

MENGEN

Fragen?

ragen? Machiphair eines Mouge:
$$|M| = \sum_{\infty} n$$
, falls M endliche Mouge und n Elte besitet ∞ , sorst.

$$|N|=\infty \qquad |55,8,103|=3$$

Mengen. Geben Sie alle Elemente folgender Mengen an:

1.
$$\{x \in \mathbb{N} \mid 1 < x \le 5\}$$

4.
$$\{x \in \mathbb{Z} \mid 3x = 1\}$$

2.
$$\{x \in \mathbb{N} \mid x^2 = 25\}$$

5.
$$\{x \in \mathbb{R} \mid x < 4\}$$

3.
$$\{x \in \mathbb{Z} \mid x < 10\}$$

6.
$$\{x \in \mathbb{R} \mid x^2 + 2x - 2 = 0\}$$

Lösung.

3.
$$\{2..., -6, -3, -2, -9, 0, 1, 2, 3, ..., 7, 8, 9\} = [-\infty, 10] \cap \mathbb{Z}$$

4.
$$x = \frac{1}{3} \notin \mathbb{Z}$$
: $\emptyset = \{ \}$

5.
$$]-\infty, q[=(-\infty, 4)=\prod_{1}^{\infty} [-3,12,...,0,...,12],...,1],...,3,999,...]^{1/2}$$

6. Hiddernachtsformel:
$$x_{1,2} = \frac{-2 \pm \sqrt{4-9\cdot 1\cdot (-2)}}{2} = \frac{-2 \pm \sqrt{4\cdot 3}}{2} = -1 \pm \sqrt{3}$$
.

Exkurs Mitternachtsformel. Leiten Sie die Mitternachtsformel für die quadratische Gleichung $ax^2 + bx + c = 0$ her.

Hinweis: Quadratische Ergänzung!

Lösung. $a \times^2 + b \times + c = 0$ $a \times^2 + b \times + c = 0$ Quadratische Meine Quadratische bleichuy!

August Sp. $a \times^2 + b \times + c = 0$ Quadratische Franch: $a \times^2 + b \times + c = 0$ Quadratische bleichuy! $a \times^2 + b \times + c = 0$ Quadratische bleichuy! $a \times^2 + b \times + c = 0$ Quadratische bleichuy! $a \times^2 + b \times + c = 0$ $a \times^2 + b \times + c = 0$ $a \times^2 + b \times + c = 0$ Quadratische bleichuy! $a \times^2 + b \times + c = 0$ $a \times^2 + b \times + c \times + c = 0$ $a \times^2 + b \times + c \times + c$

Mengenoperationen. $A = \{1, 2\}, B = \{2, 3, 4\}$

1.
$$A \cup B = \{ \times \mid \times \in A \lor \times \in B \}$$
 4. $B \setminus A$
2. $A \cap B = \{ \times \mid \times \in A \land \times \in B \}$ 5. Wahr oder falsch? $2 \in A$

2.
$$A \cap B = \{ x \mid x \in \mathbb{A} \land x \in \mathbb{B} \}$$

3.
$$A \setminus B = \{ \times \mid \times \in A \land \times \notin B \}$$
 6. Wahr oder falsch? $A \subseteq B$

Lösung.

Mengenoperationen. Eine Software-Bude hat ihre Mitarbeiter in folgende Mengen eingeteilt:

M: Alle Mitarbeiter

J: Java/SQL-Entwickler.

H: HTML/CSS-Programmierer.

V: Vertrieb/Marketing-Leute.

Geben Sie mit Hilfe der Mengenoperationen folgende Mengen an:

1. alle Entwickler, d.h. Java/SQL- oder HTML/CSS-Kentnisse

2. reine Vertrieb/Marketing-Leute, d.h. weder Java/SQL- noch HTML/CSS-Kentnisse

3. Mitarbeiter, die keiner oben genannten Gruppe zugehören

4. reine Backend-Entwickler, d.h. kein HTML/CSS, aber Java/SQL.

Lösung.

1. YUH

2. V\(JUH) = V\J \ V\H

3, M \ (YUVUH)

4. 9\H