

TNU/SAGI INTERNATIONAL SUMMER SCHOOL OF RESEARCH AND EXPLORATION IN ASTRONOMY 2024

INTRODUCTION TO ASTROCHEMISTRY

~ ~ ~

Thanh Nguyen Institute of Low Temperature Science, Hokkaido University, Japan

Introduction to Astrochemistry

- ☐ Astrophysics
- The formation of the stars
- The formation of galaxies
- The formation of stars and planets in galaxies
- ☐ Exploring the chemical evolution of matter in the Universe is also a fundamental goal of astromony: Astrochemistrry
- ☐ Questions:
 - O How are various molecules formed in the interstellar medium?
 - o How large can molecules grow in the clouds?
 - O How are molecules incorporated into stars and planets?

This image shows blue stars in the constellation of Sagittarius.

Image credit: NASA / ESA / Hubble

> Stars are gaseous objects bound together by gravitational self-attraction.

What are the components of a star?

This image shows blue stars in the constellation of Sagittarius.

Image credit: NASA / ESA / Hubble

- > Stars are gaseous objects bound together by gravitational self-attraction.
- ➤ Chemical components of stars is fairly constant: 73% hydrogen, 25% helium, and 2% other elements.

- > Stars form from the gravitational collapse of dense clouds in the interstellar medium (ISM).
- ➤ The remaining matter around the protostar forms
 a spinning disk → protoplanetary disk → planet
 orbits around a star.
- ➤ Our solar system consists a star (Sun) and 8 planets. The solar system is the result of the gravitational collapse of small part of giant molecular clouds.

- ➤ Stars form from the gravitational collapse of dense clouds in the interstellar medium (ISM).
- ➤ The remaining matter around the protostar forms
 a spinning disk → protoplanetary disk → planet
 orbits around a star.
- ➤ Our solar system consists a star (Sun) and 8 planets. The solar system is the result of the gravitational collapse of small part of giant molecular clouds.

Interstellar Medium: Overview and background

The

Interstellar

Medium

Lifecycle

Gas (300 molecules) and dust grains

Molecular clouds Protostar Protoplanetary disk Protoplanetary system (Satellites of planets, comets)

Credit: Bill Saxton

Interstellar medium: overview and background

- ☐ Interstellar medium (ISM) is interstellar space where the material fills the space between stars.
- ➤ Its place is the coupling where stars are dead, and stars are born.
- ☐ The ISM components:
 - Molecular clouds (90% hydrogen, 9% helium, and 1% other heavy elements)
 - Dust
 - Photons: diverse components and roles: cosmic microwave background (CMB) (mm), starlight (eV), X-rays (keV)
 - Cosmic rays
 - Magnetic fields
- ✓ Physical processes in ISM are complicated, they can happen to phenomenon such as absorption, emission, scattering or reflection in space.

Interstellar Medium: Overview and background

- □Why do we study the ISM?
 - Gas is where it all started back then at "Recombination". Part of the effort to understand the evolution of baryonic matter through time → Studying the physical processes involving gas in the ISM places a crucial role in astrophysics.
- ☐ Why is the ISM important?
 - Stars form from the ISM, and then activate it dynamically and chemically. Gas is the active chemical ingredient of galaxies.
- ☐ Can we see the ISM the way we see the Sun and Stars shine?
 - In principle, yes, but it's hard because gas at temperatures of the surface of stars cools rapidly unless heated, e.g., by being close to a star. This kind of gas is called nebular and has characteristic emission lines.

☐ Molecular clouds (MCs)

Schematic illustration of a molecular cloud in the ISM

- They are the densest interstellar clouds
- Temperature: 10 50 K
- Number density: $> 10^6 \text{ cm}^{-3}$
- Chemical components are H_2 , CO, CO_2 , and complex organic molecules.
- There are many physico-chemical processes occurring in MCs such as irradiation, photodesorption, bombardment, etc.

- > MCs plays an important role for the formation of stars.
- > Studying physico-chemical behavior of MCs contributes understanding the evolution of the Universe.

■ Molecular clouds: Absorption and emission

- Energy levels:
 - An electron receives photon, it transits from ground state to excited state \rightarrow ?
 - An electron transits from excited state to ground state, it emits a photon \rightarrow ?

■ Molecular clouds: Absorption and emission

- Energy levels:
 - An electron receives photon, it transits from ground state to excited state \rightarrow absorption
 - An electron transits from excited state to ground state, it emits a photon \rightarrow emission
 - > Detect or analyze the components of MCs by using the UV/ radio telescopes.

□ Molecular clouds: Absorption

Rho Ophiuchi region. Image by Phil Hart, Ross Hortin, Mark Justice, Gavan Salter and Craig Davison using the ASV LMDSS dome and equipment. Processing by James McHugh.

- ➤ Dark patch is where light emitted from the close stars is absorbed by atoms and molecules inside.
- Any level in an atom can absorb light, but it requires light of the correct wavelength to make electron jump from ground state to excited states.

- ➤ Example: Energy of ionization of hydrogen is 13.6 eV → wavelength of 91 nm.
- The wavelength of UV is from 10 400 nm. Therefore, if the wavelength of UV < 90 nm, it cannot excite hydrogen for transition from ground state to excited states.

□ Dust

- O Dust components include graphite, silicates, iron, ices...
- Typical size of a dust grain is about $\leq 10^{-7}$ m smaller than the wavelength of visible light
- Scattering of light by dust:
- Particles have size smaller than the wavelengths of light being scattered.
- ➤ Meaning that the percentage of light that will be scattered is inversely proportional to the fourth power of the wavelength following by Rayleight law:

$$I = \frac{1}{\lambda^4} \quad \text{(e.q 3)}$$

Where I is the probability of scattering.

□ Dust

- **❖** Worked example:

 - $\lambda_{blue} = 450 \text{ nm}$
 - \rightarrow ratio of $I_{blue}/I_{red} \sim ?$

Telescope

□ Dust

❖ Worked example:

- $\lambda_{red} = 760 \text{ nm}$
- $\lambda_{\text{blue}} = 450 \text{ nm}$
 - \rightarrow Ratio of $I_{blue}/I_{red} \sim 8$
- → the blue light is scattered more efficiently than the red light.

> Scattering of light by dust:

- The blue light is strongly scattered
- The red light is directly transmitted and observed by telescopes.

Astrophysical Chemistry/Ice and Planetary Science group

☐ Research areas:

✓ Atomic and molecular physics, Astrochemistry, Surface chemistry

✓ Elucidates fundamental processes of nano-particle formation and material evolution in the universe based on singularity in

nano-scale

Astrophysical Chemistry/Ice and Planetary Science group

❖ Apparatus (ASURA)

Using Apparatus for Surface Reaction in Astrophysics (ASURA) to study the complex chemical reactions

❖ Apparatus (ASURA) setup

• A vacuum chamber with the basic pressure of 1.3×10^{-13} atm

❖ Apparatus (ASURA) setup

- A vacuum chamber with the basic pressure of 10⁻¹⁰ torr
- A substrate inside the vacuum chamber, where chemical processes occur on

❖ Apparatus (ASURA) setup

☐ A beam line system

• Materials (H_2O , CO, CO_2 ,...) are introduced into the chamber via the beam line

❖ Apparatus (ASURA) setup

☐ Infrared Spectrometer to record the spectrum of molecules

❖ Apparatus (ASURA) setup

☐ Quadrupole mass spectrometer (QMS)

- Recording the presented molecules in the vacuum chamber
 - ✓ Hydrogen atoms (H red column)
 - ✓ Hydrogen molecules and deuterium atoms (H₂ & D green column)
 - ✓ Hydrogen deuteride molecules (HD blue column)
 - ✓ Deuterium molecules (D_2 yellow column)

❖ Apparatus (ASURA) setup

 \square Microwave-discharged plasma is used to dissociate H_2 molecules to generate H atoms $H_2 + hv \rightarrow H + H$

Infrared spectra of some molecules

■ Infrared spectrum of Carbon monoxide (CO) and Carbon dioxide (CO₂) on dust grains

Infrared spectra of some molecules

■ Infrared spectrum of water (H₂O) and methane (CH₄) on dust grains

Infrared spectra of some molecules

■ Infrared spectrum of Acetaldehyde (CH₃CHO) on dust grains

Mass spectrometer

- The major desorption peak of CO at m/z = 28 in range the temperature from 30 to 60 K.
- The minor peak desorbed from 130 to 155 K is attributed to CO.

Mass spectrometer

The major desorption peak of N_2 at m/z = 30 in range the temperature from 25 to 40 K.

Chemical pathways of phosphine (PH3) on dust grains

$$PH_3 + H \rightarrow PH_2 + H_2$$
,
 $PH_2 + H \rightarrow PH + H_2$.

Chemical pathways of Methyl Mercaptan (CH₃SH) on dust grains

Absorbance

Chemical pathways of Methyl Mercaptan (CH₃SH) on dust grains

- A desorption peak at m/z = 16 in range the temperature from 35 to 55K is attributed to CH_4
- ✓ CH₃SH was removed from the substrate because of the interaction with H atoms
- ✓ CH₄ was formed on the reaction surface

Thank you for your attention!

Possible chemical reactions of CH₃SH with H atoms on ASW at low temperatures

■ Possible chemical pathways of CH₃SH with H atoms on ASW

1.
$$CH_3SH + H \rightarrow CH_4 + SH$$
, $\Delta E = 0.86 \text{ eV}$

2.
$$CH_3SH + H \rightarrow CH_2SH + H_2$$
, $\Delta E = 0.32 \text{ eV}$

3.
$$CH_3SH + H \rightarrow CH_3S + H_2$$
, $\Delta E = 0.14 \text{ eV}$

4.
$$CH_3SH + H \rightarrow CH_3 + H_2S$$
. $\Delta E = 0.05 \text{ eV}$

$$+ H \rightarrow CH_4: \text{ without activation barrier}$$

$$+ H \rightarrow HS + H_2: \text{ chemical desorption (Oba et al.2018)}$$

 $HS + H \rightarrow H_2S$

Computed potential energy surfaces for the reactions between CH₃SH and H on ASW

***** Earth's atmosphere Components: a lots of particles such as: dust, H₂O ice, H₂O droplets, N₂, O₂, etc. Question: Why is the sky blue? Atmosphere

□ Reflection

M78 and Reflecting Dust Clouds Image Credit & Copyright: Ian Sharp

 A nebula is a giant cloud of dust and gas what thrown out by the explosion of a dying star in space.

Reflection nebula

○ Scatter starlight → the blue light is strongly scattered

- The blue patches = reflection nebulas
- The dark patches = dark clouds completely absorb starlight

Interstellar medium

☐ Properties of ionized gas

Type	Number density (cm ⁻³)	Temperature (K)	Major constituents	Main detection technique
Hot ionized medium	0.003	$10^6 - 10^7$	H ⁺ , C ³⁺ , N ⁴⁺ , O ⁵⁺	UV absorption, X-ray emission
Warm ionized medium	> 10	10^{4}	H ⁺ , He ⁺ ,O ⁺ , C ⁺ , N ⁺	Optical, UV, IR, Hα
H II regions	0.1 - 104	8×10^3	H ⁺ , He ⁺ ,O ⁺ , C ⁺ , N ⁺	Hα emission

* Goals: To understand how these phases are observed and how they are heated and ionized.

☐ Properties of neutral gas

Type	Number density (cm ⁻³)	Temperature (K)	Major constituents	Main detection technique
Warm neutral medium	0.2 - 0.5	$6 - 10 \times 10^3$	Н, Не	21 cm emission
Atomic cold neutral medium	10 - 100	100	$H^0 + H_2$	21 cm absorption, 3.4 µm, UV absorption
Molecular hot cores (protostellar cores)	> 10 ⁶	100 - 300	H_2	Rovibrational emission CH ₃ CN, CH ₃ OH, NH ₃

[❖] Goals: To understand how these properties are determined, what the relevant thermal and ionization processes are, how atomic and molecular clouds are related, and how the latter lead to star formation.

☐ Difference between stars and planets

	Stars	Planets	
Meaning	own light, produced due	Planets refers to the celestial object that has a fixed path (orbit), in which it moves around the star	
Light	They have their own light	They do not have their own light	
Temperature	High	Low	
Size	Big	Small	
Matter	Hydrogen, helium, and other light elements	Solid, liquid, or gas, and a combination thereon	

□ Molecular clouds: Emission

 $H\alpha$ emission at 656.46 nm in the red part of the visible light and responsible for the reddish of molecular cloud

> Observe the reddened clouds in the ISM.

Nebula IC 434 in the constellation Orion

□ Molecular clouds: Emission

- Hydrogen occupies 90 % of the total components in interstellar gas.
- => There are five hydrogen species present in interstellar clouds: H⁺, H⁻, H, H₂, H₃⁺
- $H^+ + e^- \rightarrow \{H^*\} \rightarrow H + hv$ (e.q 1)

- (a) Graphical representation of the electronic transitions between excited states and the ground state (n = 1, Lyman series) of the hydrogen atoms, and electronic transitions ending on the levels n = 2 (Balmer series), and n = 3 (Paschen series).
- (b) Projection of the Balmer series into an optical spectrum.

- Balmer series lines are most the studied H atom lines since they are in the visible.
- The Lyman series is expected to be ultraviolet continua.

□ Molecular clouds: Emission

The wavelengths, for these transitions, are given by the Rydberg formula:

$$\frac{1}{\lambda} = \frac{1}{hc} (E_{n1} - E_{n2}) = R_H (\frac{1}{n_1^2} - \frac{1}{n_2^2}), n_1 < n_2 \text{ (e.q.2)}$$

Where: $R_H = 109677.581$ cm⁻¹: Rydberg constant

n is the principal quantum number (n = 1, 2, 3, ∞)

The range of each H atom series is given by the lowest frequency transition, between n_1 and $n_2 = n_1 + 1$; $n_2 = n_1 + 2$, $n_2 = n_1 + 3$...

□ Molecular clouds: Emission

■ The wavelengths, for these transitions, are given by the Rydberg formula:

$$\frac{1}{\lambda} = \frac{1}{hc} (E_{n1} - E_{n2}) = R_H (\frac{1}{n_1^2} - \frac{1}{n_2^2}), n_1 < n_2 (e.q.2)$$

Where $R_H = 109677.581$ cm⁻¹; n is the principal quantum number (n = 1, 2, 3, ∞)

$$\mathbf{n}_1$$
; $\mathbf{n}_2 = \mathbf{n}_1 + 1$; $\mathbf{n}_2 = \mathbf{n}_1 + 2$, $\mathbf{n}_2 = \mathbf{n}_1 + 3$...

☐ Worked Example:

> Lyα:
$$n_1 = 1$$
 and $n_2 = 2$, using e.q.1: $\frac{1}{\lambda} = R_H \left(1 - \frac{1}{4}\right) = \frac{3}{4}R_H = 82258.2$ cm⁻¹

$$\Rightarrow \lambda = 1.21568 \times 10^{-5} \text{ cm} = 121.568 \text{ nm}$$
: UV

The transition of Hα:
$$n_1 = ?$$
, $n_2 = ?$, $\lambda = ???$

The transition of Hy:
$$n_1 = ?$$
, $n_2 = ?$, $\lambda = ???$

□ Molecular clouds: Emission

• The wavelengths, for these transitions, are given by the Rydberg formula:

$$\frac{1}{\lambda} = \frac{1}{hc} (E_{n1} - E_{n2}) = R_H (\frac{1}{n_1^2} - \frac{1}{n_2^2}), n_1 < n_2 \text{ (e.q.2)}$$

Where $R_H = 109677.581$ cm⁻¹; n is the principal quantum number (n = 1, 2, 3, ∞)

 \mathbf{n}_1 ; $\mathbf{n}_2 = \mathbf{n}_1 + 1$; $\mathbf{n}_2 = \mathbf{n}_1 + 2$, $\mathbf{n}_2 = \mathbf{n}_1 + 3$...

☐ Worked Example:

- > Lyα: $n_1 = 1$ and $n_2 = 2$, using e.q.1: $\frac{1}{\lambda} = R_H \left(1 \frac{1}{4}\right) = \frac{3}{4}R_H = 82258.2$ cm⁻¹
- $\Rightarrow \lambda = 1.21568 \times 10^{-5} \text{ cm} = 121.568 \text{ nm}$: UV
- The transition of Hα: $n_1 = 2$, $n_2 = 3$, $\lambda \alpha = 656.46$ nm
- The transition of Hy: $n_1 = 2$, $n_2 = 5$, $\lambda y = 434.173$ nm