$\overline{D} = D \cup$ (множество предельных точек D) — замыкание.

Примечание. $a \in \overline{D}$, тогда $\exists (x_n)$ из $D, x_n \to a$

 Π римечание. $\overline{D} = \bigcap_{\substack{D \subset F \\ F-\text{ замкн.}}} F-$ мин. (по вкл.) замкн. множество, содержащее D.

Примечание. D — замкнуто $\Leftrightarrow D = \overline{D}$

Определение. a — граничная точка D, если $\forall U(a)$ — U(a) содержит точки как из D, так и из D^c

Определение. Граница множества — множество его граничных точек. Обозначается ∂D

Упражнение:

1.
$$\partial D = \overline{D} \setminus IntD$$

- 2. ∂D замкнута
- 3. \forall множество предельных точек замкнуто.

Определение. T — множество, U — набор неких подмножеств T. При этом:

1.
$$\emptyset \in U, T \in U$$

2.
$$G_1, G_2 \dots G_n \in U \Rightarrow \bigcap_{i=1}^n G_i \in U$$

3.
$$(G_{\alpha})_{\alpha \in A}, \forall \alpha G_{\alpha} \in U \quad \bigcup_{\alpha \in A} \in U$$

Тогда T называется топологическим пространством, U — "набор" открытых множеств в T (мн-ва G^c , где $G \in U$ — замкн.)

 $a \in T$, U(a) — любое открытое множество, содержащее a и $\neq \emptyset$.

Аксиома 1. Об отделимости: $\forall x,y \in T \exists U(x), U(y) : U(x) \cap U(y) = \emptyset$

Определение. В \mathbb{R} :

1.
$$x_n \to +\infty \quad \forall E > 0 \ \exists N \ \forall n > N \ x_n > E$$

2.
$$x_n \to -\infty \quad \forall E \ \exists N \ \forall n > N \ x_n < E$$

3.
$$x_n \to \infty \Leftrightarrow |x_n| \to +\infty$$

Примечание. Требование > 0 не обязательно.

Примечание. 1. $x_n \to \infty \Rightarrow x_n$ не огр. (по модулю)

$$x_n \to +\infty \Rightarrow x_n$$
 не огр. сверху $x_n \to -\infty \Rightarrow x_n$ не огр. снизу

2.
$$x_n \to +\infty$$
. Тогда $x_n \not\to -\infty$

Откр. множества:

1. Ограниченные открытые множества — те, что открыт. в $\mathbb R$

2.
$$U_E(+\infty) = (E, +\infty] \subset \overline{\mathbb{R}}$$

 $U_E(-\infty) = [-\infty, E) \subset \overline{\mathbb{R}}$

3. Произвольное открытое множество — либо огр. откр., либо огр. $\cup U_E(+\infty)$, огр. $\cup U_E(-\infty)$, огр. $\cup U_E(+\infty) \cup U_E(-\infty)$

Доказательство. Рассмотрим $y = \tan x$

Положим $tan(\frac{\pi}{2}) = +\infty$, $tan(\frac{\pi}{2}) = -\infty$

an — монотонная биекция $[-rac{\pi}{2},rac{\pi}{2}]$ на $\mathbb R$

Она обеспечивает биекцию между совокупностью открытых множеств $[-\frac{\pi}{2},\frac{\pi}{2}]$ и . . . в $\overline{\mathbb{R}}$

В $\overline{\mathbb{R}}$ рассмотрим функцию $\rho(x,y)=|\arctan x-\arctan y|$ — метрика.

Покажем, что $x_n \to +\infty$ в смысле исх. опр. $\Leftrightarrow x_n \to +\infty$ в пространстве $(\overline{\mathbb{R}}, \rho)$

Доказательство.
$$x_n \to +\infty \Leftrightarrow \forall U(+\infty) \; \exists N \; \forall n > N \; x_n \in U(+\infty)$$
 $x_n \to +\infty$ в пространстве $(\overline{\mathbb{R}}, \rho) \Leftrightarrow$ высказыванию выше.

Примечание. $a \in \mathbb{R}$, (x_n) — вещ. посл. Тогда $x_n \to a$ в смысле обычного опр. $\Leftrightarrow x_n \to a$ в пространстве $(\overline{\mathbb{R}}, \rho)$

$$\begin{cases} x_n \to a, a \in \overline{\mathbb{R}} \\ x_n \to b, b \in \overline{\mathbb{R}} \end{cases} \Rightarrow a = b$$

$$\mathbf{B} \ \mathbb{R}^m \quad x_n \to \infty \quad \forall E \ \exists N \ \forall n > N \ ||x_n|| > E$$

$$U_E(+\infty) = \{x \in \mathbb{R}^m : ||x|| > E\}$$

1 Ревизия

 $(x_n),(y_n)$ $x_n \leq y_n$ $x_n \to x,y_n \to y,\; x,y \in \overline{\mathbb{R}}.$ Тогда $x \leq y.$

- $y=+\infty$ или $x=-\infty$ тривиально.
- $x = +\infty, y = a \in \mathbb{R}$ невозможно
- остальное как в основной теореме.

Определение. Последовательность (y_n) называется бесконечно большой, если $y_n \to +\infty$.

Примечание. x_n — бесконечно малая ($\forall n \ x_n \neq 0$) $\Leftrightarrow \frac{1}{x_n}$ — бесконечно большая.

Доказательство.
$$|x_n| < \varepsilon \Leftrightarrow \left|\frac{1}{x_n}\right| > \frac{1}{\varepsilon}$$

Теорема 1. Об арифметических свойствах пределов в $\overline{\mathbb{R}}$.

$$(x_n), (y_n) - \text{вещ.}, x_n \to a, y_n \to b, \quad a, b \in \overline{\mathbb{R}}$$

Тогда:

- 1. $x_n \pm y_n \rightarrow a \pm b$
- 2. $x_n y_n \to ab$
- 3. $\frac{x_n}{u_n} o \frac{a}{b}$, если $\forall n \ y_n \neq 0; b \neq 0$

При условии, что выражения в правых частях имеют смысл.

$$\langle x_n \to +\infty, y_n \to a \in \mathbb{R}$$

$$\forall E \ \exists N \ \forall n > N \ x_n + y_n > E$$

Для
$$E-(a-1)$$
 $\exists N_1 \ \forall n>N_1 \ x_n>E-(a-1)$

Для
$$E = 1 \; \exists N_2 \; \forall n > N_2 \; x_n > a-1$$

Также для $x_n \to +\infty, y_n$ — orp.chuзу $\Rightarrow x_n + y_n \to +\infty$.

$$\begin{cases} x_n \to +\infty \\ y_n > \varepsilon, (\varepsilon > 0) \text{ при } n > N_0 \end{cases} \Rightarrow x_n y_n \to +\infty$$

 y_n отделено от нуля при больших n.

Примечание. Верны аналогичные теоремы, где вместо $\overline{\mathbb{R}}-\overline{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$

Неопределенности:

- $+\infty \infty$
- $0 \cdot (\pm \infty)$
- $\frac{\pm \infty}{\pm \infty}$
- \bullet $\frac{0}{0}$

2 Точные границы числовых множеств

Теорема 2. Теорема Кантора о стягивающихся отрезках.

Дана последовательность отрезков $[a_1, b_1] \supset [a_2, b_2] \supset \dots$

Длины отрезков ightarrow 0, т.е. $(b_n-a_n)
ightarrow_{n
ightarrow +\infty} 0$

Тогда
$$\exists!c\in\mathbb{R}$$
 $\bigcap_{k=1}^{+\infty}[a_k,b_k]=\{c\}$ и при этом $a_n\to_{n\to+\infty}c,b_n\to_{n\to+\infty}c$

Примечание. Вместо " $b_n-a_n \to 0$ " $\forall \varepsilon>0 \ \exists n:b_n-a_n<\varepsilon$

Доказательство. Берем из аксиомы Кантора $c\in\bigcap_{k=1}^{+\infty}[a_k,b_k]$

$$\begin{cases} 0 \le b_n - c \le b_n - a_n \\ 0 \le c - a_n \le b_n - a_n \end{cases} \Rightarrow \begin{cases} b_n - c \to 0 \\ c - a_n \to 0 \end{cases} \Rightarrow \begin{cases} b_n \to c \\ a_n \to c \end{cases}$$

 $\vec{\Pi}$ о теореме об единственности предела c однозначно определено.

Определение. $E \subset \mathbb{R}$. E — огр. сверху, если $\exists M \in \mathbb{R} \ \forall x \in E \ x \leq M$. Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

Определение. $E \subset \mathbb{R}, E \neq \emptyset$.

Для E — огр. сверху супремум (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу инфимум (inf E) — наибольшая из нижних границ E.

Примечание. Техническое описание супремума: $b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$

Аналогично для inf

Определение. $M = \max E : M \in E \ \forall x \in E \ x \leq M$

Теорема 3. О существовании супремума.

 $E \subset \mathbb{R}, E \neq \emptyset, E$ — orp. cbepxy.

Тогда $\exists \sup E \in \mathbb{R}$

Доказательство. Строим систему вложенных отрезков $[a_k, b_k]$ со свойствами:

- 1. b_k верхняя граница E
- 2. $[a_k, b_k]$ содержит точки E.

 a_1 — берём любую точку E, b_1 — любая верхняя граница.

Границы следующего отрезка найдём бинпоиском (математики это называют половинное деление).

Если $\frac{a_1+b_1}{2}$ — верхняя граница E, $[a_2,b_2]:=[a_1,\frac{a_1+b_1}{2}].$

Иначе на $[\frac{a_1+b_1}{2},b_1]$ есть элементы $E,[a_2,b_2]:=[\frac{a_1+b_1}{2},b_1]$

Длина
$$[a_k,b_k] = b_k - a_k = \frac{b_1 - a_1}{2^{k-1}} \to 0$$

 $\exists!c \in \bigcap [a_k, b_k]$

Проверим: $c = \sup E$ по техническому описанию супремума:

- 1. $\forall x \in E \ \forall n \ x \leq c$
- 2. $\forall \varepsilon > 0$ $c \varepsilon$ не верхн. гран., т.е. $\exists n : c \varepsilon < a_n$

Доказательство 1: $\forall n \; x \leq b_n, x \to x, b_n \to c \Rightarrow x \leq c$ (предельный переход)

Доказательство 2: $\forall \varepsilon>0$ возьмём n : длина отрезка = $b_n-a_n<\varepsilon$.

$$c - a_n < b_n - a_n < \varepsilon$$

$$c - \varepsilon < a_n$$