будут отличаться друг от друга, и мы получим, что $\Delta \sigma \Delta z \approx \Delta v \Delta t > 1$ для $t \neq 0$. Если же мы имеем дело со средой без дисперсии, то растяжения пакета не происходит и соотношение $\Delta \sigma \Delta z \approx \Delta v \Delta t \approx 1$ сохраняется.

Волновые пакеты в воде. Волновые пакеты, распространяющиеся по кругам на поверхности воды, можно образовать, бросая в пруд гальку. При некотором опыте удается следить за распространением групп и наблюдать, как отдельные-гребни возникают позади группы, проходят через нее и рассасываются. (Это явление связано с тем, что для длин волн с $\lambda > 1.7$ см, возбуждаемых камнем средней величины, фазовая скорость больше групповой. Картина распространения волновой группы, для которой фазовая скорость в два раза больше групповой, показана на рис. 6.7.) Мы настоятельно рекомендуем понаблюдать за распространением волновых групп. Вначале возникнут некоторые трудности, связанные с довольно большой скоростью распространения группы, однако усилия будут оправданы. (См. домашние опыты.)

6.4. Фурье-анализ импульсов

В п. 6.3 мы впервые встретились с представлением функции времени $\psi(t)$ в виде интеграла Фурье. Здесь мы покажем, как найти непрерывный частотный спектр для любого «разумного» импульса, а также приведем несколько примеров, представляющих большой интерес для различных областей физики.

Импульсы ограниченной длительности. Предположим, что функция $\psi(t)$ имеет форму импульса ограниченной длительности (рис. 6.8): она равна нулю до момента времени t_0 и после момента времени

для времен более ранних, чем t_0 , и более поздних, чем t_0+T_1 , функция $\psi(t)=0$.

 t_0+T_1 . Таким образом, мы предполагаем, что существует конечный интервал времени T_1 , внутри которого происходят колебания вида $\psi(t)$ (см. рис. 6.8). Величина интервала T_1 , в общем, произвольна, однако в дальнейшем мы будем считать ее очень большой (но не бесконечно большой). (Величина $v_1=1/T_1$ будет нашей «единицей частоты», которую мы сможем выбрать сколь угодно малой.)

В п. 2.3 мы применили фурье-анализ для разложения периодической функции F(t), определенной для всех t и имеющей период

 T_1 , так что $F(t+T_1)=F(t)$. Мы умеем также применять фурье-анализ к функции, определенной в ограниченном интервале времени t. В этом случае мы строили новую периодическую функцию, определенную для всех t и совпадающую с исходной функцией на временном интервале, равном периоду. Продолжив таким образом исходную функцию и сделав ее периодической, можно применить формулы, выведенные для периодических функций. Здесь мы поступим точно так же. Образуем периодическую функцию F(t) с периодом T_1 ; на каждом периоде F(t) является копией импульса ψ (t) (рис. 6.9).

Рис. 6.9. Гtриодическая функция F(t) с периодом T_1 , полученная «повторением» импульса $\psi(t)$ в последовательные интервалы времени протяженностью T_1 .

Разложение функции F(t) в ряд Фурье определяется выражениями (2.49) — (2.52) из п. 2.3. Приведем заново результаты, которые нам понадобятся:

$$F(t) = B_0 + \sum_{n=1}^{\infty} A_n \sin n\omega_1 t + \sum_{n=1}^{\infty} B_n \cos n\omega_1 t,$$
 (73)

где

$$\omega_1 = 2\pi v_1 = \frac{2\pi}{T_1} \,. \tag{74}$$

Тогда

$$B_0 = \frac{1}{T_1} \int_{t_0}^{t_0 + T_1} F(t) dt, \tag{75}$$

$$B_n = \frac{2}{T_1} \int_{t_0}^{t_0 + T_1} F(t) \cos n\omega_1 t \, dt, \tag{76}$$

$$A_{n} = \frac{2}{T_{1}} \int_{t_{0}}^{t_{0}+T_{1}} F(t) \sin n\omega_{1} t \, dt, \tag{77}$$

где $n=1,\ 2,\ 3,\dots$ Постараемся применить формулы (73) — (77) к нашей задаче о представлении функции $\psi(t)$ в виде суперпозиции гармонических колебаний.

