#### Kahoot

 https://play.kahoot.it/#/k/87256f68-7b17-4aa0-9c9cc30869da5639

#### Lecture 8: Stability, Padé approximations

- Stability of Runga-Kutta methods
  - A-stability
  - Aliasing
  - L-stability
  - Padé approximations
  - (Nonlinear stability: AN-, B- and algebraic stability)

Book: 14.6

#### Explicit Runge-Kutta (ERK) methods

• IVP:  $\dot{y} = f(y, t), \quad y(0) = y_0$ 

• ERK:  $k_{1} = f(y_{n}, t_{n})$   $k_{2} = f(y_{n} + ha_{21}k_{1}, t_{n} + c_{2}h)$   $k_{3} = f(y_{n} + h(a_{31}k_{1} + a_{32}k_{2}), t_{n} + c_{3}h)$   $\vdots$   $k_{\sigma} = f(y_{n} + h(a_{\sigma,1}k_{1} + a_{\sigma,2}k_{2} + \dots + a_{\sigma,\sigma-1}k_{\sigma-1}), t_{n} + c_{\sigma}h)$   $y_{n+1} = y_{n} + h(b_{1}k_{1} + b_{2}k_{2} + \dots + b_{\sigma}k_{\sigma})$ 

Butcher array:

#### Recap: Test system, stability function

One step method (typically: Runge-Kutta):

$$y_{n+1} = y_n + h\phi(y_n, t_n)$$

Apply it to scalar test system:

$$\dot{y} = \lambda y$$

• We get:

$$y_{n+1} = R(h\lambda)y_n$$

where  $R(h\lambda)$  is stability function

The method is stable (for test system!) if

$$|R(h\lambda)| \le 1$$

# Stability regions for ERK methods



#### Implicit Runge-Kutta (IRK) methods

• IVP:  $\dot{y} = f(y, t), \quad y(0) = y_0$ 

• IRK: 
$$k_{1} = f(y_{n} + h(a_{1,1}k_{1} + a_{1,2}k_{2} + \dots + a_{1,\sigma}k_{\sigma}), t_{n} + c_{1}h)$$

$$k_{2} = f(y_{n} + h(a_{2,1}k_{1} + a_{2,2}k_{2} + \dots + a_{2,\sigma}k_{\sigma}), t_{n} + c_{2}h)$$

$$k_{3} = f(y_{n} + h(a_{3,1}k_{1} + a_{3,2}k_{2} + \dots + a_{3,\sigma}k_{\sigma}), t_{n} + c_{3}h)$$

$$\vdots$$

$$k_{\sigma} = f(y_{n} + h(a_{\sigma,1}k_{1} + a_{\sigma,2}k_{2} + \dots + a_{\sigma,\sigma}k_{\sigma}), t_{n} + c_{\sigma}h)$$

$$y_{n+1} = y_{n} + h(b_{1}k_{1} + b_{2}k_{2} + \dots + b_{\sigma}k_{\sigma})$$

Butcher array:

# Stability regions for implicit methods

Implicit Euler



# Stability regions for implicit methods

Trapezoidal rule and implicit midpoint rule:



### Why use IRK methods?

 IRK methods are much more complex (since we have to solve a set of nonlinear equations for each step) than ERK methods, so why use them?

– Accuracy? Stability?

- Not because of accuracy
  - Even if an IRK method may have higher accuracy for a given number of stages, it is easy and cheap to achieve same accuracy for ERK by increasing the number of stages
- It's because of the much larger stability region!
- When is this important?
  - Stiff systems!





# Stiff system

$$\dot{y}_1 = \lambda_1 y_1$$
  
$$\dot{y}_2 = \lambda_2 y_2$$

$$\lambda_2 << \lambda_1 < 0$$





must choose a small *h* for stability

can choose all h for stability

### Example 221

Explicit methods:

[R(N)]-200 if 1\lambdahl-200

no explicit methods are A-stable

Some implicit methods are A-stable

# ERK vs IRK stability regions

#### Implicit Euler



Trapezoidal/ Implicit Midpoint





# Aliasing I

Observation: (o cal solution for
the test function: 
$$\dot{y} = \lambda \dot{y}$$
 $\dot{y} = (t_n; t) = \lambda \dot{y} = (t_n; t_n) = \dot{y}$ 
 $\dot{y} = (t_n; t_n) = \dot{y} = \dot{y}$ 
 $\dot{y} = (t_n; t_n) = \dot{y} = \dot{y}$ 

# Aliasing II

• Assume:

Test system I  $\dot{y} = \lambda y$ ;  $\lambda = \sigma + j\omega$  $y_L(t_n; t_{n+1}) = e^{h\lambda}y_n$  Test system II

$$\dot{y} = \mu y$$

$$y_L(t_n; t_{n+1}) = e^{h\mu} y_n$$

When are these two systems the same?

$$e^{h\mu} = e^{h\sigma} (cos(h\omega) + j sin (h\omega))$$

$$h\mu = h\sigma + j (h\omega + 2K\pi)$$

$$\mu = \sigma + j\omega + j 2k\pi$$

$$\mu = \lambda + j 2k\pi$$

#### Visualisation I



#### Visualisation II



# L-stability I

• Assume  $\mu$  eigenvalues and we want to suppress:



# L-stability II

A method is L-stable if it is A-stable and 1R (jhw)1 → 0 if w -> ∞ for all systems  $\dot{y} = \lambda y$  where  $\lambda = j\omega$ -> L-stable methods damp out fast oscillations

# Example – L-stability

TTK4130 Modeling and Simulation

# Padé-approximation I

Test system:  $\dot{y} = \lambda y$ 

$$y_L(t_n;t_{n+1}) = e^{h\lambda}y_n \qquad \qquad y_{n+1} = R(h\lambda)y_n$$

$$\text{ "good" methods fulfill } e^s \approx R(s) \qquad s = h\lambda$$

$$\text{ERK: } \rho = \sigma \in \mathsf{Y} \qquad \text{R(s)} = \Lambda + s + \ldots + \frac{s^\rho}{\rho!} \qquad \text{Taylor series}$$

$$\text{IRK: } R(s) = \frac{1 + \beta_s s^+ \ldots + \beta_w s^w}{\Lambda + \beta_s s^+ \ldots + \delta_w s^w} \qquad \text{K_1 m } \leq \sigma$$

# Padé-approximation II

**Def:** Padé approximation  $P_m^k(s)$  of  $e^s$  is the rational function:

$$P_m^k(s) = \frac{1 + \beta_1 s + \dots + \beta_k s^k}{1 + \gamma_1 s + \dots + \gamma_m s^m},$$

which approximates  $e^s$  the best given k and m

#### Padé approximations to es

| m | 0                                             | 1                                                                              | 2                                                                                                 | 3                                                                                                                     |
|---|-----------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0 | 1                                             | $\frac{1+s}{1}$                                                                | $\frac{1+s+\frac{1}{2}s^2}{1}$                                                                    | $\frac{1+s+\frac{1}{2}s^2+\frac{1}{6}s^3}{1}$                                                                         |
| 1 | $\frac{1}{1-s}$                               | $\frac{1+\frac{1}{2}s}{1-\frac{1}{2}s}$                                        | $\frac{1 + \frac{2}{3}s + \frac{1}{6}s^2}{1 - \frac{1}{3}s}$                                      | $\frac{1 + \frac{3}{4}s + \frac{1}{4}s^2 + \frac{1}{24}s^3}{1 - \frac{1}{4}s}$                                        |
| 2 | $\frac{1}{1-s+\frac{1}{2}s^2}$                | $\frac{1 + \frac{1}{3}s}{1 - \frac{2}{3}s + \frac{1}{6}s^2}$                   | $\frac{1 + \frac{1}{2}s + \frac{1}{12}s^2}{1 - \frac{1}{2}s + \frac{1}{12}s^2}$                   | $\frac{1 + \frac{3}{5}s + \frac{3}{20}s^2 + \frac{1}{60}s^3}{1 - \frac{2}{5}s + \frac{1}{20}s^2}$                     |
| 3 | $\frac{1}{1-s+\frac{1}{2}s^2-\frac{1}{6}s^3}$ | $\frac{1 + \frac{1}{4}s}{1 - \frac{3}{4}s + \frac{1}{4}s^2 - \frac{1}{24}s^3}$ | $\frac{1 + \frac{2}{5}s + \frac{1}{20}s^2}{1 - \frac{3}{5}s + \frac{3}{20}s^2 - \frac{1}{60}s^3}$ | $\frac{1 + \frac{1}{2}s + \frac{1}{10}s^2 + \frac{1}{120}s^3}{1 - \frac{1}{2}s + \frac{1}{10}s^2 - \frac{1}{120}s^3}$ |

- m = 0: Explicit Runge-Kutta methods with  $p = \sigma$
- m = k: Gauss, Lobatto IIIA/IIIB (incl. implicit mid-point, trapezoidal)
- m = k+1: Radau-methods (incl. implicit Euler)
- m = k+2: Lobatto IIIC

