EFC01

September 25, 2019

1 IA006 - Exercícios de Fixação de Conceitos

1.1 EFC1 - 2s2019

1.1.1 Parte 1 - Atividades teóricas

Exercício 1 Distribuição:

X/Y	Y=0	Y=1	Marg. X
X=0	1/6	3/8	13/24
X=1	1/8	1/3	11/24
Marg. Y	7/24	17/24	1

a)
$$P(X)$$
 e $P(Y)$

Resposta:

•
$$P(X = x) = \{\frac{13}{24}, \frac{11}{24}\}$$

•
$$P(Y = y) = \{\frac{7}{24}, \frac{17}{24}\}$$

b)
$$P(X = 0|Y = 0)$$

 $\frac{P(X=0,Y=0)}{P(Y=0)} = \frac{1}{6} \times \frac{24}{7} = \frac{24}{42} = \frac{4}{7}$
 $\frac{P(X=1,Y=0)}{P(Y=0)} = \frac{1}{8} \times \frac{24}{7} = \frac{24}{56} = \frac{3}{7}$

Resposta:

•
$$P(X = 0|Y = 0) = \frac{4}{7}$$

c)
$$E[X]$$
 e $E[Y]$
 $E[X] = \sum_{k} x_k P(x_k)$
 $E[X] = 0 \times \frac{13}{24} + 1 \times \frac{11}{24}$
 $E[Y] = 0 \times \frac{7}{24} + 1 \times \frac{17}{24}$

Resposta:

•
$$E[X] = \frac{11}{24}$$

•
$$E[Y] = \frac{17}{24}$$

d) São independentes? Por quê?

Resposta:

X e Y NÃO são independentes, pois a probabilidade do evento Y não afeta X, de acordo com a formulação:

Exercício 2

Distribuição:

a)
$$H(X)$$
, $H(Y)$, $H(X,Y)$
Sendo: $H(X) = -\sum_{x} p(x)log_{2}[p(x)]$
 $H(X) = H(\frac{1}{4}, \frac{3}{4})$
 $H(X) = -((\frac{1}{4} \times log_{2}[\frac{1}{4}]) + (\frac{3}{4} \times log_{2}[\frac{3}{4}]))$
 $H(X) = -((\frac{1}{4} \times -2) + (\frac{3}{4}(log_{2}[3] - 2)))$
 $H(X) = -((-\frac{1}{2}) + (\frac{3}{4}(log_{2}[3] - 2)))$
 $H(X) = 0.8112$
 $H(Y) = H(\frac{3}{8}, \frac{5}{8})$
 $H(Y) = -((\frac{3}{8} \times log_{2}[\frac{3}{8}]) + (\frac{5}{8} \times log_{2}[\frac{5}{8}]))$
 $H(Y) = -((\frac{3}{8}(log_{2}(3) - 3)) + (\frac{5}{8}(log_{2}(5) - 3)))$
 $H(Y) = 0.9544$

Calculando
$$H(X,Y)$$

Sendo: $H(X,Y) = -\sum_{x} \sum_{y} p(x,y) log_{2}[p(x,y)]$
 $H(X,Y) = -((\frac{1}{4}log_{2}(\frac{1}{4})) + (\frac{3}{8}log_{2}(\frac{3}{8})) + (\frac{3}{8}log_{2}(\frac{3}{8})))$
 $H(X,Y) = 1.5612$

Resposta:

$$H(X) = 0.8112$$

 $H(Y) = 0.9544$
 $H(X,Y) = 1.5612$

b)
$$H(X|Y)$$
 e $H(Y|X)$

$$H(Y|X) = -\sum_{x} \sum_{y} p(x,y) log_2[p(y|x)]$$

$$H(Y|X) = H(X,Y) - H(X)$$

$$H(X|Y) = H(X,Y) - H(Y)$$

$$\begin{split} &P(Y=1|X=0) = \frac{P(X=0,Y=1)}{P(X)} = > \frac{1}{4} \times \frac{4}{1} = 1 \\ &P(Y=0|X=1) = \frac{P(X=1,Y=0)}{P(X)} = > \frac{3}{8} \times \frac{4}{3} = \frac{1}{2} \\ &P(Y=1|X=1) = \frac{P(X=1,Y=1)}{P(X)} = \frac{1}{2} \end{split}$$

