Bài 5. Giá trị lượng giác của một góc từ $0^{\rm 0}$ đến $180^{\rm 0}$

A. Lý thuyết

1. Giá trị lượng giác của một góc

Trong mặt phẳng tọa độ Oxy, nửa đường tròn tâm O, bán kính R=1 nằm phía trên trục hoành được gọi là nửa đường tròn đơn vị.

Cho trước một góc α , $0^{\circ} \leq \alpha \leq 180^{\circ}$. Khi đó, có duy nhất điểm $M(x_0; y_0)$ trên nửa đường tròn đơn vị để $xOM = \alpha$.

- Định nghĩa tỉ số lượng giác của một góc từ $0^{\rm o}$ đến $180^{\rm o}$

Với mỗi góc α (0° \leq α \leq 180°), gọi $M(x_0; y_0)$ là điểm trên nửa đường tròn đơn vị sao cho $xOM = \alpha$. Khi đó:

- $+\sin$ của góc α là tung độ y_0 của điểm M, được kí hiệu là \sin α ;
- + côsin của góc α là hoành độ x_0 của điểm M, được kí hiệu là cos α ;
- + Khi $\alpha \neq 90^\circ$ (hay $x_0 \neq 0$), tang của α là $\frac{y_0}{x_0}$, được kí hiệu là tan α ;
- + Khi $\alpha \neq 0^\circ$ và $\alpha \neq 180^\circ$ (hay $y_0 \neq 0$), côtang của α là $\frac{x_0}{y_0}$, được kí hiệu là cot α .
- Từ định nghĩa trên ta có:

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} (\alpha \neq 90^{\circ}); \cot \alpha = \frac{\cos \alpha}{\sin \alpha} (\alpha \neq 0^{\circ} \text{và } \alpha \neq 180^{\circ});$$
$$\tan \alpha = \frac{1}{\cot \alpha} (\alpha \notin \{0^{\circ}; 90^{\circ}; 180^{\circ}\})$$

- Bảng giá trị lượng giác (GTLG) của một số góc đặc biệt:

GTLG a	0°	30°	45°	60°	90°	180°
$\sin \alpha$	0	1/2	$\frac{\sqrt{2}}{2}$	<u>√3</u> 2	1	0
cosα	1	<u>√3</u> 2	$\frac{\sqrt{2}}{2}$	1 2	0	-1
tan a	0	<u>√3</u> 3	1	√3	П	0
cotα	II	√3	1	$\frac{\sqrt{3}}{3}$	0	II

Chú ý: Kí hiệu ∥ chỉ giá trị lượng giác tương ứng không xác định.

Ví dụ: Tìm các giá trị lượng giác của góc 120°.

Gọi M là điểm trên nửa đường tròn đơn vị sao cho $xOM = 120^{\circ}$. Gọi N, K tương ứng là hình chiếu vuông góc của M lên các trục Ox, Oy.

Do $xOM = 120^{\circ} \text{ và } xOK = 90^{\circ} \text{ nên } KOM = 30^{\circ} \text{ và } MON = 60^{\circ}.$

Từ bảng GTLG của một số góc đặc biệt:

Ta có:
$$\cos 60^{\circ} = \frac{1}{2} \text{ và } \cos 30^{\circ} = \frac{\sqrt{3}}{2}$$

Các tam giác MOK và MON là các tam giác vuông với cạnh huyền bằng 1

Suy ra ON = $\cos MON .OM = \cos 60^{\circ}.1 = \frac{1}{2} \text{ và OK} = \cos MOK .OM = <math>\cos 30^{\circ}.1 = \frac{1}{2} \text{ và OK} = \cos MOK .OM = \cos 30^{\circ}.1 = \frac{1}{2} \text{ và OK} = \frac{1}{$

$$\frac{\sqrt{3}}{2}$$

Mặt khác, do điểm M nằm bên trái trục tung nên $M\left(-\frac{1}{2};\frac{\sqrt{3}}{2}\right)$

Theo định nghĩa giá trị lượng giác ta có:

$$\sin 120^{\circ} = \frac{\sqrt{3}}{2}$$

$$\cos 120^{\circ} = -\frac{1}{2}$$

$$\tan 120^{\circ} = \frac{\sin 120^{\circ}}{\cos 120^{\circ}} = -\sqrt{3}$$

$$\cot 120^\circ = \frac{\cos 120^\circ}{\sin 120^\circ} = -\frac{1}{\sqrt{3}}.$$

Vậy sin
$$120^{\circ} = \frac{\sqrt{3}}{2}$$
; cos $120^{\circ} = -\frac{1}{2}$; tan $120^{\circ} = -\sqrt{3}$; cot $120^{\circ} = -\frac{1}{\sqrt{3}}$.

- Ta có thể dùng máy tính bỏ túi để tính giá trị gần đúng của các giá trị lượng giác của một góc.

Ví dụ:

Tính	Bấm phím	Kết quả	
sin48°50'40"	sin 4 8 5 0 4 0 =	$\sin 48^{\circ}50'40" \approx 0,7529256291$	
cos112°12'45"	∞112···12···45···=	cos112°12'45" ≈ -0,3780427715	
tan15°	tan 1 5 =	$tan 15^{\circ} = 2 - \sqrt{3}$	

- Ta cũng có thể tìm được góc khi biết một giá trị lượng giác của góc đó.

