Dynamic Programming: Introduction

- An optimization problem is one that has multiple feasible solutions, each having a specific cost. Our objective is to find the best of all possible solutions.
- Dynamic Programming is typically used to solve optimization problems.
- Introduced by Richard Bellman in 1955, the word dynamic reflects the time-varying aspect of the problems. The word programming refers to tabular method (like linear programming) to solve a problem. Doesn't really refer to computer programming.
- Solves every sub problem just once and save the solution in a table. Avoids recomputing the solution every time the sub-problem is encountered.
- Its not actually an algorithm but a meta-technique/strategy for designing algorithms.

Dynamic Programming: Properties

 How to know if an optimization problem can be solved by applying dynamic programming?

- Dynamic programming works if a problem exhibits the following two properties:
- Optimal sub-structure: An optimal solution to the problem contains within it, optimal solutions to sub-problems
- Overlapping sub-problems: When a recursive algorithm revisits the same problem repeatedly, then the optimization problem has overlapping sub-problems

Dynamic Programming: Properties

- Dynamic programming, like divide-and-conquer method, solves problems by combining the solutions to sub-problems.
- Divide-and-conquer algorithms have independent sub-problems while dynamic programming is applicable when the sub-problems are not independent.

What is the drawback of recursive algorithms like Fibonacci sequence?

Solving Fibonacci sequence using dynamic programming.

Dynamic Programming: Steps

- Steps to design a Dynamic Programming algorithm:
- 1. Characterize the structure of an optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution, typically in a bottom-up fashion
 - Construct an optimal solution from computed information

Problems

- Assembly Line Scheduling
- Matrix Chain Multiplication
- Longest Common Subsequence
- 0-1 Knapsack
- TSP

- Automobile factory has two assembly lines
- Each line has n stations: $S_{1,1}, \dots, S_{1,n}$ and $S_{2,1}, \dots, S_{2,n}$.
- Corresponding stations $S_{1,j}$ and $S_{2,j}$ perform the same function but can take different amounts of time $a_{1,j}$ and $a_{2,j}$.
- Entry times are e_1 and e_2 and exit times are x_1 and x_2 .

- Brute force solution:
- Enumerate all possibilities of selecting stations
- Compute how long it takes in each case and choose the best one

- There are 2ⁿ possible ways to choose stations
- Infeasible when n is large!!

1. Structure of the Optimal Solution

- How do we compute the minimum time of going through a station?
- \bullet Let's consider all possible ways to get from the starting point through station $S_{1,j}$
- We have two choices of how to get to S_{1,j}
- Through $S_{1,j-1}$, then directly to $S_{1,j}$
- Through S_{2,j-1}, then transfer over to S_{1,j}

contains within it an optimal solution to subproblems: "find the fastest way through Generalization: an optimal solution to the problem "find the fastest way through S_{1,j}" S1, j-1 OT S2, j-1.

This is referred to as the optimal substructure property

 We use this property to construct an optimal solution to a problem from optimal solutions to subproblems

2. Recursively define the value of an optimal solution

We define the value of an optimal solution in terms of the optimal solution to subproblems

· Definitions:

- f*: the fastest time to get through the entire factory
- f_i[j]: the fastest time to get from the starting point through station S_{i,j}
- |*: the line number which is used to exit the factory from the n^{th} station
- $I_{i,j}$: the line number (1 or 2) whose $S_{i,j-1}$ is used to reach $S_{i,j}$.

$$f^* = min(f_1[n] + x_1, f_2[n] + x_2) \rightarrow Objective Function$$

Recursively define the value of an optimal solution 5

• Base case: j = 1, i = 1, 2 (getting through station 1)

- General case: $j = 2, 3, \dots, n, and i = 1, 2$
- The fastest way through $S_{1,j}$ is either:
- The way through $S_{1,j-1}$ then directly through $S_{1,j}$ or $f_1[j-1]+a_{1,j}$
- The way through $S_{2,j-1}$, transfer from line 2 to line 1, then through $S_{1,j}$ or $f_2[j-1]+f_{2,j-1}+a_{1,j}$

$$f_1[j] = min(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j})$$

2. Recursively define the value of an optimal solution

$$f_1[j] = \begin{cases} e_1 + a_{1,1} & \text{if } j = 1 \\ & \text{min}(f_1[j-1] + a_{1,j}, f_2[j-1] + t_{2,j-1} + a_{1,j}) & \text{if } j \ge 2 \end{cases}$$

$$f_2[j] = \begin{cases} e_2 + a_{2,1} & \text{if} \\ e_2[j] = \begin{cases} min(f_2[j-1] + a_{2,j}, f_1[j-1] + t_{1,j-1} + a_{2,j}) & \text{if} \end{cases}$$

3. Compute the Optimal Solution

- Using bottom-up approach, first find optimal solutions to subproblems, and then use them to find an optimal solution to the problem.
- For j≥ 2, each value f_i[j] depends only on the values of f₁[j 1] and f₂[j 1]
- Idea: compute the values of f_i[j] as follows:

	-	2	3	4	2
[i][i]	f ₁ (1)	f ₁ (2)	f ₁ (3)	f ₁ (4)	f ₁ (5)
F ₂ [i]	f ₂ (1)	f ₂ (2)	f ₂ (3)	f ₂ (4)	f ₂ (5)

-	-	2
	1,[,]	l ₂ [j]
9	35	37
2	32	30
4	24	25
3	20	22
2	18	16
-	6	12
	f ₁ [j]	f ₂ [j]

9	7	7
2	-	2
4	-	_
8	2	2
2	-	_
-	-	2
	[Ü] ₁	l ₂ [j]

4. Construct an Optimal Solution

2	
(T)	
SU	
tatic	1
t-Sta	
	,
P	
_	1

$$i \leftarrow l^*$$

print "line" i", station"
$$n$$
 for $j \leftarrow n$ downto 2

1,[j,] 1₂[j,]

9	N	7
2	-	-2
4	-	۶
8	7	7
2	-	-
-	-	7
L		

5. print "line" i ", station" j - l

ALGORITHM

```
FASTEST-WAY(a, t, e, x, n)
```

for
$$j \leftarrow 2$$
 to j

do if
$$f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_1$$

then
$$f_1[j] \leftarrow f_1[j-1] + a_{1,j}$$

else
$$f_1[J] \leftarrow f_2[J - I]$$

do if
$$f_1[j-1] + a_{1,j} \le f_2[j-1] + t_{2,j-1} + a_{1,j}$$

then $f_1[j] \leftarrow f_1[j-1] + a_{1,j}$
 $I_1[j] \leftarrow 1$
else $f_1[j] \leftarrow f_2[j-1] + t_{2,j-1} + a_{1,j}$
 $I_1[j] \leftarrow 2$

then
$$f_2[j] \leftarrow f_2[j-1] +$$

if
$$f_2[j-1] + a_{2,j} \le f_1[j-1] + t_{1,j-1} + a_{2,j}$$

then $f_2[j] \leftarrow f_2[j-1] + a_{2,j}$
 $t_2[j] \leftarrow f_2[j-1] + a_{2,j}$
 $t_2[j] \leftarrow 2$
else $f_2[j] \leftarrow f_1[j-1] + t_{1,j-1} + a_{2,j}$
 $t_2[j] \leftarrow 1$

Compute the values of f₂[j] and l₂[j]

Compute the values of f₁[j] and l₁[j]

if
$$f_1[n] + x_1 \le f_2[n] + x_2$$

then $f^* = f_1[n] + x_1$
 $f^* = 1$

$$f = 1$$

. else $f = f_2[n] + ...$

7. else
$$f^* = f_2[n] + x_2$$

8. $f^* = 2$

complexity

The time and Space complexity of the algorithm:

