Practical on Decision Tree

Toy Dataset: The problem and solution with a toy dataset are already well known.

This is a dataset that is available as part of the ML package itself such scikit-learn. It is used to study a classification model such that it has a small size and has been used so extensively that might not have the case based relevance.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Iris Dataset For Studying Classification

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2
149	5.9	3.0	5.1	1.8	2

Feature Variable and Target Variable

Feature Variable Target Variable

Also known as: Also known as:

* Knowns * Unknown

A feature is something we have and know that we study in our research.

Aim of the research is to understand the target.

* Attributes

A decision tree (a supervised machine learning algorithm) uses historical data to learn patterns and uncover relationships between the features of your dataset and the target.

* Label

Problem

Question:

You are asked what is the rough estimate of the weight of the person whose height, age, gender you know.

What kind of problem is this: classification, clustering, or regression?

What will be your features and what will be your target?

Answer

Answer:

The problem is of regression. Estimation of a real-valued valued number (weight).

Weight: target / dependent variable

Height, age, gender: are your features.

Splitting the data into train set and test set

In a decision tree, we make decisions based on the attributes we study at the nodes (except leaf nodes).

As we move down from the root node (from top) to the bottom, we keep evaluting features (positioned at the nodes) for their values and decide whether we would like to go left or at the right down the tree.

At leaf nodes, we get to know what will be value of our target variable.

Attribute Selection Measures

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Turn to slide 10: for solved problem

The Gini index measures the impurity of D, a data partition or set of training tuples

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

where p_i is the probability that a tuple in D belongs to class C_i and is estimated by $|C_{i,D}|/|D|$. The sum is computed over m classes.

Attribute Selection Measures

RID	age	income	student	credit_rating	Class: buys_comp	uter
1	youth	high	no	fair	no	
2	youth	high	no	excellent	no	
3	middle_aged	high	no	fair	yes	if a binary split on A partitions D into D, and D
4	senior	medium	no	fair	yes	if a binary split on A partitions D into D_1 and D_2
5	senior	low	yes	fair	yes	aini index of Dairon that portitioning is
6	senior	low	yes	excellent	no	gini index of D given that partitioning is
7	middle_aged	low	yes	excellent	yes	$ D_1 $ $ D_2 $
8	youth	medium	no	fair	no	$Gini_A(D) = \frac{ D_1 }{ D }Gini(D_1) + \frac{ D_2 }{ D }Gini(D_2)$
9	youth	low	yes	fair	yes	D $ D $
10	senior	medium	yes	fair	yes	
11	youth	medium	yes	excellent	yes	
12	middle_aged	medium	no	excellent	yes	
13	middle_aged	high	yes	fair	yes	
14	senior	medium	no	excellent	no	

The Gini index measures the impurity of D, a data partition or set of training tuples

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

where p_i is the probability that a tuple in D belongs to class C_i and is estimated by $|C_{i,D}|/|D|$. The sum is computed over m classes.

Gini Index

Gini index measures the impurity of data, D.

Formula: Gini(D) = 1 - sum(p(i) ** 2)

Probability of event, E = # favorable outcomes / # sample space

	hung computer
	buys_computer
1	no
2	no
3	yes
4	yes
5	yes
6	no
7	yes
8	no
9	yes
10	yes
11	yes
12	yes
13	yes

no

How many classes do we have? Two classes.

$$p(no) = 5/14$$

 $p(yes) = 9/14$
 $gini(D) = 1 - sum(p(i) ** 2)$
 $= 1 - ((5/14) ** 2 + (9/14) ** 2)$

attr alpha alpha alpha alpha alpha alpha alpha alpha alpha

alpha

Gini impurity is 0 when column contains single value throughout.

Gini = 1 – sum(p(i) ** 2)
$$p(i == alpha) = # alpha / # total = 1$$

Gini = 1 - 1 = 0

attr alpha alpha alpha alpha alpha alpha alpha alpha alpha beta

In next couple slides, we will be introducing impurity in the otherwise 'alpha' valued column and see the gini impurity coefficient increase.

$$Gini = 1 - sum(p(i) ** 2)$$

>>> 1- ((9/10)**2 + (1/10)**2) 0.1799999999999999 attr alpha alpha alpha alpha alpha alpha alpha alpha beta

beta

attr alpha alpha alpha alpha alpha alpha alpha beta beta

beta

If we want to split on age: what will be the gini index?

Gini(split Data on Attribute age) = sum(p(age == ?) * Gini for Data(age == ?))

- = p(age == youth) * Gini for Data(attr == youth)
- + p(age == middle_aged) * Gini for Data(attr == middle_aged)
- + p(age == seniod) * Gini for Data(attr == senior)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

If we want to split on student: what will be the gini index?

