Análisis Matemático II

Preparación de cosas para hacer en clase...

15 de junio de 2018

1. 2do parcial seminara 05/07/2016 #231

-enunciado-

Calcule la masa y la coordenada z_{cm} del cuerpo delimitado por las superficies $y = x^2 + z^2$ y $y = 2 - \sqrt{x^2 + z^2}$ en el primer octante, si la densidad es, en cada punto, $\delta(x, y, z) = 2|x|$.

Rta:
$$M = \frac{5\pi}{6}$$

 $z_{cm} = 0$

-solución-

Veamos donde se intersectan las superficies

$$y = x^2 + z^2$$
 (1)

$$y = 2 - \sqrt{x^2 + z^2}$$
 (2)

Paso a cilíndricas sobre el eje y

$$y = \rho^2 \ (1')$$

$$y = 2 - \rho(2')$$

igualando

$$\rho^2 = 2 - \rho$$

$$\rho^2 = 2 - \rho$$
$$\rho^2 + \rho - 2 = 0$$

de donde $\rho = -2$ (absurdo) o $\rho = 1$.

Entonces calculamos la masa

$$M = \int_0^{2\pi} d\phi \int_0^1 \rho d\rho \int_{\rho^2}^{2-\rho} dy = \boxed{\frac{5\pi}{6}}$$

Ahora calculamos esto
$$M_z = \iiint_H z \delta dV = \int_0^{2\pi} \sin(\phi) d\phi \int_0^1 \rho^2 d\rho \int_{\rho^2}^{2-\rho} dy = 0$$
 De donde vemos que $z_{cm} = 0$

2. 2do parcial seminara 05/07/2016 #232

-enunciado-

Considere la superficie definida por $z = \sqrt{2 - x^2 - y^2}$ con $y \ge 0$.

- a) Calcule, mediante integrales de superficie, el área de la misma.
- b) Evalúe el flujo del campo $\vec{f}(x,y,z) = (-2yz,2xz,3)$ a través de ella, considerando la normal orientada hacia las y positivas. Explique el sentido físico del signo del resultado.

3. 2do parcial seminara 07/07/2017 #238

-enunciado-

Considere la superficie definida por $z = 3\sqrt{x^2 + y^2}$ con $z \le 4, y \ge 0$.

- a) Calcule el area de la misma.
- b) Evalue el flujo del campo $\vec{f}(x,y,z) = (-xy^2, x^2y, 3z)$ a través de ella, considerando la normal orientada hacia las z negativas. Interprete el signo del flujo obtenido.

Rta: a)
$$\frac{8\pi\sqrt{10}}{9}$$
 b) $\frac{-64\pi}{9}$

—solución—

a) Parametrizo la superficie con $g(u,v)=(u\cos(v),u\sin(v),3u),$ $0\leq u\leq 4/3,\,0\leq v\leq \pi.$

$$g_u' = (\cos(v), \sin(v), 3)$$

$$g'_v = (-u\sin(v), u\cos(v), 0)$$

$$g_u' \times g_v' = (-3u\cos(v), -3u\sin(v), u)$$

$$||g_u' \times g_v'|| = \sqrt{9u^2 + u^2} = \sqrt{10}u$$

Luego el área pedida es

$$\sqrt{10} \int_0^{\pi} dv \int_0^{4/3} u du = \boxed{\frac{8\pi\sqrt{10}}{9}}$$

b) $\int_0^{\pi} dv \int_0^{4/3} (-u^3 \cos(v) \sin^2(v), u^3 \cos^2(v) \sin(v), 9u) \cdot (-3u \cos(v), -3u \sin(v), u) du$

$$= \int_0^\pi dv \int_0^{4/3} 3u^4 \cos^2(v) \sin^2(v) - 3u^4 \cos^2(v) \sin^2(v) + 9u^2 du$$

$$= \int_0^\pi dv \int_0^{4/3} 9u^2 du = \frac{64\pi}{9}$$

Como la orientación de g es hacia z^+ y me piden hacia z^- , el flujo

pedido es
$$\frac{-64\pi}{9}$$

4. 2do parcial seminara 29/11/2016 #245

-enunciado-

¿Cuál es el area del trozo de superficie definido por $\vec{\sigma}(u,v) = (u-v, u^2-v^2, u+v), \text{ con } 1 \le u^2+v^2 \le 9?$

