In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
```

In [2]:

```
a=pd.read_csv(r"C:\Users\Gowthami\Downloads\bottle.csv.zip")
a
```

C:\Users\Gowthami\AppData\Local\Temp\ipykernel_22952\1376288322.py:1: DtypeWarning: Columns (47,73) have mixed types. Specify dtype option on import or set low_memory=False.

a=pd.read_csv(r"C:\Users\Gowthami\Downloads\bottle.csv.zip")

Out[2]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Dej	pthm	T_d	legC	Salnty	O2ml_l	L SThe	ta
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3		0	10	.500	33.4400	Nal	N 25.6490	00
1 In [3]:	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3		8	10	.460	33.4400	Nal	N 25.6560	00
a.head(19- 4903CR-								
0ut[3]:	1	3	054.0 056.0	HY-060- 0930- 05400560- 0010A-7		10	10	.460	33.4370	Nal	N 25.6540	00_
Cst (Cnt Btl (Cnt Sta	ID Den	19- t h_49 03 D® pt	hm	T de	aC	Salnt	v O2ml	L STh	eta O2Sa	ıt
3	1	4	054.0 	HY-060-		19	_		33.4200	_	N 25.6430	
		05.4	490	0 59 00560- 03C B 019A-3								
0	1	1 054 056	3.0	/-060- 0930- 19- 05 6 903CR-	0	10	.50	33.44	0 N	aN 25.6	649 Nal	١.
4	1	5	054 ტ ე 056.0	00AH3Y-060- 0930- 05900560- 03CR020A-7		20	10	.450	33.4210	Nal	N 25.6430	00
1	1	2 054 056	1.0 H\ 3.0 0540	/-060- 0930 0560- 08A-3 20-	8	0	.46	33.44	0 <u>N</u>	aN 25.6	356 Nal	N
864858	34404	864859	093.4 0264 \$ (1611SR- 1MJX-310- 3CR-2239-		0	18	.744	33.4083	5.80	5 23.8705	55
2	1	3 054 056	3.0 0540	/- 090000000000000	10	10	.46	33.43	7 N	aN 25.6	654 Nal	Ν.
864859	34404	864860		1 ly IX-310- 3CR-2239-		2	18	.744	33.4083	5.80	5 23.8707	'2
3	1	4 054 056	3.0 0540	/- 086 40264- 093 0 002A-3 0560- 19A-3	19	10	.45	33.42	0 Na	aN 25.6	643 Nal	Ν.
864860	34404		093.4 0264 9 (16115R- 1MX-310- 3CR-2239-		5	18	.692	33.4150	5.79	6 23.889 ⁻	11
4	1	5 054 056	3.0 0540	/- 0980 40264- 093 0 005A-3 0560- 20A-7	20	10	.45	33.42	1 N	aN 25.6	643 Nal	ν.
5 rows ×	74 ³⁴⁴⁰⁴	864862 nns	093.4 026.4	1611SR- MX-310- 2239-		10	18	.161	33.4062	5.81	6 24.0142	26
4)						

In [4]: Cs	t_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
a.info()									
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297

864863 rows × 74 columns

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 864863 entries, 0 to 864862
Data columns (total 74 columns):

Data	columns	(total	74	columns)):
------	---------	--------	----	----------	----

Data	columns (total /4	•	
#	Column	Non-Null Count	Dtype
0	Cst_Cnt	864863 non-null	int64
1	Btl_Cnt	864863 non-null	int64
2	Sta_ID	864863 non-null	object
3	Depth_ID	864863 non-null	object
4	Depthm	864863 non-null	int64
5	T degC	853900 non-null	float64
6	Salnty	817509 non-null	float64
7	02m1_L	696201 non-null	
8	STheta	812174 non-null	
9	02Sat	661274 non-null	
10		661268 non-null	
	Oxy_μmol/Kg BtlNum	118667 non-null	
11			float64
12	RecInd	864863 non-null	int64
13	T_prec	853900 non-null	float64
14	T_qual	23127 non-null	
15	S_prec	817509 non-null	float64
16	S_qual	74914 non-null	float64
17	P_qual	673755 non-null	float64
18	O_qual	184676 non-null	float64
19	SThtaq	65823 non-null	float64
