Эволюция архитектуры персонального компьютера

Первый этап

Параллельная шина ISA

Industry Standard Architecture

Одна общая системная шина

ISA - Industry Standard Architecture,

- IBM PC/XT/
- Все устройства на одной обшей шине
- Два Хозяина шины процессор и КПДП
- Трехшинная архитектура (адрес, данные, управления)
- Производительность 8 Мбайт/сек
- 15 линий прерывания
- 7 линий ПДП

Второй этап

Появление нескольких параллельных шин

Второй этап - появление нескольких шин

- Одна общая шина разделяется на несколько отдельных:
 - Системную шину
 - Шину ввода-вывода (шина PCI Peripheral Component Interconnect)
 - Шину памяти
 - Шина графического адаптера

Все шины между собой объединены в одной микросхеме

«Главный мост / Северный мост»

Большинство контроллеров ввода-вывода стали помещать в отдельнй чип – *Южный мост*

Шина PCI - Peripheral Component Interconnect

РСІ – устройства : контроллеры и мосты Производительность 133 Мбайт/сек (32бит/33МГц) и 533 Мбайт/сек (64бит/66МГц)

Топология

- Имеет топологию многоуровневая звезда.
- У каждой шины сеть свой арбитр
 - Арбитр устройство, которое управляет доступом к шине
- Максимальное количество устройств подключаемых к одному сегменту шины теоретически 32, реально не более 6.

Шина PCI

- Все устройства равноправны, нет главного.
- Bus Master (Хозяин шины)
 - Любой PCI-устройство на шине, взявший на себя временное управление шиной.
- Bus Master запрашивает арбитр своей шины для захвата шины и приемо/передачи по ней.

Организация ПДП

- Любой контроллер ввода-вывода став Хозяином шины может самостоятельно осуществлять прямой доступ к памяти (а также к другому контроллеру).
- Контроллер ПДП должен быть реализован в каждом контроллере, который хочет получить доступ по ПДП.
- Классический КПДП контроллер остался для поддержки legacy-устройств шины ISA.

Прерывания шины РСІ

- PCI-устройства могут подавать сигнал запроса на прерывания контроллеру прерываний 2 способами:
 - 1. Проводная сигнализация по проводным линиям INT;
 - 2. Сигнализация с помощью сообщений MSI (Message Signaled Interrupts)

ПРОВОДНАЯ СИГНАЛИЗАЦИЯ ПРЕРЫВАНИЙ

PIC u APIC

- На шине PCI использовались два типа контроллеров прерываний:
 - Простой PIC (Peripheral Interrupt Controller)
 - Периферийный контроллер прерываний, програмно совместимый с «историческим» контроллером 8259A;
 - APIC (Advanced Peripheral Interrupt Controller)
 - Усовершенствованный контроллер прерываний, введенный для поддержки мультипроцессорных (многоядерных) систем..

Простой контроллер РІС (самый первый вариант)

Контакты линий прерываний всех слотов соединены друг с другом с циклическим сдвигом. Так как устройство PCI обычно использует только один контакт (INTA), повышаются шансы на получение не разделяемой (non-shared) линии прерывания.

Линии IRQW-IRQZ программно коммутируются на входы interrupt line контроллера PIC

Простой спаренный РІС

Расширенный контроллер прерываний АРІС

Состоит из двух частей I/O APIC и LAPIC

- I/O APIC контроллер прерываний ввода-вывода
- ► LAPIC локальный контроллер прерываний для каждого процессора (ядра).
- ► I/O APIC принимает запросы на прерывание и передает их соответствующему LAPIC по специальной шине

