SEANCE 10 (16)

Objectifs : Déterminer le type de la molécule AX_nE_m , le type d'hybridation des orbitales et la géométrie de la molécule, représenter la molécule dans l'espace

Consignes/Activités d'introduction : lire les notes de cours, calculer le nombre des doublets liants σ , des paires propres à l'atome central, déterminer le type de la molécule AXnEm type d'hybridation des orbitales et la géométrie de la molécule

Contenu: Chapitre 2 Liaisons chimiques, méthode des orbitales atomiques

Méthode des orbitales atomique (Gillespie) : Calcul du nombre des doublets liants σ , des paires propres à l'atome central, type de la molécule AXnEm, type d'hybridation des orbitales et la géométrie de la molécule

Activités :

- 1. Identifier l'atome central.
- 2. Déterminer les doublets liants et les doublets propres à l'atome central,
- 3. Déterminer le type d'hybridation de l'atome central,
- 4. Déterminer le type de la molécule,
- 5. Déterminer la géométrie de la molécule et faire la représentation.

2.3.4. Méthode des orbitales atomiques (V.S.E.P.R.)

La méthode des OA est basée sur le fait que c'est l'arrangement des « n » doublets liants X et des « m » doublets non liants E autour de l'atome central A qui détermine la forme de la molécule. On cherche la disposition géométrique qui porte au maximum la distance entre les paires qui se repoussent mutuellement. Dans le cas d'une covalence multiple, on ne considère qu'un seul doublet liant. Les doublets liants imposent la direction de la liaison. Considérons :

- Atome central n'ait que des paires liantes (AX_n):
 - 1. 2 paires liantes AX₂, la molécule a une forme linéaire, n=2;

$$O = C = O$$

2 3 paires liantes AX₃, la molécule a une forme angulaire de 120°, n=3; RCl₂

Cl—B
$$\left\langle \begin{array}{c} Cl \\ Cl \end{array} \right.$$

La présence d'une double liaison (un nuage électronique plus volumineux repusse les paires simples) explique les écarts à la valeur de 120° observés dans les molécules AX_3 ayant une liaison π .

3. 4 paires liantes AX_4 , , la molécule a une forme tétraédrique, angle 109.5° , n=4;

CH₄

H

C

H

H

H

4. 5 paires liantes AX₅, la molécule a une forme d'une bipyramide à base triangulaire, n=5 ;

PCl₅ Cl Cl - P Cl Cl - Cl

5. 6 paires liantes AX_6 , la molécule a une forme d'un octaèdre, n=6. $PtCl_6$

• La molécule est constituée des atomes ayant des paires liantes et non liantes AX_nE_m. L'ensemble des doublets liants et non liants (n+m) se dispose comme précédemment mais on observe des modifications d'angle dues au fait que le doublet non liant est plus volumineux que le doublet liant car il ne subit que l'attraction du noyau central. On observe une diminution de l'angle reliant des paires liantes.

La variation d'angle entre les molécules de même type AXnEm s'explique par la différence d'électronégativité soit de l'atome central, soit des atomes liés :

1. atomes centraux différents. Lorsque l'électronégativité de l'atome central diminue, l'angle entre les liaisons diminue;

 $H - S - H = 92.2^{\circ}$ $H - O - H = 104.5^{\circ}$

2. atomes liés différents. Lorsque l'électronégativité des atomes liés augmente, l'angle entre les liaisons diminue. F— O— F=103.2° H—

Dans les deux cas les paires liantes sont repoussées vers les atomes liés et la répulsion entre l'atome central et chaque atome lié diminue, d' l'angle de liaison plus petit.

n	X	E	Туре	Géométrie prévue Linéaire L-M-C		
2	2 (0	AX2			
3	3	0	AX3	Triangle équilatéral	X A-X	
	2	1	AX ₂ E	Forme en V avec un angle voisin de 120°	X A ①	
4	4	0	AX4	Tétraèdre régulier	x X X	
	3	1	AX3E	Pyramide à base triangulaire	x ASX	
	2	2	AX ₂ E ₂	Forme en V avec un angle voisin de 109°	CA	
	1	3	AXE ₃	Linéaire		
5	5	0	AX5	Bipyramide à base triangulaire	X-A-X	
	4	1	AX4E	Bipyramide triangulaire avec un sommet vide	© XXX	
	3	2	AX3E2	En forme de T	×	
	5	3	AX ₂ E ₃	Linéaire	€\}3	
6	6	0	AX ₆	Octaèdre	× × ×	
	5	1	AX ₅ E	Pyramide à base carrée	x - X - x	
	4	2	AX ₄ E ₂	Plan carré	x Z^A-	