Questão 1

Ainda não respondida

A integral
$$\int_{\pi/2}^{\cdot\cdot} x \cos(x) \, dx$$
 é dada por

Vale 1,00 ponto(s).

Escolha uma:

$$\bigcirc -1 - \frac{\pi}{2}$$

$$\bigcirc -\frac{\pi}{2}$$

$$\bigcirc \frac{\pi}{2}$$

$$\bigcirc$$
 -1

$$\bigcirc -\pi - \frac{\pi}{2}$$

Questão 2

Ainda não respondida

A integral
$$\int_1^{\,\mathrm{e}} t \ln(t) \, dt$$
 é igual a

Vale 1,00 ponto(s).

Escolha uma:

$$\bigcirc \ \frac{1}{2} \bigg(\frac{e^2}{2} + 1 \bigg)$$

$$\bigcirc \frac{1}{4} (e^2 - 1)$$

$$\bigcirc \frac{1}{4} (e^2 + 1)$$

$$\bigcirc \frac{1}{2} (e^2 + 1)$$

$$\bigcirc \frac{1}{2} (e^2 - 1)$$

Questão 3

Ainda não respondida

A integral
$$\int_1^e \ln(x) dx$$
 é igual a

Vale 1,00 ponto(s).

Escolha uma:

$$\circ_1$$

$$\circ$$
 $-e$

Questão 4

A integral definida
$$\int_0^{5\ln(5)} x \mathrm{e}^{-x/5} dx$$
 vale

Questão 4

Ainda não respondida

A integral definida $\int_0^{5\ln(5)} x \mathrm{e}^{-x/5} dx$ vale

Vale 1,00 ponto(s).

Escolha uma:

- \circ 25 ln(5) 5
- \circ 20 5 ln(5).
- \circ 5 + 20 ln(5).
- \circ 20 ln(5).
- $0 20 + 5 \ln(5)$.

Questão **5**

Ainda não respondida

Vale 1,00 ponto(s).

Uma partícula se move com velocidade dada pela função $v(t)=te^{-t/2}$. Lembrando que a sua posição s(t) satisfaz s'(t)=v(t) e supondo que s(0)=0, determine a posição da partícula no instante $2\ln(2)$.

Escolha uma:

- $2 2 \ln(2)$
- $0 4 2 \ln(2)$.
- $04 + 2 \ln(2)$.
- $0 2 \ln(2) 4$
- $0 + 2 \ln(2)$

Questão 6

Ainda não respondida

Encontre a área da região delimitada pelo gráfico de $f(x)=x\mathrm{e}^{-x}$, $x\in[0,4]$, e pelo eixo $\mathcal{O}x$.

Vale 1,00 ponto(s).

Escolha uma:

- \circ 5e⁻⁴
- $0.1 5e^{-4}$
- $-1 + 5e^{-4}$
- \circ -5e⁻⁴
- \circ -5e⁻⁴ 1

Questão 7

Ainda não respondida

Vale 1,00 ponto(s).

Usando a substituição $t=\sqrt{x}$ e a fórmula de integração por

partes podemos calcular a integral $\int_0^1 \mathrm{e}^{\sqrt{x}} dx$. Seu valor é

Escolha uma:

Ainda não respondida

partes podemos calcular a integral $\int_0^1 \mathrm{e}^{\sqrt{x}} dx$. Seu valor é

Vale 1,00 ponto(s).

Escolha uma:

- \bigcirc 0
- \bigcirc -2
- O_{-1}
- $\bigcirc 2$
- $\bigcirc \sqrt{2}$

Questão 8

Ainda não respondida

A integral $\int_0^1 \arctan(x) dx$ é igual a

Vale 1,00 ponto(s).

Escolha uma:

$$\bigcirc \frac{\pi}{4} + \ln(2)$$

$$\bigcirc \frac{1}{2} \Big(\frac{\pi}{2} - \ln(2) \Big)$$

$$\bigcirc -rac{1}{2}\Big(rac{\pi}{2}+\ln(2)\Big)$$

$$\bigcirc \frac{\pi}{4} - \ln(2)$$

$$\bigcirc \frac{1}{2} \left(\frac{\pi}{2} + \ln(2) \right)$$

Questão 9

Ainda não respondida

Vale 1,00 ponto(s).

Sejam a e b números positivos quaisquer e considere a função

$$f(x) = b\sqrt{1-\left(rac{x}{a}
ight)^2}$$
 definida em $[-a,a]$. Podemos afirmar

que o volume do sólido obtido pela revolução de f em torno do eixo horizontal neste intervalo é dado por

Escolha uma:

$$\bigcirc \frac{4}{3}\pi a^2 b^2$$

$$\bigcirc \frac{4}{3}\pi ab$$

$$\bigcirc \frac{4}{3}\pi ba^2$$

$$\bigcirc \frac{4}{3}\pi ab^2$$

unenhum dos outros

Questão 10

Ainda não respondida

Vale 1,00 ponto(s).

Considere a região R delimitada pelo gráfico da função

$$f(x) = \sqrt{b^2 - \left(rac{b}{a}
ight)^2 x^2}$$
, o eixo $\mathcal{O}x$ e as retas $x = -a$ e

x=a, onde a>0, b>0, b
eq a. Chamemos de S o sólido obtido pela rotação da curva y=f(x) em torno do eixo $\mathcal{O}x$.

O volume de
$$S$$
 é $\frac{4}{3}\pi \Big(\frac{a}{b}\Big)^3$.

O volume de S pode ser calculado através da integral $\int_{-a}^{a}\pi[f(x)]^{2}dx$.

O sólido S é uma esfera.

A área A de R é a integral $\displaystyle\int_{-a}^a f(x) dx$.

Questão 11

Ainda não respondida

Vale 1,00 ponto(s).

Quando giramos o gráfico da função $f(x)=\sqrt{x}, x\in [0,3]$, em torno do eixo $\mathcal{O}x$, obtemos um sólido com formato de um projétil. O volume desse projétil é igual a

Escolha uma:

- $\bigcirc 23^{\frac{3}{2}}$
- $\bigcirc 2\sqrt{3}$
- $\bigcirc \frac{9\pi}{2}$
- $\bigcirc \ \frac{18\sqrt{3}}{5}$
- $\bigcirc 2\sqrt{3}\pi$

Questão 12

Ainda não respondida

O volume do sólido que se obtém pela rotação da região limitada por $x^2=y-2$, 2y-x-2=0 , x=0 e x=1 em torno do eixo x é dado por

Vale 1,00 ponto(s).

Escolha uma:

- $\bigcirc \frac{19\pi}{20}$
- $\frac{79\pi}{20}$