ZWCAM模块开发

ZWCAM产品事业部 甘文峰

广州中望だ賭软件股份有眼公司

www.zwcad.com

报告内容

- · 一、ZW3D应用模块简介
- 二、钣金模块
- 三、点云模块
- · 四、CAM模块
- 五、综合应用与小结

报告内容

- · 一、ZW3D应用模块简介
- 二、钣金模块
- 三、点云模块
- · 四、CAM模块
- 五、综合应用与小结

一、应用模块简介

- · ZW3D总体架构图(未完成)
 - ◆ 从上至下,由浅入深
 - 应用层: 各应用模块
 - 业务层:显示、交互、特征
 - 数据层 (拓扑数据): 拓扑、对象、历史 (几何数据): Geom、Nurbs、三角、几何运算
 - 核心层: 内存、错误处理、抽象、基础数学

一、应用模块简介

一、应用模块简介

- 常见应用模块
 - ◆ 造型类:
 - 钣金Smd
 - 点云PointCloud
 - 焊接Weld
 - 模具Mold
 - ...
 - ◆ 加工类: CAM及其下属模块
 - Lathe、Mill2、Mill3、Mill5、QM...
 - ◆ 有可能增加的应用模块
 - 增材制造、产线规划、机器人规划
 -

报告内容

- · 一、ZW3D应用模块简介
- 二、钣金模块
- 三、点云模块
- · 四、CAM模块
- 五、综合应用与小结

二、钣金模块

- Smd (Sheet Metal Design) 钣金设计
 - ◆ 目的: 创建板壳类零件造型,并求解折叠前平板的形状,便于用户准备材料。
 - ◆ 应用: 汽车覆盖件、小五金、箱体外壳...

二、钣金模块

- 基本概念
 - ◆ 折叠/展开
 - ◆ 静止面/折弯面/法兰面
 - ◆ K因子
- 重要命令
 - ◆ 创建类:
 - 拉伸基板、全法兰、部分法兰、 折边、扫掠法兰...
 - ◆ 编辑类:
 - 延伸法兰、闭合角...
 - ◆ 特殊造型:
 - 百叶窗、压痕、冲压...
 - ◆ 展开/折叠

二、钣金模块

- 待开发功能
 - ◆ 更强大的展开/折叠功能
 - 保持展开视图状态,而非特征
 - 带特征的展开/折叠(用于Bead)
 - ◆ 更多特殊造型
 - Bead Gusset Lance...
 - ◆ 造型库
 - 以Shell和Punch为基础的功能
 - 实体操作与多文件管理结合

报告内容

- · 一、ZW3D应用模块简介
- 二、钣金模块
- 三、点云模块
- · 四、CAM模块
- 五、综合应用与小结

三、点云模块

- Point Cloud 点云及反求工程
 - ◆ 目的:根据用户输入的大量点(点云),重建NURBS造型。

三、点云模块

- 基本概念
 - ◆ 三个阶段: 点云、多面体、复合曲面
 - ◆ 两个重要操作:
 - 点-->多面体:点云三角化
 - 多面体-->复合曲面: 曲面拟合
 - ◆ 其它辅助功能:
 - 点云阶段:去噪、聚类...
 - 多面体阶段: 补孔、翻面、追踪特征线...

报告内容

- · 一、ZW3D应用模块简介
- 二、钣金模块
- 三、点云模块
- · 四、CAM模块
- 五、综合应用与小结

- 概念: CAM(Computer-aided Manufacturing) 计算机辅助制造
 - ◆ 目的:根据用户输入工件、刀具、加工方法、加工参数,生成刀具路径。
 - ◆ 按加工形式分类:
 - Lathe/Turning: 车削
 - Mill2: 二轴加工、线切割、电火花...
 - Mill3: 三轴加工、曲面刻字...
 - QM: 同样是三轴加工,实现的原理不同,多用于模具的加工。
 - Mill5: 四/五轴加工、木工雕刻、牙科义齿...

- 4.1. 基本定义
 - ◆ 工件: 用户想要得到的理想形状
 - ◆ 毛坯: 上一步加工结束得到的实际形状
 - ◆ 刀具:
 - ◆ 刀路:控制刀具运动的轨迹,通常是刀位点轨迹
 - 刀触点:刀具表面与工件表面相切点
 - 刀位点:通常是刀尖点
 - ◆ 加工: 刀具沿着刀路运动,切除毛坯材料,留下刀触的包络形状
 - ◆ 残留误差(残高):加工得到的实际形状与理想形状 之间的误差

- 4.2. 车削Lathe/Turning
 - ◆ 基本要素
 - 工件: 以平面线框轮廓表达的回转体
 - 刀具: 车刀
 - 加工方法: 粗加工(层切)、精加工、车端面、切槽、切断
 - ◆ 示意图:

• 4.2. 车削Lathe/Turning

- ◆ 关键算法
 - 平面线段偏置:从工件轮廓求刀位点,刀具形状补偿
 - 轮廓投影: 车床主轴和刀架配置, 工位安排
 - 轮廓镜像:用户输入图形的象限,机床配置输出的象限

