# **Datatransformation**

# Zeilen und Spalten ändern

# Daniela Palleschi

# 2023-05-16

# Inhaltsverzeichnis

| ederholung                               | 2                                                                                                                                                                    |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| utige Ziele                              | 2                                                                                                                                                                    |
| Pre-requisites                           | 2                                                                                                                                                                    |
| Data Wrangling (hadern, rangeln, zanken) | 3                                                                                                                                                                    |
| 2.1 nycflights13                         | . 3                                                                                                                                                                  |
| 2.2 dplyr Grundlagen                     | . 4                                                                                                                                                                  |
| 2.3 dplyr Grundlagen: Pipe               | . 4                                                                                                                                                                  |
| Zeilen                                   | 5                                                                                                                                                                    |
| 3.1 filter()                             | . 5                                                                                                                                                                  |
| 3.1.1 == and                             | . 7                                                                                                                                                                  |
| 3.1.2 %in%                               | . 7                                                                                                                                                                  |
|                                          |                                                                                                                                                                      |
| Spalten                                  | 10                                                                                                                                                                   |
| 4.1 rename()                             | . 10                                                                                                                                                                 |
| 4.2 mutate()                             | . 10                                                                                                                                                                 |
| 4.3 Exercise                             | . 12                                                                                                                                                                 |
| 4.4 select()                             | . 12                                                                                                                                                                 |
| 4.5 select() helper functions            | . 14                                                                                                                                                                 |
| *                                        |                                                                                                                                                                      |
| dplyr and ggplot2                        | 16                                                                                                                                                                   |
|                                          | . 17                                                                                                                                                                 |
| 5.1.1 flights.csv                        |                                                                                                                                                                      |
| el                                       | 3.1.2 %in% 3.2 arrange()  Spalten  4.1 rename() 4.2 mutate() 4.3 Exercise 4.4 select() 4.5 select() helper functions 4.6 relocate()  dplyr and ggplot2 5.1 Exercises |

|         | 5.1.2 | nettle_1999_climate.csv | <br> | <br> | <br>18 |
|---------|-------|-------------------------|------|------|--------|
| Session | Info  |                         |      |      | 19     |

# Wiederholung

Letze Woche haben wir...

- gelernt, wie man einen neuen Datensatz in Augenschein nimmt
- gelernt, wie man verschiedene Datentypen importiert
- gelernt, wie man Daten von Hand eingibt
- einen neuen Datensatz visualisiert

# **Heutige Ziele**

Heute werden wir...

- lernen, wie man Daten mit dem Paket dplyr aus dem tidyverse verarbeitet
- lernen, wie man die pipe (%>%) benutzt, um das Ergebnis einer Funktion in eine andere Funktion zu übertragen
- Funktionen kennenlernen, die auf Zeilen operieren
- Funktionen kennenlernen, die mit Spalten arbeiten
- lernen, wie man dplyr-Funktionen mit Plots von ggplot2 kombiniert

### Lust auf mehr?

- Ch. 4 in Wickham et al. (o. J.)
- Ch. 9 in Nordmann & DeBruine (2022)

# 1 Pre-requisites

- 1. Frisches Quarto-Dokument
  - ein neues Quarto-Dokument für den heutigen Unterricht erstellen
    - Datei > Neues Dokument > Quarto Dokument, mit dem Namen 04-wrangling
  - YAML einrichten: Titel, Ihr Name, ein toc hinzufügen

```
title: "Datatransformation"
subtitle: "Woche 5"
author: "Your name here"
lang: de
format:
  html:
  toc: true
```

#### 2. Pakete

- Die heutigen Pakete sind:
  - tidyverse: zum Verarbeiten (dplyr) und Plotten (ggplot2)

```
pacman::p_load("tidyverse")
```

- 3. Datensatz
  - Speichern Sie den Datensatz aus Moodle in Ihrem Ordner daten:
    - flights.csv

# 2 Data Wrangling (hadern, rangeln, zanken)

- Im Englischen bezieht sich "wrangling" auf einen langen, schwierigen Prozess, oder auf einen Streif
- Es gibt zwei Hauptbestandteile des Wrangling
  - Transformieren: Sortieren oder Erstellen neuer Variablen (was wir heute tun werden)
  - Aufräumen: Umformung oder Strukturierung Ihrer Daten (dies werden wir in einigen Wochen tun)
- Sowohl das Aufräumen als auch das Transformieren von Daten erfordern das Paket dplyr aus dem tidyverse.
  - dplyr Funktionen werden oft als Verben bezeichnet, weil sie etwas tun

## 2.1 nycflights13

- we will use the flights.csv dataset to explore the basic dplyr verbs
  - this dataset is originally from the  ${\tt nycflights13}$  package, but I've saved it as a  ${\tt CSV}$

- die Daten enthalten Informationen über Flüge, die im Jahr 2013 von New York City aus gestartet sind
  - sie stammen vom Bureau of Transportation Statistics
  - um mehr darüber zu erfahren, rufen Sie die Hilfeseite mit ?df flights auf

## • Aufgabe 2.1: nycflights13

#### Beispiel 2.1.

- 1. Ladet den Datensatz flights.csv und speichert ihn als df\_flights.
  - Wie viele Beobachtungen sind vorhanden?
  - Wie viele Variablen gibt es?
- 2. den Datensatz untersuchen (z. B. summary(), glimpse(), usw.)

## 2.2 dplyr Grundlagen

- heute lernen wir einige der wichtigsten dplyr-Verben (Funktionen) kennen, mit denen wir die meisten unserer Datenmanipulationsprobleme lösen können
  - Ich verwende diese Verben mehrfach in wahrscheinlich jedem Analyseskript
- Die dplyr-Verben haben einige Dinge gemeinsam:
  - 1. das erste Argument ist immer ein Datenrahmen
  - 2. die folgenden Argumente beschreiben in der Regel die zu bearbeitenden Spalten, wobei der Variablenname (ohne Anführungszeichen) verwendet wird
  - 3. die Ausgabe ist immer ein neuer Datenrahmen

## 2.3 dplyr Grundlagen: Pipe

- Die Verben sind alle für eine Sache gut geeignet, so dass wir oft mehrere Verben auf einmal verwenden wollen.
  - Wir benutzen die Pipe, um dies zu tun (%>% oder |>)
  - Denkt daran, dass wir die Pipe als (und) dann lesen können
- im folgenden Code identifizieren
  - den Datenrahmen
  - "dplyr"-Verben
  - die Variablennamen



Abbildung 1: Image source: magrittr documentation (all rights reserved)

• Kannst du versuchen, herauszulesen (zu erraten), was der folgende Code macht?

```
df_flights %>%
  filter(dest == "IAH") %>%
  select(year, month, day) %>%
  relocate(year, .after = day)
```

# 3 Zeilen

- In aufgeräumten Daten stellen die Zeilen Beobachtungen dar.
- die wichtigsten Verben für Zeilen sind:
  - filter(): ändert, welche Zeilen vorhanden sind
  - arrange(): ändert die Reihenfolge der Zeilen
- Wir besprechen auch
  - distinct(): findet Zeilen mit unterschiedlichen Werten auf der Grundlage einer Variablen (Spalte)

## 3.1 filter()

- ändert, welche Zeilen vorhanden sind, ohne ihre Reihenfolge zu ändern
- nimmt den Datenrahmen als erstes Argument

- Die folgenden Argumente sind Bedingungen, die TRUE sein müssen, damit die Zeile erhalten bleibt
- alle Flüge zu finden, die mit mehr als 120 Minuten Verspätung abfliegen:

```
df_flights %>%
  filter(dep_delay > 120)
```

#### # A tibble: 9,723 x 19

|    | year        | month       | day         | dep_time    | sched_dep_time | <pre>dep_delay</pre> | arr_time    | sched_arr_time |
|----|-------------|-------------|-------------|-------------|----------------|----------------------|-------------|----------------|
|    | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>    | <dbl></dbl>          | <dbl></dbl> | <dbl></dbl>    |
| 1  | 2013        | 1           | 1           | 848         | 1835           | 853                  | 1001        | 1950           |
| 2  | 2013        | 1           | 1           | 957         | 733            | 144                  | 1056        | 853            |
| 3  | 2013        | 1           | 1           | 1114        | 900            | 134                  | 1447        | 1222           |
| 4  | 2013        | 1           | 1           | 1540        | 1338           | 122                  | 2020        | 1825           |
| 5  | 2013        | 1           | 1           | 1815        | 1325           | 290                  | 2120        | 1542           |
| 6  | 2013        | 1           | 1           | 1842        | 1422           | 260                  | 1958        | 1535           |
| 7  | 2013        | 1           | 1           | 1856        | 1645           | 131                  | 2212        | 2005           |
| 8  | 2013        | 1           | 1           | 1934        | 1725           | 129                  | 2126        | 1855           |
| 9  | 2013        | 1           | 1           | 1938        | 1703           | 155                  | 2109        | 1823           |
| 10 | 2013        | 1           | 1           | 1942        | 1705           | 157                  | 2124        | 1830           |

- # i 9,713 more rows
- # i 11 more variables: arr\_delay <dbl>, carrier <chr>, flight <dbl>,
- # tailnum <chr>, origin <chr>, dest <chr>, air\_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time\_hour <dttm>
  - wenn man die gefilterten Daten speichern will, ist es in der Regel ratsam, sie unter einem neuen Objektnamen zu speichern
    - wenn man nicht die vorgefilterte Version überschreiben will, ist ein neuer Name notwendig

```
df_delay_120 <- df_flights %>%
  filter(dep_delay > 120)
```

## i Logical operators

- Symbole, die zur Beschreibung einer logischen Bedingung verwendet werden
  - $== ist \ identisch (1 == 1)$
  - !=  $ist\ nicht\ identisch\ (1\ !=\ 2)$
  - > ist größer als (2 > 1)
  - < ist kleiner als (1 < 2)

- um Bedingungen zu kombinieren
  - & oder, und auch (für mehrere Bedingungen)
  - | oder (für mehrere Bedingungen)
- es gibt eine nette Abkürzung für die Kombination von == und |: %in%
  - behält Zeilen, in denen die Variable gleich einem der Werte auf der rechten Seite ist

#### 3.1.1 == and |

```
df_flights %>%
  filter(month == 1 | month == 2)
```

# A tibble: 51,955 x 19

|    | year        | month       | day         | dep_time    | sched_dep_time | dep_delay   | arr_time    | sched_arr_ti                    | me |
|----|-------------|-------------|-------------|-------------|----------------|-------------|-------------|---------------------------------|----|
|    | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>    | <dbl></dbl> | <dbl></dbl> | <db< td=""><td>1&gt;</td></db<> | 1> |
| 1  | 2013        | 1           | 1           | 517         | 515            | 2           | 830         | 8                               | 19 |
| 2  | 2013        | 1           | 1           | 533         | 529            | 4           | 850         | 8                               | 30 |
| 3  | 2013        | 1           | 1           | 542         | 540            | 2           | 923         | 8                               | 50 |
| 4  | 2013        | 1           | 1           | 544         | 545            | -1          | 1004        | 10                              | 22 |
| 5  | 2013        | 1           | 1           | 554         | 600            | -6          | 812         | 8                               | 37 |
| 6  | 2013        | 1           | 1           | 554         | 558            | -4          | 740         | 7                               | 28 |
| 7  | 2013        | 1           | 1           | 555         | 600            | -5          | 913         | 8                               | 54 |
| 8  | 2013        | 1           | 1           | 557         | 600            | -3          | 709         | 7                               | 23 |
| 9  | 2013        | 1           | 1           | 557         | 600            | -3          | 838         | 8                               | 46 |
| 10 | 2013        | 1           | 1           | 558         | 600            | -2          | 753         | 7                               | 45 |

- # i 51,945 more rows
- # i 11 more variables: arr\_delay <dbl>, carrier <chr>, flight <dbl>,
- # tailnum <chr>, origin <chr>, dest <chr>, air\_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time\_hour <dttm>

#### 3.1.2 %in%

```
df_flights %>%
  filter(month %in% c(1, 2))
```

# A tibble: 51,955 x 19

day dep\_time sched\_dep\_time dep\_delay arr\_time sched\_arr\_time year month <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <db1> 2013 1 517 515 2 830 819 2013 529 830 1 1 533 4 850

```
2013
                                                             2
                                                                     923
                                                                                       850
                      1
                              542
                                               540
    2013
               1
                      1
                              544
                                               545
                                                            -1
                                                                    1004
                                                                                      1022
    2013
                      1
                                               600
                                                            -6
                                                                     812
                                                                                       837
               1
                              554
    2013
                                                                                       728
               1
                      1
                              554
                                               558
                                                            -4
                                                                     740
    2013
               1
                      1
                              555
                                               600
                                                            -5
                                                                     913
                                                                                       854
                                                                                       723
    2013
                                               600
                                                            -3
                      1
                              557
                                                                     709
    2013
                                                            -3
                                                                                       846
                      1
                              557
                                               600
                                                                     838
                                                                                       745
10
    2013
                      1
                              558
                                               600
                                                            -2
                                                                     753
```

- # i 51,945 more rows
- # i 11 more variables: arr\_delay <dbl>, carrier <chr>, flight <dbl>,
- # tailnum <chr>, origin <chr>, dest <chr>, air\_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time\_hour <dttm>

## • Aufgabe 3.1: filter()

## Beispiel 3.1.

- 1. Filtert die Daten so, dass sie Zeilen von Ihrem Geburtstag enthalten.
- 2. Wie viele Flüge sind 2013 an deinem Geburtstag von NYC abgeflogen?

## 3.2 arrange()

• ändert die Reihenfolge der Zeilen auf der Grundlage eines Wertes in einer oder mehreren Spalten

```
df_flights %>%
  arrange(arr_time)
```

