

PM-DRD-TR-72023

CHEMICAL AGENT MUNITIONS DISPOSAL SYSTEM

TORELE ARMY DEPOT, UTAN

MARCH 1977

APPROVED FOR PUBLIC RELEASE Distribution Unlimited

AD A 0 63 622

DDC FILE COPY.

THE VIEWS, OPINIONS AND/OR FINDINGS
CONTAINED IN THIS REPORT AND 1705E
OF THE AUTHOR(S) AND 5 MOVED
CONSTRUED AS AN OFFICIAL MARKENNO
OF THE ARMY POSITION, BOXCY, OR
DECISION, UNLESS SO DESIGNATED BY
OTHER DOCUMENTS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	READ INSTRUCTIONS BEFORE COMPLETING FORM
	CESSION NO. 3. RECIPIENT'S CATALOG NUMBER
DRCPM-DRD-TR-72023	
. TITLE (and Subtitle) Final Demilitarization Plan	5. TYPE OF REPORT & PERIOD COVERED
Operation of the CAMDS at Tooele Army Depo	
Inclosure 15 Dunnage Incinerator Testing	6. PERFORMING ORG. REPORT NUMBER
	99-06-72 8. CONTRACT OR GRANT NUMBER(8)
Robert L. Hanson, PE, MAJ, MSC	S. CONTRACT OR GRANT NUMBER(#)
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
AEHA, APG, Maryland 21010	
1. CONTROPPINGEFORETHE PROJECT MANAGER FOR	12. REPORT DATE
CHEMICAL DEMILITARIZATION AND	March 1972
INSTALLATION RESTORATION	13. NUMBER OF PAGES 49
4. MONITORING AGENCY NAME & ADDRESS HIT HIT AND TOUR CONTACT	ling Office) 15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report) Approved for Public Release: Distribution	Unlimited
Approved for Public Release: Distribution	
Approved for Public Release: Distribution 7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20,	
Approved for Public Release: Distribution 7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20,	if different from Report)

incinerator with respect to standars of 0.2 gr/scf and No. 1 Ringlemann. The waste charging rate was 500 lb/hr. The measured particulate emissions for the two required test runs were 0.113 and 0.190 gr/scf. The observed visible emission was essentially zero on the Ringlemann Scale.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

DEMILITARIZATION PLAN OPERATION OF THE CHEMICAL AGENT MUNITIONS DISPOSAL SYSTEM (CAMDS) AT TOOELE ARMY DEPOT (9) Final rept.,)
(1) Bobert Le / Harrison 1
(1) Mar 77/
(2) 54p.)

MARCH 1977

(14) DRCPM-DRD-TR-72423

INCLOSURE NO. 15

DUNNAGE INCINERATOR TESTING

APPROVED FOR PUBLIC RELEASE Distribution Unlimited

393647 M

LEVEL

AIR POLLUTION ENGINEERING SOURCE SAMPLING SURVEY NO. 99-06-72 ACCEPTANCE TEST OF TDS DUNNAGE INCINERATOR TOOELE ARMY DEPOT TOOELE, UTAH 10 MARCH 1972

ENVIRONMENTAL HYGIENE AGENCY EDGEWOOD ARSENAL, MD. 21010

DEPARTMENT OF THE ARMY U. S. ARMY ENVIRONMENTAL HYGIENE AGENCY EDGEWOOD ARSENAL, MARYLAND 21010

USAEHA-EA

19 JUL 1972

AIR POLLUTION ENGINEERING SOURCE SAMPLING SURVEY NO. 99-6-72
ACCEPTANCE TEST OF TDS DUNNAGE INCINERATOR
TOOELE ARMY DEPOT
TOOELE, UTAH
10 MARCH 1972

ABSTRACT

An air pollution engineering source sampling survey was conducted at Tooele Army Depot to evaluate particulate and visible emissions from the TDS dunnage incinerator with respect to standards of 0.2 gr/scf and No. 1 Ringlemann. The waste charging rate was 500 lb/hr. The measured particulate emissions for the two required test runs were 0.113 and 0.190 gr/scf. The observed visible emission was essentially zero on the Ringlemann Scale.

7-0

DEPARTMENT OF THE ARMY U. S. ARMY ENVIRONMENTAL HYGIENE AGENCY EDGEWOOD ARSENAL, MARYLAND 21010

USAEHA-EA

AIR POLLUTION ENGINEERING SOURCE SAMPLING SURVEY NO. 93-6-72 ACCEPTANCE TEST OF TDS DUNNAGE INCINERATOR TOOELE ARMY DEPOT TOOELE, UTAH 10 MARCH 1972

- 1. REFERENCE. AR 11-21, Environmental Pollution Abatement, 3 November 1967.
- 2. PURPOSE. To evaluate particulate and visible emissions from the Transportable Disposal System (TDS) dunnage incinerator at a dunnage charging rate of 500 lb/hr with respect to standards of 0.2 grain per standard cubic foot (gr/scf) and No. 1 Ringlemann cited in paragraph 1-7, AR 11-21.

3. BACKGROUND.

- a. Transportable Disposal System. The TDS is a complex of four incinerators and support facilities designed for the disposal of chemical agents and chemical agent-filled munitions. The four incinerators are an agent incinerator for the disposal of GB, VX, and mustard; a deactivation incinerator for the disposal of munitions after removal of the chemical agent: a metal parts incinerator for decontamination of metal parts, containers, etc; and a dunnage incinerator for disposal of wood dunnage.
- b. Dunnage Incinerator. The dunnage incinerator was designed and fabricated by Wasteco Incorporated, Tigard, Oregon, to incinerate wood dunnage at a rate of 500 lb/hr. It has primary, mixing, and secondary chambers; a 500,000 Btu/hr No. 2 fuel oil-fired burner in the primary chamber for preheating and ignition of waste; two temperature controlled 550,000 Btu/hr No. 2 fuel oil-fired burners in the mixing chamber; and a spray-impingement type water scrubber. The induced draft fan is located at the base of a fiberglass stack with an inside diameter of 17.5 inches and an overall length of 17 feet.

- USAEHA-EA Air Pollution Engr Source Sampling Surv No. 99-6-72, Acceptance Test of TDS Dunnage Incinerator, Tooele AD, Utah, 10 Mar 72
 - c. Air Pollution Standards and Acceptance Criteria.
- (1) Department of the Army facilities are required to comply with the most stringent air pollution standards prescribed by either AR 11-21 or other Federal authority or by the applicable state or local authority. The applicable emission standards for operation of the dunnage incinerator in Utah are:
- (a) The particulate emission of 0.2 gr/scf of dry flue gas corrected to 12 percent CO_2 , excluding the CO_2 contributed by auxiliary fuel, cited in paragraph 1-7e(2), AR 11-21. The standard conditions are 70°F and one atmosphere pressure.
- (b) The visible emission of 20 percent opacity (No. 1 Ringlemann) or less which is not to be exceeded for more than three minutes in any one hour cited in paragraph 1-7a(1)(a), AR 11-21.
- (2) Utah does not have a particulate emission standard for incinerators and its visible emission standard is equivalent to the one in AR 11-21.1
- (3) Particulate is defined as any material, except uncombined water, which is suspended in a gas stream as a liquid or solid at standard conditions of 70°F and one atmosphere pressure, whose emission is evaluated using sampling and analytical methods prescribed for testing incinerators at Federal facilities. ²

4. DISCUSSION.

a. Test Methods. The sampling and analytical methods used were identical to those specified for evaluation of incinerators at Federal Facilities with the exception that carbon dioxide, oxygen, nitrogen,

[&]quot;Code of Air Conservation Regulations," Utah State Board of Health, 24 January 1972.

