Azure Backup Cost Calculation

General Parameters

Parameter	Unit	Default	Description	
P_{veeam}	%	50%	Veeam Data Reduction (in percent subtracted from original volume)	
P_{azure}	%	0%	Azure Data Reduction (in percent subtracted from original volume)	
Δ_{daily}	%	3.0%	Daily change rate (average for all workloads)	
β_{veeam}	kB	1024 kB	Veeam blocksize (read at source)	
ψ_{worker}	MB/s	90 MB/s	Maximum throughput of a single Veeam worker (depends on worker VM size: 90, 180 or 270 MB/s)	
ψ_{stacc}	MB/s	3200 MB/s	Maximum throughput of a single Azure blob storage account (25 or 60 Gb/s ⇒ 3200 or 7680 MB/s)	

Azure Cost Parameters

These depend on chosen region, VM size, storage tier, reserved vs. pay-as-you-go, etc., and should be selectable from Azure cost tables. The given defaults are just examples from WestEurope region.

Parameter	Unit	Default	Description
D_{azure}	%	0%	Azure discount percentage
$C_{azure}^{storage}$	\$ per GB per month (hot RA-GRS payg) 0.04900		Azure blob storage (used as Veeam backup target) cost per GB per month
C_{azure}^{vault}	\$ per GB per month	(RA-GRS) 0.05696 \$	Azure backup vault (used as Azure backup target) cost per GB per month
C_{azure}^{vm}	\$ per hour	(Std_F4s_v2 payg) 0.22700 \$	Azure VM cost per hour
C_{azure}^{snap}	\$ per GB per month	0.13020 \$	Azure VM snapshot cost per GB per month
$C_{azure}^{backupsnap}$	\$ per GB per month 0.14500 \$		Azure backup snapshot cost per GB per month
C_{azure}^{put}	\$ per 10,000	(hot tier) 0.10800 \$	Cost of 10,000 Azure API <i>put</i> calls

Parameter Unit		Default	Description
$C_{azure}^{backup(small)}$ \$ per VM 5 \$ Monthly cost of Azure backup service per VM of provisioned size <		Monthly cost of Azure backup service per VM of provisioned size $<50~\mathrm{GB}$	
$C_{azure}^{backup(medium)}$	\$ per VM	10 \$	Monthly cost of Azure backup service per VM of provisioned size $\geq 50~\mathrm{GB}$ and $< 500~\mathrm{GB}$
$C_{azure}^{backup(addon)}$	\$ per VM per 500 GB	10 \$	Monthly add-on cost in steps of 500 GB for Azure backup service per VM of provisioned size ≥ 500 GB

All cost parameters need to be multiplied by $(1 - D_{azure})$ to get the discounted value, given that the provided discount applies to all Azure services.

Veeam Cost Parameters

Constant	Unit Default		Description			
D_{veeam}	%	30%	Veeam discount percentage			
C_{veeam}^{list}	\$ per VM per month	10.85 \$	VUL list price (= $1.302,00$ \$ per 10 VMs per year)			
$C_{veeam}^{real} = C_{veeam}^{list} \cdot (1 - D_{veeam})$	\$ per VM per month	7.60 \$	Real (i.e. discounted) VUL cost per VM per month			

Main Input variables

Variable	Unit	Description	Constraints
N_{vm}^{small}		Number of small VMs $< 50~\mathrm{GB}$	
N_{vm}^{medium}		Number of medium VMs ≥ 50 GB and < 500 GB	
N_{vm}^{large}		Number of large VMs ≥ 500 GB	
N_{vm}		Total number of VMs to be protected	$=N_{vm}^{small}+N_{vm}^{medium}+N_{vm}^{large}$
V_{vm}	GB	Average provisoned size of protected VMs	
U_{vm}	%	Average disk utilization of protected VMs	
T_{incr}	hours	Time window for incremental backups	
R_{days}	days	Retention	

Variable	Unit	Description	Constraints
N_{snaps}		Number of daily snapshots to be kept	must be ≥ 2
δ_{isfull}		Does first Azure native snapshot require full (used) size ?	1 = yes 0 = no

