Definition (Punkt, Gerade, Ebene, Hyperebene)

Sei L ein affiner Teilraum des \mathbb{R}^n .

```
L heißt Punkt, wenn \dim(L) = 0
Gerade, wenn \dim(L) = 1
Ebene, wenn \dim(L) = 2
Hyperebene, wenn \dim(L) = n - 1.
```

Bemerkungen

Affine Teilräume

(1) Hyperebene im $\mathbb{R}^{\underline{1}}$ ist ein Punkt (Hyperebene hat Dimension $1-1=\underline{0}$, d. h. es ist ein Punkt), im $\mathbb{R}^{\underline{2}}$ ist eine Gerade (Hyperebene hat Dimension $2-1=\underline{1}$, d. h. eine Gerade), im $\mathbb{R}^{\underline{3}}$ ist eine Ebene (analog: n-1=3-1=2, also eine Ebene).

(2) Betrachte eine lineare Gleichung

$$Ax = b$$
: $a_1x_1 + a_2x_2 + ... + a_nx_n = b$

mit
$$a_i, b \in \mathbb{R}$$
, $i = 1, ..., n$ und $a_1 \neq 0$, also $A = \begin{bmatrix} a_1 & a_2 & ... & a_n \end{bmatrix}$.

Gaussnormalform ist

Affine Teilräume

$$\begin{bmatrix} 1 \end{bmatrix} \stackrel{a_2}{\underset{a_1}{a_1}} \dots \stackrel{a_n}{\underset{a_1}{a_1}} \begin{vmatrix} b \\ a_1 \end{vmatrix} \Rightarrow \mathsf{Parameter darstellung} \ \mathsf{des} \ \mathsf{L\"{o}sungsvektors}$$

$$x = egin{bmatrix} rac{b}{a_1} \ 0 \ 0 \ dots \ 0 \end{bmatrix} + \lambda_1 egin{bmatrix} -rac{a_2}{a_1} \ 1 \ 0 \ dots \ 0 \end{bmatrix} + \ldots + \lambda_{n-1} egin{bmatrix} -rac{a_n}{a_1} \ 0 \ dots \ 0 \end{bmatrix}$$

$$\Rightarrow$$
 dim(LÖS(A, b)) = $n - 1$, also:

Eine lineare Gleichung mit n Unbekannten ist eine Hyperebene im \mathbb{R}^n .

(3) Parameterdarstellung einer Gerade:
$$x = p + \lambda u$$

sowie einer Ebene: $x = p + \lambda_1 u + \lambda_2 v$
(weil $x \in L = p + U$ und dim(L) = $2 = \dim(U)$
 \Rightarrow Basis von U hat 2 linear unabhängige Vektoren u, v).

Das LGS zu einem affinen Teilraum

Sei L = p + U ein affiner Teilraum $(L \neq \emptyset)$ von \mathbb{R}^n .

Sei v_1, v_2, \ldots, v_k eine Basis von U (also dim(L) = k).

Unsere Aufgabe ist, eine solche Matrix A und einen solchen Vektor b zu finden, sodass:

$$\{x \in \mathbb{R}^n : x \in L = p + U\} = \{x \in \mathbb{R}^n : Ax = b\}$$

oder anders:

Affine Teilräume

$$L = L\ddot{O}S(A, b) \Rightarrow k = \dim(L) = \dim(L\ddot{O}S(A, b)) = \dim(L\ddot{O}S(A)).$$

Wir wissen:

$$\operatorname{rg}(A) = n - \dim(\operatorname{Ker}(F_A)) = n - \dim(\operatorname{L\ddot{O}S}(A)) = (n - k).$$

A besitzt (n-k) linear unabhängige Zeilen \Rightarrow

 \Rightarrow A ist eine Matrix der Größe $(n-k) \times n$ und b ein (n-k)-Vektor.

Offensichtlich sind $v_1, v_2, \ldots, v_k \in L\ddot{O}S(A)$:

Affine Teilräume

Es gilt, dass
$$L\ddot{O}S(A, b) = \hat{b} + L\ddot{O}S(A)$$
.

Da laut \boxtimes gilt $L\ddot{O}S(A, b) = L = p + U \Rightarrow U = L\ddot{O}S(A)$.

Weil v_1, v_2, \dots, v_k eine Basis von U bilden, sind diese Vektoren auch aus $L\ddot{O}S(A)$.

$$\Rightarrow Av_1 = Av_2 = \ldots = Av_k = 0.$$
 ∇

Wenn wir die Zeilenvektoren von $A_{(n-k)\times n}$ als $a_1, a_2, \ldots, a_{n-k}$ bezeichnen, dann

$$A = \begin{bmatrix} ---- & a_1 & ---- \\ ---- & a_2 & ---- \\ & \vdots & & \\ ---- & a_{n-k} & ---- \end{bmatrix}_{(n-k)\times n}$$

und analog bilden wir aus den Vektoren v_1, v_2, \ldots, v_k (spaltenweise) eine $n \times k$ -Matrix

$$C = \begin{bmatrix} | & | & & | \\ v_1 & v_2 & \dots & v_k \\ | & | & & | \end{bmatrix}_{(n \times k)}.$$

Dann lassen sich die Gleichungen ∇ als Matrix-Produkt darstellen:

$$A_{(n-k)\times n}\cdot C_{n\times k}=0_{(n-k)\times k}.$$

Also:

Affine Teilräume

0-000

o:
$$\begin{array}{c} a_{1} \longrightarrow \begin{bmatrix} a_{11} & \dots & \dots & a_{1n} \\ a_{2} \longrightarrow \begin{bmatrix} a_{21} & \dots & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n-k} \longrightarrow \begin{bmatrix} a_{n-k,1} & \dots & \dots & a_{n-k,n} \end{bmatrix} \end{array} \cdot \begin{bmatrix} \begin{matrix} v_{1} & v_{2} & v_{k} \\ v_{11} & v_{21} & \dots & v_{k1} \\ v_{12} & v_{22} & \dots & v_{k2} \\ \vdots & \vdots & & \vdots \\ v_{1n} & v_{2n} & \dots & v_{kn} \end{bmatrix} = \begin{bmatrix} 0 & \dots & 0 \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{bmatrix}.$$

Sei
$$\mathbf{v}_j^T = [\mathbf{v}_{j1}, \mathbf{v}_{j2}, \dots, \mathbf{v}_{jn}]$$

 $\forall j = 1, 2, \dots, k$

Analog sei
$$\mathbf{a}_{i}^{T} = \begin{bmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{bmatrix}$$

$$\forall i = 1, 2, \dots, n-k$$

(also Spalte j von C transponiert, d. h. als Zeilenvektor dargestellt).

(also Zeile i von A transponiert, d. h. als Spaltenvektor dargestellt).

Dann folgt aus $AC = 0_{(n-k)\times k}$ für die transponierten Matrizen C^T und A^T :

$$(AC)^{T} = (0_{(n-k)\times k})^{T}$$

$$\Rightarrow C^{T}A^{T} = 0_{k\times(n-k)}$$

(Wir haben die Gleichung transponiert, damit wir ein LGS für die unbekannte Matrix A bekommen.)

Also gilt für alle $\forall i = 1, 2, ..., k$ $\forall i = 1, 2, ..., n - k$:

Affine Teilräume

$$\forall i = 1, 2, \ldots, n - k$$
:

$$v_j^T a_i^T = 0$$
 oder

$$\begin{bmatrix} \cdots & v_1^T & \cdots \\ v_2^T & \cdots \\ \vdots & \vdots & \ddots \\ v_k^T & \cdots \end{bmatrix} \cdot \mathbf{a}_i^T = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{(k \times 1)} \qquad \forall i = 1, 2, \dots, n - k.$$

Also: $C^T a_i^T = 0$ für $\forall i = 1, 2, \dots, n - k$.

Daher sind a_1^T , a_2^T , ..., a_{n-k}^T (d. h. die Zeilen der gesuchten Matrix A in transponierter Form) Lösungen des homogenen LGS

$$C^T x = 0.$$

- Da v_1, v_2, \ldots, v_k linear unabhängig sind und gilt: Zeilenrang von C^T = Spaltenrang von C^T $\Rightarrow \operatorname{rg}(C^{I}) = k$.
- Da dim(LÖS(C^T)) = $n \text{rg}(C^T) = n k$, hat das homogene LGS $C^T x = 0$ n k linear unabhängige Lösungen. Diese sind a_1^T , a_2^T , ..., a_{n-k}^T .

Die Matrix A ist dann

Affine Teilräume

$$A = \begin{bmatrix} ---- a_1 & ---- \\ ---- a_2 & ---- \\ \vdots & ----- \\ ---- a_{n-k} & ---- \end{bmatrix}_{(n-k)\times n} \quad \text{und} \quad b = Ap.$$

Vorgehensweise für die Bestimmung von A und b

(die Parameterdarstellung von L) und Sei $x = p + \lambda_1 v_1 + \ldots + \lambda_k v_k$

$$C^{T} = \begin{bmatrix} \cdots & v_1^{T} & \cdots \\ \cdots & v_2^{T} & \cdots \\ \vdots & \vdots \\ \cdots & v_k^{T} & \cdots \end{bmatrix}.$$

Affine Teilräume

Löse $C^T x = 0$ nach Gauss. Lösung sind die Vektoren $a_1^T, a_2^T, \dots, a_{n-k}^T$

$$\Rightarrow A = \begin{bmatrix} ---- & a_1 & --- \\ ---- & a_2 & --- \\ \vdots & ---- & --- \end{bmatrix} \quad \text{und} \quad b = Ap \quad \text{sind}$$

$$\vdots \quad ------ \quad \vdots$$

die gesuchte Matrix A und die gesuchte rechte Seite des LGS Ax = b.

Das LGS zu einem affinen Teilraum ist nicht eindeutig.

Erklärung

Sei L = p + U ein affiner Teilraum $(L \neq \emptyset)$ und Ax = b ein zugehöriges LGS. Sei $\dim(L) = \dim(U) = k$ und $L \subseteq \mathbb{R}^n$.

Dann beschreibt jede der (n-k) Gleichungen im LGS eine Hyperebene (also einen affinen Teilraum der Dimension (n-1)) im \mathbb{R}^n .

Da $(n-1) \ge k$, gibt es <u>unendlich</u> viele solche Hyperebenen, die L beinhalten.

Daher gibt es <u>unendlich</u> viele Gleichungen (mit n Unbekannten), die den Vektoren von L genügen. Davon kann man beliebig linear unabhängige (n-k)-Tupel wählen, die dann die Matrix A des LGS zu L bilden.

$$L = p = \begin{bmatrix} a \\ b \end{bmatrix} \in \mathbb{R}^2$$

$$\Rightarrow \dim(L) = k = 0 \text{ und } n = 2.$$

$$\Rightarrow A_{(n-k)\times n} = A_{2\times 2}$$

Also: Das LGS zu L (d. h. zum Punkt p) wird von 2 Gleichungen mit 2 Unbekannten gebildet.

Jede davon beschreibt eine Hyperebene im \mathbb{R}^2 , also einen affinen Teilraum der Dimension (n-1)=(2-1)=1, d. h. eine Gerade.

Offensichtlich gibt es $\underline{\text{unendlich}}$ viele solche Geraden, die den Punkt p beinhalten.

Davon kann man beliebig viele Paare bilden, die als Schnittpunkt p haben.

Das sind die n - k = 2 - 0 = 2-Tupel (Paare) von linear unabhängigen Zeilen von $A_{2\times 2}$.

Veranschaulichung (3 verschiedene LGS zu L = p)

$$L = p = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Affine Teilräume

00000

LGS 1:

LGS 2:

•
$$x_1 + x_2 = 2$$

• $x_1 + \frac{1}{2}x_2 = \frac{3}{2}$
• $x_1 - \frac{1}{2}x_2 = \frac{1}{2}$

•
$$x_1 - 1/2 x_2 = 1/$$

LGS 3:

• $x_1 = 1$

• $x_2 = 1$

Determinante

00000

$$L: \quad \mathbf{x} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix} \qquad \text{(Ebene im } \mathbb{R}^4, \ \mathbf{n} = 4, \ k = 2)$$
 Dann ist die Matrix $\mathbf{C}_{(k \times \mathbf{n})}^T = \begin{bmatrix} \mathbf{v_1}^T \\ \mathbf{v_2}^T \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix}_{(2 \times 4)}$

$$\Rightarrow$$
 zu lösen: $C^T \times = 0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{(2 \times 2)}$.

Lösen von $C^T x = 0$ nach Gauss:

Affine Teilräume

0-000

$$C^{T} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix} \xrightarrow{(-2)|I|+I=I} \begin{bmatrix} 1 & 0 & -1 & -4 \\ 0 & 1 & 1 & 2 \end{bmatrix}_{Gaussnormalform}$$

 $\Rightarrow n - k = 4 - 2 = 2$ linear unabhängige Lösungen

$$\Rightarrow A = \begin{bmatrix} --- & a_1 & --- \\ --- & a_2 & --- \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 4 & -2 & 0 & 1 \end{bmatrix}.$$

Die rechte Seite
$$\mathbf{b} = \mathbf{A}\mathbf{p} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 4 & -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix}.$$

Dann ist das LGS Ax = b, welches L beschreibt

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 4 & -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \mathbf{b}$$

oder

$$x_1 - x_2 + x_3 = 4$$

 $4x_1 - 2x_2 + x_4 = 6$.

Anmerkung

Affine Teilräume

Es gibt auch andere Verfahren für die Berechnung des LGS zu L. Laut voriger Anmerkung können diese zu einem anderen (gültigen!) LGS zu L führen.

Anderes LGS zum vorigen Beispiel

Affine Teilräume

$$L: \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix} + \lambda_1 \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

$$x_{1} = 2 + \lambda_{1}$$

$$x_{2} = 1 + 2\lambda_{1} + \lambda_{2}$$

$$x_{3} = 3 + \lambda_{1} + \lambda_{2}$$

$$x_{4} = 2\lambda_{2} \Rightarrow \lambda_{2} = \frac{x_{4}}{2}$$

$$\Rightarrow x_{3} = 3 + \lambda_{1} + \frac{x_{4}}{2}$$

$$x_{4} = 2\lambda_{2} \Rightarrow \lambda_{2} = \frac{x_{4}}{2}$$

$$\Rightarrow x_{3} = 3 + \lambda_{1} + \frac{x_{4}}{2}$$

$$x_{3} - x_{1} = (3 + \lambda_{1} + \frac{x_{4}}{2}) - (2 + \lambda_{1}) = 1 + \frac{x_{4}}{2}$$

$$\Rightarrow \text{Gleichung 1:} \quad x_{1} + 0 \cdot x_{2} - x_{3} + \frac{x_{4}}{2} = -1$$

$$2x_{3} - x_{2} = 2(3 + \lambda_{1} + \frac{x_{4}}{2}) - (1 + 2\lambda_{1} + \frac{x_{4}}{2}) = 5 + \frac{x_{4}}{2}$$

$$\Rightarrow \text{Gleichung 2:} \quad 0 \cdot x_{1} - x_{2} + 2x_{3} - \frac{x_{4}}{2} = 5$$

⇒ LGS:
$$x_1$$
 - $x_3 + \frac{1}{2}x_4 = -1$
- $x_2 + 2x_3 - \frac{1}{2}x_4 = 5$.

Dieses LGS unterscheidet sich von dem mit dem vorigen Verfahren konstruierten.

Probe:

Affine Teilräume

0000

$$\lambda_1 = 0, \ \lambda_2 = 0:$$

$$2 - 3 + 0 = -1 \checkmark$$

$$-1 + 6 - 0 = 5 \checkmark$$

$$\lambda_1 = 1, \ \lambda_2 = 1 \Rightarrow x = \begin{bmatrix} 3 \\ 4 \\ 5 \\ 2 \end{bmatrix}.$$
 $3 - 5 + 1 = -1 \checkmark \\ -4 + 10 - 1 = 5 \checkmark$

Dieses Ergebnis ist auch ein gültiges LGS zu L.

Schnitt zweier affiner Teilräume

Seien L_1 , L_2 zwei affine Teilräume von \mathbb{R}^n .

Sei $A_1 \times = b_1$ und $A_2 \times = b_2$ das zugehörige LGS zum L_1 bzw L_2 .

Betrachte den Schnitt $L_1 \cap L_2$ von L_1 und L_2 .

Also:

Affine Teilräume

$$L_1 \cap L_2 = \{ \mathbf{x} \in \mathbb{R}^n : \ \mathbf{x} \in L_1 \land \mathbf{x} \in L_2 \} = \\ = \{ \mathbf{x} \in \mathbb{R}^n : \ A_1 \mathbf{x} = b_1 \land A_2 \mathbf{x} = b_2 \} \ \boxplus$$

$$A_1 \in M_{k_1 \times n}$$

 $A_2 \in M_{k_2 \times n}$

 $b_1: k_1$ -Vektor b_2 : k_2 -Vektor x: n-Vektor.

00000

Dann ist die Lösungsmenge $\{x\}^{\boxplus}$ veranschaulicht:

$$A_1 \times = b_1$$
 $k_1 A_1$ $k_1 A_1$ $k_1 \times k_1 \times$

$$A_{2} \times = b_{2} \qquad \qquad k_{2} \qquad \qquad \begin{vmatrix} n \\ A_{2} \end{vmatrix} = \begin{vmatrix} b_{2} \\ (k_{2} \times 1) \end{vmatrix}$$

Dies lässt sich zu einem LGS zusammenfassen:

$$Ax = b$$
 $A \in M_{(k_1+k_2)\times n}$; $b \in M_{(k_1+k_2)\times 1}$

$$\mathsf{mit} \quad A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}_{(k_1 + k_2) \times n} \quad \mathsf{und} \quad b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}_{(k_1 + k_2) \times 1} \ .$$

Schneide *L* mit Hyperebene *H*.

$$L = L_1 : x = p + \lambda_1 v_1 + \lambda_2 v_2$$

 $H = L_2 : x_1 + x_2 + x_3 + x_4 = 5$

$$p = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix}, \ v_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

(also L gleich wie im vorigen Beispiel).

Berechne $L \cap H = L_1 \cap L_2$:

$$Ax = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} x = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = b,$$

wobei A_1 und b_1 zum LGS für $L(L_1)$ gehören, sowie A_2 und b_2 zum LGS für $H(L_2)$.

$$\begin{bmatrix} A_1^* \\ A_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 & 0^* \\ 4 & -2 & 0 & 1^* \\ 1 & 1 & 1 & 1 \end{bmatrix} \quad \text{und} \quad \begin{bmatrix} b_1^* \\ b_2 \end{bmatrix} = \begin{bmatrix} 4^* \\ 6^* \\ 5 \end{bmatrix}.$$

(* aus vorigem Beispiel bekannt)

Lösen von Ax = b nach Gauss

Affine Teilräume

00000

$$\begin{bmatrix} 1 & -1 & 1 & 0 & | & 4 \\ 4 & -2 & 0 & 1 & | & 6 \\ 1 & 1 & 1 & 1 & | & 5 \end{bmatrix} \qquad \frac{(-4) \, | + | | = | | |}{(-1) \, | + | | | = | | |} \begin{bmatrix} 1 & -1 & 1 & 0 & | & 4 \\ 0 & 2 & -4 & 1 & | & -10 \\ 0 & 2 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\frac{(-1) \, | + | | | = | | |}{1/2 \, | | = | |}}$$

$$\begin{bmatrix} 1 & -1 & 1 & 0 & | & 4 \\ 0 & 1 & -2 & 1/2 & | & -5 \\ 0 & 0 & 4 & 0 & | & 11 \end{bmatrix} \xrightarrow{\frac{1/4 \, | | | = | | |}{1/2 \, | | = | |}} \begin{bmatrix} 1 & -1 & 1 & 0 & | & 4 \\ 0 & 1 & -2 & 1/2 & | & -5 \\ 0 & 0 & 1 & 0 & | & 11/4 \end{bmatrix} \xrightarrow{\frac{1+| | | | = |}{1/2 \, | = | |}} \begin{bmatrix} 1 & 0 & 0 & | & 1/2 & | & 7/4 \\ 0 & 1 & 0 & | & 1/2 & | & 1/2 \\ 0 & 0 & 1 & 0 & | & 11/4 \end{bmatrix} \Rightarrow$$

$$\Rightarrow x = \begin{bmatrix} 7/4 \\ 1/2 \\ 11/4 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} -1/2 \\ -1/2 \\ 0 \\ 1 \end{bmatrix} = p + U' = L'.$$

Also ist der Schnitt von L und H eine Gerade im \mathbb{R}^4 (weil dim $(L') = \dim(U') = 1$).

Spezialfall 1 (Lösungsmenge eines LGS)

Affine Teilräume

Man betrachtet ein LGS mit *m* Gleichungen und *n* Variablen.

Also besteht die Matrix des LGS aus m Zeilen und jede davon entspricht einer Hyperebene.

Siehe vorige Folien: eine lineare Gleichung beschreibt eine Hyperebene im \mathbb{R}^n (angenommen: n Unbekannte).

Daher: Die Lösungsmenge LÖS(A,b) eines LGS Ax = b $(A \in M_{(m \times n)}, b \in \mathbb{R}^m)$ ist der Durchschnitt von m Hyperebenen H_i (m affinen Teilräumen $L_i)$ $A_ix = a_ix = b_i$, $i = 1, \ldots, m$, wobei

$$A = \begin{bmatrix} ---- & a_1 & ---- \\ ---- & a_2 & ---- \\ \vdots & & & \\ ---- & a_m & ---- \end{bmatrix}_{(m \times n)} \quad \text{und} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}_{(m \times 1)}.$$

Spezialfall 2 (Schnitt Gerade – Hyperebene)

Veranschaulichung im \mathbb{R}^3 : Hyperebene ist eine Ebene im \mathbb{R}^3 .

Schnitt: 3 Möglichkeiten

Affine Teilräume

0000

- Gerade G in Parameterform: $x = p + \lambda u$ $(p, u \in \mathbb{R}^n)$
- Hyperebene $H \subset \mathbb{R}^n$ als Lösungsmenge der Gleichung $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$ (also in der Form eines LGS)

wobei
$$a=[a_1,a_2,\ldots,a_n]$$
 , $x=egin{bmatrix} x_1\\x_2\\ \vdots\\x_n \end{bmatrix}$, $b\in\mathbb{R}$.

0000

• Der Schnitt $G \cap H$: $\{x = p + \lambda u \in \mathbb{R}^n : ax = b\}$. $a(p + \lambda u) = b \quad \Rightarrow \quad \lambda au = b - ap. \quad \nabla$ Dabei ist

$$au = [a_1, a_2, \dots, a_n] \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = a_1u_1 + a_2u_2 + \dots + a_nu_n$$

$$ap = [a_1, a_2, \dots, a_n] \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix} = a_1p_1 + a_2p_2 + \dots + a_np_n$$

Fall 1:
$$a \cdot u \neq 0$$

$$\bigtriangledown \lambda$$
au $=$ b $-$ ap

$$\Rightarrow \lambda = \lambda_0 = \frac{b-ap}{au}$$

und
$$G \cap H = \{x_0\}$$
 mit $x_0 = p + \lambda_0 u = p + \frac{b-ap}{au} u$ ist der Schnittpunkt von G mit H .

Fall 2:
$$a \cdot u = 0$$

- Fall 2a: b ap = 0Aus ∇ folgt: $\lambda \cdot 0 = 0 \rightarrow \text{das gilt für jedes } \lambda \in \mathbb{R}$ \Rightarrow Alle Punkte $x = p + \lambda u \in G$ erfüllen die Gleichung ax = b $\Rightarrow G \cap H = G$ (Also: G liegt in der Hyperebene H)
- Fall 2b: $b-ap \neq 0$ Aus ∇ folgt: $\lambda \cdot 0 \neq 0 \rightarrow D$ as gilt für kein $\lambda \in \mathbb{R}$ \Rightarrow Der Schnitt $G \cap H$ ist die leere Menge \emptyset (Also: G ist parallel zur Hyperebene H).

Beispiel (Schnitt Gerade – Hyperebene im \mathbb{R}^3)

Sei
$$G: x = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} u \\ 2 \\ 0 \\ -1 \end{bmatrix} = p + \lambda u$$
 und

$$H: x_1 + 4x_2 = 1 \text{ (also } a = [1 \ 4 \ 0], b = 1) \text{ (Hyperebene im } \mathbb{R}^3)$$

$$G \cap H$$
:

Affine Teilräume

0000

$$a \cdot u = \begin{bmatrix} 1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = 2 \neq 0 \quad \stackrel{\mathsf{Fall 1}}{\Rightarrow} \quad x_0 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \frac{b}{1 - \begin{bmatrix} 1 & 4 & 0 \end{bmatrix}} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}} \begin{bmatrix} u \\ 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + \frac{1-5}{2} \cdot \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} - 2 \cdot \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 4 \end{bmatrix}$$

$$\Rightarrow \begin{vmatrix} -3\\1\\4 \end{vmatrix}$$
 ist der Schnittpunkt von *G* mit *H*.

Euklidische Vektorräume

Affine Teilräume

00000

Ziel: Abstand und Winkel von zwei Vektoren

• im
$$\mathbb{R}^1$$
: Für $x \in \mathbb{R}$ sei $|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$

der Betrag oder die Länge von x.

Der Abstand zweier Elemente $x, y \in \mathbb{R}^1$:

$$d(x+y)=|x-y|.$$

• im \mathbb{R}^2 :

Nach dem Satz von Pythagoras ist die Länge /

von
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 gleich $\left| \left| \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right| \right| = \sqrt{x_1^2 + x_2^2}$

und der Abstand zweier Vektoren $x, y \in \mathbb{R}^2$:

$$d(x,y) = ||x - y|| = \left| \left| \begin{array}{c} x_1 - y_1 \\ x_2 - y_2 \end{array} \right| \right| =$$
$$= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$

• im \mathbb{R}^n :

Affine Teilräume

Die euklidische Norm eines *n*-Vektors *x*

$$||x|| = \left\| \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \right\| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2}$$

und der Abstand zweier Vektoren $x, y \in \mathbb{R}^n$ ist

$$d(x, y) = ||x - y|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
.

Definition – Skalarprodukt

Affine Teilräume

Sei V ein Vektorraum über Körper K.

K wird im Weiteren \mathbb{C} sein. Da $\mathbb{R} \subset \mathbb{C}$ ist $(r \in \mathbb{R} : r = r + 0 \cdot i)$, gelten alle Auslegungen auch für $K = \mathbb{R}$.

$$\langle , \rangle : V \times V \to K$$

heißt Skalarprodukt oder inneres Produkt, wenn gilt:

- (1) $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$ $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ $\forall x, y, x_1, x_2 \in V \quad \forall \lambda \in K$
- (2) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ $\forall x, y \in V$, : komplex konjugiert (bei $K = \mathbb{C}$)
- (3) $\langle x, x \rangle > 0$ $\forall x \in V$ $\langle x, x \rangle = 0 \Leftrightarrow x = 0.$

Bemerkungen

Affine Teilräume

- (a) Eigenschaft (1) besagt, dass \langle , \rangle linear in der ersten Variable ist
- (b) Aus (2) folgt:

(i)
$$\langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$$

(ii)
$$\langle x, \lambda y \rangle = \overline{\underline{\lambda}} \langle x, y \rangle$$
.

Beweis:

(i)
$$\langle x, y_1 + y_2 \rangle \stackrel{\text{(2)}}{=} \frac{\langle y_1 + y_2, x \rangle}{\langle y_1, x \rangle} \stackrel{\text{(1)}}{=} \frac{\langle y_1, x \rangle + \langle y_2, x \rangle}{\langle y_2, x \rangle} \stackrel{\text{Eig. kompl. Z.}}{=} Z.$$

(ii)
$$\langle x, \lambda y \rangle \stackrel{(2)}{=} \overline{\langle \lambda y, x \rangle} \stackrel{(1)}{=} \overline{\lambda \langle y, x \rangle} = \overline{\lambda} \overline{\langle y, x \rangle} \stackrel{(2)}{=} \overline{\underline{\lambda}} \langle x, y \rangle$$

Also ist (,) halblinear in der zweiten Variable (nur halblinear, weil (ii) nicht der zweiten Eigenschaft einer linearen Abbildung entspricht).

(c) Eigenschaft (3) heißt positiv definit.

Definition - Euklidischer Vektorraum

Euklidischer Vektorraum

Ein Vektorraum V über Körper K mit einem inneren Produkt heißt ein euklidischer Vektorraum.

Anmerkung

Affine Teilräume

00000

 $K = \mathbb{R}$: ",euklidischer" Vektorraum.

 $K = \mathbb{C}$: unitärer Vektorraum.

Beispiel 1

Affine Teilräume

00000

$$\underline{V = \mathbb{R}^n} \quad (K = \mathbb{R}) \quad \text{mit } x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\langle x, y \rangle = x_1 y_1 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$
.

 $(\mathbb{R}^n, \langle , \rangle)$ ist ein euklidischer Vektorraum über \mathbb{R} mit dem Standard-Skalarprodukt im \mathbb{R}^n .

Beispiel 2
$$\underline{V = \mathbb{C}^n} \quad (K = \mathbb{C}) \quad \text{mit } x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \begin{array}{l} x_i, \ y_i \in \mathbb{C} \\ \forall i = 1, \dots, n \end{array}$$

mit dem Skalarprodukt

Affine Teilräume

$$\langle x, y \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + \ldots + x_n \overline{y_n}$$

(leicht überprüfbar, dass $\langle \ , \ \rangle$ ein Skalarprodukt ist)

ist ein euklidischer Vektorraum über \mathbb{C} (unitärer Vektorraum).

Beispiel 3

$$V = \mathbb{R}^2$$

Affine Teilräume

mit dem Skalarprodukt

$$\langle x, y \rangle = \left\langle \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right\rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2$$

ist auch ein euklidischer Vektorraum über \mathbb{R} .

Beispiel 4

Lorentzprodukt (auf \mathbb{R}^4) (wichtig in der Relativitätstheorie).

(Die ersten drei Koordinaten x_1, x_2, x_3 sind gewöhnliche Raumkoordinaten, die vierte die Zeit (t, s).)

$$x = (x_1, x_2, x_3, t)$$

 $y = (y_1, y_2, y_3, s)$ $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3 - c^2 t s$

c: die Konstante der Lichtgeschwindigkeit

Ungleichung von Cauchy-Schwarz

Sei V ein euklidischer Vektorraum. Dann gilt für alle $x, y \in V$:

$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle} .$$

 $\in \mathbb{R} \text{ (auch für } x, y \in \mathbb{C})$

Beweis

Affine Teilräume

00000

(1) Sei $y = 0 \Rightarrow \langle x, 0 \rangle = \langle x,$ \Rightarrow Ungleichung.

*
$$z = a + ib$$
, $\overline{z} = a - ib$
 $z\overline{z} = (a + ib)(a - ib) =$
 $= a^2 - i^2b = a^2 + b^2 =$
 $= |z|^2 (z = \langle x, y \rangle)$

Affine Teilräume

(2) Sei
$$y \neq 0 \Rightarrow \langle y, y \rangle \neq 0$$
 und setze $z = x - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y$

$$\Rightarrow 0 \leq \langle z, z \rangle = \left\langle \frac{1}{x} - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y , \frac{3}{x} - \frac{\langle x, y \rangle}{\langle y, y \rangle} \cdot y \right\rangle =$$

$$= \left\langle \frac{\langle 1, 3 \rangle}{\langle x, x \rangle} - \frac{\langle 2, 3 \rangle}{\langle y, y \rangle} \langle y, x \rangle - \frac{\overline{\langle x, y \rangle}}{\langle y, y \rangle} \langle x, y \rangle + \frac{\overline{\langle x, y \rangle}}{\langle y, y \rangle} \overline{\langle x, y \rangle} \overline{\langle x, y \rangle} \langle y, y \rangle =$$

$$= \left\langle \frac{\langle 1, 3 \rangle}{\langle x, x \rangle} - \frac{\overline{\langle x, y \rangle} \overline{\langle x, y \rangle}}{\overline{\langle y, y \rangle}} - \frac{\overline{\langle x, y \rangle} \overline{\langle x, y \rangle}}{\overline{\langle y, y \rangle}} \overline{\langle x, y \rangle} + \frac{\overline{\langle x, y \rangle} \overline{\langle x, y \rangle}}{\overline{\langle y, y \rangle}} \overline{\langle x, y \rangle} =$$

$$= \left\langle x, x \right\rangle - \frac{\overline{\langle x, y \rangle} \overline{\langle x, y \rangle}}{\overline{\langle y, y \rangle}} \stackrel{*}{=} \left\langle x, x \right\rangle - \frac{|\langle x, y \rangle|^{2}}{\overline{\langle y, y \rangle}} \Rightarrow$$

$$\Rightarrow |\langle x, y \rangle|^{2} \leq \langle x, x \rangle \langle y, y \rangle. \qquad * s. vorige Folie$$

Euklidische Norm

Affine Teilräume

00000

Euklidische Norm

Sei V ein euklidischer Vektorraum.

Sei
$$||x|| = \sqrt{\langle x, x \rangle}$$

$$\forall x \in V$$
.

Es gilt:

$$(1) ||x|| \ge 0 ||x|| = 0 \Leftrightarrow x = 0$$

$$\forall x \in V$$

(2)
$$||\lambda x|| = |\lambda| ||x||$$

$$\forall x \in V, \ \forall \lambda \in K$$

(3)
$$||x + y|| \le ||x|| + ||y||$$

$$\forall x. \ v \in V$$

 $\forall x, y \in V$ (Dreiecksungleichung).

||x|| heißt dann die euklidische Norm von x.

Beweis:

Affine Teilräume

(1)
$$||x|| = \sqrt{\langle x, x \rangle} \ge 0$$

 $||x|| = 0 \Leftrightarrow \sqrt{\langle x, x \rangle} = 0 \Leftrightarrow \langle x, x \rangle = 0 \Leftrightarrow x = 0$.

(2)
$$||\lambda x|| = \sqrt{\langle \lambda x, \underline{\lambda} x \rangle} \stackrel{(ii)}{=} \sqrt{\lambda \underline{\lambda} \langle x, x \rangle} = \sqrt{|\lambda|^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} = |\lambda| ||x||$$
.

(3)
$$||x + y||^{2} = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle =$$

$$= ||x||^{2} + \langle x, y \rangle + \overline{\langle x, y \rangle} + ||y||^{2}$$
Sei $\overline{z} = a + ib \in \mathbb{C}$ $\Rightarrow 2a = \overline{z} + \overline{z}$

$$a = \text{Re}(z)$$

$$||\text{Re}(z)| \leq |z|$$

$$= ||x||^{2} + 2 ||x|| + ||y||^{2} \leq ||x||^{2} + 2|\langle x, y \rangle| + ||y||^{2} \leq ||x||^{2} + 2|\langle x, y \rangle| + ||y||^{2} \leq ||x||^{2} + 2||x|| + ||y||^{2}$$

$$\Rightarrow ||x + y|| \leq ||x|| + ||y||.$$

Dreiecksungleichung – Veranschaulichung

Wenn $V=\mathbb{R}^2$ und die euklidische Norm der Länge des Vektors entspricht, dann muss in einem Dreieck gelten:

Seite
$$x +$$
Seite $y \ge$ Seite $(x + y)$ also
$$||x|| + ||y|| \ge ||x + y|| .$$

Affine Teilräume

Bemerkung

Affine Teilräume

00000

Ungleichung von Cauchy-Schwarz und Dreiecksungleichung in \mathbb{R}^n

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$

 $\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} (x_i)^2 \right)^{1/2} \cdot \left(\sum_{i=1}^{n} (y_i)^2 \right)^{1/2}$

$$||x+y|| \leq ||x|| + ||y||$$

$$\left(\sum_{i=1}^{n} (x_i + y_i)^2\right)^{1/2} \leq \left(\sum_{i=1}^{n} (x_i)^2\right)^{1/2} + \left(\sum_{i=1}^{n} (y_i)^2\right)^{1/2} \quad \text{(): weil } x_i, y_i \in \mathbb{R}$$

Definition (Normierter Raum)

Ein Vektorraum V heißt ein normierter Raum, falls es eine Abbildung

$$|| \quad || \ : \ V o \mathbb{R} \quad ext{(Norm) gibt mit}$$

(1)
$$||x|| \ge 0$$
 $\forall x \in V$ $||x|| = 0 \Leftrightarrow x = 0$

(2)
$$||\lambda x|| = |\lambda| ||x||$$
 $\forall x \in V, \ \forall \lambda \in K$

(3)
$$||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in V$$
.

Korollar

Affine Teilräume

00000

Jeder euklidische Vektorraum ist mit der Norm $||x|| = \sqrt{\langle x, x \rangle}$ ein normierter Raum.

00000

Beispiele (Norm)

(a)

Affine Teilräume

00000

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$
 euklidische Norm

(b)

$$||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

(c)

$$||x||_1 = \sum_{i=1}^n |x_i|$$

(d)

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 für $p \ge 1$

Veranschaulichung

Affine Teilräume

Betrachte
$$\{x \in \mathbb{R}^2 \mid ||x|| = 1\}$$
 also solche $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ für welche $||x|| = 1$.

Definition (Abstand)

Seien $x, y \in V$. Dann heißt d(x, y) = ||x - y|| der Abstand zwischen x und y.

Eigenschaft

Es gilt:

Affine Teilräume

00000

(1)
$$d(x, y) \ge 0$$

 $d(x, y) = 0 \Leftrightarrow x = y$

(2)
$$d(x, y) = d(y, x)$$

(3)
$$d(x,y) \leq d(x,z) + d(z,y)$$
.

Beweis

(1)
$$d(x,y) = ||x-y|| \stackrel{\mathsf{Def. Norm}}{\geq} 0$$

 $d(x,y) = 0 \Leftrightarrow ||x-y|| = 0 \Leftrightarrow x-y = 0 \Leftrightarrow x = y$

(2)
$$d(x,y) = ||x-y|| = ||(-1)(y-x)|| = |-1|||y-x|| = d(y,x)$$

(3)
$$d(x,y) = ||x-y|| = ||(x-z) + (z-y)||$$
 \leq $\leq ||x-z|| + ||z-y|| = d(x,z) + d(z,y)$.

Betrachte die Ungleichung von Cauchy-Schwarz für $x, y \neq 0$:

$$|\langle x, y \rangle| \le ||x|| \, ||y|| \iff -1 \le \frac{\langle x, y \rangle}{||x|| \, ||y||} \le 1.$$

Für $\cos(\alpha)$ $\alpha \in [0, 2\pi]$ gilt:

$$-1 \le \cos \alpha \le 1$$
.

Wenn

Affine Teilräume

$$\cos \alpha = \frac{\langle x, y \rangle}{||x|| \, ||y||}$$
 (1),

dann gilt die Cauchy-Schwarz-Ungleichung für den Winkel $\underline{\alpha}$. Damit ist der Winkel zwischen x und y eindeutig bestimmt für $0 \le \alpha < \pi$.

Veranschaulichung von α : siehe Folie 48

 $\langle x, y \rangle$: Aus (1) folgt also, dass

Affine Teilräume

$$\langle x, y \rangle = ||x|| \, ||y|| \cos \alpha$$
 (2)

für $\alpha = 90^{\circ} (= \frac{\pi}{2})$ ist $\cos \alpha = 0$ $\Rightarrow \langle x, y \rangle = 0$, d. h. x und v stehen senkrecht zueinander.

Veranschaulichung von $\langle x, y \rangle$: siehe Folie 50

Wenn also der Winkel zwischen zwei Vektoren 90° ist, dann sind die beiden Vektoren orthogonal (senkrecht) zueinander.

Veranschaulichung α (Winkel zwischen zwei Vektoren)

Sei
$$x, y \in \mathbb{R}^2$$
, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \neq 0$ und

 α_1 : Winkel von x zur Koordinatenachse 1

Affine Teilräume

00000

 α_2 : Winkel von y zur Koordinatenachse 1

 $\alpha = \alpha_1 - \alpha_2$: Winkel zwischen x und y (bezüglich Koordinatenachse 1).

