પ્રશ્ન 1(અ) [3 ગુણ]

ટ્રાન્ઝિસ્ટર બાયસિંગ શું છે? તેની શું જરૂર છે?

જવાબ:

ટ્રાન્ઝિસ્ટર બાયસિંગ એ AC સિગ્નલના યોગ્ય એમ્પ્લિફિકેશન માટે સ્થિર DC ઓપરેટિંગ પોઈન્ટ (Q-પોઈન્ટ) સ્થાપિત કરવાની પ્રક્રિયા છે.

કોષ્ટક: ટ્રાન્ઝિસ્ટર બાયસિંગની જરૂરિયાત

પાસું	મહત્વ
સ્થિરતા	તાપમાન વધઘટ છતાં સ્થિર Q-પોઈન્ટ જાળવે છે
લિનિયરતા	વિકૃતિ-મુક્ત એમ્પ્લિફિકેશન માટે લિનિયર રીજનમાં કાર્ય સુનિશ્ચિત કરે છે
કાર્યક્ષમતા	સિગ્નલ ક્લિપિંગ અટકાવે છે અને સિગ્નલ સ્વિંગને મહત્તમ કરે છે
વિશ્વસનીયતા	થર્મલ રનઅવે ટાળે છે અને ટ્રાન્ઝિસ્ટરને સુરક્ષિત રાખે છે

મેમરી ટ્રીક: "SOLE ઓપરેશન" (Stability, Operating point, Linearity, Efficiency)

પ્રશ્ન 1(બ) [4 ગુણ]

CE એમ્પ્લિફાયર માટે લોડ લાઇન સમજાવો

જવાબ

લોડ લાઇન એ ટ્રાન્ઝિસ્ટર સર્કિટના બધા સંભવિત ઓપરેટિંગ પોઈન્ટનું ગ્રાફિકલ રેપ્રેઝન્ટેશન છે.

આકૃતિ:

- **DC લોક લાઇન**: સેચુરેશન પોઈન્ટ (Ic=Vcc/Rc, Vce=0) અને કટઓફ પોઈન્ટ (Ic=0, Vce=Vcc) વચ્ચે દોરાય છે
- **AC લોડ લાઇન**: Q-પોઈન્ટમાંથી પસાર થાય છે, સ્લોપ = -1/rc (rc = AC કલેક્ટર રેસિસ્ટન્સ)
- **Q-પોઈન્ટ**: ઓપરેટિંગ પોઈન્ટ જ્યાં DC બાયસિંગ કન્ડિશન્સ સ્થાપિત થાય છે

મેમરી ટ્રીક: "SCQ પોઈન્ટ્સ" (Saturation, Cutoff, Q-point)

પ્રશ્ન 1(ક) [7 ગુણ]

ટ્રાન્ઝિસ્ટરની વિવિદ્ય બાયસિંગ પધ્ધતિની યાદી બનાવો અને તેમાથી કોઈપણ એક સમજાવો.

જવાબ

ટ્રાન્ઝિસ્ટર માટેની વિવિધ બાયસિંગ પધ્ધતિઓ:

કોષ્ટક: ટ્રાન્ઝિસ્ટર બાયસિંગ પધ્ધતિઓ

પદ્ધતિ	મુખ્ય લક્ષણ
ફિક્સ્ડ બાયસ	બેઝ બાયસ માટે એક રેસિસ્ટર
કલેક્ટર-ટુ-બેઝ બાયસ	નેગેટિવ ફીડબેક દ્વારા સેલ્ફ-સ્ટેબિલાઈઝિંગ
વોલ્ટેજ ડિવાઈડર બાયસ	વોલ્ટેજ ડિવાઈડર નેટવર્ક દ્વારા સૌથી સ્થિર
એમિટર બાયસ	એમિટર રેસિસ્ટર સાથે ઉત્તમ સ્થિરતા
કોમ્બિનેશન બાયસ	ઓપ્ટિમલ સ્થિરતા માટે મલ્ટિપલ ફીડબેક પાથનો ઉપયોગ

વોલ્ટેજ ડિવાઈડર બાયસ સમજૂતી:

આકૃતિ:

- **ઓપરેશન**: R1 અને R2 બેઝ વોલ્ટેજ સેટ કરવા માટે વોલ્ટેજ ડિવાઈડર બનાવે છે
- સ્થિરતા: સ્ટિફ વોલ્ટેજ ડિવાઈડરને કારણે ઉત્તમ થર્મલ સ્થિરતા
- **કાર્યક્ષમતા**: β વેરિએશનથી સ્વતંત્ર હોવાથી સૌથી વધુ ઉપયોગમાં લેવાતી પધ્ધતિ
- **ગણતરી**: બેઝ વોલ્ટેજ = Vcc × R2/(R1+R2)

મેમરી ટ્રીક: "VISE ગ્રિપ" (Voltage divider, Independent of β, Stable, Efficient)

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

સર્કિટ ડાયગ્રામની મદદથી વોલ્ટેજ ડિવાઈડર બાયસિંગ પધ્ધતિ સમજાવો

જવાબ:

વોલ્ટેજ ડિવાઈડર બાયસિંગ એ ટ્રાન્ઝિસ્ટરને બાયસ કરવાની સૌથી સ્થિર પદ્ધતિ છે.

