Curs 5

Cuprins

1 Ecuații. Relația de satisfacere

2 Γ-algebre

Amintiri

Fie (S, Σ) o signatură multisortată și X mulțime de variabile.

- \square T_{Σ} este (S, Σ) -algebră inițială, i.e. pentru orice (S, Σ) -algebră \mathcal{B} există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.
- \square $T_{\Sigma}(X)$ este (S, Σ) -algebră liber generată de X, i.e. pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_{\Sigma})$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un (S, Σ) -morfism $\tilde{e}: T_{\Sigma}(X) \to \mathcal{B}$.

Motivație

Un modul în Maude (care conține doar declații de sorturi și operații) construiește efectiv algebra T_{Σ} .

Ce se întâmplă cu ecuațiile?

Ce se întâmplă cu atributele operațiilor?

Ecuații. Relația de satisfacere

Ecuație

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație este formată din
 - \square o multime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$.

Notăm o ecuație prin

$$(\forall X)t \stackrel{\cdot}{=}_{s} t'$$

 $\stackrel{\cdot}{=}$ egalitate formală = egalitate efectivă

Satisfacerea unei ecuații

Fie (S, Σ) o signatură multisortată.

Definiție

O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ satisface o ecuație $(\forall X)t\stackrel{.}{=}_s t'$ dacă pentru orice funcție S-sortată $e:X\to A_S$,

$$\tilde{e}_s(t) = \tilde{e}_s(t')$$
.

Notăm faptul că \mathcal{A} satisface ecuația $(\forall X)t =_s t'$ prin

$$\mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t'$$

□ Dacă $\mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t'$, mai spunem și că \mathcal{A} este un model al ecuației $(\forall X)t \stackrel{\cdot}{=}_s t'$.

Satisfacerea unei ecuații

Am văzut că orice funcție S-sortată $e: X \to A_S$ se extinde unic la un morfism $\tilde{e}: T_{\Sigma}(X) \to \mathcal{A}$.

Definiție (echivalentă)

O (S, Σ) -algebră $\mathcal{A} = (A_S, A_\Sigma)$ satisface o ecuație $(\forall X)t \stackrel{.}{=}_s t'$ dacă pentru orice morfism $f: \mathcal{T}_\Sigma(X) \to A$,

$$f_s(t) = f_s(t').$$

Necesitatea cuantificării

- ☐ În cazul monosortat, cuantificarea înaintea unei ecuații nu este necesară.
- ☐ În cazul multisortat, dacă nu cuantificăm înaintea unei ecuații putem obține paradoxuri.

Necesitatea cuantificării

- În cazul monosortat, cuantificarea înaintea unei ecuații nu este necesară.
- În cazul multisortat, dacă nu cuantificăm înaintea unei ecuații putem obține paradoxuri.

Exemplu

- □ Signatura: $S = \{s, b\}$, $\Sigma = \{T : \rightarrow b, F : \rightarrow b, g : s \rightarrow b\}$
- \Box T_{Σ} : $T_{\Sigma,s} = \emptyset$, $T_{\Sigma,b} = \{T,F\}$
- $\Box T_{\Sigma} \not\models (\forall \emptyset) T \stackrel{\cdot}{=}_b F$
 - $T_T = T \neq F = T_F$
- $\square \ T_{\Sigma} \models (\forall X) T \stackrel{\cdot}{=}_b F, \text{ unde } X_s := \{x\} \text{ si } X_b := \emptyset$
 - $lue{}$ nu există niciun morfism $f:T_\Sigma(X) o T_\Sigma$

Ecuație condiționată

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație condiționată este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t, t' \in T_{\Sigma}(X)_s$,

Ecuație condiționată

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație condiționată este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$,
 - \square o mulțime H de ecuații $u \doteq_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.

Ecuație condiționată

Fie (S, Σ) o signatură multisortată.

Definiție

- O (S, Σ) -ecuație condiționată este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in \mathcal{T}_\Sigma(X)_s$,
 - \square o mulțime H de ecuații $u \doteq_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.

