Bioinformatics Report for Nanopore Sequencing Pipeline

Chunyu Zhao April 2, 2018

Contents

1	Assembly Stats and GAGE report	1
	Assess Reads and Assembly Accuracy	4
	2.1 Background	4
	2.2 Metrics	4
3	Assembly Comparison by Dotplot	8

1 Assembly Stats and GAGE report

run	barcode	total	n	ave	largest	N50
cdiff_run9_20180321	barcode01	912231885	176479	5169	101202	13261
cdiff_run9_20180321	barcode02	603358129	196654	3068	93243	7173
cdiff_run9_20180321	barcode03	6.11e+08	128700	4748	95331	10818

Assembly GAGE report for cdiff_run9_20180321:barcode01

Assembly draft2
Contigs # 4
Min contig 5006
Max contig 4261958

Not corrected N50 4261958 COUNT: 1

Genome size 4715305 Assembly size 4641733 Chaff bases 0

Missing reference bases 2082(0.04%)
Missing assembly bases 1374(0.03%)
Missing assembly contigs 0(0.00%)
Duplicated reference bases 4196
Compressed reference bases 62902

Bad trim 91 99.73 Avg idy SNPs 3181 8835 Indels < 5bp Indels >= 5 32 Inversions 2 Relocation 4 Translocation 0 Corrected contig # 38 4655248 Corrected assembly size Min correct contig 620

Corrected N50 316223 COUNT: 6

500767

Max correct contig

Assembly GAGE report for cdiff_run9_20180321:barcode02

Assembly	draft2					
Contigs #	1					
Min contig	4184602					
Max contig	4184602					
Not corrected N50	4184602 COUNT: 1					
Genome size	4191469					
Assembly size	4184602					
Chaff bases	0					
Missing reference bases 1310(0.03%)						
Missing assembly bases 1739(0.04%)						
Missing assembly contigs 0(0.00%)						
Duplicated reference bases 2003						
Compressed reference bases 10815						
Bad trim	227					
Avg idy	99.79					
SNPs	2482					
Indels < 5hn	6244					

Avg idy 99.79

SNPs 2482

Indels < 5bp 6244

Indels >= 5 28

Inversions 0

Relocation 3

Translocation 0

Corrected contig # 26

Corrected assembly size 4180619

Min correct contig 3139
Max correct contig 764784

Corrected N50 277373 COUNT: 5

Assembly GAGE report for cdiff run9 20180321:barcode03

Assembly draft2 4 Contigs # Min contig 6935 Max contig 4190307 Not corrected N50 4190307 COUNT: 1 Genome size 4277632 Assembly size 4272191 Chaff bases 0 Missing reference bases 1567(0.04%) Missing assembly bases 10787(0.25%) Missing assembly contigs 0(0.00%) Duplicated reference bases 340 Compressed reference bases 11563 Bad trim Avg idy 99.84 **SNPs** 320 Indels < 5bp 6197 Indels >= 5 37 Inversions 2 Relocation 4 Translocation 0 Corrected contig # 44 Corrected assembly size 4266346 Min correct contig 575 Max correct contig 475257 Corrected N50 198090 COUNT: 7

2 Assess Reads and Assembly Accuracy

2.1 Background

In this section, we evaluate the accuracy of raw long reads, as well as the draft assembly using alignment to the reference genome **CD630**, using Minimap2.

Read accuracy is interesting to better understand the nanopore sequencing error, and assembly accuracy is more interesting to show whether the read errors can **average out** with high sequencing depth.

2.2 Metrics

2.2.1 Read Length Distribution

2.2.2 Read Accuracy

We only uses the **aligned** parts of the reads to calcuate the **reads** identity.

To be specific, the definition of identity is same with Blast: the number of matches in the alignment divided by alignment length (including gaps).

note: If less than 50% of a read aligned, it is assigned as **unaligned** and given an identity of 0%.

2.2.3 Relative read length

We also show the distribution of relative read length: read length to reference length for each alignment. This number shows whether the basecaller is more prone to interstions or deletions.

- 100% (same length): means insertions and deletions are equally likely
- $\bullet~<100\%$ deletions are more common than insetions
- \bullet >100%: insertions are more common than deletions

2.2.4 Assembly accuracy

How accurate are the consensus sequences?

3 Assembly Comparison by Dotplot

Assembly Comparisons for cdiff_run9_20180321:barcode01

Assembly Comparisons for cdiff_run9_20180321:barcode02

Assembly Comparisons for cdiff_run9_20180321:barcode03

