SBML Model Report

Model name: "Holzhutter2004_Erythrocyte_Metabolism"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Jacky L Snoep¹ and Harish Dharuri² at September seventh 2006 at 3:04 p. m. and last time modified at April eighth 2016 at 3:29 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	45
events	0	constraints	0
reactions	38	function definitions	0
global parameters	0	unit definitions	6
rules	0	initial assignments	0

Model Notes

.

¹Stellenbosh University, jls@sun.ac.za

 $^{{}^2} California\ Institute\ of\ Technology,\ \verb|hdharuri@cds.caltech.edu|$

SBML level 2 code generated for the JWS Online project by Jacky Snoep using PySCeS Run this model online at http://jjj.biochem.sun.ac.za

To cite JWS Online please refer to: Olivier, B.G. and Snoep, J.L. (2004) Web-based modelling using JWS Online, Bioinformatics, 20:2143-2144

.

.

<u>Biomodels Curation</u>The model simulates the flux values as given for "kinetic model,, in Table 1 of the paper. The model was successfully tested on Jarnac.

2 Unit Definitions

This is an overview of nine unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name millimole

Definition mmol

2.2 Unit time

Name hour

Definition 3600 s

2.3 Unit mM

Name mM

Definition $mmol \cdot l^{-1}$

2.4 Unit mM_per_hour

Name mM_per_hour

Definition $mmol \cdot l^{-1} \cdot (3600 \text{ s})^{-1}$

2.5 Unit hour_inverse

Name hour_inverse

Definition $(3600 \text{ s})^{-1}$

2.6 Unit per_mM_hour

Name per_mM_hour

Definition $mmol^{-1} \cdot l \cdot (3600 \text{ s})^{-1}$

2.7 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.8 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.9 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	cytoplasm		3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

4 Species

This model contains 45 species. The boundary condition of five of these species is set to true so that these species' amount cannot be changed by any reaction. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Glcin	Glucose in	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
MgATP	MgATP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Glc6P	Glucose 6-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
MgADP	MgADP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
Fru6P	Fructose 6-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
Fru16P2	Fructose 1,6-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
GraP	Glyceraldehyde 3-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
DHAP	Dihydroxyacetone phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Phi	Phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
NAD	NAD	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Gri13P2	1,3-Bisphospho-D-glycerate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
NADH	NADH	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
Gri3P	3-Phospho-D-glycerate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Gri23P2f	2,3-Bisphospho-D-glycerate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Gri2P	2-Phospho-D-glycerate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
PEP	Phosphoenolpyruvate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Pyr	Pyruvate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Lac	Lactate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
NADPHf	NADPH	compartment	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		\Box
NADPf	NADP	compartment	$\operatorname{mmol} \cdot l^{-1}$		\Box
AMPf	AMP	compartment	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
ADPf	ADP	compartment	$\text{mmol} \cdot l^{-1}$		
GlcA6P	Phospho-D-glucono-1,5-lactone	compartment	$\operatorname{mmol} \cdot 1^{-1}$		\Box
Rul5P	Ribulose 5-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
GSSG	Oxidized Glutathione	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
GSH	Reduced Glutathione	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Xul5P	Xylulose 5-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Rib5P	Ribose 5-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Sed7P	Sedoheptulose 7-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
E4P	Erythrose 4-phosphate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
MgAMP	MgAMP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
ATPf	ATP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Mgf	Mg	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
MgGri23P2	MgGri23P2	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
P1NADP	Protein1 bound NADP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
P1f	Protein1	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
P1NADPH	Protein1 bound NADPH	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
P2NADP	Protein2 bound NADP	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
P2f	Protein2	compartment	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
P2NADPH	Protein2 bound NADPH	compartment	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
PRPP	PRPP	compartment	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
Lacex	External Lactate	compartment	$\operatorname{mmol} \cdot 1^{-1}$	\Box	
Pyrex	External Pyruvate	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Glcout	Glucose outside	compartment	$\operatorname{mmol} \cdot 1^{-1}$		
Phiex	Phosphate external	compartment	$\mathrm{mmol} \cdot l^{-1}$		$\overline{\mathbf{Z}}$

5 Reactions

This model contains 38 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
1	vGLT	Glucose transport	Glcout ← Glcin	
2	vHEX	Hexokinase	Glcin+MgATP Mgf, Gri23P2f, MgGri23P2 Glc6l MgADP	P+
3	vGPI	Glucosephosphate isomerase	Glc6P = Fru6P	
4	vPFK	Phosphofructokinase	MgATP+Fru6P ATPf, Mgf, AMPf, MgAMP MgADP Fru1	16P2+
5	vALD	Aldolase	$Fru16P2 \Longrightarrow GraP + DHAP$	
6	vTPI	Triosephosphate isomerase	DHAP ← GraP	
7	vGAPDH	Glyceraldehyde 3-phosphate dehydrogenase	$GraP + Phi + NAD \Longrightarrow NADH + Gri13P2$	
8	vPGK	Phosphoglycerate kinase	$MgADP + Gri13P2 \Longrightarrow MgATP + Gri3P$	
9	vBPGM	Bisphosphoglycerate mutase	Gri13P2 $\xrightarrow{\text{MgGri23P2}}$ Gri23P2f	
10	vBPGP	Bisphosphoglycerate phosphatase	$Gri23P2f \xrightarrow{MgGri23P2} Gri3P + Phi$	
11	vPGM	Phosphoglycerate mutase	Gri3P ← Gri2P	
12	vENO	Enolase	Gri2P ← PEP	
13	vPK	Pyruvate kinase	$PEP + MgADP \xrightarrow{ATPf, Fru16P2} MgATP + Pyr$	
14	vLDHNADH	Lactate dehydrogenase	$NADH + Pyr \Longrightarrow Lac + NAD$	
15	vLDHNADPH	Lactate dehydrogenase	$Pyr + NADPHf \Longrightarrow Lac + NADPf$	
16	vATPase	ATPase	$MgATP \Longrightarrow Phi + MgADP$	
17	vAK	Adenylate kinase	$MgATP + AMPf \Longrightarrow ADPf + MgADP$	

N⁰	Id	Name	Reaction Equation SBC	<u>Э</u>
18	vG6PDH	Glucose 6-phosphate dehydrogenase	Glc6P+NADPf ATPf, MgATP, Gri23P2f, MgGri23P2 NADPHf	lcA6P+
19	vPGLDH	Phosphogluconate dehydrogenase	GlcA6P+NADPf Gri23P2f, MgGri23P2, ATPf, MgATP NADPHf	Rul5P+
20	vGSSGRD	Glutathione reductase	$GSSG + NADPHf \Longrightarrow 2GSH + NADPf$	
21	vGSHox	Glutathione oxidation	$2 \text{ GSH} \Longrightarrow \text{GSSG}$	
22	vRibPepi	Phosphoribulose epimerase	Rul5P ← Xul5P	
23	vRibPiso	Ribose phosphate isomerase	Rul5P ← Rib5P	
24	vTrKet1	Transketolase 1	$Xul5P + Rib5P \Longrightarrow GraP + Sed7P$	
25	vTrAld	Transaldolase	$GraP + Sed7P \Longrightarrow E4P + Fru6P$	
26	vPPRPPS	Phosphoribosylpyrophosphate synthetase	$MgATP + Rib5P \Longrightarrow MgAMP + PRPP$	
27	vTrKet2	Transketolase 2	$Xul5P + E4P \Longrightarrow GraP + Fru6P$	
28	vPhiexch	Phosphate exchange	Phiex ← Phi	
29	vLacexch	Lactate exchange	Lacex ← Lac	
30	vPyrexch	Pyruvate exchange	Pyrex ← Pyr	
31	vMgATP	MgATP dissociation	$MgATP \Longrightarrow Mgf + ATPf$	
32	vMgADP	MgADP dissociation	$MgADP \rightleftharpoons Mgf + ADPf$	
33	vMgAMP	MgAMP dissociation	$MgAMP \Longrightarrow Mgf + AMPf$	
34	vMgGri23P2	MgGri23P2 dissociation	$MgGri23P2 \Longrightarrow Mgf + Gri23P2f$	
35	vP1NADP	P1NADP dissociation	$P1NADP \Longrightarrow P1f + NADPf$	
36	vP1NADPH	P1NADPH dissociation	$P1NADPH \Longrightarrow P1f + NADPHf$	
37	vP2NADP	P2NADP dissociation	$P2NADP \Longrightarrow P2f + NADPf$	
38	vP2NADPH	P2NADPH dissociation	$P2NADPH \Longrightarrow P2f + NADPHf$	

5.1 Reaction vGLT

This is a reversible reaction of one reactant forming one product.

Name Glucose transport

Reaction equation

$$Glcout \rightleftharpoons Glcin \tag{1}$$

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
Glcout	Glucose outside	

Product

Table 6: Properties of each product.

