References: Introduction to Real Analysis (Bartle & Sherbert), Thomas Calculus 12th Edition

## 向量

向量屬於一種特殊的矩陣,通常用以表達多維坐標。

定義 1 (向量). 一個n-維向量包含n個元素,可視之為n-維空間中的坐標,同時代表從原點指向該坐標的箭頭。

爲方便描述,記 $V_S$ 為帶有S域的元素的向量集合。

定義 2 (向量加法). 在向量集合 $V_S$ 中, 若 $\vec{x}=(x_i)_i=(x_1,x_2,\dots), \vec{y}=(y_i)_i=(y_1,y_2,\dots)\in V_S$ ,則

$$\vec{x} + \vec{y} := (x_1 + y_1, x_2 + y_2, \dots) = (x_i + y_i)_i$$

定義 3 (標量乘法). 在向量集合 $V_S$ 中,若 $\vec{x} = (x_i)_i = (x_1, x_2, \dots) \in V_S$ , $\alpha \in S$ ,則

$$\alpha \vec{x} := (\alpha x_1, \alpha x_2, \dots) = (\alpha x_i)_i$$

定義 4 (向量的量值). 對於任意向量 $\vec{v}$ , 其量值定義為 $|\vec{v}|$ , 代表其長度。

## 向量空間

定義 5 (向量空間). 設 $V_S$ 為向量集合,且 $\vec{x}, \vec{y}, \vec{z} \in V_S$ ,  $\alpha, \beta \in S$ 。若 $V_S$ 符合以下定理:

- 加法結合律:  $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$ .
- 加法交換律:  $\vec{x} + \vec{y} = \vec{y} + \vec{z}$ 。
- 加法單位元:  $\vec{0} \in V_S$ 使得 $\vec{x} + \vec{0} = \vec{0} + \vec{x} = \vec{x}$ 。
- 加法逆:  $\forall \vec{x} \in V_S$ , 存在 $\vec{y} \in V_S$ 使得 $\vec{x} + \vec{y} = \vec{y} + \vec{x} = \vec{0}$ 。
- 標乘結合律:  $\alpha(\beta \vec{x}) = (\alpha \beta) \vec{x}$ .
- 標乘單位元:  $1 \in S$ 使得 $1\vec{x} = \vec{x}$ 。
- 分配律1:  $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$ .

• 分配律2:  $(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x}$ .

示例. ℝ是一個向量空間。而且任何域也是向量空間。

示例. 在牛頓力學中討論力時, 我們會以向量表示力的大小與方向。假設目前的討論僅限於平面(二維空間), 並記施力點為原點O。



在上圖中可通過改變力量發生的先後次序來實現向量的平移,從而得出

$$\vec{F_0} = \vec{F_1} + \vec{F_2}$$

的關係式。又因二維向量可拆分為水平向量及鉛垂向量兩個分量, 故

$$\vec{F_0} = (|\vec{F_1}|\cos\theta + |\vec{F_2}|\cos\phi)\hat{i} + (|\vec{F_1}|\sin\theta + |\vec{F_2}|\sin\phi)\hat{j}$$

其中î和ĵ分別代表水平單位向量及鉛垂單位向量。

欲考慮作功問題, 我們定義以下計算方式

定義 6 (點積/内積). 兩向量 $\vec{a}, \vec{b}$ 的内積可定義為

$$\langle \vec{a}, \vec{b} \rangle \equiv \vec{a} \cdot \vec{b} := |\vec{a}||\vec{b}|\cos\theta$$

其中 $\theta$ 為 $\vec{a}$ ,  $\vec{b}$ 之間的夾角。

示例. 根據經典力學定義, 作功方程為

$$W = \vec{F} \cdot \vec{s}$$

其中W為作功純量, $\vec{F}$ 為施力向量, $\vec{s}$ 為位移向量。考慮内積定義,作功方程可寫成

$$W = |\vec{F}||\vec{s}|\cos\theta$$

其中θ為向量之間的夾角。

定理 (内積的性質). 對於 $\vec{a}, \vec{b}, \vec{c}$ ,

- 1.  $\langle 0, \vec{a} \rangle = \langle \vec{a}, 0 \rangle = 0$ ;
- $2. \langle \vec{a}, \vec{a} \rangle > 0, \langle \vec{a}, \vec{a} \rangle = 0$ 當且僅當 $\vec{a} \equiv 0$ ;
- 3.  $\langle \vec{a}, x\vec{b} + z\vec{c} \rangle = x \langle \vec{a}, \vec{b} \rangle + z \langle \vec{a}, \vec{c} \rangle$ ;
- 4. 若 $\vec{a}$ ,  $\vec{b} \in \mathbb{R}^n$ ,則 $\langle \vec{a}, \vec{b} \rangle = \langle \vec{b}, \vec{a} \rangle$ 。

命題. 向量 $\vec{a}$ ,  $\vec{b}$ 之間的夾角為

$$\theta = \arccos \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

另外,若 $\vec{a}$ 正交於 $\vec{b}$  (在 $\mathbb{R}^2$ 為互相垂直), $\vec{a}$ , $\vec{c}$ 平行,則根據定義

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos 90^\circ = 0$$

及

$$\vec{a} \cdot \vec{c} = |\vec{a}||\vec{c}|\cos 0^{\circ} = |\vec{a}||\vec{c}|$$

因此

$$|\vec{a}| = \sqrt{|\vec{a}|^2} = \sqrt{\langle \vec{a}, \vec{a} \rangle}$$

定義 7 (基與正交基與標準正交基). 對於向量空間 $V_S$ , 若 $\{\vec{b_1},\vec{b_2},\ldots,\vec{b_n}\} \subset V_S$ 為互不平行, 即綫性獨立, 同時對任意 $\vec{v} \in V_S$ , 都存在 $\alpha_1,\alpha_2,\ldots,\alpha_n \in S$ 使得

$$\vec{v} = \sum_{k=1}^{n} \alpha_k \vec{b_k}$$

則稱 $\{\vec{b_1}, \vec{b_2}, \dots, \vec{b_n}\}$ 為 $V_S$ 的基。

若 $\{\vec{\beta_1}, \vec{\beta_2}, \dots, \vec{\beta_n}\} \subset V_S$ 為 $V_S$ 的基而且對所有 $i \neq j$ ,均有

$$\langle \vec{\beta_i}, \vec{\beta_j} \rangle = 0$$

則稱 $\{\vec{\beta_1}, \vec{\beta_2}, \dots, \vec{\beta_n}\}$ 為 $V_S$ 的正交基。

若 $\{\vec{\gamma_1},\vec{\gamma_2},\ldots,\vec{\gamma_n}\}\subset V_S$ 為 $V_S$ 的正交基而且對所有i,均有

$$|\vec{\gamma_i}| = 1$$

則稱 $\{ec{\gamma_1},ec{\gamma_2},\ldots,ec{\gamma_n}\}$ 為 $V_S$ 的標準正交基。

小記. 對於任何向量空間, 標準正交基的構成并非唯一。舉例 $\mathbb{R}$ 作爲 $\mathbb{R}$ 的向量空間, 1和-1均可作爲 $\mathbb{R}$ 的標準正交基;  $\mathbb{R}^2$ 作爲 $\mathbb{R}$ 的向量空間, 則

$$\left\{ \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} : \theta \in \mathbb{R} \right\}$$

均爲№2的標準正交基。

對於有標準正交基的向量空間,我們的討論會比較簡單:

定理. 設 $V_S$ 為向量空間, $\{e_1,e_2,\ldots,e_n\}$ 為 $V_S$ 的標準正交基。若 $v,u\in V_S$ 可寫作 $v=\sum_{i=1}^nv_ie_i$ 及 $u=\sum_{i=1}^nu_ie_i$ ,則

$$\langle u, v \rangle = \sum_{i=1}^{n} u_i v_i$$

證明.

$$\langle u, v \rangle = \langle \sum_{i=1}^{n} u_{i} e_{i}, \sum_{j=1}^{n} v_{j} e_{j} \rangle = \sum_{i=1}^{n} u_{i} \langle e_{i}, \sum_{j=1}^{n} v_{j} e_{j} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} v_{j} \langle e_{i}, e_{j} \rangle$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} v_{j} \delta_{ij} = \sum_{\substack{i=j\\1 \leq i, i \leq n}} u_{i} v_{j} = \sum_{i=1}^{n} u_{i} v_{i}$$

衍理. 設 $V_S$ 為向量空間, $\{e_1,e_2,\ldots,e_n\}$ 為 $V_S$ 的標準正交基。若 $v\in V_S$ 可寫作 $v=\sum_{i=1}^n v_ie_i$ ,則

$$|v| = \sqrt{\sum_{i=1}^{n} v_i^2}$$

爲方便描述,接下來會稱 $V_S$ 的標準正交基為 $\mathcal{O}(V_S) := \{e_i\}_{i \in I}$ ,I為索引集。

定理 (餘弦定理). 設 $u,v \in V_S$ , 則

$$|u - v|^2 = |u|^2 + |v|^2 - 2|u||v|\cos\theta$$

其中 $\theta$ 是u,v的夾角。

證明. 設
$$u = \sum_{i \in I} u_i e_i, v = \sum_{i \in I} v_i e_i,$$
 則
$$|u - v|^2 = \sum_{i \in I} (u_i - v_i)^2$$
$$= \sum_{i \in I} (u_i^2 + v_i^2 - 2u_i v_i)$$
$$= \sum_{i \in I} u_i^2 + \sum_{i \in I} v_i^2 - 2\sum_{i \in I} u_i v_i$$
$$= |u|^2 + |v|^2 - 2\langle u, v \rangle$$
$$= |u|^2 + |v|^2 - 2|u||v|\cos\theta$$

在三維空間中,存在外積:

定義 8 (外積). 假設 $\{\hat{i},\hat{j},\hat{k}\}\subset\mathbb{R}^3$ 為 $\mathbb{R}^3$ 的標準正交基,則定義 $\times:\mathbb{R}^3\to\mathbb{R}^3$ 為

$$\hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{i} = \hat{j}$$

外積的定義可考慮面積與體積的計算原理:考慮三個單位向量 $\hat{i}$ , $\hat{j}$ , $\hat{k}$ 的乘積為體積及任意兩個向量的乘積為面積,基於 $\hat{i} \times \hat{j}$ 為ij平面的面積單位,而面積乘以高等於體積,故 $V(\hat{i},\hat{j},\hat{k}) = (\hat{i} \times \hat{j}) \cdot \hat{k}$ 為標量,使得 $\hat{i} \times \hat{j} = \hat{k}$ 。

因此,我們可定義

定義 9 (面積與體積). 設 $u, v, w \in \mathbb{R}^3$ , 則

$$A(u,v) := |u \times v| = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$V(u,v,w) := (u \times v) \cdot w = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

事實上,外積的計算無法以向量簡單作結。Kronecker就發現基本的向量無法解釋 $i \times j = k$ 的情況(例如,爲何面積是向量而體積不是?),因此,他提出以**雙向**量(bi-vector)為 $\hat{i}, \hat{j}, \hat{k}$ 下定義:

定義 10. 定義
$$\hat{i}=e_1e_2,\hat{j}=e_2e_3,\hat{k}=e_1e_3$$
,且 $e_ie_j=-e_je_i$ , $e_i^2=1$ 由此符合 
$$\hat{i}\hat{j}=e_1e_2e_2e_3=e_1e_3=\hat{k}$$
 
$$\hat{j}\hat{k}=e_2e_3e_1e_3=-e_2e_3e_3e_1=-e_2e_1=e_1e_2=\hat{i}$$
 
$$\hat{k}\hat{i}=e_1e_3e_1e_2=-e_3e_1e_1e_2=-e_3e_2=e_2e_3=\hat{j}$$

上述定義可引申至對軸心的旋轉:  $\hat{i}$ 為沿z軸逆時針旋轉90度;  $\hat{j}$ 為沿x軸逆時針旋轉90度;  $\hat{k}$ 為沿y軸逆時針旋轉90度。

事實上, 在更高維的空間裏, 向量的外積有以下定義

定義 11. 設 $u = (u_i)_{i \in I}, v = (v_i)_{i \in I}$ , 則外積為

$$u \wedge v = \begin{bmatrix} u_1 v_1 & u_1 v_2 & \cdots & u_1 v_n \\ u_2 v_1 & u_2 v_2 & \cdots & u_2 v_n \\ \vdots & \vdots & \ddots & \vdots \\ u_n v_1 & u_n v_2 & \cdots & u_n v_n \end{bmatrix}$$

向量函數

偏導數與全導數

方向導數

切面與法綫

二維極值與鞍點