

Vorlesung 10 - Verbände

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

• Gemacht:

- Gemacht:
 - ► Logik

- Gemacht:
 - ▶ Logik
 - ▶ Mengenlehre

- · Gemacht:
 - ▶ Logik
 - ▶ Mengenlehre
 - ► Insbesondere:

- · Gemacht:
 - ▶ Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen,

- · Gemacht:
 - ▶ Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen,

- · Gemacht:
 - ▶ Logik
 - ► Mengenlehre
 - ▶ Insbesondere: Relationen, Äquivalenzrelationen, Funktionen,

- · Gemacht:
 - ► Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen,

- · Gemacht:
 - ► Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen, Kardinalität

- · Gemacht:
 - ► Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen, Kardinalität
- Ab jetzt:

- · Gemacht:
 - ► Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen, Kardinalität
- Ab jetzt: Verschiedene Strukturen

- · Gemacht:
 - ► Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen, Kardinalität
- Ab jetzt: Verschiedene Strukturen die in Anwendungen

- · Gemacht:
 - ▶ Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen, Kardinalität
- Ab jetzt: Verschiedene Strukturen die in Anwendungen in Mathematik und Informatik

- · Gemacht:
 - ▶ Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen, Kardinalität
- Ab jetzt: Verschiedene Strukturen die in Anwendungen in Mathematik und Informatik wichtig sind.

• Sei (M, \preceq)

- Sei (M, \preceq) eine teilweise geordnete Menge

- bus supremum sup 21
- Das Supremum $\sup X$ von X

- Das Supremum $\sup X$ von X ist

- Sei (M, \preceq) eine teilweise geordnete Menge und $X \subseteq M$.
- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X,

• Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste

• Sei (M, \preceq) eine teilweise geordnete Menge und $X \subseteq M$.

Element von $\uparrow X$.

- Sei (M, \preceq) eine teilweise geordnete Menge und $X \subseteq M$. • Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
 - Element von $\uparrow X$.
- Das Infimum $\inf X$ von X

• Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste

• Sei (M, \preceq) eine teilweise geordnete Menge und $X \subseteq M$.

- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist

• Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste

• Sei (M, \prec) eine teilweise geordnete Menge und $X \subseteq M$.

- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X,

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
 - Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

Suprema/Infima

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
 - Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

Suprema/Infima existieren nicht immer.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
 - Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\ensuremath{\mathbb{R}}$

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir ${\mathbb R}$ mit der üblichen Ordnungsrelation.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

• Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

• Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

• Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

• Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann \mathbb{R} selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel:

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann \mathbb{R} selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir ℝ mit der üblichen Ordnungsrelation. Dann ℝ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq .

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir ℝ mit der üblichen Ordnungsrelation. Dann ℝ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.

• Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste

• Sei (M, \prec) eine teilweise geordnete Menge und $X \subseteq M$.

- Element von $\uparrow X$. • Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte
- Element von $\downarrow X$. • Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der

üblichen Ordnungsrelation. Dann \mathbb{R} selbst hat kein Supremum und kein Infimum.

- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von \mathbb{N} , mit der
 - Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann \mathbb{R} selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von \mathbb{N} , mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$,

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X\subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X\subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X=\bigcup X$,

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste
- Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir ℝ mit der üblichen Ordnungsrelation. Dann ℝ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.

Dieser Satz

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir ℝ mit der üblichen Ordnungsrelation. Dann ℝ selbst hat kein Supremum und kein Infimum.
- Teilmengerelation \subseteq . Dann hat M kein Supremum in M.

 Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in

• Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von \mathbb{N} , mit der

- $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert die folgende Notation:

- Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste Element von $\uparrow X$.
- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.

- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir ℝ mit der üblichen Ordnungsrelation. Dann ℝ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert die folgende Notation: Sei (M, \subseteq) eine geordnete Menge,
- Diskrete Strukturen | Verbände

• Sei (M, \prec) eine teilweise geordnete Menge und $X \subseteq M$.

- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir

 R mit der
 üblichen Ordnungsrelation. Dann

 R selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert die folgende Notation: Sei (M,\subseteq) eine geordnete Menge, und

 $x, y \in M$.

• Sei (M, \prec) eine teilweise geordnete Menge und $X \subseteq M$.

- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert die folgende Notation: Sei (M,\subseteq) eine geordnete Menge, und

 $x, y \in M$. Dann schreiben wir

- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir

 R mit der
 üblichen Ordnungsrelation. Dann

 R selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert die folgende Notation: Sei (M, \subseteq) eine geordnete Menge, und $x,y \in M$. Dann schreiben wir $x \vee y := \sup(\{x,y\})$,

- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir $\mathbb R$ mit der üblichen Ordnungsrelation. Dann $\mathbb R$ selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert die folgende Notation: Sei (M, \subseteq) eine geordnete Menge, und $x, y \in M$. Dann schreiben wir $x \vee y := \sup(\{x,y\}), \ x \wedge y := \inf(\{x,y\}).$

4 / 16

• (M,\subseteq) heißt Verband

• (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$

• (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass

• (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- $(11, \pm)$ helpe versular gain for the $w, y \in \mathbb{N}$ give the $v \neq y$ and $w \neq y$ existing the

• (M,\subseteq) heißt vollständiger Verband

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M, \subseteq) heißt vollständiger Verband gdw. für alle $X \subseteq M$

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M, \subseteq) heißt vollständiger Verband gdw. für alle $X \subseteq M$ gilt dass

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

* (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

• (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für iede Menge M

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- ullet Für iede Menge M gilt dass

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für iede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})$

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})$ die Menge

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})\,$ die Menge von allen endlichen Mengen.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q}\subset\mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband. \mathcal{Q} ist vollstandig

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q}\subset\mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband. \mathcal{Q} ist vollstandig gdw.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband. \mathcal{Q} ist vollstandig gdw. M ist eine endliche Menge.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Finish A Managa M. with the set (D(A)) (a) into a contration of a contration of
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband. \mathcal{Q} ist vollstandig gdw. M ist eine endliche Menge.
- Jeder vollständiger Verband ${\mathcal M}$

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband. \mathcal{Q} ist vollstandig gdw. M ist eine endliche Menge.
- Jeder vollständiger Verband ${\mathcal M}\,$ hat das kleinste

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M, \subseteq) heißt vollständiger Verband gdw. für alle $X \subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}), \subseteq)$ ist ein vollständiger Verband. • Sei $Q \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann Q is ein Verband. Q ist
- Jeder vollständiger Verband \mathcal{M} hat das kleinste und das grosste Element.

vollstandig gdw. M ist eine endliche Menge.

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M, \subseteq) heißt vollständiger Verband gdw. für alle $X \subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}), \subseteq)$ ist ein vollständiger Verband.
- Sei $Q \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann Q is ein Verband. Q ist
- vollstandig gdw. M ist eine endliche Menge. • Jeder vollständiger Verband $\mathcal M$ hat das kleinste und das grosste Element. Sie sind

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N},\leq) , (\mathbb{Z},\leq) , (\mathbb{Q},\leq) und (\mathbb{R},\leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- Sei $\mathcal{Q} \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann \mathcal{Q} is ein Verband. \mathcal{Q} ist vollstandig gdw. M ist eine endliche Menge.
- Jeder vollständiger Verband ${\mathcal M}$ hat das kleinste und das grosste Element. Sie sind jeweils

- (M, \subset) heißt Verband gdw. für alle $x, y \in M$ gilt dass $x \vee y$ und $x \wedge y$ existieren.
- (M, \subseteq) heißt vollständiger Verband gdw. für alle $X \subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}), \subseteq)$ ist ein vollständiger Verband. • Sei $Q \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann Q is ein Verband. Q ist
- vollstandig gdw. M ist eine endliche Menge. • Jeder vollständiger Verband $\mathcal M$ hat das kleinste und das grosste Element. Sie sind
- ieweils $\inf \mathcal{M}$

- (M, \subset) heißt Verband gdw. für alle $x, y \in M$ gilt dass $x \vee y$ und $x \wedge y$ existieren.
- (M, \subseteq) heißt vollständiger Verband gdw. für alle $X \subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- $(\mathbb{N}, <)$, $(\mathbb{Z}, <)$, $(\mathbb{Q}, <)$ und $(\mathbb{R}, <)$ sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}), \subseteq)$ ist ein vollständiger Verband.
- vollstandig gdw. M ist eine endliche Menge. • Jeder vollständiger Verband $\mathcal M$ hat das kleinste und das grosste Element. Sie sind

• Sei $Q \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann Q is ein Verband. Q ist

ieweils $\inf \mathcal{M}$ und

- (M, \subset) heißt Verband gdw. für alle $x, y \in M$ gilt dass $x \vee y$ und $x \wedge y$ existieren.
- (M, \subseteq) heißt vollständiger Verband gdw. für alle $X \subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

- $(\mathbb{N}, <)$, $(\mathbb{Z}, <)$, $(\mathbb{Q}, <)$ und $(\mathbb{R}, <)$ sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}), \subseteq)$ ist ein vollständiger Verband. • Sei $Q \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann Q is ein Verband. Q ist
- Jeder vollständiger Verband $\mathcal M$ hat das kleinste und das grosste Element. Sie sind
- ieweils $\inf \mathcal{M}$ und $\sup \mathcal{M}$.

vollstandig gdw. M ist eine endliche Menge.

