Lógico LEI

1.º teste

26 março 2022

Grupo I

(1.)

Autof (\$\phi \pho(p\pi)) = \{ \$\phi \pho(p\pi) \} \cup \text{ autof (\$\phi) \cup \pho, \$\phi_1, \$\pho(p\pi) \}

Pors que \$\phi \pho (p\pi) \text{ tenhs exstaments } 4 \text{ subfit nubso}, e'

meananio que \text{ subf (\$\phi) \text{ sups um subconjunto de } \{ \$\pho, \$\phi_1, \$\pho \pi p_1 \}.

Podemos suchlar \$\phi \text{ como } \$\pho \text{ ou como } \$\pho \text{ ou como } \$\pho \text{ outo } \$\pho \text{ po } \pi p_1.

(βο → τφ) [Ψ/ρο] = Ψ → τ φ[Ψ/ρο]

Assim, Ψ = βινρ2 ε φ = βολ βι ε υπω possivel

respects so que ε probido. Poderísmos, ainda, escolher

φ = (βινρ2)λβι.

(3.) Sija T' = { p1 17p2, p1 4p0, p1}.

	Po	þ1	170	P117/20	P,⇔R	Pi
	1	1	0	0	(1)	1
	4	0	0	0	0	O
•	0	1	1	1	0	(1)
	0	0	1	0	1	0

As formulus pin7po e pi 00 não podem ser simultane amente verdaduiras. Logo, {pin7po, pi 00 mão i consistente.

Os sibco vijuntos de T' consistentes com 2 ilementos são, entrã, $\left\{p_1 \wedge 7 \mid p_0 \ , \ p_1 \right\} \ , \ \left\{p_1 \leftrightarrow p_0 \ , \ p_1 \right\} \ .$

(4.) $V \models T$ is a so on $N(\varphi)=1$, para todo $\varphi \in T$.

In particular, $N(p_i)=1$, para todo $\varphi \in T$.

if par. Mais sinds, $N(\tau p_1 \vee \tau p_2)=1$ or $V(p_2 \rightarrow p_3)=1$.

Portant, $V(p_1)=0$ or $V(p_3)=1$.

Consideremos, por exemplo, a valoração ∇ tal que ∇ (p) = { 0 se p=p1 } . 1 n p \in 20 \in $\{p_1\}$

(5.) $\varphi = \beta_1 \Rightarrow (\beta_2 \vee \bot) \iff \beta_1 \Rightarrow \beta_2$ $\iff 77 (\beta_1 \Rightarrow \beta_2)$ $\iff 7 (\beta_1 \wedge 1\beta_2)$

Y=7 (p1 17 7 p2).

(6.) Sijam $\varphi = (p_1 \wedge 7p_2) \vee p_3$ $e \qquad \psi = 7p_4.$

Temos que q é uma FND, y é uma FNC, mas $\varphi_{\Lambda} \psi = ((p_1 \wedge 7p_2) \vee p_3) \wedge 7p_4$ ms é uma FNC. (7.) Consideremos, por exemplo, φ= poλp1. Temos

que (poλp1) → po e uma tautalogía, mas po→ (poλp1)

mas é uma tautalogía.

Consideration, como ostro exemplo, $\varphi = pov p_1 \cdot Aqvi$, $e^ p_0 \rightarrow \varphi$ que é toutologia, so passo que $\varphi \rightarrow p_0$ mas é toutologia.

(8.) Sijs $\varphi = 7p_1 \vee p_2$. So $v \in v_{10} \vee v_{20} = v_{20} = v_{10} = v_$

Grupo II

(1.) f: FCP→INO & definida recursivamente por:

(i) f (pi) = 0, para qualquer i ∈ INo;

(ii) f(L) = 0;

(iii) f (74) = f(4), para qualquer 4 = fcp;

(iv) f (4x4) = 1+ f (4) + f (4), para quaisquer 4,4 = f (5)

(4) f (4 a h) = f (h) + f (h), borz drieder h'h∈ £ c6 +

(2). Seja P(φ) a condição vou (φ[4/p]) ⊆ vou(φ) u vou(γ).

(i) Sija i EINO.

So $p_i = p$, ents $\varphi [\psi/p] = \psi e$, obviounment, $var(\varphi[\psi/p]) = var(\psi) \subseteq var(\varphi) \cup var(\psi)$.

