Ковальков Антон 577гр

Задача 4.

1) Язык L получен пересечением регулярного языка b^* , регулярного языка aa^+b^* , для которых лемма о накачке выполняется, и языка $B,B=\{ab^p|p\in PRIMES\}$. Докажем, что лемма о накачке выполняется для языка B.

$$\forall \omega \in B \ \exists N = 2 : \omega = x \cdot y \cdot z, x = \varepsilon, y = a, |xy| < N$$

$$\hookrightarrow \forall i \geqslant 1, x \cdot y^i \cdot z = a^i \cdot b^p \in aa^+b.$$

2) Докажем теперь, что язык L не регулярный. Пусть p_1 и p_2 два последовательных простых числа, $p_2 > p_1$. Пусть $ab^i \sim ab^j$, и j > i, $i < p_1$; $j - i < p_2 - p_1$; i, j – составные числа. Тогда возьмём $z = b^{p_1-i}$. Получим: $ab^iz = ab^{p_1} \in L$, $ab^jz = ab^{p_1+j-i} \notin L$, т.к. $p_1 + j - i < p_2$ Так как пар последовательных простых чисел разность которых больше двух бесконечное множество, то мы доказали что в языке L бесконечное количество классов эквивалентности. По теореме Майхилла-Нероуда это означает, что язык не регулярный.

Задача 5.

Так как $L = L_1 \cup R$, то $L_1 = (L \setminus R) \cup (L_1 \cap R)$. $(L_1 \cap R)$ конечно, так как R конечно. язык $(L \setminus R)$ регулярный так как L, R регулярные и регулярные языки замкнуты отностительно разности. Получаем, что L_1 это объединение регулярного языка и конечного.

Задача 6.

Доопределим автомат \mathcal{A} , добавив в него состояние D. Получим такой автомат:

Множество вершин Q делится на 2 части: принимающие и непринимающие. $Q = \{q_0, q_2, D|q_1, q_3\}$. Если рассматривать теперь переходы по букве a, то q_0, q_2 переходят в один класс, а D в другой. То есть они в разных классах. Таким образом $Q = \{q_0, q_2|D|q_1, q_3\}$. Рассмотрим теперь переходы по букве b. Заметим, что q_1 и q_3 переходят в разные классы по этой букве, значит они не лежат в одном классе. Получаем $Q = \{q_0, q_2|D|q_1|q_3\}$. Теперь члены одного класса по одной букве переходят в один и тот же класс.

Построим минимальный ДКА:

Задача 7.

Доопределим всюду автомат из предыдущей задачи путём добавления непринимающего состояния D.

Построим автомат распознающий язык \overline{L} . Для этого сделаем все не принимающие состояния автомата принимающими, а непринимающие принимающими.

Получившийся автомат:

Таким образом, если исходный автомат на слове ω закончил в принимающем состоянии, то в получившемся он закончит в непринимающем, и если исходный автомат не принимал слово ω , то получившийся его примет.

Минимизируем получившийся автомат. Разделим множество состояний на 2 части: принимающие и непринимающие $Q = \{Q_0, D|Q_1, Q_2\}$. Рассмотрим теперь переходы по букве a, Q_0 переходит в один класс, а D в другой. Таким образом $Q = \{Q_0|D|Q_1,Q_2\}$. Рассмотрим теперь переходы по букве b, Q_1 переходит в один класс, а Q_2 в другой. Таким

образом $Q = \{Q_0|D|Q_1|Q_2\}$. Теперь члены одного класса по одной букве переходят в один и тот же класс.

Построим минимальный ДКА:

Задача 8.

Построим КМП-автомат для подслова ab:

- $Q = \{ \varepsilon, a, ab \};$
- $q_0 = \varepsilon$;
- $$\begin{split} \bullet & \delta: \\ & \delta(\varepsilon,a) = a \\ & \delta(\varepsilon,b) = \varepsilon \\ & \delta(a,a) = a \\ & \delta(a,b) = ab \qquad \delta(ab,a) = ab \qquad \delta(ab,b) = ab \end{split}$$
- $F = \{abaa\}.$

Он всюду определён. Минимизируем получившийся автомат. Разделим множество состояний на 2 части: принимающие и непринимающие $Q = \{\varepsilon, a|ab\}$. Рассмотрим теперь переходы по букве b: ε переходи в один класс, a в другой, тогда получим $Q = \{\varepsilon|a|ab\}$. Теперь члены одного класса по одной букве переходят в один и тот же класс. Построим минимальный ДКА:

