Quiz 5 Solutions

1. Question 1(a): 5 points

Refer to the quiz sheet for the problem statement.

• Solution:

Find the dual LP problem.

Version A

Maximize
$$3w_1 + 5w_2$$

Subject to $w_1 \le 4$
 $2w_2 \le 12$
 $3w_1 + 2w_2 \le 18$
 $w_1, w_2 \ge 0$

Make the following observations.

- In the dual LP, the second and third slack variables are zero, so we have $w_2 = 6$ and $3w_1 + 2w_2 = 18$.
- All slack variables in the primal are zero. This gives us no new information.
- The optimal value is 36 in the primal. Using the strong duality theorem, we know $c^T x = b^T y$ so the value to the optimal solution in the dual must also be 36.

Given the 2-dimensional problem, plotting the dual LP we can see that the optimal solution must occur at (2,6) which lies on $w_2 = 6$ and $3w_1 + 2w_2 = 18$.

Version B

Done similarly.

2. Question 1(b): 4 points

Follow the algorithm to the dual simplex method.

3. Question 1(c): 1 point

Follow the algorithm to the dual simplex method.