Productivity

October 24, 2024

```
[14]: import pandas as pd
      import numpy as np
      import matplotlib
      from matplotlib import pylab as plt
      df=pd.read_csv('/Users/erningxu/Desktop/data assignment/Midterm/data/

¬garments_worker_productivity.csv')
      df.head()
Γ14]:
             date
                    quarter department
                                              day team
                                                         targeted_productivity
      0 1/1/2015 Quarter1
                                 sweing
                                         Thursday
      1 1/1/2015 Quarter1 finishing
                                         Thursday
                                                      1
                                                                          0.75
      2 1/1/2015 Quarter1
                                 sweing Thursday
                                                                          0.80
                                                     11
      3 1/1/2015 Quarter1
                                 sweing Thursday
                                                     12
                                                                          0.80
      4 1/1/2015 Quarter1
                                 sweing Thursday
                                                      6
                                                                          0.80
                        over_time
                                   incentive
                                              idle_time
                                                         idle men
           smv
                   wip
      0 26.16
                             7080
                                                    0.0
               1108.0
                                          98
                                                                0
      1
         3.94
                   NaN
                              960
                                           0
                                                    0.0
                                                                0
      2 11.41
                968.0
                             3660
                                          50
                                                    0.0
                                                                0
      3 11.41
                 968.0
                                                    0.0
                             3660
                                          50
                                                                0
      4 25.90 1170.0
                             1920
                                          50
                                                    0.0
                                                                0
         no_of_style_change
                            no_of_workers actual_productivity
      0
                                      59.0
                                                       0.940725
      1
                          0
                                       8.0
                                                       0.886500
      2
                          0
                                      30.5
                                                       0.800570
      3
                                      30.5
                          0
                                                       0.800570
      4
                          0
                                      56.0
                                                       0.800382
[15]: print('rows: '+str(df.shape[0]))
      print('columns: '+str(df.shape[1]))
     rows: 1197
     columns: 15
[16]: df.info()
      df.isnull().sum()
     <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 1197 entries, 0 to 1196 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	date	1197 non-null	object
1	quarter	1197 non-null	object
2	department	1197 non-null	object
3	day	1197 non-null	object
4	team	1197 non-null	int64
5	targeted_productivity	1197 non-null	float64
6	smv	1197 non-null	float64
7	wip	691 non-null	float64
8	over_time	1197 non-null	int64
9	incentive	1197 non-null	int64
10	idle_time	1197 non-null	float64
11	idle_men	1197 non-null	int64
12	no_of_style_change	1197 non-null	int64
13	no_of_workers	1197 non-null	float64
14	actual_productivity	1197 non-null	float64
dtypes: float64(6), int64(5), object(4)			

memory usage: 140.4+ KB

[16]: date 0 quarter 0 department 0 day 0 team 0 targeted_productivity 0 0 506 wip over_time 0 incentive 0 idle_time 0 idle_men 0 no_of_style_change 0 no_of_workers 0 actual_productivity 0 dtype: int64

[17]: df.describe()

[17]: team targeted_productivity \mathtt{smv} wip \ count 1197.000000 1197.000000 1197.000000 691.000000 0.729632 15.062172 1190.465991 mean 6.426901 std 3.463963 0.097891 10.943219 1837.455001 min 1.000000 0.070000 2.900000 7.000000 25% 3.000000 0.700000 3.940000 774.500000 50% 6.000000 0.750000 15.260000 1039.000000

```
12.000000
                                        0.800000
                                                    54.560000 23122.000000
      max
                             incentive
                                           idle_time
                                                         idle_men
                over_time
              1197.000000
                           1197.000000
                                         1197.000000
                                                      1197.000000
      count
              4567.460317
                             38.210526
                                            0.730159
                                                         0.369256
      mean
      std
              3348.823563
                            160.182643
                                           12.709757
                                                         3.268987
                                                         0.00000
     min
                 0.000000
                              0.000000
                                            0.000000
      25%
              1440.000000
                               0.000000
                                            0.000000
                                                         0.000000
      50%
              3960.000000
                               0.000000
                                            0.000000
                                                         0.000000
      75%
              6960.000000
                              50.000000
                                            0.000000
                                                         0.000000
             25920.000000
                           3600.000000
                                          300.000000
                                                        45.000000
      max
             no_of_style_change
                                 no_of_workers
                                                 actual_productivity
                    1197.000000
                                    1197.000000
                                                         1197.000000
      count
      mean
                       0.150376
                                      34.609858
                                                            0.735091
                       0.427848
      std
                                      22.197687
                                                             0.174488
      min
                       0.000000
                                       2.000000
                                                             0.233705
      25%
                       0.000000
                                       9.000000
                                                             0.650307
      50%
                       0.000000
                                                             0.773333
                                      34.000000
      75%
                       0.000000
                                      57.000000
                                                             0.850253
                                      89.000000
                       2.000000
                                                             1.120437
      max
[18]: plt.figure(figsize=(10, 6))
      plt.hist(df['actual_productivity'], bins=30, edgecolor='black')
      plt.title('Distribution of Actual Productivity')
      plt.xlabel('Actual Productivity')
      plt.ylabel('Frequency')
      plt.figtext(0.5, 0.01, '(This plot shows the distribution of actual_
       ⇔productivity levels, with most workers achieving between 0.65 and 0.85.)', ⊔
       ⇔ha='center', fontsize=8)
      plt.show()
      plt.figure(figsize=(10, 6))
      plt.boxplot([df['targeted_productivity'],__

