The 9th Romanian Master of Mathematics Competition

Day 1 — Solutions

Problem 1. (a) Prove that every positive integer n can be written uniquely in the form

$$n = \sum_{j=1}^{2k+1} (-1)^{j-1} 2^{m_j},$$

where $k \ge 0$ and $0 \le m_1 < m_2 < \cdots < m_{2k+1}$ are integers. This number k is called the weight of n.

(b) Find (in closed form) the difference between the number of positive integers at most 2^{2017} with even weight and the number of positive integers at most 2^{2017} with odd weight.

Vjekoslav Kovač, Croatia

Solution. (a) We show by induction on the integer $M \ge 0$ that every integer n in the range $-2^M + 1$ through 2^M can uniquely be written in the form $n = \sum_{j=1}^{\ell} (-1)^{j-1} 2^{m_j}$ for some integers $\ell \geq 0$ and $0 \leq m_1 < m_2 < \cdots < m_\ell \leq M$ (empty sums are 0); moreover, in this unique representation ℓ is odd if n > 0, and even if $n \le 0$. The integer $w(n) = \lfloor \ell/2 \rfloor$ is called the weight of n.

Existence once proved, uniqueness follows from the fact that there are as many such representations as integers in the range $-2^M + 1$ through 2^M , namely, 2^{M+1} .

To prove existence, notice that the base case M=0 is clear, so let $M\geq 1$ and let n be an

integer in the range $-2^M + 1$ through 2^M . If $-2^M + 1 \le n \le -2^{M-1}$, then $1 \le n + 2^M \le 2^{M-1}$, so $n + 2^M = \sum_{j=1}^{2k+1} (-1)^{j-1} 2^{m_j}$ for some integers $k \ge 0$ and $0 \le m_1 < \cdots < m_{2k+1} \le M-1$ by the induction hypothesis, and

some integers $k \geq 0$ and $0 \leq m_1 < \cdots < m_{2k+1} \leq M-1$ by the induction hypothesis, and $n = \sum_{j=1}^{2k+2} (-1)^{j-1} 2^{m_j}$, where $m_{2k+2} = M$.

The case $-2^{M-1} + 1 \leq n \leq 2^{M-1}$ is covered by the induction hypothesis.

Finally, if $2^{M-1} + 1 \leq n \leq 2^M$, then $-2^{M-1} + 1 \leq n - 2^M \leq 0$, so $n - 2^M = \sum_{j=1}^{2k} (-1)^{j-1} 2^{m_j}$ for some integers $k \geq 0$ and $0 \leq m_1 < \cdots < m_{2k} \leq M-1$ by the induction hypothesis, and $n = \sum_{j=1}^{2k+1} (-1)^{j-1} 2^{m_j}$, where $m_{2k+1} = M$.

(b) First Approach. Let $M \geq 0$ be an integer. The solution for part (a) shows that the number of even (respectively, odd) weight integers in the range 1 through 2^{M} coincides with the number of subsets in $\{0,1,2,\ldots,M\}$ whose cardinality has remainder 1 (respectively, 3) modulo 4. Therefore, the difference of these numbers is

$$\sum_{k=0}^{\lfloor M/2 \rfloor} (-1)^k \binom{M+1}{2k+1} = \frac{(1+\mathrm{i})^{M+1} - (1-\mathrm{i})^{M+1}}{2\mathrm{i}} = 2^{(M+1)/2} \sin \frac{(M+1)\pi}{4},$$

where $i = \sqrt{-1}$ is the imaginary unit. Thus, the required difference is 2^{1009} .

Second Approach. For every integer $M \ge 0$, let $A_M = \sum_{n=-2^M+1}^0 (-1)^{w(n)}$ and let $B_M =$ $\sum_{n=1}^{2^{M}} (-1)^{w(n)}$; thus, B_M evaluates the difference of the number of even weight integers in the range 1 through 2^M and the number of odd weight integers in that range.

