Marwadi University	Marwari University Faculty of Technology Department of Information and Communication Technology			
Subject: Design and Analysis of Algorithms (01CT0512)	Aim: Implementing the Searching Algorithms			
Experiment No: 02	Date: 02-08-2024 Enrollment No: 92200133030			

<u>Aim:</u> Implementing the Searching Algorithms

<u>IDE:</u> Visual Studio Code

Linear Search:-

Theory: -

• Linear search is a sequential searching algorithm where we start from one end and check every element of the list until the desired element is found. It is the simplest searching algorithm.

Working of Linear Search:

• The following steps are followed to search for an element k = 1 in the list below.

1) Start from the first element, compare k with each element x.

Faculty of Technology

Department of Information and Communication Technology

Subject: Design and Analysis of Algorithms (01CT0512)

Aim: Implementing the Searching Algorithms

2) If x == k, return the index.

3) Else, return not found.

Algorithm: -

Programming Language: - C++

Code :-

```
#include<iostream>
#include<vector>
using namespace std;

int Linear_Search(vector<int> Array, int key) {
    for (int i = 0; i < Array.size(); i++) {
        if (Array[i] == key) {
            return i;
        }
    }
    return -1;
}</pre>
```


Faculty of Technology

Department of Information and Communication Technology

Subject: Design and Analysis of Algorithms (01CT0512)

Aim: Implementing the Searching Algorithms

```
void Print Array(vector<int> Array) {
    for (int i = 0; i < Array.size(); i++) {</pre>
        cout << Array[i] << " ";</pre>
    }
    cout << endl;</pre>
}
void Input Array(vector<int>& Array) {
    for (int i = 0; i < Array.size(); i++) {</pre>
        cout << "Enter Element at index " << i << " : ";</pre>
        cin >> Array[i];
    }
}
int main() {
    int size;
    int key;
    while (true) {
        cout << "Enter The Size of the Array :- " << endl;</pre>
        cin >> size;
        if (size >= 1) {
             break;
        }
        cout << "Invalid Size. Size must be a Positive Integer." << endl;</pre>
    }
    vector<int> Array(size, 0);
    cout << "Enter The Element for the Array:- " << endl;</pre>
    Input Array(Array);
    cout << "Your Input Array Is :- " << endl;</pre>
    Print_Array(Array);
    cout << "Enter the Key to Search In Array :- ";</pre>
    cin >> key;
```


Marwari University Faculty of Technology

Department of Information and Communication Technology

Subject: Design and Analysis of Algorithms (01CT0512)

Aim: Implementing the Searching Algorithms

```
int ans = Linear_Search(Array, key);
if (ans != -1) {
    cout << key << " Found at Index - " << ans << " of Array." << endl;
}
else {
    cout << "Key is not exists in Array.";
}
return 0;</pre>
```

Output:-

}

```
PS D:\Aryan Data\Usefull Data\Semester - 5\Semester-5\Design And Analysis of Algorithms\Lab - Manual\Experiment - 2> cd "d:\Arya
n Data\Usefull Data\Semester - 5\Semester-5\Design And Analysis of Algorithms\Lab - Manual\Experiment - 2\"; if ($?) { g++ Line
ar_Search.cpp -o Linear_Search } ; if ($?) { .\Linear_Search }
Enter The Size of the Array :-
10
Enter The Element for the Array:-
Enter Element at index 0 : 23
Enter Element at index 1 : 45
Enter Element at index 2 : 67
Enter Element at index 3:89
Enter Element at index 4 : 90
Enter Element at index 5 : 23
Enter Element at index 6 : 17
Enter Element at index 7 : 65
Enter Element at index 8 : 39
Enter Element at index 9 : 71
Your Input Array Is :-
23 45 67 89 90 23 17 65 39 71
Enter the Key to Search In Array :- 23
23 Found at Index - 0 of Array.
PS D:\Aryan Data\Usefull Data\Semester - 5\Semester-5\Design And Analysis of Algorithms\Lab - Manual\Experiment - 2>
```

Marwadi University	Marwari University Faculty of Technology Department of Information and Communication Technologis Aim: Implementing the Searching Algorithms				
Subject: Design and Analysis of Algorithms (01CT0512)					
Experiment No: 02	Date: 02-08-2024				

Time Complexity:		
Best Case Time Complexity: Justification: -	_	
Worst Case Time Complexity:- Justification: -		

Binary Search

Theory: -

- Binary Search is a searching algorithm for finding an element's position in a sorted array.
- In this approach, the element is always searched in the middle of a portion of an array.
- Binary search can be implemented only on a sorted list of items. If the elements are not sorted already, we need to sort them first.

Working of Bubble Sort

- 1) Binary Search Algorithm can be implemented using Recursion using divide and conquer approach.
- 2) The array in which searching is to be performed is: let x = 4 be the element to be searched.

Marwadi University	Marwari University Faculty of Technology			
	Department of Information and Communication Technology			
Subject: Design and Analysis of Algorithms (01CT0512)	Aim: Implementing the Searching Algorithms			
Experiment No: 02	Date: 02-08-2024			

3) Set two pointers low and high at the lowest and the highest positions respectively.

