

Other Computer Vision Tasks

B®AZ

Semantic Segmentation

Classification : 하나의 사진 단위

Segmentation : 하나의 pixel 단위 Instance를 구분하는 게 아닌 pixel에 대해서 집중한다.

Semantic Segmentation Idea: Sliding Window

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

- 1. 작은 patch들을 일일이 CNN의 input으로 사용하는 비효율성
- 2. 겹치는 patch들 사이에 shared feature를 재사용하지 않음

overlapping patches

BOAZ

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Input: 3 x H x W

High-res: D₁ x H/2 x W/2

High-res: D₁ x H/2 x W/2

Predictions: H x W

In-Network upsampling: "Unpooling"

Nearest Neighbor

1	2	
3	4	 (

Input: 2 x 2

Output: 4 x 4

2

2

"Bed of Nails"

		250		- 100	
1	2	 0	0	0	0
3	4	3	0	4	0
		0	0	0	0

Input: 2 x 2

Output: 4 x 4

Nearest Neighbor

: 주변 값들을 모두 같은 수로 변경

Bed of Nails

: 맨 왼쪽, 맨 위의 값만을 채움

BOAZ

In-Network upsampling: "Max Unpooling"

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1
7	3	4	8

Max Unpooling

Use positions from pooling layer

1	2
3	4

53	0	0	2	0
	0	1	0	0
	0	0	0	0
	3	0	0	4

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers

이전에 Max Pooling 자리를 기억 이를 이용해서 Max Unpooling

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Input: 3 x H x W

 $D_1 \times H/2 \times W/2$

High-res: D₁ x H/2 x W/2

Predictions: H x W

Convolution vs Transpose Convolution

Convolution Network

X W Z = Conv(X, W)

X: image

W: filter

Z : feature

Transpose Convolution Network

X = TransConv(Z, W)

X : feature

W: filter

Z:input

Transpose convolution filter 또한 convolution filter의 특징을 가지고 있다.

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

D₁ x H/2 x W/2

High-res: D₁ x H/2 x W/2

Upsampling: Unpooling or strided transpose convolution

Predictions: H x W

B®AZ

Classification + Localization

Human Pose Estimation

BOAZ

CS231n: http://cs231n.stanford.edu/syllabus.html

website: https://www.slideshare.net/ssuserb208cc1/transposed-convolution