Notice that

$$w(n) = \begin{cases} w(n+2^M) + 1 & \text{if } -2^M + 1 \le n \le -2^{M-1}, \\ w(n-2^M) & \text{if } 2^{M-1} + 1 \le n \le 2^M, \end{cases}$$

to get

$$A_{M} = -\sum_{n=-2^{M-1}}^{-2^{M-1}} (-1)^{w(n+2^{M})} + \sum_{n=-2^{M-1}+1}^{0} (-1)^{w(n)} = -B_{M-1} + A_{M-1},$$

$$B_{M} = \sum_{n=1}^{2^{M-1}} (-1)^{w(n)} + \sum_{n=2^{M-1}+1}^{2^{M}} (-1)^{w(n-2^{M})} = B_{M-1} + A_{M-1}.$$

Iteration yields

$$B_M = A_{M-1} + B_{M-1} = (A_{M-2} - B_{M-2}) + (A_{M-2} + B_{M-2}) = 2A_{M-2}$$
$$= 2A_{M-3} - 2B_{M-3} = 2(A_{M-4} - B_{M-4}) - 2(A_{M-4} + B_{M-4}) = -4B_{M-4}.$$

Thus, $B_{2017} = (-4)^{504}B_1 = 2^{1008}B_1$; since $B_1 = (-1)^{w(1)} + (-1)^{w(2)} = 2$, it follows that $B_{2017} = 2^{1009}$.

Problem 2. Determine all positive integers n satisfying the following condition: for every monic polynomial P of degree at most n with integer coefficients, there exists a positive integer $k \leq n$, and k+1 distinct integers $x_1, x_2, \ldots, x_{k+1}$ such that

$$P(x_1) + P(x_2) + \dots + P(x_k) = P(x_{k+1}).$$

Semen Petrov, Russia

Note. A polynomial is *monic* if the coefficient of the highest power is one.

Solution. There is only one such integer, namely, n = 2. In this case, if P is a constant polynomial, the required condition is clearly satisfied; if P = X + c, then P(c-1) + P(c+1) = P(3c); and if $P = X^2 + qX + r$, then P(X) = P(-X - q).

To rule out all other values of n, it is sufficient to exhibit a monic polynomial P of degree at most n with integer coefficients, whose restriction to the integers is injective, and $P(x) \equiv 1 \pmod{n}$ for all integers x. This is easily seen by reading the relation in the statement modulo n, to deduce that $k \equiv 1 \pmod{n}$, so k = 1, since $1 \le k \le n$; hence $P(x_1) = P(x_2)$ for some distinct integers x_1 and x_2 , which contradicts injectivity.

If n = 1, let P = X, and if n = 4, let $P = X^4 + 7X^2 + 4X + 1$. In the latter case, clearly, $P(x) \equiv 1 \pmod{4}$ for all integers x; and P is injective on the integers, since $P(x) - P(y) = (x - y)((x + y)(x^2 + y^2 + 7) + 4)$, and the absolute value of $(x + y)(x^2 + y^2 + 7)$ is either 0 or at least 7 for integral x and y.

Assume henceforth $n \geq 3$, $n \neq 4$, and let $f_n = (X - 1)(X - 2) \cdots (X - n)$. Clearly, $f_n(x) \equiv 0 \pmod{n}$ for all integers x. If n is odd, then f_n is non-decreasing on the integers; and if, in addition, n > 3, then $f_n(x) \equiv 0 \pmod{n+1}$ for all integers x, since $f_n(0) = -n! = -1 \cdot 2 \cdot \cdots \cdot \frac{n+1}{2} \cdot \cdots \cdot n \equiv 0 \pmod{n+1}$.

Finally, let $P = f_n + nX + 1$ if n is odd, and let $P = f_{n-1} + nX + 1$ if n is even. In either case, P is strictly increasing, hence injective, on the integers, and $P(x) \equiv 1 \pmod{n}$ for all integers x.

