Drop in notes

Olaf!!! → Compiled lecture slides relevant to exam, but he's not going to upload them 🙁

OS Basics

- Virtualising machine
 - Isa
 - Threads
 - Concurrency
 - Address spaces
 - ???
 - Sockets
- Protection
 - 2 methods: user/kernel mode

Virtualisation

- CPU
 - 3 states of process: running ready blocked
 - Transition from user to kernel system calls
 - Trap table special instructions to reset to the kernel
 - Program in user mode cannot turn off interrupts
 - Multitasking
 - 2 ways to achieve: 1. timer interrupts \rightarrow context switch, 2. Yield \rightarrow program voluntarily gives CPU away
 - Store:
 - PCB see slide Multiplexing processes: The Process Control Block
- Memory
 - Process address space: typical structure
 - Share space in memory: memory management unit
 - Converts virtual and physical address spaces
 - Base + bounds
 - Kernel mode → physical address
 - User mode → check if below bound, then add base
 - Buffer overflow → overflow buffers overwrite other memory this happens inside a process but not to the whole memory storage because of memory isolation (virtualizing of memory)
 - Segmentation
 - Separate base and bound segments
 - Fragmentation
 - Internal vs external
 - Paging
 - Mapping virtual page no to physical frame no
 - Uses page tables to store map

- Pros: no external fragmentation, free pages are equivalent
- Cons: page tables are too big (there's more, see slide Paging Pros and Cons)
- TLB
 - Table page look-up needs to read twice, to reduce this, we have TLB
 - Provides spatial and temporal locality
- Multi-level page tables
 - Why do it? Benefits?
- Page fault
 - Demanding page
 - Process of a page fault
- Page replacement
 - Cold starts (compulsory misses)
 - Capacity misses
- FIFO: replace the one in the memory the longest
- LRU: the least recently used is replaced
- Random: just randomly replace a page
- Optimal: the furthest away used is replaced

Scheduling (Part of CPU)

- Workloads, schedulers, metrics
- Turnaround time: complete arrive
- Response time: first run arrive
- FIFO
 - Convoy effect small tasks build up while long task run
 - Negative effect for FIFO
- SJF
 - We don't know how long future jobs will take
 - Needs pre-emption to interrupt long jobs when shorter jobs arrive
- STCF
 - Check textbook for definition considers shortest time overall instead of shortest time left according to Olaf
 - Cruz calls this SJF preemptive, if she calls schedulers by different names and you are not sure what it is, write your assumption and its definition.
- RR
 - Horrible turnaround time, good response time
- I/O aware
 - While a process is using I/O, other processes can use the CPU
- MLFQ
 - Mac
 - Rules
 - Priorities: higher priority runs, same priority RR
 - Set priority:
 - Long jobs tend to drop in priority (starvation)
- CFS (mentioned, no slide)

- Linux

Concurrency

- To achieve concurrency we need threads
- Locks mutex
 - Synchronising
 - Condition variables: process checks variable, if condition not fulfilled, release lock and go to sleep
 - Wait and signal (signal wakes process up from sleep)
 - producer/consumer
 - While loop is needed to check condition over and over again because the condition can change
 - Consumer can consume in the order the product is produced, but not guaranteed
 - Semaphores
 - Integer values initiated to a specific value
 - Wait decrements value
 - Value is non-negative (can be a negative in text-book, but shouldn't be in exam)
 - readers/writers problem
 - Consider shared database
 - Writers can read and modify
 - Readers can only read
 - Critical section should be locked when a writer is writing
 - Approaches
 - Single mutex (lock when anyone access)
 - Not efficient
 - While reader in section, no writers can enter
 - Writer never gets there
 - Process readers and writers according to their arrival
 - Equivalence claim
 - Exam: don't need to know proofs but need to understand that they are equivalent
 - Deadlock
 - Circular dependency
 - Mutual exclusion
 - Hold and wait: holding a mutex and not releasing it while waiting for another mutex
 - No pre-emption: cannot interrupt

Persistence

- Protocol variants
 - Status checks
 - Polling

- Interrupts
- Data:
 - PIO
 - DMA
 - Adv and Disadvantage
 - Kernel needs to manage/protect it
 - Know how DMA work
- Control
- Disk
 - The Amazing Magnetic Disk
 - Explain terminology such as platters, etc.
 - Solid state disks
 - Basic idea: electric charge trapped between insulation layers, write to different locations to avoid wear and tear
 - Write:
 - Erase:
 - RAIDs
 - Bunch of disks
 - RAID-0
 - Striping, using many disks as one disk
 - RAID-5
 - Parity bits rotated: calculated by XOR
 - Inodes
 - Stores metadata
 - Has pointers to blocks
 - Superblocks
 - Bitmap blocks
 - Multilevel indexed files
 - (e.g. 12 direct blocks)
 - Direct blocks goes straight to a data file
 - Pros and cons
 - Aging: free list makes contiguous chunks hard to find fragmented over time
 - Disk aware
 - Cylinder route
 - Similar stuff similar side
 - Smart policy
 - Creating a file
 - Find free blocks
 - Find free inode entry
 - Find directory to insert
 - Mark as used in many places (map, inode, dirent)
 - Journaling
 - Write ahead
 - Log the writes first

- 2 variants
 - Writes metadata only
 - Writes all data
- Crash recovery
 - Use commits
- NEED TO KNOW UNITS!!! (Time, memory)
- Be aware of MCQ that asks what is "FALSE"? (This means read the question correctly)