

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 65800 N
                                                                      M,
                                                                                 = -2170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 43600 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 101000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 70300 N	•	= 72600 Nmm		= 230 N/mm ²	G	= 76000 N/mm ²
IN	= 70300 N	M_t	= 72000 MIIIII	σ_{a}		G	= 70000 11/11111
T_y	= 44100 N	M_x	= -2150000 Nmm	Ε	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{ extsf{s}}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	σ(M _x)		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	$\sigma_{\sf ls}$	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Described the described of Make

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 77500 N
                                                                       M,
                                                                                   = 2630000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 36400 N
                                                                                   = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 82600 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 55700 N
                                                                      M,
                                                                                  = 2560000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 37600 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 88700 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 64500 N
                                                                      M,
                                                                                  = -2160000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 43700 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 99700 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 68800 N
                                                                      M,
                                                                                  = -2140000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 44200 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 71000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 76200 N
                                                                       M,
                                                                                   = 2620000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 36500 N
                                                                                   = 230 \text{ N/mm}^2
                                                                                   = 200000 \text{ N/mm}^2
           = 81200 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 54600 N
                                                                      M,
                                                                                  = 2560000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 37600 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 87000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 64900 N
                                                                      M,
                                                                                  = -2110000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 43100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 99400 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 69500 N
                                                                      M,
                                                                                  = -2090000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 43600 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 71000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 76800 N
                                                                       M,
                                                                                  = 2570000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 36000 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 81000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 55100 N
                                                                      M,
                                                                                  = -2510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 37200 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 86900 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 63600 N
                                                                      M,
                                                                                  = -2100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 43100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 97300 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 67900 N
                                                                      M,
                                                                                  = -2090000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 43700 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 69300 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 75400 N
                                                                       M,
                                                                                   = 2560000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 36100 N
                                                                                   = 230 \text{ N/mm}^2
                                                                                   = 200000 \text{ N/mm}^2
           = 79500 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                               \sigma_{tresca} =
                                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                                               \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 53900 N
                                                                      M,
                                                                                  = -2500000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 37100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 84900 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 91800 N
                                                                       M,
                                                                                  = -4420000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 72100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 179000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 93800 N	M _t	= 121000 Nmm	σ_{a}	= 230 N/mm ²	G	$= 76000 \text{ N/mm}^2$
T_y	= 70600 N	M_x	= -4100000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	$\sigma_{\sf ls}$	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	$\sigma_{\sf IIs}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.15.06.10

