1 Variables

2 root

	var	symbol	documentation	type	units	tokens	eqs
8	$F_{N,A}$	F	directed graph indicence matrix	network			
1	t	t	time	frame	s		
6	t_o	to	starting time	frame	s		3
7	t_e	te	end time	frame	s		4
3	#	value	numerical value	constant			
4	1	one	numerical value 1	constant			1
5	0	null	numerical value 0	constant		[]	2

3 Properties

	var	symbol	documentation	type	units	tokens	eqs
57	$M^{A,\alpha}{}_N$	M_A_alpha	norming factor token A mechanism alpha	constant			51
58	$M^{A,eta}{}_N$	M_A_beta	norming factor token A mechanism beta	constant			52
59	$M^{B,\gamma}{}_N$	M_B_gamma	norming factor token B mechanism gamma	constant			53
60	$M^{B,\delta}{}_N$	M_B_delta	norming factor token B mechanism delta	constant			54
69	$M^A{}_N$	M_A	stack of M matrices token A	propertyOut			55
70	$M^B{}_N$	M_B	stack of M matrices token B	propertyOut			56
71	M_N	М	stack of M matrices token A and B	propertyOut			57

4 Control

	var	symbol	documentation	type	units	tokens	eqs
67	y_A	У	controller output	$\operatorname{controlOut}$		[]	49 50
61	m_A	m	measurement	${ m measure In}$			61 62
65	$I_{N,D}$	I_N_D	Identity to shift from differential space to integral space	network			
66	$I_{A,D}$	I_A_D	identity to shift from differential space to arc	network			
55	x_N	x	controller state	state			48
56	$x^{o}{}_{N}$	xo	controller state initial condition	state			44
50	$A_{N,D}$	A	dynamic matrix A	constant	s^{-1}		
51	$B_{A,D}$	В	input matrix C	constant	s^{-1}		
52	$C_{N,A}$	С	output matrix C	constant			
53	$D_{N,A}$	D	event matrix D	constant			
62	y_{sA}	setpoint	set point	constant			45
63	e_A	e	control error	constant			46
68	D_A	D_A	event diagonal matrix D	constant			
64	\dot{x}_D	dx	differential state	${\it differential State}$	s^{-1}		47

5 System

	var	symbol	documentation	type	units	tokens	eqs
76	u_A	u	[0-1]-normed control signal	$\operatorname{controlIn}$			63 70
74	z_N	measure	normed measurement of pi A alpha	measureOut			59
75	\mathbf{Z}_A	measure_set_A	measurement vector for A	measureOut			60
25	$\hat{x}^{A,\alpha}{}_N$	fx_A_alpha	netflow of token A due to mechanism alpha	transport	ms^{-1}		11
26	$\hat{x}^{A,\beta}{}_N$	fx_A_beta	net flow of token A due to mechanism beta	transport	ms^{-1}		12
27	$\hat{y}^{B,\gamma}{}_N$	fy_B_gamma	netflow of token B due to mechanism gamma	transport	s^{-1}		14
28	$\hat{y}^{B,\delta}{}_N$	fy_B_delta	netflow of token B due to mechansim beta	transport	s^{-1}		15
80	$\hat{x}^{A,lpha}{}_A$	fx_A_alpha_m	flow of token A due to mechanism alpha	transport	ms^{-1}		75 79
81	$\hat{x}^{A,\beta}{}_A$	fx_A_beta_m	flow of token A doe to mechanism beta	transport	ms^{-1}		76 80
82	$\hat{y}^{B,\gamma}{}_A$	fy_B_gamma_m	flow of token B due to mechanism gamma	transport	s^{-1}		77 81
83	$\hat{y}^{B,\delta}{}_A$	fy_B_delta_m	flow of token B due to mechansim delta	transport	s^{-1}		78 82
73	$I_{zN,A}$	I_measure	unidirectional graph for interface connection	network			
36	$D_{N,A}$	D	difference operator	differenceOperator			
9	x_N	x	state token A	state	$\mid m \mid$		20
10	y_N	у	state token B	state			21
11	x^{o}_{N}	xo	initial condition for state x	state	$\mid m \mid$		5
12	$y^o{}_N$	уо	initial condition for state y	state			6
34	s	S	mixed state	state			31
13	$K^{A,lpha}{}_A$	K_A_alpha	conductivity token A mechanism alpha	constant	s^{-1}		
14	$K^{A,\beta}{}_A$	K_A_beta	conductivity token A mechanism beta	constant	s^{-1}		
15	$K^{B,\gamma}{}_A$	K_B_gamma	conductivity token B mechanism gamma	constant	s^{-1}		
16	$K^{B,\delta}{}_A$	K_B_delta	conductivity token B mechanism delta	constant	s^{-1}		
17	$M^{A,lpha}{}_N$	M_A_alpha	norming factor token A mechanism alpha	constant			