Remark. The polynomial $P = f_n + nX + 1$ works equally well for even n > 2. To prove injectivity, notice that P is strictly monotone, hence injective, on non-positive (respectively, positive) integers. Suppose, if possible, that P(a) = P(b) for some integers $a \le 0$ and b > 0. Notice that $P(a) \ge P(0) = n! + 1 > n^2 + 1 = P(n)$, since $n \ge 4$, to infer that $b \ge n + 1$. It is therefore sufficient to show that P(x) > P(n+1-x) > P(x-1) for all integers $x \ge n + 1$. The former inequality is trivial, since $f_n(x) = f_n(n+1-x)$ for even n. For the latter, write

$$P(n+1-x) - P(x-1) = (x-1)\cdots(x-n) - (x-2)\cdots(x-n-1) + n(n+2-2x)$$
$$= n((x-2)\cdots(x-n) + (n-2) - 2(x-2)) \ge n(n-2) > 0,$$

since $(x-3)\cdots(x-n)\geq 2$.

Problem 3. Let n be an integer greater than 1 and let X be an n-element set. A non-empty collection of subsets A_1, \ldots, A_k of X is tight if the union $A_1 \cup \cdots \cup A_k$ is a proper subset of X and no element of X lies in exactly one of the A_i s. Find the largest cardinality of a collection of proper non-empty subsets of X, no non-empty subcollection of which is tight.

Note. A subset A of X is *proper* if $A \neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.

ALEXANDER POLYANSKY, RUSSIA

Solution 1. (Ilya Bogdanov) The required maximum is 2n-2. To describe a (2n-2)-element collection satisfying the required conditions, write $X = \{1, 2, ..., n\}$ and set $B_k = \{1, 2, ..., k\}$, k = 1, 2, ..., n-1, and $B_k = \{k-n+2, k-n+3, ..., n\}$, k = n, n+1, ..., 2n-2. To show that no subcollection of the B_k is tight, consider a subcollection \mathcal{C} whose union U is a proper subset of X, let m be an element in $X \setminus U$, and notice that \mathcal{C} is a subcollection of $\{B_1, ..., B_{m-1}, B_{m+n-1}, ..., B_{2n-2}\}$, since the other B's are precisely those containing m. If U contains elements less than m, let k be the greatest such and notice that B_k is the only member of \mathcal{C} containing k; and if U contains elements greater than m, let k be the least such and notice that B_{k+n-2} is the only member of \mathcal{C} containing k. Consequently, \mathcal{C} is not tight.

We now proceed to show by induction on $n \geq 2$ that the cardinality of a collection of proper non-empty subsets of X, no subcollection of which is tight, does not exceed 2n-2. The base case n=2 is clear, so let n>2 and suppose, if possible, that \mathcal{B} is a collection of 2n-1 proper non-empty subsets of X containing no tight subcollection.

To begin, notice that \mathcal{B} has an empty intersection: if the members of \mathcal{B} shared an element x, then $\mathcal{B}' = \{B \setminus \{x\} \colon B \in \mathcal{B}, B \neq \{x\}\}$ would be a collection of at least 2n-2 proper non-empty subsets of $X \setminus \{x\}$ containing no tight subcollection, and the induction hypothesis would be contradicted.

Now, for every x in X, let \mathcal{B}_x be the (non-empty) collection of all members of \mathcal{B} not containing x. Since no subcollection of \mathcal{B} is tight, \mathcal{B}_x is not tight, and since the union of \mathcal{B}_x does not contain x, some x' in X is covered by a single member of \mathcal{B}_x . In other words, there is a single set in \mathcal{B} covering x' but not x. In this case, draw an arrow from x to x'. Since there is at least one arrow from each x in X, some of these arrows form a (minimal) cycle $x_1 \to x_2 \to \cdots \to x_k \to x_{k+1} = x_1$ for some suitable integer $k \geq 2$. Let A_i be the unique member of \mathcal{B} containing x_{i+1} but not x_i , and let $X' = \{x_1, x_2, \ldots, x_k\}$.

Remove A_1, A_2, \ldots, A_k from \mathcal{B} to obtain a collection \mathcal{B}' each member of which either contains or is disjoint from X': for if a member B of \mathcal{B}' contained some but not all elements of X', then B should contain x_{i+1} but not x_i for some i, and $B = A_i$, a contradiction. This rules out the case k = n, for otherwise $\mathcal{B} = \{A_1, A_2, \ldots, A_n\}$, so $|\mathcal{B}| < 2n - 1$.

