FCC Part 15C Measurement and Test Report

For

MAXCORE INVESTMENT (HK) CO., LIMITED.

UNIT 2509 25/FL HO KING COMMERCIAL CENTRE 2-16 FA YUEN

STREET MONGK OK, KL, HONGKONG

FCC ID: 2AFBASP-11BT

FCC Rule(s): FCC Part 15.247

Product Description: POWER BANK BLUETOOTH SPEAKER

Tested Model: BBS 10

Report No.: STR150780201

Tested Date: <u>2015-07-02 to 2015-07-09</u>

Issued Date: <u>2015-07-10</u>

Tested By: Vigoss Liang / Engineer

Reviewed By: <u>Lahm Peng / EMC Manager</u>

Approved & Authorized By: <u>Jandy so / PSQ Manager</u>

Prepared By:

Shenzhen SEM.Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Lahm peny

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM.Test Technology Co., Ltd.

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 Test Standards	
1.3 TEST METHODOLOGY	
1.5 EUT SETUP AND TEST MODE	
2. SUMMARY OF TEST RESULTS	
3. RF EXPOSURE	
3.1 STANDARD APPLICABLE	
3.2 TEST RESULT	
4. ANTENNA REQUIREMENT	9
4.1 Standard Applicable	
5. FREQUENCY HOPPING SYSTEM REQUIREMENTS	10
5.1 STANDARD APPLICABLE	10
5.2 Frequency Hopping System	
5.3 EUT PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
6. QUANTITY OF HOPPING CHANNELS AND CHANNEL SEPARATION	
6.1 STANDARD APPLICABLE	
6.2 TEST EQUIPMENT LIST AND DETAILS	
6.4 Environmental Conditions	
6.5 SUMMARY OF TEST RESULTS/PLOTS	
7. DWELL TIME OF HOPPING CHANNEL	17
7.1 Standard Applicable	17
7.2 TEST EQUIPMENT LIST AND DETAILS	
7.3 TEST PROCEDURE	
7.4 Environmental Conditions	
8. 20DB BANDWIDTH	
8.1 Standard Applicable	
8.3 TEST PROCEDURE.	
8.4 Environmental Conditions	
8.5 SUMMARY OF TEST RESULTS/PLOTS	28
9. RF OUTPUT POWER	
9.1 Standard Applicable	
9.2 TEST EQUIPMENT LIST AND DETAILS	
9.4 Environmental Conditions	
9.5 SUMMARY OF TEST RESULTS/PLOTS	
10. FIELD STRENGTH OF SPURIOUS EMISSIONS	34
10.1 Measurement Uncertainty	34
10.2 Standard Applicable	
10.3 TEST EQUIPMENT LIST AND DETAILS	
10.4 Test Procedure	
10.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
10.7 Summary of Test Results/Plots	
11. OUT OF BAND EMISSIONS	48
11.1 STANDARD APPLICABLE	
11.2 TEST EQUIPMENT LIST AND DETAILS	
11.3 TEST PROCEDURE	48

11.4 Environmental Conditions	49
11.5 SUMMARY OF TEST RESULTS/PLOTS	49
12. CONDUCTED EMISSIONS	53
12.1 MEASUREMENT UNCERTAINTY	53
12.2 TEST EQUIPMENT LIST AND DETAILS	53
12.3 TEST PROCEDURE	53
12.4 BASIC TEST SETUP BLOCK DIAGRAM	53
12.5 Environmental Conditions	
12.6 Test Receiver Setup	
12.7 Summary of Test Results/Plots	
12.8 CONDUCTED EMISSIONS TEST DATA	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: MAXCORE INVESTMENT (HK) CO., LIMITED.

Address of applicant: UNIT 2509 25/FL HO KING COMMERCIAL

CENTRE 2-16 FA YUEN STREET MONGK OK, KL,

HONGKONG

Manufacturer: MAXCORE INVESTMENT (HK) CO., LIMITED.

