№1.4

- (a) $f:\mathbb{R}\to\mathbb{R}, f(x)=3x+1$ $f(x)\in(-\infty,+\infty),$ инъективная, сюръективная, биективная
- (б) $f:\mathbb{R}\to\mathbb{R}, f(x)=x^2+1$ $f(x)\in[1,+\infty),$ не инъективная, не сюръективная, не биективная
- (в) $f:\mathbb{R}\to\mathbb{R}, f(x)=x^3-1$ $f(x)\in(-\infty,+\infty),$ инъективная, сюръективная, биективная
- (г) $f:\mathbb{R}\to\mathbb{R}, f(x)=e^x$ $f(x)\in(0,+\infty),$ инъективная, не сюръективная, не биективная
- (д) $f:\mathbb{R}\to\mathbb{R}, f(x)=\sqrt{3x^2+1}$ $f(x)\in[1,+\infty),$ не инъективная, не сюръективная, не биективная
- (e) $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}, f(x)=\sin x$ $f(x)\in[-1,1],$ инъективная, не сюръективная, не биективная
- (ж) $f:[0,\pi]\to\mathbb{R}, f(x)=\sin x$ $f(x)\in[0,1],$ не инъективная, не сюръективная, не биективная
- (з) $f: \mathbb{R} \to [-1,1], f(x) = \sin x$ $f(x) \in [-1,1],$ не инъективная, сюръективная, не биективная
- (и) $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 \sin x$ $f(x) \in (-\infty, +\infty)$, не инъективная, сюръективная, не биективная

№1.5

- (а) не верно
- (б) верно
- (в) верно
- (г) верно
- (д) верно
- (е) верно

N.1.1

а) Докажем: $A\subseteq B\cap C$ только когда $A\subseteq B\wedge A\subseteq C$

Возьмём произвольный элемент $a \in A$. Тогда:

$$a \in B \cap C$$
$$a \in B \land a \in C$$
$$A \subseteq B \land A \subseteq C$$

ч.т.д

б) Докажем: $A\subseteq B\setminus C$ только когда $\mathbf{A}\subseteq B$ \wedge $A\cap C=\varnothing$

Возьмём произвольный элемент $a \in A$. Тогда:

$$a \in B \setminus C$$
$$a \in B \land a \notin C$$
$$A \subseteq B \land A \cap C = \emptyset$$

ч.т.д

N.1.2

а) Докажем: $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

Возьмём произвольный элемент $X \in \mathcal{P}(A \cap B)$, тогда:

$$X \subseteq A \cap B$$
$$X \subseteq A \land X \subseteq B$$
$$X \in \mathcal{P}(A) \land X \in \mathcal{P}(B)$$
$$X \in \mathcal{P}(A) \cap \mathcal{P}(B)$$

Значит, если $X\in \mathcal{P}(A\cap B)$, то $X\in \mathcal{P}(A)\cap \mathcal{P}(B)$ ч.т.д.

б) Докажем: $\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)$

 $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$

Возьмём $x\in \mathcal{P}(A)\cup \mathcal{P}(B),\ x$ - произвольный элемент из множества $\mathcal{P}(A)\cup \mathcal{P}(B)$:

$$x \in \mathcal{P}(A) \cup \mathcal{P}(B)$$

$$x \in \mathcal{P}(A) \land x \in \mathcal{P}(B)$$

$$x \subseteq A \land x \subseteq B$$

$$x \subseteq A \cup B$$

$$x \in \mathcal{P}(A \cup B)$$

$$x \in \mathcal{P}(A) \cup \mathcal{P}(B) \to x \in \mathcal{P}(A \cup B)$$

ч.т.д

в) Докажем: $\mathcal{P}(A \setminus B) \subseteq (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\varnothing\}$

Возьмём x - произвольный элемент из множества $\mathcal{P}(A \setminus B)$:

$$x \in \mathcal{P}(A \setminus B)$$

$$x \subseteq A \setminus B$$

$$x \subseteq A \land x \not\subseteq B$$

$$x \in \mathcal{P}(A) \land x \notin \mathcal{P}(B)$$

$$x \in \mathcal{P}(A) \setminus \mathcal{P}(B)$$

$$x \in \mathcal{P}(A \setminus B) \to x \in \mathcal{P}(A) \setminus \mathcal{P}(B) \to x \in (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\}$$

ч.т.д