Notăm o ecuație condiționată prin

$$(\forall X)t \stackrel{\cdot}{=}_s t' \text{ if } H$$

- \square În practică H este finită, i.e. $H = \{u_1 \stackrel{\cdot}{=}_{s_1} v_1, \dots, u_n \stackrel{\cdot}{=}_{s_n} v_n\}.$
- \square Ecuațiile din H sunt cuantificate cu X.
- ☐ Ecuațiile din *H* se numesc condiții.
- \square O ecuație $(\forall X)t \stackrel{.}{=}_s t'$ este o ecuație condiționată în care H este \emptyset .

Satisfacerea unei ecuații condiționate

Fie (S, Σ) o signatură multisortată.

Definiție

O (S, Σ) -algebră $\mathcal{A} = (A_S, A_\Sigma)$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H dacă pentru orice funcție S-sortată $e: X \to A_S$,

$$\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$$
, or. $u \doteq_{s'} v \in H \Rightarrow \tilde{e}_s(t) = \tilde{e}_s(t')$.

Notăm faptul că ${\mathcal A}$ satisface ecuația condiționată $(\forall X)t\stackrel{\cdot}{=}_s t'$ if H prin

$$\mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t' \text{ if } H$$

$$\square \ \mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t' \Leftrightarrow \mathcal{A} \models (\forall X)t \stackrel{\cdot}{=}_s t' \text{ if } \emptyset$$

Satisfacerea unei ecuații condiționate

Definiție (echivalentă)

O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H dacă pentru orice morfism $f:T_\Sigma(X)\to A$,

$$f_{s'}(u) = f_{s'}(v)$$
, or. $u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow f_s(t) = f_s(t')$.

Exempli

$$STIVA = (S = \{elem, stiva\}, \Sigma)$$

$$\square \Sigma = \{0 : \rightarrow elem, empty : \rightarrow stiva, push : elem stiva \rightarrow stiva, pop : stiva \rightarrow stiva, top : stiva \rightarrow elem\}$$
 $X: X_{elem} = \{E\}, X_{stiva} = \{S, Q\}$
Ecuația condiționată:
$$(\forall X) top(S) \stackrel{\cdot}{=}_{elem} E \text{ if } \{S \stackrel{\cdot}{=}_{stiva} push(E, Q)\}$$

Exemplu (cont.)

STIVA-algebra A:

- \square Mulțimea suport: $A_{elem} := \mathbb{N}$, $A_{stiva} := \mathbb{N}^*$
- □ Operaţii: $A_0 := 0$, $A_{empty} := \lambda$, $A_{push}(n, n_1 ... n_k) := nn_1 ... n_k$, $A_{pop}(\lambda) := \lambda$, $A_{pop}(n) := \lambda$, $A_{pop}(n_1 n_2 ... n_k) := n_2 ... n_k$, pt $k \ge 2$ $A_{top}(\lambda) := 0$, $A_{top}(n_1 ... n_k) := n_1$, pt. $k \ge 1$

Exemplu (cont.)

rezultă w = nw' si

 $\tilde{e}_{elem}(top(S)) = A_{top}(\tilde{e}_{stiva}(S)) = A_{top}(w) = A_{top}(nw') = n = \tilde{e}_{elem}(E)$

Exemplu (cont.)

STIVA-algebra C:

- \square Mulţimea suport: $C_{elem} := \mathbb{N}, \ C_{stiva} := \mathbb{N}^*$
- □ Operații: $C_0 := 0$, $C_{empty} := \lambda$, $C_{push}(x, x_1 ... x_k) := x_1 ... x_k x$, $C_{pop}(\lambda) := \lambda$, $C_{pop}(x) := \lambda$, $C_{pop}(x_1 ... x_{k-1} x_k) := x_2 ... x_k$, pt $k \ge 2$ $C_{top}(\lambda) := 0$, $C_{top}(x_1 ... x_k) := x_1$, pt. $k \ge 1$

Exemplu (cont.)

