Resource Economics - formulas

Sebastian Trümper

June 2024

1 Base formulas

General supplier function for maximizing profit

for one supplier

$$\begin{split} \max \sum_{region} \Big(q_{sell}(region) * (price(region) - C_{trans}(region)) \Big) \\ -q_{prod} * C_{prod} \\ \to \\ \min \sum_{region} \Big(q_{sell}(region) * (C_{trans}(region) - price(region)) \Big) \\ +q_{prod} * C_{prod} \\ \text{with:} \\ price(region) = IntersectionPoint(region) - Slope * \sum_{supplier} q_{sell}(region) \\ \to \\ \min \sum_{region} \Big(q_{sell}(region) \\ * (C_{trans}(region) - IntersectionPoint(region) + Slope * \sum_{supplier} q_{sell}(region)) \Big) \\ +q_{prod} * C_{prod} \end{split}$$

For transport constraint:

1. Define constraint

$$q_{sell}(region) \leq TransCap(region) \ \forall \ region$$

3. For Laplace: bring constraints into standard form

$$q_{sell}(region) - TransCap(region) \le 0 : \mu_{TransCap} \ \forall \ regions$$

4. For GAMS: change equations to ≥ 0

$$TransCap(region) - q_{sell}(region) \geq 0 \ \forall \ regions$$

For selling cap constraint:

1. Define constraint

$$\sum_{region} q_{sell}(region) \leq q_{prod}$$

3. For Laplace: bring constraints into standard form

$$\sum_{region} q_{sell}(region) - q_{prod} \le 0: \mu_{massBal}$$

4. For GAMS: change equations to ≥ 0

$$q_{prod} - \sum_{region} q_{sell}(region) \ge 0$$

For production cap constraint:

1. Define constraint

$$q_{prod} \leq ProdCap$$

3. For Laplace: bring constraints into standard form

$$q_{prod} - ProdCap \leq 0 : \mu_{prodCap}$$

4. For GAMS: change equations to ≥ 0

$$ProdCap - q_{prod} \ge 0$$

Laplace function

$$\begin{split} & \min \sum_{region} \Big(q_{sell}(region) \\ & * (C_{trans}(region) - IntersectionPoint(region) + Slope * \sum_{supplier} q_{sell}(region)) \Big) \\ & + q_{prod} * C_{prod} \\ & \text{add constraints:} \\ & + \mu_{TransCap} * (q_{sell}(region) - TransCap(region)) \end{split}$$

$$+\mu_{massBal}*(\sum_{region}q_{sell}(region)-q_{prod})$$

$$+\mu_{prodCap}*(q_{prod}-ProdCap)$$

Derive KKT's:

for q_{sell} :

$$\frac{\partial f}{\partial Q_{sell}} =$$

$$2*Slope*q_{sell}$$

 $-IntersectionPoint + C_{trans}$

 $+\mu_{TransCap}$

 $+\mu_{massBal}$

for q_{prod} :

$$\frac{\partial f}{\partial Q_{prod}} = C_{prod} - \mu_{massBal} + \mu_{prodCap}$$