Electrophysiological Recording Techniques

Operational Amplifier – The Heart of Electrophysiological Amplifier

$$V_{+}$$
 V_{out} V_{out}

$$V_{out} = Gain * (V_+ - V_-)$$

Gain is very large, therefore $V_+ - V_- = 0$
 $V_+ = V_-$

V₊: non-inverting input

V_: inverting input

V_{out}: output

 V_{S+} : positive power supply V_{S-} : negative power supply

The golden rules of op-amp:

- 1. Voltage difference between inputs is zero.
- 2. The inputs draw no current.

Operational Amplifier

Inverting Amplifier

Non-inverting Amplifier

$$V_- = V_+ = 0$$

$$\frac{V_{out}}{R_f} = -\frac{V_{in}}{R_{in}}$$

$$V_{out} = -V_{in} \frac{R_f}{R_{in}}$$

$$V_{-} = V_{+} = V_{in}$$

$$\frac{V_{out}}{R_1 + R_2} = \frac{V_{in}}{R_1}$$

$$V_{out} = V_{in} \frac{R_1 + R_2}{R_1}$$

Voltage Follower

- The op-amp has an input resistance many orders of magnitude greater than that of the micropipette and the cell.
- The output voltage follows what is at the tip of the micropipette.
- The current through the micropipette is "clamped" at zero.

Current Source

Summing Amplifier

$$\frac{V_{out}}{R} = \frac{V_1}{R} + \frac{V_2}{R} + \frac{V_3}{R}$$

$$V_{out} = V_1 + V_2 + V_3$$

Bridge Balance Technique

Figure 3-3 The "Bridge Balance" technique.

Two Excellent Sources of Electronics and Amplifiers

A guide to Electrophysiology and Biophysics Laboratory Techniques

Ohm's Law

Kirchhoff's Laws

Kirchhoff's current law:

The sum of currents into a node equals the sum of currents out.

$$I_1 + I_2 = I$$

$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R}$$

Kirchhoff's voltage law:

The sum of the voltage drops around a closed circuit is zero.

$$\Delta V_{1} + \Delta V_{2} = E$$

$$R_{1} + R_{2} = R$$

$$R_{2} = R$$

$$R_{1} + R_{2} = R$$

Capacitor – two conductive surfaces separated by a nonconductive material Biological membrane is a capacitor

Figure 1-11 Capacitance. A charge Q is stored in a capacitor of value C held at a potential ΔV .

$$Q = C \Delta V$$

Charge = Capacitance x Potential

Capacitor is proportional to the area and inversely proportional to the distance between the two conductive layers. Biological membrane: 1 µF/cm²

- Resistors consume energy. V = IR. P = IV.
- Capacitors store energy. Q = CV.
- Current passing through a resistor is proportional to the voltage drop.
- Current passing through a capacitor is proportional to the rate of voltage change. $I = \frac{dQ}{dt} = C \frac{dV}{dt}$

Figure 1-12 Capacitors in parallel add their values.

Capacitors in parallel

$$Q = Q_1 + Q_2$$

$$CV = C_1V + C_2V$$

$$C = C_1 + C_2$$

Capacitors in series

$$V = V_1 + V_2
\frac{Q}{C} = \frac{Q}{C_1} + \frac{Q}{C_2}
\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

Neuron as an RC Circuit

Figure 1-13 Membrane behavior compared with an electrical current. A membrane behaves electrically like a capacitance in parallel with a resistance.

$$V = I_R R = R(I - C\frac{dV}{dt})$$

$$V(t) = V_{inf} (1 - e^{-t/\tau})$$

$$V_{inf} = I R$$

$$\tau = R C$$