Part II

Basic GNNs & Applications

Lecture 05

Introduction to Graph Convolution Networks (GCN)

- ☐ Learn GCN fundamentals and its significance in graph-based data analysis.
- ☐ Understand message passing and smart normalization in GCNs.
- Apply GCNs to various graph-based tasks for valuable insights.

ECOLE SUPÉRIEURE EN INFORMATIQUE 8 Mai 1945 - Sidi-Bel-Abbès

LIMITATIONS OF VANILLA ann

gen

MODELS COMPARISON

Challenges and Limitations of Vanilla GNN

Recall of Vanilla GNN

Challenges and Limitations of Vanilla GNN

LIMITATIONS OF VANILLA ann

gen

MODELS COMPARISON

Vanilla GNN MLP **Dataset** 51.90% 72.50% Cora 75.21% **Facebook** 84.85%

Recall of Vanilla GNN


```
# Create a new class named VanillaGNN for our GNN
class VanillaGNN(nn.Module):
    # Initialize the VanillaGNN
    def init (self, dim in, dim h, dim out):
        super(). init ()
        # Initialize 2 VanillaGNNLayer layers
        self.gnn1 = VanillaGNNLayer(dim in, dim h)
        self.gnn2 = VanillaGNNLayer(dim h, dim out)
    # Perform the Forward pass of the VanillaGNN
    def forward(self, x, adjacency):
        # Apply the 1st GNN layer
        h = self.gnn1(x, adjacency)
        # Apply ReLU activation
        h = torch.relu(h)
        # Apply the 2nd GNN layer
        h = self.gnn2(h, adjacency)
        # Return Log softmax for classification
        return F.log softmax(h, dim=1)
```

...... Other def Functions

gen

MODELS COMPARISON

Challenges and Limitations of Vanilla GNN

nced	In real-world graphs, nodes often have varying numbers of neighbors.
Unbalar Neighbo Counts	Example: Node 1 has 3 neighbors, while node 2 has only 1.
Unanticipated Problem:	Vanilla GNN layers treat all neighbors equally with a simple aggregation operation.
	No consideration for the difference in neighbor counts.
e + 'c	Node 1 (with 1,000 neighbors) and Node 2 (with only

conseduen

1 neighbor) create embeddings with vastly distinct scales.

This scale variation hinders meaningful comparisons between embeddings.

Fig. – Simple graph where nodes have different numbers of neighbors

A or \widetilde{A} is typically not normalized.

These Limitations:

Addressing

Graph Convolutional Networks (GCN)

Inspiration From 2d Conv

Researchers have proposed more advanced methods like Graph Convolutional Networks (GCNs).

GCNs aim to tackle the issues of vanilla GNNs through normalization and more sophisticated weight assignments.

2D Convolution:

- Treats each image pixel as a node.
- Neighbors determined by fixed grid size (The filter size).
- Computes weighted average of pixel values with fixed-size, ordered neighbors.
- Neighbors are ordered and consistently sized.

Graph Convolution:

- Aims to obtain a hidden representation of a target node.
- Simple approach: average the node features of the target node and its neighbors.
- Graph neighbors are unordered and variable in size.
- Adaptable to diverse and irregular data structures.

Adjacency Matrix A:

LIMITATIONS OF VANILLA ann

gen

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Normal Normalization

Normalizing A or \widetilde{A} such that all rows sum to one \rightarrow Taking the average of neighboring node features:

$$D^{-1}A$$

or

$$\widetilde{D}^{-1}\widetilde{A}$$

Where:

- **D** is the diagonal node degree matrix of **A**
- \circ $\widetilde{\boldsymbol{D}}$ is the diagonal node degree matrix of $\widetilde{\boldsymbol{A}}$

$$\widetilde{A} = A + I$$

A delta:

9cn

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Normal Normalization

Normalizing A or \widetilde{A} such that all rows sum to one \rightarrow Taking the average of neighboring node features:

$$D^{-1}A$$

or

$$\widetilde{D}^{-1}\widetilde{A}$$

Where:

- D is the diagonal node degree matrix of A
- \circ $\widetilde{\boldsymbol{D}}$ is the diagonal node degree matrix of $\widetilde{\boldsymbol{A}}$

$$\widetilde{A} = A + I$$

This normalizes neighboring node features

Rows Sum to 1


```
D^{-1}:
[[0.33 0. 0.
              0.5 ]]
```


acn

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Symmetric Normalization

Vormalization Normal

The multiplication $\widetilde{m{D}}^{-1}\widetilde{m{A}}$ results in an $m{imbalance}$, where nodes with higher degrees have more influence in the message passing.

