Claims:

1	1. A wireless interface device that services communications between a wirelessly enabled host
2	and at least one user input device, the wireless interface device comprising:
3	a user input device comprising a switch matrix having a plurality of rows and columns;
4	a wireless interface unit that wirelessly interfaces with the wirelessly enabled host;
5	a processing unit operably coupled to the wireless interface unit;
6	an input/output unit operably coupled to the wireless interface unit and to the processing
7	unit, wherein the input/output unit also operably couples to the user input device; and
8	a keyboard scanning circuit operably coupled to said input/output device to scan the rows
9	and columns of said user input device, wherein said scanning circuit detects operation of a key
10	associated with said user device by detecting a transition in the voltage level of at least one row in
11	said switch matrix from a first state to a second state and thereafter forces said row back to said first
12	state thereby decreasing the scanning interval for detecting row transitions.
1	2. The user input device of claim 1, wherein the columns latched in a high state uniquely
2	correspond to activation of a single switch in the switch matrix.
1	3. The user input device of claim 1, wherein the columns latched in a high state correspond to
2	an ambiguous plurality of switches.
1	4. The user input device of claim 3, wherein the scan logic identifies a plurality of columns
2	associated with the plurality of switches and sequentially scans each of the plurality of columns to
3	resolve the ambiguity and thereby identify activation of an unambiguous plurality of switches.

1	5.	The user input device of claim 1, wherein the switch transition circuitry generates an I/O
2	activat	ion signal upon detection of a switch transition.
1	6.	The user input device of claim 5, wherein the I/O activation signal causes the user input
2	device	to transition from a low power state to a busy state.
1	7.	A method of detecting an input to a key switch matrix on a user input device, comprising:
2		applying control signals to the rows and columns of the switch matrix to place the rows and
3		columns in a predetermined state;
4		detecting a transition in the voltage level of at least one row in the switch matrix from a first
5		state to a second state; and
6		forcing said row back to said first state thereby decreasing the scanning interval for
7		detecting row transitions.
1	8.	The method of claim 7, wherein the columns latched in a high state uniquely correspond to
2	activati	on of a single switch in the switch matrix.
1	9.	The user input device of claim 7, wherein the columns latched in a high state correspond to
2		iguous plurality of switches.
2	an anno	iguous praranty of switches.
1	10.	The user input device of claim 9, wherein the scan logic identifies a plurality of columns
2	associa	ted with the plurality of switches and sequentially scans each of the plurality of columns to
3	resolve	the ambiguity and thereby identify activation of an unambiguous plurality of switches.
1	11.	The user input device of claim 7, wherein the switch transition circuitry generates an I/O

2	activation signal upon detection of a switch transition.
1	12. The user input device of claim 11, wherein said output signal of the switch transition
2	circuitry causes the user input device to transition from a low power state to a busy state.
1	13. A system that services communications between a wirelessly enabled host and at least one
2	user input device, comprising:
3	a wireless interface unit that wirelessly interfaces with the wirelessly enabled host;
4	a processing unit operably coupled to the wireless interface unit;
5	an input/output unit operably coupled to the wireless interface unit and to the processing
6	unit, wherein the input/output unit also operably couples to the user input device;
7	a power management unit operably coupled to the wireless interface unit, the processing
8	unit, and the input/output unit, wherein the power management unit controls the
9	power consumption of the system; and
10	a user input device, comprising:
11	a switch matrix having a plurality of rows and columns;
12	a wireless interface unit that wirelessly interfaces with the wirelessly enabled
13	host;
14	a processing unit operably coupled to the wireless interface unit;
15	an input/output unit operably coupled to the wireless interface unit and to the
16	processing unit, wherein the input/output unit also operably couples
17	to the user input device; and
18	a keyboard scanning circuit operably coupled to said input/output device to

19	scan the rows and columns of said user input device, wherein said
20	scanning circuit detects operation of a key associated with said user
21	device by detecting a transition in the voltage level of at least one
22	row in said switch matrix from a first state to a second state and
23	thereafter forces said row back to said first state thereby decreasing
24	the scanning interval for detecting row transitions.
1	14. The system of claim 13, wherein the columns latched in a high state uniquely correspond to
2	activation of a single switch in the switch matrix.
1 2	15. The system of claim 13, wherein the columns latched in a high state correspond to an ambiguous plurality of switches.
1	16. The system of claim 15, wherein the scan logic identifies a plurality of columns associated
2	with the plurality of switches and sequentially scans each of the plurality of columns to resolve the
3	ambiguity and thereby identify activation of an unambiguous plurality of switches.
I	17. The system of claim 13, wherein the power management unit powers down the wireless
2	interface unit and the processing unit after at least one inactivity period during which the user input
3	device is inactive with respect to the input/output unit.
1 2	18. The system of claim 13, wherein the power management unit controls the power consumption of the system by:
3	powering down the wireless interface unit and the processing unit during reduced power
4	operations; and

5		based upon notification received from the input/output unit indicating activity by the user
5		input device, powering up the wireless interface unit and the processing unit.
1	19.	The system of claim 18, wherein the system enters one of a plurality of power consumption
2	operat	ing states comprising:
3		busy mode in which all components of the wireless interface device are powered and
1		operational;
5		idle mode in which the wireless interface unit performs first power conserving operations;
ó		suspend mode in which the wireless interface unit performs second power conserving
7		operations; and
3		power down mode in which the wireless interface unit and the processing unit are powered
)		down.
İ	20.	The system of claim 13, wherein the switch transition circuitry generates an I/O activation
2	signal	upon detection of a switch transition.
l	21.	The system of claim 17, wherein the I/O activation signal causes the system to transition
2	from a	low power state to a busy state.