Customer Segmentation / Clustering Report

The data used for clustering includes:

- Customer Profile (from the Customers.csv file)
- Transaction Details (from the Transactions.csv file)

We applied the **KMeans** clustering algorithm to segment the customers and used various metrics to evaluate the clustering performance.

1. Number of Clusters Formed

- Clustering Algorithm Used: KMeans.
- Optimal Number of Clusters: Based on the Elbow Method (WCSS plot) and the Silhouette Score, the optimal number of clusters was chosen to be 2.
- **Reason for 2 clusters**: The **Elbow Method** suggested that the optimal number of clusters lies between 2 and 4. The **Silhouette Score** also supported this choice, with a value that indicated moderate clustering quality for 2 clusters.

2. Evaluation Metrics

Silhouette Score

- **Silhouette Score** measures how similar a point is to its own cluster compared to other clusters.
 - o A higher score (closer to +1) indicates well-defined clusters, while a score close to 0 means the clusters are overlapping.
 - o The silhouette score for this KMeans clustering is **0.288**, which suggests that the clusters are moderately separated, but not perfectly distinct.

Silhouette Score (KMeans): 0.2878

Interpretation: The score indicates moderate clustering quality, suggesting that the two clusters formed are somewhat well-separated but may still have some overlap or fuzzy boundaries.

Davies-Bouldin Index (DBI)

- The **Davies-Bouldin Index** (DBI) is a metric that evaluates the separation and compactness of clusters.
 - o Lower DBI values indicate better clustering (i.e., clusters are more compact and well-separated).

 A higher DBI value suggests that the clusters are overlapping or not clearly defined.

Davies-Bouldin Index (KMeans): 3.183

o Interpretation: This DBI value suggests that the two clusters formed are not very compact and well-separated. The clusters may not be distinct enough, and there could be some overlap. Ideally, a DBI value below 2 would indicate better separation between clusters.

3. Other Relevant Clustering Metrics

Cluster Sizes

• Cluster Distribution: The clusters formed by KMeans were relatively balanced, with each cluster containing a reasonable number of customers. There was no extreme imbalance between the sizes of the clusters, which suggests that KMeans was able to effectively partition the data into meaningful groups.

PCA Visualization

• **2D Visualization using PCA**: To visualize the clusters, **Principal Component Analysis (PCA)** was used to reduce the dimensionality of the data to 2 dimensions. A scatter plot was then created, with customers color-coded by their assigned cluster.