СОЮЗ СОВЕТСКИХ СОЦИАЛИСТИЧЕСКИХ РЕСПУБЛИК

(19) SU (11) 1694684 A1

(51)5 C 22 C 38/50

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ ПРИ ГКНТ СССР

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

BUEUUKUMAN

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4774139/02

(22) 25.12.89

(46) 30.11.91. Бюл. № 44

(72) А.Г.Глазистов

(53) 669.14.018.252.2-194(088.8)

(56) Авторское свидетельство СССР

№ 715639, кл. C 22 C 38/50, 1980.

(54) СТАЛЬ

(57) Изобретение относится к области металлургии, в частности к стали, которая может быть использована для изготовления комбинированных сверл-зенкеров, работающих в условиях сверления с пульсирующей подачей для ломки стружки отверстий диаметром до 70 мм и глубиной 85 мм в донной части цилиндричедеталей типа стаканов из нвысокопрочновязких сталей. Цель - повышение при температуре 690°C красностойкости, ударной вязкости, критического коэффициента интенсивности напряжения,

коэффициента теплопроводности, термической усталости, технологичности при ковке и шлифовке. Предложенная сталь дополнительно содержит бориды вольфрама, карбиды гифния, натрий, эрбий, рений, родий при следующем соотношении компонентов. мас. %: 0,98-1,20 углерода; 0,5-0,7 кремния; 0,7-0,9 марганца; 3,1-4,0 хрома; 3,4-4,4 молибдена; 4,6-5,7 вольфрама; 2,4-3,3 ванадия; 0,2-0,3 титана; 0,8-1,2 никеля; 0.15-0.30 циркония; 0.10-0.16 церия; 0.11-0,20 боридов вольфрама; 0,09-0,14 карбидов гафния; 0,06-0,14 натрия; 0,08-0,17 эрбия; 1,1-1,74 рения; 0,14-0,22 родия; железо - остальное. Предложенная сталь может быть использована для изготовления сверл-зенкеров, концевых фрез, работающих в условиях резания с пульсирующей подачей для ломки стружки, для обработки деталей из высокопрочновязких сталей. 2 табл.

Изобретение относится к области металлургии, в частности к области производства сталей, которые могут быть использованы для изготовления комбинированных сверл-зенкеров, работающих в условиях сверления с пульсирующей подачей для ломки стружки отверстий диаметром до 70 мм и глубиной 85 мм в донной части цилиндрических деталей типа стаканов из высокопрочновязких сталей.

Известна сталь, содержащая, мас. %:

Углерод	0,35-1,5
Кремний	0∘1−2,0
Марганец	0,1-1,5
Хром	2,0-10,0
Молибден	0,5-1,2

Вольфрам	0,5-23,0
Ванадий	0,5-5,0
Ниобий	0,1-5,0
По крайней мере один	•
из металлов группы	
редкоземельных	•
металлов	0,005-0,6
а также	
Либо кобальт	1,0-20,0
Либо бор	0,001-0,050
и /или/ титан	≤ 2,0 и /или/
Цирконий	< 2,0 /или/
Гафний	< 2,0 и /или/
Иттрий	< 2.0 и /или/
Азот	< 0,3
Железо	Остальное

Эта сталь обладает удовлетворительными уровнями красностойкости при 690°С. ударной вязкости при 20°C и поэтому может быть использована для изготовления комбинированных сверл-зенкеров. Однако эта сталь обладает низкими значениями термической усталости, критического коэффициента интенсивности напряжения при 20°C, коэффициента теплопроводности, что отрицательно сказывается на эксплуатацион- 10 ной стойкости инструмента: инструмент по причине низкого уровня термической усталости, критического коэффициента интенсивности напряжения преждевременно выходит из строя по хрупкому разрушению, а по причине низкого коэффициента теплопроводности происходит медленный отвод тепла от режущих кромок, из-за чего лезвие инструмента перегревается, происходит его затупление и смятие. Кроме этого, сталь имеет низкую технологичность при ковке и шлифовке, из-за чего возрастает стоимость изготовления инструмента. Следует отметить, что сталь для комбинированных сверлзенкеров должна иметь высокий уровень ударной вязкости, красностойкости при температуре 690°С, термической усталости, а также иметь высокие значения критического коэффициента интенсивности напряжения, коэффициента теплопроводности, так как сверление деталей из высокопрочновязких сталей производится при тяжелонагруженных работах инструмента в пульсирующем режиме, для ломки стружки, иначе стружка обматывает инструмент и обрабатываемую деталь, что угрожает безопасности оператору, а также приводит к преждевременному затуплению инструмента и снижению производительности станка. Кроме того, сталь должна иметь высокую 40 технологичность при ковке и шлифовке, что положительно сказывается на снижении стоимости изготовления инструмента. Поэтому ее применение ограничено для комбинированных сверл-зенкеров для сверления 45 отверстий диаметром до 70 мм и глубиной 85 мм в донной части цилиндрических деталей типа стаканов из высокопрочновязких сталей.

Целью изобретения является устранение указанных недостатков. В основу изобретения поставлена задача создать сталь с таким
составом входящих в нее компонентов и их
соотношением, которые обеспечили бы ей
при высокой технологичности при ковке. 55
шлифовке достаточно высокие уровни ударной вязкости при 20°С, критического коэффициента интенсивности напряжения 20°С,
красностойкости при 690°С, термической
усталости, коэффициента теплопроводно-

сти по сравнению со сталями аналогичного назначения. Для достижения указанной цели в сталь, в состав которой входят углерод, кремний, марганец, хром, молибден, вольфрам, ванадий, титан, никель, цирконий, церий, железо, дополнительно вводят бориды вольфрама, карбиды гафния, натрий, эрбий, рений, родий /физическое состояние их твердое/.

Предлагаемая сталь отличается от известной:

1. Дополнительным содержанием карбидов гафния от 0,09 до 0,14 мас. %. Карбиды гафния, введенные в указанном количестве, обеспечивают в стали при литье при высокой температуре 1600-1780°C равномерное распределение карбидов гафния, которые являются зародышами для дальнейшего выделения дисперсных карбидов хрома, молибдена, вольфрама, ванадия, титана, циркония и получения в последующем после ковки и термической обработки структуры с равномерным распределением дисперсных карбидов, что в итоге повышает красностойкость при 690°C, технологичность при шлифовке. Уменьшение содержания карбидов гафния менее 0,09 мас.% снижает эффективность их в стали по измельчению карбидов хрома, молибдена, вольфрама, ванадия, титана, циркония и равномерности их распределения в стали, что отрицательно сказывается на снижении красностойкости при температуре 690°C и технологичности при шлифовке. Увеличение содержания карбидов гафния более 0.14 мас. % приводит в стали к крупным скоплениям карбидов гафния, вследствие этого образуется неравномерное распределение карбидов хрома, молибдена. вольфрама, ванадия, титана, циркония, которые слабо связаны с матрицей металла и быстро выкрашиваются, в результате чего снижается технологичность при шлифовке и ковке. Кроме того, крупные скопления карбидов гафния и неравномерное распределение карбидов хрома, молибдена. вольфрама, ванадия, титана, циркония снижает уровни ударной вязкости и критическо-ГΟ коэффициента интенсивности напряжения.

2. Дополнительным содержанием боридов вольфрама от 0,11 до 0,20 мас. %. Бориды вольфрама, введенные в указанных количествах, обеспечивают в стали измельчение зерна и структурных фаз при термической обработке, что повышает термическую усталость, красностойкость, коэффициент теплопроводности. Уменьшение содержания боридов вольфрама менее 0.11 мас. % снижает эффективность их как измельчителя зерен и структурных фаз при термической обработки, в результате чего уменьшается термическая усталость, красностойкость, коэффициент теплопроводности. Увеличение содержания боридов вольфрама более 0,20 мас. % приводит в стали к крупным скоплениям боридов вольфрама, а также приводит к образованию сложных хромомолибденовольфрамованадиевотитаноцирконийборидовольфрамовых 10 окислов в виде пленок по границам зерен, что в совокупности приводит к снижению ударной вязкости, коэффициента теплопроводности, критического коэффициента интенсивности напряжения, красно- 15 стойкости при температуре 690°C.

