FUNDAMENTALS OF MACHINE LEARNING

AA 2025-2026

Prova Intermedia (FACSIMILE)

4 November, 2025

Istruzioni: Niente libri, niente appunti, niente dispositivi elettronici, e niente carta per appunti. Usare matita o penna di qualsiasi colore. Usare lo spazio fornito per le risposte. Instructions: No books, no notes, no electronic devices, and no scratch paper. Use pen or pencil. Use the space provided for your answers.

This exam has 5 questions, for a total of 100 points and 10 bonus points.

1.

Nome:
Matricola:
Multiple Choice: Select the correct answer from the list of choices.
(a) [5 points] True or False: Adding an L_2 regularizer to least squares regression will reduce bias. \bigcirc True \bigcirc False
(b) [5 points] True or False: A zero-mean Gaussian Prior (i.e. $p(\mathbf{w}) = \mathcal{N}(0, \sigma I)$) on model parameters in a MAP estimate corresponds to adding an L2 regularization term (e.g. $ \mathbf{w} _2$) to the loss in an MLE estimate. \bigcirc True \bigcirc False
(c) [5 points] True or False: In the Primal Form of the SVM, increasing hyperparameter C will decrease the complexity of the resulting classifier. \bigcirc True \bigcirc False
(d) [5 points] True or False: The Maximum a Priori (MAP) and Maximum Likelihood (ML) solution for linear regression are always equivalent. \bigcirc True \bigcirc False
(e) [5 points] If a hard-margin support vector machine tries to minimize $ \mathbf{w} _2$ subject to $y_n(\mathbf{w}^T\mathbf{x}_n+b) \geq 2$, what will be the size of the margin?
$\bigcirc \frac{1}{ \mathbf{w} } \bigcirc \frac{2}{ \mathbf{w} } \bigcirc \frac{1}{2 \mathbf{w} } \bigcirc \frac{1}{4 \mathbf{w} }$
(f) [5 points] The posterior distribution of B given \tilde{A} is: $P(B \mid A) = P(A \mid B)P(A)$
$\bigcirc P(B \mid A) = \frac{P(A \mid B)P(A)}{P(B)}$
$\bigcirc P(B \mid A) = \frac{P(A,B)P(B)}{P(A)}$
$\bigcap P(B \mid A) = \frac{P(A B)P(B)}{P(A)}$
$\bigcirc P(B \mid A) = \frac{P(A B)P(B)}{P(A,B)}$
(g) [5 points] Let \mathbf{w}^* be the solution obtained using unregularized least-squares regression. What solution will you obtain if you scale all input features by a factor of c before solving?
$\bigcirc c\mathbf{w}^* \bigcirc c^2\mathbf{w}^* \bigcirc \frac{1}{c^2}\mathbf{w}^* \qquad \bigcirc \frac{1}{c}\mathbf{w}^*$ $\boxed{\qquad} \qquad $

Multiple Answer: Select ALL correct choices: there may be more than one correct choice, but there is always at least one correct choice.	S
(a) [5 points] What are support vectors?	
\bigcirc The examples \mathbf{x}_n from the training set required to compute the decision function $f(\mathbf{x})$ in a	n
SVM.	
○ The class means.	
The training samples farthest from the decision boundary.	
The training samples \mathbf{x}_n that are on the margin (i.e. $y_n f(\mathbf{x}_n) = 1$).	
(b) [5 points] Which of the following are true about the relationship between the MAP and MLE estimator for linear regression?	s
They are equal in the limit of infinite training samples.	
\bigcirc They are equal if $p(\mathbf{w}) = \mathcal{N}(0, \sigma)$ for very small σ .	
They are equal if $p(\mathbf{w}) = 1$.	
They are never equal.	
(c) [5 points] You train a linear classifier on 10,000 training points and discover that the training accuracy is only 67%. Which of the following, done in isolation, has a good chance of improving your training accuracy?	
Add novel features.	
Train on more data.	
Regularize the model.	
Train on less data.	
(d) [5 points] What assumption does the quadratic Bayes generative classifier make about class-conditions covariance matrices?	.1
○ That they are equal.	
○ That they are diagonal.	
That their determinants are e	
O None of the above.	
(e) [5 points] Which of the following are reasons why you might adjust your model in ways that increas the bias?	е
You observe high training error and high validation error.	
You have few data points.	
You observe low training error and high validation error.	
Your data are not linearly separable.	
(f) [5 points] Which of the following are true of polynomial regression (i.e. least squares regression with polynomial basis mapping)?	1
If we increase the degree of polynomial, we increase variance.	
The regression function is nonlinear in the model parameters.	
The regression function is linear in the original input variables.	
○ If we increase the degree of polynomial, we decrease bias.	
(g) [5 points] Which of the following classifiers can be used on non linearly separable datasets?	
○ The hard margin SVM.	
Cogistic regression.	
The linear generative Bayes classifiers.	
Fisher's Linear Discriminant.	
Total Question 2	2: 3

2.

35

3. [15 points] Assume the class conditional distributions for a two-class classification problem are $p(\mathbf{x} \mid \mathcal{C}_1) = \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\beta}^{-1}I)$ and $p(\mathbf{x} \mid \mathcal{C}_2) = \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\beta}^{-1}I)$. Moreover, assume that the class priors are equal: $p(\mathcal{C}_1) = p(\mathcal{C}_2)$. Show that the optimal decision boundary is *linear*, i.e. that it can be written as $H = \{\mathbf{x} \mid \mathbf{w}^T\mathbf{x} + b = 0\}$ for some \mathbf{w} and b.

Hint: Remember that points \mathbf{x} on the optimal decision boundary will satisfy $p(C_1 \mid \mathbf{x}) = p(C_2 \mid \mathbf{x})$, and that the formula for the multivariate Gaussian density is:

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\}$$

4. [15 points] Suppose that the data $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$ in a regression problem are generated as:

$$y_n = \mathbf{w}^T \mathbf{x}_n + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, \beta^{-1})$ is a zero-mean random variable. Show that the maximum likelihood solution \mathbf{w}_{ML} to this problem is equivalent to the solution that minimizes the squared error on \mathcal{D} .

Hint: Recall that the formula for the univariate Gaussian density is given by:

$$\mathcal{N}(y \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}.$$

5. [10 points (bonus)] Consider the dataset with 1-dimensional inputs:

$$\mathcal{D} = \{(+1, +1), (-1, +1), (+2, -1), (-2, -1)\}$$

 $\mathcal{D} = \{(+1,+1),(-1,+1),(+2,-1),(-2,-1)\}.$ Find a nonlinear embedding $\phi: \mathbb{R} \to \mathbb{R}^2$ that makes \mathcal{D} linearly separable. Show that the resulting embedded dataset is indeed linearly separable by solving for the optimal hard-margin SVM solution (\mathbf{w}^*,b^*) .

