Теория вероятностей и математическая статистика: пересдача/комиссия 10.09.2015

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера!

Вопрос 1 \clubsuit Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

Время 8:00	кухарка заходит	кухарка не заходит	
Крылов завтракает	200	40	
Крылов уже позавтракал	25	100	
	'		
A 39	C 79		139
B 100	D 179	I	F] Нет верного ответа

Вопрос 2 \clubsuit Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p}=0.2$. Разумная оценка дисперсии случайной величины \hat{p} равна

A 0.4	C 1.6	E 0.04
B 0.16	0.0016	F Нет верного ответа.

Вопрос 3 Обычную рублевую монетку подбрасывают четыре раза. Первые три раза она выпала орлом. Вероятность того, что она выпадет орлом в четвертый раз:

<u>А</u> больше 0.5 равна 0.5 <u>С</u> меньше 0.5

Вопрос $4 \clubsuit$ Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при неизвестной дисперсии используется статистика, имеющая распределение

Вопрос 5 \clubsuit Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1^2 + Z_5^2}{Z_3^2 + Z_2^2}$ имеет распределение

Вопрос 6 \clubsuit Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение

Вопрос 22 \clubsuit Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\mathrm{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - X_1)^2$ равно

Вопрос 23 \clubsuit Ковариационная матрица вектора $X = (X_1, X_2)$ имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия разности случайных величин, $Var(X_1 - 2X_2)$, равняется

 A 15
 C 21
 ■ 30

 B 12
 D 1.2
 F Hem верного ответа.

Вопрос 24 🖟 Размером теста называется

- А Вероятность принять неверную гипотезу
- В Вероятность отвергнуть альтернативную гипотезу, когда она верна
- Вероятность отвергнуть основную гипотезу, когда она верна
- Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна
- Е Единица минус вероятность отвергнуть основную гипотезу, когда она верна
- **F** Нет верного ответа.

Вопрос 25 & Геродот Геликарнасский проверяет гипотезу $H_0: \mu=0, \ \sigma^2=1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell=-177$, а при подстановке $\mu=0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

Вопрос 26 \clubsuit Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

A $t_{n_1+n_2-1}$ C F_{n_1,n_2} E $\chi^2_{n_1+n_2-1}$ B $t_{n_1+n_2}$ I Hem верного ответа.

Вопрос 27 🌲 Датчик случайн				
ны: 0.78, 0.48. Вычислите значен ствии распределения равномерно: уровня значимости 0.1 и двух наб	му на [0;1]. Крит	чческое значени		
\bigcirc 0.78, H_0 отвергается	$0.48, H_0$ не	_	$\stackrel{\square}{=}$ 0.37, H_0 не отвергается	
$[B]$ 1.26, H_0 отвергается	$\boxed{\rm D} \ 0.3, H_0 {\rm He} {\rm o}$		F Нет верного ответа.	
Вопрос 28 \clubsuit На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[0;1]$ против альтернативной гипотезы $H_a: X_1 \sim U[0.5;1.5]$. Рассматривается критерий: если $X_1 > 0.8$, то гипотеза H_0 отвергается в пользу гипотезы H_a . Вероятность ошибки 2-го рода для этого критерия равна:				
A 0.2	0.3		E 0.4	
B 0.5	D 0.1		F Нет верного ответа.	
Вопрос 29 Редкой болезнью болеет 0.01% населения. Существующий тест ошибается в 10% случаев. У первого встречного берут тест. Судя по тесту, человек болен. Какова вероятность того, что он действительно болен?				
А больше 0.	.5 В равн	на 0.5	меньше 0.5	
Вопрос 30 У Пети связка кли подходит к замку и перебирает и			ику. Петя не знает, какой ключ пше шансы подойти?	
А у первого	В у посл	педнего	одинаковы	
Вопрос 31 • Бессмертный гесорка размера <i>n</i> из нормального оценку максимального правдопод	распределения.	Он построил оце		
А они не равны, но сближают	ся при $n \to \infty$		ны, и не сближаются при $n ightarrow$	
они равны		∞ $\boxed{\mathrm{E}} \hat{\mu}_{MM} > \hat{\mu}_{M}$	ī	
$\boxed{\mathrm{C}} \; \hat{\mu}_{MM} < \hat{\mu}_{ML}$		F Нет верног		
Вопрос 32 Если $f(x)$ — функ	ция плотности, т	го интеграл $\int_{-\infty}^{x}$	f(u) du равен	
\overline{A} 0	$\boxed{\mathrm{C}} \ \mathrm{Var}(X)$		E 0.5	
F(x)	<u>D</u> 1		$\overline{\mathbb{F}}$ $\mathbb{E}(X)$	

 $\boxed{\rm D}$ Гипотеза H_0 отвергается на уровне значимости 5%, но не на уровне значимости 1%

 $\boxed{\mathrm{E}}$ Гипотеза H_0 не отвергается на любом разумном уровне значимости

F Нет верного ответа.

Вопрос 34 Функция распределения

 А может принимать любые положительные значения
 D всегда непрерывна

 Б всюду дифференциируема

 С невозрастающая
 F не имеет горизонтальных асимптот

Имя, фамилия и номер группы:

Номер в списке (для автоматического распознавания):

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Вопрос 1: A B C D **Вопрос** 18 : A B C D E **Вопрос 2**: A B C E F Вопрос 19: А В С D Вопрос 3 : А С Вопрос 20 : А В С D Вопрос 4: А В Вопрос 21 : A B D E F [D] [E] [F]Вопрос 5: А В Вопрос 22 : А С С Б Е Г |D| $|\mathbf{E}| |\mathbf{F}|$ **Вопрос 6**: A B C D Вопрос 23 : А В С D Вопрос 7: А С С Вопрос 24: А В В Б Г Г Вопрос 8 : Вопрос 25 : А С С Б Е Г Вопрос 9: А В С $\mathbf{E} \mid \mathbf{F} \mid$ Вопрос 26 : А В С **Вопрос 10 :** A B **В** D E F G Вопрос 27: |А | В | Вопрос 11 : А Вопрос 28: А В П Б Г |C|Вопрос 29: А В Вопрос 12 : А C D E F **Вопрос 13 :** A B **В** D E F Вопрос 30 : А В **Вопрос 14:** В С D E F Вопрос 32: А С С Б Е Г Вопрос 33 : А 🔳 С 🗅 Вопрос 17: А В

+2/1/53+ ${ m Teopus}$ вероятностей и математическая статистика: пересдача/комиссия 10.09.2015Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 \clubsuit Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение $\overline{\mathbf{A}} t_{n_1+n_2-1}$ C N(0;1) $[E] F_{n_1,n_2}$ $\boxed{\mathbf{D}} \chi^2_{n_1+n_2}$ $B F_{n_1-1,n_2-1}$ Нет верного ответа. У Пети связка ключей. Один из них подходит к замку. Петя не знает, какой ключ подходит к замку и перебирает их по очереди. У какого ключа выше шансы подойти? В у последнего А у первого Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при неизвестной дисперсии используется статистика, имеющая распределение $\boxed{\mathrm{E}} \chi_{n-1}^2$ $|\mathbf{A}| t_n$ [C] N(0,1) $\mid B \mid \chi_n^2$ **F** Нет верного ответа. t_{n-1} Вопрос 4 🌲 Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение $\boxed{\mathbf{C}} F_{n_1,n_2}$ $E t_{n_1+n_2-1}$ $A t_{n_1+n_2}$ $t_{n_1+n_2-2}$ **F** Нет верного ответа. \mathbb{B} $\chi^2_{n_1+n_2-1}$ Два обычных игральных кубика подбрасываются одновременно. Больше шансы выпасть у комбинации: |C|А две шестерки одна шестерка, одна пятерка одинаковые шансы Вопрос 6 \clubsuit Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина

 $\frac{Z_1^2 + Z_5^2}{Z_2^2 + Z_2^2}$ имеет распределение

 \overline{A} $F_{7,2}$ $\boxed{\mathbf{C}} F_{2,7}$ $\boxed{\mathrm{E}} F_{1,2}$ $F_{2,2}$ F Нет верного ответа.

У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока -68, 83, 60 и 52. Вычислите статистику Вилкоксона и проверьте гипотезу H_0 об однородности результатов студентов двух потоков. Критические значения статистики Вилкоксона равны $T_L = 12$ и $T_R = 28$.

 $lue{C}$ 65.75, H_0 отвергается E 53, H_0 отвергается $24, H_0$ не отвергается [B] 12.75, H_0 не отвергается [D] 20, H_0 не отвергается **F** Нет верного ответа.

Вопрос 22 \clubsuit Пусть X_1, X_2, \ldots, X_{33} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение

A 3.3 B 0.33 D 10

 $\boxed{\mathrm{E}}$ 3

F Нет верного ответа.

Вопрос 23 🌲 Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.2 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

[A] 1.65, H_0 отвергается

C 1.29, H_0 отвергается

[D] 1.29, H_0 не отвергается

|G| Нет верного ответа.

 $\boxed{\mathrm{B}}$ 1.34, H_0 не отвергается

 $1.34, H_0$ отвергается

[F] 1.96, H_0 отвергается

Вопрос 24 \clubsuit Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1\sqrt{n+3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$ имеет распределение

A N(0,1)

C χ^2_{n-4}

 $\boxed{\mathrm{B}} t_{n-3}$

 \square $F_{1,n-2}$

Нет верного ответа.

Вопрос 25 🐇 Бессмертный гений поэзии Ли Бо оценивает математическое ожидание по выборка размера n из нормального распределения. Он построил оценку метода моментов, $\hat{\mu}_{MM}$, и оценку максимального правдоподобия, $\hat{\mu}_{ML}$. Про эти оценки можно утверждать, что

 $|A| \hat{\mu}_{MM} < \hat{\mu}_{ML}$

|D| они не равны, и не сближаются при $n \to \infty$

 $|\mathbf{B}| \hat{\mu}_{MM} > \hat{\mu}_{ML}$

[E] они не равны, но сближаются при $n \to \infty$

они равны

F *Нет верного ответа.*

Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, ли-Вопрос 26 🕹 бо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

Время 8:00	кухарка заходит	кухарка не заходит
Крылов завтракает	200	40
Крылов уже позавтракал	25	100

A 179

139

B 79

D 100

|F| *Нет верного ответа.*

•			+2/5/49+
Вопрос 27 4	• Ковариационная матрица найных величин, $\mathrm{Var}(X_1-2X_1)$		имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия
A 15 B 21	30 D 1.2		Е 12F Нет верного ответа.
Вопрос 28 величины <i>Y</i> =	Если X_i независимы, $\mathbb{E}(X_i) = \sum_{i=1}^n (X_i - X_i)^2$ равно	$(X_i) = \mu$ и $Var(X_i) = \sigma^2$	² , то математическое ожидание
$\begin{array}{ c c }\hline A & \hat{\sigma}^2\\\hline B & \sigma^2\\\hline \end{array}$	$ \begin{array}{c} \hline{\mathbf{C}} & \mu \\ \hline{\mathbf{D}} & (n - 1) \end{array} $	$1)\sigma^2$	
ствии распред	. Вычислите значение критер	оия Колмогорова и пр]. Критическое значен	ения псевдо случайной величи- оверьте гипотезу H_0 о соответ- ие статистики Колмогорова для
	<u> </u>		$0.48, H_0$ не отвергается F <i>Hem верного ответа.</i>
$\bar{X}=20$ и нес		$\hat{\sigma}^2 = 25$. В рамках пр	по оценено выборочное среднее роверки гипотезы $H_0: \mu=15$ дующее заключение
	а H_0 отвергается на уровне за H_0 отвергается на уровне за		
	а H_0 отвергается на любом ра H_0 отвергается на уровне за H_0 не отвергается на любом оного ответа.	начимости 5%, но не на	а уровне значимости 1%
Вопрос 31 4	Если Р-значение (P-value)	меньше уровня значи	мости α , то гипотеза $H_0: \ \sigma=1$
	ется, только если $H_a:\ \sigma \neq 1$ ется, только если $H_a:\ \sigma > 1$ ргается	Отвергает	ся, только если $H_a:\ \sigma<1$ ся σ
			гвующий тест ошибается в 10% болен. Какова вероятность того,
	меньше 0.5	В равна 0.5	больше 0.5
Вопрос 33	Если $f(x)$ — функция плот	ности, то интеграл $\int_{-\infty}^{x}$	$_{\circ} f(u) du$ равен
	$ \begin{array}{c} $		E 0 F 1

