PP-PicoDet LCNet

PP-PicoDet 是 PaddleDetection 团队提出的超轻量级实时目标检测模型,在移动端具有良好的性能,其具有以下特点:

- 更高的 mAP: 第一个在1M参数量之内 mAP(0.5:0.95) 超越 30+ (输入416像素时);
- 更快的预测速度: 网络预测在 ARM CPU 下可达 150FPS;
- 部署友好: 支持 PaddleLite/MNN/NCNN/OpenVINO 等预测库,支持转出 ONNX,提供了 C++/Python/Android 的 demo;
- 先进的算法: 我们在现有 SOTA 算法中进行了创新, 包括: ESNet, CSP-PAN, SimOTA 等等。

模型及论文解析:

参照论文《PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices》

摘要:

工作内容:提高目标检测的精度和效率。

- 1、研究无锚点(anchor-free)策略对轻量级目标检测模型的适用性,增强骨干结构并设计 颈部轻量型结构,从而提高网络特征提取能力;
- 2、改进标签分配策略和损失函数,提高训练的稳定性和效率。

通过上述优化,项目创建了一个新的实时目标检测器系列: PP-PicoDet。

PP-PicoDet在模型的准确性和延迟之间做了更好的权衡,PicoDet-S在仅有0.99M个参数的基础上实现了30.6%的mAP,相较于YOLOX-Nano,mAP 绝对值提高了 4.8%,同时可移动CPU 的推理延迟减少了55%,同时与NanoDet相比,mAP绝对值提高了7.1%。当输入大小为320时,其在可移动ARM CPU上达到了123 FPS(使用 Paddle Lite 时为 150 FPS)。PicoDet-L仅用了3.3M的参数量,实现了40.9%的 mAP,比 NanoDet 的 mAP 绝对值提高了 3.7%,比 YOLOv5s 快 44%。

Figure 1. Comparison of the mAPs of different lightweight models. The latency of all models tested on Qualcomm Snapdragon[®] 865(4*A77+4*A55) Processor with batch size of 1. The details are presented in Table 1.

介绍:

文章的主要贡献:

- 1、使用CSP结构来构建CSP-PAN作为neck部分。CSP-PAN用 1×1 积将neck所有分支的输入通道数全部统一为相同的通道数,从而能够有效的增强网络的特征提取能力,且减少网络参数。同时,将 3×3 可分离卷积增加到 5×5 可分离卷积,从而增大感受野:
- 2、标签分配策略在目标检测中十分重要,文章使用SimOTA动态标签分配策略,并优化了一些计算细节;
- 3、ShuffleNetV2在移动端上计算是高效的,文章在此基础上改进了网络结构并提出了一种新的主干网络,称为 Enhanced ShuffleNet (ESNet),性能优于ShuffleNetV2;
- 4、文章提出一种改进的用于检测的 One-Shot Neural Architecture Search (NAS)方法来自动找到目标检测的最优架构。文章在检测数据集上训练超网络,从而显着节省计算量并优化检测性能,NAS生成的模型实现了更好的效率精度均衡。

相关工作:

主要介绍了两类目标检测器:

- anchor-based检测器: Two-stage检测器通常都是anchor-based,会从图像中产生 region-proposals,并从region-proposals产生最终的定位框。Two-stage检测器在 目标定位上常常更加精确,然而很难在CPU或ARM设备上实现实时检测;
- anchor-free检测器:旨在消除锚框,是目标检测研究中的重要进展。Anchor-free 检测器解决了一些anchor-based检测器存在的问题,降低了内存占用,并且对定 位框的计算更加准确。

方法:

更好的主干网络:

新的主干网络ESNet,其网络模块ES-Block结构如下:

Figure 3. ES Block architecture. (a) ES Block with stride=2; (b) ES Block with stride=1.

SE模块能很好地对网络通道进行加权并获得更好的特征,因此在ES模块中加入了SE模块。 在stride为2时加入了 depthwise convolution和 pointwise convolution来结合不同通道的信息,stride为2时加入Ghost模块,使其在较少参数量下产生更多特征图,从而提升网络的学习能力,进而增强ESNet的性能。

Neural Architecture Search(NAS): 针对目标检测器的one-shot搜索方法,共分为两步: (1) 在检测数据集上训练one-shot超网; (2) 使用EA(evolutionary algorithm,进化算法)算法对训练好的超网络进行架构搜索。

CSP-PAN和 detector head:

