

## Description

The VSM3401Y uses advanced trench technology to provide excellent  $R_{DS(ON)}$ , low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

#### **General Features**

•  $V_{DS} = -30V, I_D = -4.2A$ 

 $R_{DS(ON)}$  < 130m $\Omega$  @  $V_{GS}$ =-2.5V

 $R_{DS(ON)}$  < 75m $\Omega$  @  $V_{GS}$ =-4.5V

 $R_{DS(ON)} < 55 \text{m}\Omega$  @  $V_{GS}$ =-10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

## Application

- PWM applications
- Load switch
- Power management





SOT-23-3

Schematic Diagram

## **Package Marking And Ordering Information**

| Device Marking | Device   | Device Package | Reel Size | Tape width | Quantity   |
|----------------|----------|----------------|-----------|------------|------------|
| VSM3401Y-S2    | VSM3401Y | SOT-23-3       | Ø180mm    | 8 mm       | 3000 units |

## Absolute Maximum Ratings (T<sub>A</sub>=25℃unless otherwise noted)

| Parameter                                        | Symbol              | Limit      | Unit         |  |
|--------------------------------------------------|---------------------|------------|--------------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>     | -30        | V            |  |
| Gate-Source Voltage                              | Vgs                 | ±12        | V            |  |
| Drain Current-Continuous                         | I <sub>D</sub>      | -4.2       | А            |  |
| Drain Current-Pulsed (Note 1)                    | I <sub>DM</sub>     | -30        | А            |  |
| Maximum Power Dissipation                        | P <sub>D</sub>      | 1.2        | W            |  |
| Operating Junction and Storage Temperature Range | $T_{J}$ , $T_{STG}$ | -55 To 150 | $^{\circ}$ C |  |

#### **Thermal Characteristic**

| Thermal Resistance, Junction-to-Ambient (Note 2) | $R_{\theta JA}$ | 104 | °C/W | ı |
|--------------------------------------------------|-----------------|-----|------|---|
|--------------------------------------------------|-----------------|-----|------|---|

#### Electrical Characteristics (TA=25°C unless otherwise noted)

| Parameter                      | Symbol            | Condition                                  | Min | Тур | Max | Unit |  |  |  |
|--------------------------------|-------------------|--------------------------------------------|-----|-----|-----|------|--|--|--|
| Off Characteristics            |                   |                                            |     |     |     |      |  |  |  |
| Drain-Source Breakdown Voltage | BV <sub>DSS</sub> | V <sub>GS</sub> =0V I <sub>D</sub> =-250μA | -30 |     | -   | V    |  |  |  |



| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>                                                        | V <sub>DS</sub> =-24V,V <sub>GS</sub> =0V                          | -    | -   | -1   | μA |  |
|------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------|------|-----|------|----|--|
| Gate-Body Leakage Current          | kage Current I <sub>GSS</sub> V <sub>GS</sub> =±10V,V <sub>DS</sub> =0V |                                                                    | -    | -   | ±100 | nA |  |
| On Characteristics (Note 3)        |                                                                         | •                                                                  | •    |     |      |    |  |
| Gate Threshold Voltage             | V <sub>GS(th)</sub>                                                     | V <sub>DS</sub> =V <sub>GS</sub> ,I <sub>D</sub> =-250μA           | -0.7 | -1  | -1.3 | V  |  |
|                                    | R <sub>DS(ON)</sub>                                                     | V <sub>GS</sub> =-10V, I <sub>D</sub> =-4.2A                       | -    | 47  | 55   | mΩ |  |
| Drain-Source On-State Resistance   |                                                                         | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-4A                        | -    | 56  | 75   | mΩ |  |
|                                    |                                                                         | V <sub>GS</sub> =-2.5V, I <sub>D</sub> =-1A                        |      | 72  | 130  | mΩ |  |
| Forward Transconductance           | <b>g</b> FS                                                             | V <sub>DS</sub> =-5V,I <sub>D</sub> =-4.2A                         | -    | 10  | -    | S  |  |
| Dynamic Characteristics (Note4)    |                                                                         |                                                                    | •    |     |      |    |  |
| Input Capacitance                  | C <sub>lss</sub>                                                        | \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                             | -    | 880 | -    | PF |  |
| Output Capacitance                 | Coss                                                                    | – V <sub>DS</sub> =-15V,V <sub>GS</sub> =0V,<br>– F=1.0MHz         | -    | 105 | -    | PF |  |
| Reverse Transfer Capacitance       | C <sub>rss</sub>                                                        | F-1.UIVITZ                                                         | -    | 65  | -    | PF |  |
| Switching Characteristics (Note 4) |                                                                         |                                                                    |      |     |      |    |  |
| Turn-on Delay Time                 | t <sub>d(on)</sub>                                                      |                                                                    | -    | 7   | -    | nS |  |
| Turn-on Rise Time                  | t <sub>r</sub>                                                          | V <sub>DD</sub> =-15V,I <sub>D</sub> =-4.2A                        | -    | 3   | -    | nS |  |
| Turn-Off Delay Time                | t <sub>d(off)</sub>                                                     | $V_{GS}$ =-10 $V$ , $R_{GEN}$ =6 $\Omega$                          | -    | 30  | -    | nS |  |
| Turn-Off Fall Time                 | t <sub>f</sub>                                                          |                                                                    | -    | 12  | -    | nS |  |
| Total Gate Charge                  | Qg                                                                      |                                                                    | -    | 8.5 | -    | nC |  |
| Gate-Source Charge                 | Q <sub>gs</sub>                                                         | V <sub>DS</sub> =-15V,I <sub>D</sub> =-4.2A,V <sub>GS</sub> =-4.5V | -    | 1.8 | -    | nC |  |
| Gate-Drain Charge                  | Q <sub>gd</sub>                                                         | ]                                                                  | -    | 2.7 | -    | nC |  |
| Drain-Source Diode Characteristics |                                                                         |                                                                    |      |     |      |    |  |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>                                                         | V <sub>GS</sub> =0V,I <sub>S</sub> =-4.2A                          | -    | -   | -1.2 | V  |  |

## Notes:

- **1.** Repetitive Rating: Pulse width limited by maximum junction temperature. **2.** Surface Mounted on FR4 Board,  $t \le 10$  sec.
- 3. Pulse Test: Pulse Width  $\leq$  300µs, Duty Cycle  $\leq$  2%.
- **4.** Guaranteed by design, not subject to production



# Typical Electrical and Thermal Characteristics



Figure 1:Switching Test Circuit



 $T_J$ -Junction Temperature (°C) Figure 3 Power Dissipation



Ip- Drain Current (A)

Vds Drain-Source Voltage (V) Figure 5 Output Characteristics



Figure 2:Switching Waveforms



Figure 4 Drain Current



Figure 6 Drain-Source On-Resistance





Vgs Gate-Source Voltage (V) Figure 7 Transfer Characteristics



Vgs Gate-Source Voltage (V) Figure 9 Rdson vs Vgs



Qg Gate Charge (nC) Figure 11 Gate Charge





Vds Drain-Source Voltage (V) Figure 10 Capacitance vs Vds



Vsd Source-Drain Voltage (V)
Figure 12 Source- Drain Diode Forward

Is- Reverse Drain Current (A)





Vds Drain-Source Voltage (V)
Figure 13 Safe Operation Area



Figure 14 Normalized Maximum Transient Thermal Impedance