ECE 514, Fall 2008

Homework Problems 7

Solutions (version: November 18, 2008, 13:55)

10.1 We have

$$m_X(t) = E[X_t]$$

= $E[g(t, Z)]$
= $g(t, 1)p_1 + g(t, 2)p_2 + g(t, 3)p_3$
= $a(t)p_1 + b(t)p_2 + c(t)p_3$

and

$$R_X(t_1, t_2) = E[X_{t_1} X_{t_2}]$$

$$= E[g(t_1, Z)g(t_2, Z)]$$

$$= g(t_1, 1)g(t_2, 1)p_1 + g(t_1, 2)g(t_2, 2)p_2 + g(t_1, 3)g(t_2, 3)p_3$$

$$= a(t_1)a(t_2)p_1 + b(t_1)b(t_2)p_2 + c(t_1)c(t_2)p_3.$$

10.4 In general, $R_X(t_1, t_2) = E[X_{t_1} X_{t_2}^*]$. Starting with the observation in the question,

$$0 \leq E \left[\left| \sum_{i=1}^{n} c_{i} X_{t_{i}} \right|^{2} \right]$$

$$= E \left[\left(\sum_{i=1}^{n} c_{i} X_{t_{i}} \right) \left(\sum_{k=1}^{n} c_{k} X_{t_{k}} \right)^{*} \right]$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} c_{i} E[X_{t_{i}} X_{t_{k}}^{*}] c_{k}^{*}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} c_{i} R_{X}(t_{i}, t_{k}) c_{k}^{*}.$$

10.16 The mean function of Y is

$$E[Y_n] = E[X_n - X_{n-1}] = E[X_n] - E[X_{n-1}] = 0,$$

which does not depend on n. The correlation function of Y is

$$E[Y_n Y_m] = E[(X_n - X_{n-1})(X_m - X_{m-1})]$$

$$= E[X_n X_m - X_n X_{m-1} - X_{n-1} X_m + X_{n-1} X_{m-1}]$$

$$= R_X(n-m) - R_X(n-m+1) - R_X(n-m-1) + R_X(n-m),$$

which depends on n and m only through their difference. Hence, $\{Y_n\}$ is WSS.

10.40 The transfer function is given by (using the table entry for the Cauchy characteristic function)

$$H(f) = \pi e^{-2\pi|f|}.$$

So,

$$S_Y(f) = S_X(f)|H(f)|^2 = (\mathcal{N}_0/2)\pi^2 e^{-4\pi|f|}.$$

Again using the table we get

$$R_Y(\tau) = \frac{\mathcal{N}_0 \pi^2}{2} \frac{2/\pi}{4 + \tau^2}. = \frac{\mathcal{N}_0 \pi}{4 + \tau^2}.$$

Hence,

$$E[Y_{t+1/2}Y_t] = R_Y(1/2) = \frac{\mathcal{N}_0\pi}{4 + (1/2)^2} = \frac{4\mathcal{N}_0\pi}{17}.$$

10.54 (a) We need to show that the corresponding Fourier transform is real, even, and nonnegative (see Section 10.6, p. 417). First, it is easy to see that R is real. Next, we show that R is even:

$$R(-\tau) = \int_{-\infty}^{\infty} R_0(\theta) R_0(-\tau - \theta) d\theta$$

$$= \int_{-\infty}^{\infty} R_0(-\theta) R_0(\tau + \theta) d\theta \quad \text{because } R_0 \text{ is even}$$

$$= \int_{-\infty}^{\infty} R_0(\alpha) R_0(\tau - \alpha) d\alpha$$

$$= R(\tau).$$

This shows that its Fourier transform is real and even. Finally, because $R = R_0 * R_0$, we have $S(f) = S_0(f)^2$. Also, because R_0 is real and even, $S_0(f)$ is real. Hence, $S(f) = S_0(f)^2 \ge 0$

(b) Given $R_0(\tau) = I_{[-T,T]}(\tau)$, taking Fourier transforms yields

$$S_0(f) = 2T \frac{\sin 2\pi f T}{2\pi f T}.$$

Hence,

$$S(f) = 4T^2 \left(\frac{\sin 2\pi fT}{2\pi fT}\right)^2$$

and

$$R(\tau) = 2T \left(1 - \frac{|\tau|}{2T}\right) I_{[-2T,2T]}(\tau).$$

10.56 Using the table in the book cover (for Gaussian), we have

$$V(f) = 2\sqrt{\pi}e^{-(2\pi f)^2}.$$

Hence,

$$H(f) = \alpha \frac{V(f)^* e^{-j2\pi f t_0}}{S_X(f)}$$

= $\alpha 2\sqrt{\pi} e^{-(2\pi f)^2/2} e^{-j2\pi f t_0}$.

Again using the table in the book cover, we have

$$h(t) = \alpha \sqrt{2}e^{-(t-t_0)^2/2}.$$

10.59 Assuming that $\{V_t\}$ and $\{X_t\}$ are uncorrelated, we have $R_U=R_V+R_X$ and $R_{VU}=R_V$. Hence, $H=S_V/(S_V+S_X)$.