Address of manufacturer: UNIT 2509 25/FL HO KING COMMERCIAL

CENTRE 2-16 FA YUEN STREET MONGK OK, KL,

HONGKONG

General Description of EUT	
Product Name:	POWER BANK BLUETOOTH SPEAKER
Trade Name:	1
Model No.:	BBS 10
	SP-11BT,MA-P09,MA-P04,MA-P02,SP-40BT,
Adding Model(s):	SP-12BT,SP-28BT,SP-16BT,SP-02BT,SP-27BT,
	SP-45BT, SP-04BT,
Rated Voltage:	Battery: 3.7V; USB DC5V charging purpose only
Battery capacity:	4000mAh
Power Adapter Model:	1
	<u> </u>

Note: The test data is gathered from a production sample provided by the manufacturer. The appearance of others models listed in the report is different from main-test model BBS 10, but the circuit and the electronic construction do not change, declared by the manufacturer.

Technical Characteristics of EUT	
Bluetooth Version:	V2.1+EDR
Frequency Range:	2402-2480MHz
RF Output Power:	4.631dBm (Conducted)
Data Rate:	1Mbps, 2Mbps, 3Mbps
Modulation:	GFSK, Pi/4 QDPSK, 8DPSK
Quantity of Channels:	79
Channel Separation:	1MHz
Type of Antenna:	PCB Antenna
Antenna Gain:	0dBi
Lowest Internal Frequency of EUT:	26MHz

1.2 Test Standards

The following report is prepared on behalf of the MAXCORE INVESTMENT (HK) CO., LIMITED. in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The measurement guide DA 00-705 for frequency hopping spread spectrum systems shall be performed also.

1.4 Test Facility

FCC – Registration No.: 934118

Shenzhen SEM.Test Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files and the Registration is 934118.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM. Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

CNAS Registration No.: L4062

Shenzhen SEM. Test Technology Co., Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L4062. All measurement facilities used to collect the measurement data are located at 1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road, Bao'an District, Shenzhen, P.R.C (518101).

REPORT NO.: STR15078020I PAGE 5 OF 56 FCC PART 15.247

1.5 EUT Setup and Test Mode

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List		
Test Mode	Description	Remark
TM1	Charging	/
TM2	Discharging	/
TM3	Low Channel	2402MHz
TM4	Middle Channel	2442MHz
TM5	High Channel	2480MHz
TM6	Hopping	2402-2480MHz

Modulation Configure			
Modulation	Packet	Packet Type	Packet Size
	DH1	4	27
GFSK	DH3	11	183
	DH5	15	339
	2DH1	20	54
Pi/4 DQPSK	2DH3	26	367
	2DH5	30	379
	3DH1	24	83
8DPSK	3DH3	27	552
	3DH5	31	1021

Normal mode: the Bluetooth has been tested on the modulation of GFSK, (Pi/4)DQPSK and 8DPSK, compliance test and record the worst case.

EUT Cable List and Det	ails		
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
/	/	/	/

Special Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
USB Cable	0.8	Shielded	Without Ferrite
AUX Cable	1.0	Unshielded	Without Ferrite

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
Resistance	/	5 Ω	/
Notebook	Lenovo	E10	/

REPORT NO.: STR15078020I PAGE 6 OF 56 FCC PART 15.247

2. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test Item	Result
§ 2.1093	RF Exposure	Compliant
§ 15.203; § 15.247(b)(4)(i)	Antenna Requirement	Compliant
§15.205	Restricted Band of Operation	Compliant
§ 15.207(a)	Conducted Emission	Compliant
§ 15.209(a)	Radiated Spurious Emissions	Compliant
§ 15.247(a)(1)(iii)	Quantity of Hopping Channel	Compliant
§ 15.247(a)(1)	Channel Separation	Compliant
§ 15.247(a)(1)(iii)	Time of Occupancy (Dwell time)	Compliant
§ 15.247(a)	20dB Bandwidth	Compliant
§ 15.247(b)(1)	RF Power Output	Compliant
§ 15.247(d)	Band Edge (Out of Band Emissions)	Compliant
§ 15.247(a)(1)	Frequency Hopping Sequence	Compliant
§ 15.247(g), (h)	Frequency Hopping System	Compliant

N/A: not applicable

3. RF Exposure

3.1 Standard Applicable

According to § 1.1307 and § 2.1093, the portable transmitter must comply the RF exposure requirements.

