

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO

RELATÓRIO DA 3º EXPERIÊNCIA

Controle de Sistemas Dinâmicos: Sistema de Segunda Ordem.

LABORATÓRIO DE SISTEMAS DE CONTROLE

ANDOUGLAS GONÇALVES DA SILVA JÚNIOR
CHRISTIAN RAPHAEL FRANCELINO BARI
DAVI FREIRE MAIA BOMFIM
DEÂNGELI GOMES NEVES
DEÂNGELO GOMES NEVES

NATAL

MARÇO / 2013

ANDOUGLAS GONÇALVES DA SILVA JÚNIOR CHRISTIAN RAPHAEL FRANCELINO BARI DAVI FREIRE MAIA BOMFIM DEÂNGELI GOMES NEVES DEÂNGELO GOMES NEVES

RELATÓRIO DA 3º EXPERIÊNCIA

Segundo Relatório Parcial apresentado à disciplina de Laboratório de Sistemas de Controle, correspondente à avaliação da 2º unidade do semestre 2013.1 do 8º período do curso de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte, sob orientação do **Prof. Fábio Meneghetti Ugulino de Araújo.**

NATAL

MARÇO / 2013

RESUMO

O presente trabalho descreve a análise teórica e prática dos sistemas de segunda ordem utilizados nos diversos projetos de controle. Aborda também a implementação das variáveis nesses projetos, como: tempo de acomodação, tempo de subida, tempo de pico e sobressinal. Além disso, apresenta comportamentos e conclusões a respeito de definições como fator de amortecimento e frequência natural de oscilação.

LISTA DE FIGURAS

Figura 1. Tipos de sistemas de 2ª Ordem	5
Figura 2 Dados obtidos para o teste 1	10
Figura 3 Dados obtidos para o teste 2	11
Figura 4 Dados obtidos para o teste 3	12
Figura 5 Dados obtidos para o teste 4	13
Figura 6 Dados obtidos para o teste 5	14
Figura 7 Dados obtidos para o teste 6	15
Figura 8 Dados obtidos para o teste 7	16
Figura 9 Dados obtidos para o teste 8	17
Figura 10 Dados obtidos para o teste 9	18
Figura 11 Dados obtidos para o teste 10	
Figura 12 Dados obtidos para o teste 11	19
Figura 13 Dados obtidos para o teste 12	20
	21
Gráfico 1 Nível do tanque 2 ao longo do tempo, teste 1	10
Gráfico 2. Nível do tanque 2 ao longo do tempo, teste 2	11
Gráfico 3. Nível do tanque 2 ao longo do tempo, teste 3	12
Gráfico 4. Nível do tanque 2 ao longo do tempo, teste 4	13
Gráfico 5. Nível do tanque 2 ao longo do tempo, teste 5	14
Gráfico 6. Nível do tanque 2 ao longo do tempo, teste 6	15
Gráfico 7. Nível do tanque 2 ao longo do tempo, teste 7	16
Gráfico 8. Nível do tanque 2 ao longo do tempo, teste 8	17

Gráfico 9. Nível do tanque 2 ao longo do tempo, teste 9	18
Gráfico 10. Nível do tanque 2 ao longo do tempo, teste 10	19
Gráfico 11. Nível do tanque 2 ao longo do tempo, teste 11	20
Gráfico 12. Nível do tanque 2 ao longo do tempo, teste 12	21

SUMÁRIO

INTRODUÇÃO	6
DESENVOLVIMENTO	10
CONLUSÃO	22

INTRODUÇÃO TEÓRICA

Nas análises em sistemas de controle, além dos controladores projetados para determinadas ações, também se está interessado em alguns valores na saída desse sistema. O projeto de controladores está diretamente relacionado com fatores como tempo de acomodação e de subida, sobressinal e outras grandezas que afetam diretamente no comportamento de uma determinada planta.

Para que se possa entender a influência dessas informações é necessário conhecer o significado de cada uma, onde são aplicadas e como serão afetadas na utilização de cada controlador.