$$P(Y = 0|X = 1) = \frac{P(X = 1, Y = 0)}{P(X)} = > \frac{3}{8} \times \frac{4}{3} = \frac{1}{2}$$

$$P(Y = 1|X = 1) = \frac{P(X=1,Y=1)}{P(X)} = \frac{1}{2}$$

$$H(Y|X) = -((\frac{1}{4}log_2(1)) + (\frac{3}{8}log_2(\frac{1}{2})) + (\frac{3}{8}log_2(\frac{1}{2})))$$

$$H(Y|X) = ((\frac{3}{8} \times -1) + (\frac{3}{8} \times -1))$$

$$H(Y|X) = -((\frac{3}{8} \times -1) + (\frac{3}{8} \times -1))$$

$$H(Y|X) = -((-\frac{3}{8}) + (-\frac{3}{8}))$$

$$H(Y|X) = -((-\frac{3}{8}) + (-\frac{3}{8}))$$

$$H(Y|X) = 0.75$$

$$H(X|Y) = 1.5612 - 0.9544$$

$$H(X|Y) = 0.6068$$

Resposta:

$$H(Y|X) = 0.75$$

$$H(X|Y) = 0.6068$$

c)
$$I(X,Y)$$

Dado que,

$$I(X,Y) = H(X) - H(X|Y)$$

temos portanto,

$$I(X,Y) = 0.8112 - 0.6068$$

$$I(X, Y) = 0.2044$$

Resposta:

$$I(X,Y) = 0.2044$$

Exercício 3 a)

$$C_1 => \mu = -1, \sigma^2 = 1$$

 $C_2 => \mu = 1, \sigma^2 = 1$

Função de probabilidade de densidade da Distribuição Normal é dada por:

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2)}{2\sigma^2})$$

Dado que MLE propõe:

 $\theta_{MLE} = argmax_{\theta}log[p(x|\theta)]$

Sendo $\theta = (\mu, \sigma^2)$, portanto a MLE pode ser calculada usando:

 $L(x|\mu,\sigma^2) = \log[p(x|\mu,\sigma^2)]$

Usando a distribuição acima e a regra do estimado de máxima verossimilhança, calcula-se: $L(x|\mu,\sigma^2)=-\frac{n}{2}log(2\pi\sigma^2)-\frac{1}{2\sigma^2}\sum_{i=1}^n(x-\mu)^2$ Aplicando acima, sendo n=1:

$$L(x|\mu,\sigma^2) = -\frac{n}{2}log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x-\mu)^2$$

$$L(x|\mu = -1, \sigma^2 = 1) = -\frac{1}{2}log(2\pi) - \frac{1}{2}(x+1)^2$$

$$L(x|\mu = -1, \sigma^2 = 1) = -\frac{1}{2}log(2\pi) - \frac{1}{2}(x+1)^2$$

$$L(x|\mu = -1, \sigma^2 = 1) = -\frac{1}{2}log(2\pi) - \frac{1}{2}(x-1)^2$$

Dada as fórmulas acima podemos concluir portanto que quando x = 0, as equações terão valores iguais, definindo a fronteira no valor 0, sendo 0 indecisão (ambas as classes poderiam ser escolhidas).

Para demonstrar, podemos definir 2 (dois) valores para x, consideremos x = (0,1).

