

Name: LUO ZIJIAN

Matric. No: A0224725H

MUSNET: E0572844

Subject: Stochastic process

Assignment: Homework Eight

Date: Mar 19th

Prof: Vincent Tan.

. 2	Date
[0	Through the above information from question, we can find this is aperiodic $Pr(X_{1000} = j, X_{100}) = k$, $X_{2000} = k$ $ X_0 = i $. (using the definition of conditional) $= Pr(X_{2000} = k$, $X_{1000} = k$ $ X_{1000} = j$, $X_{0=i}$) $ Pr(X_{1000} = j X_{0=i})$
370	Then we can simply that like this = Pr(X2000 = k X100 = k) · Pr(X1000 = i) · Pr(X1000 = i) · Pr(X1000 = i) / Pr(X1000 = i) = President Principles = President President Principles =
(4)	For part (b), we can find it is posterior probability,
	Using the bayes law, we get
	Pr (X1000 = 1 X1001 = j) = Pr (X100 = 1) / (X1000 = 1) Pr (X1000 = 1)
	Pr(X1001=7)
	$\frac{1}{\sqrt{n}} = \frac{\Pr(X_{100} = j \mid X_{1000} > i)}{\sqrt{n}} \cdot \frac{\Pr(X_{1000} = j \mid X_{1000} > i)}{\sqrt{n}} \cdot \Pr(X_{1$
	Owing to the definition of ergodic chain, we an get $P_{Ej} = P_{ij}$ for any So, the result is $P_{ij} = \overline{N}i = \overline{N}i$
	a) For this process, we can knew. Xn can be two different directions, which can simplify like that $X_n = \begin{cases} X_{n-1} + 1 \\ 0 \end{cases}$, with probability of p . And then, we can get the transformation equation $\{ \pi_i = \pi_i p \}$ $\{ \pi_i = \pi_i p = \pi_0 : p^2 \}$ $\{ \pi_i = \pi_i : p = \pi_0 : p^2 \}$ $\{ \pi_i = $
	If pollowed the statement in part (b) The means the first time to get state k , so there are two possible conditions: 0 it stays at state $(k-1)$, and next step is to state k with probability of P Q it stays at state $(k-1)$ but next step

is to redirect to state o, and then a new process to get state R. TR = STR-1 TI with probability of P TR-1 + 1 + Tk' with probability of (1-p).

And then, we are get $E[T_R|T_{R-1}] = P \cdot (T_{R-1}+1) + (1-p)[T_{R-1}+1+E[T_R'|T_{R-1}]]$ $= T_{R-1}+1+(1-p) E[T_R'|T_{R-1}]$ TR is a renewal process like TR, so TR' & TR ELTR' | Tk-1] = ELTR | Tk-1] Then we can get $P \in [T_k|T_{R-1}] = T_{k-1} + 1$ use the total expectation $\mathcal{B} \in [PE[Tk|TR-1]] = E[Tk-1+1]$ $P \cdot E[Tk] = E[Tk-1] + 1$ Ti = { 1 , with probability of P. 1+OTi, with probability of (1-P) E[T] = 1. P + E[I+T,']. (1-p) = P + 1 + E[T,'] - P - P E[T,'] $PE[T_i] = I \quad (E[T_i'] = E[T_i])$ $E[T_i] = \frac{I}{P}$ (c) Follow part (b), we can get $\{P.E[TR] = E[Tk-1]+1\}$ $E[T_3] = \frac{1}{p^2} + \frac{1}{p}$ $E[T_3] = \frac{1}{p^3} + \frac{1}{p^3} + \frac{1}{p}$ $E[T_R] = p_R + p_{R-1} + \cdots + p_r = \sum_{i=1}^{R} \left(\frac{1}{P}\right)^i$ 4. We can draw the graph of this markov chain we suppose state m means n (1-E) there are m white ball we can get this balance equati $\pi_{i} \underline{n-i} = \pi_{i+1} \cdot \frac{i+1}{n}$ $T(j+1) = \frac{n-j}{-+1} T(j)$

Besform

Follow this balance equation, we ranget below equation Zi 7 7; = | $\int T_{i} = \frac{n}{i} T_{i0}$ $\int T_{i2} = \frac{n-1}{2} T_{i1} = \frac{(n-1)n}{2} T_{i0}$ $\overline{\Pi}_{i} = \frac{n!}{(2-1)! \cdot 1!} \overline{\Pi}_{0} = \binom{n}{i} \overline{\Pi}_{0}$ And then we can get $\frac{n}{2}$ C_n^{-1} C_n^{-1} $C_0 = \frac{1}{2}$ 50 TLD = (1) $\pi_i = \binom{n}{i} \left(\frac{1}{2}\right)^n$ I with the above information in this question five we should know the white balls in the first um is image condition of the second um. Suppose jubite balls in the first um - j white balls (m-j) white balls -(m-j) black balls black balls. First wn Second wm For state j, there are three ion ditions Oit can add one white ball and then becomes state (jt) (e) it can keep same so listate j is steady (3) it can minus one white ball, and then becomes state (j-1) $P_{j,j} = 0 \cdot \left(\frac{1}{m}\right) \cdot \left(\frac{m-j}{m}\right) + \left(\frac{m-j}{m}\right) \cdot \left(\frac{j}{m}\right) = \frac{2j(m-j)}{m^2}$ $P_{j,j-1} = \left(\frac{j}{m}\right) \cdot \left(\frac{j}{m}\right) = \frac{j^2}{m^2}$ According to the transformation, we can get balance equation $\pi_{j}\left(\frac{m-j}{m}\right)^{2}=\pi_{j+1}\left(\frac{j+1}{m}\right)\qquad j=0,1,--m-1$ Follow this equation, we can get $\int T_{ij} = \frac{m^{2}}{12} \overline{\kappa}_{0}$ $T_{ij} = \frac{m-1}{2} \overline{\kappa}_{0}$ $T_{ij} = \frac{m-1}{2} \overline{\kappa}_{0}$ $T_{ij} = \frac{m-1}{2} \overline{\kappa}_{0}$ $T_{ij} = \frac{m}{2} \overline{\kappa}_{0}$ $T_{ij} = \frac{m}{2}$ $\pi_{j} = \left(\frac{m-j+1}{j}\right)^{2} \pi_{j-1} = \left(\frac{m}{j}\right)^{2} \pi_{0}$ $\frac{m}{Z} \binom{m}{j} = \binom{2n}{n}$ $T_{ij} = \begin{pmatrix} m & 2 & 1 \\ j & 2 & 2 \end{pmatrix}$