

Features

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low R_{DS(ON)}

Product Summary

BVDSS	RDSON	ID
40V	18.6mΩ	8A

Applications

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

SOP8 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	40	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	8	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	5	Α
I _{DM}	Pulsed Drain Current ²	32	А
EAS	Single Pulse Avalanche Energy ³	22.1	mJ
I _{AS}	Avalanche Current	10	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	21.3	W
P _D @T _A =25°C	Total Power Dissipation ⁴	2	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-ambient (Steady State) ¹		60	°C/W
Rejc	Thermal Resistance Junction-Case ¹		5.5	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	40			V	
Page	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =1A		18.6	23	mΩ	
R _{DS(ON)}	Static Dialii-Source On-Resistance	V _{GS} =4.5V , I _D =1A		24.3	31	1117.5	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.2	1.7	2.4	V	
l	Drain Source Lookage Current	V _{DS} =32V , V _{GS} =0V , T _J =25°C			1		
IDSS	I _{DSS} Drain-Source Leakage Current V _{DS}	V _{DS} =32V , V _{GS} =0V , T _J =55°C			5	uA	
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =12A		30		S	
Rg	Gate Resistance V _{DS} =0V , V _{GS} =0V , f=1MHz 2.1		Ω				
Qg	Total Gate Charge (4.5V)			3.8			
Qgs	Gate-Source Charge	V _{DS} =32V , V _{GS} =4.5V , I _D =6A		2.8		nC	
Q _{gd}	Gate-Drain Charge			1.1			
T _{d(on)}	Turn-On Delay Time			12.1			
Tr	Rise Time	V_{DD} =20V , V_{GS} =10V , R_{G} =3.3 Ω		5.2			
T _{d(off)}	Turn-Off Delay Time	I _D =1A		16		ns	
Tf	Fall Time			8			
C _{iss}	Input Capacitance			369			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		233		pF	
C _{rss}	Reverse Transfer Capacitance			13			

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,5}	$V_G=V_D=0V$, Force Current			8	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V
t _{rr}	Reverse Recovery Time			20		nS
Q _{rr}	Reverse Recovery Charge	IF=6A , dI/dt=100A/μs , T _J =25°C		35		nC

Note

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leqq 300 us$, duty cycle $\leqq 2\%$
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH, I_{AS} =10A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Source Drain Forward Characteristics

Fig.5 Normalized $V_{\text{GS(th)}}$ vs T_{J}

Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} vs T_J

Fig.8 Safe Operating Area Fig.7 Capacitance Normalized Thermal Response (Reuc) DUTY=0.5 0.2 0.1 0.1 0.05 0.02 0.01 SINGLE 0.01 0.001 0.00001 0.0001 0.001 0.01 t, Pulse Width (s)

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Switching Waveform

Package Mechanical Data-SOP-8

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
Α	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.006	0.010
D	4.700	5.100	0.185	0.200
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
е	1.270(BSC)		.270(BSC) 0.050(BSC)	
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°