

CS918: LECTURE 9

Grammars and Parsing

Arkaitz Zubiaga, 31st October, 2018

LECTURE 9: CONTENTS

- What is parsing?
- What are constituencies and dependency structures?
- Probabilistic parsing: Context Free Grammars (CFG and PCFG).
- Lexicalised parsing.
- Dependency parsing.

GRAMMARS AND PARSING

- Parsing: process of recognising a sentence and assigning syntactic structure to it.
- Syntactic structure includes:
 - Constituents: how words group together to behave as single units.
 - Grammatical relations, dependencies, subcategorisation: how words and constituents relate to each other.

GRAMMARS AND PARSING: EXAMPLE

- Examples of constituents:
 - Noun Phrase (NP): the flights, some flights, any flights,...
 - Prepositional Phrase (PP): in the morning, at home,...

GRAMMARS AND PARSING: EXAMPLE

Examples of constituents:

• Verb Phrase (VP):

 $VP \rightarrow Verb$ e.g. disappear

 $VP \rightarrow Verb NP$ e.g. prefer a morning flight

 $VP \rightarrow Verb NP PP$ e.g. leave London in the morning

 $VP \rightarrow Verb PP$ e.g. leaving on Thursday

GRAMMARS AND PARSING: EXAMPLE

• Grammatical relations:

She ate a large breakfast

"She": SUBJECT, "large breakfast": OBJECT

WHY IS SYNTAX IMPORTANT?

- Parsing is key for applications needing deep understanding of language, e.g.:
 - Grammar checkers.
 - Information extraction.
 - Machine translation.
 - Dialogue management.
 - Question answering.

SYNTACTIC CONCEPTS THAT WE WILL EXPLORE

- Constituency
- Grammatical relations
- Dependencies and Heads
- Subcategorisation
- Key formalism: Context Free Grammars, Dependency Grammars
- Resources: Treebanks
- Algorithms for parsing

CONSTITUENCY

- In general, words forming constituents can move around together, e.g.:
- On 7th September I'd like to fly from London to New York.
- I'd like to fly from London to New York on 7th September.
- On September I'd like to fly from London to New York 7th.
- e.g. a prepositional phrase (PP) would need a preposition followed by a noun (e.g. "In September", "on time")

CONSTITUENCY (PHRASE STRUCTURE)

• Analysts said Mr. Stronach wants to resume a more influential role in running the company.

DEPENDENCY STRUCTURE

• Dependency structure shows which words depend on (modify or are arguments of) which other words.

HOW CAN PARSING AND STRUCTURE HELP?

- The computer on the 3rd floor has crashed.
- What has crashed?
 - The computer.
 - The 3rd floor.

AMBIGUITY: KEY CHALLENGE IN PARSING

• I shot an elephant in my pijamas.

What do we understand here?

AMBIGUITY: KEY CHALLENGE IN PARSING

I shot an elephant in my pijamas.

Who's wearing 'my pijamas'? The elephant or me? :-)

APPROACHES TO PARSING

- Three different ways of parsing texts:
 - Probabilistic parsing: context-free grammars.
 - Lexicalised parsing.
 - Dependency parsing.

PROBABILISTIC PARSING: CONTEXT-FREE GRAMMARS

CONTEXT-FREE GRAMMARS (CFG)

- Context-free grammars (CFGs) consist of:
 - Terminals.
 - Non-terminals.
 - Rules.

which allow us to produce grammatical sentences.

CFG EXAMPLE

Rules

CFG EXAMPLE

WARWICK

PROBABILISTIC CFG (PCFG)

Like CFG, but each rule has a probability.

$$S \rightarrow NP \ VP \ (1.0)$$
 $N \rightarrow children \ (0.5)$ $VP \rightarrow V \ NP \ (0.6)$ $N \rightarrow candy \ (0.3)$ $N \rightarrow money \ (0.2)$...

