

Taurus: A Data Plane Architecture for Per-Packet ML

Tushar Swamy

Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle Olukotun

Stanford University

Datacenter networks are becoming harder to manage...

Our current generation — Jupiter fabrics — can deliver more than 1 Petabit/sec of total bisection bandwidth >>

A Look Inside Google's Data Center Networks¹

Networks require complex management with high performance

Automate decision-making with machine learning (ML)

- Making decisions based on data
 — machine learning
- Machine learning can:
 - Approximate network functions based on data
 - Customize network functions based on data
- Currently, we use by hand-written heuristics in the network...

Where in the network should ML happen?

Software Defined Network

A Taurus network introduces ML for management

Software Defined Network

Control Plane Policy Creation (Flow Rules) Packet Flow Rule Digest **Data Plane** Packet Forwarding (Match Action) Packets In Packets Out

Software Defined Network with Taurus

Control Plane

Policy Creation (Flow Rules + ML Training)

Data Plane

+ Decision Making (ML Inference)

Packets In Packets Out

ML inference should happen per-packet in the data plane

Example: Anomaly Detection

Processing time: **1. bms**

1.5 M Packets missed during flow rule installation time

Robustness and performance of the network are determined by:

ML training happens in the control plane

Software Defined Network with Taurus

ML Training is off critical path

ML Inference happens in the data plane

Software Defined Network with Taurus

ML Inference is on critical path

Taurus is an architecture for per-packet ML inference in the data plane

What do programmable switches look like?

A Protocol Independent Switch Architecture (PISA)

What abstraction should we use?

- Map-reduce can support linear algebra operations common in ML
 - Neural networks, SVMs, etc.
- SIMD Parallelism enables performance with minimal logic

- Unrolling patterns allows for flexibility
 - More unrolling

 better performance
 - Less unrolling → less resource usage

The Taurus pipeline with a Map Reduce Unit

- Map Reduce Unit must:
 - be reconfigurable
 - meet line rate (with a fixed clock)
 - incur minimal area and power overhead

Example Application: Anomaly Detection

Packet

Read local features (e.g., IP address) Retrieve out of network events (e.g., failed logins per IP) Apply learned anomaly detection

Select a port or action (e.g., drop if score == 1) Send packet to destination

Evaluation of a Taurus ASIC

- Our evaluation platform is based on *Plasticine*
- We program our map-reduce applications in the Spatial HDL

More architectural details in full paper!

Evaluation of a Taurus ASIC

- Our evaluation platform is based on Plasticine
- We program our map-reduce applications in the Spatial HDL

	Area		
Hardware	mm ²	+%	
12x10 MR Grid	4.8 x 4	3.8	
Prog. Switch	500		

*Overheads are calculated relative to state of the art programmable switches

Evaluation of an Anomaly Detection (AD) benchmark

- AD SVM: 8 support vectors
- AD DNN: 4 layers 12x6x3x2 neurons

Overhead of Map Reduce Unit		Area	Power	
Model	TP (GPkt/s)	Lat (ns)	+%	+%
SVM	1	83	0.5	0.6
DNN	1	221	0.8	1.0

^{*}Overheads are calculated relative to state of the art programmable switches

We provide an open-source, FPGA-based testbed

Questions?

Tushar Swamy

tswamy@stanford.edu

Try it out!

https://gitlab.com/dataplane-ai/taurus