

#### INSTITUTE FOR DEFENSE ANALYSES

## Improved Surface Gunnery Analysis with Continuous Data

George M. Khoury, Project Leader

Benjamin A. Ashwell V. Bram Lillard

#### March 2018

Approved for public release. Distribution is unlimited.

IDA Non-Standard Document NS D-8990

Log: H 2018-000091

INSTITUTE FOR DEFENSE ANALYSES 4850 Mark Center Drive Alexandria, Virginia 22311-1882



The Institute for Defense Analyses is a non-profit corporation that operates three federally funded research and development centers to provide objective analyses of national security issues, particularly those requiring scientific and technical expertise, and conduct related research on other national challenges.

#### **About This Publication**

This work was conducted by the Institute for Defense Analyses (IDA) under contract HQ0034-14-D-0001, Task 2299(38), "Littoral Combat Ships," for the Office of the Director, Operational Test and Evaluation. The views, opinions, and findings should not be construed as representing the official position of either the Department of Defense or the sponsoring organization.

#### Acknowledgments

The IDA Technical Review Committee was chaired by Mr. Robert R. Soule and consisted of Allison L. Goodman, Colin E. Anderson, Daniel L. Pechkis, Dean Thomas, and Heather M. Wojton from the Operational Evaluation Division.

For more information: George M. Khoury, Project Leader gmkhoury@ida.org • (703) 845-6887

Robert R. Soule, Director, Operational Evaluation Division rsoule@ida.org • (703) 845-2482

Copyright Notice
© 2018 Institute for Defense Analyses
4850 Mark Center Drive, Alexandria, Virginia 22311-1882 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at DFARS 252.227-7013 (a)(16) [Jun 2013].

#### INSTITUTE FOR DEFENSE ANALYSES

IDA Non-Standard Document NS D-8990

# Improved Surface Gunnery Analysis with Continuous Data

George M. Khoury, *Project Leader* 

Benjamin A. Ashwell V. Bram Lillard

# IDA

## Improved Surface Gunnery Analysis with Continuous Data

## Benjamin Ashwell and V. Bram Lillard

Institute for Defense Analyses

#### Introduction

Recasting gunfire data from binomial (hit/miss) to continuous (time-to-kill) allows us to draw statistical conclusions with tactical implications from free-play, live-fire surface gunnery events.

#### The Threat

Small boats combine surprise, speed, and numbers to overwhelm the defenses of even the most capable surface combatants.







**US Navy Surface Combatants** 











- (A) Arleigh Burke-class destroyer (B) Ticonderoga-class cruiser
- (C) Zumwalt-class destroyer
- (D) Freedom-variant LCS
- (E) Independence-variant LCS

And more.

#### **Summary of Gunfire**





#### **Factors Expected to Influence Gun Performance**

| Factor Name                                       | Hypothesized Effect                                                                                              |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| Range                                             | Lower Pk at longer ranges due to round dispersion and (presumably) less accurate tracks                          |  |  |
| Closure Rate                                      | Lower Pk for targets with large closure rate (positive or negative)                                              |  |  |
| Weapon Type<br>(Gun A or Gun B)                   | Gun A is expected to have a higher per-salvo Pk given its greater lethality                                      |  |  |
| Target Relative Bearing                           | Lower Pk in certain regions for the ship's targeting systems                                                     |  |  |
| Bearing Rate<br>(degrees/second)                  | Lower Pk for high bearing rates as the guns must<br>traverse rapidly and correctly predict the target's location |  |  |
| Track Staleness (seconds since last track update) | Lower Pk for stale tracks                                                                                        |  |  |
| Absolute Target / Ownship<br>Speed                | Low Pk for very high speeds (ship motion will interfere with accuracy)                                           |  |  |
| Track Source (e.g., radar, EO/IR camera)          | The EO/IR camera will be more accurate (higher Pk) than the radar                                                |  |  |
| Range*Range                                       | Pk may be highest in a sweet spot, with low Pk at both very long and very close ranges                           |  |  |
| Range*Weapon Type                                 | Gun A's greater range suggests it will retain its accuracy at longer ranges                                      |  |  |
|                                                   |                                                                                                                  |  |  |

#### **Binomial Data Limit our Insight**

Difficult to achieve acceptable power for factor analysis with binary data unless many runs (often >100) can be resourced.



We cannot fit more than two factors to our data with logistic regression, and we have large error bars.

#### **Moving From Binomial** to Continuous Responses

Instead of considering each salvo (trigger pull) as an independent event, we consider closelyspaced salvos as part of a larger "engagement".



#### **Analysis of Censored Data**

We use the probability density function (PDF) and cumulative distribution function (CDF) to create the maximum likelihood function.





We can now introduce factors  $\mu = b + \beta_1 * Factor 1 + \beta_2 * Factor 2 + ...$ 

To create results with tactical implications



Probability of kill is much higher in the "sweet spot" than at close and long ranges

#### Conclusion

Our analysis provided the Navy with suggestions for improvements to its tactics and the employment of its weapons.

A censored analysis enabled us to do so. where other methods fell short.

All data on this poster were fabricated for the purposes of demonstration.