Formelsammlung für Alles

Matthias Springstein

10. November 2010

Inhaltsverzeichnis

1	Math	ne		5
	1.1	Grund	lagen	5
		1.1.1	Mengen	5
		1.1.2	Intervalle	5
		1.1.3	Rechnengesetze	5
		1.1.4	Bruchrechnung	6
		1.1.5	Potenzen	6
		1.1.6	Wurzeln	7
		1.1.7	Logarithmen	7
		1.1.8		8
			Winkelfunktionen	9
		1.1.9	Fakultät	
			Binomischer Lehrsatz	9
		1.1.11	8	10
		1.1.12		11
			Koordinatensystem	11
	1.2		ungen	12
		1.2.1	Gleichungen n-ten Grades	12
		1.2.2	Lineare Gleichungen	12
		1.2.3	Quadratische Gleichungen	12
		1.2.4	Biquadratische Gleichungen	12
		1.2.5	Gleichungen höheren Grades	13
		1.2.6	Wurzelgleichung	13
		1.2.7	Ungleichungen	13
		1.2.8	Betragsgleichungen	13
		1.2.9	Interpolationspolynome	14
	1.3	Differi	ntialrechnung	14
			•	
2	Phys	ik		17
	2.1		atik	17
		2.1.1	Geradlinige Bewegungen(Translation)	17
		2.1.2	Kreisbewegungen(Rotation)	17
	2.2		nik	18
	2.2	2.2.1	Geradlinig(Translation)	18
		2.2.2	Drehbewegung(Rotation)	19
		2.2.3	Schiefe Ebene	19
		2.2.3		19
		2.2.4 $2.2.5$	Reibung	
			Feder	19
		2.2.6	Elastischer Stoß	20
		2.2.7	Unelastischer Stoß	20
		2.2.8	Drehimpulse	20
		2.2.9	Rotierendes Bezugssystem	21
_		_		_
3		rotechn		23
	3.1		größen	23
	3.2		e Quellen	24
	3.3	Kirchl	noffsche Gesetze	24

1 Mathe

1.1 Grundlagen

1.1.1 Mengen

Mengen Darstellung

Schreibweise	Bedeutung
$a \in M$: $a \notin M$: $M = \{x x \text{ Eigenschaften}, \ldots\}$ $M = \{a_1, a_2, \ldots, a_n\}$ $M = \{a_1, a_2, \ldots\}$	a ist ein Element von M a ist kein Element von M Beschreibende Darstellung Aufzählende Darstellung(endlich) Aufzählende Darstellung(unendlich)
$M = \{\}$ $A \subset B$ $A = B$	Leere Menge A ist eine Teilmenge von B. A heißt Untermenge und B Obermenge A und B sind gleich, d.h. jedes Element von A ist auch in B vorhanden und umgekehrt

Mengen Operationen

Schreibweise	Bedeutung
$A \cap B = \{x x \in A \text{ und } x \in B \\ A \cup B = \{x x \in A \text{ oder } x \in B\} \\ A \setminus B = \{x x \in A \text{ und } x \notin B\}$	Schnittmenge zweier Mengen Vereinigungsmenge zweier Mengen Differenz- oder Restmenge zweier Mengen

1.1.2 Intervalle

Beispiel	Beschreibung	
$[a, b] = x a \le x \le b$ $[a, b) = x a \le x \le b$	abgeschlossene Intervalle halboffene Intervall	
$(a,b] = x a < x \le b$	halboffene Intervall	
(a, b) = x a < x < b	offenes Intervall	

1.1.3 Rechnengesetze

Operationen mit Natürlichen Zahlen

Beispiel	Beschreibung
$60 = 2^2 \cdot 3^1 \cdot 5^1$	Zerlegung der Faktoren in ihre Primfaktoren und dann bildet man das Produkt aus denn höchsten Potenzen die alle Faktoren gemeinsam haben.
$70 = 2^3 \cdot 3^2$	
$ggt = 2^2 \cdot 3^1$	
$60 = 2^2 \cdot 3^1 \cdot 5^1$	Zerlegung der Faktoren in ihre Primfaktoren und dann bildet man das Pro- dukt aus denn höchsten Potenzen die in mindestens einen Faktoren auftre- ten.
$70 = 2^3 \cdot 3^2$	
$kgV = 2^3 \cdot 3^2 \cdot 5^1$	

1 Mathe

Kommutativgesetz

$$a+b=b+a$$

$$a\cdot b=b\cdot a$$
(1.1)

Assoziativgesetz

$$a + (b+c) = (a+b) + c$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$(1.2)$$

Distributivgesetz

$$a \cdot (b+c) = a \cdot b + a \cdot c \tag{1.3}$$

1.1.4 Bruchrechnung

Ein Bruch a/b heißt echte, wenn |a| < |b| ist, sonst unecht.

