Charm physics at BESIII

Martin Tat, on behalf of the BESIII Collaboration

University of Oxford

FPCP Conference

30th May 2023

Outline

Charm physics at the BESIII experiment

The BESIII experiment

- BEPCII is a symmetric e^+e^- collider with a peak luminosity of $1\times 10^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$ at $\sqrt{s}=3.773\,\mathrm{GeV}$
- Tracking: Helium-based multilayer drift chamber (MDC)
- \bullet PID: Plastic scintillator TOF system and $\frac{dE}{dx}$
- Magnet: 1.0 T superconducting solenoid
- Neutral particle tracking: CsI(TI) electromagnetic calorimeter (EMC)

Overview of (left) BEPCII and (right) BESIII

Recent charm results from BESIII

Charm physics at BESIII can be roughly categories into three areas:

- Strong-phase measurements
 - Measurement of $\delta_{K\pi}$ EPJC **82** 1009 (2022)
- 2 Amplitude analysis
- Semileptonic charm decays

Double-tag analysis

Double-tag method

The D mesons are produced in a quantum correlated state:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|D^0\rangle |\bar{D^0}\rangle - |\bar{D^0}\rangle |D^0\rangle \right)$$

Double-tag analysis

Double-tag method

Equivalently, we can consider the CP even (odd) eigenstates D_+ (D_-): $|\psi\rangle=\frac{1}{\sqrt{2}}\big(|D_+\rangle|D_-\rangle-|D_-\rangle|D_+\rangle\big)$

Double-tag analysis

Double-tag analysis has many advantages:

- ① $D\bar{D}$ pairs are quantum correlated, which provide direct access to the D^0 - $\bar{D^0}$ strong-phase difference
- Oouble-tag yields, which are experimental observables, are normalised by single-tag yields, and therefore the measurements are unaffected by systematic uncertainties from efficiencies and branching fractions
- Full reconstruction ensures that the environment is extremely clean

Only one minor drawback:

Lower statistics