Вопрос 34 \clubsuit На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[0;1]$ против альтернативной гипотезы $H_a: X_1 \sim U[0.5;1.5]$. Рассматривается критерий: если $X_1 > 0.8$, то гипотеза H_0 отвергается в пользу гипотезы H_a . Вероятность ошибки 2-го рода для этого критерия равна:

A 0.5

C 0.4

E 0.1

B 0.2

0.3

F Нет верного ответа.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Вопрос 1: A B C D E Вопрос 18: АВС В Вопрос 2: А В Вопрос 19: [А] [В] Вопрос 3: А В С Вопрос 20 : А С С Б Е **Вопрос 4**: A B C E F Вопрос 21 : А В | D | E | F |Вопрос 5 : |А| Вопрос 22 : |А| |В| $| | \mathrm{D} | | \mathrm{E} | | \mathrm{F} |$ Вопрос 6: А В С Вопрос 23 : А В С D Вопрос 7: **Вопрос 24**: A B C D E D E F Вопрос 8: А В Вопрос 25 : А В **Вопрос 9**: A С D E F Вопрос 26 : А В [D] [E] [F]Вопрос 10: Вопрос 27 : А В Вопрос 11 : А В С **Вопрос 28**: |A| |B| |C| |D| Вопрос 29: АВС О Вопрос 12: А В С D Вопрос 13: Вопрос 30 : А В [D] [E] [F]**Вопрос** 14 : A B D E F **Вопрос 31 :** A B C D F Вопрос 15: Вопрос 32 : Вопрос 33: А В **Вопрос 16 :** A B **В** D E F D E F **Вопрос** 17: A B C D F **Вопрос 34 :** A B C E F

Теория вероятностей и математическая статистика: пересдача/комиссия 10.09.2015 Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Если f(x) — функция плотности, то интеграл $\int_{-\infty}^{x} f(u) \, du$ равен Вопрос 1 E 0.5 F(x)|C| 1 D 0F Var(X) \mathbb{B} $\mathbb{E}(X)$ Все условия регулярности для применения метода максимального правдоподобия выполнены. Вторая производная лог-функции правдоподобия равна $\ell''(\theta) = -100$. Стандартная ошибка несмещенной эффективной оценки для параметра θ равна C 10 E 100 A 0.01 D 1 **F** Нет верного ответа. 0.1 Проверяя гипотезу о равенстве дисперсий в двух выборках (размером в 3 и 5 наблюдений), Анаксимандр Милетский получил значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна A 3/4 D 4/3 B 4 **F** Нет верного ответа. Вопрос 4 \clubsuit Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1^2+Z_5^2}{Z_1^2+Z_2^2}$ имеет распределение $\boxed{\mathbf{C}} F_{7,2}$ \overline{A} $F_{2,7}$ $\boxed{\mathrm{E}} F_{1,2}$ B $F_{1.7}$ **F** Нет верного ответа. Вопрос 5 . На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[0;1]$ против альтернативной гипотезы $H_a: X_1 \sim U[0.5;1.5]$. Рассматривается критерий: если $X_1 > 0.8$, то гипотеза H_0 отвергается в пользу гипотезы H_a . Вероятность ошибки 2-го рода для этого критерия равна: A 0.2 C 0.4 0.3 D 0.1 B 0.5 F Нет верного ответа. Вопрос 6 \clubsuit Пусть X_1, X_2, \dots, X_{11} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка дисперсии принимает значение A 10 C 100/11 1/10 B 11/100 D 1/11 F Нет верного ответа.

Вопрос 7 \clubsuit Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

Время 8:00	кухарка заходит	кухарка не заходит	
Крылов завтракает	200	40	•
Крылов уже позавтракал	25	100	
A 100	139	I	E 179
B 39	D 79	I	<i>Нет верного ответа.</i>

Вопрос 8 Геродот Геликарнасский проверяет гипотезу $H_0: \mu=0, \sigma^2=1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell=-177$, а при подстановке $\mu=0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

Вопрос 9 \clubsuit Пусть X_1, X_2, \ldots, X_{33} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение

Вопрос 10 \clubsuit Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

Вопрос 11 Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $Z_1^2/2 + Z_4^2/2 - Z_1Z_4$ имеет распределение

Вопрос 12 \clubsuit По случайной выборке из 100 наблюдений было оценено выборочное среднее $\bar{X}=20$ и несмещенная оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0: \mu=15$ против альтернативной гипотезы $H_a: \mu>15$ можно сделать следующее заключение

- Гипотеза H_0 отвергается на любом разумном уровне значимости
- $\boxed{\mathrm{C}}$ Гипотеза H_0 отвергается на уровне значимости 20%, но не на уровне значимости 10%
- $\boxed{\mathrm{E}}$ Гипотеза H_0 не отвергается на любом разумном уровне значимости
- **F** Нет верного ответа.

+3/3/44+ Два обычных игральных кубика подбрасываются одновременно. Больше шансы выпасть у комбинации: |А| две шестерки одна шестерка, одна пятерка одинаковые шансы Вопрос 14 Функция распределения А всегда непрерывна ограничена В может принимать любые положительные Е всюду дифференциируема значения С не имеет горизонтальных асимптот F невозрастающая Вопрос 15 🌲 У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока -68, 83, 60 и 52. Вычислите статистику Вилкоксона и проверьте гипотезу H_0 об однородности результатов студентов двух потоков. Критические значения статистики Вилкоксона равны $T_L = 12$ и $T_R = 28$. Вопрос 16 \clubsuit Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является Вопрос 17 🌲 Размером теста называется А Единица минус вероятность отвергнуть основную гипотезу, когда она верна В Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна С Вероятность принять неверную гипотезу [D] Вероятность отвергнуть альтернативную гипотезу, когда она верна Вероятность отвергнуть основную гипотезу, когда она верна |F| *Нет верного ответа.* Обычную рублевую монетку подбрасывают четыре раза. Первые три раза она выпала орлом. Вероятность того, что она выпадет орлом в четвертый раз: С больше 0.5 равна 0.5 В меньше 0.5 Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p}=0.2$. Разумная оценка дисперсии случайной величины \hat{p} равна A 0.16 |C| 0.04 $\boxed{\mathrm{D}}$ 0.4 0.0016|F| *Нет верного ответа.*

 A
 равна 0.5
 B
 больше 0.5

меньше 0.5

|A| 1.2

30

 $|\mathbf{A}| t_1$

U[0;1]

Вопрос 33 🌲 Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при неизвестной дисперсии используется статистика, имеющая распределение

E N(0,1)A χ^2_{n-1}

 $D t_n$ |F| Нет верного ответа.

Вопрос 34 \clubsuit Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение

$$\boxed{\mathbf{A}} \ F_{n_1-1,n_2-1}$$

$$\boxed{\mathbf{C}} F_{n_1,n_2}$$

$$\boxed{\mathrm{E}} \ t_{n_1+n_2-1}$$

Нет верного ответа.

Номер в списке (для автоматического распознавания):

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Вопрос 1 :	Вопрос 18: 🖪 🛭 С
Bопрос $2: A \square C D E F$	Вопрос 19: А 🔳 С D Е F
Bопрос $3: \mathbb{A} \to \mathbb{B} \subset \mathbb{D} = \mathbb{F}$	Вопрос 20: АВ В В БЕ Б
Вопрос 4 : А В С ■ Е F	Вопрос 21 :
Вопрос 5 : А В С D F	Вопрос 22: 🔳 🖪 С 🖸 Е Е
Вопрос 6: АВС БЕ	Вопрос 23: АВС БЕ
Вопрос 7: АВ В D Е F	Вопрос 24 : А В
Вопрос 8: 🔳 В С D Е F	Вопрос 25 : А 🔳 С D Е F
Bопрос $9: \mathbb{A} \square \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F}$	Вопрос 26 : [А] [В]
Вопрос 10: АВС ЕБ	Вопрос 27: АВСЕБ
Вопрос 11 :	Вопрос 28: А 🔳 С D Е F
Bопрос $12: \mathbb{A} \square \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F}$	Вопрос 29 : A B C D F G
Вопрос 13 : А ■ С	Вопрос 30: АВ 🖪
Вопрос 14: АВС ЕБ	Вопрос 31 : А 🔳 С D Е F
Вопрос 15 : А В С Е Е	Вопрос 32: А 🔳 С D Е F
Вопрос 16: 📕 В С D Е F	Вопрос 33: А 🔳 С D Е F
Вопрос 17: АВС БЕ	Вопрос 34: АВС БЕ

E 15

|F| *Нет верного ответа.*

Теория вероятностей и математическая статистика: пересдача/комиссия 10.09.2015 Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 \clubsuit Ковариационная матрица вектора $X=(X_1,X_2)$ имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия разности случайных величин, $\mathrm{Var}(X_1-2X_2)$, равняется

подходит к замку и перебирает их по очереди. У какого ключа выше шансы подойти?

А у первого В у последнего одинаковы

Вопрос 3 \clubsuit Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\mathrm{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - X_1)^2$ равно

 $ar{\mathrm{B}} \ \hat{\sigma}^2$ $ar{\mathrm{D}} \ \sigma^2$ $ar{\mathrm{F}} \ \mathit{Hem \ Bephoso \ omsema}.$

Вопрос 4 Функция распределения

30

B 0.16

А не имеет горизонтальных асимптот ограничена

В всюду дифференциируема Е невозрастающая

C 21

С может принимать любые положительные значения

E невозрастающая

F всегда непрерывна

 \boxed{D} 0.4

Вопрос 5 \clubsuit Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p} = 0.2$. Разумная оценка лисперсии случайной величины \hat{p} равна

Разумная оценка дисперсии случайной величины \hat{p} равна $\boxed{\text{C}}$ 1.6 $\boxed{\text{E}}$ 0.004

Вопрос 6 \clubsuit Пусть X_1, X_2, \ldots, X_{33} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение

<u>A</u> 3.3 <u>C</u> 0.33 <u>I</u> 1

 В 3
 D 10
 F Нет верного ответа.

Вопрос 7 \clubsuit Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение

 $oxed{\mathbb{B}} t_{n_1+n_2-1}$ $oxed{\mathbb{D}} F_{n_1,n_2}$ $oxed{\mathbb{B}}$ Hem верного ответа.