Beweis.

• Sei (M, \preceq) ein Verband.

Beweis.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion

Beweis.

• Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|:

Beweis.

• Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche

Beweis.

• Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang:

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke,

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
- ► Induktionshypothese:

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
- ▶ Induktionshypothese: Für jedes $X \subseteq M$

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
- ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
- ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n existiert $\sup X$.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
 - ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n existiert $\sup X$.
 - ► Induktionsbehauptung:

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
 - ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n existiert $\sup X$.
 - ▶ Induktionsbehauptung: Für jedes $X \subseteq M$

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
 - ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n existiert $\sup X$.
 - ▶ Induktionsbehauptung: Für jedes $X \subseteq M$ mit |X| = n + 1

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
 - ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n existiert $\sup X$.
 - ▶ Induktionsbehauptung: Für jedes $X \subseteq M$ mit |X| = n + 1 existiert $\sup X$.

Beweis. (Fortzetzung)

• Sei $X \subseteq M$

Beweis. (Fortzetzung)

• Sei $X \subseteq M$ mit |X| = n + 1

Beweis. (Fortzetzung)

• Sei $X \subseteq M \; \operatorname{mit} |X| = n+1 \; \operatorname{und} \; z \in X$.

- Sei $X \subseteq M \; \operatorname{mit} |X| = n+1 \; \operatorname{und} \; z \in X$.
- Gemäß Induktionshypothese

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - Für alle $x \in X$

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - Für alle $x \in X$ gilt

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \lor y$. Deswegen ist $z \lor y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \lor y$. Deswegen ist $z \lor y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X,

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$.

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \preceq m$. Also auch $z \prec m$

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \lor y$. Deswegen ist $z \lor y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \preceq m$. Also auch $z \prec m$ und

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch $z \leq m$ und $y \leq m$.

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \lor y$. Deswegen ist $z \lor y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch $z \leq m$ und $y \leq m$. Damit folgt auch

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch $z \leq m$ und $y \leq m$. Damit folgt auch $z \vee y \leq m$,

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch $z \leq m$ und $y \leq m$. Damit folgt auch $z \vee y \leq m$, also ist $z \vee y$

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch $z \leq m$ und $y \leq m$. Damit folgt auch $z \vee y \leq m$, also ist $z \vee y$ die kleinste obere Schranke.

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \preceq m$. Also auch $z \preceq m$ und $y \preceq m$. Damit folgt auch $z \lor y \preceq m$, also ist $z \lor y$ die kleinste obere Schranke.
 - ▶ Dies zeigt

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - ▶ Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \preceq m$. Also auch $z \preceq m$ und $y \preceq m$. Damit folgt auch $z \lor y \preceq m$, also ist $z \lor y$ die kleinste obere Schranke.
 - ▶ Dies zeigt dass $z \lor y = \sup X$.

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch $z \leq m$ und $y \leq m$. Damit folgt auch $z \vee y \leq m$, also ist $z \vee y$ die kleinste obere Schranke.
 - ▶ Dies zeigt dass $z \lor y = \sup X$.

Satz.

Satz. Für jeden Verband (M, \geq)

Satz. Für jeden Verband (M,\geq) und alle $x,y,z\in M$

Satz. Für jeden Verband (M,\geq) und alle $x,y,z\in M$ gelten

 $x \vee y$

• $x \vee y =$

• $x \lor y = y \lor x$

• $x \lor y = y \lor x$ und

• $x \lor y = y \lor x$ und $x \land y$

• $x \lor y = y \lor x$ und $x \land y =$

• $x \lor y = y \lor x$ und $x \land y = y \land x$

• $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität
- $x \vee (y \vee z)$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität
- $x \lor (y \lor z) =$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität
- $x \lor (y \lor z) = (x \lor y) \lor z$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität
- $x \lor (y \lor z) = (x \lor y) \lor z$ und

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität
- $x \lor (y \lor z) = (x \lor y) \lor z \text{ und } x \land (y \land z)$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität
- $x \lor (y \lor z) = (x \lor y) \lor z \text{ und } x \land (y \land z) =$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität
- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität Assoziativität
- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität
 - $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität $x \lor (x \land y)$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität
 - $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität
- $x \lor (x \land y) =$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität
 - $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität $x \lor (x \land y) = x$

