# Probability Distributions

Joe

### Introduction

## **Session Objective**

- 1. Define the fundamental continuous and discrete probability distributions
- 2. Use matplotlib to visualize distributions of data and discuss data vis fundamentals

#### Resource



- "Think Stats" is available free online, or through amazon (I purchased a copy, I like authors)
- Great resource if any of the material today goes by too fast

### **Basics of Data Visualization**

#### **Data Visualization**

- Data visualization is a skill that you only get better at through thoughtful practice
- Depicted is the predictions of a logistic regression model on the iris dataset



# Histograms

- The histogram is one of the more fundamental depictions of data.
- Histograms depict the how often a certain value occurs in a set of data.
- Let's hop into a notebook and go over some basic histogram creation.



# Fundamentals of Distributions

#### Continuous vs. Discrete

#### Continuous

- floating point numbers
- the life span of a fly
- prob. at a point is 0, only an integral has non-zero probability



#### **Discrete**

- integers
- e.g. the number of heads when flipping coins



# Cumulative Distribution Functions



# Relationships



## **Expectation & Variance**

#### **Recall: Expectation and Variance**

For **discrete** random variables (let P be the PMF of the r.v. X):

$$E(X) = \sum_{s \in S} s * P(X = s)$$

$$Var(X) = \sum_{s \in S} (s - E(X))^2 * P(X = s)$$

For **continuous** random variables (let f is the PDF of r.v. X):

$$E(X) = \int_{x = -\infty}^{\infty} x * f(x) dx$$

$$Var(X) = \int_{x=-\infty}^{\infty} (x - E(X))^2 * f(x) dx$$

# Important Discrete Distributions

# Bernoulli & Binomial





 $\mathsf{PMF:}\ P[\mathit{success}] = p\ , P[\mathit{failure}] = 1 - p$ 

Support: {success, failure}

Mean: p

Variance: p(1-p)

PMF:  $P[X = k] = \binom{n}{k} p^k (1 - p)^{n-k}$ 

Support:  $k \in \{0, 1, \dots, n\}$ 

Mean: np

Variance: np(1-p)

#### **Geometric Distribution**



PMF:  $P[X = k] = p(1 - p)^{k-1}$ 

Support:  $k \in \{0, 1, \dots\}$ 

Mean:  $\frac{1}{p}$ 

Variance:  $\frac{1-p}{p^2}$ 

#### **Poisson Distribution**



PMF:  $P[X = k] = \frac{\lambda^k e^{-\lambda}}{k!}$ 

Support:  $k \in \{0, 1, 2, ...\}$ 

Mean: λ

Variance: λ

# Important Continuous Distributions

### **Uniform Distribution**



PDF: 
$$f(x) = \frac{1}{b-a} * [\theta(a-x) - \theta(b+a-x)]$$

Support:  $x \in [a, b]$ 

Mean:  $\frac{a+b}{2}$ 

Variance:  $\frac{(b-a)^2}{2}$ 

#### **Normal Distribution**



PDF: 
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

Support:  $x \in (-\infty, \infty)$ 

Mean: μ

Variance:  $\sigma^2$ 

## **Exponential Distribution**



 $PDF: f(x) = \lambda \exp(-\lambda x)$ 

Support:  $x \in [0, \infty)$ 

Mean:  $\frac{1}{\lambda}$ 

Variance:  $\frac{1}{\lambda^2}$