Rta: $\frac{2\pi(19\sqrt{19}-3\sqrt{3})}{3}$

-solución-

$$\sigma_u' = (1, 2u, 1)$$

$$\sigma'_v = (-1, -2v, 1)$$

$$\begin{aligned} & (\sigma'_u \times \sigma'_v) = (2u + 2v, -1 - 1, -2v + 2u) = 2(u + v, -1, u - v) \\ & ||\sigma'_u \times \sigma'_v|| = 2||(u + v, -1, u - v)|| = 2\sqrt{(u + v)^2 + 1 + (u - v)^2} \\ & = 2\sqrt{u^2 + 2uv + v^2 + 1 + u^2 - 2uv + v^2} \\ & = 2\sqrt{2u^2 + 2v^2 + 1} \end{aligned}$$

$$||o_u \times o_v|| = 2||(u+v,-1,u-v)|| = 2\sqrt{(u+v)^2}$$

$$= 2\sqrt{u^2 + 2uv + v^2 + 1 + u^2 - 2uv + v^2}$$

$$=2\sqrt{2u^2+2v^2+1}$$

El area de la superficie, usando polares, nos queda

$$2\int_{0}^{2\pi} d\phi \int_{1}^{3} \rho \sqrt{2\rho^{2} + 1} d\rho = \frac{2\pi (19\sqrt{19} - 3\sqrt{3})}{3}$$

5. 2do parcial seminara 24/11/2017 #249

-enunciado-

Calcule la masa del cuerpo delimitado por las superficies $z=2x^2+y^2$ y $z=2-y^2$, si la densidad del material es, en cada punto, proporcional a la distancia del punto al eje z.

Rta: $\frac{8\pi}{15}$

-solución-

Analizo la intersección de las superficies

$$z = 2x^2 + y^2$$
 (1)

$$z = 2 - y^2(2)$$

Igualando

$$2x^{2} + y^{2} = 2 - y^{2}$$
$$x^{2} + y^{2} = 1$$

$$x^2 + y^2 = 1$$

o sea que la intersección vive sobre dicho cilindro.

La densidad de masa es $\delta(x, y, z) = k\sqrt{x^2 + y^2}$

En cilíndricas sobre el eje z, la masa es
$$M = \iiint_{H} \delta dV = k \int_{0}^{2\pi} \int_{0}^{1} \rho^{2} d\rho \int_{2\rho^{2} \cos^{2}(\phi) + \rho^{2} \sin^{2}(\phi)}^{2-\rho^{2} \sin^{2}(\phi)} dz$$
$$= k \int_{0}^{2\pi} \int_{0}^{1} \rho^{2} (2 - 2\rho^{2}) d\rho = \boxed{\frac{8\pi}{15}}$$

$$= k \int_0^{2\pi} \int_0^1 \rho^2 (2 - 2\rho^2) d\rho = \left| \frac{8\pi}{15} \right|$$

6. 2do parcial seminara 24/11/2017 #250

-enunciado-

Considere la superficie definida por $x = \sqrt{y^2 + z^2}$ con $x \le 3$ y $z \ge 0$.

- a) Calcule el area de la misma.
- b) Evalue el flujo del campo $\vec{f}(x, y, z) = (y, xz, -xy)$ a través de esa superficie, indicando en un gráfico el sentido que eligió para la normal.

7. final 19/12/2017 #205

-enunciado-

Dada la superficie Σ de ecuación $z = \sqrt{x^2 + y^2}$ en el 1° octante con $z \leq 9$, calcule el flujo de \vec{f} a través de Σ orientada hacia z^+ sabiendo que $\vec{f}(x, y, z) = (2y, -2x, 2z).$

Rta: 243π

-solución-

-solución-

$$g(x,y) = (x,y,\sqrt{x^2+y^2})$$
, definido en $x,y \ge 0$, $x^2+y^2 \le 9^2$.
 $g'_x = (1,0,\frac{x}{\sqrt{x^2+y^2}})$
 $g'_y = (0,1,\frac{y}{\sqrt{x^2+y^2}})$
 $n = g'_x \times g'_y = \left(\frac{-x}{\sqrt{x^2+y^2}},\frac{-y}{\sqrt{x^2+y^2}},1\right)$
 $f \cdot n = (2y,-2x,2z) \cdot \left(\frac{-x}{\sqrt{x^2+y^2}},\frac{-y}{\sqrt{x^2+y^2}},1\right)$
 $= \frac{-2xy}{\sqrt{x^2+y^2}} + \frac{2xy}{\sqrt{x^2+y^2}} + 2z = 2z$
 $2\int_0^{\pi/2} d\phi \int_0^9 \rho^2 d\rho = 2\frac{9^3}{3}\frac{\pi}{2} = \boxed{243\pi}$

8. final 19/12/2017 #206

-enunciado-

Calcule la masa del cuerpo definido por $x^2 + 3y^2 \le z \le 4 - 3x^2 - y^2$, si su densidad en cada punto es proporcional a la distancia desde el punto al eje z.

9. final 12/12/2017 #304

-enunciado-

Defina coordenadas cilíndricas. Dada $\int_0^\pi d\phi \int_0^2 d\rho \int_{-2}^1 \rho^3 \sin(\phi) dz$ planteada en coordenadas cilíndricas, grafique la región de integración en el espacio xyz y plantee la integral con los límites expresados en coordenadas cartesianas.

Rta:
$$\int_{-2}^{2} dx \int_{0}^{\sqrt{4-x^2}} y dy \int_{-1}^{2} \sqrt{x^2 + y^2} dz$$

10. final 12/12/2017 #308

-enunciado-

Dado $\vec{f}(x,y,z)=(2x,y,3z)$, **calcule** el flujo de \vec{f} a través de la superficie Σ de ecuación $x=4-y^2$ con $z\leq x,\,x\geq 0,\,z\geq 0$. **Indique** gráficamente cómo decidió orientar a Σ .

Rta: $\frac{256}{3}$ orientando hacia x^+ .

11. final 12/12/2017 #307

-enunciado-

Calcule el volumen del cuerpo definido por: $z \le 2 + x^2 + y^2$, $x^2 + y^2 \le 4$, $z \ge -1$.

Rta: 20π

12. final 05/12/2017 #312

-enunciado-

Calcule el volumen del cuerpo definido por: $z \le 4 - x^2$, $x + z \ge 2$, $y \le x$, 1er octante.

Rta: 8/3

13. final 05/12/2017 #313

-enunciado-

Dado $\vec{f}(x,y,z)=(2xz,2yz,z^2)$, calcule el flujo de \vec{f} a través de la superficie abierta Σ de ecuación $z=\sqrt{x^2+y^2}$ con $z\leq 9,\,x\geq 0$. Indique gráficamente cómo orienta a Σ .

Rta: $\frac{6561\pi}{4}$

14. final 05/12/2017 #314

-enunciado-

Calcule el área del triángulo cuyos vértices son los puntos de \mathbb{R}^3 donde la superficie de ecuación $z = xy^2 + 2x^2 - 3x - 2xy + 5$ tiene plano tangente paralelo al plano xy.

Rta: $2\sqrt{5}$

15. final 26/09/2017 #316

-enunciado-

Defina coordenadas polares. Resuelva en coordenadas polares la integral doble de $f(x,y) = \sqrt{x^2 + y^2}$ en la región D definida por: $1 \le x^2 + y^2 \le 4$ con $x \ge 0$.

Rta: $\frac{7}{3}\pi$

—solución—
$$\int_{-\pi/2}^{\pi/2} d\phi \int_1^2 \rho^2 d\rho = \frac{7}{3}\pi$$

16. final 26/09/2017 #318

-enunciado-

Siendo $\vec{f}(x,y,z) = (9z,6x,4y)$, calcule el flujo de \vec{f} a través del trozo de plano de ecuación 2x + 2y + 3z = 6 en el 1er octante. Indique gráficamente cómo decidió orientar al plano.

Rta: 54

—solución—
$$\int_0^3 dx \int_0^{3-x} (9z, 6x, 4y) \cdot \frac{(2,2,3)}{3} dy = \int_0^3 dx \int_0^{3-x} 12 dy = \frac{3^2}{2} \cdot 12 = 54$$

17. final 26/09/2017 #319

-enunciado-

Calcule el volumen del cuerpo definido por: $x^2 + y^2 \le z \le 2y$.

Rta: $\frac{\pi}{2}$

—solución—
$$\int_0^\pi d\phi \int_0^{2\sin(\phi)} \rho d\rho \int_{\rho^2}^{2\rho\sin(\phi)} dz = \frac{\pi}{2}$$

18. final 25/07/2017 #324

-enunciado-

Calcule el área del trozo de plano de ecuación z=x+2y en el 1
er octante, con $x+y+z\leq 6.$

Rta: $3\sqrt{6}$

19. final 25/07/2017 #326

—enunciado—

Calcule el volumen del cuerpo definido por: $z \ge \sqrt{x^2 + y^2}$, $x^2 + y^2 + z \le 6$.

Rta: $\frac{32}{3}\pi$

20. final 24/05/2017 #330

-enunciado-

Sea π_0 el plano tangente a la superficie de ecuación $xy+z+\ln(x+z+2y-4)-3=0$ en el punto $\vec{A}=(1,1,2)$. Calcule el flujo del campo \vec{f} a través del trozo de π_0 incluido en el 1er octante, sabiendo que $\vec{f}(x,y,z)=(3xy,-2xy,x+z)$; indique gráficamente cómo ha orientado al plano.

Rta: $\frac{81}{4}$ orientando hacia z^+ .

21. final 24/05/2017 #333

—enunciado—

Calcule el volumen del cuerpo definido por: $z \ge x^2 + y^2$, $z \le 2y + 3$.

Rta: 8π

22. final 07/06/2018 #338

—enunciado—

Calcule el volumen del cuerpo definido por: $z \ge \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 \le 2$, en el 1er octante.

Rta: $\frac{\pi}{3}(\sqrt{2}-1)$

-solución-

Analizo la intersección de las superficies

$$z = \sqrt{x^2 + y^2} (1)$$

$$x^2 + y^2 + z^2 = 2 (2)$$

$$x^2 + y^2 + z^2 = 2 \ (2)$$

$$x^2 + y^2 = 1$$

El volumen pedido es

$$\int_0^{\pi/2} d\phi \int_0^1 \rho d\rho \int_\rho^{\sqrt{2-\rho^2}} dz = \boxed{\frac{\pi}{3}(\sqrt{2}-1)}$$

23. examen viejo #48

-enunciado-

Enuncie el teorema de cambio de variables en integrales dobles. Calcule $area(D_{xy})$ sabiendo que a través del cambio de variables definido por (x,y) = (u+2v,3u+v), la región D_{xy} se transforma en D_{uv} con $area(D_{uv}) = 4.$

Rta: 20

—solución—

$$g(u, v) = (u + 2v, 3u + v), Dg = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, |det(Dg)| = |1 - 6| = 5, \text{ luego}$$

$$area(D_{xy}) = 5 \underbrace{area(D_{uv})}_{4} = 20$$

24. examen viejo $\#^{49}$

-enunciado-

Calcule el volumen del cuerpo definido por: $y \ge x^2$, $x \ge y^2$, $z \le 48xy$, en el 1º octante.

Rta: 4

25. examen viejo #50

-enunciado-

Calcule el volumen del cuerpo definido por: $0 \le y \le 1 - x^2$, $z \ge x$, $x + z \le 2$.

Rta: $\frac{8}{3}$

$$V = \int_{-1}^{1} dx \int_{0}^{1-x^{2}} dy \int_{x}^{2-x} dz = \boxed{\frac{8}{3}} \approx 2,666...$$

26. examen viejo #51

-enunciado-

Calcule la masa del cuerpo definido por $1-x^2-z^2 \le y \le 10-2x^2-2z^2$, si su densidad en cada punto es proporcional a su distancia al eje y.

Rta: $\frac{324}{5}k\pi$

—solución—

Averiguo el radio $1 - \rho^2 = 10 - 2\rho^2$, $\rho = 3$. La densidad es $k\rho$.

La masa pedida es $M = k \int_0^{2\pi} d\phi \int_0^3 \rho^2 d\rho \int_{1-\rho^2}^{10-2\rho^2} dy = \left[\frac{324}{5} k\pi \right]$

27. examen viejo #52

-enunciado-

Calcule la masa del cuerpo definido por $\sqrt{x^2 + y^2} \le z \le 3 - 2x^2 - 2y^2$, si su densidad en cada punto es proporcional a la distancia desde el punto al eje z.

Rta: $\frac{7}{10}k\pi$

—solución—

Averiguo el radio $\rho = 3 - 2\rho^2$, $\rho = 1$. La densidad es $k\rho$.

La masa pedida es $M=k\int_0^{2\pi}d\phi\int_0^1\rho^2d\rho\int_\rho^{3-2\rho^2}dz=\boxed{\frac{7}{10}k\pi}$

28. examen viejo #53

-enunciado-

Calcule la masa del cuerpo definido por $z \leq \sqrt{x^2 + y^2}$ con $1 \leq x^2 + y^2 \leq 4$ en el 1º octante, si su densidad en cada punto es proporcional a la distancia desde el punto al eje z.

Rta: $\frac{15}{8}k\pi$

-solución-

La densidad es $\delta=k\rho$. La masa es $M=k\int_0^{\pi/2}d\phi\int_1^2\rho^2d\rho\int_0^\rho dz=\boxed{\frac{15}{8}k\pi}$

29. examen viejo #54

-enunciado-

Calcule el volumen del cuerpo definido por: $x+z \leq 4, \ y \geq x, \ y \leq 6, \ 1^{\rm o}$ octante.

Rta: $\frac{112}{3}$

—solución—

 $V = \int_0^4 dx \int_x^6 dy \int_0^{4-x} dz = \boxed{\frac{112}{3}}$

30. examen viejo #55

-enunciado-

Calcule el volumen del cuerpo definido por: $x^2 + z^2 \le 9$, $y \ge x$, con $y \le 14 - x^2 - z^2$.

Rta: $\frac{171}{2}\pi$

-solución-

$$V = \int_0^{2\pi} d\phi \int_0^3 \rho d\rho \int_{\rho \cos(\phi)}^{14-\rho^2} dy = \boxed{\frac{171}{2}\pi} \approx 268,606...$$

31. examen viejo #56

-enunciado-

Calcule el volumen del cuerpo definido por: $y \le x^2$, $x^2 + z^2 \le 16$, 1° octante.

Rta: 16π

—solución—
$$V = \int_0^{\pi/2} d\phi \int_0^4 \rho d\rho \int_0^{\rho^2 \cos^2(\phi)} dy = \boxed{16\pi} \approx 50,2655...$$

32. examen viejo #57

-enunciado-

Calcule la masa del cuerpo definido por: $z \ge \sqrt{2x^2 + y^2}$, $x^2 + 2y^2 + z^2 \le 12$, si su densidad en cada punto es proporcional a la distancia desde el punto al plano xy.

Rta: $12k\pi$

-solución-

La densidad es $\delta(x, y, z) = k|z|$. La proyección sobre el plano xy queda

La defisitad es
$$b(x,y,z) = k|z|$$
. La proyection sobre el piano xy queda $x^2 + y^2 \le 4$, luego la masa pedida es
$$M = k \int_0^{2\pi} d\phi \int_0^2 \rho d\rho \int_{\sqrt{2x^2 + y^2}}^{\sqrt{12 - x^2 - 2y^2}} z dz = \frac{k}{2} \int_0^{2\pi} d\phi \int_0^2 \rho (12 - x^2 - 2y^2 - 2x^2 - y^2) d\rho = \frac{k}{2} \int_0^{2\pi} d\phi \int_0^2 (12 - 3\rho^2) \rho d\rho = \boxed{12k\pi}$$

$$\frac{k}{2} \int_0^{2\pi} \overline{d\phi \int_0^2 \rho (12 - x^2 - 2y^2 - 2x^2 - y^2) d\rho} = \frac{k}{2} \int_0^{2\pi} d\phi \int_0^2 (12 - 3\rho^2) \rho d\rho = \boxed{12k\pi}$$

33. examen viejo #58

-enunciado-

Calcule el volumen del cuerpo definido por: $3x^2+z\leq 12,\,x^2+z\geq 4,\,x\leq y\leq 4$ en el 1º octante.

Rta: $\frac{104}{3}$

-solución-

$$V = \int_0^2 dx \int_x^4 dy \int_{4-x^2}^{12-3x^2} dz = \boxed{\frac{104}{3}}$$

34. examen viejo #59

-enunciado-

Calcule el área del trozo de superficie de ecuación $z=1+\sqrt{x^2+y^2}$ con $2\leq z\leq 5$

Rta: $15\sqrt{2}\pi$

-solución-

$$(z-1)^2 = x^2 + y^2$$
, defino $G(x, y, z) = (z-1)^2 - x^2 - y^2$, $\nabla G = (-2x, -2y, 2(z-1)), G'_z = 2(z-1)$,

$$||\nabla G|| = \sqrt{4x^2 + 4y^2 + 4(z-1)^2} = 2\sqrt{2}\sqrt{x^2 + y^2}, \quad \frac{||\nabla G||}{|G_z'|} = \sqrt{2}, \text{ luego el}$$

área pedida es

$$A = \sqrt{2} \int_0^{2\pi} d\phi \int_1^4 \rho d\rho = \sqrt{2}\pi (4^2 - 1^2) = 15\sqrt{2}\pi$$

35. examen viejo #80

-enunciado-

Calcule el área del trozo de superficie de ecuación $z=\sqrt{4x^2+4y^2}$ con $z\leq 4$ en el 1º octante.

Rta: $\sqrt{5}\pi$

-solución-

$$\begin{split} z^2 &= 4x^2 + 4y^2, \text{ defino } G(x,y,z) = z^2 - 4x^2 - 4y^2, \, \nabla G = (-8x, -8y, 2z), \\ G_z' &= 2z, \, ||\nabla G|| = \sqrt{64x^2 + 64y^2 + 4z^2} = 2\sqrt{20x^2 + 20y^2}, \\ \boxed{\frac{||\nabla G||}{|G_z'|} = \frac{\sqrt{20}}{2} = \sqrt{5}}, \text{ luego el área pedida es} \end{split}$$

$$A = \sqrt{5} \int_0^{\pi/2} d\phi \int_0^2 \rho d\rho = \boxed{\sqrt{5}\pi}$$

36. examen viejo #61

-enunciado-

Siendo $f(x, y, z) = (x, yz, 2x^2 - z)$, calcule el flujo de f a través de la superficie abierta de ecuación $z = 4 - x^2$ con $0 \le y \le x$, $z \ge 0$; indique gráficamente cómo ha decidido orientar la superficie.

Rta: 12 (orientado hacia z^+)

-solución-

Parametrizo Σ con $g(x,y) = (x,y,4-x^2)$.

Luego
$$g'_x \times g'_y = det \begin{pmatrix} i & j & k \\ 1 & 0 & -2x \\ 0 & 1 & 0 \end{pmatrix} = \boxed{(2x, 0, 1)}$$

Luego
$$g'_x \times g'_y = det \begin{pmatrix} i & j & k \\ 1 & 0 & -2x \\ 0 & 1 & 0 \end{pmatrix} = \boxed{(2x,0,1)}$$

$$\int_0^2 dx \int_0^x (x, y(4-x^2), 2x^2 - 4 + x^2) \cdot (2x,0,1) dy = \int_0^2 dx \int_0^x 2x^2 + 3x^2 - 4dy = \int_0^2 5x^3 - 4x dx = \boxed{12} \text{ (orientado hacia } z^+\text{)}$$

37. examen viejo #62

-enunciado-

Dado f(x, y, z) = (3x, 2y, y + z), calcule el flujo de f a través de la superficie abierta de ecuación $y = x^2$ con $0 \le z \le 9 - y$. Indique gráficamente como decidió orientar la superficie.

Rta: $\frac{1296}{5}$ (orientado hacia y^-)

—solución—

Parametrizo Σ con $g(x,z) = (x,x^2,z)$.

Luego
$$g'_x \times g'_z = det \begin{pmatrix} i & j & k \\ 1 & 2x & 0 \\ 0 & 0 & 1 \end{pmatrix} = \boxed{(2x, -1, 0)}$$

$$\int_{-3}^3 dx \int_0^{9-x^2} (3x, 2x^2, x^2 + z) \cdot (2x, -1, 0) dz = \int_{-3}^3 dx \int_0^{9-x^2} 6x^2 - 2x^2 dz = \int_{-3}^3 4x^2 (9 - x^2) dx = \boxed{\frac{1296}{5}} \approx 259,2 \text{ (orientado hacia } y^-)$$

38. examen viejo #63

—enunciado—

Siendo f(x,y,z)=(2xy,2yz,4yz), calcule el flujo de f a través de la superficie abierta Σ de ecuación $z=4-x^2$ con $y\leq x$ en el 1º octante. Indique gráficamente que orientación adoptó para Σ .

Rta: $\frac{64}{3}$ (orientando hacia z^+)

-solución-

Proyectando sobre el plano xy y orientando hacia z^+ queda la integral

$$\int_0^2 dx \int_0^x \underbrace{(2xy, 2yz, 4yz) \cdot (2x, 0, 1)}_{4x^2y + 4y(4-x^2)} dy = \boxed{\frac{64}{3}}$$

39. examen viejo #81

—enunciado—

Calcule mediante una integral doble el área de la región plana definida por $0 \le y \le f(x), \ 0 \le x \le 2\pi$, siendo y = f(x) la solución particular de y'' + y = 1 que en el punto (0,2) tiene recta tangente de ecuación y = 2.

Rta: 2π

$$\alpha^2 + 1 = 0$$
, $\alpha_{1,2} = \pm i$, luego $y_h = C_1 \cos(x) + C_2 \sin(x)$

Para la particular propongo
$$y=C,\,y'=y''=0,\,C=1,$$
 luego $y=y_h+y_p=C_1\cos(x)+C_2\sin(x)+1$ $y'=-C_1\sin(x)+C_2\cos(x)$ Luego $2=C_1+1,\,C_2=0,$ o sea que $f(x)=\boxed{\cos(x)+1}$ La integral pedida es
$$\int_0^{2\pi}dx\int_0^{\cos(x)+1}dy=\int_0^{2\pi}\cos(x)+1=[\sin(x)+x]_0^{2\pi}=\boxed{2\pi}$$