			+4/2/38+	
	Величины Z_1,Z_2,\dots,Z_n независ Z_1Z_4 имеет распределение	имы и нормальны	N(0,1). Случайная величина	
$ \begin{array}{c} \boxed{\mathbf{A}} \chi_4^2 \\ \boxed{} \chi_1^2 \end{array} $	$egin{array}{c} \mathbb{C} \ \chi_2^2 \ \mathbb{D} \ t_2 \end{array}$		$\begin{tabular}{cccccccccccccccccccccccccccccccccccc$	
	Обычную рублевую монетку под Зероятность того, что она выпаде			
	равна 0.5	ьше 0.5	больше 0.5	
	Вопрос 10 \clubsuit Бессмертный гений поэзии Ли Бо оценивает математическое ожидание по выборка размера n из нормального распределения. Он построил оценку метода моментов, $\hat{\mu}_{MM}$, и оценку максимального правдоподобия, $\hat{\mu}_{ML}$. Про эти оценки можно утверждать, что			
 -	ны, и не сближаются при $n o$	они равны		
$ \begin{array}{c} \infty \\ B \hat{\mu}_{MM} > \hat{\mu}_{M} \end{array} $		$\boxed{\mathrm{E}} \; \hat{\mu}_{MM} < \hat{\mu}_{MI}$	i.	
	ны, но сближаются при $n \to \infty$	F Нет верног	о ответа.	
Вопрос 11 \clubsuit $\frac{Z_1^2 + Z_5^2}{Z_2^2 + Z_7^2}$ имеет рас	Величины Z_1, Z_2, \dots, Z_n независ спределение	симы и нормальнь	и $N(0,1)$. Случайная величина	
$F_{2,2}$	$lue{\mathbb{C}}$ $F_{7,2}$		$ ilde{\mathrm{E}} \ F_{2,7}$	
$lacksquare$ B $F_{1,2}$	$\boxed{\mathbb{D}} \ F_{1,7}$		F Нет верного ответа.	
Вопрос 12 Д выпасть у комби	Цва обычных игральных кубика инации:	подбрасываются	одновременно. Больше шансы	
А две шес	стерки одна шестерка,	одна пятерка	С одинаковые шансы	
пределения $N(\mu H_a: \mu = -2$ вы	Пусть X_1, X_2, \ldots, X_n — случа, 9). Для тестирования основной используете критерий: если $\bar{X} \geq$ твергаете гипотезу H_0 в пользу п	гипотезы H_0 : μ -1, то вы не отве	$\mu = 0$ против альтернативной гргаете гипотезу H_0 , в против-	
0.98	C 0.85		E 0.78	
B 0.58	D 0.87		<u>F</u> Нет верного ответа.	
Вопрос 14 Е	Ссли H_0 верна, то P -значение имо	еет распределение		
Λ χ_1^2			$ ilde{\mathbb{E}} \ t_1$	
$\boxed{\mathrm{B}} F_{1,1}$	U[0;1]		$\boxed{\mathrm{F}} \ N(\mu; \sigma^2)$	

ную по статистике оказались второго потока $-68, 83, 60$ и	равны 82, 47, 20, 43 и 73. У четыр 52. Вычислите статистику Вилко	го потока результаты за контроль в случайно выбранных студенто оксона и проверьте гипотезу H_0 с ие значения статистики Вилкоксо
	С 65.75, H_0 отвергается D 53, H_0 отвергается	\blacksquare 24, H_0 не отвергается \blacksquare <i>Hem верного ответа.</i>
выполнены. Вторая производ		года максимального правдоподоби равна $\ell''(\theta) = -100$. Стандартна авна
A 10	© 0.01	E 100
0.1		
$oxed{A} N(0,1)$	истика, имеющая распределение	$\mathbb{E} \chi_n^2 $
\mathbb{B} χ^2_{n-1} Вопрос 18 \clubsuit Пусть X_1, X нием μ и стандартным отклог	$\boxed{\mathbb{D}} \ t_n$ T_2, \dots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$	$\stackrel{\ }{\ }$ $\$
Вопрос 18 \clubsuit Пусть X_1 , X нием μ и стандартным отклого оценка дисперсии принимает	X_{2}, \ldots, X_{11} — выборка из распре, нением σ . Известно, что $\sum_{i=1}^{11} x_{i}$ значение	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100.$ Несмещення
Вопрос 18 ♣ Пусть X ₁ , X нием µ и стандартным отклогоценка дисперсии принимает А 10	X_2, \ldots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$ значение C 100/11	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100.$ Несмещенна $\boxed{\text{E}} \ 1/11$
Вопрос 18 ♣ Пусть X ₁ , X нием μ и стандартным отклогоценка дисперсии принимает А 10 1/10	$\mathbb{C}_2,\dots,X_{11}$ — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11}x_i$ значение \mathbb{C} 100/11 \mathbb{D} 11/100	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100.$ Несмещения $\boxed{\text{E}} \ 1/11$ $\boxed{\text{F}} \ \textit{Hem верного ответа.}$
Вопрос 18 \clubsuit Пусть X_1 , X нием μ и стандартным отклогоценка дисперсии принимает А 10 1/10 Вопрос 19 \clubsuit Величины Z_1	C_2, \ldots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$ значение C 100/11 D 11/100 C , C , C , C , C , C независимы и норма	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100.$ Несмещения $\boxed{\text{E}} \ 1/11$ $\boxed{\text{F}} \ \textit{Hem верного ответа.}$
Вопрос 18 ♣ Пусть X ₁ , X нием μ и стандартным отклогоценка дисперсии принимает А 10 1/10	X_2, \ldots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$ значение C 100/11 D 11/100 C , Z_2, \ldots, Z_n независимы и нормане	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100.$ Несмещения $\boxed{\text{E}} \ 1/11$ $\boxed{\text{F}} \ \textit{Hem верного ответа.}$
Вопрос 18 \clubsuit Пусть X_1 , X нием μ и стандартным отклогоценка дисперсии принимает [А] 10 [Вопрос 19 \clubsuit Величины Z_1 $\frac{Z_1\sqrt{n+3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$ имеет распределени	C_2, \ldots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$ значение C 100/11 D 11/100 C , C , C , C , C , C независимы и норма	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100.$ Несмещения $= 1/11$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $=$
Вопрос 18 \clubsuit Пусть X_1 , X нием μ и стандартным отклого оценка дисперсии принимает [А] 10 [Вопрос 19 \clubsuit Величины Z_1 $\frac{Z_1\sqrt{n+3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$ имеет распределени [А] I_{n-3} [В] I_{n-3}	Z_2, \ldots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$ значение	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещения $= 1/11$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/1111$ $= 1/1111$ $= 1/1111$ $= 1/1111$ $= 1/11111$ $= 1/11111$ $= 1/11111$ $= 1/11111$ $= 1/111111$ $= 1/1111111$ $= 1/1111111111111111111111111111111111$
Вопрос 18 \clubsuit Пусть X_1 , X нием μ и стандартным отклогоценка дисперсии принимает [А] 10 [Вопрос 19 \clubsuit Величины Z_1 $\frac{Z_1\sqrt{n+3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$ имеет распределени [А] t_{n-3} [В] $N(0,1)$ Вопрос 20 Вероятность распо времени в маленьком го	X_1, \dots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$ значение $\begin{array}{c} \mathbb{C} & 100/11 \\ \mathbb{D} & 11/100 \\ \mathbb{D}, Z_2, \dots, Z_n \end{array}$ независимы и нормане $\begin{array}{c} \mathbb{C} & F_{1,n-2} \\ \mathbb{D} & \chi_{n-4}^2 \end{array}$ рождения мальчика примерно распольше и большом городе считали дется больше	деления с математическим ожид $=33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещения $= 1/11$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/111$ $= 1/1111$ $= 1/1111$ $= 1/1111$ $= 1/1111$ $= 1/11111$ $= 1/11111$ $= 1/11111$ $= 1/11111$ $= 1/111111$ $= 1/1111111$ $= 1/1111111111111111111111111111111111$
Вопрос 18 \clubsuit Пусть X_1 , X нием μ и стандартным отклогоценка дисперсии принимает A 10 1/10 Вопрос 19 \clubsuit Величины Z_1 $\frac{Z_1\sqrt{n+3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$ имеет распределени A t_{n-3} В $N(0,1)$ Вопрос 20 Вероятность распо времени в маленьком гомальчиков. Таких дней окаже в маленьком городе Вопрос 21 Редкой болезн	C_1, \ldots, X_{11} — выборка из распреднением σ . Известно, что $\sum_{i=1}^{11} x_i$ значение $\begin{array}{c} \mathbb{C} & 100/11 \\ \mathbb{D} & 11/100 \\ \mathbb{D}, Z_2, \ldots, Z_n & \text{независимы и нормате} \\ \mathbb{C} & F_{1,n-2} \\ \mathbb{D} & \chi_{n-4}^2 \\ \mathbb{D} & \text{рождения мальчика примерно рагроде и большом городе считали дется больше} \end{array}$	деления с математическим ожид $= 33$, $\sum_{i=1}^{11} x_i^2 = 100$. Несмещения $= 1/11$ $= 1/$

$$\boxed{A} LR = 34, \chi_2^2$$

$$LR = 68, \chi_2^2$$

$$E LR = 34, \chi_{n-1}^2$$

B
$$LR = \ln 34, \chi_{n-2}^2$$

$$D LR = \ln 68, \chi_{n-2}^2$$

Вопрос 23 🐇 Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

-	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.2 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

- $oxed{A}$ 1.34, H_0 не отвергается $oxed{E}$ 1.34, H_0 отвергается $oxed{E}$ 1.96, H_0 отвергается $oxed{F}$ 1.29, H_0 отвергается $oxed{F}$ 1.29, H_0 не отвергается
- |G| Нет верного ответа.

Вопрос 24 🌲 Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

$$\overline{\mathbf{A}} F_{n_1,n_2}$$

$$t_{n_1+n_2-2}$$

$$\boxed{\mathbf{B}} \ t_{n_1+n_2-1}$$

$$\boxed{\mathbf{D}} t_{n_1+n_2}$$

Вопрос 25 Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является

$$\frac{1}{3}X_1 + \frac{2}{3}X_2$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & \frac{X_1}{2n} + \frac{X_2 + \ldots + X_{n-1}}{n-2} - \frac{X_n}{2n} & \hline & \hline & \hline & \underbrace{X_1}{2n} + \frac{X_2 + \ldots + X_{n-2}}{n-2} + \frac{X_n}{2n} \\ \hline \hline & \underbrace{X_1}{2n} + \frac{X_2 + \ldots + X_{n-2}}{n-1} + \frac{X_n}{2n} & \hline & \hline & \hline & \hline & Hem \ \textit{sephoso omesma}. \\ \hline \end{array}$$

$$\mathbb{E} \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$$

$$\frac{X_1 + X_2}{2}$$

$$\boxed{\mathbf{D}} \ \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-1} + \frac{X_n}{2n}$$

Вопрос 26 🐇 По случайной выборке из 100 наблюдений было оценено выборочное среднее $\bar{X}=20$ и несмещенная оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:~\mu=15$ против альтернативной гипотезы $H_a:\ \mu>15$ можно сделать следующее заключение

- Гипотеза H_0 отвергается на любом разумном уровне значимости
- В Гипотеза H_0 отвергается на уровне значимости 5%, но не на уровне значимости 1%
- $\boxed{ ext{C}}$ Гипотеза H_0 не отвергается на любом разумном уровне значимости
- \square Гипотеза H_0 отвергается на уровне значимости 10%, но не на уровне значимости 5%
- \blacksquare Гипотеза H_0 отвергается на уровне значимости 20%, но не на уровне значимости 10%
- **F** Нет верного ответа.