模型使用PAN结构来获得多层特征图以及CSP结构来进行相邻特征图间的特征连接和融合。对于原始的CSP-PAN,每个输出特征图的通道数与来自主干网络的输入特征图需保持相同,这对于移动设备来说成本较高。为此,模型使用1×1卷积使所有特征图中的通道数与最小的通道数相等,然后通过CSP结构实现top-down和bottom-up的特征融合,缩小的特征使得计算成本更低且不损失准确性。此外,模型在原有CSP-PAN的顶部加入了一个特征图尺度分支来检测更多物体。

所有除了 1×1 卷积之外的卷积层都使用Depthwise Separable Convolution(深度可分离卷积),这种结构可以扩大感受野,在使用很少参数的情况下给精度带来了大幅度提升。

相关模型的结构如下:

Figure 2. PP-PicoDet Architecture. The Backbone is ESNet, which outputs C3-C5 feature maps to the neck. The neck is CSP-PAN, which inputs three feature maps and outputs four feature maps. For PP-PicoDet-S, the input channel numbers are [96, 192, 384], and the output channel numbers are [96, 96, 96, 96, 96]. DP module uses depthwise and pointwise convolution.

标签分配策略和损失函数:

模型使用SimOTA动态标签分配策略来优化训练过程。SimOTA是一种会随着训练进程持续变化的标签分配策略,首先SimOTA通过中心点先验信息决定候选区域,之后计算候选区内真值跟预测框的IoU,最后对每个真值框将n个最大的IoU求和获得参数 κ 。通过直接计算候选区内所有预测框跟真值框的损失作为代价矩阵,对于每个真值框,选最小 κ 的损失对应的锚点作为正样本。

模型使用Varifocal-Loss和GIoU-Loss的加权和作为代价矩阵,GIoU-loss的权重为 λ 模型中设置为6。相关公式为:

$$cost = loss_{vfl} + \lambda \cdot loss_{giou}$$

在检测head中,对于分类,模型使用Varifocal-Loss来耦合分类预测和置信度预测。对于回归,模型使用GIoU-Loss和Distribution-Focal-Loss。相关公式为:

$$loss = loss_{vfl} + 2 \cdot loss_{giou} + 0.25 \cdot loss_{dfl}$$

上述公式中,loss_{vf1}为Varifocal-Loss,loss_{giou}指GIoU-loss,loss_{df1}指Distribution-Focal-Loss。

其他策略:

模型将检测器中的激活函数从ReLU替换为H-Swish,在保持推理时延不变的情况下性能大幅度提升。

同时,不同于线性步长学习衰减,余弦学习衰减会以指数形式衰减学习率。当batch-size较大的时候,余弦学习率会平缓地下降,从而对训练过程更有利。

过多的数据增广会提高正则化效果而使得轻量模型更难以收敛,为此,模型只使用了随机翻转、随机裁剪和多尺度缩放作为训练中的数据增广。

实验:

实验细节:

训练时,模型使用随机梯度下降(SGD),并设置动量0.9,权重衰减为4e-5。同时,模型使用了余弦衰减的学习率策略,初始学习率为0.1,Batch-size默认为80x8。由于轻量型模型容易陷入局部最优而难以收敛,模型引入了一种类似于正则化的机制,称为Cycle-EMA,用于重置历史信息,由 forget step来控制。同时,模型使用L2-norm梯度裁剪来避免梯度爆炸。

消融实验:

Model	Params(M)	mAP(0.5:0.95)	
Base	0.96	25.3	
+CSP-PAN (3 feature maps)	1.12	28.1	
+CSP-PAN (4 feature maps)	1.17	29.1	
+Replace QFL with VFL	1.17	29.2	
+Original SimOTA	1.17	29.2	
+SimOTA with modified cost matrix	1.17	30.0	
+Replace backbone with ESNet-0.75x	0.99	29.7	
+Replace LeakyRelu with H-Swish	0.99	30.6	

Table 2. Different configurations of ablation experiments in PP-PicoDet-S.