3. Дополнительным содержанием родия от 0,14 до 0,22 мас. %. Родий, введенный в указанном количестве, усиливает образование тонкораспределенных выделившихся 20 карбидов хрома, молибдена, ванадия, вольфрама, титана, циркония, что приводит к повышению термической усталости, коэффициента теплопроводности, технологичности при шлифовке. Уменьшение содержания родия 25 менее 0,14 мас.% не приводит к образованию тонкого распределения частиц карбидов хрома, молибдена, ванадия, вольфрама, титана, циркония, что отрицательно сказывается на снижении термической усталости, 30 коэффициента теплопроводности и технологичности при шлифовке. Увеличение содержания родия более 0,22 мас. % приводит к образованию по границам зерен в виде хрупких пленок соединения FeRh, что отри- 35 цательно сказывается на снижении ударной вязкости, критического коэффициента интенсивности напряжения, коэффициента теплопроводности, технологичности при

4. Дополнительным содержанием рения от 1,1 до 1,74 мас. %. Рений, введенный в указанных количествах, обеспечивает в стали равномерное распределение дисперсных карбидов рения, а также перераспре- 45 деление кислорода и образование сложных молибденовольфрамованадиевотитаноцирконийрениевых окислов в виде глобулей, располагающихся в теле зерен, что в совокупности приводит к повышению 50 термической усталости, красностойкости, технологичности при ковке. Уменьшение содержания рения менее 1,1 мас. % приводит к уменьшению карбидов рения в стали, а также количества глобулярных сложных мо- 55 либденовольфрамованадиевотитаноцирконийрениевых окислов, располагающихся в теле зерен, что в итоге приводит к снижению термической усталости, красностойкости, технологичности при ковке. Увеличение

содержания рения более 1,74 мас. % приводит к образованию сложных молибденовольфрамованадиевотитаноцирконийрениевых окислов в виде пленок по границам зерен, в результате чего снижается ударная вязкость, критический коэффициент интенсивности напряжения, коэффициент теплопроводности. Кроме того, увеличение содержания рения более 1,74 мас. % вызывает стабилизацию феррита, из-за чего образуется неполнота фазовых приращений при нагреве стали под закалку, что отрицательно сказывается на снижении красностойкости.

5. Дополнительным содержанием эрбия от 0,08 до 0,17 мас. %. Эрбий, введенный в указанном количестве, взаимодействует с серой, оказывает десульфирующее влияние, а также является эффективным глобулярозатором неметаллических включений, придавая им компактную округлую форму небольшой протяженности, что в итоге положительно сказывается на увеличении термической усталости, технологичности при шлифовке, ударной вязкости, критического коэффициента интенсивности напряжения. Уменьшение содержания эрбия менее 0,08 мас. % неэффективно, так как снижение содержания эрбия снижает десульфирующее влияние и снижается его роль как глобуляризатора неметаллических включений, что отрицательно сказывается на снижении ударной вязкости, критического коэффициента интенсивности напряжения, термической усталости, технологичности при шлифовке. Увеличение содержания эрбия более 0.17 мас.% также нежелательно, так как будет иметь место загрязнение металла сложными многофазными включениями. При этом за счет увеличения остаточного эрбия в расплаве заметно возрастает склонность стали к повторному окислению и загрязненность стали увеличивается, в результате чего ударная вязкость, термическая усталость, критический коэффициент интенсивности напряжения, технологичность при шлифовке снижаются.

