第一章 半导体器件(1)

第一章 半导体器件

- 1.1 半导体基础知识
- 1.2 二极管
- 1.3 二极管的基本应用电路
- 1.4 稳压管
- 1.5 其他类型的二极管
- 1.6 三极管
- 1.7 场效应管

1.1 半导体的基础知识

导体: 自然界中很容易导电的物质称为导体,金属一般都是导体。

绝缘体: 有的物质几乎不导电, 称为绝缘体, 如橡皮、陶瓷、塑料和石英。

半导体: 另有一类物质的导电特性处于导体和绝缘体之间, 称为半导体,

如锗、硅、砷化镓和一些硫化物、氧化物等。

1.1 半导体的基础知识

半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点。 例如:

当受外界热和光的作用时,它的导电能力明显变化。

一一 光敏器件

往纯净的半导体中掺入某些杂质,会使它的导电能力和内部结构发生变化。

—— 二极管

1.1.1 本征半导体

纯净的晶体结构的半导体称为 本征半导体

将硅或锗材料提纯便形成单晶体,它的原子结构为共价键结构。

当温度 T=0 K 时,半导体不导电,如同绝缘体。

图1.1-1 共价键结构平面示意图

1.1.2 本征激发和两种载流子

若 T^{\uparrow} ,将有少数价电子克服共价键的束缚成为自由电子,在原来的共价键中留下一个空位——空穴。

本征激发:本征半导体因热运动而产生电子-空穴对的现象。

复合: 自由电子在运动过程中与空穴相遇而填补

空穴, 使二者同时消失。

在一定温度下本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。

1.1.2 本征激发和两种载流子

- 2. 本征半导体中,自由电子和空穴总是成对出现,称为 电子 空穴对。
- 3. 本征半导体中自由电子和空穴的浓度用 n_i 和 p_i 表示,显然 $n_i = p_i$ 。
- 4. 由于物质的运动,自由电子和空穴不断的产生又不断的复合。在一定的温度下,产生与复合运动会达到平衡,载流子的浓度就一定了。
- 5. 载流子的浓度与温度密切相关,它随着温度的升高,基本按指数规律增加。

杂质半导体有两种 { N型半导体 P型半导体

一、N型半导体(Negative)

在硅或锗的晶体中掺入少量的 5 价杂质元素,如磷、锑、砷等,即构成 N 型半导体(或称电子型半导体)。

常用的5价杂质元素有磷、锑、砷等。

本征半导体掺入 5 价元素后,原来晶体中的某些硅原子将被杂质原子代替。杂质原子最外层有 5 个价电子,其中 4 个与硅构成共价键,多余一个电子只受自身原子核吸引,在室温下即可成为自由电子。

自由电子浓度远大于空穴的浓度, n >> p 。

自由电子称为多子,空穴称为少子。

图 1.1-2 N 型半导体

二、P型半导体(Positive)

在硅或锗的晶体中掺入少量的 3 价杂质元素,如硼、镓、铟等,即构成 P 型半导体。3 价杂质原子称为受主原子。

空穴浓度多于电子浓度,即 p >> n。空穴为多数载流子,电子为少数载流子。

图1.1-3 P型半导体

- 1. 掺入杂质的浓度决定多数载流子浓度;温度决定少数载流子的浓度。
- 2. 杂质半导体载流子的数目要远远高于本征半导体,因而其导电能力大大改善。
- 3. 杂质半导体总体上保持电中性。

(a) N 型半导体

(b) P 型半导体

图1.1-4 杂质半导体的的简化表示法

在一块半导体单晶上一侧掺杂成为 P 型半导体,另一侧掺杂成为 N 型半导体,两个区域的交界处就形成了一个特殊的薄层,称为PN结。

一、PN 结的形成

图1.1-5 PN 结的形成

1.1.4 PN结

形成 单向导电性 电流方程 伏安特性 电容效应

PN 结中载流子的运动

1. 扩散运动

电子和空穴浓度差形成多数载流子的扩散运动。

扩散运动形成空间电荷区

1.1.4 PN结

形成 单向导电性 电流方程 伏安特性 电容效应

空间电荷区产生内电场

内电场阻止多子的扩散,但对少子的运动起到促进作用。

2. 漂移运动

少子在内电场作用下的运动— 漂移

在空间电荷区外的同侧,少子的运动与多子运动方向相反

3. 扩散与漂移的动态平衡

扩散运动使空间电荷区增大,扩散电流逐渐减小;随着内电场的增强,漂移运动逐渐增加;

当扩散电流与漂移电流相等时,PN 结总的电流等于零,空间电荷区的宽度达到稳定。

即扩散运动与漂移运动达到动态平衡。

二、PN结的单向导电性

1. PN结 外加正向电压 (正偏)

正偏时,外电场削弱内电场, PN结变薄,势垒电压降低, 利于多子扩散,不利于少子 漂移,由多子扩散形成较大 的正向电流。PN结呈现低阻, 处于正向导通状态。

图 1.1-6 PN结正偏

2. PN 结外加反向电压(反偏) 截止

反向电流又称反向饱和电流。对温度十分敏感,随着温度升高, I_S 将急剧增大。

图 1.1-7 PN结反偏

综上所述:

当 PN 结正向偏置时,回路中将产生一个较大的正向电流, PN 结处于导通状态;

当 PN结反向偏置时,回路中反向电流非常小,几乎等于零,PN 结处于截止状态。

可见, PN 结具有单向导电性。

三、PN结的电流方程

PN结所加端电压u与流过的电流i的关系为

$$i = I_{\rm S}(e^{\frac{qu}{kT}} - 1)$$

令
$$U_T = kT/q$$
,

$$i = I_{\rm S}(e^{\frac{u}{U_T}} - 1)$$

 $I_{\rm S}$: 反向饱和电流

q: 电子电量

k: 玻尔兹曼常数

T: 热力学温度

 U_T 称为温度的电压当量,

在常温(300 K)下, $U_T \approx 26 \text{ mV}$

四、PN结的伏安特性

五、PN结的电容效应

当PN上的电压发生变化时,PN 结中储存的电荷量将随之发生变化,使PN结具有电容效应。

电容效应包括两部分 {

势垒电容

扩散电容

势垒电容

PN结外加电压变化时,空间电荷区的宽度将发生变化,有电荷的积累和释放的过程,与电容的充放电相同,其等效电容称为势垒电容 C_b 。 C_b 主要表现在加反向电压时。

扩散电容

PN结外加的正向电压变化时,在扩散路程中载流子的浓度及其梯度均有变化,也有电荷的积累和释放的过程,其等

效电容称为扩散电容Cdo

结电容:

$$C_{\rm j} = C_{\rm b} + C_{\rm d}$$

若PN 结外加电压频率高到一定程度,则失去单向导电性! 结电容不是常量!

综上所述:

PN 结总的结电容 C_j 包括势垒电容 C_b 和扩散电容 C_d 两部分。

一般来说,当二极管正向偏置时,扩散电容起主要作用,即可以认为 $C_i \approx C_d$;

