18.06 Final Exam in Linear Algebra

13 December 1993: Professor Strang

Part I (short questions)

1. Find all possible values for the determinant of the given type of 3×3 real matrix.

- [2] (a) A matrix with independent columns.
- [2] (b) A matrix with $A^2 = A$.
- [2] (c) A matrix with pivots 1, 2 and 3.
- [2] (d) A Markov matrix.
- [3] 2. Why is there no orthogonal matrix Q such that $Q^{-1}AQ = \Lambda$ if

$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
?

[2] 3. The left null space $\mathcal{N}(A^T)$ of a matrix A is spanned by $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$. The set of solutions of

the equation
$$Ax = \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}$$
 is (circle one)

the empty set, a point, a line, a plane, a three-dimensional hyperplane in \mathbb{R}^4 , all of \mathbb{R}^4 .

- [4] 4. Apply the Gram-Schmidt algorithm to the columns of the matrix $\begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ to obtain three orthonormal vectors.
 - 5. For what values of a and b is the quadratic form $ax^2 + 2xy + by^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
- [3] positive definite?

- 6. Suppose A is an m by n matrix, with independent columns.
- [2] What can you deduce about the relation of m and n?
- What can you deduce about the set of solutions to $A\mathbf{x} = 0$?
- [2] For which m and n are there nonzero solutions to $A^T \mathbf{y} = 0$?
- [2] Give two properties of the matrix $A^T A$ (other than the fact that it is square).
- [2] 7. Give an example of a matrix with exactly two zero eigenvalues and no zero entries.
- [3] 8. Consider the square matrix $A = \begin{bmatrix} 7 & -3 \\ 9 & -5 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}^{-1}$. Find the solution to the differential equation $\frac{du(t)}{dt} = Au(t)$ with initial condition $u(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- [3] 9. Find a basis for the orthogonal complement of the subspace of \mathbb{R}^4 spanned by the

vectors
$$\begin{bmatrix} 2\\0\\1\\2 \end{bmatrix}$$
, $\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$, and $\begin{bmatrix} 3\\0\\1\\3 \end{bmatrix}$.

- 10. Are the following statements true or false? You get 2 points for a correct answer and -2 points for an incorrect answer.
- T F (a) If $M^{-1}AM = B$, then A and B must have the same eigenvectors.
- T F (b) The matrices A and A^T always have the same rank.
- (c) There is a matrix with column space is spanned by the vectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$, and with
- T F row space spanned by vectors $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
- T F (d) If a square matrix has a repeated eigenvalue, it cannot be diagonalizable.
- (e) The set of vectors in \mathbb{R}^3 with integer (whole number) components is a subspace of $T-F-\mathbb{R}^3$.

Part II

1. Let
$$A$$
 be the matrix $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$.

- [3] (a) Find a factorization A = LU, where L is a lower triangular matrix, and U is in echelon form.
- [4] (b) Find the general solution of $Ax = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$.
- [4] (c) The vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ is in the column space of A if a, b and c satisfy what linear conditions?
- [4] 2. The vector space \mathbb{R}^2 has bases $\left\{\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ and $\left\{\mathbf{w}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{w}_2 = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \right\}$. Write the matrix for the identity linear transformation I from the basis $\left\{\mathbf{v}_1, \mathbf{v}_2\right\}$ to the basis $\left\{\mathbf{w}_1, \mathbf{w}_2\right\}$.
 - 3. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$.
- [3] (a) Find a matrix Q with orthonormal columns and an upper triangular matrix R such that A = QR.
- [3] (b) Find the closest vector to $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in the column space of A.
- [3] (c) If \mathbf{v} and \mathbf{w} are any two linearly independent vectors, find a nonzero linear combination that is perpendicular to \mathbf{v} .
- [3] (d) Compute the matrix P which projects onto the column space of A.
 - 4. Let **u** and **v** be vectors in the Euclidean space \mathbb{R}^n , and let A be the square matrix $\mathbf{u}\mathbf{v}^T$.
- [3] (a) Describe the row space and nullspace of A in terms of \mathbf{u} and \mathbf{v} .
- [2] (b) Show that **u** is an eigenvector of A, and find the corresponding eigenvalue.
- [2] (c) What condition must be satisfied by **u** and **v** for A to be skew-symmetric $(A = -A^T)$?
- [2] (d) What condition must be satisfied by \mathbf{u} and \mathbf{v} so that $A^2 = A$?

5. Let
$$A_n$$
 be the $n \times n$ matrix with entries $a_{ij} = \begin{cases} -2, & i = j-1, \\ 1, & i = j, \\ 1, & i = j+1, \\ 0, & \text{other entries.} \end{cases}$ For example,

$$A_1 = \begin{bmatrix} 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 1 & -2 \\ 0 & 1 & 1 \end{bmatrix}, \quad A_4 = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 1 & 1 & -2 & 0 \\ 0 & 1 & 1 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

[4] (a) Let
$$d_n = \det(A_n)$$
. Find numbers a and b such that for $n = 3, 4, 5, \ldots$,

$$d_n = ad_{n-1} + bd_{n-2}.$$

[1] (b) What is
$$d_4$$
?

[4] (c) Write the matrix
$$A$$
 such that $\begin{bmatrix} d_{n+1} \\ d_n \end{bmatrix} = A \begin{bmatrix} d_n \\ d_{n-1} \end{bmatrix}$, and calculate its eigenvalues and eigenvectors.

[2] (d) Find the number
$$\lambda$$
 such that d_n/λ^n tends to a non-zero, finite limit as n tends to infinity.

[5]
$$\operatorname{matrix} A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}.$$

11. Diagonalize the matrix
$$\begin{bmatrix} 13 & 4 \\ 4 & 7 \end{bmatrix}$$
.

2. The left null space
$$\mathcal{N}(A^T)$$
 of the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 5 \\ 1 & 0 & 0 & 0 \end{bmatrix}$ is spanned by $\begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$.

for which
$$Ax = \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix}$$
 can be solved.

(d) The set of solutions of the equation
$$Ax = \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$
 is (circle one)

the empty set, a point, a line, a plane, a three-dimensional hyperplane in \mathbb{R}^4 , all of \mathbb{R}^4 . Explain why.

[2] 2. What is the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$?