PARAMETER ESTIMATION

M: MODEL

Θ = (Θ, Θ2,..., ΘN) Θ IS CONTINUOUS N: DIMENSIONALITY
PARAMETERS

d: DATA PRIOR, $\pi(\theta)$ LIKELIHOOD, $\mathcal{L}(\theta)$ WANT: $\int_{\rho(\theta|m)}^{\rho(\theta|m)} P(\theta|\theta,m) = \frac{P(\theta|m) P(\theta|m)}{P(\theta|m)} = \frac{P(\theta|m)}{P(\theta|m)} = \frac{P($

= P(O|M) P(d(O,M) (LAW OF TOTAL)

SdO' P(O'IM) P(d(O',M) PADBABILITY)

 $\alpha f(\theta) = P(\theta | m) P(d | \theta, m)$

1. $f(\theta) \ge 0 \quad \forall \; \theta$ 2.0 $f(\theta') < \infty$

WHAT DO WE WANT FROM P(Old, M) OR f(0)?

- PARAMETER ESTIMATES: Ô = \(\int do; O P(O | d, M) \)

- UNCERTAINTIES: $\sigma = \int d\theta (\theta - \hat{\theta})^2 P(\theta | d, M) / 2$

CORNER PLOTS:

LOW-DIMBUSIONAL PROBLEMS

$$\theta = (\theta_1, \theta_2, \theta_3)$$

$$\theta = (\theta_1, \theta_2, \theta_3)$$
 $f(\theta) = P(\theta|m) P(d|\theta, m)$

EXAMPLE: 0 = F: FRACTION OF STARS WHICH ARE BINARIES

$$N=2.$$

Oz = m: AVERAGE MASS OF THE STARS.

GRID-BASED METHOD.

STEWAR ASTROPHYSICS

ALGORITHM: OFFEI

1. CHOOSE: Fmin, Fmax mmin mmax

2. (CHOOSE: RESOLUTION:
$$I \times J$$
 $I_1 J \simeq 100$

3. $F_i = F_{min} + \frac{i + 1/2}{I + 1} \left(F_{max} - F_{min}\right)$

m. similar.

4.
$$f_{i,j} = f(\theta_{i,j}) = f(F_i, m_j)$$

5. NORMALISE:

$$I \simeq (F_{max} - F_{min}) (m_{max} - m_{min}) \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} f_{ij}$$

$$P_{ij} \equiv \frac{f_{ij}}{I} \qquad P_{ij} \simeq P(O_{ij} | d, n) = P(F_{i}, m_{j} | d, n)$$

CALCULATE DEPOVED QUANTITIES

$$P(F; | d, m) = \sum_{j=1}^{n} P_{ij}$$

GENERAL!

$$\int d\theta \ g(\theta) \ P(\theta|d,m) \simeq \sum_{i=1}^{L} \sum_{j=1}^{J} g(\theta_{ij}) \ P_{ij}$$

SAMPLING

$$f(\theta) \equiv P(\theta|M) P(d|\theta,M)$$

CHARACTERYSING A DISTRIBUTION BY A FUNCTION

$$\Theta_k \sim P(\theta | d, M)$$
 $k = 1, 2, ..., K$ $K \simeq 10^{3-4}$

MONTE CARLO INTEGRATION

$$\int d\theta \ P(\theta|d,H) \ g(\theta) \simeq \frac{1}{K} \sum_{k=1}^{K} g(\theta_k) \ \text{IF} \ \theta_k \sim P(\theta|d,H)$$

UNCERTAINTY IN ESTIMATE OF INTEGRAL GOES AS K-1/2,

• NORMALISATION: $g(\theta) = 1$ $\frac{1}{K} \stackrel{\sim}{\Sigma} 1 = 1$

 $g(\theta) = \theta$ $\frac{1}{k} \sum_{k=0}^{k} \theta_k = \hat{\theta}$ · MEAN:

• COVARIANCE MATRIX: $g(\theta) = (\theta - \hat{\theta})(\theta - \hat{\theta})^T$ $\sum = \frac{1}{\kappa} \sum_{k} (\Theta_{k} - \hat{\Theta}) (\Theta_{k} - \hat{\Theta})^{T}$

METROPOUS ALGORITHM

HAVE
$$f(\theta) = P(\theta|\Pi)P(d|\theta,M)$$

ALGORITHM:

CHOOSE K.
$$\simeq 10^{3-4}$$

CHOOSE Θ_0 ; EVALUATE $f_0 = f(\Theta_0)$

INITIALISE

FOR k=1,2,...K: $\theta_{*} \sim P(\theta_{*} | \theta_{k-1}), \text{ EVALUATE } f_{*} = f(\theta_{*}) \} \text{ PROPOSE NEW}$ $p \sim U(0,1) \qquad N(\theta_{*}; \theta_{k-1}, 1)$ $if p \leq f_{*} / f_{k-1} \qquad N(\theta_{*}; \theta_{k-1}, 1)$ $\theta_{k} = \theta_{*}; f_{k} = f_{*} \qquad (10)$ $else \qquad \theta_{k} = \theta_{k-1}$

- AUTO-COPPLETION FUNCTION OF THE CHAIN
- EMPIRICAL COVARIANCE MATRIX OF THE CHAIN: $\hat{\Sigma}$ PROPOSAL DISTRIBUTION $P(\theta_*|\theta_{k-1}) = N(\mu = \theta_{k-1}, \hat{\Sigma})$