MATH CAMP ASSIGNMENT

on Differential Equations

Xiankang Wang

August 20, 2025

1 Q1

Qualitative stability (phase-line). Consider the following autonomous differential equations $\dot{y} = f(y)$.

(a) $\dot{y} = y - 7$. The unique equilibrium is $y^{=7}$. Since f'(y) = 1 > 0, y is an *unstable equilibrium* (repeller). For $y_0 < 7$, solutions decrease to $-\infty$; for $y_0 > 7$, solutions diverge to $+\infty$ monotonically.

(b) $\dot{y} = 1 - 5y$. The equilibrium is $y^{=\frac{1}{5}}$. Since f'(y) = -5 < 0, y is asymptotically stable. Every solution converges monotonically to $\frac{1}{5}$ regardless of initial condition.

(c) $\dot{y} = (1+y)^2 - 16$, $y \ge 0$. The zeros are y = -5 and y = 3, but only $y^{=3}$ is admissible due to $y \ge 0$. Since f'(y) = 2(1+y) and f'(3) = 8 > 0, $y^{=3}$ is *unstable*. For $0 \le y_0 < 3$, $\dot{y} < 0$, and trajectories move left until they exit the feasible region at y = 0 in finite time; for $y_0 > 3$, $\dot{y} > 0$ and solutions diverge to $+\infty$.

(d) $\dot{y} = \frac{1}{2}y - y^2$, $y \ge 0$. Equilibria are $y^{1=0}$ and $y^{2=\frac{1}{2}}$. Because $f'(0) = \frac{1}{2} > 0$, y^1 is unstable; because $f'(\frac{1}{2}) = -\frac{1}{2} < 0$, y^2 is asymptotically stable. For any $y_0 > 0$, solutions converge monotonically to $\frac{1}{2}$ (logistic-type saturation).

2 Q2

Phase-line analysis. We study $\dot{y} = f(y)$ for each case, identify equilibria $(f(y)^{=0})$, and determine local stability from f'(y) and the sign of f(y).

(a)
$$\dot{y} = 3 - y - \ln y$$
 (domain $y > 0$)

Let $g(y) = y + \ln y$. Since $g'(y) = 1 + \frac{1}{y} > 0$ for y > 0, g is strictly increasing with $\lim_{y \downarrow 0} g(y) = -\infty$ and $\lim_{y \uparrow \infty} g(y) = +\infty$. Hence there is a unique equilibrium $y^{>0}$ solving $y + \ln y = 3$, i.e.

$$y = W(e^3)$$
 (Lambert-W), $y^{\approx 2.207.}$

Figure 1: Q1

Moreover $f'(y) = -1 - \frac{1}{y} < 0$ for all y > 0, so the phase line points upward when y < y and downward when y > y. Therefore y is *globally asymptotically stable* on $(0, \infty)$: every solution with $y_0 > 0$ moves monotonically toward y (no overshooting in 1D).

(b)
$$\dot{y} = e^y - (y+2)$$
 (domain $y \in \mathbb{R}$)

Let $h(y) = e^y - y - 2$. Then $h'(y) = e^y - 1$, $h''(y) = e^y > 0$, so h is convex with a unique minimum at y = 0, where h(0) = -1 < 0. Since $\lim_{y \to \pm \infty} h(y) = +\infty$, there are exactly two equilibria $y_1 < 0 < y_2$ solving $e^y = y + 2$. They can be written in closed form as

$$y_k = -2 - W_k \left(-e^{-2} \right), \qquad k \in \{0, -1\},$$

with numerical values $y_1 \approx -1.84$ (principal branch W_0) and $y_2 \approx 1.15$ (lower branch W_{-1}). Stability follows from $f'(y) = e^y - 1$: since $e^{y_1} < 1$ and $e^{y_2} > 1$,

 y_1 is asymptotically stable, y_2 is unstable.

Figure 2: Q2

Phase-line directions: f(y) > 0 for $y < y_1$, f(y) < 0 on (y_1, y_2) , and f(y) > 0 for $y > y_2$. Hence all trajectories with $y_0 < y_2$ converge monotonically to y_1 , while those with $y_0 > y_2$ diverge to $+\infty$.

3 Q3

Consider the planar autonomous system

$$\dot{x} = f(x, y), \qquad \dot{y} = g(x, y),$$

and let (\bar{x}, \bar{y}) be an equilibrium $f(\bar{x}, \bar{y}) = g(\bar{x}, \bar{y}) = 0$. The Jacobian at the equilibrium is

$$J = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \Big|_{(\bar{x},\bar{y})}.$$

The local phase portrait is governed by the linearization $\dot{\mathbf{z}} = J\mathbf{z}$ with $\mathbf{z} = (x - \bar{x}, \ y - \bar{y})^{\top}$.

(a)
$$f_x = 0$$
, $f_y > 0$, $g_x > 0$, $g_y = 0$

Here

$$J = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}, \quad a = f_y > 0, \ b = g_x > 0.$$

Eigenvalues solve $\lambda^2 - ab = 0$, hence

$$\lambda_{1,2} = \pm \sqrt{ab} \in \mathbb{R} \setminus \{0\}.$$

Because the eigenvalues are real with opposite signs, the equilibrium is a *saddle*. The corresponding eigenvectors have slopes

$$m_{\pm} = \frac{dy}{dx} = \frac{\lambda_{\pm}}{a} = \pm \sqrt{\frac{b}{a}},$$

so the stable manifold is the line with slope $m_- < 0$ and the unstable manifold is the line with slope $m_+ > 0$ through (\bar{x}, \bar{y}) .

