METODA RETRAKCJI – DIAGRAM VORONOI'a

Metoda Retrakcji należy do grupy metod Mapy Dróg. Polega na zdefiniowaniu ciągłego odwzorowania wolnej przestrzeni C_{free} na 1-wymiarową sieć krzywych R położoną w C_{free} .

1. Podstawy formalne

Retrakcja jest klasycznym pojęciem w topologii.

Def. Niech X będzie przestrzenią topologiczną. Niech $Y \subseteq X$. Odwzorowanie $\rho: X \rightarrow Y$, które jest ciągłe, i którego ograniczenie do Y jest odwzorowaniem identycznym ($\rho(y) = y$, $\forall y \in Y$), jest nazywane *retrakcją* X w Y.

Def. Niech ρ będzie retrakcją przestrzeni topologicznej $X \le Y$. Mówimy, że ρ *zachowuje spójność* X wtedy i tylko wtedy gdy $\forall x \in X$, x i $\rho(x)$ należą do tego samego, połączonego ścieżką składnika X.

Niech ρ będzie zachowującą spójność retrakcją przestrzeni C_{free} na 1-wymiarowy podzbiór $R \subset C_{free}$ (siatkę krzywych). Następujące twierdzenie redukuje planowanie ruchu w C_{free} do planowania w R:

Tw. Niech $\rho: C_{free} \to R$, gdzie $R \subset C_{free}$ jest siatką 1-wymiarowych krzywych, będzie zachowująca spójność retrakcją.

Pomiędzy dwoma konfiguracjami \mathbf{q}_i , $\mathbf{q}_g \in C_{free}$ istnieje ścieżka, w. i t. w., gdy istnieje ścieżka pomiędzy ich odwzorowaniami $\rho(\mathbf{q}_i)$, $\rho(\mathbf{q}_g) \in R$.

Dowód: Jeżeli istnieje ścieżka w R pomiędzy $\rho(\mathbf{q}_i)$ a $\rho(\mathbf{q}_g)$, to istnieje ścieżka składająca się z trzech odcinków:

I. $(\mathbf{q}_{i}, \rho(\mathbf{q}_{i})),$ II. $(\rho(\mathbf{q}_{i}), \rho(\mathbf{q}_{g})),$ III. $(\rho(\mathbf{q}_{g}), \mathbf{q}_{g}).$

Odcinki I i III istnieją ponieważ przekształcenie ρ zachowuje spójność C_{free} .

Efektywność planowania ścieżki zależy od:

- wyboru odwzorowania ρ ,
- algorytmów konstruowania grafowej reprezentacji sieci krzywych R,
- obliczania odwzorowania $\rho(\mathbf{q}_i)$ i $\rho(\mathbf{q}_g)$,
- generowania ścieżek $(\mathbf{q}_i, \rho(\mathbf{q}_i))$ i $(\rho(\mathbf{q}_g), \mathbf{q}_g)$,

2. Wieloboczna przestrzeń konfiguracyjna 2D

Dla przestrzeni $C = \mathbb{R}^2$, ograniczonej wielobokami, efektywną retrakcją jest jej diagram Voronoi'a. Ten diagram ma interesująca własność maksymalizacji odległości pomiędzy robotem a przeszkodami.

Def. Niech β będzie obrysem (otoczeniem) przestrzeni swobodnej C_{free} . **Prześwit** (clearance) w punkcie $\mathbf{q} \in C_{free}$ jest funkcją:

$$clear(\mathbf{q}) = \min_{p \in \beta} \|\mathbf{q} - p\|,$$

gdzie: ||. ||-metryka Euklidesowa.

Def. Niech będzie dany zbiór:

$$near(\mathbf{q}) = \{ p \in \beta / \| \mathbf{q} - p \| = clear(\mathbf{q}) \},$$

punktów obrysu β przestrzeni swobodnej, spełniających funkcję prześwitu (względem pewnej konfiguracji \mathbf{q}).

 ${\it Diagramem\ Voronoi'a}$ przestrzeni $C_{\it free}$ nazywamy zbiór konfiguracji:

$$Vor(C_{free}) = \{ \mathbf{q} \in C_{free} \mid card (near(\mathbf{q})) > 1 \},$$

gdzie: card E – oznacza liczność (cardinality) zbioru E.

Diagram Voronoi'a jest zbiorem konfiguracji zachowujących minimalny dystans do więcej niż jednego punktu otoczenia β przestrzeni C_{free} .

3. Konstrukcja diagramu

Gdy przestrzeń swobodna C_{free} jest ograniczona wielobokami, to diagram Voronoi'a składa się z odcinków prostych i paraboli.

Każdy *odcinek prostej* jest zbiorem konfiguracji położonych najbliżej pary "krawędź – krawędź" (E-E) lub "wierzchołek – wierzchołek" (X-X). Para taka określa równanie prostej. Przykładowo, odcinek prostej S_I , jest zbiorem konfiguracji położonych najbliżej pary krawędzi (E_3, E_7) : $S_I \leftarrow (E_3, E_7)$.

Każdy *odcinek paraboli* jest zbiorem konfiguracji położonych najbliżej pary "krawędź – wierzchołek" (E-X). Para taka określa równanie paraboli. Przykładowo, odcinek paraboli S_2 jest zbiorem konfiguracji położonych najbliżej pary krawędź – wierzchołek (E_8, X_5) : $S_2 \leftarrow (E_8, X_5)$).

