

งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

แบบฟอร์มข้อมูลในการเขียนบทความ (Share IDEA)

ปฐมพงศ์ ประกอบทอง 1 , กรแก้ว อาศัยราช 2 , โบนัส ทรงวิจิตร์ 3 , จตุรนต์ กุศลส่ง 4

¹แผนกปฏิบัติการและบำรุงรักษา การไฟฟ้าส่วนภูมิภาคจังหวัดพระนครศรีอยุธยา pathompong.pra@pea.co.th
²การไฟฟ้าส่วนภูมิภาคจังหวัดพระนครศรีอยุธยา konkeaw.ars@pea.co.th
³แผนกปฏิบัติการและบำรุงรักษา การไฟฟ้าส่วนภูมิภาคอำเภอลาดหลุมแก้ว bonus.son@pea.co.th
⁴กองแผนงานระบบไฟฟ้าอัจฉริยะ การไฟฟ้าส่วนภูมิภาค chaturon.kus@pea.co.th

1. หัวข้อบทความ

ชื่อภาษาไทย : การนำข้อมูลการใช้ไฟฟ้าจากระบบมิเตอร์อัจฉริยะมาทำให้เกิดประโยชน์สูงสุด ชื่อภาษาอังกฤษ : Leveraging Electricity Consumption Data From Smart Meter System

2. ที่มาและความสำคัญ

พลังงานไฟฟ้า/กระแสไฟฟ้า (Electricity) เป็นสิ่งจำเป็นอย่างยิ่งในปัจจุบันและอนาคต เกือบทุกสิ่งบนโลกถูกขับเคลื่อนด้วยพลังงาน ไฟฟ้า ดังนั้นการตรวจวัดปริมาณของพลังงานไฟฟ้าที่ถูกส่งจ่ายและใช้ไปนั้น จึงมีความสำคัญไม่น้อยไปกว่าในส่วนของการได้มาหรือ การผลิตพลังงานไฟฟ้า ระบบการตรวจวัดปริมาณของพลังงานไฟฟ้าจึงได้ถูกพัฒนาขึ้นมา เริ่มตั้งแต่ยุคแรกๆ ที่เป็นมิเตอร์จานหมุน และต่อมาก็เป็นมิเตอร์อิเล็กทรอนิกส์ จากนั้นเข้าสู่ยุคของมิเตอร์อัจฉริยะ (Smart Meter) อย่าง AMR (Automatic Meter Reading) ซึ่งถือว่าเป็น 1-way communication system และในยุคปัจจุบันระบบ AMI (Advanced Metering Infrastructure) เป็นแบบ 2-way communication system โดยระบบมิเตอร์อัจฉริยะนี้ ทำให้เกิดการเก็บข้อมูลการใช้พลังงานไฟฟ้าในรูปแบบ อิเล็กทรอนิกส์มากขึ้นเป็นอย่างยิ่ง

ข้อมูล (Data) ที่เกิดขึ้นใหม่และถูกจัดเก็บเหล่านี้ โดยเฉพาะอย่างยิ่งในฐานะผู้ลงทุนกับระบบอย่างหน่วยงานสาธารณูปโภค เช่น PEA ข้อมูลเหล่านี้ถือว่าเป็นสิ่งมีค่าหรือเปรียบเทียบแล้วก็คือน้ำมันดิบแบบใหม่ ที่รอให้ถูกนำไปกลั่นเพื่อให้เกิดเป็นผลิตภัณฑ์ หรือผลลัพธ์ ที่เป็นประโยชน์ต่อไป การที่จะสามารถทำให้เกิดประโยชน์สูงสุดจากข้อมูลเหล่านี้ได้นั้น ต้องนำเอาหลักการ Data Analysis หรือการ วิเคราะห์ข้อมูล มาประยุกต์ใช้ให้เหมาะสม จึงเป็นสิ่งที่สำคัญยิ่ง เพื่อกลั่นเอาประโยชน์ที่ถูกช่อนไว้ภายใต้ข้อมูลที่ถูกจัดเก็บนี้ ออกมา ให้ได้มากที่สุด และเป็นประโยชน์สูงสุด โดยเฉพาะอย่างยิ่ง ข้อมูลการใช้พลังงานไฟฟ้าของผู้ใช้ไฟฟ้า ซึ่งจากเดิม PEA จะรับทราบ ข้อมูลการใช้ไฟฟ้าแค่เพียง 1 ครั้ง ต่อ 1 เดือน แต่ด้วยการมาของระบบ AMR (ในผู้ใช้ไฟฟ้ารายใหญ่) รวมถึง AMI (ในผู้ใช้ไฟฟ้าราย ย่อย) ทำให้ PEA สามารถรับทราบถึงข้อมูลการใช้ไฟฟ้าด้วยความถี่ทุกๆ 15 นาที (15-minute-interval)