20	02Satq	217797 non-null	float64
21	ChlorA	225272 non-null	float64
22	Chlqua	639166 non-null	float64
23	Phaeop	225271 non-null	float64
24	Phaqua	639170 non-null	float64
25	PO4uM	413317 non-null	float64
26	P04q	451786 non-null	float64
27	SiO3uM	354091 non-null	float64
28	Si03qu	510866 non-null	float64
29	NO2uM	337576 non-null	float64
30	NO2q	529474 non-null	
31	NO3uM	337403 non-null	
32	NO3q	529933 non-null	
33	NH3uM	64962 non-null	float64
		808299 non-null	float64
34 25	NH3q	14432 non-null	float64
35	C14As1		
36	C14A1p	12760 non-null	
37	C14A1q	848605 non-null	
38	C14As2	14414 non-null	float64
39	C14A2p	12742 non-null	float64
40	C14A2q	848623 non-null	float64
41	DarkAs	22649 non-null	float64
42	DarkAp	20457 non-null	float64
43	DarkAq	840440 non-null	float64
44	MeanAs	22650 non-null	float64
45	MeanAp	20457 non-null	float64
46	MeanAq	840439 non-null	float64
47	IncTim	14437 non-null	object
48	LightP	18651 non-null	float64
49	R_Depth	864863 non-null	float64
50	R_TEMP	853900 non-null	float64
51	R_POTEMP	818816 non-null	float64
52	R_SALINITY	817509 non-null	float64
53	R SIGMA	812007 non-null	float64
54	R_SVA	812092 non-null	float64
55	R DYNHT	818206 non-null	float64
23		SISION HOLL	50.004

56	R_02	696201 non-null	float64
57	R_02Sat	666448 non-null	float64
58	R_SIO3	354099 non-null	float64
59	R_P04	413325 non-null	float64
60	R_NO3	337411 non-null	float64
61	R_NO2	337584 non-null	float64
62	R_NH4	64982 non-null	float64
63	R_CHLA	225276 non-null	float64
64	R_PHAEO	225275 non-null	float64
65	R_PRES	864863 non-null	int64
66	R_SAMP	122006 non-null	float64
67	DIC1	1999 non-null	float64
68	DIC2	224 non-null	float64
69	TA1	2084 non-null	float64
70	TA2	234 non-null	float64
71	pH2	10 non-null	float64
72	pH1	84 non-null	float64
73	DIC Quality Comment	55 non-null	object
d+vn	es: float64(65) int6	4(5) object(4)	

dtypes: float64(65), int64(5), object(4)

memory usage: 488.3+ MB

In [5]:

a.tail()

Out[5]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426
864862	34404	864863	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0015A-3	15	17.533	33.3880	5.774	24.15297
5 rows ×	74 colun	nns							
4									

In [6]:

a.describe()

Out[6]:

	Cst_Cnt	Btl_Cnt	Depthm	T_degC	Salnty	0
count	864863.000000	864863.000000	864863.000000	853900.000000	817509.000000	696201.0
mean	17138.790958	432432.000000	226.831951	10.799677	33.840350	3.3
std	10240.949817	249664.587269	316.050259	4.243825	0.461843	2.0
min	1.000000	1.000000	0.000000	1.440000	28.431000	-0.0
25%	8269.000000	216216.500000	46.000000	7.680000	33.488000	1.3
50%	16848.000000	432432.000000	125.000000	10.060000	33.863000	3.4
75%	26557.000000	648647.500000	300.000000	13.880000	34.196900	5.5
max	34404.000000	864863.000000	5351.000000	31.140000	37.034000	11.1

8 rows × 70 columns

In [7]:

a.isna().any()

Out[7]:

Cst_Cnt	False
Btl_Cnt	False
Sta_ID	False
Depth_ID	False
Depthm	False
TA1	True
TA2	True
pH2	True
pH1	True
DIC Quality Comment	True
Length: 74, dtype: bool	

In [8]:

