

Chapitre I – Les suites

Bacomathiques -- https://bacomathiqu.es

TABLE	DES MATIÈRES	
I- D	éfinitions	1
1.	Suites numériques	1
2.	Sens de variation	1
3.	Convergence et divergence	2
II - Ca	alcul de limites	3
1.	Limites de suites de référence	3
2.	Opérations sur les limites	4
3.	Majoration, minoration et bornes	5
4.	Comparaisons et encadrements	6
III - Ra	aisonnement par récurrence	7

I - Définitions

1. Suites numériques

Pour rappel, on appelle **suite** une fonction (et plus précisément application) de $\mathbb N$ dans $\mathbb R$: cette fonction va prendre des éléments de l'ensemble de départ $\mathbb N$ et va les amener dans l'ensemble d'arrivée \mathbb{R} .

À RETENIR : DÉFINITION 📍

Il y a plusieurs manières de définir une suite :

- Par récurrence : On donne le premier terme de la suite ainsi que le terme au rang n+1.
- Par son terme général : On donne le n-ième terme de la suite en fonction de

Attention! Bien que ces deux modes de génération soient les principaux, il en existe d'autres : algorithme, motifs géométriques, ...

À LIRE : EXEMPLE 99

On définit les suites (u_n) et (v_n) ainsi :

$$-u_n = n \text{ pour tout } n \in \mathbb{N} \text{ ((}u_n\text{) est définie par son terme général).}$$

$$-(v_n) = \begin{cases} v_0 = 0 \\ v_{n+1} = v_n + 1 \text{ pour tout } n \geq 1 \end{cases} \text{ ((}v_n\text{) est définie par récurrence).}$$

On remarque que bien que définies différemment, (u_n) et (v_n) sont égales.

2. Sens de variation

À RETENIR : DÉFINITION 📍

Soit (u_n) une suite.

- (u_n) est **croissante** si on a $u_{n+1} \ge u_n$ (ou $u_{n+1} u_n \ge 0$) pour tout $n \in \mathbb{N}$.
- (u_n) est **décroissante** si on a $u_{n+1} \le u_n$ (ou $u_{n+1} u_n \le 0$) pour tout $n \in \mathbb{N}$.
- (u_n) est dite **constante** s'il existe $c \in \mathbb{R}$ tel que $u_n = c$ pour tout $n \in \mathbb{N}$.

Si une suite est croissante ou décroissante et ne change pas de variation, alors elle est dite monotone.

3. Convergence et divergence

À RETENIR : CONVERGENCE 📍

On dit qu'une suite (u_n) converge vers un réel ℓ quand n tend vers $+\infty$ si :

Pour tout $\epsilon > 0$, l'intervalle ouvert $]\ell - \epsilon, \ell + \epsilon[$, contient tous les termes de la suite (u_n) à partir d'un certain rang. On note alors : $\lim_{n \to +\infty} u_n = \ell$.

À LIRE 99

Cette définition est un peu abstraite mais elle signifie simplement que u_n se rapproche autant que l'on veut de l pourvu que n soit assez grand.

Attention! Il est tout-à-fait possible que la suite (u_n) converge vers un réel ℓ mais ne soit jamais égal à ℓ .

À RETENIR : DIVERGENCE VERS $+\infty$ §

On dit qu'une suite (v_n) diverge vers $+\infty$ quand n tend vers $+\infty$ si :

Pour tout A>0, il existe un rang N tel que pour tout $n\geq N$, $v_n>A$. On note alors : $\lim_{n\to+\infty}u_n=+\infty$.

Il existe une définition similaire pour la divergence vers $-\infty$.

À LIRE : DIVERGENCE VERS $-\infty$ %

Dire que (v_n) **diverge** vers $-\infty$ signifie que :

Pour tout A>0, il existe un rang N tel que pour tout $n\geq N$, $v_n<-A$. On note alors : $\lim_{n\to+\infty}u_n=-\infty$.