Base: 主干网络使用ShuffleNetV2-1x, neck部分使用不包含卷积的PAN, 损失函数使用标准GFL的损失函数,还有标签分配策略使用ATSS,所有的激活函数使用LeakyRelu。

模型进一步比较了Varifocal-Loss和GIoU-Loss使用不同权重时SimOTA的效果,通过改变公式中的 λ 值来寻找其最优值,相关结果如下:

λ	mAP(0.5:0.95)
5	29.8
6	30.0
7	29.8

可以看到,当GIoU-loss的权重为6时,获得了最佳的结果。

模型在ImageNet-1k上比较了ESNet-1x与原始ShuffleNetV2-1.5x网络,结果如下:

model	FLOPs Latency (M) (ms)		Top-1 Acc (%)	
ShuffleNetV2-1.5x	301	7.56	71.6	
ESNet-1x	197	7.35	73.9	

结果表明,在推理时间更低的情况下,ESNet实现了更高的精度。

模型比较了原始模型和搜索模型的性能,结果如图:

model	Params (M)	Latency (ms)	mAP (0.5:0.95)
original searched	2.35	24.6	34.5
	2.15 (-9.3%)	17.39 (-41.5%)	34.3 (-0.2)

搜索模型在实验限制下进降低了0.2%mAP,而移动端CPU推理时间提升了41.5%。

与SOTA算法对比:

Model	Size	Params(M)	FLOPs(G)	mAP(0.5:0.95)	mAP(0.5)	Latency(ms)
YOLOv3-Tiny	416	8.86	5.62	16.6	33.1	25.42
YOLOv4-Tiny	416	6.06	6.96	21.7	40.2	23.69
MobileDet-CPU	320	3.85	1.02	24.2	-	-
YOLObile	320	4.59	3.59	31.6	49.0	-
PP-YOLO-Tiny	320	1.08	0.58	20.6	-	6.75
PP-YOLO-Tiny	416	1.08	1.02	22.7	-	10.48
NanoDet-M	320	0.95	0.72	20.6	-	8.71
NanoDet-M	416	0.95	1.2	23.5	-	13.35
NanoDet-M-1.5x	416	2.08	2.42	26.8	-	15.83
YOLOX-Nano	416	0.91	1.08	25.8	-	19.23
YOLOX-Tiny	416	5.06	6.45	32.8	-	32.77
YOLOv5n	640	1.9	4.5	28.4	46.0	40.35
YOLOv5s	640	7.2	16.5	37.2	56.0	78.05
PP-PicoDet-ShuffleNetV2	416	1.17	1.53	30.0	44.6	15.06 10.63 *
PP-PicoDet-MV3-large-1x	416	3.55	2.80	35.6	52.0	20.71 17.88 *
PP-PicoDet-LCNet-1.5x	416	3.10	3.85	36.3	52.2	21.29 20.8 *
PP-PicoDet-S	320	0.99	0.73	27.1	41.4	8.13 6.65 *
PP-PicoDet-S	416	0.99	1.24	30.6	45.5	12.37 9.82 *
PP-PicoDet-M	416	2.15	2.50	34.3	49.8	17.39 15.88 *
PP-PicoDet-L	640	3.30	8.91	40.9	57.6	54.11 50.55*

从图表我们可以看到:模型在精度和速度上都大大超过了所有的YOLO模型。

上述效果主要归功于以下改进:

(1)模型的neck部分要比YOLO系列的neck要更加轻量,所以主干和head能分配更多参数。(2)模型使用针对类别不平衡的Varifocal-Loss、动态可学习的样本分配策略和基于FCOS的回归方法的组合,这种组合在轻量级模型中表现更好。在相同数量参数的情况下,PP-PicoDet-S在mAP和时延上都超越了YOLOX-Nano和NanoDet。PP-PicoDet-L的mAP和时延都优于YOLOv5s。由于使用汇编语言优化的卷积算子效率更高,模型在Paddle Lite上的推理时间甚至优于在NCNN上的推理时间。

源码解析:

所有代码来源于: GitHub - PaddlePaddle/PaddleDetection

Figure 2. PP-PicoDet Architecture. The Backbone is ESNet, which outputs C3-C5 feature maps to the neck. The neck is CSP-PAN, which inputs three feature maps and outputs four feature maps. For PP-PicoDet-S, the input channel numbers are [96, 192, 384], and the output channel numbers are [96, 96, 96, 96]. DP module uses depthwise and pointwise convolution.

ES Block

Figure 3. ES Block architecture. (a) ES Block with stride=2; (b) ES Block with stride=1.

