Econometric Modelling

SVAR - B Model

$$y_t = A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$

$$u_t = B \epsilon_t \qquad \epsilon_t \sim (0, \mathbf{I_K})$$

$$\Sigma_u = BB'$$

Baseline VAR

$$\begin{bmatrix} y_{1t} \\ y_{2t} \\ y_{3t} \\ y_{4t} \end{bmatrix}$$
 Two Monetary Policy Tools
$$\begin{cases} y_{3t} \\ y_{4t} \\ \end{cases}$$
 Measure of Output and Prices

Key Notations

- n number of policy shocks that we are interested in
- K number of variables in the SVAR
- $Z_t (n \times 1)$ vector of instruments
- u_{1t} (n x 1) vector of residual of monetary policy
- $u_{2t} (K n \times 1)$ vector of residual of non monetary policy
- ϵ_{1t} (n x 1) structural policy shocks
- ϵ_{2t} (K n x 1) non-structural policy shocks
- Σ_{AB} represents the covariance matrix

Matrix - Visuals

$$u_{t} = \begin{bmatrix} u_{t}^{1} \\ u_{t}^{2} \\ u_{t}^{3} \\ u_{t}^{4} \\ u_{t}^{5} \end{bmatrix} \quad u_{1t} \quad (n \times 1)$$

$$Z_t = \begin{bmatrix} z_t^1 \\ z_t^2 \end{bmatrix}$$

 Z_t – (n x 1) vector of instruments

Using External Instruments

Necessary Conditions:

The usage of external instruments require hunting for variables (instruments) that follow –

- 1. Correlation with monetary policy shocks
- 2. No correlation with the other shocks in the system

$$E[Z_t \epsilon_{1t}] \neq 0$$

$$E[Z_t \epsilon_{2t}] = 0$$

Using External Instruments

Derivation:

$$\begin{split} E[Z_{t}u_{t}'] &= \mathrm{E}\left[Z_{t}\right]\left[u_{1t}' \ u_{2t}'\right] \\ &= \mathrm{E}\left[Z_{t}u_{1t}' \ Z_{t}u_{2t}'\right] \\ &= \mathrm{E}\left[Z_{t}\epsilon_{1t}' \ Z_{t}\epsilon_{2t}'\right]\mathrm{B}' \qquad \qquad \dots(u_{t} = B\epsilon_{t}) \\ &= \left[\Sigma_{Z\epsilon_{1}}\mathrm{B}_{11}' + \Sigma_{Z\epsilon_{2}}\,\mathrm{B}_{12}' \right] \qquad \Sigma_{Z\epsilon_{1}}\mathrm{B}_{21}' + \Sigma_{Z\epsilon_{2}}\mathrm{B}_{22}' \\ &= \left[\Sigma_{Z\epsilon'_{1}}\,\mathrm{B}_{11}' \ \Sigma_{Z\epsilon'_{1}}\,\mathrm{B}_{21}'\right] \qquad \qquad \dots(\Sigma_{Zu_{2'}} = 0) \end{split}$$

Using External Instruments

Comparing the values:

$$\Sigma_{Zu_{1'}} = \Sigma_{Z\epsilon'_{1}} B_{11'}$$

$$\Sigma_{Zu_{2'}} = \Sigma_{Z\epsilon'_{1}} B_{21'}$$

$$B_{21} = (\Sigma_{Zu_{1'}}^{-1} \Sigma_{Zu_{2'}})' B_{11}$$

From the above derived equation, we can compute $\Sigma_{Zu_1}^{-1}, \Sigma_{Zu_2}$, using the following steps –

- 1. Estimating the reduced form VAR and obtaining the residuals $\hat{u_t}$
- 2. Regressing $\widehat{u_{2t}}$ on $\widehat{u_{1t}}$ using Z_t as instruments for $\widehat{u_{1t}}$

Using External Instruments

Computing $B_{21}B_{11}^{-1}$

$$U_2 = C U_1 + V$$

Using Z as instruments

$$U_2 Z' = C U_1 Z' + V Z'$$

Taking expectations

$$E[U_2 Z'] = C E[U_1 Z'] + E[V Z']$$

$$C = E[U_2 Z'] E[U_1 Z']^{-1} = B_{21}B_{11}^{-1}$$

Identifying Restrictions

$$B_{21} = (\Sigma_{Zu_1}^{-1}, \Sigma_{Zu_2})' B_{11}$$

For n>1

$$u_{t} = B\epsilon_{t}$$

$$\begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} \epsilon_{1t} \\ \epsilon_{2t} \end{bmatrix}$$

$$u_{1t} = B_{11} \epsilon_{1t} + B_{12} \epsilon_{2t}$$

$$u_{2t} = B_{21} \epsilon_{1t} + B_{22} \epsilon_{2t}$$

Rearranging the equations, we obtain –

$$\mathbf{u}_{1t} = \mathbf{B}_{12} B_{22}^{-1} \ \mathbf{u}_{2t} + (\mathbf{B}_{11} - \mathbf{B}_{12} B_{22}^{-1} \mathbf{B}_{21}) \ \epsilon_{1t}$$

$$\mathbf{u}_{2t} = \mathbf{B}_{21} B_{11}^{-1} \ \mathbf{u}_{1t} + (\mathbf{B}_{22} - \mathbf{B}_{21} B_{11}^{-1} \mathbf{B}_{12}) \ \epsilon_{2t}$$

Identifying Restrictions

Rewriting –

$$\mathbf{u}_{1t} = \eta \ \mathbf{u}_{2t} + \mathbf{S}_1 \epsilon_{1t}$$

$$u_{2t} = \Lambda u_{1t} + S_2 \epsilon_{2t}$$

where

$$S_1 = (B_{11} - B_{12}B_{22}^{-1}B_{21})$$
 $S_2 = (B_{22} - B_{21}B_{11}^{-1}B_{12})$

Imposing Restriction -

$$\begin{bmatrix} \mathbf{u}_{1t}^1 \\ \mathbf{u}_{1t}^2 \end{bmatrix} = \eta \ \mathbf{u}_{2t} + \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} \epsilon_{1t}^1 \\ \epsilon_{1t}^2 \end{bmatrix}$$

- Using the economic theory we set $S_{12} = 0$, which means that a structural shock in 1 year treasury rate will not have an immediate impact on the fed funds rate
- This requires estimation of the S₁ matrix

Identifying Restrictions

Rewriting –

$$\mathbf{u}_{1t} = \eta \; \mathbf{u}_{2t} + \mathbf{S}_1 \epsilon_{1t}$$

$$\mathbf{u}_{2t} = \Lambda \, \mathbf{u}_{1t} + \mathbf{S}_2 \boldsymbol{\epsilon}_{2t}$$

where

$$S_1 = (B_{11} - B_{12}B_{22}^{-1}B_{21})$$
 $S_2 = (B_{22} - B_{21}B_{11}^{-1}B_{12})$

$$B_{11} S_1^{-1} = (I - B_{12} B_{22}^{-1} B_{21} B_{11}^{-1})^{-1}$$

$$B_{21} S_1^{-1} = B_{21} B_{11}^{-1} (I - B_{12} B_{22}^{-1} B_{21} B_{11}^{-1})^{-1}$$

$$S_1 S_1' = (I - B_{12} B_{22}^{-1} B_{21} B_{11}^{-1}) B_{11} B_{11}' (I - B_{12} B_{22}^{-1} B_{21} B_{11}^{-1})'$$

Identifying Restrictions

Estimating S_1 :

$$\Sigma_u = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$
 & & $\Sigma_u = BB' = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \begin{bmatrix} B'_{11} & B'_{21} \\ B'_{12} & B'_{22} \end{bmatrix}$

$$M = B_{21}B_{11}^{-1} \Sigma_{11} (B_{21}B_{11}^{-1})' - (\Sigma_{21} (B_{21}B_{11}^{-1})' + (B_{21}B_{11}^{-1}) \Sigma'_{21}) + \Sigma_{22}$$

$$B_{12}B'_{12} = (\Sigma_{21} - B_{21}B_{11}^{-1} \Sigma'_{11})' M^{-1} (\Sigma_{21} - B_{21}B_{11}^{-1} \Sigma'_{11})$$

$$B_{22}B'_{22} = \Sigma_{22} + B_{21}B_{11}^{-1} (B_{12}B'_{12} - \Sigma_{11}) (B_{21}B_{11}^{-1})'$$

$$B_{11}B'_{11} = \Sigma_{11} - B_{12}B'_{12}$$

$$B_{12}B_{22}^{-1} = [(B_{12}B'_{12} (B_{21}B_{11}^{-1})') + (\Sigma_{21} - B_{21}B_{11}^{-1} \Sigma'_{11})'] (B_{22}B'_{22})^{-1}$$

