

Normal Distribution

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Department of Computer Science and Engineering

Normal Distribution

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Topics to be covered...

- Continuous Probability Distribution
- Normal Distribution
- Probability Density Function
- Standard Normal Distribution
- Linear Function of a Normal Random Variable
- Linear Function of a Independent Normal Random Variable
- Two independent normally distributed random variables

Continuous Probability Distribution

There are many different types of continuous random variables

PES UNIVERSITY ONLINE

- We try to pick a model that
 - Fits the data well
 - Allows us to make the best possible inferences using the data.
- One important continuous random variable is the normal random variable

Normal Distribution

Carl Friedrich Gauss (1777–1855)

Normal Distribution

- German mathematician and scientist
- Contributions in many fields of mathematics and science
- Referred to as the "Prince of Mathematicians"
- Credited with the use of the probability distribution now known as the normal or Gaussian distribution (bell curve)

Normal Distribution

Extremely important continuous probability distribution.

Rises frequently in theory and practice.

We say that a random variable is normally distributed with mean μ and standard deviation σ if the **probability density**

function is given by

Probability density function

Extremely important continuous probability distribution.

Rises frequently in theory and practice.

We say that a random variable is normally distributed with mean μ and standard deviation σ if the **probability density** function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ for } -\infty < x < \infty$$

Normal Distribution

PES UNIVERSITY ONLINE

Examples of Normal Distribution

- Heights of People
- Test Scores
- Errors in measurements
- Blood Pressure
- Size of things produced by machines

Normal Distribution

PES UNIVERSITY

Why to know Standard Deviation?

Any value is

- Likely to be within 1 standard deviation of the mean.
- Very Likely to be within 2 standard deviations.
- Almost certainly within 3 standard deviations.

The Normal Distribution and Standard Scores

CABT Statistics & Probability - Grade 11 Lecture Presentation

Source Image: www.slideshare.net

Normal Distribution

The Properties of a Normal Distribution

- Mean=Median=Mode
- Symmetry about the center(mean) μ.
- 50% of the values less than the mean and 50 greater than the mean.
- Changing **u** shifts the distribution left or right.
- Changing σ increases or decreases the spread.

Normal Distribution

Normal Distribution

The Properties of a Normal Distribution

- Approximately 68% of the area is within 1 standard deviation.
- Approximately 95% of the area is within 2 standard deviations.
- Approximately 99.7% of the area is within
 3 standard deviations.

The Normal Distribution and Standard Scores

The Distribution of Area

Under the Normal Curve

CART Statistics & Probability - Grade 11 Lecture Presentation

Source Image: www.slideshare.net

Normal Distribution

How good is rule for real data?

SAT scores roughly follow a Suppose normal distribution(with range restricted to 200-800), and the average math SAT is 500 with a standard deviation of 50, then:

- •68% of students will have scores between 450 and 550.
- •95% will be between 400 and 600.
- •99.7% will be between 350 and 650.

What if you wanted to know the math SAT score corresponding to the 95th percentile(=95% of students are lower)?

Standard Normal Distribution

PES UNIVERSITY ONLINE

- Is a Normal distribution with mean 0 and variance 1.
- Random Variable that has standard normal distribution is referred using letter Z.

$$Z \sim N(0, 1)$$

• Probabilities associated with Normal Variates can be calculated by using transformations to the Standard Normal Variate (z) – using z-table.

Standardizing Normally Distributed Random Variables

We can convert a Random Variable X having a Normal distribution with any mean and Standard deviation in to the Random variable that has a Standard Normal Distribution.

$$X \sim N(\mu, \sigma^2)$$

Standardizing X: using a basic linear transformation:

$$z = (x - \mu) / \sigma$$

Example

Find area under the normal curve:

- b) To the left of z = 0.49
- c) To the right of z = 0.49
- d) Between z = 0.40 and z = 1.30
- e) Between z = -1.50 and z = 0.90

Solution

- a) To the **left of z = -0.49 = 0.3121**
- b) To the **left of z = 0.49 = 0.6879**
- c) To the **right of z = 0.49**

$$= 1 - 0.6879 = 0.3121$$

- d) Between z = 0.40 and z = 1.30
 - = Area to left of 1.30 Area to left of 0.40
 - = 0.9032 0.6554
 - = 0.2478
- e) Between z = -1.50 and z = 0.90
 - = Area to left of 0.90 Area to left of-1.50
 - = 0.8159 0.0668
 - = 0.7491