We use instead:

$$\widetilde{\boldsymbol{D}}^{-1/2}\widetilde{\boldsymbol{A}}\ \widetilde{\boldsymbol{D}}^{-1/2}$$

 $\tilde{D}^{-1/2}$ is the diagonal matrix with the square root of node degrees.

This form of normalization ensures that the propagation weights are equally distributed among neighboring nodes.


```
Symmetric Normalization (D^{-1/2}) * A * D^{-1/2}:
[[0. 0.58 0.41 0.41]
```

[0.58 0. 0. 0.]

[0.41 0. 0. 0.5]

[0.41 0. 0.5 0.]]

Kipf, Thomas N., and Max Welling. "Semisupervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

acn

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Network Sciences

Overview of GCN

Global Transition Function (Message Passing):

• The GCN employs a specific layer-wise propagation rule:

Graph Convolutional Networks (GCN)

Manual Implementing of the GCN Layer:

```
__init__()
01
```

ECOLE SUPÉRIEURE EN INFORMATIOUE

8 Mai 1945 - Sidi-Bel-Abbès

```
# ...Import necessary libraries
class GCNLayer(nn.Module):
   def init (self, in features, out features):
       # Initialize the GCNLayer with input and output feature
          dimensions.
        super(GCNLayer, self). init ()
       # Create a learnable weight parameter.
       # This weight matrix will be fine-tuned during training.
        self.weight =
                    nn.Parameter(torch.FloatTensor(in features,
                                                  out features))
       # Initialize the weight matrix using the Xavier (Glorot)
          initialization method.
       # Xavier initialization helps with the convergence of
          the neural network.
       nn.init.xavier uniform (self.weight)
       # Rest of the methods...
```

Network Sciences

Graph Convolutional Networks (GCN)

Manual Implementing of the GCN Layer:

```
_init__()
01
```

```
# ...Import necessary libraries
class GCNLayer(nn.Module):
    def forward(self, x, adjacency):
       # Compute symmetric normalization
       # Calculate the degree of each node
        degree = torch.sum(adjacency, dim=1)
       # Calculate the reciprocal square root of the degree
        degree sqrt inv = 1.0 / torch.sqrt(degree)
       # Create a diagonal matrix with the degree sqrt inv
       D sqrt inv = torch.diag(degree sqrt inv)
       # Apply symmetric normalization to the adjacency matrix
        adjacency = torch.mm(torch.mm(D_sqrt_inv, adjacency),
                             D sqrt inv)
        # Compute the support (feature transformation)
        support = torch.mm(x, self.weight)
       # Perform the graph convolution using the normalized
          adjacency
        output = torch.spmm(adjacency, support)
        return output
```


gen

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Network Sciences

Implementation the GCN:

Class Overview 01

02 _init__()

```
# Create a new class named GCN
class GCN(nn.Module):
   def init (self, dim in, dim h, dim out):
     # Initialize the GCN class with input, hidden, and
       output layer dimensions
   def forward(self, x):
     # Perform the forward pass of the GCN
   def accuracy(self, y pred, y true):
     # Calculate the accuracy of predictions
   def fit(self, data, epochs):
     # Train the model
   def test(self, data):
     # Evaluate the model
```


9cn

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Class Overview 01

```
_init__()
02
```

forward() 03

Implementation the GCN:

```
# Create a new class named GCN
class GCN(nn.Module):
  def init (self, dim in, dim h, dim out):
       super().__init__()
       self.gcn1 = GCNLayer(dim in, dim h)
       self.gcn2 = GCNLayer(dim h, dim out)
```

Implementation the GCN With the Built-In GCNConv Module:

```
from torch geometric.nn import GCNConv
# Create a new class named GCN
class GCN(nn.Module):
  def __init__(self, dim_in, dim_h, dim_out):
       super(). init ()
       self.gcn1 = GCNConv(dim in, dim h)
       self.gcn2 = GCNConv(dim h, dim out)
```


gen

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Implementation the GCN:

Class Overview 01

init__() 02

```
# Create a new class named GCN
class GCN(nn.Module):
    def forward(self, x, adjacency):
         h = self.gcn1(x, adjacency)
         h = torch.relu(h)
         h = self.gcn2(h, adjacency)
         return F.log_softmax(h, dim=1)
```


gen

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Network Sciences

Building, Training, and Testing the GCN With the Cora Dataset:

- Class Overview 01
- init__() 02
- forward() 03
- Building, Training, and 04 Testing the GCN

```
# Create a GCN instance with specified input, hidden, and output
dimensions
gnn = GCN(dataset.num features, 16, dataset.num classes)
# Print the model architecture
print(gcn)
```

```
GCN(
  (gcn1): GCNLayer()
  (gcn2): GCNLayer()
```

9cn

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Building, Training, and Testing the GCN With the Cora Dataset – Manual GCN Layer

- Class Overview 01
- init__() 02

8 Mai 1945 - Sidi-Bel-Abbès

- forward() 03
- Building, Training, and 04 Testing the GCN

```
# Train the GCN model on the given data for a specified number
of epochs (100 in this case) and the adjacency matrix.
gcn.fit(data, epochs=100, adjacency=adjacency)
```

```
Epoch
           Train Loss: 2.762
                               Train Acc: 20.00% |
                                                   Val Loss: 2.77 |
                                                                    Val Acc: 12.00%
           Train Loss: 0.931
                                                   Val Loss: 1.53 |
Epoch 20
                               Train Acc: 82.86% |
                                                                    Val Acc: 55.80%
           Train Loss: 0.187
Epoch
                               Train Acc: 100.00% | Val Loss: 0.89 | Val Acc: 76.60%
           Train Loss: 0.055
Epoch
                               Train Acc: 100.00% | Val Loss: 0.77 | Val Acc: 76.20%
Epoch
      80
           Train Loss: 0.038
                               Train Acc: 100.00% | Val Loss: 0.76 | Val Acc: 76.00%
Epoch 100
           Train Loss: 0.034
                               Train Acc: 100.00% | Val Loss: 0.76 | Val Acc: 76.60%
```

```
# Test the model and get accuracy
test acc = gcn.test(data, adjacency=adjacency)
print(f'\nGCN test accuracy: {test acc*100:.2f}%')
```

GCN test accuracy: 80.30%

9cn

MODELS COMPARISON

Graph Convolutional Networks (GCN)

Network Sciences

Building, Training, and Testing the GCN With the Cora Dataset – Built-In GCNConv Module

- Class Overview 01
- init__() 02
- forward() 03
- Building, Training, and 04 Testing the GCN

```
# Train the GCN model on the given data for a specified number
of epochs (100 in this case) and the adjacency matrix.
gcn.fit(data, epochs=100, adjacency=adjacency)
```

```
Train Acc: 15.71% | Val Loss: 1.94 |
                                                                   Val Acc: 15.20%
Epoch
           Train Loss: 1.932
                                                   Val Loss: 0.75 | Val Acc: 77.80%
Epoch 20
           Train Loss: 0.099
                               Train Acc: 100.00% |
Epoch
      40
           Train Loss: 0.014
                               Train Acc: 100.00% | Val Loss: 0.72 |
                                                                    Val Acc: 77.20%
           Train Loss: 0.015
                              Train Acc: 100.00% | Val Loss: 0.71 | Val Acc: 77.80%
Epoch
      60
           Train Loss: 0.017 |
                               Train Acc: 100.00% |
                                                   Val Loss: 0.71
                                                                   Val Acc: 77.00%
Epoch
      80
                               Train Acc: 100.00% |
Epoch 100
           Train Loss: 0.016
                                                   Val Loss: 0.71
                                                                    Val Acc: 76.40%
```

```
# Test the model and get accuracy
test acc = gcn.test(data, adjacency=adjacency)
print(f'\nGCN test accuracy: {test acc*100:.2f}%')
```

GCN test accuracy: 79.70%

LIMITATIONS of Vanilla ann

gen

MODELS COMPARISON

Models Comparison

Network Sciences

Dataset	MLP	Vanilla GNN	GCN
Cana	51.90%	72.50%	79.70%
Cora		+20.60%	+27.80%

ECOLE SUPÉRIEURE EN INFORMATIQUE 8 Mai 1945 - Sidi-Bel-Abbès

Models Comparison

LIMITATIONS OF VAPILLA ann

gen

MODELS COMPARISON

Vanilla GNN:

Graph-Based Layers: Employs graph-based layers for iterative

Adjacency Matrix: Incorporates topological information from

Message Passing: Utilizes message passing to aggregate information from neighboring nodes.

Graph Structure: Considers the entire neighborhood of each

GCN (Graph Convolutional

Graph-Based Layers: Similar to Vanilla GNN, it employs graph-based layers for iterative node embedding

Smart Normalization: Improves upon Vanilla GNN by correctly normalizing features during message passing.

Message Passing: Also utilizes message passing to

aggregate information from neighboring nodes. Graph Structure: Like Vanilla GNN, it considers the entire neighborhood of each node, capturing graph structure.

THANK YOU