

Multi potenciostato

Autor:

Fabiola de las Casas Escardó

Director:

Juan Manuel Reta (UNER)

Co-director:

Eduardo Filomena (UNER)

Jurados:

Nombre y Apellido (1) (pertenencia (1))

Nombre y Apellido (2) (pertenencia (2))

Nombre y Apellido (3) (pertenencia (3))

Índice

Registros de cambios	. 3
Acta de constitución del proyecto	. 4
Descripción técnica-conceptual del proyecto a realizar	. 5
Identificación y análisis de los interesados	. 6
1. Propósito del proyecto	. 7
2. Alcance del proyecto	. 7
3. Supuestos del proyecto	. 7
4. Requerimientos	. 8
5. Historias de usuarios (<i>Product backlog</i>)	. 8
6. Entregables principales del proyecto	. 8
7. Desglose del trabajo en tareas	. 9
8. Diagrama de Activity On Node	. 10
9. Diagrama de Gantt	. 12
10. Matriz de uso de recursos de materiales	. 14
11. Presupuesto detallado del proyecto	. 14
12. Matriz de asignación de responsabilidades	. 15
13. Gestión de riesgos	. 15
14. Gestión de la calidad	. 17
15. Comunicación del proyecto	. 19
16. Gestión de Compras	. 19
17. Seguimiento y control	. 19
18 Procesos de cierre	10

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
1.0	Creación del documento	27/06/2020
1.1	Se completó hasta el punto 6 inclusive	11/07/2020
1.2	Se completó hasta el punto 11 inclusive y se realizaron las	29/07/2020
	correcciones indicadas	

Acta de constitución del proyecto

Buenos Aires, 27 de Junio de 2020

Por medio de la presente se acuerda con la Ing. Fabiola de las Casas Escardó que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Multi potenciostato", consistirá esencialmente en el prototipo preliminar de un potenciostato de 32 canales para la realización en simultáneo de experimentos electroquímicos, y tendrá un presupuesto preliminar estimado de 660 hs de trabajo, con fecha de inicio 27 de Junio de 2020 y fecha de presentación pública 28 de Mayo de 2021.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Guido Rozenblum Aplife Biotech S.A.

Juan Manuel Reta Director del Trabajo Final

Eduardo Filomena Co-director del Trabajo Final

Nombre y Apellido (1) Jurado del Trabajo Final Nombre y Apellido (2) Jurado del Trabajo Final

Nombre y Apellido (3) Jurado del Trabajo Final

Descripción técnica-conceptual del proyecto a realizar

En la actualidad uno de los principales desafíos de la industria farmacéutica y de diagnóstico es la dificultad de encontrar moléculas capaces de actuar como biosensores. Debido a esto existen muy pocos dispositivos que permitan hacer mediciones y detección de patologías *in-situ*, y se debe recurrir normalmente a análisis de laboratorio y procesos largos hasta obtener los resultados del estudio.

Aplife Biotech es una *startup* argentina que está desarrollando una tecnología para optimizar estos procesos de descubrimiento de moléculas y así lograr dotar a la industria farmacéutica y de diagnóstico con la capacidad de desarrollar dispositivos portátiles que detecten fácil y rápidamente problemas de salud. De esta forma se logrará descentralizar los ensayos de diagnósticos de los principales laboratorios y promoverá su portabilidad. El desarrollo de esta tecnología también puede tener un gran impacto en el medioambiente donde muchas veces es necesaria una detección rápida de patógenos o agentes tóxicos.

El objetivo de este proyecto es el desarrollo de un potenciostato. Esto es un dispositivo que se usa para mediciones de electroquímica. Su funcionamiento principal es aplicar una magnitud física que provoque una reacción química que sea medida por el mismo equipo. Por lo tanto, van a ser los dispositivos encargados de encontrar qué moléculas se comportan mejor como transductor para la detección de cada patología o agente que se desee estudiar.

El dispositivo a desarrollar tendrá como función principal aplicar un potencial variable en el tiempo y medir la corriente que genera la reacción electroquímica entre una molécula y una solución. Esto se conoce como voltametría. Existen distintos tipos de voltametría y este proyecto se va a centrar en tres: la voltametría cíclica, la cuadrada y la rampa escalonada.

