Logistic Regression

Acknowledgement

 Most of these slides were either created by Prof. Andrew Ng or else are modifications of his slides

Classification

```
Email: Spam / Not Spam?
```

Online Transactions: Fraudulent (Yes / No)?

Tumor: Malignant / Benign?

$$y \in \{0,1\}$$
 0: "Negative Class" (e.g., benign tumor)
1: "Positive Class" (e.g., malignant tumor)

Classification

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Hypothesis Representation

Hypothesis Representation

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input x

Example: If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\theta}(x) = 0.7$

Tell patient that 70% chance of tumor being malignant

$$h_{ heta}(x) = P(y=1|x; heta)$$

"probability that y = 1, given x, parameterized by θ "

$$P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$$

 $P(y = 0|x; \theta) = 1 - P(y = 1|x; \theta)$

Decision Boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y=1" if $h_{\theta}(x) \geq 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

Cost function (convex)

$$J(heta) = rac{1}{m} \sum_{i=1}^m \operatorname{Cost}(h_{ heta}(x^{(i)}), y^{(i)})$$
 $\operatorname{Cost}(h_{ heta}(x), y) = -\log(h_{ heta}(x)) \qquad ext{if } y = 1$
 $\operatorname{Cost}(h_{ heta}(x), y) = -\log(1 - h_{ heta}(x)) \qquad ext{if } y = 0$

Cost function (convex)

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

To fit parameters θ :

$$\min_{\theta} J(\theta)$$

To make a prediction given new x:

Output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)}))]$$
 Want $\min_\theta J(\theta)$: Repeat $\{$
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 $\}$ (simultaneously update all θ_j)

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)}))]$$
 Want $\min_\theta J(\theta)$: Repeat $\{$
$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 $\{$ (simultaneously update all θ_j)

A vectorized implementation

$$h = g(X\theta)$$

$$J(\theta) = \frac{1}{m} \cdot \left(-y^T \log(h) - (1-y)^T \log(1-h) \right)$$

$$heta := heta - rac{lpha}{m} X^T (g(X heta) - ec{y})$$

Multiclass Classification

The Problem of Overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

The Problem of Overfitting

The Problem of Overfitting

Addressing overfitting:

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size \vdots
```


The Problem of Overfitting: Solutions

- 1) Reduce the number of features:
 - Manually select which features to keep.
 - Use a model selection algorithm (studied later in the course).
- 2) Regularization
 - ullet Keep all the features, but reduce the magnitude of parameters $heta_j.$
 - Regularization works well when we have a lot of slightly useful features.

Intuition

Size of house

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

$$\longrightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \log_{3} \frac{1}{2} + \log_{3} \frac{1}{2} + \log_{4} \frac{1}{2}$$

Regularization

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Regularized Linear Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

 $\min_{\theta} J(\theta)$

Repeat {
$$\theta_0 := \theta_0 - \alpha \, \frac{1}{m} \, \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \left[\left(\frac{1}{m} \, \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \right) + \frac{\lambda}{m} \, \theta_j \right]$$
 $j \in \{1, 2...n\}$ }

$$heta_j := heta_j (1 - lpha rac{\lambda}{m}) - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Regularized Logistic Regression

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \Theta_{j}^{2} \qquad \left[\begin{array}{c} O_{i,j} O_{i,...,j} O_$$

Regularized Logistic Regression

$$J(heta) = -rac{1}{m} \sum_{i=1}^m [y^{(i)} \; \log(h_ heta(x^{(i)})) + (1-y^{(i)}) \; \log(1-h_ heta(x^{(i)}))] + rac{\lambda}{2m} \sum_{j=1}^n heta_j^2$$

Gradient descent

Repeat $\begin{cases} \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \circlearrowleft_{\mathfrak{I}} \right] \\ (j = \mathbf{M}, \underbrace{1, 2, 3, \ldots, n}) \\ \rbrace$