

Classez automatiquement des biens de consommation

PLAN

- 1/ Présentation de la problématique
- 2/ Présentation du jeu de données
- 3/ Exploration et préparation du jeu de données
- 4/ Traitement automatique du langage naturel (texte)
- 5/ Vision par ordinateur (image)
- 6/ Conclusion
- 7/ Suite du projet

Présentation de la problématique

Data scientist chez "Place de marché"

Lancer un marketplace e-commerce

Objectifs:

Etudier faisabilité d'un **moteur de classification** des articles, à partir de la description et de l'image

Fichier de photos correspondant aux articles

- Valeurs manquantes des colonnes cibles
- Dupliqués colonnes nom de produit et description
- Extraire la catégorie principale et sous catégories : Garder la catégorie principale (7 catégories)
- Encodage de la catégorie principale
- Equilibre des catégories

- Concaténer le nom produit et description
- Créer des fonctions de prétraitement:
 - Antonymes
 - Tokenization
 - Alphanumériques
 - Stop words (anglais)
 - Mise en minuscule
 - Lemmatisation
- Créer des fonctions de prétraitement pour les différentes méthodes (deep learning)
- Créer des fonctions de visualisation

Comptage de mots

```
Nombre de mots : 5037

15 mots les plus utilisés : ['r', 'product', 'for', 'only', 'cm', 'free', 'buy', 'replacement', 'delivery', 'genuine', 'shippin g', 'cash', 'price', 'day', 'mug']

15 mots les moins utilisés : ['clinic', 'apron', 'uniform', 'vastu', 'aura', 'negativity', 'disintegrates', 'disintegrating', 'main', 'rotate', 'clockwise', 'amplifies', 'intention', 'played', 'deeper']

Compte de mots uniques : 1123
```

<u>Méthodes</u>

Bag of words : comptage/fréquence de chaque mot Vocabulaire de 4817 mots

TF-IDF: comptage du mot dans document * nb documents contenant le mot

Vocabulaire de 4817 mots

Méthodes

Word2Vec : créer un espace vectoriel des mots avec un forme de similarité Vocabulaire de 4734 mots

Doc2Vec : créer un espace vectoriel des mots avec un forme de similarité selon le contexte des documents

Vocabulaire de 5037 mots

Méthodes

USE : réseau de neurones entrainé sur des millions de textes, renvoi vecteurs de taille 512, traite texte brut

BERT : lit les documents dans les deux sens et masque des mots pour les prédire selon le contexte réseau de neurones renvoie vecteurs de taille 768 méthode innovante et populaire

Mesure de faisabilité

- Visualisation TSNE (2 dimensions)
- Clustering KMeans (7 clusters)
- Calcul score ARI

Bag of words: 0.4622

TF-IDF: 0.6326

Word2Vec: 0.4329

Doc2Vec: 0.454

BERT: 0.3933

USE: 0.4822

ARI: 0.6326

Texte

- Récupérer les images pour les associer à leur catégorie
- Méthodes
 SIFT
 CNN (VGG16)

SIFT

Charger l'image

Passer en niveaux de gris

Redimensionner l'image (20%)

Egaliser l'histogramme (ajuster le contraste)

Identifier et extraire les descripteurs (277 304 descripteurs)

Bag of Visual Words

Créer des clusters de descripteurs (256 clusters)

Construire un histogramme (vecteur) à partir des clusters de descripteurs

Estimation de la faisabilité

Réduction de dimensions (PCA)

Visualisation TSNE (2 dimensions)

Clustering KMeans

Calcul score ARI

ARI: 0.0014

CNN (VGG16)

CNN (VGG16)

Charger le modèle pré-entraîné Supprimer la couche de classification (de sortie) Pas procéder à un entraînement

Prédire chaque image à partir du modèle pour récupérer les features

Estimation de la faisabilité

Visualisation TSNE (2 dimensions) Clustering KMeans Calcul score ARI

ARI: 0.4237

Conclusion

Le moteur de classification semble faisable avec la description des produits

Bonus:

Entrainement d'un classifieur (GradientBoostingClassifier) Score de précision de 0.76

Suite du projet

- Présentation des résultats et en discuter
- Trouver le meilleur classifieur ainsi que ses meilleurs paramètres
- Proposer une mise en production d'une API