Id	Name	SBO
Glcin	Glucose in	-

Kinetic Law

$$v_{1} = vol\left(compartment\right) \cdot \frac{\frac{Vmaxv0}{KMoutv0} \cdot \left(\left[Glcout\right] - \frac{\left[Glcin\right]}{Keqv0}\right)}{1 + \frac{\left[Glcout\right]}{KMoutv0} + \frac{\left[Glcin\right]}{KMinv0} + \frac{\frac{alfav0 \cdot \left[Glcout\right] \cdot \left[Glcin\right]}{KMinv0}}{\frac{kMinv0}{KMinv0}}}$$
(2)

Table 7: Properties of each parameter.

	Tuote	7. I reperties of v	caen pai	unicter.	
Id	Name	SBO	Value	Unit	Constant
Vmaxv0			33.60	$\begin{array}{ccc} mmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & \end{array}$. 🗹
KMoutv0			1.70	$\operatorname{mmol} \cdot 1^{-1}$	
Keqv0			1.00	dimensionless	\square
KMinvO			6.90	$\text{mmol} \cdot 1^{-1}$	
alfav0			0.54	dimensionless	

5.2 Reaction VHEX

This is a reversible reaction of two reactants forming two products influenced by three modifiers.

Name Hexokinase

Reaction equation

$$Glcin + MgATP \xrightarrow{Mgf, Gri23P2f, MgGri23P2} Glc6P + MgADP$$
 (3)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
	Glucose in MgATP	

Modifiers

Table 9: Properties of each modifier.

Id	Name	SBO
Mgf Gri23P2f	Mg 2,3-Bisphospho-D-glycerate	
MgGri23P2	MgGri23P2	

Products

Table 10: Properties of each product.

Id	Name	SBO
	1 (unite	
Glc6P	Glucose 6-phosphate	
MgADP	MgADP	

Kinetic Law

$$v_2 = \text{vol (compartment)} \\ \cdot \frac{\frac{\text{Inhibv1} \cdot [\text{Glcin}]}{[\text{Glcin}] + \text{KMGlcv1}} \cdot \frac{\text{Vmax1v1}}{\text{KMgATPv1}} \cdot \left([\text{MgATP}] + \frac{\frac{\text{Vmax2v1}}{\text{Vmax1v1}} \cdot [\text{MgATP}] \cdot [\text{Mgf}]}{\text{KMgATPMgv1}} - \frac{[\text{Glc6P}] \cdot [\text{MgADP}]}{\text{Keqv1}} \right)}{1 + \frac{[\text{MgATP}]}{\text{KMgATPv1}} \cdot \left(1 + \frac{[\text{Mgf}]}{\text{KMgATPMgv1}} \right) + \frac{[\text{Mgf}]}{\text{KMgATP}} + \left(1.55 + \frac{[\text{Glc6P}]}{\text{KGlc6Pv1}} \right) \cdot \left(1 + \frac{[\text{Mgf}]}{\text{KMgv1}} \right) + \frac{[\text{Gri23P2f}] + [\text{MgGri23P2}]}{\text{K23P2Gv1}} + \frac{[\text{Mgf}]}{\text{Mgf}} + \frac{[\text{Mgf}]}{\text{Mgf$$

Table 11: Properties of each parameter.

	Table	711. 1 Toperties of	r caem para	meter.	
Id	Name	SBO	Value	Unit	Constant
Inhibv1			1.000	dimensionless	
KMGlcv1			0.100	$\text{mmol} \cdot 1^{-1}$	
Vmax1v1			15.800	$mmol \cdot 1^{-1} \cdot$	
				$(3600 \text{ s})^{-1}$	
KMgATPv1			1.440	$\text{mmol} \cdot 1^{-1}$	
Vmax2v1			33.200	$mmol \cdot 1^{-1} \cdot$	$ \overline{\mathbf{Z}} $
				$(3600 \text{ s})^{-1}$	
KMgATPMgv1			1.140	$\text{mmol} \cdot 1^{-1}$	
Keqv1			3900.000	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
KMgv1			1.030	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
KGlc6Pv1			0.005	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
K23P2Gv1			2.700	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
KMg23P2Gv1			3.440	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$

5.3 Reaction vGPI

This is a reversible reaction of one reactant forming one product.

Name Glucosephosphate isomerase

Reaction equation

$$Glc6P \Longrightarrow Fru6P$$
 (5)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Glc6P	Glucose 6-phosphate	

Table 13: Properties of each product

Id	Name	SBO
Fru6P	Fructose 6-phosphate	

Derived unit contains undeclared units

$$v_{3} = \text{vol}\left(\text{compartment}\right) \cdot \frac{\text{Vmaxv2} \cdot \left(\left[\text{Glc6P}\right] - \frac{\left[\text{Fru6P}\right]}{\text{Keqv2}}\right)}{\left[\text{Glc6P}\right] + \text{KGlc6Pv2} \cdot \left(1 + \frac{\left[\text{Fru6P}\right]}{\text{KFru6Pv2}}\right)}$$
(6)

Table 14: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv2			935.000	$\frac{\text{mmol}}{(3600 \text{ s})^{-1}} \cdot 1^{-1}$	
Keqv2			0.393	dimensionless	\square
KGlc6Pv2			0.182	$mmol \cdot l^{-1}$	
KFru6Pv2			0.071	$mmol \cdot l^{-1}$	

5.4 Reaction vPFK

This is a reversible reaction of two reactants forming two products influenced by four modifiers.

Name Phosphofructokinase

Reaction equation

$$MgATP + Fru6P \xrightarrow{ATPf, Mgf, AMPf, MgAMP} Fru16P2 + MgADP$$
 (7)

Table 15: Properties of each reactant.

	r	
Id	Name	SBO
MgATP Fru6P	MgATP Fructose 6-phosphate	

Modifiers

Table 16: Properties of each modifier.

Id	Name	SBO
ATPf	ATP	
Mgf	Mg	
AMPf	AMP	
MgAMP	MgAMP	

Products

Table 17: Properties of each product.

Id	Name	SBO
Fru16P2	2 Fructose 1,6-phosphate	
MgADP	MgADP	

Kinetic Law

$$v_{4} = vol\left(compartment\right) \\ \cdot \frac{Vmaxv3 \cdot \left(\left[Fru6P\right] \cdot \left[MgATP\right] - \frac{\left[Fru16P2\right] \cdot \left[MgADP\right]}{Keqv3}\right)}{\left(\left[Fru6P\right] + KFru6Pv3\right) \cdot \left(\left[MgATP\right] + KMgATPv3\right) \cdot \left(1 + L0v3 \cdot \left(\frac{\left(1 + \frac{\left[ATPf\right]}{KATPv3}\right) \cdot \left(1 + \frac{\left[Mgf\right]}{KMgv3}\right)}{\left(1 + \frac{\left[AMPf\right] + \left[MgAMP\right]}{KAMPv3}\right) \cdot \left(1 + \frac{\left[Fru6P\right]}{KFru6Pv3}\right)}\right)^{\frac{4}{V}}}$$

Table 18: Properties of each parameter.

		1	r		
Id	Name	SBO	Value	Unit	Constant
Vmaxv3			239.000	$\begin{array}{ccc} mmol & \cdot & 1^{-1} \\ (3600 \text{ s})^{-1} & \end{array}$. 🛮
Keqv3			100000.000	dimensionless	
KFru6Pv3			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
KMgATPv3			0.068	$\operatorname{mmol} \cdot 1^{-1}$	
L0v3			0.001	dimensionless	
KATPv3			0.010	$\operatorname{mmol} \cdot 1^{-1}$	
KMgv3			0.440	$\operatorname{mmol} \cdot 1^{-1}$	
KAMPv3			0.033	$\text{mmol} \cdot l^{-1}$	\square

5.5 Reaction vALD

This is a reversible reaction of one reactant forming two products.

Name Aldolase

Reaction equation

$$Fru16P2 \rightleftharpoons GraP + DHAP \tag{9}$$

Reactant

Table 19: Properties of each reactant.

Id	Name	SBO
Fru16P2	Fructose 1,6-phosphate	

Products

Table 20: Properties of each product.

Id	Name	SBO
	Glyceraldehyde 3-phosphate Dihydroxyacetone phosphate	

Kinetic Law

$$= \text{vol}\left(\text{compartment}\right)$$

$$= \frac{\frac{\text{Vmaxv4}}{\text{KFru16P2v4}} \cdot \left(\left[\text{Fru16P2}\right] - \frac{\left[\text{GraP}\right] \cdot \left[\text{DHAP}\right]}{\text{Keqv4}}\right)}{1 + \frac{\left[\text{Fru16P2}\right]}{\text{KFru16P2v4}} + \frac{\left[\text{GraP}\right]}{\text{KiGraPv4}} + \frac{\left[\text{DHAP}\right] \cdot \left(\left[\text{GraP}\right] + \text{KGraPv4}\right)}{\text{KDHAPv4} \cdot \text{KiGraPv4}} + \frac{\left[\text{Fru16P2}\right] \cdot \left[\text{GraP}\right]}{\text{KFru16P2v4} \cdot \text{KiiGraPv4}}}$$

$$(10)$$

Table 21: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv4			98.910	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø
KFru16P2v4			0.007	$\text{mmol} \cdot l^{-1}$	

Id	Name	SBO	Value	Unit	Constant
Keqv4			0.114	$\operatorname{mmol} \cdot l^{-1}$	$ \mathbf{Z} $
KiGraPv4			0.057	$\operatorname{mmol} \cdot 1^{-1}$	
KGraPv4			0.191	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{A}} $
KDHAPv4			0.036	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathscr{A}} $
KiiGraPv4			0.176	$\text{mmol} \cdot l^{-1}$	$ \overline{\mathscr{L}} $

5.6 Reaction vTPI

This is a reversible reaction of one reactant forming one product.

