P3:

For each positive integer n there exist integers m and k (uniquely determined) such that

$$n = 2^k + m$$
, $0 \le m < 2^k$, $k = 0, 1, 2, ...$

Thus, for n=1, we have k=0 and m=0; for n=5, we have k=2 and m=1; and so on. Define r.vs X_n for n=1,2,...n on $\Omega=[0,1]$ by

$$X_n(w) = \begin{cases} 2^k, & \frac{m}{2^k} \le w < \frac{m+1}{2^k} \\ 0, & \text{otherwise} \end{cases}$$

Show that $X_n \stackrel{P}{\longrightarrow} 0$ but $X_n \stackrel{a.s}{\longrightarrow} 0$.

Solution:

Let the probability distribution of X_n be given by

$$P(I) = \text{length of the interval } I \subseteq \Omega.$$

Thus,
$$P(X_n = 2^k) = \frac{1}{2^k}$$
 and $P(X_n = 0) = 1 - \frac{1}{2^k}$

The limit $\lim_{n\to\infty} X_n(w) = \lim_{k\to\infty} X_n(w)$ does not exist for any $w\in\Omega$, so that X_n does not converge almost surely. But

$$\begin{split} P(|X_n - 0| > \epsilon) &= P(|X_n| > \epsilon) = P(X_n > \epsilon) \\ &= \begin{cases} 0 &, & \epsilon \ge 2^k \\ \frac{1}{2^k} &, & 0 < \epsilon < 2^k \end{cases} \end{split}$$

and we see that

$$P(|X_n - 0| > \epsilon) \rightarrow 0$$
 as n (and hence $k) \rightarrow \infty$.

Thus,
$$X_n \stackrel{P}{\longrightarrow} 0$$
 but $X_n \stackrel{a.s}{\longrightarrow} 0$.