Model selection

In this notebook we're going to analyse different techniques for model selection and afterwards we're going to discuss their shortcomings.

Selection criteria

First of all, we're going to look at different criteria to compare models based on their performance and complexity.

```
require(ISLR)

## Loading required package: ISLR

## Warning: package 'ISLR' was built under R version 3.6.3
head(Hitters)

## AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun
```

##	AtBat	Hits	HmRun	Runs	RBI	Walks	Years	CAtB	at CHits	CHmRun
## -Andy Allanson	293	66	1	30	29	14	1	2	93 66	1
## -Alan Ashby	315	81	7	24	38	39	14	34	49 835	69
## -Alvin Davis	479	130	18	66	72	76	3	16	24 457	63
## -Andre Dawson	496	141	20	65	78	37	11	56	28 1575	225
## -Andres Galarraga	321	87	10	39	42	30	2	3	96 101	12
## -Alfredo Griffin	594	169	4	74	51	35	11	44	08 1133	19
##	\mathtt{CRuns}	CRBI	CWalks	Leag	gue 1	Divisio	n Put(Outs .	Assists	Errors
## -Andy Allanson	30	29	14	:	Α		E	446	33	20
## -Alan Ashby	321	414	375	· •	N		W	632	43	10
## -Alvin Davis	224	266	263	}	Α		W	880	82	14
## -Andre Dawson	828	838	354	:	N		E	200	11	3
## -Andres Galarraga	48	46	33	3	N		E	805	40	4
## -Alfredo Griffin	501	336	194		Α		W	282	421	25
##	Salary	newI	League							
## -Andy Allanson	NA	1	A							
## -Alan Ashby	475.0)	N							
## -Alvin Davis	480.0)	Α							
## -Andre Dawson	500.0)	N							
## -Andres Galarraga	91.5	5	N							
## -Alfredo Griffin	750.0)	Α							

summary(Hitters)

