SC402- Introduction to Cryptography Assignment 4

1. If the factorization of p-1 (p prime) is known, then we can verify whether $\alpha \in \mathbb{Z}_p^*$ is a primitive element by making use of the following result.

Theorem 1. Suppose that p > 2 is prime and $\alpha \in \mathbb{Z}_p^*$. Then α is a primitive element modulo p if and only if $\alpha^{(p-1)/q} \not\equiv 1 \pmod{p}$ for all primes q such that $q \mid (p-1)$.

Use above Theorem to find the smallest primitive element modulo 97.

2. For n = pq, where p and q are distinct odd primes, define

$$\lambda(n) = \frac{(p-1)(q-1)}{\gcd(p-1, q-1)}.$$

Suppose that we modify the RSA Cryptosystem by requiring that $ab \equiv 1 \pmod{\lambda(n)}$.

- (a) Prove that encryption and decryption are still inverse operations in this modified cryptosystem.
- (b) If p = 37, q = 79, and b = 7, compute a in this modified cryptosystem, as well as in the original RSA Cryptosystem.
- 3. Implement the POHLIG -HELLMAN ALGORITHM for finding discrete logarithms in \mathbb{Z}_p , where p is prime and α is a primitive element. Use your program to find $\log_5 8563$ in \mathbb{Z}_{28703} and $\log_{10} 12611$ in \mathbb{Z}_{31153} .
- 4. Let \mathcal{E} be the elliptic curve $y^2 = x^3 + x + 28$ defined over \mathbb{Z}_{71} .
 - (a) Determine the number of points on \mathcal{E} .
 - (b) Show that \mathcal{E} is not a cyclic group.
 - (c) What is the maximum order of an element in \mathcal{E} ? Find an element having this order.
- 5. Suppose Alice is using the *ElGamal Signature* Scheme with p = 31847, $\alpha = 5$, and $\beta = 25703$. Compute the values of k and a (without solving an instance of the **Discrete Logarithm** problem), given the signature (23972, 31396) for the message x = 8990 and the signature (23972, 20481) for the message x = 31415.
- 6. Suppose we implement the *ElGamal Signature* Scheme with $p=31847, \alpha=5$, and $\beta=26379$. Write a computer program that does the following:
 - (a) Verify the signature (20679, 11082) on the message x = 20543.
 - (b) Determine the private key, a, by solving an instance of the **Discrete Logarithm** problem.
 - (c) Then determine the random value k used in signing the message x, without solving an instance of the **Discrete Logarithm** problem.