

# MASTER'S THESIS MEETING

Philip Georgis
October 13, 2021

## CURRENT TASKS



## **VALIDATION DATASET**

#### Bantu

- Sample of some of the largest among the >300 doculects from dataset
- Hellenic
  - 4 modern Hellenic doculects + 2 varieties of Ancient Greek
- Japonic
  - Japanese and Ryukyuan doculects + Old Japanese; omitted Middle Japanese
- Quechuan
  - Omitted doculects without glottocodes, and non-Quechuan languages from dataset
- Uto-Aztecan
  - Omitted non-Uto-Aztecan languages from dataset
- Vietic
  - Omitted non-Vietic languages, Proto-Vietic, and ambiguous doculects

# DATASETS OVERVIEW

#### **Validation Set**

| Family      | Number of Languages | Time Depth | Macroarea        |
|-------------|---------------------|------------|------------------|
| Bantu       | 37                  | 5000       | Africa           |
| Hellenic    | 6                   | 2400       | Eurasia          |
| Japonic     | 58                  | 2400       | Eurasia          |
| Quechuan    | 33                  | 1850       | South<br>America |
| Uto-Aztecan | 34                  | 7000       | North<br>America |
| Vietic      | 17                  | 2750       | Eurasia          |
| Average     | 31                  | 3567       |                  |

| Family       | Number of Languages | Time Depth | Macroarea        |
|--------------|---------------------|------------|------------------|
| Arabic       | 16                  | 1600       | Africa & Eurasia |
| Balto-Slavic | 16                  | 3000       | Eurasia          |
| Dravidian    | 20                  | 6000       | Eurasia          |
| Hokan        | 20                  | 5000       | North America    |
| Italic       | 58                  | 2100       | Eurasia          |
| Polynesian   | 30                  | 3000       | Papunesia        |
| Sinitic      | 19                  | 2500       | Eurasia          |
| Turkic       | 32                  | 2100       | Eurasia          |
| Uralic       | 23                  | 8000       | Eurasia          |
| Average      | 26                  | 3700       |                  |

## DATASETS OVERVIEW



- Word pairs aligned using typical alignment algorithm (costs based on phonetic similarity + PMI)
  - Ancient Attic Greek  $<\alpha \tilde{i}\mu\alpha>/h\hat{a}jma/$  Modern Demotic Greek  $<\alpha i\mu\alpha>/ema/$  'BLOOD'

| AAG | h | a | j | m | a |
|-----|---|---|---|---|---|
| MDG | - | - | e | m | a |

- Word pairs aligned using typical alignment algorithm (costs based on phonetic similarity + PMI)
  - Ancient Attic Greek <αἷμα> /hâjma/
     Modern Demotic Greek <αίμα> /ˈema/

Adaptation surprisal calculated for each pair in alignment in both directions

| AAG       | h    | a    | j    | m    | a    |
|-----------|------|------|------|------|------|
| MDG       | -    | -    | e    | m    | a    |
| Surprisal | 1.41 | 2.61 | 3.17 | 1.32 | 0.61 |

**TOTAL:** 9.12

'BLOOD'

| MDG       | -    | -    | e    | m    | a    |
|-----------|------|------|------|------|------|
| AAG       | h    | a    | j    | m    | a    |
| Surprisal | 3.10 | 3.31 | 4.21 | 0.90 | 0.87 |

**TOTAL:** 12.39

•Self-surprisal based on trigram probabilities calculated for each word

| AAG            | h    | a    | j    | m    | a    |
|----------------|------|------|------|------|------|
| Self-Surprisal | 3.29 | 2.00 | 1.91 | 0.92 | 2.98 |

**TOTAL:** 11.10

| MDG            | e    | m    | a    |
|----------------|------|------|------|
| Self-Surprisal | 3.35 | 2.14 | 2.10 |

**TOTAL:** 7.59

•Self-surprisal based on trigram probabilities calculated for each word

| AAG            | h    | a    | j    | m    | a    |
|----------------|------|------|------|------|------|
| Self-Surprisal | 3.29 | 2.00 | 1.91 | 0.92 | 2.98 |

**TOTAL:** 11.10

| MDG            | e    | m    | a    |
|----------------|------|------|------|
| Self-Surprisal | 3.35 | 2.14 | 2.10 |

**TOTAL:** 7.59

- Adaptation surprisal normalized by self-surprisal
  - $S(MDG \mid AAG) / S(MDG) = 9.12 / 7.59 = 1.20$
  - S(AAG | MDG) / S(AAG) = 12.39 / 11.10 = 1.12
- Take mean of normalized adaptation surprisal in each direction
  - → 1.16

•Self-surprisal based on trigram probabilities calculated for each word

| AAG            | h    | a    | j    | m    | a    |
|----------------|------|------|------|------|------|
| Self-Surprisal | 3.29 | 2.00 | 1.91 | 0.92 | 2.98 |

**TOTAL:** 11.10

| MDG            | e    | m    | a    |
|----------------|------|------|------|
| Self-Surprisal | 3.35 | 2.14 | 2.10 |

