AIM:

To find the damping (c) of the given beam.

PROCEDURE:

Begin the experiment by clicking the start experiment button.

1. Find logarithmic decrement (δ) from displacement v/s time graph.

The logarithmic decrement is defined as follows.

$$\delta = \frac{1}{n} \ln \left(\frac{x_1}{x_n} \right)$$

Here x_1 and x_n refer to the displacements at the first and n^{th} peak in the displacement v/s time graph. The displacements at the peaks can be found using the location slider.

2. Find the damping ratio (ζ) from the logarithmic decrement (δ). The damping ratio is given by

$$\zeta = \frac{1}{\sqrt{1 + \left(\frac{2\pi}{\delta}\right)^2}}$$

3. Find beam stiffness (k) N/m from Young's modulus (E), area moment of inertia (I) and length (L). The stiffness for different beams is given below.

Cantilever beam	$k = \frac{3EI}{L^3}$
Simply supported beam	$k = \frac{48EI}{L^3}$
Fixed Fixed beam	$k = \frac{192EI}{L^3}$

4. Find natural frequency (ω_n) rad/s from ω_d and ζ . ω_d can found from the FFT in the graph window.

$$\omega_n = \frac{\omega_d}{\sqrt{1 - \zeta^2}}$$

5. Find equivalent mass (m_{eq}) kg from ω_{n} and k.

$$m_{eq} = \frac{k}{{\omega_n}^2}$$

6. Find critical damping (c_c) Ns/m from m_{eq} and k.

$$c_c = 2\sqrt{km}$$

7. Find damping (c) Ns/m from Cc and ζ .

$$c = c_c \zeta$$

RESULT:

System damping 'c' has been found. The basic concepts in free vibration of SDOF systems are covered.

