Advanced Mathematics for Scientific Challenges

Autumn 2022

Exercises 1.1

1. Prove the extreme value theorem of Weierstrass: If f is a real continuous function on a compact set $K \subset \mathbb{R}^n$, then the problem of optimization

$$\begin{cases} & \text{Minimize } f(x) \\ & x \in K \end{cases}$$

has an optimal solution $x^* \in K$.

2. Let f be a real continuous function on \mathbb{R}^n satisfying that $f(x) \to +\infty$ when $||x|| \to +\infty$. Show that the problem of optimization

$$\begin{cases}
\text{Minimize } f(x) \\
x \in \mathbb{R}^n
\end{cases}$$

has an optimal solution $x^* \in K$.

3. (Optional) Let S be a convex subset of \mathbb{R}^n , and let λ_1 and λ_2 be positive scalars.

- (a) Show that $(\lambda_1 + \lambda_2)S = \lambda_1 S + \lambda_2 S$.
- (b) Give an example that shows that this does not need to be true when S is not convex.
- 4. (Optional) Let S be a nonempty closed convex set in \mathbb{R}^n , not containing the origin. Show that there exists a hyperplane that strictly separates S and the origin.
- 5. (Optional) Show that a convex function $f:(a,b)\to\mathbb{R}$ is continuous.
- 6. Consider a function $f:(a,b)\to\mathbb{R}$ of class C^2 . Show that f is convex if and only if $f''(x)\geq 0$ for all $x\in(a,b)$.
- 7. Let f be a real valued function on an open convex set $S \subset \mathbb{R}^n$, of class C^2 . Show that f is convex on S if and only if its Hessian matrix,

$$Q(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right),\,$$

is positive semi-definite for all $x \in S$.

8. Assume that $S \subset \mathbb{R}^n$ is a convex set and that $g: S \to \mathbb{R}$. Show that the set $g(x) \leq 0$ is convex if g is convex. What about the opposite implication?

Deadline to deliver it: October 9, 23:59.