

${\bf Susceptible}$

$$S_{t+1} = S_t(1 - \theta_i - \lambda_{t+1}) + f_t(R^N; o, \omega^N) + f_t(R^H; o, \omega^H)$$

$$S_{t+1}^V = S_t^V(1 - \lambda_{t+1}^V) + f_t(R^V; s, \omega^V) + f_t(V; s, \omega^V)$$

Vaccinated

$$V_{t+1} = V_t + S_t \theta_i - f_t(V; s, \omega^V)$$

Exposed/infected

$$E_{t+1} = E_t + S_t \lambda_{t+1} - f_t(E; m, \sigma)$$

$$E_{t+1}^V = E_t^V + S_t \lambda_{t+1}^V - f_t(E^V; q, \sigma^V)$$

Infectious

$$I_{t+1}^{A} = I_{t}^{A} + (1 - \phi_{i})f_{t}(E; m, \sigma) - f_{t}(I^{A}; n, \gamma)$$

$$I_{t+1}^{S} = I_{t}^{S} + \phi_{i}f_{t}(E; m, \sigma) - f_{t}(I^{S}; n, \gamma)$$

$$I_{t+1}^{V} = I_{t}^{V} + f_{t}(E^{V}; q, \sigma^{V}) - f_{t}(I^{V}; r, \gamma^{V})$$

Recovered

$$R_{t+1}^{N} = R_{t}^{N} + f_{t}(I^{A}; n, \gamma) + (1 - \frac{p_{i}}{\phi_{i}})f_{t}(I^{S}; n, \gamma) - f_{t}(R^{N}; o, \omega^{N})$$

$$R_{t+1}^{H} = R_{t}^{H} + \frac{p_{i}}{\phi_{i}}f_{t}(I^{S}; n, \gamma) - f_{t}(R^{H}; o, \omega^{H})$$

$$R_{t+1}^{VH} = R_{t}^{VH} + f_{t}(I^{V}; r, \gamma^{V}) - f_{t}(R^{V}; s, \omega^{V})$$

Parameters

Table 1 summarises all parameters.

Table 1: Summary of parameters.

Symbol	Parameter
R_0	basic reproduction number
R_c	reproduction number under control measures for an entirely susceptible population
R_t	effective reporduction number in the presence of immunity
$\theta_{i,t}$	time-specific probability of vaccination
σ	latency period mean
$\mid m \mid$	latency period shape non-vaccinated
$\mid q$	latency period shape vaccinated
$\mid \gamma \mid$	infectious period mean
$\mid n \mid$	infectious period shape non-vaccinated
$\mid r \mid$	infectious period shape vaccinated
ω^N	immune duration mean non-hospitalized non-vaccinated case
ω^H	immune duration mean hospitalized non-vaccinated case
0	immune duration shape non-vaccinated
ω^{VN}	immune duration mean non-hospitalized vaccinated case
ω^{VH}	immune duration mean hospitalized vaccinated case
ω^{VH}	immune duration mean vaccinated individual
s	immune duration shape vaccinated
ϕ_i	probability of asymptomatic case given infection (non-vaccinated)
$ au_i $	probability of asymptomatic case given infection (vaccinated)
p_i	probability of hospitalisaion given infection (non-vaccinated)
p_i^V	probability of hostpitalisation given infection (vaccinated)
$C = c_{i,j}$	contact matrix
η_i	relative susceptibility of age group i
$\mid v \mid$	relative infectiousness of asymptomatic cases
$\mid \mu \mid$	relative infectiousness of vaccinated cases (symptomatic and asymptomatic??)

Next generation matrix

- Expected number of secondary infections in age group i resulting from contact with an index case in age group j:
 - $k_{ij} = \frac{\beta}{\gamma} \eta_i c_{i,j} (\phi \nu + (1 \phi_i))$
 - $-\eta_i$ = relative susceptibility of of age group i;
 - $-\nu$ = relative infectiousness of asymptomatic cases.
 - $-c_{i,j}$ = average number of daily contacts between a single individual in age group j and all individuals in age group i;
- The basic reproduction number R_0 is given by the spectral radius $\rho(K)$ = the largest absolute eigenvalue
- As R_0 is specified in the model, the transmission parameter β is left as a free parameter that is scaled to the correct value.

Force of infection

• $\lambda_{i,t+1}$ = force of infection acting on a single individual in age group i at time t+1:

$$\lambda_{i,t+1} = \beta \eta_i \sum_{j=1}^{M} \frac{c_{i,j} N_j}{N_i} \left(\frac{I_{j,t}^S + I_{j,t}^A \nu}{N_j} \right) \lambda_{i,t+1} = \frac{\beta \eta_i}{N_i} \sum_{j=1}^{M} c_{i,j} (I_{j,t}^S + I_{j,t}^A \nu) - M = \text{number of discrete age groups } (M = 15);$$

- $-N_i$ = population size of age group i.

Model Assumptions

- Model assumes that individuals are vaccinated and gain immunity at some rate (probability) constnant per age group θ_i .
 - Could make this $f_t(...)$?
- E^V , I^V , and R^V have their own F_t parameters which differ between vaccinated and non-vaccinated individuals
- Vaccinated individuals who recover from infection "replenish" their vaccination immunity, i.e., R^V flows into V.

No longer sure about these assumptions...

- E^V flows into own I^V compartment, allowing adjustment of infectiousness.
 - Implicitly, vaccination protects against symptomatic and/or asymptomatic disease.
- There end up being two different forces of infection for vaccinated and unvaccinated people: λ^V and λ^N . It would be better to formulate a more complex expression for λ_t which accounts for vaccination.

Questions to answer

- Are vaccinated individuals less susceptible to infection than non-vaccinated ones?
- Does vaccinate protect against symptomatic disease? (Rather what is the proportion of asymptomatic cases in the infections reported by vaccinated individuals?)
- Do infected vaccinated individuals "replenish" their immunity upon recovery from infection?
 - Is the effect the same for symptomatic and asymptomatic cases?
- Does vaccination protect against hospitalisation?
- Do the R boxes contribute to transmission?

To do

- Are vaccinated individuals more susceptible to infection than non-vaccinated, i.e. $S^V = S$?
 - If $S^V \neq S$, then $\lambda^V \neq \lambda$.
 - Then we need to change η_i , the relative susceptibility by age group.
- Vaccine distribution (and therefore immunity) ~ age group. Therefore, immunity will differ by age
 group.
 - If immunity differs by age group susceptibility might too.
- Find **probability** of asymptomatic case given vaccinated infection/case
- Find **probability** of hospitalisation given symptoamtic vaccinated case/infection
 - Oxford paper has plenty of data which might be useful. (Intercept, odds -> probabilities.)

Possible angles

- Future of the pandemic i.e. what the winter will look like.
- Booster shot vs no booster shot \sim impact on transmission
- Waning immunity vs immune evasion vs increased contact *i.e.* how much vaccinated people transmit Delta?
 - Implicaions: vaccine passports & booster shots
- Herd immunity with imperfect vaccination?