三角波发生器

主讲教师: 王香婷 教授

三角波发生器

主要内容:

三角波发生器的电路组成; 三角波发生器的工作原理。

重点难点:

三角波发生器的原理分析。

三角波发生器

1. 电路结构

因
$$u_-=0$$
,

当 $u_{+}=0$ 时, A_{1} 状态改变。

当
$$u_{+1} = u_{-} = 0$$
时,可得 $u_{0} = -\frac{R_{2}}{R_{1}}u_{01} = \pm \frac{R_{2}}{R_{1}}U_{Z}$

即当输出电压 u_0 达到 $\frac{R_2}{R_1}(\pm U_Z)$ 时, u_{01} 跃变,同时积分 电路的输入、输出电压也随之改变。

3. 波形分析与参数计算

(1) 工作波形

$$u_{+1} = \frac{R_2}{R_1 + R_2} u_{01} + \frac{R_1}{R_1 + R_2} u_{0}$$

$$u_{+1} = +\frac{R_2}{R_1 + R_2} u_Z + \frac{R_1}{R_1 + R_2} u_O$$

$$u_{\rm Om} = \pm \frac{R_2}{R_1} U_{\rm Z}$$

3. 波形分析与参数计算

(2) 周期与频率

$$T = T_1 + T_2 = 2T_1 = 2T_2$$

$$T_1 = T_2 = 2\frac{R_2}{R_1}U_Z / \frac{U_Z}{RC}$$

$$T = \frac{4R_2RC}{R_1}$$

$$f = \frac{1}{T} = \frac{R_1}{4R_2RC}$$

问题1: 改变三角波幅值的方法?

改变比较器的输出 u_{01} 及电阻 R_1 、 R_2 即可改变三角波的幅值。

问题2: 改变三角波频率的方法?

改变电路电阻 R_1 与 R_2 的比值,或改变积分常数RC,均可改变三角波的频率。

频率可调的三角波发生器

问题 3: 改变输出电压 uo 占空比的方法?

在三角波发生器电路中,使积分电路的正、反向积分的时间常数不同,可使其输出锯齿波(即改变了占空比)。

