K-Mean's clustering! It is a method of vector Luantisation, oxiginally From Signal Processing, that aims to Partition n observations into K-clusters in which each Observation belong to the cluster with the nearst mean, serving as the Prototipe of the Complexity for Optimal Solution to K-means clustering Problem for Observations in a dimension If K & d are fixed O(ndK+1), where n is no of entities KMedioids The K-mediads or Partitioning around medouds (PAM) algorithm is a clustering technique. It chose Points that can be made centers Unlike K-means, which may not Select duty Points ...

	Paga No. Data
	Complexity
Today.	The cost function is o Cn2 K2), which can be
	beduced to o (n2), by Spitting the Change
	Al prithms:
	JX-Means
	Initialize K-cluster centers by Selecting Points
	Therate through to Point
CONTROL OF SHARE	Carculate distance of each Point to The Center
N. Carlotte	Assign The Paint to Callster closest to it
the winter of a	Calculate Mean of each cluster
1 20 0	Display final Cluster
,	1)151714) M(a) COSTE
Vaje.	
	K-Medoids
74.	
1 - **	Initialize fredity select Kot The modula Points
	as the medoids to minimize the Cost
	요즘 가게 있다. 그렇게 되었다. 그는 당시에는 열차하다 중요하는 이번 생활하면 바로의 환경을 다 되었다.
2	Assign each Point to the closest medoid
3	While the cost of the Configuration decreases
-1	For each medoid m, and for each hon-medoid
H .	duta Point.
1	

	Pece No. Date
2	Consider the Swap of m & o. and compute
	the Cool Classic
3	If the cost change is the current best remember
	This m and O combination.
4	Perform the best swap of Mbist & Obest, it
No.	it decrease the Cost Function otherwise, the
	algorithm terminate.
	Conclusion: Hence we understood and implemented
1	Il-means and K-medoids Clustering technique's.
1.	
-	