STIVA-algebra C:

- \square Mulţimea suport: $C_{elem} := \mathbb{N}, C_{stiva} := \mathbb{N}^*$
- Operații: $C_0 := 0$, $C_{empty} := \lambda$, $C_{push}(x, x_1 \dots x_k) := x_1 \dots x_k x$, $C_{pop}(\lambda) := \lambda$, $C_{pop}(x) := \lambda$, $C_{pop}(x_1 \dots x_{k-1} x_k) := x_2 \dots x_k$, pt $k \ge 2$

$$C_{top}(\lambda) := 0$$
, $C_{top}(x_1 \dots x_k) := x_1$, pt. $k \ge 1$

$\mathcal{C} \not\models (\forall X) top(S) \stackrel{\cdot}{=}_{elem} E \text{ if } \{S \stackrel{\cdot}{=}_{stiva} push(E, Q)\}$

- □ fie $e: X \to C$ o evaluare definită prin $e_{elem}(E) = 2$, $e_{stiva}(Q) = 3$ 4, $e_{stiva}(S) = 3$ 4 2
- \square atunci $\tilde{e}_{stiva}(S) = \tilde{e}_{stiva}(push(E,Q))$
- \square dar $\tilde{e}_{elem}(E) = 2 \neq 3 = \tilde{e}_{elem}(top(S))$

Γ-algebre

Definiții

Fie

- \square (S, Σ) o signatură multisortată
- $\ \square$ Γ o mulțime de ecuații condiționate

Definiții

Fie

- \square (S, Σ) o signatură multisortată
- □ Γ o mulțime de ecuații condiționate

Definiție

O (S,Σ) -algebră $\mathcal A$ este o Γ -algebră $(\mathcal A$ este model pentru $\Gamma)$ dacă

$$\mathcal{A} \models \gamma$$
, or. $\gamma \in \Gamma$.

Definiții

Fie

- \square (S, Σ) o signatură multisortată
- Γ o mulțime de ecuații condiționate

Definiție

O (S, Σ) -algebră $\mathcal A$ este o Γ -algebră $(\mathcal A$ este model pentru $\Gamma)$ dacă $\mathcal A \models \gamma \text{, or. } \gamma \in \Gamma.$

- \square În acest caz, notăm $\mathcal{A} \models \Gamma$
- \square Notăm cu $Alg(S, \Sigma, \Gamma)$ clasa tuturor Γ -algebrelor.

Proprietăți

Teoremă

$$\mathcal{A} \models \gamma \Leftrightarrow \mathcal{B} \models \gamma.$$

Proprietăți

Demonstrație

- " \Rightarrow " Fie $\iota: \mathcal{B} \to \mathcal{A}$ un izomorfism.
 - \square Fie $e: X \to B_S$ a.î. $\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$, or. $u \stackrel{\cdot}{=}_{s'} v \in H$.
 - \square Definim $f: X \to A_S$ prin f:=e; ι .
 - □ Curs 4 Propoziție. Fie \mathcal{B} o (S, Σ) -algebră și X o mulțime de variabile. Dacă $f: T_{\Sigma}(X) \to \mathcal{B}$ și $g: T_{\Sigma}(X) \to \mathcal{B}$ sunt morfisme, atunci $g = f \Leftrightarrow g \upharpoonright_{X} = f \upharpoonright_{X}$.
 - \square Deoarece $\tilde{f} \upharpoonright_X = (\tilde{e}; \iota) \upharpoonright_X$, obţinem $\tilde{f} = \tilde{e}; \iota$.
 - \square Atunci $\tilde{f}_{s'}(u) = \iota_{s'}(\tilde{e}_{s'}(u)) = \iota_{s'}(\tilde{e}_{s'}(v)) = \tilde{f}_{s'}(v)$, or. $u \stackrel{\cdot}{=}_{s'} v \in H$.
 - \square Cum $\mathcal{A} \models \gamma$, rezultă că $\tilde{f}_s(t) = \tilde{f}_s(t')$, i.e. $\iota_s(\tilde{e}_s(t)) = \iota_s(\tilde{e}_s(t'))$.
 - \square Cum ι este injectiv, obținem $\tilde{e}_s(t) = \tilde{e}_s(t')$, deci $\mathcal{B} \models \gamma$.
- "←" Se arată similar.

Consecința semantică

Fie (S, Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

Definiție

O ecuație condiționată θ este consecință semantică a lui Γ dacă

$$\mathcal{A} \models \Gamma$$
 implică $\mathcal{A} \models \theta$,

pentru orice (S, Σ) -algebră A.

- \square În acest caz, notăm $\Gamma \models \theta$.
- Dacă Θ mulțime de ecuații condiționate, atunci

$$\Gamma \models \Theta \Leftrightarrow \Gamma \models \theta$$
, or. $\theta \in \Theta$

Exemplu

Exemplu (Teoria grupurilor)

```
\square (S, \Sigma, \Gamma) unde
        \square S = \{elem\}
         \Sigma = \{e : \rightarrow elem, -: elem \rightarrow elem, +: elem elem \rightarrow elem\}
         \Gamma = \{(\forall \{x, y, z\})(x + y) + z = x + (y + z),
                        (\forall \{x\})e + x \stackrel{\cdot}{=} x,
                         (\forall \{x\})x + e \stackrel{\cdot}{=} x,
                         (\forall \{x\})(-x) + x \stackrel{\cdot}{=} e.
                         (\forall \{x\})x + (-x) \stackrel{\cdot}{=} e\}
\square \ \theta_1 := (\forall \{x, y, z\}) x \stackrel{\cdot}{=} y \text{ if } \{x + z \stackrel{\cdot}{=} y + z\}
\square \theta_2 := (\forall \{x,y\})x + y = y + x
\Box \Gamma \models \theta_1
\Box \Gamma \not\models \theta_2
```

Amintiri

Fie (S,Σ) o signatură multisortată și $\mathcal{A}=(A_S,A_\Sigma)$ o (S,Σ) -algebră.

Definiție

- O relație S-sortată $\equiv = \{\equiv_s\}_{s \in S} \subseteq A_S \times A_S$ este o congruență dacă:
 - $\square \equiv_s \subseteq A_s \times A_s$ este echivalență, or. $s \in S$:
 - □ ≡ este compatibilă cu operațiile:

pt. or.
$$\sigma: s_1 \dots s_n \to s$$
 și or. $a_i, b_i \in A_{s_i}$, $i = 1, \dots, n$ $a_i \equiv_{s_i} b_i$, or. $i = 1, \dots, n \Rightarrow A_{\sigma}(a_1, \dots, a_n) \equiv_s A_{\sigma}(b_1, \dots, b_n)$

Congruențe închise la substituții

Fie

- \square (S, Σ) o signatură multisortată,
- □ Γ o mulţime de ecuaţii condiţionate,
- \square $\mathcal{A} = (A_S, A_{\Sigma})$ o (S, Σ) -algebră și \equiv o congruență pe \mathcal{A} .

Spunem că ≡ este închisă la substituție dacă

$$\mathsf{CS}(\Gamma, \mathcal{A}) \quad \text{or. } (\forall X)t \stackrel{.}{=}_{s} t' \text{ if } H \in \Gamma, \text{ or. } e: X \to A_{S} \\ \tilde{e}_{s'}(u) \equiv_{s'} \tilde{e}_{s'}(v), \text{ or. } u \stackrel{.}{=}_{s'} v \in H \Rightarrow \tilde{e}_{s}(t) \equiv_{s} \tilde{e}_{s}(t').$$

Congruențe închise la substituții

Propoziție

 $\mathsf{Dac} \ \equiv \ \mathsf{este} \ \mathsf{o} \ \mathsf{congruen} \ \mathsf{t} \ \mathsf{a} \ \mathsf{finchis} \ \mathsf{a} \ \mathsf{substitu} \ \mathsf{tie}, \ \mathsf{atunci}$

$$A/_{\equiv} \models \Gamma$$
.

Congruente închise la substitutii

Propoziție

Dacă \equiv este o congruență pe \mathcal{A} închisă la substituție, atunci

$$A/_{\equiv} \models \Gamma$$
.

Algebra cât A/= a lui A prin congruența \equiv :

- $\square A_s/=_s := \{[a]_{=_s} \mid a \in A_s\}, \text{ or. } s \in S, \text{ unde }$
- \square $[a]_{=_s} := \{a' \in A_s \mid a \equiv_s a'\}$ (clasa de echivalență a lui a)
- \square A/= devine (S, Σ) -algebră cu operațiile:
 - \square $(A/=)_{\sigma} := [A_{\sigma}]_{=s}$, or. $\sigma : \rightarrow s$,
 - $\square (A/\equiv)_{\sigma}([a_1]_{\equiv_{s_1}},\ldots,[a_n]_{\equiv_{s_n}}):=[A_{\sigma}(a_1,\ldots,a_n)]_{\equiv_{s_n}}$
 - or. $\sigma: s_1 \dots s_n \to s$ și $a_1 \in A_{s_1}, \dots, a_n \in A_{s_n}$.
- \square $[\cdot]_{=}: \mathcal{A} \to \mathcal{A}/_{=}, a \mapsto [a]_{=_s}, \text{ or. } a \in \mathcal{A}_s, \text{ este morfism surjectiv.}$