ES模块中的主要部分是SE Block。

其核心思想是对通道的权重进行调整。对于右边分支,其通过对通道的下采集,RELU激活,上采样后,接一个simoid操作来得到各个通道的权重比例值,然后再将这个比例乘以原通道,实现对权重的调整。

```
class SEModule(nn.Layer):
    def __init__(self, channel, reduction=4):
        super(SEModule, self).__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(),
            bias_attr=ParamAttr())
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1.
            padding=0,
            weight_attr=ParamAttr(),
            bias_attr=ParamAttr())
    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
```

```
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = F.hardsigmoid(outputs)
print('scale:',outputs)
return paddle.multiply(x=inputs, y=outputs)
```

DW

深度可分离卷积,主要作用是减少卷积参数,提高模型效率。

```
self._conv_dw = ConvBNLayer(
    in_channels=mid_channels // 2,
    out_channels=mid_channels // 2,
    kernel_size=3,
    stride=stride,
    padding=1,
    groups=mid_channels // 2,
    act=None)
```

PW

PW是1x1的卷积,主要配合DW来使用,来进行通道间的计算,实现对通道数的调整。同时,DW+PW的参数量与常规卷积相比较小。

Backbone

从结构图我们可以看到,Backbone就是ES Block的堆叠,然后取4,11,14层作为Neck层输入。

CSP

CSP的结构如下:

其核心思想是对通道进行切分,对于切分后的通道,CSP对右侧部分进行卷积层操作,然后与与左侧部分进行拼接,这样可以降低操作量。

```
class CSPLayer(nn.Layer):
    """Cross Stage Partial Layer.
    Args:
        in_channels (int): The input channels of the CSP layer.
        out_channels (int): The output channels of the CSP layer.
        expand_ratio (float): Ratio to adjust the number of
channels of the
            hidden layer. Default: 0.5
        num_blocks (int): Number of blocks. Default: 1
        add_identity (bool): Whether to add identity in blocks.
            Default: True
        use_depthwise (bool): Whether to depthwise separable
convolution in
            blocks. Default: False
    .....
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 expand_ratio=0.5,
                 num_blocks=1,
                 add_identity=True,
                 use_depthwise=False,
                 act="leaky_relu"):
```

```
super().__init__()
        # *0.5,即通道数split成2份一样大小
        mid_channels = int(out_channels * expand_ratio)
        self.main_conv = ConvBNLayer(in_channels, mid_channels, 1,
act=act)
        self.short_conv = ConvBNLayer(in_channels, mid_channels, 1,
act=act)
        self.final_conv = ConvBNLayer(
            2 * mid_channels, out_channels, 1, act=act)
        self.blocks = nn.Sequential(* [
            DarknetBottleneck(
                mid_channels.
                mid_channels,
                kernel_size,
                1.0,
                add_identity,
                use_depthwise,
                act=act) for _ in range(num_blocks)
        ])
    def forward(self, x):
        # 左边路径中的split
        x_{short} = self.short_{conv}(x)
        # 右边路径中的split + 常规卷积
        x_{main} = self.main_{conv}(x)
        x_main = self.blocks(x_main)
        # concat 合并通道然后再接一层卷积
        x_final = paddle.concat((x_main, x_short), axis=1)
        return self.final_conv(x_final)
```

在代码中,CSP在进行通道切分并不是直接用SPLit切分,而是通过 1×1 卷积来对通道数进行调整,这样可以融合所有通道的信息,在保证精度的情况下减少参数量。

FPN

FPN的结构如下,其实质上就是upsample 的过程。

- 1、将backbone 输出的3层输出通道数通过1x1卷积改为96;
- 2、特征层从上到下(top-down),先将FM的尺寸进行upsample,然后和下一层进行concate连接,连接之后通道数变为96+96=192;
- 3、concate之后,经过CSP结构,通道数再次变为96,作为FPN的输出,PAN的输入。

PAN

FPN是top-down 的操作, PAN正好相反,是bottom-up操作,同时,将upsample的操作改成DP(DW+PW)进行卷积。

上述CSP、FPN、PAN部分的代码在

PaddleDetection\ppdet\modeling\necks\csp_pan.py 中。

Head

Head部分将将CSP-PAN的输出作为Head 的stage 输入。

模型训练及参数调整:

训练流程的代码:

使用百度aistudio的PaddleX来进行数据校验、模型训练、评估测试等。

数据校验:导入标注好的数据和原数据。

模型训练:完成数据校验后对模型进行训练,需要调整的参数: Epochs, Batch Size, Learning Rate

Epochs: 100; Batch Size: 66; Learning Rate: 0.1

模型评估:指标mAP(根据多个交并比(IoU)阈值计算出的精度平均值,综合反映算法在不同IoU阈值下的性能,其中IoU阈值取值为0.5-0.95,以0.05为步长,值越大,表示模型性能越好)

mAP: 0.736

测试结果: