

Practice of AI

从决策树到XGBoost

Jim Xie

决策树

根据历史的买房的数据,

预测房子会卖给哪一类人:

A:医生

B:教师

样本	近地铁	有电梯	房子大小	候选人A或B
1	是	否	中	В
2	否	是	小	В
3	否	是	大	A
4	否	是	中	A
5	否	否	大	A
6	否	是	中	A
7	否	是	大	A
8	否	否	小	В
9	否	是	大	A
10	是	否	小	В
11	是	否	中	В
12	否	否	大	A
13	是	是	大	A
14	是	是	中	В

决策树

停止分裂

- ・完全分类
- max_depth
 - 最大深度(推荐5-20之间)
- min_samples_split
 - •结点下样本最少样本
- max_leaf_nodes
 - •最大叶子节数
- min_impurity_split
 - •最小节点的不纯度(如:信息增益)

熵

举例

• 猜硬币,下面两种情况,哪种更好猜?

正反面出现概率都是0.5

正面出现概率0.2,反面出现概率0.8

$$H(X) = -(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1$$
 $H(X) = -(0.2\log_2 0.2 + 0.8\log_2 0.8) = 0.729$

$$H(X) = -\sum_{i=1}^{n} P(x_i) \log_b P(x_i)$$

熵变小了,不确定性变小了,更好猜了

ID3

以房子大为优先分裂点,因为带来的熵减(信息增益)为0.5216最多

<u> </u>	持征点	父节点熵	左子节点熵	右子节点熵	左右子节点的加权平均熵	信息增益
;	地铁?	0.9852	0.7642	0.7219	0.7490 * 9/14 + 0.7219 * 5/14 = 0.7491	0.2361
ı	电梯?	0.9852	0.9183	0.8113	0.9183 * 6/14 + 0.8113 * 8/14 = 0.8571	0.128
	大	0.9852	0.8113	0	0.8113 * 8 /14 + 0.0 * 6/14 = 0.4636	0.5216
	小	0.9852	0.8454	0	0.8454 * 11/14 + 0.0 * 3/14 = 0.6642	0.321
	中	0.9852	0.9183	0.971	0.9183 * 9/14 + 0.9710 * 5/14 = 0.9371	0.0481

ID3

继续分裂,指定完全分类或达到设定条件(如树深度)

近地铁	有电梯	房子大小	候选A或B
是	否	中	В
否		小	В
否	是	中	Α
否	是	中	Α
否	否	小	В
是	否	小	В
是	否	中	В
是	是	中	В
	是否否否否是是	是否合是否否否否是否	是否中否是中否是中否否小是否中

样本	近地铁	有电梯	房子大小	候选A或B
3	否	是	大	Α
5	否	否	大	Α
7	否	是	大	Α
9	否	是	大	Α
12	否	否	大	A
13	是	是	大	A

左子树 用同样的方法进行划分 右子树 全都是A不需要再划分

决策树扩展

- □ID4.5
 - 把信息增益换成信息增益率
- **□CART**
 - 把信息增益换成基尼系数
- □分类树 返回叶子结点的类别
- □回归树 返回叶子结点的平均数

随机森林

并行方式

Bagging

- 1. 有放回随机取样,得到K个子样本
- 2. 分别训练K个模型
- 3. 民主投票,少数服从多数得到最终结果

Adaboost

- 1. 样本加权,增加错误分类的样本权重
- 2. 分布训练K个模型
- 3. 弱分类器加权,加权求和和得到预测结果

串行结构

GBDT

新建第4颗时,利用到前3颗树学到的知识

GBDT (传统)

树串行组织,盯着残差学习,反向累积后产生结果

XGBoost

改进GBDT的损失函数,增加二阶展开,增加正则项

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t)$$

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

$$f(x + \Delta x) \simeq f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$$

把决策树看成x, f(x)为树的输出, $\Delta x \rightarrow$ 待求的决策树

$$Obj^{(t)} = \sum_{i=1}^n \left[l(y_i, \hat{y}_i^{t-1}) + g_i f_t(x_i) + rac{1}{2} h_i f_t^2(x_i)
ight] + \Omega(f_t) + constant$$

$$Obj = -rac{1}{2}\sum_{j=1}^{T}rac{G_{j}^{2}}{H_{j}+\lambda}+\gamma T_{j}$$

采样方法

X1 X2 X3 X4 X5

- □ 掷骰子: [0,9] 随机一个数, > 7 放到测试集, 否则训练集
- □ 将顺序打乱,取前30%至测试集,其他为训练集

```
test_size=0.20 #测试样本所占比例
shuffle=False #是否要乱序
random_state=1 #随机种子
```

```
from sklearn.model_selection import train_test_split
X, y = np.arange(100).reshape((10, 10)), range(10)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1,shuffle=True)
```

不平衡样本

正常样本(比重高) ◆-----→ 异常样本(比重低)

静态采样

• 平衡样本

训练集 验证集 测试集

• 不平衡样本