Es gilt:

Affine Teilräume

00000

$$\cos \alpha_1 = \frac{x_1}{||x||}$$
 $\cos \alpha_2 = \frac{y_1}{||y||}$ $\sin \alpha_1 = \frac{x_2}{||x||}$ $\sin \alpha_2 = \frac{y_2}{||y||}$

Da $\alpha = \alpha_1 - \alpha_2$, dann

$$\cos \alpha = \cos(\alpha_1 - \alpha_2) = \cos \alpha_1 \cos \alpha_2 + \sin \alpha_1 \sin \alpha_2 =$$

$$= \frac{x_1 y_1}{||x|| ||y||} + \frac{x_2 y_2}{||x|| ||y||} = \frac{x_1 y_1 + x_2 y_2}{||x|| ||y||} = \frac{\langle x, y \rangle}{||x|| ||y||} \quad (1) .$$

Veranschaulichung $\langle x, y \rangle$ (inneres Produkt zweier Vektoren)

Sei
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq 0, \quad y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \neq 0, \quad x,y \in \mathbb{R}^2$$
 und

 α : Winkel zwischen x, y (α : im ersten Quadrant)

Dann ist laut

Affine Teilräume

00000

$$\langle x, y \rangle = ||x|| \, ||y|| \cos \alpha \quad (2)$$

 $\langle x, y \rangle$ das Produkt von ||x|| ||y|| mit $\cos \alpha$.

||x|| ||y|| ist aber die Fläche des Rechtecks mit Seiten ||x|| und ||y||, also

$$||x|| \, ||y|| =$$
 $||x|| \, ||y||$

 $\cos \alpha$ hat für $\alpha \in [0, 2\pi]$ folgenden Verlauf

Aus (2) folgt:

Affine Teilräume

$$\begin{array}{l} \langle \textbf{x}, \textbf{y} \rangle \text{ geht } \underline{\text{von}} \text{ seinem maximalen Wert } \underline{||\textbf{x}|| \, ||\textbf{y}|| \cdot 1} \text{ (für } \alpha = 0^\circ) \\ \underline{\textbf{zu}} \ ||\textbf{x}|| \, ||\textbf{y}|| \cdot 0 = \underline{0} & \text{(für } \alpha = \frac{\pi}{2} = 90^\circ), \\ \underline{\text{dann zu}} \ ||\textbf{x}|| \, ||\textbf{y}|| \cdot (-1) & \text{(für } \alpha = \pi = 180^\circ), \\ \text{und wieder } \underline{\textbf{zu}} \ \underline{0} & \text{(für } \alpha = \frac{3}{2}\pi = 270^\circ), \\ \text{und periodisch zu } ||\textbf{x}|| \, ||\textbf{y}|| \text{ (für } \alpha = 2\pi = 360^\circ). \end{array}$$

graphisch dargestellt:

Affine Teilräume

00000

Determinante

Determinante

00000

Tabellarisch dargestellt:

Affine Teilräume

α	$\langle x, y \rangle$	
$\underline{0^{\circ}} = 0 \cdot \pi$	x y	(Wenn x , y parallel (kollateral) sind, ist das innere
		Produkt maximal.)
<u>60°</u>	$ x y \cdot \frac{1}{2}$	(Wenn $\alpha=60^{\circ}$, dann ist die Fläche die Hälfte des Rechtecks.)
$90^{\circ} = \frac{\pi}{2}$	0	(Wenn die Vektoren orthogonal sind, ist die Fläche 0 (minimal).)
$180^{\circ} = \pi$	$ x y \cdot(-1)$	(Hier ist das Skalarprodukt gleich dem Minus-Wert der maximalen Fläche.)
$270^{\circ} = \frac{3}{2}\pi$	0	(Hier ist das Skalarprodukt gleich 0 (Orthogonalität).)
$360^{\circ} = 2\pi$	x y	(Wie bei $\alpha=0^{\circ}$.)

Veranschaulichung Matrix-Vektor-Produkt

$$A \in M(m \times n) \qquad x \in \mathbb{R}^{n} \qquad y = Ax \in \mathbb{R}^{m}$$

$$Ax = \begin{bmatrix} a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \\ \vdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} a_{1i}x_{i} \\ \sum_{i=1}^{n} a_{2i}x_{i} \\ \vdots \\ \sum_{i=1}^{n} a_{mi}x_{i} \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{bmatrix}$$

$$y_i$$
 ist $||a_i|| \cdot ||x|| \cos(\angle a_i, x)$ für $i = 1, 2, ..., m$

Also:

Affine Teilräume

00000

 y_i ist die Fläche des Rechtecks mit Seiten $||a_i||$ und ||x|| multipliziert mit dem Cosinus des Winkels zwischen dem Vektor a; (i-te Zeile von A) und dem Vektor x.

⇒ Vektor y: Vektor von Flächen

Affine Teilräume

$$A \in M(m \times k)$$
 $B \in M(k \times n)$

$$C = AB \in M(m \times n)$$
 mit $c_{ij} = \sum_{l=1}^{k} a_{il} b_{lj}$ $i = 1, 2, ..., m$
 $j = 1, 2, ..., n$

Also: c_{ii} ist das Skalarprodukt von Zeile i von A mit Spalte i von B.

Bezeichnung:
$$\underline{a_i}$$
: Zeile i von \underline{A} $i=1,\ldots,m$ $\underline{b_j}$: Spalte j von \underline{B} $j=1,\ldots,n$.

Dann ist c_{ii} die Fläche des Rechtecks mit den Seiten $||a_i||$ und $||b_i||$ multipliziert mit dem Cosinus des Winkels zwischen a; und bi.

- \Rightarrow 1st der Winkel $\pi/2 = 90^{\circ}$, dann sind a_i und b_i orthogonal zueinander und $\cos(\pi/2) = 0$, daher in diesem Fall $c_{ii} = 0$.
- \Rightarrow C ist eine Matrix von Flächen.

Orthogonalität

Affine Teilräume

00000

Definition – Orthogonalität

Sei V ein euklidischer Vektorraum und $x, y \in V$.

x, y heißen orthogonal (senkrecht) zueinander, wenn:

$$\langle x, y \rangle = 0$$

geschrieben: $x \perp y$.

Orthogonalität

Eigenschaft – Satz von Pythagoras (für zwei orthogonale Vektoren)

Seien
$$\langle x, y \rangle = 0$$
. Dann $||x||^2 + ||y||^2 = ||x + y||^2$ $c = a + b$ (vektoriell)

Beweis

$$||x + y||^2 = \langle x + y, x + y \rangle =$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle =$$

$$= 0$$

$$= ||x||^2 + ||y||^2.$$

Definition (Orthonormalbasis)

Affine Teilräume

Sei V ein euklidischer Vektorraum und seien $v_1, v_2, \ldots, v_n \in V$.

(1) $\{v_1, v_2, \dots, v_n\}$ heißt Orthogonalsystem (OGS), wenn

$$v_i \perp v_j$$
 $\forall i, j = 1, 2, \ldots, n \quad i \neq j$

Orthogonalität

(2) $\{v_1, v_2, \dots, v_n\}$ heißt Orthonormalsystem (ONS), wenn

$$\langle v_i, v_j \rangle = \begin{cases} 1 & \text{für } i = j \\ 0 & \text{für } i \neq j \end{cases}$$

Also:
$$\{v_1, v_2, ..., v_n\}$$
 ist OGS mit $||v_i|| = 1 \quad \forall i = 1, ..., n$

- (3) $\{v_1, v_2, \dots, v_n\}$ heißt Orthonormalbasis (ONB), wenn
 - (a) $\{v_1, v_2, \dots, v_n\}$ ist Orthonormalsystem
 - (b) $\{v_1, v_2, \dots, v_n\}$ ist eine Basis von V.

Eigenschaft – Satz von Pythagoras (für *n* orthogonale Vektoren)

Sei $\{v_1, v_2, \dots, v_n\}$ ein Orthogonalsystem.

$$\Rightarrow \left\| \left| \sum_{i=1}^{n} v_i \right| \right|^2 = \sum_{i=1}^{n} ||v_i||^2$$

(Die quadrierte Norm einer Vektorensumme ist die Summe der quadrierten Normen der Vektoren.)

Beweis (vollständige Induktion)

Affine Teilräume

- n = 1 $||v_1||^2 = ||v_1||^2$
- Induktionsannahme: Sei k beliebig, aber fix, k < n, und gelte

$$\left\| \sum_{i=1}^k v_i \right\|^2 = \sum_{i=1}^k ||v_i||^2 .$$

 \bullet $k \rightarrow k+1$

Affine Teilräume

$$\left\langle \sum_{i=1}^{k} v_i, \ v_{k+1} \right\rangle = \sum_{i=1}^{k} \langle v_i, \ v_{k+1} \rangle = 0$$

Orthogonalität

Also: $\sum_{i=1}^{k} v_i$ und v_{k+1} sind \perp

$$\Rightarrow \left| \left| \sum_{i=1}^{k+1} v_i \right| \right|^2 = \left| \left| \left(\sum_{i=1}^k v_i \right) + v_{k+1} \right| \right|^2 =$$

wegen Satz von Pythagoras für zwei orthogonale Vektoren

$$= \left| \left| \sum_{i=1}^{k} v_i \right| \right|^2 + ||v_{k+1}||^2 \quad \stackrel{\text{Induktions-}}{=} \quad \sum_{i=1}^{k} ||v_i||^2 + ||v_{k+1}||^2 = \sum_{i=1}^{k+1} ||v_i||^2 \ .$$

Eigenschaft

Affine Teilräume

Sei $\{v_1, v_2, \dots, v_n\}$ ein Orthogonalsystem mit $v_i \neq 0 \quad \forall i = 1, \dots, n$.

Dann sind v_1, v_2, \ldots, v_n linear unabhängig.

Beweis

Sei $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n = 0$. Dann folgt $\forall v_i \quad (i = 1, 2, \ldots, n)$:

$$0 = \langle 0, v_i \rangle = \left\langle \sum_{j=1}^n \lambda_j v_j, v_i \right\rangle = \sum_{j=1}^n \lambda_j \left\langle v_j, v_i \right\rangle = \lambda_i \langle v_i, v_i \rangle = \lambda_i ||v_i||^2$$

 $\Rightarrow \lambda_i = 0 \quad \forall i = 1, 2, \dots, n \quad \Rightarrow v_1, v_2, \dots, v_n \text{ sind linear unabhängig.}$

Korollar

 $\{v_1, v_2, \dots, v_n\}$ ist ONB $\iff \{v_1, v_2, \dots, v_n\}$ ist ONS und LIN $\{v_1, v_2, \dots, v_n\} = V$

Beweis

Nach obiger Eigenschaft ist jedes ONS linear unabhängig.

Was bedeutet die Transformation

Affine Teilräume

$$T(x) = T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
?

Der Transformation T entspricht eine Matrix (gesucht).

$$A = \begin{bmatrix} ---- & a_1 & ---- \\ ---- & a_2 & ---- \\ \vdots & & \vdots \\ ---- & a_n & ---- \end{bmatrix} \quad \text{sodass } T(x) = Ax = \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Einerseits: T ist die Eliminierung der ersten Spalte bei der Berechnung der Halbdiagonalform (im Gauss-Algorithmus).

00000

• Andererseits: T ist die Projektion des Vektors $x \in \mathbb{R}^n$ auf \mathbb{R}^1 (d. h. auf die erste Koordinatenachse des Koordinatensystems).

Veranschaulichung

Affine Teilräume

$$x \in \mathbb{R}^2$$
 $T(x) = T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}$

Es gilt

Affine Teilräume

Orthogonalität

00000000

Also: die Zeilen von A (beginnend mit a_2) sollen orthogonal zum Vektor x sein.

Bei der Eliminierung der ersten Spalte im Gauss-Algorithmus (d. h. Vektor x =1. Spalte der Matrix des LGS) wird das $\left(-\frac{x_i}{x_1}\right)$ -fache der ersten Gleichung zur *i*-ten Gleichung addiert.

Die Matrix ist dementsprechend:
$$T = \begin{bmatrix} 1 \\ -\frac{x_2}{x_1} & 1 & & 0 \\ \vdots & & \ddots & & \\ -\frac{x_i}{x_1} & & & 1 \\ \vdots & & 0 & & \ddots \\ -\frac{x_n}{x_1} & & & & 1 \end{bmatrix}$$

Orthogonalität

00000000

Tatsächlich:

Affine Teilräume

$$\langle a_1, x \rangle = 1 \cdot x_1 = x_1$$

$$\langle a_2, x \rangle = -\frac{x_2}{x_1} \cdot x_1 + x_2 = 0$$

$$\vdots \qquad \vdots$$

$$\langle a_i, x \rangle = -\frac{x_i}{x_1} \cdot x_1 + x_i = 0$$

$$\vdots \qquad \vdots$$

$$\langle a_n, x \rangle = -\frac{x_n}{x_1} \cdot x_1 + x_n = 0$$

Die Zeilen
$$a_2, \ldots, a_n$$
 von A sind orthogonal zu x , d. h. $\cos(\angle a_i, x) = 0 \Rightarrow \angle a_i, x = 90^\circ \quad i = 2, \ldots, n$ und die Fläche $||a_i|| \, ||x|| \cos(\angle a_i, x) = \sqrt{1 + \frac{x_i^2}{x_1^2}} \, \sqrt{\sum_{i=1}^n x_i^2} \cos(\angle a_i, x) \xrightarrow[\text{mit } \cos(\angle a_i, x) = 0]{\min \text{tr}} \, \frac{0}{\cos(\angle a_i, x) = 0}$

Satz – Fourierentwicklung

Affine Teilräume

00000

Sei V ein euklidischer Vektorraum und $\{v_1, v_2, \dots, v_n\}$ ein ONS von V. Dann sind folgende Aussagen äquivalent:

- (1) $\{v_1, v_2, ..., v_n\}$ ist ONB von V
- (2) $\forall x \in V$ gilt: $x=\sum_{i}^{n}\langle x,v_{i}\rangle v_{i}$ Fourierentwicklung
- (3) $\forall x, y \in V$ gilt:

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}$$
 Parsevalsche Gleichung

- (4) $\forall x \in V$ gilt: $||x||^2 = \sum_{i=1}^n |\langle x, v_i \rangle|^2$
- (5) Ist $x \in V$ mit $\langle x, v_i \rangle = 0$ $\forall i = 1, ..., n$, so gilt x = 0.

00000

Beweis

Affine Teilräume

•
$$(1) \Rightarrow (2)$$

$$v_1, v_2, \ldots, v_n$$
 ist Basis

$$\Rightarrow \forall x \in V \text{ gilt:}$$

$$x = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$$
 eindeutig

$$\Rightarrow \langle x, v_i \rangle = \left\langle \sum_{j=1}^n \lambda_j v_j, v_i \right\rangle = \sum_{j=1}^n \lambda_j \langle v_j, v_i \rangle = \lambda_i$$

$$0 \quad i \neq j$$

$$1 \quad i = j$$

Orthogonalität

000000000

$$\bullet$$
 (2) \Rightarrow (3)

Affine Teilräume

$$\langle x, y \rangle \stackrel{(2)}{=} \langle \sum_{i=1}^{n} \langle x, v_i \rangle v_i, y \rangle$$

$$= \sum_{i=1}^{n} \langle x, v_i \rangle \langle v_i, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}$$

•
$$(3) \Rightarrow (4)$$

setzen
$$x = y$$
 in (3)

$$\Rightarrow \|x\|^2 = \langle x, x \rangle = \sum_{i=1}^n \langle x, v_i \rangle \overline{\langle x, v_i \rangle} = \sum_{i=1}^n |\langle x, v_i \rangle|^2$$

•
$$(4) \Rightarrow (5)$$

Sei
$$\langle x, v_i \rangle = 0 \quad \forall i = 1, 2, \dots, n$$

$$\stackrel{\text{(4)}}{\Rightarrow} ||x||^2 = \sum_{i=1}^n |\underbrace{\langle x, v_i \rangle}_{=0}|^2 = 0$$

$$\Rightarrow x = 0$$

• $(5) \Rightarrow 1$

Affine Teilräume

Zu zeigen ist, dass LIN $\{v_1, v_2, \dots, v_n\} = V$.

Angenommen $\exists x \in V \text{ mit } x \notin LIN\{v_1, v_2, \dots v_n\}$

$$\Rightarrow x - \sum_{j=1}^{n} \langle x, v_j \rangle v_j \neq 0$$

aber

$$\langle x - \sum_{j=1}^{n} \langle x, v_j \rangle v_j, v_i \rangle = \langle x, v_i \rangle - \sum_{j=1}^{n} \langle x, v_j \rangle \underbrace{\langle v_j, v_i \rangle}_{\substack{=0 \ i \neq j \\ =1 \ i=i}}$$

$$=\langle x, v_i \rangle - \langle x, v_i \rangle = 0 \Rightarrow$$
 Widerspruch zur Annahme

$$\stackrel{(5)}{\Rightarrow} x - \sum_{j=1}^{n} \langle x, v_j \rangle v_j = 0 \Rightarrow \mathsf{LIN}\{v_1, v_2, \dots, v_n\} = V$$

 $\Rightarrow v_1, v_2, \dots v_n$ ist eine Orthonormalbasis.

Bemerkung

Affine Teilräume

Sei $\{v_1, v_2, \dots, v_n\}$ eine Orthonormalbasis. Dann ist der Koordinatenvektor von $x \in V$ bezüglich der Basis $\{v_1, v_2, \dots, v_n\}$

$$x = \begin{bmatrix} \langle x, v_1 \rangle \\ \langle x, v_2 \rangle \\ \vdots \\ \langle x, v_n \rangle \end{bmatrix}.$$

Beispiel

Sei
$$U = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \mid x_2 + x_3 = 0 \right\} \subseteq \mathbb{R}^3$$

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \quad v_1, v_2 \in U$$

Affine Teilräume

$$\langle v_1, v_2 \rangle = 0$$

 $\|v_1\| = 1 \quad \|v_2\| = \frac{1}{\sqrt{2}} \sqrt{0 + 1 + 1} = 1$

U ist eine Ebene im $\mathbb{R}^3 \Rightarrow \dim(U) = 2 \Rightarrow v_1, v_2$ ist ONB von *U*.

Orthogonalität

Sei
$$x = \begin{bmatrix} 2 \\ 3 \\ -3 \end{bmatrix} \in U$$
. Wie lautet der Koordinatenvektor von x bezüglich der ONB $\{v_1, v_2\}$?

$$\langle x, v_1 \rangle = 2 \cdot 1 + 0 \cdot 3 + 0(-3) = 2$$

$$\langle x, v_2 \rangle = 2 \cdot 0 + \frac{1}{\sqrt{2}} 3 + \frac{1}{\sqrt{2}} (-3) (-1) = \frac{1}{\sqrt{2}} (3+3) = \frac{6}{\sqrt{2}} = 3\sqrt{2}$$

 \Rightarrow Koordinatenvektor von x bezüglich ONB $\{v_1, v_2\}$ ist

$$x_{\{v_1,v_2\}} = \begin{bmatrix} 2 \\ 3\sqrt{2} \end{bmatrix}.$$

Frage

Affine Teilräume

Besitzt jeder endlichdimensionale euklidische Vektorraum eine Orthonormalbasis? Wenn ja, wie berechnet man diese?