Congruențe închise la substituții

Demonstrație

Fie $(\forall X)t \stackrel{.}{=}_s t'$ if $H \in \Gamma$. Arătăm că $\mathcal{A}/_{\equiv} \models (\forall X)t \stackrel{.}{=}_s t'$ if H.

- □ Fie $e: X \to A/_{\equiv}$ a.î. $\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$, or. $u \stackrel{\cdot}{=}_{s'} v \in H$.
- □ Curs 4 Propoziție. Fie $h: \mathcal{A} \to \mathcal{B}$ un (S, Σ) -morfism surjectiv și X o mulțime de variabile. Pentru orice (S, Σ) -morfism $f: T_{\Sigma}(X) \to \mathcal{B}$, există un (S, Σ) -morfism $g: T_{\Sigma}(X) \to \mathcal{A}$ astfel încât g; h = f.
 - □ Cum $[\cdot]_{\equiv}: \mathcal{A} \to \mathcal{A}/_{\equiv}$ morfism surjectiv și $\tilde{e}: T_{\Sigma}(X) \to \mathcal{A}/_{\equiv}$, există $g: T_{\Sigma}(X) \to \mathcal{A}$ a.î. $g: [\cdot]_{\equiv} = \tilde{e}$.
 - □ Atunci $[g_{s'}(u)]_{\equiv_{s'}} = [g_{s'}(v)]_{\equiv_{s'}}$, i.e. $g_{s'}(u) \equiv_{s'} g_{s'}(v)$, or. $u \stackrel{.}{=}_{s'} v \in H$.
 - □ Cum ≡ congruență pe \mathcal{A} închisă la substituție, obținem $g_s(t) \equiv_s g_s(t')$. Deci $\tilde{e}_s(t) = \tilde{e}_s(t')$.

Echivalența semantică

Fie

- \square (S, Σ) o signatură multisortată,
- Γ o mulţime de ecuaţii condiţionate,
- \square $\mathcal{A} = (A_S, A_{\Sigma})$ o (S, Σ) -algebră

Echivalența semantică pe ${\mathcal A}$ determinată de Γ este

$$\equiv_{\Gamma,\mathcal{A}} := \bigcap \{ Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}.$$

Echivalența semantică

Fie

- \square (S, Σ) o signatură multisortată,
- □ Γ o mulțime de ecuații condiționate,
- \square $\mathcal{A}=(A_{\mathcal{S}},A_{\Sigma})$ o (\mathcal{S},Σ) -algebră

Echivalența semantică pe ${\mathcal A}$ determinată de Γ este

$$\equiv_{\Gamma,\mathcal{A}} := \bigcap \{ Ker(h) \mid h : \mathcal{A} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}.$$

Dacă $\mathcal{A} = \mathcal{T}_{\Sigma}(X)$, notăm $\equiv_{\Gamma, \mathcal{T}_{\Sigma}(X)}$ cu \equiv_{Γ} .

Echivalența semantică (pe $T_{\Sigma}(X)$):

$$t \equiv_{\Gamma_s} t' \Leftrightarrow \Gamma \models (\forall X)t \stackrel{\cdot}{=}_s t'.$$

Congruența semantică

Propoziție (*)

 $\equiv_{\Gamma,\mathcal{A}}$ este o congruență pe \mathcal{A} închisă la substituție.

Demonstrație

Pentru simplitatea demonstrației notăm $\equiv_{\Gamma,\mathcal{A}}$ cu \equiv .

- ≡ este congruență:
 - \square Ker(h) este congruență pentru orice morfism $h: \mathcal{A} \to \mathcal{B}$
 - ☐ Intersecția unei familii arbitrare de congruențe este congruență.