4) Find the middle element mid of the array ie. arr[(low + high)/2] = 6.

- 5) If x == mid, then return mid. Otherwise, compare the elements to be searched for with m.
- 6) If x > mid, compare x with the middle element of the elements on the right side of mid. This is done by setting low to low = mid + 1.
- 7) Else, compare x with the middle element of the elements on the left side of mid. This is done by setting high to high = mid 1.

• • • • • • • • • • • • • • • • • • •	Marwari University			
Marwadi University	Faculty of Technology			
	Department of Information and Communication Technology			
Subject: Design and Analysis of Algorithms (01CT0512)	Aim: Implementing the Searching Algorithms			
Experiment No: 02	Date: 02-08-2024 Enrollment No: 92200133030			

8) Repeat steps 4 to 7 until low meets high.

9) x = 4 is found.

Algorithm: -		
	-	

Faculty of Technology

Department of Information and Communication Technology

Subject: Design and Analysis of Algorithms (01CT0512)

Aim: Implementing the Searching Algorithms

Code :-

```
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int Binary Search(vector<int> Array, int left, int right, int key) {
    if (left <= right) {</pre>
        int mid = left + (right - left) / 2;
        if (key == Array[mid]) {
             return mid;
        }
        if (key < Array[mid]) {</pre>
             return Binary_Search(Array, left, mid - 1, key);
        }
        else {
             return Binary_Search(Array, mid + 1, right, key);
        }
    }
}
void Print_Array(vector<int> Array) {
    for (int i = 0; i < Array.size(); i++) {</pre>
        cout << Array[i] << " ";</pre>
    }
    cout << endl;</pre>
}
void Input_Array(vector<int>& Array) {
    for (int i = 0; i < Array.size(); i++) {</pre>
        cout << "Enter Element at index " << i << " : ";</pre>
        cin >> Array[i];
```


Faculty of Technology

Department of Information and Communication Technology

Subject: Design and Analysis of Algorithms (01CT0512)

Aim: Implementing the Searching Algorithms

```
}
}
int main() {
    int size;
    int key;
    while (true) {
        cout << "Enter The Size of the Array :- " << endl;</pre>
        cin >> size;
        if (size >= 1) {
             break;
        }
        cout << "Invalid Size. Size must be a Positive Integer." << endl;</pre>
    }
    vector<int> Array(size, 0);
    cout << "Enter The Element for the Array:- " << endl;</pre>
    Input Array(Array);
    sort(Array.begin(), Array.end());
    cout << "Your Input Array Is :- " << endl;</pre>
    Print Array(Array);
    cout << "Enter the Key to Search In Array :- ";</pre>
    cin >> key;
    int ans = Binary Search(Array, 0, size, key);
    if (ans != -1) {
        cout << key << " Found at Index - " << ans << " of Array." << endl;</pre>
    }
    else {
        cout << "Key is not exists in Array.";</pre>
    }
```

○ A 4	Marwari University		
Marwadi University	Faculty of Technology		
01111013107	Department of Information and Communication Technology		
Subject: Design and Analysis of Algorithms (01CT0512)	Aim: Implementing the Searching Algorithms		
Experiment No: 02	Date: 02-08-2024 Enrollment No: 92200133030		
return 0;			
}			

Output:-

```
PS D:\Aryan Data\Usefull Data\Semester - 5\Semester-5\Design And Analysis of Algorithms\Lab - Manual\Experiment - 2> cd "d:\Arya
n Data\Usefull Data\Semester - 5\Semester-5\Design And Analysis of Algorithms\Lab - Manual\Experiment - 2\"; if ($?) { g++ Bina
ry_Search.cpp -o Binary_Search } ; if ($?) { .\Binary_Search }
Enter The Size of the Array :-
10
Enter The Element for the Array:-
Enter Element at index 0 : 12
Enter Element at index 1 : 23
Enter Element at index 2 : 45
Enter Element at index 3 : 566
Enter Element at index 4 : 78
Enter Element at index 5 : 956
Enter Element at index 6 : 25
Enter Element at index 7 : 47
Enter Element at index 8 : 62
Enter Element at index 9 : 852
Your Input Array Is :-
12 23 25 45 47 62 78 566 852 956
Enter the Key to Search In Array :- 566
566 Found at Index - 7 of Array.
PS D:\Aryan Data\Usefull Data\Semester - 5\Semester-5\Design And Analysis of Algorithms\Lab - Manual\Experiment - 2>
```

Space Complexity:-	
Justification: -	
Time Complexity:	
Best Case Time Complexity:	
Justification: -	_
Sustification	

	Marwari University	
Marwadi University	Faculty of Technology	
Oniversity	Department of Information and Communication Technology	
Subject: Design and Analysis of Algorithms (01CT0512)	Aim: Implementing the S	earching Algorithms
Experiment No: 02	Date: 02-08-2024 Enrollment No: 92200133030	
Worst Case Time Complexity: Justification: -	<u>-</u>	

Worst Case Time Complexity:- <u>Justification: -</u>		
onclusion:-		