Quesito 1. Di una v.a. $X \sim N(\mu, \sigma^2)$ con media ignota e deviazione standard $\sigma = 2$ vogliamo stimare un intervallo di confidenza per μ di raggio $\varepsilon = 1$ e livello di confidenza 95%. Quant'è la dimensione del campione necessaria?

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

$$\mathbf{Risposta} \quad \frac{\varepsilon}{\sigma/\sqrt{n}} \; = \texttt{norm.ppf(} \; \alpha/\texttt{2} \; \texttt{)}$$

$$\sqrt{n} = \frac{\sigma}{\varepsilon} \cdot \text{norm.ppf(} \alpha/2 \text{)}$$

$$n = (2 * norm.ppf(0.025))**2 = 16$$

Risposta

Quesito 2. Abbiamo prelevato vari campioni di una data cultura. Ci interessa selezionare quei campioni che hanno una concentrazione ≤ 5 di una data sostanza. La misura produce risultati che differiscono dal valore corretto per un errore distribuito normalmente con media 0 e deviazione standard 7. Consideriamo la seguente procedura: se la media di 4 misure è ≤ 3 concludiamo che il campione è come desiderato altrimenti lo scartiamo.

Calcolare (nel caso più sfavorevole) la probabilità di scartare erroneamente un campione.

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

Il caso più sfavorevole occorre quando la concentrazione vera nel campione è $\mu=5$

$$\bar{X} \sim N(\mu, \sigma^2/n)$$
 media di 4 misure

$$\Pr\left(\bar{X} \ge 3\right) = \Pr\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{4}} \ge \frac{3 - \mu}{\sigma/\sqrt{4}}\right) = \Pr\left(Z \ge -4/7\right)$$
$$= 1 - \operatorname{norm.cdf}\left(-4/7\right) = 0.716$$

Risposta

Formulario: se $X \sim B(\mathbf{n}, \mathbf{p})$ allora E(X) = npse $X \sim NB(\mathbf{n}, \mathbf{p})$ allora E(X) = n(1-p)/p

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats di Python

binom.pmf(k, n, p) = $\Pr(X = k)$ dove $X \sim B(n, p)$

binom.cdf(k, n, p) = $\Pr(X \leq k)$ dove $X \sim B(n, p)$

bimom.ppf(q, n, p) = k dove k è tale che $\Pr(X \leq k) \cong q \text{ per } X \sim B(n, p)$

nbinom.xxx(k, n, p), è l'analogo per $X \sim NB(n, p)$.

norm.xxx(z), è l'analogo per $Z \sim N(0,1)$.