Advanced Vision : Lecture 9

Correspondence & Triangulation 1

Correspondence & Triangulation 3

Advanced Vision: Lecture 9

3D Recognition from stereo vision : correspondence & triangulation

Advanced Vision - Lecture 9

Toby Breckon toby.breckon@ed.ac.uk

Computer Vision Lab. Institute for Perception, Action & Behaviour School of Informatics

Toby Breckon

Advanced Vision : Lecture

Toby Breckon

Stereo Vision - Overview

From Feature identification

• Canny Edge Detection

- Result: edge fragments

RANSAC algorithm

parametric line descriptions that correspond to feature in image

 N.B. infinite line model (i.e. vector direction)

Breckon Correspondence & Triangulation 2

RANSAC: line descriptions

- RANSAC : Infinite unbounded lines geometric description
 - point p and direction a position (in 2D)
- For correspondence matching finite description useful
 - bounds on length shape

Toby Breckon Correspondence & Triangulation 4

Preprocessing: line segments

- **Requirement**: approx. start and end point of line segment.
- **Input**: geometric descriptions & set of points $\{\vec{x}\}$ for each segment identified by RANSAC.
- 1. Project points $\{\vec{x}\}$ onto ideal line through point \vec{p} with direction \vec{a} : $\lambda_i = (\vec{x}_i - \vec{p}) \cdot \vec{a}$. Projected point is $\vec{p} + \lambda_i \vec{a}$

- 2. Remove projected points not having N neighbour points within D pixels distance - outlier removal (set N and D to be similar; e.g. 43 and 45)
- 3. Endpoints of line segment are now given by smallest / largest λ

Correspondence & Triangulation 5

Advanced Vision : Lecture 9

• Given line segment endpoints b and c with direction $\vec{a} = (u,v)$

- Compute perpendicular : $\overrightarrow{n} = (-v, u)$
- Estimate midpoint : $\overrightarrow{m} = (\overrightarrow{b} + \overrightarrow{c})/2$
- Estimate length : || b c ||

(orientation)

(position)

(shape)

Preprocessing: line segments

Identified line segments

- geometric description (from RANSAC)
- length description (from preprocessing)

Preprocessing: line description 2

- Estimate edge contrast of line
 - consider area within distance D of line in regions L & R
 - Divide original images pixels into L/R regions

For any pixel \vec{x} If $0 \le (\vec{x} - \vec{b}) \cdot \vec{a} \le ||\vec{b} - \vec{c}||$ If $0 < (\vec{x} - \vec{b}) \cdot \vec{n} \le D$, put \vec{x} in L If $-D < (\vec{x} - \vec{b}) \cdot \vec{n} < 0$, put \vec{x} in R

- Estimate contrast: g = ((average brightness of pixels in L) -(average brightness of pixels in R))
- Overall final line description:
 - direction a, midpoint m, length & contrast g

Corresponding Lines: Ground Truth

Edges	L dir	R dir	L len	R len
L1:R4	(0.00,-1.00)	(0.00,-1.00)	137	125
L5:R11	(0.45, 0.89)	(0.38, 0.93)	90	119
L6:R7	(0.96,-0.28)	(0.96,-0.29)	291	251
L7:R2	(0.95, 0.32)	(1.00, 0.00)	93	140
L8:R5	(0.70,-0.71)	(0.86,-0.50)	49	61
L10:R12	(0.81, -0.59)	(0.86, -0.52)	87	82
L11:R10	(-0.33,-0.94)	(-0.29,-0.96)	72	101
L12:R3	(0.89, 0.45)	(0.96, 0.28)	129	115

Edges	L mid	R mid	L con	R con
L1:R4	(370,369)	(364,242)	-91	-37
L5:R11	(55,477)	(40,309)	28	18
L6:R7	(158,355)	(181,194)	44	55
L7:R2	(74,416)	(90,246)	-117	-44
L8:R5	(250, 567)	(278,371)	-66	-31
L10:R12	(208,402)	(205,221)	38	55
L11:R10	(199,536)	(195,358)	141	113
L12:R3	(140,554)	(132,400)	47	23

- Comparison of properties between lines that correspond in reality - Ground Truth
- But we need to find a correspondence automatically
 - we require stereo correspondence

