

CHIMIE NIVEAU SUPÉRIEUR ÉPREUVE 1

Lundi 20 mai 2002 (après-midi)

1 heure

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé.
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.

222-155 15 pages

Tableau Périodique

2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)	
	9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	
	8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)	
	7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98	
	6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19	
	5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37	
			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59	
			29 Cu 63,55	47 Ag 107,87	79 Au 196,97	
			28 Ni 58,71	46 Pd 106,42	78 Pt 195,09	
			27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt
			26 Fe 55,85	44 Ru 101,07	76 Os 190,21	108 Hs
			25 Mn 54,94	43 Tc 98,91	75 Re 186,21	107 Bh (262)
Nombre Atomique	Masse Atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85	106 Sg (263)
Nor	Masse A		23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (262)
			22 Ti 47,90	40 Zr 91,22	72 Hf 178,49	104 Rf (261)
			21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)
	4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)
1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)

71	33
Lu	r
174,97	(0)
-	103 Lr (260)
70	102
Yb	No
173,04	(259)
69	101
Tm	Md
168,93	(258)
68 Er 167,26	100 Fm (257)
67 Ho 164,93	99 Es
66	98
Dy	Cf
162,50	(251)
65	97
Tb	Bk
158,92	(247)
64	96
Gd	Cm
157,25	(247)
63	95
Eu	Am
151,96	(243)
62 Sm 150,35	94 Pu (242)
61	93
Pm	N p
146,92	(237)
60	92
Nd	U
144,24	238,03
59	91
Pr	Pa
140,91	231,04
58	90
Ce	Th
140,12	232,04
- !	**

1. Un composé exclusivement constitué de carbone, d'hydrogène et d'oxygène présente les pourcentages massiques suivants :

carbone 60 %, hydrogène 8 %, oxygène 32 %.

Quelle est sa formule moléculaire ?

- A. $C_5H_8O_2$
- B. C_5H_4O
- C_6HO_3
- D. C_7HO_4
- 2. Parmi les échantillons suivants, quel est celui qui renferme la plus petite quantité d'oxygène ?
 - A. 0.3 mole de H_2SO_4
 - B. 0.6 mole de 0.3
 - C. 0,7 mole de HCOOH
 - D. 0,8 mole de H₂O
- 3. On introduit un fil de cuivre de masse 6,4 g dans 0,10 dm³ d'une solution de AgNO₃ 1,0 mol dm⁻³. Il se forme de l'argent métallique et du nitrate de cuivre(II) en solution. Lorsque la réaction est terminée,
 - A. il subsiste un excès de cuivre.
 - B. le fil de cuivre s'est dissous complètement et quelques ions d'argent subsistent en solution.
 - C. le fil de cuivre s'est dissous complètement et il ne subsiste pas d'ions d'argent en solution.
 - D. la masse d'argent métallique formé est égale à la masse de cuivre qui a réagi.
- 4. On dissout 2,02 g de KNO₃ ($M_r = 101$) dans une quantité d'eau suffisante pour préparer 0,500 dm³ de solution. Quelle est, en mol dm⁻³, la concentration de cette solution ?
 - A. 0,02
 - B. 0,04
 - C. 0.10
 - D. 0,20

5. Le cuivre existe sous la forme de deux isotopes, ⁶³Cu et ⁶⁵Cu. La masse atomique relative du cuivre vaut 63,55. Quelle est sa composition isotopique la plus probable ?

	⁶³ Cu	⁶⁵ Cu
A.	30 %	70 %
В.	50 %	50 %
C.	55 %	45 %
D.	70 %	30 %

- **6.** Le(s)quel(s) des atomes suivants possède(nt) un ou plusieurs électron(s) célibataire(s) ?
 - I. Le fer
 - II. Le cuivre
 - III. Le zinc
 - A. I seulement
 - B. III seulement
 - C. I et II seulement
 - D. I, II et III
- 7. Les spectres de raies atomiques fournissent des informations concernant ...I... grâce à (au) ...II...

