ZScore: A Distributed System for Integrated Mixed Music Composition And Performance

Slavko Zagorac Patricia Alessandrini

Goldsmiths College, University of London

Presentation Outline

Why do we need another system?

What is it supposed to do?

How can it be achieved?

Existing technologies

Music Notation

HFT Networking high frequency trading

ZScore, current state and demo

Motivation

Leverage existing state of the art networking solutions to unlock new ways of making music.

What could the next generation of music notation systems look like?

Blur the Boundaries

electro - acoustic

symbolic - graphic

composer - performer - improviser - audience

Mission

What kind of a system would allow for:

- integrated composition and performance
- real-time notation distribution over a network
- mixed notation scores

(symbolic, graphic, algorithmic, interactive ...)

for a full-size orchestra?

Networked Music Notation

INScore
Native OSC

Decibel ScorePlayer

OpenMusic

ODOT

dfscore

2 Hats System Requirements

Performance	Simplicity	
Scalablility (1 - 100s of nodes, the same QoS)	User-friendly, Portable, Familiar	
Reliability (works all the time, every time)	Unconstrained composition	
Accurate scheduling / synchronisation	Ample performer preparation time	

Client - Server Architecture

Distributed Systems

Message Oriented Middleware (MOM)

Messaging

Open Sound Control (OSC)

-> User Datagram Protocol (UDP) -> Unicast

UDP: lightweight, connectionless, non-guaranteed delivery

TCP: reliable (ACK), lower throughput

Reliable UDP Multicast

(Negative acknowledgment, NACK)

Score Data Transmission

Bandwidth	Network Type	10 MB transfer time
11 Mbps	Ad-Hoc WiFi (no router)	7.27 sec
100 Mbps	100BASE-TX Ethernet	0.80 sec
600 Mbps	802.11n WiFi	0.13 sec
1 Gbps	1000BASE-T Ethernet	0.08 sec
7 Gbps	802.11ac WiFi (theoretical)	0.01 sec

Max theoretical UDP packet size 64KB

MTU data unit size per transaction (1500B Ethernet)

Network Synchronisation and Scheduling

OSC - NO mechanism for clock synchronisation

Network Clock Synchronisation

Network Time Protocol (NTP) error <100ms

Precision Time Protocol (PTP) sub-µs accuracy, not default

GPS time signal 14ns accuracy The Global Metronome Project

Application tempo-relative synchronisation

Network jitter compensation

Open Source HFT Software

1m+ messages per second microsecond latencies

LMAX Disruptor

low-latency, high throughput, non-blocking concurrent data structure

Aeron

reliable UDP unicast and multicast message transport (OSI L4), SBE encoding

Chronicle Queue

distributed unbounded persisted queue

Hazelcast IMDG

distributed caching, in-memory data grid, message broadcast

Cost of locks

Method	Time (ms)
Single thread	300
Single thread with lock	10,000
Two threads with lock	224,000
Single thread with CAS	5,700
Two threads with CAS	30,000
Single thread with volatile write	4,700

Table 1 - Comparative costs of contention

64 bit counter increment in a loop 500 million times; 2.4 Ghz CPU

Disruptor Pattern Overview

Chronicle Queue Performance

Latency distribution vs throughput upto 99.3%ile

40 byte message replication and acknowledgment over TCP

Score Data Representation

Semantic data models vs Graphical representation

Scalable Vector Graphics (SVG) vs Raster formats

MNX: Music Notation Markup Language Proposal

MNX-Generic:

graphical <-> semantic cross-reference

ZScore Current State

A collection of third-party and newly-developed components

Score authoring: Adobe Illustrator + Javascript plugins

Proprietary network distribution and scheduling engine (Java)

Score rendering: INScore

Score Authoring

Time-space mapping and synchronisation

Beat Division Unit (BDU)
lowest event scheduling resolution, max 1/96
tempo-relative synchronisation message broadcast

Musical context through layer hierarchy*

*Inspired by Rama Gottfried "SVG to OSC Transcoding..." TENOR 2015

Symbol library and Javascript Plugins

Distribution and Scheduling Engine

Score Part View

ZScore Demo

Future Work

Conductor gesture capture + modelling Wekinator integration

All User Interfaces in Internet Browsers MNX Integration

Interactive composition flow

Aeron middleware integration

Questions?

email slavko@zagorac.com

web http://www.zagorac.com