For Project 4, I worked on all of the tasks by myself. This project looked at the performance of the boiler design in the PS10 solar thermal power plant (Task 1), and the natural convection cooling of discrete heated electronic components mounted on a vertical circuit board (Task 2).

Task 1

In task 1.1, I was given operating and performance parameter data for the boiler design as ME248Proj4data1a data array. Each of the three input parameters— D_i , q_0^n , \dot{m} —and the two output parameters (x_e , $T_{w, max}$) were standardized by dividing by the median value of each respective parameter. The normalized data was randomly separated to create a training set (3/4 the size of the data) and a validation set (1/4 the size of the data). Then, I created the keras sequential network model with the following specs—1) RandomUniform initializer, 2) inlet layer with 6 neurons (with 3 inputs) with K.elu activation function, 3) 3 hidden layers with 8, 16, and 8 neurons all with K.elu activation function, 4) outlet layer with 2 neurons without an activation function, 5) RMSprop optimizer, 6) initialized weights to -0.2 and 0.5, 7) epochs of 800, and 8) learning rate of 0.005. The resulting NN model was trained to get the mean absolute error of 0.025 or below (ended up getting MAE = 0.0124137 with best epoch at 651).

After the training is complete, I ran two comparisons sets—first between the prediction vs real data from the training data set (Figure 1), and second between the prediction vs real data from the normalized validation data set (Figure 2) both for the exit quality. The mean absolute error between the prediction and the training set was 0.02351 while the mean absolute error between the prediction and the normalized validation set was 0.02903. Therefore, both predictions were good using the trained model, but it was visible that trained set predictions were slightly better than the validation set predictions. It makes sense since the model was actually trained based on the training set—the model has seen these values before, so it should be better at predicting the exit quality output given the training set. There was no sign of overfitting since the both the loss and predictions from the training and validation set predictions (in respect to the real data) are about the same.

Figure 1. A log-log scatter plot of exit quality prediction vs given data for trained data using the keras model. It makes a good prediction as can be seen on the graph. The MAE was 0.02351. The red line is a reference linear line (actual = prediction; ie, y = x).

Figure 2. A log-log scatter plot of exit quality prediction vs given data from the validation set using the trained keras model. It makes a good prediction, similar to the trained set (Figure 1) as can be seen on the graph. The MAE was 0.02903. The red line is a reference linear line (actual = prediction; ie, y = x).

The keras model from above was used to create surface plots (Figure 3) of exit quality (x_e) and maximum wall temperature (T_{w, max}) predictions based on the function of D_i and \dot{m} . Solar flux was fixed at 750 kW/m² while 7 $mm < D_i < 13 mm$ and 0.05 $< \dot{m} < 0.15 kg/s$. Based on the surface plot, if you want to get an output quality of about 0.75 and a maximum wall temperature no more than about 310 °C, I would recommend the parameter values of $q_0^{"} = 750 \frac{kW}{m^2}$, $D_i = 0.0105$ m, and $\dot{m} = 0.014 \frac{kg}{s}$.

Figure 3. Surface plots for predicted x_e and $T_{w, max}$ values for $7 mm < D_i < 13 mm$ and $0.05 < \dot{m} < 0.15 kg/s$ with $q_0^{"} = 750 kW/m^2$. To get an $x_e = 0.75$ and a maximum wall temperature ≤ 310 °C, I would recommend the parameter values of $q_0^{"} = 750 \frac{kW}{m^2}$, $D_i = 0.0105 m$, and $\dot{m} = 0.014 \frac{kg}{s}$.

In task 1.2, I repeated task 1.1 with a new neural network model. The sequential neural network model now has the following specs—1) RandomUniform initializer, 2) inlet layer with 6 neurons (with 3 inputs) with K.elu activation function, 3) 4 hidden layers with 8, 12, 16, and 8 neurons all with K.elu activation function, 4) dropout layers of the value of 0.25 after each of the four hidden layers, 5) outlet layer with 2 neurons without an activation function, 6) RMSprop optimizer, 7) initialized weights to -0.2 and 0.5, 8) epochs of 800, and 9) learning rate of 0.001. The resulting NN model was trained to get MAE = 0.045224 with best epoch at 190). After the training is complete, I ran two comparisons sets—first between the prediction vs real data from

the training data set (Figure 4), and second between the prediction vs real data from the normalized validation data set (Figure 5 both for the exit quality. The mean absolute error between the prediction and the training set was 0.02351 while the mean absolute error between the prediction and the normalized validation set was 0.02903. Therefore, both predictions were good using the trained model, but it was visible that trained set predictions were slightly better than the validation set predictions. It makes sense since the model was actually trained based on the training set—the model has seen these values before, so it should be better at predicting the exit quality output given the training set. There was no sign of overfitting since the both the loss and predictions from the training and validation set predictions (in respect to the real data) are about the same. Compared to the results from Task 1.1, the predictions for Task 1.2 were similar to Task 1.1 with the dropout layers. Since there was no overfitting initially in Task1.1, it is expected that the dropout layers would have little to no effect. The fit to the training and validation data are similar as before.

Figure 4. A log-log scatter plot of exit quality prediction vs given data for trained data using the keras model. It makes a good prediction as can be seen on the graph. The MAE was 0.02351. The red line is a reference linear line (actual = prediction; ie, y = x). It gives a similar result as the model from Task 1.1.

Figure 5. A log-log scatter plot of exit quality prediction vs given data from the validation set using the trained keras model. It makes a good prediction, similar to the trained set (Figure 4) as can be seen on the graph. The MAE was 0.02903. The red line is a reference linear line (actual = prediction; ie, y = x). It gives a similar result as the model from Task 1.1.

The keras model from above was used to create surface plots (Figure 6) of exit quality (x_e) and maximum wall temperature $(T_{w, max})$ predictions based on the function of D_i and \dot{m} .

Solar flux was fixed at 750 kW/m² while 7 $mm < D_i < 13 mm$ and $0.05 < \dot{m} < 0.15 kg/s$. Based on the surface plot, if you want to get an output quality of about 0.75 and a maximum wall temperature no more than about 310 °C, I would recommend the parameter values of $q_0^{"} = 750 \frac{kW}{m^2}$, $D_i = 0.0105$ m, and $\dot{m} = 0.014 \frac{kg}{s}$. Both the surface plots and parameter value recommendations validate the values from Task1.1.

Figure 6. Surface plots for predicted x_e and $T_{w, max}$ values for $7 mm < D_i < 13 mm$ and $0.05 < \dot{m} < 0.15 kg/s$ with $q_0^{"} = 750 kW/m^2$. To get an $x_e = 0.75$ and a maximum wall temperature ≤ 310 °C, I would recommend the parameter values of $q_0^{"} = 750 \frac{kW}{m^2}$, $D_i = 0.0105 m$, and $\dot{m} = 0.014 \frac{kg}{s}$. The plots and the parameter recommendation values are similar to and validates the results from Task1.1.

In task 1.3, I was given a second set of operating and performance parameter data for the boiler design as ME248Proj4data1b data array. Each of the four input parameters— D_i , q_0^n , x_e , $T_{w,max}$ —and the output parameter (\dot{m}) were standardized by dividing by the median value of each respective parameter. The normalized data was randomly separated to create a training set (3/4 the size of the data) and a validation set (1/4 the size of the data). Then, I created the keras sequential network model with the following specs—1) RandomUniform initializer, 2) inlet layer with 8 neurons (with 4 inputs) with K.elu activation function, 3) 3 hidden layers with 16, 16, and 16 neurons all with K.elu activation function, 4) outlet layer with 1 neuron without an activation function, 5) no dropout layers, 6) RMSprop optimizer, 7) initialized weights to -0.2 and 0.5, 8) epochs of 800, and 8) learning rate of 0.001. The resulting NN model was trained to get the mean absolute error of 0.025 or below (ended up getting MAE = 0.019651 with best epoch at 778).

After the training is complete, I ran two comparisons sets—first between the prediction vs real data from the training data set (Figure 7), and second between the prediction vs real data from the normalized validation data set (Figure 8) both for the mass flow rate. The mean absolute error between the prediction and the training set was 0.030806 while the mean absolute error between the prediction and the normalized validation set was 0.0291495. Therefore, both predictions were good using the trained model. In this case, the validation set was slightly better than the trained set predictions, which is counterintuitive, but it was similar enough that we can say it is not a significant difference.

Figure 7. A log-log scatter plot of mass flow rate prediction vs given data for trained data using the keras model. It makes a good prediction as can be seen on the graph. The MAE was 0.030806.

Figure 8. A log-log scatter plot of mass flow rate prediction vs given data from the validation set using the trained keras model. It makes a good prediction, similar to the trained set (Figure 7) as can be seen on the graph. The MAE was 0.0291495. The validation set MAE was slightly better than the trained set predictions, which is counterintuitive, but it was similar enough that we can say it is not a significant difference.

The keras model from above was used to create a plot (Figure 9) of mass flow rate (\dot{m}) prediction vs solar flux ($q_0^{"}$). Tube inside diameter (D_i) was fixed at 0.010 m, exit quality (x_e) fixed at 0.70, and T_{w, max} fixed at 300 °C, while $500 < q_0^{"} < 800 \ kW/m^2$.

Figure 9. A plot of \dot{m} prediction vs $q_0^{"}$ for $D_i = 0.010 \ m$, $x_e = 0.70$, $T_{w, max} = 300 \ ^{\circ}$ C, and $500 < q_0^{"} < 800 \ kW/m^2$.

Task 2

In task 2, I am looking at natural convection cooling of two discrete heated electronic components mounted on a vertical circuit board as shown in Figure 10. The performance data of the system generated by a CFD-type model is given as ME249Proj4data2 with the input data $[q_1^", q_2^", \Delta x_s]$ and the output parameter $[T_{s, max}]$.

Figure 10. Schematics of the electronic components mounted on a vertical circuit board.

In task 2.1, I normalized the CFD-generated performance parameter data of the system above for each of the three input parameters— $q_1^{"}$, $q_2^{"}$, Δx_s —and the output parameter ($T_{s, max}$) by dividing by the median value of each respective parameter. The normalized data was randomly separated to create a training set (3/4 the size of the data) and a validation set (1/4 the size of the data). Then, I created the keras sequential network model with the following specs—1) RandomUniform initializer, 2) inlet layer with 8 neurons (with 3 inputs) with K.elu activation function, 3) 3 hidden layers with 16, 16, and 16 neurons all with K.elu activation function, 4) outlet layer with 1 neuron without an activation function, 5) no dropout layers, 6) RMSprop optimizer, 7) initialized weights to -0.2 and 0.5, 8) epochs of 800, and 8) learning rate of 0.001. The resulting NN model was trained to get MAE = 0.029722 with best epoch at 430.

After the training is complete, I ran two comparisons sets—first between the prediction vs real data from the training data set (Figure 11), and second between the prediction vs real data from the normalized validation data set (Figure 12) both for the maximum surface temperature $(T_{s,\,max})$. The mean absolute error between the prediction and the training set was 0.0407531 while the mean absolute error between the prediction and the normalized validation set was 0.074538. Therefore, both predictions were good using the trained model, but it was visible that trained set predictions were slightly better than the validation set predictions. It makes sense since the model was actually trained based on the training set—the model has seen these values before, so it should be better at predicting the maximum surface temperature output given the training set.

Figure 11. A log-log scatter plot of $T_{s, max}$ prediction vs given data for trained data using the keras model. It makes a fairly good prediction as can be seen on the graph. The MAE was 0.0407531.

Figure 12. A log-log scatter plot of $T_{s, max}$ prediction vs given data from the validation set using the trained keras model. It makes a good prediction with respect to the actual value as can be seen on the graph. The MAE was 0.074538.

The keras model from above was used to create surface plots (Figure 13) of the maximum surface temperature ($T_{s, max}$) prediction based on the function of $q_{2\&3}^{"}$ and Δx_s . The heat flux was $100 < q_{2\&3}^{"} < 500 \, W/m^2$ while $0.0 < \Delta x_s < 0.015 \, m$. Based on the surface plot, if you want to get a maximum surface temperature no more than about 75 °C, I would recommend the parameter values of $q_{2\&3}^{"} < 467 \, \frac{W}{m^2}$, and $\Delta x_s < 0.002755 \, m$.

Figure 13. A surface plot for predicted $T_{s, max}$ value for $100 < q_{2\&3}^{"} < 500 \ W/m^2$ and $0.0 < \Delta x_s < 0.015 \ m$. To get $T_{s, max} \le 75$ °C, I would recommend the parameter values of $q_{2\&3}^{"} < 467 \ W/m^2$ and $\Delta x_s < 0.002755 \ m$.

Appendix

```
In [2]:
         #Task 1.1
         import numpy as np
         xdata = []
         vdata = []
         #xdata.append([ Di(m), qoflux (kW/m^2), mdot (kq/s)])
         xdata.append([0.008, 550, 0.06157])
         xdata.append([0.008, 650, 0.07269])
         xdata.append([0.008, 750, 0.08396])
         xdata.append([0.008, 850, 0.09347])
         xdata.append([0.008, 950, 0.10635])
         xdata.append([0.008, 1050, 0.11521])
         xdata.append([0.008, 1150, 0.1287])
         xdata.append([0.008, 850, 0.09516])
         xdata.append([0.008, 550, 0.04398])
         xdata.append([0.008, 750, 0.05997])
         xdata.append([0.008, 950, 0.07596])
         xdata.append([0.008, 1050, 0.08343])
         xdata.append([0.008, 1150, 0.0919])
         xdata.append([0.008, 850, 0.06797])
         xdata.append([0.008, 550, 0.0342])
         xdata.append([0.008, 750, 0.04664])
         xdata.append([0.008, 950, 0.05908])
         xdata.append([0.008, 1150, 0.0715])
         xdata.append([0.008, 850, 0.05286])
         xdata.append([0.011, 550, 0.0846])
         xdata.append([0.011, 750, 0.1154])
         xdata.append([0.011, 950, 0.1462])
         xdata.append([0.011, 1150, 0.177])
         xdata.append([0.011, 850, 0.1308])
         xdata.append([0.011, 550, 0.06047])
         xdata.append([0.011, 750, 0.08246])
         xdata.append([0.011, 950, 0.1044])
         xdata.append([0.011, 1050, 0.1134])
         xdata.append([0.011, 1150, 0.1264])
         xdata.append([0.011, 850, 0.0934])
         xdata.append([0.011, 550, 0.047])
         xdata.append([0.011, 750, 0.06413])
         xdata.append([0.011, 950, 0.08124])
         xdata.append([0.011, 1150, 0.09834])
         xdata.append([0.011, 850, 0.072691])
         xdata.append([0.011, 700, 0.087196])
         xdata.append([0.013, 550, 0.10005])
         xdata.append([0.013, 750, 0.13644])
         xdata.append([0.013, 950, 0.17282])
         xdata.append([0.013, 1150, 0.2092])
         xdata.append([0.013, 850, 0.15463])
         xdata.append([0.013, 550, 0.07147])
         xdata.append([0.013, 750, 0.09745])
```

```
xdata.append([0.013, 950, 0.12344])
xdata.append([0.013, 1050, 0.13302])
xdata.append([0.013, 1150, 0.1494])
xdata.append([0.013, 850, 0.11045])
xdata.append([0.013, 550, 0.05558])
xdata.append([0.013, 750, 0.0758])
xdata.append([0.013, 950, 0.09601])
xdata.append([0.013, 1150, 0.1162])
xdata.append([0.013, 850, 0.0859])
#ydata.append([ exit quality, max wall temperature (deg C)])
ydata.append([0.525, 306.7])
ydata.append([0.525, 298.5])
ydata.append([0.525, 294.5])
ydata.append([0.525, 290.2])
ydata.append([0.524, 286.9])
ydata.append([0.524, 284.1])
ydata.append([0.525, 281.7])
ydata.append([0.524, 290.3])
ydata.append([0.734, 307.9])
ydata.append([0.735, 295.5])
ydata.append([0.735, 287.8])
ydata.append([0.735, 285.0])
ydata.append([0.735, 282.5])
ydata.append([0.734, 291.3])
ydata.append([ 0.945, 308.6])
ydata.append([0.945, 296.2])
ydata.append([0.945, 288.5])
ydata.append([0.945, 283.1])
ydata.append([0.945, 291.9])
ydata.append([ 0.525, 328.0])
ydata.append([0.525, 311.2])
ydata.append([0.525, 300.8])
ydata.append([0.525, 293.6])
ydata.append([0.525, 305.5])
ydata.append([0.735, 329.6])
ydata.append([0.735, 312.6])
ydata.append([0.735, 302.0])
ydata.append([0.735, 299.4])
ydata.append([0.735, 294.8])
ydata.append([0.735, 306.8])
ydata.append([ 0.945, 330.7])
ydata.append([0.945, 313.6])
ydata.append([0.944, 302.9])
ydata.append([0.945, 295.6])
ydata.append([0.944, 307.7])
ydata.append([0.734, 324.7])
ydata.append([0.525, 342.2])
ydata.append([0.524, 322.3])
ydata.append([0.524, 310.0])
ydata.append([0.525, 301.6])
ydata.append([0.524, 315.5])
```

```
ydata.append([0.734, 344.1])
ydata.append([0.735, 324.0])
ydata.append([0.735, 311.5])
ydata.append([0.735, 306.3])
ydata.append([0.735, 302.9])
ydata.append([0.734, 317.1])
ydata.append([0.945, 345.3])
ydata.append([0.944, 325.1])
ydata.append([0.944, 312.5])
ydata.append([0.945, 303.9])
ydata.append([0.945, 318.2])
xarray= np.array(xdata)
yarray= np.array(ydata)
```

```
In [3]:
         #Task 1.1a
         import keras
         import pandas as pd
         from keras.models import Sequential
         import numpy as np
         import keras.backend as kb
         import tensorflow as tf
         import statistics as s
         #the follwoing 2 lines are only needed for Mac OS machines
         os.environ['KMP DUPLICATE LIB OK']='True'
         Di =[] #inputs
         q_0 = [1]
         mdot =[]
         xe = [] #outputs
         Tw = []
         xarrayn = []
         yarrayn = []
         for x in range(len(xarray)):
             Di.append(xarray[x][0])
             q0.append(xarray[x][1])
             mdot.append(xarray[x][2])
         for y in range(len(yarray)):
             xe.append(yarray[y][0])
             Tw.append(yarray[y][1])
         def median(sample):
                                   #function to calculate median
             n = len(sample)
             i = n//2
             if n%2:
                 return sorted (sample [i])
             return sum(sorted(sample)[i-1:i+1])/2
```

```
medDi = median(Di)
medq0 = median(q0)
medmdot = median(mdot)
medxe = median(xe)
medTw = median(Tw)

Din = Di/medDi
q0n = q0/medq0
mdotn = mdot/medmdot
xen = xe/medxe
Twn = Tw/medTw
xarrayn = np.column_stack((Din, q0n, mdotn))
yarrayn = np.column_stack((xen, Twn))
print(xarrayn)
print(yarrayn)
```

```
Using TensorFlow backend.
[[0.72727273 0.64705882 0.66454398]
 [0.72727273 0.76470588 0.78456557]
 [0.72727273 0.88235294 0.90620615]
 [0.72727273 1.
                         1.008850511
 [0.72727273 1.11764706 1.14786832]
 [0.72727273 1.23529412 1.24349703]
 [0.72727273 1.35294118 1.38909876]
 [0.72727273 1.
                        1.0270912 ]
 [0.72727273 0.64705882 0.47468969]
 [0.72727273 0.88235294 0.64727469]
 [0.72727273 1.11764706 0.81985969]
 [0.72727273 1.23529412 0.9004857 ]
 [0.72727273 1.35294118 0.99190502]
 [0.72727273 1.
                        0.733621151
 [0.72727273 0.64705882 0.36913114]
 [0.72727273 0.88235294 0.50339989]
 [0.72727273 1.11764706 0.63766865]
 [0.72727273 1.35294118 0.77172153]
 [0.72727273 1.
                         0.570534271
 [1.
             0.64705882 0.913113871
             0.88235294 1.245547761
 [1.
 [1.
             1.11764706 1.577981651
 [1.
             1.35294118 1.91041554]
 [1.
                        1.41176471
 [1.
             0.64705882 0.652671341
 [1.
             0.88235294 0.890016191
             1.11764706 1.12682137]
 [1.
 [1.
             1.23529412 1.223961141
             1.35294118 1.36427415]
 [1.
                         1.008094981
 [1.
             1.
             0.64705882 0.507285481
 [1.
             0.88235294 0.692174851
 [1.
 [1.
             1.11764706 0.876848351
 [1.
             1.35294118 1.06141392]
[1.
                         0.784576361
             0.82352941 0.9411333 1
 [1.
 [1.18181818 0.64705882 1.07987048]
```

```
[1.18181818 0.88235294 1.47263896]
 [1.18181818 1.11764706 1.86529951]
 [1.18181818 1.35294118 2.25796006]
 [1.18181818 1.
                        1.668969241
 [1.18181818 0.64705882 0.77139773]
 [1.18181818 0.88235294 1.05180788]
 [1.18181818 1.11764706 1.33232596]
 [1.18181818 1.23529412 1.43572585]
 [1.18181818 1.35294118 1.61252024]
 [1.18181818 1.
                         1.192120891
 [1.18181818 0.64705882 0.59989207]
 [1.18181818 0.88235294 0.81813276]
 [1.18181818 1.11764706 1.03626552]
 [1.18181818 1.35294118 1.25418241]
[1.18181818 1.
                        0.92714517]]
[[0.71428571 1.00656383]
 [0.71428571 0.97965212]
 [0.71428571 0.96652445]
 [0.71428571 0.95241221]
 [0.71292517 0.94158188]
 [0.71292517 0.93239252]
 [0.71428571 0.92451592]
 [0.71292517 0.9527404 ]
 [0.99863946 1.01050213]
 [1.
             0.969806371
[1.
             0.94453561]
[1.
             0.935346241
[1.
             0.92714145]
 [0.99863946 0.95602232]
 [1.28571429 1.01279947]
 [1.28571429 0.97210371]
 [1.28571429 0.94683295]
 [1.28571429 0.9291106 ]
 [1.28571429 0.95799147]
 [0.71428571 1.07646866]
 [0.71428571 1.02133246]
 [0.71428571 0.98720053]
 [0.71428571 0.96357073]
 [0.71428571 1.00262553]
             1.081719721
 [1.
 [1.
             1.02592714]
 [1.
             0.991138831
 [1.
             0.982605841
 [1.
             0.967509031
             1.006892021
 [1.28571429 1.08532983]
 [1.28571429 1.02920906]
 [1.28435374 0.99409255]
 [1.28571429 0.97013456]
 [1.28435374 1.00984575]
 [0.99863946 1.06563833]
 [0.71428571 1.12307187]
 [0.71292517 1.05776173]
 [0.71292517 1.01739416]
 [0.71428571 0.98982606]
 [0.71292517 1.0354447 ]
 [0.99863946 1.12930752]
```

1.063340991

[1.

```
[1.
                      1.02231703]
          [1.
                       1.005251071
          [1.
                       0.994092551
          [0.99863946 1.04069577]
          [1.28571429 1.13324582]
          [1.28435374 1.0669511 ]
          [1.28435374 1.02559895]
          [1.28571429 0.99737447]
          [1.28571429 1.04430587]]
In [97]:
          #Task 1.1b
          from sklearn.model selection import train test split
          X train, X test, y train, y test = train test split(xarrayn, yarrayn, test si
          print(X train)
          print(y train)
          print(X test)
          print(y_test)
         [[0.72727273 1.35294118 1.38909876]
                                  0.784576361
          [1.
                       1.
          [0.72727273 1.11764706 1.14786832]
          [1.18181818 0.88235294 1.47263896]
                       0.64705882 0.652671341
          [1.18181818 1.23529412 1.43572585]
                      1.35294118 1.06141392]
          [1.
          [1.18181818 1.11764706 1.03626552]
          [0.72727273 0.88235294 0.50339989]
          [0.72727273 0.88235294 0.64727469]
          [0.72727273 1.11764706 0.63766865]
                       0.64705882 0.50728548]
          [1.18181818 0.64705882 1.07987048]
                      0.88235294 0.890016191
          [0.72727273 1.23529412 0.9004857 ]
          [0.72727273 0.64705882 0.66454398]
          [1.18181818 1.
                                  1.19212089]
                       1.23529412 1.22396114]
          [1.
          [1.
                       0.88235294 0.692174851
          [1.18181818 1.35294118 2.25796006]
                                  1.008094981
          [1.18181818 1.35294118 1.61252024]
          [0.72727273 0.76470588 0.78456557]
                       1.11764706 1.577981651
          [1.
          [0.72727273 0.88235294 0.90620615]
          [1.18181818 1.
                                  1.66896924]
          [1.
                       0.82352941 0.9411333 ]
          [1.
                                  1.41176471]
                       1.
          [1.18181818 0.88235294 0.81813276]
          [0.72727273 1.11764706 0.81985969]
                       1.35294118 1.91041554]
          [1.
          [0.72727273 1.
                                  0.570534271
          [1.18181818 1.
                                  0.92714517]
          [1.
                       0.88235294 1.24554776]
```

```
1.0270912 ]
[0.72727273 1.
[1.18181818 0.88235294 1.05180788]
[0.72727273 0.64705882 0.36913114]
             1.35294118 1.36427415]
[1.18181818 1.11764706 1.86529951]]
[[0.71428571 0.92451592]
[1.28435374 1.00984575]
[0.71292517 0.94158188]
[0.71292517 1.05776173]
[1.
             1.081719721
[1.
             1.005251071
[1.28571429 0.97013456]
[1.28435374 1.02559895]
[1.28571429 0.97210371]
             0.969806371
[1.
[1.28571429 0.94683295]
[1.28571429 1.08532983]
[0.71428571 1.12307187]
[1.
             1.02592714]
             0.935346241
[1.
[0.71428571 1.00656383]
[0.99863946 1.04069577]
             0.982605841
[1.28571429 1.02920906]
[0.71428571 0.98982606]
             1.006892021
             0.994092551
[0.71428571 0.97965212]
 [0.71428571 0.98720053]
[0.71428571 0.96652445]
[0.71292517 1.0354447 ]
[0.99863946 1.06563833]
[0.71428571 1.00262553]
[1.28435374 1.0669511 ]
             0.94453561]
 [0.71428571 0.96357073]
[1.28571429 0.95799147]
[1.28571429 1.04430587]
[0.71428571 1.02133246]
[0.71292517 0.9527404 ]
[1.
             1.063340991
[1.28571429 1.01279947]
             0.967509031
[0.71292517 1.01739416]]
             0.64705882 0.91311387]
[1.18181818 0.64705882 0.77139773]
[1.18181818 0.64705882 0.59989207]
[0.72727273 1.35294118 0.99190502]
[1.18181818 1.11764706 1.33232596]
[0.72727273 1.23529412 1.24349703]
 [0.72727273 1.35294118 0.77172153]
[1.18181818 1.35294118 1.25418241]
[0.72727273 1.
                        1.008850511
[1.
             1.11764706 0.876848351
[0.72727273 1.
                        0.733621151
[0.72727273 0.64705882 0.47468969]
[1.
             1.11764706 1.12682137]]
```

```
[[0.71428571 1.07646866]
          [0.99863946 1.12930752]
          [1.28571429 1.13324582]
          [1.
                      0.92714145]
          [1.
                      1.022317031
          [0.71292517 0.93239252]
          [1.28571429 0.9291106 ]
          [1.28571429 0.99737447]
          [0.71428571 0.95241221]
          [1.28435374 0.99409255]
          [0.99863946 0.95602232]
          [0.99863946 1.01050213]
          [1.
                      0.99113883]]
In [98]:
          # define neural network model
          from keras import backend as K
          #initialize weights
          initializer = keras.initializers.RandomUniform(minval= -0.2, maxval=0.5)
          model = keras.Sequential([
              keras.layers.Dense(6, activation=K.elu, input shape=[3], kernel initiali
              keras.layers.Dense(8, activation=K.elu, kernel_initializer=initializer),
              keras.layers.Dense(16, activation=K.elu, kernel initializer=initializer),
              keras.layers.Dense(8, activation=K.elu, kernel initializer=initializer),
              keras.layers.Dense(2, kernel initializer=initializer)
            ])
In [102...
          #from tf.keras import optimizers
          rms = keras.optimizers.RMSprop(0.005)
          model.compile(loss='mean absolute error',optimizer=rms)
```

In [103...

```
# Add an early stopping callback
es = keras.callbacks.EarlyStopping(
    monitor='loss',
    mode='min',
    patience = 80,
    restore best weights = True,
    verbose=1)
# Add a checkpoint where loss is minimum, and save that model
mc = keras.callbacks.ModelCheckpoint('best model.SB', monitor='loss',
                     mode='min', verbose=1, save best only=True)
historyData = model.fit(X train,y train,epochs=800,callbacks=[es])
loss_hist = historyData.history['loss']
#The above line will return a dictionary, access it's info like this:
best_epoch = np.argmin(historyData.history['loss']) + 1
print ('best epoch = ', best_epoch)
print('smallest loss =', np.min(loss hist))
model.save('./best_model')
```

```
Epoch 1/800
39/39 [============= ] - 1s 29ms/step - loss: 0.0824
Epoch 2/800
Epoch 3/800
Epoch 4/800
Epoch 5/800
Epoch 6/800
39/39 [============== ] - 0s 558us/step - loss: 0.0525
Epoch 7/800
39/39 [========] - 0s 686us/step - loss: 0.0468
Epoch 8/800
39/39 [============== ] - 0s 482us/step - loss: 0.0490
Epoch 9/800
39/39 [============== ] - 0s 494us/step - loss: 0.0464
Epoch 10/800
Epoch 11/800
39/39 [============= ] - 0s 501us/step - loss: 0.0457
Epoch 12/800
39/39 [============= ] - 0s 661us/step - loss: 0.0486
Epoch 13/800
Epoch 14/800
Epoch 15/800
39/39 [=============== ] - 0s 716us/step - loss: 0.0460
Epoch 16/800
Epoch 17/800
```

