Test Plan

Test Case ID	Component	Objective	Expected Output	Success Criteria	Notes/Reflection
TC1	Data Ingestion - Audio	Verify that audio files are loaded correctly from Google Drive	List of '.wav' file paths (e.g., 'premierleague.wav', 'seriaa.wav')	All files are listed without errors	Reflecting on this, we underestimated how tricky Drive integration could be—permissions were a hurdle.
TC2	Data Ingestion - Reddit	Ensure Reddit posts are scraped successfully	List of 10 post objects with comments	At least 50 posts retrieved, no API errors	The API was very easy to use compared to twitter (X). Could use it for more projects.
TC3	Data Ingestion - Web	Confirm web articles are scraped and text extracted	Raw text string from the article	Text is non-empty and contains football-related content	Web scraping felt chaotic—filtering irrelevant text was tougher than expected.
TC4	Preprocessing - Audio	Test audio transcription and sentence splitting	List of sentences (e.g., "VAR has got to go.", "It delayed the game.")	Transcription matches audio, sentences are split correctly	Whisper's accuracy was impressive, but noisy audio tripped it up sometimes.
TC5	Preprocessing - Reddit	Validate language detection and translation	Translated text (e.g., "VAR is bad", "Jota should have been yellow carded.")	Language detected as non- English; translation is accurate	Translation glitches emphasized double-checking with multiple libraries.
TC6	Preprocessing - Web	Check text cleaning and sentence filtering	Cleaned sentences (e.g., "VAR rules!", "Visit our website on")	Noise removed; only relevant sentences kept	Regex tweaking was tedious but satisfying once it worked.
TC7	Feature Engineering	Ensure text is tokenized and chunked for model input	List of chunks (e.g., chunk1 & chunk2, each ≤512 tokens)	Chunks are correctly sized and tokenized	Chunking long audio transcripts felt like a breakthrough for model compatibility.
TC8	Sentiment Analysis	Verify sentiment prediction accuracy	Sentiment label "POSITIVE" with score >0.8, polarity >0	Matches expected sentiment and threshold	Fine-tuning was tricky. Had to negate "NEGATIVE" values.
TC9	Evaluation	Confirm evaluation metrics are calculated correctly	Metrics (e.g., accuracy >0.75, F1 >0.70)	Metrics align with manual validation	Seeing the confusion matrix come together was rewarding but showed model limits.
TC10	Output - Storage	Ensure results are saved correctly	CSV file (e.g., 'var_sentiment_audio_2024.csv') with correct data and is saved in Google Drive folder.	File is readable, data matches predictions	Saving to CSV felt like a small victory after all the processing.
TC11	Output - Visualization	Validate visualization accuracy	Bar plot showing sentiment is accurate (eg. Negative) and data count matches.	Plot matches data counts	Visuals brought the data to life.

Quality plan

Quality Characteristic	Assessment Criteria	Rating (1-5)	Comments	Mitigation	Reflection
Functional Suitability	The pipeline meets the	4	Pipeline processes audio,	Revisit input data to	We learned how critical
	intended functions and		Reddit, and web data, but	ensure mid-range scores	input data quality is—
	fulfils the requirements		"NEUTRAL" labels were	exist; adjust thresholds if	missing "NEUTRAL" labels
			initially missing.	needed.	threw off our analysis.
Reliability	The pipeline is stable and	5	No crashes or errors in	N/A—continue monitoring	We were relieved it ran
	performs without failure		running the pipeline; all	for edge cases in larger	smoothly after all the
			cells execute successfully.	datasets.	debugging.
Usability	The pipeline is relatively	3	Code is well-documented,	Add clearer plot titles and	Struggled to understand
	easy to understand for		but visualisations need	legends; document the	other code files from
	users		better labels; "NEUTRAL"	"NEUTRAL" fix in the	peers.
			issue confused	report.	
			interpretation.		
Performance Efficiency	The pipeline handles the	4	Takes 15 - 40 seconds to	Optimize translation with	The translation bottleneck
	workload in a reasonable		process 851 rows on	batch processing; cache	from deepgram. Used
	time		Colab, but the translation	translated results for	google trans library.
			and chunking step is slow.	reuse.	
Compatibility	The pipeline works	5	Compatible with Python	N/A—ensure dependency	Compatibility on Colab
	seamlessly on other		3.2 on Colab;	versions are pinned for	made it easy to share and
	systems		dependencies (pandas,	reproducibility.	edit on different systems.
			seaborn) are standard.		
Maintainability	The pipeline is easy to	4	Debugging "NEUTRAL"	Add unit tests for each	Debugging without tests
	analyze, modify, test, and		was time-consuming	pipeline step; modularize	was a slog—We'll
	change		because of thresholds.	translation and sentiment	prioritize testing in future
				logic further.	projects.
Portability	The pipeline is accessible	4	Runs on Google Colab	Document setup steps	All code is Colab specific,
	on varied environments		with minor setup (e.g.,	(e.g., Drive mounting) in a	we could have made it
			Drive mount); no OS	README for non-Colab	more portable to other
			issues.	users.	IDE like Kaggle or locally.

