数列极限

李 君

天津师范大学, 数学科学学院

2023 年 6 月

目录

- 第二章 数列极限
 - 数列极限的概念

§1 数列极限的概念

数列极限是整个数学分析最重要的基础之一,它不仅与函数极限 密切相关,而且为今后学习级数理论提供了极为丰富的准备知识。

- 一、数列的定义
- 二、一个经典的例于
- 三、收敛数列的定义
- 四、按定义验证极限
- 五、再论 " εN " 说法、一些例子

一、数列的定义

若函数 f 的定义域为全体正整数的集合 N_+ ,则称

$$f: \mathbb{N}_+ \to \mathbb{R} \ \text{if} \ f(n), n \in \mathbb{N}_+$$

为数列. 因为 N_+ 的所有元素可以从小到大排列出来, 所以我们也将数列写成

$$a_1, a_2, \cdots, a_n, \cdots,$$

或简记为 $\{a_n\}$. 这里 a_n 称为数列 $\{a_n\}$ 的通项.

二、一个经典的例子

古代哲学家庄周所著的《庄子.天下篇》引用了一句话:"一尺之棰,日取其半,万世不竭"。它的意思是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去.

我们把每天截下部分(或剩下部分)的长度列出:

第一天截下 $\frac{1}{2}$, 第二天截下 $\frac{1}{2^2}$, …,第 n 天截下 $\frac{1}{2^n}$, …

这样就得到一个数列:

$$\frac{1}{2},\frac{1}{2^2},\cdots,\frac{1}{2^n},\cdots,\stackrel{\square}{\boxtimes}\left\{\frac{1}{2^n}\right\}.$$

容易看出:数列 $\left\{\frac{1}{2^n}\right\}$ 的通项 $\frac{1}{2^n}$ 随着 n 的无限增大而无限趋于 0 .

三、收敛数列的定义

一般地说,对于数列 $\{a_n\}$,若当 n 充分变大时, a_n 能无限地接近某个常数 a_n 则称 $\{a_n\}$ 收敛于 a_n 下面给出严格的数学定义.

定义 1 设 $\{a_n\}$ 为一个数列, a 为一个常数, 若对于任意的正数 $\varepsilon > 0$, 总存在正整数 N, 使当 n > N 时,

$$|a_n-a|<\varepsilon,$$

则称数列 $\{a_n\}$ 收敛于 a,又称 a 为数列 $\{a_n\}$ 的极限,记作

$$\lim_{n\to\infty}a_n=a.\quad (\cancel{\mathfrak{R}}\quad a_n\to a,\ n\to\infty)$$

若 $\{a_n\}$ 不收敛,则称 $\{a_n\}$ 为发散数列.

注 定义 1 这种陈述方式,俗称为" $\varepsilon - N$ "说法.

四、按定义验证极限

为了加深对数列收敛定义的了解,下面结合例题加以说明,希望大家对 " $\varepsilon - N$ " 说法能有正确的认识.

例1用定义验证:
$$\lim_{n\to\infty}\frac{1}{n}=0$$
.

分析 对于任意正数
$$\varepsilon$$
, 要使 $\left|\frac{1}{n}-0\right|<\varepsilon$, 只要 $n>\frac{1}{\varepsilon}$. 证 对于任意的正数 ε , 取 $N=\left[\frac{1}{\varepsilon}\right]$, 当 $n>N$ 时, $\left|\frac{1}{n}-0\right|<\varepsilon$, 所以 $\lim_{n\to\infty}\frac{1}{n}=0$.

例 2 用定义验证 $\lim_{n\to\infty} q^n = 0$ (0 < |q| < 1).

分析 对于任意的正数
$$\varepsilon$$
, 要使 $|q^n-0|<\varepsilon$, 只要
$$n>\frac{\log \varepsilon}{\log |q|}.$$

证
$$\forall \varepsilon > 0$$
 (不妨设 $0 < \varepsilon < 1$), 取 $N = \left[\frac{\log \varepsilon}{\log |q|}\right] + 1$, 当 $n > N$ 时, 有

$$|q^n-0|<\varepsilon$$

这就证明了
$$\lim_{n\to\infty}q^n=0$$
.

例 3 用定义验证
$$\lim_{n\to\infty} \frac{n^2}{3n^2-n-7} = \frac{1}{3}$$
.

分析 任给 $\varepsilon > 0$, 由

$$\left| \frac{n^2}{3n^2 - n - 7} - \frac{1}{3} \right| = \left| \frac{n + 7}{3(3n^2 - n - 7)} \right|,$$

当 $n \ge 7$ 时, $n+7 \le 2n$, $3n^2 - n - 7 \ge 3n^2 - 2n \ge 2n^2$, 故要使 $\left| \frac{n+7}{3(3n^2 - n - 7)} \right| \le \frac{2n}{6n^2} = \frac{1}{3n} < \varepsilon 成立, 只要 <math>n > \frac{1}{3\varepsilon}$ 即可

注意 解这个不等式是在 $n \ge 7$ 的条件下进行的.

证 对于任意的正数 ε , 取

$$N = \max\left\{7, \left\lceil \frac{1}{3\varepsilon} \right\rceil + 1\right\},\,$$

当
$$n > N$$
 时, 有

$$\left|\frac{n^2}{3n^2-n-7}-\frac{1}{3}\right|<\varepsilon,$$

即得

$$\lim_{n\to\infty}\frac{n^2}{3n^2-n-7}=\frac{1}{3}.$$

例 4 用定义验证 $\lim_{n\to\infty} \sqrt[n]{a} = 1$, 其中 a > 0.

证 这里只验证 a>1 的情形 (0< a<1 时自证). 设 $\alpha_n=a^{\frac{1}{n}}-1$.

因为 $a = (1 + \alpha_n)^n \ge 1 + n\alpha_n$, 所以

$$0<\alpha_n=\sqrt[n]{a}-1\leq\frac{a-1}{n}.$$

故对于任意正数
$$\varepsilon$$
, 取 $N = \left[\frac{a-1}{\varepsilon}\right] + 1$, 当 $n > N$ 时,
$$|\sqrt[d]{a} - 1| < \varepsilon.$$

因此证得 $\lim_{n\to\infty} \sqrt[4]{a} = 1$.

五、再论" $\varepsilon-N$ "说法

从定义及上面的例题我们可以看出:

1. ε 的任意性: 定义中的 ε 用来刻画数列 $\{a_n\}$ 的通项与定数 a 的接近程度. 显然正数 ε 愈小, 表示 a_n 与 a 接近的程度愈高; ε 是任意的, 这就表示 a_n 与 a 可以任意接近. 要注意, ε 一旦给出, 在接下来计算 N 的过程中, 它暂时看作是确定不变的. 此外, 又因 ε 是任意正数, 所以 2ε , 3ε , $\frac{\varepsilon}{2}$, \cdots 等均可看作任意正数, 故定义 1 中的不等式

$$|a_n-a|<\varepsilon$$

可以用 $|a_n - a| < K\varepsilon (K)$ 为某一正常数) 来代替.

再有,我们还可以限定 ε 小于某一个正数 (比如 ε < 1). 事实上,对 $0<\varepsilon<1$ 若能验证 $\{a_n\}$ 满足定义 1 ,那么对 $\varepsilon\geq 1$ 自然也可以验证成立.

2. N 的相对性: 从定义 1 中又可看出, 随着 ε 的取值不同, N 当然也会不同. 但这并不意味着 N 是由 ε 惟一确定. 例如, 当 n > N 时, 有

$$|a_n-a|<\varepsilon,$$

则当 $n > N_1 = 2N$ 时, 对于同样的 ε , 更应有

$$|a_n-a|<\varepsilon.$$

也就是说, 在这里只是强调 N 的存在性, 而不追求 N 的 "最佳性"

14/22

3. 极限的几何意义

从几何上看,"n > N 时有 $|a_n - a| < \varepsilon$ ",实际上就是所有下标大于 N 的 a_n 全都落在邻域 $U(a;\varepsilon)$ 之内,而在 $U(a;\varepsilon)$ 之外, $\{a_n\}$ 至多只有有限项 (N 项)。反过来,如果对于任意正数 ε ,落在 $U(a;\varepsilon)$ 之外至多只有有限项,设这些项的最大下标为 N,这就表示当 n > N 时, $a_n \in U(a;\varepsilon)$,即 $\lim_{n \to \infty} a_n = a$.

以上是定义 1 的等价说法, 写成定义就是:

定义 1' 任给 $\varepsilon > 0$, 若在 $U(a; \varepsilon)$ 之外至多只有 $\{a_n\}$ 的有限多项,则称数列 $\{a_n\}$ 收敛于 a. 这样, $\{a_n\}$ 不以 a 为极限的定义也可陈述为:存在 $\varepsilon_0 > 0$,使得在 $(a - \varepsilon_0, a + \varepsilon_0)$ 之外含有 $\{a_n\}$ 中的无限多项.

注 $\{a_n\}$ 无极限 (即发散) 的等价定义为: $\{a_n\}$ 不以任何实数 a 为

极限.

4. 无穷小数列和无穷大数列

定义 2 若 $\lim_{n\to\infty} a_n = 0$, 则称 $\{a_n\}$ 为无穷小数列.

例如 $\left\{\frac{1}{n^2}\right\}$ 和 $\left\{\frac{n!}{n^n}\right\}$ 是无穷小数列. 当 |q| < 1 时, $\{q^n\}$ 是无穷小数列.

以下定理显然成立, 请读者自证.

定理 2.1 数列 $\{a_n\}$ 收敛于 a 的充要条件是: $\{a_n - a\}$ 是无穷小数列.

定义 3 设 $\{a_n\}$ 是一数列, 若对任意 G > 0, 总存在正整数 N, 使得任意 n > N, $|a_n| > G$, 则称 $\{a_n\}$ 是无穷大数列, 记作

$$\lim_{n\to\infty}a_n=\infty.$$

若 $|a_n| > G$, 改为 $a_n > G$ 或 $a_n < -G$, 则称 $\{a_n\}$ 是正无穷大数列或负无穷大数列, 分别记作

$$\lim_{n\to\infty}a_n=+\infty \ \ensuremath{\not\equiv} \lim_{n\to\infty}a_n=-\infty.$$

六、一些例子

为了更好地理解 " $\varepsilon - N$ " 定义, 再举一些例题.

例 5 证明 {(-1)ⁿ} 发散.

证 对于任意实数 a, 取 $\varepsilon_0 = \frac{1}{2}$, $\{a_n\} = \{(-1)^n\}$ 满足: 当 $a \le 0 (a \ge 0)$ 时,在 $\left(a - \frac{1}{2}, a + \frac{1}{2}\right)$ 之外有无限多个偶数项 (奇数项). 所以由定义 1', $\{a_n\}$ 不以 a 为极限. 又因 a 是任意的,所以 $\{a_n\}$ 发散.

例 6 证明
$$\lim_{n\to\infty} \frac{a^n}{n!} = 0$$
.

证
$$|a| > 1$$
 时, $\forall \varepsilon > 0$,取 $N = \frac{|a|^{[a|]+1}}{\varepsilon[|a|]!}$,当 $n > N$ 时,
$$\left|\frac{a^n}{n!} - 0\right| = \frac{|a| \cdots |a|}{1 \cdot 2 \cdots [|a|][|a|+1] \cdots n} \le \frac{|a|^{[|a|]}}{[|a|]!} \cdot \frac{|a|}{n} < \varepsilon.$$
 当 $0 < |a| \le 1$ 时,取 $N = \frac{1}{\varepsilon}, n > N$ 时,
$$\left|\frac{a^n}{n!}\right| \le \frac{1}{n} < \varepsilon, \text{从而}$$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0.$$

注 这里我们将 N 取为正数,而非正整数。实际上 N 只是表示某个时刻,保证从这一时刻以后的所有项都能使不等式 $|a_n - a| < \varepsilon$ 成立即可。

例 7 证明 $\lim_{n\to\infty} \sin\frac{1}{n} = 0$.

证 我们用两种方法来证明.

(1) 任给正数
$$\varepsilon$$
, 取 $N = \frac{1}{\varepsilon}$, 当 $n > N$ 时,
$$\left| \sin \frac{1}{n} - 0 \right| \le \frac{1}{n} < \varepsilon$$

(2) 任给正数 ε , 限制 ε < 1. 由

$$\left|\sin\frac{1}{n} - 0\right| = \sin\frac{1}{n} < \sin(\arcsin\varepsilon) = \varepsilon,$$

可知只需取 $N = \frac{1}{\arcsin \varepsilon}$ 即可.

注 这里假定 $0 < \varepsilon < 1$ 是必要的, 否则 $\arcsin \varepsilon$ 便没有定义.

复习思考题

- 1. 极限定义中的 $\forall \varepsilon, \exists N$ 是否可以写成 $\exists N, \forall \varepsilon$ "? 为什么?
- 2. $\lim_{n\to\infty} a_n = a \Rightarrow \lim_{n\to\infty} |a_n| = |a|$, 反之是否成立?
- 3. 已知 $\lim_{n\to\infty} a_n = A, \sigma: N \to N$ 是一个——映射. 请依据极限定

义证明: $\lim_{n\to\infty} a_{\sigma(n)} = A$.