Food:

Goal: Find quantity to maximize happiness with the constraints of money and calories

<u>Variables</u>		
X	Quantity of food x	
у	Quantity of food y	
tıx	Healthiness of food x	
tıy	Healthiness of food y	
t2X	Happiness of food x	
t ₂ y	Happiness of food y	
t ₃ x	Calories of food x	
t ₃ y	Calories of food y	
t ₃ x	Money of food x	
t ₃ y	Money of food y	
S	Money constraint	
С	Calories Constraint	
H1	Importance of happiness	

Constraints: $xt3x + yt3y \le C$ and $xt4x + yt4y \le s$

H2

Utility function=
$$U(x,y) = x^{\frac{1}{ay}} + y^{\frac{1}{ax}}, 0 < an < 1$$

The alpha values are reversed in the utility equation above because, the greater the alpha, the less weight on the variable. So if Y has a strong weight, we want to essentially decrease X's power.

Importance of healthiness

where:
$$an = \frac{H1t1n + H2t2n}{(H1 + H2)*ML}$$

ML is the machine learning parameter.

Approach: we will use Legrange optimization to solve this.

I have not written down the entire solution, as it varies from problem to problem, but this is by fundamental approach.

Exercise:

Goal: Find quantity to maximize happiness and minimize time with the constraint of minimum calories

Variables

x1, x2	Quantity of food x1, x2
t	Time
h1, h2	Happiness
h	How happy
a1, a2	Alpha parameter

Constraints: $x1 + x2 \le t$

Utility function=
$$U(x_1,x_2,x_3,x_4,x_5) = x_1^{\frac{1}{ax_1}} + x_2^{\frac{1}{ax_2}} + \dots, 0 < an < 1$$

The alpha values are reversed in the utility equation above because, the greater the alpha, the less weight on the variable. So if Y has a strong weight, we want to essentially decrease X's power.

where:
$$an = \frac{1}{(2(h)(hn)*ML)}$$

ML is the machine learning parameter.

Approach: we will use Legrange optimization to solve this.

I have not written down the entire solution, as it varies from problem to problem, but this is by fundamental approach.