Formal Languages Homework 2

Liam Dillingham

February 4, 2019

1 Problem 2.3.2

Convert to a DFA the following NFA:

	0	1
$\rightarrow p$	$\{q,s\}$	{q}
*q	$\{r\}$	$\{q,r\}$
r	{ s }	$\{p\}$
* S	0	$\{p\}$

2 Problem 2.3.3

Convert the following NFA to a DFA and informally describe the language it accepts.

	0	1
$\rightarrow p$	$\{p,q\}$	{ p}
q	$\{r, s\}$	$\{t\}$
r	$\{p,r\}$	$\{t\}$
*8	Ø	Ø
*t	Ø	Ø

3 Problem 2.3.4

Give nondeterministic finite automata to accept the following languages. Try to take advantage of nondeterminism as much as possible

4 Problem 2.4.1

Design NFA's to recognize the following sets of strings:

- 4.1 a). abc, abd, and aacd, Assume the alphabet is $\{a,b,c,d\}$.
- 4.2 b). 0101, 101, and 011.
- 4.3 c). ab, bc, and ca. Assume the alphabet is $\{a,b,c\}$.

5 Problem 2.4.2b

Convert each of your NFA's from Problem 2.4.1 to DFA's (We only complete part b here).