

Thermodynamics Outlines

Ideal gas law: PV = nRT

Relative density:
$$d = \frac{\rho_1}{\rho_2} = \frac{m_1}{m_2} = \frac{M_1}{M_2}$$
 (relative density of a gas 1 with respect to a gas 2)

Molar fraction:
$$\chi_i = \frac{n_i}{n_T}$$
 and partial pressure : $P_i = \chi_i P_T$

Pressure force work :
$$\delta W = -P_{ext}dV$$

First law: - General case :
$$dK + dU = \delta W + \delta Q$$

- System at rest:
$$dU = \delta W + \delta Q$$

Enthalpy:
$$H = U + PV$$
 For a monobaric process: $\Delta H = Q_P$

Gibbs Free enthalpy:
$$G = H - TS$$

For an ideal gas:
$$dU=n\overline{C}_VdT$$
 and $dH=n\overline{C}_pdT$,

$$\textbf{Hess' law:} \quad \Delta_r \bar{H}_T^0 = \sum_{prod} v_{prod} \Delta_f \bar{H}_T^0 \left(\text{products} \right) - \sum_{reac} v_{reac} \Delta_f \bar{H}_T^0 \left(\text{reactants} \right)$$

For a reversible adiabatic process of an ideal gas :
$$PV^{\gamma} = Cte$$

Second law:

For a reversible elementary process :
$$dS = \delta Q_{rev} / T$$

For an ideal heat reservoir :
$$\Delta S_{HR} = Q_{HR} \ / \ T_{HR}$$

For any system :
$$\Delta S_{\sigma}=S_e+S_c$$
 with $S_c=0$ if the process is reversible with $S_c>0$ if the process is irreversible

For an isolated system (universe) :
$$\Delta S_{univ} = \sum_j \Delta S_{\sigma j} = 0 \ \ \text{if the process is reversible}$$

and
$$\Delta S_{univ} > 0$$
 if the process is irreversible.

Clapeyron's equation :
$$\frac{dP^*}{dT} = \frac{\Delta_{trs} \overline{H}}{T(\overline{V}_{final} - \overline{V}_{mittal})}$$

where
$$\Delta_{I\!I\!I}$$
 is the enthalpy variation of the change of state \overline{V} is the molar volume of the substance in the considered phase.

Data:

$$R = 8,314 \text{ J.K}^{-1}. \text{ mol}^{-1}$$

 $T(K) = \theta(^{\circ}C) + 273$
1 atm = 101325 Pa = 1.01325 bar = 760 mmHg = 760 Torr