##	AtBat	Hits	HmRun	Runs		
##	Min. : 16.0	Min. : 1	Min. : 0.00	Min. : 0.00		
##	1st Qu.:255.2	1st Qu.: 64	1st Qu.: 4.00	1st Qu.: 30.25		
##	Median :379.5	Median: 96	Median: 8.00	Median : 48.00		
##	Mean :380.9	Mean :101	Mean :10.77	Mean : 50.91		
##	3rd Qu.:512.0	3rd Qu.:137	3rd Qu.:16.00	3rd Qu.: 69.00		
##	Max. :687.0	Max. :238	Max. :40.00	Max. :130.00		
##						
##	RBI	Walks	Years	CAtBat		

```
## Min. : 0.00
                     Min. : 0.00
                                     Min. : 1.000
                                                       Min. : 19.0
  1st Qu.: 28.00
                    1st Qu.: 22.00
##
                                     1st Qu.: 4.000
                                                       1st Qu.: 816.8
                                     Median : 6.000
  Median : 44.00
                    Median : 35.00
                                                       Median: 1928.0
         : 48.03
                          : 38.74
                                            : 7.444
                                                       Mean : 2648.7
##
  Mean
                    Mean
                                     Mean
                                      3rd Qu.:11.000
##
   3rd Qu.: 64.75
                     3rd Qu.: 53.00
                                                       3rd Qu.: 3924.2
##
  Max.
         :121.00
                    Max. :105.00
                                     Max.
                                             :24.000
                                                       Max. :14053.0
##
                                                            CRBI
##
       CHits
                         CHmRun
                                          CRuns
##
   Min.
              4.0
                    Min.
                           : 0.00
                                     Min.
                                            :
                                                       Min.
                                                              :
                                                                  0.00
                                                1.0
##
   1st Qu.: 209.0
                     1st Qu.: 14.00
                                      1st Qu.: 100.2
                                                       1st Qu.: 88.75
   Median : 508.0
                     Median : 37.50
                                     Median : 247.0
                                                       Median: 220.50
         : 717.6
##
   Mean
                     Mean
                           : 69.49
                                      Mean
                                            : 358.8
                                                       Mean
                                                              : 330.12
##
   3rd Qu.:1059.2
                     3rd Qu.: 90.00
                                      3rd Qu.: 526.2
                                                       3rd Qu.: 426.25
##
   Max. :4256.0
                     Max. :548.00
                                      Max.
                                            :2165.0
                                                       Max.
                                                            :1659.00
##
##
        CWalks
                     League Division
                                          PutOuts
                                                           Assists
                                       Min. : 0.0
##
         : 0.00
                     A:175
                              E:157
                                                       Min. : 0.0
   Min.
   1st Qu.: 67.25
                     N:147
                              W:165
                                       1st Qu.: 109.2
                                                       1st Qu.: 7.0
  Median: 170.50
                                       Median : 212.0
##
                                                       Median: 39.5
##
   Mean : 260.24
                                       Mean
                                             : 288.9
                                                        Mean :106.9
##
   3rd Qu.: 339.25
                                       3rd Qu.: 325.0
                                                        3rd Qu.:166.0
          :1566.00
                                       Max.
                                             :1378.0
##
   Max.
                                                        Max. :492.0
##
##
       Errors
                        Salary
                                     NewLeague
##
  \mathtt{Min}.
          : 0.00
                   Min.
                          : 67.5