3.2 Test Result

This product complied with the requirement of the RF exposure, please see the RF Exposure Report.

4. Antenna Requirement

4.1 Standard Applicable

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

4.2 Evaluation Information

This product has an integral antenna, fulfill the requirement of this section.

5. Frequency Hopping System Requirements

5.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

- (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.
- (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

5.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

REPORT NO.: STR15078020I PAGE 10 OF 56 FCC PART 15.247

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

5.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

REPORT NO.: STR15078020I PAGE 11 OF 56 FCC PART 15.247

6. Quantity of Hopping Channels and Channel Separation

6.1 Standard Applicable

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

6.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-28	2016-05-27
Attenuator	ATTEN	ATS100-4-20	/	2015-05-28	2016-05-27

6.3 Test Procedure

According to the DA 00-705, the number of hopping frequencies test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Set span = the frequency band of operation (2400MHz to 2483.5MHz)

RBW = 100kHz, VBW = 100kHz

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize, observed the band of 2400MHz to 2483.5MHz, than count it out the number of channels for comparing with the FCC rules.

The channel spacing test method as follows:

Set span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto; Detector function = peak; Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

6.4 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

6.5 Summary of Test Results/Plots

No. of Channel = 79

For GFSK mode Channel Spacing (Low CH=1MHz)

Channel Spacing (Middle CH=1MHz)

Channel Spacing (High CH=1MHz)

For 8DPSK mode Channel Spacing (Low CH=1MHz)

Channel Spacing (Middle CH=1MHz)

Channel Spacing (High CH=1MHz)

7. Dwell Time of Hopping Channel

7.1 Standard Applicable

According to 15.247(a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

7.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-28	2016-05-27
Attenuator	ATTEN	ATS100-4-20	/	2015-05-28	2016-05-27

7.3 Test Procedure

According to the DA 00-705, the dwell time of a hopping channel test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Span = zero span, centered on a hopping channel

RBW = 1 MHz

 $VBW \geqslant RBW$

Sweep = as necessary to capture the entire dwell time per hopping channel

 $Detector\ function = peak$

Trace = max hold

Use the marker-delta function to determine the dwell time

7.4 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

7.5 Summary of Test Results/Plots

The dwell time within a period in data mode is independent from the packet type (packet length). Test data is corrected with the worse case, which the packet length is DH1, DH3, and DH5.

The test period: T = 0.4 Second * 79 Channel = 31.6 s

Dwell time = time slot length * (Hopping rate / Number of hopping channels) * Period

Madalatian	Total Channal	Do alas4	Time Slot Length	Dwell Time	Limit
Modulation	Test Channel	Packet	ms	ms	ms
		DH1	0.38	121.600	400
	2402MHz	DH3	1.63	260.800	400
		DH5	2.88	307.200	400
		DH1	0.37	118.400	400
GFSK	2442MHz	DH3	1.64	262.400	400
		DH5	2.89	308.267	400
	2480MHz	DH1	0.38	121.600	400
		DH3	1.64	262.400	400
		DH5	2.89	308.267	400
	2402MHz	3DH1	0.40	128.000	400
		3DH3	1.65	264.000	400
		3DH5	2.90	309.333	400
		3DH1	0.40	128.000	400
8DPSK	2442MHz	3DH3	1.64	262.400	400
		3DH5	2.90	309.333	400
		3DH1	0.40	128.000	400
	2480MHz	3DH3	1.64	262.400	400
		3DH5	2.88	307.200	400

Please refer to the test plots as below:

DH3 time slot (Low, Middle, High Channels)

3DH1 time slot (Low, Middle, High Channels)

3DH3 time slot (Low, Middle, High Channels)

3DH5 time slot (Low, Middle, High Channels)

8. 20dB Bandwidth

8.1 Standard Applicable

According to 15.247(a)(1)(iii). For frequency hopping systems operating in the 2400MHz-2483.5 MHz no limit for 20dB bandwidth.

8.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-28	2016-05-27
Attenuator	ATTEN	ATS100-4-20	/	2015-05-28	2016-05-27

8.3 Test Procedure

According to the DA 00-705, the 20dB bandwidth test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq 1% of the 20 dB bandwidth

VBW ≥ RBW

Sweep = auto; Detector function = peak

Trace = max hold

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down bandwidth of the emission.

