Delexikalisiertes Cross-Linguales Konstituenz-Parsing für Mittelhochdeutsch (sowie Frühneuhochdeutsch)

Ercong Nie

Centrum für Informations- und Sprachverarbeitung (CIS) Ludwig-Maximilian-Universität München (LMU)

4 März 2024

Outline

- Einführung
- Cross-Linguales Delexikalisierungsparsing: Methode
- 3 Cross-Linguales Delexikalisierungsparsing: Experimentelle Ergebnisse und Analyse
- 4 Erkundung des FNHD-Parsings

Ressourcen zur historischen deutschen Sprache

Korpora annotiert auf der Token-Ebene

- Deutsche Referenzkorpora¹

¹https://www.deutschdiachrondigital.de/

 $^{^2 {\}sf https://korpling.german.hu-berlin.de/ddb-doku/index.htm}$

 $^{^3 {\}it https://www.uni-potsdam.de/de/guvdds/baumbankup}$

⁴https://ipchg.iu.edu/index.html

⁵https://www.chlg.ugent.be/

Ressourcen zur historischen deutschen Sprache

Korpora annotiert auf der Token-Ebene

- Deutsche Referenzkorpora¹

Syntaktisch annotierte Korpora

ld.	Name	Sprachen	Stil	#Wort
DDB^2	Deutsche Diachrone Baumbank	AHD, MHD, FNHD	Tiger	8,580
ReF ³	Referenzkorpus Frühneuhochdeutsch: Baumbank.UP	FNHD	Tiger	~500,000
IPCHG ⁴	Indiana-Baumbank des historischen Hochdeutschen	AHD, MHD, FNHD	PTB	~10,000
CHLG ⁵	Korpus des historischen Niederdeutschen	AND, MND	PTB	~200,000

 $^{^{1} {\}sf https://www.deutschdiachrondigital.de/}$

 $^{^2}$ https://korpling.german.hu-berlin.de/ddb-doku/index.htm

 $^{^3 {\}it https://www.uni-potsdam.de/de/guvdds/baumbankup}$

⁴https://ipchg.iu.edu/index.html

⁵https://www.chlg.ugent.be/

Automatisches Parsing für Historische Sprachen

 Für das Training eines automatischen Parsing-Systems ist in der Regel ein großes syntaktisch annotiertes Korpus (auch bekannt als Baumbank) erforderlich.

Automatisches Parsing für Historische Sprachen

- Für das Training eines automatischen Parsing-Systems ist in der Regel ein großes syntaktisch annotiertes Korpus (auch bekannt als Baumbank) erforderlich.
- Allerdings treten erhebliche Schwierigkeiten beim Aufbau einer großen Baumbank für historische Sprachen auf.
 - Knappheit an digitalen Textressourcen
 - Hoher Bedarf an linguistischer Expertise bei der Annotation
 - Großer manueller Aufwand

Automatisches Parsing für Historische Sprachen

- Für das Training eines automatischen Parsing-Systems ist in der Regel ein großes syntaktisch annotiertes Korpus (auch bekannt als Baumbank) erforderlich.
- Allerdings treten erhebliche Schwierigkeiten beim Aufbau einer großen Baumbank für historische Sprachen auf.
 - Knappheit an digitalen Textressourcen
 - Hoher Bedarf an linguistischer Expertise bei der Annotation
 - Großer manueller Aufwand
- → Ausweg: Training eines automatischen Systems zur syntaktischen Analyse unter Verwendung von Techniken des cross-lingualen Transfers.

Outline

- Einführung
- Cross-Linguales Delexikalisierungsparsing: Methode
- 3 Cross-Linguales Delexikalisierungsparsing: Experimentelle Ergebnisse und Analyse
- 4 Erkundung des FNHD-Parsings

Motivation

Hauptidee:

 Anstatt eine Sequenz von Wörtern zu parsen, erstellt der Delexikalisierungsparser einen Parse-Baum basierend auf einer Sequenz von Wortart-Tags.

Motivation

Hauptidee:

 Anstatt eine Sequenz von Wörtern zu parsen, erstellt der Delexikalisierungsparser einen Parse-Baum basierend auf einer Sequenz von Wortart-Tags.

Motivation der Delexikalisierungsmethode:

- Die Kontinuität im Prozess der Sprachevolution führt zu linguistischen Ähnlichkeiten zwischen modernem Deutsch (MD) und MHD.
 - Ähnliche Satzstruktur
 - Ähnliche Wortstellung
 - . . .
- Reichhaltige Ressourcen von MD-Texten mit syntaktischen Annotationen.
 - Tiger Corpus (Smith, 2003), usw.

Ein Beispiel der Delexikalisierung

Figure: Ein Beispiel, das den Delexikalisierungsprozess eines MD-Baumes veranschaulicht.