Continued on next page

	var	symbol	documentation	type	units	tokens	eqs
18	$M^{A,eta}{}_N$	M_A_beta	norming factor token A mechanism beta	constant			
19	$M^{B,\gamma}{}_N$	M_B_gamma	norming factor token B mechanism gamma	constant			
20	$M^{B,\delta}{}_N$	M_B_delta	norming factor token B mechanism delta	constant			
72	${\pi^{A,\alpha,o}}_N$	pi_A_alpha_norm	norming factor for pi A alpha	constant	$\mid m \mid$		58
29	\dot{x}_N	dx	diferential balance for token A	differentialState	ms^{-1}		16 32
30	\dot{y}_N	dy	differential balance for token B	differentialState	$ s^{-1} $		17 33
35	\dot{xy}	dxy	mixed stack of the two accumulation terms	differentialState			34
21	$\pi^{A,lpha}{}_N$	pi_A_alpha	effort for A mechanism alpha	secondaryState	$\mid m \mid$		7 27
22	$\pi^{A,eta}{}_N$	pi_A_beta	effort for A mechanism beta	secondaryState	$\mid m \mid$		8 28
23	${\pi^{B,\gamma}}_N$	pi_B_gamma	effort for B mechanism gamma	secondaryState			9 29
24	$\pi^{B,\delta}{}_N$	pi_B_delta	effort for B mechanism delta	secondaryState			10 30
31	$\underline{\pi}^{A}{}_{N}$	pi_A_stack	effort for token A stack	secondaryState	$\mid m \mid$		24
32	$\underline{\pi}^{B}{}_{N}$	pi_B_stack	effort for token B stack	secondaryState			25
33	$\underline{\pi}^{A,B}$	pi_stack	effort for token A, B stack	secondaryState			26
77	$M^A{}_N$	M_A	stack of M matrices for token A	propertyIn			64 67
78	$M^B{}_N$	M_B	stack of M matrices for token B	propertyIn			65 68
79	M_N	М	stack of all M matrices	propertyIn		[]	66 69

6 Equations

7 Generic

no	equation	documentation	layer
1	1 := Instantiate(#, #)	numerical value 1	root
2	0 := Instantiate(#, #)	numerical value 0	root
3	$t_o := \text{Instantiate}(t, \#)$	starting time	root
4	$t_e := \text{Instantiate}(t, \#)$	end time	root
5	$x^o_N := \text{Instantiate}(x_N, \#)$	initial condition for state x	System
6	$y^o{}_N := \text{Instantiate}(y_N, \#)$	initial condition for state y	System
7	$\pi^{A,\alpha}{}_N := M^{A,\alpha}{}_N \cdot x_N$	effort for B mechanism alpha	System
8	$\pi^{A,\beta}{}_N := M^{A,\beta}{}_N . x_N$	effort for A mechanism beta	System
9	$\pi^{B,\gamma}{}_N := M^{B,\gamma}{}_N . y_N$	effort for B mechanism gamma	System
10	$\pi^{B,\delta}{}_N := M^{B,\delta}{}_N \cdot y_N$	effort for B mechanism delta	System
11	$\hat{x}^{A,\alpha}{}_N := F_{N,A} \stackrel{A}{\star} \hat{x}^{A,\alpha}{}_A$	netflow of token A due to mechanism alpha	System
12	$\hat{x}^{A,eta}{}_N \coloneqq F_{N,A} \stackrel{A}{\star} \hat{x}^{A,eta}{}_A$	net flow of token A due to mechanism beta	System
14	$\hat{y}^{B,\gamma}{}_N := F_{N,A} \stackrel{A}{\star} \hat{y}^{B,\gamma}{}_A$	netflow of token B due to mechanism gamma	System
15	$\hat{y}^{B,\delta}{}_N := F_{N,A} \stackrel{A}{\star} \hat{y}^{B,\delta}{}_A$	netflow of token B due to mechansim beta	System