APIC

23 линии

Различные типы прерываний

Операционной системой могут поддерживаться различные типы доставки прерываний

СИГНАЛИЗАЦИЯ ПРЕРЫВАНИЙ С ПОМОЩЬЮ СООБЩЕНИЙ

Необходимость MSI

- Из-за малого количества линий запроса прерываний, при большом количестве контроллеров несколько из них могут оказаться на одной линии запроса на прерывание (разделяемые прерывания).
- Для определения источника разделяемых прерываний необходимо вызвать обработчик прерывания (ISR, Interrupt Service Routine), входящий в драйвер данного устройства.
- Для диспетчеризации разделяемых прерываний, ОС выстраивает их ISR-ы в цепочку и последовательно запускает их. Каждый ISR должен опрашивать флаг наличия прерывания в регистре состояния своего контроллера. В результате увеличилось время обработки прерываний.
- Для решения проблемы разделяемых прерываний решили перейти от запроса прерываний по физическим линиям на запросы прерываний с помощью сообщений.

Прерывания сообщением (MSI) - идея

- MSI (Message Signaled Interrupts)
- Решат проблему разделяемых прерываний
- Устройство, захватившее шину (Хозяин шины) посылает сообщение о прерывании по той же шине, что и другие данные, в специальный регистр контролера (/OAPIC..
- Адрес регистра и формат сообщения задается в пространстве конфигурации PCI-устройства при инициализации в режиме POST
- I/OAPIC передает запрос на прерывание LAPIC конкретного процессора, после чего начинается процедура обработки прерываний.
- Устройству, использующему MSI запрещается использовать проводные линии запроса INTx.

Регистр MSI APIC

Непосредственно адресуемые регистры АРІС

Адрес	Размер, бит	Тип	Назначение
FEC0_0000h	8	R/W	Index Register, <mark>индекс для доступа к косвенно</mark> адресуемым регистрам
FEC0_0010h	32	R/W	Data Register, данные для обращений к косвенно адресуемым регистрам
FECO_0020h	8	WO	TRQ Pin Assertion Register, регистр программной установки запросов прерываний (запись числа 0–23 эквивалентна подаче сигнала на соответствующий вход INTINn)
FECO_0040h	8	WO	EOI Register — регистр завершения прерываний для входов, чувствительных к уровню. Запись байта — вектора прерывания — вызывает сброс бита Remote_IRR для всех входов, которым назначен данный вектор (аналогичное действие IOAPIC выполняет по сообщению EOI, полученному по локальной шине)

- Адреса регистров APIC отражены на память
- Регистр с адресом FECO_0020h APIC служит для приема запросов прерываний в виде сообщений

Память конфигурации устройства PCI

• У каждого контроллера устройства имеется поле из 256

байт.

31	24	23	16	15	8	7	0	
	Device ID Vendor			r I D		0x00		
	Status Command				0x04			
	Class code			Revision ID)	0x08
	BIST	Header Type		Latency Timer Cache Line Size		e Size	0x0C	
	Base Address Register (BAR) 1							0x10
Base Address Register (BAR) 2 Base Address Register (BAR) 3						0x14		
Base Address Register (BAR) 3 Base Address Register (BAR) 4					0x18			
Base Address Register (BAR) 4					0x1C			
Base Address Register (BAR) 4 Base Address Register (BAR) 5					0x20			
Base Address Register (BAR) 6							0x24	
Cardbus CIS Pointer						0x28		
	Subsystem ID Subsystem Vendor ID				0x2C			
Expansion ROM Base Address						0x30		
Capabilities ptr				s ptr	0x34			
								0x38
Ma	ax_Lat	Min_Gnt		Interrupt Pin		Interrupt	Line	0x3C

- Информация хранится 32 х битными словами в формате little endian
 - Задает конфигурацию ресурсов контроллера (адреса портов, тип контроллера, выделенные линии прерывания и.т.д) во время процедуры POST

Ограничения параллельных шин

Сравнительный анализ шин

Третий этап

Последовательно-параллельная шина PCI-Express

Архитектура шины (общий вариант)

PCI Express

- Последовательно параллельная шина- представляет совокупность независимых последовательных каналов работающих параллельно.
- Данные и вся управляющая информация передается пакетами
- Стандартизированы 1, 2, 4, 8, 12,16 и 32 канальные варианты.
- Каждый канал является дуплексным и состоит из двух дифференциальных пар проводников (необходимо только 4 контакта) работающих в режиме дуплекса.
- Основана на идеологии многоуровневой сетевой модели OSI.
- Шина PCI Express локальная сеть в пределах компьютера, напоминающая Gigabit Ethernet.

