

Constructions Ex 11.2 Q8 Answer:

Given that

Construct a triangle $\triangle ABC$ in which let AB = 5 cm, $\angle B = 90^{\circ}$ and altitute CD = 3 cm, and then a triangle $\triangle AQR$ similar to it whose sides are $\left(1.5 \, \text{times} = \frac{3}{2}\right)$ of the corresponding sides of $\triangle ACB$.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $AB = 5 \,\mathrm{cm}$,

Step: II- With B as centre and draw an angle $\angle B = 60^\circ$

Step: III -From point A and B construct altitute $CD = 3 \, \text{cm}$, which cut the line BS at point C

Step: IV- Join AC to obtain ΔABC .

Step: V- Below AB, makes an acute angle $\angle BAX = 60^{\circ}$.

Step: VI- Along AX, mark off five points A_1 , A_2 and A_3 such that $AA_1 = A_1A_2 = A_2A_3$

Step: VII -Join $A_2 B$.

Step: VIII -Since we have to construct a triangle $\triangle AQR$ each of whose sides is $\left(1.5\,\mathrm{times} = \frac{3}{2}\right)$ of the corresponding sides of $\triangle ABC$.

So, we draw a line A_3Q on AX from point A_3 which is $A_3Q\|A_2B$, and meeting AB at Q.

Step: IX- From Q point draw $QR \| BC$, and meeting AC at R

Thus, $\triangle AQR$ is the required triangle, each of whose sides is $\left(1.5\,\mathrm{times} = \frac{3}{2}\right)$ of the corresponding sides of $\triangle ABC$.

Constructions Ex 11.2 Q9

Answer:

Given that

Construct an isosceles triangle ABC in which AB = BC = 6 cm and altitude = 4 cm then another triangle similar to it whose sides are $\frac{3}{4}$ of the corresponding sides of \triangle ABC.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment AB = 6 cm.

Step: II- With B as centre and radius = BC = 6 cm, draw an arc.

Step: III- From point A and B construct altitute $CD = 4 \,\mathrm{cm}$, which cut the line BS at point C

Step: IV -Join AC to obtain $\triangle ABC$.

Step: V- Below AB, makes an acute angle $\angle BAX = 60^{\circ}$

Step: VI -Along AX, mark off five points A_1,A_2 and A_3 such that $AA_1=A_1A_2=A_2A_3$

Step: VII- Join A_2B

Step: VIII -Since we have to construct a triangle ΔAQR each of whose sides is $\left(1.5\,\mathrm{times} = \frac{3}{2}\right)$ of the corresponding sides of ΔABC .

So, we draw a line A_3Q on AX from point A_3 which is $A_3Q\|A_2B$, and meeting AB at Q.

Step: IX -From Q point draw $\mathit{QR} \| \mathit{BC}$, and meeting AC at R

Thus, $\triangle AQR$ is the required triangle, each of whose sides is $\binom{3}{2}$ of the corresponding sides of $\triangle ABC$.

Constructions Ex 11.2 Q10 Answer:

Given that

Construct a $\triangle ABC$ of given data, $AB=5\,\mathrm{cm}$, $BC=6\,\mathrm{cm}$ and $\angle ABC=60^{0}$ and then a triangle similar to it whose sides are $\left(\frac{3}{4}\right)^{\mathrm{th}}$ of the corresponding sides of $\triangle ABC$.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $AB = 5 \,\mathrm{cm}$.

Step: II- With B as centre draw an angle $\angle B = 60^{\circ}$.

Step: III- With B as centre and radius = $BC = 6 \, \mathrm{cm}$, draw an arc.

Step: IV- Join AC to obtain ΔABC .

Step: V -Below AB, makes an acute angle $\angle BAX = 60^{\circ}$.

Step: VI -Along AX, mark off four points A_1,A_2 A_3 and A_4 such that $AA_1=A_1A_2=A_2A_3=A_3A_4$

Step: VII -Join A.B

Step: VIII -Since we have to construct a triangle each of whose sides is $\left(\frac{3}{4}\right)^{\text{th}}$ of the corresponding

sides of ΔABC .

So, we take three parts out of four equal parts on AX from point A_3 draw $A_3B' \parallel A_4B$, and meeting AB at B'.

Step: IX- From B' draw $B'C' \parallel BC$, and meeting AC at C'

Thus, $\Delta AB'C'$ is the required triangle, each of whose sides is $\binom{3}{4}^{\text{th}}$ of the corresponding sides of ΔABC .

********* END *******