Złożoność obliczeniowa

Jeżeli obrys β przestrzeni swobodnej C_{free} ma "n" wierzchołków, to naiwny algorytm tworzy diagram Voronoi'a w czasie $O(n^4)$ – rozważając $O(n^2)$ par (E-E), (X-X), (E-X), i obliczając przecięcia odpowiadających im równo-odległych krzywych.

Można łatwo wykazać, że całkowita liczba łuków $Vor(C_{free})$ wynosi O(n), a więc istnieje algorytm, który oblicza $Vor(C_{free})$ w czasie $O(n^2)$.

Istnieją także algorytmy o złożoności O(n log²n) opracowane przez Lee i Drysdale'a oraz przez Leven'a i Sharir'a, a także algorytmy optymalne O(n log n)opracowane przez Kirkpatrick'a oraz przez Yap'a a także przez Fortune'a.

4. Konstrukcja odwzorowania $\rho(q)$

Rozważmy konfigurację swobodną \mathbf{q} , spoza diagramu Voronoi'a ($\mathbf{q} \notin Vor(C_{free})$), oraz najbliższy dla niej punkt obrysu $p \in \beta$, czyli taki że: $\|\mathbf{q} - p\| = clear(\mathbf{q})$.

Punkt p jest albo pojedynczym wierzchołkiem obrysu ($p = X_i \in \beta$) albo elementem otwartej krawędzi obrysu ($p \in E_i \in \beta$).

Rozważmy pół-prostą L wychodzącą z p i przechodząca przez ${\bf q}$.

Odcinek łączący punkt p z najbliższym przecięciem prostej L z diagramem $Vor(C_{free})$, przebiega po "max. spadku" funkcji prześwitu clear (\mathbf{q}), tj. dla każdego \mathbf{q} położonego na tym odcinku, wektor $\nabla clear(\mathbf{q})$ wskazuje wzdłuż L.

Pierwsze przecięcie L z diagramem $Vor(C_{free})$, oznaczone przez $\rho(\mathbf{q})$, jest "obrazem konfiguracji \mathbf{q} na diagramie $Vor(C_{free})$ ".

Poza $\rho(\mathbf{q})$, funkcja prześwitu *clear* (\mathbf{q}) maleje lub zmienia się kierunek jej gradientu. Funkcję ρ można rozszerzyć na całą C_{free} , kładąc: $\rho(\mathbf{q}) = \mathbf{q}$ dla $\forall \mathbf{q} \in Vor(C_{free})$.

Tw.

Aplikacja odwzorowania $\rho: C_{free} \rightarrow Vor(C_{free})$, jest ciągła.

A więc ρ jest retrakcją C_{free} na diagram $Vor(C_{free})$. Ze względu na sposób konstrukcji zachowuje ona spójność C_{free} .

5. Algorytm planowania ścieżki

Metoda planowania ścieżki oparta na retrakcji ρ wykorzystuje diagram Voronoi'a jako mapę dróg R. Algorytm jest następujący:

- 1. Oblicz diagram $Vor(C_{free})$.
- 2. Oblicz punkty $\rho(\mathbf{q}_i)$, $\rho(\mathbf{q}_g) \in Vor(C_{free})$ i określ łuki $Vor(C_{free})$ zawierające te punkty.
- 3. Szukaj w $Vor(C_{free})$ sekwencji łuków $A_1, ...A_p$, takiej że $\rho(\mathbf{q}_i) \in A_1, \rho(\mathbf{q}_g) \in A_p$, oraz $\forall i \in [1, p-1]$ łuki A_i i A_{i+1} mają wspólny wierzchołek.
- 4. Gdy poszukiwanie zakończy się sukcesem, podaj $\rho(\mathbf{q}_i)$ i $\rho(\mathbf{q}_g)$ oraz sekwencję łączących je łuków, w przeciwnym przypadku podaj brak drogi.

Krok 1 wymaga czasu O(n log n).

W kroku **2** trzeba najpierw obliczyć dystans konfiguracji \mathbf{q}_i (odpowiednio \mathbf{q}_g) do każdej krawędzi E_s i każdego wierzchołka X_r obrysu β , a potem wyznaczyć punkt $p_i \in \beta$ (odpowiednio $p_g \in \beta$), dla którego ten dystans jest najmniejszy, następnie określić wszystkie przecięcia promienia wychodzącego z p_i (odpowiednio p_g) i przechodzącego przez \mathbf{q}_i (odpowiednio \mathbf{q}_g) z diagramem $Vor(C_{free})$ oraz wybrać przecięcie najbliższe p_i (odpowiednio p_g). Ponieważ w $Vor(C_{free})$ istnieje O(n) łuków te obliczenia wymagają O(n) czasu.

Poszukiwanie z kroku 3 również wymaga O(n) czasu.

Tak więc całkowita złożoność czasowa metody wynosi $O(n \log n)$. Najbardziej kosztowny jest krok **1**, lecz zależy on jedynie od przestrzeni C_{free} a nie od położenia konfiguracji \mathbf{q}_i i \mathbf{q}_g . Więc planowanie innych ścieżek w tej samej przestrzeni pomija krok **1** i zajmuje O(n) czasu. Dodatkowo istnieje liniowa metoda uaktualniania diagramu gdy kilka przeszkód ulegnie zmianie.