k-means

Irma Eunice Martínez de la Cruz

2022-05-26

K-MEANS

Cargar la matriz de datos "state.x77"

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformacion de datos

1.- Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo k-means

1.- Separación de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarizacion univariante.

```
X.s<-scale(X)</pre>
```

3.- Algoritmo k-medias (3 grupos)

nstart=cantidad de subconjuntos aleatorios que se escogen para realizar los calculos de algoritmo.

```
Kmeans.3<-kmeans(X.s, 3, nstart=25)</pre>
```

Centroides

Kmeans.3\$centers

```
## Log-Population
                Income Log-Illiteracy Life Exp
                                           Murder
                                                   HS Grad
## 1
                        1.31921387 -1.0778757 1.10983501 -1.3566922
     0.2360549 -1.2266128
## 2
      0.5693805 0.5486843
                        ## 3
      -0.7900149 0.2080926
      Frost Log-Area
## 1 -0.7719510 0.1991243
## 2 -0.3291597 -0.4878988
## 3 0.8803670 0.4093602
```

Cluster de pertenencia

Kmeans.3\$cluster

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	3	2	1	2
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	3	2	2	2	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	3	2	2	3
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	3	1	1	3	2
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	2	3	1	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	3	3	3	2
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	2	1	3	2
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	2	3	2	2	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	3	1	1	3	3
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	2	1	3	3

4.- SCDG

```
SCDG<-sum(Kmeans.3$withinss)
SCDG
```

[1] 203.2068

5.- Clusters

```
cl.kmeans<-Kmeans.3$cluster
cl.kmeans</pre>
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	3	2	1	2
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	3	2	2	2	1

##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	3	2	2	3
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	3	1	1	3	2
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	2	2	3	1	2
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	3	3	3	3	2
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	2	1	3	2
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	2	3	2	2	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	3	1	1	3	3
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	2	1	3	3

6.- Scatter plot con la division de grupos obtenidos (se utiliza la matriz de datos centrados).

```
col.cluster<-c("green", "yellow", "orange")[cl.kmeans]
pairs(X.s, col=col.cluster, main="k-means", pch=19)</pre>
```

k-means

Visualizacion con las dos componentes principales

```
install.packages("cluster")
library(cluster)
```

Dos primeras componentes principales

These two components explain 62.5 % of the point variability.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.kmeans<-silhouette(cl.kmeans, dist.Euc)</pre>
```

2.- Generacion del grafico

Silhouette for k-means

Average silhouette width: 0.28

EJERCICIO

SE REPLICA EL SCRIPT PERO SE VA A SUGERIRA UN NÚMERO DE CLUSTERS DIFERENTE A 3 Y 1

INCLUIR LA INTERPRETACION DEL SILHOUETTE

#_____ K-MEANS_____

Cargar la matriz de datos "state.x77"

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformacion de datos

1.- Transformacion de las variables x5 y x8 con la funcion de logaritmo.

```
X[,5]<-log(X[,5])
colnames(X)[5]<-"Log-Murder"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Metodo k-means

1.- Separación de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarizacion univariante.

```
X.s<-scale(X)</pre>
```

3.- Algoritmo k-medias (2 grupos)

nstart=cantidad de subconjuntos aleatorios que se escogen para realizar los calculos de algoritmo.

```
Kmeans.2<-kmeans(X.s, 2, nstart=25)</pre>
```

Centroides

```
Kmeans.2$centers
```

```
## Population Income Illiteracy Life Exp Log-Murder HS Grad
## 1 0.002728194 0.3862098 -0.5320231 0.3982013 -0.3814467 0.4680664
## 2 -0.006365787 -0.9011561 1.2413873 -0.9291364 0.8900424 -1.0921550
## Frost Log-Area
## 1 0.3759077 -0.09618613
## 2 -0.8771179 0.22443430
```

Cluster de pertenencia

Kmeans.2\$cluster

##	Alabama	Alaska	Arizona	Arkansas	California
##	2	1	2	2	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	1	1	1	2	2
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	1	1	1	1	1
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	1	2	2	1	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	1	1	1	2	1
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	1	1	1	1	1
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	2	1	2	1	1
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	1	1	1	1	2
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	1	2	2	1	1
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	1	2	1	1

4.- SCDG

```
SCDG<-sum(Kmeans.2$withinss)
SCDG
```

[1] 262.9755

5.- Clusters

```
cl.kmeans.2$cluster
cl.kmeans
```

##	Alabama	Alaska	Arizona	Arkansas	California
##	2	1	2	2	1
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	1	1	1	2	2
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	1	1	1	1	1
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	1	2	2	1	1
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	1	1	1	2	1
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	1	1	1	1	1
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	2	1	2	1	1
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	1	1	1	1	2
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	1	2	2	1	1
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming
##	2	1	2	1	1

6.- Scatter plot con la division de grupos obtenidos (se utiliza la matriz de datos centrados).

```
col.cluster<-c("blue", "pink")[cl.kmeans]
pairs(X.s, col=col.cluster, main="k-means", pch=15)</pre>
```

k-means

Visualizacion con las dos componentes principales

Dos primeras componentes principales

These two components explain 62.92 % of the point variability.

Silhouette

Representacion grafica de la eficacia de clasificacion de una observacion dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.kmeans<-silhouette(cl.kmeans, dist.Euc)</pre>
```

2.- Generacion del grafico

Silhouette for k-means

Average silhouette width: 0.31