IN THE CLAIMS:

DT04 Rec'd PCT/PTO 0 8 OCT 2004

 (Original) Use for the preparation of disease-modifying drugs drugs for the prevention and treatment of arthritis therapy of compounds or salts thereof having the following general formula:

$$A-(B)_{b0}-(C)_{c0}-N(O)_{S}$$
 (I)

wherein:

s is an integer and is equal to 1 or 2, preferably 2;

c0 is an integer and is equal to 0 or 1;

b0 is an integer and is 0 or 1; with the proviso that at least one between c0 and b0 is different from zero;

 $A = R-T_1$ -, wherein

R- is the radical of a non steroidal antiinflammatory precursor drug excluding the compounds having 2-oxo-1H-indolic structure, or the radical of a non steroidal antiinflammatory/analgesic drug;

 $T_1 = (CO)_t$ or $(X)_{t'}$, wherein $X = -O_{-}$, $-S_{-}$, $-N(R_{1C})_{-}$, R_{1C} is H or C_1 - C_5 linear or branched alkyl, t and t' are integers and equal to zero or 1, with the proviso that t = 1 when t' = 0; t = 0 when t' = 1;

 $B = -T_B - X_2 - T_{BI}$ wherein

T_B and T_{BI} are equal or different;

 T_B = (CO) when the reactive function in the precursor drug is -OH or -NH(R_{1C}); T_B = X, as above, when the reactive function in the precursor drug is -COOH;

 $T_{BI} = (CO)_{tx}$ or $(X)_{bxx}$, wherein tx and txx have the value of 0 or 1; with the proviso that tx = 1 when txx = 0, tx = 0 when txx = 1; X is as above;

 X_2 is a bivalent linking group as defined below:

C is the bivalent radical -T_c-Y- wherein

when b0 = c0 = 1: $T_C = (CO)$ when tx = 0, $T_C = X$ when txx = 0, X being as above;

when b0 = 0: $T_C = (CO)$ when t = 0, $T_C = X$ when t' = 0, X being as above;

when c0 = 0: tx = 0, $T_{BI} = X = -O$ -.

Y is:

Y_p:

$$R_{TIX}$$
 R_{TIIX} $|$ $|$ $[C]_{nIX}$ Y^3 $[C]_{nIIX}$ (III^p) $|$ $R_{TIX'}$ $R_{TIIX'}$

wherein:

nIX is an integer from 0 to 10, preferably from 1 to 3; nIIX is an integer from 1 to 10, preferably from 1 to 3;

 R_{TIX} , R_{TIX} , R_{TIIX} , R_{TIIX} , equal to or different from each other are H or C_1 - C_4 linear or branched alkyl; preferably R_{TIX} , R_{TIX} , R_{TIIX} , R_{TIIX} are H.

Y³ is a saturated, unsaturated or aromatic heterocyclic ring containing one or two nitrogen atoms having 5 or 6 atoms,

or Y can be:

Y₀, selected from the following:

a -R'O- alkylenoxy group wherein R' is linear or branched when possible C₁-C₂₀, preferably having from 2 to 6 carbon atoms, or a cycloalkylene having from 5 to 7 carbon atoms, in the cycloalkylene ring one or more carbon atoms can be substituted by heteroatoms, the ring can have side chains of R' type, R' being as above; or one of the following groups:

wherein nf' is an integer from 1 to 6 preferably from 1 to 4;

wherein R_{1f} = H, CH_3 and nf' is an integer from 1 to 6; preferably from 1 to 4;

or Y is Y_{Ar} and is selected from the following:

wherein n3 is an integer from 0 to 3 and n3' is an integer from 1 to 3;

wherein n3 and n3' have the above meaning;

 X_2 , bivalent radicalm is such that the corresponding precursor of B, - T_B - X_2 - T_{Bl} - wherein the free valences of T_B and of T_{Bl} are saturated each with OZ, with Z or with -N(Z^l)(Z^{ll}), wherein Z = H, C_1 - C_{10} , preferably C_1 - C_5 linear or branched when possible alkyl, Z^l , Z^{ll} equal or different have the Z values as above, depending on that T_B and/or $T_{Bl} = CO$ or X, in function of the values of t, t', tx and txx;

the precursor of B is selected from the following:

- aminoacids,
- hydroxyacids,
- aromatic and heterocyclic mono- and polyalchols,
- compounds containing at least one free acid function.
- (Original) Use according to claim 1, wherein the precursor of B is selected from the following: aminoacids selected from the following: L-carnosine (formula CI), anserine (CII), selenocysteine (CIII), selenomethionine (CIV), penicillamine (CV), N-acetylpenicillamine (CVI), cysteine (CVII), N-acetylcysteine (CVIII), glutathione (CIX) or esters thereof, preferably ethyl or isopropyl ester:

$$(CI) \qquad (CII)$$

$$HSe \xrightarrow{COOH} H_3C \xrightarrow{Se} COOH$$

$$(CIII) \qquad (CIV) \qquad (CV)$$

$$H_3C \xrightarrow{CH_3} OH HS \xrightarrow{OH} HS \xrightarrow{OH} OH HS \xrightarrow{OH} OH NHCOCH_3$$

$$(CVI) \qquad (CVIII) \qquad (CVIII)$$

hydroxyacids, selected from the following: gallic acid (formula DI), ferulic acid (DII), gentisic acid (DIII), citric acid (DIV), caffeic acid (DV), dihydrocaffeic acid (DVI), p-cumaric acid (DVII), vanillic acid (DVIII):

aromatic and heterocyclic mono- and polyalcohols, selected from the following: nordihydroguaiaretic acid (EI), quercetin (EII), catekin

(EIII), kaempferol (EIV), sulphurethyne (EV), hydroquinone (EVIII), gossypol (EIX), reductic acid (EX), methoxyhydroquinone (EXI), hydroxyhydroquinone (EXII), propyl gallate (EXIII), 3,5-di-ter-butyl-4-hydroxybenzyl-thioglycolate (EXXIV), allopurinol (EXXXI); saccharose (EC), ascorbic (ECI) and isoascorbic acid (ECII), p-cumaric alcohol (ECIII), 4-hydroxy-phenylethylalcohol (ECIV), coniferyl alcohol (ECV):

compounds containing at least one free acid function, selected from the following: 3,3'-thiodipropionic acid (NI), fumaric acid (NII), dihydroxymaleic acid (NIII), edetic acid (NV):

- 3. (Currently Amended) Use according to claims 1-2, wherein in the compounds of formula (I) when b0 = c0 = 1, the bonds between the drug radical and X₂ and between X₂ and Y are, independently the one from the other, of ester, thioester, amide type;
 when b0 = 0 and c0 = 1 the bond between the drug radical and Y is of ester.
 - thioester, amide type.
- 4. (Currently Amended) Use according to claims 1-3, wherein the R radical is selected from the following groups:

Group I)

la)

lb)

$$OCOR_{3O} \cap COR_{2O} \cap COR_{2O}$$

wherein:

R₁ is H or -OCOR₃; wherein R₃ is methyl, ethyl or C₃-C₅ linear or branched alkyl, or the residue of an heterocycle with only one ring having 5 or 6 atoms partially or totally hydrogenated, or aromatic, containing one or more heteroatoms independently selected from O, N and S;

 R_2 is hydrogen, hydroxy, halogen, C_1 - C_4 linear or branched alkyl, C_1 - C_4 linear or branched alkoxyl; a C_1 - C_4 linear or branched perluoroalkyl, for example trifluoromethyl; nitro, amino, mono- or di- (C_{1-4}) alkylamino;

with the proviso that in formula Ia) R_1 and R_2 are not contemporaneously H; preferably when $R_1 = H$ $R_2 = OH$;

preferably in the compounds of formula Ia) $T_1 = -CO$ - and:

- R₁ = acetoxy, preferably in ortho position with respect to -CO-, R₂ is hydrogen; in this case the formula Ia) represents the acetylsalicylic acid residue;

- $R_1 = H$ $R_2 = OH$, preferably in ortho position with respect to -CO-, in this case the formula la) represents the salicyilic acid residue;

in formula lb) nl is an integer 0 or 1;

preferably in the compounds of formula Ib) $R_3 = CH_3$, nI = 0, $T_1 = -CO$; in this case Ib) is the acetylsalicylsalicylic acid residue;

Group II)

lla)

IIb)

$$\begin{array}{c|c}
 & H_3C & CF_3 \\
 & N & M
\end{array}$$

wherein:

 R_{II5} is H, C_1 - C_3 linear or branched when possible alkyl;

 R_{II6} has the same meaning as R_{II5} , or when R_{II5} is H it is benzyl;

 R_{II1} , R_{II2} and R_{II3} are independently hydrogen, C_1 - C_6 linear or branched alkyl, or C_1 - C_6 linear or branched alkoxy, or CI, F, Br;

R_{II4} is R_{II1} or bromine;

the compounds are preferred wherein R_{II1} , R_{II4} are hydrogen and R_{II2} and R_{II3} are chlorine in ortho position with respect to NH; R_{II5} and R_{II6} are H, T_1 = -CO-, when the free valence is saturated with OH the precursor compound is known as diclofenac.

llb) is the residue of the 2-[(2-methyl-3-(trifluoro methyl)phenyl]amino]-3-pyridincarboxylic] acid when T_1 =

-CO- and the free valence is saturated with OH the compound is known as flunixin;

$$R_{2a}$$
 | R_{1a} - C - | R_{3a}

wherein:

 R_{2a} and R_{3a} are H, C_{1} - C_{12} linear or branched, substituted or not, alkyl or allyl, with the proviso that when one of the two is allyl the other is H; preferably R_{2a} and R_{3a} , equal or different, are H, C_{1} - C_{4} alkyl;

R_{1a} is selected from:

$$(VI) \qquad (VII)$$

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\$$

IIID) R_{1a} corresponds to the following formulas:

$$(XXXIII)$$

$$(XXXVI)$$

(XXXX)

wherein the meanings are the following:

when R_{1a} is as defined in formula (IV), Ketoprofen residue:

R_{III1} is H, SR_{III3} wherein R_{III3} is C₁-C₄ linear or branched alkyl;

R_{III2} is H, hydroxy;

the compounds wherein R_{III1} and R_{III2} are H, R_{3a} is H, and R_{2a} is methyl, T_1 = -CO- are preferred;

when R_{1a} is as defined in formula (XXI), carprofen residue:

 R_{xxio} is H, alkyl from 1 to 6 C atoms linear or branched, C_1 - C_6 alkoxycarbonyl linked to a C_1 - C_6 alkyl, C_1 - C_6 carboxyalkyl, C_1 - C_6 alkanoyl, optionally substituted with halogens, benzyl or halobenzyl, benzoyl or halobenzoyl;

 R_{xxi} is H, halogen, hydroxy, CN, C_1 - C_6 alkyl containing or not containing OH groups, C_1 - C_6 alkoxy, acetyl, benzyloxy, SR_{xxi2} wherein R_{xxi2} is C_1 - C_6 alkyl; C_1 - C_3 perfluoroalkyl; C_1 - C_6 carboxyalkyl containing or not containing OH groups, NO_2 , amino; sulphamoyl, dialkyl sulphamoyl with C_1 - C_6 alkyl, or difluoroalkylsulphonyl with C_1 - C_3 alkyl;

 R_{xxi1} is halogen, CN, C_1 - C_6 alkyl containing one or more OH groups, C_1 - C_6 alkoxy, acetyl, acetamido, benzyloxy, SR_{III3} being R_{III3} as above, C_1 - C_3 perfluoroalkyl, hydroxy, C_1 - C_6 carboxyalkyl, NO_2 , amino, C_1 - C_6 mono- or di-alkyl-amino; sulphamoyl, C_1 - C_6 di-alkyl-sulphamoyl, or di-fluoroalkylsulphamoyl as above; or R_{xxi} together with R_{xxi1} is a C_1 - C_6 alkylen-dioxy;

the compounds are preferred wherein R_{xxio} is H, the linking group is in position 2, R_{xxi} is H, R_{xxi1} is chlorine and is in para position with respect to the nitrogen;

 R_{3a} is H, R_{2a} is methyl and $T_1 = -CO_{-}$;

- when R_{1a} is as defined in formula (XXXV) tiaprofenic acid residue: Ar is phenyl, hydroxyphenyl optionally mono- or polysubstituted with halogen, alkanoyl and C_1 - C_6 alkoxy, C_1 - C_6 trialkyl, preferably C_1 - C_3 , cyclopentyl, cyclohexyl, cycloheptyl, heteroaryl, preferably thienyl, furyl containing or not containing OH, pyridyl; the preferred compounds of (XXXV) are those wherein Ar is phenyl, R_{3a} is H, R_{2a} is methyl and T_1 = -CO-;
- when R_{1a} is as defined in formula (II), suprofen residue, R_{3a} is H, R_{2a} is methyl and T_1 = -CO-;
- when R_{1a} is as defined in formula (VI), R is the residue of indoprofen when T_1 = -CO-, R_{2a} = H and R_{3a} = CH₃; of indobufen when R_{2a} is equal to H and R_{3a} = C₂H₅; T_1 = -CO-;
- when R_{1a} is as defined in formula (VIII), R is the etodolac residue when $R_{2a} = R_{3a} = H$ and $T_1 = -CO$ -;
- when R_{1a} is as defined in formula (VII), R is the fenoprofen residue when R_{3a} = H, R_{2a} = CH₃ and T₁ = -CO-;
- when R_{1a} is as defined in formula (III), R is the fenbufen residue when $R_{2a} = R_{3a} = H$ and $T_1 = -CO$ -;
- when R_{1a} is as defined in formula (IX), R is the flurbiprofen residue when $R_{3a} = H$, $R_{2a} = CH_3$, $T_1 = -CO_7$;
- when R_{1a} is as defined in formula (X) R is the tolmetin residue when $R_{2a} = R_{3a} = H$, $T_1 = -CO-$.

In group IIID) R_{1a} corresponds to the following formulas:

- IIIa), when R_{2a} = H and R_{3a} = CH₃ the pranoprofen residue is obtained: α -methyl-5H-[1]benzopyran-[2,3-b]pyridin-7-acetic acid; in the preferred compound R_{2a} = H, R_{3a} = CH₃, T_1 = -CO- and in the precursor the free valence is saturated with OH;

- (XXX), when R_{2a} = H and R_{3a} = CH₃ the bermoprofen residue is obtained: dibenz[b,f]oxepin-2-acetic acid; in the preferred compound R_{2a} = H, R_{3a} = CH₃, T_1 = -CO-;
- (XXXI), when R_{2a} = H and R_{3a} = CH₃, R is the radical of the compound CS-670: 2-[4-(2-oxo-1-cyclohexyliden methyl) phenyl]propionic acid; the preferred compound has R_{2a} = H, R_{3a} = CH₃, T₁ = -CO-;
- (XXXII), when $R_{2a} = R_{3a} = H$, the periodolac residue is obtained; when $R_{2a} = R_{3a} = H T_1 = -CO$ -;
- (XXXIII), when $R_{2a} = R_{3a} = H$, the pirazolac residue is obtained: 4-(4-chlorophenyl)-1-(4-fluorophenyl)-3-pyrazol acid derivatives; the preferred compounds have $R_{2a} = R_{3a} = H$, $T_1 = -CO$ -;
- (XXXVI), when R_{2a} = H, R_{3a} = CH₃ the zaltoprofen residue is obtained; when the residue is saturated with an hydroxyl or aminic group, or with the carboxylic function the compounds are known as dibenzotiepin derivatives; in the preferred compounds R_{2a} = H, R_{3a} = CH₃, T_1 = -CO-;
- (XXXVII), when R_{2a} = R_{3a} = H the mofezolac residue is obtained: 3,4-di(p-methoxyphenyl)isoxazol-5-acetic acid when the residue is CH₂-COOH; in the preferred compounds R_{2a} = R_{3a} = H, T₁ = -CO-;
- (XII), when $R_{2a} = R_{3a} = H$ the bromfenac residue is obtained: 2-amino-3-(4-bromobenzoyl)benzeneacetic acid; the preferred compounds have $T_1 = -CO$ -, $R_{2a} = R_{3a} = H$;
- (XXXX) when R_{2a} = R_{3a} = H the sulindac residue is obtained: (Z)-5-fluoro-2-methyl-1-[[4-(methyl sulphinyl) –phenyl]methylene]-1H-inden-3-acetic aid; the preferred compounds have T_1 = -CO-, R_{2a} = R_{3a} = H;

in Group IV) R is.

$$\begin{array}{c|c} & R_{\text{IVd}} \\ & | \\ R_{\text{IV}} & - C & - \\ & | \\ & R_{\text{IVd1}} \end{array}$$

wherein:

 R_{IVd} and R_{IVd1} are at least one H and the other an alkyl from C_1 to C_6 linear or branched, preferably C_1 - C_2 , or difluoroalkyl with C_1 - C_6 alkyl, C_1 preferred, or R_{IVd} and R_{IVd1} form together a methylene group;

R_{IV} has the following meaning;

wherein the compounds of group IV) have the following meanings:

in formula (IIB):

 R_{iV-ii} is C_1 - C_6 alkyl, C_3 - C_7 cycloalkyl, C_1 - C_7 alkoxymethyl, C_1 - C_3 trifluoroalkyl, vinyl, ethynyl, halogen, C_1 - C_6 alkoxy, difluoroalkoxy with C_1 - C_7 alkyl, C_1 - C_7 alkoxymethyloxy, alkylthiomethyloxy with C_1 - C_7 alkyl, alkyl methylthio with C_1 - C_7 alkyl, cyano, difluoromethylthio, phenyl- or phenylalkyl substituted with the C_1 - C_8 alkyl; preferably R_{iV-ii} is CH_3O_7 , R_{IVd} is H and R_{IVd1} is CH_3 , and is known as naproxene residue; T_1 = - CO_7 ;

- in formula (XB), of which the loxoprofen residue has been indicated, the compounds wherein R_{IVd} is H and R_{IVd1} is CH_3 , T_1 = -CO- are preferred;
- in formula (IIIB):

 R_{iV-iii} is a C_2 - C_5 branched or not branched alkyl, C_2 and C_3 alkyloxy, allyloxy, phenoxy, phenylthio, cycloalkyl from 5 to 7 C atoms, optionally substituted in position 1 by a C_1 - C_2 alkyl;

the compound is preferred wherein Riv-iii is

and R_{IVd} = H, R_{IVd1} is CH₃, compound known as ibuprofen residue, T₁ = -CO-;

Group V)

$$\begin{array}{c|c}
O & O & O \\
O & O & CH_3 \\
H & H & H \\
O & N & O \\
\end{array}$$

$$(VIIC) \qquad (IXC)$$

$$O & CH_3 \\
MeO & CH_3 \\
\end{array}$$

$$(IVC)$$

20

$$(CH_{2})_{2} = \begin{cases} Rvii-_{1} & O \\ Rvii \end{cases}$$

$$(IIIC) \qquad (IIC)$$

Group VE)

$$(XC) \qquad (XII)$$

$$(XXXXV)$$

In group V), the compounds have the following meanings:

when R is the formula (IIC),

 R_{Vii} is H or a $C_1\text{-}C_4$ linear or branched alkyl;

 R_{Vii-1} is R_{Vii} , or C_1 - C_4 linear or branched alkoxy; Cl, F, Br; the position of R_{Vii-1} being ortho, or meta, or para;

the Ketorolac residue is preferred, wherein R_{Vii} and $R_{\text{Vii-1}}$ are H, and T_{1} = -CO-;

when R is the formula (VIIC),

of which the tenoxicam residue has been indicated, $T_1 = -O$ -;

- when R is the formula (IXC),
 wherein T₁ = -O-, the piroxicam residue has been indicated;
- when R is the formula (IIIC),
 wherein T₁ = -CO-, of which the nabumetone residue has been indicated;
- when R is the formula (IVC), wherein T_1 = -CO-, of which the indomethacin residue has been indicated;
- when R is the formula (XC), the residue X is known as meloxicam;
 the preferred compounds are those in which T₁ = -CO-;
- when R is the formula (XI) the residue is known as ampiroxicam when the termination is $-CH(CH_3)OCOC_2H_5$; the preferred compounds have $T_1 = -CO$ -;
- when R is the formula (XIII) and the valence is saturated with H, the residue derives from lornoxicam; the preferred compounds have T₁ =
 -O-;
- when R is the formula (XXXXV), T_1 = -O- and the valence is saturated with H, the compound known as paracetamol is obtained.
- 5. (Currently Amended) Use according to claims 1-4, wherein in the compounds of formula (I) Y³ of formula (III^P) of C is selected from the following bivalent radicals:

(Y7) (Y8) (Y9) (Y10) (Y11) (Y12) (Y13) (Y14) (Y15) (Y16)

- 6. (Original) Use according to claim 5, wherein Y³ is selected from the following: (Y12) with the two free valences in the ortho positions with respect to the nitrogen atom; (Y16) with the two valences linked to the two heteroatoms, Y1 (pyrazol) 3,5-disubstituted; Y16 is particularly preferred.
- 7. (Currently Amended) Use according to claims 1-6, wherein the following compounds are used:

2-acetyloxybenzoic acid 3-nitrooxymethyl phenyl ester (IC);

2-fluoro-alpha-methyl[1,1'-biphenyl]-4-acetic acid 4-ni-trooxy butylester (II^C);

2-[(2,6-dichlorophenyl)amino]benzenacetic acid 4-ni-trooxy butyl ester (III^C);

(S)-N-acetyl-[alpha-methyl-4-(2-methylpropyl)benzen-acetyl] cysteine 4-nitrooxybutylester having formula:

4-nitrooxybutanoic acid 4-acetylaminophenylester (V^C);

trans-3-[4-[2-fluoro-alpha-methyl(1,1'-biphenyl)-4-acetyloxy]-3-methoxyphenyl]-2-propenoic acid 4-(nitrooxy) butyl ester, having formula:

2-Fluoro-alpha-methyl[1,1'-biphenyl]-4-acetic acid 3-(ni-trooxymethyl)phenyl ester having formula:

(S)-N-acetyl-[2-fluoro-alpha-methyl(1,1'-biphenyl)-4-acetyl] cysteine 4-(nitrooxy)butyl ester having formula:

$$\begin{array}{c|c}
& \text{CH}_3 & \text{NHCOCH}_3 \\
& \text{O} & \text{(CH}_2)_4^{\text{ONO}_2} \\
& \text{(VIII}^{\text{C}})
\end{array}$$

2-Fluoro-alpha-methyl[1,1'-biphenyl]-4-acetic acid 6-(nitrooxy methyl)-2-methylpyridyl ester having formula

(S)-6-methoxy-alpha-methyl-2-naphthalenacetic acid 4-(nitrooxy)butyl ester having formula :

MeO
$$(CH_2)_4$$
 ONO₂ $(CH_2)_4$ ONO₂

(S)-6-methoxy-alpha-methyl-2-naphthalenacetic acid 3-(nitrooxymethyl)phenyl ester having formula:

$$MeO$$
 CH_3
 O
 ONO_2
 (XI^B)

(S)-6-methoxy-alpha-methyl-2-naphthalenacetic acid 6-(nitrooxymethyl)-2-methylpyridyl ester having formula:

$$(XII^{C})$$

trans-3-[4-[6-methoxy-alpha-methyl-2-naphthalenacetyl oxy]-3-methoxyphenyl]-2-propenoic acid 4-(nitrooxy)butyl ester having formula:

$$(XIII^{C})$$

. . .

(S,S)-N-acetyl-S-(6-methoxy-alpha-methyl-2-naphthaleneacetyl) cysteine 4-(nitrooxy)butyl ester having formula:

2-[(2,6-dichlorophenyl)amino]benzenacetic acid 4-(nitrooxy methyl)phenylmethyl ester having formula:

$$C1$$
 N
 $C1$
 N
 ONO_2
 (XV^c)

2-[(2,6-dichlorophenyl)amino]benzenacetic acid 6-(nitrooxymethyl)-2-methylpyridyl hydrochloride ester having formula:

$$C1$$
 H
 N
 ONO_2
 (XVI^C)

(S)-3-benzoyl-alpha-methyl-benzenacetic acid 4-(nitro oxybutyl) ester having formula:

(S)-3-benzoyl-alpha-methyl-benzenacetic acid 3-(nitro oxypropyl) ester having formula:

$$(XVIII^{C})$$

(S)-3-benzoyl-alpha-methyl-benzenacetic 4-(nitro oxymethyl) phenylmethyl ester having formula:

$$ONO_{2}$$

$$OXIX^{C}$$

5-benzoyl-2,3-dihydro-1H-pyrrolizine-1-carboxylic acid 4-(nitrooxy)butyl ester having formula:

. o And a

$$(XXI^{C})$$

2-[(2,6-dichlorophenyl)amino]benzenacetic acid 5 (nitro oxy)ethyloxyethyl ester having formula:

- 1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indole-3-acetic acid 3-(nitrooxymethyl)phenyl ester (XXI^C)
- 8. (Currently Amended) Use according to claims 1-7, wherein the compounds of formula (I) are administered in pharmaceutical formulations by oral, parenteral and topical administration.
- (Currently Amended) Use according to claims 1-8 for the prevention of arthritis relapses.