Pre-requisites

- $\operatorname{span}(A) = \{Ax : x \in \mathbb{R}^d\}$
- $\ker(A) = \{x \in \mathbb{R}^d : Ax = 0\}$
 - $\ker(A) = 0 \Leftrightarrow A \text{ is invertible}$
 - $A \in \mathbb{R}^{n \times p}$, n > p, rank(A) = p (A is full rank) then A is injective: $\ker(A) = \{0\}$
- Linearity of \mathbb{E} : $\mathbb{E}(AX) = A\mathbb{E}(X)$, $\mathbb{E}(XA) = \mathbb{E}(X)A$, $\mathbb{E}(X+A) = \mathbb{E}(X)+A$
- Covariance: $cov(X) = \mathbb{E}((X \mathbb{E}(X))(X \mathbb{E}(X))^T) = (cov(x_i, x_i))_{i,i}$
- $var(aX + b) = a^2 var(X), cov(AX + B) = Acov(X)A^T$
- Transposition: $(A^T)^T = A$, $(AB)^T = B^T A^T$, $(A + B)^T = A^T + B^T$
 - Symmetric invertible matrix $A \Leftrightarrow A^{-1}$ is symmetric.
 - X^TX is positive symmetric (symmetric with positive eigenvalues).
- Dot product: $(a|b) = a^T b$, $||a||^2 = a^T a$, $||(a|b)|| \le ||a|| ||b||_2$, $||a|| = 0 \Rightarrow a = 0$
- Gradient: $\nabla_x(\alpha^T x) = \alpha$, $\nabla_x(x^T A x) = (A^T + A)x$ in general, $\nabla_x(x^T A x) = 2Ax$ if A is symmetric.
- Trace of a matrix $A \in \mathbb{R}^{n \times n}$ is defined by $\operatorname{tr}(A) = \sum_{i=1}^{n} A_{i,i}$.
 - tr(A) = tr(A^T)
 - Linearity: $tr(\alpha A + B) = \alpha tr(A) + tr(B)$
 - $\operatorname{tr}(A^{T}A) = \sum_{i=1}^{n} \sum_{i=1}^{n} A_{i,i}^{2} = ||A||_{F}^{2}$
 - tr(AB) = tr(BA)
 - $tr(PAP^{-1}) = tr(A)$. Hence, if A is diagonalizable, the trace is the sum of the eigenvalues.
 - If H is an orthogonal projector, tr(H) = rank(H).
 - $tr(u^T u) = u^T u$
- Normal distribution: $x \sim \mathcal{N}(0,1) \Rightarrow \sigma x + \mu \sim \mathcal{N}(\mu, \sigma^2)$
 - $x \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow \frac{(x-\mu)}{\sigma} \sim \mathcal{N}(0,1)$
 - $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2), X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ independent $\Rightarrow X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
 - Confidence interval for μ with known variance: $X \sim \mathcal{N}(\mu, \sigma^2) \Rightarrow Z = \frac{\overline{X} \mu}{\frac{\sigma}{2n}} \sim \mathcal{N}(0, 1)$
- Chi-squared distribution: $X_n \sim \mathcal{N}(0,1)$, $Z = \sum_{i=1}^n X_i^2 \sim \mathcal{X}_n^2$
 - $\mathbb{E}(Z) = n$, var(Z) = 2n
- T-Student distribution: $U \sim \mathcal{N}(0,1), Z \sim \mathcal{X}_n, \frac{U}{\frac{|Z|}{n}} \sim T_n$
 - $\mathbb{E}(T) = 0, n > 0, \text{var}(T) = \frac{n}{n-2}, n > 2$
 - Confidence interval for μ with unknown variance: $X \sim \mathcal{N}(\mu, \sigma^2), S^2 = \frac{1}{\pi} \sum_{i=1}^n (X_i \hat{X}_i)^2 \Rightarrow$ $T = \frac{\overline{X} - \mu}{S} \sim T_{n-1}$
 - Confidence interval for the regression coefficients θ_i^* : $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, $\hat{\sigma}^2 =$
 - $\frac{1}{n-p-1} \textstyle \sum_{i=1}^n (Y_i \hat{Y}_i)^2 \Rightarrow T_j = \frac{\hat{\theta}_{j-}\theta_{j-}^*}{\hat{\sigma} \left[(x^T x)_{ii}^{-1} \right]} \sim T_{n-p-1}$
 - Confidence interval for the predicted values $y^* = x^T \theta^*$: $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, $\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n (Y_i \hat{Y}_i)^2 \Rightarrow T_j = \frac{x^T \hat{\theta}_j x^T \theta_j^*}{\hat{\sigma} \int_{x}^T (X^T X)_{i}^{-1} x} \sim T_{n-p-1}$
 - Confidence interval for the predicted values $y = y^* + \varepsilon$: $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, $\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n (Y_i \hat{Y}_i)^2 \Rightarrow T_j = \frac{x^T \hat{\theta}_j x^T \theta_j^*}{\hat{\sigma}_j \left[1 + x^T (x^T x)_{ii}^{-1} x\right]} \sim T_{n-p-1}$
- Eigenvalues: A is invertible if and only if its eigenvalues are nonzero.

