Mark-recapture distance sampling (MRDS) in the mrds R package

- Data requirements
- MRDS analyses

Data requirements

Detection data must have:

- 2 rows per object one for Observer 1 and one for Observer 2
- Fields for:
 - object (unique object ID)
 - observer (1 or 2)
 - detected (1=yes, 0=no)
 - distance (perpendicular distance)
 - size (cluster size, if required)
- Additional covariate data can be included
- Tables for region and samples (see later)

Example: golf tee survey data – 'detections'

Thre	e required field	ds				
object	observer	detected	distance	size	sex	exposure
1	1	1	2.68	2	1	1
1	2	0	2.68	2	1	1
2	1	1	3.33	2	1	0
2	2	0	3.33	2	1	0
3	1	1	0.34	1	0	0
3	2	0	0.34	1	0	0

MRDS analysis

```
Depends on method E.g. Truncation

ddf (data, method mrmodel, dsmodel) meta.data)

Observer configuration and point/full independence
```

When is DS model required?

Observer configuration	Point/Full independence	Method	MR model	DS model
Trial	Point	trial	Yes	Yes
Trial	Full	trial.fi	Yes	No
Ю	Point	io	Yes	Yes
Ю	Full	io.fi	Yes	No

Additional covariates

Results: goodness of fit tests, qq plots

ddf.gof(fit.ddf)

Results: summary tables and plots

det.tables(fit.trial.pi) plot(det.tables(fit.trial.pi))

```
Observer 1 detections
           Detected
            Missed Detected
  [0, 0.4]
                         25
  (0.4, 0.8]
                         16
  (0.8,1.2] 2
                         16
                         22
  (1.2, 1.6]
  (1.6, 2]
  (2,2.4]
                         10
  (2.4, 2.8]
                         12
  (2.8, 3.2]
  (3.2, 3.6]
  (3.6, 4]
```


Results: detection function plots

plot(fit.trial.pi)

Estimating abundance: dht

Note, can convert a flatfile format to hierarchical structure using

Distance:::checkdata(flatfile)