PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 16/00

A2

WO 99/57150 (11) Internationale Veröffentlichungsnummer:

(43) Internationales

Veröffentlichungsdatum:

11. November 1999 (11.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01350

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 19 846.9

5. Mai 1998 (05.05.98)

DE

(71) Anmelder (für alleBestimmungsstaaten ausser **DEUTSCHES** KREBSFORSCHUNGSZENTRUM STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE]; Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): LITTLE, Melvyn [GB/DE]: Fritz-von-Briesen-Strasse 10, D-69151 Neckargemund (DE). KIPRIYANOV, Sergej [RU/DE]; Furtwänglerstrasse 3, D-69121 Heidelberg (DE).
- (74) Anwalt: HUBER, Bernard; Huber & Schüssler, Truderinger Strasse 246, D-81825 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

- (54) Title: MULTIVALENT ANTIBODY CONSTRUCTS
- (54) Bezeichnung: MULTIVALENTE ANTIKÖRPER-KONSTRUKTE

(57) Abstract

The invention relates to a multivalent F_{ν} antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an F_v antibody construct. In addition, the invention relates to a method for producing the F_v antibody constructs and to the use thereof.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein multivalentes Fy-Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind. Ferner betrifft die Erfindung Expressionsplasmide, die für ein solches Fv-Antikörper-Konstrukt codieren, und ein Verfahren zur Herstellung der F_v-Antikörper-Konstrukte sowie deren Verwendung.

A

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	$\mathbf{M}\mathbf{W}$	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	$\mathbf{s}\mathbf{G}$	Singapur		

Multivalente Antikörper-Konstrukte

Die vorliegende Erfindung betrifft multivalente F_v -Antikörper-Konstrukte, sie kodierende Expressionsplasmide, und ein Verfahren zur Herstellung der F_v -Antikörper-Konstrukte sowie ihre Verwendung.

Natürliche Antikörper sind Dimere und werden daher als bivalent bezeichnet. Sie weisen vier variable Domänen, nämlich zwei V_{H^-} und zwei V_{L^-} Domänen, auf. Die variablen Domänen dienen als Bindungsstellen für ein Antigen, wobei eine Bindungsstelle aus einer V_{H^-} und einer V_{L^-} Domäne ausgebildet ist. Natürliche Antikörper erkennen jeweils ein Antigen, wodurch sie auch als monospezifisch bezeichnet werden. Ferner weisen sie auch konstante Domänen auf. Diese tragen zur Stabilität der natürlichen Antikörper bei. Andererseits sind sie auch für unerwünschte Immunreaktionen mitverantwortlich, die entstehen, wenn natürliche Antikörper verschiedener Tierarten wechselseitig verabreicht werden.

Zur Vermeidung solcher Immunreaktionen werden Antikörper konstruiert, denen die konstanten Domänen fehlen. Insbesondere sind dies Antikörper, die nur noch die variablen Domänen aufweisen. Solche Antikörper werden mit F_v-Antikörper-Konstruten bezeichnet. Diese liegen häufig in Form einzelkettiger, sich miteinander gepaarter Monomere vor.

Es hat sich allerdings gezeigt, daß F_v -Antikörper-Konstrukte nur eine geringe Stabilität aufweisen. Ihre Verwendbarkeit für therapeutische Zwecke ist daher stark eingeschränkt.

Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, einen Antikörper bereitzustellen, mit dem unerwünschte Immunreaktionen vermieden werden können. Ferner soll er eine Stabilität aufweisen, die ihn für therapeutische Zwecke

einsetzbar macht.

Erfindungsgemäß wird dies durch die Gegenstände in den Patentansprüchen erreicht.

Gegenstand der vorliegenden Erfindung ist somit ein multivalentes F_v -Antikörper-Konstrukt, das eine große Stabilität aufweist. Ein solches eignet sich für diagnostische und therapeutische Zwecke.

Die vorliegende Erfindung beruht auf den Erkenntnissen des Anmelders, daß die Stabilität eines F_v -Antikörper-Konstruktes erhöht werden kann, wenn dieses in Form eines einzelkettigen Dimeres vorliegt, bei dem die vier variablen Domänen über drei Peptidlinker miteinander verbunden sind. Ferner hat der Anmelder erkannt, daß sich das F_v -Antikörper-Konstrukt mit sich selbst faltet, wenn der mittlere Peptidlinker eine Länge von etwa 10 - 30 Aminosäuren aufweist. Des weiteren hat der Anmelder erkannt, daß sich das F_v -Antikörper-Konstrukt mit anderen F_v -Antikörper-Konstrukten zusammenfaltet, wenn der mittlere Peptidlinker eine Länge von etwa bis zu 10 Aminosäuren aufweist, wodurch ein multimeres, d.h. multivalentes, F_v -Antikörper-Konstrukt erhalten wird. Auch hat der Anmelder erkannt, daß das F_v -Antikörper-Konstrukt multispezifisch sein kann.

Erfindungsgemäß werden die Erkenntnisse des Anmelders genutzt, ein multivalentes F_v -Antikörper-Konstrukt bereitzustellen, das mindestens vier variable Domänen umfaßt, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind.

Der Ausdruck "F_v-Antikörper-Konstrukt" weist auf einen Antikörper hin, der variable Domänen, nicht aber konstante Domänen aufweist.

Der Ausdruck "multivalentes F_v -Antikörper-Konstrukt" weist auf einen F_v -Antikörper hin, der mehrere variable Domänen, jedoch mindestens vier aufweist. Solches wird erreicht, wenn sich das einzelkettige F_v -Antikörper-Konstrukt mit sich selbst faltet, wodurch vier variable Domänen gegeben sind, oder sich mit anderen einzel-

kettigen F_v-Antikörper-Konstrukten zusammenfaltet. In letzterem Fall liegt ein F_v-Antikörper-Konstrukt vor, das 8, 12, 16, etc. variable Domänen aufweist. Günstig ist es, wenn das F_v-Antikörper-Konstrukt vier oder acht variable Domänen aufweist, d.h. es ist bi- oder tetravalent (vgl. Fig. 1). Ferner können die variablen Domänen gleich oder verschieden voneinander sein, wodurch das Antikörper-Konstrukt ein oder mehrere Antigene erkennt. Vorzugsweise erkennt das Antikörper-Konstrukt ein oder zwei Antigene, d.h. es ist mono- bzw. bispezifisch. Beispiele solcher Antigene sind die Proteine CD19 und CD3.

Der Ausdruck "Peptidlinker 1, 3" weist auf einen Peptidlinker hin, der geeignet ist, variable Domänen eines F_v-Antikörper-Konstruktes miteinander zu verbinden. Der Peptidlinker kann jegliche Aminosäuren enthalten, wobei die Aminosäuren Glycin (G), Serin (S) und Prolin (P) bevorzugt sind. Die Peptidlinker 1 und 3 können gleich oder verschieden voneinander sein. Ferner kann der Peptidlinker eine Länge von etwa 0 - 10 Aminosäuren aufweisen. In ersterem Fall ist der Peptidlinker lediglich eine Peptidbindung aus dem COOH-Rest einer der variablen Domänen und dem NH₂-Rest einer anderen der variablen Domänen. Vorzugsweise weist der Peptidlinker die Aminosäuresequenz GG auf.

Der Ausdruck "Peptidlinker 2" weist auf einen Peptidlinker hin, der geeignet ist, variable Domänen eines F_v -Antikörper-Konstruktes miteinander zu verbinden. Der Peptidlinker kann jegliche Aminosäuren enthalten, wobei die Aminosäuren Glycin (G), Serin (S) und Prolin (P) bevorzugt sind. Ferner kann der Peptidlinker eine Länge von etwa 3 -10 Aminosäuren, insbesondere 5 Aminosäuren, und ganz besonders die Aminosäuresequenz GGPGS, aufweisen, wodurch erreicht wird, daß sich das einzelkettige F_v -Antikörper-Konstrukt mit anderen einzelkettigen F_v -Antikörper-Konstrukten zusammenfaltet. Des weiteren kann der Peptidlinker eine Länge von etwa 11 - 20 Aminosäuren, insbesondere 15 - 20 Aminosäuren, und ganz besonders die Aminosäuresequenz $(G_4S)_4$, aufweisen, wodurch erreicht wird, daß sich das einzelkettige F_v -Antikörper-Konstrukt mit sich selbst faltet.

Ein erfindungsgemäßes F_v-Antikörper-Konstrukt kann durch übliche Verfahren hergestellt werden. Günstig ist ein Verfahren, bei dem für die Peptidlinker 1, 2 und 3 kodierende DNAs mit für die vier variablen Domänen eines F_v-Antikörper-Konstruktes kodierenden DNAs ligiert werden derart, daß die Peptidlinker die variablen Domänen miteinander verbinden, und das erhaltene DNA-Molekül in einem Expressionsplasmid exprimiert wird. Es wird auf die Beispiele 1 - 6 verwiesen. Hinsichtlich der Ausdrücke "F_v-Antikörper-Konstrukt" und "Peptidlinker" wird auf vorstehende Ausführungen verwiesen. Ergänzend wird auf Maniatis, T. et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory 1982, verwiesen.

DNAs, die für ein erfindungsgemäßes F_v -Antikörper-Konstrukt kodieren, sind ebenfalls Gegenstand der vorliegenden Erfindung. Ferner sind Expressionsplasmide, die solche DNAs enthalten, auch Gegenstand der vorliegenden Erfindung. Bevorzugte Expressionsplasmide sind pDISC3x19-LL, pDISC3x19-SL, pPIC-DISC-LL, pPIC-DISC-SL, pDISC5-LL und pDISC6-SL. Die ersteren vier wurden bei der DSMZ (Deutsche Sammlung für Mikroorganismen und Zellen) am 30. April 1998 unter DSM 12150, DSM 12149, DSM 12152 bzw. DSM 12151 hinterlegt.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Kit, umfassend:

- (a) ein erfindungsgemäßes F_v-Antikörper-Konstrukt, und/oder
- (b) ein erfindungsgemäßes Expressionsplasmid, sowie
- (c) übliche Hilfsstoffe, wie Puffer, Lösungsmittel und Kontrollen.

Von den einzelnen Komponenten können ein oder mehrere Vertreter vorliegen.

Die vorliegende Erfindung stellt ein multivalentes F_v -Antikörper-Konstrukt bereit, bei dem die variablen Domänen über Peptidlinker miteinander verbunden sind. Ein solches Antikörper-Konstrukt zeichnet sich dadurch aus, daß es keine Teile enthält, die zu unerwünschten Immunreaktionen führen können. Ferner weist es eine große Stabilität auf. Des weiteren ermöglicht es mehrere Antigene gleichzeitig zu binden. Das erfindungsgemäße F_v -Antikörper-Konstrukt eignet sich daher bestens nicht nur für diagnostische, sondern auch für therapeutische Zwecke verwendet zu werden.

Solche Zwecke können hinsichtlich jeder Erkrankung, insbesondere einer viralen, bakteriellen oder Tumor-Erkrankung, gesehen werden.

Kurze Beschreibung der Zeichnungen:

Fig. 1 zeigt die genetische Organisation eines erfindungsgemäßen F_v -Antikörper-Konstruktes (A) und Schemata zur Bildung eines bivalenten (B) bzw. tetravalenten F_v -Antikörper-Konstruktes (C). Ag: Antigen; His $_e$: sechs C-terminale Histidinreste; Stop: Stoppcodon (TAA); V_H und V_L : variable Region der schweren und der leichten Kette.

Fig. 2 zeigt das Schema zur Konstruktion der Plasmide pDISC3x19-LL und pDISC3x19-SL. c-myc: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E1 erkannt wird, His_e: Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB: Signalpeptidsequenz der bakteriellen Pectatlyase (PelB-Leader); rbs: Ribosomenbindungsstelle; Stop: Stoppcodon (TAA); V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 3 zeigt ein Diagramm des Expressionsplasmids pDISC3x19-LL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste kodiert; bla: Gen, das für β-Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; *c-myc.* Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; ColE1: Origin der DNA-Replikation; f1-IG: intergenische Region des Bakteriophagen f1; Lac P/O: wt *lao-*Operon-Promotor/Operator; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_H- und V_L-Domänen verknüpft; Linker 2: Sequenz, die für ein (Gly₄Ser)₄-Polypeptid kodiert, das die hybriden scFv-Fragmente verknüpft; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 4 zeigt ein Diagramm des Expressionsplasmids pDISC3x19-SL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste codiert; bla: Gen, das für β --

Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; c-myc: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; ColE1: Origin der DNA-Replikation; f1-IG: intergenische Region des Bakteriophagen f1; Lac P/O: wt lac-Operon-Promotor/Operator; Linker 1: Sequenz, die für ein GlyGly-Dipeptid codiert, das die V_H - und V_L -Domänen verknüpft; Linker 3: Sequenz, die für ein GlyGlyProGlySer-Oligopeptid codiert, das die hybriden scFv-Fragmente verknüpft; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle; V_H und V_L : variable Region der schweren und

der leichten Kette.

Fig. 5 zeigt die Nukleotid- und die davon abgeleitete Aminosäuresequenz des durch das Expressionsplasmid pDIS3x19-LL kodierten bivalenten F_v-Antikörper-Konstruktes. *c-myo*-Epitop: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; CDR: Komplementarität bestimmende Region; Gerüst: Gerüstregion (Framework-Region); His6-Schwanz, Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB-Leader: Signalpeptidsequenz der bakteriellen Pectalyase; RBS: Ribosomenbindungsstelle; V_H und V_L: variable Region der schweren und der leichten Kette.

Fig. 6 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz des durch das Expressionsplasmid pDISC3x19-SL kodierten tetravalenten F_v -Antikörper-Konstruktes. *c-myc*-Epitop: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; CDR: Komplementarität bestimmende Region, Gerüst: Gerüstregion (Framework-Region); His6-Schwanz, Sequenz, die für sechs C-terminale Histidinreste kodiert; PelB-Leader: Signalpeptidsequenz der bakteriellen Pectalyase; RBS: Ribosomenbindungsstelle; V_H und V_L : variable Region der schweren und der leichten Kette.

Fig. 7 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz einer Verbindung zwischen einem Gen, das für eine α -Faktor-Leadersequenz kodiert, und einem Gen, das für das tetravalente F_v -Antikörper-Konstrukt codiert, in dem *Pichia*-Expressionsplasmid pPIC-DISC-SL. Alpha-Faktor-Signal: Leaderpeptidsequenz des

Saccharomyces cerevisiae- α -Faktor-Sekretionssignals; V_H : variable Region der schweren Kette. Rauten zeigen die Signalspaltstellen an.