- $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität
- $x \lor (x \land y) = x$ und

- $x \lor y = y \lor x$ und $x \land y = y \land x$
- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Assoziativität

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (y \lor z) = (x \lor y) \lor z$ and $x \land (y)$
- $(\mathbf{u} \ x \land (y \land z) = (x \land y) \land z$

Assoziativität

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel,

Assoziativität

- $x \vee y = y \vee x$ and $x \wedge y = y \wedge x$
- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir

Assoziativität

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass

Assoziativität

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z)$

Deweis. Als deispiet, Deweisell will dass $x \wedge (y \wedge z)$

Assoziativität

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) =$

Assoziativität

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

Assoziativität

schaften. • $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) > x$

Assoziativität

schaften. • $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

•
$$x \lor (x \land y) = x$$
 und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
.

• $x \wedge (y \wedge z) > x$ und

Assoziativität

schaften. $x \vee y = y \vee x \ \ \text{und} \ \ x \wedge y = y \wedge x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land y$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

 \bullet m \wedge (a, \wedge m) > m und m \wedge (a, \wedge m)

• $x \wedge (y \wedge z) \ge x \text{ und } x \wedge (y \wedge z)$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

Assoziativität

schaften. $x \vee y = y \vee x \ \ \text{und} \ \ x \wedge y = y \wedge x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

$$(x \lor y) \lor z$$
 und $(x \land y)$

•
$$x \lor (x \land y) = x$$
 und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
.

•
$$x \wedge (y \wedge z) \geq x \text{ und } x \wedge (y \wedge z) \geq y$$

Assoziativität

schaften. $x \vee y = y \vee x \text{ und } x \wedge y = y \wedge x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität • $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ Absorption

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x \text{ und } x \wedge (y \wedge z) \geq y \wedge z$.

• $x\vee y=y\vee x$ und $x\wedge y=y\wedge x$ Kommutativität • $x\vee (y\vee z)=(x\vee y)\vee z$ und $x\wedge (y\wedge z)=(x\wedge y)\wedge z$ Assoziativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (y \lor z) \equiv (x \lor y) \lor z$ und $x \land (y \land z) \equiv (x \land y) \land z$ • $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

schaften.

Absorption

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigenschaften. • $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$
- $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$

- **Diskrete Strukturen** | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

Assoziativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigenschaften. • $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ • $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ **Absorption**

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) > z$.

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

schaften. $x \vee y = y \vee x \ \ \text{und} \ \ x \wedge y = y \wedge x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ Absorption

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

- $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) \geq z$.
- Damit sehen wir $x \wedge (y \wedge z)$

schaften. $x \vee y = y \vee x \ \ \text{und} \ \ x \wedge y = y \wedge x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ Absorption

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

- $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) \geq z$.
- Damit sehen wir $x \wedge (y \wedge z) >$
- ballit sellell will $x \wedge (y \wedge z)$

schaften. • $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

- $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ • $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$
- **Beweis.** Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.
- $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) > z$.
- Damit sehen wir $x \wedge (y \wedge z) > x \wedge y$.

Assoziativität

schaften. $x \vee y = y \vee x \text{ und } x \wedge y = y \wedge x$ Kommutativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und

- $x \wedge (y \wedge z) \geq z$.
- Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen

Assoziativität

schaften. • $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ **Absorption**

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

 $x \wedge (y \wedge z) > z$.

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

•
$$x \wedge (y \wedge z) \geq x$$
 und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) \geq z$.

Assoziativität

- Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen $x \wedge (y \wedge z)$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

schaften. • $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ **Absorption Beweis.** Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

 $x \wedge (y \wedge z) > z$.

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$

•
$$x \wedge (y \wedge z) \geq x$$
 und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) \geq z$.

- Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen
 - $x \wedge (y \wedge z) >$

schaften. Kommutativität • $x \lor y = y \lor x$ und $x \land y = y \land x$

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität • $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ **Absorption**

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

•
$$x \wedge (y \wedge z) \geq x$$
 und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) \geq z$.

• Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen

$$x \wedge (y \wedge z) \ge (x \wedge y) \wedge z$$
.

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ • $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) > z$.

 $x \wedge (y \wedge z) \geq (x \wedge y) \wedge z$.

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen

· Ähnlich zeigen wir

schaften.

• $x \lor y = y \lor x$ und $x \land y = y \land x$

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

Kommutativität

Assoziativität

• $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität • $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$. • $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und

$$x \wedge (y \wedge z) \ge z$$
.