Example

Let $Z \sim N(0, 1)$. Find a constant c for which

a)
$$P(Z \ge c) = 0.1587$$

b)
$$P(c \le Z \le 0) = 0.4772$$

c)
$$P(-c \le Z \le c) = 0.8664$$

Solution

a)
$$P(Z \ge c) = 0.1587$$

=> Area to left of $c = 1 - 0.1587 = 0.8413$
=> $c = 1.00$

b)
$$P(c \le Z \le 0) = 0.4772$$

Area to left of 0 = 0.5

= Area to left of c = 0.5 - 0.4772 = 0.0228

$$=> c = -2.00$$

c)
$$P(-c \le Z \le c) = 0.8664$$

$$P(0 \le Z \le c) = 0.8664/2 = 0.4332$$

Area to right of c = 0.5 - 0.4332 = 0.0668 => Area to left of <math>-c = 0.0668 => c = -1.50

Area to left of c = 1 - 0.0668 = 0.9332 => c = 1.50

Example

If $X \sim N(2, 9)$, compute:

a)
$$P(X \ge 2)$$

b)
$$P(1 \le X < 7)$$

- c) Find the median of X.
- d) Find 75th percentile of X.

Solution

a)
$$P(X \ge 2)$$

 $Z = (x-2)/3 = (2-2)/3 = 0$
 $P(Z \ge 0) = 0.5$

b) P(1
$$\leq$$
 X < 7)
P($(1-2)/3 \leq$ Z < $(7-2)/3$) = P($-1/3 \leq$ Z < $5/3$) = P($-0.33 \leq$ Z < 1.67)

- = Area to left of 1.67 Area to left of -0.33
- = 0.9525 0.3707
- = 0.5818

Solution

c) Find the median of X.

$$P(Z \le c) = 0.5 => c = 0.0$$

=> 0.0 = (x - 2)/3 => x = 2

d) Find 75th percentile of X.

 $P(Z \le c) = 0.75 => closest area to 0.7500 is 0.7486 corresponding to a z-score of 0.67$

$$=> 0.67 = (x - 2)/3 => x = 4.01$$

Example

The lifetime of a battery is in a certain application is normally distributed with mean 16 hours, standard deviation 2 hours.

- a) What is the probability that a battery will last more than 19 hours?
- b) Find the 10th percentile of the lifetimes.
- c) A particular battery lasts 14.5 hours. What percentile is its lifetime on?

Solution

PE

a) What is the probability that a battery will last more than 19 hours?

To find : $P(X \ge 19)$

$$Z = (19 - 16)/2$$

=>1.5

$$P(Z \ge 1.5) = 1 - P(Z \le 1.5) = 1 - 0.9332 = 0.0668$$

b) Find the 10th percentile of the lifetimes.

 $P(Z \le c) = 0.1000$

Closest area to 0.1000 is 0.1003 corresponding to a z-score of -1.28

$$=> -1.28 = (x - 16)/2 => x = 13.44$$

c) A particular battery lasts 14.5 hours. What percentile is its lifetime on?

$$Z = (14.5 - 16) / 2 = -0.75$$

$$P(Z \le -0.75) = 0.2266$$

=> its lifetime is approximately on 23rd percentile.

Linear Function of a Normal Random Variable

If $X \sim N(\mu_{I}, \sigma_{I}^{2})$ and a and b are constants, and

$$Y = aX + b$$
 then,

$$Y \sim N(a\mu_{X} + b, a^{2}\sigma_{Y}^{2})$$

Linear Function of a Independent Normal Random Variable

Let $X_1, X_2, ..., X_n$ be independent and normally distributed with means $\mu_1, \mu_2, ..., \mu_n$ and variances $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$. Let $c_1, c_2, ..., c_n$ be constants, and $c_1 X_1 + c_2 X_2 + ... + c_n X_n$ be a linear combination. Then

$$c_1 X_1 + c_2 X_2 + ... + c_n X_n$$

 $\sim N(c_1 \mu_1 + c_2 \mu_2 + ... + c_n \mu_n, c_1^2 \sigma_1^2 + c_2^2 \sigma_2^2 + ... + c_n^2 \sigma_n^2)$

Two independent normally distributed random variables

Sum/ Difference of two independent normally distributed random variables is normal.