                                     A:176
  1st Qu.: 3.00
                   1st Qu.: 190.0
                                     N:146
## Median : 6.00
                   Median: 425.0
         : 8.04
## Mean
                   Mean
                          : 535.9
##
   3rd Qu.:11.00
                    3rd Qu.: 750.0
## Max. :32.00
                   Max.
                          :2460.0
##
                    NA's
                           :59
# removing the NA
dim(Hitters)
## [1] 322 20
Hitters<- na.omit(Hitters)</pre>
dim(Hitters)
## [1] 263 20
We're going to use cross-validation to compare the results from different selection criteria.
nfolds <- 10
n <- dim(Hitters)[1]
folds <- cut(1:n, nfolds, labels = F)</pre>
# a bit of shuffling
indices <- sample(1:n, size=n, replace=F)</pre>
library(leaps)
## Warning: package 'leaps' was built under R version 3.6.3
get.bss.test.error<- function(train, test, cv.best){</pre>
  # estimates the error on the test dataset for the best model
  # according to each criteria
 all.best<- regsubsets(x=Salary~.,data=train,nbest=1,
```

```
nvmax=dim(train)[2]-1, # using all variables
                         method="forward" )
  s <- summary(all.best)</pre>
  r2 <- coef(all.best, id=which.max(s$rsq))
  adjr2 <- coef(all.best, id=which.max(s$adjr2))</pre>
  cp <- coef(all.best, id=which.min(s$cp))</pre>
  bic <- coef(all.best, id=which.min(s$bic))</pre>
  cv.coefs <- coef(all.best, id=cv.best)</pre>
  # test predictions
  r2.pred <- model.matrix(Salary~.,test)[,names(r2)]%*%r2
  adjr2.pred <- model.matrix(Salary~.,test)[,names(adjr2)]%*%adjr2
  cp.pred <- model.matrix(Salary~.,test)[,names(cp)]%*%cp</pre>
  bic.pred <- model.matrix(Salary~.,test)[,names(bic)]%*%bic
  cv.pred <- model.matrix(Salary~.,test)[,names(cv.coefs)]%*%cv.coefs
  # test errors
  errors <- mean((r2.pred - test$Salary)**2)</pre>
  errors <- c(errors,mean((adjr2.pred - test$Salary)**2))</pre>
  errors <- c(errors,mean((cp.pred - test$Salary)**2))</pre>
  errors <- c(errors,mean((bic.pred - test$Salary)**2))</pre>
  errors <- c(errors,mean((cv.pred - test$Salary)**2))</pre>
  return(errors)
get.cv.error <- function(ncv, nmodels, data){</pre>
  # evaluates the mean cross-validation error of the linear model
  # with the selected coefficients
  n.cv <- dim(data)[1]
  folds.cv <- cut(1:n.cv, ncv, labels=F)</pre>
  cv.errors <- matrix(nrow = ncv, ncol = nmodels)</pre>
  indices.cv <- 1:n.cv</pre>
  for(j in 1:ncv){
    test.indices.cv <- indices.cv[folds.cv==j]</pre>
    test.cv <- data[test.indices.cv,]</pre>
    train.cv <- data[-test.indices.cv,]</pre>
    cv.all.best<- regsubsets(x=Salary~.,data=train.cv,
                                 nbest=1,nvmax=nmodels, # using all variables
                                 method="forward" )
     for(m in 1:nmodels){
       cv.coefs <- coef(cv.all.best, id=m)</pre>
       cv.preds <- model.matrix(Salary~.,test)[,names(cv.coefs)]%*%cv.coefs
       # test errors
       cv.errors[j,m] <- mean((cv.preds - test$Salary)**2)</pre>
  }
  # selecting the model with the least mean error
  # expected test MSE estimated by CV for each model
  return(which.min(colMeans(cv.errors)))
test.errors <- matrix(nrow=nfolds, ncol=5)</pre>
for(i in 1:nfolds){
```

```
test.indices <- indices[folds==i]</pre>
  test <- Hitters[test.indices,]</pre>
  train <- Hitters[-test.indices,]</pre>
  # Now we'll use BSS on the train dataset
  # And we'll record the error on the test set
  # get best cv model
  cv.best <- get.cv.error(ncv=5, nmodels=(dim(Hitters)[2]-1),data = train)</pre>
  test.errors[i,] <- get.bss.test.error(train=train, test=test, cv.best=cv.best)
Let's look at the results.
test.errors <- data.frame(test.errors)</pre>
names(test.errors) <- c("r2", "adjr2", "cp", "bic", "cv")</pre>
test.errors
             r2
                    adjr2
                                          bic
                                 ср
## 1 160378.72 143422.40 143422.40 159610.15 143422.40
## 2 80984.61 80957.27 83288.87 95476.85 79866.42
## 3 199024.56 204565.73 204565.73 205284.86 193625.86
## 4 88793.36 86079.44 86995.54 85359.33 85359.33
## 5 150460.62 141612.89 134504.21 137837.55 142262.61
## 6 114399.12 102855.15 100042.77 89121.79 97775.38
## 7 198900.94 208226.35 181812.81 168333.41 177456.26
     95930.56 93306.29 93306.29 75335.05 86151.64
## 8
       82647.53 81797.56 83679.26 93913.87 83031.22
## 10 56376.12 60188.58 60188.58 73283.04 53540.29
plot(1:10, test.errors$r2, type="l", lty="dashed", col=2, ylab="test error", main="cv MSE estimate ", l
lines(1:10, test.errors$adjr2, type="1", lty="dashed", col=3, lwd=2)
lines(1:10, test.errors$cp, type="1", lty="dashed", col=4, lwd=2)
lines(1:10, test.errors$bic, type="l", lty="dashed", col=5, lwd=2)
```

