

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS FO Box 1430 Alexandria, Virginia 22313-1450 www.tepto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/763,665	01/23/2004	Andrew R. Ferlitsch	J-SLA.1378	9384
55428 7590 09/15/2008 ROBERT VARITZ 4915 SE 33RD PLACE			EXAMINER	
			MCLEAN, NEIL R	
PORTLAND,	OR 97202		ART UNIT	PAPER NUMBER
			2625	
			MAIL DATE	DELIVERY MODE
			09/15/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 10/763,665 FERLITSCH, ANDREW R. Office Action Summary Examiner Art Unit Neil R. McLean -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 09 June 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-15 is/are pending in the application. 4a) Of the above claim(s) _____ is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-15 is/are rejected. 7) Claim(s) _____ is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.

6) Other:

5) Notice of Informal Patent Application

Art Unit: 2625

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 6/9/2008 has been entered.

Status of Claims

Claims 1-15 are pending in this application.

Claims 16 and 17 have been canceled.

Independent Claims 1, 8 and 13 have been amended.

Response to Arguments

Regarding Applicant's Argument:

"More specifically, and as is made clearly evident by the specification and drawings as presented in this application, applicant's methodology involves what can best be described as a "single-event" downloading practice and structure. This practice and structure is based upon a *single* request for a downloading operation, and a *single*-event delivery download which takes place in response to that single-event request. The

Art Unit: 2625

single-event practice of the invention results in the common-time delivery of <u>both a</u> driver and appropriate device configuration information.

Such common-time, single-event behavior does <u>not occur in the cited and</u> appliedprior art, ..."

Examiner's Response:

Barrett, Chou & Chadez disclose all of the above limitations.

Barrett, Chou & Chadez do not disclose expressly a *single-event* delivery download which takes place in response to that single-event request resulting in the common-time delivery of *both a driver and appropriate device configuration information*.

Ohta discloses a single-event delivery download which takes place in response to that single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information. (FIG. 6 is a block diagram of an outline of a configuration of the print system shown in FIG. 1. The server module 509 which is management means manages the installation configuration file described below with the file associated with a virtual printer name (identification information) defined in the server. A user can select and instructs the installation configuration file described below to be or not to be generated when the driver is installed in the system of the server device 502. Various information relating to the installed printer driver is described in the file. At a request from the client device 501, the storage space of the installation configuration information and the storage space of the driver installer are transmitted from the server device 502 to the client device 501. The OS of the client device receives the storage space of the installation configuration information and the storage space of the driver installer. The client module 506 of the client device 501 receives the storage space of the driver installer from the OS of the client device 501 as described in Column 6, lines 23-60.)

Art Unit: 2625

Barrett, Chou, Chadez & Ohta are combinable because they are from the same field of endeavor of image processing; e.g., all references disclose networked printers.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to a include a single-event delivery download which takes place in response to a single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information.

The suggestion/motivation for doing so would be to alleviate the problems that arise when a user has to input various printer parameters such as a print server device, a printer name, the location of a driver, an IP address, an output port name, etc as disclosed by Ohta in the Background of Invention.

Therefore, it would have been obvious to combine the driver installer of Ohta with the network printing system of Barrett, Chou, and Chadez to obtain the invention as specified in order to provide a system for obtaining and using the installation information on the server device to prevent the user from performing a complicated operation when a driver is set up for the client device.

Page 5

Application/Control Number: 10/763,665

Art Unit: 2625

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all
obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

 Claims 1-2, 4, 7-8, 10, 12-13, and 15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barrett et al. (US 5,647,056) in view of Chou et al. (US 2003/0204950) and further in view of Chadez et al. (US 6,522,420), and further in view of Ohta (US 7,231,435).

