

Cours Math310

Deuxième partie : Probabilité

Chapitre 4: Introduction au calcul des probabilités

M. BEZOUL

31 janvier 2012

Plan de travail

- 1 Introduction au calcul des probabilités
- 2 Terminologie des probabilités
 - Evénement (d'une expèrience aléatoire)
 - Opération sur les évènements
- 3 Le concept de probabilité
 - Concept de probabilité conditionnelle
- 4 Quelques propriétés des probabilités conditionnelles
- 5 Concept dŠindépendance en probabilité
- 6 Formule de Probabilité totale et théorème de Bayes

Dans le cours précédent

Dans le cours précédent

Arrangement avec Répétition

Arrangement sans répétition
Permutations
Combinaisons
Triangle de Pascal
Binôme de Newton

Dans le cours précédent

Arrangement avec Répétition Arrangement sans répétition

Permutations Combinaisons Triangle de Pascal Binôme de Newton

Dans le cours précédent

Arrangement avec Répétition Arrangement sans répétition Permutations

Combinaisons Triangle de Pascal Binôme de Newton

Dans le cours précédent

Arrangement avec Répétition Arrangement sans répétition Permutations Combinaisons

Triangle de Pascal Binôme de Newtor

Dans le cours précédent

Arrangement avec Répétition Arrangement sans répétition Permutations Combinaisons Triangle de Pascal

Dans le cours précédent

Arrangement avec Répétition Arrangement sans répétition Permutations Combinaisons Triangle de Pascal Binôme de Newton

Plan de travail

- 1 Introduction au calcul des probabilités
- 2 Terminologie des probabilités
 - Evénement (d'une expèrience aléatoire)
 - Opération sur les évènements
- 3 Le concept de probabilité
 - Concept de probabilité conditionnelle
- Quelques propriétés des probabilités conditionnelles
- 5 Concept dŠindépendance en probabilité
- 6 Formule de Probabilité totale et théorème de Bayes

Formule de Probabilité totale et théorème de Bayes

Introduction

Cette première notion de la théorie des probabilités s'est imposée au 17^{eme} siècle dans l'étude des jeux de hasard (jeux de dés, de cartes, etc...). Une expérience aléatoire se décrit mathématiquement par la donnée de l'ensemble des résultats possibles de l'expérience en question. Il est de tradition de noter Ω un tel résultat (parfois appelé ; éventualité" dans la suite) et de désigner par l'espace de tous ces résultats possibles.

Plan de travail

- Introduction au calcul des probabilités
- 2 Terminologie des probabilités
 - Evénement (d'une expèrience aléatoire)
 - Opération sur les évènements
- 3 Le concept de probabilité
 - Concept de probabilité conditionnelle
- Quelques propriétés des probabilités conditionnelles
- 5 Concept dŠindépendance en probabilité
- 6 Formule de Probabilité totale et théorème de Bayes

Espace ou ensemble fondamental

Définition

On appel espace fondamental noté Ω d'une expérience (E), tous les résultats attendus de cette expérience.

Formule de Probabilité totale et théorème de Bayes

Exemple

• Pour l'experience E_1 : lancement d'un dé numéroté de 1 jusqu'a 6, l'espace fondamental est :

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

 E₂: "Jet d'une pièce", cette éxpèrience aura pour espace fondamental:

$$\Omega_2 = \{P, F\}$$

Formule de Probabilité totale et théorème de Bayes

Exemple

 Pour l'experience E₁: lancement d'un dé numéroté de 1 jusqu'a 6, l'espace fondamental est :

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

 E₂: "Jet d'une pièce", cette éxpèrience aura pour espace fondamental:

$$\Omega_2 = \{P, F\}$$

Formule de Probabilité totale et théorème de Baves

Exemple

 Pour l'experience E₁: lancement d'un dé numéroté de 1 jusqu'a 6, l'espace fondamental est :

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

• E₂ : "Jet d'une pièce", cette éxpèrience aura pour espace fondamental :

$$\Omega_2 = \{P, F\}$$

Formule de Probabilité totale et théorème de Baves

Exemple

 Pour l'experience E₁: lancement d'un dé numéroté de 1 jusqu'a 6, l'espace fondamental est :

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

• E₂ : "Jet d'une pièce", cette éxpèrience aura pour espace fondamental :

$$\Omega_2 = \{P, F\}$$

• A l'instant t = 0 on met en fonctionnement un appareil et l'on s'intèresse au temps de bon fonctionnement :

$$\Omega_3 = \Re_+$$

$$\Omega_4 = \{2, 3, 4, ..., 12\}$$

• A l'instant t = 0 on met en fonctionnement un appareil et l'on s'intèresse au temps de bon fonctionnement :

$$\Omega_3=\Re_+$$

$$\Omega_4 = \{2, 3, 4, ..., 12\}$$

• A l'instant t = 0 on met en fonctionnement un appareil et l'on s'intèresse au temps de bon fonctionnement :

$$\Omega_3=\Re_+$$

$$\Omega_4 = \{2, 3, 4, ..., 12\}$$

• A l'instant t = 0 on met en fonctionnement un appareil et l'on s'intèresse au temps de bon fonctionnement :

$$\Omega_3 = \Re_+$$

$$\Omega_4 = \{2, 3, 4, ..., 12\}$$

Evénement

Définition

Un événement est un ensemble de résultats ω d'une expérience aléatoire possédant une même proprité.

Exemple

Dans l'expérience du jet d'un dé, les formulations suivantes représentent des évenements :

- ω_1 : "Avoir le chiffre 1"
- ω_2 : "Avoir une chiffre impair"
- ω_3 : "Avoir un chiffre inférieur à 3"

Opérations sur les événements

- A tout événement ω , on associée son contraire $\overline{\omega}$, qui représente son complémentaire dans l'ensemble fondammentale.
- L'événement impossible (qui ne se réalise jamais), sera noté \emptyset . L'équation $A_1 \cap A_2 = \emptyset$, A_1 et A_2 sont disjoints, et signifie que A_1 et A_2 sont incompatibles.
- L'événement certain (qui se réalise toujours) sera noté Ω .

Opérations sur les évènements

Événement	J	Terminologie	Signification de la réalisation de
	ensembliste	probabiliste	ľévénement étudié
Ā	complémentation	négation	A se réalise si et seulement
	de A	de A	si A ne se réalise pas.
A∩B	intersection	conjonction	A ∩ B se réalise si et seulemen
	de A et B	de A et B	si A et B se réalisent.
A∪B	réunion	réunion	A ∪B se réalise si et seulemen
	de A et B	de A et B	si A ou B se réalisent.

Quelques propriétés des opérations sur les évènements

commutativité	$A \cap B = B \cap A$		
	$A \cup B = B \cup A$		
associativité	$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$		
	$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$		
distributivité	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$		
lois de Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$		
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$		

Département des Mines et Geologie.

Mr. BEZOUI

Formule de Probabilité totale et théorème de Bayes

Plan de travail

- Introduction au calcul des probabilités
- 2 Terminologie des probabilités
 - Evénement (d'une expèrience aléatoire)
 - Opération sur les évènements
- 3 Le concept de probabilité
 - Concept de probabilité conditionnelle
- Quelques propriétés des probabilités conditionnelles
- 5 Concept dŠindépendance en probabilité
- 6 Formule de Probabilité totale et théorème de Bayes

Le concept de probabilité

Formule de Probabilité totale et théorème de Baves

Considérons une expérience aléatoire dont l'ensemble fondamental des résultats contient un nombre fini n de résultats, cŠest-à-dire $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$.