8.4 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	53%
ATM Pressure:	1018 mbar

8.5 Summary of Test Results/Plots

Test Mode	Test Channel MHz	20 dB Bandwidth kHz	99% Bandwidth kHz	Limit kHz
	2402	765.148	758.1018	
GFSK	2441	761.699	756.4478	
	2480	755.420	760.3638	
	2402	1221	1165.2	
8DPSK	2441	1221	1165.8	
	2480	1218	1165.1	

REPORT NO.: STR15078020I PAGE 28 OF 56 FCC PART 15.247

For GFSK Low Channel:

Middle Channel:

High Channel:

For 8DPSK Low Channel:

Middle Channel:

High Channel:

9. RF Output Power

9.1 Standard Applicable

According to 15.247(b)(1). For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

9.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-28	2016-05-27
Attenuator	ATTEN	ATS100-4-20	/	2015-05-28	2016-05-27

9.3 Test Procedure

According to the DA 00-705, the peak output power test method as follows.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, the indicated level is the peak output power (the external attenuation and cable loss shall be considered).

9.4 Environmental Conditions

Temperature:	24 °C
Relative Humidity:	55%
ATM Pressure:	1011 mbar

9.5 Summary of Test Results/Plots

For GFSK

Channel	Frequency	Measured Value	Output Power	Limit
Chamiei	MHz	dBm	mW	mW
Low Channel	2402	2.986	1.9888	1000
Middle Channel	2442	3.399	2.1873	1000
High Channel	2480	3.917	2.4643	1000

For Pi/4 QDPSK

Channel	Frequency MHz	Measured Value dBm	Output Power mW	Limit mW
Low Channel	2402	3.776	2.3856	1000
Middle Channel	2442	4.136	2.5918	1000
High Channel	2480	4.603	2.8860	1000

For 8DPSK

Channel	Frequency MHz	Measured Value dBm	Output Power mW	Limit mW
Low Channel	2402	3.818	2.4088	1000
Middle Channel	2442	4.187	2.6224	1000
High Channel	2480	4.631	2.9047	1000

Note: the antenna gain of 0dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

REPORT NO.: STR15078020I PAGE 33 OF 56 FCC PART 15.247

10. Field Strength of Spurious Emissions

10.1 Measurement Uncertainty

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement is +5.10 dB.

10.2 Standard Applicable

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

10.3 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2015-05-28	2016-05-27
EMI Test Receiver	R&S	ESVB	825471/005	2015-05-28	2016-05-27
Pre-amplifier	Agilent	8447F	3113A06717	2015-05-28	2016-05-27
Pre-amplifier	Compliance Direction	PAP-0118	24002	2015-05-28	2016-05-27
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2015-05-24	2016-05-23
Horn Antenna	ETS	3117	00086197	2015-05-24	2016-05-23
Horn Antenna	ETS	3116B	00088203	2015-05-24	2016-05-23
Loop Antenna	SCHWARZECK	HFRA 5165	9365	2015-05-24	2016-05-23

REPORT NO.: STR15078020I PAGE 34 OF 56 FCC PART 15.247

10.4 Test Procedure

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.205 15.247(a) and FCC Part 15.209 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

Frequency:9kHz-30MHz Frequency:30MHz-1GHz Frequency:Above 1GHz

RBW=10KHz, RBW=120KHz, RBW=1MHz,

VBW=30KHz VBW=300KHz VBW=3MHz(Peak), 10Hz(AV)

Sweep time= Auto Sweep time= Auto Sweep time= Auto Trace = \max hold Trace = \max hold Trace = \max hold

Detector function = peak, QP Detector function = peak, AV

10.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and the Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Ant. Factor + Cable Loss - Ampl. Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-6dB\mu V$ means the emission is $6dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – FCC Part 15 Limit

10.6 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

10.7 Summary of Test Results/Plots

According to the data below, the FCC Part 15.205, 15.209 and 15.247 standards, and had the worst cases:

Note: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

REPORT NO.: STR15078020I PAGE 36 OF 56 FCC PART 15.247

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

EUT: POWER BANK BLUETOOTH SPEAKER

Tested Model: BBS 10
Operating Condition: TM1

Comment: AC120V/60Hz; USB 5V Charging

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	74.3955	26.28	2.67	28.95	40.00	-11.05	0	100	peak
2	218.3085	21.61	7.73	29.34	46.00	-16.66	58	100	peak
3	599.3213	16.58	19.19	35.77	46.00	-10.23	87	100	peak
4	742.2587	17.33	19.45	36.78	46.00	-9.22	0	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(*)	(cm)	
1	75.9773	26.45	2.48	28.93	40.00	-11.07	125	100	peak
2	225.3080	17.93	8.43	26.36	46.00	-19.64	54	100	peak
3	599.3213	18.28	19.19	37.47	46.00	-8.53	0	100	peak
4	744.8661	16.82	19.33	36.15	46.00	-9.85	0	100	peak

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

EUT: POWER BANK BLUETOOTH SPEAKER

Tested Model: BBS 10
Operating Condition: TM2

Comment: USB 5V Discharging

N	lo.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
		(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
	1	78.9652	29.15	2.12	31.27	40.00	-8.73	120	100	peak
,	2	123.6985	36.95	4.73	41.68	43.50	-1.82	300	100	peak
	3	277.0935	33.44	11.20	44.64	46.00	-1.36	220	100	peak
	4	677.5798	16.67	19.13	35.80	46.00	-10.20	10	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(0)	(cm)	
1	79.2426	29.66	2.09	31.75	40.00	-8.25	360	100	peak
2	135.9822	31.00	3.73	34.73	43.50	-8.77	360	100	peak
3	273.2341	21.81	10.93	32.74	46.00	-13.26	0	100	peak
4	729.3583	17.71	18.92	36.63	46.00	-9.37	0	100	peak

Plot of Radiated Emissions Test Data (30MHz to 1GHz)

EUT: POWER BANK BLUETOOTH SPEAKER

Tested Model: BBS 10

Operating Condition: Transmitting Low Channel (2402MHz)

Comment: Battery:3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	47.3255	23.15	-7.45	15.70	40.00	-24.30	100	100	peak
2	526.3967	22.96	-1.25	21.71	46.00	-24.29	0	100	peak
3	916.0687	22.32	5.55	27.87	46.00	-18.13	0	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	46.1780	24.96	-7.46	17.50	40.00	-22.50	360	100	peak
2	97.4560	25.92	-9.87	16.05	43.50	-27.45	360	100	peak
3	958.7943	25.59	6.06	31.65	46.00	-14.35	178	100	peak

Operating Condition: Transmitting Middle Channel (2441MHz)

Comment: Battery: DC3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	46.3402	23.37	-7.46	15.91	40.00	-24.09	360	100	peak
2	497.6765	22.28	-1.17	21.11	46.00	-24.89	275	100	peak
3	958.7943	21.87	6.06	27.93	46.00	-18.07	360	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	50.4089	26.06	-7.49	18.57	40.00	-21.43	360	100	peak
2	520.8882	24.58	-0.60	23.98	46.00	-22.02	226	100	peak
3	912.8620	24.54	5.53	30.07	46.00	-15.93	360	100	peak

Operating Condition: Transmitting High Channel (2480MHz)

Comment: Battery: DC3.7V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	46.3402	23.37	-7.46	15.91	40.00	-24.09	336	100	peak
2	108.6470	24.29	-9.60	14.69	43.50	-28.81	360	100	peak
3	958.7943	22.30	6.06	28.36	46.00	-17.64	360	100	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Degree	Height	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	(°)	(cm)	
1	40.8446	25.79	-8.27	17.52	40.00	-22.48	105	100	peak
2	501.1790	25.44	-1.10	24.34	46.00	-21.66	33	100	peak
3	935.5463	25.18	5.77	30.95	46.00	-15.05	0	100	peak