Satz (Orthonormalisierungsverfahren von Gram-Schmidt)

Sei V ein euklidischer Vektorraum und seien $w_1, w_2, \dots w_k \in V$ linear unabhängige Vektoren. Dann existiert ein Orthonormalsystem $\{v_1, v_2, \dots, v_k\}$ mit

$$LIN\{v_1, v_2, \dots, v_k\} = LIN\{w_1, w_2, \dots, w_k\}.$$

Beweis

Wir konstruieren v_1, v_2, \ldots, v_k rekursiv wie folgt:

(1) Setze
$$v_1 = \frac{1}{\|w_1\|} w_1 \Rightarrow \|v_1\| = \frac{1}{\|w_1\|} \|w_1\| = 1$$

Affine Teilräume

(2) Sind $v_1, v_2, \dots v_l$ für l < k schon berechnet, d. h. es gilt: $LIN\{v_1, v_2, \dots, v_l\} = LIN\{w_1, w_2, \dots, w_l\} \bullet$ so setze

(i)
$$\tilde{v}_{l+1} = w_{l+1} - \sum_{i=1}^{l} \langle w_{l+1}, v_i \rangle v_i$$

wir zeigen, dass $\langle \tilde{v}_{l+1}, v_i \rangle = 0$ für alle $j = 1, 2, \dots, l$.

$$\langle \tilde{v}_{l+1}, v_{j} \rangle = \langle w_{l+1} - \sum_{i=1}^{l} \langle w_{l+1}, v_{i} \rangle v_{i}, v_{j} \rangle =$$

$$= \langle w_{l+1}, v_{j} \rangle - \sum_{i=1}^{l} \langle w_{l+1}, v_{i} \rangle \underbrace{\langle v_{i}, v_{j} \rangle}_{= 0 \quad i \neq j}$$

$$= 1 \quad i = j$$

$$(da \{v_{1}, v_{2}, \dots, v_{l}\}) \text{ ONS}$$

$$= \langle w_{l+1}, v_{i} \rangle - \langle w_{l+1}, v_{i} \rangle = 0.$$

Da $w_1, \ldots, w_l, w_{l+1}$ linear unabhängig sind

$$\Rightarrow w_{l+1} \notin \mathsf{LIN}\{w_1, w_2, \dots, w_l\}$$

Affine Teilräume

Da nach Induktionsvoraussetzung •

$$\begin{aligned} \mathsf{LIN}\{w_1, w_2, \dots, w_l\} &= \mathsf{LIN}\{v_1, v_2, \dots, v_l\} \\ \Rightarrow w_{l+1} \notin \mathsf{LIN}\{v_1, v_2, \dots, v_l\} \\ \Rightarrow \tilde{v}_{l+1} &= \underbrace{w_{l+1}}_{\notin \mathsf{LIN}\{v_1, v_2, \dots, v_l\}} - \underbrace{\sum_{i=1}^{l} \langle w_{l+1}, v_i \rangle v_i}^{\dagger} \stackrel{\star}{\neq} 0 \\ &\in \mathsf{LIN}\{v_1, v_2, \dots, v_l\} \Rightarrow \tilde{v}_{l+1} \neq 0 \\ &\quad (\mathsf{weil} \ w_{l+1} \ \mathsf{und} \ \sum_{i=1}^{l} \mathsf{nicht} \ \mathsf{gleich} \ \mathsf{sein} \ \mathsf{k\"{o}nnen!}) \end{aligned}$$

(ii) Setze
$$v_{l+1} = \frac{1}{\underbrace{\|\tilde{v}_{l+1}\|}} \tilde{v}_{l+1} \Rightarrow \|v_{l+1}\| = 1$$

$$\Rightarrow \{v_1, v_2, \dots, v_{l+1}\} \text{ ist ein Orthonormal system.}$$
Da dim LIN $\{w_1, w_2, \dots, w_{l+1}\} = l+1$ und
$$v_1, v_2, \dots, v_{l+1} \in \text{LIN}\{w_1, w_2, \dots, w_{l+1}\} \text{ (nach Konstruktion)}$$
und v_1, v_2, \dots, v_{l+1} linear unabhängig sind
(laut vorigem Satz: jedes Orthonormal system ist linear unabhängig), bilden v_1, v_2, \dots, v_{l+1} eine ONB von LIN $\{w_1, w_2, \dots, w_{l+1}\}$

$$\Rightarrow \text{LIN}\{v_1, v_2, \dots, v_{l+1}\} = \text{LIN}\{w_1, w_2, \dots, w_{l+1}\}.$$

Eigenschaft

Jeder endlichdimensionale euklidische Vektorraum besitzt eine Orthonormalbasis.

Beweis

Affine Teilräume

Wähle eine beliebige Basis $\{w_1, w_2, \dots, w_n\}$ und wende das Orthonormalisierungsverfahren von Gram-Schmidt an $\Rightarrow \{v_1, v_2, \dots, v_n\}$ ist eine ONB (da $\{v_1, v_2, \dots, v_n\}$ ein ONS ist und $V = LIN\{w_1, w_2, \dots, w_n\} = LIN\{v_1, v_2, \dots, v_n\}$).

Definition (orthogonales Komplement)

Sei V ein euklidischer Vektorraum, U ein Teilraum von V. Dann heißt

$$U^{\perp} = \{ x \in V \mid \langle x, u \rangle = 0 \quad \forall u \in U \}$$

das orthogonale Komplement von U.

Eigenschaft

Affine Teilräume

Sei U ein Teilraum von V. Dann gilt:

- (1) U^{\perp} ist ein Teilraum von V
- (2) $U_1 \subset U_2 \Rightarrow U_2^{\perp} \subset U_1^{\perp}$.

Beweis

Affine Teilräume

(1) Seien
$$x, y \in U^{\perp} \Rightarrow \langle x, u \rangle = 0$$

 $\langle y, u \rangle = 0 \quad \forall u \in U$
 $\Rightarrow \langle x + y, u \rangle = \langle x, u \rangle + \langle y, u \rangle = 0$
 $\langle \lambda x, u \rangle = \lambda \langle x, u \rangle = \lambda 0 = 0$
 $\Rightarrow x + y \in U^{\perp}, \ \lambda x \in U^{\perp}.$

(2) Sei
$$U_1 \subseteq U_2$$
 und sei $x \in U_2^{\perp}$, zu zeigen ist $x \in U_1^{\perp}$.
Da $x \in U_2^{\perp} \Rightarrow \langle x, u \rangle = 0 \quad \forall u \in U_2$.
Da $U_1 \subseteq U_2 \Rightarrow \langle x, u \rangle = 0 \quad \forall u \in U_1$
 $\Rightarrow x \in U_1^{\perp}$.

Satz

Affine Teilräume

Sei V ein endlichdimensionaler euklidischer Vektorraum, U ein Teilraum von V und U^{\perp} sein orthogonales Komplement.

Dann gilt:

Jeder Vektor $x \in V$ lässt sich eindeutig als Summe zweier Vektoren aus U und U^{\perp} schreiben, also

$$\circledast \forall x \in V \quad \exists! \ x_1 \in U, x_2 \in U^{\perp} \text{ mit } x = x_1 + x_2.$$

Bezeichnung (für die Eigenschaft *):

 $V = U \oplus U^{\perp}$ ist die direkte Summe von U und U^{\perp} .

Es gilt: $V = U \oplus U^{\perp} \Leftrightarrow V = U + U^{\perp}$ und $U \cap U^{\perp} = \{0\}$.

Beweis

Affine Teilräume

00000

(1) Eindeutigkeit

Angenommen
$$x = x_1 + x_2$$
 mit $x_1 \in U$, $x_2 \in U^{\perp}$ und $x = y_1 + y_2$ mit $y_1 \in U$, $y_2 \in U^{\perp}$.

Zu zeigen ist: $x_1 = y_1$ und $x_2 = y_2$.

 $0 = x - x = (x_1 + x_2) - (y_1 + y_2) = (x_1 - y_1) + (x_2 - y_2) \in U^{\perp}$
 $\Rightarrow \langle x_1 - y_1, x_2 - y_2 \rangle = 0$
 $\Rightarrow 0 = \langle x_1 - y_1, 0 \rangle = (x_1 - y_1, (x_1 - y_1) + (x_2 - y_2)) = (x_1 - y_1, (x_1 - y_1)) + \langle (x_1 - y_1), (x_2 - y_2) \rangle = (\langle x_1 - y_1, (x_1 - y_1) \rangle + \langle (x_1 - y_1), (x_2 - y_2) \rangle = \langle (x_1 - y_1), (x_1 - y_1) \rangle + 0 = ||x_1 - y_1||^2$
 $\Rightarrow x_1 - y_1 = 0 \Rightarrow x_1 = y_1$
 $\Rightarrow x_2 - y_2 = 0 \Rightarrow x_2 = y_2$.

(2) Existenz

Affine Teilräume

Sei $\dim(V) = n$.

 $U \subseteq V \Rightarrow U$ ist endlichdimensional.

Sei dim $(U) = k \Rightarrow$ es gibt eine ONB $\{v_1, v_2, \dots, v_k\}$ in U.

Nach dem Basisergänzungssatz ergänzen wir $\{v_1, v_2, \ldots, v_k\}$ zu einer Basis $\{v_1, v_2, \ldots, v_k, w_{k+1}, \ldots, w_n\}$ von V, wenden darauf Gram-Schmidt an. $\{v_1, v_2, \ldots, v_k\}$ bleiben dabei unverändert und wir erhalten eine ONB $\{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ von V.

Wir zeigen $U^{\perp} = LIN\{v_{k+1}, \ldots, v_n\}.$

• LIN
$$\{v_{k+1},\ldots,v_n\}\subseteq U^{\perp}$$
.

00000

Sei
$$x \in LIN\{v_{k+1}, \ldots, v_n\}$$

$$\Rightarrow x = \lambda_{k+1} v_{k+1} + \cdots + \lambda_n v_n.$$

Für $i = 1, 2, \dots, k$ gilt dann

$$\langle x, v_i \rangle = \langle \lambda_{k+1} v_{k+1} + \dots + \lambda_n v_n, v_i \rangle = = \lambda_{k+1} \langle v_{k+1}, v_i \rangle + \dots + \lambda_n \langle v_n, v_i \rangle = 0. = 0$$

Sei nun
$$y \in U \Rightarrow y = \lambda_1 v_1 + \cdots + \lambda_k v_k$$

$$\Rightarrow \langle x, y \rangle = \lambda_1 \langle x, v_1 \rangle + \cdots + \lambda_k \langle x, v_k \rangle = 0.$$

$$\Rightarrow x \in U^{\perp} \Rightarrow LIN\{v_{k+1}, \dots, v_n\} \subseteq U^{\perp}.$$

•
$$U^{\perp} \subseteq \mathsf{LIN}\{v_{k+1},\ldots,v_n\}.$$

Sei
$$x \in U^{\perp} \subseteq V$$

00000

$$\Rightarrow x = \langle x, v_1 \rangle v_1 + \dots + \langle x, v_k \rangle v_k + \langle x, v_{k+1} \rangle v_{k+1} + \dots + \langle x, v_n \rangle v_n.$$

Da
$$v_1, v_2, ..., v_k \in U$$

$$\Rightarrow \langle x, v_1 \rangle = \cdots = \langle x, v_k \rangle = 0$$

$$\Rightarrow x = \langle x, v_{k+1} \rangle v_{k+1} + \dots + \langle x, v_n \rangle v_n$$

$$\in \mathsf{LIN}\{v_{k+1}, \dots, v_n\}$$

$$\Rightarrow U^{\perp} \subset LIN\{v_{k+1}, \ldots, v_n\}$$

$$\Rightarrow U^{\perp} \subseteq LIN\{v_{k+1},\ldots,v_n\}$$

$$\bullet \bullet \Rightarrow U^{\perp} = \mathsf{LIN}\{v_{k+1}, \ldots, v_n\}.$$

Insgesamt ergibt sich für $x \in V$

$$x = \underbrace{\langle x, v_1 \rangle v_1 + \dots + \langle x, v_k \rangle v_k}_{=x_1 \in U} + \underbrace{\langle x, v_{k+1} \rangle v_{k+1} + \dots + \langle x, v_n \rangle v_n}_{=x_2 \in U^{\perp}}.$$

Eigenschaft

Affine Teilräume

Sei V ein euklidischer Vektorraum mit dim(V) = n und $U \subseteq V$ ein Teilraum mit $\dim(U) = k$.

(1) Sei $\{v_1, v_2, \dots, v_k\}$ eine ONB von U.

Wenn diese zu einer ONB $\{v_1, v_2, \dots, v_k, v_{k+1}, \dots, v_n\}$ von V ergänzt wird, so gilt

$$U^{\perp} = \mathsf{LIN}\{v_{k+1}, \dots, v_n\}.$$

- (2) $\dim(V) = \dim(U) + \dim(U^{\perp})$
- (3) $(U^{\perp})^{\perp} = U$

Beweis

Folgt direkt aus dem Existenzbeweis des obigen Satzes.

Definition (orthogonale Projektion)

Sei V ein endlichdimensionaler euklidischer Vektorraum und $U \subseteq V$ ein Teilraum.

$$\forall x \in V \quad \exists! \ x_1 \in U, \ x_2 \in U^{\perp} \quad x = x_1 + x_2.$$

Dann heißt

Affine Teilräume

$$\pi_U: V \to U \quad , \quad x \mapsto x_1$$

die orthogonale Projektion auf U

$$\pi_{U^{\perp}}: V \to U^{\perp} \quad , \quad x \mapsto x_2$$

die orthogonale Projektion auf U^{\perp} .

00000

$$V=\mathbb{R}^3, \ U=\left\{egin{bmatrix}x_1\x_2\0\end{bmatrix},x_1,x_2\in\mathbb{R}
ight\} \ (ext{x-y-Ebene})$$

$$\Rightarrow U^{\perp} = \left\{ \begin{bmatrix} 0 \\ 0 \\ x_3 \end{bmatrix}, x_3 \in \mathbb{R} \right\}$$

$$\begin{bmatrix} x \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} x_2 \\ 0 \\ 0 \\ x_3 \end{bmatrix}$$

Eigenschaft

Affine Teilräume

Sei $U \subseteq V$ ein Teilraum von V.

(1) Sei $\{v_1, v_2, \dots, v_k\}$ eine ONB von U und $\{v_{k+1}, \dots, v_n\}$ die ergänzte ONB von U^{\perp}

$$\Rightarrow \pi_U(x) = \sum_{i=1}^k \langle x, v_i \rangle v_i \quad \forall x \in V$$

$$\pi_{U^{\perp}}(x) = \sum_{i=k+1}^{n} \langle x, v_i \rangle v_i \quad \forall x \in V.$$

- (2) $\pi_U: V \to U$ und $\pi_{U^{\perp}}: V \to U^{\perp}$ sind lineare Abbildungen.
- (3) $\pi_U(x) = x \quad \forall x \in U.$
- (4) $\forall x \in V \text{ gilt } \langle x \pi_U(x), u \rangle = 0 \quad \forall u \in U.$
- (5) $\pi_U(x) + \pi_{U^{\perp}}(x) = x \quad \forall x \in V.$

Beispiel

Affine Teilräume

Sei
$$w_1=\begin{bmatrix}1\\2\\3\end{bmatrix}, w_2=\begin{bmatrix}2\\1\\1\end{bmatrix}\in\mathbb{R}^3.$$
 w_1,w_2 sind linear unabhängig.

Sei $U = \mathsf{LIN}\{w_1, w_2\} \subseteq \mathbb{R}^3$.

(a) ONB von U

$$||w_1|| = \sqrt{1+4+9} = \sqrt{14} \Rightarrow v_1 = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

$$\tilde{v}_2 = w_2 - \langle w_2, v_1 \rangle v_1 = \begin{bmatrix} 2\\1\\1 \end{bmatrix} - \frac{1}{\sqrt{14}} \left\langle \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\rangle \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} 2\\1\\1 \end{bmatrix} - \frac{7}{14} \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3\\0\\-1 \end{bmatrix} \Rightarrow v_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} 3\\0\\-1 \end{bmatrix}$$

(b) orthogonale Projektion von
$$x = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$
 auf U

$$\pi_{U}(x) = \langle x, v_{1} \rangle v_{1} + \langle x, v_{2} \rangle v_{2} =$$

$$= \frac{1}{\sqrt{14}} \left\langle \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\rangle \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \frac{1}{\sqrt{10}} \left\langle \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \frac{1}{\sqrt{10}} \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \right\rangle \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} =$$

$$= \frac{4}{14} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \frac{6}{10} \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = \frac{1}{35} \begin{bmatrix} 73 \\ 20 \\ 9 \end{bmatrix}$$

(c) v_1 , v_2 , x bilden eine Basis im \mathbb{R}^3 , denn:

 $x \notin U$, sonst müsste $\pi_U(x) = x$ sein

 \Rightarrow v_1 , v_2 , x sind linear unabhängig \Rightarrow Basis im \mathbb{R}^3 .

Gram-Schmidt

Affine Teilräume

$$\tilde{v}_3 = x - \pi_U(x) = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{35} \begin{bmatrix} 73 \\ 20 \\ 0 \end{bmatrix} = \frac{1}{35} \begin{bmatrix} -3 \\ 15 \\ -0 \end{bmatrix}, \quad \|\tilde{v}_3\|_2 = \frac{1}{35}\sqrt{9 + 225 + 81} = \frac{\sqrt{315}}{35}$$

$$\Rightarrow v_3 = \frac{\tilde{v}_3}{\|\tilde{v}_3\|_2} = \frac{1}{\sqrt{315}} \begin{bmatrix} -3\\15\\-9 \end{bmatrix} \Rightarrow U^{\perp} = \mathsf{LIN}\{v_3\}.$$

Kennt man v_3 schon, so kann man $\pi_U(x)$ auch folgendermaßen berechnen:

$$\pi_{U}(x) = x - \pi_{U^{\perp}}(x) = x - \langle x, v_{3} \rangle v_{3} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - \frac{1}{\sqrt{315}} \left\langle \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 15 \\ -9 \end{bmatrix} \right\rangle \frac{1}{\sqrt{315}} \begin{bmatrix} -3 \\ 15 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} - \frac{9}{315} \begin{bmatrix} -3 \\ 15 \\ -9 \end{bmatrix} = \frac{1}{315} \begin{bmatrix} 630 + 27 \\ 315 - 135 \\ 81 \end{bmatrix} = \frac{1}{35} \begin{bmatrix} 73 \\ 20 \\ 0 \end{bmatrix}$$

Also: Wenn dim(U) groß ist, so berechnet man $\pi_U(x)$ leichter mit $\pi_{IJ}(x) = x - \pi_{IJ^{\perp}}(x)$, da dann dim (U^{\perp}) klein ist.

Anwendung (Abstand Punkt – affiner Teilraum)

Satz

Affine Teilräume

00000

Sei V ein endlichdimensionaler euklidischer Vektorraum und U ein Teilraum von V. Sei weiters $x \in V$. Dann gilt für alle $u \in U$

$$||x - u|| \ge ||x - \pi_U(x)||$$

und Gleichheit gilt genau dann wenn $u = \pi_U(x)$.

Beweis

Affine Teilräume

$$\langle x - \pi_U(x), \underbrace{\pi_U(x) - u}_{\in U} \rangle = 0$$

Aus dem Satz von Pythagoras folgt

$$||x - u||^{2} = ||(x - \pi_{U}(x)) + (\pi_{U}(x) - u)||^{2}$$

$$= ||x - \pi_{U}(x)||^{2} + ||\pi_{U}(x) - u||^{2}$$

$$\geq 0$$

$$= 0 \text{ wenn } \pi_{U}(x) = u$$

$$\geq ||x - \pi_{U}(x)||^{2}.$$

Also

 $d(x, U) = ||x - \pi_U(x)||$ ist der Abstand eines Punktes $x \in V$ vom Teilraum U.

Sei nun L = p + U ein affiner Teilraum des \mathbb{R}^n

$$||z - u|| \ge ||z - \pi_U(z)||$$

$$\Rightarrow ||x - (p + u)|| = ||x - p - u|| \ge ||(x - p) - \pi_U(x - p)|| =$$

$$= ||x - (p + \pi_U(x - p))||.$$

Also

Affine Teilräume

$$\forall y \in L = p + U \text{ gilt}$$
$$\|x - y\| \ge \|x - (p + \pi_U(x - p))\|.$$

Definition

$$d(x,L) = \|x - (p + \pi_U(x - p))\|$$

heißt der Abstand von x zu L und $p + \pi_U(x - p)$ heißt Lotfußpunkt von x an L .