6. Дополнительным содержанием натрия от 0,06 до 0,14 мас. %. Натрий, введенный в указанном количестве, усиливает общую десульфурацию стали, уплотняет структуру вблизи зерен, очищает границы зерен от обогащения фосфором и карбидных выделений, что в совокупности повышает коэффициент теплопроводности, критический коэффициент интенсивности напряжения, технологичности при ковке. Уменьшение содержания натрия менее 0,06 мас. % неэффективно, так как снижение содержания повышает рыхлость

структуры вблизи зерен, не очищает границы зерен от обогащения фосфором и карбидными выделениями, что приводит к снижению коэффициента теплопроводности, критического коэффициента интенсивности напряжения, термической усталости, технологичности при ковке. Увеличение содержания натрия более 0,14 мас. % приводит к уменьшению коэффициента теплопроводности, критического коэффициента интенсивности напряжения, технологичности при ковке и шлифовке из-за повышенной загрязненности стали окислами натрия типа X(Na₂O) · Y(MnO) · Z(Cr₂O₃) в результате повторного окисления натрия и его сое- 15 динений.

Приведенное содержание углерода (0,98-1,2 мас.%) обеспечивает стали при температуре 690°C высокую красностойкость и технологичность при ковке. Указан- 20 ное содержание кремния (0,5-0,7 мас.%) обеспечивает стали высокие уровни ударной вязкости, критического коэффициента интенсивности напряжения, технологичности при шлифовке. Введение в сталь 25 марганца в пределах 0,7-0,9 мас. % обеспечивает стали высокую технологичность при ковке. Введение в сталь хрома в пределах от 3,1 до 4,0 мас. %, титана от 0,2 до 0,3 мас.%, циркония от 0,15 до 0,30 мас.% повышает термическую усталость, технологичность при шлифовке и коэффициент теплопроводности. Введение в сталь никеля в пределах 0,8-1,2 мас. %, церия в пределах уровни ударной вязкости, критического коэффициента интенсивности напряжения и коэффициента теплопроводности. Указанное содержание вольфрама (4,6-5,7 мас.%), молибдена /3,4-4,4 мас.%/, ванадия /2,4- 40 3,3 мас. % /, титана /0,2-0,3 мас. % / повышает красностойкость, термическую усталость. Основным компонентом стали является железо, но кроме указанных легирующих элементов в ней содержатся примеси, мас. %: 45 серы до 0,03; фосфора до 0,03; меди до 0,20. Наиболее эффективно сталь, согласно изобретения, может быть использована для изготовления комбинированных сверлзенкеров, работающих в условиях сверле- 50 ния, с пульсирующей подачей для ломки стружки, отверстий диаметром до 70 мм и глубиной 85 мм в донной части цилиндрических деталей типа стаканов из высокопрочновязких сталей. Для пояснения 55 изобретения приведены примерные составы сталей со ссылками на таблицу. Сталь, согласно изобретению, выплавляют в электропечах по известным способам выплавки инструментальных сталей на обычных ших-

товых материалах с соответствующим содержанием ингредиентов. Для подтверждения того, что заявленная сталь в соответствии с формулой изобретения обеспечивает достижение поставленной цели приводим для сравнения плавки 6-8 конкретного выполнения с граничными и оптимальным значениями всех ингредиентов, входящих в состав известной стали /прототипа/ с полученными по каждому из них механико-технологическими свойствами в процессе их испытания на образцах того же типа и при тех же одинаковых условиях их изготовления и испытания, что и заявляемой стали (плавки 1-5). Химический состав плавок 1-8 приведен в табл.1.

