Пусть дана булева алгебра $\mathscr{B}=(B,\vee,\wedge,\Theta,I,\overline{})$ $\mathscr{B}^n=(B^n,\vee,\wedge,\widetilde{\Theta},\widetilde{I})$ Тогда пусть $\widetilde{\alpha},\widetilde{\beta}\in\mathscr{B}^n;\;\alpha=(\alpha_1,\ldots,\alpha_n)$ $\beta=(\beta_1,\ldots,\beta_n)$ Отсюда

$$\widetilde{\alpha} \vee \widetilde{\beta} \leftrightharpoons (\alpha_1 \vee \beta_1, \dots, \alpha_n \vee \beta_n)$$

Аналогично и для $\widetilde{\alpha} \wedge \widetilde{\beta}$.

Также
$$\widetilde{\Theta} = (\Theta, \dots, \Theta)$$
 и $\widetilde{I} = (I, \dots, I)$

Определение 1. Булев куб размерности n: $\mathcal{B}^n = (\{0,1\}^n, \vee, \wedge, \widetilde{0}, \widetilde{1})$

Рассмотрим всевозможные отображения X в носитель булевой алгебры

$$f: X \to B$$

Тогда можно сказать такое:

- 1) $(f \lor g)(x) \leftrightharpoons f(x) \lor g(x)$
- 2) $(f \wedge g)(x) \leftrightharpoons f(x) \wedge g(x)$
- 3) $\overline{f}(x) \leftrightharpoons \overline{f(x)}$
- (4) $\sigma(x) \leftrightharpoons \Theta \quad (\forall x)$
- 5) $\xi(x) = I(\forall x)$

Определение 2. Так обозначается булева алгебра функций:

$$\mathscr{B}^X = (B^X, \vee, \wedge, \sigma, \xi)$$

Булево кольцо, соответствующее булевой алгебре \mathscr{B}

$$\mathcal{R}_B = (B, \oplus, \cdot, \Theta, I)$$

Отсюда

$$a \oplus b \leftrightharpoons a\overline{b} \vee \overline{a}b$$
$$a \cdot b \leftrightharpoons a \wedge b$$

$$\mathscr{S}_M = (2^M, \cup, \cap, \varnothing, M)$$
$$\mathscr{R}_M = (2^M, \triangle, \cap, \varnothing, M)$$

0.1 Булевые функции. Основные понятия

Определение 3. Булева функция от п переменных:

$$f: \{0,1\}^n \to \{0,1\}$$

Булева переменная - это x_1, x_2, \dots, x_n . Функция выглядит обычно: $y = f(x_1, \dots, x_n)$

Множество всех булевых функций:

$$\mathscr{P}_2 = \mathscr{P}_2^{(0)} \cup \mathscr{P}_2^{(1)} \cup \ldots \cup \mathscr{P}_2^{(n)} \cup \ldots$$

Нам известно определение н-арной операции: $\omega:A^n\to A$. То есть булевы функции своего рода н-арные операции.

Можно заметить, что $\overline{x} = x \oplus 1 = x \sim 0$

$$h = (0011111010101110) \Longleftrightarrow h = \{2, 3, 4, 5, 6, 8, 10, 12, 13, 14\}$$

0.2 Равенство булевых функций. Фиктивные переменные

Определение 4. Пусть есть $f,g:\{0,1\}^n \to \{0,1\}$. Тогда функции равны, если

$$f = g \leftrightharpoons (\forall \widetilde{\alpha} \in \{0,1\}^n) (f(\widetilde{\alpha}) = g(\widetilde{\alpha}))$$

$$f(x_1, x_2) = x_1 \lor x_2 g(x_1, x_2, x_3) = x_1 x_3 \lor x_1 \overline{x_3} \lor x_2 x_3 \lor x_2 \overline{x_3} = x_1 (x_2 \lor \overline{x_3}) \lor x_2 (x_3 \lor \overline{x_3}) = x_1 \lor x_2$$

Определение 5. Булевы функции считаются равными, если они отличаются друг от друга, может быть, только фиктивными переменными.

Можно переформулировать так предыдущее определение.

Определение 6. Булевы функции равны, если они существенно зависят от одних и тех же переменных и на каждом наборе значений этих переменных принимают одинаковые значения

Пусть дан набор значений $X = \{x_1, \dots, x_n\}$. Тогда селектор $pr_i(x_1, \dots, x_i, \dots, x_n) = x_n$ и иногда называется i-селектором.

Так можно добавит фиктивные переменные:

$$y = f(x_1, \dots, x_n)$$
 $\widetilde{y} = (x_{n+1} \vee \overline{x_{n+1}}) f(x_1, \dots, x_n) = y$

0.3 Суперпозиции и формулы

Определение 7. Пусть у нас есть $f \in \mathscr{P}_{2}^{(n)}, g_{1}, \dots, g_{n} \in \mathscr{P}_{2}^{(m)}$

$$f(g_1, \ldots, g_n)(\widetilde{\alpha}) = f(g_1(\widetilde{\alpha}), \ldots, g_n(\widetilde{\alpha})), \quad \widetilde{\alpha} \in \{0, 1\}^m$$

и это называется суперпозицией.