Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт цифрового развития Кафедра инфокоммуникаций

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3 дисциплины «Алгоритмизация»

	Выполнила:
	Кубанова Ксения Олеговна
	2 курс, группа ИВТ-б-о-22-1,
	09.03.01 «Информатика и
	вычислительная техника», очная
	форма обучения
	(подпись)
	Руководитель практики:
	Воронкин Р. А.
	(подпись)
Отчет защищен с оценкой	Дата защиты

Порядок выполнения работы

Задача состоит в том, чтобы написать такой код, в котором будет происходить поиск определённого заданного числа. Такой код представлен ниже.

```
#include <iostream>
#include <ctime>
using namespace std;
int f(int a[], int n, int x)
  for (int i = 0; i < n; i++)
     if(a[i] == x)
       return i;
  }
    return -1;
int main()
  int const n = 100;
  int a[n];
  int x;
  clock t now = clock();
  for (int i = 0; i < n; i++)
     a[i] = rand() \% 10;
  cout << endl << "x=";
  x = 10;
  int result = f(a, n, x);
  if (result == -1)
     cout << "Element not found" << endl;</pre>
  else
     cout << "Element found at index " << result << endl;</pre>
  clock_t end = clock();
  double seconds = (double)(end - now) / CLOCKS_PER_SEC;
  cout << endl << seconds << endl;</pre>
  return 0;
```

Далее, с помощью метода наименьших квадратов для худшего и среднего случая выполнения задачи, следует составить линейную зависимость в виде графика.

Для худшего случая

Таблица 1 – таблица значений для МНК худшего случая

xi	10	20	30	40	50	60	70	80	90	100	550
yi	0,011	0,013	0,025	0,067	0,024	0,024	0,037	0,024	0,079	0,092	0,396
x^											
2i	100	400	900	1600	2500	3600	4900	6400	8100	10000	38500
xiy											
i	0,11	0,26	0,75	2,68	1,2	1,44	2,59	1,92	7,11	9,2	27,26
y^	0,000	0,000	0,000	0,004	0,000	0,000	0,001	0,000	0,006	0,008	0,023
2i	121	169	625	489	576	576	369	576	241	464	206

На основе сумм значений данной таблицы можно составить следующее уравнение:

$$\begin{cases} 38500a + 550b = 27,26 \\ 550a + 10b = 0,396 \end{cases}$$

Отсюда следует, что a = 0.000664242, a b = 0.003066667.

На основе этого строится линейное уравнение для графика:

$$y = 0.000664242x + 0.003066667$$

Отсюда следует найти точки.

Таблица 2 – точки для графика МНК худшего случая

n	1	2	3	4	5	6	7	8	9	10
	0,009709	0,0163	0,0229	0,0296	0,0362	0,0429	0,0495	0,0562	0,0628	0,0694
v	091	52	94	36	79	21	64	06	48	91

Рисунок 1 – график МНК для худшего случая Коэффициент корреляции равен 1.

Для среднего случая

Таблица 3 – таблица значений МНК для среднего случая

xi	10	20	30	40	50	60	70	80	90	100	550
yi	0,053	0,032	0,027	0,022	0,08	0,042	0,079	0,073	0,045	0,08	0,533
x^										1000	
2i	100	400	900	1600	2500	3600	4900	6400	8100	0	38500

y۸	0,0028	0,0010	0,0007	0,0004	0,00	0,0017	0,0062	0,0053	0,0020	0,00	0,0332
2i	09	24	29	84	64	64	41	29	25	64	05
xi*											
yi	0,53	0,64	0,81	0,88	4	2,52	5,53	5,84	4,05	8	32,8

На основе сумм значений данной таблицы можно составить следующее уравнение:

$$\begin{cases} 38500a + 550b = 32,8 \\ 550a + 10b = 0,533 \end{cases}$$

Отсюда следует, что a = 0.000422, a b = 0.030067.

На основе этого строится линейное уравнение для графика:

$$y = 0.000422x + 0.030067$$

Отсюда следует найти точки.

Таблица 4 – точки для графика МНК среднего случая

n		2	3	4	5	6	7	8	9	10
	0,0342	0,0385	0,0427	0,0469	0,0511	0,0554	0,0596	0,0638	0,0680	0,0723
у	91	15	39	64	88	12	36	61	85	09

Рисунок 2 – график МНК для среднего случая

Коэффициент корреляции равен 1.

Вывод: во время выполнения лабораторной работы были изучены и проработаны метод наименьших квадратов и нахождение коэффициента корреляции.