Sprint Plan

Sprint	Scrum	Task	Task	Start Date	End Date	Assigned To	Deliverable	Notes/Reflection
--------	-------	------	------	------------	----------	-------------	-------------	------------------

	Master	ID						
Sprint 1	Ryan Kioko	SP01	Define Aims and Objectives	Feb 14, 2025	Feb 14, 2025	Ryan Kioko	Document with project goals	I realized how crucial clear aims are—kept us focused from the start.
		SP02	Define Functional & Non-Functional Requirements	Feb 14, 2025	Feb 17, 2025	Ryan Kioko	Requirements list (e.g., sentiment accuracy >70%)	Non-functional requirements like performance were tricky to define at first.
		SP03	Set Up GitHub Repository	Feb 15, 2025	Feb 16, 2025	Ryan Kioko	GitHub repo with README	Setting up GitHub early made collaboration smoother than expected.
		SP04	Create MS Project File	Feb 17, 2025	Feb 19, 2025	Ryan Kioko	MS Project file with a timeline	Learning MS Project was a steep curve, but it helped us visualize the timeline.
		SP05	Data Scraping (Audio)	Feb 18, 2025	Feb 23, 2025	Elvis Odinkor	Audio files in Google Drive	Audio scraping was slow—permissions issues taught me to double-check access rights.
		SP06	Data Scraping (Reddit & deepgram)	Feb 18, 2025	Feb 25, 2025	Chukwueb uka Tshally- Okeke	Reddit posts and Deepgram API	Reddit and Deepgram API limits were a headache; I had to adjust queries to get enough data.
Sprint 2	Elvis Odinkor	SP07	Data Preprocessing (Cleaning & Splitting)	Feb 28, 2025	Mar 4, 2025	Chukwueb uka Tshally- Okeke	Cleaned, split sentences in CSVs	Stuttering in audio transcripts was a challenge—google translation and reddit API saved the day.
		SP08	Language Standardization (Translation)	Feb 28, 2025	Mar 6, 2025	Elvis Odinkor	Translated text in English	Translation errors made me question the tool—fine-tuning thresholds helped.
		SP09	Perform Sentiment Analysis	Mar 7, 2025	Mar 12, 2025	Elvis Odinkor	Sentiment labels and scores in CSVs	The "NEUTRAL" label issue was a surprise— debugging it taught me a lot about data.
		SP10	Create Test Plan	Mar 7, 2025	Mar 9, 2025	Chukwueb uka Tshally- Okeke	Test plan document/table	Writing the test plan clarified what to focus on—I wish I'd done it earlier.
		SP11	Create Quality Assessment Plan	Mar 10, 2025	Mar 12, 2025	Elvis Odinkor	Quality plan document/table	Assessing quality made me realize gaps in usability—visuals needed more clarity.
		SP12	Result Aggregation (Combine Data)	Mar 13, 2025	Mar 15, 2025	Chukwueb uka Tshally- Okeke	`finalprojectcsv.csv` with all sources	Combining data felt rewarding, but spotting duplicates was tedious.
		SP13	Evaluation (Metrics & Validation)	Mar 16, 2025	Mar 20, 2025	Chukwueb uka Tshally- Okeke	Metrics report (accuracy, F1, etc.)	The confusion matrix showed mislabels—I should've validated more data manually.

		SP14	Output & Visualization (Plots, Word Cloud)	Mar 16, 2025	Mar 20, 2025	Elvis Odinkor	Bar plot, heatmap, word cloud	Visuals brought the data to life, but the "NEUTRAL" issue skewed early plots.
Sprint 3	Chukwue buka Tshally- Okeke	SP15	Upload Code to GitHub	Mar 21, 2025	Mar 22, 2025	Chukwueb uka Tshally- Okeke	Code and outputs on GitHub	Uploading to GitHub was quick, but I forgot to add a detailed README at first.
		SP16	Create Presentation Slides	Mar 23, 2025	Mar 27, 2025	Ryan Kioko	PowerPoint slides for project overview	Slides took longer than expected—balancing visuals and text was tricky and using AI power slide.
		SP17	Draft Final Report	Mar 23, 2025	Mar 30, 2025	Chukwueb uka Tshally- Okeke	Draft report with all sections	Writing the report helped me reflect on our journey—wish I'd documented earlier.
		SP18	Review and Finalize Deliverables	Mar 31, 2025	Apr 1, 2025	Chukwueb uka Tshally- Okeke	Final report, slides, GitHub repo, MS Project	The final review caught small errors—team collaboration was key here.

Risk Assessment Plan

Risk Category	Description	Likelihood	Impact	Contingency & Counter method
Data Availability Risk	Twitter API changes, access restrictions, or missing data for specific leagues	Medium	High	Use alternative sources (Reddit, sports forums, football websites) if Twitter data is insufficient.
Data Quality Issues			High	Implement robust data-cleaning techniques; remove spam, duplicates, and irrelevant tweets.
Sentiment Model Accuracy	NLP models misclassify sarcasm or biased opinions	Medium	Medium	Fine-tune models with football-specific sentiment lexicons; compare results across different models.
Time Constraints	Delays in data scraping, processing, and analysis	Medium	High	Follow Agile Scrum methodology with defined sprints; prioritize key deliverables in case of time crunch.
Technical Issues	API rate limits, data storage failures, or computing power limitations	Medium	Medium	Use cloud storage solutions (Google Drive) and optimize data collection to avoid excessive API calls.
Ethical Considerations	Potential bias in data collection, violating social media policies	Low	High	Ensure compliance with ethical AI practices, anonymize user data, and adhere to platform scraping policies.
Visualization & Interpretation Challenges	Difficulty in making insights easily interpretable for stakeholders	Medium	Medium	Use intuitive graphs, dashboards, and detailed explanations to support data-driven insights.