SUBSTITUTE SEQUENCE LISTING

<110>	KAMINSKI, Joseph	
	TRANSPOSON-BASED VECTORS AND METHODS OF LEIC ACID INTEGRATION	
<130>	40000212-0027-002	
	US 10/521,936 2005-01-24	
	PCT/US03/23090 2003-07-24	
	US 60/398,628 2002-07-24	
<160>	14	
<170>	FastSEQ for Windows Version 4.0	
<210> <211> <212> <213>	19	
<220> <223>	Synthetic construct	
<400> tccggc	1 cegga aceggettt	19
<210> <211> <212> <213>	33	
<220> <223>	Synthetic construct	
<400> cgggat	2 ccca cctatggaag gaagatcaga ttt	33
<210> <211> <212> <213>	35	
<220> <223>	Synthetic construct	
<400>	3 actcg agtcaaagtg ttttgtatga tctcg	35

<210> 4 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic construct	
<400> 4 aagatctgat ccgtcgac	18
<210> 5 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic construct	
<400> 5 cgggatccca cctatgaatt atggcgtgga gaa	33
<210> 6 <211> 35 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic construct	
<400> 6 agattactcg agtcagttgt acagctgcaa tccca	35
<210> 7 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic construct	
<400> 7 ggaagccctg caaagtaaa	19
<210> 8 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 8 ttctccgaat tcatggaagt caacaaaaag c	31
<210> 9 <211> 31	

<212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 9 tccttcgtta acttcgtact caatagttcc t	31
<210> 10 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 10 tccttcgtta accggaaaac gccgctgc	28
<210> 11 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 11 aagaatgcgg ccgcgcagca aaatcagagg ta	32
<210> 12 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> PCR primer	
<400> 12 attaataagc ttttagattt caattttgtc c	31
<210> 13 <211> 10 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic construct	
<400> 13 tgcgggtgcg	10
<210> 14 <211> 33 <212> DNA <213> Artificial Sequence	

<220> <223> Synthetic construct <400> 14 ataacttcgt atgcatatgc tatacgaagt tat

33