

SEGURIDAD EN SISTEMAS DISTRIBUIDOS

Jorge Rojas Zordan Sub Gerente de Innovación y Desarrollo de Productos jrojasz@novared.net

Agenda

Evolución de las amenazas de seguridad

Sistemas Distribuidos y Tendencias de Control

Modelos de control

Desafíos para el futuro

De la telaraña a la Nube

- A finales de los '90 el mundo vivió el boom de las punto com.
- En el 2000, Chile vivió el boom de la Internet.
- A finales de la década, el mundo se vuelca a las redes sociales.
- En los próximos años los dispositivos móviles marcarán otro cambio tecnológico

"Cada uno de estos avances nos obliga a pensar en cómo evolucionan los Riesgos"

Las 10 amenazas del 2011

- Password de administración débiles o en blanco
- Información sensible transmitida por redes sin encriptación
- 3. Servidores MS-SQL con password débiles o sin clave
- Envenenamiento de tablas ARP
- Acceso a Access Point fraudulentos
- 6. Uso de encriptación WEP
- 7. Suplantación de credenciales en proceso de autenticación NTLM
- 8. Mala configuración de reglas en FW (reglas any)
- 9. Información sensible almacenada fuera de zonas seguras
- 10. Información sensible trasmitida vía Bluetooth

Fuente: Trustwave security report 2012

Impactos causados por incidentes de seguridad en el 2011

Confidencialidad

Disponibilidad

Integridad

Seguridad de la Información

Fuente: 2012 Verizon Data Breach Report

¿Riesgo en Chile?

Los riesgos en Chile no difieren de la realidad mundial

 Tarde o temprano, los riesgos que vemos en el extranjero llegarán a Chile

Un ejemplo: Stuxnet

- Virus que ataca los sistemas de control industrial
- Propagación:
 - Dispositivos USB
 - Discos de red compartidos
 - Vulnerabilidad de colas de impresión windows
 - Vulnerabilidad de RPC de windows
 - Mecanismos P2P
- El 29 de Septiembre del 2010:
 - 100.000 host infectados en 155 países
 - Sobre 60.000 host infectados en Irán
 - 1041 host infectados en Chile

Agenda

Evolución de las amenazas de seguridad

Sistemas Distribuidos y Tendencias de Control

Modelos de control

Desafíos para el futuro

Sistemas Distribuidos y Seguridad

Características:

- Información distribuida en múltiples Datacenter
- Cadena de operación productivas altamente tecnologizada
- Múltiples grupos de usuarios con distintos roles y responsabilidades (internos y externos)
- Necesidad de acceso remoto de usuarios (internos y externos)
- La Red es un punto neurálgico de todo el sistema

La administración del riesgo Ti es un proceso continuo

Fuentes de Riesgo

¿Como evaluar el impacto en mi negocio de una amenaza?

Estrategias para abordar el riesgo

Cuidar el balance entre Impacto en el negocio e Inversión en Seguridad

- Mitigar una amenaza significa reducirla a un nivel aceptable.
- Aplicar el principio de Pareto
 - El 80% del riesgo puede ser mitigado utilizando 20% de los recursos.
 - Focalizarse en los riesgo importantes.
 - Esforzarse en mitigar riesgo al menor costo.
 - Mínimo impacto para el negocio.
- Evaluar múltiples alternativas y elegir la mejor
- En ciertas ocasiones un control compensatorio vale más que un control mitigador.

Mitigar un riesgo implica mucho más que implementar una herramienta.

- Implementar un control, significa:
 - Establecer una política o norma.
 - Dar a conocer esa política.
 - Establecer un monitoreo efectivo:
 - Detectivo
 - Preventivo
 - Dejar registro de la evidencia.
 - Validar la efectividad.
 - Buscar retroalimentación
- Un control que no deja evidencia, no existe.

Implementar una estrategia de seguridad por capas

- Analizar las amenazas desde el perímetro exterior (generalmente Internet) hasta el interior (información crítica).
- En cada capa o nivel, agregar controles complementarios a la capa anterior.
- Cada capa debe potenciar el nivel anterior.
- No debe permitir una conexión desde el perímetro exterior a la capa interna.

Lo que no se mide, no se puede mejorar

- ¿Por qué necesitamos medir?
 - Para verificar el éxito o fracaso de la implementación del control.
 - Para mostrar el valor de nuestra labor.
 - Para mejorar nuestros objetivos.
 - Para predecir el comportamiento de las amenazas.
 - Para demostrar cumplimiento frente a reguladores externos y auditores.

Adoptar un estándar, evita reinventar la rueda

 Hay varios estándares de seguridad que pueden ayudarnos a establecer un marco de control de riesgo TI.

- COBIT (Control Objetives for Information and related Technology) recopilado por ISACA.
- BS 17.799 o ISO 27.001 (Information Security Management System)
- CBK (Common Body of Knowledge) recopilado por ISC
- ITIL (Information Technology Infrastructure Library) recopilada por el Gobierno Ingles.

Los controles más utilizados en Seguridad TI

• Firewall	94 %
 Log de auditoría 	83 %
 Soluciones anti malware 	83 %
 Protocolos de seguridad Wireless 	82 %
 Recuperación de Desastres 	78 %
Firma electrónica	69 %
 Encriptación de datos (en transmisión) 	67 %
 Servicios de detección/prevención de intrusos 	66 %
 Encriptación de E-mail 	60 %
 Encriptación de datos (en storage) 	44 %
 Encriptación de dispositivos móviles 	39 %
 Autenticación por doble factor 	33 %
Single sign on	29 %
 Infraestructura de llave pública 	26 %
 Infraestructura DLP 	24 %
• Biometría	19 %
\	

Agenda

Evolución de las amenazas de seguridad

Sistemas Distribuidos y Tendencias de Control

Modelos de control

Desafíos para el futuro

Perímetro Externo

- Verificar cumplimiento de políticas de seguridad ante de establecer conexión.
- Establecer VPN o VPN SSL
- Utilizar portales cautivos de accesos
- Antimalware / Firewall / Host IPS
- Control de dispositivos externos (pendrive, dvd-write, ipod)
- Encriptación de Discos Duros

Zona DMZ

- Modelo altamente redundante
- Múltiples capas complementarias de controles
- A nivel de centros de procesamientos, el modelo es escalable
- Modelo escalable en todas sus capas
- Modelo soporta multimarcas
- Monitoreo 7 x 24 x 365

Perímetro Datacenter

- Establece un perímetro de seguridad para los servicios Ti
- Modelo de control multicapas
- Sólo se exponen a usuarios, los servicios necesarios
- Protección de acceso a servicios de administración y soporte
- Monitoreo 7 x 24 x 365
- Utilizar encriptación de discos, file servers y/o los respaldos externos.

Red de Transporte

Zona Usuarios

- Antimalware / Firewall / Host IPS
- Control de dispositivos externos (pendrive, dvdwrite, ipod)
- Encriptación de Discos Duros
- Escritorio controlado
- Control de fugas de información
- Control de contenidos
- Control de acceso a aplicaciones
- Control de licencias (inventario)
- Control de acceso a la red (NAC)
- Mecanismos acceso remoto

¿Qué ocurre con los dispositivos personales?

Zona Producción

- Red independiente y altamente redundante
- Transmisión de datos encriptados
- Seguritización de servidores de control
- Acceso muy restringido y controlado
- Monitoreo de seguridad frente a ataques y malware
- Control de inventario de hardware autorizado y no autorizado
- Control de inventario de software autorizado

15 Controles Críticos

- 1. Inventario de los dispositivos autorizados y no autorizados
- 2. Inventario de software autorizado y no autorizado
- 3. Seguridad de hardware y software en equipos portátiles, estaciones de trabajo y servidores
- Seguridad en la red tales como firewall, enrutadores y conmutadores
- 5. Defesa perimetral
- 6. Mantenimiento, monitoreo y análisis de logs de auditoría
- 7. Seguridad de software de aplicación
- 8. Uso controlado de privilegios administrativos
- 9. Acceso controlado basado en "Necesidad de conocer"
- 10. Continua evaluación de vulnerabilidades y corrección
- 11. Monitoreo y control de cuentas de usuarios
- **12.** Defensas contra malware
- 13. Limitación y control de puertos de red, protocolos y servicios
- 14. Control de dispositivos inalámbricos
- 15. Prevención de pérdidas de datos

Agenda

Evolución de las amenazas de seguridad

Sistemas Distribuidos y Tendencias de Control

Modelos de control

Desafíos para el futuro

Los desafíos para la próxima década

- Administración de dispositivos smartphones, tablets y notebook personales
- Unificación de las tecnologías y controles
- Administración central y unificada
- Mejorar entendimiento de la política de seguridad, de cara a los usuarios
- Orientar los controles a los aplicativos

Administración de dispositivos smartphones, tablets y notebook personales

- Autenticación integrada a Active Directory o Repositorio LDAP
- · No importará la red donde está el usuario, sólo si fue autenticado o no
- Buscar controlar la información empresarial que radica en dispositivos externos
- Respaldo y Eliminación remota de información

Unificación de Tecnologías y Controles

- Simplificar los elementos de control
- Lograr una administración mas eficiente y menos propensa a error humano
- Tener flexibilidad para establecer controles de acuerdo a la necesidades del negocio
- Mejorar eficiencia dentro de cada dominio

Unificación de Tecnologías de control

FW

VPN

IPS

Anti Virus Anti Spam

Filtro URL

DLP

Análisis de Compor-tamiento

El uso de los distintos módulos deberá ser dinámico y acorde a las necesidades del negocio

Administración Central y Unificada

- Integrar bajo una única gestión, al menos, los registros de eventos
- Establecer métricas de seguridad que permitan determinar desviaciones a las políticas de seguridad
- Integrar las evaluaciones de vulnerabilidades
- Monitorear 24 x 7 x 365

Política de seguridad de cara al usuario

- El usuario debe percibir que los controles de seguridad son de su responsabilidad:
 - Autenticación y Autorización
 - Resguardo de la información
 - Control de acceso
 - Control de contenidos
 - Clasificación de información
- Uso controlado de dispositivos externos (pendrives, discos USB, Iphone, etc)

Orientar los controles a los aplicativos

Conclusiones

- Tendremos que adecuar los controles de seguridad a las nuevas necesidades de negocio
- Las tecnologías cambiarán, pero dependerá de nosotros el sacarles el mejor partido
- La seguridad es dinámica y debemos reaccionar oportunamente

"Es posible compatibilizar la funcionalidad de la red y el dinamismo del negocio, con un nivel de seguridad acorde"

Gracias por asistir a esta sesión...

SEGURIDAD EN SISTEMAS DISTRIBUIDOS

Jorge Rojas Zordan Sub Gerente de Innovación y Desarrollo de Productos jrojasz@novared.net