Spurious Emissions Above 1GHz

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V	
			Low Channe	el-2402MHz			
4804	58.60	-3.59	55.01	74	-18.99	Н	PK
4804	47.38	-3.59	43.79	54	-10.21	Н	AV
7206	51.84	-0.52	51.32	74	-22.68	Н	PK
7206	42.36	-0.52	41.84	54	-12.16	Н	AV
4804	55.07	-3.59	51.48	74	-22.52	V	PK
4804	44.83	-3.59	41.24	54	-12.76	V	AV
7206	53.02	-0.52	52.50	74	-21.50	V	PK
7206	42.82	-0.52	42.30	54	-11.70	V	AV
			Middle Chan	nel-2441MHz			
4882	57.89	-3.49	45.05	74	-28.95	Н	PK
4882	46.88	-3.49	30.40	54	-23.60	Н	AV
7323	52.14	-0.47	47.82	74	-26.18	Н	PK
7323	43.29	-0.47	34.97	54	-19.03	Н	AV
4882	55.93	-3.49	46.26	74	-27.74	V	PK
4882	45.81	-3.49	32.47	54	-21.53	V	AV
7323	53.99	-0.47	48.72	74	-25.28	V	PK
7323	42.59	-0.47	36.94	54	-17.06	V	AV
			High Chann	el-2480MHz			
4960	57.93	-3.41	46.42	74	-27.58	Н	PK
4960	46.92	-3.41	31.62	54	-22.38	Н	AV
7440	52.18	-0.42	50.93	74	-23.07	Н	PK
7440	43.33	-0.42	36.90	54	-17.10	Н	AV
4960	55.97	-3.41	45.45	74	-28.55	V	PK
4960	45.85	-3.41	30.45	54	-23.55	V	AV
7440	54.03	-0.42	48.60	74	-25.40	V	PK
7440	42.63	-0.42	34.68	54	-19.32	V	AV

Note: Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3^{th} Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured. The measurements greater than 20dB below the limit from 9kHz to 30MHz..

REPORT NO.: STR15078020I PAGE 47 OF 56 FCC PART 15.247

11. Out of Band Emissions

11.1 Standard Applicable

According to §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

11.2 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Spectrum Analyzer	R&S	FSP	836079/035	2015-05-28	2016-05-27
EMI Test Receiver	R&S	ESVB	825471/005	2015-05-28	2016-05-27
Pre-amplifier	Agilent	8447F	3113A06717	2015-05-28	2016-05-27
Pre-amplifier	Compliance Direction	PAP-0118	24002	2015-05-28	2016-05-27
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2015-05-24	2016-05-23
Horn Antenna	ETS	3117	00086197	2015-05-24	2016-05-23
Spectrum Analyzer	Agilent	E4402B	US41192821	2015-05-28	2016-05-27
Attenuator	ATTEN	ATS100-4-20	/	2015-05-28	2016-05-27

11.3 Test Procedure

According to the DA 00-705, the band-edge radiated test method as follows.

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2310MHz to 2410MHz for low bandedge, 2470MHz to 2500MHz for the high bandedge)

RBW = 1MHz, VBW = 1MHz for peak value measured

RBW = 1MHz, VBW = 10Hz for average value measured

 $Sweep = auto; \quad Detector\ function = peak; \quad Trace = max\ hold$

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation porduct outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the 15.209 limit for fall in the restricted bands listed in section 15.205. Note that the method of measurement KDB publication number: 913591 may be used for the radiated bandedge measurements.

REPORT NO.: STR15078020I PAGE 48 OF 56 FCC PART 15.247

According to the DA 00-705, the band-edge conducted test method as follows:

Set span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation (2380MHz to 2410MHz for low bandedge, 2470MHz to 2500MHz for the high bandedge)

RBW = 100kHz, VBW = 300kHz

Sweep = auto; Detector function = peak; Trace = max hold

All the trace to stabilize, set the marker on the emission at the bandedge, or on the highest modulation porduct outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. Those emission must comply with the limit specified in this section (at least 20dB attenuation).

11.4 Environmental Conditions

Temperature:	23°C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

11.5 Summary of Test Results/Plots

Please refer to the test plots as below.

