$\begin{array}{c} {\rm MATH~4301} \\ {\rm Exam~3} \\ {\rm Wednesday,~August~9,~2023~by~3:00pm,~FO~3.704G} \end{array}$

Each Problem is 20 points. You may choose any 4 out of the 5 to complete for full 80 points of credit. If a fifth problem is completed, it will be counted as a bonus¹. Please on your own and do not discuss the problems with your classmates or anyone else. Show all work and/or reasoning. A separate component posted to elearning will be worth an additional 20 points. If you have any questions please let me know.

1a. (10 pts) Determine whether series

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{\sqrt{n}+1}$$

converges or diverges. **Justify your answer:** Please show all details; If you are using theorems from class, please state which ones and then carefully check their assumptions.

¹I will count half of the lowest scored problem as a bonus.

1b. (10 pts) Show that if the series $\sum_{n=1}^{\infty} |a_n|$ converges and a sequence $\{b_n\}$ is bounded then $\sum_{n=1}^{\infty} |a_n b_n|$ converges.

Hint: Let $S_n = \sum_{k=1}^n |a_k|$ is nth partial sum of $\sum_{n=1}^\infty |a_n|$ and $\overline{S}_n = \sum_{k=1}^n |a_k b_k|$ be partial sum of

 $\sum_{n=1}^{\infty} |a_n b_n|.$ Start by showing that there is a constant $K \geq 0$, such that

$$\overline{S}_n \leq KS_n$$
.

- 2. (20 pts) Using the definition of Riemann integrability to show that $f:[0,1]\to\mathbb{R}$ given by $f(x)=\left\{ \begin{array}{ccc} 1 & \text{if} & x=\frac{1}{2} \\ 0 & \text{if} & x\neq\frac{1}{2} \end{array} \right.$ is Riemann integrable and find $\int_0^1 f(x)\,dx$.
- Let $\epsilon > 0$ be given and $P = \{0 = x_0 < x_1 < ... < x_n = 1\}$ be a partition of [0,1]. For each of the following cases compute L(f,P), U(f,P) and U(f,P) L(f,P)
- i) (5pts) $x_i = \frac{1}{2}$ for some $i \in \{0, 1, ..., n\}$

ii) (5pts) $x_i \neq \frac{1}{2}$ for all $i \in \{0, 1, ..., n\}$.

• (5pts) Using i) and ii), find $\delta > 0$ such that if $\Delta x_j = x_j - x_{j-1} < \delta$, then $U(f, P) - L(f, P) < \epsilon$. Now, assume that $\Delta x_j < \delta$, for j = 1, 2, ..., n. Show that $U(f, P) - L(f, P) < \epsilon$ and argue that f is Riemann integrable over [0, 1].

• (5pts) Find lower Darboux integral $\int_{0}^{1} f$ and use it to find $\int_{0}^{1} f(x) dx$. Justify your answer.

- 3. (20 pts) Let $f:[a,b]\to\mathbb{R}$ be bounded and assume that there is a partition $P=\{x_0,x_1,...,x_n\}$ of [a,b], such that U(f,P)=L(f,P) (the upper and the lower Darboux sums are equal). Show that f is constant, i.e., for all $x\in[a,b]$, f(x)=c, for some $c\in\mathbb{R}$.
- *Hint*: Notice that by the assumption $U(f, P) L(f, P) = \sum_{i=1}^{n} (M_i(f) m_i(f)) \Delta x_i = 0$. i) Show that, for i = 1, 2, ..., n, $f(x) = f(x_{i-1}) = f(x_i)$, for $x \in [x_{i-1}, x_i]$; ii) Show that f(x) = f(a) for all $x \in [a, b]$.

4a. (10 pts) Show that the following sequence of functions

$$f_n(x) = \frac{nx^2 + 2x}{n}, \ x \in [0, 1]$$

is uniformly convergent on [0,1] and find

$$\lim_{n\to\infty}\int_{0}^{1}f_{n}\left(x\right) dx.$$

Justify your answer.

- 4b. (10 pts) Find the radius of convergence R and the interval of convergence I for the following power series
 - i) $\sum_{n=0}^{\infty} \frac{n+2}{n^4+1} x^n$ Justify your answer.

ii) $\sum_{n=1}^{\infty} \frac{(x-4)^{n+1}}{n5^n}$ Justify your answer.

5a. (10 pts) For the following power series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} \left(\frac{x^n}{n!}\right)^2$$

i) (4pts) Find its radius of convergence R and the interval of convergence I.

ii) (6pts) Show that $f:I\to\mathbb{R}$ given by

$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} \left(\frac{x^n}{n!}\right)^2$$

is continuous on I.

- 5b) (10 pts) Use the following theorem from Lecture 19
 - **Theorem** Let $f_n:(a,b)\to\mathbb{R}$ be differentiable, $f:(a,b)\to\mathbb{R}$ and $f_n(x)\to f(x)$ (pointwise). Suppose that $f_n':(a,b)\to\mathbb{R}$,

$$f_n'\left(x\right) = \frac{d}{dx} f_n\left(x\right)$$

is continuous and $f'_n \to g$ (uniformly), where $g:(a,b) \to \mathbb{R}$, $g(x) = \lim_{n \to \infty} f'_n(x)$. Then f is differentiable on (a,b) and f'=g, that is,

$$g(x) = \lim_{n \to \infty} f'_n(x) = \lim_{n \to \infty} f'_n(x) = f'(x)$$
, for all $x \in (a, b)$.

to prove the following:

Corollary Let $f_n:(a,b)\to\mathbb{R}$ be differentiable and $f'_n:(a,b)\to\mathbb{R}$ be continuous for each $n\in\mathbb{N}$. Assume that

- i) $\sum_{n=1}^{\infty} f_n \to f$ (pointwise) on (a,b), i.e., $f:(a,b)\to \mathbb{R}, f(x)=\sum_{n=1}^{\infty} f_n(x)$ and
- ii) $\sum_{n=1}^{\infty} f'_n \to g$ (uniformly) on (a,b), where $g:(a,b)\to \mathbb{R}$, $g(x)=\sum_{n=1}^{\infty} f'_n(x)$. Then $f:(a,b)\to \mathbb{R}$ is differentiable and

$$f'(x) = \left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x) = g(x), \text{ for all } x \in (a,b).$$