The lowRISC project

Robert Mullins

Computer Laboratory, University of Cambridge, lowRISC C.I.C.

lowRISC

- We are producing an open source Linux capable
 System-on-a-Chip (SoC)
 64-bit multicore
- Simple permissive opensource license
- Aim to be the "Linux of the Hardware world"

Origins

- An open-source Raspberry Pi style board?
- Encourage community effort by providing regular tape-outs
- Timeliness

The lowRISC platform

- Extends the Berkeley Rocket chip generator
- Opportunity to improve the status quo?
- Not just delivering the hardware, we aim to share as much information as possible
- Encourage development of other opensource hardware (incl. PHYs and analog IP)

The lowRISC platform

Minion cores

- Simple cores are free, tape-outs are expensive
- Aim to use minion cores liberally to reduce complexity, distribute processing and create a more flexible SoC (single ISA)

General-purpose tagged memory support

- Support for fine-grain memory protection, debugging, profiling, synchronization, etc.
- Can also be extended to support provenance tracking, capabilities, etc.

Minion cores

- Minion = simple core + custom instruction-set extensions + HW "shim" + local memory + low-latency communication links
- Based on PULPino RISC-V core from ETH Zurich (<u>www.pulp-platform.org</u>)
- Initially used for programmable I/O
 - Preprocessing, monitoring, tagging of I/O data
- Secure isolated execution, thread offload, rapid/flexible implementation of IP blocks, on-chip trace processing, use multiple as a parallel processing resource, ...

Tagged memory

- Associate tags
 (metadata) with each physical memory
 location
- Tags are stored in onchip caches and a tag cache is inserted between the LLC and main memory

Tagged memory security use cases

- Protection of code pointers
- Limited control-flow integrity
- Infinite hardware memory watchpoints
 - E.g. canaries on stack
- Poisoning (simple IFT)
 - Ensure sensitive data does not leak

Tagged memory - example

- Tag rules are currently specified using a single control register (CSR) <64-bits
 - Specifies bit masks that indicate when exceptions are raised and when tags are propagated for different classes of instructions
- Code pointer protection example:
 - 1. Mark valid code pointers
 - 2. Prevent them being overwritten with arbitrary data

Tagged memory - example

- Choose a single tag bit (CPTR) for this use
- Load: ensure the CPTR tag bit is propagated
- Trigger exception if during indirect branch rs1 doesn't have CPTR tag set
- Store
 - Trigger exception if attempting to write to memory location holding a code pointer
 - Ensure CPTR tag bit is stored (i.e. create CP)

Tagged memory - example

```
e.g. CPTR = 4'b0001
Load propagation mask = CPTR
Load exception mask = 0
INDIR BRANCH exception mask = CPTR
INDIR BRANCH rs mask = CPTR
Store exception mask = CPTR
Store propagation mask = CPTR
ALU propagation mask = 0
ALU exception mask = 0
```

Extending tagged memory

- Could provide larger rule table or cache rules [see PUMP work, DARPA CRASH project]
- Could exploit unused bits of virtual address to extend scheme (e.g. to provide a capability or provenance ID)
- Tag rules could trigger operations on a minion core

RISC-V LLVM Compiler

- LLVM is a prerequisite for many industrial and academic projects. We plan to use it for a number of tagged memory use-cases
- We are producing a well documented "reference" backend for RISC-V
- Alex Bradbury is leading this effort
 - >90% of GCC torture test suite is passing (RV32I). Basic support by end Q2
 - Full support, incl. ISA variants, est. Q4'17.

Status

- See <u>lowrisc.org</u> for current releases + tutorials
- Current release (v0.3)
 - Extends Rocket chip
 - Based on the Rocket 64-bit in-order core
 - untethers Rocket chip (from ARM host)
 - Verilog top-level (rather than Chisel)
 - Trace debug support (Open SoC Debug)
 - Supports low-cost Nexys4 DDR FPGA board

Status

- New release (April 2017)
 - Tagged memory implementation
 - Optimized hierarchical tag cache
 - Minimises additional off-chip traffic due to tags
 - Tag rule checking in Rocket core pipeline
 - GCC stack smashing protection example
 - Integration of Pulpino-based minion core (with SD-card demo)

Future releases

- Full tagged memory support
 - with Linux and LLVM support, Q3'17
- More minion-based IP and integration support (Q4'17)
- Customisable and extensible SoC platform with system-level simulation support (2018)
- Test-chips 2018, Community board 2019

Funding

- Traditional research funding sources
- Donations and sponsorship
 - private individuals, Google
- lowRISC C.I.C
 - Not-for-profit organisation
 - Undertakes RISC-V consultancy work
 - Profits are used to support the project and community

5-year vision

- Industry
 - Easier to create derivative designs, faster timeto-market
 - Significantly lower the barriers to producing an SoC design
 - Cores are modified/adapted and used freely to quickly produce flexible SoCs
 - Shared technology investment permits focus on differentiation and innovation
 - Shared costs and reduced risk

5-year vision

- Academia
 - undertakes more detailed evaluations and design comparisons (reproduces results!)
 - ideas transferred more quickly to industry
 - More of the best students interested in hardware

How can we help?

- What are your priorities and areas of particular interest?
- Potential for collaborations?
- Might you have IP to contribute?
- (Students) please consider applying to Google Summer of Code! (GSoC)
 - See lowrisc.org blog or GSoC site

Thank you

Robert.Mullins@cl.cam.ac.uk www.lowrisc.org