

OM nucleic - nucleic search, using sw model

Run on: May 3, 2003, 21:11:56 ; Search time 407.991 Seconds
 (without alignments)
 16426.693 Million cell updates/sec

Result No.	Score	Query Match Length	DB ID	Description
1	256.8	8.8	588	Trichoderma reesei
2	184.4	6.2	3241	Contig 93 DNA enco
3	179	6.0	2401	Nucleotide sequence
4	179	6.0	2401	Contig 001 from co
5	177.4	6.0	1145	Celllobase gene fr
6	175.2	5.9	2430	S. venezuelae mcr
7	175.2	5.9	2430	Streptomyces venez
8	175.2	5.9	12441	S. venezuelae deso
9	175.2	5.9	13613	Streptomyces venez

Total number of hits satisfying chosen parameters: 4370478

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database : N_Genesed_101002:*

1: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1987.DAT:*

2: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1980.DAT:*

3: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1982.DAT:*

4: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1983.DAT:*

5: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1985.DAT:*

6: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1986.DAT:*

7: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1987.DAT:*

8: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1988.DAT:*

9: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1989.DAT:*

10: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1990.DAT:*

11: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1991.DAT:*

12: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1992.DAT:*

13: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1993.DAT:*

14: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1994.DAT:*

15: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1995.DAT:*

16: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1996.DAT:*

17: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1997.DAT:*

18: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1998.DAT:*

19: /SIDS2/gcdata/geneseq/geneseq-emb1/NA1999.DAT:*

20: /SIDS2/gcdata/geneseq/geneseq-emb1/NA2000.DAT:*

21: /SIDS2/gcdata/geneseq/geneseq-emb1/NA2001.DAT:*

22: /SIDS2/gcdata/geneseq/geneseq-emb1/NA2002.DAT:*

23: /SIDS2/gcdata/geneseq/geneseq-emb1/NA2002.DAT:*

24: /SIDS2/gcdata/geneseq/geneseq-emb1/NA2002.DAT:*

RESULT 1

ID AAF15000 AAFT5000 standard; cDNA; 568 BP.

AC AAF15000;

DT 13-MAR-2001 (first entry)

DE Trichoderma reesei EST SEQ ID NO:7523.

XX Multiple gene expression; filamentous fungal cell; EST;

XX expressed sequence tag; Fusarium venenatum; Aspergillus niger;

XX Aspergillus oryzae; Trichoderma reesei; identification; recombination;

XX culture condition; environmental stress; spore morphogenesis; ss.

XX metabolic pathway engineering; catabolic pathway engineering; ss.

OS Trichoderma reesei.

XX

PN WO200056762-A2.

XX

PD 28-SEP-2000.

XX

PF 22-MAR-2000; 2000WO-US07781.

PR 22-MAR-1999; 99US-0273623.

XX

PA (NOVO) NOVO NORDISK BIOTECH INC.

PA (NOVO) NOVO NORDISK AS.

XX

PI Berka RM, Rey MW, Shuster JR, Kauppinen S, Clausen IG, Olsen PB;

XX

DR WPI: 2000-594572/55.

SUMMARIES

Result No.	Score	Query Match Length	DB ID	Description
1	256.8	8.8	588	Trichoderma reesei
2	184.4	6.2	3241	Contig 93 DNA enco
3	179	6.0	2401	Nucleotide sequence
4	179	6.0	2401	Contig 001 from co
5	177.4	6.0	1145	Celllobase gene fr
6	175.2	5.9	2430	S. venezuelae mcr
7	175.2	5.9	2430	Streptomyces venez
8	175.2	5.9	12441	S. venezuelae deso
9	175.2	5.9	13613	Streptomyces venez

ALIGNMENTS

S venezuelae deso
 Chimerae therm
 Streptococcus olea
 Thermotoga marit
 Thermotoga maritim
 Mycobacterium tube
 Mycobacterium fo
 Oligonucleotide fo
 Acetobacter xylinu
 S. chrysomallus ac
 Kynase gene from
 Entire amylase gen
 Sequence encoding
 Streptomyces nours
 Streptomyces nours
 randomising oligon
 PCR primer for 5'
 Sequence containin
 Oligo #7 for clon
 Trichoderma reesei
 DNA encoding a bet
 Trichoderma reesei
 Codon optimised RA
 Modified HIV prote
 Corynebacterium gl
 Streptomyces fradi
 CDNA encoding aven
 Streptomyces albid
 Nucleotide sequenc
 3-Hydroxysteroid-o
 3-hydroxysteroid o
 Streptomyces sp. s
 3-Hydroxysteroid-o
 3-hydroxysteroid-o
 Streptomyces sp. s

XX Monitoring differential expression of genes in filamentous fungal cells
 PT uses fluorescence-labeled nucleic acids isolated from the cells and a
 PT substrate of expressed sequence tags -
 XX

PS Claim 89; Page 3038-3039; 3161pp; English.

XX The present invention describes a method for monitoring differential
 CC expression of genes in a first filamentous fungal (FF) cell relative to
 CC expression of the same genes in one or more second filamentous fungal
 CC cells. The method uses fluorescence-labeled nucleic acids isolated from
 CC the FF cells and a substrate of expressed sequence tags (EST). The ESTs
 CC are used in the methods for monitoring differential expression of genes
 CC in a first filamentous fungal (FF) cell relative to expression of the
 CC same genes in one or more second filamentous fungal cells. Monitoring
 CC the global expression of genes from FF cells allows the production
 CC potential of the microorganisms to be improved. New genes may be
 CC discovered, possible functions of unknown open reading frames can be
 CC identified and gene copy number variation and stability can be
 CC monitored. The expression of genes can be used to study how FF cells
 CC adapt to changes in culture conditions, environmental stress, spore
 CC morphogenesis, recombination, metabolic or catabolic pathway
 CC engineering. Using ESTs provides several advantages over genomic or
 CC random cDNA clones including elimination of redundancy as one spot on an
 CC array equals one gene or open reading frame, and organisation of the
 CC microarrays based on function of the gene products to facilitate
 CC analysis of the results. AAF07478 to AAF11247 represents ESTs from
 CC Fusarium venenatum; AAF11248 to AAF11853 represents ESTs from Aspergillus
 CC niger; AAF11854 to AAF11878 represents ESTs from Aspergillus oryzae; and
 CC AAF14879 to AAF15337 represents ESTs from Trichoderma reesei, which are
 XX all specifically claimed in the present invention.
 SQ Sequence 588 BP; 130 A; 167 C; 157 G; 109 T; 25 other;

Query Match 8.8%; Score 260.8; DB 21; Length 588;

Best Local Similarity 92.8%; Pred. No. 3.3e-33; Mismatches 20; Indels 2; Gaps 1; XX
 Matches 283; Conservative 0; Mismatches 20; Indels 2; Gaps 1;

QY 2208 ATCCAGGCCGCGTAGGGCGCAAGAGACGGGAACTCATTCCGAGCTGCTTGGC 2267
 Db 1 ATCCAGGCCGCGTAGGGCGCAAGAGACGGGAACTCATTCCGAGCTGCTTGGC 60

QY 2268 GACTACAACCCCTGGGCAAGCTTCCCTAGETTCCCAGGCCCTGAGAACCC 2327
 Db 61 GACTACAACCCCTGGGCAAGCTTCCCTAGETTCCCAGGCCCTGAGAACCC 120

QY 2328 GCGTTCTCACTTCGCAACGGCCGGCGACCGCTGACGGGAGGCTAGTC 2387
 Db 121 GCGTTCTCACTTCGCAACGGCCGGCGACCGCTGACGGGAGGCTAGTC 180

QY 2388 GGTTACAGGTACTACGAGTTGGGACAGAGGTCAATTCCCTTGCCAGGGCTG 2447
 Db 181 GGTTACAGGTACTACGAGTTGGGACAGAGGTCAATTCCCTTGCCAGGGCTG 240

QY 2448 TCCTACACCACTT--GCCTTTCAACTCCCGTCTCCAAAGGAGGCAAGCTGA 2505
 Db 241 TCCTACACCACTTTCGCTTTCACAACTCTCCGGGTCTAACAAANGGAGGNA 300

QY 2506 GCCTG 2510
 Db 301 GCCTG 305

RESULT 2
 AAS18442
 ID AAS18442 standard; DNA; 3241 BP.
 AC AAS18442;
 XX 12-MAR-2002 (first entry)
 XX Contig 93 DNA encoding S. carbonensis polyketide synthase.
 XX

KW Narbonolide polyketide synthase; PKS; narbomycin modification enzyme;
 KW erythromycin; rapamycin; tylosin; picromycin; methylyycin;
 KW neomethylyycin;
 XX Streptomyces carbonensis.

