sp search.shape

sp search

(1000, 15)

Economic Data Analysis with Fred and Pandas

!pip install fredapi → Collecting fredapi Downloading fredapi-0.5.2-py3-none-any.whl.metadata (5.0 kB) Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from 1 Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-packages Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from Downloading fredapi-0.5.2-py3-none-any.whl (11 kB) Installing collected packages: fredapi Successfully installed fredapi-0.5.2 import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.express as px import time plt.style.use('fivethirtyeight') pd.set option('display.max columns',500) color pal=plt.rcParams['axes.prop cycle'].by key()['color'] from fredapi import Fred fred_key= 'enter your key here' Create Fred object fred= Fred(api_key=fred_key) Search Economic data sp_search=fred.search('S&P', order_by='popularity')

₹

id realtime_start realtime_end tit

series id

BAMLH0A0HYM2	BAMLH0A0HYM2	2025-07-14	2025-07-14	ICE BofA High Yi Inc Optic Adjusted \$
CSUSHPINSA	CSUSHPINSA	2025-07-14	2025-07-14	S CoreLo Case-Shi U Natio Home
SP500	SP500	2025-07-14	2025-07-14	S&P 5
BAMLH0A0HYM2EY	BAMLH0A0HYM2EY	2025-07-14	2025-07-14	ICE BofA High Yi Inc Effect Yi
BAMLC0A0CM	BAMLC0A0CM	2025-07-14	2025-07-14	ICE BofA Corpora Inc Optic Adjust S
DDDI12SMA156NWDB	DDDI12SMA156NWDB	2025-07-14	2025-07-14	Priva Credit Depo Mor Banks a Othe
Q03069USQ605NNBR	Q03069USQ605NNBR	2025-07-14	2025-07-14	Rever Freight To Originate Less Th Ca
CSHICPCZA156NRUG	CSHICPCZA156NRUG	2025-07-14	2025-07-14	Share Gro Cap Formation Current Po
				Share

Pull raw data

sp500=fred.get_series(series_id='SP500')

sp500.plot(figsize=(12,6), title='S&P 500', lw=2)

2020

2021

2022

2023

2024

2025

Pull and join Multiple Data series

2016

unemployment_results=fred.search('unemployment')

2017

2018

2019

unemployment_results

2000

₹

id realtime_start realtime_end t

series id

Unemploy	2025-07-14	2025-07-14	UNRATE	UNRATE
Unemploy	2025-07-14	2025-07-14	UNRATENSA	UNRATENSA
Unemploy	2025-07-14	2025-07-14	UNEMPLOY	UNEMPLOY
Noncy R Unemploy	2025-07-14	2025-07-14	NROU	NROU
Cont Claims (In Unemploy	2025-07-14	2025-07-14	CCSA	CCSA
			•••	***
Total Qua Waq Manhatta (2025-07-14	2025-07-14	ENUC317430010	ENUC317430010
Compens Manufact Anima	2025-07-14	2025-07-14	IPUEN3116L0200000000	IPUEN3116L020000000
Compens Manufact Anima	2025-07-14	2025-07-14	IPUEN3116U110000000	IPUEN3116U110000000
Av Weekly V for Emplo in Fede	2025-07-14	2025-07-14	ENUC148640110SA	ENUC148640110SA
Ave Weekly V for Emplo in Fede	2025-07-14	2025-07-14	ENUC148640110	ENUC148640110