00000

Determinante

Spezialfall

Affine Teilräume

00000

Sei H eine Hyperebene gegeben durch die Gleichung

$$\langle a, x \rangle = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b$$
, wobei

H = p + U mit U Lösung der Gleichung

$$\langle a, x \rangle = a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0.$$

Also

$$U = \left\{ x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \mid \langle a, x \rangle = 0 \right\}.$$

dabei heißt
$$a=egin{bmatrix} a_1\\a_2\\\vdots\\a_n \end{bmatrix}$$
 Normalvektor von $U\Rightarrow U^\perp=\mathsf{LIN}\{a\},$

$$v=rac{a}{\|a\|}$$
 ist ONB von U^{\perp}

$$\Rightarrow \pi_U(x) = x - \pi_{U^{\perp}}(x) = x - \langle x, v \rangle v.$$

Einsetzen
$$v \Rightarrow \pi_U(x) = x - \frac{\langle x, a \rangle}{\|a\|^2} a$$

$$\Rightarrow d(x,H) \stackrel{\text{Def}}{=} \|x - p - \pi_U(x - p)\| = \left\|x - p - \left((x - p) - \frac{\langle x - p, a \rangle a}{\|a\|^2}\right)\right\|$$

$$= \left\|\frac{\langle x - p, a \rangle}{\|a\|^2}a\right\| = \frac{|\langle x - p, a \rangle|}{\|a\|^2}\|a\| =$$

$$= \frac{1}{\|a\|}\left|\langle x, a \rangle - \langle p, a \rangle\right| = \frac{1}{\|a\|}\left|\langle x, a \rangle - b\right|.$$

Also
$$d(x, H) = \frac{|\langle a, x \rangle - b|}{\|a\|}$$
.

Orthogonalität

00000000

Beispiel 1

Affine Teilräume

00000

Sei G eine Gerade im \mathbb{R}^3 , G = p + U

$$G: x = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$

Sei
$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. $d(x, G) = ?$

$$v = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\0\\-1 \end{bmatrix} \Rightarrow U = \mathsf{LIN}\{v\}$$

00000

$$x - p = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$

$$\langle x - p, v \rangle v = \left\langle \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \right\rangle \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = -\frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} = -\frac{2}{5} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}$$

$$\Rightarrow d(x, G) = \|x - p - \pi_{U}(x - p)\| = \|x - p - \langle x - p, v \rangle v\| =$$

$$= \left\| \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \frac{2}{5} \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix} \right\| = \frac{1}{5} \left\| \begin{bmatrix} 4 \\ 5 \\ 8 \end{bmatrix} \right\| = \frac{1}{5} \sqrt{105}$$

Orthogonalität

Beispiel 2

Affine Teilräume

Sei
$$H$$
 eine Ebene im \mathbb{R}^3 gegeben durch $x_1 + 2x_2 - x_3 = 4 \Rightarrow a = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$,

Orthogonalität

00000000

und sei $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Der Abstand von x zu H ist (siehe Spezialfall)

$$d(x,H) = \frac{\left| \left\langle \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\rangle - 4 \right|}{\sqrt{6}} = \frac{|2-4|}{\sqrt{6}} = \frac{2}{\sqrt{6}} = \frac{2\sqrt{6}}{6} = \frac{\sqrt{6}}{3}.$$

Determinante

Affine Teilräume

Betrachte das lineare Gleichungssystem

$$Ax = b$$

mit
$$A \in M(n \times n)$$
, $b \in \mathbb{R}^n$.

Gesucht ist eine Zahl in Abhängigkeit von der Matrix A, die angibt, ob das LGS eindeutig lösbar ist.

Eine Möglichkeit : rg(A) = n

Eine andere Möglichkeit: die Determinante

Definition

Sei
$$A \in M(n \times n)$$
.

 A_{ii} : Die $(n-1) \times (n-1)$ -Matrix, die aus A durch Weglassen der i-ten Zeile und j-ten Spalte entsteht.

00000

Beispiel

Affine Teilräume

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 0 & 4 & 6 \end{bmatrix}$$

$$A_{12} = \begin{bmatrix} 2 & 2 \\ 0 & 6 \end{bmatrix} \quad A_{23} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \quad A_{33} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$$

Definition (Determinante)

Sei
$$A \in M(n \times n)$$

Affine Teilräume

Wir definieren die Determinante von A, kurz det(A), folgendermaßen induktiv:

$$n=1$$
 $\det(a)=a$ $n>1$ (Entwicklung nach einer Spalte): Sei j mit $1\leq j\leq n$ eine beliebige aber fixe Zahl. Dann $\det(A)=\sum\limits_{i=1}^n (-1)^{i+j}\,a_{ij}\,\det(A_{ij})$ oder analog (Entwicklung nach einer Zeile): Wähle ein $i,\,1\leq i\leq n$, beliebig aber fix. Dann $\det(A)=\sum\limits_{j=1}^n (-1)^{i+j}\,a_{ij}\,\det(A_{ij}).$

Bemerkung

Die Entwicklung der Determinante nach einer Spalte oder nach einer Zeile heißt Laplacescher Entwicklungssatz.

•0000

Beispiel 1

Affine Teilräume

00000

$$n = 2$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{\text{Entwicklung nach der 1-sten Zeile } (-1)^{1+1} a \det (d) + (-1)^{1+2} b \det (c)$$

$$= ad - bc$$

Beispiel 2

$$n = 3$$

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \xrightarrow{\text{Entwicklung nach der 1-sten Spalte}} (-1)^{1+1} a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} + (-1)^{2+1} a_{21} \det \begin{bmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{bmatrix} + (-1)^{3+1} a_{31} \det \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}$$

00000

Determinante

Veranschaulichung

$$n = 3$$

Affine Teilräume

00000

 $|\det(A)|$ ist das Volumen des Parallelepipeds, welches durch die Spalten a_1, a_2, a_3 der (3×3) -Matrix A bestimmt ist.

speziell:

$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \\ & \uparrow & \uparrow & \uparrow \\ a_1 & a_2 & a_3 \end{bmatrix}$$

$$\det(A) = abc$$

Determinante

$$n=2$$

det(A) ist die Fläche des Parallelogramms, welches durch die Spalten a_1 , a_2 der (2×2) -Matrix bestimmt ist.

Speziell:

$$A = \begin{bmatrix} a & 0 \\ 0 & d \\ & \frac{1}{a_1} & \frac{1}{a_2} \end{bmatrix}$$

$$\det(A) = ad$$

$$n = 1$$

$$|\det(a)| = |a|$$

$$-1$$
 $x_1 \Rightarrow |-1| = 1$

Satz (Eigenschaften der Determinante)

Die Abbildung

Affine Teilräume

$$\det: M(n \times n) \to \mathbb{R}$$
 $A \mapsto \det(A)$

ist die eindeutig bestimmte Abbildung, die folgende Eigenschaften erfüllt:

(1) det ist linear in jeder Zeile, d. h. wenn

 $a_i = (a_{i1}, a_{i2}, \dots, a_{in})$ die *i*-te Zeile von A ist, wobei $a_i = \lambda a_i' + \mu a_i''$ gilt, dann ist

00000

(2) Ist
$$rg(A) < n \Rightarrow det(A) = 0$$
.

Affine Teilräume

(3)
$$det(E) = 1$$
, wobei $E = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{bmatrix}$.

Beweis

Affine Teilräume

- n=1 Der Satz gilt.
- n=2 Sei $A = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$.

Entwicklung nach der 1. Spalte

$$\det(A) = \det\begin{bmatrix} \frac{1}{\alpha} & \overline{\beta} \\ \gamma & \delta \end{bmatrix} = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{2+1} \cdot \gamma \cdot \beta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{1+1} \cdot \gamma \cdot \delta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{1+1} \cdot \alpha \cdot \delta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{1+1} \cdot \alpha \cdot \delta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{1+1} \cdot \alpha \cdot \delta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{1+1} \cdot \alpha \cdot \delta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^{1+1} \cdot \alpha \cdot \delta + (-1)^{1+1} \cdot \alpha \cdot \delta = \\ = \alpha \cdot \delta - \gamma \cdot \beta \qquad = (-1)^$$

00000

$$\begin{split} \text{(2) Sei rg}(A) &< 2 \Rightarrow \text{rg}(A) = 1 \\ &\Rightarrow \text{Spaltenrang} = 1 \Rightarrow \begin{bmatrix} \beta \\ \delta \end{bmatrix} = \lambda \begin{bmatrix} \alpha \\ \gamma \end{bmatrix} \\ &\Rightarrow \det \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \det \begin{bmatrix} \alpha & \lambda \alpha \\ \gamma & \lambda \gamma \end{bmatrix} = \lambda \alpha \gamma - \lambda \alpha \gamma = 0. \end{split}$$

(3)
$$\det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot 1 - 0 \cdot 0 = 1.$$

Determinante

Eindeutigkeit

Affine Teilräume

Sei det': $M(2 \times 2) \to \mathbb{R}$ eine Abbildung mit den Eigenschaften (1)–(3). Zu zeigen ist, dass det'(A) = det(A).

(i) Seien a_1, a_2 die Zeilenvektoren der Matrix A, also $A = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$.

Dann gilt:

$$\begin{split} \det' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} &= - \det' \begin{bmatrix} a_2 \\ a_1 \end{bmatrix}, \ \operatorname{denn} \\ 0 &\stackrel{(2)}{=} \det' \begin{bmatrix} a_1 + a_2 \\ a_1 + a_2 \end{bmatrix} \stackrel{(1)}{=} \det' \begin{bmatrix} a_1 \\ a_1 + a_2 \end{bmatrix} + \det' \begin{bmatrix} a_2 \\ a_1 + a_2 \end{bmatrix} \stackrel{(1)}{=} \\ &\stackrel{lin. \ abh.}{Zeilen} \\ &= \det' \begin{bmatrix} a_1 \\ a_1 \end{bmatrix} + \det' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \det' \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} + \det' \begin{bmatrix} a_2 \\ a_1 \end{bmatrix} \\ &= 0 \\ \Rightarrow \det' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = - \det' \begin{bmatrix} a_2 \\ a_1 \end{bmatrix}. \end{split}$$

Determinante

(ii) Sei nun
$$A = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$

Mit den Zeilen $a_1 = (\alpha, \beta)$, $a_2 = (\gamma, \delta)$
 $\Rightarrow a_1 = \alpha(1,0) + \beta(0,1) = \alpha e_1 + \beta e_2$ (T weggelassen, wir bezeichnen e_1^T e_2^T mit e_1 , e_2 die Zeilenvektoren)
 $a_2 = \gamma e_1 + \delta e_2$
 $\Rightarrow \det'(A) = \det' \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \det' \begin{bmatrix} \alpha e_1 + \beta e_2 \\ \gamma e_1 + \delta e_2 \end{bmatrix} =$
 $= \alpha \det' \begin{bmatrix} e_1 \\ \gamma e_1 + \delta e_2 \end{bmatrix} + \beta \det' \begin{bmatrix} e_2 \\ \gamma e_2 + \delta e_2 \end{bmatrix} =$

 $=\alpha \ \gamma \ \mathsf{det'} \begin{bmatrix} e_1 \\ e_1 \end{bmatrix} + \alpha \ \delta \ \mathsf{det'} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \beta \ \gamma \ \mathsf{det'} \begin{bmatrix} e_2 \\ e_1 \end{bmatrix} + \beta \ \delta \ \mathsf{det'} \begin{bmatrix} e_2 \\ e_2 \end{bmatrix} =$

Determinante

0.000

$$= \alpha \ \delta \ \det' \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + \beta \gamma \left(-\det' \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \right) =$$

$$= (\alpha \delta - \gamma \beta) \det' \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} = (\alpha \delta - \gamma \beta) \det'(E) =$$

$$= \det(A)$$

• n > 2 ohne Beweis

Affine Teilräume

00000

Einige wichtige Eigenschaften der Determinante

- (1) Elementare Zeilenumformungen: $A \rightarrow A'$
 - (a) Vertauschen zweier Zeilen: $\det(A') = -\det(A)$

Affine Teilräume

- (b) Multiplikation einer Zeile mit $\lambda \neq 0$: $det(A') = \lambda \cdot det(A)$
- (c) Addition eines Vielfachen einer Zeile zu einer anderen: det(A') = det(A)
- (2) Determinante der transponierten Matrix

Sei $A \in M(n \times n)$ und $A^T = (a_{ii}^T)$ mit $a_{ii}^T = a_{ji}$ die transponierte Matrix zu A. Dann gilt: $det(A^T) = det(A)$.

Determinante

Beweis (Eigenschaft (2))

$$\det(A^T) = \frac{\text{Entwicklung nach der}}{j\text{-ten Spalte von } A^T}$$

$$=\sum_{i=1}^n (-1)^{i+j} \, a_{ij}^{\mathsf{T}} \, \det(A_{ij}^{\mathsf{T}}) = \sum_{i=1}^n (-1)^{i+j} \, a_{ji} \, \det(A_{ji}) =$$

$$\stackrel{i\leftrightarrow j}{=}\sum_{j=1}^n (-1)^{i+j}\,a_{ij}\,\det(A_{ij})=\det(A)\,$$
 laut Entwicklung nach der i -ten Zeile von A

Eigenschaft

Eigenschaft (1) gilt auch für Spaltenumformungen.

Beweis

Affine Teilräume

Folgt direkt aus $det(A^T) = det(A)$.

Eigenschaft (Multiplikationssatz)

Seien $A, B \in M(n \times n)$. Dann gilt: $det(A \cdot B) = (det(A)) \cdot (det(B)).$

Bemerkung

Aus dem Multiplikationssatz folgt, dass det(AB) = det(BA), obwohl im Allgemeinen $AB \neq BA$.

Eigenschaft

Sei $A \in M(n \times n)$.

A ist invertierbar \Leftrightarrow det(A) \neq 0.

Beweis

Affine Teilräume

Beweis durch Widerspruch: Angenommen, dass gilt:

 $\neg(\det(A) \neq 0 \Rightarrow A \text{ ist invertierbar}).$

Das ist äquivalent zu: $det(A) \neq 0 \land A$ ist nicht invertierbar.

Aber wenn A nicht invertierbar $\Rightarrow \operatorname{rg}(A) < n$.

Laut Eigenschaft (2) des Satzes (Eigenschaften der Determinante) gilt: $rg(A) < n \Rightarrow det(A) = 0$. Was ein Widerspruch zur Annahme ist.

Also $det(A) \neq 0 \Rightarrow A$ ist invertierbar.

00000

Sei A invertierbar.

 $A \rightarrow E$ (durch elementare Zeilenumformungen).

Typ (c)
$$det(A') = det(A)$$

Typ (b)
$$det(A') = \lambda \cdot det(A)$$

Typ (a)
$$det(A') = -det(A)$$
.

Also

$$det(E) = \mu \cdot det(A)$$
 mit $\mu \neq 0$.

Wäre
$$det(A) = 0 \Rightarrow det(E) = 0$$
.

Aber
$$det(E) = 1 \Rightarrow Widerspruch \Rightarrow det(A) \neq 0$$
.

Determinante

00000

Eigenschaft

Sei
$$A$$
 invertierbar. Dann $\det(A^{-1}) = \frac{1}{\det(A)}$

Beweis

Affine Teilräume

A invertierbar $\Leftrightarrow \det(A) \neq 0$

$$\det(A) \cdot \det(A^{-1}) = \det(AA^{-1}) = \det(E) = 1 \Rightarrow \det(A^{-1}) = \frac{1}{\det(A)}.$$

Eigenschaft

Sei A eine obere Dreiecksmatrix, d. h.

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix}$$

Dann ist $det(A) = a_{11}a_{22} \dots a_{nn}$.

Beweis

Affine Teilräume

Entwicklung nach der 1. Spalte, dann nach der 1. Spalte von A_{11} , ... usw.

$$\Rightarrow \det(A) = (-1)^{1+1} a_{11} \det \begin{bmatrix} a_{22} & \dots & a_{2n} \\ & \ddots & \vdots \\ & & a_{nn} \end{bmatrix} + 0 + 0 + \dots + 0 =$$

$$a_{11}(-1)^{1+1} a_{22} \det \begin{bmatrix} a_{33} & \dots & a_{3n} \\ & \ddots & \vdots \\ & & a_{nn} \end{bmatrix} + 0 + 0 + \dots + 0 =$$

$$= \dots = a_{11} a_{22} \dots a_{n-1,n-1} \det(a_{nn}) =$$

$$a_{11} a_{22} \dots a_{nn}.$$

Beispiel

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix} \qquad \det(A) \stackrel{\text{Sarrus-}}{=} = 1 \cdot 4 \cdot 6 + 2 \cdot 5 \cdot 0 + 0 \cdot 0 \cdot 3 - \\ -3 \cdot 4 \cdot 0 - 5 \cdot 0 \cdot 1 - 2 \cdot 0 \cdot 6 = \\ = 1 \cdot 4 \cdot 6 = a_{11} a_{22} a_{33} = 24$$

Eigenschaft (Berechnungsverfahren für die Determinante)

Sei $A \in M(n \times n)$ invertierbar.

Verwandle A durch elementare Umformungen in eine obere Dreiecksmatrix A' mit Diagonalelementen $a'_{11}, a'_{22}, \ldots a'_{nn}$, wobei $a'_{ii} \neq 0$ für $i = 1, 2, \ldots, n$. (Dies ist sicher möglich, weil sonst wäre $\operatorname{rg}(A) < n$ und A nicht invertierbar und daher $\det(A) = 0$).

Sei r die Anzahl der Zeilenumtauschungen.

Sei λ das Produkt aller Zeilenmultiplikationen.

Dann ist:

Affine Teilräume

$$\det(A) = \frac{1}{\lambda}(-1)^r \det(A') = \frac{1}{\lambda}(-1)^r a'_{11} \dots a'_{nn}.$$

00000

Determinante

00000

Beispiel 1 (Zeilenumtauschungen)

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \det(A) \stackrel{\mathsf{I} \leftrightarrow \mathsf{IV}}{=} (-1)^1 \det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} =$$

$$\stackrel{\text{II} \leftrightarrow \text{III}}{=} (-1)^1 (-1)^1 \det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = (-1)^{2-r} \cdot (1 \cdot 1 \cdot 1 \cdot 1) = 1$$

Beispiel 2 (elementare Umformungen und Zeilenumtauschungen)

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 1 \\ 2 & 2 & 0 \end{bmatrix}^{1/2 ||\mathbf{I}|| = ||\mathbf{I}||} \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}^{||\mathbf{I}|| \leftrightarrow ||\mathbf{I}||} \begin{bmatrix} 2 & 1 & 3 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{||\mathbf{I}||(-2) + || = ||} \begin{bmatrix} 0 & -1 & 3 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{|| \leftrightarrow ||\mathbf{I}||} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 3 \\ 0 & 0 & 1 \end{bmatrix} = A'$$

$$\Rightarrow r = 2 \Rightarrow \det(A) = \frac{1}{\frac{1}{2}}(-1)^2 \cdot a'_{11} \cdot a'_{22} \cdot a'_{33} = 2 \cdot 1 \cdot 1 \cdot (-1) \cdot 1 = -2$$

$$\Rightarrow r = 2 \Rightarrow \det(A) = \frac{1}{2}(-1)^2 \cdot a'_{11} \cdot a'_{22} \cdot a'_{33} = 2 \cdot 1 \cdot 1 \cdot (-1) \cdot 1 = -2$$

$$\Rightarrow \lambda = 1/2$$

Affine Teilräume

Probe (Sarrus-Regel):

$$\det(A) = \det \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 1 \\ 2 & 2 & 0 \end{bmatrix} = 0 + 2 + 0 - 0 - 4 - 0 = -2$$

00000

Determinante

00000

$$\det\begin{bmatrix} 1 & 2 - 1 & 3 \\ 0 & 1 & 4 & 2 \\ 0 & 1 & 0 & 4 \\ 1 & 0 & 2 & 1 \end{bmatrix} \stackrel{|+(-1)|V=I}{=} \det\begin{bmatrix} 0 & 2 - 3 & 2 \\ 0 & 1 & 4 & 2 \\ 0 & 1 & 0 & 4 \\ 1 & 0 & 2 & 1 \end{bmatrix} =$$

$$\stackrel{\text{Entwicklung nach der 1. Spalte}}{=} (-1)^{1+4} \det \begin{bmatrix} 2 & -3 & 2 \\ 1 & 4 & 2 \\ 1 & 0 & 4 \end{bmatrix} \stackrel{(-2)|II|+|I|}{=} I$$

$$= (-1) \det \begin{bmatrix} 0 & -3 & -6 \\ 0 & 4 & -2 \\ 1 & 0 & 4 \end{bmatrix} \xrightarrow{\begin{array}{c} \text{Entwicklung} \\ \text{nach der 1. Spalte} \\ = \end{array}}$$

$$=(-1)(-1)^{3+1} \det \begin{bmatrix} -3 & -6 \\ 4 & -2 \end{bmatrix} = (-1)(6+24) = -30$$

Determinante

0000

Satz

Affine Teilräume

Sei $A \in M(n \times n)$, $b \in \mathbb{R}^n$.

