MA111 (IIT Bombay) Weekly Quiz 5: Green's theorem, February 20, 2021

1. Let $\mathbf{F}(x,y) = \frac{(y+e^x)}{\pi}\mathbf{i} + \frac{(2x+\sin(y^2))}{\pi}\mathbf{j}$ be defined on \mathbb{R}^2 and let C be the circle $x^2+y^2=r^2$. Find $\int_C \mathbf{F} \cdot \mathbf{ds}$. The parameter r is given.

Answer. Use Green's theorem. Let $\mathbf{F}(x,y) = F_1(x,y)\mathbf{i} + F_2(x,y)\mathbf{j}$ for all $(x,y) \in \mathbb{R}^2$, where

$$F_1(x,y) = \frac{(y+e^x)}{\pi}, \quad F_2(x,y) = \frac{(2x+\sin(y^2))}{\pi}.$$

Then for all $(x, y) \in \mathbb{R}^2$,

$$\frac{\partial F_2}{\partial x}(x,y) = \frac{2}{\pi}, \quad \frac{\partial F_1}{\partial y}(x,y) = \frac{1}{\pi}.$$

Then, using Green's theorem for the region $D = \{(x,y) \mid x^2 + y^2 \le r^2\}$ enclosed by C:

$$\begin{split} & \int_{C} \mathbf{F}.\,\mathbf{ds} = \int \int_{x^{2}+y^{2} \leq r^{2}} \left[\frac{\partial F_{2}}{\partial x}(x,y) - \frac{\partial F_{1}}{\partial y}(x,y) \right] dx dy \\ & = \frac{1}{\pi} \int \int_{x^{2}+y^{2} < r^{2}} 1 \, dx dy = \frac{1}{\pi} \mathrm{Area}(D) = r^{2}. \end{split}$$

Thus $\int_C \mathbf{F} \cdot \mathbf{ds} = r^2$.

2. Let $\mathbf{F}(x,y) = (e^y \cos x, e^y \sin x)$ defined in \mathbb{R}^2 . (Mark all correct statements below).

[1]

- (a) Then \mathbf{F} is a conservative field.
- (b) div $\mathbf{F} \neq 0$ in \mathbb{R}^3 .
- (c) Let C be the unit circle parametrized by $(\cos t, \sin t)$ for all $t \in [0, 2\pi]$. Let \mathbf{n} be the outward unit normal to C. Then $\int_C \mathbf{F} \cdot \mathbf{n} \, ds = 0$.

Ans. a) and c).

- a) correct. $\phi(x,y) = e^y \sin x$ and then $\mathbf{F} = \operatorname{grad} \phi$. So \mathbf{F} is conservative.
- b) wrong. because div $\mathbf{F}(x,y) = -e^y \sin x + e^y \sin x = 0$.
- c) correct. Using divergence from of Green's theorem: $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \operatorname{div} \mathbf{F} \, dx dy = 0$.
- 3. Let $\mathbf{F}(x,y) = (e^y \cos x, e^y \sin x)$ defined in \mathbb{R}^2 . (Mark all correct statements below).
 - (a) Then ${\bf F}$ is a conservative field.
 - (b) divF = 0 in \mathbb{R}^3 .
 - (c) Let C be the unit circle parametrized by $(\cos t, \sin t)$ for all $t \in [0, 2\pi]$. Let \mathbf{n} be the outward unit normal to C. Then $\int_C \mathbf{F} \cdot \mathbf{n} \, ds \neq 0$.

Ans. a) and b).

Same logic as Qn 2.

4. Mark the correct answer: The value of $\int_C -y dx + x dy$, where C is the triangle with vertices P = (0,0), Q = (0,a) and R = (a,0): the path is traversed from P to Q, then from Q to R and then from R to P. For given parameter a > 0.

- (a) a^2 .
- (b) $-a^2$.

Answer. Use Green's theorem. Note that the orientation of C is clock-wise, i.e., negative oriented. So,

$$\int_{C} -ydx + xdy = -\int_{-C} -ydx + xdy,$$

and now using Green's theorem for D, the region bounded by the triangle C

$$\int_{-C} -y dx + x dy = \int_{D} \left[\frac{\partial}{\partial x} [x] - \frac{\partial -y}{\partial y} \right] dx dy = 2 \operatorname{Area}(D) = 2 \frac{a^{2}}{2} = a^{2}.$$

Thus $\int_C -y dx + x dy = -a^2$.