OS US6503767-B1.

PN DR

XX

PD 16-OCT-2001.

XX

PR 05-NOV-1999; 99US-0434288.

XX

PR 05-NOV-1998; 99US-107093P.

XX

PR 27-MAY-1999; 99US-0320878.

XX

PA (KOSA-) KOSAN BIOSCIENCES INC.

PI Betlach MC, McDaniel R;

XX

DR WPI; 2002-065495/09.

XX

PT

XX

PT

XX

PS

XX

Claim 1; Column 20-22; 24pp; English.

XX

CC

QY	1084 GCTTCGAGGAGAAACACTCAAGTCTCAAGGAAAGGCCTTATCCAGTC 1143	Db	1737 GTTCGTGCGTGTGAGTCAGGACGGGGCTTGACATGGTAC 1796
Db	776 -----GGCGTCGAGCTCCCCGGAGGTCGGCCGCC 827	Db	1797 CGGGCACAGAGACGGCACTCATCAGGCTGCTTGACATGGTAC 2283
QY	1144 TTGACCAAGAGGCTAGGCTAGGAGAAGCTTCAGTTCTCAAGAAGCTG 1203	Db	1797 CGGGCACAGAGACGGCACTCATCAGGCTGCTTGACATGGTAC 1856
Db	828 AGTCTCTCCCGA--GGGCTGAGAGCGGCGGCG 884	Db	1857 GCAAGTCACCGAGAGTCCTCCGGCCGAGAACAGCACGGGTCGGCG 1916
QY	1204 CGGACAAACGCCCGAGAGAGACTCTACACACACACCCCAGAACGGCAGCTC 1263	QY	2284 GCAAGCTGTCCTGAGGCTAGATGGAGAAGTGGTGTGCT 2334
Db	885 CCGTGACGGGGTCCGGGGAGCGGGATCGTGGCTCGTCAACACCG 944	Db	1917 CGAGCTACCGAGAGTCCTCCGGCC 1004
QY	1264 AGGTGGCACAGAGGGCATCTGCTGCTGAAGAACAGAGAACACGTC 1323	QY	2335 TCACTTGCCAGGAGGCCGGGAGCGCAGCTCTCCCTGAGCA 2394
Db	945 CCACTCCGGGGCGCGGCGGCGGCG 1111	Db	2037 CCAGCTACCGAGAGTCACATCAAGGTCACCCGGG 1123
QY	1324 AGAAGAGAGGAGGCTGTGTTGGCCCAAAGCCACAGCAGGCC 1383	QY	2355 GGATCTGAGGAGGCTACTCCATCTCCATCTAGGG 1064
Db	1005 TCSCGAGAACGGGGCATCTGCTGCTGAAGAGGGCC 1111	Db	1977 GCAGGTGACAGAGAACGTCAGGAGGACCTCTCCATCTAGGG 1503
QY	1384 GCTGTGCGCACTCAGGCCCTACTACCGAGTCACTCCCTGACGCC 1443	Db	2097 CGGTAGGTGCGCACAGGCCGCGGCGACTCGAC 1183
Db	1065 ACGGCGGAAGACATCGGGTCATCGCCCCGACGGCGTCGAC-CCCAAGGTACCCGG 1123	QY	2572 AGCCCTCTCAAGGGCCAAAGATAACCGCCGCGGCGGCG 1563
QY	1444 TCGAGACCCGGCATCTACACCGTGGGGCTACACCGTCTCCATCTAGGG 1503	Db	2157 GPGCCACCCGACCTGGCGCTGGAGGAGACCTTCGGAC 1243
Db	1114 CTGGCAGGCCAACGCTGTCGGGACTCTGGGGCGGCG 1111	QY	2632 TCGATGAGGGGAGACCTTCGGACGGGCTGAC 2655
QY	1504 ASCAGTGGCTCACGCCGAGCACATGACCGAGCTCTCACCAAGGAC 1623	Db	2217 TCTCGCTCGCCGGGGAGGAGACGGTAC 2250
Db	1184 CGGGGGGTGCGGTGACGCTGAGACGGGAGACCTTCGGAC 1243		
QY	1564 CTGGTAGACCCGAGAACCTCAAC 1111		
Db	1244 ATCCCGGGGGAAACCTCAAC 1111		
QY	1624 TCGTGGATTACCAACCCGAGGGGACACACTGGAGACGAGGGACGT 1683		
Db	1278 AGGGCCACCACTCGAGCCGGCAAGGGGGGCTGAGAGGCCACGTCG 1337		
QY	1684 ACACCGCCGACGGAGACTGAGCTACAGGCTGCGGCTCTCGAGGG 1743		
Db	1338 CGCCCAACGGGAGTACCGCATCGGGTCTGACCGGGTGTACCGGTGCA- 1396		
QY	1744 CGTACGTAGACGACCAGCTGTCGTOGACACACGCCACCAAGGAGC 1803		
Db	1397 -----CTGGCAGGCCACAC 1409		
QY	1804 TCTTCGCTCGCCACCCGCGAGGAGACGGCCATCAATCGTCAAGGGAC 1863		
Db	1410 CCATCGAGGGCTGAGGCTACGGCAAGGTGAGCAGGCCGCTCTCAAGCTGAC 1469		
QY	1864 ACAAGTCAAGATCGAGTCAGTCGGCTCGGACCCACTACACCTCAAGGGAC 1923		
Db	1470 GCACGACAGCT-----CAGATCTCGGCTGGCATGA 1505		
QY	1924 TCCCGGCGCACGGCTCCCTCGGCTCGGACCCACTACACCTCAAGGGAC 1983		
Db	1506 GTGCCACCCGCTCTCCCTGAGGCTGGCTGCTGCTGCTGCTGCTGCTG 1565		
QY	1984 TCGAAAGTCGTCGCCCTGCCAAGGGACGACGACCGTCACTCTGGCTTA 2043		
Db	1566 TCGGAAGTCGTCGCCCTGCCAAGGGACGACGACCGTCACTCTGGCTTA 2043		
QY	2044 ACCGGGAGCTGGAGACCCAGGCGCCACCCGGAGCATGAGCTCCCGGCTG 2103		
Db	1618 -CTACGACCGGGGACCCAGGGCTGGCTGCTGCTGCTGCTGCTGCTGCTG 1676		
QY	2104 ACCGGGAGCTGGAGACCCAGGCGCCACCCGGAGCATGAGCTCCCGGCTG 2163		
Db	1677 ACAAGCTGATCTCGGCTCTGGGAGCGGCAACCCGAGACAGCATCTGGCT 1736		
QY	2164 GCACCCGGAGGAGATGCCCCCTGCTGACGCCACGCCGCCGCTCATCCAGGCC 2223		