Dann ist das $(n \times n)$ -Gleichungssystem Ax = b genau dann eindeutig lösbar, wenn $\det(A) \neq 0$.

Beweis

 $A \in M(n \times n)$.

Ax = b ist eindeutig lösbar $\Leftrightarrow \operatorname{rg}(A) = n \Leftrightarrow A$ ist invertierbar $\Leftrightarrow \det(A) \neq 0$.

Eigenwerte

Affine Teilräume

00000

Einführung

Die Abbildung $F_A(x) = Ax$ transformiert Vektoren $x \in \mathbb{R}^n$ in unterschiedliche Richtungen.

Also ändert die Transformation die Richtung des Vektors.

Beispiel

$$F_A : \mathbb{R}^2 \to \mathbb{R}^2 \quad A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$

$$u = \begin{bmatrix} -1 \\ 1 \end{bmatrix} : F_A(u) = Au = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ -1 \end{bmatrix} : F_A(v) = Av = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

00000

Aber es gibt auch spezielle Vektoren, für welche diese Transformation mit A ganz einfach ist, nämlich dass $Ax = \lambda x$ für ein gewisses $\lambda \in \mathbb{R}$.

Also ändert die Transformation die Richtung eines solchen Vektors nicht.

Beispiel

Affine Teilräume

00000

$$F_A$$
 (und daher) A wie auf vorheriger Folie; $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

$$F_A(v) = Av = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 \cdot v \Rightarrow \lambda = 2.$$

Solche Vektoren, die durch Transformation mit A ihre Richtung nicht ändern, spielen eine wichtige Rolle in Technik und Wissenschaft.

Diese Vektoren heißen Eigenvektoren und die entsprechenden λ -Skalare Eigenwerte von Α.

Definition (Eigenwert, Eigenvektor einer Matrix)

Sei V ein n-dimensionaler Vektorraum über K. Weiters sei $A \in M(n \times n)$ über K. Eine Zahl $\lambda \in K$ heißt Eigenwert von A, wenn es ein $x \neq 0, x \in V$ gibt, sodass $Ax = \lambda x$.

x heißt dann Eigenvektor von A bezüglich λ .

Eine analoge Definition (da jeder Matrix eine lineare Abbildung entspricht und umgekehrt):

Definition (Eigenwert, Eigenvektor einer linearen Abbildung)

Sei $T:V\to V$ linear, wobei V ein Vektorraum über K ist. Eine Zahl $\lambda\in K$ heißt Eigenwert von T, wenn es ein $x \neq 0$ gibt, sodass

$$T(x) = \lambda x$$
.

x heißt dann Eigenvektor von T bezüglich λ .

Anmerkung

Affine Teilräume

Eigenvektor ist ungleich 0.

Eigenwert kann gleich 0 sein.

Standardfall

 $V = \mathbb{C}^n$.

Affine Teilräume

A: eine komplexe $(n \times n)$ -Matrix.

 $\lambda \in \mathbb{C}$; $x \in \mathbb{C}^n$, $x \neq 0$.

Da $\mathbb{R} \subset \mathbb{C}$, gilt für reelle Matrizen:

Spezialfall

 $V = \mathbb{C}^n$ (eventuell \mathbb{R}^n).

A: eine reelle $(n \times n)$ -Matrix.

 $\lambda \in \mathbb{C}$ (eventuell $\lambda \in \mathbb{R}$); $x \in \mathbb{C}^n$ (eventuell $x \in \mathbb{R}^n$), $x \neq 0$.

Im Weiteren werden wir zunächst den Spezialfall betrachten, also die Eigenwerte und Eigenvektoren einer reellen Matrix, und uns dabei zwei Fällen widmen.

Fall 1 : A eine reelle $(n \times n)$ -Matrix und λ, x reell.

Beispiel (Fall 1)

Sei
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
 eine reelle Matrix

$$Ax = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -4x = \lambda x$$

$$\Rightarrow x = \begin{vmatrix} 6 \\ -5 \end{vmatrix}$$
 ist ein reeller Eigenvektor von A und

 $\lambda = -4$ ist ein reeller Eigenwert von A.

Hingegen ist $x = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ kein Eigenvektor von A, weil

$$Ax = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \lambda x \text{ für alle } \lambda \in \mathbb{R}.$$

Fall 2 : A eine reelle $(n \times n)$ -Matrix und λ, x komplex.

Beispiel (Fall 2)

Affine Teilräume

Sei
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 eine reelle Matrix

$$Ax = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} i \\ 1 \end{bmatrix} = i \begin{bmatrix} 1 \\ -i \end{bmatrix} = \lambda x \Rightarrow$$

 $\lambda = i$ ist ein komplexer Eigenwert und

$$x = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
 ist ein komplexer Eigenvektor von A .

Definition (Eigenraum)

Sei V ein n-dimensionaler Vektorraum.

Sei $A \in M(n \times n)$ und λ ein Eigenwert von A.

Dann heißt

Affine Teilräume

00000

$$E_{\{\lambda\}} = \{x \in V \mid Ax = \lambda x\}$$

Eigenraum zum Eigenwert λ .

Eigenschaft (geometrische Vielfachheit)

 $E_{\{\lambda\}}$ ist ein Teilraum von V. $\dim(E_{\{\lambda\}})$ heißt die geometrische Vielfachheit von λ .

Beweis

Affine Teilräume

Seien $x, y \in E_{\{\lambda\}}$.

$$\Rightarrow \text{ (i) } A(x+y) = Ax + Ay \stackrel{\text{Def}}{=} \lambda x + \lambda y = \lambda(x+y) \Rightarrow x+y \in E_{\{\lambda\}}.$$

$$\text{(ii) } A(\alpha x) = \alpha Ax = \alpha(\lambda x) = \lambda(\alpha x) \Rightarrow \alpha x \in E_{\{\lambda\}}.$$

Bemerkung

 $E_{\{\lambda\}}$ enthält genau den Nullvektor und alle Eigenvektoren zu λ .

Beispiel

Affine Teilräume

Angenommen, dass $\lambda = 7$ ein Eigenwert von $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ ist.

Gesucht ist der Eigenraum $E_{\{7\}}$.

Wenn
$$\lambda = 7$$
 ein Eigenwert von A ist $\Rightarrow \exists x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \neq 0$

$$Ax = 7x \Leftrightarrow Ax - 7x = 0 \Leftrightarrow (A - 7E)x = 0.$$

Lösung des homogenen LGS mit der Matrix

$$A - 7E = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix} \text{ ergibt}$$
$$\begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Die allgemeine Lösung ist
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \alpha_1 \mu_1 = \alpha_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

Jeder Vektor $\alpha_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \alpha_1 \in \mathbb{R} \text{ mit } \alpha_1 \neq 0 \text{ ist ein Eigenvektor zu } \lambda = 7.$

Also
$$E_{\{\lambda\}}=E_{\{7\}}=\left\{lpha_1egin{bmatrix}1\\1\end{bmatrix},lpha_1\in\mathbb{R}
ight\}$$
 (Nullvektor inklusive!)

 $E_{\{7\}}$ ist eine Gerade im \mathbb{R}^2 , die durch den Ursprung des

Koordinatensystems und $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (wenn $lpha_1=1$) geht.

Die geometrische Vielfachheit von $\lambda = 7$ ist also 1.

Speziell: wenn $x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, dann ist

$$Ax = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 7 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda x.$$

00000

Determinante

00000

Also ist x ein Eigenvektor zu $\lambda = 7$ und dieser ändert durch Transformation mit der Matrix A seine Richtung nicht.

Definition (charakteristisches Polynom)

Sei $A \in M(n \times n)$. Dann ist das Polynom *n*-ten Grades $p(\lambda) = \det(A - \lambda E)$ das charakteristische Polynom zu A.

Satz

Affine Teilräume

Ein Skalar λ ist ein Eigenwert von $A \in M(n \times n)$ dann und nur dann, wenn $p(\lambda) = \det(A - \lambda E) = 0.$

Beweis

 λ ist ein Eigenwert von $A \Leftrightarrow$

 $\exists x \neq 0 : Ax = \lambda x \Leftrightarrow (A - \lambda E)x = 0 \Leftrightarrow (A - \lambda E)x = 0$ hat eine nicht triviale Lösung.

Wir wissen:

Affine Teilräume

$$(A - \lambda E)x = 0$$
 hat eine eindeutige (triviale) Lösung $x = 0 \Leftrightarrow A - \lambda E$ ist invertierbar $\Leftrightarrow \det(A - \lambda E) \neq 0$.

Also (aus der Negation des Obigen) folgt:

$$(A - \lambda E)x = 0$$
 hat eine nicht triviale Lösung $x \neq 0 \Leftrightarrow$

$$\det(A - \lambda E) = 0.$$

Anmerkung

Das charakteristische Polynom $p(\lambda)$ ist ein reelles Polynom n-ten Grades (weil A eine reelle $n \times n$ -Matrix ist).

Nach dem Fundamentalsatz der Algebra hat dieses n Wurzeln (Nullstellen), die aber auch komplex sein können.

Also: Die Eigenwerte einer reellen Matrix können auch komplex sein (siehe Beispiel (Fall 2)).

Eigenschaft

Affine Teilräume

 λ ist ein Eigenwert von $A \Leftrightarrow \lambda$ ist eine Wurzel des charakteristischen Polynoms $p(\lambda)$ zu A.

Definition (algebraische Vielfachheit)

Sei $A \in M(n \times n)$ mit p unterschiedlichen Eigenwerten $\lambda_1, \lambda_2, \dots, \lambda_p$. Wir sagen λ_i , $i = 1, 2, \dots, p$ hat die algebraische Vielfachheit r_i , $r_i \in \mathbb{N}$

(oder: λ_i ist ein r_i -facher Eigenwert von A), wenn für das charakteristische Polynom $p(\lambda)$ von A gilt:

$$p(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \dots (\lambda - \lambda_p)^{r_p}.$$

Beispiel 1 (reelle Wurzeln von $p(\lambda)$)

Sei
$$A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$$
.

Affine Teilräume

$$p(\lambda) = \det(A - \lambda E) = \det\begin{bmatrix} 2 - \lambda & 3 \\ 3 & -6 - \lambda \end{bmatrix} = (2 - \lambda)(-6 - \lambda) - 9 = \lambda^2 + 4\lambda - 21 = (\lambda + 7)(\lambda - 3)$$

 \Rightarrow Die Wurzeln $\lambda_1 = -7, \lambda_2 = 3$ von $p(\lambda)$ sind die Eigenwerte von A.

Beispiel 2 ($p(\lambda)$ mit komplexen Wurzeln)

Sei
$$A = \begin{bmatrix} -2 & 4 \\ -1 & -2 \end{bmatrix}$$
.

$$p(\lambda) = \det(A - \lambda E) = \det\begin{bmatrix} -2 - \lambda & 4\\ -1 & -2 - \lambda \end{bmatrix} = (-2 - \lambda)^2 - (-4) = (2 + \lambda)^2 + 4$$

$$p(\lambda) = 0 \Leftrightarrow (2 + \lambda)^2 + 4 = 0 \Leftrightarrow (\lambda + 2)^2 = -4 \Leftrightarrow \lambda + 2 = \pm 2i$$

 $\Rightarrow \lambda_1 = -2 + 2i, \ \lambda_2 = -2 - 2i \text{ sind die Eigenwerte von } A.$

Beispiel 3 (mehrfache Wurzeln)

Affine Teilräume

Sei
$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & -8 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$p(\lambda) = \det(A - \lambda E) = \det \begin{bmatrix} 5 - \lambda & -2 & 6 & -1 \\ 0 & 3 - \lambda & -8 & 0 \\ 0 & 0 & 5 - \lambda & 4 \\ 0 & 0 & 0 & 1 - \lambda \end{bmatrix} = (5 - \lambda)(3 - \lambda)(5 - \lambda)(1 - \lambda) = (5 - \lambda)^2(3 - \lambda)(1 - \lambda)$$

$$\Rightarrow \lambda_1 = 5, \lambda_2 = 3, \lambda_3 = 1 \text{ sind die Eigenwerte von } A.$$

Der Eigenwert $\lambda_1 = 5$ ist ein mehrfacher (zweifacher) Eigenwert und $\lambda_2 = 3$, $\lambda_3 = 1$ sind einfache Eigenwerte (also $r_1 = 2$, $r_2 = 1$, $r_3 = 1$).

Orthogonalität

Beispiel (Basis von $E_{\{\lambda\}}$)

Affine Teilräume

Sei
$$A=\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
 mit einem Eigenwert $\lambda=2$.

Gesucht ist eine Basis von $E_{\{2\}}$.

 $\lambda = 2$ ist ein zweifacher Eigenwert von A:

$$\det(A - \lambda E) = \det \begin{bmatrix} 4 - \lambda & -1 & 6 \\ 2 & 1 - \lambda & 6 \\ 2 & -1 & 8 - \lambda \end{bmatrix} =$$

$$= (4 - \lambda)(1 - \lambda)(8 - \lambda) - 12 - 12 - 12(1 - \lambda) + \frac{1}{2} = \frac{1}{$$

$$= (4 - \lambda)(1 - \lambda)(8 - \lambda) - 12 - 12 - 12(1 - \lambda) + 2(8 - \lambda) + 6(4 - \lambda) =$$

= $-\lambda^3 + 13\lambda^2 - 40\lambda + 36 = 0 \Rightarrow$

die charakteristische Gleichung ist $\lambda^3 - 13\lambda^2 - 40\lambda + 36 = 0 \Rightarrow$

$$\Rightarrow (\lambda^2-4\lambda+4)(\lambda-9)=(\lambda-2)(\lambda-2)(\lambda-9)=0 \Rightarrow \lambda_1=2, \lambda_2=9.$$

Also: Die algebraische Vielfachheit von λ_1 bzw. λ_2 ist 2 bzw. 1.

Das homogene LGS zu Ax = 2x ist:

Affine Teilräume

$$(A-2E)x = 0 \Rightarrow \begin{pmatrix} \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1/2 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow$$

$$L\ddot{\mathsf{OS}}(A-2E) = \left\{ x \in \mathbb{R}^3 \mid \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \alpha_1 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\} \Rightarrow$$

 $E_{\{2\}}$ ist ein zweidimensionaler Teilraum des \mathbb{R}^3

mit der Basis:
$$\left\{ \begin{bmatrix} 1/2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\}.$$

Daher ist die geometrische Vielfachheit von λ_1 gleich 2.

Satz (Eigenwerte einer Dreiecksmatrix)

Die Eigenwerte einer Dreiecksmatrix sind ihre Diagonalwerte.

Beweis

Affine Teilräume

Das charakteristische Polynom einer (z. B. oberen) Dreiecksmatrix ist

$$p(\lambda) = \det(A - \lambda E) = \det \begin{pmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ & a_{22} & \dots & a_{2n} \\ & & \ddots & \vdots \\ & & a_{nn} \end{bmatrix} - \begin{bmatrix} \lambda \\ & \lambda \\ & & \ddots \\ & & & \lambda \end{bmatrix} \end{pmatrix}$$

$$= \det \begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ & a_{22} - \lambda & \dots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} - \lambda \end{bmatrix} = (a_{11} - \lambda)(a_{22} - \lambda) \dots (a_{nn} - \lambda).$$

$$p(\lambda) = 0 \Leftrightarrow a_{11} = \lambda_1 \text{ oder } a_{22} = \lambda_2 \text{ oder } \dots \text{ oder } a_{nn} = \lambda_n.$$

 $p(\lambda) = 0 \Leftrightarrow a_{11} = \lambda_1 \text{ oder } a_{22} = \lambda_2 \text{ oder } \dots \text{ oder } a_{nn} = \lambda_n.$ Also sind die Wurzeln von $p(\lambda)$ die Diagonalwerte von A.

Beispiel

Affine Teilräume

Sei
$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
 und $B = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$.

Dann sind die Eigenwerte von A 3, 0 und 2.

Die Eigenwerte von B sind 4 (zweifach) und 1.

Satz (Eigenvektoren zu unterschiedlichen Eigenwerten)

Seien v_1, v_2, \ldots, v_p die Eigenvektoren zu unterschiedlichen Eigenwerten $\lambda_1, \lambda_2, \ldots, \lambda_p$ von A.

Dann ist die Vektormenge $\{v_1, v_2, \dots, v_n\}$ linear unabhängig.

Beweis (durch Widerspruch)

Affine Teilräume

Seien v_1, v_2, \ldots, v_n linear abhängig $\Rightarrow \exists i \in \{1, 2, \ldots, p\}$, sodass der Vektor v_i eine Linearkombination der anderen Vektoren ist (die alle linear unabhängig sind).

Ohne Einschränkung der Allgemeinheit sei i = p. Also:

- (1) $v_p = c_1 v_1 + c_2 v_2 + \ldots + c_{p-1} v_{p-1}$ wobei nicht alle c; gleich 0 sind. Multiplikation mit A (von links): $Av_{p} = c_{1}Av_{1} + c_{2}Av_{2} + \ldots + c_{p-1}Av_{p-1}.$ Da $Av_i = \lambda_i v_i$ $i = 1, 2, \dots, p \Rightarrow$
- (2) $\lambda_p v_p = c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 + \ldots + c_{p-1} \lambda_{p-1} v_{p-1}$. Multiplikation von (1) mit λ_n
- (3) $\lambda_n v_n = c_1 \lambda_n v_1 + c_2 \lambda_n v_2 + \ldots + c_{n-1} \lambda_n v_{n-1}$. Subtraktion (2) - (3) ergibt: $0 = c_1(\lambda_1 - \lambda_p)v_1 + c_2(\lambda_2 - \lambda_p)v_2 + \ldots + c_{p-1}(\lambda_{p-1} - \lambda_p)v_{p-1}$ Da $\{v_1, v_2, \dots, v_{p-1}\}\$ linear unabhängig sind \Rightarrow

(4) $c_i(\lambda_i - \lambda_p) = 0$ für i = 1, 2, ..., p - 1. Aber $(\lambda_i - \lambda_p) \neq 0$ i = 1, 2, ..., p - 1 (weil die λ -Werte unterschiedlich sind). Dann folgt aus (4) $\Rightarrow c_i = 0, i = 1, 2, ..., p - 1,$ was aber einen Widerspruch zu (1) darstellt.

Definition (ähnliche Matrizen)

Affine Teilräume

Zwei $(n \times n)$ -Matrizen A, B heißen ähnlich, wenn es eine invertierbare Matrix P gibt, sodass $B = P^{-1}AP$ oder $A = PBP^{-1}$.

Die Transformation von A zu $P^{-1}AP$ heißt Ähnlichkeitstransformation.

Satz (Eigenwerte ähnlicher Matrizen)

Seien A, B zwei ähnliche $(n \times n)$ -Matrizen. Dann haben A und B das gleiche charakteristische Polynom und daher die gleichen Eigenwerte (einschließlich derer Vielfachheit).

Beweis

Affine Teilräume

Wenn
$$A, B$$
 ähnlich $\Rightarrow \exists P$ invertierbar : $B = P^{-1}AP$
 $B - \lambda E = P^{-1}AP - \lambda P^{-1}P = P^{-1}(AP - \lambda P) = P^{-1}(A - \lambda E)P$.

Dann
$$det(B - \lambda E) = det(P^{-1}(A - \lambda E)P) =$$

= $det(P^{-1}) det(A - \lambda E) det(P)$.

Da
$$\det(P^{-1})\det(P) = \det(P^{-1}P) = \det(E) = 1 \Rightarrow \det(B - \lambda E) = \det(A - \lambda E)$$

und daher haben A und B die gleichen Eigenwerte.

Definition (diagonalisierbare Matrix)

Eine $(n \times n)$ -Matrix A heißt diagonalisierbar, wenn sie ähnlich zu einer Diagonalmatrix D ist, d.h. wenn es eine invertierbare Matrix P gibt, sodass $A = PDP^{-1}$ (später so geschrieben).

Satz (Diagonalisierbarkeit einer Matrix)

Eine $(n \times n)$ -Matrix A ist diagonalisierbar dann und nur dann, wenn A n linear unabhängige Eigenvektoren hat.

Anders:

Affine Teilräume

Es gilt $A = PDP^{-1}$ (D eine Diagonalmatrix) \Leftrightarrow

Die Spalten von P sind n linear unabhängige Eigenvektoren von A.

In diesem Fall sind die Diagonalelemente von D die zugehörigen Eigenwerte zu den Eigenvektoren von A.

Anders:

A ist diagonalisierbar dann und nur dann, wenn sie Eigenvektoren besitzt, die eine Basis des \mathbb{C}^n bilden. (Eine solche Basis heißt Eigenvektor-Basis.)

Beweis

Affine Teilräume

Wenn P eine $(n \times n)$ -Matrix mit Spalten v_1, v_2, \ldots, v_n ist und D eine Diagonalmatrix ist mit den Elementen $\lambda_1, \lambda_2, \dots, \lambda_n$, dann

(1)
$$AP = A \begin{bmatrix} | & | & & | \\ v_1 & v_2 & \dots & v_n \\ | & | & & | \end{bmatrix} = \begin{bmatrix} | & | & & | \\ Av_1 & Av_2 & \dots & Av_n \\ | & | & & | \end{bmatrix}$$
 und

(2)
$$PD = \begin{bmatrix} | & | & & | \\ v_1 & v_2 & \dots & v_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} = \begin{bmatrix} & & & & \\ & \lambda_1 v_1 & \lambda_2 v_2 & \dots & \lambda_n v_n \\ | & & & & | \end{bmatrix}.$$

 \Rightarrow

Angenommen, dass A diagonalisierbar ist und $A = PDP^{-1}$. Multiplikation mit P (von rechts) ergibt AP = PD, also aus (1) und (2) folgt

(3) $Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2, \dots, Av_n = \lambda_n v_n$. Da P invertierbar ist $\Rightarrow v_1, v_2, \dots, v_n$ sind linear unabhängig. Diese sind (da linear unabhängig) ungleich null. Dann folgt aus (3), dass $\lambda_1, \lambda_2, \dots, \lambda_n$ die Eigenwerte und v_1, v_2, \dots, v_n die Eigenvektoren von A sind.

 \Leftarrow

Wenn $\{v_1, v_2, \dots, v_n\}$ die Menge der Eigenvektoren von A ist, dann lässt sich

$$P = \begin{bmatrix} | & | & & | \\ v_1 & v_2 & \dots & v_n \\ | & | & & | \end{bmatrix}$$

und mit den dazugehörigen Eigenwerten $\lambda_1, \lambda_2, \ldots, \lambda_n$ auch D konstruieren. Das gilt für jede Menge von Eigenvektoren. Dann aus (1), (2) \Rightarrow AP = PD. Wenn diese zusätzlich linear unabhängig sind, dann ist P invertierbar und aus $AP = PD \Rightarrow A = PDP^{-1}$.

Beispiel (Matrix diagonalisierbar)

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}.$$

Also gesucht ist eine invertierbare Matrix P und eine Diagonalmatrix D, sodass $A = PDP^{-1}$

Die Eigenwerte von A sind die Elemente von D:

$$\det(A - \lambda E) = \det \begin{bmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{bmatrix} =$$

 $= \lambda^3 - 3\lambda^2 + 4 = (\lambda - 1)(\lambda + 2)^2 \Rightarrow \lambda_1 = 1, \lambda_2 = -2$ (zweifach).

Die linear unabhängigen Eigenvektoren von A bilden die Spalten von P:

• Eigenvektor x zu λ_1 : $Ax = \lambda_1 x$

$$\begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} = A - E$$

Homogenes LGS zu
$$\lambda_1:(A-E)x=0:\begin{bmatrix}0&3&3&0\\-3&-6&-3&0\\3&3&0&0\end{bmatrix}\to$$

$$\begin{bmatrix} 3 & 3 & 0 & | & 0 \\ -3 & -6 & -3 & | & 0 \\ 0 & 3 & 3 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & -3 & -3 & | & 0 \\ 0 & 3 & 3 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow x = \alpha_1 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

• Homogenes LGS zu $\lambda_2 = -2$: (A + 2E)x = 0

$$A + 2E = \begin{bmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow x = \alpha_1 \begin{bmatrix} \mu_1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} \mu_2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

Dann ist der Basisvektor v_1 des Eigenraums $E_{\{1\}}$

$$v_1 = egin{bmatrix} 1 \ -1 \ 1 \end{bmatrix}$$
 ($x ext{ für } lpha_1 = 1$)

und die Basisvektoren v_2, v_3 des Eigenraums $E_{\{-2\}}$ sind

$$v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \ v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
 (x für $\alpha_1 = \alpha_2 = 1$).

00000

Also
$$P = \begin{bmatrix} | & | & | \\ v_1 & v_2 & v_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \text{ und } D = \begin{bmatrix} 1 & \\ & -2 & \\ & & -2 \end{bmatrix}.$$

• Probe: Verifizierung ob AP = PD und ob P invertierbar.

$$AP = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

$$\Rightarrow AP = PD = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix} \Rightarrow$$

 $\Rightarrow \operatorname{rg}(P) = 3 \Rightarrow P$ ist invertierbar.

Dann folgt aus (*), dass $A = PDP^{-1} \Rightarrow A$ ist diagonalisierbar.

Beispiel (Matrix nicht diagonalisierbar)

$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

$$\det(A - \lambda E) = \det \begin{bmatrix} 2 - \lambda & 4 & 3 \\ -4 & -6 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{bmatrix} =$$

$$= (2 - \lambda)(-6 - \lambda)(1 - \lambda) + (-12) \cdot 3 + (-12) \cdot 3 - 3(-6 - \lambda) \cdot 3 - (-16)(1 - \lambda) - (-9)(2 - \lambda) =$$

$$=\lambda^3+3\lambda^2-4=0\Rightarrow(\lambda-1)(\lambda+2)^2=0\Rightarrow$$

$$\Rightarrow \lambda_1 = 1, \lambda_2 = -2$$
 (zweifach).

Also sind die Eigenwerte gleich wie im vorigen Beispiel.

• Homogenes LGS zu $\lambda_1 = 1 : (A - 1 \cdot E)x = 0$

$$\begin{bmatrix} (2-1) & 4 & 3 & 0 \\ -4 & (-6-1) & -3 & 0 \\ 3 & 3 & (1-1) & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 0 \\ -4 & -7 & -3 & 0 \\ 3 & 3 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\rightarrow \begin{bmatrix} 4 & 7 & 3 & 0 \\ -4 & -7 & -3 & 0 \\ 3 & 3 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 7 & 3 & 0 \\ 3 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 3 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\rightarrow \begin{bmatrix} -3 & 0 & 3 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow$$

$$\Rightarrow x = \alpha_1 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \quad \Rightarrow \text{der Basisvektor des Eigenraums $E_{\{1\}}$ für}$$

$$\text{den Eigenwert $\lambda_1 = 1$ ist dann $v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ (x für $\alpha_1 = 1$)}.$$

• Homogenes LGS zu $\lambda_2 = -2$: (A + 2E)x = 0

$$\begin{bmatrix} 2-(-2) & 4 & 3 & 0 \\ -4 & -6-(-2) & -3 & 0 \\ 3 & 3 & 1-(-2) & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 4 & 4 & 3 & 0 \\ -4 & -4 & -3 & 0 \\ 3 & 3 & 3 & 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 4 & 4 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & \overline{0} & 0 & 0 \end{bmatrix} \Rightarrow x = \alpha_1 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} = (\text{weil } 2)$$

Orthogonalität

Der Basisvektor des Eigenraums $E_{\{-2\}}$ für

den Eigenwert
$$\lambda_2 = -2$$
 ist $v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$ (x für $\alpha_1 = 1$).

Also: Der Eigenraum zum zweifachen Eigenwert -2 ist eindimensional. Es gibt also nicht 3 linear unabhängige Eigenvektoren von A, sondern nur $2 \Rightarrow$ um eine invertierbare Matrix P zu gestalten ist das zu wenig \Rightarrow Matrix A ist nicht diagonalisierbar.

Anmerkung

Affine Teilräume

00000

Diese Beispiele zeigen, dass wenn λ ein r-facher Eigenwert ist, dann ist dim $(E_{\{\lambda\}}) \le r$.

Beispiel (Matrix diagonalisierbar)

$$\lambda_1 = 1$$
, $r = 1$: $\dim(E_{\{1\}}) = 1 = r$
 $\lambda_2 = -2$, $r = 2$: $\dim(E_{\{-2\}}) = 2 = r$.

Beispiel (Matrix nicht diagonalisierbar)

$$\lambda_1 = 1$$
, $r = 1$: $\dim(E_{\{1\}}) = 1 = r$
 $\lambda_2 = -2$, $r = 2$: $\dim(E_{\{-2\}}) = 1 < r$.

Satz (hinreichende Bedingung für die Diagonalisierbarkeit einer Matrix)

Eine $(n \times n)$ -Matrix mit n unterschiedlichen Eigenwerten ist diagonalisierbar.

Beweis

Affine Teilräume

Seien v_1, v_2, \ldots, v_n die Eigenvektoren zu den *n* unterschiedlichen Eigenwerten der Matrix A. Diese sind (nach dem Satz über Eigenvektoren zu den unterschiedlichen Eigenwerten) linear unabhängig. Dann ist die daraus gebildete Matrix P invertierbar und laut dem vorigen Satz ist A diagonalisierbar.

Anmerkung

Affine Teilräume

Um diagonalisierbar zu sein, ist es nicht notwendig, für eine $(n \times n)$ -Matrix nur einfache Eigenwerte zu haben.

Siehe Beispiel (Matrix diagonalisierbar):

Die dortige (3×3) -Matrix A ist diagonalisierbar, obwohl diese nur 2 unterschiedliche Eigenwerte hat: einen einfachen Eigenwert (1) und einen zweiten Eigenwert (-2) mit algebraischer Vielfachheit 2.

Dieses Beispiel zeigt, dass es diagonalisierbare Matrizen gibt, die nicht unbedingt unterschiedliche Eigenwerte haben. Wie findet man in diesem Fall die invertierbare Matrix P (sodass $P^{-1}AP = D$)?

Wir wissen:

Wenn eine Matrix *n* unterschiedliche Eigenwerte hat, dann ist diese diagonalisierbar. Wann ist eine Matrix diagonalisierbar, wenn sie weniger als n unterschiedliche Eigenwerte hat?

Satz (Diagonalisierbarkeit bei weniger als *n* unterschiedlichen Eigenwerten)

Sei A eine $(n \times n)$ -Matrix mit p unterschiedlichen Eigenwerten $\lambda_1, \lambda_2, \ldots, \lambda_p$.

a) Für $1 \le k \le p$ ist die Dimension des Eigenraumes $E_{\{\lambda_k\}}$ kleiner oder gleich der algebraischen Vielfachheit von λ_k . Also für jedes λ_k : geometrische Vielfachheit < algebraische Vielfachheit.

Orthogonalität

- b) Die Matrix A ist diagonalisierbar dann und nur dann, wenn die Summe der Dimensionen der unterschiedlichen Eigenräume gleich n ist. Das ist dann und nur dann, wenn die Dimension des Eigenraumes für jedes λ_k gleich der algebraischen Vielfachheit von λ_k ist.
- c) Wenn A diagonalisierbar ist und für jedes k = 1, 2, ..., p gilt, dass B_k eine Basis des Eigenraums $E_{\{\lambda_k\}}$ zu λ_k ist, dann bilden die Vektoren $B_1 \cup B_2 \cup \ldots \cup B_n$ die Eigenvektor-Basis des \mathbb{C}^n .

Beispiel

Affine Teilräume

Sei
$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$
.

A ist eine untere Dreiecksmatrix mit den Eigenwerten auf der Hauptdiagonale: A hat <u>zwei</u> unterschiedliche Eigenwerte, 5 und -3. Daher ist $\underline{p}=\underline{2}$ und die algebraische Vielfachheit beider ist 2. Die Basen für diese Eigenwerte sind:

$$\text{für } \lambda_1 = 5 \qquad B_1 = \{v_1, v_2\} = \left\{ \begin{bmatrix} -8\\4\\1\\0 \end{bmatrix}, \begin{bmatrix} -16\\4\\0\\1 \end{bmatrix} \right\},$$

für
$$\lambda_2 = -3$$
 $B_2 = \{v_3, v_4\} = \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}.$

Daher ist
$$\dim(E_{\{\lambda_1\}}) = \dim(E_{\{\lambda_2\}}) = 2$$
 und $\dim(E_{\{\lambda_1\}}) + \dim(E_{\{\lambda_2\}}) = 2 + 2 = 4 = \dim(\mathbb{C}^4)$.

Deshalb ist diese Matrix laut b) diagonalisierbar. Laut c) bilden $\{v_1, v_2, v_3, v_4\}$ eine Basis des \mathbb{C}^4 . Darum ist $P = [v_1, v_2, v_3, v_4]$ invertierbar und $A = PDP^{-1}$ mit

$$D = \begin{bmatrix} 5 & & & \\ & 5 & & \\ & & -3 & \\ & & & -3 \end{bmatrix}.$$

Wir wissen:

Affine Teilräume

Wenn eine $(n \times n)$ -Matrix <u>weniger</u> als \underline{n} linear unabhängige Eigenvektoren hat, bzw. wenn die Dimension des Eigenraumes für jeden Eigenwert <u>nicht gleich</u> seiner algebraischen Vielfachheit ist, dann ist die Matrix <u>nicht</u> diagonalisierbar. In diesem Fall <u>kann</u> die Matrix auf eine "diagonal-nahe" Form gebracht werden. Diese Matrix heißt die jordansche kanonische Form von A.

Satz (jordansche kanonische Form)

Affine Teilräume

Jede $(n \times n)$ -Matrix A ist ähnlich zu einer Block-Matrix (jordansche kanonische Form von A)

$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_m \end{bmatrix}$$

d. h. es gibt eine invertierbare $(n \times n)$ -Matrix P, sodass $A = PJP^{-1}$. Jedes J_i (jordanscher Block), i = 1, 2, ..., m, hat die Gestalt

wobei λ einer der Eigenwerte von A ist.

- Die Anzahl m der Blöcke ist gleich der Anzahl der linear unabhängigen Eigenvektoren von A.
- Die geometrische Vielfachheit jedes Eigenwertes ist gleich der Anzahl der jordanschen Blöcke mit diesem Eigenwert.
- Die algebraische Vielfachheit jedes Eigenwerts ist gleich der Summe der Dimensionen aller jordanschen Blöcke mit diesem Eigenwert.

Beispiel (jordansche kanonische Form)

Sei $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Finde die jordansche kanonische Form von A.

$$p(\lambda) = \det(A - \lambda E) = \det\begin{bmatrix} 1 - \lambda & 1 \\ & 1 - \lambda \end{bmatrix} = (1 - \lambda)^2 \Rightarrow$$

 $\Rightarrow \lambda_1 = 1, r_1 = 2$. Also ist 1 ein zweifacher Eigenwert von A.

$$E_{\{1\}}: \ (A-1\cdot E)x=0 \Leftrightarrow \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=0 \Leftrightarrow x=\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

Da dim $(E_{\{1\}}) \neq r_1$ $(1 \neq 2) \Rightarrow A$ ist nicht diagonalisierbar. Aber es gibt die jordansche kanonische Form von A:

$$J = \begin{bmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_m \end{bmatrix}.$$

- m: # linear unabhängige Eigenvektoren von A ist gleich 1.
- # jordansche Blöcke mit $\lambda_1 = \dim(E_{\{1\}})$ ist gleich 1.
- Die Summe der Dimensionen aller jordanschen Blöcke mit $\lambda_1 = 1$ ist gleich der algebraischen Vielfachheit von $\lambda_1 = 2$.

$$\begin{split} \mathsf{Also} \ J &= [J_1], \quad J_1 = \begin{bmatrix} \lambda_1 & 1 \\ & \lambda_1 \end{bmatrix}_{2 \times 2} = \begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix} \Rightarrow \\ J &= \begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix} & \text{in diesem Spezialfall } A. \end{split}$$

Dann ist für
$$P = E = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 die Matrix A ähnlich zu J . $(A = EJE^{-1})$

Wir wissen:

Jeder $(n \times n)$ -Matrix A entspricht eindeutig eine lineare Transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, sodass $T(x) = F_A(x) = Ax$ für jedes $x \in \mathbb{R}^n$. Wenn aber A diagonalisierbar ist, dann ist die darstellende Matrix dieser Transformation diagonal.

Satz

Affine Teilräume

Sei A eine diagonalisierbare $(n \times n)$ -Matrix der Form $A = PDP^{-1}$, wobei D eine $(n \times n)$ -Diagonalmatrix ist. Wenn B eine Basis des \mathbb{R}^n ist, deren Vektoren die Spalten von der Matrix P sind, dann ist D die darstellende Matrix der Abbildung $T(x) = F_A(x) = Ax$ bezüglich der Basis B.

Beweis

Affine Teilräume

Sei $B=\{v_1,v_2,\ldots,v_n\}$ eine Basis des \mathbb{R}^n . Dann ist die Matrix $P_{\{B\}}=[v_1,v_2,\ldots,v_n]$ invertierbar und $D_{\{B\}}=P_{\{B\}}^{-1}$ ist die Koordinaten-Wechselmatrix von der kanonischen Basis zur Basis B, d. h. für $\forall x\in\mathbb{R}^n$:

(1) $P_{\{B\}}^{-1}v_{\{E\}}=v_{\{B\}}$. (siehe darstellende Matrix: Spezialfall 4)

oder umgekehrt:

 $P_{\{B\}}$ ist die Koordinaten-Wechselmatrix von der Basis B zur kanonischen Basis E, d. h. für $\forall x \in \mathbb{R}^n$

(2) $P_{\{B\}}v_{\{B\}}=v_{\{E\}}$.

Die darstellende Matrix von T bezüglich B ist laut Spezialfall 2.3

$$(V = W = \mathbb{R}^n, T : \mathbb{R}^n \to \mathbb{R}^n \quad B_V = B_W = B)$$

$$\begin{split} & D_{\{B\}} = \big[[T(v_1)]_{\{B\}} \ [T(v_2)]_{\{B\}} \ \dots \ [T(v_n)]_{\{B\}} \big] = \\ & = \big[[A(v_1)]_{\{B\}} \ [A(v_2)]_{\{B\}} \ \dots \ [A(v_n)]_{\{B\}} \big] \stackrel{\text{laut } (1)}{=} \\ & = \big[P_{\{B\}}^{-1} [A(v_1)]_{\{E\}} \ P_{\{B\}}^{-1} [A(v_2)]_{\{E\}} \ \dots \ P_{\{B\}}^{-1} [A(v_n)]_{\{E\}} \big] = \\ & = P_{\{B\}}^{-1} A[v_{1_{\{E\}}} \ v_{2_{\{E\}}} \ \dots \ v_{n_{\{E\}}}] = P_{\{B\}}^{-1} AP_{\{B\}}. \end{split}$$

Da A diagonalisierbar ist, d. h. $A=PDP^{-1}\Rightarrow$ wenn wir $P=P_{\{B\}}$ setzen, dann $D_{\{B\}}=P_{\{B\}}^{-1}AP_{\{B\}}=P^{-1}(PDP^{-1})P=D.$

Also: Die darstellende Matrix ist diagonal.

Beispiel (darstellende Matrix diagonal)

Affine Teilräume

Sei
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
, $T(x) = F_A(x) = Ax$ mit $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$.

Gesucht ist die Basis $B = \{v_1, v_2\}$ des \mathbb{R}^2 , für welche die darstellende Matrix diagonal ist. Diese Matrix ist diagonalisierbar, sie hat 2 unterschiedliche Eigenwerte

$$\lambda_1=5, \lambda_2=3 \text{ mit zugehörigen Eigenvektoren } \textit{v}_1=\begin{bmatrix}1\\-1\end{bmatrix} \text{ und } \textit{v}_2=\begin{bmatrix}1\\-2\end{bmatrix}.$$

Also
$$A = PDP^{-1}$$
 mit $P = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ und $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$.

Laut obigem Satz ist $D_{\{B\}} = D$ die darstellende Matrix von T bezüglich der Basis $B = \{v_1, v_2\}.$

Da für den Spezialfall 2.3 gilt $D_{\{B\}}x_{\{B\}} = [T(x)]_{\{B\}}$, dann $[Ax]_{\{B\}} = [T(x)]_{\{B\}} = D_{\{B\}}x_{\{B\}} = Dx_{\{B\}}.$

Konkret: Sei
$$x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
. Dann $T(x) = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ -3 \end{bmatrix}$.

$$x_{\{B\}} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} + a_2 \begin{bmatrix} 1 \\ -2 \end{bmatrix} \Rightarrow \begin{array}{l} a_1 + a_2 = 1 \\ -a_1 - 2a_2 = 1 \end{array} \right\} \Rightarrow$$

$$a_1 = 3$$

$$a_2 = -2$$

$$\Rightarrow x_{\{B\}} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$[T(x)]_{\{B\}} = a_1 \begin{bmatrix} 1\\1\\-1 \end{bmatrix} + a_2 \begin{bmatrix} 1\\-2 \end{bmatrix} \Rightarrow \begin{array}{l} a_1 + a_2 = 9\\ -a_1 - 2a_2 = -3 \end{array} \} \Rightarrow$$

$$a_1 = 15\\ a_2 = -6 \end{cases} \Rightarrow [T(x)]_{\{B\}} = \begin{bmatrix} 15\\-6 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 15 \\ -6 \end{bmatrix} \Rightarrow [T(x)]_{\{B\}} = Dx_{\{B\}}$$

Also:

Affine Teilräume

T(x) = Ax beschreibt die Transformation T zur Basis E. $[T(x)]_{\{B\}} = Dx_{\{B\}}$ beschreibt die gleiche Transformation T zur Basis B. T(x) und $[T(x)]_{\{B\}}$ sind die Darstellungen des gleichen Vektors bezüglich unterschiedlicher Basen.

Anmerkung

Im Beweis des vorigen Satzes könnte die Matrix D durch eine ähnliche Matrix C ersetzt werden: Also $A = PCP^{-1}$

Dann ist die Matrix C ebenso die darstellende Matrix $D_{\{B\}}$ der linearen Abbildung T(x) = Ax bezüglich der Basis $B = \{v_1, v_2, \dots, v_n\}$, wobei v_i die *i*-te Spalte (i = 1, 2, ..., n) der Matrix P ist.

Umgekehrt:

Affine Teilräume

Wenn $T: \mathbb{R}^n \to \mathbb{R}^n$ als T(x) = Ax definiert ist und B eine Basis des \mathbb{R}^n ist, dann ist die darstellende Matrix $D_{\{B\}}$ von T ähnlich zu A. Da für die Matrix P der Basisvektoren von B

$$D_{\{B\}} = P^{-1}AP$$

gilt, ist die Menge aller ähnlichen Matrizen zu A gleich der Menge aller Matrix-Repräsentationen der Transformation $T(x) = F_A(x) = Ax$.

Beispiel (darstellende Matrix in der jordanschen kanonischen Form)

Sei
$$A = \begin{bmatrix} 4 & -9 \\ 4 & -8 \end{bmatrix}$$
 , $v_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Das charakteristische Polynom von A ist

$$\det(A - \lambda E) = \det\begin{bmatrix} 4 - \lambda & -9 \\ 4 & -8 - \lambda \end{bmatrix} = (4 - \lambda)(-8 - \lambda) + 36 = \lambda^2 - 4\lambda + 8\lambda - 32 + 36 = \lambda^2 + 4\lambda + 4 = (\lambda + 2)^2.$$

Der Eigenraum $E_{\{-2\}}$ zum Eigenwert $\lambda=-2$ ist eindimensional:

$$(A - \lambda E)x = 0 \Leftrightarrow (A + 2E)x = 0$$

$$\begin{bmatrix} 6 & -9 \mid 0 \\ 4 & -6 \mid 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3/2 \mid 0 \\ 4 & -6 \mid 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -3/2 \mid 0 \\ 0 \end{bmatrix} \Rightarrow x = \alpha \begin{bmatrix} 3/2 \\ 1 \end{bmatrix} \Rightarrow \dim(E_{\{-2\}}) = 1.$$

Dadurch ist A nicht diagonalisierbar.

Die Basis $B = \{v_1, v_2\}$ hat die Eigenschaft, dass bezüglich der Basis B die darstellende Matrix $D_{\{B\}}$ zu T(x) = Ax die jordansche kanonische Form von A ist. Dies ist so, weil A ähnlich zu $D_{\{B\}}$ ist, d. h. wenn $P_{\{B\}} = [v_1 \ v_2]$, dann $D_{\{B\}} = P^{-1}AP$.

$$AP = \begin{bmatrix} 4 & -9 \\ 4 & -8 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -6 & -1 \\ -4 & 0 \end{bmatrix}$$
$$P^{-1}AP = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} -6 & -1 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$$

ist die jordansche kanonische Form von A (mit Eigenwert auf der Diagonale).

$$D_{\{B\}} = \lfloor [T(v_1)]_{\{B\}} [T(v_2)]_{\{B\}} \rfloor = \lfloor [Av_1]_{\{B\}} [Av_2]_{\{B\}} \rfloor$$
$$= \begin{bmatrix} -6 \\ -4 \end{bmatrix}_{\{B\}} \begin{bmatrix} -1 \\ 0 \end{bmatrix}_{\{B\}} \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}.$$

Also $D_{\{B\}} = P^{-1}AP$, d. h. in diesem Fall nimmt die darstellende Matrix die jordansche kanonische Form an.

Anmerkung

 $P^{-1}AP$ ist folgendermaßen berechnet:

AP und danach $[P \ AP] \rightarrow [E \ P^{-1}AP]$

Also ohne explizite Berechnung von P^{-1} und darauf folgender Matrix-Multiplikation von \overline{AP} mit P^{-1} .

Komplexe Eigenwerte (einer reellen Matrix)

Affine Teilräume

Das charakteristische Polynom einer reellen $(n \times n)$ -Matrix ist ein Polynom n-ten Grades. Dieses hat n Wurzeln (mehrfach gezählt), einige davon eventuell auch komplex. Wenn eine reelle $(n \times n)$ -Matrix komplexe Eigenwerte hat, dann enthalten diese "eine kritische Information" über die Matrix.

Die Eigenwert-Eigenvektor-Theorie, die für \mathbb{R}^n gilt, ist leicht auch auf \mathbb{C}^n übertragbar, wenn ermöglicht wird, dass eine reelle Matrix auf Vektoren aus \mathbb{C}^n operieren kann.

Definition (komplexer Eigenwert und Eigenvektor)

Sei A eine $(n \times n)$ -Matrix. Ein komplexer Skalar λ heißt (komplexer) Eigenwert von A, wenn es einen Vektor $v \in \mathbb{C}^n, v \neq 0$ gibt, für den gilt $Av = \lambda v$.

Anmerkung

Affine Teilräume

Analog wie im \mathbb{R}^n , gilt auch im \mathbb{C}^n :

 $\lambda \in \mathbb{C}$ ist ein Eigenwert von $A \Leftrightarrow \det(A - \lambda E) = 0$.

Beispiel (komplexe Eigenwerte und Eigenvektoren)

Sei
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \cos \frac{\pi}{2} & -\sin \frac{\pi}{2} \\ \sin \frac{\pi}{2} & \cos \frac{\pi}{2} \end{bmatrix}$$
.

 $F_A(x) = Ax$ rotiert die Vektoren $x \in \mathbb{R}^2$ gegen den Uhrzeigersinn durch alle vier Quadranten, sodass man nach 4 Rotationen zur ursprünglichen Position von x gelangt.

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$$

$$Ax = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}, \quad A^2x = A(Ax) = \begin{bmatrix} -x_1 \\ -x_2 \end{bmatrix}, \quad A^3x = A(A^2x) = \begin{bmatrix} x_2 \\ -x_1 \end{bmatrix}, \quad A^4x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

00000

Offensichtlich hat A die Eigenschaft, dass für keinen Nichtnullvektor x gilt, dass Ax ein Vielfaches von x ist, d.h. A hat keinen Eigenvektor im \mathbb{R}^2 und daher folgt, dass A keinen reellen Eigenwert hat.

Affine Teilräume

$$\det(A - \lambda E) = \det \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 + 1 \Rightarrow$$

 $\lambda^2 + 1 = 0$ hat zwei komplexe Wurzeln $\lambda_1 = i$, $\lambda_2 = -i$.

Die zugehörigen Eigenvektoren sind $v_1 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ und $v_2 = \begin{bmatrix} 1 \\ i \end{bmatrix}$:

$$Av_1 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} i \\ 1 \end{bmatrix} = i \begin{bmatrix} 1 \\ -i \end{bmatrix} = \lambda_1 v_1$$

$$Av_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix} = \lambda_2 v_2.$$

Beispiel (Eigenraum für komplexe Eigenwerte)

Sei
$$A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix}$$
.

Eigenwerte:

Affine Teilräume

$$\det(A - \lambda E) = \det \begin{bmatrix} 0.5 - \lambda & -0.6 \\ 0.75 & 1.1 - \lambda \end{bmatrix} = \lambda^2 - 1.6\lambda + 1 \Rightarrow \lambda_1 = 0.8 - 0.6i , \quad \lambda_2 = 0.8 + 0.6i.$$

$$E_{\{\lambda_1\}}, E_{\{\lambda_2\}}$$
:

$$E_{\{\lambda_1\}} = \{x \mid (A - \lambda_1 E)x = 0\} \Rightarrow$$

$$\left(\begin{bmatrix}0.5 & -0.6\\0.75 & 1.1\end{bmatrix} - \begin{bmatrix}0.8 - 0.6i & 0\\0 & 0.8 - 0.6i\end{bmatrix}\right)\begin{bmatrix}x_1\\x_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \Rightarrow$$

$$\begin{bmatrix} -0.3 + 0.6i & -0.6 \\ 0.75 & 0.3 + 0.6i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} (-0.3 + 0.6i)x_1 - 0.6x_2 = 0 & (1) \\ 0.75x_1 + (0.3 + 0.6i)x_2 = 0 & (2) \end{bmatrix}$$

Orthogonalität

(2)
$$\Rightarrow x_1 = \frac{-(0.3 + 0.6i)x_2}{0.75} = -(0.4 + 0.8i)x_2$$

Affine Teilräume

$$(-0.3 + 0.6i)(-0.4 - 0.8i)x_2 - 0.6x_2 = 0$$

$$(1) \Rightarrow (0.12 + 0.24i - 0.24i - 0.48i^2)x_2 - 0.6x_2 = 0$$

$$0.6x_2 - 0.6x_2 = 0$$

Diese Gleichung ist für jeden beliebigen komplexen Wert x_2 lösbar.

Also
$$E_{\{\lambda_1\}} = \left\{ x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -(0.4 + 0.8i)x_2 \\ x_2 \end{bmatrix} \mid x_2 \in \mathbb{C} \right\}.$$

Analog
$$E_{\{\lambda_2\}} = \left\{ x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \overline{-(0.4 + 0.8i)x_2} \\ \overline{x_2} \end{bmatrix} \mid x_2 \in \mathbb{C} \right\}.$$

 $E_{\{\lambda_1\}}$, $E_{\{\lambda_2\}}$ sind eindimensionale Teilräume des \mathbb{C}^2 .

Definition (komplex konjugierter Vektor)

Wenn der Real-(Imaginär-)Teil eines komplexen Vektors x als $Re \times (Im \times)$ bezeichnet wird, dann ist der komplex konjugierte Vektor \overline{x} zu x

$$\overline{x} = Re x - Im x$$
.

Anmerkung (voriges Beispiel)

Jeder Vektor $x \in E_{\{\lambda_1\}}$ ist komplex konjugiert zu $\overline{x} \in E_{\{\lambda_2\}}$ und umgekehrt.

Definition (komplex konjugierte Matrix)

Sei B eine komplexe Matrix. Dann hat \overline{B} , die komplex konjugierte Matrix zu B, die komplex konjugierten Elemente von B.

Eigenschaft

Affine Teilräume

Seien $r \in \mathbb{C}$, $x \in \mathbb{C}^n$ und B und C komplexe $(n \times n)$ -Matrizen.

Dann gilt: $\overline{rx} = \overline{r} \ \overline{x}$, $\overline{Bx} = \overline{B} \ \overline{x}$, $\overline{BC} = \overline{B} \ \overline{C}$ und $\overline{rB} = \overline{r} \ \overline{B}$.

Eigenschaft

Affine Teilräume

Sei A eine reelle $(n \times n)$ -Matrix. Da $A = \overline{A}$, gilt $\overline{Ax} = \overline{A}\overline{x} = A\overline{x}$.

Wenn λ ein Eigenwert von A ist und x der zugehörige Eigenvektor im \mathbb{C}^n , dann

$$A\overline{x} = \overline{Ax} = \overline{\lambda}\overline{x} = \overline{\lambda}\overline{x}$$

 $\Rightarrow \lambda$ ist auch ein Eigenwert von A und der zugehörige Eigenvektor ist \overline{x} .

Anders:

Komplexe Eigenwerte einer reellen Matrix und die zu ihnen zugehörigen Eigenvektoren treten in komplex konjugierten Paaren auf.

Beispiel

Im vorigen Beispiel:

$$\lambda_1 = 0.8 + 0.6i \qquad \lambda_2 = 0.8 - 0.6i \Rightarrow \lambda_1 = \overline{\lambda_2}$$

$$v_1 = \begin{bmatrix} -(0.4 + 0.8i)x_2 \\ x_2 \end{bmatrix} \qquad v_2 = \begin{bmatrix} \overline{-(0.4 + 0.8i)x_2} \\ \overline{x_2} \end{bmatrix} \Rightarrow v_1 = \overline{v_2}$$

Beispiel (Rotationsmatrix)

Affine Teilräume

Sei
$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 $a, b \in \mathbb{R}$ und nicht beide gleich 0.

Dann sind die Eigenwerte von A:

$$\det(A - \lambda E) = \det\begin{bmatrix} a - \lambda & -b \\ b & a - \lambda \end{bmatrix} = (a - \lambda)^2 + b^2 = \lambda^2 - 2a\lambda + a^2 + b^2 = 0$$

 \Rightarrow Diskriminante der quadratischen Gleichung $D=4a^2-4(a^2+b^2)=-4b^2$

$$\lambda_1, \lambda_2 = \frac{2a \pm \sqrt{-4b^2}}{2} = a \pm ib.$$

Es gilt
$$|\lambda_1| = |\lambda_2| = \sqrt{a^2 + b^2} = \left\| \begin{bmatrix} a \\ b \end{bmatrix} \right\|_2$$
.

Wir wissen:

Affine Teilräume

00000

Wenn
$$u=\begin{bmatrix} a\\b\end{bmatrix}\in\mathbb{R}^2$$
 und φ der Winkel zwischen u und der positiven ersten Koordinatenachse ist, dann

$$\cos \varphi = \frac{a}{||u||_2} = \frac{a}{\sqrt{a^2 + b^2}} \quad \text{und} \quad \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}} \ .$$

Wenn $r = \sqrt{a^2 + b^2}$, dann

Affine Teilräume

00000

$$A = r \begin{bmatrix} a/r & -b/r \\ b/r & a/r \end{bmatrix} = \begin{bmatrix} \operatorname{Skalierung} & \operatorname{Rotation} \\ r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}.$$

Also die Transformation Ax eines Vektors $x \in \mathbb{R}^2$ besteht aus der Komposition einer Rotation von x um den Winkel φ und einer Skalierung mit $r = |\lambda_{1,2}|$.

Anmerkung

Affine Teilräume

Die Eigenvektoren einer Rotationsmatrix

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \text{ sind } \begin{bmatrix} 1 \\ -i \end{bmatrix} \text{ und } \begin{bmatrix} 1 \\ i \end{bmatrix}.$$

Beweis

Wir wissen (voriges Beispiel Rotationsmatrix), dass die Eigenwerte von A $\lambda_1 = a + ib$ und $\lambda_2 = a - ib$ sind.

$$A \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} a+ib \\ b-ia \end{bmatrix} = (a+ib) \begin{bmatrix} 1 \\ -i \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

$$A \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} a-ib \\ b+ia \end{bmatrix} = (a-ib) \begin{bmatrix} 1 \\ i \end{bmatrix} = \lambda_2 \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Beispiel

Affine Teilräume

Sei
$$A = \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix}$$
.

Wir wissen (voriges Beispiel):

$$\lambda_1 = 0.8 - 0.6i$$
 $\lambda_2 = 0.8 + 0.6i$
 $v_1 = \begin{bmatrix} -2 - 4i \\ 5 + 0i \end{bmatrix}$ (für $x_2 = 5 + 0i$) $v_2 = \begin{bmatrix} -2 + 4i \\ 5 - 0i \end{bmatrix}$ (für $\overline{x_2} = 5 - 0i$).

Sei P eine reelle (2×2) -Matrix

$$P = [Re \ v_1 \ Im \ v_1] = \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix} \Rightarrow P^{-1} = \frac{1}{20} \begin{bmatrix} 0 & 4 \\ -5 & -2 \end{bmatrix}$$
 (siehe übernächste Folie)

und sei

$$C = P^{-1}AP = \frac{1}{20} \begin{bmatrix} 0 & 4 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} 0.5 & -0.6 \\ 0.75 & 1.1 \end{bmatrix} \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{bmatrix}.$$

C ist eine Rotationsmatrix (weil diese von der Gestalt $\begin{vmatrix} a & -b \\ b & a \end{vmatrix}$ ist und

$$C = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \text{ mit } r = \sqrt{0.8^2 + 0.6^2} = 1 \text{ und } \cos \varphi = 0.8, \sin \varphi = 0.6).$$

Orthogonalität

Aus
$$C = P^{-1}AP \Rightarrow A = PCP^{-1} = P \begin{bmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{bmatrix} P^{-1}$$
.

Also ist in A eine Rotation enthalten.

Die Transformation mit A bewirkt:

Affine Teilräume

- Koordinatenwechsel von der kanonischen Basis E zur Basis $\{Re\ v_1, Im\ v_1\}$ (= Multiplikation mit P^{-1})
- anschließende Rotation um den Winkel $\varphi = \arccos(0.8)$ (= Multiplikation mit C)
- und Wechsel zu Koordinaten bzgl. der ursprünglichen Basis E (= Multiplikation mit P).

Beispiel

Affine Teilräume

00000

$$P = \begin{bmatrix} -2 & -4 \\ 5 & 0 \end{bmatrix} \qquad P^{-1} = ?$$

$$\begin{bmatrix} -2 & -4 & 1 & 0 \\ 5 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & -1/2 & 0 \\ 5 & 0 & 0 & 1 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 2 & | & -1/2 & 0 \\ 0 & -10 & | & 5/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & | & -1/2 & 0 \\ 0 & 1 & | & -5/20 & -1/10 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & | & 0 & | & 2/10 \\ 0 & 1 & | & -5/20 & -1/10 \end{bmatrix} \Rightarrow P^{-1} = \frac{1}{20} \begin{bmatrix} 0 & 4 \\ -5 & -2 \end{bmatrix}.$$

Anmerkung

Die Berechnungen wie im obigen Beispiel können für beliebige reelle (2×2) -Matrizen mit einem komplexen Eigenwert durchgeführt werden.

Satz

Affine Teilräume

Sei A eine reelle (2 × 2)-Matrix mit einem komplexen Eigenwert $\lambda = a - bi$ ($b \neq 0$) und zugehörigem Eigenvektor $v \in \mathbb{C}^2$.

Dann
$$A = PCP^{-1}$$
,
wobei $P = [Re\ v\ Im\ v]$ und $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Beweis (ohne Details)

Der Beweis beruht darauf, dass für eine reelle Matrix gilt:

$$A Re x = Re Ax$$
 und $A Im x = Im Ax$.

Wenn v der Eigenvektor zum komplexen Eigenwert λ ist, dann sind Re v und Im v linear unabhängig im \mathbb{R}^2 .