Epoch	[======] 18/800				
	[======] 19/800	-	0s	274us/step - loss: 0.0476	5
39/39	[======]	-	0s	315us/step - loss: 0.0478	3
	20/800 [=======]	_	0s	304us/step - loss: 0.0442	2
	21/800	_	0s	229us/sten - loss: 0.0446	5
Epoch	22/800			-	
	[======] 23/800	-	0s	357us/step - loss: 0.0450)
	[=======] 24/800	-	0s	301us/step - loss: 0.0460)
39/39	[======]	_	0s	476us/step - loss: 0.0435	5
	25/800 [=======]	_	0s	623us/step - loss: 0.0441	1
Epoch	26/800				
	[======] 27/800	-	0s	380us/step - loss: 0.0547	/
	[======] 28/800	-	0s	285us/step - loss: 0.0459)
39/39	[======]	_	0s	371us/step - loss: 0.0442	2
	29/800	_	0s	283us/step - loss: 0.0444	1
Epoch	30/800			-	
Epoch	[======] 31/800			-	
	[======] 32/800	-	0s	384us/step - loss: 0.0445	5
39/39	[======]	_	0s	575us/step - loss: 0.0478	3
	33/800	_	0s	459us/step - loss: 0.0448	3
	34/800		٥٩	672ug/gton logg. 0 0444	_
Epoch	35/800				
	[======] 36/800	-	0s	432us/step - loss: 0.0450)
39/39	[======]	-	0s	359us/step - loss: 0.0450)
_	37/800 [=======]	_	0s	381us/step - loss: 0.0445	5
_	38/800 [======]	_	Λς	516us/sten = loss: 0 0465	7
Epoch	39/800			-	
	[=======] 40/800	-	0s	681us/step - loss: 0.0433	3
	[======] 41/800	-	0s	676us/step - loss: 0.0475	5
39/39	[======]	_	0s	707us/step - loss: 0.0444	1
	42/800 [=======]	_	0s	542us/step - loss: 0.0432	2
Epoch	43/800				
Epoch	[=======] 44/800				
	[======] 45/800	-	0s	696us/step - loss: 0.0426	5
	[======]	_	0s	352us/step - loss: 0.0416	5

Epoch	46/800			
39/39	[======]	-	0s	684us/step - loss: 0.0447
	47/800 [=======]		٥٥	441ug/gton logg. 0 0427
	48/800	_	US	441us/scep - 10ss: 0.042/
39/39	[======]	-	0s	415us/step - loss: 0.0432
	49/800		٥٩	E20vg/gtop logg, 0 0400
	50/800	_	US	520us/step - 10ss: 0.0498
39/39	[======]	_	0s	430us/step - loss: 0.0442
	51/800		0 -	504/
	[======] 52/800	_	US	594us/step - loss: 0.0426
39/39	[======]	_	0s	766us/step - loss: 0.0456
	53/800		0 -	007/
	[======] 54/800	_	US	89/us/step - loss: 0.04/5
39/39	[======]	_	0s	846us/step - loss: 0.0421
	55/800		0 -	401/
	[=======] 56/800	_	US	481us/step - loss: 0.0413
39/39	[======]	_	0s	605us/step - loss: 0.0408
	57/800		0 -	5660-1-1
	[======] 58/800	-	0s	566us/step - loss: 0.0454
	[========]	_	0s	485us/step - loss: 0.0429
	59/800		•	105 /
	[======] 60/800	-	US	435us/step - loss: 0.0425
	[========]	_	0s	446us/step - loss: 0.0450
	61/800		•	001 / 1 0 0400
	[=======] 62/800	-	0s	291us/step - loss: 0.0420
39/39	[======]	_	0s	487us/step - loss: 0.0435
	63/800		0 -	212/
	[======] 64/800	_	US	313us/step - 10ss: 0.0415
39/39	[======]	_	0s	400us/step - loss: 0.0488
	65/800		0 ~	2020-7-1 1 0 0422
	[======] 66/800	_	US	392us/step - 10ss: 0.0423
	[======]	_	0s	250us/step - loss: 0.0428
	67/800		0 ~	254
	[======] 68/800	_	US	254us/step - 10ss: 0.0421
39/39	[======]	_	0s	267us/step - loss: 0.0399
	69/800		0 ~	261
	[======] 70/800	_	US	261us/step - 10ss: 0.0446
39/39	[======]	_	0s	324us/step - loss: 0.0439
	71/800		0 -	210/
	[======] 72/800	-	US	31ous/step - 10ss: 0.0484
39/39	[======]	_	0s	328us/step - loss: 0.0393
	73/800		0 =	26609/9405 105-10 0405
	[======] 74/800	-	US	200us/step - 10ss: 0.0425
1				

Epoch	[======] 75/800				
	[======] 76/800	-	0s	266us/step - loss: 0.0413	
39/39	[======]	-	0s	251us/step - loss: 0.0412	
	77/800	_	0s	272us/step - loss: 0.0402	
Epoch	78/800			-	
	[======] 79/800	-	0s	251us/step - loss: 0.0409	
	[======] 80/800	-	0s	230us/step - loss: 0.0412	
	[========]	_	0s	311us/step - loss: 0.0383	,
	81/800		۸e	341ug/gten _ logg. 0 0392	
Epoch	82/800			-	
	[======] 83/800	-	0s	246us/step - loss: 0.0437	
39/39	[======]	_	0s	339us/step - loss: 0.0474	:
	84/800	_	0s	241us/step - loss: 0.0391	
Epoch	85/800			-	
	[======] 86/800	-	0s	290us/step - loss: 0.0398	
	[=======]	-	0s	307us/step - loss: 0.0392	
	87/800 [=======]	_	0s	353us/step - loss: 0.0411	
	88/800 [======]	_	Λα	267us/step = loss 0 0455	
Epoch	89/800				
	[======] 90/800	-	0s	297us/step - loss: 0.0442	
39/39	[======]	-	0s	305us/step - loss: 0.0400	1
	91/800	_	0s	344us/step - loss: 0.0404	
Epoch	92/800			-	
	[======] 93/800	_	US	394us/step - 10ss: 0.0414	
	[======] 94/800	-	0s	335us/step - loss: 0.0418	
39/39	[======]	_	0s	349us/step - loss: 0.0431	
	95/800 [======]	_	0s	378us/step = loss: 0.0392	
Epoch	96/800			-	
	[======] 97/800	-	0s	383us/step - loss: 0.0407	
39/39	[======]	-	0s	376us/step - loss: 0.0506	
	98/800 [=======]	_	0s	450us/step - loss: 0.0379	,
	99/800		٥٥	400ug/gton logg. 0 0402	
Epoch	100/800				
	[======] 101/800	-	0s	570us/step - loss: 0.0381	
39/39	[======]	-	0s	533us/step - loss: 0.0434	
	102/800 [=========]	_	0s	450us/step - loss: 0.0451	
,	. ,				

```
Epoch 103/800
39/39 [============== ] - 0s 433us/step - loss: 0.0391
Epoch 104/800
Epoch 105/800
39/39 [============ ] - 0s 616us/step - loss: 0.0406
Epoch 106/800
Epoch 107/800
Epoch 108/800
39/39 [============= ] - 0s 322us/step - loss: 0.0407
Epoch 109/800
Epoch 110/800
Epoch 111/800
39/39 [============ ] - 0s 324us/step - loss: 0.0436
Epoch 112/800
Epoch 113/800
39/39 [=============== ] - 0s 406us/step - loss: 0.0389
Epoch 114/800
39/39 [============= ] - 0s 430us/step - loss: 0.0467
Epoch 115/800
39/39 [============= ] - 0s 859us/step - loss: 0.0388
Epoch 116/800
39/39 [============ ] - 0s 506us/step - loss: 0.0370
Epoch 117/800
39/39 [=========== ] - 0s 367us/step - loss: 0.0408
Epoch 118/800
39/39 [============ ] - 0s 466us/step - loss: 0.0445
Epoch 119/800
39/39 [============= ] - 0s 383us/step - loss: 0.0367
Epoch 120/800
Epoch 121/800
- loss: 0.0387
Epoch 122/800
39/39 [============= ] - 0s 408us/step - loss: 0.0397
Epoch 123/800
39/39 [============= ] - 0s 481us/step - loss: 0.0471
Epoch 124/800
39/39 [============== ] - 0s 385us/step - loss: 0.0368
Epoch 125/800
Epoch 126/800
39/39 [=============== ] - 0s 306us/step - loss: 0.0416
Epoch 127/800
39/39 [============= ] - 0s 300us/step - loss: 0.0383
Epoch 128/800
39/39 [============== ] - 0s 331us/step - loss: 0.0398
Epoch 129/800
Epoch 130/800
39/39 [============= ] - 0s 277us/step - loss: 0.0385
```

Epoch	131/800			
39/39	[========]	-	0s	342us/step - loss: 0.0357
	132/800 [=======]	_	Λα	299115/sten _ loss. 0 0375
Epoch	133/800			
	[======================================	-	0s	314us/step - loss: 0.0359
	134/800	_	0s	376us/step - loss: 0.0355
Epoch	135/800			-
	[========] 136/800	-	0s	382us/step - loss: 0.0378
39/39	[========]	-	0s	394us/step - loss: 0.0384
	137/800 [=======]	_	0s	364us/step = loss: 0.0393
Epoch	138/800			-
	[========] 139/800	-	0s	398us/step - loss: 0.0443
	[=========]	_	0s	368us/step - loss: 0.0367
	140/800		٥a	422ug/gton logg. 0 0200
Epoch	141/800			-
	[======================================	-	0s	334us/step - loss: 0.0407
	142/800 [========]	_	0s	363us/step - loss: 0.0319
Epoch	143/800			
	[=======] 144/800	-	0s	268us/step - loss: 0.0320
39/39	[========]	-	0s	526us/step - loss: 0.0432
	145/800 [===================================	_	0s	706us/step = loss: 0.0331
Epoch	146/800			
	[========] 147/800	-	0s	590us/step - loss: 0.0317
39/39	[========]	_	0s	737us/step - loss: 0.0305
	148/800 [========]		۸c	756ug/gton logg: 0.0429
Epoch	149/800			-
	[========] 150/800	-	0s	598us/step - loss: 0.0339
	[===========]	_	0s	762us/step - loss: 0.0338
Epoch	151/800			
	[========] 152/800	-	US	462us/step - loss: 0.0339
39/39	[========]	-	0s	531us/step - loss: 0.0446
	153/800 [===================================	_	0s	386us/step - loss: 0.0371
Epoch	154/800			
	[========] 155/800	-	0s	442us/step - loss: 0.0365
39/39	[========]	_	0s	362us/step - loss: 0.0287
	156/800 [===========]		۸c	367ug/gton logg. 0 0361
Epoch	157/800			
	[========] 158/800	-	0s	329us/step - loss: 0.0287
	[======================================	_	0s	393us/step - loss: 0.0519
Epoch	159/800			

	[======] 160/800	-	0s	266us/step -	loss:	0.0332
39/39	[=======] 161/800	-	0s	298us/step -	loss:	0.0349
39/39	[======]	_	0s	267us/step -	loss:	0.0285
	162/800 [=======]	_	0s	570us/step -	loss:	0.0294
	163/800	_	0s	367us/step -	loss:	0.0293
Epoch	164/800 [=======]			_		
Epoch	165/800 [======]			_		
Epoch	166/800			_		
Epoch	[======] 167/800			_		
Epoch	[======] 168/800			_		
	[======] 169/800	-	0s	375us/step -	loss:	0.0483
39/39	[======] 170/800	-	0s	351us/step -	loss:	0.0314
39/39	[======]	-	0s	442us/step -	loss:	0.0248
39/39	171/800 [=======]	_	0s	509us/step -	loss:	0.0296
	172/800 [=======]	_	0s	630us/step -	loss:	0.0353
	173/800 [======]	_	0s	659us/step -	loss:	0.0314
Epoch	174/800 [======]					
Epoch	175/800 [=======]					
Epoch	176/800			_		
Epoch	[======] 177/800					
	[======] 178/800	-	0s	652us/step -	loss:	0.0373
	[======] 179/800	-	0s	500us/step -	loss:	0.0310
39/39	[=======] 180/800	-	0s	442us/step -	loss:	0.0360
39/39	[======]	-	0s	335us/step -	loss:	0.0336
39/39	181/800 [======]	_	0s	316us/step -	loss:	0.0294
	182/800 [=======]	_	0s	329us/step -	loss:	0.0297
Epoch	183/800 [======]					
Epoch	184/800 [======]					
Epoch	185/800					
Epoch	[=======] 186/800					
	[=======] 187/800	-	0s	307us/step -	loss:	0.0299
39/39	[======]	-	0s	356us/step -	loss:	0.0269

Epoch	188/800				
	[======================================	-	0s	337us/step - loss:	0.0326
	189/800	۱ _	۸e	360us/sten = loss	0 0263
Epoch	190/800			_	
	[======================================	-	0s	398us/step - loss:	0.0294
	191/800	l –	0s	549us/step - loss:	0.0435
Epoch	192/800			_	
	[======================================	-	0s	473us/step - loss:	0.0280
39/39	[======================================	-	0s	363us/step - loss:	0.0240
	194/800	1	0.0	222ug/g+on logg	0 0260
	195/800	-	US	323us/step - 10ss:	0.0208
	[======================================	-	0s	369us/step - loss:	0.0302
	196/800	۱ –	0s	424us/step - loss:	0.0268
Epoch	197/800			_	
	[======================================	-	0s	344us/step - loss:	0.0313
39/39	[======================================	-	0s	329us/step - loss:	0.0332
	199/800	ı _	۸e	364ug/gten _ logg	0 0291
Epoch	200/800			_	
	[======================================	-	0s	383us/step - loss:	0.0276
	[======================================	-	0s	443us/step - loss:	0.0236
	202/800		0		0 0000
	[======================================	-	US	280us/step - loss:	0.0320
39/39	[======================================	-	0s	341us/step - loss:	0.0345
	204/800	l –	0s	423us/step - loss:	0.0284
Epoch	205/800				
	[======================================	-	0s	329us/step - loss:	0.0281
39/39	[======================================	-	0s	334us/step - loss:	0.0380
	207/800	1 _	۸e	364ug/sten _ loss	0 0261
Epoch	208/800				
	[======================================	-	0s	285us/step - loss:	0.0350
	[======================================	-	0s	358us/step - loss:	0.0250
	210/800		0 -	225/-1	0 0000
	[======================================	-	US	335us/step - loss:	0.0293
	[======================================	-	0s	310us/step - loss:	0.0294
	212/800 [===================================	l –	0s	359us/step - loss:	0.0337
Epoch	213/800				
	[======================================	-	0s	458us/step - loss:	0.0240
39/39	[======================================	-	0s	487us/step - loss:	0.0336
	215/800	1 .	Λe	376118/stan loss	ስ በኃይን
	216/800	, –	υÞ	2/002/20eb - 1022	0.0202

	[=======] 217/800	-	0s	429us/step - loss:	0.0299
39/39	[========] 218/800	-	0s	391us/step - loss:	0.0290
39/39	[========] 219/800	-	0s	446us/step - loss:	0.0318
39/39	[======]	_	0s	538us/step - loss:	0.0222
39/39	220/800 [======]	_	0s	478us/step - loss:	0.0324
39/39	221/800 [======]	_	0s	393us/step - loss:	0.0241
39/39	222/800 [======]	_	0s	256us/step - loss:	0.0419
	223/800 [=======]	_	0s	268us/step - loss:	0.0264
	224/800 [======]	_	0s	343us/step - loss:	0.0282
Epoch	225/800 [======]				
Epoch	226/800 [======]				
Epoch	227/800 [=======]				
Epoch	228/800 [=======]				
Epoch	229/800 [=======]				
Epoch	230/800				
Epoch	[=======] 231/800				
Epoch	[=======] 232/800				
Epoch	[======] 233/800				
Epoch	[======] 234/800				
	[======] 235/800	-	0s	333us/step - loss:	0.0248
	[======] 236/800	-	0s	326us/step - loss:	0.0286
	[=======] 237/800	-	0s	436us/step - loss:	0.0285
39/39	[=======] 238/800	-	0s	318us/step - loss:	0.0257
39/39	[=======] 239/800	-	0s	402us/step - loss:	0.0309
39/39	[========] 240/800	-	0s	457us/step - loss:	0.0297
39/39	[======]	-	0s	391us/step - loss:	0.0312
39/39	241/800 [=======]	_	0s	369us/step - loss:	0.0356
39/39	242/800 [=======]	_	0s	323us/step - loss:	0.0284
39/39	243/800 [=======]	_	0s	372us/step - loss:	0.0299
	244/800 [=======]	_	0s	429us/step - loss:	0.0277

Epoch	245/800				
39/39	[=======]	-	0s	413us/step - loss:	0.0263
	246/800 [========]	_	Λq	35511g/gten = logg.	0 0272
Epoch	247/800				
	[=======]	-	0s	389us/step - loss:	0.0270
	248/800 [=======]	_	0s	372us/step - loss:	0.0297
Epoch	249/800			_	
	[=======] 250/800	-	0s	371us/step - loss:	0.0270
39/39	[=======]	_	0s	348us/step - loss:	0.0317
	251/800 [=======]		٥a	227ug/g+on logg.	0 0212
	252/800	_	US	33/us/step - 10ss:	0.0313
	[======]	-	0s	414us/step - loss:	0.0295
	253/800 [=======]	_	0s	379us/step - loss:	0.0242
Epoch	254/800			_	
	[=======] 255/800	-	0s	435us/step - loss:	0.0236
39/39	[=======]	_	0s	427us/step - loss:	0.0302
	256/800 [=======]		Λα	400us/sten _ loss.	0 0290
Epoch	257/800			_	
	[=======] 258/800	-	0s	311us/step - loss:	0.0298
	[===========]	_	0s	393us/step - loss:	0.0311
	259/800		•	201 / 1	0 0005
	[=======] 260/800	_	US	391us/step - loss:	0.0285
39/39	[=======]	_	0s	364us/step - loss:	0.0270
	261/800 [=======]	_	0s	403us/step - loss:	0.0245
Epoch	262/800				
	[=======] 263/800	-	0s	378us/step - loss:	0.0329
39/39	[=======]	_	0s	316us/step - loss:	0.0312
	264/800 [========]		Λα	37611g/gten _ logg.	0 0290
Epoch	265/800				
	[=======] 266/800	-	0s	302us/step - loss:	0.0282
	[==========]	_	0s	310us/step - loss:	0.0221
	267/800		0 -	206/	0 0007
	[=======] 268/800	_	US	306US/Step - loss:	0.0207
	[======]	_	0s	292us/step - loss:	0.0236
	269/800 [========]	_	0s	445us/step - loss:	0.0261
Epoch	270/800				
	[=======] 271/800	-	0s	393us/step - loss:	0.0309
39/39	[=======]	_	0s	489us/step - loss:	0.0277
	272/800 [=======]	_	Λe	326118/sten . loss.	0 0250
	273/800	_	va	220ab/bcep - 10bb:	J • U Z J J

```
39/39 [============== ] - 0s 327us/step - loss: 0.0265
Epoch 274/800
39/39 [=========== ] - 0s 344us/step - loss: 0.0275
Epoch 275/800
Epoch 276/800
Epoch 277/800
Epoch 278/800
39/39 [=============== ] - 0s 406us/step - loss: 0.0235
Epoch 279/800
39/39 [============== ] - 0s 366us/step - loss: 0.0291
Epoch 280/800
39/39 [============== ] - 0s 541us/step - loss: 0.0287
Epoch 281/800
39/39 [============== ] - 0s 795us/step - loss: 0.0348
Epoch 282/800
Epoch 283/800
Epoch 284/800
39/39 [============= ] - 0s 390us/step - loss: 0.0210
Epoch 285/800
Epoch 286/800
39/39 [=============== ] - 0s 490us/step - loss: 0.0331
Epoch 287/800
39/39 [============= ] - 0s 334us/step - loss: 0.0243
Epoch 288/800
Epoch 289/800
Epoch 290/800
39/39 [============== ] - 0s 410us/step - loss: 0.0313
Epoch 291/800
Epoch 292/800
39/39 [============== ] - 0s 417us/step - loss: 0.0298
Epoch 293/800
Epoch 294/800
Epoch 295/800
39/39 [============== ] - 0s 294us/step - loss: 0.0268
Epoch 296/800
39/39 [============= ] - 0s 448us/step - loss: 0.0271
Epoch 297/800
Epoch 298/800
39/39 [============= ] - 0s 389us/step - loss: 0.0247
Epoch 299/800
39/39 [============== ] - 0s 391us/step - loss: 0.0223
Epoch 300/800
- loss: 0.0260
Epoch 301/800
```

	[=======] 302/800	-	0s	376us/step	-	loss:	0.0246
39/39	[=======] 303/800	-	0s	341us/step	-	loss:	0.0228
39/39	[======]	-	0s	352us/step	-	loss:	0.0279
39/39	304/800 [======]	_	0s	443us/step	_	loss:	0.0265
	305/800 [======]	_	0s	396us/step	_	loss:	0.0275
	306/800	_	0s	377us/step	_	loss:	0.0295
Epoch	307/800 [=======]			_			
Epoch	308/800			_			
Epoch	[======] 309/800			_			
Epoch	[======] 310/800			_			
	[======] 311/800	-	0s	357us/step	-	loss:	0.0281
39/39	[=======] 312/800	-	0s	376us/step	-	loss:	0.0252
39/39	[======]	-	0s	376us/step	-	loss:	0.0269
39/39	313/800 [======]	_	0s	363us/step	_	loss:	0.0279
	314/800 [======]	_	0s	330us/step	_	loss:	0.0246
Epoch	315/800 [======]						
Epoch	316/800 [======]						
Epoch	317/800						
Epoch	[======] 318/800						
Epoch	[======] 319/800						
	[======] 320/800	-	0s	433us/step	-	loss:	0.0235
39/39	[=======] 321/800	-	0s	477us/step	-	loss:	0.0265
39/39	[======]	-	0s	404us/step	_	loss:	0.0239
39/39	322/800 [======]	_	0s	397us/step	_	loss:	0.0363
	323/800 [======]	_	0s	435us/step	_	loss:	0.0266
	324/800 [======]	_	0s	406us/step	_	loss:	0.0196
Epoch	325/800 [======]						
Epoch	326/800						
Epoch	[=======] 327/800						
Epoch	[=======] 328/800						
	[======] 329/800	-	0s	712us/step	-	loss:	0.0264
	[======]	-	0s	573us/step	-	loss:	0.0204

Epoch	330/800				
	[======]	-	0s	534us/step - loss: 0	.0235
	331/800 [=======]	_	0s	469us/step - loss: 0	.0236
Epoch	332/800			_	
	[=======] 333/800	-	0s	589us/step - loss: 0	.0291
39/39	[=======]	-	0s	317us/step - loss: 0	.0269
	334/800 [=======]	_	0s	398us/step - loss: 0	.0262
Epoch	335/800			_	
	[=======] 336/800	-	0s	518us/step - loss: 0	.0239
39/39	[=======]	_	0s	554us/step - loss: 0	.0278
	337/800 [=======]	_	0s	400us/step - loss: 0	.0251
Epoch	338/800			_	
	[=======] 339/800	-	0s	286us/step - loss: 0	.0253
39/39	[=======]	_	0s	318us/step - loss: 0	.0265
	340/800 [=======]	_	0s	336us/step - loss: 0	.0214
Epoch	341/800			_	
	[=======] 342/800	-	0s	320us/step - loss: 0	.0216
39/39	[=======]	-	0s	336us/step - loss: 0	.0279
	343/800 [========]	_	0s	573us/step - loss: 0	.0308
Epoch	344/800				
	[=======] 345/800	_	0s	406us/step - loss: 0	.0236
	[======]	-	0s	292us/step - loss: 0	.0283
	346/800 [=======]	_	0s	309us/step - loss: 0	.0258
	347/800		0 -	201/	0206
	[=======] 348/800	_	US	381us/step - 10ss: 0	.0386
	[=======] 349/800	-	0s	384us/step - loss: 0	.0205
	[======================================	_	0s	389us/step - loss: 0	.0233
	350/800 [=======]		0.0	257ug/g+on logg. 0	0277
Epoch	351/800				
	[=======] 352/800	-	0s	385us/step - loss: 0	.0205
39/39	[=======]	_	0s	401us/step - loss: 0	.0259
	353/800 [=========]		۸c	555us/sten loss. 0	0252
Epoch	354/800				
	[=======] 355/800	-	0s	438us/step - loss: 0	.0231
39/39	[=======]	_	0s	385us/step - loss: 0	.0243
	356/800 [=========]	_	0.5	353us/sten = loss. 0	.0305
Epoch	357/800				
	[=======] 358/800	-	0s	362us/step - loss: 0	.0235
	· 				

	[=======] 359/800	-	0s	334us/step	-	loss:	0.0223
39/39	[=======] 360/800	-	0s	366us/step	-	loss:	0.0292
39/39	[======]	-	0s	351us/step	-	loss:	0.0246
39/39	361/800 [======]	_	0s	367us/step	_	loss:	0.0198
	362/800 [======]	_	0s	339us/step	_	loss:	0.0218
Epoch	363/800 [======]			_			
Epoch	364/800 [=======]			_			
Epoch	365/800			_			
Epoch	[======] 366/800			_			
	[======] 367/800	-	0s	369us/step	-	loss:	0.0218
	[======] 368/800	-	0s	269us/step	-	loss:	0.0204
39/39	[=======] 369/800	-	0s	335us/step	-	loss:	0.0311
39/39	[======]	-	0s	387us/step	-	loss:	0.0198
39/39	370/800 [======]	_	0s	289us/step	_	loss:	0.0343
	371/800 [======]	_	0s	597us/step	_	loss:	0.0246
	372/800 [======]	_	0s	547us/step	_	loss:	0.0273
Epoch	373/800 [=======]						
Epoch	374/800			_			
Epoch	[======] 375/800						
Epoch	[======] 376/800			_			
	[======] 377/800	-	0s	823us/step	-	loss:	0.0262
39/39	[=======] 378/800	-	0s	664us/step	-	loss:	0.0195
39/39	[======]	-	0s	319us/step	_	loss:	0.0246
39/39	379/800 [=======]	_	0s	252us/step	_	loss:	0.0238
	380/800 [=======]	_	0s	690us/step	_	loss:	0.0290
	381/800 [======]	_	0s	679us/step	_	loss:	0.0187
Epoch	382/800 [======]						
Epoch	383/800						
Epoch	[=======] 384/800						
Epoch	[=======] 385/800						
	[======] 386/800	-	0s	383us/step	-	loss:	0.0221
	[======]	-	0s	315us/step	-	loss:	0.0274

Epoch	387/800				
39/39	[======================================] –	0s	296us/step - loss:	0.0315
	388/800 [===================================	1 _	Λq	29811g/gten - logg.	0 0280
Epoch	389/800				
	[=====================================] –	0s	361us/step - loss:	0.0231
	[======================================	1 –	0s	316us/step - loss:	0.0285
	391/800				
	[=====================================] -	0s	260us/step - loss:	0.0240
39/39	[======================================] –	0s	318us/step - loss:	0.0295
	393/800	1 _	0s	287us/sten - loss:	0.0195
Epoch	394/800			_	
	[=====================================] –	0s	302us/step - loss:	0.0192
	[======================================] –	0s	365us/step - loss:	0.0211
	396/800	,	٥٩	22224 / g + o p	0 0222
	397/800] –	US	ossus/step - loss:	0.0332
	[======================================] –	0s	370us/step - loss:	0.0192
	398/800 [===================================	1 –	0s	464us/step - loss:	0.0223
Epoch	399/800				
	[======================================] –	0s	511us/step - loss:	0.0255
39/39	[======================================] –	0s	424us/step - loss:	0.0199
	401/800	1 _	Λs	52711s/sten = loss:	0.0221
Epoch	402/800				
	[======================================] –	0s	342us/step - loss:	0.0204
39/39	[======================================] –	0s	377us/step - loss:	0.0208
	404/800	1	۸c	402ug/gton logg.	0 0206
	405/800	J –	US	402us/scep - 10ss:	0.0280
	[======================================] –	0s	363us/step - loss:	0.0240
	[======================================] –	0s	480us/step - loss:	0.0236
	407/800	,	0 ~	COC	0 0207
	[======================================] -	US	696us/step - loss:	0.0207
	[======================================] –	0s	829us/step - loss:	0.0286
	409/800	1 –	0s	790us/step - loss:	0.0241
Epoch	410/800				
	[=====================================] –	0s	601us/step - loss:	0.0221
39/39	[======================================] –	0s	386us/step - loss:	0.0204
	412/800	1 _	Λs	348us/sten - loss:	0.0172
Epoch	413/800				
	[=====================================] –	0s	410us/step - loss:	0.0185
39/39	[======================================] –	0s	334us/step - loss:	0.0229
Epoch	415/800				

```
39/39 [============== ] - 0s 269us/step - loss: 0.0249
Epoch 416/800
Epoch 417/800
39/39 [============== ] - 0s 362us/step - loss: 0.0285
Epoch 418/800
Epoch 419/800
39/39 [========== ] - 0s 696us/step - loss: 0.0212
Epoch 420/800
Epoch 421/800
39/39 [============== ] - 0s 761us/step - loss: 0.0212
Epoch 422/800
39/39 [============= ] - 0s 546us/step - loss: 0.0263
Epoch 423/800
39/39 [============ ] - 0s 745us/step - loss: 0.0200
Epoch 424/800
Epoch 425/800
Epoch 426/800
39/39 [============== ] - 0s 749us/step - loss: 0.0250
Epoch 427/800
Epoch 428/800
39/39 [============== ] - 0s 1ms/step - loss: 0.0198
Epoch 429/800
39/39 [============ ] - 0s 676us/step - loss: 0.0335
Epoch 430/800
39/39 [============ ] - 0s 620us/step - loss: 0.0229
Epoch 431/800
39/39 [============= ] - 0s 464us/step - loss: 0.0210
Epoch 432/800
39/39 [============== ] - 0s 350us/step - loss: 0.0276
Epoch 433/800
Epoch 434/800
39/39 [============= ] - 0s 353us/step - loss: 0.0246
Epoch 435/800
Epoch 436/800
39/39 [============= ] - 0s 760us/step - loss: 0.0210
Epoch 437/800
39/39 [============== ] - 0s 371us/step - loss: 0.0221
Epoch 438/800
Epoch 439/800
39/39 [=============== ] - 0s 411us/step - loss: 0.0221
Epoch 440/800
39/39 [============= ] - 0s 309us/step - loss: 0.0268
Epoch 441/800
39/39 [============== ] - 0s 384us/step - loss: 0.0197
Epoch 442/800
39/39 [=============== ] - 0s 311us/step - loss: 0.0208
Epoch 443/800
39/39 [============== ] - 0s 619us/step - loss: 0.0178
```

