ELEC 221 Formula Sheet

Continuous Time Signals

Even and Odd Components:

$$x_e(t) = \frac{1}{2}[x(t) + x(-t)]$$

$$x_o(t) = \frac{1}{2}[x(t) - x(-t)]$$

A signal is periodic with fundamental period T_0 if $x(t + kT_0) = x(t) \quad \forall t \in (-\infty, \infty)$

Energy:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

Power:

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

Causality:

- Causal: x(t) = 0 for t < 0.
- Anti-Causal: x(t) = 0 for $t \ge 0$.
- A-Causal or Non-Causal: Both of the above.

Continuous Time Systems

Dynamic systems have memory. Active systems can deliver energy to the outside world.

Linearity:

$$S[\alpha x(t) + \beta y(t)] = \alpha S[x(t)] + \beta S[y(t)]$$

Time Invariance:

If
$$S[x(t)] = y(t)$$
 then $S[x(t \pm \tau)] = y(t \pm \tau)$.

Zero-State Response:

Due to the input as the initial conditions are zero.

Zero-Input Response:

Due to the initial conditions as the input is zero.

Convolution:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau$$

Causality:

A continuous time system S is causal if whenever x(t) = 0 and there are no initial conditions, y(t) = 0 and the output y(t) does not depend on future inputs.

Bounded-Input Bounded-Output Stability:

If an input x(t) bounded then the output of an BIBO system is also bounded.

$$\int_{-\infty}^{\infty} |h(t)| \, dt < \infty$$

Laplace Transform

 $s = \sigma + i\omega$

Eigenfunction Property:

$$\mathcal{S}[e^{s_0t}] = H(s_0)e^{s_0t}$$

One Sided Laplace Transform:

$$F(s) = \mathcal{L}[f(t)u(t)] = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$$

Region of Convergence:

- Finite support → Entire s-plane.
- Causal function $\to \sigma > \max(\sigma_i), -\infty < \omega < \infty$.
- Anti-causal $\rightarrow \sigma < \min(\sigma_i), -\infty < \omega < \infty$.
- Non-causal $\rightarrow \mathcal{R} = \mathcal{R}_{causal} \cap \mathcal{R}_{anti-causal}$.

Initial Value Theorem:

$$f(0+) \Leftrightarrow \lim_{s \to \infty} sF(s)$$

Final Value Theorem:

$$\lim_{t \to \infty} f(t) \Leftrightarrow \lim_{s \to 0} sF(s)$$

Bounded-Input Bounded-Output Stability:

If the region of convergence contains the $i\omega$ -axis, then the system is BIBO stable.

Fourier Series

Fourier analysis in the steady state.

Eigenfunction Property:

$$S[e^{j\omega_0 t}] = H(j\omega_0)e^{j\omega_0 t}$$

$$x(t) = \sum_k X_k e^{j\omega_k t} \implies y(t) = \sum_k X_k H(j\omega_k)e^{j\omega_k t}$$

$$= \sum_k X_k |H(j\omega_k)|e^{j(\omega_k t + \angle H(\omega_k))}$$

Fourier Series Coefficients (for any t_0):

$$X_{k} = \frac{1}{T_{0}} \int_{t_{0}}^{t_{0}+T_{0}} x(t)e^{-jk\omega_{0}t} dt$$

Parseval's Power Relation (for any t_0):

$$P = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt = \sum_{k = -\infty}^{\infty} |X_k|^2$$

Symmetry of Line Spectra:

$$|X_k| = |X_{-k}|$$

$$\angle X_k = -\angle X_{-k}$$

Trigonometric Fourier Series:

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\omega t + \Theta_k)$$

$$x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\omega t + \Theta_k) x(t) = c_0 + 2\sum_{k=1}^{\infty} [c_k \cos(k\omega_0 t) + d_k \sin(k\omega_0 t)]$$

$$c_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \cos(k\omega_0 t) dt$$
 $k = 0, 1, 2...$

$$d_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \sin(k\omega_0 t) dt \quad k = 1, 2, 3...$$

$$\Theta_k = -\arctan(d_k/c_k)$$

Fourier Coefficients from Laplace Transform:

