# 2020 FORCE ML COMPETITION

How to predict lithology based on well logs using ML

### The problem

#### Company

FORCE is a cooperating forum for improved exploration and improved oil and gas recovery conducted by oil and gas companies and authorities in Norway.

#### Context

All E&P companies must interpret lithologies from well logs to know where to find hydrocarbons.

This process is laborious and not scalable. 2-3 per well. Basin studies require hundreds of wells.

#### Problem statement

How can E&P companies improve the lithology classification score to less than -0.52 in less than five weeks?

### Challenges deep-dive

#### Challenge 1

#### **Incomplete well logs**

Acquiring some logs is very expensive.

There are many missing values in the logs.

#### Challenge 2

#### Large data set

There are nearly 1.2 M samples in the train set.

Have to be smart handling RAM.

#### Challenge 3

#### **Cost-sensitive classifier**

The cost of misclassifications is not the same for all lithologies.

# Solution

Improve the winning submission

I refactored the winning submission code to understand its intricacies and assumptions.

Then, I explore alternatives to some of the modeling decisions made.

# Implementation

### The data

#### Train:

- 98 well.
- 12 lithology classes.
- 28 features, 8 with more than 50% missing.

#### Open test:

- 10 wells.
- Feature distribution similar to Train.

#### Hidden test:

- 10 wells.
- Feature distribution similar to Train.



### The Scoring Function

The scoring function was designed to weight misclassification errors differently

$$S = -\frac{1}{N} \sum_{i=0}^{N} A_{\hat{y}_i y_i}$$

N is the number of samples A is the penalty matrix  $\hat{y}_i$  is the true target for sample i $y_i$  is the prediction for sample i

| label prediction     | Sandstone | Sandstone/Shale | Shale | Mari  | Dolomite | Limestone | Chalk | Halite | Anhydrite | Tuff  | Coal  | Crystalline Basement |
|----------------------|-----------|-----------------|-------|-------|----------|-----------|-------|--------|-----------|-------|-------|----------------------|
| Sandstone            | 0         | 2               | 3.5   | 3     | 3.75     | 3.5       | 3.5   | 4      | 4         | 2.5   | 3.875 | 3.25                 |
| Sandstone/Shale      | 2         | 0               | 2.375 | 2.75  | 4        | 3.75      | 3.75  | 3.875  | 4         | 3     | 3.75  | 3                    |
| Shale                | 3.5       | 2.375           | 0     | 2     | 3.5      | 3.5       | 3.75  | 4      | 4         | 2.75  | 3.25  | 3                    |
| Marl                 | 3         | 2.75            | 2     | 0     | 2.5      | 2         | 2.25  |        | 4         | 3.375 | 3.75  | 3.25                 |
| Dolomite             | 3.75      | 4               | 3.5   | 2.5   | 0        | 2.625     | 2.875 | 3.75   | 3.25      | 3     | 4     | 3.625                |
| Limestone            | 3.5       | 3.75            | 3.5   | 2     | 2.625    | 0         | 1.375 | 4      | 3.75      | 3.5   | 4     | 3.625                |
| Chalk                | 3.5       | 3.75            | 3.75  | 2.25  | 2.875    | 1.375     | 0     | 4      | 3.75      | 3.125 | 4     | 3.75                 |
| Halite               | 4         | 3.875           | 4     | 4     | 3.75     | 4         | 4     | 0      | 2.75      | 3.75  | 3.75  | 4                    |
| Anhydrite            | 4         | 4               | 4     | 4     | 3.25     | 3.75      | 3.75  | 2.75   | 0         | 4     | 4     | 3.875                |
| Tuff                 | 2.5       | 3               | 2.75  | 3.375 | 3        | 3.5       | 3.125 | 3.75   | 14        | 0     | 2.5   | 3.25                 |
| Coal                 | 3.875     | 3.75            | 3.25  | 3.75  | 4        | 4         | 4     | 3.75   | 4         | 2.5   | 0     | 4                    |
| Crystalline Basement | 3.25      | 3               | 3     | 3.25  | 3.625    | 3.625     | 3.75  | 4      | 3.875     | 3.25  | 4     | 0                    |



#### Revised



Revised



#### Revised



## The winning submission model



There will be 10 models, one for each data split.

The predicted probabilities are averaged across models.

