Théorème Analyse

 $\begin{array}{l} \underline{\text{Intégrale généralisée}:} \text{ Soient } f\colon I \to \mathbb{R} \text{ ou } \mathbb{C} \text{ continue et } F \text{ une primitive de } f \text{ sur } I. \text{ On dit que } \\ \text{l'intégrale impropre } \int_I f(t) dt \ \underline{\text{converge}} \text{ si } F \text{ admet des limites finies en } \alpha^+ \text{et } \beta^-. \text{ On pose alors } \\ \int_I f(t) dt = \lim_{x \to \beta^-} F(x) - \lim_{x \to \alpha^+} F(x). \text{ Sinon on dit que l'intégrale diverge.} \\ \end{array}$

Intégrales de Riemann :

- 1. Soit $a>0, \lambda\in\mathbb{R}$, l'intégrale $\int_a^{+\infty}\frac{1}{t^{\lambda}}dt$ converge ssi $\lambda>1$.
- 2. Soit $a>0, \lambda\in\mathbb{R}$, l'intégrale $\int_0^a \frac{1}{t^\lambda}dt$ converge ssi $\lambda<1$.

<u>Linéarité:</u>

Soient $f,g:I\to\mathbb{R}$ ou \mathbb{C} continues. SI $\int_I f(t)dt$ et $\int_I g(t)dt$ convergent, alors $\exists \lambda,\mu\in\mathbb{C}$, $\int_I (\lambda f+\mu g)(t)dt$ converge.

Relation de Chasles:

Si $\int_{\alpha}^{\beta} f(t) dt$ converge, alors $\forall \gamma \in [\alpha; \beta], \int_{\alpha}^{\gamma} f(t) dt$ et $\int_{\gamma}^{\beta} f(t) dt$ convergent également.

Changement de variables :

Soit $\varphi: J \to I$ une bijection de classe \mathcal{C}^1 strictement croissante sur l'intervalle J d'extrémités

 $a=\inf(J)$ et $b=\sup(J)$. Alors les intégrales $\int_{\alpha}^{\beta}f(t)dt$ et $\int_{a}^{b}f(\varphi(u))\varphi'(u)du$ sont de même nature, et sont égales en cas de convergence.

Intégration par parties généralisées :

Soient $u,v:I\to\mathbb{R}$ ou \mathbb{C} de classe C^1 . Si l'intégrale $\int_{\alpha}^{\beta}u(t)v'(t)dt$ converge et si la fonction uv admet des limites finies en α^+ et β^- , alors $\int_{\alpha}^{\beta}u'(t)v(t)dt$ converge, et on a :

$$\int_{\alpha}^{\beta} u'(t)v(t)dt = [uv]_{\alpha}^{\beta} - \int_{\alpha}^{\beta} u(t)v'(t)dt$$

Fonction intégrable :

Soit $f: I \to \mathbb{R}$ ou \mathbb{C} continue. On dit que f est intégrable sur I si $\int_I |f(t)| dt$ converge.

Intégrabilité sur un segment inclus dans celui de départ :

Soient $f: I \to \mathbb{R}$ ou \mathbb{C} continue et $J \subset I$ un intervalle de \mathbb{R} .

- i. Si f est intégrable sur I alors elle l'est aussi sur J.
- ii. Si f n'est pas intégrable sur I, alors elle ne l'est pas non plus sur I.

Théorème de comparaison :

Soient $f, g: I \to \mathbb{R}$ continues et à valeurs positives telles que $f \le g$

- i. Si g est intégrable sur I, alors f l'est également.
- ii. Si f n'est pas intégrable sur I, alors g non plus.

Intégrabilité des fonctions dominées :

Soient $a \in \mathbb{R}, b \in]a; +\infty[\cup \{+\infty\}.$ Soient $f, g : [a, b[\rightarrow \mathbb{R} \text{ ou } \mathbb{C} \text{ continues telles que } f(x) =_{x \to b} O(g(x)).$

- i. Si g est intégrable sur I alors f l'est également.
- ii. Si f n'est pas intégrable sur I, alors il en va de même pour g.

Intégrabilité des fonctions équivalentes :

Soient $a \in \mathbb{R}, b \in]a; +\infty[\cup \{+\infty\}.$ Soient $f,g:[a,b[\to \mathbb{R} \text{ ou } \mathbb{C} \text{ continues telles que } f(x) \sim_{x \to b} g(x).$

Alors f intégrable sur $[a,b[\Leftrightarrow g \text{ intégrable sur } [a,b[$.

Linéarité de l'intégrabilité :

Soient $f,g:I\to\mathbb{R}$ ou \mathbb{C} continues. Si f et g sont intégrables sur I, alors $\forall \lambda,\mu\in\mathbb{C}$, la fonction $\lambda f+\mu g$ est intégrable sur I.

Inégalité de Cauchy-Schwarz:

Soient $f,g:I\to\mathbb{R}$ continues. Si f^2 et g^2 sont intégrables sur I, alors fg l'est aussi et :

$$\int_{I} |f(t)g(t)|dt \leq \sqrt{\int_{I} f^{2}(t)dt} \sqrt{\int_{I} g^{2}(t)dt}$$

Lien entre intégrabilité de f et convergence de $\int_{t} f(t)dt$

Soit $f: I \to \mathbb{R}$ ou \mathbb{C} . Si f est intégrable sur I, alors $\int_I f(t) dt$ converge, et :

$$\left| \int_{I} f(t)dt \right| \leq \int_{I} |f(t)|dt$$

Définition de l'absolue convergence :

Soit $f: I \to \mathbb{R}$ ou \mathbb{C} continue. On dit que l'intégrale $\int_I f(t) dt$ est absolument convergente si f est intégrable sur I. Si $\int_I f(t) dt$ converge mais pas absolument, on dit qu'elle est semi-convergente.

Intégrales de Bertrand :

Soient b > 1, $\lambda, \mu \in \mathbb{R}$,

la fonction $t\mapsto \frac{1}{t^{\lambda}(\ln t)^{\mu}}$ est intégrable sur $[b;+\infty[$ ssi $\lambda>1$ ou $(\lambda=1$ et $\mu>1)$