Ví dụ:

Tìm x, biết	Bấm phím	Kết quả	
$\sin x = 0,3456$	SHFT sin (sin-1) 0 • 3 4 5 6 = •••	x ≈ 20°13'7"	

Chú ý:

- + Khi tìm x biết sin x, máy tính chỉ đưa ra giá trị $x \le 90^{\circ}$.
- + Muốn tìm x khi biết cos x, tan x, ta cũng làm tương tự như trên, chỉ thay phím tương ứng bởi phím .

2. Mối quan hệ giữa các giá trị lượng giác của hai góc bù nhau

Đối với hai góc bù nhau, α và $180^{\circ} - \alpha$, ta có:

$$\sin (180^{\circ} - \alpha) = \sin \alpha;$$

$$\cos (180^{\circ} - \alpha) = -\cos \alpha;$$

$$\tan (180^{\circ} - \alpha) = -\tan \alpha \ (\alpha \neq 90^{\circ});$$

$$\cot (180^{\circ} - \alpha) = -\cot \alpha \ (0^{\circ} < \alpha < 180^{\circ}).$$

Chú ý:

- Hai góc bù nhau có sin bằng nhau; có côsin, tang, côtang đối nhau.

Ví dụ: Tính các giá trị lượng giác của góc 135°.

Hướng dẫn giải

Ta có $135^{\circ} + 45^{\circ} = 180^{\circ}$, vì vậy góc 135° và góc 45° là hai góc bù nhau:

Suy ra:

$$\sin 135^\circ = \sin 45^\circ = \frac{\sqrt{2}}{2}$$

$$\cos 135^\circ = -\cos 45^\circ = -\frac{\sqrt{2}}{2}$$

$$\tan 135^\circ = -\tan 45^\circ = -1$$

$$\cot 135^{\circ} = -\cot 45^{\circ} = -1$$

Vậy
$$\sin 135^\circ = \frac{\sqrt{2}}{2}$$
; $\cos 135^\circ = -\frac{\sqrt{2}}{2}$; $\tan 135^\circ = -1$; $\cot 135^\circ = -1$.

- Hai góc phụ nhau có sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Ví dụ:

Ta có $30^{\circ} + 60^{\circ} = 90^{\circ}$ nên góc 30° và góc 60° là hai góc phụ nhau.

Khi đó:

$$\sin 30^\circ = \cos 60^\circ = \frac{1}{2}$$

$$tan 30^\circ = \cot 60^\circ = \frac{\sqrt{3}}{3}.$$

B. Bài tập tự luyện

B1. Bài tập tự luận

Bài 1. Cho góc α , biết $\sin \alpha = \frac{\sqrt{2}}{2}$. Tính giá trị của biểu thức $A = 4\sin^2 \alpha + 3\cos^2 \alpha$.

Hướng dẫn giải

Ta có:

$$A=4 sin^2 \ \alpha +3 cos^2 \ \alpha =(3 sin^2 \ \alpha +3 cos^2 \ \alpha)+sin^2 \ \alpha =3 \ (sin^2 \ \alpha +cos^2 \ \alpha)+sin^2 \ \alpha$$

$$Vi \, cos^2 \, \alpha \, + sin^2 \, \alpha \, = 1 \, \, v \grave{a} \, sin \, \alpha = \frac{\sqrt{2}}{2} \, .$$

Thay vào A ta có:
$$A = 3.1 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{7}{2}$$
;

Vậy
$$A = \frac{7}{2}$$
.

Bài 2. Cho
$$A = \frac{3\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}$$
 và tan $\alpha = \sqrt{2}$. Chứng minh $A = 7 - 4\sqrt{2}$.

Hướng dẫn giải

Ta có:
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \sqrt{2} \Rightarrow \sin \alpha = \sqrt{2} \cos \alpha$$

Suy ra
$$A = \frac{3\sin\alpha - \cos\alpha}{\sin\alpha + \cos\alpha}$$

$$=\frac{3\sqrt{2}\cos\alpha-\cos\alpha}{\sqrt{2}\cos\alpha+\cos\alpha}$$

$$=\frac{(3\sqrt{2}-1)\cos\alpha}{(\sqrt{2}+1)\cos\alpha}$$

$$=\frac{3\sqrt{2}-1}{\sqrt{2}+1}=\frac{\left(3\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=7-4\sqrt{2}$$

Vậy A=
$$7 - 4\sqrt{2}$$
.

