WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

G01N 33/573, C12N 9/12, C07K 14/435

(11) International Publication Number:

WO 97/37224

(43) International Publication Date:

9 October 1997 (09.10.97)

(21) International Application Number:

PCT/GB97/00898

A1

(22) International Filing Date:

1 April 1997 (01.04.97)

(30) Priority Data:

9606765.7 9626362.9 30 March 1996 (30.03.96)

19 December 1996 (19.12.96)

GB (i) GB

(71) Applicant (for all designated States except US): MEDICAL RESEARCH COUNCIL [GB/GB]; 20 Park Crescent, London W1N 4AL (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): COHEN, Philip [GB/GB]; MRC Protein Phosphorylation, University of Dundee, Medical Sciences Institute, Dept. of Biochemistry, Dundee DD1 4HN (GB). COHEN, Patricia, Townsend, Wade [GB/GB]; MRC Protein Phosphorylation, University of Dundee, Dept. of Biochemistry, Medical Sciences Institute, Dundee DD1 4HN (GB). BARFORD, David [GB/GB]; University of Oxford, Laboratory of Molecular Biophysics, Rex Richards Building, South Parks Road, Oxford OX1 3QU (GB).
- (74) Agent: BASSETT, Richard; Eric Potter Clarkson, St. Mary's Court, St. Mary's Gate, Nottingham NG1 1LE (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: PROTEIN PHOSPHATASE-1 CATALYTIC SUBUNIT INTERACTIONS

(57) Abstract

A method of identifying a compound which modulates the interaction between a PPIc and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative. A method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PPIc or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PPIc activity, or a functional equivalent thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	Œ	Ireland	MN	Mongolia	ŪA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	loeland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2,,,	Zillioatiwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

15

20

£4

PROTEIN PHOSPHATASE-1 CATALYTIC SUBUNIT INTERACTIONS

The present invention relates to peptides and protein-protein interactions and to the use of peptides, peptide analogues and compounds which modulate protein-protein interactions in the control of cellular metabolism and function.

Cellular metabolism or function is controlled by a number of regulatory agents, which are affected by extracellular factors, for example the physical condition of the cell or the binding of a messenger molecule to a receptor located on the cell surface. The extracellular factor may then initiate a cascade of secondary messenger reactions within the cell itself, leading ultimately to changes in some aspects(s) of metabolism or cell function.

It is well recognised by those skilled in the art that phosphorylation or dephosphorylation reactions often play a key role in regulating the activity of the proteins affected. Dephosphorylation reactions are catalysed by phosphatase enzymes, the activity of which may themselves be controlled by phosphorylation and/or dephosphorylation events. Whilst a substantial amount of knowledge has been accumulated regarding protein phosphatases as a group, the number and variety of these enzymes is such that detailed information concerning the mode of action of a specific phosphatase is not always available. There remains a need to further elucidate and characterise particular key enzymes.

25 The reversible phosphorylation of proteins regulates most aspects of cell life. About a third of all mammalian proteins are now thought to contain covalently bound phosphate and, since protein kinases and phosphatases probably account for approximately 2-3% of all human gene products (Hunter, 1995), many of these enzymes must typically phosphorylate/dephosphorylate numerous proteins in vivo. However, it is becoming increasingly clear that some protein kinases

and phosphatases do not find their physiological substrates by simple diffusion within cells and that they are frequently directed to particular loci in the vicinity of their substrates by interaction with targeting subunits. In this way, the actions of protein kinases and phosphatases with inherently broad specificities are restricted and their properties tailored to the needs of a particular subcellular location, organelle or process (reviewed in Hubbard and Cohen, 1993; Faux and Scott, 1996).

Protein phosphatase-1 (PP1), one of the major protein serine/threonine phosphatases of eukaryotic cells, participates in the control of a variety of cellular functions that include glycogen metabolism, muscle contraction, the exit from mitosis (reviewed in [1,2]) and the splicing of mRNA [3]. However, evidence has been accumulating that different processes are regulated by distinct forms of PP1 in which the phosphatase catalytic subunit (PP1c) is complexed to specific "targeting subunits". These proteins not only direct PP1c to particular subcellular locations, but modify its specificity in unique ways and confer regulation by extracellular agonists (reviewed in [2,3]).

Several targeting subunits have been isolated and characterised, including the G_M -subunit that targets PP1c to both the glycogen particles and sarcoplasmic reticulum of striated muscles [4,5], the G_L subunit that targets PP1c to liver glycogen [6,7], the M-complexes responsible for the association of PP1c with the myofibrils of skeletal muscle [8,9] and smooth muscle [9-12], the p53 binding protein p53BP2 [13] and nuclear proteins such as sds22 [14] and NIPP1 [15,16]. PP1c is also reported to interact with other mammalian proteins such as the retinoblastoma gene product [17], ribosomal protein L5 [18], a 110 kDa nuclear protein that has yet to be identified [15] and two cytosolic proteins, termed inhibitor-1 and inhibitor-2. Inhibitor-1, and its homologue termed dopamine and cyclic AMP-regulated phosphoprotein (DARPP), become potent PP1 inhibitors after phosphorylation by cyclic AMP-dependent protein kinase

10

15

20

25

(PKA). Inhibitor-1 is thought to inactivate PP1c released from glycogen particles when G_M is phosphorylated by PKA [19]. Inhibitor-2 is present as a complex with PP1 in the cytosol, and there is evidence that one of its roles is to act like a molecular chaperone to ensure that the PP1 catalytic centre is folded correctly prior to its delivery to a specific targeting subunit [20]. It seems likely that many other PP1-targeting subunits will be identified over the next few years as a result of the introduction of powerful new techniques such as microcystin Sepharose affinity chromatography [8] and the yeast "two hybrid system" [13].

10

15

20

25

30

5

The forms of PP1c isolated so far each contain a single PP1c-binding subunit, implying that the interaction of different targeting subunits with PP1c may be mutually exclusive. This, in turn, suggests that the binding sites for targeting subunits may overlap, and that the proportion of PP1 directed to any particular location may be determined by the amounts of each targeting subunit synthesised and their relative affinities for PP1. However, the different targeting subunits show surprisingly little similarity to one another. G_M and G_L are structurally related, yet display only 23% amino acid sequence identity over the first 286 residues of G_M , while G_L lacks the C-terminal 750 residues of G_M [7]. p53BP2 [13] and the M_{110} subunits from smooth muscle [10,11] and skeletal muscle [8] contain ankyrin repeats, but no other similarities have so far been detected between other PP1 targeting subunits.

The paradigm for the targeting subunit concept is protein phosphatase-1 (PP1), one of the major serine/threonine specific protein phosphatases of eukaryotic cells (Stralfors et al., 1985). This enzyme is involved in controlling diverse cellular functions including glycogen metabolism, muscle contraction, the exit from mitosis and the splicing of RNA (Cohen, 1989; Shenolikar, 1994; Wera and Hemmings, 1995). These different processes appear to be regulated by distinct PP1 holo-enzymes in which the same catalytic subunit (PP1c) is

10

15

20

25

30

complexed to different targeting or regulatory subunits. The latter class of subunits act to confer *in vivo* substrate specificity not only by directing PP1c to the subcellular loci of its substrates, but also by enhancing or suppressing its activity towards different substrates. In addition, the regulatory subunits allow the activity of PP1 to be modulated by reversible protein phosphorylation and second messengers in response to extracellular stimuli.

Many regulatory subunits modulate the activity of PP1 towards its substrates. In the instance of the regulatory M_{110} subunit that targets PP1c to myosin, the region on the M_{110} subunit that enhances the dephosphorylation of myosin by PP1 has now been shown to be distinct from the region involved in targetting the PP1-M holoenzyme to myosin. These observations indicate that alterations in the substrate specificity of PP1c are likely to result from conformational changes induced by interactions with the targetting subunit and not simply as a direct result of targetting PP1c to its substrate. However, in the case of the glycogen binding subunit G_M , the dephosphorylation of glycogen phosphorylase and glycogen synthase was enhanced only under conditions when both the PP1- G_M complex and its substrates were bound to glycogen (Hubbard and Cohen, 1989) suggesting that targetting alone may be sufficient to enhance specificity.

Whilst the identity of the PP1-binding site(s) on any targeting subunit is unknown, it has now been realised that the control of the substrate specificity and activity of this key regulatory enzyme and its interactions are of therapeutic importance. Disruption of PP1-targeting subunit interactions provide a way of altering selectively the state of phosphorylation, and hence the activities, of particular PP1 substrates. We have now identified relatively small peptides from the G_M and M_{110} -subunits that interact with PP1, and which either disrupt or mimic the distinctive properties of myofibrillar and glycogen-associated forms of PP1. The binding of the G-subunit and the M-subunit of PP1 has also

15

been found to be mutually exclusive.

A first aspect of the invention provides a method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.

Conveniently, the PP1c or a fragment, variant or derivative or fusion thereof or a fusion of a fragment, variant or derivative is one that is produced using recombinant DNA technology. By "fragment, variant, derivative or fusion of PP1c" we mean any such fragment, variant, derivative or fusion that retains the ability to interact with a regulatory subunit or a suitable PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.

- By "regulatory subunit" we mean any such regulatory subunit. Further subunits are being identified all of the time. It is preferred if the regulatory subunit contains the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe as described below.
- By "PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative" we include any such fragments, variants, derivatives and fusions which are able to bind to PP1c. Conveniently, the fragments, variants, derivatives are made using recombinant DNA technology or, in the case of peptides and peptide derivatives and analogues they may be made using peptide synthetic methods.

The enhancement or disruption of the interaction between the said PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and the said regulatory subunit or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative can be measured *in vitro* using methods well known in the art of biochemistry and including any methods which can be used to assess protein-protein, protein-peptide and protein-ligand interactions.

The said interaction can also be measured within a cell, for example using the yeast two-hybrid system as is well known in the art.

It should be appreciated that before the present invention the dissociation of a PP1c-regulatory subunit has not been achieved using a small molecule such as a peptide or a peptide analogue or derivative. Thus, it is preferred if the compounds screened in the method of the first aspect of the invention are small molecules and in particular that they are not intact regulatory subunits of PP1c.

By "small molecule" we include any compounds which have a molecular weight of less than 5000, preferably less than 2000 and more preferably less than 1000. Conveniently, the compounds screened are compounds which are able to enter a cell either passively *via* the cell membrane or *via* an active uptake system.

A second aspect of the invention provides a method of identifying a compound which mimics the effect of a regulatory subunit of PP1c, the method comprising contacting said compound with PP1c and determining whether, in the presence of the compound, PP1c adopts the function of properties of a PP1c in the presence of a given regulatory subunit.

30 By "mimics the effect of a regulatory subunit of PP1c" we include the meaning

15

20

that the compound modifies a property of PPIc in such a way that PP1c acts, in at least one respect, like PP1c that is interacting with a regulatory subunit.

Examples of the properties of PP1c that may be modified, and examples of compounds which modify the properties of PP1c which are therefore identifiable in this method are given below.

Preferably, in the methods of the first and second aspects the said regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes, p53 BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2, or DARPP.

More preferably, the regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes or p53BP2, and still more preferably the regulatory subunit of PP1c is M_{110} or G_M .

15

20

25

10

5

In relation to the method of the first aspect of the invention the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete G_M regulatory subunit. Preferably the peptides are not [E2-R575] or [H100-P350].

As is described in more detail in the Examples, these peptides have been shown to bind to PP1c and it is convenient, in some circumstances, for the method to be carried out such that one of these peptide is displaced from, or the binding is enhanced to, PP1c. Suitably, the peptide may be labelled in a detectable manner to facilitate the detection of the interaction with PP1c. Conveniently, the peptide is labelled radioactively or fluorescently using methods well known in the art.

Also in relation to the method of the first aspect of the invention the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete M_{110} regulatory subunit.

As is shown in more detail in the Examples these peptides have been shown to bind to PP1c.

- Also in relation to the first aspect of the invention the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
- We have found that, surprisingly, many regulatory subunits that bind to PP1c contain the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid, preferably a naturally occurring amino acid. Typically, the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative is a peptide (typically 8-400 amino acid residues, preferably 8-200, more preferably 8-10 and still more preferably 8-20 amino acid residues in length which comprises the given consensus peptide sequence).

It is preferred if the PP1c-binding fragment, variant or derivative comprises, in addition to the said consensus peptide sequence, at least one basic residue in the four residues N-terminal of the consensus peptide sequence. Preferably, there are at least two basic residues in this position, more preferably at least three such residues.

30 It is also preferred wherein in the consensus peptide sequence Xaa is not Asp

or Glu because the negative charge is believed to interfere with binding to PP1c. Similarly, it is preferred if Xaa is not a large hydrophobic residue such as Phe, Tyr, Trp, Ile or Leu.

- It is particularly preferred if the PP1c-binding fragment is a fragment of a regulatory subunit comprising the said consensus peptide sequence and therefore the peptide sequences which flank the consensus peptide sequence are the same as in the native regulatory subunit.
- Preferably the PP1c-binding fragment is a fragment of any of the M₁₁₀, G_L, G_M, M-complexes, p53BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2 or DARPP regulatory subunits comprising said consensus sequence.

Although the methods of the first and second aspects of the invention do not rely on any particular mechanism whereby the modulation or mimicking occurs, it is preferred if the compound binds to a PP1c. Alternatively, but still preferably, the compound binds to a regulatory subunit of PP1c.

A further aspect of the invention provides a compound identifiable by the method of the first or second aspects of the invention.

A further aspect of the invention provides a compound which modulates the interaction between a PP1c and a regulatory subunit thereof said compound comprising any of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63 to 80 of G_M or functional equivalents or said compound comprising any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or said compound comprising the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any naturally occurring amino acid or functional equivalents thereof, provided that the said compound is not a complete regulatory subunit

15

25

of PP1c. Preferably, the peptides are not [E2-R575] or [H100-P350].

10

By "functional equivalent" we include the meaning that the compound, although having a different structure to the said peptides, modulates the interaction between a PP1c and a regulatory subunit thereof in substantially the same way. For example, a functional equivalent may be a peptide in which conservative substitutions have been made. By "conservative substitution" is intended combinations such as Gly, Ala; Val, Ile, Leu; Asp, Glu; Asn, Gln; Ser, Thr; Lys, Arg; and Phe, Tyr. A functional equivalent may also be a peptide with the given sequence which has been adapted to be more likely to enter a cell. For example, fatty acids or other hydrophobic moieties may be attached to the peptide.

By the term "peptide" we mean derivatives of peptides which are resistant to proteolysis, for example those in which the N or C termini are blocked, or both are blocked, and it includes molecules in which one or more of the peptide linkages are modified so that the molecule retains substantially the same molecular configuration in the linkage but the linkage is more resistant to hydrolysis than a peptide linkage.

20

25

30

5

10

15

It is particularly preferred if the compound consists of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] or peptide 63 to 80 of G_M or functional equivalents thereof or if the compound consists of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof. Preferably, the peptide is not [E2-R575] or [H100-P350].

A still further aspect of the invention provides a method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, or binds PP1c or mimics the effect of a regulatory subunit, the

WO 97/37224 PCT/GB97/00898

method comprising selecting a compound which is capable of adopting the same or substantially the same conformation as a peptide bound to the regulatory subunit-binding site of PP1c or the same or substantially the same conformation as the portion of PP1c which binds to said peptide. Suitably, the peptide comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid, preferably a naturally occurring amino acid. Conveniently, the said peptide consists of residues 63 to 75 of G_M .

It is particularly preferred if the conformation of the said peptide and the conformation of the said portion of PP1c is as defined by reference to the atomic coordinates given in Table A (see also Example 2). Example 2 provides further details of the peptide - PP1c interactions.

Table A provides the atomic coordinates for the given PP1c-peptide crystal structure.

A further aspect of the invention provides a compound identifiable by the aforementioned method of the invention.

- It will be appreciated that the aforementioned compounds and peptides will be useful in medicine and, accordingly, the invention includes pharmaceutical compositions of the said compounds in combination with a pharmaceutically acceptable carrier.
- The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. Such methods include the step of bringing into association the active ingredient (compound of the invention) with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers

WO 97/37224

or finely divided solid carriers or both, and then, if necessary, shaping the product.

PCT/GB97/00898

Formulations in accordance with the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets, each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be presented as a bolus, electuary or paste.

A tablet may be made by compression or moulding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder (eg povidone, gelatin, hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (eg sodium starch glycolate, cross-linked povidone, cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Moulded tablets may be made by moulding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent. The tablets may optionally be coated or scored and may be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethylcellulose in varying proportions to provide desired release profile.

25

30

5

10

15

20

Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavoured basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouth-washes comprising the active ingredient in a suitable liquid carrier.

Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilised) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.

Preferred unit dosage formulations are those containing a daily dose or unit, daily sub-dose or an appropriate fraction thereof, of an active ingredient.

15

10

It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavouring agents.

20

25

30

A further aspect of the invention provides a method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.

It will be appreciated that the said compounds are disclosed above with respect to specific compounds or with respect to methods of obtaining such compounds.

WO 97/37224 PCT/GB97/00898

In particular, it is preferred if the compound administered to the cell is any one or more of the peptides [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences or any one or more of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or peptides comprising said peptide sequences. Preferably, the peptide is not [E2-R575] or [H100-P350].

14

In this embodiment it will be appreciated that functional equivalents include those compounds defined above as being functional equivalents, in particular, derivatives of peptides which are more readily able to enter a cell.

The compound may be administered to the cell in any suitable way, in particular in such a way that the compound will enter the cell in a suitable form to have its desired effect. Method of facilitating the entry of a compound into the cell are known in the art, for example, in relation to peptides the importins and penetrations may be used, or the peptides may be micro-injected or they may enter the cell in a suitable vehicle such as in a liposome.

20 Preferably, the cell is a cell in a mammalian body.

The aforementioned compounds of the invention or a formulation thereof may be administered by any conventional method including oral and parenteral (eg subcutaneous or intramuscular) injection. The treatment may consist of a single dose or a plurality of doses over a period of time.

Whilst it is possible for a compound of the invention to be administered alone, it is preferable to present it as a pharmaceutical formulation, together with one or more acceptable carriers. The carrier(s) must be "acceptable" in the sense of being compatible with the compound of the invention and not deleterious to

5

10

15

25

15

20

25

30

the recipients thereof. Typically, the carriers will be water or saline which will be sterile and pyrogen free.

A further aspect of the invention provides a method of treating a patient in need of modulation of PP1c activity or function the method comprising administering to the patient an effective amount of a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.

As will be apparent from what is described herein, protein phosphatase-1 (PP1) is one of the principal serine/threonine-specific protein phosphatases in human cells where it plays key roles in regulating a variety of physiological roles, including the metabolism of glycogen, the splicing of mRNA, the exit from mitosis and the contraction of smooth muscle. The different functions of PP1 are carried out by distinct species of this enzyme in which the same catalytic unit is complexed to different "targeting" subunits. The latter class of proteins direct PP1 to specific subcellular loci, tailor its properties to the needs of a particular locus and confer the ability to be regulated by extracellular signals (hormones, growth factors, neurotransmitters). Compounds as herein described that disrupt specific PP1-"targeting" subunits interactions or mimic the effect of a targeting subunit are likely to have a number of therapeutic uses as outlined below.

PP1 interacts with the M110-subunit which targets it to myosin in smooth muscle and enhances the rate at which PP1 dephosphorylates myosin. The dephosphorylation of myosin underlies the relaxation of smooth muscle. Thus compounds such as those disclosed herein which disrupt the interaction of PP1

WO 97/37224 PCT/GB97/00898

with M110 in arterial muscle are expected to increase the phosphorylation of arterial myosin and elevate blood pressure.

16

The interaction of PP1 with M110 enhances the rate at which PP1 dephosphorylates myosin, but suppresses the rate at which it dephosphorylates glycogen phosphorylase. The disruption of the PP1-M110 interaction is therefore measured in a screen by looking for compounds which enhance the dephosphorylation of phosphorylase and/or suppress the dephosphorylation of the myosin P-light chain (see the Examples).

10

15

20

5

Compounds, such as those disclosed herein, that mimic the effect of the M110 subunit in stimulating myosin dephosphorylation are expected to be useful in lowering blood pressure. Such compounds are identified by their ability to stimulate the dephosphorylation of the myosin P-light chain by the catalytic subunit of PP1. An example of such an assay, which shows that the N-terminal 38 residues of the M110 subunit stimulate the dephosphorylation of the myosin P-light chain by PP1, is shown in the Examples.

The interaction of PP1 with G_L targets the phosphatase to liver glycogen. This interaction enhances the dephosphorylation glycogen synthase which stimulates the conversion of glucose to glycogen. A compounds, such as those disclosed herein, disrupts the interaction between PP1 and G_L is expected to be useful in treating hypoglycaemia. The interaction of G_L with PP1 strongly suppresses the rate at which PP1 dephosphorylates glycogen phosphorylase. A compound, such as those disclosed herein, which disrupts the interaction of PP1 with G_L can be screened for very simply by its ability to increase the phosphorylase phosphatase activity of PP1 G_L . This can be carried out, for example, using rat liver glycogen pellet as described in the Examples. There is no need to use the purified enzyme.

WO 97/37224

PP1 interacts with p53 BP2 (Helps et al, 1995) a protein which is known to interact with the tumour suppressor p53. The phosphorylation of p53 is known to enhance its ability to bind to DNA and hence its ability to function as a tumour suppressor. p53BP2 may be a protein which targets PP1 to p53 stimulating the dephosphorylation and inactivation of p53. A compound, such as those disclosed herein, which disrupts the interaction of PP1 with p53BP2 may enhance the phosphorylation of p53 and its ability to function as a tumour suppressor. Since p53BP2 suppresses the dephosphorylation of glycogen phosphorylase (Helps et al, 1995), compounds that disrupt the p53BP2-PP1 complex can be screened by measuring the increase in rate of dephosphorylation of glycogen phosphorylase.

PCT/GB97/00898

The present invention provides peptides able to bind to the catalytic sub-unit of protein phosphatase-1 (hereinafter referred to as PP1c). Generally the peptides affect the ability of PP1c to bind to particular target(s) and/or the regulation of PP1c activity.

Peptides can be designed based on the sequences of regulatory subunits, especially in relation to the peptide consensus sequence found therein and its flanking sequences. Peptides can be synthesised by methods well known in the art. For example, peptides may be synthesised by the Fmoc-polyamide mode of solid-phase peptide synthesis as disclosed by Lu et al (1981) J. Org. Chem. 46, 3433 and references therein. Temporary N-amino group protection is afforded by the 9-fluorenylmethyloxycarbonyl (Fmoc) group. Repetitive cleavage of this highly base-labile protecting group is effected using 20% piperidine in N,N-dimethylformamide. Side-chain functionalities may be protected as their butyl ethers (in the case of serine threonine and tyrosine), butyl esters (in the case of glutamic acid and aspartic acid), butyloxycarbonyl derivative (in the case of cysteine) and 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative (in the case

10

15

20

25

of arginine). Where glutamine or asparagine are C-terminal residues, use is made of the 4,4'-dimethoxybenzhydryl group for protection of the side chain amido functionalities. The solid-phase support is based on a polydimethylacrylamide polymer constituted from the three monomers dimethylacrylamide (backbone-monomer), bisacryloylethylene diamine (cross linker) acryloylsarcosine methyl ester (functionalising agent). The peptide-to-resin cleavable linked agent used is the acid-labile 4-hydroxymethyl-phenoxyacetic acid derivative. All amino acid derivatives are added as their preformed symmetrical anhydride derivatives with the exception of asparagine and glutamine, which are added using a reversed N, N-dicyclohexyl-carbodiimide/1hydroxybenzotriazole mediated coupling procedure. All coupling and deprotection reactions are monitored using ninhydrin, trinitrobenzene sulphonic acid or isotin test procedures. Upon completion of synthesis, peptides are cleaved from the resin support with concomitant removal of side-chain protecting groups by treatment with 95% trifluoroacetic acid containing a 50% scavenger mix. Scavengers commonly used are ethanedithiol, phenol, anisole and water, the exact choice depending on the constituent amino acids of the peptide being synthesised. Trifluoroacetic acid is removed by evaporation in vacuo, with subsequent trituration with diethyl ether affording the crude peptide. Any scavengers present are removed by a simple extraction procedure which on lyophilisation of the aqueous phase affords the crude peptide free of scavengers. Reagents for peptide synthesis are generally available from Calbiochem-Novabiochem (UK) Ltd, Nottingham NG7 2QJ, UK. Purification may be effected by any one, or a combination of, techniques such as size exclusion chromatography, ion-exchange chromatography and (principally) reverse-phase high performance liquid chromatography. Analysis of peptides may be carried out using thin layer chromatography, reverse-phase high performance liquid chromatography, amino-acid analysis after acid hydrolysis and by fast atom bombardment (FAB) mass spectrometric analysis.

5

10

15

20

The peptides may be derived from the targeting subunit(s) of PP1c, in particular from the subunits G_L , G_M , M_{110} and/or M_{21} . Additionally the peptides may be derived from other subunits such as different M-complexes, p53BP2, sds22, NIPP1, L5, Inhibitor-1, Inhibitor-2, DARPP or the like. Functional equivalents or portions of these peptides may also be used.

In a further aspect the present invention provides the use of peptides derived from targeting subunit(s) of PP1c, functional equivalents or portions thereof to affect cellular metabolism or function.

10

15

In a further aspect the present invention provides a method of treatment of the human or non-human (preferably mammalian) animal body, said method comprising altering the levels of peptides derived from targeting subunit(s) of PP1c, functional equivalents or portions thereof to an extent that cellular metabolism or function is affected.

Aspects of cellular metabolism that may be affected include (but are not limited to) glycogen metabolism, muscle metabolism, physiology and function.

Generally the levels of peptides or their activity will be enhanced in cells and this control may be achieved by causing higher levels of expression of nucleotides sequences encoding for such peptides (optionally linked to molecules which allow them to cross a cell membrane) or through the administration of such peptides or precursors thereof. Alternatively, in some circumstances, it may be more desirable to depress the levels of certain peptides or at least to depress the level of peptides in active form.

Preferred peptides according to the present invention are derivatives of G_M , especially [G63-T93], [G63-N75], [E2-R575], [E2-P243], [E2-D118], [H100-P350] and peptide 63 to 80, and derivatives of M_{110} , especially

[M1-E309], [M1-F38], [M1-A150], [L24-Y496]. Preferably, the peptide is not [E2-R575] or [H100-P350].

Particularly preferred peptides are those derived from amino acid nos. 63 to 93 (including 63-80 and 63-75) of G_M ; or from amino acids 1 to 309 (including from 1-150 and 1-38) of M_{110} .

The sequence of G_M is given in Chen et al (1994) Diabetes 43, 1234-1241.

In yet further aspect the present invention provides chimeric proteins containing portions of other proteins or peptides or containing additional amino acids.

Additionally the present invention provides nucleotide sequences (optionally in the form of plasmids) encoding the peptides or chimeric proteins of interest. DNA which encodes the polypeptides or peptides of the invention or chimeric 15 proteins can be made based on a knowledge of the peptide sequences disclosed herein. The DNA is then expressed in a suitable host to produce a polypeptide comprising the compound of the invention. Thus, the DNA encoding the polypeptide constituting the compound of the invention may be used in 20 accordance with known techniques, appropriately modified in view of the teachings contained herein, to construct an expression vector, which is then used to transform an appropriate host cell for the expression and production of the polypeptide of the invention. Such techniques include those disclosed in US Patent Nos. 4,440,859 issued 3 April 1984 to Rutter et al, 4,530,901 issued 23 July 1985 to Weissman, 4,582,800 issued 15 April 1986 to Crowl, 4,677,063 25 issued 30 June 1987 to Mark et al, 4,678,751 issued 7 July 1987 to Goeddel, 4,704,362 issued 3 November 1987 to Itakura et al, 4,710,463 issued 1 December 1987 to Murray, 4,757,006 issued 12 July 1988 to Toole, Jr. et al. 4,766,075 issued 23 August 1988 to Goeddel et al and 4,810,648 issued 7 30 March 1989 to Stalker, all of which are incorporated herein by reference.

10

15

The DNA encoding the polypeptide constituting the compound of the invention may be joined to a wide variety of other DNA sequences for introduction into an appropriate host. The companion DNA will depend upon the nature of the host, the manner of the introduction of the DNA into the host, and whether episomal maintenance or integration is desired.

Generally, the DNA is inserted into an expression vector, such as a plasmid, in proper orientation and correct reading frame for expression. If necessary, the DNA may be linked to the appropriate transcriptional and translational regulatory control nucleotide sequences recognised by the desired host, although such controls are generally available in the expression vector. The vector is then introduced into the host through standard techniques. Generally, not all of the hosts will be transformed by the vector. Therefore, it will be necessary to select for transformed host cells. One selection technique involves incorporating into the expression vector a DNA sequence, with any necessary control elements, that codes for a selectable trait in the transformed cell, such as antibiotic resistance. Alternatively, the gene for such selectable trait can be on another vector, which is used to co-transform the desired host cell.

- Host cells that have been transformed by the recombinant DNA of the invention are then cultured for a sufficient time and under appropriate conditions known to those skilled in the art in view of the teachings disclosed herein to permit the expression of the polypeptide, which can then be recovered.
- 25 Many expression systems are known, including bacteria (for example *E. coli* and *Bacillus subtilis*), yeasts (for example *Saccharomyces cerevisiae*), filamentous fungi (for example *Aspergillus*), plant cells, animal cells and insect cells.
- 30 The vectors include a prokaryotic replicon, such as the ColE1 ori, for

10

15

20

25

30

propagation in a prokaryote, even if the vector is to be used for expression in other, non-prokaryotic, cell types. The vectors can also include an appropriate promoter such as a prokaryotic promoter capable of directing the expression (transcription and translation) of the genes in a bacterial host cell, such as E. coli, transformed therewith.

A promoter is an expression control element formed by a DNA sequence that permits binding of RNA polymerase and transcription to occur. Promoter sequences compatible with exemplary bacterial hosts are typically provided in plasmid vectors containing convenient restriction sites for insertion of a DNA segment of the present invention.

Typical prokaryotic vector plasmids are pUC18, pUC19, pBR322 and pBR329 available from Biorad Laboratories, (Richmond, CA, USA) and pTrc99A and pKK223-3 available from Pharmacia, Piscataway, NJ, USA.

A typical mammalian cell vector plasmid is pSVL available from Pharmacia, Piscataway, NJ, USA. This vector uses the SV40 late promoter to drive expression of cloned genes, the highest level of expression being found in T antigen-producing cells, such as COS-1 cells.

An example of an inducible mammalian expression vector is pMSG, also available from Pharmacia. This vector uses the glucocorticoid-inducible promoter of the mouse mammary tumour virus long terminal repeat to drive expression of the cloned gene.

Useful yeast plasmid vectors are pRS403-406 and pRS413-416 and are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Plasmids pRS403, pRS404, pRS405 and pRS406 are Yeast Integrating plasmids (YIps) and incorporate the yeast selectable markers HIS3, TRP1,

WO 97/37224

5

LEU2 and URA3. Plasmids pRS413-416 are Yeast Centromere plasmids (YCps)

A variety of methods have been developed to operably link DNA to vectors via complementary cohesive termini. For instance, complementary homopolymer tracts can be added to the DNA segment to be inserted to the vector DNA. The vector and DNA segment are then joined by hydrogen bonding between the complementary homopolymeric tails to form recombinant DNA molecules.

Synthetic linkers containing one or more restriction sites provide an alternative method of joining the DNA segment to vectors. The DNA segment, generated by endonuclease restriction digestion as described earlier, is treated with bacteriophage T4 DNA polymerase or *E. coli* DNA polymerase I, enzymes that remove protruding, 3'-single-stranded termini with their 3'-5'-exonucleolytic activities, and fill in recessed 3'-ends with their polymerizing activities.

The combination of these activities therefore generates blunt-ended DNA segments. The blunt-ended segments are then incubated with a large molar excess of linker molecules in the presence of an enzyme that is able to catalyze the ligation of blunt-ended DNA molecules, such as bacteriophage T4 DNA ligase. Thus, the products of the reaction are DNA segments carrying polymeric linker sequences at their ends. These DNA segments are then cleaved with the appropriate restriction enzyme and ligated to an expression vector that has been cleaved with an enzyme that produces termini compatible with those of the DNA segment.

Synthetic linkers containing a variety of restriction endonuclease sites are commercially available from a number of sources including International Biotechnologies Inc, New Haven, CN, USA.

20

A desirable way to modify the DNA encoding the polypeptide of the invention is to use the polymerase chain reaction as disclosed by Saiki et al (1988) Science 239, 487-491.

In this method the DNA to be enzymatically amplified is flanked by two specific oligonucleotide primers which themselves become incorporated into the amplified DNA. The said specific primers may contain restriction endonuclease recognition sites which can be used for cloning into expression vectors using methods known in the art. In relation to the above section on DNA expression the term "polypeptide" includes peptides and chimeric proteins.

Further the present invention provides host cells transformed with suitable expression vectors and able to express the peptides. The host cells may be prokaryotic (e.g. E. coli) or eukaryotic (e.g. yeast, mammalian cell cultures).

Bacterial cells are preferred prokaryotic host cells and typically are a strain of *E. coli* such as, for example, the *E. coli* strains DH5 available from Bethesda Research Laboratories Inc., Bethesda, MD, USA, and RR1 available from the American Type Culture Collection (ATCC) of Rockville, MD, USA (No ATCC 31343). Preferred eukaryotic host cells include yeast and mammalian cells, preferably vertebrate cells such as those from a mouse, rat, monkey or human fibroblastic cell line. Yeast host cells include YPH499, YPH500 and YPH501 which are generally available from Stratagene Cloning Systems, La Jolla, CA 92037, USA. Preferred mammalian host cells include Chinese hamster ovary (CHO) cells available from the ATCC as CCL61, NIH Swiss mouse embryo cells NIH/3T3 available from the ATCC as CRL 1658, and monkey kidney-derived COS-1 cells available from the ATCC as CRL 1650.

Transformation of appropriate cell hosts with a DNA construct of the present

15

20

invention is accomplished by well known methods that typically depend on the type of vector used. With regard to transformation of prokaryotic host cells, see, for example, Cohen et al (1972) Proc. Natl. Acad. Sci. USA 69, 2110 and Sambrook et al (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Transformation of yeast cells is described in Sherman et al (1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY. The method of Beggs (1978) Nature 275, 104-109 is also useful. With regard to vertebrate cells, reagents useful in transfecting such cells, for example calcium phosphate and DEAE-dextran or liposome formulations, are available from Stratagene Cloning Systems, or Life Technologies Inc., Gaithersburg, MD 20877, USA.

Electroporation is also useful for transforming cells and is well known in the art for transforming yeast cell, bacterial cells and vertebrate cells.

15

20

10

For example, many bacterial species may be transformed by the methods described in Luchansky et al (1988) Mol. Microbiol. 2, 637-646 incorporated herein by reference. The greatest number of transformants is consistently recovered following electroporation of the DNA-cell mixture suspended in 2.5X PEB using 6250V per cm at 25μ FD.

Methods for transformation of yeast by electroporation are disclosed in Becker & Guarente (1990) Methods Enzymol. 194, 182.

Successfully transformed cells, ie cells that contain a DNA construct of the present invention, can be identified by well known techniques. For example, cells resulting from the introduction of an expression construct of the present invention can be grown to produce the polypeptide of the invention. Cells can be harvested and lysed and their DNA content examined for the presence of the DNA using a method such as that described by Southern (1975) J. Mol. Biol.

98, 503 or Berent et al (1985) Biotech. 3, 208. Alternatively, the presence of the protein in the supernatant can be detected using antibodies as described below.

In addition to directly assaying for the presence of recombinant DNA, successful transformation can be confirmed by well known immunological methods when the recombinant DNA is capable of directing the expression of the protein. For example, cells successfully transformed with an expression vector produce proteins displaying appropriate antigenicity. Samples of cells suspected of being transformed are harvested and assayed for the protein using suitable antibodies.

Thus, in addition to the transformed host cells themselves, the present invention also contemplates a culture of those cells, preferably a monoclonal (clonally homogeneous) culture, or a culture derived from a monoclonal culture, in a nutrient medium.

In another aspect the present invention provides antibodies to PP1c which act in an analogous manner to the peptides of interest. Antibodies to the peptides themselves are also provided and these may themselves be used to affect cell metabolism or function.

Peptides in which one or more of the amino acid residues are chemically modified, before or after the peptide is synthesised, may be used providing that the function of the peptide, namely the production of specific antibodies in vivo, remains substantially unchanged. Such modifications include forming salts with acids or bases, especially physiologically acceptable organic or inorganic acids and bases, forming an ester or amide of a terminal carboxyl group, and attaching amino acid protecting groups such as N-t-butoxycarbonyl. Such modifications may protect the peptide from in vivo metabolism. The peptides

15

20

25

may be present as single copies or as multiples, for example tandem repeats. Such tandem or multiple repeats may be sufficiently antigenic themselves to obviate the use of a carrier. It may be advantageous for the peptide to be formed as a loop, with the N-terminal and C-terminal ends joined together, or to add one or more Cys residues to an end to increase antigenicity and/or to allow disulphide bonds to be formed. If the peptide is covalently linked to a carrier, preferably a polypeptide, then the arrangement is preferably such that the peptide of the invention forms a loop.

PCT/GB97/00898

According to current immunological theories, a carrier function should be present in any immunogenic formulation in order to stimulate, or enhance stimulation of, the immune system. It is thought that the best carriers embody (or, together with the antigen, create) a T-cell epitope. The peptides may be associated, for example by cross-linking, with a separate carrier, such as serum albumins, myoglobins, bacterial toxoids and keyhole limpet haemocyanin. More recently developed carriers which induce T-cell help in the immune response include the hepatitis-B core antigen (also called the nucleocapsid protein), presumed T-cell epitopes such as Thr-Ala-Ser-Gly-Val-Ala-Glu-Thr-Thr-Asn-Cys (SEQ ID No 1), beta-galactosidase and the 163-171 peptide of interleukin-1. The latter compound may variously be regarded as a carrier or as an adjuvant or as both. Alternatively, several copies of the same or different peptides of the invention may be cross-linked to one another; in this situation there is no separate carrier as such, but a carrier function may be provided by such cross-linking. Suitable cross-linking agents include those listed as such in the Sigma and Pierce catalogues, for example glutaraldehyde, carbodiimide and succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate, the latter agent exploiting the -SH group on the C-terminal cysteine residue (if present).

If the peptide is prepared by expression of a suitable nucleotide sequence in a suitable host, then it may be advantageous to express the peptide as a fusion

10

15

20

WO 97/37224 PCT/GB97/00898

product with a peptide sequence which acts as a carrier. Kabigen's "Ecosec" system is an example of such an arrangement.

28

The peptide of the invention may be linked to other antigens to provide a dual effect.

In a yet further aspect the present invention provides a method of diagnosis of abnormalities of cellular metabolism, said method comprising analysing the naturally occurring peptide(s) or the nucleotide sequences encoding therefore and comparing the results to the peptides described herein.

The peptides of the present invention may also be used in diagnosis and this aspect is also covered by the present invention.

The specificity of the catalytic subunit of protein phosphatase-1 (PP1c) is 15 modified by regulatory subunits that target it to particular subcellular locations. For the first time we have identified PP1c-binding domains on G_L and G_M , the subunits that target PP1c to hepatic and muscle glycogen, respectively, and on M₁₁₀, the subunit that targets PP1c to smooth muscle myosin. The peptide G_M-(G63-T93) interacted with PP1c and prevented G_L from suppressing the dephosphorylation of glycogen phosphorylase, but it did not dissociate G_L from PP1c or affect other characteristic properties of the PP1_{GL} complex. These results indicate that G_L contains two PP1c-binding sites, the region which suppresses the dephosphorylation of glycogen phosphorylase being distinct from that which enhances the dephosphorylation of glycogen synthase. At higher 25 concentrations, G_{M} -(G63-N75) had the same effect as G_{M} -(G63-T93), but not if Ser67 was phosphorylated by cyclic AMP-dependent protein kinase. Thus phosphorylation of Ser67 dissociates G_M from PP1c because phosphate is inserted into the PP1c-binding domain of G_M . The fragments M_{110} -(M1-E309) and M_{110} -(M1-F38), but not M_{110} -(D39-E309), mimicked the M_{110} subunit in 30

10

15

20

25

stimulating dephosphorylation of the smooth muscle myosin P-light chain and heavy meromyosin *in vitro*. However, in contrast to the M_{110} subunit and M_{110} -(M1-E309), neither M_{110} -(M1-F38) nor M_{110} -(D39-E309) suppressed the PP1c-catalysed dephosphorylation of glycogen phosphorylase. These observations suggest that the region which stimulates the dephosphorylation of myosin is situated within the N-terminal 38 residues of the M_{110} subunit, while the region which suppresses the dephosphorylation of glycogen phosphorylase requires the presence of at least part of the region 39-296 which contains seven ankyrin repeats. M_{110} -(M1-F38) displaced G_L from PP1c, while G_M -(G63-T93) displaced M_{110} from PP1c *in vitro*. These observations indicate that the region(s) of PP1c that interact with G_M/G_L and M_{110} overlap, explaining why different forms of PP1c contain just a single targeting subunit.

We also disclose the structure of PP1c in complex with a portion of a targeting subunit, and show that changing key amino acid residues in the subunit disrupts its interaction with PP1c. These studies identify a critical structural motif in targeting subunits involved in the interaction with PP1c as well as the recognition site on PP1c itself. These findings will facilitate the rational design of agents such as peptides or other forms of small cell-permeant molecules that act by disrupting PP1-targeting subunit interactions. Given the structural motif and the coordinates of the atoms in the crystal structure, it is within the scope of the abilities of a skilled molecular modeller to produce small cell-permeant molecules, which can enter cells naturally, and possess either the same motif, or an analogous structure to give the same functional properties to the molecule. Thus the small cell-permeant molecule can have a precise copy of the motif, or one which is functionally equivalent. The molecule can be a peptide, but other types of molecules, which are transferred across the plasma membrane of cells, may be preferred.

30 Several mammalian PP1c targeting subunits have been isolated and

characterised, including the G_M subunit that targets PP1c to both the glycogen particles and sarcoplasmic reticulum of striated muscles (Tang et al., 1991; Chen et al., 1994), the G_L subunit that targets PP1c to liver glycogen (Moorhead et al., 1995; Doherty et al., 1995), the M₁₁₀ subunits responsible for the association of PP1c with the myofibrils of skeletal muscle (Moorhead et al., 1994; Alessi et al., 1992) and smooth muscle (Alessi et al., 1992; Chen et al., 1994), the p53 binding protein p53BP2 (Helps et al., 1995) and the nuclear protein NIPP-1 (Jagiello et al., 1995; Van Eynde et al., 1995). PP1c is also reported to interact with other mammalian proteins such as the retinoblastoma gene product (Durphee et al., 1993), an RNA splicing factor (Hirano et al., 1996), ribosomal proteins L5 (Hirano et al., 1995) and RIPP-1 (Beullens et al., 1996), a 110 kDa nuclear protein yet to be identified (Jagiello et al., 1995), kinesin-like proteins and small cytosolic proteins, inhibitor-1, DARPP-32 and inhibitor-2 (Cohen, 1989; Cohen, 1992, Hubbard and Cohen, 1993). Moreover, a number of distinct PP1-regulatory subunits have been identified in yeast (reviewed by Stark, 1996). We attempted to identify which regions of the G_M and M_{110} subunits were involved in binding to PP1c. These studies led to the identification of relatively small peptides from each targeting subunit that were capable of interacting with PP1c. Peptides comprising residues 63-93, 63-80 and 63-75 of G_M bound to PP1c, dissociating it from G_L , while the N-terminal 38 residues of the M_{110} subunit ($M_{110}[1-38]$) mimicked the intact M_{110} subunit in enhancing the rate at which PP1c dephosphorylated the 20 kDa myosin light chain (MLC₂₀) subunit of smooth muscle myosin (Johnson et al., 1996).

25

10

15

20

The present invention thus provides peptides comprising the N-terminal 38 residues of the M_{110} subunit, and those comprising residues 63-93, 63-80 and 63-75 of G_M .

Phosphorylation of Ser 67 of G_M by protein kinase A (PKA) disrupts the

interaction of G_M with PP1c (Dent et al., 1990) and a similar disruption is also observed following the phosphorylation of Ser 67 of the $G_M[63-75]$ peptide (Johnson et al., 1996). The finding that $G_M[63-93]$ disrupted the interaction between PP1c and the M_{110} subunit, and prevented M_{110} from enhancing the MLC₂₀ phosphatase activity of PP1c implies that the binding of M_{110} and G_M to PP1c are mutually exclusive.

Thus the invention contemplates the substitution or modification of an amino acid in any such peptide.

10

15

20

25

5

To understand the basis for the recognition by PP1c of regulatory subunits, and peptides derived from these subunits, we co-crystallised a complex of PP1c with the $G_M[63-75]$ peptide and determined the structure at 3.0 Å resolution. These experiments have demonstrated that residues 64 to 69 of the peptide are bound in an extended conformation to a hydrophobic channel within the C-terminal region of PP1c. The residues in $G_M[63-75]$ that interact with PP1c lie in an Arg/Lys-Val/Ile--Xaa-Phe motif common to $M_{110}[1-38]$ and almost all known mammalian PP1-binding proteins. Substituting Val or Phe by Ala in the $G_M[63-75]$ peptide, and deleting the VxF motif from the $M_{110}[1-38]$ peptide, abolished the ability of both peptides to interact with PP1c. These findings identify a recognition site on PP1c for a critical structural motif involved in the interaction of targeting subunits with PP1.

Particularly preferred peptides are derived from residues 63 to 69 of G_M and comprise the motif Arg/Lys-Val/Ile-Xaa-Phe. Peptides derived from M_{110} (or any other source) and also including the motif are also included in the scope of the invention.

Preferred peptides may also be substantially or wholly made up of hydrophobic residues.

10

15

The identification of this area of PP1c necessary for binding to the various subunits allows the design of agents to specifically disrupt the interaction at this area. Such disruption may, for example, increase the phosphorylation of the protein phospholamban in cardiac muscle and thus increase the force and rate of contraction of the muscle. This provides a possible treatment for congestive heart failure. Also, the specific disruption of the complex of PP1 and p53BP2 may prevent PP1 from dephosphorylating the tumour suppressor protein p53, thus enhancing phosphorylation of p53, its ability to bind to DNA, and thus its ability to act as a tumour suppressor.

The identification of the key motif in targetting subunits that bind to PP1 also provides the means to produce targetting subunits that can no longer interact with PP1. Over-expression of these mutant targetting subunits provides a powerful new way to determine the functions of different targetting subunits in vivo.

Abbreviations

20 PP1, protein phosphatase-1

PP1c, catalytic subunit of PP1

PP1, -isoform of PP1c

PP1_G, glycogen-associated form of PP1

PP1_M, myosin-associated form of PP1

25 G_M, glycogen-binding subunit of PP1 from striated muscle

G_L, glycogen-binding subunit of PP1 from liver

NIPP1, nuclear inhibitor of PP1

DARPP, dopamine and cyclic AMP-regulated phosphoprotein

M₂₁ and M₁₁₀, myofibrillar-binding subunits of PP1 with molecular masses of

30 21kDa and 110 kDa respectively.

PKA, cyclic AMP-dependent protein kinase
PhMeSO₂F, phenylmethylsuphonyl fluoride
GST, glutathione-S-transferase
MLC₂₀, myosin light chain of molecular mass 20 kDa.

5

15

25

The invention is now described in more detail by reference to the following Examples and Figures wherein:

Figure 1 shows that the N-terminal 118 residues of human G_M interact with PP1c.

GST- G_M fusion proteins were electrophoresed on 10% SDS/polyacrylamide gels and stained with Coomassie blue (lanes 1-3) or, after transfer to nitrocellulose, probed with digoxygenin-labelled PP1 γ (lanes 4-6) as in [9]. Lanes 1 and 4, GST- G_M -(E2-D118); Lanes 2 and 5, GST- G_M -(H100-P350); Lanes 3 and 6, GST. The positions of the marker proteins glycogen phosphorylase (97 kDa), bovine serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and soybean trypsin inhibitor (20 kDa) are indicated.

Figure 2 shows that synthetic peptides between residues 63 and 93 of rabbit G_M stimulate the phosphorylase phosphatase activity of PP1_{GL}.

Hepatic glycogen particles were diluted in assay buffer to 0.6 phosphorylase phosphatase (PhP) mU per ml, incubated for 15 minutes at 30°C with G_{M} -(G63-T93) (closed circles), G_{M} -(G63-K80) (open circles) or G_{M} -(G63-N75) (closed triangles) and assayed as described in Example 1. The open triangles show the effect of G_{M} -(G63-N75) which had been phosphorylated at Ser67 by PKA (p G_{M} -(G63-N75)). Similar results were obtained in four experiments.

Figure 3 shows that removal of the M_{21} subunit from smooth muscle PP1_M does

WO 97/37224 PCT/GB97/00898

not affect its MLC₂₀ phosphatase:phosphorylase phosphatase activity ratio.

- (A) Purified smooth muscle $PP1_M$ was electrophoresed on a 12% SDS/polyacrylamide gel, and either stained with Coomassie blue (lane 1) or immunoblotted [32] with antibodies specific for the M_{21} subunit (lane 2) or the M_{110} subunit (lane 3). The positions of the M_{110} subunit, the M_{21} subunit and PP1c are marked.
- (B) Purified PP1_M (lane 1) or PP1_M lacking the M₂₁ subunit (lane 2) were electrophoresed on a 12% SDS polyacrylamide gel, transferred to nitrocellulose and immunoblotted with mixed, affinity-purified antibodies to the M₁₁₀ and M₂₁ subunits. The M₁₁₀ and M₂₁ subunits are marked. The activity ratio, MLC₂₀ phosphatase (MP):phosphorylase phosphatase (PhP) of the two preparations is also shown. Similar results were obtained in three different experiments. The activity ratio MP:PhP of PP1c is 0.07.
 - Figure 4 shows expressed fragments of the M_{110} subunit before and after cleavage of the GST-fusion proteins with thrombin.
- 15% electrophoresed 20 Purified **GST-fusion** proteins were SDS/polyacrylamide gel and stained with Coomassie blue. Lane 1, 2, $GST-M_{110}$ -(D39- E309); 3, $GST-M_{110}-(M1-A150)$; Lane GST- M_{110} -(M1-E309); Lane 4, GST- M_{110} -(L24- Y496). Lanes 5-8 are the same as Lanes 1-4 except that the fusion proteins were cleaved with thrombin. The positions of the marker proteins glycogen phosphorylase (97 kDa), bovine 25 serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa), GST (26 kDa) and soybean trypsin inhibitor (20 kDa) are marked.
- Figure 5 shows the effect of M_{110} subunit fragments on PP1c-catalysed dephosphorylation of MLC₂₀ and glycogen phosphorylase

A,B; Effects of M₁₁₀-(M1-E309) (closed circles), M₁₁₀-(M1-F38) (open circles) and M₁₁₀-(D39-E309) (open triangles) on the MLC₂₀ phosphatase (B) and phosphorylase phosphatase (B) activities of PP1c were measured after incubating PP1c for 15 minutes at 30°C with each fragment. The results are presented as a percentage of those obtained in experiments where the M₁₁₀ fragments were omitted.

C,D; The effect of M_{110} -(M1-A150) (open circles) and M_{110} -(L24-Y496) (closed circles) on the MLC₂₀ phosphatase (C) and phosphorylase phosphatase (D) activities of PP1c were measured as in A,B.

Figure 6 shows the effect of M_{110} -(M1-F38) and M_{110} -(M1-E309) on the dephosphorylation of glycogen synthase by PP1c.

- The glycogen synthase phosphatase activity of PP1c was measured after a 15 minute incubation at 30°C with the indicated concentrations of M₁₁₀-(M1-F38) and M₁₁₀-(M1-E309). Similar results were obtained in three different experiments.
- Figure 7 shows that G_M-(G63-T93) dissociates PP1_M.
 - (A) The phosphorylase phosphatase (PhP) activity of $PP1_M$ (closed circles) and its MLC_{20} phosphatase (MLCP) activity (open circles) were assayed after preincubation for 15 minutes at 30°C with the indicated concentrations of G_M -(G63-T93). Activities are shown relative to control incubations in which G_M -(G63-T93) was omitted. Similar results were obtained in three experiments.
- (B,C) PPIM was incubated for 15 minutes at 30°C in the absence (B) and presence (C) of 10 M G_{M} -(G63-T93), then passed through a 30 x 1 cm column

25

of Superose 12 equilibrated at ambient temperature in 50 mM Tris/HC1 pH 7.5, 0.2M NaC1, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol, 0.03% (by mass) Brij 35 in the absence (B) or presence (C) of 1 μ M G_M-(G63-T93). Fractions (0.25 ml) were assayed for MLC₂₀ phosphatase (MLCP) in B and for phosphorylase phosphatase (PhP) activity in C. The arrows denote the position of ferritin (450 kDa) and ovalbumin (43 kDa).

Figure 8 shows that G_{M} -(G63-T93) prevents M_{110} -(M1-F38) or M_{110} -(M1-E309) from modulating the substrate specificity of PP1c.

10

5

- (A) The MLC₂₀ phosphatase activity of PP1c was assayed after incubation for 15 minutes at 30°C in the presence or absence of 1 μ M G_M-(G63-T93) and either 0.1 μ M M₁₁₀-(M1-F38) or 0.1 nM M₁₁₀-(M1-E309).
- 15 (B) The phosphorylase phosphatase activity of PP1c was assayed as in A in the presence or absence of 1 μ M G_M-(G63-T93) and 1.0 nM M₁₁₀-(M1-E309). The results are presented (SEM for three experiments) as a percentage of the PP1c activity measured in the absence of G_M-(63-T93), M₁₁₀-(M1-F38) or M₁₁₀-(M1-E309).

20

Figure 9 shows the location of PP1c-binding domains on the G_M and M_{110} targeting subunits and their effects on PP1 activity.

The hatched boxes in the M_{110} subunit denote the positions of the ankyrin repeats.

Figure 10 shows a stereo view of the electron density corresponding to the peptide. A: Initial 2-fold averaged electron map. B: map calculated using 3Fo-2Fc coefficients and phases calculated from the final refined model. Displayed using TURBO-FRODO.

Figure 11 shows the structure of PP1- $G_M[63-75]$ peptide complex. A. Stereo view of a ribbons diagram of PP1c to indicate the position of the peptide binding channel at the interface of the two β -sheets of the β -sandwich. The peptide atoms are represented as ball-and-stick (MOLSCRIPT, Kraulis, 1991).

5

- B. View of the surface of PP1c to show the hydrophobic peptide binding channel. Residues 63' to 69' (GRRVSFA) (SEQ ID No 2) of the G_M [63 75] peptide are shown as sticks. Drawn with TURBO-FRODO.
- 10 C. Stereo view of the $G_M[63-75]$ peptide at the recognition site of PP1 to indicate polar interactions between peptide and protein and the formation of the β -sheet between Ser 67' Ala 69' and 14 of PP1. Drawn with TURBO-FRODO.
- D. Solvent accessible surface and surface electrostatic potential of PP1-G_M[63 75] peptide complex calculated with PP1 coordinates alone and showing the peptide as a stick representation in the vicinity of the peptide binding site. The figure was created with GRASP (Nicholls and Honig, 1991). The protein surface is coloured according to electrostatic potential from red (most negative) to blue (most positive). The figure shows pronounced negative electrostatic potential in the region surrounding the N-terminus of the peptide binding site that results from seven conserved acidic residues.
 - E. Details of the structure of the peptide binding site to show hydrophobic interactions between PP1c and Val 66', Phe 68' and Ala 69' of the G_M [68-75] peptide (MOLSCRIPT, Kraulis, 1991).
 - Figure 12 shows a sequence alignment of PP1-regulatory subunits in the vicinity of the (R/K)(V/I) x F motif. (A) mammalian PP1-binding subunits.
- 30 G_M, Tang et al., 1991; GL, Docherty et al., 1995; G_L-related protein, Doherty

et al., 1996; p53BP2, Helps et al., 1995; NIPP-I, Bollen et al., 1995; splicing factor PSF, Hirano et al., 1996; M₁₁₀ subunit, Chen et al., 1994; inhibitor-I, Aitken et al., 1982; DARPP-32, Williams et al., 1986. (B) PPI-binding proteins in S. cerevisiae. GACI (Francois et al., 1992); PIG2 GIP1, GIP2, YIL045W (Tu et al., 1996); REGI, REG2 (Tu and Carlson, 1995; Frederick and Tatchell, 1996); SCD5 (Nelson et al 1996; Tu et al 1996). The region homologous to the RRVSFA (SEQ ID No 3) motif in G_M which intersects with PP1c is boxed.

Figure 13 shows the disruption of the interactions between PP1c and the G_L and 10 M_{110} subunits by a synthetic peptide from p53BP2. (A) PP1_M from chicken gizzard smooth muscle (Alessi et al., 1992) was diluted and incubated for 15 min 3 0 ° C a t with t h e peptide GKRTNLRKTGSERIAHGMRVKFNPLALLLDSC (SEQ ID No 15 corresponding to the sequence in p53BP2 that contains the RVxF motif. Reactions were started with either ³²P-labelled MLC₂₀ or glycogen phosphorylase and the MLC₂₀ phosphatase (open circles) and phosphorylase phosphatase (PhP, closed circles) activities were determined. The results are expressed as a percentage of the activity determined in control incubations where the p53BP2 peptide was omitted (100%). Similar results were obtained 20 in three separate experiments. (B) same as (A) except that the peptide was incubated with diluted hepatic glycogen particles containing PP1-G_L before measuring the PhP activity. Similar results were obtained in three separate experiments.

25

30

Figure 14 shows the effect of $M_{110}[M1-F38]$ and $M_{110}[M1-K35]$ on the PP1c-catalysed dephosphorylation of MLC_{20} $M_{110}[M1-F38]$ (1-38, open circles) or $M_{110}[M1-K35]$ (1-35, closed circles) were incubated with PP1c for 15 min at 30°C and reactions started with the ³²P-labelled MLC_{20} substrate. The results are expressed as a % of the activity determined in control incubations where

the M_{110} peptides were omitted (100%). Similar results were obtained in three separate experiments.

Figure 15 shows the effect of synthetic peptides derived from the M_{110} and G_M subunits on the phosphorylase phosphatase activity of PP1- G_L . (A) Hepatic glycogen protein particles containing PP1- G_L were diluted and incubated for 15 min at 30°C with the indicated concentrations of either $M_{110}[M1\text{-}F38]$ (open circles) or $M_{110}[M1\text{-}K35]$ (closed circles) and the phosphatase reactions were initiated by addition of 32 P-labelled glycogen phosphorylase. The results are expressed as a percentage of the activity determined in control incubations where the M_{110} peptides were omitted. Similar results were obtained in three separate experiments. (B) The experiment was carried out as in (A), except that the peptide $G_M[G63\text{-}N75]$ ("wild type", WT) and variants in which either Val 66 (V66A) (closed triangles) or Phe 68 (F68A) (closed circles) were changed to Ala, were used instead of the M_{110} peptides. Similar results were obtained in three separate experiments.

Figure 16 shows a stereo view of a ribbons diagram of a model of PP1-phospho-inhibitor-l complex. The side chains of Ile 10, Phe 12 and pThr 35 of phospho-inhibitor-l are shown with the main-chain atoms of residues 8 to 36 of the inhibitor indicated as a shaded ribbon. Drawn with MOLSCRIPT (Kraulis 1991).

Figure 17 shows a comparison of rat and chicken gizzard M_{110} and M_{21} subunits.

Vertical lines indicate identical residues, colons denote similar residues in the rat and chicken M_{110} sequences and deletions are shown by dots. (A) Comparison of M_{110} subunits. Underlined residues in the rat M_{110} subunit (Rat1) are deleted in some rat aorta forms and underlined residues in the

30

10

15

WO 97/37224 PCT/GB97/00898

40

chicken M_{110} subunit (Ch1) are deleted in some chicken gizzard forms [5, 8]. Dashed lines above residues indicate amino acids deleted in the rat kidney M_{110} subunit [9]. The alternative C-terminal sequences of rat uterus M_{110} subunit are shown as Ratl and Rat2. Leucine residues in the C-terminal leucine zipper motif are double underlined. (B). The C-terminal sequence of the M_{110} subunit is structurally related to the M_{21} subunit. The sequence of the chicken M_{21} subunit [5] is compared with the C-terminal sequences of Rat2 and Ch1 from A. Identities between Ch1 and Rat2 are shown in boldface type.

Figure 18 shows immunoprecipitation and immunoblotting of PP1_M in extracts from chicken gizzard myofibrils.

A. Antibodies specific for the M_{110} and/or M_{21} subunits immunoprecipitate most of the myosin P-light chain phosphatase activity in myofibrillar extracts. 15 PP1_M was immunoprecipitated with either control IgG, antibody raised against the PP1_M holoenzyme, antibody specific for the M₁₁₀ subunit or antibody specific for the M_{21} subunit, as described under Methods in Example 3. The figure shows activity present in the supernatant (S, open bars) or pellet (P, filled bars) as a percentage of that measured before centrifugation. The results 20 shown are the average (± S.E.M.) for three separate experiments each assayed in duplicate. B, The M_{110} and M_{21} subunits are present in similar molar proportions in myofibrillar extracts and in purified PP1_M. 10 ng (track 1) or 3 ng (track 3) of purified PP1_M or 12 μ g (track 2) or 3.6 μ g (track 4) of myofibrillar extract was electrophoresed on a 12% SDS/polyacrylamide gel, 25 transferred to nitrocellulose and immunoblotted with mixed affinity-purified antibodies to the M_{110} and M_{21} subunits as in [22]. The positions of the two subunits are marked. The results indicate that PP1_M comprises about 0.1% of the myofibrillar protein.

Figure 19 shows the identification of the region on the M_{110} subunit that

interacts with the M₂₁ subunit.

WO 97/37224

5

10

15

20

25

A) PP1_M 5 μ g (track 1), 10 μ g bacterial extract containing M₁₁₀-(R714-I1004) (track 2), MBP-M₁₁₀-(R714-I1004) 1 μ g (track 3), MBP-M₁₁₀-(R714-L934) 1 μ g (track 4), MBP-M₁₁₀-(K933-I1004) 1 μ g (track 5), MBP 1 μ g (track 6), M₁₁₀-(M1-E309) 2 μ g (lane 7) and M₁₁₀-(M1-S477) 2 μ g (track 8) were run on a 12% SDS/polyacrylamide gel and stained with Coomassie Blue. B) same as A) except that 10-fold less protein was electrophoresed and after transfer to nitrocellulose the proteins were probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml). C) same as B) except that, after electrophoresis, the proteins were transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁-(M1-L146) (0.2 μ g/ml).

Figure 20 shows the identification of the region of the M_{21} subunit involved in interaction with the M_{110} subunit and in dimerization.

A) GST-M₂₁ 5 μ g (track 1), M₂₁ 5 μ g (track 2), M₂₁-(M1-L146) 5 μ g (track 3), M₂₁-(M1-E110) 20 μ g (track 4) and M₂₁-(E110-K186) 5 μ g (track 5) were run on 16.5% polyacrylamide gels and stained with Coomassie Blue. The marker proteins ovalbumin (43 kDa) and carbonic anhydrase (29 kDa) are indicated.

B) GST-M₂₁ 0.5 μ g (track 1), M₂₁ 0.5 μ g (track 2), M₂₁-(M1-L146) 0.5 μ g (track 3), M₂₁-(M1-E110) 5 μ g (track 4) and M₂₁-(E110-K186) 5 μ g (track 5) were electrophoresed as in A) and after transfer to nitrocellulose the blots were probed with digoxigenin-labelled MBP-M₁₁₀-(K933-I1004) (0.2 μ g/ml). C) same as B) except that, after electrophoresis, the proteins were transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml).

Figure 21 shows that the M_{21} subunit and M_{21} -(M1-L146) interact with the M_{110} subunit and themselves, but not with PP1.

10

15

PP1_M (0.5 μ g) was electrophoresed on a 12% SDS/polyacrylamide gel, transferred to nitrocellulose and probed with digoxigenin-labelled M₂₁ subunit (0.2 μ g/ml) (track 1) or digoxigenin-labelled M₂₁-(M1-L146) (0.2 μ g/ml) (track 2). The positions of the M₁₁₀ subunit, the M₂₁ subunit and PP1c are marked.

Figure 22 shows that removal of the M_{21} subunit from smooth muscle $PP1_M$ does not prevent it from being pelleted with myosin.

The PP1 catalytic subunit (PP1c), PP1_M, or PP1_M lacking the M_{21} subunit, PP1_M(ΔM_{21}), each at 30 nM, were incubated for 15 min at 0°C with 1 μ M myosin and centrifuged (see Methods of Example 3). The figure shows the myosin P-light chain phosphatase activity present in the supernatant (S, open bars) or pellet (P, filled bars) as a percentage of that measured before centrifugation. The results shown are the average (\pm S.E.M.) for three separate experiments each assayed in duplicate.

Figure 23 shows the identification of a region of the M_{110} subunit which binds to myosin.

(A); PP1_M, M₁₁₀-(M1-S477) and GST-M₁₁₀-(M377-K976), each at 30 nM were incubated for 15 min at 0°C with 1 μM myosin and centrifuged. The supernatants (S), resuspended pellets (P) and the suspension before centrifugation (T, total) were electrophoresed on 12% SDS/polyacrylamide gels, transferred to nitrocellulose and immunoblotted with antibodies raised against the PP1_M holoenzyme. No protein was pelleted in the absence of myosin (not shown). The positions of the marker proteins myosin heavy chain (200 kDa), glycogen phosphorylase (97 kDa), bovine serum albumin (66 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and soybean trypsin inhibitor (20 kDa) are indicated. (B) The experiments were carried out as in (A), except that the M₁₁₀ fragments and M₂₁ subunit were used at 100 nM, the 8.5 kDa

 M_{110} -(K933-I1004) fragment was electrophoresed on a 16.5% polyacrylamide gel and immunoblotting was carried out with affinity purified antibodies (see Methods). A small amount of M_{110} -(R714-I1004) pelleted in the absence of myosin. This was probably due to aggregation in the bacterial extract since this did not happen when it was complexed to the M_{21} subunit (data not shown). No other protein was pelleted in the absence of myosin.

43

Figure 24 shows that the isolated M_{21} subunit binds to myosin.

(A); Myosin (1 μM) was mixed with 50 μM, 20 μM or 10 μM M₂₁ subunit to give the molar ratios M₂₁:myosin dimer indicated. After 15 min at 0°C, the solutions were centrifuged and the supernatants (S), resuspended pellets (P) and the suspension before centrifugation (T, total) were electrophoresed on 12% SDS/polyacrylamide gels and stained with Coomassie blue. The positions of the myosin heavy chain (MHC) and the M₂₁ subunit are indicated. The myosin light chains migrate faster than the M₂₁ subunit and are not visible at these loadings.

(B); Myosin (track A) was purified from chicken gizzard, and the myosin "rod" domain (track B) and light meromyosin (track C) produced by digestion of myosin with papain and chymotrypsin, respectively. These three proteins, all at 1 μ M, were then mixed with M_{21} subunit (track D) to give a molar ratio M_{21} :myosin dimer of 10:1 and, after 15 min at 0°C, the solutions were centrifuged and the supernatants (S), resuspended pellets (P) and the suspension before centrifugation (T, total) were electrophoresed on 12% SDS/polyacrylamide gels and stained with Coomassie blue. The slightly faster migrating band in the M_{21} subunit preparation was shown by amino acid sequencing to be N-terminally truncated commencing at residue 16. (C); same as (B), except that M_{21} -(M1-L146) (track D) replaced the M_{21} subunit.

20

10

15

20

25

30

Figure 25 gives a schematic representation of the regions on the M_{110} subunit from chicken gizzard that interact with PP1c, myosin and the M_{21} subunit.

PP1c binds to the KVKF (SEQ ID No 5) motif between residue 35 and 38, just N-terminal to the seven ankyrin repeats (hatched vertical lines) that suppress the dephosphorylation of substrates other than myosin. Residues 1-38 of the M_{110} subunit enhance the dephosphorylation of myosin. The M_{21} subunit binds to the C-terminal 72 residues of the M_{110} subunit which are 43% identical in amino acid sequence to residues 87-161 of the M_{21} subunit. The dephosphorylated form of myosin binds to M_{110} -(R714-I1004) but not to M_{110} -(K933-I1004), suggesting that myosin binds N-terminal to the M_{21} subunit.

Example 1: Identification of protein phosphatase 1-binding domains on the glycogen and myofibrillar targeting subunits

MATERIALS AND METHODS

Materials.

The myosin-associated form of PP1 (PP1_M) was from chicken gizzard [9] and the glycogen-associated form of PP1 (PP1_G) from rabbit skeletal muscle [21]. The β isoform of PP1c was released from PP1_G by incubation for 2 hours in 2M LiBr, then purified by gel-filtration on a 30 x 1 cm column of Superose 12 (Pharmacia, Milton Keynes, U.K.) in the presence of 0.5M LiBr. Glycogen protein particles from rat liver [22] were used as the source of hepatic PP1_G. Digoxygenin-labelled PP1c (γ_1 -isoform, hereafter termed PP1) was prepared as in [9]. G_L was expressed in E. coli as a glutathione-S-transferase (GST) fusion protein [7], termed GST- G_L . The catalytic subunit of PP2A from bovine heart (PP2AC) was provided by Dr R. MacKintosh in this Unit. The phosphorylatable myosin light chain (MLC₂₀) and heavy meromyosin from chicken gizzard were a gift from Dr M. Ikebe (Case Western Reserve

University, Cleveland, USA). Thrombin and benzamidine-Agarose were purchased from Sigma (Poole, UK).

Peptide synthesis.

Peptides were synthesised on an Applied Biosystems 430A peptide synthesiser 5 and their purity and concentration established by high performance liquid chromatography, mass spectrometry and amino acid analysis. The sequence of rabbit G_M-(G63-T93) is GRRVSFADNFGFNLVSVKEFDTWELPSVSTT (SEQ ID No 6) the of and sequence M_{110} -(M1-F38) MKMADAKQKRNEQLKRWIGSETDLEPPVVKRQKTKVKF (SEQ ID No 10 The peptide G_{M} -(G63-T93) was cleaved with Lys-C endoproteinase (Boehringer) and the peptide G_M-(E81-T93) thus generated was purified on a The peptides G_{M} -(G63-K80) and G_{M} -(G63-N75), were synthesised, and the latter phosphorylated at Ser67 with the catalytic subunit of cyclic AMP-dependent protein kinase (PKA), then bound to a 1 ml C₁₈ column 15 equilibrated in 0.1% (v/v) trifluoroacetic acid, washed with 0.1% trifluoroacetic acid to remove excess ATP, eluted with 0.1% trifluoroacetic acid containing 70% acetonitrile, dried and dissolved in water. G_M-(S40-Y55) was a gift from Dr Bruce Kemp (St Vincent's Institute, Australia). 20

Preparation of phosphorylated proteins and phosphatase assays.

³²P-labelled rabbit skeletal muscle phosphorylase a (containing 1.0 mol phosphate per mol subunit) was prepared by phosphorylation with phosphorylase kinase [23], ³²P-labelled rabbit skeletal muscle glycogen synthase (containing 1.5 mol/mol subunit in the sites 3 region) was prepared by phosphorylation with glycogen synthase kinase-3 [24]), ³²P-labelled chicken gizzard MLC₂₀ and ³²P-labelled chicken gizzard heavy meromyosin (containing 1.0 mol phosphate per mol subunit) were prepared by phosphorylation with smooth muscle myosin light chain kinase [9]. The dephosphorylation of

25

15

25

phosphorylase a (10 μ M), glycogen synthase (1 μ M) and MLC₂₀ (1 μ M) and heavy meromyosin (1 μ M) was carried out as in [24]. One unit of activity (U) was that amount which released 1 mole of phosphate in one minute.

Construction of vectors for the expression of N-terminal fragments of the G_M subunit as glutathione-S-transferase (GST) fusion proteins in E. coli.

 G_{M} -(E2-R575) was produced by inserting a SmaI-SmaI restriction fragment, encoding amino acids 2-575 of human G_{M} , from clone H1G11 [5] into the SmaI site of pGEX-KG (Pharmacia, Milton Keynes, U.K.). This resulted in the addition after residues 2-575 of amino acids EFPVVVVEF (SEQ ID No 8) before the stop codon. G_{M} -(E2-P243) was made by deleting an NcoI-HindIII fragment of the G_{M} -(E2-R575) construct, resulting in termination after residue 243. G_{M} -(E2-D118), encoding amino acids 2-118, with a C-terminal addition of QLNSS was produced by deleting a BgIII-HindIII fragment of the G_{M} -(E2-R575) construct. G_{M} -(H100-P350) encoding amino acids 100-350 was made by inserting an EcoRI-HindIII digested PCR fragment prepared using primers

5' GCCGAATTCACACAGAAGAATATGTTTTAGCC 3' (SEQ ID No 9) and
5' GCCGAAGCTTATGGAAAATTGACTGGATCTGTTG 3' (SEQ ID No 10)
into the same sites of pGEX-KG. Restriction sites in the primers are underlined.

Construction of vectors for the expression of the chicken gizzard M_{21} subunit in E. coli.

The entire coding region (M1-K186) of the M_{21} subunit [10] was amplified by PCR using primers

- 5' CGCGCATATGTCGTCGCTGTTCACCAGG 3' (SEQ ID No 11) and
- 30 5' GGCGGATCCCTACTTGGAGAGTTTGC 3' (SEQ ID No 12), containing

restriction sites NdeI and BamH1 (underlined). After cleavage with the restriction enzymes, the PCR fragment was cloned into the same sites of the bacterial expression vector pT7-7.

5 Production of fragments of the chicken gizzard and rat aorta M_{110} subunits.

The C-terminal 291 residues M_{110} -(R714-I1004) of the chicken gizzard M_{110} subunit were amplified by PCR using a primer

5' AGGAAGAATTCGTTCCACACGAAC 3' (SEQ ID No 13) containing an EcoRI restriction site (underlined) and a KS primer in the Bluescript vector of the cDNA clone [10]. The EcoRI digested PCR fragment was subcloned into the same site of pT7-7.

aorta M₁₁₀ fragments were produced as GST-fusion proteins. M₁₁₀-(M1-A150) was amplified by PCR using primers A (5' CCTAGCCCGGGGATGAAGATGGCGGAC 3') (SEQ ID No 14) and B (5' GCGGAAGCTTATGCTTCCTCCTCTGCAATATC 3') (SEQ ID No 15), containing Smal and HindIII restriction sites (underlined) and the Smal-HindIII digested PCR fragment subcloned into the same sites of pGEX-KG. M₁₁₀-(M1-E309) was produced by subcloning a Smal-HindIII digested PCR fragment amplified using primers Α CTAGAAGCTTCCATATTTGCTGTTGATTCAATC 3') (SEQ ID No 16) into the same sites of pGEX-KG. This resulted in one amino acid (A) being added after E309. M₁₁₀-(D39-E309) was produced by subcloning a SmaI-HindIII digested PCR primers D (5' fragment amplified using CCTAGCCCGGGGGACGATGGCGCCGTCTTCC 3') (SEQ ID No 17) and C into the same sites of pGEX-KG. An M_{110} -(L24-K976) was prepared by inserting a Xhol-Xhol restriction fragment of the entire M₁₁₀ cDNA in Bluescript into XhoI site of pGEX-KG, and M₁₁₀-(L24-Y496) expressed by deleting a NdeI-NdeI fragment of the L24-K976 construct and filling the

15

20

25

10

15

20

25

30

overhanging ends before ligating them. This resulted in the addition after Y496 of amino acids MVAD (SEQ ID No 18) before the stop codon. The sequence of all subclones produced after PCR amplification were verified using an Applied Biosystems 373A automated DNA sequencer and Taq dye terminator cycle sequencing according to the manufacturer's instructions.

Expression of proteins in E.coli.

All constructs were expressed in *E. coli* strain BL21(DE3)plysS. Cultures were grown at 37°C in Luria-Bertani medium in the presence of 100 μg/ml ampicillin and 30 μg/ml chloramphenicol to an A600 of 0.4-0.6, and induced with 50 μg/ml isopropylthiogalactoside for 8 hours at 25°C or overnight at ambient temperature. After centrifugation for 10 minutes at 7000 x g (4°C), cells from one litre of culture were resuspended in 20 ml of 50 mM Tris-HCl pH 8.0, 0.1 M NaCl, 1 mM EDTA, 0.1% (by vol) 2-mercaptoethanol, 0.2 mM phenylmethylsulphonylfluoride (PhMeSO₂F), 1 mM benzamidine (buffer A) and frozen at -80°C. After thawing, sodium deoxycholate (1 mg/ml), 8 mM MgSO4 and 10 g/ml DNAase I were added, the extract incubated until it was no longer viscous, then made 6 mM in EDTA, 1 mM in benzamidine and 0.2 mM in PhMeSO₂F and centrifuged for 10 minutes at 10,000 x g. The soluble GST-fusion proteins were then purified from the supernatant by affinity chromatography on glutathione-Sepharose (Pharmacia).

The M_{21} subunit and M_{110} -(R714-I1004) C-terminal fragment from chicken gizzard M_{110} subunit, which were used for affinity purification of the anti- M_{21} and anti- M_{110} antibodies (see below) were obtained in inclusion bodies and therefore recovered in the pellets after centrifuging E. coli extracts at 10,000 x g. M_{110} -(R714-I1004) was solubilised by resuspension in Buffer A containing 0.5% (by mass) Triton X-100 and was >95% pure. The M_{21} subunit was not solubilised by this procedure but, after washing the pellets in 0.5% Triton

10

15

X-100, was dissolved by sonication in 0.5% trifluoroacetic acid; its purity was about 20%.

M₁₁₀ GST-fusion proteins (1-9 mg/ml in 50 mM Tris/HCl, 2.5 mM CaCl2, 150 mM NaCl and 0.1% (by vol) 2-mercaptoethanol) were cleaved by incubation for 20 minutes at 30°C with 20 μg/ml thrombin. Benzamidine-Agarose (0.2 ml) was added and, after incubation (with rotation) for 30 minutes at ambient temperature, the benzamidine-Agarose containing the attached thrombin was removed, and the supernatant dialysed against 50 mM Tris-HCl pH 7.5, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol, 10% glycerol and stored in aliquots at -80°C. After cleavage with thrombin, all fragments of the M₁₁₀ subunit, except M₁₁₀-(L24-Y496), commenced with the sequence GSPG (SEQ ID No 19) before the initiating residue of the GST-fusion proteins. The M₁₁₀-(24-Y496) was preceded by the sequence GSPGISGGGGGILDSMGR (SEQ ID No 20).

Production of antibodies that recognise the M_{110} and M_{21} subunits of chicken gizzard $PP1_M$.

Polyclonal sheep antibodies to the PP1_M holoenzyme were raised in the Scottish Antibody Production Unit (Carluke, Ayrshire, U.K.). Antibodies which recognise the M₁₁₀ subunit specifically were obtained by passing the antiserum down a 4 ml affinity column comprising 40 mg of M₁₁₀-(R714-I1004) coupled covalently to 1g of dried CNBr-activated Sepharose 4B (Sigma). After washing with 10 column volumes of 50 mM Tris/HCl pH 7.5, 1% (by mass) Triton X-100, 0.1 mM EGTA, 0.1% (by vol) 2-mercaptoethanol (Buffer B) plus 0.5 M NaCl, followed by 10 volumes of Buffer B plus 1 M LiBr, the anti-M₁₁₀ antibody was eluted with 50 mM glycine pH 2.0, neutralised immediately with 1 M Tris/HCl pH 8.0 and stored in aliquots at -80°C.

identical manner, except that the affinity column comprised about 40 mg of the expressed chicken gizzard M_{21} subunit coupled to 6 g (dry weight) of CNBr-activated Sepharose.

5 Removal of the M_{2l} subunit from $PP1_M$.

PP1_M (0.01 ml, 0.4U/ml) was dissociated by incubation for 30 minutes with 500 μ M arachidonic acid [25] and then for 30 minutes with 0.08 ml of packed Protein G-Sepharose coupled to 0.08 mg of affinity purified anti-M₂₁ antibody. The Protein G-Sepharose was pelleted, and the supernatant diluted at least 15-fold to allow the M₁₁₀ subunit and PP1c to recombine. The M₁₁₀-PP1c complex was further purified by gel filtration on Superose 12 (30 x 1 cm) to ensure complete removal of any free PP1c.

RESULTS.

15

20

25

30

10

Identification of a PP1c-interaction domain on the G_M -subunit of PP1 $_{GM}$. The amino acid sequence of rat hepatic G_L is 23% identical (39% similar) to residues 1-286 of G_M from human skeletal muscle [7]. There is no homology over the first 63 residues but identity is >40% over the regions 63-86, 144-166 and 186-227 of G_M suggesting that one or more of these sequences comprise a PP1-binding domain. Fusion proteins in which GST was linked to fragments of G_M were therefore tested for their ability to bind to PP1c. GST-G_M-(E2-D118) (Fig 1) and GST-G_M-(E2-P243) (data not shown), but not GST-G_M- (H100-P350) or GST itself (Fig 1) interacted with PP1 in Far Western experiments, indicating that the first 118 residues of G_M contain a Moreover, a proteolytic fragment derived from PP1c-binding domain. GST-G_M-(E2-D118) whose molecular mass was 5 kDa less GST-G_M-(E2-D118), but not a proteolytic fragment that was 6 kDa smaller, also interacted with PP1c (Fig 1). Taken together, the observations suggested that the region comprising residues 63-86 was likely to bind to PP1c. We therefore synthesised $G_{M^{-}}(G63-T93)$ and examined its effect on the enzymatic properties of $PP1_{GL}$, the form of PP1 associated with rat hepatic protein-glycogen particles.

- The interaction of PP1c with G₁ suppresses the dephosphorylation of muscle 5 glycogen phosphorylase by 80% and enhances the dephosphorylation of muscle glycogen synthase by 2-3 fold [21, 26]. Disruption of the characteristic properties of hepatic PP1_{GI} can therefore be monitored very simply by changes G_M-(G63-T93) induced a sixfold increase in the in its specificity. 10 phosphorylase phosphatase activity of PP1_{GL}, the concentrations required for 50% activation being 30 nM (Fig 2). G_{M} -(G63-T93) also prevented bacterially expressed GST-G_L from suppressing the phosphorylase phosphatase activity of PP1c (data not shown). However, G_{M} -(G63-T93) had no effect on the glycogen synthase phosphatase activity of PP1_{GI}, nor was there any alteration of the other characteristic properties of PP1_{Gt}, namely allosteric inhibition of the 15 glycogen synthase phosphatase activity by phosphorylase a and binding to glycogen (data not shown). Thus the interaction of G_M-(G63-T93) with PP1_{GL} does not displace G_L from PP1c.
- G_M-(G63-T93) also increased the phosphorylase phosphatase activity of PP1c, indicating that it binds to PP1c, rather than to G_L. However, the maximal stimulation was only 37 + 1.4% (SEM for three experiments), establishing that far greater activation of PP1_{GL} is explained by the ability of G_M-(G63-T93) to overcome the suppressive effect of G_L on the phosphorylase phosphatase activity of PP1c. Several other peptides, including a 32 residue peptide related to the C-terminus of ribosomal protein S6([G245,G246]S6[218-249]), G_M-(S40-Y55) and G_M-(E81-T93) (data not shown), had no effect on the phosphorylase phosphatase activity of PP1_{GL} or PP1c at concentrations up to 10 μM.

20

25

30

The peptides G_{M} -(G63-K80) and G_{M} -(G63-N75) also increased the phosphorylase phosphatase activity of PP1_{GL}, but were less effective than G_{M} -(G63-T93) and higher concentrations were needed (Fig 2). G_{M} -(G63-K80) and G_{M} -(G63-N75) did not increase the phosphorylase phosphatase activity of PP1c significantly at concentrations up to 10 μ M (data not shown). The phosphorylation of G_{M} at Ser67 by cyclic AMP-dependent protein kinase (PKA) triggers the dissociation of PP1 from G_{M} in vitro and in vivo [18] and phosphorylation of the peptide G_{M} -(G63-N75) at Ser67 prevented it from increasing the phosphorylase phosphatase activity of PP1_{GL} (Fig 2A). The increase in phosphorylase phosphatase activity observed at the highest phosphopeptide concentrations (10 μ M) may be explained by trace contamination (<10%) with dephosphopeptide, resulting either from incomplete phosphorylation of Ser67 or slight dephosphorylation during the assay.

15 Identification of a PP1-interaction domain on the M_{110} subunit.

Antibodies were prepared that recognised either the M_{110} or M_{21} subunits of the myosin-associated form of PP1 (PP1_M) from chicken gizzard (Fig 3A). Removal of the M_{21} subunit using the M_{21} -specific antibody (Fig 3B and see Methods) did not affect the activity of PP1_M towards MLC₂₀ or phosphorylase, the MLC₂₀ phosphatase:phosphorylase phosphatase activity ratio (0.95 \pm 0.03) remaining 15-fold higher than PP1c (Fig 3B). The M_{21} subunit bound to M_{110} , but had no effect on the MLC₂₀ phosphatase or phosphorylase phosphatase activity of PP1c and did not bind to PP1c (D. Johnson unpublished). Thus M_{110} is solely responsible for enhancing the dephosphorylation of MLC₂₀ and suppressing the dephosphorylation of glycogen phosphorylase by PP1c [9].

In order to identify which region(s) of M_{110} modulates the specificity of PP1c, fusion proteins were constructed consisting of glutathione S-transferase (GST) followed by fragments of the M_{110} subunit. After expression in E. coli and

20

25

30

purification by affinity chromatography on glutathione-Sepharose, the fusion proteins were cleaved with thrombin to release GST from fragments of the M_{110} subunit (Fig 4 and see Methods). M_{110} -(M1-E309), which contains seven 33 residue ankyrin repeats located between residues 39-296, modified the specificity of PP1c in a similar manner to M_{110} itself, increasing activity towards MLC_{20} about 3-fold (Fig 5A) and suppressing activity towards glycogen phosphorylase by about 80% (Fig 5B). The concentration of M_{110} -(M1-E309) required to activate the MLC_{20} phosphatase activity maximally (0.1 nM) was similar to the PP1c concentration in the assay, indicating an extremely high affinity for PP1c. M_{110} -(M1-A150) modified the specificity of PP1 similarly, but 10-fold higher concentrations were needed compared to M_{110} -(M1-E309) (Figs 5C and 5D).

If the GST tags were not cleaved with thrombin, a 10-fold higher concentration of M_{110} -(M1-E309) was needed to modulate the substrate specificity of PP1c, while M_{110} -(M1-A150) was unable to stimulate the MLC₂₀ phosphatase activity of PP1c at all (data not shown). GST itself did not interact with PP1c (Fig 1), had no effect on either the MLC₂₀ phosphatase or phosphorylase phosphatase activity of PP1c (data not shown), and therefore was not removed from the solution after cleavage of the fusion proteins with thrombin.

In contrast to M_{110} -(M1-E309), M_{110} -(D39-E309) failed to stimulate the MLC₂₀ phosphatase activity of PP1c, or to inhibit its phosphorylase phosphatase activity (Figs 5A and 5B), suggesting that the extreme N-terminus of the M_{110} subunit (i.e. before the start of the ankyrin repeats) might be important in modulating the specificity of PP1c. The peptide M_{110} -(M1-F38) was therefore synthesized and found to stimulate the MLC₂₀ phosphatase activity of PP1c to the same extent as M_{110} -(M1-E309), although the concentration required for half maximal activation (10 nM) was at least 100-fold higher (Fig 5A). M_{110} -(M1-F38) stimulated the dephosphorylation of heavy meromyosin in a

similar manner to the dephosphorylation of MLC_{20} (data not shown). However, like M_{110} -(D39-E309), M_{110} -(M1-F38) did not inhibit the phosphorylase phosphatase activity of PP1c (Fig 5B). These observations suggested that residues beyond 38 were needed to suppress phosphorylase phosphatase activity. Consistent with this, M_{110} -(L24-Y496) was less effective than M_{110} -(M1-A150) or M_{110} -(M1-E309) in stimulating the MLC_{20} phosphatase activity of PP1c, but inhibited the phosphorylase phosphatase activity of PP1c in a similar manner to M_{110} -(M1-A150) (Figs 5C and 5D).

Although M₁₁₀-(D39-E309) and M₁₁₀-(M1-F38) had no effect on the phosphorylase phosphatase activity of PP1c when each peptide was included individually in the assays at concentrations up to 1 μM (Fig 5), a 39 ± 2% inhibition (SEM n=4) was observed when both peptides were both present at 1 μM. Surprisingly, M₁₁₀-(D39-E309) prevented (IC50 = 0.1 M) M₁₁₀-(M1-F38) from stimulating the MLC₂₀ phosphatase activity of PP1c (data not shown). Thus M₁₁₀-(D39-E309) plus M₁₁₀-(M1-F38) do not faithfully mimic the effect of M₁₁₀-(M1-E309).

We have reported previously that the M_{110}/M_{21} complex suppresses the dephosphorylation of glycogen synthase by PP1c [9] and, consistent with this finding, the dephosphorylation of glycogen synthase was also inhibited by M_{110} -(M1-E309) (Fig 6B). However, the dephosphorylation of glycogen synthase was greatly enhanced by M_{110} -(M1-F38) (Fig 6A).

25 The binding of G_M and the M_{110} subunit to PP1c is mutually exclusive.

In order to investigate whether G_M binds to the same region of PP1c as M_{110} , we next examined the effect of G_M -(G63-T93) on the properties of PP1_M. G_M -(G63-T93) at 10 μ M increased the phosphorylase phosphatase activity of PP1_M by about 7-fold and suppressed its MLC₂₀ phosphatase activity by 60-65%

30

5

(Fig 7A), indicating that the distinctive properties of PP1_M had been disrupted. Gel-filtration experiments confirmed that G_{M} -(G63-T93) had displaced the M_{110} subunit from PP1_M, dissociating it to PP1c (Figs 7B and 7C). G_{M} -(G63-T93) also prevented M_{110} -(M1-F38) or M_{110} -(M1-E309) from stimulating the MLC₂₀ phosphatase activity of PP1c (Fig 8A), and prevented M_{110} -(M1-E309) from suppressing the phosphorylase phosphatase activity of PP1c (Fig 8B).

Conversely, the presence of $10 \mu M M_{110}$ -(M1-F38) increased the phosphorylase phosphatase activity of PP1_{GL} by 3.5- fold. This resulted from the partial dissociation to PP1c, because the enhanced phosphorylase phosphatase activity was not associated with glycogen, but recovered in the supernatant after centrifugation of the glycogen-protein particles (not shown).

DISCUSSION.

15

20

10

5

We have identified a region on G_M that binds to PP1c (Fig 9). The peptides G_M -(G63-T93), G_M -(G63-K80) and G_M -(G63-N75) all prevented G_L from suppressing the dephosphorylation of glycogen phosphorylase by PP1c and two lines of evidence indicate that these peptides interact with PP1c and not with G_L .

Firstly, the PP1c-catalysed dephosphorylation of glycogen phosphorylase is stimulated slightly by G_{M} -(G63-T93).

Secondly, PP1c crystallises in the presence of G_M-(G63-K80) or G_M-(G63-N75) in a different form than is observed in the absence of these peptides. PKA phosphorylates G_M at Ser67 and the introduction of a negative charge directly into the PP1c-binding domain explains why phosphorylation of Ser67 triggers the dissociation of G_M from PP1c [18]. Phosphorylation of G_M-(G63-N75) at Ser67 also prevented this peptide from interacting with PP1 in the PP1_{GL}

complex (Fig 2).

Although G_M-(G63-T93) prevented G_L from suppressing the dephosphorylation of glycogen phosphorylase by PP1c, it did not dissociate G, from PP1c, nor did it affect the other characteristic properties of PP1_{GL}. Moreover, unlike G_L, 5 G_{M} -(G63-T93) did not itself suppress the phosphorylase phosphatase activity of PP1c, but actually enhanced it slightly. These observations demonstrate that another region(s) on G_L must interact with PP1c and that this other region(s) may play an important role in modulating the substrate specificity of PP1c. The presence of a second PP1c binding site in G_M/G_L would be somewhat 10 analogous to the situation found in inhibitor-1 and DARPP which also contain two PP1-binding sites, high (nM) affinity binding being generated by the conjugation of two low affinity binding sites that, individually, only interact with PP1 at μM concentrations [28]. The second PP1c-binding site on G_M/G_L might correspond to one of the other regions where G_M and G_L show >40% 15 identity (residues 144-166 and 186-227 of human G_M). G_{M} -(H100-P350) was not recognised by PP1c in Far Western experiments (Fig 1) this result is not definitive because G_M-(H100-P350) may only interact with PP1c weakly. Alternatively, G_M-(H100-P350) might not fold correctly or fail to renature after SDS/polyacrylamide gel electrophoresis. 20

However, it is also possible that residues 144-166 and 186-227 of G_M do not represent part of the second PP1c-binding domain, but part of the glycogen-binding domain. In this connection it should be recalled that residues 144-166 and 186-227 are the regions showing greatest similarity (25% identity) to GAC1, which appears to be a homologue of G_M/G_L in budding yeast [7, 27, 28]. Curiously, GAC1 does not contain a region homologous to residues 63-93 of G_M/G_L . It would clearly be of interest to compare the effect of GAC1 on the enzymatic properties of PP1c with those of G_M and G_L .

WO 97/37224

5

10

15

20

25

30

We have also identified a region on the M_{110} subunit that binds to PP1c. An N-terminal fragment, M100-(M1-E309), enhanced the PP1c-catalysed dephosphorylation of MLC₂₀ and suppressed the dephosphorylation of glycogen phosphorylase in a similar manner to M_{110} itself (Fig 5). However, unlike M_{110} , this fragment does not bind to myosin. Thus the region which enhances the dephosphorylation of MLC₂₀ is distinct from the myosin-binding domain.

The fragment M_{110} -(M1-E309) contains seven ankyrin repeats lying between residues 39 and 296. However, M_{110} -(D39-E309) was ineffective as an activator of the MLC₂₀ phosphatase activity of PP1c or as an inhibitor of the phosphorylase phosphatase activity, and this led to the finding that a peptide comprising the N-terminal 38 residues of the M_{110} subunit enhances the dephosphorylation of MLC₂₀ to the same extent as M_{110} -(M1-E309), although with lower potency. However, M_{110} -(M1-F38) did not inhibit the dephosphorylation of glycogen phosphorylase by PP1c suggesting that residues beyond 38 are required to suppress this activity. This view was reinforced by the finding that, although neither M_{110} -(M1-F38) nor M_{110} -(D39-E309) inhibited the phosphorylase phosphatase activity of PP1c when present individually, inhibition was observed in the presence of both peptides. Moreover M_{110} -(D39-E309) actually prevented M_{110} -(M1-F38) from stimulating the dephosphorylation of MLC₂₀.

These observations suggest that M_{110} -(D39-E309) can bind to M_{110} -(M1-F38) and/or PP1c. An interaction with PP1c seems likely because it has been found that M_{110} -(D39-E309) can enhance the phosphorylase activity of PP1_{GL}. The presence of a second PP1-binding site in the ankyrin-repeat domain of the M_{110} subunit is also supported by the observation that higher concentrations of M_{110} -(M1-A150) and M_{110} -(M1-E309) are needed to inhibit the phosphorylase phosphatase activity of PP1c than are required to stimulate its MLC_{20} phosphatase activity (see Fig 5). The presence of at least two PP1-binding sites

WO 97/37224 PCT/GB97/00898 58

may explain why the M_{110} subunit and PP1c interact at picomolar concentrations. The ankyrin repeat domain might suppress the dephosphorylation of some substrates (such as glycogen phosphorylase) by a steric mechanism, preventing them from gaining easy access to the catalytic centre. This scenario could explain why the dephosphorylation of glycogen synthase is greatly enhanced by M_{110} -(M1-F38) yet suppressed by M_{110} -(M1-E309) (Fig 6).

 G_{M} -(G63-T93) abolished the distinctive properties of PP1_M (Fig 7A), prevented M_{110} -(M1-F38) or M_{110} -(M1-E309) from modulating the substrate specificity of PP1c (Fig 8) and displaced the M_{110} subunit from PP1_M (Fig 7B). In addition, the peptide M_{110} -(M1-F38), was capable of displacing G_{L} from PP1_{GL}. These findings indicate that the binding site(s) on PP1c for G_{M} and the M_{110} subunit are likely to overlap, explaining why different forms of PP1 contain a single PP1-targeting subunit. The three-dimensional structure of PP1c isoforms have recently been solved to high resolution [29,30], and PP1c crystallises in different forms in the presence of G_{M} -(G63-N75) or G_{M} -(G63-K80) or M_{110} -(M1-F38) than in the absence of these peptides.

Consistent with the results presented here, Gailly et al [31] have recently shown that M₁₁₀-(M1-F38) or M₁₁₀(M1-E309) enhance the ability of PP1c to stimulate the relaxation of microcystin-contracted permeabilised portal vein, while G_M-(G63-T93) inhibits the ability of PP1_M to induce the relaxation of this smooth muscle. G_M-(G63-T93) also slowed the relaxation of permeabilised femoral artery, indicating that it competes with the endogenous M₁₁₀ subunit for PP1c [31]. Thus the PP1c-binding peptides described constitute useful pharmacological agents with which to explore the role and regulate the activity of PP1 in cell regulation.

5

10

Example 2: Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1

MATERIALS AND METHODS

5

10

15

20

25

Crystallisation and Data Collection

The catalytic subunit of PP1 1 was overproduced in Escherischia coli and purified as described previously (Alessi et al., 1993; Barford and Keller, 1994). The $G_M[G63-N75]$ peptide, variants of this peptide in which Val 66' or Phe 68' were changed to Phe, and the peptides $M_{110}[1-38]$ and $M_{110}[1-35]$ were synthesised on an Applied Biosystems 430A peptide synthesiser and purified by chromatography on a C18 column (Johnson et al., 1996) by Mr F.B. Caudwell at Dundee. A three-fold molar excess of $G_M[G63-N75]$ was added to the protein solution (8 mg/ml), which had been previously dialysed against 10 mM Tris-HC1 (pH 7.8), 0.3 M NaCl, 0.4 mM MnCl₂ and 2 mM DTT. complex was crystallised at 20°C using the hanging drop vapour diffusion method, by mixing 2 ml of the protein-peptide solution and 2 ml of the precipitant solution containing 2.0 M ammonium sulphate, 2% (w/v) polyethylene glycol 400,100 mM HEPES (pH 7.5) and 2 mM DTT. These conditions are very much in contrast to the relatively low ionic strength conditions from which the monoclinic PP1c crystals grew (Barford and Keller, 1994; Egloff et al., 1995). Crystals appeared after 3 months as a cluster. Individual crystals removed from the cluster had dimensions of $\sim 25 \mu m \times 25$ μ m x 5 μ m. Crystals were frozen in a 100 K nitrogen gas stream and stored. Prior to freezing, crystals were incubated in a cryoprotectant solution consisting of an equilibration buffer; 2.0 M ammonium sulphate, 2% (w/v) PEG 400, 100 mM HEPES (pH 7.5) with increasing amounts of glycerol in steps of 7%, 15%, 22% and 30% (v/v).

A partial data set to 3.0 Å was collected on Beam Line PX 9.6, SRS,

10

15

20

25

30

Daresbury, using a 30 cm diameter Mar Research image plate system. Data were processed and scaled using DENZO and SCALEPACK (Otwinowski, 1993). The crystal system is tetragonal with point group symmetry P422 and unit cell dimensions a = b = 62.50 Å, c = 361.30 Å. Systematic absences indicate a 21 screw axis along b. The Matthews coefficient was 2.38 Å₃ per Dalton, assuming 2 molecules per asymmetric unit. A second data-set was collected on BL4 at the ESRF, Grenoble. Substantial radiation damage was observed during data collection requiring that three crystals were used in total. Data collected from four crystal at Daresbury and the ESRF were merged together in SCALEPACK. Details of the data collection and processing statistics are given in Table 1.

Structure determination

The structure of the PP1- $G_M[63-75]$ complex was solved by molecular replacement using as a model the protein atoms coordinates of the 2.5Å refined structure of the catalytic subunit of PP1 γ 1 determined by MAD methods (Egloff *et al.*, 1995). Rotation and translation functions searches were performed with AMORE (Navaza, 1992). Using data between 8 and 3 Å resolution, the peak in the rotation search was 6.7 standard deviations (SD) above the mean. The translation search was best performed using data between 8 and 3.5 Å, giving a maximal peak at 13.8 SD above the mean for the space group P41212. After the first rigid body refinement performed in AMORE, the R-factor was 0.494 and the correlation factor 0.30.

Crystallographic Refinement

The solution from molecular replacement was optimized by 20 cycles of rigid body refinement performed with X-PLOR version 3.1 (Brunger, 1992), using data between 8.0 Å and 3.0 Å resolution. After a round of conjugate gradient

10

15

20

25

positional refinement and simulated annealing molecular dynamics to 2000 K. followed by 25 cycles of grouped B-factor refinement (2 B-factor groups for each residue), the R factor (respectively free-R) was 0.295 (0.367). Fourier difference maps (Fo-Fc) and (3Fo-2Fc) revealed the presence of three strong peaks at (over three-times the sigma level of the map) at the catalytic site of PP1c. From the previously refined PP1c-structure, we identified two as manganese and iron ions. The third one, occupying the position of the tungstate ion in the PP1c-WO4 complex, was identified as sulphate. The initial difference Fourier maps also revealed strong electron density near the N-terminus of β 14. The maps were improved by applying non-crystallographic symmetry 2-fold averaging using PHASES (Furey and Swaminathan, 1990). As shown in Fig. 1A, residues Val 66', Ser 67' and Phe 68' of the G_M [63-75] peptide were identified in the averaged map. These 3 residues, as well as the 2 metal and sulphate ions were built in each molecule, using the program TURBO-FRODO (Roussel and Cambillau, 1992). Refinement of this structure was performed by repeated rounds of manual rebuilding followed by conjugate gradient positional refinement and grouped B-factor refinement using X-PLOR. The final model contains protein residues Lys 6 to Ala 299 and peptide residues Arg 65' to Ala 69' in molecule 1, and protein residues Asn 8 to Lys 297 and peptide residues Gly 63' to Ala 69' in molecule 2. A few well defined water molecules were also observed in both initial (3Fo-2Fc) and (Fo-Fc) electron density maps. Eventually, 14 water molecules that were above 3 sigma in the (Fo-Fc) difference map, within hydrogen bond of the PP1-peptide complex or another solvent molecule and present in both molecules, were included in the model. The crystallographic and refinement data are summarized in Table 1. Representative electron density from the peptide before and after refinement is shown in Figure 10A and 10B, respectively. Solvent accessible surface areas were calculated using the method of Lee and Richards (1974).

Purification and assay of PP1.

PP1c was isolated from the rabbit skeletal muscle PP1- G_M complex as described previously (Johnson *et al*, 1996). Glycogen particles isolated from rat liver (Schelling *et al*, 1988) served as the source of PP1- G_L . The dephosphorylation of glycogen phosphorylase (10 μ M) and the isolated MLC₂₀ of smooth muscle myosin (1 μ M) by PP1c was carried out as described previously (Cohen *et al.*, 1988; Alessi *et al.*, 1992).

10 Table 1. Crystallographic data and refinement statistics

Crystallographic data:	
Space group	P4 ₁ 2 ₁ 2
Unit cell parameters (Å)	a = b = 62.50; c = 361.30
Number of molecules per asymmetric unit	2
Temperature (K)	100
Total measured reflections	290671
Number of unique reflections	15509
Mean I/s(I)	7.5
Completeness (%)	87
Overall R-merge (%)	14.7
Refinement statistics:	
Number of reflections used for refinement	13078
Resolution range (Å)	8.0-3.0
R-work	0.223
R-free	0.308
Number of residues	protein peptide

Molecule 1	294 (Lys 6 to 6 (ARVSFA) (SEQ ID No 21) Ala 299) 6 (RRVSFA) SEQ ID No 3)
Molecule 2	290 (Asn 8 to Lys 297)
R.m.s.d. from ideal bond lengths (Å)	0.012
R.m.s.d. from ideal angles (°)	1.863
Number of water molecules	
Molecule 1	7
Molecule 2	7

Table 2. PP1-peptide polar interactions Peptide Protein atom

	Peptide atom	Protein atom	Water molecule	Distance (A)
Molecule 1	Arg 65' O	-	7W	3.2
	Val 66' N	Asp 242OD2 (**)		3.0
	Ser 67' N	Leu 289 O		3.3
	Ser 67' OG		7W	2.7
	Ser 67' O	Cys 291 N (*)		3.2
	Ala 69' N	Cys 291 O (*)		2.8
	Arg 64' NH1	Glu 287 O		2.6
		(**)		
	Arg 65' O		7W	2.8
	Val 66' N	Asp 242 OD2 (**)		3.2
	Ser 67' N	Leu 289 O (*)		3.1
	Ser 67' OG		7W	2.6
	Ser 67'	Cys 291 N (*)		3.0

15

5

10

	Ala 69' N	Cys 291 O (*)	3.3			
Table 2.	Table 2. PP1-peptide hydrophobic interactions					
	Peptide residues	Protein residues				
	Val 66'	Ile 169 (*), Leu 243 (*), D242 (**), Leu 289 (*), Cys 291 (*)				
	Phe 68'	Phe 257 (*), Cys 291 (*), Phe 293 (*)				
	Ala 69'	Met290 (**)				

The star (*) indicates residues absolutely conserved in all protein phosphatase 1 sequences available so far, the double start (**) the residues mostly conserved (from sequence alignment from Barton et al, 1994).

RESULTS AND DISCUSSION

Structure Determination.

Grenoble and at PX9.6, Daresbury (Table 1). The relatively high merging R-factors and low I/(I values of the crystallographic data results from the weak diffraction observed from the PP1-G_M[63-73] crystals. This is attributable to both the small crystal size (~25 μm by 25 μm by 5 μm) and long c-axis of the unit cell. In addition, the high x-ray photon dose required to obtain usable diffraction images resulted in x-ray radiation damage to the crystals, despite being maintained at a temperature of 100 K during the course of the experiment. The structure was solve by the molecular replacement method using as a search model the 2.5 Å refined coordinates of PP1c (Egloff et al., 1995). Phases obtained from a single cycle of simulated annealing refinement

20

25

30

of the protein coordinates alone using X-PLOR Brunger, 1992), and improved by 2-fold non-crystallographic symmetry averaging and solvent flattening, were used to calculate an electron density map. This map revealed clear density corresponding to residues Val 66', Ser 67' and Phe 68' (where 'denotes residues of the peptide) of the G_M peptide and provided a starting point for further refinement of the PP1- G_M peptide complex (Fig. 10A). The final model of the complex was refined at 3.0 Å resolution with a crystallographic R-factor of 0.22 and R-free of 0.31 (Fig. 10B). The two molecules of PP1c within the asymmetric unit are similar with a root mean square deviation between main chain atoms of 0.6 Å. Residues 6 to 299 and 8 to 297 from molecules 1 and 2 respectively, are visible in the electron density map. Similar to the structures of native PP $_{\gamma 1}$ (Egloff *et al.*, 1995) and PP1 α in complex with microcystin LR (Goldberg *et al.*, 1995), residues C-terminal to 299 are disordered.

15 Overall Structure of PP1

The conformation of PP1c in the PP1- G_M complex is virtually identical to that of native PP1c in complex with tungstate (Egloff *et al.*, 1995) with a root mean square deviation between equivalent main-chain atoms of 1.0 Å. PP1c is folded into a single elliptical domain consisting of a central β -sandwich of two mixed β -sheets surrounded on one side by 7α -helices and on the other by a sub-domain consisting of 3α -helices and a 3 stranded mixed α -sheet (Fig. 2A, B). The interface of the three β -sheets at the top of the β -sandwich creates a shallow catalytic site channel. Three loops connecting β -strands with α -helices within a β - α - β - α - β motif in sheet 1 (strand order β 4- β 3- β 2- β 13- β 14) together with loops emanating from the opposite β -sheet (sheet 2; strand order, β 1- β 5- β 6- β 10- β 12- β 11) provide the catalytic site residues. The catalytic site of PP1 contains a binuclear metal site consisting of Mn²⁺ and Fe²⁺ (Egloff *et al.*, 1995) and, in the PP1- G_M complex, oxygen atoms of a sulphate ion of crystallisation coordinate both metal ions, similar to that seen in the PP1-tungstate (Egloff *et al.*, 1995) and PP2B-phosphate complexes (Griffith *et*

15

20

25

30

al, 1995).

$PP1c-G_{M}[63-75]$ Peptide Interactions

Six residues of the $G_M[63-75]$ peptide (Arg 64' to Ala 69') are clearly visible in the electron density map of the complex of molecule 2, the remaining residues are not visible and assumed to be disordered (Fig. 10B). Density is not visible for Arg 64' of the peptide bound to molecule 1, otherwise equivalent residues of the peptide are similar within the two complexes. The six residues (RRVSFA) (SEQ ID No 3) of the $G_M[63-75]$ peptide in complex 2 adopt an extended conformation and bind to a hydrophobic channel on the protein surface with dimensions 25 Å by 10 Å that is formed at the interface of the two β -sheets of the β -sandwich opposite to the catalytic site channel and therefore remote from the catalytic site (Fig. 11A). The residues that form this channel occur on three regions of PP1c, namely (i) the N-terminus of 5 and $\beta 5/\beta 6$ loop of sheet 2; (ii) the three edge β -strands of sheet 2: β 10, β 12, β 11 and (iii) β 13, the $\beta 13/\beta 14$ loop and $\beta 14$ of the edge of sheet 1 (Fig. 11A). The total solvent accessible surface area buried on formation of the complex is 980 Å2. Three residues of the peptide (Ser 67' to Ala 69') form a β -strand which is incorporated into β -sheet 1 of PP1c as a sixth β -strand parallel to the N-terminus of the edge β -strand, β 14 (residues Leu 289 to Leu 296) (Fig. Main-chain atoms of Ser 67' and Ala 69' form H-bonds to the main-chain atoms of residues of β 14. In addition, the main-chain nitrogen of Val 66' forms a H-bond with the side-chain of Asp 242. Other polar interactions include the guanidinium group of Arg 64' with the mainchain carbonyl of Glu 287 and a salt bridge to Asp 166. Both Asp 166 and Asp 242 are invariant in mammalian PP1 genes. A water molecule bridges the main-chain carbonyl of Arg 65' and side-chain hydroxyl of Ser 67' with the main-chain carbonyl of Thr 288 of PP1c (Fig. 11C). A notable feature of the peptide binding site is the presence of a negatively charged region created by seven acidic residues (with one Lys residue) surrounding the hydrophobic channel at the N-terminus of the peptide in the vicinity of Arg 64' and Arg 65' that includes Asp 166 and Asp 242 (Fig. 11D). This would suggest a favourable electrostatic environment for the side chains of Arg 64' and Arg 65'.

5

10

15

20

25

30

The predominant interactions between the peptide and PP1c involve hydrophobic contacts between the side chains of Val 66' and Phe 68' and solvent exposed, invariant, hydrophobic residues of PP1c that form the hydrophobic channel (Fig. 11C, E). In particular, the binding site for the side chain of Val 66' is formed from the side chains of Ile 169, Leu 243, Leu 289 and Cys 291, whereas that for the side chain of Phe 68' is formed from the side chains of Phe 257, Cys 291 and Phe 293. Details of peptide-PP1c contacts are given in Table 2. The structure of the $G_M[63-75]$ peptide binding site is likely to be conserved in other forms of PP1 from diverse species. Each hydrophobic residue of PP1c that interacts with the Val 66' and Phe 68' residues of the $G_M[63-75]$ peptide are invariant and the acidic residues that surround the N-terminus of the peptide binding site are highly conserved amongst all isoforms of PP1 from species as diverse as yeast, Drosophila, mammals and higher plants (Barton et al., 1994). However, since these residues are not conserved within the PP2A and PP2B sequences, these proteins will not recognise PP1-regulatory subunits.

Presence of an (R/K) (V/I) x F Motif in other PP1c Regulatory Proteins

Over a dozen regulatory subunits of PP1c are now known which appear to bind to PP1c in a mutually exclusive manner that suggests either an overlapping binding site or sites. Sequence comparisons of these subunits reveals little similarity except for the motif (R/K) (V/I) x F, that is not only present in $G_M[63-75]$ but also in G_M , G_L , M_{110} , NIPP-1, p53BP2, and an RNA splicing factor (Fig. 12A). Moreover, a 38 residue peptide from the 110kDa M_{110} subunit that binds to PP1c contain this motif (Johnson et al., 1996), as do

fragments of NIPP-1 (Beullens et al., 1992; Van Eynde et al., 1995), an RNA splicing factor (Hirano et al., 1996) and p53BP2 (Helps et al., 1995). A 32 residue peptide from p53BP2, which contains this motif, disrupted the interaction of the M_{110} subunit with PP1c, as shown by a decrease in the rate of dephosphorylation of the MLC₂₀ subunit of smooth muscle myosin and by an increase in the rate of dephosphorylation of glycogen phosphorylase (Fig. 13A). This peptide also disrupted the interaction of the G_L subunit with PP1c, as shown by an increase in the rate of dephosphorylation of glycogen phosphorylase (Fig. 13B). Peptides comprising the motif (R/K) (V/I) x F are thus encompassed within the scope of the invention.

In further support of the notion of a common PP1c recognition motif present within PP1-binding proteins, previous studies had revealed that the sequence KIQF (SEQ ID No 22) (similar to the R/KVxF motif) at the N-terminus of inhibitor 1 and its homologue DARPP-32 (Fig. 12A) is necessary for mediating the inhibitory effects of these proteins. Loss of Ile 10 of the KIQF (SEQ ID No 22) motif of inhibitor 1 disrupts the inhibitory effects on PP1c by phospho-inhibitor-1 (Aitken and Cohen, 1984; Endo et al., 1996) and the binding of either dephospho-inhibitor-1 or phospho-inhibitor-1 to PP1c (Endo et al., 1996). A similar result was found on disrupting the equivalent residue (Ile 9) of DARPP-32 (Hemmings et al., 1990; Desdouits et al., 1995). These results were interpreted to indicate that inhibitor-1 and DARPP-32 bind to PP1 through two low affinity binding sites, one that encompasses the sequence KIQF (SEQ ID No 22) and another which includes the phosphorylated Thr residue (35 in I-1, 34 in DARPP-32) and which presumably binds at the catalytic site. Analysis of the PP1-G_M[63-75] complex structure suggests that an isoleucine residue could be readily accommodated within the peptide binding site in place of Val 66' such that the additional methyl group on Ile compared to Val would contribute to favourable van der Waals interactions between the peptide and Leu 243 and Cys 291 of PP1. More bulky hydrophobic residues

5

10

15

20

25

15

20

25

30

such as Leu, Met and Phe cannot be accommodated, however. It is interesting to note that as well as the (R/K) (V/I) x F motif shared by PP1-regulatory subunits, the four residues N-terminal to this motif contain an abundance of basic residues. These residues may provide further favourable interactions with the negative electrostatic surface potential at the N-terminus of the $G_M(63-75]$ peptide binding site of PP1c (Fig. 11D).

Mutagenesis of the R/K) $(V/I) \times F$ motif

The structural studies presented here suggest a dominant role for Val 66' and Phe 68' in stabilising the interaction between $G_M[63-75]$ and PP1c and this notion is further reinforced by the finding that other PP1-regulatory subunit sequences contain an (R/K)(V/I) x F motif yet share little overall sequence similarity. To test the hypothesis that Val 66' and Phe 68' are required for the interaction of $G_M[63-75]$ with PP1c and also that the KVKF (SEQ ID No 5) sequence present within the $M_{110}[M1-F38)$ peptide is important in mediating its interaction with PP1c, we synthesised variations of the G_M and M_{110} peptides where the R/KVxF motif was disrupted. The two variants of the G_M peptide were Val 66' and Phe 68' to Ala substitutions. In order to disrupt the (R/K)(V/I) x F present within the M_{110} peptide, a peptide corresponding to residues Met 1 to Lys 35 was synthesised which no longer contains the sequence VKF of the VxF motif, which is present at residues 36-38.

The results for the $M_{110}[1-38]$ and $M_{110}[1-35]$ peptides (Figs. 14, 15) are unequivocal. Whereas $M_{110}[1-38]$ stimulates the myosin light chain phosphatase activity of PP1c with a half-maximal effect at 10 nM reaching maximal (3-fold) activation at a peptide concentration of 1 μ M as reported previously (Johnson et al, 1996), the $M_{110}[1-35]$ peptide was at least 104-fold less effective at activating PP1c (Fig. 14). Unlike $M_{110}[1-38]$, the $M_{110}[1-35]$ peptide was also unable to activate the phosphorylase phosphatase activity of liver PP1- G_L . This latter result suggests two conclusions. Firstly, that although $M_{110}[1-38]$ is able

10

15

20

to bind to PP1c and disrupt the interactions between PP1c and the G_L -subunit, hence reversing the inhibitory effects of G_L on the ability of PP1c to dephosphorylate phosphorylase, loss of the VKF sequence in the $M_{110}[1-38]$ peptide abolishes the ability of the peptide to disrupt this interaction. Secondly, the recognition site on PP1c for the VKF sequence of the $M_{110}[1-38]$ peptide must overlap with the binding site for the G_L subunit, suggesting that the VKF sequence binds to the same site as the VSF sequence of G_L that is identical with that present in the $G_M[63-75]$ peptide. Similar conclusions may be reached from the results obtained from disrupting the VxF motif within the $G_M[63-75]$ peptide (Fig. 16B). Substitution of Phe 68' for Ala abolishes completely the ability of $G_M[63-75]$ to disrupt the PP1- G_L complex, whereas replacement of Val 66' with Ala reduced the effectiveness of the disruption 100-fold.

Thus preferred peptides may comprise analogues of G_M with substitutions at Val 66' and Phe 68' to some other amino acid such as Ala, so that binding of the PP1c to G_M does not occur and the PP1c is not suitably directed or controlled. Alternatively, suitable peptides could comprise peptides suitable to compete for the binding site(s) of Val 66' and Phe 68' on PP1c. Such peptides can be added in sufficient quantities to compete for the Phe 68' and Val 66' binding site(s) on the PP1c, thereby disrupting the interaction of PP1c and natural G_M . Such peptides could comprise structural analogues of G_M with Phe 68' and Val 66' in the same positions as G_M . Alternatively, other amino acids capable of mimicking the binding of Phe 68' and Val 66' could be used in these locations.

25

30

Regulation of the PP1- G_M Complex by Phosphorylation of Ser 67'

Phosphorylation of Ser 67', corresponding to x of the VxF motif, by PKA promotes dissociation of both G_M and G_M [63-75] from PP1c. In vivo, this provides a mechanism of inhibiting PP1c during stimulation of skeletal muscle

10

15

20

by adrenalin (Dent et al., 1990). The sequence of G_M surrounding Ser 67' (RRVSFA) (SEQ ID No 3) conforms to a consensus PKA recognition sequence. Interestingly, the conformation of the peptide is similar to that of residues 18 to 23 corresponding to the pseudo-substrate sequence of PKI bound to the catalytic site of PKA (Knighton et al., 1990). Although the side chain of Ser 67' is exposed within the PP1c-peptide complex, overall the G_M peptide is buried, and it is unlikely that Ser 67' would be a substrate for PKA when the peptide is bound to PP1c. This would suggest that PKA phosphorylates Ser 67' when G_M is not associated with PP1c and that this phosphorylation prevents the re-association of PP1c with G_M. Since phosphorylation of Ser 67' promotes the dissociation of the PP1-G_M complex both in vivo and in vitro, it is most likely that PKA phosphorylates Ser 67' of G_M by competing with PP1c for the RRVSFA (SEQ ID No 3) sequence. This is consistent with a notion that the PP1-G_M complex exists in dynamic equilibrium with free PP1c and G_M subunits and that phosphorylation occurs on the regulatory subunit during transient dissociation from PP1c. In the PP1c-peptide complex, the side-chain of Ser 67' adopts the most favourable rotamer conformation. Analysis of the PP1c peptide complex structure suggests that incorporation of a phosphate group onto the side chain of Ser 67' with the same side-chain rotomer conformation would cause steric hindrance between the peptide and Met 290 of PP1 and also introduce a phosphate group into a region of negative charge at the PP1c surface (Fig. 11C, D). This may explain how phosphorylation of Ser 67' prevents peptide association with PP1c, although it should be noted that rotation of the side-chain of Ser 67' would relieve this steric clash.

25

30

A similar mechanism of control may also operate for other PP1-regulatory subunits. For example, NIPP-1 a nuclear inhibitor of PP1, inhibits PP1 with an inhibitory constant of 1 pM (Beullens et al., 1992). Phosphorylation of NIPP-1 by PKA and/or casein kinase 2 in vitro abolishes this inhibition (Beullens et al., 1993; Van Eynde et al., 1994). Although the sites of

10

phosphorylation on NIPP-1 that mediate these effects are not yet fully characterised it is known that these sites occur within the central ~120 residues of NIPP-1 that incorporates the (R/K)(V/I) x F motif (Van Eynde et al., 1995). Interestingly, a consensus phosphorylation site for PKA (RKNS) (SEQ ID No 23) occurs immediately N-terminal to this motif whereas one casein kinase 2 consensus phosphorylation site occurs between the Val and Phe of the motif and another occurs immediately C-terminal to the Phe residue (TFSEDDE) (SEQ ID No 24) (Van Eynde et al., 1995) (Fig. 12A). It is possible that PKA, casein kinase II or other kinases with similar specificity, release PP1c from inhibition by NIPP-1 by phosphorylating NIPP-1 at sites that block its interaction with the (R/K)(V/I) x F motif recognition site on PP1c.

Model of the PP1c-Phospho-Inhibitor 1 Complex

15 Our model for the interaction of a (R/K)(V/I) x F motif with PP1c, together with previous kinetic data suggesting that the sequence KIQF (SEQ ID No 22) of inhibitor-1 (Aitken and Cohen, 1984; Endo et al., 1996) and DARPP-32 (Hemmings et al., 1990; Desdouits et al, 1995) interacts with PP1c, allowed us to construct a plausible model of a complex of PP1c with phospho-inhibitor 1. The major assumptions of this model were (1) the KIQF (SEQ ID No 22) 20 sequence of inhibitor-1 binds to the same site as RVSF (SEQ ID No 25) of the $G_{\rm M}[63-75]$ sequence and (2) that the phosphothreonine residue 35 of phospho-inhibitor 1 binds at the phosphate binding site of the PP1c-catalytic site. Secondary structure predictions of inhibitor 1 (Rost and Sander, 1993; Rost, 1996) suggested that residues 9 to 14 and 23 to 31 adopt β -strand and 25 α -helical conformations, respectively. The prediction of the sequence KIQF (SEQ ID No 22) as a β -strand is consistent with our assumption that this region of inhibitor-1 adopts the same conformation as RVSF (SEQ ID No 25) of the G_M peptide when bound to the VxF recognition site of PP1c. We have 30 positioned the residues RRPpTP (SEQ ID No 26) encompassing the pThr 35

15

20

25

30

site within the catalytic site channel in an extended conformation, with the phosphate group of the pThr 35 occupying the phosphate binding site of the catalytic site and the Oy-atom of Thr 35 equivalent to the solvent exposed oxygen of a dianion that forms a H-bond to the side-chain of the putative general acid His 125 (Egloff et al., 1995; Griffith et al., 1995). The four consecutive Arg residues N-terminal to pThr 35 interact with Asp and Glu residues within an acidic groove of PP1c formed from the $\beta7/\beta8$ loop on one side and the $\beta 10/\beta 11$ loop and $\beta 11$ strand on the other, similar to that proposed by Goldberg et al., (1995) for their model of DARPP-32 bound to PP1c. We propose that residues 20 to 30 of inhibitor-1 form an amphipathic helix which folds around the edge of the β -sandwich of PP1c. The N-terminus of this helix is disrupted by prolines at residues 19 and 23. Pro 19 and Pro 15 are probably responsible for introducing turns into the polypeptide chain that allows the β -strand encompassing the KIQF (SEQ ID No 22) sequence (residues 9 to 14) to connect with the α helix. The model of the phospho-inhibitor 1-PP1c complex is shown in Fig. 16.

Prediction of PP1 Recognition Motifs in Yeast PP1-Binding Proteins

The residues in mammalian PP1c that interact with the sequence RRVSFA (SEQ ID No 3) are conserved in S. cerevisiae PP1 suggesting that the proteins in S. cerevisiae known to interact with PP1 (reviewed by Stark, 1996) probably bind to a similar hydrophobic groove on the surface of the enzyme. Examination of their amino acid sequences revealed that a number of PP1-binding proteins in S. cerevisiae contained putative PP1-binding motifs that were similar to those present in mammalian PP1-binding proteins (Fig. 12A, B). The S. cerevisiae PP1-binding proteins not only contain a V/I x F motif, but also a basic residue equivalent to Arg 64' of G_MV the residue that contacts Asp 166, Leu 289 and the main-chain carbonyl of Glu 287 of PP1c. Several of the S. cerevisiae proteins also contain a further basic residue (His or Lys) at the position equivalent to Arg 65' of G_M. Another striking feature of the

putative PP1-binding sequences in S. cerevisiae is the presence of a basic amino acid between the Val/IIe and Phe residues, as is also found in two mammalian PP1-regulatory subunits, the M₁₁₀ subunit and the p53BP2 (Fig. 12A).

5

10

15

20

25

30

The S. cerevisiae proteins GAC1 and PIG2 show some homology to residues 140-230 of mammalian G_MV and there is genetic and biochemical evidence that they may function to regulate glycogen metabolism in budding yeast (Francois et al., 1992). GIP2 also shares sequence similarity with residues 140-230 of mammalian G_M, while YIL045W is an open reading frame in the S. cerevisiae genome whose predicted amino acid sequence shows 41% sequence identity to GIP2. YIL045W contains two putative PP1-binding motifs and site directed mutagenesis will be needed to establish which (if either) of these sequences binds to PP1c. REG1 and REG2 are PP1-binding proteins that play a role in cell growth and, in the case of REG1, glucose repression (Tu and Carlson, 1995; Tu et al., 1996; Frederick and Tatchell, 1996). GIP1, which also contains two putative PP1-binding motifs, is expressed specifically during meiosis, affects the transcription of late meiotic genes and is essential for sporulation (Tu and Carlson, 1996). SCD5 is a PP1-interacting protein (Tu et al., 1996) that was first isolated as a multicopy suppressor of the inviability of clathrin heavy chain-deficient yeast (Nelson et al., 1996).

The findings herein demonstrate that the short peptide sequence, the (R/K)(V/I)XF motif, is critical for PP1c to interact with its regulatory subunits. PP1c (when complexed to its targeting subunits) plays key roles in the control of many cellular processed and it is reasonable to predict that over 100 pp1-binding proteins may exist in mammalian cells. Protein sequence data-base searching has revealed that the (R/K)(V/I)XF motifs are found in 10% of proteins. Thus if ~100 PP1-binding proteins occur in mammalian cells, only 1% of proteins with the (R/K)(V/I)XF motif will be PP1-binding proteins. The

reasons why only a few proteins with the (R/K)(V/I)XF motif bind to PP1 are numerous. For example, not every residue may be tolerated at position X or immediately N-terminal or C- terminal to this motif. This study has shown that phosphoserine is not tolerated at position X and it is therefore likely that Asp or Glu will not be tolerated either. The structure of the PP1- $G_M[63-75]$ complex suggests that large hydrophobic residues will also be excluded from position X. Moreover, the Val (or IIe) and Phe residues in many (R/K)(V/I)XFmotifs will be buried in the hydrophobic core of the protein and hence be unable to interact with PP1, since this motif is predicted to form an amphipathic β -strand conformation. Thirdly, many of the (R/K)(V/I)XF motifs will be in extracellular proteins or extracelluar domains of transmembrane proteins and hence be unable to bind to PP1. Particular feature so the tertiary structure of PP1-binding proteins may allow exposure of this motif on the surface to allow interaction with PP1. Finally, there is evidence that a second PP1-binding site exists on the G_M and M₁₁₀ subunits (Johnson et al., 1996) and the high affinity interaction of PP1c with protein inhibitor-1 is generated by the binding of PP1c to two low affinity sites (Desdouits et al., 1995), one of which is the KIQF sequence belonging to the (R/K)(V/I)XF motif.

The question of how regulatory subunits modulate the substrate specificity of PP1c requires the co-crystallisation of PP1c with a diverse array of regulatory subunits and substrates and is beyond the scope of this paper. However, two models to account for this property of regulatory subunits are that these subunits either alter the conformation of PP1c or simply target PP1 to its substrates. Both mechanisms may operate *in vivo* depending on the regulatory subunits and substrates. For example, evidence for the former model has recently been reported for the enhancement of myosin dephosphorylation by a complex of PP1c and the M₁₁₀ subunit (Johnson *et al.*, 1996, 1997), whereas the enhancement of the dephosphorylation of glycogen phosphorylase and glycogen synthase by the PP1-G_M complex is more consistent with the second

10

15

10

15

20

25

30

model (Hubbard and Cohen, 1989).

The identification of the (R/K)(V/I)XF motif also suggests a new approach for determining the physiological roles of PP1-targeting subunits whose functions are unknown. Thus mutation of the (R/K)(I/V)XF motif should disrupt the interaction of many targeting subunits with PP1c without affecting their binding to the target locus. Expression of these mutated proteins under an inducible promoter should lead to displacement of the normal targeting subunit (complexed to PP1c) from its target locus, without disrupting the functions of any other PP1c-targeting subunit complex. Finally, the structural information described here will also facilitate the rational design of drugs that act by disrupting PP1-targeting subunit interactions.

Example 3: Identification of the regions on the M_{110} subunit of protein phosphatase 1M that interact with the M_{21} subunit and with myosin

Abbreviations:- PP1_M, myofibril-associated form of protein phosphatase 1; PP1c, catalytic subunit of protein phosphatase-1; M₁₁₀ and M₂₁, 110 kDa and 21 kDa regulatory subunits of PP1_M; MBP, maltose-binding protein; GST, glutathione-S-transferase.

SUMMARY

We have previously isolated a form of protein phosphatase-1 (PP1_M) from avian smooth muscle myofibrils which is composed of the catalytic subunit of PP1 (PP1c) bound to an M-complex consisting of 110 kDa (M₁₁₀) and 21 kDa (M₂₁) subunits. The interaction of PP1c with an N-terminal region of the M₁₁₀ subunit enhances the dephosphorylation of myosin and suppresses the dephosphorylation of other substrates [Alessi, D.R., MacDougaii, L.K., Sola, M.M., Ikebe, M. and Cohen, P. (1992) Eur. J. Biochem 210, 1023-1035;

15

20

Chen, Y.H., Chen, M.X., Alessi, D.R., Campbell, D.G., Shanahan, C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56; Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H., Chen, M.X. and Cohen, P.T.W. (1996) Eur. J. Biochem. 239, 317-325]. In this Example we establish that PPI_M accounts for nearly all the myosin phosphatase activity in myofibrils, that the M_{110} and M_{21} subunits are present at similar concentrations in the myofibrillar fraction and that these subunits are entirely bound to PP1. We demonstrate that the M₂₁ subunit does not interact with PP1c, but with the C-terminal 72 residues of the M₁₁₀ subunit, a region which is 43% identical to residues 87-161 of the M_{21} subunit. A fragment of the M_{21} subunit, M_{21} -(M1-L146), lacking the C-terminal leucine zipper, also bound to the M_{110} subunit, but two other fragments M_{21} -(M1-E110) and M_{21} -(E110-K186) did not. The M_{110} and M_{21} subunits were both found to be myosin-binding proteins. C-terminal 291 residues of the M_{110} subunit, but not the C-terminal 72 residues, bound to myosin, but the N-terminal fragments M₁₁₀-(M1-E309) and M₁₁₀-(M1-S477) did not. Thus the region of the M_{110} subunit which stimulates the dephosphorylation of myosin by PP1c is distinct from the region which targets PP1_M to myosin. Remarkably, each myosin dimer was capable of binding about 20 moles of M₂₁ subunit and many of the M₂₁-binding sites were located in the myosin "rod domain". The potential significance of this observation is discussed.

Introduction

Protein phosphatase-1 (PP1), one of the major serine/threonine-specific protein phosphatases in eukaryotic cells, is regulated by targetting subunits that direct it to particular subcellular loci, modify its substrate specificity and confer the ability to be regulated by extracellular signals (reviewed in [1, 2]). A significant proportion of the PP1 in vertebrate muscle extracts is associated with myofibrils and has enhanced activity towards the P-light chain of myosin and

10

15

20

reduced activity towards other substrates, such as glycogen phosphorylase [3, 4]. When isolated from avian (chicken gizzard) [4, 5] or mammalian (pig bladder) [6] smooth muscle, this form of PP1 (PP1_M) was found to be composed of three subunits, namely the catalytic subunit of PP1 (PP1c) and two other proteins with molecular masses of 110 kDa and 21 kDa, termed the M_{110} and M_{21} subunits, respectively [4, 5]. The M_{110} subunit is complexed to both PP1c and the M_{21} subunit [4], and is the component which modulates the substrate specificity of PP1c because selective removal of the M_{21} subunit from PP1_M does not affect the rate at which either myosin or glycogen phosphorylase are dephosphorylated [7].

The M_{110} subunit has been cloned from rat aorta [5], chicken gizzard [8] and rat kidney [9] cDNA libraries. The N-terminus of the M_{110} subunit contains seven ankyrin repeats (residues 39-296 of the rat aorta protein), while alternative splicing in rat uterus [5] gives rise to two different C-termini (Fig 17A), termed Rat1 and Rat2. The C-terminus of Rat1 is virtually identical to the C-terminus of the M_{110} subunit from chicken gizzard (Fig 17A). The sequence of the M_{21} subunit from chicken gizzard is structurally related to the C-terminal region of the M_{110} subunit, the most striking similarities occurring from residues 76-141 of the M_{21} subunit and residues 921-984 of the chicken gizzard M_{110} subunit (54% identity, Fig 17B). However, the C-terminal 53 residues of the M_{21} subunit from chicken gizzard are strikingly similar (83% identity) to the C-terminal 53 residues of the rat aorta sequence, both terminating in a leucine zipper (Fig 17B, [5]).

25

30

Residues 1-309 of the M_{110} subunit from rat aorta, M_{110} -(M1-E309), mimic the intact M_{110} subunit in stimulating the dephosphorylation of myosin and in suppressing the dephosphorylation of glycogen phosphorylase by PP1c, but a slightly shorter construct M_{110} -(D39-E309) (which still contains the seven ankyrin repeats) is unable to modulate the specificity of PP1c [7]. This

15

20

25

30

observation led to the finding that the N-terminal 38 residues, M_{110} -(M1-F38), bind to PP1c and enhance the dephosphorylation of myosin. However, M_{110} -(M1-F38) does not suppress the dephosphorylation of glycogen phosphorylase, suggesting that the ankyrin repeats either contain a second PP1c-binding site or prevent glycogen phosphorylase from binding to the active site of PP1c, perhaps by steric hindrance [7].

A 13 residue peptide G_{M} -(G63-N75) from the subunit (G_{M}) which targets PP1c to glycogen and the sarcoplasmic reticulum in striated muscle, has been co-crystallised with PP1c and the structure of the complex solved to $3\dot{A}$ resolution [2]. These studies showed that a hexapeptide sequence in G_{M} -(G63-N75) (Arg-Arg-Val-Ser-Phe-Ala) (SEQ ID No 3) binds to a small hydrophobic groove on the surface of PP1c forming a β -sheet which runs parallel to another β -sheet in PP1c. Moreover, inspection of other mammalian PP1c-binding proteins reveals that almost all contain an Arg/Lys-Val/Ile-Xaa-Phe motif that is likely to be critical for interaction with PP1c [2]. For example, a Lys-Val-Lys-Phe (SEQ ID No 5) motif is present between residues 35 and 38 of the M_{110} subunit and the deletion of residues 36-38 from M_{110} -(M1-F38) prevents this peptide from stimulating the dephosphorylation of myosin, and from disrupting the interaction of PP1c with other targetting subunits [2].

The finding that a region near the N-terminus of the M_{110} subunit binds to PP1c and modulates its specificity raised the question of which region on the M_{110} subunit interacted with the M_{21} subunit, and how the PP1_M complex is targeted to the myofibrils. In this Example we identify regions near the C-terminus of the M_{110} subunit that interact with the M_{21} subunit and with myosin, and demonstrate that the M_{21} subunit is also a myosin-binding protein. These findings indicate that the domain of the M_{110} subunit which enhances the dephosphorylation of the myosin P-light chain is distinct from the region which targets PP1c to the contractile apparatus.

MATERIALS AND METHODS

Materials

- PP1_M [4] and the dephosphorylated form of myosin [10] were isolated from chicken gizzard, and the rod-domain and light meromyosin were obtained by subdigestion of chicken gizzard myosin with papain and chymotrypsin, respectively [11]. PP1_G was purified from rabbit skeletal muscle by Dr G. Moorhead in this laboratory [12] and PP1c dissociated from the glycogen-binding subunit by incubation for 2 h in 2 M LiBr and then purified by gel-filtration on a 30 x 1 cm column of Superose 12 (Pharmacia, Milton Keynes, UK) in the presence of LiBr (0.5 M). All other chemicals were from BDH Chemicals (Poole, UK) or Sigma (Poole, UK).
- Construction of vectors for the expression of fragments of the M_{110} subunit from rat aorta (rat2 sequence in Fig 17A) as glutathione-S-transferase (GST) fusion proteins in E. coli.
- A construct pGEX-M₁₁₀-(M1-E309) for the expression of GST-M₁₁₀-(M1-E309) from rat aorta was produced as described previously [7]. A construct for the expression of GST-M₁₁₀-(M1-S477) was prepared by subcloning a *XhoI-HindIII* fragment (encoding L24-S477) of pKS-M₁₁₀-(M1-S477) described in [5] into the same sites of pGEX-M₁₁₀-(M1-E309). The resulting construct expressed a GST-M₁₁₀-(M1-S477) fusion protein with the additional amino acids SAANSISSLIHRD* (SEQ ID No 27) after S477. An expression construct for GST-M₁₁₀-(M377-K976) was produced by deleting a *NcoI-NcoI* fragment of the construct pGEX-M₁₁₀-(L24-K976) [7].
- Construction of vectors for the expression of C-terminal fragments of the M_{II0} 30 subunit from chicken gizzard (Ch1 sequence in Fig 17A, [5]) as maltose binding

15

20

protein (MBP) fusion proteins in E. coli.

A pT7.7 vector for the expression of the C-terminal 291 residues of the M₁₁₀ subunit from chicken gizzard, pT7-M₁₁₀-(R714-I1004) was described previously [7]. A construct for the expression of MBP-M₁₁₀-(R714-I1004) was produced by cloning an *NdeI-Bam*HI fragment of pT7-M₁₁₀-(R714-I1004) into the pMAL-HA vector (New England Biolabs). Removal of a *Hin*dIII-*Hin*dIII restriction fragment from pMBP-M₁₁₀-(R714-I1004) allowed expression of MBP-M₁₁₀-(R714-L934) with the sequence GTGRRFTTS (SEQ ID No 28) added to its C-terminus. Removal of a *NdeI-Hin*dIII restriction fragment from pMBP-M₁₁₀-(R714-I1004), followed by filling in the overhanging ends and religating them, allowed expression of MBP-M₁₁₀-(K933-I1004).

Construction of vectors for the expression in E. coli. of the M_{21} subunit from chicken gizzard [5], with and without the C-terminal leucine zipper domain.

A pT7.7 vector for the expression of the entire coding region (M1-K186) of the M_{21} subunit was described previously [7]. The leucine zipper motif of the M_{21} subunit was deleted by removing a *SacI-BamHI* restriction fragment from pT7.7 M_{21} , filling in the overhanging ends and religating them. The construct expressed M_{21} -(M1-R144) with an extra I and L after residue 144. The M_{21} -(M1-R144) protein was insoluble when expressed and was purified as described for the expressed M_{21} subunit [7].

Construction of vectors for the expression of the M_{2l} subunit from chicken gizzard [5] and fragments of the M_{2l} subunit as glutathione-S-transferase (GST) fusion proteins in E. coli.

A construct expressing GST-M₂₁ was produced by inserting a *NdeI-HindIII* fragment of pT7.7 M₂₁ encoding M1-K186 into the same sites of the pGEX

30

10

15

vector modified to include an NdeI site. A construct expressing GST- M_{21} -(M1-E110) plus an additional Ala residue at the C-terminus was constructed by deleting a XhoI-HindIII fragment of pGEX- M_{21} , filling in the overhanging ends and religating them. In order to express GST- M_{21} -(E110-K186), a NdeI-XhoI restriction fragment of pGEX- M_{21} was deleted and the overhanging ends filled in and religated.

Expression of proteins in E. coli.

This was carried out essentially as described in [7], except that, after freezing the cells at -80°C and thawing, the lysates were not treated with DNAase but sonicated for 4 min on ice (ensuring that the temperature remained below 4°C) until the suspension was no longer viscous. The soluble GST-fusion proteins and MBP-fusion proteins were purified from the supernatant by affinity chromatography on glutathione-Sepharose (Sigma) and amylose resin (New England Biolabs), respectively, according to the instructions of the manufacturers. After expression in *E. coli* M₁₁₀-(R714-I1004) was the major soluble protein and all experiments with this fragment were performed using the bacterial extracts.

20

25

30

The chicken gizzard M₂₁ subunit was isolated from *E. coli* extracts as described [7]. M₂₁ subunit lacking the leucine zipper domain, M₂₁-(M1-L146), like the M₂₁ subunit itself, was obtained in inclusion bodies and therefore recovered in the pellet obtained after centrifugation of the bacterial lysates for 30 min at 28 000 x g. The inclusion bodies were washed three times in 50 mM Tris/HCl pH 7.5, 0.1M NaCl, 10 mM EDTA, 0.1% (by vol) 2-mercaptoethanol, 1 mM benzamidine, 0.2 mM phenylmethylsulphonyl fluoride and 0.5% (by mass) Triton X-100, then resuspended in 50 mM Tris/HCl pH 7.5, 1 mM EDTA, 1 mM EGTA, 0.03% (by mass) Brij-35, 0.1% (by vol) 2-mercaptoethanol. An aliquot (containing 3 mg protein) was made 0.5% (by vol) in trifluoroacetic

10

15

20

acid, sonicated, centrifuged for 2 min at 13,000 x g and the supernatant (containing the solubilised M_{21} subunit) loaded on to a Vydac C18 column (Separations Group, Hesperia, CA, USA) equilibrated in 0.1% (by vol) trifluoroacetic acid. The column was developed with a linear acetonitrile gradient at a flow rate of 1.0 ml / min with an increase in acetonitrile concentration of 1% per min. Homogeneous M_{21} subunit, which eluted at 42% acetonitrile, and M_{21} -(M1-L146) which eluted at 40% acetonitrile were dried in a vacuum concentrator redissolved in water, redried and then dissolved in 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij-35, 0.1% (by vol) 2-mercaptoethanol.

Removal of GST and MBP tags from fusion proteins.

GST- M_{110} -(1-477) was cleaved with thrombin and the proteinase removed using benzamidine agarose [7]. GST- M_{21} -(E110-K186) (1mg / ml) was cleaved by incubation for 1 h at 30°C with 10 μ g/ml thrombin, while GST- M_{21} -(M1-E110) (1mg / ml) was cleaved by incubation for 3 h at 30°C with 1 μ g/ml thrombin, because it was more susceptible to degradation by thrombin. MBP- M_{110} (K933-I1004) (1 mg / ml) was cleaved by incubation for 8 h at 23°C with Factor Xa (10 μ g/ml). Other conditions and removal of Factor Xa were carried out as described for thrombin [7].

Preparation of phosphorylated myosin P-light chain and phosphatase assays.

32P-labelled myosin P-light chains containing 1.0 mol phosphate per mol subunit was prepared by phosphorylation with smooth muscle myosin light chain kinase [4]. The dephosphorylation of myosin P-light chain (1 μM) was carried out as in [4] and one unit of activity (U) was that amount which catalysed the release of 1 μmole of phosphate in one min. When assaying PP1_M in immunoprecipitates from the myofibrillar extracts, the tubes were

shaken continuously and 3 nM okadaic acid was included to inhibit any PP2A present.

Immunoprecipitation of PP1_M from myofibrillar extracts.

5

10

15

20

Antibodies raised against the PP1_M holoenzyme (1 μ g), which recognise both the M₁₁₀ and M₂₁ subunits, but not PP1c, affinity purified antibodies specific for either the M_{110} subunit or M_{21} subunit (5 μ g) [7], and control IgG (5 μ g) were conjugated separately to 10 μ l of pelleted protein G-Sepharose. After incubation for 30 min at 4°C, the Protein G-Sepharose-antibody conjugate was washed three times with 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij-35, 0.3M NaCl, 0.1% (by vol) 2-mercaptoethanol before addition of a 100 µl of myofibrillar extract (prepared as in [4]) which had been diluted 10-fold in 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA, 0.1% (by vol) 2mercaptoethanol, 0.2 mM phenylmethylsulphonyl fluoride, 1 mM benzamidine, 10 μg/ml leupeptin containing 1 mg/ml bovine serum albumin. incubation for 1 h at 4°C, with shaking, a 10 μ l aliquot of the suspension was removed to measure the total activity. The remaining 90 μ l was centrifuged for 1 min at 13,000 x g, the supernatant was removed, and the pellet washed twice in dilution buffer containing 0.2 M NaCl and 0.03% (by mass) Brij-35 (but no bovine serum albumin), once in dilution buffer and then resuspended in 90 μ l of dilution buffer. Myosin P-light chain phosphatase activity was then measured in the supernatant and the resuspended pellet at a further 30-fold final dilution.

25

30

Myosin binding assays. Myosin (0.5 mg/ml, 1 μ M in terms of myosin heavy chains) in 10 mM Hepes pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.1% (by vol) 2-mercaptoethanol, was mixed with PP1_M, M₂₁ subunit, or fragments of the M₁₁₀ and M₂₁ subunits, at the concentrations indicated in figure legends. After incubation for 15 min at 0°C, the solutions were centrifuged for 2 min at

13,000 x g, the supernatants removed, and the pellets washed twice in 10 mM Hepes pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.1% (by vol) 2-mercaptoethanol before resuspension in 50 mM Tris-HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij 35, 0.6 M NaCl, 0.1% (by vol) 2-mercaptoethanol. Aliquots of the supernatant, the resuspended pellet and the suspension before centrifugation were either assayed for myosin P-light chain phosphatase activity or denatured in SDS and analysed by SDS/polyacrylamide gel electrophoresis.

Preparation of a complex between GST- M_{21} and M_{110} -(R714-11004).

10

15

25

GST- M_{21} (10 μ g) was mixed with 80 μ l of bacterial extract expressing M_{110} -(R714-I1004). After incubation for 15 min at ambient temperature the solution was added to 20 μ l (packed volume) of glutathione-Sepharose equilibrated in 50 mM Tris HCl pH 7.5, 0.1 mM EGTA, 0.03% (by mass) Brij 35, 0.1% (by vol) 2-mercaptoethanol, 0.2 mM phenylmethylsulphonyl fluoride, 1 mM benzamidine and 0.15 M NaCl. After incubation for 30 min at 4°C with shaking, the Sepharose was washed three times in the same buffer before eluting the complex with buffer containing 20 mM glutathione pH 8.0.

20 Other procedures.

Proteins were labelled with digoxigenin and Far Western analyses carried out as described [4], except that the digoxigenin-labelled probe was used at a concentration of 0.2 μ g/ml instead of 2 μ g/ml. SDS/polyacrylamide gel electrophoresis was carried out on 7.5-15% gels according to Laemmli [13] and on 16.5% gels according to Schagger and von Jagow [14]. Protein was estimated according to Bradford [15].

Results

PP1_M accounts for nearly all the myosin phosphatase activity in extracts prepared from chicken gizzard myofibrils.

5

10

15

20

80-90% of the myosin phosphatase activity present in chicken gizzard homogenates is recovered in the myofibrils [4]. In the present study, we used antibodies that recognise the M₁₁₀ and/or the M₂₁ subunits of chicken gizzard PP1_M [7] to immunoprecipitate the myosin P-light chain phosphatase activity About 90% of the activity was from the myofibrillar extracts. immunoprecipitated by antibodies raised against the PP1_M holoenzyme (Fig 18A) which recognise both the M_{110} and M_{21} subunits in immunoblotting experiments, but not PP1c. Similarly, about 80% of the myosin P-light chain phosphatase activity in the myofibrillar extracts was immunoprecipitated by either the anti- M_{110} antibody or by the anti- M_{21} antibody (Fig 18A). Thus, most of the myosin P-light chain phosphatase activity in myofibrillar extracts is catalysed by PP1c present as a complex containing both the M_{110} and the M_{21} subunits.

Immunoblotting experiments demonstrated that the ratio $M_{110}:M_{21}$ in 25

the myofibrils.

myofibrillar extracts was identical to the ratio of these subunits in purified PP1_M (Fig 18B), which is 1:1 [4]. These immunoblotting experiments also demonstrated that PP1_M comprises 0.1% of the protein in the myofibrillar extract (see legend to Fig 18B), identical to the proportion estimated from the fold-purification needed to obtain pure PP1_M from this fraction (see Table 1 in Ref 4). These experiments imply that PP1_M accounts for virtually all the myosin phosphatase activity associated with myofibrils, and that neither the M₁₁₀ nor the M₂₁ subunit is present in a significant molar excess over PP1c in

15

20

25

30

Identification of a region on the M_{110} subunit that binds to the M_{21} subunit.

PP1_M and several fragments of the M₁₁₀ subunit, were subjected to SDS/polyacrylamide gel electrophoresis (Fig 19A) and, after transfer to nitrocellulose, the blots were probed with digoxigenin-labelled M₂₁ subunit (Fig 19B). These experiments showed that the M₂₁ subunit recognised the full length M₁₁₀ subunit (Fig 19B, track 1), M₁₁₀-(R714-I1004) (Fig 19B, tracks 2 and 3) and M₁₁₀-(K933-I1004) (Fig 19B, track 5), but not M₁₁₀-(R714-L934) (Fig 19B, track 4), M₁₁₀-(M1-E309) (Fig 19B, track 7) or M₁₁₀-(M1-S477) (Fig 19B, track 8). Thus, the M₂₁ subunit binds to the C-terminal 72 residues of the M₁₁₀ subunit. The specificity of this interaction was indicated by the observation that digoxigenin-labelled M₂₁ subunit recognised only M₁₁₀-(R714-I1004) and no other protein in the *E. coli* extract (track 2 in Figs 19A and 19B), nor did it recognise the MBP or GST tags, PP1c (Figs 19A and 19B) or any of the molecular mass markers (data not shown).

Consistent with the results in Fig 19, digoxigenin-labelled MBP- M_{110} -(R714-I1004) (data not shown) and MBP- M_{110} -(K933-I1004) (Fig 20B), but not digoxigenin-labelled MBP- M_{110} -(R714-L934) (data not shown), recognised the full length M_{21} subunit and M_{21} (M1-L146) in Far Western blotting experiments.

The region of the M_{21} subunit that interacts with the M_{110} subunit.

Digoxigenin-labelled M_{21} -(M1-L146) recognised the same fragments of the M_{110} subunit as the full length M_{21} protein (Fig 19C), demonstrating that the C-terminal leucine zipper of the M_{21} subunit is not required for interaction with the M_{110} subunit. However, neither digoxigenin-labelled GST- M_{21} -(M1-E110) nor digoxigenin-labelled GST- M_{21} -(E110-K186) recognised M_{110} -(K933-I1004) in Far Western blotting experiments (data not shown). Consistent with these findings, digoxigenin-labelled M_{110} -(K933-I1004) recognised the full length M_{21}

protein and M_{21} -(M1-L146), but not M_{21} -(M1-E110) or M_{21} -(E110-K186) in Far Western blotting experiments (Figs 20A and B). However, digoxigenin-labelled M_{110} -(K933-I1004) did recognise a proteolytic fragment of the M_{21} subunit with an apparent molecular mass only slightly larger than M_{21} -(M1-E110) (Fig 20B, track 2 and compare tracks 2 and 4 in Fig 20A). These results are considered further under Discussion.

The isolated M_{21} subunit dimerizes and the region involved in dimerization is identical to that which interacts with the M_{110} subunit.

10

15

20

25

30

5

Although the M_{110} subunit binds to both PP1c and the M_{21} subunit [4], and removal of the M_{21} subunit does not alter the specificity of the PP1_M complex [7], an interaction between the M_{21} subunit and PP1c had not been excluded. In order to examine this point, PP1c and the M_{21} subunit were mixed together and subjected to gel filtration on Superose 12. The M_{21} subunit eluted just before the 37 kDa PP1c protein, demonstrating that they do not form a high affinity complex and suggesting that the isolated M_{21} subunit dimerizes (data not shown). These results were supported by the finding that digoxigenin-labelled full length M_{21} subunit recognised the M_{21} subunit as well as the M_{110} subunit, but not PP1c, in Far Western blotting experiments (Fig 21, track 1). Similar results were obtained with M_{21} -(M1-L146) (Fig 21, track 2). Digoxigenin-labelled M_{21} subunit, like digoxigenin-labelled M_{110} -(K933-I1004), recognised a fragment of the M_{21} subunit that migrated slightly more slowly than M_{21} -(M1-E110), but did not recognise M_{21} -(M1-E110) or M_{21} -(E110-K186) (Tracks 2, 4 and 5 in Figs 20B and 20C).

Identification of a region on the M_{110} subunit that binds to myosin.

When PP1_M (30 nM) was mixed with chicken gizzard myosin (1 μ M) and centrifuged to pellet the myosin, 85% of the myosin P-light chain phosphatase

10

15

20

25

was recovered in the pellet (Figs 22 and 23A). In contrast, neither PP1c (Fig 22) nor bovine serum albumin (data not shown) bound to myosin under these conditions. After removal of the M_{21} subunit from PP1_M [7], the M_{110} -PP1c complex (PP1_M(ΔM_{21}) still pelleted with myosin in a similar manner to PP1_M itself (Fig 22), indicating that the M_{110} subunit is a myosin-binding protein.

In order to identify the myosin-binding domain(s), several fragments of the M_{110} subunit were expressed and purified from $E.\ coli$ extracts and their binding to myosin was studied. GST- M_{110} -(M1-S477), like GST- M_{110} -(M1-E309) [7], stimulated the PP1c-catalysed dephosphorylation of the myosin P-light chain and inhibited the dephosphorylation of glycogen phosphorylase in a similar manner to the full length M_{110} subunit (data not shown). However, neither GST- M_{110} -(M1-S477) nor GST- M_{110} -(M1-E309) bound to myosin (data not shown), even after removal of the GST-tag from GST- M_{110} -(M1-S477) (Fig 23A).

A fragment comprising GST-M₁₁₀-(M377-K976) from rat aorta migrated as multiple bands on SDS/polyacrylamide gels after purification on glutathione-Sepharose (Fig 23A), indicating cleavage at multiple sites within the M₁₁₀ subunit. Only the largest fragment, with an apparent molecular mass corresponding to undegraded GST-M₁₁₀-(M377-K976) bound to myosin (Fig 23A), suggesting that the myosin binding site(s) was located towards the C-terminus of the M₁₁₀ subunit. Consistent with this finding, M₁₁₀-(R714-I1004) from chicken gizzard also bound to myosin (Fig 23B). However, M₁₁₀-(K933-I1004), which bound to the M₂₁ subunit (Fig 20B), did not bind to myosin in these experiments (Fig 23B).

10

15

20

25

30

The M_{21} subunit, and a complex between M_{21} and M_{110} -(R714-I1004) bind to myosin.

After purification on glutathione-Sepharose, GST-M₂₁ migrated as four protein staining bands (track 1 in Fig 20A), the two species of highest apparent molecular mass being recognised by the anti-M₂₁ antibody (Fig 23B). The apparent molecular mass of the slowest migrating band (47 kDa) corresponds to undegraded GST-M₂₁ and this species bound to myosin (Fig 23B). The next most slowly migrating band had an apparent molecular mass of 38 kDa, slightly less than that of GST-M₂₁-(M1-E110) (data not shown) indicating that it corresponds to GST fused to about the first 100 residues of the M₂₁ subunit; this fragment hardly bound to myosin (Fig 23B).

Bacterial extracts expressing M_{110} -(R714-I1004) were mixed with GST- M_{21} and the resulting complex was purified on glutathione-Sepharose. This complex bound quantitatively to myosin (Fig 23B). In contrast, the GST- M_{21} fragment of apparent molecular mass 38 kDa was not complexed to M_{110} -(R714-I1004) and did not bind to myosin (Fig 23B). The C-terminal fragment of the M_{21} subunit, M_{21} -(E110-K186) also did not bind to myosin under these conditions (data not shown).

Multiple binding sites for the M_{21} subunit on the myosin molecule.

The molar ratio myosin: PP1_M in chicken gizzard is about 80:1 in vivo [4] and the myosin binding experiments described above were therefore carried out using a large (ten fold) molar excess of myosin over either the M_{21} or the M_{110} subunit. However, further experiments carried out with the M_{21} subunit in excess revealed that, remarkably, 20 or more moles of M_{21} subunit could be bound to each myosin dimer (Fig 24A). Many of the binding sites were located in the region of myosin involved in filament formation, because the M_{21}

10

15

20

subunit was pelleted with the myosin "rod" domain even when the molar ratio M_{21} : myosin dimer was 10:1 (Fig 24B). A shorter portion of the rod, termed light meromyosin, also bound the M_{21} subunit avidly. However, a fragment of the M_{21} subunit lacking the first 15 residues from the N-terminus, which was a contaminant in this preparation, did not bind to light meromyosin (Fig 24B), although it bound to the longer myosin rod (Fig 24B). The M_{21} subunit lacking the C-terminal leucine zipper, M_{21} -(M1-L146), bound to both myosin and the rod domain, but fewer moles of M_{21} -(M1-L146) could be bound and this C-terminally truncated species did not bind to light meromyosin under the conditions studied (Fig 24C).

Multiple forms of the M_{110} subunit

Comparison of two different clones encoding the M_{110} subunit from chicken gizzard revealed a 123 bp (41 amino acid) deletion/insertion after Asn-511 (Fig 17, [8]). Since the rat aorta sequence [5] showed considerable variation from the chicken sequences in this region, compared to the high degree of sequence similarity throughout most of the rest of the molecule (Fig 17), it seemed probable that forms of the rat M_{110} subunit also existed that varied in this middle section of the protein. PCR of the "variable region" of several rat aorta clones gave fragments of either 608 bp or 776 bp. Direct sequencing of these fragments showed an in frame insertion of 168bp (56 amino acids) after Ser-552 (Fig. 1); i.e. a slightly different position from the deletion reported for the chicken gizzard M₁₁₀ subunit (Fig 17). Furthermore, a different 62 amino acid deletion/insertion in this section is apparent by comparison of the rat aorta sequences with that of the M₁₁₀ protein from rat kidney (Fig. 1) [9]. While it is likely that most of these variations arise by alternative splicing of the mRNA, Southern blotting of rat genomic DNA revealed the presence of two closely related genes (data not shown).

25

10

15

20

25

30

Discussion

The contraction of smooth muscle is triggered by phosphorylation of the P-light chain of myosin catalysed by myosin light chain kinase. However, the identity of the myosin P-light chain phosphatase remained unclear for many years. In 1992 we reported that 80-90% of the myosin phosphatase activity in chicken gizzard homogenates was associated with myofibrils and purified a myosin phosphatase to homogeneity from this fraction [4]. This enzyme, termed PP1_M, was found to be composed of the β -isoform of PP1c (termed the δ -isoform in [16]) and an "M-complex" consisting of two other subunits [4] whose molecular masses were 21 kDa (M_{21}) [5] and 110 kDa (M_{110}) [5, 8], respectively. Further evidence that a form of PP1 was the major myosin phosphatase in smooth muscle was indicated by the finding that tautomycin (a much more potent inhibitor of PP1 than PP2A [17]) stimulated the contraction of permeabilised mammalian smooth muscle fibres at much lower concentrations than okadaic acid [18] (a much more potent inhibitor of PP2A than PP1 [19]).

Two further pieces of evidence presented in this Example establish that $PP1_M$ accounts for most, if not all, of the myosin phosphatase activity associated with chicken gizzard myofibrils, reinforcing the view that it is likely to be the major myosin P-light chain phosphatase *in vivo*. Firstly, nearly all the myosin P-light chain phosphatase activity was immunoprecipitated by antibodies that recognise either the M_{110} or the M_{21} subunit specifically (Fig 18A). Secondly, $PP1_M$ was found to represent 0.1% of the protein in the myofibrillar extracts whether its concentration was calculated from the increase in specific activity needed for purification to homogeneity [4] or from immunoblotting experiments with the anti- M_{110} and anti- M_{21} antibodies (Fig 18B). Had another enzyme been the major myosin phosphatase in the myofibrillar extracts the enrichment estimated by immunoblotting with anti- M_{110} and anti- M_{21} antibodies would have been

15

20

much higher.

The experiments presented in Fig 18 also demonstrate that the M_{110} and M_{21} subunits are not present in myofibrillar extracts in a significant molar excess over PP1c and that all the M_{110} subunits are complexed to M_{21} subunit and vice versa. The M₂₁ subunit was found to bind to the C-terminal 72 residues of the chicken gizzard M₁₁₀ subunit (Figs 19 and 25), a region whose amino acid sequence is 43% identical to residues 87-161 of the M₂₁ subunit (Fig 17B). The C-terminal leucine zipper of the M_{21} subunit (residues 145-186) is not required for interaction with the M_{110} subunit, and the site on the M_{21} subunit which interacts with the M_{110} subunit lies within about the N-terminal 120 residues (Fig 20B). Interestingly, the same region is essential for the dimerisation of the M₂₁ subunit (compare Figs 20B and 20C), suggesting that the region(s) involved in interaction is probably located between residues 60 and 120 of the M_{21} subunit and 906-965 of the M_{110} subunit from chicken gizzard; i.e. the regions with greatest amino acid identity between these two proteins (Fig 17). More digoxigenin-labelled M_{21} subunit bound to the M_{110} subunit than to the M_{21} subunit in Far Western blotting experiments (Fig 21), consistent with the observation that M_{110}/M_{21} heterodimers form in vivo, but not M_{21}/M_{21} homodimers. The finding that the C-terminus of the M_{110} subunit interacts with the M₂₁ subunit explains why preparations of PP1_M comprising PP1c complexed to N-terminal fragments of the M₁₁₀ subunit do not contain the M_{21} subunit [8, 20].

PP1_M binds to the dephosphorylated form of myosin and our data demonstrate that the M₁₁₀ subunit (Fig 22) and the M₂₁ subunit (Fig 23B and Fig 24) are both myosin-binding proteins. The C-terminal 600 residues of the M₁₁₀ subunit from rat aorta, M₁₁₀-(M377-K976) (Fig 23A) and the C-terminal 291 residues of the M₁₁₀ subunit from chicken gizzard, M₁₁₀-(R714-I1004), bound to myosin, but the C-terminal 72 residues of the M₁₁₀ subunit, M₁₁₀-(K933-1004), did not

(Fig 23B), indicating that a myosin-binding domain is likely to be situated in the M_{110} subunit just N-terminal to the M_{21} -binding domain (Fig 25). In contrast, two N-terminal fragments of the M_{110} subunit M_{110} -(M1-S477) (Fig 23A) and M_{110} -(M1-E309) (data not shown) did not bind to myosin under the conditions studied. Since M_{110} -(M1-E309) [7] and M_{110} -(M1-S477) (data not shown) stimulate the dephosphorylation of myosin and inhibit the dephosphorylation of glycogen phosphorylase by PP1c, and in a similar manner to full length M_{110} subunit, these results show that the region of the M_{110} subunit which stimulates the dephosphorylation of the myosin P-light chain is distinct from that which binds the dephosphorylated form of myosin and thereby targets PP1_M to the contractile apparatus.

Digestion of chicken gizzard PP1_M with chymotrypsin cleaves the M₁₁₀ subunit to a fragment with an apparent molecular mass of 58 kDa and a form of PP1, termed here PP1_M*, can then be isolated by gel-filtration which appears to comprise just the 58 kDa fragment and PP1c in a 1:1 molar ratio [8]. The 58 kDa fragment, like the M_{110} subunit, has a blocked N-terminus and seven tryptic peptides isolated were located between residues 286 and 467, suggesting that the 58 kDa fragment corresponds to the N-terminal portion of the M_{110} subunit [8]. PP1_M* was reported to bind to myosin, albeit less effectively than PP1_M [8], suggesting the presence of a myosin-binding domain within the 58 kDa fragment. This result is in apparent conflict with the present study, M_{110} -(M1-S477), which also migrates because the fragment SDS/polyacrylamide gels with an apparent molecular mass of 58 kDa, did not bind to dephosphorylated myosin under conditions where 80-90% of the PP1_M and M_{110} -(R714-I1004) was pelleted with myosin (Fig 23A). One possible explanation for this discrepancy is that PP1_M* also contains small myosinbinding fragments from the C-terminus of the M₁₁₀ subunit which still interact with the N-terminal 58 kDa fragment, but are too small to be detected by SDS/polyacrylamide gel electrophoresis. In a separate study heavy meromyosin

5

10

15

20

25

30

(50 μ g) was found to bind partially to 2 mg of M₁₁₀-(1-633) coupled to Affigel 15, at very low ionic strength but not at 150-200 mM NaCl [21]. The significance of this observation is unclear because of the extremely high concentration of the M₁₁₀-(1-633) used in these experiments. The average intracellular concentration of PP1_M in chicken gizzard is about 1 μ M, 100-fold lower than the concentration of myosin. In the present study, we analysed the binding of the M₁₁₀ subunit and its subfragments (30-100 nM) to myosin (1 μ M) using low concentrations of these proteins to try and ensure that only high affinity binding sites were identified.

10

15

20

5

The isolated M_{21} subunit also bound to myosin and up to 20 moles of M_{21} subunit could be bound to each myosin dimer (Fig 24). These observations indicate that each myosin molecule contains multiple binding sites for the M_{21} subunit, many of which are located within the "rod domain" (Figs 24B and 24C). *In vivo*, the molar ratio PP1_M: myosin is about 1:80 and yet, during muscle relaxation, all the myosin P-light chains can be dephosphorylated by PP1_M within seconds. This implies that PP1_M must be highly mobile within the myofibrils and move extremely rapidly from one myosin molecule to another. The "off rates" for binding of PP1_M to myosin must therefore be very fast as well as the "on rates". It is tempting to speculate that the presence of multiple binding sites on myosin for the M_{21} subunit (and perhaps for the M_{110} subunit as well) allows PP1_M to "slide" rapidly from one myosin molecule to another.

Example 4: Design of small molecules to modulate the properties of PP1

25

30

Table A is a print-out of the atomic coordinates of the protein phosphatase-1 peptide coordinates as deduced in Example 2. The format is Protein Data Bank. The structure of the protein phosphatase-1 catalytic subunit (PP1c) in complex with a 13-residue peptide (G_M peptide) corresponding to a site of interaction between PP1c and the glycogen targeting subunit provides a frame-

10

15

20

25

30

work for the rational design of small molecules to modulate the functions and properties of PP1 in vivo. Knowledge of the structural nature of the interactions between the G_M peptide and PP1c allows the design of inhibitors that mimic these interactions. These inhibitors may be designed for increased potency, cell permeability and with improved pharmokinetic properties.

Computer graphics systems may be used to design such inhibitors in conjunction with computer graphics modelling software such as SYBIL available from: Tripos Inc, 16995 S Hanley Road, St Louis, Missouri 63144-2913, USA and LUDI available from: Molecular Simulations Inc, 9685 Scranton Road, San Diego, CA 92121-3752, USA, and in conjunction with the atomic coordinates shown in Table A.

Example 5: Effect of peptide derived from p53BP2 binding site to PP1 in vivo

The function of p53BP2 is ascertained by examining the *in vivo* effect of peptides based on the sequence of the p53BP2 binding site to PP1. This may be done by reference to the consensus peptide sequence described in the previous Examples and by reference to the crystal structure in Example 2. The peptide is introduced into cultured cells using penetratin available from Appligene. Other importins may also be used. Alternatively cDNA specifying p53BP2 proteins mutant in the p53BP2 binding site to PP1 are transfected in cultured cells. The effect of these agents on the cell cycle and apoptosis are assessed by a number of methods, for example WAF1 ELISA and Nuclear Matrix Protein ELISA assays (Amersham).

The effect of the p53BP2 peptide is to modulate the interaction between PP1 and p53BP2 in vivo and affect cell regulation and apoptosis. The p53BP2 peptide may also be micro-injected into the cell.

				Table 4				
MOTA	1	N LYS	6	Table A -10.263	46.372	91.126	1.00 53.07	0
ATOM	3	CA LYS	6	-9.182	46.177	90.159	1.00 53.07	0
ATOM	4	CB LYS	6	-9.220	47.277	89.092	1.00 45.20	0
ATOM	5	CG LYS	6	-10.284	47.095	88.015 86.868	1.00 45.20 1.00 45.20	0
ATOM	6	CD LYS	6 6	-9.809 -8.832	46.200 46.919	85.927	1.00 45.20	0
ATOM	7 8	CE LYS NZ LYS	6	-7. 49 8	47.216	86.540	1.00 45.20	ő
ATOM ATOM	12	C LYS	6	-7.814	46.179	90.835	1.00 53.07	ŏ
ATOM	13	O LYS	6	-6.854	45.624	90.303	1.00 45.20	0
ATOM	14	N LEU	7	-7. 74 6	46.816	92.005	1.00 42.33	0
MOTA	16	CA LEU	7	-6.527	46.941	92.800	1.00 43.14	0
ATOM	17	CB LEU CG LEU	7 7	-6. 84 0 -5. 67 0	47.599 47.782	94.141 95.106	1.00 24.45 1.00 18.34	0
MOTA MOTA	18 19	CG LEU CD1 LEU	7	-4.775	48.881	94.589	1.00 25.09	ŏ
ATOM	20	CD2 LEU	'n	-6.186	48.121	96.496	1.00 22.21	ŏ
ATOM	21	C LEU	7	-5. 89 2	45.594	93.063	1.00 42.81	0
ATOM	22	O LEU	7	-6.497	44.723	93.675	1.00 23.55	0
ATOM	23	N ASN	8	-4. 65 6	45.424	92.627	1.00 17.03	0
MOTA	25	CA ASN	8	-4.000 -3.204	44.156	92.846 91.610	1.00 11.65 1.00 18.54	0
ATOM ATOM	26 27	CB ASN CG ASN	8 - 8	-3.486	42.312	91.193	1.00 15.30	ŏ
ATOM	28	OD1 ASN	8	-4,643	41.903	91.068	1.00 14.53	ŏ
ATOM	29	ND2 ASN	8	-2.429	41.538	90.993	1.00 7.61	0
ATOM	32	C ASN	8	-3.1 1 0	44.207	94.079	1.00 11.35	0
ATOM	33	O ASN	8	-1.906 -3.716	44.515 43.900	93.985 95.232	1.00 12.23 1.00 12.56	0
ATOM ATOM	34 36	N ILE CA ILE	9 9	-3.718	43.894	96.523	1.00 14.41	ő
ATOM	37	CB ILE	9	-3 .95 5	43.439	97.690	1.00 2.00	ŏ
ATOM	38	CG2 ILE	9	-3. 15 5	42.828	98.812	1.00 2.00	0
ATOM	39	CG1 ILE	9	-4.742	44.634	98.244	1.00 2.00	0
ATOM	40	CD1 ILE	9	-3.865	45.837 42.996	98.581 96.501	1.00 2. 0 0 1.00 10. 0 7	0
ATOM ATOM	41 42	C ILE	9 9	-1. 79 6 -0. 75 9	43.351	97.045	1.00 2.00	ő
ATOM	43	N ASP	10	-1.916	41.845	95.849	1.00 2.00	Ō
ATOM	45	CA ASP	10	-0.822	40.887	95.782	1.00 2.00	0
ATOM	46	CB ASP	10	-1.336	39.562	95.208	1.00 45.77	0
MOTA	47	CG ASP	10	-2.234	38.801	96.191 96.879	1.00 46.34 1.00 50.94	0
MOTA	48 49	OD1 ASP OD2 ASP	10 10	-3. 05 4 -2. 12 3	39. 44 4 37.558	96.879	1.00 55.84	0
ATOM ATOM	50	C ASP	10	0.426	41.369	95.036	1.00 2.00	ŏ
MOTA	51	O ASP	10	1.540	41.181	95. 51 6	1.00 43.44	0
MOTA	52	n se r	11	0.245	41.993	93.874	1.00 2.00	0
ATOM	54	CA SER	11	1.387	42.494	93.112 91.678	1.00 2.00 1.00 24.54	0
ATOM ATOM	5 5 5 6	CB SER OG SER	11 11	0.987 -0.025	42.834 43.819	91.653	1.00 26.40	ŏ
MOTA	58	C SER	11	1.964	43.727	93.804	1.00 2.00	Ō
MOTA	59	O SER	11	3.168	44.010	93.702	1.00 23.86	0
MOTA	60	N ILE	12	1.099	44.40/	94.493	1.00 19.26	0
MOTA	62	CA ILE	12	1.536	45.641	95.226 95.878	1.00 19.26 1.00 2.00	0
MOTA MOTA	63 64	CB ILE	12 12	0.345 0.831	46.351	96.909	1.00 2.00	Ö
MOTA	65	CG1 ILE	12	-0. 49 9	46.986	94.775	1.00 2.00	0
MOTA	66	CD1 ILE	12	-1.722	47.687	95.245	1.00 2.00	0
MOTA	67	C ILE	12	2.501	45.112	96.275	1.00 19.26	0
ATOM	68	O ILE	12	3.684	45.445	96.264	1.00 2.00	0
MOTA MOTA	69 71	N ILE CA ILE	13 13	1.987 2.764	44.246 43.605	97.141 98.199	1.00 2.00 1.00 2.00	0
ATOM	72	CB ILE	13	1.899	42.504	98.897	1.00 2.00	ŏ
ATOM	73	CG2 ILE	13	2.747	41.645	99.810	1.00 2.00	0
MOTA	74	CG1 ILE	13	0.764	43.154	99.691	1.00 2.00	0
MOTA	75	CD1 ILE	13	-0.213	42.167	100.331	1.00 2.00	0
MOTA	76 77	C ILE	13	4.039 5.142	42.960 43.099	97.602 98.158	1.00 2.00 1.00 2.00	0 0
MOTA MOTA	78	O ILE N GLN	13 14	3.864	42.278	96.462	1.00 2.00	Ö
MOTA	80	CA GLN	14	4.937	41.582	95.740	1.00 2.00	0
ATOM	81	CB GLN	14	4.415	41.065	94.391	1.00 21.13	0
ATOM	82	CG GLN	14	5.467	40.470	93.454	1.00 32.43	0
MOTA	83	CD GLN	1 4	5.655	41.284	92.171	1.00 28.89	U

MOTA	84	QE1	GLN	14	4.726	41.428	91.363	1.00 30.84	0
MOTA	85	NE2	GLN	14	6.861	41.818	91.977	1.00 29.15	0
MOTA	88	С	GLN	14	6.088	42.519	95.515	1.00 2.00	0
MOTA	89	0	GLN	14	7.206	42.249	95.934	1.00 24.80	0
MOTA	90	N	ARG	15	5.789	43.625	94.848	1.00 15.16	0
ATOM	92	CA	ARG	15	6.776	44.638	94.552	1.00 15.16	Ō
MOTA	93	CB	ARG	15	6.122	45.812	93.846	1.00 8.83	ŏ
	94	CG CG	ARG	15	6.530	45.981	92.388	1.00 8.83	ő
MOTA									
ATOM	95	CD	ARG	15	5.543	46.882	91.684	1.00 8.83	0
MOTA	96	NE	ARG	15	4.195	46.322	91.761	1.00 8.83	0
MOTA	98	CZ	ARG	15	3.094	46.998	91.465	1.00 8.83	0
MOTA	9 9		ARG	15	3.178	48.261	91.07 3	1.00 9.33	0
MOTA	102	NH2	ARG	15	1.907	46.413	91.567	1.00 8.83	0
MOTA	105	C	ARG	15	7.405	45.10 6	95.841	1.00 15.16	0
MOTA	10 6	0	ARG	15	8.622	45.124	95.952	1.00 13.09	0
MOTA	107	N	LEU	16	6.575	45.462	96.820	1.00 2.00	0
MOTA	109	CA	LEU	16	7.049	45.924	98.124	1.00 2.00	ō
ATOM	110	CB	LEU	16	5.853	46.215	99.033	1.00 2.00	ŏ
	111	CG	LEU	16	4.982	47.420	98.662	1.00 2.00	ő
MOTA									
MOTA	112	CD1		16	3.630	47.302	99.324	1.00 2.00	0
MOTA	113	CD2		16	5.664	48.707	99.056	1.00 2.00	0
MOTA	114	С	LEU	16	8.014	44.942	98.809	1.00 2.00	0
MOTA	115	0	LEU	16	9.031	45.354	99.361	1.00 2.00	0
ATOM	116	N	LEU	17	7.712	43.650	98.77 0	1.00 12.70	0
MOTA	118	CA	LEU	17	8. 59 0	42.652	99.39 5	1.00 4.33	0
MOTA	119	CB	LEU	17	7.812	41.387	99.780	1.00 4.50	0
MOTA	120	CG	LEU	17	6.740		100.838	1.00 4.52	0
MOTA	121	CD1		17	6.338		101.302	1.00 11.14	Ó
ATOM	122	CD2		17	7.285		101.997	1.00 6.93	ŏ
	123	CDZ	LEU	17	9.796	42.225	98.548	1.00 7.39	ŏ
MOTA							99.086	1.00 15.30	ő
MOTA	124	0	LEU	17	10.751	41.652		1.00 65.13	ő
MOTA	125	И	GLU	18	9.758	42.492	97.238		
MOTA	127	CA	GLU	18	10.847	42.104	96.329	1.00 70.48	0
MOTA	128	CB	GLU	18	10. 50 5	42.471	94.883	1.00 89.02	0
MOTA	129	CG	GLU	18	10.769	43.92 9	94.547	1.00 97.06	0
MOTA	130	CD	GLU	18	10.677	44.239	93. 06 9	1.00 39.46	0
ATOM	131	OE1	GLU	18	11.030	43.351	92.256	1.00 39.46	0
ATOM	132	OE2	GLU	18	10.265	45.375	92.727	1.00 39.46	0
MOTA	133	C	GLU	18	12.199	42.724	96.687	1.00 70.82	0
MOTA	134	ŏ	GLU	18	13.244	42.249	96.240	1.00 88.34	0
	135	N	VAL	19	12.172	43.793	97.480	1.00 28.97	ō
MOTA						44.470	97.891	1.00 28.97	ŏ
MOTA	137	CA	VAL	19	13.394			1.00 6.66	ŏ
ATOM	138	CB	VAL	19	13.139	45.968	98.207		ő
MOTA	139	CG1	VAL	19	12.746	46.702	96.942	1.00 6.86	
MOTA	140		VAL	19	12.044	46.117	99.231	1.00 4.03	0
MOTA	141	C	VAL	19	14.079	43.805	99.081	1.00-28.97	0
MOTA	142	0	VAL	19	15.134	44.258	99.514	1.00 13.23	0
MOTA	143	N	ARG	20	13.490	42.736		1.00 2.00	0
ATOM	145	CA	ARG	20	14.093	42.016	100.748	1.00 2.00	0
ATOM	146	CB	ARG	20	13.242	40.812	101.142	1.00 17.66	0
MOTA	147	CG	ARG	20	12.043		101.990	1.00 16.46	0
MOTA	148	CD	ARG	20	11.192		102.195	1.00 21.30	0
ATOM	149	NE	ARG	20	12.006		102.532	1.00 18.45	0
ATOM	151	CZ	ARG	20	11.559		102.546	1.00 23.19	O
							102.249	1.00 28.11	0
MOTA	152		ARG	20	10.288			1.00 21.96	Ö
MOTA	155		ARG	20	12.383		102.836		Ö
MOTA	158	C	ARG	20	15.480		100.333	1.00 2.00	
ATOM	159	O	ARG	20	15.609	40.778	99.353	1.00 20.52	0
ATOM	160	N	GLY	21	16.514		101.047	1.00 61.97	0
ATOM	162	CA	GLY	21	17.863		100.718	1.00 65.49	0
ATOM	163	C	GLY	21	18.702	42.522	99.930	1.00 66.05	O
MOTA	164	Ô	GLY	21	19.933	42.409	99.889	1.00 13.74	O
ATOM	165	N	SER	22	18.055	43.490	99.290	1.00 19.66	0
ATOM	167	CA	SER	2 2	18.790	44.491	98.523	1.00 17.08	0
	168		SER	22 22	17.874	45.159	97.481	1.00 26.61	Ö
ATOM		CB			16.821	45.908	98.074	1.00 32.17	ŏ
MOTA	169	OG	SER	22		45.500	99.466	1.00 17.54	ő
MOTA	171	Č	SER	22	19.371	45.538	100.657	1.00 17.54	0
MOTA	172	0	SER	22	19.047	43.358	100.00/	1.00 21.05	U

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	173 175 176 177 178 179 180 184 185 186 187 191 192 193 195 196 197 198	N CABCCC NZ O N CACCON CO N CACON CO	LYS LYS LYS LYS LYS LYS PRO PRO PRO PRO PRO GLY GLY GLY	23 23 23 23 23 23 23 23 24 24 24 24 24 25 25 25 25 26	20.222 20.828 21.565 20.639 21.341 20.346 19.448 19.739 18.659 19.990 21.185 18.987 19.618 21.109 18.798 19.752 17.579 17.275 16.653 16.098	46.409 47.458 48.471 49.422 50.716 51.775 52.240 48.190 48.488 48.148 49.165 49.217 49.208 50.551 51.325 50.835 52.119 51.904 52.827 50.679	98.935 99.740 98.852 98.085 97.688 97.214 98.306 100.528 99.998 101.813 102.614 102.613 104.004 103.704 102.019 101.938 101.575 100.981 99.037 99.116	1.00 53.24 1.00 49.50 1.00 94.25 1.00 59.71 1.00 59.77 1.00 59.94 1.00 49.47 1.00 59.94 1.00 37.72 1.00 2.00 1.00 36.73 1.00 2.00 1.00 2.00 1.00 33.26 1.00 2.00 1.00 22.79 1.00 22.84 1.00 18.00 1.00 28.24 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	200 201	CA CB	LYS LYS	2 6 2 6	16.174 16. 46 9	50.351 48.892	97.817 97. 45 8	1.00 2.00 1.00 45.45	0
MOTA	202	CG	LYS LYS	26 26	15.931 16.209	48.437 49.435	96.110 94.979	1.00 55.13 1.00 59.31	0
MOTA MOTA	203 204	CD CE	LYS	2 6	17.694	49.644	94.691	1.00 60.93	0
MOTA	205	NZ	LYS LYS	2 6 2 6	17.883 14.674	50.619 50.624	93.569 97.856	1.00 68.30 1.00 2.00	0
MOTA MOTA	209 210	O C	LYS	2 6	13.916	49.964	98.566	1.00 42.74	0
MOTA	211	N	ASN	27	14.278	51.648	97.111 97.027	1.00 2.00 1.00 2.00	0
MOTA MOTA	213 214	CA CB	ASN ASN	27 27	12.894 12.836	52.086 53.526	96.517	1.00 50.37	ŏ
MOTA	215	CG	ASN	27	13.257	54.52 5	97.563	1.00 56.29	0
MOTA	216		ASN	27 27	12.929 13.982	54.381 55.551	98.740 97.142	1.00 61.45 1.00 59.50	0
MOTA MOTA	217 220	C KD2	asn asn	27 27	11.964	51.219	96.183	1.00 2.00	ŏ
ATOM	221	0	ASN	27	12.384	50.256	95.540	1.00 54.11	0
ATOM	222 224	N	VAL	28 28	10.689 9.646	51.590 50.910	96.209 95.473	1.00 12.34 1.00 12.71	0
MOTA MOTA	225	CA CB	VAL VAL	28 28	9.126	49.693	96.283	1.00 2.00	0
MOTA	226	CG1	VAL	28	8.777	50.111	97.684	1.00 2.00 1.00 2.00	0
M OTA M OT A	227 228	CG2 C	VAL VAL	28 28	7.932 8.549	49.053 51.935	95.599 95.145	1.00 2.00 1.00 19.22	0
ATOM	229	0	VAL	28	7.757	52.363	96.000	1.00 2.00	0
MOTA	230	N	GLN	2 9	8.548	52.372	93.892	1.00 26.36	0
MOTA MOTA	232 233	CA CB	GLN GLN	29 2 9	7. 58 6 8. 20 3	53.365 54.239	93.424 92.325	1.00 27.97 1.00 11.00	0
ATOM	234	CG	GLN	29	7.479	55.543	92.080	1.00 8.47	Ō
MOTA	235	CD	GLN	29	7.684	56.541	93.201	1.00 11.72 1.00 13.39	0
ATOM ATOM	236 237	OE1 NE2		29 29	7.097 8.525	57.619 56.195	93.198 94.159	1.00 13.39	Ö
MOTA	240	C	GLN	29	6.347	52.688	92.887	1.00 27.73	0
MOTA	241	0	GLN	29	6. 401 5. 22 9	51.934 52.941	91.926 93.531	1.00 8.22 1.00 2.00	0
MOTA MOTA	242 244	N CA	LEU	30 30	3.978	52.359	93.087	1.00 2.00	ő
MOTA	245	CB	LEU	30	3.157	51.859	94.279	1.00 18.06	0
MOTA	246	CG	LEU	30	3.381 4.857	50.416 50.152	94.729 94.928	1.00 18.06 1.00 18.06	0
ATOM ATOM	247 248		LEU	30 30	2.603	50.171	96.009	1.00 18.06	ő
MOTA	249	C	LEU	30	3.223	53.441	92.348	1.00 2.00	0
MOTA	250 251	O M	LEU GLN	30 31	3. 36 3 2. 44 1	54.621 53.050	92.664 91.355	1.00 18.06 1.00 75.78	0
ATOM ATOM	251 253	N CA	GLN	31	1.679	54.026	90.599	1.00 80.15	o
MOTA	254	CB	GLN	3 1	0.782	53.336	89.593	1.00 2.00	0
MOTA	255	CG	GLN	31 31	1.448 0.498	52. 20 4 51. 46 9	88.883 87.976	1.00 2.00 1.00 2.00	0 0
ATOM ATOM	256 257	CD OE1	GLN GLN	31	0.933	50.694	87.122	1.00 2.00	Ö
MOTA	258		GLN	3 1	-0.809	51.698	88.150	1.00 2.00	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM	261 262 263 265 266 267 268	C O N CA CB CG	GLN GLU GLU GLU GLU GLU	31 31 32 32 32 32 32 32	0.819 0.276 0.716 -0.074 -0.236 -1.206 -1.652	54.783 54.187 56.091 56.979 58.333 59.320 60.426	91.585 92.512 91.380 92.228 91.523 92.181 91.226	1.00 79.69 1.00 2.00 1.00 2.00 1.00 2.00 1.00 57.69 1.00 62.36 1.00 60.46	0 0 0 0 0 0
ATOM ATOM	269 270	OE1 OE2	GLU GLU	32 32	-2.596 -1.059	61.176 60.543	91.570 90.128	1.00 59.61 1.00 62.85	0
ATOM ATOM	271 272	C O	GLU GLU	32 32	-1.449 -1.875	56.370 56.341	92.539 93.695	1.00 2.00 1.00 53.86	o o
ATOM	27 3	N	ASN	3 3	-2.127	55.86 5	91.517	1.00 6.25	0
MOTA MOTA	275 276	CA CB	asn Asn	33 33	-3.445 -4.134	55.278 55.026	91.714 90.364	1.00 7.45 1.00 30.19	0
MOTA	277 278	CG OD1	ASN ASN	33 33	-3.291 -2.592	54.199 53.261	89.412 89.810	1.00 30.49	0
MOTA MOTA	279	ND2		33	-3.349	54.551	88.141	1.00 32.73 1.00 33.00	0
ATOM ATOM	282 283	C O	asn Asn	33 33	-3.448 -4.466	54.002 53.670	92.565 93.182	1.00 10.76 1.00 23.15	0
MOTA	284	N	GLU	34	-2.322	53.292	92.598	1.00 27.56	0
MOTA MOTA	286 287	CA CB	GLU GLU	34 34	-2.217 -1.005	52.081 51.251	93.402 92.985	1.00 24.54 1.00 23.44	0
MOTA	288	C G	GLU	34	-1.203	50.47 9	91.69 8	1.00 22.75	О
ATOM ATOM	289 2 9 0	CD OE1	GLU GLU	34 34	-0.120 -0.443	49.438 48.226	91.47 9 91.46 0	1.00 28.72 1.00 34.33	0
ATOM	291	OE2	GLU	34	1.055 -2.106	49.834	91.330	1.00 31.11 1.00 25.10	0
MOTA MOTA	292 293	C O	GLU GLU	34 34	-2.106 -2.797	52.470 51.923	94.871 95.716	1.00 19.23	0
MOTA	294 296	N CA	ILE	35 35	-1.2 4 4 -1.083	53.430 53.889	95.172 96.541	1.00 14.94 1.00 28.22	0
MOTA MOTA	297	CB	ILE	3 5	0.045	54.88 8	96.632	1.00 2.00	О
MOTA MOTA	298 299	CG2 CG1	ILE	35 35	0.013 1. 354	55.607 54.15 4	97.961 96. 39 5	1.00 2.00 1.00 2.00	0
ATOM	30 0	CD1	ILE	3 5	2.554	55.045	96.414	1.00 2.00	0
MOTA MOTA	301 302	C O	ILE	3 5 3 5	-2.368 -2.794	54.536 54.302	97.034 98.172	1.00 13.21 1.00 2.00	0
MOTA	303	N	ARG	36	-2.985	55.340	96.171	1.00 2.00	0
MOTA MOTA	305 306	CA CB	ARG ARG	36 36	-4.237 -4.578	56.015 57.082	96.506 95.446	1.00 2.00 1.00 8.06	0
MOTA	307	C G	ARG	36	-5.725	56.70 3	94.502	1.00 14.08 1.00 20.55	0
MOTA MOTA	308 309	CD NE	ARG ARG	36 36	-6.059 -6.465	57.824 59.029	93.555 94.267	1.00 20.55 1.00 14.43	0
MOTA	311	CZ	ARG	36	-7.726	59.383 58.618	94.491	1.00 22.93 1.00 22.80	0
MOTA MOTA	312 315	NH1 NH2	ARG ARG	36 36	-8. 72 9 -7.98 7	60.518	95.134	1.00 19.87	0
MOTA	318	C	ARG	36	-5.394	55.005 55.305	96.657 97.279	1.00 2.00 1.00 2.00	0
ATOM ATOM	319 320	O N	ARG GLY	36 37	-6. 41 5 -5. 24 0	53.828	96.059	1.00 2.00	0
MOTA	322	CA	GLY	37 37	-6.264 -6.118	52.814 52.251	96.1 7 7 97.575	1.00 2.00 1.00 2.00	0
MOTA MOTA	323 324	С О	GLY GLY	37	-7.106	52.03 0	98.289	1.00 2.00	0
ATOM ATOM	325 327	N CA	LEU LEU	38 38	-4.864 -4.558	52.039 51.515	97.975 99.288	1.00 8.88 1.00 8.88	0 0
MOTA	328	CB	LEU	38	-3.061	51.550	99.559	1.00 2.00	0
MOTA MOTA	329 330	CG	LEU	38 38	-2. 20 2 -0. 76 5	50.559 50.804	98.784 99.171	1.00 2.00 1.00 2.00	0
MOTA	331	CD2	LEU	38	-2.614	49.106	99.0 63	1.00 2.00	0
ATOM ATOM	332 333	C O	LEU	38 38	-5.278 -6.130	52.406	100.258	1.00 8.88 1.00 2.00	0 0
MOTA	334	N	CYS	39	-4.976	53.705	100.216	1.00 2.00	0
MOTA MOTA	336 337	CA CB	CYS CYS	39 39	-5.613 -5.3 3 9		101.099 100.607	1.00 2.00 1.00 2.00	0
MOTA	338	SG	CYS	39	-3.719	56.686	100.830	1.00 2.00	0
MOTA MOTA	339 340	C O	CYS CYS	3 9 3 9	-7.140 -7.708	54.580	101.201 102.296	1.00 2.00 1.00 2.00	0
MOTA	341	И	LEU	40	-7.793		100.053 99.999	1.00 2.00 1.00 2.00	0
MOTA MOTA	343 344	CA CB	LEU LEU	4 0 4 0	-9.233 -9.735	54.330	98.599	1.00 2.00	Ö
	-								

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	345 346 347 348 349 350 352 353 354 355 361 362 363 365 366	CD2 C O N CA CB CCD CE NZ C O N CA CB	LEU LEU LEU LYS	40 40 40 41 41 41 41 41 41 41 42 42	-10.127 -9.020 -10.401 -9.817 -10.853 -9.174 -9.721 -9.123 -9.685 -11.188 -11.746 -11.198 -9.475 -10.375 -8.266 -7.935	45.721 50.376 49.934 50.666 50.477 50.854	96.960 100.426 101.071 100.081 100.468 99.598 99.884 99.923 100.560 99.910 101.963 102.674 102.440 103.844 104.094	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.00 2.00 7.31 7.31 2.00 2.00 2.00 2.00 2.00 7.31 2.00 3.34 3.34 2.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MOTA MOTA	367 369	og C	SER SER	42 42	-6.315 -8. 84 4	51.398	103.766 104.650	1.00 1.00	2.00 7.34	0
MOTA MOTA	370 371	N O	SER ARG	42 - 43	-9.504 -8.906		105.600 104.247	1.00	2.00 2.00	0
ATOM	37 3	CA	ARG	43	-9.746	53.650	104.928	1.00	2.00	0
ATOM	374 3 7 5	CB	ARG	4 3 4 3	-9.856 -10.530		104.135	1.00 1.00	2.00 2.00	0
ATOM ATOM	375 376	CG CD	ARG ARG	43	-11.541	•	104.097	1.00	2.00	ŏ
MOTA	377	NE	ARG	43	-11.803		104.679 105.005	1.00	2.00	0
MOTA MOTA	37 9 38 0	CZ NH1	ARG	4 3 4 3	-13.010 -14.112		103.005	1.00 1.00	2.00 2.00	0
ATOM	383		ARG	43	-13.120	59.827	105.502	1.00	2.00	0
MOTA MOTA	386 387	C O	ARG ARG	4 3 4 3	-11.136 -11.800		105.104 106.083	1.00	2.00 2.00	0
ATOM	388	N	GLU	44	-11.574	52.321	104.130	1.00	19.11	0
MOTA	390	CA	GLU	44	-12.901		104.146		19.41	0
MOTA MOTA	391 392	CB CG	GLU GLU	4 4 4 4	-13.179 -14.599		102.776 102.542		23.41 34.12	0
MOTA	39 3	CD	GLU	44	-14.711	49.574	101.532	1.00	38. 7 2	0
MOTA	394 395		GLU	4 4 4 4	-15.634 -13.886		100.699 101.576	-	43.51 35.90	0
ATOM ATOM	395 396	C C	GLU	44	-12.987		105.260		20.56	Ö
MOTA	397	0	GLU	44	-13.967		106.007		24.61	0
MOTA MOTA	398 40 0	N CA	ILE	4 5 4 5	-11.945 -11.896		105.379	1.00	8.30 8.30	0
ATOM	401	CB	ILE	45	-10.720	47.876	106.133	1.00	2.00	0
MOTA	402		ILE	45	-10.795 -10.774		107.049 104.698	1.00	2.00 2.00	0
ATOM ATOM	403 404	CD1	ILE	4 5 4 5	-10.774 -9. 55 9		104.095	1.00	2.00	Õ
ATOM	405	C	ILE	45	-11.775	49.401	107.784	1.00	8.30	0
MOTA MOTA	406 407	N N	ILE PHE	4 5 4 6	-12.249 -11.134		108.756 107.905	1.00 1.00	2.00	0
MOTA	409	CA	PHE	46	-11.013	51.154	109.214	1.00	2.00	Õ
ATOM	410	CB	PHE	46	-10.076		109.176	1.00	2.00	0
ATOM ATOM	41 1 41 2	CG CD1	PHE PHE	4 6 4 6	-8.665 -7. 82 9		108.843 108.223	1.00	2.00 2.00	0
MOTA	413	CD2	PHE	46	-8.168	50.726	109.151	1.00	2.00	0
MOTA MOTA	414 415		PHE	4 6 4 6	-6. 51 6 -6.8 59		107.915 108.845	1.00	2.00 2.00	0
MOTA	416	CZ	PHE PHE	46	-6.027		108.227	1.00	2.00	Ö
ATOM	417	C	PHE	46	-12.396		109.686	1.00	2.00	0
MOTA MOTA	418 419	N O	PHE LEU	46 47	-12.840 -13.106		110.731 108.896	1.00	2.00 2.00	0 0
MOTA	421	CA	LEU	47	-14.441	52.807	109.277	1.00	2.00	0
MOTA	422	CB	LEU	47	-15.043		108.190	1.00	2.00	0
MOTA MOTA	423 424	CG CD1	LEU	47 47	-14.641 -14.094		108.110 109.462	1.00 1.00	2.00	0 0
ATOM	425	CD2	LEU	47	-13.619	55.397	107.030	1.00	2.00	0
ATOM ATOM	426 427	C O	LEU LEU	47 47	-15.424 -16.432		109.578 110.243	1.00	2.00 2.00	0 0
ATOM	428	и	SER	48	-15.145		109.091	1.00	2.00	0

ATOM 446 C. GILN 49 -14.210 49.205 113.540 1.00 63.04 0 ATOM 448 N PRO 50 -14.645 80.373 113.540 1.00 63.04 0 ATOM 448 N PRO 50 -14.645 80.373 113.540 1.00 14.615 ATOM 449 CD PRO 50 -14.645 80.373 113.731 1.00 14.615 ATOM 450 CA PRO 50 -14.645 80.373 113.731 1.00 14.615 ATOM 450 CA PRO 50 -14.728 49.657 115.00 1.00 34.58 0 ATOM 451 CB PRO 50 -14.728 49.657 115.00 1.00 34.58 0 ATOM 451 CB PRO 50 -14.728 49.657 115.00 1.00 2.00 0 ATOM 452 CG PRO 50 -14.496 47.365 116.511 1.00 2.00 0 ATOM 453 C PRO 50 -13.459 50.468 116.511 1.00 2.00 0 ATOM 454 O PRO 50 -12.356 50.002 115.868 1.00 2.00 0 ATOM 455 N ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 456 CB ILE 51 -13.626 51.673 116.00 2.00 0 ATOM 457 CA ILE 51 -13.626 51.673 116.00 2.00 0 ATOM 458 CB ILE 51 -13.602 54.035 118.673 1.00 2.00 0 ATOM 460 CGI ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 461 CDI ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 462 C ILE 51 -13.602 54.035 118.673 1.00 2.00 0 ATOM 463 O ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 464 N LEU 52 -12.288 56.370 117.351 1.00 2.00 0 ATOM 466 CA LEU 52 -12.238 56.370 117.351 1.00 2.00 0 ATOM 467 CB LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 468 CG LEU 52 -11.650 51.966 118.731 1.00 2.00 0 ATOM 468 CG LEU 52 -11.650 51.996 118.173 1.00 2.00 0 ATOM 469 CDI LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.655 50.501 11.055 51.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.18.667 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664 48.766 119.977 1.00 2.00 0 ATOM 470 CD2 LEU 53 -10.664	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	430 431 432 434 435 436 438 439 440 441 442 443	CA CB OG C O N CA CB CC CD OE1 NE2	SER SER SER SER GLIN GLIN GLIN GLIN GLIN GLIN	48 48 48 48 49 49 49 49 49	-16.037 -16.121 -14.844 -15.624 -16.184 -14.627 -14.175 -12.763 -12.668 -11.246 -10.251 -11.151	48.483 48.045 48.473 47.390 48.922 48.193 47.645 46.511 45.952	107.622 110.482 110.700 111.225 112.394 112.173 111.146 110.995	1.00 2.00 1.00 23.35 1.00 30.63 1.00 2.00 1.00 28.70 1.00 61.72 1.00 63.25 1.00 13.32 1.00 7.00 1.00 8.88 1.00 9.23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM 448 N PRO 50 -14.645 28.778 114.734 1.00 34.58 0 ATOM 449 CD PRO 50 -14.967 47.399 115.118 1.00 34.58 0 ATOM 450 CA PRO 50 -14.4967 47.399 115.118 1.00 34.58 0 ATOM 451 CB PRO 50 -15.037 48.678 117.032 1.00 2.00 0 ATOM 452 CG PRO 50 -14.496 47.365 116.531 1.00 2.00 0 ATOM 453 C PRO 50 -13.459 50.468 116.164 1.00 34.58 0 ATOM 453 C PRO 50 -13.459 50.468 116.164 1.00 34.58 0 ATOM 454 N ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 455 N ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 457 CA ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 458 CB ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 459 CG2 ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 460 CG1 ILE 51 -12.328 56.370 117.351 1.00 2.00 0 ATOM 461 CD1 ILE 51 -12.328 56.370 117.351 1.00 2.00 0 ATOM 462 C ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 463 O ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 464 N LEU 52 -11.622 50.522 120.159 1.00 2.00 0 ATOM 466 CA LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 467 CB LEU 52 -11.622 50.521 120.159 1.00 2.00 0 ATOM 468 CG LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 471 C LEU 52 -11.665 50.518 122.808 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 473 N LEU 53 -10.662 46.982 118.069 1.00 2.00 0 ATOM 474 CD LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 475 CB LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 476 CB LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 477 CG LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 478 CD LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 479 CD LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 479 CD LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 478 CD LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 479 CD LEU 53 -10.660 40.391 119.770 1.00 2.00 0 ATOM 479 CD LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 479 CD LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 479 CD LEU 55 -10.660 49.331 119.770 1.00	ATOM	446	С	GLN	49	-14.210	49.205	113.540		
ATOM 449 CD PRO 50 -14.967 47.399 115.118 1.00 4.685 0 ATOM 450 CA PRO 50 -15.037 48.678 117.032 1.00 2.00 0 ATOM 451 CB PRO 50 -15.037 48.678 117.032 1.00 2.00 0 ATOM 452 CG PRO 50 -15.037 48.678 117.032 1.00 2.00 0 ATOM 453 C PRO 50 -13.459 50.468 116.1531 1.00 2.00 0 ATOM 454 O PRO 50 -13.459 50.468 116.164 1.00 34.58 0 ATOM 454 O PRO 50 -13.459 50.468 116.164 1.00 34.58 0 ATOM 455 N ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 457 CA ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 458 CB ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 459 CG2 ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 459 CG2 ILE 51 -11.850 54.035 118.673 1.00 2.00 0 ATOM 460 CG1 ILE 51 -11.850 54.035 118.673 1.00 2.00 0 ATOM 461 CD1 ILE 51 -11.850 54.035 118.673 1.00 2.00 0 ATOM 463 O ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 464 N LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 465 CA LEU 52 -11.655 50.522 120.159 1.00 2.00 0 ATOM 466 CA LEU 52 -11.655 50.522 120.159 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.888 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.888 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 471 C LEU 52 -11.655 50.518 122.888 1.00 2.00 0 ATOM 473 N LEU 53 -10.664 47.204 118.667 1.00 2.00 0 ATOM 474 CD LEU 52 -11.655 50.518 122.888 1.00 2.00 0 ATOM 475 CA LEU 53 -90.66 46.982 118.069 1.00 2.00 0 ATOM 476 CB LEU 53 -90.66 46.982 118.069 1.00 2.00 0 ATOM 477 CG LEU 53 -90.66 46.982 118.069 1.00 2.00 0 ATOM 478 CD1 LEU 53 -90.66 46.982 118.069 1.00 2.00 0 ATOM 478 CD1 LEU 53 -90.66 46.982 118.069 1.00 2.00 0 ATOM 480 C LEU 53 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C LEU 53 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C LEU 53 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C LEU 53 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C LEU 53 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C LEU 53 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C LEU 53 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C G LEU 54 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C G LEU 55 -90.66 46.982 118.991 1.00 2.00 0 ATOM 480 C										
ATOM 451 CB PRO 50	-				5 0	-14.967	47.399	115.118	1.00 4.85	
ATOM 453 C PRO 50 -14.496 47.346 116.531 1.00 2.00 0 ATOM 454 C PRO 50 -13.459 50.468 116.164 1.00 32.95 0 ATOM 455 N ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 457 CA ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 458 CB ILE 51 -13.627 5.550 117.015 1.00 2.00 0 ATOM 459 CG2 ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 460 CG1 ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 461 CD1 ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 462 C ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 463 O ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 464 CD ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 466 CA ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 466 CA ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 466 CA ILE 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 466 CA ILE 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 466 CA ILE 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 466 CA ILEU 52 -11.650 50.522 120.159 1.00 2.00 0 ATOM 467 CB LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 468 CG ILEU 52 -11.650 50.522 120.159 1.00 2.00 0 ATOM 469 CD1 LEU 52 -12.391 50.746 121.473 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.650 50.891 123.944 1.00 2.00 0 ATOM 471 C LEU 52 -11.2559 50.899 123.944 1.00 2.00 0 ATOM 472 C LEU 52 -11.2559 50.899 123.944 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.371 129.770 1.00 2.00 0 ATOM 476 CB LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 477 CG LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.855 47.889 115.810 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.855 47.889 115.810 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.855 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.855 47.889 115.810 1.00 2.00 0 ATOM 480 C LEU 53 -9.855 47.889 115.810 1.00 2.00 0 ATOM 480 C LEU 53 -9.855 47.889 115.810 1.00 2.00 0 ATOM 480 C LEU 53 -9.855 47.889 119.790 1.00 2.00 0 ATOM 480 C LEU 53 -9.855 47.889 119.970 1.00 2.00 0 ATOM 480 C LEU 53 -9.855 47.889 119.970 1.00 2.00 0 ATOM 480 C LEU 53 -9.866 61.00 2.00 10 0 ATOM 480 C LEU 54 -11.466 40.00 11.00 2.00 0 ATOM 480 C LEU 55 -9.666										
ATOM 454 0 PRO 50 -13.459 50.468 116.164 1.00 3.58 0 ATOM 455 N ILE 51 -12.356 50.002 115.884 1.00 2.95 0 ATOM 457 CA ILE 51 -12.356 50.002 115.884 1.00 2.00 0 ATOM 458 CB ILE 51 -12.499 52.550 117.015 1.00 2.00 0 ATOM 458 CB ILE 51 -13.001 53.975 117.015 1.00 2.00 0 ATOM 458 CB ILE 51 -13.001 53.975 117.015 1.00 2.00 0 ATOM 460 CGI ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 461 CDI ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 461 CDI ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 462 C ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 463 O ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 466 CA LEU 52 -11.652 50.522 120.159 1.00 2.00 0 ATOM 466 CA LEU 52 -11.652 50.522 120.159 1.00 2.00 0 ATOM 466 CA LEU 52 -11.652 50.522 120.159 1.00 2.00 0 ATOM 468 CG LEU 52 -11.652 50.522 120.159 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CDI LEU 52 -12.259 50.899 123.944 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.650 50.891 129.994 1.00 2.00 0 ATOM 471 C LEU 52 -11.650 50.891 129.994 1.00 2.00 0 ATOM 472 C LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 474 C C LEU 53 -10.644 47.204 118.667 1.00 2.00 0 ATOM 475 CA LEU 53 -10.644 47.204 118.667 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 478 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 478 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 480 C LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 C LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 C LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 C LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 C LEU 53 -10.660 46.982 118.069 1.00 2.00 0 ATOM 480 C LEU 53 -10.660 40.982 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.660 46.220 119.982 1.00 2.00 0 ATOM 480 C LEU 53 -10.660 40.200 119.770 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
ATOM 457 CA ILE 51 -13.626 51.673 116.708 1.00 2.00 0 ATOM 458 CB ILE 51 -12.499 52.550 117.015 1.00 2.00 0 ATOM 458 CB ILE 51 -13.001 53.975 117.318 1.00 2.00 0 ATOM 459 CG2 ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 460 CG1 ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 461 CD1 ILE 51 -12.328 56.370 117.351 1.00 2.00 0 ATOM 462 C ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 463 O ILE 51 -10.456 51.996 118.172 1.00 2.00 0 ATOM 464 N LEU 52 -11.650 51.996 118.172 1.00 2.00 0 ATOM 466 CA LEU 52 -11.622 50.522 120.159 1.00 2.00 0 ATOM 467 CB LEU 52 -11.625 50.518 12.808 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 12.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -12.391 50.746 121.473 1.00 2.00 0 ATOM 469 CD1 LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 471 C LEU 52 -11.623 49.085 122.973 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 476 CB LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 477 CG LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 478 CD1 LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 479 CD2 LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 479 CD2 LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 478 CD1 LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 478 CD1 LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 478 CD1 LEU 53 -10.686 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.20 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.20 119.792 1.00 2.00 0 ATOM 480 C LEU 55 -6.666 41.712 119.452 1.00 2.00 0 ATOM 480 C G LEU 54 -11.666 40.00 119.792 1.00 2.00 0 ATOM						-13.459	50.468	116.164	1.00 34.58	
ATOM 458 CB ILE 51 -12.499 52.550 117.015 1.00 2.00 0 ATOM 458 CB ILE 51 -13.0612 54.035 118.673 1.00 2.00 0 ATOM 460 CG1 ILE 51 -13.642 54.035 118.673 1.00 2.00 0 ATOM 461 CD1 ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 462 C ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 463 0 ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 464 N LEU 52 -10.456 52.303 118.283 1.00 2.00 0 ATOM 466 CA LEU 52 -10.456 52.303 118.283 1.00 2.00 0 ATOM 466 CA LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 466 CA LEU 52 -12.391 50.746 121.473 1.00 2.00 0 ATOM 467 CB LEU 52 -12.559 50.899 213.944 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 471 C LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 472 C LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.16 1.00 2.00 0 ATOM 475 CA LEU 53 -10.584 48.576 119.16 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 477 CG LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 478 CD LEU 53 -9.8802 47.038 116.555 1.00 2.00 0 ATOM 478 CD LEU 53 -9.862 47.038 115.510 1.00 2.00 0 ATOM 478 CD LEU 53 -9.866 46.220 119.972 1.00 2.00 0 ATOM 478 CD LEU 53 -9.866 46.220 119.972 1.00 2.00 0 ATOM 478 CD LEU 53 -9.866 46.220 119.972 1.00 2.00 0 ATOM 478 CD LEU 53 -9.866 46.220 119.972 1.00 2.00 0 ATOM 480 CD LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 CD LEU 53 -9.866 46.220 119.972 1.00 2.00 0 ATOM 480 CD LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 CD LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 CD LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 480 CD LEU 53 -10.466 40.201 119.472 1.00 19.77 0 ATOM 480 CD LEU 53 -10.466 40.201 119.472 1.00 19.77 0 ATOM 480 CD LEU 53 -10.464 47.204 119.402 1.00 2.00 0 ATOM 480 CD LEU 53 -10.464 47.204 119.452 1.00 2.00 0 ATOM 480 CD LEU 53 -10.464 11.465 40.049 120.474 1.00 2.00 0 ATOM 480 CD LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 480 CD LEU 55 -8.666 41.00 119.977 0 ATOM 480										
ATOM 459 C2 ILE 51 -13.001 53.975 117.318 1.00 2.00 0 ATOM 460 C31 ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 461 CD1 ILE 51 -11.850 54.958 117.295 1.00 2.00 0 ATOM 463 C ILE 51 -12.328 56.370 117.351 1.00 2.00 0 ATOM 463 C ILE 51 -10.456 51.996 118.172 1.00 2.00 0 ATOM 464 N LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 466 CA LEU 52 -11.650 51.996 118.172 1.00 2.00 0 ATOM 467 CB LEU 52 -11.651 50.522 120.159 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.233 49.085 122.973 1.00 2.00 0 ATOM 471 C LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 474 C LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 475 CA LEU 53 -10.684 47.204 118.669 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 54 -11.466 41.712 119.452 1.00 2.00 0 ATOM 480 C G LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 480 C G LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 490 C								117.015		
ATOM 461 CD1 ILE 51 -11.850 53.958 117 295 1.00 2.00 0 ATOM 462 C ILE 51 -12.328 56.370 117.351 1.00 2.00 0 ATOM 463 O ILE 51 -10.456 51.996 118.172 1.00 2.00 0 ATOM 464 N LEU 52 -11.650 51.996 118.172 1.00 2.00 0 ATOM 465 CA LEU 52 -11.650 51.996 118.283 1.00 2.00 0 ATOM 466 CA LEU 52 -11.651 50.522 120.159 1.00 2.00 0 ATOM 467 CB LEU 52 -11.655 50.522 120.159 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -12.393 49.085 122.973 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.2559 50.899 123.944 1.00 2.00 0 ATOM 471 C LEU 52 -11.2559 50.899 123.944 1.00 2.00 0 ATOM 472 O LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 473 N LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 474 C LEU 52 -11.655 64 48.331 120.006 1.00 2.00 0 ATOM 475 CA LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 476 CB LEU 53 -90.666 66.982 118.067 1.00 2.00 0 ATOM 476 CB LEU 53 -90.666 66.982 118.067 1.00 2.00 0 ATOM 478 CD1 LEU 53 -8802 47.038 116.555 1.00 2.00 0 ATOM 478 CD1 LEU 53 -98.35 47.889 115.810 1.00 2.00 0 ATOM 478 CD1 LEU 53 -98.35 47.889 115.810 1.00 2.00 0 ATOM 478 CD1 LEU 53 -98.35 47.889 115.810 1.00 2.00 0 ATOM 478 CD1 LEU 53 -98.35 47.889 115.810 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 46.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.666 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 40.49 120.474 1.00 20.01 0 ATOM 480 C LEU 53 -10.686 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 40.230 119.792 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 40.280 119.974 1.00 2.00 0 ATOM 480 C LEU 55 -7.401 47.550 116.353 1.00 2.00 0 ATOM 480 C LEU 55 -7.401 47.550 116.353 1.00 2.00 0 ATOM 480 C LEU 55 -7.401 47.550 116.353 1.00 2.00 0 ATOM 480 C LEU 55 -7.401 47.500 119.974 1.00 2.00 0 ATOM 480 C LEU 55 -8.666 40.981 11.00 2.00 0 ATOM 480 C LEU 55 -8.6							53.975	117.318	1.00 2.00	0
ATOM		459 460								
ATOM 463 O ILE 51 -11.650 51.996 118.172 1.00 2.00 0 ATOM 464 N LEU 52 -12.284 51.187 119.028 1.00 2.00 0 ATOM 466 CA LEU 52 -11.622 50.522 120.159 1.00 2.00 0 ATOM 466 CA LEU 52 -11.622 50.522 120.159 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.391 50.746 121.473 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 471 C LEU 52 -11.665 49.033 119.770 1.00 2.00 0 ATOM 473 N LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 475 CA LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 477 CG LEU 53 -9.8802 47.038 116.555 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.8802 47.038 116.555 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.866 46.522 120.937 1.00 2.00 0 ATOM 480 C LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 480 C LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 480 C LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 485 CB GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 486 CG GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 487 CD GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 488 OEB GLU 54 -12.955 43.809 120.714 1.00 20.13 0 ATOM 489 OE2 GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 489 OE GLU 54 -14.668 42.873 122.346 1.00 73.27 0 ATOM 489 OE GLU 54 -14.668 42.873 122.346 1.00 73.27 0 ATOM 490 C GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 490 C GLU 54 -13.44 43.458 118.336 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 2.00 0 ATOM 490 C GLU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 490 C GLU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM										
ATOM 466 CA LEU 52 -11.284 51.187 119.028 1.00 2.00 0 ATOM 466 CA LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -12.559 50.518 122.808 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.656 49.033 119.770 1.00 2.00 0 ATOM 471 C LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 475 CA LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.067 1.00 2.00 0 ATOM 477 CG LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.835 47.088 116.555 1.00 2.00 0 ATOM 480 C LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 481 O LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 481 O LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.265 44.049 120.474 1.00 20.13 0 ATOM 485 CB GLU 54 -11.265 43.809 120.714 1.00 56.32 0 ATOM 486 CG GLU 54 -11.465 44.049 120.474 1.00 20.13 0 ATOM 487 CD GLU 54 -11.266 40.99 120.714 1.00 56.32 0 ATOM 489 OE2 GLU 54 -11.466 42.80 119.972 1.00 19.77 0 ATOM 489 OE2 GLU 54 -11.466 42.80 119.974 1.00 73.27 0 ATOM 489 OE2 GLU 54 -11.466 42.80 119.974 1.00 66.32 0 ATOM 489 OE2 GLU 54 -11.466 42.80 119.974 1.00 73.27 0 ATOM 489 OE2 GLU 54 -11.466 42.80 119.974 1.00 6.32 0 ATOM 490 C GLU 54 -11.466 42.80 119.974 1.00 2.00 0 ATOM 490 C GLU 54 -11.466 42.80 119.974 1.00 2.00 0 ATOM 490 C GLU 54 -11.466 42.80 119.974 1.00 2.00 0 ATOM 490 C GLU 54 -11.466 42.80 119.974 1.00 2.00 0 ATOM 490 C GLU 54 -11.466 42.80 119.974 1.00 2.00 0 ATOM 490 C GLU 54 -11.466 41.999 119.913 1.00 4.857 0 ATOM 490 C GLU 54 -11.466 41.00 10.45 0 ATOM 490 C GLU 54 -11.466 41.00 10.45 0 ATOM 490 C GLU 54 -11.466 41.00 10.45 0 ATOM 490 C GLU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 490 C GLU 54 -11.2955 43.809 120.114 1.00 56.32 0 ATOM 490 C GLU 54 -10.989 38.283 121.771 1.00 10.34 0 ATOM 490 C GLU 55 -8.666 41.712 119.9452 1.00 2.00 0 ATOM 490 C GLU 55 -8.666 41.712 119.9452 1.00 2.									1.00 2.00	
ATOM 466 CA LEU 52 -11.622 50.522 120.159 1.00 2.00 0 ATOM 467 CB LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 468 CG LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.233 49.085 122.973 1.00 2.00 0 ATOM 471 C LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 472 O LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 475 CA LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.667 1.00 2.00 0 ATOM 477 CG LEU 53 -9.066 46.982 118.667 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.8802 47.038 116.555 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 46.230 119.792 1.00 2.00 0 ATOM 481 O LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 484 CA GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 486 CG GLU 54 -11.465 44.049 120.474 1.00 2.013 0 ATOM 487 CD GLU 54 -11.465 44.049 120.474 1.00 56.32 0 ATOM 488 OC LEU 53 -10.366 40.271 1.00 19.77 0 ATOM 489 OC GLU 54 -11.466 42.873 122.346 1.00 66.19 0 ATOM 489 OC GLU 54 -11.466 42.873 122.346 1.00 66.19 0 ATOM 489 OC GLU 54 -11.466 42.873 122.346 1.00 66.19 0 ATOM 490 C GLU 54 -14.688 42.873 122.346 1.00 66.19 0 ATOM 490 C GLU 54 -14.688 42.873 122.346 1.00 78.06 0 ATOM 490 C GLU 54 -14.688 42.873 122.346 1.00 78.06 0 ATOM 490 C GLU 54 -14.688 42.800 119.774 1.00 2.00 0 ATOM 490 C GLU 54 -14.688 42.800 119.774 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.800 119.774 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.800 119.774 1.00 2.00 0 ATOM 490 C GLU 54 -14.668 42.800 119.794 1.00 2.00 0 ATOM 490 C GLU 55 -8.664 40.807 121.664 1.00 2.00 0 ATOM 490 C GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 55 -8.664 40.807 121.664 1.00 2.00 0 ATOM 490 C GLU 55 -8.604 40.807 121.664 1.00 2.00 0 ATOM 490 C GLU 55 -8.604 40.807 121.664 1.00 2.00 0 ATOM 490 C GLU 55 -8.604 40.807 121.664 1.00 2.00 0 ATOM 490 C GLU										
ATOM 468 CG LEU 52 -11.655 50.518 122.808 1.00 2.00 0 ATOM 469 CD1 LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.233 49.085 122.973 1.00 2.00 0 ATOM 471 C LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 472 O LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 475 CA LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 476 CB LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 477 CG LEU 53 -9.066 46.982 118.667 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 480 C LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 481 O LEU 53 -10.686 46.230 119.792 1.00 2.00 0 ATOM 481 O LEU 53 -10.668 46.230 119.792 1.00 2.00 0 ATOM 481 O LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.465 44.049 120.474 1.00 19.77 0 ATOM 485 CB GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 487 CD GLU 54 -13.244 43.362 12.135 1.00 69.64 0 ATOM 489 OE2 GLU 54 -13.244 33.62 12.2346 1.00 69.64 0 ATOM 489 OE2 GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 489 OE2 GLU 54 -14.668 42.873 122.346 1.00 78.06 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 78.06 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 78.06 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 78.06 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 19.77 0 ATOM 491 O GLU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 493 CB LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.664 40.807 121.664 1.00 10.45 0 ATOM 498 CD2 LEU 55 -8.624 40.807 121.666 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.807 121.666 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.807 121.666 1.00 2.00 0 ATOM 500 C LEU 55 -8.7245 42.188 119.976 1.00 2.00 0 ATOM 500 C LEU 55 -8.7245 40.807 121.666 1.00 2.00 0 ATOM 500 C GU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 501 C GU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB	ATOM	466		LEU	5 2		50.522	120.159		
ATOM 469 CD1 LEU 52 -12.559 50.899 123.944 1.00 2.00 0 ATOM 470 CD2 LEU 52 -11.660 49.033 119.770 1.00 2.00 0 ATOM 472 0 LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 476 CB LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 477 CG LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -7.401 47.550 116.555 1.00 2.00 0 ATOM 480 C LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 481 0 LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 482 N GLU 54 -11.465 46.230 119.792 1.00 2.00 0 ATOM 484 CA GLU 54 -11.465 44.049 120.474 1.00 20.13 0 ATOM 485 CB GLU 54 -12.955 43.809 120.714 1.00 20.13 0 ATOM 487 CD GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 488 OEI GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 489 OE2 GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 489 OE2 GLU 54 -14.668 42.873 122.324 1.00 78.06 0 ATOM 489 OE2 GLU 54 -14.668 42.873 122.324 1.00 78.06 0 ATOM 490 C GLU 54 -14.668 42.873 122.324 1.00 78.06 0 ATOM 490 C GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 490 C GLU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 491 C GLU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 492 N LEU 55 -9.473 42.800 119.882 1.00 19.77 0 ATOM 493 CD LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 494 CA LEU 55 -7.246 42.188 119.176 1.00 2.00 0 ATOM 497 CD1 LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 499 CD LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 499 CD LEU 55 -8.664 40.586 120.456 1.00 2.00 0 ATOM 499 CD LEU 55 -8.664 40.586 120.456 1.00 2.00 0 ATOM 490 CD LEU 55 -8.664 40.586 120.456 1.00 2.00 0 ATOM 490 CD LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 490 CD LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 490 CD LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 CD LEU 55 -8.7246 42.188 119.176 1.00 2.00 0 ATOM 500 CD LEU 55 -8.7246 40.807 121.664 1.00 10.45 0 ATOM 500 CD LEU 55 -8.724 40.807 121.668 1.00 2.00 0 ATOM 500 CD GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM							50.746	121.473		
ATOM 470 CD2 LEU 52 -11.233 49.085 122.973 1.00 2.00 0 ATOM 471 C LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 472 O LEU 52 -12.652 48.331 120.006 1.00 2.00 0 ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 475 CA LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 477 CG LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 478 CD2 LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 46.230 119.792 1.00 2.00 0 ATOM 481 O LEU 53 -10.686 46.522 120.937 1.00 2.00 0 ATOM 481 O LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 197.77 O ATOM 485 CB GLU 54 -11.265 44.049 120.474 1.00 20.13 0 ATOM 485 CB GLU 54 -11.465 44.049 120.474 1.00 20.13 0 ATOM 486 CG GLU 54 -12.955 43.809 120.714 1.00 56.32 O ATOM 489 OE2 GLU 54 -14.668 42.873 122.346 1.00 66.19 0 ATOM 489 OE2 GLU 54 -14.668 42.873 122.346 1.00 66.19 0 ATOM 489 OE2 GLU 54 -14.839 41.734 122.848 1.00 73.27 O ATOM 490 C GLU 54 -14.839 41.734 122.848 1.00 73.27 O ATOM 491 O GLU 54 -14.839 41.734 122.848 1.00 73.27 O ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 O ATOM 495 CB LEU 55 -9.473 42.800 119.974 1.00 2.00 O ATOM 495 CB LEU 55 -9.473 42.800 119.974 1.00 2.00 O ATOM 496 CG LEU 55 -7.245 42.188 119.313 1.00 48.57 O ATOM 497 CD1 LEU 55 -8.666 41.712 119.452 1.00 19.77 O ATOM 498 CD2 LEU 55 -8.666 41.712 119.452 1.00 12.00 O ATOM 498 CD2 LEU 55 -8.664 40.586 120.456 1.00 2.00 O ATOM 499 C LEU 55 -8.664 40.586 120.456 1.00 2.00 O ATOM 499 C LEU 55 -8.664 40.586 120.456 1.00 2.00 O ATOM 499 C LEU 55 -8.664 40.586 120.456 1.00 2.00 O ATOM 499 C LEU 55 -8.664 40.586 120.456 1.00 2.00 O ATOM 499 C LEU 55 -8.664 40.586 120.456 1.00 2.00 O ATOM 503 CA GLU 56 -8.407 38 24 120.826 1.00 2.00 O ATOM 503 CA GLU 56 -8.407 38 24 120.826 1.00 12.494 O ATOM 505 CG GLU 56 -9.741 37 .0729 1.00 18.79 O ATOM 506 CD GLU 56 -8.407 38 24 120.826 1.00 30.34 O										
ATOM 472		470	CD2	LEU	5 2	-11.233	49.085	122.973	1.00 2.00	0
ATOM 473 N LEU 53 -10.584 48.576 119.136 1.00 2.00 0 ATOM 475 CA LEU 53 -10.464 47.204 118.667 1.00 2.00 0 ATOM 476 CB LEU 53 -9.066 46.982 118.069 1.00 2.00 0 ATOM 477 CG LEU 53 -8.802 47.038 116.555 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -7.401 47.555 11.00 2.00 0 ATOM 480 C LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 481 O LEU 53 -10.686 46.230 119.792 1.00 2.00 0 ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 485 CB GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 486 CG GLU 54 -11.465 44.049 120.474 1.00 20.13 0 ATOM 487 CD GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 488 OE1 GLU 54 -14.668 42.873 122.346 1.00 66.19 0 ATOM 488 OE1 GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 489 OE2 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 490 C GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 491 O GLU 54 -14.668 42.873 122.346 1.00 78.06 0 ATOM 492 N LEU 55 -8.666 41.712 119.979 119.971 0 ATOM 499 C GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 491 O GLU 54 -14.839 41.734 122.968 1.00 2.00 0 ATOM 492 N LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 497 CD1 LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.4407 38 124 120.826 1.00 2.00 0 ATOM 504 CB GLU 56 -8.4407 38 124 120.826 1.00 30.34 0 ATOM 505 CG GLU 56 -10.989 38.288 121.171 1 1.00 30.34 0 ATOM 506 CD GLU 56 -10.989 38.288 121.171 1 1.00 30.34 0										
ATOM 476 CB LEU 53										
ATOM 478 CD1 LEU 53 -8.802 47.038 116.555 1.00 2.00 0 ATOM 478 CD1 LEU 53 -9.835 47.889 115.810 1.00 2.00 0 ATOM 479 CD2 LEU 53 -7.401 47.550 116.353 1.00 2.00 0 ATOM 480 C LEU 53 -10.686 46.230 119.792 1.00 2.00 0 ATOM 481 0 LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 485 CB GLU 54 -11.251 45.076 119.472 1.00 20.13 0 ATOM 486 CG GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 486 CG GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 488 0E1 GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 489 0E2 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 489 0E2 GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.458 118.336 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.624 40.807 121.664 1.00 2.00 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 506 CD GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 507 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 508 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -8.407 38.283 121.171 1.00 30.34 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0										
ATOM 478 CD1 LEU 53										
ATOM 481 O LEU 53 -10.686 46.230 119.792 1.00 2.00 0 ATOM 481 O LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 19.777 0 ATOM 485 CB GLU 54 -11.251 45.076 120.474 1.00 20.13 0 ATOM 486 CG GLU 54 -12.955 44.049 120.474 1.00 20.13 0 ATOM 487 CD GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 488 0E1 GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 488 0E1 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 489 0E2 GLU 54 -15.613 43.627 122.024 1.00 73.27 0 ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 497 CD1 LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 498 CD2 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 43.298 117.961 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 43.298 117.961 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.867 121.664 1.00 10.45 0 ATOM 500 G LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -9.741 37 .67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0	MOTA	478	CD1	LEU	5 3		47.889	115.810		
ATOM 481 O LEU 53 -10.365 46.522 120.937 1.00 2.00 0 ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 484 CA GLU 54 -11.265 44.049 120.474 1.00 20.13 0 ATOM 485 CB GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 486 CG GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 488 0E1 GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 488 0E1 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 489 0E2 GLU 54 -16.668 42.873 122.346 1.00 78.06 0 ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 0 GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 495 CB LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 496 CG LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 497 CD1 LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.666 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.666 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.666 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -9.771 38.281 121.771 1.00 30.34 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0										
ATOM 482 N GLU 54 -11.251 45.076 119.472 1.00 19.77 0 ATOM 484 CA GLU 54 -11.465 44.049 120.474 1.00 20.13 0 ATOM 485 CB GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 486 CG GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 487 CD GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 488 0E1 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 489 0E2 GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -8.664 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.724 40.807 121.664 1.00 2.00 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -9.741 37 .67 120.826 1.00 2.00 0 ATOM 506 CD GLU 56 -9.741 37 .67 120.826 1.00 2.00 0 ATOM 507 CG GLU 56 -9.741 37 .67 120.826 1.00 2.00 0 ATOM 508 CB GLU 56 -9.741 37 .67 120.826 1.00 30.34 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0										
ATOM 485 CB GLU 54 -12.955 43.809 120.714 1.00 56.32 0 ATOM 486 CG GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 487 CD GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 488 OE1 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 489 OE2 GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.624 40.807 121.664 1.00 10.45 0 ATOM 500 C LEU 55 -8.448 39.374 119.961 1.00 2.00 0 ATOM 500 C LEU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 500 C LEU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM 505 CG GLU 56 -9.741 37 .57 120.729 1.00 18.79 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0	MOTA						45.076	119.472	1.00 19.77	
ATOM 486 CG GLU 54 -13.244 43.362 122.135 1.00 66.19 0 ATOM 487 CD GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 488 OE1 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 489 OE2 GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37 .57 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -9.741 37 .57 120.729 1.00 18.79 0 ATOM 506 CD GLU 56 -9.741 37 .57 120.729 1.00 18.79 0 ATOM 507 CD GLU 56 -9.741 37 .57 120.729 1.00 18.79 0 ATOM 508 CD GLU 56 -9.741 37 .57 120.729 1.00 18.79 0 ATOM 509 CD GLU 56 -9.741 37 .57 120.729 1.00 18.79 0										
ATOM 488 OE1 GLU 54 -14.668 42.873 122.346 1.00 69.64 0 ATOM 488 OE1 GLU 54 -15.613 43.627 122.024 1.00 78.06 0 ATOM 489 OE2 GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 506 CD GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 507 CG GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 508 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0			_			-13.244				
ATOM 489 OE2 GLU 54 -14.839 41.734 122.848 1.00 73.27 0 ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.024 40.586 120.456 1.00 2.00 0 ATOM 500 O LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -9.741 37 .67 120.729 1.00 18.79 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0			CD	GLU		-14.668	42.873	122.346	1.00 69.64	
ATOM 490 C GLU 54 -10.798 42.820 119.882 1.00 19.77 0 ATOM 491 O GLU 54 -11.451 41.949 119.313 1.00 48.57 0 ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.024 40.586 120.456 1.00 2.00 0 ATOM 500 O LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 505 CG GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0										
ATOM 492 N LEU 55 -9.473 42.800 119.974 1.00 2.00 0 ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.624 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM 505 CG GLU 56 -9.741 37 .67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0										
ATOM 494 CA LEU 55 -8.666 41.712 119.452 1.00 2.00 0 ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.624 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.724 40.807 121.664 1.00 10.45 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0										
ATOM 495 CB LEU 55 -7.245 42.188 119.176 1.00 2.00 0 ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 G LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM 505 CG GLU 56 -9.741 37 .67 120.729 1.00 18.79 0 ATOM 506 CD GLU 56 -10.989 38.283 121.171 1.00 30.34 0										
ATOM 496 CG LEU 55 -7.148 43.458 118.336 1.00 2.00 0 ATOM 497 CD1 LEU 55 -5.695 43.728 117.961 1.00 2.00 0 ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.624 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0							42.188	119.176		
ATOM 498 CD2 LEU 55 -8.024 43.298 117.108 1.00 2.00 0 ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 G LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37 .67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0				LEU						
ATOM 499 C LEU 55 -8.624 40.586 120.456 1.00 2.00 0 ATOM 500 C LEU 55 -8.724 40.807 121.664 1.00 10.45 0 ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37 .67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0										
ATOM 501 N GLU 56 -8.448 39.374 119.961 1.00 2.00 0 ATOM 503 CA GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0										
ATOM 503 CA GLU 56 -8.407 38 24 120.826 1.00 2.00 0 ATOM 504 CB GLU 56 -9.741 37 67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0										
ATOM 504 CB GLU 56 -9.741 37.67 120.729 1.00 18.79 0 ATOM 505 CG GLU 56 -10.989 38.283 121.171 1.00 30.34 0 ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0										
ATOM 506 CD GLU 56 -11.012 38.677 122.658 1.00 42.94 0						-9.741	37 .6 7	120.729	1.00 18.79	

ATOM 508 OE2 GLU 56 -10.872 39.882 122.95	
ATOM 509 C GLU 56 -7.244 37.343 120.39	
ATOM 510 O GLU 56 -6.292 37.839 119.80 ATOM 511 N ALA 57 -7.312 36.062 120.76	
ATOM 511 N ALA 57 -7.312 36.062 120.76 ATOM 513 CA ALA 57 -6.336 35.026 120.40	
ATOM 514 CB ALA 57 -6.750 34.434 119.03	9 1.00 26.61 0
ATOM 515 C ALA 57 -4.867 35.474 120.38	
ATOM 516 O ALA 57 -4.543 36.519 120.93	
ATOM 517 N PRO 58 -3.951 34.632 119.85 ATOM 518 CD PRO 58 -4.109 33.203 119.53	
AIOM 510 CD THE 50	
ATOM 519 CA PRO 58 -2.526 34.988 119.78 ATOM 520 CB PRO 58 -1.852 33.645 119.50	
ATOM 521 CG PRO 58 -2.881 32.926 118.71	
ATOM 522 C PRO 58 -2.176 36.002 118.67	
ATOM 523 O PRO 58 -2.688 35.901 117.54	
ATOM 524 N LEU 59 -1.284 36.947 118.97 ATOM 526 CA LEU 59 -0.856 37.944 117.98	
RION 320 CT. 200 CT. 2	
ATOM 527 CB LEU 59 -1.862 39.100 117.89 ATOM 528 CG LEU 59 -1.842 40.166 118.99	
ATOM 529 CD1 LEU 59 -2.880 41.252 118.70	
ATOM 530 CD2 LEU 59 -2.117 39.498 120.33	
ATOM 531 C LEU 59 0.510 38.501 118.35	
ATOM 532 O LEU 59 1.030 38.229 119.42 ATOM 533 N LYS 60 1.103 39.259 117.43	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
ATOM 535 CA LYS 60 2.399 39.872 117.66 ATOM 536 CB LYS 60 3.358 39.655 116.51	
ATOM 537 CG LYS 60 3.185 38.327 115.76	
ATOM 538 CD LYS 60 3.556 37.101 116.60	
ATOM 539 CE LYS 60 5.034 36.783 116.54	
ATOM 540 NZ LYS 60 5.824 37.927 117.06 ATOM 544 C LYS 60 2.063 41.353 117.80	
ATOM 544 C LYS 60 2.063 41.353 117.80 ATOM 545 O LYS 60 1.142 41.832 117.12	
ATOM 546 N ILE 61 2.757 42.072 118.68	= " " " " " " " " " " " " " " " " " " "
ATOM 548 CA ILE 61 2.499 43.496 118.82	
ATOM 549 CB ILE 61 2.032 43.859 120.24	
ATOM 550 CG2 ILE 61 1.485 45.288 120.23 ATOM 551 CG1 ILE 61 0.940 42.881 120.70	
1101.	
ATOM 552 CD1 ILE 61 0.019 43.422 121.78 ATOM 553 C ILE 61 3.791 44.220 118.49	
ATOM 554 0 ILE 61 4.862 43.752 118.86	8 1.00 2.00 0
ATOM 555 N CYS 62 3.698 45.341 117.78	
ATOM 557 CA CYS 62 4.874 46.095 117.39	
ATOM 558 CB CYS 62 5.147 45.925 115.89 ATOM 559 SG CYS 62 5.439 44.252 115.26	
ATOM 559 SG CYS 62 5.439 44.252 115.26 ATOM 560 C CYS 62 4.607 47.560 117.65	
ATOM 561 0 CYS 62 3.451 47.957 117.75	
ATOM 562 N GLY 63 5.662 48.367 117.73	9 1.00 2.00 0
ATOM 564 CA GLY 63 5.507 49.789 117.97	1 1.00 2.00 0
ATOM 565 C GLY 63 6.548 50.610 117.22	2 1.00 2.00 0 7 1.00 11.39 0
ATOM 566 O GLY 63 7.624 50.109 116.89 ATOM 567 N ASP 64 6.216 51.870 116.95	
ATOM 569 CA ASP 64 7.068 52.834 116.25	
ATOM 570 CB ASP 64 7.805 53.721 117.24	5 1.00 6.62 0
ATOM 571 CG ASP 64 6.873 54.589 118.02	
ATOM 572 OD1 ASP 64 5.996 54.019 118.70	
ATOM 573 OD2 ASP 64 7.003 55.829 117.94 ATOM 574 C ASP 64 8.064 52.362 115.22	
ATOM 574 C ASP 64 8.064 52.362 115.22 ATOM 575 O ASP 64 9.221 52.080 115.55	
ATOM 576 N ILE 65 7.619 52.326 113.96	
ATOM 578 CA ILE 65 8.471 51.924 112.84	9 1.00 3.07 0
ATOM 579 CB ILE 65 7.663 51.310 111.67	
ATOM 580 CG2 ILE 65 8.609 50.903 110.53	
ATOM 581 CG1 ILE 65 6.871 50.095 112.15 ATOM 582 CD1 ILE 65 7.723 49.023 112.76	
ATOM 582 CD1 ILE 65 7.723 49.023 112.76 ATOM 583 C ILE 65 9.185 53.177 112.35	
ATOM 584 O ILE 65 10.379 53.148 112.10	
ATOM 585 N HIS 66 8.451 54.276 112.23 ATOM 587 CA HIS 66 9.022 55.536 111.77	5 1 .00 2.0 0 0

ATOM	588	С	HIS	66	9.847	55.525 110.502	1.00 2.00	0
ATOM	58 9	0	HIS	66	11.042	55.818 110.539	1.00 12.38 1.00 8.25	0
MOTA MOTA	59 0 59 1	CB CG	HIS HIS	66 66	9.846 9.040	56.182 112.881 57.046 113.782	1.00 8.25 1.00 8.25	0
MOTA	59 2		HIS	66	8.104	57.949 113.337	1.00 8.25	ő
MOTA	594		HIS	66	9.001	57.109 115.133	1.00 8.25	ŏ
MOTA	595	NE2	HIS	66	8.042	58.043 115.526	1.00 8.25	Õ
ATOM	59 6	CE1	HIS	6 6	7.536	58.516 114.399	1.00 8.25	0
ATOM	597	N	GLY	67	9.197	55.195 109.385	1.00 11.52	0
MOTA	59 9	CA	GLY	67	9.835	55.174 108.078	1.00 11.52	0
ATOM	600	C	GLY	67	11.029	54.266 107.868	1.00 11.52	0
ATOM	601	0	GLY	67	11.782	54.462 106.915	1.00 81.94	0
ATOM	602	N	GLN GLN	68 68	11.214 12.353	53.272 108.730 52.364 108.602	1.00 18.96 1.00 20.32	0
MOTA MOTA	604 605	CA CB	GLN	68	13.007	52.139 109.957	1.00 6.39	0
ATOM	60 6	CG	GLN	68	13.261	53.407 110.711	1.00 4.06	ő
ATOM	607	CD	GLN	68	14.315	53.239 111.757	1.00 7.01	Õ
MOTA	608	OE1	GLN	68	15.013	54.197 112.111	1.00 8.21	0
ATOM	609	NE2	GLN	6 8	14.453	52.020 112.270	1.00 5.84	0
MOTA	612	C	GLN	68	11.916	51.039 108.010	1.00 18.72	0
MOTA	613	0	GLN	68	12.018	49.975 108.634	1.00 10.73	0
MOTA	614	N	TYR	6 9	11.450	51.119 106.777	1.00 5.70	0
ATOM	616	CA	TYR	69 60	10. 95 9 10.807	49.970 106.054 50.313 104.587	1.00 5.52 1.00 2.00	0
ATOM	617 618	CB CG	TYR TYR	69 69	9.988	49.322 103.841	1.00 2.00	ő
MOTA MOTA	619	CD1	TYR	69	8.658	49.099 104.187	1.00 2.00	Ö
ATOM	620	CE1	TYR	69	7.873	48.194 103.477	1.00 2.00	Õ
ATOM	621	CD2	TYR	69	10.526	48.611 102.762	1.00 2.00	0
MOTA	622	CE2	TYR	69	9.751	47.701 102.038	1.00 2.00	0
MOTA	623	CZ	TYR	69	8.431	47.506 102.408	1.00 2.00	0
MOTA	624	OH	\mathbf{TYR}	69	7.656	46.632 101.715	1.00 2.00	0
MOTA	626	Č	TYR	69	-11.815	48.730 106.188 47.641 106.393	1.00 8.52 1.00 2.00	0
MOTA	627	0	TYR	69 70	11.284 13.132	48.877 106.093	1.00 2.00	0
ATOM ATOM	62 8 63 0	N CA	TYR TYR	70	13.992	47.703 106.186	1.00 2.00	Ö
ATOM	631	CB	TYR	70	15.420	48.031 105.741	1.00 64.80	Ō
ATOM	632	ČĢ	TYR	70	15. 53 3	47.964 104.231	1.00 70.91	0
ATOM	63 3	CD1	TYR	70	15.026	48.993 103.431	1.00 73.06	0
MOTA	634	CE1	TYR	70	15.082	48.924 102.041	1.00 68.38	0
ATOM	63 5	CD2	TYR	70	16.107	46.857 103.597	1.00 73.86	0
MOTA	636	CE2	TYR	70	16.171	46.780 102.200	1.00 70.94 1.00 72.52	0
ATOM	637	CZ	TYR	70 70	15.654 15.712	47.820 101.433 47.779 100.062	1.00 72.32	ő
ATOM	63 8 64 0	OH C	TYR TYR	70 7 0	13.943	47.007 107.538	1.00 2.00	ő
ATOM ATOM	641	0	TYR	70	13.967	45.771 107.610	1.00 64.08	0
ATOM	642	N	ASP	71	13.821	47.789 108.608	1.00 7.87	0
ATOM	644	CA	ASP	71	13.728	47.203 109.927	1.00 6.73	0
MOTA	64 5	CB	ASP	71	14.030	48.242 110.998	1.00 14.88	0
ATOM	64 6	CG	ASP	71	15.514	48.600 111.054	1.00 25.87	0
MOTA	647		ASP	71	15.826	49.778 111.293 47.714 110.861	1.00 24.58 1.00 21.52	0
MOTA	648		ASP	71 71	16.3 7 5 12.3 3 1	46.622 110.051	1.00 21.32	ő
MOTA MOTA	649 65 0	C O	ASP ASP	71	12.116	45.697 110.826	1.00 14.14	0
ATOM	651	N	LEU	72	11.399	47.148 109.250	1.00 2.00	0
MOTA	653	CA	LEU	72	10.015	46.654 109.208	1.00 2.00	0
MOTA	654	CB	LEU	7 2	9.094	47.613 108.456	1.00 2.00	0
MOTA	65 5	CG	LEU	7 2	7.771	46.946 108.067	1.00 2.00	0
ATOM	65 6		LEU	72	7.025	46.562 109.342	1.00 2.00	0
ATOM	657	CD2		72	6.935	47.867 107.208	1.00 2.00 1.00 2.00	0
ATOM	658	C	LEU	7 2	10.014	45.320 108.476 44.401 108.814	1.00 2.00	0
MOTA	659	0	LEU	7 2	9.259 10. 84 8	45.231 107.449	1.00 2.00	Ö
ATOM	660	N	LEU	7 3 7 3	10.968	44.005 106.693	1.00 42.59	ő
ATOM ATOM	662 663	CA CB	LEU	73 73	11.846	44.218 105.460	1.00 2.00	Ō
ATOM	664	CG	LEU	73	11.248	44.759 104.160	1.00 2.00	0
ATOM	665		LEU	73	12.324	44.728 103.101	1.00 2.00	0
ATOM	666		LEU	7 3	10.052	43.920 103.725	1.00 2.00	0
MOTA	667	C	LEU	73	11.603	42.978 107.629	1.00 42.42	О

ATOM ATOM	668 669	O N	LEU ARG	73 74	11.059 12.729	41.890 107.81 43.354 108.24		0
ATOM	671	CA	ARG	74	13.462	42.494 109.17	7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ŏ
MOTA	672	CB	ARG	74	14.591	43.285 109.84	0 1.00 31.22	0
ATOM	67 3	CG	ARG	74	15.809	43.478 108.95	8 1.00 31.18	0
MOTA	674	CD	ARG	74	16.944	44.146 109.71		0
MOTA	67 5	NE	ARG	74	17.250	43.459 110.96		0
MOTA	6 7 7	CZ	ARG	74	17.210	44.041 112.15		0
MOTA	6 7 8	NH1	ARG	74	16.888	45.327 112.26		0
ATOM	681	NH2	ARG	74	17.476	43.339 113.25		O
MOTA	684	С	ARG	74	12.569	41.896 110.25		ε
MOTA	685	0	ARG	74	12.621	40.703 110.54		O
MOTA	68 6	N	LEU	75	11.747	42.742 110.85		0
MOTA	688	CA	LEU	7 5	10.818	42.331 111.90		0
MOTA	689	CB	LEU	75	10.069	43.580 112.40		0
MOTA	690	CG	LEU	7 5	8.704	43.654 113.09		0
ATOM	691		LEU	7 5	8.554	45.074 113.60		0
MOTA	692	-	LEU	7 5	7.561 9.850	43.337 112.138 41.279 111.38		0
MOTA	693	C	LEU	7 5 7 5	9.594	40.284 112.04		0
MOTA	694	0	LEU PHE	7 5	9.325	41.514 110.19		0
MOTA	695	N		76 76	8.382	40.604 109.57		0
MOTA	697	CA	PHE	7 6	7.883	41.173 108.259		Ö
MOTA	6 9 8 69 9	CB CG	PHE PHE	7 6	6.626	41.966 108.383		Ö
ATOM	700		PHE	76	6.447	43.124 107.642		ő
MOTA MOTA	701		PHE	76 76	5.616	41.550 109.240		ŏ
ATOM	702	CE1	PHE	7 6	5.277	43.852 107.75		Ö
ATOM	703	CE2	PHE	7 6	4.447	42.270 109.358		ŏ
MOTA	704	CZ	PHE	7 6	4.272	43.423 108.615		Ö
ATOM	705	Č	PHE	7 6	9.016	39.271 109.322		0
ATOM	706	Ō	PHE	7 6	8.339	38.260 109.363		0
MOTA	707	N	GLU	77	10.316	39.283 109.043	_	0
MOTA	709	CA	GLU	7 7	11.080	38.065 108.789	9 1.00 2.00	0
ATOM	710	CB	GLU	7 7	12.436	38.409 108.193	1 1.00 84.85	O
ATOM	711	CG	GLU	7 7	12.331	39.117 106.863	1 1.00 89.26	0
ATOM	712	CD	GLU	7 7	13.651	39.690 106.393	1 1.00 98.60	0
MOTA	713	OE1	GLU	7 7	13.627	40.493 105.434		О
MOTA	714	OE2	GLU	7 7	14.709	39.345 106.973		0
MOTA	715	C	GLU	7 7	11.262	37.316 110.100		0
MOTA	716	0	GLU	7 7	11.469	36.103 110.099		0
ATOM	717	N	TYR	7 8	11.182	38.045 111.216		0
MOTA	719	CA	TYR	78	11.325	37.449 112.538		0
MOTA	720	CB	\mathbf{TYR}	7 8	11.945	38. 45 5 113.514	4 1.00 67.13	0
MOTA								
	721	CG	TYR	7 8	12.459	37.828 114.796	6 1.00 69.14	0
MOTA	722	CG CD1	TYR TYR	78	12.459 11.822	37.828 114.796 36.717 115.368	1.00 69.14 1.00 76.95	0
MOTA	722 723	CG CD1 CE1	TYR TYR TYR	78 78	12.459 11.822 12.278	37.828 114.796 36.717 115.368 36.142 116.548	1.00 69.14 1.00 76.95 1.00 77.96	0 0 0
MOTA MOTA	722 723 724	CG CD1 CE1 CD2	TYR TYR TYR TYR	78 78 78	12.459 11.822 12.278 13.577	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446	5 1.00 69.14 8 1.00 76.95 8 1.00 77.96 6 1.00 75.81	0 0 0
MOTA MOTA	722 723 724 725	CG CD1 CE1 CD2 CE2	TYR TYR TYR TYR TYR TYR	78 78 78 78	12.459 11.822 12.278 13.577 14.044	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638	5 1.00 69.14 B 1.00 76.95 B 1.00 77.96 5 1.00 75.81 B 1.00 77.77	0 0 0 0
MOTA MOTA MOTA MOTA	722 723 724 725 726	CG CD1 CE1 CD2 CE2 CZ	TYR TYR TYR TYR TYR TYR TYR	78 78 78 78 78	12.459 11.822 12.278 13.577 14.044 13.387	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183	5 1.00 69.14 8 1.00 76.95 8 1.00 77.96 6 1.00 75.81 8 1.00 77.77 1 1.00 77.18	0 0 0 0 0
MOTA MOTA MOTA MOTA	722 723 724 725 726 727	CG CD1 CE1 CD2 CE2 CZ OH	TYR TYR TYR TYR TYR TYR TYR TYR	78 78 78 78 78 78	12.459 11.822 12.278 13.577 14.044 13.387 13.826	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14	0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA	722 723 724 725 726 727 729	CG CD1 CE1 CD2 CE2 CZ OH C	TYR	78 78 78 78 78 78 78	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.369 36.964 113.053	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29	0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA	722 723 724 725 726 727 729 730	CG CD1 CE1 CD2 CE2 CZ OH C	TYR	78 78 78 78 78 78 78 78	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 36.964 113.053 35.796 113.403	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78	0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 729 730 731	CG CD1 CE1 CD2 CE2 CZ OH C	TYR	78 78 78 78 78 78 78 78 78	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 36.964 113.053 35.796 113.403 37.863 113.113	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 729 730 731 733	CG CD1 CE1 CD2 CE2 CZ OH C	TYR	78 78 78 78 78 78 78 78 79	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 36.964 113.053 35.796 113.403 37.863 113.113	5 1.00 69.14 8 1.00 76.95 8 1.00 77.96 6 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 3 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 729 730 731 733 734	CG CD1 CE1 CD2 CE2 CZ OH C O N CA C	TYR	78 78 78 78 78 78 78 78 79	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 36.964 113.053 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.628	5 1.00 69.14 8 1.00 76.95 8 1.00 77.96 6 1.00 75.81 8 1.00 77.77 1 1.00 77.18 1 1.00 87.14 1 1.00 15.29 3 1.00 62.78 7 1.00 2.00 1 1.00 2.00 9 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 729 730 731 733	CG CD1 CE1 CD2 CE2 CZ OH C O N CA C	TYR	78 78 78 78 78 78 78 79 79	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 36.964 113.053 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.628	5 1.00 69.14 8 1.00 76.95 8 1.00 77.96 6 1.00 75.81 8 1.00 77.77 1 1.00 77.18 1.00 87.14 1.00 15.29 3 1.00 62.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11	0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 729 730 731 733 734 735	CG CD1 CE1 CD2 CE2 CZ OH C O N CA C	TYR	78 78 78 78 78 78 78 78 79	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 35.796 113.403 37.863 113.11 37.485 113.582 36.532 112.623 35.649 113.052 36.699 111.338	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11 1.00 49.23	0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 730 731 733 734 735 736	CG CD1 CE1 CD2 CE2 CZ OH C O N CA C	TYR	78 78 78 78 78 78 78 79 79 79	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 36.964 113.053 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.628	5 1.00 69.14 8 1.00 76.95 8 1.00 77.96 6 1.00 75.81 8 1.00 77.77 1 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11 8 1.00 49.23 1.00 48.34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 730 731 733 734 735 736 738	CG CD1 CE1 CD2 CZ OH C O N CA C O N CA	TYR	78 78 78 78 78 78 78 79 79 79 79	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.369 35.796 113.053 37.863 113.113 37.485 113.583 36.532 112.629 35.649 113.052 36.699 111.338 35.870 110.336	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 49.23 1.00 49.23 1.00 47.91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 739 731 733 734 735 736 738 739	CG CD1 CE1 CD2 CZ OH C O N CA C O N CA C	TYR	78 78 78 78 78 78 78 79 79 79 79 80 80 80	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601 5.699	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.623 35.649 113.053 36.699 111.338 35.870 10.336 36.782 109.526 37.572 110.097 36.692 108.193	1.00 69.14 1.00 76.95 1.00 77.96 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11 8 1.00 49.23 1.00 49.23 1.00 47.91 1.00 15.83 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 739 731 733 734 735 736 738 739 740	CG CD1 CE1 CD2 CZ OH C O N CA C O N CA C	TYR	78 78 78 78 78 78 78 79 79 79 79 80 80 80 80	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601 5.699 4.955	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.369 35.796 113.403 37.863 113.113 37.485 113.583 36.532 112.623 35.649 113.053 36.699 111.338 35.870 110.330 36.782 109.520 37.572 110.097	1.00 69.14 1.00 76.95 1.00 77.96 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11 8 1.00 49.23 1.00 49.23 1.00 47.91 1.00 15.83 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 730 731 733 734 735 736 738 739 741 743 744	CG CD1 CE1 CD2 CZ OH C O N CA C O N CA C	TYR TYR TYR TYR TYR TYR TYR TYR TYR GLY GLY GLY GLY GLY GLY GLY FHE PHE	78 78 78 78 78 78 78 79 79 79 79 80 80 80 80 81	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601 5.699 4.955 5.759	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.18.368 36.115 118.368 36.964 113.053 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.628 35.649 113.053 36.699 111.338 36.782 109.336 36.782 109.336 37.572 110.093 37.572 110.093 37.558 107.343 37.403 105.886	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11 1.00 49.23 1.00 49.23 1.00 47.91 1.00 15.83 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 729 730 731 733 734 735 736 738 740 741 743 744 745	CG CD1 CE1 CD2 CZ CZ OH C O N CA C O N CA C O C C C C C C C C C C C C C C C C	TYR TYR TYR TYR TYR TYR TYR TYR TYR GLY GLY GLY GLY GLY GLY PHE PHE PHE	78 78 78 78 78 78 78 79 79 79 79 80 80 80 81 81	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601 5.699 4.955 5.759 4.948 5.386 6.673	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.363 35.964 113.053 35.863 113.113 37.485 113.582 35.649 113.053 36.699 111.338 36.782 109.526 37.572 100.093 36.692 108.193 37.558 107.343 37.403 105.886 38.134 105.556	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00 1.00 34.11 1.00 49.23 1.00 49.23 1.00 47.91 1.00 15.83 1.00 2.00 1.00 2.00 1.00 2.00 1.00 34.11 1.00 49.23 1.00 49.23 1.00 49.23 1.00 49.23 1.00 40.20 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 730 731 733 734 735 736 738 739 740 741 743 744 745 746	CG CD1 CE1 CD2 CZ CZ OH C O N CA C O N CA C C O CD1 CD1	TYR TYR TYR TYR TYR TYR TYR TYR TYR GLY GLY GLY GLY GLY PHE PHE PHE	78 78 78 78 78 78 78 79 79 79 79 80 80 80 81 81 81	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601 5.699 4.955 5.759 4.955 5.759 4.955 7.899	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.363 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.629 35.649 113.052 35.649 113.052 35.649 113.052 36.699 111.338 36.782 109.520 37.572 110.097 36.692 108.193 37.558 107.348 37.403 105.886 38.134 105.556 37.506 105.688	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 3 1.00 62.78 7 1.00 2.00 2 1.00 2.00 1.00 2.00 2 1.00 34.11 8 1.00 49.23 1.00 48.34 1.00 47.91 1.00 15.83 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 730 731 733 734 735 736 738 739 741 743 745 746 747	CG CD1 CE1 CD2 CE2 CZ OH CON CA CON CA CCON CA CCON CA CCON CA CCD CD1 CD2	TYR TYR TYR TYR TYR TYR TYR TYR TYR GLY GLY GLY GLY PHE PHE PHE PHE	78 78 78 78 78 78 78 79 79 79 79 80 80 80 81 81 81	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601 5.699 4.955 5.759 4.955 5.759 4.986 6.673 7.899 6.652	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.365 36.964 113.053 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.626 35.649 113.052 36.699 111.338 36.782 109.520 37.572 110.097 36.692 108.193 37.403 105.886 38.134 105.556 37.506 105.686 39.467 105.138	1.00 69.14 1.00 76.95 1.00 77.96 1.00 75.81 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 49.23 1.00 49.23 1.00 49.23 1.00 49.23 1.00 49.23 1.00 5.20 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	722 723 724 725 726 727 730 731 733 734 735 736 738 739 740 741 743 744 745 746	CG CD1 CE1 CD2 CE2 CZ OH CON CA CON CA CD CD2 CD1 CD2 CD1 CD2 CE1	TYR TYR TYR TYR TYR TYR TYR TYR TYR GLY GLY GLY GLY GLY PHE PHE PHE	78 78 78 78 78 78 78 79 79 79 79 80 80 80 81 81 81	12.459 11.822 12.278 13.577 14.044 13.387 13.826 9.967 9.811 8.992 7.675 6.977 6.226 7.237 6.601 5.699 4.955 5.759 4.955 5.759 4.955 7.899	37.828 114.796 36.717 115.368 36.142 116.548 38.346 115.446 37.775 116.638 36.673 117.183 36.115 118.363 35.796 113.403 37.863 113.113 37.485 113.582 36.532 112.629 35.649 113.052 35.649 113.052 35.649 113.052 36.699 111.338 36.782 109.520 37.572 110.097 36.692 108.193 37.558 107.348 37.403 105.886 38.134 105.556 37.506 105.688	1.00 69.14 1.00 76.95 1.00 77.96 1.00 77.77 1.00 77.18 1.00 87.14 1.00 15.29 1.00 62.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 49.23 1.00 48.34 1.00 47.91 1.00 15.83 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000

ATOM MOTA	750 751	CZ C	PHE PHE	81 81	9.044 3. 42 8	39.517 37.380	104.992 107.548	1.00 2.00 1.00 2.00	0
ATOM	752	o	PHE	81	2.918	36.257	107.636	1.00 2.00	ő
MOTA	753	N	PRO	82	2.694	38.505	107.618	1.00 2.00	ŏ
ATOM	754	CD	PRO	82	3.317	39.807	107.337	1.00 21.23	Ö
ATOM	755	CA	FDO	82	1.261	38.702	107.820	1.00 2.00	0
ATOM	756	CB	PRO	82	0.996	39.979	107.079	1.00 20.78	0
ATOM	757	CG	PRO	82	2.144	40.765	107.502	1.00 22.98	0
ATOM	758	С	PRO	82	0.273	37.623	107.490	1.00 2.00	0
MOTA	759	0	PRO	82	-0.761	37.529	108.161	1.00 36.87	0
MOTA	760	N	PRO	83	0.501	36.841	106.423	1.00 27.66	0
MOTA	761	CD	PRO	83	1.439	36.880	105.290	1.00 2.85	0
MOTA	762	CA	PRO	83	-0.514	35.812	106.201	1.00 30.55	0
MOTA	763	CB CG	PRO PRO	8 3 8 3	0.089 1.550	34.958 35.427	105.083 104.971	1.00 5.44 1.00 10.08	0
MOTA	764 765	C	PRO	8 3	-0.791	34.990	107.460	1.00 10.08	ő
MOTA MOTA	766	o	PRO	83	-1.947	34.863	107.882	1.00 5.06	ő
ATOM	767	N	GLU	84	0.284	34.504	108.080	1.00 63.06	ŏ
ATOM	769	CA	GLU	84	0.190	33.665	109.268	1.00 65.66	ŏ
ATOM	770	CB	GLU	84	1.448	32.797	109.382	1.00 61.87	0
ATOM	771	CG	GLU	84	1.194	31.402	109.979	1.00 75.07	0
MOTA	772	CD	GLU	84	0.401	30.452	109.056	1.00 79.88	0
MOTA	773	OE1		84	1.015	29.508	108.504	1.00 76.25	0
ATOM	774		GLU	84	-0.832	30.635	108.891	1.00 74.31	0
MOTA	775	C	GLU	84	-0.066	34.394	110.588	1.00 66.47	0
ATOM	776	0	GLU	84	-1.194		111.085	1.00 61.22 1.00 66.52	0
MOTA	777	N	SER	8 5	0.984 0.882		111.161 112.431	1.00 66.32	0
MOTA	779 78 0	CA CB	SER SER	8 5 8 5	2. 26 6		112.900	1.00 04.70	ő
ATOM ATOM	781	OG	SER	8 5	3.198		112.871	1.00 2.00	ő
ATOM	783	C	SER	85	-0.013		112.349	1.00 62.83	Ö
ATOM	784	ŏ	SER	85	-0.005	37.633	111.341	1.00 2.00	0
ATOM	785	N	ASN	86	-0. 78 5	37.146	113.412	1.00 2.00	0
ATOM	7 87	CA	ASN	8 6	-1.647	38.321		1.00 2.00	0
MOTA	78 8	CB	ASN	86	-2.747	38.123	114.520	1.00 2.00	0
MOTA	789	CG	ASN	86	-3.887	37.283	113.994	1.00 10.84	0
ATOM	790		ASN	8 6	-3.763	36.629	112.957 114.705	1.00 12.15 1.00 6.45	0
MOTA	791		asn Asn	86 86	-5.0 1 7 -0.7 4 2	37.300 39. 467	113.912	1.00 0.43	Ö
ATOM ATOM	794 795	C	ASN	86	0.363	39.229	114.423	1.00 2.00	ŏ
ATOM	796	N	TYR	87	-1.183	40.703	113.723	1.00 2.00	Ō
ATOM	798	CA	TYR	87	-0.337	41.830	114.081	1.00 2.00	0
ATOM	799	CB	TYR	87	0.529	42.253	112.870	1.00 2.00	0
ATOM	800	CG	TYR	87	1.802		112.684	1.00 2.00	0
MOTA	801	CD1		87	1.879	40.421	111.749	1.00 2.00	.0
MOTA	802	CE1		87	3.039	39.689	111.598	1.00 2.00	.0
MOTA	803		TYR	87	2.930		113.458	1.00 2.00 1.00 2.00	0
ATOM	804			87	4.080 4.127	20 006	113.313 112.384	1.00 2.00	Ö
MOTA MOTA	805 806	CZ OH	TYR TYR	87 87	5.280	39 281	112.259	1.00 2.00	ŏ
ATOM	808	C	TYR	87	-1.104	43.029	114.588	1.00 2.00	0
ATOM	809	ō	TYR	87	-2.264		114.216	1.00 2.00	0
MOTA	810	N	LEU	88	-0.440		115.435	1.00 2.00	0
MOTA	812	CA	LEU	88	-1.015		115.987	1.00 2.00	0
MOTA	813	CB	LEU	88	-1.615		117.375	1.00 2.00	0
MOTA	814	CG	LEU	88	-2.364	45.917	118.062	1.00 2.00	0
MOTA	815		LEU	88	-3.657		117.348	1.00 2.00 1.00 2.00	0
MOTA	816		LEU	88	-2.675	-	119.493	1.00 2.00 1.00 2.00	0
MOTA	817	C	LEU	88	0.119		116.084 116.814	1.00 2.00	ŏ
MOTA	818	0	LEU	88	1.082 0.061		115.309	1.00 2.00	ő
MOTA	819 821	N CA	PHE PHE	8 9 8 9	1.114		115.393	1.00 2.00	ő
ATOM ATOM	822	CB	PHE	89	1.567	48.599	114.004	1.00 2.00	Ō
ATOM	823	CG	PHE	89	2.305		113.221	1.00 2.00	0
ATOM	824		PHE	89	1.617	46.543	112.578	1.00 2.00	
ATOM	825		PHE	89	3.683		113.159	1.00 2.00	
ATOM	826	CE1	PHE	89	2.284		111.885	1.00 2.00	
MOTA	827	CE2	PHE	89	4.379	46.586	112.464	1.00 2.00	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	82901345678900234657890123466780123 888888888888888888888888888888888888	OD2 C O N CA CB CG CD1 CD2 CE2 CZ OH C O N CA CB CG CD2	LEU LEU GLY GLY GLY ASP ASP ASP ASP ASP TYR	899900000001111222222233333333333444444	3.673 0.495 -0.664 1.271 0.819 1.518 0.111 1.000 2.4884 0.884 2.307 3.427 3.673 4.189 4.541 5.790 4.189 4.5427 5.790 4.189 4.427 5.790 4.189 4.200 6.390 6.390 6.300 6.3	49.250 49.615 49.797 50.797 50.799 49.2249 48.275 53.196 970 53.312 53.312 55.976 57.234 53.312 55.976 57.231 57.2	111.826 116.197 115.985 117.124 118.014 119.370 119.991 121.147 120.402 117.463 118.200 116.175 115.588 115.588 115.567 114.820 115.576 116.063 117.725 116.063 117.725 113.422 112.096 110.938 110.171 111.029 111.029 112.593 113.379 109.904 110.523 109.904 109.904 109.904 109.780	1.00 2.00 1.00 4.99 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 14.03 1.00 14.03 1.00 14.03 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	874 875	C O	VAL VAL	94 94	6. 25 3 · 6. 44 7	58.457	110.985	1.00 2.00	0
ATOM	87 6	N	ASP	9 5	6.774	59.629	109.094	1.00 8.40 1.00 2.00	0
MOTA MOTA	87 8 87 9	CA CB	ASP ASP	95 95	7.641 6.967		109.689 110.868	1.00 2.00 1.00 39.32	ő
MOTA	880	CG	ASP	95	5.975	62.433	110.449	1.00 45.35	0
MOTA	881	OD1		9 5	6.227 4.937		109.471 111.127	1.00 44.75 1.00 53.79	0
MOTA MOTA	882 883	OD2 C	ASP ASP	95 95	8.975	60.074	110.155	1.00 2.71	0
MOTA	884	0	ASP	95	9.092	58.877	110.421 110.252	1.00 37.69 1.00 21.97	0 0
MOTA MOTA	885 887	N CA	ARG ARG	96 96	9.972 11.322	60. 94 9 60.589	110.232	1.00 27.39	ő
MOTA	888	CB	ARG	96	11.285	59. 98 9	112.099	1.00 18.63	0
ATOM	889	CG	ARG	96	12.037		113.128 113.581	1.00 24.81 1.00 32.64	0
MOTA MOTA	890 891	CD NE	ARG ARG	96 96	11.255 10.551	62.052 61.833	114.850	1.00 32.04	ŏ
ATOM	893	CZ	ARG	96	9.890	62.774	115.525	1.00 39.86	
MOTA	894	NH1		96	9.824		115.066 116.670	1.00 40.95 1.00 44.56	
ATOM ATOM	897 900	NH2 C	ARG ARG	96 96	9.290 12.109	62.471 59.659	109.732	1.00 24.24	Ö
ATOM	901	0	ARG	96	13.114		109.135	1.00 13.09	0
MOTA	902	N	GLY	97	11.668	58.411	109.592	1.00 19.94	
MOTA	904	CA	GLY GLY	97 97	12.359 12.412		108.716 107.269	1.00 20.45 1.00 23.76	
ATOM ATOM	905 906	C 0	GLY	97	11.516		106.773	1.00 84.64	0
ATOM	907	N	LYS	98	13.460		106.584	1.00 47.57	_
ATOM ATOM	909 910	CA CB	LYS	98 98	13. 69 8 15.147		105.182 104.832	1.00 46.79 1.00 31.45	_
ATOM	210	C D	ر. يان		·				

ATOM	011	-							
ATOM	911 912	CG CD	LYS	9 8	16.169		105.487	1.00 30.73	0
ATOM	913	CE	LYS LYS	98 98	17.606 18.605	58.061 59.089		1.00 32.79 1.00 30.08	0
ATOM	914	NZ	LYS	98	20.036	58.743		1.00 30.08	0
ATOM	918	C	LYS	9 8	12.741	57.196		1.00 44.78	ŏ
ATOM	919	0	LYS	98	12.613	57.707		1.00 31.43	ő
MOTA	920	N	GLN	9 9	12.059	56.120		1.00 2.00	Ö
MOTA	922	CA	GLN	99	11.132	55.430		1.00 2.00	0
ATOM	923	CB	GLN	99	11.654	54.023	103.337	1.00 11.21	0
MOTA	924 925	CC	GLN	9 9	12.945	53.993	102.552	1.00 6.66	0
ATOM ATOM	926	CD OE1	GLN GLN	9 9 9 9	13.361 13.802	52.586 51.805	102.177 103.031	1.00 11.01	0
ATOM	927	NE2	GLIN	9 9	13.802	52.247	100.895	1.00 10.44 1.00 8.18	0
ATOM	930	C	GLN	9 9	9.741	55.328	104.245	1.00 2.00	0
ATOM	931	Ō	GLN	99	9.177	54.238	104.317	1.00 6.66	ő
ATOM	932	N	SER	100	9.178	56.460	104.657	1.00 24.01	Õ
MOTA	934	CA	SER	100	7.839	56.475	105.257	1.00 24.01	Ö
MOTA	935	CB	SER	10 0	7.481	57.897		1.00 2.00	0
ATOM	936	o G	SER	100	8.479	58.490		1.00 2.00	0
ATOM ATOM	938 939	С	SER	100	6. 74 9 5. 70 3	55.987 55.463	104.272	1.00 24.01	0
ATOM	940	N O	SER LEU	100 101	7. 01 5		104.680 102.977	1.00 2.00 1.00 27.83	0
ATOM	942	CA	LEU	101	6.084		101.913	1.00 27.83 1.00 27.83	0
ATOM	943	CB	LEU	101	6.551		100.599	1.00 27.05	Õ
ATOM	944	C G	LEU	101	5. 59 3	57.224	99.721	1.00 3.66	Õ
MOTA	945	CD1		101	4.209	56.591	99.749	1.00 3.66	0
MOTA	946	CD2	LEU	101	5. 53 2		100.208	1.00 3.66	0
ATOM	947	C	LEU	101	5.852		101.689	1.00 27.83	0
ATOM	948	0	LEU	101	4.731		101.467	1.00 3.66	0
MOTA MOTA	949 951	N CA	GLU	102 102	6. 90 1 6. 71 3		101.725 101.490	1.00 2.00 1.00 2.00	0
ATOM	952	CB	GLU GLU	102	7. 97 6		100.870	1.00 2.00	0
ATOM	953	CG	GLU	102	9.211		101.294	1.00 13.98	Ö
ATOM	954	CD	GLU	102	10.116		100.136	1.00 13.98	Ö
ATOM	955	OE1		102	10.181	53.727	99.737	1.00 13.98	0
MOTA	956	OE2		10 2	10.772	51. 59 9	99.643	1.00 13.98	0
ATOM	957	C	GLU	102	6.307		102.763	1.00 2.00	0
ATOM	958	0	GLU	102	5.686		102.729	1.00 13.98	0
MOTA	959	И	THR	103	6. 664 6. 29 3	51.901 51.330	103.897 105.173	1.00 2.00	0
MOTA MOTA	961 962	CA CB	THR THR	103 103	6.923	52.098	106.309	1.00 2.00 1.00 2.00	0
ATOM	963	OG1		103	8.313	52.297		1.00 2.00	Ö
ATOM	965	CG2	THR	103	6.758		107.599	1.00 2.00	0
MOTA	966	C	THR	10 3	4.775	51.440	105.296	1.00 2.00	0
MOTA	967	0	THR	10 3	4.081	50.428	105.394	1.00 2.00	0
MOTA	968	N	ILE	104	4.256	52.667	105.257	1.00 2.00	0
MOTA	970	CA	ILE	104	2.824		105.363	1.00 2.00	0
MOTA	971	CB	ILE	104	2.486		105.300 103.956	1.00 12.72 1.00 12.35	0
MOTA MOTA	972 973	CG2 CG1	ILE	104 104	2. 85 6 0. 99 6		105.548	1.00 12.33	Ö
ATOM	974	CD1	ILE	104	0.459		106.787	1.00 12.35	Ö
ATOM	975	C	ILE	104	2.074		104.294	1.00 2.00	0
MOTA	976	0	ILE	104	0.975	51.581	104.544	1.00 18.28	0
MOTA	977	N	CYS	10 5	2.690		103.127	1.00 23.45	0
ATOM	979	CA	CYS	105	2.080		102.042	1.00 21.74	0
MOTA	980	CB	CYS	105	2.722		100.708	1.00 20.76	0
ATOM ATOM	981	SG	CYS	105	2.010	52.958	99.957 102.214	1.00 18.03 1.00 17.08	0 0
ATOM ATOM	982 983	C 0	CYS	105 105	2.061 1.114		102.214	1.00 17.08	0
ATOM	984	Ŋ	LEU	106	3.089		102.833	1.00 20.70	Ö
MOTA	986	CA	LEU	106	3.124		103.073	1.00 2.00	Ŏ
ATOM	987	CB	LEU	106	4.519	47.042	103.495	1.00 2.00	0
ATOM	988	CG	LEU	106	4.680		103.802	1.00 2.00	0
ATOM	989		LEU	106	4.200	44.694	102.639	1.00 2.00	0
ATOM	990		LEU	106	6.133		104.053	1.00 2.00	0
ATOM	991	C	LEU	106	2.154	47.179	104.178	1.00 2.00	0
MOTA	992	0	LEU	106	1.589	46.088	104.192	1.00 2.00 1.00 2.00	0
MOTA	993	1.1	LEU	107	1.992	48.107	105.116	1.00 2.00	U

ATOM	995	CA LEU	107	1.078	47.922 106.	226 1.00	0 2.00	0
ATOM	996	CB LEU	107	1.347	48.967 107.			0
ATOM	997	CG LEU	107	2.761	48.857 107.			0
MOTA	998	CD1 LEU	107	3. 10 6 2. 86 8	50.016 108. 47.535 108.			0 0
MOTA	99 9	CD2 LEU C LEU	107 107	-0.339	48.035 105.			Ö
ATOM ATOM	1000 1001	C LEU	107	-1.153	47.125 105.			ŏ
ATOM	1001	N LEU	108	-0.623	49.126 104.			Ō
ATOM	1004	CA LEU	108	-1.953	49.340 104.	394 1.00	2.00	0
ATOM	1005	CB LEU	108	-2.020	50.666 103.			0
MOTA	1006	CG LEU	108	-2,103	51.925 104.			0
ATOM	1007	CD1 LEU	108	-2.244	53.164 103.0 51.792 105.0			0
MOTA	1008	CD2 LEU C LEU	108 108	-3.281 -2.352	48.206 103.			0
MOTA MOTA	1009 1010	O LEU	108	-3.533	47.846 103.			ŏ
MOTA	1011	N ALA	109	-1.366	47.643 102.			0
ATOM	1013	CA ALA	109	-1.608	46.539 101.	839 1.0 0	2.00	0
MOTA	1014	CB ALA	109	-0.336	46.209 101.			0
MOTA	1015	C ALA	109	-2.091	45.316 102.6			0
ATOM	1016	O ALA	109	-3.146	44.746 102.3			0
MOTA	1017 1019	N TYR CA TYR	110 110	-1.311 -1.625	44.929 103.6 43.781 104.6			0
ATOM ATOM	1019	CA TYR CB TYR	110	-0.495	43.564 105.4			ŏ
ATOM	1021	CG TYR	110	0.674	42.771 104.9			ŏ
ATOM	1022	CD1 TYR	110	1.966	43.235 105.0			O
MOTA	1023	CE1 TYR	110	3.053	42.474 104.			0
MOTA	1024	CD2 TYR	110	0.494	41.517 104.3			0
ATOM	1025	CE2 TYR	110 110	1.578 2.859	40.743 103.9			0
ATOM ATOM	1026 1027	CZ TYR OH TYR	110	3.963	40.483 103.7			ő
ATOM	1029	C TYR	110	-2.948	43.940 105.2			ō
MOTA	1030	O TYR	110	-3.663	42,961 105.4	441 1.00	2.00	0
MOTA	1031	N LYS	111	-3.265	45.168 105.6			0
MOTA	103 3	CA LYS	111	-4.508	45,430 106.			0
MOTA	1034	CB LYS	111	-4.619	46.904 106.7 47.262 107.3			0
ATOM ATOM	1035 1036	CG LYS	111 111	-5. 94 2 -6.085	46.501 108.6			ŏ
MOTA	1036	CE LYS	111	-7. 41 0	46.743 109.3	·		Õ
ATOM	1038	NZ LYS	111	-7.643	45.735 110.4			O
MOTA	1042	C LYS	111	-5 .69 8	45.051 105.4			0
MOTA	1043	O LYS	111	-6.655	44.431 105.9			0
ATOM	1044	N ILE	112	-5.624	45.455 104.1 45.192 103.1			0
ATOM ATOM	1046 1047	CA ILE CB ILE	112 112	-6.651 -6.361	45.192 103.1 45.978 101.8			0
MOTA	1047	CB ILE	112	-7.414	45.656 100.8			ŏ
ATOM	1049	CG1 ILE	112	-6.339	47.482 102.1		25.04	0
MOTA	1050	CD1 ILE	112	-5.857	48.336 101.0			0
MOTA	1051	C ILE	112	-6.706	43.706 102.8			0
ATOM	1052	O ILE	112	-7. 7 83	43.156 102.5			0 0
ATOM ATOM	1053 1055	N LYS CA LYS	113 113	-5. 53 7 -5. 44 7	43.067 102.8			Ö
MOTA	1056	CB LYS	113	-4.001	41.285 102.1			Ö
MOTA	1057	CG LYS	113	-3.852	39.909 101.5			0
MOTA	1058	CD LYS	113	-2.780	39.871 100.5		8.72	0
ATOM	1059	CE LYS	113	-2.618	38.467 99.9			0
ATOM	1060	NZ LYS	113	-3.952	37.873 99.6			0
ATOM	1064	C LYS	113	-5. 9 87	40.780 103.6		_	0
ATOM ATOM	1065 1066	O LYS N TYR	113 114	-6.620 -5.7 4 4	39.742 103.4 41.200 104.9			0
MOTA	1068	CA TYR	114	-6.226	40.455 106.0			ŏ
MOTA	1069	CB TYR	114	-5.122	39.580 106.6			0
MOTA	1070	CG TYR	114	-4.138	38.988 105.0	689 1.00	12.47	0
MOTA	1071	CD1 TYR	114	-3.027	39.715 105.3		12.47	0
ATOM	1072	CE1 TYR	114	-2.111	39.191 104.3		12.47	0
MOTA	1073	CD2 TYR	114 114	-4.307 -3.395	37.709 105.1 37.168 104.1		12.47	0
MOTA MOTA	1074 1075	CE2 TYR	114	-2.296	37.168 104		12.47	ő
MOTA	1076	OH TYR	114	-1.378	37.404 103.0		12.47	ŏ

ATOM	1078	C	TYR	114	-6.729		107.155	1.00 9.78	0
ATOM ATOM	1079 1080	0 N	TYR PRO	114 115	-6.058 -7. 92 8	41.638		1.00 12.47 1.00 34.30	0
ATOM	1081	CD	PRO	115	-7.926 -8.843	41.845		1.00 34.30	0
ATOM	1082	CA	PRO	115	-8.488	42.912		1.00 34.30	ŏ
MOTA	1083	CB	PRO	115	-9.862	43.227		1.00 24.86	Ō
MOTA	1084	CG	PRO	115	-9.640	43.117		1.00 24.86	0
MOTA	1085	C	PRO	115	-8.586	42.310		1.00 34.30	0
MOTA MOTA	1086 1087	O N	PRO GLU	115 116	-8.017 -9.275	42.837		1.00 24.86 1.00 2.00	0
MOTA	1089	CA	GLU	116	-9. 47 7	40.538		1.00 2.00 1.00 2.00	0
MOTA	1090	CB	GLU	116	-10.577	39.469	110.637	1.00 35.30	ŏ
ATOM	1091	C G	GLU	116	-11.67 3	39.726	109.593	1.00 37.08	ō
MOTA	1092	CD	GLU	116	-12.739		110.027	1.00 43.38	0
ATOM	1093		GLU	116	-13.060		109.235	1.00 47.93	0
ATOM ATOM	1094 1095	OE2 C	GLU GLU	116 116	-13.274 -8.213		111.147 111.358	1.00 48.80 1.00 2.00	0
ATOM	1096	Ö	GLU	116	-8.213 -8.296		112.424	1.00 2.00	0
ATOM	1097	Ň	ASN	117	-7.054		110.712	1.00 2.00	ŏ
ATOM	1099	CA	ASN	117	-5.820	39.455	111.211	1.00 2.00	ō
MOTA	1100	CB	ASN	117	-5.457		110.375	1.00 6.12	0
ATOM	1101	C G	ASN	117	-6.552		110.353	1.00 8.10	0
MOTA MOTA	1102 1103	_	ASN ASN	117 117	-7.584 -6.328		109.700 111.048	1.00 17.57 1.00 14.33	0
ATOM	1106	C	ASN	117	-4.613		111.048	1.00 14.33	0
ATOM	1107	ŏ	ASN	117	-3.496		111.506	1.00 8.94	ŏ
MOTA	1108	N	PHE	118	-4.821	41.620	110.862	1.00 2.00	0
MOTA	1110	CA	PHE	118	-3.715		110.815	1.00 2.00	0
MOTA	1111	CB	PHE	118	-3.135		109.395	1.00 2.00	0
MOTA MOTA	1112 1113	CG CD1	PHE	118 118	-1.902 -0.647		109.256 109.155	1.00 2.00 1.00 2.00	0
ATOM	1114	CD2		118	-1.995		109.177	1.00 2.00	ŏ
ATOM	1115	CE1		118	0.503		108.972	1.00 2.00	ŏ
MOTA	1116	CE2		118	-0.857	45.647	108.997	1.00 2.00	0
MOTA	1117	CZ	PHE	118	0.393		108.894	1.00 2.00	0
ATOM	1118	C	PHE	118	-4.392 5.304		111.194	1.00 2.00 1.00 2.00	0
ATOM ATOM	1119 1120	N O	PHE PHE	118 119	-5.384 -3.874		110.576 112.240	1.00 2.00	Ö
ATOM	1122	CA	PHE	119	-4.467		112.721	1.00 12.11	Ö
ATOM	1123	CB	PHE	119	-5.174	45.400	114.022	1.00 2.00	O
MOTA	1124	CG	PHE	119	-6.229		113.889	1.00 2.00	0
ATOM	1125	CD1		119	-5.903		113.975	1.00 2.00	0
ATOM ATOM	1126 1127		PHE PHE	119 119	-7.556 -6.881		113.655 113.829	1.00 2.00 1.00 2.00	0
ATOM	1128		PHE	119	-8. 54 6		113.506	1.00 2.00	ŏ
ATOM	1129	CZ	PHE	119	-8.20 9		113.592	1.00 2.00	0
MOTA	1130	C	PHE	119	-3.472		112.905	1.00 12.11	0
MOTA	1131	0	PHE	119	-2.342		113.346		0
MOTA	1132	N.	LEU	120 120	-3.893 -3.043	48.008	112.537 112.672	1.00 2.00 1.00 2.00	0 0
MOTA ATOM	1134 1135	CA CB	LEU LEU	120	-3. 04 3 -2. 77 0		111.303	1.00 2.00	Õ
ATOM	1136	CG	LEU	120	-2.127		110.259	1.00 2.00	0
MOTA	1137	CD1	LEU	120	-2.147	49.623	108.924	1.00 2.00	0
MOTA	1138		LEU	120	-0.731	48.539	110.685	1.00 2.00	0
MOTA	1139	C	LEU	120	-3.766		113.559	$ \begin{array}{cccc} 1.00 & 2.00 \\ 1.00 & 2.00 \end{array} $	0 0
MOTA MOTA	1140 1141	O N	LEU LEU	120 121	- 4 . 9 63 -3.069		113.375 114.542	1.00 2.00 1.00 2.00	0
ATOM	1141	N CA	LEU	121	-3.670		115.415	1.00 2.00	ŏ
MOTA	1144	CB	LEU	121	-3.351		116.890	1.00 2.00	0
MOTA	1145	CG	LEU	121	-4.142	50.320	117.598	1.00 2.00	0
MOTA	1146	_	LEU	121	-3.6 4 8		119.012	1.00 2.00	0
ATOM	1147		LEU	121	-5.609	50.657		1.00 2.00 1.00 2.00	0 0
ATOM ATOM	1148 1149	C	LEU LEU	121 121	-3. 10 6 -2. 21 3	53. 06 0 53. 14 8	115.004 114.166	1.00 2.00	Ö
ATOM	1149	N	ARG	121 122	-3.631		115.592	1.00 2.00	Ő
MOTA	1152	CA	ARG	122	-3.162	55.434	115.251	1.00 2.00	O
ATOM	1153	CB	ARG	122	-4.336		115.224	1.00 2.00	0
MOTA	1154	CG	ARG	122	-4.047	57.765	114.619	1.00 2.00	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1155 1156 1158 1159 1165 1166 1167 1171 1172 1174 1177 1178 1181 1182 1188 1188 1188 1188	NH2 C O N CA C O N CA CCB CCB CCC ND1 CA CCB CCD ND2 C O N CA CCB CCD ND2 C C D N CA CCB CCD ND2 C C D N C C D D N C C D D D D	ARG ARG ARG ARG ARG GLY GLY GLY ASN ASN ASN ASN HIS HIS HIS HIS	122 122 122 122 122 123 123 123 124 124 124 124 124 125 125 125 125 125 125 125 125 125 125	-5.298 -5.207 -6.274 -7.512 -6.104 -2.163 -1.135 -0.205 -0.865 -0.865 -0.390 1.003 2.477 2.940 3.240 1.103 1.143 1.678 2.3759 4.765 6.686 5.954	59.851 60.578 60.131 61.762 55.942 55.716 56.635 57.235 58.730 59.177 59.508 60.956 61.584 61.333 60.187 60.186 61.072 61.815 60.186 61.072 61.815 60.186 61.322 62.496	114.683 114.014 113.685 113.956 113.102 116.208 117.423 115.631 116.399 116.198 115.262 117.058 118.486 118.236 118.486 118.236 115.708 114.963 113.723 113.723 114.503 115.493 113.772	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 86.19 1.00 2.00 1.00 8.88 1.00 8.54 1.00 6.38 1.00 5.53 1.00 19.06 1.00 13.65 1.00 13.41 1.00 13.65 1.00 8.85	
MOTA MOTA MOTA	1194 1195 1196 1198	C N CA	HIS HIS GLU GLU	125 125 126 126	1.555 2.090 0.241 -0.731	59.905 60.382	112.523 111.513 112.686 111.664	1.00 16.39 1.00 13.34 1.00 2.00 1.00 2.00	0
MOTA MOTA MOTA MOTA	1199 1200 1201 1202	CB CG CD	GLU GLU GLU	126 126 126 126	-1.462 -0.783 0.578 1.615	58.725 57.443 57.217	112.050 111.570 112.190 111.504	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0
ATOM	1203	OE2	GLU	126	0.610	56.898	113.385	1.00 2.00	0
MOTA MOTA	1204 1205	C 0	GLU GLU	126 126	-1.683 -2.903		111.705 111.837	1.00 2.00 1.00 2.00	
MOTA	1206	N	CYS	127	-1.097	62.392	111.578	1.00 2.00	
ATOM ATOM	1208 1209	CA CB	CYS CYS	127 127	-1.860 -2.037		111.681 113.167	1.00 2.00 1.00 26.08	
ATOM	1210	SG	CYS	127	-3.052		113.546	1.00 39.49	ŏ
ATOM	1211	C	CYS	127	-1.142		110.976	1.00 2.00	
MOTA MOTA	1212 1213	O N	CYS	127 128	0. 04 8 -1. 91 2		111.204 110.142	1.00 23.46 1.00 2.00	0
ATOM	1215	CA	ALA	128	-1:48 9	66,551	109.335	1.00 2.00	0
MOTA	1216	CB	ALA	128	-2. 68 6 -0. 38 5		109.031	1.00 2.00 1.00 2.00	
MOTA MOTA	1217 1218	C O	ALA ALA	128 128	0.690		109.346	1.00 2.00	
ATOM	1219	N	SER	129	-0.649	68.097	111.021	1.00 2.00	0
ATOM ATOM	1221 1222	CA CB	SER SER	129 129	0.331 -0.288		111.675 112.937	1.00 2.00 1.00 28.29	0 0
MOTA	1223	OG	SER	129	-0.836		113.760	1.00 32.64	0
ATOM	1225	C	SER	129	1.671		112.042	1.00 2.00	0
MOTA MOTA	1226 1227	0 N	SER ILE	129 130	2.669 1.687		112.186 112.226	1.00 24.43 1.00 2.00	0 0
ATOM	1229	CA	ILE	130	2.920		112.572	1.00 2.00	0
MOTA	1230	CB	ILE	130	2.671		113.588	1.00 2.00	
ATOM ATOM	1231 1232	CG2	ILE ILE	130 130	3.999 2.012		114.058 114.854	1.00 2.00 1.00 2.00	
MOTA	1233	CD1	ILE	130	2.828	66.820	115.554	1.00 2.00	0
ATOM ATOM	1234 1235	C	ILE	130	3.563		111.289	1.00 2.00	
MOTA	1235	0 N	ILE ASN	130 131	4.776 2.751		111.113	1.00 2.00 1.00 15.50	
MOTA	1238	CA	ASN	131	3.209	64.747	109.091	1.00 12.35	0
ATOM ATOM	1239 1 24 0	CB CG	NSA NSA	131 131	2.027 1. 48 7		108.231 108.632	1.00 2.00 1.00 2.00	
ATOM	1241		ASN	131	1.712		109.750	1.00 2.00	

ATOM	1242	MD2	ASN	131	0.745	62 212	107.718	1.00 2.00	0
MOTA	1245	C	ASN	131	3.849				
ATOM	1246						108.374		0
		0	ASN	131	5.001		107.951	1.00 2.00	0
ATOM	1247	N	ARG	132	3.051	66.971		1.00 2.00	0
MOTA	1249	CA	ARG	132	3.386		107.627	1.00 2.00	0
MOTA	1250	CB	ARG	132	2.327	69.269		1.00 22.25	0
ATOM	1251	CG	ARG	132	2.505			1.00 26.48	0
MOTA	1252	CD	ARG	132	2.50 5	70.734	105.962	1.00 27.28	0
MOTA	1253	NE	ARG	132	3.849	70.533	105.434	1.00 36.02	0
MOTA	1255	CZ	ARG	132	4.577	71.479	104.852	1.00 34.03	0
MOTA	1256	NH1	ARG	132	4.080	72.697	104.711	1.00 30.29	Ó
ATOM	1259	NH2	ARG	132	5.808	71.211	104.424	1.00 37.77	ŏ
ATOM	1262	С	ARG	132	4.768	68.731	107.990	1.00 2.00	ŏ
ATOM	1263	ō	ARG	132	5.359		107.225	1.00 27.60	Ö
MOTA	1264	Ň	ILE	133	5.314		109.127	1.00 2.00	ŏ
MOTA	1266	CA	ILE	133	6.652		109.457	1.00 2.00	ŏ
MOTA	1267	CB	ILE	133	6.652			1.00 20.12	ő
ATOM	1268	CG2	ILE	133	6.215		110.441	1.00 20.12	
	1269		ILE	133	5.761	68.999	111.800	1.00 19.34	0
MOTA		CG1			5.687				0
MOTA	1270	CD1	ILE	133			113.065	1.00 22.74	0
MOTA	1271	C	ILE	133	7.794	67.779	109.553	1.00 2.00	0
MOTA	1272	0	ILE	133	8.915	68.073	109.127	1.00 21.74	0
ATOM	1273	N	TYR	134	7.521	66.583	110.080	1.00 2.00	0
MOTA	1275	CA	\mathbf{TYR}	134	8.571	65.567		1.00 2.00	0
ATOM	1276	CB	TYR	134	8. 33 0		111.561	1.00 27.01	0
ATOM	1277	CG	TYR	134	8.270	65. 64 8	112.767	1.00 19.94	0
MOTA	1278	CD1	TYR	134	7.092	65. 7 89	113.486	1.00 23.86	0
MOTA	1279	CE1	TYR	134	7.016	66.651	114.557	1.00 24.86	0
ATOM	1280	CD2	TYR	134	9.380	66. 39 2	113.160	1.00 24.55	0
MOTA	1281	CE2	TYR	134	9.312	67.254	114.228	1.00 23.33	0
ATOM	1282	CZ	TYR	134	8.128		114.925	1.00 28.93	0
ATOM	1283	ОН	TYR	134	8.043		115.984	1.00 27.73	0
ATOM	1285	Č.	TYR	134	8.823		109.139	1.00 2.00	Ŏ
ATOM	1286	0	TYR	134	8.986		109.368	1.00 24.62	Õ
	1287	N	GLY	135	8.847		107.922	1.00 11.68	ŏ
ATOM					9.134		106.787	1.00 10.40	Ö
MOTA	1289	CA	GLY	135		63.772		1.00 10.40	ő
MOTA	1290	C	GLY	135	8.028			1.00 20.70	Ö
ATOM	1291	0	GLY	135	8.010	64.127	104.713		Ö
MOTA	1292	N	PHE	136	7.110	62.963	106.393	1.00 2.00	
MOTA	1294	CA	PHE	136	6.062		105.549	1.00 2.00	0
MOTA	1295	CB	PHE	136	4.951	61.757	106.347	1.00 2.00	0
MOTA	1296	CG	PHE	136	4.091		105.524	1.00 2.00	0
MOTA	1297		PHE	136	4.664	59.734	104.870	1.00 2.00	0
MOTA	1298	CD2	PHE	136	2.713		105.424	1.00 2.00	0
MOTA	129 9	CE1	PHE	136	3.882		104.131	1.00 2.00	0
MOTA	130 0	CE2	PHE	136	1. 91 5		104.688	1.00 2.00	0
ATOM	1301	CZ	PHE	136	2.507		104.037	1.00 2.00	0
MOTA	1302	С	PHE	136	5.421	63.358	104.563	1.00 2.00	0
MOTA	1303	0	PHE	13 6	5.121	62. 92 6	103.445	1.00 2.00	0
MOTA	1304	N	TYR	137	5. 19 9	64.616	104.940	1.00 2.00	0
MOTA	1306	CA	TYR	137	4.606	65.530	103.977	1.00 2.00	0
MOTA	1307	CB	TYR	137	4.243		104.598	1.00 2.00	0
ATOM	1308	ČĞ	TYR	137	3.886		103.564	1.00 2.00	0
ATOM	1309		TYR	137	2.550		103.257	1.00 2.00	0
MOTA	1310	CE1		137	2.228	69 196	102.327	1.00 2.00	0
				137	4.893	68 666	102.901	1.00 2.00	0
MOTA	1311		TY R TY R	137	4.576		101.985	1.00 2.00	ŏ
MOTA	1312			_			101.707	1.00 2.00	Ö
MOTA	1313	CZ	TYR	137	3.247			1.00 2.00	ő
MOTA	1314	OH	TYR	137	2.920	70.893	100.823		
MOTA	1316	C	TYR	137	5.566		102.822	1.00 2.00	0
MOTA	1317	O	TYR	137	5.187		101.646	1.00 2.00	0
MOTA	1318	11	ASP	138	6.802		103.155	1.00 2.00	0
MOTA	1320	CA	ASP	138	7.822	66.439	102.147	1.00 2.00	0
MOTA	1321	CB	ASP	138	9.102		102.810	1.00 28.59	0
ATOM	1322	CG	ASP	138	8.832			1.00 31.85	0
ATOM	1323		ASP	138	8. 99 9			1.00 34.04	0
MOTA	1324	OD2	ASP	138	8.432	67.963	104.867	1.00 31.26	0
MOTA	1325	C	ASP	138	8.118	65.203	101.308	1.00 2.00	С

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1326 1329 13331 13333 13335 13336 13336 13341 1344 13446 1344 1344	ON CCCCCCC ON CCCCCCCCCCCCCCCCCCCCCCCCC	ASP GLU GLU GLU GLU GLU GLU GLU CYS CYS CYS CYS LYS LYS LYS LYS LYS LYS LYS LYS LYS ARG ARG ARG	138 139 139 139 139 139 139 139 140 140 140 141 141 141 141 141 141 141	8.322 8.366 8.366 8.365 9.167 9.135 9.372 7.6655 4.981 3.625 3.313 5.128 5.128 5.128 5.128 5.128 5.128 5.128 7.755 5.455 5.855 6.431 7.731 8.997 11.368	65.309 64.030 62.797 61.608 60.361 59.231 58.050 59.518 62.549 62.549 62.355 62.355 62.361 63.348 62.961 64.616 65.693 69.522 70.750 71.948 65.642 65.642 65.642 64.564 64.566	100.102 101.926 101.200 102.149 101.526 102.525 102.087 103.738 100.117 98.941 100.511 99.553 100.221 101.477 98.416 97.257 98.763 97.786 98.468 97.584 98.468 97.584 98.380 96.791 95.582 97.319 96.512 97.444 96.778	1.00 27.39 1.00 31.40 1.00 28.32 1.00 2.00 1.00 4.78 1.00 3.01 1.00 2.00 1.00 4.61 1.00 30.47 1.00 2.00 1.00 12.32 1.00 3.99 1.00 18.56 1.00 23.54 1.00 12.32 1.00 41.55 1.00 40.86 1.00 38.66 1.00 38.66 1.00 35.28 1.00 36.09 1.00 40.44 1.00 40.27 1.00 28.60 1.00 23.84 1.00 23.84 1.00 22.75 1.00 24.10	
MOTA	1362 1363	CD NE	ARG	142 142	12. 474 12. 09 9	64.073 63.283	97. 79 9 98.963	1.00 33.58 1.00 37.62	0
MOTA MOTA	1365	CZ	ARG	142	12.464	62.018	99.150	1.00 46.30	0
MOTA MOTA	1366 1369	NH1 NH2	ARG ARG	142 142	13.224 12.060	61.404 61.363	98.2 4 9 100.234	1.00 44.23 1.00 42.22	0
ATOM	1372	C	ARG	142	8.732	63.689	95.519	1.00 23.84	Ö
ATOM	1373	0	ARG	142	8.995	63.838	94.330	1.00 24.93	0
ATOM ATOM	1374 1376	N CA	ARG ARG	143 143	8.268 8.104	62.550 61.413	95. 99 9 95. 12 5	1.00 2.00 1.00 2.00	0
MOTA	1377	CB	ARG	143	8.267	60.134	95.941	1.00 2.86	O
ATOM	1378	CG	ARG	143	9.686 9.792	59.9 4 1 58.8 7 4	96. 45 5 97. 53 0	1.00 2.86 1.00 8.64	0
ATOM ATOM	1379 1380	CD NE	ARG ARG	143 143	9.792 9. 49 0	57.527	97.330 97. 04 9	1.00 4.03	0
MOTA	1382	CZ	ARG	143	9.492	56.439	97.816	1.00 6.91	0
MOTA	1383	NH1	ARG	143	9.782	56.527	99.115	1.00 7.13	0
MOTA MOTA	1386 1389	NH2 C	ARG ARG	143 143	9.203 6. 7 96	55.257 61.411	97.287 94.367	1.00 12.97 1.00 2.00	0
ATOM	1390	0	ARG	143	6.707	60.818	93.295	1.00 12.04	Ö
MOTA	1391	N	TYR	144	5.791	62.097	94.897	1.00 2.00	0
ATOM ATOM	1393 1394	CA CB	TYR TYR	144 144	4.459 3.509	62.120 61.150	94.274 95. 0 21	1.00 2.00 1.00 2.00	0
ATOM	1395	CG	TYR	144	3.902	59.689	94.953	1.00 2.00	Ö
ATOM	1396	CD1	TYR	144	4.946	59.20 3	95.716	1.00 2.00	0
ATOM ATOM	1397 1398	CE1		144	5.336	57.885	95.635	1.00 2.00	0
ATOM	1398 13 9 9	CD2 CE2		144 144	3. 24 8 3. 63 3	58.804 57.483	94.102 94.017	1.00 2.00 1.00 2.00	ŏ
ATOM	1400	CZ	TYR	144	4.683	57.034	94.786	1.00 2.00	0
MOTA	1401	ОН	TYR	144	5.113	55.738	94.703	1.00 2.00	0
ATOM ATOM	1403 1404	C 0	TYR TYR	144 144	3.789 4.129	63.502 64.316	94.169 93.297	1.00 2.00 1.00 2.00	0
ATOM	1405	Ň	ASN	145	2.827	63.750	95. 05 8	1.00 2.00	ŏ
ATOM	1407	CA	ASN	145	2.081	65.000	95.083	1.00 2.00	0
ATOM ATOM	1408	CB	ASN	145	1.1 5 9 0. 25 5	65.078 63.861	93. 8 67 93. 74 8	1.00 7.57 1.00 5.76	0
ATOM	1409 1410	CG OD1	ASN ASN	145 145	-0.823	63.826	94.329	1.00 5.76 1.00 9.42	0
MOTA	1411	NDS	ASN	145	0.702	62.851	93.007	1.00 5.88	0
ATOM	1414	C	ASN	145	1.229	65.137	96.354	1.00 2.00	0
MOTA MOTA	1415 1416	0	ASN ILE	145 146	0.760 1.001	64.143 66.391	96.93 8 96. 73 7	1.00 11.61 1.00 2.00	0 0

ATOM	1410	۵.	•••	1.46	0.045	66 545	05 001	1 00 0 00	_
MOTA	1418 1419	CA CB	ILE	146 146	0.217 0.168	66.745 68.278	97.901 98. 04 8	1.00 2.00 1.00 2.00	0
ATOM	1420	CG2	ILE	146	-0.607	68.690	99.278	1. 3 2.00	Ö
MOTA	1421	CG1	ILE	146	1.591	68.798	98.201	1.00 2.00	ŏ
MOTA	1422	CD1	ILE	146	1.679	70.270	98.360	1.00 2.00	ő
MOTA	1423	С	ILE	146	-1.181	66.143	97.851	1.00 2.00	ő
ATOM	1424	Ö	ILE	146	-1.805	65.927	98.881	1.00 2.00	ŏ
MOTA	1425	N	LYS	147	-1.680	65.839	96.668	1.00 2.00	ő
MOTA	1427	CA	LYS	147	-3.000	65.241	96.594	1.00 2.00	ō
MOTA	1428	CB	LYS	147	-3.412	65.007	95.131	1.00 15.32	0
MOTA	1429	CG	LYS	147	- 4 .880	64.64 3	94.902	1.00 21.64	0
MOTA	1430	CD	LYS	147	-5.024	63.248	94.280	1.00 29.48	0
MOTA	1431	CE	LYS	147	-4.704	62.128	95.300	1.00 25.79	0
MOTA	1432	NZ	LYS	147	-4.388	60.777	94.716	1.00 22.31	0
ATOM	1436	C	LYS	147	-2.864	63.928	97.345	1.00 2.00	0
MOTA	1437 1438	O N	LYS LEU	147 148	-3.652 -1.815	63.630 63.180	98. 23 3 97.023	1.00 8.30	0
MOTA MOTA	1440	CA	LEU	148	-1.582	61.892	97.651	1.00 9.36 1.00 9.36	0
ATOM	1441	CB	LEU	148	-0.360	61.202	97.037	1.00 9.36 1.00 2.00	0
ATOM	1442	CG	LEU	148	-0.207	59.721	97.415	1.00 2.00	0
ATOM	1443		LEU	148	-1.398	58.910	96.924	1.00 2.00	0
ATOM	1444		LEU	148	1.078	59.168	96.835	1.00 2.00	ŏ
MOTA	1445	C	LEU	148	-1.423	62.040	99.157	1.00 9.36	ō
MOTA	1446	0	LEU	148	-2.097	61.351	99.89 9	1.00 2.00	0
MOTA	1447	N	TRP	149	-0.55 5	62.943	99.611	1.00 2.00	0
MOTA	1449	CA	TRP	149	-0.360		101.042	1.00 2.00	0
MOTA	1450	CB	TRP	149	0.559		101.276	1.00 9.48	0
MOTA	1451	CG	TRP	149	0.690			1.00 13.35	0
ATOM	1452	CD2	TRP	149	0.095		103.387	1.00 9.36	0
ATOM ATOM	1453 1454	CE2 CE3	TRP TRP	1 4 9 1 4 9	0. 51 2 -0.751	65.907 66.946	104.725 102.951	1.00 12.67 1.00 9.36	0
MOTA	1455	CD1	TRP	149	1.415		103.713	1.00 12.84	Ö
MOTA	1456	NE1	TRP	149	1.315		104.895	1.00 14.40	ŏ
ATOM	1458	CZ2	TRP	149	0.119		105.632	1.00 10.82	Ō
ATOM	1459	CZ3	TRP	149	-1.138	67.912	103.858	1.00 10.25	0
MOTA	1460	CH2	TRP	149	-0.702		105.182	1.00 21.34	0
MOTA	1461	С	TRP	149	-1.712			1.00 2.00	0
MOTA	1462	0	TRP	149	-2.095		102.647	1.00 9.36	0
MOTA	1463	N	LYS	150	-2.429		101.216	1.00 2.00	0
ATOM	1465	CA	LYS	150	-3.756			1.00 2.00 1.00 25.82	0
MOTA	1466 1467	CB CG	LYS LYS	150 150	-4.392 -3.695		100.819	1.00 25.82	0
ATOM ATOM	1468	CD	LYS	150	-4.145	67.981	99.676	1.00 24.78	ő
MOTA	1469	CE	LYS	150	-4.236			1.00 28.33	Ö
MOTA	1470	NZ	LYS	150	-5.243	69.673	101.132	1.00 35.49	0
ATOM	1474	C	LYS	150	-4.661		101.786	1.00 2.00	0
ATOM	1475	Ō	LYS	150	-5.46 8	63.397		1.00 28.71	0
MOTA	1476	N	THR	151	-4.525	62.638	100.809		0
MOTA	1478	CA	THR	151	-5.315		100.758	1.00 2.00	0
MOTA	1479	CB	THR	151	-5.111	60.670	99.408	1.00 18.71	0
MOTA	1480	OG1		151	-5.491	61.532	98.332	1.00 21.97 1.00 19.85	0
ATOM	1482	CG2		151 151	-5. 964 -4. 92 0	59.434	99.332 101.925	1.00 19.83	0
MOTA MOTA	1483 1484	C 0	THR THR	151	-4.920 -5. 7 60		102.489	1.00 14.71	ő
ATOM	1485	N	PHE	152	-3.645		102.297	1.00 2.00	0
MOTA	1487	CA	PHE	152	-3.161		103.398	1.00 2.00	0
ATOM	1488	CB	PHE	152	-1.638		103.502	1.00 13.78	0
ATOM	1489	CG	PHE	152	-0.956		102.830	1.00 13.78	0
MOTA	1490	CD1		152	0.034	58.792	101.864	1.00 13.78	0
MOTA	1491		PHE	152	-1.289		103.178	1.00 13.78	0
ATOM	1492		PHE	152	0.679		101.260	1.00 13.78	0
MOTA	1493	CE2		152	-0.648		102.578	1.00 13.78	0
MOTA	1494	CZ	PHE	152	0.340		101.617	1.00 13.78	0
MOTA	1495	C	PHE	152	-3. 76 7		104.673	1.00 2.00	0
MOTA	1496	0	PHE	152	-4.380 -3.657		105.397 104.944	1.00 13.78 1.00 2.00	0
MOTA	1497	N	THR	153 153	-3.657 -4.217		104.944	1.00 2.00	0
ATOM ATOM	1 49 9 1500	CA CB	THR THR	153	-4.166		106.318	1.00 19.49	0
VI ON	1 200	cv	* * (17	400				· · ·	-

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1501 1503 1504 1505 1506 1508 1509 1511 1512 1513 1514 1515 1517 1518 1519 1520 1521 1522 1522 1525 1526	OG1 THR CG2 THR C THR O THR N ASP CA ASP CB ASP OD1 ASP OD2 ASP O ASP O ASP O ASP O CYS CA CYS CA CYS CB CYS SG CYS C CYS O CYS N PHE CA PHE CA PHE CG PHE	153 153 153 1554 1554 1554 1555 1555 155	-4.912 -2.739 -5.653 -6.054 -6.415 -7.801 -8.442 -9.965 -10.548 -7.889 -8.783 -6.968 -6.951 -5.904 -5.770 -6.627 -7.267 -5.641 -5.172 -4.056 -2.766	64.207 105.265 64.095 106.293 61.607 106.348 61.158 107.414 61.667 105.276 61.250 105.332 61.393 103.945 61.345 103.987 61.750 102.971 60.912 105.018 59.806 105.801 59.444 106.569 58.981 105.319 57.571 105.691 56.822 104.865 55.072 105.254 57.479 107.178 56.741 107.931 58.273 107.583 58.366 108.954 59.409 109.018 58.945 108.437	1.00 24.34 1.00 23.93 1.00 2.00 1.00 29.22 1.00 2.00 1.00 21.48 1.00 27.37 1.00 20.95 1.00 2.00 1.00 11.19 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 8.58 1.00 8.58 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA MOTA MOTA MOTA	1527 1528 1529 1530 1531	CD1 PHE CD2 PHE CE1 PHE CE2 PHE CZ PHE	156 156 156 156	-2.537 -1.756 -1.309 -0.518 -0.295	57.585 108.206 59.847 108.160 57.130 107.710 59.400 107.662 58.039 107.439	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM	1532 1533 1534 1536 1537 1538	C PHE O PHE N ASN CA ASN CB ASN CG ASN	156 156 157 157 157 157		58.743 109.931 58.119 110.974 59.758 109.572 60.233 110.405 61.475 109.779 62.661 109.577	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
ATOM ATOM ATOM ATOM MOTA ATOM	1539 1540 1543 1544 1545 1547	OD1 ASN ND2 ASN C ASN O ASN N CYS CA CYS	157 157 157 157 158 158	-8.226 -6.669 -9.230 -10.242 -9.064 -10.074	63.629 108.922 62.601 110.143 59.179 110.631 59.489 111.240 57.962 110.120 56.914 110.304	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA	1548 1549 1550 1551 1552 1554	CB CYS SG CYS C CYS O CYS N LEU CA LEU	158 158 158 158 159	-10.751 -11.898 -9.482 -10.148 -8.216 -7.433	56.567 108.970 57.864 108.331 55.665 110.924 54.648 111.049 55.772 111.304 54.714 111.945	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1555 1556 1557 1558 1559 1560 1561 1562 1563	CR LEU CG LEU CD1 LEU CD2 LEU C LEU O LEU N PRO CD PRO CA PRO	159 159 159 159 159 159 160 160	-5.985 -4.747 -4.993 -3.536 -8.010 -8.548 -7.951 -7.504 -8.473	55.219 112.037 54.363 111.781 53.449 110.617 55.269 111.503 54.454 113.361 55.367 113.980 53.209 113.871 51.978 113.208 52.896 115.209	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1564 1565 1566 1567 1568 1570 1571 1572 1573 1574	CB PRO CG PRO O PRO N ILE CA ILE CB ILE CG2 ILE CG1 ILE CD1 ILE C ILE	160 160 160 161 161 161 161 161	-8.398 -8.416 -7.535 -6.329 -8.062 -7.206 -7.862 -8.493 -8.493 -9.428 -6.741 -5.808	51.375 115.269 50.956 113.838 53.516 116.228 53.463 116.031 54.073 117.315 54.717 118.312 55.995 118.918 56.837 117.823 55.612 119.987 56.766 120.775 53.859 119.492 54.254 120.193	1.00 2.00 1.00 2.00 1.00 2.00 1.00 10.42 1.00 10.42 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 10.42 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM	1576 1577 1579	O ILE N AL A CA AL A	161 162 162	-7. 387 -7.036	52.712 119.720 51.832 120.837	1.00 2.00 1.00 16.67 1.00 16.67	0

N MON	1500					50 400 400			_
ATOM ATOM	1580	CB	ALA	162	-7.580	52.409 122.		1.00 2.00	0
MOTA	1581 1582	C	ALA	162	-7.567	50.414 120.		1.00 16.67	Ö
MOTA	1583	0	ALA ALA	162	-8. 49 4 -6.984	50.203 119. 49.455 121.		1.00 2.00	0
MOTA	1585	N CA	ALA	163 163	-7.3 7 9	48.052 121.		1.00 2.00 1.00 2.00	0
ATOM	1586	CB	ALA	163	-6.559	47.374 120.		1.00 2.00	0
MOTA	1587	C	ALA	163	-7.232	47.283 122.		1.00 14.80	0
MOTA	1588	0	ALA	163	-6.373	47.620 123.		1.00 2.00	0
ATOM	1589	Ň	ILE	164	-8.069	46.263 122.		1.00 8.09	0
ATOM	1591	CA	ILE	164	-8.036	45.424 124.		1.00 8.09	ő
ATOM	1592	CB	ILE	164	-9.323	45.590 124.		1.00 10.56	ő
ATOM	1593	CG2	ILE	164	-9.2 0 0	44.830 126.		1.00 10.56	ŏ
ATOM	1594	CG1		164	-9.566	47.055 125.		1.00 10.56	ŏ
ATOM	1595	CD1		164	-10.886	47.285 125.		1.00 10.56	ŏ
MOTA	159 6	С	ILE	164	-7. 91 0	43.938 123.	623	1.00 8.09	Ŏ
MOTA	1597	0	ILE	164	-8. 86 6	43.328 123.	127	1.00 10.56	0
ATOM	1598	N	VAL	165	-6.739	43.353 123.	856	1.00 20.53	0
ATOM	1600	CA	VAL	16 5	-6.510	41.958 123.		1.00 21.83	0
ATOM	1601	CB	VAL	165	-5.041	41.664 123.		1.00 2.00	0
MOTA	1602		VAL	165	-4.905	40.241 122.		1.00 2.00	0
MOTA	1603	CG2		165	-4.460	42.686 122.		1.00 2.00	0
MOTA	1604	С	VAL	16 5	-6.973	40.987 124.		1.00 22.04	0
MOTA	1605	0	VAL	16 5	-6.546	41.064 125.		1.00 2.00	0
MOTA	1606	N	ASP	166	-7.841	40.066 124.		1.00 10.50	0
MOTA	1608	CA	ASP	166	-8.401	39.057 125.		1.00 16.73	0
MOTA	1609	CB	ASP	166	-7.348	37.980 125.		1.00 24.26	0
ATOM	1610	CG	ASP	166	-7.245	36.914 124. 36.207 123.		1.00 24.02	0
MOTA	1611		ASP	166	-8.258 -6. 14 5	36.776 123.		1.00 22.19 1.00 26.91	0
MOTA	1612 1613		ASP ASP	1 6 6 1 6 6	-8.9 6 3	39.674 126.		1.00 26.51	Ö
MOTA MOTA	1614	C O	ASP	166 166	-9. 13 9	39.006 127.		1.00 13.13	ő
ATOM	1615	N	GLU	167	-9.262	40.967 126.		1.00 2.00	ŏ
ATOM	1617	CA	GLU	167	-9.833	41.811 127.		1.00 2.00	ŏ
ATOM	1618	CB	GLU	167	-11.280	41.394 127.		1.00 81.32	Ö
ATOM	1619	ĊĠ	GLU	167	-12.129	41.397 126.		1.00 2.00	0
MOTA	1620	CD	GLU	167	-11.819	42.603 125.		1.00 2.00	0
MOTA	1621	OE1	GLU	167	-11.133	42.398 124.		1.00 2.00	0
MOTA	1622	OE2		167	-12.268	43.750 125.	622	1.00 2.00	0
ATOM	1623	С	GLU	167	-9.056	41.981 128.		1.00 2.00	0
MOTA	1624	0	GLU	167	-9.634	42.138 129.		1.00 74.79	0
MOTA	1625	N	LYS	168	-7.733	41.984 128.		1.00 22.77	0
MOTA	1627	CA	LYS	168	-6.829	42.154 129.		1.00 14.49	0
MOTA	1628	CB	LYS	168	-6.098	40.844 129.		1.00 21.81	0
MOTA	1629	CG	LYS	168	-6.956	39.798 130.		1.00 17.49	0
ATOM	1630	CD	LYS	168	-7.6 7 7	40.404 131.		1.00 18.27	0
MOTA	1631	CE.	LYS	168	-8.654	39.411 132. 40.080 133.		1.00 26.28 1.00 29.04	0
MOTA	1632	NZ	LYS	168	-9.658 -5.811	43.225 129.		1.00 23.04	Ö
MOTA MOTA	1636	C	LYS	168 168	-5.665	44.214 129.		1.00 17.06	Ö
ATOM	1637 1638	О	LYS ILE	169	-5.109	43.015 128.	131	1.00 2.00	ŏ
MOTA	1640	CA	ILE	169	-4.093	43.950 127.	663	1.00 2.00	0
MOTA	1641	CB	ILE	169	-3.151	43.267 126.	648	1.00 2.00	0
ATOM	1642	CG2		169	-1.989	44.184 126.	302	1.00 2.00	0
MOTA	1643	CG1	ILE	169	-2.632	41.952 127.	215	1.00 2.00	0
MOTA	1644	CD1	ILE	169	-1.691	41.218 126.	297	1.00 2.00	0
MOTA	1645	С	ILE	169	-4.731	45.144 126.	964	1.00 2.00	0
MOTA	1646	O	ILE	169	-5. 39 3	44.973 125.		1.00 2.00	0
ATOM	1647	11	PHE	170	-4.572	46.337 127.		1.00 17.81	0
MOTA	1649	CA	PHE	170	-5.110	47.525 126.		1.00 19.78	0
MOTA	1650	CB	PHE	170	-5.486	48.610 127.		1.00 2.00	0
MOTA	1651	CG	PHE	170	-5.895	49.920 127.		1.00 2.00	0
ATOM	1652		PHE	170	-7.095	50.028 126.	278	1.00 2.00	0
ATOM	1653		PHE	170	~5. 09 2	51.056 127.	37U	1.00 2.00	0
ATOM	1654	CE1		170	-7.493	51.248 125. 52.282 126.		1.00 2.00 1.00 2.00	0
MOTA	1655	CE2		170	-5. 47 3	52.282 126. 52.377 126.		1.00 2.00	0
MOTA	1656	CZ	PHE	170	-6.680 -3. 94 3	47.992 126.		1.00 23.45	0
ATOM	1657	C	PHE	170	-3.943 -2.809	47.983 126.		1.00 23.43	0
MOTA	1658	0	PHE	170	- 2 . 009	47.505 120.		2.00	0

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1659 16662 16663 16664 16665 16670 16772 16773 16776 16770 16883 16884 16889 16993 16993 16990 16990 16990 16990	CE1 N CA C O N CA C O N CA C CB C CG	CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	171 171 171 171 171 171 172 172 172 172	-4.208 -3.158 -2.952 -2.524 -3.499 -4.655 -2.495 -2.495 -3.403 -1.231 -0.227 -1.154 0.146 0.815 1.893 0.056 1.377 2.487 1.774 3.123 3.492 0.168 0.711 0.568 -0.648 -0.830 -2.227 -3.190 -2.341 -3.637 -3.740 -3.469	48.375 124.790 48.836 123.898 47.843 122.766 46.203 123.305 50.189 123.310 50.453 122.2655 52.378 122.668 53.356 123.597 53.995 125.094 52.890 122.287 52.277 122.657 53.951 121.488 54.461 121.112 55.130 122.297 54.707 122.722 55.457 119.944 56.074 119.588 55.347 119.241 56.189 119.241 56.189 119.045 56.172 122.817 56.933 123.395 56.450 125.386 56.111 126.041 56.453 125.913 56.028 127.283 56.343 127.763 56.231 126.999 56.764 129.021 57.063 129.021 57.063 129.096 54.407 132.374	1.00 2.00 1.00 26.14 1.00 16.13 1.00 2.00 1.00 26.14 1.00 12.00 1.00 2.00 1.00 14.54 1.00 15.67 1.00 2.00 1.00 12.00 1.00 16.98 1.00 16.98 1.00 16.98 1.00 16.98 1.00 16.98 1.00 16.98 1.00 12.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM	1701 1702 1703		LEU	176 176 176	-4.463 -3.876 -2.943	54.218 130.121 58.545 129.692 59.329 129.645	1.00 2.00 1.00 11.28 1.00 2.00	0 0 0
MOTA	1704	N	SER	17 7	-5.138	58.913 129.850	1.00 6.18	0
ATOM ATOM	1706 1707	CA CB	SER SER	177 1 7 7	-5. 56 7 -6. 47 6	60.304 129.918 60.587 128.718	1.00 6.86 1.00 12.19	0 0
ATOM	1708	OG	SER	177	-7.189	61.804 128.835	1.00 12.19	0
MOTA	1710	С	SER	177	-6.356	60.573 131.193	1.00 7.79	0
ATOM ATOM	1711 1 71 2	O N	SER PRO	177 178	-7.170 -6.150	59.749 131.606 61.736 131.824	1.00 12.19 1.00 2.00	0
ATOM	1713	CD	PRO	178	-5.223	62.827 131.505	1.00 29.89	0
MOTA	1714	CA	PRO	178	-6.895	62.054 133.041	1.00 2.00	0
ATOM ATOM	1715 1716	CB CG	PRO PRO	178 178	-6. 231 -5. 84 2	63.337 133.518 63.973 132.274	1.00 25.57 1.00 21.36	0
ATOM	1717	C	PRO	178	-8.394	62.266 132.757	1.00 2.00	0
ATOM	1718	0	PRO	178	-9.140	62.740 133.617	1.00 24.04	0
ATOM ATOM	1719 1721	N CA	ASP ASP	179 179	-8.821 -10.206	61.933 131.543 62.078 131.129	1.00 38.94 1.00 37.05	0
ATOM	1722	CB	ASP	179	-10.264	62.870 129.837	1.00 33.34	0
MOTA	1723	CG	ASP	17 9	-9.964	64.320 130.048	1.00 30.55	0
ATOM ATOM	1724 1725	OD1 OD2		179 1 79	-10.923 -8.786	65.045 130.386 64.728 129.889	1.00 31.71 1.00 32.17	0
ATOM	1726	C	ASP	179	-10.871	60.735 130.923	1.00 40.05	Ö
ATOM	1727	0	ASP	17 9	-12.096	60.638 130.873	1.00 34.46	0
ATOM ATOM	1728 1730	N CA	LEU LEU	180 180	-10.057 -10.570	59.699 130.791 58.362 130.590	1.00 15.43 1.00 12.98	0 0
ATOM	1731	CB	LEU	180	-9.446	57.467 130.058	1.00 2.00	Õ
MOTA	1732	CG	LEU	180	-9.867	56.186 129.338	1.00 2.00	0
ATOM ATOM	1733 1734		LEU LEU	180 180	-10.706 -8.633	56.511 128.110 55.413 128.953	1.00 2.00 1.00 2.00	0 0
ATOM	1735	CDZ	LEU	180	-11.157	57.806 131.902	1.00 14.43	Ö
ATOM	1736	0	LEU	180	-10.470	57.709 132.931	1.00 2.00	0
ATOM	1737	11	GLN	181	-12.448	57.492 131.862	1.00 5.88	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1739 1740 1741 1742 1743 1744 1747 1748 1749 1751 1752 1753 1755	CA CB CG CD OE1 NE2 C O N CA CB OG CC	GLN GLN GLN GLN GLN GLN SER SER SER SER	181 181 181 181 181 181 181 182 182 182	-13.184 -14.379 -14.002 -15.101 -16.285 -14.717 -13.672 -14.188 -14.651 -16.174 -16.668 -14.112	56.917 132.992 57.787 133.375 59.152 133.900 60.172 133.676 59.886 133.877 61.366 133.242 55.563 132.500 54.554 133.205 55.544 131.274 54.310 130.664 54.255 130.614 54.856 129.433 54.177 129.248	1.00 5.88 1.00 32.99 1.00 36.07 1.00 38.35 1.00 41.53 1.00 38.39 1.00 5.88 1.00 2.20 1.00 9.71 1.00 15.80 1.00 17.25 1.00 3.77	000000000000000000000000000000000000000
ATOM	1756	0	SER	182	-13.359	55.019 128.751	1.00 15.80	0
MOTA ATOM	1 7 57 1 7 59	N CA	MET MET	183 183	-14.526 -14.156	53.091 128.615 52.780 127.251	1.00 2.00 1.00 2.00	0
MOTA	1760	CB	MET	183	-14.100	51.272 127.064	1.00 2.00 1.00 2.00	0
ATOM ATOM	1761 1762	CG SD	MET MET	183 183	-13.171	50.616 128.048	1.00 2.00	0
ATOM	1763	CE	MET	183	-11.620 -10.520	51.473 128.022 50.135 127.900	1.00 2.00 1.00 2.00	0
MOTA	1764	C	MET	183	-15.204	53.373 126.326	1.00 2.00	0
ATOM ATOM	1 76 5 17 6 6	N	MET GLU	183 184	-14.959	53.550 125.129	1.00 2.00	0
ATOM	1768	CA	GLU	184	-16.370 -17.432	53.700 126.882 54.280 126.082	1.00 2.00 1.00 2.00	0 0
MOTA	1769	CB	GLU	184	-18.668	54.531 126.910	1.00 2.00	0
ATOM ATOM	1770 1771	CG CD	GLU GLU	184 184	-19.830 -20.273	54.977 126.073	1.00 8.82	0
ATOM	1772		GLU	184	-20.273 - 19.84 6	53.927 125.068 52.744 125.181	1.00 13.01 1.00 14.09	0
MOTA	1773	OE2		184	-21.064	54.293 124.164	1.00 20.29	0
MOTA MOTA	1774 1775	С 0	GLU GLU	184 184	-16. 97 8 -17. 39 9	55.586 125.481 55.946 124.392	1.00 2.00 1.00 23.33	0
MOTA	1776	N	GLN	185	-16.117	56.295 126.198	1.00 23.33	0
ATOM ATOM	1778 1779	CA CB	GLN	185	-15.599	57.561 125.714	1.00 14.30	0
ATOM	1780	CG CG	GLN GLN	185 185	-14.697 -15.454	58.190 126.758 58.629 127.990	1.00 43.49 1.00 47.40	0
MOTA	1781	CD	GLN	185	-14.537	58.929 129.139	1.00 47.40	0
MOTA MOTA	1782 1783	OE1 NE2		185 185	-13.994 -14.350	58.016 129.753	1.00 56.49	0
MOTA	1786	C	GLIN	185	-14.834	60.208 129.437 57.307 124.432	1.00 49.76 1.00 16.93	0
MOTA MOTA	1787	0	GLN	185	-14.973	58.053 123.461	1.00 43.79	0
MOTA	1788 1790	N CA	ILE ILE	186 186	-14.044 -13.280	56.238 124.420 55.880 123.235	1.00 5.67 1.00 5.67	0
MOTA	1791	CB	ILE	186	-12.436	54.613 123.470	1.00 16.18	Ö
MOTA MOTA	1792 1793		ILE	186 186	-11.675	54.243 122.208	1.00 11.85	0
MOTA	1794	CD1		186	-11.489 -10.545	54.825 124.642 55.954 124.459	1.00 13.18 1.00 17.92	0
MOTA	1795	C	ILE	186	-14.294	55.566 122.143	1.00 5.67	Ö
ATOM ATOM	1796 1797	O N	ILE ARG	186 187	-14.260 -15.207		1.00 19.35	0
ATOM	1799	ÇA	ARG	187	-16.243	54.655 122.471 54.205 121.561	1.00 17.59 1.00 16.33	0
MOTA	1800		ARG	187	-17.141	53.165 122.237	1.00 20.41	0
ATOM ATOM	1801 1802	CG CD	ARG ARG	187 187	-16. 46 8 -17. 49 7	51.900 122.723 51.006 123.447	1.00 29.32 1.00 31.43	0 0
MOTA	1803	NE	ARG	187	-16.888	49.888 124.165	1.00 31.43	0
ATOM ATOM	1805 1806		ARG	187	-16.311	48.838 123.580	1.00 34.30	0
ATOM	1809	NH1 NH2		187 187	-16.256 -15.783	48.747 122.252 47.873 124.322	1.00 41.37 1.00 34.50	0
MOTA	1812		ARG	187	-17.148	55.302 121.011	1.00 15.89	Ö
ATOM ATOM	1813 1814		ARG	187	-17.937	55.032 120.108	1.00 20.82	0
ATOM	1814		ARG ARG	188 188	-17.071 -17.964	56.524 121.529 57.557 121.012	1.00 2.00 1.00 2.00	0
MOTA	1817	CB	ARG	188	-18.878	58.105 122.106	1.00 2.00	0
ATOM ATOM	1818		ARG	188	-18.184	58.827 123.228	1.00 29.44	0
ATOM	1819 1820		ARG ARG	188 188	-19. 20 2 - 20.41 0	59.586 124.034 58.802 124.237	1.00 31.32 1.00 33.18	0
MOTA	1822	CZ	ARG	188	-21.637	59.285 124.112	1.00 29.63	ŏ
MOTA MOTA	1823 1826	NH1 NH2		188 188	-21.827 -22.671	60.561 123.777 58.484 124.332	1.00 36.26 1.00 32.06	0
					_	-		_

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1829 1830 1831 1833 1834 1835 1836 1837 1838 1839 1840	CD1 C O N	ARG ARG ILE ILE ILE ILE ILE ILE ILE	188 189 189 189 189 189 189 189	-17.255 -17.758 -16.070 -15.263 -13.759 -12.924 -13.411 -11.970 -15.620 -15.448 -16.158	59.804 58.369 59.333 59.043 59.973 59.205 58.946 59.244 58.184 60.342	117.044 117.108	1.00 2.00 1.00 31.89 1.00 17.06 1.00 16.98 1.00 16.67 1.00 17.65 1.00 16.74 1.00 19.51 1.00 25.93 1.00 22.12	0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM	1842 1843	CA CB	MET MET	190 190	-16.514 -17.051		115.685 115.320	1.00 24.92 1.00 46.39	0
MOTA	1844	$\mathbf{C}\mathbf{G}$	MET	190	-17.366	61.977	113.826	1.00 46.97	0
ATOM ATOM	1845 1846	SD CE	MET MET	190 190	-17.820 -16.271		113.312 112.598	1.00 58.03 1.00 52.38	0 8
MOTA	1847	C	MET	190	-15.173	60.194	115.015	1.00 25.36	0
ATOM ATOM	1848 1849	O N	MET ARG	190 191	-14.287 -15.023		115.106 114.346	1.00 32.57 1.00 2.00	0
ATOM	1851	CA	ARG	191	-13.732		113.772	1.00 2.00	ő
MOTA	1852	CB	ARG	191	-13.731		113.089	1.00 2.00	0
MOTA MOTA	1853 1854	CD	ARG ARG	191 191	-12.3 0 0 -11.9 7 8		112.821 113.752	1.00 11.31	0
MOTA	185 5	NE	ARG	191	-13.139	54.935	113.762	1.00 2.00	0
ATOM	1857	CZ	ARG	191	-13.124		113.416	1.00 2.00 1.00 2.00	0
MOTA MOTA	1858 1861		ARG ARG	191 191	-11.985 -14.263		113.047 113.430	1.00 2.00	0
ATOM	1864	C	ARG	191	-13.084	59.769	112.857	1.00 2.00	0
MOTA	1865	0	ARG	191 192	-11.995 -13.685		113.202 111.670	1.00 6.10 1.00 37.06	0
MOTA MOTA	1866 1867	N CD	PRO PRO	192 192	-14.912	-	111.045	1.00 37.00	Ö
MOTA	1868	CA	PRO	192	-13.048		110.799	1.00 36.28	0
MOTA MOTA	1869 1870	CB CG	PRO PRO	192 192	-14.114 -14.743		109.749 109.602	1.00 2.00 1.00 2.00	0
ATOM	1871	C	PRO	19 2	-12.787	62.261	111.693	1.00 37.24	Ö
MOTA	1872	0	PRO	192	-13.697		112.004	1.00 2.00	0
MOTA MOTA	1 87 3 1 87 5	N CA	THR THR	193 193	-11.552 -11.182		112.168 113.089	1.00 2.00 1.00 2.00	0
ATOM	1876	CB	THR	193	-11.627		114.540	1.00 22.05	0
MOTA	1877	OG1	THR	19 3	-11.349		115.392 115.089	1.00 31.69 1.00 21.46	0 0
ATOM ATOM	1879 1880	CG2 C	THR THR	193 193	-10.862 -9. 70 0		113.152	1.00 21.40	ő
ATOM	1881	0	THR	19 3	-8.865	62.795	112.860	1.00 17.62	0
MOTA MOTA	1882 1884	N	ASP ASP	194 194	-9.394 -8.031		113.572 113.744	$ \begin{array}{cccc} 1.00 & 2.00 \\ 1.00 & 2.00 \end{array} $	0
MOTA	1885	CA CB	ASP	194	-7.927		113.744	1.00 49.25	ő
MOTA	1886	CG	ASP	194	-6.561	67.197	112.912	1.00 49.25	0
MOTA MOTA	1887 1888		ASP ASP	194 194	-6. 13 2 -5.9 2 0	68.334 66.371	113.194 112.217	1.00 49.25 1.00 49.25	0 0
MOTA	1889	C	ASP	194	-7.686		115.216	1.00 2.00	Ö
MOTA	1890	0	ASP	194	-8.571		116.077	1.00 54.62	0
MOTA MOTA	1891 1893	N CA	VAL VAL	195 195	-6. 40 8 -5. 94 8		115.488 116.839	1.00 17.01 1.00 12.88	0
MOTA	1894	СВ	VAL	195	-4.509		116.818	1.00 9.98	O
MOTA	1895		VAL	195	-3.934		118.239	1.00 9.98	0
ATOM ATOM	1896 1897	CG2	VAL VAL	195 195	-4.532 -5.971	65.994	116.124	1.00 9.98 1.00 12.88	0
MOTA	1898	ō	VAL	195	-5.343	66.934	117.038	1.00 9.98	0
MOTA	1899	N	PRO	196	-6.771		118.567	1.00 16.08	0
ATOM ATOM	1900 1901	CD CA	PRO PRO	196 196	-7.805 -6.862		119.033 119.284	1.00 26.02 1.00 21.91	0
MOTA	1902	CB	PRO	196	-8.026	67.195	120.240	1.00 25.86	0
MOTA	1903	CG	PRO	196	-8.874		119.496	1.00 25.31	0
MOTA MOTA	1904 1905	C	PRO PRO	196 196	-5. 56 0 -4. 80 9		120.027 120.349	1.00 24.64 1.00 23.54	0 0
MOTA	1906	N	ASP	197	-5.291	69.010	120.302	1.00 39.93	0
ATOM ATOM	1908 1909	CA CB	ASP ASP	197 197	-4. 05 8 -3.605		121.005 120.612	1.00 38.76 1.00 78.93	0
					2.003	· - · · /			

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1910 1911 1912 1913 1914 1915 1917 1918 1919 1920 1921 1922 1925 1926 1927 1929	OD2 C O N CA CB CCD OE1 NE2 C O N CA C	ASP ASP ASP GLN GLN GLN GLN GLN GLN GLN GLN GLN GLY GLY	197 197 197 197 198 198 198 198 198 198 199	-5. -4. -3. -5. -5. -6. -7. -8. -7. -8. -7.	137 820	72.263 72.134 69.256 69.577 68.789 68.588 69.937 70.967 71.041 70.793 67.793 67.909 66.148 64.670	123.255 122.973 124.385 125.120 124.503 125.192 126.397 124.424 124.429 123.640 125.509 125.692 125.631	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.00 27.32 32.39 29.94 32.81 29.42 2.00 26.90 15.56 13.32	
MOTA MOTA MOTA	1931 1932 1934	O N CA	GLY LEU LEU	199 200 200	-6. -8. -8.	857	63.842	125.502 125.684 125.666	1.00 1.00 1.00	2.00 2.00 2.00	0 0 0
MOTA	1935		LEU	200	-10.		61.701	125.667	1.00	2.00	ŏ
MOTA MOTA	1936 1937	CG CD1	LEU	200 200	-9.9 -11.			126.081 126.947	1.00 1.00	2.00	0
ATOM	1938	CD2		200	-9.			124.847	1.00	2.00 2.00	0
MOTA	1939		LEU	200	-7.	850	61.875	124.521	1.00	2.00	Ŏ
MOTA MOTA	1940 1941		LEU LEU	200 201	-6.1 -8.1		61.323 62.045	124.764 123.283	1.00	2.00 2.00	0
MOTA	1943		LEU	201	-7.			122.070	1.00	2.00	0
MOTA	1944		LEU	201	-8.3		62.041	120.811	1.00	2.00	0
MOTA MOTA	1945 1946	CG CD1	LEU	201 201	-8.1 -8.1			119.589 118.375	1.00	2. 0 0 2. 0 0	0
ATOM	1947	CD2		201	-6.			119.277	1.00	2.00	0
ATOM	1948		LEU	201	-6.			122.059	1.00	2.00	0
ATOM ATOM	1949 1950		LEU CYS	201 202	-5.3 -6.0		61.347 63.333	121.715 122.446	1.00 1.00	2.00 2.00	0
ATOM	1952		CYS	202	-4.			122.484	1.00	2.00	0
MOTA	1953		CYS	202	-4.5	722	65.306	123.024	1.00	2.00	0
ATOM ATOM	19 54 1955		CYS CYS	202 202	-3.(-3.8			123.209 123.394	1.00	2.00 2.00	0
ATOM	1956		CYS	202	-2.5			123.334	1.00	2.00	0
ATOM	1957		ASP	203	-4.3	385	62.798	124.584		15.07	0
MOTA MOTA	1959 1960		ASP ASP	203 203	-3.6 -4.4			125.611 126.931		11.86 13.71	0
ATOM	1961		ASP	203	-4.4			127.497		15.77	0
MOTA	1962		ASP	203	-3.5	529	64.315	127.162		11.73	0
ATOM ATOM	1963 1964		ASP ASP	203 203	-5.3 -3.3			128.271 125.262		16.16 13.81	0
MOTA	1965		ASP	203	-2.2			125.492		23.94	0
MOTA	1966	N	LEU	204	-4.3	330	59.902	124.695	1.00	10.49	0
ATOM ATOM	1968 1969		LEU LEU	204 204	-4.(-5.3			124.332 123.717		10.49 10.22	0
MOTA	1970		LEU	204	-6.4			124.696		10.22	0
MOTA	1971	CD1	LEU	204	-7.6	667	57.281	123.866	1.00	10.22	0
ATOM ATOM	1972 1973	CD2		204	-6.1			125.620		10.22	0
ATOM	1974		LEU	204 204	-2.9 -2.2			123.361 123.392		10.49 10.22	0
MOTA	1975		LEU	205	-2.	748	59.336	122.501	1.00	2.00	0
MOTA	1977		LEU	205	-1.6			121.525	1.00	2.00	0
ATOM ATOM	1978 1979		LEU LEU	205 205	-2.1 -3.4			120.219 119.551	1.00	2.00 2.00	0
ATOM	1980	CD1		205	- 3 . 9	595	60.238	118.259	1.00	2.00	Õ
ATOM	1981	CD2		205	- 3 . 4			119.269	1.00	2.00	0
ATOM ATOM	1982 1983		LEU	205 205	-0.4			121.967 121.314	1.00 1.00	2.00 2.00	0 0
ATOM	1984		TRP	206	-0.4			123.072		10.02	Ö
ATOM	1986	CA	TRP	206				123.545		10.02	0
MOTA MOTA	1987 1988		TRP TRP	20 6 206				123.408 122.052	1.00 1.00	2.00 2.00	0
V 1 Ou	1 7 0 0		1 1/1	200	0.4	• x /	JJ. 40J		1.00	2.00	• 2

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1989 1990 1991 1992 1993 1995 1996 1997 1998 1999 2000 2002 2003 2004 2006	NE1 CZ2 CZ3	TRP TRP TRP TRP TRP TRP TRP TRP TRP SER SER SER SER	206 206 206 206 206 206 206 206 207 207 207 207 207	1.532 1.105 2.854 -0.616 -0.212 1.950 3.697 3.238 1.246 2.419 0.418 0.830 -0.363 -0.482 1.951	64.535 64.355 63.541 64.178 65.207 65.024 65.443 61.330 60.867 60.690 60.273 61.120	121.420 120.148 121.813 121.162 120.017 119.263 120.932 119.669 124.955 125.194 125.886 127.267 128.121 129.256 127.446	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	
ATOM ATOM	2007	O N	SER ASP	207 208	2.075 2.777	58.743 59.943		1.00 31.05 1.00 2.00	0 0
MOTA	2010	CA	ASP	208	3.899		128.764	1.00 2.00	0
ATOM	2011	CB	ASP ASP	208 208	5. 25 7 5. 29 6		128.505 127.256	1.00 42.39 1.00 46.59	0
MOTA MOTA	2012 2013	CG OD1	ASP	208	5.695		127.362	1.00 48.93	ő
ATOM	2014		ASP	208	4.959		126.180	1.00 44.70	0
MOTA	2015	C	ASP	208	3.903		130.231	1.00 2.00 1.00 45.54	0
ATOM ATOM	2016 2017	O N	ASP PRO	208 209	3.580 4.244		131.072 130.559	1.00 43.34	0
ATOM	2018	CD	PRO	209	4.509		129.673	1.00 2.00	Ö
MOTA	2019	CA	PRO	20 9	4.299		131.957	1.00 10.98	0
MOTA	2020 2021	CB CG	PRO PRO	209 209	4.407 5.197		131.845 130.604	1.00 2.00 1.00 2.00	0
MOTA MOTA	2021	C	PRO	209	5.584		132.507	1.00 10.98	ő
MOTA	2023	O	PRO	209	6.448		131.712	1.00 2.00	0
ATOM	2024	N	ASP	210 210	5.724 6.931		133.833 134.413	1.00 2.00 1.00 2.00	0
MOTA MOTA	2026 2027	CA CB	ASP ASP	210	6.755		134.614	1.00 31.00	ő
ATOM	2028	$\mathbf{C}G$	ASP	210	8.050		134.990	1.00 36.69	0
ATOM	2029		ASP	210	9.132		134.874	1.00 33.32 1.00 38.93	0
MOTA MOTA	2030 2031	C C	ASP ASP	210 210	7.989 7.304		135.396 135.729	1.00 38.93	0
ATOM	2032	0	ASP	210	6.448	57.320	136.496	1.00 28.60	0
ATOM	2033	N	LYS	211	8.608		135.966	1.00 4.23	0
ATOM ATOM	2035 2036	CA CB	LYS LYS	211 211	9. 17 0 10. 64 7		137.211 137.024	1.00 9.37 1.00 17.66	0
MOTA	2037	CG	LYS	211	10.941		136.345	1.00 29.60	Ō
ATOM	2038	CD	LYS	211	12.451		136.403	1.00 32.82	0
MOTA	2039	CE	LYS	211 211	12.852 14.336		135.809 135.852	1.00 42.70 1.00 41.45	0
ATOM ATOM	2040 2044	NZ C	LYS LYS	211	9.100		138.367	1.00 7.69	0
MOTA	2045	Ö	LYS	211	8.746		139.481	1.00 18.85	0
MOTA	2046	N	ASP	212	9.456		138.093 139.101	1.00 2.00 1.00 2.00	0
MOTA MOTA	2048 2049	CA CB	ASP ASP	212 212	9. 46 8 10. 32 2	61.669	138.624	1.00 39.78	Ö
ATOM	2050	CG	ASP	212	11.483	61.254	137.754	1.00 46.31	0
MOTA	2051		ASP	212	11.823		136.834	1.00 41.85	0
ATOM ATOM	2052 2053	OD2	ASP ASP	212 212	12.051 8. 074		137.987 139.412	1.00 46.28 1.00 2.00	Ő
ATOM	2054	Õ	ASP	212	7.943		139.903	1.00 41.82	0
MOTA	205 5	N	VAL	213	7.040		139.124	1.00 2.00	0
ATOM	2057	CA	VAL	213	5.669 5.137		139.340 138.050	1.00 2.00 1.00 2.00	0
MOTA MOTA	2058 2059	CB CG1	VAL VAL	213 213	3.652	61.247	137.922	1.00 2.00	Ő
ATOM	2060	CG2	VAL	213	5. 50 5	62.826	138.076	1.00 2.00	0
ATOM	2061	C	VAL	213	4.767		139.763	1.00 2.00	0
MOTA MOTA	2062 2063	N	VAL LEU	213 214	5.007 3. 74 8		139.390 140.564	1.00 2.00 1.00 21.53	0
ATOM	2065	CA.	LEU	214	2.815		141.022	1.00 19.34	ŏ
MOTA	2066	CB	LEU	214	2.742		142.543	1.00 14.66	0
ATOM	2067	CG	LEU	214	2. 37 1 3.507		143.097 142.816	1.00 15.86 1.00 9.71	0
MOTA	2068	CDI	LEU	214	3.301	50.411	142.010	1.00 7.71	V

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2069 2070 2071 2072 2074 2075 2076 2077 2079 2080 2081	CD2 C O N CA C O N CA CB CB	LEU LEU GLY GLY GLY TRP TRP	214 214 215 215 215 215 216 216 216 216	2.109 1.433 0.757 1.003 -0.299 -0.081 0.772 -0.824 -0.684 -2.030 -2.903	59.068 58.124 60.322 60.640 61.255 60.796 62.303 62.979 63.535	144.588 140.439 140.033 140.411 139.852 138.487 137.739 138.167 136.890 136.458 136.050	1.00 17.44 1.00 19.87 1.00 9.54 1.00 16.98 1.00 11.19 1.00 12.07 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2082 2083 2084 2085 2086 2088 2089 2090 2091 2092 2093	CD2 CE2 CE3 CD1 NE1 CZ2 CZ3 CH2 C	TRP TRP TRP TRP TRP TRP TRP TRP TRP GLY	216 216 216 216 216 216 216 216 216 216	-2.840 -3.806 -2.050 -3.879 -4.425 -4.005 -2.251 -3.217 0.310 0.261 1.213	61.741 60.713 61.865 61.860 60.811 59.812 60.970 59.961 64.101 64.883	134.804 134.865 133.648 136.789 136.087 133.809 132.605 132.695 136.985 137.926 136.021	1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2095 2096 2097 2098 2100 2101 2102 2103 2104 2105 2106	CA C O N CA CB CG CD OE1 OE2 C	GLY GLY GLU GLU GLU GLU GLU	217 217 217 218 218 218 218 218 218 218 218	2.199 2.312 1.627 3.189 3.434 4.198 5.082 6.577 7.056 7.276 4.232	65.245 65.928 65.559 66.923 67.686 68.978 69.595 69.562 70.519 68.589	136.028 134.675 133.720 134.594 133.364 133.729 132.641 132.987 133.631 132.616	1.00 15.52 1.00 10.15 1.00 26.84 1.00 23.86 1.00 22.47 1.00 65.82 1.00 67.96 1.00 67.00 1.00 68.41 1.00 63.29	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2107 2108 2110 2111 2112 2113 2114 2117 2118 2119	O N CA CB CG OD1 ND2 C O N	GLU ASN ASN ASN ASN ASN ASN ASN ASN	218 219 219 219 219 219 219 219 219 220	4.808 4.253 5.039 4.140 4.832 6.052 4.057 6.058 5.776 7.246	65.820 67.245 66.510 65.888 64.791 64.646 64.003 67.411 68.576 66.886	132.371 132.750 131.103 130.108 129.048 128.282 128.341 127.560 129.425 129.151	1.00 25.48 1.00 67.07 1.00 21.19 1.00 21.18 1.00 10.60 1.00 14.78 1.00 9.20 1.00 8.28 1.00 21.70 1.00 9.52 1.00 35.32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2121 2122 2123 2124 2125 2126 2127 2128 2130 2131 2132	CA CB CG OD1 OD2 C O N CA CB CG	ASP ASP ASP ARG ARG ARG ARG	220 220 220 220 220 220 221 221 221 221	8.266 9.585 9.469 9.083 9.778 7.763 8.045 6.986 6.427 5.578 6.251	66.900 65.673 64.584 65.797 68.148 69.262 67.287 67.552 66.382 65.056	126.661 126.444 125.127 124.672 124.739	1.00 34.19 1.00 48.55 1.00 92.38 1.00 48.43 1.00 92.09 1.00 33.44 1.00 47.84 1.00 22.98 1.00 22.11 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2133 2134 2136 2137 2140 2143 2144 2145 2147 2148 2149 2150 2152 2153	CD NE CZ NH1 NH2 C O N CA C O N CA C	ARG ARG ARG ARG ARG ARG GLY GLY GLY VAL VAL	221 221 221 221 221 221 221 222 222 222	5.241 5.828 6.785 7.255 7.285 5.546 5.164 5.188 4.328 2.939 2.142 2.1658 1.366	62.154 62.866 60.947 68.776 69.239 69.280 70.447 70.103 70.988 68.804 68.313	124.590 123.811 122.790 124.064 125.109 124.052 126.280 126.343 125.844 125.509 125.776	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2154 2155 2156 2157 2158 2160 2161 2162 2164 2165 2166 2168 2169 2170 2171 2172 2173 2174 2175	C VI O VI N SI CA SI CB SI OG SI O SI O SI O SI O SI O SI O SI O SI O	AL 22 AL 22 AL 22 ER 22 ER 22 ER 22 ER 22 ER 22 HE 22	3 2.3 1.3 2.4 -0.4 -0.4 -0.4 0.5 -0.5 -0.5 -1.5 -2.5 -2.5 -3.5 -2.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3	258 68 071 67 004 66 205 66 661 65 609 64 713 64 077 65 814 66 124 64 484 64 625 65 925 65 396 66 899 66 363 67 618	.762 .125 .431 .897 .825 .453 .003 .779 .706 .586 .489 .552 .248 .869 .241 .869	123.280 123.004 126.250 126.656 126.550 127.440 126.759 126.546 128.787 129.153 129.533 131.890 131.758 131.239 131.086 131.983 131.086	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.00 2.00 2.00 2.00 12.21 15.55 6.64 10.80 20.53 8.42 6.68 6.68 14.03 11.21 11.66 11.41 11.76 14.72	
MOTA	2176	C P	HE 22				130.957 129.966	1.00	6.68 15.31	0
MOTA MOTA	2177 2178		HR 22		663 63	.022	132.203	1.00	2.00	0
ATOM	2180		HR 22 HR 22				132.509 132.853	1.00	2.00 13.51	0
ATOM ATOM	2181 2182	OG1 T					133.094		13.51	Ö
MOTA	2184		HR 22				1 34.08 6 1 3 3. 68 6	1.00	13.51	0
ATOM ATOM	2185 2186		HR 22 HR 22				134.394		13.51	Ö
MOTA	2187	N P	HE 22				133.883	1.00	2.00	0
ATOM ATOM	2189 2190		HE 22				134.957 134.472	1.00	2. 0 0 18. 7 4	0
ATOM	2191		HE 22	7 0.	362 57	.793	133.131	1.00	21.51	0
MOTA	2192	CD1 P					133.034 131.954	-	18.55 20.45	0
ATOM ATOM	2193 2194	CD2 P					131.787	-	19.97	ő
MOTA	219 5	CE2 P	HE 22	7 0.	371 57	.948	130.698		14.44	0
MOTA MOTA	2196 2197		HE 22				130.612 135.562	1.00	17. 0 9 2. 0 0	0
MOTA	2198		HE 22		282 57	.668	134.888		20.11	0
MOTA	2199		LY 22	-			136.867 137.607		21.90 20.86	0
ATOM ATOM	2201 2202		LY 22 LY 22				137.807		24.57	Ö
MOTA	2203	0 G	LY 22	8 1.	365 55	.615	137.223	1.00	2.00	0
MOTA MOTA	2204 2206		LA 22 LA 22	-			138.704 138.971	1.00 1.00	2.00 2.00	0
ATOM	2207		LA 22				139.835	1.00	2.00	ŏ
MOTA	2208		LA 22				139.576	1.00	2.00 2.00	0
ATOM ATOM	2209 2210		LA 22 LU 23				139.460 140.220	1.00	2.00	Ö
ATOM	2212	CA G	LU 23	0 -0.	648 54	.881	140.875	1.00	2.00	0
ATOM ATOM	2213 2214		LU 23				141.647 143.111		66.07 71.18	0
ATOM	2215		LU 23				143.337	1.00	2.00	0
MOTA	2216	OE1 G					143.199	1.00	2.00	0
MOTA MOTA	2217 2218	OE2 G	L U 23 L U 23				143.663 139.862	1.00	2. 0 0 2. 0 0	Ö
MOTA	2219	0 G	LU 23	0 -2.	649 53	.922	139.96 6	1.00	60.28	0
MOTA MOTA	2220 2222		'AL 23 'AL 23				138.861 137.772	1.00 1.00	12.41 9.72	0
ATOM	2223		'AL 23		186 56	.789	136.717	1.00	2.00	Ö
MOTA	2224	CG1 V	'AL 23	1 -3.			135.718	1.00	2.00	0
MOTA MOTA	2225 2226	CG2 V	'AL 23 'AL 23				137.396 137.102	1.00	2.00	0 0
MOTA	2227	0 v	'AL 23	1 -3.	937 53	.966	136.849	1.00	2.00	0
MOTA	2228		AL 23				136.832 136.203	1.00	2. 0 0 2. 0 0	0
ATOM ATOM	2230 2231		'AL 23				136.203	1.00	2.00	0
ATOM	2232	cci v					135.548	1.00	2.00	Ō

MOTA MOTA MOTA MOTA	2233 2234 2235 2236 2238 2239	C N CA CB	VAL VAL VAL ALA ALA ALA	232 232 232 233 233 233	0.664 -2.533 -3.449 -2.217 -2.920 -2.297	52.724 135.3 51.413 136.9 50.787 136.4 51.292 138.2 50.395 139.1 50.487 140.5	92 1.00 2.00 54 1.00 2.00 75 1.00 38.57 73 1.00 38.57	0 0 0 0 0
ATOM ATOM ATOM	2240 2241 2242	И С	ALA	233 233	-4.426 -5.255	50.681 139.24 49.763 139.10	56 1.00 9.05	0
ATOM ATOM	2244 2245	CA CB	LYS LYS	234 234 234	-4.780 -6.177	51.954 139.39 52.355 139.43	77 1.00 2.00	0
MOTA	224 6	CG	LYS	234	-6. 27 0 -5. 77 6	53.843 139.80 54.160 141.20		0 0
MOTA MOTA	2247 2248	CD CE	LYS LYS	234 234	-6.667 -5. 91 6	53.499 142.29 53.151 143.56		0
ATOM	2249	NZ	LYS	234	-5.104	51.892 143.44		0
MOTA MOTA	2253 2254	C	LYS LYS	234 234	-6.920	52.036 138.18		0
ATOM	2255	N	PHE	234	-7.936 -6.389	51.319 138.20 52.532 137.06		0
MOTA	2257	CA	PHE	235	-6.973	52.319 135.73	3 1.00 14.37	ŏ
ATOM ATOM	2258 2259	CB CG	PHE PHE	235 235	-6. 05 5 -6. 43 8	52.880 134.64 52.452 133.24		0
MOTA	2260	CD1	PHE	235	-7.352	53.199 132.50	2 1.00 2.00	ő
ATOM ATOM	2261 2262	CD2	PHE PHE	235 235	-5.9 24 -7. 76 0	51.270 132.70 52.777 131.23		0
ATOM	2263	CE2	PHE	235 235	-6. 31 6	50.834 131.45		0
ATOM	2264	CZ	PHE	235	-7. 24 2	51.588 130.71		0
MOTA MOTA	2265 2266	C O	PHE PHE	235 235	-7. 22 9 -8. 31 2	50.849 135.44 50.471 134.97		0
MOTA	2267	N	LEU	23 6	-6.217	50.029 135.69	0 1.00 3.08	0
ATOM ATOM	2269 2270	CA CB	LEU LEU	236 236	~6. 33 9 -5. 01 8	48.606 135.44 47.900 135.73		0
MOTA	2271	CG	LEU	236	-3.915	48.136 134.71	0 1.00 2.00	0
MOTA MOTA	2 27 2 2 27 3		LEU LEU	236 236	-2.6 9 9 -4. 40 5	47.332 135.09 47.737 133.32		0
ATOM	2274	CDZ	LEU	236 236	-7. 45 2	47.978 136.27		Ô
ATOM	2275	0	LEU	236	-8.389	47.398 135.71		0
MOTA MOTA	2276 2278	N CA	HIS HIS	237 237	-7.368 -8.368	48.118 137.60 47.540 138.50		0
MOTA	2279	CB	HIS	237	-8.088	47.885 139.98	0 1.00 38.56	0
MOTA MOTA	2280 2281	CG CD2	HIS HIS	237 237	-9.141 -10.323	47.380 140.93 47.916 141.32		0 0
MOTA	2282		HIS	237	-9.035	46.173 141.59		Ö
ATOM	2284 2285		HIS	237	-10.103 -10.900	45.989 142.35		0
MOTA MOTA	2287	NE2	HIS HIS	237 237	-10.900 -9.747	47.031 142.21 48.033 138.13		0
MOTA	2288	0	HIS	237	-10.672	47.232 138.02	7 1.00 35.43	0
MOTA MOTA	2289 2291	N CA	LYS	238 238	-9.882 -11.183	49.346 137.94 49.923 137.60		0 0
MOTA	2292	CB	LYS	238	-11.071	51.424 137.32	7 1.00 28.00	0
MOTA MOTA	2293 2294	CG CD	LYS LYS	238 238	-12.427 -12.322	52.103 137.10 53.628 136.82		0 0
MOTA	2295	CE	LYS	238	-11.917	54.444 138.08	3 1.00 32.99	0
MOTA	2296	NZ	LYS	238	-11.833	55.925 137.84		0 0
ATOM ATOM	2300 2301	C O	LYS LYS	238 238	-11.776 -12.991	49.215 136.40 49.205 136.23	3 1.00 2.00 4 1.00 29.21	. 0
MOTA	2302	N	HIS	239	-10.913	48.607 135.58	4 1.00 2.00	0
MOTA MOTA	2304 2305	CA CB	HIS HIS	239 239	-11.340 -10.784	47.897 134.38 48.603 133.14		0
MOTA	2306	CG	HIS	239	-11.125	50.056 133.09	1 1.00 2.00	0
MOTA MOTA	2307		HIS	239	-12.282	50.689 132.78 51.046 133.39		0
ATOM	2308 2310		HIS HIS	239 239	-10.217 -10.797	52.225 133.28		0
ATOM	2311	NE2	HIS	239	-12.052	52.036 132.91	4 1.00 2.00	0
MOTA MOTA	2313 2314	C	HIS HIS	239 239	-10.946 -10.938	46.417 134.35 45.798 133.29	2 1.00 2.00 5 1.00 2.00	0
MOTA	2315	N	ASP	240	-10.642	45.838 135.50	3 1.00 37.96	0
MOTA MOTA	2317 2318	CA CB	ASP ASP	240 240	-10. 25 1 -11.482	44.433 135.56 43.512 135.73	34 1.00 37.83 17 1.00 39.81	0
017	5 J I O	~ L)		2 40	11.402		- ·	-

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2319 2320 2321 2322 2323 2324 2326 2327 2328 2329 2330 2331 2332 2333 2333 2333 2333 2333	OD1 OD2 C O N CA CB CG CD1 CD2 C O N CD2	ASP ASP LEU LEU LEU LEU LEU LEU LEU LEU LSP ASP ASP	240 240 240 240 241 241 241 241 241 241 242 242 242 242	-12.676 -12.687 -13.610 -9.393 -9.626 -8.417 -7.462 -7.086 -8.185 -7.795 -8.435 -6.255 -6.157 -5.235 -4.683 -5.751	43.571 44.578 43.985 42.933 44.823 44.551 45.858 46.590 48.047 45.899 43.925 43.832 43.534 42.895 40.511	133.797 134.040 132.955	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	47.06 50.73 47.58 37.76 40.81 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	000000000000000000000000000000000000000
ATOM ATOM	2339 2340		ASP	242 242	-4.149 -2.711	39.404 43.506	133.976 133.033	1.00	15.37 2.00	0
MOTA MOTA	2341 2342		ASP LEU	242 243	-1.7 0 2 -2. 68 9		133.671 131.994	$1.00 \\ 1.00$		0
MOTA	2344		LEU	243	-1.440		131.539	1.00	18.84	0
MOTA MOTA	2345 2346		LEU LEU	243 243	-0. 644 0. 69 8		130.822 130.097	$\frac{1.00}{1.00}$	2.00 2.00	0
MOTA	2347	CD1		243	0.410	43.690	128.660	1.00	2.00	ŏ
ATOM	2348	CD2		243	1.526		130.397	1.00	2.00	0
MOTA MOTA	2349 2350		LEU LEU	243 243	-1.804 -2.960		130.590 130.183	1.00 1.00	19.91 2.00	0
MOTA	2351		ILE	244	-0.834	46.849	130.283	1.00	24.04	Ö
MOTA	2353		ILE	244	-1.070		129.354	1.00		0
MOTA MOTA	2354 2355		ILE ILE	244 244	-1.164 -1.235		130.067 129.026	1.00 1.00	2.00 2.00	0
ATOM	2356		ILE	244	-2. 39 5		130.994	1.00	2.00	Ö
MOTA	2357	CD1	ILE	244	-2.607		131.803	1.00	2.00	0
MOTA MOTA	2358 2359		ILE ILE	244 244	0. 06 9 1.2 3 4		128.369 128.755	1.00	25.54	0
MOTA	2360		CYS	245	-0.286		127.096	1.00	2.00	ŏ
MOTA	2362	CA (CY S	245	0.675		126.019	1.00	2.00	0
MOTA	2363 2364		CYS CYS	245 245	0. 40 3 1. 84 9		125.077 124.986	1.00	7.03 12.49	0
MOTA MOTA	2365		CYS	245	0.668		125.275	1.00	2.00	Ö
ATOM	2366	0	CY S	245	-0.362	49.842	124.782	1.00	8.03	O
MOTA	2367		ARG	246	1.829		125.235 124.562	1.00	2.00	0
MOTA MOTA	2369 2370		ARG ARG	246 246	1.987 1.763	51.277 52.438	125.541	1.00	2.00	ő
MOTA	2371		ARG	246	2.658	52.453	126.783	1.00	2.00	O
MOTA	2372		ARG	246	3.969		126.623	1.00	2.00	0
ATOM ATOM	2373 2 37 5		ARG ARG	246 246	3.714 4.610		126.383 126.519	1.00	2.00 2.00	ő
ATOM	2376	NH1		246	5.842	55.334	126.895	1.00	2.00	0
MOTA	2379	NH2		246	4.263		126.289	1.00	2.00	0
MOTA MOTA	2382 2383		ARG ARG	246 246	3.374 4.216		123.938 124.168	1.00	2.00	0 0
ATOM	2384		ALA	247	3.605		123.108	1.00	2.00	Ō
MOTA	2386		ALA	247	4.906		122.484	1.00	2.00	0
MOTA MOTA	2387 2388		ALA ALA	247 247	4.791 5.351		120.975 122.819	1.00	61.76	0 0
ATOM	2389		ALA	247	5.806		123.922	1.00	61.76	ŏ
MOTA	2390	N	HIS	248	5.187	54.801	121.870	1.00	2.00	0
MOTA MOTA	2392 2393		HIS HIS	248 248	5. 51 2 6. 95 9		122.042 122.361	1.00	2.00 2.00	0
MOTA	2394		HIS	248	7.507		121.672	1.00	2.00	0
MOTA	2395	CB .	HIS	248	4.539	56.793	123.054	1.00	2.00	0
MOTA	2396		HIS	248 248	4.255 5.262		122.837 122.594	1.00	2.00	0
MOTA MOTA	2397 2398	ND1 CE1		248	4.677		122.535	1.00	2.00 2.00	0
MOTA	2399	CD2		248	3.074		122.913	1.00	2.00	Ö

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2400 2402 2404 2405 2406 2407 2408 2409 2412 2413 2414 2416 2417 2418 2419	NE2 HIS N GLN CA GLN CB GLN CCD GLN OE1 GLN NE2 GLN C GLN O GLN N VAL CA VAL CB VAL CG1 VAL CG2 VAL	248 249 249 249 249 249 249 250 250 250 250	3.359 7.588 8.967 9.010 7.987 8.159 7.871 8.640 10.052 9.884 11.185 12.339 13.571 14.641 13.161	56.283 5 56.722 5 57.759 5 58.253 5 59.406 5 57.389 5 55.222 5 54.057 1 55.664 5 55.664 5 55.628 1 54.714 1 56.708 1	123.348 123.731 125.192 125.566 126.983 127.274 123.529 123.888 122.988 122.735 122.300 121.706 121.311	1.00 2.00 1.00 7.57 1.00 7.57 1.00 30.82 1.00 32.63 1.00 39.63 1.00 32.74 1.00 7.57 1.00 28.32 1.00 20.32 1.00 20.32 1.00 6.81 1.00 6.81	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2420 2421 2422 2424 2425 2426 2427 2428 2429 2430 2432	C VAL O VAL N VAL CA VAL CG VAL CG2 VAL C VAL O VAL N GLU CA GLU	250 250 251 251 251 251 251 251 252 252	12.733 12.471 13.372 13.820 12.655 11.778 11.803 14.960 14.792 16.118 17.312	52.887 1 52.023 1 51.150 1 51.967 1 50.661 1 51.167 1 50.470 1 51.224 1	125.120 123.797 124.871 125.391 126.311	1.00 20.32 1.00 6.81 1.00 2.00 1.00 2.00 1.00 9.99 1.00 9.99 1.00 2.00 1.00 9.99 1.00 21.55 1.00 19.34	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2432 2433 2434 2435 2436 2437 2438 2439 2440 2442 2443	CA GLU CG GLU CD GLU OE1 GLU C GLU C GLU C GLU N ASP CA ASP CB ASP	252 252 252 252 252 252 252 252 253 253	18.452 19.819 20.926 21.938 20.782 17.144 17.838 16.240 16.025 16.125	50.605 1 50.220 1 49.966 1 49.303 1 50.422 1 49.055 1 48.571 1 48.356 1 46.936 1	125.542 124.933 125.962 125.597 127.126 124.145 123.261 124.815	1.00 19.34 1.00 11.04 1.00 18.95 1.00 20.82 1.00 17.37 1.00 29.06 1.00 19.22 1.00 8.64 1.00 2.00 1.00 2.00 1.00 78.16	0000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2444 24445 24446 24447 24449 2451 2453 2453	CG ASP OD1 ASP OD2 ASP C ASP O ASP N GLY CA GLY C GLY N TYR	253 253 253 253 253 254 254 254 254 255	17.543 18.060 18.148 14.710 14.201 14.161 12.919 11.715 10.694 11.823	46.106 1 44.995 1 47.181 1 46.645 1 45.528 1 47.660 1 47.483 1 47.547 1 48.124 1	L26.401	1.00 84.05 1.00 89.15 1.00 87.62 1.00 2.00 1.00 63.68 1.00 2.00 1.00 2.00 1.00 2.00 1.00 43.70 1.00 2.00	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2456 2457 2458 2459 2460 2461 2462 2463 2464 2466 2467	CA TYR CB TYR CG TYR CD1 TYR CE1 TYR CD2 TYR CE2 TYR CZ TYR CH TYR CTYR CTYR CTYR CTYR CTYR CTYR CTYR C	255 255 255 255 255 255 255 255 255 255	10.749	46.956 1	125.484 125.571 126.185 125.696 126.248 127.246 127.802 127.301 127.839 126.847	1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2468 2470 2471 2472 2473 2474 2475 2476 2477 2478 2480	N GLU CA GLU CB GLU CD GLU OE1 GLU OE2 GLU C GLU O GLU N PHE CA PHE	256 256 256 256 256 256 256 256 256 257 257	10.336 10.632 11.092 11.264 11.485 10.726 12.418 9.362 8.299 9.474 8.357	47.853 1 48.341 1 49.798 1 50.457 1 51.961 1 52.725 1 52.378 1 48.238 1	127.656 128.979 128.910 130.269 130.179 130.834 129.453 129.420 130.919	1.00 2.00 1.00 2.00 1.00 20.70 1.00 27.98 1.00 31.28 1.00 39.87 1.00 2.00 1.00 18.74 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0 0

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2481 2483 2484 2485 2486 2487 2488 2489 2490 2493 2494 2496	CD2 CE1 CE2 CZ C O N CA CB CG CD1	PHE PHE PHE PHE PHE PHE PHE PHE PHE PHE	257 257 257 257 257 257 257 258 258 258 258 258	8.578 8.222 9.187 6.906 8.849 6.560 7.533 8.257 9.215 7.104 6.884 6.417 5.831 6.625 4.468	46.139 44.865 43.926 44.594 42.740 43.417 42.481 48.593 49.360 48.777 49.916 51.086 52.237 53.325 52.271	131.694 131.649 131.101 131.058 130.781 132.671 132.782 133.286 134.147	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 25.02 1.00 25.02 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
MOTA	2497		PHE	25 8	6.070	54.439	135.070 135.003	1.00 2.00	0
ATOM ATOM	2498 2499	CE2 CZ	PHE	258 258	3.900 4.698		135.003	1.00 2.00 1.00 2.00	0
MOTA	2500	C	PHE	258	5.837	49.508	135.160	1.00 25.02	ŏ
ATOM	2501	0	PHE	258 [*] 259	4.965		134.859	1.00 2.00	0
MOTA MOTA	2502 2504	N CA	ALA ALA	259 259	5. 95 3 5.027	50.063 49.775	136.368 137.457	1.00 13.61 1.00 11.22	0
MOTA	2505	CB	ALA	259	3.626	50.318	137.122	1.00 2.00	0
ATOM	2506	C	ALA	259	4.951		137.729	1.00 12.73 1.00 2.00	0
ATOM ATOM	2507 2508	O N	ALA LYS	259 260	3.876 6.091		137.660 138.016	1.00 2.00	0
ATOM	2510	CA	LYS	260	6.140	46.214	138.304	1.00 9.39	0
ATOM ATOM	2511 2512	CB CG	LYS LYS	260 260	5. 594 6. 58 9		139.704 140.844	1.00 20.75 1.00 28.17	0
ATOM	251 2	CD	LYS	260	6.797	47.622	141.177	1.00 36.91	Ö
MOTA	2514	CE	LYS	260	7.615		142.449	1.00 36.02	0
ATOM	2515	NZ	LYS	260	6. 91 9 5. 37 0		143.633 137.279	1.00 29.33 1.00 2.00	0
ATOM ATOM	2519 2520	C O	LYS LYS	260 260	4.443		137.641	1.00 15.95	ő
ATOM	2521	N	ARG	261	5.764	45.531	136.004	1.00 2.00	0
MOTA	2523	CA	ARG	261	5.173		134.851 134.964	1.00 2.00 1.00 21.35	0
ATOM ATOM	2524 2525	CB CG	ARG ARG	261 261	5. 41 0 6. 88 1		134.928	1.00 21.35	Õ
ATOM	2526	CD	ARG	261	7.088	41.473	134.970	1.00 9.03	0
MOTA	2527	NE CZ	ARG	261	8.408		134.460 134.222	1.00 14.18 1.00 14.38	0
MOTA MOTA	2529 253 0	CZ NH1	ARG ARG	261 26 1	8.801 7. 97 6		134.462	1.00 14.30	Ö
ATOM	253 3		ARG	261	10.018	39.603	133.729	1.00 18.11	0
MOTA	2536	C	ARG	261	3.692		134.592	1.00 2.00 1.00 21.35	0
MOTA MOTA	2537 2538	N O	ARG GLN	261 262	3. 00 9 3. 21 5		133.933 135.092	1.00 21.35 1.00 7.73	0
ATOM	2540	CA	GLN	262	1.821		134.927	1.00 7.73	0
ATOM	2541	СВ	GLN	262	1.379		136.100	1.00 2.00	0
ATOM ATOM	2542 2543	CG CD	GLN GLN	262 262	1.106 0.859	46.888	137.434 138.601	1.00 2.00 1.00 2.00	0
ATOM	2544	OE1	GLN	262	-0.277		138.930	1.00 2.00	0
ATOM	2545		GLN	262	1.922		139.237	1.00 2.00	0
MOTA MOTA	2548 2549	C	GLN GLN	262 262	1.635 0.526		133.628 133.154	1.00 7.73 1.00 2.00	0
ATOM	2550	N	LEU	263	2.730		133.078	1.00 2.00	0
ATOM	2552	CA	LEU	26 3	2.723		131.819	1.00 2.00	0
ATOM ATOM	2553 2554	CB CG	LEU LEU	263 263	2. 754 3. 0 70		132.069 130.890	1.00 2.00 1.00 2.00	0
ATOM	255 5		LEU	26 3	2.404		131.133	1.00 2.00	0
ATOM	2556		LEU	263	4.575		130.679	1.00 2.00	0
ATOM ATOM	2557 2558	C O	LEU LEU	263 263	3. 9 91 5.018	48.305 48.082	131.089 131.736	1.00 2.00 1.00 2.00	0
ATOM	2559	N	VAL	264	3.932	48.207	129.759	1.00 42.92	Ö
MOTA	2561	CA	VAL	264	5.105	47.850	128.949	1.00 41.59	0
MOTA	25 62	CB CC1	LAV	264	5.014 3.952		128.433 127.372	1.00 2.00 1.00 2.00	0
ATOM ATOM	2563 2564		JAV JAV	264 264	3.952 6. 34 9	45.908	127.372	1.00 2.00	0
ATOM	2565	Ċ	VAL	264	5.193		127.772	1.00 42.79	0

MOTA MOTA MOTA MOTA	2566 2567 2569 2570	O N CA CB	VAL THR THR THR	264 265 265 265	4.164 6.409 6.639 7.420	49.261 127 49.237 127 50.177 126 51.412 126	. 40 0 . 29 2	1.00 1.00 1.00	2.00 2.00 2.00	0
MOTA	2571	OG1	THR	265	6.534	52.253 127	. 531	1.00	2. 0 0 2. 0 0	0
MOTA MOTA	2573	CG2	THR	265	8.021	52.191 125		1.00	2.00	0
ATOM	2574 2575	C	THR THR	265 265	7.405 8.612	49.523 125. 49.245 125.		1.00	2.00 2.00	0
ATOM	2576	N	LEU	266	6.712	49.280 124.		1.00	7.19	Ö
MOTA	2578	CA	LEU	266	7.330	48.653 122.		1.00	7.19	0
ATOM ATOM	25 7 9 2580	CB CG	LEU LEU	266 266	6.338 5.815	47.721 122. 46.505 122.		1.00	2.00	0
ATOM	2581		LEU	26 6	4.859	45.733 122.		1.00	2.00 2.00	0
MOTA	2582		LEU	266	6.955	45.599 123.	368	1.00	2.00	ő
ATOM ATOM	2583 2584	C	LEU LEU	26 6	7.898	49.618 121.		1.00	7.19	0
ATOM	2585	О	PHE	266 267	7.329 9.033	50.675 121. 49.249 121.		1.00	2.00 2.00	0
MOTA	2587	CA	PHE	267	9.665	50.068 120.		1.00	2.00	ő
ATOM	258 8	CB	PHE	267	10.763	50.960 120.		1.00	2.00	0
ATOM ATOM	2589 2590	CG CD1	PHE PHE	267 267	10.937 9.985	52.260 120. 53.261 120.		1.00 1.00	2.00 2.00	0
ATOM	2591		PHE	267	12.021	52.468 119.		1.00	2.00	0
MOTA	2592	CE1	PHE	267	10.108	54.445 119.	493	1.00	2.00	ŏ
ATOM ATOM	2593 2594	CE2 CZ	PHE	267 267	12.146	53.652 118.		1.00	2.00	0
ATOM	2595	C	PHE PHE	267	11.187 10.246	54.636 118. 49.076 119.		1.00 1.00	2.00 2.00	0
ATOM	2596	ō	PHE	267	11.418	48.693 119.	321 1	1.00	2.00	Ö
ATOM	2597	N	SER	268	9.387	48.638 118.			12.94	0
ATOM ATOM	2599 2600	CA CB	SER Ser	268 268	9.707 8.420	47.648 117. 47.043 116.			12.94 11.11	0
ATOM	2601	OG	SER	268	7.593	46.579 117.			11.11	Ô
MOTA	2603	C	SER	268	10.450	48.231 116.	103 1	L.00	12.94	0
ATOM ATOM	2604 2605	0 N	SER Ala	268 269	10.150 11.391	49.344 115. 47.454 115.			11.11	0
MOTA	2607	CA	ALA	269	12.222	47.779 114.			71. 0 1 71.7 2	0
ATOM	2608	CB	ALA	269	11.383	48.513 113.			82.00	Ö
ATOM	2609	C	ALA	269	13.585	48.469 114.			74.82	0
ATOM ATOM	2610 2611	N O	ALA PRO	2 6 9 2 7 0	14.609 13.619	47.889 114. 49.704 115.			91.21 28.82	0
ATOM	2612	CD	PRO	270	12.436	50.466 115.		L . 0 0	2.00	Ö
ATOM	2613	CA	PRO	270	14.788	50.542 115.			31.86	0
MOTA MOTA	2614 2615	CB CG	PRO PRO	270 270	14.340 13.034	51.374 116. 51.783 116.		L. 0 0 L. 0 0	2.00 2.00	0
MOTA	2616	C	PRO	270	16.254	50.192 115.			29.52	Ö
MOTA	2617	0	PRO	270	16.716	49.072 115.		L. 0 0	2.00	0
MOTA MOTA	2618 2620	N CA	ASN ASN	271 271	16.928 18.346	51.318 115. 51.621 115.		L. 0 0 L. 0 0	2.00 2.00	0
ATOM	2621	CB	ASN	271	19.168	50.935 114.			35. 9 6	ő
MOTA	2622	CG	ASN	271	18.483	50.953 113.	300 1		61.9 6	0
MOTA	2623		ASN	271	17.605	51.787 113.			36.11	0
MOTA MOTA	2624 2627	ND2 C	ASN ASN	271 271	18.872 18.199	50.015 112. 53.143 115.		L. 0 0 L. 0 0	36.31 2. 0 0	Ô
ATOM	2628	Ö	ASN	271	19.072	53.807 114.	915 1	L.00	61.6 9	0
MOTA	2629	N	TYR	272	17.039	53.638 115.		1.00	2.00	0
MOTA MOTA	2631 2632	CA CB	TYR TYR	272 272	16. 48 9 15. 7 72	54.978 115. 55.358 117.		L.00 L.00	2. 0 0 17. 3 3	0
ATOM	2633	CG	TYR	272	14.528	56.208 116.			10.41	Ö
MOTA	2634	CD1	TYR	272	13.458	55.769 116.	105	1.00	11.86	0
ATOM	2635	CEI	TYR	272	12.313	56.571 115. 57.454 117.			14.32	0
MOTA MOTA	2636 2637	CD2 CE2	TYR TYR	272 272	14.421 13.287	57.454 117. 58.256 117.			10.66 15.43	0
MOTA	2638	CZ	TYR	272	12.243	57.813 116.	52 9	1.00	9.40	0
ATOM	2639	ОН	TYR	272	11.143	58.636 116.			17.38	0
MOTA MOTA	2641 2642	C O	TYR TYR	272 272	17.332 18.356	56.132 115. 56.471 115.		1.00 1.00	2.00 29.84	0
ATOM	2643	N	CYS	273	16.860	56.731 114.	201	1.00	7.24	Ö
MOTA	2645	CA	CYS	27 3	17.490	57.875 113.		1.00	6.82	0
MOTA	2646	CB	CYS	273	17.203	59,167,114.	15.5	1.00	11.61	Ú

MOTA MOTA MOTA MOTA MOTA MOTA	2647 2648 2649 2650 2652 2653 2654	SG C O N CA C	CYS CYS CYS GLY GLY GLY	273 273 273 274 274 274 274	15.496 19.010 19.738 19.498 20.934 21.710 22.817	57.724 58.717 56.502 56.303 57.029 57.515	113.512 113.185 113.044 114.134 113.906	1.00 10.42 1.00 8.43 1.00 9.04 1.00 13.82 1.00 13.82 1.00 13.82 1.00 39.65	0 0 0 0 0 0
MOTA MOTA MOTA	2655 2657 2658	N CA CB	GLU GLU GLU	275 275 27 5	21.120 21.719 21.479	57.764	115.326 116.467 116.340	1.00 92.80 1.00 91.32 1.00 25.01	0 0 0
MOTA	2659	C G	GLU	275 275	19.994 19.730		116.224 116.060	1.00 31.82 1.00 30.92	0
MOTA MOTA	2660 2661	OE1	GLU GLU	27 5	18.951	61.713	116.868	1.00 38.31	0
ATOM	2662 2663	OE2 C	GLU GLU	275 275	20.276 21.137		115.125 117.794	1.00 34.18 1.00 90.32	0
MOTA MOTA	2664	ō	GLU	275	20.941	58.047	118.716	1.00 23.69	0
MOTA	2665	N	PHE	276 276	20.868 20.303		117.901 119.134	1.00 18.78 1.00 17.07	0
ATOM ATOM	2667 2668	CA CB	PHE PHE	276 276	18.774		119.125	1.00 17.07	Ö
ATOM	2669	CG	PHE	276	18.280		119.652	1.00 35.89	0
ATOM ATOM	2670 2671	CD1 CD2		276 276	17.522 18.572		118.849 120.949	1.00 35.53 1.00 39.17	0
MOTA	2672	CE1	PHE	276	17.067		119.329	1.00 31.45	0
ATOM ATOM	2673 2674	CE2 CZ	PHE PHE	276 276	18.123 17.367		121.434 120.621	1.00 36.03 1.00 39.75	0
ATOM	2675	c	PHE	27 6	20.681	53.992	119.597	1.00 17.79	0
ATOM ATOM	2676 2677	O N	PHE ASP	276 277	20.463 21.213		120.772 118.712	1.00 38.38 1.00 27.69	0
ATOM	2679	CA	ASP	2 7 7	21.638		119.093	1.00 27.89	ŏ
MOTA	2680	CB	ASP	2 7 7 2 7 7	22.884 23.231	_	120.018 120.716	1.00 0.27 1.00 39.20	0
MOTA MOTA	2681 2682	CG OD1	ASP ASP	277 2 7 7	23.231		121.964	1.00 39.20	Õ
MOTA	2683		ASP	277	23.576		120.036	1.00 39.20	0
ATOM ATOM	2684 2685	С 0	ASP ASP	277 277	20.560 20.761		119.742 119.918	1.00 26.41 1.00 0.76	Ö
MOTA	2686	N	ASN	278	19.428	51.491	120.101	1.00 2.00	0
ATOM ATOM	2688 2689	CA CB	asn asn	278 278	18.3 4 4 17.1 4 2		120.722 120.920	1.00 2.00 1.00 2.00	0
ATOM	2690	CG	ASN	278	16.394	51.930	119.639	1.00 2.00	0
ATOM	2691		ASN	278 278	16.867. 15.225		118.765 119.510	1.00 2.00 1.00 2.00	0
ATOM ATOM	2692 2695	C	ASN ASN	278	17.938	49.602	119.829	1.00 2.00	Ŏ
ATOM	2696	0	ASN	278	17.970		118.600	1.00 2.00 1.00 14.31	0
MOTA MOTA	2697 2 69 9	N CA	ALA ALA	279 279	17.603 17.133		120.454 119.734	1.00 14.31	Ö
MOTA	2700	CB	ALA	279	17.281		120.594	1.00 2.00	0
MOTA MOTA	2701 2702	C O	ALA ALA	279 279	15.655 15.155		119.498 119.996	1.00 14.31 1.00 2.00	0
MOTA	2703	Ŋ	GLY	280	14.959	46.788	118.743	1.00 2.00	0
MOTA MOTA	2705 2706	CA C	GLY GLY	280 280	13.5 4 9 12.864		118.484 118.992	1.00 2.00 1.00 2.00	0
ATOM	2707	Ö	GLY	280	13.381	44.698	118.799	1.00 9.35	0
MOTA	2708	N	ALA	281	11. 72 5 11. 0 82		119.643 120.167	1.00 2.00 1.00 2.00	0 0
MOTA MOTA	2710 2711	CA CB	ALA ALA	281 281	10.799		120.167	1.00 2.00	0
MOTA	2712	C	ALA	281	9.815		119.437	1.00 2.00	0
MOTA MOTA	2713 2714	N O	ALA MET	281 282	9.451 9.140		118.473 119.918	1.00 2.00 1.00 14.19	0
MOTA	2716	CA	MET	28 2	7.907	42.833	119.315	1.00 14.19	0
MOTA MOTA	2717 2718	CB CG	MET MET	28 2 28 2	8.232 7.056		117.995 117.060	1.00 25.98 1.00 24.91	0
MOTA	2719	SD	MET	28 2	7.304	40.449	115.980	1.00 25.45	0
MOTA MOTA	2720 2721	CE C	MET MET	282 282	9.044 7.397		115.525 120.363	1.00 21.20 1.00 14.19	0
MOTA	2722	0	MET	282 282	8.142	40.972	120.790	1.00 24.98	0
MOTA MOTA	2723 2 72 5	N CA	MET MET	283 283	6.148 5. 59 2		120.788 121.825	1.00 2.00 1.00 2.00	0
ATOM	2726	CB	MET	283	4.940		122.925	1.00 19.29	0

ATOM	2727	CG	MET	283	4.481	41.205	124.142	1.00 19.76	0
MOTA	2728	SD	MET	28 3	3.228	42.077	125.116	1.00 20.92	0
MOTA	272 9	CE	MET	283	4.204		125.966	1.00 17 38	ő
ATOM	2730	C	MET	283	4.592		121,335	1.00 2.00	ő
ATOM	2731	0	MET	283	3.456	40 470	121.036	1.00 16.17	
ATOM	2732	N	SER	284	5.012	38 871	121.291	1.00 2.00	0
ATOM	2734	CA	SER	284	4.148		120.869		0
ATOM	2735	CB	SER	284	4.991		120.220		0
ATOM	2736	OG	SER	284	6.376			1.00 20.90	0
MOTA	2738	C	SER				120.528	1.00 23.67	0
MOTA	2739	Ö		284	3.275		122.018	1.00 2.00	0
			SER	284	3.777		122.978	1.00 26.24	0
ATOM	2740	N	VAL	285	1.967		121.894	1.00 2.00	0
ATOM	2742	CA	VAL	285	0.979		122.859	1.00 2.00	0
MOTA	2743	CB	VAL	285	-0.091		123.056	1.00 2.00	0
ATOM	2744		VAL	285	-0.952	37.714	124.262	1.00 2.00	0
MOTA	2745		VAL	28 5	0.572	39.381	123.171	1.00 2.00	0
MOTA	2746	С	VAL	285	0.274	35.644	122.417	1.00 2.00	ō
MOTA	2747	0	VAL	285	-0.572	35.672	121.532	1.00 2.00	ŏ
MOTA	2748	N	ASP	28 6	0.609		123.026	1.00 2.00	ŏ
MOTA	2750	CA	ASP	28 6	-0.056		122.663	1.00 2.00	ő
MOTA	2751	CB	ASP	28 6	0.771		123.071	1.00 22.05	Ö
ATOM	2752	CG	ASP	286	1.192		124.531	1.00 24.93	
ATOM	2753		ASP	286	0.578		125.344	1.00 24.93	0
ATOM	2754		ASP	286	2.152		124.866	1.00 32.49	0
ATOM	2755	C	ASP	286	-1.494	33.141			0
ATOM	2756	Õ	ASP	28 6	-1.993			1.00 2.00	0
ATOM	2757	N	GLU	287	-2.144		123.881	1.00 12.72	0
ATOM	2759	CA	GLU	287	-3.543	32.036		1.00 28.94	0
ATOM	2760	CB	GLU			31.744		1.00 28.07	0
ATOM	2761			287	-3. 91 2	30.340		1.00 59.96	0
ATOM	2762	CG	GLU	287	-3.610		121.177	1.00 66.13	0
ATOM		CD	GLU	287	-2.139		120.890	1.00 70.85	0
	2763		GLU	287	-1.712	29.890		1.00 75.38	0
MOTA	2764		GLU	287	-1.412	29.315		1.00 73.00	0
MOTA	2765	C	GLU	287	-3.876		124.638	1.00 30.16	0
MOTA	2766	0	GLU	287	-5.017		125.029	1.00 62.37	0
MOTA	2767	N	THR	288	-2.852		125.455	1.00 41.83	0
MOTA	2769	CA	THR	288	-2.995	31.665		1.00 36.69	0
MOTA	2770	СВ	THR	288	-2.269	30.449		1.00 11.26	0
MOTA	2771		THR	288	-0.865	30.552		1.00 11.65	0
MOTA	2773	CG2	THR	28 8	-2,827	29.171	126.800	1.00 11.00	0
MOTA	2774	C	THR	288	-2.461		127.53 3	1.00 36.73	0
MOTA	2775	О	THR	28 8	-2.015	32. 94 8		1.00 18.83	0
MOTA	2 77 6	N	LEU	28 9	-2.492		126.776	1.00 6.34	0
MOTA	2 77 8	CA	LEU	28 9	-2.027	35.334	127.232	1.00 2.00	0
MOTA	277 9	CB	LEU	289	-3.081	35.946	128.15 5	1.00 2.00	0
ATOM	2 78 0	CG	LEU	289	-4.282	36.465	127.346	1.00 2.00	0
MOTA	2781	CD1	LEU	289	-5.390	36.973	128.263	1.00 2.00	0
MOTA	278 2	CD2	LEU	289	-3.817	37.593	126.412	1.00 2.00	0
MOTA	278 3	C	LEU	289	-0.615		127.826	1.00 2.00	0
MOTA	2784	0	LEU	289	-0.299	36.445	128.493	1.00 2.00	0
MOTA	2785	N	MET	290	0.244	34.475	127.566	1.00 20.85	0
MOTA	2787	CA	MET	290	1.619	34.548		1.00 23.75	0
MOTA	2788	CB	MET	290	2.238	33.156		1.00 24.81	0
ATOM	2789	CG	MET	290	3.717	33.200		1.00 23.46	0
ATOM	2790	SD	MET	290	4.726	31.867		1.00 26.75	Ō
ATOM	2791	CE	MET	290	5.196	32.555		1.00 29.16	Ö
ATOM	2792	C	MET	290	2.430	35.332		1.00 19.20	Ö
ATOM	2793	0	MET	290	2.545	34.910		1.00 19.20	Ö
ATOM	2794		CYS	291	3.003		127.449		0
ATOM		N			3.003				
	2796	CA	CYS	291		37.336		1.00 2.00	0
ATOM	2797	CB	CYS	291	3.624	38.773		1.00 17.87	0
ATOM	2798	SG	CYS	291	1.913		127.404	1.00 13.14	0
ATOM	2799	C	CYS	291	5.293		126.465	1.00 2.00	0
ATOM	2800	0	CYS	291	5.958		127.448	1.00 23.09	0
ATOM	2801	N	SER	292	5.808	37.187		1.00 5.71	0
MOTA	2803	CA	SER	292	7.223	36.977		1.00 9.30	0
ATOM	2804	CB	SER	292	7.385	35.709	124.098	1.00 12.57	0
ATOM	2805	Oc:	SER	292	€ 548	34.675	124.593	1.00 20 05	()

ATOM MOTA	2807 2808 2809	C O N CA	SER SER PHE PHE	292 292 293 293	7.691 6.867 8.993 9.526	38.195 38.867 38.487 39.623	124.113 123.485 124.128 123.385	1.00 4.04 1.00 14.24 1.00 2.00 1.00 2.00	0 0 0
MOTA MOTA	2811 2812	CB	PHE	29 3	10.077	40.676	124.337	1.00 17.01	ŏ
MOTA	2813	CG	PHE	293	9.063		125.270 126.466	1.00 19.48 1.00 23.05	0
MOTA MOTA	2814 2815	CD1 CD2	PHE PHE	293 293	8. 77 2 8. 41 4		124.967	1.00 21.44	0
ATOM	2816	CE1	PHE	293	7.852	41.146	127.352	1.00 24.82	0
MOTA	2817	CE2	PHE	29 3 29 3	7. 494 7. 21 3		125.845 127.044	1.00 20.24 1.00 22.28	0
ATOM ATOM	2818 2819	CZ C	PHE PHE	29 3	10.641		122.412	1.00 2.00	ŏ
MOTA	2820	0	PHE	293	11.715		122.853	1.00 17.14	0
ATOM	2821	N	GLN GLN	294 294	10.390 11. 40 4		121.104 120.060	1.00 2.00 1.00 2.00	0
ATOM ATOM	2823 2824	CA CB	GLN	294	10.748		118.743	1.00 14.58	õ
MOTA	2825	CG	GLN	294	10.074	37.383	118.798	1.00 22.67	0
MOTA	2826 2827	CD OE1	GLN GLN	294 294	8.684 7.835		118.179 118.535	1.00 24.62 1.00 27.17	0
MOTA MOTA	2828	NE2	GLN	294	8.441		117.258	1.00 25.84	õ
MOTA	2831	С	GLN	294	12.182		119.855	1.00 2.00	0
MOTA	2832 2833	N O	GLN ILE	294 295	11.587 13.507		119.660 119.893	1.00 20.63 1.00 11.23	0
ATOM ATOM	2835	CA	ILE	29 5	14.356		119.772	1.00 12.32	ŏ
MOTA	2836	CB	ILE	295	15.400		120.968	1.00 10.45	0
ATOM ATOM	2837 2838	CG2 CG1	ILE	29 5 29 5	16.277 14.674		120.886 122.324	1.00 10.45 1.00 10.45	0
ATOM	2839	CD1	ILE	29 5	13.756		122.580	1.00 10.45	Õ
MOTA	2840	C	ILE	295	15.126		118.453	1.00 7.79	0
ATOM ATOM	2841 2842	о И	ILE LEU	295 296	15.723 15.087		117.974 117.873	1.00 10.45 1.00 11.71	ő
MOTA	2844	CA	LEU	296	15.824	43.235	116.658	1.00 13.33	0
MOTA	2845	CB	LEU	296	14.987		115.717 114.946	1.00 24.46 1.00 22.89	0
ATOM ATOM	2846 2847	CG CD1	LEU	296 296	13.835 12.626		115.862	1.00 22.12	Ö
MOTA	2848	CD2	LEU	29 6	13.499	44.331	113.732	1.00 19.71	0
MOTA	2849	C	LEU	296	16.965		117.224 117.485	1.00 13.82 1.00 13.73	0
MOTA MOTA	2850 2851	N O	LEU LYS	296 297	16.785 18.135	43.454	117.483	1.00 2.00	ŏ
ATOM	2853	CA	LYS	297	19.319	44.087	117.997	1.00 2.00	0
MOTA	2854 2855	CB	LYS	297 297	20.224 · 20.792	42.971 42.094	118.527 117.419	1.00 79.20 1.00 79.65	0
MOTA MOTA	2856	CG CD	LYS LYS	297	21.898		117.915	1.00 76.76	ŏ
MOTA	2857	CE	LYS	297	22.543		116.762	1.00 71.01	0
MOTA MOTA	2858 2862	NZ C	LYS LYS	297 29 7	23.644 20.259		117.232 117.376	1.00 68.76 1.00 2. 0 0	0
MOTA	2863	0	LYS	297	21.255	45.501		1.00 94.11	Õ
MOTA	2864	N	CZZ	298	19.995		116.152	1.00 40.11	0
MOTA MOTA	2865 2866	CD CA	PRO PRO	298 298	18.942 20.900	46.658	115.188 115.553	1.00 2.00 1.00 40.11	Ö
ATOM	2867	CB	PRO	298	20.220	46.981	114.227	1.00 2.00	0
ATOM	2868	CG	PRO	298	19.570		113.886	1.00 2.00 1.00 40.11	0
MOTA MOTA	2869 2870	C O	PRO PRO	298 298	21,264 21.041		116.312 117.514	1.00 2.00	ŏ
ATOM	2871	N	ALA	299	21.854	48.878	115.574	1.00 61.74	0
ATOM	2873	CA	ALA	2 9 9	22.276		116.101 116.799	1.00 61.74 1.00 2.00	0
ATOM ATOM	2874 2875	CB C	ALA ALA	299 299	23.627 22.373	51.193	114.973	1.00 2.00	Õ
ATOM	2876	Õ	ALA	29 9	21.893	52.319	115.105	1.00 2.00	0
ATOM	2877	И	ASN	508	41.191	29.848	91.500 90.896	1.00 48.97 1.00 48.97	0
ATOM ATOM	2879 2880	CA CB	ASN ASN	508 508	39. 9 02 38. 95 1	30.1 50 30.831	91.887	1.00 48.37	Ö
MOTA	2881	CG	ASN	508	37.666	31.359	91.203	1.00 0.74	0
ATOM	2882		ASN	508	36.879	30.587 32.682	90.592 91.290	1.00 0.74 1.00 0.74	0
MOTA MOTA	2883 2886	ND2 C	ASN ASN	50 8 50 8	37.453 40.096	31.041	89.687	1.00 48.97	0
MOTA	2887	Ö	ASN	508	40.274	32.266	89.798	1.00 0.74	О
MOTA	2888	N	ILE	509	40.006	30.387	88.533	1.00 17.27	0

MOTA	2890	CA	ILE	509	40.188	30.983	87.224	1.00 18.75	0
ATOM	2891	CB	ILE	509	40.088	29.889	86.127	1.00 44.37	ŏ
ATOM	2892	CG2	ILE	509					
					38.650	29.700	85.673	1.00 52.59	0
MOTA	2893		ILE	509	41.013	30.238	84.9 6 6	1.00 44.31	0
MOTA	2894	CD1	ILE	509	42.489	30.093	85.305	1.00 44.07	0
ATOM	2895	С	ILE	509	39.196	32.089	86.957	1.00 18.83	0
MOTA	2896	0	ILE	509	39.463	32.956	86.131	1.00 44.94	-
ATOM	2897	N	ASP	510					0
					38.070	32.071	87.670	1.00 2.00	0
MOTA	289 9	CA	ASP	510	37.048	33.088	8 7.48 5	1.00 2.00	0
MOTA	290 0	CB	ASP	51 0	35.711	32.605	88.031	1.00 52.76	0
MOTA	2901	CG	ASP	510	35.029	31.634	87.089	1.00 54.58	ŏ
MOTA	2902	OD1		510	34.008	32.015	86.483	1.00 54.54	
	2903								0
MOTA		OD2		510	35.521	30.497	86.944	1.00 58.16	0
MOTA	2904	С	ASP	51 0	37.40 3	34.442	88. 0 56	1.00 2.00	0
MOTA	290 5	0	ASP	510	37.016	35.464	87. 4 90	1.00 52.34	0
MOTA	2906	N	SER	511	38.143	34.471	89.160	1.00 2.00	ŏ
ATOM	2908	CA	SER	511	38.548	35.763	89.739	1.00 2.00	
									0
MOTA	2909	CB	SER	511	39.372	35.570	91.015	1.00 53.95	0
MOTA	2910	O G	SER	511	38.631	34.907	92.020	1.00 50.17	0
MOTA	291 2	C	SER	511	39.447	36.379	88.69 0	1.00 2.00	0
ATOM	2913	0	SER	511	39.228	37.488	88.203	1.00 59.62	ō
ATOM	2914	Ŋ	ILE	512	40.453	35.584	88.349	1.00 45.56	
									0
ATOM	2916	CA	ILE	512	41.462	35.892	87.361	1.00 40.32	0
MOTA	2917	CB	ILE	51 2	42.224	3 4.59 8	87.035	1.00 2.00	0
ATOM	291 8	CG2	ILE	512	43.250	34.842	85.943	1.00 2.00	0
MOTA	2919		ILE	51 2	42.897	34.092	88.316	1.00 2.00	Ō
ATOM	2920		ILE	512	43.635	32.772	88.174	1.00 2.00	Õ
MOTA	2921	C	ILE	512	40.843	36.514	86.105	1.00 41.22	0
MOTA	2922	О	ILE	51 2	41.051	37.70 0	85.848	1.00 2.00	0
MOTA	2923	N	ILE	51 3	40.061	35.72 8	85.358	1.00 2.00	0
MOTA	292 5	CA	ILE	51 3	39.408	36.19 5	84.136	1.00 2.00	0
MOTA	2926	CB	ILE	51 3	38.435	35.123	83.529	1.00 2.00	Ö
ATOM	2927	CG2	ILE	51 3	37.560	35.757	82.455	1.00 2.00	0
MOTA	292 8	CG1	ILE	51 3	39.227	33.96 3	82. 89 0	1.00 2.00	0
MOTA	292 9	CD1	ILE	51 3	38.365	32.79 6	82.367	1.00 2.00	0
MOTA	2930	С	ILE	51 3	38.640	37.493	84.335	1.00 2.00	0
ATOM	2931	Ö	ILE	513	38.764	38.403	83.519	1.00 2.00	ō
MOTA	2932	Ŋ	GLN	514	37.858	37.611	85.402	1.00 12.46	0
MOTA	2934	CA	GLN	514	37.117	38.85 3	85.581	1.00 12.46	0
MOTA	2935	CB	GLN	514	35.985	38.67 8	86.591	1.00 26.62	0
ATOM	2936	CG	GLN	514	36.384	38.251	87.972	1.00 26.62	0
MOTA	2937		GLN	514	35.195	38.279	88.929	1.00 26.62	0
						39.337	89.140	1.00 26.62	ŏ
MOTA	2938		GLN	514	34.582				
MOTA	2939	NE2	GLN	514	34.851	37.116	89.502	1.00 26.62	0
MOTA	294 2	С	GLN	514	38.00 9	40.055	85.936	1.00 12.46	0
ATOM	2943	0	GLN	514	37. 68 6	41.205	85.613	1.00 26.62	0
ATOM	2944	N	ARG	515	39.147	39.773	86.564	1.00 6.50	0
MOTA	2946	CA	ARG	515	40.090	40.810	86.937	1.00 7.53	0
MOTA	2947	CB	ARG	515	41.125	40.251	87.917	1.00 8.04	0
MOTA	2948	CG	ARG	51 5	4 0. 62 6	40.257	89.362	1.00 8.04	0
MOTA	2 94 9	CD	ARG	5 15	41.182	39.117	90.212	1.00 8.04	0
MOTA	2950	NE	ARG	51 5	42.609	39.250	90.490	1.00 8.04	0
ATOM	2952	CZ	ARG	515	43.355	38.276	90.998	1.00 8.04	0
									Ö
MOTA	2953	NH1		515	42.805	37.103	91.275		
MOTA	2956	NH2	ARG	515	44.64 6	38.478	91.228	1.00 8.04	0
ATOM	2 95 9	C	ARG	5 15	40.745	41.325	85.669	1.00 12.92	0
ATOM	2960	Ō	ARG	515	40.840	42.537	85.464	1.00 8.04	0
MOTA	2961	Ŋ	LEU	516	41.167	40.398	84.810	1.00 8.93	0
							83. 52 5		Õ
MOTA	2963	CA	LEU	516	41.788	40.727		1.00 6.71	
MOTA	2964	CB	LEU	516	42.172	39.431	82.786	1.00 2.00	0
MOTA	2965	CG	LEU	516	43.298	38.561	83.385	1.00 2.00	0
ATOM	2966	CD1		516	43.057	37.096	83.083	1.00 2.00	0
				516	44.650	38.986	82.843	1.00 2.00	ő
ATOM	2967	CD2							0
ATOM	2968	C	LEU	516	40.809	41.562	82.675	1.00 5.82	
MOTA	296 9	0	LEU	516	41.187	42.516	82.002	1.00 2.00	0
ATOM	2970	11	LEU	517	39.534	41.228	82. 75 5	1.00 2.00	O
MOTA	2972	CA	LEU	517	38.519	41.928	81.993	1.00 2.73	0
ATOM	2973	CB	LEU	517	37.336	40.993	81.752	1.00 7.08	Ċ
ATOM	671)	< D		,,,	3	• •			**

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2974 2975 2976 2977 2978 2979 2981 2982 2983 2984 2985 2986 2987 2988 2989 2989 2989	CG CD1 CD2 C O N CA CB CD OE1 OE2 C O N CA	LEU LEU GLU GLU GLU GLU GLU GLU	517 517 517 517 518 518 518 518 518 518 518 518 519 519	37.203 38.524 36.133 37.989 37.169 38.409 37.845 37.621 36.908 35.550 34.554 35.481 38.618 38.121 39.828 40.582 42.078	40.297 39.694 39.227 43.262 43.908 44.981 45.015 46.315 46.705 47.001 46.748 46.200 47.335 45.978 46.804	80.398 79.950 80.518 82.536 81.858 83.722 84.178 85.699 86.231 85.526 86.262 84.252 83.677 83.729 83.166 82.589 82.428	1.00 3.18 1.00 12.86 1.00 9.89 1.00 9.79 1.00 16.46 1.00 2.00	
ATOM ATOM	2992 2993		VAL	519	42.759	46.806	83.771	1.00 42.53	0
ATOM	2994 2995	CG2 C	VAL VAL	51 9 51 9	42.272 40.007	45.488 47.307	81.684 81.196	1.00 37.62 1.00 22.58	0
MOTA MOTA	2996	0	VAL	51 9	40.402	48.229	80.493	1.00 48.07	ŏ
MOTA	2997	N	ARG	520	39.066	46.442	80.815	1.00 26.87	0
MOTA	299 9	CA	ARG ARG	52 0 52 0	38. 41 0 37. 21 6	46.495 45.534	79.515 79.480	1.00 28.58 1.00 40.18	0
MOTA MOTA	3000 3001	CB CG	ARG	520 520	36.878	45.043	78.086	1.00 44.14	ő
MOTA	3002	CD	ARG	52 0	35.994	43.814	78.116	1.00 47.95	0
ATOM	3003	NE	ARG	52 0	3 4.59 2 33 .56 5	44.131 43.402	77.872 78.308	1.00 44.40 1.00 51.11	0
MOTA MOTA	300 5 300 6	CZ NH1	ARG ARG	520 520	33.363 33. 76 7	42.298	79.022	1.00 48.24	0
ATOM	3009		ARG	52 0	32.325	43.778	78.026	1.00 49.03	0
MOTA	3012	C	ARG	52 0	37. 94 6 37. 88 1	47.899 48.247	79.147 77.964	1.00 28.36 1.00 46.63	0 0
MOTA MOTA	3013 3014	0 N	ARG GLY	52 0 52 1	37. 63 9	48.703	80.158	1.00 27.79	Õ
ATOM	3016	CA	GLY	521	37.186	50. 05 6	79.905	1.00 30.97	0
MOTA	3017	C	GLY	521	38.158	51. 09 9 52. 124	80.400 80.940	1.00 32.39 1.00 54.55	0
ATOM ATOM	3018 3019	N O	GLY SER	52 1 52 2	37. 73 9 39. 4 51	50.840	80.225	1.00 46.95	0
MOTA	3021	CA	SER	52 2	40.495	51.761	80.663	1.00 47.91	0
MOTA	302 2	CB	SER	522	41.300 40.459	51.146 50.694	81.801 82.844	1.00 33.41 1.00 32.38	0
MOTA MOTA	3023 3025	OG C	SER SER	522 522	41.436	52.094	79.517	1.00 49.38	0
MOTA	3026	Ö	SER	52 2	41.495	51.378	78.513	1.00 34.02	0
MOTA	3027	N	LYS	52 3	42.174	53.184	79.679 78.674	1.00 84.47 1.00 81.24	0
MOTA MOTA	302 9 303 0	CA CB	LYS LYS	52 3 52 3	43.127 44.035	53.640 54.715	79.274	1.00 43.78	ŏ
ATOM	3031	CG	LYS	52 3	43.307	55.987	79.619	1.00 44.40	0
MOTA	3032	CD	LYS	52 3	44.206	56.990	80.322	1.00 68.84	0
MOTA MOTA	3033 3034	CE NZ	LYS LYS	52 3 52 3	43.493 42.092	58.336 58.186	80.458 80.983	1.00 44.38 1.00 44.06	0
MOTA	3038	C	LYS	52 3	44.000	52.501	78.173	1.00 80.03	0
MOTA	3039	0	LYS	52 3	44.314	51.584	78.937	1.00 43.77 1.00 2.00	0
MOTA MOTA	3040 3041	ห CD	PRO PRO	524 524	44.360 43.901	52.514 53. 42 7	76.873 75.811	1.00 2.00 1.00 84.06	0
ATOM	3042	CA	PRO	524	45.218	51.459	76.316	1.00 2.00	0
ATOM	3043	CB	PRO	524	45.357	51.871	74.850	1.00 82.26	0
ATOM ATOM	3044 3045	CG C	PRO PRO	524 524	44.057 46.576	52. 57 4 51. 48 9	74.576 77.063	1.00 78.74 1.00 2.00	Ö
ATOM	3046	Ö	PRO	524	47.510	52.190	76.653	1.00 76.15	0
MOTA	3047	N	GLY	52 5	46.647	50.742	78.166	1.00 33.80	0
ATOM ATOM	3049 3050	CA	GLY GLY	52 5 52 5	47. 84 6 47. 57 5	50.682 50.197	78.984 80. 4 03	1.00 98.68 1.00 99.00	0
MOTA	3050	C 0	GLY	52 5	48.427	49.555	81.013	1.00 2.00	Ö
MOTA	3052	Ň	LYS	526	46.397	50. 49 6	80.942	1.00 49.37	0
ATOM	3054	CA	LYS	52 6	46.047 44.537	50.070 50.226	82.297 82.505	1.00 44.35 1.00 0.79	0
MOTA MOTA	3055 3056	CB CG	LYS LYS	526 526	44.013	49.851	83.911	1.00 0.79	0
MOTA	3057	CD	LYS	52 6	44.370	50.915	84.950	1.00 0.29	0
MOTA	3058	CE	LYS	526	44.413	50.312	86.354	1.00 28.48	0

ATOM ATOM ATOM	3059 3063 3064	N 2 C O	LYS LYS LYS	526 526 526	45.166 46.461 45.984	51.143 48.602	87.348 82.479	1.00 28.16 1.00 41.81	0
ATOM	3065	N	ASN	527	47.372	47.727 48.337	81.760 83.412	1.00 0.75 1.00 6.60	0
ATOM ATOM	3067 3068	CA CB	ASN	527 527	47.861	46.972	83.639	1.00 6.60	0
MOTA	3069	CG	asn Asn	527 527	49.208 50.300	46.977 47.733	84.381 83.645	1.00 20.38 1.00 30.42	0
MOTA	3070	OD1	ASN	527	50.695	48.820	84.068	1.00 29.99	0
MOTA MOTA	3071 3074	ND2 C	ASN ASN	527 527	50.818 46.895	47.148	82.561	1.00 30.17	0
ATOM	3075	Õ	ASN	527	45.866	46.135 46.628	84.463 84.924	1.00 6.60 1.00 23.47	0
ATOM	3076	N	VAL	528	47.271	44.866	84.647	1.00 26.67	ő
ATOM ATOM	3078 3079	CA CB	VAL VAL	528 52 8	46.541 45.575	43.874 43.004	85.443 84.603	1.00 26.67	0
MOTA	3080		VAL	52 8	44.909	41.956	85.488	1.00 33.44 1.00 33.01	0
MOTA	3081	CG2	VAL	52 8	44.524	43.858	83. 9 56	1.00 35.61	ŏ
MOTA MOTA	3082 3083	C 0	VAL VAL	528 528	47.607 48.054	42.940 42.003	86.018 85.348	1.00 26.67	0
MOTA	3084	N	GLN	529	48.048	43.231	87.239	1.00 36.85 1.00 2.00	0
MOTA	3086	CA	GLN	52 9	49.061	42.407	87.92 0	1.00 2.00	ŏ
ATOM ATOM	3087 3088	CB CG	GLN GLN	52 9 52 9	49.968 51.142	43.297 42.569	88.787 89.428	1.00 30.41 1.00 32.34	0
MOTA	3089	CD	GLN	529	52.380	42.558	88.558	1.00 32.34	Ö
MOTA	3090 3091	OE1		52 9	53.436	43.035	88.962	1.00 35.47	0
MOTA MOTA	3091	NE2 C	GLN GLN	52 9 52 9	52.259 48.350	42.014 41.347	87.361 88.792	1.00 30.69 1.00 2.00	0
ATOM	3095	0	GLN	52 9	47.545	41.689	89.663	1.00 32.29	ő
ATOM ATOM	3096 3098	N CA	LEU LEU	530	48.624	40.072	88.536	1.00 2.00	0
ATOM	3099	CB	LEU	53 0 53 0	47.994 47.462	39.002 37.911	89.303 88.381	1.00 2.00 1.00 12.99	0
MOTA	3100	CG	LEU	530	46.535	38.302	87.248	1.00 12.99	ŏ
MOTA MOTA	3101 3102	CD1 CD2	LEU LEU	530 530	47.297 45.313	38.159 37.403	85. 95 6 87. 24 3	1.00 12.9 9 1. 00 12.9 9	0
ATOM	3103	C	LEU	53 0	49.002	38.365	90.236	1.00 12.99	0
MOTA	3104	0	LEU	530	50.207	38.543	90.067	1.00 12.99	0
MOTA MOTA	3105 3107	N CA	GLN GLN	531 531	48.516 49.418	37.622 36.932	91.221 92.117	1.00 2.00 1.00 2.00	0
MOTA	3108	CB	GLN	531	48.634	36.051	93.090	1.00 61.54	Ö
MOTA	3109	CG	GLN	53 1	48.376	36.639	94.465	1.00 62.91	0
MOTA MOTA	3110 3111	CD OE1	GLN GLN	531 531	47.221 47.322	37.603 38.684	94.487 95.053	1.00 63.71 1.00 59.60	0 0
MOTA	3112	NE2	GLN	531	46.111	37.219	93.876	1.00 61.96	0
ATOM ATOM	3115 3116	C O	GLN GLN	531 531	50.337 4 9. 85 9	36.040 35.276	91.266 90.422	1.00 2.00 1.00 67.15	0
ATOM	3117	N	GLU	53 2	51.647	36.153	91.480	1.00 67.13	Ö
MOTA	3119	CA	GLU	532	52.65 5	35.349	90.766	1.00 2.00	0
MOTA MOTA	3120 3121	CB CG	GLU GLU	53 2 53 2	54.056 55.176	35.623 34.623	91.336 90.966	1.00 19.01 1.00 22.74	0
MOTA	3122	CD	GLU	532	56.496	34.871	91.746	1.00 25.50	ŏ
MOTA	3123	OE1		532	56.845	36.042	92.058	1.00 20.16	0
MOTA MOTA	3124 3125	OE2 C	GLU GLU	53 2 53 2	57.195 52.345	33.8 7 9 33.8 6 6	92.051 90.900	1.00 20.82 1.00 2.00	0
ATOM	3126	Õ	GLU	532	52.833	33.059	90.116	1.00 17.28	0
ATOM	3127	N	ASN	533	51.568	33.509	91.918	1.00 26.78	0
MOTA MOTA	31-29 3130	CA CB	ASN ASN	53 3 53 3	51.181 50.751	32.120 31.857	92.127 93.587	1.00 27.69 1.00 42.65	0 0
MOTA	3131	CG	ASN	53 3	49.834	32.944	94.154	1.00 49.17	0
ATOM	3132	OD1		533	50.274	34.070	94.392	1.00 50.06	0
ATOM ATOM	3133 3136	ND2	ASN ASN	53 3 53 3	48.568 50.053	32.605 31.770	94.387 91.165	1.00 50.92 1.00 26.24	0
MOTA	3137	0	ASN	53 3	49.918	30.615	90.747	1.00 41.80	0
MOTA MOTA	3138 3140	N CA	GLU GLU	534 534	49.253 48.146	32.777 32.592	90.815 89.893	1.00 24.76 1.00 19.83	0
MOTA	3141	CB	GLU	534	47.228	33.801	89.918	1.00 17.15	0
ATOM	3142	CG	GLU	534	46.509	33.924	91.239	1.00 23.75	0
MOTA MOTA	3143	CD OE1	GLU	534 534	45.598 44.490	35.132 34.997	91.323 91.890	1.00 25.22 1.00 24.06	0 0
ATOM	3145	OE2		534	45.991	36.215	90.837	1.00 29.17	0

MOTA MOTA MOTA MOTA MOTA MOTA MOTA	3146 3147 3148 3150 3151 3152 3153	C O N CA CB CG2 CG1	ILE	534 534 535 535 535 535 535	48.712 48.235 49.747 50.389 51.442 52.050 50.793 51.537	32.365 31.500 33.122 32.942 34.023 33.784 35.411 36.488	88.510 87.779 88.156 86.859 86.570 85.190 86.641 85.849	1.00 21.16 1.00 14.12 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0
MOTA MOTA	3154 3155	CD1	ILE	53 5	51.060	31.56 5	86.797	1.00 2.00	C
ATOM ATOM	3156 3157	O N	ILE ARG	53 5 53 6	50.788 51.914	30.780 31. 25 6	85.876 87. 77 8	$ \begin{array}{cccc} 1.00 & 2.00 \\ 1.00 & 2.00 \end{array} $	0
MOTA	315 9	CA	ARG	53 6	52. 58 3	29.951	87.793	1.00 2.00	0
MOTA MOTA	3160 3161	CB CG	ARG ARG	53 6 53 6	53. 49 5 52.80 8	29.818 29.604	89.011 90.341	1.00 39.13 1.00 45.43	0
MOTA	3162	CD	ARG	53 6	53.839	29.648	91.474	1.00 49.26	0
MOTA MOTA	31 6 3 31 6 5	NE CZ	ARG ARG	53 6 53 6	55. 05 9 55. 11 0	28.910 27.603	91.132 90.876	1.00 56.04 1.00 55.24	0 0
MOTA	3166	NH1	ARG	53 6	54.011	26.860	90.920	1.00 53.92	0
MOTA MOTA	3169 3172	NH2 C	ARG ARG	536 536	56. 26 7 5 1.56 2	27.032 28.811	90.576 87.7 4 2	1.00 44.45 1.00 2.00	0
MOTA	3173	ŏ	ARG	53 6	51.806	27.778	87.126	1.00 37.01	0
MOTA	3174	N	GLY	537	50.40 6 49.34 5	29.033 28.046	88.363 88.340	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
MOTA MOTA	3176 31 7 7	CA C	GLY GLY	537 537	48.690	28.000	86.970	1.00 2.00	ő
MOTA	3178	0	GLY	537	48.292	26.924	86.512	1.00 2.00	0
ATOM ATOM	3179 3181	N CA	LEU LEU	538 538	48. 57 4 47. 97 9	29.164 29.276	86.319 84.977	1.00 9.51 1.00 7.63	0
MOTA	3182	CB.	LEU	53 8	47.930	30.736	84.513	1.00 2.00	0
MOTA MOTA	3183 3184	CG CD1	LEU LEU	53 8 53 8	46. 65 4 46. 86 5	31.524 32.966	84.772 84.408	1.00 2.00 1.00 2.00	0
MOTA	3185	-	LEU	53 8	45.531	30.940	83.972	1.00 2.00	ŏ
MOTA	3186	C	LEU	53 8	48.816	28.472	84.000 83.271	1.00 12.73 1.00 2.00	0
MOTA MOTA	3187 3188	N 0	LEU CYS	53 8 53 9	48.295 50.120	27.635 28. 72 4	84.000	1.00 2.00 1.00 2.00	Ô
MOTA	3190	CA	CYS	539	51.036	28.001	83.132	1.00 2.00	0
MOTA MOTA	3191 3192	CB SG	CYS CYS	53 9 53 9	52. 47 3 52. 71 3	28. 49 4 30.280	83.337 83.567	1.00 20.52 1.00 19.48	0
ATOM	3193	C	CYS	539	50. 9 57	26.501	83.474	1.00 2.00	0
MOTA	3194	0	CYS	53 9	50.854	25.658	82.58 8 84.76 9	1.00 29.69 1.00 26.60	0
MOTA MOTA	3195 3197	N CA	LEU LEU	54 0 5 4 0	50. 984 50. 91 9	26.191 24.819	85.26 5	1.00 26.60	0
MOTA	3198	CB	LEU	540	51.106	24.818	86.786	1.00 2.00	0
ATOM ATOM	319 9 320 0	CG CD1	LEU	54 0 54 0	52. 53 9 53. 00 1	24.770 23.360	87.33 9 87.38 5	$ \begin{array}{cccc} 1.00 & 2.00 \\ 1.00 & 2.00 \end{array} $	0
MOTA	3201		LEU	540	53.492	25.577	86.497	1.00 2.00	0
MOTA	320 2 320 3	C	LEU	54 0 54 0	49.635 49.677	24.061 22.856	84.89 9 84.61 9	1.00 26.60 1.00 2.00	0
MOTA MOTA	3203	0 N	LEU LYS	541	48.500	24.756	84.901	1.00 13.81	Ö
MOTA	3206	CA	LYS	541	47.219	24.126	84.561	1.00 17.46	0
MOTA MOTA	3207 3208	CB CG	LYS LYS	541 541	46. 04 6 45. 84 4	24.964 24.880	85.108 86.624	1.00 14.61 1.00 22.53	0
MOTA	3209	CD	LYS	541	44.709	25. 77 7	87.150	1.00 31.64	0
MOTA MOTA	3210 3211	CE NZ	LYS LYS	541 541	45.175 44.147	27.201 28.010	87.517 88.284	1.00 37.15 1.00 27.95	0
MOTA	3215	C	LYS	541	47.047	23.891	83.046	1.00 16.97	0
MOTA	3216	0	LYS	541	46.862	22.745	82.608	1.00 8.92 1.00 2.00	0
MOTA MOTA	3217 3219	N CA	SER SER	54 2 54 2	47.131 46.975	24.963 24.877	82.253 80.791	1.00 2.00 1.00 2.00	0
MOTA	3220	CB	SER	542	47.165	26.256	80.150	1.00 2.00	0
MOTA MOTA	3221 3223	OG C	SER SER	542 542	48.499 47.915	26. 7 03 23.870	80.298 80.107	1.00 2.00 1.00 2.00	0 0
MOTA	3224	0	SER	542	47.450	22.991	79.377	1.00 2.00	0
MOTA	3225	N	ARG	543	49.223 50.244	24.016	80 .338 79.772	1.00 8.64	0
MOTA MOTA	7777								
	3227 3228	CA CB	ARG ARG	543 543	51.607	23.128 23.381	80.434	1.00 8.64 1.00 2.00	0 0
MOTA MOTA									

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3233 3234 3237 3240 3241 3242 3244 3245 3246 3247 3248	C O N CA CB CG CD	ARG ARG ARG ARG ARG GLU GLU GLU GLU GLU GLU	543 543 543 543 544 544 544 544	55.326 54.523 56.483 49.873 50.187 49.227 48.834 48.308 48.175 47.561 46.433	19.606 19.915 21.660 20.806 21.352 19.978 19.841 18.415		1.00 3.99 1.00 2.00 1.00 8.64 1.00 5.52 1.00 42.94 1.00 44.22 1.00 37.01 1.00 41.48 1.00 46.37	000000000000000000000000000000000000000
ATOM ATOM	32 4 9 325 0	OE2 C		544 544	48.202 47.763	17.777 19.584	85.543 80.339	1.00 53.09 1.00 47.19	0
MOTA	3251	0	GLU	544	47.742	18.450	79.867	1.00 40.49 1.00 34.80	0 0
ATOM ATOM	3252 3254	N CA	ILE ILE	54 5 54 5	46.898 45.823	20.538	79.994	1.00 2.00	0
MOTA	3255	CB	ILE	545	44.805	20.315 21.487	79.017 78.959	1.00 2.00 1.00 11.87	0
MOTA MOTA	3256 3257	CG2		545	43.645	21.102	78.064	1.00 6.53	ŏ
ATOM	3257	CG1 CD1		54 5 54 5	44.28 8 43.26 7	21.836 22.955	80.353 80.361	1.00 16.65 1.00 13.01	0
MOTA	3259	C	ILE	54 5	46.377	20.149	77.605	1.00 2.00	0
ATOM ATOM	3260 3261	O N	ILE PHE	54 5 54 6	45.960 47.302	19.267 21.018	76.868 77.227	1.00 9.05	0
MOTA	3263	CA	PHE	546	47.895	20.945	75.918	1.00 2.00 1.00 2.00	0
MOTA MOTA	3264 3265	CB CG	PHE PHE	546 546	49.058	21.906	75.816	1.00 2.00	0
ATOM	3266		PHE	54 6	48.653 49.512	23.335 24.293	75. 87 5 76. 39 9	1.00 2.00 1.00 2.00	0
ATOM	3267		PHE	546	47.411	23.730	75.426	1.00 2.00	ŏ
ATOM ATOM	326 8 3 26 9	CE1	PHE PHE	54 6 54 6	49.127 47.023	25.630 25.050	76. 47 3 75. 49 6	1.00 2.00 1.00 2.00	0
MOTA	3270	CZ	PHE	54 6	47.881	26.006	76.020	1.00 2.00	Ö
ATOM ATOM	3271 3272	C 0	PHE PHE	546 546	48.374 48.141	19.538 18.990	75.658 74.596	1.00 2.00 1.00 2.00	0
MOTA	3273	N	LEU	54 7	49.012	18.935	76.647	1.00 2.00	o
ATOM ATOM	32 7 5 32 7 6	CA CB	LEU LEU	547 547	49.527 50. 4 99	17.582 17.289	76.506	1.00 2.00	0
MOTA	32 7 7	CG	LEU	547	51.754	18.159	77.654 77.582	1.00 6.91 1.00 8.40	0
MOTA MOTA	3278 3279		LEU	547	52. 09 6	18.701	78.934	1.00 16.17	0
ATOM	3279	CD2 C	LEU LEU	547 547	52.905 48. 42 2	17.363 16.526	77.029 76. 43 4	1.00 11.72 1.00 2.00	0
MOTA	3281	0	LEU	547	48.642	15.414	75.946	1.00 6.91	ő
MOTA MOTA	3282 3284	N CA	SER SER	54 8 5 4 8	47.230 46.091	16.881 15.964	76. 90 3 76. 89 8	1.00 5.34 1.00 5.34	0
MOTA	3285	CB	SER	54 8	45.099	16.356	77.993	1.00 36.19	0
ATOM ATOM	3286 3288	OG C	SER SER	54 8 54 8	45.611	17.389	78.821	1.00 39.64	0
MOTA	3289	0	SER	54 8	45.374 44.299	15.975 15.381	75. 55 2 75. 40 6	1.00 5.34 1.00 36.66	0
ATOM	3290	N	GLN	549	45.968	16.649	74.569	1.00 23.79	0
MOTA MOTA	3292 3293	CA CB	GLN GLN	54 9 54 9	45.384 44.751	16.754 18.128	73.242 73.084	1.00 23.94 1.00 46.80	0
MOTA	3294	CG	GLN	54 9	43.567	18.354	73.990	1.00 38.43	0
MOTA MOTA	3295 3296	CD OE1	GLN GLN	54 9 54 9	43.180 43.934	19.800 20.672	74.054 73.624	1.00 38.53 1.00 46.42	0
MOTA	3297		GLN	54 9	42.002	20.074	74.595	1.00 40.42	Õ
MOTA MOTA	33 0 0 3 30 1	C O	GLN GLN	54 9 54 9	46.456	16.547	72.182	1.00 25.87	0
ATOM	3302	N	PRO	55 0	47.634 46.068	16.766 16.105	72. 4 51 70.963	1.00 42.01 1.00 2.00	0
ATOM	3303	CD	PRO	55 0	44.729	15.738	70.469	1.00 36.68	0
MOTA MOTA	3304 3305	CA CB	PRO PRO	55 0 55 0	47.075 46.253	15.894 15.350	69.921 68. 75 0	1.00 2.00 1.00 36.68	0
MOTA	3306	CG	PRO	550	44.886	15.915	68.988	1.00 36.68	C
MOTA MOTA	3307 3308	C 0	PRO PRO	5 50 5 50	47.816 47.318	17.184 18.280	69.580 69.840	1.00 2.00 1.00 36.68	0
MOTA	3309	N	ILE	551	49.013	17.046	69.015	1.00 2.00	0
ATOM ATOM	3311 3312	CA CB	ILE	5 51 5 51	49. 824 51.293	18.198	68.626 68.510	1.00 2.00	0
ATOM	3312	CG2		551	51.293 51. 49 0	17.788 16.914	67.292	1.00 2.00 1.00 2.00	0
ATOM	3314	CG1	ILE	5 5!	52 182	19.021	68.475	1.00 2.00	Ö

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3316 3317 3318 3322 33223 33225 33226 33226 33227 33323 33333 33333 33333 33333 33333 33333 3333	CONCABCG11CCONCABCGCD12CONCABCGCD12CCONCABCGCCCCONCACCCCCONCACCCCCCCCCCCCCCCCCCCCC	LLEU LEU LEU LEU LEU LEU LEU LEU LEU LEU	55555555555555555555555555555555555555	53.648 49.295 49.596 48.514 47.896 48.287 47.809 48.084 46.397 45.753 45.881 44.240 44.374 45.224 43.4604 41.135 42.524 41.476 41.135 42.3268 44.240 44.2524 41.476 41.135 42.3268 43.1688 44.0241 43.1688 44.0241 45.2242 43.1688 44.0246 45.2268 46.039 47.809 48.0868 48.0868 48.0868 49.0868 49.0868 49.0868 40.0868	18.701 18.705 19.807 17.863 18.202 17.148 17.215 18.532 16.130 17.124 19.352 19.512 20.926 21.262 20.282 22.639 19.780 18.375 17.983 16.492 15.550 15.310 15.957 14.465 18.823 18.311 20.112 21.007 22.456	68.468 67.281 66.840 66.627 65.369 64.320 62.209 62.131 65.728 65.734 66.517 67.055 68.543 69.290 68.64.309 65.724 64.956 64.956 65.177 63.928 64.917 63.928 64.917 64.917	1.00 2.00 1.00 2.00	
MOTA MOTA	3350 3351		LEU	555 555	40.660 41.274	22.840 24.194	65.972 65.697	1.00 2.00 1.00 2.00	0
ATOM ATOM	3352 3353	CD2 C	LEU	555 555	39.959 37. 93 2	22.839 20.734	67.294 64.237	1.00 2.00 1.00 2.00	
ATOM	3354	Õ	LEU	55 5	37.862	19.731	63.537	1.00 2.00	0
MOTA MOTA	3355 3357	N CA	GLU GLU	55 6 556	36.933 35.716	21.603 21.460	64.345 63.569	1.00 2.00	
ATOM	3358	CB	GLU	55 6	35.028	20.115	63.846	1.00 32.90	0
ATOM	3359	CG	GLU	556	34.175	20.063	65.100 64.941	1.00 48.42	
MOTA MOTA	3360 3361	CD OE1	GLU GLU	556 5 5 6	32.935 32.792	19.176 18.188	65.711	1.00 60.59	
ATOM	3362	OE2	GLU	55 6	32.101	19.477	64.047	1.00 59.64	
MOTA MOTA	3363 3364	C O	GLU GLU	556 556	34.736 35.067	22.583 23.580	63.826 64.44 6	1.00 2.00 1.00 16.83	
MOTA	3365	N	ALA	557	33.544	22.423	63.257	1.00 2.00	0
ATOM	3367	CA	ALA	557	32.398	23.330	63.427 64.788	1.00 2.00	
ATOM ATOM	3368 3369	С В С	ALA ALA	557 557	31.7 4 7 32.701	23.013 24.826	63.286	1.00 47.02	
ATOM	3370	Ö	ALA	557	33.711	25.191	62.671	1.00 40.85	0
MOTA MOTA	3371 3 3 72	И	PRO PRO	558 558	31.811 30.459	25.711 25.558	63.802 64.353	1.00 2.00 1.00 2.44	_
ATOM	3372	CD CA	PRO	558	32.123	27.139	63.658	1.00 2.00	_
MOTA	3374	CB	PRO	558	30.786	27.826	63.951	1.00 2.53	_
MOTA MOTA	3375 3376	CG C	PRO PRO	558 558	29.798 33.190	26.759 27.648	63.843 64. 62 7	1.00 2.44	
ATOM	3377	Ö	PRO	558	32.975	27.616	65.844	1.00 7.53	0
MOTA	3378	N	LEU	559	34.325	28.119	64.112	1.00 2.00	
MOTA MOTA	3380 3381	CA CB	LEU LEU	559 559	35.349 36. 568	28.689 27.769	64.982 65.148	1.00 2.00	
ATOM	3382	CG	LEU	55 9	37.592	27.571	64.050	1.00 2.00	
ATOM	3383		LEU	559	38.620	26.563	64.476	1.00 2.00	
MOTA MOTA	3384 3385	CD2 C	LEU LEU	559 559	36.885 35.769	27.083 30.038	62.830 64.435	1.00 2.00 1.00 2.00	
ATOM	3386	0	LEU	559	35.444	30.389	63.311	1.00 2.00	0
MOTA	3387	11	LYS	560	36.461	30.804	65.260	1.00 2.00	
MOTA MOTA	3 38 9 3390	CA CB	LYS LYS	560 560	36.932 36.359	32.115 33.143	6 4 .889 65.843	1.00 2.00	

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3391 3392 3393 3398 3399 3400 3402 3403 3404 3405 3406	CG CD CE NZ C O N CA CB CG2 CG1	LYS LYS LYS LYS LYS ILE ILE ILE ILE ILE	560 560 560 560 560 561 561 561 561 561	36.612 35.574 34.253 33.706 38.426 38.908 39.164 40.606 41.095 42.566 40.204 40.806	34.562 35.512 35.452 34.083 31.990 31.624 32.244 32.106 31.318 30.913 30.076 28.940	65.427 66.018 65.278 65.225 65.052 66.117 63.986 64.017 62.750 62.891 62.558 61.761	1.00 20.44 1.00 20.44 1.00 20.44 1.00 20.44 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
ATOM ATOM	3407 3408	С 0	ILE	561 561	41.247	33.488 34.450	64.102 63.543	1.00 2.00 1.00 2.00	0
ATOM ATOM	3409 3411	N CA	CYS CYS	5 62 5 62	42.365	33.586	64.833	1.00 2.00	0
ATOM	3412	CB	CYS	562	43.124 42.793	34.829 35.464	65.001 66.339	1.00 2.00 1.00 13.31	0
MOTA	3413	SG	CYS	562	41.073	35.733	66.574	1.00 13.31	ő
ATOM	3414	С	CYS	562	44.642	34.589	64.928	1.00 2.00	ŏ
MOTA	3415	0	CYS	56 2	45.151	33.551	65.373	1.00 13.31	0
ATOM ATOM	3 41 6 3 41 8	N CA	GLY GLY	56 3 56 3	45.362 46.805	35.540 35.424	64.348 64.252	1.00 2.00	0
ATOM	3419	C	GLY	56 3	47.546	36.260	65.291	1.00 2.00 1.00 2.00	0
ATOM	3420	ŏ	GLY	56 3	46.997	36.556	66.351	1.00 5.66	ő
MOTA	3421	N	ASP	564	48.780	36.649	64.958	1.00 2.00	0
MOTA	3423	CA	ASP	564	49.657	37.452	65.811	1.00 2.00	0
ATOM ATOM	3 42 4 3 42 5	CB CG	ASP ASP	564 564	50. 70 5 51. 724	38.191 37.270	64.964 64.321	1.00 2.00 1.00 2.00	0
ATOM	3426		ASP	564	51.390	36.585	63.334	1.00 2.00	Ö
MOTA	3427		ASP	564	52.876	37.249	64.786	1.00 2.00	0
ATOM	3428	C	ASP	564	48.981	38.497	66.693	1.00 2.00	0
MOTA MOTA	3 42 9 3 43 0	N O	ASP ILE	564 565	48. 39 5 49. 094	39.442 38.327	66.189 68.009	1.00 2.00 1.00 31.53	0
MOTA	3432	CA	ILE	56 5	48.537	39.294	68.953	1.00 31.33	0
MOTA	343 3	CB	ILE	56 5	47.810	38.612	70.135	1.00 9.39	Ō
MOTA	3434	CG2	ILE	56 5	47.139	39.664	70.996	1.00 9.39	0
MOTA MOTA	3435 3436	CG1	ILE ILE	56 5 56 5	46.710 45.611	37.685 38. 42 4	69.622 68.906	1.00 9.39 1.00 9.39	0
MOTA	3437	CDI	ILE	56 5	49.681	40.168	69.489	1.00 32.16	0
MOTA	3438	Ö	ILE	565	49.491	41.356	69.756	1.00 9.39	Ō
MOTA	3439	N	HIS	566	50.859	39.560	69.637	1.00 14.33	0
MOTA	3441	CA	HIS	566	52.082	40.219 41.227	70.111	1.00 15.67	0
MOTA MOTA	3442 3443	C O	HIS HIS	56 6 56 6	51. 95 8 52. 42 7	42.359	71.245	1.00 16.54 1.00 15.89	0
ATOM	3444	ČВ	HIS	56 6	52.811	40.882	68.943	1.00 9.53	Ŏ
MOTA	3445	CG	HIS	566	53.652	39.936	68.153	1.00 9.53	0
ATOM	3446	ND1		56 6	54.829 53.470	39.391 39.432	68 . 60 5 66 .910	1.00 9.53 1.00 9.53	0
MOTA MOTA	3448 3449	CD2 NE2	HIS	56 6 56 6	54.525	38.582	66.589	1.00 9.53 1.00 9.53	0
MOTA	3450	CE1		566	55.312	38.600	67.652	1.00 9.53	0
MOTA	3451	N	GLY	567	51.337	40.808	72.345	1.00 2.00	0
MOTA	3453	CA	GLY	567	51.170	41.686	73.490	1.00 2.00	0
MOTA MOTA	3 45 4 3 45 5	C 0	GLY GLY	567 567	50. 249 50. 26 9	42.894 43.764	73.375 74.254	1.00 2.00 1.00 3.59	0
MOTA	3456	N	GLN	568	49.455	42.973	72.314	1.00 36.66	Ö
MOTA	3458	CA	GLN	568	48.527	44.086	72.141	1.00 34.60	0
MOTA	3459	CB	GLN	568	48.164	44.236	70.667	1.00 2.50	0
MOTA	3460	CG	GLN	568	49.345 49.768	44.164 45.507	69.715 69.144	1.00 3.37 1.00 3.10	0
ATOM ATOM	3461 3462	CD OE1	GLN GLN	568 568	50.958	45.769	68.974	1.00 3.10	Ö
ATOM	3463	NE2	GLN	568	48.800	46.349	68.813	1.00 18.91	Ö
ATOM	3466	C	GLN	56 8	47.280	43.730	72.950	1.00 34.26	0
MOTA	3467	0	GLN	56 8	46.253	43.365	72.380	1.00 7.33	0
ATOM ATOM	3468 3470	N CA	TYR TYR	56 9 56 9	47.363 46.263	43.864 43.485	74.272 75.161	1.00 2.00 1.00 2.00	0
ATOM	3471	CB	TYR	569	46.664	43.687	76.626	1.00 26.93	Ö
ATOM	3472	CG	TYR	56 9	45.692	43.048	77.600	1.00 27.02	0
ATOM	3473	CD1	TYR	56 9	45.401	41.684	77 526	1.00 22.43	()

ATOM 3480 C TYR 569 43.885 43.374 75.015 1.00 2 ATOM 3481 O TYR 569 43.885 43.374 75.015 1.00 2 ATOM 3482 N TYR 570 44.817 45.384 74.710 1.00 1 ATOM 3485 CB TYR 570 43.515 45.999 74.510 1.00 1 ATOM 3485 CB TYR 570 43.515 45.999 74.510 1.00 1 ATOM 3486 CG TYR 570 43.577 47.792 76.261 1.00 5 ATOM 3487 CD1 TYR 570 43.577 47.792 76.261 1.00 5 ATOM 3488 CE1 TYR 570 44.749 47.743 77.025 1.00 4 ATOM 3488 CE1 TYR 570 44.715 47.952 78.398 1.00 5 ATOM 3489 CD2 TYR 570 42.375 48.063 76.917 1.00 5 ATOM 3491 CZ TYR 570 42.375 48.063 76.917 1.00 5 ATOM 3492 OH TYR 570 43.507 48.215 79.010 1.00 5 ATOM 3494 C TYR 570 43.507 48.215 79.010 1.00 5 ATOM 3495 O TYR 570 43.452 48.426 80.359 1.00 5 ATOM 3496 N ASP 571 43.452 48.426 80.359 1.00 1 ATOM 3496 N ASP 571 43.813 45.311 72.217 1.00 1 ATOM 3498 CA ASP 571 43.813 45.311 72.217 1.00 1 ATOM 3499 CB ASP 571 43.813 45.311 72.217 1.00 1 ATOM 3499 CB ASP 571 43.802 44.903 70.891 1.00 1 ATOM 3500 CG ASP 571 44.590 44.870 69.975 1.00 ATOM 3500 CG ASP 571 44.590 44.870 69.975 1.00 1 ATOM 3501 OD1 ASP 571 44.590 44.870 69.975 1.00 1 ATOM 3501 OD1 ASP 571 44.590 44.870 69.975 1.00 1 ATOM 3501 OD1 ASP 571 44.590 44.870 69.975 1.00 1 ATOM 3501 OD1 ASP 571 44.590 44.870 69.975 1.00 1 ATOM 3501 OD1 ASP 571 44.590 44.870 69.975 1.00 1 ATOM 3501 OD1 ASP 571 44.590 44.870 70.891 1.00 1 ATOM 3501 OD1 ASP 571 44.402 47.044 69.110 1.00 1 ATOM 3501 OD1 ASP 571 44.402 47.044 69.110 1.00 1 ATOM 3501 OD1 ASP 571 44.402 47.044 69.110 1.00 1 ATOM 3501 OD1 ASP 571 44.402 47.044 69.110 1.00 1 ATOM 3505 N LEU 572 43.487 42.707 71.853 1.00 ATOM 3500 CG LEU 572 43.909 40.641 73.110 1.00 ATOM 3500 CG LEU 572 43.909 40.641 73.110 1.00 ATOM 3500 CD1 LEU 572 43.909 40.641 73.820 1.00 ATOM 3500 CD LEU 572 43.909 40.641 73.820 1.00 ATOM 3511 CD2 LEU 572 43.909 40.641 73.820 1.00 ATOM 3511 CD2 LEU 572 43.909 40.641 73.820 1.00 ATOM 3511 CD2 LEU 572 43.909 40.641 73.820 1.00 ATOM 3511 CD2 LEU 572 43.909 40.641 73.820 1.00 ATOM 3511 CD2 LEU 572 44.227 38.982 74.955 1.00 ATOM 3511 CD2 LEU 572 44.227 38.982 74.955 1.00	4.68
ATOM 3514 N LEU 573 41.395 42.604 73.572 1.00 ATOM 3516 CA LEU 573 40.092 42.874 74.195 1.00 ATOM 3517 CB LEU 573 40.224 43.910 75.317 1.00	9.95 0 6.25 0 2.00 0
ATOM 3517 CB LEU 573 40.807 43.360 76.625 1.00	2.00 0
ATOM 3519 CD1 LEU 573 40.667 44.416 77.717 1.00	2. 0 0 0 2. 0 0 0
ATOM 3520 CD2 LEU 573 40.079 42.053 77.033 1.00 ATOM 3521 C LEU 573 39.055 43.344 73.170 1.00	4.08 0
ATOM 3522 O LEU 573 37.865 42.974 73.260 1.00	2. 0 0 0 3. 1 2 0
ATOM 3323 N ARG 374 320 44 665 71 115 1 00 1	
ATOM 3526 CB ARG 574 39.491 45.598 70.212 1.00 3	0.04 0
ATOM 3527 CG ARG 574 39.704 46.994 70.757 1.00 3	1.00 0 5.07 0
ATOM 3528 CD ARG 574 40.294 47.989 68.514 1.00 3	6.10 0
ATOM 3531 CZ ARG 574 41.018 48.625 67.587 1.00 3	6.14 0 5.84 0
ATOM 3532 NH1 ARG 574 42.198 49.162 67.890 1.00 3 ATOM 3535 NH2 ARG 574 40.565 48.713 66.341 1.00 4	
ATOM 3538 C ARG 574 38.265 43.440 70.324 1.00 1	0.99 0
ATOM 3539 O ARG 574 37.092 43.253 70.004 1.00 3	0.16 0 2.00 0
ATOM 3540 N LEU 575 39.260 42.591 70.066 1.00 ATOM 3542 CA LEU 575 39.156 41.339 69.323 1.00	2.00 0 2.00 0
A11M 3347 CA DEU 373 33,1230 14,1333 37,1	8.14 0
ATOM 3544 CG LEU 575 41.058 39.569 68.514 1.00 l	8.14 0 8.14 0
ATOM 3343 CDI BEO 373	8.14 0
ATOM 3547 C LEU 575 37.970 40.494 69.801 1.00	2.00 0
ATOM 3548 O LEU 575 37.121 40.081 69.001 1.00	8.14 0
AION 3349 N THE 370	9.25 0
ATOM 3551 CA PHE 576 36.823 39.459 71.664 1.00 ATOM 3552 CB PHE 576 37.115 39.098 73.119 1.00	2.60 0
	2.60 0 2.00 0
ATOM 3553 CG PHE 576 38.116 38.001 73.270 1.00 ATOM 3554 CD1 PHE 576 39.158 38.111 74.184 1.00	

MOTA	3556	CE	L PHE	576		40.097	37.09 8	74.324	1 00 2 00	_
MOTA	3557	CE2		576		38.960	35.828	72.621	1.00 2.00 1.00 2.00	0
MOTA	3558	CZ	PHE	576		40.000	35.953	73.540	1.00 2.00	0
MOTA	3559	С	PHE	576		35.479	40.164	71.573	1.00 29.95	0
MOTA	3560	0	PHE	57 6		34.433	39.517	71.648	1.00 2.00	0
MOTA	3561	N	GLU	577		35.504	41.484	71.421	1.00 21.04	ő
MOTA	3563	CA	GLU	577		34.273	42.259	71.307	1.00 23.58	ŏ
MOTA	3564	CB	GLU	577		34.561	43.731	71.566	1.00 40.21	ŏ
ATOM ATOM	3565	CG	GLU	5 7 7		35.032	44.001	72.971	1.00 50.88	Ö
	3566	CD	GLU	5 7 7		35.688	45.347	73.113	1.00 55.67	0
MOTA MOTA	3567 35 6 8	OE1 OE2		577 577		36.439	45.522	74.099	1.00 60.01	0
ATOM	3569	C	GLU	577		35.461 33.654	46.224	72.245	1.00 63.14	0
ATOM	3570	õ	GLU	5 7 7		32.435	42.091 42.156	69.928	1.00 25.67	0
ATOM	3571	N	TYR	578		34.509	41.901	69.772 68.928	1.00 44.83	0
ATOM	3573	CA	TYR	578		34.052	41.700	67.561	1.00 51.92 1.00 48.79	0
MOTA	3574	CB	TYR	578		35.208	41.834	66.564	1.00 48.79	0
MOTA	357 5	CG	TYR	57 8		35.703	43.245	66.356	1.00 40.25	0
MOTA	357 6	CD1		57 8		35.598	43.865	65.111	1.00 40.27	ő
ATOM	3577	CE1		578		36.062	45.168	64.917	1.00 44.74	ŏ
MOTA	3578	CD2		57 8		36.281	43.960	67.39 9	1.00 45.71	ŏ
MOTA	3579	CE2		578		36.747	45.25 8	67.217	1.00 42.53	0
MOTA	3580	CZ	TYR	578		36. 63 6	45.853	65.97 9	1.00 49.98	0
MOTA MOTA	3581 3583	ОН	TYR	57 8		37.106	47.131	65.812	1.00 54.82	0
ATOM	3584	C O	TYR TYR	578 578		33.467	40.303	67.458	1.00 49.18	О
ATOM	3585	N	GLY	579		32. 31 6 3 4.27 1	40.124	67.081	1.00 35.27	0
ATOM	3587	CA	GLY	57 9		34.271	39.307 37.9 4 9	67. 79 7 67. 71 3	1.00 2.60	0
ATOM	3588	C .	GLY	57 9		32. 73 7	37.628	68.755	1.00 6.22 1.00 8.52	0
MOTA	3589	ŏ	GLY	57 9		31.555	37.446	68.437	1.00 39.88	0
MOTA	3590	N	GLY	580		33.194	37.557	70.006	1.00 2.00	ő
MOTA	3592	CA	GLY	58 0		32.342	37.236	71.140	1.00 2.00	ŏ
MOTA	3593	C	GLY	580		33. 19 1	36.491	72.151	1.00 2.00	0
MOTA	3594	0	GLY	580		33. 72 5	35.415	71.853	1.00 44.94	0
MOTA	3 59 5	N	PHE	581		33.307	37.067	73. 34 8	1.00 15.06	O
ATOM	3597	CA	PHE	581		34.116	36.500	74.432	1.00 12.63	0
ATOM ATOM	3598 3599	CB CG	PHE	581 581		33.857	37.263	75.744	1.00 2.00	0
ATOM	3600		PHE PHE	581		34. 67 9 34.136	38.5 4 2 39.783	75.885 75. 55 7	1.00 2.00	0
MOTA	3601		PHE	581		35. 99 9	38.495	76.346	1.00 2.00 1.00 2.00	0
MOTA	3602	CE1	PHE	581		34.894	40.941	75.687	1.00 2.00	ő
ATOM	3603	CE2	PHE	581		36.757	39.659	76.475	1.00 2.00	ŏ
MOTA	3604	CZ	PHE	581		36.204	40.875	76.146	1.00 2.00	Ö
MOTA	3605	С	PHE	581		33. 91 3	34.99 9	74.611	1.00 12.63	0
MOTA	3606	0	PHE	5 81		32.782	34.521	74.647	1.00 2.00	О
MOTA	3667	N	PRO	582		35.021	34.243	74.737	1.00 21.81	0
MOTA	3608	CD	PRO	582		36.360	34.852	74.820	1.00 85.20	0
MOTA MOTA	36 0 9 36 1 0	CA	PRO	582		35.141	32.79 5		1.00 24.62	0
ATOM	3611	CB CG	PRO PRO	582 582		36.398 37.2 6 6	32.675 33.636	75.737 75.008	1.00 86.40	0
ATOM	3612	C	PRO	58 2		33. 96 6	31.958	75.425	1.00 87.84 1.00 28.53	0
MOTA	3613	Ö	PRO	582		33.816	30.796	75.012	1.00 28.33	Ö
MOTA	3614	N	PRO	583		33.160	32.466	76.374	1.00 13.00	Ö
MOTA	3615	CD	PRO	58 3		33.090	33.632	77.269	1.00 51.24	0
ATOM	3616	CA	PRO	58 3	:	32. 09 9	31.500	76.681	1.00 13.55	O
ATOM	3617	CB	PRO	58 3		31.281	32.215	77.759	1.00 53.59	0
MOTA	3618	CG	PRO	5 83		31.616	33.699	77.550	1.00 50.46	0
MOTA	3619	C	PRO	5 83		31.296	31.283	75.389	1.00 14.03	0
ATOM	3620	0	PRO	583		30.950	30.152	75.043	1.00 48.29	0
MOTA	3621	N	GLU	584		31.089	32.383	74.663	1.00 35.81	0
MOTA MOTA	3623 3624	CA CB	GLU	584 584		30.333	32.439	73.412	1.00 39.44	0
ATOM	3625	CG	GLU GLU	584		30.122 28. 95 5	33.913 34.213	73.043 72.117	1.00 78.69 1.00 90.10	0
MOTA	3626	CD	GLU	584		28.662	35.712	72.022	1.00 95.10	0
MOTA	3627	OE1		584		28.313	36.190	70.918	1.00 90.41	Ô
MOTA	3628	OE2		584		28.782	36.418	73.053	1.00 95.81	Ô
MOTA	3629	C	GLU	584		30.975	31.676	72.244	1.00 36.17	Ö
MOTA	3630	O	GLU	584		30.780	30.466	72.106	1.00 78.35	O

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3631 3633 3634 3635 3637 3638 3641 3642 3643 3644 3645 3648 3650 3652 3653	ND2 C O N CA CB CG	SER SER SER SER SER ASN ASN ASN ASN ASN ASN TYR TYR TYR	585 585 585 585 586 586 586 586 587 587 587	31.737 32.394 32.720 31.558 33.669 34.382 33.947 35.136 34.728 33.497 32.967 36.251 36.017 37.458 38.571 39.049 38.177	32.381 31.779 32.857 33.556 30.995 31.258 30.037 29.197 27.854 27.107 25.960 27.745 29.937 30.574 29.858 30.554 31.706 32.946	71.406 70.245 69.209 68.809 70.539 71.5664 69.625 69.265 70.506 69.029 68.966 69.876 69.873	1.00 12.28 1.00 8.77 1.00 31.98 1.00 27.38 1.00 9.84 1.00 35.35 1.00 2.00 1.00 2.00 1.00 2.87 1.00 10.37 1.00 11.13 1.00 4.44 1.00 2.00 1.00 2.87 1.01 13.99 1.00 13.99 1.00 13.99 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	365 5 365 6	CE1		587 587	36.998 36.177	33.004 34.138	70.638 70.624 69.088	1.00 2.00 1.00 2.00 1.00 2.00	0
ATOM ATOM	3657 3658	CD2 CE2	TYR TYR	587 587	38. 51 9 37.701	34.061 35.205	69.065	1.00 2.00	0
MOTA	3659	CZ	TYR	587	36.532 35.743	35. 23 1 36.3 5 2	69.8 4 0 69.8 3 8	1.00 2.00 1.00 2.00	0
ATOM ATOM	3660 3662	OH C	TYR TYR	587 587	39.721	29.608	68.745	1.00 13.99	0
MOTA	3663	0	\mathbf{TYR}	587	39.812	28.562 29.987	69. 39 2 67. 80 9	1.00 2.00 1.00 2.00	0
MOTA MOTA	3664 3666	N CA	LEU LEU	58 8 58 8	40.584 41.803	29.261	67.493	1.00 2.00	Õ
ATOM	3667	CB	LEU	58 8	41.681	28.482	66.195	1.00 10.69 1.00 10.69	0
MOTA	3668 3669	CD1	LEU LEU	588 588	43.032 43.568	27.907 27. 07 3	65.781 66.912	1.00 10.69	ŏ
MOTA MOTA	3670		LEU	58 8	42.912	27.07 9	64.533	1.00 10.69	0
MOTA	3671	C	LEU	588 588	42.809 42.547	30.375 31.301	67.301 66.532	1.00 2.00 1.00 10.69	0
MOTA MOTA	3672 3673	0 N	LEU PHE	58 9	43.924	30.33 3	68.026	1.00 2.00	0
MOTA	367 5	CA	PHE	589	44.938	31.363	67.865 69.200	1.00 2.00 1.00 2.00	0
MOTA MOTA	3 67 6 3 67 7	CB CG	PHE PHE	58 9 58 9	45.289 44.279	32. 01 3 33. 02 6	69.652	1.00 2.00	Ö
MOTA	3 67 8	CD1	PHE	589	43.136	32.633	70.326	1.00 2.00 1.00 2.00	0
ATOM ATOM	36 7 9 3680		PHE PHE	58 9 58 9	44.471 42.203	· 34. 37 6 - 33. 56 7	69.391 70.732	1.00 2.00 1.00 2.00	Ö
MOTA	3681	CE2	PHE	58 9	43.542	35.321	69.793	1.00 2.00	0
MOTA	3682	CZ	PHE	58 9 58 9	42.408 46.140	34.918 30.717	70. 46 3 67. 21 9	1.00 2.00 1.00 2.00	0
MOTA MOTA	3683 3684	C 0	PHE PHE	589	46.532	29.610	67. 60 2	1.00 2.00	0
MOTA	3685	N	LEU	590	46.715	31.411 30.892	66. 23 5 65. 4 59	1.00 2.00 1.00 2.00	0
MOTA MOTA	3687 3688	CA CB	LEU LEU	590 590	47.84 5 47.65 0	31.303	63. 98 8	1.00 9.73	ő
MOTA	3689	CG	LEU	590	46.273	31.022	63.356 62.014	1.00 9.73 1.00 9.73	0 0
ATOM ATOM	3690 3691		LEU LEU	590 590	46.162 46.056	31. 7 02 29.529	63.211	1.00 9.73	ŏ
ATOM	3692	C	LEU	59 0	49.277	31.221	65. 94 7	1.00 2.00	0
MOTA	3693	0	LEU	590 591	50.263 49.389	30.856 31. 92 9	65.296 67.071	1.00 9.73 1.00 2.00	0 0
MOTA MOTA	3694 3696	N CA	GLY GLY	591	5 0. 7 03	32.223	67.626	1.00 2.00	0
MOTA	3697	C	GLY	591	51.132	33.648	67.923	1.00 2.00 1.00 2.00	0
MOTA MOTA	3698 3699	0 N	GLY ASP	591 592	50.369 52.387	34.620 33.741	67.769 68.358	1.00 2.00	Õ
ATOM	3701	CA	ASP	592	53.033	35.000	68. 70 7	1.00 2.00	0
MOTA	3702	CB	ASP	592 592	53.424 54.521	35.746 35. 05 1	67. 44 8 66. 68 6	1.00 6.15 1.00 16.84	0 0
MOTA ATOM	3703 3704	CG OD1	ASP ASP	592	54.955	35.606	65.657	1.00 11.71	0
ATOM	3705	OD2	ASP	59 2	54.943	33.949	67.114 69.598	1.00 18.80	0
ATOM ATOM	3 70 6 3 70 7	C	ASP ASP	59 2 59 2	52.194 51.813	35.887 36.995	69.211	1.00 6.68	0
ATOM	3708	N	TYR	593	51.927	35.370	70.800	1.00 12.61	0
MOTA MOTA	3710 3711	CA CB	TY R T YR	593 593	51.127 50 602	36. 03 6 35.017	71. 82 2 72.827	1.00 12.61 1.00 2.00	0 0
A LON	7 (1 1	(_;,	6 4 4 5	,,,	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

ATOM	3712	CG	TYR	59 3	49.994	33.790	72.200	1.00 2.00	0
MOTA	3713	CD1		593	50.558	32.532	72.382	1.00 2.00	0
MOTA	3714	CE1	TYR	59 3	49.995	31.401	71.793	1.00 2.00	ő
MOTA	3715	CD2		59 3	48.852	33.886	71.413	1.00 2.00	ŏ
MOTA	3716	CE2		59 3	48.284	32. 77 2	70.822	1.00 2.00	ō
ATOM	3717	CZ	TYR	59 3	48.856	31.540	71.013	1.00 2.00	Ō
ATOM	3718	он	TYR	593	48.267	30.459	70.412	1.00 2.00	Õ
MOTA	3720	C	TYR	59 3	51.995	37.019	72.560	00 12.61	0
MOTA	3721	0	TYR	59 3	51.526	38.079	72.981	00 2.00	0
MOTA MOTA	3722 3724	N	LAV	594	53.270	36.660	72.692	1.00 2.00	0
MOTA	3725	CA CB	VAL VAL	594 594	54.238	37.463	73.420	1.00 2.00	0
ATOM	3726		VAL	594	54.913 53.855	36. 59 9	74.501	1.00 30.06	0
MOTA	3 72 7		VAL	594	55.950	35.785 35.684	75.241	1.00 30.06	0
ATOM	3728	C	VAL	594	55.309	38.154	73.875 72.563	1.00 30.06	0
ATOM	3729	ŏ	VAL	594	55.408	37. 91 9	71.356	1.00 2.00 1.00 30.06	0
ATOM	3730	N	ASP	59 5	56.112	38.991	73.218	1.00 2.00	0
MOTA	3732	CA	ASP	59 5	57.184	39.776	72.601	1.00 2.00	0
MOTA	3733	CB	ASP	59 5	58.073	38.903	71.705	1.00 33.25	ő
MOTA	3734	CG	ASP	59 5.	58.911	37.890	72.502	1.00 42.03	ŏ
MOTA	373 5	OD1	ASP	59 5	59.240	38.147	73.679	1.00 40.72	ŏ
MOTA	3736	OD2	ASP	59 5	59.256	36.831	71.941	1.00 46.45	Õ
MOTA	3737	C	ASP	59 5	56.547	40.920	71.818	1.00 2.00	Ö
MOTA	3738	0	ASP	59 5	55.335	40.901	71.57 5	1.00 29.29	0
MOTA	3739	N	ARG	59 6	57.342	41.927	71.460	1.00 2.00	0
MOTA	3741	CA	ARG	59 6	56.843	43.096	70.716	1.00 2.00	0
MOTA	3742	CB	ARG	59 6	56.146	42.658	69.41 6	1.00 7.10	0
MOTA	3743	CC	ARG	59 6	57.043	41.863	68.457	1.00 13.06	0
ATOM	3744	CD	ARG	596	58.035	42.755	67.729	1.00 17.94	0
MOTA MOTA	3 74 5 3 74 7	NE	ARG	59 6 59 6	59. 293 59. 40 2	42.081	67.407	1.00 25.56	0
MOTA	3748	CZ NH1	ARG ARG	596 -	58.325	40.954 40.338	66.709	1.00 35.06	0
ATOM	3751		ARG	596	60.604	40.338	66.236 66.486	1.00 31.67 1.00 31.81	0
MOTA	3754	C	ARG	596	55.898	43.996	71.547	1.00 31.81	0
ATOM	3 75 5	Õ	ARG	596	56.269	45.112	71.922	1.00 2.00	Ö
MOTA	3756	Ň	GLY	597	54.692	43.521	71.847	1.00 32.20	ŏ
ATOM	3758	CA	GLY	597	53.763	44.323	72.632	1.00 30.86	Ö
MOTA	3759	C	GLY	597	54.199	44.603	74.062	1.00 35.68	Ō
MOTA	3760	O	GLY	597	55.120	43.976	74.570	1.00 2.00	0
MOTA	3761	N	LYS	598	53.520	45.539	74.720	1.00 20.71	0
MOTA	376 3	CA	LYS	59 8	53.845	45.911	76.097	1.00 17.90	0
MOTA	3764	CB	LYS	59 8	53.686	47.427	76.271	1.00 54.79	0
ATOM	3765	CG	LYS	59 8	54.813	48.259	75.655	1.00 53.06	0
ATOM	3766	CD	LYS	59 8	56.159	48.031	76.359	1.00 56.27	0
ATOM	3767	CE	LYS	59 8	56.120	48.441	77.838	1.00 53.59	0
MOTA	3768	NZ	LYS	59 8	57.407	48.186	78.548	1.00 56.50	0
MOTA	3772	C	LYS	598	53.064	45.179	77.210	1.00 18.19	0
MOTA MOTA	3773 3774	N	LYS GLN	598 599	53. 384 52. 05 3	45.314 44.400	78.395 76.832	1.00 55.50 1.00 2.00	0
ATOM	3776	CA	GLN	599	51.244	43.666	77.795	1.00 2.00	ŏ
ATOM	3777	CB	GLN	599	49.820	44.244	77.839	1.00 24.44	Õ
ATOM	3778	CG	GLN	59 9	49.780	45.701	78.304	1.00 31.08	0
ATOM	3779	CD	GLN	599	48.398	46.169	78.728	1.00 27.33	0
ATOM	3780	OE1	GLN	599	47.537	46.449	77.895	1.00 26.31	0
MOTA	3781	NE2	GLN	59 9	48.188	46.277	80.029	1.00 27.77	0
MOTA	3784	C	GLN	59 9	51.215	42.163	77.514	1.00 2.00	0
MOTA	378 5	0	GLN	59 9	50.183	41.515	77.626	1.00 24.92	0
MOTA	3786	N	SER	600	52.371	41.602	77.198	1.00 2.00	0
MOTA	3788	CA	SER	600	52.445	40.180	76.921	1.00 2.00	C
ATOM	3789	CB	SER	600	53.875	39.781	76.547	1.00 2.00	0
ATOM	3790	OG	SER	600	54.381	40.577	75.480	1.00 2.00	0
MOTA	3792	C	SER	600	51.968	39.304	78.078	1.00 2.00	0
ATOM	3793	0	SER	600	51.589	38.153 39.830	77.856	1.00 2.00	0
MOTA MOTA	3794 3796	N CA	LEU LEU	601 601	51.990 51.566	39.055	79.306 80.486	1.00 2.00 1.00 2.00	0 0
ATOM	37 9 5	CB	LEU	601	52.120	39.628	81.801	1.00 2.00	0
ATOM	3798	CG	LEU	601	53.573	39.753	82.260	1.00 2.00	0
ATOM	37 9 9		LEU	601	54.290	38.405	82.228	1.00 2.00	0
			220	30.			,,	2.00	

ATOM ATOM ATOM ATOM	3800 3801 3802 3803	CD2 C N	LEU LEU LEU GLU	601 601 601 602	54.244 50.058 49.498 49.412	40.799 39.002 37.949 40.154	81.399 80.635 80.921 80.490	1.00 1.00 1.00 1.00	2.00 2.00 4.13 2.00	0 0 0
MOTA	3805	CA	GLU	602	47.969	40.227	80.608 80.495	1.00	2.00 5.18	0
MOTA	3806 3807	CB CG	GLU GLU	602 602	47. 48 6 47. 75 2	41.676 42.552	81.739	1.00	5.18	0
MOTA MOTA	3808	CD	GLU	602	49.152	43.180	81.773	1.00	5.18	0
MOTA	3809		GLU	602	50. 14 6 49. 26 6	42.439 44.424	81.854 81.732	$\frac{1.00}{1.00}$	5.18 5.18	0
ATOM ATOM	3810 3811	OE2 C	GLU GLU	602 602	49.266 47. 41 3	39.391	79.479	1.00	2.00	Ö
ATOM	3812	Õ	GLU	602	46.452	38.661	79.661	1.00	5.18	0
ATOM	3813	N	THR	603	48.072 47. 70 5	39. 47 7 38. 74 8	78.323 77.110	1.00 1.00		0
ATOM ATOM	3815 3816	CA CB	THR THR	603 603	48.585	39.206	75.941	1.00	8.67	ő
ATOM	3817	OG1	THR	60 3	48.197	40.527	75.557	1.00	8.67	0
ATOM	3819	CG2	THR	603 603	48.437 47. 79 4	38.272 37.228	74.748 77.228	1.00	8.67 56.10	0
ATOM ATOM	3820 3821	C O	THR THR	603	46.804	36.522	77.060	1.00	8.67	ő
ATOM	3822	N	ILE	604	48.980	36.713	77.505	1.00	2.00	0
MOTA	3824	CA	ILE	604	49.137 50.643	35.273 34.900	77.630 77.738	1.00 1.00	2.00 2.00	0
MOTA MOTA	3825 3826	CB CG2	ILE	604 604	51.244	35.475	79.009	1.00	2.00	0
MOTA	3827	CG1	ILE	604	50.812	33.382	77.627	1.00	2.00	0
MOTA	3828	CD1	ILE	604	50.1 7 7	32.766 34.710	76.369 78.808	1.00 1.00	2.00	0
ATOM ATOM	3829 3830	C O	ILE	604 604	48. 31 4 47. 88 6	33.565	78.779	1.00	2.00	Ö
ATOM	3831	Ŋ	CYS	605	48.057	35.526	79.821	1.00		0
MOTA	3833	CA	CYS	605	47.283	35.072	80.962 82.138	1.00	16.48 12.63	0
MOTA MOTA	3834 3835	CB SG	CYS CYS	605 605	47.434 48.994	36.026 35.843	82.130		18.12	Ö
ATOM	3836	C	CYS	605	45.824	34.923	80.630	1.00	10.22	0
MOTA	3837	0	CYS	605	45.185	33.963	81.068 79.861	1.00	8. 5 9 2. 0 0	0
ATOM ATOM	3838 3840	CA N	LEU LEU	60 6 60 6	45.280 43.874	35.856 35.771	79.504	1.00	2.00	Ö
ATOM	3841	CB	LEU	60 6	43.396	37.087	78.881	1.00	2.00	0
MOTA	3842	CG	LEU	606	41.886	37.223	78.636	1.00	2.00	0
ATOM ATOM	3843 3844		LEU	60 6 60 6	41.081 41.551	36.716 38.688	79.867 78. 3 26	1.00	2.00	0
ATOM	3845	C	LEU	60 6	43.589	34.599	78.559	1.00	2.00	0
MOTA	3846	O	LEU	606	42.503	34.012	78.612	1.00	2.00	0
MOTA MOTA	3847 3849	N CA	LEU	607 607	44.562 44.392	34.246 33.137	77. 71 3 76. 77 2	1.00	9.59	0
MOTA	3850	CB	LEU	607	45.394	33.246	75.604	1.00	9.66	0
MOTA	3851	CG	LEU	607	45.302	34.531	74.755	1.00	9.66	0
MOTA MOTA	3 85 2 3 85 3		LEU	607 607	46.376 43.951	34.564 34.634	73.709 74.114	1.00 1.00	9.66 9.66	0
MOTA	3854	CDZ	LEU	607	44.509	31.781	77.476	1.00	9.59	0
MOTA	3855	O	LEU	607		30.841	77.148	1.00	9.66	0
MOTA MOTA	3856 3 85 8	N CA	LEU	60 8 60 8	45.412 45.599	31.688 30.460	78. 45 2 79. 23 0	1.00	67.56	0
MOTA	3859	CB	LEU	608	46.872	30.529	80.054	1.00	2.00	0
ATOM	3860	CG	LEU	608	48.168	30.385	79.273	1.00	2.00	0
MOTA MOTA	3861 3862		LEU	608 608	49.357 48.109	30.366 29.107	80.234 78. 4 62	1.00 1.00	2.00	0
ATOM	3863	C	LEU	608	44.427	30.217	80.170	1.00	67.5 6	. 0
ATOM	3864	0	LEU	608	44.097	29.059	80.477	1.00	2.00	0
MOTA MOTA	3865 3867	N CA	ALA ALA	609 609	43.833 42.667	31.313 31.250	80.653 81.531	1.00 1.00	2.00	0
ATOM	3868	CB	ALA	609	42.322	32.637	82.044	1.00	2.00	0
MOTA	3869	C	ALA	609	41.496	30.677	80.734	1.00	2.00	0
ATOM	3870	O N	ALA TYR	609 610	40.833 41.263	29.747 31.231	81.162 79.552	1.00 1.00	2.00	0 0
MOTA MOTA	3871 3873	N CA	TYR	610	40.186	30.771	78.686	1.00	2.00	ő
MOTA	3874	CB	TYR	610	40.046	31.717	77.504	1.00	2.00	0
ATOM	3875 3876	CG	TYR TYR	610 610	39.274 39.685	32.974 34.202	77.820 77.315	1.00 1.00	2.00	0 0
MOTA ATOM	3877	CEI		610	38.952	35.359	77.558	1.00	2.00	Ö

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3878 3879 3880 3881 3883 3884 3885 3888 3889 3890 3891	CD2 CE2 CZ OH C O N CA CB CG CD CE	TYR TYR TYR TYR TYR TYR LYS LYS LYS LYS LYS	610 610 610 610 610 611 611 611 611 611	38.108 37.367 37.797 37.086 40.431 39.481 41.703 42.063 43.551 43.926 43.240 43.476	32.933 34.091 35.298 36.452 29.342 28.575 28.991 27.532 26.136 25.837 24.412	78.589 78.841 78.319 78.533 78.205 78.006 78.017 77.308 76.803 75.467 74.980	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 3.53 1.00 3.53 1.00 3.53	000000000000000000000000000000000000000
ATOM ATOM	3892 3896	NZ C	LYS LYS	611 611	42.391 41.717	23.502 26.666	75.421 78.700	1.00 3.53 1.00 2.00	0
MOTA	3897	0	LYS	611	41.142	25.618	78.431	1.00 2.00	0
MOTA MOTA	3 89 8 3 90 0	N CA	ILE	612 612	42.084 41.780	26.990 26.115	79.93 8 81.06 9	1.00 26.02	0
MOTA	3901	CB	ILE	612	42.543	26.535	82.336	1.00 26.02 1.00 2.00	0
MOTA MOTA	390 2 390 3	CG2 CG1	ILE ILE	612 612	42.232 44.041	25.576	83.475	1.00 2.00	0
MOTA	3904	CD1	ILE	612	44.860	26.511 27.144	82.063 83.135	$ \begin{array}{cccc} 1.00 & 2.00 \\ 1.00 & 2.00 \end{array} $	0
MOTA	3905	C	ILE	612	40.284	26.149	81.365	1.00 26.02	ŏ
MOTA MOTA	3906 3907	O N	ILE LYS	612 613	39.698 39.683	25.131 27.326	81.739 81.181	1.00 2.00 1.00 2.00	0
MOTA	390 9	CA	LYS	61 3	38.257	27.556	81.414	1.00 2.00	0
MOTA MOTA	3910 3911	CB CG	LYS LYS	613 613	37.966 36. 52 8	29.058 29.437	81.402 81.650	1.00 10.53 1.00 10.53	0
MOTA	3912	CD	LYS	613	36.070	29.072	83.035	1.00 10.53	0
MOTA MOTA	3913 3914	CE NZ	LYS LYS	613 613	34.717 33.611	29.693	83.364	1.00 10.53	0
MOTA	3918	C	LYS	613	37.379	29.182 26.847	82.523 80.384	1.00 10.53 1.00 2.00	0
ATOM ATOM	3919 3920	0	LYS TYR	613	36.335	26.293	80.739	1.00 10.53	0
ATOM	392 0	N CA	TYR	614 614	37. 81 9 37. 07 9	26.842 26.214	79.121 78.016	1.00 24.09 1.00 27.84	0
ATOM	3923	CB	TYR	614	36.47 3	27.301	77.125	1.00 2.00	0
ATOM ATOM	3924 3925	CG CD1	TYR TYR	614 614	35.679 36.123	28.363 29.689	77.855 77.892	1.00 2.00 1.00 2.00	0
ATOM	3926	CE1	TYR	614	35.40 9	30.671	78.567	1.00 2.00	0
MOTA MOTA	3927 3928	CD2 CE2	TYR TYR	614 614	34.490 33.766	28.048 29.020	78.516 79.199	1.00 2.00 1.00 2.00	0
MOTA	392 9	CZ	TYR	614	34.232	30.330	79.227	1.00 2.00	Ö
ATOM ATOM	3930 3932	OH C	TYR TYR	614 614	33.560	31.293	79.960	1.00 2.00	0
ATOM	393 3	Ö	TYR	614	37.97 6 38.01 2	25.317 25.474	77.146 75.935	1.00 25.93 1.00 2.00	0 0
MOTA	3934	N	PRO	615	38.641	24.310	77.73 3	1.00 21.49	0
ATOM ATOM	3935 3936	CD CA	PRO PRO	61 5 61 5	38. 4 94 39.5 4 1	23.854 23.406	79.123 76.995	1.00 11.83 1.00 22.47	0
ATOM	3937	CB	PRO	61 5	39.950	22.384	78.055	1.00 11.83	0
ATOM ATOM	3938 3939	CG C	PRO PRO	615 615	38. 77 3 39. 07 8	22.382 22.714	78.995 75.720	1.00 11.83 1.00 20.23	0
ATOM	3940	0	PRO	615	39.873	22.026	75.074	1.00 11.83	0
ATOM ATOM	3941 3943	N CA	GLU GLU	616 616	37.813 37.296	22.879 22.213	75.350 74.159	1.00 15.62 1.00 16.61	0
MOTA	3944	CB	GLU	616	36.240	21.179	74.566	1.00 26.75	0
ATOM ATOM	3945 3946	CG CD	GLU GLU	616 616	36.644	20.253	75.695	1.00 30.68	0 0
ATOM	3947	OE1		616	37. 87 2 38.7 4 7	19.416 19.294	75.382 76.273	1.00 40.71 1.00 39.65	Ö
ATOM	3948	OE2		616	37.960	18.874	74.256	1.00 39.29	0
ATOM ATOM	3949 3950	C O	GLU GLU	616 616	36.681 36.276	23.175 22.765	73.140 72.046	1.00 13.01 1.00 20.06	0
MOTA	3951	И	ASN	617	36.620	24.453	73.499	1.00 2.00	0
ATOM ATOM	3953 3954	CA CB	ASN ASN	617 617	36.027 34.678	25. 46 7 25.89 6	72.636 73.218	1.00 2.00 1.00 42.63	0
MOTA	395 5	CG	ASN	617	33.743	24.720	73.456	1.00 47.29	0
ATOM ATOM	3956 3957	OD1 ND2		617 617	33.800 32.883	24.064 24.443	74.500 72.485	1.00 50.83 1.00 53.65	0
MOTA	3960	C C	ASN	617	36.941	26.686	72.476	1.00 33.65	0
ATOM	3961	O	ASN	617	36.505	27.747	72.032	1 00 45.01	О

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3964 3964 39665 39666 39666 3977 39977 39977 3998 3998 3998 3998 39	CE1 CE2 CZ CON CACB CCD1 CD2 CE1 CC2 CCON CACB CCB CCD1	PHE	618 618 618 618 618 618 618 618 619 619 619 619 619 619 619 619 619 620 620 620 620 620 621 621	38.215 39.192 39.146 40.042 39.501 41.422 40.325 40.540 40.893 41.5468 41.404 40.063 41.738 41.738 42.468 41.404 40.638 41.738 41.738 41.738 41.738 41.738 41.738 41.747 47.225 47.805 48.880 48.577	26.517 27.596 28.387 29.585 30.871 29.447 30.5854 26.966 27.239 26.599 25.622 24.595 23.297 22.389 27.5668 27.239 27.5668 27.239 27.938	72.812 72.736 74.044 74.073 74.058 74.147 74.119 74.209 74.195 72.570 73.394 71.514 70.151 70.151 70.311 70.311 70.370 70.892 70.738 71.005 70.564 71.282 71.073 72.565 70.438	1.00 14.67 1.00 14.67 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	399 9 400 0	CG CD1	LEU LEU	621 621	47.256 47.021	26.280 26.511	66.739 65.253	1.00 2.00 1.00 2.00	0
MOTA MOTA	40 01 40 02	CD2 C	LEU LEU	621 621	47.281 50.162	24.813 27.756	67.062 68.943	1.00 2.00 1.00 2.00	0
ATOM ATOM	4003 4004	о О	LEU ARG	62 1 62 2	50. 12 1 51. 29 6	28.9 3 7 27.092	69.285 68.774	1.00 2.00 1.00 2.00	0
MOTA	4006	CA	ARG	62 2	52.59 3	27.690	69.013	1.00 2.00	0
MOTA MOTA	4007 4008	CB CG	ARG ARG	62 2 62 2	53.620 54.96 7	26.5 7 8 27. 05 2	69.231 69.716	1.00 5.18 1.00 5.18	0
ATOM	4009	CD	ARG	62 2	55.802	25.891	70.196	1.00 5.18	0
ATOM ATOM	401 0 401 2	NE CZ	ARG ARG	62 2 62 2	56. 96 9 57.83 0	26.357 25.553	70.941 71.557	1.00 5.18 1.00 5.18	0
ATOM	4013	NH1	ARG	62 2	57.659	24.240	71.525	1.00 6.18	Ö
MOTA	4016		ARG	622	58.870	26. 05 6 28.6 1 5	72.199 67.894	1.00 5.18 1.00 2.00	0
ATOM ATOM	40 19 40 20	C O	ARG ARG	62 2 62 2	53.070 53.032	28.270	66.702	1.00 16.40	Ô
ATOM	4021	N	GLY	62 3	53.508	29.8 0 5 30.7 4 9	68.286	1.00 19.04 1.00 20.78	0 0
ATOM ATOM	4023 4024	CA C	GLY GLY	62 3 62 3	54.043 55. 55 1	30.749	67.328 67.390	1.00 20.78 1.00 18.09	Ö
MOTA	4025	0	GLY	623	56.069	29.805	68.212	1.00 2.00	0
MOTA MOTA	4026 4028	N CA	ASN ASN	624 624	56. 28 1 57. 72 8	31.266 31.1 4 4	66.530 66.566	1.00 32.06 1.00 32.95	0
MOTA	4029	CB	ASN	624	58. 34 5	31.543	65.220	1.00 12.63	0
MOTA MOTA	4030 4031	CG OD1	asn asn	624 624	58.120 57.381	33.002 33. 754	64.857 65.538	1.00 8.84 1.00 9.47	0
ATOM	4031	ND2	ASN	624	58.721	33.411	63.757	1.00 8.50	ŏ
MOTA	4035	C	ASN	624	58.260	31.988	67.721	1.00 32.42	0 0
MOTA MOTA	4036 4037	N O	ASN HIS	624 625	59. 44 2 57. 35 9	31.926 32.757	68.066 68.335	1.00 7.81 1.00 7.73	0
ATOM	4039	CA	HIS	625	57.687	33.614	69.477	1.00 8.83	0
MOTA MOTA	4040 4041	CB CG	HIS HIS	62 5 62 5	57. 03 0 57. 90 9	34.987 35.998	69.320 68.656	1.00 2.00 1.00 2.00	0 0
MOTA	4041	CD2	HIS	625	59.042	35.854	67.933	1.00 2.00	0
MOTA	4043		HIS	625	57.668	37.351	68.721 68.069	1.00 2.00 1.00 2.00	0 ()
MOTA	4045	CEI	HIS	625	58. 61 8	37. 99 9	60.004	1.00 2.00	U

ATOM 4046 C HIS 625 59.464 37.113 67.582 1.00 2.00 0 ATOM 4048 C HIS 625 57.278 32.980 70.807 1.00 8.94 0 ATOM 4049 C HIS 625 57.278 32.980 70.807 1.00 8.94 0 ATOM 4049 N HIS 625 57.278 32.980 70.807 1.00 8.94 0 ATOM 4050 N G GUU 626 56.989 10.914 71.825 1.00 2.00 0 ATOM 4051 C G GUU 626 56.989 10.914 71.825 1.00 2.00 0 ATOM 4053 C G GUU 626 56.989 10.914 71.845 1.00 1.00 18.70 0 ATOM 4055 C G GUU 626 54.051 30.627 71.645 1.00 12.00 0 ATOM 4055 C G GUU 626 54.051 30.627 71.2039 1.00 18.70 0 ATOM 4057 OEZ GUU 626 53.516 12.922 72.217 1.00 18.70 0 ATOM 4058 C GUU 626 53.516 12.922 72.217 1.00 2.01 0 ATOM 4059 O GUU 626 53.516 12.922 72.217 1.00 2.01 0 ATOM 4059 O GUU 626 57.886 10.0627 10.02 10.0 2.00 0 ATOM 4069 N CYS 627 59.015 10.748 72.039 1.00 2.00 0 ATOM 4060 N CYS 627 66.835 10.04 11.00 11.00 2.00 0 ATOM 4061 C C CYS 627 66.290 310.667 72.218 1.00 2.00 0 ATOM 4062 C A CYS 627 66.291 30.667 72.218 1.00 2.00 0 ATOM 4063 C C CYS 627 66.291 30.667 72.218 1.00 2.00 0 ATOM 4066 C CYS 627 66.291 31.607 72.218 1.00 2.00 0 ATOM 4066 C CYS 627 66.315 12.951 71.00 19.49 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 C A LA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4067 C B ALA 628 62.994 30.704 71.900 1.00 19.49 0 ATOM 4070 C B ALA 628 63.980 31.662 74.206 1.00 19.49 0 ATOM 4071 C B ALA 628 63.980 31.662 74.206 1.00 19.49 0 ATOM 4070 C B ALA 628 63.980 31.662 74.206 1.00 19.49 0 ATOM 4070 C B ALA 628 63.980 31.602 74.206 1.00 19.49 0 ATOM 4070 C B ALA 628 63.990 31.662 74.206 1.00 19.49 0 ATOM 4071 C C B ALA 628 63.991 31.602 74.206 1.00 19.49 0 ATOM 4070 C B ALA 628 63.991 31.602 74.206 1.00 19.49 0 ATOM 4070 C B ALA 628 63.991 31.602 74.206 1.00 19.49 0 ATOM 4070 C B ALA 628 63.991 31.602 74.206 1.00 19.49 0 ATOM 4080 C C A SER 629 65.637 31.813 72.478 1.00 19.40 0 ATOM 4080 C C A SER 629 65.637 31.813 77.700 1.00 19.49 0 ATOM 4080 C C A SER 629 65.637 31.813 77.700 1.00 19.40 0 ATOM 4080 C C A SER 629 65.637 31.813 77.700 1.00 19.40 0 ATOM 4080 C C A SER 629 65.637 31.813 77.700 1.00 19.40 0 AT	N MOM	4046			6 D C	50 454				
ATOM 4049 0 HIS 625 57.188 31.644 71.825 1.00 2.00 0 ATOM 4050 N GLU 626 56.629 30.914 71.945 1.00 2.00 0 ATOM 4051 CB GLU 626 55.629 30.914 71.945 1.00 2.00 0 ATOM 4053 CB GLU 626 55.4051 30.627 72.039 1.00 18.70 0 ATOM 4055 CD GLU 626 55.4051 30.627 72.039 1.00 18.70 0 ATOM 4055 CD GLU 626 53.516 32.922 72.217 1.00 2.00 0 ATOM 4056 CD GLU 626 53.516 32.922 72.217 1.00 20.31 0 ATOM 4057 022 GLU 626 53.516 32.922 72.217 1.00 20.31 0 ATOM 4058 C GLU 626 53.516 32.922 72.217 1.00 20.31 0 ATOM 4058 C GLU 626 53.516 32.922 72.217 1.00 20.31 0 ATOM 4059 C GLU 626 53.516 32.922 72.217 1.00 20.31 0 ATOM 4059 C GLU 626 53.516 32.922 72.217 1.00 20.00 0 ATOM 4060 N CYS 627 59.015 30.068 72.029 1.00 2.00 0 ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4061 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4061 CB CYS 627 60.230 30.667 72.218 1.00 2.00 0 ATOM 4064 CB CYS 627 60.230 30.667 72.218 1.00 2.00 0 ATOM 4066 O CYS 627 60.230 30.667 72.218 1.00 2.00 0 ATOM 4066 O CYS 627 60.230 30.667 72.218 1.00 2.00 0 ATOM 4066 O CYS 627 60.230 30.667 72.218 1.00 2.00 0 ATOM 4066 O CYS 627 60.230 30.667 72.218 1.00 2.00 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.90 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4067 N ALA 628 61.991 30.762 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.904 31.602 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.904 31.602 75.567 1.00 2.00 0 ATOM 4070 CB SER 629 66.6057 31.813 72.478 1.00 11.00 19.49 0 ATOM 4071 C ALA 628 63.904 31.602 75.567 1.00 2.00 0 ATOM 4070 CB SER 629 66.6057 31.813 72.478 1.00 11.00 19.49 0 ATOM 4070 CB SER 629 66.6057 31.813 72.478 1.00 11.00 19.49 0 ATOM 4070 CB SER 629 66.6057 31.813 72.478 1.00 11.00 19.49 0 ATOM 4070 CB SER 629 66.6057 31.813 72.478 1.00 11.00 19.49 0 ATOM 4070 CB SER 629 65.660 37.313 73.700 71.71 1.00 10.83 0 ATOM 4070 CB SER 629 65.660 37.313 73.700 71.71 1.00 10.83 0 ATOM 4070 CB SER 629 65.660 37.313 73.71 71.71 1.00 10.00 10.83 0 ATOM 4070 CB SER 629 65.660 37.31 33.31 72.478 1.00 11.00 10.83 0 ATOM 4080 C SER 629 65.660	MOTA	4046			625	59.464	37.113	67.582	1.00 2.00	0
ATOM 4050 N GLU 626 56.984 31.691 70.767 1.00 2.00 0 ATOM 4052 CA GLU 626 56.6984 31.691 70.767 1.00 2.00 0 ATOM 4053 CB GLU 626 55.404 30.026 71.666 1.00 23.06 0 ATOM 4054 CG GLU 626 55.404 30.026 71.666 1.00 23.06 0 ATOM 4055 CD GLU 626 53.812 31.997 71.445 1.00 17.00 0 ATOM 4056 CB GLU 626 53.812 31.997 71.445 1.00 17.00 0 ATOM 4057 CB GLU 626 53.813 32.927 72.217 1.00 20.31 0 ATOM 4058 C GLU 626 53.813 32.927 72.217 1.00 20.31 0 ATOM 4057 CB GLU 626 53.813 32.927 72.217 1.00 20.31 0 ATOM 4058 C GLU 626 53.813 32.927 72.217 1.00 20.31 0 ATOM 4059 C GLU 626 53.813 32.927 72.217 1.00 20.31 0 ATOM 4059 C GLU 626 53.813 32.927 72.217 1.00 20.31 0 ATOM 4069 C GLU 626 53.813 32.927 72.217 1.00 20.31 0 ATOM 4061 CB CYS 627 59.013 30.767 72.039 1.00 2.00 0 ATOM 4063 CB CYS 627 62.235 28.841 71.921 1.00 23.50 0 ATOM 4063 CB CYS 627 62.235 28.843 70.575 1.00 12.90 0 ATOM 4066 C C CYS 627 62.235 28.843 70.575 1.00 12.90 0 ATOM 4066 C C CYS 627 62.235 28.843 70.575 1.00 12.90 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4067 CB ALA 628 63.903 31.662 73.908 1.00 81.90 0 ATOM 4067 CB ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4070 CB ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4070 CB SER 629 66.5637 31.813 72.4788 1.00 12.00 0 ATOM 4071 C ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4070 C SER 629 66.057 30.877 71.355 1.00 12.90 0 ATOM 4071 C ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4070 C SER 629 66.057 30.877 71.355 1.00 12.90 0 ATOM 4070 C SER 629 66.057 30.877 71.355 1.00 12.90 0 ATOM 4070 C SER 629 66.057 30.877 71.355 1.00 12.90 0 ATOM 4080 C T LE 630 62.64 33.938 77.71.355 1.00 15.99 0 ATOM 4080 C T LE 630 62.64 33.938 77.71.355 1.00 15.99 0 ATOM 4080 C T LE 630 62.65 33.913 77.71.355 1.00 15.99 0 ATOM 4090 N ASN 631 61.65 33.973 70.077 1.00 2.00 0 ATOM 4090 N ASN 631 61.65 33.973 70.707 71.00 2.00 0 ATOM 4090 C SER 629 66.05 37 33.973 70.077 1.00 12.40 0 ATOM 4090 N ASN 631 63										
ATOM 4052 CA GLU 626 55.4051 30.914 71.945 1.00 2.00 1 ATOM 4054 CG GLU 626 55.4051 30.627 77.039 1.00 18.70 0 ATOM 4055 CD GLU 626 53.816 32.922 77.217 1.00 20.31 0 ATOM 4056 CD GLU 626 53.816 32.922 77.217 1.00 20.31 0 ATOM 4057 0E2 GLU 626 53.811 32.165 70.214 1.00 23.26 0 ATOM 4058 C GLU 626 53.911 32.165 70.214 1.00 23.26 0 ATOM 4058 C GLU 626 53.911 32.165 70.214 1.00 23.26 0 ATOM 4059 C GLU 626 53.911 32.165 70.214 1.00 23.26 0 ATOM 4059 C GLU 626 57.886 30.068 72.029 1.00 2.00 0 ATOM 4060 N CYS 627 55.015 30.748 71.921 1.00 23.50 0 ATOM 4060 N CYS 627 55.015 30.748 71.184 1.00 2.00 0 ATOM 4060 N CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4060 C CA CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C CA CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C CA CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C C CYS 627 62.215 28.843 70.5755 1.00 19.90 0 ATOM 4067 N ALA 628 627 61.355 32.8467 73.100 1.00 19.49 0 ATOM 4067 N ALA 628 62.914 30.700 73.850 0 ATOM 4071 C ALA 628 63.990 31.662 74.206 1.00 19.49 0 ATOM 4070 CE ALA 628 63.990 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4075 C SER 629 66.057 31.813 72.478 1.00 12.00 0 ATOM 4075 C SER 629 65.319 33.131 71.899 1.00 10.99 49 0 ATOM 4070 CE SER 629 65.639 31.813 72.478 1.00 12.00 0 ATOM 4070 C SER 629 65.639 31.813 72.478 1.00 12.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4070 CE SER 629 65.639 31.813 72.478 1.00 12.00 0 0 ATOM 4070 C SER 629 65.639 31.813 72.478 1.00 12.00 0 0 ATOM 4070 C SER 629 65.869 31.00 75.557 71.00 2.00 0 ATOM 4070 C SER 629 65.869 31.00 75.557 71.00 2.00 0 ATOM 4070 C SER 629 65.869 31.860 77.759 71.400 10.00 19.40 0 ATOM 4070 C SER 629 65.869 31.800 77.759 71.400 10.00 19.40 0 ATOM 4070 C SER 629 65.869 31.800 77.750 71.00 10.00 19.40 0 ATOM 4070 C SER 629 65.869 31.800 77.770 71.00 10.00 19.40 0										
ATOM 4054 CG GLU 626 55.404 30.026 71.666 1.00 23.06 0 ATOM 4055 CD GLU 626 53.812 31.997 71.445 1.00 17.00 0 ATOM 4056 CD1 GLU 626 53.812 31.997 71.445 1.00 17.00 0 ATOM 4057 OE2 GLU 626 53.813 32.165 70.214 1.00 23.26 0 ATOM 4058 C GLU 626 53.813 32.165 70.214 1.00 23.26 0 ATOM 4058 C GLU 626 53.811 32.165 70.214 1.00 23.26 0 ATOM 4059 O GLU 626 57.881 32.165 70.214 1.00 23.26 0 ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4061 CA CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4062 CA CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4066 C CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4066 C CYS 627 61.255 30.748 73.105 1.00 19.90 0 ATOM 4066 C CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4067 N ALA 628 61.371 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 23.607 73.508 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 23.607 73.500 1.00 19.49 0 ATOM 4070 CB ALA 628 63.890 31.669 74.202 11.00 19.49 0 ATOM 4071 CB ALA 628 63.890 31.669 74.202 11.00 19.49 0 ATOM 4072 C ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4071 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4071 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4071 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4071 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4071 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4071 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4070 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4071 CB ALA 628 63.890 31.669 77.202 11.00 19.40 0 ATOM 4080 CB ALA 628 63.890 31.893 77.39 1.00 19.40 0 ATOM 4080 CB ALA 628 63.890 31.893 77.39 1.00 19.40 0 ATOM 4080 CB ALA 628 63.890 31.893 77.39 1.00 10.40 0 CB ATOM 4080 CB ALA 628 63.890 31.893 77.39 1.00 19.40 0 CB ATOM 4080 CB ALA 628 63.890 31.893 77.39 1.00 19.40 0 CB ATOM 4080 CB ALA 628 63.890 31.893 77.39 1.00 19.40 0 CB ATOM 4080										
ATOM 4055 CD GLU 626 53.812 31.997 71.445 1.00 17.00 0 ATOM 4056 DEI GLU 626 53.816 32.922 72.217 1.00 20.311 0 ATOM 4057 OB2 GLU 626 53.811 32.165 70.214 1.00 20.311 0 ATOM 4058 C GLU 626 53.911 32.165 70.214 1.00 20.311 0 ATOM 4058 C GLU 626 53.911 32.165 70.214 1.00 23.26 0 ATOM 4059 O GLU 626 57.886 30.068 72.029 1.00 2.00 0 ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4060 N CYS 627 66.290 30.067 72.218 1.00 23.00 0 ATOM 4061 CR CYS 627 66.290 30.067 72.218 1.00 23.00 0 ATOM 4063 CB CYS 627 66.290 30.067 72.218 1.00 23.00 0 ATOM 4064 SG CYS 627 66.235 28.843 70.575 1.00 19.90 0 ATOM 4066 C CYS 627 62.235 28.843 70.575 1.00 19.90 0 ATOM 4066 C CYS 627 62.235 28.843 70.575 1.00 19.49 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4067 CB ALA 628 63.904 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.904 30.702 74.900 1.00 19.49 0 ATOM 4071 C ALA 628 63.903 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.903 31.662 77.208 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.460 0 ATOM 4075 CA SER 629 64.660 31.101 73.291 1.00 10.460 0 ATOM 4070 CB SER 629 66.057 30.877 71.355 1.00 12.90 0 ATOM 4070 CB SER 629 66.057 30.877 71.355 1.00 12.90 0 ATOM 4070 C SER 629 66.057 30.877 71.355 1.00 12.00 0 ATOM 4070 CC SER 629 66.057 30.877 71.355 1.00 12.00 0 ATOM 4070 CC SER 629 66.057 30.877 71.355 1.00 12.00 0 ATOM 4080 O SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4080 C SER 629 66.057 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.537 31.813 72.478 1.00 10.460 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.355 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.356 1.00 12.00 0 ATOM 4080 C SER 629 65.637 30.877 71.359 1.00 13.43 0 ATOM 4080 C SER 629 65.637 30										_
ATOM 4056 OEI GUU 626 53.812 31.997 71.445 1.00 17.00 7 0 ATOM 4057 OE2 GUU 626 53.911 32.165 70.214 1.00 23.26 0 0 ATOM 4059 O GUU 626 53.911 32.165 70.214 1.00 23.26 0 0 ATOM 4059 O GUU 626 57.881 28.841 71.921 1.00 23.26 0 0 ATOM 4059 O GUU 626 57.881 28.841 71.921 1.00 23.26 0 0 ATOM 4059 O GUU 626 57.881 28.841 71.921 1.00 23.50 0 0 ATOM 4060 N CYS 627 59.015 30.748 72.188 1.00 2.00 0 ATOM 4063 CE CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CE CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4065 C CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4066 O CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4066 O CYS 627 61.250 30.842 73.105 1.00 2.00 0 ATOM 4066 O CYS 627 61.250 30.842 73.105 1.00 19.90 ATOM 4066 O CYS 627 61.355 32.066 73.008 1.00 8.12 ATOM 4067 N ALA 628 61.371 30.116 73.970 1.00 19.49 0 ATOM 4067 N ALA 628 63.890 31.662 74.900 1.00 19.49 0 ATOM 4070 CE ALA 628 63.890 31.662 74.900 1.00 19.49 0 ATOM 4070 CE ALA 628 63.890 31.662 75.561 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 75.2661 75.567 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 75.2661 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 75.2661 75.567 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 75.2661 75.567 1.00 19.40 0 ATOM 4070 CE SER 629 66.637 31.813 72.278 1.100 14.60 0 ATOM 4071 CE SER 629 66.637 31.813 72.278 1.100 14.60 0 ATOM 4070 CE SER 629 65.869 34.085 71.759 1.00 19.49 0 ATOM 4070 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 CE SER 630 629 65.869 34.085 77.759 1.00 19.16 0 ATOM 4080 CE SER 630 629 65.869 34.085 77.75										
ATOM 4056 OEL GLU 626 53.516 32.922 72.217 1.00 20.31 0 ATOM 4058 C GLU 626 57.888 30.068 72.029 1.00 2.00 0 ATOM 4058 C GLU 626 57.888 30.068 72.029 1.00 2.00 0 ATOM 4060 N CYS 627 60.290 30.068 72.029 1.00 2.00 0 ATOM 4060 N CYS 627 60.290 30.068 72.184 1.00 2.00 0 ATOM 4062 CA CYS 627 60.290 30.067 72.2184 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.2184 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CB CYS 627 60.235 28.843 70.575 1.00 19.90 0 ATOM 4066 C CYS 627 62.235 28.843 70.575 1.00 19.90 0 ATOM 4066 C CYS 627 61.250 30.842 73.105 1.00 2.00 0 ATOM 4066 C CYS 627 61.250 30.842 73.105 1.00 19.90 0 ATOM 4067 N ALA 628 62.343 30.702 74.900 1.00 19.49 0 ATOM 4067 N ALA 628 63.904 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.904 30.702 74.900 1.00 19.49 0 ATOM 4071 C ALA 628 63.900 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.921 32.859 74.484 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.10 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 19.49 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 19.49 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 19.89 0 ATOM 4077 OC SER 629 65.637 31.813 72.478 1.00 19.89 0 ATOM 4079 C SER 629 65.637 31.813 72.478 1.00 19.89 0 ATOM 4070 CA ATOM 4071 CA ATOM 407										
ATOM 4058 C GUU 626 53.911 32.165 70.214 1.00 23.260 0 ATOM 4059 O GUU 626 57.881 28.841 71.921 1.00 23.50 0 ATOM 4060 N CYS 627 59.015 30.748 72.181 1.00 23.50 0 ATOM 4060 N CYS 627 59.015 30.748 72.181 1.00 23.50 0 ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4066 O CYS 627 61.250 30.842 73.105 1.00 2.00 0 ATOM 4066 O CYS 627 61.250 30.842 73.105 1.00 2.00 0 ATOM 4066 O CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 63.970 429.601 75.567 1.00 2.00 0 ATOM 4070 CB ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.673 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 65.673 31.813 72.478 1.00 14.60 0 ATOM 4077 OC SER 629 65.673 31.813 77.1355 1.00 15.99 0 ATOM 4079 C SER 629 65.6119 33.131 71.899 1.00 19.16 0 ATOM 4079 C SER 629 65.9119 33.131 71.899 1.00 19.16 0 ATOM 4080 N SER 629 65.619 34.085 71.759 1.00 13.43 0 ATOM 4080 N SER 629 65.60 34.085 71.759 1.00 13.43 0 ATOM 4081 N ILE 630 63.843 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 62.664 33.937 70.017 1.00 2.00 0 ATOM 4086 CGI ILE 630 62.664 33.938 68.980 1.00 2.00 0 ATOM 4080 C SER 630 629 65.669 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 630 629 65.66 36.492 72.01 1.00 2.00 0 ATOM 4080 C SER 630 629 65.66 36.492 72.01 1.00 2.00 0 ATOM 4080 C SER 630 629 65.693 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 630 629 65.693 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 630 629 65.693 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 630 629 65.60 37 30.877 71.566 1.00 2.00 0 ATOM 4080 C SER 630 629 65.60 38 33.973 70.017 1.00 2.00 0 ATOM 4080 C SER 630 629 65.60 57 30.877 77.355 1.00 2.00 0 ATOM 4080 C SER 630 629 65.60 57 30.877 77.355 1.00 0.00 0 ATOM 40									1.00 17.00	
ATOM 4058 C GLU 626 57.886 30.068 72.029 1.00 2.00 0 ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4062 CA CYS 627 60.290 30.0667 72.2184 1.00 2.00 0 ATOM 4063 CB CYS 627 60.832 29.957 70.789 1.00 12.00 0 ATOM 4064 SG CYS 627 60.832 29.957 70.789 1.00 19.90 0 ATOM 4065 C CYS 627 60.832 29.957 70.789 1.00 19.90 0 ATOM 4066 O CYS 627 61.260 30.842 73.105 1.00 19.90 0 ATOM 4066 O CYS 627 61.250 30.842 73.105 1.00 19.90 0 ATOM 4066 O CYS 627 61.250 30.842 73.105 1.00 19.90 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 63.904 30.702 74.900 1.00 19.49 0 ATOM 4071 C ALA 628 63.904 30.702 74.900 1.00 19.49 0 ATOM 4072 O ALA 628 63.921 32.859 74.484 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4070 CB SER 629 65.637 31.813 72.478 1.00 19.49 0 ATOM 4070 CB SER 629 65.637 31.813 72.478 1.00 19.49 0 ATOM 4070 CB SER 629 65.637 31.813 72.478 1.00 19.49 0 ATOM 4070 CB SER 629 65.637 31.813 72.478 1.00 19.49 0 ATOM 4070 CB SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4070 CB SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4070 CB SER 629 65.637 31.813 77.1355 1.00 15.99 0 ATOM 4070 CB SER 629 65.637 31.813 77.1355 1.00 15.99 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 629 65.839 34.085 71.759 1.00 13.43 0 ATOM 4080 C SER 630 63.988 34.354 71.022 1.00 2.00 0 ATOM 4080 C SER 630 63.988 34.354 71.022 1.00 2.00 0 ATOM 4080 C SER 630 63.988 34.355 77.759 1.00 13.43 0 ATOM 4080 C SER 630 630 63.988 37.77 1.750 1.00 13.43 0 ATOM 4080 C SER 630 632 66.835 35.504 74.77 316 1.00 15.25 0 ATOM 4080 C SER 630 632 66.836 33.988 37.76 59.00 1.00 1.00 1.00 1.00 1.00 1.00 1.										
ATOM 4060 N CYS 627 59.015 30.748 72.181 1.00 23.50 0 ATOM 4060 N CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4065 C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4065 C CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4065 C CYS 627 62.235 28.843 70.575 1.00 19.90 0 ATOM 4066 O CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4066 O CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 63.90 31.662 74.900 1.00 19.49 0 ATOM 4071 C ALA 628 63.90 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 O CB SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4079 C SER 629 65.81 33.3131 71.899 1.00 19.16 0 ATOM 4079 C SER 629 65.81 33.3131 71.899 1.00 19.16 0 ATOM 4079 C SER 629 65.81 33.3131 71.899 1.00 19.16 0 ATOM 4080 C SER 629 65.81 33.3131 71.899 1.00 19.16 0 ATOM 4080 C SER 629 65.81 33.3131 71.899 1.00 19.16 0 ATOM 4080 C SER 629 65.81 33.3131 71.899 1.00 19.16 0 ATOM 4081 N LLE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB LLE 630 63.834 33.157 71.566 1.00 2.00 0 ATOM 4088 C TLE 630 63.834 33.157 71.566 1.00 2.00 0 ATOM 4080 C SER 630 62.96 65.97 31.877 71.566 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 77.017 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 77.017 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 77.007 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 77.007 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 77.007 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 77.007 1.00 2.00 0 ATOM 4080 C SER 630 62.076 33.973 77.007 1.00 2.00 0 ATOM 4080 C SER 630 63.00 63.884 73.998 1.00 17.37 0 ATOM 4080 C SER 630 63 63 64 62 77.30 65 77.75 1.00 21.3										
ATOM 4060 N CYS 627 59.015 30.748 72.184 1.00 2.00 0 ATOM 4062 CA CYS 627 60.832 29.957 70.789 1.00 7.85 0 ATOM 4064 SG CYS 627 60.832 29.957 70.789 1.00 7.85 0 ATOM 4065 C CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4066 C CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.921 32.859 74.484 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4077 OG SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4077 OG SER 629 65.846 29.522 71.762 1.00 2.00 0 ATOM 4079 C SER 629 65.846 29.522 71.762 1.00 2.00 0 ATOM 4080 C SER 629 65.846 29.522 71.762 1.00 2.00 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4080 C SER 630 62.664 32.998 68.880 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.998 77.791 1.00 2.00 0 ATOM 4080 C SER 630 62.664 32.998 68.880 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.998 77.791 1.00 2.00 0 ATOM 4080 C SER 630 632 66.861 35.504 77.791 1.00 10.29 0 ATOM 4080 C SER 630 632 66.861 35.504 77.791 1.00 10.29 0 ATOM 4080 C SER 630 632 66.861 35.504 77.791 1.00 10.29 0 ATOM 4080 C SER 630 632 66.860 37.791 1.00 10.29 0 ATOM 4080 C SER 630 632 66.860 37.791 1.00 10										
ATOM 4063 CB CYS 627 60.290 30.067 72.218 1.00 2.00 0 ATOM 4064 SG CYS 627 62.235 28.843 70.575 1.00 19.90 0 ATOM 4065 C CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4066 C CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 61.371 30.116 73.370 1.00 19.49 0 ATOM 4067 N ALA 628 61.371 30.116 73.370 1.00 19.49 0 ATOM 4067 N ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.890 31.662 74.266 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 74.266 1.00 19.49 0 ATOM 4071 C ALA 628 63.890 31.662 74.266 1.00 19.49 0 ATOM 4072 O ALA 628 63.890 31.662 74.266 1.00 19.49 0 ATOM 4073 C A SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4077 OG SER 629 65.866 39.522 71.762 1.00 2.00 0 ATOM 4079 C SER 629 65.866 34.085 71.759 1.00 15.99 0 ATOM 4079 C SER 629 65.866 34.085 71.759 1.00 19.16 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.893 33.167 71.559 1.00 19.16 0 ATOM 4081 N ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.664 32.998 68.880 1.00 2.00 0 ATOM 4080 C SI ILE 630 62.664 32.998 68.880 1.00 2.00 0 ATOM 4080 C ILE 630 62.664 33.998 68.880 1.00 2.00 0 ATOM 4080 C ILE 630 62.666 35.291 72.3131 1.00 2.00 0 ATOM 4089 C ILE 630 62.666 35.291 72.3131 1.00 2.00 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4090 C ASN 631 63.264 33.598 68.800 1.00 2.00 0 ATOM 4090 C ASN 631 63.264 33.598 77.781 1.00 10.29 0 ATOM 4090 N ASN 631 63.350 35.504 74.272 1.00 9.61 0 ATOM 4090 N ASN 631 63.350 37.790 77.00 17.10 0.00 2.00 0 ATOM 4090 N ASN 631 63.350 37.790 77.70 0 17.10 0.00 2.00 0 ATOM 4090 N ASN 631 63.350 37.790 77.70 0 17.10 0 2.00 0 ATOM 4090 C ASN 631 63.264 37.790 37.998 77.918 1.00 13.36 0 ATOM 4090 N ASN 631 63.364 33.124 75.815 1.00 10.290 0 ATOM 4090 N ASN 631 63.364										
ATOM 4064 SG CYS 627 60.832 29.957 70.789 1.00 7.85 0 ATOM 4065 C CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4066 C CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4067 N ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.914 30.702 74.900 1.00 19.49 0 ATOM 4069 CA ALA 628 63.804 31.662 74.206 1.00 19.49 0 ATOM 4071 C ALA 628 63.804 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.278 1.00 14.60 0 ATOM 4076 CB SER 629 65.637 31.813 72.7878 1.00 14.60 0 ATOM 4077 OS SER 629 65.637 31.813 72.788 1.00 14.60 0 ATOM 4070 C SER 629 65.119 33.131 71.899 1.00 14.60 0 ATOM 4070 C SER 629 65.119 33.131 71.899 1.00 13.43 0 ATOM 4080 O SER 629 65.866 38.84 33.167 71.566 1.00 2.00 0 ATOM 4080 C SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4081 C RILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4082 C RILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4085 C GI ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 C GI ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 C GI ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 C DI ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4088 C RILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4089 C RILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4089 C RILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4089 C RILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4089 C RILE 630 63.64 33.598 68.980 1.00 2.00 0 ATOM 4089 C RILE 630 63.64 33.598 68.980 1.00 2.00 0 ATOM 4089 C RILE 630 63.64 33.598 68.980 1.00 2.00 0 ATOM 4090 N ASN 631 61.992 34.729 75.349 1.00 18.55 0 ATOM 4091 C RSN 631 61.992 34.729 75.349 1.00 18.55 0 ATOM 4092 C A SN 631 61.992 34.729 75.349 1.00 18.55 0 ATOM 4094 C B ASN 631 61.992 34.729 75.349 1.00 18.55 0 ATOM 4096 C RSN 631 63.593 37.898 77.918 1.00 17.37 0 ATOM 4091 C RSN 631 63.593 37.898 77.918 1.00 17.37 0 ATOM 4091 C RSN 631 63.593 37.898 77.918 1.00 17.37 0 ATOM 4092 C A RSN 631 63.593 37.898 77.918 1.00 17.37 0 ATOM 4094 C RSN 631 63.593 37										
ATOM 4065 C CYS 627 62,235 28,843 70,575 1.00 19.90 0 ATOM 4065 C CYS 627 61,355 32,066 73,008 1.00 2.00 0 ATOM 4066 C CYS 627 61,355 32,066 73,008 1.00 8,12 0 ATOM 4067 N ALA 628 61,371 30,116 73,370 1.00 19.49 0 ATOM 4067 N ALA 628 62,934 30,702 74,900 1.00 19.49 0 ATOM 4070 CB ALA 628 63,800 31,662 74,266 1.00 19.49 0 ATOM 4071 C ALA 628 63,800 31,662 74,266 1.00 19.49 0 ATOM 4072 O ALA 628 63,800 31,662 74,266 1.00 19.49 0 ATOM 4073 N SER 629 64,660 31,101 73,291 1.00 12.00 0 ATOM 4073 N SER 629 64,660 31,101 73,291 1.00 12.00 0 ATOM 4075 CA SER 629 65,637 31,813 72,478 1.00 12.00 0 ATOM 4076 CB SER 629 65,837 31,813 72,478 1.00 12.00 0 ATOM 4079 C SER 629 65,866 39,522 71,762 1.00 12.00 0 ATOM 4079 C SER 629 65,866 31,931 31,71,785 1.00 15,99 0 ATOM 4079 C SER 629 65,866 34,085 71,759 1.00 19.16 0 ATOM 4080 C SER 629 65,866 34,085 71,759 1.00 19.16 0 ATOM 4081 N ILE 630 63,834 33,167 71,759 1.00 19.16 0 ATOM 4081 N ILE 630 63,198 34,354 71,022 1.00 2.00 0 ATOM 4084 CB ILE 630 62,076 33,198 34,354 71,022 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62,076 33,973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62,664 32,998 68,880 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62,664 32,998 68,880 1.00 2.00 0 ATOM 4088 C ILE 630 62,664 33,598 68,880 1.00 2.00 0 ATOM 4089 O ILE 630 62,666 36,492 72,068 1.00 2.00 0 ATOM 4090 N ASN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N ASN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N ASN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N ASN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N DA SN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N ASN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N ASN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N ASN 631 61,350 35,504 74,272 1.00 9,61 0 ATOM 4090 N ASN 631 61,350 36,484 72,99 73,137 1.00 10,29 0 ATOM 4090 N ASN 631 62,664 32,789 77,918 1.00 11,36 0 ATOM 4090 N ASN 631 62,664 32,789 77,918 1.00 11,36 0 ATOM 4090 N ASN 631 62,664 32,789 77,918 1.00 12,49 0 ATOM 4101 N ARG 632 63,644 37,588 77,781 1.00 12,00 0 ATOM 4102 C ARG 632 64,662 67,789 37,					_					
ATOM 4066 C CYS 627 61.260 30.842 73.105 1.00 2.00 0 ATOM 4067 N ALA 628 61.371 30.116 73.970 1.00 19.49 0 ATOM 4069 CA ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.271 1.00 19.49 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CE SER 629 66.057 30.877 71.355 1.00 14.60 0 ATOM 4077 O SER 629 66.057 30.877 71.355 1.00 14.60 0 ATOM 4077 O SER 629 65.846 9.522 71.762 1.00 20.43 0 ATOM 4078 O SER 629 65.119 33.131 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.119 33.131 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.169 34.085 71.759 1.00 13.43 0 ATOM 4081 N LLE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB LLE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4086 C SILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 C SILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 C SI LLE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 C SI LLE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 C SI LLE 630 62.664 33.598 66.080 1.00 2.00 0 ATOM 4080 C SA SN 631 61.932 34.729 73.137 1.00 12.00 2.00 0 ATOM 4080 C SA SN 631 61.932 34.729 73.137 1.00 12.00 2.00 0 ATOM 4080 C SA SN 631 61.932 34.729 73.137 1.00 12.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 12.00 2.00 0 ATOM 4090 C ASN 631 63.998 34.597 75.349 1.00 2.00 0 ATOM 4090 C ASN 631 63.998 34.597 75.349 1.00 2.00 0 ATOM 4090 C ASN 631 63.955 35.847 4.891 1.00 2.00 0 ATOM 4090 C ASN 631 63.955 35.947 4.891 1.00 1.00 2.00 0 ATOM 4090 C ASN 631 63.958 66.492 75.867 1.00 2.00 0 ATOM 4090 C ASN 631 63.958 66.492 77.818 1.00 1.00 2.00 0 ATOM 4090 C ASN 631 63.958 66.492 77.818 1.00 1.00 2.00 0 ATOM 4090 C ASN 631 63.958 66.492 75.867 1.00 2.00 0 ATOM 4090 C ASN 631 63.958 66.492 77.818 1.00 1.00 1.50 0.00 0 ATOM 4090 C ASN 631 63.958 66.492 77.889 1.00 1.00 1.3.60 0 ATOM 4090 C ASN 631 63.958 66.492 77.889 1.00 1.00 1.3.60 0 ATOM 4090 C ASN 631 632 66.983 38.988 73.797										
ATOM 4066 0 CYS 627 61.355 32.066 73.008 1.00 8.12 0 ATOM 4067 N ALA 628 62.914 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 2.00 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4073 N SER 629 65.637 31.813 72.478 1.00 10.083 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4077 OC SER 629 65.846 29.522 71.762 1.00 19.16 0 ATOM 4079 C SER 629 65.866 29.527 71.762 1.00 19.16 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.167 71.556 1.00 2.00 0 ATOM 4083 CA LLE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 63.834 33.167 71.022 1.00 2.00 0 ATOM 4086 CG1 LLE 630 63.834 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 LLE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 LLE 630 62.664 29.988 68.980 1.00 2.00 0 ATOM 4086 CG1 LLE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4088 C LLE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4088 C LLE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4089 C SER 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 C SER 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4091 C ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 C ASN 631 61.932 34.729 73.349 1.00 8.67 0 ATOM 4094 C C ASN 631 61.932 34.729 73.349 1.00 8.67 0 ATOM 4094 C C ASN 631 63.564 77.795 75.003 1.00 6.75 0 ATOM 4094 C C ASN 631 63.266 73.79 75.003 1.00 6.75 0 ATOM 4094 C C ASN 631 632 67.03 37.896 77.998 71.00 1.00 13.36 0 ATOM 4094 C C ASN 631 632 67.393 38.896 73.722 1.00 2.10 0 ATOM 4094 C C ASN 631 632 67.393 38										
ATOM 4069 CA ALA 628 61.971 30.116 73.970 1.00 19.49 0 ATOM 4070 CB ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4071 C ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4072 O ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 64.660 31.101 73.291 1.00 14.60 0 ATOM 4076 CE SER 629 66.057 30.877 71.355 1.00 14.60 0 ATOM 4077 OC SER 629 66.057 30.877 71.355 1.00 14.60 0 ATOM 4077 OC SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4078 OC SER 629 65.637 31.813 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.119 33.131 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.169 34.085 71.759 1.00 13.43 0 ATOM 4081 N LLE 630 63.884 33.167 71.566 1.00 2.00 0 ATOM 4083 CA LLE 630 63.884 33.167 71.566 1.00 2.00 0 ATOM 4085 CG2 ILE 630 63.884 33.167 71.566 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.664 33.598 68.980 1.00 2.00 0 ATOM 4087 CD1 LLE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O LLE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4080 O SAN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 62.367 36.281 75.349 1.00 10.02 1.00 2.00 0 ATOM 4090 C ASN 631 62.367 36.281 75.349 1.00 10.29 0 ATOM 4090 C ASN 631 62.367 36.291 75.891 1.00 10.29 0 ATOM 4090 C ASN 631 62.367 36.292 77.839 1.00 10.29 0 ATOM 4090 C ASN 631 62.367 36.292 77.839 1.00 10.29 0 ATOM 4091 C BASN 631 62.367 36.292 77.839 1.00 10.29 0 ATOM 4090 C ASN 631 62.266 35.581 77.903 1.00 10.29 0 ATOM 4091 C BASN 631 62.367 36.292 77.839 1.00 10.29 0 ATOM 4090 C ASN 631 62.367 36.598 77.907 1.00 13.50 0 ATOM 4091 C BASN 631 62.367 36.598 77.909 1.00 6.00 0 ATOM 4091 C BASN 631 62.367 36.598 77.909 1.00 10.00 11.75 0 ATOM 4091 C BASN 631 62.367 36.492 75.898 1.00 12.49 0 ATOM 4091 C BASN 631 63.266 79.393 38.896 77.990 1.00 10.299 0 ATOM 4004										
ATOM 4069 CA ALA 628 62.934 30.702 74.900 1.00 19.49 0 ATOM 4070 CB ALA 628 63.704 9.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 10.083 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4077 OC SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4079 C SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4080 O SER 629 65.866 29.522 71.762 1.00 20.43 0 ATOM 4081 N ILE 630 63.834 33.131 71.599 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.167 71.556 1.00 2.00 0 ATOM 4084 CB ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4086 CG1 ILE 630 63.898 34.354 71.022 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 32.998 68.980 1.00 2.00 0 ATOM 4089 C ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4090 N ASN 631 61.352 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 2.00 0 ATOM 4090 C ASN 631 61.350 35.504 74.272 1.00 1.00 2.00 0 ATOM 4090 C ASN 631 61.350 35.504 74.272 1.00 1.00 2.00 0 ATOM 4090 C ASN 631 62.366 35.281 73.732 1.00 1.02 2.00 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 1.29 0 ATOM 4090 C ASN 631 62.267 33.848 74.891 1.00 17.37 0 ATOM 4091 C ASN 631 63.264 77.99 77.891 1.00 13.50 0 ATOM 4091 C ASN 631 63.264 77.99 77.891 1.00 13.50 0 ATOM 4091 C ASN 631 63.266 7.363 70 75.003 1.00 6.75 0 ATOM 4091 C ASN 631 63.266 7.373 8.848 77.991 1.00 1.00 18.51 0 ATOM 4091 C ASN 631 63.266 7.373 8.848 77.991 1.00 1.00 18.51 0 ATOM 4091 C ASN 631 63.266 7.373 8.848 77.991 1.00 1.00 18.51 0 ATOM 4000 C ASN 631 632 66.866 36.492 75.867 1.00 2.00 0 ATOM 4000 C ASN 631 632 66.866 36.492 77.891 1.00 1.00 18.50 0 ATOM 4000 C ASN 631 632 66.866 36.492 77.891 1.0										_
ATOM 4071 C ALA 628 63.704 29.601 75.567 1.00 2.00 0 ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.83 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 OG SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.863 31.813 72.478 1.00 10.83 0 ATOM 4079 C SER 629 65.863 31.813 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.863 31.813 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.863 31.813 71.899 1.00 13.43 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 20.00 0 ATOM 4083 CA ILE 630 63.834 33.167 71.566 1.00 20.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 20.00 0 ATOM 4085 CG2 ILE 630 62.604 32.998 68.980 1.00 20.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 20.00 0 ATOM 4087 CD1 ILE 630 62.664 33.598 68.080 1.00 20.00 0 ATOM 4088 C ILE 630 62.636 36.492 72.068 1.00 20.00 0 ATOM 4089 O ILE 630 62.666 36.492 72.068 1.00 20.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 62.366 36.492 72.068 1.00 2.00 0 ATOM 4090 C ASN 631 62.366 36.492 72.068 1.00 2.00 0 ATOM 4090 C ASN 631 62.367 34.597 75.349 1.00 10.29 0 ATOM 4090 C ASN 631 62.367 34.597 75.349 1.00 10.29 0 ATOM 4090 C ASN 631 62.267 33.893 73.70 1.00 10.29 0 ATOM 4090 C ASN 631 62.267 33.893 73.70 1.00 10.29 0 ATOM 4090 C ASN 631 62.267 33.893 73.70 1.00 10.29 0 ATOM 4090 C ASN 631 62.267 33.893 73.70 1.00 10.29 0 ATOM 4090 C ASN 631 62.267 34.597 75.399 1.00 10.86 0 ATOM 4090 C ASN 631 62.267 34.597 75.399 1.00 10.20 0 ATOM 4090 C ASN 631 62.267 34.597 75.399 1.00 10.20 0 ATOM 4090 C ASN 631 62.267 34.597 75.399 1.00 10.88 0 ATOM 4090 C ASN 631 62.267 37.288 1.00 2.00 0 ATOM 4080 C ASN 631 62.267 34.597 75.399 1.00 1.00 10.29 0 ATOM 4080 C ASN 631 62.267 40.279 75.399 1.00 1.00 10.28 0 ATOM 4090 C ASN 631 632 66.364 37.781 1.00		4069								_
ATOM 4071 C ALA 628 63.890 31.662 74.206 1.00 19.49 0 ATOM 4072 O ALA 628 63.921 32.859 74.484 1.00 1.00 2.00 0 ATOM 4073 N SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 14.60 ATOM 4077 OG SER 629 65.846 29.522 71.762 1.00 20.43 ATOM 4079 C SER 629 65.846 29.522 71.762 1.00 20.43 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 ATOM 4080 N SER 629 65.869 34.085 71.759 1.00 13.43 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 20.00 ATOM 4084 CB ILE 630 63.834 33.167 71.562 1.00 20.00 ATOM 4085 CG2 ILE 630 62.076 33.973 70.017 1.00 20.00 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 20.00 ATOM 4087 CD1 ILE 630 62.664 33.598 68.080 1.00 20.00 ATOM 4088 C ILE 630 62.666 35.281 72.131 1.00 20.00 ATOM 4089 N SER 631 61.350 35.504 74.272 1.00 20.00 ATOM 4089 O ILE 630 62.666 35.281 72.131 1.00 20.00 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 20.00 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 20.00 ATOM 4091 N ASN 631 61.350 35.504 74.272 1.00 20.00 ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 20.00 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 10.29 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 10.29 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 ATOM 4096 CA ASN 631 62.367 35.504 74.272 1.00 21.10 ATOM 4096 CA ASN 631 62.367 37.75.033 1.00 6.75 ATOM 4096 CA ASN 631 62.367 37.892 1.00 21.10 ATOM 4097 CA ASN 631 62.367 37.893 1.00 6.75 ATOM 4098 CA ASN 631 60.355 35.804 77.503 1.00 6.75 ATOM 4096 CA ASN 631 60.355 35.804 77.503 1.00 6.75 ATOM 4096 CA ASN 631 60.364 37.781 1.00 17.37 ATOM 4096 CA ASN 631 60.356 37.781 1.00 17.37 ATOM 4096 CA ASN 631 60.368 ATOM 4097 CA ASN 631 60.368 ATOM 4098 CA ASN 631 6										
ATOM 4073 N SER 629 64.660 31.101 73.291 1.00 10.03 0 ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4077 OG SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 OG SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4080 O SER 629 65.864 29.522 71.762 1.00 20.43 0 ATOM 4080 O SER 629 65.863 34.085 71.759 1.00 13.43 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 63.983 4.355 71.022 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.676 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4080 C ILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4080 C ILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 61.932 34.729 75.349 1.00 15.25 0 ATOM 4090 C ASN 631 62.667 36.555 35.810 75.349 1.00 15.25 0 ATOM 4090 C ASN 631 62.367 34.597 75.349 1.00 15.25 0 ATOM 4090 C ASN 631 62.367 34.597 75.349 1.00 1.00 2.00 0 ATOM 4090 C ASN 631 59.155 33.848 74.891 1.00 17.37 0 ATOM 4090 C ASN 631 58.26 33.598 77.909 1.00 6.60 0 ATOM 4090 C ASN 631 58.26 33.598 77.909 1.00 8.67 0 ATOM 4090 C ASN 631 62.059 37.466 75.438 1.00 2.00 0 ATOM 4100 C ASN 631 62.26 73.72 39.883 78.901 1.00 12.90 0 ATOM 4101 N - ARG 632 67.436 36.492 75.867 1.00 2.00 0 ATOM 4101 N - ARG 632 67.436 36.492 75.867 1.00 2.00 0 ATOM 4101 C ARG 632 67.436 36.492 75.867 1.00 2.00 0 ATOM 4101 C ARG 632 67.436 36.492 75.867 1.00 2.00 0 ATOM 4101 C ARG 632 67.436 36.492 75.867 1.00 2.00 0 ATOM 4102 C ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4103 C ARG 632 67.436 36.492 75.867 1.00 2.490 0 ATOM 4104 C BARG 632 67.436 36.492 75.867 1.00 2.800 0 ATOM 4105 C BARG 632 67.837 38.838 7										
ATOM 4075 CA SER 629 65.637 31.813 72.478 1.00 10.83 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 14.60 0 ATOM 4076 CB SER 629 65.637 31.813 72.478 1.00 15.99 0 ATOM 4077 OG SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4079 C SER 629 65.846 29.522 71.762 1.00 15.99 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4080 N ILE 630 63.834 33.167 71.569 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.167 71.569 1.00 2.00 0 ATOM 4083 CA ILE 630 63.834 33.167 71.569 1.00 2.00 0 ATOM 4084 CB ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 33.598 68.980 1.00 2.00 0 ATOM 4080 O ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 O ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 O ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 O ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 O ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4080 O ILE 630 62.666 35.281 72.131 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4091 CG ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.159 33.896 73.722 1.00 21.10 7.00 7.00 ATOM 4094 CG ASN 631 59.555 33.884 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.884 74.891 1.00 17.37 0 ATOM 4090 C ASN 631 62.367 35.504 74.272 1.00 21.10 7.37 0 ATOM 4090 C ASN 631 632 63.555 38.80 75.790 1.00 13.36 0 ATOM 4101 N ARG 632 63.555 38.80 75.790 1.00 13.36 0 ATOM 4101 N ARG 632 66.361 35.504 77.918 1.00 17.37 0 ATOM 4100 C ASN 631 632 66.361 35.504 77.918 1.00 17.35 0 ATOM 4101 N ARG 632 66.361 35.504 77.918 1.00 17.35 0 ATOM 4100 CA ARG 632 66.361 35.504 77.903 1.00 6.75 0 ATOM 4100 CA ARG 632 66.361 35.504 77.903 1.00 6.75 0 ATOM 4100 CA ARG 632 66.361 35.504 77.903 1.00 18.50 0 ATOM 4100 CA ARG 632 66.361 35.504 77.903 1.00 18.50 0 ATOM 4110 NIL ARG 632 66.361 35.504 77.918 1.00 13.36 0 ATOM 4110 NIL ARG 632									1.00 2.00	
ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 OG SER 629 65.846 29.522 71.765 1.00 19.16 0 ATOM 4080 O SER 629 65.819 33.131 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4081 N ILLE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILLE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILLE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILLE 630 62.604 32.998 88.980 1.00 2.00 0 ATOM 4086 CG1 ILLE 630 62.604 32.998 88.980 1.00 2.00 0 ATOM 4087 CD1 ILLE 630 62.604 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILLE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILLE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 C ILLE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4094 CG ASN 631 61.932 34.729 75.349 1.00 8.67 0 ATOM 4095 DD1 ASN 631 59.189 33.896 73.722 1.00 2.10 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 2.10 0 ATOM 4096 ND2 ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N ARG 632 63.6355 35.810 75.815 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.594 77.815 1.00 2.00 0 ATOM 4106 CD ARG 632 67.03 37.598 77.918 1.00 11.35 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 2.00 0 ATOM 4107 NE ARG 632 67.436 36.202 77.819 1.00 11.35 0 ATOM 4108 CG ARG 632 67.436 36.202 77.811 1.00 13.36 0 ATOM 4101 NHI ARG 632 67.373 38.685 77.997 1.00 13.36 0 ATOM 4102 CA ILLE 633 66.82 67.373 38.687 77.918 1.00 11.75 0 ATOM 4101 CA RG 632 67.837 38.635 77.918 1.00 11.75 0 ATOM 4102 CA ILLE 633 66.82 67.373 39.886 77.851 1.00 2.00 0 ATOM 4110 NHI ARG 632 67.693 39.471 70.625 1.00 29.80 0 ATOM 4120 CA ILLE 633 66.83 66.132 39.471 70.625 1.00 29.80 0 ATOM 4121 CB ILLE 633 66.83 66.33 39.473 77.2588 1.00 21.20 0 ATOM 4122 CG2 ILLE 633 66.86 39.473 77.2588 1.00 31.40 0		4073			629	64.660	31.101	73.291	1.00 10.83	
ATOM 4076 CB SER 629 66.057 30.877 71.355 1.00 15.99 0 ATOM 4077 OG SER 629 65.846 29.522 71.765 1.00 19.16 0 ATOM 4080 O SER 629 65.819 33.131 71.899 1.00 19.16 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4081 N ILLE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4083 CA ILLE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILLE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILLE 630 62.604 32.998 88.980 1.00 2.00 0 ATOM 4086 CG1 ILLE 630 62.604 32.998 88.980 1.00 2.00 0 ATOM 4087 CD1 ILLE 630 62.604 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILLE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILLE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 C ILLE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 C ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4094 CG ASN 631 61.932 34.729 75.349 1.00 8.67 0 ATOM 4095 DD1 ASN 631 59.189 33.896 73.722 1.00 2.10 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 2.10 0 ATOM 4096 ND2 ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.038 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N ARG 632 63.6355 35.810 75.815 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.594 77.815 1.00 2.00 0 ATOM 4106 CD ARG 632 67.03 37.598 77.918 1.00 11.35 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 2.00 0 ATOM 4107 NE ARG 632 67.436 36.202 77.819 1.00 11.35 0 ATOM 4108 CG ARG 632 67.436 36.202 77.811 1.00 13.36 0 ATOM 4101 NHI ARG 632 67.373 38.685 77.997 1.00 13.36 0 ATOM 4102 CA ILLE 633 66.82 67.373 38.687 77.918 1.00 11.75 0 ATOM 4101 CA RG 632 67.837 38.635 77.918 1.00 11.75 0 ATOM 4102 CA ILLE 633 66.82 67.373 39.886 77.851 1.00 2.00 0 ATOM 4110 NHI ARG 632 67.693 39.471 70.625 1.00 29.80 0 ATOM 4120 CA ILLE 633 66.83 66.132 39.471 70.625 1.00 29.80 0 ATOM 4121 CB ILLE 633 66.83 66.33 39.473 77.2588 1.00 21.20 0 ATOM 4122 CG2 ILLE 633 66.86 39.473 77.2588 1.00 31.40 0						65.637	31.813	72.478	1.00 14.60	0
ATOM 4079 C SER 629 65.846 29.522 71.762 1.00 20.43 0 ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 19.16 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4081 C ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.866 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 35.281 72.131 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4090 N ASN 631 62.367 36.370 75.003 1.00 10.737 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 17.37 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 10.525 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.06 0 ATOM 4100 C ASN 631 62.367 36.370 75.003 1.00 6.06 0 ATOM 4101 N - ARG 632 63.65873 35.595 75.909 1.00 8.810 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.343 38.635 77.918 1.00 11.75 0 ATOM 4107 NE ARG 632 67.343 38.635 77.918 1.00 11.75 0 ATOM 4101 NHL ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4102 CA ILE 633 66.083 67.372 39.883 73.014 1.00 19.86 0 ATOM 4113 NH2 ARG 632 66.361 35.244 77.316 1.00 2.00 0 ATOM 4120 CA ILE 633 66.083 67.372 39.886 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.864 4930 38.865 77.958 1.00 22.00 0 ATOM 4122 CG2 ILE 633 66.864 4930 38.865 77.958 1.00 22.00 0 ATOM 4122 CG2 ILE 633 66.864 47.90 37.716 77.710 1.00 13.36 0 ATOM 4122 CG1 ILE 633 66.864 47.90 37.716 77.700 1.00 22.80 0 ATOM 4122 CG1 ILE 633 66.864 47.90 37.716 77.700		4076			629	66.057		71.355	1.00 15.99	0
ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 0 ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 0 ATOM 4084 CB ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4086 CGI ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4086 CGI ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CDI ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4090 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4090 CG ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4090 CA ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 CA ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 CA ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 CA ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4000 CA ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 CA ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 CA ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 CA ASR 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4101 N ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 13.36 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4105 CG ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4105 CB ARG 632 67.436 36.303 39.471 70.01 13.350 0 ATOM 4122 CG2 ILE 633 66.496 37.781 77.10		4077			62 9	65.846			1.00 20.43	0
ATOM 4080 O SER 629 65.869 34.085 71.759 1.00 13.43 O ATOM 4081 N ILE 630 63.834 33.167 71.566 1.00 2.00 O ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 O ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 O ATOM 4086 CGI ILE 630 62.676 33.973 70.017 1.00 2.00 O ATOM 4086 CGI ILE 630 62.664 32.998 68.980 1.00 2.00 O ATOM 4086 CGI ILE 630 62.664 32.998 68.980 1.00 2.00 O ATOM 4088 C ILE 630 62.666 36.492 72.068 1.00 2.00 O ATOM 4088 C ILE 630 62.666 36.492 72.068 1.00 2.00 O ATOM 4089 O ILE 630 62.636 35.281 72.131 1.00 2.00 O ATOM 4099 O ILE 630 62.666 36.492 72.068 1.00 2.00 O ATOM 4090 N ASN 631 61.350 35.504 74.272 71.00 9.61 O ATOM 4090 CG ASN 631 61.350 35.504 74.272 71.00 9.61 O ATOM 4090 CG ASN 631 59.555 33.848 74.891 1.00 17.37 O ATOM 4095 ODI ASN 631 59.555 33.848 74.891 1.00 17.37 O ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 O ATOM 4099 C ASN 631 59.899 33.896 73.722 1.00 17.37 O ATOM 4099 C ASN 631 59.899 33.896 73.722 1.00 17.37 O ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 1.525 O ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 1.525 O ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 1.525 O ATOM 4009 C ASN 631 62.367 36.370 75.003 1.00 1.525 O ATOM 4009 C ASN 631 62.367 36.370 75.003 1.00 6.75 O ATOM 4101 N ARG 632 63.555 35.810 75.189 1.00 2.00 O ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 O ATOM 4104 CB ARG 632 63.555 35.810 75.438 1.00 6.80 O ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 O ATOM 4116 C ARG 632 67.436 36.303 37.781 75.148 1.00 2.00 O ATOM 4118 N ILE 633 66.085 38.308 71.610 1.00 32.61 O ATOM 4120 CA ILE 633 66.085 38.308 77.907 1.00 13.50 O ATOM 4121 CB ILE 633 66.085 38.308 77.907 1.00 13.50 O ATOM 4122 CG2 ILE 633 66.496 37.781 77		4079	С		629			71.899	1.00 19.16	0
ATOM 4083 CA ILE 630 63.198 34.354 71.022 1.00 2.00 0 ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.664 33.598 68.080 1.00 2.00 0 ATOM 4089 O ILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4099 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4090 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4090 C ASN 631 62.367 37.486 75.438 1.00 6.85 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 CA ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 66.361 35.244 77.316 1.00 2.00 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 2.00 0 ATOM 4106 CD ARG 632 67.436 36.202 77.819 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.436 36.202 77.811 1.00 13.36 0 ATOM 4101 NH1 ARG 632 67.372 39.883 78.001 1.00 13.36 0 ATOM 4101 NH1 ARG 632 67.372 39.883 78.001 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.55 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.56 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.56 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.56 0 ATOM 4110 NH1 ARG 632 67.436 36.492 75.5867 1.00 2.00 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.36 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 22.01 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 22.01 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 22.01 0 ATOM 4120 CA ILE 633 66.085 39.473 72.588 1.00 32.61 0 ATOM 4120 CA ILE 633 64.86							34.085	71.759	1.00 13.43	0
ATOM 4084 CB ILE 630 62.076 33.973 70.017 1.00 2.00 0 ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 62.664 33.598 68.980 1.00 2.00 0 ATOM 4088 C ILE 630 62.666 36.492 72.068 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 9.61 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4099 C ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4099 C ASN 631 59.555 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 6.80 0 ATOM 4104 CB ARG 632 64.635 36.492 77.867 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.20 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.20 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.303 37.598 77.918 1.00 11.75 0 ATOM 4101 NH ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4116 C ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4116 C ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4116 C ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4118 N ILE 633 66.085 38.308 71.610 1.00 12.49 0 ATOM 4118 N ILE 633 66.085 38.308 71.610 1.00 12.49 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 12.49 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 12.49 0 ATOM 4122 CG2 ILE 633 66.4864 41.053 72.588 1.00 22.01 0 ATOM 4123 CG ILE 633 66.4864 41.053 72.588 1.00 22.19 0 ATOM 4124 CD1 ILE 633 66.4864 41.053 72.588 1.00 22.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0	MOTA	4081	N	ILE	630	63.834	33.167	71.566	1.00 2.00	0
ATOM 4085 CG2 ILE 630 61.675 35.174 69.202 1.00 2.00 0 ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.422 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 60.759 34.597 73.137 1.00 10.29 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 8.67 0 ATOM 4095 ODI ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4090 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.594 77.918 1.00 2.00 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4100 NH1 ARG 632 67.436 36.202 77.819 1.00 11.75 0 ATOM 4100 NH1 ARG 632 67.436 36.202 77.819 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.436 36.202 77.81 1.00 10.13.36 0 ATOM 4110 NH1 ARG 632 67.436 36.202 77.81 1.00 10.13.36 0 ATOM 4110 CR ARG 632 67.436 36.202 77.81 1.00 11.75 0 ATOM 4110 CR ARG 632 67.436 38.383 78.001 1.00 18.51 0 ATOM 4111 N ILE 633 65.234 37.658 73.014 1.00 19.86 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4126 O ILE 633 66.4864 41.053 72.878 1.00 22.19 0 ATOM 4127 N TYR 634 62.276 40.471 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.588 1.00 31.99 0	MOTA	4083	CA	ILE	630	63. 19 8	34.354			0
ATOM 4086 CG1 ILE 630 62.604 32.998 68.980 1.00 2.00 0 ATOM 4087 CD1 ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4099 N ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.848 75.003 1.00 6.75 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 C ASN 631 62.059 37.486 75.438 1.00 6.80 0 ATOM 4101 N ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.5244 77.316 1.00 2.00 0 ATOM 4104 CB ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.222 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.436 36.222 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.222 77.839 1.00 8.31 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4110 C ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4110 C ARG 632 64.962 37.781 7.141 1.00 13.50 0 ATOM 4111 NH2 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4112 CB ILE 633 66.085 38.308 71.610 1.00 28.84 0 ATOM 4113 NH2 ARG 632 64.962 37.781 7.160 1.00 28.84 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 28.84 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4126 O ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4127 N TYR 634 62.276 40.471 70.625 1.00 29.80 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0	MOTA	4084	CB	ILE	630	62. 07 6	3 3. 97 3			
ATOM 4087 CD1 ILE 630 63.664 33.598 68.080 1.00 2.00 0 ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4093 CB ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 2.00 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4101 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4101 NH1 ARG 632 67.373 38.635 77.918 1.00 13.50 0 ATOM 4101 NH1 ARG 632 67.373 38.865 77.918 1.00 13.50 0 ATOM 4110 NH1 ARG 632 64.962 37.781 1.00 13.50 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.801 1.00 13.50 0 ATOM 4110 CA ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.801 1.00 13.50 0 ATOM 4110 NH2 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH2 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH2 ARG 632 67.837 38.635 77.907 1.00 13.50 0 ATOM 4110 CA ILE 633 66.085 38.308 71.610 1.00 18.51 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 2.09 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 2.980 0 ATOM 4122 CG2 ILE 633 64.962 37.781 75.148 1.00 2.00 0 ATOM 4124 CD1 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4124 CD1 ILE 633 66.364 496 72.594 1.00 35.23 0 ATOM 4124 CD1 ILE 633 66.364 496 72.594 1.00 35.23 0 ATOM 4124 CD1 ILE 633 64.960 72.594 1.00 35.23 0 ATOM 4124 CD1 ILE 633 64.960 72.594 1.00 35.23 0 ATOM 4124 CD1 ILE 633 64.960 72.594 1.00 30.444 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.	MOTA	4085	CG2	ILE	630		35.174			
ATOM 4088 C ILE 630 62.636 35.281 72.131 1.00 2.00 0 ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 15.25 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4105 CG ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4106 CD ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4107 N E ARG 632 67.436 36.202 77.839 1.00 8.20 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4107 NE ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4108 ND ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4107 NE ARG 632 67.837 38.635 77.918 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 66.366 38.788 73.914 1.00 12.49 0 ATOM 4116 C ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4112 CB ILE 633 66.085 38.386 77.917 1.00 13.36 0 ATOM 4120 CA ILE 633 66.085 38.388 78.001 1.00 18.51 0 ATOM 4121 CB ILE 633 66.085 38.388 78.001 1.00 19.86 0 ATOM 4122 CG2 ILE 633 66.085 38.388 78.001 1.00 19.86 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 29.80 0 ATOM 4125 C ILE 633 64.864 41.053 72.878 1.00 32.62 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 32.62 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.99 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 32.462 0 ATOM 4127 N TYR 634 62.276 40.471 72.316 1.00 31.99 0	MOTA	408 6	CG1	ILE	63 0					
ATOM 4089 O ILE 630 62.866 36.492 72.068 1.00 2.00 0 ATOM 4090 N ASN 631 61.932 34.729 73.137 1.00 10.29 0 ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 21.10 0 ATOM 4096 ND2 ASN 631 59.555 33.848 74.891 1.00 21.10 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 21.10 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.436 36.202 77.839 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.863 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4111 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.903 37.598 78.901 1.00 11.75 0 ATOM 4111 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4111 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4111 NH1 ARG 632 67.903 37.598 78.801 1.00 11.75 0 ATOM 4112 CB ILE 633 65.608 38.788 73.812 1.00 2.00 0 ATOM 4112 CB ILE 633 66.085 38.388 78.001 1.00 18.51 0 ATOM 4121 CB ILE 633 66.085 38.388 71.610 1.00 22.884 0 ATOM 4122 CG2 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.864 41.053 72.878 1.00 32.49 0 ATOM 4124 CD1 ILE 633 64.864 41.053 72.878 1.00 32.49 0 ATOM 4124 CD1 ILE 633 64.864 41.053 72.878 1.00 32.40 0 ATOM 4124 CD1 ILE 633 64.864 41.053 72.878 1.00 32.40 0 ATOM 4124 CD1 ILE 633 64.864 41.053 72.878 1.00 32.40 0 ATOM 4	MOTA	4087	CD1	ILE		63.664				
ATOM	MOTA	4088	С	ILE	63 0	62. 63 6				
ATOM 4092 CA ASN 631 61.350 35.504 74.272 1.00 9.61 0 ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N ARG 632 63.555 35.810 75.03 1.00 6.75 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 66.361 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.524 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.03 37.598 77.918 1.00 11.75 0 ATOM 4108 NH1 ARG 632 67.03 37.598 77.918 1.00 11.75 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4111 NH2 ARG 632 64.962 37.781 1.00 13.50 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 66.92 37.781 75.148 1.00 12.49 0 ATOM 4118 N ILE 633 66.083 38.885 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 66.083 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4121 CB ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 64.864 41.053 72.878 1.00 32.62 0 ATOM 4127 N TYR 634 63.503 39.866 72.815 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4120 CA TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0		4089	0							
ATOM 4093 CB ASN 631 60.759 34.597 75.349 1.00 8.67 0 ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4096 ND2 ASN 631 59.555 33.848 75.815 1.00 21.10 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.918 1.00 11.75 0 ATOM 4109 NH1 ARG 632 67.837 38.635 77.918 1.00 11.75 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4111 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 12.49 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4127 N TYR 634 63.503 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.503 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.503 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.503 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.503 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 30.44 0	ATOM		N							
ATOM 4094 CG ASN 631 59.555 33.848 74.891 1.00 17.37 0 ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4105 CG ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.20 0 ATOM 4109 CZ ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 NH1 ARG 632 67.436 36.302 77.918 1.00 11.75 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4113 NH2 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 18.51 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4120 CG ILE 633 66.085 38.308 71.610 1.00 28.84 0 ATOM 4121 CB ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 35.23 0 ATOM 4127 N TYR 634 64.550 39.866 72.815 1.00 35.23 0 ATOM 4127 N TYR 634 64.550 39.866 72.815 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62										
ATOM 4095 OD1 ASN 631 59.189 33.896 73.722 1.00 21.10 0 ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 13.50 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 28.84 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4127 N TYR 634 63.503 39.467 72.588 1.00 32.21 9 0 ATOM 4127 N TYR 634 63.303 39.471 72.588 1.00 32.21 9 0 ATOM 4129 CA TYR 634 63.303 39.477 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4096 ND2 ASN 631 58.926 33.124 75.815 1.00 15.25 0 ATOM 4099 C ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4100 O ASN 631 62.059 37.486 75.438 1.00 6.80 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4105 CG ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4110 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4110 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 63.464 41.053 72.878 1.00 31.19 0 ATOM 4129 CA TYR 634 63.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0										
ATOM 4100 O ASN 631 62.367 36.370 75.003 1.00 6.75 0 ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 13.50 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4123 CG1 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 29.80 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 64.864 41.053 72.878 1.00 32.62 0 ATOM 4129 CA TYR 634 63.203 39.471 70.2316 1.00 31.98 0										
ATOM 4101 N - ARG 632 64.635 35.810 75.189 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4100 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.8635 77.811 1.00 13.50 0 ATOM 4116 C ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4121 CB ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 64.550 39.866 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.804 41.053 72.878 1.00 32.61 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4101 N - ARG 632 63.555 35.810 75.189 1.00 2.00 0 ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4106 CD ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4107 NE ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 CZ ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4109 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4111 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4103 CA ARG 632 64.635 36.492 75.867 1.00 2.00 0 ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 41113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 12.49 0 ATOM 4118 N ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4120 CA ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4121 CB ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.594 1.00 35.23 0 ATOM 4126 O ILE 633 64.550 39.866 72.594 1.00 35.23 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 13.98 0										
ATOM 4104 CB ARG 632 65.873 35.595 75.909 1.00 6.06 0 ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 67.837 39.863 77.907 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 19.86 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.875 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4105 CG ARG 632 66.361 35.244 77.316 1.00 8.20 0 ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.930 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0					-					
ATOM 4106 CD ARG 632 67.436 36.202 77.839 1.00 8.31 0 ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 I.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 I.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 12.49 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.594 1.00 35.23 0 ATOM 4126 O ILE 633 64.550 39.866 72.594 1.00 35.23 0 ATOM 4126 O ILE 633 64.550 39.866 72.594 1.00 35.23 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4107 NE ARG 632 67.003 37.598 77.918 1.00 11.75 0 ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4109 CZ ARG 632 67.837 38.635 77.907 1.00 13.36 0 ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 0 ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 32.62 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0										
ATOM 4110 NH1 ARG 632 69.144 38.423 77.811 1.00 13.50 0 ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4117 O ARG 632 64.962 37.781 75.148 1.00 2.00 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 29.19 0 ATOM 4126 O ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.98 0										
ATOM 4113 NH2 ARG 632 67.372 39.883 78.001 1.00 18.51 0 ATOM 4116 C ARG 632 64.962 37.781 75.148 I.00 2.00 0 ATOM 4117 O ARG 632 64.930 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4125 C ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4129 CA TYR 634 61.395 40.006 71.147 1.00 13.98 0										
ATOM 4116 C ARG 632 64.962 37.781 75.148 I.00 2.00 0 ATOM 4117 O ARG 632 64.930 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										0
ATOM 4117 O ARG 632 64.930 38.865 75.745 1.00 12.49 0 ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										0
ATOM 4118 N ILE 633 65.234 37.658 73.852 1.00 21.20 0 ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										0
ATOM 4120 CA ILE 633 65.608 38.788 73.014 1.00 19.86 0 ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										
ATOM 4121 CB ILE 633 66.085 38.308 71.610 1.00 32.61 0 ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0								73.014		0
ATOM 4122 CG2 ILE 633 66.132 39.471 70.625 1.00 29.80 0 ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 30.44 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										
ATOM 4123 CG1 ILE 633 67.490 37.716 71.700 1.00 28.84 0 ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										0
ATOM 4124 CD1 ILE 633 67.619 36.496 72.594 1.00 35.23 0 ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										
ATOM 4125 C ILE 633 64.550 39.866 72.815 1.00 22.19 0 ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0									1.00 35.23	0
ATOM 4126 O ILE 633 64.864 41.053 72.878 1.00 30.44 0 ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										
ATOM 4127 N TYR 634 63.303 39.473 72.588 1.00 32.62 0 ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										0
ATOM 4129 CA TYR 634 62.276 40.471 72.316 1.00 31.19 0 ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										0
ATOM 4130 CB TYR 634 61.395 40.006 71.147 1.00 13.98 0										0
60 024 20 756 (0 04) 1 00 10 07 0							40.006			
							39.755	69.941	1.00 19.07	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4132 4133 4134 4135 4137 4139 4140 4141 4144 4145 4144 4145 4145 4150 4151 4155 4155	CE1 CD2 CE2 CZ OH CON CA CON CA CBCCD1 CCD2 CE1 CC2	TYR TYR TYR TYR TYR GLY GLY PHE PHE PHE PHE PHE PHE PHE PHE PHE	634 634 634 6334 6334 635 635 636 636 636 636 636 636	62.652 63.498 62.668 63.515 63.935 61.430 60.380 61.851 60.270 60.103 59.725 58.386 57.275 56.293 57.214 55.270 55.210 55.238 59.761	40.805 40.587 38.474 38.236 39.296 41.637 40.807 41.407 40.658 41.155 39.502 38.786 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 36.845 37.461 38.522	69.147 68.074 69.639 68.571 67.786 66.720 73.446 73.188 74.690 75.786 76.780 77.892 76.431 77.639 78.208 77.824 78.942 78.942 78.944 79.111	1.00 17.28 1.00 16.13 1.00 15.20 1.00 18.14 1.00 21.41 1.00 28.63 1.00 19.20 1.00 38.67 1.00 39.39 1.00 41.31 1.00 69.69 1.00 54.49 1.00 56.26 1.00 2.00 1.00 2.00	
MOTA MOTA	415 6 415 7 415 8	С О И	PHE PHE TYR	636 636 637	59.761 59.321 61.005	38.728 38.114	79.791 78.415	1.00 33.84 0 1.00 2.00 0 1.00 2.00 0)
ATOM ATOM	4160 4161	CA CB	TYR TYR	637 637	61.918 63.266	37.836 37.419	79.506 78.947	1.00 2.00 0 1.00 18.03 0	
MOTA	4162	CG	TYR	637 637	64.345 64.560	37.308 36.116	79.986 80.668	1.00 13.39 0 1.00 15.45 0	
MOTA MOTA	4163 4164	CD1 CE1	TYR TYR	637	65.563	36.007	81.603	1.00 14.13 0)
MOTA MOTA	4165 4166	CD2 CE2		637 637	65.163 66.163	38.390 38.292	80.273 81.200	1.00 14.83 0 1.00 13.98 0	
MOTA	4167	CZ	TYR	637	66.363	37.101	81.863	1.00 14.88 0)
MOTA	416 8 417 0	OH C	TYR TYR	637 637	67.3 7 9 62.091	37.015 39.056	82.784 80. 4 11	1.00 13.10 0 1.00 2.00 0	
MOTA MOTA	4171	0	TYR	637	62.362	38.920	81.605	1.00 20.03 0)
MOTA	4172	И	ASP	638	61.919 62.086	40.240 41.484	79.833 80.554	1.00 2.00 0 1.00 2.00 0	
ATOM ATOM	4174 4175	CA CB	ASP ASP	638 638	62.701	42.522	79.614	1.00 57.25 0)
MOTA	4176	CG	ASP	638	64.049	42.053	79.046	1.00 66.80 0 1.00 65.06 0	
MOTA MOTA	4177 417 8		ASP ASP	638 638	64.078 65.077	41.539 42.175	77.905 79.750	1.00 65.06 0 1.00 69.12 0	
MOTA	4179	C	ASP	638	60.816	41.961	81.245	1.00 2.00 0	
ATOM ATOM	4180 4181	0 N	ASP GLU	638 639	60.884 59.656	42.531 41.724	82.331 80.644	1.00 55.83 0 1.00 2.00 0	
MOTA	4183	CA	GLU	639	58.405	42.074	81.317	1.00 2.00 0)
MOTA	4184	CB	GLU	639	57.210 57.051	41 .774 42 .726	80.419 79.261	1.00 64.74 0 1.00 71.70 0	
MOTA MOTA	418 5 418 6	CG CD	GLU GLU	639 639	55.900	42.720	78.355	1.00 66.55 0)
MOTA	4187	OE1	GLU	639	54.748	42.718	78.667	1.00 65.31 0 1.00 72.66 0	
ATOM ATOM	418 8 418 9	OE2	GLU GLU	63 9 63 9	56. 15 2 58. 37 2	41.684 41.145	77.329 82.547	1.00 72.00 0	
ATOM	4190	Õ	GLU	639	58.009	41.550	83.654	1.00 65.95 0	
ATOM	4191 4193	N	CYS	640 640	58.787 58.859	39.895 38.843	82.314 83.323	1.00 15.74 0 1.00 15.74 0	
ATOM ATOM	4193	CA CB	CYS CYS	6 4 0	59.187	37.504	82.684	1.00 4.35 0)
MOTA	4195	SG	CYS	640	57.734	36.587	82.208	1.00 13.44 0 1.00 15.74 0	
ATOM ATOM	4196 4197	C O	CYS CYS	6 4 0 6 4 0	59.859 59.5 9 0	39.081 38.723	84.426 85.564	1.00 15.74 0 1.00 11.73 0	
MOTA	4198	N	LYS	641	61.028	39.631	84.110	1.00 2.00 0	
ATOM	4200	CA	LYS LYS	641 641	62.009 63.425	39.890 39.454	85.153 84.721	1.00 2.00 0 1.00 32.33 0	
ATOM ATOM	4201 4202	CB CG	LYS	641	64.225	40.436	83.869	1.00 32.55 0)
ATOM	4203	CD	LYS	641	65.735	40.154	83.954 85.386	1.00 38.99 0 1.00 41.14 0	
ATOM ATOM	4204 4205	CE NZ	LYS LYS	641 641	66.281 66.228	40.198 41.554	86.007	1.00 41.14 0	
ATOM	4209	C	LYS	641	61.950	41.371	85.568	1.00 2.00 0)
ATOM ATOM	4210 4211	11 O	LYS ARG	64 1 6 4 2	62.94 8 60.750	42.106 41.801	85.54 8 85.945	1.00 35.25 0 1.00 17.38 0	
.11017	4611			J • L	2220				

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4213 4214 4215 4216 4217 4219 4220 4223 4226 4227 4228 4230 4231 4232 4233	C O N CA CB CG	ARG ARG ARG ARG ARG ARG ARG ARG	642 642 642 642 642 642 642 643 643 643	60.502 60.341 61.636 61.463 60.488 60.816 62.097 59.867 59.200 59.114 58.180 56.869 55.804 55.526	44.131 44.613 46.016 46.077 46.208 46.291 46.253 43.098 43.455 42.630 42.500 42.392 43.749 43.745	86.384 85.204 84.561 83.940 82.846 81.560 81.199 80.631 87.126 88.288 86.427 87.016 85.924 85.304 84.341	1.00 14.00 1.00 23.15 1.00 25.43	
ATOM ATOM	4234 4236	NE CZ	ARG ARG	64 3 64 3	53. 1 21 51. 9 39	43.351 43.569	84.949	1.00 8.38	0
MOTA	4237	NH1	AR G	643	51.869	44.187	84.390 83.218	1.00 8.38 1.00 8.38	0
ATOM ATOM	424 0 424 3		ARG	643	50.825	43.157	84.985	1.00 8.38	ő
ATOM	4244	C O	ARG ARG	643 643	56. 84 1 56. 1 56	41.304 41.309	87.93 9 88. 96 9	1.00 11.54	0
MOTA	4245	N	TYR	644	57.606	40.285	87. 56 5	1.00 8.38 1.00 2.00	0
ATOM ATOM	4247 4248	CA	TYR	644	57.703	39.052	88.333	1.00 2.00	ő
ATOM	4249	CB CG	TYR TYR	6 4 4 6 4 4	56.784 55.338	37.972 38.378	87. 74 1 87. 74 0	1.00 14.67 1.00 14.67	0
ATOM	4250	CD1	TYR	644	54.695	38.723	86.554	1.00 14.67	0
ATOM ATOM	4251 4252	CE1	TYR TYR	6 4 4 6 4 4	53.359	39.140	86.54 8	1.00 14.67	0
ATOM	4253	CE2	TYR	644	54. 61 7 53. 28 9	38. 45 3 38. 86 6	88.922 88.929	1.00 14.67 1.00 14.67	0
ATOM	4254	CZ	TYR	644	52.66 5	39.209	87.739	1.00 14.67	ŏ
ATOM ATOM	425 5 425 7	OH C	TYR TYR	6 4 4	51.3 4 9 59.1 6 0	39.629 38.598	87. 74 1 88. 33 0	1.00 14.67 1.00 2.00	0
MOTA	4258	0	TYR	644	60.062	39.412	88. 57 5	1.00 2.00 1.00 14.67	0
MOTA MOTA	4259	N	ASN	645	59.399	37.321	88.028	1.00 2.00	Ö
ATOM	4261 4262	CA CB	ASN ASN	64 5 64 5	60. 75 3 61.103	36.794 36.1 4 7	88. 0 21 89. 37 9	1.00 2.00 1.00 16.19	0
ATOM	4263	CG	ASN	645	60.081	35.097		1.00 16.19	Ö
MOTA MOTA	4264 426 5		ASN	645	59.46 6	34.378	89.054	1.00 16.19	O
MOTA	4268	C C	ASN ASN	64 5 64 5	59.916 61.051	35. 00 9 35. 80 9	91.150 86.927	1.00 16.19 1.00 2.00	0
MOTA	4269	0	ASN	645	60.156	35.217	86.333	1.00 16.19	ő
ATOM ATOM	4270 4272	N CA	ILE ILE	64 6 64 6	62.342	35.648	86.678	1.00 2.00	0
MOTA	4273	CB	ILE	64 6	62.856 64.390	34.716 34.593	85.689 85.830	1.00 2.00 1.00 2.81	0 0
MOTA	4274		ILE	646	64.917	33.316	85.196	1.00 2.59	0
ATOM ATOM	427 5 427 6	CG1 CD1	ILE	64 6 64 6	65. 054 66. 49 2	35.814 35.955	85.221 85.666	1.00 2.59 1.00 8.72	0
MOTA	4277	C		64 6	62.214	33. 33 9			0
ATOM ATOM	4278 4279	0	ILE	646	61.875	32.675	84.915	1.00 6.42	0
MOTA	4279	N CA	LYS LYS	647 647	62.031 61.441	32. 91 8 31. 614	87.137 87.411	1.00 2.00 1.00 2.00	0
MOTA	4282	CB	LYS	647	61.347	31.387	88.920	1.00 79.29	ŏ
ATOM ATOM	4283 4284	CG CD	LYS LYS	647 647	62.714	31.450	89.594	1.00 84.06	0
ATOM	4285	CE	LYS	64 7	63. 72 7 65. 15 7	30.622 31. 09 0	88.804 89.028	1.00 88.57 1.00 86.67	0
ATOM	4286	NZ	LYS	647	66. 02 9	30.668	87.886	1.00 91.44	0
ATOM ATOM	4290 4291	0	LYS LYS	647 647	60. 08 3 59.751	31.478	86.738	1.00 2.00	0
ATOM	4292	N	LEU	648	59.751 59. 32 2	30. 4 26 32.563	86.187 86. 7 63	1.00 74.01 1.00 25.02	0
ATOM	4294	CA	LEU	648	58.012	32.599	86.136	1.00 23.81	0
ATOM ATOM	4295 4296	CB CG	LEU	64 8 64 8	57. 30 0 55. 80 2	33.918 33.929	86.460 86.178	1.00 2.00 1.00 2.00	0 0
ATOM	4297	CD1		648	55. 80 2	32.777	86.951	1.00 2.00 1.00 2.00	0
ATOM	4298		LEU	648	55.206	35.262	86.574	1.00 2.00	0
ATOM ATOM	4299 4300	C O	LEU	64 8 64 8	58. 24 5 57.562	32. 49 5 31. 75 1	84.637 83.934	1.00 28.16 1.00 2.00	0 0
MOTA	4301	N	TRP	649	59.227	33.243	84.151	1.00 2.00	0
MOTA	4303	CA	TRP	649	59.554	33.224	82.738	1.00 40.96	O

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4304 4305 4306 4307 4308 4310 4312 4313 4314 4315 4317 4319 4322 4323 4324 4328 4329 43333 4334	CH2 C O N CA CB CG CD CE	TRP TRP TRP TRP	649 649 649 649 649 649 649 649 650 650 650 651 651 651	60.719 61.206 62.393 62.460 63.412 60.607 61.356 64.457 59.900 59.748 61.179 62.257 63.420 64.541 65.148 66.096 59.976 59.926 58.997 57.792 56.913	34.161 34.051 33.394 33.527 32.703 34.546 34.232 32.995 32.174 32.323 31.802 31.315 31.138 29.776 29.371 30.343 29.898 28.593 27.974 28.851 27.805 29.234 28.422 28.422 28.422	82.465 81.081 80.653 79.246 81.320 79.951 78.846 78.495 80.576 79.175 82.292 81.285 83.069 82.796 83.795 83.820 84.718 84.221 85.202 82.892 82.892 83.702 83.838 86.268	1.00 11.77 1.00 14.98 1.00 14.05 1.00 12.39 1.00 25.06 1.00 17.81 1.00 15.30 1.00 13.58 1.00 15.93 1.00 16.10 1.00 40.42 1.00 12.84 1.00 2.00 1.00 2.00 1.00 49.18 1.00 4.52 1.00 3.83 1.00 11.09 1.00 11.03 1.00 2.00 1.00 5.16 1.00 5.16 1.00 10.53 1.00 14.10 1.00 23.26	000000000000000000000000000000000000000
MOTA MOTA	4334 4336 4337		THR THR	651 651	55.582 57.012	28.150 28.543	85.047 82.539	1.00 24.53 1.00 14.03	0
MOTA	4338 4339	0	THR PHE	651 652	56.599 56.837	27.534 29.779	81.951 82.082	1.00 23.01 1.00 2.00	0
MOTA	4341	N CA	PHE	65 2	56.127	30.032	80.840	1.00 2.00	0
MOTA	4342	CB	PHE	65 2	56.225 55.027	31.511 32.320	80.440 80.821	1.00 2.00 1.00 2.00	0
ATOM ATOM	4343 4344	CG CD1	PHE PHE	652 652	55.164	33.486	81.536	1.00 2.00	ŏ
MOTA	4345	CD2	PHE	65 2	53.753	31.919	80.459	1.00 2.00	0
MOTA	434 6 434 7	CE1 CE2		65 2 65 2	54.039 52.630	34.245 32.678	81.884 80.808	1.00 2.00 1.00 2.00	0
MOTA MOTA	4348	CZ	PHE	652	52.775	33.832	81.515	1.00 2.00	0
MOTA	434 9	C	PHE	652	56.717	29.160	79.743	1.00 2.00	0
MOTA	4350 4351	O N	PHE THR	65 2 65 3	55.981 58.039	28.456 29.143	79.067 79.608	1.00 2.00 1.00 2.00	0
MOTA MOTA	4353	CA	THR	65 3	58.631	28.344	78.552	1.00 2.00	0
MOTA	4354	CB	THR	653	60.126	28.538	78.429	1.00 2.14	0 0
ATOM ATOM	435 5 435 7	OG1 CG2		65 3 65 3	60.804 60. 49 9	27.592 29.945	79,255 78,787	1.00 2.14 1.00 2.14	0
MOTA	4358	C	THR	653	58.371	26.846	78.588	1.00 2.00	0
ATOM	4359	0	THR	65 3	58.452	26.196	77.555	1.00 4.20 1.00 2.00	0
MOTA MOTA	4360 4362	N CA	ASP ASP	654 654	58.064 57.803	26.271 24.839	79.743 79.749	1.00 2.00 1.00 2.00	0
MOTA	4363	CB	ASP	654	58.083	24.225	81.119	1.00 25.83	0
ATOM	4364	CG	ASP	654	58.607	22.794 22.420	81.018 79.960	1.00 26.00 1.00 29.22	0
MOTA MOTA	4365 4366	OD1 OD2		654 654	59.163 58. 47 2	22.043	82.006	1.00 28.12	Ö
MOTA	4367	C	ASP	654	56.367	24.603	79.332	1.00 2.00	0
MOTA	4368	0	ASP	654	56.014	23. 51 8 25.625	78.874 79.503	1.00 18.75 1.00 27.58	0
MOTA MOTA	4369 4371	N CA	CYS CYS	655 655	55.537 54.146	25.546	79.095	1.00 27.58	Ŏ
MOTA	4372	CB	CYS	65 5	53.333	26.675	79.722	1.00 8.45	0
MOTA MOTA	4373 4374	S G C	CYS CYS	655 655	51.756 54.162	26. 97 8 25.683	78.901 77.575	1.00 8.45 1.00 27.58	0
MOTA	4375	0	CYS	65 5	53.565	24.863	76.865	1.00 8.45	0
MOTA	4376	N	PHE	656	54.871	26.709	77.088	1.00 7.64	0
MOTA MOTA	4378 4379	CA CB	PHE PHE	656 656	55.018 55.967	26.966 28.145	75.653 75. 4 02	1.00 7.64 1.00 12.44	0
ATOM	4380	CG	PHE	656	55.384	29.483	75.747	1.00 12.44	0
MOTA	4381	CD1	PHE	656	54.073	29.591	76.242	1.00 12.44 1.00 12.44	0
MOTA MOTA	4382 4383		PHE	65 6 65 6	56.144 53.525	30.641 30.840	75.594 76.585	1.00 12.44	0
ATOM	4384		PHE	656	55.614	31.891	75.929	1.00 12.44	0

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	4385 4386 4387 4388 4390 4391 4392 4393 4394	CZ C O N CA CB CG OD1 ND2		656 656 657 657 657 657 657	54.296 55.564 55.033 56.595 57.198 58.353 59.614 59.564	31.990 25.705 25.274 25.099 23.425 24.233 25.404 23.607	76.430 74.961 73.940 75.543 75.096 75.892 75.690 75.350 75.896	1.00 12.44 1.00 7.64 1.00 12.44 1.00 2.00 1.00 2.00 1.00 12.64 1.00 12.64 1.00 12.64	0 0 0 0 0 0 0 0
MOTA MOTA	4397 4398	C 0	asn asn	657 657	56.202 56.585	22.772 21.668	74.881 74.532	1.00 2.00 1.00 12.64	0
MOTA MOTA	4399 4401	N CA	CYS CYS	658 658	54.934 53.930	23.017	75.196	1.00 2.00	0
ATOM	4402	CB	CYS	65 8	53.543	21.964 21.468	7 5.08 0 76.47 5	1.00 2.00 1.00 10.87	0
ATOM ATOM	440 3 440 4	SG C	CYS CYS	658 658	55.004 52.708	20.919 22.390	77.397	1.00 10.87	0
MOTA	4405	ŏ	CYS	658	51.726	21.659	74.258 74.162	1.00 2.00 1.00 10.87	0
MOTA MOTA	440 6 440 8	N CA	LEU LEU	659 659	52.799 51.739	23.560 24.085	73.634	1.00 11.17	0
MOTA	4409	CB	LEU	65 9	51.739	25.569	72.781 72. 47 0	1.00 11.17 1.00 2.00	0
MOTA MOTA	4410 4411	CG CD1	LEU LEU	65 9 65 9	51.757 52.286	26.629	73.542	1.00 2.00	0
MOTA	4412	CD2		65 9	50.307	27.965 26.759	73.123 73.767	1.00 2.00 1.00 2.00	0
MOTA MOTA	4413 4414	C O	LEU LEU	65 9 65 9	51.651	23.298	71.450	1.00 11.17	0
ATOM	4415	И	PRO	66 0	52.681 50.415	22.845 23.109	70.900 70.931	1.00 2.00 1.00 14.96	0
MOTA MOTA	4416 4417	CD CA	PRO	660 660	49.134	23.535	71.52 3	1.00 2.00	0
ATOM	4418	CB	PRO PRO	66 0	50.166 48.640	22.398 22.381	69.680 69.590	1.00 14.96 1.00 2.00	0
MOTA MOTA	441 9 442 0	CG	PRO	660	48.194 50.796	22.472	71. 02 8	1.00 2.00	0
MOTA	4421	C O	PRO PRO	660 660	50.796	23.248 24.474	68.579 68.7 0 9	1.00 14.96 1.00 2.00	0 0
ATOM ATOM	4422 4424	N	ILE ILE	661 661	51.195	22.603	67.488	1.00 28.66	0
ATOM	4425	CA CB	ILE	661	51.880 53.126	23.279 22.480	66.397 66.036	1.00 30.55 1.00 19.83	0
MOTA MOTA	4426 4427	CG2 CG1	ILE	661	54.064	22.432	67.228	1.00 22.82	0
ATOM	4428	CD1	ILE ILE	661 661	52.728 53. 89 6	21.050 20.161	65.669 65.299	1.00 24.89 1.00 29.65	0
MOTA MOTA	4429	C	ILE	661	51.074	23.577	65.132	1.00 29.24	0
MOTA	4430 4431	N 0	ILE	661 662	51.428. 50.004	24.493 22.810	64.372 64.915	1.00 20.63 1.00 22.79	0
ATOM ATOM	4433	CA	ALA	662	49.112	22.970	63.751	1.00 22.79	0
ATOM	4434 4435	CB C	ALA ALA	662 662	49.652 47.683	22.187 22.507	62.529 64.086	1.00 2.00 1.00 22.79	0
MOTA	4436	0	ALA	662	47.439	21.887	65.139	1.00 2.00	0
MOTA MOTA	4437 443 9	N CA	ALA ALA	663 663	46.739 45.347	22.816 22.438	63.205 63.410	1.00 2.00 1.00 2.00	0
MOTA	4440	СВ	ALA	663	44.599	23.535		1.00 18.31	0
ATOM ATOM	4441 4442	C 0	ALA ALA	663 663	44.748 45.323	22.223 22.623	62.053 61.041	1.00 2.00 1.00 22.14	0 0
ATOM	4443	N	ILE	664	43.600	21.565	62.028	1.00 16.69	0
MOTA MOTA	4445 4446	CA CB	ILE ILE	664 664	42.892 43.240	21.300 19.885	60.788 60.208	1.00 16.69 1.00 9.81	0
ATOM	4447	CG2	ILE	664	42.396	19.597	58.976	1.00 9.81	0
ATOM ATOM	4448 4449	CG1 CD1	ILE ILE	664 664	44.724 45.161	19.810 18.450	59.819 59.316	1.00 9.81 1.00 9.81	0
MOTA	4450	С	ILE	664	41.408	21.397	61.118	1.00 16.69	0
MOTA MOTA	4451 4452	0 N	ILE VAL	664 665	40.880 40.754	20.603 22.408	61.899 60.561	1.00 9.81 1.00 14.09	0 0
MOTA	4454	CA	JAV	665	39.332	22.608	60. 77 7	1.00 14.09	0
MOTA MOTA	4455 4456	CB CG1	VAL	66 5 66 5	38.954 37.450	24.091 24.239	60.742 60.710	1.00 2.00 1.00 2.00	0 0
MOTA	4457		VAL	665	39.500	24.788	61.950	1.00 2.00	0
MOTA	4458	C	VAL	665	38.509	21.873	59.729	1.00 14.09	0
MOTA MOTA	445 9 446 0	И	VAL ASP	665 666	38.768 37.517	21.972 21.137	58.524 60.219	1.00 2.00 1.00 2.00	0
MOTA	4462	CA	ASP	666	36.595	20.345	59.407	1.00 2.00	0
MOTA	4463	CB	ASP	666	35.443	21235	58.93 3	1.00 65.64	O

MOTA	4464	CG	ASP	666	34.545	21.675	60.081	1.00 73.26	0
MOTA	4465		ASP	666	33.763	20.838	60.578 60.493	1.00 71.65 1.00 75.52	0
MOTA MOTA	446 6 446 7	C C	ASP ASP	66 6 66 6	34.623 37.234	22.851 19.577	58.235	1.00 /3.32	0
MOTA	4468	0	ASP	666	36.648	19.467	57.158	1.00 57.66	Ö
ATOM	4469	N	GLU	667	38.439	19.048	58.472	1.00 17.20	Ö
ATOM	4471	CA	GLU	667	39.203	18.270	57.489	1.00 17.69	ŏ
ATOM	4472	CB	GLU	667	38.455	16.981	57.138	1.00 42.87	0
ATOM	4473	CG	GLU	667	38.170	16.101	58.345	1.00 52.20	0
MOTA	4474	CD	\mathbf{GLU}	667	37.457	14.806	57.988	1.00 53.85	0
ATOM	4475		GLU	667	36.222	14.717	58.211	1.00 51.15	0
MOTA	4476		GLU	667	38.139	13.877 19.015	57.494 56.207	1.00 55.67 1.00 17.24	0
MOTA	4477 4478	C O	GLU GLU	667 667	39.584 40.146	18.421	55.286	1.00 17.24	0
ATOM ATOM	4479	N	LYS	668	39.314	20.319	56.172	1.00 26.53	Õ
MOTA	4481	CA	LYS	668	39.615	21.133	55.002	1.00 20.22	ŏ
ATOM	4482	CB	LYS	66B	38.318	21.709	54.410	1.00 13.48	Ŏ
ATOM	4483	CG	LYS	668	37.383	20.628	53. 85 9	1.00 13.48	0
MOTA	4484	CD	LYS	668	38.119	19.77 9	52.819	1.00 13.48	0
MOTA	4485	CE	LYS	668	37.341	18.551	52.398	1.00 16.60	0
MOTA	4486	ΝZ	LYS	668	38.247	17.564	51.739	1.00 18.66	0
ATOM	4490	C	LYS	668	40.636	22.244	55.240 54.584	1.00 19.61 1.00 13.48	0
MOTA	4491	0	LYS ILE	668 669	41.676 40.356	23.166	56.158	1.00 13.48 1.00 2.00	0
MOTA MOTA	449 2 449 4	N CA	ILE	669	41.295	24.263	56.424	1.00 2.00	ŏ
ATOM	4495	CB	ILE	669	40.617	25.456	57.183	1.00 2.00	ŏ
ATOM	4496	CG2	ILE	669	41.521	26.680	57.166	1.00 2.00	ŏ
ATOM	4497		ILE	669	39.298	25.839	56.518	1.00 2.00	0
ATOM	4498	CD1	ILE	66 9	38.581	26.960	57.189	1.00 2.00	0
MOTA	4499	C	ILE	669	42.439	23.721	57.279	1.00 2.00	0
MOTA	450 0	0	ILE	669	42.201	23.034	58.269	1.00 2.00	0
MOTA	4501	N	PHE	670	43.673	24.010	56.892	1.00 2.00	0
MOTA	4503	CA	PHE	670	44.841 45.804	23.551 22.801	57.641 56.718	1.00 2.00 1.00 2.00	0
MOTA MOTA	45 04 45 05	CB CG	PHE PHE	670 670	47.182	22.614	57.291	1.00 2.00	Õ
ATOM	450 6		PHE	670	47.503	21.473	58.007	1.00 2.00	ŏ
MOTA	4507		PHE	670	48.163	23.569	57.093	1.00 2.00	0
ATOM	4508	CE1		670	48.769	21.288	58. 50 6	1.00 2.00	0
ATOM	4509	CE2	PHE	670	49.436	23.384	57.596	1.00 2.00	0
MOTA	4510	CZ	PHE	67 0	49.737	22.241	58.302	1.00 2.00	0
MOTA	4511	C	PHE	670	45.528	24.780	58.190	1.00 2.00	0
MOTA	4512	0	PHE	670	45.901	25.652	57.421	1.00 2.00 1.00 2.00	0
MOTA	451 3	И	CYS	671	45.725 46.353	24.839 25.992	59.501 60.120	1.00 2.00	Ö
MOTA MOTA	451 5 451 6	CA CB	CYS CYS	671 671	46.333	26.596	61.136	1.00 14.45	ő
ATOM	4517	SG	CYS	671	43.708	26.779	60.568	1.00 25.33	ŏ
ATOM	4518	C	CYS	671	47.685	25.701	60.816	1.00 2.00	0
MOTA	4519	0	CYS	671	47.921	24.589	61.310	1.00 8.01	0
MOTA	4520	N	CYS	67 2	48.546	26.714		1.00 2.00	0
MOTA	4522	CA	CYS	672	49.845	26.666	61.515	1.00 2.00	0
MOTA	4523	CB	CYS	6 7 2	50.826	25.741	60.792	1.00 9.00	0
ATOM	4524	SG	CYS	67 2	51.494	26.372	59.265 61.525	1.00 11.24 1.00 2.00	0
MOTA MOTA	4525 4526	C O	CYS CYS	67 2 67 2	50.336 4 9.751	28.122 28.963	60.850	1.00 2.00	Ő
MOTA	4527	N	HIS	67 3	51.369	28.440	62.300	1.00 17.94	Ö
ATOM	4529	CA	HIS	67 3	51.855	29.817	62.360	1.00 17.94	0
ATOM	4530	C	HIS	67 3	52.456	30.359	61.065	1.00 17.94	0
ATOM	4531	0	HIS	67 3	51.960	31.349	60.514	1.00 2.00	O
MOTA	4532	CB	HIS	6 7 3	52.894	29.965	63.459	1.00 2.00	0
MOTA	4533	CG	HIS	673	53.283	31.383	63.724	1.00 2.00	0
MOTA	4534		HIS	67 3	52.388	32.377	64.033	1.00 2.00	0
ATOM	4536		HIS	6 7 3	54.503	31.975	63.718	1.00 2.00	0
ATOM	4537 4538		HIS	6 7 3 673	54.371 53.072	33.330 33.512	64.019 64.199	1.00 2.00 1.00 2.00	0 0
ATOM ATOM	45 38 45 39	N	HIS GLY	674	53.072	29.721	60.626	1.00 2.00	0
ATOM	4541	CA	GLY	674	54.260	30.101	59.417	1.00 2.00	0
ATOM	4542	C	GLY	674	53.773	29.407	58 163	1.00 2.00	ő
ATOM	4543	Ö	GLY	674	53.410	30.063	57.203	1.00 11.62	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	454467 454478 45549 45553 4555567 455567 4566567 456667 456667 45667 45667 4571	N CA CO ON CA CB CG CD1 CD2 CO N CA CB CG CD1 CD2 CO N CA CB CC	GLY GLY GLY GLY LEU LEU LEU LEU LEU LEU SER SER SER SER PRO PRO PRO PRO PRO	675 675 675 675 676 676 676 676 677 677	53.759 53.286 53.867 54.241 54.723 54.336 52.827 52.412 52.100 56.207 56.582 57.946 58.083 59.248 58.247 57.405 59.449 60.474 59.887 61.329 61.329 59.859	28.087 27.440 26.061 25.173 25.883 24.591 24.409 24.625 24.556 23.575 24.333 25.248 23.069 22.617 21.985 21.192 21.556 20.684 21.605 22.638 20.647 21.076 22.517 19.234	58.136 56.931 56.604 57.455 54.886 53.418 53.244 51.777 54.075 55.381 54.945 54.945 55.388 53.484 53.681 52.469 52.184 53.681 52.469 53.032	1.00 6.25 1.00 6.25 1.00 6.25 1.00 28.15 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 12.63 1.00 12.63 1.00 12.63 1.00 12.63 1.00 12.63 1.00 12.63 1.00 15.59 1.00 15.59 1.00 15.59 1.00 15.59 1.00 15.59	000000000000000000000000000000000000000
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4572 4573 4575 4576 4577 4578 4579 4580 4581 4582		PRO ASP ASP ASP ASP ASP ASP ASP LEU	678 679 679 679 679 679 679 679 680	59.990 59.685 59.687 60.510 61.766 62.687 61.826 58.303 58.129 57.315	18.269 19.112 17.813 17.926 18.758 18.269 19.902 17.278 16.094	52.293 54.342 54.992 56.271 56.073 55.383 56.586 55.314 55.576	1.00 15.59 1.00 2.00 1.00 2.00 1.00 26.28 1.00 24.05 1.00 32.92 1.00 28.53 1.00 2.00 1.00 24.04	0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	4584 4585 4586 4587 4588 4589 4590 4591 4593	CA CB CG CD1	LEU LEU LEU LEU LEU LEU LEU GLN GLN	680 680 680 680 680 680 681 681	55.970 55.970 55.683 53.540 53.085 55.262 54.421 55.588 54.922	18.149 17.747 19.000 18.788 17.791 20.134 16.862 17.331 15.578 14.686	55.279 55.622 55.916 56.262 57.398 56.582 54.588 53.814 54.561 53.611	1.00 2.00 1.00 2.00 1.00 4.45 1.00 2.86 1.00 2.86 1.00 2.86 1.00 2.00 1.00 15.95 1.00 2.00 1.00 2.00	0 0 0 0 0 0 0 0 0
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4594 4595 4596 4597 4598 4601 4602 4603 4605 4606		GLN GLN GLN GLN GL GL SER SER SER	681 681 681 681 681 681 682 682 682	55.719 57.097 57.716 57.589 58.377 53.551 52.547 53.505 52.238 52.131	13.410 13.620 12.321 11.894 11.663 14.319 14.392 13.923 13.566 12.048	53.385 52.863 52.468 51.326 53.409 54.159 53.445 55.423 56.027 56.224	1.00 36.99 1.00 36.99 1.00 36.99 1.00 36.99 1.00 2.00 1.00 11.55 1.00 39.00 1.00 42.03 1.00 2.00	0 0 0 0 0 0 0 0 0
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	4607 4609 4610 4611 4613 4614 4615 4616 4617	OG C O N CA CB CG SD CE	SER SER SER MET MET MET MET MET MET	682 682 682 683 683 683 683 683	52.131 53.198 52.003 52.941 50.730 50.338 48.820 48.099 48.197 49.486	12.048 11.507 14.284 14.742 14.397 15.029 15.069 15.565 17.328 17.429	56.224 56.993 57.343 58.009 57.698 58.938 59.044 57.799 57.477 56.200	1.00 2.00 1.00 38.75 1.00 2.00 1.00 15.16 1.00 15.16 1.00 11.68 1.00 12.75 1.00 12.61	0000000000
ATOM ATOM ATOM ATOM ATOM	4618 4619 4620 4622 4623 4624	C O N CA CB CG	MET MET GLU GLU GLU GLU	683 683 684 684 684	50.906 51.215 51.050 51.597 52.007 52.850	14.131 14.585 12.848 11.881 10.594 9.689	60.024 61.116 59.705 60.644 59.937	1.00 15.16 1.00 15.01 1.00 40.22 1.00 41.85 1.00 63.04 1.00 72.94	0 0 0 0 0

MOTA MOTA MOTA	4625 4626 4627	CD OE1 OE2		684 684	53.111 52.139 54.285 52.819	8.343 7.716 7.909 12.471	60.206 59.730 60.201 61.297	1.00 77.43 1.00 77.96 1.00 79.67 1.00 40.42	0 0
MOTA MOTA	4628 4629	C	GLU	684 684	52.932	12.471	62.517	1.00 62.00	Ö
ATOM	4630	N	GLN	685	53.727	12.959	60.466	1.00 2.00	0
MOTA	4632	CA	GLN	685	54.945	13.559	60.952	1.00 2.00	0
ATOM	4633	CB	GLN	685	55.703 56.162	14.200 13.188	59.797 58. 77 5	1.00 52.45 1.00 57.01	0
MOTA	4634 4635	CG CD	GLN GLN	685 685	56.779	13.133	57.574	1.00 58.68	0
ATOM ATOM	4636	OE1		685	56.258	13.728	56.471	1.00 68.68	0
MOTA	4637	NE2		685	57.895	14.510	57. 77 8	1.00 65.77	0
MOTA	4640	C	GLN	685	54.627	14.585	62.029	1.00 2.00 1.00 54.77	0
MOTA	4641	0	GLN	68 5 68 6	55. 31 2 53. 57 9	14.631 15.387	63.056 61. 81 6	1.00 16.80	0
MOTA	4642 4644	N CA	ILE	68 6	53.179	16.391	62.807	1.00 14.42	Ö
MOTA MOTA	4645	CB	ILE	68 6	51.990	17.270	62.307	1.00 2.00	0
ATOM	4646	CG2	ILE	68 6	51.754	18.441	63.247	1.00 2.00	0
MOTA	4647	CG1	ILE	68 6	52.304	17.869	60.944	1.00 2.00	0
MOTA	4648	-	ILE	68 6 68 6	51.139 52.761	18.668 15.633	60.369 64. 07 9	1.00 2.00 1.00 13.83	0
MOTA MOTA	464 9 465 0	C O	ILE	68 6	53.289	15.884	65.165	1.00 2.00	Õ
ATOM	4651	N	ARG	687	51.856	14.669	63.914	1.00 3.14	0
MOTA	4653	CA	AR G	687	51.367	13.855	65.027	1.00 3.14	0
ATOM	4654	CB	ARG	687	50.307	12.835	64.564 63.559	1.00 23.50 1.00 26.96	0
ATOM	4655	CG	ARG	687 687	49.266 48.288	13.324 12.211	63.083	1.00 25.95	0
ATOM ATOM	4656 4657	CD NE	ARG ARG	687	48.878	11.199	62.190	1.00 41.22	Ō
ATOM	4659	CZ	ARG	687	49.583	10.138	62.594	1.00 45.24	0
ATOM	4660		AR G	687	50.062	9.283	61.702	1.00 43.65	0
MOTA	4663	NH2	ARG	687	49.827	9. 92 2 13. 06 0	63.887 65.665	1.00 36.26 1.00 3.14	0
ATOM	4666 4667	C O	ARG ARG	687 687	52.504 52.260	12.327	66.613	1.00 18.08	ŏ
MOTA MOTA	4668	N	ARG	68 8	53.722	13.157	65.136	1.00 11.08	0
ATOM	4670	CA	ARG	688	54.841	12.402	65.694	1.00 10.97	0
MOTA	4671	CB	ARG	68 8	55.576	11.624	64.595	1.00 52.72 1.00 52.20	0
MOTA	4672	CG	ARG	68 8	54.794 54.421	10. 48 5 9. 46 3	63. 99 5 65. 03 5	1.00 55.85	0
ATOM ATOM	4673 4674	CD NE	ARG ARG	68 8 68 8	53.634	8.372	64.468	1.00 50.50	Ö
ATOM	4676	CZ	ARG	688	54.145	7.254	63.956	1.00 54.57	0
MOTA	467 7		AR G	688	53.335	6.326	63.465	1.00 53.02	0
MOTA	4680		ARG	68 8	55.457 55.853	7.056 13.257	63.931 66. 45 7	1.00 50.07 1.00 9.37	0
MOTA MOTA	4683 4684	C O	ARG ARG	68 8 68 8	56.771	12.719	67.084	1.00 54.51	Ö
MOTA	4685	N	ILE	689	55.698	14.576	66.398	1.00 38.26	0
ATOM	4687	CA	ILE	68 9	56.614	15.487	67.081	1.00 36.62	0
MOTA	4688	CB	ILE	689	56.319	16.952	66.673	1.00 2.00 1.00 2.00	0
MOTA	4689	CG2	ILE	68 9	57. 24 8 56. 49 3	17. 9 01 17. 11 9	67.3 9 9 65.160	1.00 2.00	Ö
MOTA M OTA	4690 4691	CG1 CD1	ILE	689 689	56.670	18.556	64.711	1.00 2.00	0
MOTA	4692	C	ILE	689	56.552	15.347	68.620	1.00 42.28	0
MOTA	4693	0	ILE	68 9	55.468	15.462	69.226	1.00 2.00 1.00 2.00	0
MOTA	4694	N	MET	69 0	57.710	15.084 14.930	69.242 70. 7 04	1.00 2.00 1.00 2.00	0
MOTA MOTA	4696 4697	CA CB	MET MET	690 690	57.794 59.204	14.516	71.138	1.00 31.54	Ö
ATOM	4698	CG	MET	69 0	59.657	13.160	70.616	1.00 36.54	0
ATOM	4699	SD	MET	69 0	58.703	11.742	71.207	1.00 43.14	0
ATOM	4700	CE	MET	690	59.784	10.411	70.721	1.00 40.70	0
MOTA	4701	C	MET	690	57.491	16.3 1 3 17. 26 9	71.227 70.864	1.00 2.00 1.00 21.20	0
MOTA MOTA	4702 4703	0 N	MET ARG	690 691	58.189 56.489	16.441	72.092	1.00 21.20	Ö
MOTA	4705	AC	ARG	691	56.135	17.780	72.507	1.00 65.12	0
MOTA	4706	CB	ARG	691	54.678	17.879	72.869	1.00 2.00	0
MOTA	4707	CG	ARG	691	54.077	19.116	72.206	1.00 2.00 1.00 2.00	0 0
ATOM	4708 4709	CD	ARG ARG	691 691	5 2.59 8 52.082	19.166 17. 82 0	72. 38 4 72. 5 51	1.00 2.00	0
MOTA MOTA	4709	NE CZ	ARG	691	50.832	17.540	72.862	1.00 2.00	Ö
ATOM	4712		ARG	691	49.957	18.525	73.024	1.00 2.00	!}

MOTA MOTA MOTA MOTA MOTA MOTA MOTA	4715 4718 4719 4720 4721 4722 4723	NH2 C O N CD CA	ARG ARG PRO PRO PRO	691 691 692 692 692		50.482 56.930 57.176 57.265 56.930 58.060	16.273 18.632 19.794 18.151 16.947 19.115	73.046 73.458 73.100 74.693 75.482 75.500	1.00 2.00 0 1.00 64.88 0 1.00 2.00 0 1.00 0.89 0 1.00 19.88 0 1.00 0.77 0
ATOM ATOM ATOM ATOM	4724 4725 4726 4727	CB CG C O N	PRO PRO PRO PRO THR	692 692 692 693		58.305 57.071 59.327 60.258 59.310	18.357 17.462 19.317 18.502 20.362	76.811 76.911 74.643 74.690 73.811	1.00 21.87 0 1.00 19.02 0 1.00 0.10 0 1.00 22.15 0 1.00 2.00 0
MOTA MOTA MOTA	4729 4730 4731	CA CB OG1	THR THR THR	693 693 693		60.395 60.153 61.310	20.605 19.842 19.947	72.896 71.569 70.728	1.00 2.00 0 1.00 39.91 0
ATOM ATOM ATOM	4733 4734 4735	CG2	THR	693 693		58. 944 60.567	20.419 22.057	70.830 72.560	1.00 46.31 0 1.00 2.00 0
ATOM ATOM	4736 4738	O N CA	THR ASP ASP	693 694 694		59.640 61.782 62.075	22.848 22.399 23.747	72.678 72.154 71.736	1.00 41.07 0 1.00 4.51 0 1.00 4.51 0
ATOM ATOM	4739 4740	CB CG	ASP ASP	694 694		63.429 63.337	24.203 25.520	72.283 73.041	1.00 83.74 0 1.00 83.74 0
ATOM ATOM ATOM	4741 4742	OD2	ASP ASP	694 694		63.231	25.484 26.594	74.285 72.400	1.00 83.74 0 1.00 83.74 0
ATOM ATOM	4743 4744 4745	О О И	ASP ASP VAL	694 694 695		62.101 62.403 61.743	23.682 22.632 24.784	70.201 69.629 69.546	1.00 4.51 0 1.00 83.74 0
ATOM ATOM	4747 4748	CA CB	VAL VAL	695 695		61.760 61.212	24.864 26.224	68.087 67.623	1.00 31.71 0 1.00 37.86 0 1.00 72.52 0
MOTA MOTA	474 9 475 0		VAL VAL	695 695		61.120 59.863	26. 26 8 26. 47 4	66.113 68.253	1.00 68.63 0 1.00 68.27 0
MOTA	4751 4752	0	VAL VAL	695 695	-	63.242 64.070	24.744 25.548	67.687 68.123	1.00 34.22 0 1.00 75.22 0
ATOM ATOM ATOM	4753 4754 4755	N CD	PRO PRO	69 6		63.599	23.730 22.616	66.873 66.373	1.00 2.00 0 1.00 5.25 0
ATOM ATOM	4756 4757	CA CB CG	PRO PRO PRO	. 69 6 69 6 69 6		64.998 64.997 63.768	23.549 22.163 21.486	66.462 65.803 66.381	1.00 2.00 0 1.00 5.25 0 1.00 5.25 0
MOTA MOTA	4758 4759	C	PRO PRO	696 696		65.570 64.878	24.612 25.556	65.536 65.137	1.00 2.00 0 1.00 5.25 0
MOTA	4760 4762	N CA	ASP ASP	697 697		66.850 67.598	24.431 25.311	65.214 64.321	1.00 34.70 0 1.00 35.10 0
MOTA MOTA	4763 4764 4765	CB CG	ASP ASP ASP	697 697 697		69.098 69.630 69.612	24.951 24.774 23.613	64.376 65.825	1.00 81.36 0 1.00 81.80 0 1.00 0.89 0
MOTA MOTA	4766 4767		ASP ASP	697 697		70.075 67.037	25.792 25.099	66.347 66.436 62.894	1.00 0.89 0 1.00 0.05 0 1.00 36.63 0
MOTA MOTA	4768 4769	0 N	ASP GLN	697 698		67.014 66.576	26.022	62.069	1.00 0.75 0 1.00 8.48 0
MOTA	4771 4772	CA CB	GLN GLN	698 698		65.997 67.089	23.510 23.346	61.335 60.285	1.00 2.00 0 1.00 43.65 0
ATOM ATOM ATOM	4773 4774 4775	CG CD OE1	GLN GLN GLN	698 698 698		68.191 69.158 68.781	22.376 22.169 22.242	60.649 59.501 58.327	1.00 44.93 0 1.00 43.25 0 1.00 45.90 0
MOTA MOTA	4776 4779	NE2 C	GLN GLN	698 698		70.411 65.211	21.911 22.216	59.830 61.482	1.00 44.14 0 1.00 2.32 0
MOTA	4780 4781	N	GLN GLY	69 8 69 9		65.396 64.324	21. 48 6 21. 93 9	62. 4 52 60.530	1.00 42.62 0 1.00 2.00 0
ATOM ATOM ATOM	4783 4784 4785	CA C	GLY GLY	699 699		63.510	20.728 21.059 22.204	60.576 60.346 60.013	1.00 2.00 0 1.00 2.00 0 1.00 2.00 0
MOTA MOTA	4786 4788	O N CA	GLY LEU LEU	699 700 700		61.726 61.153 59.700	20.090	60.545 60.352	1.00 2.00 0 1.00 2.00 0 1.00 2.00 0
MOTA MOTA	4789 4790	CB CG	LEU LEU	70 0 70 0		58.941 57.436	18.962 18.836	60.555 60.273	1.00 4.64 0 1.00 8.84 0
MOTA MOTA	4791 4792	CD2	LEU	700 700		57.219 56.879	18.881	58.793 60.803	1.00 8.28 0 1.00 5.23 0
MOTA MOTA	4793 4794	C	LEU	70 0 700		59. 08 6 58.365	21.400 22.261	61.247 60.763	1.00 2.00 0 1.00 8.77 0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	47978990123480078900123448134814814812223445678912344882223458224882333	CD2 CONCACBCOD1 CONCACBCOD1 CONCACBCCD1	LEU LEU LEU LEU LEU CYS CYS CYS ASP ASP ASP ASP ASP ASP ASP LEU	701 701 701 701 701 701 701 701 702 702 702 702 702 703 703 703 703 703 703 703 704 704 704 704 704 704 704 704 705 705 705	59.394 58.860 59.278 58.156 59.278 58.759 57.124 59.339 561.646 60.622 60.442 60.022 60.292 59.641 59.795 61.126 61.537 57.518 57.513 55.413 55.413 55.416 55.366 55.366 56.884 56.884	21.362 22.362 22.039 21.874 21.879 22.994 23.747 24.691 25.117 26.639 25.786 26.954 24.940 25.442 24.391 24.940 22.9560 24.861 25.9560 26.954 24.861 25.9560 26.9	62.540 63.477 64.908 65.942 67.354 65.800 63.153 63.157 62.890 62.269 61.543 61.365 61.384 60.316 59.104 57.698 57.943 57.943 57.943 60.723 60.733 61.763 61	1.00 11.21 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 10.82 1.00 10.82 1.00 2.00 1.00 10.82 1.00 2.00 1.00 2.00 1.00 9.22 1.00 9.22 1.00 9.22 1.00 9.22 1.00 9.22 1.00 9.22 1.00 2.00 1.01 43 1.00 2.00 1.01 43 1.00 2.00	
MOTA MOTA MOTA	4834 4835 4836	CD1	LEU LEU LEU	705 705 705	57.376 55.446 57.279	26.870 26.156 29.466	65.950 64.566 61.900	1.00 2.00 0 1.00 2.00 0 1.00 39.58)
MOTA MOTA	4837 4838	0	LEU TRP	705 706	56.924 58.307	30.598 29.237	62.240 61.086	1.00 2.00 0 1.00 2.00	
ATOM	4840	CA	TRP	70 6	59.117.	30.319	60.523	1.00 2.00 (1.00 23.95 (
MOTA MOTA	4841 4842	CB CG	TRP TRP	706 706	60.594 61.02 5	30.025 30.261	60.777 62.165	1.00 23.95	
ATOM	4843	CD2	TRP	706	61.380	31.520	62.742	1.00 23.95	
MOTA MOTA	4844 4845	CE2	TRP TRP	706 706	61.735 61.434	31.278 32.832	64.083 62.254	1.00 23.95 (1.00 23.95 (
MOTA	4846	CD1		70 6	61.173	29.329	63.150	1.00 23.95	
MOTA MOTA	4847 4849	NE1 CZ2	TRP TRP	706 706	61.599 62.1 4 1	29. 93 2 32.303	64.307 64.946	1.00 23.95 (1.00 23.95 (
ATOM	4850	CZ3	TRP	706	61.835	33.850	63.108	1.00 23.95	
ATOM	4851	CH2		706	62.184	33.580	64.439	1.00 23.95 1.00 2.00	
ATOM ATOM	4852 4853	C O	TRP TRP	706 706	58.947 59.186	30.619 31.751	59.028 58.598	1.00 2.00 (1.00 23.95 (
MOTA	4854	N	SER	707	58.564	29.604	58.249	1.00 17.80	
ATOM	4856	CA	SER	707	58.423	29.730	56.796 56.160	1.00 12.52 1.00 9.59	
MOTA MOTA	4857 4858	CB OG	SER SER	707 707	58.034 56.693	28.383 28.010	56.444	1.00 8.78	
MOTA	4860	C	SER	707	57. 45 9	30.806	56.328	1.00 18.86	
MOTA MOTA	4861 4862	N	SER	707 708	56.521 57.700	31.179 31.303	57.035 55.124	1.00 6.18 1.00 7.67	
ATOM	4864	CA	ASP ASP	708	56.860	32.328	54.547	1.00 7.67	
ATOM	4865	CB	ASP	708	57. 54 6	33.676	54.656)
ATOM ATOM	4866 4867	CG OD1	ASP ASP	708 708	57.720 58.844	34.104 34.049	56.079 56.597))
ATOM	4868	OD2	ASP	708	56.717	34.483	56.689	1.00 10.95	3
MOTA	4869	C	ASP	708	56.609	31.998	53.104))
ATOM ATOM	4870 4871	0 N	ASP PRO	708 709	57.461 55.425	31.432 32.328	52.444 52.596)
ATOM	4872	CD	PRO	709	54.346	33.006	53.302)

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4873 4874 4875 4876 4877 4878 4880 4881 4882 4883	OD2		709 709 709 709 709 710 710 710 710 710	55.029 53.507 53.169 55.475 55.071 56.306 56.769 58.297 58.824 58.070 60.002	32.078 32.036 32.316 33.269 34.393 33.046 34.155 34.215 35.631 36.497 35.884	51.214 51.283 52.728 50.406 50.712 49.393 48.576 48.537 48.303 47.793 48.635	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.57 1.00 4.76 1.00 18.70 1.00 26.43 1.00 26.58 1.00 30.90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MOTA MOTA	4885 4886	C O	ASP ASP	710 710	56.211 56. 45 4	34.045 33 .05 6	47.168 46.467	1.00 5.37 1.00 15.67	0
ATOM ATOM	4887 4889	N CA	LYS LYS	711 711	55.449 54.802	35.074 35.217	46.789 45.480	1.00 10.56	0
MOTA	4890	CB	LYS	711	54.266	36.661	45.368	1.00 16.19 1.00 35.75	0 0
MOTA	4891	CG	LYS	711	53.743	37.109	44.007	1.00 43.76	0
MOTA MOTA	4892 4893	CD CE	LYS LYS	711 711	54.843	37.750	43.146	1.00 49.83	0
ATOM	4894	NZ	LYS	711	55.459 56.632	38. 97 6 39.514	43.819 43.064	1.00 54.70 1.00 58.93	0
MOTA	4898	C	LYS	71 1	55.753	34.877	44.331	1.00 16.03	0
ATOM	4899	0	LYS	711	55.459	34.001	43.518	1.00 37.96	Ö
MOTA MOTA	4900 4902	N CA	ASP ASP	712 712	56.894 57.890	35. 56 0 35. 33 0	44.282	1.00 2.00	0
MOTA	4903	CB	ASP	712	58.6 5 5	36.629	43.252 42.927	1.00 2.00 1.00 75.12	0
MOTA	4904	CG	ASP	712	59.362	37.231	44.134	1.00 75.41	ő
MOTA MOTA	4905 4906	OD1 OD2	ASP ASP	712 712	58.723 60.5⁄61	38.013	44.866	1.00 77.74	0
MOTA	4907	C	ASP	712 712	58.863	36.937 3 4.18 9	44.341 43.597	1.00 84.37 1.00 2.00	0
MOTA	4908	0	ASP	71 2	60.083	34.366	43.607	1.00 77.12	0
MOTA MOTA	490 9 491 1	N CA	VAL	713 713	58.2 9 8	33.016	43.866	1.00 27.09	0
MOTA	4912	CB	VAL VAL	713 713	59.057 59.166	31.811 31.579	44.18 8 45.7 27	1.00 17.74 1.00 2.00	0
MOTA	4913	CG1		71 3	59.124	30.098	46.069	1.00 2.00	0
MOTA	4914		VAL	71 3	60.481	32.120	46.224	1.00 2.00	0
MOTA MOTA	491 5 491 6	C O	VAL VAL	71 3 71 3	58.3 1 9 57.0 9 2	30.653 30.567	43.538 43.593	1.00 21.93 1.00 2.00	0
MOTA	4917	Ň	LEU	714	59.063	29.766	42.903	1.00 2.00	0
ATOM	4919	CA	LEU	714	58.434	28.642	42.249	1.00 10.30	0
ATOM ATOM	4920 4921	CB CG	LEU LEU	714 714	59.285 58.662	28.147 27.005	41.078 40.272	1.00 48.90 1.00 42.23	0
ATOM	4922		LEU	714	57.229	27.357	39.909	1.00 42.23	0
ATOM	4923		LEU	714	59.478	26.753	39.025	1.00 42.86	0
MOTA MOTA	4924 4925	C 0	LEU LEU	714 714	58.224 57.09 6	27.530 27.099	43.235	1.00 13.23	0
ATOM	4926	N	GLY	715	59.322	27.039	43.445 43.834	1.00 44.7 2 1.00 76.3 6	0
MOTA	4928	CA	GLY	715	59.263	25.995	44.800	1.00 76.36	ŏ
ATOM ATOM	4929 4930	C	GLY GLY	71 5 71 5	59.630	26.420	46.206	1.00 76.36	0
ATOM	4931	N O	TRP	716	58.814 60.875	26.974 26.183	46.929 46.583	1.00 19.62 1.00 4.87	0
MOTA	4933	CA	TRP	716	61.365	26.503	47.918	1.00 4.87	Ö
MOTA MOTA	4934 4935	CB CG	TRP TRP	716 716	61.944	25.241	48.554	1.00 2.00	0
ATOM	4936	CD2	TRP	716	60.884 59.936	24.317 24.529	48.932 49.962	1.00 2.00 1.00 2.00	0
MOTA	4937	CE2	TRP	71 6	59.050	23.439	49.943	1.00 2.00	Ö
MOTA	4938	CE3		716	59.7 5 0	25.541	50.909	1.00 2.00	0
ATOM ATOM	4939 494 0	CD1 NE1		716 716	60. 56 2 59. 454	23.134 22.597	48.343 48.940	1.00 2.00 1.00 2.00	0
MOTA	4942	CZ2	TRP	716	57.994	23.334	50.830	1.00 2.00	Ö
MOTA	4943	CZ3		716	58.715	25.438	51.783	1.00 2.00	0
ATOM ATOM	4944 4945	CH2 C	TRP TRP	716 716	57.8 4 3 62. 40 6	24.343 27.594	51.743 47.954	1.00 2.00 1.00 4.87	0 0
ATOM	4946	Ö	TRP	716	63.596	27.315	47.871	1.00 4.87	0
ATOM	4947	N	GLY	717	61. 96 8	28.837	48.067	1.00 2.00	0
ATOM ATOM	494 9 495 0	CA C	GLY GLY	7 17 7 17	62. 91 1 63. 72 5	29. 9 37 30.031	48.124 49.414	1.00 2.00 1.00 2.00	0
ATOM	4951	0	GLY	717	63.443	29.343	50.404	1.00 2.00	0
MOTA	4952	ii.	GLU	718	64.752	30.880	49 387	1.00 4 99	Ö

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	4954 495567 495567 49569 49661 49664 49668 49668 4977 4977 49778	ND2 C O N CA CB CG		718 718 718 718 718 718 718 718 719 719 719 719 719 720 720 720 720	65.606 66.980 68.026 69.392 68.353 64.560 63.848 63.159 62.159 62.533 60.879 64.781 65.825 64.388 64.388 64.388 64.388 64.388	31.113 31.619 31.716 30.371 30.358 29.336 32.182 33.269 31.863 32.804 32.083 32.965 33.912 32.676 33.855 33.529 35.117 36.222 37.535 37.574 38.071	50.538 50.092 51.211 51.633 52.624 50.986 51.340 50.828 52.590 53.444 54.591 55.296 55.983 55.110 54.007 54.566 53.878 54.3706 52.200 51.801	1.00 8.49 1.00 86.14 1.00 89.35 1.00 87.67 1.00 95.59 1.00 9.60 1.00 90.23 1.00 32.81 1.00 14.30 1.00 14.30 1.00 14.30 1.00 14.30 1.00 14.30 1.00 42.61 1.00 47.00 1.00 77.30 1.00 92.85 1.00 92.39	000000000000000000000000000000000000000
MOTA	4979	OD2	ASP	720	64.172	37.094	51.416	1.00 90.51	O
MOTA MOTA	4980 4981	C	ASP ASP	720 720	65.328 66.255	36. 35 2 36. 98 6	55.869 56.370	1.00 39.89 1.00 74.64	0
MOTA	4982	N	ARG	721	64.411	35.728	56.602	1.00 13.83	0
ATOM ATOM	4984 4985	CA CB	ARG ARG	721 721	64.446 63.262	35. 75 9 35. 00 7	58.060 58.649	1.00 12.18 1.00 15.37	0
ATOM	4986	CG	ARG	721	61.946	35. 69 3	58.572	1.00 7.28	0
MOTA	4987	CD	ARG	721	60.950	34.836 35.306	59.300 59.103	1.00 7.28 1.00 8.88	0
MOTA MOTA	498 8 499 0	NE CZ	ARG ARG	721 721	59. 59 3 59. 05 1	36.315	59.766	1.00 9.83	0
ATOM	4991		ARG	721	59.751	36.965	60. 69 0	1.00 8.95	0
ATOM	4994		ARG	721	57. 80 9	36.682	59.485 58.592	1.00 8.62 1.00 8.44	0
MOTA MOTA	4997 4998	C	ARG ARG	721 721	65. 71 0 65. 98 2	35.093 35.142	59.798	1.00 10.25	ő
ATOM	4999	N	GLY	72 2	66.449	34.437	57.697	1.00 4.85	0
MOTA	5001	CA	GLY	72 2 72 2	67.668 67. 39 2	33. 75 2 32. 34 4	58.083 58.592	1.00 4.85 1.00 4.85	0 0
MOTA MOTA	5002 5003	C 0	GLY GLY	722 722	68.305	31.655	59.052	1.00 76.68	ŏ
MOTA	5004	N	VAL	723	66.134	31.918	58.508	1.00 10.85	0
ATOM ATOM	5006 500 7	CA CB	VAL VAL	723 723	65. 71 7 6 5. 25 9	30.591 30. 57 4	58.958 60. 4 71	1.00 10.85 1.00 2.00	0
ATOM	5008		VAL	72 3	66.449	30.400	61.386	1.00 2.00	Õ
MOTA	5009		VAL	72 3	64.504	31.858	60.825	1.00 2.00	0
MOTA	5010 5011	C	VAL VAL	72 3 72 3	64.546 63.667	30. 10 0 30. 88 3	58.105 57.714	1.00 10.85 1.00 2.00	0 0
MOTA MOTA	5012	N O	SER	724	64.541	28.802	57.824	1.00 42.15	ö
MOTA	5014	CA	SER	724	63.479	28.193	57.040	1.00 42.15	0
MOTA MOTA	5015 5016	CB OG	SER SER	724 724	62.127 61.077	28.609 27.808	57.623	1.00 2.00 1.00 2.00	0
MOTA	5018	C	SER	724	63.583	28.588	55.561	1.00 42.15	С
MOTA	5019	0	SER	724	64.680	28.820	55.049	1.00 2.00	0
MOTA MOTA	5020 5022	N CA	PHE PHE	725 725	62. 45 4 62. 46 4	28. 64 3 29. 00 7	54.863 53.457	1.00 2.00 1.00 2.00	0
MOTA	5023	CB	PHE	725	62.461	27.779	52.541	1.00 2.00	0
MOTA	5024	CG	PHE	725	62.891	26.551	53.205	1.00 2.00	0
ATOM ATOM	5025 5026		PHE PHE	725 725	62.047 64.151	25.916 26.044	54.089 52. 9 84	1.00 2.00 1.00 2.00	Ö
ATOM	5027		PHE	725	62.458	24.791	54.750	1.00 2.00	0
ATOM	5028		PHE	725	64.578	24.906	53.646	1.00 2.00	0
ATOM ATOM	5029 5030	CZ C	PHE PHE	725 725	63.733 61.222	24.280 29.787	54.530 53.146	1.00 2.00 1.00 2.00	0
MOTA	5031	ò	PHE	725	60.382	30. 04 0	54.009	1.00 2.00	0
ATOM	5032	N	THR	726	61.132	30.162	51.886	1.00 34.54	0
ATOM ATOM	5034 5035	CA CB	THR THR	726 726	60. 00 9 60. 46 8	30.877 32.154	51.357 50.661	1.00 30.82	0
ATOM	5036	OG 1		726	61.880	32. 09 8	50.406	1.00 2.00	0
MOTA	5038	CG3	THR	726	60.222	33.327	51.561	1.00 2.00	0

