x80	Reservd
7:5	R/W	0x3	LINEOUTG Line out Gain Control From -4.5dB to 6dB, 1.5dB/step, default is 0dB
	R/W	0x0	LINEOUTEN
4			Line out Enable
			0: disable 1: enable
			LINEOUTS0
3	R/W	0x0	MIC1 Boost stage to Line out mute
			0: Mute, 1: On
1	R/W	0x0	LINEOUTS1
2			MIC2 Boost stage to Line out mute
			0: Mute, 1: On
			LINEOUTS2
1	R/W	0x0	Right Output mixer to Line out mute
			0: Mute, 1: On
	R/W	0x0	LINEOUTS3
0			Left Output mixer to Line out mute
			0: Mute, 1: On

REG 80H_ADC DAP Left Status Register

Default: 0x0000	Register Name: AC_ADC_DAPLSTA
-----------------	-------------------------------

Bit	Read/Write	Default	Description
15:10	R	0x0	Reserved
9	R	0x0	Left AGC saturation flag
8	R	0x0	Left AGC noise-threshold flag
			Left Gain applied by AGC
			(7.1 format 2s complement(-20dB – 40dB), 0.5B/ step)
			0x50: 40dB
7:0	R	0x0	0x4F: 39.5dB
			0x00: 00dB
			0xFF: -0.5dB

REG 81H_ADC DAP Right Status Register

Default: 0x0	000		Register Name: AC_ADC_DAPRSTA
Bit	Read/Write	Default	Description
11:10	R	0x0	Reserved
9	R	0x0	Right AGC saturation flag
8	R	0x0	Right AGC noise-threshold flag
7:0	R	ОхО	Right Gain applied by AGC (7.1 format 2s complement(-20dB – 40dB), 0.5dB /step) 0x50: 40dB 0x4F: 39.5dB 0x00: 00dB 0xFF: -0.5dB

REG 82H_ADC DAP Left Channel Control Register

Default: 0x0	000		Register Name: AC_ADC_DAPLCTRL
Bit	Read/Write	Default	Description
15	R/W	0x0	Reserved
14	R/W	0x0	Left AGC enable
14	N/ VV	OXO	0: disable 1: enable
13	R/W	0x0	Left HPF enable
13	K/VV	UXU	0: disable 1: enable
12	R/W	0x0	Left Noise detect enable
12			0: disable 1: enable
11:10	R/W	0x0	Reserved
		0x0	Left Hysteresis setting
0.0	R/W		00: 1dB
9:8	N/ VV		01: 2dB
			10: 4dB

			11: disable;
			Left Noise debounce time
			0000: disable
			0001: 4/fs
7:4	R/W	0x0	0010: 8/fs
			1111: 16*4096/fs
			T=2 ^(N+1) /fs, except N=0
			Left Signal debounce time
			0000: disable
			0001: 4/fs
3:0	R/W	0x0	0010: 8/fs
			1111: 16*4096/fs
			T=2 ^(N+1) /fs, except N=0

REG 83H_ADC DAP Right Channel Control Register

Default: 0x	:0000		Register Name: AC_ADC_DAPRCTRL
Bit	Read/Write	Default	Description
15	R/W	0x0	Reserved
14	R/W	0x0	Right AGC enable 0: disable 1: enable
13	R/W	0x0	Right HPF enable 0: disable 1: enable
12	R/W	0x0	Right Noise detect enable
12	Nyvv	UXU P	0: disable 1: enable
11:10	R/W	0x0	Reserved
		0x0	Right Hysteresis setting 00: 1dB
9:8	R/W		01: 2dB
			10: 4dB
			11: disable
		0x0	Right Noise debounce time
			0000: disable
			0001: 4/fs
7: 4	R/W		0010: 8/fs
			1111: 16*4096/fs
			T=2 ^(N+1) /fs ,except N=0
			Right Signal debounce time
3: 0	R/W	0.0	0000: disable
3.0	IN/ VV	0x0	0001: 4/fs
			0010: 8/fs

	1111: 16*4096/fs
	$T=2^{(N+1)}/fs$, except N=0

REG 84H_ADC DAP Left Target Level Register

Default: 0x2C28			Register Name: AC_ADC_DAPLTL
Bit	Read/Write	Default	Description
15:14	/	/	/
12.0	D (M)	0x2C	Left channel target level setting(-1dB30dB).(6.0format
13:8	R/W	(-20dB)	2s complement)
7:0	D (M)	0x28	Left channel max gain setting(0-40dB).(7.1format 2s
	R/W	(20dB)	complement)

REG 85H_ADC DAP Right Target Level Register

Default: 0x2C28			Register Name: AC_ADC_DAPRTL
Bit	Read/Write	Default	Description
15:14	/	/	/
13:8	R/W	0x2C(-20dB)	Right channel target level setting(-1dB30dB).(6.0format 2s complement)
7:0	R/W	0x28(20dB)	Right channel max gain setting (0-40dB). (7.1format 2s complement)

