Math 357 Long quiz 05A

2024–03–27 (W)

Your name:	

Let
$$p = 3t^4 + 4t^3 - 12t^2 + 18 \in \mathbf{Q}[t]$$
.

- (a) Prove that p is irreducible in Q[t].
- (b) Prove that p has two distinct zeros in \mathbf{R} and two distinct zeros in $\mathbf{C} \mathbf{R}$. (You need not compute them.) You may use the following information in your proof:

t	-3	-2	-1	0	1	2	3
p(t)	45	-14	5	18	13	50	261

(c) Let $\alpha \in C$ be a zero of p, and let $\beta \in C$ such that the minimal polynomial of β over Q has degree 3. (Note that α or β may be real.) Can $\beta \in Q(\alpha)$? in a splitting field of p? Justify your assertions.