Estimating Impact Matrix

$$S_{1}S_{1}' = (I - B_{12}B_{22}^{-1} B_{21}B_{11}^{-1}) B_{11}B_{11}' (I - B_{12}B_{22}^{-1} B_{21}B_{11}^{-1})'$$

$$B_{21}S_{1}^{-1} = B_{21}B_{11}^{-1} (I - B_{12}B_{22}^{-1} B_{21}B_{11}^{-1})^{-1}$$

$$B_{11}S_{1}^{-1} = (I - B_{12}B_{22}^{-1} B_{21}B_{11}^{-1})^{-1}$$

- Using $B_{12}B_{22}^{-1}$, and $B_{11}B_{11}'$ and $B_{21}B_{11}^{-1}$ one can compute S_1S_1'
- Imposing triangular structure we obtain S_1
- Finally using S_1 , we obtain B_{11} and B_{21}

$$\mathbf{B} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Data Briefing

Baseline Specification

- Four variables Fed Funds Rate, 1 year Treasury Rate, log CPI and log Industrial Production
- Time Period July 1979 to December 2011 (T=390)
- Monetary policy Variables
 - Conventional Fed Funds Rate
 - Forward Guidance 1 Year Treasury Rate

Instruments

- 2 Policy shocks Futures price changes (5 Futures Contracts)
- Feds Funds Rate Shock Current month FFR Contract
- Forward Guidance Shock 3 month ahead FFR Contract

Preliminary Data Checks

Eyeball Econometrics

Preliminary Data Checks

Eyeball Econometrics

Initial Analysis

Order of Integration

Fed		_	
	C	பர	
	· •		

Critical value: -3.41

Statistic: -2.58

Optimal VAR(p) = 12

Decision: *Fail to reject* the null

First Diff

Critical value: -2.86

Statistic: -6.92

Decision: Reject the

null

1 yr Treasury Rate

Critical value: -3.41

Statistic: -4.07

Optimal VAR(p) = 12

Decision: *Reject* the

null

log CPI

Critical value: -3.41

Statistic: -5.66

Optimal VAR(p) = 3

Decision: Reject the

null

log IP

Critical value: -3.41

Statistic: -2.10

Optimal VAR(p) = 5

Decision: *Fail to reject* the null

First Diff

Critical value: -2.86

Statistic: -6.00

Decision: Reject the

null

Model Estimation

$$Y_t = [FFR_t, TR1_t, ln CPI_t, ln Ip_t]$$

Lag order estimation using Information criteria ($p_{max}=12$)

$$AIC = 12$$

$$SC = 2$$

Comparative Analysis

- Std residual analysis
- Autocorrelogram
- Diagnostics test

Johansen Trace Test

r	LR	p- value	90%	95%	99%
0	119.36	0	60	63.66	70.91
1	50.66	0.0059	39.73	42.77	48.87
2	24.43	0.0732	23.32	25.73	30.67
3	6.35	0.4282	10.68	12.45	16.22

Note

- Do not transform series into first differences
- Run regression on levels

Using AIC lag order – p=12

Autocorrelation for u₄

Using AIC lag order -p=12

Std residuals u_3

Diagnostics Check

Portmanteau Test	Non-normality test
Statistic: 615.6 p value: 0.40	Statistic: 748.82 p value: 0.000
Decision: <i>Fail to reject</i> the null	Decision: Reject the null

Using AIC lag order -p=2

Using AIC lag order -p=2

Std residuals u_4

Std residuals u₃

Diagnostics Check

Portmanteau Test	Non-normality test
Statistic: 928.87 p value: 0.000	Lutkepohl - Statistic: 14143 p value: 0.000
Decision: Reject the null	Decision: Reject the null

Orthogonalized Forecast Error Impulse response to 2 Structural Monetary Shocks

Orthogonalized Forecast Error Impulse response to 2 Structural Monetary Shocks

Effects of feds rate shock –

- significant positive impact on (short run) Feds rate and 1 year rate
 - Rates go to zero after one year
- Significant positive impact on price level (prolonged/permanent effect)
- Significant positive impact on production levels (short run)!!!!. But negative effect on production in longer run

Forward Guidance Shock -

- Significant impact on both the rates.
 - Impact zeros down after 15 months
- No significant impact on price levels
- However, it does have significant positive impact on production in very short run!!!

FEVD - 2 Structural Monetary Shocks

FEVD - 1 Structural Monetary Shocks - FFR Shock

Forecast Error Variance Decomposition