[&]quot;Specifications for Incinerator Testing at Federal Facilities," USPHS Publication (Oct 67) and Addendum thereto (Dec 67), DHEW.

USAEHA-EA Air Pollution Engr Source Sampling Surv No. 99-6-72, Acceptance Test of TDS Dunnage Incinerator, Tooele AD, Utah, 10 Mar 72

and carbon monoxide determinations were made with a Fisher-Hamilton gas partitioner. This method was chosen over the Orsat method because the analytical chemists in this Agency have proven it to be the more accurate of the two methods. These methods are briefly described in Appendix Λ .

b. Results.

- (1) The test and operating data are summarized in the Table, page 4.
- (a) The measured particulate emissions, 0.113 and 0.190 gr/scf of dry flue gas corrected to 12 percent carbon dioxide from the waste, for the two test runs are less than the 0.2 gr/scf standard at the waste charging rate of 500 lb/hr.
- (b) During each test run a visible emission of No. 3 Ringlemann was observed for 40-45 seconds following one of the incremental charges. This emission appeared to be associated with operator charging technique (since the incremental charges were uniform and a visible emission did not accompany each charge) and should for the most part be eliminated after operating personnel gain experience with the incinerator. The average observed visible emission over each 60-minute test run was essentially zero on the Ringlemann Scale and therefore did not exceed the No. 1 Ringlemann standard.
 - (2) The ramifications of the above test results are:
- (a) The dunnage incinerator can be operated at test conditions and not exceed the applicable particulate and visible emission standards for its operation in Utah of 0.2 gr/scf and No. 1 Ringlemann cited in paragraph 1-7, AR 11-21.
- (b) If the dunnage incinerator is used in another state with a particulate emission standard more stringent than 0.2 gr/scf (i.e. Colorado³), it will have to be retested to determine the operating conditions, including waste charging rate, at which it will meet the more stringent standard.

Regulation I, "Emission Control Regulations for Particulates, Smokes, and Sulfur Oxides for the State of Colorado," Colorado Department of Health, Denver, Colorado, adopted 14 January 1971, effective 15 March 1971.

USAEHA-EA Air Pollution Engr Source Sampling Surv No. 99-6-72, Acceptance Test of TDS Dunnage Incinerator, Tooele AD, Utah, 10 Mar 72

TABLE SUMMARY OF TEST DATA

	Preliminary Run Burners Only	Test Run No. 1	Test Run No. 2
Operating Data:			
Waste charging rate, lb/hr	0	500 (4 @ 125 lb)	500 (4 @ 125 lb
Mixing chamber temperature, oF	737	1448	1462
Primary chamber draft, in. H20	-0.5	-0.1	-0.1
Scrubber flow rate, gpm	25	25	25
Fuel consumption, gal/hr	17.06	4.81	5.36
Stack Gas Data:			
Temperature, °F	312	382	362
Velocity, ft/min	2995	3264	3342
Flow rate, scf/min	2840	2834	2969
Percent moisture	14.0	26.6	25.4
Percent CO2 waste (dry volume)	-	2.3	2.0
Percent CO2 burners (dry volume)	2.1	0.7	0.7
Percent 02 (dry volume)	18.2	18.0	17.7
Percent N2 (dry volume)	79.7	79.2	79.6
Percent CO (dry volume)	0.0	0.0	0.0
Emission Data:			
Particulate concentration, gr/scf	-	0.022	0.032
Particulate concentration, gr/scf dry flue gas corrected to 12% CO ₂ from waste		0.113	0.190
Particulate emission rate, lb/hr		0.39	0.61
Average visible emission, % opaci	ty 0	0	0

- (3) Completed data and calculation forms 2 for the two test runs are in Appendix B.
- 5. CONCLUSION. Particulate and visible emissions from the dunnage incinerator do not exceed the standards governing its operation in Utah at test operating conditions.
- 6. RECOMMENDATION. Proceed with the planned use of the dunnage incinerator in the South Area, Tooele Army Depot, at a dunnage charging rate of 500 lb/hr or less.

ROBERT L. HANSON, P.E.

ROBERT L. HANSON, P.E

MAJ, MSC

Sanitary Engineer

Air Pollution Engineering Division

APPROVED:

J. P. MADDEN, P.E.

LTC. MSC

Chief, Air Pollution Engineering Division

LEE C. HERWIG, P.E.

LTC, MSC

Director, Environmental Quality

[&]quot;Specifications for Incinerator Testing at Federal Facilities," USPHS Publication (Oct 67) and Addendum thereto (Dec 67), DHEW.

USAEHA-EA Air Pollution Engr Source Sampling Surv No. 99-6-72, Acceptance Test of TDS Dunnage Incinerator, Tooele AD, Utah, 10 Mar 72

APPENDIX A

SAMPLING AND ANALYTICAL METHODS

1. SAMPLING METHODS.

a. Particulate.

- (1) Particulate was collected by isokinetic train sampling according to Federal specifications for incinerator testing. 2 The sampling train consisted of a 0.25-inch probe tip, stainless steel probe with heated glass liner, glass cyclone, filter housing and a tared Gelman Type A glass fiber filter, four Greenburg-Smith impingers immersed in an ice bath, vacuum pump, and calibrated orifice.
- a bypass valve on the vacuum pump so the velocity of sample gas entering the probe tip equalled the velocity of the stack gas at the sampling point. Stack gas velocity was determined using an S-type pitot tube and draft gauge. A nomograph was used to determine the isokinetic sampling rate from values for dry gas meter temperature; probe tip diameter; and stack gas static pressure, velocity pressure, temperature, and moisture content.
- (3) The particulate sampling location was eight stack gas diameters downstream from the connection of the induced draft fan to the stack, and four stack diameters upstream from the top of the stack. The stack gas velocity over the stack cross-section at this location did not vary by a factor of more than 2:1: therefore, particulate samples were collected at the point of average velocity. 2

b. Carbon Dioxide.

(1) Gas samples for carbon dioxide, carbon monoxide, oxygen, and nitrogen analyses were collected by proportional sampling (sampling rate proportional to stack gas flow rate at the sampling point) in a Saran bag. 2

^{2 &}quot;Specifications for Incinerator Testing at Federal Facilities," USPHS Publication (Oct 67) and Addendum thereto (Dec 67), DHEW.

- USAEHA-EA Air Pollution Engr Source Sampling Surv No. 99-6-72, Acceptance Test of TDS Dunnage Incinerator, Tooele AD, Utah, 10 Mar 72, App A
- (2) The sampling port was located immediately upstream from the scrubber.

2. ANALYTICAL METHODS.

- a. Particulate. Analytical methods specified for the evaluation of incinerators at Federal facilities² were used for particulates. Separate weighings were made for particulates collected in the probe and cyclone, on the filter, in the impinger washings, and for the organic particulates extracted with ether and chloroform from the impinger solutions. These weighings were combined to determine the total particulate emission. Acetone was used as the washing solution.
- b. Carbon Dioxide. A Fisher-Hamilton gas partitioner was used to determine the percent carbon dioxide, carbon monoxide, oxygen, and nitrogen in the gas samples collected by proportional sampling.
- c. Moisture. The volume of water condensed in the first three impingers plus the moisture absorbed by silica gel in the final impinger of the particulate sampling train were combined to determine moisture content of the stack gas.

[&]quot;Specifications for Incinerator Testing at Federal Facilities," USPHS Publication (Oct 67) and Addendum thereto (Dec 67), DHEW.

USAEHA-EA Air Pollution Engr Source Sampling Surv No. 99-6-72, Acceptance Test of TDS Dunnage Incinerator, Tooele AD, Utah, 10 Mar 72

APPENDIX B

DATA AND CALCULATION FORMS 2

[&]quot;Specifications for Incinerator Testing at Federal Facilities," USPHS Publication (Oct 67) and Addendum thereto (Dec 67), DHEW.