จากที่กล่าวมาในข้างต้น ปัจจุบัน ได้มีงานวิจัยมากมายถูกศึกษาและตีพิมพ์ ในหัวข้อของวิธีการนำเอาข้อมูลจากมิเตอร์อัจฉริยะมาใช้ ประโยชน์ รวมถึงยังมีรายงานการนำเอาไปใช้กับระบบไฟฟ้าจริง ทั้งในประเทศและต่างประเทศ ดังนั้นถึงเวลาแล้วที่ PEA จะได้นำเอา ข้อมูลรูปแบบเดียวกันนี้ มาใช้ให้เกิดประโยชน์ที่สูงยิ่งขึ้นไปกว่าที่เคยทำ เพื่อสร้างประโยชน์ให้กับทั้งทาง PEA และผู้ใช้ไฟฟ้า ซึ่งเป็น ลูกค้าของ PEA ที่เราต้องดูแลและให้บริการเป็นอย่างดี

3. เนื้อหา และรายละเอียด

รูปภาพที่ 1 กรอบการทำงานเชิงความคิด

กรอบการทำงานของแนวคิดที่ต้องการนำเสนอในบทความนี้สามารถแสดงได้ดังรูปภาพที่ 1 (ด้านบน) กรอบสีเหลืองด้านซ้ายมือคือฝั่ง ขาเข้า (Input) ซึ่งหลักๆ จะประกอบไปด้วย 1) ข้อมูลจากมิเตอร์อัจฉริยะ 2) ข้อมูลจากระบบ SAP 3) ข้อมูลจากระบบ GIS 4) ทฤษฎีและมาตรฐานทางไฟฟ้าที่เกี่ยวข้อง จากนั้นข้อมูลขาเข้าเหล่านี้จะถูกนำเข้าสู่กระบวนการหลัก (Process) ที่ถูกพัฒนาและ นำเสนอขึ้นมา เพื่อวิเคราะห์และสกัดเอาคุณค่าที่ถูกซ่อนไว้จากข้อมูลขาเข้าออกมาให้ได้ตรงตามวัตถุประสงค์ โดยกระบวนดังกล่าว อาศัยการประยุกต์หลักการ การวิเคราะห์ข้อมูล (Data Analysis) และ การเรียนรู้ของเครื่องจักร (Machine Learning) มาเป็น พื้นฐาน หลังจากนั้นผลลัพธ์ (Output) จากกระบวนการนี้ จะถูกนำไปสร้างประโยชน์ ทั้งต่อองค์กร และลูกค้า

รูปภาพที่ 2 ขั้นตอนการรวบรวมและเตรียมความพร้อมข้อมูล

ระบบการนำเอาข้อมูลมาใช้ให้เกิดประโยชน์สูงสุดตามแนวคิดที่ต้องการนำเสนอ สามารถเริ่มได้ด้วยขั้นตอนดังรูปภาพที่ 2 (ด้านบน) ซึ่งเริ่มจากการสร้างระบบเพื่อการรวบรวมข้อมูลที่จำเป็น จากแหล่งข้อมูลที่เกี่ยวข้อง (Smart Meter, SAP และ GIS ในที่นี้) หลังจาก ที่สามารถรวบรวมข้อมูลได้แล้ว จึงนำเข้าสู่ระบบการทำความสะอาดข้อมูล (Data Cleansing) เพื่อจัดการกับข้อมูลที่ขาดหายไป (Missing Values) หรือข้อมูลที่ไม่สมบูรณ์ถูกต้อง (Uncompleted Data) สุดท้ายในส่วนนี้จะมีระบบการเตรียมการข้อมูลในขั้นต้น ด้วย (Data Preparing) เพื่อปรับแต่งข้อมูลในเบื้องต้นให้พร้อมที่จะถูกนำไปวิเคราะห์ต่อไป