I II

- A. les niveaux d'énergie la distance entre les raies
- B. la masse atomique la position des raies
- C. le nombre d'électrons nombre de raies
- D. la charge nucléaire l'intensité des raies

- **8.** Parmi les paires d'entités suivantes, quelle est celle dont la première entité est plus volumineuse que la seconde ?
 - A. Cl et Cl
 - B. Na⁺ et Na
 - C. Na et K
 - D. Si et Cl
- 9. Les oxydes des éléments de la troisième période (Na \rightarrow Cl) acquièrent un caractère plus ...I... et produisent des solutions plus ...II... lorsqu'ils sont introduits dans l'eau.

I II

- A. ionique acide
- B. ionique basique
- C. covalent acide
- D. covalent basique
- 10. Parmi les réactions suivantes, quelle(s) est (sont) celle(s) qui est (sont) spontanée(s)?
 - I. $Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$
 - II. $Br_2 + 2I^- \rightarrow I_2 + 2Br^-$
 - A. I seulement
 - B. II seulement
 - C. I et II
 - D. Ni I, ni II

11. Lorsqu'on représente la structure de Lewis de HCOOCH₃, combien dénombre-t-on de paires électroniques liantes et de paires électroniques non liantes ?

	paires liantes	paires non liantes
A.	8	4
B.	7	5
C.	7	4
D.	5	5

12. L'angle de liaison carbone-carbone dans CH₃CHCH₂ est proche de

- $A. 180^{\circ}.$
- B. 120°.
- C. 109°.
- D. 90°.

13. La délocalisation des électrons est importante dans

- A. CO_2 .
- B. SO_2 .
- C. HCOOH.
- D. TiO_2 .

14. L'ion triiodure I_3^- possède une forme

- A. coudée.
- B. linéaire.
- C. en T.
- D. triangulaire.

15.	Que	se produit-il lorsqu'un liquide passe à l'état solide à une température déterminée ?
	A.	Les particules deviennent plus petites et il y a un dégagement de chaleur.
	B.	Les particules se rapprochent les unes des autres et il y a une absorption de chaleur.
	C.	Les particules deviennent plus ordonnées et il y a un dégagement de chaleur.
	D.	Les forces d'attraction entre les particules deviennent plus fortes et il y a une absorption de chaleur.
16.		souhaite déterminer la masse molaire d'un gaz inconnu par pesée d'un échantillon de ce gaz. Outre la se de gaz, quelle grandeur doit-on aussi connaître ?
		I. Sa pression
		II. Sa température
		III. Son volume
	A.	I seulement
	B.	II seulement
	C.	I et II seulement
	D.	I, II et III
17.		mélange formé de 0,6 mole de N_2 , 0,4 mole de O_2 et 0,2 mole de H_2 a une pression totale de 2,0 osphères. Que vaut, en atmosphères, la pression partielle de N_2 ?
	A.	0,5
	B.	0,6
	C.	1,0
	D.	1,2

222-155 Tournez la page

Quelle est la valeur de ΔH (en kJ mol⁻¹) pour la réaction suivante ? 18.

Énergies de liaisons	Н—Н	С—С	C = C	С—Н
/ kJ mol ⁻¹	436	348	612	412

- A. 124
- B. 101
- C. -101
- D. -124

19. Sur la base des informations suivantes :

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$

$$H_2(g) + O_2(g) \rightarrow H_2O_2(l)$$
 $\Delta H = -187.6 \text{ kJ}$
 $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ $\Delta H = -571.6 \text{ kJ}$

déterminer la valeur de ΔH (en kJ) pour la réaction

$$2H_2O_2(1) \rightarrow 2H_2O(1) + O_2(g)$$

- -196,4A.
- B. -384,0
- C. -759,2
- D. -946.8

20. Pour quelle transformation la variation d'entropie, ΔS , est-elle la plus proche de zéro ?

- A. $H_2O(1) \rightarrow H_2O(g)$
- $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$ B.
- C. $H_2(g) + I_2(g) \rightarrow 2HI(g)$
- D. $Mg(s) + H_2O(l) \rightarrow MgO(s) + H_2(g)$

- **21.** Lorsque ΔG^{\ominus} accompagnant une réaction est négatif, la réaction est
 - A. rapide.
 - B. endothermique.
 - C. réversible.
 - D. spontanée.
- **22.** Soit la réaction

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

Quelle modification aura pour effet d'augmenter la vitesse de la réaction lorsque $50~\rm cm^3~d$ 'une solution de HCl 1,0 mol dm $^{-3}$ sont ajoutés à 1,0 g de CaCO $_3$?

