Machine Listening for Music and Sound Analysis

Lecture 2 – Machine Learning

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

Jakob.abesser@idmt.fraunhofer.de

https://machinelistening.github.io

Learning Objectives

- Introduction
- Learning paradigms
- Machine learning (ML) project pipeline
- Deep learning

Introduction

Goals

- "...give computers the ability to learn without being explicitly programmed" [Samuels, 1959]
- Learning structures in given (un)labeled data to make predictions on new / unseen data
- Paradigm change
 - Now: joint representation learning (features) & data modeling (classification)
 - Before: manually designed / general-purpose features
- Related disciplines
 - Statistics, data science, optimization

Introduction Terminology

- Artificial Intelligence (AI)
 - "an agent's ability to achieve goals in a wide range of environments" [Legg & Hutter, 2007]
- Machine Learning (ML)
 - Pattern recognition, data modeling, learning, prediction
- Deep Learning (DL)
 - (Brain-inspired) artificial neural networks (ANN)
- Data Science
 - Knowledge extraction from data

Introduction

Application Scenarios

- Computational finance (credit scoring, algorithmic trading)
- Computer vision (face & object recognition, motion detection)
- Computational biology (tumor detection, drug discovery, DNA sequencing)
- Energy (price & load forecasting)
- Predictive Maintenance (automotive, aerospace, manufacturing)
- Natural language processing (sentiment classification, text search, translation)
- Machine Listening (music transcription, instrument recognition, sound event detection, acoustic scene classification)

Learning Paradigms

Learning Paradigms

Learning Paradigms Unsupervised Learning

- Goal
- Model hidden structure in data
- Density estimation
- Example
 - K-means clustering
 - Data partitioning into K clusters
 - Minimize within-cluster variance

Learning Paradigms Supervised Learning

Learning Paradigms Supervised Learning

Learning Paradigms

Supervised Learning - Classification

Learning Paradigms Supervised Learning - Classification

- Predict one / multiple categorical label from features
 - Examples → music genre, instrument(s), key
- Feature space modeling (Example: 2 classes)

Learning Paradigms Supervised Learning - Classification

- Example: K-Nearest Neighbors
 - Training → store all examples
 - Development → find best K
 - Test → assign test item to dominant class label of the K closest training data items
- Distance measures
 - Euclidean distance, manhattan distance, cosine distance, ...

Machine Learning

Learning Paradigms Supervised Learning - Regression

- Predicting a continuous quantity from features
- Examples
 - House price prediction

Learning Paradigms Self-supervised Learning

- Problem:
 - Supervised learning requires a lot of (annotated) data → expensive!
- Solution:
 - Train model on related (proxy) task (derive labels from the data!)
 - Predict any part of the input from any other part.
 Predict the future from the past.
 - ▶ Predict the future from the recent past.
 - Predict the past from the present.
 - Predict the top from the bottom.
 - Predict the occluded from the visible
 - Pretend there is a part of the input you don't know and predict that.

■ Transfer learning → Train model with fewer data on target task (e.g. sentiment classification in text)

ML Project Pipeline

ML Project Pipeline Data Collection & Pre-Processing

- Data collection
 - Check for available data resources for given (or related) task
 - Collect / record / annotate new data
 - Ensure data variability
 - Example (acoustic condition monitoring) → include different motor engine types & conditions, recording locations, microphones, ...
- Data pre-processing
 - Cleanup remove errors, silence, empty files, ...
 - Balance dataset (proportion among class examples)
 - Normalize (depends on the model)

ML Project Pipeline Data Split

- Training Set
 - Model learns from this data
- Validation Set (a.k.a development / dev set)
 - Used to fine-tune the model (hyper)parameters
 - Model occasionally sees but does not learn from this data
- Test set
 - Only used once after the model training & tuning is completed
 - Should reflect the targeted real-world use case for the model
- Common split ratios
 - 80% 10% 10% or even 98% 1% 1% (for bigger datasets)