Состав плавки (см.табл.1) не обеспечивает стали высокой красностойкости: красностойкость оценивали по твердости (твердость замеряли на приборе ТК-2 по шкале C при температуре 20°C)на шлифованых (с параметром: шероховатости R = 0,32 мкм по ГОСТ 2789-73) образцах диаметром 70 мм и высотой 20 мм, вырезанных электроэрозионным попособом из термически упрочненных (закалка с температуры 1200°C с выдержкой 10,4 мин, охлаждение в масле и трехкратный отпуск при температуре 575°C продолжительностью каждого отпуска 1,2 ч) заготовок диаметром 70 мм и длиной 85 мм, прошедшие дополнительный отпуск при температуре 690°С продолжительностью 7,5 ч. Красностойкость стали данного состава составляет 58,9 ед. 0,1-0,16 мас. % обеспечивает стали высокие 35 HRC. Сталь указанного состава при температуре 20°C имеет низкую ударную вязкость, равную 284 кДж/м². Ударную вязкость определяли на шлифованных до параметра шероховатости R_d = 0,32 мкм по ГОСТ 2789-73 образцах II типа по ГОСТ 9454-78 при V-виде концентратора (R = 0,25 мм), вырезанных электроэрозионным способом с поверхности заготовок диаметром 70 мм и длиной 85 мм, прошедших закалку от температуры 1200°с с выдержкой 10.4 мин, охлаждение в масле и трехкратный отпуск при температуре 575°C продолжительностью каждого отпуска 1,2 ч. Испытания производили на копре с запасом работы маятника 147 Дж. Сталь указанного состава при температуре 20°C имеет низкий критический коэффициент интенсивности напряжения, равный 398 кгс/мм^{3/2}. Критический коэффициент интенсивности напряжения определяли на призматических образцах малого размера 15х20х150 мм. прошедших термическое упрочнение (закалка с температуры аустенитизации 1200°С с выдержкой 3,5 мин, охлаждение в масле с последующим трехкратным отпуском

при температуре 575°С продолжительностью каждого отпуска 1,2 ч). Наведение усталостной трещины на образцах производили после термического упрочнения. Образцы шлифовали до параметра шероховатости $R_a = 0.32$ 5 мкм по ГОСТ 2789-73. Испытания образцов проводили на копре с запасом работы маятника 147 Дж при 20°С. В процессе испытания определяли полную работу разрушения /А, Дж/ и непосредственно на изломе длину исходной усталостной трещины (I, мм), эти данные были исходными для вычисления характеристики Кьс по формуле

$$K_{LC} = \sqrt{\frac{E \cdot A \cdot t}{(L - \delta)^2 \cdot t + B^2 (2.94 - 4.46 \/B)}}$$

где E и δ – соответственно модуль упругости и коэффициент Пуассона. В, t и th высота, номинальная толщина и толщина 20 образца в нетто-сечении. Сталь указанного состава имеет низкую термическую усталость, равную 7935 циклов. Термическую усталость определяли на шлифованных до параметра шероховатости R = 0.32 мкм по ГОСТ 2789-73 образцах диаметром 20 мм и длиной 55 мм, вырезанных электроэрозионным способом с поверхности заготовок диаметром 70 мм и длиной 85 мм, прошедших закалку от температуры 1200°C с выдержкой 10,4 мин, охлаждение в масле и трехкратный отпуск при 575°С продолжительностью каждого отпуска 1,2 ч. Испытания на термическую усталость производили по методике, описанной Ю.А.Геллер "Инструментальные стали", М.: Металлургия, 1983 г. с. 67-69. Для определения термической усталости образцы нагревали токами высокой частоты на установке ЛПЗ-67.В (частота тока 60-74 кГц) на глубину 1,2—1,5 мм. Термический -40 цикл включал нагрев образцов до температуры 690°C на глубину 1,2-1,5 мм в течение 8 с и охлаждения в масле до 20°C. Через каждые 10 термических циклов образцы зачищали и исследовали на наличие трещин. 45 Термическая усталость определялась по числу термических циклов до образования первой трещины. Сталь указанного состава имеет низкую технологичность при шлифовке, оцененную по коэффициенту 50 шлифуемости /G/, равную 8,6. Коэффициент шлифуемости /см. книгу И. Артингер "Инструментальные стали и их термическая обработка", М.: Металлургия, 1982 г., с. 77-78/ рассчитывали по формуле: 55 $G = \frac{Q_1 - Q_2}{P_1 - P_2}$, где G-коэффициент шлифуемости; Q1 и Q2 - масса металла образца соответственно до и после шлифовки, г; Р1