```
a.isnull().sum()
Out[8]:
Cst_Cnt
                             0
Btl_Cnt
                             0
Sta_ID
                             0
Depth_ID
                             0
Depthm
                             0
TA1
                        862779
TA2
                        864629
pH2
                        864853
pH1
                        864779
DIC Quality Comment
                        864808
Length: 74, dtype: int64
```

In [9]:

```
a.loc[:,['Salnty','T_degC']]
```

Out[9]:

	Salnty	T_degC
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533

864863 rows × 2 columns

In [10]:

```
a=a[['Salnty','T_degC']]
a.columns=['Sal','Temp']
```

In [11]:

a.head(20)

Out[11]:

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
5	33.431	10.45
6	33.440	10.45
7	33.424	10.24
8	33.420	10.06
9	33.494	9.86
10	33.510	9.83
11	33.580	9.67
12	33.640	9.50
13	33.689	9.32
14	33.847	8.76
15	33.860	8.71
16	33.876	8.53
17	NaN	8.45
18	33.926	8.26
19	33.980	7.96

In [12]:

sns.lmplot(x='Sal',y='Temp',data=a,order=2,ci=None)

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x17ff59ebc10>


```
In [13]:
```

```
a.fillna(method='ffill')
```

Out[13]:

	Sal	Temp
0	33.4400	10.500
1	33.4400	10.460
2	33.4370	10.460
3	33.4200	10.450
4	33.4210	10.450
864858	33.4083	18.744
864859	33.4083	18.744
864860	33.4150	18.692
864861	33.4062	18.161
864862	33.3880	17.533
	_	

864863 rows × 2 columns

In [14]:

```
a.fillna(value=0,inplace=True)
```

C:\Users\Gowthami\AppData\Local\Temp\ipykernel_22952\3015722605.py:1: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

a.fillna(value=0,inplace=True)

In [15]:

```
x=np.array(a['Sal']).reshape(-1,1)
y=np.array(a['Temp']).reshape(-1,1)
```

In [16]:

```
a.isna().any()
```

Out[16]:

Sal False Temp False dtype: bool

```
In [17]:
```

```
a.isnull().sum()
```

Out[17]:

Sal 0 Temp 0 dtype: int64

In [18]:

```
a.dropna(inplace=True)
```

C:\Users\Gowthami\AppData\Local\Temp\ipykernel_22952\2317726482.py:1: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

a.dropna(inplace=True)

In [19]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

In [20]:

```
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.014809436284115463

In [21]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [22]:

```
a500=a[:][:500]
sns.lmplot(x='Sal',y='Temp',data=a500,order=1,ci=None)
```

Out[22]:

<seaborn.axisgrid.FacetGrid at 0x17ff475fd90>

In [23]:

```
a500.fillna(method='ffill',inplace=True)
x=np.array(a500['Sal']).reshape(-1,1)
y=np.array(a500['Temp']).reshape(-1,1)
a500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```

Regression: 0.022412040359021446

In [24]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 0.022412040359021446

#conclusion: Linear regression is best fit for the model

Ridge and Lasso regression

In [25]:

```
plt.figure(figsize = (10, 10))
sns.heatmap(a.corr(), annot = True)
```

Out[25]:

<Axes: >


```
In [26]:
```

```
features = a.columns[0:2]
target = a.columns[-1]
#X and y values

X = a[features].values
y = a[target].values
#splot

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=17
print("The dimension of X_train is {}".format(X_train.shape))
print("The dimension of X_test is {}".format(X_test.shape))
#Scale features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

The dimension of X_train is (605404, 2) The dimension of X_test is (259459, 2)

In [27]:

```
#Model
lr = LinearRegression()
#Fit model
lr.fit(X_train, y_train)
#predict
#prediction = Lr.predict(X_test)
#actual
actual = y_test
train_score_lr = lr.score(X_train, y_train)
test_score_lr = lr.score(X_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

In [28]:

```
#Using the linear CV model
from sklearn.linear_model import RidgeCV
#Ridge Cross validation
ridge_cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 1, 10]).fit(X_train, y_train)
#score
print("The train score for ridge model is {}".format(ridge_cv.score(X_train, y_train)))
print("The train score for ridge model is {}".format(ridge_cv.score(X_test, y_test)))
```

The train score for ridge model is 0.999999981135502 The train score for ridge model is 0.9999999811206

In [29]:

```
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(X_train,y_train)
#train and test scorefor ridge regression
train_score_ridge = ridgeReg.score(X_train, y_train)
test_score_ridge = ridgeReg.score(X_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.999999999723243 The test score for ridge model is 0.9999999997231402

In [30]:

```
plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo

plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


In [31]:

```
#Using the linear CV model
from sklearn.linear_model import LassoCV
#Lasso Cross validation
lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).fit(X_trai
#score
print(lasso_cv.score(X_train, y_train))
print(lasso_cv.score(X_test, y_test))
```

0.999999994806811

0.999999994806712

In [32]:

```
#Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(X_train,y_train)
train_score_ls =lasso.score(X_train,y_train)
test_score_ls =lasso.score(X_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.0 The test score for ls model is -1.9031696447013857e-05