Name Triosephosphate isomerase

Reaction equation

$$DHAP \rightleftharpoons GraP \tag{11}$$

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
DHAP	Dihydroxyacetone phosphate	

Product

Table 23: Properties of each product.

Id	Name	SBO
GraP	Glyceraldehyde 3-phosphate	e

Kinetic Law

$$v_{6} = \text{vol (compartment)} \cdot \frac{\text{Vmaxv5} \cdot \left([\text{DHAP}] - \frac{[\text{GraP}]}{\text{Keqv5}} \right)}{[\text{DHAP}] + \text{KDHAPv5} \cdot \left(1 + \frac{[\text{GraP}]}{\text{KGraPv5}} \right)}$$
(12)

Table 24: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv5			5456.600	$\begin{array}{ccc} mmol & \cdot & 1^{-1} \\ (3600 \text{ s})^{-1} & \end{array}$. 🛛
Keqv5			0.041	dimensionless	
KDHAPv5			0.838	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
KGraPv5			0.428	$\text{mmol} \cdot l^{-1}$	\square

5.7 Reaction vGAPDH

This is a reversible reaction of three reactants forming two products.

Name Glyceraldehyde 3-phosphate dehydrogenase

Reaction equation

$$GraP + Phi + NAD \Longrightarrow NADH + Gri13P2$$
 (13)

Reactants

Table 25: Properties of each reactant.

Id	Name	SBO
GraP Phi NAD	Glyceraldehyde 3-phosphate Phosphate NAD	

Products

Table 26: Properties of each product.

Id	Name	SBO
NADH Gri13P2	NADH 1,3-Bisphospho-D-glycerate	

Kinetic Law

 $v_7 = \text{vol}(\text{compartment})$

$$\cdot \frac{\frac{V_{maxv6}}{KNADv6 \cdot KGraPv6 \cdot KGraPv6 \cdot \left([NAD] \cdot [GraP] \cdot [Phi] - \frac{[Gri13P2] \cdot [NADH]}{Keqv6} \right)}{\left(1 + \frac{[NAD]}{KNADv6} \right) \cdot \left(1 + \frac{[GraP]}{KGraPv6} \right) \cdot \left(1 + \frac{[Phi]}{KPv6} \right) + \left(1 + \frac{[NADH]}{KNADHv6} \right) \cdot \left(1 + \frac{[Gri13P2]}{K13P2Gv6} \right) - 1}$$

$$(14)$$

Table 27: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv6			4300.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ø
KNADv6			0.050	$\text{mmol} \cdot 1^{-1}$	
KGraPv6			0.005	$\text{mmol} \cdot 1^{-1}$	
KPv6			3.900	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Keqv6			$1.92 \cdot 10^{-4}$	dimensionless	
KNADHv6			0.008	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
K13P2Gv6			0.004	$\text{mmol} \cdot l^{-1}$	\square

5.8 Reaction vPGK

This is a reversible reaction of two reactants forming two products.

Name Phosphoglycerate kinase

Reaction equation

$$MgADP + Gri13P2 \Longrightarrow MgATP + Gri3P$$
 (15)

Reactants

Table 28: Properties of each reactant.

Id	Name	SBO
MgADP	MgADP	
Gri13P2	1,3-Bisphospho-D-glycerate	

Table 29: Properties of each product.

Id	Name	SBO
MgATP	MgATP	
Gri3P	3-Phospho-D-glycerate	

Derived unit contains undeclared units

$$v_{8} = vol \left(compartment \right)$$

$$\cdot \frac{\frac{V_{maxv7}}{KMgADPv7 \cdot K13P2Gv7} \cdot \left([MgADP] \cdot [Gri13P2] - \frac{[MgATP] \cdot [Gri3P]}{Keqv7} \right) }{\left(1 + \frac{[MgADP]}{KMgADPv7} \right) \cdot \left(1 + \frac{[Gri13P2]}{K13P2Gv7} \right) + \left(1 + \frac{[MgATP]}{KMgATPv7} \right) \cdot \left(1 + \frac{[Gri3P]}{K3PGv7} \right) - 1 }$$

$$(16)$$

Table 30: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv7			5000.000	mmol \cdot 1^{-1}	· \[\bigg[\]
				$(3600 \text{ s})^{-1}$	
KMgADPv7			0.350	$\operatorname{mmol} \cdot 1^{-1}$	
K13P2Gv7			0.002	$\operatorname{mmol} \cdot 1^{-1}$	
Keqv7			1455.000	dimensionless	
KMgATPv7			0.480	$\text{mmol} \cdot 1^{-1}$	$ \mathbf{Z} $
K3PGv7			1.200	$\text{mmol} \cdot l^{-1}$	$ \overline{\mathbf{Z}} $

5.9 Reaction vBPGM

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name Bisphosphoglycerate mutase

Reaction equation

$$Gri13P2 \xrightarrow{MgGri23P2} Gri23P2f$$
 (17)

Table 31: Properties of each reactant.

Id	Name	SBO
Gri13P2	1,3-Bisphospho-D-glycerate	

Modifier

Table 32: Properties of each modifier.

Id	Name	SBO
MgGri23P2	MgGri23P2	

Product

Table 33: Properties of each product.

Id	Name	SBO
Gri23P2f	2,3-Bisphospho-D-glycerate	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol}\left(\text{compartment}\right) \cdot \frac{\text{kDPGMv8} \cdot \left(\left[\text{Gri13P2}\right] - \frac{\left[\text{Gri23P2f}\right] + \left[\text{MgGri23P2}\right]}{\text{Keqv8}}\right)}{1 + \frac{\left[\text{Gri23P2f}\right] + \left[\text{MgGri23P2}\right]}{\text{K23P2Gv8}}}$$
(18)

Table 34: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
kDPGMv8 Keqv8 K23P2Gv8				$(3600 \text{ s})^{-1}$ dimensionless mmol·l ⁻¹	 ☑ ☑

5.10 Reaction vBPGP

This is a reversible reaction of one reactant forming two products influenced by one modifier.

Name Bisphosphoglycerate phosphatase

Reaction equation

$$Gri23P2f \xrightarrow{MgGri23P2} Gri3P + Phi$$
 (19)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
Gri23P2f	2,3-Bisphospho-D-glycerate	

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
MgGri23P2	MgGri23P2	

Products

Table 37: Properties of each product

	ruste strategetties of each producti				
Id	Name	SBO			
Gri3P Phi	3-Phospho-D-glycerate Phosphate				

Kinetic Law

Derived unit $0.0010 \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{10} = vol\left(compartment\right) \cdot \frac{Vmaxv9 \cdot \left(\left[Gri23P2f\right] + \left[MgGri23P2\right] - \frac{\left[Gri3P\right]}{Keqv9}\right)}{\left[Gri23P2f\right] + \left[MgGri23P2\right] + K23P2Gv9} \tag{20}$$

Table 38: Properties of each parameter.

	Tuble	so. Troperties of each pa	anneter.	
Id	Name	SBO Value	Unit	Constant
Vmaxv9		0.5	$\frac{1}{(3600 \text{ s})^{-1}}$. 🛮
Keqv9 K23P2Gv9		100000.0 0.2	0 dimensionless 0 mmol·1 ⁻¹	

5.11 Reaction vPGM

This is a reversible reaction of one reactant forming one product.

Name Phosphoglycerate mutase

Reaction equation

$$Gri3P \rightleftharpoons Gri2P$$
 (21)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
Gri3P	3-Phospho-D-glycerate	

Product

Table 40: Properties of each product.

Id	Name	SBO
Gri2P	2-Phospho-D-glycerate	

Kinetic Law

$$v_{11} = \text{vol (compartment)} \cdot \frac{\text{Vmaxv10} \cdot \left([\text{Gri3P}] - \frac{[\text{Gri2P}]}{\text{Keqv10}} \right)}{[\text{Gri3P}] + \text{K3PGv10} \cdot \left(1 + \frac{[\text{Gri2P}]}{\text{K2PGv10}} \right)}$$
(22)

Table 41: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv10			2000.000	$mmol \cdot l^{-1}$ $(3600 s)^{-1}$. 🛛
Keqv10			0.145	dimensionless	
K3PGv10			5.000	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
K2PGv10			1.000	$\text{mmol} \cdot l^{-1}$	

5.12 Reaction vENO

This is a reversible reaction of one reactant forming one product.