16.06.10

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 107000 N
                                                                      M,
                                                                                  = 5300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 61600 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 146000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 74600 N
                                                                       M,
                                                                                  = 4870000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 60900 N
                                                                                  = 230 \text{ N/mm}^2
           = 150000 Nmm
                                                                                  = 200000 \text{ N/mm}^2
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 91200 N
                                                                       M,
                                                                                  = -4420000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 72100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 177000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 92900 N
                                                                       M,
                                                                                  = -4090000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 70700 N
                                                                                  = 230 \text{ N/mm}^2
           = 120000 Nmm
                                                                                  = 200000 \text{ N/mm}^2
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 107000 N
                                                                      M,
                                                                                  = 5300000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 61600 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 145000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 74100 N
                                                                       M,
                                                                                  = -4860000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 60900 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 149000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 90400 N
                                                                      M,
                                                                                  = -4310000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 71200 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 175000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 92400 N	M _t	= 119000 Nmm	σ_a	= 230 N/mm ²	G	= 76000 N/mm ²
T_v	= 69900 N	M _x	= -4000000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	$\sigma_{\sf ls}$	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\sf ld}$	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	$\sigma_{ ext{tresca}}$	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 106000 N	M _t	= 143000 Nmm	σ_a	= 230 N/mm ²	G	= 76000 N/mm ²
T_v	= 60900 N	M_x	= 5190000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	$\sigma_{\sf ls}$	=	r_u	=
$\hat{S_u}$	=	$\tau(T_{yc})$	=	$\sigma_{\sf IIs}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{s}$	₃ =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 73400 N
                                                                       M,
                                                                                  = -4750000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 60000 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 147000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 89700 N
                                                                       M,
                                                                                  = -4310000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 71200 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 173000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 91400 N	M,	= 117000 Nmm	σ_a	= 230 N/mm ²	G	= 76000 N/mm ²
T _y	= 70000 N	M _x	= -3990000 Nmm	E		-	
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{\sf d}$	=	θ_{t}	=
A	=	$\tau(M_t)_c$	_i =	$\sigma_{\sf ls}$	=	$r_{\rm u}$	=
$\hat{S_u}$	=	$\tau(T_{vc})$	=	$\sigma_{\sf lls}$	=	r _v	=
C_{w}	=	$\tau(T_{vb})$	d=	$\sigma_{\sf Id}$	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$,=	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 106000 N
                                                                      M,
                                                                                  = 5180000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 60900 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 142000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 72800 N
                                                                      M,
                                                                                  = -4740000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 59900 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 145000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 44600 N
                                                                                  M,
                                                                                                = 762000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 23900 N
                                                                                                = 230 \text{ N/mm}^2
                                                                                                = 200000 \text{ N/mm}^2
             = 63700 Nmm
                                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                     \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
             =
                                                                                                                                                                     \sigma_{tresca} =
\begin{array}{c} v_o \\ A^* \\ S^u \\ J^u \\ J_t \end{array}
                                                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                                                     \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                  \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 47700 N
                                                                                   M,
                                                                                                 = 713000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 23700 N
                                                                                                 = 230 \text{ N/mm}^2
                                                                                                = 200000 \text{ N/mm}^2
             = 45600 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                      \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
             =
                                                                                                                                                                      \sigma_{tresca} =
\begin{matrix} v_o \\ A^* \\ S^u_u \\ J^u_u \\ J_t \end{matrix}
                                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                                                      \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 53600 N
                                                                       M,
                                                                                  = -973000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 19300 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 52800 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 40600 N
                                                                       M,
                                                                                  = 950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 20700 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 59900 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 42900 N
                                                                                   M,
                                                                                                 = 755000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 24100 N
                                                                                                 = 230 \text{ N/mm}^2
                                                                                                = 200000 \text{ N/mm}^2
             = 61300 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                      \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
             =
                                                                                                                                                                      \sigma_{tresca} =
\begin{matrix} v_o \\ A^* \\ S^u_u \\ J^u_u \\ J_t \end{matrix}
                                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                                                      \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 45700 N
                                                                        M,
                                                                                    = 707000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 23900 N
                                                                                    = 230 \text{ N/mm}^2
                                                                                    = 200000 \text{ N/mm}^2
           = 43700 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                        \tau(T_{yc}) =
           =
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
           =
J_u
J_v
J_t
\sigma(N) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 51700 N
                                                                                   M,
                                                                                                 = -960000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 19500 N
                                                                                                 = 230 \text{ N/mm}^2
                                                                                                = 200000 \text{ N/mm}^2
             = 51000 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                      \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
             =
                                                                                                                                                                      \sigma_{tresca} =
\begin{matrix} v_o \\ A^* \\ S^u_u \\ J^u_u \\ J_t \end{matrix}
                                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                                                      \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 36800 N
                                                                                    M,
                                                                                                  = -884000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 19700 N
                                                                                                  = 230 \text{ N/mm}^2
                                                                                                  = 200000 \text{ N/mm}^2
             = 54400 Nmm
                                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                        \sigma_{\text{IId}}
                                                                                    \tau(T_{yc}) =
             =
                                                                                                                                                                        \sigma_{tresca} =
\begin{array}{c} v_o \\ A^* \\ S^u \\ C^w \\ J_u \\ J_t \end{array}
                                                                                                                                                                        \sigma_{\text{mises}} =
                                                                                                                                                                        \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                    \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 43700 N
                                                                                   M,
                                                                                                 = 740000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 23700 N
                                                                                                 = 230 \text{ N/mm}^2
                                                                                                = 200000 \text{ N/mm}^2
             = 61300 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                      \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
             =
                                                                                                                                                                      \sigma_{tresca} =
\begin{matrix} v_o \\ A^* \\ S^u_u \\ J^u_u \\ J_t \end{matrix}
                                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                                                      \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 46900 N	M,	= 44000 Nmm	σ_a	$= 230 \text{ N/mm}^2$	G	= 76000 N/mm ²
T _y	= 23600 N	M _x	= 693000 Nmm	E E	= 200000 N/mm ²	Ğ	- 7 0000 TWITHIN
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
A.	=	$\tau(M_t)_c$	₁ =	$\sigma_{\sf ls}$	=	r _u	=
S_u	=	$\tau(T_{vc})$	=	$\sigma_{\sf lls}$	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	$\sigma_{\sf ld}$	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$, = , =	σ_{IId}	=	$J_{\rm p}$	=
J_{v}	=	$\tau(T_y)_0$	_I =	σ_{tresca}	=	I-	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 52500 N
                                                                       M,
                                                                                  = 948000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 19100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 50800 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 37500 N
                                                                                   M,
                                                                                                 = 872000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 19300 N
                                                                                                 = 230 \text{ N/mm}^2
                                                                                                 = 200000 \text{ N/mm}^2
             = 54400 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                       \sigma_{\text{IId}}