и Р2 - масса шлифовального круга соответственно до и после шлифования, г. Для определения коэффициента шлифуемости производили шлифование при 20°С продольными проходами образца вырезанных электроэрозионным способом с поверхности заготовок диаметром 70 мм и длиной 85 мм, прошедших закалку от температуры аустенитизации 1200°С с выдержкой 10,4 мин, охлаждение в масле и трехкратный отпуск при температуре 575°C продолжительностью каждого отпуска 1,2 ч. Образец длиной 85 мм с поверхностью шероховатости Ra = 0,32 мкм по ГОСТ 2789-73 шлифова-15 ли с диаметра 15 мм на диаметр 10 мм, кругом шлифовальным ПП150×20×32 24A 40СМ7К5 35 м/с 1 кл. АГОСТ 2424-75 при глубине шлифования 0,03 мм, продольной подаче 4 мм, окружной скорости шлифовального круга 15,76 м/с; скорость образца (заготовки) 40 обкат/мин; охлаждение при шлифовании производили 1,5% эмульсией из эмульсола марки Э-1/А/. Поверхность шероховатости образца после шлифовки имела R_a = 0,32 мкм по ГОСТ 2789-73. Взвешивание образцов производили на весах ВЛА-200 г-М, а шлифовального круга на весах ВЛТ-6. Сталь указанного состава имеет низкую технологичность при ковке - "тяжело" куется. Технологичность при ковке оценивали по способности к деформации в ковочном интервале температур (температура начала ковки 1160°C, температура окончания ковки 920°C, охлаждение после ковки со скоростью 40 град/ч до 20° С) и по наличию или отсутствия трещин в прутках диаметром 15 мм. Заготовки сечением 70 х 100 мм, длиной 240 мм нагревали в кузнечной нагревательной печи до темпера-. туры 1160°C и проковывали под молотом БШ-350 на круг диаметром 15 мм. При этом температура конца ковки соответствовала допустимой 920°C. Способность к ковке оценивалась по трехбалльной шкале:куется "очень тяжело" - при наличии трещин в количестве одной: куется "тяжело" - при наличии одной трещины: куется "легко" - при отсутствии трещины. Сталь указанного состава имеет низкий коэффициент теплопроводности 0,089971 кал/см^оС-с. Коэффициент теплопроводности определяли на образцах диаметром 50 мм и длиной 190 мм. прошедших термическое упрочнение (закалка с температуры аустенитизации 1200°с с выдержкой 9,8 мин, охлаждение в масле с последующим трехкратным отпуском при 575°С продолжительностью каждого отпуска 1,2 ч). Образцы со всех сторон шлифовали до параметра шероховатости R_a = 0,32 мкм по ГОСТ 2789-73. Для определения коэффициента теплопроводности в образце вдоль вертикальной оси с торца головки на глубину 60 мм высверливали отверстие диаметром 30 мм, в которое устанавливали электронагреватель диаметром 20 мм, высотой 50 мм и закрывали сверху торец головки образца шайбой диаметром 50 мм и высотой 15 мм из испытуемого материала образца. В образце от торца головки на расстоянии 90 и 140 мм производили перпендикулярно вертикальной оси образца на глубину 25 мм сверление диаметром 6 мм, в которое ко дну отверстия приваривали с помощью тока разряда конденсаторных батарей диаметром 0,2 мм платино-платинорадиевые термопары. Образцы в собранном виде вертикально головкой вверх помещали через днище, в цилиндрическую камеру с внутренним диаметром 200 мм, внутренней высотой 300 мм 20 и толщиной стенки 10 мм. Нижний торец образца крепился в днище камеры с обеих сторон с помощью телескопических в виде усеченного конуса крепежно-уплотнительного устройства с теплоизоляционными 25 манжетами. Образец устанавливали так, чтобы сверление под нижнюю термопару было на уровне 10 мм от внутренней стороны днища цилиндрической камеры, а нижний торец образца выходил за пределы 30 наружной стороны камеры на 30 мм. Образец охлаждался снизу путем помещения всей нижней части камеры / днища / в ванну с водой с температурой 20°C (камера ставилась в ванну на пустотелые ножки). Нагрев 35 головки образца производили до 400°C. длительность испытания 20 мин. Разность температур, расстояние между приваренными к образцу термопарами, площадь поперечного сечения образца между 40 термопарами, расходуемая мощность в печи головки образца, время испытания были исходными данными для вычисления коэффициента теплопроводности по формуле