REG 86H_ADC DAP Left High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPLHAC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0005	Left channel output signal average level coefficient setting(the coefficient [reg86[10:0],reg87] is 3.24 format
			2s complement)

REG 87H_ADC DAP Left Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPLLAC
Bit	Read/Write	Default	Description
15:0	R/W	0x1EB8	Left channel output signal average level coefficient setting(the coefficient [reg86[10:0],reg87] is 3.24 format 2s complement)

REG 88H_ADC DAP Right High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPRHAC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0005	Right channel output signal average level coefficient setting(the coefficient [reg88[10:0],reg89] is 3.24 format 2s complement)

REG 89H_ADC DAP Right Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPRLAC
Bit	Read/Write	Default	Description
15:0	R/W	0x1EB8	Right channel output signal average level coefficient setting(the coefficient [reg88[10:0],reg89] is 3.24 format 2s complement)

REG 8AH_ADC DAP Left Decay Time Register

Default: 0x001F			Register Name: AC_ADC_DAPLDT
Bit	Read/Write	Default	Description
15	/	/	/
14:0	R/W	0x001F (32x32fs)	Left decay time coefficient setting 0000: 1x32/fs 0001: 2x32/fs 7FFF: 2 ¹⁵ x32/fs T=(n+1)*32/fs When the gain increases, the actual gain will increase 0.5dB at every decay time.

REG 8BH_ADC DAP Left Attack Time Register

Default: 0x0000			Register Name: AC_ADC_DAPLAT
Bit	Read/Write	Default	Description
15	/	/	/
14:0	R/W	0x0000	Left attack time coefficient setting 0000: 1x32/fs 0001: 2x32/fs 7FFF: 2 ¹⁵ x32/fs

	T=(n+1)*32/fs
	When the gain decreases, the actual gain will decrease
	0.5dB at every attack time.

REG 8CH_ADC DAP Right Decay Time Register

Default: 0x001F			Register Name: AC_ADC_DAPRDT
Bit	Read/Write	Default	Description
15	/	/	/
			Right decay time coefficient setting
			0000: 1x32/fs
			0001: 2x32/fs
14.0	R/W	0x001F	
14:0		(32x32fs)	7FFF: 2 ¹⁵ x32/fs
			T=(n+1)*32/fs
			When the gain increases, the actual gain will increase 0.5dB
			at every decay time.

REG 8DH_ADC DAP Right Attack Time Register

Default: 0x0000			Register Name: AC_ADC_DAPRAT
Bit	Read/Write	Default	Description
15	/	/	/
14:0	R/W	0x0000	Right attack time coefficient setting 0000: 1x32/fs 0001: 2x32/fs 7FFF: 2 ¹⁵ x32/fs T=(n+1)*32/fs When the gain decreases, the actual gain will decrease 0.5dB at every attack time.

REG 8EH_ADC DAP Noise Threshold Register

Default: 0x1E1E			Register Name:AC_ADC_DAPNTH
Bit	Read/Write	Default	Description
15:13	/	/	/
12:8	R/W	0x1E (-90dB)	Left channel noise threshold setting. 0x00: -30dB 0x01: -32dB 0x02: -34dB

			0x1D: -88dB
			0x1E: -90dB
			0x1F: -90dB(the same as 0x1E)
7:5	/	/	1
			Right channel noise threshold setting(-9030dB).
			0x00: -30dB
			0x01: -32dB
4.0	R/W	0.45(0040)	0x02: -34dB
4:0	K/VV	0x1E(-90dB)	
			0x1D: -88dB
			0x1E: -90dB
			0x1F: -90dB(the same as 0x1E

REG 8FH_ADC DAP Left Input Signal High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPLHNAC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0005	Left input signal average filter coefficient to check noise or not(the coefficient [reg8f[10:0],reg90] is 3.24 format 2s complement), always the same as the left output signal average filter's.

REG 90H_ADC DAP Left Input Signal Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPLLNAC
Bit	Read/Write	Default	Description
15:0	R/W	0x0005	Left input signal average filter coefficient to check noise or not(the coefficient [reg8f[10:0],reg90] is 3.24 format 2s complement) always the same as the left output signal average filter's

REG 91H_ADC DAP Right Input Signal High Average Coef Register

Default: 0x0005			Register Name: AC_ADC_DAPRHNAC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0005	Right input signal average filter coefficient to check noise or not(the coefficient [reg91[10:0],reg92] is 3.24 format 2s complement), always the same as the right output signal average filter's

REG 92H_ADC DAP Right Input Signal Low Average Coef Register

Default: 0x1EB8			Register Name: AC_ADC_DAPRLNAC
Bit	Read/Write	Default	Description
15:0	R/W	Ox1EB8	Right input signal average filter coefficient to check noise or not(the coefficient [reg91[10:0],reg92] is 3.24 format 2s complement), always the same as the right output signal average filter's

REG 93H_ADC DAP High HPF Coef Register

Default: 0x00FF			Register Name: AC_DAPHHPFC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x00FF	HPF coefficient setting(the coefficient [reg93[10:0],reg14] is 3.24 format 2s complement)