7

Fig. 8 zeigt die Nukleotid- und die abgeleitete Aminosäuresequenz einer Verbindung zwischen einem Gen, das für eine α -Faktor-Leadersequenz kodiert, und einem Gen, das für das bivalente F_v -Antikörper-Konstrukt codiert, in dem *Pichia*-Expressionsplasmid pPIC-DISC-LL. Alpha-Faktor-Signal: Leaderpeptidsequenz des *Saccharomyces cerevisiae-α*-Faktor-Sekretionssignals; V_H : variable Region der schweren Kette. Rauten zeigen die Signalspaltstellen an.

Fig. 9 zeigt ein Diagramm des Expressionsplasmids pDISC5-LL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste kodiert; bla: Gen, das für β -Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; c-myc. Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; hok-sok: Plasmid-stabilisierender DNA-Locus; Lacl: Gen, das für den Lac-Repressor kodiert; Lac P/O: wt lac-Operon-Promotor/Operator; LacZ': Gen, das für das α-Peptid von β-Galactosidase kodiert; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_{H^-} und V_{L^-} Domänen verknüpft; Linker 2: Sequenz, die für ein (Gly₄Ser)₄-Polypeptid kodiert, das die hybriden scFv-Fragmente verknüpft; M13 IG: intergenische Region des Bakteriophagen M13; pBR322ori: Ursprung der DNA-Replikation; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle, die von dem E. coli lacZ Gen (lacZ), von dem Bakteriophagen T7 Gen 10 (T7g10) oder von dem E. coli skp Gen (skp) stammt; skp: Gen, das für den bakteriellen periplasmatischen Faktor Skp/OmpH kodiert; tHP: starker Transkriptions-Terminator; tlPP: Transkriptions-Terminator; V_H und V_L : variable Region der schweren und der leichten Kette.

Fig. 10 zeigt ein Diagramm des Expressionsplasmids pDISC6-SL. 6xHis: Sequenz, die für sechs C-terminale Histidinreste codiert; bla: Gen, das für β-Lactamase kodiert, die für Ampicillinresistenz verantwortlich ist; bp: Basenpaare; c-myc: Sequenz, kodierend für ein Epitop, das von dem Antikörper 9E10 erkannt wird; hok-sok: Plasmid-stabilisierender DNA-Locus; Lacl: Gen, das für den Lac-Re-

pressor kodiert; Lac P/O: wt lac-Operon-Promotor/Operator; LacZ': Gen, das für das α -Peptid von β -Galactosidase kodiert; Linker 1: Sequenz, die für ein GlyGly-Dipeptid kodiert, das die V_{H^-} und V_L -Domänen verknüpft; Linker 3: Sequenz, die für ein GlyGlyProGlySer-Oligopeptid kodiert, das die hybriden scFv-Fragmente verknüpft; M13 IG: intergenische Region des Bakteriophagen M13; pBR322ori: Ursprung der DNA-Replikation; Pel-B-Leader: Signalpeptidsequenz der bakteriellen Pectatlyase; rbs: Ribosomenbindungsstelle, die von dem E. coli lacZ Gen (lacZ), von dem Bakteriophagen T7 Gen 10 (T7g10) oder von dem E. coli skp Gen (skp) stammt; skp: Gen, das für den bakteriellen periplasmatischen Faktor Skp/OmpH kodiert; tHP: starker Transkriptions-Terminator; tlPP: Transkriptions-Terminator; V_H und V_L : variable Region der schweren und der leichten Kette.

Die Erfindung wird durch die nachfolgenden Beispiele erläutert.

Beispiel 1: Konstruktion der Plasmide pDISC3x19-LL und pDISC3x19-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v -Antikörper-Konstrukten in Bakterien

Die Plasmide pHOG-αCD19 und pHOG-dmOKT3, welche für die scFv-Fragmente kodieren, die von dem Hybridom HD37, das für menschliches CD19 (Kipriyanov *et al.*, 1996, *J. Immunol. Meth.* 196, 51-62) spezifisch ist, bzw. von dem Hybridom OKT3, das für menschliches CD3 (Kipriyanov *et al.*, 1997, *Protein Eng.* 10, 445-453) spezifisch ist, abgeleitet sind, wurde zur Konstruktion von Expressionsplasmiden für ein einzelkettiges F_v-Antikörper-Konstrukt verwendet. Ein PCR-Fragment 1 der V_H-Domäne von Anti-CD19, gefolgt von einem Segment, das für einen GlyGly-Linker codiert, wurde unter Verwendung der Primer DP1, 5'-TCA-CACAGAATTCTTAGATCTATTAAAGAGGAGAAATTAACC, und DP2, 5'-AGCACACGATATCACCGCCAAGCTTGGGTGTTGTTTTGGC, erzeugt (vgl. Fig. 2). Das PCR-Fragment 1 wurde mit *Eco*RI und *Eco*RV gespalten und mit dem mit *Eco*RI/*Eco*RV linearisierten Plasmid pHOG-dmOKT3 ligiert, wodurch der Vektor pHOG19-3 erzeugt wurde. Das PCR-Fragment 2 der V_L-Domäne von Anti-CD19,

gefolgt von einem Segment, das für ein c-myc-Epitop und einen Hexahistidinylschwanz codiert, wurde unter Verwendung der Primer DP3, 5'-AGCACA-CAAGCTTGGCGGTGATATCTTGCTCACCCAAACTCCA, und DP4, 5'-AGCA-CACTCTAGAGACACACAGATCTTTAGTGATGGTGATGGTGAGTTTAGG, erzeugt. Das PCR-Fragment 2 wurde mit HindII und Xbal gespalten und mit dem durch HindIII/Xba linearisierten Plasmid pHOG-dmOKT3 ligiert, wodurch der Vektor pHOG3-19 erhalten wurde (vgl. Fig. 2). Das für das hybride scFv-3-19 codierende Gen in dem Plasmid pHOG3-19 wurde mittels PCR mit den Primern Bi3sk, 5'-CAGCCGGCCATGGCGCAGGTGCAACTGCAGCAG und entweder Li-1, 5'-TATA-TACTG<u>CAGCTG</u>CACCTGGCTACCACCAC-AGCGGCCGCAGCATCAGCCCG, zur Erzeugung eines langen flexiblen (Gly₄Ser)₄inter-scFv-Linkers (PCR-Fragment 3, vgl. Fig. 2) oder Li-2, 5'-TATA-TACTGCAGCTGCACCTGGGCCACCAGCGGCCGCAGCATCAGCCCG, zur Erzeugung eines kurzen, starren GGPGS-Linkers (PCR-Fragment 4, vgl. Fig. 2) amplifiziert. Die Expressionsplasmide pDISC3x19-LL und pDISC3x19-SL wurden durch Ligierung des Ncd/Pvull-Restriktionsfragments aus pHOG19-3, umfassend das Vektorgerüst und die Ncd/Pvull-gespaltenen PCR-Fragmente 3 bzw. 4 konstruiert (vgl. Fig. 3, 4). Die vollständige Nukleotid- und Proteinsequenzen der bivalenten bzw. tetravalenten F_v -Antikörper-Konstrukte sind in den Figuren 5 bzw. 6 angegeben.

Beispiel 2: Konstruktion der Plasmide pPIC-DISC-LL und pPIC-DISC-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v -Antikörper-Konstrukten in Hefe

(A) Konstruktion von pPIC-DISC-SL

Der Vektor pPICZαA (Invitrogen BV, Leek, Niederlande) zur Expression und Sekretion von rekombinanten Proteinen in der Hefe *Pichia pastoris* wurde als Ausgangsmaterial verwendet. Er enthält ein Gen, das für das *Saccharomyces cerevi*- siae α-Faktor-Sekretionssignal codiert, gefolgt von einem Polylinker. Die Sekretion dieses Vektors beruht auf dem dominanten selektierbaren Marker, Zeocin™, der sowohl in *Pichia* als auch in *E. coli* bifunktionell ist. Das Gen, das für das tetravalente F_v-Antikörper-Konstrukt (scDia-SL) codiert, wurde mittels PCR von der Matrize pDISC3x19-SL unter Verwendung der Primer 5-PIC, 5'-CCGTGAAT-TCCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGC, und pSEXBn 5'-GGTC-GACGTTAACCGACAAACAACAGATAAAACG amplifiziert. Das so erhaltene PCR-Produkt wurde mit *Eco*RI und *Xba*I gespalten und in mit *Eco*RI/*Xba*I linearisiertes pPICZαA ligiert. Es wurde das Expressionsplasmid pPIC-DISC-SL erhalten. Die Nukleotid- und Proteinsequenzen des tetravalenten F_v-Antikörper-Konstruktes sind in Fig. 7 gezeigt.

(B) Konstruktion von pPIC-DISC-LL

Die Konstruktion von pPIC-DISC-LL wurde auf der Grundlage von pPICZαA (Invitrogen BV, Leek, Niederlande) und pDISC3x19-LL (vgl. Fig. 3) durchgeführt. Die Plasmid-DNA pPICZαA wurde mit *Eco*RI gespalten. Die überstehenden 5'-Enden wurden unter Verwendung eines Klenow-Fragments der *E. coli*-DNA-Polymerase I aufgefüllt. Die so erhaltene DNA wurde mit *Xba*l gespalten, und das große Fragment, umfassend den pPIC-Vektor, wurde isoliert. Analog wurde die DNA von pDISC3x19-LL mit *Nco*l gespalten und mit einem Klenow-Fragment behandelt. Nach der Spaltung mit *Xba*l wurde ein kleines Fragment, umfassend ein für den bivalenten F_v-Antikörper kodierendes Gen, isoliert. Dessen Ligierung mit einer pPIC-abgeleiteten Vektor-DNA ergab das Plasmid pPIC-DISC-LL. Die Nukleotid-und Proteinsequenz des bivalenten F_v-Antikörper-Konstruktes sind in Fig. 8 gezeigt.

Beispiel 3: Expression des tetravalenten bzw. bivalenten F_v-Antikörper-Konstruktes in Bakterien

E. coli-XL1-Blue-Zellen (Stratagene, La Jolla, CA), die mit den Expressionsplasmiden pDISC3x19-LL bzw. pDISC3x19-SL transformiert worden waren, wurden

über Nacht in 2xYT-Medium mit 50 μ g/ml Ampicillin und 100 mM Glucose (2xYT_{Ga}) bei 37°C gezüchtet. 1:50-Verdünnungen der Übernachtkulturen in $2xYT_{GA}$ wurden als Kolbenkulturen bei 37°C unter Schütteln mit 200 UpM gezüchtet. Als die Kulturen einen OD₆₀₀-Wert von 0,8 erreicht hatten, wurden die Bakterien durch 10minütige Zentrifugation mit 1500 g bei 20°C pelletiert und in dem gleichen Volumen eines frischen 2xYT-Mediums, das 50 μ g/ml Ampicillin und 0,4 M Saccharose enthielt, resuspendiert. IPTG wurde bis zu einer Endkonzentration von 0,1 mM zugesetzt, und das Wachstum wurde bei Raumtemperatur (20-22°C) 18-20 h fortgesetzt. Die Zellen wurden durch 10minütige Zentrifugation mit 5000 g bei 4°C geerntet. Der Kulturüberstand wurde zurückgehalten und auf Eis gelagert. Um die löslichen periplasmatischen Proteine zu isolieren, wurden die pelletierten Bakterien in 5% des Anfangsvolumens an eiskalter 50 mM Tris-HCl, 20% Saccharose, 1 mM EDTA, pH 8,0, resuspendiert. Nach einer 1stündigen Inkubation auf Eis unter gelegentlichem Rühren wurden die Sphäroplasten mit 30.000 g 30 min bei 4°C zentrifugiert, wobei der lösliche periplasmatische Extrakt als Überstand und die Sphäroplasten mit dem unlöslichen periplasmatischen Material als Pellet erhalten wurden. Der Kulturüberstand und der lösliche periplasmatische Extrakt wurden vereinigt, durch weitere Zentrifugation (30.000 g, 4°C, 40 min) geklärt. Das rekombinante Produkt wurde durch Ammoniumsulfatfällung (Endkonzentration 70% Sättigung) eingeengt. Das Proteinpräzipitat wurde durch Zentrifugation (10.000 g, 4°C, 40 min) gewonnen und in 10% des Anfangsvolumens an 50 mM Tris-HCl, 1 M NaCl, pH 7,0, aufgelöst. Eine immobilisierte Metallaffinitätschromatographie (IMAC) wurde bei 4°C unter Verwendung einer 5 ml Säule an chelatierender Sepharose (Pharmacia), die mit Cu2+ beladen war und mit 50 mM Tris-HCl, 1 M NaCl, pH 7,0 (Startpuffer) equilibriert worden war, durchgeführt. Die Probe wurde durch ihr Leiten über die Säule aufgeladen. Sie wurde dann mit zwanzig Säulenvolumina Startpuffer, gefolgt von Startpuffer mit 50 mM Imidazol, bis die Absorption bei 280 nm des Effluenten minimal war, gewaschen (etwa dreißig Säulenvolumina). Das absorbierte Material wurde mit 50 mM Tris-HCl, 1 M NaCl, 250 mM Imidazol. pH 7,0, eluiert.

Die Proteinkonzentrationen wurden mit dem Bradford-Farbstoffbindungstest (1976,

Anal. Biochem., 72, 248-254) unter Verwendung des Bio-Rad(München, Deutschland)-Proteinassaykits bestimmt. Die Konzentrationen der gereinigten tetravalenten bzw. bivalenten F_v -Antikörper-Konstrukte wurden aus den A_{280} -Werten unter Verwendung der Extinktionskoeffizienten $\epsilon^{1mg/ml}=1,96$ bzw. 1,93 bestimmt.

Beispiel 4: Expression des tetravalenten bzw. bivalenten Antikörper-Konstruktes in der Hefe *Pichia pastoris*

Kompetente *P. pastoris* GS155-Zellen (Invitrogen) wurden in Gegenwart von 10 μ g Plasmid-DNA von pPIC-DISC-LL bzw. pPIC-DISC-SL, die mit *Sad* linearisiert worden war, elektroporiert. Die Transformanten wurden 3 Tage bei 30°C auf YPD-Platten, die 100 μ g/ml ZeocinTM enthielten, selektiert. Die Klone, die bivalente bzw. tetravalente F_v-Antikörper-Konstrukte sezernierten, wurden durch Plattenscreening unter Verwendung eines anti-c-*myc*-mAk 9E10 (IC Chemikalien, Ismaning, Deutschland) selektiert.