Gini(split Data on Attribute attr) = sum(p(Data(attr)) * Gini (Data(attr)))

- = p(Data(student == yes)) * Gini(Data(student == yes))
- + p(Data(student == no)) * Gini(Data(student == no))

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

	Α	В
1	age	buys_computer
2	youth	no
3	youth	no
4	middle_aged	yes
5	senior	yes
6	senior	yes
7	senior	no
8	middle_aged	yes
9	youth	no
10	youth	yes
11	senior	yes
12	youth	yes
13	middle_aged	yes
14	middle_aged	yes
15	senior	no

	attr	#	p(attr)	p(no attr)	p(yes attr)	gini
0	youth	5	0.357143	0.6	0.4	0.48
1	middle_aged	4	0.285714	0.0	1.0	0.0
2	senior	5	0.357143	0.4	0.6	0.48

For records where age == youth: These are yellow records.

$$# yes / # total = 2 / 5 = 0.4$$

$$\#$$
 no / $\#$ total = 3 / 5 = 0.6

```
Gini (age == youth) = ?

# yes = 2
# no = 3

Gini (age == youth) = 1 - ((2/5) ** 2 + (3/5) ** 2) = 0.48
```

	Α	В
1	age	buys_computer
2	youth	no
3	youth	no
4	middle_aged	yes
5	senior	yes
6	senior	yes
7	senior	no
8	middle_aged	yes
9	youth	no
10	youth	yes
11	senior	yes
12	youth	yes
13	middle_aged	yes
14	middle_aged	yes
15	senior	no

For records where age == middle_aged: These are orange records.

p(yes | age == middle_aged) = # yes / # total

yes | age == middle_aged = 4
no | age == middle_aged = 0

yes / # total = 4 / 4 = 1

no / # total = 0 / 4 = 0

Gini impurity is 0 when column contains single value throughout.

Algorithm for building a decision tree:

Step 1: Find overall gini coefficient. If the gini is zero. Stop the branching at this node.

Step 2: Find the attribute with which lowest gini impurity is left.

Step 3: Split on that attribute

Step 4: Repeat steps 1 to 3 to create more branches on splitted data.

3	middle_aged	high		no		fair		
4	senior	medi	um	no		fair		
5	senior	low		yes		fair		
6	senior	low		yes		excelle	ent	
7	middle_aged	low		yes		excelle	ent	
8	youth	medi	um	no		fair		
9	youth	low		yes		fair		
10	senior	medi	um	yes		fair		
11	youth	medi	um	yes		excelle	ent	
12	middle_aged	medi	um	no		excelle	ent	
13	middle_aged	high		yes		fair		
14	senior	medi	um	no		excelle	ent	
D.I.D.								
	age		stude	nt	credit_	rating		_compute
	youth	high	no		fair		no	
2	youth	high	no		excelle	nt	no	
3	middle_aged	high	no		fair		yes	
4	senior	medium	no		fair		yes	
5	senior	low	yes		fair		yes	
6	senior	low	yes		excelle	nt	no	
7	middle_aged	low	yes		excelle	nt	yes	
8	youth	medium	no		fair		no	
9	youth	low	yes		fair		yes	
10	senior	medium	yes		fair		yes	
11	youth	medium	yes		excelle	nt	yes	

excellent

excellent

fair

yes

yes

no

student

no

no

income

high

high

credit_rating

excellent

fair

Class: buys_computer

no

no yes

yes yes no yes

no

yes yes yes

yes yes

no

RID

age

youth

vouth

12 middle aged medium no

medium no

13 middle aged high

14 senior

- 1: age == middle_aged or not
- 2: If true: buys computer
- 3: If false. Split.
 Student == 'no': True or False.
- 4: If true: split on age. Age == senior or not

5: If false:
Condition: not a student
And (not middle_aged and not senior)

Result: does not buy a computer

We split on age and on the right you are seeing the decision that we have yet to build.

After we split on student and we are left building the following decision tree on the left branch.

After we split on student and we are left building the following decision tree on the right branch.


```
Record: (
   Age == youth | 2,
   Income == high | 0,
   Student == no | 0,
   Credit_rating == fair | 1
)
```

Checks age <= 0.5 == False Checks student <= 0.5 == True Check age <= 1.5 == False We get [3 (no's), 0 (yes's)]

RID age	income	student	credit_rating	buys_computer	Step 1: age >= 0.5 (!= middle_aged)	Step 2: student <= 0.5 (no)	Step 3: age ==	'youth' or age > 1.5
1 youth	high	no	fair	no	TRUE	TRUE	TRUE	
2 youth	high	no	excellent	no	TRUE	TRUE	TRUE	
3 middle_aged	high	no	fair	yes	FALSE	FALSE	FALSE	
4 senior	medium	no	fair	yes	TRUE	TRUE	FALSE	
5 senior	low	yes	fair	yes	TRUE	FALSE	FALSE	
6 senior	low	yes	excellent	no	TRUE	FALSE	FALSE	
7 middle_aged	low	yes	excellent	yes	FALSE	FALSE	FALSE	
8 youth	medium	no	fair	no	TRUE	TRUE	TRUE	
9 youth	low	yes	fair	yes	TRUE	FALSE	FALSE	
10 senior	medium	yes	fair	yes	TRUE	FALSE	FALSE	
11 youth	medium	yes	excellent	yes	TRUE	FALSE	FALSE	
12 middle_aged	medium	no	excellent	yes	FALSE	FALSE	FALSE	
13 middle_aged	high	yes	fair	yes	FALSE	FALSE	FALSE	
14 senior	medium	no	excellent	no	TRUE	TRUE	FALSE	
					Not all 'buys_computer' are same	Not all 'buys_computer' are same	All 'buys_comp	uter' are same: no