Advanced Encryption Standard (AES) Cryptography - CS 411 / CS 507

Erkay Savaş

Department of Computer Science and Engineering Sabancı University

October 17, 2019

AES Selection Process

- Successor to DES
- The selection process is administered by NIST
 - AES selection was an open process.
 - 1997, NIST called for candidates to replace DES.
 - Requirements were
 - Block cipher with 128-bit block size
 - Support for 128, 192, 256 bits of key sizes
 - Efficient software and hardware implementation.
 - Cryptographic community was asked to comment on five finalists: MARS(IBM), RC6(RSA), Rijndael, Serpent, Twofish.
 - NIST chose Rijndael as AES in 2000.

Rijndael for AES

Joan **Dae**men & Vincent **Rij**men

- Likely to be the most commonly used algorithm in the next decade.
- See http://www.nist.gov/aes for more information

Algorithm	Pentium Pro 200 Mhz	FPGA hardware	
	Mbit/s	Gbit/s	
MARS	69	-	
RC6	105	2,4	
Rijndael	71	1,9	
Serpent	27	4,9	
Twofish	95	1,6	

Performance: AES vs DES

• Hardware ASIC (0.12 μ m)

Cipher	Area(# of gates)	Time Performance
TDES	5.5K/16.954K	334 Mbps/1.067 Gbps
AES	5.4K/20.328K/36.9K	311 Mbps/2.8 Gbps/4.459 Gbps

• Hardware FPGA (Virtex-E xcv1000E-8)

Cipher	Area($\#$ of slices)	Time Performance
TDES	668/1122	136 Mbps/290 Mbps
AES	956/2529	109 Mbps/833 Mbps

• Software (AMD Opteron 8354 2.2 GHz processor under Linux)

Cipher	Mode	Time Performance
TDES	CTR	13 MiB/s
AES	CTR(128/192/256)	139/113/96 MiB/s

AES Overview

- Rijndael block size is also variable (128/192/256)
- Number of rounds (n_r) is a function of the key length:

Key length(in bits)	n_r
128	10
192	12
256	14

Rijndael Overview

- Not a Feistel cipher.
 - Recall: Feistel ciphers do not process the whole block in each iteration.
 - This explains why Rijndael has fewer number of rounds.
- Rijndael has three basic steps (or layers):
 - Key Addition Layer: XORing the block with the round key.
 - Byte Substitution Layer: 8-by-8 substitution (s-box).
 Nonlinear operation (confusion).
 - Diffusion Layer: provides the diffusion of the bits of a block.
 Linear operations
 - ShiftRow Layer
 - MixColumn Layer

Rijndael Encryption

The Layers

- We will assume the block and key lengths are fixed to 128-bit (16 bytes).
 - 16 bytes (128 bit) are arranged into a 4×4 matrix

$$S = \left(\begin{array}{cccc} s_0^{i-1} & s_4^{i-1} & s_8^{i-1} & s_{12}^{i-1} \\ s_1^{i-1} & s_5^{i-1} & s_9^{i-1} & s_{13}^{i-1} \\ s_2^{i-1} & s_6^{i-1} & s_{10}^{i-1} & s_{14}^{i-1} \\ s_3^{i-1} & s_7^{i-1} & s_{11}^{i-1} & s_{15}^{i-1} \end{array} \right)$$

- Each matrix entry can be thought an element of $GF(2^8)$ with $x^8+x^4+x^3+x+1$.
 - We will occasionally do arithmetic in $GF(2^8)$.

The Byte Substitution Layer 1/2

- Each byte in the matrix is changed to another byte by the following operations:
 - Each byte in S is an element of $GF(2^8)$, A(x).
 - ② Find the multiplicative inverse of A(x), $T(x) = A^{-1}(x)$.
 - Apply the affine transformation defined by

$$\begin{pmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} t_0 \\ t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_5 \\ t_6 \\ t_7 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

The Byte Substitution Layer - SBOX

- \bullet In round i, every byte of the state s_j^{i-1} is substitued by a highly nonlinear transformation

$$ullet$$
 The result is another 4×4 matrix whose entries are bytes.