Name Enolase

Reaction equation

$$Gri2P \rightleftharpoons PEP$$
 (23)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
Gri2P	2-Phospho-D-glycerate	

Product

Table 43: Properties of each product.

Id	Name	SBO
PEP	Phosphoenolpyruvate	

Kinetic Law

$$v_{12} = \text{vol (compartment)} \cdot \frac{\text{Vmaxv11} \cdot \left([\text{Gri2P}] - \frac{[\text{PEP}]}{\text{Keqv11}} \right)}{[\text{Gri2P}] + \text{K2PGv11} \cdot \left(1 + \frac{[\text{PEP}]}{\text{KPEPv11}} \right)}$$
(24)

Table 44: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv11			1500.0	$\frac{\text{mmol} \cdot 1^{-1}}{(3600 \text{ s})^{-1}}$	· 🗹
Keqv11			1.7	dimensionless	
K2PGv11			1.0	$\operatorname{mmol} \cdot 1^{-1}$	
KPEPv11			1.0	$mmol \cdot l^{-1}$	

5.13 Reaction vPK

This is a reversible reaction of two reactants forming two products influenced by two modifiers.

Name Pyruvate kinase

Reaction equation

$$PEP + MgADP \xrightarrow{ATPf, Fru16P2} MgATP + Pyr$$
 (25)

Reactants

Table 45: Properties of each reactant.

Id	Name	SBO
PEP	Phosphoenolpyruvate	
MgADP	MgADP	

Modifiers

Table 46: Properties of each modifier.

Id	Name	SBO
ATPf	ATP	
Fru16P2	Fructose 1,6-phosphate	

Products

Table 47: Properties of each product.

Id	Name	SBO
MgATP	MgATP	
Pyr	Pyruvate	

Kinetic Law

$$v_{13} = \text{vol} (\text{compartment})$$

$$\frac{Vmaxv12 \cdot \left([PEP] \cdot [MgADP] - \frac{[Pyr] \cdot [MgATP]}{Keqv12} \right)}{\left([PEP] + KPEPv12 \right) \cdot \left([MgADP] + KMgADPv12 \right) \cdot \left(1 + \frac{L0v12 \cdot \left(1 + \frac{[ATPf] + [MgATP]}{KATPv12} \right)^4}{\left(1 + \frac{[PEP]}{KPEPv12} \right)^4 \cdot \left(1 + \frac{[Fru16P2]}{KPFru16P2v12} \right)^4} \right)}$$

$$(26)$$

Table 48: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv12			570.000	$\frac{\text{mmol} \cdot 1^{-1}}{(3600 \text{ s})^{-1}}$. 🗹
Keqv12			13790.000	dimensionless	\square
KPEPv12			0.225	$\operatorname{mmol} \cdot 1^{-1}$	\square
KMgADPv12			0.474	$\operatorname{mmol} \cdot 1^{-1}$	\square
L0v12			19.000	dimensionless	\square
KATPv12			3.390	$\operatorname{mmol} \cdot 1^{-1}$	\square
KFru16P2v12			0.005	$\operatorname{mmol} \cdot 1^{-1}$	\square

5.14 Reaction vLDHNADH

This is a reversible reaction of two reactants forming two products.

Name Lactate dehydrogenase

Reaction equation

$$NADH + Pyr \rightleftharpoons Lac + NAD$$
 (27)

Reactants

Table 49: Properties of each reactant.

Id	Name	SBO
NADH	NADH	
Pyr	Pyruvate	

Table 50: Properties of each product.

Id	Name	SBO
Lac NAD	Lactate NAD	

Derived unit $0.0010 \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{14} = \text{vol}\left(\text{compartment}\right) \cdot \text{Vmaxv13} \cdot \left(\left[\text{Pyr}\right] \cdot \left[\text{NADH}\right] - \frac{\left[\text{Lac}\right] \cdot \left[\text{NAD}\right]}{\text{Keqv13}}\right)$$
 (28)

Table 51: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv13			2800000.0	$mmol^{-1} \cdot 1 \cdot (3600 \text{ s})^{-1}$	Ø
Keqv13			9090.0	dimensionless	

5.15 Reaction vLDHNADPH

This is a reversible reaction of two reactants forming two products.

Name Lactate dehydrogenase

Reaction equation

$$Pyr + NADPHf \Longrightarrow Lac + NADPf$$
 (29)

Reactants

Table 52: Properties of each reactant.

Id	Name	SBO
Pyr	Pyruvate	
NADPHf	NADPH	

Table 53: Properties of each product.

Id	Name	SBO
Lac	Lactate	
NADPf	NADP	

Derived unit $0.0010 \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{15} = vol\left(compartment\right) \cdot kLDHv14 \cdot \left([Pyr] \cdot [NADPHf] - \frac{[Lac] \cdot [NADPf]}{Keqv14} \right) \tag{30}$$

Table 54: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kLDHv14			243.4	$mmol^{-1} \cdot 1 \cdot (3600 \text{ s})^{-1}$	Ø
Keqv14			14181.8	dimensionless	

5.16 Reaction vATPase

This is a reversible reaction of one reactant forming two products.

Name ATPase

Reaction equation

$$MgATP \rightleftharpoons Phi + MgADP$$
 (31)

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
MgATP	MgATP	

Table 56: Properties of each product.

Id	Name	SBO
Phi	Phosphate	
MgADP	MgADP	

 $\textbf{Derived unit} \ (3600 \ s)^{-1} \cdot mmol$

$$v_{16} = \text{vol} (\text{compartment}) \cdot \text{kATPasev15} \cdot [\text{MgATP}]$$
 (32)

Table 57: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kATPasev15			1.68	$(3600 \text{ s})^{-1}$	

5.17 Reaction vAK

This is a reversible reaction of two reactants forming two products.

Name Adenylate kinase

Reaction equation

$$MgATP + AMPf \Longrightarrow ADPf + MgADP$$
 (33)

Reactants

Table 58: Properties of each reactant.

Id	Name	SBO
MgATP AMPf	MgATP AMP	

Table 59: Properties of each product.

Id	Name	SBO
ADPf	ADP	

Id	Name	SBO
MgADP	MgADP	

Derived unit contains undeclared units

$$v_{17} = vol\left(compartment\right) \cdot \frac{\frac{V_{maxv16}}{KATPv16 \cdot KAMPv16} \cdot \left(\left[MgATP\right] \cdot \left[AMPf\right] - \frac{\left[MgADP\right] \cdot \left[ADPf\right]}{Keqv16}\right)}{\left(1 + \frac{\left[MgATP\right]}{KATPv16}\right) \cdot \left(1 + \frac{\left[AMPf\right]}{KAMPv16}\right) + \frac{\left[MgADP\right] + \left[ADPf\right]}{KADPv16} + \frac{\left[MgADP\right] \cdot \left[ADPf\right]}{KADPv16^2}}\right)} \tag{34}$$

Table 60: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
Vmaxv16			1380.00	$\frac{\text{mmol} \cdot 1^{-1}}{(3600 \text{ s})^{-1}}$. 🛮
KATPv16			0.09	$\text{mmol} \cdot \hat{\mathbf{l}}^{-1}$	\square
KAMPv16			0.08	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Keqv16			0.25	dimensionless	\square
KADPv16			0.11	$\text{mmol} \cdot 1^{-1}$	\square

5.18 Reaction vG6PDH

This is a reversible reaction of two reactants forming two products influenced by four modifiers.

Name Glucose 6-phosphate dehydrogenase

Reaction equation

$$Glc6P + NADPf \xrightarrow{ATPf, MgATP, Gri23P2f, MgGri23P2} GlcA6P + NADPHf \qquad (35)$$

Table 61: Properties of each reactant.

Id	Name	SBO
	Glucose 6-phosphate NADP	

Modifiers

Table 62: Properties of each modifier.

Id	Name	SBO
ATPf	ATP	
MgATP	MgATP	
Gri23P2f	2,3-Bisphospho-D-glycerate	
MgGri23P2	MgGri23P2	

Products

Table 63: Properties of each product.

Id	Name	SBO
	Phospho-D-glucono-1,5-lactone NADPH	

Kinetic Law

Table 64: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv17			162.000	mmol · l ⁻¹	· 🗹
				$(3600 \text{ s})^{-1}$	
KG6Pv17			0.067	$\operatorname{mmol} \cdot 1^{-1}$	\square
KNADPv17			0.004	$\operatorname{mmol} \cdot 1^{-1}$	\square
Keqv17			2000.000	dimensionless	\square
KATPv17			0.749	$\text{mmol} \cdot l^{-1}$	\square
KNADPHv17			0.003	$\operatorname{mmol} \cdot 1^{-1}$	\square
KPGA23v17			2.289	$\operatorname{mmol} \cdot 1^{-1}$	\square

5.19 Reaction vPGLDH

This is a reversible reaction of two reactants forming two products influenced by four modifiers.