Part 1, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO.68R-1056 APPROVAL EXPIRES Jan. 1973

SUMMARY OF RESULTS

Incinerator Test

Run No. ____

١.	Hame of firm Edgewood Arsenal, Many land	
2.	Location of plant South Area, Toock Army Depot, Whah	
3.	Type of incinerator Wasteco Inc.	
4.	Control equipment Scrubber	
5.	Sampling point location 17.5-in Stack, 12 ft. Above I.D. Fan	
٥.	Material incinerated Wood Dunnage	
7.	Meight of material incinerated 500 /6	
3.	Pollutants sampled Particulate	
9.	Time of particulate test:	
	Date 10 March 1472 , Begin 1435 , End 1535	
	Operating Variables	
10.	Scrubber pressure drop, in. 1120	
11.	Scrubber H ₂ 0 rate, gpm	
12.	Primary chamber draft, in. H ₂ 0 Overfire - 0.1 Underfire NM	_
13.	Secondary chamber temnerature, of 1448	
14.	Stack temperature (Thd), OF.	

15. Stack flow rate (Vdb).scfm

(includes impinger

catch)

Emission Data

2080

- 16. Water vapor in stack gas (V_{cg}) , % by volume 26.6 17. Excess air at sampling point (Vb1), % 619 grains/cf grains/scf at stack 12 % CO2 * grains/scf conditions 1b/hr Cas = 0.002 Cam= 0.005 18. Particulate -Cap = 0.074 probe, cyclone Can = 0.013 Cag = 0.042 19. Particulate -Cat = 0.007 probe, cyclone, filter Cao = 0.022 Car = 0.113 Cax = 0.342 20. Total particulate Cau = 0.008

Legend: NM - not measured scf = Standard cubic foot, i.e., dry gas at 70°F and 29.92 in. Hq. Stack conditions: Stack temperature and stack pressure including moisture.

^{*} Correction to 12 % $\rm CO_2$ made using % $\rm CO_2$ from waste only.

^{** %} CO2 from burner corrected to test conditions.

Part 2, p. 1 of 2, DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO.68R-1056 APPROVAL EXPIRES Jan. 1973

SUMMARY OF TEST DATA

	Date 10 March 1972 Run No. 1		
	Particulate Sampling Train		
1.	Sampling nozzle diameter, in.	Dav =	0.25
2.	Sampling time, min.	Taw =	
3.	Sample gas volume - meter condition, cf	Vac =	33.67
4.	Average meter temperature, ^O F	T _{ai} =	
5.	Average orifice pressure drop, in. 1120	Paf =	0.33
6.	Particulate collected - probe and cyclone, mg	Waj =	8.0
7.	Particulate collected - probe, cyclone and filter, mg	Wak =	31.0
3.	Particulate collected - total, mg	Wal -	37.9
	Velocity Traverse - Burner Only		
9.	Stack area, in. ²	S _{dd} =	240.4
10.	Average stack pressure, in. 31g (absolute)		0.0
11.	Average stack temperature, ^O F		312
12.	Average $\sqrt{\text{velocity head x stack temperature}}$	She =	18.00
13.	ioisture in stack gas from burners, % by volume	V _{hi} =	14.0
	Velocity Traverse During Test - Burner and	Waste	
14.	Stack area, in. ²	S _{dd} =	240.4
15.	Average stack pressure, in. Hg (absolute)	P _{di} =	0.0
16.	Average stack temperature, ^O F		382
17.	Average Vvelocity head x stack temperature	S _{de} =	19.17
	Stack Moisture Content		
18.	Total water collected by train, ml	V _{ce} =	206.3

Orsat Analysis - Burner Only

19.	CO ₂ , % volume (dry)	V _{bb} =
20.	CO, % volume (dry)	V _{bc} =
21.	02, % volume (dry)	V _{bd} =
	N ₂ , % volume (dry)	V _{be} =
	Orsat Analysis - Burners and Waste	
23.	CO ₂ , % volume (dry)	V _{bf} = <u>3.0</u>
24.	CO, % volume (dry)	V _{bg} =
25.	U ₂ , ⊊ volume (dry)	V _{bh} =
	112, 2 volume (dry)	V _{bi} =
	Incinerator Operating Data	
27.	Fraction of test time all burners are operating	G _{bm} = ~~

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO 68R-1056 APPROVAL EXPIRES Jan. 1973

PARTICULATE SAMPLING TRAIN DATA AND CALCULATIONS

Nozzie diameter (D_{av}) , in. = Δzs Barometric pressure (P_{aa}) , in. Hg = 24.81Sampling point location 344ck Run No. 1

			Gas Meter		
Clock time	Point No.	Reading (V _{ac})	Temp. in	Temp. out	Orifice
0	3	969.01	•	-	-
10	3	974.59 c	94	81	0.23
20	3	980.19	95	12	0.83
30	3	985.82	95	23	0.85
40	3	991.42	96	84	485
50	3	997.31	95	84	095
60	3	1003.37	97	34	0.95
		(Dem (F= 0.98)			
-					

Net time Net Average Average Average $(T_{aw})=60$ $(V_{ac})=53.67$ $(T_{ad})=95$ $T_{ae})=93$ $(P_{af})=0.88$

(1) A. Average meter temperature = $\frac{T_{ad} + T_{ae}}{2} = T_{ai} = \frac{2?}{2}$

(2) B. Dry gas sample volume @ standard conditions, cf

= 17.7 x
$$V_{ac}$$
 x $\frac{P_{aa} + \frac{P_{af}}{13.6}}{(T_{ai} + 460)} = V_{ab} = \frac{26.84}{13.6}$

NCAP-18 (12/67

Part 3, p. 2 of 3

Laboratory Data

Particulate - probe and cyclone (W_{aj}), mg =

8.0

Particulate - probe, cyclone, and filter (W_{ak}) , mg =

31.0

Particulate Concentration Calculations

In grains/scf

(3) A. Particulate - probe and cyclone, grains/scf

$$C_{am} = 0.0154 \times \frac{W_{aj}}{V_{ab}} =$$

0.0040

(4) B. Particulate - probe, cyclone, and filter, grains/scf

$$c_{am} = \frac{0.0154 \times \frac{14}{ak}}{V_{ab}} =$$

0.0177

(5) C. Particulate - total, grains/scf (Go to Part 6, page 1)

$$c_{ao} = \frac{0.0154 \times W_{al}}{V_{ab}} =$$

0.0217

In grains/scf @ 12 % CO2

(17) D. Particulate - probe and cyclone, grains/scf @ 12 % CO,

$$C_{ap} = C_{am} \times \frac{12}{V_{ba}} =$$

0.024

(18) E. Particulate - probe, cyclone, and filter, grains/scf @ 12 % CO2

$$C_{aq} = C_{an} \times \frac{12}{V_{ba}} =$$

0.092

(19) F. Particulate - total, grains/scf @ 12 % CO,

$$c_{ar} = c_{ao} \times \frac{12}{V_{ba}} =$$

0,113

In grains/cf @ stack conditions

(20) G. Particulate - probe and cyclone, grains/cf @ stack conditions

$$C_{as} = \frac{17.7 \times C_{am} \times P_{di} \times Mch}{(T_{df} + 460)} = \frac{0.0014}{(T_{df} + 460)}$$

(21) H. Particulate - probe, cyclone, and filter, grains/cf @ stack conditions

$$C_{at} = \frac{17.7 \times C_{an} \times P_{di} \times Mch}{(T_{df} + 460)} = \frac{0.6069}{(T_{df} + 460)}$$

(22) I. Particulate - total, grains/cf @ stack conditions

$$C_{au} = \frac{17.7 \times C_{ao} \times P_{di} \times Mch}{(T_{df} + 460)} = \frac{0.0084}{}$$

In 1b/hr

(23) J. Particulate - probe and cyclone, 1b/hr

(24) K. Particulate - probe, cyclone, and filter, lb/hr

(25) L. Particulate - total, 1b/hr

(26) :1. % isokinetic =
$$\frac{1032 \times (T_{df} + 460) \times V_{ab}}{V_{dh} \times T_{av} \times P_{di} \times H_{ch} \times (D_{av})^2} = I_{ax} = \frac{105}{(Go \text{ to Part 7, p. 1})}$$

V_{ba} from Orsat data and calculation sheet (part 7).

