Analysis of Several Variables

V Sai Prabhav

ISI Year II, Semester I

Topology of Euclidean Space

1.1 Introduction

Definition 1.

$$\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R} = \{(x_1, x_2, \cdots, x_n) | x_1, \cdots, x_n \in \mathbb{R}\}$$

1.2 \mathbb{R}^n as a Vector Space

- $\langle x, y \rangle = \sum_{i=1}^{n} \ \forall \ x, y = \mathbb{R}^n$
- $\{e_i\}_{i=1}^n$ is an orthonormal basis for \mathbb{R}^n
- Simplest maps $\mathbb{R}^n \to \mathbb{R}^m$? Linear maps: It sends lines to lines

Example 1. Linear map $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = x f(1) \ \forall \ x \in \mathbb{R}$$

Corollary 1. if $c \in \mathbb{R}$, then $x \mapsto cx$ is a liner map therefore $\{f : \mathbb{R} roundbackLinear\} \iff \mathbb{R}$

Remark 1. Let $l: \mathbb{R}^n - > \mathbb{R}^m$ be a linear map.

$$le_j = \sum_{i=1}^m a_{ij}e_i \ \forall \ j = 1, \cdots, n$$

we write $[L]_{\{e_i\}_{i=1}^n}^{\{e_j\}_{i=1}^m=(a_{ij})_{m\times n}}$

Definition 2. Define distance function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \geq 0$ by d(x,y) = ||x-y||

Definition 3 (Scalar Product).

Remark 2. • $|x| = \langle x, y \rangle^{1/2}$

• <, > is liner w.r.t 1st and second slot

Theorem 1 (Cauchy Schwarz inequality).

$$\forall x, y \in \mathbb{R}^n, \langle x, y \rangle \leq |x| |y|$$

Proof.

$$0 \le \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i y_j - x_j y_i)^2 = 2 \left[\sum \sum_{i \ge 1} x_i^2 y_i^2 - \sum_{i \ge 1} x_i x_j y_i y_j \right] \implies \langle x, y \rangle \le |x| |y|$$
$$= \left[|x|^2 |y|^2 - \langle x, y \rangle^2 \right]$$

Remark 3. equality occurs if and only if $x_iy_j = x_jy_i \ \forall \ i,j$

Theorem 2. Let $L: \mathbb{R}^n \to \mathbb{R}^m$ a linear map. Then $\exists M > 0$ such that $|Lx| \leq M|x| \ \forall \ x \in \mathbb{R}^n$

Proof. As
$$x = \sum_{i=1}^{n} x_i e_i$$
,
so $Lx = \sum_{i=1}^{n} x_i Le_i$

$$\implies |Lx| = \left| \sum_{i=1}^{n} x_i Le_i \right| \le \sum_{i=1}^{n} |x_i Le_i| = \sum |x_i| |Le_i| \le |x| \left(|Le_i| \right)$$
$$\left\langle x, y^{22} \right\rangle$$

O

1.3 Connectedness

Differentiation

- 2.1 The Derivative as a Linear Map
- 2.2 The Chain Rule
- 2.3 Inverse and Implicit Function Theorems

Integration

- 3.1 Multiple Integrals
- 3.2 Change of Variables
- 3.3 Fubini's Theorem

Manifolds

- 4.1 Submanifolds of Euclidean Space
- 4.2 Tangent Spaces
- 4.3 Differential Forms