Projet 4 : Anticipez les besoins en consommation de bâtiments

Problématique

Problématique : Prédire les émissions de CO2 et la consommation totale d'énergie de bâtiments non destinés à l'habitation

Évaluer l'intérêt de l' "ENERGY STAR Score" pour la prédiction d'émissions

Données des Bâtiments à Seattle

- Donnée collecté par la ville sur la consommation en énergie des bâtiments résidentiel et non résidentiel
- 3376 lignes sur 46 colonnes
- Contient des informations telles que le GFA (Gross Floor Area), la position géographique, la consommation d'énergie des bâtiments, le type de bâtiments...
- Certaines colonnes ne sont presque pas renseignées
- L'Énergie Star Score n'est pas renseignée pour tous les bâtiments

Données disponibles

Préparation des données

 On commence par se débarrasser des colonnes qui ne sont pas remplis à au moins 50 %

Création de la distance Haversine

- On a la latitude et la longitude de chaque bâtiment, mais cette information n'est pas très utile en l'état.
- Avec la longitude et la latitude, on calcule la distance harversine entre le centre de Seattle et le bâtiment.

Sélection des colonnes et des lignes

- On se débarrasse des colonnes qui ne sont pas pertinentes pour répondre à la problématique
- Par exemple, l'adresse, le nom de la propriété, l'ID...
- On se débarrasse également des colonnes qui sont redondantes.
- Par exemple, la même information dans une unité différente pour les colonnes numériques.
- A l'aide de la colonne BuildingType, on se débarrasse des lignes contenant des bâtiments résidentiels.

Colonnes catégoriel

- On rassemble certaines catégories dans les colonnes catégorielles pour éviter de se retrouver avec un trop grand nombre de catégories.
- Par exemple : K-12 School et University ont été regroupé dans la catégorie School.
- On transforme les colonnes 'numériques' qui correspondent à des catégories identifiées par des nombres.

- A l'aide d'un diagramme de corrélation, on se débarrasse des colonnes numériques qui sont trop corrélées.
- On se débarrasse des colonnes qui ont plus de 70 % de corrélations (on en garde une et on supprime les autres)

Par exemple:

- Electricity(kwH) et Electricity(kBtu) sont la même information dans différentes unités (on remarque d'ailleurs une corrélation de 1)
- PropretyGFABuilding(s) et NumberofBuildings ont une corrélation de 0,8. C'est trop élevés. On va se débarrasser de l'un d'entre eux.

One Hot Encoding et sélection des features

- On fait le One Hot Encoding des colonnes catégoriel
- On sélectionne les colonnes qui sont suffisamment corrélées avec nos deux targets (SiteEnergyUse(kBtu) et TotalGHGEmissions) tout en évitant celles qui sont trop corrélés (entre 0.05 et 0.82)
- On supprime également les colonnes de la même nature que la target.

Modélisation

- On va chercher un modèle de machine learning qui nous permettra de créer un modèle capable de faire une prédire nos targets (SiteEnergyUse(kBtu) et TotalGHGEmissions) à partir de certaines informations que nous avons sélectionné.
- On divisera notre dataframe en un set d'apprentissage, et un set de test. On voudra éviter que notre modèle overfit, c'est-à-dire qu'il soit trop performant avec le set d'entraînement, par rapport à la validation croisée.
- On testera construira le modèle avec et sans l'EnergyStarScore pour évaluer son utilité.

Modélisation

 On entraînera notre modèle avec le log de notre target, afin d'améliorer ses performances.

Prédiction du SiteEnergyUse(kBtu)

	model	best_params	r2_score_cv	r2_score_train	r2_score_test	mean_res	std_res	time (s)	commentaire
0	Baseline			0.000000	-0.002380	0.058362	1.196231		
1	LinearRegression()	{}	0.55914	0.582693	0.547749	0.040892	0.803420	1.64776	
2	LinearRegression()	0	0.511942	0.533006	0.457034	0.007626	0.881424	1.168745	No energyStar
3	Ridge()	{'alpha': 0.001}	0.55914	0.582693	0.547749	0.040892	0.803420	1.571679	
4	Ridge()	{'alpha': 0.001}	0.511942	0.533006	0.457034	0.007627	0.881424	0.944736	No energyStar
5	Lasso()	{'alpha': 0.02353535353535353534}	0.562294	0.578363	0.542502	0.038072	0.808217	0.178465	
6	Lasso()	{'alpha': 0.02}	0.513528	0.529794	0.455056	0.007631	0.883029	0.17575	No energyStar
7	SVR()	{'kernel': 'rbf'}	0.66407	0.756774	0.636263	0.019010	0.721204	0.235083	
8	SVR()	{"kernel": 'rbf'}	0.60661	0.679639	0.549604	-0.041988	0.801710	0.25088	No energyStar
9	RandomForestRegressor()	{'max_depth': 3, 'max_features': 'auto', 'min_samples_leaf': 6, 'min_samples_split': 10, 'n_estimators': 50}	0.701219	0.737772	0.668814	0.016234	0.688225	0.871226	
10	RandomForestRegressor()	{'max_depth': 3, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 12, 'n_estimators': 47}	0.674035	0.706732	0.621889	-0.002926	0.735565	0.75797	No energyStar
11	Gradient Boosting Regressor()	{'n_estimators': 86}	0.785376	0.888046	0.790105	0.055136	0.545264	1.565155	
12	GradientBoostingRegressor()	{'n_estimators': 52}	0.702849	0.777588	0.650263	0.005903	0.707409	1.478229	No energyStar

Prédiction du SiteEnergyUse(kBtu)

- Le Gradient Boosting semble être le plus performant, mais il overfit beaucoup trop.
- On choisit le RandomForestRegressor car il a de bonne performance et overfit beaucoup moins.
- On regarde la distribution des résidus et on plot la prédiction contre les valeurs réelles, pour vérifier qu'il n'y a pas de biais.
- On va regarder l'importance de chaque feature également.

Prédiction du SiteEnergyUse(kBtu)

Moyenne des résidus : 0.01

Feature importance : SiteEnergyUse(kBtu)

Prédiction du TotalGHGEmissions

	model	best_params	r2_score_cv	r2_score_train	r2_score_test	mean_res	std_res	time (s)	commentaire
0	Baseline			-2.220446e-16	-0.059685	0.346245	1.417269		
1	LinearRegression()	0	0.379778	3.997010e-01	0.342383	0.185732	1.134208	1.609277	
2	LinearRegression()	0	0.349053	3.680387e-01	0.274833	0.174368	1.194237	1.153278	No energyStar
3	Ridge()	{'alpha': 24.569164629827903}	0.382231	3.986010e-01	0.330802	0.197900	1.142375	1.497459	
4	Ridge()	{'alpha': 26.3281546564802}	0.351452	3.669900e-01	0.265386	0.187263	1.200215	0.971655	No energyStar
5	Lasso()	{'alpha': 0.03}	0.385601	3.956489e-01	0.321407	0.204792	1.149399	0.192249	
6	Lasso()	{'alpha': 0.03}	0.354282	3.641034e-01	0.258518	0.195018	1.204719	0.187507	No energyStar
7	SVR()	{'kernel': 'rbf'}	0.426938	5.218869e-01	0.360859	0.276636	1.098764	0.241549	
8	SVR()	{"kernel": 'rbf'}	0.395403	4.730933e-01	0.316681	0.231835	1.148391	0.240184	No energyStar
9	RandomForestRegressor()	{'max_depth': 3, 'max_features': 'auto', 'min_samples_leaf': 3, 'min_samples_split': 6, 'n_estimators': 25}	0.479187	5.177816e-01	0.417548	0.152828	1.070788	0.438773	
10	RandomForestRegressor()	{'max_depth': 3, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 6, 'n_estimators': 20}	0.445103	4.831506e-01	0.398014	0.169672	1.086458	0.346658	No energyStar
11	GradientBoostingRegressor()	{'max_depth': 2, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 6, 'n_estimators': 30}	0.507497	5.577698e-01	0.473657	0.184281	1.011573	0.235997	
12	GradientBoostingRegressor()	{'max_depth': 2, 'max_features': 'auto', 'min_samples_leaf': 3, 'min_samples_split': 5, 'n_estimators': 30}	0.465437	5.076807e-01	0.414031	0.183172	1.069324	0.229073	No energyStar

Prédiction du TotalGHGEmissions

- Cette fois, on choisit le Gradiant Boosting, il possède les meilleures performances et n'overfit pas trop.
- On regarde la distribution des résidus et on plot la prédiction contre les valeurs réelles, pour vérifier qu'il n'y a pas de biais.
- On va regarder l'importance de chaque feature également.

Prédiction du TotalGHGEmissions

Moyenne des résidus : 0.18

Feature importance: TotalGHGEmissions

EnergyStarScore

- Ne pas utiliser l'EnergyStarScore donne un modèle moins performant systématiquement.
- On remarque une amélioration d'à peu prês 4% du score à chaque fois.
- Il est donc utile de continuer à le calculer pour les futures améliorer la précision des prédictions.