lmię i nazwisko	Nr indeksu	Kierunek	Wydział (skrót)	Data	Wersja sprawozdania
Dawid Królak	145383	Informatyka	WIIT	21.10.2020	1.0
Nr ćwiczenia	Tytuł ćwiczenia				
301	Wyznaczanie współczynnika załamania światła z pomiaru pozornej i rzeczywistej				
	grubości płytek				

1. Wstęp teoretyczny.

Przechodząc przez różne ośrodki, swiatło ulega załamaniu, tzn. zmienia swój kierunek poruszania się. Skutkiem tego zjawiska jest obserwowanie pozornej zmiany położenia źródła światła. Zależnie od współczynnika załamania i ośrodka w którym obserwowane jest zjawisko, obserwator odnosi wrażenie, że źródło znajduje się bliżej lub dalej niż w rzeczywistości.

Przyczyną takiego zachowania się fali świetlnej jest zmiana prędkości jej propagacji w różnych materiałach [1]. Zgodnie z prawem Snella stosunek prędkości światła w dwóch różnych ośrodkach jest równy stosunkowi sinusów kąta padania θ_1 i kąta załamania θ_2 , który z kolei równy jest iloczynowi bezwzględnych współczynników światła danych ośrodków (1.1). Bezwzględny współczynnik załamania światła obliczamy przyjmując za jeden z ośrodków próżnię, która z definicji ma współczynnik załamania równy 1 (1.2).

$$\frac{n_2}{n_1} = \frac{\sin\theta_1}{\sin\theta_2} \tag{1.1}$$

$$n = \frac{\sin\theta_1}{\sin\theta_2} \tag{1.2}$$

W niniejszym eksperymencie współczynnik załamania światła kilku różnych materiałów zostanie zmierzony metodą mikroskopową, tzn, zmierzona zostanie grubość rzeczywista *d* oraz grubość pozorna *h* czterech różnych płytek. Grubość pozorna to odległość o jaką należy przesunąć płytkę ku górze aby w okularze mikroskopu uzyskać ostry obraz jej

spodu. W związku z załamaniem światła i założeniem, że promienie przechodzące przez płytkę tworzą bardzo mały kąt z prostą prostopadłą do normalnej, powinna ona być mniejsza od grubości rzeczywistej proporcjonalnie do jej współczynnika załamania.

$$n = \frac{\sin\theta_1}{\sin\theta_2} \approx \frac{\tan\theta_1}{\tan\theta_2} = \frac{d}{h} \tag{2}$$

2. Wyniki pomiarowe.

Zmierzone grubości rzeczywiste i pozorne:

Lp.	Płytk	Płytka nr 1		Płytka nr 2		Płytka nr 3		Płytka nr 4	
	<i>d</i> [mm]	<i>h</i> [mm]							
1.	3,68	2,27	5,70	3,82	3,91	2,50	4,89	3,16	
2.	3,68	2,25	5,70	3,82	3,91	2,49	4,90	3,13	
3.	3,68	2,25	5,70	3,83	3,91	2,50	4,89	3,12	
4.	3,67	2,26	5,70	3,83	3,91	2,49	4,89	3,19	
5.	3,67	2,25	5,70	3,83	3,91	2,50	4,89	3,15	
6.	3,67	2,26	5,69	3,84	3,91	2,51	4,89	3,15	
7.	3,67	2,24	5,71	3,83	3,90	2,49	4,88	3,15	
8.	3,66	2,26	5,70	3,84	3,90	2,50	4,89	3,15	
9.	3,66	2,26	5,71	3,83	3,90	2,50	4,88	3,19	
10.	3,67	2,27	5,71	3,83	3,90	2,51	4,88	3,16	

3. Opracowanie wyników

Obliczenie wartości średnich grubości rzeczywistych i pozornych, oraz odchyleń standardowych pomiarów.

