ГЛАВАІ

Дифференциальные уравнения первого порядка, разрешенные относительно производной § 1. основные обозначения и понятия

$$y' = f(x, y) (1.1) f \in C(G), G \subset \mathbb{R}^2.$$

- **Df.** Функция $y = \varphi(x)$, определенная на некотором промежутке $\langle a, b \rangle$, называется решением дифференциального уравнения (1.1), если для любого $x \in \langle a, b \rangle$ выполняются следующие три условия:
 - 1) функция $\varphi(x)$ дифференцируемая,
 - 2) точка $(x, \varphi(x)) \in G$,
 - 3) $\varphi'(x) = f(x, \varphi(x)).$

30. Задача Коши

Оно заключается в том, чтобы для некоторой точки $(x_0, y_0) \in G$ найти такое решение $y = \varphi(x)$ уравнения (1.1), определенное на каком-либо промежутке $\langle a, b \rangle \ni x_0$, что $\varphi(x_0) = y_0$.

- **Df.** Числа x_0, y_0 начальные данные (н. д.) задачи Коши.
- **Df.** Решение задачи Коши уравнения (1.1) с н. д. x_0, y_0 существует, если существуют такие интервал $(a,b) \ni x_0$ и решение $y = \varphi(x)$, определенное на нем, что $y_0 = \varphi(x_0)$.
- **Df.** Решение задачи Коши уравнения (1.1) с н. д. x_0, y_0 единственно, если для любых двух решений $y = \varphi_1(x)$ и $y = \varphi_2(x)$ поставленной задачи Коши можно указать такой интервал $(\alpha, \beta) \ni x_0$, что $\varphi_1(x) \stackrel{(\alpha,\beta)}{\equiv} \varphi_2(x)$.
 - **Df.** Любая точка (x_0, y_0) из G, в которой решение задачи Коши единственно, называется точкой единственности.
 - $\mathbf{Df.}$ Область $\widetilde{G}\subset G$ называется областью единственности, если каждая точка \widetilde{G} является точкой единственности.

4⁰. Интегральное уравнение.

Df. Уравнение

$$y = y_0 + \int_{x_0}^x f(s, y) \, ds, \tag{1.3}$$

где функция f(x,y) определена и непрерывна в области $G \subset \mathbb{R}^2$, точка $(x_0,y_0) \in G$, а $x_0,x \in \langle a,b \rangle$, называется интегральным уравнением на промежутке $\langle a,b \rangle$.

Теорема (о связи между дифференциальным и интегральным уравнениями). Пусть функция f(x,y) непрерывна в области G. Для того чтобы определенная на $\langle a,b \rangle$ функция $y = \varphi(x)$ была решением задачи Коши дифференциального уравнения (1.1) с начальными данными x_0, y_0 , необходимо и достаточно, чтобы она была решением интегрального уравнения (1.3) на $\langle a,b \rangle$.

5^{0} . Отрезок Пеано.

Итак, для любой точки (x_0,y_0) из области G найдутся константы a,b>0 такие, что замкнутый прямоугольник

$$\overline{R} = \{(x, y) : |x - x_0| \le a, |y - y_0| \le b\} \subset G$$

 $M=\max_{(x,y)\in\overline{R}}|f(x,y)|>0,$ и введем константу $h=\min\left\{a,b/M\right\}>0.$

Df. Отрезок $P_h(x_0, y_0) = \{x : |x - x_0| \le h\} = [x_0 - h, x_0 + h]$ называется отрезком Пеано, построенным для точки (x_0, y_0) .

6^{0} . Теоремы о существовании и единственности решения.

Теорема Пеано (о существовании решения). Пусть правая часть уравнения (1.1) непрерывна в области G, тогда для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $P_h(x_0, y_0)$ существует по крайней мере одно решение задачи Коши уравнения (1.1) с начальными данными x_0, y_0 , определенное на $P_h(x_0, y_0)$.

