МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Трансляции, отладка и выполнение программ на языке

Ассемблера

Вариант №6

Студент гр. 1383	E	богданов Е.М.
Преподаватель	F	Ефремов М.А.

Санкт-Петербург

Цели работы.

Изучить режимы адресации и формирование исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

Выполнение работы.

- 1. Были изменены значения vec1, vec2, matr согласно варианту.
- 2. Была проведена попытка трансляции файла с получением ошибок (рис.1).

Рисунок 1 — Ошибки при первой попытке трансляции

```
Cross-reference [NUL.CRF]:
L2.ASM(42): error A2052: Improper operand type
L2.ASM(50): warning A4031: Operand types must match
L2.ASM(54): warning A4031: Operand types must match
L2.ASM(55): error A2055: Illegal register value
L2.ASM(74): error A2046: Multiple base registers
L2.ASM(75): error A2047: Multiple index registers
L2.ASM(82): error A2006: Phase error between passes
```

3. Были описаны предупреждения и ошибки(закомментированы):

mov mem3, [bx]; — обраться к области памяти можно только через регистр

mov cx, vec2[di] и mov cx, matr[bx][di] — регистры имеют размер 2 байта, тогда как vec2[di] и matr[bx][di]— 1 байт

mov ax,matr[bx*4][di] — регистр bx нельзя использовать для масштабирования

mov ax,matr[bp+bx]— базовый регистр должен быть один mov ax,matr[bp+di+si] — индексный регистр должен быть один

4. Программа была протранслирована и был составлен протокол(табл.1 и рис. 2) :

Рисунок 2 — Начальное состояние регистров

_					
AX 0000	SI 0000	CS 1AOA	IP 0000	Stack +0 0000	Flags 7202
BX 0000	DI 0000	DS 19F5		+2 0000	
CX 00B0	BP 0000	ES 19F5	HS 19F5	+4 0000	OF DF IF SI
DX 0000	SP 0018	SS 1A05	FS 19F5	+6 0000	0 0 1 0

Таблица 1 — Протокол выполнение программы

Адрес	Символический	16-ричный	Регистры до	Регистры
команды	код команды	код команды	выполнения	после
				выполнения
0000	PUSH DS	1E	SP=0018	SP=0016
			STACK:	STACK:
			+0 0000	+0 19F5
0001	SUB AX,AX	2B C0		
0003	PUSH AX	50	SP=0016	SP=0014
			STACK:	STACK:
			+0 19F5	+0 0000
			+2 0000	+0 19F5
0004	MOV AX, 1A07	B8 07 1A	AX=0000	AX=1A07
0007	MOV DS, AX	8E D8	DS=19F5	DS=1A07
0009	MOV AX,01F4	B8 F4 01	AX= 1A07	AX=01F4
000C	MOV CX, AX	0B C8	CX=00B0	CX=01F4
000E	MOV BL,24	B3 24	BX=0000	BX=0024
0010	MOV BH, CE	B7 CE	BX=0024	BX=CE24
0012	MOV [0002],	C7 06 02 00		

	FFCE	CE FF		
0018	MOV BX, 0006	BB 06 00	BX=CE24	BX=0006
001B	MOV [0000],	A3 00 00		
	AX			
001E	MOV AL, [BX]	8A 07	AX=01F4	AX=0112
0020	MOV AL,	8A 47 03	AX=0112	AX=010F
	[BX+03]			
0023	MOV CX,	8B 4F 03	CX=01F4	CX=0B0F
	[BX+03]			
0026	MOV DI, 0003	BF 02 00	DI=0000	DI=0002
0029	MOV AL,	8A 85 0E 00	AX=010F	AX=01E2
	[000E+DI]			
002D	MOV BX, 0003	BB 03 00	BX=0006	BX=0003
0030	MOV AL,	8A 81 16 00	AX=01E2	AX=01FF
	[0016+BX+DI]			
0034	MOV AX, 1A07	B8 07 1A	AX=01FF	AX=1A07
0037	MOV ES, AX	8E C0	ES=19F5	ES= 1A07
0039	MOV AX, ES:	26 8B 07	AX=1A07	AX=00FF
	[BX]			
003C	MOV AX, 0000	B8 00 00	AX=00FF	AX=0000
003F	MOV ES, AX	8E C0	ES=1A07	ES=0000
0041	PUSH DS	1E	SP=0014	SP=0012
			STACK:	STACK:
			+0 0000	+0 1A07
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0042	POP ES	07	SP=0012	SP=0014
			ES=0000	ES=1A07
			STACK:	STACK:

			+0 1A07	+0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
0043	MOV CX,	26 8B 4F FF	CX=0B0F	CX=FFCE
	ES:[BX-01]			
0047	XCHG AX, CX	91	AX=0000	AX=FFCE
			CX=FFCE	CX=000
0048	MOV DI, 0002	BF 02 00		
004B	MOV	26 89 01		
	ES:[BX+DI],			
	AX			
004E	MOV BP,SP	8B EC	BP=0000	BP=0014
0050	PUSH [0000]	FF 36 00 00	SP=0014	SP=0012
			STACK:	STACK:
			+0 0000	+0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0054	PUSH [0002]	FF 36 02 00	SP=0012	SP=0010
			STACK:	STACK:
			+0 01F4	+0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP, SP	8B EC	BP=0014	BP=0010
005A	MOV DX,	8B 56 02	DX=0000	DX=01F4
	[BP+02]			
005D	RET FAR 0002	CA 02 00	SP=0010	SP=0016
			CS=1A0A	CS=01F4
			+0 FFCE	+0 19F5

-	+2 01F4	+2 0000
-	+4 0000	+4 0000
-	+6 19F5	+6 0000

Выводы.

Изучены режимы адресации на языке Ассемблера.

Составлен протокол работы программы, найдены и объяснены ошибки в исходном коде

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Программа изучения режимов адресации процессора
IntelX86
    EOL EOU '$'
    ind EQU 2
    n1 EQU 500
    n2 EQU -50
    ; Стек программы
    AStack SEGMENT STACK
     DW 12 DUP(?)
    AStack ENDS
    ; Данные программы
    DATA SEGMENT
    ; Директивы описания данных
    mem1 DW 0
    mem2 DW 0
    mem3 DW 0
    vec1 DB 18,17,16,15,11,12,13,14
    vec2 DB 30,40,-30,-40,10,20,-10,-20
    matr DB -4, -3, 1, 2, -2, -1, 3, 4, 5, 6, 7, 8, -8, -7, -6, -5
    DATA ENDS
    ; Код программы
    CODE SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
    ; Головная процедура
    Main PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
     mov DS, AX
    ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
    ; Регистровая адресация
     mov ax, n1
     mov cx, ax
     mov bl, EOL
     mov bh, n2
    ; Прямая адресация
     mov mem2, n2
     mov bx, OFFSET vec1
     mov mem1,ax
    ; Косвенная адресация
     mov al, [bx]
```

```
; mov mem3, [bx];
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
 ;mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
 ;mov cx,matr[bx][di]
 ;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ---- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
 xchg cx, ax
; ---- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp, sp
 ;mov ax,matr[bp+bx]
 ;mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp, sp
mov dx, [bp]+2
 ret 2
Main ENDP
CODE ENDS
 END Main
```

приложение б

ЛИСТИНГ

Microsoft (R) Macro Assembler Version 5.10

10/22/22 17:40:2 Page 1-1

```
; Программа изучения режи
                       ♦ов адресации процессора І
                       ntelX86
= 0024
                            EOL EQU '$'
= 0002
                             ind EQU 2
= 01F4
                             n1 EQU 500
                            n2 EQU -50
=-0032
                       ; Стек программы
                       AStack SEGMENT STACK
0000
0000 000C[
                              DW 12 DUP(?)
        3333
                  ]
0018
                      AStack ENDS
                      ; Данные программы
0000
                      DATA SEGMENT
                       ; Директивы описания данн�
                       Фx
0000 0000
                       mem1 DW 0
0002
     0000
                      mem2 DW 0
0004
      0000
                      mem3 DW 0
0006
      12 11 10 OF OB OC
                           vec1 DB 18,17,16,15,11,12,13,14
      0D 0E
      1E 28 E2 D8 0A 14
000E
                           vec2 DB 30,40,-30,-40,10,20,-10,-20
      F6 EC
0016 FC FD 01 02 FE FF
                            matr DB -4, -3, 1, 2, -2, -1, 3, 4, 5, 6, 7, 8, -8, -7, -6, -
                       5
      03 04 05 06 07 08
      F8 F9 FA FB
0026
                      DATA ENDS
                       ; Код программы
0000
                      CODE SEGMENT
                       ASSUME CS:CODE, DS:DATA, SS:AStack
                       ; Головная процедура
0000
                      Main PROC FAR
0000 1E
                       push DS
0001 2B C0
                             sub AX, AX
0003 50
                       push AX
0004 B8 ---- R
                       mov AX, DATA
0007 8E D8
                             mov DS, AX
                       ; ПРОВЕРКА РЕЖИМОВ АДРЕСА
                       ФИИ НА УРОВНЕ СМЕЩЕНИЙ
                       ; Регистровая адресация
0009 B8 01F4
                              mov ax, n1
000C
     8B C8
                              mov cx,ax
000E B3 24
                             mov bl, EOL
0010 B7 CE
                             mov bh, n2
                       ; Прямая адресация
0012 C7 06 0002 R FFCE
                             mov mem2, n2
                      mov bx,OFFSET vec1
0018 BB 0006 R
001B A3 0000 R
                       mov mem1,ax
                       ; Косвенная адресация
001E 8A 07
                            mov al, [bx]
                        ;mov mem3,[bx];
```

Page 1-2

```
; Базированная адресация
0020 8A 47 03
                           mov al, [bx]+3
0023 8B 4F 03
                           mov cx, 3[bx]
                     ; Индексная адресация
0026 BF 0002
                       mov di, ind
0029 8A 85 000E R
                          mov al, vec2[di]
                     ;mov cx,vec2[di]
                     ; Адресация с базирование
                     • и индексированием
002D BB 0003
                           mov bx,3
0030 8A 81 0016 R
                           mov al, matr[bx][di]
                      ;mov cx,matr[bx][di]
                      ;mov ax,matr[bx*4][di]
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСА�
                     ФИИ С УЧЕТОМ СЕГМЕНТОВ
                     ; Переопределение сегмент
                     ; ----- вариант 1
0034 B8 ---- R
                     mov ax, SEG vec2
0037 8E CO
                      mov es, ax
0039 26: 8B 07
                     mov ax, es:[bx]
003C B8 0000
                      mov ax, 0
                     ; ----- вариант 2
                      mov es, ax
003F 8E C0
0041 1E
                      push ds
0042 07
                      pop es
0043 26: 8B 4F FF
                      mov cx, es: [bx-1]
0047 91
                     xchg cx,ax
                     ; ----- вариант 3
                       mov di,ind
0048 BF 0002
004B 26: 89 01
                     mov es:[bx+di],ax
                     ; ---- вариант 4
                        mov bp,sp
004E 8B EC
                      ;mov ax,matr[bp+bx]
                      ;mov ax,matr[bp+di+si]
                     ; Использование сегмента �
                     тека
0050 FF 36 0000 R
                           push mem1
0054 FF 36 0002 R
                           push mem2
0058 8B EC
                           mov bp,sp
005A 8B 56 02
                           mov dx, [bp]+2
005D CA 0002
                           ret 2
                     Main ENDP
0060
0060
                     CODE ENDS
                     END Main
```

Segments and Groups:

${\tt N}$ a ${\tt m}$ e	Length Align	Combine Class
ASTACK	0018 PARA STACK 0060 PARA NONE 0026 PARA NONE	
_	Maria Malua 7440	
N a m e	Type Value Attr	
EOL	NUMBER 0024	
IND	NUMBER 0002	
MAIN	F PROC 0000 CODE L BYTE 0016 DATA L WORD 0000 DATA L WORD 0002 DATA	Length = 0060
MEM3	L WORD 0004 DATA NUMBER 01F4	
N2	NUMBER -0032	
VEC1	L BYTE 0006 DATA L BYTE 000E DATA	
@CPU	TEXT 0101h TEXT L2 TEXT 510	

47842 + 459418 Bytes symbol space free

⁸⁴ Source Lines 84 Total Lines

¹⁹ Symbols

⁰ Warning Errors
0 Severe Errors