The largest average probability defines the predicted class

Open score: -0.515 Hidden score: -0.471



# My models scores

#### XGBoost Groups outperforms in the hidden test

| Model             | Notebook         | Open Score | Hidden Score |
|-------------------|------------------|------------|--------------|
| XGBoost           | 7.0, 7.1, 7.2    | -0.538     | -0.570       |
| XGBoost No Splits | 10.0, 10.1, 10.2 | -0.539     | -0.541       |
| XGBoost Groups    | 9.0, 9.1, 9.2    | -0.567     | -0.506       |
| Random Forest NS  | 12.0, 12.1, 12.2 | -0.574     | -0.542       |

# My models

-0.506 Hidden Score XGBoost Grouped

Would have ranked 5th



| Final Score | My team name /personal name is                                                  | Score on hidden dataset | My current score<br>XEEK leader board is | My current<br>position<br>XEEK leade<br>board is |
|-------------|---------------------------------------------------------------------------------|-------------------------|------------------------------------------|--------------------------------------------------|
| 1           | Olawale Ibrahim                                                                 | -0.469                  | -0.5118                                  | 24                                               |
| 2           | GIR TEAM                                                                        | -0.4792                 | -0.5037                                  | 11                                               |
| 3           | Lab.ICA-Team / Smith A.                                                         | -0.49536                | -0.4943                                  | 6                                                |
| 4           | H3G (Haoyuan Zhang, Harry Brandsen, Gregory Barrere,<br>Helena Nandi Formentin) | -0.504489               | -0.509                                   | 17                                               |
| 5           | ISPL Team                                                                       | -0.50835                | -0.4885                                  | 2                                                |
| 6           | Jiampiers C.                                                                    | -0.50886                | -0.5014                                  | 9                                                |
| 7           | José Bermúdez                                                                   | -0.509061               | -0.5052                                  | 14                                               |
| 8           | Bohdan Pavlyshenko                                                              | -0.51713                | -0.5112                                  | 22                                               |
| 9           | Jeremy Zhao                                                                     | -0.51733                | 0.5264                                   | 31                                               |
| 10          | Campbell Hutcheson                                                              | -0.52206                | -0.505                                   | 13                                               |

### The Groups

- Norwegian North Sea lithologies.
- Not all lithologies are present in all groups
- This inspired me to split the data by groups.
- Also the groups feature has no missing values in the train or test sets.



### **Groups: EDA**

Lith presence per group



Marl Limestone NORDLAND GP.

### Groups: EDA

#### Log presence per group

- Percent of samples per we
- Poor availability:
  - **SGR**
  - DTS
  - **DCAL**

  - **RMIC**
  - **ROPA**
  - **RXO**
- Only in a few groups:
  - **ROP**
  - **MUDWEIGHT**

| ell             |          |
|-----------------|----------|
| <del>2</del> 11 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 |          |
|                 | 20_LITH  |
|                 | ZU_LIITI |

| WELL                     | 1.0 |
|--------------------------|-----|
| DEPTH_MD                 | 1.0 |
| X_LOC                    | 1.0 |
| Y_LOC                    | 1.0 |
| Z_LOC                    | 1.  |
| GROUP                    | 1.0 |
| FORMATION                | 1.0 |
| CALI                     | 0.  |
| RSHA                     | 0.  |
| RMED                     | 0.  |
| RDEP                     | 0.9 |
| RHOB                     | 0.  |
| GR                       | 1.0 |
| SGR                      | 0.: |
| NPHI                     | 0.  |
| PEF                      | 0.0 |
| DTC                      | 0.  |
| SP                       |     |
| BS                       | 0.  |
| ROP                      | 0.: |
| DTS                      | 0.  |
| DCAL                     | 0.  |
| DRHO                     | 0.9 |
| MUDWEIGHT                | 0.0 |
| RMIC                     | 0.: |
| ROPA                     | 0.: |
| RXO                      | 0.: |
| 20_LITHOFACIES_LITHOLOGY | 1.0 |
| LITHOFACIES_CONFIDENCE   | 0.  |

|        | GP.      |
|--------|----------|
| 000000 | 1.000000 |
| 000000 | 1.000000 |
| 000000 | 0.985168 |
| 000000 | 0.985168 |
| 000000 | 0.985168 |
| 000000 | 1.000000 |
| 000000 | 1.000000 |
| 995924 | 0.870260 |
| 748569 | 0.564163 |
| 954024 | 0.975956 |
| 998772 | 0.985168 |
| 998102 | 0.963169 |
| 000000 | 1.000000 |
| 195070 | 0.056881 |
| 98995  | 0.877733 |
| 520216 | 0.593005 |
| 984535 | 0.978192 |
| 707730 | 0.534002 |
| 521844 | 0.607798 |
| 100969 | 0.592087 |
| 186026 | 0.291036 |
| 041147 | 0.189469 |
| 966753 | 0.966858 |
| 000000 | 0.252924 |
| 177902 | 0.313016 |
| 155905 | 0.380753 |
| 353683 | 0.207798 |
| 000000 | 1.000000 |
| 000070 | 0.000560 |

GP.

GROUPED 1.000000

| 0.985168                                                                                                             | 1.000000                                                                                                                    | 0.998778                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| 0.985168                                                                                                             | 1.000000                                                                                                                    | 0.998778                                                                                                             |
| 0.985168                                                                                                             | 1.000000                                                                                                                    | 0.998778                                                                                                             |
| 1.000000                                                                                                             | 1.000000                                                                                                                    | 1.000000                                                                                                             |
| 1.000000                                                                                                             | 1.000000                                                                                                                    | 1.000000                                                                                                             |
| 0.870260                                                                                                             | 0.970240                                                                                                                    | 0.999712                                                                                                             |
| 0.564163                                                                                                             | 0.634757                                                                                                                    | 0.532308                                                                                                             |
| 0.975956                                                                                                             | 0.973767                                                                                                                    | 0.998778                                                                                                             |
| 0.985168                                                                                                             | 0.999496                                                                                                                    | 0.998778                                                                                                             |
| 0.963169                                                                                                             | 0.989881                                                                                                                    | 0.999928                                                                                                             |
| 1.000000                                                                                                             | 1.000000                                                                                                                    | 1.000000                                                                                                             |
| 0.056881                                                                                                             | 0.134081                                                                                                                    | 0.072235                                                                                                             |
| 0.877733                                                                                                             | 0.989680                                                                                                                    | 0.990656                                                                                                             |
| 0.593005                                                                                                             | 0.609649                                                                                                                    | 0.555308                                                                                                             |
|                                                                                                                      |                                                                                                                             |                                                                                                                      |
| 0.978192                                                                                                             | 0.940681                                                                                                                    | 0.952275                                                                                                             |
| 0.978192<br>0.534002                                                                                                 | 0.940681 0.749549                                                                                                           | 0.952275<br>0.821965                                                                                                 |
|                                                                                                                      |                                                                                                                             |                                                                                                                      |
| 0.534002                                                                                                             | 0.749549                                                                                                                    | 0.821965                                                                                                             |
| 0.534002<br>0.607798                                                                                                 | 0.749549<br>0.620364                                                                                                        | 0.821965<br>0.800331                                                                                                 |
| 0.534002<br>0.607798<br>0.592087                                                                                     | 0.749549<br>0.620364<br>0.276601                                                                                            | 0.821965<br>0.800331<br>0.454539                                                                                     |
| 0.534002<br>0.607798<br>0.592087<br>0.291036                                                                         | 0.749549<br>0.620364<br>0.276601<br>0.134156                                                                                | 0.821965<br>0.800331<br>0.454539<br>0.128944                                                                         |
| 0.534002<br>0.607798<br>0.592087<br>0.291036<br>0.189469                                                             | 0.749549<br>0.620364<br>0.276601<br>0.134156<br>0.267893                                                                    | 0.821965<br>0.800331<br>0.454539<br>0.128944<br>0.293538                                                             |
| 0.534002<br>0.607798<br>0.592087<br>0.291036<br>0.189469<br>0.966858                                                 | 0.749549<br>0.620364<br>0.276601<br>0.134156<br>0.267893<br>0.971659                                                        | 0.821965<br>0.800331<br>0.454539<br>0.128944<br>0.293538<br>0.999928                                                 |
| 0.534002<br>0.607798<br>0.592087<br>0.291036<br>0.189469<br>0.966858<br>0.252924                                     | 0.749549<br>0.620364<br>0.276601<br>0.134156<br>0.267893<br>0.971659<br>0.173162                                            | 0.821965<br>0.800331<br>0.454539<br>0.128944<br>0.293538<br>0.999928<br>0.293467                                     |
| 0.534002<br>0.607798<br>0.592087<br>0.291036<br>0.189469<br>0.966858<br>0.252924<br>0.313016                         | 0.749549<br>0.620364<br>0.276601<br>0.134156<br>0.267893<br>0.971659<br>0.173162<br>0.159088                                | 0.821965<br>0.800331<br>0.454539<br>0.128944<br>0.293538<br>0.999928<br>0.293467<br>0.095378                         |
| 0.534002<br>0.607798<br>0.592087<br>0.291036<br>0.189469<br>0.966858<br>0.252924<br>0.313016<br>0.380753             | 0.749549<br>0.620364<br>0.276601<br>0.134156<br>0.267893<br>0.971659<br>0.173162<br>0.159088<br>0.106193                    | 0.821965<br>0.800331<br>0.454539<br>0.128944<br>0.293538<br>0.999928<br>0.293467<br>0.095378<br>0.137210             |
| 0.534002<br>0.607798<br>0.592087<br>0.291036<br>0.189469<br>0.966858<br>0.252924<br>0.313016<br>0.380753<br>0.207798 | 0.749549<br>0.620364<br>0.276601<br>0.134156<br>0.267893<br><b>0.971659</b><br>0.173162<br>0.159088<br>0.106193<br>0.325524 | 0.821965<br>0.800331<br>0.454539<br>0.128944<br>0.293538<br>0.999928<br>0.293467<br>0.095378<br>0.137210<br>0.249048 |

