PROJECT PART 1

Feature Extraction, Density Estimation and Bayesian Classification.

1)Steps followed in the Project:

- 1) First, we import the data from the .mat files.
- 2) We then extract the data and store them in Xtrain, ytrain, Xtest, ytest respectively.
- 3) Then we create the following functions.

"skewness"- to calculate the skewness of every image in the given data.

"brighttodark"- to calculate the ratio of bright pixels to dark pixels of every image in the given data using a threshold T.

"normalize" - which uses these functions to normalize our data.

- 4) We then, convert these normalized data into a dataframe, which makes it easier for us to do the remaining tasks.
- 5) We then use Maximum Likelihood estimation, to find the estimates of mean and co-variance of both the classes.
- 6) We then calculate the probability density function using these estimates.
- 7) Then we define a function which does minimum error rate classification given the prior probabilities and X.
- 8) Then we calculate the error rate for every configuration.

2)Head of the Normalized Features when the Value of T is 150:

Head of Train Dataframe

	0	1	label
0	-0.312630	-0.051244	3
1	0.965460	-0.847999	3
2	0.516517	-0.815870	3
3	0.297382	-0.489563	3
4	1.906885	-1.441811	3

Head of test Dataframe

	0	1	label
0	-1.174485	1.142590	3
1	-0.444426	0.203891	3
2	-1.184313	1.324994	3
3	-1.922119	2.850372	3
4	-0.139868	-0.286138	3

3)Head of the Normalized Features when the Value of T is 200:

```
Head of Train Dataframe

0 1 label

0 -0.312630 -0.029591 3

1 0.965460 -0.826533 3

2 0.516517 -0.725447 3

3 0.297382 -0.382378 3

4 1.906885 -1.157556 3
```

He	ad	of	test	Dataframe	
			0	1	label
0	-1	.174	4485	1.214555	3
1	-0	.44	4426	0.447426	3
2	-1	.184	4313	0.843338	3
3	-1	.92	2119	3.075649	3
4	-0	.139	9868	-0.374038	3

4) Mean and Co-variance when T is 150:

```
The maximum likelihood estimates for mean of 3 is 0 -0.379520
1  0.358546
dtype: float64

The maximum likelihood estimates for mean of 7 is 0  0.371585
1  -0.351050
dtype: float64

The maximum likelihood estimates for covariance of 3 is [[ 0.8437565  -0.91737529] [-0.91737529  1.10355626]]

The maximum likelihood estimates for covariance of 7 is [[ 0.87417217  -0.72010492] [-0.72010492  0.64980588]]
```

5) Mean and Co-variance when T is 200:

```
The maximum likelihood estimates for mean of 3 is 0 -0.379520
1  0.306744
dtype: float64

The maximum likelihood estimates for mean of 7 is 0  0.371585
1  -0.300330
dtype: float64

The maximum likelihood estimates for covariance of 3 is [[ 0.8437565  -0.91624532] [-0.91624532  1.136679 ]]

The maximum likelihood estimates for covariance of 7 is [[ 0.87417217  -0.72986478] [-0.72986478  0.68416819]]
```

6)Error Rates for all possible values of T and all possible prior probabilities:

Threshold (T)	P(3) and p(7)	Train Error Rate	Test Error Rate
150	0.5 and 0.5	0.3428299272601 316	0.3385308385308 3854
150	0.3 and 0.7	0.4065639071700 7274	0.4078309078309 078
200	0.5 and 0.5	0.2882750259785 2445	0.2955647955647 956
200	0.3 and 0.7	0.4031866989954 9703	0.4130284130284 1303