 You can use a table with 256 entries whose entries are bytes in order to implement this layer.

The Shift Row Layer

 Four rows of the matrix are shifted cyclically to the left by offsets of 0, 1, 2, 31, 2, 3.

$$\begin{pmatrix} c_0 & c_4 & c_8 & c_{12} \\ c_1 & c_5 & c_9 & c_{13} \\ c_2 & c_6 & c_{10} & c_{14} \\ c_3 & c_7 & c_{11} & c_{15} \end{pmatrix} = \begin{pmatrix} b_0 & b_4 & b_8 & b_{12} \\ b_5 & b_9 & b_{13} & b_1 \\ b_{10} & b_{14} & b_2 & b_6 \\ b_{15} & b_3 & b_7 & b_{11} \end{pmatrix} \leftarrow \begin{pmatrix} b_0 & b_4 & b_8 & b_{12} \\ b_1 & b_5 & b_9 & b_{13} \\ b_2 & b_6 & b_{10} & b_{14} \\ b_3 & b_7 & b_{11} & b_{15} \end{pmatrix}$$

The Mix Column Layer

$$\begin{pmatrix} d_0 & d_4 & d_8 & d_{12} \\ d_1 & d_5 & d_9 & d_{13} \\ d_2 & d_6 & d_{10} & d_{14} \\ d_3 & d_7 & d_{11} & d_{15} \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \cdot \begin{pmatrix} c_0 & c_4 & c_8 & c_{12} \\ c_1 & c_5 & c_9 & c_{13} \\ c_2 & c_6 & c_{10} & c_{14} \\ c_3 & c_7 & c_{11} & c_{15} \end{pmatrix}$$

- $02 = 0000 \ 0010$
- $03 = 0000 \ 0011$

The Round Key Addition

A simple XORing operation

$$\begin{pmatrix} s_0^i & s_4^i & s_8^i & s_{12}^i \\ s_1^i & s_5^i & s_9^i & s_{13}^i \\ s_2^i & s_6^i & s_{10}^i & s_{14}^i \\ s_3^i & s_7^i & s_{11}^i & s_{15}^i \end{pmatrix} = \begin{pmatrix} d_0 & d_4 & d_8 & d_{12} \\ d_1 & d_5 & d_9 & d_{13} \\ d_2 & d_6 & d_{10} & d_{14} \\ d_3 & d_7 & d_{11} & d_{15} \end{pmatrix} \oplus \begin{pmatrix} k_0^i & k_4^i & k_8^i & k_{12}^i \\ k_1^i & k_5^i & k_9^i & k_{13}^i \\ k_2^i & k_6^i & k_{10}^i & k_{14}^i \\ k_3^i & k_7^i & k_{11}^i & k_{15}^i \end{pmatrix}$$

ullet The matrix whose entries are s^i_j is the output of the round i

The Key Schedule

- The original key consists of 128 bits (16 B)
- We need round keys for the 10 (12 or 14) rounds
- The nonlinear SBOX function is used to generate round keys

Decryption

- Rijndael is not Feistel cipher;
 - Thus each layer must actually be inverted.
 - Operations in each layer are invertible:
 - InvByteSub
 - InvShiftRow (Shift right instead of left)
 - InvMixColumn
 - The inverse of MixColumn exists because 4×4 matrix used in MixColumn is invertible.

InvMixColumn matrix

$$\begin{pmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{pmatrix} \qquad 0E = 0000 \ 1110 \rightarrow$$

Rijndael Decryption

Final Remarks

- In every round, each bit in the block are treated uniformly
 - This has the effect of diffusing the input bits faster
 - After two rounds each of the 128 output bits depends on each of the 128 input bits.
- S-box is constructed using a very simple algebraic mapping,
 - $-x \to x^{-1}$ in $GF(2^8) \to \text{highly nonlinear}$; balanced
 - Its simplicity removes any suspicions about a certain trapdoor, which was believed to exist in DES for years.
- Key scheduling utilizes highly nonlinear SubByte mapping.
- No known attacks are better than brute force for seven or more rounds