• Damit sehen wir $x \wedge (y \wedge z) \ge x \wedge y$, und deswegen

• $x \lor y = y \lor x$ und $x \land y = y \land x$

schaften.

• Ähnlich zeigen wir $(x \wedge y) \wedge z$

 $x \wedge (y \wedge z) \geq (x \wedge y) \wedge z$.

Kommutativität

• $x\vee y=y\vee x$ und $x\wedge y=y\wedge x$ Kommutativität • $x\vee (y\vee z)=(x\vee y)\vee z$ und $x\wedge (y\wedge z)=(x\wedge y)\wedge z$ Assoziativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$. • $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

- $x \wedge (y \wedge z) \ge z$.
- Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen $x \wedge (y \wedge z) \geq (x \wedge y) \wedge z.$
- Ähnlich zeigen wir $(x \wedge y) \wedge z >$

schaften.

• $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

 $x \wedge (y \wedge z) \geq (x \wedge y) \wedge z$.

 $x \wedge (y \wedge z) > z$.

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

schaften.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und

• Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen

Absorption

• Ähnlich zeigen wir $(x \wedge y) \wedge z > x \wedge (y \wedge z)$.

• $x\vee y=y\vee x$ und $x\wedge y=y\wedge x$ Kommutativität • $x\vee (y\vee z)=(x\vee y)\vee z$ und $x\wedge (y\wedge z)=(x\wedge y)\wedge z$ Assoziativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und

 $x \wedge (y \wedge z) \geq z$. Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$. und deswegen

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

schaften.

- Damit sehen wir $x \wedge (y \wedge z) \ge x \wedge y$, und deswegen $x \wedge (y \wedge z) \ge (x \wedge y) \wedge z.$

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

• Ähnlich zeigen wir $(x \wedge y) \wedge z > x \wedge (y \wedge z)$. Deswegen $(x \wedge y) \wedge z$

• $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

Beweis. Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$. • $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) > z$.

• Damit sehen wir
$$x \wedge (y \wedge z) \geq x \wedge y$$
, und deswegen
$$x \wedge (y \wedge z) \geq (x \wedge y) \wedge z.$$

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

schaften.

• $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

Beweis. Als Beispiel, beweisen wir dass
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
.
• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und

- $x \wedge (y \wedge z) > z$. • Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen
 - $x \wedge (y \wedge z) \geq (x \wedge y) \wedge z$.

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$

schaften.

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

Ein Verband (M,\subseteq)

Ein Verband (M,\subseteq) ist distributiv

Ein Verband (M,\subseteq) ist distributiv gdw.

 $x \wedge (y \vee z)$

$$x \wedge (y \vee z) =$$

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

und

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

und

 $x \vee (y \wedge z)$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

und

$$x \vee (y \wedge z) =$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

und

$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Satz. Jede total geordnete Menge (M, \preceq)

Beweis.

Beweis.

• Wir müssen zeigen

Beweis.

• Wir müssen zeigen dass ∨ und ∧ existieren,

Beweis.

Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA)

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$.

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \leq y$. Dann ist y

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke für $\{x, y\}$.

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \leq y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \preceq y$ oder $y \preceq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \leq y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$.

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$. Dann gilt $y \leq z$

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$. Dann gilt $y \leq z$
- und damit ist u

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$. Dann gilt $y \leq z$
 - und damit ist u die kleinste obere Schranke

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \leq y$ oder $y \leq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \prec y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$. Dann gilt $y \leq z$
- und damit ist y die kleinste obere Schranke für $\{x, y\}$.

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \preceq y$ oder $y \preceq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \leq y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$. Dann gilt $y \leq z$ und damit ist y die kleinste obere Schranke für $\{x, y\}$. D.h. $y = x \vee y$.

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \preceq y$ oder $y \preceq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \leq y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$. Dann gilt $y \leq z$ und damit ist y die kleinste obere Schranke für $\{x, y\}$. D.h. $y = x \vee y$.
- Infimum: Ähnlich.

Beweis. (Fortzetzung.)

Beweis. (Fortzetzung.)

• Distributivität: Seien $x, y, z \in M$.

Beweis. (Fortzetzung.)

• Distributivität: Seien $x,y,z\in M$. Wir zeigen z.B. dass $x\wedge (y\vee z)=(x\wedge y)\vee (x\wedge z)$.

Ordnung $x \wedge (y \vee z) \quad (x \wedge y) \vee (x \wedge z)$

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$	
$x \prec y \prec z$			

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \preceq y \preceq z$	x	x
$x \leq z \leq y$		

Beweis. (Fortzetzung.)

Ordnung	$x \land (y \lor z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \preceq z \preceq y$	x	

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$		

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \preceq x \preceq z$	x	

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \preceq x \preceq z$	x	x

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \preceq z \preceq y$	x	x
$y \leq x \leq z$	x	x
$y \preceq z \preceq x$		

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \preceq z \preceq x$	z	

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \preceq z \preceq x$	z	z

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \preceq x \preceq y$		

Beweis. (Fortzetzung.)

Ordnung	$x \land (y \lor z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \preceq x \preceq y$	x	

Beweis. (Fortzetzung.)

Ordnung	$x \land (y \lor z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \preceq x \preceq y$	x	x

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \leq x \leq y$	x	x
$z \leq y \leq x$		

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \preceq y \preceq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \leq x \leq y$	x	x
$z \leq y \leq x$	y	

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \preceq z \preceq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \leq x \leq y$	x	x
$z \preceq y \preceq x$	y	y

Beweis. (Fortzetzung.)

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \leq x \leq y$	x	x
$z \preceq y \preceq x$	y	y

• Wir betrachten jetzt

• Wir betrachten jetzt die folgende Frage:

• Wir betrachten jetzt die folgende Frage: Inwieweit

• Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen

- Wir betrachten jetzt die folgende Frage: Inwieweit $\,$ erlauben die Operationen $\,\lor\,$ und $\,\land\,$

• Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- ullet Wir betrachten also eine Menge M zusammen mit zwei Funktionen

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen \vee, \wedge

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge \colon M \times M \to M$.

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge: M \times M \to M$.
- · Der nächste Satz sagt,

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge \colon M \times M \to M$.
- · Der nächste Satz sagt, dass, wenn wir annehmen,

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge: M \times M \to M$.
- Der nächste Satz sagt, dass, wenn wir annehmen, dass diese Operationen sind

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge \colon M \times M \to M$.
- Der nächste Satz sagt, dass, wenn wir annehmen, dass diese Operationen sind kommutativ,

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge: M \times M \to M$.
- · Der nächste Satz sagt, dass, wenn wir annehmen, dass diese Operationen sind kommutativ, assoziativ und abssorptiv.

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge: M \times M \to M$.
- · Der nächste Satz sagt, dass, wenn wir annehmen, dass diese Operationen sind kommutativ, assoziativ und abssorptiv, dann stammen sie

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge: M \times M \to M$.
- Der nächste Satz sagt, dass, wenn wir annehmen, dass diese Operationen sind kommutativ, assoziativ und abssorptiv, dann stammen sie aus einer Ordnungsrelation stammen.

Satz.

Satz. Sei (M, \sqcup, \sqcap)

Satz. Sei (M,\sqcup,\sqcap) eine Menge

Satz. Sei (M,\sqcup,\sqcap) eine Menge zusammen mit zwei Funktionen

Satz. Sei (M,\sqcup,\sqcap) eine Menge zusammen mit zwei Funktionen $\sqcup,\sqcap\colon M\times M\to M$.

Satz. Sei (M, \sqcup, \sqcap) eine Menge zusammen mit zwei Funktionen $\sqcup, \sqcap \colon M \times M \to M$. Wir nehmen an,

Satz. Sei (M, \sqcup, \sqcap) eine Menge zusammen mit zwei Funktionen $\sqcup, \sqcap : M \times M \to M$.

Wir nehmen an, dass für alle $x, y, z \in M$

Satz. Sei (M, \sqcup, \sqcap) eine Menge zusammen mit zwei Funktionen $\sqcup, \sqcap \colon M \times M \to M$. Wir nehmen an, dass für alle $x, y, z \in M$ das Folgende gilt:

Satz. Sei (M, \sqcup, \sqcap) eine Menge zusammen mit zwei Funktionen $\sqcup, \sqcap : M \times M \to M$. Wir nehmen an, dass für alle $x, y, z \in M$ das Folgende gilt:

Charakterisierung von Verbänden durch die Operationen \vee und \wedge Diskrete Strukturen

Satz. Sei (M, \sqcup, \sqcap) eine Menge zusammen mit zwei Funktionen $\sqcup, \sqcap \colon M \times M \to M$. Wir nehmen an, dass für alle $x, y, z \in M$ das Folgende gilt:

• $x \sqcup y = y \sqcup x$

• $x \sqcup y = y \sqcup x$ und

• $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

• $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$ (Kommutativität)

- Wir nehmen an, dass für alle $x,y,z\in M$ das Folgende gilt:
- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z)$

- Wir nehmen an, dass für alle $x,y,z\in M$ das Folgende gilt:
- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) =$

