SOC 4015/5050: Lecture 03 Equations

Christopher Prener, Ph.D.

Fall 2018

Median (odd n of items)

Let m = the median item's term:

$$m = \left(\frac{n+1}{2}\right)^{th}$$

Median (even n of items)

Let m_a = the median item's term:

$$m_a = \left(\frac{n+1}{2}\right)^{th}$$
 (2a)

Let x_a = the next lower value before m_a . Let x_b = the next higher value after m_a .

Let m_b = the median:

$$m_b = \left(\frac{x_a + x_b}{2}\right) \tag{2b}$$

Mean

$$\bar{x} = \frac{\sum_{i=1}^{n} x}{n} \tag{3}$$

Standard Deviation

Deviance

$$D = (x - \bar{x}) \tag{4a}$$

Total Error

$$TE = \sum_{i=1}^{n} (x - \bar{x})$$
 (4b)

Sum of Squared Error

$$SS = \sum_{i=1}^{n} (x - \bar{x})^2$$
 (4c)

Variance

$$s^2 = \frac{\sum_{i=1}^{n} (x - \bar{x})^2}{n - 1}$$
 (4d)

Standard Deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x - \bar{x})^2}{n - 1}}$$
 (4e)

Formatting Work by Hand

Given x = [1,7,3,2,8,6,3,8,7]

$s^{2} = \frac{\sum_{i=1}^{n} (x - \bar{x})^{2}}{n - 1}$ $s^{2} = \frac{60}{8}$ $s^{2} = 7.5$						$s = \sqrt{s^2}$ $s = \sqrt{7.5}$ $s = 2.739$				
D^2	16	4	4	6	6		4	6	4	09
D	-4	2	-2	-3 9	3		-2	3	2	0
x	ಬ	ಬ	ಸ	2	ಸ	ಬ	ಬ	ಬ	5	
x	\Box	7	3	2	∞	9	3	∞	7	
	1		l	4		9		∞	6	Z