Toby Breckon

Advanced Vision : Lecture

Toby Breckon

Advanced Vision: Lecture

Correspondence & Triangulation

Image Features - edges

- Correspondence = matching : but ... what to match?
 - Edge Fragments from edge detector
 - numerous, noisy, limited description

- Edge Lines from RANSAC (post-processed edge fragments)
 - larger structures, less noise, rich description

- · Which?
 - Lines: few and larger (easier) but harder to obtain and less dependable (noise, occlusion) - used here
 - Fragments: thought to be used by human visual system

Stereo Correspondence Problem

Key principle: triangulation between

corresponding image features

Q: For a given feature in the left, what is the correct correspondence?

- · Different pairing result in different 3D results
 - inconsistent correspondence = inconsistent 3D (!)
 - Key problem in all stereo vision approaches

Binocular Stereo

Correspondence & Triangulation 11

Correspondence: Matching Constraints (local)

Orientation

- edge direction a

Toby Breckon

Correspondence & Triangulation 13

Advanced Vision: Lecture 9

Toby Breckon

Correspondence: Matching Constraints (local)

Shape

- edge length

Correspondence: Matching Constraints (local)

Colour

- edge contrast g

(nearly the same across the edge, find closest match)

Correspondence & Triangulation

Advanced Vision : Lecture :

Correspondence: Matching Constraints (global)

Smoothness

- matched features have consistent depth to neighbours

Uniqueness

- one to one, left to right, correspondence
 - 0 : no match (due to occlusion in one image)
 - 1: normal 1-to-1 matching
 - 2+: difficult cases (wires, vines, etc. from coincidental)

Toby Breckon Correspondence & Triangulation

Lecture Problem

 Which stereo correspondence constraint would you use to reject these matches?

Toby Breckon Correspondence & Triangulation 17

Advanced Vision : Lecture

Advanced Vision: Lecture 9

Correspondence: Epipolar Geometry

- Constraining L->R Correspondence
 - reduces 2D search to 1D
 - images linked by fundamental matrix, F.

- For matched points \vec{p} , \vec{p} , \vec{p} =0.
- F generally derived from prior calibration routine (with preknown target).
- Points are homogeneous
- F is 3x3

Correspondence: Epipolar Geometry

- Feature \vec{p} in the left image lies on a ray \vec{r} in space
- r projects to an epipolar line e in the right image
 - along which the matching feature p must lie

- If the images are "rectified", then epipolar line is the image row

- i.e. cameras (or images via post-processing) both perfectly axis aligned

Correspondence & Triangulation Toby Breckon

Stereo Matching Results

Correspondence & Triangulation 19

Stereo Matching Results

- Maximally consistent set of correspondences
- Based on local, global and eipolar constraint (interpretation tree or similar, wildcard matches)

Toby Breckon

Correspondence & Triangulation 21

Advanced Vision: Lecture 9

Triangulation: Projection Matrix

- $P_i = K_i R_i [I] \overrightarrow{e_i}$, $i \in \{L,R\}$
 - R: camera orientation
 - $-\overrightarrow{\mathbf{e}_{i}} = (\mathbf{e}_{xi}, \mathbf{e}_{yi}, \mathbf{e}_{zi})$: camera centre (in world) $\overrightarrow{\mathbf{e}_{L}} = (0,0,0) \overrightarrow{\mathbf{e}_{R}} = (D_{L\rightarrow R},0,0)$

$$- \mathbf{K_i} = \begin{bmatrix} f_i m_{ri} & s_i & r_{0i} \\ 0 & f_i m_{ci} & c_{0i} \\ 0 & 0 & 1 \end{bmatrix}$$

- \mathbf{f}_i = camera focal length (mm)
- \mathbf{m}_{ri} , \mathbf{m}_{ci} = row/column pixel/mm scale
- \mathbf{r}_{0i} , \mathbf{c}_{0i} = optical axis / image plane intersection
- **s** = skew factor

Lab Cameras (example)

$$R_L = R_R = I$$

$$\overrightarrow{e}_{L} = (0,0,0) \overrightarrow{e}_{R} = (D_{L \to R}, 0,0)$$

(camera separation of d)

$$K_{L} = K_{R}$$

(L and R = identical camera(s))

$$f_i m_{ci} = f_i m_{ri} = 832.5$$

 $\mathbf{r}_{0i}, \mathbf{c}_{0i} = \text{(height/2, width/2)}$

 $s_i = 0$ (typical for CCD)

Correspondence & Triangulation 23

Triangulation: Image Projection

- Projection of object point $\vec{v} = (x, y, z, 1)'$ onto image plane, image point $\vec{u} = (r_i, c_i, 1)'$. (3D world to 2D image)
- $\lambda \vec{u}_i = P_i \vec{v}$ $(\lambda = homogeneous scaling factor)$
 - where P_i = camera projection matrix for $i \in \{L,R\}$

Toby Breckon

Triangulation: 3D line calculation

- Aim : recovery of 3D line position
- Assume: line successfully matched in L & R images
- Two key stages
 - 1. Compute 3D plane that goes through 2D line in image and camera origin (for both L and R cameras)
 - 2. Compute intersection of these two 3D planes from two cameras
 - intersection of two 3D planes = 3D line

Triangulation – Step 1: Find 3D planes

- Find 3D plane for each image L and R: \overrightarrow{n} . (x, y, z)' + d = 0
 - $(\lambda r, \lambda c, \lambda)' = P(x, y, z, 1)'$ from projection relation. Solving we get:

$$r = -fm_r \frac{y - e_y}{z - e_z} + r_0$$
 $c = fm_c \frac{x - e_x}{z - e_z} + c_0$

- **3D plane**: $\vec{n} = (fm_c sin(\theta), -fm_r cos(\theta), r_0 cos(\theta) + c_0 sin(\theta) + b)'$ $d = -\vec{n}' \cdot (e_x, e_y, e_z)'$

Toby Breckon

Correspondence & Triangulation 25

Advanced Vision: Lecture 9

Triangulation - Step 2: Planar Intersection

Two 3D Planes:

- LEFT: \vec{n}_L . $(x, y, z)' + d_L = 0$
- RIGHT: \overrightarrow{n}_R . $(x, y, z)' + d_R = 0$

Intersection of two 3D planes gives a 3D line

- 3D line defined as : direction v, point a
 - $-\overrightarrow{\mathbf{V}} = \overrightarrow{n_L} \times \overrightarrow{n_R} \qquad (cross \ product \ of \ planar \ normals)$

let: $M = [\overrightarrow{v}, \overrightarrow{n_L}, \overrightarrow{n_R}]'$ (3 x 3 matrix) $\overrightarrow{b} = [0, -d_L, -d_R]'$ (3D point)

 $-\vec{a} = M^{-1}\vec{b}$ (point on line closest to origin)

Toby Breckon

Correspondence & Triangulation 26

Projected Stereo Line Positions

- 3D awareness of our lines as : vector \overrightarrow{v} & point \overrightarrow{a}
 - defined in \mathbb{R}^3

Correspondence Between Lines

Lines in 3D space

Number	Pairs	direction	point
1	L1:R4	(-0.82, 0.08, -0.56)	(9.1, 2.0, -13.0)
2	L5:R11	(0.61, -0.06, 0.78)	$\left(-125.3,\!98.6,\!107.1\right)$
3	L6:R7	(-0.28, -0.95, -0.03)	(0.9, -10.6, 294.4)
4	L7:R2	(0.07, -0.62, -0.77)	(48.3, -97.0, 82.9)
5	L8:R5	(-0.18, -0.45, 0.87)	(114.8, 91.8, 72.1)
6	L10:R12	(-0.50, -0.73, 0.44)	(71.5, 77.0, 208.8)
7	L11:R10	(0.79, -0.20, 0.57)	(-98.4, 57.2, 154.6)
8	L12:R3	(0.11,-0.69,-0.70)	(110.4,-123.6,140.1)

- each line represented by point / vector

oby Breckon Correspondence & Triangulation 27 Toby Breckon Correspondence & Triangulation 28

Summary

- Feature Identification
 - Last lecture : Canny Edge Detection & RANSAC
- Feature pre-processing
 - extract extended position/shape/colour description
- Stereo Correspondence
 - local and global matching constraints
 - epipolar geometry
- Triangulation
 - intersection of 3D planes → 3D line

Next lecture : recognition

Toby Breckon

Correspondence & Triangulation 29