Lp.	Płytka nr 1		Płytka nr 2		Płytka nr 3		Płytka nr 4	
	d [mm]	h [mm]	d [mm]	h [mm]	d [mm]	h [mm]	d [mm]	h [mm]
1.	3,68	2,27	5,7	3,82	3,91	2,5	4,89	3,16
2.	3,68	2,25	5,7	3,82	3,91	2,49	4,9	3,13
3.	3,68	2,25	5,7	3,83	3,91	2,5	4,89	3,12
4.	3,67	2,26	5,7	3,83	3,91	2,49	4,89	3,19
5.	3,67	2,25	5,7	3,83	3,91	2,5	4,89	3,15
6.	3,67	2,26	5,69	3,84	3,91	2,51	4,89	3,15
7.	3,67	2,24	5,71	3,83	3,9	2,49	4,88	3,15
8.	3,66	2,26	5,7	3,84	3,9	2,5	4,89	3,15
9.	3,66	2,26	5,71	3,83	3,9	2,5	4,88	3,19
10.	3,67	2,27	5,71	3,83	3,9	2,51	4,88	3,16
średnia:	3,671	2,257	5,702	3,83	3,906	2,499	4,888	3,155
odch. Std.:	0,00233	0,003	0,002	0,00211	0,00163	0,00233	0,002	0,00703

Podstawiając obliczone średnie wartości grubości rzeczywistej d i h do zależności:

$$n = \frac{d}{h}$$

Otrzymano tabelę współczynników załamania światła:

	Płytka nr 1	Płytka nr 2	Płytka nr 3	Płytka nr 4
Wsp. Zał.:	1,62649535	1,48877285	1,56302521	1,54928685

Współczynnik załamania światła jest wartością bezjednostkową, co wynika z rachunku jednostek:

$$n = \frac{d}{h} = \frac{[mm]}{[mm]} = [-]$$

4. Obliczenie błędów pomiarowych.

Do obliczenia błędów pomiarowych wykorzystano metodę różniczki logarytmicznej.

Korzystając ze wzoru:

$$y = Ax_1^{a_1}x_2^{a_2} \to |\Delta y| = |y| \left(\left| a_1 \frac{\Delta x_1}{x_1} \right| + \left| a_2 \frac{\Delta x_2}{x_2} \right| \right)$$
 (3.1)

Błąd pomiarowy jest równy:

$$n = 1 * d^{1} * h^{-1} \rightarrow |\Delta n| = |n| \left(\left| \frac{\Delta d}{d} \right| + \left| -\frac{\Delta h}{h} \right| \right)$$
 (3.2)

Obliczenia dla płytki numer 1:

$$n_1 = 1 * 3,671^1 * 2,257^{-1} = 1,62649535$$

$$|\Delta n_1| = |n_1| \left(\left| \frac{0,00233}{3,671} \right| + \left| -\frac{0,003}{2,257} \right| \right) = 0,00319576$$

Analogicznie obliczono wartości błędów pomiarowych dla pozostałych płytek. Wyniki zestawiono w tabeli:

	Płytka 1	Płytka 2	Płytka 3	Płytka 4
Bł. pom.	0,00319576	0,00134167	0,00211287	0,00408687

5. Zaokraglenie obliczonych wartości i ostateczna postać wyniku.

Błąd pomiarowy i wartość współczynnika załamania zaokrąglono do dwóch miejsc znaczących.

$$\Delta n_1 = 0,00319576 \approx 0,0032$$

$$n_1 = 1,62649535 \approx 1,6265$$

Ostateczny wynik dla płytki numer 1, wraz z niepewnością pomiarową.

$$n_1 = 1,6265 \pm 0,0032$$

Postępując analogicznie wyznaczono:

$$n_2 = 1,4888 \pm 0,0014$$

$$n_3 = 1,5630 \pm 0,0022$$

$$n_4 = 1,5493 \pm 0,0041$$

6. Wnioski i obserwacje.

Patrząc przez materiał o współczynniku załamania większym od ośrodka w którym jest obserwowany jego grubość pozorna jest zawsze mniejsza od rzeczywistej. Otrzymane wyniki są obarczone wystarczająco małym błędem, aby móc z dużą pewnością określić materiały z których wykonano poszczególne płytki[1]:

Płytka nr 1 - flint (1.57-1.75)

Płytka nr 2 - plexiglass (1.49)

Płytki nr 3 i 4- szkło crown (1.5-1.62)

7. Przypisy.

[1] Engineering ToolBox, (2008). *Refractive Index for some common Liquids, Solids and Gases*. [online] Available at: https://www.engineeringtoolbox.com/refractive-index-d_1264.html [Accessed 21.10.2020].