Zur Expression der bivalenten bzw. tetravalenten F_v -Antikörper-Konstrukte wurden die Klone in YPD-Medium in Schüttelkolben 2 Tage bei 30°C unter Rühren gezüchtet. Die Zellen wurden zentrifugiert, in dem gleichen Volumen des Mediums, das Methanol enthielt, resuspendiert und weitere 3 Tage bei 30°C unter Rühren inkubiert. Die Überstände wurden nach der Zentrifugation gewonnen. Das rekombinante Produkt wurde durch Ammoniumsulfatfällung, gefolgt von IMAC, wie vorstehend beschrieben, isoliert.

Beispiel 5: Charakterisierung des tetravalenten bzw. bivalenten F_{v} -Antikörper-Konstruktes

(A) Größenausschlußchromatographie

Eine analytische Gelfiltration der F_v -Antikörper-Konstrukte wurde in PBS unter Verwendung einer Superdex-200-HR10/30-Säule (Pharmacia) durchgeführt. Das

Probenvolumen und die Fließgeschwindigkeit betrugen 200 μ l/min bzw. 0,5 ml/min. Die Säule wurde mit hoch- und niedermolekularen Gelfiltrations-Kalibrationskits (Pharmacia) kalibriert.

(B) Durchflußzytometrie

Die menschliche CD3 $^+$ /CD19 $^-$ akute-T-Zell-Leukämielinie Jurkat und die CD19 $^+$ /CD3 $^-$ B-Zellinie JOK-1 wurden für die Durchflußzytometrie verwendet. 5 x 10 5 Zellen in 50 μ l RPMI 1640-Medium (GIBCO BRL, Eggestein, Deutschland), das mit 10% FCS und 0,1% Natriumazid supplementiert war (als vollständiges Medium bezeichnet), wurden mit 100 μ l der F $_v$ -Antikörper-Präparate 45 min auf Eis inkubiert. Nach Waschen mit dem vollständigen Medium wurden die Zellen mit 100 μ l 10 μ g/ml anti-c-myo-Mak 9E10 (IC Chemikalien) in dem gleichen Puffer 45 min auf Eis inkubiert. Nach einem zweiten Waschzyklus wurden die Zellen mit 100 μ l des FITC-markierten Ziege-anti-Maus-IgG (GIBCO BRL) unter den gleichen Bedingungen wie vorher inkubiert. Die Zellen wurden dann erneut gewaschen und in 100 μ l 1 μ g/ml-Propidiumiodid-Lösung (Sigma, Deisenhofen, Deutschland) in vollständigem Medium unter Ausschluß von toten Zellen resuspendiert. Die relative Fluoreszens der gefärbten Zellen wurde unter Verwendung eines FACScan-Durchflußzytometers (Becton Dickinson, Mountain View, CA) gemessen.

(C) Cytotoxizitätstest

Die CD19-exprimierende Burkitt-Lymphoma-Zellinie Raji und Namalwa wurden als Zielzellen verwendet. Die Zellen wurden in RPMI 1640 (GIBCO BRL), das mit 10% hitzeinaktiviertem FCS (GIBCO BRL), 2 mM Glutamin und 1 mM Pyruvat supplementiert war, bei 37°C in einer befeuchteten Atmosphäre mit 7,5% $\rm CO_2$ inkubiert. Die cytotoxischen T-Zell-Tests wurden in RPMI-1640-Medium, das mit 10% FCS, 10 mM HEPES, 2 mM Glutamin, 1 mM Pyruvat und 0,05 mM 2-ME supplementiert war, durchgeführt. Die cytotoxische Aktivität wurde unter Verwendung eines Standard[51 Cr]-Freisetzungstests bewertet; 2 x 10 6 Zielzellen wurden mit 200 μ Ci

Na[51 Cr]O $_{4}$ (Amersham-Buchler, Braunschweig, Deutschland) markiert und 4mal gewaschen und anschließend in Medium in einer Konzentration von 2 x 10^{5} /ml resuspendiert. Die Effektorzellen wurden auf eine Konzentration von 5 x 10^{6} /ml eingestellt. Zunehmende Mengen an CTLs in $100~\mu$ l wurden auf 10^{4} Zielzellen/Vertiefung in $50~\mu$ l titriert. $50~\mu$ l Antikörper wurden jeder Vertiefung zugesetzt. Der gesamte Test wurde dreifach angesetzt und 4 h bei 37° C inkubiert. $100~\mu$ l des Überstands wurden gewonnen und auf [51 Cr]-Freisetzung in einem gamma-Zähler (Cobra Auto Gamma; Canberra Packard, Dreieich, Deutschland) getestet. Die maximale Freisetzung wurde durch Inkubation der Zielzellen in 10° SDS bestimmt, und die spontane Freisetzung wurde durch Inkubation der Zellen in Medium allein bestimmt. Die spezifische Lyse (%) wurde berechnet als: (experimentelle Freisetzung - spontane Freisetzung)/(maximale Freisetzung - spontane Freisetzung) x 100.

Beispiel 6: Konstruktion der Plasmide pDISC5-LL und pDISC6-SL zur Expression von bivalenten, bispezifischen bzw. tetravalenten, bispezifischen F_v -Antikörper-Konstrukten in Bakterien durch Hoch-Zelldichte-Fermentation

Es wurden Expressionsvektoren hergestellt, die das hok/sok Plasmid-freie Zell"suicide"-System und ein Gen enthielten, das für den Skp/OmpH periplasmatischen
Faktor für eine größere Herstellung rekombinanter Antikörper kodiert. Das skp Gen
wurde durch PCR mittels der Primer skp-1, 5'-CGA ATT CTT AAG ATA AGA AGG
AGT TTA TTG TGA AAA AGT GGT TAT TAG CTG CAG G und skp-2, 5'-CGA ATT
AAG CTT CAT TAT TTA ACC TGT TTC AGT ACG TCG G unter Verwendung des
Plasmids pGAH317 (Holck and Kleppe, 1988, Gene 67, 117-124) amplifiziert. Das
erhaltene PCR-Fragment wurde mit AfIII und HindIII gespalten und in das mit
AfIII/HindIII linearisierte Plasmid pHKK (Horn et al., 1996, Appl. Microbiol.
Biotechnol. 46, 524-532) inseriert, wodurch der Vektor pSKK erhalten wurde. Die in
den Plasmiden pDISC3x19-LL und pDISC3x19-SL enthaltenen und für die scFvAntikörper-Konstrukte kodierenden Gene wurden durch PCR mittels der Primer fe-

5

1, 5'-CGA ATT TCT AGA TAA GAA GGA GAA ATT AAC CAT GAA ATA CC und fe-2, 5'-CGA ATT CTT AAG CTA TTA GTG ATG GTG ATG GTG ATG TGA G amplifiziert. Die Xbal/AfIII gespaltenen PCR-Fragmente wurden in pSKK vor dem skp Insert inseriert, wodurch die Expressionsplasmide pDISC5-LL bzw. pDISC6-SL erhalten wurden, die tri-cistronische Operons unter der Kontrolle des lac Promotor/Operator-Systems enthalten (vgl. Fig. 9, 10).

K 2675

10

25

Patentansprüche

- 5 1. Multivalentes F_v -Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind.
 - 2. F_v -Antikörper-Konstrukt nach Anspruch 1, wobei die Peptidlinker 1 und 3 0 10 Aminosäuren aufweisen.
 - 3. F_v -Antikörper-Konstrukt nach Anspruch 2, wobei die Peptidlinker 1 und 3 die Aminosäuresequenz GG aufweisen.
- 4. F_v-Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei das F_v-Anti 15 körper-Konstrukt bivalent ist.
 - 5. F_v-Antikörper-Konstrukt nach Anspruch 4, wobei der Peptidlinker 2 11-20 Aminosäuren aufweist.
- 20 6. F_v-Antikörper-Konstrukt nach Anspruch 4 oder 5, wobei der Peptidlinker 2 die Aminosäuresequenz (G₄S)₄ aufweist.
 - 7. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-3, wobei das F_v -Antikörper-Konstrukt tetravalent ist.
 - 8. F_v-Antikörper-Konstrukt nach Anspruch 7, wobei der Peptidlinker 2 3-10 Aminosäuren aufweist.
- 9. F_v-Antikörper-Konstrukt nach Anspruch 7 oder 8, wobei der Peptidlinker 2
 30 die Aminosäuresequenz GGPGS aufweist.

- 10. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-9, wobei das F_v -Antikörper-Konstrukt multispezifisch ist.
- 11. F_v-Antikörper-Konstrukt nach Anspruch 10, wobei das F_v-Antikörper Konstrukt bispezifisch ist.
 - 12. F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-9, wobei das F_v -Antikörper-Konstrukt monospezifisch ist.
- 13. Verfahren zur Herstellung des multivalenten F_v-Antikörper-Konstruktes nach einem der Ansprüche 1-12, wobei für die Peptidlinker 1, 2 und 3 kodierende DNAs mit für die vier variablen Domänen eines F_v-Antikörper-Konstruktes kodierenden DNAs ligiert werden derart, daß die Peptidlinker die variablen Domänen miteinander verbinden, und das erhaltene DNA-Molekül in einem Expressionsplasmid exprimiert wird.
 - 14. Expressionsplasmid, kodierend für das multivalente F_v -Antikörper-Konstrukt nach einem der Ansprüche 1-12.
- 20 15. Expressionsplasmid nach Anspruch 14, nämlich pDISC3x19-LL.
 - 16. Expressionsplasmid nach Anspruch 14, nämlich pDISC3x19-SL.
 - 17. Expressionsplasmid nach Anspruch 14, nämlich pPIC-DISC-LL.
 - 18. Expressionsplasmid nach Anspruch 14, nämlich pPIC-DISC-SL.
 - 19. Expressionsplasmid nach Anspruch 14, nämlich pDISC5-LL.
- 30 20. Expressionsplasmid nach Anspruch 14, nämlich pDISC6-SL.

- 21. Verwendung des multivalenten F_v -Antikörper-Konstruktes nach einem der Ansprüche 1-12 zur Diagnose und/oder Therapie von Erkrankungen.
- 22. Verwendung nach Anspruch 21, wobei die Erkrankungen virale, bakterielle oder Tumor-Erkrankungen sind.

