Least Squares

 $\min_{\beta_1, \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$

solved by taking partial derivatives and setting equal to 0

 $RSS = \sum (y_i - \hat{y}_i)^2$

 $= \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$

i=1

 ∂RSS

 $\partial \beta_0$

 $= -2\sum_{i} (y_i - \beta_0 - \beta_1 x_i) = 0$

 ∂SSR

 $\partial \beta_1$

 $- = -2x_i \sum (y_i - \beta_0 - \beta_1 x_i) = 0$

 $\overline{\chi}$

 $\sum_{i=1}^{n} x_i y_i - n \overline{y} \overline{x} \qquad Cov(x, y)$

Var(x)

 $\sum_{i=1}^{n} x_i^2 + n\overline{x}$

[full proof: https://statproofbook.github.io/P/slr-ols]

Least Squares

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$

$$\min_{\beta_1, \beta_0} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

solved by taking partial derivatives and setting equal to 0

$$\frac{\partial RSS}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0 \qquad \Longrightarrow \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\frac{\partial SSR}{\partial \beta_1} = -2x_i \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0 \qquad \Longrightarrow \hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n \overline{y} \overline{x}}{\sum_{i=1}^n x_i^2 + n \overline{x}} = \frac{Cov(x, y)}{Var(x)}$$

Maximum Likelihood Estimation