Incialmente analisa-se um sistema de segunda ordem, dado por:

$$\ddot{y} + \left(\frac{b}{a}\right)\dot{y} + \left(\frac{c}{a}\right) = \left(\frac{d}{a}\right)r(t)$$

Definem-se três grandezas importantes em sistemas de controle:

- 1) Fator de Amortecimento (ξ)
- 2) Frequência Natural de Oscilação (ω_n)
- 3) Ganho (K)

Tem-se que:

$$\frac{b}{a} = 2\xi \omega_n$$
; $\frac{c}{a} = \omega_n^2$; $\frac{d}{a} = K$

Portanto:

$$\ddot{y} + 2\xi \omega_n \, \dot{y} + {\omega_n}^2 = Kr(t)$$

Aplicando Laplace na equação acima e considerando $K = \omega_n^2$:

$$\frac{Y(s)}{X(s)} = \frac{{\omega_n}^2}{s^2 + 2\xi\omega_n + \omega_n^2}$$

Essa equação é uma generalização aos sistemas de segunda ordem cujo pólos serão:

$$s = -\xi \omega_n \, \pm \, \omega_n \, \sqrt{\xi^2 - 1}$$

De acordo com valores do fator de amortecimento é possível dividir os sistemas de segunda ordem em três grupos característicos:

1) Sistema Subamortecido

Neste caso o sistema tem dois pólos complexos conjugados e tem como intervalo de valores para o fator de amortecimento: $0 < \xi < 1$. Este sistema apresenta oscilação.

2) Sistema Criticamente Amortecido

Os pólos desse sistema são reais e iguais. Com relação ao fator de amortecimento, seu valor é igual a 1(um).

3) Sistema Sobreamortecido

Por fim, neste sistema os pólos são reais e diferentes. O valor do fator de amortecimento é maior que 1(um). A medida que esse valor aumenta, o sistema fica mais parecido com um sistema de primeira ordem.

A figura 1 apresenta quatro gráficos para exemplificar cada um dos sistemas apresentado, além de mostrar, no caso do sobreamortecido, a aproximação do sistema a um caso de primeira ordem com o aumento do fator de amortecimento.

Figura 1 - Exemplo dos três tipos de sistemas

Sabendo os tipos de sistema de segunda ordem existente, a influência do valor de amortecimento em cada um e a existência de um ganho K e uma frequência natural, é possível, no ponto de vista de controle, analisar pontos específicos da saída de um sistema e relaciona-los com as ações proporcionais, integrais e derivativas usadas para projetar os controladores.

Alguns pontos importantes da resposta de um sistema são definidos abaixo.

 Tempo de Subida – Corresponde ao tempo necessário para que o valor final seja atingido pela primeira vez. Esse tempo pode ser calculado da seguinte forma:

$$t_r = \frac{\pi - \beta}{\omega_d}$$

Onde:
$$\beta = arctg\left(\sqrt{\frac{1-\xi^2}{\xi}}\right)e\ \omega_d = \ \omega_n\ \sqrt{\xi^2-1}$$

- 2) Tempo de Acomodação Corresponde ao tempo que leva para que o sistema entre em uma faixa de valores estabelecidos em torno do valor final. Em outras palavras, é o tempo que leva para o sistema estabilizar. Essa faixa, geralmente, é dada em porcentagem. Existem duas faixas de valores mais comuns utilizados para determinar o tempo de acomodação:
 - 2%

Calculado da seguinte forma:

$$t_s = \frac{4}{\xi \omega_n}$$

• 5%

Calculado da seguinte forma:

$$t_s = \frac{3}{\xi \omega_n}$$

3) Tempo de Pico – Corresponde ao tempo em que o sistema atingiu o primeiro valor de pico do Sobressinal. Ele pode ser obtido por:

$$t_p = \frac{\pi}{\omega_d}$$

Onde:
$$\omega_d = \omega_n \sqrt{\xi^2 - 1}$$

4) Sobressinal (Overshoot) – Corresponde ao maior valor de pico da curva de resposta tendo como referência o valor final. Calcula-se da seguinte forma:

$$M_p(\%) = 100 e^{-(\frac{\xi \pi}{\sqrt{1-\xi^2}})}$$

Por fim, cada ação (proporcional, integral e derivativa) influenciará de uma forma distinta em cada ponto apresentado.