REG 94H_ADC DAP Low HPF Coef Register

Default: 0xFAC1			Register Name: AC_DAPLHPFC
Bit	Read/Write	Default	Description
15:0	R/W	0xFAC1	HPF coefficient setting(the coefficient [reg93[10:0],reg14] is 3.24 format 2s complement)

REG 95H_ADC DAP Optimum Register

Default: 0x00	000		Register Name: AC_DAPOPT
Bit	Read/Write	Default	Description
15:11	/	/	1
10	R/W	0	Left energy default value setting(include the input and output) 0: min 1: max
9:8	R/W	00	Left channel gain hystersis setting. The different between target level and the signal level must larger than the hystersis when the gain change. 00: 0.4375db 01: 0.9375db 10: 1.9375db 11: 3db
7:6	/	/	1

			The input signal average filter coefficient setting
5	R/W	0	0: is the [reg8f[10:0], reg90] and [reg91[1:0], reg92];
			1: is the [reg86[10:0], reg87] and [reg88[1:0], reg89];
			AGC output when the channel in noise state
4	R/W	0	0: output is zero
			1: output is the input data
3	/	/	/
		0	Right energy default value setting(include the input and
2	D /\A/		output)
2	R/W		0: min
			1: max
			Right channel gain hystersis setting.
		00	The different between target level and the signal level must
			larger than the hystersis when the gain change.
1:0	R/W		00: 0.4375db
			01: 0.9375db
			10: 1.9375db
			11: 3db

REG A0H_DAC DAP Control Register

Default: 0x0000			Register Name: AC_DAC_DAPCTRL
Bit	Read/Write	Default	Description
15:3	/	/	
2	R/W	0	DRC enable control
2	K/VV		0: disable 1: enable
		0	Left channel HPF enable control
	R/W		0: disable 1: enable
	0 R/W	0	Right channel HPF enable control
U			0: disable 1: enable

REG A1H_DAC DAP High HPF Coef Register

Default: 0x00FF			Register Name: AC_DAC_DAPHHPFC
Bit	Read/Write	Default	Description
15:11	/	/	/
10.0	D (M)	0xFF	HPF coefficient setting(the coefficient [reg a1[10:0], reg a2]
10:0	R/W		is 3.24 format 2s complement)

REG A2H_DAC DAP Low HPF Coef Register

Default: 0xFAC1	Register Name: AC_DAC_DAPLHPFC
-----------------	--------------------------------

Bit	Read/Write	Default	Description
15.0	R/W	0xFAC1	HPF coefficient setting(the coefficient [reg a1[10:0], reg a2]
15:0	N/ VV	UXFACI	is 3.24 format 2s complement)

REG A3H_DAC DAP Left High Energy Average Coef Register

Default: 0x0100			Register Name: AC_DAC_DAPLHAVC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0100	Left channel energy average filter coefficient setting(the coefficient [reg a3[10:0], reg a4] is 3.24 format 2s complement)

REG A4H_DAC DAP Left Low Energy Average Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPLLAVC
Bit	Read/Write	Default	Description
15:0	R/W	0x0000	Left channel energy average filter coefficient setting(the coefficient [rega3[10:0],rega4] is 3.24 format 2s complement)

REG A5H_DAC DAP Right High Energy Average Coef Register

Default: 0x0	100		Register Name: AC_DAC_DAPRHAVC
Bit	Read/Write	Default	Description
15:11	/	V	/
10:0	R/W	0x0100	Right channel energy average filter coefficient setting(the coefficient [reg a5[10:0], reg a6] is 3.24 format 2s complement)

REG A6H_DAC DAP Right Low Energy Average Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPRLAVC
Bit	Read/Write	Default	Description
15:0	R/W	0x0000	Right channel energy average filter coefficient setting(the coefficient [reg a5[10:0],reg a6] is 3.24 format 2s complement)

REG A7H_DAC DAP High Gain Decay Time Coef Register

Default: 0x0100	Register Name: AC_DAC_DAPHGDEC
-----------------	--------------------------------

Bit	Read/Write	Default	Description
15:11	/	/	1
			Gain smooth filter decay time coefficient setting(the
10:0	R/W	0x0100	coefficient [reg a7[10:0], reg a8] is 3.24 format 2s
			complement)

REG A8H_DAC DAP Low Gain Decay Time Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPLGDEC
Bit	Read/Write	Default	Description
15:0	R/W	0x0000	Gain smooth filter decay time coefficient setting(the coefficient [reg a7[10:0], reg a8] is 3.24 format 2s complement)

REG A9H_DAC DAP High Gain Attack Time Coef Register

Default: 0x0100			Register Name: AC_DAC_DAPHGATC
Bit	Read/Write	Default	Description
15:11	/	/	/
10:0	R/W	0x0100	Gain smooth filter attack time coefficient setting(the coefficient freg a9[10:0], reg aa] is 3.24 format 2s complement.)

