PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 8 (Mar 14 – Apr 4)

- 1 (5+5+5) Let $K \subseteq L$ be a splitting field extension for some $f \in K[t] \setminus K$. Then the following are equivalent:
 - (i) f has a repeated root over L;
 - (ii) $\exists \alpha \in L \text{ s.t. } 0 = f(\alpha) = (\mathcal{D}f)(\alpha);$
 - (iii) $\exists g \in K[t], \deg g \geq 1 \text{ s.t. } g \text{ divides both } f \text{ and } \mathcal{D}f.$
- **2** (5) Let K be a field, char(K) = p > 0 and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that f is inseparable.
- **3** (10) Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that there is $g \in K[t]$ and a non-negative n such that $f(t) = g(t^{p^n})$ and g is an irreducible and separable polynomial.
- 4 (10) Prove that $\prod_{\alpha \in \mathbb{F}_q^*} \alpha = -1$.
- **5** (5+5+5+5) a) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \beta \beta^p$ for some $\beta \in \mathbb{F}_q$. Prove that $\text{Tr}(\alpha) = 0$.
 - b) Let $\alpha \in \mathbb{F}_q$ and $\alpha = \gamma^{1-p}$ for some nonzero $\gamma \in \mathbb{F}_q$. Prove that $Norm(\alpha) = 1$.
 - c) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\text{Tr}(\alpha) = n\alpha$.
 - d) Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $Norm(\alpha) = \alpha^n$.
- 6 The midterm exam will be on Thursday the 27th!