Claims

- [c1] 1.An electric machine with cooling rings, comprising:
 - a housing;
 - a stator core disposed within the housing and having at least one end-turn extending beyond an end of the stator core, the end-turn being potted with a potting material;
 - a rotor rotatably positioned within the stator core;
 - a non-laminated thermal conductor ring having a thermal conductivity that is greater than a thermal conductivity of the potting material disposed between the potted stator core end-turn and the housing for conducting heat from the stator core end-turn to the housing.
- [c2] 2.The electric machine of claim 1, wherein the housing has a coolant fluid circulated therein.
- [c3] 3.The electric machine of <u>claim 1</u>, wherein the thermal conductor ring is a metallic thermal conductor ring disposed between the potted stator core endturn and the housing.
- [c4] 4.The electric machine of <u>claim 3</u>, wherein the metallic thermal conductor ring is an aluminum ring disposed between the potted stator core end-turn and the housing.
- [c5] 5.The electric machine of <u>claim 3</u>, wherein the metallic thermal conductor ring is an aluminum alloy ring disposed between the potted stator core end-turn and the housing.
- [c6] 6.The electric machine of <u>claim 1</u>, wherein the thermal conductor ring is a non-metallic thermal conductor ring disposed between the potted stator core endturn and the housing.
- [c7] 7.The electric machine of <u>claim 1</u>, wherein the thermal conductor ring further comprises an outer face thereof disposed against an inner surface of the housing.
- [c8] 8.The electric machine of claim 7 , wherein the outer face of the thermal

	conductor ring is pressed fit against the inner surface of the housing.
[c9]	9.The electric machine of claim 8, wherein the housing is shrink fitted against
	the outer face of the thermal conductor ring.
[c10]	10. The electric machine of claim 1, wherein the thermal conductivity of the
	thermal conductor ring is at least 90 BTU/hr ft degree F.
[c11]	11. The electric machine of claim 1, wherein the thermal conductivity of the
	thermal conductor ring is at least 300 times greater than the thermal
	conductivity of the potting material.
[c12]	12. The electric machine of claim 1, further comprising a space defined between
	the potted stator end-turn and the thermal conductor that is filled with the
	potting material.
[c13]	13. The electric machine of $\underline{\text{claim 1}}$, wherein the potting material is a flexible
	potting material.
[c14]	14. The electric machine of claim 13, wherein the flexible potting material is an
	elastomeric potting material.
[c15]	15.The electric machine of <u>claim 13</u> , wherein the flexible potting material is a

viscoelastic potting material.

APP_ID=09683018 Page 11 of 15