5

A

Linkers: L1

L1 = GG

 $L2 = (G_4S)_4$

L3 = GGPGS

FIGUR 3

FIGUR 4

EcoRI RBS PelB leacer Ncgl
1691 COTACODROCORACTORIOSTOSTOSTOSTOSTOSOSORACOSTATOCATARASTARACOTARIOSARACASTARARACARACARACARACATARACTARACTAR
L'M K Y T L P T A A A S L L L L A A O P A M
* Pramera 1
92 CGCAGGTGCAACTGCAGCAGTCTGGGGCTGAACTGGCAAGACCTGGGGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACCTTTTAC
and didd a data a reday was ckas grap pa
CDR-H1 Frame-H2 CDR-H2
183 TAGGTACACGATGCACTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATTGGATACATTAATCCTAGCCGTGGTTATAC
52 R Y T M H W V K Q R P G Q G L E W I G Y I N P S R G Y T
Frame-H3
267 TAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGAC
30 N Y N Q K F K D K A T L T T D K S S S T A Y M Q L S S L T
CDR-H3 Frame-H4 354 ATCTGAGGACTCTGCGAGTCTATTACTGTGCAAGATATTATGATGATGATTACAGCCTTGACTACTGCGGCCAAGGCACCACTCTCA
109) S E D S A V Y Y C A R Y Y D D H Y S L D Y W G Q G T T L
440 CAGTCTCCTCAGCCAAACACCCAAGCTTGGGGGGTGATATCTTGCTCACCCAAACTCCAGCTTCTTTGGCTGCAGGCAG
138 T V S S A K T T P K L G G D I L L T Q T P A S L A V S L G Q
CDB-i i
530 GGGCCACCATCTCCCAAGGCCAAGGCCAAAGTGTTGATTGA
168 R A T I S C K A S Q S V D V D G D S V L N N V Q Q I P G
CDB4/2
614 AGCCACCCAAACTCCTCATCTATGATGCATCCAATCTAGTTTTCTCGATCCGATCCGATCCGATCCGATCTATCCAATCTAGTTTCCAACTCTATCCAATCTAGTTTTCCAACTCTAGTTTCCAACTCTATCCAACTCTATCCAACTCTAGTTTTCCAACTCTATCCAACTCTAGTTTTCCAACTCTATCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAGTTTTCCAACTCTAACTCTAGTTTCCAACTCTAGTTTCCAACTCTAACTCAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCTAACTCAACTCTAACTCTAACTCAACTCTAACTCTAACTCTAACTCTAACTCTAACTCAACTCTAACTCAACTCAACTCAACTCTAACTCAACAA
196 Q P P K L L I Y D A S N L V S G I P P R F S G S G S G T D F
CDB 13
104 CACCOTCAACATCCATCCATCCTGTGGAAGGTGGAACGTGCAACCTATCACTGAACAACAAAAAAAA
225 T L N I H P V E K V D A A T V H C Q Q S T E D P W T F G G
C kacca Not! Linker 2
790 GGCACCAAGCTGGAAATCAAA <u>CGGGCTGATGCT</u> GCGGCCGCTGGTGGTGGTGGTGGTTGTTGGGGGGGG
255 G T K L E I K R A D A A A A G G G G G G G G G G G
Pvull Frame-H1 VH anti-CD19
874 TCCGGTGGTGGTGCTACCCACCCACCCACCACCACCACCACCACCACCACCAC
874 TCCGGTGGTGGTGGTAGCCAGCTGCAGCAGCAGCTCTGGGGCTGAGCTGGTGAGGCCTGAGTCCTCAGTGAAGATTTCCTGCAAGG
2837 S G G G S Q 7 Q L Q Q S G A E L V R P G S S V K I S C K
CDB-H1 Frame-H2 CDB-H1 CDB-H2
2837 S G G G S Q 7 Q L Q Q S G A E L V R P G S S V K I S C K CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGAACTGGGTGAAGCAGAGCACTGGATGGA
263 S G G G S Q 7 Q L Q Q S G A E L V R P G S S V K I S C K CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGCTAGTAGTAGTAGATTGGC 312 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGCTAGATGGATGGACTGGACAGGGCCTGGACAGGGTCTTGAGTGGATGGA
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGCTAGATGGATGGACTGGACAGGGCCTGGACAGGGTCTTGAGTGGATGGA
CDR-H1 Frame-H2 CDR-H1 Frame-H2 CDR-H2 962 CTTCTCGCTATCATTCAGTAGCTAGTAGATGAACTGGGTGAAGCAGAGGCCTGGACAGGGTCTTGAGTGGATTGGACAGGATTTGGC 312 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PStI Frame-H3 1049 CTGGAGATGGTGATACTAACTACAATGGAAAGTTCAAGGGTAAAGCCACTCTGACTGCACGACGAATCCTCCAGCACAGCCTACA 341 P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y
CDR-H1 Frame-H2 ODR-H2 962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGGACTGGATGGA
CDR-H1 Frame-H2 ODR-H2 962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGGACTGGATGGA
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGGATGGACTGGATGGA
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGGTACTGGATGGATGGACTGGACAGGGTGACAGGGTCTTGAGTGGATTGGACAGAGTTTTGGC 312 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CDR-H2 CDR-H2 CDR-H2 GOR-H2 GOR-H2 STATE-H2 CDR-H2 GOR-H2 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PStI Frame-H3 CTGGAGATGGGTGAACTACAACGGTAAACTACAACGGTAAACTACAACACCCCAAGCGTAACTACAACCCCAAACCTACAAC
CDR-H1 CDR-H2 GDR-H2 GDR-H2 962 CTTCTGGCTATGCATTCAGTAGGTAGTGGATGAACTGGGTGAAGCAGGCCTGGACAGGGTCTTGAGTGGATTGGACAGAGTTTTGGC 312 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PStl Frame-H3 1049 CTGGAGATGGTGATACTACAATGGAAAGTTCAAGGGTAAAGCCACTCTGAGTAGAGACGAATCCTCCAGCACAGCCTACA 341 P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y 1133 TGCAACTCAGCAGCCTAGCATCTGAGGACTCTTGCGGTCTATTTCTGTGCAAGACGGAGGAGACGATAGGGCGGTTATTTACTAT 369 M Q L S S L A S E D S A 7 Y F C A R R E T T T V G R Y Y Y Frame-H4 1219 GCTATGGACTCTGCGGTCAAGGAACCTCAGTCACCGTCACCCCAAGCCTTGGCGGGTGATATCGTGCTCACTC 398 A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T VL anti-CD3
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGCCTATGCATTCAGTAGCTAGTGGATGGACTGGACAGCGCTGGACAGGGTCTTGAGTGGATTGGACAGGATTTGGC 312 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PSU Frame-H3 1049 CTGGAGATGGTGATACTACAATGGAAAGTTCAAGGGTAAAGCCACTCTGCAGCACGAATCCTCCAGCACAGCCTACA 341 P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y 1133 TGCAACTCAGCAGCCTAGCATCTGAGGACTCTTGCGGTCTATTTCTGTGCAAGACGGGGGAGACTACGAGGCGGTAAGTACTATT 369 M Q L S S L A S E D S A 7 Y F C A R R E T T T V G R Y Y Y Frame-H4 CH1 Linker 1 Frame-L1 1219 GCTATGGACTACTGCGGTCAAGGAACCTCAGTCACCTCCAGCCTACACCTC 398 A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T VL anti-CD3 1307 AGTCTCCAGCAATCATGTCTGCATCTCCAGGGAGAAAGGTCACCATGACGTGCAAGCTGCAAGTTAAGTTACATGAACTTG CDR-H2 CDR-
CDR-H2 CDR-H2 GDR-H2 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PSII Frame-H3 GDR-H3 GDR-H3 GDR-H3 GDR-H3 GDR-H3 TGCAACTCAGCAGCCTAGCATCTGAGGACTCTGAGGACGATACCTCCAGCACAGCCTACA GDR-H3 GDR-H3 GDR-H3 GDR-H3 GDR-H3 GDR-H3 Frame-H4 Frame-H4 Linker 1 Frame-L1 GCTATGGAGCTACTGAGGACCTCAGGACCTCAGCCCTACACCCCCCAAGCTTGAGGACGACCCCAAGCTTGAGGACGACCCCAAGCTTGAGGACCCCAAGCTTGAGGACCTCACTC WL anti-CD3 GDR-L1 GDR-H2 CDR-H2 CDR-H2 CDR-H2 CDR-H3 CDR-H
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGGACTGGACTGGACAGGCCTGGACAGGGTCTTGAGTGGACTGGACAGGATTTGGC 312) A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PSU Frame-H3 1049 CTGGAGATGGTGATACTACAATGGAAAGTTCAAGGGTAAAGCCACTCTGACTGCAGACGAATCCTCCAGCACAGCCTACA 341) P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y 1133 TGCAACTCAGCAGCCTAGCATCTGAGGACTCTTGCGGTCTATTTCTGTGCAAGACGGGGAGACTACGACGGTTATTACTAT 369) M Q L S S L A S E D S A V Y F C A R R E T T T V G R Y Y Y Frame-H4 CH1 Linker 1 Frame-L1 1219 GCTATGGACTACTGGGGTCAAGGAACCTCAGTCACGGCGAAACCACCCAAGCTTGGCGGTGATATCGTGCTCACTC 398) A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T VL anti-CD3 CDR-L1 1307 AGTCTCCAGCAATCATGTCTCCATCTCCAGGGGACAAGGTCACCTGCAGGTGAAGTTACATGTACTGGGGACAACCTCAGCTAAGGTAACACCCCAAGGTTAAGTTACATGAACTCG 427) Q S P A I M S A S P G E K V T M T C S A S S S V S Y M N W Frame-L2 CDR-L2
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATGCATTCAGTAGCTAGGTGGATGGATGGAGGCAGGGCTTGGACAGGGTCTTGAGTGGATTTGAGAGAGTTTTGGC 312) A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PStl Frame-H3 1049 CTGGGAGATGGTGATACTACTACTACTACTAGGAAAGTTCAAGGGTAAAGCCACTCTGACTGCAGAGAATCCTCCAGCACAGCTTACA 341) P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y CDR-H3 1133 TGCAACTCAGCAGCCTAGCATCTGAGGACTCTTGCGGTCTATTTTCTGTGCAAGAGGAGACTACGACGGTAAGTGTACTATTTCTGTGCAAGAGGAGACTACGAGGGTAAGGCGGTTATTTACTATT 369) M C L S S L A S E D S A Y Y F C A R R E T T T V Q R Y Y Y Frame-H4 1219 GCTATGGACTCTGGGGTCAAGGAACCTCAGGTCACCTCAGCCAAACAACACCCAAGCTTGGGGGTGATATCGTGCTACTC 398) A M D Y W G Q G T S V T V S S A K T T P K L G G D I V L T VL anti-CD3 CDR-L1 1307 AGTCTCCAGCAATCATGTCTCCAGGGAGAAGGTCACCATGACCTGCAGGTGGAGGTAAGGTTAAGTTACATGAGCAGCTAACTCGAGCTCAAGCTTGAGGTTAAGTTACATGAACTGG 427) Q S P A I M S A S P G E K V T M T C S A S S S V S Y M N W Frame-L2 1393 TACCAGCAGAAGTCAGGGCACCTCCCCCAAAAGATGGATTTATGAGAGATGGAACTTCGAGCTTCCTCCAGCCTAAACTTCGAGCTTCCTCCAGCCTCAACCTCCAGCTTCCTCCAGCCTCACTCCAGCCTCAAGCTTCGAGCTCCAGCTCCACTCCAGCCTCAAGCTTCGAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGCTCCAGCCTCAAGCTTCCAGGCTCAAGTTGAGGTTAAGTTACATGAACTCGAGTTCAGCCCAAAGTTCAAGGTTAAGTTACATGAACTCGAGTTACATGAACTCCAGCTCCACCTCAAGCTTCCAGCCCAAAAGAACTCCCAAGCTTCAAGGTTAAGTTACATGAACTCCAGCTCCACCTCAAGCTTCCAGCCCAAAGATCCAAGCTTCCAGCCCAAAGATCCAAAGATCCAAAGATCCAAACTTCCAAGCTTCCAGCCCCAAACTTCCAGCCCCCAAACTTCCAGCCCCCAAACATCCAAGCTTCCAGCCCCAAACATCCAAGCTTCCAGCCCCCAAACATCCAAGCTTCCAGCCCCCAAACATCCAAGCTTCCAGCCCCCAAACCTTCCAGCCCCAAACATCCAAACAACTCCCAAGCTTCCAGCCCCCAAACATCCAAACAACTCCCAAACATCCAAACAACTCCCAAGCTTCCAGCCCCCAAACATCCAAACAACAACCCCCAAGCTTCAGCCCCCAAACATCCAAACAACTCCCAAGCTTCCAGCCCCAAACTCCAAGCTTCAACCTCCAAGCTTCAACTTCCAGCCCCAAACATCCAAACAACAACAACAACAACAACAACAAC
CDR-H1 Frame-H2 CDR-H2 962 CTTCTGGCTATCATTCAGTAGCTACTGGATGAACTGGTGAACCAGGGCTTGACAGGGCTTGACTGGATTGGACAGATTTGGC 312 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PSII Frame-H3 1049 CTGGAGATGGTGATACTAACTACAATGGAAAGTTCAAGGGTAAAGCCACTCTGACTGCAGACGAATCCTCCAGCACGCCTACA 341 P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y CDR-H3 1133 TGCAACTCAGCAGCCTAGCATCTGAGGACTCACGGGTAATTCTGTGCAAGACGGGAGACTACGAGGGGGAGACTACGAGGGGGGGG
CDR-H2 AS G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W PStl Frame-H3 1049 CTGGAGATGGTGATACTACTACTACTACTACTACTACTACTACTACTACTAC
CDR-H1 CDR-H2 CDR-H2 Frame-H2 CDR-H2 CDR-H2 CDR-H3 1049 CTGGGGGATGGTGATCAGCTACCATCAGCAACGTCAAGGGTAAAGCCAACGCTACAGCGTAAGCAAGC
CDR-H1 Frame-H2 CDR-H1 Frame-H2 CDR-H1 Frame-H2 CDR-H2 CDR-H2 CDR-H1 Frame-H2 CDR-H2 CDR-H3 C
COR-H2 PSUI Frame-H3 COR-H3
COR-H2 S G G G G S Q Y Q L Q Q S G A E L V R P G S S V X I S C X COR-H2 Prime-H2 COR-H2 GOR-H2 112 A S G Y A F S S Y W M N W V X Q R P G Q G L E W I G Q I W PStI Frame-H3 1049 CTGGAGATGGTACTACATGCAATGGAAGTTCAAGGGTAAAGCCACCTCCACCACAGACGAATCCTCCAGCACGACTACA 341 P G D G D T N Y N G X F X G X A T L T A D E S S S T A Y COR-H3 1133 TGCAACTCAGCAGCCTAGGACTCTGAGGACTCTCTGTGCAAGACGAAGACTCCCAGCCACCCTACA 369 M Q L S S L A S E D S A Y Y F C A R R E T T T V G R Y Y Y Frame-H4 1219 GCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCCAAGCTTGGAGGAGAACCACCCAAGCTTGGAGACTAATCCTCCACCACCC 1398 A M D Y W G Q G T S V T V S S A X T T P X L G G D I V L T VL anti-CD3 COR-L1 1307 AGTCTCCAGCAACTACTGCAGGAACGTCACCCAAGCTCACCTCAGCTCAACCTCAGCTCAACCTCAGCTCAACTCACTC
CDR-H1 Frame-H2 1049 CTGGAGATGGTATCTACTACCATGGATGGAAGTTCAAGGGTTAAGCCCTGCAAGGGAGGCCTGCACGACAGGTTTGAGTGATTGACCACCTACACAGGTTTGAGTGATTGACCTACACTACACTACACTACACTACACTCCACCTACACAGGTTACCACTCCACCACCTCCACCACACCTCCACCACACCTCCACCA
CDR-H1 Frame-H2 962 CTTCTGGCTATGCATTCAGTAGCTACTGGATGAACTGCGTGAAGCAGGGCCTGGACAGGGTCTTGAGTGATTGACAGAGATTTGGC 312 A S G Y A F S S Y W M N W V K Q R P G Q G L E W I G Q I W 1049 CTGGAGATGGTAACTACAATGGAAAGTTCAAGGGTAAAGCCCACCTGACACAGATCTCACACCAACCCTACA 341 P G D G D T N Y N G K F K G K A T L T A D E S S S T A Y 1133 TGCAACTCAGCAGCCTAGCATCTGAGGACTCTCCGGTCTATTTCTGTGCAAGAGAGACTACGAGAATCGTCCACGACACACATTATTACTAT 369 M Q L S S L A S E D S A 7 Y F C A R R E T T T V G R Y Y Y Frame-H4 1219 GCTATGGACTACTGAGGACCTCAGCTCTCCAGCCCTCACCCAACACAGAGACTACCAACCCTACAGCTTGAGGACTACTCCAGCTCACCCAACCCTACCCTCACCCAACACACAC
CDR-H1 Frame-H2 1049 CTGGAGATGGTATCTACTACCATGGATGGAAGTTCAAGGGTTAAGCCCTGCAAGGGAGGCCTGCACGACAGGTTTGAGTGATTGACCACCTACACAGGTTTGAGTGATTGACCTACACTACACTACACTACACTACACTCCACCTACACAGGTTACCACTCCACCACCTCCACCACACCTCCACCACACCTCCACCA