รูปภาพที่ 3 ขั้นตอนการนำข้อมูลมาใช้ประโยชน์เพื่อการบำรุงรักษาหม้อแปลงจำหน่าย

หลังจากที่ได้ข้อมูลที่พร้อมถูกนำมาใช้งานได้ในเบื้องต้นตามรูปภาพที่ 2 แล้ว บทความนี้ขอนำเสนอขั้นตอนการนำข้อมูลมาใช้ ประโยชน์เพื่อการบำรุงรักษาหม้อแปลงจำหน่ายตามรูปภาพที่ 3 โดยการสร้างระบบการวิเคราะห์ข้อมูลแบบพื้นฐาน (Descriptive Analytics) เพื่อแสดงสถานะการจ่ายโหลดของหม้อแปลงจำหน่าย และเพิ่มความสามารถในการแสดงเหตุการณ์ที่เกิดการจ่ายโหลด เกิดพิกัด (80% ของพิกัดหม้อแปลง) และเหตุการณ์ที่เกิดการจ่ายโหลดเกินมาตรฐานฟิวส์แรงต่ำของ PEA รวมไปถึงเพื่อแสดง สถานะการจ่ายกระแสไฟฟ้าของแต่ละเฟส หากพบว่าเกิดสถานการณ์จ่ายโหลดแบบไม่สมดุลเกินมาตรฐาน (20% Unbalance) ข้อมูลจะถูกนำเข้าสู่ระบบการวิเคราะห์ข้อมูลแบบให้คำแนะนำ (Prescriptive Analytics) ซึ่งเป็นการให้คำแนะนำการย้ายเฟสมิเตอร์ เพื่อลดความไม่สมดุลในการจ่ายกระแสไฟฟ้าลง ขั้นตอนที่นำเสนอนี้ มีวัตถุประสงค์มุ่งเน้นไปที่การลดความสูญ เสียเชิงเทคนิค (Technical Loss) ให้กับหน่วยงานผู้ให้บริการสาธารณูปโภคด้านไฟฟ้าเช่น PEA

รูปภาพที่ 4 ขั้นตอนการนำข้อมูลมาใช้ประโยชน์เพื่อการตรวจจับพฤติกรรมการใช้ไฟฟ้าที่เข้าข่ายละเมิดการใช้ไฟ

นอกเหนือจากการลดความสูญเสียเชิงเทคนิค ตามขั้นตอนที่ได้นำเสนอในรูปภาพที่ 3 แล้ว ข้อมูลชุดเดียวกันนี้ ยังสามารถถูกนำมาใช้ ประโยชน์เพื่อการตรวจจับพฤติกรรมการใช้ไฟฟ้าที่เข้าข่ายละเมิดการใช้ไฟ ตามขั้นตอนในรูปภาพที่ 4 ซึ่งข้อมูลที่ถูกเตรียมพร้อมแล้ว ในขั้นต้น จะถูกนำเข้าสู่ระบบการเตรียมพร้อมข้อมูลขั้นสูง (Data Preprocessing) เพื่อปรับข้อมูลให้เหมาะสมต่อการนำเข้าสู่ระบบการวิเคราะห์ข้อมูลแบบพยากรณ์ (Predictive Analytics) ซึ่งในที่นี้ขอนำเสนอหลักการการเรียนรู้ของเครื่องจักร (Machine Learning) เข้ามาช่วยในการสร้างระบบดังกล่าว หากจะระบุเพิ่มเติมให้ชัดเจนยิ่งขึ้น การสร้างระบบนี้มักจะถูกเรียกว่า ระบบการ ตรวจจับการขโมยไฟฟ้าใช้ (Electricity Theft Detection) ซึ่งระบบนี้สามารถถูกสร้างขึ้นด้วยระเบียบวิธี (Algorithm) ที่ถูกเรียกว่า การจำแนก (Classification) และสามารถอาศัยหลักการการเรียนรู้แบบมีผู้สอน (Supervised Learning) เข้ามาช่วยสร้างระบบนี้ได้ โดยผลลัพธ์ที่ได้จากกระบวนการที่กล่าวมานี้ จะเป็นการแสดงผลการวิเคราะห์ข้อมูล (Visualization) และมีการรายงานผลการ ตรวจจับและซี้เป้าไปยัง ผู้ใช้ไฟฟ้าที่เข้าข่ายละเมิด เพื่อให้เจ้าหน้าที่สามารถตรวจสอบได้อย่างตรงจุดมากขึ้น ขั้นตอนที่นำเสนอนี้ มี วัตถุประสงค์มุ่งเน้นไปที่การลดความสูญเสียที่ไม่เกี่ยวข้องกับเชิงเทคนิค (Non-Technical Loss) ให้กับหน่วยงานผู้ให้บริการ สาธารณูปโภคด้านไฟฟ้าเช่น PEA