Regarding Claim 1:

Barrett et al. discloses a method for downloading to a client device (PC 42 in Figure 2), and therein auto-configuring (Column 27, lines 4-6), an imaging device driver (Column 51, lines 31-33) which, along with relevant configuration information (Column 54, lines 36-43), is embedded (Column 10, lines 15-18) within the imaging device's included firmware per se (Printer 78 in Figure 2), said method comprising

establishing between the client device and the imaging device an operative connection (Column 7, lines 39-45), including a bi-directional, imaging-device communication port (e.g., 100 in Figure 3) which is

(a) compatible with both devices (Column 7, lines 48-54), and

Art Unit: 2625

(b) the port via which imaging-job information will be exchanged between the devices (e.g., exchange of data described in Column 7, lines 43-45);

in relation to said establishing, and utilizing the mentioned port, effecting a companion delivery download (Column 18, lines 35-55) therethrough from the imaging device to the client device (Column 41, lines 60-67; See Steps S1607 – S1612 in Figure 16) of the relevant configuration information (e.g., Column 42, Table 42).

Barrett et al. discloses all of the above limitations however Barrett et al. does not disclose expressly wherein the imaging driver is sent from the imaging device to the client device, and in association with said effecting and resulting delivery, autoconfiguring in the client device the delivered imaging.

In the same field of endeavor of installing device drivers, Chou et al. discloses wherein the imaging driver is sent from the imaging device to the client device ([0006], lines 1-6) and in association with said effecting and resulting delivery, auto-configuring in the client device the delivered imaging driver ([0016], lines 8-14; Figure 1, Step 120).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use the built in driver of Chou et al. in Barrett et al.'s method for managing access to networked peripherals.

The suggestion/motivation for doing so would be to make the installation of a new device easier and to make sure that the correct device driver is installed in the host to prevent conflicts.

Art Unit: 2625

Therefore, it would have been obvious to combine the built in driver of Chou et al. with Barrett et al.'s method for managing access to networked peripherals to obtain the invention as specified in claim 1.

Barrett and Chou disclose all of the above limitations.

Barrett and Chou do not disclose expressly wherein relevant configuration information is embedded within the imaging device's included firmware per se

Chadez et al. discloses wherein relevant configuration information is embedded within the imaging device's included firmware per se (The controller 26 controls operation of the printing mechanism 34 and the print engine 36. The controller's CPU 28 is preferably implemented as an Application Specific Integrated Circuit (ASIC) that is designed to support serial and parallel I/O functionality with the host, compress and decompress the raster data, communicate with the print engine, and send the host data to the engine as disclosed in Column 2, lines 45-51 and in Figure 2).

Barrett and Chou & Chadez are combinable because they are from the same field of endeavor of image processing; e.g., both all references disclose networked printers.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to put all the relevant configuration information including the firmware per se within (embedded) the imaging device.

The suggestion/motivation for doing so would have been to have one e.g., ASIC to perform both the processing and printing tasks using one controller. There is a need

Art Unit: 2625

to design printer firmware that performs both the processing and printing tasks using only one ASIC, while maintaining an acceptable engine speed as disclosed by Chadez in Column 1, lines 22-25.

Therefore, it would have been obvious to combine Barrett and Chou with Chadez to obtain the invention as specified in claim 1.

Barrett, Chou & Chadez disclose all of the above limitations.

Barrett, Chou & Chadez do not disclose expressly a *single-event* delivery download which takes place in response to that single-event request resulting in the common-time delivery of *both a driver and appropriate device configuration information*.

Ohta discloses a single-event delivery download which takes place in response to that single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information. (FIG. 6 is a block diagram of an outline of a configuration of the print system shown in FIG. 1. The server module 509 which is management means manages the installation configuration file described below with the file associated with a virtual printer name (identification information) defined in the server. A user can select and instructs the installation configuration file described below to be or not to be generated when the driver is installed in the system of the server device 502. Various information relating to the installed printer driver is described in the file. At a request from the client device 501, the storage space of the installation configuration information and the storage space of the driver installer are transmitted from the server device 502 to the client device 501. The OS of the client device receives the storage space of the installation configuration information and the storage space of the driver installer. The client module 506 of the client device 501 receives the storage space of the driver installer from the OS of the client device 501 as described in Column 6, lines 23-60.)