Name Phosphogluconate dehydrogenase

Reaction equation

$$GlcA6P + NADPf \xrightarrow{Gri23P2f, MgGri23P2, ATPf, MgATP} Rul5P + NADPHf$$
 (37)

Reactants

Table 65: Properties of each reactant.

Id	Name	SBO
GlcA6P NADPf	Phospho-D-glucono-1,5-lactone NADP	

Modifiers

Table 66: Properties of each modifier.

	1	
Id	Name	SBO
Gri23P2f	2,3-Bisphospho-D-glycerate	
MgGri23P2	MgGri23P2	
ATPf	ATP	
MgATP	MgATP	

Products

Table 67: Properties of each product.

Id	Name	SBO
Rul5P NADPHf	Ribulose 5-phosphate NADPH	

Kinetic Law

$$v_{19} = vol\left(compartment\right) \\ \cdot \frac{\frac{v_{maxv18}}{K6PGIv18} \cdot \left(\left[GlcA6P\right] \cdot \left[NADPf\right] - \frac{\left[Rul5P\right] \cdot \left[NADPHf\right]}{Keqv18}\right)}{\left(1 + \frac{\left[NADPf\right]}{KNADPv18}\right) \cdot \left(1 + \frac{\left[GlcA6P\right]}{K6PGIv18} + \frac{\left[Gri23P2f\right] + \left[MgGri23P2\right]}{KPGA23v18}\right) + \frac{\left[ATPf\right] + \left[MgATP\right]}{KATPv18} + \frac{\left[NADPHf\right] \cdot \left(1 + \frac{\left[GlcA6P\right]}{K6PG2v18}\right)}{KNADPhv18}}$$

Table 68: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv18			1575.000	mmol \cdot 1^{-1}	. 🗹
				$(3600 \text{ s})^{-1}$	
K6PG1v18			0.010	$\text{mmol} \cdot 1^{-1}$	
KNADPv18			0.018	$\text{mmol} \cdot l^{-1}$	
Keqv18			141.700	dimensionless	
KPGA23v18			0.120	$\operatorname{mmol} \cdot 1^{-1}$	
KATPv18			0.154	$\text{mmol} \cdot l^{-1}$	
K6PG2v18			0.058	$\operatorname{mmol} \cdot 1^{-1}$	
KNADPHv18			0.005	$\text{mmol} \cdot l^{-1}$	

5.20 Reaction vGSSGRD

This is a reversible reaction of two reactants forming two products.

Name Glutathione reductase

Reaction equation

$$GSSG + NADPHf \Longrightarrow 2GSH + NADPf$$
 (39)

Reactants

Table 69: Properties of each reactant.

Id	Name	SBO
GSSG NADPHf	Oxidized Glutathione NADPH	

Table 70: Properties of each product.

Two to 7 ov 11 op et the 5 of each product.			
Id	Name	SBO	
GSH NADPf	Reduced Glutathione NADP		

Derived unit contains undeclared units

$$v_{20} = \text{vol}\left(\text{compartment}\right) \cdot \frac{V \text{maxv19} \cdot \left(\frac{[\text{GSSG}] \cdot [\text{NADPHf}]}{\text{KGSSGv19} \cdot \text{KNADPHv19}} - \frac{\frac{[\text{GSH}]^2}{\text{KGSHv19}^2} \cdot [\text{NADPf}]}{\text{KNADPv19} \cdot \text{Keqv19}}\right)}{1 + \frac{[\text{NADPHf}] \cdot \left(1 + \frac{[\text{GSSG}]}{\text{KGSSGv19}}\right)}{\text{KNADPHv19}} + \frac{[\text{NADPf}]}{\text{KNADPv19}} \cdot \left(1 + \frac{[\text{GSH}] \cdot \left(1 + \frac{[\text{GSH}]}{\text{KGSHv19}}\right)}{\text{KGSHv19}}\right)}\right) \tag{40}$$

Table 71: Properties of each parameter.

	14010 / 1. 1	roperties of	cach pai	ameter.	
Id	Name	SBO	Value	Unit	Constant
Vmaxv19			90.000	$\begin{array}{ccc} mmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & \end{array}$. 🗹
KGSSGv19			0.065	$\operatorname{mmol} \cdot 1^{-1}$	
KNADPHv19			0.009	$mmol \cdot l^{-1}$	
KGSHv19			20.000	$\operatorname{mmol} \cdot 1^{-1}$	
KNADPv19			0.070	$\operatorname{mmol} \cdot 1^{-1}$	
Keqv19			1.040	dimensionless	

5.21 Reaction vGSHox

This is a reversible reaction of one reactant forming one product.

Name Glutathione oxidation

Reaction equation

$$2GSH \rightleftharpoons GSSG$$
 (41)

	/=/ Troperenes or each re	
Id	Name	SBO
GSH	Reduced Glutathione	

Product

Table 73: Properties of each product.

	rectroperios or each pr	• • • • • • • • • • • • • • • • • • • •
Id	Name	SBO
GSSG	Oxidized Glutathione	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{21} = \text{vol}\left(\text{compartment}\right) \cdot \text{Kv20} \cdot [\text{GSH}]$$
 (42)

Table 74: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Kv20			0.03	$(3600 \text{ s})^{-1}$	Ø

5.22 Reaction vRibPepi

This is a reversible reaction of one reactant forming one product.

Name Phosphoribulose epimerase

Reaction equation

$$Rul5P \Longrightarrow Xul5P \tag{43}$$

Table 75: Properties of each reactant.

Id	Name	SBO
Ru15P	Ribulose 5-phosphate	

Product

Table 76: Properties of each product.

Table 70. I Toperties of each product.			
Id	Name	SBO	
Xul5P	Xylulose 5-phosphate		

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}\left(\text{compartment}\right) \cdot \frac{\text{Vmaxv21} \cdot \left(\left[\text{Rul5P}\right] - \frac{\left[\text{Xul5P}\right]}{\text{Keqv21}}\right)}{\left[\text{Rul5P}\right] + \text{KRu5Pv21} \cdot \left(1 + \frac{\left[\text{Xul5P}\right]}{\text{KX5Pv21}}\right)}$$
(44)

Table 77: Properties of each parameter.

	10010	,,,,,,,	r outin punt		
Id	Name	SBO	Value	Unit	Constant
Vmaxv21			4634.00	$\frac{\text{mmol} \cdot 1^{-1}}{(3600 \text{ s})^{-1}}$. 🛛
Keqv21			2.70	dimensionless	$ \overline{\mathbf{Z}} $
KRu5Pv21			0.19	$\operatorname{mmol} \cdot 1^{-1}$	
KX5Pv21			0.50	$\operatorname{mmol} \cdot 1^{-1}$	

5.23 Reaction vRibPiso

This is a reversible reaction of one reactant forming one product.

Name Ribose phosphate isomerase

Reaction equation

$$Rul5P \rightleftharpoons Rib5P \tag{45}$$

Table 78: Properties of each reactant.

Tuble 70: I Toperties of each feactaint.				
Id	Name	SBO		
Ru15P	Ribulose 5-phosphate			

Product

Table 79: Properties of each product

Table 17. I Toperties of each product.				
Id	Name	SBO		
Rib5P	Ribose 5-phosphate			

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}\left(\text{compartment}\right) \cdot \frac{\text{Vmaxv22} \cdot \left(\left[\text{Rul5P}\right] - \frac{\left[\text{Rib5P}\right]}{\text{Keqv22}}\right)}{\left[\text{Rul5P}\right] + \text{KRu5Pv22} \cdot \left(1 + \frac{\left[\text{Rib5P}\right]}{\text{KR5Pv22}}\right)}$$
(46)

Table 80: Properties of each parameter.

			I		
Id	Name	SBO	Value	Unit	Constant
Vmaxv22			730.00	$\begin{array}{ccc} mmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & \end{array}$. 🗹
Keqv22			3.00	dimensionless	\square
KRu5Pv22			0.78	$\operatorname{mmol} \cdot 1^{-1}$	\square
KR5Pv22			2.20	$\operatorname{mmol} \cdot 1^{-1}$	\square

5.24 Reaction vTrKet1

This is a reversible reaction of two reactants forming two products.

Name Transketolase 1

Reaction equation

$$Xul5P + Rib5P \Longrightarrow GraP + Sed7P \tag{47}$$

Table 81: Properties of each reactant.

Table 01. 110perties of each feactaint.				
Id	Name	SBO		
Xul5P Rib5P	Xylulose 5-phosphate Ribose 5-phosphate			

Products

Table 82: Properties of each product.