V_{db}, T_{df}, V_{dh}, P_{di}, from velocity data and calculation sheet for test (Part 5).

[&]quot;ch from moisture content data and calculation sheet (Part 6).

Day from particulate sampling train data and calculation sheet (Part 3).

Part 4, p. 1 of 3

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO. 68R-1056 APPROVAL EXPIRES Jan. 1973

VELOCITY TRAVERSE DATA AND CALCULATION SHEET

(Burners Only)

Date 10 mauch 1972	Time 1007-1057 Run No. A.
Sampling point location_	Stack
Stack area (Sdd), in.2	240.4
Wet bulb temperature (Thi	
Dry bulb temperature (Thk	
110	, in. Hg absolute = 24.85
***	-type pitot tube, C = 0.85

Drawing of stack cross section

Point		' nm'	Stack (Thd),	(T _{hd} + 460),	Velocity head (V _a),	Vax (Tha+ 460)	Vax (Thd+ 460
No.	point, in.	in. Hg. (gage)	o _F	o ^k	in. H ₂ 0	1 4p	a 110
1	46				025	0.500	
2	5.8				0.82	0.565	
3	24	Max Top	2078	1.34	0.59	0.615	
4	9.6	Min lop	0.500		0.43	0.655	
5	15.8	1.36 2.0	: 34 m	plies 0	0.44	0.464	
6	181			cm: Hd.	0.44	064	
2	14.7	use poin			0.42	0.647	
8	249				0.39	0.625	
7	4.6				0.27	0.520	
10	5.8				0.35	0.541	
"	24	`			0.59	250.0	
12	9.4				0.43	1.055	
13	15.8				0.46	0.678	
14	18.1				0.45	0.670	
15	19.7				0.44	0.664	
16	20.9				0.40	0.632	
						Z TAPO . QUEY	
		Avg	Avg			70	Avg (She)
		in. Hg		16			

(Phc) = Phm + Ph1 = _____

HORT APPROVED
BUILDE F BING AU
NO. GBR-1056
APPROVAL EXPIRES
Jan. 1973

VELOCITY TRAVERSE DATA AND CALCULATION SHEET

(Burners Only)

Date 10 hourn 572 Time 1077-1057 Run No. Pre

Sampling point location 5thc/c

Stack area (S_{dd}), in. 2 240. 4

Wet bulb temperature (T_{hj}), of NM

Dry bulb temperature (T_{hk}), of NM

Barometric pressure (P_{hl}), in. Hg absolute = 24.25

Note: Calculations for S-type pitot tube, C = 0.85

Drawing of stack cross section

Distance Stack Stack Temperature Velocity $V_{a} \times (T_{hd} + 460) \sqrt{V_{a} \times (T_{hd} + 460)}$ press. (P_{hm}) (T_{hd}), (T_{hd}+ 460), head (Va), in. H₂0 Point from ref. in. NO. point, OF OR Hg. (gage) in. 7.4 18.04 0.0 315 775 442 315.50 3 17.48 313.40 7.4 0.0 310 770 0.42 770 17.98 7.4 0.0 30 0.42 313.40 Avg (She) Avg Avg - 0.0 = 312 in. Hg (abs) = (Phc) = Phm + Ph1 = 24.85

NCAP-19 (12/67)

Part 4, p. 3 of 3

- (9) A. Moisture in stack gas, from wet and dry bulb temperatures using psychrometric charts (Vhi), % = <u>M.O (condenset method, post 6)</u>
- (10) B. Mole fraction of dry gas

(11) C. Stack velocity @ P_{hc} and T_{hd} (stack conditions, includes moisture), fpm

(12) D. Stack volume @ standard conditions, scfm

$$v_{hf} = \frac{0.123 \times V_{hf} \times S_{dd} \times P_{hc} \times P_{hg}}{(T_{hd} + 460)} = V_{hh} = \frac{2442}{1}$$

(Go to Part 5, n. 2)

 $\dot{n}_{\rm bk}$ from Orsat data and calculation sheet (Part 7).

Part 5, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service

National Center for Air Pollution Control

FURM APPROVED
BUDGET BUREAU
NO.68R-1056
APPROVAL EXPIRES

	VELOCITY	DATA AND CAL	LCULATION SHEET FO	R TEST
		(Durners	and Waste)	
Date	10 march 1972		Time /435- /535	
Sampl	ing point location_	Stack	Run No	/
Stack	area (S _{dd}), in. ²	240.4		

Note: Calculations for S-type pitot tube, C = 0.85

Drawing of stack

cross section

	Distance from ref. point, in.	Stack press.(P _{dj} in. Hg (gage)	Stack (T _{df}),	temperature (T _{df} + 460), o _R	Velocity head (V _b), in. H ₂ 0	V _b x (T _{df} + 460)	V _b x (T _{df} + 460
3	7.4	0.0	410	870	0.43	374.10	19.34
3	7.4	0.0	390	850	0.43	365.50	19.12
3	7.4	00	385	845	0.44	371.80	19.28
3	7.4	0.0	370	830	0.44	365.20	19.11
3	スソ	0.0	370	230	0.43	356.50	18.89
3	24	0.0	365	82.5	0.45	871.25	19.27
		Avg = 0.0	Avg = 382				Avg (S _{de})
		in. Hg abs) = (P _{di}) = P _d	j ^{+ P} aa	= 44.81			

P aa from particulate sampling train sheet (Part 3). NCAP-20 (12/67)

Part 5, p. 2 of 2

(13) A. Stack velocity @ P_{di} and T_{df} (stack conditions), from

= 4350 x S_{de} x
$$\frac{1}{P_{di} \times M_{ca}} = V_{dh}$$
 3764

(14) B. Stack volume @ standard conditions, scfm

= 0.123 x
$$\frac{V_{dh} \times S_{dd} \times M_{ch} \times P_{di}}{(T_{df} + 460)} = V_{db} = 2020$$

(Go to Part 7, p. 2.)

 $^{\rm M}$ _{ca}, $^{\rm M}$ _{ch} from stack moisture data and calculation sheet (Part 6).

Part 6, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO. 68R-1056 APPROVAL EXPIRES Jan. 1973

STACK MOISTURE CONTENT DATA AND CALCULATIONS FOR TEST

Date 10 March 1972

Run No.	Pre	1	
H ₂ O condensed in impingers (V _{Cb}), ml	49.0	/93.7	
H ₂ O absorbed by silica gel (V _{cd}), ml	4.0	12.4	
Total H_2O collected = $V_{ce} = (V_{cb} + V_{cd})$, ml	53.0	2063	
Vol of H_2O vapor @ 70^{OF} and 29.92 in. $Hg = 0.0474 \times V_{Ce}$ = (V_{Cf}) , cf	250	9.73	
Moisture in stack gas = (V _{cg}), % (from formula below)	14.0	26.6	
fiole fraction dry gas, = (M _{ch}) (from formula below)	0.860	0.734	
Molecular weight of stack gas ("ca) (from formula below)	27.5	26.3	

(6) A. Moisture in stack gas (V_{cg}) , %

$$= \frac{100 \times V_{cf}}{V_{ab} + V_{cf}}$$

(7) B. Mole fraction dry gas (M_{ch})

Part o, p. 2 of 2

(8) C. Holecular weight of stack gas

$$M_{ca} = M_{bj} \times M_{ch} + 18 (1 - M_{ch})$$
(Go to Part 4, p. 2.)