 $Q \cdot I$ $\lambda = \frac{1}{S \cdot (t_1 - t_2) \cdot \tau},$

где 1- коэффициент теплопроводности, кад/см. о С-с; Q - количество теплоты, кал; 1 - расстояние между верхней и нижней термопарой, см: S - площадь поперечного се- 50 чения образца между верхней и нижней термопарами, cm^2 ; t_1 и t_2 — показания температуры соответственно в верхней и нижней термопарах, °C; т - длительность испытатеплопроводности описана в книге Б.Г.Лившица "Физические свойства металлов и сплавов", М.: Машгиз, 1956 г., с. 240-241, рис.192/. Состав плавки 2 при рассмотренных методах испытаний, режимах термиче-

ской обработки обеспечивает стали высокие уровни красностойкости /60,2 ед.HRC/. ударной вязкости (354 кДж/м²), критического коэффициента интенсивности напряжения (449 кгс/мм $^{3/2}$), коэффициента теплопроводности (0.09552 кал/см.°С.с). термической усталости (9065 циклов), технологичности при ковке и шлифовке (11,1). Состав плавки 3 при рассмотренных методах испытаний, режимах термообработки обеспечивает стали высокие уровни красностойкости /61,9 ед.HRC/, ударной вязкости /331 к $Дж/м^2$ /, критического коэффициента интенсивности напряжения /425 кгс/мм^{3/2}/, коэффициента теплопроводности /0,09040 кал/см. оС.с/, термической усталости (8675 циклов), технологичности при ковке (легко куется) и шлифовке (10,3). Состав плавки 4 при рассмотренных методах испытаний, режимах термической обработки обеспечивает стали высокие уровни красностойкости (62,8 ед.HRC), ударной вязкости (306 кДж/м²), критического коэффициента интенсивности напряжения (405 кгс/мм^{3/2}), коэффициента теплопроводности (0,089760 кал/см . ОС.с), термической усталости (8241 циклов), технологичности при ковке (легко куется) и шлифовке (9,8). Состав плавки 5 при рассмотренных методах испытаний, режимах термической обработки не обеспечивает стали высоких уровней красностойкости (59,9 ед. HRC), ударной вязкостин (268 $\kappa Дж/м^2$), критического коэффициента интенсивности напряжения (376 кгс/мм^{3/2}), коэффициента теплопроводности (0,083410 кал/см. оС.с), термической усталости (7614 циклов), технологичности при ковке (тяжело куется) и шлифовке (9,04). Состав плавки 6 при рассмотренных методах испытаний, режимах термообработки не обеспечивает стали высоких уровней красностойкости /57,2 ед.HRC/, ударной вязкости **(**245) кгс/мм²), критического коэффициента ин-45 тенсивности напряжения (354 кгс/мм^{3/2}); коэффициента теплопроводности (0,079450 кал/см. ОС⋅с), термической усталости /7411 циклов/, технологичности при ковке (тяжело куется) и шлифовке (8,2). Состав плавки 7 при рассмотренных методах испытаний, режимах термической обработки не обеспечивает стали высоких уровней красностойкости (58,1 ед. HRC), ударной вязкости (224 кДж/м²), критического коэффициента ния, с. /методика испытания коэффициента 55 интенсивности напряжения (327 кгс/мм^{3/2}). коэффициента теплопроводности (0.076354 кал/см₊°С∙с), термической усталости (7116 циклов), технологичности при ковке (тяжело куется) и шлифовке (7,3). Состав плавки 8 при рассмотренных методах испытаний, режимах термической обработки не обеспечивает стали высоких уровней красностойкости (59,2 ед. HRC), ударной вязкости (200 кДж/м²), критического коэффициента интенсивности напряжения (308 кгс/мм³/²), коэффициента теплопроводности (0,072244 кал/смъ°С•с), термической усталости /6979 циклов/, технологичности при ковке (очень тяжело куется) и шлифовке (6,8).

