Assignment #2

Introduction to GR, 2020 Fall
International Centre for Theoretical Sciences
Instructor: Prof. Bala Iyer, Tutor: Md Arif Shaikh¹
Due on October 04, 2020 11:59 PM.

- 1. If s is an affine parameter, show that, under the transformation $s \to \bar{s} = \bar{s}(s)$, the parameter \bar{s} will be affine only if $\bar{s} = \alpha s + \beta$, where α and β are constants.
- 2. Show that if $t^{\alpha} = dx^{\alpha}/d\lambda$ obeys the geodesic equation in the form $Dt^{\alpha}/d\lambda = kt^{\alpha}$, then $u^{\alpha} = dx^{\alpha}/d\lambda^{\star}$ satisfies $Du^{\alpha}/d\lambda^{\star} = 0$ if λ^{\star} and λ are related by $d\lambda^{\star}/d\lambda = \exp(\int k(\lambda)d\lambda)$.
- 3. Prove that if a manifold is affine flat then the connection is necessarily integrable and symmetric.
- 4. Find the geodesic equation for \mathbb{R}^3 in cylindrical polars.
- 5. Prove that the covariant derivative of the metric tensor vanishes.
- 6. Establish the theorem that any two-dimensional Riemann manifold is conformally flat in the case of a metric of signature 0, i.e., at any point the metric can be reduced to the diagonal form (+1-1) say.
- 7. Show that the Einstein tensor G_{ab} vanishes if and only if the Ricci tensor R_{ab} vanishes.
- 8. Let's take the coordinates $x^a = (t, r, \theta, \phi)$ and the line element

$$ds^{2} = e^{\nu}dt^{2} - e^{\lambda}dr^{2} - r^{2}d\theta^{2} - r^{2}\sin^{2}\theta d\phi^{2},$$
(1)

where $\nu = \nu(t, r)$ and $\lambda = \lambda(t, r)$ are arbitrary functions of t and r.

- (a) Find g_{ab} , g and g^{ab} .
- (b) Calculate the connections using the metric elements.
- (c) Calculate the Riemann tensor.
- (d) Calculate the Ricci tensor, Ricci scalar and the Einstein tensor.
- 9. The surface of a two-dimensional cone is embedded in three-dimensional flat space. The cone has an opening angle of 2α . Points on the cone which all have the same distance r from the apex define a circle, and ϕ is the angle that runs along the circle.
 - (a) Write down the metric of the cone in terms of r and ϕ .
 - (b) Find the coordinate transformations $x(r,\phi)$ and $y(r,\phi)$ that brings the metric into the form $ds^2 = dx^2 + dy^2$. Do these coordinates cover the entire two-dimensional plane?
 - (c) Prove that any vector parallel transported along a circle of constant r on the surface of the cone ends up rotated by an angle β after a complete trip. Express β in terms of α .

¹arif.shaikh@icts.res.in