Barrett, Chou, Chadez & Ohta are combinable because they are from the same field of endeavor of image processing; e.g., all references disclose networked printers. Art Unit: 2625

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to a include a single-event delivery download which takes place in response to a single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information.

The suggestion/motivation for doing so would be to alleviate the problems that arise when a user has to input various printer parameters such as a print server device, a printer name, the location of a driver, an IP address, an output port name, etc as disclosed by Ohta in the Background of Invention.

Therefore, it would have been obvious to combine the driver installer of Ohta with the network printing system of Barrett, Chou, and Chadez to obtain the invention as specified in order to provide a system for obtaining and using the installation information on the server device to prevent the user from performing a complicated operation when a driver is set up for the client device.

Regarding Claim 2:

Barrett et al. discloses the method of claim 1, wherein said effecting includes issuing from the client device to the imaging device a request though the communication port for the delivery of the driver and the configuration information (Column 7, lines 39-45).

Regarding Claim 4:

Art Unit: 2625

Barrett et al. discloses the method of claim 2, wherein the communication port employed is IEEE 1284 ECP parallel port (Column 5, lines 40-41).

Regarding Claim 7:

Barrett et al. discloses the method of claim 5, wherein the communication port employed is IEEE 1284 ECP parallel port (Column 5, lines 40-41).

Regarding Claim 8:

Barrett et al. disclose a setting which includes an operatively and communicatively interconnected (Column 7, lines 39-45) client device (PC 42 in Figure 2) and imaging device (Printer 78 in Figure 2), wherein the imaging device's firmware per se possesses an embedded (Column 10, lines 15-18) imaging driver (Column 51, lines 31-33) and related configuration information (Column 54, lines 36-43), and the imaging device is not yet installed on the client device (Column 54, lines 36-43), a method comprising

identifying, and preparing for use, a bi-directional communication port (e.g., 100 in Figure 3) via which imaging-job information may be exchanged between the two devices, and using this port, sending from the imaging device to the client device the related configuration information (Column 18, lines 35-55),

Art Unit: 2625

Barrett et al. discloses all of the above limitations however Barrett et al. does not disclose expressly wherein the imaging driver is sent from the imaging device to the client device, and following said sending, and in the client device, auto-configuring the sent driver

In the same field of endeavor of installing device drivers, Chou et al. discloses wherein the imaging driver is sent from the imaging device to the client device ([0006], lines 1-6), and following said sending, and in the client device, auto-configuring the sent driver ([0016], lines 8-14; Figure 1, Step 120).

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use the built in driver of Chou et al. in Barrett et al.'s method for managing access to networked peripherals.

The suggestion/motivation for doing so would be to make the installation of a new device easier and to make sure that the correct device driver is installed in the host to prevent conflicts.

Therefore, it would have been obvious to combine the built in driver of Chou et al. with Barrett et al.'s method for managing access to networked peripherals.to obtain the invention as specified in claim 8.

Barrett and Chou disclose all of the above limitations.

Barrett and Chou do not disclose expressly wherein relevant configuration information is embedded <u>within</u> the imaging device's <u>included firmware per se</u>

Chadez et al. discloses wherein relevant configuration information is embedded within the imaging device's included firmware per se (The controller 26 controls

Art Unit: 2625

operation of the printing mechanism 34 and the print engine 36. The controller's CPU 28 is preferably implemented as an Application Specific Integrated Circuit (ASIC) that is designed to support serial and parallel I/O functionality with the host, compress and decompress the raster data, communicate with the print engine, and send the host data to the engine as disclosed in Column 2. lines 45-51 and in Figure 2).

Barrett and Chou & Chadez are combinable because they are from the same field of endeavor of image processing; e.g., both all references disclose networked printers.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to put all the relevant configuration information including the firmware per se within(embedded) the imaging device.

The suggestion/motivation for doing so would have been to have one e.g., ASIC to perform both the processing and printing tasks using one controller. There is a need to design printer firmware that performs both the processing and printing tasks using only one ASIC, while maintaining an acceptable engine speed as disclosed by Chadez in Column 1, lines 22-25.