Addition und Subtraktion zweier Brüche

$$\frac{a}{b} \pm \frac{c}{d} = \frac{a \cdot d \pm b \cdot c}{b \cdot d} \tag{1.4}$$

Multiplikation zweier Brüche

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \tag{1.5}$$

Division zweier Brüche

$$\frac{a}{b} \div \frac{c}{d} = \frac{a \cdot d}{b \cdot c} \tag{1.6}$$

1.1.5 Potenzen

Eine Potenz a^n ist ein Produkt aus n gleichen Faktoren a:

$$a^n = a \cdot a \cdot a \dots a \tag{1.7}$$

a: Basis n: Exponent

Rechenregeln

$$a^m * a^n = a^{m+n} (1.8a)$$

$$\frac{a^m}{a^n} = a^{m-n} \tag{1.8b}$$

$$a^n \cdot b^n = (a \cdot b)^n \tag{1.8d}$$

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \tag{1.8e}$$

1.1.6 Wurzeln

Wurzelziehen ist die Umkehrfunktion des Potenzieren

$$\sqrt[n]{a} = a^{\left(\frac{1}{n}\right)} \tag{1.9}$$

a: Radikand n: Wurzelexponent

Rechenregeln

$$\sqrt[n]{a^m} = a^{\left(\frac{m}{n}\right)} \tag{1.10a}$$

$$\sqrt[m]{\sqrt[n]{a}} = a \frac{1}{m \cdot n} = m \cdot \sqrt[n]{a}$$
(1.10b)

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} \tag{1.10c}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \tag{1.10d}$$

1.1.7 Logarithmen

Logarthmus ist das eindeutige lösen der Gleichung $r = a^x$ zur Lösung x.

$$x = \log_a r \tag{1.11}$$

$$a: \text{Basis } (a>0, a\neq 1) \ r: \text{Numerus } (r>0)$$

Rechenregeln

$$\log_a b = \frac{\ln b}{\ln a} \tag{1.12a}$$

$$\log_a(u \cdot v) = \log_a u + \log_a v \tag{1.12b}$$

$$\log_a \left(\frac{u}{v}\right) = \log_a u - \log_a v \tag{1.12c}$$

$$\log_a \left(u^k \right) = k \cdot \log_a u \tag{1.12d}$$

$$\log_a \sqrt[n]{u} = \left(\frac{1}{n}\right) \cdot \log_a u \tag{1.12e}$$

Basiswechsel

$$\log_b r = \frac{\log_a r}{\log_a b} = \frac{1}{\log_a b} \cdot \log_a r = K \cdot \log_a r \tag{1.13}$$

Beim Basiswechsel von a o b werden die Logarithmen mit einer Konstanten K multipliziert.

$$\lg \to \ln \Rightarrow K = 2,3026 \tag{1.14}$$

$$\ln \to \lg \Rightarrow K = 0,4343 \tag{1.15}$$

1 Mathe

1.1.8 Winkelfunktionen

Rechenregeln

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) \qquad \qquad \sin x = \cos\left(x + \frac{\pi}{2}\right) \tag{1.20}$$

$$\tan x = \frac{\sin x}{\cos x} = \frac{1}{\cot x} \qquad \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x}$$
 (1.21)

Trigonometrischer Pythagoras

$$\sin^2 x + \cos^2 x = 1 \tag{1.22}$$

Addition von Winkeln

$$\sin(x_1 \pm x_2) = \sin x_1 \cdot \cos x_2 \pm \cos x_1 \cdot \sin x_2 \tag{1.23a}$$

$$\cos\left(x_1 \pm x_2\right) = \cos x_1 \cdot \cos x_2 \mp \sin x_1 \cdot \sin x_2 \tag{1.23b}$$

$$\tan(x_1 \pm x_2) = \frac{\tan x_1 \pm \tan x_2}{1 \mp \tan x_2 + \tan x_2} \tag{1.23c}$$

$$\tan(x_1 \pm x_2) = \frac{\tan x_1 \pm \tan x_2}{1 \mp \tan x_1 \cdot \tan x_2}$$

$$\cot(x_1 \pm x_2) = \frac{\cot x_1 \cdot \cot x_2 \mp 1}{\cot x_2 \pm \cot x_1}$$
(1.23c)