→df['actual_productivity']],patch_artist=True,vert=False)

      plt.yticks([1, 2], ['Targeted Productivity', 'Actual Productivity'])
      plt.title('Comparison of Targeted vs Actual Productivity')
      plt.xlabel('Productivity')
      plt.figtext(0.5, 0.01, '(This boxplot compares targeted productivity against
       ⇔actual productivity, which shows actual productivity always falls short of ⊔
       →the target)', ha='center', fontsize=8)
      plt.show()
      df['department'] = df['department'].str.strip().str.lower()
      grouped = df.groupby(['department', 'team'])['actual_productivity'].mean().
       →unstack()
```

0.800000

24.260000

1252.500000

75%

9.000000

```
grouped.plot(kind='bar', figsize=(12, 6))
plt.title('Actual Productivity by Department and Team')
plt.ylabel('Actual Productivity')
plt.xlabel('Department')
plt.xticks(rotation=360)
plt.legend(title='Team')
plt.figtext(0.5, 0.01, '(This bar chart compares average actual productivity,
 \hookrightarrowacross different departments, with the sewing department showing lower\sqcup
 →average productivity than finishing.)', ha='center', fontsize=8)
avg_productivity = df.groupby(['department'])['actual_productivity'].mean()
departments = avg_productivity.index
plt.plot(departments, avg_productivity, linestyle='dashed', color='red', __
 →label='Avg Actual Productivity')
plt.legend()
plt.show()
print(df['department'].unique())
```


(This plot shows the distribution of actual productivity levels, with most workers achieving between 0.65 and 0.85.)

Productivity
(This boxplot compares targeted productivity against actual productivity, which shows actual productivity always falls short of the target)

['sweing' 'finishing']

```
[19]: numeric_df = df.select_dtypes(include=[np.number])
    correlation_matrix = numeric_df.corr()
```



```
[20]: from sklearn.model_selection import TimeSeriesSplit

df['date'] = pd.to_datetime(df['date'], format='%m/%d/%Y')

data = df.sort_values(by='date')

X = df.drop(columns=['date', 'actual_productivity']) # Dropping date and_

starget from features
```

```
y = df['actual_productivity']
      tscv = TimeSeriesSplit(n_splits=3)
      splits = list(tscv.split(X, y))
      train_index = splits[0][0]
      val_index = splits[1][1]
      test_index = splits[2][1]
      X_train = X.iloc[train_index]
      y_train = y.iloc[train_index]
      X_val = X.iloc[val_index]
      y_val = y.iloc[val_index]
      X_test = X.iloc[test_index]
      y_test = y.iloc[test_index]
      train_date_range = (data.iloc[train_index]['date'].min(), data.
       ⇔iloc[train_index]['date'].max())
      val_date_range = (data.iloc[val_index]['date'].min(), data.
       →iloc[val index]['date'].max())
      test_date_range = (data.iloc[test_index]['date'].min(), data.
       →iloc[test_index]['date'].max())
      print("Training set date range:", train date range)
      print("Validation set date range:", val_date_range)
      print("Test set date range:", test_date_range)
     Training set date range: (Timestamp('2015-01-01 00:00:00'),
     Timestamp('2015-01-18 00:00:00'))
     Validation set date range: (Timestamp('2015-02-04 00:00:00'),
     Timestamp('2015-02-23 00:00:00'))
     Test set date range: (Timestamp('2015-02-23 00:00:00'), Timestamp('2015-03-11
     00:00:00'))
[21]: from sklearn.compose import ColumnTransformer
      from sklearn.pipeline import Pipeline
      from sklearn.preprocessing import StandardScaler, OneHotEncoder,
       ⇔OrdinalEncoder, MinMaxScaler
      onehot ftrs = ['department', 'day']
      std_ftrs = ['targeted_productivity', 'smv', 'wip', 'over_time', 'incentive', |
       -'idle_time', 'idle_men', 'no_of_style_change', 'team', 'no_of_workers']
      preprocessor = ColumnTransformer(
          transformers=[
              ('onehot', OneHotEncoder(sparse output=False, handle unknown='ignore'),

onehot_ftrs),
              ('std', StandardScaler(), std_ftrs)])
```

```
clf = Pipeline(steps=[('preprocessor', preprocessor)])
X_train_prep = clf.fit_transform(X_train)
X_val_prep = clf.transform(X_val)
X_test_prep = clf.transform(X_test)
print(X_train.shape)
print(X_train_prep.shape)
print(X_train_prep)
(300, 13)
(300, 18)
[[ 0.
                           0.
                                                    0.50022296
               1.
                                      ... 0.
  1.12456265]
                                      ... 0.
[ 1.
               0.
                           0.
                                                    -1.56762787
 -1.12016124]
[ 0.
                           0.
                                      ... 0.
                                                    1.38644475
 -0.12984187]
                           0.
                                      ... 0.
                                                    -0.38599882
[ 0.
  1.08054846]
[ 1.
               0.
                           0.
                                      ... 0.
                                                    1.38644475
 -1.16417543]
                                                    -0.38599882
[ 1.
              0.
                           0.
                                      ... 0.
 -1.12016124]]
```