Therefore, it would have been obvious to combine Barrett and Chou with Chadez to obtain the invention as specified in claim 8.

Barrett, Chou & Chadez disclose all of the above limitations.

Art Unit: 2625

Barrett, Chou & Chadez do not disclose expressly a *single-event* delivery download which takes place in response to that single-event request resulting in the common-time delivery of *both a driver and appropriate device configuration information*.

Ohta discloses a single-event delivery download which takes place in response to that single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information. (FIG. 6 is a block diagram of an outline of a configuration of the print system shown in FIG. 1. The server module 509 which is management means manages the installation configuration file described below with the file associated with a virtual printer name (identification information) defined in the server. A user can select and instructs the installation configuration file described below to be or not to be generated when the driver is installed in the system of the server device 502, Verious information relating to the installed printer driver is described in the file. At a request from the client device 501, the storage space of the installation configuration information and the storage space of the driver installer are transmitted from the server device 502 to the client device 501. The OS of the client device receives the storage space of the installation configuration information and the storage space of the driver installer. The client module 506 of the client device 501 as described in Column 6, lines 23-60.)

Barrett, Chou, Chadez & Ohta are combinable because they are from the same field of endeavor of image processing; e.g., all references disclose networked printers.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to a include a single-event delivery download which takes place in response to a single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information.

The suggestion/motivation for doing so would be to alleviate the problems that arise when a user has to input various printer parameters such as a print server device. a printer name, the location of a driver, an IP address, an output port name, etc as disclosed by Ohta in the Background of Invention.

Therefore, it would have been obvious to combine the driver installer of Ohta with the network printing system of Barrett, Chou, and Chadez to obtain the invention as specified in order to provide a system for obtaining and using the installation information on the server device to prevent the user from performing a complicated operation when a driver is set up for the client device.

Regarding Claim 10:

Barrett et al. discloses the method of claim 8, wherein said sending is preceded, and triggered, by a request process (Column 7, lines 39-45) which is initiated from the client device and communicated to the imaging device through the communication port.

Regarding Claim 12:

Barrett et al. discloses the method of claim 8, wherein the port which is identified and prepared is IEEE 1284 ECP parallel port (Column 5, lines 40-41).

Regarding Claim 13:

Barrett et al. disclose an embedded-driver downloading and configuring structure comprising an imaging device (Printer 78 in Figure 2) possessing <u>within its firmware per se</u> an embedded (Column 10, lines 15-18) driver (Column 51, lines 31-33) and related configuration information (Column 54, lines 36-43),

Art Unit: 2625

a client device (PC 42 in Figure 2) having the capability for operative installation of said imaging device,

a communication port (e.g., IEEE 1284 ECP parallel port; Column 5, lines 40-41) defining a shareable, compatible via for the exchange of imaging-job information between said devices (e.g., exchange of data described in Column 7, lines 43-45), and appropriately inter-associated request (Column 7, lines 39-45), response and auto-configuring (Column 54, lines 36-43) structure distributively present in said client and imaging devices, operatively connected to said port, and operable, collaboratively, to effect a chain of events including

- (a) a request from said client device (Column 7, lines 39-45) to said imaging device for the download configuration information,
- (b) a responsive download (Column 18, lines 35-55) from said imaging device to said client device.

Barrett et al. discloses all of the above limitations however Barrett et al. does not disclose expressly wherein the imaging driver is sent from the imaging device to the client device, and an auto configuring of the downloaded driver in said client device.

In the same field of endeavor of installing device drivers, Chou et al. discloses wherein the imaging driver is sent from the imaging device to the client device ([0006], lines 1-6), and an auto configuring of the downloaded driver in said client device ([0016], lines 8-14; Figure 1, Step 120).

Art Unit: 2625

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to use the built in driver of Chou et al. in Barrett et al.'s method for managing access to networked peripherals.

The suggestion/motivation for doing so would be to make the installation of a new device easier and to make sure that the correct device driver is installed in the host to prevent conflicts.

