MTH5105 Differential and Integral Analysis 2010-2011

Solutions 2

1 Exercises for Feedback

1) Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies $|f'(x)| \leq 1$ for all $x \in \mathbb{R}$. Show that

$$|f(x) - f(y)| \le |x - y|$$

for all $x, y \in \mathbb{R}$.

Solution:

For any $x, y \in \mathbb{R}$ with x < y, f is continuous on [x, y] and differentiable on (x, y). Therefore we can apply the Mean Value Theorem to f on the interval [x, y].

The MVT implies that there exists a $c \in (x, y)$ such that

$$\frac{f(y) - f(x)}{y - x} = f'(c) .$$

By (a), $|f'(c)| \le 1$.

Therefore

$$\left| \frac{f(y) - f(x)}{y - x} \right| = |f'(c)| \le 1,$$

which implies $|f(y) - f(x)| \le |y - x|$.

This inequality is symmetric in x and y and trivially true if x = y, so that we can drop the restriction x < y. (This could have been argued earlier: without loss of generality, let x < y...)

2) Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies

$$|f(x) - f(y)| < (x - y)^2$$

for all $x, y \in \mathbb{R}$. Show that f is constant. Hint: try to compute the derivative of f first.

Solution:

From the inequality it follows that for all $x, a \in \mathbb{R}$

$$\left| \frac{f(x) - f(a)}{x - a} \right| \le |x - a| \;,$$

so that

$$\left| \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \right| = \lim_{x \to a} \left| \frac{f(x) - f(a)}{x - a} \right| \le \lim_{x \to a} |x - a| = 0.$$

Hence f'(a) exists and equals f'(a) = 0. Therefore f is differentiable for all $x \in \mathbb{R}$ with f'(x) = 0.

Now we want to apply Theorem 2.5 to show that f is constant, i.e. that f(x) = f(y) for all $x, y \in \mathbb{R}$. Note that the assumption of Theorem 2.5 is that f has zero derivative on a closed and bounded interval. The correct step is therefore to apply Theorem 2.5 to f on the interval [x, y] for x < y. Then it follows that f is constant on [x, y] and hence that f(x) = f(y). (Simply to say f'(x) = 0, so by Theorem 2.5 f is constant on \mathbb{R} is insufficient.)

2 Extra Exercises

3) Let $f, g: \mathbb{R} \to \mathbb{R}$ be differentiable with

$$f' = g$$
 and $g' = -f$.

Show that between every two zeros of f there is a zero of g and between every two zeros of g there is a zero of f.

Solution:

Choose $a, b \in \mathbb{R}$ with a < b such that f(a) = f(b) = 0.

As f is differentiable on \mathbb{R} , the assumptions of Rolle's Theorem are satisfied on [a, b], i.e. f continuous on [a, b] and differentiable on (a, b).

Therefore there exists a $c \in (a, b)$ such that f'(c) = 0.

As
$$f' = g$$
, $g(c) = f'(c) = 0$.

An analogous argument is valid with f and g exchanged.

4) Let $f: \mathbb{R} \to \mathbb{R}$ be twice differentiable (f'' = (f')') with

$$f(0) = f'(0) = 0$$
 and $f(1) = 1$.

Show that there exists a $c \in (0,1)$ such that f''(c) > 1.

Solution:

As f is differentiable on \mathbb{R} , the assumptions of the MVT are satisfied on [0,1], i.e. f continuous on [0,1] and differentiable on (0,1).

Therefore there exists a $d \in (0,1)$ such that

$$f'(d) = \frac{f(1) - f(0)}{1 - 0} = 1.$$

As f' is differentiable on \mathbb{R} , the assumptions of the MVT are satisfied on [0, d], i.e. f' continuous on [0, d] and differentiable on (0, d).

Therefore there exists a $c \in (0, d)$ such that

$$f''(c) = \frac{f'(d) - f'(0)}{d - 0} = \frac{1}{d}.$$

As $d \in (0,1), 1/d > 1$.

5*) Suppose that f is continuous on [0,1], differentiable on (0,1), and f(0)=0. Prove that if f' is decreasing on (0,1), then the function $g:(0,1)\to\mathbb{R}$ given by g(x)=f(x)/x is decreasing on (0,1).

Solution:

Since g is differentiable on (0,1) it suffices to show that $g'(x) \leq 0$. As

$$g'(x) = \frac{f'(x)x - f(x)}{x^2}$$
,

we only need to show that $f'(x)x - f(x) \le 0$.

Applying the MVT to f on [0, x], there exists a $c \in (0, x)$ such that f(x) - f(0) = f'(c)(x - 0).

As f' is decreasing and c < x, $f'(x) \le f'(c)$. Therefore

$$f(x) = f'(c)x \ge f'(x)x$$

and hence $f'(x)x - f(x) \le 0$ for all $x \in (0,1)$.

Thomas Prellberg, January 2011