Public-Key Encryption and Digital Signatures

PRNGs: Summary

- True randomness requires sampling a physical process
 - Slow, expensive, and biased (low entropy)
- PRNG: An algorithm that uses a little bit of true randomness to generate a lot of random-looking output
 - Seed(entropy): Initialize internal state
 - Reseed(entropy): Add additional entropy to the internal state
 - Generate(n): Generate n bits of pseudorandom output
 - Security: Computationally indistinguishable from truly random bits
- HMAC-DRBG: Use repeated applications of HMAC to generate pseudorandom bits
- Application: UUIDs

Summary: Diffie-Hellman Key Exchange

- Algorithm:
 - Alice chooses a and sends ga mod p to Bob
 - \circ Bob chooses **b** and sends $g^b \mod p$ to Alice
 - Their shared secret is $(g^a)^b = (g^b)^a = g^{ab} \mod p$
- Diffie-Hellman provides forwards secrecy: Nothing is saved or can be recorded that can ever recover the key
- Issues
 - Not secure against MITM
 - o Both parties must be online
 - Does not provide authenticity

Public-Key Cryptography (Asymmetric Key Cryptography)

Public-Key Cryptography

- A cryptography scheme that both parties in the communication use different keys
- In public-key schemes, each person has two keys
 - Public key: Known to everybody
 - Private key: Only known by that person
 - Keys come in pairs: every public key corresponds to one private key (mathematically related)

Public-Key Cryptography

- Uses number theory
 - Examples: Modular arithmetic, factoring, discrete logarithm problem
 - Contrast with symmetric-key cryptography (uses XORs and bit-shifts)
- Messages are numbers
 - Contrast with symmetric-key cryptography (messages are bit strings)
- Benefit: No longer need to assume that Alice and Bob already share a secret
- Drawback: Much slower than symmetric-key cryptography
 - Number theory calculations are much slower than XORs and bit-shifts

Public-Key Cryptography for Confidentiality

- Scenario
 - Alice wants to send a message to Bob
 - Alice uses Bob's public key to encrypt the message
 - Bob decrypt the message with his private key
- Who can perform the encryption? i.e., send messages to Bob
 - Anyone, because Bob's public key is public
- Who can perform the decryption? i.e., see the message for Bob
 - Only Bob, with his private key

Public-Key Cryptography (MITM)

ITIS 6200 / 8200

Scenario

- Alice wants to send a message to Bob
- Alice uses Bob's public key to encrypt the message
- Mallory intercepts the message, changes it into another message encrypted with Bob's public
- Bob decrypts the message with his private key, cannot tell if it's from Alice

Public-Key Cryptography for Integrity

- Scenario
 - Alice wants to send a message to Bob
 - Alice uses her private key to encrypt the message
 - Bob decrypts the message with Alice public key
- Who can perform the encryption? i.e. who can produce the message
 - Only Alice, with her private key
- Who can perform the decryption? i.e., who can verify the message
 - Anyone, because Alice's public key is public

Public-Key Cryptography

- Encryption with the public key, e.g., send message to Alice
 - C = Enc(pub-alice, M)
 - M = Dec(priv-alice, C)

- Encryption with the private key, e.g., Alice signs the message
 - C = Enc(priv-alice, M)
 - M = Dec(pub-alice, C)
- Two common encryption/decryption pairs, other pairs do not work

Public-Key Encryption

Public-Key Encryption: Definition

ITIS 6200 / 8200

Three parts:

- KeyGen() → PK, SK: Generate a public/private keypair, where PK is the public key, and SK is the private (secret) key
- \circ Enc(PK, M) \to C: Encrypt a plaintext M using public key PK to produce ciphertext C
- \circ Dec(SK, C) \rightarrow M: Decrypt a ciphertext C using secret key SK

Properties

- Correctness: Decrypting a ciphertext should result in the message that was originally encrypted
 - Dec(SK, Enc(PK, M)) = M for all PK, $SK \leftarrow \text{KeyGen}()$ and M
- Efficiency: Encryption/decryption should be fast
- \circ **Security**: Similar to IND-CPA, but Alice (the challenger) just gives Eve (the adversary) the public key, and Eve doesn't request encryptions, except for the pair M_0 , M_1
 - You don't need to worry about this game (it's called "semantic security")

RSA Encryption

Cryptography Roadmap

	Symmetric-key	Asymmetric-key
Confidentiality	 One-time pads Block ciphers with chaining modes (e.g. AES-CBC) 	RSA encryption
Integrity, Authentication	MACs (e.g. HMAC)	 Digital signatures (e.g. RSA signatures)

- Hash functions
- Pseudorandom number generators
- Public key exchange (e.g. Diffie-Hellman)

- Key management (certificates)
- Password management

RSA Encryption

- The first public key cryptosystem
- Invented by Rivest, Shamir, and Adleman
- Any bit size is OK
 - Bit size of the prime numbers used to create public and private keys
 - Different from symmetric key encryption
 - 512 was standard when it was released
 - 2048 or 4096 is standard now
- Based on prime numbers and factoring

