9. Übungsblatt

Ksenia Klassen ksenia.klassen@udo.edu Dag-Björn Hering dag.hering@udo.edu

 $\begin{array}{c} Henning\ Ptaszyk\\ henning.ptaszyk@udo.edu \end{array}$

17. Januar 2017

1 Aufgabe1

```
P_{\lambda}(k) = \frac{\lambda^{k}}{k!} e^{-\lambda} , k \in \mathbb{N}_{0}
\lambda \in \mathbb{R}^{0}
\mathcal{L}(\lambda) = P_{\lambda}(13) P_{\lambda}(8) P_{\lambda}(9)
    = \frac{\lambda^{13}}{13!} e^{-\lambda} \cdot \frac{\lambda^{8}}{8!} e^{-\lambda} \cdot \frac{\lambda^{9}}{9!} e^{-\lambda}
= e^{-3\lambda} \cdot \frac{\lambda^{30}}{13! \, 3! \, 7!}
    - In (L()) = - In ( =31. 230. (13! 8! 9!)
=-[-3\lambda + 30 ln (\lambda) - ln (13!8!9!) ]
  = 31 - 38 los (1) + los (13/8/71) =: Lyg (1)

Bestimme Minimum d. regatives log-likelihood?
      f_{\lambda} Z(\lambda) = 0
      = 3-30 x-1 + 0 =0
     \lambda^{-1} = 10^{-1} - \lambda = 10^{-1}
Printe and Minima 2^{11}(\lambda) \stackrel{!}{>} 0^{-1}
        (1) = 30 /2 > 0 -> ninimum
           Luax = L(10) = = -30. 10 30.
   Taylor Na Berusz: (wm x=10 ~ orld. Extremus)
=: Cla
Ta (-In (LCX)), 10) = (30-30 h (10) + Ci)
    + (3-3) (2-10)+10032(2-10)2
```

Abbildung 1: Seite1.

```
T2 (-lm (L(A)), 10) = 10.3 (1-10)2 + 42
                                                                                                                                                          = \frac{1}{2} \cdot 0.3 \left(\lambda^2 - 20\lambda + 100\right) + \frac{1}{2} \cdot 0.3 \lambda^2 - 6\lambda + 30 + \frac{1}{2} \cdot 0.3 \lambda^2 + \frac{1}{2} \cdot 0.3 \lambda^
                                                                                                                                                          = 0.15\lambda^2 - 3\lambda + 15 + C_{12}^1
                                                                                                                                                           = 0.15/2-3/ + 18+ G2
                                                                                                                                                          = 0.15-31+93=193
                                     A-Werte für Artgabe @ (Rechungen unter Pyth
                                        λ+1/2 = 10.17 λ+1/2 = 8.28
                                            x+ = 18.78 X+2 = 6.78
                                          2 = 16.52 2+42 = 5.47
   Es erzebt sies jeweils ein Intervalle für den Ort de Externo den Skätzer. Dien Intervalle könnerds Konfident intervalle gemest werden.
                               1-Worke für Aufgabersteil D (ReSmungen venter Ry State divergeführt)

17 mgar = 11.83 1 → 12 = 8.17
                             12 = 13.65 2 taper ≈ 6.35
                              2 traylor = 15.48 2 - 2412 = 4.52
    Es ist zu Erkenner, dass sich die genoziwierte
 log Likeli hard we 1=10 selv asanlies wie die
   to to Blise by - Likeli hood withilt. Do Sur koon sie
in sim nessen lungebuy vervendet werden
  Dies Voyder de Apposituation Kann nitelia sin
   um bessex alerte fir der Erwartungswert z whallon.
```

Abbildung 2: Seite2.

Abbildung 3: Graphische Darstellung der negativen log-likelihood sowie ihrer Taylorn- äherung 2.Ordnung.

2 Aufgabe 3

2.1 a)

Die Messwerte aus der Datei $aufg_a.csv$ sollen mit Hilfe der Methode der kleinsten Quadrate an ein Polynom 6. Grades

$$p(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3 + a_5 x^4 + a_6 x^5 + a_7 x^6$$
 (1)

gefittet werden. Dafür wird die Designmatrix A für die Messewerte bestimmt und über die Formel

$$\vec{a} = (A^T A)^{-1} A \vec{y} \tag{2}$$

folgen die Koeffizienten die in der Tabelle 1 aufgelistet sind. In der Abbildung 4 sind die Messwerte und das Polynom dargestellt.

Tabelle 1: Koeffizienten des Polynoms 6.Grades für den Fit.

a_1	a_2	a_3	a_4	a_5	a_6	a_7
$-6,7 \cdot 10^{-2}$	$6, 1 \cdot 10^{-1}$	$-5, 1 \cdot 10^{-1}$	$2,1\cdot 10^{-1}$	$-4,5\cdot10^{-2}$	$4,8\cdot10^{-3}$	$-1,9 \cdot 10^{-4}$

Abbildung 4: Messwerte und Fit für die Messwerte.

2.2 b)

Nun soll über eine Reguariserung ($\Gamma = \sqrt{\lambda}CA$) in den Fit mit eingehen. Die unterschiedlichen Regularisierungsstärken sind $\lambda \in (0.1, 0.3, 0.7, 3, 10)$. Die Koeffizienten die sich für

die unterschiedlichen Regularisierungsstärken sind in der Tabelle2 und die dazugehörigen Graphen in der Abbildung 5 zu finden.

Tabelle 2: Koeffizienten des Polynoms 6. Grades für den Fit bei underschiedlichen Regularisierungsstärken λ .

λ	a_1	a_2	a_3	a_4	a_5	a_6	a_7
0, 1	$5, 3 \cdot 10^{-02}$	$2,6\cdot 10^{-01}$	$-1,9 \cdot 10^{-01}$	$7,7\cdot 10^{-02}$	$-1,7\cdot 10^{-02}$	$1,9 \cdot 10^{-03}$	$-8, 1 \cdot 10^{-05}$
	,	,	$-6, 4 \cdot 10^{-02}$	$2,5\cdot 10^{-02}$	$-6, 3 \cdot 10^{-03}$		$-3,6 \cdot 10^{-05}$
0, 7	,	,		$6,5 \cdot 10^{-03}$,	$-1,8\cdot 10^{-05}$
3				$-1, 1 \cdot 10^{-04}$			$-6,0\cdot 10^{-06}$
10	$1,7 \cdot 10^{-01}$	$2,1\cdot10^{-03}$	$-2, 1 \cdot 10^{-03}$	$-1,9 \cdot 10^{-04}$	$-1, 4 \cdot 10^{-04}$	$3,9 \cdot 10^{-05}$	$-2, 3 \cdot 10^{-06}$

Abbildung 5: Messwerte und Fit bei underschiedlichen Regularisierungsstärken λ .

2.3 c)

Diesmal werden die Daten aus der Datei $aufg_c.csv$ verwendet. Die Messungen für einen x-wert werden gemittelt und der Mittelwertfehler wird mit der Formel

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$\tag{3}$$

berechnet. Die Mittelwerte und die entsprechenden Fehler sind in der Tabelle 3 zu finden.

Tabelle 3: Mittelwerte von y und Mittelwertfehler für ensprechende x Werte.

x	\overline{y}	σ_y	
0,50	0, 12	0,02	
1,50	0, 18	0,03	
2,50	0, 20	0,03	
3,50	0, 16	0,03	
4,50	0, 12	0,02	
5,50	0,09	0,02	
6,50	0,07	0,01	
7,50	0,06	0,01	

Über die Mittelwertfehler kann eine Gewichtsmatrix W definiert werden mit dieser und der Formel

$$\vec{a} = (A^T W A)^{-1} A^T W \vec{y} \tag{4}$$

können die Parameter für den Fit bestimmt werden. Diese sind in der Tabelle 4 aufgelistet und in der Abbildung 6 sind die berechneten Mittelwerte mit Fehler sowie der Fit enthalten.

Tabelle 4: Koeffizienten des Polynoms 6.Grades für den Fit.

a_1	a_2	a_3	a_4	a_5	a_6	a_7
$1,0\cdot 10^{-1}$	$1,9\cdot 10^{-2}$	$6,2\cdot 10^{-2}$	$-3,8 \cdot 10^{-2}$	$7,9\cdot10^{-3}$	$-7,3\cdot 10^{-04}$	$2,6\cdot10^{-5}$

Abbildung 6: Mittelwerte der Messwerte und deren Mittelwertfehler und Fit mit Hilfe einer Gewichtsmatrix.