ML Project Pipeline Model Selection

- Many models and approaches exist
 - Types (SVM, GMM, logistic regression, DNNs)
 - Hyperparameters (SVM kernel functions, DNN layer types)
- Often constrained by the use-case / task
 - Model complexity (memory, training time, training data amount)
- Different models require different feature pre-processing
- Use simple models for simple tasks

ML Project Pipeline Model Training

- Iterative process
 - Use (batches) of training data to iteratively improve model predictions (optimization)
 - Learn from examples
 - Update model parameters according to loss function
- Often start with random parameter initialization

ML Project Pipeline Model Training

Example: linear regression

$$y = W \cdot x + b$$

Training loop

y → target (output)
x → features (input)
W → weights
b → bias

ML Project Pipeline Model Validation

- Unbiased evaluation of the model after each training iteration
- Helps to
 - optimize model (hyper)parameters
 - detect overfitting on training data
 - stop the training

ML Project Pipeline Model Testing

- Final model evaluation
- Test set should reflect final application scenario (same data distribution)
- Evaluation metrics (binary classification)
 - Accuracy % of correct classifications
 - Recall % of actual positive examples were classified as positive
 - Precision % of positive predictions are actually positive
 - F-Score harmonic mean of precision and recall

Actual Values

Positive (1) Negative (0)

Predicted Values Positive (1)

Negative (0)

Deep Learning Introduction

- Artificial neural networks → mimic brain processing
 - Connected neurons (weighted input summation & non-linear processing)

■ Deep neural networks → multiple layers

Deep Learning Introduction

- Hierarchical feature learning
 - Example (face recognition)

Edges, curves

Shapes, object parts

Objects (faces)

First layers

Final layers

Deep Learning Deep Neural Networks

Deep Learning Activation Functions

- Activation functions add non-linearity
- Make networks more powerful in (complex) pattern recognition
- Examples:

Hyper Tangent Function

ReLU Function

Sigmoid Function

Deep Learning Training

- Loss contour
 - Goal → find global minima

Deep Learning Training

- Gradient descend
 - Move into opposite direction of gradient
 - Learning rate effects step size

Deep Learning Training

Back propagation

Deep Learning Playground

- A neural network playground!
 - https://playground.tensorflow.org

Deep Learning Convolutional Neural Networks (CNN)

- Convolutional layers
 - Local connectivity → receptive field
 - Shared weights
 - Translation Equivariance → translation of input = translation of activations
- Pooling → local aggregation

Deep Learning

Recurrent Neural Networks (RNN)

- Recurrent layers
 - Model sequential data → model dynamic temporal behaviour
 - Internal memory state(s) → memorize previous data for future predictions
- Vanishing gradient problem
 - Gating mechanisms (Gated Recurrent Units (GRU), Long Short-term Memory (LSTM)

Deep Learning

Recurrent Neural Networks (RNN)

- Application Examples
 - One-to-many: sequential music generation (given a starting note)
 - Many-to-one: sentiment classification (positive vs. negative)
 - Many-to-many: machine translation (e.g. Spanish to German)

Deep Learning Autoencoders

- Symmetric architecture (decoder & encoder)
- Objective: minimize reconstruction error (e.g. mean squared error)
- Compression of input (embedding)
- lacktriangle Prioritize on important information ightarrow learn useful representations

Summary

- Introduction
 - Terminology, application scenarios
- Learning Paradigms
 - Unsupervised, supervised, self-supervised learning
- ML project pipeline
 - Data collection, pre-processing, split
 - Model selection, validation, training, testing
- Deep Learning
 - DNN, CNN, RNN, Autoencoders

References

- S. Legg, M. Hutter (2007). Universal Intelligence: A Definition of Machine Intelligence. Minds & Machines. 17 (4): 391-444.
- A. L. Samuel (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development. 3(3), 210-229.