Math 200A Homework Question Compendium

D. Zack Garza

August 17, 2019

Contents

1 One

1. Given:

$$\forall x \in G, x^2 = e$$

Show:

$$G \in \mathbf{Ab}$$

2. Given:

$$|G|<\infty, |G|=0 \mod 2$$

Show:

$$\exists g \in G \ni o(g) = 2$$

3. Given:

$$G \in \mathbf{Ab}$$

Show:

$$T(G) \le G$$

(where

$$T(G) = \{g \in G : |g| < \infty\}$$

- 4. Show: Every finite group is finitely generated.
 - Show:

 \mathbb{Z}

is finitely generated

	• Show:	
		$H \leq (\mathbb{Q}, +) \implies$
		H
	is cyclic • Show:	
		$\mathbb Q$
	is not finitely generated	
5.	Show:	
		\mathbb{Q}/\mathbb{Z}
	has, for each coset, exactly one represe	entative in
		$[0,1)\cap \mathbb{Q}$
	• Show: Every element of	
		\mathbb{Q}/\mathbb{Z}
	has finite order. • Show: There are elements in	
		\mathbb{Q}/\mathbb{Z}
	of arbitrarily large order. • Show:	
		$\mathbb{Q}/\mathbb{Z} = T(\mathbb{R}/\mathbb{Z})$
	• Show:	
		$\mathbb{Q}/\mathbb{Z}\cong\mathbb{C}^x$
6.	Given:	
		G/Z(G)
	is cyclic Show:	
		G
	is abelian	
7.	Given:	

Show:

 $H \trianglelefteq G, K \trianglelefteq G, H \cap K = e$

8. Given:

$$|G|<\infty, \quad H\leq G, \quad N\trianglelefteq G, (|H|,[G:N])=1$$

Show:

$$H \leq N$$

 $9. \; Given:$

$$|G| < \infty, N \le G, (|N|, [G:N]) = 1$$

Show:

N

is the unique subgroup of order

|N|

2 Two

1. Given: For every triplet in

G

, two elements commute Show:

G

is abelian

2. Given:

$$H_1, H_2, H_3 \le G, G = H_1 \cup H_2$$

Show:

$$G = H_1 \vee G = H_2$$

3. Given:

$$G = H_1 \cup H_2 \cup H_3, G$$

finite Show:

$$G = H_i \vee \forall i, [G:H_i] = 2$$

4. Show: TFAE;

clos(H)

is:

	• The smallest normal subgroup of		
		G	
	containing		
		H	
	The subgroup generated by all	conjugates of	
		H	
		\bigcap N	
	•	$H \leq N \stackrel{!}{ riangle} G$	
		$\phi:G o -$	
	,		
		$\phi(H) = e$	
	, then		
		ϕ	
	factors through	C(1, (H))	
5	. Given:	$G/\operatorname{clos}(H)$	
٠.		$H, K \leq HK \leq G$	
	Show:		
	$ar{I}$	$\frac{HK}{H \cap K} \cong \frac{HK}{H} \times \frac{HK}{K}$	
6.	. Given:		

$$H \leq G, N \, \trianglelefteq \, G, H \in \operatorname{Hall}(G)$$

Show:

$$H\cap N\in \operatorname{Hall}(N)\wedge \frac{HN}{N}\in \operatorname{Hall}(\frac{G}{N})$$

7. Given:

|G| = n, G

cyclic,

 $\sigma_i:G\to G\ni x\mapsto x^i$

• Show

 $\sigma_i \in End(G)$

• Show

 $\sigma_i \in Aut(G)$

iff

(i, n) = 1

•

 $\sigma_i = \sigma_j$

iff

 $i = j \mod n$

•

 $\tau \in Aut(G) \implies \exists i \ni \tau = \sigma_i$

•

 $\sigma_i \circ \sigma_j = \sigma_{ij}$

6. The map

 $\psi: Z_n^{\times} \to Aut(G)$ $i \mapsto \sigma_i$

is an isomorphism.

8. Given:

G

is cyclic Show:

Aut(G)

is abelian of order

 $\phi(n)$

9. *Show*:

$$D_{\infty} \cong \langle a, b \mid b^2 = e, ba = a^{-1}b \rangle$$

10. *Show*:

$$Q_8 \cong \langle a, b \mid a^2 = b^2, a^{-1}ba = b^{-1} \rangle$$

11. *Show*:

$$\langle x, y \mid xy^2 = y^3, yx^2 = x^3y \rangle = \langle e \rangle$$

3 Three

1. Given:

$$G \sim X$$

transitively,

$$H \trianglelefteq G$$

• Show:

$$H \sim X$$

, but possibly not transitively

• *Show*:

G

acts transitively on

$$\left\{ \mathcal{O}_{\langle}:h\ \in H\right\}$$

 \bullet Show:

$$\forall i, j, |\mathcal{O}_{h_i}| = |\mathcal{O}_{h_i}|$$

 \bullet Given:

$$x \in \mathcal{O}_h$$

Show:

$$|\mathcal{O}_h| = |H: H \cap G_x|$$

 \bullet Show:

$$|\{\mathcal{O}_h\}_{h\in H}| = [G:HG_x]$$

2. Given:

 \mathcal{K}

a conjugacy class in

 S_n

,

$$\{\mathcal{O}_s:s\in S_n\}$$

orbits of an

 A_n

-action on

 S_n

Show:

$$\mathcal{K} = \mathcal{O}_s \vee \mathcal{K} = \mathcal{O}_{s_i} \cup \mathcal{O}_{s_j}$$

Show: Case 2 occurs iff

 $\{k_i\}$

, the cycle lengths in disjoint cycle form, are odd and distinct

3. i:

$$|G| < \infty, H < G$$

 \bullet Show:

$$\{gHg^{-1}:g\in G\}=[G:N_G(H)]$$

 \bullet Show:

$$G \neq \bigcup_{g \in G} gHg^{-1}$$

4. Prove Cauchy's Theorem. Given

$$p \mid o(G) < \infty$$

$$X = \{(a_i)_{i=1}^p \in G^p \ni \prod_{i=1}^p a_i = e\}$$
 asdsadas

•	Shor	,,,	
•	1711.070	1/.	

$$(a_1 a_2 \cdots a_p) = e \implies (a_2 a_3 \cdots a_p a_1) = e$$

 \bullet Show:

$$(Z_p,+) \sim X$$

and

$$\bar{1} \sim (a_1 a_2 \cdots a_p) = (a_2 a_3 \cdots a_p a_1)$$

• Show:

$$|X| = |G|^{p-1}$$

 \bullet Show:

$$\{\mathcal{O}_x: |\mathcal{O}_x| = 1\} > 1$$

and

$$\exists a \in G \ni a^p = e$$

5. Given:

$$G \sim X$$
, $|G| < \infty$, $1 < |X| < \infty$

 \bullet Show:

$$\exists g \ inG \ni \forall x \in X, g \sim x \neq x$$

• Show: This holds if

$$|G| = \infty$$

, but not if

$$|X| = \infty$$

as well.

 $6. \; Given:$

$$H \leq G$$

. Show:

is

• The largest

$$N \leq G, N \subseteq H$$

	• Generated by all norma	
		H
	• Given by	
		$\bigcap aHa^{-1}$
		$\bigcap_{g \in G} gHg^{-1}$
	• The kernel of	
	THE MOTHER OF	G
		$G \sim \frac{G}{H} \ni x \sim gH = (xg)H$
7.	Given:	
		$[H:G]=n<\infty$
	• <i>Show</i> :	
		$[\operatorname{core}(H):G]$
	1 1	[(/)
	divides	
		n!
	• Show:	
		G
	simple	
		$\implies o(G) \mid n! \land G < \infty$
0	a:	()
8.	Given:	
		A_n
	is simple for	
	-	m > 5
		$n \ge 5$
	Show:	

Show:

 $\exists H[H:A_n]=n$

 $\not\exists H \in A_n \ni [H : A_n] < n$

9. Given:

r

beads of

n

colors Show: How many distinct circular bracelets can be made.

4 Four

H char G

Show:

 $H \trianglelefteq G$

2. Given:

H char $K \unlhd G$

Show:

 $H \trianglelefteq G$

3. Given:

 $K = \langle k \rangle \le G$

Show:

$$H \le K \implies H \le G$$

4. Show

$$H \trianglelefteq K \trianglelefteq G \not \Longrightarrow H \trianglelefteq G$$

5. Given:

$$P \le H \le K \le G < \infty, P \in \mathrm{Syl}_p(G)$$

Show:

$$P, H \trianglelefteq K \implies P \trianglelefteq K$$

6. Show:

$$N_G(N_G(P)) = N_G(P)$$

 $7. \; Given:$

$$\sigma \in Aut(G)$$

Show:

$$\sigma Inn(G)\sigma^{-1} = Inn(G)$$

iff

$$\forall g \in G, g^{-1}\sigma(g) \in Z(G)$$

8.	Show:

Inn(G) char Aut(G)

9. Given:

$$H \subseteq G, P \in \mathrm{Syl}_p(G)$$

• Show:

$$\exists g \in G \ni gPg^{-1} \in Syl_p(H)$$

• Given:

$$H \trianglelefteq G$$

Show:

$$P \cap H \in \mathrm{Syl}_p(H)$$

 \bullet Given:

$$P \leq G$$

Show:

$$P \cap H \in \mathrm{Syl}_p(H)$$

and

$$|\mathrm{Syl}_p(H)| = 1$$

10. Given:

$$|G| = pqr, p < q < r$$

Show:

$$\exists P_i \in \mathrm{Syl}_i(G) \leq G$$

11. *Given*:

$$|G| = 595$$

Show: All sylow subgroups are normal

12. *Given*:

$$|G| = p(p+1)$$

Show:

$$\exists N \mathrel{\unlhd} G$$

where

$$|N| = p$$

or

$$p+1$$

5 Five

1. Given:

$$G = H \rtimes_{\psi} K$$

$$\psi: K \to Aut(H)$$
$$k \mapsto \psi(k)$$

$$\theta \in Aut(H)$$

$$\rho:K o K$$

$$\phi_{\theta}: Aut(H) \to Aut(H)$$

$$\rho \mapsto \theta \circ \rho \circ \theta^{-1}$$

$$\psi_2: K \to Aut(H)$$

 $k \mapsto (\phi_\theta \circ \psi)(k)$

$$\psi_3: K \to Aut(H)$$

 $k \mapsto (\psi \circ \rho)(k)$

Show:

$$H \rtimes_{\psi} K \cong H \rtimes_{\psi_2} K \cong H \rtimes_{\psi_3} K$$

2. Classify groups of order

$$pq, p < q, p \mid q - 1$$

- 3. Classify groups of order 20.
- 4. Classify groups of order 75.
- 5. Show:

$$|G| < 60 \implies G$$

is not simple.

6. Show:

$$|G| < 60 \implies G$$

is solvable

7. Given: $|G| < \infty$ $H \leq G$ maximal $\implies [G:H] = p$, a prime. Show: |G|is solvable • Given: $P \in Syl_p(G) \land \exists H \ni N_G(P) \le H \le G$ Show: $[G:H] = 1 \mod p$ • Given: $p \mid o(G)$, the largest such prime Show: $\exists P \trianglelefteq G \in Syl_p(G),$ 8. $|G| < \infty$ • Given: Gis characteristically simple Show: $\exists H \text{ (simple)} \ni G \cong H^n$. Show: Whether or not the converse holds • Given: $N \leq G$ minimal Show: N

is characteristically simple,

 $N \cong H^n$

6 Six

G

is nilpotent Show:

$$H \leq G \implies H, G/H$$

are nilpotent

2. Show:

is nilpotent

$$\implies G$$

is nilpotent

3. Given:

$$|G| < \infty$$

Show:

|G|

is nilpotent iff

$$a, b \in G, (a, b) = 1 \implies ab = ba$$

4. Show:

 D_{2n}

is nilpotent iff

$$n=2^i$$

5. Given:

$$|G|<\infty$$

• Show

$$\Phi(G)$$
 char G

• Show

$$\Phi(G)$$

is nilpotent

	$ P = p^e$
	Show:
	$P/\Phi(P)$
	is an elementary abelian p-group Show:
	$N \leq P, P/N$
	is elementary abelian
	$\implies \Phi(P) \subseteq N$
R	Given:
υ.	
	R
	a commutative ring,
	$x, y \in R$
	nilpotent
	• Show:
	x + y
	is nilpotent Show:
	$\{x \in R : x \text{ is nilpotent}\} \leq R$
	• Given:
	c DX c D
	$u \in R^{\times}, x \in R$
	nilpotent Show:
	$u + x \in R^{\times}$
	Charu. An counterpresent to 1 when
	• Show: An counterexample to 1 when
	R
	is noncommutative.
7	Given:
•	
	R
	a commutative ring,
	R[[x]]
	its formal power series

• Given:

•	\mathbf{S}	h۵	οv	· 7
•	. 7	ш	IJν	V.

$$\sum_{i=0}^{\infty} a_i x^i \in R[[x]]^{\times} \iff a_0 \in R^{\times}$$

• Show:

R

a domain

$$\implies R[[x]]$$

a domain

• Given:

R

a field Show:

$$I = \{ r \in R[[x]] : r_0 = 0 \}$$

is a maximal ideal of

Show:

I

is the unique maximal ideal

8. Given:

R

a commutative ring,

G

a finite group,

RG

a group ring.

• Given:

$$\mathcal{K} = \{k_1, k_2, \cdots k_m\}$$

a conjugacy class in

G

Show:

$$K = \sum_{i=1}^{m} k_i \in RG \implies K \in Z(RG)$$

• Given:	
	$\mathcal{K}_1\cdots\mathcal{K}_r$
distinct conjugacy classes in	
distinct conjugacy classes in	
	G
,	
	$K_i = \sum_j k_j \ni k_j \in \mathcal{K}_i$
Show:	
Z(RG)	$= \{ \sum a_l K_l : \forall 1 \le l \le r, a_l \in R \}$
(All	
	D
	R
-linear combinations of the	
	\mathcal{K}_i
)	
9. Given:	
	R
a ring,	
	$M_n(R)$
its matrix ring	
• Given:	
	$I \leq R$
(two-sided) Show:	
	$M_n(I) \le M_n(R)$

Show:

• Show:

 $\frac{M_n(R)}{M_n(I)} \cong M_n(\frac{R}{I})$

is of the form

 $M_n(I)$

for some

 $I \trianglelefteq R$

Show:

R

a division ring

 $\implies M_n(R)$

is a simple ring.

7 Seven

8 Eight