CS166 WI24: Homework 6 (Due Friday March 11 11:59pm)

***** Problem 1: Fourier Transform of Factors

Recall the periodic states defined for fixed *N* and some *r* that divides *N*:

$$|\phi_r\rangle := \sqrt{\frac{r}{N}} \sum_{k=0}^{\frac{N}{r}-1} |kr\rangle. \tag{1}$$

In this problem we will prove that

$$QFT_N |\phi_r\rangle = |\phi_{N/r}\rangle. \tag{2}$$

Instead of proving it generally, we will look at the case where N=21 and r=3 that we studied in class.

- 1. Write the state $|\phi_3\rangle$.
- 2. Apply QFT_{21} to $|\phi_3\rangle$. We know the solution will be $|\phi_7\rangle$, but for this problem, write the state as a sum of states with Fourier amplitudes. Your solution should be in the form

$$\frac{1}{?} \sum_{y} \sum_{k} \omega^{?} |y\rangle. \tag{3}$$

- 3. There are two cases to analyze. In one case, the power of ω will be a multiple of 7. What is the amplitude for this case?
- 4. The other case is when the previous statement is NOT true. What happens in this case? Pick some *y* and draw all the values that appear with this *y* in the complex plane.

***** Problem 2: QFT Counter

Suppose $x \in \{0, ..., 15\}$ is a four bit string. Let $x_1x_2x_3x_4$ be the binary representation of the integer x.

- 1. Express the state resulting from applying QFT_N to the state $|x\rangle$.
- 2. Now suppose that $y \in \{0, ..., N-1\}$. Let $y_1 ... y_n$ be the binary representation of the integer y. Express the output of the circuit below as a function of y and the N-th root of unity ω . Here, we are using the gate

$$P_{a} = \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^{a}} \end{bmatrix}.$$

$$|y_{1}\rangle - P_{1} - P_{2}|$$

$$|y_{2}\rangle - P_{2}| - P_{3}|$$

$$|y_{4}\rangle - P_{4}| - P_{4}|$$

$$|y_{4}\rangle - P_{4}|$$

3. Put your answer from the first two parts of this problem to express the output of the the following circuit as a function of *x*.

4. Finally, express the output of the following circuit. The inverse of the QFT maps from the Fourier amplitudes to the standard basis amplitudes.

Problem 3: Period Finding

Consider the Period Finding algorithm for the function $f: \{0, ..., N-1\} \rightarrow \{0, ..., M-1\}$, where $f(x) = 3^x \mod M$. Here, M = 14 and N = 16.

- 1. What is the state of the algorithm after measuring the second register of qubits? That is, before applying the QFT to the first register.
- 2. Given the state you wrote out above, what are the possible measurement outcomes if we measure the second register? Label the measurement outcomes 1 to 6, from smallest to largest integer.
- 3. Suppose you measure the second register and observe outcome number 4 from above (this is the fourth largest outcome, not the measurement $|3\rangle$). What is the state after measurement?
- 4. Once the second register is measured, we can ignore it and focus on the first register. If we write the first register in the format

$$\frac{1}{\sqrt{s}} \sum_{i=0}^{s-1} |jr + l\rangle \tag{5}$$

what is r, and l?

Problem 4: Shor's Algorithm (Code)

In this problem, you implement Shor's algorithm to factor 15. I want you to write the code for the quantum portion of the algorithm, and then solve the remaining problems.

In Edstem I will post template code for applying the function 2^s mode 15. When you apply your QFT, do not use a package and hardcode the gates yourself. You can use the gate

circ.cp(lambda, a, b)

to apply a controlled version of

$$P(\lambda) = e^{i\lambda}. (6)$$

For this gate, the order of the control and target do not matter.

Use 4 classical bits to store your measurement results. The measurement result of the second register does not matter, as the goal is just to create a periodic state. Thus, you should measure the second register first and store this in your classical bits, then overwrite the result when you measure the first register.

- 1. What are the possible outcomes from measuring first register and which outcomes allow you to recover the period of 2^s mod 15?
- 2. After determining the period of 2^s mod 15, then how would you use that information to factor 15?