PCI Express

Пропускная способность PCI Express, Гбайт/с

Год выпуска	Версия PCI Express	Кодирование	Скорость	Пропускная способность на х линий					
				×1	×2	×4	×8	×16	
2002	1.0	8b/10b	2,5 FT/c	250 Мбайт/с	0.50 Гбайт/с	1.0 Гбайт/с	2.0 Гбайт/с	4.0 Гбайт/с	
2007	2.0	8b/10b	5 FT/c	500 Мбайт/с	1.0 Гбайт/с	2.0 Гбайт/с	4.0 Гбайт/с	8.0 Гбайт/с	
2010	3.0	128b/130b	8 FT/c	984.6 Мбайт/с	1.97 Гбайт/с	3.94 Гбайт/с	7.88 Гбайт/с	15.8 Гбайт/с	
2017	4.0	128b/130b	16 FT/c	1.969 Гбайт/с	3.94 Гбайт/с	7.88 Гбайт/с	15.75 Гбайт/с	31.5 Гбайт/с	
2019	5.0	128b/130b	32 FT/c	3.938 Гбайт/с	7.88 Гбайт/с	15.75 Гбайт/с	31.51 Гбайт/с	63.0 Гбайт/с	
2021	6.0	128b/130b	64 ГТ/c	8 Гбайт/с	16 Гбайт/с	32 Гбайт/с	64 Гбайт/с	128.0 Гбайт/с	

Архитектура шины

- Память конфигурации
- Порты ввода-вывода

Корневой комплекс

(Root Complex или корневой комплекс) отвечает за связь с процессором и системной памятью, а также за управление и конфигурирование всей шины PCI Express.

Root Complex содержит несколько портов PCI Express

К каждому из порту может подключаться коммутатор (switch), или PCIExpress - устройство (Endpoint).

Root Complex отвечает за доступ у пространству конфигурации, портам и пространству памяти.

В настоящее время входит в состав северного моста

Kommytatop PCI Express

- Коммутатор передает пакеты с одного порта на другой и служит для расширения количества подключаемых устройств
- Программно коммутатор представляет собой набор мостов PCI-PCI, т.е. каждая шина PCI-Express представляется как виртуальный мост PCI-PCI.

Передача пакета

Многоуровневая модель шины PCI Express

Каждый уровень добавляет к данным свой заголовок

Передача /прием пакетов

Формат пакетов шины PCI Express

- **Кадр** начальная и конечная последовательность бит необходимых для распознавания начала и конца каждого пакета.
- Порядковый номер добавляется на канальном уровне чтобы пакеты направленные одному получателю можно было собрать в нужной последовательности;
- Заголовок описывает тип пакета, адрес получателя, приоритет и другие свойства
- Данные данные пакеты;
- **CRC** контрольная сумма пакета.

Прерывания PCI Express MSI - (Message Signaled Interrupts)

Для запроса прерывания контроллеру надо послать специальный пакет на адрес регистра в LAPIC (MSIx) или I/O APIC (MSI)

Масштабируемость шины PCI Express

Последовательный поток байт может передаваться параллельно по нескольким каналам (до 32 каналов)

Чипсет

 Чипсет - набор микросхем которые обеспечивают взаимодействие между процессором, памятью, и устройства вода-вывода.

- Состав два чипа:
 - северным мост (Northbridge) или МСН (Memory Controller Hub)
 - южный мост (Southbridge) или ICH (I/O Controller Hub,)

АРХИТЕКТУРА НА ОСНОВЕ ШИНЫ PCI Express

Чипсет для процессора Intel Core i9