legend("topright", legend = c("r2", "adjr2", "cp", "bic", "cv"), col=c(2,3,4,5,6), lty="dashed")

lines(1:10, test.errors\$cv, type="1", lty="dashed", col=6, lwd=2)

cv MSE estimate


```
colMeans(test.errors)

## r2 adjr2 cp bic cv
## 122789.6 120301.2 117180.6 118355.6 114249.1

which.min(colMeans(test.errors))

## cv
## 5
```

So the cross validation criteria seems to be the most reliable in model selection. We'll now use this criteria to select the best model fitting it on the whole data.

```
best.cv <- get.cv.error(ncv=10, nmodels=(dim(Hitters)[2]-1), data=Hitters)
best.cv</pre>
```

[1] 2

Let's now look at the best model:

```
##
     (Intercept)
                          AtBat
                                          Hits
                                                        Walks
                                                                      CAtBat
##
    146.24960033
                    -1.93676754
                                    6.65672102
                                                   5.55204413
                                                                 -0.09953904
##
           CRuns
                           CRBI
                                        CWalks
                                                    DivisionW
                                                                     PutOuts
      1.25067124
                     0.66176849
                                   -0.77798498 -115.34950146
                                                                  0.27773062
##
```

Let's look at some plots to see how the best model is seen according to other criteria.

```
par(mfrow=c(2,2))
s <- summary(all.best)
# rss
plot(s$rss,xlab="Model size",ylab="RSS",type="l")
points(9, s$rss[9], col="red",cex=2,pch=20)
# adjr2
plot(s$adjr2,xlab="Model size",ylab="Adjusted RSq",type="l")
points(9, s$adjr2[9], col="red",cex=2,pch=20)
# Cp
plot(s$cp,xlab="Model size",ylab="Cp",type='l')
points(9, s$cp[9], col="red", cex=2, pch=20)
# BIC
plot(s$bic,xlab="Model size",ylab="BIC",type='l')
points(9, s$bic[9], col="red", cex=2, pch=20)</pre>
```



```
par(mfrow=c(1,1))
plot(all.best, scale="r2")
```


plot(all.best, scale="adjr2")

plot(all.best, scale="Cp")

plot(all.best, scale="bic")

Shrinkage methods

We'll now loook at a different set of selection tools: shrinkage methods like LASSO and RIDGE. We'll actually use the ElasticNet model, of which Lasso and RIdge are special cases.

require(hdi)

```
## Loading required package: hdi
## Warning: package 'hdi' was built under R version 3.6.3
## Loading required package: scalreg
## Loading required package: lars
## Loaded lars 1.2
data("riboflavin")
```

The riboflavin dataset records the riboflavin production by Bacillus subtilis together with the gene expressions. Each row refers to one gene, storing in x its expression level.

require(glmnet)

```
## Loading required package: glmnet
## Warning: package 'glmnet' was built under R version 3.6.3
## Loading required package: Matrix
## Loaded glmnet 3.0-2
```

```
attach(riboflavin)
lambda.grid <- grid <- 10^seq(10,-2, length = 100)
lasso <- glmnet(x = x, y=y, alpha = 1, lambda = lambda.grid)</pre>
ridge <- glmnet(x = x, y=y, alpha = 0, lambda = lambda.grid)</pre>
Exploration of the output:
dim(coef(lasso))
## [1] 4089 100
dim(coef(ridge))
## [1] 4089 100
lasso$lambda[50]
## [1] 11497.57
round(coef(lasso)[,50],2)[coef(lasso)[,50]!=0]
## (Intercept)
         -7.16
ridge$lambda[50]
## [1] 11497.57
round(coef(ridge)[,50],2)[round(coef(ridge)[,50],2)!=0]
## (Intercept)
The above lambda is too high to allow any value to be different from zero. Let's have a broader look at the
results with a plot:
plot(lasso)
## Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
## 'x' values
```


plot(ridge)

The above plots are a perfect synthesis of the differences between ridge and lasso: while ridge performs a "soft thresholding", slowly shrinking all variables to 0 as lambda increases, lasso performs a "hard thresholding", cutting off variables as they reach a certain threshold (determined by lambda).

plot(ridge, xvar="lambda")