| <d< th=""><th>4115</th><th></th><th></th><th></th><th></th><th>1 —</th><th>_</th><th>sched_arr_time</th></d<> | 4115 |             |             |             |             | 1 —         | _           | sched_arr_time |
|---------------------------------------------------------------------------------------------------------------|------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|
| ٠٠٠                                                                                                           | TDT/ | <dbl></dbl>    |
| 1 2                                                                                                           | 2013 | 1           | 2           | 2130        | 2130        | 0           | 1           | 18             |
| 2 2                                                                                                           | 2013 | 1           | 11          | 2157        | 2000        | 117         | 1           | 2208           |
| 3 2                                                                                                           | 2013 | 1           | 11          | 2253        | 2249        | 4           | 1           | 2357           |
| 4 2                                                                                                           | 2013 | 1           | 14          | 2122        | 2130        | -8          | 1           | 2              |
| 5 2                                                                                                           | 2013 | 1           | 14          | 2246        | 2250        | -4          | 1           | 7              |
| 6 2                                                                                                           | 2013 | 1           | 15          | 2304        | 2245        | 19          | 1           | 2357           |
| 7 2                                                                                                           | 2013 | 1           | 16          | 2018        | 2025        | -7          | 1           | 2329           |
| 8 2                                                                                                           | 2013 | 1           | 16          | 2303        | 2245        | 18          | 1           | 2357           |
| 9 2                                                                                                           | 2013 | 1           | 19          | 2107        | 2110        | -3          | 1           | 2355           |

- 10 2013 1 22 2246 2249 -3 1 2357
- # i 336,766 more rows
- # i 11 more variables: arr\_delay <dbl>, carrier <chr>, flight <dbl>,
- # tailnum <chr>, origin <chr>, dest <chr>, air\_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time\_hour <dttm>
  - wir können desc() innerhalb von arrange() hinzufügen, um eine absteigende Reihenfolge (von groß nach klein) anstelle der standardmäßigen aufsteigenden Reihenfolge zu verwenden
    - desc ist die Abkürzung für descending im Englischen (= absteigend)

```
df_flights %>%
  arrange(desc(dep_delay))
```

# A tibble: 336,776 x 19

|    | year        | ${\tt month}$ | day         | ${\tt dep\_time}$ | ${\tt sched\_dep\_time}$ | ${\tt dep\_delay}$ | ${\tt arr\_time}$ | ${\tt sched\_arr\_time}$ |
|----|-------------|---------------|-------------|-------------------|--------------------------|--------------------|-------------------|--------------------------|
|    | <dbl></dbl> | <dbl></dbl>   | <dbl></dbl> | <dbl></dbl>       | <dbl></dbl>              | <dbl></dbl>        | <dbl></dbl>       | <dbl></dbl>              |
| 1  | 2013        | 1             | 9           | 641               | 900                      | 1301               | 1242              | 1530                     |
| 2  | 2013        | 6             | 15          | 1432              | 1935                     | 1137               | 1607              | 2120                     |
| 3  | 2013        | 1             | 10          | 1121              | 1635                     | 1126               | 1239              | 1810                     |
| 4  | 2013        | 9             | 20          | 1139              | 1845                     | 1014               | 1457              | 2210                     |
| 5  | 2013        | 7             | 22          | 845               | 1600                     | 1005               | 1044              | 1815                     |
| 6  | 2013        | 4             | 10          | 1100              | 1900                     | 960                | 1342              | 2211                     |
| 7  | 2013        | 3             | 17          | 2321              | 810                      | 911                | 135               | 1020                     |
| 8  | 2013        | 6             | 27          | 959               | 1900                     | 899                | 1236              | 2226                     |
| 9  | 2013        | 7             | 22          | 2257              | 759                      | 898                | 121               | 1026                     |
| 10 | 2013        | 12            | 5           | 756               | 1700                     | 896                | 1058              | 2020                     |

- # i 336,766 more rows
- # i 11 more variables: arr\_delay <dbl>, carrier <chr>, flight <dbl>,
- # tailnum <chr>, origin <chr>, dest <chr>, air\_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time\_hour <dttm>

## • Aufgabe 3.2: arrange()

#### Beispiel 3.2.

- 1. Ordne die Daten nach Jahr, Monat, Tag und Abfahrtszeit (dep\_time)
- 2. Filtere die Daten so, dass sie Beobachtungen aus deinem Geburtsmonat und dem Geburtsmonat, der 6 Monate nach deinem Geburtsmonat liegt, enthalten, dann
  - ordne die Daten nach Tag und absteigender Ankunftszeit (arr\_time)

# 4 Spalten

- In Tidy Data stellen die Spalten Variablen dar
- die wichtigsten Verben für Spalten sind:
  - rename(): ändert die Namen der Spalten
  - mutate(): erzeugt neue Spalten, die von den vorhandenen Spalten abgeleitet werden
  - select(): ändert, welche Spalten vorhanden sind
  - relocate(): ändert die Position der Spalten

## 4.1 rename()

- Mit rename() können wir den Namen von Spalten ändern
  - die Reihenfolge der Argumente ist neuer\_name = alter\_name
- Versuchen wir, einige der Variablennamen auf Deutsch zu ändern
  - Ich behalte die Variablennamen in Kleinbuchstaben, als Kodierungskonvention

### 4.2 mutate()

- mutate() erzeugt neue Spalten aus vorhandenen Spalten
  - z.B. können wir einfache Algebra mit den Werten in jeder Spalte durchführen

```
df_flights %>%
  mutate(
    gain = dep_delay - arr_delay,
)
```

#### # A tibble: 336,776 x 20

|    | year        | month       | day         | dep_time    | sched_dep_time | dep_delay   | arr_time    | sched_arr_time |
|----|-------------|-------------|-------------|-------------|----------------|-------------|-------------|----------------|
|    | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>    | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>    |
| 1  | 2013        | 1           | 1           | 517         | 515            | 2           | 830         | 819            |
| 2  | 2013        | 1           | 1           | 533         | 529            | 4           | 850         | 830            |
| 3  | 2013        | 1           | 1           | 542         | 540            | 2           | 923         | 850            |
| 4  | 2013        | 1           | 1           | 544         | 545            | -1          | 1004        | 1022           |
| 5  | 2013        | 1           | 1           | 554         | 600            | -6          | 812         | 837            |
| 6  | 2013        | 1           | 1           | 554         | 558            | -4          | 740         | 728            |
| 7  | 2013        | 1           | 1           | 555         | 600            | -5          | 913         | 854            |
| 8  | 2013        | 1           | 1           | 557         | 600            | -3          | 709         | 723            |
| 9  | 2013        | 1           | 1           | 557         | 600            | -3          | 838         | 846            |
| 10 | 2013        | 1           | 1           | 558         | 600            | -2          | 753         | 745            |

- # i 336,766 more rows
- # i 12 more variables: arr\_delay <dbl>, carrier <chr>, flight <dbl>,
- # tailnum <chr>, origin <chr>, dest <chr>, air\_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time\_hour <dttm>, gain <dbl>
  - mit "mutate()" werden diese neuen Spalten auf der rechten Seite des Datensatzes hinzugefügt
    - Das macht es schwierig zu sehen, was passiert.
  - um zu kontrollieren, wo die neue Spalte hinzugefügt wird, können wir .before oder .after verwenden

```
df_flights |>
  mutate(
    gain = dep_delay - arr_delay,
    .after = day
)
```

|   | year        | ${\tt month}$ | day         | gain        | ${\tt dep\_time}$ | sched_dep_time | <pre>dep_delay</pre> | arr_time    |
|---|-------------|---------------|-------------|-------------|-------------------|----------------|----------------------|-------------|
|   | <dbl></dbl> | <dbl></dbl>   | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>       | <dbl></dbl>    | <dbl></dbl>          | <dbl></dbl> |
| 1 | 2013        | 1             | 1           | -9          | 517               | 515            | 2                    | 830         |
| 2 | 2013        | 1             | 1           | -16         | 533               | 529            | 4                    | 850         |
| 3 | 2013        | 1             | 1           | -31         | 542               | 540            | 2                    | 923         |
| 4 | 2013        | 1             | 1           | 17          | 544               | 545            | -1                   | 1004        |
| 5 | 2013        | 1             | 1           | 19          | 554               | 600            | -6                   | 812         |
| 6 | 2013        | 1             | 1           | -16         | 554               | 558            | -4                   | 740         |
| 7 | 2013        | 1             | 1           | -24         | 555               | 600            | -5                   | 913         |
| 8 | 2013        | 1             | 1           | 11          | 557               | 600            | -3                   | 709         |

```
2013
             1
                   1
                         5
                                 557
                                                600
                                                            -3
                                                                    838
10 2013
             1
                   1
                       -10
                                 558
                                                600
                                                            -2
                                                                    753
# i 336,766 more rows
# i 12 more variables: sched_arr_time <dbl>, arr_delay <dbl>, carrier <chr>,
    flight <dbl>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
    distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
```

#### 4.3 Exercise

- 1. Erstelle eine neue Variable namens Geschwindigkeit, die gleich ist:
  - Entfernung" geteilt durch "air\_time", multipliziert mit 60
  - erscheint vor dep\_time
- 2. Rendert euer Dokument

## **4.4** select()

df\_flights %>%

- select() fasst die Daten so zusammen, dass sie nur die gewünschten Spalten enthalten
- Spalten nach Namen auswählen

```
select(year, month, day)
# A tibble: 336,776 x 3
    year month
                 day
   <dbl> <dbl> <dbl>
   2013
             1
2 2013
             1
                   1
3 2013
             1
                   1
 4 2013
             1
5 2013
             1
                   1
6 2013
             1
                   1
7
   2013
             1
                   1
8
   2013
             1
                   1
9 2013
             1
                   1
10 2013
                   1
             1
# i 336,766 more rows
```

• alle Spalten zwischen year und day auswählen

```
select(year:day)
# A tibble: 336,776 x 3
    year month
                 day
   <dbl> <dbl> <dbl>
1 2013
             1
                   1
2 2013
             1
                   1
3 2013
                   1
             1
4 2013
             1
                   1
5 2013
             1
                   1
6 2013
             1
                   1
7 2013
             1
                   1
8 2013
             1
                   1
9 2013
                   1
             1
10 2013
             1
                   1
```

df\_flights %>%

• alle Spalten außer denen von Jahr bis Tag auswählen (! wird als "nicht" gelesen)

```
df_flights %>%
  select(!year:day)
```

# i 336,766 more rows

```
speed dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay
   <dbl>
            <dbl>
                                        <dbl>
                                                 <dbl>
                                                                            <dbl>
                             <dbl>
                                                                 <dbl>
1 370.
               517
                               515
                                            2
                                                   830
                                                                   819
                                                                                11
2
   374.
               533
                               529
                                            4
                                                   850
                                                                   830
                                                                                20
3 408.
               542
                               540
                                            2
                                                   923
                                                                   850
                                                                                33
4
   517.
               544
                               545
                                           -1
                                                  1004
                                                                   1022
                                                                              -18
5 394.
                               600
                                           -6
                                                                   837
                                                                              -25
               554
                                                   812
6 288.
               554
                               558
                                           -4
                                                   740
                                                                   728
                                                                               12
7
   404.
                               600
                                           -5
                                                                   854
                                                                                19
               555
                                                   913
   259.
                                           -3
                                                                   723
                                                                              -14
8
               557
                               600
                                                   709
9 405.
               557
                               600
                                           -3
                                                   838
                                                                   846
                                                                                -8
                                           -2
10 319.
               558
                               600
                                                                   745
                                                                                8
                                                   753
```

<sup>#</sup> i 336,766 more rows

<sup>#</sup> i 10 more variables: carrier <chr>, flight <dbl>, tailnum <chr>,

<sup>#</sup> origin <chr>, dest <chr>, air\_time <dbl>, distance <dbl>, hour <dbl>,

<sup>#</sup> minute <dbl>, time\_hour <dttm>

## 4.5 select() helper functions

• einige Hilfsfunktionen, die das Leben bei der Arbeit mit select() erleichtern:

```
- starts_with("abc")
- ends_with("xyz")
- contains("ijk")
- where(is.character)

df_flights %>%
select(starts_with("d"))
```

# A tibble: 336,776 x 5

| day         | dep_time                                          | $dep\_delay$                                                                                                          | dest                                                                                                                                                                                                                                                                                                                   | distance                                                                                                          |
|-------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| <dbl></dbl> | <dbl></dbl>                                       | <dbl></dbl>                                                                                                           | <chr></chr>                                                                                                                                                                                                                                                                                                            | <dbl></dbl>                                                                                                       |
| 1           | 517                                               | 2                                                                                                                     | IAH                                                                                                                                                                                                                                                                                                                    | 1400                                                                                                              |
| 1           | 533                                               | 4                                                                                                                     | IAH                                                                                                                                                                                                                                                                                                                    | 1416                                                                                                              |
| 1           | 542                                               | 2                                                                                                                     | MIA                                                                                                                                                                                                                                                                                                                    | 1089                                                                                                              |
| 1           | 544                                               | -1                                                                                                                    | BQN                                                                                                                                                                                                                                                                                                                    | 1576                                                                                                              |
| 1           | 554                                               | -6                                                                                                                    | ATL                                                                                                                                                                                                                                                                                                                    | 762                                                                                                               |
| 1           | 554                                               | -4                                                                                                                    | ORD                                                                                                                                                                                                                                                                                                                    | 719                                                                                                               |
| 1           | 555                                               | -5                                                                                                                    | FLL                                                                                                                                                                                                                                                                                                                    | 1065                                                                                                              |
| 1           | 557                                               | -3                                                                                                                    | IAD                                                                                                                                                                                                                                                                                                                    | 229                                                                                                               |
| 1           | 557                                               | -3                                                                                                                    | MCO                                                                                                                                                                                                                                                                                                                    | 944                                                                                                               |
| 1           | 558                                               | -2                                                                                                                    | ORD                                                                                                                                                                                                                                                                                                                    | 733                                                                                                               |
|             | <dbl> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</dbl> | <dbl> <dbl> <dbl> <dbl> 1 517   1 517 1 533   1 542 1 544   1 554 1 554   1 555 1 557   1 557</dbl></dbl></dbl></dbl> | <dbl></dbl> <dbl>         1       517       2         1       533       4         1       542       2         1       544       -1         1       554       -6         1       554       -4         1       555       -5         1       557       -3         1       557       -3         1       557       -3</dbl> | 1 517 2 IAH 1 533 4 IAH 1 542 2 MIA 1 544 -1 BQN 1 554 -6 ATL 1 554 -4 ORD 1 555 -5 FLL 1 557 -3 IAD 1 557 -3 MCO |

# i 336,766 more rows

```
df_flights %>%
   select(ends_with("ay"))
```

# A tibble: 336,776 x 3

day dep\_delay arr\_delay <dbl> <dbl> <dbl> 1 2 1 11 2 1 4 20 3 2 33 4 1 -18 -1 5 1 -6 -25 6 1 -4 12 7 1 -5 19 -3 8 1 -14

- 9 1 -3 -8 10 1 -2 8
- # i 336,766 more rows

# • Aufgabe 4.1: select()

## Beispiel 4.1.

- 1. Drucke die Spalten in df\_flights, die mit "d" beginnen
- 2. Drucke die Spalten in df\_flights, die "dep" enthalten
- 3. Drucke die Spalten in df\_flights, die
  - mit mit "a" beginnen, und
  - mit "e" enden

## 4.6 relocate()

- relocate() verschiebt Variablen
  - standardmäßig werden sie nach vorne verschoben

df\_flights %>% relocate(speed)

|    | speed       | year        | month       | day         | dep_time    | sched_dep_time | dep_delay   | arr_time    |
|----|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|
|    | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>    | <dbl></dbl> | <dbl></dbl> |
| 1  | 370.        | 2013        | 1           | 1           | 517         | 515            | 2           | 830         |
| 2  | 374.        | 2013        | 1           | 1           | 533         | 529            | 4           | 850         |
| 3  | 408.        | 2013        | 1           | 1           | 542         | 540            | 2           | 923         |
| 4  | 517.        | 2013        | 1           | 1           | 544         | 545            | -1          | 1004        |
| 5  | 394.        | 2013        | 1           | 1           | 554         | 600            | -6          | 812         |
| 6  | 288.        | 2013        | 1           | 1           | 554         | 558            | -4          | 740         |
| 7  | 404.        | 2013        | 1           | 1           | 555         | 600            | -5          | 913         |
| 8  | 259.        | 2013        | 1           | 1           | 557         | 600            | -3          | 709         |
| 9  | 405.        | 2013        | 1           | 1           | 557         | 600            | -3          | 838         |
| 10 | 319.        | 2013        | 1           | 1           | 558         | 600            | -2          | 753         |

- # i 336,766 more rows
- # i 12 more variables: sched\_arr\_time <dbl>, arr\_delay <dbl>, carrier <chr>,
- # flight <dbl>, tailnum <chr>, origin <chr>, dest <chr>, air\_time <dbl>,
- # distance <dbl>, hour <dbl>, minute <dbl>, time\_hour <dttm>
  - aber wir können auch .before oder .after verwenden, um eine Variable zu platzieren

```
df_flights %>% relocate(speed, .after = day)
# A tibble: 336,776 x 20
                 day speed dep_time sched_dep_time dep_delay arr_time
    year month
   <dbl> <dbl> <dbl> <dbl> <
                               <dbl>
                                               <dbl>
                                                          <dbl>
                                                                   <dbl>
 1 2013
             1
                    1
                       370.
                                 517
                                                 515
                                                              2
                                                                     830
2 2013
                       374.
                                                 529
                                                              4
                                                                     850
             1
                    1
                                 533
3 2013
             1
                    1
                       408.
                                                 540
                                                              2
                                                                     923
                                 542
4 2013
             1
                    1
                       517.
                                 544
                                                 545
                                                             -1
                                                                    1004
5 2013
             1
                    1
                       394.
                                 554
                                                 600
                                                             -6
                                                                     812
6 2013
             1
                       288.
                                 554
                                                 558
                                                             -4
                                                                     740
7 2013
             1
                   1
                       404.
                                 555
                                                 600
                                                             -5
                                                                     913
                       259.
8 2013
             1
                    1
                                 557
                                                 600
                                                             -3
                                                                     709
9 2013
             1
                    1
                       405.
                                 557
                                                 600
                                                             -3
                                                                     838
             1
                                                             -2
                                                                     753
10 2013
                    1
                       319.
                                 558
                                                 600
# i 336,766 more rows
# i 12 more variables: sched_arr_time <dbl>, arr_delay <dbl>, carrier <chr>,
    flight <dbl>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#
    distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
```

## 5 dplyr and ggplot2

- wir können einen Datensatz mit Hilfe der Verben "dplyr" ändern und diese Änderungen dann in "ggplot2" einspeisen
- Was würde der folgende Code ergeben?



- wichtig: wir können Pipes (%>%) für neue Verben/Funktionen verwenden
  - aber die Funktion ggplot() verwendet +, um neue Ebenen zur Darstellung hinzuzufügen

#### 5.1 Exercises

• damit Ihr Quarto-Skript für diese Woche als abgeschlossen gilt, muss es zumindest die Übungen aus nettle\_1999\_climate.csv enthalten (siehe unten)

#### 5.1.1 flights.csv

- 1. Drucke in einer einzigen Pipeline alle Flüge aus, die jede der folgenden Bedingungen erfüllen:
  - Kam mit mehr als zwei Stunden Verspätung an, ist aber nicht zu spät abgeflogen
  - Sie flogen nach Houston (IAH oder HOU)
  - Wurden von United Airlines (UA), American Airlines (AA) oder Delta (DL) durchgeführt
  - Sie sind im Sommer abgeflogen (Juli, August oder September)
  - kamen mehr als zwei Stunden zu spät an, flogen aber nicht zu spät ab
- 2. Sortiert df\_flights, um die Flüge mit den größten Abflugverspätungen zu finden

- 3. Welche Flüge haben die weiteste Strecke zurückgelegt? Welche Flüge haben die geringste Entfernung zurückgelegt?
- 4. Speichert in einer einzigen Pipeline ein neues Objekt namens df\_fluege und:
  - den Datensatz flights.csv erneut laden
  - Auswahl der Variablen Jahr, Monat, Tag, dep\_delay, arr\_delay, carrier
  - eine neue Variable gain erstellen, die dep\_delay subtrahiert von arr\_delay ist
    - und vor dep\_delay eingefügt wird
  - benennen Sie diese Variablen um, so dass sie deutsch sind

#### 5.1.2 nettle\_1999\_climate.csv

- 5. Speichere den Datensatz nettle\_1999\_climate.csv als ein Objekt namens df\_nettle
  - einen kurzen Blick auf den Datensatz werfen (z.B. summary())
- 6. In einer einzigen Pipeline:
  - Erstellen eines neuen Objekts namens fig\_nettle, das die folgenden Schritte enthält:
- nehmt df\_nettle, und dann (d.h., benutzt eine Pipeline)
  - verwende die Funktion clean\_names aus dem janitor-Paket, um die Namen zu bereinigen (siehe die Anmerkungen von letzter Woche), und dann
  - Umbenennen von mgs in grow seasons, und dann
  - ein Streudiagramm erstellen, das grow\_seasons auf der x Achse und langs auf der y Achse hat

# Heutige Ziele

Heute haben wir gelernt...

• gelernt, wie man mit dem Paket dplyr aus dem tidyverse Daten verarbeiten kann

- gelernt, wie man die pipe (%>%) verwendet, um das Ergebnis einer Funktion in eine andere Funktion einzuspeisen
- Funktionen kennengelernt, die auf Zeilen operieren
- Funktionen kennengelernt, die mit Spalten arbeiten
- gelernt, wie man dplyr-Funktionen mit Plots von ggplot2 kombiniert

## **Session Info**

Hergestellt mit R version 4.2.3 (2023-03-15) (Shortstop Beagle) und RStudioversion 2023.3.0.386 (Cherry Blossom).

```
sessionInfo()
R version 4.2.3 (2023-03-15)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Ventura 13.2.1
Matrix products: default
        /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats
              graphics grDevices utils
                                             datasets
                                                      methods
                                                                 base
other attached packages:
                                      stringr_1.5.0
 [1] lubridate_1.9.2 forcats_1.0.0
                                                      dplyr_1.1.1
                     readr_2.1.4
 [5] purrr_1.0.1
                                      tidyr_1.3.0
                                                      tibble_3.2.1
 [9] ggplot2_3.4.2
                     tidyverse_2.0.0
loaded via a namespace (and not attached):
 [1] pillar_1.9.0
                      compiler_4.2.3
                                        tools_4.2.3
                                                         bit_4.0.5
 [5] digest_0.6.31
                      timechange_0.2.0 jsonlite_1.8.4
                                                         evaluate_0.20
 [9] lifecycle_1.0.3 gtable_0.3.3
                                        pkgconfig_2.0.3 rlang_1.1.0
[13] cli_3.6.1
                      rstudioapi_0.14 parallel_4.2.3
                                                         yaml_2.3.7
[17] xfun_0.38
                      fastmap_1.1.1
                                       withr_2.5.0
                                                         knitr_1.42
                      vctrs_0.6.1
[21] generics_0.1.3
                                       hms_1.1.3
                                                         rprojroot_2.0.3
[25] bit64_4.0.5
                      grid_4.2.3
                                        tidyselect_1.2.0 here_1.0.1
[29] glue_1.6.2
                      R6_2.5.1
                                        fansi_1.0.4
                                                         vroom_1.6.1
```

```
[33] rmarkdown_2.21 pacman_0.5.1 farver_2.1.1 tzdb_0.3.0
[37] magrittr_2.0.3 scales_1.2.1 htmltools_0.5.5 colorspace_2.1-0
[41] labeling_0.4.2 utf8_1.2.3 stringi_1.7.12 munsell_0.5.0
[45] crayon_1.5.2
```

Nordmann, E., & DeBruine, L. (2022). Applied Data Skills (Version 2.0). Zenodo. https://doi.org/10.5281/zenodo.6365078

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (o. J.). *R for Data Science* (2. Aufl.). https://r4ds.hadley.nz/