REG AAH_DAC DAP Low Gain Decay Time Coef Register

Default: 0x0000			Register Name: AC_DAC_DAPLGATC
Bit	Read/Write	Default	Description
15:0 F	R/W	0x0000	Gain smooth filter attack time coefficient setting(the coefficient [reg a9[10:0], reg aa] is 3.24 format 2s complement)

REG ABH_DAC DAP High Energy Threshold Register

Default: 0x04FB			Register Name: AC_DAC_DAPHETHD
Bit	Read/Write	Default	Description
15:0	R/W	0x04FB	The DRC Energy compress threshold parameter T setting(the T = [reg ab, reg ac] is 8.24 format 2s complement)

REG ACH_DAC DAP Low Energy Threshold Register

Default: 0x9ED0			Register Name: AC_DAC_DAPLETHD
Bit	Read/Write	Default	Description
			The DRC Energy compress threshold parameter T
15:0	R/W	0x9ED0	setting(the T = [reg ab, reg ac] is 8.24 format 2s
			complement)

REG ADH_DAC DAP High Gain K Parameter Register

Default: 0x0780			Register Name: AC_DAC_DAPHGKPA
Bit	Read/Write	Default	Description
15:11	/	/	1
10.0	D //A/	0x0780	The DRC gain curve slope k parameter setting(the K = [reg
10:0	R/W		ad[10:0], reg ae] is 3.24 format 2s complement)

REG AEH_DAC DAP Low Gain K Parameter Register

Default: 0x0000			Register Name: AC_DAC_DAPLGKPA
Bit	Read/Write	Default	Description
15:0	R/W	0x0000	The DRC gain curve slope k parameter setting(the K = [reg ad[10:0], reg ae] is 3.24 format 2s complement)

REG AFH_DAC DAP High Gain Offset Parameter Register

Default: 0x0	100		Register Name: AC_DAC_DAPHGOPA
Bit	Read/Write	Default	Description
15:13	/	/	/
12:0	R/W	0x0100	The DRC gain curve offset O parameter setting(the O = [reg af[12:0], reg b0] is 5.24 format 2s complement)

REG BOH_DAC DAP Low Gain Offset Parameter Register

Default: 0x0000			Register Name: AC_DAC_DAPLGOPA
Bit	Read/Write	Default	Description
15.0	D //A/	00000	The DRC gain curve offset O parameter setting(the K = [reg
15:0	R/W	0x0000	af[12:0], regb0] is 5.24 format 2s complement)

REG B1H _DAC DAP Optimum Register

Default: 0x0000			Register Name: AC_DAC_DAPOPT
Bit	Read/Write	Default	Description
15:6	/	/	/
			DRC gain defaut value setting
5	R/W	0	0: The default gain is 1
			1: The default gain is 0
			The hysteresis of the gain smooth filter to use the decay time
			coefficient or the attack time coefficient.
			When in the decay time state, if g(n-1)-g(n)>hysteresis, then
			the state will change to attack time state, and when in the
			attack time, if g(n)-g(n-1)>hysteresis, then the state will
			change to decay time state. Note the hysteresis of 0x00 and
			0x04 is the same.
			00000: 2 ⁻¹⁶
4.0	D/M/	000	00001: 2 ⁻¹⁹
4:0	R/W	0x00	00010: 2218
			00011: 2 17
	C		00100: 2 -16
			10011 : 2 ⁻¹
	, ,		10100 ~11111: 1
)		hysteresis = 2^{n-20} ,except n=0x00, and n less 0x14.

REG B4H_ADC DAP Enable Register

Default: 0x0000			Register Name: ADC_DAP_ENA
Bit	Read/Write	Default	Description
45			I2S1_ADCL0_AGC_ENA
	R/W	0x0	I2S1 ADC timeslot 0 left channel AGC enable
15			0: Disable
			1: Enable
	R/W	0x0	I2S1_ADCR0_AGC_ENA
14			I2S1 ADC timeslot 0 right channel AGC enable
			0: Disable

AXP813

AXP813 Optimized For Multi-Core High-Performance System

ANI 613 Optimized for Multi-Core ringn-r erjormance system				
			1: Enable	
13 R/W		I2S1_ADCL1_AGC_ENA		
	R/W	0x0	I2S1 ADC timeslot 1 left channel AGC enable	
13	N/ VV	UXU	0: Disable	
			1: Enable	
			I2S1_ADCR1_AGC_ENA	
12	D /\A/	0.0	I2S1 ADC timeslot 1 right channel AGC enable	
12	R/W	0x0	0: Disable	
			1: Enable	
			I2S2_ADCL_AGC_ENA	
4.4	D //A/	00	I2S2 ADC left channel AGC enable	
11	R/W	0x0	0: Disable	
			1: Enable	
			I2S2_ADCR_AGC_ENA	
40	D ()4/	0.0	I2S2 ADC right channel AGC enable	
10	R/W	0x0	0: Disable	
			1: Enable	
			I2S2_DACL_AGC_ENA	
	5 /44	0.0	I2S2 DAC left channel AGC enable	
9	R/W	0x0	0: Disable	
			1: Enable	
			I2S2_DACR_AGC_ENA	
	5 /44		I2S2 DAC right channel AGC enable	
8	R/W	0x0	0: Disable	
			1: Enable	
		1	ADCL_AGC_ENA	
_	D ///		ADC left channel AGC enable	
7	R/W	0x0	0: Disable	
			1: Enable	
			ADCR_AGC_ENA	
		0x0	ADC right channel AGC enable	
6	R/W		0: Disable	
			1: Enable	
5:0	R/W	0x0	Reserved	
	· -	1		

