DM872 Math Opt @ Work

More on Polyhedra and Farkas' Lemma

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark Outline Farkas' Lemma

1. Farkas' Lemma

Outline

1. Farkas' Lemma

We look at Farkas' Lemma with two objectives:

- (giving another proof of strong duality)
- understanding a certificate of infeasibility

Farkas' Lemma

Farkas' Lemma

Theorem (Farkas' Lemma)

Let
$$A \in \mathbb{R}^{m \times n}$$
 and $\mathbf{b} \in \mathbb{R}^m$. Then,

either I.
$$\exists \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b} \text{ and } \mathbf{x} \geq \mathbf{0}$$

or II. $\exists \mathbf{y} \in \mathbb{R}^m : \mathbf{y}^T A \geq \mathbf{0}^T \text{ and } \mathbf{y}^T \mathbf{b} < \mathbf{0}$

Easy to see that both I and II cannot occur together:

$$(0 \le) \qquad \mathbf{y}^T A \mathbf{x} = \mathbf{y}^T \mathbf{b} \qquad (< 0)$$

Geometric interpretation of Farkas' Lemma

Linear combination of a_i with nonnegative terms generates a convex cone:

$$\{\lambda_1 \mathbf{a}_1 + \ldots + \lambda_n \mathbf{a}_n, |\lambda_1, \ldots, \lambda_n \geq \mathbf{0}\}$$

Polyhedral cone: $C = \{ \boldsymbol{x} \mid A\boldsymbol{x} \leq \boldsymbol{0} \}$, intersection of many $\boldsymbol{a}\boldsymbol{x} \leq 0$ Conic hull of rays $\boldsymbol{p}_i = \{\lambda_i \boldsymbol{a}_i, \lambda_i \geq 0 \}$

Either

point b lies in convex cone C

or

 \vec{a} hyperplane h passing through point 0 $h = \{x \in \mathbb{R}^m : y^Tx = 0\}$ for $y \in \mathbb{R}^m$ such that all vectors a_1, \ldots, a_n (and thus C) lie on one side and b lies (strictly) on the other side (ie, $y^Ta_i \ge 0, \forall i = 1 \dots n$ and $y^Tb < 0$).

Alternative Formulation

Theorem (Farkas' Lemma)

The inequality $c^T x \ge c_0$ is valid for the non-empty polyhedron $P := \{x \ge 0 \mid Ax = b\}$ if and only if $y \in \mathbb{R}^m$ exists such that:

$$c^T \ge y^T A$$
 $c_0 \le y^T b$

(sufficiency) (used in Gomory cuts)

$$c^T x \ge y^T A x = y^T b \ge c_0$$

 \Rightarrow (necessity)

by simplex algorithm similar to our proof of the strong duality theorem

Corollary

- (i) Ax = b has sol $x \ge 0 \iff \forall y \in \mathbb{R}^m$ with $y^T A \ge 0^T$, $y^T b \ge 0$
- (ii) $Ax \leq b$ has sol $x \geq 0 \iff \forall y \geq 0$ with $y^T A \geq 0^T$, $y^T b \geq 0$
- (iii) $Ax \leq \mathbf{0}$ has sol $x \in \mathbb{R}^n \iff \forall y \geq \mathbf{0}$ with $y^T A = \mathbf{0}^T, y^T b \geq \mathbf{0}$

Certificate of Infeasibility

Farkas' Lemma provides a way to certificate infeasibility.

Theorem

Let Ax = b, $x \ge 0$.

Given a certificate y^* it is easy to check the conditions (by linear algebra):

$$A^T y^* \ge 0$$
$$by^* < 0$$

Why would \mathbf{v}^* be a certificate of infeasibility?

Proof (by contradiction)

Assume, $A^T y^* \ge 0$ and $by^* < 0$.

Moreover assume $\exists x^*$: $Ax^* = b$, $x^* \ge 0$, then:

$$(\geq 0)$$
 $(\mathbf{y}^*)^T A \mathbf{x}^* = (\mathbf{y}^*)^T \mathbf{b}$ (< 0)

Contradiction

General form:

$$\begin{array}{l} \max \, c^T x \\ A_1 x = \, b_1 \\ A_2 x \leq \, b_2 \\ A_3 x \geq \, b_3 \\ x \geq \, \, 0 \end{array}$$

infeasible
$$\Leftrightarrow \exists v^*$$

$$b_1^T y_1 + b_2^T y_2 + b_3^T y_3 > 0$$

$$A_1^T y_1 + A_2^T y_2 + A_3^T y_3 \le 0$$

$$y_2 \le 0$$

$$y_3 \ge 0$$

Example

 $y_1 = -1, y_2 = 1$ is a valid certificate.

- Observe that it is not unique!
- It can be reported in place of the dual solution because same dimension.
- To repair infeasibility we should change the primal at least so much as that the certificate of infeasibility is no longer valid.
- Only constraints with $y_i \neq 0$ in the certificate of infeasibility cause infeasibility