Db	413	AGGGTCCGCCCTAACAGGACATGGCTGGCCCGATGATGAAACACATCGGGTGC	472	Qy	1744	CGTACCTAGACGACCAGCTGTCCTGACAAAGCAGTCGCCACCAAGCAGGTCCCCCGATGCTCCT 1803	
Qy	664	CCTCTCGGTTGAGCTGGCTTCAGTGGATGTTGAGGATCTCGTCCTGCGGGCTTGGAG	723	Db	1495	-----	-----
Db	473	CCACACGGGGCGGAACCTACCGAGACCTTCAGGAGACCTCGAGGAGACCCCTGTCCTCGCGCACCG	532			-----	-----
Qy	724	CCTGCGACTCTCATCGGGCATTCAGAGACTGGAGTCAGGCTACAGCTACAGCACTTT	783	Qy	1804	TCTTGGCTCGCCACCCCGAGGAGAGGGCGCATCACTCGTCGAAGGCAACAGCT 1863	
Db	533	CGTGCGCCACATCAAGGGCATCCAGGGACACCCCTGTCCTCGCGCACCGCCAAAGCACATCG	592	Db	1508	CCATCGAGGCGGTAGGTCTACGGCAGGTGAGCAGGCCGCGTCCTCAAGTGCAGCAAG 1567	
Qy	784	TCTGCACTGATGACAGAGGACAGGGCATGATGGTCCAGGACATGTCACGGAGGGCTC	843	Qy	1864	ACAATCTCAGATGAGTTGGCTCCGACCCACCTACACCCCTCAAGGGACACATCG 1923	
Db	593	CGGCCACACACAGGAGACACCGCTCTCGTGTAAGGCCATGTCAGCGAGACAGC	652	Db	1568	GCACCCACAGCT-----CACGATCTGGGCTTCGCGATGA 1603	
Qy	844	TCCCTGAAACTACGCACTCCCGTCAGATGTTGTCAGACTCCACGGGGCTCGT 903		Qy	1924	TCCCGGCCACGSGTCCCGCGTCGCGGGTGCACAGGTCATTGACGACCGGGCAA 1983	
Db	653	TCCGGAGATCTGAGTTCGGGGTCTGAG-----CGTCTCCAAAGCCGGGGCTCT 769		Db	1604	GTGCGACCCCGCCTCCGGACTGGGCTGGGGCTGGGTGACCGCGCGCGCACCGACAA 1663	
Qy	904	TCTAGAGGGGATCATGGGATCATGGGTTGTTGAGGCTAATCTGAACTTA 963		Qy	1984	TGAAAACGCGCCCTCCGCAAGGAGGACGACCTAAATCTGAACTTA 2043	
Db	710	TCTATGTTGCTACAGCAGGCTTCACGCGCTCAACGSGAGCGCTCTGCGCA 769		Db	1664	TCGCGAAGGCGTGGAGTGGGGGGTGGGGCTCGCTCG 1715	
Qy	964	ATGGATGCTTCGAAAGGAATGGGTTGGATGGCTAATCTGACGACTGTGAGCA	1023	Qy	2044	ACCGCAGACTGGGAGGACGGGGCCACCGGAGGACGACGATGAGCTCCCGCTCG 2103	
Db	770	ACAGCTGCTGGGACGGTAGGGCTTGGGTTGGGGCTTCAAGGCTGGTACGAGCTGCGCA 829		Db	1716	-CTTACGACGSCACCGGGGACGGGCTCGCGGCGCTCGCGGCG 1774	
Qy	1024	CATAGCTGACACAGAAGCTGGCTGGAGGCTGACCTGGAGATCCGGACCTCCAC 1083		Qy	2104	ACCGCTGATGCGAGCTGGCGCGCCACAGCTCTGCTATGAGCTGGGGTGCCTGG 2163	
Db	830	C-----CCGGGACACGACGGCGACGCGCTACACCAAGGGCTCGACCGAGATG----- 873		Db	1775	ACAACTGATCTGGCTGCTGGGACGCCACCGGACGACAGATCTGGCTCACACCG 1834	
Qy	1084	GCTTCGAGGAGAACACTCACTTCACGTTTCAACAGGAAAGCCCTTACAGCTCA	1143	Qy	2164	GCACCCGGAGGATSCCTCTGCGACGSCACCGCCSCGCTCATCCGGCCTGG 2223	
Db	874	-----GGCGTGGCTCCCGGAGCTCCCGGAGCTCCGGAAAGGGCGACGCC 925		Db	1835	GTTGCTGGCTGATGCCGTGCTGCTGCTGAGCCCGCGGGTCTGGGACATGTTG 1894	
Qy	1144	TGACCACTGAGGGCTAGGGAACTCTCTGAGGAGTCGAGGAGCTGGTGTGAGA	1203	Qy	2224	GGCGAACGGAGGACCTTCGCGACGSCACCGCCSCGCTCATCCGGCCTGG 2283	
Db	926	AGTCTTCTGGCAACGAGGGATCTGCTGCTGAGGAGGAGGAGGAGGAGG 982		Db	1895	CGGCCACGGGGCGCGAGGACGACCGCCACCGCCCGCTGG 1954	
Qy	1204	CGGAGAACGGCCCGAGAGCAGCTGGTCAACACACCCGAAAGCGACGCTCTCGG 1263		Qy	2284	GCAGCGTCTCCCTCACCTCCCTCCC-----AAGCCCTGAGGACACCCGGGTT 2334	
Db	983	CGTGTACCGGGTGGCGAGGGCATCTGCGCTCTGCGCCAGATGGAGCTGGCTCG 1042		Db	1955	GCAGCTCAGCSCAGAGCTTCGGGCGCCAGAACGAGCGGGTCCGGGACCCGA 2014	
Qy	1264	AGGTGGCAACGAGGGATCTGCTGCTGAGGAGGAGAACACCTTCGCGCTGAGCA	1323	Qy	2335	TCACTCCGGACCGAGGCGCGAGGACGACCGCCACCGCCCGCTGG 2394	
Db	1043	CACTCCGGCGGGGCCGAGCACAGGCGGTGCCCAGGGCTGG 1102		Db	2015	CAAGCTTCCGGGCGGCGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 2074	
Qy	1324	AGGAGAGGAGGGGATGGGGCCAAAGCCAAAGGAGGAGGAGGAGGAGGAGGAGG 1383		Qy	2395	GTACTACGAGCTTGGCGACAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 2454	
Db	1103	TGCGCGAACACGGCGGTGCTCTGGCAAGGAGGAGGAGGAGGAGGAGGAGG 1162		Db	2075	GCTGGTTCGAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 2134	
Qy	1384	GCCTCTGGCGACTCAGGGCTACTACGGCAGTCACCTCTTGGGGCTCAGGAGCAG 1443		Qy	2455	CCACTTTGGCTTTCCAATCTCTCGCTCTCACAGGAC--GGCAAGCTGAGGCT 2511	
Db	1163	ACCCGGCAAGACATCGCGCTCATCGCGCGACGGCGCTCGAC-CCTAGGTACCGGC 1221		Db	2135	CTCTGTTCTACGCGAGGCGCCGACGGCTGGCTACGCTCACGGGTTGTCAGGTC 2194	
Qy	1444	TGAGAGGGCGCATGTGATCACCGCTGGCGCCCTACACCGGTCTCCATCTAGCG 1503		Qy	2512	CCCTCCGGAGAACACCGGGCTCGCGCTCCGGCACAGGTGGCCAGCTAGTC 2571	
Db	1222	CTGGCAGGCCAACCTCGTCCGGACTCGGGGGCGCCACATCGACACATCAAGGC 1281		Db	2195	CGCTACGGTGGCTACGCGACAGGGGGCGCCAGGAGGCTGGTCAGGGTACTCG 2254	
Qy	1504	ACGAGTCTCTACGGCGAGGGGGTCCGGCGACGGGCTCTGAGGAGGAGGAGG 1563		Qy	2572	AGCCCTCCAGGGCCAGATTAACGCCCTCAAGGAGCTCAAGGGCTTCGCAAG 2631	
Db	1282	CGGGCGGGTGGGGCTGAGGGTGAAGGAGGAGGAGGAGGAGGAGGAGGAGG 1341		Db	2255	GTGCCAGGCCGAAGGGTGGCGCTCCGGAGGGAGGAGGAGGAGGAGGAGGAGG 2314	
Qy	1564	CTGTGACTACTACCAACCCAAAGGGGGAGACAGGTGGTACGGGACATGGAGGGACGT 1683		Qy	2632	TGAACTGCGCCGGGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 2665	
Db	1342	ATCCCGCGGGGAACCTCAGC-----CCGGCGGTTAAC 1375		Db	2315	TCTGCTCCGGGGGGAGGCGAAAGACGGTGAC 2348	
Qy	1624	TGTTGACTACTACCAACCCAAAGGGGGAGACAGGTGGTACGGGACATGGAGGGACGT 1683			RESULT 7		
Db	1376	AGGGCACCAGCTCGAGGGGGGGGGCGCTACGAGGAGGAGGAGGAGGAGGAGG 1435			AAD3052		
Qy	1684	ACACCCCGAGGAGGACTGGACCTACGAGCTCGCCCTCTGCTCTGGGGCTGGAG 1743		ID	AAD3052 standard; DNA; 2430 BP.		
Db	1436	CGCGGACGCGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG 1494		AC	AAD3052;		
				XX			
				DT	23-BEP-2002 (first entry)		

