Weeks 10 and 11: Data Structures and Algorithms

Sorting

Q1	Q2	Q3	Total
$(3 \times 9) = 27$	3 + 20 = 23	10	60

Do the following reading prior to doing this assignment:

Lecture	Topics	Reading
21 – 26	Sorting	https://drive.google.com/file/d/19g07m0WDR3E0XNnPi ogoXaxr6vKGsgx/view?usp=sharing

Q1) Write a **program** that implements and compares several **Sorting algorithms**

S. No.	Program Details		Marks
1	Functions:		
	[1] Selection_sort ().		(3)
	[2]	Bubble_sort ()	(3)
	[3]	insertion_sort ()	(3)
	[4]	merge_sort ()	(3)
	[5]	quick_sort ()	(3)
	[6]	heap_sort ()	(3)
	[7]	radix_sort ()	(3)
	[8]	count_sort ()	(3) (3)
	[9]	bucket_sort ()	(3)
2	A main() function that		
	[1]	Calls upon an external file containing a list of numbers ("input1.txt").	(3)
	[2]	Evaluates the total number of numbers present in the input file.	(5)
	[3]	Sorts the list of numbers using all the (9) sorting algorithms enlisted in (Q1).	(5)
	[4]	Evaluates the run-time for each sorting algorithm.	(5)
	[5]	Prints the time-taken by each sorting algorithm in increasing order of magnitude.	(5)
	5.1		(=)
3	[1]	Repeat Q2 for the five files attached i.e., "input2.txt" to "input5.txt."	(5)
	[2]	Plot the results using a graph, where the Y-axis represents the time taken in seconds,	(5)
		whereas, the x-axis represents the number of entries in each input file (in increasing	
		order). You may use the logarithmic scale $\log_{10}()$ for the x-axis. Make sure you use a	
		different colour for each sorting algorithm.	1

Rubrics (Associated Marks)

S. No.	Content	Meets Criteria (1)	Marks	Does not meet expectations (0)	Marks
1	Indentation	Perfect	100%	Code not indented properly	0
2	Code works	Code compiles and executes properly for any variable sized matrices	100%	Code has errors	Based on the code
3	Comments	Code is properly commented	100%	Code is not properly commented.	0