- If vp(A) denotes the set of eigenvalues of A, then $vp(A + \lambda I) = \lambda + vp(A)$
- Singular Value Decomposition (SVD): $A \in \mathbb{R}^{n \times p} \Rightarrow \exists U \in \mathbb{R}^{n \times n}, \exists V \in \mathbb{R}^{p \times p}$ orthogonal, and $\exists \Sigma \in \mathbb{R}^{n \times p}$ $\mathbb{R}^{n \times p}$ diagonal such that $A = U \Sigma V^T$.
 - The eigenvectors of A^TA are the columns of V.
 - The eigenvectors of AA^T are the columns of U.
 - Singular values in *S* are on the diagonal component and are the square roots of eigenvalues, arranged in descending order.
- Convexity: $f: \mathbb{R}^p \to \mathbb{R}^n$ and $\nabla^2 f \in \mathbb{R}^{p \times p}$ symmetric positive $\Rightarrow f$ is convex.
- An orthogonal projector P on E, a subspace of \mathbb{R}^n : $P^2 = P$, $P^T = P$, $\ker(P) = E^{\perp}$.
 - Hat matrix: $H = X(X^TX)^{-1}X^T$ is an orthogonal projector onto the column space of X
- λ eigenvalue of $A \Leftrightarrow \exists v$ eigenvector: $Av = \lambda v$
 - The eigenvalues of an idempotent matrix $(A^2 = A)$ are either 0 or 1
 - Number of eigenvalues equal to 1 is then tr(A)
- Orthogonal matrix: $P^T = P^{-1}$
- Similar matrices A and B: there exists an orthogonal matrix P such that $B = P^{-1}AP$, they share the same eigenvalues
- Diagonalizable matrix A: there exists an orthogonal matrix P, such that $D := PAP^T$ is diagonal, and its elements being are the eigen values of A
- Quantile function: $Q(p) = F_{Y}^{-1}(p), F_{Y}^{-1}(x) = \mathbb{P}(X \le x) = p$

Synthèse

Ordinary Least Square

- $\min_{\theta} \| Y X\theta \|_2^2$
- $\hat{\theta}_n \in \arg\min_{\theta \in \mathbb{R}^{p+1}} \parallel Y X\theta \parallel_2^2$
- Gram matrix: $\hat{G}_n = \frac{X^T X}{n}$
- Orthogonal projector on span(X): $\widehat{H}_{n,X} \in \mathbb{R}^{n \times n}$
- The OLS estimator always exists, and the associated prediction is given by $\hat{Y} = \hat{H}_{n,X}Y$. It is either:
 - uniquely defined \Leftrightarrow the Gram matrix is invertible, which is equivalent to ker(X) = $\ker(X^T X) = \{0\}$
 - $\hat{\theta} = (X^T X)^{-1} X^T Y$
 - $-b(\hat{\theta}_n, \theta^*) = 0$
 - $\operatorname{cov}(\widehat{\theta}_n) = \sigma^2 (X^T X)^{-1}$
 - $R_{\text{pred}}(\hat{\theta}_n, \theta^*) = (p+1) \frac{\sigma^2}{n}$
 - $R_{\text{quad}}(\hat{\theta}_n, \theta^*) = \text{tr}((X^T X)^{-1})\sigma^2$
 - *non-unique*, with an infinite number of solutions. This happens if and only if $ker(X) \neq \{0\}$
 - $\hat{\theta} + \ker(X)$, where $\hat{\theta}$ is a particular solution
 - The traditionally considered solution is $\hat{\theta} = (X^T X)^+ X^T Y$
 - Moore-Penrose inverse: For a positive semi-definite symmetric matrix *A* with eigenvectors u_i and corresponding eigenvalues $\lambda_i \geq 0$, $A^+ = \sum_i$ $\lambda_i^{-1} u_i u_i^T \mathbb{1}_{\{\lambda_i > 0\}}$
- $\min_{\tilde{\theta} \in \mathbb{R}^p} \| Y_c \tilde{X}_c \tilde{\theta} \| = \min_{\theta \in \mathbb{R}^{p+1}} \| Y X\theta \|$
 - $X = (1_n, \tilde{X}), Y_c = Y 1_n(1_n^T Y) \text{ and } \tilde{X}_c = \tilde{X} 1_n(1_n^T \tilde{X})$
- Determination coefficient $R^2 = \frac{\|\hat{Y} \bar{y}_n \mathbf{1}_n\|_2^2}{\|Y \bar{y}_n \mathbf{1}_n\|_2^2} = 1 \frac{\|\hat{Y} Y\|_2^2}{\|Y \bar{y}_n \mathbf{1}_n\|_2^2}$ because of the orthogonality between $\hat{Y} - Y$ and \hat{Y} , and between $\hat{Y} - Y$ and $\bar{y}_n 1_n$

- $R^2 = 0 \Leftrightarrow \hat{Y} = \hat{H}_{1}$, implying that $\hat{\theta}_n = (\bar{y}_n, 0, ..., 0)$ is one OLS estimator.

