

### **Title Slide**



**Project Title:** Real – Time Traffic Monitoring System

Course: B - Tech Degree: CSE Section: "Z"

**Department:** SEAS (School of Engineering & Sciences)

**Institution:** SRM University AP

### **Project By:**

- 1. ABHISHEKH KUMAR JHA (AP23110011668)
- 2. BHUPENDRA YADAV (AP23110011660)
- 3. RAKESH PATEL (AP23110011671)
- 4. Y. UMESH REDDY (AP23110011667)
- 5. B. AKHIL (AP23110011662)

**Project Submitted to: MS. V. VEDA SRI** 



**Department of Computer Science and Engineering** 

SRM University,AP



### **Problem Statement:**

With the rapid growth of urbanization and an increasing number of vehicles on the road, cities are facing severe traffic congestion, leading to extended travel times, increased pollution, and reduced quality of life. Traditional traffic management systems lack the capability to adapt to real-time conditions and often operate on static schedules or outdated information. This results in inefficient traffic flow, particularly during peak hours or in response to accidents and roadwork.





### **Proposed Solution:**

#### Real-Time Data Collection

- Data Sources
- Data Aggregation Platforms

### Real-Time Analysis

- Edge Computing
- Data Fusion & Filtering

# Traffic Control & Incident Detection

- ML Models
- Anomaly Detection

#### Adaptive Traffic Signal Control

- Dynamic Signal Optimization
- Co-ordinated Traffic Flow





### **KEY RESEARCH:**

Data Collection and Sensing Technologies

Data Processing and Big Data Analytics

**Optimization Algorithms** 

IoT and Edge Computing

Cybersecurity and Privacy

Human Factors and Behavioral Analysis







### Importance:

Reducing Traffic Congestion

**Improving Road Safety** 

Reducing Environmental Impact

**Enhancing Emergency Response** 

Supporting Sustainable Urban Growth



### AIM:

The aim of creating a real-time traffic monitoring system is to develop an intelligent, data-driven platform that optimizes urban traffic flow, reduces congestion, and improves road safety by leveraging real-time data. This system is intended to support cities in creating more sustainable, efficient, and user-friendly transportation networks.





### **OBJECTIVES:**

Reduce congestion and travel time

Improve road safety

Reduce emissions

Enhance emergency response



## **TECHNICAL APPROACH:**

# SRM UNIVERSITY AP

### **Workflow:**



### **Technologies Used:**





### **Class Definitions:**



### **Main Function:**

- Creates an object of SmartTrafficMonitoringSystem.
- Call the **welcome()** function to start the program.



### **Program Flow:**

User Interaction

Traffic Monitoring

Data Display



### Potential challenges and risks:

Cybersecurity

Real-Time Processing

Data Privacy

System Malfunction or Errors

Scalability

Cyber-Attacks





### **Strategies for overcoming these challenges:**

**Interoperable Systems** 

**Edge Computing** 

**Data Encryption** 

**Redundant Systems** 

Remote Monitoring and Maintenance

**Continuous Monitoring** 



# **IMPACT AND BENEFITS**



### **Benefits of the solution**

Potential Impact on the target audience

Increased Road Safety

Accessible Transportation

Boosts Productivity

**Cost Savings** 

**Advancements in Smart City Initiatives** 

Traffic Flow Optimization **Enhanced Safety** Time Savings **Environmental Sustainability Support for Multi-Modal Transportation** 





### **CONCLUSION:**

This C++ Traffic Management System is an excellent illustration of how to utilize C++ for data management and file handling to create a useful, real-world application. The user may access a variety of car records as needed with the aid of this user-friendly, automated, and straightforward C++ system. It demonstrates how programming may be used to automate processes in a variety of domains, such as traffic control.



# **REFERENCES:**

- (PDF) Real-time Traffic Monitoring System based on Deep Learning and YOLOv8
- Artificial Intelligence-Enabled Traffic Monitoring System