Das Delexikalisierungsparsing-System für MHD besteht aus drei Modulen: Wortart-Tagger, Tag-Mapper und Delexikalisierter Parser.

Das Delexikalisierungsparsing-System für MHD besteht aus drei Modulen: Wortart-Tagger, Tag-Mapper und Delexikalisierter Parser.

Wortart-Tagger

- Annotiert eine Sequenz von MHD-Tokens mit Wortart- und morphologischen Tags.
- Wird auf dem ReM-Korpus unter Verwendung des RNNTaggers trainiert. (Schmid, 2019).

Das Delexikalisierungsparsing-System für MHD besteht aus drei Modulen: Wortart-Tagger, Tag-Mapper und Delexikalisierter Parser.

Wortart-Tagger

- Annotiert eine Sequenz von MHD-Tokens mit Wortart- und morphologischen Tags.
- Wird auf dem ReM-Korpus unter Verwendung des RNNTaggers trainiert. (Schmid, 2019).

Tag-Mapper

Ordnet Tags aus dem HiTS-Tagset (für ReM) dem STTS-Tagset (für MD-Baumbanken) zu.

MHD-Tag	MD-Tag
CARDD	CARD
DDART	ART
NA	NN

Das Delexikalisierungsparsing-System für MHD besteht aus drei Modulen: Wortart-Tagger, Tag-Mapper und Delexikalisierter Parser.

Wortart-Tagger

- Annotiert eine Sequenz von MHD-Tokens mit Wortart- und morphologischen Tags.
- Wird auf dem ReM-Korpus unter Verwendung des RNNTaggers trainiert. (Schmid, 2019).

Tag-Mapper

Ordnet Tags aus dem HiTS-Tagset (für ReM) dem STTS-Tagset (für MD-Baumbanken) zu.

MD-Tag
CARD
ART
NN

Delexikalisierter Parser

- Basiert auf dem Berkeley Neural Parser (Benepar) (Kitaev and Klein, 2018).
- Wird auf der delexikalisierten Tiger Treebank (50.474 MD Parse-Bäume) trainiert.

Figure: Überblick über das cross-linguale delexikalisierte Parsing-System für MHD.

Outline

- Einführung
- 2 Cross-Linguales Delexikalisierungsparsing: Methode
- 3 Cross-Linguales Delexikalisierungsparsing: Experimentelle Ergebnisse und Analyse
- 4 Erkundung des FNHD-Parsings

Baselines

- Vanilla Benepar: Führt einen einfachen Zero-Shot Cross-Lingual Transfer durch, indem ein Benepar-Modell auf MD-Baumbanken ohne Delexikalisierung trainiert und dann direkt auf das Parsen von MHD-Eingabesätzen angewendet wird.
- Tetra-Tagging mit Vortrainierten Sprachmodellen (PLMs): Eine Technik, die das Konstituenten-Parsing auf Sequenz-Labeling reduziert (Kitaev and Klein, 2020).
 - **gBERT**: Tetra-Tagging mit dem deutschen BERT-Modell (Chan et al., 2020)
 - mBERT: Tetra-Tagging mit dem multilingualen BERT-Modell (Devlin et al., 2019)

Hauptergebnisse

	Recall		Precision		FScore		CM	
	MG	MHG	MG	MHG	MG	MHG	MG	MHG
Baselines								
Vanilla Benepar	84.18	34.41	87.57	44.40	85.84	38.77	45.80	0.00
Tetra-gBERT	86.31	23.20	88.19	29.53	87.24	25.98	51.70	3.12
Tetra-mBERT	60.68	19.69	65.61	23.25	63.15	21.32	21.35	0.00
Unsere Methode								
Dexparser	81.39	64.72	84.89	70.19	83.10	67.34	39.03	12.50

Table: Parsing-Ergebnisse verschiedener Methoden des Cross-Lingual-Transfers. **CM** steht für vollständige Übereinstimmung". Der beste Wert jeder Spalte ist **fett** markiert.

- Dexparser zeigt deutliche Vorteile beim Parsen von MHD im Vergleich zu anderen Baselines
- Dexparser erzielt auch vergleichbare Ergebnisse bei MD.

Ablationsstudie

	Recall	Precision	FScore	СМ
Delexikalisierter Parser unter Verwendung von Gold-Tags	66.18	71.17	68.59	14.58
- unter Verwendung von vorhergesagten Tags	64.72	70.19	67.34	12.50
- ohne Mapping	59.16	68.82	63.63	7.29
- ohne morphologische Information	48.66	65.38	55.8	9.28

Table: Die MHD-Parsing-Ergebnisse unter Verwendung des delexikalisierten Parsers in der Ablationsstudie.