EcoRI RBS PelB leader
Neol GAATTCATTAAA <u>GAGGAG</u> AAATTAACCATGAAATTACCTATTGCCTACGGCAGCCAGC
1) M K Y L L P T A A A G L L L L A A Q P A M
24 200 200 100 200 100 200 100 100 100 100
155 1AGGTACACGATGCACTCACATALAACAGACCCCCCCCCCC
THE SECOND SECON
267 TAATTACAATCAGAAGTTCAAGGACAAGGCCACATTGACTACAGACAAATCCTCCAGCACAGCCTACATGCAACTGAGCAGCCTGAC
80 N Y N Q K F K D K A T L T T D K S S S T A Y M Q L S S L T
CDR-H3 Frame-H4 354 ATCTGAGGACTCTGCAGTCTATTACTGCAAGATATTATGATGATGATTACAGCCTTGACTACTGGGGCCAAGGCACCACTCTCA 109
109 S E D S A V Y Y C A R Y Y D D H Y S L D Y W G Q G T T L
440 CAGIUICUCAGGCAAAACAACACCCAAGCAMGGCGGTGAMATCAMCCACAAAACAAA
UDDEN 1
330 GGCCGCCALCLACAAGGCCAAAGGCCAAAGGGGTTGATTTTTTTTTT
The state of the s
CDR-L2 Frame-L3 614 AGCCACCCAAACTCCTCATCTATGATGCATCCAATCTAGTTTCTGGGATCCCACCCA
196 O P P K L L I Y D A S N L V S G I P P R F S G S G S G T D F
00010
102 CACCCTCAACATCCATCCATCCACAACGTCCACAACGTCCAACCTATCAACCAAC
1: Xanna Noti
TO CONTROL WAR I WANTE WITH THE PROPERTY OF TH
VH and Onto
779 CDR-H1 Frame-H2
ons Garage Cite Gill Call Call Call Call Call Call Call C
ons Garage Cite Gill Call Call Call Call Call Call Call C
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGACTAGACAGACTTTGGCCTGGACAGAGACTAGAGAGACTAGAGAGACTAGAGAGACTAGAGAGAG
968 CTGGACAGGTTCTGAGTGACATTTGGCTGGCTGGCTGGCT
VRPGSSVKISCKAAGATTTCCTGCAAGGCTTCTGGCTATGCATTCAGTAGCTAGTGAAGTGGATGAACTGGGTGAAGCAGAGGC CDR-H2 968 CTGGACAGGGTCTTGAGTGGACAGAGTTTTGGCCTGGAGATGGTGATACTAACTA
284 V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGACAGAGTTTTGGCTTGGGTGATGATTCAAAATGGAAAGTTCAAGGGTAAAGCC 314 P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGAGAGTCCTCCAGCACAGCTTACATCCAACTGCACCCCTTACATCCAACTGCACCTCAGCACTTCAGCACTCCACCACCTTACATCCAACTGCACCTACCTCACCTACCTACCTACCTACCTACCTACCTACCTACCACC
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGACTAGACAGAGTTTGGCTAGGATGAAGTGCAAGAGTTCAAGGGTAAGCC 314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGAGAGTCCTCCAGCACAGCCTTACATCCAACTCAAGCACTCTGAGGACTCTTGAGGACTCTTGTTTCTGTGCAAGAC 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R
968 CTGGACAGGCTCTGAGTGACAGATTTCGCCAGGCTTCTGGCTATGCATTCAGTAGCTAGGATGAACTGGGTGAAGCAGAGGC 314 P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGGCATTCCAGCACGCCTACATCCAACTCCAGCACTCTGAGGACTCTGCGGTCTATTTCTGTGCAAGAG 342 T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDB-H3
VRPGSSVKISCOMAGAGATTCCTGCAAGGCTTCTGGCTATGCATTCAGTAGGTAAGTGGATGAACTGGGTGAAGCAGAGCCCAGAGCCCAGAGCCTCTGAGGAGAACTGGGTGAAGTGAAGCTGGAGGAGAGCCCAGAGAAGCCCAGAGAAGCCCTGGACAAGGGTAAAGCCCAGACAAGGGTAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAGAAAGCCCAAGAAG
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R 284) CDR-H2 968 CTGGACAGGGTCTTGAGTGGATTGGCAGAGGCTTGGCTGGATGATGCAATGGAAAGTTCAAGGGTAAAGCC 314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGAGGATCCTCCAGCACAGCCTTACATCCAACTCAAGCACCTTACATCTGAGGACTCTGAGGACTCTGTGCAACAGC 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 CDR-H3 Frame-H4 CH1 1142 GGGAGACTACGAGGGTTAGGACCTTATTTACTATGGATTATGGACTCTAGGAACCTCAGGTCAACTCAGCACCTCAGCTAAAACCTCAGCACCTCAGCACCTCAGCACCTCAGCACCTCAGCACCTCAGCACCTCAGCACCTCAGCCTCAACTCAGCCTAAAA Linker 1 Frame-Linker V A M D Y W G Q G T S V T V S S A K Linker 1 Frame-Linker V AND C R
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGGATTGGCAGAGTTTGGCTGGGTGAAGTTCAAGGGTAAAGCC 314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGAGTGCATCCTCAGCACGCCTACATCCAACTCAGCACCCTGAGGACTCTGAGGACTCTGTGGGTCTATTTCTGTGCAAGAG 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 CDR-H3 1142 GGGAGACTACGACGGTTAGTACTATTGCTATTGGACTTACGGGTCTAAGGACCTCAGCCTCAGCCCTAAGAACCTCAGGACGTTACGGGTCTAAGGACGCCTAAGAACCTCAGGACCTCAGGACGTTACAGACGAACCTCAGGACCTCAGGACCTCAGCCCTAAAA 172) R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGGATTGGCAGAGTTTGGCTGGGTGAAGTTCAAGGGTAAAGCC 314) P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGAGTGCATCCTCAGCACGCCTACATCCAACTCAGCACCCTGAGGACTCTGAGGACTCTGTGGGTCTATTTCTGTGCAAGAG 342) T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 CDR-H3 1142 GGGAGACTACGACGGTTAGTACTATTGCTATTGGACTTACGGGTCTAAGGACCTCAGCCTCAGCCCTAAGAACCTCAGGACGTTACGGGTCTAAGGACGCCTAAGAACCTCAGGACCTCAGGACGTTACAGACGAACCTCAGGACCTCAGGACCTCAGCCCTAAAA 172) R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3
VRPGSSVXISCXASGTTCTCCAGCAGCTTCTCCCTATCCATTCAGTAGCTAGCT
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGTCTTGAGTGGATTGGACAGATTTGGCTGGATGATGTAGCTAGC
VRPGSSVXISCAGCTTCTCCAGCAGCTTCTCCCTATCCATTCAGTAGCTAGC
V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGGATTGGACAGGATTTGGCCTGGAGATGATTGACTAGATTGGAAAGTTCAAGGGTAAAGCC 314 P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGACAATCCTCCAGCACAGCCTACATCCAACCAGCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGTCCAAGAC 342 T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 1142 GGGAGACTACGACGGTAGGCCGTTATTTACTATGCTATTGGACTACTCAGGGGTCAAGGACCTCAGCCTACACCAGCCTAACATCCAGCCAAAAGACCTCAGCCCTAACACCTCAGCCAAAA 372 R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAACCTTGGCGGTGATTATCGTGCTCCACCCAC
284 V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R 968 CTGGACAGGGTCTTGAGTGGATTGGACAGATTTGGCCTGGAGTGATGCATGGATGAAGTTCAAGGGTAAGCC 314 P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGAGATCCTCCAGCACAGCCTACATCCAACTCCAGCAGCCCTAGCATCTGAGGACTCTCCGGGTCTATTTCTGTCCAAGAG 342 T L T A D E S S S T A Y M Q L S S L A S E D S A V Y F C A R CDR-H3 1142 GGGAGACTACGAGAGGGTAGGCCGTTATTACTATGGTATGGACTAGGACTCAGGAACCTCAGGTCACCGGTCTCCTCAGCCAAAA 372 R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 1226 CAACACCCAAGCTTGGCGGTGATATCCTCCAGCAATCATCCAGCTACATCCATC
284) V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGGATTGACAGGATTTGGCTGGAGGAGGATGATAGCTAACTAA
VRPGSSVKISCOCTCACTCACTCACTCACTCACACCCTTCTCCCCAAAACATTCACTAGCTACCTCCACCAACCCTCACCCAAAACATCACCCTCCACCA
284 V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGGATTGGACATTGGCTTGGGGTAACTAGCAAGCA
284 V R P G S S V K I S C K A S G Y A F S S Y W M N W V X Q R 284 CTGACAGGGTCTGAGGATTGACCAGGATTTGGCCAGGATTGAGGTAGCAGGGC CDR.H2 968 CTGGACAGGGTCTTGAGTGCATTGACCAGGATTTGGCCTGGAGATGGTGATACCTACAATGGAAAGTTCAAGGGTAAACCC 314 P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGCAGGACGAATCCTCCAGCACAGCCTACATGCAACTCAGCACCCTAGCATCTGAGGACTCTGCGGTCTATTTCTGTGCAAGAG 342 T L T A D E S S T A Y M Q L S S L A S E D S A V Y F C A R CDR.H3 1142 GGGAGACTACGACGGTAGGCCGTTATTACTATTGCTATTGGACTACTGCAGGAACCTCAGCTCACCTAAAA 372 R E T T T V G R Y Y Y A M D Y W G Q G T S V T V S S A K Linker 1 Frame-L1 VL anti-CD3 400 T T P K L G G D I V L T Q S P A I M S A S P G E K V T M T C CDR-L1 Frame-L2 CDR-L1 Frame-L2 CDR-L2 430 S A S S S V S Y M N W Y Q Q K S G T S P K R W I Y D T S K Frame-L3 1401 ACTGGCTTCTGCAGGTGCAGCTCACTCAGGCAGGTCACGGCAGAAGATGCATGC
284 V R P G S S V K I S C K A S G Y A F S S Y W M N W V K Q R CDR-H2 968 CTGGACAGGGTCTTGAGTGATTGGACAGATTTGGCCTGGAGGATGATGATTCAAGATGGAAAGATGGAAAGACGGTAAACCC 314 P G Q G L E W I G Q I W P G D G D T N Y N G K F K G K A Frame-H3 1051 ACTCTGACTGCAGGAGATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTAGCATTGAGGACTCTCCAGGACACTCTCAGGACACTCAAGACTCAGCACCCTAGCATTGAGGACTCTCCAGGACACTCTCAGGACACTCAAGACTCAAGACTCAAGACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCACCTCAAGCCTAACACTCCAAGCCTAAACACTCCAAGCCTCAAGCCTCAAGCCTAACACCTCAAGCCTCCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCAAGCCTCCAAGAAGCTCAAGCCTCAAGCCTCCAAGAAGCTCAAGCCTCAAGCCTCCAAGAACCCTCAAGCCTCAAGCATCACCTCCAAGCATCACCCCCAAAAAGATGGATTTATGGACAACTCCAAGCCTCAAGCATCAAGATCAAGCATCAAGCATCAAGCATCAAGCATCAAGCATCAAGCATCAAGATCAAGCATCAAGCATCAAGCATCAAGCATCAAGATCAAGCATCAAGATCAAGCATCAAGATCAAGCATCAAGATCAAGCATCAAGATCAAGCATCAAGATCAAGCATCAAGATCAAGCATCAAGATCAAGCATCAAGATCAAGATCAAGATCAAGATCAAGATCAAGCATCAAGATC
284 V R P G S S V X I S C X A S G Y A F S S Y W M N W V X Q R CDR-12 968 CTGGACAGGGTCTGAGTGAGTTGACCAGGCTTGGGGAGTGAGCAGGCGGGAGAGGTCAGGGGGAAAGCCG 314 P G Q G L E W I G Q I W P G D G D T N Y N G X F X G X A Frame-H3 1051 ACTCTGACTGCAGAGCGATTCCAGCAGCCTACATGCAACTCAGCAGCCTAGCATCTGCAGCACCTTAGCATCTGCAGCACCTAGCATCTGCAGCACCTTAGCACTCTGCAGCACCTTAGCATCTGCAGCACCTTAGCATCTGCAGCACCTTAGCACTCTGCAGCACCTTAGCACTCTGCAGCACCTTAGCACTCTGCAGCACCTTAGCACTCTGCAGCACCTTAGCACTCTGCAGCACCTTAGCACTCTGCAGCACCTTAGCACCTCAGCACCTTAGCACCTCAGCACCTTAGCACCTCAGCACCTTAGCACCTCAGCACCTTCAGCACCTCTCAGCAGCACCTCAGCACCTCAGCACCTCCAGCACACCTTCAGCAGCACCTCAGCACCTCAGCACCTCCAGCACACCTTCCAGCAGCACCTCAGCACCTCCAGCACACCTCCAGCACACCTTCCAGCAGCACCTCCAGCACCTCCAGCACCTCCAGCACCTCCAGCACCTCCAGCACCTCCAGCACCTCCAGCACCTCCAGCACCTCCAGCACCCTCCAGCACCCTCCAGCACCCTCCAGCACCCAGCACTCACCCTCCAGCACCACCACCCCCCAAAAGCTCAGCCTCCAGCACCCCCCCAAAAGCTCAGCCTCCAGCACCCCCCCAAAAGATCAGCTCCAGCACCCACC

FIGUR 7

FIGUR 9

FIGUR 10

1

SEQUENZPROTOKOLL

- (1) ALLGEMEINE ANGABEN:
 - (i) ANMELDER:
 - (A) NAME: Deutsches Krebsforschungszentrum
 - (B) STRASSE: Im Neuenheimer Feld 280
 - (C) ORT: Heidelberg
 - (E) LAND: Deutschland
 - (F) POSTLEITZAHL: 69120
 - (ii) BEZEICHNUNG DER ERFINDUNG: Multivalente Antikoerper-Konstrukte
 - (iii) ANZAHL DER SEQUENZEN: 17
 - (iv) COMPUTER-LESBARE FASSUNG:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA)
- (2) ANGABEN ZU SEQ ID NO: 1:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1698 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 28..1689
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide
 - (B) LAGE: 28..1689
 - (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
- GAATTCATTA AAGAGGAGAA ATTAACC ATG AAA TAC CTA TTG CCT ACG GCA 51

