CS 444 - Compiler Construction

Winter 2020

Lecture 4: January 15th, 2020

Lecturer: Ondřej Lhoták Notes By: Harsh Mistry

4.1 Analysis Continued

4.1.1 Parsing

- The ultimate goal is to produce a tree data structure which represents the input
- Regular expressions can express infinite languages, but not infinite levels of nesting. Therefore for parsing we use context-free languages represented by a context-free grammar

Definition 4.1 Context Free Grammar (CFG) is a 4-tuple $G = \langle N, T, R, S \rangle$

- T Terminals
 - Words that make up the actual language
- \bullet N Non-Terminals
 - Internal to the grammar
- \bullet R Production Rules
- \bullet S Start non-terminal
- Notations in this course
 - Terminals $a, b, c \in T$
 - Non-terminals $A, B, C \in N$
 - Start S
 - Symbols $V = T \cup N$ $X, Y, Z \in T \cup N$
 - Strings of terminals T^* $w, x, y, z \in T^*$
 - Strings of symbols $(T \cup N)^*$ $\alpha, \beta, \gamma, \delta \in (T \cup N)^*$
 - Production Rules $A \rightarrow \alpha$

Definition 4.2 "Directly Derives" $BA\gamma \rightarrow P\alpha\gamma$ if $A \rightarrow a \in E$

Definition 4.3 "Derives" $\alpha \to^* \beta$ if $\alpha = \beta$ or $\alpha \to \gamma$ and $\gamma \to \beta$

Definition 4.4 $L(G) = \{x \in T^* \mid S \to *x\}$

Definition 4.5 α is a <u>sentential form</u> if $S \to^* \alpha$ $L(G) = sentential - forms(G) \cap T^*$

Definition 4.6 Recognition is $x \in L(G)$

 \bullet Parsing is finding a derivation for x

Definition 4.7 A grammar is Ambiguous if some input has more than 1 parse tree

4.1.1.1 Top-Down Parsing

LL(k) LL(1)

- Start with $\alpha = S$ and input string x
- Repeat till $\alpha = x$
 - Replace some non-terminal A in α with β where $A \to B \in R$

Note

LL(k) grammars cannot generate left-associative trees

4.1.1.2 Bottom-Up Parsing

LR(k) LR(1)

- Start with $\alpha = x$
- Repeat till $\alpha = S$
 - Replace some "handle" β in α with A where $A \to B \in R$

Note

LR(k) grammars can generate both left-associative and right-associative trees