XX DE Streptomyces venezuelae DesR gene.
 XX KW Glycosylated polyketide; modified recombinant bacterial host cell;
 KW mBRC; macrolide; antitrycyclic; angucycline; avermectin; milbemycin;
 KW tetracyclic; polyene; Polyether; ansamycin; isochromanequinone; sugar;
 KW desosamine; DesR; glucosidase; enzyme; gene; ds.
 OS Streptomyces venezuelae.
 XX
 FH Key Location/Qualifiers
 FT CDS 1..2430
 FT /*tag= a
 FT /product= "Streptomyces venezuelae DesR protein"
 FT /transl_except= {pos:1..3, aa:Met}
 FT /note= "CDS does not include start codon"
 FT /partial
 XX WO200229035-A2.
 XX PD 11-APR-2002.
 XX PF 05-OCT-2001; 2001WO-US31255.
 PR 05-OCT-2000; 2000US-238185P.
 XX PA (MINN.) UNIV MINNESOTA.
 PA (LIU H.) LIU H.
 PA (SHERMAN D H.) SHERMAN D H.
 PA (ZHAO L.) ZHAO L.
 XX PI Liu H., Sherman DH, Zhao L.;
 XX DR P-PSDB; AAB24237.
 XX DR PPI; 2002-405171/43.
 XX PT Modified recombinant bacterial host cells in which the expression and
 PT activity of nucleic acids encoding sugar biosynthetic enzymes has been
 PT altered, useful for producing metabolites with altered sugar structures
 XX PS Disclosure; Page 170-171; 174pp; English.
 CC The invention provides a method to alter the sugar structure diversity
 CC for a particular metabolite via the recruitment and collaborative action
 CC of sugar genes from a variety of sugar biosynthetic pathways to yield a
 CC metabolite comprising a non-natural sugar, e.g., a novel glycosylated
 CC polyketide. The invention also relates to a modified recombinant
 CC bacterial host cell (mBRC) in which the expression and activity of
 CC nucleic acids encoding sugar biosynthetic enzymes has been altered.
 CC The mBRCs may be cultured to produce the modified sugar products,
 CC e.g., a macrolide, anthracycline, angucycline, avermectin, milbemycin,
 CC tetracycline, polyene, polycyclic, ansamycin or isochromanequinone.
 CC The present sequence is Streptomyces venezuelae sugar (desosamine)
 CC biosynthetic gene cluster DesR (glucosidase) gene.
 XX SQ Sequence 2430 BP; 407 A; 878 C; 834 G; 311 T; 0 other;
 Query Match 5.9%; Score 175.2; DB 24; Length 2430;
 Best Local Similarity 47.6%; Preid: 0; Mismatches: 968; Indels: 150; Gaps
 Matches: 1016; Conservative: 0; Mismatches: 968; Indels: 150; Gaps
 OY 544 CGCTCGGGTCCACATCAACACTCCTCGAGAGCGAGGTAAGNTGATGGCAAG 603
 Db 353 CCTCGGCCAGCACCTTCGAGACCATGCGACAGGTACGGCAAGGTCATGGCCCG 412
 QY 604 AGGCATCGCTAAGATGGCATGTGATCTCGGGCCGACTATCAACITGCAAGCTCC 663
 Db 413 ACGGTCGGCGGCTCACCGAGATGCTGCTGGCCCGATGATGAAACACATCGGGTG 472
 QY 664 CTCTCGGGTCAACGTTGCTGAGCTGATGTTGAGGATGCTGTTCTGGGGCTTGGAG 723
 Db 473 CGCAAGGGCGCCGGAACTAGAGAACCTTCAGCAGGACCCCTCGCAGGACCCCTGGTCCTCGGGCACCG 532

QY	724	CTCGCGCTCATCCGGCATTCAGGACTTGGGGTGGGGTACGATCAAGCACTTT	783
Db	533	CGGTCCGCAGATCAGGCAACGGCCAACTGGGCGGTCTGAGCACCGCCAACTRCG	592
QY	784	TGGCAATGATCAGGAGACAGCGCATCTACGGGATGATGGTGGAGCATCTACGGACGGCTC	843
Db	593	CGGCCAACACCGGAGACACCGGTTCTCGTGAAACGCCAATGCGACAGGCACGC	652
QY	844	TCGTAATCTACGACTCCGGTCAGATGCTGCGAGACTCCACCGGGTGGCT	903
Db	653	TCCGAGAGATCGAGTTCGGGGTTCGAG- -GCGTCTCAAGGCCCGCCGCGCT	709
QY	904	TCATGACGGCTACAGGCTCAACGGCAACGGCCTCTGGCAACGGGAGACCCCAAATCTTG	963
Db	710	TCACTGTCGCTACAGGCTCAACGGCAACGGCCTCTGGCAACGGGAGACGGCAACGAGCTCTCA	769
QY	964	ATGGGATCTGAGGAAGATGGGTTGGATGGCTTAATCATGGAGACTGGTAGCGGA	1023
Db	770	ACAAGGTGGCGCAGAGCTGGGCTTCAGGGCTGGTATGTCGACTGGCTGCGCA	829
QY	1024	CATACTGACACAGAGACGGCTGGCAGGCTCCAGCTGAGATGCCGACCTCCAC	1083
Db	830	C---CCGGGACCCGACGCCATCACAAAGGGCTCAGGAGAGAG-----	873
QY	1084	GCTTCGAGGAGAAACACTTCAGTCAGCTGAGGAGCTTCAGGAGACGCTTATCCAGTC	1143
Db	874	-----GGCTGCACTCCCGCGGAGGGCTGGCTGCTGAGGAGCTTCAGGAGAGAGGCA	925
QY	1144	TTGACCAGAGGGCTGGGAAGTTCTCACTGGTCTGAGAAGAGTGGTGGCTGAGTGA	1203
Db	926	AGTTCTTCGGCA---GGCCTGAGACGGCCCTCTGACAGGGAGCTCCGGAGCGGG	982
QY	1204	CGGAGACGGCCCCAGACCACTGTCACACACCCGAAACGGGAGCTTCCTCGGA	1263
Db	983	CGTAGCGCCTCGGGAGGGATGTCAGGAGATGGAGAGTGGCTGCTCTCG	1042
QY	1264	AGGTGTCACAGGAGCATGGTCTGAGAAGAGACACGCTTCGAGGAGAGAGGCG	1323
Db	1043	CCACTCCGGCGCCGGCCGAGCGAGCGAGGGCCAGGGCCAGGCGCTGTCGCAAGG	1102
QY	1324	AGAAGAAGAACACGCGTATGTCGAGGAGACATACCGGGGAGAGAGGAGAGGAG	1383
Db	1103	TGCGCGAGAACGGGGTCTCCACGGGAGGGCCAGGGCTCGCGCTGCGGT	1162
QY	1384	GCTCTGGCACTCAGGGCCTACTCGCAGCTCATCCCTTGACGGCTCAGGAAGGAGC	1443
Db	1163	ACGGCGGAAGAGCATCGCGCTCATGGCCGAGGCCGCTGAC---CCAAAGGTCACGGC	1221
QY	1444	TGGAGACGGGATCTACCGCTGGGCTACACACCGTCTCCATCTAGCG	1503
Db	1222	CTGGCGAGGCCACGCGTGTGGCTCGGACTCGGGGGCGCAGACCCATCAAGGC	1281
QY	1504	AGGAGTGCCTCACGGCGACGGCGCTCGGGCATCGCTGAGGGCTTCAGGAGGCC	1563
Db	1282	CGGGGGTGGCGAGCGTGGAGGAGGGTGGAGGAGGACCTTGGGACGAG	1341
QY	1564	CTGCTACCCCTAACGGCGACATGACGGACTCTCTCTCACCAAGACGGATGCACC	1623
Db	1342	ATCCCGGGGGGAACTCTGAG- -CGGGCTCTCAACC	1375
QY	1624	TGGGGACTACTACACCCAAAGGCGCAGACACGGTGTACGCCACATGGAGGGAGT	1683
Db	1376	AGGGCCACCACTGAGCGGGCAAGGGGGGGCTGTAGCGACGGCAGCTGACCGCG	1435
QY	1684	ACACGCCGACGAGGACTGCACTACAGCTGGCTCGCTGCTGCTGCGGACGGCAAGG	1743
Db	1436	CCGGCAGCGGAGTACCGCTCGGGCGTGGACCGGGTGTACGCCACGGTGCAG-	1494
QY	1744	CGTAGCTGACGACGACGCTCGTCGACACGCCACCAAGCAGGCCGCGGATGCGT	1803
Db	1495	-----CTCGACGCCACA	1507