Multiplikation von Winkeln

$$\sin x_1 \cdot \sin x_2 = \frac{1}{2} \cdot (\cos(x_1 - x_2) - \cos(x_1 + x_2)) \tag{1.24a}$$

$$\cos x_1 \cdot \cos x_2 = \frac{1}{2} \cdot (\cos(x_1 - x_2) + \cos(x_1 + x_2)) \tag{1.24b}$$

$$\sin x_1 \cdot \cos x_2 = \frac{1}{2} \cdot (\sin(x_1 - x_2) + \sin(x_1 + x_2)) \tag{1.24c}$$

$$\tan x_1 \cdot \tan x_2 = \frac{\tan x_1 + \tan x_2}{\cot x_1 + \cot x_2} \tag{1.24d}$$

Umrechnung Grad- ⇒ Bogenmaß

$$x = \frac{\pi}{180^{\circ}} \cdot \alpha \tag{1.25}$$

${\sf Umrechnung\ Bogen-} \Rightarrow {\sf Gradma} \\ {\sf Bogen-}$

$$\alpha = \frac{180^{\circ}}{\pi} \cdot x \tag{1.26}$$

Für weitere Winkelformeln siehe Papula Formelsammlung Seite 90-102.

1.1.9 Fakultät

n! ist definitionsgemäß das Produkt aus denn ersten n Faktoren

$$n! = 1 \cdot 2 \cdot 3 \dots (n-1) \cdot n = \prod_{k=1}^{n} k \quad (n \in \mathbb{N})$$
 (1.27)

Vorsicht bei () Fakultät

$$0! = 1 \tag{1.28}$$

1.1.10 Binomischer Lehrsatz

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1} \cdot b^1 + \binom{n}{2}a^{n-2} \cdot b^2 + \dots + \binom{n}{n-1}a^1 \cdot b^{n-1} + b^n$$
(1.29)

$$=\sum_{k=0}^{n} \binom{n}{k} a^{n-k} \cdot b^k \tag{1.30}$$

$$=\sum_{k=0}^{n} \binom{n}{k} a^k \cdot b^{n-k} \tag{1.31}$$

Der Binomialkoeffizienten mit den Koeffizienten $\binom{n}{k}$ wird n über k gelesen.

Bildungsgesetz

$$\binom{n}{k} = \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-(k-1))}{k!} = \frac{n!}{k! \cdot (n-k)!}$$
(1.32)

Rechenregel

$$\binom{n}{0} = \binom{n}{n} = 1 \tag{1.33a}$$

$$\binom{n}{k} = 0 \text{ für } k > n \tag{1.33b}$$

$$\binom{n}{1} = \binom{n}{n-1} = n \tag{1.33c}$$

$$\binom{n}{k} = \binom{n}{n-k} \tag{1.33d}$$

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \tag{1.33e}$$

Ersten Binomischen Formeln

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2 \tag{1.34}$$

$$(a+b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3 \tag{1.35}$$

$$(a+b)^4 = a^4 + 4 \cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 + 4 \cdot a \cdot b^3 + b^4$$
(1.36)

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2 \tag{1.37}$$

$$(a-b)^3 = a^3 - 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 - b^3 \tag{1.38}$$

$$(a-b)^4 = a^4 - 4 \cdot a^3 \cdot b + 6 \cdot a^2 \cdot b^2 - 4 \cdot a \cdot b^3 + b^4$$
(1.39)

$$(a+b) \cdot (a-b) = a^2 - b^2 \tag{1.40}$$

1.1.11 Grenzwertberechnung

Rechenregeln

$$\lim_{x \to x_0} C \cdot f(x) = C \cdot \left(\lim_{x \to x_0} f(x)\right) \tag{1.41a}$$

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$
 (1.41b)

$$\lim_{x \to x_0} \left(f(x) \cdot g(x) \right) = \left(\lim_{x \to x_0} f(x) \right) \cdot \left(\lim_{x \to x_0} g(x) \right) \tag{1.41c}$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$$
(1.41d)

$$\lim_{x \to x_0} \sqrt[\eta]{f(x)} = \sqrt[\eta]{\lim_{x \to x_0} f(x)} \tag{1.41e}$$

$$\lim_{x \to x_0} (f(x))^n = \left(\lim_{x \to x_0} f(x)\right)^n \tag{1.41f}$$

$$\lim_{x \to x_0} \left(a^{f(x)} \right) = a^{\left(\lim_{x \to x_0} f(x)\right)} \tag{1.41g}$$

$$\lim_{x \to x_0} (\log_a f(x)) = \log_a \left(\lim_{x \to x_0} f(x) \right) \tag{1.41h}$$

Grenzwertregel von Bernoulli und de l'Hospital

Diese Regel wird angewendet wenn das normale Ergebniss die Form $\frac{0}{0}$ oder $\frac{\infty}{\infty}$ annimmt, was sonst eine beliebige Zahl darstellt.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \tag{1.42}$$