| 98778 |
|-------|
| 99928 |
| 00000 |
| 72235 |
| 90656 |
| 55308 |
| 52275 |
| 21965 |
| 00331 |
| 54539 |
| 28944 |
| 93538 |

HEGRE

1.000000 1.000000

1.000000 1.000000

HORDALAND NORDLAND

1.000000

1.000000

0.984133

1.000000

1.000000

0.998765

0.998765

0.998765

| 0.550105 |
|----------|
| 1.000000 |
| 0.813641 |
| 0.908693 |
| 0.501448 |
| 0.984152 |
| 0.998765 |
| 0.802487 |
| 1.000000 |
| 0.022285 |
| 0.434787 |
| 0.543310 |
| 0.922870 |
| 0.830567 |
| 0.528993 |
| 0.523010 |
| 0.041510 |
| 0.328430 |
| 0.758554 |
| 0.409527 |
| 0.098562 |
| 0.073367 |
| 0.250407 |
| 1.000000 |
| 0.999881 |

1.000000

| 0.984133                                                                                                 | ( |
|----------------------------------------------------------------------------------------------------------|---|
| 0.984133                                                                                                 | C |
| 1.000000                                                                                                 | 1 |
| 0.272724                                                                                                 | 1 |
| 0.827240                                                                                                 | C |
| 0.491712                                                                                                 | ( |
| 0.933241                                                                                                 | ( |
| 0.984133                                                                                                 | C |
| 0.523805                                                                                                 | C |
| 1.000000                                                                                                 | 1 |
| 0.043529                                                                                                 | ( |
| 0.208673                                                                                                 | ( |
| 0.423643                                                                                                 | ( |
| 0.824827                                                                                                 | ( |
|                                                                                                          |   |
| 0.852668                                                                                                 | ( |
| 0.852668<br>0.491452                                                                                     |   |
|                                                                                                          | ( |
| 0.491452                                                                                                 | ( |
| 0.491452<br>0.614369                                                                                     |   |
| 0.491452<br>0.614369<br>0.017625                                                                         |   |
| 0.491452<br>0.614369<br>0.017625<br>0.241501                                                             |   |
| 0.491452<br>0.614369<br>0.017625<br>0.241501<br>0.531106                                                 |   |
| 0.491452<br>0.614369<br>0.017625<br>0.241501<br>0.531106<br>0.398583                                     |   |
| 0.491452<br>0.614369<br>0.017625<br>0.241501<br>0.531106<br>0.398583<br>0.000000                         |   |
| 0.491452<br>0.614369<br>0.017625<br>0.241501<br>0.531106<br>0.398583<br>0.000000<br>0.059593             |   |
| 0.491452<br>0.614369<br>0.017625<br>0.241501<br>0.531106<br>0.398583<br>0.000000<br>0.059593<br>0.229895 |   |
| 0.491452<br>0.614369<br>0.017625<br>0.241501<br>0.531106<br>0.398583<br>0.000000<br>0.059593<br>0.229895 |   |

| 0.694278 | 1.000000 | 0.995125 |
|----------|----------|----------|
| 0.694278 | 1.000000 | 0.995125 |
| 1.000000 | 1.000000 | 1.000000 |
| 1.000000 | 1.000000 | 1.000000 |
| 0.999468 | 0.880768 | 0.949527 |
| 0.364072 | 0.544390 | 0.432717 |
| 0.347305 | 0.985130 | 0.985886 |
| 0.694278 | 1.000000 | 0.995125 |
| 0.735196 | 0.917094 | 0.885245 |
| 1.000000 | 1.000000 | 1.000000 |
| 0.000000 | 0.026117 | 0.025988 |
| 0.741184 | 0.553424 | 0.682995 |
| 0.106387 | 0.597003 | 0.648833 |
| 0.982635 | 0.950646 | 0.929376 |
| 0.303526 | 0.829958 | 0.599163 |
| 0.682635 | 0.575138 | 0.599253 |
| 0.999601 | 0.416646 | 0.449980 |
| 0.063273 | 0.104938 | 0.265062 |
| 0.210645 | 0.331095 | 0.196592 |
| 0.736327 | 0.887983 | 0.876861 |
| 0.915902 | 0.303576 | 0.133467 |
| 0.000000 | 0.188845 | 0.140398 |
| 0.021490 | 0.086726 | 0.336417 |
| 0.105788 | 0.317589 | 0.236420 |
| 1.000000 | 1.000000 | 1.000000 |
| 0.999933 | 0.999932 | 0.999885 |
| 1.000000 | 1.000000 | 1.000000 |

ROGALAND

1.000000

1.000000

1.000000

PERMIAN

1.000000

1.000000

0.694278

SHETLAND

1.000000

1.000000

0.995125

**VTB** 

1.000000 1.000000

1.000000 1.000000

0.976643 0.997997

0.976643 0.997997

0.976643 0.997997

1.000000 1.000000

1.000000 1.000000

1.000000 0.981053

0.739776 0.67164

0.974575 0.971275

0.976643 0.997000

0.999387 0.970380

1.000000 1.000000

0.099403 0.138687

0.998660 0.962767

0.757314 0.583816

0.969176 0.971283

0.706655 0.724996

0.757505 0.668324

0.562031 0.151956

0.999464 0.967182 0.529714 0.108788

0.123219 0.222968

1.000000 1.000000

0.999847 0.999831

1.000000 1.000000

0.186705

0.222163

0.438773

0.326035

0.286902

0.298308

0.383543

### XGBoost Groups: Confusion Matrix

- Sandstone/Shale is a mixed bag
- It does very well at predicting:
  - Shale
  - Halite
  - Anhydrite
- Getting confused with Shale:
  - Marl
  - Dolomite
  - Tuff
  - Coal
- Hard to separate Chalk from Limestone
- No Basement on Hidden Test



Predicted label

0.8

0.2

### Future work

- Build category logs comparison
- Explore differences between my version of Olawale XBoost and the original submission
  - Including the cat. column gradient
  - Including the well name column
- Tune model hyperparameters
- Use cost sensitive approach
  - MetaCost algorithm needs memory efficient implementation
  - Add custom score function to XGBoost train step



```
def fit(self, flag, num_class):
 :param flag: The name of classification labels
 :param num class: The number of classes
 :return: Classifier
 col = [col for col in self.S.columns if col != flag]
M = [1]
for i in range(self.m):
     # Let S [i] be a resample of S with self.n examples
    S_[i] = self.S.sample(n=self.n, replace=True)
    X = S_[i][col].values
    y = S_[i][flag].values
    # Let M[i] = model produced by applying L to S_[i]
     model = clone(self.L)
     M.append(model.fit(X, y))
 label = []
 S_array = self.S[col].values
 for i in range(len(self.S)):
    if not self.q:
         k_th = [k for k, v in S_.items() if i not in v.index]
         M_= list(np.array(M)[k_th])
    else:
        M = M
    if self.p:
         P_j = [model.predict_proba(S_array[[i]]) for model in M_]
         P_j = []
         vector = [0] * num_class
         for model in M_:
             vector[model.predict(S_array[[i]])] = 1
            P_j.append(vector)
    # Calculate P(j|x)
    P = np.array(np.mean(P_j, 0)).T
    # Relabel
     label.append(np.argmin(self.C.dot(P)))
 # Model produced by applying L to S with relabeled y
 X_train = self.S[col].values
y_train = np.array(label)
 model_new = clone(self.L)
 model_new.fit(X_train, y_train)
 return model new
```