MAT 442 Homework 10

Nickolas Gregory Dodd

Serial number: 12

October 27, 2015

5.2.8

Suppose that $A \in M_{nxn}(F)$. has two distinct eigenvalues, $\lambda 1$ and $\lambda 2$ and that $\dim(E_{\lambda 1}) = n - 1$. Prove that A is diagonalizable.

Proof: By Theorem 5.7, it follows that $\dim(E_{\lambda 2}) \geq 1$. Therefore, there exists a non-zero eigenvector in $E_{\lambda 2}$. Now, since $\dim(E_{\lambda 1}) = n - 1$, it follows that we can choose a basis of eignevectors β for $E_{\lambda 1}$. Hence, by Theorem 5.8, $v \cup \beta$ is a linearly independent subset of V of length $n = \dim V$, so $v \cup \beta$ is a basis of eigenvectors. Thus, by Theorem 5.1, A is diagonalizable.

5.2.11b

Let A be an n x n matrix that is similar to an upper triangular matrix and has the distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ with corresponding multiplicities m_1, m_2, \ldots, m_k . Prove the following:

(b)
$$\det(A) = (\lambda_1)^{m_1} (\lambda_2)^{m_2} \dots (\lambda_k)^{m_k}$$
.

Proof: Since the characteristic polynomial (and thus it's roots) is independent of the choice of basis, we know that the characteristic polynomial of A is the same as the characteristic polynomial of the similar upper triangular matrix, B. Let Q be the similar sized matrix such that $A = QBQ^{-1}$. Now, $\det(A) = \det(QBQ^{-1}) = \det(Q)\det(B)\det(Q^{-1}) = \det(B) = (\lambda_1)^{m_1} (\lambda_2)^{m_2} \dots (\lambda_k)^{m_k}$ where λ_i appears m_i times on B's diagonal, which follows since the determinant of a triangular matrix is the product of its diagonal entries.

5.2.12

Let T be an invertible linear operator on a finite-dimensional vector space V.

(a)

Recall that for an eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1} (Exercise 8 of ection 5.1). Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} .

Proof: Let E_{λ} be the eigenspace of T corresponding to λ and $E_{\lambda^{-1}}$ be the eigenspace of T^{-1} corresponding to λ^{-1} . Let $v \in E_{\lambda}$. Then $T(v) = \lambda v$ and so $v = \lambda T^{-1}(v)$. This means that $T^{-1}(v) = \lambda^{-1}v$ and $v \in E_{\lambda^{-1}}$. Conversely, if $v \in E_{\lambda^{-1}}$, we have $T^{-1}(v) = \lambda^{-1}v$ and so $v = \lambda^{-1}T(v)$. Hence, $T(v) = \lambda v$ and $v \in E_{\lambda}$. Therefore, the two spaces are the same.

(b)

Prove that if T is diagonalizable, then T^{-1} is diagonalizable.

Proof: By part (a) above, if T is diagonalizable and invertible, then the eigenbasis of T obtained by diagonalizing T will also be the eigenbasis of T^{-1} corresponding to the inverse eigenvalues. To see this, let A be the representation of T. Then since, T is diagonalizable, A is diagonalizable, and hence is similar to a diagonal matrix D. Let Q be the similar sized matrix whose columns are composed of the eigenbasis vectors of A. Then, $A = Q^{-1}DQ$. The inverse matrix, representing T^{-1} is given by $A^{-1} = QD^{-1}Q^{-1}$. Since D is diagonal, $[D^{-1}]_{ii} = 1 / [D]_{ii}$, which agrees with part (a) above. Thus, T^{-1} is diagonalizable.

5.2.13

Let $A \in M_{nxn}(F)$. Recall from Exercise 14 of Section 5.1 that A and A^t have the same characteristic polynomial and hence share the same eigenvalues with the same multiplicities. For any eigenvalue λ of A and A^t , let E_{λ} and E'_{λ} denote the corresponding eigenspace for A and A^t respectively.

