CS 303: Praktische Informatik II Übungsblatt 5

Prof. Dr. Rainer Gemulla

Universität Mannheim, FSS 2023

1 Huffman-Code

Gegeben sei die folgende Zeichenkette:

password_sharp_sword

- a) Wieviele Bits benötigt man mindestens pro Zeichen bei einer binären Kodierung mit fester Bitlänge? Kodieren Sie die Zeichenkette binär mit fester Bitlänge.
- b) Kodieren Sie die Zeichenkette binär mit dem Huffman-Algorithmus. Geben Sie anschließend die Kompressionsrate (Ersparnis) im Vergleich zu a) an.
- c) Angenommen, Sie erhalten die Kodierungen aus Aufgabenteil a) und b) mit je einem einzelnen Bit-Fehler an einer beliebigen Stelle. Wie wirkt sich dies jeweils auf die Dekodierung aus? Welchen Vorteil hat die Kodierung mit fester Bitlänge? Welchen Vorteil hat die Kodierung mit variabler Bitlänge?
- d) Gegeben sei folgende Kodierung

und der folgende Huffman-Baum. Welcher Satz ergibt sich daraus?

2 Kodierung

Betrachten Sie ein Nachrichtenquelle mit vier verschiedenen Zeichen. Zeichen A und B treten jeweils mit einer Wahrscheinlichkeit von 40% auf, Zeichen C oder D entsprechend mit einer Wahrscheinlichkeit von 20%. Die vier Zeichen werden wie folgt kodiert:

Zeichen A \Rightarrow 10, Zeichen B \Rightarrow 11, Zeichen C \Rightarrow 110, Zeichen D \Rightarrow 101.

- a) Wie gut ist der Code hinsichtlich des Platzbedarfs?
- b) Ist der Code ein Präfix-Code?
- c) Ist der Code dekodierbar?
- d) Finden Sie ein Beispiel für einen Code, welcher kein Präfix-Code, aber dennoch dekodierbar ist?

3 Entropie

- a) Wie ist Entropie definiert und welche Bedeutung hat sie für die Kodierung mit variabler Bitlänge?
- b) Gegeben sei die Zeichenkette password_sharp_sword aus Aufgabe 1 mit den relativen Häufigkeiten:

```
p: 10%, a: 10%, s: 20%, w: 10%, o: 10%, r: 15%, d: 10%, _: 10%, h: 5% Berechnen Sie die Entropie der entsprechenden Zufallsvariable.
```

- c) Vergleichen Sie das Ergebnis aus Aufgabenteil b) mit der erwarteten Codewortlänge für der Huffman-Kodierung aus Aufgabe 1. Diskutieren Sie!
- d) Wiederholen sie Aufgabenteil b) und c) mit folgenden relativen Häufigkeiten:

```
p: 6,25%, a: 6,25%, s: 50%, w: 6,25%, o: 6,25%, r: 12,5%, d: 6,25%, : 6,25%, h: 0%
```

Diskutieren Sie!

e) Betrachten sie eine diskrete Zufallsvariable X über m Symbolen $A = \{a_1, \ldots, a_m\}$, für die alle relativen Häufigkeiten Zweierpotenzen sind. Das heißt:

$$p_i = P(X = a_i) = 2^{-l_i}$$
 für $l_i \in \mathbb{N}_0$.

Es gilt $\sum_{i=1}^{m} p_i = 1$. Ein Beispiel ist $A_{ex} = \{a_1, a_2, a_3\}$ mit $p_1 = 1/2$, $p_2 = 1/4$ und $p_3 = 1/4$; ein anderes Beispiel ist die relative Häufigkeitsverteilung aus Aufgabenteil d).

Wir behaupten: Bei der Verwendung der Huffman-Kodierung wird das Symbol a_i durch ein Codewort der Länge l_i dargestellt. Welche erwartete Codewortlänge ergibt sich dadurch? Wie verhält sie sich zur Entropie der Zufallsvariable X?

f) *Beweisen Sie die Behauptung aus Aufgabenteil e).

4 Verfügbarkeit

Sie betreiben eine Infrastruktur, die in Abbildung 1 schematisch dargestellt ist und sich aus drei Einheiten mit einzelnen Komponenten zusammensetzt. Anfangs besitzen Sie 2 Prozessoren, 1 Festplatte und 5 Netzteile. Die Ausfallwahrscheinlichkeiten der jeweiligen Komponenten sind in Tabelle 1 gegeben.