 Met Lys Tyr Leu Leu Pro Thr Ala

 1 5

GCC Ala	GCT Ala 10	r GT7	TTC Lev	CTG Leu	CTG Leu	CTO Lev 15	. Ala	GCT Ala	CAG Glr	CCG Pro	GCC Ala 20	Met	G GCG Ala	G CAC	GTG Val	9	99
CAA Gln 25	Leu	CAC Glr	G CAG	TCI Ser	GGG Gly	Ala	GAA Glu	. CTG . Leu	GCA LAla	AGA Arg 35	Pro	GGG Gly	GCC Ala	TCA Ser	GTG Val 40	14	47
AAG Lys	ATG Met	TCC Ser	TGC Cys	AAG Lys 45	Ala	TCT Ser	GGC Gly	TAC	ACC Thr	Phe	ACT Thr	AGG Arg	TAC Tyr	ACG Thr	ATG Met	19	95
CAC His	TGG Trp	GTA Val	AAA Lys 60	GIn	AGG Arg	CCT Pro	GGA Gly	CAG Gln 65	Gly	CTG Leu	GAA Glu	TGG Trp	ATT Ile 70	Gly	TAC	24	13
ATT Ile	AAT Asn	CCT Pro 75	Ser	CGT Arg	GGT Gly	TAT Tyr	ACT Thr 80	AAT Asn	TAC Tyr	AAT Asn	CAG Gln	AAG Lys 85	TTC Phe	AAG Lys	GAC Asp	29	1
AAG Lys	GCC Ala 90	ACA Thr	TTG Leu	ACT Thr	ACA Thr	GAC Asp 95	AAA Lys	TCC Ser	TCC Ser	AGC Ser	ACA Thr 100	GCC Ala	TAC Tyr	ATG Met	CAA Gln	33	9
CTG Leu 105	AGC Ser	AGC Ser	CTG Leu	ACA Thr	TCT Ser 110	GAG Glu	GAC Asp	TCT Ser	GCA Ala	GTC Val 115	TAT Tyr	TAC Tyr	TGT Cys	GCA Ala	AGA Arg 120	38	7
TAT Tyr	TAT Tyr	GAT Asp	GAT Asp	CAT His 125	TAC Tyr	AGC Ser	CTT Leu	GAC Asp	TAC Tyr 130	TGG Trp	GGC Gly	CAA Gln	GGC Gly	ACC Thr 135	ACT Thr	43	5
CTC Leu	ACA Thr	GTC Val	TCC Ser 140	TCA Ser	GCC Ala	AAA Lys	ACA Thr	ACA Thr 145	CCC Pro	AAG Lys	CTT Leu	GGC Gly	GGT Gly 150	GAT Asp	ATC Ile	48	3
TTG Leu	CTC Leu	ACC Thr 155	CAA Gln	ACT Thr	CCA Pro	GCT Ala	TCT Ser 160	TTG Leu	GCT Ala	GTG Val	TCT Ser	CTA Leu 165	GGG Gly	CAG Gln	AGG Arg	53:	1
GCC Ala	ACC Thr 170	ATC Ile	TCC Ser	TGC Cys	Lys	GCC Ala 175	AGC Ser	CAA Gln	AGT Ser	GTT Val	GAT Asp 180	TAT Tyr	GAT Asp	GGT Gly	GAT Asp	579	9
AGT Ser 185	TAT Tyr	TTG. Leu	AAC Asn	TGG Trp	TAC Tyr 190	CAA Gln	CAG Gln	ATT Ile	CCA Pro	GGA Gly 195	CAG Gln	CCA Pro	CCC Pro	AAA Lys	CTC Leu 200	627	7
CTC Leu	ATC Ile	TAT Tyr	Asp	GCA Ala 205	TCC Ser	AAT Asn	CTA Leu	GTT Val	TCT Ser 210	GGG Gly	ATC Ile	CCA Pro	CCC Pro	AGG Arg 215	TTT Phe	675	5
AGT Ser	GGC Gly	Ser	GGG Gly 220	TCT Ser	GGG . Gly	ACA Thr	Asp	TTC Phe 225	ACC Thr	CTC Leu	AAC Asn	Ile	CAT His 230	CCT Pro	GTG Val	723	3

GAG Glu	AAC Lys	GTG Val 235	. Asp	GCT Ala	GCA Ala	A ACC	TAT Tyr 240	His	TGT Cys	CAC Glr	G CAA	A AGT Ser 245	Th:	GAC Glu	GAT Asp	77	1
CCG Pro	TGG Trp 250	unr	TTC Phe	GGT Gly	GGA Gly	GGC Gly 255	ACC Thr	AAC Lys	G CTG Leu	GAA Glu	ATC Ile 260	Lys	CGG Arg	G GCT	GAT Asp	81	9
GCT Ala 265	. Ala	GCC Ala	GCT Ala	GGT Gly	GGT Gly 270	· Gly	GGT Gly	TCI Ser	GGC Gly	GGC Gly 275	· Gly	GGT Gly	' AGC	GGT Gly	GGT Gly 280	86	7
GGC Gly	GGC Gly	TCC Ser	GGT Gly	GGT Gly 285	GGT Gly	GGT Gly	AGC Ser	CAG Gln	GTG Val 290	CAG Gln	CTG Leu	CAG Gln	CAG Gln	TCT Ser 295	GGG	91	5
GCT Ala	GAG Glu	CTG Leu	GTG Val 300	AGG Arg	CCT Pro	GGG Gly	TCC Ser	TCA Ser 305	GTG Val	AAG Lys	ATT Ile	TCC Ser	TGC Cys 310	AAG Lys	GCT Ala	963	3
TCT Ser	GGC Gly	TAT Tyr 315	GCA Ala	TTC Phe	AGT Ser	AGC Ser	TAC Tyr 320	TGG Trp	ATG Met	AAC Asn	TGG Trp	GTG Val 325	AAG Lys	CAG Gln	AGG Arg	1011	1
CCT Pro	GGA Gly 330	CAG Gln	GGT Gly	CTT Leu	GAG Glu	TGG Trp 335	ATT Ile	GGA Gly	CAG Gln	ATT Ile	TGG Trp 340	CCT Pro	GGA Gly	GAT Asp	GGT Gly	1059	€
GAT Asp 345	ACT Thr	AAC Asn	TAC Tyr	AAT Asn	GGA Gly 350	AAG Lys	TTC Phe	AAG Lys	GGT Gly	AAA Lys 355	GCC Ala	ACT Thr	CTG Leu	ACT Thr	GCA Ala 360	1107	7
GAC Asp	GAA Glu	TCC Ser	TCC Ser	AGC Ser 365	ACA Thr	GCC Ala	TAC Tyr	ATG Met	CAA Gln 370	CTC Leu	AGC Ser	AGC Ser	CTA Leu	GCA Ala 375	TCT Ser	1155	5
GAG Glu	GAC Asp	TCT Ser	GCG Ala 380	GTC Val	TAT Tyr	TTC Phe	TGT Cys	GCA Ala 385	AGA Arg	CGG Arg	GAG Glu	ACT Thr	ACG Thr 390	ACG Thr	GTA Val	1203	;
GGC Gly	CGT Arg	TAT Tyr 395	TAC Tyr	TAT Tyr	GCT Ala	ATG Met	GAC Asp 400	TAC Tyr	TGG Trp	GGT Gly	CAA Gln	GGA Gly 405	ACC Thr	TCA Ser	GTC Val	1251	
Thr	GTC Val 410	TCC Ser	TCA Ser	GCC Ala	AAA Lys	ACA Thr 415	ACA Thr	CCC Pro	AAG Lys	CTT Leu	GGC Gly 420	GGT Gly	GAT Asp	ATC Ile	GTG Val	1299	
CTC Leu 425	ACT Thr	CAG Gln	TCT Ser	CCA Pro	GCA Ala 430	ATC Ile	ATG Met	TCT Ser	GCA Ala	TCT Ser 435	CCA Pro	GGG Gly	GAG Glu	AAG Lys	GTC Val 440	1347	
ACC Thr	ATG Met	ACC Thr	Cys	AGT Ser 445	GCC Ala	AGC Ser	TCA Ser	AGT Ser	GTA Val 450	AGT Ser	TAC Tyr	ATG Met	AAC Asn	TGG Trp 455	TAC Tyr	1395	

4

CAG Gln	CAG Gln	AAG Lys	TCA Ser 460	GGC Gly	ACC Thr	TCC Ser	CCC Pro	Lys	AGA Arg	TGG Trp	ATT Ile	TAT Tyr	Asp	ACA Thr	TCC Ser	1443
AAA Lys	CTG Leu	GCT Ala 475	TCT	GGA Gly	GTC Val	CCT Pro	GCT Ala 480	465 CAC His	TTC Phe	AGG Arg	GGC Gly	AGT Ser 485	470 GGG Gly	TCT Ser	GGG Gly	1491
ACC Thr	TCT Ser 490	TAC Tyr	TCT Ser	CTC Leu	ACA Thr	ATC Ile 495	AGC Ser	GGC Gly	ATG Met	GAG Glu	GCT Ala 500	GAA Glu	GAT Asp	GCT Ala	GCC Ala	1539
ACT Thr 505	TAT Tyr	TAC Tyr	TGC Cys	CAG Gln	CAG Gln 510	TGG Trp	AGT Ser	AGT Ser	AAC Asn	CCA Pro 515	TTC Phe	ACG Thr	TTC Phe	GGC Gly	TCG Ser 520	1587
GGG Gly	ACA Thr	AAG Lys	TTG Leu	GAA Glu 525	ATA Ile	AAC Asn	CGG Arg	GCT Ala	GAT Asp 530	ACT Thr	GCA Ala	CCA Pro	ACT Thr	GGA Gly 535	TCC Ser	1635
GAA Glu	CAA Gln	AAG Lys	CTG Leu 540	ATC Ile	TCA Ser	GAA Glu	GAA Glu	GAC Asp 545	CTA Leu	AAC Asn	TCA Ser	CAT His	CAC His 550	CAT His	CAC His	1683
CAT His	CAC His	TAAT	'CTAG	A												1698

(2) ANGABEN ZU SEQ ID NO: 2:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 554 Aminosäuren

 - (B) ART: Aminosäure (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Gln Ser Gly Ala Glu

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly

Tyr Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly

Gln Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr

5

Asn	Tyr	` Asn	Gln	Lys 85	Phe	Lys	Asp	Lys	Ala 90		Leu	Thr	Thr	Asp 95	Lys
Ser	Ser	Ser	Thr 100	Ala	. Tyr	Met	Gln	Leu 105	Ser	Ser	Leu	Thr	Ser 110		Asp
Ser	Ala	Val 115	Tyr	Tyr	Cys	Ala	Arg 120	Tyr	Tyr	Asp	Asp	His 125	Tyr	Ser	Leu
Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Thr	Leu	Thr	Val	Ser 140	Ser	Ala	Lys	Thr
Thr 145	Pro	Lys	Leu	Gly	Gly 150	Asp	Ile	Leu	Leu	Thr 155	Gln	Thr	Pro	Ala	Ser 160
Leu	Ala	Val	Ser	Leu 165	Gly	Gln	Arg	Ala	Thr 170	Ile	Ser	Cys	Lys	Ala 175	Ser
Gln	Ser	Val	Asp 180	Tyr	Asp	Gly	Asp	Ser 185	Tyr	Leu	Asn	Trp	Tyr 190	Gln	Gln
Ile	Pro	Gly 195	Gln	Pro	Pro	Lys	Leu 200	Leu	Ile	Tyr	Asp	Ala 205	Ser	Asn	Leu
Val	Ser 210	Gly	Ile	Pro	Pro	Arg 215	Phe	Ser	Gly	Ser	Gly 220	Ser	Gly	Thr	Asp
Phe 225	Thr	Leu	Asn	Ile	His 230	Pro	Val	Glu	Lys	Val 235	Asp	Ala	Ala	Thr	Tyr 240
His	Cys	Gln	Gln	Ser 245	Thr	Glu	Asp	Pro	Trp 250	Thr	Phe	Gly	Gly	Gly 255	Thr
Lys	Leu	Glu	Ile 260	Lys	Arg	Ala	Asp	Ala 265	Ala	Ala	Ala	Gly	Gly 270	Gly	Gly
Ser	Gly	Gly 275	Gly	Gly	Ser	Gly	Gly 280	Gly	Gly	Ser	Gly	Gly 285	Gly	Gly	Ser
Gln	Val 290	Gln	Leu	Gln	Gln	Ser 295	Gly	Ala	Glu	Leu	Val 300	Arg	Pro	Gly	Ser
Ser 305	Val	Lys	Ile	Ser	Cys 310	Lys	Ala	Ser	Gly	Tyr 315	Ala	Phe	Ser	Ser	Tyr 320
Trp	Met	Asn	Trp	Val 325	Lys	Gln	Arg	Pro	Gly 330	Gln	Gly	Leu	Glu	Trp 335	Ile
Gly	Gln	Ile	Trp 340	Pro	Gly	Asp	Gly	Asp 345	Thr	Asn	Tyr	Asn	Gly 350	Lys	Phe
Lys	Gly	Lys 355	Ala	Thr	Leu	Thr	Ala 360	Asp	Glu	Ser	Ser	Ser 365	Thr	Ala	Tyr

6

Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met Asp 385 390 395 Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser 485 490 Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn Arg Ala Asp Thr Ala Pro Thr Gly Ser Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Ser His His His His His 545 550

- (2) ANGABEN ZU SEQ ID NO: 3:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 1653 Basenpaare

 - (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 28..1644

(ix) MERKMAL:

(A) NAME/SCHLÜSSEL: mat_peptide (B) LAGE:28..1644

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

GAATTCATTA AAGAGGAGAA ATTAACC ATG AAA TAC CTA TTG CCT ACG GCA	
Met Lys Tyr Leu Leu Pro Thr Ala 1 5	51
GCC GCT GGC TTG CTG CTG GCA GCT CAG CCG GCC ATG GCG CAG GTG Ala Ala Gly Leu Leu Leu Ala Ala Gln Pro Ala Met Ala Gln Val 10 15 20	99
CAA CTG CAG CAG TCT GGG GCT GAA CTG GCA AGA CCT GGG GCC TCA GTG Gln Leu Gln Gin Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val 30 35 40	147
AAG ATG TCC TGC AAG GCT TCT GGC TAC ACC TTT ACT AGG TAC ACG ATG Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Arg Tyr Thr Met 45 50 55	195
CAC TGG GTA AAA CAG AGG CCT GGA CAG GGT CTG GAA TGG ATT GGA TAC His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr 60 65 70	243
ATT AAT CCT AGC CGT GGT TAT ACT AAT TAC AAT CAG AAG TTC AAG GAC Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp 75 80 85	291
AAG GCC ACA TTG ACT ACA GAC AAA TCC TCC AGC ACA GCC TAC ATG CAA Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln 90 95 100	339
CTG AGC AGC CTG ACA TCT GAG GAC TCT GCA GTC TAT TAC TGT GCA AGA Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg 105 110 115	387
TAT TAT GAT GAT CAT TAC AGC CTT GAC TAC TGG GGC CAA GGC ACC ACT Tyr Tyr Asp Asp His Tyr Ser Leu Asp Tyr Trp Gly Gln Gly Thr Thr 125	435
CTC ACA GTC TCC TCA GCC AAA ACA ACA CCC AAG CTT GGC GGT GAT ATC Leu Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile 140 145 150	483
TTG CTC ACC CAA ACT CCA GCT TCT TTG GCT GTG TCT CTA GGG CAG AGG Leu Leu Thr Gln Thr Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg 155 160 165	531
GCC ACC ATC TCC TGC AAG GCC AGC CAA AGT GTT GAT TAT GAT GGT GAT Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp Gly Asp 170 175 180	579