#### Padé approximations to es

| m | 0                                                   | 1                                                                              | 2                                                                                                 | 3                                                                                                                     |
|---|-----------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0 | $\frac{1}{1}$                                       | $\frac{1+s}{1}$                                                                | $\frac{1+s+\frac{1}{2}s^2}{1}$                                                                    | $\frac{1+s+\frac{1}{2}s^2+\frac{1}{6}s^3}{1}$                                                                         |
| 1 | $\frac{1}{1-s}$                                     | $\frac{1+\frac{1}{2}s}{1-\frac{1}{2}s}$                                        | $\frac{1 + \frac{2}{3}s + \frac{1}{6}s^2}{1 - \frac{1}{3}s}$                                      | $\frac{1 + \frac{3}{4}s + \frac{1}{4}s^2 + \frac{1}{24}s^3}{1 - \frac{1}{4}s}$                                        |
| 2 | $\frac{1}{1-s+\frac{1}{2}s^2}$                      | $\frac{1 + \frac{1}{3}s}{1 - \frac{2}{3}s + \frac{1}{6}s^2}$                   | $\frac{1 + \frac{1}{2}s + \frac{1}{12}s^2}{1 - \frac{1}{2}s + \frac{1}{12}s^2}$                   | $\frac{1 + \frac{3}{5}s + \frac{3}{20}s^2 + \frac{1}{60}s^3}{1 - \frac{2}{5}s + \frac{1}{20}s^2}$                     |
| 3 | $\frac{1}{1 - s + \frac{1}{2}s^2 - \frac{1}{6}s^3}$ | $\frac{1 + \frac{1}{4}s}{1 - \frac{3}{4}s + \frac{1}{4}s^2 - \frac{1}{24}s^3}$ | $\frac{1 + \frac{2}{5}s + \frac{1}{20}s^2}{1 - \frac{3}{5}s + \frac{3}{20}s^2 - \frac{1}{60}s^3}$ | $\frac{1 + \frac{1}{2}s + \frac{1}{10}s^2 + \frac{1}{120}s^3}{1 - \frac{1}{2}s + \frac{1}{10}s^2 - \frac{1}{120}s^3}$ |
|   |                                                     | L-stab                                                                         | le L-stab                                                                                         |                                                                                                                       |

- m = 0: Explicit Runge-Kutta methods with  $p = \sigma$
- m = k: Gauss, Lobatto IIIA/IIIB (incl. implicit mid-point, trapezoidal)
- m = k+1: Radau-methods (incl. implicit Euler)
- m = k+2: Lobatto IIIC

# Padé approximations as stability function

- 1. Assume  $k \le m \le k+2$ In that case  $\left|P_m^k(s)\right| \le 1$  if  $Re[s] \le 0$
- 2.  $|P_m^m(j\omega)| = 1$  if  $\omega \to \infty$
- 3. Assume m > kIn that case  $|P_m^k(s)| \to 0$  if  $\omega \to \infty$

One step methods with stability function  $R(s) = P_m^k(s)$  are:

- A-stable if k = m
- L-stable if m = k + 1 or m = k + 2

#### Pneumatic spring example, again

Model from Newton's 2nd law:

$$\ddot{x} + g(1 - x^{-\kappa}) = 0$$

"mass-spring-damper with nonlinear spring"



• On state-space form  $\dot{y} = f(y, t)$ 

$$\begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -g(1-y_1^{-\kappa}) \end{pmatrix}$$

Linearization about equilibrium:

$$\frac{\partial f}{\partial y} = \begin{pmatrix} 0 & 1 \\ -g\kappa & 0 \end{pmatrix}, \qquad \lambda_{1,2} = \pm j\omega_0, \quad \omega_0 = \sqrt{g\kappa} \approx 3.7$$