Id	Name	SBO
GraP Sed7P	Glyceraldehyde 3-phosphate Sedoheptulose 7-phosphate	

Kinetic Law

 $\textbf{Derived unit} \ \ 0.001000000000000013 \ mol \cdot (3600 \ s)^{-1}$

$$v_{24} = \text{vol (compartment)} \tag{48} \\ \cdot \frac{\text{Vmaxv23} \cdot \left(\left[\text{Rib5P} \right] \cdot \left[\text{Xul5P} \right] - \frac{\left[\text{GraP} \right] \cdot \left[\text{Sed7P} \right]}{\text{Keqv23}} \right)}{\left(\text{K1v23} + \left[\text{Rib5P} \right] \right) \cdot \left[\text{Xul5P} \right] + \left(\text{K2v23} + \text{K6v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{Rib5P} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{GraP} \right] + \left(\text{K3v23} + \text{K5v23} \cdot \left[\text{Sed7P} \right] \right) \cdot \left[\text{CSP} \right] + \left(\text{CSP} \right) \cdot \left[\text{CSP} \right] +$$

Table 83: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv23			23.500	$\begin{array}{ccc} mmol & \cdot & l^{-1} \\ (3600 \text{ s})^{-1} & \end{array}$. 🗹
Keqv23			1.050	dimensionless	
K1v23			0.418	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
K2v23			0.306	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
K6v23			0.008	dimensionless	$\overline{\mathbf{Z}}$
K3v23			12.432	$\text{mmol} \cdot l^{-1}$	$\overline{\mathbf{Z}}$
K5v23			0.411	dimensionless	$\overline{\mathbf{Z}}$
K4v23			0.005	$\operatorname{mmol} \cdot 1^{-1}$	
K7v23			48.800	dimensionless	$\overline{\mathbf{Z}}$

5.25 Reaction vTrAld

This is a reversible reaction of two reactants forming two products.

Name Transaldolase

Reaction equation

$$GraP + Sed7P \Longrightarrow E4P + Fru6P$$
 (49)

Table 84: Properties of each reactant.

Id	Name	SBO
GraP Sed7P	Glyceraldehyde 3-phosphate Sedoheptulose 7-phosphate	

Table 85: Properties of each product.

Id	Name	SBO
E4P	Erythrose 4-phosphate	
Fru6P	Fructose 6-phosphate	

Kinetic Law

 $\textbf{Derived unit} \ \ 0.001000000000000013 \ mol \cdot \left(3600 \ s\right)^{-1}$

$$v_{25} = vol\left(compartment\right) \\ Vmaxv24 \cdot \left(\left[Sed7P\right] \cdot \left[GraP\right] - \frac{\left[E4P\right] \cdot \left[Fru6P\right]}{Keqv24}\right) \\ \cdot \frac{\left(K1v24 + \left[GraP\right]\right) \cdot \left[Sed7P\right] + \left(K2v24 + K6v24 \cdot \left[Fru6P\right]\right) \cdot \left[GraP\right] + \left(K3v24 + K5v24 \cdot \left[Fru6P\right]\right) \cdot \left[E4P\right] + K4v24}{\left(E4P\right) \cdot \left[E4P\right] + \left(E4P\right) \cdot \left[E4P\right] + E4P}$$

Table 86: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv24			27.200	mmol · l ⁻¹	· 🗹
				$(3600 \text{ s})^{-1}$	
Keqv24			1.050	dimensionless	
K1v24			0.008	$\operatorname{mmol} \cdot 1^{-1}$	\square
K2v24			0.048	$\operatorname{mmol} \cdot 1^{-1}$	
K6v24			0.465	dimensionless	\square
K3v24			0.173	$\operatorname{mmol} \cdot 1^{-1}$	
K5v24			0.868	dimensionless	
K4v24			0.006	$\operatorname{mmol} \cdot 1^{-1}$	
K7v24			2.524	dimensionless	

5.26 Reaction vPPRPPS

This is a reversible reaction of two reactants forming two products.

Name Phosphoribosylpyrophosphate synthetase

Reaction equation

$$MgATP + Rib5P \Longrightarrow MgAMP + PRPP$$
 (51)

Reactants

Table 87: Properties of each reactant.

14010 07	ruote of troperties of euch reactains.			
Id	Name	SBO		
MgATP Rib5P	MgATP Ribose 5-phosphate			

Products

Table 88: Properties of each product.

Id	Name	SBO
MgAMP PRPP	MgAMP PRPP	

Kinetic Law

Derived unit $0.00100000000000013 \text{ mol} \cdot (3600 \text{ s})^{-1}$

$$v_{26} = \text{vol (compartment)} \cdot \frac{\text{Vmaxv25} \cdot \left([\text{Rib5P}] \cdot [\text{MgATP}] - \frac{[\text{PRPP}] \cdot [\text{MgAMP}]}{\text{Keqv25}} \right)}{(\text{KATPv25} + [\text{MgATP}]) \cdot (\text{KR5Pv25} + [\text{Rib5P}])}$$
(52)

Table 89: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant		
Vmaxv25			1.10	$\frac{\text{mmol} \cdot 1^{-1}}{(3600 \text{ s})^{-1}}$	· 🗹		
Keqv25			100000.00	dimensionless			
KATPv25			0.03	$\text{mmol} \cdot 1^{-1}$			
KR5Pv25			0.57	$mmol \cdot l^{-1}$	\square		

5.27 Reaction vTrKet2

This is a reversible reaction of two reactants forming two products.

Name Transketolase 2

Reaction equation

$$Xul5P + E4P \Longrightarrow GraP + Fru6P \tag{53}$$

Reactants

Table 90: Properties of each reactant.

Id	Name	SBO		
Xul5P E4P	Xylulose 5-phosphate Erythrose 4-phosphate			

Products

Table 91: Properties of each product.

Id	Name	SBO
GraP Fru6P	Glyceraldehyde 3-phosphate Fructose 6-phosphate	

Kinetic Law

 $\textbf{Derived unit} \ \ 0.001000000000000013 \ mol \cdot (3600 \ s)^{-1}$

$$v_{27} = vol\left(compartment\right) \\ Vmaxv26 \cdot \left([E4P] \cdot [Xul5P] - \frac{[GraP] \cdot [Fru6P]}{Keqv26} \right) \\ \cdot \frac{\left(K1v26 + [E4P] \right) \cdot [Xul5P] + \left(K2v26 + K6v26 \cdot [Fru6P] \right) \cdot [E4P] + \left(K3v26 + K5v26 \cdot [Fru6P] \right) \cdot [GraP] + K4v26}{(E4P)}$$

Table 92: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv26			23.500	mmol · 1 ⁻¹	· 🔼
				$(3600 \text{ s})^{-1}$	
Keqv26			1.200	dimensionless	\square
K1v26			0.002	$\operatorname{mmol} \cdot 1^{-1}$	\square
K2v26			0.306	$\operatorname{mmol} \cdot 1^{-1}$	\square
K6v26			0.122	dimensionless	\square
K3v26			0.055	$\operatorname{mmol} \cdot 1^{-1}$	\square
K5v26			0.029	dimensionless	\square
K4v26			$3 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1}$	
K7v26			0.215	dimensionless	$\overline{\mathbb{Z}}$

5.28 Reaction vPhiexch

This is a reversible reaction of one reactant forming one product.

Name Phosphate exchange

Reaction equation

$$Phiex \rightleftharpoons Phi \tag{55}$$

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
Phiex	Phosphate external	

Product

Table 94: Properties of each product.

Id	Name	SBO
Phi	Phosphate	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{28} = \text{vol}\left(\text{compartment}\right) \cdot \text{Vmaxv27} \cdot \left(\left[\text{Phiex}\right] - \frac{\left[\text{Phi}\right]}{\text{Keqv27}}\right)$$
 (56)

Table 95: Properties of each parameter.

Id	Name	SBO V	alue	Unit	Constant
Vmaxv27		10		$(3600 \text{ s})^{-1}$	\square
Keqv27			1.0	dimensionless	

5.29 Reaction vLacexch

This is a reversible reaction of one reactant forming one product.

Name Lactate exchange

Reaction equation

$$Lacex \rightleftharpoons Lac \tag{57}$$

Reactant

Table 96: Properties of each reactant.

Id	Name	SBO
Lacex	External Lactate	

Product

Table 97: Properties of each product.

Id	Name	SBO
Lac	Lactate	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{29} = \text{vol}\left(\text{compartment}\right) \cdot \text{Vmaxv28} \cdot \left(\left[\text{Lacex}\right] - \frac{\left[\text{Lac}\right]}{\text{Keqv28}}\right)$$
 (58)

Table 98: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmaxv28 Keqv28				(3600 s) ⁻¹ dimensionless	

5.30 Reaction vPyrexch

This is a reversible reaction of one reactant forming one product.

Name Pyruvate exchange

Reaction equation

$$Pyrex \rightleftharpoons Pyr \tag{59}$$

Reactant

Table 99: Properties of each reactant.

ruste 33. I roperties of each reactant.			
Id	Name	SBO	
Pyrex	External Pyruvate		

Product

Table 100: Properties of each product.

Id	Name	SBO
Pyr	Pyruvate	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{30} = \text{vol}\left(\text{compartment}\right) \cdot \text{Vmaxv29} \cdot \left(\left[\text{Pyrex}\right] - \frac{\left[\text{Pyr}\right]}{\text{Keqv29}}\right)$$
 (60)

Table 101: Properties of each parameter.