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$

- will fielifiell all, dass ful alle $x,y,z\in M$ das rolgelide gil
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z$ und

 $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$ (Kommutativität)
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$ (Assoziativität)

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$
- $x \sqcup (x \sqcap y) = x$

(Assoziativität)

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$
- $x \sqcup (x \sqcap y) = x$ und

(Kommutativität)

(Assoziativität)

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$
- $x \sqcup (x \sqcap y) = x$ und $x \sqcap (x \sqcup y) = x$

(Kommutativität)

(Assoziativität)

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$
- $x \sqcup (x \sqcap y) = x \text{ und } x \sqcap (x \sqcup y) = x$

(Kommutativität)

(Assoziativität)

- $x \sqcup y = y \sqcup x$ und $x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$
- $x \sqcup (x \sqcap y) = x \text{ und } x \sqcap (x \sqcup y) = x$

Dann ist (M, \preceq) ein Verband,

(Kommutativität)
(Assoziativität)

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$
- $x \sqcup (x \sqcap y) = x \text{ und } x \sqcap (x \sqcup y) = x$ Dann ist (M, \preceq) ein Verband, wobei

cibana, wobei

 \prec

(Kommutativität)

(Assoziativität)

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$
- $x \sqcup (x \sqcap y) = x \text{ und } x \sqcap (x \sqcup y) = x$ Dann ist (M, \preceq) ein Verband, wobei

$$\preceq =$$

(Kommutativität)

(Assoziativität)

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (x \sqcap y) = x \text{ und } x \sqcap (x \sqcup y) = x$
- Dann ist (M, \preceq) ein Verband, wobei

 $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$

$$\preceq = \{(x, y) \in M \times M \mid x = x \sqcap y\}$$
.

(Kommutativität)

(Assoziativität)

Beweis. Für alle $x, y \in M$

Beweis. Für alle $x, y \in M$ definieren wir

Beweis. Für alle $x, y \in M$ definieren wir $x \leq y$

Beweis. Für alle $x, y \in M$ definieren wir $x \leq y$ gdw.

Beweis. Für alle $x, y \in M$ definieren wir $x \leq y$ gdw. $x = x \sqcap y$.

Beweis. Für alle $x, y \in M$ definieren wir $x \leq y$ gdw. $x = x \sqcap y$. Wir beweisen zunächst

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

Reflexivität:

• Reflexivität: Für jedes $x \in M$

• Reflexivität: Für jedes $x \in M$ gilt

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

x

$$x =$$

$$x = x \sqcap (x \sqcup (x \sqcap x))$$

$$x = x \sqcap (x \sqcup (x \sqcap x)) =$$

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x$$
,

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x$$
,

also $x \leq x$.

Antisymmetrie:

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \prec y$

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \prec y$ und

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

14 / 16

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \prec y$ und $y \prec x$.

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$ und

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x$$
,

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \cap y$ und $y = y \cap x$.

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$ und $y = y \sqcap x$.

Mit Hilfe der Kommutativität

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$ und $y = y \sqcap x$. Mit Hilfe der Kommutativität gilt dann

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \cap y$ und $y = y \cap x$. Mit Hilfe der Kommutativität gilt dann

x

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x$$
,

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$ und $y = y \sqcap x$.

Mit Hilfe der Kommutativität gilt dann

$$x = x \sqcap y$$

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x$$
,

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$ und $y = y \sqcap x$.

$$x = x \sqcap y = y \sqcap x$$

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x$$
,

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$ und $y = y \sqcap x$.

Mit Hilfe der Kommutativität gilt dann

$$x = x \cap y = y \cap x = y$$
.

• Transitivität: Seien $x \leq y$ und $y \leq z$.

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \cap y$

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \cap y$ und

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \cap y$ und $y = y \cap z$.

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \cap y$ und $y = y \cap z$. Unter Nutzung der Assoziativität erhalten wir

x

$$x =$$

$$x = x \sqcap y$$

$$x = x \sqcap y =$$

$$x = x \sqcap y = x \sqcap (y \sqcap z)$$

$$x = x \sqcap y = x \sqcap (y \sqcap z) =$$

$$x = x \sqcap y = x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$$

$$x = x \sqcap y = x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z =$$

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \sqcap y = x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z = x \sqcap z$$

und damit $x \leq z$.

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich).

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x,y\in M$.

• Transitivität: Seien $x \prec y$ und $y \prec z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität, erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$.

Wir zeigen.

• Transitivität: Seien $x \prec y$ und $y \prec z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität, erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$.

Wir zeigen, dass $x \sqcup y$

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$. Wir zeigen, dass $x \sqcup y$ das Supremum von $\{x, y\}$ ist.

