Ejercicios Tema 3 Parte 2 - Distribuciones Notables: continuas

Distribuciones notables continuas

29 marzo, 2023

Contenidos

1 Distribuciones notables continuas		1	
	1.1	Problema 1	1
	1.2	Problema 2	1
	1.3	Problema 3	2
	1.4	Problema 4	2
	1.5	Problema 5	2
	1.6	Problema 6	2
	1.7	Problema 7.	9

1 Distribuciones notables continuas

1.1 Problema 1.

El tiempo X que utiliza un comercial para exponer un producto cuando LO VENDE sigue, aproximadamente, una distribución normal con parámetros $\mu=3$ minutos 45 segundos y $\sigma=10$ segundos.

- 1. ¿Cuál es la probabilidad de que consiga la venta en menos de 4 minutos?
- 2. ¿Y en más de 3.5 minutos?

1.2 Problema 2.

El tiempo X que utiliza un comercial para exponer un producto cuando NO VENDE sigue, aproximadamente, una distribución normal con parámetros $\mu=2$ y $\sigma=0.8$.

- 1. ¿Cuál es el cuantil 0.95 de esta variable? Interpretarlo en el sentido de tiempo perdido por el comercial.
- 2. ¿Cuál es el tiempo perdido en el 40% de las llamadas más cortas?

1.3 Problema 3.

Un centro de atención telefónica por voz (call center) recibe por termino medio 102 llamadas por hora. Suponed que el tiempo entre llamadas consecutivas es exponencial.

- 1. Sea X el tiempo entre dos llamadas consecutivas ¿cuál es la distribución de X?
- 2. Calcular la probabilidad que pasen al menos 2.5 minutos hasta recibir la primera llamada.
- 3. Calcular la probabilidad que pasen menos de 3 minutos hasta recibir la siguiente llamada.
- 4. Calcular la esperanza y la varianza de X.

1.4 Problema 4.

Sea X una variable aleatoria normal con parámetros $\mu=1$ y $\sigma=1$. Calculad el valor de b tal que $P\left((X-1)^2 \leq b\right)=0.1$.

1.5 Problema 5.

Sea Z una variable aleatoria N(0,1). Calcular $P\left(\left(Z-\frac{1}{4}\right)^2>\frac{1}{16}\right)$.

1.6 Problema 6.

Un contratista de viviendas unifamiliares de lujo considera que el coste en euros de una contrata habitual es una variables X que sigue una distribución $N(\mu = 600000, \sigma = 60000)$

- 1. ¿Cuál es la probabilidad de que el coste del edificio esté entre 560000 y 660000 euros?
- 2. 0.2 es la probabilidad de que el coste de la vivienda supere ¿qué cantidad?
- 3. ¿Cuál es el coste mínimo del 5% de las casa más caras?

1.7 Problema 7.

Si X está distribuida uniformemente en (0,2) e Y es una variable exponencial con parámetro λ . Calcular el valor de λ tal que P(X < 1) = P(Y < 1).