- Segunda etapa do projeto do Banco de Dados para um SI, cujo objetivo é obter uma descrição de como implementar o BD, dependente do Hardware e do Software escolhidos.
- São considerados nesta etapa os seguintes elementos:
 - Qual o tipo do SGBD escolhido?
 - Quais os requisitos de desempenho?
 - Quais os requisitos de segurança?
 - Como os dados serão manipulados?
 - Como otimizar as consultas?

- Existem vários tipos de SGBD's no mercado que implementam diferentes modelos, tais como o Modelo Relacional e o Modelo Orientado a Objetos.
- □ Nesta etapa do curso daremos ênfase ao Modelo Relacional.

- Proposto por Edgar F. Cood nos anos 70 dando origem aos SGBDR's
- Princípio: as linhas de uma tabela representam os fatos descritos nas entidades
- Uma linha de uma tabela é chamada de tupla
- O tipo de dados que descreve cada coluna é chamado de domínio
- Durante a especificação do domínio, deve-se especificar o tipo, o tamanho e o domínio dos atributos, sempre de acordo com o SGBD escolhido.

Tabela DEPARTAMENTO		
Nome	@Número	RG Gerente
Contabilidade	1	101010
Engenharia	2	303030
Marketing	3	202020

Modelo Relacional de BD

O ideal é a criação de um Dicionário de Dados, que deve ser mantido assim como a Modelagem Conceitual.

Tabela FUNCIONÁRIO				
Coluna	Tipo	Tamanho	Domínio	
RG	Int	8	0 a 99999999	
Nome	Varchar	30	a-z, A-Z	
Salário	Decimal	7,2	>= 200,00 e <99999,99	
Data Nascimento	DateTime	10	> 01/01/1900 e < 01/01/2200	

- Tipos de dados mais utilizados no SGBD SQL SERVER: Char(n), Varchar(n), DateTime, Decimal(n,m), Real, Int, Text
- □ Toda tabela deve possuir uma *chave primária* (*Primary Key PK*), que deve ser mínima
- As **Associações/Relacionamentos** entre duas entidades do Modelo Conceitual são implementadas no Modelo Relacional com o uso de **chaves estrangeiras** (Foreign Key FK)

- As FKs não precisam ter o mesmo nome das chaves primárias, embora seja recomendável
- As FKs precisam ser do mesmo tipo das PKs que referenciam
- A abordagem relacional gera o que se chama de regras de integridade do Modelo Relacional:
 - Integridade de domínio dos atributos
 Garantido pelo SGBD com base nos tipos de dados e regras (rules) definidas

- 2. Integridade de chave
 - A PK não pode conter um valor nulo (NULL)
- 3. Integridade Referencial
 - Os valores possíveis das FKs devem pertencer ao conjunto das PKs referenciadas e existentes atualmente no BD ou possivelmente serem NULL. Não pode existir na FK um valor que não exista na tabela na qual ela é PK
- A Integridade referencial pode criar problemas durante a manipulação dos dados (atualização e remoção)
 - Ex: Como remover o Departamento de Código 1?
 - Ex: Como atualizar o Código do Departamento de 2 para 4?

- Soluções para problemas de atualização da PK e remoção de linhas referenciadas:
 - Bloqueia: não atualiza/remove enquanto as linhas relacionadas existirem (RESTRICT);
 - 2. **Propaga**: Remove/atualiza as linhas relacionadas (CASCADE DELETE/UPDATE)
 - 3. Set Null: Coloca NULL nas linhas da FK e remove/altera a linha da PK
 - **4. Set Default**: Coloca o valor Default definido para a FK e remove/altera a linha PK
- Os SGBDRs implementam essas soluções, porém é o analista, com base na realidade que está modelando, quem deve definir qual é a melhor solução e documentá-la no Dicionário de Dados.

Mapeamento do Modelo Conceitual para o Modelo Relacional

Regras de Transformação

- Durante a aplicação das regras, deve-se levar em consideração o desempenho, a manutenção e a perda de espaço de armazenamento, nesta ordem
- Para representarmos o Diagrama Físico Relacional, somente necessitamos dos seguintes símbolos:

Regras de Transformação

Regra 1:

Cada entidade forte vira uma tabela, cada atributo simples vira uma coluna com um tipo de dado e domínio a ser definido. É necessário também identificar a chave primária(PK) e representá-la com a palavra PK logo após o nome do atributo

Modelo Conceitual

Modelo Físico

Regras de Transformação

Regra 2:

Toda associação/relacionamento N:N vira uma tabela contendo dois relacionamentos identificadores. As chaves primárias das tabelas relacionadas viram PK e FK na nova tabela gerada. Os atributos próprios do relacionamento, se existirem, ficam na tabela gerada. As FKs não podem aceitar valores NULL, e são representadas com a palavra FK logo depois do nome do atributo

Regras de Transformação

Regra 2:

- □ Exercícios: aplique a regra 2 aos seguintes casos:
 - Pedido (NroPedido, ValorTotal, Data)
 Produto (CódBarras, Nome, PrecoVenda)
 Venda[NroPedido, CódBarras](Quantidade, PrecoPago)
 - Médico (CRM, Nome, Endereço)
 Paciente (Código, Nome, Endereço)
 Consulta[CRM, Código](Data, ValorPago, Diagnóstico)
 - 3. Filme (CódFilme, Nome) Ator(CódAtor, Nome) Elenco[CódFilme, CódAtor]

Regras de Transformação

Regra 3:

- Em Associações/Relacionamentos 1:N, acrescente o atributo chave do lado 1 na tabela do lado N como FK contendo um relacionamento 1:N normal. Os atributos dos relacionamentos serão acrescentados na tabela do lado N.
- □ Exercício: aplique a regra 3 ao seguinte caso:
 - Departamento (CódDepto, Nome)
 Empregado (CPF, Nome)
 Lotação [CódDepto, CPF] (DataInicio)

Regras de Transformação

Regra 4:

- Em Associações/Relacionamentos 1:1, adicione a PK de uma das tabelas como FK na outra tabela. Caso existam, os atributos do relacionamento serão colocados na tabela que possuir a FK. Dica: tente colocar a FK na tabela que possua menos linhas
- ☐ Exercício: aplique a regra 4 ao seguinte caso:
 - Professor (CódProf, Nome, Endereco)
 Curso (CódCurso, Descricao)
 Coordena[CódProf, CódCurso](Gratificacao)
 - Estado (Sigla, Nome)
 Governador (CodGov, Nome)
 Governa[Sigla, CodGov](DataInicio)

Regras de Transformação

Regra 5:

- Em Associações/Relacionamentos com entidade fraca, a mesma vira uma nova tabela. Adicione a PK da tabela do lado 1 como PFK na tabela do lado N. Escolha um ou mais atributos da tabela do lado N para compor a PK. Represente o relacionamento como 1:N identificador. Os atributos do relacionamento, caso existam, serão acrescentados na tabela do lado N. Inclua a opção "ON DELETE CASCADE" para o novo relacionamento
- Exercício: aplique a regra 5 ao seguinte caso:
 - Funcionário (CódFunc, Nome, Endereco)
 Dependente (CódDep, Nome, Idade)
 Depende[CódFunc, CódDep]

Regras de Transformação

Regra 6:

- Em Auto Relacionamentos, aplique as regras para relacionamentos 1:N, N:N e 1:1
- Exercícios: aplique a regra 6 aos seguintes casos:
 - 1. Empregado (CódEmp, Nome) Supervisiona[CódEmp, CódEmp]
 - 2. Disciplina (CodDisciplina, Nome, CargaHoraria) *Pré-requisito*[CodDisciplina, CodDisciplina]

Regras de Transformação

Regra 7:

- Em Heranças/Especializações gere uma tabela para a entidade pai e para cada entidade filha. As PKs das entidades "pais" serão PFKs nas entidades filhas
- □ Exercício: aplique a regra 7 aos seguintes casos:
 - 1. Pessoa, PessoaFísica e PessoaJurídica
 - 2. Veículo, Automóvel e Moto

Exercícios de Fixação

Transformar todos os Modelos Entidade Relacionamento feitos nas aulas anteriores em Modelos Físicos.