AG1 Sei 185	- 1 A 1	r TTO	G AAC 1 Asr	C TG(G TAC D Tyr 190	: Gir	A CAC	ATT	r cc.	A GG/ D Gl ₃ 195	/ Gl:	G CCA	A CCO	C AAZ D Lys	A CTC Leu 200		627
CTC Let	C ATO	TATE Tyr	GAT Asp	GCA Ala 205	ı Ser	AA1 Asn	CTA Leu	GT7 Ual	Ser 210	: Gl	G ATO	C CCA	A CCO	C AGO Arg 215	TTT The		675
AGT Ser	GGC Gly	: AGT : Ser	GGG Gly 220	ser	GGG Gly	ACA Thr	GAC Asp	TTC Phe 225	e Thr	CTC Lev	C AA(Asr	C ATO	CAT His 230	Pro	GTG Val		723
GAG Glu	AAG . Lys	GTG Val 235	Asp	GCT Ala	GCA Ala	ACC Thr	TAT Tyr 240	CAC	TG1 Cys	' CAG Gln	CAA Glr	A AGT Ser 245	Thr	GAG	GAT Asp		771
CCG Pro	TGG Trp 250	THE	TTC Phe	GGT Gly	GGA Gly	GGC Gly 255	ACC Thr	AAG Lys	CTG Leu	GAA Glu	ATC Ile 260	Lys	. CGG Arg	GCT Ala	GAT Asp		819
GCT Ala 265	Ald	GCC Ala	GCT Ala	GGT Gly	GGC Gly 270	CCA Pro	GGG Gly	TCG Ser	CAG Gln	GTG Val 275	CAG Gln	CTG Leu	CAG Gln	CAG Gln	TCT Ser 280		867
GGG Gly	GCT Ala	GAG Glu	CTG Leu	GTG Val 285	AGG Arg	CCT Pro	GGG Gly	TCC Ser	TCA Ser 290	GTG Val	AAG Lys	ATT	TCC Ser	TGC Cys 295	AAG Lys		915
GCT Ala	TCT Ser	GGC Gly	TAT Tyr 300	GCA Ala	TTC Phe	AGT Ser	AGC Ser	TAC Tyr 305	TGG Trp	ATG Met	AAC Asn	TGG Trp	GTG Val 310	AAG Lys	CAG Gln	•	963
AGG Arg	CCT Pro	GGA Gly 315	CAG Gln	GGT Gly	CTT Leu	GAG Glu	TGG Trp 320	ATT Ile	GGA Gly	CAG Gln	ATT Ile	TGG Trp 325	CCT Pro	GGA Gly	GAT Asp		1011
GGT Gly	GAT Asp 330	ACT Thr	AAC Asn	TAC Tyr	AAT Asn	GGA Gly 335	AAG Lys	TTC Phe	AAG Lys	GGT Gly	AAA Lys 340	GCC Ala	ACT Thr	CTG Leu	ACT Thr		1059
GCA Ala 345	GAC Asp	GAA Glu	TCC Ser	TCC Ser	AGC Ser 350	ACA Thr	GCC Ala	TAC Tyr	ATG Met	CAA Gln 355	CTC Leu	AGC Ser	AGC Ser	CTA Leu	GCA Ala 360		1107
TCT Ser	GAG Glu	GAC Asp	TCT Ser	GCG Ala 365	GTC Val	TAT Tyr	TTC Phe	TGT Cys	GCA Ala 370	AGA Arg	CGG Arg	GAG Glu	ACT Thr	ACG Thr 375	ACG Thr		1155
GTA Val	GGC Gly	CGT Arg	TAT Tyr 380	TAC Tyr	TAT Tyr	GCT Ala	Met	GAC Asp 385	TAC Tyr	TGG Trp	GGT Gly	CAA Gln	GGA Gly 390	ACC Thr	TCA Ser		1203
GTC Val	TIII	GTC Val 395	TCC Ser	TCA Ser	GCC Ala	Lys	ACA Thr 400	ACA Thr	CCC Pro	AAG Lys	CTT Leu	GGC Gly 405	GGT Gly	GAT Asp	ATC Ile		1251

GTG Val	CTC Leu 410	Thr	CAG Gln	TCT Ser	CCA Pro	GCA Ala 415	ATC Ile	ATG Met	TCT Ser	GCA Ala	TCT Ser 420	CCA Pro	GGG Gly	GAG Glu	AAG Lys	1299
GTC Val 425	ACC Thr	ATG Met	ACC Thr	TGC Cys	AGT Ser 430	GCC Ala	AGC Ser	TCA Ser	AGT Ser	GTA Val 435	AGT Ser	TAC Tyr	ATG Met	AAC Asn	TGG Trp 440	1347
TAC Tyr	CAG Gln	CAG Gln	AAG Lys	TCA Ser 445	GGC Gly	ACC Thr	TCC Ser	CCC Pro	AAA Lys 450	AGA Arg	TGG Trp	ATT Ile	TAT Tyr	GAC Asp 455	ACA Thr	1395
TCC Ser	AAA Lys	CTG Leu	GCT Ala 460	TCT Ser	GGA Gly	GTC Val	CCT Pro	GCT Ala 465	CAC His	TTC Phe	AGG Arg	GGC Gly	AGT Ser 470	GGG Gly	TCT Ser	1443
GGG Gly	ACC Thr	TCT Ser 475	TAC Tyr	TCT Ser	CTC Leu	ACA Thr	ATC Ile 480	AGC Ser	GGC Gly	ATG Met	GAG Glu	GCT Ala 485	GAA Glu	GAT Asp	GCT Ala	1491
GCC Ala	ACT Thr 490	TAT Tyr	TAC Tyr	TGC Cys	CAG Gln	CAG Gln 495	TGG Trp	AGT Ser	AGT Ser	AAC Asn	CCA Pro 500	TTC Phe	ACG Thr	TTC Phe	GGC Gly	1539
TCG Ser 505	GGG Gly	ACA Thr	AAG Lys	TTG Leu	GAA Glu 510	ATA Ile	AAC Asn	CGG Arg	GCT Ala	GAT Asp 515	ACT Thr	GCA Ala	CCA Pro	ACT Thr	GGA Gly 520	1587
TCC Ser	GAA Glu	CAA Gln	AAG Lys	CTG Leu 525	ATC Ile	TCA Ser	GAA Glu	GAA Glu	GAC Asp 530	CTA Leu	AAC Asn	TCA Ser	CAT His	CAC His 535	CAT His	1635
CAC His			TAAT	CTAG	A											1653

(2) ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 539 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Ala

Ala Gln Pro Ala Met Ala Gln Val Gln Leu Gln Gln Ser Gly Ala Glu 30

Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly 40

Tyr	Thr 50	Phe	Thr	Arg	Tyr	Thr 55	Met	His	Trp	Val	Lys 60	Gln	Arg	Pro	Gly
Gln 65	Gly	Leu	Glu	Trp	Ile 70	Gly	Tyr	Ile	Asn	Pro 75	Ser	Arg	Gly	Tyr	Th:
Asn	Tyr	Asn	Gln	Lys 85	Phe	Lys	Asp	Lys	Ala 90	Thr	Leu	Thr	Thr	Asp 95	Lys
Ser	Ser	Ser	Thr 100	Ala	Tyr	Met	Gln	Leu 105	Ser	Ser	Leu	Thr	Ser 110	Glu	Asp
Ser	Ala	Val 115	Tyr	Tyr	Cys	Ala	Arg 120	Tyr	Tyr	Asp	Asp	His 125	Tyr	Ser	Let
Asp	Tyr 130	Trp	Gly	Gln	Gly	Thr 135	Thr	Leu	Thr	Val	Ser 140	Ser	Ala	Lys	Thr
Thr 145	Pro	Lys	Leu	Gly	Gly 150	Asp	Ile	Leu	Leu	Thr 155	Gln	Thr	Pro	Ala	Ser 160
Leu	Ala	Val	Ser	Leu 165	Gly	Gln	Arg	Ala	Thr 170	Ile	Ser	Cys	Lys	Ala 175	Ser
Gln	Ser	Val	Asp 180	Tyr	Asp	Gly	Asp	Ser 185	Tyr	Leu	Asn	Trp	Tyr 190	Gln	Glr
Ile	Pro	Gly 195	Gln	Pro	Pro	Lys	Leu 200	Leu	Ile	Tyr	Asp	Ala 205	Ser	Asn	Leu
Val	Ser 210	Gly	Ile	Pro	Pro	Arg 215	Phe	Ser	Gly	Ser	Gly 220	Ser	Gly	Thr	Asp
Phe 225	Thr	Leu	Asn	Ile	His 230	Pro	Val	Glu	Lys	Val 235	Asp	Ala	Ala	Thr	Tyr 240
His	Cys	Gln	Gln	Ser 245	Thr	Glu	Asp	Pro	Trp 250	Thr	Phe	Gly	Gly	Gly 255	Thr
ГÀЗ	Leu	Glu	Ile 260	Lys	Arg	Ala	Asp	Ala 265	Ala	Ala	Ala	Gly	Gly 270	Pro	Gly
Ser	Gln	Val 275	Gln	Leu	Gln	Gln	Ser 280	Gly	Ala	Glu	Leu	Val 285	Arg	Pro	Gly
Ser	Ser 290	Val	Lys	Ile	Ser	Cys 295	Lys	Ala	Ser	Gly	Tyr 300	Ala	Phe	Ser	Ser
Tyr 305	Trp	Met	Asn	Trp	Val 310	Lys	Gln	Arg	Pro	Gly 315	Gln	Gly	Leu	Glu	Trp 320
Ile	Gly	Gln	Ile	Trp 325	Pro	Gly	Asp	Gly	Asp 330	Thr	Asn	Tyr	Asn	Gly 335	Lys

- Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala 345 Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Arg Arg Glu Thr Thr Val Gly Arg Tyr Tyr Ala Met 375 Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Ala Lys Thr Thr Pro Lys Leu Gly Gly Asp Ile Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Leu Ala Ser Gly Val Pro Ala His Phe Arg Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Gly Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp 490 Ser Ser Asn Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn Arg Ala Asp Thr Ala Pro Thr Gly Ser Glu Gln Lys Leu Ile Ser Glu 520 Glu Asp Leu Asn Ser His His His His His
- (2) ANGABEN ZU SEQ ID NO: 5:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 57 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN

WO 99/57150

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
TATATACTGC AGCTGCACCT GCGACCCTGG GCCACCAGCG GCCGCAGCAT CAGCCCG	57
(2) ANGABEN ZU SEQ ID NO: 6:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 45 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
CCGTGAATTC CAGGTGCAAC TGCAGCAGTC TGGGGCTGAA CTGGC	45
(2) ANGABEN ZU SEQ ID NO: 7:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 34 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
GGTCGACGTT AACCGACAAA CAACAGATAA AACG	34
(2) ANGABEN ZU SEQ ID NO: 8:	
(i) SEQUENZKENNZEICHEN:(A) LÄNGE: 348 Basenpaare(B) ART: Nucleotid(C) STRANGFORM: Einzelstrang	

WO 99/57150 PCT/DE99/01350

13

		((D) 7	OPOL	JOGIE	E: li	near									
	(ii) AF	RT DE	ES MC	LEKÜ	JLS:	Geno	m-DN	JA							
	(iii) HY	POTH	ETIS	CH:	NEIN	1									
	(iv	AA.	ITISE	NSE:	NEI	N										
	(ix	(RKMA A) N B) L		SCHL	ÜSSE 48	L: C	DS								
	(ix	(L: m	at_p	epti	de						
	(xi) SE	QUEN	ZBES	CHRE	IBUN	G: S	EQ I	D NO	: 8:						
ATG Met 1	AGA Arg	TTT Phe	CCT Pro	TCA Ser 5	ATT Ile	TTT Phe	ACT Thr	GCT Ala	GTT Val 10	TTA Leu	TTC Phe	GCA Ala	GCA Ala	TCC Ser 15	TCC Ser	48
GCA Ala	TTA Leu	GCT Ala	GCT Ala 20	CCA Pro	GTC Val	AAC Asn	ACT Thr	ACA Thr 25	ACA Thr	GAA Glu	GAT Asp	GAA Glu	ACG Thr 30	GCA Ala	CAA Gln	96
ATT Ile	CCG Pro	GCT Ala 35	GAA Glu	GCT Ala	GTC Val	ATC Ile	GGT Gly 40	TAC Tyr	TCA Ser	GAT Asp	TTA Leu	GAA Glu 45	GGG Gly	GAT Asp	TTC Phe	144
GAT Asp	GTT Val 50	GCT Ala	GTT Val	TTG Leu	CCA Pro	TTT Phe 55	TCC Ser	AAC Asn	AGC Ser	ACA Thr	AAT Asn 60	AAC Asn	GGG Gly	TTA Leu	TTG Leu	192
TTT Phe 65	ATA Ile	AAT Asn	ACT Thr	ACT Thr	ATT Ile 70	GCC Ala	AGC Ser	ATT Ile	GCT Ala	GCT Ala 75	AAA Lys	GAA Glu	GAA Glu	GGG Gly	GTA Val 80	240
TCT Ser	CTC Leu	GAG Glu	AAA Lys	AGA Arg 85	GAG Glu	GCT Ala	GAA Glu	GCT Ala	GAA Glu 90	TTC Phe	CAG Gln	GTG Val	CAA Gln	CTG Leu 95	CAG Gln	288
CAG Gln	TCT Ser	GGG Gly	GCT Ala 100	GAA Glu	CTG Leu	GCA Ala	AGA Arg	CCT Pro 105	GGG Gly	GCC Ala	TCA Ser	GTG Val	AAG Lys 110	ATG Met	TCC Ser	336
	AAG Lys															348

(2) ANGABEN ZU SEQ ID NO: 9:

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 116 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser 10

Ala Leu Ala Ala Pro Val Asn Thr Thr Thr Glu Asp Glu Thr Ala Gln

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Gln Val Gln Leu Gln

Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser

Cys Lys Ala Ser 115

- (2) ANGABEN ZU SEO ID NO: 10:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 354 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Genom-DNA
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE:1..354
 - (ix) MERKMAL:
 - (A) NAME/SCHLÜSSEL: mat_peptide
 (B) LAGE:1..354

