Вариант 2

Задача 1

Студент и преподаватель играют в игру: они подбрасывают монету до тех пор, пока не встретится последовательность PPO (победа преподавателя) или POO (победа студента). Является ли игра честной (вероятность выиграша каждого игрока равна 0.5)?

Задача 2

Из множества $\{1, \ldots, 2n\}$ случайным образом выбирается n+1 элемент. С какой вероятностью среди них найдутся два два взаимно простых числа?

Задача 3

Пусть задан ориентированный граф G(V,E) и $s,t\in V$. Покажите, что минимальное число ребер в пути из s в t совпадает с максимальным значением $\phi(t)-\phi(s)$ среди всех функций $\phi:V\to Z$, таких, что выполнено: $\phi(w)-\phi(v)\leq 1$ для всех ребер $(v,w)\in E$.

Задача 4

Пусть A - некоторая невырожденная $n \times n$ матрица. Покажите, что для любой вырожденной $n \times n$ матрицы X выполнено:

$$||A - X||_2 \cdot ||A^{-1}||_2 \ge 1$$

где
$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2}$$

Задача 5

Предложите алгоритм, который получает на вход список из n натуральных чисел d_1,\ldots,d_n и за полиномиальное время сообщает существует ли ненаправленный граф G(V,E) (|V|=n), степени вершин которого равны соответственно d_1,\ldots,d_n . Граф не может содержать петель или нескольких ребер между одной и той же парой вершин.

Задача 6

Доказать неравенство

$$\frac{1}{2} - \frac{1}{e} < \int_0^1 \frac{xe^{-x}}{1+x^2} dx < 1 - \frac{2}{e}$$