PARSING

- We may need to work in both directions:
 - Top-down approach from rules to producing sentence
 - → Natural Language Generation.
 - Bottom-up approach from sentence to generating tree
 - → Parsing.

PARSING

 We are given a sentence, and we need to generate the tree based on the rules we have.

Cocke-Kasami-Younger (CKY) algorithm for parsing.

WARWICK

CKY PARSING ALGORITHM

CKY PARSING ALGORITHM

- Having the entire constituency list (T, N, R).
 - Use **bottom-up approach** to fill in the tree.

WARWICK


```
S \rightarrow NP VP 0.9
S \rightarrow VP 0.1
VP \rightarrow V NP 0.5
VP \rightarrow V 0.1
VP \rightarrow V @VP_V 0.3
VP \rightarrow VPP 0.1
@VP_V \rightarrow NPPP 1.0
NP \rightarrow NP NP 0.1
NP \rightarrow NP PP 0.2
NP \rightarrow N 0.7
PP \rightarrow P NP 1.0
```



```
S \rightarrow NP VP 0.9
S \rightarrow VP
                 0.1
VP \rightarrow V NP 0.5
VP \rightarrow V @VP V 0.3
VP \rightarrow VPP 0.1
@VP V \rightarrow NP PP 1.0
NP \rightarrow NP NP 0.1
NP \rightarrow NP PP 0.2
NP \rightarrow N 0.7
PP \rightarrow P NP 1.0
```



```
S \rightarrow NP VP 0.9
S \rightarrow VP
                 0.1
VP \rightarrow V NP 0.5
VP \rightarrow V @VP V 0.3
VP \rightarrow VPP 0.1
@VP V \rightarrow NP PP 1.0
NP \rightarrow NP NP | 0.1
NP \rightarrow NP PP 0.2
NP \rightarrow N 0.7
PP \rightarrow P NP 1.0
```


0.9*0.06*0.35 = 0.0189

0.5*0.14*0.1 = 0.007

0.1*0.14*0.35 = 0.049

0.9*0.06*0.35 = 0.0189

0.5*0.14*0.1 = 0.007

0.1*0.14*0.35 = 0.049

The Viterbi (maximum) score determines the predicted parsed tree via CKY.

WARWICK

0.5*0.14*0.1 = 0.007

0.1*0.14*0.35 = 0.049

It's larger, but doesn't belong to a " $S \rightarrow ...$ " rule (i.e. whole sentence)

people

fish

WARWICK

0.9*0.06*0.35 = 0.0189

0.5*0.14*0.1 = 0.007

0.1*0.14*0.35 = 0.049

If there were more levels (upwards) in the tree, then we'd choose this one, and carry on.

people

fish

LEXICALISED PARSING

LEXICALISATION OF PCFGs

- So far we have only considered the probabilities of POS-based rules, e.g. $P(JJ NP) \rightarrow 0.3$
- We can "lexicalise" that, by considering the probabilities of words occurring in different constituents, e.g.:
 - "money": noun (most common, P=0.9) or adjective (P=0.1).
 - "money laundering": can be JJ NP or NP NP.
 - However, "money" more likely to occur in NP NP than in JJ NP → then increases P(NP NP).

LEXICALISATION OF PCFGs

• Probability of different verbal complement frames (i.e., "subcategorisations") depends on the verb:

Local Tree	come	take	think	want
VP → V	9.5%	2.6%	4.6%	5.7%
VP → V NP	1.1%	32.1%	0.2%	13.9%
VP → V PP	34.5%	3.1%	7.1%	0.3%
VP → V SBAR	6.6%	0.3%	73.0%	0.2%
VP → V S	2.2%	1.3%	4.8%	70.8%
VP → V NP S	0.1%	5.7%	0.0%	0.3%
VP → V PRT NP	0.3%	5.8%	0.0%	0.0%
VP → V PRT PP	6.1%	1.5%	0.2%	0.0%