	(xi) SE	QUEN:	ZBES	CHRE	IBUN	G: S:	EQ I	D NO	: 10	:					
ATG Met 1	AGA Arg	TTT Phe	CCT Pro	TCA Ser 5	ATT Ile	TTT Phe	ACT Thr	GCT Ala	GTT Val 10	TTA Leu	TTC Phe	GCA Ala	GCA Ala	TCC Ser 15	TCC Ser	48
GCA Ala	TTA Leu	GCT Ala	GCT Ala 20	CCA Pro	GTC Val	AAC Asn	ACT Thr	ACA Thr 25	ACA Thr	GAA Glu	GAT Asp	GAA Glu	ACG Thr 30	GCA Ala	CAA Gln	96
ATT Ile	CCG Pro	GCT Ala 35	GAA Glu	GCT Ala	GTC Val	ATC Ile	GGT Gly 40	TAC Tyr	TCA Ser	GAT Asp	TTA Leu	GAA Glu 45	GGG Gly	GAT Asp	TTC Phe	144
GAT Asp	GTT Val 50	GCT Ala	GTT Val	TTG Leu	CCA Pro	TTT Phe 55	TCC Ser	AAC Asn	AGC Ser	ACA Thr	AAT Asn 60	AAC Asn	GGG Gly	TTA Leu	TTG Leu	192
TTT Phe 65	ATA Ile	AAT Asn	ACT Thr	ACT Thr	ATT Ile 70	GCC Ala	AGC Ser	ATT Ile	GCT Ala	GCT Ala 75	AAA Lys	GAA Glu	GAA Glu	GGG Gly	GTA Val 80	240
TCT Ser	CTC Leu	GAG Glu	AAA Lys	AGA Arg 85	GAG Glu	GCT Ala	GAA Glu	GCT Ala	GAA Glu 90	TTC Phe	ATG Met	GCG Ala	CAG Gln	GTG Val 95	CAA Gln	288
CTG Leu	CAG Gln	CAG Gln	TCT Ser 100	GGG Gly	GCT Ala	GAA Glu	Leu	GCA Ala 105	AGA Arg	CCT Pro	GGG Gly	GCC Ala	TCA Ser 110	GTG Val	AAG Lys	336
ATG	TCC	TGC	AAG	GCT	TCT											354

(2) ANGABEN ZU SEQ ID NO: 11:

Met Ser Cys Lys Ala Ser 115

- (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 118 Aminosäuren (B) ART: Aminosäure

 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

Met Arg Phe Pro Ser Ile Phe Thr Ala Val Leu Phe Ala Ala Ser Ser

Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp Glu Thr Ala Gln 30

Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp Phe

WO 99/57150 PCT/DE99/01350

16

42

Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu 55

Phe Ile Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val

Ser Leu Glu Lys Arg Glu Ala Glu Ala Glu Phe Met Ala Gln Val Gln

Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val Lys

Met Ser Cys Lys Ala Ser 115

- (2) ANGABEN ZU SEQ ID NO: 12:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 42 Basenpaare

 - (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

TCACACAGAA TTCTTAGATC TATTAAAGAG GAGAAATTAA CC

- (2) ANGABEN ZU SEQ ID NO: 13:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 40 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"
 - (iii) HYPOTHETISCH: NEIN
 - (iv) ANTISENSE: NEIN

WO 99/57150 PCT/DE99/01350

(xi) SEQU	JENZBESCHREIBUNG: SEQ ID NO: 13:	
AGCACACGAT AT	CCACCGCCA AGCTTGGGTG TTGTTTTGGC	40
(2) ANGABEN Z	U SEQ ID NO: 14:	
(A) (B) (C)	JENZKENNZEICHEN: LÄNGE: 43 Basenpaare ART: Nucleotid STRANGFORM: Einzelstrang TOPOLOGIE: linear	
(ii) ART (A)	DES MOLEKÜLS: Sonstige Nucleinsäure BESCHREIBUNG: /desc = "Primer"	
(iii) HYPO	THETISCH: NEIN	
(iv) ANTI	SENSE: NEIN	
(xi) SEQUI	ENZBESCHREIBUNG: SEQ ID NO: 14:	
AGCACACAAG CT	IGGCGGTG ATATCTTGCT CACCCAAACT CCA	43
(2) ANGABEN ZU	J SEQ ID NO: 15:	
(A) (B) (C)	ENZKENNZEICHEN: LÄNGE: 57 Basenpaare ART: Nucleotid STRANGFORM: Einzelstrang TOPOLOGIE: linear	
(ii) ART E (A)	DES MOLEKÜLS: Sonstige Nucleinsäure BESCHREIBUNG: /desc = "Primer"	
(iii) HYPOT	CHETISCH: NEIN	
(iv) ANTIS	EENSE: NEIN	
	NZBESCHREIBUNG: SEQ ID NO: 15:	
	GACACAC AGATCTTTAG TGATGGTGAT GGTGATGTGA GTTTAGG	57
	SEQ ID NO: 16:	
(A) ; (B) ; (C) ;	NZKENNZEICHEN: LÄNGE: 33 Basenpaare ART: Nucleotid STRANGFORM: Einzelstrang TOPOLOGIE: linear	

WO 99/57150 PCT/DE99/01350

<pre>(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure (A) BESCHREIBUNG: /desc = "Primer"</pre>	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:	
CAGCCGGCCA TGGCGCAGGT GCAACTGCAG CAG	33
(2) ANGABEN ZU SEQ ID NO: 17:	
 (i) SEQUENZKENNZEICHEN: (A) LÄNGE: 102 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear 	
(ii) ART DES MOLEKÜLS: Sonstige Nucleinsäure(A) BESCHREIBUNG: /desc = "Primer"	
(iii) HYPOTHETISCH: NEIN	
(iv) ANTISENSE: NEIN	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:	
TATATACTGC AGCTGCACCT GGCTACCACC ACCACCGGAG CCGCCACCAC CGCTACCACC	60
GCCGCCAGAA CCACCACCAC CAGCGGCCGC AGCATCAGCC CG	102

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07K 16/00 16/28, C12N 15/63, A61K 39/395, G01N 33/53

A3

- WO 99/57150 (11) Internationale Veröffentlichungsnummer:
- (43) Internationales Veröffentlichungsdatum:

11. November 1999 (11.11.99)

(21) Internationales Aktenzeichen:

PCT/DE99/01350

(22) Internationales Anmeldedatum:

5. Mai 1999 (05.05.99)

(30) Prioritätsdaten:

198 19 846.9

5, Mai 1998 (05.05.98)

DE

(71) Anmelder (für Bestimmungsstaaten ausser US): alleKREBSFÖRSCHUNGSZENTRUM DEUTSCHES STIFTUNG DES ÖFFENTLICHEN RECHTS [DE/DE]; Im Neuenheimer Feld 280, D-69120 Heidelberg (DE).

(72) Erfinder: und

- (75) Erfinder/Anmelder (nur für US): LITTLE, Melvyn [GB/DE]; Fritz-von-Briesen-Strasse 10, D-69151 Neckargemund (DE). KIPRIYANOV, Sergej [RU/DE]; Furtwänglerstrasse 3, D-69121 Heidelberg (DE).
- (74) Anwalt: HUBER, Bernard; Huber & Schüssler, Truderinger Strasse 246, D-81825 München (DE).

(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU. TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchen-22. Juni 2000 (22.06.00) berichts:

- (54) Title: MULTIVALENT ANTIBODY CONSTRUCTS
- (54) Bezeichnung: MULTIVALENTE ANTIKÖRPER-KONSTRUKTE

(57) Abstract

The invention relates to a multivalent F_v antibody construct comprising at least four variable domains which are connected to one another via peptide linkers 1, 2 and 3. The invention also relates to expression plasmids which code for such an F_v antibody construct. In addition, the invention relates to a method for producing the F_v antibody constructs and to the use thereof.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein multivalentes F_v-Antikörper-Konstrukt mit mindestens vier variablen Domänen, die über die Peptidlinker 1, 2 und 3 miteinander verbunden sind. Ferner betrifft die Erfindung Expressionsplasmide, die für ein solches Fy-Antikörper-Konstrukt codieren, und ein Verfahren zur Herstellung der Fv-Antikörper-Konstrukte sowie deren Verwendung.

A

B

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
\mathbf{BG}	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВЈ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	$\mathbf{z}\mathbf{w}$	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
\mathbf{CZ}	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	\mathbf{SG}	Singapur		

Inter. mail Application No PCT/DE 99/01350

A. CLASSIF IPC 6	CO7K16/00 CO7K16/28 C12N15/6	53 A61K39/395 G01	N33/53
According to	International Patent Classification (IPC) or to both national classifica	ution and IPC	
B. FIELDS	SEARCHED		
IPC 6	cumentation searched (classification system followed by classification $A61K - C07K - G01N$		
	ion searched other than minimum documentation to the extent that s		
Electronic d	ata base consulted during the international search (name of data bas	se and, where practical, search terms used	·/
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rela	evant passages	Relevant to claim No.
х	GRUBER M ET AL: "Efficient tumo lysis mediated by a bispecific s chain antibody expressed in Esch coli." JOURNAL OF IMMUNOLOGY, (1994 JUN (11) 5368-74., XP000872832 the whole document	ingle erichia	1,4, 10-14, 21,22
X	MACK M ET AL: "A small bispecif antibody construct expressed as functional single-chain molecule tumor cell cytotoxicity." PROCEEDINGS OF THE NATIONAL ACAD SCIENCES OF THE UNITED STATES OF (1995 JUL 18) 92 (15) 7021-5., XP000566333 the whole document	a with high EMY OF	1,2,4, 10-14, 21,22
X Fur	ther documents are listed in the continuation of box C.	Patent family members are liste	d in annex.
"A" docum consi "E" earlier filing "L" docum which citatic "O" docum other "P" docum later	nent which may throw doubts on priority claim(s) or his cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or reans nent published prior to the international filing date but than the priority date claimed	"T" later document published after the in or priority date and not in conflict wind to understand the principle or invention "X" document of particular relevance; the cannot be considered novel or canninvolve an inventive step when the "Y" document of particular relevance; the cannot be considered to involve an document is combined with one or ments, such combination being obvin the art. "&" document member of the same pate	th the application but theory underlying the e claimed invention into be considered to document is taken alone e claimed invention inventive step when the more other such docu- rious to a person skilled nt family
	e actual completion of the international search 23 February 2000	Date of mailing of the international s	earon report
	l mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer Mennessier, T	

Inter anal Application No
PCT/DE 99/01350

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Х	KURUCZ I ET AL: "Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria." JOURNAL OF IMMUNOLOGY, (1995 MAY 1) 154 (9) 4576-82., XP000872833 the whole document	1,4,5, 10-14, 21,22
X	DE JONGE J ET AL: "Production and characterization of bispecific single-chain antibody fragments." MOLECULAR IMMUNOLOGY, (1995 DEC) 32 (17-18) 1405-12., XP000872314 the whole document	1,4,5, 10-14, 21,22
A	COLOMA M J ET AL: "Design and production of novel tetravalent bispecific antibodie [see comments]." NATURE BIOTECHNOLOGY, (1997 FEB) 15 (2) 159-63., XP000647731 page 159 -page 160	1-22
T	KIPRIYANOV S M ET AL: "Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics." JOURNAL OF MOLECULAR BIOLOGY, (1999 OCT 15) 293 (1) 41-56., XP002131382 the whole document	1-22

International application No. PCT/DE 99/01350

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
S	ee supplemental sheet Additional Matter PCT/ISA/210	
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:	
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

International application No.

PCT/DE 99/01350

	PC1/DE 99/01330
Continuation of Field I.1	
Although Claims Nos. 21 and 22 relate to a diagnostic method whuman/animal body or to a method for treatment of the human/accarried out and was based on the cited effects of the multivalent.	nimal body, the search was

Inte. onales Aktenzeichen PCT/DE 99/01350

		1,4,7,0,2	, 0100	
A KLASSI IPK 6	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07K16/00 C07K16/28 C12N15/6	3 A61K39/395 G01N	33/53	
Nach der Int	ternationalen Patentidassifikation (IPK) oder nach der nationalen Klas	selfikation und der IPK		
	RCHIERTE GEBIETE			
Recherchler IPK 6	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbo A61K C07K G01N	Ne)		
	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so			
Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)				
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN			
Kategorle®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Telle	Betr. Anspruch Nr.	
X	GRUBER M ET AL: "Efficient tumor lysis mediated by a bispecific si chain antibody expressed in Esche coli." JOURNAL OF IMMUNOLOGY, (1994 JUN	ngle richia	1,4, 10-14, 21,22	
,	(11) 5368-74. , XP000872832 das ganze Dokument 		1 2 4	
X	MACK M ET AL: "A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (1995 JUL 18) 92 (15) 7021-5., XP000566333 das ganze Dokument		1,2,4, 10-14, 21,22	
	<u>-</u>	-/		
	erre Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	Slehe Anhang Patentfamille		
 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist mach dem internationalen Anmeldedatum veröffentlicht worden ist und mit der Anmeldedatum veröffentlicht worden ist und mit der Anmeldedatum veröffentlicht worden ist und mit der Anmeldedatum veröffentlicht worden ist "T" Spätere Veröffentlichtung, die nach dem internationalen Anmeldedatum veröffentlicht worden ist und mit der Anmeldedatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlicht worden ist und mit der Anmelden nach dem Prioritätsdatum veröffentlichtung augrundellegenden Theore angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindum aufgrund dieser Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindum veröffentlichtung von besonderer Bedeutung; die beanspruchte Erfindum verö				
2	3. Februar 2000	17. 03.00		
Name und F	Postanschifft der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL. – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fay. (431-70) 340-3018	Bevollmächtigter Bedlensteter Mennessier, T		

Inte ionales Aktenzeichen
PCT/DE 99/01350

		101/02 99/01350
C.(Fortsetza Kategorie®	ing) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Telle Betr. Anspruch Nr.
Х	KURUCZ I ET AL: "Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria."	1,4,5, 10-14, 21,22
x	JOURNAL OF IMMUNOLOGY, (1995 MAY 1) 154 (9) 4576-82. , XP000872833 das ganze Dokument DE JONGE J ET AL: "Production and	1,4,5,
	characterization of bispecific single-chain antibody fragments." MOLECULAR IMMUNOLOGY, (1995 DEC) 32 (17-18) 1405-12. , XP000872314 das ganze Dokument	10-14, 21,22
A	COLOMA M J ET AL: "Design and production of novel tetravalent bispecific antibodie 'see comments!." NATURE BIOTECHNOLOGY, (1997 FEB) 15 (2) 159-63., XP000647731 Seite 159 -Seite 160	1-22
T	KIPRIYANOV S M ET AL: "Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics." JOURNAL OF MOLECULAR BIOLOGY, (1999 OCT 15) 293 (1) 41-56., XP002131382 das ganze Dokument	1-22

Inc.nationales Aktenzeichen PCT/DE 99/01350

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr.
weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, namlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
 Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
daß eine sinnvolle Internationale Necherone flicht durchgefahrt Werden Karm, frammen
3. Ansprüche Nr.
3. Anspruche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die
Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen er-
faßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Internationales Aktenzeichen PCT/DE 99 /01350

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.1

Obwohl die Ansprüche 21 und 22 sich auf ein Diagnostizierverfahren, das am menschlischen/tierischen Körpers vorgenommen wird, bzw auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen des multivalenten Fv-Antikörper-Konstruktes.