Заметим, что коэффициент B_0 в разложении (73) равен нулю. Действительно, функция $\psi(t)$ равна нулю вне своего интервала T_1 , а в пределах этого интервала осциллирует. С физической точки зрения равенство B_0 =0 означает, что в системе нет «постоянного смещения» или «постоянного напряжения», т. е. в общем случае у процесса, заданного функцией $\psi(t)$, нет постоянной составляющей. Это не означает, конечно, отсутствия таких процессов, для которых функция $\psi(t)$ имела бы вне T_1 не нулевое, а какое-либо конечное

значение. Мы просто не рассматриваем сейчас такие случан. Сила принципа суперпозиции заключается в том, что он дает всзможность не рассматривать не интересующие нас члены суперпозиции, с той оговоркой, что «мы уже рассматривали их и позже добавим эти члены в результат».]

Переход от суммы Фурье к интегралу Фурье. Рассмотрим несколько первых членов в бесконечных суммах разложения (73). Этн члены имеют вид $A_1 \sin \omega_1 t + B_1 \cos \omega_1 t$, $A_2 \sin 2\omega_1 t + B_2 \cos 2\omega_1 t$ н т. д. Покажем, что эти первые члены пренебрежимо малы. Из рис. 6.8 мы видим, что у функции $\psi(t)$ нет компонент с периодом большим, чем T_1 . Искусственно построенная функция F(t) будет иметь компоненту с периодом T_1 . Но так как выбор T_1 произволен (за исключением особых случаев), то мы можем сделать этот интервал очень большим, так что соответствующая угловая частота ω_1 = $=2\pi/T_1$ будет очень малой. Константы A_1 , A_2 , B_1 , B_2 и т. д. при соответствующем выборе T_1 могут быть сделаны очень малыми, и ими можно пренебречь. В частности, мы можем сделать T_1 таким, что первыми несколькими константами A_n и B_n можно пренебречь. Под «первыми несколькими A_n и B_n » мы подразумеваем, например, нервые десять тысяч членов. Теперь рассмотрим такие n, для которых уже нельзя пренебречь членами A_n и B_n . Рассмотрим два последовательных члена в уравнении (73), n и n+1:

$$F(t) = \dots + A_n \sin n\omega_1 t + A_{n+1} \sin (n\omega_1 + \omega_1) t + \dots$$
 (78)

Если T_1 достаточно велико, мы можем предположить, что ω_1 столь мало, а n столь велико, что A_{n+1} отличается от A_n на бесконечно малую величину. В этом случае мы можем заменить $n\omega_1$ на непрерывную переменную ω и рассматривать A_n как непрерывную функцию частоты ω :

$$\omega = n\omega_1. \tag{79}$$

Пусть $\delta \omega$ — приращение ω при увеличении n на δn :

$$\delta \omega = \omega_1 \, \delta n, \quad \delta n = \delta \omega / \omega_1.$$
 (80)

Далее, пусть δn настолько мало, что коэффициенты A_n в днапазоне от n до $n+\delta n$ можно считать практически равными. В этом случае мы можем сгруппировать члены, соответствующие диапазону δn в уравнении (78), считая, что все они имеют одинаковую частоту ω (среднее значение ω в диапазоне $\delta \omega$). Перепишем разложение (78) следующим образом [используя равенства (79) и (80)]:

$$F(t) = \dots + \delta n A_n \sin n\omega_1 t + \dots = \dots + \delta \omega \frac{A_n}{\omega_1} \sin \omega t + \dots = \dots + \delta \omega A(\omega) \sin \omega t + \dots = \int_0^\infty A(\omega) \sin \omega t \, d\omega + \dots$$
(81)

Чтобы получить последнее из равенств (81), мы заменили сумму по последовательности полос с шириной $\delta \omega$ интегралом, а $\delta \omega$ — на более общий символ $d\omega$. Точки (...) в формуле (81) соответствуют

второй сумме в (73), а именно $\sum B_n \cos n\omega_1 t$. Эту сумму также можно представить в виде интеграла. Окончательно получаем

$$F(t) = \int_{0}^{\infty} A(\omega) \sin \omega t \, d\omega + \int_{0}^{\infty} B(\omega) \cos \omega t \, d\omega, \tag{82}$$

$$A(\omega) = A(n\omega_1) = A_n/\omega_1, \quad B(\omega) = B(n\omega_1) = B_n/\omega_1. \tag{83}$$

Заметим, что переменная ω имеет нижний предел, равный нулю. Это справедливо потому, что A_n и B_n равны (примерно) нулю при n, близких к нулю, и поэтому $A(\omega)$ и $B(\omega)$ должны равняться нулю при $\omega = 0$.

Из равенств (83) и (77) имеем

$$A(\omega) = \frac{2}{\omega_1 T_1} \int_{t_0}^{t_0 + T_1} F(t) \sin \omega t \, dt;$$

учитывая, что $\omega_1 T_1 = 2\pi$, получим

$$A(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \psi(t) \sin \omega t \, dt.$$

В последнем равенстве мы учли тот факт, что интеграл по периоду от искусственно построенной периодической функции F(t) равен интегралу по времени от $-\infty$ до $+\infty$ от непериодического импульса $\psi(t)$.

Интеграл Фурье. Мы пришли к выводу, что вместо периодической функции F(t) можем написать в выражении (82) первоначальную функцию $\psi(t)$. Для этой функции справедливо следующее разложение, которое называется интегралом Фурье:

$$\psi(t) = \int_{0}^{\infty} A(\omega) \sin \omega t \, d\omega + \int_{0}^{\infty} B(\omega) \cos \omega t \, d\omega, \tag{84}$$

где коэффициенты $A(\omega)$ и $B(\omega)$ равны

$$A(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \psi(t) \sin \omega t \, dt, \tag{85}$$

$$B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \psi(t) \cos \omega t \, dt. \tag{86}$$

Рассмотрим несколько интересных применений этих формул. Приложение. Прямоугольный частотный спектр. Пусть функция $A(\omega)$ равна нулю для всех ω , а функция $B(\omega)$ постоянна для ω между ω_1 и ω_2 и равна нулю для всех других значений ω . Выберем постоянное значение $B(\omega)$ таким, чтобы площадь под $B(\omega)$

была равна единице, т. е.

$$B\left(\omega\right)=\frac{1}{\Delta\omega}\text{ для }\omega_{1}\leqslant\omega\leqslant\omega_{2}=\omega_{1}+\Delta\omega,\\ B\left(\omega\right)=0\text{ для остальных }\omega.$$
 (87)

(Так как $B(\omega)$ имеет размерность обратной частоты, то функция $\psi(t)$ должна быть безразмерной.) Функция $\psi(t)$ вычисляется следующим образом:

$$\psi(t) = \int_{0}^{\infty} A(\omega) \sin \omega t \, d\omega + \int_{0}^{\infty} B(\omega) \cos \omega t \, d\omega =$$

$$= 0 + \int_{\omega_{1}}^{\omega_{2}} \frac{1}{\Delta \omega} \cos \omega t \, d\omega = \frac{1}{\Delta \omega} \frac{\sin \omega t}{t} \Big|_{\omega = \omega_{1}}^{\omega = \omega_{2}},$$

т. е,

$$\psi(t) = \frac{\sin \omega_2 t - \sin \omega_1 t}{\Delta \omega t} = \frac{\sin \omega_2 t - \sin \omega_1 t}{(\omega_2 - \omega_1) t}.$$
 (88)

В этом выражении числитель представляет собой суперпозицию двух колебаний, которая дает модулированное колебание с частотой модуляции ($\omega_2 - \omega_1$)/2. Знаменатель содержит множитель t, благодаря которому $\psi(t)$ имеет наибольшее значение при t=0. Представим выражение (88) в виде почти гармонического колебания со средней частотой ω_0 и с медленно изменяющейся амплитудой:

$$\begin{array}{c}
\omega_{0} = \frac{1}{2} \left(\omega_{2} + \omega_{1} \right), & \frac{1}{2} \Delta \omega = \frac{1}{2} \left(\omega_{2} - \omega_{1} \right), \\
\omega_{2} = \omega_{0} + \frac{1}{2} \Delta \omega, & \omega_{1} = \omega_{0} - \frac{1}{2} \Delta \omega; \\
\psi(t) = \frac{\sin(\omega_{0} + \frac{1}{2} \Delta \omega) t - \sin(\omega_{0} - \frac{1}{2} \Delta \omega) t}{\Delta \omega t} = \left[\frac{\sin(\frac{1}{2} \Delta \omega t)}{\frac{1}{2} \Delta \omega t} \right] \cos \omega_{0} t. \quad (90)
\end{array}$$

Таким образом, $\psi(t)$ представляет собой «быстрое» колебание с медленно изменяющейся амплитудой A(t):

$$\psi(t) = A(t)\cos\omega_0 t, \quad A(t) = \frac{\sin^{1/2}\Delta\omega t}{\frac{1}{2}\Delta\omega t}. \tag{91}$$

Результат, представленный равенством (91), аналогичен результату, полученному в п. 6.3 для суперпозиции N гармонических колебаний, частоты которых равномерно распределены между границами интервала ω_1 и ω_2 . Если перейти к пределу, устремив N к ∞ , мы получим разложение (91). (См. формулы (57) и (58), п. 6.3.) Импульс $\psi(t)$ и его преобразование Фурье показаны на рис. 6.6.

Приложение. «Прямоугольный» временной импульс. Пусть функция $\psi(t)$ равна нулю всюду, кроме промежутка Δt , центрированного относительно t_0 и простирающегося от t_1 до t_2 . В этом промежутке функция имеет постоянное значение, которое выбрано таким, чтобы интеграл от $\psi(t)$ по t был равен единице:

$$\hat{\Psi}(t) = \frac{1}{\Delta t}, \qquad t_1 \leqslant t \leqslant t_2 = t_1 + \Delta t.$$
 (92)

Найдем коэффициенты Фурье $A(\omega)$ и $B(\omega)$ для функции $\psi(t)$.

Если $t_0 = 0$, то $\psi(t)$ — четная функция времени, и поэтому $A(\omega)$ должно равняться нулю (так как $\sin \omega t$ — нечетная функция). Если $t_0 \neq 0$, то мы должны вычислять как $A(\omega)$, так и $B(\omega)$. Мы всегда можем облегчить вычисление, сместив ось времени, т. е. заменив t на t — t_0 . Так как $\psi(t)$ — четная функция от t — t_0 , то мы имеем

$$\psi(t) = \int_{0}^{\infty} B(\omega) \cos \omega (t - t_0) d\omega, \qquad (93)$$

где

$$B(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \psi(t) \cos \omega(t - t_0) dt.$$
 (94)

Произведя это несложное интегрирование (задача 6.20), мы получим

$$B(\omega) = \frac{1}{\pi} \frac{\sin \frac{1}{2} \Delta t \, \omega}{\frac{1}{2} \Delta t \, \omega}. \tag{95}$$

Прямоугольный импульс [функция (92)] и его фурье-коэффициент $B(\omega)$ показаны на рис. 6.10. Заметим, что если мы определяем $\Delta\omega$

Рис. 6.10. Прямоугольный импульс ψ (t) и его фурье-коэффициент B (ω).

как интервал, простирающийся от минимальной частоты (которая равна нулю) до частоты, соответствующей первому нулю в коэффициенте $B(\omega)$, то имеем

$$\Delta \omega \ \Delta t = 2\pi, \quad \Delta v \ \Delta t = 1.$$
 (96)

 Φ урье-анализ хлопка с помощью рояля. Предположим, что мы хотим оценить длительность звука от хлопка руками. У нас нет ни микрофона, ни усилителя звуковых частот, ни осциллографа, но в нашем распоряжении находится рояль. Нажав на демпфирующую педаль (освободив тем самым все струны), расположим руки под поднятой крышкой рояля и хлопнем в ладоши. Рояль будет играть роль частотного анализатора. Оцените наивысший тон, для которого интенсивность звука достаточно велика. Можно сказать, что для этой частоты справедливо приближенное равенство $v \approx 1/\Delta t$. Этот пример, как следует из дальнейших рассуждений, дает нам дополнительное представление о смысле анализа Φ урье.

С некоторым приближением мы можем считать, что воздушная волна давления длительностью Δt воздействует на все струны в одно

и то же время и в одном направлении. Струны начинают колебаться с собственными частотами. Те струны, частоты которых малы по сравнению с $1/\Delta t$, совершат только часть полного колебания за время действия силы. Эти струны испытывают ускорение в течение всего времени Δt действия силы. Струны с периодом, точно равным Δt , ускоряются волной давления в течение первой полуволны длительностью $\Delta t/2$ и тормозятся в течение следующей полуволны. Замедление и ускорение, получаемые струной за время $\Delta t/2$, равны по величине, и поэтому после прекращения лействия силы струна не колеблется. Таким образом, струны с собственными частотами от нуля до значения несколько меньшего, чем $1/\Delta t$, возбуждаются с положительной амплитудой. Струна с частотой $1/\Delta t$ имеет нулевую амилитулу: эта частота определяет первый нуль для коэффициента $B(\omega)$ в выражении (95). Струны с частотами между $1/\Delta t$ и $2/\Delta t$ следают от одного до двух подных колебаний за время Δt . Струна с частотой $2/\Delta t$ совершит за это время два полных колебания и успокоится. Эта частота соответствует второму нулю $B(\omega)$. Струна с частотой $1.5/\Delta t$ будет вести себя следующим образом: после окончания первого цикла колебаний на эту струну в течение первой половины второго цикла будет действовать сила того же направления. Эта струна получит 1/2 часть импульса силы, так как она совершает три полуцикла собственных колебаний, причем вклады от двух из них взаимно уничтожаются. Струна с частотой собственных колебаний $1/(1/\Delta t)$ за Δt совершит лишь полникла колебаний, а амплитуда ее должна быть в три раза больше, чем для струны с частотой колебаний v=1.5 (1/ Δt). Из равенства (95) следует, что коэффициент $B(\omega)$ для $\omega \Delta t = \pi$ действительно в три раза больше, чем для $\omega \Lambda t = 3\pi$.

Этот пример показывает, что рояль или аналогичный музыкальный инструмент можно использовать в качестве частотного анализатора. (Мы пренебрегаем тем фактом, что связь воздуха со струнами может и не быть столь совершенной.) Заметим, что из пианино, используемого в качестве анализатора, очень трудно получить информацию о фазе колебаний. Однако для нашего уха фаза не представляет интереса. Это общая ситуация; часто нас не интересуют коэффициенты $A(\omega)$ и $B(\omega)$ по отдельности, так что мы можем ограничиться интересивностью $I(\omega)$ фурье-разложения, которая определяется следующим образом:

$$I(\omega) = A^2(\omega) + B^2(\omega). \tag{97}$$

Дельта-функция времени. Если продолжительность Δt прямоугольного импульса значительно короче периода колебания наибольшей частоты, который мы можем обнаружить, то коэффициент $B(\omega)$ постоянен для регистрируемого нами диапазона частот. Это утверждение можно пояснить при помощи рис. 6.10. Если устремить Δt к нулю, то первый нуль функции $B(\omega)$ устремится к $+\infty$ и для любой частоты функция $B(\omega)$ будет равна $1/\pi$. Импульс, определяемый функцией (92), называется дельта-функцией времени, если Δt достаточно мало. Например, наивысшая частота ноты рояля $v \approx 5000 \, cu$, и поэтому любой звуковой импульс длительностью меньше десятой миллисекунды будет возбуждать колебания всех струн. Нужно заметить, что с помощью рояля мы не сможем отличить этот звуковой импульс от звукового импульса, в десять раз большего по величине, длительность которого на порядок меньше. В обоих случаях конечный результат движения струн будет одинаков.

Приложение. Затухающий гармонический осциллятор; естественная ширина линии. Нас интересует частотный спектр, т. е. «форма линии» видимого света, испускаемого атомом, среднее время жизни которого порядка $\tau \approx 10^{-8}$ сек. Если бы нас интересовала лишь ширина спектральной линии, то ее легко определить, и мы знаем, что она порядка $1/\tau$, т. е. 10^8 гу. Нас однако интересует большее, а именно детальная форма линии. Будем считать, что моделью атома является затухающий гармонический осциллятор. Это значит, что функция $\psi(t)$ равна нулю для всех t < t = 0, а при t = 0 действует скачкообразное возмущение и функция имеет вид

$$\psi(t) = e^{-1/2\Gamma t}\cos\omega_1 t. \tag{98}$$

(Мы полагаем постоянную амплитуду равной единице, чтобы сократить вычисления.) Коэффициент затухания обратно пропорционален среднему времени жизни атома:

$$\Gamma = 1/\tau. \tag{99}$$

Пусть частота колебаний нашей модели атома в отсутствие затухания равна ω_0 . Мы знаем (см. главу 3), что частота затухающих колебаний ω_1 следующим образом связана с ω_0 и Γ :

$$\omega_1^2 = \omega_0^2 - \frac{1}{4} \Gamma^2. \tag{100}$$

Выразим равенство (98) с помощью интеграла Фурье:

$$\psi(t) = \int_{-\infty}^{\infty} A(\omega) \sin \omega t \, d\omega + \int_{0}^{\infty} B(\omega) \cos \omega t \, d\omega. \tag{101}$$

Имеем

$$2\pi A(\omega) = 2 \int_{-\infty}^{\infty} \psi(t) \sin \omega t \, dt = \int_{0}^{\infty} e^{-1/2\Gamma t} 2 \cos \omega_{1} t \sin \omega t \, dt =$$

$$= \int_{0}^{\infty} e^{-1/2\Gamma t} \left[\sin (\omega + \omega_{1}) t + \sin (\omega - \omega_{1}) t \right] dt, \quad (102)$$

$$2\pi B(\omega) = 2 \int_{-\infty}^{\infty} \psi(t) \cos \omega t \, dt = \int_{0}^{\infty} e^{-1/2\Gamma t} 2 \cos \omega_{1} t \cos \omega t \, dt =$$

$$= \int_{0}^{\infty} e^{-1/2\Gamma t} \left[\cos (\omega + \omega_{1}) t + \cos (\omega - \omega_{1}) t \right] dt. \quad (103)$$

В любой таблице определенных интегралов мы найдем

$$\int_{0}^{\infty} e^{-ax} \sin bx \, dx = \frac{b}{b^2 + a^2},\tag{104}$$

$$\int_{0}^{\infty} e^{-ax} \cos bx \, dx = \frac{a}{b^{2} + a^{2}}.$$
 (105)

Равенства (102) и (103) дают

$$2\pi A(\omega) = \frac{(\omega + \omega_1)}{(\omega + \omega_1)^2 + (\frac{1}{2}\Gamma)^2} + \frac{(\omega - \omega_1)}{(\omega - \omega_1)^2 + (\frac{1}{2}\Gamma)^2},$$
 (106)

$$2\pi B(\omega) = \frac{\frac{1}{2}\Gamma}{(\omega + \omega_1)^2 + (\frac{1}{2}\Gamma)^2} + \frac{\frac{1}{2}\Gamma}{(\omega - \omega_1)^2 + (\frac{1}{2}\Gamma)^2}.$$
 (107)

Воспользуемся равенством (100) для замены ω_1^2 на ω_0^2 . После ряда преобразований получим

$$2\pi A(\omega) = \frac{2\omega(\omega^2 - \omega_0^2) + \omega\Gamma^2}{(\omega_0^2 - \omega^2)^2 + \Gamma^2\omega^2},$$
(108)

$$2\pi B(\omega) = \frac{\Gamma(\omega^2 + \omega_0^2)}{(\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2},$$
(109)

$$I(\omega) = [2\pi A(\omega)]^{2} + [2\pi B(\omega)]^{2} = \frac{4\omega^{2} + \Gamma^{2}}{(\omega_{0}^{2} - \omega^{2}) + \Gamma^{2}\omega^{2}}.$$
 (110)

Сравнение свободно затухающего колебания с вынужденным колебанием. Интересно сравнить полученные результаты частотного фурье-анализа колебаний свободно затухающего гармонического осциллятора с результатами частотного анализа установившихся вынужденных колебаний. Приведем результаты, которые были получены для такой системы в п. 3.2 [равенства (3.17) и (3.32) — (3.35)]:

$$A_{\pi}(\omega) = \frac{F_0}{M} \frac{(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2},$$
 (111)

$$A_{\pi}(\omega) = \frac{F_0}{M} \frac{\Gamma \omega}{(\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2}, \qquad (112)$$

$$|A|^{2} = [A_{\pi}(\omega)]^{2} + [A_{\pi}(\omega)]^{2} = \frac{F_{0}^{2}}{M^{2}} \frac{1}{(\omega_{0}^{2} - \omega^{2})^{2} + \Gamma^{2}\omega^{2}}, \quad (113)$$

$$P(\omega) = \frac{1}{2} \frac{F_0^2}{M} \frac{\Gamma \omega^2}{(\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2},$$
 (114)

$$E(\omega) = \frac{1}{2} \frac{F_0^2}{M} \frac{\frac{1}{2} (\omega^2 + \omega_0^2)}{(\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2}.$$
 (115)

Сравнивая эти выражения с формулами (108) и (109), мы видим, что коэффициент $B(\omega)$ для затухающих колебаний пропорционален запасенной энергии $E(\omega)$ вынужденных колебаний. Коэффициент $A(\omega)$ для затухающих колебаний состоит из двух слагаемых: одно из них пропорционально $\omega A_{\mathbf{A}}(\omega)$, а второе пропорционально

 $A_{\rm n}(\omega)$. При достаточно слабом затухании слагаемое, пропорциональное $A_{\rm n}$, пренебрежимо мало, за исключением значений ω , очень близких к резонансу ω_0 ; поэтому $A(\omega)$ в этом случае практически пропорционально $\omega A_{\rm g}(\omega)$. Интенсивность $I(\omega)$, определяемая как $A^2(\omega)+B^2(\omega)$, состоит из двух частей: одна часть пропорциональна поглощаемой мощности $P(\omega)$, а вторая часть, при достаточно слабом затухании, т. е. при $\Gamma^2 \ll \omega^2$, пренебрежимо мала. Поэтому можно считать, что интенсивность $I(\omega)$ для свободного затухания практически пропорциональна поглощаемой мощности, $P(\omega)$ для вынужденных колебаний.

Лоренцевская форма линии; связь с резонансной кривой. В случае слабого затухания для ω , близких к ω_0 , коэффициент $B(\omega)$ и интенсивность $I(\omega)$ пропорциональны функции $L(\omega)$:

$$L(\omega) = \frac{(^{1}/_{2}\Gamma)^{2}}{(\omega_{0} - \omega)^{2} + (^{1}/_{2}\Gamma)^{2}}.$$
 (116)

Эта функция называется лоренцевской формой линии. Коэффициент затухания Γ равен величине интервала частот, внутри которого $L(\omega) > ^{1}/_{2}L(\omega_{0})$. Этот интервал частот называется шириной линии $\Delta \omega$ частотного спектра, описывающего затухающие колебания:

$$(\Delta \omega)_{3. \kappa} = \Gamma. \tag{117}$$

Лоренцевская форма линии (116) совпадает с брейт-вигнеровской резонансной кривой $R(\omega)$, которая дает (для слабого затухания) частотную зависимость величин $A_{\pi}(\omega)$, $|A|^2$, $E(\omega)$ и $P(\omega)$ при вынужденных колебаниях [равенство (3.36), п. 3.2)]:

$$R(\omega) = \frac{(^{1}/_{2}\Gamma)^{2}}{(\omega_{0} - \omega)^{2} + (^{1}/_{2}\Gamma)^{2}}.$$
 (118)

Полная ширина резонанса на уровне половины максимального значения равна

$$(\Delta\omega)_{\rm pes} = \Gamma. \tag{119}$$

Таким образом, мы пришли к замечательному выводу, что для слабо затухающего гармонического осциллятора (который мы взяли в качестве модели излучающего атома) преобразование Фурье дает ту же частотную зависимость, что и резонансные характеристики вынужденных колебаний:

$$(\Delta\omega)_{3. \kappa} = (\Delta\omega)_{pes} = \frac{1}{\tau_{3. \kappa}}.$$
 (120)

Измерение собственной частоты и полосы частот. Тот факт, что фурье-преобразование для затухающих свободных колебаний совпадает с резонансной кривой для установившихся вынужденных колебаний, имеет важные экспериментальные следствия. Допустим, что мы хотим определить а) первую моду рояльной струны и б) энергию первого возбужденного состояния атома.

Рассмотрим три способа, которыми это можно сделать:

1. Временная зависимость свободных колебаний. В зависимости от того, с какой из двух систем мы имеем дело, мы можем воспользоваться либо молоточком рояля, либо столкновением атома с другим атомом для внезапного возбуждения системы в момент t=0. Произведя скоростные фотоснимки движения затухающего осциллятора, мы можем построить график смещения в зависимости от времени. Это возможно для рояльной струны, но для атома невозможно, даже в принципе. (В томе «Квантовая физика» будет показано, почему это невозможно.)

2. Резонансная характеристика вынужденного колебания. Пусть в установившемся режиме на систему воздействует гармоническая сила F_0 соз ωt . Будем менять частоту внешней силы и измерять поглощаемую мощность $P(\omega)$ как функцию частоты. Это можно

Рис. 6.11. Слабо затухающий гармонический осциллятор. а) Импульс $\psi(t) = \exp[-1/2t/\tau] \cos \omega t$ при $\omega_1 = 8\pi\Gamma$, т. е. $\tau = 4T_1$; б) фурье-коэффициенты для непрерывной суперпозиции гармонических членов.

 $\int_{0}^{\infty} [A(\omega) \sin \omega t + B(\omega) \cos \omega t] d\omega.$

сделать не только для струны рояля, но и для некоторых возбужденных состояний атомов, если на них действует установившееся электромагнитное излучение. Снимая зависимость P от ω , можно найти ω_0 и Γ .

3. Фурье-анализ испускаемого спектра. Выполним фурье-анализ излучения для системы, внезапно приведенной в возбужден-

ное состояние. Это возможно как для струны рояля, так и для некоторых возбужденных состояний атома, если измерять частоты испускаемого атомом света. Легче всего измерить интенсивность излучения в зависимости от частоты. Эта величина пропорциональна интенсивности $I(\omega)$, получаемой из фурье-анализа. Зная функцию $I(\omega)$, мы можем получить частоту ω_0 и ширину полосы Γ . На рис. 6.11 показаны затухающие колебания гармонического осциллятора и коэффициенты Фурье $A(\omega)$ и $B(\omega)$. Для того чтобы в произведении ширины полосы на интервал времени $\Delta\omega$ $\Delta t \geqslant 2\pi$ получить точное равенство, мы должны определить длительность Δt как произведение 2π на среднее время жизни τ . Тогда равенство (120) примет вид $\Delta\omega$ $\Delta t = 2\pi$.

6.5. Фурье-анализ бегущих волновых пакетов

Предположим, что передатчик в точке z=0 воздействует на непрерывную, однородную, одномерную открытую систему таким образом, что волновая функция $\psi(z,t)$ бегущих волн в точке z=0 имеет известную зависимость от времени f(t):

$$\psi(0, t) = f(t). \tag{121}$$

Любая «разумная» функция f(t) может быть представлена суперпозицией гармонических колебаний. Если f(t) не периодическая функция времени, то суперпозиция непрерывна (по частоте) и выражается через интеграл Фурье:

$$f(t) = \int_{0}^{\infty} [A(\omega) \sin \omega t + B(\omega) \cos \omega t] d\omega.$$
 (122)

Бегущие солны в однородной диспергирующей среде. Каждая гармоническая составляющая суперпозиции (122) определяет свою собственную гармоническую бегущую волну с волновым числом k, значение которого следует из дисперсионного соотношения

$$k = k(\omega). \tag{123}$$

Каждая частотная составляющая бегущей волны распространяется со своей собственной фазовой скоростью

$$v_{\Phi} = \frac{\omega}{k(\omega)}.\tag{124}$$

Вся бегущая волна $\psi(z, t)$ является суперпозицией этих гармонических бегущих волн. Это значит, что мы получим $\psi(z, t)$ и $\psi(0, t)$ заменой ωt на $\omega t - kz = \omega t - k(\omega)z$ в каждой гармонической составляющей суперпозиции (122):

$$\psi(0, t) = \int_{\omega=0}^{\infty} [A(\omega) \sin \omega t + B(\omega) \cos \omega t] d\omega, \qquad (125)$$

$$\Psi(z, t) = \int_{\omega=0}^{\infty} \{A(\omega) \sin[\omega t - k(\omega) z] + B(\omega) \cos[\omega t - k(\omega) z]\} d\omega.$$
(126)