Final Examination

-. Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & -1 \\ 2 & -1 & 1 \end{pmatrix}$$

- 1. Compute the determinant of A.
- 2. Find the rank of A.
- 3. Determine if *A* is invertible. If *A* is invertible, find A^{-1} .

$$\Box$$
. If $A = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & -1 \\ 2 & -1 & 0 \end{pmatrix}$ and $AX = A - X$. Find X .

- 1. Write the augmented matrix \overline{A} of the system.
- 2. Determine the value of λ such that the system is consistent.
- 3. Find the dimension of the null space of the coefficient matrix A.
- 4. When the system is consistent, solve it.

$$\square. \text{ Let } A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Find the eigenvalues and eigenvectors of A.
- 2. Orthogonally diagonalize *A*.

$$\Xi$$
. Let quadratic form $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 4x_1x_2$

- 1. Write the matrix of the quadratic form $f(x_1, x_2, x_3)$.
- 2. Make a change of variable X=PY, that transforms the quadratic form $f(x_1, x_2, x_3)$ into a quadratic form with no cross-product term. Give P and the new quadratic form.
- 3. Determine whether the quadratic form $f(x_1, x_2, x_3)$ is positive definite.

 \overrightarrow{h} . If A is 3×3 and A - I, A - 2I, A - 3I are all not invertible (sometimes called singular). Show that A can be diagonalizable.

 \pm . If you do the subject below, you can get 5 extra points.

If $A^2 = A$. Show that matrix A+I is invertible and find $(A+I)^{-1}$.