Berechnete Grenzwerte

$$\lim_{x \to \infty} \frac{1}{a} = 0 \qquad \qquad \lim_{x \to \infty} a^x = 0 \text{ für } |a| < 0 \tag{1.43}$$

$$\lim_{x \to \infty} \frac{a^x}{x!} = 0 \qquad \qquad \lim_{x \to \infty} a^x = 1 \text{ für } a = 1$$
 (1.44)

$$\lim_{x \to \infty} \sqrt{x}a = 1 \text{ für } a > 0 \qquad \qquad \lim_{x \to \infty} \frac{\sin x}{x} = 1$$
 (1.45)

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \tag{1.46}$$

1.1.12 Reihen

Arithmetische Reihen

$$a + (a+d) + (a+2 \cdot d) + \ldots + (a+(n-1) \cdot d) = \frac{n}{2} (2 \cdot a + (n-1) \cdot d)$$
 (1.47)

 $a: {
m Anfangsglied} \quad a_n = a + (n-1) \cdot d: {
m Endglied}$

Geometrische Reihen

$$a + a \cdot q + a \cdot q^{2} + \ldots + a \cdot q^{n-1} = \sum_{k=1}^{n} a \cdot q^{k-1} = \frac{a(q^{n} - 1)}{q - 1}$$
(1.48)

 $a: An fangsglied \quad a_n = a \cdot q^{n-1}: Endglied$

1.1.13 Koordinatensystem

Kartesische Koordinaten

0: Ursprung, Nullpunkt

x: Abzisse

y : Ordinate

Polar Koordinaten

0 : Po

r: Abstand des Punktes P zum Punkt O

φ: Winkel zwischen dem Strahl und der x Achse(Polarachse)

Polarkoordinaten ⇒ Kartesische Koordinaten

$$x = r \cdot \cos \varphi \qquad \qquad y = r \cdot \sin \varphi \tag{1.49}$$

Kartesische Koordinaten ⇒ Polarkoordinaten

$$r = \sqrt{x^2 + y^2} \qquad \qquad \varphi = \tan^{-1}\left(\frac{y}{x}\right) \tag{1.50}$$

Koordinatentransformation(Parallelverschiebung)

$$y = f(x) \Rightarrow \begin{cases} x = u + a \\ y = v + b \end{cases} \Rightarrow v = f(u + a) - b$$
 (1.51)

(a; b): Ursprung des neuen u,v Koordinatensystems, bezogen auf das alte x,y-System.

1.2 Gleichungen

1.2.1 Gleichungen n-ten Grades

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0 = 0 \quad (a_n \neq 0, a_k \in \mathbb{R})$$
 (1.52)

Eigenschaften

- Die Gleichung besitzen maximal n reelle Lösungen.
- Es gibt genau n komplexe Lösungen.
- Für ungerades n gibt es mindestens eine reelle Lösung.
- Komplexe Lösungen treten immer Paarweise auf.
- ullet Es existieren nur Lösungsformeln bis $n \leq 4$. Für n > 4 gibt es nur noch grafische oder numerische Lösungswege.
- Wenn eine Nullstelle bekannt ist kann man die Gleichung um einen Grad verringern, indem man denn zugehörigen Linearfaktor $x-x_1$ abspaltet(Polynome Division).

1.2.2 Lineare Gleichungen

$$a_1 \cdot x + a_0 = 0 \Rightarrow x_1 = -\frac{a_0}{a_1} \quad (a_1 \neq 0)$$
 (1.53)

1.2.3 Quadratische Gleichungen

$$a_2 \cdot x^2 + a_1 \cdot x + a_0 = 0 \quad (a_2 \neq 0)$$
 (1.54)

Normalform mit Lösung

$$x^{2} + p \cdot x + q = 0 \Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^{2} - q}$$
 (1.55)

Überprüfung (Vietascher Wurzelsatz)

$$x_1 + x_2 = -p x_1 \cdot x_2 = q (1.56)$$

 x_1, x_2 : Lösung der quadratischen Gleichung.

1.2.4 Biquadratische Gleichungen

Diese Gleichungen lassen sich mithilfe der Substitution lösen.

$$a \cdot x^4 + b \cdot x^2 + c = 0 u = x^2 (1.57)$$

$$a \cdot u^2 + b \cdot u + c = 0 \qquad \qquad x = \pm \sqrt{u} \tag{1.58}$$

Das u kann mithilfe der Lösungsformel einer quadratischen Gleichung gelöst werden.