 $^{{\}rm V}_{\rm ab}$ from particulate data and calculation sheet (Part 3).

 $^{{\}rm M_{bj}}$ from Orsat data sheet (Part 7).

Part 7, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO 68R-1056 APPROVAL EXPIRES Jan. 1973

ORSAT DATA AND CALCULATION SHEET

Orsat Analysis - Burner Only (From bag sample)

Sampling point location Influent to Scinborionate 10 maion 1972 Time 1027-1055

	Analysis 1	Analysis 2	Analysis 3	Λvg	x = mole.wt	wt/mole (dry)
CO ₂ (V _{bb}), % vol (dry)				2.1	44/100	0.92
CO (V _{bc}), % vol (dry)				0.0	23/100	+0.00
0 ₂ (V _{bd}), % vol (dry)				182	32/100	+5.82
N ₂ (V _{be}), % vol (dry)				79.7	23/100	+22.32
			M _{bk} =	Avg mole of dry	cular wt stack gas=	29.00

Orsat Analysis for Test - Waste and Burners (From bag sample)

Date	10	mai	64	1976		Time	1435-1535	?un	No.	
Sampl	ing	point	loc	ation	Influent	to	Schubbe.			

	Analysis 1	Analysis 2	Analysis 3	Avg	x = mole wt	(dry)
CO ₂ (V _{bf}) % vol (dry)				3.0	44/100	1.32
CO (V _{bg}). % vol (dry)				0.0	23/100	+ 0.00
0 ₂ (V _{bh}), % vol (dry)				18.0	32/100	+5.76
"2 (Vbi), % vol (dry)				79.2	28/100	+20.18

Mbj = Avo molecular wt of dry stack gas =

(28) A. Excess air, %

$$= \frac{100 \times (V_{bh} - \frac{V_{bg}}{2})}{0.264 \times V_{bi} - (V_{bh} - \frac{V_{bg}}{2})} = V_{bi} = \frac{6/9}{2}$$

(Transfer all answers to summary of results)

(15) B. * CO₂ contributed by hurner, % by volume of stack gas corrected to test conditions.

$$V_{bn} = V_{bb} \times \frac{V_{hh}}{V_{db}} \times G_{bm} = \frac{(2 \cdot \partial(2442)(4.81)}{6080(7.00)}$$

(16) B. CO₂ in stack gas from waste, % vol (dry) (Go to Part 3, p. 2)

 $V_{\rm db}$ from velocity data and calculation sheet for test (Part 5).

 $V_{\rm hh}$ from velocity traverse data and calculation sheets (Part 4).

 G_{bm} from incinerator data and calculation sheet (Part 10).

Note: Above calculation corrects ${\rm CO_2}$ of burner to stack test conditions.

Z = CO₂ from burners, scfm (Determine from natural gas flow rate)

$$V_{ba} = \frac{V_{db} \times V_{bf} - (Z \times G_{bm} \times 100)}{V_{db}}$$

^{*} Note: If CO_2 from burners is determined from an analysis of the natural gas flow, the following equation can be used in place of equations (15) and (16) to calculate (V_{ba}) .

Part 8, p. 1 of 1 DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO 68R-1056 APPROVAL EXPIRES Jan. 1973

POUNDS PER HOUR EMISSION CALCULATION

Total particulate collected by train, grams	Hla = 0.0379
Area of sampling nozzle, in. ²	W1b = 0.049
Area of stack, in. ²	W1c = 240.4
Time of particulate test, min.	W1d = - 60
Emissions, lbs/hr	
= 0.132 x W _{la} x W _{lc} =	C _{ay} =

Note: Sufficient data and calculations should be included to show that the particulate train was operated within 10 percent of isokinetic conditions. Comparison of the probe sampling velocity to the stack gas velocity will be sufficient for this purpose. To make this comparison it will be necessary to measure:

- 1. Stack temperature
- 2. Stack velocity
- 3. Sampled gas volume and temperature
- 4. Moisture in sampled gas

Part 9, p. 1 of]

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO.68R-1056 APPROVAL EXPIRES Jan. 1973

STICKY PAPER DATA AND CALCULATIONS

Date 10 man	1472
Stack area, in. ²	240.4
Sampling point 1	ocation
Run No. /	

Time	Part/in. ² /min > 60 microns	Part/min >60 microns
	Avg NM	AVQ NM

Note: Particles/min = stack area x part/in.2/min.

Part 10, p. 1 of 1

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service
National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO. 68R-1056 APPROVAL EXPIRES Jan. 1973

INCINERATOR OPERATING DATA AND CALCULATION SHEET

Date		10	mauch	1972	
Run	No.		,		

1		Primary ch	amber draft	Secondary	Stack	
:laterial		Underfire,	chamber	opacity		
Clock time	charged, 1b	Overfire, in. H ₂ 0	in. H ₂ 0 (Optional)	Temp. oF	2	Comments
0	125		NM		0	
10		-0.1		1400	0	
15	125			1500	0	7 20% aparty to-
20		-01			0	45 sec w/ change
30	125	-0.15		1400	0	
40		-0.1		1410	٥	4.81 gal DF 2 used
45	125				0	in comin run 1.
50		-0.1		1510	0	253 41 0F2 4500
60		-0.1		1470	0	in 30 min Pre ran.
	:let = 500	Avg =-0.1	Avg = MM	Avg =/448	Avg = O	

Fraction of	time	a11	burners	are	operating	(G _{bm}) =	NM	7
	• • • • • • • • • • • • • • • • • • • •				op	, Dm,		

Part 1, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO.68R-1056 APPROVAL EXPIRES Jan. 1973

3

SUMMARY OF RESULTS

Incinerator Test

Run No. 2

1.	Hame of firm Edgewood Arsenal, many land
2.	Location of plant South Area, Toorle Army Orpot, Whah
3.	Type of incinerator Western Inc.
4.	Control equipment School
5.	Sampling point location 17.5-in Stack, 12 ft Above T. U. Fan.
ú.	Material incinerated Wood Dunnage
7.	Weight of material incinerated 500 16
3.	Pollutants sampled Particulate
9.	Time of particulate test:
	Uate 10 March 1972 , Begin 1555 , End 1655
	Operating Variables
10.	Scrubber pressure drop. in. 1120 0.3
11.	Scrubber H ₂ O rate, gpm
12.	Primary chamber draft, in. H ₂ 0 Overfire -0.1 Underfire MA7
13.	Secondary chamber temnerature, OF
14.	Stack temperature (Thd), OF.

Emission Data

- 15. Stack flow rate (Vdp).scfm 2215
- 16. Water vapor in stack gas (V_{cg}), % by volume
- 17. Excess air at sampling point (Vb1), % 534

	grains/cf at stack conditions	grains/scf	grains/scf at 12 % CO ₂ *	lb/hr
late - cyclone	Cas = 0.002	Cam = 0,004	C _{ap} = 0.014	C _{av} = 0.074
late - cyclone,	Cat = 0.011	C _{an} =0.018	C _{aq} = 0.169	C _{aw} =0.532
articulate des impinger	Cau = 0.013	C = 0.032	C _{ar} = 0.190	Cax = 0.607

- 13. Particul probe.
- 19. Particul probe. filter
- 20. Total pa (includ catch)

21.	Percent	isokinetic	for	particu	late	train

					**	,				
22.	CO2	in	stack gas	from	burners	,	10	volume	(dry)	

1	
T =	105
xs*	
G A	

Logand: Not - not measured scf = Standard cubic foot, i.e., dry gas at 70°F and 29.92 in. Hq. Stack conditions: Stack temperature and stack pressure including moisture.

