Risoluzione del compito n. 4 (Marzo 2021)

PROBLEMA 1

Calcolate preliminarmente $1 + 2 + 2^2 + 2^3 + \cdots + 2^9$.

- a) Determinate tutte le soluzioni $z\in\mathbb{C}$ dell'equazione $1+z+z^2+z^3=1$. b) Determinate tutte le soluzioni $z\in\mathbb{C}$ dell'equazione $1+z+z^2+z^3+z^3$ $z^4 + z^5 + z^6 = 1.$

Ricordando che per $q \neq 1$ è $1 + q + \cdots + q^k = (1 - q^{k+1})/(1 - q)$, abbiamo

$$1 + 2 + 2^2 + 2^3 + \dots + 2^9 = \frac{1 - 2^{10}}{1 - 2} = 2^{10} - 1 = 1023$$
.

Allora osserviamo che $z=1\,$ non risolve alcuna delle equazioni proposte, quindi possiamo usare la formula ricordando che già sappiamo che $z \neq 1$ e otteniamo

$$1+z+z^2+z^3=1\iff \begin{cases} z\neq 1\\ \frac{1-z^4}{1-z}=1 \end{cases} \iff \begin{cases} z\neq 1\\ 1-z^4=1-z \end{cases} \iff \begin{cases} z\neq 1\\ z^4=z \;.$$

L'equazione $z^4=z$ ha come soluzione z=0 oppure $z^3=1$, e le radici cubiche dell'unità sono z=1 (che dobbiamo scartare) e $z=-1/2\pm\sqrt{3}/2$, quindi l'equazione a) ha tre soluzioni:

$$z = 0$$
, $z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$.

L'equazione b) si tratta allo stesso modo, ma arriviamo a

$$\begin{cases} z \neq 1 \\ z^7 = z \end{cases}$$

per cui o z=0 o $z^6=1$ con $z\neq 1$. Le radici seste dell'unità hanno argomenti multipli di $\pi/3$ quindi le soluzioni dell'equazione b) sono sei,

$$z = 0$$
, $z = \frac{1}{2} \pm \frac{\sqrt{3}}{2}$, $z = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$, $z = -1$.

PROBLEMA 2

Considerate la funzione $f(x)=\frac{1}{2}\log(x^2-3x+2)+\frac{1}{x-2}-\frac{1}{x-1}$.

a) Determinate il dominio di f, e i limiti di f agli estremi del dominio.

- Determinate f', l'insieme in cui f è derivabile, e i limiti di f' agli estremi di tale insieme.
- Determinate gli intervalli di monotonia di f, gli eventuali punti di massimo e minimo locale di f.
- Determinate il segno di f.
- Senza studiare f'', spiegate perché f'' si deve annullare almeno due volte.
- Tracciate il grafico di f. f)

Dato che $x^2-3x+2=(x-1)(x-2)$ e che il logaritmo è definito quando il suo argomento è maggiore di zero, il dominio di f è $]-\infty,1[\cup]2,+\infty[$. Per $x\to\pm\infty$ il logaritmo va all'infinito e le due frazioni a zero, quindi

$$\lim_{x \to +\infty} f(x) = +\infty .$$

Invece per $\,x \to 2^+\,$ il logaritmo tende a $\,-\infty\,$ e la prima frazione a $\,+\infty\,$, ma quest'ultima domina sul logaritmo quindi $f(x) \to +\infty$, e lo stesso accade per $x \to 1^-$, dunque

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = +\infty.$$

Nel suo dominio, f è derivabile con derivata

$$f'(x) = \frac{x(x-3)(2x-3)}{2(x-1)^2(x-2)^2}$$

che (nel dominio) si annulla per x = 0 e x = 3, è positiva per 0 < x < 1 e x > 3 e negativa per x < 1 e 2 < x < 3; inoltre

$$\lim_{x \to \pm \infty} f'(x) = 0 , \qquad \lim_{x \to 1^{-}} f'(x) = +\infty , \qquad \lim_{x \to 2^{+}} f(x) = -\infty .$$

In particolare f è strettamente decrescente in $]-\infty,0]$ e in]2,3], strettamente crescente in [0,1[e in $[3,+\infty[$, e ha due punti di minimo in x=0 e x=3. Il valore in x=0 è il minimo su $]-\infty,1[$ e quello in x=3 è il minimo su $]2,+\infty[$. Dato che

$$f(0) = f(3) = \frac{1}{2}\log 2 + \frac{1}{2} > 0$$
,

la funzione $\,f\,$ è sempre positiva.

Dato infine che nell'intervallo $]-\infty,0[$ la funzione continua f' è negativa, e tende a zero agli estremi, per un corollario del Teorema di Weierstraß ha un minimo in tale intervallo, e questo deve essere un punto in cui f'' si annulla; lo stesso ragionamento si può fare in $]3,+\infty[$ ottenendo che anche in tale intervallo c'è (almeno) un altro punto in cui f'' si annulla.

PROBLEMA 3

In questo esercizio, i coefficienti dei monomi vanno semplificati ai minimi termini. Siano

$$f(x) = \operatorname{sen}(\operatorname{sen} x)$$
, $g(x) = \cos(1 - \cos x)$, $h(x) = f(x) - xg(x)$.

- a) Determinate lo sviluppo di Taylor di f di ordine 6, centrato in $x_0 = 0$.
- b) Determinate lo sviluppo di Taylor di g di ordine 6, centrato in $x_0 = 0$.
- c) Determinate lo sviluppo di Taylor di h di ordine 6, centrato in $x_0 = 0$.
- d) Determinate al variare di $\beta \in \mathbb{R}$ il valore di $\lim_{x \to 0} \frac{h(x) + \beta x^3}{x^5}$

Possiamo anticipare che, essendo f dispari, nello sviluppo vedremo solo i termini di ordine dispari, ed essendo g pari nel suo sviluppo vedremo solo termini di ordine pari; ma se g è pari, xg(x) e quindi anche h sono dispari, e anche nello sviluppo di h vedremo solo termini di ordine dispari.

Ricordiamo che $o(x + o(x))^k = o(x^k)$, dunque abbiamo direttamente

$$f(x) = \operatorname{sen}\left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^6)\right)$$

$$= \left(x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^6)\right) - \frac{1}{6}(\cdots)^3 + \frac{1}{120}(\cdots)^5 + o(\cdots)^6$$

$$= x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^6) - \frac{1}{6}\left(x^3 - 3\frac{x^5}{6}\right) + \frac{1}{120}x^5 = x - \frac{x^3}{3} + \frac{x^5}{10} + o(x^6).$$

Dato poi che $1-\cos x=x^2/2-x^4/24+o(x^5)$ è un infinitesimo di ordine 2 , ricordando che $o\left(hx^2+o(x^2)\right)^k=o(x^{2k})$ abbiamo

$$g(x) = \cos\left(\frac{x^2}{2} - \frac{x^4}{24} + o(x^5)\right)$$

$$= 1 - \frac{1}{2}\left(\frac{x^2}{2} - \frac{x^4}{24} + o(x^5)\right)^2 + o(\cdots)^3$$

$$= 1 - \frac{1}{2}\left(\frac{x^4}{4} - \frac{x^6}{24} + o(x^7)\right) + o(x^6) = 1 - \frac{x^4}{8} + \frac{x^6}{48} + o(x^6)$$

per cui

$$h(x) = x - \frac{x^3}{3} + \frac{x^5}{10} + o(x^6) - x + \frac{x^5}{8} = -\frac{x^3}{3} + \frac{9x^5}{40} + o(x^6).$$

Allora

$$\lim_{x \to 0} \frac{h(x) + \beta x^3}{x^5} = \lim_{x \to 0} \frac{(\beta - 1/3)x^3 + 9x^5/40 + o(x^6)}{x^5}$$

$$= \lim_{x \to 0} \frac{(\beta - 1/3) + 9x^2/40 + o(x^3)}{x^2} = \begin{cases} +\infty & \text{se } \beta > 1/3 \\ 9/40 & \text{se } \beta = 1/3 \\ -\infty & \text{se } \beta < 1/3. \end{cases}$$

PROBLEMA 4

Considerate la successione $a_n = \log \frac{1}{n^7} - \log \frac{1}{n^7 + n^{\alpha}}$.