39/39	444/800				
	[======================================] –	0s	342us/step - loss: 0.02	217
	445/800	1 _	Λq	338us/sten = loss. 0 0	226
Epoch 39/39 Epoch 39/39 Epoch 39/39 Epoch 39/39 Epoch	446/800			_	
	[======================================] –	0s	402us/step - loss: 0.03	190
	[======================================] –	0s	370us/step - loss: 0.02	222
	448/800		0	260 / 1 2 2 2	
	[======================================] –	US	260us/step - loss: 0.02	26/
	[======================================] –	0s	285us/step - loss: 0.02	237
	450/800	1 –	0s	368us/step - loss: 0.02	292
Epoch	451/800			_	
	[=====================================] –	0s	930us/step - loss: 0.02	258
39/39	[======================================] –	0s	712us/step - loss: 0.03	182
	453/800 [===================================	1	۸c	837ug/g+on logg• 0 0°	220
Epoch	454/800				
	[=====================================] –	0s	433us/step - loss: 0.02	209
	[======================================] –	0s	378us/step - loss: 0.03	170
	456/800		0 -	204/	
	[=====================================] -	US	394us/step - 10ss: 0.0.	L / /
39/39	[======================================] –	0s	336us/step - loss: 0.02	248
	458/800 [===================================	1 –	0s	297us/step - loss: 0.02	207
Epoch	459/800				
	[======================================] –	0s	316us/step - loss: 0.02	245
39/39	[======================================] –	0s	350us/step - loss: 0.02	242
39/39 Epoch 39/39	461/800	1 _	0s	281us/step = loss: 0.03	223
	462/800				
	[======================================] –	0s	291us/step - loss: 0.02	284
39/39	[======================================] –	0s	331us/step - loss: 0.03	193
	464/800	1 _	۸e	346us/sten _ loss. 0 0	1 Q <u>/</u>
Epoch 39/39 Epoch	465/800				
	[======================================] –	0s	349us/step - loss: 0.02	250
	[======================================] –	0s	297us/step - loss: 0.02	244
	467/800 [===================================	1	0.0	220ug/gton logg. 0.00	1 5 5
	468/800] –	US	320us/step - 10ss: 0.0.	133
	[======================================] –	0s	336us/step - loss: 0.02	238
39/39 Epoch 39/39	469/800	1 –	0s	363us/step - loss: 0.02	200
	470/800				
	[=====================================	J –	US	325us/step - 10ss: 0.03	1/3
39/39	[======================================] –	0s	369us/step - loss: 0.02	245
Epoch	472/800				

```
39/39 [============= ] - 0s 350us/step - loss: 0.0205
Epoch 473/800
Epoch 474/800
Epoch 475/800
Epoch 476/800
39/39 [========== ] - 0s 320us/step - loss: 0.0196
Epoch 477/800
Epoch 478/800
39/39 [============== ] - 0s 584us/step - loss: 0.0244
Epoch 479/800
Epoch 480/800
39/39 [============ ] - 0s 804us/step - loss: 0.0216
Epoch 481/800
Epoch 482/800
39/39 [============= ] - 0s 1ms/step - loss: 0.0224
Epoch 483/800
39/39 [============== ] - 0s 457us/step - loss: 0.0221
Epoch 484/800
Epoch 485/800
Epoch 486/800
39/39 [============= ] - 0s 367us/step - loss: 0.0191
Epoch 487/800
Epoch 488/800
39/39 [============== ] - 0s 393us/step - loss: 0.0203
Epoch 489/800
39/39 [============== ] - 0s 372us/step - loss: 0.0212
Epoch 490/800
39/39 [============== ] - 0s 334us/step - loss: 0.0191
Epoch 491/800
39/39 [============== ] - 0s 327us/step - loss: 0.0212
Epoch 492/800
- loss: 0.0291
Epoch 493/800
Epoch 494/800
39/39 [============= ] - 0s 323us/step - loss: 0.0194
Epoch 495/800
39/39 [============== ] - 0s 372us/step - loss: 0.0198
Epoch 496/800
39/39 [============= ] - 0s 508us/step - loss: 0.0294
Epoch 497/800
Epoch 498/800
Epoch 499/800
39/39 [============ ] - 0s 539us/step - loss: 0.0293
Epoch 500/800
```

	[======]	_	0s	589us/step - loss:	0.0148
	501/800 [==========]	_	Λs	850us/sten - loss:	0.0264
Epoch	502/800				
	[======] 503/800	-	0s	817us/step - loss:	0.0146
	[=========]	_	0s	870us/step - loss:	0.0205
Epoch	504/800				
	[======] 505/800	-	0s	/32us/step - loss:	0.0223
39/39	[======]	_	0s	693us/step - loss:	0.0208
	506/800 [=======]		٥٥	762ug/g+on logg.	0 0106
	507/800	_	US	/02us/scep - 10ss:	0.0190
	[======]	-	0s	731us/step - loss:	0.0185
	508/800 [==========]	_	0s	726us/step = loss:	0.0183
Epoch	509/800				
	[=========]	-	0s	550us/step - loss:	0.0216
	510/800 [=======]	_	0s	327us/step - loss:	0.0238
Epoch	511/800				
	[======] 512/800	-	0s	258us/step - loss:	0.0201
	[=======]	_	0s	365us/step - loss:	0.0177
_	513/800				
	[=======] 514/800	-	0s	58/us/step - loss:	0.0221
39/39	[======]	_	0s	627us/step - loss:	0.0149
	515/800 [=======]		٥٥	251ug/gton logge	0 0201
	516/800	_	05	331us/step - 10ss:	0.0201
	[======]	-	0s	502us/step - loss:	0.0192
	517/800 [=======]	_	Λs	382115/sten = loss:	0.0277
Epoch	518/800				
	[======] 519/800	-	0s	528us/step - loss:	0.0285
	[=======]	_	0s	819us/step - loss:	0.0166
Epoch	520/800				
	[======] 521/800	-	0s	725us/step - loss:	0.0215
	[========]	_	0s	417us/step - loss:	0.0326
	522/800		0 ~	100	0 0101
	[======] 523/800	_	US	406us/step - loss:	0.0181
39/39	[======]	-	0s	342us/step - loss:	0.0188
	524/800 [=======]	_	Λe	39311g/gton _ logg.	0 0241
	525/800		V.S	373d3/3cep - 1033.	0.0241
	[=======]	-	0s	357us/step - loss:	0.0222
	526/800 [=======]	_	0s	338us/step - loss:	0.0182
Epoch	527/800				
	[======] 528/800	-	0s	430us/step - loss:	0.0164
	[========]	_	0s	375us/step - loss:	0.0224
	-			-	

Epoch	529/800				
39/39	[======]	-	0s	279us/step - loss: 0.0259	9
	530/800		٥a	216ug/gton logg. 0 024	2
Epoch 39/39 Epoch 39/39 Epoch 39/39	531/800	_	US	310us/scep - 10ss: 0:0242	٤
	[=======]	-	0s	303us/step - loss: 0.021	7
	532/800 [======]		٥a	407ug/gton logg. 0 010	2
	533/800	_	US	40/us/scep - 10ss: 0.0192	۷
	[=======]	_	0s	307us/step - loss: 0.0163	L
	534/800 [======]		٥a	22009/9409 1099 0 020	7
	535/800	_	US	320us/scep - 10ss: 0.020	′
39/39	[=======]	-	0s	352us/step - loss: 0.014	5
	536/800 [======]		٥٥	363ug/g+op logg. 0 010	2
	537/800	_	US	303us/scep - 10ss: 0.0192	_
39/39	[=======]	-	0s	331us/step - loss: 0.0178	3
	538/800 [======]		۸c	357ug/g+op logg• 0 025	1
	539/800	_	US	33/us/scep - 10ss: 0.023	*
	[========]	_	0s	617us/step - loss: 0.024)
	540/800 [=======]		۸c	309ug/g+op logg• 0 017	1
	541/800	_	US	309us/scep - 10ss. 0.01/.	L
	[========]	_	0s	287us/step - loss: 0.0219)
	542/800 [=======]		۸c	287ug/g+op logg• 0 0179	2
	543/800	_	US	207ds/scep - 10ss. 0.0176	,
	[=====]	-	0s	320us/step - loss: 0.0228	3
	544/800 [=======]	_	Λe	331us/sten _ loss. 0 022	า
Epoch	545/800				
	[======]	-	0s	319us/step - loss: 0.020	L
	546/800 [=======]	_	۸e	406us/sten = loss. 0 020	5
	547/800		0 D	10000, 5000	
	[======================================	-	0s	873us/step - loss: 0.0258	3
	548/800 [=======]	_	0s	872us/step - loss: 0.0179	9
Epoch	549/800				
	[======================================	-	0s	672us/step - loss: 0.014	5
	550/800 [======]	_	0s	396us/step - loss: 0.0220	5
Epoch	551/800				
	[======================================	-	0s	379us/step - loss: 0.0220)
	552/800 [=======]	_	0s	376us/step - loss: 0.017	1
Epoch	553/800				
	[======================================	-	0s	503us/step - loss: 0.0220	5
	554/800 [========]	_	0s	352us/step - loss: 0.016	7
Epoch	555/800				
	[======] 556/800	-	0s	363us/step - loss: 0.0160	5
	[=========]	_	0s	429us/step - loss: 0.0202	2
	557/800				

```
39/39 [============== ] - 0s 462us/step - loss: 0.0186
Epoch 558/800
39/39 [============ ] - 0s 426us/step - loss: 0.0310
Epoch 559/800
39/39 [=============== ] - 0s 368us/step - loss: 0.0227
Epoch 560/800
Epoch 561/800
39/39 [=============== ] - 0s 371us/step - loss: 0.0247
Epoch 562/800
39/39 [=============== ] - 0s 444us/step - loss: 0.0227
Epoch 563/800
39/39 [============== ] - 0s 381us/step - loss: 0.0160
Epoch 564/800
39/39 [============== ] - 0s 352us/step - loss: 0.0187
Epoch 565/800
39/39 [============== ] - 0s 446us/step - loss: 0.0175
Epoch 566/800
Epoch 567/800
- loss: 0.0216
Epoch 568/800
39/39 [============== ] - 0s 369us/step - loss: 0.0169
Epoch 569/800
39/39 [============ ] - 0s 366us/step - loss: 0.0182
Epoch 570/800
39/39 [============ ] - 0s 637us/step - loss: 0.0259
Epoch 571/800
Epoch 572/800
Epoch 573/800
39/39 [============== ] - 0s 377us/step - loss: 0.0228
Epoch 574/800
Epoch 575/800
Epoch 576/800
39/39 [============= ] - 0s 371us/step - loss: 0.0146
Epoch 577/800
Epoch 578/800
39/39 [=============== ] - 0s 608us/step - loss: 0.0192
Epoch 579/800
39/39 [============== ] - 0s 408us/step - loss: 0.0296
Epoch 580/800
39/39 [============== ] - 0s 498us/step - loss: 0.0196
Epoch 581/800
39/39 [============== ] - 0s 511us/step - loss: 0.0204
Epoch 582/800
39/39 [============ ] - 0s 2ms/step - loss: 0.0147
Epoch 583/800
39/39 [============= ] - 0s 1ms/step - loss: 0.0198
Epoch 584/800
39/39 [============ ] - 0s 455us/step - loss: 0.0160
Epoch 585/800
```

```
39/39 [============== ] - 0s 471us/step - loss: 0.0231
Epoch 586/800
39/39 [============ ] - 0s 483us/step - loss: 0.0206
Epoch 587/800
Epoch 588/800
Epoch 589/800
39/39 [=========== ] - 0s 416us/step - loss: 0.0175
Epoch 590/800
39/39 [=============== ] - 0s 317us/step - loss: 0.0165
Epoch 591/800
39/39 [============== ] - 0s 417us/step - loss: 0.0231
Epoch 592/800
39/39 [============= ] - 0s 674us/step - loss: 0.0192
Epoch 593/800
39/39 [============= ] - 0s 398us/step - loss: 0.0204
Epoch 594/800
Epoch 595/800
Epoch 596/800
39/39 [============== ] - 0s 444us/step - loss: 0.0235
Epoch 597/800
39/39 [============= ] - 0s 526us/step - loss: 0.0249
Epoch 598/800
Epoch 599/800
39/39 [============ ] - 0s 319us/step - loss: 0.0231
Epoch 600/800
39/39 [============= ] - 0s 464us/step - loss: 0.0169
Epoch 601/800
Epoch 602/800
39/39 [============= ] - 0s 546us/step - loss: 0.0239
Epoch 603/800
39/39 [============= ] - 0s 447us/step - loss: 0.0186
Epoch 604/800
39/39 [============== ] - 0s 438us/step - loss: 0.0228
Epoch 605/800
Epoch 606/800
39/39 [============ ] - 0s 561us/step - loss: 0.0238
Epoch 607/800
- loss: 0.0155
Epoch 608/800
Epoch 609/800
39/39 [============== ] - 0s 746us/step - loss: 0.0135
Epoch 610/800
Epoch 611/800
Epoch 612/800
39/39 [============= ] - 0s 525us/step - loss: 0.0129
Epoch 613/800
```

	[=====]	_	0s	401us/step - loss: 0.0317
	614/800 [=======]	_	0 s	377us/sten = loss: 0.0138
Epoch	615/800			_
	[======] 616/800	-	0s	432us/step - loss: 0.0169
	[=========]	_	0s	714us/step - loss: 0.0205
	617/800		•	-
	[======] 618/800	-	0s	44/us/step - loss: 0.01/1
39/39	[======]	-	0s	452us/step - loss: 0.0193
	619/800 [=======]	_	Λς	411115/sten - loss: 0 0186
Epoch	620/800			_
	[======] 621/800	-	0s	456us/step - loss: 0.0155
	[=========]	_	0s	473us/step - loss: 0.0178
	622/800		•	504 / 1 3 0 0140
	[======] 623/800	-	0s	504us/step - loss: 0.0140
39/39	[======]	-	0s	466us/step - loss: 0.0141
	624/800 [=======]	_	0s	368us/step = loss: 0.0221
Epoch	625/800			
	[======] 626/800	-	0s	389us/step - loss: 0.0267
	[=======]	_	0s	442us/step - loss: 0.0161
	627/800		0 -	507
	[======] 628/800	_	US	50/us/step - 10ss: 0.0158
39/39	[======]	_	0s	629us/step - loss: 0.0172
	629/800 [=======]	_	0s	403us/step - loss: 0.0168
Epoch	630/800			_
	[======] 631/800	-	0s	376us/step - loss: 0.0227
	[========]	_	0s	418us/step - loss: 0.0134
	632/800 [======]		0 a	400mg/gton logg. 0 0100
	633/800	_	US	409us/step - 10ss: 0.0190
	[=======]	-	0s	432us/step - loss: 0.0214
	634/800 [=======]	_	0s	520us/step - loss: 0.0202
Epoch	635/800			
	[======] 636/800	-	0s	1ms/step - loss: 0.0165
39/39	[======]	_	0s	679us/step - loss: 0.0189
	637/800 [=======]		Λσ	644us/stan loss 0 0172
Epoch	638/800			
	[=========]	-	0s	644us/step - loss: 0.0198
	639/800 [=======]	_	0s	639us/step - loss: 0.0156
Epoch	640/800			
	[======] 641/800	-	0s	426us/step - loss: 0.0234
	[======]	-	0s	359us/step - loss: 0.0235

Epoch	642/800				
	[=======]	-	0s	383us/step - loss: 0	0.0223
	643/800 [===================================		۸e	44411g/gten = logg. (0 0160
Epoch	644/800			_	
	[========]	-	0s	407us/step - loss: (0.0243
	645/800 [==========]	ı –	0s	392us/step - loss: (0.0211
Epoch	646/800			_	
	[=====================================	-	0s	472us/step - loss: (0.0160
	[=========]	-	0s	365us/step - loss: (0.0254
	648/800 [=========]		0.0	272ug/g+on logg. (0 0105
	649/800	-	US	2/2us/step = 10ss: (0.0185
	[======]	-	0s	307us/step - loss: 0	0.0201
	650/800 [=========]	ı <u>-</u>	0s	332us/step - loss: (0.0230
Epoch	651/800			_	
	[=====================================	-	0s	322us/step - loss: (0.0125
39/39	[========]	-	0s	296us/step - loss: 0	0.0204
	653/800 [===================================	ı _	۸e	31811g/gton _ logg. (0 0136
Epoch	654/800				
	[=====================================	-	0s	416us/step - loss: (0.0182
	[==========]	-	0s	472us/step - loss: (0.0188
	656/800		•	760 / 1	0.0167
	[=====================================	-	US	/68us/step - loss: (0.016/
39/39	[========]	-	0s	440us/step - loss: 0	0.0172
	658/800 [===================================	ı <u>-</u>	0s	510us/step - loss: (0.0160
Epoch	659/800				
Epoch 39/39	[==========]	-	0s	393us/step - loss: (0.0246
	[========]	-	0s	293us/step - loss: 0	0.0243
	661/800 [===================================	ı _	۸e	311ug/gten _ logg. (0.0200
Epoch	662/800				
	[========] 663/800	-	0s	337us/step - loss: (0.0182
	[==========]	-	0s	336us/step - loss: (0.0146
	664/800		0 -	200/	0.0104
	[========] 665/800	-	US	382us/step - 10ss: (0.0194
	[=======]	-	0s	488us/step - loss: 0	0.0166
	666/800 [===================================	ı –	0s	316us/step - loss: (0.0194
Epoch	667/800				
	[=====================================	-	0s	392us/step - loss: (0.0346
39/39	[=======]	-	0s	510us/step - loss: (0.0186
	669/800 [==========]	l .	Λe	31411g/gton _ logg. (n n16n
	670/800	_	JB	21400/pceb - 1089: (0.0100

```
39/39 [============== ] - 0s 358us/step - loss: 0.0174
Epoch 671/800
Epoch 672/800
39/39 [=============== ] - 0s 347us/step - loss: 0.0126
Epoch 673/800
Epoch 674/800
39/39 [=========== ] - 0s 736us/step - loss: 0.0215
Epoch 675/800
39/39 [=============== ] - 0s 920us/step - loss: 0.0170
Epoch 676/800
39/39 [============== ] - 0s 881us/step - loss: 0.0136
Epoch 677/800
39/39 [============== ] - 0s 578us/step - loss: 0.0214
Epoch 678/800
- loss: 0.0184
Epoch 679/800
39/39 [=============== ] - 0s 662us/step - loss: 0.0203
Epoch 680/800
39/39 [=============== ] - 0s 406us/step - loss: 0.0199
Epoch 681/800
39/39 [============= ] - 0s 518us/step - loss: 0.0209
Epoch 682/800
Epoch 683/800
39/39 [============ ] - 0s 327us/step - loss: 0.0242
Epoch 684/800
39/39 [=========== ] - 0s 356us/step - loss: 0.0222
Epoch 685/800
39/39 [============= ] - 0s 348us/step - loss: 0.0279
Epoch 686/800
39/39 [============= ] - 0s 386us/step - loss: 0.0185
Epoch 687/800
Epoch 688/800
39/39 [=============== ] - 0s 339us/step - loss: 0.0182
Epoch 689/800
39/39 [============ ] - 0s 432us/step - loss: 0.0216
Epoch 690/800
Epoch 691/800
Epoch 692/800
39/39 [============== ] - 0s 864us/step - loss: 0.0196
Epoch 693/800
39/39 [============== ] - 0s 611us/step - loss: 0.0153
Epoch 694/800
39/39 [=========== ] - 0s 360us/step - loss: 0.0208
Epoch 695/800
Epoch 696/800
Epoch 697/800
39/39 [============= ] - 0s 463us/step - loss: 0.0258
Epoch 698/800
```

	[=======]	-	0s	441us/step - loss: 0.	0156
	699/800 [=======]	_	0s	568us/step - loss: 0.	0165
Epoch	700/800				
	[======] 701/800	-	0s	759us/step - loss: 0.	0211
39/39	[======]	_	0s	767us/step - loss: 0.	0211
	702/800 [======]	_	0s	664us/step = loss: 0.	0177
Epoch	703/800				
	[======] 704/800	-	0s	360us/step - loss: 0.	0199
39/39	[======]	_	0s	273us/step - loss: 0.	0143
	705/800 [======]		۸c	367ug/g+on logg. 0	0147
Epoch	706/800				
	[======================================	-	0s	312us/step - loss: 0.	0192
	707/800 [=======]	_	0s	248us/step - loss: 0.	0227
	708/800		0 -	204/	0157
	[======] 709/800	_	US	284us/step - 10ss: 0.	0157
	[======]	-	0s	390us/step - loss: 0.	0135
	710/800 [=========]	_	0s	325us/step - loss: 0.	0212
Epoch	711/800				
	[=======] 712/800	-	0s	237us/step - loss: 0.	0168
39/39	[======]	_	0s	338us/step - loss: 0.	0183
	713/800 [=========]	_	Λς	370us/sten - loss. 0	0191
Epoch	714/800				
	[======] 715/800	-	0s	312us/step - loss: 0.	0259
	[=======]	_	0s	386us/step - loss: 0.	0159
	716/800 [=========]		Λα	432ug/gton logg. 0	0240
	717/800	_	US	432us/step - 10ss: 0.	0240
	[=========]	-	0s	301us/step - loss: 0.	0178
_	718/800 [=========]	_	0s	280us/step - loss: 0.	0221
	719/800		0 -	200/	0100
	[=======] 720/800	_	US	299us/step - 10ss: 0.	0190
	[=======]	-	0s	370us/step - loss: 0.	0190
	721/800 [=======]	_	0s	346us/step - loss: 0.	0243
Epoch	722/800				
	[======] 723/800	-	0s	318us/step - loss: 0.	0190
39/39	[======]	_	0s	285us/step - loss: 0.	0131
	724/800 [=========]	_	0s	237us/step - loss: 0.	0147
Epoch	725/800				
	[======] 726/800	-	0s	271us/step - loss: 0.	0206
	[=======]	_	0s	271us/step - loss: 0.	0207

```
Epoch 727/800
39/39 [==============] - 0s 262us/step - loss: 0.0194
Epoch 728/800
39/39 [============] - 0s 288us/step - loss: 0.0139
Epoch 729/800
39/39 [============] - 0s 260us/step - loss: 0.0227
Epoch 730/800
39/39 [=============] - 0s 303us/step - loss: 0.0193
Epoch 731/800
39/39 [==============] - 0s 756us/step - loss: 0.0141
Restoring model weights from the end of the best epoch
Epoch 00731: early stopping
best epoch = 651
smallest loss = 0.012513714746978039
```

```
In [108...
          # Task 1.1e
          from sklearn import metrics
          # This line of code can be used to reconstruct the saved model. The name of t
          recon model = keras.models.load model("best model")
          import matplotlib.pyplot as plt
          y_predict = []
          xepred = []
          xeorig = []
          for i in range(len(X_train)):
              test = [[X_train[i][0], X_train[i][1], X_train[i][2]]]
              testarray = np.array(test)
              a = recon_model.predict(testarray)
              y_predict.append([a[0][0], a[0][1]])
              xepred.append([a[0][0]])
              xeorig.append([y_train[i][0]])
          x = np.linspace(0.5, 1.5, 100)
          y = x
          plt.figure()
          ax = plt.gca()
          ax.scatter(xepred ,xeorig , c='blue', label = 'data')
          ax.set yscale('log')
          ax.set_xscale('log')
          plt.plot(x, y, '-r', label='y=x')
          plt.xlabel("Predicted exit quality")
```

mae_xe = metrics.mean_absolute_error(xepred, xeorig)

print('mean absolute error between predictions and the collection of test dat

plt.ylabel("Actual exit quality")

#MAE of predicted vs test data

plt.legend()

plt.show()

plt.tight layout()

mean absolute error between predictions and the collection of test data: Xe = 0.02350722758865225

In [109... # Task 1.1f from sklearn import metrics # This line of code can be used to reconstruct the saved model. The name of t recon model = keras.models.load model("best model") import matplotlib.pyplot as plt y predictf = [] xepredf = [] xeorigf = [] for i in range(len(X test)): testf = [[X_test[i][0], X_test[i][1], X_test[i][2]]] testarrayf = np.array(testf) af = recon_model.predict(testarrayf) y_predictf.append([af[0][0], af[0][1]]) xepredf.append([af[0][0]]) xeorigf.append([y_test[i][0]]) x = np.linspace(0.5, 1.5, 100)y = xplt.figure() ax = plt.gca() ax.scatter(xepredf , xeorigf , c='blue', label = 'data') ax.set yscale('log') ax.set_xscale('log') plt.plot(x, y, '-r', label='y=x')plt.xlabel("Predicted exit quality") plt.ylabel("Actual exit quality") plt.legend() plt.tight layout() plt.show() #MAE of predicted vs test data mae xef = metrics.mean absolute error(xepredf, xeorigf) print('mean absolute error between predictions and the collection of test dat

mean absolute error between predictions and the collection of test data: Xe = 0.029029867787563276

In [170... #Task1.1g X = np.linspace(0.007, 0.013) #DiY = np.linspace(0.05, 0.15) #mdotq0 = 750Xp = [] #input Yp = []testdatap = [] xep = [] #output Twp = []preddatap = [] q0n = q0/medq0Xn = X/medDiYn = Y/medmdotfor x in range(len(Xn)): for y in range(len(Yn)): testdatap.append([Xn[x], q0n, Yn[y]]) Xp = np.asarray(testdatap)[:,0]*medDi Yp = np.asarray(testdatap)[:,2]*medmdot for x in range(len(testdatap)): testp = [[testdatap[x][0], testdatap[x][1], testdatap[x][2]]] testarrayp = np.array(testp) outptp = recon model.predict(testarrayp) preddatap.append(outptp) xep.append(outptp[0][0]*medxe) Twp.append(outptp[0][1]*medTw) fig = plt.figure() ax = plt.axes(projection='3d') surf = ax.plot_trisurf(Xp, Yp, xep) fig.colorbar(surf, shrink=0.5, aspect=5, pad=0.2) ax.set_zlabel('Exit quality', rotation=60) ax.set ylabel('Mass flow rate [kg/s]') ax.set_xlabel('Diameter [m]', rotation=150) ax.xaxis.labelpad=15 ax.yaxis.labelpad=15 ax.zaxis.labelpad=15 ax.title.set text('Xe prediction'); plt.tight layout() plt.show()

Xe prediction


```
fig = plt.figure()
ax = plt.axes(projection='3d')
surf = ax.plot_trisurf(Xp, Yp, Twp)
fig.colorbar(surf, shrink=0.5, aspect=5, pad=0.2)
ax.set_zlabel('Tw,max [Celsius]', rotation=60)
ax.set_ylabel('Mass flow rate [kg/s]')
ax.set_xlabel('Diameter [m]', rotation=150)
ax.xaxis.labelpad=15
ax.yaxis.labelpad=15
ax.zaxis.labelpad=15
ax.title.set_text('Tw,max Prediction');
plt.tight_layout()
plt.show()
```

Tw.max Prediction


```
In [254...
          #Task1.2a-c
          # define neural network model
          from keras import backend as K
          from keras.layers import Dense, Dropout, Flatten
          #initialize weights
          initializer = keras.initializers.RandomUniform(minval= -0.2, maxval=0.5)
          modelv2 = keras.Sequential()
          modelv2.add(Dense(6, activation=K.elu, input_shape=[3], kernel_initializer=i
          modelv2.add(Dense(8, activation=K.elu, kernel initializer=initializer))
          modelv2.add(Dropout(0.25))
          modelv2.add(Dense(12, activation=K.elu, kernel_initializer=initializer))
          modelv2.add(Dropout(0.25))
          modelv2.add(Dense(16, activation=K.elu, kernel initializer=initializer))
          modelv2.add(Dropout(0.25))
          modelv2.add(Dense(8, activation=K.elu, kernel_initializer=initializer))
          modelv2.add(Dropout(0.25))
          modelv2.add(Dense(2, kernel_initializer=initializer))
```

```
In [257... #from tf.keras import optimizers
    rms = keras.optimizers.RMSprop(0.001)
    modelv2.compile(loss='mean_absolute_error',optimizer=rms)
```

In [258... # Add an early stopping callback es = keras.callbacks.EarlyStopping(monitor='loss', mode='min', patience = 80, restore best weights = True, verbose=1) # Add a checkpoint where loss is minimum, and save that model mc = keras.callbacks.ModelCheckpoint('best modelv2.SB', monitor='loss', mode='min', verbose=1, save best only=True) historyDatav2 = modelv2.fit(X train,y train,epochs=800,callbacks=[es]) loss_histv2 = historyDatav2.history['loss'] #The above line will return a dictionary, access it's info like this: best_epochv2 = np.argmin(historyDatav2.history['loss']) + 1 print ('best epoch = ', best_epochv2) print('smallest loss =', np.min(loss histv2))

```
Epoch 1/800
39/39 [============= ] - 3s 77ms/step - loss: 0.1947
Epoch 2/800
39/39 [=============== ] - 0s 780us/step - loss: 0.1839
Epoch 3/800
Epoch 4/800
39/39 [============== ] - 0s 802us/step - loss: 0.1679
Epoch 5/800
39/39 [=============== ] - 0s 699us/step - loss: 0.1767
Epoch 6/800
39/39 [=============== ] - 0s 510us/step - loss: 0.1378
Epoch 7/800
39/39 [=========== ] - Os 2ms/step - loss: 0.1679
Epoch 8/800
39/39 [============== ] - 0s 1ms/step - loss: 0.1539
Epoch 9/800
39/39 [============== ] - 0s 819us/step - loss: 0.1512
Epoch 10/800
39/39 [=============== ] - 0s 611us/step - loss: 0.1828
Epoch 11/800
39/39 [============== ] - 0s 482us/step - loss: 0.1871
Epoch 12/800
39/39 [============= ] - 0s 1ms/step - loss: 0.1466
Epoch 13/800
Epoch 14/800
Epoch 15/800
Epoch 16/800
Epoch 17/800
```

model.save('./best_modelv2')

```
39/39 [============== ] - 0s 471us/step - loss: 0.1911
Epoch 18/800
39/39 [============ ] - 0s 436us/step - loss: 0.1672
Epoch 19/800
Epoch 20/800
Epoch 21/800
Epoch 22/800
Epoch 23/800
- loss: 0.1799
Epoch 24/800
39/39 [=============== ] - 0s 418us/step - loss: 0.1515
Epoch 25/800
39/39 [============= ] - 0s 686us/step - loss: 0.1691
Epoch 26/800
39/39 [=============== ] - 0s 410us/step - loss: 0.1690
Epoch 27/800
39/39 [=============== ] - 0s 367us/step - loss: 0.1553
Epoch 28/800
39/39 [============== ] - 0s 414us/step - loss: 0.1678
Epoch 29/800
Epoch 30/800
39/39 [============ ] - 0s 519us/step - loss: 0.1652
Epoch 31/800
Epoch 32/800
Epoch 33/800
39/39 [============== ] - 0s 471us/step - loss: 0.1688
Epoch 34/800
Epoch 35/800
Epoch 36/800
39/39 [============ ] - 0s 487us/step - loss: 0.1623
Epoch 37/800
Epoch 38/800
39/39 [=============== ] - 0s 503us/step - loss: 0.1483
Epoch 39/800
39/39 [=============== ] - 0s 548us/step - loss: 0.1521
Epoch 40/800
39/39 [=========== ] - 0s 516us/step - loss: 0.1793
Epoch 41/800
39/39 [============ ] - 0s 486us/step - loss: 0.1702
Epoch 42/800
Epoch 43/800
39/39 [============= ] - 0s 688us/step - loss: 0.1608
Epoch 44/800
39/39 [============== ] - 0s 501us/step - loss: 0.1786
Epoch 45/800
```

Epoch	[======] 46/800			
	[======] 47/800	-	0s	721us/step - loss: 0.1239
	[======] 48/800	-	0s	549us/step - loss: 0.1835
39/39	[======]	-	0s	811us/step - loss: 0.1714
39/39	49/800 [=======]	_	0s	702us/step - loss: 0.1567
	50/800 [=======]	_	0s	614us/step - loss: 0.1624
Epoch	51/800 [======]			
Epoch	52/800			
Epoch	[======] 53/800			-
	[======] 54/800	-	0s	859us/step - loss: 0.1586
39/39	[=======] 55/800	-	0s	785us/step - loss: 0.1619
39/39	[======]	-	0s	1ms/step - loss: 0.1632
	56/800 [=======]	_	0s	1ms/step - loss: 0.1413
	57/800 [======]	_	0s	1ms/step - loss: 0.1478
Epoch	58/800 [=======]			
Epoch	59/800			-
Epoch	[======] 60/800			-
	[======] 61/800	-	0s	511us/step - loss: 0.1637
39/39	[=======] 62/800	-	0s	549us/step - loss: 0.1662
39/39	[======]	_	0s	512us/step - loss: 0.1383
	63/800 [=======]	_	0s	503us/step - loss: 0.1450
Epoch	64/800 [======]			
Epoch	65/800 [=======]			_
Epoch	66/800			
Epoch	[========] 67/800			
	[=======] 68/800	-	0s	564us/step - loss: 0.1822
39/39	[=======] 69/800	-	0s	737us/step - loss: 0.1448
39/39	[======]	-	0s	770us/step - loss: 0.1817
	70/800 [=======]	_	0s	449us/step - loss: 0.1317
	71/800 [======]	_	0s	468us/step - loss: 0.1815
Epoch	72/800 [=======]			
Epoch	73/800			
39/39	[=====]	-	0s	716us/step - loss: 0.1484

Epoch	74/800			
	[=======]	_	0s	523us/step - loss: 0.1286
	75/800			
	[======================================	-	0s	380us/step - loss: 0.1447
	76/800 [======]	_	٥q	403us/step = loss: 0.1466
	77/800		05	103d5/5ccp = 1055. 0.1400
	[======]	_	0s	405us/step - loss: 0.1566
	78/800			
	[=======] 79/800	-	0s	1ms/step - loss: 0.1534
	[========]	_	0s	544us/step - loss: 0.1323
Epoch	80/800			-
	[=====]	-	0s	564us/step - loss: 0.1484
	81/800 [======]		٥٥	612ug/gton logg. 0 1502
	82/800	_	US	013us/scep - 10ss: 0.1303
	[========]	_	0s	481us/step - loss: 0.1509
	83/800			
	[======] 84/800	-	0s	lms/step - loss: 0.1497
	[=========]	_	0s	934us/step - loss: 0.1389
Epoch	85/800			-
	[=======]	-	0s	677us/step - loss: 0.1620
	86/800 [======]	_	٥g	775us/sten = loss: 0.1512
	87/800		0 D	7734575000 1055. 0:1312
	[======]	-	0s	749us/step - loss: 0.1597
	88/800 [======]		٥٥	714ug/gton logg. 0 1626
	[] 89/800	_	US	/14us/step - 10ss: 0.1030
39/39	[======]	_	0s	616us/step - loss: 0.1860
	90/800		•	455 /
	[======] 91/800	_	US	4/5us/step - loss: 0.1513
	[=======]	_	0s	587us/step - loss: 0.1280
	92/800			
	[======] 93/800	-	0s	480us/step - loss: 0.1435
	[========]	_	0s	492us/step - loss: 0.1701
Epoch	94/800			
	[======] 95/800	-	0s	551us/step - loss: 0.1587
	[=========]	_	0s	622us/step - loss: 0.1411
Epoch	96/800			
	[======]	-	0s	668us/step - loss: 0.1393
	97/800 [======]		Λe	72911g/g+op _ logg• 0 1373
	98/800	_	V.S	727d8/8cep - 1088. 0:13/3
	[======]	-	0s	652us/step - loss: 0.1426
	99/800		0 ~	466
	[======] 100/800	_	υS	400us/scep - 10ss: 0.1310
39/39	[======]	_	0s	605us/step - loss: 0.1441
	101/800		^	616
	[======] 102/800	-	US	olous/step - loss: 0.14/1
LPOON	102,000			

```
39/39 [============== ] - 0s 781us/step - loss: 0.1630
Epoch 103/800
Epoch 104/800
Epoch 105/800
39/39 [============= ] - 0s 574us/step - loss: 0.1475
Epoch 106/800
39/39 [=========== ] - 0s 478us/step - loss: 0.1454
Epoch 107/800
39/39 [=============== ] - 0s 800us/step - loss: 0.1418
Epoch 108/800
39/39 [============== ] - 0s 476us/step - loss: 0.1812
Epoch 109/800
39/39 [============= ] - 0s 495us/step - loss: 0.1599
Epoch 110/800
39/39 [============ ] - 0s 546us/step - loss: 0.1537
Epoch 111/800
39/39 [============= ] - 0s 466us/step - loss: 0.1485
Epoch 112/800
Epoch 113/800
39/39 [============== ] - 0s 415us/step - loss: 0.1362
Epoch 114/800
Epoch 115/800
Epoch 116/800
39/39 [============ ] - 0s 493us/step - loss: 0.1464
Epoch 117/800
39/39 [============= ] - 0s 468us/step - loss: 0.1462
Epoch 118/800
Epoch 119/800
39/39 [============== ] - 0s 497us/step - loss: 0.1450
Epoch 120/800
Epoch 121/800
39/39 [============== ] - 0s 522us/step - loss: 0.1340
Epoch 122/800
Epoch 123/800
39/39 [============= ] - 0s 433us/step - loss: 0.1431
Epoch 124/800
39/39 [============== ] - 0s 497us/step - loss: 0.1536
Epoch 125/800
Epoch 126/800
Restoring model weights from the end of the best epoch
Epoch 00126: early stopping
best epoch = 46
smallest loss = 0.12392662733029096
```

In [250... # Task 1.2e from sklearn import metrics # This line of code can be used to reconstruct the saved model. The name of t recon_modelv2 = keras.models.load_model("best_modelv2") import matplotlib.pyplot as plt y predict2 = [] xepred2 = [] xeorig2 = []for i in range(len(X train)): test = [[X_train[i][0], X_train[i][1], X_train[i][2]]] testarray = np.array(test) a = recon_modelv2.predict(testarray) y_predict2.append([a[0][0], a[0][1]]) xepred2.append([a[0][0]]) xeorig2.append([y_train[i][0]]) x = np.linspace(0.5, 1.5, 100)y = xplt.figure() ax = plt.qca()ax.scatter(xepred2 ,xeorig2 , c='blue', label = 'data') ax.set yscale('log') ax.set_xscale('log') plt.plot(x, y, '-r', label='y=x')plt.xlabel("Predicted exit quality") plt.ylabel("Actual exit quality") plt.legend() plt.tight layout() plt.show() #MAE of predicted vs test data mae xe2 = metrics.mean absolute error(xepred2, xeorig2) print('mean absolute error between predictions and the collection of test dat

mean absolute error between predictions and the collection of test data: Xe = 0.02350722758865225

In [251... # Task 1.2f from sklearn import metrics # This line of code can be used to reconstruct the saved model. The name of t recon modelv2 = keras.models.load model("best modelv2") import matplotlib.pyplot as plt y predictf2 = [] xepredf2 = [] xeorigf2 = []for i in range(len(X test)): testf = [[X_test[i][0], X_test[i][1], X_test[i][2]]] testarrayf = np.array(testf) af = recon_modelv2.predict(testarrayf) y_predictf2.append([af[0][0], af[0][1]]) xepredf2.append([af[0][0]]) xeorigf2.append([y_test[i][0]]) x = np.linspace(0.5, 1.5, 100)y = xplt.figure() ax = plt.gca() ax.scatter(xepredf2 , xeorigf2 , c='blue', label = 'data') ax.set yscale('log') ax.set_xscale('log') plt.plot(x, y, '-r', label='y=x')plt.xlabel("Predicted exit quality") plt.ylabel("Actual exit quality") plt.legend() plt.tight layout() plt.show() #MAE of predicted vs test data mae xef2 = metrics.mean absolute error(xepredf2, xeorigf2) print('mean absolute error between predictions and the collection of test dat

mean absolute error between predictions and the collection of test data: Xe = 0.029029867787563276

In [252... #Task1.2g X = np.linspace(0.007, 0.013) #DiY = np.linspace(0.05, 0.15) #mdotq0 = 750testdatap = [] xep2 = [] #outputTwp2 = []preddatap2 = [] q0n = q0/medq0Xn = X/medDiYn = Y/medmdotfor x in range(len(Xn)): for y in range(len(Yn)): testdatap.append([Xn[x], q0n, Yn[y]]) Xp = np.asarray(testdatap)[:,0]*medDi Yp = np.asarray(testdatap)[:,2]*medmdot for x in range(len(testdatap)): testp = [[testdatap[x][0], testdatap[x][1], testdatap[x][2]]] testarrayp = np.array(testp) outptp = recon modelv2.predict(testarrayp) preddatap2.append(outptp) xep2.append(outptp[0][0]*medxe) Twp2.append(outptp[0][1]*medTw) fig = plt.figure() ax = plt.axes(projection='3d') surf = ax.plot_trisurf(Xp, Yp, xep2) fig.colorbar(surf, shrink=0.5, aspect=5, pad=0.2) ax.set_zlabel('Exit quality', rotation=60) ax.set_ylabel('Mass flow rate [kg/s]') ax.set_xlabel('Diameter [m]', rotation=150) ax.xaxis.labelpad=15 ax.yaxis.labelpad=15 ax.zaxis.labelpad=15 ax.title.set text('Xe prediction'); plt.tight layout() plt.show()

Xe prediction


```
fig = plt.figure()
ax = plt.axes(projection='3d')
surf = ax.plot_trisurf(Xp, Yp, Twp2)
fig.colorbar(surf, shrink=0.5, aspect=5, pad=0.2)
ax.set_zlabel('Tw,max [Celsius]', rotation=60)
ax.set_ylabel('Mass flow rate [kg/s]')
ax.set_xlabel('Diameter [m]', rotation=150)
ax.xaxis.labelpad=15
ax.yaxis.labelpad=15
ax.zaxis.labelpad=15
ax.title.set_text('Tw,max Prediction');
plt.tight_layout()
plt.show()
```

Tw.max Prediction


```
In [13]:
```

```
#Task1.3
import numpy
xdata = []
ydata = []
#xdata.append([ Di(m), qoflux (kW/m^2), exit quality, max wall temperature (d
xdata.append([0.008, 550, 0.525, 306.7])
xdata.append([0.008, 650, 0.525, 298.5])
xdata.append([0.008, 750, 0.525, 294.5])
xdata.append([0.008, 850, 0.525, 290.2])
xdata.append([0.008, 950, 0.524, 286.9])
xdata.append([0.008, 1050, 0.524, 284.1])
xdata.append([0.008, 1150, 0.525, 281.7])
xdata.append([0.008, 850, 0.524, 290.31])
xdata.append([0.008, 550, 0.734, 307.9])
xdata.append([0.008, 750, 0.735, 295.5])
xdata.append([0.008, 950, 0.735, 287.8])
xdata.append([0.008, 1050, 0.735, 285.0])
xdata.append([0.008, 1150, 0.735, 282.5])
xdata.append([0.008, 850, 0.734, 291.3])
xdata.append([0.008, 550, 0.945, 308.6])
xdata.append([0.008, 750, 0.945, 296.2])
xdata.append([0.008, 950, 0.945, 288.5])
xdata.append([0.008, 1150, 0.945, 283.1])
xdata.append([0.008, 850, 0.945, 291.9])
xdata.append([0.011, 550, 0.525, 328.0])
xdata.append([0.011, 750, 0.525, 311.2])
xdata.append([0.011, 950, 0.525, 300.8])
xdata.append([0.011, 1150, 0.525, 293.6])
xdata.append([0.011, 850, 0.525, 305.5])
xdata.append([0.011, 550, 0.735, 329.6])
```

```
xdata.append([0.011, 750, 0.735, 312.6])
xdata.append([0.011, 950, 0.735, 302.0])
xdata.append([0.011, 1050, 0.735, 299.4])
xdata.append([0.011, 1150, 0.735, 294.8])
xdata.append([0.011, 850, 0.735, 306.8])
xdata.append([0.011, 550, 0.945, 330.7])
xdata.append([0.011, 750, 0.945, 313.6])
xdata.append([0.011, 950, 0.944, 302.9])
xdata.append([0.011, 1150, 0.945, 295.6])
xdata.append([0.011, 850, 0.944, 307.7])
xdata.append([0.011, 700, 0.734, 324.7])
xdata.append([0.013, 550, 0.525, 342.2])
xdata.append([0.013, 750, 0.524, 322.3])
xdata.append([0.013, 950, 0.524, 310.0])
xdata.append([0.013, 1150, 0.525, 301.6])
xdata.append([0.013, 850, 0.524, 315.5])
xdata.append([0.013, 550, 0.734, 344.1])
xdata.append([0.013, 750, 0.735, 324.0])
xdata.append([0.013, 950, 0.735, 311.5])
xdata.append([0.013, 1050, 0.735, 306.3])
xdata.append([0.013, 1150, 0.735, 302.9])
xdata.append([0.013, 850, 0.734, 317.1])
xdata.append([0.013, 550, 0.945, 345.3])
xdata.append([0.013, 750, 0.944, 325.1])
xdata.append([0.013, 950, 0.944, 312.5])
xdata.append([0.013, 1150, 0.945, 303.9])
xdata.append([0.013, 850, 0.945, 318.2])
#data.append([mdot (kg/s)])
ydata.append([0.06157])
ydata.append([0.07269])
ydata.append([0.08396])
ydata.append([0.09347])
ydata.append([0.10635])
ydata.append([0.11521])
ydata.append([0.1287])
ydata.append([0.09516])
ydata.append([0.04398])
ydata.append([0.05997])
ydata.append([0.07596])
ydata.append([0.08343])
ydata.append([0.0919])
ydata.append([0.06797])
ydata.append([0.0342])
ydata.append([0.04664])
ydata.append([0.05908])
ydata.append([0.0715])
ydata.append([0.05286])
ydata.append([0.0846])
ydata.append([0.1154])
ydata.append([0.1462])
```

```
ydata.append([0.177])
ydata.append([0.1308])
ydata.append([0.06047])
ydata.append([0.08246])
ydata.append([0.1044])
ydata.append([0.1134])
ydata.append([0.1264])
ydata.append([0.0934])
ydata.append([0.047])
ydata.append([0.06413])
ydata.append([0.08124])
ydata.append([0.09834])
ydata.append([0.072691])
ydata.append([0.087196])
ydata.append([0.10005])
ydata.append([0.13644])
ydata.append([0.17282])
ydata.append([0.2092])
ydata.append([0.15463])
ydata.append([0.07147])
ydata.append([0.09745])
ydata.append([0.12344])
ydata.append([0.13302])
ydata.append([0.1494])
ydata.append([0.11045])
ydata.append([0.05558])
ydata.append([0.0758])
ydata.append([0.09601])
ydata.append([0.1162])
ydata.append([0.0859])
xarray3= numpy.array(xdata)
yarray3= numpy.array(ydata)
```

```
In [7]:
         #Task 1.3a
         import keras
         import pandas as pd
         from keras.models import Sequential
         import numpy as np
         import keras.backend as kb
         import tensorflow as tf
         import statistics as s
         #the follwoing 2 lines are only needed for Mac OS machines
         import os
         os.environ['KMP_DUPLICATE_LIB_OK']='True'
         Di3 =[] #inputs
         q03 =[]
         xe3 = []
         Tw3 = []
         mdot3 =[] #output
```

```
xarrayn3 = []
yarrayn3 = []
for x in range(len(xarray3)):
    Di3.append(xarray3[x][0])
    q03.append(xarray3[x][1])
    xe3.append(xarray3[x][2])
    Tw3.append(xarray3[x][3])
for y in range(len(yarray3)):
    mdot3.append(yarray3[y][0])
def median(sample):
                           #function to calculate median
    n = len(sample)
    i = n//2
    if n%2:
        return sorted (sample [i])
    return sum(sorted(sample)[i-1:i+1])/2
medDi3 = median(Di3)
medq03 = median(q03)
medxe3 = median(xe3)
medTw3 = median(Tw3)
medmdot3 = median(mdot3)
Din3 = Di3/medDi3
q0n3 = q03/medq03
xen3 = xe3/medxe3
Twn3 = Tw3/medTw3
mdotn3 = mdot3/medmdot3
xarrayn3 = np.column stack((Din3, q0n3, xen3, Twn3))
yarrayn3 = mdotn3
print(xarrayn3)
print(yarrayn3)
[[0.72727273 0.64705882 0.71428571 1.00656383]
[0.72727273 0.76470588 0.71428571 0.97965212]
[0.72727273 0.88235294 0.71428571 0.96652445]
[0.72727273 1.
                       0.71428571 0.95241221]
[0.72727273 1.11764706 0.71292517 0.94158188]
[0.72727273 1.23529412 0.71292517 0.93239252]
[0.72727273 1.35294118 0.71428571 0.92451592]
[0.72727273 1.
                       0.71292517 0.952773221
[0.72727273 0.64705882 0.99863946 1.01050213]
[0.72727273 0.88235294 1.
                                  0.969806371
[0.72727273 1.11764706 1.
                                  0.944535611
```

0.935346241

0.92714145]

0.99863946 0.95602232]

[0.72727273 0.64705882 1.28571429 1.01279947] [0.72727273 0.88235294 1.28571429 0.97210371] [0.72727273 1.11764706 1.28571429 0.94683295]

[0.72727273 1.23529412 1.

[0.72727273 1.

[0.72727273 1.35294118 1.

```
[0.72727273 1.35294118 1.28571429 0.9291106 ]
[0.72727273 1.
                        1.28571429 0.957991471
             0.64705882 0.71428571 1.076468661
[1.
[1.
             0.88235294 0.71428571 1.02133246]
[1.
             1.11764706 0.71428571 0.987200531
             1.35294118 0.71428571 0.963570731
[1.
                        0.71428571 1.002625531
[1.
             0.64705882 1.
                                   1.08171972]
[1.
[1.
             0.88235294 1.
                                   1.025927141
[1.
             1.11764706 1.
                                   0.991138831
[1.
             1.23529412 1.
                                   0.982605841
             1.35294118 1.
[1.
                                   0.967509031
[1.
                                   1.006892021
                        1.
[1.
             0.64705882 1.28571429 1.085329831
             0.88235294 1.28571429 1.029209061
[1.
[1.
             1.11764706 1.28435374 0.994092551
             1.35294118 1.28571429 0.97013456]
[1.
                        1.28435374 1.009845751
[1.
             0.82352941 0.99863946 1.065638331
[1.
[1.18181818 0.64705882 0.71428571 1.12307187]
[1.18181818 0.88235294 0.71292517 1.05776173]
[1.18181818 1.11764706 0.71292517 1.01739416]
[1.18181818 1.35294118 0.71428571 0.98982606]
[1.18181818 1.
                        0.71292517 1.0354447 ]
[1.18181818 0.64705882 0.99863946 1.12930752]
[1.18181818 0.88235294 1.
                                   1.063340991
[1.18181818 1.11764706 1.
                                   1.022317031
[1.18181818 1.23529412 1.
                                   1.00525107]
[1.18181818 1.35294118 1.
                                   0.994092551
                        0.99863946 1.040695771
[1.18181818 1.
[1.18181818 0.64705882 1.28571429 1.13324582]
[1.18181818 0.88235294 1.28435374 1.0669511 ]
[1.18181818 1.11764706 1.28435374 1.02559895]
[1.18181818 1.35294118 1.28571429 0.99737447]
[1.18181818 1.
                        1.28571429 1.04430587]]
[0.66454398 0.78456557 0.90620615 1.00885051 1.14786832 1.24349703
1.38909876 1.0270912 0.47468969 0.64727469 0.81985969 0.9004857
0.99190502 0.73362115 0.36913114 0.50339989 0.63766865 0.77172153
0.57053427 0.91311387 1.24554776 1.57798165 1.91041554 1.41176471
0.65267134 0.89001619 1.12682137 1.22396114 1.36427415 1.00809498
0.50728548 0.69217485 0.87684835 1.06141392 0.78457636 0.9411333
1.07987048 1.47263896 1.86529951 2.25796006 1.66896924 0.77139773
1.05180788 1.33232596 1.43572585 1.61252024 1.19212089 0.59989207
0.81813276 1.03626552 1.25418241 0.92714517]
#Task 1.3b
from sklearn.model selection import train test split
X train3, X test3, y train3, y test3 = train test split(xarrayn3, yarrayn3, test3)
print(X train3)
print(y_train3)
print(X_test3)
print(y test3)
```

rrn 72727273 1 35294118 N 71428571 N 924515921

In [7]:

```
1.28435374 1.00984575]
[0.72727273 1.11764706 0.71292517 0.94158188]
[1.18181818 0.88235294 0.71292517 1.05776173]
            0.64705882 1.
                                  1.081719721
[1.18181818 1.23529412 1.
                                  1.005251071
            1.35294118 1.28571429 0.970134561
[1.18181818 1.11764706 1.28435374 1.02559895]
[0.72727273 0.88235294 1.28571429 0.97210371]
[0.72727273 0.88235294 1.
                                  0.969806371
[0.72727273 1.11764706 1.28571429 0.94683295]
            0.64705882 1.28571429 1.08532983]
[1.
[1.18181818 0.64705882 0.71428571 1.12307187]
            0.88235294 1.
                                  1.02592714]
[0.72727273 1.23529412 1.
                                  0.935346241
 [0.72727273 0.64705882 0.71428571 1.00656383]
                       0.99863946 1.04069577]
[1.18181818 1.
[1.
            1.23529412 1.
                                  0.982605841
            0.88235294 1.28571429 1.02920906]
[1.
[1.18181818 1.35294118 0.71428571 0.98982606]
                                  1.00689202]
            1.
                       1.
[1.18181818 1.35294118 1.
                                  0.994092551
[0.72727273 0.76470588 0.71428571 0.97965212]
            1.11764706 0.71428571 0.98720053]
[0.72727273 0.88235294 0.71428571 0.96652445]
                       0.71292517 1.0354447 ]
[1.18181818 1.
            0.82352941 0.99863946 1.065638331
[1.
                       0.71428571 1.00262553]
[1.
            1.
[1.18181818 0.88235294 1.28435374 1.0669511 ]
[0.72727273 1.11764706 1.
                                  0.94453561]
[1.
            1.35294118 0.71428571 0.963570731
                       1.28571429 0.95799147
[0.72727273 1.
[1.18181818 1.
                       1.28571429 1.04430587]
            0.88235294 0.71428571 1.02133246]
[1.
[0.72727273 1.
                       0.71292517 0.952773221
[1.18181818 0.88235294 1.
                                  1.063340991
[0.72727273 0.64705882 1.28571429 1.01279947]
            1.35294118 1.
                                  0.967509031
[1.18181818 1.11764706 0.71292517 1.01739416]]
[1.38909876 0.78457636 1.14786832 1.47263896 0.65267134 1.43572585
1.06141392 1.03626552 0.50339989 0.64727469 0.63766865 0.50728548
1.07987048 0.89001619 0.9004857 0.66454398 1.19212089 1.22396114
0.69217485 2.25796006 1.00809498 1.61252024 0.78456557 1.57798165
0.90620615 1.66896924 0.9411333 1.41176471 0.81813276 0.81985969
1.91041554 0.57053427 0.92714517 1.24554776 1.0270912 1.05180788
0.36913114 1.36427415 1.865299511
            0.64705882 0.71428571 1.07646866]
[[1.
[1.18181818 0.64705882 0.99863946 1.12930752]
[1.18181818 0.64705882 1.28571429 1.13324582]
[0.72727273 1.35294118 1.
                                  0.927141451
[1.18181818 1.11764706 1.
                                  1.022317031
[0.72727273 1.23529412 0.71292517 0.93239252]
[0.72727273 1.35294118 1.28571429 0.9291106 ]
[1.18181818 1.35294118 1.28571429 0.99737447]
                       0.71428571 0.95241221]
[0.72727273 1.
            1.11764706 1.28435374 0.99409255]
[1.
[0.72727273 1.
                       0.99863946 0.956022321
```

```
[0.72727273 0.64705882 0.99863946 1.01050213]
                     1.11764706 1.
                                           0.99113883]]
         [0.91311387 0.77139773 0.59989207 0.99190502 1.33232596 1.24349703
          0.77172153 1.25418241 1.00885051 0.87684835 0.73362115 0.47468969
          1.12682137]
In [43]:
          # define neural network model
          from keras import backend as K
          #initialize weights
          initializer = keras.initializers.RandomUniform(minval= -0.2, maxval=0.5)
         modelv3 = keras.Sequential([
             keras.layers.Dense(8, activation=K.elu, input shape=[4], kernel initiali
             keras.layers.Dense(16, activation=K.elu, kernel_initializer=initializer)
             keras.layers.Dense(16, activation=K.elu, kernel_initializer=initializer),
             keras.layers.Dense(16, activation=K.elu, kernel_initializer=initializer),
             keras.layers.Dense(1, kernel_initializer=initializer)
            1)
In [47]:
          #from tf.keras import optimizers
          rms = keras.optimizers.RMSprop(0.001)
         modelv3.compile(loss='mean_absolute_error',optimizer=rms)
In [48]:
          # Add an early stopping callback
          es = keras.callbacks.EarlyStopping(
             monitor='loss',
             mode='min',
             patience = 80,
             restore best weights = True,
             verbose=1)
          # Add a checkpoint where loss is minimum, and save that model
         mc = keras.callbacks.ModelCheckpoint('best modelv3.SB', monitor='loss',
                              mode='min', verbose=1, save best only=True)
         historyData3 = modelv3.fit(X train3,y train3,epochs=800,callbacks=[es])
          loss_hist3 = historyData3.history['loss']
          #The above line will return a dictionary, access it's info like this:
         best epoch3 = np.argmin(historyData3.history['loss']) + 1
         print ('best epoch = ', best epoch3)
         print('smallest loss =', np.min(loss_hist3))
         modelv3.save('./best modelv3')
         Epoch 1/800
         39/39 [============ ] - 1s 37ms/step - loss: 0.0490
         39/39 [================ ] - 0s 607us/step - loss: 0.0431
         Epoch 3/800
```

```
39/39 [============== ] - 0s 758us/step - loss: 0.0441
Epoch 4/800
39/39 [============ ] - 0s 2ms/step - loss: 0.0455
Epoch 5/800
Epoch 6/800
39/39 [============== ] - 0s 462us/step - loss: 0.0353
Epoch 7/800
39/39 [=========== ] - 0s 995us/step - loss: 0.0497
Epoch 8/800
Epoch 9/800
Epoch 10/800
39/39 [============= ] - 0s 682us/step - loss: 0.0441
Epoch 11/800
39/39 [============== ] - 0s 559us/step - loss: 0.0401
Epoch 12/800
Epoch 13/800
Epoch 14/800
39/39 [============== ] - 0s 302us/step - loss: 0.0471
Epoch 15/800
Epoch 16/800
Epoch 17/800
39/39 [============= ] - 0s 246us/step - loss: 0.0476
Epoch 18/800
Epoch 19/800
Epoch 20/800
39/39 [============= ] - 0s 349us/step - loss: 0.0426
Epoch 21/800
Epoch 22/800
39/39 [============= ] - 0s 309us/step - loss: 0.0368
Epoch 23/800
Epoch 24/800
Epoch 25/800
39/39 [============== ] - 0s 285us/step - loss: 0.0386
Epoch 26/800
39/39 [============= ] - 0s 586us/step - loss: 0.0379
Epoch 27/800
39/39 [=============== ] - 0s 511us/step - loss: 0.0354
Epoch 28/800
39/39 [============= ] - 0s 329us/step - loss: 0.0398
Epoch 29/800
Epoch 30/800
Epoch 31/800
39/39 [============== ] - 0s 297us/step - loss: 0.0338
```

Epoch	32/800				
39/39	[======]	-	0s	329us/step - loss: 0.0424	ŀ
	33/800 [======]		٥٥	501ug/g+on logg. 0 0427	7
	34/800	_	US	581us/step - 10ss: 0.045/	,
39/39	[======]	_	0s	296us/step - loss: 0.0332	?
	35/800 [======]		٥٥	215ug/g+on logg. 0 0550	
	36/800	_	US	315us/step - 10ss: 0.0559	,
39/39	[======]	_	0s	577us/step - loss: 0.0354	Ļ
	37/800 [======]		٥٥	206ug/gton logg. 0 0513	,
	38/800	_	US	296us/step - 10ss: 0.0513	,
39/39	[======]	-	0s	368us/step - loss: 0.0356	5
	39/800 [======]		٥٥	390ug/gtop logg 0 0354	1
	40/800	_	US	300ds/scep - 10ss: 0.0334	t
39/39	[======]	-	0s	389us/step - loss: 0.0332	?
	41/800 [=======]		۸c	317us/stan loss 0 0339	2
	42/800	_	US	31/us/scep - 10ss: 0.0336	,
39/39	[=======]	-	0s	394us/step - loss: 0.0340)
	43/800 [=======]		۸c	458us/stan loss, 0 0666	
	44/800	_	US	430ds/scep - 10ss. 0.0000	,
	[======]	_	0s	422us/step - loss: 0.0354	Ļ
	45/800 [=======]		Λα	400us/stan loss 0 0366	
	46/800	_	US	409us/scep - 10ss. 0.0300	,
	[=====]	-	0s	328us/step - loss: 0.0420)
	47/800 [=======]		Λe	540us/step _ loss 0 0380	1
	48/800		V.S	340d8/8cep - 1088: 0:0300	'
	[=======]	-	0s	296us/step - loss: 0.0509)
	49/800 [=======]	_	Λς	357us/sten = loss 0 0543	₹
	50/800		O D	1055. 0.0313	•
	[======================================	-	0s	412us/step - loss: 0.0421	L
	51/800 [=======]	_	0s	321us/step - loss: 0.0444	ļ
Epoch	52/800				
	[=========]	-	0s	432us/step - loss: 0.0355	,
	53/800 [======]	_	0s	457us/step - loss: 0.0372	2
Epoch	54/800				
	[=========]	-	0s	280us/step - loss: 0.0339)
	55/800 [=======]	_	0s	292us/step - loss: 0.0376	5
Epoch	56/800				
	[=========]	-	0s	301us/step - loss: 0.0323	}
	57/800 [=======]	_	0s	216us/step - loss: 0.0358	3
Epoch	58/800				
	[======] 59/800	-	0s	250us/step - loss: 0.0363	}
	[=======]	_	0s	241us/step - loss: 0.0323	}
	60/800				

	[=====]	-	0s	290us/step -	-	loss:	0.0413
	61/800 [=======]	_	0s	363us/step -	_	loss:	0.0447
Epoch	62/800 [======]						
Epoch	63/800			_			
	[======] 64/800	-	0s	333us/step -	-	loss:	0.0322
39/39	[======]	_	0s	318us/step -	-	loss:	0.0540
	65/800 [=======]	_	0s	337us/step -	_	loss:	0.0456
Epoch	66/800 [=======]			_			
Epoch	67/800			_			
	[======] 68/800	-	0s	334us/step -	-	loss:	0.0336
39/39	[======]	-	0s	419us/step -	-	loss:	0.0329
	69/800 [=======]	_	0s	285us/step -	_	loss:	0.0314
Epoch	70/800 [======]						
Epoch	71/800			_			
	[======] 72/800	-	0s	518us/step -	-	loss:	0.0372
39/39	[======]	-	0s	355us/step -	-	loss:	0.0363
	73/800 [=======]	_	0s	405us/step	_	loss:	0.0387
	74/800 [======]	_	Λς	497118/sten	_	1000.	0 0358
Epoch	75/800						
	[======] 76/800	-	0s	727us/step -	-	loss:	0.0333
39/39	[======]	-	0s	486us/step -	-	loss:	0.0527
39/39	77/800 [=======]	_	0s	452us/step -	_	loss:	0.0552
	78/800 [======]	_	0s	430us/step	_	loss:	0.0533
Epoch	79/800			_			
	[======] 80/800	-	0s	362us/step -	-	loss:	0.0369
	[=======] 81/800	-	0s	283us/step -	-	loss:	0.0313
39/39	[======]	_	0s	382us/step -	_	loss:	0.0365
	82/800 [=======]	_	0s	591us/step -	_	loss:	0.0439
Epoch	83/800						
Epoch	[=======] 84/800						
	[======] 85/800	-	0s	593us/step -	-	loss:	0.0303
39/39	[======]	-	0s	291us/step -	_	loss:	0.0390
	86/800 [=======]	_	0s	438us/step -	_	loss:	0.0317
Epoch	87/800						
Epoch	[=======] 88/800						
39/39	[=====]	-	0s	332us/step -	-	loss:	0.0324

Epoch	89/800				
	[======================================] –	0s	373us/step - los	s: 0.0442
	90/800		0 -	266/	- 0 0500
	[=====================================] –	US	366us/step - los	S: 0.0523
	[======================================] –	0s	392us/step - los	s: 0.0342
	92/800				
	[=====================================] –	0s	303us/step - los	s: 0.0307
	[======================================	1 –	0s	467us/step - los	s: 0.0308
Epoch	94/800				
	[======================================] –	0s	476us/step - los	s: 0.0487
	95/800 [===================================	1 _	۸e	32511g/sten = los	s• 0 0367
	96/800	1 _	0.5	3234B/BCCP - 10B	5. 0.0507
	[======================================] –	0s	422us/step - los	s: 0.0339
	97/800 [===================================	,	0~	246/=+=== 1==	~- 0 0240
	98/800] –	US	340us/step - 10s	S: 0.0348
	[======================================] –	0s	776us/step - los	s: 0.0411
	99/800	_		/	
	[=====================================] –	0s	595us/step - los	s: 0.0729
	[======================================	1 -	0s	464us/step - los	s: 0.0306
Epoch	101/800				
	[======================================] –	0s	917us/step - los	s: 0.0340
	102/800	1 –	0s	515us/step = los	s: 0.0315
Epoch	103/800				
	[======================================] –	0s	558us/step - los	s: 0.0310
	104/800	1 _	۸e	635ug/gten _ log	c• N N317
	105/800	1 _	0.5	0334B7BCCP - 10B	5. 0.0517
	[======================================] –	0s	450us/step - los	s: 0.0581
_	106/800	1	٥٥	193ug/gton log	a. 0 0333
	107/800] –	US	493us/step - 10s	5. 0.0333
	[======================================] –	0s	522us/step - los	s: 0.0386
	108/800	,	0~	441/-	~- 0 0206
	[=====================================] –	US	441us/step - los	S: 0.0296
	[======================================] –	0s	445us/step - los	s: 0.0450
	110/800	_	•	106 / 1	0 0061
	[=====================================] –	0s	406us/step - los	s: 0.0361
	[======================================] –	0s	466us/step - los	s: 0.0416
Epoch	112/800				
	[=====================================] –	0s	370us/step - los	s: 0.0415
	[======================================	1 –	0s	366us/step - los	s: 0.0349
Epoch	114/800				
	[======================================] –	0s	414us/step - los	s: 0.0316
	115/800	1 –	0s	434us/step - los	s: 0.0341
Epoch	116/800				
	[======================================] –	0s	387us/step - los	s: 0.0302
Epoch	117/800				

	[======]	_	0s	362us/step - loss: 0.0566
	118/800 [========]	_	0s	1ms/step - loss: 0.0296
Epoch	119/800			
	[======] 120/800	_	0s	521us/step - 10ss: 0.04/8
	[======]	-	0s	509us/step - loss: 0.0357
	121/800 [=========]	_	0s	370us/step - loss: 0.0413
Epoch	122/800			
	[======] 123/800	-	0s	380us/step - loss: 0.0296
39/39	[======]	_	0s	578us/step - loss: 0.0521
	124/800 [==========]	_	0s	440us/step - loss: 0.0311
Epoch	125/800			
	[======] 126/800	-	0s	274us/step - loss: 0.0379
39/39	[======]	_	0s	417us/step - loss: 0.0302
	127/800 [=========]	_	Λs	396us/sten = loss: 0.0383
Epoch	128/800			
	[======] 129/800	-	0s	335us/step - loss: 0.0438
39/39	[======]	_	0s	389us/step - loss: 0.0321
	130/800 [==========]		Λe	449us/sten _ loss. 0 0293
	131/800	_	US	449us/step - 10ss. 0.0293
	[=======] 132/800	-	0s	358us/step - loss: 0.0362
	[========]	_	0s	434us/step - loss: 0.0434
	133/800 [=========]		Λα	663ug/stop logg: 0.0479
Epoch	134/800			
	[======] 135/800	-	0s	681us/step - loss: 0.0315
	[=======]	_	0s	331us/step - loss: 0.0290
	136/800 [==========]		Λσ	260ug/gton logg. 0 0366
Epoch	137/800			
	[======] 138/800	-	0s	317us/step - loss: 0.0341
	[========]	_	0s	285us/step - loss: 0.0388
	139/800		0 =	257/
	[=======] 140/800	_	US	35/us/step - loss: 0.0504
	[======]	-	0s	390us/step - loss: 0.0307
	141/800 [==========]	_	0s	348us/step - loss: 0.0304
Epoch	142/800			
	[=======] 143/800	-	0s	292us/step - loss: 0.0318
39/39	[======]	_	0s	302us/step - loss: 0.0308
	144/800 [==========]	_	0s	388us/step - loss: 0.0328
Epoch	145/800			
39/39	[======]	-	0s	259us/step - loss: 0.0316

Epoch	146/800				
39/39	[======================================	-	0s	280us/step - loss: 0.02	299
39/39	147/800	ı _	Λα	286ug/gten _ logg. 0 0	333
	148/800				
	[======================================	-	0s	284us/step - loss: 0.00	507
	149/800	ı –	0s	434us/step - loss: 0.03	325
Epoch	150/800			_	
39/39	[=====================================	-	0s	303us/step - loss: 0.03	377
	[======================================	-	0s	303us/step - loss: 0.03	339
	152/800 [===================================		0 ~	225/	2.2.4
	153/800	-	US	335us/step - 10ss: 0.0.	324
39/39	[======================================	-	0s	365us/step - loss: 0.02	287
	154/800 [===================================	l _	0s	250us/step = loss: 0.04	126
Epoch	155/800			_	
	[=====================================	-	0s	304us/step - loss: 0.04	167
	[=========]	-	0s	280us/step - loss: 0.04	148
	157/800 [===================================	1	٥٩	400mg/gton logg. 0.00	260
Epoch	158/800				
	[======================================	-	0s	410us/step - loss: 0.02	279
	159/800 [===================================	l –	0s	261us/step - loss: 0.02	295
Epoch	160/800				
	[=====================================	-	0s	307us/step - loss: 0.02	291
39/39	[======================================	-	0s	275us/step - loss: 0.02	296
	162/800 [===================================	ı _	Λs	279us/sten = loss: 0.04	121
Epoch	163/800				
	[=====================================	-	0s	284us/step - loss: 0.00	507
39/39 Epoch 39/39 Epoch 39/39 Epoch 39/39 Epoch	[======================================	-	0s	417us/step - loss: 0.03	394
	165/800 [===================================	1	٥٩	22422/2402 1022 0 0	120
	166/800	-	US	324us/step - 10ss: 0.04	139
		-	0s	272us/step - loss: 0.03	304
	[======================================	۱ –	0s	247us/step - loss: 0.03	307
	168/800				
	[========] 169/800	-	0s	275us/step - loss: 0.04	106
39/39	[========]	-	0s	249us/step - loss: 0.04	147
39/39 Epoch 39/39	170/800 [===================================	ı	۸c	281ug/gton logg: 0 0/	136
	171/800				
	[======================================	-	0s	324us/step - loss: 0.02	283
	172/800 [===================================	-	0s	283us/step - loss: 0.03	311
Epoch	173/800				
	[=====================================	-	US	31/US/Step - 10SS: 0.05	013
-					

	[======] 175/800	-	0s	334us/step - lo	ss:	0.0278
	[======] 176/800	-	0s	329us/step - lo	ss:	0.0302
39/39	[=======] 177/800	-	0s	613us/step - lo	ss:	0.0340
39/39	[======]	-	0s	383us/step - lo	ss:	0.0342
	178/800 [=======]	_	0s	363us/step - lo	ss:	0.0434
	179/800 [======]	_	0s	403us/step - lo	ss:	0.0332
Epoch	180/800 [======]					
Epoch	181/800 [=======]					
Epoch	182/800					
Epoch	[======] 183/800			_		
	[======] 184/800	-	0s	333us/step - lo	ss:	0.0336
	[======] 185/800	-	0s	475us/step - lo	ss:	0.0415
39/39	[=======] 186/800	-	0s	353us/step - lo	ss:	0.0286
39/39	[======]	-	0s	336us/step - lo	ss:	0.0434
39/39	187/800 [=======]	_	0s	306us/step - lo	ss:	0.0376
	188/800 [=======]	_	0s	425us/step - lo	ss:	0.0347
	189/800 [======]	_	0s	395us/step - lo	ss:	0.0306
Epoch	190/800 [======]					
Epoch	191/800 [=======]					
Epoch	192/800					
Epoch	[======] 193/800			_		
	[=======] 194/800	-	0s	330us/step - lo	ss:	0.0344
	[======] 195/800	-	0s	364us/step - lo	ss:	0.0342
39/39	[=======] 196/800	-	0s	371us/step - lo	ss:	0.0301
39/39	[======]	-	0s	321us/step - lo	ss:	0.0273
39/39	197/800 [=======]	_	0s	291us/step - lo	ss:	0.0361
	198/800 [=======]	_	0s	398us/step - lo	ss:	0.0388
	199/800 [=========]	_	0s	303us/step - lo	ss:	0.0313
Epoch	200/800 [======]					
Epoch	201/800 [=======]					
Epoch	202/800					
39/39	[=====]	-	0s	26/us/step - lo	ss:	0.0498

Epoch	203/800				
39/39	[=======]	-	0s	380us/step - loss: 0.03	81
	204/800 [=======]	_	Λq	400us/sten = loss. 0.04	64
Epoch	205/800			_	
	[=======]	-	0s	341us/step - loss: 0.03	27
	206/800 [=======]	_	0s	362us/step - loss: 0.03	28
Epoch	207/800			_	
	[=======] 208/800	-	0s	370us/step - loss: 0.04	42
39/39	[=======]	_	0s	356us/step - loss: 0.04	02
	209/800 [=======]		٥a	200ug/gton logg. 0 02	62
	210/800	_	US	399us/step - 10ss: 0.02	03
	[======]	-	0s	634us/step - loss: 0.04	42
	211/800 [=======]	_	0s	350us/step - loss: 0.03	06
Epoch	212/800			_	
	[=======] 213/800	-	0s	419us/step - loss: 0.02	81
39/39	[=======]	_	0s	434us/step - loss: 0.03	10
	214/800 [=======]		Λα	33811g/gton _ logg. 0 03	9.1
Epoch	215/800			_	
	[=======] 216/800	-	0s	299us/step - loss: 0.04	41
	[======================================	_	0s	362us/step - loss: 0.03	44
	217/800		•	200	٥.
	[=======] 218/800	_	US	290us/step - loss: 0.04	25
39/39	[=======]	_	0s	427us/step - loss: 0.03	15
	219/800 [=======]	_	0s	311us/step - loss: 0.03	45
Epoch	220/800				
	[=======] 221/800	-	0s	295us/step - loss: 0.03	99
39/39	[=======]	_	0s	337us/step - loss: 0.04	15
	222/800 [=======]		Λα	31711g/gton _ logg. 0 03	0.8
Epoch	223/800				
	[=======] 224/800	-	0s	485us/step - loss: 0.04	01
	[======================================	_	0s	420us/step - loss: 0.03	34
Epoch	225/800				
	[=======] 226/800	-	0s	343us/step - loss: 0.02	/6
39/39	[=======]	-	0s	414us/step - loss: 0.04	51
	227/800 [========]	_	0s	453us/step = loss: 0.04	17
Epoch	228/800				
	[=======] 229/800	-	0s	445us/step - loss: 0.03	55
	[=========]	_	0s	442us/step - loss: 0.03	96
	230/800 [=======]		0~	472ug/g+on logg. 0 02	66
	231/800	_	US	4/2us/step - 10ss: 0.02	00
-					

	[=======] 232/800	-	0s	501us/step -	- loss:	0.0446
39/39	[======]	-	0s	516us/step -	- loss:	0.0273
39/39	233/800 [=======]	_	0s	505us/step -	- loss:	0.0408
	234/800 [======]	_	0s	326us/step -	- loss:	0.0338
	235/800	_	0s	527us/step -	- loss:	0.0433
Epoch	236/800 [=======]			_		
Epoch	237/800			_		
Epoch	[======] 238/800			_		
	[======] 239/800	-	0s	398us/step -	- loss:	0.0361
39/39	[=======] 240/800	-	0s	851us/step -	- loss:	0.0271
39/39	[======]	-	0s	513us/step -	- loss:	0.0452
39/39	241/800 [=======]	_	0s	480us/step -	- loss:	0.0377
	242/800 [======]	_	0s	376us/step -	- loss:	0.0358
Epoch	243/800 [======]					
Epoch	244/800					
Epoch	[======] 245/800					
	[======] 246/800	-	0s	660us/step -	- loss:	0.0277
	[=======] 247/800	-	0s	314us/step -	- loss:	0.0374
39/39	[======]	-	0s	349us/step -	- loss:	0.0369
39/39	248/800 [=======]	_	0s	272us/step -	- loss:	0.0302
	249/800 [=======]	_	0s	441us/step -	- loss:	0.0368
	250/800 [======]	_	0s	484us/step -	- loss:	0.0396
Epoch	251/800 [======]					
Epoch	252/800					
Epoch	[=======] 253/800					
	[=======] 254/800	-	0s	694us/step -	- loss:	0.0268
	[=======] 255/800	-	0s	909us/step -	- loss:	0.0276
39/39	[=======] 256/800	-	0s	514us/step -	loss:	0.0436
39/39	[======]	-	0s	321us/step -	- loss:	0.0286
39/39	257/800 [=======]	_	0s	349us/step -	- loss:	0.0444
	258/800 [======]	_	0s	358us/step -	- loss:	0.0470
Epoch	259/800 [=======]					
33/33	[]	-	US	-JJub/blep -	- 1055:	0.0340

Epoch	260/800				
39/39	[=======]	-	0s	335us/step - loss:	0.0279
	261/800 [=======]	_	Λe	34611g/gten - logg: 1	0 0421
Epoch	262/800			_	
	[=======]	-	0s	301us/step - loss:	0.0262
	263/800 [=======]	_	0s	372us/step - loss:	0.0291
Epoch	264/800			_	
	[========] 265/800	-	0s	307us/step - loss:	0.0387
39/39	[=======]	_	0s	484us/step - loss:	0.0489
	266/800 [=======]		٥a	240ug/g+on logge	0 0202
	267/800	_	US	349us/step - 10ss:	0.0303
	[======]	_	0s	465us/step - loss:	0.0263
	268/800 [=======]	_	0s	403us/step - loss:	0.0253
Epoch	269/800			_	
	[========] 270/800	_	0s	417us/step - loss:	0.0322
39/39	[=======]	_	0s	406us/step - loss:	0.0257
	271/800 [=======]		۸e	325ug/gten _ logg.	n n338
Epoch	272/800			_	
	[=======] 273/800	-	0s	363us/step - loss:	0.0384
	[======================================	_	0s	325us/step - loss:	0.0426
	274/800		•	100 / 1	0 0054
	[=======] 275/800	_	US	493us/step - loss:	0.0254
39/39	[=======]	_	0s	326us/step - loss:	0.0424
	276/800 [========]	_	0s	305us/step - loss:	0.0483
Epoch	277/800				
	[========] 278/800	-	0s	370us/step - loss:	0.0284
39/39	[=======]	_	0s	356us/step - loss:	0.0312
	279/800 [========]		۸e	394ug/gten _ logg.	0 0373
Epoch	280/800				
	[========] 281/800	-	0s	371us/step - loss:	0.0486
	[======================================	_	0s	299us/step - loss:	0.0384
	282/800		0 -	204/	0 0202
	[========] 283/800	_	US	284us/step - loss:	0.0392
39/39	[=======]	_	0s	359us/step - loss:	0.0365
	284/800 [===================================	_	0s	492us/step - loss:	0.0268
Epoch	285/800				
	[========] 286/800	_	0s	328us/step - loss:	0.0314
39/39	[=======]	_	0s	419us/step - loss:	0.0276
	287/800 [========]	l <u>.</u>	Λe	62211g/gton _ logg.	በ በ2ይ5
	288/800	_	JB	022ab/bcep - 10bb:	0.0203

	[=======] 289/800	-	0s	748us/step - loss: 0.0350
39/39	[========] 290/800	-	0s	1ms/step - loss: 0.0299
39/39	[======]	-	0s	663us/step - loss: 0.0279
39/39	291/800 [======]	_	0s	444us/step - loss: 0.0267
39/39	292/800 [=======]	_	0s	629us/step - loss: 0.0323
	293/800 [======]	_	0s	373us/step - loss: 0.0388
	294/800 [======]	_	0s	387us/step = loss: 0.0298
Epoch	295/800 [=======]			-
Epoch	296/800 [=======]			-
Epoch	297/800			
Epoch	[======] 298/800			
Epoch	[======] 299/800			
	[======] 300/800	-	0s	645us/step - loss: 0.0277
39/39	[=======] 301/800	-	0s	425us/step - loss: 0.0323
39/39	[========] 302/800	-	0s	459us/step - loss: 0.0328
39/39	[======]	-	0s	391us/step - loss: 0.0257
39/39	303/800 [======]	_	0s	417us/step - loss: 0.0308
	304/800 [=======]	_	0s	518us/step - loss: 0.0273
	305/800 [======]	_	0s	307us/step - loss: 0.0287
Epoch	306/800			_
Epoch	307/800 [=======]			_
Epoch	308/800			
Epoch	[=======] 309/800			
Epoch	[=======] 310/800			
	[======] 311/800	-	0s	585us/step - loss: 0.0285
	[=======] 312/800	-	0s	480us/step - loss: 0.0253
39/39	[=======] 313/800	-	0s	288us/step - loss: 0.0279
39/39	[======]	-	0s	296us/step - loss: 0.0275
39/39	314/800	_	0s	377us/step - loss: 0.0332
39/39	315/800 [======]	_	0s	401us/step - loss: 0.0265
	316/800 [=======]	_	0s	376us/step - loss: 0.0379

Epoch	317/800							
39/39	[======================================	=====]	_	0s	298us/step	_	loss:	0.0384
	318/800						_	
	[======================================	=====]	-	0s	323us/step	-	loss:	0.0414
	319/800	=====1	_	۸c	39111g/gten	_	1099.	0 0400
	320/800	J		0.D	331us/5ccp		1055.	0.0400
	[======================================	=====]	_	0s	278us/step	_	loss:	0.0314
	321/800							
	[======================================	=====]	-	0s	330us/step	-	loss:	0.0307
	322/800 [===================================	1		Λc	39511g/gton		1000	0 0322
	323/800		_	US	J/Jus/scep	_	1055.	0.0322
	[======================================	=====]	_	0s	451us/step	_	loss:	0.0260
	324/800							
	[======================================	=====]	-	0s	486us/step	-	loss:	0.0332
	325/800 [===================================	1		Λc	12111g/gton		1000	0 0247
	326/800		_	US	421us/scep	_	1055.	0.0247
	[======================================	=====]	_	0s	350us/step	_	loss:	0.0386
	327/800							
] =====================================	=====]	-	0s	320us/step	-	loss:	0.0309
	328/800 [===================================	=====1	_	۸e	509118/sten	_	1099.	0 0369
	329/800	J		05	303ub/ bccp		1055.	0.0303
	[======================================	=====]	_	0s	311us/step	_	loss:	0.0299
	330/800						_	
	[=====================================	=====]	-	0s	456us/step	-	loss:	0.0275
	[======================================	=====1	_	0 =	396115/sten	_	1055:	0.0412
	332/800	,		o D	oscub, bccp		1000.	0.0112
	[======================================	=====]	-	0s	427us/step	-	loss:	0.0259
	333/800			0	F.7.0 / .		1	0 0000
	[=====================================	=====]	-	US	5/0us/step	_	loss:	0.0298
	[======================================	=====]	_	0s	312us/step	_	loss:	0.0297
	335/800	•			-			
	[======================================	=====]	-	0s	308us/step	-	loss:	0.0307
	336/800	1		٥٥	441,194,940		1000.	0 0472
	337/800]	_	US	441us/scep	_	TOSS:	0.04/3
	[======================================	=====]	_	0s	503us/step	_	loss:	0.0252
Epoch	338/800							
	[======================================	=====]	-	0s	397us/step	-	loss:	0.0265
	339/800	1		٥٥	303ug/g+op		logg.	0 0310
	340/800]	_	US	393us/scep	_	TOSS:	0.0310
	[======================================	=====]	_	0s	372us/step	_	loss:	0.0313
	341/800							
	[======================================	=====]	-	0s	289us/step	-	loss:	0.0255
	342/800 [===================================	=====1	_	۸c	34011g/gten	_	1099.	0 0295
	343/800	J		0.0	- 10 ав, в сер	-	1000.	3.0273
39/39	[======================================	=====]	_	0s	395us/step	_	loss:	0.0488
	344/800			•	510 ()			0 0 7 0 7
	[=====================================	=====]	-	US	/10us/step	-	loss:	0.0528
Phocii	J=J/000							

	[=======] 346/800	-	0s	312us/step - loss:	0.0293
39/39	[=======] 347/800	-	0s	409us/step - loss:	0.0260
39/39	[======]	-	0s	356us/step - loss:	0.0277
	348/800 [=======]	_	0s	304us/step - loss:	0.0281
	349/800 [======]	_	0s	342us/step - loss:	0.0282
Epoch	350/800 [=======]				
Epoch	351/800			_	
Epoch	[=======] 352/800			_	
Epoch	[======] 353/800			_	
	[======] 354/800	-	0s	817us/step - loss:	0.0258
39/39	[=======] 355/800	-	0s	637us/step - loss:	0.0297
39/39	[======]	-	0s	404us/step - loss:	0.0336
39/39	356/800 [======]	_	0s	556us/step - loss:	0.0313
	357/800 [======]	_	0s	585us/step - loss:	0.0245
	358/800 [======]	_	0s	466us/step - loss:	0.0280
Epoch	359/800 [======]				
Epoch	360/800				
Epoch	[======] 361/800				
Epoch	[======] 362/800				
	[======] 363/800	-	0s	310us/step - loss:	0.0368
39/39	[=======] 364/800	-	0s	361us/step - loss:	0.0402
39/39	[======]	-	0s	448us/step - loss:	0.0259
39/39	365/800 [=======]	_	0s	456us/step - loss:	0.0355
	366/800 [=======]	_	0s	404us/step - loss:	0.0410
	367/800 [======]	_	0s	325us/step - loss:	0.0475
Epoch	368/800 [======]				
Epoch	369/800				
Epoch	[=======] 370/800				
Epoch	[======] 371/800				
	[======] 372/800	-	0s	363us/step - loss:	0.0348
39/39	[=======] 373/800	-	0s	486us/step - loss:	0.0322
	[======]	-	0s	272us/step - loss:	0.0421

Epoch	374/800				
	[======]	-	0s	362us/step - loss: 0	.0273
	375/800 [======]	_	0s	343us/step - loss: 0	.0239
Epoch	376/800			_	
	[======] 377/800	-	0s	410us/step - loss: 0	.0288
39/39	[======]	-	0s	391us/step - loss: 0	.0570
	378/800 [======]	_	0s	320us/step - loss: 0	.0287
Epoch	379/800			_	
	[======] 380/800	_	0s	469us/step - loss: 0	.0362
39/39	[======]	-	0s	758us/step - loss: 0	.0364
	381/800 [======]	_	0s	433us/step - loss: 0	.0279
Epoch	382/800			_	
Epoch	[======] 383/800			_	
	[======] 384/800	-	0s	310us/step - loss: 0	.0335
	[======]	_	0s	410us/step - loss: 0	.0359
	385/800 [======]		۸c	272ug/g+on logg. 0	0245
Epoch	386/800			_	
	[======] 387/800	-	0s	392us/step - loss: 0	.0328
39/39	[======]	_	0s	397us/step - loss: 0	.0242
	388/800 [======]	_	0s	333us/sten = loss: 0	.0409
Epoch	389/800				
	[======] 390/800	-	0s	405us/step - loss: 0	.0312
39/39	[======]	_	0s	411us/step - loss: 0	.0251
	391/800 [=======]	_	0s	612us/step - loss: 0	.0250
Epoch	392/800			_	
	[=======] 393/800	_	0s	324us/step - loss: 0	.0253
	[======]	-	0s	368us/step - loss: 0	.0286
	394/800 [=======]	_	0s	348us/step - loss: 0	.0346
	395/800 [======]		0.0	627ug/g+on logg. 0	0461
Epoch	396/800				
	[======] 397/800	-	0s	320us/step - loss: 0	.0286
39/39	[======]	_	0s	274us/step - loss: 0	.0287
	398/800 [=======]	_	۸e	364115/sten - loss. 0	0271
Epoch	399/800				
	[======] 400/800	-	0s	458us/step - loss: 0	.0404
39/39	[======]	-	0s	461us/step - loss: 0	.0246
	401/800 [=======]	_	0s	503us/step - loss: 0	.0341
	402/800		-	_	

	[=======] 403/800	-	0s	742us/step - loss: 0	.0307
39/39	[=======] 404/800	-	0s	608us/step - loss: 0	.0418
39/39	[======]	-	0s	852us/step - loss: 0	.0237
	405/800 [=======]	_	0s	507us/step - loss: 0	.0457
	406/800 [======]	_	0s	368us/step - loss: 0	.0295
Epoch	407/800 [=======]			_	
Epoch	408/800			_	
Epoch	[=======] 409/800				
Epoch	[======] 410/800			_	
	[======] 411/800	-	0s	404us/step - loss: 0	.0319
39/39	[=======] 412/800	-	0s	673us/step - loss: 0	.0351
39/39	[======]	-	0s	445us/step - loss: 0	.0428
39/39	413/800 [======]	_	0s	381us/step - loss: 0	.0389
	414/800 [=======]	_	0s	313us/step - loss: 0	.0337
	415/800 [======]	_	0s	347us/step - loss: 0	.0359
Epoch	416/800 [=======]				
Epoch	417/800				
Epoch	[=======] 418/800				
Epoch	[======] 419/800				
	[======] 420/800	-	0s	581us/step - loss: 0	.0379
39/39	[=======] 421/800	-	0s	441us/step - loss: 0	.0239
39/39	[======]	-	0s	316us/step - loss: 0	.0237
39/39	422/800 [========]	_	0s	439us/step - loss: 0	.0331
	423/800 [=======]	_	0s	396us/step - loss: 0	.0311
	424/800 [======]	_	0s	407us/step - loss: 0	.0293
Epoch	425/800 [======]				
Epoch	426/800				
Epoch	[=======] 427/800				
Epoch	[=======] 428/800				
	[======] 429/800	-	0s	436us/step - loss: 0	.0278
39/39	[=======] 430/800	-	0s	466us/step - loss: 0	.0237
	[======]	-	0s	322us/step - loss: 0	.0296

Epoch	431/800			
39/39	[========]	-	0s	326us/step - loss: 0.0342
	432/800 [=======]		٥a	266ug/gton logg. 0 0250
	433/800	-	US	300us/scep - 10ss: 0.0339
39/39	[========]	-	0s	385us/step - loss: 0.0320
	434/800		٥٩	452mg/gton logg, 0.0200
	435/800	-	US	452us/scep - 10ss: 0.0308
39/39	[========]	-	0s	881us/step - loss: 0.0354
	436/800 [=======]		٥٩	76399/9409 1099 0 0405
	437/800	-	US	/03us/scep - 10ss: 0.0405
39/39	[========]	-	0s	837us/step - loss: 0.0247
	438/800 [========]		٥٩	1mg/gton logg, 0.0202
	439/800	-	US	Ims/step - loss: 0.0283
39/39	[========]	-	0s	594us/step - loss: 0.0397
	440/800 [========]		٥٩	721,127/24.09 10.227
	441/800	-	US	/31us/scep - 10ss: 0.032/
39/39	[========]	-	0s	617us/step - loss: 0.0261
	442/800 [===================================		٥٩	245,127,240,201
	443/800	-	US	345us/scep - 10ss: 0.0281
39/39	[========]	-	0s	345us/step - loss: 0.0440
	444/800 [===================================		٥٩	201,12 / 24.07
	445/800	-	US	301us/scep - 10ss: 0.0313
39/39	[========]	-	0s	434us/step - loss: 0.0223
	446/800 [===================================		۸c	3/7ug/g+on logg. 0 0330
	447/800	-	US	347us/step - 10ss: 0:0339
	[======]	-	0s	408us/step - loss: 0.0343
	448/800 [===================================	ı _	Λe	62311g/g+an _ logg. 0 0229
	449/800	_	V.S	023d8/8cep - 1088. 0.0227
	[======================================	-	0s	529us/step - loss: 0.0244
	450/800 [===================================	ı _	Λq	596us/step = loss: 0.0300
Epoch	451/800			
	[======================================	-	0s	410us/step - loss: 0.0268
	452/800 [===================================	ı –	0s	329us/step - loss: 0.0309
Epoch	453/800			
	[======================================	-	0s	376us/step - loss: 0.0357
	454/800 [===================================	ı –	0s	512us/step - loss: 0.0370
Epoch	455/800			
	[======================================	-	0s	886us/step - loss: 0.0408
	456/800 [===================================	ı –	0s	626us/step - loss: 0.0294
Epoch	457/800			
	[=========] 458/800	-	0s	687us/step - loss: 0.0361
	458/800 [===================================	l –	0s	584us/step - loss: 0.0287
	459/800			-

	[=======] 460/800	-	0s	566us/step - loss: 0.0224
39/39	[======]	-	0s	514us/step - loss: 0.0452
39/39	461/800 [=======]	-	0s	389us/step - loss: 0.0250
	462/800 [=======]	_	0s	412us/step - loss: 0.0281
	463/800	_	0s	732us/step = loss: 0.0275
Epoch	464/800 [=======]			-
Epoch	465/800			
Epoch	[======] 466/800			-
	[======] 467/800	-	0s	381us/step - loss: 0.0287
39/39	[=======] 468/800	-	0s	411us/step - loss: 0.0438
39/39	[======]	-	0s	421us/step - loss: 0.0270
39/39	469/800 [=======]	_	0s	332us/step - loss: 0.0361
	470/800 [=======]	_	0s	404us/step - loss: 0.0239
Epoch	471/800 [======]			
Epoch	472/800			
Epoch	[======] 473/800			
Epoch	[======] 474/800			
	[======] 475/800	-	0s	363us/step - loss: 0.0337
39/39	[=======] 476/800	-	0s	431us/step - loss: 0.0388
39/39	[======]	-	0s	782us/step - loss: 0.0314
	477/800 [=======]	_	0s	762us/step - loss: 0.0431
	478/800 [=======]	_	0s	1ms/step - loss: 0.0456
Epoch	479/800 [======]			
Epoch	480/800			
Epoch	[=======] 481/800			
Epoch	[=======] 482/800			
	[======] 483/800	-	0s	409us/step - loss: 0.0376
39/39	[=======] 484/800	-	0s	350us/step - loss: 0.0302
39/39	[======]	-	0s	551us/step - loss: 0.0293
39/39	485/800 [=======]	_	0s	701us/step - loss: 0.0250
	486/800 [=======]	_	0s	303us/step - loss: 0.0405
Epoch	487/800 [======]			
]		0.5	101ab, 200p 10bb. 0.0250

	488/800			
	[======================================] –	0s	403us/step - loss: 0.0331
	489/800 [===================================	1 -	0s	489us/step - loss: 0.0408
Epoch	490/800			
	[=====================================] –	0s	723us/step - loss: 0.0238
	[======================================] -	0s	846us/step - loss: 0.0224
	492/800 [===================================	,	0.4	2mg/gton logg, 0.0266
Epoch	493/800			
	[======================================] –	0s	736us/step - loss: 0.0466
	494/800 [===================================	1 -	0s	972us/step - loss: 0.0239
Epoch	495/800	_		_
	[=====================================] –	0s	682us/step - loss: 0.0290
39/39	[======================================] –	0s	506us/step - loss: 0.0516
	497/800 [===================================	1 _	0 s	32911s/sten = loss: 0.0458
Epoch	498/800	_		_
	[=====================================] –	0s	382us/step - loss: 0.0400
	[======================================] -	0s	391us/step - loss: 0.0328
	500/800 [===================================	,	0.4	207,12 / 2+07 1022 0 0246
	501/800] -	US	29/us/step - 10ss: 0.0346
	[======================================] –	0s	350us/step - loss: 0.0232
	502/800 [===================================	1 –	0s	320us/step - loss: 0.0293
Epoch	503/800	_		_
	[=====================================] –	0s	532us/step - loss: 0.0266
39/39	[======================================] –	0s	466us/step - loss: 0.0233
	505/800	1 _	۸e	359us/stan _ loss. 0 0418
Epoch	506/800			
	[=====================================] –	0s	408us/step - loss: 0.0228
	[======================================] -	0s	380us/step - loss: 0.0257
	508/800	,	0.4	22/11/2/2505 10/20 0 0202
	[=====================================] -	US	324us/step - 10ss: 0.0302
	[======================================] –	0s	390us/step - loss: 0.0388
	510/800	1 –	0s	483us/step - loss: 0.0226
Epoch	511/800			
	[=====================================] –	0s	583us/step - loss: 0.0292
39/39	[======================================] –	0s	305us/step - loss: 0.0458
	513/800	1 _	۸e	320us/stan _ loss. 0 0222
Epoch	514/800			
	[=====================================] –	0s	286us/step - loss: 0.0465
	[======================================] –	0s	469us/step - loss: 0.0311
Epoch	516/800			

```
39/39 [============== ] - 0s 405us/step - loss: 0.0280
Epoch 517/800
39/39 [=========== ] - 0s 362us/step - loss: 0.0264
Epoch 518/800
Epoch 519/800
39/39 [============= ] - 0s 499us/step - loss: 0.0376
Epoch 520/800
39/39 [============= ] - 0s 733us/step - loss: 0.0278
Epoch 521/800
Epoch 522/800
Epoch 523/800
39/39 [============== ] - 0s 877us/step - loss: 0.0216
Epoch 524/800
39/39 [============ ] - 0s 445us/step - loss: 0.0233
Epoch 525/800
Epoch 526/800
Epoch 527/800
39/39 [============== ] - 0s 290us/step - loss: 0.0418
Epoch 528/800
39/39 [============= ] - 0s 568us/step - loss: 0.0223
Epoch 529/800
39/39 [=============== ] - 0s 951us/step - loss: 0.0465
Epoch 530/800
39/39 [============== ] - 0s 767us/step - loss: 0.0237
Epoch 531/800
39/39 [============= ] - 0s 845us/step - loss: 0.0239
Epoch 532/800
39/39 [============= ] - 0s 688us/step - loss: 0.0315
Epoch 533/800
39/39 [============== ] - 0s 783us/step - loss: 0.0349
Epoch 534/800
39/39 [============= ] - 0s 985us/step - loss: 0.0263
Epoch 535/800
- loss: 0.0274
Epoch 536/800
39/39 [=============== ] - 0s 781us/step - loss: 0.0351
Epoch 537/800
39/39 [=============== ] - 0s 917us/step - loss: 0.0477
Epoch 538/800
39/39 [============= ] - 0s 548us/step - loss: 0.0290
Epoch 539/800
Epoch 540/800
39/39 [============== ] - 0s 411us/step - loss: 0.0270
Epoch 541/800
Epoch 542/800
Epoch 543/800
39/39 [============= ] - 0s 368us/step - loss: 0.0222
Epoch 544/800
```

```
39/39 [============== ] - 0s 467us/step - loss: 0.0340
Epoch 545/800
Epoch 546/800
Epoch 547/800
Epoch 548/800
39/39 [============ ] - 0s 374us/step - loss: 0.0333
Epoch 549/800
Epoch 550/800
39/39 [============== ] - 0s 311us/step - loss: 0.0247
Epoch 551/800
39/39 [============= ] - 0s 420us/step - loss: 0.0262
Epoch 552/800
39/39 [============= ] - 0s 539us/step - loss: 0.0253
Epoch 553/800
Epoch 554/800
Epoch 555/800
39/39 [============= ] - 0s 367us/step - loss: 0.0239
Epoch 556/800
39/39 [============= ] - 0s 288us/step - loss: 0.0456
Epoch 557/800
39/39 [=============== ] - 0s 313us/step - loss: 0.0390
Epoch 558/800
39/39 [============ ] - 0s 639us/step - loss: 0.0401
Epoch 559/800
Epoch 560/800
Epoch 561/800
39/39 [============== ] - 0s 391us/step - loss: 0.0258
Epoch 562/800
Epoch 563/800
39/39 [============== ] - 0s 532us/step - loss: 0.0210
Epoch 564/800
Epoch 565/800
Epoch 566/800
39/39 [============= ] - 0s 329us/step - loss: 0.0393
Epoch 567/800
Epoch 568/800
Epoch 569/800
39/39 [============= ] - 0s 372us/step - loss: 0.0319
Epoch 570/800
Epoch 571/800
39/39 [============== ] - 0s 361us/step - loss: 0.0315
Epoch 572/800
39/39 [============== ] - 0s 400us/step - loss: 0.0340
```

Epoch	573/800			
39/39	[======================================] –	0s	414us/step - loss: 0.0258
	574/800	1 _	Λe	502us/sten = loss. 0 0243
Epoch	575/800	-		_
	[======================================] –	0s	460us/step - loss: 0.0224
	576/800 [===================================	1 –	0s	462us/step - loss: 0.0238
Epoch	577/800	-		_
	[=====================================] –	0s	410us/step - loss: 0.0282
39/39	[======================================] –	0s	1ms/step - loss: 0.0508
	579/800 [===================================	1	Λα	271ug/gton logg. 0 0214
	580/800] -	US	3/lus/step - loss: 0.0214
] -	0s	490us/step - loss: 0.0296
	581/800	1 –	0s	456us/step - loss: 0.0420
Epoch	582/800			_
	[======================================] –	0s	555us/step - loss: 0.0246
39/39	[======================================] –	0s	568us/step - loss: 0.0310
	584/800	1 _	۸e	581us/sten _ loss. 0 0354
Epoch	585/800			_
	[======================================] –	0s	377us/step - loss: 0.0295
	[======================================] –	0s	293us/step - loss: 0.0228
	587/800		•	222 / 1 2 2 2 2 2 4
	[======================================	J –	US	333us/step - loss: 0.03/4
39/39	[======================================] –	0s	368us/step - loss: 0.0406
	589/800 [===================================	1 –	0s	262us/step - loss: 0.0231
Epoch	590/800	-		_
	[=====================================] –	0s	577us/step - loss: 0.0299
39/39	[======================================] –	0s	337us/step - loss: 0.0478
	592/800 [===================================	1 _	۸e	444us/sten _ loss. 0 0228
Epoch	593/800			
	[=====================================] –	0s	347us/step - loss: 0.0309
	[======================================] –	0s	415us/step - loss: 0.0248
	595/800		0 -	507/
	[=====================================] -	US	59/us/step - loss: 0.04/3
39/39	[======================================] –	0s	409us/step - loss: 0.0214
	597/800 [===================================	1 –	0s	397us/step - loss: 0.0349
Epoch	598/800			
	[=====================================] –	0s	431us/step - loss: 0.0394
39/39	[======================================] –	0s	366us/step - loss: 0.0248
	600/800	1	Λe	35411g/gten = logg. 0 0255
	601/800	1 _	VB	- 1035. 0.0255

	[=======] 602/800	-	0s	358us/step - loss:	0.0369
39/39	[=====================================	-	0s	456us/step - loss:	0.0212
39/39	[======]	_	0s	891us/step - loss:	0.0290
39/39	604/800 [=======]	_	0s	528us/step - loss:	0.0302
	605/800 [=======]	_	0s	345us/step - loss:	0.0262
	606/800 [======]	_	0s	370us/step - loss:	0.0313
Epoch	607/800 [=======]			_	
Epoch	608/800 [=======]			_	
Epoch	609/800 [=======]			_	
Epoch	610/800			_	
Epoch	[======] 611/800			_	
Epoch	[======] 612/800				
	[======] 613/800	-	0s	932us/step - loss:	0.0345
	[=======] 614/800	-	0s	582us/step - loss:	0.0339
39/39	[=======] 615/800	-	0s	482us/step - loss:	0.0234
39/39	[======]	-	0s	518us/step - loss:	0.0294
39/39	616/800 [======]	_	0s	671us/step - loss:	0.0242
39/39	617/800 [======]	_	0s	782us/step - loss:	0.0434
	618/800 [=======]	_	0s	381us/step - loss:	0.0250
	619/800 [======]	_	0s	317us/step - loss:	0.0321
Epoch	620/800 [======]			_	
Epoch	621/800 [=======]				
Epoch	622/800				
Epoch	[=======] 623/800				
Epoch	[========] 624/800				
Epoch	[=======] 625/800				
	[======] 626/800	-	0s	465us/step - loss:	0.0405
	[=======] 627/800	-	0s	397us/step - loss:	0.0332
39/39	[=======] 628/800	-	0s	515us/step - loss:	0.0289
39/39	[=====================================	-	0s	409us/step - loss:	0.0305
	[======]	-	0s	405us/step - loss:	0.0360

	630/800			
	[=====================================] –	0s	1ms/step - loss: 0.0405
39/39	[======================================] -	0s	886us/step - loss: 0.0323
	632/800	1 –	0s	485us/step - loss: 0.0241
Epoch	633/800 [===================================	_		_
Epoch	634/800	_		_
	[=====================================] –	0s	378us/step - loss: 0.0319
39/39	[======================================] -	0s	433us/step - loss: 0.0261
39/39	[======================================] –	0s	331us/step - loss: 0.0400
	637/800	1 –	0s	496us/step - loss: 0.0298
Epoch	638/800 [===================================	_		_
Epoch	639/800	_		_
	[=====================================] -	0s	1ms/step - loss: 0.0244
39/39	[======================================] –	0s	435us/step - loss: 0.0338
	641/800 [===================================] -	0s	338us/step - loss: 0.0283
	642/800 [===================================	1 –	0s	383us/step = loss: 0.0394
Epoch	643/800			
Epoch	[=====================================			
	[=====================================] –	0s	663us/step - loss: 0.0244
39/39	[======================================] –	0s	473us/step - loss: 0.0388
	646/800 [===================================	1 -	0s	366us/step - loss: 0.0247
Epoch	647/800 [===================================			
Epoch	648/800	-		-
	[=====================================] –	0s	350us/step - loss: 0.0241
39/39	[======================================] –	0s	354us/step - loss: 0.0293
	650/800 [===================================] –	0s	880us/step - loss: 0.0242
	651/800 [===================================	1 –	0s	1ms/step - loss: 0.0460
Epoch	652/800			
	[=====================================] -	0s	550us/step - loss: 0.0206
	[=====================================] -	0s	431us/step - loss: 0.0212
39/39	[======================================] –	0s	483us/step - loss: 0.0448
	655/800 [===================================	1 -	0s	383us/step - loss: 0.0498
Epoch	656/800 [===================================			
Epoch	657/800			
	[=====================================] –	0s	402us/step - loss: 0.0339

	[=======] 659/800	-	0s	800us/step -	loss:	0.0368
39/39	[======]	-	0s	820us/step -	loss:	0.0258
39/39	660/800 [=======]	_	0s	368us/step -	loss:	0.0322
	661/800 [=======]	_	0s	406us/step -	loss:	0.0229
	662/800 [======]	_	0s	346us/step -	loss:	0.0223
Epoch	663/800 [======]					
Epoch	664/800 [=======]			_		
Epoch	665/800 [=======]					
Epoch	666/800			_		
Epoch	[======] 667/800			_		
Epoch	[======] 668/800					
	[======] 669/800	-	0s	306us/step -	loss:	0.0418
39/39	[=======] 670/800	-	0s	300us/step -	loss:	0.0270
39/39	[========] 671/800	-	0s	378us/step -	loss:	0.0232
39/39	[======]	-	0s	662us/step -	loss:	0.0309
39/39	672/800 [=======]	_	0s	441us/step -	loss:	0.0275
39/39	673/800 [=======]	_	0s	382us/step -	loss:	0.0282
	674/800 [=======]	_	0s	415us/step -	loss:	0.0421
Epoch	675/800 [======]					
Epoch	676/800 [=======]					
Epoch	677/800 [=======]			_		
Epoch	678/800					
Epoch	[========] 679/800					
Epoch	[=======] 680/800					
	[======] 681/800	-	0s	347us/step -	loss:	0.0314
	[=======] 682/800	-	0s	306us/step -	loss:	0.0241
39/39	[========] 683/800	-	0s	251us/step -	loss:	0.0241
39/39	[=========] 684/800	-	0s	298us/step -	loss:	0.0277
39/39	[======]	_	0s	282us/step -	loss:	0.0364
39/39	685/800 [=======]	_	0s	340us/step -	loss:	0.0379
	686/800 [=======]	_	0s	356us/step -	loss:	0.0408

Epoch	687/800			
	[======================================] –	0s	318us/step - loss: 0.0263
	688/800 [===================================	1 –	0s	392us/step - loss: 0.0314
Epoch	689/800	_		-
	[=====================================] –	0s	318us/step - loss: 0.0227
39/39	[======================================] –	0s	329us/step - loss: 0.0311
	691/800 [===================================	1 –	0s	409us/step - loss: 0.0403
Epoch	692/800	_		-
	[=====================================] –	0s	319us/step - loss: 0.0229
39/39	[======================================] -	0s	433us/step - loss: 0.0296
	694/800 [===================================	1 –	0s	803us/step - loss: 0.0245
Epoch	695/800			
	[=====================================] -	0s	414us/step - loss: 0.0385
39/39	[======================================] -	0s	542us/step - loss: 0.0338
	697/800 [===================================] -	0s	377us/step - loss: 0.0269
Epoch	698/800	_		-
Epoch	[=====================================			
	[======================================] -	0s	397us/step - loss: 0.0283
	700/800] -	0s	395us/step - loss: 0.0215
Epoch 39/39 Epoch 39/39	701/800	,	0.4	27002/2402 1022 0 0404
	702/800			
	[=====================================] –	0s	474us/step - loss: 0.0316
39/39	[======================================] -	0s	473us/step - loss: 0.0316
	704/800	1 _	۸e	430us/sten = loss. 0 0444
Epoch	705/800	-		-
	[=====================================] -	0s	561us/step - loss: 0.0278
39/39	[========] –	0s	631us/step - loss: 0.0322
	707/800	1 –	0s	1ms/step - loss: 0.0312
Epoch	708/800			
	[=====================================] –	0s	780us/step - loss: 0.0209
39/39	[======================================] -	0s	411us/step - loss: 0.0459
	710/800	1 -	0s	396us/step - loss: 0.0236
Epoch	711/800			
	[=====================================] -	US	459us/step - 10ss: 0.032/
	[=====================================] –	0s	389us/step - loss: 0.0234
	[======================================] –	0s	376us/step - loss: 0.0209
	714/800	1	0.5	737ug/gton logg: 0 0247
	715/800	, –	va	,5,45,5ccp - 1055. 0.0247

	[======] 716/800	-	0s	502us/step - lo	oss:	0.0397
39/39	[=======] 717/800	-	0s	378us/step - lo	oss:	0.0407
39/39	[======]	_	0s	364us/step - lo	oss:	0.0292
	718/800 [=======]	_	0s	349us/step - lo	oss:	0.0253
	719/800	_	0s	306us/step - 10	oss:	0.0387
Epoch	720/800 [======]			_		
Epoch	721/800					
Epoch	[======] 722/800			_		
	[======] 723/800	-	0s	520us/step - lo	oss:	0.0284
39/39	[=======] 724/800	-	0s	369us/step - lo	oss:	0.0371
39/39	[======]	-	0s	455us/step - lo	oss:	0.0299
39/39	725/800 [======]	_	0s	403us/step - lo	oss:	0.0342
	726/800 [=======]	_	0s	716us/step - lo	oss:	0.0197
Epoch	727/800 [======]					
Epoch	728/800					
Epoch	[=======] 729/800					
Epoch	[======] 730/800					
	[======] 731/800	-	0s	734us/step - lo	oss:	0.0264
39/39	[=======] 732/800	-	0s	407us/step - lo	oss:	0.0424
39/39	[======]	_	0s	371us/step - lo	oss:	0.0253
	733/800 [=======]	_	0s	369us/step - lo	oss:	0.0203
	734/800 [=========]	_	0s	371us/step - lo	oss:	0.0257
Epoch	735/800 [======]					
Epoch	736/800					
Epoch	[=======] 737/800					
	[=======] 738/800	-	0s	821us/step - lo	oss:	0.0370
	[=======] 739/800	-	0s	333us/step - lo	oss:	0.0360
39/39	[=======] 740/800	-	0s	407us/step - lo	oss:	0.0313
39/39	[======]	_	0s	333us/step - lo	oss:	0.0319
39/39	741/800 [=======]	_	0s	306us/step - lo	oss:	0.0335
	742/800 [======]	_	0s	377us/step - lo	oss:	0.0226
Epoch	743/800 [======]					
37/37	[]	_	υS	230us/step - 10	055:	0.0348

Epoch	744/800			
] –	0s	326us/step - loss: 0.0213
	745/800 [===================================	1 _	0 s	336us/sten = loss: 0.0224
Epoch	746/800			
] –	0s	279us/step - loss: 0.0403
	747/800 [===================================	1	۸c	311ug/gton logg: 0 0340
	748/800] -	US	311us/scep - 10ss: 0.0340
	[======================================] –	0s	499us/step - loss: 0.0391
	749/800 [===================================	,	0 ~	((1))
	750/800] -	US	661us/step - 10ss: 0.0386
39/39	[======================================] -	0s	376us/step - loss: 0.0313
	751/800		0	400 / 4 3 0 0077
	[=====================================] –	US	409us/step - loss: 0.02//
	[======================================] -	0s	302us/step - loss: 0.0391
	753/800			
	[=====================================] –	0s	398us/step - loss: 0.0218
	[======================================] -	0s	393us/step - loss: 0.0386
Epoch	755/800			
	[=====================================] -	0s	345us/step - loss: 0.0336
	[======================================	1 -	0s	418us/step - loss: 0.0240
Epoch	757/800			
	[======================================] –	0s	530us/step - loss: 0.0203
	758/800 [===================================	1 –	0s	445us/step - loss: 0.0257
Epoch	759/800			
] –	0s	425us/step - loss: 0.0281
-	760/800 [===================================	1 –	0s	309us/step = loss: 0.0210
	761/800	1	Ů.D	105dB/ 500p 10BB/ 010210
] –	0s	368us/step - loss: 0.0405
_	762/800 [===================================	1 _	۸e	381us/sten _ loss. 0 0470
	763/800	1 _	05	301dB/BCCP = 10BB: 0:0470
] –	0s	379us/step - loss: 0.0257
	764/800 [===================================	1	۸c	323ug/g+on logg: 0 0212
	765/800] _	US	323us/scep - 10ss. 0.0212
	[======================================] –	0s	356us/step - loss: 0.0200
	766/800 [===================================	1	٥a	446ug/gton logg. 0 0262
	767/800] –	US	440us/scep - 10ss: 0.0203
39/39	[======================================] –	0s	494us/step - loss: 0.0312
	768/800	,	0 ~	2==/=+== 1=== 0 0204
	[=====================================] -	US	2ms/step - loss: 0.0204
39/39	[======================================] –	0s	580us/step - loss: 0.0219
	770/800	1	0 -	909ug/gton 10g-100404
	[=====================================] –	US	ovous/step - 10ss: 0.0484
39/39	[======================================] –	0s	507us/step - loss: 0.0404
Epoch	772/800			

```
- loss: 0.0252
Epoch 773/800
Epoch 774/800
39/39 [============== ] - 0s 452us/step - loss: 0.0340
Epoch 775/800
39/39 [============ ] - 0s 489us/step - loss: 0.0306
Epoch 776/800
39/39 [============ ] - 0s 1ms/step - loss: 0.0261
Epoch 777/800
39/39 [============== ] - 0s 497us/step - loss: 0.0246
Epoch 778/800
39/39 [============= ] - 0s 487us/step - loss: 0.0197
Epoch 779/800
39/39 [=============== ] - 0s 381us/step - loss: 0.0269
Epoch 780/800
39/39 [============ ] - 0s 458us/step - loss: 0.0374
Epoch 781/800
Epoch 782/800
- loss: 0.0340
Epoch 783/800
39/39 [============= ] - 0s 340us/step - loss: 0.0291
Epoch 784/800
39/39 [============== ] - 0s 398us/step - loss: 0.0214
Epoch 785/800
39/39 [============ ] - 0s 386us/step - loss: 0.0323
Epoch 786/800
Epoch 787/800
Epoch 788/800
39/39 [============== ] - 0s 419us/step - loss: 0.0293
Epoch 789/800
Epoch 790/800
39/39 [============= ] - 0s 893us/step - loss: 0.0428
Epoch 791/800
Epoch 792/800
Epoch 793/800
39/39 [============== ] - 0s 428us/step - loss: 0.0215
Epoch 794/800
Epoch 795/800
Epoch 796/800
39/39 [============= ] - 0s 339us/step - loss: 0.0307
Epoch 797/800
Epoch 798/800
Epoch 799/800
39/39 [============= ] - 0s 433us/step - loss: 0.0295
```

```
In [49]:
          # Task 1.3e
          from sklearn import metrics
          # This line of code can be used to reconstruct the saved model. The name of t
          recon model3 = keras.models.load model("best modelv3")
          import matplotlib.pyplot as plt
          mdotpred = []
          for i in range(len(X train3)):
              test3 = [[X_train3[i][0], X_train3[i][1], X_train3[i][2], X_train3[i][3]]
              testarray3 = np.array(test3)
              a3 = recon_model3.predict(testarray3)
              mdotpred.append([a3[0][0]])
          mdotorig = y train3
          plt.figure()
          ax = plt.gca()
          ax.scatter(mdotpred ,mdotorig , c='blue', label = 'data')
          ax.set yscale('log')
          ax.set xscale('log')
          plt.xlabel("Predicted mass flow rate")
          plt.ylabel("Actual mass flow rate")
          plt.legend()
          plt.tight_layout()
          plt.show()
          #MAE of predicted vs test data
          mae_mdot = metrics.mean_absolute_error(mdotpred,mdotorig)
          print('mean absolute error between predictions and the collection of test date
```


mean absolute error between predictions and the collection of test data: Mdot = 0.030806486495235645

```
In [51]:
          # Task 1.3f
          from sklearn import metrics
          # This line of code can be used to reconstruct the saved model. The name of t
          recon_model3 = keras.models.load_model("best_modelv3")
          import matplotlib.pyplot as plt
          mdotpred2 = []
          for i in range(len(X test3)):
              testv3 = [[X_test3[i][0], X_test3[i][1], X_test3[i][2], X_test3[i][3]]]
              testarrayv3 = np.array(testv3)
              at3 = recon_model3.predict(testarrayv3)
              mdotpred2.append([at3[0][0]])
          mdotorig2 = y_test3
          plt.figure()
          ax = plt.gca()
          ax.scatter(mdotpred2 ,mdotorig2 , c='blue', label = 'data')
          ax.set yscale('log')
          ax.set xscale('log')
          plt.xlabel("Predicted mass flow rate")
          plt.ylabel("Actual mass flow rate")
          plt.legend()
          plt.tight layout()
          plt.show()
          #MAE of predicted vs test data
          mae_mdot2 = metrics.mean_absolute_error(mdotpred2,mdotorig2)
          print('mean absolute error between predictions and the collection of test dat
```


mean absolute error between predictions and the collection of test data: Mdot = 0.02914950802617285

```
In [30]:
          #Task1.3q
          Di = 0.010
          X = np.linspace(500, 800) #qo
          xe = 0.70
          Tw = 300
          recon model3 = keras.models.load model("best modelv3")
          testdatap = []
          predmdot = [] #output
          Din = Di/medDi3
          Xn = X/medq03
          xen = xe/medxe3
          Twn = Tw/medTw3
          for x in range(len(Xn)):
              testp = [[Din, Xn[x], xen, Twn]]
              testarrayp = np.array(testp)
              outptp = recon model3.predict(testarrayp)
              predmdot.append(outptp[0][0]*medmdot3)
          fig = plt.figure()
          ax = plt.axes()
          ax.plot(X, predmdot)
          ax.set_ylabel('Mass flow rate [kg/s]')
          ax.set_xlabel('Solar flux[kW/m^2]',)
          ax.xaxis.labelpad=15
          ax.yaxis.labelpad=15
          ax.title.set_text('Mdot prediction');
          plt.tight_layout()
          plt.show()
```



```
In [1]:
         #Task 2
         import numpy as np
         xdata = []
         ydata = []
         #xdata.append([qflux1 (W/m^2), qflux2 (W/m^2), separation distance (m)])
         xdata.append([200.0,
                                100.0, 0.0001)
                                400.0, 0.0001)
         xdata.append([200.0,
                                200.0, 0.000])
         xdata.append([200.0,
                                400.0, 0.0001)
         xdata.append([500.0,
         xdata.append([100.0,
                                300.0, 0.000])
                                300.0, 0.002])
         xdata.append([600.0,
                                400.0, 0.0021)
         xdata.append([500.0,
         xdata.append([200.,
                               400.0, 0.002])
                                300.0, 0.002])
         xdata.append([100.0,
         xdata.append([200.0,
                                200.0, 0.002])
         xdata.append([200.0,
                                100.0, 0.002])
                                200.0, 0.002])
         xdata.append([100.0,
                                400.0, 0.004])
         xdata.append([500.0,
                                400.0, 0.0041)
         xdata.append([300.0,
                                400.0, 0.004])
         xdata.append([200.0,
                                400.0, 0.004])
         xdata.append([100.0,
         xdata.append([100.0,
                                300.0, 0.004])
                                300.0, 0.004])
         xdata.append([200.0,
                                300.0, 0.004])
         xdata.append([500.0,
         xdata.append([200.0,
                                100.0, 0.004])
                                200.0, 0.004])
         xdata.append([100.0,
         xdata.append([200.0,
                                200.0, 0.004])
                                200.0, 0.004])
         xdata.append([300.0,
                                300.0, 0.006])
         xdata.append([100.0,
         xdata.append([200.0,
                                400.0, 0.006])
                                200.0, 0.006])
         xdata.append([400.0,
```

```
xdata.append([600.0,
                      300.0, 0.006])
                      600.0, 0.0061)
xdata.append([300.0,
xdata.append([200.0,
                      100.0, 0.006])
                      200.0, 0.006])
xdata.append([100.0,
xdata.append([50.0,
                     200.0, 0.006])
xdata.append([350.0, 150.0, 0.004])
                      150.0, 0.008])
xdata.append([350.0,
xdata.append([300.0,
                      200.0, 0.008])
                      100.0, 0.008])
xdata.append([200.0,
xdata.append([250.0,
                      50.0, 0.008])
                     250.0, 0.0081)
xdata.append([50.0,
xdata.append([400.0,
                      300.0, 0.0081)
xdata.append([500.0,
                      400.0, 0.008])
                     200.0, 0.0101)
xdata.append([50.0,
xdata.append([100.0, 200.0, 0.010])
                      200.0, 0.010])
xdata.append([200.0,
xdata.append([300.0,
                      200.0, 0.010])
xdata.append([500.0,
                      400.0, 0.010])
                      300.0, 0.010])
xdata.append([400.0,
xdata.append([100.0,
                      100.0, 0.010])
                      100.0, 0.010])
xdata.append([200.0,
#xdata.append([maximum surface temperature (deq C)])
ydata.append([52.7])
ydata.append([72.2])
ydata.append([56.0])
ydata.append([77.2])
ydata.append([62.8])
ydata.append([84.6])
ydata.append([77.2])
ydata.append([71.6])
ydata.append([62.4])
ydata.append([55.3])
ydata.append([52.7])
ydata.append([53.9])
ydata.append([77.2])
ydata.append([72.2])
ydata.append([71.1])
ydata.append([70.2])
ydata.append([62.2])
ydata.append([63.2])
ydata.append([77.2])
ydata.append([52.7])
ydata.append([53.6])
ydata.append([54.8])
ydata.append([61.4])
ydata.append([62.0])
ydata.append([70.8])
ydata.append([69.5])
ydata.append([84.6])
ydata.append([86.4])
ydata.append([52.7])
ydata.append([53.4])
```

```
ydata.append([53.0])
ydata.append([65.5])
ydata.append([65.5])
ydata.append([61.4])
ydata.append([52.7])
ydata.append([57.1])
ydata.append([57.4])
ydata.append([69.5])
ydata.append([77.2])
ydata.append([52.9])
ydata.append([53.2])
ydata.append([53.9])
ydata.append([61.4])
ydata.append([77.2])
ydata.append([69.5])
ydata.append([43.6])
ydata.append([52.7])
xarray4= np.array(xdata)
yarray4= np.array(ydata)
```

```
In [4]:
         #Task 2.1a
         import keras
         import pandas as pd
         from keras.models import Sequential
         import numpy as np
         import keras.backend as kb
         import tensorflow as tf
         import statistics as s
         #the follwoing 2 lines are only needed for Mac OS machines
         import os
         os.environ['KMP_DUPLICATE_LIB OK']='True'
         q1 =[] #inputs
         q2 = []
         dx = []
         Ts =[] #output
         xarrayn4 = []
         yarrayn4 = []
         for x in range(len(xarray4)):
             q1.append(xarray4[x][0])
             q2.append(xarray4[x][1])
             dx.append(xarray4[x][2])
         for y in range(len(yarray4)):
             Ts.append(yarray4[y][0])
         medq1 = np.median(q1)
         medq2 = np.median(q2)
         meddx = np.median(dx)
         medTs = np.median(Ts)
         q1n = q1/medq1
         q2n = q2/medq2
         dxn = dx/meddx
         Tsn = Ts/medTs
         xarrayn4 = np.column stack((q1n, q2n, dxn))
         yarrayn4 = Tsn
         print(xarrayn4)
         print(yarrayn4)
```

```
Using TensorFlow backend.
        0.5
[[1.
             0.
             0.
 [1.
        2.
 [1.
        1.
             0.
 [2.5]
       2.
             0.
 [0.5
       1.5
 [3.
        1.5
             0.5 ]
 [2.5
             0.5 ]
       2.
 [1.
             0.5 ]
        2.
 [0.5
       1.5
             0.5 1
             0.5
 [1.
        1.
 [1.
        0.5
             0.5 ]
 [0.5
       1.
             0.5 ]
 [2.5
       2.
             1.
 [1.5
       2.
                  1
 [1.
        2.
             1.
 [0.5]
        2.
 [0.5
       1.5
             1.
 [1.
        1.5
       1.5
 [2.5]
 [1.
        0.5
 [0.5
       1.
 [1.
        1.
 [1.5
       1.
 [0.5
       1.5
             1.5 ]
 [1.
        2.
             1.5
             1.5 ]
 [2.
        1.
 [3.
        1.5
             1.5 1
 [1.5
       3.
             1.5
        0.5
 [1.
             1.5
 [0.5
             1.5 ]
        1.
 [0.25 1.
             1.5 1
 [1.75 0.75 1.
 [1.75 0.75 2.
 [1.5
        1.
 [1.
        0.5
             2.
 [1.25 0.25 2.
 [0.25 1.25 2.
 [2.
        1.5
 [2.5
             2.
        2.
 [0.25 1.
             2.5
 [0.5
             2.5 ]
       1.
 [1.
        1.
             2.5 1
 [1.5
       1.
             2.5
 [2.5]
       2.
             2.5 ]
 [2.
        1.5
             2.5 ]
 [0.5
       0.5
             2.5 ]
 [1.
        0.5
             2.5 11
[0.84726688 1.1607717
                          0.90032154 1.24115756 1.0096463
                                                               1.36012862
 1.24115756 1.1511254
                          1.00321543 0.88906752 0.84726688 0.86655949
 1.24115756 1.1607717
                          1.14308682 1.12861736 1.
                                                               1.01607717
 1.24115756 0.84726688 0.86173633 0.88102894 0.98713826 0.99678457
 1.13826367 1.11736334 1.36012862 1.38906752 0.84726688 0.8585209
 0.85209003 \ 1.05305466 \ 1.05305466 \ 0.98713826 \ 0.84726688 \ 0.91800643
 0.92282958 1.11736334 1.24115756 0.85048232 0.85530547 0.86655949
```

0.98713826 1.24115756 1.11736334 0.70096463 0.84726688]

```
In [5]:
#Task 2.1b
from sklearn.model_selection import train_test_split

X_train4, X_test4, y_train4, y_test4 = train_test_split(xarrayn4, yarrayn4, test4)
print(X_train4)
print(Y_train4)
print(X_test4)
print(y_test4)
```

```
[[2.5]
       2.
            0.5 ]
            2.5 ]
[0.5
      1.
[1.5
       1.
[1.5
       2.
[1.
       1.5
[2.
       1.5
            2.5 ]
[0.5
       2.
            1.
            0.5]
[1.
       1.
[0.5
       1.5
[0.5
       1.
            1.5 ]
[1.75 0.75 2.
[0.5
      0.5
            2.5 ]
[1.
       0.5
            0.
[1.75 0.75 1.
[0.25 1.
            1.5 ]
[3.
       1.5
            0.5 ]
       1.
[0.5
            0.5]
[1.
       0.5
[1.
       2.
[1.
       1.
[1.
       1.
            1.
[1.
       1.
            0.
[1.25 0.25 2.
[0.5
      1.5
[2.
       1.5
           0.5 ]
[1.
       0.5
[1.5
       1.
[2.5
      1.5
            1.
[1.
       0.5
      1.
[0.5
            1.
[1.
       2.
            0.5 1
[1.5]
     1.
            2.5 ]
[1.
       2.
            1.
[1.
       0.5
            1.5]
[2.5]
       2.
            2. ]]
[1.24115756 0.85530547 0.98713826 1.1607717 1.01607717 1.11736334
1.12861736 0.88906752 1.
                                    0.8585209 1.05305466 0.70096463
0.84726688 1.05305466 0.85209003 1.36012862 0.86655949 0.84726688
1.1607717 \quad 0.86655949 \quad 0.88102894 \quad 0.90032154 \quad 0.91800643 \quad 0.99678457
1.11736334 0.84726688 0.98713826 1.24115756 0.84726688 0.86173633
1.1511254 0.98713826 1.14308682 0.84726688 1.24115756]
[[1.5 3.
            1.5 1
[0.25 1.
            2.5 ]
[3.
       1.5
            1.5 ]
      2.
            2.5 ]
[2.5]
            1.5]
[1.
       2.
[0.25 1.25 2.
[2.5 2.
            1.
[1.
       0.5
[0.5
       1.5
            0.
[2.
       1.
            1.5 ]
      1.5
            0.5 ]
[0.5
            0.]]
[2.5 2.
[1.38906752 0.85048232 1.36012862 1.24115756 1.13826367 0.92282958
1.24115756 0.84726688 1.0096463 1.11736334 1.00321543 1.24115756]
```

```
In [6]:
        # define neural network model
        from keras import backend as K
        #initialize weights
        initializer = keras.initializers.RandomUniform(minval= -0.2, maxval=0.5)
        modelv4 = keras.Sequential([
           keras.layers.Dense(8, activation=K.elu, input shape=[3], kernel initiali
           keras.layers.Dense(16, activation=K.elu, kernel_initializer=initializer)
           keras.layers.Dense(16, activation=K.elu, kernel_initializer=initializer),
           keras.layers.Dense(16, activation=K.elu, kernel initializer=initializer),
           keras.layers.Dense(1, kernel initializer=initializer)
          1)
In [7]:
        #from tf.keras import optimizers
        rms = keras.optimizers.RMSprop(0.001)
        modelv4.compile(loss='mean absolute error',optimizer=rms)
In [8]:
        # Add an early stopping callback
        es = keras.callbacks.EarlyStopping(
           monitor='loss',
           mode='min',
           patience = 80,
           restore best weights = True,
           verbose=1)
        # Add a checkpoint where loss is minimum, and save that model
        mc = keras.callbacks.ModelCheckpoint('best modelv4.SB', monitor='loss',
                           mode='min', verbose=1, save best only=True)
        historyData4 = modelv4.fit(X_train4,y_train4,epochs=800,callbacks=[es])
        loss hist4 = historyData4.history['loss']
        #The above line will return a dictionary, access it's info like this:
        best epoch4 = np.argmin(historyData4.history['loss']) + 1
        print ('best epoch = ', best epoch4)
        print('smallest loss =', np.min(loss_hist4))
        modelv4.save('./best modelv4')
       Epoch 1/800
       Epoch 2/800
       35/35 [============== ] - 0s 439us/step - loss: 3.7159
       Epoch 3/800
       35/35 [============== ] - 0s 416us/step - loss: 3.0676
       Epoch 4/800
       35/35 [============= ] - 0s 2ms/step - loss: 2.4587
       Epoch 5/800
       Epoch 6/800
```

35/35	[======]	_	0s	349us/step - loss: 1.7719
Epoch				
	[=====]	-	0s	396us/step - loss: 1.4710
Epoch			•	215 /
35/35 Epoch	[=======]	-	US	315us/step - 10ss: 1.258/
-	[==========]	_	0s	344us/step = loss: 1.1062
	10/800		0 D	511d5/5ccp 1055. 1.1002
	[======]	_	0s	431us/step - loss: 1.0396
	11/800			
	[========]	-	0s	242us/step - loss: 0.9621
	12/800 [=========]		٥٥	446ug/gton logg. 0.0224
	13/800	_	US	440us/step - 10ss: 0.9324
	[========]	_	0s	358us/step - loss: 0.8834
Epoch	14/800			
	[======]	-	0s	443us/step - loss: 0.8536
	15/800			
	[========]	-	0s	297us/step - loss: 0.8241
_	16/800		۸e	335us/sten _ loss: 0 7971
	17/800	_	V.S	333da/acep = 10aa. 0.7771
	[========]	_	0s	761us/step - loss: 0.7714
Epoch	18/800			
	[=====]	-	0s	733us/step - loss: 0.7446
	19/800		•	401 / 1 0 7107
	[======] 20/800	-	US	481us/step - loss: 0./18/
_	[======================================	_	0s	689us/step - loss: 0.6883
	21/800		0.0	
35/35	[======]	_	0s	890us/step - loss: 0.6770
	22/800			
	[=======]	-	0s	1ms/step - loss: 0.6350
	23/800 [==========]	_	۸e	934us/sten = loss: 0 6041
	24/800		UB	754d5/5CCP - 1055. 0.0041
	[======]	_	0s	414us/step - loss: 0.5849
-	25/800			
	[========]	-	0s	523us/step - loss: 0.5580
	26/800 [=======]		٥٥	375ug/gton logg: 0.5410
	27/800	_	US	3/Jus/scep - 10ss: 0.3410
	[========]	_	0s	492us/step - loss: 0.5121
Epoch	28/800			
	[======]	-	0s	634us/step - loss: 0.5007
	29/800		•	227 / 1 2 2 4022
	[======] 30/800	-	US	33/us/step - loss: 0.4832
	[=======]	_	0s	453us/step - loss: 0.4677
	31/800		-	
35/35	[======]	_	0s	327us/step - loss: 0.4487
	32/800		_	
	[=========]	-	0s	376us/step - loss: 0.4347
	33/800 [===========]	_	Λe	629115/step _ loss. 0 /15/
	34/800	_	UB	02748/8cep - 1088: 0.4134
	[=======]	_	0s	377us/step - loss: 0.4107
	•			-

```
Epoch 35/800
35/35 [=============== ] - 0s 740us/step - loss: 0.3890
Epoch 36/800
Epoch 37/800
35/35 [=============== ] - 0s 550us/step - loss: 0.3631
Epoch 38/800
Epoch 39/800
35/35 [============== ] - 0s 507us/step - loss: 0.3372
Epoch 40/800
35/35 [============== ] - 0s 404us/step - loss: 0.3365
Epoch 41/800
35/35 [=============== ] - 0s 374us/step - loss: 0.3199
Epoch 42/800
Epoch 43/800
35/35 [============= ] - 0s 686us/step - loss: 0.3093
Epoch 44/800
35/35 [=============== ] - 0s 581us/step - loss: 0.3193
Epoch 45/800
Epoch 46/800
- loss: 0.2994
Epoch 47/800
- loss: 0.2608
Epoch 48/800
35/35 [============== ] - 0s 1ms/step - loss: 0.2340
Epoch 49/800
35/35 [============= ] - 0s 429us/step - loss: 0.2402
Epoch 50/800
35/35 [============= ] - 0s 561us/step - loss: 0.2171
Epoch 51/800
35/35 [=============== ] - 0s 427us/step - loss: 0.2099
Epoch 52/800
35/35 [============== ] - 0s 394us/step - loss: 0.1987
Epoch 53/800
35/35 [============ ] - 0s 414us/step - loss: 0.2075
Epoch 54/800
35/35 [=============== ] - 0s 377us/step - loss: 0.2124
Epoch 55/800
Epoch 56/800
35/35 [============== ] - 0s 465us/step - loss: 0.1868
Epoch 57/800
35/35 [============ ] - 0s 461us/step - loss: 0.1634
Epoch 58/800
35/35 [============== ] - 0s 569us/step - loss: 0.1868
Epoch 59/800
Epoch 60/800
Epoch 61/800
35/35 [============== ] - 0s 892us/step - loss: 0.1458
Epoch 62/800
```

	[=======]	-	0s	716us/step - loss:	0.1692
35/35	63/800 [=======]	_	0s	547us/step - loss:	0.1324
	64/800 [=======]	_	0s	309us/step - loss:	0.1333
	65/800 [======]	_	0s	813us/step - loss:	0.1190
Epoch	66/800 [=======]				
Epoch	67/800				
Epoch	[======] 68/800			_	
	[======] 69/800	-	0s	611us/step - loss:	0.1025
35/35	[=======] 70/800	-	0s	387us/step - loss:	0.1006
35/35	[======]	_	0s	485us/step - loss:	0.0936
	71/800 [=======]	_	0s	417us/step - loss:	0.1549
	72/800 [======]	_	0s	386us/step - loss:	0.1013
Epoch	73/800 [=======]			_	
Epoch	74/800			_	
Epoch	[======] 75/800				
	[======] 76/800	-	0s	415us/step - loss:	0.1180
35/35	[=======] 77/800	-	0s	443us/step - loss:	0.0826
35/35	[======]	-	0s	320us/step - loss:	0.1356
	78/800 [=======]	_	0s	332us/step - loss:	0.1506
	79/800 [======]	_	0s	848us/step - loss:	0.1061
Epoch	80/800 [=======]				
Epoch	81/800			_	
Epoch	[=======] 82/800				
	[======] 83/800	-	0s	429us/step - loss:	0.0753
35/35	[========] 84/800	-	0s	699us/step - loss:	0.0944
35/35	[======]	_	0s	449us/step - loss:	0.1001
	85/800 [=======]	_	0s	501us/step - loss:	0.0801
	86/800 [======]	_	0s	576us/step - loss:	0.0603
Epoch	87/800 [======]				
Epoch	88/800				
Epoch	[========] 89/800				
	[======] 90/800	-	0s	302us/step - loss:	0.0684
	[======]	-	0s	300us/step - loss:	0.0561

Epoch	91/800				
35/35	[======]	_	0s	289us/step - loss: 0.077	5
	92/800	_	Λα	402115/sten _ loss. 0 068	1
Epoch	93/800			_	
	[=======]	-	0s	334us/step - loss: 0.1113	3
	94/800	_	0s	524us/step - loss: 0.063	5
Epoch	95/800			_	
	[======] 96/800	-	0s	471us/step - loss: 0.0538	3
	[=======]	_	0s	454us/step - loss: 0.0938	3
	97/800		•	206 / 1 2 2 2 2 2 2	_
	[======] 98/800	-	0s	326us/step - loss: 0.053.	3
35/35	[======]	_	0s	258us/step - loss: 0.0463	3
	99/800	_	Λα	29411g/g+an _ logg. 0 0634	5
Epoch	100/800			_	
	[=======]	-	0s	366us/step - loss: 0.0739)
	101/800 [=========]	_	0s	356us/step - loss: 0.0458	3
Epoch	102/800			_	
	[======] 103/800	-	0s	304us/step - loss: 0.0528	3
35/35	[======]	_	0s	337us/step - loss: 0.0524	1
	104/800 [=========]		٥٥	261ug/gton logg. 0 0510	2
	105/800	_	US	201us/step = 10ss: 0:031	,
	[=======]	-	0s	303us/step - loss: 0.0778	3
	106/800 [=========]	_	0s	322us/step - loss: 0.0450	5
Epoch	107/800				
	[======] 108/800	-	0s	336us/step - loss: 0.044	1
35/35	[======]	_	0s	443us/step - loss: 0.0443	1
_	109/800		٥٩	562ug/gton logg. 0 0571	=
	110/800	_	US	302us/step = 10ss: 0:03/	,
	[======]	-	0s	347us/step - loss: 0.0680	5
	111/800 [=========]	_	0s	362us/step - loss: 0.050	5
Epoch	112/800				
	[======] 113/800	-	0s	511us/step - loss: 0.078	5
	[=======]	_	0s	331us/step - loss: 0.0564	1
	114/800		0 ~	204	`
	[======] 115/800	_	US	294us/step - 10ss: 0.0/69	,
35/35	[======]	-	0s	287us/step - loss: 0.0465	5
	116/800 [=========]	_	Λq	26211s/sten = loss. 0 0611	2
Epoch	117/800				
	[======] 118/800	-	0s	328us/step - loss: 0.0588	3
	[========]	_	0s	335us/step - loss: 0.0475	5
	119/800			-	

```
35/35 [=============== ] - 0s 407us/step - loss: 0.0546
Epoch 120/800
Epoch 121/800
Epoch 122/800
35/35 [=============== ] - 0s 509us/step - loss: 0.0516
Epoch 123/800
Epoch 124/800
Epoch 125/800
35/35 [============== ] - 0s 615us/step - loss: 0.0374
Epoch 126/800
35/35 [============== ] - 0s 732us/step - loss: 0.0656
Epoch 127/800
35/35 [============== ] - 0s 320us/step - loss: 0.0942
Epoch 128/800
35/35 [============= ] - 0s 407us/step - loss: 0.0584
Epoch 129/800
35/35 [============= ] - 0s 536us/step - loss: 0.0455
Epoch 130/800
35/35 [============== ] - 0s 344us/step - loss: 0.0441
Epoch 131/800
35/35 [============= ] - 0s 404us/step - loss: 0.0432
Epoch 132/800
Epoch 133/800
Epoch 134/800
Epoch 135/800
Epoch 136/800
35/35 [============== ] - 0s 280us/step - loss: 0.0902
Epoch 137/800
Epoch 138/800
35/35 [============== ] - 0s 292us/step - loss: 0.0607
Epoch 139/800
35/35 [============== ] - 0s 289us/step - loss: 0.0425
Epoch 140/800
Epoch 141/800
35/35 [============== ] - 0s 336us/step - loss: 0.0368
Epoch 142/800
- loss: 0.0569
Epoch 143/800
35/35 [============== ] - 0s 565us/step - loss: 0.0489
Epoch 144/800
35/35 [============== ] - 0s 386us/step - loss: 0.0456
Epoch 145/800
35/35 [============= ] - 0s 540us/step - loss: 0.0377
Epoch 146/800
35/35 [============= ] - 0s 326us/step - loss: 0.0370
Epoch 147/800
```