                                                                                    \tau(T_{yc}) =
             =
                                                                                                                                                                       \sigma_{tresca} =
\begin{matrix} v_o \\ A^* \\ S^u_u \\ J^u_u \\ J_t \end{matrix}
                                                                                                                                                                       \sigma_{\text{mises}} =
                                                                                                                                                                       \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 41900 N
                                                                                   M,
                                                                                                 = 732000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 23900 N
                                                                                                 = 230 \text{ N/mm}^2
                                                                                                = 200000 \text{ N/mm}^2
             = 58800 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                      \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
             =
                                                                                                                                                                      \sigma_{tresca} =
\begin{matrix} v_o \\ A^* \\ S^u_u \\ J^u_u \\ J_t \end{matrix}
                                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                                                      \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 44800 N
                                                                                   M,
                                                                                                = 686000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 23800 N
                                                                                                = 230 \text{ N/mm}^2
                                                                                                = 200000 \text{ N/mm}^2
             = 42000 Nmm
                                                                                   \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                      \sigma_{\text{IId}}
                                                                                   \tau(T_{yc}) =
             =
                                                                                                                                                                      \sigma_{tresca} =
\begin{array}{c} v_o \\ A^* \\ S^u \\ J^u \\ J_t \end{array}
                                                                                                                                                                      \sigma_{\text{mises}} =
                                                                                                                                                                      \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                   \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 50400 N
                                                                       M,
                                                                                  = 935000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 19300 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 48900 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
             = 35900 N
                                                                                    M,
                                                                                                  = 860000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
             = 19500 N
                                                                                                  = 230 \text{ N/mm}^2
                                                                                                  = 200000 \text{ N/mm}^2
             = 52100 Nmm
                                                                                    \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                                         \sigma_{\text{IId}}
                                                                                    \tau(T_{yc}) =
             =
                                                                                                                                                                         \sigma_{tresca} =
\begin{array}{c} v_o \\ A^* \\ S^u \\ C^w \\ J_u \\ J_t \end{array}
                                                                                                                                                                         \sigma_{\text{mises}} =
                                                                                                                                                                         \sigma_{\text{st.ven}} =
             =
\sigma(N) =
                                                                                    \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 103000 N
                                                                      M,
                                                                                 = 5600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 90700 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 214000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 109000 N
                                                                      M,
                                                                                  = 5730000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 97700 N
                                                                                  = 230 \text{ N/mm}^2
           = 151000 Nmm
                                                                                 = 200000 \text{ N/mm}^2
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 126000 N
                                                                      M,
                                                                                 = 6950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 71000 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 179000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 89100 N
                                                                       M,
                                                                                  = 6960000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 77300 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 189000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 102000 N
                                                                       M,
                                                                                  = 5570000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 90900 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 212000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                              \sigma_{tresca} =
                                                                       \tau(T_{yb})_{d} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 108000 N
                                                                      M,
                                                                                 = 5720000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 97700 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 149000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 125000 N
                                                                       M,
                                                                                  = 6930000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 71100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 178000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                              \sigma_{tresca} =
                                                                       \tau(T_{yb})_{d} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 88400 N
                                                                      M,
                                                                                  = 6930000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 77600 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 187000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 102000 N
                                                                      M,
                                                                                  = 5480000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 90500 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 210000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 108000 N
                                                                      M,
                                                                                 = -5640000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 96700 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 149000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 124000 N
                                                                      M,
                                                                                  = 6800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 70700 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 176000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto E di DE Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 88000 N
                                                                       M,
                                                                                  = 6810000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 77100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 185000 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 101000 N
                                                                      M,
                                                                                  = 5460000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 90800 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 208000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di AB Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T. Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 107000 N	M _t	= 147000 Nmm	σ_a	= 230 N/mm ²	G	= 76000 N/mm ²
T_v	= 96500 N	M_x	= -5620000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	$\sigma_{\sf ls}$	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\sf ld}$	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{s}$, =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	$\sigma_{ ext{tresca}}$	=	·	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 123000 N
                                                                      M,
                                                                                 = 6780000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 70800 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 175000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 87200 N
                                                                      M,
                                                                                  = 6780000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 77400 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 184000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 68200 N
                                                                      M,
                                                                                 = -2040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 45700 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 119000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 72900 N
                                                                      M,
                                                                                  = -2000000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 45800 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 85300 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 79100 N
                                                                       M,
                                                                                   = 2450000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 38400 N
                                                                                   = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 95600 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 57000 N
                                                                      M,
                                                                                  = 2370000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 39400 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 102000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 67100 N
                                                                      M,
                                                                                 = -2030000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 45700 N
                                                                                 = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 117000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                            \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 71700 N	M,	= 83800 Nmm	σ_a	= 230 N/mm ²	G	= 76000 N/mm ²
T _y	= 45800 N	M_x	= -2000000 Nmm	E E	= 200000 N/mm ²	<u> </u>	7 0000 1 4 1 1 1 1 1
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{\sf d}$	=	θ_{t}	=
A	=	$\tau(M_t)_c$	_i =	$\sigma_{\sf ls}$	=	$r_{\rm u}$	=
S_u	=	$\tau(T_{vc})$	=	$\sigma_{\sf lls}$	=	r _v	=
C_{w}	=	$\tau(T_{vb})$	d=	$\sigma_{\sf ld}$	=	r _o	=
J_u	=	$\tau(T_{v})_{s}$,=	σ_{IId}	=	J_{p}	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 78200 N
                                                                      M,
                                                                                  = 2440000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 38400 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 94400 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto medio di BC Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 56200 N
                                                                      M,
                                                                                  = 2370000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 39400 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 101000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 67600 N
                                                                      M,
                                                                                  = -1990000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 45100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 117000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

