Souza Princi Maria Note: 6/20 (score total : 6/20)

+230/1/28+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :
	Souza Princi 00 1 2 3 4 5 6 7 8 9
	Maria Maria
0/0	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.
2/2	\boxtimes J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +230/1/ $xx+\cdots$ +230/2/ $xx+$.
	Q.2 Le langage $\{(ab)^n \mid \forall n \in \mathbb{N}\}$ est
0/2	□ non reconnaissable par automate □ fini □ vide ⋈ rationnel
	Q.3 Le langage $\{ \heartsuit^n \mid \forall n \in \mathbb{N} \}$ est
0/2	☐ fini ☑ rationnel (!) ☐ non reconnaissable par automate fini ☐ vide
	Q.4 Un langage quelconque
	peut n'être inclus dans aucun langage dénoté par une expression rationnelle
0/2	 peut avoir une intersection non vide avec son complémentaire n'est pas nécessairement dénombrable
	⊠ est toujours inclus (⊆) dans un langage rationnel
	Q.5 A propos du lemme de pompage Si un langage le vérifie, alors il est rationnel
2/2	☐ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel
	Si un langage ne le vérifie pas, alors il n'est pas rationnel Q.6 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$
	dont la <i>n</i> -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):
2/2	2^n \square Il n'existe pas. \square $\frac{n(n+1)}{2}$ \square $n+1$
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
0/2	$\ \ \ \ \ \ \ \ \ \ \ \ \ $
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
-1/2	\boxtimes 2 ⁿ \square Il n'existe pas. \bigcirc 4 ⁿ \square $\frac{n(n+1)(n+2)(n+3)}{4}$
	Q.9 Déterminiser cet automate. $\xrightarrow{a,b} \xrightarrow{a} \xrightarrow{a} \xrightarrow{b}$

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

- \square Det(T(Det(T(A))))
- \Box $T(Det(T(Det(\mathcal{A}))))$

Fin de l'épreuve.

2/2

-1/2