 Die Qualität der Wortart-Annotation, das Tagset-Mapping und die Annotation morphologischer Informationen tragen gemeinsam zur Leistung des Delexikalisierungsparsers bei MHD bei.

Fallstudie

Zwei Beispiele für die Bäume, die von unserem delexikalisierten Parser erzeugt wurden, im Vergleich zu den Referenz-Parsebäumern.

Outline

- Einführung
- Cross-Linguales Delexikalisierungsparsing: Methode
- 3 Cross-Linguales Delexikalisierungsparsing: Experimentelle Ergebnisse und Analyse
- 4 Erkundung des FNHD-Parsings

Verwendung des Delexikalisierungsparsings auf FNHD

Trainingdatensatz	Recall	Precision	FScore	CM
Nur MD	41.11	51.42	45.69	7.80
Nur FNHD	56.61	66.69	61.24	18.05
Gemischt-gleich	57.87	67.12	62.15	18.90
Gemischt-alle	57.21	67.68	62.01	18.80

Table: Experimentelle Ergebnisse der Anwendung von Delexikalisierungsparsing auf FNHD.

- Wir haben verschiedene Kombinationen von Trainingdatensatz ausprobiert:
 - Nur MD: Enthält ausschließlich delexikalisierte MD-Bäume (18977 MD-Bäume).
 - **Nur FNHD**: Enthält ausschließlich delexikalisierte FNHD-Bäume (18977 FNHD-Bäume).
 - **Gemischt-gleich**: Verwendet eine gleiche Anzahl gemischter MD- und FNHD-Bäume (18977 MD-Bäume + 18977 FNHD-Bäume).
 - **Gemischt-alle**: Kombiniert alle MD- und FNHD-Bäume(47474 MD-Bäume + 18977 FNHD-Bäume).

Verwendung des Tetra-Taggings auf FNHD

model	Recall	Precision	FScore	CompleteMatch	TaggingInternalAcc.	TaggingLeafAcc.
dbmdz/convbert-base-german-europeana-cased	70.91	73.08	71.98	27.90	82.61	95.57
benjamin/roberta-base-wechsel-german	76.58	77.44	77.01	33.90	85.26	96.50
dbmdz/bert-base-german-europeana-cased	75.19	76.26	75.72	32.30	84.79	96.38
redewiedergabe/bert-base-historical-german-rw-cased	71.73	73.80	72.75	29.25	83.16	95.71
bert-base-german-cased	70.52	72.81	71.64	26.95	82.37	95.56
dbmdz/distilbert-base-german-europeana-cased	66.29	69.25	67.74	24.75	81.10	95.23
dbmdz/electra-base-german-europeana-cased-generator	67.21	69.97	68.56	24.55	80.99	95.26
dbmdz/bert-base-historic-multilingual-cased	74.46	76.06	75.25	31.20	84.12	96.19

Wir haben die **Tetra-Tagging-Parsing-Methode** mit mehreren vortrainierten Sprachmodellen kombiniert und die Modelle auf FNHD-Baumbanken trainiert.

Verwendung des Benepar auf FNHD

	enhg_only	mix_equal	mix_all
model-convbert-german-europeana	83.22	82.99	83.12
model-roberta-wechsel-german	83.01	83.05	82.95
model-bert-german-europeana	82.24	82.75	82.35
model-historical-german	80.44	80.67	80.68
model-bert-base-german-cased	79.80	79.83	79.91
model-distilbert-german-europeana	78.38	78.41	78.39
model-electra-german-europeana	78.15	78.18	78.03
model-bert-historic-multilingual	81.37	81.26	81.15

Wir haben den **Berkeley Neural Parser** mit mehreren vortrainierten Sprachmodellen kombiniert und die Modelle auf verschiedene Kombinationen von Baumbanken trainiert. (F1-Score wird angegeben.)

Vielen Dank für Ihre Aufmerksamkeit!

References

- Branden Chan, Stefan Schweter, and Timo Möller. 2020. German's next language model. In *Proceedings of the 28th International Conference on Computational Linguistics*, pages 6788–6796, Barcelona, Spain (Online). International Committee on Computational Linguistics.
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.
- Nikita Kitaev and Dan Klein. 2018. Constituency parsing with a self-attentive encoder. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2676–2686, Melbourne, Australia. Association for Computational Linguistics.
- Nikita Kitaev and Dan Klein. 2020. Tetra-tagging: Word-synchronous parsing with linear-time inference. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 6255–6261, Online. Association for Computational Linguistics.
- Helmut Schmid. 2019. Deep learning-based morphological taggers and lemmatizers for annotating historical texts. In *Proceedings of the 3rd international conference on digital access to textual cultural heritage*, pages 133–137.
- George Smith. 2003. A brief introduction to the tiger treebank, version 1. Technical report, Universität Potsdam