Homework - 5

- 1) Solve the exercises mentioned in class.
- 2) For a segular, smooth χ curve d show that (i) $\frac{d\eta_s}{ds} = -\chi_s \overrightarrow{T}$
- 3) (ii) Show that xs is a smooth function of s.
- Suppose $d: [a,b] \rightarrow \mathbb{R}^2$ is a smooth regular curve and $\beta: [a,b] \rightarrow \mathbb{R}^2$ be defined by $\beta(t) = d(a+b-t)$. Show that β is regular. Their signed curvature functions (ii) Suppose their signed curvature functions are χ_1 and χ_2 respectively. Show that $\chi_2(t) = -\chi_1(a+b-t)$

Interpret this geometrically.

- 4) Given an ellipse $\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b > 0 find a parametrization. Using this find the points where the curvature is maximum and minimum respectively.
- 5) Draw the following curves and find curvature wherever defined.

 (i) p= 2+coso (ii) p= 1+2coso (iii) p= sin20
- 6) Find curvature of the following curves at any point. (i) $y = e^{x}$ (ii) $y = \frac{1}{2}e^{x}$, x > 0 (iii) $y = \log x$.