EE5311- Digital IC Design

Module 5 - Sequential Circuit Design

Janakiraman V

Assistant Professor
Department of Electrical Engineering
Indian Institute of Technology Madras
Chennai

November 9, 2018

Learning Objectives

- Build elementary sequential circuits like latches and flip flops - Static and Dynamic
- Identify devices that affect set up and hold time
- Derive max and min delay constraints for latch/ flip flop based pipeline systems
- Account for clock skew in a pipelined system
- Analyse time borrowing across half cycles and across cycles
- Calculate the maximum clock frequency of operation of a pipelined system

Outline

- Finite State Machines
- Sequencing Elements
- Sequencing Methods
 - ▶ Flip flop
 - Latch
- Delay definitions
- Circuit Implementations of Latch/ Flop
 - Static
 - Dynamic
- Max delay constraints
- Min delay constraints
- Time Borrowing

Finite State Machines

Ability to feed data back to combinational circuits requires delays

Sequencing Elements

- ► Latch Transparent when CLK=1, samples on the falling edge
- ► Flop Samples on the rising edge

Sequencing Methods

Timing Notation

Term	Name
t_{pd}	Logic Propagation Delay
t _{cd}	Logic Contamination Delay
t_{pcq}	Latch/ Flop Clock-Q Propagation Delay
t_{ccq}	Latch/ Flop Clock-Q Contamination Delay
t_{pdq}	Latch D-Q Propagation Delay
t_{cdq}	Latch D-Q Contamination Delay
t _{setup}	Latch/ Flop Setup Time
t _{hold}	Latch/Flop Hold Time

Combinational Logic Delay

- $ightharpoonup t_{cd}$ Contamination delay Min delay through the circuit
- $ightharpoonup t_{pd}$ Propagation delay Max delay through the circuit

Flip Flop Delay

- ▶ t_{ccq} Contamination Clock-Q delay
- ▶ t_{pca} Propagation Clock-Q delay
- ▶ t_{setup} Set up time
- ► t_{hold} Hold time

Latch Delay

- ► t_{ccq} Contamination Clock-Q delay
- $ightharpoonup t_{pcq}$ Propagation Clock-Q delay
- ▶ t_{cdq} Contamination D-Q delay
- ▶ t_{pdq} Propagation D-Q delay
- t_{setup} Set up time
- ► t_{hold} Hold time

Bistability

- ▶ A and B are stable operating points
- ► C is a Metastable point

Metastability

- ightharpoonup C A small noise will take the output to either 0 or V_{DD}
- ► A, B Stable points which is inmmune to large noise

Switching Bistable States

- ▶ Breaking the Feedback loop Multiplexer based latch
- Overpowering Feedback loop Common in SRAMs

Multiplexer Based Latches

Multiplexer Based Latches

Multiplexer Based Latches

Clock load is very high - FOUR transistors

Multiplexer Based Flip Flop

Master-Slave Positive edge triggered Flip Flop

Multiplexer Based Flip Flop Timing

Master-Slave Positive edge triggered Flip Flop - Timing

Multiplexer Based Positive Edge Triggered Flop

Clock load is very high - FOUR transistors

Negative Edge Triggered Flop Race Conditon

- ▶ Negative Edge Flop Race Condition ($CLK = \overline{CLK} = 1$)
- Both latches are transparent at the same time
- $(CLK = \overline{CLK} = 0)$ is not a problem because all NMOS pass transistors are OFF
- This flop suffers from:
 - Passing a logic high fully
 - Slow charging time for a logic high (source potential increases)

Negative Edge Triggered Flip Flop Race Conditon

Race condition:

- ► Race condition at sampling edge can be avoided by imposing a hold time constraint
- ▶ Beware of race condition on the non-sampling edge

Multiplexer Based Flop - Setup and Hold Times

$$t_{setup} = 3t_{inv-pd} + t_{tx-pd}$$

$$t_{cq} = t_{pd-tx} + t_{pd-inv}$$

$$t_{hold} = 0$$

Flops with Overpowering Feedback Loops

- Driver needs to overpower feedback loop in the master
- Reverse conduction possible
- Need non-overlapping clocks

Non-overlapping Clocks

Latch with Tri State Inv in Feedback Loop

▶ Inverter + Pass gate in feedback loop = Tri state inverter

Latch with Output Isolation

Noise on the output cannot propagate and disturb the internal state

Itanium 2 Latch

- ▶ Break or Overpower Feedback? Break 0 and overpower 1.
- Lesser area needed to overpower weak PMOS with strong NMOS

Tri State Inverter Dynamic Latch

Tri-State Inverter

Data stored dynamically on a capacitor

Tri State Inverter Dynamic Latch

Tri-State Inverter

Bad Implementation

 Charge sharing is a serious problem in the bad implementation

C2MOS Flop Positive Edge Triggered

Insensitive to clock overlap

C2MOS Flop - 00 Overlap

- ▶ Positive Edge Triggered Flop: 0 0 overlap
- ▶ Post the overlap *L*₂ becomes opaque
- ▶ Data cannot go through from $D \rightarrow Q$
- Data inversion does the trick
- ▶ Race conditon requires PMOS in L₁ and NMOS L₂ to be ON - Not possible

C2MOS Flop - 11 Overlap

- ▶ Positive Edge Triggered Flop: 1 1 overlap
- lacksquare Data will go through from D o Q
- Post the overlap L₂ becomes transparent Turns on PMOS in L₂
- Need to impose hold time constraint

