2 Исследование работы интегрального дешифратора VDD 2.5 V 2.5 V ____5V VDD J1 10 U4 11 U5 NOT DCD_2TO4 \triangleright NOT NOT GND

Рисунок 2.1 Схема лабораторного макета ИДШ

Проведём эксперименты для составления таблицы истинности дешифратора.

Рисунок 2.2 Работа ИДШ при А=0 В=0

ТУТ НАХОДИТСЯ СООТВЕТСТВУЮЩИЙ РИСУНОК

Рисунок 2.3 Работа ИДШ при А=0 В=1

ТУТ НАХОДИТСЯ СООТВЕТСТВУЮЩИЙ РИСУНОК

Рисунок 2.4 Работа ИДШ при A=1 B=0

ТУТ НАХОДИТСЯ СООТВЕТСТВУЮЩИЙ РИСУНОК

Рисунок 2.5 Работа ИДШ при А=1 В=1

Таблица истинности дешифратора

ТУТ ЗАПИСАНЫ 0 и 1 В СООТВЕТСТВИИ с РИС 2.2-2.5

G	В	A	X1	X2	X3	X4
0	0	0				
0	0	1				
0	1	0				
0	1	1				

Логические выражения, реализуемые дешифратором:

ТУТ ЗАПИСАНЫ ЛОГИЧЕСКИЕ ВЫРАЖЕНИЯ

Опишем словами, какую функцию выполняет дешифратор:							
	1 250						
Откроем документацию,	дешифратора в MS:						
	Model data :						
	.MODEL DCD_2TO4 d_chip (behavious +;TIL 2 TO 4 DECODERS/DEMULTIPLE +/inputs ~G B A +/outputs YO Y1 Y2 Y3 +/table 5 +;~G B A YO Y1 Y2 Y3 + H X X H H H H H H H H H L L L L L H H H H						

Рисунок 2.6 Таблица истинности ИДШ в Мультисиме

Исследуем дешифратор на логических элементах

ВНИМАНИЕ! Выполняется для получения оценки ХОРОШО.

Рисунок 2.7 Схема лабораторного макета дешифратора на логических элементах

ДАЛЕЕ СЛЕДУЮТ РИСУНКИ 2.8-2.11, ПОКАЗЫВАЮЩИЕ РАБОТУ ДЕШИФРАТОРА НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ

Таблица истинности ДШ на ЛЭ ТУТ ЗАПИСАНЫ 0 и 1 В СООТВЕТСТВИИ с РИС 2.8-2.11

	A	X5	X6	X7	X8
0	0				
0	1				
1	0				
1	1				

Сравним таблицы истинности интегрального дешифратора и дешифратора на логических элементах

ТУТ ПОКАЗАНЫ РЯДОМ ТАБЛИЦЫ ИСТИННОСТИ ИНТЕГРАЛЬНОГО ДЕШИФРАТОРА И ДЕШИФРАТОРА НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ

Заметим,	что		
----------	-----	--	--

Отечественные дешифраторы

кР1533ид4, кФ1533ид4, экФ1533ид4

Микросхемы, представляют собой сдвоенный дешифратордемультиплексор 2-4. Могут использоваться в качестве сдвоенного дешифратора 2 на 4; сдвоенного демультиплексора 1 на 4; дешифратора 3 на 8; демультиплексора 1 на 8. Содержат 211 интегральных элементов. Корпус типа 238.16-1, масса не более 1,2 г, 4307.16-А

Назначение выводов: 1 - вход информационный 1D; 2 - вход стробирования $\overline{1C}$; 3 - вход выбора данных SE2; 4 - выход $\overline{1Y}$.3; 5 - выход $\overline{1Y}$.2; 6 - выход $\overline{1Y}$.1; 7 - выход $\overline{1Y}$.0; 8 - общий; 9 - выход $\overline{2Y}$.0; 10 - выход $\overline{2Y}$.1; 11 - выход $\overline{2Y}$.2; 12 - выход $\overline{2Y}$.3; 13 - вход выбора данных SE1; 14 - вход стробирования $\overline{2C}$; 15 - вход информационный $\overline{2D}$; 16 - напряжение питания.

Условное графическое обозначение КР1533ИД4, КФ1533ИД4, ЭКФ1533ИД4

Рисунок 2.12 Техническая документация отечественных дешифраторов

Промышленная микросхема дешифратора 2 на 4 74S139D

Рисунок 2.13 Техническая документация дешифратора 74S139D

(Источник: http://. httml Дата посещения: 21.11.2020)

Рисунок 2.14 Схема лабораторного макета дешифратора 74S139D

ДАЛЕЕ СЛЕДУЮТ РИСУНКИ 2.15-2.18, ПОКАЗЫВАЮЩИЕ РАБОТУ ДЕШИФРАТОРА 74S139D

Таблица истинности дешифратора 74S139D

ТУТ ЗАПИСАНЫ 0 и 1 В СООТВЕТСТВИИ с РИС 2.15-2.18

G	В	A	X1	X2	X3	X4
0	0	0				
0	0	1				
0	1	0				
0	1	1				

Сравним таблицы истинности ИДш, Дш на ЛЭ и дешифратора 74S139D

ТУТ ПОКАЗАНЫ РЯДОМ ТАБЛИЦЫ ИСТИННОСТИ ИНТЕГРАЛЬНОГО ДЕШИФРАТОРА, ДЕШИФРАТОРА НА ЛОГИЧЕСКИХ ЭЛЕМЕНТАХ и ДЕШИФРАТОРА 748139D