N	= 72400 N	M,	= 84200 Nmm		= 230 N/mm ²	G	= 76000 N/mm ²
				σ_a		u	= 70000 14/111111
T_y	= 45300 N	M_x	= -1960000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}		$\sigma(M_x)$		$ au_{\sf d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_j =	$\sigma_{\sf ls}$	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	$\sigma_{\sf Id}$	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{s}$, =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_{y})_{c}$	₁ =	σ_{tresca}	=		

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 78800 N
                                                                      M,
                                                                                  = 2400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 38000 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 94600 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
           =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 56800 N
                                                                      M,
                                                                                  = 2330000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 39000 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 101000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 66600 N
                                                                      M,
                                                                                 = -1990000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 45100 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 115000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                      \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 71200 N	M,	= 82600 Nmm	σ_a	= 230 N/mm ²	G	= 76000 N/mm ²
T_y	= 45300 N	M _x	= -1950000 Nmm	Ε̈́	= 200000 N/mm ²		
y_{G}	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{\sf s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{\sf d}$	=	θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)$	_d =	$\sigma_{\sf ls}$	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$) =	$\sigma_{\sf lls}$	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	$\sigma_{\sf ld}$	=	r_{o}	=
J_{u}	=	$\tau(T_{y})_{g}$	_s =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{\alpha}$	_d =	$\sigma_{ ext{tresca}}$	=	·	

Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 77800 N
                                                                       M,
                                                                                  = 2400000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 38000 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 93300 Nmm
                                                                       \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                              \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare su questo foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 76000 \text{ N/mm}^2
Ν
           = 56000 N
                                                                      M,
                                                                                  = 2330000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 39000 N
                                                                                  = 230 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 100000 Nmm
                                                                      \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                             \sigma_{\text{IId}}
                                                                       \tau(T_{yc}) =
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
           =
\sigma(N) =
                                                                      \sigma_{\text{Id}}
```