

Scientific Machine Learning

Lecture 3: Curve-Fitting Revisiting / Probability Distribution

Dr. Daigo Maruyama

Prof. Dr. Ali Elham

Key Components (Current Position)

Machine Learning Classification by Use/Application - Revisit

In this course, machine learning classification is done by methods and their concepts.

Lecture content

- Maximum Likelihood Estimation (continued from Lecture 2)
- Curve Fitting Revisiting
- Probability Distributions

The lecture of this time basically follows the 1st and 2nd chapters of the book: Christopher M. Bishop "Pattern Recognition And Machine Learning" Springer-Verlag (2006) The name of this book is shown as "PRML" when it is referred in the slides.

Lecture content

0. Maximum Likelihood Estimation (continued from Lecture 2)

Likelihood Function - Review

Likelihood function: a probability of data

Data points are assumed to be generated from <u>a</u> distribution (pdf) $p(x) (= p(x|\mu, \sigma))$.

1. <u>Independent</u> and identically distributed (i.i.d.)

$$p(x_1, x_2) = p(x_1)p(x_2) = \prod_{i=1}^{2} p(x_i)$$

2. $p(x_i|\mu,\sigma)$:

the probability when the data point x_i is generated from the distribution $p(x|\mu,\sigma)$.

We can define the probability when all the data points are generated from the distribution $p(x|\mu, \sigma)$, which is $p(\mathbf{X}|\mu, \sigma)$.

a probability of the data X

$$\underline{p(\mathbf{X}|\boldsymbol{\mu},\boldsymbol{\sigma})} = \prod_{i=1}^{N} p(x_i|\boldsymbol{\mu},\boldsymbol{\sigma})$$

When this probability is regarded as a function of the parameters μ and σ , $p(\mathbf{X}|\mu,\sigma)$ is not a probability anymore.

But useful for estimation of the parameters μ , σ !

Maximum Likelihood Estimation (MLE)

Likelihood function: a probability of data

$$\mathbf{X} = (x_1, x_2, \cdots, x_N)$$
 a probability of the data \mathbf{X}
$$p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\sigma}) = \prod_{i=1}^{N} p(x_n|\boldsymbol{\mu}, \boldsymbol{\sigma})$$

$$L(\boldsymbol{\mu}, \boldsymbol{\sigma}) \equiv -\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\sigma}) = \frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \boldsymbol{\mu})^2 + \frac{N}{2} \ln \sigma^2 + \frac{N}{2} \ln 2\pi$$
 Take negative log

Maximum Likelihood Estimation (MLE) $\hat{w}, \hat{\sigma} = \operatorname{argmax} p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma)$

$$\widehat{\mathbf{w}}, \widehat{\mathbf{\sigma}} = \underset{\mathbf{w}, \mathbf{\sigma}}{\operatorname{argmax}} p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \mathbf{\sigma})$$

Maximizing the likelihood function with respect to the parameters μ and σ

Optimization problem
$$\frac{\partial L(\mu, \sigma)}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu) \quad \text{when } \frac{\partial L(\mu, \sigma)}{\partial \mu} = 0, \quad \begin{cases}
\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \\
\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2
\end{cases}$$

Maximum Likelihood Estimation (MLE)

Likelihood function: a probability of data

a probability of the data X

$$p(\mathbf{X}|\boldsymbol{\mu},\boldsymbol{\sigma})$$

Maximum Likelihood Estimation (MLE)

$$\hat{\mu}, \hat{\sigma} = \underset{\mu, \sigma}{\operatorname{argmax}} p(\mathbf{X}|\mu, \sigma)$$

Maximize:

- the probability of the data given the parameters: $p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\sigma})$
- the probability of the parameters given the data: $p(\mu, \sigma | \mathbf{X})$

Likelihood

Posterior **◆**

Which is correct?

Bayes' theorem

under certain conditions:

$$p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\sigma}) \propto p(\boldsymbol{\mu}, \boldsymbol{\sigma}|\mathbf{X})$$

Lecture content

1. Curve Fitting Revisiting

The least square method and the regularization method are summarized in perspectives based in the **probability theory**.

x: deterministic variable

t: random variable

Consider a pdf of the output t_0 at a given input x_0

$$p(t_0|x_0)$$

We **assume** that this pdf is a Gaussian distribution parametrized by μ and σ .

