From %x_recepter to Rcpp: a new user interface and an efficient algorithm

Helene Charlotte Rytgaard and Thomas Alexander Gerds

October 21, 2016

1 Introduction

The Danish National Prescription Registry (NCBI) provides individual-level data on all prescription drugs sold in Danish community pharmacies since 1994 (?). Effects and side effects of drugs can be assessed in a Danish nation wide registry studies. For this the prescription data are linked to the cause of death register and other Danish registries (?).

This document describes a complex algorithm for the computation of drug exposure strength and length relative to a prespecified study period [a,b]. Note that the start of the study period has to be after the start of the registry.

2 Drug prescription data

We describe the data of a single person who has purchased the drug of interest at K different dates in the study period [a,b]. The setup can easily be generalized to multiple individuals. The set of ordered drug purchase dates for one individual is denoted as

$$T_1 < \cdots < T_K$$
.

One package of each drug product is defined by the drug strength S of the smallest unit (e.g., one pill or half a pill) and the amount of such units that it contains. For each drug we distinguish $J \geq 1$ different package types according to the different strengths: $S_1 < \cdots < S_J$. Note that the original SAS macro allowed at most 4 different package types. For each drug strength S_j the values s_j^{\min} , s_j^{\max} , s_j^* define the minimal, maximal and typical dose per day, respectively. Since s_j^{\min} is the smallest dose possible, we must have $S_j = p_j s_j^{\min}$ for some integer $p_j \geq 1$. The number of smallest units, s_j^{\min} , of type j purchased on date T_k is denoted by n_{jk} . For each drug strength S_j we have $G_{jk} \geq 0$ purchases on date T_k . For $g = 1, \ldots, G_{jk}$, we let p_{ij} denote the number of packages and p_{ij} denote the package size of purchase g. Thus, the total amount D_k of the

drug purchased on date T_k is given by the formula

$$D_k = \sum_{j=1}^{J} \left(\sum_{g=1}^{G_{jk}} \operatorname{pn}_{gk} \operatorname{ps}_{gk} \right) S_j = \sum_{j=1}^{J} \left(\sum_{g=1}^{G_{jk}} \operatorname{pn}_{gk} \operatorname{ps}_{gk} \right) p_j s_j^{\min} = \sum_{j=1}^{J} n_{jk} s_j^{\min},$$

such that $n_{jk} = \left(\sum_{g=1}^{G_{jk}} \operatorname{pn}_{gk} \operatorname{ps}_{gk}\right) p_j$. Figure 1 illustrates the data

Figure 1: label til figure

Hospital admission data 3

Hospitals usually deliver drugs for their patients. It is therefore hensigtsmaessig to take into account periods of hospitalization in the calculation of exposure lengths. For a single individual we define up to Q periods of hospitalization by the admission dates L_1, \ldots, L_Q and the corresponding discharge dates

We compute the number of days hospitalized in the period $[T_k, T_{k+1}]$ as:

$$A_k = \sum_{q=1}^{Q} \max (0, \min (T_{k+1}, R_q) - \max (T_k, L_q)).$$

Accordingly the number of non-hospitalized days in $[T_k, T_{k+1}]$ is:

$$H_k = (T_{k+1} - T_k) - A_k.$$

FIXME:

- need to limit to the study period [a,b]?
- is the day T_{k+1} included in $[T_k, T_{k+1})$ or not? [3cm]

4 Exposure strength and exposure lengths

The aim is to calculate the ends of the exposure periods E_k and for each exposure period the exposure strength per day X_k . The calculations of exposure are based on the drug prescription data and the hospitalization dates and depend further on an integer N that defines the number of prescription dates back in time to use in the calculations of exposure in a given period $[T_k, T_{k+1})$.

To express the exposure in period $[T_k, T_{k+1}]$ we first note that based on the total drug purchase on date T_k the individual can be exposed at most $n_k = \sum_{j=1}^{J} n_{jk}$ days.

We use the following notation to indicate if the maximal number of exposure days exceeds the non-hospitalized days in period $[T_k, T_{k+1})$:

$$u_k = \begin{cases} 0, & n_k \le H_k \\ 1, & n_k > H_k \end{cases}.$$

Furthermore, we use $S_{j(k)}$ to denote the nearest of the predefined pill strengths not exceeding the average strength computed for a period T_k , that is, the index j(k) is defined as,

$$j(k) = \max \left\{ \ell \in \{1, \dots, J\} : S_{\ell} \le \frac{1}{c_k} \sum_{j=1}^{J} 1\{n_{jk} > 0\} S_j \right\}.$$

where $c_k = \sum_{j=1}^J 1\{n_{jk} > 0\}$ is the number of different drug strengths purchased on date T_k , $\frac{1}{c_k} \sum_{j=1}^J 1\{n_{jk} > 0\} S_j$ is the average strength for period T_k . Recall again, that c_k was the number of different drugs strengths purchased on date T_k , $c_k = \sum_{j=1}^J 1\{n_{jk} > 0\}$.

We distinguish between two periods to be used for calculating an average daily dose,

$$I_k^{(1)} = \{ \max (\min\{\ell \in \{1, \dots, J\} : u_\ell = \dots = u_{k-1} = 1\}, \\ \min\{\ell \in \{1, \dots, J\} : S_{i(\ell)} = \dots = S_{i(k)} \}, \dots, k-1 \},$$

and

$$I_k^{(2)} = \{ \min\{\ell \in \{1, \dots, J\} : u_\ell = \dots = u_{k-1} = 1\}, \dots, k-1 \},\$$

Note that $I_k^{(2)}$ begins on the earliest date T_{i_0} from which the sequence of prescriptions up to time T_k provides a large enough amount of drugs to cover the corresponding number of days between T_{i_0} and T_k , whereas $I_k^{(1)}$ also takes into account that the average doses along the sequence must be the same. The average daily dose in the period $I_k^{(w)}$ is then defined as,

$$M_k^{(w)} = \frac{\sum_{\ell \in I_k^{(w)}} D_\ell}{\sum_{\ell \in I_k^{(w)}} H_\ell}, \qquad w = 1, 2.$$

At last, we define two binary variables to indicate whether the level of the calculated average dose for w=2 is below/above the relevant minimal/maximal daily doses,

$$v_k^{\max} = 1 \left\{ M_k^{(2)} > s_{j(k)}^{\max} \right\}, \qquad v_k^{\min} = 1 \left\{ M_k^{(2)} < s_{j(k)}^{\min} \right\}.$$

4.0.1 Calculating the doses, X_1, \ldots, X_K

The average exposure strength X_k per day for period $[T_k, T_{k+1})$ is computed as follows.

$$\begin{split} X_k &= (1 - u_k) \left(1 - u_{k-1} \right) s_k^* \\ &+ u_{k-1} \, \mathbf{1} \{ S_{j(k)-1} = S_{j(k)} \} \, \left(\operatorname{argmin} \left| M_k^{(1)} - p \cdot s_{j(k)}^{\min} \right| \cdot s_{j(k)}^{\min} \right) \\ &+ \left(u_k \left(1 - u_{k-1} \right) + u_{k-1} \mathbf{1} \{ S_{j(k)-1} \neq S_{j(k)} \} \right) \left(v_k^{\max} \, s_{j(k)}^{\max} + v_k^{\min} \, s_{j(k)}^{\min} + (1 - v_k^{\max}) (1 - v_k^{\min}) s_{j(k)}^* \right). \end{split}$$

Note that $\left(\operatorname*{argmin}_{p \in \mathbb{N}} \left| M_k^{(1)} - p \cdot s_{j(k)}^{\min} \right| \cdot s_{j(k)}^{\min} \right)$ is the rounding of the average daily dose $M_k^{(1)}$ to the nearest factor of the relevant minimal dose $s_{j(k)}^{\min}$.

4.0.2 Calculating the end dates, E_1, \ldots, E_k

$$E_{k} = \min \left[T_{k+1} - 1, (1 - u_{k}) (1 - u_{k-1}) \left(T_{k} - 1 + \text{round} \left(\frac{D_{k} + R_{k}}{s_{k}^{*}} \right) \right) + (1 - (1 - u_{k}) (1 - u_{k-1})) \left(T_{k} - 1 + \text{round} \left(\frac{D_{k} + R_{k}}{X_{k}} \right) \right) \right]$$

4.0.3 Calculating the leftover dose, R_1, \ldots, R_k

$$R_k = \left(D_{k-1} + R_{k-1} - X_{k-1} \left(E_{k-1} - T_{k-1}\right)\right) u_k.$$

5 User interface

5.1 Output

The output consists of:

- B_1, \ldots, B_K : Starting dates for each prescription period.
- E_1, \ldots, E_K : End dates for each prescription period.
- X_1, \ldots, X_K : Calculated dose for each prescription period.