

Photophysical Transitions: Definitions, Allowedness, and Rates

Molecular Photochemistry
CHEM 4801

Overview of Photophysical Transitions; The Spirit of "Allowedness"

A *photophysical transition* occurs between initial and final states with the same chemical structure.

States may differ in:

- Electron configuration
- Nuclear (vibrational) configuration
- Spin configuration

Classical Dynamics

Interactions change the motion of the particles of a system

Actions are accompanied by equal and opposite reactions

Law of Conservation of Energy

Law of Conservation of Momentum

A *mechanism* for a transition includes:

- Structural, energetic, and momentum differences between the initial and final states
- Interactions or forces that can convert the initial state into the final state

Selection Rules

A **selection rule** is a criterion governing allowed transitions in an idealized situation involving precisely defined initial and final states. "Rules are made to be broken."

Recall our earlier connection of the **overlap integral** $\langle \psi_f | P | \psi_i \rangle$ to the probability of a transition taking place.

$$p \propto \left| \langle \psi_f | \hat{P} | \psi_i \rangle \right|^2 \to k_P$$

Electron spin cannot change (S and T states are orthogonal)

Initial and final orbitals must overlap

Vibrational wavefunctions must overlap

Quantum Origins of the Rates of Photophysical Transitions

Quantum States of a Molecule

The *quantum* state of a molecular system is described as a product of three separable wave functions: electronic, nuclear, and spin.

$$\Psi = \psi_e \times \psi_v \times \psi_s$$

 $\psi_{\rm e}$: orbital configuration (NBO + Hückel)

 ψ_{ν} : spatial dependence and occupancy of vibrational modes

 ψ_s : electron spins (particularly *unpaired* spins)

Transition Rates and Prohibition Factors

The observed rate constant of a transition is equal to the theoretically maximal rate constant ($\sim 10^{14} \, \text{s}^{-1}$) times *prohibition factors* due to orbital, vibrational, and spin effects.

$$k_{obs} = k_{max}^0 \times f_e \times f_v \times f_s$$

$$f \sim \left| \frac{\langle H \rangle}{\Delta E} \right|^2$$

The *matrix element* (*H*) captures the overlap of the initial and final wave functions.

$$\langle H \rangle = \langle \psi_f | H | \psi_i \rangle$$

Vibronic Coupling

Coupled Nuclear and Electronic Motion

Nuclear motion (vibrations) can serve as a mechanism for the interconversion of excited electronic states. The transfer of vibrational energy to electronic energy is called *vibronic coupling*.

In-plane vibrations have no effect

Out-of-plane vibration enables an otherwise forbidden IC process

$$rate(s^{-1}) = \frac{2\pi\rho}{h} \langle \Psi_1^0 | H_v | \Psi_2^0 \rangle^2$$

The Franck-Condon Principle and Fermi's Golden Rule

Nuclei move at *much* slower speeds than electrons. This has two important implications for photophysical transitions.

Particle	Mass (kg)
proton	1.67×10^{-27}
electron	9.11×10^{-31}

Nuclear positions do not change during radiative transitions.

Nuclear motions do not change during non-radiative transitions.

The Franck-Condon Principle

According to the *Franck-Condon principle*, electronic transitions occur most favorably when the nuclear structures of the initial and final states are most similar.

Video describing the Frank-Condon principle

Franck-Condon (FC) factor for a transition is defined as $\langle \chi_f | \chi_i \rangle$, the overlap integral of the vibrational wave functions.

Fermi's Golden Rule

Non-radiative transitions require a perturbation that mixes initial and final states. Transition rate is directly related to the perturbation matrix element and the final density of states (*Fermi's golden rule*).

Rapidly decreasing FC factors with increasing ΔE result in slower rates at greater ΔE , the **energy gap law**.

$$k_{i\to f} = \frac{dp(t)}{dt} = \frac{2\pi}{\hbar} V_{fi}^2 \rho(E_f)$$

Perturbation matrix element

$$V_{fi} = \langle \psi_f | \hat{P} | \psi_i \rangle$$

Energy Gap Law

As a result of Fermi's golden rule, rates of non-radiative transitions (IC, ISC) generally follow an **energy gap law**: the greater ΔE between initial and final states, the slower the rate.

Kasha's rule: Internal conversion from $S_n \rightarrow S_1$ is generally much more rapid than $S_1 \rightarrow S_0$.

Klàn and Wirz, p. 37

Singlet-Triplet Interconversions: Sources of "Magnetic Torque" and El-Sayed's Rules

Intersystem crossing is governed by *conservation of angular momentum*; orbital or spin angular momentum (or an external magnetic field) can serve as a source or sink when $S \to T$ or $T \to S$ takes place.

Spin "flipping" or "rephasing" converts S to T or vice versa.

Heavy Atom Effect

Excited states in which there is significant unpaired electron density on a heavy atom exhibit enhanced rates of intersystem crossing. This is called the *heavy atom effect (HAE)*.

$$H_{so} = -\frac{Z^4 e^2}{8\pi\epsilon_0 m_e^2 c^2} \vec{l} \cdot \vec{s}$$

The magnitude of spin-orbit coupling depends strongly on *Z*.

Greater H_{so} facilitates ISC as a change in spin can be more easily "powered" by changes in orbital motion.