Probabilistic model

$$p(t_0|x_0, \boldsymbol{\mu}, \boldsymbol{\sigma}) = \mathcal{N}(t_0|\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$

We further assume that the mean μ is a function the input x.

$$\mu = y(x, \mathbf{w})$$

e.g. $y(x, \mathbf{w})$ is a polynomial function.

The least square method and the regularization method are summarized in perspectives based in the **probability theory**.

The probabilistic model is now (for arbitrary input x):

$$p(t|x, \mathbf{w}, \sigma) = \mathcal{N}(t|y(x, \mathbf{w}), \sigma^2)$$

Consider parameters μ , σ when they make the probability of data X (Likelihood function) maximum.

Consider the likelihood function.

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma) = \prod_{i=1}^{N} \mathcal{N}(t_i|y(x_i, \mathbf{w}), \sigma^2)$$

x: deterministic variable

t: random variable

Technische

Maximum Likelihood Estimation (MLE)

$$\hat{\boldsymbol{w}}, \hat{\boldsymbol{\sigma}} = \underset{\boldsymbol{w}, \boldsymbol{\sigma}}{\operatorname{argmax}} p(\mathbf{t}|\mathbf{x}, \boldsymbol{w}, \boldsymbol{\sigma})$$

Please confirm that $\widehat{\boldsymbol{w}}$ by MLE is identical to that by the least square method.

Likelihood function

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma) = \prod_{i=1}^{N} \mathcal{N}(t_i|y(x_i, \mathbf{w}), \sigma^2) \qquad \widehat{\mathbf{w}}, \widehat{\sigma} = \underset{\mathbf{w}, \sigma}{arg \max} p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma)$$

$$= \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{\{t_i - y(x_i, \mathbf{w})\}^2}{2\sigma^2}\right]$$

$$L(\mathbf{w}, \sigma) \equiv -\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{2\sigma^2} \sum_{i=1}^{N} \{t_i - y(x_i, \mathbf{w})\}^2 + \frac{N}{2} \ln(2\pi\sigma^2)$$

the least square term

Minimizing $L(\mathbf{w}, \sigma)$ w.r.t. \mathbf{w} leads to the least square method.

- Numerical errors in computing the likelihood function can be eased by taking the log.
- The negative log of likelihood function is normally called Error Function.

Bayes' theorem

When we focus on the parameters \mathbf{w} : Objective: obtain $\hat{\mathbf{w}}$

the new function to be optimized

 $p(\mathbf{w})$: a Gaussian distribution around **0** e.g.

$$p(\mathbf{w}|\sigma_{\mathbf{w}}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \sigma_{\mathbf{w}}^{2}\mathbf{I}) \quad \bullet \cdots$$

Bayes' theorem $p(w|\mathcal{D}) \propto p(\mathcal{D}|w)p(w)$

 $-\ln p(\mathbf{w}|\mathcal{D}) \propto -\ln p(\mathcal{D}|\mathbf{w}) - \ln p(\mathbf{w})$

$$= \frac{1}{2\sigma^2} \sum_{i=1}^{N} \{t_i - y(x_i, \mathbf{w})\}^2 + \frac{N}{2} \ln(2\pi\sigma^2) + \frac{1}{2\sigma_{\mathbf{w}}^2} ||\mathbf{w}||^2$$

$$-\ln p(\mathbf{w}|\mathcal{D}) \propto \sum_{i=1}^{N} \{t_i - y(x_i, \mathbf{w})\}^2 + \left(\frac{\sigma}{\sigma_{\mathbf{w}}}\right)^2 \|\mathbf{w}\|^2 = E(\mathbf{w}) + \lambda \|\mathbf{w}\|^2 \qquad \lambda \equiv \left(\frac{\sigma}{\sigma_{\mathbf{w}}}\right)^2$$

 $p(\mathbf{w}|\sigma_{\mathbf{w}}) = \frac{1}{\left(\sqrt{2\pi\sigma_{\mathbf{w}}^2}\right)^{M+1}} exp\left[-\frac{\|\mathbf{w}\|^2}{2\sigma_{\mathbf{w}}^2}\right]$

Prior distribution of w

where.

$$\lambda \equiv \left(\frac{\sigma}{\sigma_{\mathbf{w}}}\right)^2$$

The same function as that for the regularization

Lecture content

2. Probability Distributions

Machine Learning Modeling (Revisit)

Probabilistic model is hypothesis.

We should know some useful models.

"All models are wrong, but some are useful."
The aphorism from George Box*

*George E. P. Box "Science and Statistics", *Journal of the American Statistical Association*, 71(791799), 1976.

https://en.wikipedia.org/wiki/George_E._P._Box

We cannot inquire which is correct, input error or output error.

- Parametric distributions $p(x|\theta)$
 - Discrete probability distributions
 - Bernoulli distribution
 - Binomial distribution
 - Categorical distribution
 - Multinomial distribution
 - Poisson distribution
 - Continuous probability distributions
 - Beta distribution
 - Dirichlet distribution
 - Gaussian distribution
 - Laplace distripute $p(x|\theta) = \mathcal{N}(x|\mu, \sigma^2)$ where, $\theta = (\mu, \sigma)$
- Non-parametric distributions

- Parametric distributions $p(x|\theta)$
 - Discrete probability distributions

• Bernoulli distribution

2 classes

- Binomial distribution
- Categorical distribution
- Multinomial distribution
- Poisson distribution

discrete output

multiple classes

for Classification / Discrete output

- Continuous probability distributions for Regression
 - Beta distribution
 - Dirichlet distribution
 - Gaussian distribution almost all cases
 - Laplace distribution
- Non-parametric distributions

Bernoulli distribution p(x)

$$\mu^x(1-\mu)^{1-x}$$

Therefore,

$$p(x|\mu) = \text{Bern}(x|\mu)$$

probability probability
$$\mu \qquad 1-\mu \qquad 0 \leq \mu \leq 1$$

Used in Classification (2-classes)

dataset: $\mathcal{D} = \{x_1, \dots, x_N\}$

The likelihood

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu)$$

 μ : probability of x=1

The likelihood
$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu)$$

$$L(\mu) \equiv -\ln p(\mathcal{D}|\mu) = -\sum_{n=1}^{N} \{x_n \ln \mu + (1-x_n) \ln(1-\mu)\}$$

$$\hat{\mu} = \operatorname{argmin} L(\mu)$$

Binomial distribution p(m)

$$\binom{N}{m}\mu^m(1-\mu)^{N-m}$$

Therefore,

$$p(m|N,\mu) = Bin(m|N,\mu)$$

multiple experiments of Bernoulli

Parameters:

 μ : probability of x = 1 (the same as Bernoulli)

N: number of experiments (can be observations)

m: number of observations of x = 1

Basis of:

Poisson distribution

Gaussian distribution

Please consider $\hat{\mu}$ by MLE when N=3 and m=3.

PRML, p. 70

Categorical distribution p(x)

where,
$$x = \{x_1, \dots, x_K\}, \sum_{k=1}^K x_k = 1$$

multi dimensional of Bernoulli

$$\prod_{k=1}^{K} \mu_k x_k \qquad \text{parameters} \\
\mu = (\mu_1, \dots, \mu_K)^{\text{T}}$$

 μ_k : probability of $x_k = 1$

Observations *x* is now represented as

$$K = 6$$
 $\mathbf{x} = (0,0,1,0,0,0)^{\mathrm{T}}$

when 3 is observed

probability theory, wikipedia

$$p(x|\mu) = \operatorname{Cat}(x|\mu)$$

Used in Classification (multiple-classes)

Multinomial distribution

$$p(\boldsymbol{m}|\boldsymbol{\mu}, N) = \text{Mult}(\boldsymbol{x}|\boldsymbol{\mu}, N) = N! \prod_{k=1}^{K} \frac{\mu_k^{m_k}}{m_k!}$$

Binomial distribution

$$p(m|N,\mu) = {N \choose m} \mu^m (1-\mu)^{N-m}$$

$$N \to \infty$$

$$N\mu: \text{const.}$$

Poisson distribution

$$p(k|\lambda) = \Pr(k|\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$\lambda = N\mu$$

Gaussian distribution

Poisson distribution

$$p(k|\lambda) = \Pr(k|\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

Dataset $\mathbf{k} = \{k_1, \dots, k_N\}$

$$p(\mathbf{k}|\lambda) = \prod_{n=1}^{N} \Pr(k_n|\lambda)$$

by MLE
$$\hat{\lambda} = 4.878$$

$$L(\mu) \equiv -\ln p(\mathbf{k}|\lambda) = -\sum_{n=1}^{N} \left\{ k_n \ln \lambda - \lambda - \sum_{n=1}^{N} \ln \lambda \right\}$$

Gaussian Distribution (Normal Distribution)

Carl Friedrich Gauss (1777-1855)

Born in Braunschweig

Collegium Carolinum at TUBS

Some important topics related to Gaussian distributions

- Least square method
- Central limit theorem
- Gaussian Process