In [33]:

```
pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
```

Out[33]:

<Axes: >

In [34]:

```
#plot size
plt.figure(figsize = (10, 10))
#add plot for ridge regression
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo
#add plot for lasso regression
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',
#add plot for linear model
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
```

Out[34]:

[<matplotlib.lines.Line2D at 0x17fd2e42b10>]

Elastic net

```
In [35]:
```

```
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(X,y)
print(regr.coef_)
print(regr.intercept_)
[0.     0.94934511]
0.5401219631063316
```

```
In [36]:
```

```
y_pred_elastic=regr.predict(X_train)
```

In [37]:

```
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set", mean_squared_error)
```

Mean Squared Error on test set 114.40984808660129

Vehicle selection

In [38]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge

df=pd.read_csv(r"C:\Users\Gowthami\Downloads\fiat500_VehicleSelection_Dataset.csv")
df
```

Out[38]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1	lounge	51	882	25000	1	44.907242	8.611
1	2	pop	51	1186	32500	1	45.666359	12.241
2	3	sport	74	4658	142228	1	45.503300	11.417
3	4	lounge	51	2739	160000	1	40.633171	17.634
4	5	рор	73	3074	106880	1	41.903221	12.495
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	pop	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568

1538 rows × 9 columns

In [39]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	ID	1538 non-null	int64
1	model	1538 non-null	object
2	engine_power	1538 non-null	int64
3	age_in_days	1538 non-null	int64
4	km	1538 non-null	int64
5	previous_owners	1538 non-null	int64
6	lat	1538 non-null	float64
7	lon	1538 non-null	float64
8	price	1538 non-null	int64
44	C1+C4/2\ :	-+ < 4 (< \ - - - - -	4 \

dtypes: float64(2), int64(6), object(1)

memory usage: 108.3+ KB

In [40]:

df.head()

Out[40]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	F
0	1	lounge	51	882	25000	1	44.907242	8.611560	-
1	2	рор	51	1186	32500	1	45.666359	12.241890	1
2	3	sport	74	4658	142228	1	45.503300	11.417840	
3	4	lounge	51	2739	160000	1	40.633171	17.634609	(
4	5	рор	73	3074	106880	1	41.903221	12.495650	;

In [41]:

df.tail()

Out[41]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lc
1533	1534	sport	51	3712	115280	1	45.069679	7.704
1534	1535	lounge	74	3835	112000	1	45.845692	8.666
1535	1536	pop	51	2223	60457	1	45.481541	9.413
1536	1537	lounge	51	2557	80750	1	45.000702	7.682
1537	1538	pop	51	1766	54276	1	40.323410	17.568
4	_	_			_			

In [42]:

df.info

Out[42]:

<box< th=""><th>d meth</th><th>od Da</th><th>taFrame.inf</th><th>o of</th><th>ID</th><th>mod</th><th>del</th><th>engine_power</th><th>age_i</th><th>in_d</th></box<>	d meth	od Da	taFrame.inf	o of	ID	mod	del	engine_power	age_i	in_d
ays	km	ı pre	vious_owner	S						
0	1	loun	ge	51	88	32	2500	9	1	\
1	2	р	ор	51	118	6	3250	9	1	
2	3	spo	rt	74	465	8 1	L4222	8	1	
3	4	loun	ge	51	273	9 1	L6000	9	1	
4	5	р	ор	73	307	4 1	L0688	9	1	
• • •	• • •		• •	• • •	• •	•		•	• • •	
1533	1534	spo	rt	51	371	.2 1	L1528	9	1	
1534	1535	loun	ge	74	383	5 1	L1200	9	1	
1535	1536	р	ор	51	222	23	6045	7	1	
1536	1537	loun	ge	51	255	7	8075	9	1	
1537	1538	р	ор	51	176	6	5427	5	1	
		1-4	1							
•		lat	lon	price						
0	44.90		8.611560	8900						
1	45.66		12.241890	8800						
2	45.50	3300	11.417840	4200						
3	40.63	3171	17.634609	6000						
4	41.90	3221	12.495650	5700						
• • •			• • •	• • •						
1533	45.06	9679	7.704920	5200						
1534	45.84	5692	8.666870	4600						
1535	45.48	1541	9.413480	7500						
1536	45.00	0702	7.682270	5990						
1537	40.32	3410	17.568270	7900						

[1538 rows x 9 columns]>

In [43]:

df.describe()

Out[43]:

	ID	engine_power	age_in_days	km	previous_owners	li
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.00000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.54136
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.13351
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.85583
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.80299
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.39409
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.46796
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.79561
4						

In [44]:

```
df.isna().any()
```

Out[44]:

ID False model False engine_power False False age_in_days False km previous_owners False False lat False lon price False

dtype: bool

In [45]:

```
df.isnull().sum()
```

Out[45]:

ID 0 model 0 0 engine_power 0 age_in_days 0 0 previous_owners lat 0 0 lon 0 price

dtype: int64

In [46]:

```
df.isnull()
```

Out[46]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	False	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False	False
1533	False	False	False	False	False	False	False	False	False
1534	False	False	False	False	False	False	False	False	False
1535	False	False	False	False	False	False	False	False	False
1536	False	False	False	False	False	False	False	False	False
1537	False	False	False	False	False	False	False	False	False

1538 rows × 9 columns

In [47]:

df.loc[:11,["ID","price"]]

Out[47]:

	ID	price
0	1	8900
1	2	8800
2	3	4200
3	4	6000
4	5	5700
5	6	7900
6	7	10750
7	8	9190
8	9	5600
9	10	6000
10	11	8950
11	12	10990

In [48]:

```
df=df[["engine_power","price"]]
df.columns=["Engine","pri"]
```

In [49]:

```
sns.lmplot(x='Engine',y='pri',data=df,order=2,ci=None)
```

Out[49]:

<seaborn.axisgrid.FacetGrid at 0x17fd2e74350>

In [50]:

```
df.describe()
```

Out[50]:

	Engine	pri
count	1538.000000	1538.000000
mean	51.904421	8576.003901
std	3.988023	1939.958641
min	51.000000	2500.000000
25%	51.000000	7122.500000
50%	51.000000	9000.000000
75%	51.000000	10000.000000
max	77.000000	11100.000000

In [51]:

```
df.fillna(method="ffill")
```

Out[51]:

	Engine	pri
0	51	8900
1	51	8800
2	74	4200
3	51	6000
4	73	5700
1533	51	5200
1534	74	4600
1535	51	7500
1536	51	5990
1537	51	7900

1538 rows × 2 columns

In [52]:

```
x=np.array(df['Engine']).reshape(-1,1)
y=np.array(df['pri']).reshape(-1,1)
```

In [53]:

```
df.dropna(inplace=True)
```

C:\Users\Gowthami\AppData\Local\Temp\ipykernel_22952\1379821321.py:1: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

In [54]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

In [55]:

```
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.046186912889935816

In [56]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [57]:

```
df500=df[:][:500]
sns.lmplot(x='Engine',y='pri',data=df500,order=1,ci=None)
```

Out[57]:

<seaborn.axisgrid.FacetGrid at 0x17fd2e13710>

#df500.fillna(method='ffill',inplace=True) x=np.array(df500['Engine']).reshape(-1,1) y=np.array(df500['pri']).reshape(-1,1) df500.dropna(inplace=True) x train,x test,y train,y test=train test split(x,y,test size=0.25) regr=LinearRegression() regr.fit(x_train,y_train) print("Regression:",regr.score(x_test,y_test)) y_pred=regr.predict(x_test) plt.scatter(x test,y test,color='b') plt.plot(x test,y pred,color='k') plt.show()

In [58]:

```
from sklearn.linear model import LinearRegression
from sklearn.metrics import r2 score
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 0.046186912889935816

#conclusion: Linear regression is not fit for the model

Ridge and Lasso regression

In [59]:

```
features = df.columns[0:2]
target = df.columns[-1]
#X and y values
X = df[features].values
y = df[target].values
#splot
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=17
print("The dimension of X_train is {}".format(X_train.shape))
print("The dimension of X_test is {}".format(X_test.shape))
#Scale features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

The dimension of X_train is (1076, 2) The dimension of X_test is (462, 2)

In [60]:

```
#Model
lr = LinearRegression()
#Fit model
lr.fit(X_train, y_train)
#predict
#prediction = lr.predict(X_test)
#actual
actual = y_test
train_score_lr = lr.score(X_train, y_train)
test_score_lr = lr.score(X_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

```
The train score for lr model is 1.0 The test score for lr model is 1.0
```

In [61]:

```
#Using the Linear CV model
from sklearn.linear_model import RidgeCV
#Ridge Cross validation
ridge_cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 1, 10]).fit(X_train, y_train)
#score
print("The train score for ridge model is {}".format(ridge_cv.score(X_train, y_train)))
print("The train score for ridge model is {}".format(ridge_cv.score(X_test, y_test)))
```

In [62]:

```
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(X_train,y_train)
#train and test scorefor ridge regression
train_score_ridge = ridgeReg.score(X_train, y_train)
test_score_ridge = ridgeReg.score(X_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.9999088581979684 The test score for ridge model is 0.9999100853681022

In [63]:

```
plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True)
```

Out[63]:

<Axes: >

In [64]:

```
plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo

plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


In [65]:

```
#Using the linear CV model
from sklearn.linear_model import LassoCV
#Lasso Cross validation
lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).fit(X_trai
#score
print(lasso_cv.score(X_train, y_train))
print(lasso_cv.score(X_test, y_test))
```

- 0.999999999501757
- 0.999999999638806

In [66]:

```
#Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(X_train,y_train)
train_score_ls =lasso.score(X_train,y_train)
test_score_ls =lasso.score(X_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9999728562194999 The test score for ls model is 0.9999728508562553

In [67]:

```
pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
```

Out[67]:

<Axes: >

In [68]:

```
#plot size
plt.figure(figsize = (10, 10))
#add plot for ridge regression
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo
#add plot for lasso regression
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',
#add plot for linear model
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
```

Out[68]:

[<matplotlib.lines.Line2D at 0x17fd2c63290>]

Elastic net

In [69]:

```
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(X,y)
print(regr.coef_)
print(regr.intercept_)
```

```
[-0. 0.99999973]
0.002280249860632466
```

In [70]:

```
y_pred_elastic=regr.predict(X_train)
```

In [71]:

```
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set", mean_squared_error)
```

Mean Squared Error on test set 77371869.93693778

Data

In [72]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
```

In [73]:

```
de=pd.read_csv(r"C:\Users\Gowthami\Downloads\data.csv")
de
```

Out[73]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
0	2014- 05-02 00:00:00	3.130000e+05	3.0	1.50	1340	7912	1.5	0
1	2014- 05-02 00:00:00	2.384000e+06	5.0	2.50	3650	9050	2.0	0
2	2014- 05-02 00:00:00	3.420000e+05	3.0	2.00	1930	11947	1.0	0
3	2014- 05-02 00:00:00	4.200000e+05	3.0	2.25	2000	8030	1.0	0
4	2014- 05-02 00:00:00	5.500000e+05	4.0	2.50	1940	10500	1.0	0
4595	2014- 07-09 00:00:00	3.081667e+05	3.0	1.75	1510	6360	1.0	0
4596	2014- 07-09 00:00:00	5.343333e+05	3.0	2.50	1460	7573	2.0	0
4597	2014- 07-09 00:00:00	4.169042e+05	3.0	2.50	3010	7014	2.0	0
4598	2014- 07-10 00:00:00	2.034000e+05	4.0	2.00	2090	6630	1.0	0
4599	2014- 07-10 00:00:00	2.206000e+05	3.0	2.50	1490	8102	2.0	0

4600 rows × 18 columns

In [74]:

```
de=de[["sqft_living","sqft_lot"]]
de.columns=["Liv","Lot"]
```

In [75]:

```
sns.lmplot(x='Liv',y='Lot',data=de,order=2,ci=None)
```

Out[75]:

<seaborn.axisgrid.FacetGrid at 0x17fd2c2f7d0>

In [76]:

de.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4600 entries, 0 to 4599
Data columns (total 2 columns):
Column Non-Null Count Dtype
--- 0 Liv 4600 non-null int64
1 Lot 4600 non-null int64

dtypes: int64(2)
memory usage: 72.0 KB

```
In [77]:
```

```
de.describe()
```

Out[77]:

	Liv	Lot
count	4600.000000	4.600000e+03
mean	2139.346957	1.485252e+04
std	963.206916	3.588444e+04
min	370.000000	6.380000e+02
25%	1460.000000	5.000750e+03
50%	1980.000000	7.683000e+03
75%	2620.000000	1.100125e+04
max	13540.000000	1.074218e+06

In [78]:

```
de.fillna(method='ffill')
```

Out[78]:

	Liv	Lot
0	1340	7912
1	3650	9050
2	1930	11947
3	2000	8030
4	1940	10500
4595	1510	6360
4596	1460	7573
4597	3010	7014
4598	2090	6630
4599	1490	8102

4600 rows × 2 columns

In [79]:

```
x=np.array(de['Liv']).reshape(-1,1)
y=np.array(de['Lot']).reshape(-1,1)
```

In [80]:

```
de.dropna(inplace=True)
```

C:\Users\Gowthami\AppData\Local\Temp\ipykernel_22952\836337131.py:1: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

de.dropna(inplace=True)

In [81]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

In [82]:

```
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.10640487967838053

In [83]:

```
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [84]:

```
de500=de[:][:500]
sns.lmplot(x='Liv',y='Lot',data=de500,order=1,ci=None)
```

Out[84]:

<seaborn.axisgrid.FacetGrid at 0x17fd2e50650>

In [85]:

```
de500.fillna(method='ffill',inplace=True)
x=np.array(de500['Liv']).reshape(-1,1)
y=np.array(de500['Lot']).reshape(-1,1)
de500.dropna(inplace=True)
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```

Regression: 0.11354254617812931

In [86]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 0.11354254617812931

#conclusion: Linear regression is fit for the model

Ridge and lasso

In [87]:

```
plt.figure(figsize = (10, 10))
sns.heatmap(de.corr(), annot = True)
```

Out[87]:

<Axes: >


```
In [88]:
```

```
features = de.columns[0:2]
target = de.columns[-1]
#X and y values

X = de[features].values
y = de[target].values
#splot

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=17
print("The dimension of X_train is {}".format(X_train.shape))
print("The dimension of X_test is {}".format(X_test.shape))
#Scale features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

The dimension of X_train is (3220, 2) The dimension of X_test is (1380, 2)

In [89]:

```
#Model
lr = LinearRegression()
#Fit model
lr.fit(X_train, y_train)
#predict
#prediction = lr.predict(X_test)
#actual
actual = y_test
train_score_lr = lr.score(X_train, y_train)
test_score_lr = lr.score(X_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lr))
print("The test score for lr model is {}".format(test_score_lr))
```

Linear Regression Model:

The train score for lr model is 1.0 The test score for lr model is 1.0

In [90]:

```
#Using the linear CV model
from sklearn.linear_model import RidgeCV
#Ridge Cross validation
ridge_cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 1, 10]).fit(X_train, y_train)
#score
print("The train score for ridge model is {}".format(ridge_cv.score(X_train, y_train)))
print("The train score for ridge model is {}".format(ridge_cv.score(X_test, y_test)))
```

The train score for ridge model is 0.99999999999997 The train score for ridge model is 0.999999999999999

In [91]:

```
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(X_train,y_train)
#train and test scorefor ridge regression
train_score_ridge = ridgeReg.score(X_train, y_train)
test_score_ridge = ridgeReg.score(X_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.9999900245012017 The test score for ridge model is 0.9999902306741419

In [92]:

```
plt.figure(figsize = (10, 10))
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo

plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
plt.xticks(rotation = 90)
plt.legend()
plt.show()
```


In [93]:

```
#Using the Linear CV model
from sklearn.linear_model import LassoCV
#Lasso Cross validation
lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).fit(X_trai
#score
print(lasso_cv.score(X_train, y_train))
print(lasso_cv.score(X_test, y_test))
```

0.99999999997705

0.999999999996928

In [94]:

```
#Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(X_train,y_train)
train_score_ls =lasso.score(X_train,y_train)
test_score_ls =lasso.score(X_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9999999291360324 The test score for ls model is 0.9999999291231869

In [95]:

```
pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "bar")
```

Out[95]:

<Axes: >

In [96]:

```
#plot size
plt.figure(figsize = (10, 10))
#add plot for ridge regression
plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=5,colo
#add plot for lasso regression
plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',
#add plot for linear model
plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,color='gre
```

Out[96]:

[<matplotlib.lines.Line2D at 0x17ffa835350>]

Elastic net

```
In [97]:
```

```
from sklearn.linear_model import ElasticNet
regr=ElasticNet()
regr.fit(X,y)
print(regr.coef_)
print(regr.intercept_)
```

[7.84570096e-07 9.99999995e-01]

-0.001601077769009862

In [98]:

```
y_pred_elastic=regr.predict(X_train)
```

In [99]:

```
mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
print("Mean Squared Error on test set", mean_squared_error)
```

Mean Squared Error on test set 1635484254.240867

In []: