(19) World Intellectual Property Organization International Bureau

I BERKE LEKTOO IN TITUK TOKKO ISE, KA KEESK SIIIN OSIO JERKA ISIN ISIN ETIIDA IRIN III RAN

(43) International Publication Date 3 July 2003 (03.07.2003)

(10) International Publication Number WO 03/055231 A1

(51) International Patent Classification ² : G02B 26/10, 5/20	H04N 9/31,	(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT	/IB02/05226	CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC.
(22) International Filing Date: 5 December 2002	(05.12.2002)	LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
(25) Filing Language:	English	SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.
(26) Publication Language:	English	

10/028,407 21 December 2001 (21.12.2001) US (71) Applicant: KONINKLIJKE PHILIPS ELECTRON-ICS N.V. [NL/NL]; Groenewondseweg 1, NL-5621 BA

(30) Priority Data:

Eindhoven (NL).

(84) Designated States (regional): ARIPO putent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, HE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW. MI., MR. NE. SN. TD. TG).

(72) Inventors: JANSSEN, Peter, J., M.; Prof. Holstlaan 6, NL-The Netherlainds Eindhoven (NL). SHIMIZU, Jeffrey, A.; Prof. Holstlaan 6, NL-5656 AA Bindhoven (NL).

Deciaration under Rule 4.17:

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for the following designation CN

(74) Agent: VAN DEN HOOVEN, Jan; Internationaal Octroofbureau B.V., Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).

Published:

with international search report

[Continued on next page]

(54) Title: COLOR PROJECTION SYSTEM INCLUDING ROTATING HOLOGRAPHIC COLOR FILTER ELEMENTS

(57) Abstract: A multi-stripe scrolling apparatus has a beam splitter that internally reflects white light onto a movable array of bolographic elements that respectively emit three different color beams that are focused onto a light valve, causing bands of the three colors to sequentially scroll across the light valve.

WO 03/055231 A1 IMPERIMENTAL METERS OF THE PROPERTY OF THE PRO

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

COLOR PROJECTION SYSTEM INCLUDING ROTATING HOLOGRAPHIC COLOR FILTER ELEMENTS

The invention relates to a color projection device and a method of causing alternate bands of first, second and third color light to scroll across the surface of a light valve.

5

20

Color projection display systems exist in which a white light source is separated into red, blue, and green sub-beams for separate modulation by corresponding color components of an incoming display signal, and then the modulated subbeams are recombined into a full color display for projection onto a viewing screen. Modulation of the subbeams is commonly carried out using three separate electro-optical light modulators such as liquid crystal display (LCD) panels, one for each of the three subbeams.

However, in one type of color projection system the three subbeams are all modulated by a single LCD panel. This is accomplished by shaping the subbeams into bandshaped cross-sections, and scrolling the bands sequentially across the LCD panel (also referred to as a light valve), while synchronously addressing those portions of the panel that are illuminated by the bands with the corresponding display signal information. The simultaneous use of a substantial portion of the available red, blue and green light through a single light valve panel provides optical efficiencies comparable to that of three-panel systems employing the same types of light-valve panels. Using only a single panel eliminates the need to mechanically converge different color images, formed on different panels, and reduces system cost.

A compact apparatus for generating a scrolling color stripe pattern is disclosed in U.S Patent No. 6,266,105. That apparatus employs a drum covered with dichroic elements that selectively reflect red, green and blue color bands. The reflected light is separated from the incoming light by means of a polarizing beam-splitter and quarter wave plate. Unfortunately however, neither the dichroics nor the optics can be produced at low cost.

It is an object of the invention to provide a projection display device which enables the application of low cost components and does not rely on polarized light.

This object is achieved by an projection display device in accordance with the invention as specified in claim 1.

5

10

15

25

30

Our new invention does not use expensive elements and does not rely on polarized light. It is based on low-cost technology and can also be used with light valves that don't use polarized light, e.g. tilting mirror array or DMD. Generally, multistripe scrolling according to the invention includes using holographic elements to isolate light beams of three colors, e.g., red, green, and blue, from white light, and causing them to scroll sequentially across a light valve.

In one aspect of the invention, a multi-stripe scrolling apparatus comprises a white light source; a lens system including a total internal reflection beam splitter having an internal surface exhibiting a critical angle of total internal reflection; a movable array of holographic elements including a plurality of first holographic elements for producing a first color, a plurality of second holographic elements for producing a second color substantially different from the first color, and a plurality of third holographic elements for producing a third color substantially different from the first and second colors; and a light valve. Each of the first, second, and third holographic elements is configured such that white light arriving at a respective one of the first, second, and third holographic elements from a respective arrival direction produces a beam of substantially monocolor light of a respective one of the first, second, and third colors, that leaves the respective one of the first, second, and third holographic elements in a respective departure direction that differs by a predetermined angle from the respective arrival direction. The predetermined angle is the same for the first holographic elements as for the second and third holographic elements. The white light source, lens system including beam splitter, movable array, and light valve are physically disposed relative to one another such that light from the white light source enters the beam splitter and impinges at a angle of incidence to the internal surface that is greater than the critical angle, so that the light from the white light source is reflected from the internal surface and is directed to the respective ones of the first, second, and third holographic elements, and such that the a beams of substantially monocolor light leaving respective first, second, and third holographic elements reach the beam splitter and impinge at a second angle of incidence to the internal surface that is less than the critical angle, so that the beams of first, second, and third color light pass through the internal surface to form alternating bands

15

25

30

of light of the first, second, and third colors that scroll across the surface of the light valve when the movable array is moving.

It is a further object of the invention to provide a method of causing alternate bands of first, second and third color light to scroll across the surface of a light valve which is able to be performed by applying low cost components and does not rely on polarized light.

This object is achieved by a method in accordance with the invention as specified in claim 7.

In this aspect of the invention, a method of causing alternating bands of first, second, and third color light to scroll across the surface of a light valve, comprises reflecting a collimated beam of light off an internal surface of a total internal reflection beam splitter; directing the reflected light onto an array of holographic elements including at least a first, a second, and a third holographic element; emitting a first color light beam from the first holographic element; cmitting a second color light beam from the second holographic element, the second color being substantially different from the first color; emitting a third color light beam from the third holographic element, the third color being substantially different from both of the first and second colors; transmitting the first, second, and third color light beams through the internal surface of the beam splitter; directing the first, second, and third color light beams transmitted through the internal surface to form alternating bands of light of the first color, the second color, and third color, respectively, on the light valve; and moving the array of holographic elements so that the alternating bands of first, second, and third color light scroll across the surface of the light valve.

Further advantageous embodiments are specified in the dependent claims.

These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described herein after.

In the drawing:

FIG. 1 is a cross-sectional view of one possible embodiment of multi-stripe color scrolling according to the invention;

FIG. 2 is a cross-sectional view of a total internal reflection beam splitter according to the embodiment of FIG. 1;

FIG. 3 is a cross-sectional view of a portion of a rotatable drum showing three sample holographic elements disposed on its circumference;

FIG. 4 is a cross-sectional view of a second possible embodiment of multistripe color scrolling according to the invention; and

FIG. 5 is a cross-sectional view of a third possible embodiment of multi-stripe color scrolling according to the invention.

5

10

20

FIG. 1 illustrates a multistripe scrolling color projection display device according to one possible embodiment of the invention. A lamp includes a white light source 1, in this embodiment an incandescent bulb 1, a mirror 3, and a source mask 5 having a source aperture 7. A lens system 9 includes a collimating lens 11, a Total Internal Reflection (TIR) beam splitter 13 having an internal surface 15 and an exit surface 17, a converging lens 19, a focusing lens 21, an exit mask 23 having an exit aperture 25, and a correcting lens 27. A movable array 29 of diffractive, i.e. holographic elements includes a rotatable drum 29 having repeating sequences of first, second, and third color (e.g., red, green, and blue) 15 emitting holographic elements 30, 32, 34. A light valve 36 includes a single liquid crystal display (LCD) panel 36.

In operation, a beam of collimated white light from the white light source 1 is directed into the light valve 36. It should be noted that for the purposes of this application "white light source" and in general "white light" signifies any multi-wavelength light that includes a range of wavelengths broad enough (in difference between smallest and largest wavelength) to encompass a sizable portion of the visible light range, and preferably including red, green, and blue wavelengths. Therefore a fluorescent or other tri-wavelength light source including exactly three wavelengths (red, green, and blue for example), a highintensity incandescent bulb, and even an ordinary household lightbulb would qualify as a "white light source."

White light from the white light source (1) is reflected and focused by the mirror 3 through the source aperture 7 in the source mask 5. Converging after passing through the source aperture 7, the white light is collimated by the collimating lens 11 and enters the lens system 9.

30

In the lens system 9, the collimated white light enters the TIR beam splitter 13 and impinges on the internal surface 15 of the TIR beam splitter 13. The internal surface 15 has a critical angle α for internal reflection. This angle is measured relative to the normal (perpendicular) of the internal surface 15. The angular deviation from the normal to the internal surface 15 of light impinging on the internal surface 15 is called its angle of

10

20

25

30

incidence. Light having an angle of incidence with the internal surface 15 no greater than the critical angle α will mostly pass through the internal surface 15. Light having an angle of incidence greater than the critical angle α will be totally reflected. This is known as total internal reflection, or TIR.

As can be seen more clearly in FIG. 2, the collimated white light has an angle of incidence β with the internal surface 15 that is greater than the critical angle α , and so is totally reflected. Light then exits the beam splitter 13 through the exit surface 17 (at an angle of incidence less than the critical angle α), passes through the converging lens 19, and strikes the holographic elements 30, 32, 34 of the rotatable drum 29. As can be seen in FIGS. 1 and 3, the converging lens 19 causes the collimated light to converge somewhat so that it has the same angle of incidence γ at different holographic elements 30, 32, 34 around the circumference 38 of the drum 29.

The different types of holographic elements 30, 32, 34 have correspondingly different colors of interest. For example, red for first holographic elements 30, green for second holographic elements 32, and blue for third holographic elements 34. Each holographic element is configured so that if white light enters at the angle of incidence γ , its respective color of interest is emitted at an angle that is the same for all the holographic elements 30, 32, 34. For example, in the embodiment shown in FIG. 3, white light enters each of the first holographic elements 30, second holographic elements 32, and third holographic elements 34 at the angle of incidence γ and beams of red, green, and blue light all exit the first holographic elements 30, second holographic elements 32, and third holographic elements 34, respectively, at a direction directly radially from the center of the drum 29 (in this particular embodiment).

These red, green, and blue colored beams pass through the converging lens 19, which re-collimates them, and they once again pass into the beam splitter 13. However, this time when they reach the internal surface 15 they are at an angle of incidence δ less than the critical angle α ; so they pass through the internal surface 15 of the beam splitter 13. The focusing lens 21 focuses the beams through the exit aperture 25 in the exit mask 23. The beams pass through the correcting lens 27, and onto the light valve 36 in a pattern of corresponding red, green, and blue bands on the surface of the light valve 36. It will be understood that as the rotatable drum 29 rotates, these bands will be caused to scroll across the surface of the light valve 36.

Many different variations of the invention or possible. For example, many arrangements can be envisioned for causing the holographic elements 30, 32, 34 to cycle

WO 03/055231 PCT/IB02/05226

6

across the white light field, and thus cause the colored beams they produce to scroll across light valve 36. For example, rotating disks 40, 42 with spiral 44 (FIG. 4), radial 46 (FIG. 5), or other patterns of holographic elements can be used. Or, a revolving belt or other means may be used to sequence the holographic elements across the white light field. Also,

different variations of lens systems can be envisioned. In some embodiments the correcting lens 27 (and/or other elements of the lens system) may not be necessary.

Other embodiments, variations of embodiments, and equivalents, as well as other aspects, objects, and advantages of the invention, will be apparent to those skilled in the art and can be obtained from a study of the drawings, the disclosure, and the appended claims.

10

CLAIMS:

5

10

20

A projection display device comprising:

a white light source;

a lens system including a total internal reflection beam splitter having an internal surface exhibiting a critical angle of total internal reflection;

a movable array of holographic elements including a plurality of first holographic elements for producing a first color, a plurality of second holographic elements for producing a second color substantially different from the first color, and a plurality of third holographic elements for producing a third color substantially different from the first and second colors; and

a light valve,

each of the first, second, and third holographic elements being configured such that white light arriving at a respective one of the first, second, and third holographic elements from a respective arrival direction produces a beam of substantially monocolor light of a respective one of the first, second, and third colors, that leaves said respective one of the first, second, and third colors, that leaves said respective one of the first, second, and third nolographic elements in a respective departure direction that differs by a predetermined angle from the respective arrival direction, the predetermined angle being the same for the first holographic elements as for the second and third holographic elements, the white light source, lens system including beam splitter, movable array, and

light valve being physically disposed relative to one another such that:

light from the white light source enters the beam splitter and impinges at a first angle of incidence to the internal surface that is greater than the critical angle, so that the light from the white light source is reflected from the internal surface and is directed to the respective ones of the first, second, and third holographic elements; and

said beams of substantially monocolor light leaving respective first, second, and third holographic elements reach the beam splitter and impinge at a second angle of incidence to the internal surface that is less than the critical angle, so that said beams of first, second, and third color light are not reflected from but pass through the internal surface to form alternating bands of light of the first, second, and third colors that scroll across the surface of the light valve when the movable array is moving.

20

25

- A projection display device as claimed in claim 1, wherein the lens system
 further includes a collimating lens disposed between the white light source and the beam
 splitter to collimate the light from the white light source as it passes to the beam splitter.
- A projection display device as claimed in claim 1, wherein the movable array
 of holographic elements is comprised by a rotatable drum having a plurality of said first,
 second, and third holographic elements disposed around the circumference of the drum.
- 4. A projection display device wherein the lens system further includes a converging lens disposed between the beam splitter and the drum to cause the white light reflected from the internal surface of the beam splitter to arrive at each holographic element at a substantially constant angle relative to said holographic element as the drum rotates and said holographic element revolves along an arc of the circumference of the drum illuminated by the white light, and to collimate said beams of first, second, and third color light that leave the respective first, second, and third holographic elements before said beams of first, second, and third color light enter the beam splitter.
 - A projection display device wherein the movable array of holographic elements is comprised by a rotatable disk having holographic stripes in a pattern on a surface of the disk.
 - A projection display device wherein the projection display device further comprises an exit mask having an aperture therein disposed between the beam splitter and the light valve.
 - the lens system further including a focusing lens, disposed between the beam splitter and the exit mask, that focuses said beams of first, second, and third color light that have passed through the internal surface into the aperture.
 - A method of causing alternating bands of first, second, and third color light to scroll across the surface of a light valve, comprising:
 - reflecting a collimated beam of light off an internal surface of a total internal reflection beam splitter;

directing said reflected light onto an array of holographic elements including at least a first, a second, and a third holographic element;

emitting a first color light beam from the first holographic element;

emitting a second color light beam from the second holographic element, the second color being substantially different from the first color;

emitting a third color light beam from the third holographic element, the third color being substantially different from both of the first and second colors;

transmitting the first, second, and third color light beams through the internal surface of the beam splitter;

directing the first, second, and third color light beams transmitted through the internal surface to form alternating bands of light of the first color, the second color, and third color, respectively, on the light valve; and

moving the array of holographic elements so that the alternating bands of first, second, and third color light scroll across the surface of the light valve.

15

25

30

10

- A method as claimed in claim 7, wherein the method further comprises a step
 of constructing the array of holographic elements by arranging the first, second, and third
 holographic elements around the circumference of a rotatable drum,
- and wherein the step of moving the array of holographic elements includes 20 rotating the drum.
 - 9. A method as claimed in claim 8, wherein the step of arranging the first, second, and third holographic elements around the circumference of the rotatable drum includes arranging a plurality of the first holographic elements, a plurality of the second holographic elements, and a plurality of the third holographic elements, around the circumference of the rotatable drum in an alternating pattern of first, second, and third holographic elements, respectively.
 - 10. A method as claimed in claim 7, wherein the method further comprises a step of constructing the array of holographic elements by arranging an alternating series of holographic stripes in a pattern on a surface of a disk,

and wherein the step of moving the array of holographic elements includes rotating the disk.

- 11. A method as claimed in claim 7, wherein the method further comprises a step of forming the collimated beam of light by focusing light from a white light source to converge through an aperture of a source mask, and then collimating the light that has passed through the aperture of the source mask.
- 12. A method as claimed in claim 7, wherein the step of forming the alternating bands of first, second, and third color light on the light valve includes focusing the first, second, and third color light beams to converge through an aperture of an exit mask.

INTERNATIONAL SEARCH REPORT

Internat Application No

PCT/1B 02/05226 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H04N9/31 G02B26/10 60285/20 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 H04N G02B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. 1-12 A EP 0 977 442 A (KONINKL PHILIPS ELECTRONICS NV) 2 February 2000 (2000-02-02) abstract: figures 1,3 WO 01 26383 A (OPTICAL COATING LABORATORY INC) 12 April 2001 (2001-04-12) 1-12 page 7, line 27 -page 8, line 8; figures 1.2 PATENT ABSTRACTS OF JAPAN 1-12 vol: 2000, no. 15, 6 April 2001 (2001-04-06) -& JP 2000 338599 A (UNIV DE LIEGE), 8 December 2000 (2000-12-08) abstract X Patent family members are listed in annex. Further documents are listed in the continuation of box C. . Special categories of cited documents: "I" later document published after the international fling date or priority date and not in conflict with the application but ched to understand the principle or theory underlying the *A" document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered hovel or cannot be considered to involve an inventive step when the document is taken alone severe an invanive step when the document is taken alone
"" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such documents, such combination being obvious to a person skilled
in the ext. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or coment published prior to the international filing date but aler than the priority date daimed "&" document member of the same patent family Date of malling of the international search report Date of the actual completion of the international search 27/02/2003 18 February 2003

Authorized officer

Daffner, M

Name and mailing address of the ISA

European Palent Office, P.B. 6518 Palentisan 2 NL - 2280 HV Rijswijk Tal (+31-70) 340-2040, Tx. 31 651 epo nl, Fac (+31-70) 340-3016

Form PCTASA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

ion on patent family members

Internati Application No PCT/1B 02/05226

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0977442	A	02-02-2000	US EP JP	6266105 0977442 2000056394	A2	24-07-2001 02-02-2000 25-02-2000
WO 0126383	A	12-04-2001	US WO	6398364 0126383		04-06-2002 12-04-2001
JP 2000338599	A	08-12-2000	US	6382798	B1	07-05-2002