

Aprendizado de Máquina e Deep Learning

Implementação da Árvore de Decisão

Prof. Dr. Thiago Meirelles Ventura

• Uso da biblioteca scikit-learn

from sklearn.tree import DecisionTreeClassifier

Carregamento dos dados

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p
0	1	M	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80
1	2	M	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28
2	3	M	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	Mkt&Fin	57.80
3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	Mkt&HR	59.43
4	5	M	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8	Mkt&Fin	55.50

salary	status
270000.0	Placed
200000.0	Placed
250000.0	Placed
NaN	Not Placed
425000.0	Placed

Transformação dos dados

```
df['area'] = pd.factorize( df['hsc_s'] )[0]
df['sexo'] = pd.factorize( df['gender'] )[0]
df['experiencia'] = pd.factorize( df['workex'] )[0]
```


• Seleção dos atributos e preparação dos conjuntos de dados

```
x = df[['area', 'sexo', 'experiencia']]
y = df['status']

X_train, X_test, [...] = train_test_split([...])
```


• Construção do modelo e treinamento

```
from sklearn.tree import DecisionTreeClassifier
```

```
arvore = DecisionTreeClassifier()
arvore.fit(X_train,y_train)
```


Avaliação do modelo

```
predicao = arvore.predict(X_test)

print(confusion_matrix(y_test,predicao))
print(classification report(y test,predicao))
```


Desenho da árvore

```
from sklearn import tree

features = list(x.columns)

fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(20,20))

tree.plot_tree(arvore, feature_names=features, class_names=arvore.classes_)
```


Exercício 6

- Crie um modelo de Árvore de Decisão
- Aproveite da classe DecisionTreeClassifier
- Use o conjunto de dados "emprego.csv"

script arvoredecisao.ipynb

• Teste com transformação de coluna por categoria

script arvoredecisao.ipynb

