2.410 D. dir ring, S* & D* > S is control in D.

Notation $x_{1}y \in D^{x}$ we "S-indep" if $S_{1}x + S_{2}y = 0 \implies S_{1} = S_{2} = 0$.

Lenna: If $x,y \in D^x$ are S-indep, $d \in D^x \setminus \{x,y\}$, Then

either x ad are S-indep or y ad are S-indep.

 $\frac{Pf}{S_1} = S_1 + S_2 d = 0 = S_3 y + S_4 d, \quad S_1 \neq 0 \implies X = -S_1^{-1} S_2 d, \quad y = -S_3^{-1} S_4 d.$

S&D, fix seS. s=0 der, assume s+0. Problem Pf: Define $\rho: D \rightarrow D$ by $\rho(d) = ds$

Step 1: P is an S-homomorphism (by distributivity & associativity)

Step 2: Y de Dx 3 2 es s.t. p(d) = 2 d $(dsd \in S \Rightarrow dsd = \lambda_{\lambda})$.

Step 3: If x,y are S-indep, then $\lambda_x = \lambda_y$.

Step 4: $\exists \lambda \in S \text{ s.t. } \lambda = \lambda_d \forall d \in D^x. Take <math>x \in D \setminus S$, $y \in S^x$.

Suppose $S_1, S_2 \in S$ & $S_1 \neq 0$, but $S_1 \times + S_2 y = 0$. $S_0 \times = -S_1^{-1} S_2 y \in S$, contradiction. $S_0 \times Y \in D^{\times}$, $\lambda_0 = \lambda_{\times} = \lambda_y = \lambda$.

5+ep5: p(1)=1S=s1 So $\lambda=S$.

Unique factorization domain: An integral domain where

very wonzero elt factors uniquely into the product of "atoms".

i.e. $X = a_1 \cdots a_m = b_1 \cdots b_m \implies m = n + 2 = a_1 \sim b_{\sigma(i)}$ (i.e. $(a_i) = (b_{\sigma(i)})$) for some $\sigma \in S_h$.

atoms: $a = bc \implies b$ or $c \in S_h$ unit.

D

Thun R[x] is a UFD iff R is a UFD.

 \propto is an algebraic integer if a satisfies a monic polynomial over \mathbb{Z} . • i.e. $\sqrt{-5}$: $\chi^2 + 5 = 0$.

•
$$\mathbb{Z}\left(\overline{1-5}\right)$$
 is not a u.f.d: $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$.
 $\ell(6) = 2$

half-factorial Domain:

XER*, any two factorizations have same length.

 \underline{ex} $F_2[x^2, x^3]: x^6 = x^2 x^2 x^2 = x^3 x^3.$ $\underbrace{x^6}_{x^2} = x^2 x^2 x^2 = x^3 x^3.$

bounded factorization domain

for x∈R*, ∃N_x s.t. L(x) ≤ N_x

for
$$x \in \mathbb{R}^*$$
, $\exists N_x$ s.t. $L(x) \in N_x$

Y factorization

 f_{twite} factorization domain

 $x \in \mathbb{R}^*$ has finitely many factorizations.

R+ x C[x]

HFD

BFD

$$R + x c(x)$$
 $x^2 = x x x^{-1} x$
 $x \in S'$.

and $x = x = x x$
 $x \in S'$.