REG B5H_DAC DAP Enable Register

Default: 0x0000			Register Name: DAC_DAP_ENA
Bit	Read/Write	Default	Description
		0x0	I2S1_DACO_DRC_ENA
15	D /\A/		I2S1 DAC timeslot 0 DRC enable
15	R/W		0: Disable
			1: Enable

14	R/W	0x0	Reserved
			I2S1_DAC1_DRC_ENA
13	R/W	0x0	I2S1 DAC timeslot 1 DRC enable
15	K/ VV	UXU	0: Disable
			1: Enable
12	R/W	0x0	Reserved
		0x0	I2S2_DAC_DRC_ENA
11	R/W		I2S2 DAC DRC enable
11	N/ VV		0: Disable
			1: Enable
10:8	R/W	0x0	Reserved
			DAC_DRC_ENA
7	R/W	0x0	DAC DRC enable
'	N/ VV		0: Disable
			1: Enable
6:0	R/W	0x0	Reserved

REG B8H_SRC1 Control 1 Register

Default:	0x0000		Register Name: SRC1_CTRL1
Bit	Read/Write	Default	Description
15	R/W	0x0	SRC1_RATI_ENA SRC1 Manual setting ratio enable 0-disable 1-enable
14	R	0x0	SRC1_LOCK_STS SRC1 Ratio lock status 0-not locked 1-locked
13	R	0x0	SRC1_FIFO_OVR SRC1 FIFO Overflow status 0-normal 1-overflowed
12:10	R	0x0	SRC1_FIFO_LEV_[8:6] SRC1 FIFO Level high 3-bit
9:0	R/W	0x0	SRC1_RATI_SET_[25:16] Manual setting ratio high 10-bit

REG B9H_SRC1 Control 2 Register

Default: 0x0000			Register Name: SRC1_CTROL2
Bit	Read/Write	Default	Description
15:0	R/W 0x0	0.0	SRC1_RATI_StET_[15:0]
15:0		Manual setting ratio low 16-bi	

REG BAH_SRC1 Control 3 Register

Default: 0x0040			Register Name: SRC1_CTRL3
Bit	Read/Write	Default	Description
15.10	15:10 R 0x0	0.0	SRC1_FIFO_LEV_[5:0]
15.10		UXU	SRC1 FIFO Level low 6-bit
9:0	D	0x40	SRC1_RATI_VAL_[25:16]
9.0	R		Calculated ratio high 10-bit

REG BBH_SRC1 Control 4 Register

Default: 0x0000			Register Name: SRC1_CTRL4		
Bit	Read/Write	Default	Description		
15:0	R	0x0	SRC1_RATI_VAL_[15:0]		
15.0	K	UXU	Calculated ratio low 16-bit	_	

REG BCH_SRC2 Control 1 Register

Default: 0x0000			Register Name: SRC2_CTRL1
Bit	Read/Write	Default	Description
			SRC2_RATI_ENA
15	R/W	0x0	SRC2 Manual setting ratio enable
			0-disable 1-enable
			SRC2_LOCK_STS
14 R	0x0	SRC2 Ratio lock status	
	V N		0-not locked 1-locked
			SRC2_FIFO_OVR
13	R	0x0	SRC2 FIFO Overflow status
			0-normal 1-overflowed
13:10	2 :10 R	0x0	SRC2_FIFO_LEV_[8:6]
12.10			SRC2 FIFO Level high 3-bit
9:0	R/W	0x0	SRC2_RATI_SET_[25:16]
3.0			Manual setting ratio high 10-bit

REG BDH_SRC2 Control 2 Register

Default: 0x0000			Register Name: SRC2_CTRL2
Bit	Read/Write	Default	Description
15.0	15:0 R/W	0x0	SRC2_RATI_SET_[15:0]
15:0	n/ vv	UXU	Manual setting ratio low 16-bit

REG BEH_SRC2 Control 3 Register

Default: 0x0040			Register Name: SRC2_CTRL3
Bit	Read/Write	Default	Description
15.10	15:10 R 0x0	0.0	SRC2_FIFO_LEV_[5:0]
15.10		UXU	SRC2 FIFO Level low 6-bit
9:0	R 0x0	0.0	SRC2_RATI_VAL_[25:16]
9.0		UXU	Calculated ratio high 10-bit