- A. Une augmentation du volume de HCl
- B. Une diminution de la concentration de HCl
- C. Une réduction de la taille des particules de CaCO₃ solide
- D. Une augmentation de la pression de CO₂
- 23. On considère la réaction suivante se déroulant à 100 °C:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Quelle(s) est (sont) la (les) proposition(s) correcte(s) à propos de cette réaction ?

- I. Chaque collision entre des molécules de N₂ et de H₂ conduit à la formation de NH₃.
- II. Cette réaction implique une collision entre une molécule N₂ et trois molécules H₂.
- A. I seulement
- B. II seulement
- C. I et II
- D. Ni I, ni II

- **24.** La vitesse d'une réaction chimique augmente lorsque la température augmente. Cette augmentation de la vitesse de la réaction est due à
 - I. une augmentation de la fréquence des collisions.
 - II. une diminution de l'énergie d'activation.
 - III. une augmentation du nombre de molécules qui réagissent.
 - A. I seulement
 - B. II seulement
 - C. I et III seulement
 - D. I, II et III
- **25.** La constante d'équilibre d'une réaction en phase gazeuse s'exprime sous la forme :

$$K_{\rm c} = \frac{[{\rm O}_2]^5 [{\rm NH}_3]^4}{[{\rm NO}]^4 [{\rm H}_2{\rm O}]^6}.$$

À quelle équation correspond cette expression de la constante d'équilibre ?

- A. $4NH_3 + 5O_2 \rightleftharpoons 4NO + 6H_2O$
- B. $4NO + 6H_2O \rightleftharpoons 4NH_3 + 5O_2$
- C. $8NH_3 + 10O_2 \rightleftharpoons 8NO + 12H_2O$
- D. $2NO + 3H_2O \rightleftharpoons 2NH_3 + \frac{5}{2}O_2$

26. La réaction suivante est exothermique :

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

Quelle modification permettrait de déplacer l'équilibre vers la droite ?

- I. Augmenter la pression
- II. Augmenter la température
- A. I seulement
- B. II seulement
- C. I et II
- D. Ni I, ni II

27. Quelle est la combinaison correcte?

	$\Delta H_{ m vaporisation}$	Température d'ébullition	Forces intermoléculaires
A.	grande	élevée	fortes
B.	grande	basse	faibles
C.	petite	basse	fortes
D.	petite	élevée	faibles

28. Des solutions P, Q, R et S ont les propriétés suivantes :

P:
$$pH = 8$$

Q:
$$[H^+] = 1 \times 10^{-3} \text{ mol dm}^{-3}$$

R:
$$pH = 5$$

S:
$$[H^+] = 2 \times 10^{-7} \text{ mol dm}^{-3}$$

Lorsque ces solutions sont classées dans l'ordre croissant d'acidité (solution la moins acide en premier lieu), l'ordre correct est

- A. **P**, **S**, **R**, **Q**.
- B. **Q**, **R**, **S**, **P**.
- C. S, R, P, Q.
- D. **R**, **P**, **Q**, **S**.

29. La dissociation ionique de l'acide sulfurique est représentée par les équations suivantes :

$$H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

 $HSO_4^-(aq) + H_2O(l) \rightarrow H_3O^+(aq) + SO_4^{2-}(aq)$

Quelle est la base conjuguée de HSO₄ (aq) ?

- A. $H_2O(1)$
- B. $H_3O^+(aq)$
- C. $H_2SO_4(aq)$
- D. $SO_4^{2-}(aq)$
- **30.** Que valent les concentrations $[H^+]$ et $[OH^-]$ dans une solution 0,10 mol dm⁻³ d'un acide faible $(K_a = 1,0 \times 10^{-7})$?

$$[H^{+}]$$
 $[OH^{-}]$

- A. $1,0 \times 10^{-1}$ $1,0 \times 10^{-13}$
- B. $1,0 \times 10^{-3}$ $1,0 \times 10^{-11}$
- C. $1,0 \times 10^{-4}$ $1,0 \times 10^{-10}$
- D. $1,0 \times 10^{-6}$ $1,0 \times 10^{-8}$
- **31.** Laquelle des combinaisons suivantes constitue une solution tampon?
 - I. 20 cm³ de CH₃COOH 0,10 moldm³ et 10 cm³ de CH₃COONa 0,10 moldm³
 - II. 20 cm³ de CH₃COOH 0,10 moldm⁻³ et 10 cm³ de NaOH 0,10 moldm⁻³
 - A. I seulement
 - B. II seulement
 - C. I et II
 - D. Ni I, ni II