Bài 3. Tính giá trị của các biểu thức sau:

a)
$$3\sin 150^{\circ} + \tan 135^{\circ} + \cot 45^{\circ}$$

b)
$$\cot 135^{\circ} - \tan 60^{\circ}$$
. $\cos^2 30^{\circ}$

Hướng dẫn giải

a)
$$3\sin 150^{\circ} + \tan 135^{\circ} + \cot 45^{\circ}$$

$$= 3.\sin(180^{\circ} - 30^{\circ}) + \tan(180^{\circ} - 45^{\circ}) + \cot 45^{\circ}$$

$$= 3.\sin 30^{\circ} - \tan 45^{\circ} + \cot 45^{\circ}$$

$$=3.\frac{1}{2}+(-1)+1=\frac{3}{2}$$

b)
$$\cot 135^{\circ} - \tan 60^{\circ} \cdot \cos^2 30^{\circ}$$

$$= \cot(180^{\circ} - 45^{\circ}) - \tan 60^{\circ} \cdot \cos^2 30^{\circ}$$

$$=-\cot 45^{\circ}-\tan 60^{\circ}.\cos^2 30^{\circ}$$

$$= (-1) - \sqrt{3} \cdot \left(\frac{\sqrt{3}}{2}\right)^2 = -\frac{4 + 3\sqrt{3}}{4}.$$

B2. Bài tập trắc nghiệm

- **Bài 4.** Biết tan $\alpha = 2$, giá trị của biểu thức $M = \frac{3\sin\alpha 2\cos\alpha}{5\cos\alpha + 7\sin\alpha}$ bằng:
- **A.** $-\frac{4}{9}$;
- **B.** $\frac{4}{19}$;
- $\mathbf{C.} \frac{4}{19};$
- **D.** $\frac{4}{9}$.

Hướng dẫn giải

Đáp án đúng là: B

Cách 1: Vì $\cos \alpha \neq 0$ nên chia cả tử và mẫu của M cho $\cos \alpha$ ta có:

$$M = \frac{3\frac{\sin\alpha}{\cos\alpha} - 2}{5 + 7\frac{\sin\alpha}{\cos\alpha}} = \frac{3.\tan\alpha - 2}{5 + 7.\tan\alpha} = \frac{3.2 - 2}{5 + 7.2} = \frac{4}{19}.$$

Cách 2: Ta có: $\tan \alpha = 2 \Leftrightarrow \frac{\sin \alpha}{\cos \alpha} = 2(\cos \alpha \neq 0) \Leftrightarrow \sin \alpha = 2\cos \alpha$, thay $\sin \alpha = 2\cos \alpha$

$$2\cos\alpha \text{ vào M ta được } M = \frac{3.2\cos\alpha - 2\cos\alpha}{5\cos\alpha + 7.2\cos\alpha} = \frac{4\cos\alpha}{19\cos\alpha} = \frac{4}{19}.$$

Bài 5. Cho $\cos \alpha = -\frac{4}{5}$ và góc α thỏa mãn $90^{\circ} < \alpha < 180^{\circ}$. Khi đó.

A.
$$\cot \alpha = \frac{4}{3}$$
;

B.
$$\sin \alpha = \frac{3}{5}$$
;

C.
$$\tan \alpha = \frac{4}{5}$$
.

$$\mathbf{D.} \sin \alpha = -\frac{3}{5}.$$

Hướng dẫn giải

Đáp án đúng là: B

Ta có: $\sin^2\alpha + \cos^2\alpha = 1$

$$\Leftrightarrow \sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(-\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25}.$$

$$\Leftrightarrow \begin{vmatrix} \sin \alpha = \frac{3}{5} \\ \sin \alpha = -\frac{3}{5} \end{vmatrix}$$

Vì
$$90^{\circ} < \alpha < 180^{\circ}$$
 nên $\sin \alpha > 0$. Do đó $\sin \alpha = \frac{3}{5}$

$$\Rightarrow \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{3}{4}, \cot \alpha = \frac{\cos \alpha}{\sin \alpha} = -\frac{4}{3}.$$

Vậy đáp án đúng là B.

Bài 6. Nếu $3\cos x + 2\sin x = 2$ và $\sin x < 0$ thì giá trị đúng của $\sin x$ là:

A.
$$-\frac{5}{13}$$
;

B.
$$-\frac{7}{13}$$
;

$$C. -\frac{9}{13};$$

D.
$$-\frac{12}{13}$$
.

Hướng dẫn giải

Đáp án đúng là: A

Ta có: $3\cos x + 2\sin x = 2$

$$\Leftrightarrow (3\cos x + 2\sin x)^2 = 4$$

$$\Leftrightarrow$$
 9cos²x + 12cosx.sinx + 4sin²x = 4(sin²x + cos²x)

$$\Leftrightarrow$$
 5cos²x + 12cosx.sinx = 0

$$\Leftrightarrow$$
 cosx(5cosx + 12sinx) = 0

$$\Leftrightarrow \begin{bmatrix} \cos x = 0\\ 5\cos x + 12\sin x = 0 \end{bmatrix}$$

Với $\cos x = 0 \Rightarrow \sin x = 1$ loại vì $\sin x < 0$.

Với $5\cos x + 12\sin x = 0$, ta có hệ phương trình:

$$\begin{cases} 5\cos x + 12\sin x = 0 \\ 3\cos x + 2\sin x = 2 \end{cases} \Leftrightarrow \begin{cases} \sin x = -\frac{5}{13} \\ \cos x = \frac{12}{13} \end{cases}.$$

$$V_{a}^{2}y \sin x = -\frac{5}{13}.$$