Calculation Formulas

General

Value			Formula		
Total provisioned source volume of workloads in TB (all VMs)	V_{prov}	=	$(N_{vm} \cdot V_{vm}) \div 1024$		
Total used source volume (average) of workloads in TB (all VMs)	V_{used}	=	$V_{prov} \cdot U_{vm}$		
Total snapshot volume in TB (if $\delta_{isfull}=0$)	V_{snaps}	=	$V_{used} \cdot \Delta_{daily} \cdot N_{snaps}$		
Total snapshot volume in TB (if $\delta_{isfull}=1$)	V_{snaps}	=	$V_{used} + \left(V_{used} \cdot \Delta_{daily} \cdot (N_{snaps} - 1) ight)$		
\implies Total snapshot volume in TB as function of δ_{isfull}	$V_{snaps}(\delta_{isfull})$	=	$\left(\left(V_{used} \cdot \Delta_{daily} \cdot N_{snaps} ight) \cdot \left(1 - \delta_{isfull} ight) ight) + \left(\left(V_{used} + \left(V_{used} \cdot \Delta_{daily} \cdot \left(N_{snaps} - 1 ight) ight) ight) \cdot \delta_{isfull} ight)$		

Azure Backup

Value			Formula
Volume of full backups in TB (all VMs)	V_{azure}^{full} =	=	$(1 - P_{azure}) \cdot V_{used}$
Volume of incremental backups in TB (all VMs)	V_{azure}^{incr} =	=	$V_{azure}^{full} \cdot \Delta_{daily}$
Total backup volume in TB for retention of \emph{r} days (no GFS, all VMs)	$V_{azure}^{total}(r)$ =	=	$V_{azure}^{full} + \left(V_{azure}^{incr} \cdot (r-1) ight)$
Monthly cost of Azure Backup service for all small VMs $<50~\mathrm{GB}$	C_{azure}^{small} =	=	$N_{vm}^{small} \cdot C_{azure}^{backup(small)}$
Monthly cost of Azure Backup service for all medium VMs ≥ 50 GB and < 500 GB	C_{azure}^{medium} =	=	$N_{vm}^{medium} \cdot C_{azure}^{backup(medium)}$
Monthly cost of Azure Backup service for all large VMs $\geq 500~\mathrm{GB}$	C_{azure}^{large} =	=	$N_{vm}^{large} \cdot C_{azure}^{backup(large)}$

Value			Formula
Total monthly cost of Azure Backup service for all VMs	$C_{azure}^{service}$	=	$C_{azure}^{small} + C_{azure}^{medium} + C_{azure}^{large}$
Monthly total cost of Azure Backup vault storage for all VMs with retention of r days	$C_{azurevault}^{total}(r)$	=	$V_{azure}^{total}(r) \cdot C_{azure}^{vault} \cdot 1024$
Monthly total cost of Azure Backup snapshots for all VMs	$C_{azure}^{snaptotal}(\delta_{isfull})$	=	$V_{snaps}(\delta_{isfull}) \cdot C_{azure}^{backupsnap} \cdot 1024$
⇒ Total monthly Azure Backup cost	$C_{azure}^{total}(r,\delta_{isfull})$	=	$C_{azure}^{service} + C_{azurevault}^{total}(r) + C_{azure}^{snaptotal}(\delta_{isfull})$

Veeam Backup

Value			Formula
Volume of full backups in TB (all VMs)	V_{veeam}^{full}	=	$(1 - P_{veeam}) \cdot V_{used}$
Volume of incremental backups in TB (all VMs)	$V_{vee am}^{incr}$	=	$V_{veeam}^{full} \cdot \Delta_{daily}$
Total backup volume in TB for retention of \emph{r} days (no GFS, all VMs)	$V_{veeam}^{total}(r)$	=	$V_{veeam}^{full} + \left(V_{veeam}^{incr} \cdot (r-1) ight)$
Throughput required for incremental backup in MB/s	Φ_{incr}	=	$\left(V_{veeam}^{incr}\cdot 1024^2 ight)\div \left(T_{incr}\cdot 3600 ight)$
Veeam workers required for incremental backup rounded up to full integer	$N_{workers}$	=	$\Phi_{incr} \div \psi_{worker}$
Estimated number of API $\it put$ calls within given $\it r$ days incrementals only	$A_{put}(r)$	=	$(r \cdot V_{veeam}^{incr} \cdot 1024^3) \div \beta_{veeam}$
Maximum number of Veeam workers per storage account rounded up to full integer, based on storage account limit given as ψ_{stacc}	$N_{maxworkers}(\psi_{stacc})$	=	$\psi_{stacc} \div \psi_{worker}$
Number of storage accounts required rounded up to full integer, based on storage account limit given as ψ_{stacc}	$N_{stacc}(\psi_{stacc})$	=	$\max\Bigl((\Phi_{incr} \div \psi_{stacc}), (N_{workers} \div N_{maxworkers})\Bigr)$