Лекция 1

Тема: Линейное подпространтсво

Пусть V, \mathbb{P} - некоторое линейное пространство над полем \mathbb{P} Тогда в нем выполняются законы композиции: $\forall a,b \in V, \quad \forall \alpha \in \mathbb{P}$

- 1. $a + b \in V \quad V \times V \to V$
- $2. \ \alpha * a \in V \quad \mathbb{P} \times V \to V$

Линейные пространства \mathbb{C}, \mathbb{C} и \mathbb{C}, \mathbb{R} отличаются размерностью

Пусть $b, a_1, ..., a_n \in V, \alpha_1, ..., \alpha_n \in \mathbb{P}$, где и $b = \alpha_1 a_1 + \alpha_2 a_2 + ... + \alpha_2 a_2$ Тогда вектор b называется линейной комбинацией векторов $a_1, ..., a_n$

Линейная комбинация называется нетривиальной, если хотя бы один коэффициент не равен нулю Линейная оболочка векторов $a_1, ..., a_n \in V$ - множество всевозможных линейных комбинаций этих веторов. Обозначается как $L(a_1, ..., a_n)$

Линейное пространство $W \neq \emptyset$ называется линейным подпространством пространства V, если

- $W \subset V$
- оно само является линейным пространством относительно операций композиции из V

Вектора $a_1, ..., a_n \in V$ называют линейно зависимыми, если существует их нетривиальная линейная комбинация, равная нулевому вектору

Линейное пространство называется бесконечномерным, если $\forall n \in \mathbb{N}$ найдется набор из плинейнонезависимых векторов. Примеры:

- Множество функций, непрерывных на некотором промежутке
- Множество всех многочленов

Рассмотрим линейное пространство многочленов $\underline{\mathbb{M}_{\kappa}}, \mathbb{R}$ *Народ, а что Панф с ним сделал в итоге, используя факт непредставимости трансцендентных чисел в виде корня полинома? Я забыл*

Пусть есть такое натуральное число m, что любые m + 1 векторов из V линейно зависимы. Очевидно, что любые m+1 векторов также линейно зависимы. Мы можем взять минимальное число из всех m (т.к ограниченное снизу подмножество натуральных чисел имеет минимум). Назовем его n. Это число- dim V. Взяв n линейно независимых векторов, мы получаем базис V $e_1, ..., e_n \in V$ Базисные вектора

- Линейно независимы
- Упорядоченные *Я забыл, для чего оно требуется, Панф про это отдельно говорил*
- ullet $\forall a \in V \quad e_1,...,e_n,a$ линейно зависимы

 $V = L(e_1, e_2, ..., e_n)$ по свойствам базисных векторов (любой вектор выражается из базисных)

Теорема 1 Пусть есть $V, \mathbb{P}(), W$ - подпространство. Тогда $dimW \leqslant dimV$

Доказательство: Очевидно, ибо базисные вектора в W так же будут базисными векторами в V

Теорема 2 Пусть есть $V, \mathbb{P}(), W$ - подпространство. $dimW = dimV \iff W = V$

Доказательство: Базисные вектора V будут так же базисными векторами в V, и наоборот. Значит, они совпадают. Если определить V и W как линейные оболочки этих векторов, их равенство очевидно

Теорема 3 Пусть есть $V, \mathbb{P}()$. Тогда набор векторов $e_1, ..., e_k$ либо базис, либо существует набор векторов $e_{k+1}, ..., e_n$ такой, что $e_1, ..., e_k, e_{k+1}, ..., e_n$ - базис

Доказательство: Есть два случая

- $L(e_1,...,e_k) = V$. Тогда $(e_1,...,e_k)$ базис
- $\exists e_{k+1} \in V \setminus L(e_1,...,e_k)$. В таком случае мы последовательно 'добираем' вектора до базиса