A1: Eine Zahl $a \in \mathbb{R}$ heißt rational, wenn sie sich als Bruch $a = \frac{p}{q}$ mit ganzzahligen p, q und $q \neq 0$ darstellen lässt. Gegeben seien eine feste rationale Zahl $a \neq 0$ und eine beliebige reelle Zahl b. Folgender Satz soll untersucht werden: Ist b nicht rational, so ist auch $a \cdot b$ nicht rational.

- a. Geben Sie Voraussetzung und Behauptung des Satzes an.
- b. Bilden Sie die Kontraposition.
- c. Beweisen Sie den Satz.
- a. Voraussetzung: b ist nicht rational, Behauptung: a * b ist nicht rational
- b. Ist a * b rational, so ist auch b rational

C. Vir reign b.

a. b rational =>
$$\exists p, q \in \mathbb{Z}$$
: $a \cdot b = \frac{p}{q}$

nech Vorametry give: a rational => $\exists p, q \in \mathbb{Z}$: $a = \frac{p}{q}$
 $\Rightarrow b = \frac{p \cdot q}{q \cdot p} = \frac{p \cdot q}{q \cdot p} = b$ to rational