		+4/ 5/ 55+		
бо уже позавтракал. В эт По таблице сопряженности зы о том, что визиты кух Время 8:00 Крылов завтракает Крылов уже позавтракал А 79 В 179 Вопрос 28 Проверяя и наблюдений), Анаксимандр	то же время кухари вычислите статисарки не зависят от кухарка заходит 200 25 139 D 39 типотезу о равенство Милетский получил	н Андреевич Крылов, либо завтракает, ли- рка либо заглядывает к Крылову, либо нет. стику χ^2 Пирсона для тестирования гипоте- того, позавтракал ли уже Крылов или нет. кухарка не заходит 40 100 Е 100 Е 100 Е нет верного ответа. е дисперсий в двух выборках (размером в 3 и 5 и значение тестовой статистики 10. Если оценка сая оценка дисперсии может быть равна		
80	C 4	E 4/3		
B 25	D 3/4	F Нет верного ответа.		
Вопрос 29 \clubsuit Если Р-значение (P-value) меньше уровня значимости α , то гипотеза $H_0: \sigma=1$ А Не отвергается В Отвергается, только если $H_a: \sigma \neq 1$ В Отвергается, только если $H_a: \sigma < 1$ В Отвергается В Отв				
0.5 B 2.5	C 0.75D 0.25	Е 7.5F Нет верного ответа.		
В 2.5				
<u>A</u> 0.4	0.3	E 0.5		
B 0.2	D 0.1	F <i>Hem верного ответа.</i>		
Вопрос 32 🌲 Размером т	еста называется			
© Вероятность принять в D Единица минус вероят	ть альтернативную г неверную гипотезу ность отвергнуть ал	у, когда она верна ипотезу, когда она верна ьтернативную гипотезу, когда она верна новную гипотезу, когда она верна		

Если f(x) — функция плотности, то интеграл $\int_{-\infty}^{x} f(u) \, du$ равен Вопрос 34

A $\mathbb{E}(X)$

F(x)

E 1

F Нет верного ответа.

lacksquare $\operatorname{Var}(X)$

D 0

F 0.5

Имя, фамилия и номер группы:

Номер в списке (для автоматического распознавания):

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Вопрос 1: **В** В С D Е F Вопрос 2 : А В **Вопрос 19**: A B C D E **Вопрос 3**: A B C D Вопрос 20: Вопрос 4: А В С Вопрос 21 : А С Вопрос 5: Вопрос 22: |А| |В| $| | \mathrm{D} | | \mathrm{E} | | \mathrm{F} |$ **Вопрос 6**: A B C D Вопрос 23 : А В С | **Вопрос 7**: A B C D E Вопрос 24: А В В Б Г Г Вопрос 8 : А С С Б Е Г D E F Вопрос 25 : А В Вопрос 9: Вопрос 26: Вопрос 10: А В С Вопрос 27: |А | В | **Вопрос 11 :** В В С D Е F Вопрос 28: |B||C||D||E|Вопрос 12 : А С Вопрос 29 : [А] [В] Вопрос 13: **Вопрос 30 :** В В С D Е F Вопрос 14: А В С Вопрос 31 : А В [D] [E] [F]Вопрос 15: АВС D **Вопрос 32 :** В В С D Е F Вопрос 33 : А 🔳 С [D] Вопрос 16 : А C D**Вопрос** 17 : A B D E F **Вопрос 34 :** A B D E F

+5/1/32+ ${ m Teopus}$ вероятностей и математическая статистика: пересдача/комиссия 10.09.2015Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 \clubsuit Пусть X_1, X_2, \ldots, X_n — случайная выборка размера 36 из нормального распределения $N(\mu,9)$. Для тестирования основной гипотезы $H_0: \mu=0$ против альтернативной $H_a: \mu = -2$ вы используете критерий: если $X \ge -1$, то вы не отвергаете гипотезу H_0 , в противном случае вы отвергаете гипотезу H_0 в пользу гипотезы H_a . Мощность критерия равна 0.98 $\boxed{\text{C}}$ 0.85 D = 0.78B 0.58 |F| *Нет верного ответа.* Вопрос 2 \clubsuit Пусть X_1, X_2, \dots, X_{33} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение $\boxed{\mathrm{E}} \ 0.33$ 1 C 3.3 B 3 D 10 F *Нет верного ответа.* Вопрос 3 \clubsuit Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $Z_1^2/2 + Z_4^2/2 - Z_1Z_4$ имеет распределение Λ χ_3^2 χ_1^2 |F| *Нет верного ответа.* Вопрос 4 Функция распределения А невозрастающая ограничена Е всегда непрерывна В всюду дифференциируема |F| может принимать любые положительные С не имеет горизонтальных асимптот значения Редкой болезнью болеет 0.01% населения. Существующий тест ошибается в 10%случаев. У первого встречного берут тест. Судя по тесту, человек болен. Какова вероятность того, что он действительно болен? А равна 0.5 В больше 0.5 меньше 0.5 Вопрос 6 Если H_0 верна, то P-значение имеет распределение Λ χ_1^2 C N(0;1) $\boxed{\mathrm{E}} F_{1.1}$ $B N(\mu; \sigma^2)$ U[0;1]Проверяя гипотезу о равенстве дисперсий в двух выборках (размером в 3 и 5 наблюдений), Анаксимандр Милетский получил значение тестовой статистики 10. Если оценка дисперсии по одной из выборок равна 8, то другая оценка дисперсии может быть равна

80

D 3/4

|F| *Нет верного ответа.*

A 4

 $\boxed{\text{B}}$ 4/3

Вопрос 15 \clubsuit Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\mathrm{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - X_1)^2$ равно

Вопрос 16 ♣ Величины Z_1, Z_2, \dots, Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1^2 + Z_2^2}{Z_2^2 + Z_2^2}$ имеет распределение

Вопрос 17 \clubsuit Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

Время 8:00	кухарка заходит	кухарка не заходит	
Крылов завтракает	200	40	
Крылов уже позавтракал	25	100	
A 179	139	I	E 79
B 100	D 39	I	F Нет верного ответа.

Вопрос 18 & Николай Коперник подбросил бутерброд 200 раз. Бутерброд упал маслом вниз 95 раз, а маслом вверх — 105 раз. Значение критерия χ^2 Пирсона для проверки гипотезы о равной вероятности данных событий равно

Вопрос 19 Обычную рублевую монетку подбрасывают четыре раза. Первые три раза она выпала орлом. Вероятность того, что она выпадет орлом в четвертый раз:

равна 0.5 В меньше 0.5 С больше 0.5

[E] 53, H_0 отвергается

F Нет верного ответа.

на равны $T_L = 12$ и $T_R = 28$.

[B] 65.75, H_0 отвергается

 $oxed{A}$ 12.75, H_0 не отвергается $oxed{C}$ 20, H_0 не отвергается

 $24, H_0$ не отвергается

30

E 1.2

B 15

F *Нет верного ответа.*

Вопрос 34 \clubsuit Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является

$$\begin{array}{c|c}
\hline A & \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-1} + \frac{X_n}{2n} & \boxed{C} & \frac{1}{3}X_1 + \frac{2}{3}X_2 \\
\hline
\hline
 & \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-1}}{n-2} - \frac{X_n}{2n} & \boxed{D} & \frac{X_1 + X_2}{2}
\end{array}$$

 $\boxed{\mathbf{E}} \ \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$

$$\frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-1}}{n-2} - \frac{X_n}{2n}$$

F Нет верного ответа.

Номер в списке (для автоматического распознавания):

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Bопрос $1: \blacksquare$ \Box \Box \Box \Box \Box \Box \Box \Box \Box	Вопрос 18 : АВС 🔳 Е Г
Bопрос $2: \square$ \square \square \square \square \square \square \square \square \square	Вопрос 19:
Bопрос $3:$ A \blacksquare C D E F	Вопрос 20: АВСЕ Б
Вопрос 4: АВСЕЕ	Вопрос 21 : А 🔳 С D Е F
Вопрос 5: [А] [В]	Вопрос 22 : 🛽 🔳 С
Вопрос 6: АВСЕЕ	Вопрос 23 : А В С 🔳 Е Г
Вопрос $7: \mathbb{A} \to \mathbb{B}$ $\mathbb{E} \to \mathbb{F}$	Вопрос 24:
Вопрос 8: А В	Вопрос 25 : А В С D 🔳 F
Вопрос $9: A B C \blacksquare E F$	Вопрос 26 : АВСЕ Б
Вопрос 10: АВС В С	Вопрос 27:
Вопрос 11 : А В С D Е	Вопрос 28: АВСЕ Б
Вопрос 12: А 🔳 С D Е F	Вопрос 29: АВСБББ
Вопрос 13 : A B C D E \blacksquare G	Вопрос 30: А В
Вопрос 14: АВСЕ Б	Вопрос 31 : А В 🔳 D Е F
Вопрос 15: АВСЕЕ	Вопрос 32:
Вопрос 16: АВСЕГ	Вопрос 33 :
Вопрос 17: АВ В БЕ Б	Вопрос 34 : A

Ни пуха, ни пера!

 Теория вероятностей и математическая статистика:
 пересдача/комиссия 10.09.2015

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ.

Вопрос 1 🗘 Датчик случайных чисел выдал следующие значения псевдо случайной величины: 0.78, 0.48. Вычислите значение критерия Колмогорова и проверьте гипотезу H_0 о соответствии распределения равномерному на [0; 1]. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

- $0.48, H_0$ не отвергается
- $\boxed{\mathrm{E}}$ 0.37, H_0 не отвергается

- $\boxed{\mathrm{B}}$ 0.78, H_0 отвергается
- **F** Нет верного ответа.

Вопрос 2 . Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

 $t_{n_1+n_2-2}$

 $C t_{n_1+n_2-1}$

 $\mathbb{E} \chi^2_{n_1+n_2-1}$

 $\boxed{\mathrm{B}} t_{n_1+n_2}$

 $\boxed{\mathrm{D}} F_{n_1,n_2}$

F Нет верного ответа.

Вопрос 3 \clubsuit Геродот Геликарнасский проверяет гипотезу $H_0: \mu = 0, \sigma^2 = 1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell=-177$, а при подстановке $\mu=0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

Вопрос 4 🗘 Николай Коперник подбросил бутерброд 200 раз. Бутерброд упал маслом вниз 95 раз, а маслом вверх — 105 раз. Значение критерия χ^2 Пирсона для проверки гипотезы о равной вероятности данных событий равно

A 7.5

C 2.5

E 0.25

B 0.75

0.5

F *Нет верного ответа.*

Вопрос 5 🗘 Размером теста называется

- А Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна
- В Вероятность отвергнуть альтернативную гипотезу, когда она верна
- С Вероятность принять неверную гипотезу
- Вероятность отвергнуть основную гипотезу, когда она верна
- Е Единица минус вероятность отвергнуть основную гипотезу, когда она верна
- F *Нет верного ответа.*

Вопрос 22 \clubsuit Пусть X_1, X_2, \ldots, X_{11} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка дисперсии принимает значение

A 10	C 11/100	E 100/11
1/10	D 1/11	F Нет верного ответа.

Вопрос 23 \clubsuit Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является

Вопрос 24 \clubsuit — Если Р-значение (P-value) меньше уровня значимости α , то гипотеза $H_0: \sigma = 1$

 $\boxed{\mathbf{A}}$ Отвергается, только если $H_a: \sigma > 1$ D Не отвергается [E] Отвергается, только если $H_a: \sigma < 1$ [B] Отвергается, только если $H_a: \sigma \neq 1$ **F** Нет верного ответа. Отвергается

Вопрос 25 \clubsuit Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при неизвестной дисперсии используется статистика, имеющая распределение

Вопрос 26 🐇 Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.2 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

$\boxed{{ m A}}$ 1.34, H_0 не отвергается	\square 1.65, H_0 отвергается	G Hem верного ответа.
\blacksquare 1.96, H_0 отвергается	$1.34, H_0$ отвергается	
$[C]$ 1.29, H_0 не отвергается	$[F]$ 1.29, H_0 отвергается	

 $\boxed{\mathrm{A}}$ 53, H_0 отвергается

 \blacksquare 24, H_0 не отвергается

 $E 12.75, H_0$ не отвергается

 $\boxed{\mathrm{B}}$ 20, H_0 не отвергается

 \square 65.75, H_0 отвергается

Номер в списке (для автоматического распознавания):

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Bопрос $1: \square$ \square \square \square \square \square \square \square \square \square	Вопрос 18 : А В
Bопрос $2:$ \blacksquare \blacksquare \square \square \square \square \square \square	Вопрос 19: 🔳 🖪 С 🗇 Е F
Bопрос $3:$ A \square C D E F	Вопрос 20: АВСЕ Б
Вопрос 4: АВС ЕБ	Вопрос 21 : А В 🔳 D Е F
Bопрос $5:$ A B C \blacksquare E F	Вопрос 22: А 🔳 С D Е F
Bопрос $6:$ \blacksquare \to \to \to \to \to \to \to \to	Вопрос 23: АВСЕ Б
Bопрос $7: A B C D \blacksquare F$	Вопрос 24: АВ В БЕ Б
Вопрос 8: А В 🖪	Вопрос 25 : A B C D F
Вопрос 9: АВСБББ	Вопрос 26 : A B C D F G
Вопрос 10: АВ В В Б	Вопрос 27: АВ 🔳 DЕ F
Вопрос 11 : А В С 🔳 Е Б	Вопрос 28: А 🔳 С D Е F
Вопрос 12: АВСБББ	Вопрос 29: А С
Вопрос 13 :	Вопрос 30: АВСЕ Б
Вопрос 14: АВС ВЕ	Вопрос 31 : [А]
Вопрос 15 : В В С D Е F	Вопрос 32: А 🔳 С D Е F
Вопрос 16: АВСБББ	Вопрос 33 : A B П D E F
Вопрос 17: АВСВЕ	Вопрос 34: АВ 🔳 DЕ F

Учитываются только ответы, перенесённые на этот листок.