Механические свойства заявляемой стали представлены в табл.2 в сопоставлении со сталью известного состава.

Заявляемая сталь, как видно из таблицы, состава плавок 2,3,4 при высоких значениях при температуре испытания 690°С красностойкости обладает высокими уровнями ударной вязкости, критического коэффициента интенсивности напряжения, коэффициента теплопроводности, термической усталости, технологичности при ковке и шлифовке.

Применение предлагаемой стали для комбинированных сверл-зенкеров, работающих в условиях сверления с пульсирую- 2 щей подачей для ломки стружки отверстий диаметром до 70 мм и глубиной 85 мм в донной части цилиндрических деталей типа стаканов из высокопрочновязких сталей, приводит к увеличению стойкости инструмента и позволяет получить ожидаемый годовой экономический эффект на одном виде инструмента в размере 2631,2 руб. Заявляемая сталь прошла испытания на предприя-

тии и рекомендована руковрдством предприятия к внедрению.

Формула изобретения

Сталь, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, ванадий, титан, никель, цирконий, церий и железо, о т л и ч а ю щ а я с я тем, что, с целью повышения при температуре 690°С красностойкости, ударной вязкости, критического коэффициента интенсивности напряжения, коэффициента теплопроводности, термической усталости, технологичности при ковке и шлифовке, она дополнительно содержит бориды вольфрама, карбиды гафния, натрий, эрбий, рений, родий при следующем соотношении компонентов, мас. %:

		~ - 1 · · · · · · · · · · · · · · · · · ·
	Углерод	0,98-1,20
-	Кремний	0.5-0.7
	Марганец	0,7-0,9
20	Хром	3,1-4,0
	Молибден	3,4-4,4
	Вольфрам	4,6-5,7
	Ванадий	2,4-3,3
	Титан	0,2-0,3
25	Никель	0.8-1.2
	Цирконий	0,15-0,30
	Церий	0,10-0,16
	Бориды вольфрама	0,11-0,20
	Карбиды гафния	0,09-0,14
30	Натрий	0,06-0,14
	Эрбий	0.08-0.17
	Рений	1,1-1,74
	Родий	0,14-0,22
	Железо	Остальное
35		

[лая— к е					_		Содержание элементов, нас.Х							•				
1	Угле- род		Мар- ганец		Мо~ либ− лен	Жольф- ран	Кана- дий			Кир− коний		тфилов	Карби— ды гаф— ния	Натрий	Эрбий	Рений	Родий	Железо
3 4 6	1,09 1,20 1,35 1,415	0,6 0,7 0,2 0,3	0,8 0,9 0,2 0,3	4,0 3,8	3,9 4,4 2,8 3,2	5,7 8,0	2,85 3,3 3,5 4,0	0,25 0,3 0,1 0,15	1,0 1,2 0,2 0,3	0,225 0,30 0,1 0,175		0,20 - -	0,115	0,10	0,08 0,125 0,17		0,14 0,18 0,22	Остальное

таблица 2

Плав- ка	Красно- стой- кость HRC	вязкость	Критичес- кий коэф- фициент интенсив- ности напряже- ния, 3/2 кгс/мм	Коэффици— ент тепло— проводности, кал/см. С·с	_	гичность	Коэффи- циент шиифуе- мости
2	60,2	354	449	0,09552	9065	Jierko	11,1
3	61,9	331	425	0,09040	8675	Jierкo	10,3
-4	62,8	306	405	0,089760	8241	Легко	9,8
6	57,2	245	354	0,079450	6411	Тяжело	8,2
7	58,1	224	327	0,076354	6116	Тяжело	7,3
8	59,0	200	298	0,072244	5779	Очень тяжело	6,8

Редактор Т. Пилипенко

Составитель Л. Суязова Техред М.Моргентал

Корректор В. Гирняк

Заказ 4132

Тираж

Подписное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж-35, Раушская наб., 4/5