<u>Ação Proporcional</u> - A ação proporcional apenas aplica um ganho no sistema, não modificando de forma direta, nenhum ponto definido anteriormente.

<u>Ação Integrativa</u> – A ação integrativa não modifica os pontos relacionados ao regime transitório. Porém, influencia no regime permanente modificando o tempo de acomodação do sistema.

<u>Ação Derivativa</u> – A ação derivativa atua no regime transitório, influenciando nos valores de sobressinal, tempo de subida e tempo de pico. Não atua no regime permanente.

2. Desenvolvimento

O sistema agora utiliza o sensor que mede e nível do tanque 2, pois o controle de seu sistema, equivale a um controle de sistema de segunda ordem, porém é possui ainda realizar o controle do tanque 1. Os parâmetros de saída fornecidos pelo programa, para ambos os sistemas, são: tempo de subida (para os intervalos de 0%-100%,10%-90% e 20%-80%), tempo de pico, overshot, undershot e tempo de acomodação (para intervalos de 10%,5% e 2%).

Diversos teste foram realizados variando os valores de k_p , k_i e k_d , os resultados obtidos podem ser visto a seguir:

Gráfico 1: níveis dos tanques,para $k_p=1$, $k_i=0$, 1 e $k_d=1$

Geral Tanque 1 Tanque 2					
Tempo de subida 0-100	14.419	s	Undershoot	54.441	%
Tempo de subida 10-90	10.836	s	Tempo de acomodação 10%		s
Tempo de subida 20-80	7.8862	s	Tempo de acomodação 5%		s
Tempo de pico	29.783	s	Tempo de acomodação 2%		s
Overshoot	74.526	%			

Figura 2: Dados obtidos do gráfico 1

Pelo gráfico 1 e seu conjunto de valores, percebemos que sua convergência ocorre de maneira muito lenta . Isso, normalmente, ocorre quando o valor do k_i é grande para o sistema.

Gráfico 2: níveis dos tanques,para $k_p=0$, 8 , $k_i=0$, 01 e $k_d=0$, 5

Figura 3: Dados obtidos do gráfico 2

Para os parâmetros do gráfico 2, o sistema consegui atingir o tempo acomodação para 10% e 5%, mas não pra 2%. A estabilidade do sistema se deve a redução de k_i , porem o aumento de k_d intensificou o ruído do sinal que causou a não estabilidade do sistema para u, tempo de acomodação de 2%. Além disso, os parâmetros causam uma maior velocidade de subida.

Gráfico 3: níveis dos tanques,para $k_p=1$, 5 , $k_l=0$, 025 e $k_d=0$, 25

Geral Tanque 1 Tanque 2					
Tempo de subida 0-100	14.020	s	Undershoot	11.286	%
Tempo de subida 10-90	10.865	s	Tempo de acomodação 10%	89.679	s
Tempo de subida 20-80	8.3375	s	Tempo de acomodação 5%	120.75	s
Tempo de pico	22.546	s	Tempo de acomodação 2%	178.40	s
Overshoot	36.065	%			

Figura 4: Dados obtidos do gráfico 3

Para os parâmetros do gráfico 3, o sistema conseguiu atingir todos os tipos de tempo de acomodação além de convergir mais rápido, porém ele produz um overshot maior que a do gráfico 2. Isso ocorreu com a redução dos parâmetros k_i e k_d .

Gráfico 4: níveis dos tanques,para $k_p=1$, 5 , $k_i=0$, 025 e $k_d=0$, 25

Figura 5: Dados obtidos do gráfico 4

Os mesmo parâmetros do gráfico 3 foram utilizados no sistema de 1ª ordem e obteve-se um resultado bem satisfatório.

Gráfico 5: níveis dos tanques,para $k_p=1$, 5 , $k_i=1$ e $k_d=0$, 25

Figura 6: Dados obtidos do gráfico 5

Novamente, o sistema não conseguiu estabilizar devido ao grande valor da variável $k_i.$

Gráfico 6: níveis dos tanques,
para $k_p=1, {\bf 5}$, $k_i=0, {\bf 25}$ e $k_d=0, {\bf 25}$

Figura 7: Dados obtidos do gráfico 6

Resultados, definitivamente, não esperados, que podem ter sido ocasionado por uma duplicação de imagem.