#### **Simulation**





### Padé approximations to es

| $k \atop m$ | 0                                                   | 1                                                                              | 2                                                                                                 | 3                                                                                                                     |
|-------------|-----------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 0           | $\frac{1}{1}$                                       | $\frac{1+s}{1}$                                                                | $\frac{1+s+\frac{1}{2}s^2}{1}$                                                                    | $\frac{1+s+\frac{1}{2}s^2+\frac{1}{6}s^3}{1}$                                                                         |
| 1           | $\frac{1}{1-s}$                                     | $\frac{1+\frac{1}{2}s}{1-\frac{1}{2}s}$                                        | $\frac{1 + \frac{2}{3}s + \frac{1}{6}s^2}{1 - \frac{1}{3}s}$                                      | $\frac{1 + \frac{3}{4}s + \frac{1}{4}s^2 + \frac{1}{24}s^3}{1 - \frac{1}{4}s}$                                        |
| 2           | $\frac{1}{1-s+\frac{1}{2}s^2}$                      | $\frac{1 + \frac{1}{3}s}{1 - \frac{2}{3}s + \frac{1}{6}s^2}$                   | $\frac{1 + \frac{1}{2}s + \frac{1}{12}s^2}{1 - \frac{1}{2}s + \frac{1}{12}s^2}$                   | $\frac{1 + \frac{3}{5}s + \frac{3}{20}s^2 + \frac{1}{60}s^3}{1 - \frac{2}{5}s + \frac{1}{20}s^2}$                     |
| 3           | $\frac{1}{1 - s + \frac{1}{2}s^2 - \frac{1}{6}s^3}$ | $\frac{1 + \frac{1}{4}s}{1 - \frac{3}{4}s + \frac{1}{4}s^2 - \frac{1}{24}s^3}$ | $\frac{1 + \frac{2}{5}s + \frac{1}{20}s^2}{1 - \frac{3}{5}s + \frac{3}{20}s^2 - \frac{1}{60}s^3}$ | $\frac{1 + \frac{1}{2}s + \frac{1}{10}s^2 + \frac{1}{120}s^3}{1 - \frac{1}{2}s + \frac{1}{10}s^2 - \frac{1}{120}s^3}$ |
|             |                                                     | L-stab                                                                         | le L-stab                                                                                         |                                                                                                                       |

- m = 0: Explicit Runge-Kutta methods with  $p = \sigma$
- m = k: Gauss, Lobatto IIIA/IIIB (incl. implicit mid-point, trapezoidal)
- m = k+1: Radau-methods (incl. implicit Euler)
- m = k+2: Lobatto IIIC

#### Energy



Equilibrium energy

#### Pneumatic spring with resonant load

Equations of motion (Newton's law):



Linearization around equilibrium:

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -g\frac{m_1+m_2}{m_1}\kappa(x_1^*)^{-(\kappa-1)} - \frac{\omega_2^2}{2} & 0 & \frac{\omega_2^2}{2} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{\omega_2^2}{2} & 0 & -\frac{\omega_2^2}{2} & 0 \end{pmatrix}$$

Eigenvalues:

$$\lambda_{1,2} = \pm j\omega_1$$
,  $\omega_1 = 3.7 \text{ rad/s}$   
 $\lambda_{3,4} = \pm j\omega_2$ ,  $\omega_2 = 1000 \text{ rad/s}$ 

#### Position of the two masses

RK4 with time step h = 0.0005



#### Spring deflection, RK4 with h = 0.0005



Oscillation is lightly damped by integration method

#### Energy of RK4 solution, h = 0.0005



Energy related to fast dynamics slowly damped out

#### Position of the two masses

Gauss, order 2 and Lobatto IIIC, order 2, h = 0.05



# Spring deflection

Gauss, order 2 and Lobatto IIIC, order 2, h = 0.05



- Gauss method gives no damping, but shifts fast dynamics and energy to frequencies below Nyquist frequency,  $\omega_N = \frac{\pi}{h} = \frac{\pi}{0.05} = 62.8$
- Lobatto IIIC dampens out fast dynamics in one step

# Total energies

Gauss, order 2 and Lobatto IIIC, order 2, h = 0.05



- Gauss does not dampen energies at all (same as exact total energy)
- Lobatto IIIC dampens out energy associated with fast dynamics in very few steps, to the energy of slow dynamics

#### Modelica

- Replacable / redeclare
- Choices
- Check out:
  - http://book.xogeny.com/components/architectures/replaceable/

#### Homework

- Check out the Modelica Circuit example (uploaded on Blackboard).
  - Look at the structure replaceable / redeclare
  - Read:<a href="http://book.xogeny.com/components/architectures/replaceable/">http://book.xogeny.com/components/architectures/replaceable/</a>
- Read 14.7.

# Self-study section

#### Example: "Lambert's problem"

• IVP:

$$\dot{u} = \frac{1}{100} - (\frac{1}{100} + u + v)(1 + (u + 1000)(u + 1)), \quad u(0) = 0$$

$$\dot{v} = \frac{1}{100} - (\frac{1}{100} + u + v)(1 + v^2), \quad v(0) = 0$$

- Task: Simulate from t = 0 s til t = 100 s
- Eigenvalues:

$$(u, v) = (0, 0) \Rightarrow \lambda_1 \approx -1000, \lambda_2 \approx -0.01$$
  
 $(u, v) = (-.5, .5) \Rightarrow \lambda_1 \approx -500, \lambda_2 \approx -0.03$   
 $(u, v) = (-1, 1) \Rightarrow \lambda_1 \approx -11, \lambda_2 \approx -1$ 

# Using Euler (explicit), h = 0.002





# Attempt 3: Euler implicit, h = 10





149 function evaluations! (dependent on solution algorithm)

#### Comparisons