EXAMPLE OF PCFG

Grammar		Lexicon
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book [.10] \mid flight [.30]$
$S \rightarrow VP$	[.05]	<i>meal</i> [.015] <i>money</i> [.05]
$NP \rightarrow Pronoun$	[.35]	flight [.40] dinner [.10]
NP o Proper-Noun	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> [.40]
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$
$Nominal \rightarrow Noun$	[.75]	<i>me</i> [.15] <i>you</i> [.40]
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$
$Nominal \rightarrow Nominal PP$	[.05]	<i>NWA</i> [.40]
$\mathit{VP} o \mathit{Verb}$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$
$\mathit{VP} o \mathit{Verb} \mathit{NP}$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$
$\mathit{VP} o \mathit{Verb} \mathit{NP} \mathit{PP}$	[.10]	on [.20] near [.15]
$VP \rightarrow Verb PP$	[.15]	through [.05]
$\mathit{VP} o \mathit{Verb} \mathit{NP} \mathit{NP}$	[.05]	
$VP \rightarrow VP PP$	[.15]	
$PP \rightarrow Preposition NP$	[1.0]	

HELP WITH DISAMBIGUATION

Lexicalised PCFGs can deal with disambiguation better:

I shot an elephant in my pijamas.

P("shot an elephant")
>> P("elephant in my pijamas")

LANGUAGE MODELLING

Lexicalised PCFGs and language models can be linked:

• We can learn language models informed by syntactic structure, e.g. "flying planes" as <u>VB NN</u> or <u>JJ NN</u>.

piloting planes p

planes that fly

Language models can assist decision-making in PCFGs.

CONSTITUENT TREE

- Trees can be more complex.
- CKY: break it down, bottom-up; POS tagging for leaves, then go up.

According to latest reports Sony outperformed its competitors like Nintendo and Panasonic during last quarter.

PENN TREEBANK NON-TERMINALS

S	Sentence or clause.
SBAR	Clause introduced by a (pos-
	sibly empty) subordinating
	conjunction.
SBARQ	Direct question introduced
	by a wh-word or wh-phrase.
SINV	Inverted declarative sen-
	tence.
SQ	Inverted yes/no question,
	or main clause of a wh-
	question.
ADJP	Adjective Phrase.
ADVP	Adverb Phrase.
CONJP	Conjunction Phrase.
FRAG	Fragment.
INTJ	Interjection.
LST	List marker. Includes sur-
	rounding punctuation.
NAC	Not A Constituent; used
	within an NP.
NP	Noun Phrase.
NX	Used within certain complex
	NPs to mark the head.

PP	Prepositional Phrase.		
PRN	Parenthetical.		
PRT	Particle.		
QP	Quantity Phrase (i.e.,		
	complex measure/amount)		
	within NP.		
RRC	Reduced Relative Clause.		
UCP	Unlike Coordinated Phrase.		
VP	Verb Phrase.		
WHADJP	Wh-adjective Phrase, as in		
	how hot.		
WHADVP	Wh-adverb Phrase.		
WHNP	Wh-noun Phrase, e.g. who,		
	which book, whose daughter,		
	none of which, or how many		
	leopards.		
WHPP	Wh-prepositional Phrase,		
	e.g., of which or by whose		
	authority.		
X	Unknown, uncertain, or un-		
	bracketable.		

STATE-OF-THE-ART

• Dependent on entire tree, e.g. "eat sushi" is different in the below examples.

STATE-OF-THE-ART

- PCFG achieves ~73% on Penn TreeBank.
- State-of-the art ~92%: Lexicalised PCFG.

 Dependency syntax postulates that syntactic structure consists of lexical items linked by binary asymmetric relations ("arrows") called dependencies.

DEPENDENCY PARSING submitted prep nsubjpass auxpass Bills were prep pobj on Brownback pobj appos ports Senator Republican CCconj prep immigration and pobi

49

Kansas

The arrow connects a
 head
 (governor, superior, regent)
 with a dependent
 (modifier, inferior, subordinate)

- How do we decide which one's the head?
- Usually define heads in PCFG, e.g.:
 - $S \rightarrow NP VP$
 - $VP \rightarrow \underline{VBD} NP PP$
 - NP \rightarrow DT JJ NN

Graph Algorithms:

- Consider all word pairs.
- Create a Maximum Spanning Tree for a sentence.

Transition-based Approaches:

- Similar to how we parse a program:
- Shift-Reduce Parser: MaltParser.

MALTPARSER (Nivre et al. 2008)

- Simple form of greedy discriminative dependency parser.
- The parser does a sequence of bottom up actions.
- The parser has:
 - a stack σ , written with top to the right
 - starts with the ROOT symbol
 - a buffer β , written with top to the left
 - starts with the input sentence
 - a set of dependency arcs A, which starts off empty
 - a set of actions

MALTPARSER (Nivre et al. 2008)

Start:
$$\sigma = [ROOT], \beta = W_1, ..., W_n, A = \emptyset$$

- 1. Left-Arc_r $\sigma|w_i, w_j|\beta, A \rightarrow \sigma, w_j|\beta, AU\{r(w_j, w_i)\}$ Precondition: r' $(w_k, w_i) \notin A, w_i \neq ROOT$
- 2. Right-Arc_r σ |wi, wj| β , A \rightarrow σ |w_i|w_j, β , AU{r(w_i,w_j)}
- 3. Reduce $\sigma|w_i$, β , $A \rightarrow \sigma$, β , A
 - 1. Precondition: $r'(w_k, w_i) \in A$
- 4. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$

Finish:
$$\beta = \emptyset$$

Left-Arc_r $\sigma|w_i, w_j|\beta, A = \sigma, w_j|\beta, A \cup \{r(w_j, w_i)\}$ Precondition: $(w_i, r', w_i) \notin A, w_i \neq ROOT$

- 2. Right-Arc_r $\sigma|w_i, w_i|\beta, A = \sigma|w_i|w_i, \beta, A \cup \{r(w_i, w_i)\}$
- 3. Reduce $\sigma|w_i, \beta, A_{\pm}, \sigma, \beta, A$
- 3. Reduce $\sigma | w_i, \beta, A = \sigma, \beta, A$ Precondition: $(w_i, r', w_i) \in A$
- 4. Shift $\sigma, w_i | \beta, A = \sigma | w_i, \beta, A$

MALTPARSER

$$\left[\begin{array}{c} ROOT \end{array}\right]_S \left[Red \quad \text{figures} \quad \text{ on the screen} \quad \text{ indicated} \quad \text{falling stocks} \right]_Q$$

- 1. Shift: (_ROOT_ Red) figures on the screen indicated falling stocks)
- 2. Left-arc: (_ROOT_) Red (figures on the screen indicated falling stocks)

- 1. Left-Arc_r $\sigma|w_i, w_j|\beta, A = \sigma, w_j|\beta, A \cup \{r(w_j, w_i)\}$ Precondition: $(w_k, r', w_i) \notin A, w_i \neq ROOT$
- 2. Right-Arc_r $\sigma|w_i, w_i|\beta, A = \sigma|w_i|w_i, \beta, AU\{r(w_i, w_i)\}$
- 3. Reduce $\sigma|w_i, \beta, A_{\pm}\sigma, \beta, A$ Precondition: $(w_k, r', w_i) \in A$
- 4. Shift $\sigma, w_i | \beta, A = \sigma | w_i, \beta, A$

MALTPARSER

RESOURCES

• There is a long list of Treebanks available for a wide range of languages, a good list can be found here:

https://en.wikipedia.org/wiki/Treebank

ASSOCIATED READING

 Jurafsky, Daniel, and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. 3rd edition. Chapters 10-13.