If $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent random variables that are normally distributed, then their sum/difference is also normally distributed. i.e., if

If,
$$X \sim N(\mu_{X}, \sigma_{X}^{2})$$

$$Y \sim N(\mu_{X}, \sigma_{X}^{2})$$

$$X + Y \sim N(\mu_{X} + \mu_{Y}, \sigma_{X}^{2} + \sigma_{Y}^{2})$$
Then,
$$X - Y \sim N(\mu_{X} - \mu_{Y}, \sigma_{X}^{2} + \sigma_{Y}^{2})$$

Example

Let X be a normal random variable with mean 2 and variance 3, and

let X be a normal random variable with mean 1 and variance 4.

Assume that X1 and X2 are independent.

What is the distribution of the linear combination Y = 2X1 + 3X2?

Example

Y is normally distributed with mean 7 and variance 48 as the following calculation illustrates:

$$(2X_1 + 3X_2) \sim N(2(2)+3(1), 2^2(3)+3^2(4)) = N(7,48)$$

Example

A light fixture holds two lightbulbs. Bulb A is a type whose lifetime is normally distibuted with mean 800 hours and standard deviation 100 hours. Bulb B has a lifetime that is normally distibuted with mean 900 hours and standard deviation 150 hours. Assume the lifetimes of the bulbs are independent.

- 1) What is the probability Bulb B lasts longer than bulb A?
- 2) What is the probability Bulb B lasts 200 hours more than bulb A?
- 3)Another light fixture holds only one bulb. A bulb of type A is installed, and when it burns out, a bulb of type B is installed.

What is the probability that the total lifetime of the two bulbs is more than 2000 hours?

Solution

Bulb A : $X \sim N(800, 100^2)$

Bulb B : Y \sim N(900, 150²)

Assume the lifetimes of the bulbs are independent.

1) What is the probability Bulb B lasts longer than bulb A?

D = Y - X. The event B > A is the event D > 0

D
$$\sim N(\mu_Y - \mu_X, \sigma_Y^2 + \sigma_X^2)$$

$$D \sim N (100, 180.28^2)$$

Since D is a linear combination of independent normal random variables,

D is normally distributed. P(D > 0)

$$Z = (0 - 100)/180.28 => z = -0.55$$

$$P(Z > -0.55) = 1 - P(Z < -0.55) = 1 - 0.2912 = 0.7088$$

Example

Bulb A : $X \sim N(800, 100^2)$

Bulb B : Y \sim N(900, 150²)

Assume the lifetimes of the bulbs are independent.

2) What is the probability Bulb B lasts 200 hours more than bulb A?

D = Y - X. The event B > A is the event D > 0

D ~ N(
$$\mu_Y - \mu_X$$
, $\sigma_Y^2 + \sigma_X^2$)

$$D \sim N (100, 180.28^2)$$

Since D is a linear combination of independent normal random variables,

D is normally distributed.P(D > 200)

$$Z = (200 - 100)/180.28 => z = 0.55$$

$$P(Z > 0.55) = 1 - P(Z < 0.55) = 1 - 0.7088 = 0.2912$$

Example

3) Another light fixture holds only one bulb. A bulb of type A is installed, and when it burns out, a bulb of type B is installed.

What is the probability that the total lifetime of the two bulbs is more than 2000 hours?

$$X + Y \sim N(\mu_Y + \mu_X, \sigma_X^2 + \sigma_Y^2)$$

 $X + Y \sim N (1700, 180.28^2)$

Since X + Y is a linear combination of independent normal random variables, X + Y is normally distributed.

$$P(X + Y > 2000)$$

 $Z = (2000 - 1700)/180.28 => z = 1.66$
 $P(Z > 1.66) = 1 - P(Z < 1.66) = 1 - 0.9515 = 0.0485$

THANK YOU

Prof. Uma D

Prof. Suganthi S

Prof. Silviya Nancy J

Department of Computer Science and Engineering