MULTILAYER WIRING SUBSTRATE, MANUFACTURE THEREOF, AND MANUFACTURE OF DOUBLE SIDE PRINTED WIRING BOARD

Patent Number:

JP6275959

Publication date:

1994-09-30

Inventor(s):

SUGIYAMA HISASHI; others: 08

Applicant(s)::

HITACHI LTD

Requested Patent:

☐ JP6275959

Application

JP19930061681 19930322

Priority Number(s):

IPC Classification:

H05K3/46; H05K3/28

EC Classification:

Equivalents:

Abstract

PURPOSE:To obtain a highly reliable and high density wiring board having excellent heat-resisting property, mechanical characteristics and electric charactistics and the like at low cost by a method wherein a conductor pattern layer and an interlayer insulating film layer are alternately formed on the double-side printed wiring board, on which a conductor pad is provided, connected to the conductor of a filled-up through hole.

CONSTITUTION:At least one or more layers of conductor pattern layers 701 to 708 and an interlayer insulating film layer are alternately formed on a double- side printed wiring board where a conductor pad 709, to be connected to the conductor of a filled-up interlayer connection through hole is provided. The conductor pad 709, the conductor pattern layers 701 to 708 are electrically connected with one another. For example, after the through type plated through hole of the double side printed wiring, where the surface layer conductor is patterned, and the conductor gap have been filled up by an organic high molecular insulating film, a conductor pad 709, which will be connected to the surface conductor and the through type plated through hole conductor, is formed.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作所生産技術研究所内

神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作所生産技術研究所内

特開平6-275959

(43)公開日 平成6年(1994)9月30日

(51)Int.Cl. ⁵ H 0 5 K	3/46 3/28	識別記号 N E B	庁内整理番号 6921-4E 6921-4E 7511-4E	1	FI			ŧ	支術表示箇所
					審査請求	未請求	請求項の数11	OL	(全 11 頁)
(21)出願番号		特願平5—61681			(71)出願人	000005108 株式会社日立製作所			
(22)出願日		平成5年(1993)3月22日			(72)発明者	東京都千代田区神田駿河台四丁目6番地杉山 寿			

神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (74)代理人 弁理士 高橋 明夫 (外1名) 最終頁に続く

(54)【発明の名称】 多層配線基板とその製造方法および両面プリント配線板の製造方法

(57)【要約】

【目的】 耐熱性、機械特性、電気特性等の特性に優れ、低コスト、かつ、信頼性の高い、貫通めっきスルーホールの穴の影響をなくし、高密度配線機能を有する多層配線基板, ビルドアップ法が形成しうる本来の高密度配線機能を最大限に活用するその製造方法および前記多層配線基板に用いられる両面プリント配線板の製造方法を提供する。

【構成】 穴埋めされた層間接続スルーホールの導体101,102,103と接続する導体パッド709が設けられた両面プリント配線板上に、少なくとも1層以上の導体パターン層604と層間を絶縁する絶縁膜304とが交互に形成され、該導体パッド709と導体パターン層604および導体パターン層604同士を電気的に接続したものである。

図 7

(72)発明者 北村 直也

(72)発明者 山口 欣秀

【特許請求の範囲】

【請求項1】 穴埋めされた層間接続スルーホールの導体と接続する導体パッドが設けられた両面プリント配線板上に、少なくとも1層以上の導体パターン層と層間絶縁膜層とが交互に形成され、該導体パッドと導体パターン層および導体パターン層同士が電気的に接続されて成る多層配線基板。

1

【請求項2】 (1) 貫通めっきスルーホールを有し、表層導体がパターニングされた両面プリント配線板の前記貫通めっきスルーホールおよび前記導体間隙を有機系高分子の絶縁膜で充填する工程と、

(2) 該両面プリント配線板の表層導体および貫通めっきスルーホール導体の所定位置に接続する導体パッドを 形成する工程とを含む穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板の製造方法。

【請求項3】 (1) 貫通めっきスルーホールを有し、表層導体がパターニングされていない両面プリント配線板の前記貫通めっきスルーホールを有機系高分子の絶縁膜で充填する工程と、

(2) 該両面プリント配線板表層導体および貫通めっき スルーホール導体の所定位置に接続する導体パッドを形 成する工程とを含む穴埋めされた層間接続スルーホール の導体と前記導体に接続される導体パッドが設けられた 両面プリント配線板の製造方法。

【請求項4】 貫通めっきスルーホールを有し、表層導体がパターニングされた両面プリント配線板の前記貫通めっきスルーホールおよび前記導体間隙を有機系高分子の絶縁膜で充填する工程が、

- (1) 該両面プリント配線板上に表面の平坦な金型を設 30 置し、該両面プリント配線板と該金型との間に溶剤を含 まない流動性有機系高分子前駆体を挾む工程と、
- (2) 該金型と該両面プリント配線板との間を排気する 工程と、
- (3) 該金型を該両面プリント配線板方向へ移動させて 該溶剤を含まない流動性有機系高分子前駆体を前記貫通 めっきスルーホールおよび前記導体間隙に充填する工程 と、
- (4) 該溶剤を含まない流動性有機系高分子前駆体に静 水圧をかける工程と、
- (5) 該溶剤を含まない流動性有機系高分子前駆体を硬化する工程と、
- (6) 該有機系高分子で覆われた前記導体上面を露出させる工程と、