Arătăm că ≡ este închisă la substituție:

- □ Fie $(\forall X)t =_s t'$ if $H \in \Gamma$ și $e : X \to A_S$ a.î. $\tilde{e}_{s'}(u) \equiv_{s'} \tilde{e}_{s'}(v)$, or. $u =_{s'} v \in H$.
- \square Trebuie să arătăm că $\tilde{e}_s(t) \equiv_s \tilde{e}_s(t')$.

Demonstrație (cont.)

- □ Avem $(\tilde{e}_{s'}(u), \tilde{e}_{s'}(v)) \in \equiv \subseteq Ker(h)$, or. $u =_{s'} v \in H$ și or. $h : A \to B \models \Gamma$.
- □ Deci $h_{s'}(\tilde{e}_{s'}(u)) = h_{s'}(\tilde{e}_{s'}(v))$, or. $u \stackrel{\cdot}{=}_{s'} v \in H$ și or. $h : A \rightarrow B \models \Gamma$.
- \square Fie $\mathcal{B} \models \Gamma$ și $h : \mathcal{A} \rightarrow \mathcal{B}$.
- \square Avem \tilde{e} ; $h: T_{\Sigma}(X) \to \mathcal{B}$ și $h_{s'}(\tilde{e}_{s'}(u)) = h_{s'}(\tilde{e}_{s'}(v))$, or. $u \stackrel{\cdot}{=}_{s'} v \in H$
- \square Deci $h_s(\tilde{e}_s(t)) = h_s(\tilde{e}_s(t'))$.
- \square Rezultă că $(\tilde{e}_s(t), \tilde{e}_s(t')) \in Ker(h)$, or. $h: \mathcal{A} \to \mathcal{B} \models \Gamma$
- \square Deci $(\tilde{e}_s(t), \tilde{e}_s(t')) \in \equiv$, adică $\tilde{e}_s(t) \equiv_s \tilde{e}_s(t')$.

Congruența semantică

Propoziție (*)

 $\equiv_{\Gamma,\mathcal{A}}$ este cea mai mică congruență pe \mathcal{A} închisă la substituție.

Demonstrație

- $\square \equiv_{\Gamma, \mathcal{A}}$ este congruență pe \mathcal{A} închisă la substituție.
- \square Fie \sim o altă congruență pe ${\mathcal A}$ închisă la substituție.
- \square Fie $p:\mathcal{A}\to\mathcal{A}/_{\sim}$ surjecția canonică, i.e. $p(a)=[a]_{\sim}$, or. $a\in\mathcal{A}$.
- \square $\mathcal{A}/_{\sim} \models \Gamma$.
- \square Dar $\sim = Ker(p)$.
- □ Deci $\equiv_{\Gamma, A} \subseteq \sim$.

Γ-algebra iniţială

Definim pe T_{Σ} congruența semantică determinată de Γ :

$$\equiv_{\Gamma, T_{\Sigma}} := \bigcap \{ Ker(f) \mid f : T_{\Sigma} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$$

Teoremă (⋆)

 $T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}}$ este Γ -algebra inițială.

Demonstrație

- $\square \equiv_{\Gamma, T_{\Sigma}}$ este închisă la substituții (slide 31)
- $\Box T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}} \models \Gamma \text{ (slide 28)}$
- $\square \equiv_{\Gamma, T_{\Sigma}} = \equiv_{\mathfrak{K}}$, unde $\mathfrak{K} = Alg(S, \Sigma, \Gamma)$
- \square Pt. or. $\mathcal{B} \models \Gamma$, ex. un unic morfism $\bar{f}: T_{\Sigma}/_{\equiv_{\Gamma}, \tau_{\Sigma}} \to \mathcal{B}$ (Curs 4 slide 31).

Consecințe

Fie (S, Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

Teoremă (*)

Fie $\mathcal{A}=(A_S,A_\Sigma)$ o (S,Σ) -algebră și $h:T_\Sigma\to\mathcal{A}$ unicul morfism. Sunt echivalente:

- Λ este Γ-algebră iniţială.
- 2 A verifică următoarele proprietăți:
 - □ No Junk: h este surjectiv
 - No Confusion:

$$h_s(t_1) = h_s(t_2) \Leftrightarrow \Gamma \models (\forall \emptyset) t_1 \stackrel{.}{=}_s t_2$$
, or. $t_1, t_2 \in (T_{\Sigma})_s$.

Pe săptămâna viitoare!