

2^a Lista de Exercícios de Fundamentos de Matemática Elementar I Prof. Márcio Antônio de Andrade Bortoloti

1. A escala N de temperaturas foi feita com base nas temperaturas máxima e mínima em uma determinada cidade. A correspondência com a escala Celsius é a seguinte:

$^{o}\mathrm{N}$	$^{o}\mathrm{C}$
0	18
100	43

Em que temperatura ferve a água na escala N?

- 2. Uma caixa dágua de 1000 litros tem um furo no fundo por onde escoa a água a uma vazão constante. Ao meio dia de certo dia ela foi cheia e, às 6 da tarde desse dia, só tinha 850 litros. Quando ficará pela metade?
- 3. Os termos a_1, a_2, \dots, a_n de uma P.A. são os valores $f(1), f(2), \dots, f(n)$ de uma função afim. Mostre que cada a_i é igual à área de um trapézio delimitado pelo gráfico de f, pelo eixo OX e pelas retas verticais de equações x = i 1/2 e x = i + 1/2. Mostre que a soma $S = a_1 + a_2 + \dots + a_n$ é igual à área do trapézio delimitado pelo gráfico de f, pelo eixo OX e pelas retas verticais x = 1/2 e x = n + 1/2. Conclua que $S = \frac{a_1 + a_n}{2}n$.
- 4. Determine a imagem da função $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \max\{x 1; 10 2x\}$.
- 5. Faça o gráfico de $f(x) = \min\{4 x; x + 1\}$.
- 6. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função crescente. Mostre que as seguintes afirmações são equivalentes:
 - (i) f(nx) = nf(x) para todo $n \in \mathbb{Z}$ e todo $x \in \mathbb{R}$.
 - (ii) Pondo a = f(1), tem-se f(x) = ax para todo $x \in \mathbb{R}$.
 - (iii) f(x+y) = f(x) + f(y) para quaisquer $x, y \in \mathbb{R}$.
- 7. Dados arbitrariamente $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, com $x_1 \neq x_2$, mostre que existe uma única função afim $f : \mathbb{R} \to \mathbb{R}$ tal que $f(x_1) = y_1$ e $f(x_2) = y_2$.
- 8. Lembre-se que uma função $f: A \to B$ é chamada injetiva, se para todo $x, y \in A$ tivermos $f(x_1) = f(x_2)$ implicando $x_1 = x_2$. Agora vamos ao exercício: Seja $f: \mathbb{R} \to \mathbb{R}$ uma função crescente (ou decrescente) injetiva. Mostre que, se o acréscimo $f(x+h) f(x) = \phi(h)$ depender apenas de h, mas não de x, então f é uma função afim.
- 9. Mostre que, se uma função crescente (ou decrescente) $f: \mathbb{R} \to \mathbb{R}$ transforma qualquer progressão aritmética $x_1, x_2, \dots, x_n, \dots$ em uma progressão aritimética $y_1 = f(x_1), y_2 = f(x_2), \dots, y_n = f(x_n), \dots$ então f é uma função afim.