Санкт-Петербургский Государственный Университет Saint-Petersburg State University

ЛАБОРАТОРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ

ОТЧЕТ

По лабораторной работе 2

«Измерение модуля Юнга и коэффициента Пуассона»

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

 $ext{Санкт-} \Pi ext{етербург} \\ 2021$

1 Цель работы

Механизм упругого деформирования материалов состоит в обратимых смещениях атомов из положений равновесия в кристаллической решетке. Чем больше величина смещения каждого атома, тем больше упругая деформация тела. Величина упругой деформации невелика и для металлов и для их сплавов меньше 1%.

Поведение материалов при упругой деформации описывается законом Гука, который определяет прямую пропорциональную зависимость между компонентами тензоров деформации и напряжения.

В данной лабораторной работе производится исследование образцов на растяжение с измерением деформаций и определением постоянных, характеризующих упругие свойства образца — модуля Юнга E и коэффициента Пуассона ν . При измерении деформаций используют проволочные тензодатчики сопротивления (ТД).

2 Теоретические исследования

Рассмотрим стержень длины l=150 мм, ширины a=28.7 мм и толщины b=2.2 мм. Площадь сечения пластины равна $S_0=63$ мм², стержень растягивается силой P.

Рис. 1: Испытательная пластина.

Пусть ось Ox системы координат совпадает с осью стержня. Стержень будет находиться в состоянии одноосного растяжения, то есть напряжения в нем будут равны:

$$\sigma_{xx} = \frac{P}{S_0}; \quad \sigma_{yy} = \sigma_{zz} = \sigma_{xy} = \sigma_{xz} = \sigma_{yz} = 0.$$
 (1)

Знаем, что поведение материалов при упргой деформации описывается законом Гука, в общем случае закон Гука записывается следующим образом:

$$\varepsilon_{xx} = \frac{1}{E} \left(\sigma_{xx} - \nu (\sigma_{yy} + \sigma_{zz}) \right); \quad \sigma_{xy} = \frac{E}{1 + \nu} \varepsilon_{xy};
\varepsilon_{yy} = \frac{1}{E} \left(\sigma_{yy} - \nu (\sigma_{xx} + \sigma_{zz}) \right); \quad \sigma_{yz} = \frac{E}{1 + \nu} \varepsilon_{yz};
\varepsilon_{zz} = \frac{1}{E} \left(\sigma_{zz} - \nu (\sigma_{yy} + \sigma_{xx}) \right); \quad \sigma_{xz} = \frac{E}{1 + \nu} \varepsilon_{xz}.$$
(2)

Подставив (1) в (2), получим, что при данном поле напряжений относительные удлинения по всем осям будут отличны от нуля, а сдвиги будут равны нулю:

$$\varepsilon_{xx} = \frac{1}{E}\sigma_{xx}; \quad \varepsilon_{yy} = \varepsilon_{zz} = -\frac{\nu}{E}\sigma_{xx}; \quad \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0.$$
(3)

Отсюда получим, что экспериментальным путем модуль Юнга и коэффициент Пуассона может быть получен по следующим формулам:

$$E = \frac{P}{S_0} \frac{1}{\varepsilon_{xx}}; \quad \nu = -\frac{\varepsilon_{yy}}{\varepsilon_{xx}}.$$
 (4)

Относительные удлинения ε_{xx} и ε_{yy} стержня в данной работе находим прямым измерением при помощи тензодатчиков.

3 Экспериментальная установка

В данной лабораторной работе деформации измеряются посредством тензодатчиков, которые установлены в продольном и поперечном направлениях. Тензодатчик (рис. 2) состоит из зигзагообразно уложенной проволоки (решетки) 1, наклеенной на подложку (тонкую бумагу) 2. К концам проволочной решетки припаяны медные выводы 3. Сверху решетка покрыта защитным слоем бумаги или лака. Тензодатчик измеряет относительное удлинение в направлении, обозначенном стрелками (рис. 2).

Рис. 2: Схема тензодатчика.

На рисунке (1) тензодатчики 1 и 2 измеряют продольное удлинение, 3 и 4 поперечное. Тензодатчики подключены к электронному измерителю деформации. Чувствительность датчика характеризуется коэффициентом $K=6.4\cdot 10^{-7}$.

Лабораторная работа выполняется на универсальном лабораторном стенде по сопротивлению материалов (рис. 3), здесь 1 – образец, 2 – нагружающее устройство, 3 – силоизмерительное устройство.

Рис. 3: Схема экспериментальной установки.

4 Эксперимент

При выполнении работы расчеты производились с помощью инструментов пакета Matlab. Образец нагружали последовательно силой P до 500 H с шагом 50 H, на каждом шаге фиксировались показания измерителя деформаций для всех тензорезистров. Подсчитали разность показаний прибора для ступени $\Delta P = 50$ H и занесли в таблицу 1. Все показания были усреднены. Для каждого шага были вычислены постоянные ν и E. Относительные деформации ε_{xx} , ε_{yy} , соответствующие приращениям силы, были определены по следующим формулам:

$$\varepsilon_{xx} = \Delta n_x \cdot K; \quad \varepsilon_{yy} = \Delta n_y \cdot K.$$
 (5)

Далее построим график зависимости напряжения σ_{xx} от величины продольной деформации ε_{xx} . Построим прямую методом наименьших квадратов.

Рис. 4: График зависимости σ_{xx} от ε_{xx} .

Считая, что в двух последних шагах результаты не являются достоверными, были вычислены конечные значения коэффициента Пуассона ν и модуля Юнга E. Все погрешности и окончательные результаты измерений модуля Юнга и коэффициента Пуассона представлены в следующей таблице:

Величина	Значение	Размерность		
E	51	ГПа		
ΔE	12	1 11a		
ν	0.32			
$\Delta \nu$	0.01	_		
$\Delta E/E$	23	%		
$\Delta E/E$ $\Delta \nu/ u$	2	70		

№	P	Δn_x	Δn_y	$arepsilon_{xx}$	$arepsilon_{yy}$	σ_{xx}	ν	E
	Н	дел		·10 ⁻⁶		МПа	_	ГПа
1	50	5	-4	3.2	-2.56	0.79	0.8	247.47
2	100	25	-8	16	-5.12	1.58	0.32	49.49
3	150	1	-5	10.24	-3.2	2.38	0.31	77.33
4	200	17	-6	10.88	-3.84	3.17	0.35	72.78
5	250	18	-5	11.52	-3.2	3.96	0.28	68.74
6	300	35	-11	22.4	-7.04	4.75	0.31	35.35
7	350	23	-5	14.72	-3.2	5.54	0.22	53.8
8	400	21	-8	13.44	-5.12	6.34	0.38	58.92
9	450	13	-6	8.32	-3.84	7.13	0.46	95.18
10	500	48	-15	30.72	-9.6	7.92	0.31	25.78

Таблица 1: Экспериментальные и расчетные данные.

5 Выводы

В проделанной работе мы исследовали на практике одноосное растяжение стержня, измеряя деформации при помощи тензодачиков, подключенных к измерителю деформаций. Познакомились с принципом работы тезодатчиков сопротивления, их преимуществами и недостатками. Исследовав изменение продольной деформации при увеличении нагрузки, убедились в линейной зависимости продольной деформации от напряжения. Вычислили модуль Юнга и коэффициент Пуассона. Оценили относительные и абсолютные погешности результатов.