

Fall_2017_INFO6205_Quiz_8 45 minutes

Question - 1 What does MergeSort have in common with QuickSort	SCORE: 5 points
Using your knowledge of MergeSort and QuickSort, choose which of the following statements is true.	
They each tend to be O(n log n) in the average case; they are both recursive, operating on two or more partitions.	
They are both "stable"sorts	
They both use a lot of extra memory	
Unlike Quicksort, MergeSort can benefit from having a recursion cutoff which uses InsertionSort.	
Question - 2 Quick sort randomization step	SCORE: 4 points
Why does quick sort shuffle the input before starting work? Isn't that counter-productive?	
Question - 3 Minimum number of compares	SCORE: 5 points
	SCORE: 5 points
Minimum number of compares What is the theoretical minimum number of compares that a sort	SCORE: 5 points
Minimum number of compares What is the theoretical minimum number of compares that a sort algorithm must perform when data is randomly shuffled prior to the sort?	SCORE: 5 points
Minimum number of compares What is the theoretical minimum number of compares that a sort algorithm must perform when data is randomly shuffled prior to the sort? n	SCORE: 5 points
Minimum number of compares What is the theoretical minimum number of compares that a sort algorithm must perform when data is randomly shuffled prior to the sort? n n²	SCORE: 5 points
Minimum number of compares What is the theoretical minimum number of compares that a sort algorithm must perform when data is randomly shuffled prior to the sort? n n² n lg n	SCORE: 5 points SCORE: 30 points
What is the theoretical minimum number of compares that a sort algorithm must perform when data is randomly shuffled prior to the sort? n n² n lg n n! Question - 4	SCORE: 30 points

performance of quicksort is based on the

```
following two observations:

Quicksort is slower than insertion sort for tiny subarrays.

Being recursive, quicksort's sort() is certain to call itself for tiny subarrays.

Accordingly, it pays to switch to insertion sort for tiny subarrays.
```

```
Sample Input

5

5 4 3 1 2

The first line is size of the array.
The second line is the value of the intergers in the array, ie. The elements in the array
```

```
Sample output:
1 2 3 4 5
The output is the sorted array
```

Please note: you are not allowed to use the Arrays.sort() method.