

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół:

1.Kulig Mateusz 2.Ryś Przemysław

AGH	Fizyka	Fizyka techniczna					
	Laboratorium elektroniczne WFiIS						
Rok akademie	Rok akademicki: 2022/2023 Semestr V Grupa: 2						
Temat ćwicze	enia:						
	Programowalna matryca	a logiczna (PLD) C-4 Logika ko	ombinacyjna				
Data wykonania ćwiczenia		Data oddania sprawozdania	Ocena				
10.01.2023		23.01.2023					

1 Cel ćwiczenia

Celem ćwiczenia jest zaprojektowanie układów kombinacyjnych oraz sprawdzenie ich działania w praktyce za pomocą matrycy logicznej.

2 Aparatura

W ćwiczeniu użyliśmy następujących przyrządów:

- Generator sygnału
- Zasilacz
- Oscyloskop
- Płytka PLC
- wyświetlacz 7-segmentowy

3 Analiza danych

3.1 Realizacja bramek logicznych.

Korzystając z 7 wyjść matrycy (w trybie kombinacyjnym) zaprojektowaliśmy w postaci sumy iloczynów następujące bramki logiczne: NOT, AND, NAND, OR, NOR, XOR, XNOR (każda bramka na kolejnym wyjściu matrycy O_1 , O_2 , itd.). Wszystkie bramki logiczne były dwu wejściowe i zależały od sygnałów wejściowych A i B (wyjątkiem jest inwerter (NOT), który zależał tylko od A).

W tabeli 1 zebraliśmy funkcje logiczne odpowiadające poszczególnym wyjściom. Bramki zmontowaliśmy na matrycy logicznej, zweryfikowaliśmy ich poprawność, czy dla 4 kombinacji sygnałów wejściowych A i B wyjście bramki przyjmuje wartości zgodne z przewidywaniami teoretycznymi. Zdjęcie matrycy pokazujące zaimplementowane funkcje logiczne przedstawia rysunek 1.

Tab. 1: Funkcje logiczne odpowiadające podstawowym bramkom.

Wyjście	Funkcja logiczna
O_1	$Y_1 = \overline{A}$
O_2	$Y_2 = AB$
O_3	$Y_3 = \overline{A} + \overline{B}$
O_4	$Y_4 = A + B$
O_5	$Y_5 = \overline{A}\overline{B}$
O_6	$Y_6 = A\overline{B} + B\overline{A}$
O_7	$Y_7 = \overline{A}\overline{B} + AB$

Rys. 1: Zdjęcie matrycy pokazujące zaimplementowane funkcje logiczne.

3.2 Pomiar czasu propagacji.

Podaliśmy na wejście bramki AND przebieg prostokątny (Low level=0 [V], High level=5 [V]) oraz zmierzyliśmy czasy przełączenia ze stanu niskiego do wysokiego $T_{LH}=2,4[\mu s]$ oraz wysokiego do niskiego $T_{HL}=0,272[\mu s]$. Zmierzyliśmy również szerokość zbocza narastającego i zbocza opadającego i wyniosły one kolejno $t_z=460[ns]$ oraz $t_f=362[ns]$.

3.3 Dekoder kodu binarnego na wyświetlacz 7-segmentowy

Zbudowaliśmy układ kombinacyjny dekodujący liczby w kodzie binarnym na wyświetlacz 7-segmentowy prezentujący liczby w kodzie dziesiętnym. Użyliśmy wejść A – D jako 4 bitów liczby binarnej (A jest najmłodszym bitem) oraz wyjść O_1-O_8 jako sygnałów sterujących poszczególnymi segmentami wyświetlacza (wszystkie wyjścia zostały skonfigurowane jako wyjścia kombinacyjne). Rysunek 2 przedstawia jak wyjścia sterują wyświetlaczem. Zaprojektowany dekoder prezentował liczby dziesiętne od 0 do 9, odpowiednio dla binarnych 0000-1001 oraz spełniał wymagania szczególne tj. dla wartości na wejściu 10-15 (binarnie 1010-1111) wyświetlacz pokazywał wartość zakodowaną szesnastkowo: $10 \rightarrow A$, $11 \rightarrow B$, $12 \rightarrow C$, itd. Wygląd poszczególnych symboli przedstawia rysunek 3. Kropka na wyświetlaczu miała stale być wyłączona.

Rys. 2: Budowa wyświetlacza 7-segmentowego.

Rys. 3: Użyte konfiguracje wyświetlacza.

Zadanie rozpoczęliśmy od zaprojektowania tabeli stanów(rysunek 4), gdzie dla każdego z 16 stanów 4-bitowego słowa wejściowego DCBA przypisaliśmy jednoznacznie wartość wszystkich 8 wyjść dekodera, związanych z odpowiednimi segmentami wyświetlacza.

Następnie dokonaliśmy minimalizacji funkcji logicznych dla każdego z 8 wyjść $O_1 - O_8$ wykorzystując metodę tablic Karnaugh'a. Tablice Karnaugh'a przedstawiliśmy na rysunkach od 5 do 12, każdą z zaznaczonymi grupami. W tabeli 2 zebraliśmy zminimalizowane w ten sposób funkcje logiczne. Zdjęcie matrycy pokazujące zaimplementowane przez nas funkcje logiczne przedstawia rysunek 13.

DEC	D	С	В	Α	O ₁	O ₂	O ₃	O ₄	O ₅	O ₆	O ₇	O ₈	Symbol
0	0	0	0	0	1	1	1	1	1	1	0	0	
1	0	0	0	1	0	1	1	0	0	0	0	0	
2	0	0	1	0	1	1	0	1	1	0	1	0	2
3	0	0	1	1	1	1	1	1	0	0	1	0	
4	0	1	0	0	0	1	1	0	0	1	1	0	4
5	0	1	0	1	1	0	1	1	0	1	1	0	0
6	0	1	1	0	1	0	1	1	1	1	1	0	-6
7	0	1	1	1	1	1	1	0	0	0	0	0	
8	1	0	0	0	1	1	1	1	1	1	1	0	8
9	1	0	0	1	1	1	1	1	0	1	1	0	
10	1	0	1	0	1	1	1	0	1	1	1	0	Ω
11	1	0	1	1	0	0	1	1	1	1	1	0	Ь
12	1	1	0	0	1	0	0	1	1	1	0	0	
13	1	1	0	1	0	1	1	1	1	0	1	0	
14	1	1	1	0	1	0	0	1	1	1	1	0	
15	1	1	1	1	1	0	0	0	1	1	1	0	F

Rys. 4: Tabela stanów wraz ze znakiem odpowiadającym danej konfiguracji.

Tab. 2: Funkcje zminimalizowane przy pomocy tablic Karnaugh'a.

Wyjście	Zminimalizowana funkcja
O_1	$Y_1 = B\overline{A} + \overline{A} \overline{D} \overline{C} + B\overline{C} \overline{D} + A\overline{D}C + BCD + \overline{B} \overline{C}D + D\overline{B} \overline{A}$
O_2	$Y_2 = \overline{D}\overline{C} + \overline{B}\overline{A}\overline{D} + BA\overline{D} + D\overline{B}A + \overline{A}D\overline{C}$
O_3	$Y_3 = \overline{B}\overline{D}\overline{C} + \overline{D}C + D\overline{C} + \overline{D}BA + C\overline{B}A$
O_4	$Y_4 = D\overline{B}\overline{A} + C\overline{B}A + CB\overline{A} + AD\overline{C} + B\overline{D}\overline{C} + \overline{A}\overline{D}\overline{C}$
O_5	$Y_5 = B\overline{A} + CD\overline{A}\overline{D}\overline{C} + D\overline{B}\overline{A} + DBA$
O_6	$Y_6 = \overline{B}\overline{A} + D\overline{C} = \overline{B}\overline{D}C + BDC + CB\overline{A}$
O_7	$Y_7 = D\overline{C} + B\overline{A} + \overline{B}C\overline{D} + ADC + \overline{D}B\overline{C}$
O_8	$Y_8 = 0$

DC\BA	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	1	0	1	1
10	1	1	0	1

Rys. 5: Tablica Karnaugh'a dla wyjścia O_1 . Kolorowymi pętlami zaznaczono kolejne grupy jedynek.

DC\BA	00	01	11	10
00		1	1	1
01	1	0	1	0
11	0	1	0	0
10	1	1	0	1

Rys. 6: Tablica Karnaugh'a dla wyjścia \mathcal{O}_2 . Kolorowymi pętlami zaznaczono kolejne grupy jedynek.

DC\BA	00	01	11	10
00	1	1	1	0
01	1	1	1	1
11	0	1	0	0
10	1	1	1	1

Rys. 7: Tablica Karnaugh'a dla wyjścia \mathcal{O}_3 . Kolorowymi pętlami zaznaczono kolejne grupy jedynek.

DC\BA	00	01	11	10
00	1	0	1	1
01	0	1	0	
11	1	1	0	1
10	1	1	1	0

Rys. 8: Tablica Karnaugh'a dla wyjścia \mathcal{O}_4 . Kolorowymi pętlami zaznaczono kolejne grupy jedynek.

DC\BA	00	01	11	10
00	1	0	0	1
01	0	0	0	1
11	1	1	1	1
10	1	0	1	1

Rys. 9: Tablica Karnaugh'a dla wyjścia \mathcal{O}_5 . Kolorowymi pętlami zaznaczono kolejne grupy jedynek.

DC\BA	00	01	11	10
00	1	0	0	0
01	1	1	0	1
11	1	0	1	1
10	1	1	1	1

Rys. 10: Tablica Karnaugh'a dla wyjścia \mathcal{O}_6 . Kolorowymi pętlami zaznaczono kolejne grupy jedynek.

DC\BA	00	01	11	10
00	0	0	1	
01	1	1	0	1
11	0	1	1	1
10	1	1	1	1

Rys. 11: Tablica Karnaugh'a dla wyjścia \mathcal{O}_7 . Kolorowymi pętlami zaznaczono kolejne grupy jedynek.

DC\BA	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

Rys. 12: Tablica Karnaugh'a dla wyjścia O_8 .

Rys. 13: Zdjęcie matrycy pokazujące zaimplementowane funkcje logiczne.