

- DE1
 - Bool algebra
 - VHDL
 - o ...
- AE1
- AUD

∠ Link example:

This repository was made for usage of Lecture BPC-DE1; BUT 2021.

Col1	Col2
Row2	Row2
Row3	Row3
Row4	Row4

⊘ Code example in VHDL:

```
signal input_stream : input; signal clk :std_logic; signal parity :bit ;
begin
Ul: Parity_Generator1 port map(
input_stream, clk,
input1 : process (clk)
parity => parity );
begin
if clk <= 'U' then clk <= '0' after 1 ns; else clk <= not clk after 1 ns;
end if;
end process;</pre>
```

Programming:

∂ De Morgan's law verification

∂ Code of architecture

⊘ Waveforms

⊘ Playground link

Here is link my playground link to my play playground program site. (https://www.edaplayground.com/x/A8MC)

∂ Function table

С	b	a	f(c,b,a)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Ø Distributive laws verification 1

⊘ Code of architecture

⊘ Waveforms

Here is link my playground link to my play playground program site. (https://www.edaplayground.com/x/jLYU)

⊘ Code of architecture

```
architecture dataflow of gates is
begin
    -- Equation A
    -- left side:
    aL_0 <= (x_i and y_i) or (x_i and z_i);
    -- right side:
    aR_o <= x_i and (y_i or z_i);

-- Equation B
    -- left side:
    bL_0 <= (x_i or y_i) and (x_i or z_i);
    -- right side:
    bR_o <= x_i or (y_i and z_i);

end architecture dataflow;</pre>
```

⊘ Waveforms

Je zřejmé že rovnice platí. Provedli jsme jednoduchou zkoušku - pravá strana se rovná levé.

Here is link my playground link to my play playground program site. (https://www.edaplayground.com/x/m_y5)