+7/1/18+ ${ m Teopus}$ вероятностей и математическая статистика: пересдача/комиссия 10.09.2015Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 \clubsuit Пусть X_1, X_2, \dots, X_{33} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение A 0.33 B 3.3 **F** Нет верного ответа. Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение A $\chi^2_{n_1+n_2-1}$ $C t_{n_1+n_2-1}$ $\boxed{\mathrm{E}} t_{n_1+n_2}$ $t_{n_1+n_2-2}$ F Нет верного ответа. $B F_{n_1,n_2}$ Вопрос 3 \clubsuit Пусть X_1, X_2, \ldots, X_n — случайная выборка размера 36 из нормального распределения $N(\mu,9)$. Для тестирования основной гипотезы $H_0: \mu=0$ против альтернативной $H_a: \mu = -2$ вы используете критерий: если $\bar{X} \ge -1$, то вы не отвергаете гипотезу H_0 , в противном случае вы отвергаете гипотезу H_0 в пользу гипотезы H_a . Мощность критерия равна $\boxed{\mathbf{C}}$ 0.58 A 0.78 D 0.85 B 0.87 F Нет верного ответа. Два обычных игральных кубика подбрасываются одновременно. Больше шансы Вопрос 4 выпасть у комбинации: две шестерки одна шестерка, одна пятерка одинаковые шансы У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока -68, 83, 60 и 52. Вычислите статистику Вилкоксона и проверьте гипотезу H_0 об однородности результатов студентов двух потоков. Критические значения статистики Вилкоксона равны $T_L = 12$ и $T_R = 28$. [E] 12.75, H_0 не отвергается $\boxed{\mathbf{A}}$ 20, H_0 не отвергается $24, H_0$ не отвергается $\boxed{\mathrm{B}}$ 53, H_0 отвергается Вопрос 6 \clubsuit Ковариационная матрица вектора $X = (X_1, X_2)$ имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия разности случайных величин, $Var(X_1 - 2X_2)$, равняется |C| 1.2A 15 D 21 B 12 |F| *Нет верного ответа.*

+7/3/16+ Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет. Время 8:00 кухарка заходит кухарка не заходит 200Крылов завтракает Крылов уже позавтракал 25 100 C 100 E 79 139 D 179 B 39 F *Нет верного ответа.*

Вопрос 14 & Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\mathrm{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - X_1)^2$ равно

Вопрос 15 \clubsuit Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $Z_1^2/2 + Z_4^2/2 - Z_1Z_4$ имеет распределение

Вопрос 16 ♣ Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.2 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

 A
 1.34, H_0 не отвергается
 D
 1.96, H_0 отвергается
 G
 Hem верного ответа.

 В
 1.65, H_0 отвергается
 \blacksquare 1.34, H_0 отвергается

 С
 1.29, H_0 отвергается
 \blacksquare 1.29, H_0 не отвергается

Вопрос 17 \clubsuit На основе случайной выборки, содержащей одно наблюдение X_1 , тестируется гипотеза $H_0: X_1 \sim U[0;1]$ против альтернативной гипотезы $H_a: X_1 \sim U[0.5;1.5]$. Рассматривается критерий: если $X_1 > 0.8$, то гипотеза H_0 отвергается в пользу гипотезы H_a . Вероятность ошибки 2-го рода для этого критерия равна:

 A 0.5
 C 0.4
 E 0.2

 B 0.1
 ■ 0.3
 F Hem верного ответа.

Вопрос 18 Редкой болезнью болеет 0.01% населения. Существующий тест ошибается в 10% случаев. У первого встречного берут тест. Судя по тесту, человек болен. Какова вероятность того, что он действительно болен?

f A равна 0.5 f B больше 0.5 $\bf M$ меньше 0.5

Вопрос 19 🌲 — Если Р-значение (P-value) менып	ие уровня значимости α , то гипотеза $H_0: \ \sigma=1$
Отвергается	D Не отвергается
В Отвергается, только если $H_a: \sigma > 1$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$ C $ Отвергается, только если $H_a: \sigma < 1$	[F] <i>Нет верного ответа.</i>
Вопрос 20 \clubsuit Бессмертный гений поэзии Ли I борка размера n из нормального распределения. оценку максимального правдоподобия, $\hat{\mu}_{ML}$. Про	
они равны	$\boxed{\mathrm{D}} \; \hat{\mu}_{MM} < \hat{\mu}_{ML}$
$\stackrel{\square}{\mathbb{B}}$ они не равны, и не сближаются при $n \to \infty$	$\boxed{\text{E}} \ \hat{\mu}_{MM} > \hat{\mu}_{ML}$
$\boxed{\mathbf{C}}$ они не равны, но сближаются при $n o \infty$	F Нет верного ответа.
Вопрос 21 🌲 Размером теста называется	
А Единица минус вероятность отвергнуть аль	тернативную гипотезу, когда она верна
В Единица минус вероятность отвергнуть осн	овную гипотезу, когда она верна
С Вероятность принять неверную гипотезу	
—————————————————————————————————————	потезу, когда она верна
Вероятность отвергнуть основную гипотезу.	<u>-</u>
F Нет верного ответа.	· · · · · ·
Вопрос 22 • Проверяя гипотезу о равенстве наблюдений), Анаксимандр Милетский получил дисперсии по одной из выборок равна 8, то друга	
A 4/3 C 4	80
B 3/4 D 25	F <i>Hem верного ответа.</i>
Вопрос 23 Обычную рублевую монетку под выпала орлом. Вероятность того, что она выпаде	брасывают четыре раза. Первые три раза она ет орлом в четвертый раз:
А меньше 0.5 рав	вна 0.5
Вопрос 24 Функция распределения	
А всюду дифференциируема	D не имеет горизонтальных асимптот
В невозрастающая	Е всегда непрерывна
ограничена	F может принимать любые положительные значения
Вопрос 25 Если $f(x)$ — функция плотности,	то интеграл $\int_{-\infty}^{x} f(u) du$ равен
$\boxed{A} \hspace{0.1cm} 0$	$oxed{\mathbb{E}} \ \mathbb{E}(X)$
$[\underline{\mathbf{B}}] \operatorname{Var}(X)$ $[\underline{\mathbf{D}}] 1$	F(x)

		+//5/14+					
Вопрос 26 . Датчик случайн ны: 0.78, 0.48. Вычислите значен ствии распределения равномерно уровня значимости 0.1 и двух на	му на [0; 1]. Критическое значени	оверьте гипотезу H_0 о соответ-					
$oxed{A}\ 0.37,\ H_0$ не отвергается $oxed{B}\ 1.26,\ H_0$ отвергается		$0.48, H_0$ не отвергается \overline{F} <i>Hem верного ответа.</i>					
Вопрос 27 Вероятность рождения мальчика примерно равна 0.5. На протяжении длительного времени в маленьком городе и большом городе считали дни, когда рождается больше 65% мальчиков. Таких дней окажется больше							
в маленьком городе	В примерно одинаково	С в большом городе					
Вопрос 28 ♣ Имеется случа проверке гипотезы о равенстве м дисперсии используется статисти							
$ \begin{array}{c} \boxed{\mathbf{A}} \chi_{n-1}^2 \\ \boxed{\mathbf{B}} N(0,1) \end{array} $	$ \begin{array}{ c c } \hline C & \chi_n^2 \\ \hline & t_{n-1} \end{array} $	E t_n F Hem $eephoro$ $omsema$.					
Вопрос 29 \clubsuit Величины Z_1, Z_2 $\frac{Z_1\sqrt{n+3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$ имеет распределение	Z_1, \dots, Z_n независимы и нормальн	ы $N(0,1)$. Случайная величина					
$\boxed{\mathbf{A}} \ N(0,1)$	$\boxed{\mathbf{C}} t_{n-1}$	$\boxed{\mathrm{E}} \ F_{1,n-2}$					
$\boxed{\mathrm{B}} t_{n-3}$	$\overline{\mathbb{D}}$ χ^2_{n-4}	Нет верного ответа.					
Вопрос 30 . Все условия регульности. Вторая производная ошибка несмещенной эффективн		вна $\ell''(\theta) = -100$. Стандартная					
A 0.01	<u>C</u> 1	E 100					
B 10	0.1	F <i>Hem верного ответа.</i>					
Вопрос 31 ♣ Николай Копер. 95 раз, а маслом вверх — 105 раз. вероятности данных событий ран							
A 7.5	C 0.75	0.5					
B 0.25	D 2.5	F Нет верного ответа.					
Вопрос 32 \clubsuit Пусть $\hat{\sigma}_1^2$ — не размером n_1 , $\hat{\sigma}_2^2$ — несмещенная размером n_2 . Тогда статистика $\frac{\hat{\sigma}_2}{\hat{\sigma}_2}$	оценка дисперсии, полученная	полученная по первой выборке по второй выборке, с меньшим					
lacksquare $N(0;1)$	$\boxed{\mathbf{C}} \ t_{n_1+n_2-1}$	$E F_{n_1-1,n_2-1}$					
$\boxed{\mathbf{B}} \ \chi^2_{n_1+n_2}$	$\boxed{\mathbb{D}} \ F_{n_1,n_2}$	Нет верного ответа.					

$$\boxed{\mathbf{A}} \ LR = 34, \, \chi_{n-1}^2$$

$$\boxed{\mathbf{C}} \ LR = \ln 34, \, \chi_{n-2}^2$$

$$E LR = 34, \chi_2^2$$

$$LR = 68, \chi_2^2$$

$$\boxed{\mathbf{D}} \ LR = \ln 68, \ \chi_{n-2}^2$$

Вопрос 34 У Пети связка ключей. Один из них подходит к замку. Петя не знает, какой ключ подходит к замку и перебирает их по очереди. У какого ключа выше шансы подойти?

А у первого

В у последнего

Номер в списке (для автоматического распознавания): 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 **Вопрос 1**: A B C D Вопрос 18 : А В Вопрос 2 : А В С **Вопрос 19:** В С D Е F Вопрос 3: АВСВ Вопрос 20: Вопрос 4: А С **Вопрос 21 :** A B C D **Вопрос 22 :** A B C D Вопрос 5: |А| |В| | |D| |E|**Вопрос 6**: A B C D Вопрос 23 : А С Вопрос 7: А В С D

Имя, фамилия и номер группы:

Вопрос 8: А В

Вопрос 10 : А В

Вопрос 11 : 🔟

Вопрос 9: A B C D E

Вопрос 12: А С С Б Е

Вопрос 14 : A B C D

Вопрос 15:

Вопрос 16: A B C D

Вопрос 13 : В В С D Е F

Вопрос 17: A B C **E** F

Bonpoc 23 : A B C Bonpoc 24 : A B C D E F

Bonpoc 25 : A B C D E B

Bonpoc 26 : A B C D F

Bonpoc 27 : B C

Bonpoc 28 : A B C D E F

Bonpoc 29 : A B C D E F

Bonpoc 30 : A B C D E F

Bonpoc 31 : A B C D F

Bonpoc 32 : A B C D F

Bonpoc 33 : A B C D F

Вопрос 34 : А В

Учитываются только ответы, перенесённые на этот листок.

|D|

|C||D|

 Теория вероятностей и математическая статистика:
 пересдача/комиссия 10.09.2015

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера!