รูปภาพที่ 5 ขั้นตอนการนำข้อมูลมาใช้ประโยชน์เพื่อให้คำแนะนำในการเปลี่ยนอัตราค่าไฟ

หลังจากที่เราได้ทำการกล่าวถึงประโยชน์ที่ PEA ในฐานะผู้ลงทุนระบบมิเตอร์อัจฉริยะ และในฐานะผู้ให้บริการสาธารณูปโภค สามารถนำเอาข้อมูลต่างๆ มาใช้ประโยชน์สูงสุดแล้วนั้น ขั้นตอนตามรูปภาพที่ 5 จะเป็นการกล่าวถึงการสร้างประโยชน์ให้กับฝั่งผู้ใช้ ไฟฟ้า ซึ่งขั้นตอนนี้จะมีวัตถุประสงค์เพื่อช่วยแนะนำวิธีการลดค่าใช้จ่าย อย่างถูกระเบียบและถูกกฎหมาย ให้กับผู้ใช้ไฟฟ้า ซึ่งจาก ข้อมูลชุดเดียวกันกับที่เคยได้กล่าวมาแล้วนั้น จะถูกนำเข้าสู่ระบบการคำนวณค่าใช้จ่าย ทั้งตามอัตราปกติ และอัตรา TOU จากนั้นจะ ถูกนำเข้าสู่ระบบวิเคราะห์ข้อมูลแบบให้คำแนะนำ (Prescriptive Analytics) เพื่อแสดงผลการคำนวนค่าใช้จ่ายทั้ง 2 อัตราให้กับผู้ใช้ ไฟฟ้า รวมถึงให้คำแนะนำถึงความเป็นไปได้ในการเปลี่ยนแปลงอัตราค่าไฟฟ้า เพื่อลดค่าใช้จ่าย ซึ่งผู้ใช้ไฟฟ้าเองก็อาจจะจำเป็นต้อง ปรับเปลี่ยนพฤติกรรมการใช้ไฟฟ้า เพื่อให้สามารถใช้ประโยชน์อัตราประเภท TOU ได้อย่างเต็มที่ ทั้งนี้การเปลี่ยนอัตราเป็น TOU ของผู้ใช้ไฟฟ้านั้น สามารถสร้างประโยชน์ให้กับภาพรวมในการผลิต, ส่งจ่าย และจำหน่าย พลังงานไฟฟ้าของประเทศได้อีกด้วย

รูปภาพที่ 6 ขั้นตอนการนำข้อมูลมาใช้ประโยชน์เพื่อตรวจจับความผิดปกติในการใช้ไฟฟ้าของผู้ใช้ไฟฟ้า