ATOM	503 9	С	T HR	726	59.450	20.066	50.382	1 00 34 00	
MOTA	5 04 0	Õ	THR	726	60.201	29.866 29.208	49.684	1.00 34.20 1.00 2.00	0
MOTA MOTA	5041 5043	N	PHE	727	58.144	29.685	50.375	1.00 2.00	ŏ
ATOM	5043	CA CB	PHE PHE	72 7 72 7	57.555 56.852	28.712 27.612	49.483 50.275	1.00 2.00 1.00 9.97	0
ATOM	5045	CG	PHE	727	55.698	28.096	51.105	1.00 9.97 1.00 15.33	0
ATOM	5046	CD1	PHE	7 27	54.394	27.922	50.666	1.00 9.89	0
ATOM	5047	CD2		727	55.916	28.726	52.323	1.00 15.65	ŏ
ATOM ATOM	5048 5049	CE1	PHE PHE	727 727	53.338 54.852	28.360	51.418	1.00 11.89	0
MOTA	5050	CZ	PHE	727	53.563	29.171 28.986	53.087 52.631	1.00 6.87 1.00 11.72	0
MOTA	5051	C	PHE	72 7	56.580	29.398	48.553	1.00 2.00	0
MOTA	5052	0	PHE	727	55.848	30.312	48.982	1.00 18.77	Ö
MOTA MOTA	505 3 505 5	N CA	GLY GLY	728 728	56. 57 6	28.956	47.289	1.00 13.14	0
MOTA	5056	C	GLY	728 728	55.709 54.348	29.542 28.894	46.277 46.174	1.00 12.12 1.00 13.69	0
MOTA	5057	ō	GLY	728	54.062	27.913	46.862	1.00 2.00	0
MOTA	5058	N	ALA	729	53.513	29.436	45.292	1.00 33.39	ŏ
MOTA MOTA	506 0 506 1	CA CB	ALA ALA	729 729	52.161	28.916	45.080	1.00 33.11	0
ATOM	5062	C	ALA	729 729	51.375 52.139	29.862 27.507	44.200 44.485	1.00 16.31 1.00 31.34	0
ATOM	5063	õ	ALA	729	51.143	26.796	44.600	1.00 16.31	0
MOTA	5064	N	GLU	73 0	53.221	27.105	43.831	1.00 22.53	Õ
MOTA	5066	CA	GLU	730	53.284	25.761	43.281	1.00 26.87	0
MOTA MOTA	5067 5068	CB CG	GLU GLU	730 730	54.622 54.893	25.551 24.117	42.570 42.142	1.00 59.75 1.00 62.63	0
MOTA	5069	CD	GLU	730	56.138	23.984	41.283	1.00 62.63	0
MOTA	507 0	OE1	GLU	730	57.213	23.624	41.822	1.00 74.97	Õ
MOTA	5071	OE2	GLU	73 0	56.034	24.238	40.063	1.00 67.31	0
MOTA MOTA	5072 5073	C O	GLU GLU	730 730	53.140 52.285	24.781 23.899	44.446 44.425	1.00 24.85 1.00 58.27	0
ATOM	5074	N	VAL	731	53.9 5 8	24.989	45.477	1.00 38.27	0
MOTA	5076	CA	LAV	731	53.985	24.157	46.679	1.00 19.42	Ö
MOTA	5077	СВ	VAL	731	55.079	24.628	47.645	1.00 19.11	0
MOTA MOTA	5 07 8 5 07 9	CG1 CG2	VAL VAL	731 731	55.159 56.412	23.699 24.691	48.824 46.942	1.00 19.11 1.00 19.11	0
ATOM	5080	C	VAL	731	52.659	24.051	47.423	1.00 15.11	0
ATOM	5081	Ŏ	VAL	731	52.210	23.128	47.900	1.00 19.11	Ö
MOTA	5082	N	VAL	732	52.035	25.332	47.525	1.00 15.54	0
ATOM ATOM	5084 5085	CA CB	VAL VAL	73 2 73 2	50.750 50.254	25. 44 9 26. 89 8	48.209 48.240	1.00 15.54 1.00 20.17	0
ATOM	5086	CG1	VAL	73 2	48.907	26.985	48.962	1.00 20.17	o
MOTA	5087	CG2	VAL	732	51.272	27.764	48.902	1.00 20.17	0
ATOM	5088	C	VAL	732	49.653	24.609	47.554	1.00 15.54	0
MOTA MOTA	5089 5090	O	VAL ALA	73 2 73 3	49.011	23.791	48.222	1.00 20.17	0
MOTA	5090	N CA	ALA	73 3	49.437 48.408	24.822 24.109	46.253 45.501	1.00 16.29 1.00 16.29	0
MOTA	5093	CB	ALA	73 3	48.260	24.717	44.131	1.00 17.33	Ö
MOTA	5094	C	ALA	733	48.703	22.618	45.390	1.00 16.29	0
ATOM ATOM	5095 5096	0	ALA LYS	733 734	47.776	21.795	45.349	1.00 17.78 1.00 2.00	0
ATOM	5098	N CA	LYS	734	49. 99 6 50. 49 9	22.287 20.905	45.348 45.259	1.00 2.00 1.00 2.00	o
MOTA	5099	CB	LYS	734	52.012	20.936	45.015	1.00 23.03	0
ATOM	5100	CG	LYS	734	52.507	20.244	43.759	1.00 25.55	0
MOTA MOTA	5101 5102	CD CE	LYS LYS	734 734	52.696	21.212	42.594	1.00 35.13	0
MOTA	5103	NZ	LYS	734	53. 61 3 55.006	20.608 20.311	41.521 42.001	1.00 46.09	Ö
ATOM	5107	C	LYS	734	50.222	20.146	46.578	1.00 2.00	0
MOTA	5108	0	LYS	734	49.995	18.926	46.591	1.00 16.68	0
ATOM	5109	N	PHE	73 5	50.263	20.915	47.670	1.00 36.96	0
MOTA MOTA	5111 5112	CA CB	PHE PHE	73 5 73 5	50.036 50.606	20.478 21.554	49.047 49.991	1.00 33.73 1.00 8.60	0
MOTA	5113	CG	PHE	735	50.320	21.323	51.465	1.00 8.60	Ö
MOTA	5114	CDI	PHE	7 35	50.955	20.298	52.169	1.00 8.60	0
MOTA	5115	CD2	PHE	73 5	49.412	22.135	52.142	1.00 8.60	0
MOTA MOTA	5116 5117	CE1	PHE PHE	735 735	50.690 49.143	20.086 21.929	53.512 53.483	1.00 8.60 1.00 8.60	0
MOTA	5118	CZ.	PHE	735	49.784	20.900	54.168	1 00 8.60	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5119 51120 511213 511213 511225 511226 511226 511325 51133 51134 51135 51136 5	O PHE O PHE O PHE N LEU CA LEU CB LEU CG LEU CD1 LEU O LEU O LEU N HIS CG HIS CD2 HIS ND1 HIS CE1 HIS O HIS CA LYS	735 736 736 736 736 736 737 737 737 737 737	48.546 48.151 47.731 46.289 45.599 45.314 45.415 44.986 46.423 46.423 46.423 46.438 47.747 46.423 46.638 47.749 45.091 46.091 47.836 49.343 49.516 52.1521 46.5935 46.699 48.699 48.699 48.699 48.699 48.699 48.699 48.699 48.699 48.9	20.256 19.181 21.281 21.208 22.451 23.760 24.8743 20.014 19.215 19.906 18.818 19.037 17.784 17.169 17.016 16.570 17.266 16.163 15.111 15.250 14.473 16.642 16.319 16.642 15.314 16.5319 16.6488 17.2517 15.364	49.334 49.801 49.299 48.770 49.458 50.8696 48.567 49.1218 46.427 44.263 43.868 43.766 47.426 47.426 48.256 47.426 48.256 49.119 47.426 48.256 49.256 50.266 50.2	1.00 34.15 1.00 8.60 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 25.73 1.00 25.73 1.00 69.97 1.00 68.65 1.00 71.13 1.00 76.45 1.00 74.54 1.00 74.54 1.00 11.82 1.00 10.83 1.00 10.15 1.00 13.96 1.00 14.10 1.00 13.23 1.00 16.98 1.00 17.32 1.00 16.32 1.00 17.32 1.00 16.32 1.00 17.32 1.00 16.32 1.00 17.32 1.00 18.91 1.00 19.90 1.00 8.91 1.00 3.85 1.00 7.65 1.00 6.50 1.00 3.85	000000000000000000000000000000000000000
MOTA	5165 5167	NE2 HIS	73 9 73 9 73 9	44.442 43.913	16.598 16.722	51.378 52.477	1.00 2.00 1.00 18.58	0 0
MOTA MOTA	5168 5169	O HIS N AS P	740	43.763	16.678	50.236	1.00 2.00	0 0
ATOM	5171	CA ASP	740 74 0	42.314 41.567	16.9 1 2 15. 69 5	50.191 50.75 8	1.00 2.00 1.00 37.08	Ö
MOTA MOTA	5172 5173	CB ASP CG ASP	740	42.092	14.367	50.206	1.00 45.58	0
MOTA	5174	OD1 ASP	740	42.974 41.62 2	13.754 13.932	50.856 49.12 9	1.00 45.42 1.00 41.93	0
MOTA MOTA	5175 5176	OD2 ASP C ASP	740 740	41.900	18.170	50.955	1.00 2.00	0
MOTA	5177	O ASP	740	40.773	18.286	51. 43 2 51.045	1.00 36.93 1.00 2.00	0
ATOM ATOM	5178 5180	N L E U CA L E U	741 741	42.610	19.113 20.357	51.764	1.00 2.00	0
ATOM	5181	CB LEU	741	43.920	20.818	52.415	1.00 2.00 1.00 2.00	0
MOTA	5182 5183	CG LEU CD1 LEU	741 741	44.572 45.906	19.861 20. 39 4	53.388 53.859	1.00 2.00	Ö
MOTA MOTA	5184	CD2 LEU	741	43.620	19.673	54.519	1.00 2.00	0
MOTA	5185	C LEU	741	42.122	21.433 21.301	50.818 49.611	$ \begin{array}{cccc} 1.00 & 2.00 \\ 1.00 & 2.00 \end{array} $	0
MOTA MOTA	5186 5187	O LEU N ASP	741 742	42.261 41.588	22.510	51.385	1.00 2.00	0
ATOM	5189	CA ASP	742	41.080	23.620	50.607	1.00 2.00	0
MOTA	5190	CB ASP	742	39.605	23.858 22.741	50.909 50.433	1.00 21.53 1.00 26.90	0
MOTA	5191 5192	CG ASP OD1 ASP	742 742	38. 71 7 39. 15 9	21.898	49.622	1.00 27.19	Ō
MOTA MOTA	5193	OD1 ASP	742	37. 55 5	22.714	50.876	1.00 25.85	0
ATOM	5194	C ASP	742	41.810	24.913 25.698	50.887 49.970	1.00 2.00 1.00 14.77	0 C
MOTA MOTA	5195 5196	O ASP N LEU	742 743	42.064 42.141	25.152	52.149	1.00 5.78	0
MOTA	5198	CA LEU	743	42.785	26.407	52.509	1.00 5.78	0
ATOM	5199	CB LEU	743	41.7 4 4 41.689	27.312 28.847	53.185 53.088	1.00 2.00 1.00 2.00	0
ATOM ATOM	5200 5201	CD1 LEU	743 743	40.947	29.364	54 297	1.00 2.00	ē

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5202 5203 5204 5205 5207 5208 5209 5210 5211	CD2 C O N CA CB CG2 CG1 CD1	ILE	743 743 744 744 744 744 744 744	43.051 43.919 43.973 44.837 45.916 47.338 48.360 47.637 49.117	29.469 26.152 25.091 27.104 27.031 27.043 27.214 25.754 25.602	53.053 53.483 54.088 53.599 54.574 53.968 55.089	1.00 2.00 1.00 5.78 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	0 0 0 0 0 0
ATOM ATOM	5212 5213	C	ILE	744 744	45.770 45.830	28.330 29.423	52.856 55.356 54.788	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM	5214	N	CYS	745	45.557	28.226	56.65 5	1.00 71.57	0
ATOM ATOM	5216 521 7	CA CB	CYS CYS	745 745	45.426 44.204	29.418 29.301	57.462 58.363	1.00 66.70 1.00 17.55	0
ATOM	5218	SG	CYS	745	43.454	30.878	58.703	1.00 23.65	ő
ATOM ATOM	5219 5220	C O	CYS CYS	745 745	46.700 47.093	29.572 28.667	58.281	1.00 69.12	0
ATOM	5221	N	ARG	746	47.363	30.706	59.017 58.121	1.00 21.37 1.00 2.00	0
ATOM	5223	CA	ARG	746	48.594	30.982	58.837	1.00 2.00	õ
ATOM ATOM	5224 5225	CB CG	ARG ARG	746 746	49.810 49.860	30.672 31.394	57.944 56.609	1.00 2.00	0
ATOM	5226	CD	ARG	746	50.792	32.619	56.617	1.00 2.00 1.00 2.00	0
ATOM	5227	NE	ARG	746	52.220	32.293	56.560	1.00 2.00	0
ATOM ATOM	5229 5230	CZ NH1	ARG ARG	746 746	53. 21 2 5 2.95 6	33.184 34. 47 9	56.626 56.738	1.00 2.00 1.00 2.00	0
ATOM	5233	NH2	ARG	746	54.468	32.778	56.603	1.00 2.00	Ö
ATOM ATOM	5236 5237	C	ARG	746	48.597	32.439	59.271	1.00 2.00	0
ATOM	5237 5238	O N	ARG ALA	74 6 74 7	47.739 49.524	33.220 32.802	58. 84 7 60. 14 6	1.00 2.00 1.00 2.00	0
MOTA	5240	CA	ALA	747	49.635	34.185	60.595	1.00 2.00	ő
ATOM ATOM	5241 5242	CB C	ALA ALA	747 747	49.41 0 51. 07 3	34.264 34.588	62.106 60.193	1.00 2.00 1.00 2.00	0
ATOM	5243	ŏ	ALA	747	51.378	34.658	58.999	1.00 2.00	0
ATOM	5244	N	HIS	748	51.943	34.854	61.168	1.00 2.00	0
MOTA MOTA	5246 5247	CA C	HIS HIS	748 748	53.359 53.812	35.168 36.462	60. 93 9 60. 30 9	1.00 2.00 1.00 2.00	0
MOTA	5248	Õ	HIS	748	54.820	37.004	60.744	1.00 2.00	ŏ
MOTA	5249	CB	HIS	748	54.032	34.028	60.187	1.00 2.00	0
ATOM ATOM	525 0 525 1	CG ND1	HIS HIS	748 748	55. 50 3 56.023	33.916 33.803	60. 42 9 61.694	1.00 2.00 1.00 2.00	0
MOTA	525 2	CE1	HIS	748	57.308	33.548	61.526	1.00 2.00	0
ATOM ATOM	5253 5254	CD2 NE2	HIS HIS	748 748	56. 49 3 57. 63 4	33. 73 7 33. 50 0	59.527 60.237	1.00 2.00 1.00 2.00	0
ATOM	5256	NE2	GLN	749	53.116	36.962	59.302	1.00 2.00	Ö
ATOM	5258	CA	GLN	749	53.556	38.197	58.677	1.00 2.00	0
ATOM ATOM	525 9 52 6 0	CB CG	GLN GLN	74 9 7 4 9	53.964 55.257	37.940 37.222	57.249 57.143	1.00 27.13 1.00 28.03	0
ATOM	5261	CD	GLN	749	55. 58 6	36.915		1.00 30.37	Ö
ATOM	5262		GLN	749	56.425	37.580	55.107	1.00 30.92	0
ATOM ATOM	5263 5266	NE2	GLN GLN	749 749	54. 92 8 52. 55 6	35.898 39.310	55.173 58.708	1.00 30.08 1.00 2.00	0
MOTA	5267	Ō	GLN	749	51. 38 8	39.106	58.407	1.00 25.39	0
MOTA MOTA	526 8 527 0	N CA	VAL VAL	750 750	53. 03 8 52. 19 3	40.498 41.682	59.069 59.157	1.00 6.34 1.00 6.34	0
ATOM	5271	CB	VAL	75 0	52.968	42.896	59.764	1.00 12.20	Ö
ATOM	527 2		VAL	750	54.183	43.216	58.935	1.00 12.20	0
ATOM ATOM	5273 5274	CG2 C	VAL VAL	750 750	52. 05 5 51.6 7 2	44.109 42.018	59.872 57.771	1.00 12.20 1.00 6.34	0
ATOM	5275	Ö	VAL	750	52.471	42.219	56.850	1.00 12.20	0
MOTA	5276	N	VAL	751	50.343	42.001	57.617	1.00 25.10	0
MOTA ATOM	5278 5279	CA CB	VAL VAL	751 751	49.685 48.617	42.327 41.298	56. 34 8 55.902	1.00 25.10 1.00 2.00	0
MOTA	5280	CG1	VAL	751	49.271	39.971	55.524	1.00 2.00	O
MOTA	5281 5282	CG2 C	VAL VAL	751 751	47.570 48.996	41.138 43.654	56.976 56.540	1.00 2.00 1.00 25.10	0
MOTA MOTA	5282 5283	0	VAL	751	48.606	43.995	57.646	1.00 2.00	0
MOTA	5284	N	GLU	752	48.820	44.389	55.453	1.00 2.00	0
MOTA	5286	CA	GLU	752	48.219	45 709	55.526	1.00 2.00	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	7890123467890123567801123456780122456789012445678901234467890 2222222222222333333333333333333333333	CCOOCONCCOOCONCCOONCCCCCCCCCCCCCCCCCCC	GLUUGGASSPPPYYYYRRRRRRRRRRBUUUUUGGLUUUGGASSPPPYYYYRRRRRRRRRRRRRRUUUUUUUUUUUEEEEEEEEEE	77777777777777777777777777777777777777	48.48677744687714268771444.3884666664428702446844.37444.37444.37444.37444.37444.37444.37444.37444.3744.37444.37	46.839 46.821769 46.821769 46.821769 46.821769 46.821769 46.821769 46.821769 46.821769 46.821769 46.821769 47.72189 47.72189 48.32189 48.3319	54.687 55.497 55.497 55.497 55.497 55.497 55.497 55.497 55.55 56.1279 56.1	1.00 39.2 1.00 75.3 1.00 75.3 1.00 75.3 1.00 74.9 1.00 31.7 1.00 32.0 1.00 38.9 1.00 31.7 1.00 85.1 1.00 85.1 1.00 88.0 1.00 92.4 1.00 31.4 1.00 64.6 1.00 5.1 1.00 27.0 1.00 27.0 1.00 27.0 1.00 27.0 1.00 28.1 1.00 28.1 1.00 27.0 1.00 27	21060463601034006099:758117098-75818600000000000000000000000000000000000
MOTA MOTA MOTA	5344 5346 5347	N I CA I CB I	PHE PHE PHE	758 758 758	46.893 48.075 49.241	34.387 34.050 33.789	49.150 48.397 49.317	1.00 2.00 1.00 2.00 1.00 10.52	0 0
MOTA	5349	CD1 I	PHE	758	51.404	34.131	48.100	1.00 7.91	. 0
MOTA MOTA	5350 5351	CD2 I		758 758	50. 654 52. 54 6	31.895	48.492	1.00 11.14	0
ATOM ATOM	535 2 535 3		PHE PHE	758 758	51.796 52.741	31.398 32.272	47.858 47.347	1.00 11.5	
ATOM	5354	C I	PHE	758	47.725	32.786	47.636	1.00 2.00	
MOTA MOTA	53 5 5 535 6	N I	PHE ALA	758 75 9	46.826 48.415	32.034 32.573	48.042 46.518	1.00 13.46	3 0
ATOM ATOM	5358 5359		ALA ALA	759 759	48.196 48.767	31. 4 07 30. 15 5	45.673 46.334	1.00 17.61 1.00 2.00	
ATOM	5360	\subset A	ALA	7 59	46.733	31.180	45.314	1.00 19.54	0
ATOM ATOM	5361 5362		ALA LYS	7 59 760	46.187 46.086	30.106 32.205	45.547 44.780	1.00 2.00 1.00 3.3F	

ATOM AOTA MOTA MOTA MOTA ATOM ATOM ATOM	5364 5365 5366 5367 5368 5369 5373	CA CB CG CD CE NZ C	LYS LYS LYS LYS LYS LYS LYS	760 760 760 760 760 760 760 760	44.699 44.639 45.654 45.843 44.506 44.621 43.715 42.953	32.076 31.068 31.316 30.068 29.540 28.293 31.659 30.702	44.341 43.184 42.062 41.205 40.699 39.896 45.432 45.256	1.00 3.38 1.00 64.10 1.00 64.10 1.00 64.10 1.00 64.10 1.00 64.10 1.00 3.38 1.00 64.10	0 0 0 0 0
ATOM ATOM	537 5 537 7	N CA	ARG ARG	761 761	43.751 42.869	32.376	46.557	1.00 16.83	0
MOTA	537 8	CB	ARG	761	41.399	32.139 32.154	47.721 47.274	1.00 16.83 1.00 38.86	0
ATOM ATOM	5379 5380	CG CD	ARG ARG	761 761	41.012	33.375	46.458	1.00 38.86	ő
ATOM	5381	NE	ARG	761	40.550 40.63 5	34.493 35.785	47.334 46.669	1.00 38.86 1.00 38.86	0
ATOM ATOM	5383 5384	CZ NH1	ARG	761	39. 79 9	36. 79 3	46.898	1.00 38.86	ő
ATOM	5387	NH2		761 761	38. 79 8 39. 98 8	36.6 4 2 37.963	47.767 46.291	1.00 38.86 1.00 38.86	0
ATOM	5390	C	ARG	761	43.145	30.844	48.508	1.00 38.86	0
ATOM ATOM	5391 5392	O N	ARG GLN	761 762	42.596	30.639	49.585	1.00 38.86	0
ATOM	5394	CA	GLN	762	44.021 44.359	30.002 28.718	47.971 48.559	1.00 24.54 1.00 24.54	0
ATOM ATOM	5395 5396	CB	GLN	762	45.167	27.90 8	47.553	1.00 19.81	ő
ATOM	5397	CG CD	GLN GLN	762 762	44.502 45.309	27.794 26. 95 9	46.173 45.196	1.00 19.81 1.00 19.81	0
MOTA	5398	OE1	GLN	76 2	45.111	25.745	45.097	1.00 19.81	0
ATOM ATOM	5399 5402	NE2 C	GLN GLN	762 762	46.230	27.596	44.476	1.00 19.81	0
MOTA	5403	0	GLN	762	45.126 45.278	28.856 27.893	49.857 50. 59 9	1.00 24.54 1.00 19.81	0
ATOM ATOM	5404	N	LEU	763	45.631	30.05 3	50.119	1.00 2.00	ŏ
MOTA	5406 5407	CA CB	LEU LEU	76 3 76 3	46.354 47.882	30. 32 6 30. 31 9	51.353 51.127	1.00 2.00 1.00 13.68	0
MOTA	5408	CG	LEU	76 3	48.847	30.427	52.335	1.00 13.68	Ö
ATOM ATOM	540 9 541 0		LEU LEU	76 3 76 3	50. 11 7 4 9. 20 0	29.641 31.871	52.066 52.633	1.00 13.68	0
ATOM	5411	C	LEU	76 3	45.893	31.705	51.809	1.00 13.68 1.00 2.00	0
ATOM ATOM	5412 5413	О И	LEU VAL	763 764	45.654	32.595	50.981	1.00 13.68	0
MOTA	5415	CA	VAL	764	45. 74 1 45.3 4 0	31.869 33.140	53.118 53.680	1.00 13.21 1.00 13.65	0
ATOM	5416	CB	VAL	764	43.825	33.165	53.953	1.00 2.00	0
MOTA MOTA	5417 5418	CG1	VAL VAL	764 764	43. 45 2 43. 40 4	32.097 34.521	54.933 54.434	1.00 2.00 1.00 2.00	0
ATOM	5419	С	VAL	764	46.159	33.363	54.955	1.00 18.12	ŏ
MOTA MOTA	5420 5421	0 N	VAL THR	764 765	46.396 46.646	32.437 34.587	55.737 55.111	1.00 2.00 1.00 2.00	0
MOTA	5423	CA	THR	765	47.453	34.992	56.254	1.00 2.00 1.00 2.00	0
ATOM ATOM	5424 5425	CB	THR	765	48.731	35.660	55.798	1.00 2.00	0
ATOM	5427	OG1 CG2		765 765	49. 47 4 49.5 4 2	34.740 36.119	54.99 1 56.97 3	1.00 2.00 1.00 2.00	0
MOTA	5428	C	THR	765	46.675	36.024	57.030	1.00 2.00	0
ATOM ATOM	5429 5430	0 N	THR L E U	765 766	46.201 46. 54 9	37.016 35.797	56. 4 54 58.333	1.00 2.00 1.00 5.65	0
MOTA	5432	CA	LEU	766	45.832	36.717	59.205	1.00 5.65	Ö
MOTA MOTA	5433 5434	CB CG	LEU LEU	766 766	44.8 4 8 43.964	35.943	60.059 59. 37 2	1.00 2.00	0
MOTA	5435	CD1		766	43.703	34.922 33.794	60.327	1.00 2.00 1.00 2.00	0
MOTA	5436	CD2		766	42.672	35.581	58.943	1.00 2.00	0
MOTA MOTA	5437 5438	C 0	LEU LEU	766 766	46.826 47.864	37.382 36.790	60.142 60.478	1.00 5.65 1.00 2.00	0
MOTA	5439	N	PHE	7 67	46.520	38.605	60.554	1.00 2.00	0
ATOM ATOM	5441 5442	CA CB	PHE PHE	7 67 7 67	47. 34 2 48. 25 9	39.320 40.328	61.530 60.864	1.00 2.00 1.00 2.00	0
MOTA	5443	CG	PHE	767	49.494	40.328	61.649	1.00 2.00 1.00 2.00	0
ATOM ATOM	5444	CD1		767	50.523	39.678	61.69 5	1.00 2.00	0
ATOM	5445 5446	CD2 CE1	PHE PHE	767 767	49.6 4 7 51.689	41.811 39.935	62.317 62.389	1.00 2.00 1.00 2.00	0
ATOM	5447	CE2	PHE	767	50.813	42.078	63.018	1.00 2.00	0
ATOM ATOM	544 8 5449	CZ C	PHE PHE	767 767	51.838 46.325	41 .134 40.033	63.050 62.418	1.00 2.00 1.00 2.00	0
	2	•			40.54,	•	20.410	1.00 2.00	J

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5450 5451 5455 5455 5455 5455 5465 5466 5466	O N CA CB OC O N CCA CC C C C C C C C C C C C C C C C	PHE SER SER SER SER SER ALA ALA ALA PRO PRO PRO PRO PRO PRO	767 768 768 768 768 768 768 769 769 769 770 770 770 770 770 770	45.957 45.850 44.833 44.247 43.903 45.261 46.297 44.4619 45.142 45.410 44.855 46.717 47.556 47.578 48.615 48.913 47.227 48.8363	41.184 39.317 39.819 38.645 37.635 40.872 40.731 41.911 43.009 42.454 44.253 45.347 44.109 42.904 45.209 44.494 43.329 46.584 47.259	62.171 63.432 64.334 65.091 64.175 65.373 65.474 66.428 67.786 65.786 65.786 65.398 64.540 65.399 64.540 64.718	1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 27.69 1.00 4.86 1.00 31.35 1.00 11.84 1.00 14.07 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	5472 5474	N CA	ASN ASN	771 771	48.363	48.578	64.718	1.00 2.00	0
MOTA	547 5	CB	ASN	771	48.014	49.664	65.022	1.00 40.66	0
ATOM ATOM	5476 5477	CG OD1	ASN	771 771	48.270 49.382	51.032 51.557	64.457 64.550	1.00 47.17 1.00 40.36	0
ATOM	5478	ND2		771	47.249	51.617	63.841	1.00 43.79	0
MOTA	5481	C	ASN	771	50.174 50.811	48.414 49.318	64.666 65.208	1.00 2.00 1.00 50.90	0
ATOM ATOM	5482 5483	N O	ASN TYR	771 772	50.657	47.191	64.417	1.00 50.30	0
MOTA	5485	CA	TYR	772	51.955	46.645	64.768	1.00 6.11	0
MOTA	5486	CB	TYR	77 2	52.366 53.253	45.641 44.546	63.705 64.228	1.00 8.06 1.00 8.06	0
ATOM ATOM	5487 5488	CG CD1	TYR TYR	77 2 7 7 2	52.992	43.949	65.453	1.00 8.06	ő
ATOM	5489	CEl	TYR	77 2	53.781	42.910	65.929	1.00 8.06	0
MOTA	5490	CD2	TYR	7 7 2 7 7 2	54.335 55.135	44.084	63.487 63.945	1.00 8.06 1.00 8.06	0
ATOM ATOM	5491 5492	CE2	TYR TYR	772	54.854	42.459	65.170	1.00 8.06	Õ
ATOM	5493	OH	TYR	772	55.634	41.403	65.632	1.00 8.06	0
ATOM	5495	C	TYR	772	53.130	47.557	65.074 64.271	1.00 6.11 1.00 19.22	0
ATOM ATOM	5496 5497	N	TYR CYS	772 773	53.499 53.724	48.428 47.335	66.244	1.00 15.64	ő
ATOM	5499	CA	CYS	773	54.868	48.107	66.681	1.00 13.08	0
MOTA	5500	CB	CYS	77 3	56.059	47.798	65.777 65.891	1.00 21.47 1.00 23.28	0
MOTA MOTA	5501 5502	SG C	CYS CYS	<i>77</i> 3 <i>7</i> 73	56.646 54.624	46.112 49.617	66.685	1.00 23.28	Ö
MOTA	5503	Ō	CYS	773	55.573	50.398	66.832	1.00 20.82	0
MOTA	5504	N	GLY	774	53.362	50.031	66.545	1.00 2.00 1.00 2.00	0
MOTA MOTA	5506 5507	CA C	GLY GLY	774 774	53. 05 9 53. 82 1	51.452 52.023	66. 48 2 65.288	1.00 2.00 1.00 2.00	0
MOTA	5508	Ö	GLY	774	54.051	53.233	65.188	1.00 60.37	0
ATOM	5509	N	GLU	775	54.219	51.130	64.383	1.00 22.26 1.00 18.01	0
MOTA MOTA	5511 5512	CA CB	GLU GLU	<i>11</i> 5 <i>1</i> 75	54.973 56.253	51.500 50.683	63.211 63.133	1.00 40.50	Ö
ATOM	5513	CG	GLU	77 5	57.103	50.811	64.357	1.00 44.10	0
ATOM	5514	CD	GLU	775	58.496	50.246	64.190	1.00 42.58	0
MOTA MOTA	5515 5516		GLU GLU	775 775	59. 40 4 58.687	50.734 49.324	64.894 63.367	1.00 46.10 1.00 44.55	Ö
ATOM	5517	C	GLU	775	54.181	51.268	61.945	1.00 16.06	0
MOTA	5518	0	GLU	775	54.133	52.118	61.051	1.00 34.47	0
ATOM	5519	N	PHE	776 776	53.530 52.809	50.125 49.796	61.87 4 60.667	1.00 21.64	0
ATOM ATOM	5521 5 52 2	CA CB	PHE PHE	776	52.809	48.279	60.517	1.00 7.64	0
MOTA	5523	CG	PHE	776	54.213	47.739	60.363	1.00 6.06	0
MOTA MOTA	5524 5525	CD1	PHE	776 776	55.056 54.692	47.656 47.363	61.452 59.122	1.00 6.54 1.00 10.09	0
ATOM.	5526	CE1	PHE PHE	776	56.370	47.206	61.313	1.00 10.09	Ö
MOTA	5527	CE2	PHE	776	56.005	46.910	58.969	1.00 9.96	0
MOTA	5528	CZ	PHE	776	56.845	46.833 50.402	60.071 60.480	1.00 6.06 1.00 21.71	0 0
MOTA	5529	_	PHE	776	51.424	70 . 4 U S	JU.48U	1.00 21.74	V

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	01334567890234555555555555555555555555555555555555	OD2 CONCACB CGD1 ND2 CONCACB CONCACCONCACONCACONCACONCACONCACONCACON	PHE ASP ASP ASP ASP ASP ASP ASP ASN ASN ASN ASN ASN ASN ASN ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	776 777 777 777 777 777 777 777 777 777	50.979 50.757 49.427 49.5299 51.519 49.685 47.458 48.756 47.948 48.760 49.928 48.760 49.928 48.4672 45.783 44.537 43.404 44.537 43.998 44.672 45.537 43.998 44.672 45.537 43.998 44.672 45.537 43.998 44.672 45.537 43.998 44.672 45.537 46.671 46.671 46.671 47.474 46.671 47.474 47.671 47.474 47.671 47.6	50.601 50.720 51.322 52.790 53.464 54.595 50.547 51.095 49.268 48.373 47.123 46.258 46.613 47.945 48.227 47.267 46.799 46.925 43.560 44.925 43.584 44.925 43.587 40.567 39.587 39.076 39.061	59.346 61.584 61.532 61.071 62.246 62.644 60.632 60.164 60.419 59.584 59.221 60.435 61.275 60.538 61.481 59.578 60.168 59.988 61.606 62.077 61.747 61.345 60.984 59.492 61.763 62.398 61.610	1.00 9.78 1.00 47.34 1.00 47.73 1.00 36.82 1.00 86.03 1.00 85.84 1.00 85.92 1.00 47.70 1.00 37.69 1.00 12.97 1.00 3.97 1.00 17.34 1.00 11.19 1.00 10.18 1.00 7.69 1.00 4.32 1.00 4.32 1.00 6.26 1.00 6.26 1.00 6.26 1.00 86.19 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 14.58 1.00 2.00	000000000000000000000000000000000000000
MOTA MOTA	5570 5571 5572	CA CB CG	MET MET	782 782 782	39.857 39. 03 7 38. 73 6	37.833 38.204 37.067	62.319 63.554 64.502	1.00 2.00 1.00 2.00 1.00 2.00	0 0 0
ATOM	557 3	SD	MET	78 2	37.743	37.608	65.912	1.00 2.00	0
ATOM	5574	CE	MET	78 2	37.595 39. 01 0	39.370 37.029	65.621	1.00 2.00 1.00 2.00	0
MOTA MOTA	5575 5576	C O	MET MET	78 2 78 2	38.090	37.029	61.306 60.688	1.00 2.00 1.00 2.00	0
ATOM	5577	N	MET	78 3	39.325	35.752	61.116	1.00 2.00	Ö
MOTA	5579	CA	MET	78 3	38.570	34.955	60.165	1.00 2.00	0
MOTA MOTA	5580 5581	CB CG	MET MET	78 3 78 3	39. 48 2 38. 68 8	34.182 33.363	59.209 58.165	1.00 16.43 1.00 19.34	0
ATOM	5582	SD	MET	78 3	39.689	32.337	57.060	1.00 18.69	ŏ
MOTA	5 58 3	CE	MET	78 3	39.780	30.793	57.97 5	1.00 21.53	0
MOTA	5584	C	MET	78 3	37.608 38.004	33.976 33.010	60.794 61.447	1.00 2.00 1.00 10.33	0
ATOM ATOM	5 58 5 5 58 6	O N	MET Ser	783 784	36.335	34.221		1.00 2.00	Ö
MOTA	5588	CA	SER	784	35.276	33.374	61.034	1.00 2.00	0
MOTA	5589	CB	SER	784	34.033	34.220	61.308	1.00 16.25 1.00 16.25	0
ATOM ATOM	5590 5592	OG C	SER SER	784 784	34.385 34.953	35.392 32.301	62.020 59.990	1.00 18.23	Ö
MOTA	5 59 3	Ô	SER	784	34.672	32.611	58.839	1.00 19.28	0
MOTA	5594	N	VAL	78 5	35.033	31.045	60.401	1.00 10.88	0
MOTA MOTA	55 9 6 55 9 7	CA CB	VAL VAL	78 5 78 5	34.706 35. 64 9	29.907 28. 73 9	59.557 59.792	1.00 16.53 1.00 11.43	0
ATOM	5598		VAL	78 5	35.183	27.538	58.975	1.00 11.43	Ö
MOTA	5599		VAL	78 5	37.082	29.153	59.477	1.00 11.43	0
ATOM	5600	C	VAL	78 5	33.357 33.254	29.465 28.998	60.083 61.225	1.00 12.38 1.00 11.43	0
MOTA MOTA	5601 5602	N	VAL ASP	785 786	32.307	29.613	59.291	1.00 2.00	Ö
MOTA	5604	CA	ASP	78 6	31.024	29.200	59.807	1.00 2.00	0
ATOM	5605	CB	ASP	78 6	29.874	30.008	59.171 57.842	1.00 24.90 1.00 30.71	0
ATOM ATOM	5606 5607	CG OD1	ASP ASP	786 786	29. 40 3 28. 24 5	29.458 29.765	57.474	1.00 30.71	0
MOTA	5608		ASP	78 6	30.165	28.737	57.163	1.00 32.56	C
MOTA	5609	C	ASP	786	30.860	27.699	59.656	1.00 2.00	0
ATOM	5610	O	ASP	786	31.677	27.025	59.031	1 00 23.30	O

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	5611 5613 5614 5615 5616 5617 5618 5619	N CA CB CG CD OE1 OE2 C	GLU GLU GLU GLU GLU GLU	787 787 787 787 787 787 787	29.803 29.447 27.983 27.174 27.384 26.858 28.070 29.665	27.195 25.782 25.636 26.963 27.758 27.319 28.817 25.015	60.268 60.270 60.696 60.747 62.053 63.117 62.024 58.965	1.00 7.48 1.00 13.41 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 11.86 1.00 2.00	0 0 0 0 0 0 0 0
ATOM ATOM ATOM	5620 5621 5623	O N CA	GLU THR THR	787 788 788	30.002 29.492 29.616	23.830 25.698 25.092	58.994 57.836 56.513	1.00 2.00 1.00 56.74 1.00 52.70	0 0
MOTA	5624	CB	THR	788	28.369	25.402	55.700	1.00 6.46	0
ATOM ATOM	5625 5627	OG1 CG2	THR THR	788 78 8	28.317 27.101	26.819 24.968	55.467 56.457	1.00 4.65 1.00 10.48	0
MOTA	5628	C	THR	78 8	30.835	25.536	55.68 3	1.00 51.86	0
ATOM ATOM	562 9 563 0	N O	THR LEU	78 8 78 9	30. 75 1 31. 94 6	25.628 25.823	54.449 56.364	1.00 12.46 1.00 10.40	0
ATOM	5632	CA	LEU	789	33.194	26.245	55.734	1.00 6.34	0
MOTA	563 3	CB	LEU	78 9	33.670	25.165 24.017	54.775 55.405	1.00 8.80 1.00 15.93	0
MOTA MOTA	5634 5635	CG CD1	LEU LEU	78 9 78 9	34.458 35.879	24.017	55.677	1.00 15.95	0
ATOM	563 6	CD2		78 9	33.785	23.525	56.682	1.00 14.98	0
MOTA	563 7 563 8	C	LEU	78 9 78 9	33.173 34.065	27.619 27.948	55.042 54.248	1.00 4.53 1.00 8.97	0
MOTA MOTA	563 9	N	MET	79 0	32.165	28.430	55.336	1.00 2.00	0
ATOM	5641	CA	MET	79 0	32.126	29.748	54.743	1.00 2.00 1.00 19.79	0
ATOM ATOM	5642 5643	CB CG	MET MET	790 790	30. 69 8 30. 58 8	30.267 31.572	54.636 53.882	1.00 19.79 1.00 19.37	0
MOTA	5644	SD	MET	79 0	28.979	31.708	53.134	1.00 18.51	0
MOTA MOTA	564 5 564 6	CE C	MET MET	790 790	28.359 32.945	33.110 30.667	53.992 55.627	1.00 23.23 1.00 2.00	0
ATOM	5647	0	MET	790	32.615	30.857	56.799	1.00 23.79	0
ATOM	5648	N	CYS	791	34.014	31.228	55.067 55.803	1.00 2.00 1.00 2.00	0
ATOM ATOM	5650 5651	CA CB	CYS	791 791	34.882 36.325	32.133 31.793	55.516	1.00 14.83	0
MOTA	565 2	S G	CYS	791	36. 57 0	30.052	55.766	1.00 15.43	0
MOTA MOTA	5653 5654	C	CYS CYS	791 791	34.616 34.314	33.591 33.961	55.502 54.371	1.00 2.00 1.00 21.84	0
MOTA	5655	O N	SER	792	34.697	34.412	56.540	1.00 2.00	0
MOTA	5657	CA	SER	792	34.480	35.849	56.430	1.00 2.00 1.00 2.93	0
MOTA MOTA	5658 5659	CB OG	SER SER	79 2 79 2	33.0 7 3 32. 88 7	36.221 35.867	56.903 58.256	1.00 2.93 1.00 3.41	0
MOTA	5661	C	SER	79 2	35.539	36.518	57.303	1.00 2.00	0
MOTA	5662	0	SER PHE	792 79 3	36. 29 0 35. 60 9	35.826 37.8 4 2	57.994 57.270	1.00 2.56 1.00 2.00	0
MOTA MOTA	5663 5665	N CA	PHE	793 793	36.617	38.558	58.039	1.00 2.00	0
MOTA	5666	CB	PHE	7 93	37.765	39.025	57.129	1.00 38.05 1.00 24.74	0
ATOM ATOM	5667 5668	CG CD1	PHE PHE	79 3 79 3	38.531 38.055	37.913 37.314	56. 4 69 55. 30 6		0
ATOM	5669	CD2	PHE	7 93	39.741	37.474	57.002	1.00 26.11	0
MOTA MOTA	5670 5671		PHE PHE	79 3 79 3	38.774 40.466	36.295 36.460	54.680 56.389	1.00 27.84 1.00 27.16	0
ATOM	5672	CZ	PHE	793	39.983	35.868	55.223	1.00 29.41	0
MOTA	5673	C	PHE	793	36.101	39.782	58.784	1.00 2.00 1.00 23.22	0
MOTA MOTA	5674 5675	0 N	PHE GLN	793 794	35.362 36.480	40.599 39.893	58.233 60.051	1.00 23.22	0
MOTA	5677	CA	GLN	794	36.128	41.064	60.837	1.00 63.52	0
MOTA	5678	CB	GLN	794 794	35.608 34.294	40.713 39.954	62.238 62.289	1.00 31.74 1.00 36.03	0
MOTA MOTA	5679 5680	CG CD	GLN GLN	794 794	34.506	38.455	62.252	1.00 39.99	Ö
MOTA	5681		GLN	794	34.622	37.858	61.179	1.00 39.14	0
MOTA MOTA	5682 5685	NE2 C	GLN GLN	794 794	34.575 37.471	37.838 41.760	63.425 60.958	1.00 44 .72 1.00 65 .96	0
ATOM	568 6	0	GLN	794	38.486	41,132	61.272	1.00 37.24	0
MOTA	5687 5689	И	ILE	79 5 79 5	37. 49 8 38. 73 2	43.045 43.790	60.658 60.748	1.00 53.07 1.00 54.05	0
MOTA MOTA	5689 5690	CA CB	ILE ILE	795 79 5	39.084	44.483	59.392	1.00 26.19	0
ATOM	5691		ILE	795	40.115	45.589	59.608	1.00 28.70	0

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	5692 5693 5694 5695 5698 5699 5700 5701 5702 5703 5704 5707 5708 5709 5710 5711 5712 5716 5717	CD1 C O N CA CB CG CD1	ILE LEU LEU LEU LEU	795 795 7995 7996 7996 7996 7997 797 797 797 797	39.643 38.559 38.543 37.476 39.544 39.521 39.839 40.368 40.976 39.242 40.637 41.649 40.454 41.475 40.805 39.959 39.456 39.134 38.852 42.356 42.961	43.467 42.449 44.847 45.452 45.008 46.054 45.528 44.121 44.038 43.114 46.977 46.510 48.280 49.207 50.354 49.929 51.183 50.875 52.117 49.727 50.809	58.390 57.906 61.817 61.817 61.817 63.686 65.089 65.308 66.702 65.119 63.206 62.667 63.356 62.902 62.154 60.932 60.151 58.662 57.851 64.053 63.985	1.00 30.47 1.00 28.83 1.00 53.94 1.00 27.08 1.00 30.60 1.00 34.91 1.00 41.88 1.00 41.67 1.00 39.26 1.00 42.51 1.00 33.78 1.00 34.59 1.00 37.84 1.00 40.12 1.00 0.26 1.00 0.34 1.00 0.65 1.00 0.70 1.00 50.42 1.00 0.89	000000000000000000000000000000000000000
MOTA MOTA	5718 5720	N CA	ALA ALA	400 400	-8.399 -6.981	33.628 33.565	131.469 131.818	1.00 75.56 1.00 75.56	0
ATOM	5721	CB	ALA	400	-6.134	33.160	130.576	1.00 21.27	0
MOTA MOTA	5 72 2 572 3	C O	ALA ALA	40 0 40 0	-6.530 -7.350	34.922 35.762	132.352 132.744	1.00 75.56 1.00 21.27	0
ATOM	5724	N	ARG	401	-5.2 1 8	35.116	132.374	1.00 2.00	ő
MOTA	5726	CA	ARG	401	-4.619	36.351	132.833	1.00 2.00	0
ATOM ATOM	572 7 5 72 8	CB CG	ARG ARG	401 401	-4.586 -5.638	36.3 9 5 37.360	134.359 134.956	1.00 2.00 1.00 2.00	0
ATOM	5729	CD	ARG	401	-5. 63 9	37.340	136.471	1.00 2.00	Ö
MOTA	5730	NE	ARG	401	-6.285	38.512	137.058	1.00 2.00	0
MOTA	573 2 573 3	CZ NH1	ARG	401	-5. 73 0 -6. 33 8	39.260 40.369	138.022 138.457	1.00 2.00 1.00 2.00	0
ATOM ATOM	5736		ARG	401 401	-6.338 -4.527	38.949	138.511	1.00 2.00 1.00 2.00	0
ATOM	5739	С	ARG	401	-3.216	36.446	132.267	1.00 2.00	Ö
ATOM	5740	0	ARG	401	-2.505	35.443	132.150	1.00 2.00	0
ATOM ATOM	5741 5743	N CA	VAL VAL	402 402	-2.822 -1.516	37.655 37.882	131.898 131.311	1.00 2.00 1.00 2.00	0
ATOM	5 74 4	CB	VAL	402	-1.331	39.379	131.042	1.00 2.00	Ö
MOTA	5745	CG1		402	-0.063	39.632	130.283	1.00 2.00	0
MOTA	5746 5747		VAL	402	-2.503 -0.398	39. 88 9 37. 37 6	130.282 132.223	1.00 2.00 1.00 2.00	0
MOTA MOTA	5748	C O	VAL VAL	402 402	-0.5 4 8	37.369	132.223	1.00 2.00	0
ATOM	5749	N	SER	403	0.701	36.920	131.625	1.00 19.26	0
ATOM	5751	CA	SER	403	1.882	36.461	132.361	1.00 23.92	0
MOTA MOTA	575 2 575 3	CB OG	SER SER	40 3 40 3	1.894 1.503	34.942	132.528 131.333	1.00 22.54 1.00 14.30	0
ATOM	5755	C	SER	403	3.070		131.514	1.00 21.44	Ō
MOTA	5756	0	SER	403	2.890	37.720	130.595	1.00 23.72	0
MOTA MOTA	5757 5759	N	PHE	404	4.271 5.439	36.415 36.827	131.793 131.013	1.00 13.47 1.00 13.06	0
ATOM	5760	CA CB	PHE PHE	404 404	6.101		131.647	1.00 2.00	Ő
MOTA	5761	ĊĠ	PHE	404	5.228	39.270	131.627	1.00 2.00	0
MOTA	5762	CD1		404	4.421		132.711	1.00 2.00	0
ATOM ATOM	5763 5764	CD2 CE1		404 404	5. 17 1 3.560		130.505 132.677	1.00 2.00 1.00 2.00	0
ATOM	5765	CE2		404	4.313		130.463	1.00 2.00	ŏ
MOTA	5766	CZ	PHE	404	3.507	41.472	131.549	1.00 2.00	0
MOTA	5767	C	PHE	404	6.476	35.735	130.791	1.00 16.54 1.00 2.00	0
ATOM ATOM	5768 5769	N O	PHE ALA	404 405	6. 4 72 7. 34 1		131.489 129.802	1.00 2.00 1.00 2.00	0
ATOM	5771	CA	ALA	405	8.420	35.054	129.414	1.00 2.00	0
MOTA	5772	СB	ALA	405	9.762		129.619	1.00 85.03	0
ATOM	5773	C	ALA	405	8.434	33.682 32.654	130.078 129.401	1.00 2.00 1.00 85.03	0
MOTA MOTA	5774 5775	И О	ALA GLY	405 899	8. 38 0 32. 96 8	17.226	49.661	1.00 95.94	0
MOTA	5777	CV	GLY	899	31.781	16.989	50.464	1 00 95 94	Ò

MOTA	5778	C	GLY	899	31.215	18.274	51.038 51.338	1.00 95.94 1.00 32.75	0
ATOM ATOM	5779 5 78 0	N O	GLY ARG	899 900	30.022 32.090	18.368 19.260	51.193	1.00 42.23	ő
MOTA	5782	CA	ARG	900	31.732	20.569	51.722	1.00 42.23	0
MOTA	578 3	CB	ARG	900	31.110	20.432	53.110	1.00 22.01	0
MOTA	5784	CG	ARG	900	30.578	21.718	53.694	1.00 22.01	0
ATOM	5 78 5	CD	ARG	900	30.080	21.488	55.120	1.00 22.01	0
ATOM	5 78 6	NE	ARG	900	31.005	20.664	55.909	1.00 22.01	0
MOTA	5788	CZ	ARG	900	31.111	20.691	57.237	1.00 22.01 1.00 22.01	0
ATOM	5789	NH1		900	30.361 31.957	21.512 19.865	57.963 57.839	1.00 22.01	0
MOTA	5792 5795	NH2	ARG ARG	9 0 0 9 0 0	33.034	21.365	51.774	1.00 42.23	ő
MOTA MOTA	5796	C O	ARG	900	33.795	21.309	52.735	1.00 22.01	Ö
ATOM	5 79 7	Ŋ	ARG	901	33.284	22.091	50.697	1.00 8.39	Ö
ATOM	5799	CA	ARG	901	34.490	22.880	50.542	1.00 8.39	0
ATOM	5800	CB	ARG	901	34.793	23.036	49.045	1.00 2.00	0
ATOM	5801	CG	ARG	901	34.504	21.810	48.186	1.00 2.00	0
ATOM	5802	CD	ARG	901	34.584	22.175	4 6. 69 9	1.00 2.00	0
MOTA	580 3	NE	ARG	901	34.278	21.012	45.863	1.00 2.00	0
ATOM	5805	CZ	ARG	901	35.190	20.195	45.327	1.00 2.00	0
MOTA	5806		ARG	901	36. 49 8 3 4.79 1	20.416	45.509	1.00 2.00 1.00 2.00	0
ATOM	5809	NH2		901	34.791	19.114 24.259	44.64 9 51.1 5 8	1.00 2.00	0
MOTA	5 81 2 5 81 3	C	ARG ARG	901 901	33.241	24.629	51.138	1.00 2.00	0
ATOM ATOM	5814	N O	VAL	902	35.393	25.005	51.149	1.00 2.00	ő
ATOM	5816	CA	VAL	902	35.425	26.384	51.650	1.00 2.00	Ö
MOTA	5817	CB	VAL	902	36.880	26.814	51.869	1.00 12.90	0
MOTA	5818	CG1		902	37.039	28.332	51.992	1.00 12.90	0
ATOM	5819	CG2	VAL	902	37.492	26.219	53.139	1.00 12.90	0
ATOM	5820	C	VAL	902	34.782	27.324	50.627	1.00 2.00	0
ATOM	5821	O	VAL	902	34.737	27.031	49.435	1.00 12.90	0
MOTA	5822	N	SER	903	34.288	28.438	51.120	1.00 2.00	0
MOTA	5824	CA	SER	903	33.673	29.487	50.271	1.00 2.00	0
ATOM	5825	CB	SER	903	32.173	29.205	50.008	1.00 2.00 1.00 2.00	0
ATOM	582 6	OG	SER	903	31.477	28.917 30.814	51. 20 9 50.991	1.00 2.00	0
ATOM	5828	C	SER SER	903 903	33.871 34.386	30.866	52.115	1.00 2.00	Ö
MOTA MOTA	5829 5830	O N	PHE	904	33.482	31.903	50.376	1.00 2.00	Õ
MOTA	5832	CA	PHE	904	33.683	33.188	51.034	1.00 2.00	0
ATOM	5833	CB	PHE	904	34.894	33.898	50.455	1.00 17.14	0
MOTA	5834	ĊĠ	PHE	904	36.184	33.109	50.672	1.00 17.14	0
ATOM	583 5	CD1	PHE	904	36.511	32.067	49.805	1.00 17.14	0
MOTA	583 6	CD2	PHE	904	37.034	33.426	51.738	1.00 17.14	0
ATOM	5837	CE1	PHE	904	37.690	31.343	49.994	1.00 17.14	0
MOTA	5838	CE2	PHE	904	38.216	32.704	51.927	1.00 17.14	0
MOTA	5839	CZ	PHE	904	38.544	31.662 34.080	51. 054 50.894	- 1.00 17.14 1.00 2.00	ŏ
MOTA MOTA	5840 5841	C	PHE	904 904	32. 4 91 31.716	33.994	49.926	1.00 17.14	ő
MOTA	5842	N	ALA	905	32.386	34.912	51.874	1.00 70.83	Ō
ATOM	5844	CA	ALA	905	31.311	35.857	51.949	1.00 69.99	0
MOTA	5845	CB	ALA	905	30.042	35.128	52.370	1.00 2.00	0
ATOM	5846	C	ALA	905	31.646	36.940	52.962	1.00 69.85	0
ATOM	5847	0	ALA	905	30.981	37.068	53. 99 3	1.00 2.00	0
MOTA	5848	N	ALA	907	37.374	34.312	47.285	1.00 23.39	0
MOTA	585 0	CA	ALA	907	36.215	33.651	46.695	1.00 23.39	0
MOTA	5851	CB	ALA	907	35.317	34.681	46.008 45.699	1.00 41.64 1.00 23.39	0
MOTA	5852	C	ALA	907	36.637	32.568	45.899	1.00 23.39	Ö
MOTA	5853 5854	0	ALA	907 908	3 5.85 0 3 7.87 5	31.680 32.643	45.215	1.00 83.90	Ö
ATOM	5856	N	ALA	908	38.378	31.663	44.253	1.00 83.90	ŏ
ATOM ATOM	5857	CA CB	ALA ALA	908	39.439	32.296	43.337	1.00 22.84	Õ
ATOM	5858	СБ	ALA	908	38.961	30.466	44.992	1.00 83.90	Ö
MOTA	5859	Ö	ALA	908	38.459	30.074	46.046	1.00 22.84	O
MOTA	5860	оw	WAT	1	62.869	37.982	63.341	1.00 20.00	0
MOTA	5863	OW	WAT	103	57.039	39.062	61.228	1.00 20.00	O
MOTA	586 6	OW	WAT	101	7.257	66.194	118.365	1.00 20.00	0
MOTA	5869	OM	TAW	2	12.341	60.209	123.464	1.00 20.00	0
MOTA	5872	OVi	TAW	į	10.655	60.748	120.833	1 00 20.00	O

ATOM	5875	OW	WAT	104	55. 43 2	36.306	63.901	1.00 20.00	0
ATOM	5878	OW	WAT	102	56. 78 2	40.457	58,333	1.00 20.00	0
ATOM	5881	OW	TAW	4	5. 78 7	57.856	118.686	1.00 20.00	0
ATOM	5884	OW	TAW	105	54. 38 2	39. 15 5	63.734	1.00 20.00	0
ATOM	5887	OW	WAT	5	8.964	57.595	118.151	1.00 20.00	0
ATOM	5890	OW	WAT	106	38.56 5	47.423	74.959	1.00 20.00	Ø
ATOM	5893	OW	WAT	6	16.086	42.169	105.289	1.00 20.00	0
ATOM	5896	OW	TAW	107	31.158	26.414	51.913	1.00 20.00	0
ATOM	5899	OW	WAT	7	-0.781	32.787	131.574	1.00 20.00	0
ATOM	5902	MN	MN2	430	4.422	59.061	119.360	1.00 15.61	0
ATOM	5903	MN	MN2	431	7.458	57.875	117.661	1.00 16.53	0
ATOM	5904	MN	MN2	930	56. 03 8	34.500	63. 72 7	1.00 16.67	0
ATOM	5905	MN	MN2	931	54.402	37.798	64.756	1.00 15.40	0
ATOM	5906	S	SO4	801	57. 5 51	37.278	64.009	1.00 37.87	0
ATOM	5907	01	SO4	801	57. 60 0	35.852	63.897	1.00 42.46	0
ATOM	5908	02	SO4	801	58. 69 0	37.740	64.722	1.00 42.01	0
ATOM	5909	03	SO4	801	56. 35 5	37.648	64.705	1.00 45.08	0
ATOM	5910	04	SO4	801	57.520	37.854	62.725	1.00 41.40	0
ATOM	5911	S	SO4	800	6.866	60.776	118.643	1.00 37.87	0
ATOM	5912	01	SO4	800	7.710	60.635	119.773	1.00 42.46	0
ATOM	5913	02	SO4	800	7.044	62.063	118.053	1.00 42.01	0
ATOM	5914	03	SO4	800	5.496	60.612	119.046	1.00 45.08	0
ATOM	5915	04	SQ4	800	7.194	59.728	117.703	1.00 41.40	0

5

20

References for Example 3

- 1. Hubbard, M.J. and Cohen, P. (1993) Trends Biochem. Sci. 18, 172-177.
- Egloff, M.P., Johnson, D.F., Moorhead, G., Cohen, P.T., W., Cohen, P. and Barford, D., (1997) *EMBO J.* in press.
- 3. Dent, P., MacDougall, L.K., MacKintosh, C., Campbell, D.G. and Cohen, P. (1992) Eur. J. Biochem. 210, 1037-1044.
- Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen,
 P. (1992) Eur. J. Biochem. 210, 1023-1035.
- Chen, Y-H., Chen, M-X., Alessi, D.R., Campbell, D.G., Shanahan,
 C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56.
 - Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A.P., Somlyo,
 A.V. and Haystead, T.A.J. (1994) J. Biol. Chem. 269, 31598-31606.
- 7. Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H., Chen, M.X. and Cohen, P.T.W. (1996) Eur. J. Biochem. 239, 317-325.
 - 8. Shimizu, H., Ito, M., Miyahara, M., Ichikawa, K., Okubo, S., Konishi, T., Naka, M., Tanaka, T., Hirano, K., Hartshorne, D.J. and Nakano, T. (1994) J. Biol. Chem. 269, 30407-30411.
 - 9. Haystead, C.M.M., Gailly, P., Somlyo, A.P. and Somlyo, A.V. and Haystead, T.A.J. (1995) FEBS Lett 377, 123-127.
 - 10. Ikebe, M. and Hartshorne, D.J. (1985) J. Biol. Chem. 260, 13146-13153.
 - 11. Margossian, S.S. and Lowey, S. (1982) Methods Enzymol. 85, 55-71.
 - 12. Hubbard, M.J. and Cohen, P. (1991) Methods Enzymol. 201, 414-427.
- 25 13. Laemmli, U.K. (1970) Nature 227, 680-685.
 - 14. Schagger H. and von Jagow, G. (1987) Anal. Biochem 166, 368-379.
 - 15. Bradford, M.M. (1976) Anal. Biochem 72, 248-254.
 - Sasaki, K., Shima, H., Kitagawa, Y., Irino, S., Sugimura, T. and Nagao, M. (1990) Jap. J. Cancer Res. 81, 1272-1280.
- Takai, A., Sasaki, K., K., Nagai, H., Mieskes, G., Isobe, M., Isono,

5

- K. and Yasumoto, T. (1995) Biochem. J. 306, 657-665.
- Gong, M.C., Cohen, P., Kitazawa, T., Ikebe, M., Masuo, M., Somlyo,
 A.P. and Somlyo, A.V. (1992) J. Biol. Chem. 267, 14662-14668.
- 19. Cohen, P., Klumpp, S. and Schelling, D.L. (1989) FEBS Lett **250**, 596-600.
 - 20. Pato, M.D. and Kerc, E. (1985) J. Biol. Chem. 260, 12359-12366.
 - 21. Ichikawa, K., Hirano, K., Tanaka, J., Nakano, T. and Hartshorne, D.J. (1996) *Biochemistry* 35, 6313-6320.
- 22. Traverse, S., Cohen, P., Paterson, H., Marshall, C., Rapp, U. and Grand, R.J.A. (1993) *Oncogene* 8, 3175-3181.

References (other than those numbered in square brackets or otherwise given in full):

- Aitken, A., Cohen, P. (1982) FEBS. Lett. 147, 54-58.
 Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 126, 235-246.
 - Alessi D.R., McDougall, L.K., Sola, M.M., Ikebe, M. and Cohen, P. (1992) Eur. J. Biochem. 210, 1023-1035.
- Alessi, D.R., Street, A.J., Cohen, P. and Cohen, P.T.W. (1993) Eur. J. Biochem. 213, 1055-1066.
 Barford, D. and Keller, J.C. (1994) J. Mol. Biol. 235, 763-766.
 - Barton, G.J., Cohen, P.T.W. and Barford, D. (1994) Eur. J. Biochem. 220, 225-237.
- Brunger, A.T. (1992) X-PLOR: Yale University Press, New Haven, CT. Beullens, M., Van Eynde, A., Stalmans, W. and Bollen, M. (1992) J. Biol. Chem., 267, 16538-16544.
 - Beullens, M., Van Eynde, A., Bollen, M., Stalmans, W. (1993) J. Biol. Chem., 268, 13172-13177.
- Beullens, M., Stalmans, W., Bollen, M. (1996) Eur. J. Biochem., 239,

183-189.

Chen, Y.H., Chen M.X., Alessi, D.R., Campbell, D.G., Shanahan, C.,

Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett. 356, 51-55.

Cohen, P., Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors, P. and

5 Tung, H.Y.L. (1988) Methods Enzymol 159, 390-408.

Cohen, P. (1989) ANN. Rev. Biochem., 58, 453-508.

Cohen, P. (1992) Trends Biochem. Sci., 17, 408-413.

Dent, P., Lavoinne, A., Nakielny, S., Caudwell, F.B., Watt, P. and Cohen, P. (1990) *Nature* 348, 302-307.

- Desdouits, F., Cheetham, J.J., Huang, H.B., Jwon, Y.G., de Cruz e Silba, E.F., Denefle, P., Ehrlich, P., Nairn, A.C., Greengard, P., Girault, J.A. (1995) Biochem. Biophys. Res. Comm., 206, 653-658.
 - Derrick, J.P. and Wigley, D.B. (1992) Nature 359, 752-754.

Doherty, M.J., Moorhead G., Morrice, N., Cohen, P. and Cohen, P.T.W.

15 (1995) FEBS Lett. 375, 294-298.

Doyle, D.A., Lee, A., Lewis, J., Kim, E., Sheng, M., MacKinnon, R., (1996) *Cell* 85, 1067-1076.

Durfee, T., Becherer, K., Chen, P.L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H., Elledge, S.J. (1993) Genes and Development, 7, 555-569.

20 Endo, S., Zhou, X., Connor, J., Wang, B., Shnolikar, S. (1996) Biochemistry, 35, 5220-5228.

Faux, M.C., Scott, J.D. (1996) Trends Biochem, Sci., 21, 312-315.

Francois, J.M., Thompson-Jaeger, S., Skroch, J., Zellenka, U., Spevak, W., Tatchell, K. (1992) *EMBO J.*, 11, 87-89.

25 Frederick, D.L., Tatchell, K. (1996) *Mol Cell Biol.* 16, 2922-2931. The REG2 gene.

Furey, W. and Swaminathan, S. (1990) Am. Cryst. Acco. Meeting Summ. 18, 73.

Helps, N., Barker, H., Elledge, S.J. and Cohen, P.T.W. (1995) FEBS Lett.

30 **377**, 295-300.

Hemmings, Jr., Nairn, A.C., Elliot, J.R., Greengard, P. (1990) J. Biol. Chem., 265, 20369-20376.

Hirano, K., Ito, M., Hartshorne, D.J. (1995) J. Biol. Chem., 270, 19786-19790.

5 Hirano, K., Erdodi, F., Patton, J.G. and Hartshorne, D.J. (1996) FEBS Lett. 389, 191-194.

Hubbard, M.J., Cohen, P. (1993) Trends Biochem. Sci., 18, 172-177. Hunter, T. (1995) Cell, 80, 225-236.

Goldberg, J., Huang, H., Kwon, Y., Greengard, P., Nairn, A.C. and Kuriyan,

10 J. (1995) Nature, 376, 745-753.

Griffith, J.P., Kim, J.L., Kim, E.E., Sintchak, M.D., Thomson, J.A., Fitzgibbon, M.J., Fleming, M.A., Caron, P.R., Hsiao, K. and Navia, M.A. (1995) *Cell*, 82, 507-522.

Jagiello, I., Beullens, M., Stalmans, W., Bollen, M. (1995) J. Biol. Chem.,

15 **270**, 17257-17263.

Kissinger C.R., Parge, H.E., Knighton, D.R., Lewis, C.T., Pelletier, L.A., Tempczyk, A., Kalish, V.J., Tucker, K.D., Showalter, R.E., Moomaw, E.W., Gastinel, L.N., Habuka, N., Chen, X., Maldonado, F., Barker, J.E., Bacquet, R. and Villafranca, J.E. (1995) *Nature*, 378, 641-644.

- Kraulis, P. (1991) J. Appl. Cryst., 24, 946-950.
 Johnson, D.F., Moorhead, G., Caudwell, F.B., Cohen, P., Chen, Y.H.,
 Chen, M.X., Cohen, P.T.W. (1996) Eur. J. Biochem., 239, 317-325.
 Knighton D.R., Zheng, J., Ten Eyck, L.F., Xuong, N.H., Taylor, S.S.,
 Sowadski, J.M., (1991) Science, 414-420.
- Kraulis, P.J. (1991) J. Appl. cryst. 24, 946-950.
 Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T. and Hultgren, S.J. (1993) Science, 262, 1234-1241.
 Merrit, E.A., Murphy M.E.P., (1994) Acta. Cryst. D50, 869-873.
 Moorhead, G., MacKintosh, W., Morrice, N., Gallagher, T., MacKintosh, C.
 (1994) FEBS Lett., 356, 46-50.

Moorhead, G., MacKintosh, C., Morrice, N., Cohen, P. (1995) FEBS Lett., 362, 101-105.

Nassar, N., Horn, G., Herrman, C., Scherer, A., McCormick, F. and Wittinghofer, A. (1995) *Nature*, 375, 554-560.

- Navaza, J. (1992). AMoRe: In proceedings of the CCP4 Study Weekend. (Dodson, E.J et al) pp87-91, SERC, Daresbury Laboratory, Warrington, U.K. Nelson, K.K., Holmes, M., Lemmon, S.K. (1996) Mol. Biol. Cell 7, 245-260. Nicholls, A. And Honig, B. (1991) Comput. Chem. 12, 435-445.
 - Otwinowski, Z. (1993) Denzo. In Data Collection and Processing. (Sawyer,
- L., Isaacs, N. and Bailey, S. eds), pp. 56-62, SERC Daresbury Laboratory, Warrington, UK.

Rost, B., Sander, C. (1993) J. Mol. Biol., 232, 584-599.

Rost, B. (1996) Meth. in Enzym. 266, 525-539.

Schelling, D.L., Leader, D.P., Zammit, V.A. and Cohen, P. (1988) Biochim.

15 Biophys. Acta 927, 221-231.

Shenolikar, S. (1994) A M Rev. Cell. Biol., 10, 56-86.

Stralfors, P., Hiraga, A. and Cohen, P. (1986) Eur. J. Biochem, 149, 295-303.

Tang, P.M., Bondor, J.A., Swiderek, K.M. and dePaoli-Roach, A.A. (1991) J. Biol. Chem. 266, 15782-15789.

- 20 Tu, J., Carlson, M. (1996) EMBO J., 14, 5939-5946.
 - Tu, J. Song, W., Carlson, M. (1996) Mol. Cell. Biol. 16, 4199-4206.

Van Eynde, A., Beullens, M., Stalmans, W., Bollen, M. (1994) *Biochem. J.*, **297**, 447-449.

Van Eynde, A., Wera, S., Beullens, M., Torrekens, S., Van Leuven, F.,

25 Stalmans, W. and Bollen, M. (1995) J. Biol. Chem. 270, 28068-28074.

Wera, S. and Hemmings, B.A. (1995) Biochem. J., 311, 17-29.

Williams, K.R., Hemmings, H.C., LoPresti, M.B., Konigsberg, W.H. and Greengard, P. (1986) J. Biol. Chem. 261, 1890-1903.

Zhou, M.M. et al., Fesik, S.W. (1995) Nature 378, 584-592.

WO 97/37224 PCT/GB97/00898

References (given as numbers in square brackets, except in Example 3)

- 1. Hubbard, M.J. and Cohen, P. (1993) Trends Biochem. Sci. 18, 172-177.
- 2. Bollen, M. and Stalmans, W. (1992) Crit. Rev. Biochem. Mol. Biol. 27, 227-281.
 - Mermoud, J.E., Cohen, P. and Lamond, A.I. (1992) Nuc. Acids, Res.
 20, 5263-5269.
 - 4. Tang, P.M., Bondor, H.A., Swiderek, K.M. and dePaoli-Roach, A.A. (1991) J. Biol. Chem. 266, 15782-15789.
- Chen, Y.H., Hansen, L., Chen, M.X., Bjorbaek, C., Vestergaard, H., Hansen, T., Cohen, P.T.W. and Pedersen, O. (1994) *Diabetes* 43, 1234-1241.
 - 6. Moorhead, G., MacKintosh, C., Morrice, N. and Cohen, P. (1995) *FEBS Lett* 362, 101-105.
- Doherty, M.J., Moorhead, G., Morrice, N., Cohen, P. and Cohen,
 P.T.W. (1995) FEBS Lett 375, 294-298.
 - 8. Moorhead, G., MacKintosh, R.W., Morrice, N., Gallagher, T. and MacKintosh, C. (1994) FEBS Lett. 356, 46-50.
- Alessi, D.R., MacDougall, L.K., Sola, M.M., Ikebe, M. and Cohen,
 P. (1992) Eur. J. Biochem. 210, 1023-1035.
 - 10. Chen. Y-H., Chen, M-X., Alessi, D.R., Campbell, D.G., Shanahan, C., Cohen, P. and Cohen, P.T.W. (1994) FEBS Lett 356, 51-56.
 - Shimizu, H., Ito, M., Miyahara, M., Ichikawa, K., Okubo, S., Konishi, T., Naka, M., Tanaka, T., Hirano, K., Hartshorne, D.J. and Nakano, T. (1994) J. Biol. Chem. 269-30407-30411.
 - 12. Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A.V. and Haystead, T.A.J. (1994) *J. Biol. Chem.* **269**, 31598-31606.
 - 13. Helps, N., Barker, H., Elledge, S.J. and Cohen, P.T., W. (1995) FEBS Lett 377, 295-300.
- 30 14. Ohkura, H. and Yanagida, M. (1991) Cell 64, 149-157.

25

5

5

- Jagiello, I., Buellens, M., Stalmans, W. and Bollen, M. (1995) J. Biol.
 Chem. 270, 17257-17263.
- Van Eynde, A., Wera, S., Beullens, M., Torrekens, S., Van Leuven, F., Stalmans, W. and Bollen, M. (1995) J. Biol. Chem. 270, 28068-28074.
- 17. Durphee, T., Becherer, K., Chen, P-L., Yeh, S.H., Yang, Y., Kilburn, A.E., Lee, W.H. and Elledge, S.J. (1993) Genes and Development 7, 555-569.
- 18. Hirano, K., Ito, M. and Hartshorne, D.J. (1995) *J. Biol. Chem.* **270**, 19786-19790.
 - 19. Cohen, P. (1992) Trends Biochem. Sci. 17, 408-413.
 - Alessi, D.R., Street, A.J., Cohen, P., and Cohen, P.T.W. (1993) Eur.
 J. Biochem 213, 1055-1066.
 - 21. Hubbard, M.J., and Cohen, P. (1991) Methods Enzymol. 201, 414-427.
- Schelling, D.L., Leader, D.P., Zammit, V.A. and Cohen, P. (1988)

 Biochem. Biophys. Acta 927, 221-231.
 - 23. Cohen, P., Alemany, S., Hemmings, B.A., Resink, T.J., Stralfors, P. and Tung, H.Y.L. (1988) *Methods Enzymol.* 159, 390-408.
- Stewart, A.A., Hemmings, B.A., Cohen, P., Goris, J. and Merlevede,
 W. (1991) Eur. J. Biochem 115, 197-205.
 - Gong, M.C., Fuglsang, A., Alessi, D.R., Kobayashi, S., Cohen, P.,
 Somlyo, A.V. and Somlyo, A.P. (1992) J. Biol. Chem. 267, 21492-21498.
- Alemany, S., Pelech, S. and Brierley, C.H. and Cohen, P. (1986) Eur.
 J. Biochem. 156, 101-110.
 - Stuart, J.S., Frederick, D.L., Varner, C.M. and Tatchell, K. (1994)
 Mol. Cell. Biol. 14, 896-905.
 - Desdouits, F., Cheetham, J.J., Huang, H-B., Kwon, Y.G., da Cruz e Silva, E.F., Denefle, P., Ehrlich, M.E., Nairn, A.C., Greengard, P. and Girault, J.A. (1995) *Biochem. Biophys. Res. Commun.* 206, 652-

30

658.

- 29. Goldberg, J., Huang, H., Kwon, Y., Greengard, P., Nairn, A.C. and Kuriyan, J. (1995) *Nature* 376, 745-753.
- 30. Egloff, M-P., Cohen, P.T.W. and Renemer, P. and Barford, D. (1995)
 J. Mol. Biol. 254, 942-959.
 - 31. Gailly, P., Somlyo, A.P. and Somlyo, A. (1996) submitted.
 - 32. Traverse, S., Cohen, P., Paterson, H., Marshall, C., Rapp, U. and Grand, R.J.A. (1993) Oncogene 8, 3175-3181.

CLAIMS

- 1. A method of identifying a compound which modulates the interaction between a PP1c and a regulatory subunit thereof, the method comprising determining whether a compound enhances or disrupts the interaction between (a) a PP1c or a fragment, variant, derivative or fusion thereof or a fusion of a fragment, variant or derivative and (b) a regulatory subunit which is able to bind to PP1c or a PP1c-binding fragment, variant, derivative or fusion of said subunit or a fusion of said fragment, variant or derivative.
- 2. A method of identifying a compound which mimics the effect of a regulatory subunit of PP1c, the method comprising contacting said compound with PP1c and determining whether, in the presence of the compound, PP1c adopts the function of properties of a PP1c in the presence of a given regulatory subunit.
- 3. A method according to Claim 1 or 2 wherein said regulatory subunit of PP1c is any one of M₁₁₀, G_L, G_M, M-complexes, p53 BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2, or DARPP.
 - 4. A method according to Claim 3 wherein the regulatory subunit of PP1c is any one of M_{110} , G_L , G_M , M-complexes or p53BP2.
- 25 S. A method according to Claim 4 wherein the regulatory subunit of PP1c is M_{110} or G_M .
- 6. A method according to Claim 1 wherein the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63-80 of G_M or

functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete G_M regulatory subunit.

- 7. A method according to Claim 1 wherein the fragment of a regulatory subunit which is able to bind to PP1c is any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M_{110} or functional equivalents thereof or peptides comprising said peptide sequences provided that they are not the complete M_{110} regulatory subunit.
- A method according to Claim 1 wherein the PP1c-binding fragment, variant or derivative of said regulatory subunit or a fusion of said fragment, variant or derivative comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
- A method according to Claim 8 wherein the PP1c-binding fragment, variant or derivative comprises, in addition to the said consensus peptide sequence, at least one basic residue in the four residues N-terminal of the consensus peptide sequence.
- 20 10. A method according to Claim 8 wherein in the consensus peptide sequence Xaa is not Asp or Glu or a large hydrophobic residue.
- 11. A method according to Claim 8 wherein the PP1c-binding fragment is a fragment of a regulatory subunit comprising the said consensus peptide sequence.
 - 12. A method according to Claim 10 wherein the PP1c-binding fragment is a fragment of any of the M₁₁₀, G_L, G_M, M-complexes, p53BP2, sds22, NIPPI, L5, Inhibitor-1, Inhibitor-2 or DARPP regulatory subunits comprising said consensus sequence.

30

- 13. A method according to any one of the preceding claims wherein the compound binds to a PPIc.
- 14. A method according to Claim 1 wherein the compound binds to a regulatory subunit of PP1c.
 - 15. A compound identifiable by the method of any one of Claims 1 to 14.
- 16. A compound which modulates the interaction between a PP1c and a regulatory subunit thereof said compound comprising any of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63 to 80 of G_M or functional equivalents or said compound comprising any of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or said compound comprising the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any naturally occurring amino acid or functional equivalents thereof, provided that the said compound is not a complete regulatory subunit of PP1c.
- 20 17. A compound according to Claim 16 consisting of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], or peptide 63 to 80 of G_M or functional equivalents thereof or consisting of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof.

- 18. A peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- 30 19. A method of identifying a compound which modulates the interaction

20

between a PP1c and a regulatory subunit thereof, or binds PP1c or mimics the effect of a regulatory subunit, the method comprising selecting a compound which is capable of adopting the same or substantially the same conformation as a peptide bound to the regulatory subunit-binding site of PP1c or the same or substantially the same conformation as the portion of PP1c which binds to said peptide.

- 20. A method according to Claim 19 wherein said peptide comprises the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe wherein Xaa is any amino acid.
 - 21. A method according to Claim 20 wherein said peptide consists of residues 63 to 75 of G_M.
- A method according to Claim 21 wherein the conformation of the said peptide and the conformation of the said portion of PP1c is as defined by reference to the coordinates in Table A.
 - 23. A compound identifiable by the method of any one of Claims 19 to 22.
 - 24. A compound according to any one of Claims 15 to 18 or 23 for use in medicine.
- 25. A pharmaceutical composition comprising a compound according to any one of Claims 15 to 18 or 23 and a pharmaceutically acceptable carrier.
 - 26. A method of affecting cellular metabolism or function, the method comprising administering to a cell (a) a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or

30

- (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- A method according to Claim 26 wherein any one or more of the peptides [G63-T93], [G63-N75], [E2-P243], [E2-D118], and peptide 63-80 of G_M or functional equivalents thereof or peptides comprising said peptide sequences are administered.
- A method according to Claim 26 wherein any one or more of the peptides [M1-E309], [M1-F38], [M1-A150] or [L24-Y496] of M₁₁₀ or functional equivalents thereof or peptides comprising said peptide sequences are administered.
- A method according to Claim 26 wherein a compound according to any one of Claims 15 to 18 or 23 are administered to the cell.
 - 30. A method according to any one of Claims 26 to 29 wherein the cell is in a mammalian body.

25

- 31. A method of treating a patient in need of modulation of PP1c activity or function the method comprising administering to the patient an effective amount of a compound which modulates the interaction between a PP1c and a regulatory subunit thereof or (b) a compound which mimics the effect of a regulatory subunit of PP1c or (c) a peptide capable of binding a PP1c and which affects the ability of PP1c to bind to a particular target and/or affects the regulation of PP1c activity, or a functional equivalent thereof.
- 30 32. Use of peptides derived from targeting subunits of PP1c, functional

10

equivalents or portions thereof to affect cellular metabolism.

- 33. A method of treatment of a mammal said method comprising altering levels of peptides derived from a targeting subunit of PP1c, functional equivalents or portions thereof to an extent that cellular metabolism or function is affected.
- 34. A PP1c-regulating subunit that is modified so that it cannot interact with PP1c.
- 35. A PP1c-regulator subunit according to Claim 34 wherein the consensus peptide sequence Arg/Lys-Val/Ile-Xaa-Phe is missing or modified.

Fig. 1

Fig. 2

Fig. 3A

MP:PhP 0.92 0.97

Fig 3B

Fig. 4

Fig. 6

Fig. 7A

Fig. 7B

fraction number

Fig. 7C

M₁₁₀-(M1-E309) G_M-(G63-T93)

Fig. 8

G_{M}	Effect of fragment on PP1G _L and/or PP1M activity	Dissociation of PP1G ₁ and/or PP1M by fragment
MII [
G63 🗆 T93	prevents \mathbf{G}_{L} from suppressing the dephosphorylation of phosphorylase	does not dissociate $G_{\rm L}$ from PP1 $G_{\rm L}$ displaces M_{110} from PP1 M
G63[] N75	prevents \mathbf{G}_{L} from suppressing the dephosphorylation of phosphorylase	
M ₁₁₀		
MILEREN INSTA		
M1[KKKK KKK] E309	stimulates dephosphorylation of MLC $_{20}$ and suppresses dephosphorylation of phosphorylase	displaces G _L , from PP1G _L
MICENSE A150	stimulates dephosphorylation of MLC ₂₀ and suppresses dephosphorylation of phosphorylase	
M1 F38	stimulates dephosphorylation of MLC ₂₀ but does <u>not</u> suppress the dephosphorylation of phosphorylase	displaces $\mathbf{G}_{\scriptscriptstyle \mathrm{L}}$ from PP1 $\mathbf{G}_{\scriptscriptstyle \mathrm{L}}$
D39 [KKKK KKKK] F.309	no effect on PP1C activity	

Fig. 9

13/34

Fig. 10A

Fig 10B

Fig. 11A

Fig 11B

Fig. 11C

Fig 11E

protein	putative PP1-binding motif	residues
	,'	
GAC1	SPE KNVRF AIE	66-76
PIG2	S S G K S V R F A A H	50~60
GIP2	IRSKSVHFDQA	217-227
YIL045W	QRS KSVHF DRV	193-203
YIL045W	V F V K N I Y F S N A	412-422
REG1	TKNR HIHF NDR	461-471
REG2	PRERHIK F NDN	164-174
SCD5	FKS K K V R F SEH	270-280
GIP1	LSERFIPFNNL	180-190
GIP1	KKK R C V N F RNK	441-451
SHP1	K V T R E I T F W K E	232-242

Fig. 12A

RECTIFIED SHEET (RULE 91)
ISA/EP

procein	Put	ac	iv	e	Ρ₽	1 -	bi	nd	in	g :	mot	if		res	idue	25
GAC1	S	P	Ε	ĸ	N	v	R	F	Α '	Ī	Ξ			5	5 - 76	;
PIG2	S	s	G	ĸ	S	v	R	F	A	. A	H			5(0-60	
GIP2	Ι	R	S	ĸ	S	v	H	F	D	Q	A			217	7-22	7
YIL045W	Q	P.	S	ĸ	S	v	H	F	D	R	V			193	-20	3
YIL045W	V	F	V	ĸ	И	I	¥	F	S	N	A			412	-42	2
PEG1	T	K	N	R	H	I	Ξ	F	N	D	2			461	-47	1
PEG2	3	₽.	Ξ	₹	Η	Ξ	K	F	N	D	N			164	-174	4
SCD5	Ē	K	s	ኧ	X	v	R	F	S	Ξ	F.			270	-280)
GIP1	W	N	L	7	F	I	Ď,	F	И	D :	Ľ			180	-190)
GIP1	K	K	ĸ	R	C	v	N	F	R	N	K		4	441	-451	-

Fig. 12B

Fig. 13A

Fig. 13B

Fig. 14

Fig. 15A

Fig. 15B

Fig. 16

```
MKMADAKQKRNEQLKRWIGSETDLEPPVVKRQ KTKVKFDDGAVFLAACSS
Rat
                                        Fig. 17
CÞ
    100
Rat
Ch
    QPDNEGWIPLEARASCGYLDIAEFLIGQGAHV GAVNSEGDTPLDIAEER 150
CP
    MEELLQNEVNRQGVDIEAARKEEERIHLRDAR QWLUSGEISDVREAKSGG
Rat
    Сħ
    LVDNLCDMETVNKVGQTAFDVADEDILGTLEE LQKKQHLLHSZKRDKKSP
Rat
    Ch
    LIESTANHENNOPOKTPKEKETLIIEPEKNAS RIESLEGEKADEEEEGKK
Rat
     Ch
    DESSCSSEEDEEDDSESEAETDKTKPHASVTHASTAGTQAAPAAVTTPTL 400
    Ch
    SENGGTPTSPVKKFPTSTTKISPKEZERKDES PASWRLGLRKTGSTGALA
Rat
    Ch
     TASKEACKEKDTAGVIRSASSPRLSSSLDH KEKEKDHKGTRLAYVAPT
    Ch
    IPRRLGSTSDIZZKEHRES..SNLRTSSSYTR RKWEDDLKKNSSIHEGST 548
    Ch
    Ret
CF
    Rat
Ch
    637/693
Ch
Rat
    Ch
    KERSEVSREDRYKQKYSRTYDETYARTRPVST SSSSTPSSSSLSTLGSSL 737/793
||||| :::||:|:|||| :| | |||| || || |:|| |:||||| |||
|KEESE.TKDDDYRQRYSRTVEEPYERYRPTST.STSTSSTSSLSTSTSSL 789
Rec
    TASSQLURPHSLYGITSATSRGLTKDS: ARGE KERREGEDKSQPESIR 787/843
RAC
    Ch
      RPREERESTGVSFWTQDSDENEQERQSDT EDGSSERDTQTDSVSRYD 837/893
    CP
    .. SSSTSSBDRYDBLLGRSABYSYLEERRPYG SRLENDDSTDFKKLYRQI 885/941
Rat
    TGSLSV8GGDRYDSAQGRSGSGSTLEDREPYC SRLEKEDSTDFRELYEQI 938
Ch
                                    935/991
935
Rat1/3
    Rat 2
Ch
    LZRRIBEMETELKMLP DŁAŁDHORŁKDENGAŁ IRVISKLSK
                                    976/1032
Rat1/3
Rat 2
    SOYLLGOTESSKENI
    Ch
                                   1004
```

RECTIFIED SHEET (RULE 91)
ISA/EP

Fig. 18A

1 2 3 4

Fig. 18B

Fig 19

Fig. 20

Fig. 21

Fig. 22

A

Fig. 23

A

Fig. 24A

В

Fig 24C

Fig. 25