Assim temos:

$$L(x = 1 | \mu = -1, \sigma^2 = 1) = -\frac{1}{2}log(2\pi) - \frac{1}{2}(1+1)^2$$

$$L(x = 1 | \mu = -1, \sigma^2 = 1) = -0.9189 - \frac{1}{2}(2)^2$$

$$L(x = 1 | \mu = -1, \sigma^2 = 1) = -0.9189 - 2$$

$$L(x = 1 | \mu = -1, \sigma^2 = 1) = -0.9189 - \frac{1}{2}(2)^2$$

$$L(x = 1 | \mu = -1, \sigma^2 = 1) = -0.9189 - 2$$

$$L(x = 1 | \mu = -1, \sigma^2 = 1) = -2.9189$$

$$L(x = 1 | \mu = 1, \sigma^2 = 1) = -\frac{1}{2}log(2\pi) - \frac{1}{2}(1-1)^2$$

 $L(x = 1 | \mu = 1, \sigma^2 = 1) = -0.9189 - \frac{1}{2}(0)^2$

$$L(x = 1 | \mu = 1, \sigma^2 = 1) = -0.9189 - \frac{1}{2}(0)^2$$

$$L(x=1|\mu=1,\sigma^2=1)=-0.9189$$
 Definindo $x=0$:
$$L(x=0|\mu=1,\sigma^2=1)=-\frac{1}{2}log(2\pi)-\frac{1}{2}(0-1)^2$$

$$L(x=0|\mu=1,\sigma^2=1)=-0.9189-\frac{1}{2}(-1)^2$$

$$L(x=0|\mu=1,\sigma^2=1)=-1.4189$$

$$L(x=0|\mu=-1,\sigma^2=1)=-\frac{1}{2}log(2\pi)-\frac{1}{2}(0-(-1))^2$$

$$L(x=0|\mu=-1,\sigma^2=1)=-0.9189-\frac{1}{2}(1)^2$$

$$L(x=0|\mu=-1,\sigma^2=1)=-1.4189$$

Resposta:

Dessa maneira, pode-se concluir que (conforma apresentado pelo gráfico também), amostras menores que 0 (zero) poderão ser classificados como sendo da classe C_1 e valores acima de 0 (zero) sendo da classe C_2 , e 0 (zero) sendo a fronteira onde encontraremos indecisão.

$$C_1: x < 0$$

 $C_2: x > 0$
b) $P(C_1) = 0.7, P(C_2) = 0.3$

Tendo a probabilidade a priori e utilizando o MAP cuja formulação apresenta:
$$\theta_{MAP} = argmax_{\theta}log[p(x|\theta)] + log[p(\theta)]$$

Sendo $\theta = (\mu, \sigma^2)$ e para o caso da classe C_1 : $f(x|\mu = -1, \sigma^2 = 1) = log[p(x|\mu = -1, \sigma^2 = 1)] + log[p(\mu = -1, \sigma^2 = 1)]$
Podemos definir para $x = 0$: $log[p(x = 0|\mu = -1, \sigma^2 = 1)] = -1.4189$ $p(\mu = -1, \sigma^2 = 1) = 0.7$
Dessa maneira temos: $f(x = 0|\mu = -1, \sigma^2 = 1) = -1.4189 + log[0.7]$ $f(x = 0|\mu = -1, \sigma^2 = 1) = -1.7755$
Para a classe C_2 temos: $f(x = 0|\mu = 1, \sigma^2 = 1) = -1.4189 + log[0.3]$ $f(x = 0|\mu = 1, \sigma^2 = 1) = -2.6228$

Resposta:

Portanto no caso a amostra de valor 0 (zero) já não representa mais a região de indecisão do novo modelo dado as probabilidades.

Caso as distribuições sejam uniformes com média equidistantes e variâncias iguais a média, como o exercício fornece, pode-se calcular o ponto de intersecção, indiferente da densidade de probabilidades tendo valores a posteriori usando:

$$\frac{P(C_1x)}{P(C_2x)} = \frac{f1(x)}{f2(x)} \times \frac{P(C_1)}{P(C_2)}$$

$$\frac{P(C_1x)}{P(C_2x)} = log \frac{f1(x)}{f2(x)} + log \frac{P(C_1)}{P(C_2)}$$

$$\frac{P(C_1x=-1)}{P(C_2x=1)} = log \frac{f1(x=-1)}{f2(x=1)} + log \frac{P(C_1)}{P(C_2)}$$

$$\frac{P(C_1x=-1)}{P(C_2x=1)} = log \frac{0.3989}{0.3989} + log \frac{0.7}{0.3}$$

$$\frac{P(C_1x=-1)}{P(C_2x=1)} = 0 + 0.8472$$
Como temos 2 classes:

$$\frac{P(C_1x=-1)}{P(C_2x=1)} = \frac{0.8472}{2}$$

$$\frac{P(C_1x=-1)}{P(C_2x=1)} = 0.4236$$

Neste caso a fronteira de decisão será igual a 0.4236.