T.J.	Nama	CDO	Volue	Ilmit	Constant
10	Name	SBO	Value	Unit	Constant
Vmaxv29			10000.0	$(3600 \text{ s})^{-1}$	
Keqv29			1.0	dimensionless	

5.31 Reaction vMgATP

This is a reversible reaction of one reactant forming two products.

Name MgATP dissociation

Reaction equation

$$MgATP \Longrightarrow Mgf + ATPf \tag{61}$$

Table 102: Properties of each reactant.

Id	Name	SBO
MgATP	MgATP	

Table 103: Properties of each product.

Id	Name	SBO
Mgf ATPf	Mg ATP	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{31} = \text{vol}\left(\text{compartment}\right) \cdot \text{EqMult} \cdot \left(\left[\text{MgATP}\right] - \frac{\left[\text{Mgf}\right] \cdot \left[\text{ATPf}\right]}{\text{KdATP}}\right)$$
 (62)

Table 104: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
EqMult KdATP				$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	<u>✓</u>

5.32 Reaction vMgADP

This is a reversible reaction of one reactant forming two products.

Name MgADP dissociation

Reaction equation

$$MgADP \rightleftharpoons Mgf + ADPf$$
 (63)

Table 105: Properties of each reactant.

Id	Name	SBO
MgADP	MgADP	

Table 106: Properties of each product.

Id	Name	SBO
Mgf ADPf	Mg ADP	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{32} = \text{vol}\left(\text{compartment}\right) \cdot \text{EqMult} \cdot \left(\left[\text{MgADP}\right] - \frac{\left[\text{Mgf}\right] \cdot \left[\text{ADPf}\right]}{\text{KdADP}}\right)$$
 (64)

Table 107: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
EqMult KdADP				$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	

5.33 Reaction vMgAMP

This is a reversible reaction of one reactant forming two products.

Name MgAMP dissociation

Reaction equation

$$MgAMP \rightleftharpoons Mgf + AMPf \tag{65}$$

Table 108: Properties of each reactant.

Id	Name	SBO
MgAMP	MgAMP	

Table 109: Properties of each product.

Id	Name	SBO
Mgf AMPf	Mg AMP	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{33} = vol\left(compartment\right) \cdot EqMult \cdot \left(\left[MgAMP\right] - \frac{\left[Mgf\right] \cdot \left[AMPf\right]}{KdAMP} \right) \tag{66}$$

Table 110: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
EqMult KdAMP			10 ⁷ 16.640	$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	

5.34 Reaction vMgGri23P2

This is a reversible reaction of one reactant forming two products.

Name MgGri23P2 dissociation

Reaction equation

$$MgGri23P2 \Longrightarrow Mgf + Gri23P2f$$
 (67)

Table 111: Properties of each reactant.

•	dole III. I Io	perties of each	reactant.
	Id	Name	SBO
	MgGri23P2	MgGri23P2	

Table 112: Properties of each product.

Id	Name	SBO
Mgf Gri23P2f	Mg 2,3-Bisphospho-D-glycerate	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{34} = \text{vol}\left(\text{compartment}\right) \cdot \text{EqMult} \cdot \left(\left[\text{MgGri23P2}\right] - \frac{\left[\text{Mgf}\right] \cdot \left[\text{Gri23P2f}\right]}{\text{Kd23P2G}}\right)$$
 (68)

Table 113: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
EqMult Kd23P2G			10 ⁷ 1.667	$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	✓ ✓

5.35 Reaction vP1NADP

This is a reversible reaction of one reactant forming two products.

Name P1NADP dissociation

Reaction equation

$$P1NADP \rightleftharpoons P1f + NADPf \tag{69}$$

Table 114: Properties of each reactant.

Id	Name	SBO
P1NADP	Protein1 bound NADP	

Table 115: Properties of each product.

Id	Name	SBO
P1f	Protein1	
NADPf	NADP	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{35} = \text{vol}\left(\text{compartment}\right) \cdot \text{EqMult} \cdot \left(\left[\text{P1NADP}\right] - \frac{\left[\text{P1f}\right] \cdot \left[\text{NADPf}\right]}{\text{Kd1}}\right)$$
 (70)

Table 116: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
EqMult Kd1				$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	✓

5.36 Reaction vP1NADPH

This is a reversible reaction of one reactant forming two products.

Name P1NADPH dissociation

Reaction equation

$$P1NADPH \Longrightarrow P1f + NADPHf \tag{71}$$

Table 117: Properties of each reactant.

Id	Name	SBO
P1NADPH	Protein1 bound NADPH	

Table 118: Properties of each product.

Id	Name	SBO
P1f	Protein1	
NADPHf	NADPH	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{36} = \text{vol}\left(\text{compartment}\right) \cdot \text{EqMult} \cdot \left(\left[\text{P1NADPH}\right] - \frac{\left[\text{P1f}\right] \cdot \left[\text{NADPHf}\right]}{\text{Kd3}}\right)$$
 (72)

Table 119: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
EqMult Kd3				$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	✓ ✓

5.37 Reaction vP2NADP

This is a reversible reaction of one reactant forming two products.

Name P2NADP dissociation

Reaction equation

$$P2NADP \Longrightarrow P2f + NADPf \tag{73}$$

Table 120: Properties of each reactant.

Id	Name	SBO
P2NADP	Protein2 bound NADP	

Table 121: Properties of each product.

Id	Name	SBO
P2f	Protein2	
NADPf	NADP	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{37} = \text{vol}\left(\text{compartment}\right) \cdot \text{EqMult} \cdot \left(\left[\text{P2NADP}\right] - \frac{\left[\text{P2f}\right] \cdot \left[\text{NADPf}\right]}{\text{Kd2}}\right)$$
 (74)

Table 122: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
EqMult Kd2				$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	✓ ✓

5.38 Reaction vP2NADPH

This is a reversible reaction of one reactant forming two products.

Name P2NADPH dissociation

Reaction equation

$$P2NADPH \Longrightarrow P2f + NADPHf \tag{75}$$

Table 123: Properties of each reactant.

Id	Name	SBO
P2NADPH	Protein2 bound NADPH	

Table 124: Properties of each product.

Id	Name	SBO
P2f	Protein2	
NADPHf	NADPH	

Kinetic Law

Derived unit $(3600 \text{ s})^{-1} \cdot \text{mmol}$

$$v_{38} = vol\left(compartment\right) \cdot EqMult \cdot \left(\left[P2NADPH \right] - \frac{\left[P2f \right] \cdot \left[NADPHf \right]}{Kd4} \right) \tag{76}$$

Table 125: Properties of each parameter.

		1	1		
Id	Name	SBO	Value	Unit	Constant
EqMult Kd4				$(3600 \text{ s})^{-1}$ mmol·l ⁻¹	✓

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

6.1 Species Glcin

Name Glucose in

Initial concentration $4.5663 \text{ } \text{mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in vHEX and as a product in vGLT).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glcin} = v_1 - v_2 \tag{77}$$

6.2 Species MgATP

Name MgATP

Initial concentration $1.4 \text{ mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in vHEX, vPFK, vATPase, vAK, vPPRPPS, vMgATP and as a product in vPGK, vPK and as a modifier in vG6PDH, vPGLDH).

$$\frac{d}{dt}MgATP = v_8 + v_{13} - v_2 - v_4 - v_{16} - v_{17} - v_{26} - v_{31}$$
(78)

6.3 Species Glc6P

Name Glucose 6-phosphate

Initial concentration $0.0394 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vGPI, vG6PDH and as a product in vHEX).

$$\frac{d}{dt}Glc6P = v_2 - v_3 - v_{18} \tag{79}$$

6.4 Species MgADP

Name MgADP

Initial concentration $0.1 \text{ mmol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in vPGK, vPK, vMgADP and as a product in vHEX, vPFK, vATPase, vAK).

$$\frac{d}{dt}MgADP = v_2 + v_4 + v_{16} + v_{17} - v_8 - v_{13} - v_{32}$$
(80)

6.5 Species Fru6P

Name Fructose 6-phosphate

Initial concentration $0.0153 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in vPFK and as a product in vGPI, vTrAld, vTrKet2).

$$\frac{d}{dt} Fru6P = v_3 + v_{25} + v_{27} - v_4 \tag{81}$$

6.6 Species Fru16P2

Name Fructose 1,6-phosphate

Initial concentration $0.0097 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vALD and as a product in vPFK and as a modifier in vPK).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Fru}16\mathrm{P2} = v_4 - v_5 \tag{82}$$

6.7 Species GraP

Name Glyceraldehyde 3-phosphate

Initial concentration $0.0061 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vGAPDH, vTrAld and as a product in vALD, vTPI, vTrKet1, vTrKet2).

$$\frac{d}{dt}GraP = v_5 + v_6 + v_{24} + v_{27} - v_7 - v_{25}$$
(83)

6.8 Species DHAP

Name Dihydroxyacetone phosphate

Initial concentration $0.1492 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in vTPI and as a product in vALD).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DHAP} = v_5 - v_6 \tag{84}$$