Correction to 12 % CO₂ made using % CO₂ from waste only.

[%] CO2 from burner corrected to test conditions.

Part 2, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND MELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO.68R-1056 APPROVAL EXPIRES Jan. 1973

SUMMARY OF TEST DATA

	Date 10 Mair 9 1974 Run No. 2		
	Particulate Sampling Train		
1.	Sampling nozzle diameter, in.	Dav =	0.25
2.	Sampling time, min.	Taw =	60
3.	Sample gas volume - meter condition, cf		36.02
4.	Average meter temperature, ^O F		91
5.	Average orifice pressure drop, in. 1120	Paf =	1.02
6.	Particulate collected - probe and cyclone, mg	Waj =	2.0
7.	Particulate collected - probe, cyclone and filter, mg	Wak =	57.4
3.	Particulate collected - total, mg	Wal =	_ 58.4
	Velocity Traverse - Burner Only		
9.	Stack area, in. ²	S _{dd} =	240.4
10.	Average stack pressure, in. Hg (absolute)	P _{hc} =	0.0
11.	Average stack temperature, ^O F	T _{hd} =	3/2
12.	Average V velocity head x stack temperature	S _{he} =	18.00
13.	Hoisture in stack gas from burners, % by volume	V _{hi} =	14.0
	Velocity Traverse During Test - Burner and	Waste	
14.	Stack area, in. ²	S _{dd} =	240.4
15.	Average stack pressure, in. Hg (absolute)	P _{di} =	0.0
16.	Average stack temperature, ^O F	T _{df} =	362
17.	Average Vvelocity head x stack temperature		19.02
	Stack Moisture Content		
18.	Total water collected by train, ml	V_ =	206.9

Part 2, p. 2 of 2

Orsat Analysis - Burner Only

19.	CO ₂ , % volume (dry)	V _{bb} =
20.	CO, % volume (dry)	V _{bc} = 0.0
21.	0 ₂ , % volume (dry)	V _{bd} =
22.	112, % volume (dry)	V _{be} =
	Orsat Analysis - Burners and Waste	
23.	CO ₂ , % volume (dry)	V _{bf} = - 2.7
24.	CO, % volume (dry)	V _{bq} = 0.0
25.	υ ₂ , ‰ volume (dry)	V _{bh} =
26.	112, % volume (dry)	V _{bi} = 79.4
	Incinerator Operating Data	
27.	Fraction of test time all burners are operating	G _{hm} = NM

Part 3, p. 1 of 3

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO 68R-1056 APPROVAL EXPIRES Jan. 1973

PARTICULATE SAMPLING TRAIN DATA AND CALCULATIONS

Nozzle diameter (D_{av}) , in. = 0.75

Barometric pressure (P_{aa}) , in. Hg = 24.80

Sampling point location 34ack Run No. =

			Gas Neter		
Clock time	Point No.	Reading (V _{ac})	Temp. in OF	Temp. out	Orifice & P in. H ₂ 0
0	3	11.80	-	-	-
10	3	17.89	94	83	1.00
20	3	23.94	94	83	1.00
30	3	30.10	96	83	1.05
40	3	36.24	100	84	1.05
SO	3	42.38	99	85	1.00
60	3	48.56	102	87	1,02
		(D6M (F=098)			
-					

Net time Net Net Average Average Average $(T_{aw})=60$ $(V_{ac})=36.02$ $(T_{ad})=98$ $T_{ae})=84$ $(P_{af})=1.02$

(1) A. Average meter temperature =
$$\frac{\tau_{ad} + \tau_{ae}}{2} = \tau_{ai} = \frac{91}{2}$$

(2) B. Dry gas sample volume @ standard conditions, cf

= 17.7 x
$$V_{ac} \times \frac{P_{aa} + \frac{P_{af}}{13.6}}{(T_{ai} + 460)} = V_{ab} = 28.60$$

Laboratory Data

Particulate - probe and cyclone $(W_{a,j})$, mg =

8.0

Particulate - probe, cyclone, and filter (W_{ak}) , mg =

52.4

Particulate - total (includes impinger washings) (Wal), mg = 58.6

Particulate Concentration Calculations

In grains/scf

(3) A. Particulate - probe and cyclone, grains/scf

$$C_{am} = 0.0154 \times \frac{W_{aj}}{V_{ab}} =$$

0.0043

(4) B. Particulate - probe, cyclone, and filter, grains/scf

$$C_{am} = \frac{0.0154 \times W_{ak}}{V_{ab}} =$$

0.0282

(5) C. Particulate - total, grains/scf (Go to Part 6, page 1)

$$c_{ao} = \frac{0.0154 \times W_{al}}{V_{ab}} =$$

0.0314

In grains/scf @ 12 % CO₂

(17) D. Particulate - probe and cyclone, grains/scf 0 12 % ${\rm CO_2}$

$$C_{ap} = C_{am} \times \frac{12}{V_{ba}} =$$

0.016

(18) E. Particulate - probe, cyclone, and filter, grains/scf @ 12 % CO2

$$C_{aq} = C_{an} \times \frac{12}{V_{ba}} =$$

0.169

(19) F. Particulate - total, grains/scf @ 12 % CO2

$$c_{ar} = c_{ao} \times \frac{12}{V_{ba}} =$$

0.190

Part 3, p. 3 of 3

In grains/cf @ stack conditions

(20) 6. Particulate - probe and cyclone, grains/cf @ stack conditions

$$C_{as} = \frac{17.7 \times C_{am} \times P_{di} \times Mch}{(T_{df} + 460)} = 0.0010$$

(21) H. Particulate - probe, cyclone, and filter, grains/cf @ stack conditions

$$c_{at} = \frac{17.7 \times C_{an} \times P_{di} \times Mch}{(T_{df} + 460)} = \frac{0.0112}{(T_{df} + 460)}$$

(22) I. Particulate - total, grains/cf @ stack conditions

$$C_{au} = \frac{17.7 \times C_{ao} \times P_{di} \times Mch}{(T_{df} + 460)} = \frac{0.0127}{}$$

In 1b/hr

(23) J. Particulate - probe and cyclone, 1b/hr

$$C_{av} = 0.00357 \times C_{am} \times V_{db} = 0.076$$

(24) K. Particulate - probe, cyclone, and filter, lb/hr

$$C_{av} = 0.00857 \times C_{an} \times V_{db} = 0.532$$

(25) L. Particulate - total, lb/hr

$$C_{ax} = 0.00857 \times C_{ao} \times V_{db} = 0.607$$

(26) :1. % isokinetic =
$$\frac{1032 \times (T_{df} + 460) \times V_{ab}}{V_{dh} \times T_{alv} \times P_{di} \times (T_{ch} \times (D_{av})^2)} = I_{ax} = \frac{705}{(Go \text{ to Part 7, p. 1)}}$$

V_{ba} from Orsat data and calculation sheet (part 7).

V_{db}, T_{df}, V_{dh}, P_{di}, from velocity data and calculation sheet for test (Part 5).

[&]quot;cn from moisture content data and calculation sheet (Part 6).

Day from particulate sampling train data and calculation sheet (Part 3).

Part 4, p. 1 of 2 DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO. 68R-1056 APPROVAL EXPIRES Jan. 1973

VELOCITY TRAVERSE DATA AND CALCULATION SHEET (Burners Only)

Date 10 Macen 1972 Time 1027-1057 Run No. A. Sampling point location 3 mck

Sampling point location 3hckStack area (S_{dd}) , in. 2 240.4Wet bulb temperature (T_{hj}) , of NMDry bulb temperature (T_{hk}) , of NM

Barometric pressure (P_{h1}) , in. Hg absolute = 24.85Note: Calculations for S-type pitot tube, C = 0.85

Drawing of stack cross section

	Distance from ref.	Stack press.(P _{hm})	(That)	(T _{hd} + 460),	Velocity head (V _a),	V_x (T_+ 460)	Vax (Thd+ 460
No.	point, in.	in. "" Hg. (gage)	o _F	o _R	in. H ₂ 0	a na	a nd
3	7.4	0.0	315	775	0.42	325.50	1204
3	7.4	0.0	310	770	0.42	323.40	17.48
3	7.4	0.0	310	770	0.42	823.40	17.58
		Avg	Avg				Avg (She)
		= 0.0	= 3/2	<u>.</u>			= 18,00
		in. Hg (abs) =		35			

7

Part 4, p. 2 of 2

- (9) A. Moisture in stack gas, from wet and dry bulb temperatures using psychrometric charts (Vhi), % = 14.0 (randen sec method, pact 6)
- (10) B. Mole fraction of dry gas

$$=\frac{100-V_{hi}}{100} = M_{hg} = 0.86$$

(11) C. Stack velocity @ $P_{\rm hc}$ and $T_{\rm hd}$ (stack conditions, includes moisture), fpm

= 4350 x S_{he}
$$\frac{1}{P_{hc} \times (M_{bk} \times M_{hg} + 18(T-M_{hg}))}$$
 = $V_{hf} = \sqrt{99.5}$

(12) D. Stack volume @ standard conditions, scfm

$$= \frac{0.123 \times V_{hf} \times S_{dd} \times P_{hc} \times P_{hg}}{(T_{hd} + 460)} = V_{hh} = -2442$$

(Go to Part 5, n. 2)

 $[\]delta_{\rm bk}$ from Orsat data and calculation sheet (Part 7).

Part 5, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

BUDGET BUREAU NO.68R-1056 APPROYAL EXPIRES

VELOCITY DATA AND CALCULATION SHEET FOR TEST (Durners and Waste)

Date 10 March 1972 Time 1555-1655 Sampling noint location Stack Run No. 2 Stack area (S_{dd}), in.² 240.4

Note: Calculations for S-type pitot tube, C = 0.85

Drawing of stack cross section

		in. Hg abs) = {P _{di}) = P _{dj}					
		Avg = <u>0.0</u>	Avg = 362				Avg (Sde) = 19,62
3	7.4	0.0	355	815	0.47	583.0	19.57
3	7. y 7. y	0.0	365	870	0.40	396.0 377.2	19.90
3	7.Y	0.0	365	875 875	A48	396.0	19.90
3_	7.4	0.0	355	815	040	574.9	19.34
3_	7.4	0.0	375	835	0.46	384.1	19.00
Point No.	Distance from ref. point, in.	Stack press.(P _{dj}) in. Hg (gage)	Stack (T _{df}), O _F	(T _{df} + 460),	Velocity head (V _b), in. H ₂ 0	V _b x (T _{df} + 460)	V _b x (T _{df} + 460

P aa from particulate sampling train sheet (Part 3). NCAP-20 (12/67) 37

Part 5, p. 2 of 2

(13) A. Stack velocity @ P_{di} and T_{df} (stack conditions), from

= 4350 x S_{de} x
$$\frac{1}{P_{di} \times {}^{11}ca} = V_{dh}$$
 3341

(14) B. Stack volume @ standard conditions, scfm

= 0.123 ×
$$\frac{V_{dh} \times S_{dd} \times M_{ch} \times P_{di}}{(T_{df} + 460)} = V_{db} = \frac{-22/5}{1}$$

(Go to Part 7, p. 2.)

Mca, the from stack moisture data and calculation sheet (Part 6).

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO. 68R-1056 APPROVAL EXPIRES Jan. 1973

STACK MOISTURE CONTENT DATA AND CALCULATIONS FOR TEST

Date 10 March 1972

Run No.	Pre	Z	
H ₂ O condensed in impingers (V _{cb}), ml	49.0	194.8	
H ₂ O absorbed by silica gel (V _{cd}), ml	4.0	12.1	
Total H_2O collected = $V_{ce} = (V_{cb} + V_{cd})$, ml	53.0	206.9	
Vol of H_2O vapor @ 70^{OF} and 29.92 in. $Hg = 0.0474 \times V_{ce}$ = (V_{cf}) , cf	2.50	9.76	
Moisture in stack gas = (V _{cg}), % (from formula below)	14.0	25.4	
<pre>!lole fraction dry gas, = (Mch) (from formula below)</pre>	0,860	0.746	
Molecular weight of stack gas ("ca) (from formula below)	-25 .7	26.3	

(6) A. Moisture in stack gas (V_{cq}) , %

$$= \frac{100 \times V_{cf}}{V_{ab} + V_{cf}}$$

(7) B. Hole fraction dry gas (M_{ch})

$$=\frac{100 - v_{cq}}{100}$$

Part 6, p. 2 of 2

(8) C. Holecular weight of stack gas

$$M_{ca} = M_{bj} \times M_{ch} + 18 (1 - M_{ch})$$
(Go to Part 4. p. 2.)

 $[{]m V}_{
m ab}$ from particulate data and calculation sheet (Part 3).

 $^{{\}rm M_{bj}}$ from Orsat data sheet (Part 7).

Part 7, p. 1 of 2

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO 68R-1056 APPROVAL EXPIRES Jan. 1973

ORSAT DATA AND CALCULATION SHEET

Orsat Analysis - Burner Only (From bag sample)

Sampling point location Influent to School

Date 10 March 1972 Time 1027-1057

	Analysis	Analysis 2	Analysis 3	Λvg	x = mole.wt	wt/mole (dry)
CO2 (Vbb), 2 vol (drv)				2.1	44/100	0.92
CO (V _{bc}), % vol (dry)				0.0	23/100	+ 0.00
0 ₂ (V _{bd}), % vol (dry)				18,2	32/100	+5.32
N2 (Vbe), % vol (dry)				79.7	28/100	+ 22.32
bk = Avg molecular wt of dry stack gas=					29.00	

Orsat Analysis for Test - Maste and Burners (From bag sample)

Date 10 March 1472 Time 1555-1665 Run No. 2
Sampling point location In flagent to Schabber

	Analysis 1	Analysis 2	Analysis 3	Avg	x = mole wt	wt/mole (dry)
CO ₂ (V _{bf}) % vol (dry)				2.7	44/100	1.19
CO (V _{bg}). % vol (dry)				0.0	23/100	+ 0.00
0 ₂ (V _{bh}), % vol (dry)				17.7	32/100	+ 5.66
"2 (Vbi), % vol (dry)				79.0	28/100	+22.36
			M _{bj} -	Avo mole dry st	cular wt of ack gas =	29.15

(28) A. Excess air, %

$$= \frac{100 \times (V_{bh} - \frac{V_{bq}}{2})}{0.264 \times V_{bi} - (V_{bh} - \frac{V_{bq}}{2})} = V_{bi} = 534$$

(Transfer all answers to summary of results)

(15) B. *CO₂ contributed by hurner, % by volume of stack gas corrected to test conditions.

$$V_{bn} = V_{bb} \times \frac{V_{hh}}{V_{db}} \times G_{bm} = \frac{(2.1)(2442)(5.34)}{(2315)(7.04)}$$

(16) B. CO₂ in stack gas from waste, % vol (dry) (Go to Part 3, p. 2)

 $V_{\rm db}$ from velocity data and calculation sheet for test (Part 5).

