LAB7_inclass

Results:

```
₹ Epoch [50/300] - Loss: 0.0848
     Epoch [100/300] - Loss: 0.0451
     Epoch [150/300] - Loss: 0.0309
     Epoch [200/300] - Loss: 0.0236
     Epoch [250/300] - Loss: 0.0191
     Epoch [300/300] - Loss: 0.0160
                                       Training Loss Curve
         1.75
         1.50
         1.25
      Total Loss
         1.00
         0.75
         0.50
         0.25
         0.00
                                      100
                                                            200
                                                                       250
                                                 150
                                                                                  300
                                                Epoch
     === Testing ===
     Sentence: ['The', 'movie', 'is', 'bad'] → Prediction: 0
Sentence: ['The', 'movie', 'is', 'good'] → Prediction: 1
```

QA:

What does the hidden state \square represent at each time step when processing a sequence of \square words?

At each time step t, the hidden state s_t represents the summarized information of the input sequence up to the

current word.

It captures both the **current input word** and the **context from all previous words** in the sequence.

In other words, s_t acts like the memory of the RNN that accumulates and updates information as it reads each word in order.

Why are RNNs hard to train?

RNNs are hard to train mainly because of the problems of **vanishing gradients** and **exploding gradients** during backpropagation through time (BPTT).

Vanishing gradients make the model unable to learn long-range dependencies, since the gradients shrink exponentially and updates become too small.

Exploding gradients cause the gradients to become very large, making the model unstable or the loss diverge.