REG BFH_SRC2 Control 4 Register

Default: 0x0000			Register Name: SRC2_CTRL4		
Bit	Read/Write	Default	Description		
15:0	R	0x0	SRC2_RATI_VAL_[15:0]		
15.0	K	UXU	Calculated ratio low 16-bit	_	

REG COH_RTC Analog Control Register

Default: 0x003F			Register Name: CLK32KOUT_ACTRL
Bit	Read/Write	Default	Description
15:8	R/W	0x00	Reserved
7	R/W	0x0	CLK32AP_OD_CTR CLK32KAP Output Pin Open Drain mode control 0: push-pull 1: reserved
6:4	R/W	0x3	VBG_TRM VIO_RTC Voltage trimming 0: 1.08V
3:2	R/W	0x3	XTAL_G xtal gain control 3: largest gain 0: smallest gain
1	R/W	0x1	XTAL_DEB xtal fater startup config 0: slower startup 1: faster startup
0	R/W	0x1	XTAL_EN xtal enable 0: xtal disable

	1: xtal enable			
	1. Atai Chabic			

REG C1H_CK32K Output Control Register 1

Default: 0x00e1			Register Name: CK32K_OUT_CTRL1		
Bit	Read/Write	Default	Description		
15:8	R/W	0x0	Reserved		
			CK32KAP_PRE_DIV		
			Pre-division after 4MHz input from ADDA.		
			000: 1		
			001: 2		
7:5	R/W	0x3	010: 4		
7.5	K/VV	UXS	011: 8		
			100: 16		
			101: 32		
			110: 64		
			111: 122(32KHz)		
			CK32KAP_MUX_SEL		
4	R/W	0x0	CK32KAP Output source select control.		
4	IV VV	UXU	0: 32KHz from RTC		
			1: 4MHz from ADDA		
			CK32KAP_POST_DIV		
			Post-division after clock selection.		
			000: 1		
			001: 2		
3:1	R/W	0x0	010: 4		
3.1	IV, VV	OAC .	011: 8		
			100: 16		
			101: 32		
			110: 64		
1			111: 128		
			CK32KAP_ENA		
0	R/W	0x1	CK32KAP Output enable control.		
	K/VV	OXI	0: Disable output		
			1: Enable output		

REG C2H_CK32K Output Control Register 2

Default: 0x0000			Register Name: CK32K_OUT_CTRL2
Bit	Read/Write	Default	Description
15:8	R/W	0x0	Reserved
7.5		0x0	CK32KBB_PRE_DIV
7:5	R/W		Pre-division after 4MHz input from ADDA.

	AN 013 Optimized for Marci Core riight resjoinfunce System			
			000: 1	
			001: 2	
			010: 4	
			011: 8	
			100: 16	
			101: 32	
			110: 64	
			111: 122(32KHz)	
			CK32KBB_MUX_SEL	
	5 /14/		CK32KBB Output source select control.	
4	R/W	0x0	0: 32KHz from RTC	
			1: 4MHz from ADDA	
		0x0	CK32KBB_POST_DIV	
			Post-division after clock selection.	
			000: 1	
			001: 2	
2.4	5 /14/		010: 4	
3:1	R/W		011: 8	
			100: 16	
			101: 32	
			110: 64	
			111: 128	
			CK32KBB_ENA	
	R/W	0x0	CK32KBB Output enable control.	
0			0: Disable output	
			1: Enable output	

REG C3H_CK32K Output Control Register 3

Default: 0x0000			Register Name: CK32K_OUT_CTRL3
Bit	Read/Write	Default	Description
15:8	R/W	0x0	Reserved
			CK32KMD_PRE_DIV
			Pre-division after 4MHz input from ADDA.
			000: 1
			001: 2
7:5	R/W	0x0	010: 4 011: 8
7.5	K/VV	UXU	
			100: 16
			101: 32
			110: 64
			111: 122(32KHz)
4	R/W	0x0	CK32KMD_MUX_SEL
4	IN VV	UXU	CK32KMD Output source select control.

-			<u> </u>
			0: 32KHz from RTC
			1: 4MHz from ADDA
			CK32KMD_POST_DIV
			Post-division after clock selection.
			000: 1
			001: 2
2.4	D //4/	0.0	010: 4
3:1	R/W	0x0	011: 8
			100: 16
			101: 32
			110: 64
			111: 128
			CK32KMD_ENA
	5 /14/	0.0	CK32KMD Output enable control.
0	R/W	0x0	0: Disable output
			1: Enable output

REG C6H_RTC Reset Register

Default: 0x0000			Register Name: RTC_RST_REG
Bit	Read/Write	Default	Description
15:8	wo	0x0	RTC_KEY_FIELD. RTC key field should be written at value 0x53. Writing any other value in this field aborts the write operation.
7:1	/	1	
0	R/W	ОхО	RTC_RESET. When this bit is set to 1, then all registers of time will be reset to default values. 0: No effect; 1: Reset relevant registers.