Теорема (единственности, слабая). Пусть в уравнении (1.1) функция f(x,y) непрерывна в области $G \subset \mathbb{R}^2$, а в области $\widetilde{G} \subset G$ существует и непрерывна частная производная $\partial f(x,y)/\partial y$, тогда \widetilde{G} – это область единственности для уравнения (1.1).

- 70. Частное, особое и общее решение.
- **Df.** Решение уравнения (1.1) $y = \varphi(x)$, определенное на промежутке $\langle a, b \rangle$, называется частным, если каждая его точка является точкой единственности, и называется особым, если каждая его точка является точкой неединственности.
- **Df.** Пусть \widetilde{G} это область единственности. Непрерывная функция $y = \varphi(x, C)$ называется общим решением дифференциального уравнения (1.1) в области $A \subset \widetilde{G}$, если выполняются два условия: 1) для любой точки $(x_0, y_0) \in A$ уравнение $y_0 = \varphi(x_0, C)$ имеет единственное решение $C_0 = U(x_0, y_0)$; 2) функция $y = \varphi(x, C_0)$ является решением задачи Коши (1.1) с начальными данными x_0, y_0 .

Теорема (о существовании общего решения). Для любой точки (x_0, y_0) из области единственности \widetilde{G} уравнения (1.1) найдется область $A \subset \widetilde{G}$, в которой существует общее решение (см. § 4).

8⁰. Продолжимость решений.

Df. Решение $y = \varphi(x)$ уравнения (1.1), определенное на промежутке $\langle a,b \rangle$, продолжимо вправо за точку b, если существуют число $\tilde{b} > b$ и решение $y = \widetilde{\varphi}(x)$ уравнения (1.1) на $\langle a, \tilde{b} \rangle$ такие, что сужение функции $\widetilde{\varphi}(x)$ на $\langle a,b \rangle$ совпадает с функцией $\varphi(x)$. При этом $y = \widetilde{\varphi}(x)$ называется продолжением решения $y = \varphi(x)$ вправо (за точку b).

Аналогично определяется продолжимость влево за точку a.

Лемма (о продолжении решения за границу отрезка). *Решение* $y = \varphi(x)$ уравнения (1.1), определенное на промежутке $\langle a, b \rangle$, продолжимо вправо за точку b.

- **Df.** Решение уравнения (1.1) называется полным, если его нельзя продолжить ни влево, ни вправо.
- Df. Область определения полного решения называется максимальным интервалом существования этого решения.

Утверждение. *Максимальный интервал существования решения – это интервал.*

90. Интегральные кривые и поле направлений.

Df. Кривая, являющаяся графиком полного решения, называется интегральной кривой.

- **Df.** Отрезок, вообще говоря, единичной длины с центром в точке $(x_0, y_0) \in G$ и тангенсом угла наклона, равным $f(x_0, y_0)$, называется направлением поля или отрезком поля направлений в точке (x_0, y_0) , индуцированным уравнением (1.1).
- Df. Область G, заполненная отрезками поля направлений, называется полем направлений, индуцированным уравнением (1.1).

10^{0} . Метод изоклин.

 $\mathbf{Df.}$ Изоклиной уравнения (1.1) называется любая кривая, расположенная в области G, в каждой точке которой направление поля имеет один и тот же угол наклона.

§ 2. СУЩЕСТВОВАНИЕ РЕШЕНИЯ

1⁰. Ломаные Эйлера.

2^0 . Лемма об ε -решении.