นอกเหนือจากการให้คำแนะนำในการเปลี่ยนอัตราค่าไฟแล้ว ข้อมูลที่มียังสามารถนำมาสร้างระบบการตรวจจับความผิดปกติในการ ใช้ไฟฟ้า ให้กับผู้ใช้ไฟฟ้า เพื่อเป็นการเสริมสร้างการให้บริการลูกค้าในรูปแบบเฉพาะตน (Personalization) เป็นการยกระดับการ ให้บริการต่อผู้ใช้ไฟฟ้า ทำให้ผู้ใช้ไฟฟ้าสามารถเข้าใจถึงพฤติกรรมการใช้ไฟฟ้าของตนเองได้ รวมถึงยังวิเคราะห์พฤติกรรมการใช้ไฟฟ้า เพื่อตรวจจับการใช้ไฟฟ้าที่อาจจะผิดปกติ ไปจากพฤติกรรมที่ผ่านมาได้ จากรูปภาพที่ 6 ข้อมูลจะถูกนำเข้าระบบการวิเคราะห์ข้อมูล ทั้งแบบพื้นฐาน และแบบพยากรณ์ (Descriptive and Predictive) เพื่อแสดงผลการเปรียบเทียบพฤติกรรมการใช้ไฟฟ้าของลูกค้ากับ ลูกค้ารายอื่นๆ รวมถึงเปรียบเทียบกับพฤติกรรมของตนเอง พร้อมทั้งยังสามารถแสดงผลการแสดงความผิดปกติในการใช้ไฟฟ้า และ รายงานผลการวิเคราะห์ออกมาอีกด้วย

4. ผลลัพธ์ / ประโยชน์ที่คาดว่าจะได้รับ

4.1 ประโยชน์ทางการเงิน

- 4.1.1 หาก PEA สามารถทราบข้อมูลความผิดปกติของหม้อแปลง ไม่ว่าจะเป็น Over-load ,Over-fuse หรือ Unbalance ที่เกิดขึ้นได้ และดำเนินการแก้ไขก่อนที่หม้อแปลงเหล่านั้นจะชำรุดเสียหาย PEA จะสามารถลดภาระค่าใช้จ่ายที่ต้องเปลี่ยนหม้อแปลง ลูกใหม่ได้
- 4.1.2 หาก PEA สามารถทราบการใช้ไฟฟ้าที่เข้าข่ายละเมิดได้แบบอัตโนมัติทันทีที่เกิดเหตุ PEA จะสามารถลดการสูญเสีย รายได้ที่เกิดขึ้นจากการละเมิดได้ทันที
- 4.1.3 หาก PEA สามารถทราบภาพรวมของการใช้พลังงานไฟฟ้าของผู้ใช้ไฟได้ จะส่งผลถึงเรื่องการประมาณค่าใช้จ่ายใน การซื้อ-ขายพลังงานไฟฟ้าต่อไปในอนาคต

4.2 ประโยชน์ที่ไม่ใช่ทางการเงิน

- 4.2.1 เมื่อลูกค้าได้ทราบข้อมูลการใช้พลังงานไฟฟ้าของตนเอง จะสามารถเข้าใจพฤติกรรมการใช้ไฟฟ้าของตนเองมากยิ่งขึ้น ลดปัญหาที่อาจส่งผลไปสู่การร้องเรียน อีกทั้งยังเป็นการสร้างความพึงพอใจให้ลูกค้าในส่วนของงานให้บริการอีกด้วย
- 4.2.2 สามารถลดกระบวนการปฏิบัติงานที่ไม่จำเป็น เช่น กระบวนการวัดโหลดหม้อแปลงที่เป็นแผนรายเดือน/รายปี อาจ ถูกแทนที่ด้วยการออกไปวัดโหลดหม้อแปลงเมื่อพบข้อมูล Over-load ,Over-fuse หรือ Unbalance ในระบบ และกระบวนการ ตรวจสอบการละเมิดรายปี อาจถูกแทนที่ด้วยการออกไปตรวจสอบเมื่อพบข้อมูลเข้าข่ายละเมิดในระบบ
- 4.2.3 เพิ่มประสิทธิภาพในการปฏิบัติงาน เมื่อทราบข้อมูลเบื้องต้น เช่น Over-load ,Over-fuse, Unbalance หรือ พฤติกรรมที่เข้าข่ายละเมิด แล้วจึงออกไปปฏิบัติงาน จะยิ่งเพิ่มโอกาสในการปฏิบัติงานที่สำเร็จและลดเวลาในการค้นหาลง
- 4.2.4 พนักงานได้ทราบหลักการและวิธีการใหม่ๆ ที่นำมาใช้ประโยชน์ได้ ไม่ว่าจะเป็น Data Analysis , Machine learning เป็นการเพิ่มทักษะในกระบวนการคิด วิเคราะห์ ปฏิบัติให้พนักงาน และนำไปสู่การพัฒนาอย่างต่อเนื่อง

5. โอกาสในการขยายผล / การต่อยอด / การนำไปประยุกต์ใช้งาน

5.1 การนำไปประยุกต์ใช้งาน

ทางคณะทำงานได้พัฒนา Web application ในหัวข้อ Data Driven Innovation C1 (DDI-C1) ซึ่งข้อดีของการพัฒนาใน ลักษณะนี้คือ ระบบสามารถถูกเรียกใช้งานได้จากทุก Smart Device ที่สามารถเชื่อมต่อกับระบบอินเตอร์เน็ต และมีการติดตั้ง Web Browser ไว้ใช้งาน รวมถึงยังสามารถสร้างระบบการทำงานแบบ Real-Time สามารถเพิ่มศักยภาพในการทำงานให้เป็นแบบ Partial หรือ Fully Automatic ได้ในอนาคต รวมถึงรองรับการติดต่อกับระบบอื่นด้วยระบบ Application Programming Interface (API) เพิ่มความปลอดภัยในการเข้าถึงข้อมูลด้วยระบบ Identity Management (IDM) ขององค์กร เบื้องต้น ทางคณะทำงานได้พัฒนา Web application ขึ้นมาในรูปแบบของ Prototype ซึ่งประกอบไปด้วย 6 ฟีเจอร์ (อ้างอิงเนื้อหาจากข้อที่ 2) ดังนี้

- 5.1.1 Transformer Load Monitoring: นำข้อมูลจาก Smart Meter มาประกอบกับข้อมูล GIS เพื่อประเมินสภาพการ จ่ายไฟฟ้าของหม้อแปลงจำหน่าย พร้อมทั้งตรวจจับเหตุการณ์ Over-load และ Over-fuse พร้อมการ Visualization
- 5.1.2 Current Unbalance Reduction: นำข้อมูลจาก Smart Meter มาประกอบกับข้อมูล GIS เพื่อประเมินสภาพการ จ่ายกระแสไฟฟ้าของหม้อแปลงจำหน่าย ว่าเกิดสถานะ Unbalance หรือไม่ พร้อมทั้งประเมินและแนะนำการย้ายเฟสมิเตอร์ เพื่อลด ความไม่สมดุลนั้นลง โดยอัตโนมัติ
- 5.1.3 Electricity Theft Detection: นำข้อมูลการใช้พลังงานไฟฟ้าจาก Smart Meter มาเข้าสู่กระบวนการ Machine Learning เพื่อสร้างระบบการตรวจจับพฤติกรรมการใช้ไฟฟ้าที่เข้าข่ายละเมิดใช้ไฟ พร้อมการ Visualization
- 5.1.4 Anomalous Consumption Detection: นำข้อมูลการใช้พลังงานไฟฟ้าจาก Smart Meter มาเข้าสู่กระบวนการ Data Analysis และ Machine Learning เพื่อสร้างระบบการตรวจจับการใช้พลังงานที่เข้าข่ายผิดปกติไปจากพฤติกรรมที่ผ่านมา พร้อมการ Visualization
- 5.1.5 Changing Tariff Recommendation: นำข้อมูลการใช้พลังงานไฟฟ้าจาก Smart Meter มาวิเคราะห์หาความ เป็นไปได้ในการลดค่าไฟฟ้าด้วยการเปลี่ยนอัตราเป็น TOU (Time of Use)

5.1.6 Monthly Summarized Report: เป็นการสรุปข้อมูลและผลการวิเคราะห์จากทั้ง 5 ฟีเจอร์ ที่กล่าวมา นำมาทำเป็น การสรุปแบบรายเดือน เพื่อทำให้ผู้ใช้งานเข้าใจได้ง่ายขึ้น

5.2 โอกาสในการขยายผลและต่อยอด

แนวคิดนี้สามารถถูกนำไปต่อยอดและขยายผลใช้ในภาพขององค์กรได้อย่างแน่นอน เนื่องจากในอนาคตอันใกล้นี้ จะมีการ นำระบบ Smart Meter มาใช้งานมากขึ้น ทั้งในส่วนของ AMR (Automatic Meter Reading) และ AMI (Advanced Metering Infrastructure) ซึ่งเป็นส่วนสำคัญของ Smart Grid รวมถึงการประยุกต์ใช้หลักการ Data Analysis และ Machine Learning เข้า มาพัฒนางานต่อไปในอนาคต

5.3 ภาพตัวอย่าง Prototype

รูปภาพที่ 7 ตัวอย่าง Prototype หน้าแรกเข้า/หน้าเข้าสู่ระบบ

รูปภาพที่ 8 ตัวอย่าง Prototype หน้าแรกของฟีเจอร์ที่ 1

รูปภาพที่ 9 ตัวอย่าง Prototype หน้ารายละเอียดของฟีเจอร์ที่ 1

รูปภาพที่ 10 ตัวอย่าง Prototype หน้าแรกของฟีเจอร์ที่ 2

สำแนวทากรปรับปรุงเฟส คองสอ							
The Buttons extension for Distributes provides a common set of options. API methods and slying to display buttons on a page that will inferred with a Distribute. The core birray provides the based framework upon which plug-ins can built.							
Copy CSV Print	Search:						
# IT	¶aiaaf ↓↑	เลขการติดตั้งมีเตอร์	I) wawa	udathui II	ต้องเปลี่ยนเฟส IF		
1	1		AN	CN	True		
2	1		BN	AN	True		
8	2		AN	CN	True		
9	2		BN	AN	True		
3	1		BN	BN	False		
4	1		BN	BN	False		
5	1		BN	BN	False		
6	1		BN	BN	False		
7	1		CN	CN	False		
10	2		BN	BN	False		
Previous 1 2 Next							

รูปภาพที่ 11 ตัวอย่าง Prototype หน้ารายละเอียดของฟีเจอร์ที่ 2

รูปภาพที่ 12 ตัวอย่าง Prototype หน้ารายละเอียดของฟีเจอร์ที่ 3

รูปภาพที่ 13 ตัวอย่าง Prototype หน้าแรกในส่วนของผู้ใช้ไฟฟ้า

รูปภาพที่ 14 ตัวอย่าง Prototype หน้ารายละเอียดของฟีเจอร์ที่ 4

รูปภาพที่ 15 ตัวอย่าง Prototype หน้ารายละเอียดของฟีเจอร์ที่ 4

รูปภาพที่ 16 ตัวอย่าง Prototype หน้ารายละเอียดของฟีเจอร์ที่ 5

5.4 ทีมงานพัฒนา

การนำแนวความคิดที่ได้นำเสนอไว้แล้วข้างต้น มาพัฒนาเป็นชิ้นงานดังภาพข้างต้นนั้น ได้เกิดจากความร่วมมือของหลาย ภาคส่วน ทั้งจากส่วนงานในการไฟฟ้าส่วนภูมิภาคสำนักงานใหญ่ และส่วนงานของการไฟฟ้าส่วนภูมิภาค เขต 1 ภาคกลาง ดังมี รายนามของสมาชิกทีมหลักๆ ดังตารางต่อไปนี้

ลำดับ	ชื่อ-สกุล	ตำแหน่ง-สังกัด	บทบาทในทีมงาน
1	มกรา เกียรติเมธา	วศก.5 ผปบ.กฟฟ.รังสิต (กฟก.1)	Data Analyst, Full-Stack Developer
2	โบนัส ทรงวิจิตร์	วศก.6 ผปบ.กฟฟ.ลาดหลุมแก้ว (กฟก.1)	Data Visualizer, Frontend Developer
3	ปฐมพงศ์ ประกอบทอง	ชผ.ปบ.กฟจ.อยุธยา (กฟก.1)	Business Analyst, Content Creator
4	กรแก้ว อาศัยราช	นทน.6 (จป.ว) กฟจ.อยุธยา (กฟก.1)	Content Creator, UX/UI Designer
5	จตุรนต์ กุศลส่ง	หผ.รอ. (กองแผนงานระบบไฟฟ้าอัจฉริยะ)	Project Consultant