を含むことを特徴とする穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板の製造方法。

【請求項5】 貫通めっきスルーホールを有し、表層導 (1)感光性絶縁的体がパターニングされていない両面プリント配線板の前 (2)露光、現像に記貫通めっきスルーホールを有機系高分子の絶縁膜で充 50 を形成する工程と、

填する工程が、

- (1) 該両面プリント配線板上に表面の平坦な金型を設置し、該両面プリント配線板と該金型との間に溶剤を含まない流動性有機系高分子前駆体を挟む工程と、
- (2) 該金型と該両面プリント配線板との間を排気する工程と、
- (3) 該金型を該両面プリント配線板方向へ移動させて 該溶剤を含まない流動性有機系高分子前駆体を前記貫通 めっきスルーホールおよび前記導体間隙に充填する工程 10 と、
 - (4) 該溶剤を含まない流動性有機系高分子前駆体に静 水圧をかける工程と、
 - (5) 該溶剤を含まない流動性有機系高分子前駆体を硬 化する工程と、
 - (6) 該有機系高分子で覆われた前記導体上面を露出させる工程とを含むことを特徴とする穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板の製造方法。

【請求項6】 両面プリント配線板の表層導体および質20 通めっきスルーホール導体の所定位置に接続する導体パッドを形成する工程が、

- (1) 前記貫通めっきスルーホールまたは前記貫通めっきスルーホールと前記表層導体の間隙とが有機系高分子の絶縁膜で充填された両面プリント配線板の表面全面にパッド用導体を形成する工程と、
- (2) 該導体上の所定位置にレジストの残しパターンを 形成する工程と、
- (3) 該導体をエッチングにより所定の形状にパターニングし、該レジストを剥離する工程とを含むことを特徴とする穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板の製造方法。

【請求項7】 両面プリント配線板の表層導体および貫通めっきスルーホール導体の所定位置に接続する導体パッドを形成する工程が、

- (1) 前記貫通めっきスルーホールまたは前記貫通めっきスルーホールと前記導体間隙とが有機系高分子の絶縁膜で充填された両面プリント配線板表面の所定位置にレジストの抜きパターンを形成する工程、
- 40 (2) 該レジストの抜きパターン内に導体を形成し、該レジストを剥離する工程とを含むことを特徴とする穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板の製造方法。

【請求項8】 穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられたプリント配線板上に、

- (1) 感光性絶縁樹脂を成膜する工程と、
- (2) 露光、現像により該感光性絶縁樹脂にビアホール を形成する工程と、

- (3) 露光された該感光性絶縁樹脂表面を粗化する工程と、
- (4) 導体を形成する工程と、
- (5) 熱硬化により該感光性絶縁樹脂を完全硬化する工程と、
- (6) 該導体のエッチングによりパターンを形成する工程とを繰り返し、多層化することを特徴とする請求項1記載の多層配線基板の製造方法。

【請求項9】 溶剤を含まない流動性有機系高分子前駆体が、多官能エポキシ樹脂組成物、分子内に2個以上のマレイミド骨格を有する化合物の組成物、分子内に2個以上のシアン酸エステル骨格を有する化合物の組成物、分子内に2個以上のベンゾシクロブテン骨格を有する化合物の組成物の内、少なくとも1つ以上を含むいずれかの組成物であることを特徴とする請求項4、5記載のいずれかの両面プリント配線板の製造方法。

【請求項10】 感光性絶縁樹脂が、少なくとも、室温において固形の多官能不飽和化合物, エポキシ樹脂, アクリレートモノマー, 光重合開始剤, アミン系の熱硬化剤を含む組成物あるいは不飽和基を付加反応させた2官 20能以上の多官能固形エポキシ樹脂, アクリレートモノマー, 光重合開始剤, アミン系の熱硬化剤を含む組成物のいずれかであることを特徴とする請求項8記載の多層配線基板の製造方法。

【請求項11】 アミン系熱硬化剤が、ジシアンジアミドまたはジアミノトリアジン化合物のいずれかであることを特徴とする請求項10記載の多層配線基板の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、大型計算機やワークステーション等のコンピュータ、交換機等に使われる高密度な多層配線基板およびその製造方法、並びに前記多層配線基板に用いられる両面プリント配線板の製造方法に関する。

[0002]

【従来の技術】近年、従来の多層配線基板およびその製造方法に替わる新しい高密度な多層配線基板およびその製造方法が提案されている。例えば、ビルドアップ法が挙げられる。この方法は、基本的には表層導体がパターニングされたプリント配線板の表層に感光性絶縁材料を成膜した後、露光・現像によりビアホールを形成し、次いで、表層全面に導体を形成した後、導体をパターニングする。さらに、これを繰り返して多層化した後、最後に、貫通めっきスルーホールを形成する方法である。

【0003】この方法においては、プリント配線板の表層導体とビルドアップの導体層およびビルドアップの導体層同士の接続が、ドリリングによる質通めっきスルーホールによる接続でなく、コンフォーマルビアにより接続される。そのため、従来の質通めっきスルーホールの

