Problem Set #1

Due Wednesday January 29th

ANALYTICAL EXERCISES

- F
- 1. Consider an urn containing N balls each labeled with a unique number 1, 2, ..., N. M of these balls are colored red and the remaining N-M are white, $0 \le M \le N$. Understand that these facts represents our state of knowledge, or information I. Let $R_i \equiv \text{red ball}$ on the i^{th} draw and $W_i \equiv \text{white ball}$ on the i^{th} draw. According to our knowledge of the composition of the urn, only red or white can be drawn, thus, for the i^{th} draw it must be that $p[R_i|I] + p[W_i|I] = 1$.
 - a) Find the probability of drawing and red or white ball on the first draw, i.e. $p[R_1|I]$? and $P[W_1|I]$
 - b) Find the probability of drawing a red ball on the first two draws, assuming you are sampling without replacement, i.e. find $p[R_1R_2|I]$
 - c) Following this logic find the probability for drawing a red ball on the first $m \le M$ consecutive draws. Show your logic.
 - d) Find the probability for drawing exactly $m \le M$ red balls in $n \le N$ draws, regardless of order.
- 2. A *sample* is a set of *n* numbers $x = x_1, x_2, ..., x_n$. The *sample mean* is the average of the sample, $m[x] = \frac{x_1 + ... + x_n}{n}$, the *sample variance* is the average squared deviation of the sample values from the sample mean $s[x]^2 = \frac{(x_1 m[x])^2 + ... + (x_n m[x])^2}{n}$, and the *sample standard deviation* is the square root of the sample variance.
 - a) Suppose we model the sample as a constant, μ . In general the likelihood that all the numbers in the sample will be to equal μ is zero. In order to allow for deviations, suppose that we assume that likelihood of the sample is proportional to

- $exp[-rac{(x_1-\mu)^2+...+(x_n-\mu)^2}{n\sigma}]$, where σ is a second model parameter. Derive the expression for the posterior probability $p[\mu,\sigma|x]$, given a prior $p[\mu,\sigma]$.
- b) *Jeffreys' prior* is $p[\mu, \sigma] = d\mu \frac{d\sigma}{\sigma}$. Letting $d\mu = d\sigma = 1$ Use Jeffreys' prior to find the maximum posterior probabilities, $(\hat{\mu}, \hat{\sigma})$. (Hint: Use the first order conditions. You should get familiar looking results)
- 3. I'm thinking of a number between 1 and 100. How many bits (yes/no questions) of information are necessary in order to identify the exact number? Explain your reasoning.
- 4. Find the maximum entropy distribution for a random variable $X \in \mathbb{R}$ constrained to have a given mean $\int_X f[x]xdx = \mu$ and variance $\int_X f[x]x^2dx = \sigma^2$.
- 5. Let p[y, x] be given by

$X\downarrow/Y\rightarrow$	0	1
0	1/3	1/3
1	0	1/3

Find:

- a) H[X], H[Y]
- b) H[X|Y], H[Y|X]
- c) H[X, Y]
- d) I[X;Y]
- 6. Let the random variable X have three possible outcomes $\{a, b, c\}$ Consider two distributions on this random variable:

Symbol	p[x]	q[x]
a	1/2	1/3
b	1/4	1/3
С	1/4	1/3

Find:

- a) H[p], H[q]
- b) D[p||q], D[q||p]
- c) Verify that $D[p||q] \neq D[q||p]$

R EXERCISES

Please email me your final cleaned R script annotated with comments.

- 1. A bank has made 100 mortgages of a new type (say it's 2005 and they are subprime mortgages), and all have been outstanding 5 years. Of these 100, 5 of them have defaulted. The bank would like to estimate the probability θ of default in the first five years for this type of mortgage, and get some idea of how much uncertainty there is about the probability, given the observed data. These being a new type of mortgage, the bank assigns a uniform prior over θ .
 - a) Plot the likelihood in R and indicate on the plot (e.g. use the abline() function) the location of the maximum likelihood value of θ as well as the expected value of θ .
 - b) Using the quantile function *qbeta*() calculate and indicate a symmetric 95% confidence interval (cut off 2.5% of the left and right tail). Does this look like a reasonable confidence interval?
 - c) Find the shortest interval with 95% probability (Hint: Feel free to use a package such as "TeachingDemos" that calculates the highest posterior density region).
 - d) Compare graphically the 95% confidence interval and the shortest 95% interval. Which do you favor and why?