- So $p_i \neq p$, with $\varphi [\psi/p] = \varphi$ or $(\varphi [\psi/p]) = vec (\varphi) \subseteq vec (\varphi) \cup vec (\psi)$.

 Assim, $\mathcal{P}(p_i)$, $p_{i'2}$ table $i \in IN_0$.
- (ii) Sends var $(L[Y/p]) = ver(L) = \emptyset$, i claro gue var $(L[Y/p]) \subseteq ver(L) \cup ver(Y)$. Logo, $\mathcal{P}(L)$.
- (iii) Sigs $\varphi \in \mathcal{F}^{(P)}$ to I_{φ} $Q(\varphi)$, or signary, var $(\varphi [\psi p]) \subseteq \text{var}(\varphi) \cup \text{var}(\psi)$. (HI)
 Thurs que

van ((14)[4/p]) = van (7 4[4/p]) =

= van (4 [4/p]) ⊆ van (4) U van (4)

= van (7p) U van (4).

Assim, P(74).

(iv) Sijom φ1, φ2 ∈ F(P tois que P(φ1) & P(φ2), i.c.,

NOW (φ1 [4/p]) ⊆ von (φ1) υ von (ψ) &

von (φ2 [4/p]) ⊆ von (φ2) υ von (ψ1) (H2) Sijo □ ∈ {Λ,ν, >, ε>}.

Temos que non (ψ1 □ φ2)[4/p]) = von (φ1 (4/p) □ φ2 [4/p]) =

= non (φ1 [4/p]) υ von (φ2 [4/p]) ⊆ non(φ1) υ von (ψ2) υ von (ψ2

= van (91) υ van (92) υ van (4)

= van (910 φ2) υ van (4).

Portuito, van (910 φ2) [4/ρ]) ⊆ van (910 φ2) υ van (4),

i.e. P(910 φ2).

Por (i)-(ir), pulo Princípio de Indução Estrutural, Prop), para toda y E FCP.

(3.) y= (7p0 Ap1) → ((p1 → p2) → 1)

> 7 (7p0 1 p1) V 7 (p1 → p2)

(=> po v p1 v (p1 17 pz), que i ums FND.

Assim, porpir (p117pz) & uns FND legicomente equivolente a p.

CASO1: Nr (p1)=0.

Nut caso, N (P1 → P3) = 1.

CASO 2: N (P1) = 1.

Note caso, como $N(7p_1Vp_2)=1$, segue-se que $V(p_2)=1$. Dado que $V(p_2\leftrightarrow p_3)=1$, segue-se que $V(p_3)=1$ e, portante, $V(p_1\to p_3)=1$.

Assim, em ambos os casos, r(p, > p3)=1.

bgo, n v e ums vslorsus que satisfieg {7p,vpz,p200p3}, entais ~ satisfiz p1 → p3. Portents,

7), vp2, p2 ↔ p3 = p1 → p3.

(5.) Admitsmos que $\text{TU}\{\varphi\}$ é consistente e que $\text{T} = 7\gamma - 7\varphi$.

Futso, existe pelo memos uma raboração or tal que or

ratisfaz $\text{TU}\{\varphi\}$. logo, $\text{V} = \text{Te} \text{V}(\varphi) = 1$. le $\text{Te} \text{P} + \text{$

(6.) $\frac{P_{1} \wedge (P_{2} \rightarrow (P_{2} \wedge P_{3}))}{P_{1} \wedge (P_{2} \rightarrow (P_{2} \wedge P_{3}))} \xrightarrow{P_{1} \wedge (P_{2} \rightarrow (P_{2} \wedge P_{3}))} \wedge_{2} E$ $\frac{P_{1} \wedge (P_{1} \rightarrow (P_{2} \wedge P_{3}))}{P_{1} \wedge (P_{2} \wedge P_{3})} \wedge_{1} E$ $\frac{P_{1} \wedge (P_{1} \rightarrow (P_{2} \wedge P_{3}))}{P_{2} \wedge P_{3}} \wedge_{1} E$ $\frac{P_{1} \wedge P_{2}}{(P_{1} \wedge (P_{1} \rightarrow (P_{2} \wedge P_{3})))} \rightarrow (P_{1} \wedge P_{2})$ $\frac{P_{1} \wedge P_{2}}{(P_{1} \wedge P_{2} \wedge P_{3})} \rightarrow (P_{1} \wedge P_{2})$

é uns demonstração em DNP da fórmula dada.