Solvents and other additives containing heavy atoms also facilitate ISC via the *external HAE*. Excited S states of the "perturber" mix with the T state of the "perturbed."

Compound	$oldsymbol{\kappa}^{\scriptscriptstyle ext{O}}_{f}$	k_{ST}	k ⁰ _p	k_{TS}	Φ_{f}	Φ_{p}
Naphthalene	10 ⁶	106	10^{-1}	10-1	0.55	0.05
1-Fluoronaphthalene	10 ⁶	106	10-1	10-1	0.84	0.06
1-Chloronaphthalene	10 ⁶	108	10	10	0.06	0.54
1-Bromonaphthalene	10 ⁶	10 ⁹	50	50	0.00	0.55
1-lodonaphthalene	10 ⁶	10^{10}	500	500	0.00	0.70
Perylene	2.0×10^{8}	10^{7}	_	0.98	0.98	_
3-Bromoperylene	2.0×10^{8}	10^{7}	_	0.98	0.98	_

External Heavy Atom Effect

Solvents and other additives containing heavy atoms also facilitate ISC via the *external heavy* atom effect. Excited S states of the "perturber" mix with a low-lying T state of the "perturbed."

TABLE III. Phosphorescence data for naphthalene in heavy-atom-containing hosts.

			Lifetimes ^a		
Host	Host Purity	0 –0 band (naph- h_8)	Naph-h ₈ (msec)	Naph-d ₈	$(1/\tau)h_8 - (1/\tau)d_8$
$p ext{-} ext{Br}_2arphi$	Zone refined	4830 Å	33	33.5	0.4±3
$s ext{-}\mathrm{Br}_3arphi$	Rextal	4750	70	81	2.0 ± 1.3
$124\text{-Br}_3\varphi$	Vac. sub.	4820	ь	•••	•••
s-Br $_{4}arphi$	Zone refined	4820	33	36.5	2.8 ± 2.9
C_6Br_6	Rextal	4800	96	105	0.9 ± 0.6
$p ext{-}\mathrm{ClBr}oldsymbol{arphi}$	Zone refined	4830	c	c	•••
$p ext{-}\mathrm{Cl}_2arphi$	Zone refined	4830	776	1 370	0.56 ± 0.1
$s ext{-}\mathrm{Cl}_3arphi$	Rextal	4810	950±50	2 200±200	0.6 ± 0.1
s -Cl ₄ $oldsymbol{arphi}$	Zone refined	4800	790±70	1 $840^{d} \pm 50$	0.7 ± 0.1
C_6Cl_6	Zone refined	4770	1380	4 100±300	0.48 ± 0.05
$p\text{-}\mathrm{I}_2\varphi$	Vac. sub.	4820	14.9 ± 1.2	15.1 ± 0.9	0.8
φ-φ	Zone refined	4750	2100	13 500±700	0.40 ± 0.03

 $^{^{\}rm a}$ Average deviation of several runs (over several time scales) was better than $\pm 5\%$ unless noted.

b Nonexponential—host crystal (impurity) phosphoresces.

^c Nonexponential, lifetime seems to be on the order of 50 msec for naph-h₈

and 60 msec for naph-ds.

^d No 6-sec phosphorescence observed as reported by E. T. Harrigan and N. Hirota, J. Chem. Phys. 49, 2301 (1968).

El-Sayed's Rules

El-Sayed's rules suggest that in photo-excited organic molecules, intersystem crossing is allowed only when a change in orbital occupancy occurs. A spin flip is coupled to a $p_x \to p_y$ transition.

Radiative Transitions: Transition Dipole and Oscillator Strength

Transition Dipole Moment

Interaction of electromagnetic radiation with molecular electrons results in a **transition dipole moment** μ_{mn} . Forbidden radiative transitions have $\mu_{mn} = 0$.

$$\hat{\mu} = e \sum_{i=1}^{N} \vec{r}_{i}$$

$$\mu_{mn} = \langle \psi_m | \hat{\mu} | \psi_n \rangle$$

The probability of the $n \to m$ transition is proportional to $|\mu_{mn}|^2$.

https://en.wikipedia.org/wiki/Transition_dipole_moment

Transition Dipole Moment

Electronically forbidden transitions involve either no net overlap of ψ_m and ψ_n or no net displacement of electrons by the incident radiation.

 $n \rightarrow \pi^*$ in H₂CO: zero net orbital overlap

__-polarized light and C₆**H**₆**:** zero electron displacement

Oscillator Strength

Oscillator strength f for an electronic transition relates the strength of an electronic transition to that of a classical harmonic oscillator. It is related to the size of a peak in an absorption spectrum.

$$f_{mn} = (4.702 \times 10^{-7} \text{ D}^{-2} \text{ cm}) \bar{\nu} |\mu_{mn}|^2$$

For a transition with f = 1 and $\bar{v} = 40,000$ cm⁻¹,

$$f_{mn} = (4.319 \times 10^{-9} \text{ mol L}^{-1} \text{ cm}^2) A$$

 $3.784 \times 10^{-9} \text{ mol L}^{-1} \text{ cm}^2) \epsilon$ $\bar{\nu}_{for}$

$$f_{mn} \approx (6.784 \times 10^{-9} \text{ mol L}^{-1} \text{ cm}^2) \epsilon_{max} \bar{\nu}_{fwhm}$$