Therefore, it would have been obvious to combine the built in driver of Chou et al. with Barrett et al.'s method for managing access to networked peripherals.to obtain the invention as specified in claim 13.

Barrett and Chou disclose all of the above limitations.

Barrett and Chou do not disclose expressly wherein relevant configuration information is embedded <u>within</u> the imaging device's <u>included firmware per se</u>

Chadez et al. discloses wherein relevant configuration information is embedded within the imaging device's included firmware per se (The controller 26 controls operation of the printing mechanism 34 and the print engine 36. The controller's CPU 28 is preferably implemented as an Application Specific Integrated Circuit (ASIC) that is designed to support serial and parallel I/O functionality with the host, compress and decompress the raster data, communicate with the print engine, and send the host data to the engine as disclosed in Column 2, lines 45-51 and in Figure 2).

Art Unit: 2625

Barrett and Chou & Chadez are combinable because they are from the same field of endeavor of image processing; e.g., both all references disclose networked printers.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to put all the relevant configuration information including the firmware per se within(embedded) the imaging device.

The suggestion/motivation for doing so would have been to have one e.g., ASIC to perform both the processing and printing tasks using one controller. There is a need to design printer firmware that performs both the processing and printing tasks using only one ASIC, while maintaining an acceptable engine speed as disclosed by Chadez in Column 1, lines 22-25.

Therefore, it would have been obvious to combine Barrett and Chou with Chadez to obtain the invention as specified in claim 13.

Barrett, Chou & Chadez disclose all of the above limitations.

Barrett, Chou & Chadez do not disclose expressly a single-event delivery download which takes place in response to that single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information.

Ohta discloses a single-event delivery download which takes place in response to that single-event request resulting in the common-time delivery of <u>both a driver and appropriate device configuration information</u>. (FIG. 6 is a block diagram of an outline of a configuration of the print system shown in FIG. 1. The server module 509 which is management means manages the <u>installation configuration file</u> described below with the file associated with a virtual printer name (identification information)

Art Unit: 2625

defined in the server. A user can select and instructs the installation configuration file described below to be or not to be generated when the driver is installed in the system of the server device 502. Various information relating to the installed printer driver is described in the file. At a request from the client device 501, the storage space of the installation configuration information and the storage space of the driver installer are transmitted from the server device 502 to the client device 501. The OS of the client device receives the storage space of the installation configuration information and the storage space of the driver installer. The client module 506 of the client device 501 receives the storage space of the installation configuration information and the storage space of the driver installer from the OS of the client device 501 as described in Column 6, lines 23-60.)

Barrett, Chou, Chadez & Ohta are combinable because they are from the same field of endeavor of image processing; e.g., all references disclose networked printers.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to a include a single-event delivery download which takes place in response to a single-event request resulting in the common-time delivery of both a driver and appropriate device configuration information.

The suggestion/motivation for doing so would be to alleviate the problems that arise when a user has to input various printer parameters such as a print server device, a printer name, the location of a driver, an IP address, an output port name, etc as disclosed by Ohta in the Background of Invention.

Therefore, it would have been obvious to combine the driver installer of Ohta with the network printing system of Barrett, Chou, and Chadez to obtain the invention as specified in order to provide a system for obtaining and using the installation information on the server device to prevent the user from performing a complicated operation when a driver is set up for the client device.

Application/Control Number: 10/763,665 Page 19

Art Unit: 2625

Regarding Claim 15:

admitted prior art.

Barrett et al. discloses the downloading and configuring structure of claim 13, wherein said communication port is IEEE 1284 ECP parallel port (Column 5. lines 40-

41).

Regarding Claim 16: (Canceled)

Regarding Claim 17: (Canceled)

 Claims 3, 5-6, 9, 11, and 14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barrett, Chou, Chadez, and Ohta and further in view of applicant's

Regarding Claim 3, and similar Claims 6, 11, and 14:

Barrett, Chou & Chadez discloses all of the limitations as disclosed in Claims 1, 8, and 13. However, Barrett et al. does not disclose expressly wherein the communication port employed is RAW port 9100.

