Rime®

LoRaGateway

锐米 LoRa 网关说明书

文档版本

版本	日期	描述	
1.0	2016-01-22	为第一代网关提供操作说明	
2.0	2016-09-30	添加第二代网关操作说明	
2.1	2016-12-03	添加 Fast 功能,第一代网关全部升级到第二代	

目录

Rime [®]	LoRaGateway	1
锐米 LoRa 网关说明书		1
文档版本		1
产品型号		4
产品特点		4
功能描述		4
系统框图		5
产品尺寸		6
1 电气特性		7
1.1 最大工作条件		7
1.2 整体电气参数		7
1.3 模块接口电气特性		7
1.5 射频参数		7
2 连接 PC 或路由器		8
2.1 RS485 接口		8
2.2 Ethernet 接口		8
2.3 更多信息		8
3 配置参数		9
3.1 时间值与网络模型		9
3.1.1 组网参数		9
3.1.2 时间值		9
3.1.3 网络模式		9
3.2 网络地址		11
3.2.1 重新分配		11
3.2.2 更换网关		11

Rime [®]	LoRaGateway 27
附录 D: 常见问题与解决办法	26
附录 C: CRC16 计算方法	25
附录 B: 计算主动上报和唤醒下发时长	24
附录 A: 网关接口协议	19
6.4 数据帧解析	18
	17
	16
	16
6 接口定义	16
5.3 更多信息	15
	15
5.1 RS485 接口	15
5 接入云服务器	15
4 与终端通信	15
3.3.3 功率	14
	14
	14
3.3 速率、频率和功率	14
3.2.5 获取与显示地址	12
3.2.4 回收地址	11
3.2.3 指定终端	11

产品型号

产品特点

- 能唤醒:唤醒休眠终端,基于 CAD 和地址过滤,支持广播和单播唤醒。
- 长距离: 空旷环境可覆盖半径 5km 的区域。
- 低功耗:终端休眠功耗仅 1.4uA,典型抄表应用 2 节 5 号电池工作 10 年。
- 免冲突:基于 TDMA(时分复用)通信技术,高效节能,最大化利用带宽。
- 低速率:从 0.1 kbps 到 20kbps 可选,适合传感器数据,不适合语音和视频。
- 自组网:最大支持 400 个 LoRa 终端,自组网,自治愈,即插即用。
- 多接口: 支持 Ethernet 和 RS485 方式接入 Internet 或 PC。
- 连接云:快速搭建云服务器,用户定制物联网系统。

功能描述

锐米 LoRa 网关(以下简称网关)是锐米通信提供的 LPWAN(低功耗广域网络)产品,结合**锐米 LoRa 终端**和**锐米云服务器**可以快速搭建物联网系统(详情请链接: http://www.rimelink.com/nd.jsp?id=36&_np=105_315)。

支持超低功耗唤醒技术,特别适合用户远程控制(如:使用手机随时随地开关灯光、电机、阀门等)。基于 CAD 和地址过滤技术,节能高效;支持广播和单播唤醒,灵活便捷。

基于 LoRa ™扩频调制技术,安装高增益 470MHz 天线,网关与终端有效通信 距离空旷可达 5km。特别适合于户外通信场景,如:远程抄表、城市监控、工业控制等。

基于超低功耗设计,终端休眠功耗低至 1.4uA,特别适合电池供电的产品。典型的抄表应用中,2 节 5 号电池可以有效工作 10 年。

基于 TDMA (时分复用) 通信技术,网络内所有终端通信无碰撞,最大化利用带宽,没有重传延时,提高网络整体 QoS,降低网络整体功耗。

对网关进行简单配置后,与终端自动组网,上电即可工作,需任何网络维护,极大降低用户的使用复杂度和维护成本。

内嵌多种无线通信健壮性技术,智能解决:通信碰撞、微弱信号、外界干扰、断 网继连等挑战,提供一个长期稳定运营的物联网系统。

系统框图

产品尺寸

网关机箱尺寸如下表(不包含天线、电源和接口接插件)

体积	长	宽	盲
尺寸 (mm)	139	114	64

网关机箱外框与安装 CAD 图如下

1 电气特性

网关的不同电气特性列出如下,此外详细信息和其他参数范围也可应要求提供。

1.1 最大工作条件

参数项目	测试条件	最小值	典型值	最大值	单位
供电电压			9		V
存储温度		-40	-	+85	$^{\circ}$
运行温度		-20	-	+70	$^{\circ}$
ESD				8000	V

1.2 整体电气参数

参数列表	测试条件	最小值	典型值	最大值	单位
供电电压			9.0		V
平均功率		441	623	910	mW

1.3 模块接口电气特性

参数列表	测试条件	最小值	典型值	最大值	单位
RS485 波特率		-	115200	-	bps
Ethernet 速率		10M	100M	-	bps
隔离电压强度	漏电流<5mA,温度<95%		2.5K		VDC

1.5 射频参数

参数列表	测试条件	最小值	典型值	最大值	单位
频率范围		410	470	525	MHz
RF 发射功率	470 MHz	_	17	20	dBm
调制方式	扩频调制				
发射频率 vs 温度	00 Fil. 70°0	_	±7	-	kHz
发射功率 vs 温度	-20 到+70℃	_	±0.5	_	dB

2 连接 PC 或路由器

2.1 RS485 接口

第一步:请将"RS485线缆"接插头连接网关;

第二步: 请使用 "USB 转 RS485 线缆"接入 PC;

第三步:安装 USB 转 RS485 驱动,找到对应串口号,使用网关设参软件。

2.2 Ethernet 接口

第一步:请将"Ethernet线缆"接插头连接网关;

第二步:将网关连接到路由器:

第三步:使用网关设参软件,配置网关IP地址等,连接到PC或服务器。

2.3 更多信息

关于连接网关和使用设参软件更详尽信息,请参考《锐米 LoRa 网关设参软件》 http://www.rimelink.com/nd.jsp?id=36&_np=105_315

3 配置参数

3.1 时间值与网络模型

3.1.1 组网参数

参数	含义
终端节点个数	终端个数必须 大于等于 入网终端的最大地址
单次上传最大字节	为 0 代表关闭主动上报,1~247 允许主动上报
上报失败重传次数	一般为 0
唤醒 data 最大字节	为 0 代表关闭唤醒下发,1~247 允许唤醒下发
唤醒 ack 最大字节	参考《锐米 LoRa 终端说明书》3.4 低功耗唤醒

3.1.2 时间值

参数	含义
Slot 时长	必须 大于等于 "主动上报时长",计算方法参考 附录 C
二次上报间隔	必须 大于等于" 终端节点个数 x(Slot 时长+上报失败重传次数)"
唤醒间隔	必须 大于等于" 唤醒下发时长",计算方法参考 附录 C

3.1.3 网络模式

模式 1 仅主动上报

设置"唤醒 data 最大字节"为 0,代表关闭唤醒下发,网络模式如上图所示,节点仅主动上报。

模式 2 仅唤醒下发

设置"单次上传最大字节"为 0, 代表关闭主动上报, 网络模式如上图所示, 仅唤醒下发节点。

模式 3 上报+唤醒 |

保留时隙 = 二次上报间隔 - (Slot 时长 x 终端节点个数);

如果"保留时隙"大于等于"最小唤醒间隔",网络模式如上图所示:在一轮主动上报的末尾,允许一次唤醒下发。

模式 4 上报+唤醒Ⅱ

如果 "Slot 时长" 大于等于 "(主动上报时长+唤醒下发时长)", 网络模式如上图 所示: 每次节点主动上报后,允许一次唤醒下发。

小结

上述 4 种模式的案例,请参考《锐米 LoRa 系统配置案例》:

http://www.rimelink.com/nd.jsp?id=44& np=105 315

3.2 网络地址

和路由器 DHCP 分配网络地址类似,网关根据终端 ID 分配网络地址,从 0x0001 开始; 0xFFFF 代表广播地址。对于网络地址,用户一般有如下应用。

3.2.1 重新分配

给网关发送"恢复出厂设置"命令,再给终端重新上电,网络将给终端重新分配 网络地址。

3.2.2 更换网关

第一步:将"旧网关"和"终端"掉电;

第二步: 先配置"新网关"的网络参数,再发送"恢复出厂设置"命令;

第三步:给所有终端上电,自动申请网络地址。

3.2.3 指定终端

示例:终端 ID=0x12345678, 欲分配网络地址=0x0001。

第一步:将该终端掉电;

第二步:对网关执行"设置网络地址项",代入"终端 ID=0x12345678"和 "网络地址=0x0001":

第三步:将该终端上电,它将获得网络地址 0x0001。

3.2.4 回收地址

示例: 欲回收网络=0x0001 给某终端,该终端 ID=0x12345678, 网络地址=0x0064。

第一步:将该终端掉电;

第二步:对网关执行"清除网络地址项",代入"网络地址=0x0001";

第三步:对网关执行"清除网络地址项",代入"网络地址=0x0064":

第四步:给该终端上电,它将获得网络地址 0x0001。

3.2.5 获取与显示地址

服务器端可以采用如下步骤获取和显示网络地址表:

第一步: 获取网络地址表大小。

服务器发送"读取地址表数目",网关回复地址表总数目和有效项数目。

如:地址表总数目=80,有效项数目=70

第二步: 获取网络地址表项。

服务器发送"读取地址表项",参数为: 起始地址+地址项个数。

如:上例中地址表总数目=80,一次读取地址表项最大=50,需要分2次读取:

次数	起始地址	地址项个数
1	1	50
2	51	30

第三步:显示地址表项。

网关返回的地址表项:终端 ID+有效标志:服务器需要添加网络地址。

如:上例中服务器读取第1次网络地址表项,得到如下表数据(共50项)

终端 ID (十六进制)	有效 (十六进制)
11 22 33 44	01
55 66 77 88	00

第2次网络地址表项,得到如下表数据(共30项)

终端 ID(十六进制)	有效 (十六进制)
99 AA BB CC	01
00 DD EE FF	01

一般转换成如下格式,方便用户观看

网络地址	终端 ID	有效
0x0001	0x11223344	Т
0x0032	0x55667788	F
0x0033	0x99AABBCC	Т
0x0050	0x00DDEEFF	Т

3.3 速率、频率和功率

特别注意:请确保网关和终端的空中速率和频率一致,否则将无法通信!并且,这2个参数需要对"网关"和"终端"分别设置。

3.3.1 速率

网关可以设置空中速率档位,它的规律是:距离越远,速率越低,提供三种模式。

模式	空中速率	空空传输	小区环境	楼道通信
远距离	443bps	5000m	绕射 4 栋 32 层建筑物,120m	36 层
中距离	2876bps	2000m	绕射 3 栋 32 层建筑物,100m	20 层
近距离	20334bps	1000m	绕射 2 栋 32 层建筑物,90m	10 层

3.3.2 频率

用户可以划分不同频段来组织不同的子网,这就是 FDMA(频分复用)技术。如: 一个子网工作在 470MHz,另一个子网工作在 471MHz,这 2 个子网互不干扰。每一个频段称为一个信道,网关信道划分与空中速率档位有如下对应关系:

	• • • • • • • • • • • • • • • • • • • •					
模式	信道带宽	常用实例		常用实例		
远距离, 低速率	200kHz	469.8MHz	470.0MHz	470.2MHz		
中距离, 中速率	300kHz	469.7MHz	470.0MHz	470.3MHz		
近距离,高速率	1000kHz	469.0MHz	470.0MHz	471.0MHz		

3.3.3 功率

用户可根据需要,调整网关的发射功率,支持-1~20dBm 的范围。一般网关工作在最大发射功率状态(20dBm)。

4 与终端通信

一般而言,网关和终端通信良好。如果发现通信失败,请按如下顺序排查原因。

顺序	概率	原因	解决
1	50%	速率与频率不一致	将网关和终端分别设置成相同的速率和频率
2	40%	网络参数不正确	请按"3.1 时间值与网络模型"设置网络参数
3	5%	距离太远	降低速率或缩短网关与终端通信距离
4	4%	信号干扰严重	切换网关与终端频率
5	1%	硬件损坏	联系锐米售后客服

5 接入云服务器

从设参 PC 查看到网络正常工作后,可以将网关连接到云服务器。

5.1 RS485接口

使用设参 PC 作 Internet 中转站,可以将 RS485 网关采集数据上传到云服务器。

第一步:点击设参软件"传输设置",开启数据传输,选择"传输类型=HTTP":

第二步: 在 HTTP 地址框输入: http://121.40.175.101/test/R.aspx;

第三步:访问采集数据地址: http://121.40.175.101/test/S.aspx。

5.2 Ethernet 接口

设置云服务器的 IP 地址和端口,Ethernet 网关可以直接与云服务器连接。如果希望将采集数据接入锐米测试云平台:

第一步:点击设参软件"以太网配置",搜索设备,获取参数信息;

第二步:设置:目标 IP=121.40.175.101,目标端口=5555;

第三步:访问采集数据地址:详见发货清单中"锐米测试云平台 URL"。

5.3 更多信息

请参考锐米云: http://www.rimelink.com/nd.jsp?id=40&_np=105_315

6 接口定义

6.1 Ethernet 网关接口

网关通过 Ethernet 端口与服务器对接。通信帧位于 TCP/IP 协议帧之上,它们的 层次关系如图 6-1 所示。通信帧采用变长格式,大部分设备可以很好地处理以"回车符"结尾的数据帧,协议中的 Tail 等于 0x0D(回车符)。协议帧的定义和实例 详见附录 A 和附录 B。

图 6-1 Ethernet 网关协议帧格式

6.2 RS485 网关接口

服务器与网关通信帧采用变长格式,如图 6-2 所示。大部分设备可以很好地处理以"回车符"结尾的数据帧,协议中的 Tail 等于 0x0D(回车符)。协议帧的定义和实例详见附录 A 和附录 B。

图 6-2 RS485 网关协议帧格式

6.3 通信模式

通信一般遵循主从方式,服务器为主,网关为从。通信由服务器发起,网关根据相应的命令进行响应,如图 6-3 所示。

图 6-3 主从模式

当网关接收终端主动上报或唤醒回应时,它将以"异步方式"发送给服务器,如下图所示。

图 6-4 异步发送

6.4 数据帧解析

为简化系统设计,我们强烈建议您采用"状态机"来解析数据帧,并且把解析工作放在 ISR(中断服务程序)完成,仅当接收到最后一个字节(0x0D)时,再将整个数据帧提交给进程处理。该解析状态机的原理如下图 6-5 所示。

为帮助用户更好地理解数据帧的解析,我们设计了 Demo 系统,公布源代码,请链接: http://www.rimelink.com/nd.jsp?id=43&_np=105_315

6-5 用户系统接收通信数据帧状态机

接收数据帧设计原则:

1. 保持接收数据全貌; 2. 尽可能地简单; 3. 具备高度容错能力。 备注:

C: 串口输入字节; Cnt: 当前数据域的累计个数。

附录 A: 网关接口协议

			实例	
帧含义	Туре	数据域	字节	数据解释
读取软件版本 (Server->Sink)	0x01	1	0	/
回应软件版本 (Sink->Server)	0x81	软件版本号 (字符串,以'\0'结尾)	56	"RGWE470TW V1.1.9 16-08-01, SN=1F303533333323447162E0031"
配置射频参数 (Server->Sink)	0x02	2B:前导码 0x55 0xAA 1B:空中速率档位 有效值=[4, 7, 10] 4B:频率,有效范围= [410 MHz~ 525MHz] 2B:CRC16 校验	9	数据帧(十六进制): 55 AA 07 1C 03 A1 80 XX XX 55 AA: 前导码(防错) 07: 使用第7档速率(见表 2) 1C 03 A1 80: 0x1C03A180(470,000,000), 即频率为470MHz。 XX XX: 对前面7字节CRC16校验
回应配置射频 (Sink->Server)	0x82	配置结果 (字符串,以'\0'结尾)	3 28	"OK" "Bad bps, valid is[4, 7, 10]"
读取射频参数 (Server->Sink)	0x03	1	0	1
回应读取射频 (Sink->Server)	0x83	2B:前导 0x55 0xAA 1B:空中速率档位 4B:频率(大端格式) 2B:CRC16 校验	9	数据帧(十六进制): 55 AA 07 1C 03 A1 80 XX XX 55 AA: 前导码(防错) 07: 使用第7档速率(见表 2) 1C 03 A1 80: 0x1C03A180(470,000,000), 即频率为470MHz。 XX XX: 对前面7字节CRC16校验
设置网络参数 (Server->Sink)	0x04	1B:单次上传最大字节 有效值=[0~247]注①	16	数据帧(十六进制): F0 00 64 32 01 2C 03 E8 00 04 93 E0 00 04 93 E0

		1		·
		1B:上传失败重传次数		F0: 单次上传最大字节=0xF0(240 字节)
		有效值=[0~127]		00: 上传失败重传次数=0x00(无须重传)
		1B:唤醒 data 最大字节		64: 唤醒 data 最大字节=0x64(100 字节)
		有效值=[0~247]注②		32: 唤醒 ack 最大字节=0x32(50 字节)
		1B:唤醒 ack 最大字节		01 2C: 终端个数=0x012C(300)
		有效值=[0~247]注②		03 E8: Slot 时长=0x03E8(1000ms)
		2B:终端节点个数		00 04 93 E0: 二次上报间隔=
		有效值=[1~400]		0x493E0(300000ms)
		2B:Slot 时长(ms),		00 04 93 E0: 唤醒间隔=
		有效值=[注③,		0x493E0(300000ms)
		32767]		
		4B:二次上报间隔(ms)		
		[注④,86400000]		
		4B:唤醒间隔(ms)		
		[0, 86400000]		
回应设置网络	0x84	设置结果	3	"OK"
(Sink->Server)	UX64	(字符串,以'\0'结尾)	37	"Bad number of node, valid is [1~400]"
读取网络参数	0x05		0	
(Server->Sink)	UXUS	1	0	
				数据帧(十六进制): F0 00 64 32 01 2C 03
		1B:单次上传最大字节		E8 00 04 93 E0 00 04 93 E0
		1B:上传失败重传次数		F0: 单次上传最大字节=0xF0(240 字节)
		1B:唤醒 data 最大字节		00: 上传失败重传次数=0x00(无须重传)
回应网络参数	0x85	1B:唤醒 ack 最大字节	16	64: 唤醒 data 最大字节=0x64(100 字节)
(Sink->Server)	0x85	2B:终端节点个数	10	32: 唤醒 ack 最大字节=0x32(50 字节)
		2B:Slot 时长(ms),		01 2C: 终端个数=0x012C(300)
		4B:二次上报间隔(ms)		03 E8: Slot 时长=0x03E8(1000ms)
		4B:唤醒间隔(ms)		00 04 93 E0: 二次上报间隔=
				0x493E0(300000ms)

				00 04 93 E0: 唤醒间隔=
				0x493E0(300000ms)
恢复出厂设置				
(Server->Sink)	0x08	/	0	
回应恢复出厂		,		"O.1.0"
(Sink->Server)	0x88	/	3	"OK"
清除网络地址项	000	OD. W. 상 나나 네	0	数据帧(十六进制): 00 01
(Server->Sink)	0x09	2B:网络地址	2	清除 0x0001 地址项,可分配其他终端使用
回应清除地址项	0,400		3	"OK"
(Sink->Server)	0x89	1	26	"Bad addr, valid is [1~10]"
设置网络地址项		2B:网络地址		数据帧(十六进制): 00 01 12 34 56 78
(Server->Sink)	0x0A	2B.网络地址 4B:终端 ID	6	指定终端 ID 为 0x12345678 分配
(Server-2Sirik)		40.突姍 10		网络地址为 0x0001
回应设置地址项	0x8A	/	3	"OK"
(Sink->Server)	UXU/ (,	27	"Bad addr, valid is [1~400]"
 唤醒通信数据帧	0x0B	2 字节 NodeAddr+ 唤醒通信数据	6	数据帧(十六进制): 00 02 12 34 56 78
(Server-> Sink)				00 02: 节点地址
(OCIVEI > OIIIK)		· 大胜也旧奴加		12 34 56 78: 唤醒通信数据
接收唤醒结果	0x8B	(字符串,以'\ 0 '结尾)	3	"OK"
(Sink->Server)	OXOD	(1717年,以10年代)	18	"Bad node address!"
设置发射功率	0x0C	1B:发射功率,	1	数据帧(十六进制): 14
(Server-> Sink)	0,000	有效范围=[-1~20]	'	14: 0x14=20,发射功率为 20dBm
回应设置功率	0x8C	发送结果	3	"OK"
(Sink->Server)	UXOC	(字符串,以'\0'结尾)	28	"Bad TX power, valid is[-1~20]"
读取发射功率	0x0D		0	1
(Server-> Sink)		1	0	1
回应读取功率	0x8D	1B:发射功率,	1	数据帧(十六进制): 14
(Sink->Server)	UXOD	有效范围=[-1~20]		14: 0x14=20,发射功率为 20dBm
读取地址表数目	0x0E	1	0	1

(Server-> Sink)				
回应地址表数目 (Sink->Server)	0x8E	2B: 地址总数目 2B: 有效地址数目	4	数据帧(十六进制): 00 50 00 46 00 50: 0x0050=80, 地址总数目 80 00 46: 0x0046=70, 有效地址数目 70
读取地址表项 (Server-> Sink)	0x0F	2B: 起始地址 [1~地址总数目] 1B: 地址项个数[1~50]	3	数据帧(十六进制): 00 01 32 00 01: 0x0001=1,起始地址为 1 32: 0x32=50,读取 50 个地址项
回应地址表项 (Sink->Server)	0x8F	每个地址项为 5B: 终端 ID+有效标志	250	(续上例, 起始地址为 1)数据帧(十六进制): 11 22 33 44 01 55 66 77 88 00 (省略 240B) 地址=1, 终端 ID=0x11223344, 有效=T 地址=2, 终端 ID=0x55667788, 有效=F (省略表项: 地址 3~地址 50)
Node 主动上报 (Sink->Server)	0xC0	2 字节 NodeAddr+ 实际接收数据+ 1 字节 RSSI 值	7	数据帧(十六进制): 00 02 12 34 56 78 FF 00 02: 节点地址 12 34 56 78: Node 上报的数据 FF: RSSI 值=-1 (该值为有符号 8 位整数)
Node 唤醒回应 (Sink->Server)	0xC1	2 字节 NodeAddr+ 实际接收数据+ 1 字节 RSSI 值	7	数据帧(十六进制): 00 02 12 34 56 78 FF 00 02: 节点地址 12 34 56 78: Node 上报的数据 FF: RSSI 值=-1 (该值为有符号 8 位整数)
读取内部参数 (Server-> Sink)	0x3F	1	0	0
回应内部参数 (Sink->Server)	0xBF	/	22	参数注⑤

注①: 为 0 表示节点不需要主动上报; 注②: 为 0 表示节点不需要唤醒通信;

注③:根据"速率"和"单次上报最大字节"计算"上报数据空中时间"(详见**附录 C)**

SlotUsed=(1 + 上报失败重传次数)* 上报数据空中时间;

"上报 slot 时长"必须大于等于"SlotUsed"。

注④: "二次上报间隔"必须大于等于(终端节点个数 * 上报 slot 时长)。

注⑤: 这是一个内部命令,仅供开发人员调试使用。

附录 B: 计算主动上报和唤醒下发时长

计算时长需要使用计算时间的 C 语言代码 GetMINSlot_main.c, 下载链接为: http://www.rimelink.com/nd.jsp?id=33&_np=105_315

实例 1: 空中速率档位=远距离, 低速率: 单次上传最大字节=10, 主动上报时长:

普通网关: GetMinSlotLen(10, RF_SPEED_LOW, FALSE) = 1795ms

快递网关: GetMinSlotLen(10, RF SPEED LOW, TRUE) = 1472ms

实例 2: 空中速率档位=远距离,低速率;唤醒 data 最大字节=20,唤醒 ack 最大字节=0;唤醒下发时长:

普通网关:

GetTime4WakeExchange(20, 0, RF_SPEED_LOW, FALSE)=2083ms 快递网关:

GetTime4WakeExchange(20, 0, RF_SPEED_LOW, TRUE)=1720ms

使用网关设参软件可以方便计算这 2 个时间值,以实例 1 和实例 2 的条件,设 参软件计算的时间值:主动上报时长=1795ms,唤醒下发时长=2083ms。

附录 C: CRC16 计算方法

下载源代码请链接: http://www.rimelink.com/nd.jsp?id=33&_np=105_315

附录 D: 常见问题与解决办法

问题一:无法正常通信。

请检查终端与网关的空中速率档位和频率是否一致。

请检查天线是否正确安装且匹配。

通信距离是否超过范围。

请检查网关是否正确上电。

问题二:通信质量差,距离近且丢包率高。

请检查天线是否正确安装且匹配。

是否接收环境恶劣,如:障碍物十分密集、有强干扰源。

是否有同频干扰。

Rime®

LoRaGateway

销售与服务

公司名称:长沙市锐米通信科技有限公司

公司网站: www.rimelink.com

产品销售: sales@rimelink.com

技术支持: techsupport@rimelink.com

联系电话: 0731-82231246

公司地址: 长沙市普瑞大道 278 号 48 座 2504