Notes on Mathematical Statistics

Vinh Dang

Contents

1	Mu	ltivariate Probability Distributions	1
	1.1	Bivariate and Multivariate Probability Distributions	1

<u>iv</u> Contents

Chapter 1

Multivariate Probability Distributions

1.1 Bivariate and Multivariate Probability Distributions

Definition 1.1: Joint Probability Function for Discrete RVs

The joint (or bivariate) probability function for discrete random variables Y_1 and Y_2 is given by

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2), -\infty < y_1, y_2 < \infty.$$

Remark.

The joint probability function p of two discrete random variables Y_1 and Y_2 satisfies:

- 1. $p(y_1, y_2) \ge 0$ for all y_1, y_2 .
- $2. \sum_{y_1, y_2} p(y_1, y_2) = 1$

Definition 1.2: Joint Distribution Function

The joint (bivariate) distribution function for any random variables Y_1 and Y_2 is given by

$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2), -\infty < y_1, y_2 < \infty.$$

Definition 1.3: Jointly Continuous RVs

Let Y_1 and Y_2 be continuous RVs with joint distribution function $F(y_1, y_2)$. If there exists a nonnegative function $f(y_1, y_2)$ such that

$$F(y_1, y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1, t_2) dt_2 dt_1$$

for all $-\infty < y_1, y_2 < \infty$ then Y_1 and Y_2 are said to be jointly continuous RVs. The function $f(y_1, y_2)$ is called the joint probability density function.

Remark.

If $f(y_1, y_2)$ is a joint density function for jointly continuous random variables Y_1 and Y_2 , then

1.
$$f(y_1, y_2) \ge 0$$
 for all y_1, y_2 .

1.
$$f(y_1, y_2) \ge 0$$
 for all y_1, y_2 .
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2 = 1$.

Remark.

$$P((X,Y) \in R) = \iint_R f(x,y) dA$$
 for any "reasonable" set R in the (y_1,y_2) plane.

Exercises

• Exercise 1.1

Contracts for two construction jobs are randomly assigned to one or more of three firms A, B, C. Let $Y_1 = \#$ contracts assigned to firm A and $Y_2 = \#$ contracts assigned to firm B.

- 1. Find the joint probability function for Y_1 and Y_2 .
- 2. Find F(1,0).

Solution:

1. Let (α, β) where $\alpha, \beta \in \{A, B, C\}$ denote the firms that job 1 and job 2 are assigned to, respectively. The sample space is

$$\Omega = \{(A, A), (A, B), (A, C), (B, A), (B, B), (B, C), (C, A), (C, B), (C, C)\}.$$

Each outcome has probability 1/9. The joint probability function for Y_1 and Y_2 is given by the following table

$$\begin{array}{c|ccccc} & & & y_1 & \\ y_2 & 0 & 1 & 2 \\ \hline 0 & 1/9 & 2/9 & 1/9 \\ 1 & 2/9 & 2/9 & 0 \\ 2 & 1/9 & 0 & 0 \\ \end{array}$$

2. We have

$$F(1,0) = P(Y_1 \le 1, Y_2 \le 0)$$

$$= P(Y_1 = 0, Y_2 = 0) + P(Y_1 = 1, Y_2 = 0)$$

$$= p(0,0) + p(1,0)$$

$$= \frac{1}{9} + \frac{2}{9}$$

$$= \frac{1}{3}$$

• Exercise 1.2

Three balanced coins are tossed independently. Let $Y_1 = \#$ heads and $Y_2 =$ amount of money won. The amount of money won is determined as follows: if the first head occurs on toss i, you win i for i = 1, 2 or i. If no heads appear, you lose i.

- 1. Find $p(y_1, y_2)$.
- 2. Find the probability that fewer than three heads will occur and you will win \$1 or less, i.e., find F(2,1).

Solution:

1. The function $p(y_1, y_2)$ is given by

		y_1		
y_2	0	1	2	3
$\overline{-1}$	1/8	0	0	0
1	0	1/8	2/8	1/8
2	0	1/8	1/8	0
3	0	1/8	0	0

2. We have

$$F(2,1) = p(0,-1) + p(1,1) + p(2,1)$$

$$= \frac{1}{8} + \frac{1}{8} + \frac{2}{8}$$

$$= \frac{1}{2}$$

• Exercise 1.3

Of nine executives in a business firm, 4 are married, 3 have never married and 2 are divorced. 3 of the executives are to be randomly selected for promotion. Let Y_1 be the number of married executives and Y_2 be the number of never-married executives among the 3 selected. Find the joint probability function of Y_1 and Y_2 .

Solution: The sample space, the possible values of Y_1 and Y_2 and the associated probabilities are given by

outcome	$3\mathrm{m}$	2m1n	2m1d	3n	2n1m	2n1d	2d1m	2d1n	1m1n1d
(y_1, y_2)	(3,0)	(2,1)	(2,0)	(0,3)	(1, 2)	(0, 2)	(1,0)	(0,1)	(1,1)
probability	$\frac{\binom{4}{3}}{\binom{9}{3}}$	$\frac{\binom{4}{2}\binom{3}{1}}{\binom{9}{3}}$	$\frac{\binom{4}{2}\binom{2}{1}}{\binom{9}{3}}$	$\frac{\binom{3}{3}}{\binom{9}{3}}$	$\frac{\binom{4}{1}\binom{3}{2}}{\binom{9}{3}}$	$\frac{\binom{3}{2}\binom{2}{1}}{\binom{9}{3}}$	$\frac{\binom{4}{1}}{\binom{9}{3}}$	$\frac{\binom{3}{1}}{\binom{9}{3}}$	$\frac{\binom{4}{1}\binom{3}{1}\binom{2}{1}}{\binom{9}{3}}$

The joint probability function $p(y_1, y_2)$ is given by

		y_1		
y_2	0	1	2	3
0	0	1/21	1/7	1/21
1	1/28	2/7	3/14	0
2	1/28 1/14	1/7	0	0
3	1/84	0	0	0

More concisely, one can write down the formula for $p(y_1, y_2)$ as

$$p(y_1, y_2) = \frac{\binom{4}{y_1}\binom{3}{y_2}\binom{2}{3-y_1-y_2}}{\binom{9}{3}}.$$