Asmt 5: Regression

Yulong Liang (u1143816)

April 8, 2018

1 Singular Value Decomposition (20 points)

A (10 points): The L_2 norm of the difference between A and Ak for each value of k is as follows,

k	norm(A-Ak,2)
1	1732.480227359794
2	1315.314411943770
3	1030.434194031714
4	862.923723294262
5	809.417134749558
6	430.710782675815
7	302.765634006722
8	105.438774512875
9	9.310007247409
10	0.000011654328

B (5 points): The smallest value k so that the L_2 norm of A - Ak is less than 10% that of A is, k = 8

When the L_2 norm of A is 2266.423544467972 and the L_2 norm of A-Ak is 105.438774512875.

C (5 points): The plot of the points in 2 dimensions is as follows,

Figure 1: Data points in 2-dimensional subspace after PCA

Get the best rank-2 approximation of the SVD which gave me U' as a 3000×2 matrix, S' as a 2×2 matrix and V' as a 40×2 . There are two approaches to get the subspace coordinates:

- V' describes the subspace which minimizes the squared sum of residuals. Use $\langle \mathbf{A}, \mathbf{V}' \rangle$ to get the new coordinates in the 2-dimensional subspace whose axes are the two principal components.
- $A = USV^T \Rightarrow AV = US$. Use $\langle \mathbf{U}', \mathbf{S}' \rangle$ to get the new coordinates in the 2-dimensional subspace whose axes are the two principal components.

2 Frequent Directions and Random Projections (40 points)

A (20 points):

• How large does l need to be for the above error to be at most $||A||_F^2/10$?

$$||A||_F^2 = 1.2618 \times 10^7$$

$$||A||_F^2/10 = 1.2618 \times 10^7/10 = 1.2618 \times 10^6$$

l	$ \max_{ x =1} A_x ^2 - B_x ^2 $
1	5.1367e + 06
2	5.0209e + 06
3	2.8471e + 06
4	1.6867e + 06
5	1.0815e + 06

When l = 5, the above error is,

$$\max_{||x||=1} |||A_x||^2 - ||B_x||^2| = ||A^T A - B^T B|| = 1.0815 \times 10^6 < ||A||_F^2 / 10$$

• How does this compare to the theoretical bound (e.g. for k = 0).

$$l = k + \frac{1}{\epsilon} = 0 + \frac{1}{0.1} = 10$$

The empirical l = 5 is less than the theoritical l = 10.

• How large does l need to be for the above error to be at most $||A - A_k||_F^2/10$ (for k = 2)?

$$||A - A_k||_F^2 = 4.4800 \times 10^6$$
$$||A - A_k||_F^2 / 10 = 4.4800 \times 10^6 / 10 = 4.4800 \times 10^5$$

1	$ \max_{ x =1} A_x ^2 - B_x ^2 $
1	5.1367e + 06
2	5.0209e+06
3	2.8471e + 06
4	1.6867e + 06
5	1.0815e + 06
6	7.0533e + 05
7	2.1034e + 05

When l = 7, the above error is,

$$\max_{||x||=1} |||A_x||^2 - ||B_x||^2| = ||A^T A - B^T B|| = 2.1034 \times 10^5 < ||A - A_k||_F^2 / 10$$

B (20 points):

$$l = 219$$

Since Random Sampling is a random algorithm, we need to specify the probability of failure δ . Assuming we want the probability of failure $\delta = 0.01$, then we get l = 219.

The experiment is as follows,

- Initialize l = 0
- Run Random Sampling algorithm for 100 times.
- If the error bound $||A^TA B^TB|| \le ||A A_k||_F^2/10$ is acheived, record l. Otherwise, increment l and run Step2 again. Repeat until the error bound is acheived and record l.
- Run Step1-3 for 100 times and get 100 ls. Calculate the mean of the 100 ls.

According to **Central Limit Theorem**, the real \hat{l} is equal to the expectation of l, which approximately equals the mean of ls.

3 Linear Regression (40 points)

A (20 points): X and Y

Coefficients	$norm(\hat{Y}-Y,2)$
C0.0	4.974259
C0.1	4.974260
C0.3	4.974400
C0.5	4.975351
C1.0	4.991665
C2.0	5.243593

B (20 points): three subsets of X and Y

Coefficients	X1,Y1	X2,Y2	X3,Y3	Average
C0.0	3.254072	3.202433	3.351705	3.269403333
C0.1	3.251804	3.203395	3.350592	3.268597
C0.3	3.234075	3.211249	3.341872	3.262398667
C0.5	3.200887	3.227794	3.325420	3.251367
C1.0	3.087773	3.319639	3.266257	3.224556333
C2.0	3.366890	3.882281	3.332971	3.527380667

Averaging the result of the three subsets, **Ridge Regression with s** = **1.0** works best with $norm(\hat{Y} - Y, 2) \approx 3.22456$.

4 Appendix: Codes

```
function result = svd_norm(A, U, S, V)
    result = zeros(10,1);
    for k = 1:10
         Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)';
         result(k) = norm(A-Ak, 2)
    end
end
function k = svd\_norm2(A, U, S, V)
    normA = norm(A, 2);
    k = 1;
    while 1
         Ak = U(:,1:k) * S(1:k,1:k) * V(:,1:k)';
         sse = norm(A-Ak, 2);
         if sse >= 0.1*normA
             k = k+1;
         else
             break
         end
    end
\mathbf{end}
function [B] = FD(A, 1)
    [n,d] = size(A);
    B = \mathbf{zeros}(2*1,d);
    % fill in the rest here
    for i = 1:n
         idx = find(all(B==0,2),1);
         B(idx,:) = A(i,:);
         idx = find(all(B==0,2),1);
         if isempty(idx)
             [U, S, V] = \mathbf{svd}(B);
             delta = S(1,1)^2;
             for j = 1:l-1
                  S(j,j) = (S(j,j)^2 - delta)^0.5;
             \quad \text{end} \quad
             for j = 1:1*2
                  S(j,j) = 0;
             end
             B = S*V';
         end
    end
end
```

```
function l = FD_l(A)
    froNorm = norm(A, 'fro')^2
    l = 1;
    while 1
        B = FD(A, 1);
        error = norm(A'*A - B'*B, 2)
         if error <= froNorm/10
             break
        end
        l = l + 1;
    \mathbf{end}
end
function l = FD_l2(A, k)
    [U, S, V] = \mathbf{svd}(A);
    Uk = U(:, 1:k);
    Sk = S(1:k,1:k);
    Vk = V(:, 1:k);
    Ak = Uk*Sk*Vk';
    froNorm = norm(A-Ak, 'fro')^2
    1 = 1;
    while 1
        B = FD(A, 1);
        error = norm(A'*A - B'*B, 2)
        if error <= froNorm/10
             break
        end
         l = l + 1;
    \mathbf{end}
end
function [B] = RP(A, 1)
    [n, d] = size(A);
    S = normrnd(0,1,[1,n])/1^0.5;
    B = S*A;
end
function l = RP_l(A)
    froNorm = norm(A, 'fro')^2
    1 = 1;
    while 1
        B = RP(A, 1);
        error = norm(A'*A-B'*B, 2);
         if error <= froNorm/10
             break
        end
        l = l + 1;
```