À LIRE 00

Å noter que l'on n'étudie les limites des **suites** que quand n tend vers $+\infty$, et qu'il est possible qu'une suite n'admette pas de limite. On dit alors que cette suite **diverge**. Par contre, si une suite converge vers une limite, alors cette limite est **unique**.

II - Calcul de limites

1. Limites de suites de référence

Nous allons donner quelques suites "classiques" avec leur limite en $+\infty$:

$\begin{array}{|c|c|c|c|}\hline \textbf{Suite} & \textbf{Limite quand } n \text{ tend vers } + \infty \\ \hline (\sqrt{n}) & + \infty \\ (n) & + \infty \\ \hline (n^k), \text{ pour } k \in \mathbb{N}^* & + \infty \\ \hline \left(\frac{1}{\sqrt{n}}\right) & 0 \\ \hline \left(\frac{1}{n^k}\right), \text{ pour } k \in \mathbb{N}^* & 0 \\ \hline \end{array}$

Nous allons désormais donner la limite d'une catégorie de suite très importante en mathématiques : celle des **suites géométriques**. Ainsi :

À RETENIR : LIMITE DE SUITES GÉOMÉTRIQUES 📍

Soit (v_n) une suite définie pour tout $n \in \mathbb{N}$ par $v_n = q^n$ (où q est un nombre réel). Alors, on peut donner la limite de la suite (v_n) en fonction de q:

Limite d'une suite géométrique								
Si on a	-1 < q < 1	1 < q	$q \leq -1$	q = 1				
Alors la suite (v_n) a pour limite	0	$+\infty$	Pas de limite	1				

À LIRE 00

Le réel q est la **raison** de la suite : si q > 1, (v_n) est strictement croissante, si 0 < q < 1, (v_n) est strictement décroissante et si q = 1 ou 0, (v_n) est constante.

2. Opérations sur les limites

Dans tout ce qui suit, (u_n) et (v_n) sont deux suites. Ces tableaux sont à connaître et sont requis pour pouvoir travailler sur les limites.

À RETENIR : LIMITE D'UNE SOMME 🜹									
Limite d'une somme									
Si la limite de (u_n) quand n tend vers $+\infty$ est	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$			
Et la limite de (v_n) quand n tend vers $+\infty$ est	ℓ'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$			
Alors la limite de $(u_n + v_n)$ quand n tend vers $+\infty$ est	$\ell + \ell'$	$+\infty$	$-\infty$	$+\infty$	$-\infty$?			

À RETENIR : LIMITE D'UN PRODUIT 📍									
Limite d'un produit									
Si la limite de									
(u_n) quand n	ℓ	0 > 0	$\ell > 0$	0 < 0	$\ell < 0$	1.20	$+\infty$	20	
tend vers $+\infty$	ι κ	\ \ \ > 0	$\ell > 0$	$\ell < 0$	$\ell < 0$	$+\infty$	$+\infty$	$-\infty$	
est									
Et la limite de									
(v_n) quand n	ℓ'	1.20	20	1.20	20	1.20	20	20	$\mid_{\pm\infty}\mid$
tend vers $+\infty$	(K	$+\infty$	$-\infty$	$ +\infty $	$-\infty$	$+\infty$	$-\infty$	$-\infty$	
est									
Alors la limite									
de $(u_n \times v_n)$	$\ell imes \ell'$	$+\infty$	~	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	7
quand <i>n</i> tend	1 ^ 1	$ +\infty $	$-\infty$	$ -\infty $	$+\infty$	$+\infty$	$-\infty$	$\int_{-\infty}^{+\infty}$	•
vers $+\infty$ est									

À RETENIR : LIMITE D'UN QUOTIENT 📍

Limite d'un quotient									
Si la limite de (u_n) quand n									
tend vers $+\infty$	ℓ	ℓ	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$	ℓ	0
est									
Et la limite de									
(v_n) quand n	$\ell' eq 0$		$\ell' \sim 0$	$\theta' < 0$	$\ell' > 0$	$\theta' = 0$	$\pm \infty$	0+	0
tend vers $+\infty$	$ \ell \neq 0 $	$\perp \infty$	$\ell > 0$	$\epsilon < 0$	<i>k</i> > 0	$\epsilon < 0$		0_	0
est									
Alors la limite									
de $\left(\frac{u_n}{v_n}\right)$ quand	ℓ	0					,	1	7
n tend vers	$\overline{\ell'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	'	$\pm \infty$	f
$+\infty$ est									

À LIRE : FORMES INDÉTERMINÉES 👀

À noter qu'il n'existe que 4 formes indéterminées : " $+\infty-\infty$ ", " $0\times\pm\infty$ ", " $\pm\infty$ " et "0 = 1".