V_{hh} from velocity traverse data and calculation sheets (Part 4).

 ${\bf G}_{{\bf bm}}$ from incinerator data and calculation sheet (Part 10).

Note: Above calculation corrects ${\rm CO_2}$ of burner to stack test conditions.

Z = CO₂ from burners, scfm (Determine from natural gas flow rate)

$$V_{ba} = \frac{V_{db} \times V_{bf} - (Z \times G_{bm} \times 100)}{V_{db}}$$

^{*} Note: If ${\rm CO}_2$ from burners is determined from an analysis of the natural gas flow, the following equation can be used in place of equations (15) and (16) to calculate (${\rm V}_{\rm ba}$).

Part 8, p. 1 of 1

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO 68R-1056 APPROVAL EXPIRES

Jan. 1973

POUNDS PER HOUR EMISSION CALCULATION

Total particulate collected by train, grams	H1a = -	0.0586
Area of sampling nozzle, in. ²	W16 = -	0.049
Area of stack, in. ²	W1c = -	2444
Time of particulate test, min.	W1d = -	. 60

Emissions, lbs/hr

Cay = 0.63

Note: Sufficient data and calculations should be included to show that the particulate train was operated within 10 percent of isokinetic conditions. Comparison of the probe sampling velocity to the stack gas velocity will be sufficient for this purpose. To make this comparison it will be necessary to measure:

- 1. Stack temperature
- 2. Stack velocity
- 3. Sampled gas volume and temperature
- 4. Moisture in sampled gas

Part 9, p. 1 of 1 DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO.68R-1056 APPROVAL EXPIRES Jan. 1973

STICKY PAPER DATA AND CALCULATIONS

Date 10 March 1972	
Stack area, in. ² 2404	
Sampling point location	
Run No.	

Time	Part/in. ² /min > 60 microns	Part/min >60 micron
		
	Avg NM	AVQ NM

Note: Particles/min = stack area x part/in. 2/min.

Part 10, p. 1 of 1

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service
National Center for Air Pollution Control

FORM APPROVED BUDGET BUREAU NO. 68R-1056 APPROVAL EXPIRES Jan. 1973

INCINERATOR OPERATING DATA AND CALCULATION SHEET

Date		10	march	1972	
Run	No.		a		

Clock time	:Material charged,	Primary ch	amber draft	Secondary	Stack	
			Underfire,	chamber	opacity	
		Overfire, in. H ₂ 0	in. H ₂ 0 (Optional)	Temp. oF	2	Comments
0	425		NM		0	
10		-0.1		1440	0	
15	125				0	220% gooding for
20		-01		1600	0	40 se w/change
30	125	-01		1410	0	
40		-0.1		1450	0	5.36 941 DEZ 14
45	125				0	60-min +49 90. 2
50		-01		1420	0	
60		-01		1450	0	
	:let = 500	Avg =-0/	Avg = NM	Avg = Mez	Avg =Q	

Fraction of	time a	11 b	urners	are	operating	(G _{bm})	•	NM

S

Part 11, p. 1 of 4

DEFINITIONS

Standard conditions - 70°F and 29.92 in. Hg

scf - Standard cubic foot of dry gas @ 70°F and 29.92 in. Hg
scfm - Standard cubic foot per minute of dry gas @ 70°F and 29.92 in. Hg
Stack conditions - stack temperature, pressure, and moisture.

LIST OF SYMBOLS

Part 3. Particulate sampling train data and calculation sheet

Cam, Particulate-probe and cyclone, grains/scf

Can, particulate-probe, cyclone and filter, grains/scf

Cao, Particulate-total, grains/scf

C_{ap}, particulate-probe, cyclone and filter, grains/scf

@ 12 % CO₂

 c_{aq} , particulate-probe, cyclone and filter, grains/scf 0 12 % c_{aq}

Car, particulate-total, grains scf 12 % CO2

Cas, particulate-probe and cyclone, grains/scf @ stack conditions

C_{at}, particulate-probe, cyclone and filter, grains/cf @ stack conditions

Cau, particulate-total particulate, grains/cf @ stack conditions

Cay, particulate - probe and cyclone, lb/hr

Caw, particulate - probe, cyclone and filter, lb/hr

Cax, particulate - total, lb/hr

Dav, sampling nozzle diameter, in.

Pas, barometric pressure, in.Hg (Absolute)

Part 11, p. 2 of 4

 P_{af} , orifice pressure drop, in. H_2^0 T_{ad} , gas meter inlet temperature, 0F

Tae, gas meter exit temperature, °F

T_{ai}, average gas meter temperature, °F

Tau, net time of test, minutes

Tax, percent isokinetic

 v_{ab} , volume of dry gas sampled @ standard conditions, ft

Vac, Volume of dry gas sampled @ meter conditions, ft

Wai, particulate-probe and cyclone, mg

Wak, particulate-probe, cyclone and filter, mg

Wal, particulate - total, mg

Part 4. Velocity traverse data and calculation sheet (burners only)

Mho, mole fraction dry gas

Phc, stack pressure, in.Hg. (absolute)

Ph1, barometric pressure, in. Hg.(absolute)

Phm, stack pressure, in. Hg. (gage)

Sdd, stack area, in. 2

She average Velocity head x stack temperature.

Thd, average stack temperature, of

Thi, wet bulb temperature, oF

Thk, dry bulb temperature, oF

Va, Velocity head of stack gas (burner only) in. H20

V_{hf}, stack gas velocity, fpm @ stack conditions

Vhh, stack gas volume @ standard conditions, scfm

Vhi, moisture in stack gas by volume, %

Part 11, p. 3 of 4

Part 5. Velocity data and calculation sheet for test (burners and waste)

Pdi, stack pressure, in Hg (absolute)

Pdi, stack pressure, in. Hg (gage)

Sad, stack area, in2

Sde, average Velocity head x stack temperature

Tdf, stack temperature, F

 V_b , velocity head of stack gas burner and waste, in. H_2 0

Vdb, stack gas volume @ standard conditions, scfm

V , stack velocity @ stack conditions, fpm

Part 6. Stack moisture content data and calculation sheet

Mca, molecular weight of stack gas

Moh, mole fraction of dry gas

V_{ch}, H₂0 condensed in impingers, ml

V_{cd}, H₂O absorbed silica gel, ml

V_{ce}, total H₂O collected, ml

 v_{cf} , volume of water vapor collected, cu ft θ standard conditions

 v_{cg} , moisture in stack gas by volume, x

Part 7. Orsat data and calculation sheet

G_{bm}, fraction of test time all burners are operating

Mhi, molecular weight of dry stack gas (waste and burner)

Mbk, molecular weight of dry stack gas (burner only)

V_{ba}, % CO₂from waste (dry basis)

vbb, % co2 from burner (dry basis)

Vbc, % CO from burner (dry basis)

Vhd, % Ofrom burner (dry basis)

Vha, % N2 from burner (dry basis)

Part 11, p. 4 of 4

 $v_{\rm bf}$, % co_2 from waste and burner (dry basis)

 V_{bg} , % CO from waste and burner (dry basis)

 $v_{\rm bh}$, % o_2 from waste and burner (dry basis)

 v_{bi} , x_{2} from waste and burner (dry basis)

 v_{b1} , x excess air at sampling point

 $v_{\rm bn}$, co_2 contributed by burner, z by volume of stack gas corrected to test conditions