REG C7H_RTC Control Register

Default: 0x0000			Register Name: RTC_CTRL_REG
Bit	Read/Write	Default	Description
			RTC_SIM
			RTC simulation bit.
15	D /\A/	0.0	When this bit is set '1', the relevant registers will rolling-over faster,
15	R/W	0x0	such as second/minute/hour ext. 0: Normal mode,
			1: Simulation mode.
14:3	/	/	/
2	R/W	0x0	Error mode

			· · · · · · · · · · · · · · · · · · ·
			0 = Do not affect current Time/Week/Date
			1 = Set the wrong segment to max value
			RTC_STOP
			RTC stop bit.
	D //A/	00	When this bit is set '1', the relevant registers will stop rolling-over, such as second/minute/hour ext.
1	R/W	0x0	
			0: No stop,
			1: Stop rolling-over.
			12H_24H_MODE.
0	R/W	0x0	0: 12 hour mode.
			1: 24 hour mode.

REG C8H_RTC Seconds Register

Default: 0x0000			Register Name: RTC_SEC_REG
Bit	Read/Write	Default	Description
15:7	/	/	/
6:0	R/W	0x0	RTC_SEC These bits represent the current second value coded in BCD format. The value should be from 0 to 59. For example, if the [6:0] is '1011001', this represents the value 59.

REG C9H_RTC Minutes Register

Default: 0x0000			Register Name: RTC_MIN_REG
Bit	Read/Write	Default	Description
15:7	/	/	/
			RTC_MIN
6:0	R/W	0x0	These bits represent the current minute value coded in BCD format.
			The value should be from 0 to 59.

REG CAH_RTC Hours Register

Default: 0x0001			Register Name: RTC_HOU_REG
Bit	Read/Write	Default	Description
15:9	/	/	/
8			AM_PM_SEL
	D (M)	0.40	AM/PM select. 0: AM,
	R/W	0x0	
			1: PM.
7:6	/	/	/
5:0	R/W	0x1	RTC_HOU

These bits represent the current hour value coded in BCD format.
The value should be from 0 to 23.

REG CBH_RTC Weekdays Register

Default	Default: 0x0000		Register Name: RTC_WEE_REG
Bit	Read/Write	Default	Description
15:3	/	/	/
			RTC_WEE
			These bits represent the current weekday value coded in BCD
			format. The value should be from 0 to 6.
			000: Sunday
2.0	D /\A/	0.0	001: Monday
2:0	2:0 R/W	0x0	010: Tuesday
			011: Wednesday
			100: Thursday
			101: Friday
			110: Saturday

REG CCH_RTC Days Register

Default: 0x0001			Register Name: RTC_DAY_REG
Bit	Read/Write	Default	Description
15:6	/	1	
			RTC_DAY
5:0	R/W	0x1	These bits represent the current day value coded in BCD format.
	V		The value should be from 1 to 31.

REG CDH_RTC Months Register

Default: 0x0001			Register Name: RTC_MON_REG
Bit	Read/Write	Default	Description
15:5	/	/	/
			RTC_MON
4:0	R/W	0x1	These bits represent the current day value coded in BCD format.
			The value should be from 1 to 12.

REG CEH_RTC Years Register

Default:	Default: 0x0000		Register Name: RTC_YEA_REG
Bit	Read/Write	Default	Description

			LEAP_YEAR
			0: Not leap year
15	R/W	0x0	1: Leap year.
			This bit will not set by hardware. It should be set or clear by
			software.
14:8	/	/	1
			RTC_YEA
7:0	R/W	0x0	These bits represent the current day value coded in BCD format.
			The max value is 99(0x10011001).

REG CFH_RTC Update Trigger

Default	: 0x0000		Register Name: RTC_UPD_TRIG
Bit	Read/Write	Default	Description
			Time/Week/Date write trigger
15	D /\A/		0 = Nothing will happen.
15	15 R/W	0x0	1 = Writing a 1 to this bit will update the Time/Week/Date value.
			This bit will always be 0 when being read.
14:1	R/W	0x0	Reserved
			REG_C8H-REG_CEH Read control
0	R/W	0x0	0: Read the effective real time clock value
			1: Read the value of REG_C8H-REG_CEH written by host

REG D0H_Alarm Interrupt Enable Register

Default: 0x0000			Register Name: ALM_INT_ENA
Bit	Read/Write	Default	Description
15:1		/	/
	0 R/W 0x0		ALM_INT_ENA
0		0.0	Alarm interrupt enable.
		UXU	0: Alarm interrupt disable
			1: Alarm interrupt enable

REG D1H_Alarm Interrupt Status Register

Default: 0x0000			Register Name: ALM_INT_STA_REG
Bit	Read/Write	Default	Description
15:1	/	/	/
0			ALM_INT_STS
	R/W	0x0	Alarm interrupt status. Set 1 to this bit will clear it.
	N/ VV	UXU	0: Alarm interrupt is not pending;
			1: Alarm interrupt is pending.

