A quick reminder: Chemical kinetics

Voet & Voet Chapter 14 or, for example, Atkins Chapter 10

What can we learn?

- → predict how quickly a reaction mixture approaches equilibrium
 - → study the reaction mechanism (understand the elementary steps)

How do we do it?

- → determine the stoichiometry and identify any side reactions
- → determine how the reagent and/or product concentrations change

A) Quenching the reaction at defined times

B) Real-time analysis by spectroscopy

Technique	Range of time-scales
Femtochemistry	>10 ⁻¹⁵
Flash photolysis	>10 ⁻¹²
Fluorescence decay	$10^{-10} - 10^{-6}$
Ultrasonic absorption	$10^{-10} - 10^{-4}$
EPR*	10 ⁻⁹ -10 ⁻⁴
Electric field jump	10 ⁻⁷ -1
Temperature jump	10 6-1
Phosphorescence	10 ⁶ -10
NMR*	$10^{-5}-1$
Pressure jump	>10 ⁻⁵
Stopped flow	>10 ⁻³

01/19/22

with time (@ constant T)

Kinetics

Reaction rates

Raw kinetic data: [reactant](t)

Time, t

Stoichiometry and rate:

$$A + B \rightarrow C$$

E.g.,
$$I_2 + C_2H_4 \rightarrow C_2H_4I_2$$

•
$$\Delta B = -5$$

$$\triangle C = 5$$

$$-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$$

$$\triangle C = 5$$

$$-\frac{d[A]}{dt} = 2\frac{d[C]}{dt}$$

$$\Rightarrow -\frac{1}{2}\frac{d}{dt}$$

$$-\frac{1}{2}\frac{d[A]}{dt} = \frac{d[C]}{dt}$$

Summary of rate laws

Differential Rate Law

Integral Rate Law

Half-Life

0th Order:

$$-\frac{d[A]}{dt} = k$$

$$[A](t) = [A]_0 - kt$$

$$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$$

1st Order:

$$-\frac{d[A]}{dt} = k[A]$$

$$[A](t) = [A]_0 e^{-kt}$$

$$t_{1/2} = \frac{\ln 2}{k}$$

2nd Order:

$$-\frac{d[A]}{dt} = k[A]^2$$

$$\frac{1}{[A](t)} = kt + \frac{1}{[A]_0}$$

$$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$$

