Аппроксимационные схемы

Определение Алгоритм *A* называется *\varepsilon*-аппроксимационной схемой, если для любого $\varepsilon \in]0,1[$ и любых исходных данных *I* задачи верно

$$z^{A}(I) \ge (1 - \varepsilon)z^{*}(I)$$

Другими словами, алгоритм A является $(1-\varepsilon)$ -приближенным алгоритмом для всех $\varepsilon \in]0,1[$.

Алгоритм H^{ε}

1.
$$l := \min \{ \lceil 1/\varepsilon \rceil - 2, n \}, \quad z^A := 0$$

2. Для всех подмножеств $L \subset J$, $|L| \le l-1$

if
$$(\sum_{j \in L} w_j \le c)$$
 and $(\sum_{j \in L} p_j > z^A)$ then $z^A := \sum_{j \in L} p_j$

- 3. Для всех подмножеств $L \subset J$, |L| = l if $(\sum_{j \in L} w_j \le c)$ then
 - Применить алгоритм A^{MG} к задаче с множеством предметов $\{j \mid p_j \leq \min \ \{p_i, i \in L\}\} \setminus L$ и вместимостью рюкзака $c \sum_{j \in L} w_j$
 - if $\sum_{j \in L} p_j + z^{MG} > z^A$ then $z^A := \sum_{j \in L} p_j + z^{MG}$.

Теорема Алгоритм H^{ε} является ε -аппроксимационной схемой.

Доказательство. Если оптимальное решение z^* содержит не более l предметов, то $z^A = z^*$ и утверждение верно.

Пусть в оптимальном решении более чем l предметов. Выберем в нем подмножество L^* из l предметов с наибольшими весами p_j . Рассмотрим подзадачу S с множеством предметов $\{j \mid p_j \leq \min \{p_i, i \in L^*\}\} \setminus L^*$ и вместимостью рюкзака $c - \sum_{j \in L^*} w_j$. Оптимальное решение этой подзадачи

обозначим через z_S^* . Тогда $z^* = z_S^* + \sum_{j \in L^*} p_j$. Приближенное решение,

полученное алгоритмом A^{MG} , обозначим через z_S^{MG} .

По определению $z^A \geq \sum_{j \in L^*} p_j + z_S^{MG}$ и, кроме того, $z_S^{MG} \geq \frac{1}{2} z_S^*$.

Рассмотрим два случая:

1.
$$\sum_{j \in L^*} p_j \ge \frac{l}{l+2} z^*$$
. Тогда $z^A \ge \sum_{j \in L^*} p_j + z_S^{MG} \ge \sum_{j \in L^*} p_j + \frac{1}{2} z_S^* =$

$$\sum_{j \in L^*} p_j + \frac{1}{2} (z^* - \sum_{j \in L^*} p_j) = \frac{1}{2} (z^* + \sum_{j \in L^*} p_j) \ge \frac{1}{2} (z^* + \frac{l}{l+2} z^*) = \frac{l+1}{l+2} z^*$$

2. $\sum_{j \in L^*} p_j < \frac{l}{l+2}z^*$. Тогда в L^* найдется предмет с $p_j < \frac{1}{l+2}z^*$. По

определению в подзадаче S все предметы имеют вес не более $\frac{1}{l+2}z^*$.

Применяя свойство 2 для *LP*-релаксаций, получаем

$$z^* = \sum_{j \in L^*} p_j + z_S^* \le \sum_{j \in L^*} p_j + z_S^{MG} + \frac{1}{l+2} z^* \le z^A + \frac{1}{l+2} z^*.$$

Итак, в обоих случаях получаем $z^A \ge \frac{l+1}{l+2}z^*$. Величина $\frac{l+1}{l+2}$ растет с ростом l

$$u \frac{l+1}{l+2} \ge \frac{\frac{1}{\varepsilon}-1}{\frac{1}{\varepsilon}} = 1-\varepsilon.$$

$$T = O(n \ n^l) = O(n^{l+1}). \quad \Pi = O(n).$$

Пример Положим
$$n = \left\lceil \frac{1}{\varepsilon} \right\rceil + 1, \ c = \left\lceil \frac{1}{\varepsilon} \right\rceil M$$
 и $p_1 = 2, \quad p_2 = p_3 = \ldots = p_n = M,$ $w_1 = 1, \quad w_2 = w_3 = \ldots = w_n = M.$ Оптимум $z^* = M(l+2), \ l = n-3, \ z^A = (l+1)M + 2$ и $z^A/z^* \to (l+1)/(l+2)$ при $M \to \infty.$

Определение ε -аппроксимационная схема A называется *полиномиальной*, если ее трудоемкость полиномиально зависит от длины записи исходных данных задачи.

 $T_H = O(n^{l+1}) = O(n^{1/\varepsilon - 1})$ — полиномиальная зависимость при заданном ε . Если $\varepsilon = 0.1$, то $T_H = O(n^9)$, то есть алгоритм H^{ε} является полиномиальной ε -аппроксимационной схемой для задачи о рюкзаке.

Определение ε -аппроксимационная схема A называется *полностью полиномиальной*, если ее трудоемкость полиномиально зависит от длины записи исходных данных задачи и величины $1/\varepsilon$.

Теорема Для задачи о рюкзаке существует полностью полиномиальная ε -аппроксимационная схема.

Доказательство Для примера $I = \{p_1, ..., p_n, w_1, ..., w_n, c\}$ построим новый пример \bar{I} , в котором $\bar{c} = c, \bar{w}_j = w_j, \bar{p}_j = \left\lfloor \frac{p_j}{K} \right\rfloor$ для некоторой константы K > 0, которую определим позже. Для примера \bar{I} применим алгоритм ДП и найдем оптимальный набор предметов \bar{X} . Скорее всего он будет отличаться от оптимального набора X^* для примера I. Оценим разность

$$z^{A} = \sum_{j \in \overline{X}} p_{j} \ge \sum_{j \in \overline{X}} K \left\lfloor \frac{p_{j}}{K} \right\rfloor \ge K \sum_{j \in X^{*}} \left\lfloor \frac{p_{j}}{K} \right\rfloor \ge \sum_{j \in X^{*}} K \left(\frac{p_{j}}{K} - 1 \right) = \sum_{j \in X^{*}} \left(\frac{p_{j}}{K} - 1 \right) = \sum_{j$$

между полученным значением z^A и оптимальным z^* :

$$= \sum_{j \in X^*} (p_j - K) = z^* - |X^*| K.$$

Второе неравенство в этой цепочке следует из оптимальности \overline{X} для \overline{I} .

Мы хотим получить
$$\frac{z^* - z^A}{z^*} \le \frac{|X^*|K}{z^*} \le \varepsilon.$$

Следовательно,
$$K \leq \frac{\mathcal{E} \cdot z^*}{\mid X^* \mid}$$
. Так как $n \geq |X^*|$ и $z^* \geq p_{\max}$, то

$$\frac{\mathcal{E} \cdot z^*}{\mid X^* \mid} \ge \frac{\mathcal{E} \cdot z^*}{n} \ge \frac{\mathcal{E} \cdot p_{\text{max}}}{n}$$

и, полагая $K = \varepsilon \cdot p_{\max}/n$, получим нужное значение для параметра K.

Трудоемкость алгоритма определяется трудоемкостью ДП. Если вместо исходной задачи решать обратную к ней, то T = O(Un), где U — верхняя оценка на оптимальное значение целевой функции $\bar{z}^* = \sum_{i \in \overline{V}} \bar{p}_i$.

Очевидно, что
$$\bar{z}^* \le n \bar{p}_{\max}$$
, но $\bar{p}_{\max} \le \frac{p_{\max}}{K} = \frac{n}{\varepsilon}$, то есть $\bar{z}^* \le n^2 / \varepsilon$.

Полагая
$$U = n^2/\varepsilon$$
, получаем $T = O(n^3 \cdot \frac{1}{\varepsilon})$, $\Pi = O(Un) = O(n^3 \cdot \frac{1}{\varepsilon})$.

Задача о ближайшем соседе

Дано: функция $f(x, y) \ge 0$ — затраты на обслуживание отрезка дороги от x до y, $0 \le x \le y \le M$, x, y — целочисленные точки, n — число отрезков.

Найти: оптимальное разбиение сегмента [0,M] на n отрезков.

Математическая модель:

$$\min \sum_{k=1}^{n} f(x_{k-1}, x_k)$$

$$0 = x_0 \le \ldots \le x_n = M$$

Алгоритм динамического программирования

 $S_k(y)$ — минимальные затраты на обслуживание k отрезков для сегмента [0, y].

Рекуррентные соотношения:

$$S_1(y) = f(0,y), y = 1,..., M$$

 $S_k(y) = \min_{1 \le x \le y} \{S_{k-1}(x) + f(x,y)\}, y = 1,..., M, k = 2,..., n.$

$$T = O(nM^2)$$
 $\Pi = O(nM)$

Оптимизация числа отрезков

Для каждого n = 1, ..., M найти $S_n(M)$ и выбрать наименьшее значение $T = O(M^3), \ \Pi = O(M^2).$

Модифицированный вариант

 $\widetilde{S}(y)$ — минимальные затраты на обслуживание сегмента [0, y].

Рекуррентные соотношения:

$$\widetilde{S}(0) = 0,$$

$$\widetilde{S}(y) = \min_{0 \le x \le y-1} {\{\widetilde{S}(x) + f(x, y)\}}, \quad y = 1, \dots, M.$$

$$T = O(M^2), \quad \Pi = O(M).$$

Задача замены оборудования

Приведение затрат к начальному моменту

Пусть χ — банковский процент, или коэффициент эффективности капиталовложений (годовая норма дисконта).

Если S_1 — капитал в начальный год, то по истечении года эта сумма станет равной $S_2 = S_1 \cdot (1 + \chi)$, а в конце *t*-го года $S_t = S_1 \cdot (1 + \chi)^{t-1}$.