Abbildung 1: Darstellung der Einheiten mit Komponenten

Komponente	Ausfallwahrscheinlichkeit x_i
Prozessor	0.5%
Festplatte	1%
Netzteil	3%

Tabelle 1: Ausfallwahrscheinlichkeiten der Komponenten

- a) Das gesamte System fällt aus, wenn alle Komponenten einer Einheit ausfallen. Wie hoch ist die Wahrscheinlichkeit, dass dieser Fall eintritt?
- b) Sie möchten nun die Ausfallwahrscheinlichkeit des Systems auf 0.01% reduzieren. Wie viele Einheiten an Festplatten sollten Sie mindestens zukaufen, um die gewünschte Ausfallwahrscheinlichkeit zu erreichen?
- c) Redundanz ist eine Möglichkeit, um die Zuverlässigkeit eines Systems zu erhöhen. Welche Überlegungen sollten bei der Zusammenstellung eines Systems neben der Ausfallwahrscheinlichkeit der einzelnen Komponenten auch ein Rolle spielen?

Projekt 4: Huffman-Kodierung

(10 Punkte)

- a) Erweitern Sie die Klasse HuffmanCode. java, die angeben soll, wie stark eine Datei mittels Huffman-Kodierung komprimiert werden kann. Wir betrachten dabei jedes Byte als ein Zeichen. Die Vorgabe stellt folgende Funktionalität zur Verfügung:
 - Eine Datei wird von der Festplatte eingelesen (der Dateiname wird dem Programm als Argument übergeben) und die gelesenen Bytes in einem Array char[] chars gespeichert.
 - Die main-Methode liefert bereits den Rahmen für die erwartete Ausgabe.

Ihr Programm soll folgende Informationen über die Datei ausgeben:

- (i) aus wie vielen Zeichen die Datei besteht (0.5P)
- (ii) aus wie vielen verschiedenen Zeichen die Datei besteht (0.5P)
- (iii) wie viele Bits zur Kodierung der Datei durch einen optimalen Code fester Bitlänge benötigt werden (0.5P)
- (iv) wie viele Bits zur Kodierung der Datei durch den optimalen Huffman-Code benötigt werden (4P)
- (v) wie viel Speicherplatz prozentual im Vergleich zur ursprünglichen Kodierung (8 Bit pro Zeichen) gespart wird durch
 - i. die optimale feste Bitlänge, (0.5P)
 - ii. den Huffman-Code. (0.5P)
- (vi) die Shannon-Entropie der Datei (0.5P)
- (vii) welche 10 Zeichen am häufigsten auftreten. Geben Sie für jedes Zeichen die absolute und relative Häufigkeit, die Codelänge des Huffman-Codes, die hexadezimale Darstellung sowie für alle druckbaren Zeichen (≥ 33) das Zeichen selbst aus. (1P)

Hinweise. Die Berechnung des tatsächlichen Huffman-Codes ist nicht gefordert. In diesem Projekt kann es hilfreich sein, zusätzliche Hilfsklassen *in derselben Java-Datei* zu implementieren.

Optional. Erweitern Sie ihr Programm, sodass es (1) die Huffman-Kodierung der Eingabedatei ausgibt und (2) eine so ausgegebene Datei wieder einlesen und dekodieren kann. Welche weiteren Informationen müssen dazu in der kodierten Datei abgelegt werden?

Beispiel. Für den Aufruf

java HuffmanCode blatt05-datei0.txt

soll ihr Programm folgende Ausgabe liefern:

```
Anzahl Zeichen
Anzahl verschiedener Zeichen
                                 : 13
Kodierung mit fester Bitlänge
                                : 344 Bits (4 Bits pro Zeichen)
Kodierung mit Huffman-Code
                                : 303 Bits (3,52 Bits pro Zeichen)
Ersparnis (optimale feste Länge): 50,00%
Ersparnis (Huffman-Code)
                                 : 55,96%
Entropie
                                 : 3,50
Häufigste Zeichen:
0x61 a, Häufigkeit: 11 (12,8%), Codewortlänge: 3
OxOA , Häufigkeit: 10 (11,6%), Codewortlänge: 3
OxOD , Häufigkeit: 10 (11,6%), Codewortlänge: 3
0x62 b, Häufigkeit: 10 (11,6%), Codewortlänge: 3
0x63 c, Häufigkeit: 9 (10,5%), Codewortlänge: 3
0x64 d, Häufigkeit: 8 (9,3%), Codewortlänge: 4
0x65 e, Häufigkeit: 7 (8,1%), Codewortlänge: 4
0x66 f, Häufigkeit: 6 (7,0%), Codewortlänge: 4
0x67 g, Häufigkeit: 5 (5,8%), Codewortlänge: 4
0x68 h, Häufigkeit: 4 (4,7%), Codewortlänge: 4
```

b) Wenden Sie ihr Programm auf die in ILIAS abgelegten Beispieldateien 1 bis 4 an. Alle Dateitypen sollen direkt eingelesen werden. Diskutieren Sie die Ergebnisse. Reichen Sie Ihre Programmausgaben und Diskussion bei der Projektabgabe in Form einer PDF-Datei innerhalb ihrer abzugebenden zip-Datei mit ein. (2P)