- Voltametría cíclica: consiste en aplicar una onda triangular y medir la reacción. Esta medición puede ser de máximos y mínimos o de valores en intervalos establecidos por el usuario. También se configuran la altura de la onda triangular y la pendiente.
- Voltametría Cuadrada: se aplica una onda cuadrada y se mide la reacción. La medición es nuevamente de máximos y mínimos o en un tiempo definido cuando la señal aplicada es máxima y cuando es mínima. Se configura la altura y el duty cycle.
- Voltametría rampa escalonada (SWV: square wave voltammetry): es una onda cuadrada montada sobre una onda triangular. La medición se realiza en el 10 % antes que la señal cambie de tensión. Se pueden configurar la pendiente, el duty cycle y las tensiones máximas y mínimas.

Un potenciostato está compuesto por 3 electrodos encargados de aplicar la tensión y tomar las lecturas de interés denominados Counter Electrode (CE), Working Electrode (WE) y Reference Electrode (RE). El CE es el encargado de aplicar la señal y el RE controla que la señal aplicada por el CE sea la esperada. El WE es donde se deposita la molécula que se desea estudiar y, por lo tanto, el encargado de realizar la medición. Los potenciostatos disponibles en el mercado tienen como máximo 16 canales limitando la cantidad de experimentos a realizar en simultáneo y prolongando su tiempo de los mismos.

El equipo actual que posee Aplife Biotech S.A. cuenta con 10 canales, 4 ADC, 1 DAC y todo es controlado por un microcontrolador de 8 bits. La empresa busca mejorar este prototipo aumentando la cantidad de canales a 32, mejorando la interfaz con el usuario mediante comunicación USB, permitiendo un almacenamiento interno de los datos obtenidos en las

mediciones y realizando el control mediante una FPGA. Esto se debe a que se busca que el potenciostato final sea un ASIC para así lograr agrupar una mayor cantidad de electrodos en un espacio menor y de esta forma masificar las mediciones. Estos ASIC van a necesitar un dispositivo donde sean conectados y puedan ser controlados. Por esta razón, como se muestra en la Figura 1, se va a dividir el proyecto en dos partes: el potenciostato y el dispositivo de control. En la misma se muestra un único conjunto de electrodos de forma representativa.

Figura 1: Diagrama en bloques del sistema

El bloque del potenciostato consta de un sensor de temperatura, un DAC de 16 bits encargado de aplicar la señal seleccionada por el usuario y un ADC de 16 bits para la adquisición de datos. La señal analógica del DAC se aplica al CE mediante un circuito de realimentación cuya señal de control será tomada por el electrodo RE. Esta señal desencadena una reacción química en el electrodo WE que genera una corriente. Esta corriente puede ir desde los pA a los 100 nA, por lo que es necesario un circuito de amplificación previo a hacer la conversión AD. Este debe poder ser manipulado por la FPGA para seleccionar el multiplicador adecuado para tener una correcta lectura en el ADC.

El dispositivo de control gira en torno a una FPGA. La interfaz USB permite al usuario configurar la señal que quiere aplicar y ver los datos del experimento resultante desde cualquier PC mediante una aplicación UI. Además el FPGA debe procesar la información adquirida del ADC y del sensor de temperatura y almacenarla en una memoria RAM externa, para después transmitirla a la PC.

Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Guido Rozenblum	Aplife Biotech S.A.	CTO
Responsable	Fabiola de las Casas	Aplife Biotech S.A.	Ingeniera de Desarrollo
	Escardó		
Colaboradores	Iván G. Politzer	Aplife Biotech S.A.	Ingeniero de Desarrollo
Orientadores	Juan Manuel Reta	UNER	Director del Trabajo final
Orientadores	Eduardo Filomena	UNER	Co-director del Trabajo final
Usuario final	Biólogos y	Aplife Biotech S.A.	-
	Biotecnólogos		

1. Propósito del proyecto

El próposito de este proyecto es desarrollar un prototipo funcional de un potenciostato de múltiples canales que pueda realizar distintos tipos de pruebas de voltimetría y adquirir los datos de las reacciones electroquímicas que se produzcan.

2. Alcance del proyecto

El presente proyecto incluye:

- Prototipo funcional.
- Desarrollo y documentación de firmware.
- Desarrollo de PCB para bloque de potenciostato.
- Documentación de hardware.
- Programa en python para graficar las mediciones obtenidas.
- Pruebas de validación y verificación.

El presente proyecto no incluye:

- Desarrollo de una aplicación de PC para interfaz de usuario, el sistema debe ser controlado por línea de comando.
- Fabricación del PCB de dispositivo de control, que se realizará con una placa de desarrollo de la marca elegida.
- Gabinete.

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Los fondos estipulados estarán disponibles para la duración del proyecto.
- El tiempo para el desarrollo será suficiente.
- No surgirá ningún proyecto de mayor importancia en la empresa.
- Los materiales necesarios serán adquiridos en tiempo y forma.

4. Requerimientos

1. Requerimientos generales del proyecto:

- 1.1. Debe poder controlarse mediante USB 3.1
- 1.2. La documentación del proyecto debe seguirse con control de versiones GIT.

2. Requerimientos de mediciones:

- 2.1. Se deben poder medir corrientes en el rango de 1 pA hasta los 100 nA. Rango previamente definido por el usuario.
- 2.2. El error de las mediciones, una vez seleccionado el rango de corriente, debe ser menor al $10\,\%$
- 2.3. Todos los electrodos se tienen que poder medir en 1,6 ms o a una frecuencia de 625Hz.
- 2.4. Se debe poder seleccionar si medir mínimos y máximos o tomar mediciones en intervalos de tiempo constantes y definidos por el usuario.

3. Requerimientos de voltametría:

- 3.1. El DAC debe tener un rango de +1,5 V
- 3.2. Voltametría cíclica
 - 1) Se debe poder seleccionar la pendiente entre 10 mV/s a 1 V/s
- 3.3. Voltametría cuadrada y rampa escalonada
 - 1) El duty cycle deber ser del 50 %
 - 2) La altura de los saltos de tensión deben ser configurables
 - 3) La medición se debe realizar en el ultimo $10\,\%$ del ancho de los pulsos antes de cambiar de estado.

4. Requerimientos de hardware:

- 4.1. Los electrodos deben estar recubiertos de oro y serán provistos por la empresa.
- 4.2. Los electrodos deben estar en un PCB separado para que puedan ser conectados y desconectados al potenciostato.

5. Historias de usuarios (*Product backlog*)

6. Entregables principales del proyecto

- Equipo funcionando
- Manual de uso
- Código fuente
- Informe final

7. Desglose del trabajo en tareas

1. Análisis preliminar (40 hs hs)

- 1.1. Definición del alcance del proyecto (8 hs)
- 1.2. Definición de requerimientos (10 hs)
- 1.3. Planificación (6 hs)
- 1.4. Bibliografía de experimentos de voltametría (16 hs)

2. Diseño y construcción de hardware - Potenciostato (60 hs)

- 2.1. Revisión y re-diseño del circuito actual (8 hs)
- 2.2. Definición de circuito para la selección de amplificación pre conversor AD (10 hs)
- 2.3. Selección de componentes (10 hs)
- 2.4. Adquisición de componentes (2 hs)
- 2.5. Pruebas básicas de comportamiento del circuito (16 hs)
- 2.6. Desarrollo del PCB (8 hs)
- 2.7. Montaje del prototipo en el PCB (4 hs)
- 2.8. Documentación (2 hs)

3. Diseño y construcción de hardware - Dispositivo de control (124 hs)

- 3.1. Estudio y selección de placa de desarrollo de FPGA (24 hs)
- 3.2. Estudio y selección de memoria RAM (24 hs)
- 3.3. Selección de tipo de alimentación externa (12 hs)
- 3.4. Adquisición de componentes elegidos (2 hs)
- 3.5. Pruebas iniciales en placa de desarrollo (36 hs)
- 3.6. Pruebas de potencia de alimentación externa (24 hs)
- 3.7. Documentación (2 hs)

4. Desarrollo de firmware (206 hs)

- 4.1. Driver conversor DA (36 hs)
- 4.2. Driver conversor AD (36 hs)
- 4.3. Driver de sensor de temperatura (24 hs)
- 4.4. Almacenamiento en memoria externa RAM (40 hs)
- 4.5. Comunicación USB (36 hs)
- 4.6. Módulo para la selección del circuito amplificador (24 hs)
- 4.7. Integración de firmware (8 hs)
- 4.8. Documentación (2 hs)

5. Validación y Verificación (160 hs)

- 5.1. Validación y verificación de señales aplicadas con el conversor DA (24 hs)
- 5.2. Validación y verificación de almacenamiento en memoria RAM externa (24 hs)
- 5.3. Validación y verificación de sensor de temperatura (24 hs)
- 5.4. Pruebas con soluciones electroquímicas conocidas (44 hs)

- 5.5. Ajustes de parámetros a partir de los resultados obtenidos en las pruebas (36 hs)
- 5.6. Documentación (8 hs)

6. Documentación (70 hs)

- 6.1. Manual de uso (10 hs)
- 6.2. Memoria del trabajo final (50 hs)
- 6.3. Presentación final (10 hs)

Cantidad total de horas: (660 hs)

8. Diagrama de Activity On Node

Figura 2: Diagrama en Activity on Node. Primera parte

Figura 3: Diagrama en Activity on Node. Segunda parte

9. Diagrama de Gantt

WBS	Nombre	Inicio	Fin	Trabajo	Duración
1	· Análisis preliminar	jun 29	jul 17	13d 1h	14d 1h
1.1	Definición del alcance del proyecto	jun 29	jul 1	2d 2h	2d 2h
1.2	Definición de requerimientos	jul 2	jul 7	3d 1h	3d 1h
1.3	Planificación	jul 8	jul 9	2d	2d
1.4	Bibliografia de experimentos de voltimetria	jul 10	jul 17	5d 1h	5d 1h
2	Diseño y construcción de hardware - Potenciostato	jul 20	ago 21	20d	23d 2h
2.1	Revisión y re-diseño del circuito actual	jul 20	jul 22	2d 2h	2d 2h
2.2	Definición de circuito para la selección de amplificador pre conversor AD	jul 23	jul 28	3d 1h	3d 1h
2.3	Selección de componentes	jul 29	ago 3	3d 1h	3d 1h
2.4	Adquisición de componentes	ago 4	ago 4	2h	2h
2.5	Pruebas básicas de comportamiento del circuito	ago 5	ago 12	5d 1h	5d 1h
2.6	Desarrollo del PCB	ago 13	ago 18	2d 2h	2d 2h
2.7	Montaje del prototipo en el PCB	ago 19	ago 20	1d 1h	1d 1h
2.8	Documentación	ago 21	ago 21	2h	2h
3	Diseño y construcción de hardware - Dispositivo de control	ago 24	oct 21	41d 1h	41d 2h
3.1	Estudio y selección de placa de desarrollo de FPGA	ago 24	sep 2	8d	8d
3.2	Estudio y selección de memoria RAM	sep 3	sep 14	8d	8d
3.3	Selección de tipo de alimentación externa	sep 15	sep 18	4d	4d
3.4	Adquisición de componentes elegidos	sep 21	sep 21	2h	2h
3.5	Pruebas iniciales en placa de desarrollo	sep 22	oct 7	12d	12d
3.6	Pruebas de potencia de alimentación externa	oct 8	oct 20	8d	8d
3.7	Documentación	oct 21	oct 21	2h	2h
4	Desarrollo de firmware	oct 21	feb 3	68d 2h	69d 1h
4.1	Driver conversor DA	oct 21	nov 5	12d	12d
4.2	Driver conversor AD	nov 6	nov 24	12d	12d
4.3	Driver de sensor de temperatura	nov 25	dic 4	8d	8d
4.4	Almacenamiento en memoria externa RAM	dic 9	dic 29	13d 1h	13d 1h
4.5	Comunicación USB	dic 30	ene 18	12d	12d
4.6	Módulo para la selección del circuito amplificador	ene 19	ene 28	8d	8d
4.7	Integración de firmware	ene 29	feb 2	2d 2h	2d 2h
4.8	Documentación	feb 2	feb 3	2h	2h
5	· Validación y verificación	feb 4	abr 27	53d 1h	53d 1h
5.1	V y V de señales aplicadas con el conversor DA	feb 4	feb 17	8d	8d
5.2	V y V de almacenamiento en memoria RAM	feb 18	mar 1	8d	8d
5.3	V y V de sensor de temperatura	mar 2	mar 11	8d	8d
5.4	Pruebas con soluciones químicas conocidas	mar 12	abr 6	14d 2h	14d 2h
5.5	Ajustes de parámetros a partir de resultados obtenidos	abr 6	abr 22	12d	12d
5.6	Documentación	abr 22	abr 27	2d 2h	2d 2h
6	Documentación	abr 27	may 28	23d 1h	22d 2h
6.1	Manual de uso	abr 27	abr 30	3d 1h	3d 1h
6.2	Memoria del trabajo final	abr 30	may 24	16d 2h	16d 2h
6.3	Presentación final	may 24	may 28	3d 1h	3d 1h

Figura 4: Tabla de tareas del diagrama gantt

FACULTAD **DE INGENIERIA**

Carrera de Especialización en Sistemas Embebidos

Plan de proyecto de Trabajo final

Figura 5: Diagrama de gantt

10. Matriz de uso de recursos de materiales

Código WBS	Nombre Tarea		Recursos requeridos (horas)				
Codigo WDS			FPGA	Lab. electrónico	Lab. químico		
1	Análisis preliminar	40	0	0	0		
2	Hardware - Potenciostato	44	0	0	0		
2.5	Pruebas básicas del circuito	0	0	16	0		
2.7	Montaje de prototipo		0	4	0		
3.1 - 3.4	Dispositivo de control		0	0	0		
3.5	Pruebas en FPGA		36	0	0		
3.6	Pruebas de alimentación	0	0	24	0		
4	Desarrollo de firmware	206	206	0	0		
5	Validación y verificación		116	116	0		
5.4	Pruebas con soluciones químicas		44	0	44		
6	Documentación	70	0	0	0		

11. Presupuesto detallado del proyecto

COSTOS DIRECTOS							
Descripción	Cantidad	Valor unitario	Valor total				
Componentes electrónicos potenciostato	1	U\$S 110	U\$S 110				
Placa de desarrollo FPGA	1	U\$S 200	U\$S 200				
Horas de ingeniería	660 hs	U\$S 10	U\$S 6.600				
Soluciones químicas	40	U\$S 10	U\$S 400				
SUBTOTAL		U\$S 7.310					
COSTOS INDIRI	ECTOS						
Descripción	Cantidad	Valor unitario	Valor total				
30% del total de los costos directos	1	U\$S 2.193	U\$S 2.193				
SUBTOTAL							
TOTAL			U\$S 9.503				

12. Matriz de asignación de responsabilidades

Cádima		Responsable	Orientadores	Equipo	Cliente	
Código WBS	Nombre de la tarea	Fabiola	Juan Manuel Reta	Iván G. Pollitzer	Guido Rozenblum	
WBS		de las Casas Escardó	Eduardo Filomena	Ivan G. Pollitzer	Guido Rozenbium	
1	Análisis preliminar	P	С	-	S	
0.1	Revisión y re-diseño	Р	С			
2.1	del circuito actual	Р	C	-	-	
2.2	Definición de circuito	Р	C			
2.2	de amplificación	Р	C	-	-	
2.3	Selección de componentes	P	-	S	I	
2.4	Adquisición de componentes	S	-	P	A	
2.5	Pruebas básicas de circuito	P	-	S	I	
2.6	Desarrollo PCB	P	-	-	-	
2.7	Montaje de prototipo en PCB	S	-	P	-	
3.1	Estudio y selección de FPGA	P	С	I	-	
3.2	Estudio y selección de RAM	P	С	I	-	
3.3	Selección alimentación externa	P	С	I	-	
3.4	Adquisición de componentes	S	-	P	A	
3.5	Pruebas iniciales con FPGA	P	С	-	-	
3.6	Pruebas de potencia de	Р	С			
5.0	alimentación externa	Г		-	-	
4	Desarrollo de firmware	Р	С	S	-	
5.1	V y V de señales del	Р	I	S	C / A	
0.1	conversor DA	Γ	1	, s	C / A	
5.2	V y V de almacenamiento	Р	I	S	A	
5.2	en RAM	Γ	1	, s	Α	
5.3	V y V de sensor de	Р	I	S	C / A	
0.0	temperatura	1	1	L S	C / A	
5.4	Pruebas con soluciones	Р	I	S	S	
0.4	electroquímicas conocidas				5	
5.5	Ajustes de parámetros	Р	С	S	A	
6	Documentación	P	C / A	_	I	

Referencias:

- ullet P = Responsabilidad Primaria
- ullet S = Responsabilidad Secundaria
- \blacksquare A = Aprobación
- I = Informado

13. Gestión de riesgos

Riesgo 1: Imposibilidad para cumplir los plazos del proyecto.

- Severidad (S): 8, retrasaría la entrega del prototipo funcional al cliente.
- Probabilidad de ocurrencia (O): 3, la empresa brindará soporte alivianando la carga de otros proyectos del responsable.

Riesgo 2: Errores en el diseño del prototipo

• Severidad (S): 9, genera retrasos y un aumento de costos.

• Probabilidad de ocurrencia (O): 7, hay tener en cuenta muchas especificaciones de las distintas partes del prototipo.

Riesgo 3: Demoras en la importación de componentes.

- Severidad (S): 8, genera un retraso general
- Probabilidad de ocurrencia (O): 8, debido a la situación actual (pandemia CoVID-19) hay mucha incerteza con lo relacionado a la importación.

Riesgo 4: Demora y complejidad de los ensayos electroquímicos

- Severidad (S): 7, no se lograria validar el funcionamiento final del proyecto.
- Probabilidad de ocurrencia (O): 4, actualmente ya se están realizando algunos experimentos, por lo que se tiene la experiencia y apoyo suficiente para diminuir este riesgo.

Riesgo 5: Cambio de especificaciones por parte del cliente

- Severidad (S): 7, dependiendo que especificación se pida modificar el riesgo puede ser menor.
- Probabilidad de ocurrencia (O): 7, al ser un producto para realizar mediciones electroquimicas nuevas, no se conoce con demasiada presicion las verdaderas necesidades del prototipo final.
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*
1	8	3	24	-	-	-
2	9	7	63	7	5	35
3	8	8	64	6	7	42
4	7	4	28	-	-	
5	7	7	49	6	5	30

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 45.

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 2: se realizarán consultas y validaciones del diseño al director y co-director. Además el prototipo se realizará en módulos acoplables y de esta manera, si hay un error de diseño solo será necesario cambiar dicho modulo.

• Severidad (S*): 7, se verá afectado solo el modulo con el error por lo que se podrá continuar con el resto del proyecto, mientras se fábrica nuevamente dicho modulo corregido.

■ Probabilidad de ocurrencia (O*): 5, al tener revisiones periódicas con el director y codirector aumenta al probabilidad de detectar estos errores con tiempo.

Riesgo 3: se buscarán proveedores locales y en caso de no haber, se aumentará la cantidad de cada componente pedido al exterior. De esta forma, en caso de haber demora solo se producirá en ese único pedido.

- Severidad (S*): 6, las proveedores locales disponen de la mayoría de los componentes requeridos, pero a un precio mayor en algunos casos.
- Probabilidad de ocurrencia (O*): 7, el contexto actual excede una previsión precisa y hay componentes que solo se consiguen en el exterior.

Riesgo 5: se extenderán los rangos máximos de los distintos experimentos a realizar, basado en bibliografía existente, y se incluirán las prestaciones de los equipos disponibles en el mercado, confirmando con el cliente todas las definiciones.

- Severidad (S*): 6, al ampliar las prestaciones y rangos de medición pedidos por el cliente se anticipan posibles cambios futuros.
- Probabilidad de ocurrencia (O*): 5, el cliente siempre puede buscar cambiar las especificaciones pero al haber confirmado todo previo al comienzo del proyecto ya esta al tanto de las limitaciones del mismo.

14. Gestión de la calidad

• Req #1.1: Debe poder controlarse mediante USB 3.1.

Verificación y validación:

- Verificación:
- Validación:
- Req. #1.2: La documentación del proyecto debe seguirse con control de versiones GIT.
 Verificación y validación:
 - Verificación:
 - Validación:
- Req. #2.1: Se deben poder medir corrientes en el rango de 1 pA hasta los 100 nA. Rango previamente definido por el usuario.

Verificación y validación:

- Verificación:
- Validación:
- Req. #2.2: El error de las mediciones, una vez seleccionado el rango de corriente, debe ser menor al 10 %.

Verificación y validación:

- Verificación:
- Validación:
- Req. #2.3: Todos los electrodos se tienen que poder medir en 1,6 ms o a una frecuencia de 625Hz.

Verificación y validación:

- Verificación:
- Validación:
- Req. #2.4: Se debe poder seleccionar si medir mínimos y máximos o tomar mediciones en intervalos de tiempo constantes y definidos por el usuario.

Verificación y validación:

- Verificación:
- Validación:
- Req. #3.1: El DAC debe tener un rango de +1,5 V

Verificación y validación:

- Verificación:
- Validación:
- Req. #3.2: Voltametría cíclica: Se debe poder seleccionar la pendiente entre 10 mV/s a 1 V/s

Verificación y validación:

- Verificación:
- Validación:
- Req. #3.3: Voltametría cuadrada y rampa escalonada: el duty cycle deber ser del 50 %, la altura de los saltos de tensión deben ser configurables y la medición se debe realizar en el ultimo 10 % del ancho de los pulsos antes de cambiar de estado.

Verificación y validación:

- Verificación:
- Validación:
- Req. #4.1: Los electrodos deben estar recubiertos de oro y serán provistos por la empresa.
 Verificación y validación:
 - Verificación:
 - Validación:
- Req. #4.2: Los electrodos deben estar en un PCB separado para que puedan ser conectados y desconectados al potenciostato.

Verificación y validación:

- Verificación:
- Validación:

Para cada uno de los requerimientos del proyecto indique:

- Req #1: Copiar acá el requerimiento.
 Verificación y validación:
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente:

Detallar

 Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido:
 Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, etc.

15. Comunicación del proyecto

PLAN DE COMUNICACIÓN DEL PROYECTO							
¿Qué comunicar?	Audiencia	Propósito	Frecuencia	Método de comunicac.	Responsable		
Plan de trabajo	Todos los	Informar del alcance	Una vez	Reunión online	Fabiola de las		
r ian de trabajo	interesados	del proyecto	Ona vez	Reumon omme	Casas Escardó		
Avance del trabajo	Director	Informar y validar el	15 días	Reuniones online	Fabiola de las		
Avance dei trabajo	Co-director	progreso	15 dias	Iteumones omme	Casas Escardó		
Consultas	Director	Sugerencias y	15 días	Reuniones online	Fabiola de las		
Consultas	Co-director	búsqueda de soluciones	15 dias	15 dias Reuniones onnne			
Pruebas de aceptación	Cliente	Validación del	Al finalizar el	Reunión presencial	Fabiola de las		
r ruebas de aceptación	Chente	prototipo	prototipo	rteumon presenciai	Casas Escardó		
Finalización del proyecto	Todos los	Conocer los resultados	Al finalizar	Reunión online	Fabiola de las		
r manzacion dei proyecto	interesados	Conocei ios resultados	el proyecto	rteumon omme	Casas Escardó		

16. Gestión de Compras

En caso de tener que comprar elementos o contratar servicios: a) Explique con qué criterios elegiría a un proveedor. b) Redacte el Statement of Work correspondiente.

17. Seguimiento y control

Para cada tarea del proyecto establecer la frecuencia y los indicadores con los se seguirá su avance y quién será el responsable de hacer dicho seguimiento y a quién debe comunicarse la situación (en concordancia con el Plan de Comunicación del proyecto).

El indicador de avance tiene que ser algo medible, mejor incluso si se puede medir en % de avance. Por ejemplo,se pueden indicar en esta columna cosas como "cantidad de conexiones ruteadeas" o "cantidad de funciones implementadas", pero no algo genérico y ambiguo como "%", porque el lector no sabe porcentaje de qué cosa.

18. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

SEGUIMIENTO DE AVANCE								
Tarea	del	Indicador de	Frecuencia	Resp. de se-	Persona a ser	Método	de	
WBS		avance	de reporte	guimiento	informada	comunic.		

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: Indicar esto y quién financiará los gastos correspondientes.