Если в год t хотим потратить сумму S_t , то в начальный год должны иметь

$$S_1 = \frac{S_t}{(1+\chi)^{t-1}}$$
. Затраты S_t в год t , будучи приведенными к начальному момен-

ту t = 1, равны

$$\widetilde{S} = \alpha^{t-1} \cdot S_t$$

где $\alpha = \frac{1}{1+\chi}$ — коэффициент дисконтирования, $0 < \alpha \le 1$.

Если в течении T лет производились траты $S_1, S_2, ..., S_t$ то суммарные приведенные затраты вычисляются по формуле:

$$\widetilde{S} = \sum_{t=1}^{T} \alpha^{t-1} S_t.$$

Пример Рассмотрим распределение капитала в 8 млн. руб. в течение 8 лет при банковском проценте $\chi = 0.1 \ (\alpha = 0.91)$ и трех стратегиях:

- 1) все траты в 1-й год;
- 2) равномерные траты;
- 3) все траты в последний год.

Стратегия	Год								Суммарные
	1	2	3	4	5	6	7	8	приведенные затраты
1	8	<u> </u>	_	<u> </u>	_	<u>-</u>	_	<u>-</u>	8.0
2	1	1	1	1	1	1	1	1	5.9
3	_	_	_	_	_	_	_	8	4.2

Постановка задачи

g — начальная стоимость оборудования;

 c_t — стоимость эксплуатации оборудования в t год, $c_{t+1} \ge c_t$;

Система функционирует бесконечно, оборудование периодически заменяется.

Т — период замены оборудования;

 S_T — суммарные затраты при фиксированном периоде замены T :

$$S_T = g + \sum_{t=1}^T \alpha^{t-1} c_t + \alpha^T g + \sum_{t=1}^T \alpha^{T+t-1} c_t + \alpha^{2T} g + \sum_{t=1}^T \alpha^{2T+t-1} c_t + \dots$$
 за первые T лет за вторые T лет

Благодаря дисконтированию затрат (α < 1) величина S_T конечна:

$$S_T = (g + \sum_{t=1}^T \alpha^{t-1} c_t)(1 + \alpha^T + \alpha^{2T} + \dots) = (g + \sum_{t=1}^T \alpha^{t-1} c_t)/(1 - \alpha^T) < \infty.$$

Задача отыскания оптимального периода замены оборудования: $S_T \to \min_{T>0}$

Применение динамического программирования

Рассмотрим систему, функционирующую в течение T лет, причем решение о замене оборудования принимается каждый год.

Дано: $\{1,...,m\}$ — набор типов оборудования;

 g_t^i — стоимость оборудования i-го типа, купленного в год t;

 $c_t^i(au)$ — стоимость годовых эксплуатационных затрат на оборудование i-го типа, купленного в год t и проработавшего au лет;

 $\Phi_t^i(au)$ — остаточная стоимость оборудования i-го типа возраста au, купленного в год t;

n — максимально допустимый возраст оборудования;

 i_0 , τ_0 — тип и возраст оборудования в начале функционирования;

Пусть $S_t^i(\tau)$ — минимальные суммарные затраты в интервале [t, T], приведенные к началу t-го года, при условии, что в начале t-го года было оборудование типа i возраста τ . Требуется найти $S_1^{i_0}(\tau_0)$.

Рекуррентные соотношения:

$$S_T^i(\tau) = \min \begin{cases} c_{T-\tau}^i(\tau+1) - \alpha \varPhi_{T-\tau}^i(\tau+1), & \text{если замены нет,} \\ \min \left[g_T^k + c_T^k(1) - \alpha \varPhi_T^k(1) \right] - \varPhi_{T-\tau}^i(\tau), & \text{в случае замены,} \\ 1 \le k \le m \end{cases}$$

$$1 \le \tau \le n$$
, $1 \le i \le m$,

$$S_t^i(\tau) = \min \begin{cases} c_{t-\tau}^i(\tau+1) + \alpha S_{t+1}^i(\tau+1), & \text{если продолжаем эксплуа-тировать оборудование} \\ \min_{1 \leq k \leq m} \left[g_t^k + c_t^k(1) + \alpha S_{t+1}^k(1) \right] - \varPhi_{t-\tau}^i(\tau), & \text{если заменяем оборудованиe} \end{cases}$$

$$1 \le \tau \le n$$
, $1 \le i \le m$, $1 \le t < T$.

Алгоритм может быть реализован с трудоемкостью $T = O(m^2 n T)$, и памятью $\Pi = O(mnT)$.

Вопросы

- ε-аппроксимационная схема является полностью полиномиальной, если ее трудоемкость полиномиально зависит от є и от длины записи исходных данных (Да или Нет)?
- Для задачи замены оборудования метод динамического программирования дает точное решение с полиномиальной трудоемкостью (Да или Нет)?
- Для задачи замены оборудования метод динамического программирования можно обобщить на случай, когда коэффициент дисконтирования зависит от времени (Да или Нет)?
- Для задачи замены оборудования метод динамического программирования можно вести не с конца планового периода, а с начала (Да или Нет)?
- В чем недостатки модели замены оборудования?