A chacun des n événements simples (événements ne correspondant quŠà un seul résultat) qu'on peut définir pour cette expérience aléatoire correspond une probabilité de réalisation ; cŠest-à-dire à chacun des événements ω_i correspond une probabilité de réalisation $(P\{\omega_i\}), (i=1,2,...,n)$. Ces n probabilités sont telles que : pour $i=1,2,...,n,0 \le P(\omega_i) \le 1$ et $\sum_{i=1}^n P(\omega_i) = 1$

Soit A un événement défini à partir de cette expérience, cŠest-à-dire soit A un sous-ensemble de W. La probabilité de réalisation de lŠévénement A peut se noter P(A) et, de façon générale,

$$P(A) = \sum_{i=1}^{n} P(\{\omega_i\}) \tag{1}$$

Formule de Probabilité totale et théorème de Bayes

Si les n éléments de l'ensemble Ω sont équiprobables, c'est-à-dire si $P(\omega_i) = \frac{1}{n}, i = 1, 2, ..., n$, alors :

$$P(A) = \frac{\#A}{\#\Omega} = \frac{\#A}{\#n} \tag{2}$$

où le symbole # désigne la cardinalité (le nombre d'éléments) de l'ensemble qui le suit.

Formule de Probabilité totale et théorème de Baves

Le concept de probabilité conditionnelle

Définition (probabilité conditionnelle)

Soit A et E deux événements où E a une probabilité de réalisation non-nulle. La probabilité conditionnelle de réalisation de l'événement A étant donné que l'événement E s'est réalisé est notée P(A|E). Parfois, la probabilité conditionnelle P(A|E) se calcule ou se déduit directement. Lorsque ce n'est pas le cas, on utilise la définition : $P(A|E) = P(A \cap E)/P(E)$.

Plan de travail

- Introduction au calcul des probabilités
- 2 Terminologie des probabilités
 - Evénement (d'une expèrience aléatoire)
 - Opération sur les évènements
- Le concept de probabilité
 - Concept de probabilité conditionnelle
- 4 Quelques propriétés des probabilités conditionnelles
- 5 Concept dŠindépendance en probabilité
- 6 Formule de Probabilité totale et théorème de Bayes

Quelques propriétés des probabilités conditionnelles

Les propriétés des probabilités de réalisation de deux événements A et B, s'étendent à la probabilité conditionnelle.

Soit A, B et E trois événements, où E a une probabilité de réalisation non nulle.

$$0 \le P(A|E) \le 1 \qquad 0 \le P(B|E) \le 1$$

$$P(\overline{A}|E) = 1 - P(A|E) \text{ et } P(\overline{B}|E) = 1 - P(B|E)$$

Plan de travail

- Introduction au calcul des probabilités
- 2 Terminologie des probabilités
 - Evénement (d'une expèrience aléatoire)
 - Opération sur les évènements
- Le concept de probabilité
 - Concept de probabilité conditionnelle
- Quelques propriétés des probabilités conditionnelles
- 5 Concept dŠindépendance en probabilité
- 6 Formule de Probabilité totale et théorème de Bayes

Indépendance de 2 événements

Deux événements possibles A et B sont dits indépendants en probabilité si la réalisation de l'un ne modifie en rien la probabilité de réalisation de l'autre. On peut définir ce concept d'indépendance en probabilité de 2 événements possibles de 3 façons équivalentes :

- **1** P(A|B) = P(A);
- **2** P(A|B) = P(A);
- $P(A \cap B) = P(A).P(B)$

Plan de travail

- Introduction au calcul des probabilités
- 2 Terminologie des probabilités
 - Evénement (d'une expèrience aléatoire)
 - Opération sur les évènements
- 3 Le concept de probabilité
 - Concept de probabilité conditionnelle
- Quelques propriétés des probabilités conditionnelles
- 5 Concept dŠindépendance en probabilité
- 6 Formule de Probabilité totale et théorème de Bayes

Formule de Probabilité totale et théorème de Bayes

Soit $E_1, E_2, ..., E_k$ une suite d'événements qui forme une partition de W et dont les probabilités de réalisation $P(E_i), i = 1, 2, ..., k$, sont connues et non nulles.

Soit A un événement quelconque pour lequel il est possible de calculer directement les probabilités conditionnelles de réalisation $P(A|E_i)$, i=1,2,...,k.

Formule des probabilités totales

$$P(A) = P(A|E_1)P(E_1) + P(A|E_2)P(E_2) + ... + P(A|E_k)P(E_k)$$

Loi de Bayes

$$P(E_i|A) = P(AE_i)/P(A) = P(A|E_i)P(E_i)/P(A), i = 1, 2, ..., k.$$

Merci de votre attention!