Algebra of Events

•••

PLSC 309 16 January 2019

Review of outcomes and events

Heads or Tails

All combinations of the two flips:

HH

HT

TH

TT

 $P(HH) = \frac{1}{4}$ $P(HT) = \frac{1}{4}$ $P(TH) = \frac{1}{4}$ $P(TT) = \frac{1}{4}$

- Factory makes widgets
- Interested in keeping the failure rate down below 5%
- In other words, no more than 5 out of 100 widgets should fail
- Each widget made is an observation
- Our main variable is "failure" which is binary variable (1/0)

Widget success or failure

All combinations that make up >5% failure or <5% failure

P(>5% failure) P(<5% failure)

F can change depending on the question

Probability that there is a less than 5% failure rate

All combinations that make up >5% failure or <5% failure

F can change depending on the question

How many failures will I get in 1000 trials? What is the overall failure rate?

All combinations that have 1 failure, 2 failures, 3 failures, ...

Sample space \square **Event Space** \square **Probability Space**

Flip a coin twice

Sample space Event Space Probability Space

Flip a coin twice

НН	НТ
TT	TH

Sample space □ Event Space □ Probability Space

Flip a coin twice

P(HH) = 1/4	P(HT) = 1/4
P(TT) = 1/4	P(TH) = 1/4

Sample space □ Event Space □ Probability Space

- Sample space (Ω) : each possible outcome
- Event space (F): the combinations of possible outcomes you're interested in
 - A visualization of the set of events
- Probability space (P): the chance the events you're interested in actually happens
 - "Actually happens" is a shorthand way of saying, "If I repeated this an infinite number of times, what percentage of those times would the events happen"

Probability Space

What is the chance I get both a heads and tails in two flips?

P(HH) = 1/4	P(HT) = 1⁄4
P(TT) = 1/4	P(TH) = 1/4

Probability space

Probability Space

What is the chance I get both a heads and tails in two flips?

P(Either both heads or both tails) = $\frac{1}{2}$

P(Either heads and tails or tails and heads) = ½

Probability space

Probability Space as a Venn Diagram

What is the chance I get both a heads and tails in two flips?

Probability Space as a Venn Diagram

President Trump has a 93% approval rating among Republicans. 35% of Americans identify as republicans. Trump has an approval rating of 41% among all Americans.

Types of probabilities

- Marginal probability: the individual, separate chance that the event happens
 - \circ P(A)
 - ∘ **P(B)**
- *Joint probability:* the chance that all marginal probabilities occur simultaneously
 - o P(A and B)
- *Conditional probability:* given that an event happens, how likely is it that another event happens
 - P(A | B)

When there is no joint probability, events are disjoint

What is the chance I get both a heads and tails in two flips?

Joint probability = 0 (definition of disjoint events)

Marginal probabilities = P(Event)

What is the chance I get both a heads and tails in two flips?

Independent events and joint probability

- Independent events are two or more events whose occurrence does not affect the others
- Independence is always an assumption
- The joint probability of two independent events is calculated as:
 - \circ P(A and B) = P(A) * P(B)

Independent Events

What is the chance I first get a heads, and then get a tails?

P(HH) = 1/4	P(HT) = 1/4
P(TT) = 1/4	P(TH) = 1/4

$$P(H) = \frac{1}{2}$$

$$P(T) = \frac{1}{2}$$

$$P(H) * P(T) = \frac{1}{4}$$

Independent Events

3:05 p.m. Eastern	ELO POINT SPREAD	WIN PROB.	SCORE	6:40 p.m.	ELO POINT SPREAD	WIN PROB.	SCORE
🔩 L.A. Rams		36%		New England		39%	
New Orleans	- 4	64%		Kansas City	- 3	61%	

- P(Rams win) = 36%
- P(Patriots win) = 39%
- P(Patriots and Rams win) = 36% * 39%

Conditional probabilities

- P(A|B): if B happens, how likely is A?
- Formula for calculating conditional probabilities

$$P(A|B) = P(A \text{ and } B) / P(B)$$

- For independent events, P(A|B) = P(A)
- The conditional probability of getting a heads if the first coin is heads

$$P(A|B) = P(A \text{ and } B) / P(B)$$

 $P(A|B) = \frac{1}{4} / \frac{1}{2}$
 $P(A|B) = \frac{1}{2} = P(A)$

Conditional probability calculations

		Response			
		Earth is	Not	Don't Know	-
		warming	warming	Refuse	Total
	Conservative Republican	0.11	0.20	0.02	0.33
Party and	Mod/Lib Republican	0.06	0.06	0.01	0.13
Ideology	Mod/Cons Democrat	0.25	0.07	0.02	0.34
34325	Liberal Democrat	0.18	0.01	0.01	0.20
	Total	0.60	0.34	0.06	1.00

What is the probability that a respondent believes the Earth is not warming, given they're a liberal democrat?

Conditional probability calculations

		Response			
		Earth is	Not	Don't Know	-
		warming	warming	Refuse	Total
	Conservative Republican	0.11	0.20	0.02	0.33
Party and	Mod/Lib Republican	0.06	0.06	0.01	0.13
Ideology	Mod/Cons Democrat	0.25	0.07	0.02	0.34
94525	Liberal Democrat	0.18	0.01	0.01	0.20
	Total	0.60	0.34	0.06	1.00

What is the probability that a respondent believes the Earth is not warming, given they're a liberal democrat?

P(A) = Believes Earth is not warming

P(B) = Is a Liberal Democrat

Conditional probability calculations

		Response			
		Earth is	Not	Don't Know	-
		warming	warming	Refuse	Total
	Conservative Republican	0.11	0.20	0.02	0.33
Party and	Mod/Lib Republican	0.06	0.06	0.01	0.13
Ideology	Mod/Cons Democrat	0.25	0.07	0.02	0.34
94525	Liberal Democrat	0.18	0.01	0.01	0.20
	Total	0.60	0.34	0.06	1.00

What is the probability that a respondent believes the Earth is not warming, given they're a liberal democrat?

$$P(A|B) = P(A \text{ and } B) / P(B)$$

		•	Response	е	
		Earth is	Not	Don't Know	-
		warming	warming	Refuse	Total
	Conservative Republican	0.11	0.20	0.02	0.33
Party and	Mod/Lib Republican	0.06	0.06	0.01	0.13
Ideology	Mod/Cons Democrat	0.25	0.07	0.02	0.34
34325	Liberal Democrat	0.18	0.01	0.01	0.20
	Total	0.60	0.34	0.06	1.00

What is the probability that a respondent believes the Earth is not warming, given they're a conservative Republican?

		•	Response	е	
		Earth is	Not	Don't Know	-
		warming	warming	Refuse	Total
	Conservative Republican	0.11	0.20	0.02	0.33
Party and	Mod/Lib Republican	0.06	0.06	0.01	0.13
Ideology	Mod/Cons Democrat	0.25	0.07	0.02	0.34
841805	Liberal Democrat	0.18	0.01	0.01	0.20
	Total	0.60	0.34	0.06	1.00

What is the probability that a respondent believes the Earth is not warming, given they're a conservative Republican?

P(A) = Believes Earth is not warming

P(B) = Is a conservative Republican

		•	Response	е	
		Earth is	Not	Don't Know	-
		warming	warming	Refuse	Total
	Conservative Republican	0.11	0.20	0.02	0.33
Party and	Mod/Lib Republican	0.06	0.06	0.01	0.13
Ideology	Mod/Cons Democrat	0.25	0.07	0.02	0.34
841805	Liberal Democrat	0.18	0.01	0.01	0.20
	Total	0.60	0.34	0.06	1.00

What is the probability that a respondent believes the Earth is not warming, given they're a liberal democrat?

$$P(A|B) = P(A \text{ and } B) / P(B)$$

General Multiplication Rule for joint probabilities

- For independent events, P(A and B) = P(A) * P(B)
- This is actually a simplification for the probability of any combination of events

$$P(A \text{ and } B) = P(A|B) * P(B)$$

In the case of independent events, P(A|B) = P(A)

Boston smallpox: Venn Diagram

• The probability that multiple events occur

Boston smallpox: marginal and joint probabilities

- A *crosstab* displays joint and marginal probabilities in one table
 - The joint probabilities are the cross-sections
 - The marginal probabilities are the row and column totals
- We can use this to calculate conditional probabilities

		inoculated		
		yes	no	Total
result	lived	0.0382	0.8252	0.8634
	died	0.0010	0.1356	0.1366
	Total	0.0392	0.9608	1.0000

Boston smallpox: calculating conditional probabilities

		inoculated		
		yes	no	Total
result	lived	0.0382	0.8252	0.8634
	died	0.0010	0.1356	0.1366
	Total	0.0392	0.9608	1.0000

What is the probability that a random person in Boston was not inoculated and lived?

 $P(lived = yes \mid linoculated = no) = P(lived and not inoculated) / P(not inoculated)$

Boston smallpox: calculating conditional probabilities

		inoculated		
		yes	no	Total
result	lived	0.0382	0.8252	0.8634
	died	0.0010	0.1356	0.1366
	Total	0.0392	0.9608	1.0000

What is the probability that a random person in Boston was not inoculated and lived?

 $P(lived = yes \mid inoculated = no) = 0.8252 / 0.9608 = 0.8588$

Boston smallpox: conditional probabilities

Review

- How to represent probabilities as a venn diagram
- Independent and disjoint events
- Marginal probability
 - \circ P(A) or P(B)
- Joint probability
 - o P(A and B)
- Conditional Probability
 - \circ P(A|B)