RSA Encryption: Definition

ITIS 6200 / 8200

- KeyGen():
 - Randomly pick two large primes, p and q
 - Done by picking random numbers and then using a test to see if the number is (probably) prime
 - \circ Compute N = pq
 - N is usually between 2048 bits and 4096 bits long
 - o Choose e
 - Requirement: e is not a factor of (p 1)(q 1)
 - Requirement: 2 < e < (p 1)(q 1)
 - Compute $d = e^{-1} \mod (p 1)(q 1)$
 - *d* is the modular multiplicative inverse of *e*
 - \blacksquare 1 = (d * e) mod (p 1)(q 1)
 - Algorithm: Extended Euclid's algorithm
 - Public key: N and e
 - Private key: d

Example

- Randomly pick two (large) primes,
 p and q
 - p = 3, q = 7
- \circ Compute N = pq
 - N = p*q = 21
- Choose e
 - e = 5 (not a factor of 2 * 6 = 12)
- Compute $d = e^{-1} \mod (p 1)(q 1)$
 - d = 5 since (d * e) mod (p 1)(q
 1) = 5 * 5 mod (2 * 6) = 1
- Public key: N=21 and e=5
- \circ Private key: d = 5

RSA Encryption: Definition

ITIS 6200 / 8200

- Enc(*e*, *N*, *M*):
 - Output: Me mod N
- Dec(*d*, *C*):
 - Output: *C*^d mod *N*
 - $\circ \quad C^d \bmod N = (M^e)^d \bmod N$

Example

- Enc(e, N, M):
 - Output Me mod N
 - \circ M = 12, e = 5, N = 21
 - \circ C = $12^5 \mod 21 = 3$

- Dec(*d*, *C*):
 - \circ Output $C^d \mod N$
 - \circ C = 3, d = 5, N = 21
 - $M = 3^5 \mod 21 = 243 \mod 21 = 12$

RSA Encryption: Correctness

- 1. Theorem: $M^{ed} \mod N \equiv M \mod N$
- 2. Euler's theorem: $a^{\varphi(N)} \equiv 1 \mod N$
 - \circ $\varphi(N)$ is the totient function of N
 - If *N* is prime, $\varphi(N) = N 1$ (Fermat's little theorem)
 - For a semi-prime pq, where p and q are prime, $\varphi(pq) = (p 1)(q 1)$
- 3. Notice: $e^*d \equiv 1 \mod (p-1)(q-1)$ so $ed \equiv 1 \mod \varphi(N)$
 - This means that $ed = k\varphi(n) + 1$ for some integer k
- 4. (1) can be written as $M^{k\varphi(N)+1} \equiv M \mod N$
- 5. $M^{k\varphi(N)}M^1 \equiv M \mod N$
- 6. $1M^1 \equiv M \mod N$ by Euler's theorem
- 7. $M \equiv M \mod N$

RSA Encryption: Security

- RSA problem: Given N and C = M^e mod N, it is hard to find M
 - No harder than the factoring problem
 - o If you can factor N, you can recover d), because $1 = (d * e) \mod (p 1)(q 1)$, and N = p*q
- A brute-force attack is basically trying to factor the public key into two prime numbers
- Current best solution is to factor N, but unknown whether there is an easier way
 - If the RSA problem is as hard as the factoring problem, then the scheme is secure as long as the factoring problem is hard
 - Factoring problem is assumed to be hard, but we have no proof

RSA Encryption: Issues

- Is RSA encryption IND-CPA secure?
 - No. It's deterministic. No randomness was used at any point!
- Sending the same message encrypted with different public keys also leaks information
 - \circ $m^{e_a} \mod N_a$, $m^{e_b} \mod N_b$, $m^{e_c} \mod N_c$
 - Small m and e leaks information
 - e is usually small (~16 bits) and often constant (3, 17, 65537)
- Side channel: A poor implementation leaks information
 - The time it takes to decrypt a message depends on the message and the private key
 - This attack has been successfully used to break RSA encryption in OpenSSL
- Result: We need a probabilistic padding scheme

OAEP

- Optimal asymmetric encryption padding (OAEP): A variation of RSA that introduces randomness
 - Different from "padding" used for symmetric encryption, used to add randomness instead of dummy bytes
- Idea: RSA can only encrypt "random-looking" numbers, so encrypt the message with a random key

OAEP: Padding

- k₀ and k₁ constants defined in the standard, and G and H are hash functions
 - M can only be n k₀ k₁ bits long
 - G produces a (n k₀)-bit hash, and H produces a
 k₀-bit hash
- 2. Pad M with k_1 0's
 - Idea: We should see 0's here when unpadding, or else someone tampered with the message
- 3. Generate a random, *k*₁-bit string *r*
- 4. Compute $X = M || 00...0 \oplus G(r)$
- 5. Compute $Y = r \oplus H(X)$
- 6. Result: *X* || *Y*