Applicant discloses in the specification the "well known bi-directional RAW port 9100"; Page 6, lines 18-19).

Art Unit: 2625

Barrett et al. & Applicant's admitted prior art are combinable because they are from the same field of endeavor of image processing systems.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to have the Applicant's communication protocol RAW port 9100 as a means of communication in the image processing system of Barrett et al.

The suggestion/motivation for doing so is to have a well known, fast, proven, supported, and standardized communication port to ensure proper transmission of image data.

Therefore, it would have been obvious to combine the Applicant's communication protocol RAW port 9100 with the image processing system of Barrett et al. to obtain the invention as specified in claims 3, 6, 11, and 14.

Regarding Claim 5:

Barrett, Chou & Chadez disclose the method of claim 2 which is employed with a client device (PC 42 in Figure 2), and which further comprises integrationally linking the process of requesting (Column 7, lines 39-45), downloading (Column 18, lines 35-55) and auto-configuring with such process (Column 41, lines 60-67; e.g., Configuration Commands Table 9, Column 42); (Column 54, lines 36-43).

Barrett et al. does not disclose expressly an add-device process for installing a system device.

Applicant discloses in the specification the "conventional create-installed –printer (add-device) process (22b in Figure 1)" (Specification; Page 9, lines 10-11).

Art Unit: 2625

Barrett et al. & Applicant's admitted prior art are combinable because they are from the same field of endeavor of updating network devices.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to have the Applicant's admitted prior art method of installing add on devices with Barrett et al.'s method of managing a network peripheral.

The suggestion/motivation for doing so is to have a conventional, proven, supported, and standardized process when adding new devices to a system.

Therefore, it would have been obvious to combine the Applicant's admitted prior art method of installing add on devices with Barrett et al.'s method of managing a network peripheral to obtain the invention as specified in Claim 5.

Regarding Claim 9:

Barrett, Chou & Chadez disclose the method of claim 8, wherein the client device possesses, and includes the capability to implement, an add-device process, and said sending and auto-configuring steps are effectively integrated with implementation of that process (Column 41, lines 60-67; e.g., Configuration Commands Table 9, Column 42); (Column 54, lines 36-43).

Barrett et al. does not disclose expressly an add-device process for installing a system device.

Applicant discloses in the specification the "conventional create-installed –printer (add-device) process (22b in Figure 1)" (Specification; Page 9, lines 10-11).

Art Unit: 2625

Barrett et al. & Applicant's admitted prior art are combinable because they are from the same field of endeavor of updating network devices.

At the time of the invention, it would have been obvious to a person of ordinary skill in the art to have the Applicant's admitted prior art method of installing add on devices with Barrett et al.'s method of managing a network peripheral.

The suggestion/motivation for doing so is to have a conventional, proven, supported, and standardized process when adding new devices to a system.

Therefore, it would have been obvious to combine the Applicant's admitted prior art method of installing add on devices with Barrett, Chou & Chadez's method of managing a network peripheral to obtain the invention as specified in Claim 9.

Conclusion

6. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. Lomas et al. discloses a method of enabling installation of a network printer onto a client processor and employing a server for managing printer installations.

Examiner Notes

The Examiner cites particular columns and line numbers in the references as applied to the claims above for the convenience of the applicant. Although the specified

Art Unit: 2625

citations are representative of the teachings in the art and are applied to the specific limitations within the individual claim, other passages and figures may apply as well. It is respectfully requested that, in preparing responses, the applicant fully considers the references in its entirety as potentially teaching all or part of the claimed invention, as well as the context of the passage as taught by the prior art or as disclosed by the Examiner.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Neil R. McLean whose telephone number is (571)270-1679. The examiner can normally be reached on Monday through Friday 7:30AM-4:00PM EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, David K. Moore can be reached on 571.272.7437. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2625

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Neil R. McLean/ Examiner, Art Unit 2625

/David K Moore/ Supervisory Patent Examiner, Art Unit 2625