FUNÇÃO EXPONENCIAL

Exemplo 1. O número de usuários da rede social "Juntos" praticamente tem triplicado a cada 2 anos. Suponha que em determinado ano (t=0), o serviço contasse com meio milhão de usuários.

Sendo o tempo (t) medido em anos e o número de usuários (N) medido em milhões, temos:

• Tabela com alguns dados:

t	-2	0	2	4	6
N(t)	0,17	0,5	1,5	4,5	13,5

ullet Vamos obter uma fórmula para Nem função de t

t(anos)	$N(\text{milh\~oes})$
-2	$0,17 = 0,5/3 = 0,5 \cdot 3^{-1} = 0,5 \cdot 3^{-2/2}$
0	$0,5 = 0,5 \cdot 3^0 = 0,5 \cdot 3^{0/2}$
2	$1,5 = 0,5 \cdot 3 = 0,5 \cdot 3^{2/2}$
4	$N(\text{minoes})$ $0, 17 = 0, 5/3 = 0, 5 \cdot 3^{-1} = 0, 5 \cdot 3^{-2/2}$ $0, 5 = 0, 5 \cdot 3^{0} = 0, 5 \cdot 3^{0/2}$ $1, 5 = 0, 5 \cdot 3 = 0, 5 \cdot 3^{2/2}$ $4, 5 = 0, 5 \cdot 3 = 0, 5 \cdot 3^{2} = 0, 5 \cdot 3^{4/2}$ $13, 5 = 4, 5 \cdot 3 = 0, 5 \cdot 2^{3} = 0, 5 \cdot 3^{6/2}$
6	$13, 5 = 4, 5 \cdot 3 = 0, 5 \cdot 2^3 = 0, 5 \cdot 3^{6/2}$

Portanto $N(t) = 0, 5 \cdot 3^{t/2}$

Exemplo 2. Enquanto a rede "Juntos" faz sucesso, na rede "Tchau" o número de usuários de cada ano é a metade da quantidade do ano anterior. Suponha que no ano correspondente a t=0, o serviço contasse com 6 milhões de usuários.

Medindo o tempo em anos e o número de usuários (N) em milhões, temos:

• Tabela com alguns dados:

t	-1	0	1	2	3
N(t)	12	6	3	1,5	0,75

• Vamos, agora, expressar N em função de t.

t(anos)	$N(\text{milh\~oes})$
-1	N(milhões) $12 = 6/0, 5 = 6 \cdot (1/2)^{-1}$
0	$6 = 6 \cdot (1/2)^{0}$ $3 = 6 \cdot (1/2)^{1}$ $1,5 = 3 \cdot (1/2) = 6 \cdot (1/2)^{2}$ $0,75 = 1,5 \cdot (1/2) = 6 \cdot (1/2)^{3}$
1	$3 = 6 \cdot (1/2)^1$
2	$1,5 = 3 \cdot (1/2) = 6 \cdot (1/2)^2$
3	$0,75 = 1,5 \cdot (1/2) = 6 \cdot (1/2)^3$

Portanto $N(t) = 6 \cdot \left(\frac{1}{2}\right)^t$

A função $f(x)=a^x$ é chamada de função exponencial (de base a), sendo a um número real positivo e diferente de 1.

- O domínio de uma função exponencial é \mathbb{R} e a imagem é $]0,+\infty[$
- \bullet Se a>1,então $f(x)=a^x$ é crescente;e se 0< a<1,então $f(x)=a^x$ é decrescente.
- Um caso particular, mas muito importante, ocorre quando a base é o chamado númro de Euler, que é denotado por e. O número e é irracional e vale aproximadamente 2,71828. A função $f(x) = e^x$ também é denotada por $\exp(x)$.

Exemplo 3. A função $f(x) = (0,63)^x$ é decrescente, pois tem base (0,63) entre 0 e 1.

A função $f(x) = (\sqrt{2})^x$ é crescente, pois sua base é maior que 1.

A função $y=5^{-x}$ é decrescente, pois sua base é 1/5: $5^{-x}=(1/5^x)=(1/5)^x$

A função $y=-3\cdot 2^x$ é decrescente: a função $y=2^x$ é crescente, pois a base é maior que 1, assim ao multiplicarmos por um número negativo, -3, obtemos uma função decrescente.

Propriedades Sejam $a,\ b$ números reais positivos, xe ynúmeros reais quaisquer. Então

1

$$a^{-1} = \frac{1}{a}$$
 $a^0 = 1$ $a^1 = a$

$$a^{0} = 1$$

$$a^1 = a$$

$$a^{-}a^{g} = a^{-}$$

$$a^x a^y = a^{x+y} \qquad \qquad \frac{a^x}{a^y} = a^{x-y}$$

$$(a^x)^y = a^{xy}$$

$$a^{-x} = \frac{1}{a^x}$$

$$a^{-x} = \frac{1}{a^x} \qquad \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

$$(ab)^x = a^x b^x$$

• Note que $(a^x)^y \neq a^{x^y}$: $(2^3)^2 = 2^6 = 64$, mas $2^{3^2} = 2^9 = 512$

•
$$2^3 = \frac{1}{2^{-3}}$$

Gráfico de $f(x) = a^x$.

• Considere a função $f(x) = e^x$. Sabemos que f é crescente, nunca é negativa ou zero e que quanto e^x pode ser tão grande quanto queiramos, bastando tomar x suficientemente grande, isto é, $\lim e^x = +\infty$. Também vemos que podemos tornar e^x tão próximo de zero quanto queiramos, basta tomar x negativo, mas com módulo grande, isto e, $\lim_{x\to\infty}e^x=0$. A tabela abaixo apresenta alguns valores para o gráfico da função:

- Toda função exponencial $y = a^x$, com a > 1 tem gráfico semelhante ao gráfico acima.
 - Vamos esboçar o gráfico de $f(x) = (1/2)^x$.

f é decrecente, $\lim (1/2)^x = +\infty$ e $\lim (1/2)^x = 0$.

• Toda função exponencial $y = a^x$, com 0 < a < 1 tem gráfico semelhante ao gráfico acima.

FUNÇÃO LOGARÍTMICA

A função $f(x) = a^x$ tem inversa, pois é crescente ou decrescente, conforme a base a. Assim, fica definida a função $f^{-1}:]0, +\infty[\to \mathbb{R}$ que associa a cada número real positivo x um número real y, desde que f(y)=x, isto é, $f^{-1}(x)=y \iff a^y=x$. A função f^{-1} é a função logaritmíca de base a: $f^{-1}(x)=\log_a x$.

- Note que: $\log_a x = y \iff a^y = x$.
- \bullet O domínio da função \log_a é $]0,+\infty[$ e sua imagem é $\mathbb{R}.$
- ullet O logaritmo de x na base a é o expoente ao qual devemos elevar apara obter x.
- \bullet Se a>1,então a função $\log_a x$ é crescente; se 0< a<1,então a função $f(x) = \log_a x$ é decrescente
- O logaritmo natural ou neperiano de x (x > 0) é $\log_e x$, que é denotado por $\ln x.$ Isto é: $\ln x = \log_e x.$ Assim,

$$\ln x = y \iff e^y = x$$

Exemplo 4.

- $\log_{2} 1 = 0, \text{ pois } 2^{0} = 1$
- $\log_{e} 1 = 0$, pois $5^{0} = 1$
- $\log_4 2 = \frac{1}{2}$, pois $4^{1/2} = \sqrt{4} = 2$
- $\log_{2} 2 = 1/3$, pois $8^{1/3} = \sqrt[3]{8} = 2$
- $\log_2 0.5 = -1$, pois $2^{-1} = \frac{1}{2}$
- $\log_{\frac{1}{3}} 9$, pois $\left(\frac{1}{3}\right)^{-2} = \frac{1}{3^{-2}} = 3^2 = 9$
- $\log_{\pi} \pi^{\sqrt{2}} = \sqrt{2}$, pois $\pi^{\sqrt{2}} = \pi^{\sqrt{2}}$
- $\log_a a^b = b$, pois $a^b = a^b$

Propriedades Seja a número real positivo e diferene de 1. Então

$$\log_a 1/a = -1 \qquad \log_a 1 = 0$$

$$\log_a a = 1$$

$$\log_a xy = \log_a x + \log_a y$$

$$\log_a x/y = \log_a x - \log_a y$$

$$\log_a x^y = y \log_a x$$

Mudança de base:
$$\log_a x = \frac{\log_b x}{\log_b a}$$
. Em particular $\log_a x = \frac{\ln x}{\ln a}$ $\log_a a^x = x$
$$a^{\log_a x} = x$$

Em particular:
$$\ln(e^x) = x$$

$$e^{\ln x} = x$$

- \bullet Não existe $\log_a 0$, qualquer que seja a base a.
- \bullet Se x é negativo, então $\log_a x$ não é número real.
- $\ln e = 1$.

Exemplo 5. • A função $y = \ln x$ é crescente, pois sua base é o número e, que é maior que 1.

- A função $f(x) = \log_{0,5} x$ é decescente, pois sua base é 0,5, que é um número entre 0 e 1.
- A função $y=-3\log x$ é decrescente: $\log x$ é crescente, pois sua base é 10, que é maior que 1. Mas ao multiplicarmos por número negativo, obtemos uma função decrescente.
- função $f(x)=2\ln x$ é crescente: $\ln x$ é crescente, pois a base é e, que é maior que 1. Portanto, ao multiplicarmos por um número positivo, a função obtida continua sendo crescente.

Exemplo 6. Determine x em cada caso:

•
$$\log_{\underline{1}} 8 = -\frac{2}{3}$$

Temos:

$$\log_{\frac{1}{2}} 8 = -\frac{2}{3} \Longleftrightarrow \left(\frac{1}{x}\right)^{-2/3} = 8 \Longleftrightarrow \frac{1}{x^{-2/3}} = 8$$

$$\Longleftrightarrow x^{2/3} = 2^3 \Longleftrightarrow \left(x^{2/3}\right)^{3/2} = \left(2^3\right)^{3/2} \Longleftrightarrow x = 2^{9/2}$$

• $\ln x^5 = 2$.

Temos: $\ln x^5 = 2 \iff x^5 = e^2 \iff x = \sqrt[5]{e^2}$. Portanto, $x = e^{2/5}$

Exemplo 7. Em cada caso expresar y como função explícita de x:

• $2\log_3 y = \log_3 x + 5\log_3 2$

Temos:

$$2 \log_{3} y = \log_{3} x + 5 \log_{3} 2$$

$$\log_{3} y^{2} = \log_{3} x + \log_{3} 2^{5}$$

$$\log_{3} y^{2} = \log_{3} 2^{5} x$$

$$y^{2} = 2^{5} x$$

$$y = \sqrt{2^{5} x}$$

$$y = 4\sqrt{2x}$$

Temos:

$$\ln y = 5x - 2 \ln 3$$

$$\ln y + 2 \ln 3 = 5x$$

$$\ln y + \ln 3^2 = 5x$$

$$\ln 3^2 y = 5x$$

$$3^2 y = e^{5x}$$

$$y = \frac{e^{5x}}{9}$$

• Começamos "invertendo" a tabela:

1	N	0,17	0,5	1,5	4,5	13,5
ı	t(N)	-2	0	2	4	6

De $N = 0, 5 \cdot 3^{t/2}$, aplicando logaritmo em ambos os lados:

$$\begin{split} \log_3 N &= \log_3 0, 5 \cdot 3^{t/2} \\ \log_3 N &= \log_3 0, 5 + \log_3 3^{t/2} \\ \log_3 N - \log_3 0, 5 &= \frac{t}{2} \underbrace{\log_3 3}_{1} \\ \log_3 N/0, 5 &= \frac{t}{2} \\ &\frac{t}{2} = \log_3 (N/0, 5) \\ &t = 2 \log_3 6N \end{split}$$

O gráfico de t em função de N é dado pela figura abaixo. Note que é o gráfico da figura 1. com os eixos "trocados".

Exemplo 9. Agora vamos tomar o exemplo 2 e expressar t em função de N:

• Tabela de t em função de N:

N	12	6	3	1,5	0,75
t(N)	-2	0	2	4	6

De $N = 6 \cdot \left(\frac{1}{2}\right)^t$ aplicando logaritmo nos dois lados obtemos:

$$\begin{split} \log_{1/2} N &= \log_{1/2} 6 (\frac{1}{2})^t \\ \log_{1/2} N &= \log_{1/2} 6 + \log_{1/2} (\frac{1}{2})^t \\ \log_{1/2} N - \log_{1/2} 6 &= t \log_{1/2} (\frac{1}{2}) \\ \log_{1/2} N/6 &= t \\ t &= \log_{1/2} N/6 \end{split}$$

O gráfico de t em função de N é dado pela figura abaixo. Note que é o gráfico da figura 1. com os eixos "trocados".

Exemplo 8. Vamos "inverter" o exemplo 1, isto é, vamos expressar t em função de N:

Exemplo 10. Nos processos radioativos *meia-vida* ou *período de semi desintegração* de um radioisótopo é o tempo necessário para que metade da massa deste isótopo desintegre-se, o que pode levar segundos ou bilhões de anos. Assim, como a meia-vida do titânio-44, Ti-44, é de 60 anos, se tivermos 10 kg deste material, depois de 60 anos teremos 5kg de Ti-44. Mais 60 anos e restarão 2,5 kg de Ti-44 e assim sucessivamente.

A meia-vida de um radioisótopo não varia com a pressão e nem com a temperatura, pois é um processo que envolve apenas o núcleo atômico, e tampouco depende da quantidade inicial da amostra. Assim, tal grandeza pode ser usada para determinar a idade de fósseis vegetais e animais, de rochas e até da própria Terra.

Nos organismos vivos o carbono-14, C-14, está presente em uma concentração constante de 10 ppb, ito é, em cada bilhão de átomos, existem 10 átomos de carbono-14. Os animais, pessoas e vegetais absorvem esse radioisótopo ao longo de suas vidas, parando de absorvê-lo somente quando morrem. Como a meia-vida de C-14 é de 5730 anos, é possível medir a concentração de carbono-14 no fóssil e determinar a sua idade.

Como exemplo, suponha que num fóssil animal o teor de carbono- 14 é igual a 1,25 ppb, o que corresponde a 12,5% do teor de carbono encontrado nos seres vivos. Temos:

 $10\,\mathrm{ppb}$ 5730anos $5\,\mathrm{ppb}$ 5730anos $2,5\,\mathrm{ppb}$ 5730anos $1,25\,\mathrm{ppb}$

Portanto, o fóssil tem 17190 anos.

Determine uma expressão para calcular, em fósseis vegetais e animais, o teor de carbono-14, em ppb, em função de t (tempo).

Determine a idade de um fóssil cujo teor de carbono-14 é de 3,47 ppb.

Ao morrer, o animal ou vegetal, tem uma concentração de $10~{\rm ppb}$ de C-14, que cai pela metade a cada período de $5730~{\rm anos}.$

t(anos)	C (concentração em ppb)
$0 \times 5730 = 0$	$10 = 10 \cdot (1/2)^0$
$1 \times 5730 = 5730$	$5 = 10 \cdot (1/2) = 10 \cdot (1/2)^{1}$
$2 \times 5730 = 11460$	$2,5 = 5 \cdot (1/2) = \cdot (1/2) = 10 \cdot (1/2)^2$
$3 \times 5730 = 17190$	$\begin{vmatrix} 1,25=2,5\cdot(1/2)=10\cdot(1/2)^3 \end{vmatrix}$

Assim, a concentração, em ppb., é $C=10\cdot\left(\frac{1}{2}\right)^{t/5730}$, com t em anos.

Se o teor de carbono-14, em ppb, de um fóssil é igual a 3,47, então:

$$C = 3,47$$

$$10 \cdot \left(\frac{1}{2}\right)^{t/5730} = 3,47$$

$$\left(\frac{1}{2}\right)^{t/5730} = 3,47/10$$

$$\ln\left(\frac{1}{2}\right)^{t/5730} = \ln(0,347)$$

$$\frac{t}{5730}\ln(1/2) = \ln(0,347)$$

$$t = 5730 \cdot \frac{\ln(0,347)}{\ln(1/2)}$$

$$t = 8,749,66$$

Portanto o fóssil tem, aproximadamente, 8.750 anos.

Gráfico de $f(x) = \log_a x$

 ${\color{red} \bullet}$ Considere a função $f(x) = \ln x$. Aqui a base é e, portanto a função é crescente (e>1).

Note que $\lim_{x\to +\infty} \ln x = +\infty$ e que $\lim_{x\to 0^+} \ln x = -\infty$. Você pode perceber isso fazendo uma tabela de $\ln x$ para algum valores "bem grandes" de x e para valores positivos de x, mas "próximos" de zero:

x	f(x)	x	f(x)
e	1	e^{-1}	-1
e^{10}	10	e^{-10}	-10
e^{100}	100	e^{-100}	-100
e^{1000}	1000	e^{-1000}	-1000
			l

Conhecendo o comportamento da função, basta fazer uma tabela em alguns poucos pontos:

Todas as funções logarítmicas de base maior que 1 tem gráfico semelhante ao gráfico acima.

• Considere, agora, a função $f(x) = \log_{1/2} x$. Aqui a base é 1/2, portanto a função é crescente (0 < 1/2 < 1).

Note que $\lim_{x\to +\infty}\log_{1/2}=-\infty$ e que $\lim_{x\to 0^+}\log_{1/2}x=+\infty$. Você pode perceber isso fazendo uma tabela de $\log_{1/2}x$ para algum valores "bem grandes" de x e para valores positivos de x, mas "próximos" de zero:

x	f(x)	x	f(x)
1/2	1	$(1/2)^{-1}$	-1
$(1/2)^{10}$	10	$(1/2)^{-10}$	-10
$(1/2)^{100}$	100	$(1/2)^{-100}$	-100
$(1/2)^{1000}$	1000	$(1/2)^{-1000}$	-1000
	1	1	1

Conhecendo o comportamento da função, basta tabela a função em alguns poucos pontos:

Todas as funções logarítmicas de base entre 0 e 1 tem gráfico semelhante ao gráfico acima.

Exercícios de revisão

1 Decidir, em cada caso, se a função é crescente ou decrescente. Justifique as respostas.

(a)
$$f(x) = 1,04^x$$

(b)
$$f(x) = 0.8^x$$

(c)
$$f(x) = e^x$$

(d)
$$f(x) = \ln x$$

(d)
$$f(x) = \ln x$$
 (e) $f(x) = \log_{0.7} x$

(f)
$$f(x) = \log_{\pi} x$$

2 A meia vida do fósforo-32 é de aproximadamente 14 dias. Para uma amostra inicial de 12 g determine:

- (a) Uma expressão para a massa, m(t), restante após t dias.
- (b) A massa remanescente após 8 dias.
- (c) O gráfico de m(t).
- (d) Quanto tempo é necessário para que a amostra fique reduzida a 0.5g?
- 3 Um capital C_0 é investido a uma taxa de 1,5% ao mês. Determine:
- (a) A expressão do capital C no mês t.
- (b) O tempo necessário para que um investimento inicial de R\$ 2.000.00 duplique.

4 O número N de bactérias numa dada colônia era de 800 em t=2h e de 32500 em t=6h. Sabe-se que o crescimento do número de bactérias é exponencial e dado por $N(t) = N_0 e^{kt}$. Determine

- (a) A expressão para calcular a quantidade N de bactérias.
- (b) O número inicial de bactérias.
- (c) A partir do instante inicial, em quanto tempo o número de bactérias dobrou?

5 Um paciente recebe uma dose de codeína. A quantidade Q, em miligramas, na corrente sanguínea t horas após ter recebido a droga é dada por $Q(t) = 400(0.6)^t$.

- (a) Esboce o gráfico de Q(t).
- (b) Calcule a quantidade da droga que permance na corrente sanguínea após 4 horas. Qual a quantidade eliminada em 4 horas?
- (c) Se a quantidade da droga na corrente sanguínea estiver abaixo de 10mg ela não é mais detectada. Quanto tempo levará para isso ocorrer?

6 Determinar x em cada caso:

(a)
$$\log_2 16 = x$$

(b)
$$\log_x 0.008 = -3$$

(d)
$$\log 100 = x$$

(e)
$$\log_7 x = \frac{2}{3}$$

(g)
$$\log x = 3$$

(h)
$$\ln x = -2$$

(j)
$$\log_{\frac{1}{2}} 16 = -\frac{4}{3}$$

$$(k) \ln 3x = -1$$

(m)
$$\log_b 6 = \frac{1}{2}$$

(n)
$$\log_k x^2 = c$$

7 Exprimir y como função de x:

(a)
$$\ln y = 3 \ln x + \ln 5$$

(b)
$$\ln y = mx + \ln c$$

(c)
$$2\log y = 3\log x + 4\log 5$$

(d)
$$\log_2 y = 2x + \log_2 7$$

(e)
$$\ln y = k \ln x + \ln c$$

(f)
$$5\log_3 y = 3\log_3 x - \log_3 2$$

Respostas

- 1 (a), (c), (d) e (f) são crescentes, pois têm bases maiores que 1. Já (b) e (e) são decrescentes, pois suas bases são menores que 1 (mas positivas).
- 2 (a) $m(t) = 12(0.5)^{t/14}$ (b) 8,08 g (d) 64,2 dias

3 (a)
$$C(t) = C_0(1,015)^t$$
 (b) 46,6 anos

4 (a) $N(t) = 126 e^{0.9261t}$ (b) 126 (c) 0,7485 h ou 44 min e 54 s

5 (b) Ao término de 4h ainda haverá na corrente sanguínea 51,84 mg. Quantidade eliminada em 4h: $400 - 51,84 = 348,16 \,\mathrm{mg}$.

(c) 7,22h (ou 7h13min)

Exercício 2(c)

Exercício 5(a)

(e)
$$\sqrt[3]{49}$$

(f) $e^{7/3}$

(m)
$$36$$
 (n) $\sqrt{k^c}$

(g)
$$1000$$
 (h) $1/e^2$

7 (a)
$$y = 5x^3$$

(c)
$$y = 25x\sqrt{x}$$

(e)
$$y = c x^k$$

(b)
$$y = c e^{mz}$$

(d)
$$y = 7(4^x)$$

(f)
$$y = \sqrt[5]{x^3/2}$$