Epoch	[======] 148/800					
	[======] 149/800	-	0s	415us/step - 1	loss:	0.0686
35/35	[======] 150/800	-	0s	887us/step -]	loss:	0.0590
35/35	[======]	-	0s	566us/step - 3	loss:	0.0356
35/35	151/800 [======]	_	0s	748us/step -]	loss:	0.0390
	152/800 [=======]	_	0s	697us/step -]	loss:	0.0378
	153/800 [======]	_	0s	471us/step -]	loss:	0.0508
Epoch	154/800 [======]					
Epoch	155/800					
Epoch	[=======] 156/800					
Epoch	[======] 157/800					
	[======] 158/800	-	0s	682us/step -]	loss:	0.0358
	[=======] 159/800	-	0s	651us/step - 1	loss:	0.0491
35/35	[=======] 160/800	-	0s	924us/step -]	loss:	0.0606
35/35	[======]	-	0s	847us/step -]	loss:	0.0360
35/35	161/800 [======]	_	0s	298us/step -]	loss:	0.0836
	162/800 [=======]	_	0s	481us/step -]	loss:	0.0424
	163/800	_	0s	317us/step -]	loss:	0.0501
Epoch	164/800 [======]					
Epoch	165/800					
Epoch	[======] 166/800			_		
Epoch	[=======] 167/800					
	[======] 168/800	-	0s	368us/step - 1	loss:	0.0417
	[=======] 169/800	-	0s	625us/step -]	loss:	0.0972
35/35	[======]	-	0s	317us/step -]	loss:	0.0406
35/35	170/800	-	0s	563us/step - 1	loss:	0.0358
35/35	171/800 [======]	_	0s	557us/step - 3	loss:	0.0428
	172/800 [=======]	_	0s	641us/step -]	loss:	0.0343
Epoch	173/800 [======]					
Epoch	174/800 [=======]					
Epoch	175/800					
35/35	[=====]	-	0s	429us/step -]	LOSS:	0.0720

Epoch	176/800				
	[========]	-	0s	495us/step - loss: 0	.0362
	177/800 [=======]	ı –	0s	805us/step - loss: 0	.0371
Epoch	178/800				
Epoch	[=======] 179/800			_	
	[========] 180/800	-	0s	402us/step - loss: 0	.0484
35/35	[=======]	-	0s	265us/step - loss: 0	.0345
	181/800 [=======]	ı –	0s	482us/step - loss: 0	.0419
Epoch	182/800 [=======]			_	
Epoch	183/800			_	
	[=======] 184/800	-	0s	431us/step - loss: 0	.0399
	[======================================	-	0s	331us/step - loss: 0	.0530
	185/800 [=======]		Λα	254ug/g+op logg: 0	0730
Epoch	186/800			_	
	[========] 187/800	-	0s	514us/step - loss: 0	.0687
35/35	[========]	-	0s	335us/step - loss: 0	.0369
	188/800 [===================================	ı <u>–</u>	0s	279us/step - loss: 0	.0421
Epoch	189/800				
	[========] 190/800	-	0s	311us/step - loss: 0	.0831
35/35	[========]	-	0s	398us/step - loss: 0	.0348
	191/800 [===================================	l –	0s	365us/step - loss: 0	.0776
Epoch	192/800 [=======]				
Epoch	193/800				
	[=======] 194/800	-	0s	408us/step - loss: 0	.0602
35/35	[=======]	-	0s	280us/step - loss: 0	.0514
	195/800 [===================================	ı _	0 s	309us/sten = loss: 0	. 0508
Epoch	196/800				
	[========] 197/800	-	0s	281us/step - loss: 0	.0690
35/35	[=======]	-	0s	358us/step - loss: 0	.0462
	198/800 [===================================	ı –	0s	288us/step - loss: 0	.0523
Epoch	199/800				
	[=======] 200/800	-	0s	341us/step - loss: 0	.0554
	[======================================	-	0s	349us/step - loss: 0	.0385
	201/800 [===================================	-	0s	300us/step - loss: 0	.0447
	202/800 [=======]	l <u>.</u>	Λe	41711g/g+an = logg. 0	0514
Epoch	203/800				
	[=======] 204/800	-	0s	514us/step - loss: 0	.0534
TPOCII	201,000				

	[=======] 205/800	-	0s	339us/step - loss:	0.0386
35/35	[=======] 206/800	-	0s	309us/step - loss:	0.0402
35/35	[======]	-	0s	411us/step - loss:	0.0420
35/35	207/800	_	0s	354us/step - loss:	0.0409
35/35	208/800 [======]	_	0s	323us/step - loss:	0.0385
	209/800 [======]	_	0s	296us/step - loss:	0.0447
	210/800	_	0s	354us/step - loss:	0.0562
Epoch	211/800 [=======]			_	
Epoch	212/800 [=======]			_	
Epoch	213/800				
Epoch	[=======] 214/800				
Epoch	[======] 215/800				
Epoch	[======] 216/800			_	
	[======] 217/800	-	0s	342us/step - loss:	0.0667
	[=======] 218/800	-	0s	402us/step - loss:	0.0527
35/35	[=======] 219/800	-	0s	429us/step - loss:	0.0395
35/35	[=======] 220/800	-	0s	807us/step - loss:	0.0481
35/35	[======]	-	0s	873us/step - loss:	0.0332
35/35	221/800 [======]	_	0s	652us/step - loss:	0.0498
	222/800 [======]	_	0s	513us/step - loss:	0.0405
	223/800 [=======]	_	0s	791us/step - loss:	0.0610
	224/800 [======]	_	0s	441us/step - loss:	0.0390
Epoch	225/800 [======]				
Epoch	226/800 [======]				
Epoch	227/800 [========]				
Epoch	228/800				
Epoch	[=======] 229/800				
Epoch	[========] 230/800				
Epoch	[=======] 231/800				
	[======] 232/800	-	0s	315us/step - loss:	0.0338
35/35	[======]	-	0s	472us/step - loss:	0.0372

Epoch	233/800				
35/35	[=======]	_	0s	636us/step - loss:	0.0782
	234/800 [=======]	_	0s	558us/step - loss: (0.0768
Epoch	235/800			_	
	[=======] 236/800	_	0s	522us/step - loss: (0.0336
35/35	[=======]	_	0s	271us/step - loss:	0.0413
	237/800 [=========]	_	0s	261us/step - loss: (0.0345
Epoch	238/800				
	[========] 239/800	-	0s	398us/step - loss: (0.0402
		_	0s	315us/step - loss:	0.0373
	240/800 [=========]	_	0s	317us/step - loss: (0.0373
	241/800		0 a	20000 / at on loads	0 0570
Epoch	242/800			_	
	[=======] 243/800	_	0s	251us/step - loss:	0.0642
35/35	[=======]	_	0s	244us/step - loss:	0.0346
	244/800 [===================================	_	Λs	237us/sten = loss: (0.0783
Epoch	245/800				
	[=======] 246/800	_	0s	253us/step - loss: (0.0353
35/35	[========]	_	0s	265us/step - loss:	0.0348
	247/800 [===================================	_	0s	254us/step - loss: (0.0408
Epoch	248/800 [=======]				
Epoch	249/800				
	[========] 250/800	_	0s	325us/step - loss:	0.0394
35/35	[========]	_	0s	325us/step - loss:	0.0629
_	251/800 [===================================	_	0s	308us/step - loss: (0.0350
Epoch	252/800			-	
	[========] 253/800	_	0s	278us/step - loss: (0.0372
	[======================================	_	0s	338us/step - loss:	0.0482
	254/800 [=========]	_	0s	343us/step - loss: (0.0352
	255/800 [========]		Λα	273ug/g+on logg. (0 0300
Epoch	256/800				
	[========] 257/800	_	0s	458us/step - loss:	0.0331
35/35	[=======]	_	0s	272us/step - loss:	0.0481
	258/800 [==========]	_	0s	333us/step - loss: (0.0603
Epoch	259/800				
	[========] 260/800	_	US	449us/step - loss: (0.0428
35/35	[=======]	_	0s	830us/step - loss:	0.0729
Ebocu	261/800				

	[=======] 262/800	-	0s	793us/step - loss: 0.0506
35/35	[=======] 263/800	-	0s	827us/step - loss: 0.0448
35/35	[======]	_	0s	525us/step - loss: 0.0392
35/35	264/800 [=======]	_	0s	441us/step - loss: 0.0683
	265/800 [========]	_	0s	353us/step - loss: 0.0385
	266/800 [======]	_	0s	438us/step - loss: 0.0679
Epoch	267/800 [======]			
Epoch	268/800 [=======]			
Epoch	269/800 [=======]			_
Epoch	270/800			_
Epoch	[=======] 271/800			_
Epoch	[======] 272/800			
	[======] 273/800	-	0s	353us/step - loss: 0.0570
	[=======] 274/800	-	0s	282us/step - loss: 0.0345
35/35	[=======] 275/800	-	0s	257us/step - loss: 0.0430
35/35	[======]	-	0s	386us/step - loss: 0.0599
35/35	276/800 [=======]	_	0s	1ms/step - loss: 0.0327
35/35	277/800 [======]	_	0s	467us/step - loss: 0.0369
	278/800 [=======]	_	0s	508us/step - loss: 0.0540
	279/800 [======]	_	0s	308us/step - loss: 0.0408
	280/800	_	0s	408us/step - loss: 0.0314
Epoch	281/800 [======]			
Epoch	282/800 [=======]			
Epoch	283/800			
Epoch	[=======] 284/800			
Epoch	[========] 285/800			
	[=======] 286/800	-	0s	321us/step - loss: 0.0712
	[======] 287/800	-	0s	414us/step - loss: 0.0408
35/35	[=======] 288/800	-	0s	458us/step - loss: 0.0687
35/35	[=======] 289/800	-	0s	363us/step - loss: 0.0371
	[======]	-	0s	406us/step - loss: 0.0440

Epoch	290/800				
	[=======]	-	0s	328us/step - loss	: 0.0340
	291/800 [=========]	۱ –	0s	431us/step - loss	: 0.0330
Epoch	292/800				
	[========] 293/800	-	0s	345us/step - loss	: 0.0641
35/35	[========]	-	0s	305us/step - loss	: 0.0638
	294/800 [========]	ı –	0s	330us/step - loss	: 0.0326
Epoch	295/800			_	
	[=====================================	-	0s	44/us/step - loss	: 0.0349
35/35	[========]	-	0s	469us/step - loss	: 0.0519
	297/800 [=======]	ı –	0s	357us/step - loss	: 0.0468
Epoch	298/800			_	
	[========] 299/800	-	US	331us/step - loss	: 0.0318
	[======================================	-	0s	341us/step - loss	: 0.0351
	300/800 [===================================	ı –	0s	334us/step - loss	: 0.0618
	301/800		0.4	200,19/9+09 1099	. 0 0270
Epoch	302/800			_	
	[=======] 303/800	-	0s	318us/step - loss	: 0.0696
	[=========]	-	0s	604us/step - loss	: 0.0345
	304/800 [========]		Λα	421ug/g+on logg	• 0 0303
Epoch	305/800				
	[=======] 306/800	-	0s	422us/step - loss	: 0.0612
35/35	[========]	-	0s	465us/step - loss	: 0.0390
	307/800 [=======]		۸e	43911g/gten - logg	• 0 0545
Epoch	308/800			_	
	[=======] 309/800	-	0s	692us/step - loss	: 0.0526
35/35	[=======]	-	0s	418us/step - loss	: 0.0380
	310/800 [========]	ı –	0s	653us/step - loss	: 0.0329
Epoch	311/800				
	[=======] 312/800	-	0s	533us/step - loss	: 0.0534
35/35	[=======]	-	0s	356us/step - loss	: 0.0588
	313/800 [=========]	ı –	0s	400us/step - loss	: 0.0351
Epoch	314/800				
	[=======] 315/800	-	US	309us/step - loss	: 0.0511
	[======================================	-	0s	411us/step - loss	: 0.0314
	316/800 [=======]	-	0s	313us/step - loss	: 0.0324
	317/800 [=======]	ı	0.5	550ug/g+an 1000	• 0 0/102
	318/800	_	va	22002) aceh - 1082	. 0.0403

	[======]	_	0s	360us/step	_	loss:	0.0530
	319/800 [=========]	_	0s	339us/sten	_	loss:	0.0377
Epoch	320/800			_			
	[======] 321/800	-	0s	331us/step	-	loss:	0.0327
	[==========]	_	0s	394us/step	_	loss:	0.0568
	322/800		•	- 4.40		-	0 0405
	[======] 323/800	-	0s	440us/step	-	loss:	0.0437
35/35	[======]	-	0s	403us/step	-	loss:	0.0499
	324/800 [=========]	_	Λς	34011g/gten	_	1099.	0 0329
Epoch	325/800			_			
	[======] 326/800	-	0s	252us/step	-	loss:	0.0468
	[=========]	_	0s	262us/step	_	loss:	0.0545
	327/800		•	207 / 1			0.0570
	[======] 328/800	-	0s	28/us/step	-	loss:	0.0579
35/35	[======]	-	0s	469us/step	-	loss:	0.0343
	329/800 [=========]	_	0 s	39911s/sten	_	1055:	0.0498
Epoch	330/800			_			
	[======] 331/800	-	0s	350us/step	-	loss:	0.0362
	[======================================	_	0s	423us/step	_	loss:	0.0389
	332/800		•	2.45		7	0.0655
	[======] 333/800	-	0s	345us/step	-	loss:	0.0657
35/35	[======]	_	0s	368us/step	_	loss:	0.0737
	334/800 [==========]	_	Λe	62011g/g+an	_	1000.	0 0308
Epoch	335/800			_			
	[======] 336/800	-	0s	257us/step	-	loss:	0.0314
	[==========]	_	0s	301us/step	_	loss:	0.0671
	337/800		•	400 / .		7	0 0054
	[======] 338/800	-	0s	400us/step	-	loss:	0.0354
35/35	[======]	-	0s	258us/step	-	loss:	0.0330
	339/800 [==========]	_	Λς	28511g/gten	_	1099.	0 0486
Epoch	340/800						
	[======] 341/800	-	0s	322us/step	-	loss:	0.0306
	[=========]	_	0s	256us/step	_	loss:	0.0731
	342/800		•	200 / 1		,	0 0000
	[======] 343/800	-	0s	289us/step	-	loss:	0.0338
35/35	[======]	-	0s	328us/step	-	loss:	0.0623
	344/800 [=======]	_	0 =	351118/sten	_	1055.	0.0551
Epoch	345/800						
	[======] 346/800	-	0s	362us/step	-	loss:	0.0509
	[==========]	_	0s	384us/step	_	loss:	0.0335
	•			-			

```
Epoch 347/800
35/35 [============= ] - 0s 495us/step - loss: 0.0335
Epoch 348/800
- loss: 0.0467
Epoch 349/800
Epoch 350/800
Epoch 351/800
35/35 [=============== ] - 0s 314us/step - loss: 0.0325
Epoch 352/800
35/35 [============== ] - 0s 319us/step - loss: 0.0437
Epoch 353/800
35/35 [============= ] - 0s 401us/step - loss: 0.0339
Epoch 354/800
35/35 [============== ] - 0s 405us/step - loss: 0.0413
Epoch 355/800
Epoch 356/800
Epoch 357/800
35/35 [============== ] - 0s 284us/step - loss: 0.0449
Epoch 358/800
Epoch 359/800
Epoch 360/800
Epoch 361/800
Epoch 362/800
Epoch 363/800
35/35 [============== ] - 0s 594us/step - loss: 0.0618
Epoch 364/800
35/35 [=========== ] - 0s 676us/step - loss: 0.0368
Epoch 365/800
35/35 [============== ] - 0s 382us/step - loss: 0.0684
Epoch 366/800
35/35 [============= ] - 0s 306us/step - loss: 0.0446
Epoch 367/800
35/35 [=============== ] - 0s 358us/step - loss: 0.0329
Epoch 368/800
35/35 [============== ] - 0s 283us/step - loss: 0.0440
Epoch 369/800
Epoch 370/800
Epoch 371/800
Epoch 372/800
Epoch 373/800
Epoch 374/800
```

Epoch	375/800			
35/35	[======]	-	0s	311us/step - loss: 0.0369
	376/800 [======]	_	Λq	26211s/sten = loss. 0 0521
Epoch	377/800			
	[======================================	-	0s	266us/step - loss: 0.0312
	378/800 [======]	_	0s	368us/step - loss: 0.0617
Epoch	379/800			_
	[======] 380/800	-	0s	351us/step - loss: 0.0395
35/35	[=======]	_	0s	289us/step - loss: 0.0324
	381/800 [======]		٥a	2/200/04-05 1000 0 021/
	382/800	_	US	343us/step - 10ss: 0.0314
	[======]	-	0s	458us/step - loss: 0.0419
	383/800 [======]	_	0s	266us/step - loss: 0.0432
Epoch	384/800			
	[======] 385/800	-	0s	279us/step - loss: 0.0338
35/35	[=======]	_	0s	251us/step - loss: 0.0417
	386/800 [======]		Λα	324us/stan _ loss. 0 0301
Epoch	387/800			_
	[======] 388/800	-	0s	251us/step - loss: 0.0376
	[==========]	_	0s	386us/step - loss: 0.0486
	389/800		•	244 / 1 2 2 2 2 2 2 5
	[======] 390/800	_	US	344us/step - loss: 0.0345
35/35	[=======]	_	0s	303us/step - loss: 0.0390
	391/800 [=======]	_	0s	292us/step - loss: 0.0530
Epoch	392/800			
	[======] 393/800	-	0s	653us/step - loss: 0.0307
35/35	[=======]	_	0s	700us/step - loss: 0.0425
	394/800 [=======]		Λα	541us/stan _ loss. 0 0311
Epoch	395/800			
	[======] 396/800	-	0s	2ms/step - loss: 0.0369
	[==========]	_	0s	598us/step - loss: 0.0585
	397/800		0 -	422/
	[======] 398/800	_	US	433us/step - loss: 0.0345
35/35	[=======]	_	0s	310us/step - loss: 0.0330
	399/800 [=======]	_	0s	414us/step - loss: 0.0324
Epoch	400/800			
	[======] 401/800	-	0s	533us/step - loss: 0.0505
35/35	[=======]	_	0s	466us/step - loss: 0.0326
	402/800 [======]	_	Λe	42111g/gten = logg. 0 0620
	403/800	_	va	12145/500p - 1055. 0.0050

	[=======] 404/800	-	0s	360us/step - los	s: 0	.0331
35/35	[======]	-	0s	441us/step - los	s: 0	.0487
35/35	405/800 [=======]	_	0s	390us/step - los	s: 0	.0312
	406/800 [========]	_	0s	546us/step - los	s: 0	.0381
	407/800 [======]	_	0s	578us/step - los	s: 0	.0480
Epoch	408/800 [=======]			_		
Epoch	409/800					
Epoch	[=======] 410/800			_		
Epoch	[======] 411/800					
	[======] 412/800	-	0s	314us/step - los	s: 0	.0352
35/35	[=======] 413/800	-	0s	404us/step - los	s: 0	.0580
35/35	[======]	-	0s	319us/step - los	s: 0	.0355
35/35	414/800 [=======]	_	0s	392us/step - los	s: 0	.0314
	415/800 [=======]	_	0s	624us/step - los	s: 0	.0598
Epoch	416/800 [======]					
Epoch	417/800 [=======]					
Epoch	418/800					
Epoch	[======] 419/800					
	[======] 420/800	-	0s	504us/step - los	s: 0	.0518
	[======] 421/800	-	0s	294us/step - los	s: 0	.0339
35/35	[=======] 422/800	-	0s	276us/step - los	s: 0	.0555
35/35	[======]	-	0s	316us/step - los	s: 0	.0317
35/35	423/800 [=======]	_	0s	310us/step - los	s: 0	.0340
	424/800 [=======]	_	0s	289us/step - los	s: 0	.0384
	425/800	_	0s	272us/step - los	s: 0	.0309
Epoch	426/800 [======]					
Epoch	427/800					
Epoch	[========] 428/800					
	[=======] 429/800	-	0s	272us/step - los	s: 0	.0474
	[=======] 430/800	-	0s	384us/step - los	s: 0	.0320
35/35	[=======] 431/800	-	0s	377us/step - los	s: 0	.0297
	[======]	-	0s	280us/step - los	s: 0	.0407

Epoch	432/800			
	[======]	-	0s	277us/step - loss: 0.0331
	433/800 [=======]	_	0s	280us/step - loss: 0.0366
Epoch	434/800			
	[======] 435/800	-	0s	256us/step - loss: 0.0594
35/35	[======]	_	0s	248us/step - loss: 0.0366
	436/800 [=======]	_	0s	287us/step - loss: 0.0476
Epoch	437/800			
	[======] 438/800	_	0s	40/us/step - loss: 0.0352
35/35	[======]	-	0s	423us/step - loss: 0.0380
	439/800 [=======]	_	0s	465us/step - loss: 0.0316
Epoch	440/800			_
	[======] 441/800	_	US	339us/step - loss: 0.0355
	[======]	_	0s	343us/step - loss: 0.0778
	442/800 [=======]	_	0s	309us/step - loss: 0.0525
	443/800		0 a	201ug/gton logg. 0 0257
Epoch	444/800			
	[======] 445/800	-	0s	283us/step - loss: 0.0543
	[=========]	_	0s	252us/step - loss: 0.0338
	446/800 [=======]		Λα	296ug/gton logg: 0 0576
Epoch	447/800			
	[======] 448/800	-	0s	295us/step - loss: 0.0519
35/35	[======]	_	0s	295us/step - loss: 0.0391
	449/800 [=======]	_	0s	461us/step = loss: 0.0305
Epoch	450/800			-
	[=======] 451/800	-	0s	439us/step - loss: 0.0346
35/35	[======]	-	0s	319us/step - loss: 0.0381
	452/800 [=======]	_	0s	310us/step - loss: 0.0691
Epoch	453/800			
	[======] 454/800	_	0s	2/3us/step - loss: 0.0449
	[======]	_	0s	313us/step - loss: 0.0388
	455/800 [=======]	_	0s	344us/step - loss: 0.0553
	456/800 [======]		0 a	226ug/gton logg. 0 0250
Epoch	457/800			
	[======] 458/800	-	0s	283us/step - loss: 0.0347
35/35	[======]	_	0s	256us/step - loss: 0.0326
	459/800 [======]	_	Λe	319115/sten - loss. 0 0305
	460/800		75	12342, 235p 1055. 0.0303

	[=====]	-	0s	674us/step	-	loss:	0.0784
	461/800 [========]	_	0s	340us/step	_	loss:	0.0439
	462/800 [=======]	_	Λq	29011s/sten	_	10991	0 0542
Epoch	463/800			_			
	[======] 464/800	-	0s	374us/step	-	loss:	0.0392
35/35	[======]	-	0s	277us/step	-	loss:	0.0526
	465/800 [=======]	_	0s	418us/step	_	loss:	0.0574
	466/800 [=======]	_	0s	315us/sten	_	loss:	0.0326
Epoch	467/800			_			
Epoch	[======] 468/800			_			
	[======] 469/800	-	0s	263us/step	-	loss:	0.0321
35/35	[======]	-	0s	324us/step	-	loss:	0.0451
	470/800 [=======]	_	0s	273us/step	_	loss:	0.0433
Epoch	471/800			_			
Epoch	[======] 472/800			_			
	[======] 473/800	-	0s	302us/step	-	loss:	0.0372
35/35	[======]	_	0s	314us/step	-	loss:	0.0312
	474/800 [=======]	_	0s	305us/step	_	loss:	0.0613
Epoch	475/800 [======]			_			
Epoch	476/800			_			
	[======] 477/800	-	0s	305us/step	-	loss:	0.0320
35/35	[======]	-	0s	289us/step	-	loss:	0.0577
	478/800 [========]	_	0s	470us/step	_	loss:	0.0357
	479/800 [======]	_	0s	511115/sten	_	1099:	0.0484
Epoch	480/800						
	[=======] 481/800	-	0s	354us/step	-	loss:	0.0357
	[=======] 482/800	-	0s	298us/step	-	loss:	0.0368
35/35	[======]	_	0s	298us/step	_	loss:	0.0367
	483/800 [=======]	_	0s	341us/step	_	loss:	0.0372
Epoch	484/800						
Epoch	[=======] 485/800						
	[======] 486/800	-	0s	448us/step	-	loss:	0.0316
35/35	[======]	-	0s	307us/step	-	loss:	0.0442
	487/800 [=======]	_	0s	357us/step	_	loss:	0.0480
Epoch	488/800 [======]						
33/33	[==]	_	US	JJIUS/Step	_	TOSS:	0.0392

```
Epoch 489/800
35/35 [============== ] - 0s 273us/step - loss: 0.0452
Epoch 490/800
Epoch 491/800
35/35 [============== ] - 0s 321us/step - loss: 0.0310
Epoch 492/800
Epoch 493/800
Epoch 494/800
35/35 [============== ] - 0s 310us/step - loss: 0.0313
Epoch 495/800
35/35 [============= ] - 0s 326us/step - loss: 0.0337
Epoch 496/800
Epoch 497/800
35/35 [============= ] - 0s 488us/step - loss: 0.0483
Epoch 498/800
35/35 [=============== ] - 0s 275us/step - loss: 0.0315
Epoch 499/800
Epoch 500/800
35/35 [============= ] - 0s 329us/step - loss: 0.0309
Epoch 501/800
Epoch 502/800
35/35 [============ ] - 0s 388us/step - loss: 0.0309
Epoch 503/800
35/35 [============ ] - 0s 259us/step - loss: 0.0429
Epoch 504/800
Epoch 505/800
35/35 [============== ] - 0s 257us/step - loss: 0.0599
Epoch 506/800
35/35 [============== ] - 0s 310us/step - loss: 0.0385
Epoch 507/800
Epoch 508/800
35/35 [============= ] - 0s 446us/step - loss: 0.0323
Epoch 509/800
Epoch 510/800
35/35 [=============== ] - 0s 339us/step - loss: 0.0436
Restoring model weights from the end of the best epoch
Epoch 00510: early stopping
best epoch = 430
smallest loss = 0.029722268134355544
```

```
In [12]:
          # Task 2.1e
          from sklearn import metrics
          # This line of code can be used to reconstruct the saved model. The name of t
          recon_model4 = keras.models.load_model("best_modelv4")
          import matplotlib.pyplot as plt
          Tspred = []
          for i in range(len(X train4)):
              test4 = [[X train4[i][0], X train4[i][1], X train4[i][2]]]
              testarray4 = np.array(test4)
              a4 = recon_model4.predict(testarray4)
              Tspred.append([a4[0][0]*medTs])
          Tsorig = y_train4*medTs
          plt.figure()
          ax = plt.gca()
          ax.scatter(Tspred ,Tsorig , c='blue', label = 'data')
          ax.set yscale('log')
          ax.set xscale('log')
          plt.xlabel("Predicted Ts,max")
          plt.ylabel("Actual Ts, max")
          plt.legend()
          plt.tight layout()
          plt.show()
          #MAE of predicted vs test data
          mae_Ts = metrics.mean_absolute_error(Tspred/medTs,Tsorig/medTs)
          print('mean absolute error between predictions and the collection of test dat
```


mean absolute error between predictions and the collection of test data: Ts,ma x = 0.04075310190281407

```
In [13]:
          # Task 2.1f
          from sklearn import metrics
          # This line of code can be used to reconstruct the saved model. The name of t
          recon_model4 = keras.models.load_model("best_modelv4")
          import matplotlib.pyplot as plt
          Tspred2 = []
          for i in range(len(X test4)):
              testv4 = [[X_test4[i][0], X_test4[i][1], X_test4[i][2]]]
              testarrayv4 = np.array(testv4)
              at4 = recon_model4.predict(testarrayv4)
              Tspred2.append([at4[0][0]*medTs])
          Tsorig2 = y_test4*medTs
          plt.figure()
          ax = plt.gca()
          ax.scatter(Tspred2 ,Tsorig2 , c='blue', label = 'data')
          ax.set yscale('log')
          ax.set_xscale('log')
          plt.xlabel("Predicted Ts,max")
          plt.ylabel("Actual Ts, max")
          plt.legend()
          plt.tight layout()
          plt.show()
          #MAE of predicted vs test data
          mae_Ts2 = metrics.mean_absolute_error(Tspred2/medTs,Tsorig2/medTs)
          print('mean absolute error between predictions and the collection of test dat
```


mean absolute error between predictions and the collection of test data: Ts,ma x = 0.07453766947518334

```
In [11]:
         #Task2.1g
          X = np.linspace(100, 500) #q23
          Y = np.linspace(0.0, 0.015) #dx
          testdatap4 = []
          Ts4= [] #output
          preddatap4 = []
          Xn = X/medq1
          q2 = X/medq2
          Yn = Y/meddx
          for x in range(len(Xn)):
              for y in range(len(Yn)):
                  testdatap4.append([Xn[x], q2[x], Yn[y]])
          Xp = np.asarray(testdatap4)[:,0]*medq1
          q2p = np.asarray(testdatap4)[:,1]*medq2
          Yp = np.asarray(testdatap4)[:,2]*meddx
          for x in range(len(testdatap4)):
              testp4 = [[testdatap4[x][0], testdatap4[x][1], testdatap4[x][2]]]
              testarrayp4 = np.array(testp4)
              outptp4 = recon model4.predict(testarrayp4)
              preddatap4.append(outptp4)
              Ts4.append(outptp4[0][0]*medTs)
          fig = plt.figure()
          ax = plt.axes(projection='3d')
          surf = ax.plot_trisurf(Xp, Yp, Ts4)
          fig.colorbar(surf, shrink=0.5, aspect=5, pad=0.2)
          ax.set_zlabel('Ts,max', rotation=60)
          ax.set_ylabel('dx [m]')
          ax.set_xlabel('q2&3" [W/m^2]', rotation=150)
          ax.xaxis.labelpad=15
          ax.yaxis.labelpad=15
          ax.zaxis.labelpad=15
          ax.title.set text('Ts,max prediction');
          plt.tight layout()
          plt.show()
```

Ts,max prediction

