M.Sc. Steffen Meyer M.Sc. Matthias Thiel

22. Mai 2019

Stochastik I

7. Übung

Aufgabe 1 (**4 Punkte**) Es sei (Ω, \mathcal{A}, P) , ein Wahrscheinlichkeitsraum, $(X_i)_{i=1,\dots,n}$ eine endliche Familie von Zufallsvariablen auf (Ω, \mathcal{A}, P) mit Werten in $(\Omega_i, 2^{\Omega_i})$ wobei die Ω_i , für $i=1,\dots,n$ höchstens abzählbar sind. Zeigen Sie: $(X_i)_{i=1,\dots,n}$ ist unabhängig genau dann, wenn für alle $x_i \in \Omega_i$ gilt:

$$P\left(\bigcap_{i=1}^{n} \{X_i = x_i\}\right) = \prod_{i=1}^{n} P(\{X_i = x_i\}).$$

Aufgabe 2 (4 Punkte) Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum. Mit \mathcal{N} bezeichnen wir die Menge aller Teilmengen von μ -Nullmengen, d.h.

$$\mathcal{N} := \{ F \subset \Omega : \exists G \in \mathcal{A} \text{ mit } \mu(G) = 0 \text{ und } F \subset G \}$$

Wir definieren die Vervollständigung $\mathcal{A}^{\mathcal{N}}$ von \mathcal{A} durch

$$\mathcal{A}^{\mathcal{N}} := \sigma(\mathcal{A} \cup \mathcal{N}).$$

Zeigen Sie:

$$\mathcal{A}^{\mathcal{N}} = \{ A \cup N : A \in \mathcal{A}, N \in \mathcal{N} \}.$$

Nun setzen wir μ auf $\mathcal{A}^{\mathcal{N}}$ fort durch

$$\tilde{\mu}(A \cup N) = \mu(A)$$

für $A \in \mathcal{A}$ und $N \in \mathcal{N}$. Zeigen Sie, dass die Fortsetzung wohldefiniert ist und dass $(\Omega, \mathcal{A}^{\mathcal{N}}, \tilde{\mu})$ ein vollständiger Maßraum ist.

Bemerkung: Ein Maßraum $(\Omega, \mathcal{A}, \mu)$ heißt vollständig, wenn alle Teilmengen von μ -Nullmengen in der σ -Algebra \mathcal{A} enthalten sind.

Aufgabe 3 (4 Punkte) Beweisen Sie den folgenden Satz: Seien f, g μ -integrierbar und $\alpha \in \mathbb{R}$. Dann sind $\alpha f, f + g$ (falls überall definiert), $\max\{f, g\}$, $\min\{f, g\}$ μ -integrierbar und es gilt

$$\int \alpha f \, d\mu = \alpha \int f \, d\mu, \quad \int f + g \, d\mu = \int f \, d\mu + \int g \, d\mu.$$

Ist $f \leq g$, so folgt:

$$\int f \, d\mu \le \int g \, d\mu.$$

- **Aufgabe 4** (**4 Punkte**) Sei $(f_n)_{n\in\mathbb{N}}$ eine nichtsteigende Folge messbarer, numerischer Funktionen mit $\int f_1^+ d\mu < \infty$.
 - (i) Zeigen Sie dass

$$\int \inf_{n} f_n \, d\mu = \inf_{n} \int f_n \, d\mu.$$

(ii) Zeigen Sie anhand eines Gegenbeispiels, dass die Integrierbarkeitsbedingung an f_1 notwendig ist.