- a) Calcolate $\lim a_n$ al variare di $\alpha \in \mathbb{R}$.
- Studiate la convergenza della serie $\sum_n a_n$ al variare di $\alpha \in \mathbb{R}$. Posto $b_n = n^{\alpha-7} a_n$, studiate la convergenza della serie $\sum_n b_n$ al variare di $\alpha \in \mathbb{R}$.

Abbiamo

$$a_n = \log \frac{n^7 + n^{\alpha}}{n^7} = \log(1 + n^{\alpha - 7}).$$

Vediamo subito che

$$\lim_{n \to +\infty} a_n = \begin{cases} +\infty & \text{se } \alpha > 7\\ \log 2 & \text{se } \alpha = 7\\ 0 & \text{se } \alpha < 7. \end{cases}$$

Dato che $1+n^{\alpha-7}>1$, la prima serie è a termini positivi, e per quanto appena visto diverge positivamente se $\alpha \geq 7$ dato che il termine generale non è infinitesimo, e dobbiamo studiarla per $\alpha < 7$. In tal caso $n^{\alpha - 7} \rightarrow 0$ quindi

$$\lim_{n \to +\infty} \frac{a_n}{n^{\alpha - 7}} = \lim_{n \to +\infty} \frac{\log(1 + n^{\alpha - 7})}{n^{\alpha - 7}} = 1$$

quindi per il criterio del confronto asintotico la serie ha lo stesso carattere di $\sum_n n^{\alpha-7} = \sum_n 1/n^{7-\alpha}$, dunque converge per $7-\alpha>1$ ossia $\alpha<6$, e diverge positivamente altrimenti (il criterio dice solo che diverge per $6 \le \alpha < 7$ dato che per $\alpha \ge 7$ non possiamo applicarlo perché il logaritmo NON si comporta come $n^{\alpha-7}$; peraltro per $\alpha > 7$ sapevamo già tutto). In conclusione la prima serie converge se $\alpha < 6$ e diverge positivamente se $\alpha \geq 6$. Invece la seconda serie ha termine generale

$$b_n = n^{\alpha - 7} - \log(1 + n^{\alpha - 7})$$

(che è sempre positivo dato che $\log(1+x) \leq x$), e distinguiamo due (anzi, tre) casi: se $\alpha - 7 > 0$ il termine $n^{\alpha - 7}$ tende a $+\infty$ e domina sul logaritmo, quindi $b_n \to +\infty$ e la serie diverge positivamente. Se $\alpha=7$ abbiamo $b_n\equiv 1-\log 2>0$ e di nuovo la serie diverge positivamente. Invece per $\alpha < 7$ abbiamo $n^{\alpha-7} \to 0$ e ricordando che $\log(1+t) = t - t^2/2 + o(t^2)$ possiamo scrivere

$$b_n = n^{\alpha - 7} - \left(n^{\alpha - 7} - \frac{1}{2}n^{2(\alpha - 7)} + o(n^{2(\alpha - 7)})\right) = \frac{1}{2}n^{2(\alpha - 7)} + o(n^{2(\alpha - 7)})$$

e per il criterio del confronto asintotico $\sum_n b_n$ ha lo stesso carattere di

$$\sum_{n} n^{2(\alpha - 7)} = \sum_{n} \frac{1}{n^{14 - 2\alpha}}$$

che converge se e solo se $14-2\alpha>1$ ossia $\alpha<13/2$. Riunendo (come prima) i tre casi otteniamo che $\sum_n b_n$ converge per $\alpha < 13/2$ e diverge positivamente per $\alpha \ge 13/2$.