To rule out the case k < n, consider an extra element x^* outside X and let

$$\mathcal{B}^* = \{B \colon B \in \mathcal{B}', \ B \cap X' = \varnothing\} \cup \{(B \setminus X') \cup \{x^*\} \colon B \in \mathcal{B}', \ X' \subseteq B\};$$

thus, in each member of \mathcal{B}' containing X', the latter is collapsed to singleton x^* . Notice that \mathcal{B}^* is a collection of proper non-empty subsets of $X^* = (X \setminus X') \cup \{x^*\}$, no subcollection of which is tight. By the induction hypothesis, $|\mathcal{B}'| = |\mathcal{B}^*| \le 2|X^*| - 2 = 2(n-k)$, so $|\mathcal{B}| \le 2(n-k) + k = 2n - k < 2n - 1$, a final contradiction.

Solution 2. Proceed again by induction on n to show that the cardinality of a collection of proper non-empty subsets of X, no subcollection of which is tight, does not exceed 2n-2.

Consider any collection \mathcal{B} of proper non-empty subsets of X with no tight subcollection (we call such collection good). Assume that there exist $M, N \in \mathcal{B}$ such that $M \cup N$ is distinct from M, N, and X. In this case, we will show how to modify \mathcal{B} so that it remains good, contains the same number of sets, but the total number of elements in the sets of \mathcal{B} increases.

Consider a maximal (relative to set-theoretic inclusion) subcollection $\mathcal{C} \subseteq \mathcal{B}$ such that the set $C = \bigcup_{A \in \mathcal{C}} A$ is distinct from X and from all members of \mathcal{C} . Notice here that the union of any subcollection $\mathcal{D} \subset \mathcal{B}$ cannot coincide with any $K \in \mathcal{B} \setminus \mathcal{D}$, otherwise $\{K\} \cup \mathcal{D}$ would be tight. Surely, \mathcal{C} exists (since $\{M, N\}$ is an example of a collection satisfying the requirements on \mathcal{C} , except for maximality); moreover, $C \notin \mathcal{B}$ by the above remark.

Since $C \neq X$, there exists an $L \in \mathcal{C}$ and $x \in L$ such that L is the unique set in \mathcal{C} containing x. Now replace in \mathcal{B} the set L by C in order to obtain a new collection \mathcal{B}' (then $|\mathcal{B}'| = |\mathcal{B}|$). We claim that \mathcal{B}' is good.

Assume, to the contrary, that \mathcal{B}' contained a tight subcollection \mathcal{T} ; clearly, $C \in \mathcal{T}$, otherwise \mathcal{B} is not good. If $\mathcal{T} \subseteq \mathcal{C} \cup \{C\}$, then C is the unique set in \mathcal{T} containing x which is impossible. Therefore, there exists $P \in \mathcal{T} \setminus (\mathcal{C} \cup \{C\})$. By maximality of \mathcal{C} , the collection $\mathcal{C} \cup \{P\}$ does not satisfy the requirements imposed on \mathcal{C} ; since $P \cup C \neq X$, this may happen only if $C \cup P = P$, i.e., if $C \subset P$. But then $\mathcal{G} = (\mathcal{T} \setminus \{C\}) \cup \mathcal{C}$ is a tight subcollection in \mathcal{B} : all elements of C are covered by \mathcal{G} at least twice (by P and an element of \mathcal{C}), and all the rest elements are covered by \mathcal{G} the same number of times as by \mathcal{T} . A contradiction. Thus \mathcal{B}' is good.

Such modifications may be performed finitely many times, since the total number of elements of sets in \mathcal{B} increases. Thus, at some moment we arrive at a good collection \mathcal{B} for which the procedure no longer applies. This means that for every $M, N \in \mathcal{B}$, either $M \cup N = X$ or one of them is contained in the other.

Now let M be a minimal (with respect to inclusion) set in \mathcal{B} . Then each set in \mathcal{B} either contains M or forms X in union with M (i.e., contains $X \setminus M$). Now one may easily see that the two collections

$$\mathcal{B}_{+} = \{A \setminus M : A \in \mathcal{B}, \ M \subset A, \ A \neq M\}, \quad \mathcal{B}_{-} = \{A \cap M : A \in \mathcal{B}, \ X \setminus M \subset A, \ A \neq X \setminus M\}$$

are good as collections of subsets of $X \setminus M$ and M, respectively; thus, by the induction hypothesis, we have $|\mathcal{B}_+| + |\mathcal{B}_-| \le 2n - 4$.

Finally, each set $A \in \mathcal{B}$ either produces a set in one of the two new collections, or coincides with M or $X \setminus M$. Thus $|\mathcal{B}| \leq |\mathcal{B}_+| + |\mathcal{B}_-| + 2 \leq 2n - 2$, as required.

Solution 3. We provide yet another proof of the estimate $|\mathcal{B}| \leq 2n - 2$, using the notion of a good collection from Solution 2. Arguing indirectly, we assume that there exists a good collection \mathcal{B} with $|\mathcal{B}| \geq 2n - 1$, and choose one such for the minimal possible value of n. Clearly, n > 2.

Firstly, we perform a different modification of \mathcal{B} . Choose any $x \in X$, and consider the subcollection $\mathcal{B}_x = \{B \colon B \in \mathcal{B}, x \notin B\}$. By our assumption, \mathcal{B}_x is not tight. As the union of sets in \mathcal{B}_x is distinct from X, either this collection is empty, or there exists an element $y \in X$ contained in a unique member A_x of \mathcal{B}_x . In the former case, we add the set $B_x = X \setminus \{x\}$ to \mathcal{B} , and in the latter we replace A_x by B_x , to form a new collection \mathcal{B}' . (Notice that if $B_x \in \mathcal{B}$, then $B_x \in \mathcal{B}_x$ and $y \in B_x$, so $B_x = A_x$.)

We claim that the collection \mathcal{B}' is also good. Indeed, if \mathcal{B}' has a tight subcollection \mathcal{T} , then B_x should lie in \mathcal{T} . Then, as the union of the sets in \mathcal{T} is distinct from X, we should have $\mathcal{T} \subseteq \mathcal{B}_x \cup \{B_x\}$. But in this case an element y is contained in a unique member of \mathcal{T} , namely B_x , so \mathcal{T} is not tight — a contradiction.

Perform this procedure for every $x \in X$, to get a good collection \mathcal{B} containing the sets $B_x = X \setminus \{x\}$ for all $x \in X$. Consider now an element $x \in X$ such that $|\mathcal{B}_x|$ is maximal. As we have mentioned before, there exists an element $y \in X$ belonging to a unique member (namely, B_x) of \mathcal{B}_x . Thus, $\mathcal{B}_x \setminus \{B_x\} \subset \mathcal{B}_y$; also, $B_y \in \mathcal{B}_y \setminus \mathcal{B}_x$. Thus we get $|\mathcal{B}_y| \ge |\mathcal{B}_x|$, which by the maximality assumption yields the equality, which in turn means that $\mathcal{B}_y = (\mathcal{B}_x \setminus \{B_x\}) \cup \{B_y\}$.

Therefore, each set in $\mathcal{B} \setminus \{B_x, B_y\}$ contains either both x and y, or none of them. Collapsing $\{x, y\}$ to singleton x^* , we get a new collection of $|\mathcal{B}| - 2$ subsets of $(X \setminus \{x, y\}) \cup \{x^*\}$ containing no tight subcollection. This contradicts minimality of n.

- **Remarks. 1.** Removal of the condition that subsets be proper would only increase the maximum by 1. The 'non-emptiness' condition could also be omitted, since the empty set forms a tight collection by itself, but the argument is a bit too formal to be considered.
- **2.** There are many different examples of good collections of 2n-2 sets. E.g., applying the algorithm from the first part of Solution 2 to the example shown in Solution 1, one may get the following example: $B_k = \{1, 2, ..., k\}, k = 1, 2, ..., n-1, \text{ and } B_k = X \setminus \{k-n+1\}, k = n, n+1, ..., 2n-2.$