Colle L2PR-4 A1

1 Question de cours

- a) Soit $A, B \in K[X]$. Donnez la définition de B divise A.
- b) Soient $A, B, C \in K[X]$. Que vaut pgcd(AB, AC)? Démontrez-le.

2 Exercice

On pose, pour $n \ge 1$ et $x \in]0,1]$, $f_n(x) = nx^n ln(x)$ et $f_n(0) = 0$.

- a) Démontrer que (fn) converge simplement sur [0,1] vers une fonction f que l'on précisera. On note ensuite $g=f-f_n$.
- b) Étudier les variations de g.
- c) En déduire que la convergence de (f_n) vers f n'est pas uniforme sur [0,1].
- d) Soit $a \in]0,1]$. Montrez-qu'il existe $n_0 \in \mathbb{N}$ tel que $exp(-\frac{1}{n}) \geqslant a$ pour tout $n \geqslant n_0$. Démontrer que la suite (f_n) converge uniformément vers f sur [0,a].

Colle L2PR-4 A2

1 Question de cours

- a) Donner la définition de convergence simple et de convergence uniforme d'une suite de fonction sur un ensemble. Donner la définition de "suite uniformément de Cauchy" (\sim suite vérifiant le critère de Cauchy).
- b) Quel est le lien entre ces concepts?

- a) Effectuer la division euclidienne de A par B avec $A=3X^5+4X^2+1$ et $B=X^2+2X+3$.
- b) Trouver tous les polynômes P tels que P+1 soit divisible par $(X-1)^4$ et P-1 par $(X+1)^4$ de deux manières différentes.

Colle L2PR-4 B1

1 Question de cours

- a) Donner la définition d'une suite de fonction.
- b) Énoncer et démontrer le théorème d'interversion de limite et d'intégration pour les suites de fonctions.

- a) Effectuer la division euclidienne de A par B avec $A = 3X^5 + 2X^4 X^2 + 1$ et $B = X^3 + X + 2$.
- b) Trouver les $P \in \mathbb{R}[X]$ tels que :

a)
$$P(X^2) = (X^2 + 1)P(X)$$
.

b)
$$(P')^2 = 4P$$

c)
$$PoP = P$$

- c) Soit $(A,B) \in (K[X])^2$ non nuls. Montrer que les assertions suivantes sont équivalentes :
 - i) A et B ne sont pas premiers entre eux.
 - ii) il existe $(U, V) \in (\mathbb{K}[X] \{0\})^2$ tel que AU + BV = 0, deg(U) < deg(B) et deg(V) < deg(A).

Colle L2PR-4 B2

1 Question de cours

- a) Soient $A, B \in K[X]$ avec B non nul. Énoncer le théorème de division euclidienne.
- b) Soient $A, B, C \in K[X]$. On suppose que A divise BC et que pgcd(A, B) = 1. Que peut-on en déduire reliant A et C? Démontrez-le.

- a) Soit $f_n : \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$. Démontrer que chaque f_n est de classe C^1 sur \mathbb{R} et que la suite de fonctions (f_n) converge uniformément vers une fonction f. f est-elle C^1 sur \mathbb{R} ?
- b) Soit $a \ge 0$. On définit la suite de fonctions (f_n) sur [0,1] par $f_n(x) = n^a x^n (1-x)$. Montrer que la suite (f_n) converge simplement vers 0 sur [0,1], mais que la convergence est uniforme si et seulement si a < 1.
- c) Démontrer que la limite uniforme d'une suite de fonctions uniformément continues est elle-même uniformément continue.

Colle L2PR-4 C1

1 Question de cours

- a) Soit $A \in \mathbb{K}[X]$ \mathbb{K} . Donner la définition mathématique de A est irréductible.
- b) Donnez la relation de Bezout et démontrez-la.

2 Exercice

1) Soit (f_n) une suite de fonction définies par :

$$f_n(x) = \begin{cases} 0 & \text{si } x < 0\\ nx & \text{si } 0 \leqslant x \leqslant \frac{1}{n}\\ 1 & \text{si } x > \frac{1}{n} \end{cases}$$

- a) Faire une figure pour quelques valeurs de n.
- b) Déterminer la limite de (f_n) quand n tend vers l'infini.
- c) Préciser si la convergence est uniforme dans les trois cas suivants :
 - i) Sur $]-\infty,0[$.
 - ii) Sur un segment contenant l'origine.
 - iii) Sur $[a, +\infty]$, a > 0.
- 2) Etudier la convergence simple et uniforme de $f_n(x) = (\sin(x))^n \cos(x)$.

Colle L2PR-4 C2

1 Question de cours

- a) Donner la définition d'une suite de fonction.
- b) Énoncer le théorème de dérivation pour les suites de fonctions.

- a) Effectuer la division euclidienne de A par B avec $A = X^4 X^3 + X 2$ et $B = X^2 2X + 4$.
- b) On cherche les polynômes $P(X) = (X a)(X b) \in \mathbb{C}[X]$ tels que P(X) divise $P(X^3)$.
 - i) Montrer que, si a = b alors $P \in \mathbb{R}[X]$.
 - ii) Montrer que si $a \neq b$ et $a^3 \neq b^3$, il existe 6 polynômes dont 4 dans $\mathbb{R}[X]$.
 - iii) Trouver les polynômes P si $a \neq b$ et $a^3 = b^3$ et en déduire que 13 polynômes en tout conviennent, dont 7 dans $\mathbb{R}[X]$.

AUTRES EXERCICES

Exercice 1

Etudier la convergence simple et uniforme de $f_n(x) = exp(\frac{(n-1)x}{n})$.

Exercice 2

Soit $f_n:[0,1]\to\mathbb{R}$ définie par :

$$f_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si } x \in [0, \frac{1}{n}] \\ 0 & \text{sinon} \end{cases}$$

- a Étudier la limite simple de la suite (f_n) .
- b Calculer:

$$\int_0^1 f_n(t)dt$$

Y a-t-il convergence uniforme de la suite de fonction (f_n) ?

c Étudier la convergence uniforme sur [a,1] avec a>0 .

Exercice 3

- 1. Effectuer la division euclidienne de A par B avec $A=X^5-7X^4-X^2-9X+9$ et $B=X^2-5X+4$.
- 2. À quelle condition sur $a,b,c\in\mathbb{R}$, le polynôme

$$X^4 + aX^2 + bX + c$$

est-il divisible par $X^2 + X + 1$?

Exercice 4

Soient $A, B \in \mathbb{K}[X]$ non nuls. Montrer que A et B sont premiers entre eux si, et seulement si, A + B et AB le sont.

Exercice 5

Décomposer P et Q en produit d'irréductibles sur \mathbb{R} en sachant qu'ils ont une racine commune.

$$P(X) = X^3 - 9X^2 + 26X$$

$$Q(X) = X^3 - 7X^2 + 7X + 15$$