Lossless Join Example discussed in class

Let R = ABCDE, R1 = AD, R2 = AB, R3 = BE, R4 = CDE, and R5 = AE. Let the functional dependencies be: $A \rightarrow C$, $B \rightarrow C$, $C \rightarrow D$, $DE \rightarrow C$, $CE \rightarrow A$

Apply algorithm 7.2 from class handout to test if the decomposition of R into {R1,..,R5} is a lossless join decomposition.

The initial table looks as follows:

	A	В	C	D	<u>E</u>
R1(AD)	a1	b12	b13	a4	b15
R2(AB)	a1	a2	b23	b24	b25
R3(BE)	b31	a2	b33	b34	a5
R4(CDE)	b41	b42	a3	a4	a5
R5(AE)	a1	b52	b53	b54	a5

Apply FD A -> C to the initial table to modify the violating dependencies. Rows 1, 2, 5 will need to change the values for the RHS attribute C – equate b13, b23, b53 to b13 (you might very well have picked b23 or b53 to equate all three). We won't change the rows 3 & 4 yet because their symbols b31, b41 are different from a1.

A	В	C	D	E
a1	b12	b13 b13	a4	b15
a1	a2	b23 b13	b24	b25
b31	a2	b33	b34	a5
b41	b42	a3	a4	a5
a1	b52	b53 b13	b54	a5

Apply B -> C next to equate b33 with b13

A	В	C	D	E
a1	b12	b13 b13	a4	b15
a1	a2	b23 b13	b24	b25
b31	a2	b33 b13	b34	a5
b41	b42	a3	a4	a5
a1	b52	b53 b13	b54	a5

Next, use C -> D to equate a4, b24, b34, and b54

A	В	C	D	E
a1	b12	b13 b13	a4	b15
a1	a2	b23 b13	b24 a4	b25
b31	a2	b33 b13	b34 a4	a5
b41	b42	a3	a4	a5
a1	b52	b53 b13	b54 a4	a5

DE -> C helps us to equate b13 (all occurrences) with a3. The following table shows the corresponding changes.

A	В	C	D	E
a1	b12	b13 b13 a3	a4	b15
a1	a2	b23 b13 a3	b24 a4	b25
b31	a2	b33 b13 a3	b34 a4	a5
b41	b42	a3	a4	a5
a1	b52	b53 b13 a3	b54 a4	a5

Apply CE -> A to the table above to equate b31, b41, and a1.

A	В	C	D	E
a1	b12	b13 b13 a3	a4	b15
a1	a2	b23 b13 a3	b24 a4	b25
b31 a1	a2	b33 b13 a3	b34 a4	a5
b41 a1	b42	a3	a4	a5
a1	b52	b53 b13 a3	b54 a4	a5

The middle row in the table above is all a's, and the decomposition has a lossless join.

What happens if we apply FDs in a different order?

Try any FD with the same symbols (a or b) on the LHS attribute in at least two rows. We have two choices: $A \rightarrow B$ or $B \rightarrow C$. We tried $A \rightarrow B$ in the previous test. Try $B \rightarrow C$ here.

<u>A</u>	В	С	D	<u>E</u>
a1	b12	b13	a4	b15
a1	a2	b23 b23	b24	b25
b31	a2	b33 b23	b34	a5
b41	b42	a3	a4	a5
a1	b52	b53	b54	a5

Apply A -> C after that to get the following table. Notice I chose b23 to equate b13, b23, and b53.

A	В	C	D	E
a1	b12	b13 b23	a4	b15
a1	a2	b23 b23	b24	b25
b31	a2	b33 b23	b34	a5
b41	b42	a3	a4	a5
a1	b52	b53- b23	b54	a5

The table shown above is the similar to the one we got before after applying $A \rightarrow C$ and $B \rightarrow C$ to the initial table. To the current table we apply $C \rightarrow D$ as before because we have the same symbol b23 in rows 1, 2, 3, and 5.