Gráfico 7: níveis dos tanques,para $k_p=1,5$, $k_i=0,25$ e $k_d=1$

Geral Tanque 1 Tanque 2					
Tempo de subida 0-100	14.145	s	Undershoot	11.248	%
Tempo de subida 10-90	10.639	s	Tempo de acomodação 10%	70.143	s
Tempo de subida 20-80	8.0719	s	Tempo de acomodação 5%	112.62	s
Tempo de pico	24.863	s	Tempo de acomodação 2%	329.17	s
Overshoot	36.904	%			

Figura 8: Dados obtidos do gráfico 7

O sistema conseguiu atingir todos os tempos de acomodação e obteve-se um undershot e overshot baixo, porém o ruído está sendo intensificado, ocasionado pelo aumento do k_d .

Níveis

Gráfico 8: níveis dos tanques,para $k_p=1$, 5 , $k_i=0$, 25 e $k_d=0$, 25

Figura 9: Dados obtidos do gráfico 8

Os parâmetros k_p , k_i e k_d escolhidos foram bons, pois todos os tempos de acomodação foram atingidos, além de gerar baixo overshot e undershot, entretanto o sistema não possui um tempo de subida alto e os tempos de acomodação de 5% e 2% são altos.

Níveis 27,5 25,0 22,5 20,0 17,5 **Altrira** (cm) 15,0 10,0 7,5 5,0 2,5 0,0 Ó 25 50 75 175 200 300 100 125 150 225 250 275 325 t (s) Nível do tanque1 — setpoint — Nível do tanque2

Gráfico 9: níveis dos tanques,para $k_p=1$, $\mathbf{5}$, $k_i=0$, $\mathbf{01}$ e $k_d=1$

Figura 10: Dados obtidos do gráfico 9

Para o sistema do gráfico 9 possui bons parâmetros, porém o \boldsymbol{k}_d gerou ruídos intensos.

Níveis 27,5 25,0 22,5 20,0 17,5 Altrua (cm) 15,0 10,0 7,5 5,0 2,5 0,0 25 50 Ó 75 100 125 150 175 200 225 250 275 300 t (s) - Nível do tanque1 — setpoint — Nível do tanque2

Gráfico 10: níveis dos tanques,para $k_p=3$, $k_l=0,025$ e $k_d=0,5$

Figura 11: Dados obtidos do gráfico 10

O aumento do k_p gerou rápidas oscilações ao sistema, impedindo o tempo de acomodação de 5% e 2% do sistema.

Gráfico 11: níveis dos tanques,para ${m k}_p=3$, ${m k}_i={m 0}$ e ${m k}_d={m 0}$

Figura 12: Dados obtidos do gráfico 11

No sistema de primeira ordem, que possui ganho proporcional apenas, não consegui se estabilizar em um tempo de acomodação de 2%,porem ,o sistema consegui atingir o valor de pico rapidamente.

Gráfico 12: níveis dos tanques,para $k_p=5$, $k_l=0,001$ e $k_d=\!\!0$

Figura 13: Dados obtidos do gráfico 12

Para o sistema com k_p alto, um k_i muito pequeno e sem ganho derivativo, o tanque 1 (sistema de primeira ordem) não consegui reagir de forma rápida as mudanças, devido a seu baixo k_p .

3.CONCLUSÃO

A partir dos vários testes realizados, pode-se perceber que o controle PID não converge bem quando temos um ganho integrativo em torno de 0,1. Podemos perceber que aumentando o ganho derivativo o sistema converge mais para a região de acomodação de 10%, porem as regiões de acomodação de 5% e de 2% são muito difíceis de conseguir. Os melhores resultados foram obtidos quando o kp = 1,5; ki = 0,025; e kd = 0,25, com estes ganhos o sistema conseguiu entrar em todas as regiões de acomodação e gerou um overshoot e undershoot menor que os demais testes realizados.

4. REFERÊNCIAS BIBLIOGRÁFICAS

ARAUJO, F. M. U, Sistemas de controle, 2007.