(a)

Show by way of example that for a given common eigenvalue, these two eigenspaces need not be the same.

Proof: Let $A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$... $Then, for \lambda = 0, E_{\lambda} = \text{span}(0, 1)$ while for $A^t, E'_{\lambda} = \text{span}(1, 1)$.

(b)

Prove that for any eigenvalue λ , $\dim(E_{\lambda}) = \dim(E'_{\lambda})$.

Proof: We have that, dim (E_{λ}) = dim $N(A - \lambda I) = N(A - \lambda I)^t) = N(A^t - \lambda I) = dim(E'_{\lambda})$.

(c)

Prove that if A is diagonalizable, then A^t is also diagonalizable.

Proof: By Theorem 5.9, A is diagonalizable iff the characteristic polynomial of A splits and for each eigenvalue λ_i , mult(λ_i) = dim E_{λ_i} . Now, since the characteristic polynomial of A and A^t are the same, if A is diagonalizable, then the characteristic polynomial of A^t also splits. By part (b) above, we also know that the dimensions of the corresponding eigenspaces E'_{λ_i} are the same, thus the multiplicities for the corresponding eigenvalues are the same. Then, it follows from Theorem 5.9 that A^t is diagonalizable.

5.2.18a

Prove that if T and U are simultaneously diagonalizable linear operators, then T and U commute (i.e., TU = UT).

Proof: Let β be as in the preamble to this exercise in the text. That is, β is a basis for V which makes both $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal matrices. Now, consider the matrix multiplication $[T]_{\beta}[U]_{\beta}$. Since both matrices are diagonal, we simply multiply their diagonal elements together. Therefore, letting $A = [T]_{\beta}$ and $B = [U]_{\beta}$, we have

$$C_{ii} = A_{ii}B_{ii}$$
 for $1 \le i \le \dim(V)$. (1)

By associativy of scalar multiplication,

$$C_{ii} = A_{ii}B_{ii} = B_{ii}A_{ii} (2)$$

, so C = AB = BA. Substituting back in, this means that $[T]_{\beta}[U]_{\beta} = [U]_{\beta}[T]_{\beta}$. Hence, it follows that T and U commute.

5.20

Let W_1, W_2, \ldots, W_k be subspaces of a finite-dimensional vector space V such that

$$\sum_{i=1}^{k} W_i = V$$

Prove that V is the direct sum of $W_1, W_2, ..., W_k$ iff dim(V) =

$$\sum_{i=1}^{k} dim(W_i)$$

.

Proof: Attached to back of assignment on handwritten paper.

5.4.3

Let T be a linear operator on a finite-dimensional vector space V. Prove that the following subspace are T-invariant.

(a)

0 and V.

Proof: Since for any $v \in V$, T(0) = 0 and $T(v) \in V$, the claim holds for any linear operator T.

(b)

N(T) and R(T).

Proof: For any $v \in N(T)$, by definition we have that $T(v) = 0 \in N(T)$. Also, for any $v \in R(T)$, we have $T(v) \in R(T)$ by definition. Thus the claim holds for any linear operator T.

(c)

 E_{λ} , for any eigenvalue λ of T.

Proof: If $v \in E_{\lambda}$, where v is a non-zero eigenvector corresponding to eigenvalue λ , we have $T(v) = \lambda v$. Since $T(\lambda v) = \lambda T(v) = \lambda^2 v$, it follows that $T(v) \in E_{\lambda}$.

5.3.5

Let T be alinear operator on a vector space V. Prove that the intersection of any collection of T-invariant subspaces of V is a T-invariant subspace of V.

Proof: Let $U_{kk\epsilon K}$ be a collection fo T-invariant subspaces of V. Let $U^* = \bigcap_{k\epsilon K} U_k$. For every $u \in U^*$, we have $T(u) \in U_k$ for every $k \in K$. So it follows that $T(v) \in U^*$ as well.