How to use a model for predictions?

```
preds <- predict(lasso, s = 0.01, newx=riboflavin$x)
mse.train <- mean((riboflavin$y - preds)**2)
mse.train</pre>
```

```
## [1] 0.005253187
```

```
preds.lasso <- predict(lasso, s = grid, newx=riboflavin$x)
plot(log(grid), colMeans((riboflavin$y - preds.lasso)**2), col="red", main="Train MSE", type="l", ylab = preds.ridge <- predict(ridge, s = grid, newx=riboflavin$x)
lines(log(grid), colMeans((riboflavin$y - preds.ridge)**2), col="blue", type="l", ylab = "", lty="dashed")
legend("right", legend=c("lasso","ridge"), col=c("red","blue"), lty="dashed")</pre>
```

Train MSE

Now let's use cross validation to do both model assessment and model selection: we're going to select the best lasso and ridge models on a train dataset and evaluate them with a second cross-validation against hold-out sets.

```
nfolds <- 10
n <- dim(riboflavin)[1]</pre>
folds <- cut(1:n, breaks = nfolds, labels = F)</pre>
indices <- sample(1:n, size=n, replace = F)</pre>
res.cv <- matrix(nrow=10, ncol=4)
for(i in 1:nfolds){
  test.indices <- indices[folds==i]</pre>
  test <- riboflavin[test.indices, ]</pre>
  train <- riboflavin[-test.indices, ]</pre>
  ## model selection using cv on the train dataset
  ## LASSO
  lasso.cv <- cv.glmnet(x=train$x, y=train$y,</pre>
                          alpha = 1, lambda = lambda.grid, nfolds =10)
  lasso.lambda <- lasso.cv$lambda.min</pre>
  res.cv[i,1] <- lasso.lambda
  lasso.fit <- glmnet(train$x, train$y, alpha =1, lambda = lasso.lambda)</pre>
  ridge.cv <- cv.glmnet(x=train$x, y=train$y,</pre>
                          alpha = 0, lambda = lambda.grid, nfolds = 10)
  ridge.lambda <- ridge.cv$lambda.min
  res.cv[i,3] <- ridge.lambda</pre>
  ridge.fit <- glmnet(train$x, train$y, alpha =0, lambda = ridge.lambda)</pre>
```

```
## model assessment on the test dataset
 ## LASSO
 lasso.predict <- predict(lasso.fit, newx=test$x)</pre>
 lasso.error<- mean((test$y-lasso.predict)**2)</pre>
 res.cv[i,2]<-lasso.error
 ## RIDGE
 ridge.predict <- predict(ridge.fit, newx=test$x)</pre>
 ridge.error<- mean((test$y-ridge.predict)**2)</pre>
 res.cv[i,4]<-ridge.error</pre>
}
res.cv <- data.frame(res.cv)</pre>
names(res.cv) <- c("lambda lasso","error lasso","lambda ridge", "error ridge")</pre>
##
    lambda lasso error lasso lambda ridge error ridge
     ## 1
## 2
     ## 3
     0.04037017 0.3959881 8.1113083 0.39342692
     ## 4
## 5
     ## 6
     ## 7
     ## 8
## 9
     0.04037017 0.1396851
                        6.1359073 0.13475449
## 10
     par(mfrow=c(2,2))
hist(res.cv$`error lasso`, main="LASSO error")
hist(res.cv$`lambda lasso`, main="LASSO lambda")
hist(res.cv$`error ridge`, main="RIDGE error")
hist(res.cv$`lambda ridge`, main="RIDGE lamdba")
```


Not only the ridge presents a higher expected error on the test set, but it also has more variability in the lambda values. Therefore we're going to use Lasso, fitting it to the whole dataset.

```
lasso.cv <- cv.glmnet(x=x, y=y,alpha = 1, lambda = lambda.grid, nfolds =10)
plot(lasso.cv)</pre>
```



```
best.lambda <- lasso.cv$lambda.min
lasso.fit <- glmnet(x,y, alpha=1, lambda=best.lambda, thresh=1e-12)
sum(coef(lasso.fit)!=0)</pre>
```

[1] 41

In the final model only 41 of the initial >4000 genes are active.