Df. Для всякого $\varepsilon > 0$ непрерывная и кусочно гладкая на отрезке [a,b] функция $y = \psi(x)$ называется ε -решением уравнения (1.1) на [a,b], если для $\forall x \in [a,b]$ точка $(x,\psi(x)) \in G$ и

$$|\psi'(x) - f(x, \psi(x))| \le \varepsilon. \tag{1.8}$$

Лемма. Для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $P_h(x_0, y_0)$: 1) всякая ломаная Эйлера продолжима на весь отрезок $P_h(x_0, y_0)$ и для $\forall x \in [x_0 - h, x_0 + h]$ точка $(x, \psi(x)) \in \overline{R}$, 2) для $\forall \varepsilon > 0$ найдется такое $\delta > 0$, что всякая ломаная Эйлера $y = \psi(x)$ с рангом дробления не превосходящим δ является ε -решением уравнения (1.1) на отрезке Пеано $P_h(x_0, y_0)$.

30. Лемма Асколи - Арцело.

Рассмотрим последовательность $\{h_n(x)\}_{n=1}^{\infty}$, заданную на [a,b]. Каждая из функций последовательности $\{h_n(x)\}_{n=1}^{\infty}$ ограничена на [a,b], если $\forall n \geq 1 \ \exists K_n > 0 : \ \forall x \in [a,b] \Rightarrow |h_n(x)| \leq K_n$.

Df. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ равномерно ограничена на [a,b], если $\exists K > 0$: $\forall n \geq 1$, $\forall x \in [a,b] \Rightarrow |h_n(x)| \leq K$.

Каждая из функций последовательности $\{h_n(x)\}_{n=1}^{\infty}$ непрерывна на [a,b], а значит, согласно теореме Кантора равномерно непрерывна на [a,b], если $\forall \varepsilon > 0$, $\forall n \geq 1 \quad \exists \delta_n > 0 : \quad \forall x',x'' \in [a,b] : |x'-x''| \leq \delta \Rightarrow |h_n(x') - h_n(x'')| \leq \varepsilon$.

Df. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ равностепенно непрерывна на [a,b], если $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall n \geq 1, \ \forall x',x'' \in [a,b] : |x'-x''| \leq \delta \Rightarrow |h_n(x') - h_n(x'')| \leq \varepsilon.$

Последовательность функций $\{h_n(x)\}_{n=1}^{\infty}$ поточечно сходится к некоторой функции h(x) на отрезке [a,b], если $\forall \, \varepsilon > 0, \, \forall \, x \in [a,b]$ $\exists \, N_x > 0: \, \forall \, i,j \geq N \, \Rightarrow \, |h_i(x) - h_j(x)| \leq \varepsilon.$

Df. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ равномерно сходится к некоторой функции h(x) на отрезке [a,b], если $\forall \, \varepsilon > 0 \, \exists \, N > 0 : \forall \, i,j \geq N, \, \forall \, x \in [a,b] \Rightarrow |h_i(x) - h_j(x)| \leq \varepsilon.$

Лемма Асколи - Арцело (о существовании равномерно сходящейся подпоследовательности). Из любой равномерно ограниченной и равноственно непрерывной на [a,b] последовательности функций $\{h_n(x)\}_{n=1}^{\infty}$ можсно извлечь равномерно сходящуюся на [a,b] подпоследовательность.

4⁰. Доказательство теоремы о существовании решения.

Теорема Пеано (о существовании решения). Пусть правая часть уравнения (1.1) непрерывна в области G, тогда для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $P_h(x_0, y_0)$ существует не менее одного решения задачи Коши уравнения (1.1) с начальными данными x_0, y_0 , определенного на $P_h(x_0, y_0)$.

§ 3. ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ЗАДАЧИ КОШИ

1^0 . Лемма Гронуолла.

Лемма. Пусть функция h(x) непрерывна на промежутке $\langle a, b \rangle$,

$$\exists \lambda, \mu > 0 : \forall x_0, x \in \langle a, b \rangle \Rightarrow 0 \leq h(x) \leq \lambda + \mu \left| \int_{x_0}^x h(s) \, ds \right|, (1.10)$$

тогда справедливо неравенство

$$h(x) < \lambda e^{\mu|x-x_0|}. (1.11)$$

Следствие. Если в лемме Гронуолла $\lambda = 0$, т. е. в неравенстве (1.10) $0 \le h(x) \le \mu \left| \int_{x_0}^x h(s) \, ds \right|$, то $h(x) \stackrel{\langle a,b \rangle}{\equiv} 0$.

20. Условия Липшица.

Df. Функция f(x,y) удовлетворяет условию Липшица по у глобально на множестве $D \subset \mathbb{R}^2$, т. е. $f \in \operatorname{Lip}_y^{gl}(D)$, если

$$\exists L > 0: \forall (x, \widehat{y}), (x, \widetilde{y}) \in D \Rightarrow |f(x, \widetilde{y}) - f(x, \widehat{y})| \leq L|\widetilde{y} - \widehat{y}|.$$
 (1.12)

Df. Функция f(x,y) удовлетворяет условию Липшица по у локально в области $G \subset \mathbb{R}^2$, т. е. $f \in \operatorname{Lip}_y^{loc}(G)$, если для любой точки $(x_0, y_0) \in G$ найдется окрестность этой точки $V(x_0, y_0) \subset G$ такая, что функция f(x,y) удовлетворяет в ней условию Липшица по у глобально, т. е. $f \in \operatorname{Lip}_y^{gl}(V(x_0, y_0))$.

3⁰. Теоремы о единственности решения.

Теорема (единственности). Пусть в уравнении (1.1) функция f(x,y) непрерывна и удовлетворяет условию Липшица по у ло-кально в области G, тогда G – это область единственности

Теорема (единственности, слабая). Пусть в уравнении (1.1) функция f(x,y) непрерывна в области $G \subset \mathbb{R}^2$, а в области $\widetilde{G} \subset G$ существует и непрерывна частная производная $\partial f(x,y)/\partial y$, тогда \widetilde{G} – это область единственности для уравнения (1.1).

Теорема Осгуда (единственности, сильная). Пусть в уравнении (1.1) функция f(x,y) непрерывна в области $G \subset \mathbb{R}^2$ и

$$\forall (x, \widehat{y}), (x, \widetilde{y}) \in G: |f(x, \widetilde{y}) - f(x, \widehat{y})| \le h(|\widetilde{y} - \widehat{y}|), (1.13)$$

где функция h(s) определена, непрерывна и положительна для всякого $s \in (0,a]$ и $\int_{\varepsilon}^{a} h^{-1}(s) ds \to \infty$ при $\varepsilon \to 0$ $(a,\varepsilon > 0)$. Тогда G – область единственности для уравнения (1.1) (без доказательства).

§ 4. СУЩЕСТВОВАНИЕ ОБЩЕГО РЕШЕНИЯ

10. Область существования общего решения.

пусть G область единственности для уравнения (1.1). $A = \{(x,y) \mid a < x < b, \ \varphi_1(x) < y < \varphi_2(x)\}.$

Лемма (о поведении решений в области A). 1) Существует число h > 0 такое, что для любой точки $(x_0, y_0) \in \overline{A}$ можно построить $P_h(x_0, y_0)$ — отрезок Пеано универсальной длины 2h; 2) Для любой точки $(x_0, y_0) \in \overline{A}$ решение уравнения (1.1) $y = \varphi(x)$ с начальными данными x_0, y_0 продолжимо на весь отрезок [a, b].

2^{0} . Формула общего решения.

Для произвольной точки $\zeta \in (a,b)$ положим

$$\varphi(x,C) = y(x,\zeta,C) \qquad ((\zeta,C) \in \overline{A}). \tag{1.13}$$

Теорема (о существовании общего решения). Определенная в (1.13) функция $y = \varphi(x, C)$ является общим решением уравнения (1.1) в области A, построенной в окрестности произвольной точки из области единственности G.

Df. Общее решение $y = \varphi(x, C)$, определенное формулой (1.13), называется общим решением в форме Коши или классическим общим решением.