CS44

USN 1 M S

** RAMAIAH Institute of Technology

(Autonomous Institute, Affiliated to VTU)
(Approved by AICTE, New Delhi & Govt. of Karnataka)
Accredited by NBA & NAAC with 'A+' Grade

					710010411	od by HB/ (d H/ l to 1	,,,,,	. 0.0	
SE	ME	STER	EN	D EXAMINATIONS - AUGUST / S	SEPT	EMBER 2	02	3	
Program Course Name Course Code		:	B.E Computer Science and Engineering		Semester Max. Marks Duration		IV		
		:	Data Communication and Networkis CS44	ng			: 100 : 3 Hrs		
			the C	Candidates:					
	• Ar	nswer on	e full	question from each unit. ams wherever is necessary.					
				,					
1.	a) b) c)	Define N	4esh	UNIT - I functions of 7 layered OSI reference model of topology with the advantages and disadvar mportance of DNS in the communication ne	ntages.	_	CC)1	(10) (06) (04)
2.	a)	Explain the use of Multipurpose Internet Mail Extensions (MIME) in Email Applications.					CC)1	(05)
	b) c)		tiate	quence of information transmitted in FTP se between static and dynamic docume		n the Web	CC		(05) (10)
				UNIT - II					
3.	a) b) c)	Explain	the a	Back-N Protocol along with the sequence dia approaches to Congestion Control. P Segment Structure.	agram.		CC)2	(08) (06) (06)
4.	a)	Summarize the flow control mechanism in TCP along with receiver window calculations.					CC)2	(07)
	b))2	(07)
	c)	Suppose i)	Com using estin	measured RTT values are 106 ms and 120 pute estimated RTT after each sample RTT g the value of $\alpha = 0.125$ and assuming mated RTT was 100 ms just before the ples was obtained.	values that t	he value of	CC)2	(06)
		ii) iii)	Com valu- befo Com	pute also DevRTT after each sample is obtae of β =0.25 and assuming the value of Dere the first of these two samples was obtainpute the TCP time-out interval after each obtained.	evRTT ned.	= 5 ms just			
				UNIT - III					
5.	•	An organization address subblock	aniza 14.2 es to k of 6	am explain the IPV4 datagram format. tion is granted a block of addresses w 4.74.0/24. The organization needs to have use in its three subnets: one subblock of 50 addresses, and one subblock of 120 add	three	subblocks of dresses, one		O3 O3	(08) (08)
	c)	i. 00000	clas 0001	s of each address: 00001011 00001011 11101111			C	03	(04)

ii. 11000001 10000011 00011011 11111111
iii. 10100111 11011011 10001011 01101111
iv. 11110011 10011011 11111011 00001111

- 6. a) Explain RIP protocol with an example. CO3 (08)
 - b) An address in a block is given as 73.22.17.25. Find the number of CO3 (06) addresses in the block, the first address and the last address.
 - c) Find the least cost path using LINK state algorithm for the given graph CO3 (06) shown in Fig.6(c):

Fig. 6(c)
Graph to find least cost path

UNIT-IV

7.	a)	Consider CRC-8 $x^8 + x^2 + x + 1$, and answer the following questions: i) Does it detect a single error? Defend your answer. ii) Does it detect a burst error of size 6? Defend your answer. iii) What is the probability of detecting a burst error of size 9?		(08)
	b) c)	iv) What is the probability of detecting a burst error of size 15? Explain the types of errors in data transmission. Discuss the different persistent methods of CSMA.	CO4 CO4	(06) (06)

8.	a)	What is the Hamming distance for each of the following codewords?					(80)
	•	i.	d (10000, 00000)	ii.	d (10101, 10000)		
		iii.	d (00000, 11111)	iv.	d (00000, 00000)		
	L- N	D	!l CCM/CA !l-+-!l			CO 4	(00)

b) Describe CSM/CA in detail. CO4 (06)
c) Discuss the design of the CRC encoder and decoder. Also, discuss the CO4 (06)
performance of CRC.

UNIT-V

- 9. a) Explain the different causes of transmission impairments during signal CO5 (08) transmission through media.
 - b) A voice grade channel of the telephone network has a bandwidth of CO5 (06) 3.4 KHz.
 - i) Calculate the channel capacity of the telephone channel for a SNR of 25 Db
 - ii. Calculate the minimum SNR required to support information transmission through the telephone channel at the rate of 3600bps.
 - c) What is meant by modulation? Explain any one modulation scheme by CO5 (06) taking suitable examples.
- 10. a) Construct the unipolar NRZ, return to zero , bipolar, Manchester and CO5 (10) differential Manchester signal pattern for the binary sequence 110011010.
 - b) Explain the hidden and exposed station problems in IEEE 802.11. CO5 (10)
