

INTERNET OF THINGS (IOT) TUTORIAL FOR TRAINERS

23-24 MARCH 2021

BY MUHAMMAD AZIZI MOHD ARIFFIN

INTRODUCTION TO IOT

IEEE Definition:

"A network of items, each embedded with sensors, which are connected to the Internet."

DHT11 DHT22 CO2 Sensor **Motion Sensor** Arduino UNO Node MCU ESP8266/ESP32 Raspberry PI

Grafana Laravel PHP/MYSQL

IOT HARDWARE (MICROCONTROLLER)

NodeMCU ESP8266

IOT HARDWARE (SINGLE-BOARD COMPUTER)

Raspberry PI

IOT HARDWARE (SENSORS)

- DHT11 & 22 (Temperature & Humidity)
- **×** Soil Moisture Sensor
- CO2 Sensor
- × PH Sensor
- Motion Sensor

IOT HARDWARE (ACTUATOR)

- × Relay
- * Buzzer
- Water Pump
- LCD Display

IOT HARDWARE (CONNECTIVITY)

- × Wi-Fi
- **×** Ethernet
- LoraWAN
- * Bluetooth
- × Zigbee
- × GSM

IOT SOFTWARE

- × Arduino IDE
- IBM NodeRED
- MicroPython
- Blynk Smartphone App

IOT EXERCISE (DAY 1)

- Activity 0: Installing Arduino IDE & Connecting Node MCU
- Activity 1: Digital Input and Output GPIO
- Activity 2: GPIO Non-Blocking
- Activity 3: Analog Output (RGB LED)
- Activity 4: Analog Input (LM35 Sensor)
- Activity 5: DH11 Sensor Module
- Activity 6: Displaying Sensor Data via Build in Web Server
- Activity 7: Sending Sensor Data via TCP Socket

IOT EXERCISE (DAY 2)

- Activity 8: Pushing Sensor Data via HTTP Post
- * Activity 9: Using Node MCU with Blynk Platform
- Activity 10: Pushing Sensor Data to Google Firebase
- Activity 11: Introduction to Raspberry PI
- Activity 12: Using Raspberry PI GPIO
- Activity 13: Displaying Sensor via Flask using Raspberry PI

THANK YOU LET'S GET OUR HANDS DIRTY

