Note that the pair (q, r) is not necessarily unique.

Actually, unique factorization holds in principal ideal domains (PID's), see Theorem 32.12. As shown below, every Euclidean domain is a PID, and thus, unique factorization holds for Euclidean domains.

Proposition 30.18. Every Euclidean domain A is a PID.

Proof. Let \Im be a nonnull ideal in A. Then, the set

$$\{\varphi(a) \mid a \in \mathfrak{I}\}\$$

is nonempty, and thus, has a smallest element m. Let b be any (nonnull) element of \mathfrak{I} such that $m = \varphi(b)$. We claim that $\mathfrak{I} = (b)$. Given any $a \in \mathfrak{I}$, we can write

$$a = bq + r$$

for some $q, r \in A$, with $\varphi(r) < \varphi(b)$. Since $b \in \mathfrak{I}$ and \mathfrak{I} is an ideal, we also have $bq \in \mathfrak{I}$, and since $a, bq \in \mathfrak{I}$ and \mathfrak{I} is an ideal, then $r \in \mathfrak{I}$ with $\varphi(r) < \varphi(b) = m$, contradicting the minimality of m. Thus, r = 0 and $a \in (b)$. But then,

$$\mathfrak{I}\subseteq (b),$$

and since $b \in \mathfrak{I}$, we get

$$\mathfrak{I}=(b),$$

and A is a PID.

As a corollary of Proposition 30.18, the ring \mathbb{Z} is a Euclidean domain (using the function $\varphi(a) = |a|$) and thus, a PID. If K is a field, the function φ on K[X] defined such that

$$\varphi(f) = \begin{cases} 0 & \text{if } f = 0, \\ \deg(f) + 1 & \text{if } f \neq 0, \end{cases}$$

shows that K[X] is a Euclidean domain.

Example 30.3. A more interesting example of a Euclidean domain is the ring $\mathbb{Z}[i]$ of Gaussian integers, i.e., the subring of \mathbb{C} consisting of all complex numbers of the form a+ib, where $a,b\in\mathbb{Z}$. Using the function φ defined such that

$$\varphi(a+ib) = a^2 + b^2,$$

we leave it as an interesting exercise to prove that $\mathbb{Z}[i]$ is a Euclidean domain.

Not every PID is a Euclidean ring.