Bölüm 12

Z Tanım Bölgesinde Durum Geri Besleme Kontrolörü

Durum uzay modeli

$$x(k) = Ax(k-1) + Bu(k-1), \quad y(k-1) = Cx(k-1)$$
(12.1)

olmak üzere

$$u(k-1) = Kx(k-1) (12.2)$$

kontrolörüne **Durum Geri Besleme** kontrolörü adı verilmektedir. Dikkat edilirse bu kontrol kuralı

$$u(k-1) = Kx(k-1)$$

$$u(k-1) = \begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} \begin{bmatrix} x_1(k-1) \\ x_2(k-1) \\ \vdots \\ x_n(k-1) \end{bmatrix}$$

$$u(k-1) = k_1x_1(k-1) + k_2x_2(k-1) + \cdots + k_nx_n(k-1)$$

$$(12.3)$$

olarak yazılabilir. Bu kontrolör ile kapalı çevrim durum uzay modeli

$$x(k) = Ax(k-1) + Bu(k-1), \quad y(k-1) = Cx(k-1)$$

$$x(k) = Ax(k-1) + BKx(k-1), \quad y(k-1) = Cx(k-1)$$

$$x(k) = (A+BK)x(k-1), \quad y(k-1) = Cx(k-1)$$
(12.4)

80BÖLÜM 12. Z TANIM BÖLGESİNDE DURUM GERİ BESLEME KONTROLÖRÜ

olarak elde edilir. Kapalı çevrim modelin z tanım bölgesi ifadesi

$$x(k) = (A + BK)x(k - 1) + Br(k - 1), \quad y(k - 1) = Cx(k - 1)$$

$$z^{1}x(k - 1) = (A + BK)x(k - 1) + Br(k - 1), \quad y(k - 1) = Cx(k - 1)$$

$$(zI - (A + BK))x(k - 1) = Br(k - 1), \quad y(k - 1) = Cx(k - 1)$$

$$x(k - 1) = (zI - (A + BK))^{-1}Br(k - 1), \quad y(k - 1) = Cx(k - 1)$$

$$y(k - 1) = C(zI - (A + BK))^{-1}Br(k - 1)$$

$$\frac{y(k - 1)}{r(k - 1)} = C(zI - (A + BK))^{-1}B$$

$$(12.5)$$

şeklindedir ve karakteristik polinom

$$p_c(z) = \det(zI - (A + BK)) \tag{12.6}$$

ile hesaplanır. Bu polinom için kutuplar seçilirken K kontrolör matrisi hesaplanır. Bu işlem için

$$K = -\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}^{-1} p_d(A)$$
 (12.7)

burada $p_d(z)$ atanmak istenen polinom olmak üzere formülü kullanılabilir.

$$\begin{bmatrix} x_1[k] \\ x_2[k] \end{bmatrix} = \begin{bmatrix} 1 & 0.1 \\ -0.1 & 0.95 \end{bmatrix} \begin{bmatrix} x_1[k-1] \\ x_2[k-1] \end{bmatrix} + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} u[k-1]
y[k-1] = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1[k-1] \\ x_2[k-1] \end{bmatrix}$$
(12.8)

ile verilen sistem için yerleşme zamanı $t_s = 1$, s ve aşım %10 olacak şekilde bir durum geri besleme kontrolörü tasarlansın. Aday karakteristik polinom

$$p_d(s) = s^2 + 8s + 45.7844$$

= $(s + 4 + 5.4575i)(s + 4 - 5.4575i)$ (12.9)

şeklindedir ve z tanım Bölgesinde

$$p_d(z) = (z - 0.57295 - 0.34794i)(z - 0.57295 + 0.34794i)$$

= $z^2 - 1.146z + 0.4493$ (12.10)

şeklindedir. $p_d(A)$ terimi

$$\begin{aligned} p_d(A) &= z^2 - 1.146z + 0.4493 \Big|_{z=A} \\ &= A \cdot A - 1.146A + 0.4493I \\ &= \begin{bmatrix} 0.99 & 0.195 \\ -0.195 & 0.8925 \end{bmatrix} - \begin{bmatrix} 1.146 & 0.1146 \\ -0.1146 & 1.0887 \end{bmatrix} + \begin{bmatrix} 0.4493 & 0 \\ 0 & 0.4493 \end{bmatrix} \\ &= \begin{bmatrix} 0.2934 & 0.0804 \\ -0.0804 & 0.2532 \end{bmatrix} \end{aligned}$$
(12.11)

olarak hesaplanır ve geri besleme kontrolörü

$$K = -\begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0.0100 \\ 0.1 & 0.0950 \end{bmatrix}^{-1} \begin{bmatrix} 0.2934 & 0.0804 \\ -0.0804 & 0.2532 \end{bmatrix}$$

= $\begin{bmatrix} -29.3433 & -8.04104 \end{bmatrix}$ (12.12)

olarak elde edilir. Durum uzayı modeli ve geri besleme kontrolörü ile birlikte Şekil 12.1 ile gösterilmiştir.

Şekil 12.1: Yay-kütle-damper sistemine ait ayrık durum uzay modeli ve geri besleme kontrolörü

Şekil 12.2: Yay-kütle-damper sistemine ait ayrık durum uzay modeli ve geri besleme kontrolörü basamak yanıtı

Şekil 12.3: Yay-kütle-damper sistemine ait ayrık durum uzay modeli ve geri besleme kontrolörü ön filtreli basamak yanıtı