Continued on next page

no	equation	documentation	layer
16	$\dot{x}_N := \hat{x}^{A,\alpha}{}_N + \hat{x}^{A,\beta}{}_N$	diferential balance for token A	System
17	$\dot{y}_N := \hat{y}^{B,\gamma}{}_N + \hat{y}^{B,\delta}{}_N$	differential balance for token B	System
20	$x_N := \int_{t_o}^{t_e} \dot{x}_N \ dt + x^o{}_N$	state token A	System
21	$y_N := \int_{t_o}^{t_e} \dot{y}_N \ dt + y^o{}_N$	state token B	System
24	$\underline{\pi}^{A}{}_{N} := \operatorname{Stack}\left(\pi^{A,\alpha}{}_{N}, \pi^{A,\beta}{}_{N}\right)$	effort for token A stack	System
25	$\underline{\pi}^{B}{}_{N} := \operatorname{Stack}\left(\pi^{B,\gamma}{}_{N}, \pi^{B,\delta}{}_{N}\right)$	effort for token B stack	System
26	$\underline{\pi}^{A,B} := \operatorname{MixedStack}\left(\underline{\pi}^{A}{}_{N},\underline{\pi}^{B}{}_{N}\right)$	effort for token A, B stack	System
27	$\pi^{A,\alpha}{}_N := \text{Instantiate}(\pi^{A,\alpha}{}_N, \#)$	effort for B mechanism alpha	System
28	${\pi^{A,\beta}}_N := \text{Instantiate}({\pi^{A,\beta}}_N, \#)$	effort for A mechanism beta	System
29	$\pi^{B,\gamma}{}_N := \text{Instantiate}(\pi^{B,\gamma}{}_N,\#)$	effort for B mechanism gamma	System
30	${\pi^{B,\delta}}_N := \text{Instantiate}({\pi^{B,\delta}}_N, \#)$	effort for B mechanism delta	System
31	$s := \text{MixedStack}\left(x_N, y_N\right)$	mixed state	System
32	$\dot{x}_N := \operatorname{Instantiate}(\dot{x}_N, 0)$	diferential balance for token A	System
33	$\dot{y}_N := \operatorname{Instantiate}(\dot{y}_N, 0)$	differential balance for token B	System
34	$\dot{xy} := ext{MixedStack}\left(\dot{x}_N, \dot{y}_N ight)$	mixed stack of the two accumulation terms	System
44	$x^o_N := \text{Instantiate}(x_N, \#)$	controller state initial condition	Control
45	$y_{sA} := \text{Instantiate}(m_A, \#)$	set point	Control
46	$e_A := m_A - y_{sA}$	control error	Control

no	equation	documentation	layer
47	$\dot{x}_D := A_{N,D} \overset{N}{\star} x_N + B_{A,D} \overset{A}{\star} e_A$	differential state	Control
48	$x_N := \int_{t_o}^{t_e} I_{N,D} \stackrel{D}{\star} \dot{x}_D \ dt$	controller state	Control
49	$y_A := C_{N,A} \overset{N}{\star} x_N + I_{A,D} \overset{D}{\star} \left(I_{N,D} \overset{N}{\star} D_{N,A} \overset{A}{\star} e_A \right)$	controller output	Control
50	$y_A := C_{N,A} \stackrel{N}{\star} x_N + D_A \cdot e_A$	controller output	Control
51	$M^{A,\alpha}{}_N := \operatorname{Instantiate}(M^{A,\alpha}{}_N, \#)$	norming factor token A mechanism alpha	Properties
52	$M^{A,\beta}{}_N := \operatorname{Instantiate}(M^{A,\beta}{}_N,\#)$	norming factor token A mechanism beta	Properties
53	$M^{B,\gamma}{}_N := \operatorname{Instantiate}(M^{B,\gamma}{}_N, \#)$	norming factor token B mechanism gamma	Properties
54	$M^{B,\delta}{}_N := \operatorname{Instantiate}(M^{B,\delta}{}_N, \#)$	norming factor token B mechanism delta	Properties
55	$M^{A}{}_{N} := \operatorname{Stack}\left(M^{A,lpha}{}_{N},M^{A,eta}{}_{N}\right)$	stack of M matrices token A	Properties
56	$M^{B}{}_{N} := \operatorname{Stack}\left(M^{B,\gamma}{}_{N}, M^{B,\delta}{}_{N}\right)$	stack of M matrices token B	Properties
57	$M_N := \operatorname{Stack}\left(M^A{}_N, M^B{}_N ight)$	stack of M matrices token A and B	Properties
58	${\pi^{A,\alpha,o}}_N := \text{Instantiate}({\pi^{A,\alpha}}_N, \#)$	norming factor for pi A alpha	System
59	$z_N := \left(\pi^{A,\alpha,o}{}_N\right)^{-1} \cdot \pi^{A,\alpha}{}_N$	normed measurement of pi A alpha	System
60	$\underline{\mathbf{z}}_A := I_{zN,A} \overset{N}{\star} z_N$	measurement vector for A	System
61	$m_A := \operatorname{Instantiate}(m_A, \#)$	measurement	Control
63	$u_A := \operatorname{Instantiate}(u_A, \#)$	[0-1]-normed control signal	System

Continued on next page

no	equation	documentation	layer
64	$M^{A}{}_{N} := \operatorname{Stack}\left(M^{A,lpha}{}_{N},M^{A,eta}{}_{N}\right)$	stack of M matrices for token A	System
65	$M^{B}{}_{N}:=\operatorname{Stack}\left(M^{B,\gamma}{}_{N},M^{B,\delta}{}_{N} ight)$	stack of M matrices for token B	System
66	$M_N := \operatorname{Stack}\left(M^A{}_N, M^B{}_N\right)$	stack of all M matrices	System
75	$\hat{x}^{A,\alpha}{}_A := u_A \cdot K^{A,\alpha}{}_A \cdot D_{N,A} \stackrel{N}{\star} \pi^{A,\alpha}{}_N$	flow of token A due to mechanism alpha	System
76	$\hat{x}^{A,\beta}{}_A := K^{A,\beta}{}_A \cdot D_{N,A} \stackrel{N}{\star} \pi^{A,\beta}{}_N$	flow of token A doe to mechanism beta	System
77	$\hat{y}^{B,\gamma}{}_A := K^{B,\gamma}{}_A . D_{N,A} \stackrel{N}{\star} \pi^{B,\gamma}{}_N$	flow of token B due to mechanism gamma	System
78	$\hat{y}^{B,\delta}{}_A := K^{B,\delta}{}_A \cdot D_{N,A} \stackrel{N}{\star} \pi^{B,\delta}{}_N$	flow of token B due to mechansim delta	System
79	$\hat{x}^{A,\alpha}{}_A := \text{Instantiate}(\hat{x}^{A,\alpha}{}_A, \#)$	flow of token A due to mechanism alpha	System
80	$\hat{\boldsymbol{x}}^{A,\beta}{}_{A} := \text{Instantiate}(\hat{\boldsymbol{x}}^{A,\beta}{}_{A}, \#)$	flow of token A doe to mechanism beta	System
81	$\hat{y}^{B,\gamma}{}_A := \text{Instantiate}(\hat{y}^{B,\gamma}{}_A, -)$	flow of token B due to mechanism gamma	System
82	$\hat{y}^{B,\delta}{}_A := \text{Instantiate}(\hat{y}^{B,\delta}{}_A, \#)$	flow of token B due to mechansim delta	System

8 Interface Link Equation

no	equation	documentation	layer
62	$m_A := \underline{\mathbf{z}}_A$	interface equation	System -> Control
67	$M^A{}_N := M^A{}_N$	interface equation	Properties -> System
68	$M^B{}_N := M^B{}_N$	interface equation	Properties -> System
69	${M}_N:={M}_N$	interface equation	Properties -> System
70	$u_A:=y_N$	interface equation	Control -> System