

Flight Forecast: Predicting Summer Travel Disruptions

- Background
- Data Visualization
- Modeling Approach

Group 4
Jiapeng Wang
Yifan Chen
Zhixing Liu

Background

Background:

- Summer is the busiest air travel season in the U.S.
- Passengers often face frequent delays and cancellations
- Understanding disruption patterns can help travelers make smarter decisions

Objective:

- Predict the probability of flight cancellation
- Predict departure and arrival delay durations
- Provide actionable travel recommendations based on predictions

Data Scope:

 Focused on flights from May to August 2024,
 Captures the peak summer travel season in the U.S.

Data Sources & Enrichment:

- Core dataset from the U.S. Department of Transportation
- Includes flight schedules, actual times, and airline info
- Weather data was added using the Meteostat package, based on airport latitude and longitude

Data Visualization: Time Patterns

Delays by 3-Hour Time Blocks

Cancellation Patterns by Weekday

Data Visualization: Airline & Airport Performance

Airline Cancellation & Delay

Data Visualization: Weather Impact

Cancellation Rate Under Extreme Weather

Departure Delay vs. Precipitation

Modeling approach - XGBoost

- Apply one-hot encoding and label encoding
- Handle data imbalance for classification model
- Remove outliers for regression models using the IQR method

Model	AUC_MSE
Cancellation	0.87
Dep_delay	136.07
Arr_delay	219.92

Cancellation	Dep_delay	Arr_delay
origin_snow_mm dest_snow_mm	MKT_AIRLINE SCH_DEP_TIME	MKT_AIRLINE SCH_DEP_TIME
small_airport WEEK_Sun medium_airport	DEP_HOUR ORIGIN_IATA medium_airport	DEP_HOUR ORIGIN_IATA precipitation_mm

Modeling approach - XGBoost

- Models without weather use base information on flights as inputs
- Models with weather add weather features such as snow, precipitation, air temperature, and wind speed to the inputs.
- The APP will detect if the entered departure time is within one week from the current day. If yes, the model with weather is called.

Version_1	Version_2	
model_arr_no_weather	model_arr_weather	
$model_dep_no_weather$	$model_dep_weather$	
$model_cancel_no_weather$	$model_cancel_weather$	

 In the regression model, we use the RMSE of the model to approximate the volatility of the forecast.

Thank you

Q&A

Backup

Note: Only use red icons on white or light gray backgrounds