Portanto:

 $C_1: x < 0.436$ $C_2: x > 0.436$

1.1.2 Parte 2 – Atividade computacional

Importação dos dados do Australian Bureau of Meteorology e sua apresentação.

Os dados, são definidos como uma série temporal onde em determinada data é apresentada a temperatura. Abaixo é apresentado os primeiros 10 registros dos 3650 itens.

	Data Tem	perature
0	01/01/1981	20.7
1	02/01/1981	17.9
2	03/01/1981	18.8
3	04/01/1981	14.6
4	05/01/1981	15.8
5	06/01/1981	15.8
6	07/01/1981	15.8
7	08/01/1981	17.4
8	09/01/1981	21.8

Divisão dos dados em treinamento e teste. Conforme solicitado os dados até 1990 serão usado para treinamento e os posteriores para teste.

Utilização de K-Folds para dividir os dados de treinamento em pequenas "pastas" para verificar melhor configuração de treinamento dado os dados.

Conforme solicitado, os dados serão divididos em até 30 pastas, além disso, será testado a possibilidade de cada pasta conter dados randomicamente misturados de diferentes épocas para

avaliar se o modelo se comporta de modo melhor ou pior em questão a temporalidade das informações.

Exercício 1 Calcular a melhor predição de acordo com os dados usando Quadrados Mínimos. T(x, T) = 1

$$w = \phi^T (\phi \phi^T)^{-1} y$$

Usando K-Fold Cross Validation, o dataset foi dividido e executado para cada parâmetro de K. Sendo k a quantidade de atrasos.

Conforme discutido em aula, os atrasos da série, aqueles cujas valores começam a posição inicial poderiam ser preenchidos com 0 (zero). Entretanto, tentanto evitar um desvio inicial muito grande, essa série atrasada inicial foi preenchidas com valores de uma distribuição uniforme variando do valor mínimo e máximo contido dentro do dataset, conforme abaixo.

Valores:

Min: 0.0 Max: 26.3

Dessa maneira foi executado um modelo de Regressão Linear nos dados, partindo de uma séria de K=1 até K=30 e usando K-Fold (variando até 20 folds).

O resultados obtidos são apresentados abaixo.

Melhores valores

 $K \hspace{0.2in} : 9$

K-Fold: 6 / 6

Os gráficos acima, apresentam os valores após filtro pós-processamento para escolher o melhor valor de K.

Abaixo, são apresentados os primeiros 10 itens da iteração total executada. O primeiro item não representa a melhor opção, pois para escolha da melhor opção foi calculada a média dos valores.

	K	K-Fold	Validation I	Fold	Média	MSE
287	16	3	3	6.08	87971	
268	15	3	3	6.1	15867	
249	14	3	3	6.12	26024	
157	9	6	6	6.12	27955	
192	11	3	3	6.13	33455	
363	20	3	3	6.13	35489	
344	19	3	3	6.1^{2}	43807	
290	16	6	6	6.1^{2}	45325	
154	9	3	3	6.14	15530	
195	11	6	6	6.1^{2}	47887	

É possível também, usar de outra alternativa no método de K-Fold... no caso estamos embaralhando os dados antes de passar para o método e consequentemente o modelo. Por fim, chegamos aproximadamente no mesmo resultado, entretanto tomando um caminho de certa maneira diferente... Neste sentido, podemos encontrar os melhores valores W para o modelo em folds totalmente direfentes.

Melhores valores

K : 9 K-Fold: 5 / 1

Abaixo, são apresentados os primeiros 10 itens da iteração total executada. O primeiro item não representa a melhor opção, pois para escolha da melhor opção foi calculada a média dos valores.

	K	K-Fold	Validation I	Fold	Média	MSE
286	16	2	1	5.75	50690	
346	19	5	3	5.82	26303	
266	15	1	1	5.83	35400	
343	19	2	2	5.80	68697	
457	25	2	2	5.8'	77817	
172	10	2	2	5.8'	79661	
513	28	1	1	5.89	91007	
381	21	2	2	5.89	92352	
156	9	5	1	5.90	05596	
478	26	4	2	5.90	09008	

Exercício 2 No exercício 2 usando o mesmo dataset usando anteriormente com a mesma questão de atraso, passaremos cada um dos itens por uma Rede Neural, usando como função de ativação a função hiperbólica.

Para validar a quantidade de unidades (ou neurônios) faremos a geração dessas unidades variando de 1 até 100 com seus pesos dentro de uma distribuição uniforme variando de -1 até 1.

Como valores para λ (regularização) será utilizado o seguinte range: 1e+1 até 1e-6, dando espaçamentos de 0.1. Para visualmente ficar mais legível (devido a grande variação), os dados (os valores de regularização) são apresentados em escala logarítimica.

Para a normalização dos dados, evitando a saturação da tangente hiperbólica, os dados serão normalizados entre os valores de mínimo e máximo dos dados (os quais já foram apresentados acima).

Valores de K, estão dentro da faixa de 5 até 20 e o K-Fold utilizado foi de 1 até 10 folds.

```
Valores de regularização testados: 8 [1.e+01 1.e+00 1.e-01 1.e-02 1.e-03 1.e-04 1.e-05 1.e-06]
```

```
K: 5 \le =  Time to run: 163.76 secs
K: 6 <=> Time to run: 168.24 secs
K: 7 \le  Time to run: 168.59 secs
K: 8 \le > Time to run: 167.77 secs
K: 9 <=> Time to run: 167.6 secs
K: 10 <=> Time to run: 167.5 secs
K: 11 <=> Time to run: 166.18 secs
K: 12 <=> Time to run: 167.34 secs
K: 13 <=> Time to run: 168.47 secs
K: 14 \le > Time to run: 190.73 secs
K: 15 <=> Time to run: 192.71 secs
K: 16 <=> Time to run: 182.79 secs
K: 17 \ll Time to run: 210.97 secs
K: 18 <=> Time to run: 187.06 secs
K: 19 <=> Time to run: 188.91 secs
K: 20 <=> Time to run: 174.61 secs
```

Melhores resultados:

K-Fold : 1 / 1 K : 5 T : 100 lambda : 0.0001

 MSE da validação : 6.952768332192359

Abaixo, são apresentados os primeiros 10 itens da iteração total executada. O primeiro item não representa a melhor opção, pois para escolha da melhor opção foi calculada a média dos valores.

	K	K-Fold	Validation I	Fold	Τ	Regulariz	zacao	Média	MSE
8483	14	3	2	101		0.00100	6.47	9141	
9378	15	3	2	87		0.01000	6.488	8502	
8459	14	3	2	77		0.00100	6.491	1464	
8469	14	3	2	87		0.00010	6.492	2263	
9374	15	3	2	83		0.00100	6.493	3626	
9337	15	3	2	46		0.00100	6.495	5681	
8440	14	3	2	58		0.00001	6.496	6261	
8479	14	3	2	97		0.00100	6.497	7782	
8468	14	3	2	86		0.00010	6.498	8737	
9386	15	3	2	95		0.00100	6.500	0816	

O resultado do modelo acima ficou bem próximo do executado usando apenas a Regressão Linear simples (sem uma camada intermediára entre as entradas e o Regressor). Neste sentido, pela natureza dos dados, mesmo usando modelos mais complexos podemos acabar por chegar no mesmo resultado.

Rodolfo De Nadai - 208911

Todo o código deste relatório esta disponível em: https://github.com/rdenadai/ia006c