આકૃતિ:

કોષ્ટક: વોલ્ટેજ ડિવાઈડર બાયસિંગની વિશેષતાઓ

કોમ્પોનન્ટ	รเข้	
R1, R2	β થી સ્વતંત્ર સ્થિર બેઝ વોલ્ટેજ બનાવે છે	
Rc	કલેક્ટર કરંટને મર્યાદિત કરે છે અને આઉટપુટ વોલ્ટેજ વિકસિત કરે છે	
Re	નેગેટિવ ફીડબેક દ્વારા સ્થિરતા પ્રદાન કરે છે	
બાયપાસ કેપેસિટર	ગેઇન વધારવા માટે Re ની આસપાસ AC સિગ્નલને બાયપાસ કરે છે	

- **કાર્યરત સિદ્ધાંત**: R1 અને R2 બેઝ વોલ્ટેજ સેટ કરતા વોલ્ટેજ ડિવાઈડર બનાવે છે
- **થર્મલ સ્થિરતા**: Re નેગેટિવ ફીડબેક માટે ઉત્તમ થર્મલ સ્થિરતા પ્રદાન કરે છે
- **ફાયદો**: તાપમાન અને β માં ફેરફાર છતાં Q-પોઈન્ટ સ્થિર રહે છે

મેમરી ટ્રીક: "BEST બાયસ" (Base voltage, Emitter stability, Stiff divider, Temperature stable)

પ્રશ્ન 2(અ) [3 ગુણ]

કાસ્કેડિંગ એમ્પ્લિફાયરની પદ્ધતિઓ લખો

જવાબ:

કાસ્કેડિંગ એમ્પ્લિફાયરનો અર્થ એકંદર ગેઈન વધારવા માટે એકાધિક એમ્પ્લિફાયર સ્ટેજને શ્રેણીમાં જોડવાનો છે.

કોષ્ટક: કાસ્કેડિંગ એમ્પ્લિફાયરની પદ્ધતિઓ

પદ્ધતિ	મુખ્ય લક્ષણ	
RC કપલિંગ	ઇન્ટરસ્ટેજ કપલિંગ માટે કેપેસિટર અને રેસિસ્ટરનો ઉપયોગ	
ટ્રાન્સફોર્મર કપલિંગ	ઇમ્પીડન્સ મેચિંગ અને આઇસોલેશન માટે ટ્રાન્સફોર્મરનો ઉપયોગ	
ડાયરેક્ટ કપલિંગ	કોઈ કપલિંગ કોમ્પોનન્ટ નહીં, સ્ટેજ વચ્ચે સીધું કનેક્શન	
LC કપલિંગ	હાઈ-ફ્રીક્વન્સી એપ્લિકેશન માટે ઇન્ડક્ટર-કેપેસિટરનો ઉપયોગ	

મેમરી ટ્રીક: "RTDL કનેક્શન" (RC, Transformer, Direct, LC)

પ્રશ્ન 2(બ) [4 ગુણ]

CE અને CB એમ્પ્લિફાયરની સરખામણી કરો

જવાબ:

કોષ્ટક: CE અને CB એમ્પ્લિફાયરની સરખામણી

પેરામીટર	કોમન એમિટર (CE)	કોમન બેઝ (CB)
ઇનપુટ ઇમ્પીડન્સ	મધ્યમ (≈1kΩ)	નીચું (≈50Ω)
આઉટપુટ ઇમ્પીડન્સ	ઊંચું (≈50kΩ)	ખૂબ ઊંચું (≈500kΩ)
વોલ્ટેજ ગેઇન	ઊંચું (≈500)	ઊંચું (≈500)
કરંટ ગેઇન	મધ્યમ (β)	1 થી ઓછું (α)
ફેઝ શિફ્ટ	180°	0°
એપ્લિકેશન	વોલ્ટેજ એમ્પ્લિફિકેશન	હાઈ-ફ્રીક્વન્સી એમ્પ્લિફિકેશન

મેમરી ટ્રીક: "PIVOT તફાવતો" (Phase shift, Impedance, Voltage gain, Output impedance, Throughput)

પ્રશ્ન 2(ક) [7 ગુણ]

RC કપલ્ડ એમ્પ્લિફાયરની સર્કિટ દોરો. આવૃત્તિ પ્રતિભાવ આપો અને સમજાવો

જવાબ:

RC કપલ્ડ એમ્પ્લિફાયર ઇન્ટરસ્ટેજ કપલિંગ માટે રેસિસ્ટર-કેપેસિટર નેટવર્કનો ઉપયોગ કરે છે.

આવૃત્તિ પ્રતિભાવ:

- નીચી આવૃત્તિ વિસ્તાર: કપલિંગ અને બાયપાસ કેપેસિટરને કારણે ગેઈન ઘટે છે
- મધ્ય આવૃત્તિ વિસ્તાર: મહત્તમ ગેઈન સાથે ફ્લેટ પ્રતિસાદ
- ઊંચી આવૃત્તિ વિસ્તાર: ટ્રાન્ઝિસ્ટરની આંતરિક કેપેસિટન્સને કારણે ગેઈન ઘટે છે
- બેન્ડવિડ્ય: નીચા અને ઊંચા કટઓફ આવૃત્તિઓ દ્વારા નક્કી થાય છે

મેમરી ટ્રીક: "LMH વિસ્તારો" (Low, Mid, High frequency regions)

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

એમ્પ્લિફાયરના ગેઇન, બેંડવિથ અને ગેઇન-બેંડવિથ ગુણાકારની વ્યાખ્યા લખો.