3. Majoration, minoration et bornes

À RETENIR : DÉFINITION 🖁

Soient une suite (u_n) et deux réels m et M:

- On dit que que m est un **minorant** de (u_n) si pour tout $n: u_n > m$.
- On dit que que M est un **majorant** de (u_n) si pour tout $n: u_n < M$.
- On dit que que (u_n) est **bornée** si elle est à la fois majorée et minorée.

À RETENIR : THÉORÈME 🕴

- Si (u_n) est croissante et est majorée, alors elle est convergente. Si elle n'est pas majorée, (u_n) diverge vers $+\infty$.
- Si (u_n) est décroissante et est minorée, alors elle est convergente. Si elle n'est pas minorée, (u_n) diverge vers $-\infty$.

DÉMONSTRATION

Il faut savoir montrer que toute suite croissante et non majorée diverge vers $+\infty$. C'est ce que nous allons faire ici. Soit donc (u_n) une telle suite. Soit A>0, on cherche un rang N tel que pour tout $n\geq N$, $u_n>A$.

Or, comme (u_n) est non majorée, il existe N tel que $u_N > A$. De plus, comme (u_n) est croissante, alors $A < u_N \le u_{N+1} \le u_{N+2} \le ...$

Donc on a bien trouvé notre rang N vérifiant la définition de la divergence vers $+\infty$.

À LIRE 00

Toute suite convergente est également bornée.

4. Comparaisons et encadrements

À RETENIR : THÉORÈMES DE COMPARAISON 💡

Soient deux suites (u_n) et (v_n) telles que $u_n < v_n$ à partir d'un certain rang N. On a :

— Si
$$\lim_{n\to +\infty} u_n = +\infty$$
, alors $\lim_{n\to +\infty} v_n = +\infty$.

— Si
$$\lim_{n\to+\infty} v_n = -\infty$$
, alors $\lim_{n\to+\infty} u_n = -\infty$.

— Si
$$\lim_{n \to +\infty} u_n = \ell$$
 et $\lim_{n \to +\infty} v_n = \ell'$ alors $\ell < \ell'$.

DÉMONSTRATION

Il peut être utile de savoir démontrer le premier point dans le cas N=0 (les autres points se démontrent de manière semblable). Supposons $\lim_{n\to +\infty}u_n=+\infty$. Soit A>0, on cherche un rang p tel que pour tout $n\geq p$, $v_n>A$.

Comme u_n diverge vers $+\infty$, il existe un rang q tel que pour tout $n \ge q$, $u_n > A$. Donc on a : $A < u_q < v_q$, mais aussi $A < u_{q+1} < v_{q+1}$, etc...

Donc il suffit de poser p=q et on a bien notre rang vérifiant la définition de la divergence vers $+\infty$.

À RETENIR : THÉROÈME DES GENDARMES 📍

Soient trois suites (u_n) , (v_n) et (w_n) . On suppose que que $u_n < v_n < w_n$ à partir d'un certain rang et que (u_n) et (w_n) convergent vers le réel ℓ .

Alors
$$\lim_{n\to+\infty} v_n = \ell$$
.

III - Raisonnement par récurrence

Si on souhaite montrer qu'une propriété est vraie pour tout $n \in \mathbb{N}$ à partir d'un certain rang p, il est possible d'utiliser un type de raisonnement appelé **raisonnement par récurrence**.

À RETENIR : RAISONNEMENT PAR RÉCURRENCE 📍

Initialisation : On teste la propriété au rang p. Si elle est vérifiée, on passe à l'étape suivante

Hérédité: On suppose la propriété vraie à un rang $n \ge p$. Puis on montre qu'elle reste vraie au rang n + 1.

Conclusion : On explique que l'on vient de démontrer la propriété au rang n+1 et que comme celle-ci est initialisée et héréditaire, alors elle est vraie à partir du rang p.

À LIRE : EXEMPLE 99

Soit une suite (u_n) définie par $(u_n)=\begin{cases} u_0=4\\ u_{n+1}=\frac{4u_n+17}{u_n+4} \end{cases}$. On souhaite montrer que pour tout $n\in\mathbb{N}$, on a $4\leq u_n\leq 5$.

On note \mathcal{P}_n la propriété définie pour tout $n \in \mathbb{N}$ par \mathcal{P}_n : $4 \le u_n \le 5$.

On constate que $u_{n+1} = \frac{4u_n + 17}{u_n + 4} = \frac{4(u_n + 4) + 1}{u_n + 4} = 4 + \frac{1}{u_n + 4}$.

Initialisation : On teste la propriété au rang 0 :

 $\mathcal{P}_0: 4 \leq \mathit{u}_0 \leq 5 \iff 4 \leq 4 \leq 5.$ C'est vrai : la propriété est vraie au rang 0.

Hérédité : Supposons la propriété vraie à un rang $n \in \mathbb{N}$ et vérifions qu'elle est vraie au rang n+1.

D'après \mathcal{P}_n : $4 \leq u_n \leq 5$. Donc on a :

$$\iff$$
 4 $\leq u_n \leq 5$

$$\iff 4+4 \le u_n+4 \le 5+4$$

 $\iff \frac{1}{9} \leq \frac{1}{u_n+4} \leq \frac{1}{8}$ (la fonction inverse est décroissante sur \mathbb{R}^+ donc on change de sens l'inégalité)

$$\iff 4 + \frac{1}{9} \le 4 + \frac{1}{u_n + 4} \le 4 + \frac{1}{8}$$

Or $4+\frac{1}{9}\approx 4.111>4$ et $4+\frac{1}{8}=4.125<5.$ On a donc bien :

$$4 \le u_{n+1} \le 5$$

Conclusion : La propriété est initialisée au rang 0 et est héréditaire. Ainsi, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

Le raisonnement par récurrence est très utilisé en mathématiques et ne se limite pas qu'à l'étude des suites. On peut par exemple l'utiliser pour montrer l'**inégalité de Bernoulli**.

À RETENIR : INÉGALITÉ DE BERNOULLI 🕈

 $(1+x)^n > 1 + nx$ pour tout $n \ge 2$ et tout $x \in [-1, 0[\cup]0, +\infty[$.

DÉMONSTRATION : INÉGALITÉ DE BERNOULLI

Soit $x \in [-1, 0[\cup]0, +\infty[$. On note \mathcal{P}_n la propriété définie pour tout $n \ge 2$ par \mathcal{P}_n : $(1+x)^n > 1+nx$. Montrons \mathcal{P}_n par récurrence.

Initialisation : On teste la propriété au rang 2 :

$$\mathcal{P}_2: (1+x)^2 = 1 + 2x + x^2 > 1 + 2x \text{ (car } x^2 > 0).$$

La propriété est vraie au rang 2.

Hérédité : Supposons la propriété vraie à un rang $n \ge 2$ et vérifions qu'elle est vraie au rang n + 1.

En multipliant les deux membres de l'inégalité de l'hypothèse de récurrence par $1+x \ge 0$ (qui ne change donc pas le sens de l'inégalité), on obtient :

$$(1+x)^n(1+x) \ge (1+nx)(1+x)$$

 $\iff (1+x)^{n+1} \ge 1 + (n+1)x + nx^2 > 1 + (n+1)x$

Conclusion

La propriété est initialisée au rang 2 et est héréditaire. Ainsi, \mathcal{P}_n est vraie pour tout $n \geq 2$.