Statistical Model

Fixed-design model

- $Y = X\theta^* + \varepsilon, \varepsilon \sim \mathcal{N}(0, \sigma^2)$ iid
- Matrix notations X, Y: each row corresponds to a sample x_i or y_i .
 - We handle the intercept by either centering the vectors or by fixing the first coordinate of each sample $x_{i,1} = 1$.
- $\hat{\theta}_n \theta^* = (X^T X)^{-1} X^T \varepsilon$
- Bias: $b(\hat{\theta}_n, \theta^*) = \mathbb{E}(\hat{\theta}) \theta^*$
 - Unbiased if $b(\hat{\theta}_n, \theta^*) = 0$
- Quadratic risk: $R_{\text{quad}}(\hat{\theta}_n, \theta^*) = \mathbb{E}(\|\hat{\theta}_n \theta^*\|^2) = b(\hat{\theta}_n, \theta^*) \text{var}(\hat{\theta})$
- Prediction risk: $R_{\text{pred}}(\hat{\theta}_n, \theta^*) = \frac{\mathbb{E}(\|Y^* \hat{Y}\|^2)}{n}$
- Linear estimator: AY, $A \in \mathbb{R}^{(p+1)\times n}$, A depends only on X
- Under the fixed design model: $cov(\hat{\theta}_n) \le cov(AY)$
- Empirical variance: $\tilde{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (Y_i \hat{Y}_i)^2$
 - $\quad \mathbb{E}(\tilde{\sigma})_n^2 = \sigma^2 \frac{n-p-1}{n}$
 - Unbiased: $\hat{\sigma}_n^2 = \frac{1}{n-p-1} \sum_{i=1}^n (Y_i \hat{Y}_i)^2$

Gaussian model

- $Y \stackrel{\text{iid}}{\sim} \mathcal{N}(X\theta^*, \sigma^2)$
- $\hat{\theta}_n \sim \mathcal{N}(\theta^*, \sigma^2(X^TX)^{-1})$
 - $b(\hat{\theta}_n, \theta^*) = 0$
 - $\operatorname{cov}(\hat{\theta}_n) = \sigma^2 (X^T X)^{-1}$
- Hat matrix
 - $H = X(X^TX)^{-1}X^T$
 - $\bullet \qquad H^T = H$
 - $H^2 = H$
 - HX = X
- · Cochran lemma
 - $H\varepsilon$ and $(I-H)\varepsilon$ are independent
 - $\frac{1}{\sigma^2} \varepsilon^T H \varepsilon \sim \mathcal{X}_{p+1}^2$
 - $\frac{1}{\sigma^2} \varepsilon^T (I H) \varepsilon \sim \mathcal{X}_{n-p-1}^2$
- $\hat{\theta}$ is independent of $\hat{\sigma}^2$
- Central Limit Theorem (CLT): X_n sequence of iid random variables with the same mean μ and the same standard deviation σ , by defining $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i : \frac{\overline{X} \mu}{\frac{\sigma}{m}} \xrightarrow{L} \mathcal{N}(0,1)$
 - Sufficiently large: n > 30

Hypothesis testing

Reject whenever
$$\hat{T}_n \in \mathcal{R}$$
Do not reject whenever $\hat{T}_n \notin \mathcal{R}$

- Level 1α
- Errors:

- Type 1: to reject whereas \mathcal{H}_0 is true
- Type 2: not to reject whereas \mathcal{H}_0 is false
- Test of no effect: \mathcal{H}_0 : $\theta_k^* = 0$

Ridge Regression

- When X is not full rank, one can add L2 regularization to make the problem solvable: $\min_{\theta} \|X\theta Y\|_2^2 + n\lambda \|\theta\|_2^2$
- $\hat{\theta}_n \in \arg\min_{\theta \in \mathbb{R}^{p+1}} \parallel Y X\theta \parallel_2^2 + n\lambda \parallel \theta \parallel_2^2$
- $\hat{\theta}_n^{(Ridge)} = (X^T X + \lambda I)^{-1} X^T Y$

-
$$b(\hat{\theta}_n^{(Ridge)}, \theta^{(Ridge)*}) = -n\lambda(X^TX + n\lambda I_n)^{-1}\theta^*$$

- Reduce bias $\lambda \to 0$
- Reduce variance $\lambda \to \infty$

-
$$\operatorname{var}(\hat{\theta}_n^{(Ridge)}) = \sigma^2 (X^T X + n\lambda I_p)^{-1} X^T X (X^T X + n\lambda I_p)^{-1}$$

• $\operatorname{var}(\hat{\theta}_n^{(Ridge)}) < \operatorname{var}(\hat{\theta}_n)$

Least Absolute Shrinkage and Selection Operator (LASSO) Regression

• If we know that only certain coordinates of the samples x_i are useful for predicting y_i , we can perform variable selection. One simple way is to use L1 regularization, which forces most coordinates of θ to be zero: $\min_{\theta} \frac{1}{2} \parallel Y - X\theta \parallel_2^2 + \lambda \parallel \theta \parallel_1$