જવાબ:

કોષ્ટક: મુખ્ય એમ્પ્લિફાયર પેરામીટર્સ

પેરામીટર	વ્યાખ્યા
ગોઇન (A)	આઉટપુટ સિગ્નલનો ઇનપુટ સિગ્નલ સાથેનો ગુણોત્તર (વોલ્ટેજ, કરંટ, અથવા પાવર)
બેન્ડવિડ્થ (BW)	નીચા અને ઊંચા કટઓફ આવૃત્તિઓ વચ્ચેનો આવૃત્તિ રેન્જ (f₂-f₁)
ગેઇન-બેન્ડવિડ્થ ગુણાકાર (GBW)	ગેઇન અને બેન્ડવિડ્થનો ગુણાકાર, આપેલા એમ્પ્લિફાયર માટે સ્થિર રહે છે

મેમરી ટ્રીક: "GBP સ્થિરાંકો" (Gain, Bandwidth, Product constants)

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

સિંગલ સ્ટેજ એમ્પ્લિફાયરનો ફિક્વન્સી રિસ્પોન્સ સમજાવો અને તેની કટઓફ ફિક્વન્સીઓ દર્શાવો.

જવાબ:

ફ્રિક્વન્સી રિસ્પોન્સ સિંગલ સ્ટેજ એમ્પ્લિફાયરમાં આવૃત્તિ સાથે ગેઇનના ફેરફાર દર્શાવે છે.

આકૃતિ:

- કટઓફ આવૃત્તિઓ: જ્યાં ગેઇન મહત્તમ ગેઇનના 0.707 ગણા સુધી ઘટે છે તે બિંદુઓ
- **નીચી કટઓફ આવૃત્તિ (f₁)**: કપલિંગ અને બાયપાસ કેપેસિટર દ્વારા નિર્ધારિત થાય છે
- **ઊંચી કટઓફ આવૃત્તિ (f₂)**: ટ્રાન્ઝિસ્ટર જંક્શન કેપેસિટન્સ દ્વારા મર્યાદિત થાય છે
- **બેન્ડવિડ્ય**: f₁ અને f₂ વચ્ચેનો આવૃત્તિ રેન્જ (BW = f₂ f₁)

મેમરી ટ્રીક: "LUG પોઈન્ટ્સ" (Lower cutoff, Upper cutoff, Gain maximum)

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

સામાન્ય કલેક્ટર એમ્પ્લિફાયરની સર્કિટ ડાયગ્રામ દોરો અને સમજાવો

જવાબ:

સામાન્ય કલેક્ટર (CC) એમ્પ્લિફાયરને એમિટર ફોલોઅર તરીકે પણ ઓળખવામાં આવે છે.

કોષ્ટક: સામાન્ય કલેક્ટર એમ્પ્લિફાયરની વિશેષતાઓ

પેરામીટર	લાક્ષણિકતા
વોલ્ટેજ ગેઇન	લગભગ 1 (1 કરતાં ઓછો)
કરંટ ગેઇન	ઊંચો (β)
ઇનપુટ ઇમ્પીડન્સ	ખૂબ ઊંચી (≈ β × Re)
આઉટપુટ ઇમ્પીડન્સ	ખૂબ નીચી (≈ 1/gm)
ફેઝ શિફ્ટ	0° (કોઈ ફેઝ ઇન્વર્ઝન નહીં)
એપ્લિકેશન	ઇમ્પીડન્સ મેચિંગ, બફર સ્ટેજ

- **કાર્યરત સિદ્ધાંત**: આઉટપુટ એમિટરથી લેવામાં આવે છે, કલેક્ટર ઇનપુટ અને આઉટપુટ માટે સામાન્ય છે
- મુખ્ય લક્ષણ: વોલ્ટેજ ફોલોઅર જેમાં આઉટપુટ વોલ્ટેજ ઇનપુટ વોલ્ટેજને અનુસરે છે
- મુખ્ય ફાયદો: ઊંચી ઇનપુટ ઇમ્પીડન્સ અને નીચી આઉટપુટ ઇમ્પીડન્સ

મેમરી ટ્રીક: "BIVOP લક્ષણો" (Buffer, Impedance matching, Voltage follower, One gain, Phase matched)

પ્રશ્ન 3(અ) [3 ગુણ]

ટ્રાન્ઝિસ્ટર ટુ પોર્ટ નેટવર્ક દોરો અને તેના માટે h-પેરામીટરનું વર્ણન કરો.

જવાબ:

ટ્રાન્ઝિસ્ટરને h-પેરામીટર્સ સાથે ટુ-પોર્ટ નેટવર્ક તરીકે રજૂ કરી શકાય છે.

આકૃતિ:

કોષ્ટક: h-પેરામીટર્સ

પેરામીટર	વર્ણન
h ₁₁ (h_i)	આઉટપુટ શોર્ટ-સર્કિટેડ હોય ત્યારે ઇનપુટ ઇમ્પીડન્સ
h ₁₂ (h_r)	ઇનપુટ ઓપન-સર્કિટેડ હોય ત્યારે રિવર્સ વોલ્ટેજ ટ્રાન્સફર રેશિયો
h ₂₁ (h_f)	આઉટપુટ શોર્ટ-સર્કિટેડ હોય ત્યારે ફોરવર્ડ કરંટ ટ્રાન્સફર રેશિયો
h ₂₂ (h_0)	ઇનપુટ ઓપન-સર્કિટેડ હોય ત્યારે આઉટપુટ એડમિટન્સ

મેમરી ટ્રીક: "IRFO પેરામીટર્સ" (Input impedance, Reverse transfer, Forward transfer, Output admittance)

પ્રશ્ન 3(બ) [4 ગુણ]

CE એમ્પ્લિફાયર માટે વોલ્ટેજ ગેઇન Av, કરંટ ગેઇન Ai અને પાવર ગેઇન Ap સમજાવો

જવાબ:

કોષ્ટક: CE એમ્પ્લિફાયર માટે ગેઇન એક્સપ્રેશન્સ

ગેઇન પ્રકાર	એક્સપ્રેશન	h-પેરામીટર્સ સાથે સંબંધ
વોલ્ટેજ ગેઇન (Av)	V _o /V _i	$Av = -h_fe \times R_L / h_ie$
કરંટ ગેઇન (Ai)	l _o /l _i	Ai = h_fe / (1 + h_oe × R_L)
પાવર ગેઇન (Ap)	P _o /P _i	Ap = Av × Ai = (વોલ્ટેજ ગેઇન × કરંટ ગેઇન)

- **વોલ્ટેજ ગેઇન**: CE એમ્પ્લિફાયર માટે સામાન્ય રીતે 500-1000
- **કરંટ ગેઇન**: ટ્રાન્ઝિસ્ટરના h_fe (β) જેટલું
- પાવર ગેઇન: વોલ્ટેજ ગેઇન અને કરંટ ગેઇનનો ગુણાકાર

મેમરી ટ્રીક: "VIP ગેઇન્સ" (Voltage, Input-output current, Power)

પ્રશ્ન 3(ક) [7 ગુણ]

ડાર્લિંગટન પેર, તેની વિશેષતાઓ અને ઉપયોગો સમજાવો

જવાબ

ડાર્લિંગટન પેરમાં બે ટ્રાન્ઝિસ્ટર હોય છે જે એક ઉચ્ચ-ગેઇન ટ્રાન્ઝિસ્ટર તરીકે કાર્ય કરે છે.

આકૃતિ:

કોષ્ટક: ડાર્લિંગટન પેરની વિશેષતાઓ

વિશેષતા	นต์า
કરંટ ગેઇન	ખૂબ ઊંચો (β ₁ × β ₂)
ઇનપુટ ઇમ્પીડન્સ	અત્યંત ઊંચી
વોલ્ટેજ ડ્રોપ	વધારે (≈1.4V) બે B-E જંક્શનને કારણે
સ્વિચિંગ સ્પીડ	સિંગલ ટ્રાન્ઝિસ્ટર કરતાં ધીમી
થર્મલ સ્ટેબિલિટી	સિંગલ ટ્રાન્ઝિસ્ટર કરતાં નબળી

- ઉપયોગો: પાવર એમ્પ્લિફાયર, મોટર ડ્રાઈવર, ટચ સ્વિય, સેન્સર
- **ફાયદા**: ખૂબ ઊંચો કરંટ ગેઇન, ઊંચી ઇનપુટ ઇમ્પીડન્સ
- મર્યાદાઓ: ઊંચો સેચુરેશન વોલ્ટેજ, ધીમું સ્વિચિંગ

મેમરી ટ્રીક: "CHIPS એપ્લિકેશન" (Current amplification, High impedance, Increased gain, Power handling, Slower switching)

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

LDR ના ઉપયોગની ચર્ચા કરો.

જવાબ:

Light Dependent Resistor (LDR) એક ફોટોરેસિસ્ટર છે જેનો રેસિસ્ટન્સ પ્રકાશની તીવ્રતા વધવાની સાથે ઘટે છે.

કોષ્ટક: LDR ના ઉપયોગો

ઉપયોગ	કાર્ય સિદ્ધાંત
ઓટોમેટિક સ્ટ્રીટ લાઈટ્સ	જ્યારે એમ્બિયન્ટ લાઈટ લેવલ ઘટે ત્યારે લાઈટ ચાલુ કરે છે
કેમેરા એક્સપોઝર કંટ્રોલ	પ્રકાશની તીવ્રતાના આધારે એપર્ચર/શટર એડજસ્ટ કરે છે
લાઈટ બીમ અલાર્મ	જ્યારે પ્રકાશનો બીમ અવરોધિત થાય ત્યારે અલાર્મ ટ્રિગર કરે છે
સોલર ટ્રેકર	સોલર પેનલને મહત્તમ સૂર્યપ્રકાશ તરફ ઓરિએન્ટ કરવામાં મદદ કરે છે
ઓટોમેટિક બ્રાઈટનેસ કંટ્રોલ	એમ્બિયન્ટ લાઈટના આધારે ડિસ્પ્લે બ્રાઈટનેસ એડજસ્ટ કરે છે

મેમરી ટ્રીક: "CASAL ઉપયોગો" (Camera, Alarm, Street light, Automatic control, Light measurement)

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

ક્લિપર અને ક્લેમ્પરની સરખામણી

જવાબ:

કોષ્ટક: ક્લિપર અને ક્લેમ્પર વચ્ચેની સરખામણી

પેરામીટર	ક્લિપર	કલેમ્પર
કાર્ય	સિગ્નલની એમ્પ્લિટ્યુડ મર્યાદિત/ક્લિપ કરે છે	સિગ્નલનું DC લેવલ શિફ્ટ કરે છે
આઉટપુટ	થ્રેશોલ્ડથી બહારના ભાગો દૂર કરે છે	DC કોમ્પોનન્ટ ઉમેરે છે
કોમ્પોનન્ટ	ડાયોડ + રેસિસ્ટર	ડાયોડ + કેપેસિટર + રેસિસ્ટર
વેવ શેપ	વેવ શેપ બદલે છે	વેવ શેપ જાળવે છે
ઉપયોગો	નોઈઝ રિમૂવલ, વેવ શેપિંગ	TV સિગ્નલ પ્રોસેસિંગ, DC રિસ્ટોરેશન

મેમરી ટ્રીક: "CLIPS vs CLAMPS" (Cut Levels In Peak Signal vs Change Level And Maintain Peak Shape)

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

CE એમ્પ્લિફાયર માટે h-પેરામીટર સર્કિટનું વર્ણન કરો.

જવાબ:

h-પેરામીટર્સ CE એમ્પ્લિફાયર પરફોર્મન્સ વિશ્લેષણની સરળ રીત પ્રદાન કરે છે.

આકૃતિ:

કોષ્ટક: CE કોન્ફિગરેશન માટે h-પેરામીટર્સ

પેરામીટર	સિમ્બોલ	ટિપિકલ વેલ્યુ	ફિઝિકલ સિગ્નિફિકન્સ
ઇનપુટ ઇમ્પીડન્સ	h_ie	1-2 kΩ	બેઝ-એમિટર ઇનપુટ ઇમ્પીડન્સ
રિવર્સ વોલ્ટેજ રેશિયો	h_re	10-4	આઉટપુટથી ઇનપુટ તરફ ફીડબેક
ફોરવર્ડ કરંટ ગેઇન	h_fe	50-300	કરંટ ગેઇન (β)
આઉટપુટ એડમિટન્સ	h_oe	10 ⁻⁶ S	આઉટપુટ કન્ડક્ટન્સ

• **સર્કિટ એનાલિસિસ**: વોલ્ટેજ ગેઇન, કરંટ ગેઇન, ઇનપુટ/આઉટપુટ ઇમ્પીડન્સની ગણતરી માટે h-પેરામીટર્સનો ઉપયોગ

- **ઇક્વિવેલન્ટ સર્કિટ**: h-પેરામીટર્સને ટુ-પોર્ટ નેટવર્ક રેપ્રેઝન્ટેશનમાં સંયોજિત કરે છે
- કાયદો: જટિલ ટ્રાન્ઝિસ્ટર વર્તનને લિનિયર પેરામીટર્સમાં સરળ બનાવે છે

મેમરી ટ્રીક: "FIRO પેરામીટર્સ" (Forward gain, Input impedance, Reverse feedback, Output admittance)

પ્રશ્ન 4(અ) [3 ગુણ]

ડાર્લિંગટન જોડી પર ટૂંકી નોંધ લખો.

જવાબ:

ડાર્લિંગટન જોડી બે ટ્રાન્ઝિસ્ટરને સંયોજિત કરીને સુપર-હાઈ ગેઇન ટ્રાન્ઝિસ્ટર બનાવે છે.

आङ्गति:

- **કોન્ફિગરેશન**: બે ટ્રાન્ઝિસ્ટર જેમાં પ્રથમ ટ્રાન્ઝિસ્ટરનો એમિટર બીજા ટ્રાન્ઝિસ્ટરના બેઝને ડ્રાઇવ કરે છે
- **કુલ ગેઇન**: β₁ × β₂ (વ્યક્તિગત ટ્રાન્ઝિસ્ટર ગેઇનનો ગુણાકાર)
- **ઇનપુટ ઇમ્પીડન્સ**: અત્યંત ઊંચી (β₂ × R_e1)

મેમરી ટ્રીક: "HIS ગુણધર્મો" (High gain, Impedance boost, Sandwich configuration)

પ્રશ્ન 4(બ) [4 ગુણ]

ઝેનર ડાયોડને વોલ્ટેજ રેગ્યુલેટર તરીકે સમજાવો.

જવાબ:

ઝેનર ડાયોડ રિવર્સ બ્રેકડાઉનમાં ઓપરેટ થાય ત્યારે સ્થિર વોલ્ટેજ રેફરન્સ પ્રદાન કરે છે.

કોષ્ટક: ઝેનર વોલ્ટેજ રેગ્યુલેટર

પેરામીટર	વર્ણન
સિદ્ધાંત	રિવર્સ બ્રેકડાઉન રીજિયનમાં સ્થિર વોલ્ટેજ જાળવે છે
સીરીઝ રેસિસ્ટર (Rs)	કરંટ મર્યાદિત કરે છે અને વધારાનો વોલ્ટેજ ડ્રોપ કરે છે
લોડ રેસિસ્ટર (RL)	પાવર લેતા સર્કિટનું પ્રતિનિધિત્વ કરે છે
રેગ્યુલેશન	ઇનપુટ વોલ્ટેજની વધઘટ છતાં આઉટપુટ વોલ્ટેજ સ્થિર રાખે છે

- **કાર્યપદ્ધતિ**: ઝેનર બ્રેકડાઉન રીજિયનમાં કાર્ય કરે છે, સ્થિર વોલ્ટેજ જાળવે છે
- મર્યાદા: પાવર ડિસિપેશન ક્ષમતા મહત્તમ કરંટને મર્યાદિત કરે છે

મેમરી ટ્રીક: "ZEBRA" (Zener Effect Breakdown Regulates Accurately)

પ્રશ્ન 4(ક) [7 ગુણ]

ઓપ્ટોકપલર ને ફાયદા અને ગેરફાયદા સાથે સમજાવો.

જવાબ:

ઓપ્ટોકપલર (ઓપ્ટોઆઇસોલેટર તરીકે પણ ઓળખાય છે) આઇસોલેટેડ સર્કિટ વચ્ચે સિગ્નલ ટ્રાન્સફર કરવા માટે પ્રકાશનો ઉપયોગ કરે છે.

કોષ્ટક: ઓપ્ટોકપલરના ફાયદા અને ગેરફાયદા

इायहा	ગેરફાયદા
સંપૂર્ણ ઇલેક્ટ્રિકલ આઇસોલેશન	અપેક્ષાકૃત ધીમો રિસ્પોન્સ ટાઇમ
ઉચ્ચ નોઇઝ ઇમ્યુનિટી	મર્યાદિત બેન્ડવિડ્થ
ગ્રાઉન્ડ લૂપ્સ નથી	તાપમાન સંવેદનશીલ
ઉચ્ચ વોલ્ટેજ આઇસોલેશન	એજિંગ ઇફેક્ટ્સ
ટ્રાન્ઝિઅન્ટ્સ સામે સુરક્ષા	LED ડ્રાઇવ કરવા માટે કરંટની જરૂર પડે છે

- **કાર્યપદ્ધતિ**: ઇનપુટ સિગ્નલ LED ને ડ્રાઇવ કરે છે, જે પ્રકાશ ઉત્સર્જિત કરે છે અને ફોટોડિટેક્ટર દ્વારા શોધાય છે
- ઉપયોગો: મેડિકલ ઇક્વિપમેન્ટ, ઇન્ડસ્ટ્રિયલ કંટ્રોલ, પાવર સપ્લાય, સિગ્નલ આઇસોલેશન
- પ્રકારો: ફોટોરેસિસ્ટર, ફોટોડાયોડ, ફોટોટ્રાન્ઝિસ્ટર, ફોટો-SCR આધારિત

મેમરી ટ્રીક: "LIGHT ટ્રાન્સફર" (Linked Isolated Galvanic-free High-voltage Transfer)

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

હાફ વેવ વોલ્ટેજ ડબલર દોરો.

જવાબ:

હાફ-વેવ વોલ્ટેજ ડબલર ડાયોડ અને કેપેસિટરનો ઉપયોગ કરીને ઇનપુટ પીક વોલ્ટેજના લગભગ બમણા DC આઉટપુટ ઉત્પન્ન કરે છે.

• ક્રોમ્પોનન્ટ્સ: બે ડાયોડ અને બે કેપેસિટર

• આઉટપુટ: ઇનપુટ પીક વોલ્ટેજના લગભગ બમણા

મેમરી ટ્રીક: "DC2" (Doubles input using Capacitors and 2 Diodes)

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

OLED નું કાર્ય અને ઉપયોગો સમજાવો.

જવાબ:

ઓર્ગેનિક લાઇટ એમિટિંગ ડાયોડ (OLED) ઓર્ગેનિક કોમ્પાઉન્ડનો ઉપયોગ કરે છે જે તેમાંથી કરંટ પસાર થાય ત્યારે પ્રકાશ ઉત્સર્જિત કરે છે.

આકૃતિ:

કોષ્ટક: OLED કાર્ય અને ઉપયોગો

પાસું	વર્ણન
કાર્યપદ્ધતિ	ઓર્ગેનિક લેયરમાં ઇલેક્ટ્રોન-હોલ રિકોમ્બિનેશન પ્રકાશ ઉત્પન્ન કરે છે
કાર્યક્ષમતા	ઉચ્ચ કાર્યક્ષમતા, ઓછા પાવરનો વપરાશ
વ્યૂઇંગ એન્ગલ	ઉત્તમ (લગભગ 180°)
ઉપયોગો	સ્માર્ટફોન, ટીવી, વેરેબલ ડિવાઇસ, લાઇટિંગ
ફાયદા	પાતળી, ફ્લેક્સિબલ, વધુ સારું કોન્ટ્રાસ્ટ, ઝડપી રિસ્પોન્સ

મેમરી ટ્રીક: "VIEWS ટેકનોલોજી" (Vibrant colors, Incredible contrast, Excellent angle, Wide application, Self-emitting)

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

સોલર બેટરી ચાર્જર સર્કિટનું કાર્ય સમજાવો.

જવાબ:

સોલર બેટરી યાર્જર સૌર ઊર્જાને બેટરી ચાર્જ કરવા માટે ઇલેક્ટ્રિકલ ઊર્જામાં રૂપાંતરિત કરે છે.

કોષ્ટક: કોમ્પોનન્ટ્સ અને તેમના કાર્યો

કોમ્પોનન્ટ	รเช้
સોલર પેનલ	સૂર્યપ્રકાશને DC ઇલેક્ટ્રિસિટીમાં રૂપાંતરિત કરે છે
ચાર્જ કંટ્રોલર	ઓવરચાર્જિંગ અને ડીપ ડિસ્ચાર્જ અટકાવે છે
વોલ્ટેજ રેગ્યુલેટર	યોગ્ય યાર્જિંગ લેવલ પર વોલ્ટેજ સ્થિર કરે છે
બેટરી	ઇલેક્ટ્રિકલ ઊર્જા સંગ્રહિત કરે છે
ઇન્ડિકેટર સર્કિટ	ચાર્જિંગ સ્ટેટસ અને બેટરી લેવલ દર્શાવે છે

- કાર્ય સિદ્ધાંત: ફોટોવોલ્ટેઇક ઇફેક્ટ સૂર્યપ્રકાશને ઇલેક્ટ્રિસિટીમાં રૂપાંતરિત કરે છે
- રેગ્યુલેશન: વોલ્ટેજ/કરંટ રેગ્યુલેશન દ્વારા ઓવરચાર્જિંગ અટકાવે છે
- સુરક્ષા: રાત્રે બેટરી ડિસ્ચાર્જ થતી અટકાવવા માટે રિવર્સ કરંટ પ્રોટેક્શન સામેલ છે
- પ્રકારો: PWM (પલ્સ વિડ્થ મોક્યુલેશન) અને MPPT (મેક્સિમમ પાવર પોઇન્ટ ટ્રેકિંગ)

મેમરી ટ્રીક: "SCORE સિસ્ટમ" (Solar Conversion, Overcharge protection, Regulation, Energy storage)

પ્રશ્ન 5(અ) [3 ગુણ]

રેગ્યુલેટેડ પાવર સપ્લાયનો બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

રેગ્યુલેટેડ પાવર સપ્લાય ઇનપુટ અથવા લોડમાં ફેરફાર છતાં સ્થિર DC આઉટપુટ વોલ્ટેજ પ્રદાન કરે છે.

आहृति:

- ક્રોમ્પોનન્ટ્સ: ટ્રાન્સફોર્મર, રેક્ટિફાયર, ફિલ્ટર, વોલ્ટેજ રેગ્યુલેટર
- કાર્ચ: લોડ ચેન્જ છતાં AC ને સ્થિર DC માં રૂપાંતરિત કરે છે

મેમરી ટ્રીક: "TRFO બ્લોક્સ" (Transformer, Rectifier, Filter, Output regulator)

પ્રશ્ન 5(બ) [4 ગુણ]

ટ્રાન્ઝિસ્ટર શંટ વોલ્ટેજ રેગ્યુલેટરનું વર્ણન કરો.

જવાબ:

ટ્રાન્ઝિસ્ટર શંટ રેગ્યુલેટર લોડની સમાંતર ટ્રાન્ઝિસ્ટરમાંથી વધારાના કરંટને ડાઇવર્ટ કરીને સ્થિર આઉટપુટ વોલ્ટેજ જાળવે છે.

આકૃતિ:

કોષ્ટક: ટ્રાન્ઝિસ્ટર શંટ રેગ્યુલેટર

કોમ્પોનન્ટ	รเข้
ઝેનર	રેફરન્સ વોલ્ટેજ પ્રદાન કરે છે
ટ્રાન્ઝિસ્ટર	વદ્યારાના કરંટને શંટ કરે છે
સીરીઝ રેસિસ્ટર (Rs)	વદ્યારાનો વોલ્ટેજ ડ્રોપ કરે છે
લોડ રેસિસ્ટર (RL)	પાવર લેતા સર્કિટનું પ્રતિનિધિત્વ કરે છે

- **કાર્યપદ્ધતિ**: જ્યારે આઉટપુટ વધવાનો પ્રયાસ કરે ત્યારે ટ્રાન્ઝિસ્ટર વધુ કન્ડક્ટ કરે છે
- ફાયદો: સારા રેગ્યુલેશન સાથે સરળ સર્કિટ

મેમરી ટ્રીક: "ZEST સર્કિટ" (Zener reference, Excess current, Shunt transistor, Tension-free output)

પ્રશ્ન 5(ક) [7 ગુણ]

SMPS બ્લોક ડાયાગ્રામ દોરો અને તેના ફાયદા ગેરફાયદા સાથે સમજાવો.

જવાબ:

સ્વિચ્ડ મોડ પાવર સપ્લાય (SMPS) ઉચ્ચ કાર્યક્ષમતા માટે સ્વિચિંગ રેગ્યુલેશનનો ઉપયોગ કરે છે.

આકૃતિ:

કોષ્ટક: SMPS ના ફાયદા અને ગેરફાયદા

ફાયદા	ગેરફાયદા
ઉચ્ચ કાર્યક્ષમતા (80-95%)	જટિલ સર્કિટ ડિઝાઇન
નાનું કદ અને હળવા વજન	ઉચ્ચ-આવૃત્તિ નોઇઝ ઉત્પન્ન કરે છે
વિશાળ ઇનપુટ વોલ્ટેજ રેન્જ	EMI/RFI ઇન્ટરફ્રેરન્સ
સાટું રેગ્યુલેશન	ઓછા પાવર માટે ઊંચી કિંમત
ઓછી ગરમી ઉત્પાદન	મુશ્કેલ ટ્રબલશૂટિંગ

- કાર્ય સિદ્ધાંત: ઉચ્ચ આવૃત્તિ પર પાવરને ઝડપથી ચાલુ/બંધ કરે છે
- કદ ઘટાડો: ઊંચી સ્વિચિંગ આવૃત્તિ નાના ટ્રાન્સફોર્મરની મંજૂરી આપે છે
- **ઉપયોગો**: કોમ્પ્યુટર, ટીવી, મોબાઇલ ચાર્જર, LED ડ્રાઇવર

મેમરી ટ્રીક: "SWEEP ફાયદા" (Small size, Widerange input, Efficient, Economical, Precise regulation)

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

ત્રણ ટર્મિનલ IC 7812 નો ઉપયોગ કરીને વોલ્ટેજ રેગ્યુલેટર દોરો.

જવાબ:

ત્રણ ટર્મિનલ IC 7812 ફિક્સ્ડ +12V રેગ્યુલેટેડ આઉટપુટ વોલ્ટેજ પ્રદાન કરે છે.

+----+ GND

• **કોમ્પોનન્ટ્સ**: 7812 રેગ્યુલેટર IC અને ફિલ્ટર કેપેસિટર

• **પિન કોન્ફિગરેશન**: ઇનપુટ, ગ્રાઉન્ડ, આઉટપુટ

• વિશેષતાઓ: આંતરિક કરંટ લિમિટિંગ અને થર્મલ શટડાઉન

મેમરી ટ્રીક: "IGO પિન્સ" (Input, Ground, Output)

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

ટ્રાન્ઝિસ્ટર સીરીઝ વોલ્ટેજ રેગ્યુલેટરનું વર્ણન કરો

જવાબ:

ટ્રાન્ઝિસ્ટર સીરીઝ રેગ્યુલેટર સીરીઝ ટ્રાન્ઝિસ્ટરની કન્ડક્ટિવિટી બદલીને આઉટપુટ વોલ્ટેજને નિયંત્રિત કરે છે.

આકૃતિ:

કોષ્ટક: સીરીઝ વોલ્ટેજ રેગ્યુલેટરની વિશેષતાઓ

વિશેષતા	นย์า
કંટ્રોલ એલિમેન્ટ	ટ્રાન્ઝિસ્ટર સીરીઝમાં વેરિએબલ રેસિસ્ટર તરીકે કાર્ય કરે છે
રેફરન્સ	ઝેનર ડાયોડ સ્થિર રેફરન્સ વોલ્ટેજ પ્રદાન કરે છે
રેગ્યુલેશન	ફીડબેક ટ્રાન્ઝિસ્ટર કન્ડક્ટિવિટી એડજસ્ટ કરે છે
કાર્યક્ષમતા	ઉચ્ચ કરંટ લોડ માટે શંટ રેગ્યુલેટર કરતાં વધુ સારી

- **કાર્ય સિદ્ધાંત**: સ્થિર આઉટપુટ જાળવવા માટે ટ્રાન્ઝિસ્ટર કન્ડક્ટિવિટી બદલાય છે
- ફાયદો: ઉચ્ચ કરંટ માટે શંટ રેગ્યુલેટર કરતાં વધુ કાર્યક્ષમ

મેમરી ટ્રીક: "CERT સર્કિટ" (Control transistor, Efficient design, Reference voltage, Transistor in series)

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

UPS બ્લોક ડાયાગ્રામ દોરો અને તેના ફાયદા ગેરફાયદા સાથે સમજાવો.

જવાબ:

અનઇન્ટરપ્ટિબલ પાવર સપ્લાય (UPS) મુખ્ય પાવર સપ્લાય ફેઇલ થાય ત્યારે ઇમરજન્સી પાવર પ્રદાન કરે છે.

आકृति:

કોષ્ટક: UPS ના ફાયદા અને ગેરફાયદા

ફાયદા	ગેરફાયદા
બેકઅપ પાવર પ્રદાન કરે છે	મર્યાદિત બેકઅપ સમય
વોલ્ટેજ ફ્લક્યુએશનથી બચાવે છે	નિયમિત બેટરી મેઇન્ટેનન્સ
સર્જ પ્રોટેક્શન	પ્રારંભિક ઊંચી કિંમત
સરળ પાવર ટ્રાન્ઝિશન	ઓપરેશન દરમિયાન ઘોંઘાટ
પાવર કન્ડિશનિંગ	સ્ટેન્ડબાયમાં ઓછી કાર્યક્ષમતા

- પ્રકારો: ઓફલાઇન/સ્ટેન્ડબાય, લાઇન-ઇન્ટરેક્ટિવ, ઓનલાઇન/ડબલ-કન્વર્ઝન
- ઉપયોગો: કોમ્પ્યુટર, મેડિકલ ઇક્વિપમેન્ટ, ડેટા સેન્ટર, ટેલિકોમ્યુનિકેશન્સ
- **કાર્ચપદ્ધતિ**: સામાન્ય રીતે બેટરી ચાર્જ કરતી વખતે મુખ્ય પાવર પસાર કરે છે; પાવર જતા રહે ત્યારે બેટરી પાવર પર સ્વિય કરે છે

મેમરી ટ્રીક: "POWER બેકઅપ" (Protection from Outages, Waveform conditioning, Emission-free, Reliability boost)