Bandedge (Radiated)

Lowest Bandedge

Horizontal (Worst case)

No.	Frequency	Reading	Correct	Result	Limit Margin		Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	33.78	-3.70	30.08	54.00	-23.92	Average Detector
	2310.000	46.22	-3.70	42.52	74.00	-31.48	Peak Detector
2	2390.000	33.11	-3.05	30.06	54.00	-23.94	Average Detector
	2390.000	45.35	-3.05	42.30	74.00	-31.70	Peak Detector
3	2400.000	60.19	-2.98	57.21	Delta = 23	Delta = 23.28 dBc Average Detec	
4	2402.000	83.46	-2.97	80.49	/ Average Dete		Average Detector

Highest Bandedge

Horizontal (Worst case)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.990	82.72	-2.42	80.30	/	/	Average Detector
	2479.840	87.55	-2.43	85.12	/	/	Peak Detector
2	2483.500	43.92	-2.40	41.52	54.00	-12.48	Average Detector
	2483.500	49.99	-2.40	47.59	74.00	-26.41	Peak Detector
3	2500.000	33.16	-2.28	30.88	54.00	-23.12	Average Detector
	2500.000	44.44	-2.28	42.16	74.00	-31.84	Peak Detector

Bandedge (Conducted) Lowest Bandedge

Highest Bandedge

12. Conducted Emissions

12.1 Measurement Uncertainty

Base on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement is ± 2.88 dB.

12.2 Test Equipment List and Details

Description	Description Manufacturer		Serial Number	Cal. Date	Due. Date
EMI Test Receiver	Rohde & Schwarz	ESPI	101611	2015-05-28	2016-05-27
L.I.S.N	Schwarz beck	NSLK8126	8126-224	2015-05-28	2016-05-27
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100911	2015-05-28	2016-05-27

12.3 Test Procedure

The setup of EUT is according with per ANSI C63.4-2009 measurement procedure. The specification used was with the FCC Part 15.207 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. The spacing between the peripherals was 10 cm.

12.4 Basic Test Setup Block Diagram

REPORT NO.: STR15078020I PAGE 53 OF 56 FCC PART 15.247

12.5 Environmental Conditions

Temperature:	25 °C
Relative Humidity:	52%
ATM Pressure:	1012 mbar

12.6 Test Receiver Setup

During the conducted emission test, the test receiver was set with the following configurations:

Start Frequency	. 150 kHz
Stop Frequency	. 30 MHz
Sweep Speed	. Auto
IF Bandwidth	. 10 kHz
Quasi-Peak Adapter Bandwidth	.9 kHz
Quasi-Peak Adapter Mode	. Normal

12.7 Summary of Test Results/Plots

According to the data in section 12.8, the EUT <u>complied with the FCC Part 15.207</u> Conducted margin for a Class B device, with the *worst* margin reading of:

-9.35 dB at 0.1580 MHz in the Neutral, Peak detector, 0.15-30MHz

12.8 Conducted Emissions Test Data

Plot of Conducted Emissions Test Data

EUT: POWER BANK BLUETOOTH SPEAKER

Tested Model: BBS 10

Operating Condition: Transmitting & Charging

Comment: AC120V/60Hz; USB 5V charging

Test Specification: Neutral

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.1500	47.15	9.50	56.65	66.00	-9.35	peak
2	0.1500	24.49	9.50	33.99	56.00	-22.01	AVG
3	0.2060	41.97	9.50	51.47	63.37	-11.90	peak
4	0.2060	29.63	9.50	39.13	53.37	-14.24	AVG
5	4.0060	18.99	10.00	28.99	46.00	-17.01	AVG
6	4.1540	33.38	10.00	43.38	56.00	-12.62	peak

Test Specification: Line

No.	Frequency	Reading	Correct	Result	Limit	Margin	Detector
	(MHz)	(dBuV)	(dB/m)	(dBuV)	(dBuV)	(dB)	
1	0.2020	42.07	9.50	51.57	63.53	-11.96	peak
2	0.2060	29.05	9.50	38.55	53.37	-14.82	AVG
3	1.7460	17.13	10.00	27.13	46.00	-18.87	AVG
4	1.7540	29.51	10.00	39.51	56.00	-16.49	peak
5	3.7940	18.51	10.00	28.51	46.00	-17.49	AVG
6	4.0260	31.37	10.00	41.37	56.00	-14.63	peak

***** END OF REPORT *****