OAEP: Unpadding

- 1. Compute $r = Y \oplus H(X)$
- 2. Compute $M || 00...0 = X \oplus G(r)$
- 3. Verify that $M \parallel 00...0$ actually ends in k_1 0's
 - Error if not

OAEP

- Even though G and H are irreversible, we can recover their inputs using XOR and work backwards
- This structure is called a Feistel network
 - Can be used for encryption algorithms if G and H depend on a key
 - Example: DES (out of scope)
- Takeaway: To fix the problems with RSA
 (it's only secure encrypting random numbers and isn't IND-CPA), use RSA with OAEP,

 abbreviated as RSA-OAEP

Hybrid Encryption

- Issues with public-key encryption
 - Notice: We can only encrypt small messages because of the modulo operator
 - Notice: There is a lot of math, and computers are slow at math
 - Result: Asymmetric doesn't work for large messages
- Hybrid encryption: Encrypt data under a randomly generated key K using symmetric encryption, and encrypt K using asymmetric encryption
 - Benefit: Now we can encrypt large amounts of data quickly using symmetric encryption, and we still have the security of asymmetric encryption
- Almost all cryptographic systems use hybrid encryption
 - Scenario:
 - Alice wants to send a message to Bob
 - Alice chooses / generates a random symmetric key K
 - Alice computes C1 = Enc(K, M) and sends it to Bob (Symmetric encryption)
 - Alice computes C2 = Enc(pub_bob, K) and sends it to Bob (Asymmetric encryption)
 - Bob receives both messages
 - uses his private key to decrypt C2 and get K, and then
 - use K to decrypt C1 and get M

Digital Signatures

Cryptography Roadmap

	Symmetric-key	Asymmetric-key
Confidentiality	 One-time pads Block ciphers with chaining modes (e.g. AES-CBC) 	RSA encryptionElGamal encryption
Integrity, Authentication	MACs (e.g. HMAC)	 Digital signatures (e.g. RSA signatures)

- Hash functions
- Pseudorandom number generators
- Public key exchange (e.g. Diffie-Hellman)

- Key management (certificates)
- Password management

Digital Signatures

- Asymmetric cryptography is good because we don't need to share a secret key
- Digital signatures are the asymmetric way of providing integrity/authenticity to data
- Assume that Alice and Bob can communicate public keys without Mallory interfering
 - We will see how to fix this limitation later

Public-key Signatures

- Only the owner of the private key can sign messages with the private key
- Everybody can verify the signature with the public key

Digital Signatures: Definition

ITIS 6200 / 8200

Three parts:

- KeyGen() → PK, SK: Generate a public/private keypair, where PK is the verify (public) key, and SK is the signing (secret) key
- \circ Sign(SK, M) \rightarrow sig: Sign the message M using the signing key SK to produce the signature sig
- Verify(PK, M, sig) → {0, 1}: Verify the signature sig on message M using the verify key PK and output 1 if valid and 0 if invalid

Properties

- Correctness: Verification should be successful for a signature generated over any message
 - Verify(PK, M, Sign(SK, M)) = 1 for all PK, SK ← KeyGen() and M
- Efficiency: Signing/verifying should be fast
- Security: EU-CPA, same as for MACs

Digital Signatures in Practice

- If you want to sign message M:
 - First hash M
 - \circ Then sign H(M)
- Why do digital signatures use a hash?
 - Allows signing arbitrarily long messages
- Digital signatures provide integrity and authenticity for M
 - The digital signature acts as proof that the private key holder signed H(M), so you know that
 M is authentically endorsed by the private key holder

RSA Signatures

RSA Signatures

- Recall RSA encryption: $M^{ed} \equiv M \mod N$
 - There is nothing special about using e first or using d first!
 - If we encrypt using d, then anyone can "decrypt" using e
 - Given x and x^d mod N, can't recover d because of discrete-log problem, so d is safe

RSA Signatures: Definition

- KeyGen():
 - Same as RSA encryption:
 - Public key: N and e
 - Private key: d
- Sign(*d*, *M*):
 - \circ Compute $H(M)^d \mod N$
- Verify(e, N, M, sig)
 - Verify that $H(M) \equiv sig^e \mod N = (H(M))^{d^*e} \mod N$

Summary: Public-Key Cryptography

- Public-key cryptography: Two keys; one undoes the other
- Public-key encryption: One key encrypts, the other decrypts
 - Security properties similar to symmetric encryption
 - RSA: Produce a pair e and d such that Med = M mod N
 - Not IND-CPA secure on its own
- Hybrid encryption: Encrypt a symmetric key, and use the symmetric key to encrypt the message
- Digital signatures: Integrity and authenticity for asymmetric schemes
 - RSA: Same as RSA encryption, but encrypt the hash with the private key