1000 rows × 15 columns

unrate=fred.get_series('UNRATE')
unrate.plot()

unemp_df=fred.search('unemployment rate state', filter=('frequency', 'Monthly'))
unemp_df

id realtime_start realtime_end

series id

UNRATE	UNRATE	2025-07-14	2025-07-14	Unem _l
UNRATENSA	UNRATENSA	2025-07-14	2025-07-14	Unem _l
LNS14000006	LNS14000006	2025-07-14	2025-07-14	Unem _l Rate -
UNEMPLOY	UNEMPLOY	2025-07-14	2025-07-14	Unem _l
LNU03000000	LNU03000000	2025-07-14	2025-07-14	Unem _l
LAUCN3001900000000005	LAUCN300190000000005	2025-07-14	2025-07-14	E Pı Co
LAUCN4709500000000005	LAUCN470950000000005	2025-07-14	2025-07-14	E Pı Lake
LAUCN220350000000005	LAUCN220350000000005	2025-07-14	2025-07-14	E Pi Ea: P
LAUCN021300000000005	LAUCN021300000000005	2025-07-14	2025-07-14	E Po K
				Bor
				E Pı

unemp_df = unemp_df.query('seasonal_adjustment == "Seasonally Adjusted" and units == "Percent

```
unemp_df.shape

→ (52, 15)

unemp_df=unemp_df.loc[unemp_df['title'].str.contains('Unemployment Rate')]

unemp_df.shape

→ (46, 15)

all_results=[]
for myid in unemp_df.index:
    results=fred.get_series(myid)
    results=results.to_frame(name=myid)
    all_results.append(results)

type(all_results)

→ list

all_results[4]

→ M0892AUSM156SNBR

1929-04-01 0.69

1929-05-01 1.65

1929-06-01 2.06
```

→		M0892AUSM156SNBR
	1929-04-01	0.69
	1929-05-01	1.65
	1929-06-01	2.06
	1929-07-01	0.79
	1929-08-01	0.04
	•••	
	1942-02-01	3.56
	1942-03-01	3.22
	1942-04-01	2.33
	1942-05-01	1.22
	1942-06-01	0.24

159 rows x 1 columns

```
unemp_results=pd.concat(all_results, axis=1)
```

```
cols_to_drop = []
for i in unemp_results:
    if len(i) > 4:
        cols_to_drop.append(i)
unemp_results = unemp_results.drop(columns = cols_to_drop, axis=1)
```

```
uemp_states = unemp_results.copy() #.drop('UNRATE', axis=1)
uemp_states = uemp_states.dropna()
id_to_state = unemp_df['title'].str.replace('Unemployment Rate in ','').to_dict()
uemp_states.columns = [id_to_state[c] for c in uemp_states.columns]

# Plot States Unemployment Rate
px.line(uemp_states)
```


Pull april 2020 Unemployment rate per state

```
apr_2020rate=uemp_states.loc[uemp_states.index == '2020-04-01'].T.sort_values('2020-04-01')
apr_2020rate.plot(kind='bar', figsize=(12,6), title='April 2020 Unemployment Rate')
```


Pull Participation rate

```
part_df = fred.search('participation rate state', filter=('frequency', 'Monthly'))
part_df = part_df.query('seasonal_adjustment == "Seasonally Adjusted" and units == "Percent'

part_id_to_state = part_df['title'].str.replace('Labor Force Participation Rate for ','').tr

all_results = []

for myid in part_df.index:
    results = fred.get_series(myid)
    results = results.to_frame(name=myid)
    all_results.append(results)
    time.sleep(0.1) # Don't request to fast and get blocked

part_states = pd.concat(all_results, axis=1)
part_states.columns = [part_id_to_state[c] for c in part_states.columns]
```

Plot Unemp vs Participation

```
# Fix DC
uemp_states = uemp_states.rename(columns={'the District of Columbia':'District Of Columbia':
```

```
fig, axs = plt.subplots(10, 5, figsize=(20, 20), sharex=True)
axs = axs.flatten()
i = 0
for state in uemp_states.columns:
    if state in ["District Of Columbia", "Puerto Rico"]:
        continue
    ax2 = axs[i].twinx()
    uemp_states.query('index >= 2020 and index < 2022')[state] \
        .plot(ax=axs[i], label='Unemployment')
    part_states.query('index >= 2020 and index < 2022')[state] \</pre>
        .plot(ax=ax2, label='Participation', color=color_pal[1])
    ax2.grid(False)
    axs[i].set_title(state)
    i += 1
plt.tight_layout()
plt.show()
```