If $x_1(t)$ is a single period of x(t), then

$$X_k = \frac{1}{T_0} \mathcal{L}[x_1(t)] \Big|_{s=jk\omega_0}$$

Response of LTI Systems to Periodic Signals:

If the input to an LTI system has Fourier Series $x(t) = X_0 + 2\sum_{k=1}^{\infty} |X_k| \cos(k\omega t + \angle X_k)$, then the steady state response is $y(t) = X_0 |H(j0)| +$

$$2\sum_{k=1}^{\infty} |X_k| |H(jk\omega_0)| \cos(k\omega_0 t + \angle X_k + \angle H(jk\omega_0))$$

Fourier Transform

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$$

Fourier Transform from Laplace Transform (if X(s)contains the $i\omega$ -axis):

$$\mathcal{F}[x(t)] = \mathcal{L}[x(t)]|_{s=i\omega} = X(s)|_{s=i\omega}$$

Fourier Transform of Periodic Signals:

$$\sum_{k} X_k e^{jk\omega_0 t} \stackrel{\mathcal{F}}{\Longleftrightarrow} \sum_{k} 2\pi_k \delta(\omega - k\omega_0)$$

Parseval's Energy Relation:

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} |X(\omega)|^2 d\omega$$

Symmetry of Spectral Representations:

$$|X(\omega)| = |X(-\omega)|$$

$$Re[X(\omega)] = Re[X(-\omega)]$$

$$\angle X(\omega) = -\angle X(-\omega)$$

$$\text{Im}[X(\omega)] = -\text{Im}[X(-\omega)]$$

Sampling Theory

$$x_s(t) = x(nT_s) = x(t)|_{t=nT_s} = x(t) \sum_{t=1}^{n} \delta(t - nT_s)$$

$$X_s(\omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(\omega - k\omega_s)$$

Nyquist-Shannon Sampling Rate:

$$\omega_s = \frac{2\pi}{T_s} \ge 2\omega_{\text{max}}$$

Aliasing occurs if $\omega_s < 2\omega_{\rm max}$.

Reconstruction $X(\omega) = X_s(\omega)H_{lp}(\omega)$:

$$H_{\rm lp}(\omega) = \begin{cases} T_s & -\frac{\omega_s}{2} < \omega < \frac{\omega_s}{2} \\ 0 & \text{otherwise} \end{cases}$$

Signal Reconstruction from Sinc Interpolation:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(nT_s) \frac{\sin(\pi(t - nT_s))/T_s}{\pi(t - nT_s)/T_s}$$

Discrete Time Signals

Define
$$x[n] = x(nT_0)$$
.
 $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$
Periodicity:

$$x[n+kN] = x[n] \quad \forall k \in \mathbb{Z}$$

When sampling an analog sinusoid of fundamental period T_0 , we obtain a periodic discrete sinusoid provided that m, N not divisible by eachother:

$$T_s/T_0 = m/N$$

Aliasing occurs if:

$$T_s > T_0/2$$

Energy:

$$E = \sum_{n = -\infty}^{\infty} |x[n]|^2$$

Power:

$$P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$

Convolutional Sum:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Bounded-Input Bounded-Output Stability:

$$\sum_{k} |h[n]|^2 < \infty$$

Solution to Autoregressive Discrete System:

$$y[n] = ay[n-1] + bx[n], n \ge 0$$

 $y[n] = \sum_{k=0}^{n} ba^{k} x[n-k], n \ge 0$

Z-Transform

$$\mathcal{Z}[x(nT_s)] = \mathcal{L}[x_s(t)]|_{z=e^{sT_s}} = \sum_n x(nT_s)z^{-n}$$

