Spatial Reference Systems

Definitions (OGC/ISO-19100 series)

- Coordinate operation: a change of coordinates, based on a one-toone relationship, from one coordinate reference system to another.
- Conversion: is a coordinate operation in which both coordinate reference systems are based on the same datum, e.g. change of units of coordinates.
- ☐ **Transformation**: is a coordinate operation in which the two coordinate reference systems are based on different datums, e.g. a change from a global reference frame to a regional frame.
- Projection: is a coordinate conversion from an ellipsoidal coordinate system to a plane.
 - Note: Although projections are simply conversions according to the standard, they are treated as separate entities in PROJ as they make up the vast majority of operations in the library.

Projection surfaces

Choice of projection

Purpose of the map

- **Area covered** (USA, Australia, Europe, Polar regions, Equatorial regions, linear shape, ...)
- Scale of representation (continent, state, city)
- Use what distortions we allow/not allow
 - Equal area projections: for measuring/comparing areas
 - Conformal projection: measuring local angles (cadastral app)
 - Gnomonic: great circles display as straight lines
 - Equidistant projection: preserves proportions of distances and some distances along parallels

Conversion: Cartesian to Geographical CRS

- □ Cartesian 3D Coordinates
 - Earth centered (X,Y,Z),
- Polar 3D coordinates:
 - Latitude: angle north or south of the equatorial place
 - Longitude: angle east or west from the prime meridian
 - Height: distance above the surface of sphere/spheroid/geoid
 - □ → Parallels and Meridians

Transformation

- Transformation is the conversion (mapping) of the values of coordinates in one reference system into another;
- The values of the coordinates are <u>numerically</u> different;
- Affine transformations linear mapping method, preserving straight lines and planes (7 parameters):
 - □ Rotation (3 parameters rotation around x, y and z)
 - □ Translation (in 3D translation vector x,y,z)
 - Scaling (1 parameter)

There are hundreds of SRS...

Defining parameters of transformations for each pair would be infeasible (m:n)

We (Proj) define the parameters from the current SRS to a world geographic SRS: WGS84

□ SRS1 → WGS84 → (-1) SRS2

In PostGIS: ST Transform(geom, targetSRS)

Most geodetic transformations are a series of elementary operations, the output of one operation being the input of the next.

Coordinate transformations – going from one system to the other (similar type)

- May involve datum change
- □ From polar to 3D earth centred cartesian
- From polar to 2D cartesian (Map projection)
- Map re-projections (from one 2D cartesian to another via the polar)

Geometries

Point

A point in the Cartesian plane \mathbb{R}^2 is associated with a unique pair of real number a=(x,y) measuring distance from the origin in the x and y directions. It is sometimes convenient to think of the point a as a vector.

- Scalar: Addition, subtraction, and multiplication, e.g., $(x_1, y_1) - (x_2, y_2) =$ $(x_1 - x_2, y_1 - y_2)$
- Norm: $||a|| = \sqrt{(x^2 + y^2)}$
- Distance: |ab| = ||a b||
- Angle between vectors: $\cos \alpha = \frac{x_a x_b + y_a y_b}{||a||.||b||}$

Line

- The *line* incident with a and b is defined as the point set $\{\lambda a + (1-\lambda)b | \lambda \in \mathbb{R}\}.$
- The *line segment* between a and b is defined as the point set $\{\lambda a + (1 \lambda)b | \lambda \in [0, 1]\}.$
- The half line radiating from b and passing through a is defined as the point set $\{\lambda a + (1 \lambda)b | \lambda \ge 0\}$.

Polyline vs Polygon

- A polyline in R² is a finite set of line segments (called edges) such that each edge end-point is shared by exactly two edges, except possibly for two points, called the extremes of the polyline.
- If no two edges intersect at any place other than possibly at their end-points, the polyline is <u>simple</u>.
- A polyline is closed if it has no extreme points.
- A (simple) polygon in R² is the area enclosed by a simple closed polyline. This polyline forms the boundary of the polygon. Each end-point of an edge of the polyline is called a vertex of the polygon.
- A convex polygon has every point intervisible
- A star-shaped or semi-convex polygon has at least one point that is intervisible

Polyline vs Polygon (and other terms)

Note: Polyline and Linestring are interchangeably used terms Note: Convexity can be explained in terms of monotonicity

Convex poly

Simple vs Non-Simple Geometry

Single vs Multi-Geometry

Representing geometries as text

■ WKT: Well-Known Text representation:

- □ Point: "POINT (70 30)"
- Polyline: "LINESTRING (30 10,20 50,60 70)"
- □ Polygon: "POLYGON ((30 10,20 50,60 70, 30 10))"
- Polygon with hole:
 - "POLYGON((30 10,20 50,60 70, 30 10),(30 15, 25 45,55 65,30 15))"
- □ Multipolygon: "MULTIPOLYGON (((40 40, 20 45, 45) 30, 40 40)),

(20 35, 10 30, 10 10, 30 5, 45 20, (30 20, 20 15, 20 25, 30 20)))"

Invalid polygons

(Note: with a boundary overlapping itself)

(Note: with a Hole outside the outer ring)

Geometry Validation

Line

Curve

 Extremely important step when importing data from unknown sources;

SpatialReferenceSystem

Polygon

GeometryCollection

MultiPolyaon

MultiPo

MultiLineStrina

Invalid geometries can break spatial analysis!

LinearRing

- It can be a tedious process to fix data...
- ST_isSimple(geom)
- ST_isValid(geom) and ST_isValidReason(geom)
- ST_makeValid(geom) (and the expert trick: ST_Buffer(geom,0.00001)

☐ Constraint: ALTER TABLE public.my_valid_table ADD CONSTRAINT enforce_valid_geom CHECK (st_isvalid(geom));

Operations on Spatial entities

Query types

- Thematic (as in non-spatial databases):
 - Return all areas where landuse is "crop"
 - Return all parcels where owner is "Joe Blocks"
 - □ → we get a subset of spatial entities that satisfy a non-spatial condition
- Geometric (you have experienced some, and we will do some more soon):
 - What is the distance from NY to MEL?
 - Return the area of 100 km around Melbourne.
 - What is the region where pine trees grow in this forest
 - Is Bendigo north of Melbourne?
- Topological:
 - Is Parkville adjacent to Carlton?
 - □ What are the suburbs surrounding the suburb where Melbourne uni is?
 - What is the tram route between Melbourne Uni and St Kilda Beach
- Set-theoretic operations (as distinguished by some authors)
 - Union/Intersection/Difference create geometry based on topological test outomces
 - □ What is the part of the Yarra river that is within Melbourne