REG D8H_Alarm Seconds Register

Default:	0x0000		Register Name: ALM_SEC_REG
Bit	Read/Write	Default	Description
			ALM_SEC_ENA
15	D /\A/	0x0	Second alarm enable bit.
15	R/W	UXU	0: Disable second alarm;
			1: Enable second alarm.
14:7	/	/	/
			ALM_SEC_SET
C.O	D /\A/	0.40	These bits represent the current second value coded in BCD format.
6:0	R/W	0x0	The value should be from 0 to 59.
			For example, if the [6:0] is '1011001', this represents the value 59.

REG D9H_Alarm Minutes Register

Default: 0x0000			Register Name: ALM_MIN_REG
Bit	Read/Write	Default	Description
15	R/W	0x0	ALM_MIN_ENA Minute alarm enable bit. 0: Disable minute alarm; 1: Enable minute alarm.
14:7	/	/	
6:0	R/W	0x0	ALM_MIN_SET These bits represent the current minute value coded in BCD format. The value should be from 0 to 59.

REG DAH_Alarm Hours Register

Default:	0x0001		Register Name: ALM_HOU_REG
Bit	Read/Write	Default	Description
			ALM_HOU_ENA
15	R/W	0x0	Hour alarm enable bit.
13	N/ VV	UXU	0: Disable hour alarm;
			1: Enable hour alarm.
14:9	/	/	1
		0x0	AM_PM_SEL
8	R/W		AM/PM select.
0	N/ VV		0: AM,
			1: PM.
7:6	/	/	1
5:0	R/W	0x1	ALM_HOU_SET

These bits represent the current hour value coded in BCD format.
The value should be from 0 to 23.

REG DBH_Alarm Weekdays Register

Default:	0x0000		Register Name: ALM_WEEK_REG	
Bit	Read/Write	Default	Description	
			ALM_WEE_ENA	
15	R/W	0x0	Week alarm enable bit.	
13	N/ VV	UXU	0: Disable hour alarm;	
			1: Enable hour alarm.	
14:3	/	/	/	
			ALM_WEE_SET	
			These bits represent the current weekday value coded in BCD	
			format. The value should be from 0 to 6.	
			000: Sunday	
2:0	R/W	0x0	001: Monday	
2.0	K/VV	UXU	Description ALM_WEE_ENA Week alarm enable bit. 0: Disable hour alarm; 1: Enable hour alarm. / ALM_WEE_SET These bits represent the current weekday value coded in BCD format. The value should be from 0 to 6. 000: Sunday	
			011: Wednesday	
			100: Thursday	
			101: Friday	
			110: Saturday	

REG DCH_Alarm Days Register

Default:	0x0001		Register Name: ALM_DAY_REG
Bit	Read/Write	Default	Description
			ALM_DAY_ENA
15	R/W	0x0	Day alarm enable bit.
13	K/VV	UXU	0: Disable day alarm;
			1: Enable day alarm.
14:6	/	/	/
			ALM_DAY_SET
5:0	R/W	0x1	These bits represent the current day value coded in BCD format.
			The value should be from 1 to 31.

REG DDH_Alarm Months Register

Default: 0x0001			Register Name: ALM_MON_REG
Bit	Read/Write	Default	Description
15	R/W	0.0	ALM_MON_ENA
15	K/VV	V 0x0	Month alarm enable bit.

			0: Disable month alarm;	
			1: Enable month alarm.	
14:5	/	/	/	
			ALM_MON_SET	
4:0	R/W	0x1	These bits represent the current day value coded in BCD format.	
			The value should be from 1 to 12.	

REG DEH_Alarm Years Register

Default: 0x0000			Register Name: ALM_YEA_REG
Bit	Read/Write	Default	Description
			ALM_YEA_ENA
15	R/W	0x0	Year alarm enable bit.
			0: Disable year alarm;
			1: Enable year alarm.
14:5	/	/	
7:0	R/W	0x0	ALM_YEA_SET
			These bits represent the current day value coded in BCD format.

REG DFH_Alarm Update Trigger

Default: 0x0000			Register Name: ALM_UPD_TRIG	
Bit	Read/Write	Default	Description	
15	R/W	0x0	Time/Week/Date write trigger	
			0 = Nothing will happen.	
			1 = Writing a 1 to this bit will update the alarm Time/Week/Date	
			value. This bit will always be 0 when being read.	
14:1	R/W	0x0	Reserved	
			REG_D8H-REG_DEH Read control	
0	R/W	0x0	0: Read the effective alarm setting value	
			1: Read the value of REG_D8H-REG_DEH written by host	

REG EOH-EFH RTC General Purpose Register n(n=0-15)

Default: 0x0000			Register Name: RTC_GP_REGn
Bit	Read/Write	Default	Description
15:0	R/W	0x0	RTC_GP_DATn
			These bits art used to save data.(n = 0^{15})

16 Package

Figure 16-1 shows the package dimension of AXP813(11mm x 11mm, 218-ball, BGA).

AXP813

AXP813 Optimized For Multi-Core High-Performance System

Figure 16-1 AXP813 Package

Order Information:

Table 16-1

Туре	Quantity	Part Number
Tray	pcs/Tray Trays/package	AXP813