Singing Very High Speed Integrated Circuit Hardware Description Language Board (S76D)

Kai Fabian Hasso-Plattner-Institut Potsdam Dominik Moritz Hasso-Plattner-Institut Potsdam

August 26, 2012

Figure 1: 3D rendered image of the custom extension board used for this music player

Abstract

This is time for all good men to come to the aid of their party! ...

Contents

T	ıntr	roduction	2				
2	Multimedia Card						
	2.1	Interface description	2				
		SPI Interface					
		2.2.1 Initializing the card	3				
		2.2.2 Reading data	4				
	2.3	Implementation of Communication	4				

Pin. No.	Name	Description	Note for our implementation
1	DAT3	MMC: Chip select	Chip IO Pin, mmc_cs, D7
2	CMD	Command	Chip IO Pin, mmc_mosi, D8, (MOSI – mas-
			ter out, slave in)
3	GND	Ground	Board ground
4	VDD	Voltage	Supply Voltage (+3.3 V)
5	CLK	Clock	Chip IO Pin, mmc_clock, D10
6	GND	Ground	Board ground
7	DAT0	Data	Chip IO, mmc_miso, B4, (MISO - master in,
			slave out)
8	DAT1	Data	Pull up (Voltage via resistor)
9	DAT2	Data	Pull up (Voltage via resistor)

1 Introduction

2 Multimedia Card

2.1 Interface description

Figure 2: MMC Interface

2.2 SPI Interface

The SPI Interface uses two connections to the MMC. First the *master out*, *slave in* to send commands to the MMC and the *master in*, *slave out* to receive the results from the MMC. You can see the pins on the MMC in figure 2.

Sending commands requires you to stick to a predefined protocol that we will describe. A basic sequence for one cammand can be found in figure 3. In figure 4 and 5 you can find the sequence of commands we have to send to the card in order to initialize it or read a block.

Each command is a binary coded sequence in a format that is defined in the official reference manual. Figure 3 should give you a basic idea of how the communication works. The start byte (SB) consists

Figure 3: Sending a command to the MMC

of 8 times HI (1). Before that, the card only sends 0s. The response token (RT) consists of 8 bits. Each bit indicates a certain error or a successful command. In case the command finished successfully, the card returns 0000 0001

2.2.1 Initializing the card

Figure 4: Flow for initializing

Figure 5: Flow for reading

2.2.2 Reading data

2.3 Implementation of Communication

List of Figures

1	3D rendered image of the custom extension board used for this music player	1
2	MMC Interface	2
3	Sending a command to the MMC	3
4	Flow for initializing	3
5	Flow for reading	4
6	Controller VHDL FSM	5

Figure 6: Controller VHDL FSM