みで層間接続をとるプリント配線板に比べると高密度な 多層配線基板が得られる。しかしながら、プリント配線 板の表層導体と内層導体との接続、プリント配線板両面 の接続は、製造工程の最終段階で形成される貫通めっき スルーホールによる接続であるために、この分、配線密 度が低下する欠点がある。

【0004】また、ドリリングにより形成し、穴埋めされていない貫通めっきスルーホールを有するプリント配線板上では、感光性絶縁材料を成膜できないために、ビルドアップ法による薄膜多層配線層を形成できない。なお、これに関連するものとしては、特開平4-148590号公報記載の技術が知られている。

【0005】前記技術の改良として、層間接続のためにドリリングで形成しためっきスルーホールの穴を樹脂充填し、上部にめっきスルーホールと前記導体に接続される導体パッドを形成してめっきスルーホールの面積を有効利用する多層配線基板の製造方法がある。これに関連するものとしては、例えば特開平4-168794号公報に示される方法がある。

【0006】上記方法は、多層配線基板の隣接する2層の導体層の接続には有効であるが、プリント配線板の両面あるいは1層以上の導体層を隔てた2層の導体層の接続には、やはり、製造工程の最終段階で形成する貫通めっきスルーホールに頼らざるを得えず、出来上がった多層配線基板には穴埋めされていない貫通めっきスルーホールが残るという欠点がある。

[0007]

【発明が解決しようとする課題】上記従来の技術では、ベースのプリント配線板に貫通めっきスルーホールがある場合はビルドアップ法は適用できない問題があった。貫通めっきスルーホールのないベースのプリント配線板上にビルドアップ法を適用し、薄膜多層配線層を形成したとしても、ビルドアップで形成した導体層とベースのプリント配線板の内層導体間の接続あるいはベースのプリント配線板の両面の接続をとるために、製造工程の最終段階で貫通めっきスルーホールを形成しなければならないという問題がある。上記貫通めっきスルーホールの製造工程最終段階にて形成することは、穴埋めされていない貫通めっきスルーホールが残存するという問題があった。高密度配線が形成できるビルドアップ法の本来の機能を最大限に活用することはできないという問題があった。

【0008】本発明は、上記従来技術の問題点を解決するためになされたもので、耐熱性、機械特性、電気特性等の特性に優れ、低コスト、かつ、信頼性が高い、貫通めっきスルーホールの穴の影響をない、高密度配線機能を有する多層配線基板、ビルドアップ法が形成しうる本来の高密度配線機能を最大限に活用するその製造方法および前記多層配線基板に用いられる両面プリント配線板の製造方法を提供することを目的とするものである。

[0009]

【課題を解決するための手段】上記目的を達成するために、本発明に係る多層配線基板の構成は、穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板上に、少なくとも1層以上の導体パターン層と層間絶縁膜層とが交互に形成され、該導体パッドと前記導体パターン層および前記導体パターン層同士が電気的に接続するものである。上記両面プリント配線板は内層導体層を含んでいても差し支えない。

【0010】また、上記本発明の多層配線基板のベース基板に用いられ、穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板の製造方法は次の如く構成する。第一の方法は、(1)質通めっきスルーホールを有し、表層導体がパターニングされた両面プリント配線板の前記貫通めっきスルーホールおよび前記導体間隙を有機系高分子の絶縁膜で充填する工程、(2)該両面プリント配線板の表層導体および質通めっきスルーホール導体の所定位置に接続される導体パッドを形成する工程とを含む方法である。

【0011】第二の方法は、(1) 貫通めっきスルーホールを有し、表層導体がパターニングされていない両面プリント配線板の前記貫通めっきスルーホールを有機系高分子の絶縁膜で充填する工程と、(2) 該両面プリント配線板の表層導体および貫通めっきスルーホール導体の所定位置に接続される導体パッドを形成する工程とを含む方法である。

【0012】上記工程の内、貫通めっきスルーホールを有し、表層導体がパターニングされた両面プリント配線板の前記貫通めっきスルーホールおよび前記導体間隙を有機系高分子の絶縁膜で充填する工程と、貫通めっきスルーホールを有し、表層導体がパターニングされていない両面プリント配線板の前記貫通めっきスルーホールを有機系高分子の絶縁膜で充填する工程とをさらに詳しく説明する。

【0013】すなわち、(1)該両面プリント配線板上に表面の平坦な金型を設置し、該両面プリント配線板と該金型との間に溶剤を含まない流動性有機系高分子前駆体を挟む工程と、(2)該金型と該両面プリント配線板との間を排気する工程と、(3)該金型を該両面プリント配線板方向へ移動させて該溶剤を含まない流動性有機系高分子前駆体を貫通めっきスルーホールおよび導体間隙に充填する工程と、(4)該溶剤を含まない流動性有機系高分子前駆体に静水圧をかける工程と、(5)該溶剤を含まない流動性有機系高分子前駆体を硬化する工程と、(6)該有機系高分子で覆われた導体上面を露出させる工程とを含む方法である。

【0014】また、上記工程の内、両面プリント配線板の表層導体および貫通めっきスルーホール導体の所定位

置に接続される導体パッドを形成する工程をさらに詳しく説明する。第一の方法は、(1)貫通めっきスルーホールまたは貫通めっきスルーホールと導体間隙とが有機系高分子の絶縁膜で充填された両面プリント配線板の表面全面にパッド用導体を形成する工程と、(2)該導体上の所定位置にレジストの残しパターンを形成する工程と、(3)該導体をエッチングにより所定の形状にパターニングし、該レジストを剥離する工程とを含むサブトラクティブ法である。

【0015】第二の方法は、(1) 貫通めつきスルーホールまたは貫通めつきスルーホールと導体間隙とが有機系高分子の絶縁膜で充填された両面プリント配線板表面の所定位置にレジストの抜きパターンを形成する工程と、(2) 該レジストの抜きパターン内に導体を形成し、該レジストを剥離する工程とを含むアディティブ法である。以上の方法により、穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板を製造することができる。

【0016】上記両面プリント配線板のベース基板上に 薄膜多層配線層を形成する方法を説明する。すなわち、

(1) 感光性絶縁樹脂を成膜する工程と、(2) 露光、現像により該感光性絶縁樹脂にビアホールを形成する工程と、(3) 露光された該感光性絶縁樹脂表面を粗化する工程と、(4) 導体を形成する工程と、(5) 熱硬化により該感光性絶縁樹脂を完全硬化する工程と、(6) 該導体のエッチングによりパターンを形成する工程とを含むビルドアップ法である。

【0017】ここで、本発明に用いられる材料をさらに詳しく説明する。溶剤を含まない流動性有機系高分子前駆体には、多官能エポキシ樹脂組成物、分子内に2個以上のマレイミド骨格を有する化合物の組成物、分子内に2個以上のシアン酸エステル骨格を有する化合物の組成物、分子内に2個以上のベンゾシクロブテン骨格を有する化合物の組成物の内の少なくとも1つ以上を含む組成物のいずれかを使用する。

【0018】また、感光性絶縁樹脂は、少なくとも、室温で固形の多官能不飽和化合物,エポキシ樹脂,アクリレートモノマー,光重合開始剤,アミン系の熱硬化剤をふくむ組成物,あるいは、少なくとも、不飽和基を付加反応させた2官能以上の多官能固形エポキシ樹脂、アクリレートモノマー、光重合開始剤、アミン系の熱硬化剤を含む組成物の内のいずれかを使用する。また、アミン系熱硬化剤はジシアンジアミドあるいはジアミノトリアジン化合物が望ましい。

[0019]

【作用】上記各技術的手段の働きは次のとおりである。本発明に係る多層配線基板の構成によれば、穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドとが設けられた両面プリント配線板上に、少なくとも1層以上の導体パターン層と層間絶縁膜層とが

交互に形成され、該導体パッドと前記導体パターン層および前記導体パターン層同士が電気的に接続されるので、ベース基板の両面プリント配線板の貫通めっきスルーホールの穴の影響がなくなり、この上に薄膜多層配線層を形成することができる。

【0020】また、製造工程の最終段階で貫通めっきスルーホールが形成されないので、ベース基板上の薄膜多層配線層の配線密度を最大限にすることができる。さらに、ベース基板上の薄膜多層配線層とベース基板の内層 導体層との接続,ベース基板の両面の接続,各導体層の接続等が、製造工程における最終段階の貫通めっきスルーホールの形成がなくても施すことができる。

【0021】本発明に係る両面プリント配線板の製造方 法によれば、貫通めっきスルーホールのある両面プリン ト配線板上に表面の平坦な金型を設置し、該両面プリン ト配線板と該金型との間に溶剤を含まない流動性有機系 高分子前駆体を挾む工程と、該金型と該両面プリント配 線板との間を排気する工程と、該金型を該両面プリント 配線板方向へ移動させて該溶剤を含まない流動性有機系 高分子前駆体を貫通めっきスルーホールおよび導体間隙 に充填する工程と、該溶剤を含まない流動性有機系高分 子前駆体に静水圧をかける工程と、該溶剤を含まない流 動性有機系高分子前駆体を硬化する工程と、該有機系高 分子で覆われた導体上面を露出させる工程とを含む工程 としたので、貫通スルーホール内あるいは導体間隙にピ ンホールやクラックのない均一な物性の絶縁膜を形成す ることができる。また、次ぎの工程において形成される 導体パッドを接続するために必要な該両面プリント配線 板の表層導体の表面を露出させることができ、かつ、表 面が平坦なベース基板を作ることができる。

【0022】さらに、上記両面プリント配線板表層導体および質通めっきスルーホール導体の所定位置に接続する導体パッドを形成する方法として、特殊な技術でなく、従来技術であるサブトラクティブ法あるいはアディティブ法を採用することができる。

【0023】次ぎに、本発明に係る多層配線基板の製造 方法によれば、感光性絶縁樹脂を成膜する工程,露光, 現像により該感光性絶縁樹脂にビアホールを形成する工程 と、露光された該感光性絶縁樹脂表面を粗化する工程 と、導体を形成する工程と、熱硬化により該感光性絶縁 樹脂を完全硬化する工程と、前記導体をエッチングによ りパターンに形成させる工程を経る方法としたため、従 来から問題となっていた前記導体と層間絶縁膜の接着強 度を向上させることができ、信頼性の高い薄膜多層配線 層を形成することができる。

【0024】上記貫通めっきスルーホールあるいは導体間隙を埋めるために適用できる材料は、溶剤を含まない流動性有機系高分子前駆体であり、多官能エポキシ樹脂組成物、分子内に2個以上のマレイミド骨格を有する化合物の組成物、分子内に2個以上のシアン酸エステル骨50

格を有する化合物の組成物,分子内に2個以上のベンゾシクロブテン骨格を有する化合物の組成物の内の少なくとも1つ以上を含む組成物を用いることにより、耐熱性,機械特性,電気特性等に優れた絶縁膜を得ることができる。

【0025】また、上記の感光性絶縁樹脂には、上記導体と層間絶縁膜との接着強度を向上させるために、光で硬化する成分と熱で硬化する成分とが必要であり、少なくとも、室温で固形の多官能不飽和化合物,エポキシ樹脂,アクリレートモノマー,光重合開始剤,アミン系の熱硬化剤を含む組成物,あるいは、少なくとも、不飽和基を付加反応させた2官能以上の多官能固形エポキシ樹脂,アクリレートモノマー,光重合開始剤,アミン系の熱硬化剤を含む組成物のいずれかにより、導体と層間絶縁膜との接着強度に優れ、かつ、良好な解像性も得られる。さらに、アミン系熱硬化剤に、ジシアンジアミドあるいはジアミノトリアジン化合物を用いたことで、導体のマイグレーションを抑えることができる。

[0027]

0 【実施例】以下、本発明の各実施例を図1ないし図7を 参照して説明する。

[実施例 1]図1は、本発明の一実施例に係る両面プリント配線板およびその製造方法を示す説明図、図5は、本発明の一実施例に係る両面プリント配線板の製造方法を示す説明図である。図1において、穴埋めされた層間接続スルーホールの導体と前記導体に接続する導体パッドが設けられた両面プリント配線板の製造方法の一例を説明する。

【0028】両面の信号層を接続する貫通めっきスルーホール101と裏面の電源層との接続をとる2種類の貫通めっきスルーホール102、103とを有し、両面の銅がパターニングされた図1(a)に示すガラスポリイミド両面プリント配線板を用意する。前記プリント配線板としてはBTレジンのプリント配線板、例えば三菱瓦斯化学(株)製を用いても差し支えない。

【0029】次ぎに、このプリント配線板の貫通めっきスルーホールと表層導体の間隙を有機系高分子の絶縁膜104で充填して図1(b)に示す基板を作成するが、その間のプロセスが、図5に示される金型工程である。

40 図5(a)に示されるように、前記図1(a)のプリント配線板の両面をフイルム状組成物105にて挟み、これを金型501の間に挿入する。

【0030】前記フイルム状組成物105は、本実施例においては、溶剤を含まない流動性有機系高分子前駆体、例えば4官能ポキシ樹脂エピクロンEXA4700(大日本インキ化学製造(株)製商品名)とフェノール樹脂バーカムTD2131(大日本インキ化学製造(株)製商品名)65phrとを混練し溶融成形したも

(体)製制の名)も5phrとを混練し溶離成形したものである。

0 【0031】次いで、前記金型501を70℃に加熱し

10

て上記フイルム状組成物 105 を溶融させ、さらに、前記金型 501 と前記プリント配線板との空間を 10 to rrに排気して約7分間真空度を保持する。これにより、上記フイルム状組成物 105 が貫通めっきスルーホール 101、102、103 および銅配線間隙に充填され、図 5 (b) に示される基板を構成した。

【0032】そして、前記金型501と図5(b)の前記プリント配線板の空間を大気圧に戻した後、圧縮圧力5 k g f / c m 2 にて上下方向から、横方向からの空気圧 4. 5 k g f / c m 2 にて横方向から加圧する。5 分後に前記金型501を70℃から200℃まで勾配速度を70℃/分にて昇温し、その状態にて30分間保持した。

【0033】そして、前記図5 (b) のプリント配線板を金型501から外して常圧下で200 $^{\circ}$ 、60分加熱する。その結果、平坦で、ボイドやピンホールがなく、かつ、均一な物性を有する絶縁膜104が貫通めっきスルーホール101、102、103および表層配線導体間隙に形成される。この結果、図5 (c) に示されるプリント配線板を得た。

【0034】図5 (c) のプリント配線板には表層導体上106に絶縁膜104の極薄膜が残存する。そこで、図5 (c) のプリント配線板を100℃に加熱し、20分間O3の雰囲気下にて紫外線に曝すことにより、絶縁膜104をエッチバックし、表層導体を露出させた図5(d) のプリント配線板、すなわち、図1(b) のプリント配線板を得た。

【0035】前記金型501におけるモールドの条件として、真空度は20Torr以下、圧力は20kgf/cm²以下、上下方向の圧縮圧力は、横方向からの圧縮圧力よりも大きいか少なくとも等しいことが望ましく、その圧力差は10kgf/cm²以下であるとさらに良い結果が得られる。さらに、エッチバックの方法として酸素プラズマアッシングや研磨等を使用することもできる。

【0036】このようにして形成した図1 (b)のプリント配線板両面には、銅の下地膜をスパッタにて0.5 μ mの厚さに成膜し、次いで、通常の電気銅めっきにてさらに15 μ mの厚さに増し、前記プリント配線板両側の全面に銅107を成膜した図1 (c)に示されるプリント配線板を得た。前記銅107を成膜する方法としては、この他イオンプレーティングや熔射、化学めっき等の従来技術を用いることができる。

【0037】次に、銅107の上に従来技術によりエッチングレジストを形成し、露光・現像・エッチング・剥離の工程により銅107をパターニングして、穴埋めされた層間接続スルーホールの導体と接続する導体パッド108やその他のパターンを有する両面プリント配線板、すなわち完成された図1(d)の両面プリント配線板を得た。

【0038】 [実施例 2] 次に、本発明の他の一実施例に係る両面プリント配線板を図1,2を参照して説明する。図2は本発明に他の一実施例に係る両面プリント配線板を示す説明図である。 [実施例 1] と同様にして図1(b)に示される両面プリント配線板まで形成する。

【0039】次いで〔実施例 1〕では、いわゆるサブトラクティブ法により図1(d)に示される両面プリント配線板を得たが、本実施例においては、いわゆるアディティブ法にて導体パッド201を形成した。

【0040】すなわち、図1(b)の両面プリント配線板の両面に所定の従来技術によりめっきレジストを形成し、露光・現像により所定の抜きパターンを得た後、化学銅めっきにて導体パッド201を形成してレジストを剥離する。このようにして、図2に示される穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板を完成した。

【0041】 [実施例 3] 次に、本発明のさらに他の一実施例に係る両面プリント配線板の製造方法を図1,3を参照して説明する。図3は、本発明にさらに他の一実施例に係る両面プリント配線板の製造方法を示す説明図である。 [実施例 1] と同様にして図1 (b) に示される両面プリント配線板まで形成する。

【0042】図3に示される両面の信号層を接続する貫通めつきスルーホール301と裏面の電源層との接続をとる2種類の貫通めつきスルーホール302、303とを有し、両面の銅がパターニングされていない図3

(a) に示されるガラスポリイミド両面プリント配線板30 を用意する。

【0043】次ぎに、〔実施例 1〕と同様にして、この両面プリント配線板の貫通めっきスルーホールを有機系高分子の絶縁膜304で充填して図3(b)に示される基板とし、図3(b)の基板の両面に従来の方法によりめっきレジストを形成し、露光・現像により所定の抜きパターンを得た後、化学銅めっきにて導体パッド305を形成し、レジストを剥離して図3(c)に示される両面プリント配線板とした。

【0044】そして、この上に所定の方法によりエッチングレジストを形成し、露光・現像・エッチング・剥離の工程により銅306をパターニングして、穴埋めされた層間接続スルーホールの導体と接続する導体パッド306やその他のパターンを有する図3(d)に示される両面プリント配線板が得られる。

【0045】 〔実施例 4〕次に、図3,4を参照して本発明のさらに他の一実施例を説明する。図4は、本発明にさらに他の一実施例に係る両面プリント配線板を示す説明図である。〔実施例 3〕と同様にして図3

(b) に示される両面プリント配線板まで形成し、次い 50 で図3(b)の両面プリント配線板の両面全面に〔実施

12 * 本発明のさらに他の一実施例に係る多層配線基板の説明

例 1〕と同様にして銅を 15μ mの厚さに成膜した。【0046】そして、この上に所定の方法によりエッチングレジストを形成し、露光・現像・エッチング・剥離の工程により銅をパターニングする。この結果、図4に示される穴埋めされた層間接続スルーホールの導体と接続する導体パッド401やその他のパターンを有する両面プリント配線板を得た。

【0047】 [実施例 5] 次に、図1,6,7を参照 して本発明のさらに他の一実施例に係る多層配線基板の 製造方法を説明する。図6は、本発明のさらに他の一実 10 施例に係る多層配線基板の製造方法の説明図、図7は、*

図である。

【0048】〔実施例 1〕の方法で形成した図1

(d) に示された穴埋めされた層間接続スルーホールの 導体と接続する導体パッドが設けられた両面プリント配 線板を使用し、その上にビルドアップ法にて薄膜多層配 線層が形成された多層配線基板およびその製造方法とを 説明する。

【0049】本実施例においては、露光・現像工程の感光性絶縁樹脂として下記(イ)~(へ)よりなる樹脂組成物を調整し使用した。

(イ)ジアリルフタレート樹脂	100g
(ロ) エピコート828	30 g
(ハ)ペンタエリスリトールトリアクリレート	20 g
(ニ) ベンゾインイソプロピルエーテル	4 g
(ホ) ジシアンジアミド	4 g
(へ) 2, 4-ジアミノー6-[2'-メチルイミダゾリルー	(1'))-
エチルーsートリアジン	1 g
(ト) その他 (塗布特性向上のための添加剤)	適量

【0050】まず、上記(T)~(T)と適量の溶剤(T2 に T2 に T3 の とを混合した樹脂組成物を形成し、T3 の分間加熱撹拌した。次に、前記樹脂組成物を常温にした後、他の成分(T2 に T3 に T4 に T4 に T5 に T4 に T5 に T6 に T7 に T7 に T8 を T8 に T9 に T9

過マンガン酸カリウム 水酸化ナトリウム 液温

【0052】上記図6 (b) に示される基板を3~10分間浸漬し粗化を行い、50 v o 1%塩酸に3分浸漬して中和させ、後に水洗・乾燥して粗化層を形成した。次に、粗化層を活性化するため触媒液に浸漬し、下地導電膜を無電解銅めっきにより0.2μmの厚さに形成した *

20 * (a) に示される基板を得た。

【0051】次いで、400W高圧水銀ランプを用い2分間、紫外光でパターン露光し、現像してビアホール602を形成し、さらに、全面露光をして図6(b)に示される基板を得た。その後、前記樹脂膜と後工程にて形成されるめっき皮膜との接着強度を確保するために樹脂表面の粗化を行った。使用した粗化液および粗化条件は、次の通りである。

0. $1 \sim 0$. 5 mol/l0. $2 \sim 0$. 4 mol/l $50 \sim 90 \%$

*後、樹脂層を完全硬化するため150℃で30分間加熱 硬化を行い、最後に、厚付け電気銅めっき603を15 μmを施して図6(c)に示される基板とした。

【0053】触媒処理液その他および処理条件を下記に示す。

(触媒処理液) シップレー社製

①キャタプリップ404 (2 7 0 g / 1) 4 5 ℃、3分 ②キャタプリップ404 (2 7 0 g / 1) 4 5 ℃、5分 キャタポジット44 (3 0 m l / 1)

③アクセレータ

室温、3分

[0054]

(導電膜) シップレー社製

カッパーミックス 328A (125m1/1) 室温、1分 カッパーミックス 328L (125m1/1)

カッパーミックス 328C (25m1/1)

[0055]

(銅めっき前処理)

ニュートラクリーン(50 v o 1 %)室温、3分硫酸洗浄(10 v o 1 %)室温、1分

(75m1/1)

 $H_2\,S\,O_4$

(98m1/1)

HC!

(0.15m1/1)

CuーボードHAメーキャップ (10ml/l)

(株) 荏原ユージライト製

液温

室温

電流密度

 $2 A/d m^2$

【0057】次ぎに、通常の方法により基板にエッチングレジストを形成し、露光・現像・エッチング・剥離の工程により銅603をパターニングし、さらに、不要な回路間の触媒を除去して第1層目の導体パターン層604を形成する。その結果、図6(d)に示される基板を得た。

【0058】触媒の除去は5wt%NaOHの強アルカリ水溶液に10分間浸漬して実施し、第2層、第3層の導体パターン層の形成に関しても上記と同様に実施した。最後に、ソルダーレジストを表面に形成して図7に示される多層配線基板を得た。

(無電解ニッケルめっき液) ブルーシューマー(Ni-P)

液温

めっき時間

下地導電膜は、銅よりもニッケルの方が樹脂との接着強度は大きい。

【0062】 [実施例 7] 次に、図1,7を参照して本発明のさらに他の一実施例に係る多層配線基板の製造方法を説明する。図1 (d) に示される両面プリント配線板の表面導体の保護および下地導電膜に〔実施例

クロム硫酸粗化液および条件

無水クロム酸

硫酸

液温

時間

アルカリ中和処理

【0064】 [実施例 8] 次に、図2,7を参照して本発明のさらに他の一実施例に係る多層配線基板の製造方法を説明する。 [実施例 2]の方法で形成した図2に示される穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板を用い、この上に [実施例 6]と同様のビルドアップ法により図7に示される多層配線基板と同様 40の層を構成した多層配線基板を製造した。

【0065】 [実施例 9] 次に、図3,7を参照して本発明のさらに他の一実施例に係る多層配線基板の製造方法を説明する。 [実施例 3] の方法で形成した図3(d)に示される穴埋めされた層間接続スルーホールの導体と接続する導体パッドが設けられた両面プリント配線板を用い、この上に [実施例 6] と同様のビルドアップ法にて図7に示される多層配線基板と同様の層構成の多層配線基板を製造した。

【0066】〔実施例 10〕次に、図4, 7を参照し *50

*【0059】図7に示される多層配線基板の層構成は、701と708とが、キャップとグランド層を兼ね、702,703と706,707とが信号層、704と705とが2種類の電源層である。ベース基板の表裏の信号層間および裏面の電源層とは、穴埋めされた質通めっ

14

きスルーホールと、前記スルーホールと接続される導体 パッド709とにより接続される。 【0060】〔実施例 6〕次に、図7を参照して本発

明のさらに他の一実施例に係る多層配線基板の製造方法を説明する。図7は、本発明のさらに他の一実施例に係る多層配線基板の説明図である。 [実施例 5] においては、前記の如く下地導電膜を無電解銅めっきにより 0.2 μmの厚さに形成したが、 [実施例 6] におい

ては、下地導電膜として下記の無電解ニッケルめっきを施し、〔実施例 5〕と同様の方法にて図7に示される 多層配線基板を得た。

[0061]

原液使用

カニゼン社製

80℃

5分

※6〕と同様の無電解ニッケルめっきを用い、粗化液および粗化条件として下記のクロム硫酸粗化液および条件を用い、他の条件は〔実施例 5〕と同様にして、図7に示される多層配線基板を得た。

[0063]

2. 0 m o 1 / 1 ~ 飽和濃度

3. $6 \sim 6 \text{ mo } 1 / 1$

50~80℃

3~10分

5~10分

*で本発明のさらに他の一実施例に係る多層配線基板の製造方法を説明する。 [実施例 4] の方法で形成した図4に示される穴埋めされた層間接続スルーホールの導体と前記導体に接続される導体パッドが設けられた両面プリント配線板を用い、この上に [実施例 6] と同様のビルドアップ法にて図7の多層配線基板と同様の層構成の多層配線基板を製造した。

【0067】上記各実施例の多層配線基板と貫通スルーホールやインタースティシャルビアホールで層間接続をとる通常の多層配線基板とを比較すると、格子ピッチを1.27mmとし、格子間に2本の配線を形成できるとして計算した時の配線密度(格子の数、配線長を考慮)を1とすると、本実施例の多層配線基板のビルドアップ法により形成した薄膜多層配線層は、格子ピッチ0.635mmに少なくとも2本の配線を形成できるので相対配線密度は約2倍とすることができる。

【0068】これは面積を同じとすると信号層数を1/

2に、逆に、信号層数を同じとすると面積を1/2にす ることができる計算になり、高密度化とコスト低減の効 果が大きい。これに対して、製造の最終段階で貫通めっ きスルーホールを形成すると、その面積分の配線をロス することになる。

【0069】上記各実施例は、両面プリント配線板の両 表層導体を2種類の電源層とし、この両面にXY信号層 2層と、グランドとキャップ層とをかねた1層とを形成 して成る多層配線基板およびその製造方法について説明 したが、本発明は、層構成に限定されるものでなく、上 10 103 裏面の電源層との接続をとる貫通めっきスルー 記両面プリント配線板の内層にXY信号層2層を入れた 4層板を用いても差し支えない。

【0070】また、溶剤を含まない流動性有機系高分子 前駆体の前記フィルム組成物についても、上記実施例で は、4官能ポキシ樹脂エピクロンEXA4700 (大日 本インキ化学製造(株)製商品名)とフェノール樹脂バ -カムTD2131 (大日本インキ化学製造 (株) 製商 品名) 65phrとを混練し溶融成形したものを用いた が、ビスマレイミド/シアン酸エステル系材料であるB T-3309T (三菱瓦斯化学 (株) 製商品名) やベン 20 続する導体パッド ゾシクロブテン系材料である180℃で5時間加熱して オリゴマー化したシスビスベンゾシクロブテニルエテン を用いても差し支えない。その際の硬化温度はそれぞれ 220°C, 250°Cとすることが好ましい。

[0071]

【発明の効果】以上詳細に説明したように、本発明によ れば、耐熱性、機械特性、電気特性等の特性に優れ、低 コスト、かつ、信頼性が高い、貫通めっきスルーホール の穴の影響がない、高密度配線機能を有する多層配線基 板,ビルドアップ法が形成しうる本来の高密度配線機能 30 を最大限に活用するその製造方法および前記多層配線基 板に用いられる両面プリント配線板の製造方法を提供す ることができる。

【図面の簡単な説明】

【図1】本発明の一実施例に係る両面プリント配線板お よびその製造方法を示す説明図である。

【図2】本発明に他の一実施例に係る両面プリント配線 板を示す説明図である。

【図3】本発明にさらに他の一実施例に係る両面プリン ト配線板の製造方法を示す説明図である。

【図4】本発明にさらに他の一実施例に係る両面プリン ト配線板を示す説明図である。

【図5】本発明の一実施例に係る両面プリント配線板の 製造方法を示す説明図である。

16 【図6】本発明のさらに他の一実施例に係る多層配線基 板の製造方法の説明図である。

【図7】本発明のさらに他の一実施例に係る多層配線基 板の説明図である。

【符号の説明】

- 101 両面の信号層を接続する貫通めっきスルーホー ル
- 102 裏面の電源層との接続をとる貫通めっきスルー ホール
- ホール
 - 104 有機系高分子の絶縁膜
 - 105 溶剤を含まない流動性有機系高分子前駆体のフ イルム状組成物
 - 106 表層導体部
 - 107 銅
 - 108 穴埋めされた層間接続スルーホールの導体と接 続する導体パッド
- 201 穴埋めされた層間接続スルーホールの導体と接
 - 301 両面の信号層を接続する貫通めっきスルーホー ル
 - 302 裏面の電源層との接続をとる貫通めっきスルー ホール
 - 303 裏面の電源層との接続をとる貫通めっきスルー ホール
 - 304 有機系高分子絶縁膜
 - 305 導体パッド
 - 306 銅
- 401 導体パッド
 - 501 金型
 - 601 感光性絶縁樹脂
 - 602 ビアホール
 - 603 銅
 - 604 導体パターン層
 - 701 キャップ層をかねるグランド層
 - 702 信号層
 - 703 信号屬
 - 704 電源層
- 40 705 電源層
 - 706 信号層
 - 707 信号層
 - 708 キャップ層をかねるグランド層
 - 709 導体パッド

フロントページの続き

(72)発明者 渡部 真貴雄 (72)発明者 岡 齋 神奈川県横浜市戸塚区吉田町292番地 株 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 式会社日立製作所生産技術研究所内 (72)発明者 今林 慎一郎 (72)発明者 京井 正之 神奈川県横浜市戸塚区吉田町292番地 株 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 式会社日立製作所生産技術研究所内 (72) 発明者 田中 勇 (72)発明者 谷口 幸弘 神奈川県横浜市戸塚区吉田町292番地 株 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所生産技術研究所内 式会社日立製作所情報通信事業部内