反向偏置时,势垒电容起主要作用,可以认为 $C_j \approx C_b$ 。

 $C_{\rm b}$ 和 $C_{\rm d}$ 值都很小,通常为几个皮法 ~ 几十皮法, 有些结面积大的二极管可达几百皮法。

在信号频率较高时,须考虑结电容的作用。

1.2 二极管

在PN结上加上引线和封装,就成为一个二极管。

图1.2-1二极管的几种外形

1.2.1 二极管的几种常见结构

(c) 平面型

往往用于集成电路制造工艺中。PN 结面积可大可小, 用于高频整流和开 关电路中。

(a) 点接触型

PN结面积小,结电容小,用于检波和 变频等高频电路。 PN结面积大, 用于工频大电流 整流电路。

图1.2-2 二极管的常见结构

1.2.2 二极管的伏安特性

一、伏安特性

二极管的伏安特性曲线可用下式表示

硅二极管2CP10的伏安特性

锗二极管2AP15的伏安特性

1.2.2 二极管的伏安特性

1.2.2 二极管的伏安特性

二、温度对二极管伏安特性的影响

在环境温度升高时,二极管的 正向特性将左移,反向特性将 下移。

二极管的特性对温度很敏感。

1.2.3 二极管的主要参数

- (1) 最大整流电流 I_{F} : 最大平均值,限制二极管的结温升
- (2) 反向工作峰值电压 U_{R} . 最大瞬时值
- (3) 反向峰值电流 I_{R} 即 I_{S}
- (4) 最高工作频率 f_{M}

在实际应用中,应根据管子所用的场合,按其所承受的最高反向电压、最大正向平均电流、工作频率、环境温度等条件,选择满足要求的二极管。

二极管在电子电路中主要起整流、限幅、开关的作用。

一、由伏安特性折线化得到的等效电路

1. 理想模型

2. 恒压降模型

3. 折线模型

讨论:电源电压值不同时如何求解回路电流?

$$V = 30$$
V时 $I \approx \frac{V}{R}$

$$V = 5 \text{V时} I = \frac{V - U_{\text{D}}}{R}$$

V = 2V时要实测伏安特性 采用第三种模型求I

应根据不同情况选择不同的等效电路,采用不同求解方法!

二、二极管的微变等效电路

二极管工作在正向特性的某一小范围内时,其正向特性可以等效成一个微变电阻。

即
$$r_{\rm d} = \frac{\Delta v_{\rm D}}{\Delta i_{\rm D}}$$
 根据 $i_{\rm D} = I_{\rm S}(e^{v_{\rm D}/V_T} - 1)$

得Q点处的微变电导

$$g_{d} = \frac{di_{D}}{dv_{D}}\Big|_{Q} = \frac{I_{S}}{V_{T}}e^{v_{D}/V_{T}}\Big|_{Q} = \frac{I_{D}}{V_{T}}$$

则
$$r_{\rm d} = \frac{1}{g_{\rm d}} = \frac{V_{T}}{I_{\rm D}}$$

常温下 (T=300K)

$$r_{\rm d} = \frac{V_T}{I_{\rm D}} = \frac{26(\text{mV})}{I_{\rm D}(\text{mA})}$$

应用举例:计算二极管电流和两端的电压

$$V_{\rm DD}$$
=10V 时 (R =10k Ω)

理想模型

$$V_{\rm D} = 0 \,\mathrm{V}$$
 $I_{\rm D} = V_{\rm DD} / R = 1 \,\mathrm{mA}$

恒压模型

$$V_{\rm D}=0.7\,{
m V}$$
(硅二极管典型值)

$$I_{\rm D} = (V_{\rm DD} - V_{\rm D})/R = 0.93 \,\mathrm{mA}$$

应用举例:计算二极管电流和两端的电压

$$V_{\rm DD}$$
=10V 时 (R =10k Ω)

折线模型

$$V_{th} = 0.5 \, \mathrm{V}$$
 (硅二极管典型值)

设
$$r_{\rm D} = 0.2 \,\mathrm{k}\Omega$$

$$I_{\rm D} = \frac{V_{\rm DD} - V_{\rm th}}{R + r_{\rm D}} = 0.931 \,\mathrm{mA}$$

$$V_{\mathrm{D}} = V_{\mathrm{th}} + I_{\mathrm{D}} r_{\mathrm{D}} = 0.69 \, \mathrm{V}$$

应用举例:计算二极管电流和两端的电压

$$V_{\rm DD}$$
=10V 时 (R =10k Ω)

理想模型

$$V_{\rm D} = 0 \, \mathrm{V}$$
 $I_{\rm D} = V_{\rm DD} / R = 1 \, \mathrm{mA}$

恒压模型

$$V_{\mathrm{D}}=0.7\,\mathrm{V}$$
(硅二极管典型值) $I_{\mathrm{D}}=(V_{\mathrm{DD}}-V_{\mathrm{D}})/R=0.93\,\mathrm{mA}$

折线模型

$$V_{\rm D} = V_{\rm th} + I_{\rm D} r_{\rm D} = 0.69 \,\rm V$$
 $I_{\rm D} = \frac{V_{\rm DD} - V_{\rm th}}{R + r_{\rm D}} = 0.931 \,\rm mA$

1.3 二极管的基本应用电路

- 1.3.1二极管整流电路
- 1.3.2桥式整流电路
- 1.3.3倍压整流电路
- 1.3.4限幅电路
- 1.3.5与门电路

1.3.1 二极管整流电路

利用二极管的单向导电性可以将交流信号变换成单向脉动的信号,这种过程称为整流。

1.3.2 桥式整流电路

图1.3-2桥式整流电路及波形

设输入信号 $v_i = \sqrt{2}V_i\sin\omega t$,根据高等数学求平均值的方法,可得桥式整流电路输出电压的平均值为:

$$V_{\text{o(AV)}} = \frac{1}{\pi} \int_{0}^{\pi} \sqrt{2} V_{\text{i}} \sin \omega t d(\omega t) = \frac{2\sqrt{2}}{\pi} V_{\text{i}} \approx 0.9 V_{\text{i}}$$

$$I_{\text{o(AV)}} = \frac{V_{\text{o(AV)}}}{R} = \frac{0.9V_{\text{i}}}{R}$$

根据输出电压脉动系数S的定义:整流输出电压的基波峰值电压 V_{OM} 与输出电压的平均值 $V_{\text{o(AV)}}$ 的比可得

$$S = \frac{V_{\text{OM}}}{V_{\text{o(AV)}}} = \frac{\frac{2}{3} \cdot \frac{2\sqrt{2}}{\pi} V_{\text{i}}}{\frac{2\sqrt{2}}{\pi} V_{\text{i}}} = \frac{2}{3} \approx 0.67$$

1.3.2 桥式整流电路

基波峰值电压 V_{OM} 实际上 就是傅里叶级数基波信号的系数,因为桥式整流输出基波信号的频率是输入信号的 2 倍,即周期为 π ,且该函数为偶函数,根据傅里叶级数系数的计算公式可得

$$V_{\text{OM}} = \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} \sqrt{2} V_{\text{i}} \cos \omega t \cos(2\omega t) d(\omega t) = \frac{2}{3} \cdot \frac{2\sqrt{2}}{\pi} V_{\text{i}}$$

1.3.3 倍压整流电路

利用电容器存储电能的作用,由多个二极管和电容器可以获得几倍于输入电压的输出电压,这种电路称为倍压整流电路,如图1.3-3所示。

图1.3-3倍压整流电路

1.3.3 倍压整流电路

同理还可组成三倍压、四倍压的整流电路。

在图1.3-4所示的电路中,若输出信号是 C_1 和 C_3 两端电压的和,则输出电压为输入电压的三倍压,组成三倍压整流电路;若输出信号是 C_2 和 C_4 两端电压的和,则输出电压为输入电压的四倍压,组成四倍压整流电路。

图1.3-4三倍压、四倍压整流电路

1.3.4 限幅电路

在电子电路中,为了保护电路不会因电压过高而损坏,需要对输入电压进行限制,利用二极管限幅电路就可实现该目的。

二极管限幅电路及波形如图1.3-5所示。

图1.3-5限幅电路及波形

1.3.5 与门电路

利用二极管通、断的开关特性,可以组成实现与逻辑函数关系的电路,该电路称为与门电路。二极管与门电路如图1.3-6所示。

图1.3-6与门电路

讨论:对于二极管应用电路应解决两个问题

- 如何判断二极管的工作状态?
- 什么情况下应选用二极管的什么等效电路?

两电路如下图所示,二极管导通时 $U_{\rm D}$ =0.7V,分别求解各电路的输出电压。

稳压管与二极管的外形相似,稳 压管的特性曲线如图1.4-1(a)所示, 常用的图符如图1.4-1(b)所示, 稳压管工作于反向击穿状态,击 穿电压从几伏到几十伏, 反向电 流也比一般的二极管大。能在反 向击穿状态下正常工作而不损坏. 是稳压管工作的特点。稳压管在 电路中用VDZ来表示。

图1.4-1稳压管的特性曲线和符号

稳压管的主要参数包括:

1. 稳定电压 V_Z

正常工作时二极管两端的电压, 也是并联负载两端电压

- 2. 稳定电流I_Z(I_{Zmin})
- 3. 额定功耗P_{ZM}
- 4. 动态电阻 r_d
- 5. 温度系数α: 温度每变化1°C时, 稳压管稳压值的变化量

如图所示电路, $V_{\rm i}=10{\rm V}$, 波动的幅度为 ± 10%, $V_{\rm Z}=6{\rm V}$, $I_{\rm Zmin}=5{\rm mA}$ $I_{\rm ZM}=30{\rm mA}$, $R_{\rm L}$ 的变化范围是 $600\Omega\sim\infty$, 求限流电阻 R 的取值范围。

分析:由于稳压管的反向电流在小于/_{zmin}时不稳压,大于/_{zmax}时会因超过额定功率而损坏,所以在稳压管电路中必须串联一个电阻来限制电流。

计算限流电阻R时应考虑:

当输入电压最小,负载电流最大,稳压管的工作电流应比/_{zmin}大 当输入电压最大,负载电流最小,稳压管的工作电流应比/_{zmax}小

如图所示电路, $V_{\rm i}=10{\rm V}$, 波动的幅度为 ± 10%, $V_{\rm Z}=6{\rm V}$, $I_{\rm Zmin}=5{\rm mA}$ $I_{\rm ZM}=30{\rm mA}$, $R_{\rm L}$ 的变化范围是 $600\Omega\sim\infty$, 求限流电阻 R 的取值范围。

解 因为输入电压变化的幅度是 $\pm 10\%$,所以输入电压的最大值为 11V,最小值为 9V,该电路带负载两个极限的情况是,输入电压最小时,带最大的负载 600Ω ,负载电流最大 I_{Lmax} 为 10mA,此时稳压管应工作在最小击穿电流 I_{Zmin} 的状态下,限流电阻的值为

$$R_1 = \frac{V_{\text{imin}} - V_{\text{Z}}}{I_{\text{ZLmin}} + I_{\text{Lmax}}} = \frac{(9 - 6) \text{ V}}{(5 + 10) \text{ mA}} = 200\Omega$$

如图所示电路, $V_{\rm i}=10{\rm V}$, 波动的幅度为 ± 10%, $V_{\rm Z}=6{\rm V}$, $I_{\rm Zmin}=5{\rm mA}$ $I_{\rm ZM}=30{\rm mA}$, $R_{\rm L}$ 的变化范围是 $600\Omega\sim\infty$, 求限流电阻 R 的取值范围。

输入电压最大时,带最小的负载 $R = \infty$,此时稳压管应工作在最大击穿 I_{ZM} 的状态下,限流电阻的值为

$$R_2 = \frac{V_{\text{imax}} - V_{\text{Z}}}{I_{\text{ZM}}} = \frac{(11 - 6) \text{ V}}{30 \text{ mA}} = 167 \Omega$$

根据 $R_1 \ge R \ge R_2$ 的关系,取 $R = 180 \Omega_{\odot}$

1.5 其他类型的二极管

一、发光二极管

发光二极管包括可见光、不可见光、 激光等不同的类型,这些二极管除 了具有PN结的单向导电性外,还可 以将电能转换成光能输出。

图1.5-1发光二极管和符号

1.5 其他类型的二极管

二、光电二极管

光电二极管是一种远红外线接收管,它可将所接收到的光能转换成电能。 PN结型光电二极管充分利用PN结的 光敏特性,将接收到光能的变化转 换成电流的变化。

图1.5-2光电二极管