- 32. Laquelle des transformations suivantes correspond à une réaction de réduction ?
 - $\mathrm{Mn}^{2^+}(\mathrm{aq}) \to \mathrm{MnO}_4^-(\mathrm{aq})$ A.
 - B. $\operatorname{CrO}_{4}^{2-}(\operatorname{aq}) \to \operatorname{Cr}^{3+}(\operatorname{aq})$
 - C. $2\text{CrO}_4^{2^-}(\text{aq}) \rightarrow \text{Cr}_2\text{O}_7^{2^-}(\text{aq})$
 - D. $MnO_2(s) \rightarrow MnO_4^{2-}(aq)$
- 33. Les potentiels standard d'électrode de Al et de Mn sont donnés ci-dessous :

$$Al^{3+}(aq) + 3e^{-} \rightleftharpoons Al(s)$$
 -1,66 V
 $Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$ -1,18 V

$$Mn^{2+}(aq) + 2e^{-} \rightleftharpoons Mn(s)$$
 -1,18 V

Que vaut la force électromotrice de la pile construite avec ces deux métaux en contact avec des solutions de leurs ions à la concentration de 1,0 mol dm⁻³?

- 0,22 V A.
- 0,48 V B.
- C. 2,84 V
- D. 3,43 V
- 34. Lorsqu'on soumet une solution aqueuse de chlorure de cuivre(II) à une électrolyse sous électrodes de carbone, les produits obtenus sont

	électrode negative	électrode positive
A.	de l'hydrogène gazeux	du chlore gazeux
B.	de l'hydrogène gazeux	de l'oxygène gazeux
C.	du cuivre métallique	de l'oxygène gazeux
D.	du cuivre métallique	du chlore gazeux

- **35.** Les composés suivants ont des masses molaires voisines. Quel est celui dont la température d'ébullition est la plus élevée ?
 - A. CH₃COOH
 - B. C₂H₅OCH₃
 - C. CH₃COCH₃
 - D. C_2H_5Cl
- **36.** Parmi les molécules suivantes, quelle est celle qui présente un centre chiral ?
 - A. NH₂CH₂COOH
 - B. CH₃CH(NH₂)COOH
 - C. $CH_3C(NH_2)$, COOH
 - D. (CH_3) , $C(NH_2)COOH$
- **37.** Laquelle des réactions suivantes se produit à température ambiante ?
 - A. $CH_3CH_2CH_2NH_2 + OH^- \rightarrow CH_3CH_2CH_2OH + NH_2^-$
 - $\mathrm{B.} \qquad \mathrm{CH_{3}CH_{2}CH_{2}OCH_{3} + CN^{-} \rightarrow CH_{3}CH_{2}CH_{2}OCN + CH_{3}^{-}}$
 - $\text{C.} \qquad \text{CH}_3\text{CH}_2\text{CH}_2\text{Br} + \text{OH}^- \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{OH} + \text{Br}^-$
 - D. $(CH_3)_3COH + Cl^- \rightarrow (CH_3)_3CCl + OH^-$
- **38.** Parmi les composés suivants, quel est celui qui subit une oxydation lorsqu'il est traité par du dichromate(VI) de potassium en solution acide ?
 - A. CH₃CH₂CHO
 - B. CH₃COCH₃
 - C. CH₃COOH
 - D. (CH₃)₃COH

39.	raiii	in les composes survaints, quer est cerui qui reagit par substitution electrophine?
	A.	1-Bromobutane
	B.	Cyclohexane
	C.	Méthylbenzène
	D.	Propanone
40.		quelle valeur du rapport m/e ne doit-on \mathbf{pas} s'attendre à observer un pic correspondant à l'un des principaux dans le spectre de masse de $\mathrm{CH_3COOC_2H_5}$?
	A.	88
	B.	32
	C.	29
	D.	15