1.2.5 Gleichungen höheren Grades

Gleichungen höheren Grades kann man durch graphische oder numerische Ansätze lösen. Hilfreich ist das finden einer Lösung und das abspalten eines Linearfaktor , mithilfe der Polynomendivision oder dem Hornor Schema,von der ursprünglichen Gleichung.

Polynomendivision

$$\frac{f(x)}{x - x_0} = \frac{a_3 \cdot x^3 + a_2 \cdot x^2 + a_1 \cdot x + a_0}{x - x_0} = b_2 \cdot x^2 + b_1 \cdot x + b_0 + r(x)$$
(1.59)

 x_0 ist dabei die erste gefunden Nullstelle. r(x) verschwindet wenn x_0 ein Nullstellen oder eine Lösung von f(x) ist.

$$r(x) = \frac{a_3 \cdot x_0^3 + a_2 \cdot x_0^2 + a_1 \cdot x_0 + a_0}{x - x_0} = \frac{f(x_0)}{x - x_0}$$
(1.60)

Hornor-Schema

	a_3	a_2	a_1	a_0
x_0	a_3	$a_3 \cdot x_0$ $a_2 + a_3 \cdot x_0$	$(a_2 + a_3 \cdot x_0) \cdot x_0$ $a_1 + a_2 \cdot x_0 + a_3 \cdot x_0^2$	$(a_1 + a_2 \cdot x_0 + a_3 \cdot x_0^2) \cdot x_0$ $a_0 + a_1 \cdot x_0 + a_2 \cdot x_0^2 + a_3 \cdot x_0^3$
	b_2	b_1	b_0	$f(x_0)$

1.2.6 Wurzelgleichung

Wurzelgleichungen löst man durch quadrieren oder mit hilfe von Substitution. Bei Wurzelgleichung ist zu beachten das quadrieren keine Aquivalente Umformung ist und das Ergebniss überprüft werden muss.

1.2.7 Ungleichungen

- Beidseitiges Subtrahieren oder Addieren ist möglich
- Die Ungleichung darf mit einer beliebige positiven Zahl multipliziert oder dividiert werden
- Die Ungleichung darf mit einer beliebige negativen Zahl multipliziert oder dividiert werden, wenn man gleichzeitig das Relationszeichen umdreht.

1.2.8 Betragsgleichungen

Betragsgleichungen löst man mithilfe der Fallunterscheidung. Dabei wird einmal davon ausgegangen das der Term inerhalb des Betrags einmal positiv und einmal negativen sein kann.

$$y = |x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & x < 0 \end{cases}$$
 (1.61)

1.2.9 Interpolationspolynome

Entwicklung einer Polynomefunktion anhand von n+1 Kurvenpunkten.

- $\textbf{1. M\"{o}glichkeit} \ \ \text{Aufstellen von} \ n+1 \ \text{Gleichungen und ermitteln der Kurvenfunktion mithilfe des Gaußen Algorithmus}.$
- 2. Möglichkeit Interpolationspolynome von Newton

Interpolationspolynome von Newton

Gegeben sind die Punkte $P_0=(x_0;y_0),\ P_1=(x_1;y_1),\ P_2=(x_2;y_2),\ \ldots,\ P_n=(x_n;y_n),$ damit lautet die Funktion wie folgt:

$$f(x) = a_0 + a_1 \cdot (x - x_0) + a_2 \cdot (x - x_0) \cdot (x - x_1) \tag{1.62}$$

$$+a_3 \cdot (x-x_0) \cdot (x-x_1) \cdot (x-x_2)$$
 (1.63)

$$+ \dots$$
 (1.64)

$$+ a_n \cdot (x - x_0) \cdot \ldots \cdot (x - x_{n-1}) \tag{1.65}$$

Die Koeffizienten $a_0, a_1, a_2, \ldots, a_n$ lassen sich mithilfe des Differentenshema berechnen. Dabei ist $y_0 = a_0$, $[x_0, x_1] = a_1$, $[x_0, x_1, x_2] = a_2$ usw.

Different enshema

k	x_k	y_k	1	2	3	
0	x_0	y_0	r 1			
1	x_1	y_1	$[x_0, x_1]$	$[x_0,x_1,x_2]$	$[x_0, x_1, x_2, x_3]$	
2	x_2	y_2	$[x_1, x_2]$ $[x_2, x_3]$	$[x_1, x_2, x_3]$	$[x_1, x_2, x_3, x_4]$	
3	x_3	y_3		$[x_2,x_3,x_4]$		
	:					
n	x_n	y_n				

Rechenregel für dividierte Differenzen

$$= \frac{y_0 - y_1}{x_0 - x_1} \qquad = \frac{[x_0, x_1] - [x_1, x_2]}{x_0 - x_2}$$

$$[x_1, x_2] = \frac{y_1 - y_2}{x_1 - x_2} \qquad (1.66) \qquad [x_1, x_2, x_3] = \frac{[x_1, x_2] - [x_2, x_3]}{x_1 - x_3} \qquad (1.67)$$

$$= \frac{[x_0, x_1, x_2] - [x_1, x_2, x_3]}{x_0 - x_2}$$

$$[x_1, x_2, x_3, x_4] = \frac{[x_1, x_2, x_3] - [x_2, x_3, x_4]}{x_1 - x_3}$$
(1.68)

1.3 Differntialrechnung

Potenz funktion
$$x^n$$
 $n \cdot x^{n-1}$ (1.69)

Exponentialfunktionen	$e^x \ a^x$	$e^x = \ln a \cdot a^x$	(1.70) (1.71)
Logarithmusfunktionen	$\ln x$ $\log_a x$	$\frac{\frac{1}{x}}{(\ln a) \cdot x}$	(1.72) (1.73)
Trigonometrische Funktionen	$\sin x$ $\cos x$ $\tan x$ $\tan x$	$\cos x \\ -\sin x \\ \frac{1}{\cos^2 x} \\ 1 + \tan^2 x$	(1.74) (1.75) (1.76) (1.77)
Faktorregel	$y = C \cdot f(x)$	$\Rightarrow y' = C \cdot f'(x)$	(1.78)

2 Physik

2.1 Kinematik

2.1.1 Geradlinige Bewegungen (Translation)

$$a(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s} \tag{2.1}$$

$$v(t) = a_0 * t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s} \tag{2.2}$$

$$s(t) = \frac{1}{2}a_0 * t^2 + v_0 * t + s_0 \tag{2.3}$$

2.1.2 Kreisbewegungen(Rotation)

Winkelgrößen

Bahngrößen

$$\alpha(t) = \alpha_0 = \frac{\mathrm{d}\omega}{\mathrm{d}t} = \dot{\omega} = \ddot{\varphi} \tag{2.4}$$

$$\omega(t) = \alpha_0 * t + \omega_0 = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi} \tag{2.5}$$

$$\varphi(t) = \frac{1}{2}\alpha_0 * t^2 + \omega_0 * t + \varphi_0 \tag{2.6}$$

$$a_t(t) = a_0 = \frac{\mathrm{d}v}{\mathrm{d}t} = \dot{v} = \ddot{s} \tag{2.7}$$

$$v(t) = a_0 * t + v_0 = \frac{\mathrm{d}s}{\mathrm{d}t} = \dot{s}$$
 (2.8)

$$s(t) = \frac{1}{2}a_0 * t^2 + v_0 * t + s_0$$
 (2.9)

Umrechnung Winkelgrößen ⇔ Bahngrößen

Winkelgeschwindigkeit, Kreisfrequenz

$$a_t = \alpha \cdot r \tag{2.10}$$

$$\vec{a_t} = \vec{\alpha} \times \vec{r} \tag{2.11}$$

$$\vec{\alpha} = \vec{r} \times \vec{a_t} \tag{2.12}$$

$$r = \omega \cdot r \tag{2.13}$$

$$\vec{v} = \vec{\omega} \times \vec{r}$$
 (2.14)
 $\vec{\omega} = \vec{r} \times \vec{v}$ (2.15)

$$\vec{\omega} = \vec{r} \times \vec{v}$$
 (2.15)
 $s = \varphi \cdot r$ (2.16)

2.
$$\sigma$$

$$\omega = \frac{2}{T} \tag{2.17}$$

$$= 2 \cdot \pi \cdot n \tag{2.18}$$

$$= 2 \cdot \pi \cdot f \tag{2.19}$$

2 Physik

Bahngeschwindigkeit

Radialbeschleunigung

$$v = \frac{2 \cdot \pi \cdot r}{T} \tag{2.20}$$

$$= \omega \cdot r \tag{2.21}$$

$$a_r = \frac{v^2}{r} \tag{2.22}$$

$$= v \cdot \omega \tag{2.23}$$

$$=\omega^2 \cdot r \tag{2.24}$$

$$N = \frac{\omega_0 \cdot t}{2 \cdot \pi} + \frac{1}{2} \cdot \frac{\alpha}{2 \cdot \pi} \cdot t^2 \tag{2.25}$$

$$= n_0 \cdot t + \frac{\alpha}{4 \cdot \pi} \cdot t^2 \tag{2.26}$$

Umdrehungen

2.2 Dynamik

Kraft

Arbeit

2.2.1 Geradlinig(Translation)

 $\vec{F} = m \cdot \vec{a}$ (2.27)

$$\vec{F}_{\mathrm{Tr}} = -m \cdot \vec{a} \tag{2.28}$$

Impuls $\vec{p} = m \cdot \vec{v}$ (2.29)

$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = m \cdot \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} + \vec{v} \cdot \frac{\mathrm{d}m}{\mathrm{d}t}$$
 (2.30)

Kraftstoß
$$\Delta \vec{p} = \vec{p}_2 - \vec{p}_1 = \int_{\vec{p}_2}^{\vec{p}_1} dp = \int_0^t \vec{F} dt \qquad (2.31)$$

$$W = -\int_{\vec{s}_{1}}^{\vec{s}_{2}} \vec{F}_{Tr} \circ d\vec{s}$$
 (2.32)

$$= \int_{\vec{v}_0}^{\vec{v}_1} m \vec{v} \circ d\vec{v} = \frac{1}{2} m \left(v_1^2 - v_0^2 \right)$$
 (2.33)

kin. Energie
$$E_{\rm kin} = \frac{1}{2} m v^2 \tag{2.34}$$

Hubarbeit
$$W_{\rm hub} = mgh$$
 (2.35)

Leistung
$$P = \vec{F} \circ \vec{v} = \frac{\mathrm{d}W}{\mathrm{d}t} = \dot{W} \tag{2.36}$$

(2.45)

2.2.2 Drehbewegung (Rotation)

 ${\bf Massentr\"{a}gheits moment}$

$$J = m \cdot r^2 \tag{2.37}$$

Drehimpuls

$$\vec{L} = \vec{r} \times \vec{p} \tag{2.38}$$

$$= J \cdot \vec{\omega} \tag{2.39}$$

Drehmoment

$$\vec{M} = \vec{r} \times \vec{F} = J\vec{\alpha} = \dot{\vec{L}} \tag{2.40}$$

kinetische Energie

$$E_{kin} = \frac{1}{2}J\omega^2 \tag{2.41}$$

Arbeit

$$\Delta W = \int_{\varphi_0}^{\varphi_1} \vec{M} \circ \vec{e_\omega} \, \mathrm{d}\varphi = \int_{\vec{\omega}_0}^{\vec{\omega}_1} J \vec{\omega} \, \mathrm{d}\vec{\omega}$$
 (2.42)

$$=\frac{1}{2}J\left(\omega_1^2-\omega_0^2\right) \tag{2.43}$$

$$F_{zp} = -m \cdot \omega^2 \cdot r$$

$$= -m \cdot v^2 \cdot \frac{\vec{e_r}}{r}$$
(2.44)

2.2.3 Schiefe Ebene

Kräfte

$$\vec{F}_N = \vec{F}_G \cos \alpha \tag{2.46}$$

$$\vec{F}_{H} = \vec{F}_{G} \sin \alpha \tag{2.47}$$

2.2.4 Reibung

Reibungskräfte

$$F_R = \mu \cdot F_N \tag{2.48}$$

2.2.5 Feder

Hookesches Gesetz k = D: Federkonstante

$$F = -kx = Dx (2.49)$$

Spannungsenergie

$$W = \int_{x_{\min}}^{x_{\max}} F \, \mathrm{d}x = \int_{x_{\min}}^{x_{\max}} kx \, \mathrm{d}x \tag{2.50}$$

$$= \frac{1}{2} \cdot k \cdot \left(x_{\text{max}}^2 - x_{\text{min}}^2 \right) \tag{2.51}$$

2.2.6 Elastischer Stoß

Energieerhaltung

Energie vor den Stoß = Energie nach den Stoß

$$\sum E_{\rm kin} = \sum E'_{\rm kin} \tag{2.52}$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}' \tag{2.53}$$

Zentraler, elastischer Stoß (Energie und Impuls)

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$
 (2.54)

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2' \tag{2.55}$$

Zentraler, elastischer Stoß (Geschwindigkeit nach dem Stoß)

$$v_2' = \frac{2m_1}{m_1 + m_2} v_1 + \frac{m_2 - m_1}{m_1 + m_2} v_2 \tag{2.56}$$

$$v_1' = \frac{2m_2}{m_1 + m_2}v_2 + \frac{m_1 - m_2}{m_1 + m_2}v_1 \tag{2.57}$$

2.2.7 Unelastischer Stoß

Energieerhaltung

Energie vor den Stoß = Energie nach den Stoß + Arbeit

$$\sum E_{\rm kin} = \sum E'_{\rm kin} + \Delta W \tag{2.58}$$

Impulserhaltung

Impuls vor den Stoß = Impuls nach den Stoß

$$\sum m\vec{v} = \sum m\vec{v}' \tag{2.59}$$

Total unelastischer Stoß (Energie und Impuls)

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}(m_1 + m_2)v'^2 + \Delta W$$
 (2.60)

$$m_1 v_1 + m_2 v_2 = (m_1 + m_2) v'$$
 (2.61)

Zentraler, elastischer Stoß (Geschwindigkeit nach dem Stoß und Energieverlust)

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$\Delta W = \frac{m_1 \cdot m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$$
(2.62)

$$\Delta W = \frac{m_1 \cdot m_2}{2(m_1 + m_2)} (v_1 - v_2)^2 \tag{2.63}$$

2.2.8 Drehimpulse

Drehimpulserhaltungssatz

$$\sum \vec{L} = \sum \vec{L}' \tag{2.65}$$

Kupplung Zweier Drehkörper (Winkelgeschwindigkeit nach dem Kuppeln und Energieverlust)

$$\vec{\omega}' = \frac{J_0 \vec{\omega_0} + J_1 \vec{\omega_1}}{J_1 + J_2} \tag{2.66}$$

$$\Delta W = \frac{J_0 \cdot J_1}{2 \left(J_0 + J_1 \right)} \left(\omega_0 - \omega_1 \right)^2 \tag{2.67}$$

2.2.9 Rotierendes Bezugssystem

$$\vec{F}_Z = F_r \cdot \vec{e}_r = -m\vec{\omega} \times (\vec{\omega} \times \vec{r}) = -m\vec{\omega} \times \vec{v}$$
 (2.68)

Zentrifugalkraft

$$F_Z = -m\frac{v^2}{r} = -m\omega^2 r \tag{2.69}$$

$$\vec{F}_C = -2m\vec{\omega} \times \vec{v} \tag{2.70}$$

3 Elektrotechnik

3.1 Grundgrößen

Elementarladung

ele. Ladung

ele. Strom

ele. Stromdichte

ele. Potenzial

ele. Spannung

ele. Widerstand

ele. Leitwert

$$e \approx 1, 6 \cdot 10^{-19} C$$
 (3.1)

$$[Q] = 1C = 1As \tag{3.2}$$

$$Q = n \cdot e \tag{3.3}$$

$$[I] = 1A \tag{3.4}$$

$$i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t} \tag{3.5}$$

$$[J] = 1 \frac{A}{mm^2} \tag{3.6}$$

$$\vec{J} = \frac{I}{\vec{A}} \tag{3.7}$$

$$[\varphi] = 1V = 1\frac{Nm}{As} = 1\frac{kgm^2}{As^3}$$
 (3.8)

$$\varphi = \frac{W}{Q} \tag{3.9}$$

$$[U] = 1V \tag{3.10}$$

$$U_{AB} = \varphi_a - \varphi_b \tag{3.11}$$

$$[R] = 1\Omega = 1\frac{V}{A} \tag{3.12}$$

$$R = \frac{U}{I} \tag{3.13}$$

$$= \rho \frac{l}{A} = \frac{1}{\kappa} \frac{l}{A} \tag{3.14}$$

$$[G] = 1S = 1\frac{A}{V} \tag{3.15}$$

$$G = \frac{I}{U} \tag{3.16}$$

$$=\frac{1}{R}\tag{3.17}$$

$$= \kappa \frac{A}{l} = \frac{1}{\rho} \frac{A}{l} \tag{3.18}$$

3 Elektrotechnik

Temperaturabhängigkeit von Widerstand

$$R_2 = R_1 \cdot \left(1 + \alpha \left(\vartheta_2 - \vartheta_1\right) + \beta \left(\vartheta_2 - \vartheta_1\right)^2\right) \tag{3.19}$$

Leistung

$$[P] = 1W = 1VA$$
 (3.20)
 $P = u(t) \cdot i(t)$ (3.21)

$$P = u(t) \cdot i(t) \tag{3}$$

Mittlere Leistung

$$P = \frac{1}{T} \int_0^T u(t) \cdot i(t) \, \mathrm{d}t \tag{3.22} \label{eq:3.22}$$

3.2 Lineare Quellen

Lineare Spanungsquelle

$$U = U_q - R_i \cdot I \tag{3.23}$$

$$I_K = \frac{U_q}{R_i} \tag{3.24}$$

Lineare Stromquelle

$$I = I_q - \frac{U}{R_i} \tag{3.25}$$

$$U_l = I_q \cdot R_i \tag{3.26}$$

3.3 Kirchhoffsche Gesetze

Knotenpunktsatz

$$\sum_{i=1}^{n} I_i = 0 (3.27)$$

Maschensatz

$$\sum_{i=1}^{n} U_i = 0 (3.28)$$