QY 1804 TCTTCGCTCCGCCACCGGGAGGACCGGGCATCAATCTGTCAAGGCACACGT 1863
 Db 1508 CCATCGAGGGGGTCAAGGTCAAGGCAGGGTCAAGTGAGCAGCCGCTCTCAAGTGACCAAG 1567
 QY 1864 ACAGGTCAAGATCGATCGTGCCTCGCACCCACTAACCGTCAAGGGGACACATCG 1923
 Db 1568 GCAAGCACAAGCT----- 1603
 QY 1924 TCCCCGGCACGGCTCCCTCGCGTGGGGTCAAGGTCAAGTCATGACGACGGCAA 1983
 Db 1604 GNGCCACCCGCTCCTCGCGAGGTGGCTGACCCGCGGGGAGCGAGGA 1663
 QY 1984 TGGAAAGTCTGTCACCCCTGGCCAGGAGCACGACCATGAGCTCCCGGTCTGG 2103
 Db 1716 -CTAGAGCAGGGACCGAGGAGGCGGACCGGGGAGGAGGACCATGAGCTCCCGGTCTGG 2103
 QY 2104 ACCAGCTCATGTCGAGCGGGGCGGACCCAAACACCCGTCGRGTCAAGCACGG 2163
 Db 1775 ACAGCTGATCTCGCTGRCGCGACSCAACCGAACAGTGTGTTCTCACACCC 1834
 QY 2164 GCACCCCCAGAGATGCCGCTGAGCCACGGGGCTGACCGTGTGACCTGTCAG 1774
 Db 1835 GTTGTGTCGTCGATGCGTGTGTCAGGCTGACACCCCGGGTCTGGACATGGTAC 1894
 QY 2224 GCGGAAACAGAGGGCAACTCTATGCCGAGCTGCTGCTGACTAACCTCTGG 2283
 Db 1895 CGGCGCAGGGGCCAGGCCGACCCGGCGCGCTGCTACGGTAGTCAACCGAGCG 1954
 QY 2284 GCGAAGCTGTCCTCAGCTTCCT-----AAGGCCCTCAGACACCCCGGTTC 2334
 Db 1955 GCAAGCTCAGCAGAGCTTCCGGCCCGAGAACCCAGCACGGGCGCCGACCC 2014
 QY 2335 TCAACTTGGCACGGCGCGACGCTTACCGGAGGCTTACGGTACGGTATA 2394
 Db 2015 CAAAGCTTACCCGGCGTGTGACAAACGAGCTACCGGAGGCTACGGTACCG 2074
 QY 2395 GFACTAGAGTTGGCACAGAACCTCAATTCCCTTGCGCACGGCTTGTACA 2454
 Db 2075 GCGGTTGACAGAACCTCAACCGCTGTCGGTGTGGCGACGGCTTGTGACA 2134
 QY 2455 CACATTGGCTTCAATCTCTGGTGTCAAGAGAC--GGCAAGCTTGTGCT 2511
 Db 2135 CCTGTCRACGAGAGCGGCCGAGCGCTGCTGGTACGTCCACGGGTCTTGTACA 2194
 QY 2512 CCTCTCGTGTGAGAACACCGGCTCGTGCCTGGCGAACGGCTTGTACA 2571
 Db 2195 CGTCAGGTCGCCAACAGGGGAACCGGCCGCCGAGGTGTGCGTACCGTG 2254
 QY 2572 ACCCCCTCAAGCGGCCAACATTAACCGGCCCTCAAGAGCTCAAGGGCTGCGAACAG 2631
 Db 2255 GCGCACGCCAACGCGCTCGCACGGAGAACGGCTGCGTGGCTACAGGAG 2314
 QY 2632 TCGACTTGCACCCGGAGAGACGAGGGCTGAC 2665
 Db 2315 TCTGCTCGCCGGGGAGCGGTGAC 2348

RESULT 8
 AAZ8784
 ID AAZ87284 standard; DNA; 12441 BP.
 XX
 AC AAZ87284;
 XX
 DR 05-JUN-2000 (first entry)
 XX
 DE S. venezuelae desosamine biosynthetic gene cluster pikB, SEQ ID NO:3.
 XX
 KW Desosamine biosynthesis; macrolide; polyketide; methymycin; pikromycin; neomethymycin; narbomycin; polyhydroxalkanoate monomer synthase;

KW biopolymer; antibiotic; chemotherapeutic; immunosuppressant; asthma; chronic obstructive pulmonary disease; respiratory inflammation; hypercholesterolaemia; crop protection agent; ds.

OS streptomyces venezuelae ATCC15439.

XX PN WO200000620-A2.

XX PD 06-JUN-2000.

XX PF 25-JUN-1999; 99WO-US14398.

XX PR 26-JUN-1998; 98US-0105537.

XX PA (MINN) UNIV MINNESOTA.

XX PI Sherman DH, Liu H, Xue Y, Zhao L;

XX DR WPI: 2000-166679/14.

XX DR P-PSDB; AAY77179.

PT Desosamine and macrolide biosynthetic gene clusters, useful for, e.g., synthesis of methymycin and pikromycin -

XX PS claim 2; Page 281-287; 438pp; English.

CC The invention relates to an isolated and purified nucleic acid segment comprising a desosamine biosynthetic gene cluster, a fragment or its biologically active variant, where the nucleic acid sequence is not derived from the eryc gene cluster of Saccharopolyspora erythraea or Streptomyces antibioticus. The invention also relates to a macrolide biosynthetic gene cluster, or fragments thereof. The macrolide pikromycin, neomethymycin, narbomycin or a combination of these compounds. Recombinant or augmented cells comprising the desosamine and/or macrolide biosynthetic gene clusters are useful for the production of biologically active macrolides. The macrolide biosynthetic proteins are useful for synthesis of methymycin, pikromycin, neomethymycin and narbomycin. The alternative termination of polyketide synthesis may be useful to prepare novel antibiotics and polyhydroxalkanoate (PHA) monomers. The compounds produced by the recombinant host cells are useful as biopolymers, e.g., in packaging or biomedical applications, to engineer PHA monomer syntheses or to prepare biologically active agents, such as chemotherapeutics, immunosuppressants, agents to treat asthma, chronic obstructive pulmonary disease as well as other diseases involving respiratory inflammation, cholesterol-lowering agents or macrolide-based antibiotics which are active against a variety of organisms, e.g., bacteria, including multi-drug resistant pneumococci and other respiratory pathogens, as well as viral parasitic pathogens, or as crop protection agents (e.g., fungicides or insecticides), via expression of polyketides in plants. The present sequence represents the desosamine biosynthetic gene cluster from Streptomyces venezuelae ATCC 15439.

SQ sequence 12441 BP; 1704 A; 4294 C; 4686 G; 1757 T; 0 other;

Query Match 5.9%; Score 175.2; DB 21; Length 12441;
 Best Local Similarity 47.6%; Pred. No. 2.2e-19; Matches 1016; Conservative 0; Mismatches 988; Indels 150; Gaps 11;

Matches 1016; Conservative 0; Mismatches 988; Indels 150; Gaps 11;

QY 544 CGCGCGGTTTACACCAACTCTGCTGAGAGGGCGTAATGATGGGCAAAG 603
 Db 3977 CCCCTGGCCAGACCTTGTGAGCACCATGGCGAGCTAGGGCAAGGTCTGGCCCG 4036
 QY 604 AGGCATCCTTAAAGTGGCATGTGATCTGGCCGACTATCACATGCCACCTCCC 663
 Db 4037 ACGGTCGGCGCTAACCGAGCATGTGTCCTGGCCGATGATGACAACATCCGGTC 4096
 QY 664 CTCTGGTGGACCTGGCTCCAGTGGATGCTTCCTGGGGCTTGGAG 723
 Db 4097 CGACGGGGCGGAACATCAGAGACCTTCAGCGAGGACCCCTGGCTCCGGCACCG 4156
 QY 724 CTGGGCTCTCATCCGGGAACTCAGAGCTGGAGTGGCTACAGTCAAGCAACTT 783

OS Streptomyces venezuelae.
 XX
 Key PT
 FH altered, useful for producing metabolites with altered sugar structures
 FT PT
 PR XX
 FT PS Disclosure: Fig 8; 174pp; English.

FT CDS
 /product= "Streptomyces venezuelae Des gene cluster
 encoded protein #1"
 806..2014
 /*tag= a
 /*tag= b
 /product= "Streptomyces venezuelae Des VIII protein"
 /transl_except= (pos:806..808, aa:Met)
 /note= "CDS does not include start codon"
 /partial
 2162..3442
 /*tag= c
 /product= "Streptomyces venezuelae Des VII protein"
 3535..4245
 /*tag= d
 /product= "Streptomyces venezuelae Des VI protein"
 /transl_except= (pos:3532..3534, aa:Met)
 /note= "CDS does not include start codon"
 /partial
 4312..6741
 /*tag= e
 /product= "Streptomyces venezuelae Des R protein"
 /transl_except= (pos:4312..4314, aa:Met)
 /note= "CDS does not include start codon"
 /partial
 complement (7969..6829)
 /*tag= f
 /product= "Streptomyces venezuelae Des V protein"
 /transl_except= (pos:7969..7967, aa:Met)
 /note= "CDS does not include start codon"
 /partial
 complement (8979..7965)
 /*tag= g
 /product= "Streptomyces venezuelae Des IV protein"
 /transl_except= (pos:8979..8977, aa:Met)
 /note= "CDS does not include start codon"
 /partial
 complement (9111..9989)
 /*tag= h
 /product= "Streptomyces venezuelae Des IV protein"
 complement (11639..10182)
 /*tag= i
 /product= "streptomyces venezuelae Des IV protein"
 complement (12883..11636)
 /*tag= j
 /product= "Streptomyces venezuelae Des IV protein"
 /transl_except= (pos:12881..12883, aa:Met)
 /note= "CDS does not include start codon"
 /partial
 WO200229035-A2.

XX Sequence 13613 BP; 1858 A; 4732 C; 5093 G; 1930 T; 0 other;
 XX Query Match 5..9%; Score 175..2; DB 24; Length 13613;
 Best Local Similarity 47..6%; Pred. No. 2..2e19; Matches 1016; Conservativeness 0; Mismatches 968; Indels 150; Gaps 11;

XX Matches 1016; Conservative 0; Mismatches 968; Indels 150; Gaps 11;

QY 544 CGCTCGGTTCACHTCAACAACTCTGCTGAGAGGAGGTAAGATGATGGCRAAG 603
 Db 4664 CCCTRGGCCGACGACTCTTGCAGACACCATGGCCGAGACTACGGCAAGTCATGGCGCG 4723

QY 604 AGGCATCCTAACAGAGTGGCAGTGATCTCGGCCGAGACTCACATGACACATCCGCTCC 663
 Db 4724 ACGTCGCGCTCAACAGGAGCATGGCTCTGGCCGATGATGACACATCCGGTGC 4783

QY 664 CTCTCGGTGAGCCTGGCTGACTGATGTTGGAGGATCGTCTCGGCCGAGACTCGTCC 723

QY 664 CGAAGGGCGCCGGAACATGAGACCTTCAGAGGAGCCCTGGTGCACGAC 4843

QY 724 CTSGGGCTTCATCGGGCATTCAGAGCACTGGCTGAGGAGCTAGCATGAGACTTT 783
 Db 4844 CGGTRGCCAGATCAAGGCATCCAGGGCTGCGGGCTGATGACCACGGCAGACHTCG 4903

QY 784 TGTCAAATGATCAGAGGAGCAGGGCATGATGGTGCAGACATGCTCACCGAGC 843
 Db 4904 CGSCCAACACCCAGGAGAACCGCTTCAGCTGGCAACGCCATGGCAGACGC 4963

QY 844 TCCGTGAACCTAGGACTCTCCGTTCAAGATGCTGAGACTCCAGGGCTG 903
 Db 4964 TCGCGAGATCAGTTCCGGCTCAG--GGCTCTCCAAAGGGCGGGCTCT 5020

QY 904 TCATGACGCCGATCATGGCATCAATGGGTGTCGTCAGCAGAACCTTAATCTTG 963
 Db 5021 TCATGTGTCCTACACGGCTCAACGGAAAGCCGCTCTGGCCAAAGCAGCTCTCA 5080

QY 964 ATGGGATCTTCAAAGCATGGGTGGGATGGCCATTATGAGCCGAGCTGGTAGGCA 1023
 Db 5081 ACAACGTTGCGACCGAGTGGGCTCAGGCTGGTGTGTCGACAGCTGGCTGCCA 5140

QY 1024 CATACAGTACAGAGAGCCGTTGGGAGGCTCTGACCTCGAGATCCCAGGCTCCAC 1083
 Db 5141 C---CCCGGGCACCGAGCCATCACCAGGGCTCAGCAGGAG--- 5184

QY 1084 GCTTCCGAGGAGAACACTCAAGTCAAGTCCACAGGAAAGCCCTTATCCAGTC 1143
 Db 5185 -----GGCGTCGAGCTCCCGGAGCTCCGAGGAGCCCTCGCCGCCA 5236

QY 1144 TTGACCAAGGGCTAGGGAGCTCTCAGTGTGTCAGAAGTGTGCTGCTGGAGGTGA 1203
 Db 5237 AGTTCCTGGCGA---GGCGTCGAGAGCGGCCTCCAGGCACTGGCTCCCGAGCG 5293

QY 1204 CGGAGAACGGCCGAGAGACTGTCACACAGACCCCGRAACGGCAGCTCTCCGGA 1263
 Db 5254 CCTGAGGGCTGGCGAGCGATGCTGCCAGATGGAGAAGTGGTGTGCTCTCG 5353

XX Modified recombinant bacterial host cells in which the expression and

FT /tag= h "PikB gene cluster protein #8 (AY77209)"
 FT complement (12342..13799)
 FT /*tag= i
 FT product= "PikB gene cluster protein #9 (AY77210)"
 FT complement (1306..15043)
 FT /*tag= j "PikB gene cluster protein #10 (AY77211)"
 FT product= "PikB gene cluster protein #11 (AY77212)"
 FT /*tag= k "PikB gene cluster protein #11 (AY77212)"
 PN WO20000620-A2.
 PD 06-JAN-2000.
 XX
 PT 25-JUN-1999; 99WO-US14398.
 XX
 PR 26-JUN-1998; 98US-0105537.
 XX
 PA (MINU) UNIV MINNESOTA.
 XX
 PT Sherman DH, Liu H, Xue Y, Zhao L;
 XX
 DR WPI; 2000-160679/14.
 DR P-PSDB; AAY77204, AAY77205, AAY77206, AAY77207, AAY77208,
 DR AAY77209, AAY77210, AAY77211, AAY77212, AAY80998, AAY80999.
 XX
 PT Desosamine and macrolide biosynthetic gene clusters, useful for, e.g.,
 synthesis of methymycin and pikromycin -
 XX
 Disclosure; Figure 32; 438pp; English.

The invention relates to an isolated and purified nucleic acid segment comprising a desosamine biosynthetic gene cluster, a fragment or its biologically active variant, where the nucleic acid sequence is not derived from the eric gene cluster of *Saccharopolyspora erythraea* or *Streptomyces* antibiotic. The invention also relates to a macrolide biosynthetic gene cluster, or fragments thereof. The macrolide biosynthetic gene cluster encodes proteins which synthesise methymycin, pikromycin, neomethymycin, narbomycin or a combination of these compounds. Recombinant or augmented cells comprising the desosamine and/or macrolide biosynthetic gene clusters are useful for the production of biologically active macrolides. The macrolide biosynthetic proteins are useful for synthesis of methymycin, pikromycin, neomethymycin and narbomycin. The alternative termination of polypeptide synthesis may be useful to prepare novel antibiotics and polyhydroxyalcanoate (PHA) monomers. The compounds produced by the recombinant host cells are useful as biopolymers, e.g., in packaging or biomedical applications, to engineer PHA monomer synthases or to prepare biologically active agents, such as chemotherapeutics, immunosuppressants, agents to treat asthma, chronic obstructive pulmonary disease as well as other diseases involving respiratory inflammation, cholesterol-lowering agents or macrolide-based antibiotics which are active against a variety of organisms, e.g., bacteria, including multi-drug resistant pneumococci and other respiratory pathogens, as well as viral parasitic pathogens, or as crop protection agents (e.g., fungicides or insecticides) via expression of polyketides in plants. The present sequence represents the desosamine biosynthetic gene cluster (pik) from *Streptomyces venezuelae* ATCC 15439, as given in figure 32.

SQ Sequence 13613 BP; 1858 A; 4733 C; 5022 G; 1930 T; 0 other;

Query Match 5-6%; Score 167.2; DB 21; Length 13613;
 Best Local Similarity 50.4%; Pred. No. 4.2e-18; Matches 496; conservative 0; Mismatches 473; Indels 15; Gaps 3;

QY 1697 GGACTGCACCTACGAGCTGGCTCGTCGCTCGCGCACGGCAAGGGTAGCTAGACGA 1756
 Db 3516 CGCGTCAACCAGGCCAACAGTCGAGGCCAACGGGGGTAGCTACGCCAC 3575
 QY 1757 CCAGCTCGTCGACAAGGCCACCAAGGGTCCCGCGGATGCCATTCTCGCTCGC 1816

Db 3576 GCTGACCGTGCCCCCGAGGGAGTACCGCATCGCGTCCCTGCCACCGGGTTACGC 3635
 QY 1817 CACCGCGGGAGAGCGGCGCATCAATCTCGTCAGGCAACACGTAACAGTTCAGAT 1876
 Db 3636 CACGGTGCAGCTCGGCAGCACACCATGAGGGCGTCAGGTCTACGCCAACGTGACG 3695
 QY 1877 CGAGTTCGCGCACCCACCTACACCTCAAGGGGACACATCGTCCCGGGCACGG 1936
 Db 3696 CCCGCTCCAAAGCTGACCAAGGGCACGCCAACGTCTCGGCTACGGTGTAG 3755
 QY 1937 CTCCCTCCGTCGGCGGCGTCRAGGTCAATGAGCAGGAGGCCAATCGAAAGTCCG 1996
 Db 3756 TGCCACCCGCTCTCCCTGGAGCTGGCTGGGTGACGCCGGCGGCCAGCGAGAT 3815
 QY 1997 CGCCTCGGCAAGGAGCAGACGACAGGTCATCACTCGGCGCTPAACGC--CACTG 2053
 Db 3816 CGGAAAGGCCGTCGAGTGGCCGGAAAGGGCGTACCGGGCGTCCTCGCTACGACGA 3875
 QY 2054 GGAGACCCAGGAGGCCGAGCGAGCATGAGCCTCCGCGCGCTGAGCACG 2113
 Db 3876 CGGACCCAGGGGGTCGACCGTCCGAGCTGTGCTGCCGGTACCGAGACAGTGT 3935
 QY 2114 TGGGACCTGGCGCCGACCAACACCCCTCGTGTGTCATGAGCGGCCACCCGA 2173
 Db 3936 CTGGCTGTCGGAGCCAAACGAGCTACCCGTCACACCGGTTCCGRTGGT 3995
 QY 2174 GGAGATGCCCTGGCTCGAGGCCACGCCCGGTATCGTGTGTCACGGCTGGTACCGAGA 2233
 Db 3996 GGCGATGGCTGGCTGTCACAGGCCCGCGTCCUGACATGTGTACCGGGCAGGC 4055
 QY 2234 GACGGCACACTCATGGAGCTCGCTTGCGACTACACCCCTCGGCAAGCTGTC 2293
 Db 4056 GGCGCCGGGCCACCGCCGCGCTCTACCGTGAACGTCACCCGGAGCGCAAGCTCAC 4115
 QY 2294 CCTCAGCTTCTCC-----AAGGCCCTCGAGGCAACCCGGGTTCTCAACTTCGG 2344
 Db 4116 GCAGAGCTTCTGGCGGAGGAGACCGAGCAGCGGAGCCGAGCTACGCTACGA 4175
 QY 2345 CACCGAGCGCGCGGAGCAGCTGAGCCGAGCTAGGGCTAGTGGTACAGGTTACAGA 2404
 Db 4176 GGCGTGCACACCAGAGCTACCGCGAGCTACCGCGGAGGCGCATCCACSTCGGTACCGCTGGTCA 4235
 QY 2405 GTTGGCCACAGGAGCTCAATTCCCTTGCGAGGGCTGCTACCCACTTGG 2464
 Db 4236 CAAGGAGAACGTCAGCGCTGTTCCGTTGGGAGCGGCTGTGCTACCGCTTCAC 4295
 QY 2465 CTTTCCAAATCTCTCCGTCTCACAGGAC---GCCAGCTGAGGGTGTGCTCTCCCGT 2521
 Db 4296 GEGAGGCCGACCCGACCTCGCGCTGAGGTCCACGGGTGGTGTGAGTCAGGTCACGGT 4355
 QY 2522 GAAGAACACCCSCTCGCCGGCCACAGGTGGCCACACTCTAGTCAGGCCCTCA 2581
 Db 4356 CGCGAACAGCGGGAGGCCGGCGGGAGGAGTCGTCGTCACCGCTGCCAGGCC 4415
 QY 2582 ASGGCCAAGATAAACGCCCGCTGAGGCTCAGGGCTCAGGGTTCGAAAGTCACTGACTGA 2611
 Db 4416 GAACTGAGCGCTCCGAGGGAGAAGACTCGTGGGGTACACGAAAGTCACTGACTGA 4475
 QY 2642 GCGGGGAGAGGAAGGGGTGAC 2665
 Db 4476 CGGGGGAGAGGAAGACGCGTAC 4499

RESULT 11
 AX132999 ID AAT32999 standard; DNA; 2256 BP.
 XX AC AAT32999;
 XX DT 18-OCT-1996 (first entry)
 XX DE Chimaeric thermostable beta-glucosidase coding sequence.

PT FT /label= ORF1
 PT FT /product= 8,8-a-deoxyoleandolide_synthase_1
 FT CDS 18267..29717
 FT FT /*tag= e
 FT FT /label= ORF2
 FT FT /product= 8,8-a-deoxyoleandolide_synthase_2
 FT CDS 29787..40346
 FT FT /*tag= f
 FT FT /label= ORF3
 FT FT /product= 8,8-a-deoxyoleandolide_synthase_3
 FT CDS 40625..41830
 FT FT /*tag= g
 FT FT CDS 41878..43158
 FT FT /*tag= h
 FT FT CDS 43163..44443
 FT FT /*tag= i
 FT FT CDS 44143..45173
 FT FT /*tag= j
 FT FT CDS 45231..46411
 FT FT /*tag= k
 FT FT CDS 46491..47714
 FT FT /*tag= l
 FT FT CDS complement (47808..49517)
 FT FT /*tag= m
 FT FT CDS oleB
 XX WO200026349-A2.
 XX PD 11-MAY-2000.
 XX PR 22-OCT-1999; 98US-0106100.
 XX PR 16-FEB-1999; 99US-0120254.
 XX PA (KOSA-) KOSAN BIOSCIENCES INC.
 XX Betlach MC, Shah SK, McDaniel R, Tang L;
 XX WPI; 2000-365602/31.
 DR P-PSDB; AAY92707, AAY92708, AAY92709.
 XX PR Recombinant DNA compound encoding oleandomide polyketide synthase for
 PT synthesizing polyketides comprising a coding sequence for a domain of a
 PT loading module or any one of extender modules
 XX Disclosure; Page 14-26; 86pp; English.

This is part of the Streptococcus antibioticus oleandomycin gene cluster. The oleandomide polyketide synthase (PKS), also known as 8,8-a-dideoxyoleandolide synthase, is encoded by three open reading frames (ORF), designated oleB, oleA and oleM. The PKS is a type I "modular" enzyme, where each ORF encodes 2 extender modules and the first ORF also encodes the loading module. Each module is composed of at least a ketosynthase (KS), acyl-transferase (AT) and an acyl carrier protein (ACP) domain. The oleandomide PKS loading module contains an inactivated KS, called KS-Q, where Q is the abbreviation for glutamine, present instead of the active site cysteine required for activity. The large multifunctional PKS enzymes catalyze the biosynthesis of polyketide macrocyclics through multistep pathways involving decarboxylative condensations between acylthioesters followed by cycles of varying beta-carbon processing activities. The macrocyclic product of the PKS, 8,8-a-dideoxyoleandolide, is further modified by epoxidation and glycosylation to yield oleandomycin, an antibacterial polyketide. The invention concerns an isolated recombinant DNA compound, comprising a coding sequence for a domain of loading module or any one of extender

CC modules 1-4 or 1-6, including an oleandomide PKS operably linked to a promoter. Also discussed are recombinant oleandomide PKS in which the module 1 KS domain is inactivated by deletion or other mutation. In particular, the inactivation is mediated by a change in the KS domain that renders it incapable of binding substrate (the KS1-o mutation), rendered by mutation in the codon for the active site cysteine. The oleandomide PKS is useful for synthesizing polyketides, which are useful as antibiotics and motilides. Heterologous expression of oleandomide PKS in host cells such as Streptomyces coelicolor and S. lividans is also made possible. Unmodified oleandomide compounds can be provided to cultures of *Saccharopolyspora erythraea* and converted to the corresponding derivatives of erythromycins A-D.

Sequence 50937 BP; 6672 A; 16253 C; 19272 G; 8740 T; 0 other;

Query	Match	Score	Length
QY	4.7%	138.6	50937
Best Local Similarity		5.0%	
Matches		354	
Conservative		0	
Mismatches		209	
Indices		12	
Gaps		3	
QY	2048 CGACTGGGGACCGAGGGGCCACCGCGGACGTCATGAGCTCCGGGCTGTGAGCA	2107	
Db	3417 CGACGACGCGCTCGAGGAGGGGACCCACGPGCGTCTCGCCGGCAGGAGCA	3358	
QY	2108 GCTCATGGCGAAGTGGCGCCGCGCAGAACACCGTGCTCGTCATGAGGGAC	2167	
Db	3357 CCTGATCAGCGGCTGGCGCGTGCAGCCGACGCGCACCCCGTGTGGCTCA	3298	
QY	2168 CCCGAGGAGATGCCCTGCTGAGCGCCACCCCGCTATCCGGCCGGTAKGGCG	2227	
Db	3297 CTCCCTCACCATGCCCTGGCTGAGGAAGAACGGCGGTGTCACCATGTTG	3238	
QY	2228 CAACGAGGAGGGCAACTCATGCGACGAGTCAGCTTCAGACCCCTGGCAA	2287	
Db	3237 CCAGCCGGCGCGAGGGACACCAGCCCTCGTGTGGCGACGCCAGGGCG	3178	
QY	2288 GCCTCCCTACCTTCCC-----CAAGCCCTGAGAACCCCGTTCACATT	2341	
Db	3177 GCCTGACCCAGACTTCCGGCGACGGCGAGGCGCTTCSCCGCGACGCC	3118	
QY	2342 CCCGACCGAGCCGGGGCACCTG--TAGGCAGGAGTCAGTGGGTACAGGA	2398	
Db	3117 CTACCCGGAGTCGAGTACACTGACTCTCCGAGGGCATCTCGCTTC	3058	
QY	2399 CTACGAGTTGCGACAGAACGAGCTCAATTTCCTCTGGCACGGCCCTACACCAC	2458	
Db	3057 GTACGACACGAGCGGGCTCAGCCCGTGTCTCCITCGGCCACGGGTGTCTACACCC	2998	
QY	2459 TTTGGCTTTCAACTCTCGCTCTCAAA---GGGGCAGCTGAGGCTGGTCT	2515	
Db	2997 CTTCGACTACCGGGACCTGAGGTCAGGGCTGGCGACGCCGGCGACCTCTC	2938	
QY	2516 CTCCGTAAGACACCGCTCGTCCGCCGCCACAGGTGGCCAGCTCTAGTCAGCC	2575	
Db	2937 CACGGCTCGCACACCGTAAAGCGCACCGCGAAGGAGGTCGGCTAGGGCC	2878	
QY	2576 CCTCCGAGGCCAACAGTAAACGCCCGTCAGGCTCAAGGCTCAAGGCTCTGCA	2635	
Db	2877 GTCCCCGCAAGTGGCTGGCGAGGCCAGCTGCCCTGGCGCTACGGAGGTGA	2818	
QY	2636 ACTGCAGCCGGAGAGCAGGAGGGTGAATCGAGGAGGAGGAGTGTGTC	2690	
Db	2817 GCTGCCGCCGCGAGGAGGAGCTGACCTGAGCCAGGGCCT 2763		

RESULT 13

ID AAT93682

XX AAT93682 standard; DNA; 2166 BP.

AC AAT93682;

XX DT 12-MAR-1998 (first entry)

XX DE Thermotoga maritima MSB8 glycosidase encoding DNA.

XX glycosidase; thermostable; textile; food processing; pharmaceutical;
 KW detergent; baking; industry; Thermococcus; Staphylothermus;
 KW Pyrococcus; glucose; soluble oligosaccharide; ss.
 XX OS Thermotoga maritima.

Key Location/Qualifiers
 FH
 FT
 FT
 XX
 PN WO9725417-A1.
 XX 17-JUL-1997.
 PD
 XX
 PP 10-JAN-1997; 97WO-US00092.
 XX
 PR 13-SEP-1996; 96US-0712612.
 PR 11-JAN-1996; 96US-0583787.
 XX PA (RECO-) RECOMBINANT BIOCATALYSIS INC.
 XX PT Bylina EJ, Lam DE, Mathur EJ, Swanson RV;
 XX DR WPI; 1997-372658/34.
 DR P-PSDB; AAW34558.

PT New thermostable glycosidase(s) - from Thermococcus, Staphylothermus
 PT and Pyrococcus, used in the textile, food processing,
 PT pharmaceutical, detergent and baking industries
 XX
 PS Claim 4; Fig 5; 82pp; English.

CC The present sequence encodes glycosidase isolated from Thermotoga
 CC maritima. The enzyme or its encoding nucleic acid sequence is used for
 CC generating glucose from soluble oligosaccharides. The enzyme can be
 CC used in the food processing, pharmaceutical, textile, detergent and
 CC baking industries. The enzyme is also used to treat lactose intolerance,
 CC as a diagnostic reporter molecule, in corn wet milling or in the fruit
 CC juice industry. The enzymes can be used to hydrolyze guar gum to remove
 CC non-reducing terminal mannose residues. The nucleic acids encoding the
 CC enzyme may be used to generate probes to identify similar sequences.
 XX Sequence 2166 BP; 668 A; 454 C; 578 G; 466 T; 0 other;
 SQ

Query Match Similarity 4.63; Score 135.8; DB 18; Length 2166;
 Best Local Similarity 53.8%; Pred. No. 4.3e-13; Mismatches 284; Conservative 0; Mismatches 247; Indels 0; Gaps 0;

Db QY 545 GCTCGGTTCCACATTCGCACTTGCTGGAGGGCAGGTAAATGATGAGGGCAAAGA 604
 Db 258 GCTCGCTCTACCTGGAACAGAGACCTCTGGAGAAGTGGAAAGGCCATGGGAGA 317

QY -605 GGCATCGCTAGAGGCGCAGTGATGATGCCCGGACTTCATGCACGCC 664
 Db 318 AGTTAGGATAGGTTGCGATGATGATGAGATTCAGAARACC 377

QY 665 TCTCGGTGGACCTGGCTCTGAGTGTGGAGGATCCGTTCTGGGGCTTGGGAGC 724
 Db 378 TCTTGTGGAAGGAATTCTGAGTACTACTCAGAACAGAAATGGC 437

QY 725 TGGGCTCTCATCGCGCATTCAGAGCACTGGAGTCAGGGTACGATCAGCACITTT 784
 Db 438 TTGAGGCTTGTCAAGGGGTTCAATCTCAAGGGGTTGGACATAAACACTTGT 497

QY 785 GTGCAATGATGAGGACGAGCATGGCAGACAGATGAGTGTGGAGGGCT 844
 Db 498 CGCGAACACACCGAACACAGATGAGTGTGGAGCTCCAGCGGGTGGT 557

QY 845 CGGGAATCTAGGCACTCCGTTCCAGATGAGTGTGGAGCTCCAGCGGGTGGT 904
 Db 558 CAGAGAAATATCTGAAGGTTGAAATTGTCAGAGAACGACCTGGACGT 617

RESULT 14
 QY 905 CATGACGGCTACANTGCACTAACATGGCGTGTGCAAGGGAGACCTAAATCTGCA 964
 Db 618 GATGAGCGCTTACACAAACTGAAATCTGAACTGTCAGAACGAAATGGCTTGA 677

QY 965 TGGAGCTTCGAAAGGAACGGGTGGGGTGCCCTAATCTATGACCGACTGTACGGCAC 1024
 Db 678 GAAGGTTCTCAGGGAAATGGGATTGCGGTTTCGTTGAGCGACTGGTACGGGG 737

QY 1025 ATACAGTACACAGAAAGCCGTTGGCAGGCGCTCGACCTGAGATGCCCG 1075
 Db 738 AGACACCCCTPAGAACAGCTCAAGGCCGAAACGATATATCAGCCCTG 788

XX
 PN WO9824799-A1.
 XX 11-JUN-1998.
 PD
 XX
 PS 08-DEC-1997; 97WO-US22623.
 XX
 PR 10-OCT-1997; 97US-0949026.
 PR 06-DEC-1996; 96US-0056916.

PA (DIVE-) DIVERSA CORP.
 XX
 PI Bylina EJ, Lam DE, Mathur EJ, Swanson RV;
 XX DR WPI; 1998-362407/31.
 DR P-PSDB; AAW49862.

XX
 PS Glycosidase enzymes from organisms of the genera Staphylothermus,
 PT Pyrococcus and Thermococcus - for deriving sugar from
 PT oligosaccharides, useful in the e.g. food processing, textile or
 PT baking industries
 XX
 PS Claim 1; Fig 5a-b; 92pp; English.

CC This isolated polynucleotide comprises a coding region for
 CC glycosidase MSB8-6G (see AAW9862) from a Thermotoga maritima MSB8
 CC clone (6G) that grows optimally at 85 degC in high salt medium.
 CC The sequence shows 53% nucleic acid identity to beta-galactosidase
 CC of Clostridium thermophilum. The invention provides 18
 CC polynucleotides (see AAV36907-24) coding for thermostable glycosidases
 CC (see AAW49858-75) having glucosidase, alpha-galactosidase,
 CC beta-galactosidase, beta-mannosidase, endoglucanase
 CC or pullulanase activity. Vectors and host cells are also claimed.
 CC A method is provided for producing the enzymes by recombinant
 CC techniques. A claimed method for generating glucose from soluble
 CC cell oligosaccharides comprises contacting a sample (selected from
 CC dairy products, fruit juice, detergent, textile, guar gum, animal
 CC feed, plant biomass or waste product) containing oligosaccharides
 CC (selected from maltose, cellobiose, lactose, sucrose, raffinose,
 CC starchose, verbasose, cellulose, starch, amylose, glycoprotein,
 CC disaccharides, polyaccharides and pullulan) with one of the
 CC claimed glycosidases such that glucose is produced.
 XX Sequence 2166 BP; 675 A; 444 C; 581 G; 466 T; 0 other;

Wed May 7 14:14:33 2003

Search completed: May 4, 2003, 00:38:56
Job time : 2161.99 secs

us-10-027-000-1.rng

