

This page Is Inserted by IFW Operations
And is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of
The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
Please do not report the images to the
Image Problem Mailbox.**

FERROELECTRIC LIQUID CRYSTAL ELEMENT

Patent Number: JP62205319
Publication date: 1987-09-09
Inventor(s): TSUBOYAMA AKIRA; others: 01
Applicant(s): CANON INC
Requested Patent: JP62205319
Application Number: JP19860047340 19860306
Priority Number(s):
IPC Classification: G02F1/133; G09F9/30
EC Classification:
Equivalents: JP1940426C, JP6068589B

Abstract

PURPOSE:To remove defect of orientation due to difference of stages of an auxiliary electrode and to obtain uniform monodomain on an interface with a substrate by covering the auxiliary electrode formed with metallic film contacting with a stripe electrode with spacers.

CONSTITUTION:A glass substrate 2 is constituted of a group of strip-shaped signal electrode 4 and an auxiliary electrode 5 formed of Al film at one end thereof, and polyimide coating film 6 is formed uniformly on the surface of the substrate. Spacers 7 for keeping the cell thickness are formed on the substrate 2 so as to cover the auxiliary electrode. On one hand, a group of stripe scanning electrode 3, auxiliary electrode 5, and polyimide film 6 are formed similarly on the glass substrate 1. The substrate 1 and the substrate 2 are arranged in such manner that upper and lower electrode groups intersect each other, and ferroelectric liquid crystals 8 are filled in the inside thereof. Further, the thickness of the coating film 6 of the substrate 1 is made rather thicker to mitigate the stage difference in the parallel direction to some degree and the direction of orientation treatment is arranged to parallel direction to the direction of the strip electrode. Thus sufficiently good monodomain contg. no defect in the interface is obtd.

Data supplied from the esp@cenet database - I2

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A) 昭62-205319

⑫ Int.Cl. ¹	識別記号	厅内整理番号	⑬ 公開 昭和62年(1987)9月9日
G 02 F 1/133	323	8205-2H	
G 09 F 9/30	320	8205-2H	
		6731-5C	審査請求 未請求 発明の数 1 (全4頁)

⑭ 発明の名称 強誘電性液晶素子

⑮ 特願 昭61-47340

⑯ 出願 昭61(1986)3月6日

⑰ 発明者 坪山 明 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
 ⑲ 発明者 谷口 修 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内
 ⑳ 出願人 キヤノン株式会社 東京都大田区下丸子3丁目30番2号
 ㉑ 代理人 弁理士 豊田 善雄

明細書

1. 発明の名称

強誘電性液晶素子

2. 特許請求の範囲

1) 一対の基板間に強誘電性液晶を挟持し、互いに交差する走査電極と信号電極を設けたマトリクス構造の液晶素子であって、前記走査電極と信号電極のうち少なくとも一方が該電極の長手方向に沿って接した金属フィルムで形成した補助電極をスペーサーで被覆することにより、補助電極の段差による配向欠陥をなくすことができるようとしたものである。

2) 前記強誘電性液晶がスマectティック相であることを特徴とする特許請求の範囲第1項に記載の強誘電性液晶素子。

3. 発明の詳細な説明

【産業上の利用分野】

本発明は液晶表示素子や液晶一光シャッター等に用いられる液晶素子に関し、詳しくは強誘電性

液晶を用いた液晶素子に関するものである。

【開示の概要】

本明細書及び図面は、強誘電性液晶を用いた液晶素子において、ストライプ状の電極に沿って接した金属フィルムで形成した補助電極をスペーサーで被覆することにより、補助電極の段差による配向欠陥をなくすことができるようとしたものである。

【従来の技術】

近年、強誘電性液晶素子は、その高速応答性とメモリー性から高精細大型ディスプレイへの応用が考えられている。このような液晶素子の構成としては、交差した走査電極群と信号電極群の交差部を直交とする単純マトリクス構造が一般に用いられている。この構造は高精細になると電極の幅が狭くなり、電極の1ラインあたりの抵抗値が高くなるため、1ライン中で電圧値にばらつきが生じ、駆動に必要な電圧が各画素に十分に印加されないことがあった。そこでこの欠点を解決するため、透明電極に金属補助配線を設けることが行な

ない。

一方、対向するガラス基板1の作成工程は、スペーサー7を形成しないこと以外は前記ガラス基板2の場合と同様である。

このガラス基板1には前記スペーサー7が形成されていないため、基板上には補助電極5による段差がある。しかしながら、本発明者らは一軸性配向処理方向に液晶層厚の段差がある場合、特にスマートチック相を有する強誘電性液晶においては配向欠陥を生じる割合が非常に小さいことを見いだした。

したがってガラス基板1のポリイミド被膜6の膜厚をやや厚めの1500Åに設定して平行方向の段差をある程度緩和するとともに、配向処理の方向を基板上のストライプ電極方向と平行とすることにより、界面において欠陥のない良好なモノドメインを得ることができる。配向処理はラビング法を用い、前述したようにガラス基板1はストライプ電極と平行にガラス基板2はストライプ電極と垂直にそれぞれラビング処理を施した。

モノドメインの形成が確認された。

さらに、このセルの基板端から導線を引き出し、各画素にパルス電圧印加したところ、1 msecで±15Vの電圧で反転し、第1と第2の安定状態を持つ双安定性を示した。

このように、各画素は一定電圧で一様に反転し、1ライン中の電圧のばらつきが実用上ないことが確認された。

実施例2

液晶材料として以下に示すDOBAMBC

を封入し、それ以外はすべて前記実施例1と同様の実験を行ったところ、十分均一なモノドメイン配向を得ることができた。また、反転に必要な駆動電圧は1 msecで±18Vであり、前記実施例1と同様に良好な駆動特性が得られた。

本発明で用いるスペーサー7としては、前述の実施例で用いたポリイミドの他に、感光性ポリイ

このようにして得られた基板を、電極群が互いに直交するよう貼り合わせて液晶セルを形成した。

実施例1

このようにして作成された液晶セルに、以下に示す3成分からなる強誘電性液晶を封入した。

偏光顕微鏡による相観察から、上記3成分混合液晶のSmC*相（カイルスマクティックC相）の温度範囲は4~35°Cであった。この3成分混合液晶を前記液晶セルに封入、封止後、等方相まで昇温し、0.5°C/hで徐冷することにより配向処理を行った。この液晶セルを直交ニコルに設定した偏光顕微鏡で観察すると、配向欠陥の非常に少ない

ミド、感光性ポリアミド、フォトレジスト材、ポリアミド、フェノール樹脂等を用いることができる。また、補助電極5としては、Alの他にCr(クロム)、Ag(銀)、Cu(銅)などが使用できる。

【発明の効果】

以上説明したように、本発明によれば補助電極の段差による配向欠陥をなくし、基板との界面において均一なモノドメインを得ることができる。したがって強誘電性液晶を用いた場合でも適正な駆動特性を得ることができる。

4. 図面の簡単な説明

第1図は実施例を示す部分断面図、第2図は実施例を示す平面図である。

- 1, 2 … ガラス基板、3 … 走査電極群、
- 4 … 信号電極群、5 … 補助電極、
- 6 … ポリイミド被膜、7 … スペーサー、
- 8 … 強誘電性液晶。

出願人 キヤノン株式会社

代理人 豊田善雄