Nullclines and streamlines. The nullclines are the axes of the linearization: $\dot{x} = 0$ on $y = \bar{y}$ and $\dot{y} = 0$ on $x = \bar{x}$. Moreover the quadratic invariant

$$\frac{d}{dt}(b(x-\bar{x})^2 - a(y-\bar{y})^2) = 2b(x-\bar{x})\dot{x} - 2a(y-\bar{y})\dot{y} = 0$$

implies that the trajectories are the hyperbolas

$$b(x - \bar{x})^2 - a(y - \bar{y})^2 = C$$
,

with asymptotes given by the eigendirections m_{\pm} ; orbits approach the stable manifold and are repelled along the unstable manifold.

(b)
$$f_x < 0$$
, $f_y > 0$, $g_x < 0$, $g_y < 0$

Write
$$J = -\alpha\beta$$

 $-\gamma - \delta$ with $\alpha, \beta, \gamma, \delta > 0$. Then

trace
$$\tau = \operatorname{tr} J = -(\alpha + \delta) < 0$$
, determinant $\Delta = \det J = \alpha \delta + \beta \gamma > 0$.

Hence every eigenvalue has negative real part and the equilibrium is *asymptotically stable*. The precise nature is determined by the discriminant:

$$D = \tau^2 - 4\Delta = (\alpha - \delta)^2 - 4\beta\gamma.$$

- If D > 0 (i.e. $\beta \gamma < \frac{(\alpha \delta)^2}{4}$), the eigenvalues are real and negative: a *stable node*. Trajectories are tangent to the two eigendirections and approach monotonically.
- If D = 0, a degenerate/stellar node (repeated negative eigenvalue).
- If D < 0 (i.e. $\beta \gamma > \frac{(\alpha \delta)^2}{4}$), the eigenvalues are complex with negative real part: a *stable focus* (spiral sink).

Figure 3: Q3

Orientation (clockwise vs. counterclockwise). Evaluate the vector field on the axes: at (x > 0, y = 0), $\dot{x} = -\alpha x < 0$, $\dot{y} = -\gamma x < 0$ (moves left and down); at (x = 0, y > 0), $\dot{x} = \beta y > 0$, $\dot{y} = -\delta y < 0$ (moves right and down). Thus the rotation around the equilibrium is *clockwise*. Streamlines either spiral clockwise into the equilibrium (focus) or approach it along two inward-pointing directions (node), depending on *D* as above.

4 Q4 Local stability

For each system $\dot{x} = f(x,y)$, $\dot{y} = g(x,y)$, we find equilibria and classify them via the Jacobian $J = f_x f_y$ $g_x g_y$.

(a)
$$\dot{x} = e^x - 1$$
, $\dot{y} = ye^x$

Equilibria solve $e^x - 1 = 0$ and $ye^x = 0$, hence only (0,0).

$$J(x,y) = \begin{pmatrix} e^x & 0 \\ ye^x & e^x \end{pmatrix}, \qquad J(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Eigenvalues (1,1): a repelling (unstable) node. Therefore (0,0) is a locally unstable equilibrium.

(b)
$$\dot{x} = x + 2y$$
, $\dot{y} = x^2 + y$

Equilibria from x + 2y = 0 and $x^2 + y = 0$ give

$$(x,y) = (0,0), \qquad (x,y) = \left(\frac{1}{2}, -\frac{1}{4}\right).$$

Jacobian J(x, y) = 12

2x1.

$$J(0,0) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \Rightarrow \lambda = (1,1) \text{ (defective)} \Rightarrow \textit{unstable improper node (source)}.$$

$$J\left(\frac{1}{2}, -\frac{1}{4}\right) = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \quad \lambda = 1 \pm \sqrt{2} \implies saddle.$$

(c)
$$\dot{x} = 1 - e^y$$
, $\dot{y} = 5x - y$

Equilibrium (0,0). The Jacobian

$$J(0,0) = \begin{pmatrix} 0 & -1 \\ 5 & -1 \end{pmatrix} \quad \Rightarrow \quad \chi(\lambda) = \lambda^2 + \lambda + 5.$$

Eigenvalues $\lambda = \frac{-1 \pm i\sqrt{19}}{2}$ have negative real part; thus (0,0) is a *locally asymptotically stable focus (spiral sink)*. From $\dot{x}(0,y>0) < 0$ and $\dot{y}(x>0,0) > 0$, the rotation is *clockwise*.

(d)
$$\dot{x} = x^3 + 3x^2y + y$$
, $\dot{y} = x(1+y^2)$

Equilibria: $x(1+y^2)=0 \Rightarrow x=0$, then $\dot{x}=y\Rightarrow y=0$; only (0,0). The Jacobian

$$J(x,y) = \begin{pmatrix} 3x^2 + 6xy & 3x^2 + 1 \\ 1 + y^2 & 2xy \end{pmatrix}, \qquad J(0,0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Eigenvalues $\lambda = \pm 1$ of opposite sign \Rightarrow *saddle*. Stable/unstable eigendirections are $y = \mp x$.

Figure 4: Q4