$$\frac{\partial}{\partial t} \nabla^2 \psi + J(\psi, \nabla^2 \psi + f + sh) = -C\nabla^2 \psi + G$$

Ediman frais

Diman. [U,2TT]x[0,bTT]

B.C. $Y(0,y,t) = Y(2\pi, y, t)$ $\frac{\partial \Psi}{\partial x}(x, 0, t) = \frac{\partial \Psi}{\partial x}(x, b_{r}, t)$ (e.g. fradistr rield out "Them!

Spectral expansion:

B.C. $\varphi(\omega, y) = \varphi(2\pi, y)$ $\varphi_{,L}(x,0) = \varphi_{,L}(x,b_{H}) = 0$

 $\nabla^2 q_{nm} = \lambda_{nm} q_{nm} \quad |n| = 0, 1, 2, \dots ; m = 1, 2, \dots$

(2) $9_{om}(y) = \sqrt{2} \cos mu$

Orthonomy Expansin

Pnm (y) = Vz einx sin my

4 (S1, y, t) 4 (nm (t) Pnm

$$\begin{aligned} & \forall (31,y,t) = \sum_{N_{1},n_{1}} f_{nn}(t) q_{nn} \\ & \forall N_{1}, N_{2}, N_{2} = \sum_{N_{1},n_{2}} q_{nn}(t) < q_{nn}, q_{eh} > \\ & < q_{nn}, q_{eh} > = 0 \qquad \text{unless } h = \epsilon + m = k. \end{aligned}$$

$$\begin{aligned} & < q_{nn}, q_{eh} > = 0 \qquad \text{unless } h = \epsilon + m = k. \end{aligned}$$

$$\begin{aligned} & > q_{nn}(t) = \sum_{N_{1},n_{2}} q_{nn}(t) < q_{nn}, q_{eh} > \\ & > q_{nn}(t) = \sum_{N_{1},n_{2}} q_{nn}(t) < q_{nn} > \\ & > q_{nn}(t) = \sum_{N_{1},n_{2}} q_{nn}(t) < q_{nn} > \\ & = \int_{0}^{\infty} q_{nn}(t) q_{nn}(t) < q_{nn}(t$$

(3)

GOAL
Derive H 5-n le Charney-de Voie model
1. e., equations for
$Y_{0,}(t), Y_{-1,}(t), Y_{11}(t)$
which are the coefficients of the lowest 3 modes in the spectral expansion.
Expert: 00 Es for these tems, is.
+, = ·-·
4-,, =
4,, 1 =
when the RHS or front of 4, 4, 4,
Note that Muse equations will be complex of be how to find the "real" versions.
Styps: () expand hay
(2) calculate lan
(3) calculate egn. (1) is series expansion

(4) project out modes.