# PU1

TTM4100 - COMMUNICATION SERVICES AND NETWORKS

TDT4140 - SOFTWARE ENIGNEERING

TDT4145 - Data Modeling, Databases and Database Management Systems

TDT4180 - Human-Computer Interaction

## Gruppe 7:

Espen Albert, Finn Inderhaug, Kristoffer Andreas Dalby Christoffer B. Nysæter, Andreas Wien, Jonas André Dalseth

5. mars 2014

#### 1 Resources

We have 6 persons available for completing the application. Every person has their own personal computer with development tools for the java runtime environment, the postgreSQL database, and the JSON object interface. The budget for our project is limited to the work hours specified in time estimate.

## 2 Time and budget estimate

Based on the resources we have at our disposal we have made the following time and budget estimates. Since this project is a school exercise labour is free. Nonetheless we have put together a budget consisting of our work hours and a fictive salary of 849,90NOK. Making the salary budget a total of  $\approx 734300NOK$ . In addition to creating a calendar, we have also been given a separate project in TTM4100 which we have included here, and will take some of the total work time. We have estimated a total monetary spending budget of 0 NOK, because we are using free software and the developers personal computers. It is highly unlikely that we will pay for any new software or hardware during this project.

We have estimated 18 workdays of 8 hours, with 6 developers. This gives us 864 work hours.

### 3 Deadlines

The absolute deadlines are required from our customer(the exercise) are shown in table 1.

## 4 Responsibilities

We will divide the responsibility for the completion of the exercise in 4 parts; the database, network communication, client model and client view. There is also a person responsible for human resources, and a union representative chosen democratically by the group. The human resource responsible has taken on him to create a friendly work environment and to plan fun excursions.

#### 4.1 Database

The database will hold every piece of information that the program needs to save over a longer time period. The work is divided as shown in table 2

Tabell 1: Deadlines

| Task                          | Due by date |
|-------------------------------|-------------|
| PU1 Prosjektplan              | 2.mars      |
| PU2 Systemtestplan            | 2.mars      |
| KTN Prosjektplan              | 3.mars      |
| DB ER modell                  | 6.mars      |
| MMI D2.1 og 2.2               | 7.mars      |
| PU3 Overordnet Design         | 9.mars      |
| DB2 Logisk databaseskjema     | 14.mars     |
| MMI del 3                     | 14.mars     |
| PU4 Implementasjon og testing | 21.mars     |
| PU5 Dokumentasjon             | 21.mars     |
| KTN working implementation    | 24.mars     |

Tabell 2: Database section and amount of time

| Task                                  | Estimated hours |
|---------------------------------------|-----------------|
| Create ER-diagram for the application | 10 hours        |
| Logic databasechema                   | 10 hours        |
| Setup the database server             | 8 hours         |
| Create the needed structure in SQL    | 16 hours        |
| Implement JDBC                        | 8 hours         |
| Implement needed methods              | 16 hours        |
| Total                                 | 68 hours        |

#### 4.2 Network communication

Network communication consists of the part of the server communicating with both clients and the database. It is vital that the server can lock resources, and still queue requests from clients. In table 3 we have a look at how many work hours that will be allocated to this part of the system.

Tabell 3: Computer networking work breakdown schedule

| Task                                                                  | Estimated hours |
|-----------------------------------------------------------------------|-----------------|
| Creating a class diagram                                              | 4               |
| Sequence diagram for login, send message from client and logout.      | 6               |
| A short textual description of the design                             | 2               |
| Play with JSON                                                        | 6               |
| Server and client login                                               | 6               |
| Server and client logout                                              | 6               |
| Extra functionality                                                   | 0-24            |
| System integration                                                    | 10              |
| Test many clients                                                     | 4               |
| Overall computer networking separate project                          | 44              |
| Planning server to client                                             | 6               |
| Planning client to server                                             | 6               |
| Server to clients, Master                                             | 10              |
| Server and clients, Threads sending JSON objects to logged in clients | 16              |
| Clients to server, Master                                             | 10              |
| Clients to server, Check for inconsistency                            | 10              |
| Clients to server, multiple Threads                                   | 10              |
| Overall computer networking common project total                      | 58              |
| Overall computer networking total                                     | 102             |

#### 4.3 Network communication

#### 4.4 Client model

The client model can be separated in to several smaller problems that are easier time estimated as parts. The sum of these makes the total time estimate of the clients model as seen in table 4. The model will be written in java, and handle json objects from the server. It will also provide a fully fledged API for the GUI<sup>1</sup>.

 $<sup>^1{</sup>m graphical}$  unit inteface

Tabell 4: Client model time estimate

| Task                                   | Estimated hours |
|----------------------------------------|-----------------|
| Creating login functionality           | 7               |
| Parsing json objects to model          | 8               |
| Define model and API structure         | 12              |
| Create json objects based on the model | 8               |
| Creating vital functions and objects   | 16              |
| Create unit tests                      | 6               |
| Optimize the notify function           | 15              |
| Sum                                    | 72              |

### 4.5 Client view

The client view is the way the user interacts with the system. It features an easy to use interface communicating with the clients model. The workload is shown in table 5.

Tabell 5: Time to design the user interface

| Task                                            | Estimated hours |
|-------------------------------------------------|-----------------|
| Discuss how we want the user interface          | 12 hours        |
| Designing the user interface using paper models | 12 hours        |
| Show papermodel to studass and another group    | 6 hours         |
| Fix papermodel after feedback                   | 3 hours         |
| Conceptual model                                | 6 hours         |
| Screen design                                   | 12 hours        |
| Construction design                             | 12 hours        |
| Make login screen                               | 4 hours         |
| Make appointment view                           | 16 hours        |
| Make week view                                  | 16 hours        |
| Other functionality                             | 16 hours        |

## 5 Work load distribution as gantt diagram

We are planning on rotating the tasks between people. The persons responsible are listed in table 6. Espen is responsible for the KTN separate project.

Tabell 6: Responsibilities

| Person               | Responsibilities             |
|----------------------|------------------------------|
| Espen Albert         | Network communication        |
| Finn Inderhaug Holme | Client model                 |
| Kristoffer Kradalby  | Database                     |
| Jonas André Dalseth  | Client ciew, human resources |
| Andreas Wien         | Union representative         |

He will be rotating between the KTN project and the other projects. He will take turns working with different parts of the project for example

• monday: KTN with Jonas.

• tuesday: GUI with Jonas.

• wednesday: KTN with Kristoffer.

• thursday: Database with kristoffer.

The documentation will be an ongoing project since day one. We will log hours and do documentation all the way. The work load is shown in figure 1

## 6 Risk analysis

Our simple risk analysis is shown in figure 2. The overall workload distribution is way below the 860 hours. We have accounted for pretty much everything not going as planned.



Figur 1: Gantt diagram

| Prob/Conseq | Low             | Mod                                      | High                                                  |
|-------------|-----------------|------------------------------------------|-------------------------------------------------------|
| Low         |                 |                                          | Illness 3+ persons<br>Git hub down<br>People quitting |
| Mod         |                 | Hardware error<br>System integration     |                                                       |
| High        | Procrastination | Illness 1-2 persons<br>Bad communication | Low skills<br>Fail to plan                            |

Figur 2: Risk analysis