Обычную рублевую монетку подбрасывают четыре раза. Первые три раза она Вопрос 1 выпала орлом. Вероятность того, что она выпадет орлом в четвертый раз:

> меньше 0.5 В больше 0.5 равна 0.5

У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока -68, 83, 60 и 52. Вычислите статистику Вилкоксона и проверьте гипотезу H_0 об однородности результатов студентов двух потоков. Критические значения статистики Вилкоксона равны $T_L = 12$ и $T_R = 28$.

 \overline{A} 53, H_0 отвергается

 $24, H_0$ не отвергается

Вопрос 3 🐁 Николай Коперник подбросил бутерброд 200 раз. Бутерброд упал маслом вниз 95 раз, а маслом вверх -105 раз. Значение критерия χ^2 Пирсона для проверки гипотезы о равной вероятности данных событий равно

A 7.5

 $\boxed{\text{C}}$ 0.75

 $E \mid 2.5$

D 0.25

F Нет верного ответа.

Вопрос 4 \clubsuit Величины Z_1, Z_2, \ldots, Z_n независимы и нормальны N(0,1). Случайная величина $\frac{Z_1^2 + Z_5^2}{Z_2^2 + Z_2^2}$ имеет распределение

 $F_{2,2}$

 $\boxed{\mathrm{C}} F_{1.7}$

 $E \mid F_{2,7}$

 $\overline{\mathbf{B}}$ $F_{7.2}$

 $\overline{\mathbf{D}}$ $F_{1,2}$

F Нет верного ответа.

Вопрос $5 \clubsuit$ Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером $n_1, \hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение

 $A F_{n_1-1,n_2-1}$

C N(0;1)

 $E t_{n_1+n_2-1}$

 $B F_{n_1,n_2}$

 $\boxed{\mathbf{D}} \chi^2_{n_1+n_2}$

Нет верного ответа.

Вопрос 6 🗘 Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

A $\chi^2_{n_1+n_2-1}$

 $C F_{n_1,n_2}$

 $|E| t_{n_1+n_2-1}$

 $t_{n_1+n_2-2}$

 $\boxed{\mathrm{D}} \ t_{n_1+n_2}$

Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.2 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

 $\boxed{\mathrm{A}}$ 1.65, H_0 отвергается

|D| 1.29, H_0 отвергается

[G] *Нет верного ответа.*

 \blacksquare 1.34, H_0 не отвергается \blacksquare 1.34, H_0 отвергается \blacksquare 1.29, H_0 не отвергается

[F] 1.29, H_0 не отвергается

Вопрос 20 . Датчик случайных чисел выдал следующие значения псевдо случайной величины: 0.78, 0.48. Вычислите значение критерия Колмогорова и проверьте гипотезу H_0 о соответствии распределения равномерному на [0; 1]. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

 \blacksquare 0.48, H_0 не отвергается \blacksquare 0.78, H_0 отвергается \blacksquare 0.37, H_0 не отвергается \blacksquare 0.37, H_0 не отвергается \blacksquare 1.26, H_0 отвергается \blacksquare 2.27, H_0 отвергается \blacksquare 2.28, H_0 отвергается \blacksquare 2.29, H_0 отвергается \blacksquare 2.29, H_0 0.39, H_0

Вопрос 21 \clubsuit Если Р-значение (P-value) меньше уровня значимости α , то гипотеза $H_0: \sigma = 1$

 $\overline{\mathbf{A}}$ Отвергается, только если $H_a: \sigma \neq 1$ Отвергается

 $\boxed{\mathrm{B}}$ Отвергается, только если $H_a: \sigma > 1$

Е Не отвергается

 \square Отвергается, только если H_a : $\sigma < 1$

F Нет верного ответа.

Вопрос 22 \clubsuit Величины Z_1, Z_2, \dots, Z_n независимы и нормальны N(0,1). Случайная величина $Z_1^2/2 + Z_4^2/2 - Z_1Z_4$ имеет распределение

 χ_1^2

B χ^2_4

F Нет верного ответа.

Вопрос 23 Функция распределения

А не имеет горизонтальных асимптот

|D| невозрастающая

В может принимать любые положительные значения

ограничена

С всюду дифференциируема

F всегда непрерывна

Вопрос 24 \clubsuit Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является

$$A \frac{X_1+X_2}{2}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline & \frac{X_1}{2n} + \frac{X_2 + \ldots + X_{n-1}}{n-2} - \frac{X_n}{2n} & \hline & \hline & \hline & \frac{X_1}{2n} + \frac{X_2 + \ldots + X_{n-2}}{n-2} + \frac{X_n}{2n} \\ \hline \hline & \frac{1}{3}X_1 + \frac{2}{3}X_2 & \hline & \hline & \hline & Hem \ \textit{sephozo omsema.} \\ \hline \end{array}$$

$$\mathbb{E} \frac{X_1}{2n} + \frac{X_2 + \dots + X_{n-2}}{n-2} + \frac{X_n}{2n}$$

$$\begin{array}{c|c} \hline \textbf{A} & \frac{X_1 + X_2}{2} & & \hline & \frac{X_1}{2n} + \frac{X_2 + \ldots + X_n}{n - 2} \\ \hline \textbf{B} & \frac{X_1}{2n} + \frac{X_2 + \ldots + X_{n-2}}{n - 1} + \frac{X_n}{2n} & \hline \textbf{D} & \frac{1}{3}X_1 + \frac{2}{3}X_2 \\ \end{array}$$

$$\boxed{\mathbf{D}} \frac{1}{3}X_1 + \frac{2}{3}X_2$$

случаев. У первого встречного берут тест. Судя по тесту, человек болен. Какова вероятность того, что он действительно болен?

 A
 больше 0.5
 меньше 0.5
 С
 равна 0.5

Вопрос 32 У Пети связка ключей. Один из них подходит к замку. Петя не знает, какой ключ подходит к замку и перебирает их по очереди. У какого ключа выше шансы подойти?

А у первого В у последнего одинаковы

A 0.5

 $\boxed{\mathbf{C}}$ 0

 \mathbb{E} $\mathbb{E}(X)$

 $oxed{B} \operatorname{Var}(X)$

F(x)

F 1

Вопрос 34 \clubsuit Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при неизвестной дисперсии используется статистика, имеющая распределение

 $\boxed{\mathbf{A}} \ \chi^2_{n-1}$

C N(0,1)

 $\mathbb{E} \chi_n^2$

 t_{n-1}

 $\boxed{\mathrm{D}} t_n$

Номер в списке (для автоматического распознавания):

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Вопрос 1 : А В 🔳	Вопрос 18: АВС Б Б Г
Bопрос 2 : $A \square C D E F$	Вопрос 19: A B C D F G
Bопрос $3:$ A \blacksquare C D E F	Вопрос 20: 🔳 🖪 С 🗇 Е Е
Вопрос 4 : В С D E F	Вопрос 21: АВС ЕБ
Вопрос 5 : A B C D E	Вопрос 22:
Bопрос $6: \mathbb{A} \blacksquare \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F}$	Вопрос 23 : АВСБББ
Вопрос 7: АВС БЕ	Вопрос 24: АВ В БЕ Б
Вопрос 8 : А С	Вопрос 25: АВСЕБ
Вопрос 9: АВ В В Б	Вопрос 26: АВСБББ
Bопрос $10:$ \blacksquare \to \to \to \to \to \to \to \to	Вопрос 27: А 🔳 С D Е F
Вопрос 11 : В В С D Е F	Вопрос 28: АВС БЕ
Вопрос 12: 🔳 В С D Е F	Вопрос 29: АВС ЕБ
Вопрос 13: 📕 В С D Е F	Вопрос 30: АВС ЕБ
Вопрос 14: АВС БЕ	Вопрос 31 : 🛕 🔳 С
Вопрос 15 : В В С D Е F	Вопрос 32: [А] [В]
Вопрос 16: 🔳 В С D Е F	Вопрос 33: АВС ЕБ
Вопрос 17:	Вопрос 34 : A

Учитываются только ответы, перенесённые на этот листок.

D не имеет горизонтальных асимптот

Е невозрастающая

ограничена

Теория вероятностей и математическая статистика: пересдача/комиссия 10.09.2015 Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера! Вопрос 1 \clubsuit Пусть X_1, X_2, \dots, X_{33} — выборка из распределения с математическим ожиданием μ и стандартным отклонением σ . Известно, что $\sum_{i=1}^{11} x_i = 33, \sum_{i=1}^{11} x_i^2 = 100$. Несмещенная оценка μ принимает значение C 0.33D 10 E 3.3 A 3 F Нет верного ответа. 1 У Пети связка ключей. Один из них подходит к замку. Петя не знает, какой ключ Вопрос 2 подходит к замку и перебирает их по очереди. У какого ключа выше шансы подойти? В у последнего А у первого одинаковы Вопрос 3 \clubsuit Пусть $\hat{\sigma}_1^2$ — несмещенная оценка дисперсии, полученная по первой выборке размером n_1 , $\hat{\sigma}_2^2$ — несмещенная оценка дисперсии, полученная по второй выборке, с меньшим размером n_2 . Тогда статистика $\frac{\hat{\sigma}_1^2/n_1}{\hat{\sigma}_2^2/n_2}$ имеет распределение A $\chi^2_{n_1+n_2}$ $C F_{n_1,n_2}$ $E t_{n_1+n_2-1}$ Нет верного ответа. D N(0:1) $[B] F_{n_1-1,n_2-1}$ Вопрос 4 \clubsuit Пусть X_1, \ldots, X_n — выборка объема n из некоторого распределения с конечным математическим ожиданием. Несмещенной и состоятельной оценкой математического ожидания является $A \frac{X_1+X_2}{2}$ $\boxed{\text{B}} \frac{1}{3}X_1 + \frac{2}{3}X_2$ Вопрос 5 🗘 Размером теста называется А Вероятность принять неверную гипотезу В Единица минус вероятность отвергнуть альтернативную гипотезу, когда она верна С Вероятность отвергнуть альтернативную гипотезу, когда она верна Вероятность отвергнуть основную гипотезу, когда она верна Е Единица минус вероятность отвергнуть основную гипотезу, когда она верна F *Нет верного ответа.* Вопрос 6 Функция распределения