Convergence:

$$|X(z)| = \sum_{n} |x[n]| r^{-n} < \infty$$

Initial Value Theorem:

$$x[0] = \lim_{z \to \infty} X(z)$$

Final Value Theorem:

$$\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1)X(z)$$

Updated December 11, 2018

https://github.com/DonneyF/formula-sheets

Fourier Transform Properties

•			
	Time Domain	Frequency Domain	
Expansion/Contraction	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X(\frac{\omega}{\alpha})$	
Reflection	x(-t)	$X(-\omega)$	
Duality	X(t)	$2\pi x(-\omega)$	
Differentiation (t)	$\frac{d^n x}{dt^n}$	$(j\omega)^n X(\omega)$	
Differentiation (ω)	-jtx(t)	$\frac{dX(\omega)}{d\omega}$	
Integration	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$ $e^{-j\alpha\omega}X(\omega)$	
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\omega}X(\omega)$	
Frequency shifting	$e^{j\omega_0 t}x(t)$	$X(\omega-\omega_0)$	
Modulation	$x(t)\cos(\omega_c t)$	$0.5[X(\omega - \omega_c) + X(\omega + \omega_c)]$	
Multiplication	x(t)y(t)	$\frac{1}{2\pi}[X*Y](\omega)$	
Conjugation	$x^*(t)$	$X^*(-\omega)$	

Z-Transform Properties

	Time Domain	Z-Domain
Time Shifting (causal)	$x[n-N], n \in \mathbb{Z}$	$z^{-N}X(z)$
Time Shifting (acausal)	x[n-N]	$z^{-N}X(z) + x[-1]z^{-N+1}$
		$+x[-2]z^{-N+2} + \cdots x[-N]$
Time reversal	x[-n]	$X(z^{-1})$
Multiplication by n	nx[n]	$-z\frac{dX(z)}{dz}$
Multiplication by n^2	$n^2x[n]$	$z^{2} \frac{d^{2}X(z)}{dz^{2}} + z \frac{dX(z)}{dz}$ $(1 - z^{-1})X(z) - x[-1]$
Finite Difference	x[n] - x[n-1]	$(1-z^{-1})X(z)-x[-1]$
Accumulation	$\sum_{k=0}^{n} x[k]$	$\frac{X(z)}{1-z^{-1}}$

Misc. Identities

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x} \xrightarrow{n \to \infty \text{ and } x < 1} \frac{1}{1 - x}$$

$$\cos \theta = 1/2(e^{j\theta} + e^{-j\theta})$$

$$\sin \theta = 1/2j(e^{j\theta} - e^{-j\theta})$$

Fourier Transform Pairs

f(t)	$F(\omega)$
$\delta(t)$	1
$\delta(t- au)$	$e^{-j\omega au}$
u(t)	$1/j\omega + \pi\delta(\omega)$
u(t)	$-1/j\omega + \pi\delta(\omega)$
sign(t)	$2/j\omega$
α	$2\pi\alpha\delta(\omega)$
$e^{-a t },a>0$	$\frac{2a}{a^2+\omega^2}$
$\cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)]+\delta(\omega+\omega_0)$
$\sin(\omega_0 t)$	$-j\pi[\delta(\omega-\omega_0)]-\delta(\omega+\omega_0)$
$\frac{\sin(\omega t)}{\pi t}$	$u(\omega+\omega_0)-u(\omega-\omega_0)$
$u(\omega+\tau)-u(\omega-\tau)$	$2\tau \frac{\sin(\omega\tau)}{\omega\tau}$
rect(t/T)	$T\operatorname{sinc}(T\omega/2)$

One-sided Z-Transforms

f[n]	F(z)
$\delta[n]$	1, Whole z-plane
u[n]	$\frac{1}{1-z_{-1}^{-1}}, z > 1$
nu[n]	$\frac{z^{-1}}{(1-z^{-1})^2}, z > 1$
$n^2u[n]$	$\frac{z^{-1}(1+z^{-1})}{(1-z^{-1})^3}, z > 1$
$\alpha^n u[n], \alpha < 1$	$\frac{1}{1 - \alpha z^{-1}}, z > \alpha $
$n\alpha^n u[n], \alpha < 1$	$\frac{\alpha z^{-1}}{(1 - \alpha z^{-1})^2}, z > \alpha $
$\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}, z > 1$
$\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}, z > 1$