**TOTAL:** 7.59

- Adaptation surprisal normalized by self-surprisal
  - $S(MDG \mid AAG) / S(MDG) = 9.12 / 7.59 = 1.20$
  - S(AAG | MDG) / S(AAG) = 12.39 / 11.10 = 1.12
- Take mean of normalized adaptation surprisal in each direction
  - $\rightarrow$  1.16  $\rightarrow$  turn into similarity: e^^-1.16 = 0.31

### OPTIMAL COGNATE CLUSTERING THRESHOLDS

#### BASED ON VALIDATION DATASETS



Optimal threshold = 0.23

### OPTIMAL COGNATE CLUSTERING THRESHOLDS

#### BASED ON VALIDATION DATASETS



Optimal threshold = 0.35

### OPTIMAL COGNATE CLUSTERING THRESHOLDS

#### BASED ON VALIDATION DATASETS



Optimal threshold = 0.80







## IMPROVED TREE COMPARISON

- Found paper which discusses impact of comparing resolved, binary trees with unresolved, non-binary trees on Quartet Distance and Robinson-Foulds distance
- Pompei, S., Loreto, V., & Tria, F. (2011). On the Accuracy of Language Trees. PLoS ONE, 6(6).
   <a href="https://doi.org/doi:10.1371/journal.pone.0020109">https://doi.org/doi:10.1371/journal.pone.0020109</a>
- GQD seems to be the measure which is used in other phylogenetic inference papers
- Tree Dist presumably has the same issue but found no modification → GQD as primary evaluation now



### WEIRD BUG?

- Quartet Distance and Tree Distance seem not to penalize an outgroup item being grouped elsewhere in the tree
- O distance for both measures between these two trees, despite Southern Tsakonian appearing in different positions

Why? How to fix?



## WEIRD BUG?

- Quartet Distance and Tree Distance seem not to penalize an outgroup item being grouped elsewhere in the tree
- Similar issue in Turkic tree with placement of Chuvash

Why? How to fix?





## BEST AUTOMATIC TREES (NOT USING GOLD COGNATE SETS)

| Dataset      | TreeDist | Generalized Quartet Distance | Cognate<br>Clustering<br>Method | Word Form<br>Evaluation<br>Method | Linkage<br>Method |
|--------------|----------|------------------------------|---------------------------------|-----------------------------------|-------------------|
| Arabic       | 0.67     | 0.22                         | PMI                             | surprisal                         | Ward              |
| Balto-Slavic | 0.16     | 0.02                         | none                            | surprisal                         | complete          |
| Dravidian    | 0.41     | 0.22                         | none                            | phonetic                          | average           |
| Hokan        | 0.40     | 0.04                         | surprisal                       | phonetic                          | average           |
| Italic       | 0.39     | 0.16                         | none                            | surprisal                         | Ward              |
| Polynesian   | 0.58     | 0.12                         | PMI                             | phonetic                          | Ward              |
| Sinitic      | 0.61     | 0.16                         | none                            | phonetic                          | average           |
| Turkic       | 0.56     | 0.31                         | surprisal                       | PMI                               | Ward              |
| Uralic       | 0.32     | 0.04                         | none                            | phonetic                          | complete          |

#### **NOTES:**

- Significantly lower tree distances using
   Generalized Quartet
   Distance
- No separation of cognate/non-cognates before evaluation often produces best trees
- Phonetic (5/9) and surprisal (3/9) are the most effective evaluation methods

## BEST GOLD TREES (USING GOLD COGNATE SETS)

| Dataset      | TreeDist | Generalized Quartet Distance | Word Form Evaluation Method | Linkage<br>Method |
|--------------|----------|------------------------------|-----------------------------|-------------------|
| Arabic       | 0.64     | 0.30                         | PMI                         | Ward              |
| Balto-Slavic | 0.16     | 0.02                         | surprisal                   | complete          |
| Dravidian    | 0.44     | 0.26                         | surprisal                   | complete          |
| Hokan        | 0.36     | 0.02                         | phonetic                    | average           |
| Italic       | 0.41     | 0.21                         | surprisal                   | Ward              |
| Polynesian   | 0.57     | 0.12                         | PMI                         | Ward              |
| Sinitic      | 0.63     | 0.27                         | surprisal                   | Ward              |
| Turkic       | 0.57     | 0.32                         | surprisal                   | weighted          |
| Uralic       | 0.40     | 0.05                         | phonetic                    | average           |

#### **NOTES:**

- Most trees based on gold cognate sets are less accurate than those using either automatic cognate sets or no separation of cognates/noncognates before evaluation
- Only Hokan tree is better using gold cognate sets
- **Surprisal** seems to be the most effective word evaluation technique (5/9)

## TIME PLAN...

Finish coding distance measures: OCTOBER 19

• Finish testing on cognate detection: OCTOBER 22

• Finish testing on trees: OCTOBER 29

Finish all data collection/experiment: NOVEMBER 1

• First draft complete: NOVEMBER 15 \*

Second draft complete: DECEMBER 1

<sup>\*</sup> Will have begun writing sooner

## NEXT TASKS