А всюду дифференциируема

С может принимать любые положительные

В всегда непрерывна

значения

+9/2/3+ По случайной выборке из 100 наблюдений было оценено выборочное среднее $ar{X}=20$ и несмещенная оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:~\mu=15$ против альтернативной гипотезы $H_a: \mu > 15$ можно сделать следующее заключение | A | Гипотеза H_0 отвергается на уровне значимости 5%, но не на уровне значимости 1% В Гипотеза H_0 отвергается на уровне значимости 10%, но не на уровне значимости 5% [C] Гипотеза H_0 отвергается на уровне значимости 20%, но не на уровне значимости 10% Гипотеза H_0 отвергается на любом разумном уровне значимости $[\mathbf{E}]$ Гипотеза H_0 не отвергается на любом разумном уровне значимости F *Нет верного ответа.* Если f(x) — функция плотности, то интеграл $\int_{-\infty}^{x} f(u) du$ равен Вопрос 8 $\mathbf{A} = 0$ $\boxed{\mathrm{C}} \operatorname{Var}(X)$ F $\mathbb{E}(X)$ F(x)B 0.5 Вопрос 9 \clubsuit Геродот Геликарнасский проверяет гипотезу $H_0: \mu = 0, \sigma^2 = 1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell = -177$, а при подстановке $\mu = 0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0 C $LR = \ln 34, \chi^2_{n-2}$ E $LR = \ln 68, \chi^2_{n-2}$ $A LR = 34, \chi_2^2$ $LR = 68, \chi_2^2$ $\boxed{\text{B}} LR = 34, \chi_{n-1}^2$ **F** Нет верного ответа. Вопрос 10 \clubsuit — Если Р-значение (P-value) меньше уровня значимости α , то гипотеза $H_0: \sigma = 1$ [A] Отвергается, только если $H_a: \sigma \neq 1$ Отвергается $oxed{B}$ Отвергается, только если $H_a: \sigma < 1$ F *Нет верного ответа.* С Не отвергается Вопрос 11 \clubsuit Пусть X_1, X_2, \ldots, X_n — случайная выборка размера 36 из нормального распределения $N(\mu, 9)$. Для тестирования основной гипотезы $H_0: \mu = 0$ против альтернативной $H_a: \mu = -2$ вы используете критерий: если $X \ge -1$, то вы не отвергаете гипотезу H_0 , в противном случае вы отвергаете гипотезу H_0 в пользу гипотезы H_a . Мощность критерия равна C 0.78 0.98D 0.85 **F** Нет верного ответа. B 0.58 Вопрос 12 4 Все условия регулярности для применения метода максимального правдоподобия выполнены. Вторая производная лог-функции правдоподобия равна $\ell''(\theta) = -100$. Стандартная ошибка несмещенной эффективной оценки для параметра θ равна A 0.01 |C| 100.1 B 100 D 1 [F] *Нет верного ответа.*

1					+9/3/2+
Вопрос 13	-		-		по 10-бальной шкале два вида
мороженного:			с орешками. Капитолина		
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6
-	одуль значен	ия статисти	ки теста знако	в. Использу	н нормальную аппроксимацию,
					почтения мороженного с ореш-
			кенное с ореши		
A 1.29, H_0	отвергается		$1.34, H_0$ отвер	гается	G <i>Нет верного ответа.</i>
$\boxed{\text{B}}$ 1.96, H_0	отвергается	E	$1.65, H_0$ отвер	гается	
	не отвергает		$1.29, H_0$ не оті		
0 1.54, 110	пе отвергает	CA I	1.29, 11 ₀ He 011	вергается	
					имеет вид $\begin{pmatrix} 10 & 3 \\ 3 & 8 \end{pmatrix}$. Дисперсия
разности случ	айных велич	ин, $Var(X_1 -$	– $2X_2$), равняє	тся	
30		\mathbf{C}	21		E 15
B 1.2		D	12		F Нет верного ответа.
ную по статис второго поток	тике оказали :a — 68, 83, 6 результатов	ись равны 82 0 и 52. Вычи студентов д	, 47, 20, 43 и 73 ислите статист	3. У четырёх ику Вилкокс	потока результаты за контрольслучайно выбранных студентов она и проверьте гипотезу H_0 об вначения статистики Вилкоксо-

б

 $\boxed{\mathrm{C}}$ 20, H_0 не отвергается $\boxed{\text{A}}$ 53, H_0 отвергается [E] 12.75, H_0 не отвергается $D 65.75, H_0$ отвергается $24, H_0$ не отвергается F *Нет верного ответа.*

Вопрос 16 🛦 Каждое утро в 8:00 Иван Андреевич Крылов, либо завтракает, либо уже позавтракал. В это же время кухарка либо заглядывает к Крылову, либо нет. По таблице сопряженности вычислите статистику χ^2 Пирсона для тестирования гипотезы о том, что визиты кухарки не зависят от того, позавтракал ли уже Крылов или нет.

Время 8:00	кухарка заходит	кухарка не заходит	
Крылов завтракает	200	40	
Крылов уже позавтракал	25	100	
	'		
A 179	C 79	I	E 100
139	D 39	I	F Нет верного ответа.

Вопрос 17 \clubsuit Величины Z_1, Z_2, \dots, Z_n независимы и нормальны N(0,1). Случайная величина $rac{Z_1^2 + Z_5^2}{Z_2^2 + Z_7^2}$ имеет распределение

 $\boxed{\mathrm{E}} \ F_{1,2}$ A $F_{2,7}$ $F_{2,2}$ D $F_{7,2}$ B $F_{1,7}$ **F** Нет верного ответа.

ны: 0.78, 0.48. Вы ствии распределен	числите значение критерия Кол	ледующие значения псевдо случайной в могорова и проверьте гипотезу H_0 о со ическое значение статистики Колмогоро 0.776.
\boxed{A} 0.78, H_0 отве 0.48, H_0 не о	<u> </u>	
Вопрос 19 Есл	ли H_0 верна, то P -значение имеє	ет распределение
$ \begin{array}{c} \boxed{\mathbf{A}} \ N(\mu; \sigma^2) \\ \boxed{\mathbf{B}} \ N(0; 1) \end{array} $		$egin{array}{c} egin{array}{c} egin{array}{c} F_{1,1} \end{array}$
	о встречного берут тест. Судя по	еления. Существующий тест ошибается тесту, человек болен. Какова вероятност
	А равна 0.5 меньп	ne 0.5
выпала орлом. Ве	роятность того, что она выпадет	орлом в четвертый раз:
95 раз, а маслом в	— Николай Коперник подбросил бу верх — 105 раз. Значение критерь	ыше 0.5 равна 0.5 терброд 200 раз. Бутерброд упал масло ия χ^2 Пирсона для проверки гипотезы о
	— Николай Коперник подбросил бу верх — 105 раз. Значение критерь	— - терброд 200 раз. Бутерброд упал масло
95 раз, а маслом ві вероятности данні А 7.5 В 0.75 Вопрос 23 \$проверке гипотезь	Николай Коперник подбросил бу верх — 105 раз. Значение критери ых событий равно □ 0.5 □ 2.5 Имеется случайная выборка ра	терброд 200 раз. Бутерброд упал масло ия χ^2 Пирсона для проверки гипотезы о Е 0.25
95 раз, а маслом ві вероятности данні А 7.5 В 0.75 Вопрос 23 \$проверке гипотезь	Николай Коперник подбросил бу- верх — 105 раз. Значение критери ых событий равно □ 0.5 □ 2.5 Имеется случайная выборка раз и о равенстве математического ох	терброд 200 раз. Бутерброд упал масло ия χ^2 Пирсона для проверки гипотезы о Е 0.25
95 раз, а маслом ві вероятности данні A 7.5 B 0.75 B опрос 23 A проверке гипотезь дисперсии использ A C	Николай Коперник подбросил бу- верх — 105 раз. Значение критери ых событий равно □ 0.5 □ 2.5 Имеется случайная выборка раз и о равенстве математического об вуется статистика, имеющая расы □ χ_n^2 □ χ_{n-1}^2	терброд 200 раз. Бутерброд упал масло ия χ^2 Пирсона для проверки гипотезы о E 0.25 F Hem верного отвежидания заданному значению при неизвиределение t_{n-1} F Hem верного отвежи
95 раз, а маслом ві вероятности данні A 7.5 B 0.75 B опрос 23 A проверке гипотезь дисперсии использ A C	Николай Коперник подбросил буверх — 105 раз. Значение критериых событий равно	терброд 200 раз. Бутерброд упал масло ия χ^2 Пирсона для проверки гипотезы о
95 раз, а маслом ві вероятности данні A 7.5 B 0.75 B 0.75 B опрос 23 A проверке гипотезь дисперсии использ A A B A A A B A	Николай Коперник подбросил буверх — 105 раз. Значение критериых событий равно	терброд 200 раз. Бутерброд упал масло ия χ^2 Пирсона для проверки гипотезы о E 0.25 F Hem верного отве змера n из нормального распределени кидания заданному значению при неизвиределение
95 раз, а маслом ві вероятности данні A 7.5 B 0.75 B 0.75 B опрос 23 A проверке гипотезь дисперсии использ A A B A A A B A	Николай Коперник подбросил буверх — 105 раз. Значение критериых событий равно $\begin{array}{c} & 0.5 \\ \hline D & 2.5 \\ \hline \end{array}$ Имеется случайная выборка разовренстве математического обрустся статистика, имеющая расоврегся $\begin{array}{c} C & \chi_n^2 \\ \hline D & \chi_{n-1}^2 \\ \hline \end{array}$ еличины Z_1, Z_2, \ldots, Z_n независи C_1 имеет распределение $\begin{array}{c} C & \chi_n^2 \\ \hline C & \chi_n^2 \\ \hline \end{array}$ Пусть X_1, X_2, \ldots, X_{11} — выборктным отклонением σ . Известно, ученым отклонением σ .	терброд 200 раз. Бутерброд упал масло ия χ^2 Пирсона для проверки гипотезы о E 0.25 F Hem верного отвежидания заданному значению при неизв пределение

_	м городе и большом городе с	мерно равна 0.5. На протяжении длите считали дни, когда рождается больше (
А примерно одина	аково в маленьком	и городе С в большом городе
Вопрос 27 \clubsuit Величинь $\frac{Z_1\sqrt{n+3}}{\sqrt{\sum_{i=4}^n Z_i^2}}$ имеет распредел		и нормальны $N(0,1)$. Случайная велич
$\boxed{\mathbf{A}} t_{n-3}$	$\boxed{\mathbb{C}} t_{n-1}$	$oxed{\mathbb{E}} \ N(0,1)$
$lacksquare$ B $F_{1,n-2}$	$\boxed{\mathrm{D}} \chi^2_{n-4}$	Нет верного ответа
борка размера n из норма	ального распределения. Он п	ценивает математическое ожидание по построил оценку метода моментов, $\hat{\mu}_{MI}$ оценки можно утверждать, что
$\boxed{ ext{A}} \; \hat{\mu}_{MM} > \hat{\mu}_{ML}$	D	они не равны, и не сближаются при ∞
они равны	[E]	$\hat{\mu}_{MM} < \hat{\mu}_{ML}$
С они не равны, но сбл	пижаются при $n o \infty$ $\boxed{\mathrm{F}}$	Нет верного ответа.
	-	
	борок равна 8, то другая оц	енка дисперсии может быть равна
дисперсии по одной из вы	борок равна 8, то другая оц	E 4/3
дисперсии по одной из вы 80 В 25	борок равна 8, то другая оц С 4 D 3/4	енка дисперсии может быть равна Е 4/3 F Нет верного ответа
дисперсии по одной из вы $\blacksquare 80$ $\blacksquare 25$ Вопрос $30 \clubsuit \ $ Если X_i	борок равна 8, то другая оц $egin{array}{c} C & 4 \\ \hline D & 3/4 \\ \end{array}$ независимы, $\mathbb{E}(X_i) = \mu$ и V	енка дисперсии может быть равна Е 4/3 F Нет верного ответа
дисперсии по одной из вы $\blacksquare 80$ $\blacksquare 25$ Вопрос $30 \clubsuit \ $ Если X_i	борок равна 8, то другая оц $egin{array}{c} C & 4 \\ \hline D & 3/4 \\ \end{array}$ независимы, $\mathbb{E}(X_i) = \mu$ и V	енка дисперсии может быть равна Е 4/3 F Нет верного ответа
дисперсии по одной из вы $\blacksquare 80$ $\blacksquare 25$ \blacksquare Вопрос $\blacksquare 30 \clubsuit$ \blacksquare Если $\blacksquare X_i$ величины $\blacksquare Y = \sum_{i=1}^n (X_i - X_i)$	борок равна 8, то другая оц $\ \ \ \ \ \ \ \ \ \ \ \ \ $	енка дисперсии может быть равна $egin{array}{c} E & 4/3 \ \hline F & \textit{Hem верного ответа} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
дисперсии по одной из вы $\blacksquare 80$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 30$ $\blacksquare 25$ $\blacksquare 40$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 60$ $\blacksquare $	борок равна 8, то другая оц	енка дисперсии может быть равна $ E $
дисперсии по одной из вы $\blacksquare 80$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 30$ $\blacksquare 25$ $\blacksquare 40$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 50$ $\blacksquare 60$ $\blacksquare $	борок равна 8, то другая оц	енка дисперсии может быть равна $E 4/3$ F Hem верного ответа $F(X_i) = \sigma^2$, то математическое ожида $E \hat{\sigma}^2$ F Hem верного ответа ржащей одно наблюдение X_1 , тестиру ипотезы $H_a: X_1 \sim U[0.5; 1.5]$. Рассма
дисперсии по одной из вы $\blacksquare 80$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 25$ $\blacksquare 30$ $\blacksquare 25$ $\blacksquare 40$ $\blacksquare 10$ $\blacksquare $	борок равна 8, то другая оц $\boxed{\mathbb{C}}$ 4 $\boxed{\mathbb{D}}$ 3/4 независимы, $\mathbb{E}(X_i) = \mu$ и V $X_1)^2$ равно $\boxed{\mathbb{C}}$ σ^2 $\boxed{\mathbb{D}}$ $2(n-1)\sigma^2$ ве случайной выборки, содел 1] против альтернативной гиротив альтернативной гиротивного критерия равна:	енка дисперсии может быть равна
дисперсии по одной из вы \blacksquare 80 \blacksquare 25 \blacksquare Вопрос 30 \clubsuit Если X_i величины $Y = \sum_{i=1}^n (X_i - \blacksquare) (X$	борок равна 8, то другая оц $\boxed{\mathbb{C}}$ 4 $\boxed{\mathbb{D}}$ 3/4 независимы, $\mathbb{E}(X_i) = \mu$ и V $X_1)^2$ равно $\boxed{\mathbb{C}}$ σ^2 $\boxed{\mathbb{E}}$ $2(n-1)\sigma^2$ ве случайной выборки, содел 1] против альтернативной гиротив альтернативной гиротивной гир	енка дисперсии может быть равна

Вопрос 33 \clubsuit Зулус Чака каСензангакона проверяет гипотезу о равенстве математических ожиданий в двух нормальных выборках небольших размеров n_1 и n_2 . Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

 $t_{n_1+n_2-2}$

 $\boxed{\mathbf{B}} \ \chi^2_{n_1+n_2-1}$

 $\boxed{\mathbf{C}} t_{n_1+n_2}$

 $\boxed{\mathrm{D}} F_{n_1,n_2}$

 $\boxed{\mathrm{E}} t_{n_1+n_2-1}$

F Нет верного ответа.

Вопрос 34 \clubsuit Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p}=0.2$. Разумная оценка дисперсии случайной величины \hat{p} равна

A 1.6

0.0016

E 0.04

B 0.16 D 0.4

Номер в списке (для автоматического распознавания):

- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9
- 0 1 2 3 4 5 6 7 8 9

Bonpoc 1 : $A \square C \square E \square F$	Вопрос 18 : A
Вопрос 2: А В	Вопрос 19: АВ В БЕ Б
Вопрос 3: АВС БЕ	Вопрос 20 : А 🔳 С
Bопрос 4 : $A B C \blacksquare E F$	Вопрос 21 : А В
Вопрос 5: АВСЕБ	Вопрос 22: АВВ ДВ Б
Bonpoc 6: A B C D E	Вопрос 23: АВСББГ
Вопрос 7: АВСЕБ	Вопрос 24: АВСВЕБ
Вопрос 8: АВСЕБ	Вопрос 25: АВС ЕБ
Вопрос 9: АВСЕБ	Вопрос 26: А С
Вопрос 10: АВСЕБ	Вопрос 27: АВСБЕ
Вопрос 11 : В В С D Е F	Вопрос 28: А 🔳 С D Е F
Вопрос 12: АВС БЕ	Вопрос 29:
Вопрос 13: АВС ЕББ	Вопрос 30: АВС ЕЕ
Вопрос 14: 📕 🖪 С 🗇 Е Г	Bonpoc $31: A \square C D E F$
Вопрос 15 : A С D E F	Вопрос 32: А 🔳 С
Вопрос 16: А 🔳 С D Е F	Вопрос 33: 🔳 🖪 С 🗇 Е Г
Вопрос 17: АВ В БЕ Б	Вопрос 34: АВ В В Б Е Б

Учитываются только ответы, перенесённые на этот листок.

${ m Teopus}$ вероятностей и математическая статистика: пересдача/комиссия 10.09.2015

Можно пользоваться простым калькулятором. В каждом вопросе единственный верный ответ. Ни пуха, ни пера!

Вопрос 1 \clubsuit Геродот Геликарнасский проверяет гипотезу $H_0: \mu = 0, \sigma^2 = 1$ с помощью LR статистики теста отношения правдоподобия. При подстановке оценок метода максимального правдоподобия в лог-функцию правдоподобия он получил $\ell = -177$, а при подстановке $\mu = 0$ и $\sigma=1$ оказалось, что $\ell=-211$. Найдите значение LR статистики и укажите её закон распределения при верной H_0

$\boxed{\mathbf{A}} \ LR = 34,$	χ_2^2
---------------------------------	------------

C $LR = \ln 68, \chi^2_{n-2}$ $LR = 68, \chi^2_2$

B
$$LR = 34, \chi^2_{n-1}$$

$$D LR = \ln 34, \chi_{n-2}^2$$

F Нет верного ответа.

Вопрос 2 🕹 Производитель мороженного попросил оценить по 10-бальной шкале два вида мороженного: с кусочками шоколада и с орешками. Было опрошено 5 человек.

	Евлампий	Аристарх	Капитолина	Аграфена	Эвридика
С крошкой	10	6	7	5	4
С орехами	9	8	8	7	6

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.2 гипотезу об отсутствии предпочтения мороженного с орешками против альтернативы, что мороженное с орешками вкуснее.

 $\boxed{\mathbf{A}}$ 1.29, H_0 отвергается

[D] 1.65, H_0 отвергается

|G| Нет верного ответа.

 $1.34, H_0$ отвергается

[C] 1.29, H_0 не отвергается [F] 1.34, H_0 не отвергается

Вопрос 3 Если H_0 верна, то P-значение имеет распределение

 Λ χ_1^2

U[0;1]

E N(0;1)

 $B t_1$

 \square $F_{1.1}$

 $[F] N(\mu; \sigma^2)$

Вопрос 4 \clubsuit Если X_i независимы, $\mathbb{E}(X_i) = \mu$ и $\mathrm{Var}(X_i) = \sigma^2$, то математическое ожидание величины $Y = \sum_{i=1}^n (X_i - X_1)^2$ равно

 \hat{A} $\hat{\sigma}^2$

 $2(n-1)\sigma^2$

 $\boxed{\mathrm{E}} \sigma^2$

B μ

 $\boxed{\mathrm{D}} (n-1)\sigma^2$

F *Нет верного ответа.*

Вопрос 5 🌲 У пяти случайно выбранных студентов первого потока результаты за контрольную по статистике оказались равны 82, 47, 20, 43 и 73. У четырёх случайно выбранных студентов второго потока -68, 83, 60 и 52. Вычислите статистику Вилкоксона и проверьте гипотезу H_0 об однородности результатов студентов двух потоков. Критические значения статистики Вилкоксона равны $T_L = 12$ и $T_R = 28$.

 \boxed{A} 53, H_0 отвергается

 $\boxed{\mathrm{C}}$ 20, H_0 не отвергается

[E] 65.75, H_0 отвергается

 \Box 12.75, H_0 не отвергается \Box 24, H_0 не отвергается

Редкой болезнью болеет 0.01% населения. Существующий тест ошибается в 10%случаев. У первого встречного берут тест. Судя по тесту, человек болен. Какова вероятность того, что он действительно болен?

> В больше 0.5 меньше 0.5

Вопрос 25 Обычную рублевую монетку подбрасывают четыре раза. Первые три раза она выпала орлом. Вероятность того, что она выпадет орлом в четвертый раз:

> больше 0.5 равна 0.5 меньше 0.5

Вопрос 26 У Пети связка ключей. Один из них подходит к замку. Петя не знает, какой ключ подходит к замку и перебирает их по очереди. У какого ключа выше шансы подойти?				
A	у первого	В у посл	педнего П	одинаковы
гипотеза $H_0: X_1 \sim$	$U[0;1]$ против али $X_1>0.8$, то ги	льтернативн потеза H_0 о	ой гипотезы H_a :	о наблюдение X_1 , тестируется $X_1 \sim U[0.5; 1.5]$. Рассматри- взу гипотезы H_a . Вероятность
A 0.1 B 0.5	D	0.3 0.2		E 0.4F Нет верного ответа.
Вопрос 28 Два с выпасть у комбинаци		ıых кубика ı	подбрасываются с	одновременно. Больше шансы
А две шестерк	и одна	а шестерка, с	одна пятерка	С одинаковые шансы
	${ m x}-105$ раз. Знач			Бутерброд упал маслом вниз ия проверки гипотезы о равной
0.5 B 7.5	C D	0.75 0.25		Е 2.5F Нет верного ответа.
Вопрос 30 Функт	ция распределені	Я		
А всегда непрерын В невозрастающая С не имеет горизо		тот	значения	имать любые положительные реренциируема
			е уровня значимо	ости α , то гипотеза $H_0: \ \sigma=1$
пределения $N(\mu, 9)$. $H_a: \mu = -2$ вы испо-	елько если H_a : сть X_1, X_2, \ldots, X_n Для тестировани льзуете критерий гаете гипотезу H	$\sigma>1$ X_n — случал ия основной й: если $ar{X}\geq$	$oxed{ ext{E}}$ Не отвергае $oxed{ ext{F}}$ Нет верногойная выборка разгипотезы $H_0: \mu$ —1, то вы не отве	

Вопрос 33 & Среди 100 случайно выбранных ацтеков 20 платят дань Кулуакану, а 80 — Аскапоцалько. Соответственно, оценка доли ацтеков, платящих дань Кулуакану, равна $\hat{p}=0.2$. Разумная оценка дисперсии случайной величины \hat{p} равна

0.0016

 $\boxed{\text{C}}$ 0.4

E 0.16

B 0.04

D 1.6

 \fbox{F} Hem верного ответа.

Вопрос 34 \clubsuit Имеется случайная выборка размера n из нормального распределения. При проверке гипотезы о равенстве математического ожидания заданному значению при неизвестной дисперсии используется статистика, имеющая распределение

A χ_n^2

 t_{n-1}

 $\boxed{\mathbf{B}} \ \chi^2_{n-1}$

 $\boxed{\mathrm{D}} t_n$

Имя, фамилия и номер группы:

Номер в списке (для автоматического распознавания):

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

Вопрос 1: A B C D **Вопрос** 18 : **В** В С D Е F Вопрос 3: А В Вопрос 20 : А С С Б Е Г |D|**Вопрос** 4 : A B D E F **Вопрос 21 :** В С D Е F Вопрос 22: А С С Б Е Г Вопрос 5 : |А| |В| |С| **Вопрос 6**: **В** В С D **Вопрос 23 :** В В С D Е F Вопрос 7: А В \mathbf{D} Вопрос 24 : А В Вопрос 8: АВС D Вопрос 25 : А 🔳 🖸 **Вопрос 9**: **В** В С D E F Вопрос 26 : А В Вопрос 10 : А В Вопрос 27: АВВ БВ Б Вопрос 11 : А В С $\left[\mathbf{C}\right]$ Вопрос 28 : |А| Вопрос 29: **Вопрос 12 :** A B C D **Вопрос 13**: A B **В** D E F **Вопрос 30 :** A B C D E **Вопрос 14:** В С D E F Вопрос 15: АВВ БЕБ Вопрос 32 : А С С Б Е **Вопрос 16**: A B C D E Вопрос 33: B C D E F Вопрос 17: А В Вопрос 34: А В С D

Учитываются только ответы, перенесённые на этот листок.