1. Import Required Libraries

```
import pandas as pd
import numpy as np
```

2. Load and Inspect the Data

```
df = pd.read_csv(r"/content/yahoo_mutual_fund_gainers.csv")
```

View initial records

df.head()

₹	Symbol		Name	Price	Change	Change %	50 Day Avg	200 Day Avg	3 Month Return	YTD Return	52 Wk Change %	52 Wk Range	11.
	0	FTPAX	First Trust Private Assets Fund	11.51+0.89(+8.38%)	0.89	+8.38%	10.82	10.82			+11.53%	NaN	
	1	0P0001T9Z1	CSOP Ether ETF Unlisted Share C	6.23+0.28(+4.67%)	0.28	+4.67%	4.70	6.65	-43.65%	-48.37%	-31.09%	NaN	
Next	2 t ste	eps: Generate o		_14_13+0 52(+3 82%). ew recommended plots		+3.82%_ interactive	12.87_ e sheet	13_11	2 30%	_ ±0.80% _	5.61%_	NaN	

Check shape and info

```
df.shape
→ (341, 10)
df.info()
    <class 'pandas.core.frame.DataFrame'>
    Index: 341 entries, 0 to 340
    Data columns (total 10 columns):
     # Column
                   Non-Null Count Dtype
     0 Symbol
                        341 non-null
                                        object
         Name
                        341 non-null
                        341 non-null
                                        float64
                        341 non-null
                                        float64
         Change
         Change %
                        341 non-null
                                        object
         50 Day Avg
                        341 non-null
                                        object
         200 Day Avg
                        341 non-null
                                        object
         3 Month Return 341 non-null
                                        object
        YTD Return
                        341 non-null
                                        object
         52 Wk Change % 341 non-null
                                        object
    dtypes: float64(2), object(8)
    memory usage: 29.3+ KB
```

3. Data Cleaning and Preprocessing

3.1 Remove Duplicate Records

```
df.drop_duplicates(inplace=True)
df.duplicated().sum()
```

3.2 Drop Unnecessary Columns

```
# 1. Drop the '52 Wk Range' column
df.drop(columns=['52 Wk Range'], inplace=True)
```

3.3 Extract Only Numeric Price

```
# 2. Extract only the numeric price from 'Price' column (before '+' sign)
df['Price'] = df['Price'].str.extract(r'([\d.]+)')
# Optional: Convert 'Price' to float type
df['Price'] = df['Price'].astype(float)
```

3.4 Replace '--' with NaN in Specific Columns

3.5 Clean and Convert Return Columns to Float

```
# Re-check for '--' and replace with NaN again just to be sure

df[['3 Month Return', 'YTD Return']] = df[['3 Month Return', 'YTD Return']].replace('--', np.nan)

# Ensure values are clean for conversion (remove %, spaces)

df['3 Month Return'] = df['3 Month Return'].astype(str).str.replace('%', '', regex=False).str.strip()

df['YTD Return'] = df['YTD Return'].astype(str).str.replace('%', '', regex=False).str.strip()

# Convert to float (coerce will convert any invalid string to NaN)

df['3 Month Return'] = pd.to_numeric(df['3 Month Return'], errors='coerce')

df['YTD Return'] = pd.to_numeric(df['YTD Return'], errors='coerce')

# Count how many NaNs exist (i.e., originally '--')

count_3m_na = df['3 Month Return'].isna().sum()

count_ytd_na = df['YTD Return'].isna().sum()

print("NaNs in '3 Month Return':", count_3m_na)

print("NaNs in 'YTD Return':", count_ytd_na)

The NaNs in '3 Month Return': 0

NaNs in 'YTD Return': 0
```

3.6 Fill NaN with Column Mean

```
df['3 Month Return'] = df['3 Month Return'].fillna(df['3 Month Return'].mean())
df['YTD Return'] = df['YTD Return'].fillna(df['YTD Return'].mean())
https://colab.research.google.com/drive/1C3qOTAocJMwGNQpwYYON7OpQLxf-cPGQ#scrollTo=d5uSdW8w3irw&printMode=true
```

3.7 Add '%' Symbol Back After Imputation

```
#If you want to add the % symbol back:
df['3 Month Return'] = df['3 Month Return'].round(2).astype(str) + '%'
df['YTD Return'] = df['YTD Return'].round(2).astype(str) + '%'
```

4. Rename Columns for Clarity

```
df.rename(columns={
   'Change %': 'Daily Change %',
   '50 Day Avg': '50-Day Moving Avg',
   '200 Day Avg': '200-Day Moving Avg',
   '3 Month Return': '3-Month Return %',
   'YTD Return': 'Year-To-Date Return %',
   '52 Wk Change %': '52-Week Change %'
}, inplace=True)
```

5. Final Check

df.shape
df.head()

→	Symbol		Name	Price	Change	Daily Change %	50-Day Moving Avg	200-Day Moving Avg	3-Month Return %	Year-To-Date Return %	52-Week Change %	
	0	FTPAX	First Trust Private Assets Fund	11.51	0.89	+8.38%	10.82	10.82	6.59%	10.1%	+11.53%	11.
	1	0P0001T9Z1	CSOP Ether ETF Unlisted Share C	6.23	0.28	+4.67%	4.70	6.65	- 43.65%	- 48.37%	-31.09%	
	2	GRHIX	Goehring & Rozencwajg	14.13	0.52	+3.82%	12.87	13.11	-2.39%	0.8%	-5.61%	•
Next steps: Generate code with df) (View recommended plots) New interactive sheet)												

Suppose your cleaned DataFrame is named df
df.to_csv("cleaned_mutual_fund_data.csv", index=False)

Start coding or generate with AI.