6.9 Species Phi

Name Phosphate

Initial concentration 0.9992 mmol·l⁻¹

This species takes part in four reactions (as a reactant in vGAPDH and as a product in vBPGP, vATPase, vPhiexch).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Phi} = v_{10} + v_{16} + v_{28} - v_7 \tag{85}$$

6.10 Species NAD

Name NAD

Initial concentration $0.0653 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vGAPDH and as a product in vLDHNADH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NAD} = v_{14} - v_7 \tag{86}$$

6.11 Species Gri13P2

Name 1,3-Bisphospho-D-glycerate

Initial concentration $5 \cdot 10^{-4} \text{ } \text{mmol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in vPGK, vBPGM and as a product in vGAPDH).

$$\frac{d}{dt}Gri13P2 = v_7 - v_8 - v_9 \tag{87}$$

6.12 Species NADH

Name NADH

Initial concentration $2 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in vLDHNADH and as a product in vGAPDH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADH} = v_7 - v_{14} \tag{88}$$

6.13 Species Gri3P

Name 3-Phospho-D-glycerate

Initial concentration $0.0658 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vPGM and as a product in vPGK, vBPGP).

$$\frac{d}{dt}Gri3P = v_8 + v_{10} - v_{11}$$
 (89)

6.14 Species Gri23P2f

Name 2,3-Bisphospho-D-glycerate

Initial concentration $2.0601 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vBPGP and as a product in vBPGM, vMgGri23P2 and as a modifier in vHEX, vG6PDH, vPGLDH).

$$\frac{d}{dt}Gri23P2f = v_9 + v_{34} - v_{10} \tag{90}$$

6.15 Species Gri2P

Name 2-Phospho-D-glycerate

Initial concentration $0.0084 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vENO and as a product in vPGM).

$$\frac{d}{dt}Gri2P = v_{11} - v_{12} \tag{91}$$

6.16 Species PEP

Name Phosphoenolpyruvate

Initial concentration $0.0109 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vPK and as a product in vENO).

$$\frac{d}{dt}PEP = v_{12} - v_{13} \tag{92}$$

6.17 Species Pyr

Name Pyruvate

Initial concentration 0.084 mmol·1⁻¹

This species takes part in four reactions (as a reactant in vLDHNADH, vLDHNADPH and as a product in vPK, vPyrexch).

$$\frac{\mathrm{d}}{\mathrm{d}t} Pyr = v_{13} + v_{30} - v_{14} - v_{15}$$
(93)

6.18 Species Lac

Name Lactate

Initial concentration $1.6803 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a product in vLDHNADH, vLDHNADPH, vLacexch).

$$\frac{\mathrm{d}}{\mathrm{d}t} Lac = v_{14} + v_{15} + v_{29} \tag{94}$$

6.19 Species NADPHf

Name NADPH

Initial concentration $0.0040 \text{ mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vLDHNADPH, vGSSGRD and as a product in vG6PDH, vPGLDH, vP1NADPH, vP2NADPH).

$$\frac{d}{dt}NADPHf = v_{18} + v_{19} + v_{36} + v_{38} - v_{15} - v_{20}$$
(95)

6.20 Species NADPf

Name NADP

Initial concentration $0 \text{ mmol} \cdot 1^{-1}$

This species takes part in six reactions (as a reactant in vG6PDH, vPGLDH and as a product in vLDHNADPH, vGSSGRD, vP1NADP, vP2NADP).

$$\frac{d}{dt}NADPf = v_{15} + v_{20} + v_{35} + v_{37} - v_{18} - v_{19}$$
(96)

6.21 Species AMPf

Name AMP

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vAK and as a product in vMgAMP and as a modifier in vPFK).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{AMPf} = v_{33} - v_{17} \tag{97}$$

6.22 Species ADPf

Name ADP

Initial concentration $0.25 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a product in vAK, vMgADP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ADPf} = v_{17} + v_{32} \tag{98}$$

6.23 Species GlcA6P

Name Phospho-D-glucono-1,5-lactone

Initial concentration $0.025 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in vPGLDH and as a product in vG6PDH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GlcA6P} = v_{18} - v_{19} \tag{99}$$

6.24 Species Ru15P

Name Ribulose 5-phosphate

Initial concentration $0.0047 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vRibPepi, vRibPiso and as a product in vPGLDH).

$$\frac{d}{dt}Rul5P = v_{19} - v_{22} - v_{23} \tag{100}$$

6.25 Species GSSG

Name Oxidized Glutathione

Initial concentration $4 \cdot 10^{-4} \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vGSSGRD and as a product in vGSHox).

$$\frac{d}{dt}GSSG = v_{21} - v_{20} \tag{101}$$

6.26 Species GSH

Name Reduced Glutathione

Initial concentration $3.1136 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vGSHox and as a product in vGSSGRD).

$$\frac{d}{dt}GSH = 2v_{20} - 2v_{21} \tag{102}$$

6.27 Species Xu15P

Name Xylulose 5-phosphate

Initial concentration $0.0127 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vTrKet1, vTrKet2 and as a product in vRibPepi).

$$\frac{\mathrm{d}}{\mathrm{d}t} X u 15P = v_{22} - v_{24} - v_{27} \tag{103}$$

6.28 Species Rib5P

Name Ribose 5-phosphate

Initial concentration $0.014 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vTrKet1, vPPRPPS and as a product in vRibPiso).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Rib5P} = v_{23} - v_{24} - v_{26} \tag{104}$$

6.29 Species Sed7P

Name Sedoheptulose 7-phosphate

Initial concentration $0.0154 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vTrAld and as a product in vTrKet1).

$$\frac{d}{dt}\text{Sed7P} = v_{24} - v_{25} \tag{105}$$

6.30 Species E4P

Name Erythrose 4-phosphate

Initial concentration $0.0063 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in vTrKet2 and as a product in vTrAld).

$$\frac{d}{dt}E4P = v_{25} - v_{27} \tag{106}$$

6.31 Species MgAMP

Name MgAMP

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in vMgAMP and as a product in vPPRPPS and as a modifier in vPFK).

$$\frac{d}{dt}MgAMP = v_{26} - v_{33} \tag{107}$$

6.32 Species ATPf

Name ATP

Initial concentration $0.25 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in five reactions (as a product in vMgATP and as a modifier in vPFK, vPK, vG6PDH, vPGLDH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ATPf} = v_{31} \tag{108}$$

6.33 Species Mgf

Name Mg

Initial concentration $0.8 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a product in vMgATP, vMgADP, vMgAMP, vMgGri23P2 and as a modifier in vHEX, vPFK).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Mgf} = v_{31} + v_{32} + v_{33} + v_{34} \tag{109}$$

6.34 Species MgGri23P2

Name MgGri23P2

Initial concentration $0.5 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in vMgGri23P2 and as a modifier in vHEX, vBPGM, vBPGP, vG6PDH, vPGLDH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MgGri23P2} = -v_{34} \tag{110}$$

6.35 Species P1NADP

Name Protein1 bound NADP

Initial concentration $0 \text{ } mmol \cdot l^{-1}$

This species takes part in one reaction (as a reactant in vP1NADP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{P1NADP} = -v_{35} \tag{111}$$

6.36 Species P1f

Name Protein1

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in vP1NADP, vP1NADPH).

$$\frac{d}{dt}P1f = v_{35} + v_{36} \tag{112}$$

6.37 Species P1NADPH

Name Protein1 bound NADPH

Initial concentration $0.024 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in vP1NADPH).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{P1NADPH} = -v_{36} \tag{113}$$

6.38 Species P2NADP

Name Protein2 bound NADP

Initial concentration $0 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in vP2NADP).

$$\frac{\mathrm{d}}{\mathrm{d}t}P2\mathrm{NADP} = -v_{37} \tag{114}$$

6.39 Species P2f

Name Protein2

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in vP2NADP, vP2NADPH).

$$\frac{d}{dt}P2f = v_{37} + v_{38} \tag{115}$$

6.40 Species P2NADPH

Name Protein2 bound NADPH

Initial concentration $0.024 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in vP2NADPH).

$$\frac{\mathrm{d}}{\mathrm{d}t} P2NADPH = -v_{38} \tag{116}$$

6.41 Species PRPP

Name PRPP

Initial concentration $1 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in vPPRPPS), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{P}\mathbf{R}\mathbf{P}\mathbf{P} = 0\tag{117}$$

6.42 Species Lacex

Name External Lactate

Initial concentration 1.68 mmol·l⁻¹

This species takes part in one reaction (as a reactant in vLacexch), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Lacex} = 0\tag{118}$$

6.43 Species Pyrex

Name External Pyruvate

Initial concentration $0.084 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in vPyrexch), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pyrex} = 0\tag{119}$$

6.44 Species Glcout

Name Glucose outside

Initial concentration $5 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in vGLT), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Glcout} = 0\tag{120}$$

6.45 Species Phiex

Name Phosphate external

Initial concentration $1 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in vPhiexch), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Phiex} = 0\tag{121}$$

 $\mathfrak{BML2}^{lag}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany