ฟังก์ชันผลิตอาเรย์สูตรคูณ

จงเขียนฟังก์ชันที่ทำงานตามชื่อฟังก์ชัน (หรือตามที่เขียนใน comment)

```
import numpy as np
def mult_table(nrows, ncols):
    # คืนอาเรย์ที่มี shape เป็น (nrow, ncols) ภายในเก็บตารางสูตรคูณ (ดูตัวอย่างข้างล่าง)
exec(input().strip()) # ต้องมีคำสั่งนี้ ตรงนี้ ตอนส่งให้ Grader ตรวจ
```

ข้อแนะน้ำ: ถ้าคิดไม่ออก ลองอ่านการคำนวณ outer product จาก https://en.wikipedia.org/wiki/Outer_product

ข้อมูลนำเข้า

คำสั่งภาษา Python ที่ใช้ทดสอบการทำงานของฟังก์ชัน

ข้อมูลส่งออก

ผลที่ได้จากการสั่งทำงานคำสั่งที่ได้รับ

ตัวอย่าง

input (จากแป้นพิมพ์)	output (ทางจอภาพ)												
<pre>print(mult_table(2,2))</pre>	[[1 2] [2 4]]												
<pre>print(mult_table(3,4))</pre>	[[1 2 3 4] [2 4 6 8] [3 6 9 12]]												
<pre>print(mult_table(12,12))</pre>]]]]]	1 2 3 4 5	2 4 6 8 10	3 6 9 12 15	4 8 12 16 20	5 10 15 20 25	6 12 18 24 30	7 14 21 28 35	8 16 24 32 40	9 18 27 36 45	10 20 30 40 50	11 22 33 44 55	12] 24] 36] 48] 60]
]	6 7 8 9	12 14 16 18 20	18 21 24 27 30	24 28 32 36 40	30 35 40 45 50	36 42 48 54 60	42 49 56 63 70	48 56 64 72 80	54 63 72 81 90	60 70 80 90	66 77 88 99	72] 84] 96]
]	11 12	22 24	33 36	44 48	55 60	66 72	77 84	88 96	99 108	110	121	132] 144]]