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \preceq z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$. Wir zeigen, dass $x \sqcup y$ das Supremum von $\{x, y\}$ ist.

will zeigen, that $x \sqcup y$ that supremum volit $\{x, y\}$ is

• Obere Schranke: Es gilt $x = x \sqcap (x \sqcup y)$

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \sqcap y = x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z = x \sqcap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$. Wir zeigen, dass $x \sqcup y$ das Supremum von $\{x, y\}$ ist.

• Obere Schranke: Es gilt $x = x \sqcap (x \sqcup y)$ und damit $x \preceq x \sqcup y$.

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$. Wir zeigen, dass $x \sqcup y$ das Supremum von $\{x, y\}$ ist.

• Obere Schranke: Es gilt $x=x\sqcap(x\sqcup y)$ und damit $x\preceq x\sqcup y$. Ebenso gilt $y=y\sqcap(y\sqcup x)$

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$. Wir zeigen, dass $x \sqcup y$ das Supremum von $\{x, y\}$ ist.

• Obere Schranke: Es gilt $x=x\sqcap(x\sqcup y)$ und damit $x\preceq x\sqcup y$. Ebenso gilt $y=y\sqcap(y\sqcup x)$ und damit $y\preceq x\sqcup y$,

• Kleinste obere Schranke: Sei $z \in M$ mit $x \leq z$ und $y \leq z$,

• Kleinste obere Schranke: Sei $z \in M$ mit $x \leq z$ und $y \leq z$, also $x = x \sqcap z$ und $y = y \sqcap z$.

• Kleinste obere Schranke: Sei $z \in M$ mit $x \preceq z$ und $y \preceq z$, also $x = x \sqcap z$ und $y = y \sqcap z$.

Wir folgern zunächst mit Absorption und Kommutativität

• Kleinste obere Schranke: Sei $z \in M$ mit $x \leq z$ und $y \leq z$, also $x = x \sqcap z$ und $y = y \sqcap z$. Wir folgern zunächst mit Absorption und Kommutativität

$$x \sqcup z = (x \sqcap z) \sqcup z = z$$
 und $y \sqcup z = (y \sqcap z) \sqcup z = z$.

• Kleinste obere Schranke: Sei $z \in M$ mit $x \leq z$ und $y \leq z$, also $x = x \sqcap z$ und $y = y \sqcap z$. Wir folgern zunächst mit Absorption und Kommutativität

$$x \sqcup z = (x \sqcap z) \sqcup z = z \quad \text{und}$$

$$y \sqcup z = (y \sqcap z) \sqcup z = z \quad .$$

Damit ergibt sich nun

$$(x \sqcup y) \sqcap z = (x \sqcup y) \sqcap (x \sqcup z)$$
$$= (x \sqcup y) \sqcap (x \sqcup (y \sqcup z))$$
$$= (x \sqcup y) \sqcap ((x \sqcup y) \sqcup z) = (x \sqcup y)$$

• Kleinste obere Schranke: Sei $z \in M$ mit $x \leq z$ und $y \leq z$, also $x = x \sqcap z$ und $y = y \sqcap z$. Wir folgern zunächst mit Absorption und Kommutativität

$$x \sqcup z = (x \sqcap z) \sqcup z = z$$
 und $y \sqcup z = (y \sqcap z) \sqcup z = z$.

Damit ergibt sich nun

$$(x \sqcup y) \sqcap z = (x \sqcup y) \sqcap (x \sqcup z)$$

$$= (x \sqcup y) \sqcap (x \sqcup (y \sqcup z))$$

$$= (x \sqcup y) \sqcap ((x \sqcup y) \sqcup z) = (x \sqcup y)$$

und damit $(x \sqcup y) \preceq z$.

• Kleinste obere Schranke: Sei $z \in M$ mit $x \preceq z$ und $y \preceq z$, also $x = x \sqcap z$ und $y = y \sqcap z$. Wir folgern zunächst mit Absorption und Kommutativität

$$x \sqcup z = (x \sqcap z) \sqcup z = z$$
 und $y \sqcup z = (y \sqcap z) \sqcup z = z$.

Damit ergibt sich nun

$$(x \sqcup y) \sqcap z = (x \sqcup y) \sqcap (x \sqcup z)$$

$$= (x \sqcup y) \sqcap (x \sqcup (y \sqcup z))$$

$$= (x \sqcup y) \sqcap ((x \sqcup y) \sqcup z) = (x \sqcup y)$$

und damit $(x \sqcup y) \prec z$.

16 / 16

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de