Principles

1. Core Principle

- Provide value to end user (the reason it all exists)
- Keep it simple stupid
- Maintain the vision
- Be open to future
- Others will consume what you produce
- Plan ahead for reuse
- Think, then act

2. Communication principles

- Listen
- Prepare before you communicate
- Someone should facilitate the communication
- Face to face communication is the best
- Take notes and document decision
- Collaborate with customer
- Stay focused on a topic, modularize your decision
- If something is unclear draw the picture
- Move on to next topic
 - a) After you agree to something
 - b) If you cannot agree to something
 - c) If a function or feature is unclear and cannot be clarified at the moment
- Negotiation is not a contest or a game, it works the best when both parties win

3. Deployment principles

- Customer expectation from the software product should me managed
- A complete delivery package should be assembled and tested
- A support system must be established before the software is delivered
- Appropriate instructional material should be provided to end user
- Buggy software should be fixed first ,delivered later
- 4. Modelling practices principles

- Primary goal of software team is to build software not create a model
- Don't create more model than you need
- Try to produce simple model
- Build models in such a way that makes then agreeable to change
- Be able to state an explicit purpose for each model that is created
- Adopt the model you develop to the system at hand
- Try to build useful model but forget about building useful model
- Don't become inflexible about the syntax of the model if it communicate contents successfully, representation is secondary
- If your talent tell you a model isn't right even it seems ok on paper, you probably have reason to be concerned

5. Testing principles

- It is the process of executing a program with the intent of finding errors
- A good test is one that has a high probability of finding an as yet undiscovered error
- A successful test is one that uncover an as yet undiscovered error

6. Planning principles

- Understand the project scope
- Involve the customer in the planning activity
- Recognize that planning is iterative
- Estimate based on what you know
- Consider risk as you define the plan
- Be realistic
- Adjust granularity as you proceed further with the planning
- Define how quality will be achieved
- Define how you will accommodate changes

7. Scheduling principles

- Define clear project objectives
- Break down work into task
- Estimate effort and duration
- Communication and collaboration
- Regular monitoring and tracking

- Review and adapt
- Allocate resources

Difference between

1. Software quality management and software quality assurance

Software Quality Assurance (QA)	Software Quality Control (QC)
It is a procedure that focuses on providing assurance that quality requested will be achieved	It is a procedure that focuses on fulfilling the quality requested.
QA aims to prevent the defect	QC aims to identify and fix defects
It is a method to manage the quality- Verification	It is a method to verify the quality-Validation
It does not involve executing the program	It always involves executing a program
It's a Preventive technique	It's a Corrective technique
It's a Proactive measure	It's a Reactive measure

2. Waterfall vs Incremental model

Parameters	Waterfall	Incremental
Simplicity	Simple	Intermediate
Risk	High	Comparatively low
involvement		

manageability	Difficult	Easy
User	At the beginning	Throughout
involvement		
Flexible	rigid	Less flexible
Maintenance	least	High
duration	Long	Very long

3. Agile vs Prescriptive model

Agile	Prescriptive
These models satisfy customer	Developed to bring order and
through fast delivery	structure in software process
	model
Comparatively less popular	More popular
People oriented	Process oriented
It follows iterative development	It follows life cycle
model	model(waterfall,spiral)
Informal communication is	Formal communication is required
required	
Customer role is critical	Customer role is important
e.g Extreme programming,Scrum	Waterfall,incremental model

4. White box vs Black Box

Whitebox	Blackbox
Tester need to have knowledge	Tester doesn't need to have
Of internal code	knowledge of internal code
It aims at testing the structure	It aims at testing the functionality
Aka structural testing, clear box	Aka data driven , box testing ,
testing , code based testing or	Data and functional testing
glass box testing	
Suited for lower level of testing	Suited for higher level of testing
like unit testing	Like system testing
Based on detailed designed	Based on requirement
documents	specification document
Statement , branch and path	Equivalence partitioning and
coverage are white box testing	Boundary value analysis are black
techniques	box testing techniques

5.

 It is the procedure to create the deliverables 	It is the procedure to verify that deliverables
QA involves in full software development life cycle	QC involves in full software testing life cycle
 In order to meet the customer requirements, 	QC confirms that the standards are followed
QA defines standards and methodologies	while working on the product
It is performed before Quality Control	It is performed only after QA activity is done
It is a Low-Level Activity, it can identify an error and mistakes which QC cannot	It is a High-Level Activity, it can identify an error that QA cannot
Its main motive is to prevent defects in the system. It is a less time- consuming activity	Its main motive is to identify defects or bugs in the system. It is a more time-consuming activity
QA ensures that everything is executed in the right way, and that is why it falls under verification activity	QC ensures that whatever we have done is as per the requirement, and that is why it falls under validation activity

It requires the involvement of the whole team	It requires the involvement of the Testing team
The statistical technique	 The statistical technique
applied on QA is known	applied to QC is known as
as SPC or Statistical	SQC or Statistical Quality
Process Control (SPC)	Control

6. CMMI vs ISO

Parameters	СММІ	ISO
Scope	Broad coverage of	Focuses primarily on
	software development	quality management
	and management areas.	and software life cycle
		processes.
Approach	Staged representation	Process-based approach
	with maturity levels.	with specific
		requirements.
Implementation	Involves a systematic	Requires establishing
	and staged approach,	and maintaining a QMS,
	including regular	followed by certification
	appraisals.	audits.
Focus	Process improvement	Quality management
	and maturity levels	and adherence to
		specified processes
		throughout the
		software life cycle.
Industry	Software development,	Software development
Application	IT services, and system	manufacturing ,health
	engineering	care and services

7. Waterfall and spiral

Parameters	Waterfall Model	Spiral Model
Working Nature	Sequential method	Evolutionary method
Involvement of	Minimum, at end of	Maximum, earlier in
Customer	project completion	project development
Identification & rectification of errors	After completion of all stages	Earlier while developing the project
Simplicity	Easy Model	Complex Model
Flow of the Phases	One after another, difficult to go back	In iteration, easy to go back
Project size	Small	Large
Flexibility to change contents	Difficult	Easy
Cost	Less	More
Framework type	Linear	Iterative