TD3. Ensemble dénombrable, Espace probabilité

Exercice 1.

- a) Montrer que l'ensemble $\mathbf{N}^{(\mathbf{N})}$ des fonctions $f: \mathbf{N} \to \mathbf{N}$ presque nulles sont dénombrable.
- b) Montrer que si A est un ensemble possédant au moins deux éléments, alors $A^{\mathbf{N}}$ n'est pas dénombrable.

Exercice 2.

Montrer que si A est un ensemble au plus dénombrable et B un ensemble infini, alors $A \cup B$ est en bijection avec B.

Exercice 3.

- a) Montrer qu'un espace vectoriel sur Q de dimension finie non nulle est dénombrable.
- b) Montrer que $\mathbf{Q}[X]$ est dénombrable.

Exercice 4. On appelle *nombre algébrique* tout nombre complex racine d'un polynôme non nulle à coefficients rationnels.

- a) Montrer que l'ensemble des nombres algébriques est dénombrable.
- b) Existe-t-il des réels non algébriques?

Exercice 5. Soit $(I_a)_{a\in A}$ une famille d'intervalles ouverts non-vides deux à deux disjoints. Démontrer que A est nécessairement au plus dénombrable.

Exercice 6.

- a) Montrer que l'ensemble des points de discontinuité d'une fonction monotone $f:[a,b] \to \mathbb{R}$ est dénombrable. (Indication : on pourra considérer les ensembles $J(n) = \{x \in [a,b] : |f(x+) f(x-)| > 1/n\}$.)
- b) Qu'en est-il pour une fonction réelle monotone définie sur $\mathbb R$ tout entier?

Exercice 7. Soit Ω un ensemble non vide et \mathcal{F} une partie de $\mathcal{P}(\Omega)$.

- a) Montrer que l'intersection d'une famille non vide quelconque de tribus sur Ω est encore une tribu.
- b) Montrer qu'il existe des tribus sur Ω contenant \mathcal{F} , et que l'intersection de toutes ces tribus, qu'on note $\sigma(\mathcal{F})$, est la plus petite tribu sur Ω contenant \mathcal{F} .
- c) Montrer que la réunion de deux tribus n'est pas toujours une tribu.

La tribu $\sigma(\mathcal{F})$ est appelée tribu engendrée par \mathcal{F} .

Exercice 8. Soit $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et f une application de Ω dans un ensemble Ω' .

- a) Montrer que $\mathcal{A}' = \{B \subset \Omega' : f^{-1}(B) \in \mathcal{A}\}$ est une tribu sur Ω' . On l'appelle tribu image de \mathcal{A} par f.
- b) Montrer que $\mathbb{P}_f: B \in \mathcal{A}' \to \mathbb{P}(f^{-1}(B))$ est une probabilité sur (Ω', \mathcal{A}') . On l'appelle probabilité image de \mathbb{P} par f.

Exercice 9. On souhaite démontrer qu'il n'existe pas de probabilité \mathbb{P} sur l'espace probabilisé $([0,1],\mathcal{P}([0,1]))$ telle que,

- pour $0 \le a < b \le 1$, $\mathbb{P}([a, b]) = b a$;
- pour $a \in \mathbf{R}$ et $E \subset [0,1]$ tels que $a+E \subset [0,1]$, on a $\mathbb{P}(E+a) = \mathbb{P}(E)$.

On raisonne par l'absurde et on suppose qu'une telle probabilité existe.

- a) Montrer que $x \sim y$ si $x y \in \mathbf{Q}$ définie une relation d'equivalence sur \mathbf{R} .
- b) Considère l'espace quotient $[1/3, 2/3]/_{\sim}$. Pour chaque classe d'equivalence $c \in [1/3, 2/3]/_{\sim}$, on choisit $x_c \in [1/3, 2/3]$ tel que $x_c \in c$. On pose

$$X = \{x_c \in [1/3, 2/3] : c \in [1/3, 2/3]/_{\sim}\}.$$

Pour $r \in \mathbf{Q} \cap [-1/3, 1/3]$, on pose

$$X_r = \{x + r : x \in X\}.$$

Montrer que

- si $r, r' \in \mathbf{Q} \cap [-1/3, 1/3]$, on a $X_r \cap X_{r'} = \emptyset$,
- $-[1/3,2/3] \subset \bigcup_{r \in \mathbf{Q} \cap [-1/3,1/3]} X_r \subset [0,1].$
- c) Conclure.

Soit \mathcal{B} la tribu sur [0,1] engendrée par [a,b] avec $0 \le a < b \le 1$. En théorie de la mesure, on va construire une telle probabilité \mathbb{P} sur \mathcal{B} . La tribu \mathcal{B} est appelée tribu de Borel. La probabilité \mathbb{P} est appelée la mesure de Lebesgue.