- 4.3. 二轴铣削Mill2
 - ◆ 基本要素
 - 工件: 以平面轮廓和边界表达的形状
 - 刀具:
 - 平底铣刀,在平面内可以认为是一个圆;
 - 成型铣刀,通常是一个锥面,用于倒角;
 - 加工方法:
 - 单纯走轮廓: Profile、Chamfer、Corner Round...
 - 区域填充: Spiral、Zigzag、Box、Contour...
 - ◆ 示意图

• 4.3. 二轴铣削Mill2

◆ 关键算法

- 高度层次树: 多个高度的不同层关系树
- 区域层次树:类似于造型中的外环/内环
- 平面轮廓偏置:
- 平面区域布尔:
- 区域内样式填充:

◆ 待实现算法

- D-Loop: 欠加工区域补偿
- 轮廓属性:外部进刀
- ...

- 4.4. 曲面三轴铣削Nurbs Mill3 (大部分功能已被QM代替)
 - ◆ 基本要素
 - 工件:以NURBS+STL表达的零件形状
 - 刀具: APT-5或者APT-7参数表达
 - ◆ 示意图:

4.5. 快速铣削QM

- ◆ 基本要素
 - 工件: 以STL表达的零件形状
 - 刀具: APT刀具
 - 加工方法:
 - 粗加工: Offset2D
 - 精加工: Z-Level、Lace、Offset3D
 - 特殊加工:清角CornerFinish、角度限制 AngleLimit
 - 刀路限制: 平面和空间中的刀路限制
- ◆ 示意图:

• 4.5. 快速铣削QM

◆ 本质: 刀具与工件的求交运算Intersection

• 工件: 以STL表达的零件形状

• 刀具: APT刀具

◆ 基本概念:

- 刀具是一个回转体,工件是一个STL模型
- 刀具与工件求交,求第一个接触位置
- 刀触点Cutter Contact (CC) 是刀具与工件接触的点
- 刀位点Cutter Location (CL) 是此时的刀尖坐标,用于描述刀具的位置

• 4.5. 快速铣削QM

◆ 基本原理

- 由于刀具形状多样,通常以刀尖来记录【刀位点】。在三轴加工中,刀具总是竖直的。有了 刀位点,刀具的位置和姿态就惟一确定。
- 将所有刀位点(CL)按顺序连接,加上一些后处理,即成为用户所需要的刀路(Toolpath)

- 4.5. 快速铣削QM
 - ◆ 刀路生成思考题:
 - 假如刀具侧面形状如下(半球形),工件侧面形状分别如图所示,请绘制通过Drop操作产生的CL刀路

• 4.5. 快速铣削QM

- ◆ 求交刀路的效率问题:
 - 假如使用穷举法Exhaust Method
 - · 刀具轮廓分成n段
 - 工件形状包含m个三角形(百万量级)
 - 刀轨包含k个Drop点(十万量级)
 - 时间复杂度O(m*n*k)

• 4.5. 快速铣削QM

◆ 关键算法

• EEUG: 生成四边模型,模型密化

· Slice: 平面与四边模型求截面线

• Drp: 刀具与三角网格求交

· NewDrp: 刀具与四边模型求交

• Chop: 三维网格上的等距偏置

· Join: 平面网格内的点连接

• Containment: 平面内刀路限制与空间中的刀路限制

• ...

4.6. 五轴铣削Mill5

- ◆ 基本要素
 - 工件:以STL表达的零件形状
 - 刀具: 以直线和圆弧轮廓表达的回转体
 - 加工方法: 基本都是精加工
 - 生成一条导向曲线,在导向曲线采点,得到投射起点和刀 具姿态:
 - 生成一系列投射方向;
 - 进行刀具投射,求刀触点/刀位点。
- ◆ 示意图:

• 4.6. 五轴铣削Mill5

- ◆ 关键算法
 - · 刀具与三角网格(STL)求交
 - 投射方向试探
 - 刀具姿角试探
- ◆ 待实现算法
 - 三角网格空间排序与定位:减少无效求交运算
 - ...

- 4.7. CAM模块共性技术
 - ◆ 刀具刀柄库
 - M2、M3、QM、M5均为铣削,刀具刀柄为回转体。应该统一定义,以直线和圆弧轮廓表达。
 - Lathe略有不同,可忽略。
 - ◆ 进退刀
 - 统一路径的称谓及定义:
 - Mill2, Lathe: Approach, Engage, Retract, Departure
 - Mill3、QM、 Mill5: Traverse、Lead In、 Long Link、 Short Link、 Lead Out、
 - 统一各类路径Feed/Speed,显示颜色
 - **•** ...

报告内容

- · 一、ZW3D应用模块简介
- 二、钣金模块
- 三、点云模块
- · 四、CAM模块
- 五、综合应用与小结

五、综合应用与小结

- 综合应用
 - ◆ 钣金行业
 - 造型、排料、下料
 - ◆ 塑料制品行业
 - 反求、加工
 - **...**

感谢您的聆听

Thank you for listening