C2MOS Flop - Timing Parameters

- Assumption: Clock edges are instantaneous and have no overlap
- $ightharpoonup t_{setup} = ?$
- $ightharpoonup t_{hold} = ?$
- $ightharpoonup t_{cq} = ?$

C2MOS Flop - Timing Parameters

- Assumption: Clock edges are instantaneous and have no overlap
- $t_{setup} = L_1$ Tri state inverter delay
- $ightharpoonup t_{hold} = 0$
- $t_{cq} = L_2$ Tri state inverter delay

Transmission Gate Based Flop

- Assumption: Clock edges are instantaneous and have no overlap
- $ightharpoonup t_{setup} = ?$
- $ightharpoonup t_{hold} = ?$
- $ightharpoonup t_{cq} = ?$

Transmission Gate Based Flop

- Assumption: Clock edges are instantaneous and have no overlap
- $ightharpoonup t_{setup} = t_{TG_1}$
- $t_{cq} = t_{l_1} + t_{TG_2} + t_{l_2}$
- $ightharpoonup t_{hold} = 0$

Flip Flop Characterization

- ▶ As data to clock (t_{DC}) reduces, t_{CQ} increases
- $t_{DQ} = t_{DC} + t_{CQ}$ decreases and then increseas
- $ightharpoonup t_{setup}$ t_{DC} at which t_{DQ} is minimum
- ► Corresponding t_{CQ} is t_{pcq}
- $ightharpoonup t_{ccq}$ t_{CQ} for large t_{DC}

Max Delay Constraint - Flip Flop

$$T_C \geq t_{pcq} + t_{pd} + t_{setup} \ t_{pd} \leq T_C - (t_{pcq} + t_{setup})$$

Max Delay Constraint - Latch

$$T_C \ge t_{pdq1} + t_{pd1} + t_{pdq2} + t_{pd2}$$

 $t_{pd} = t_{pd1} + t_{pd2} \le T_C - (2t_{pdq})$

 ϕ_1

 ϕ_2

Min Delay Constraint - Flip Flop

$$t_{hold} \le t_{cd} + t_{ccq}$$

 $t_{cd} \ge t_{hold} - t_{ccq}$

Min Delay Constraint - Latch

$$t_{hold} \leq t_{cd1}, t_{cd2} + t_{ccq} + t_{nonoverlap} \ t_{cd1}, t_{cd2} \geq t_{hold} - t_{ccq} - t_{nonoverlap}$$

Time Borrowing

- ► Flops impose hard edges
- If data arrives late Error
- If data arrives early Data is blocked till next edge
- Blocking time is wasted
- Latches allow Time Borrowing
- Data doesn't have to set up until the falling edge

Time Borrowing

- Open loop pipelines can borrow across cycles
- ▶ Closed loop pipelines can only borrow across half cycles.

Maximum Time Borrowing

$$t_{borrow} \leq \frac{T_C}{2} - (t_{setup} + t_{nonoverlap})$$

Clock Skew

- Clock is routed all through the chip
- Clocks are distributed in a tree structure through buffers
- ► All clock edges need to arrive at the same time across the chip
- Some variation is inevitable!
- The grid will have some small delay
- Worst case delay is called t_{skew}

Clock Tree

Nodes 1-8 see the same amout of delay and ideally should have no skew

Max Delay Constraint with Skew- Flip Flop

$$T_C \geq t_{pcq} + t_{pd} + t_{setup} + t_{skew} \ t_{pd} \leq T_C - \left(t_{pcq} + t_{setup} + t_{skew}
ight)$$

Min Delay Constraint with Skew - Flip Flop

$$t_{hold} \le t_{cd} + t_{ccq} - t_{skew}$$

 $t_{cd} \ge t_{hold} - t_{ccq} + t_{skew}$

Max Delay Constraint with Skew- Latch

$$T_C \ge t_{pdq1} + t_{pd1} + t_{pdq2} + t_{pd2}$$

 $t_{pd} = t_{pd1} + t_{pd2} \le T_C - (2t_{pdq})$

Two phase latches are Skew Tolerant

Min Delay Constraint - Latch

$$t_{cd1}, t_{cd2} \geq t_{hold} - t_{ccq} - t_{nonoverlap} + t_{skew}$$
 $t_{borrow} \leq \frac{T_C}{2} - (t_{setup} + t_{nonoverlap} + t_{skew})$

Sequence Element Timing Summary

Constraint	Flop	Two Phase Latch
Max	$t_{pd} \leq T_C - (t_{pcq} + t_{setup} + t_{skew})$	$t_{pd1} + t_{pd2} \le T_C - (2t_{pdq})$ (Skew Tolerant)
Min	$t_{cd} \ge t_{hold} - t_{ccq} + t_{skew}$	$t_{cd1}, t_{cd2} \ge t_{hold} - t_{ccq} - t_{nonoverlap} + t_{skew}$
Borrow	N.A.	$t_{borrow} \leq rac{T_{C}}{2} - (t_{setup} + t_{nonoverlap} + t_{skew})$

References

The material presented here is based on the following books/ lecture notes

- Digital Integrated Circuits Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic 2nd Edition, Prentice Hall India
- 2. CMOS VLSI Design, Neil H.E. Weste, David Harris and Ayan Banerjee, 3rd Edition, Pearson Education