Examenul național de bacalaureat 2022 Proba E. c)

Matematică *M_pedagogic*BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3}(2-\sqrt{3})+3=2\sqrt{3}-\sqrt{3}\cdot\sqrt{3}+3=2\sqrt{3}$	3 p
	$\sqrt{12} = 2\sqrt{3}$, deci $\sqrt{3}(2-\sqrt{3}) + 3 = \sqrt{12}$	2p
2.	a+1 > 2a-1	2p
	a < 2 și cum a este număr natural, obținem $a = 0$ sau $a = 1$	3 p
3.	$3^{x} \cdot 3^{2} \cdot 2^{x} \cdot 2 + 2 \cdot 6^{x} = 120 \iff 18 \cdot 6^{x} + 2 \cdot 6^{x} = 120$, deci $20 \cdot 6^{x} = 120$	3 p
	$6^x = 6 \Rightarrow x = 1$	2p
4.	Mulțimea numerelor naturale nenule mai mici decât 114 are 113 elemente, deci sunt 113 cazuri posibile	2 p
	În mulțimea numerelor naturale nenule mai mici decât 114 sunt 28 numere divizibile cu 4, deci sunt 28 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{28}{113}$	1p
5.	$M(a,15) \in d \Rightarrow 15 = 3a + 2a$	3p
	$15 = 5a \Rightarrow a = 3$	2p
6.	$BC = \sqrt{AB^2 + AC^2} = 5$, $AB^2 = BD \cdot BC \Rightarrow BD = \frac{9}{5}$	3p
	$\sin \angle BAD = \frac{BD}{AB} = \frac{3}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$(-1) \circ (-1) = 2 \cdot (-1) \cdot (-1) - (-1) - (-1) + 1 =$	2p
	=2+1+1+1=5	3 p
2.	$x \circ y = 2xy - x - y + \frac{1}{2} + \frac{1}{2} = 2x\left(y - \frac{1}{2}\right) - \left(y - \frac{1}{2}\right) + \frac{1}{2} =$	3 p
	$= 2\left(x - \frac{1}{2}\right)\left(y - \frac{1}{2}\right) + \frac{1}{2}, \text{ pentru orice numere reale } x \text{ și } y$	2 p
3.	$x \circ 1 = 2\left(x - \frac{1}{2}\right)\left(1 - \frac{1}{2}\right) + \frac{1}{2} = x - \frac{1}{2} + \frac{1}{2} = x$, pentru orice număr real x	2 p
	$1 \circ x = 2\left(1 - \frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \frac{1}{2} = x - \frac{1}{2} + \frac{1}{2} = x = x \circ 1$, pentru orice număr real x, deci $e = 1$ este	3p
	elementul neutru al legii de compoziție "o"	

4.	$x \circ \frac{1}{2} = 2\left(x - \frac{1}{2}\right)\left(\frac{1}{2} - \frac{1}{2}\right) + \frac{1}{2} = \frac{1}{2}, \text{ pentru orice număr real } x$ $\frac{1}{2} \circ x = 2\left(\frac{1}{2} - \frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \frac{1}{2} = \frac{1}{2}, \text{ deci } x \circ \frac{1}{2} = \frac{1}{2} \circ x = \frac{1}{2}, \text{ pentru orice număr real } x$	2p 3p
5.	$\frac{1}{3} \circ \frac{2}{4} \circ \frac{3}{5} \circ \dots \circ \frac{2020}{2022} = \left(\frac{1}{3} \circ \frac{1}{2}\right) \circ \frac{3}{5} \circ \dots \circ \frac{2020}{2022} =$	2 p
	$= \frac{1}{2} \circ \left(\frac{3}{5} \circ \dots \circ \frac{2020}{2022} \right) = \frac{1}{2}$	3 p
6.	$\left(\log_2 x + \frac{1}{2}\right) \circ \left(\log_3 x + \frac{1}{2}\right) = 2\left(\log_2 x + \frac{1}{2} - \frac{1}{2}\right) \left(\log_3 x + \frac{1}{2} - \frac{1}{2}\right) + \frac{1}{2} = 2 \cdot \log_2 x \cdot \log_3 x + \frac{1}{2},$	3p
	$2 \cdot \log_2 x \cdot \log_3 x + \frac{1}{2} = \frac{1}{2} \iff \log_2 x \cdot \log_3 x = 0$, de unde obținem $x = 1$, care convine	2 p

SUBIECTUL al III-lea (30 de puncte)

1.	$A \cdot A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$	3p
	$4I_2 = 4 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, \text{ deci } A \cdot A = 4I_2$	2p
2.	$aI_2 + A = a \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} =$	3p
	$= \begin{pmatrix} a & 2 \\ 2 & a \end{pmatrix} = M(a)$, pentru orice număr real a	2p
3.	$M(2) \cdot M(4) = (2I_2 + A)(4I_2 + A) = 8I_2 + 6A + 4I_2 =$	3 p
	$=12I_2 + 6A = 6(2I_2 + A) = 6 \cdot M(2)$	2p
4.	$M(a) \cdot M(b) = (ab+4) \cdot I_2 + (a+b) \cdot A = 7 \cdot I_2 + 4 \cdot A \Longrightarrow$	3p
	$\Rightarrow ab = 3$ şi $a + b = 4$ şi cum a şi b sunt numere naturale, obţinem perechile (3,1) şi (1,3)	2 p
5.	$M(k+2) = \begin{pmatrix} k+2 & 2 \\ 2 & k+2 \end{pmatrix} \Rightarrow \det(M(k+2)) = (k+2)^2 - 4 = k^2 + 4k$	3p
	$k^2 + 4k \le 0$ și k număr natural, obținem $k = 0$	2 p
6.	$M(a) - 2 \cdot A = \begin{pmatrix} a & 2 \\ 2 & a \end{pmatrix} - \begin{pmatrix} 0 & 4 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} a & -2 \\ -2 & a \end{pmatrix}$	2p
	$M(a) \cdot (M(a) - 2 \cdot A) = (M(a) - 2 \cdot A) \cdot M(a) = I_2$, deci $a^2 = 5$, și cum $a < -2$, obținem că $a = -\sqrt{5}$	3p