Math Function

Is f(x) even, odd, or neither?
$$f(x) = -\frac{2x^5}{2x^8 - 4x^6 + 12x^4 + 4x^2 + 11.16}$$

THOUGHT 1:Even functions are symmetric about the y-axis, and odd functions are symmetric about the origin. I need to plot the function.

ACTION 1: Call Python Ploting tool y=-2 * x**5/ (2 * x**8 - 4 * x**6 + 12 * x**4 + 4 * x**2 + 11.16) plt.plot(x, y) OBSERVATION 1

THOUGHT 2: The function is symmetric about the origin, indicating f(x) is odd.

Geometry

Given ∠BCJ=105°, ∠KEF=105°. Find ∠EIC

THOUGHT 1: I need to draw an auxiliary Line IX parallel to Line BD

ACTION 1: 2 Draw the aux. line using Python Code

THOUGHT 2: Given \angle BCJ = \angle KEF = 105°, their supplementary angles, \angle KEH = \angle DCJ = 180° - 105° = 75°. Given BD parallel to IX, it follows that \angle EIX = \angle KEH, and \angle XIC = \angle DCJ, both measuring 75°. Therefore, \angle EIC = \angle EIX + \angle XIC = 150°

Correspondonce

Which point is corresponding to the reference point?

THOUGHT 1:To find the corresponding point for the reference point in the first image, I will use the segmentation and marking tool to understand the objects relationships

ACTION 1: Call segmentation and marking

segmented1, boxes1 = segment_and_mark(image_1)
segmented2, boxes2 = segment_and_mark(image_2)

THOUGHT 2:The reference point in the first image is on the monitor screen, specifically on the right speaker. In the second image, I need to find the point that corresponds to the right speaker on the monitor. The segmentation and marking tool has labeled the objects, and I can see that the monitor in the second image is labeled as 3. The corresponding point should be on the right side of the monitor, which is B.

Graph Connectivity

[0, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]

THOUGHT 1:We can use the networkx library to plot the graph

G = nx.from_numpy_matrix(np.array(adjacency_matrix),
create_using=nx.DiGraph)
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True)

OBSERVATION 1

THOUGHT 2: From the graph, I saw there is a path between node 0 and node 4.