# **Probabilities Recap**

10-605 Machine Learning with Large Datasets

Fall 2022



### **Outline**

- Setup
- Random variables
- Distribution function
- Expectation
- Multivariate Distributions
- Independence
- ROC curve
- Probability in Hashing (birthday paradox)



## Setup

### Sample Space

A set of all possible outcomes or realizations of some random trial.

#### Event

A subset of sample space

### Probability Axioms

- $\circ$  P(A) ≥ 0 for every A
- $\circ$  P( $\Omega$ )=1;
- o If A1, A2, . . . are disjoint, then

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$



### Random variables

#### Definition

 $\circ$  A random variable is a function that maps from the sample space to the reals (X :  $\Omega \to R$ ), i.e., it assigns a real number X(ω) to each outcome ω.

### Example

- X returns 1 if a coin is heads and 0 if a coin is tails. Y returns the number of heads after 3 flips of a fair coin.
- Random variables can take on many values, and we are often interested in the distribution over the values of a random variable, e.g., P(Y = 0)



### **Distribution function**

#### Definition

- Suppose X is a random variable, x is a specific value that it can take,
- Cumulative distribution function (CDF) is the function  $F: R \rightarrow [0, 1]$ , where  $F(x) = P(X \le x)$ .
- If X is discrete  $\Rightarrow$  probability mass function: f(x) = P(X = x).



## Distribution function (cont.)

 If X is continuous ⇒ probability density function for X if there exists a function f such that f(x) ≥ 0 for all x,

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

and for every  $a \le b$ ,

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$

If F(x) is differentiable everywhere, f(x) = F'(x).



# **Example of distributions**

| Discrete variable                                | Probability function                                                                                                        | Mean            | Variance |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|----------|
| Uniform $X \sim U[1, \ldots, N]$                 | 1/ <i>N</i>                                                                                                                 | $\frac{N+1}{2}$ |          |
| Binomial $X \sim Bin(n, p)$                      | $\binom{n}{x}p^{x}(1-p)^{(n-x)}$                                                                                            | np              |          |
| <b>Geometric</b> $X \sim Geom(p)$                | $(1-p)^{x-1}p$                                                                                                              | 1/p             |          |
| <b>Poisson</b> $X \sim Poisson(\lambda)$         | $\frac{e^{-\lambda}\lambda^{x}}{x!}$                                                                                        | λ               |          |
| Continuous variable                              | Probability density function                                                                                                | Mean            | Variance |
| Uniform $X \sim U(a, b)$                         | 1/ (b-a)                                                                                                                    | (a + b)/2       |          |
| <b>Gaussian</b> $X \sim N(\mu, \sigma^2)$        | $\frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$                                                           | $\mu$           |          |
| Gamma $X \sim \Gamma(\alpha, \beta) \ (x \ge 0)$ | $\frac{\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{1}{2\sigma^2}(x-\mu)^2)}{\frac{1}{\Gamma(\alpha)\beta^a}x^{a-1}e^{-x/\beta}}$ | $\alpha \beta$  |          |
| <b>Exponential</b> $X \sim exponen(\beta)$       | $\frac{1}{\beta}e^{-\frac{x}{\beta}}$                                                                                       | β               |          |

# **Expectation**

### Expected Values

Discrete random variable X

$$E[g(X)] = \sum_{x \in \chi} g(x)f(x)$$

Continuous random variable X

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$



# **Expectation (cont.)**

Mean and variance

$$\mu = E(X)$$

$$var[X] = E[(X - \mu)^2]$$

We also have

$$var[X] = E[X^2] - \mu^2$$



### **Multivariate Distributions**

Definition

$$F_{X,Y}(x,y) := P(X \le x, Y \le y)$$

and

$$f_{X,Y}(x,y) := \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

Marginal Distribution of X (discrete case)

$$f_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = \sum_y f_{X,Y}(x, y)$$

What about continuous variable?



## Independence

### • Independent Variables

X and Y are independent if and only if

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

Or

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$



## Independence (cont.)

#### IID variable

 Independent and identically distributed (IID) random variables are drawn from the same distribution and are all mutually independent.

### Linearity of Expectation

Even if the events are not independent, this property still holds

$$E[\sum_{x=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$$



• Confusion matrix

#### **Actual Values**

|           | ,            | Positive (1) | Negative (0) |
|-----------|--------------|--------------|--------------|
| d Values  | Positive (1) | ТР           | FP           |
| Predicted | Negative (0) | FN           | TN           |



- Statistics Computed from Confusion Matrix
  - Precision: Out of all the predicted positive instances how many were predicted correctly.

Recall: Out of all the positive classes
 how many instances were identified correctly.







- Introduction to AUC ROC Curve
  - how good the model is for distinguishing the given classes, in terms of the predicted probability











### Assumption

- n=number of people
- o k=365
- $\circ$  P(person i is born on day j) = 1/k

We are interested in the event A that at least two people have the same

$$P(A) = 1 - P(\overline{A})$$

$$= 1 - \frac{k}{k} \cdot \frac{k-1}{k} \cdot \dots \cdot \frac{k-n+1}{k}$$

$$= 1 - \frac{k!}{(k-n)!k^n}.$$



### Hashing

- Similar to assignments of birthdays
- n items mapped into k slots

### Hashing problems dealing with probabilities

- the expected number of items mapping to same slot
- the expected number of empty slots
- the expected number of collisions



### Empty slots

The probability that slot j remains empty after mapping all n items is

$$(1-\frac{1}{k})^n$$

The expected number of empty slots is

$$E(X) = \sum_{j=1}^{k} E(X_j) = k \left(1 - \frac{1}{k}\right)^n.$$

 $\circ$  If k = n, we can get a max limitation of 0.367



### KL Divergence

Question:

How different are two probability distributions from each other?

$$D_{KL}(P||Q) = \mathbb{E}_{x \sim P(\cdot)}[\log(rac{P(X)}{Q(X)})] = \sum_x P(x)\lograc{P(x)}{Q(x)}$$

It captures what is the expected "excess surprise" from using Q as a model for data when the actual distribution is P.

KL-divergence is NOT symmetric!

### **Concentration Inequalities**

Can we figure out the probability that a random variable deviates from it's mean by a particular value; i.e. with how much probability does the following statement occur:

$$|\bar{X} - \mathbb{E}[X]| \le \delta$$

Concentration inequalities are a family of such statements that provide **exact** bounds on this probability.

Some common ones are; Markov's, Chebyshev's, Hoeffding's, Chernoff's Bounds etc.

### Markov's Inequality

If X is non-negative, then for a positive value of a;

If 
$$X \geq 0$$
,  $P(X \geq a) \leq rac{\mathbb{E}[X]}{a}$ 

### Chebyshev's Inequality

For a random variable X, with finite mean, and non-zero variance;

$$\Pr(|X - \mu| \geq k\sigma) \leq rac{1}{k^2}$$

Qualitatively, this statement tells us the probability that the value of a random variable deviates from it's mean by 'k' standard deviations is bounded by 1/k^2.

### Johnson and Lindenstrauss Lemma

**Lemma** For any  $0 < \epsilon < 1$  and any interger n let k be a possitive interger such that

$$k \ge \frac{24}{3\epsilon^2 - 2\epsilon^3} \log n \tag{2}$$

then for any set A of n points  $\in \mathbb{R}^d$  there exists a map  $f: \mathbb{R}^d \to \mathbb{R}^k$  such that for all  $x_i, x_i \in A$ 

$$(1 - \epsilon)||x_i - x_j||^2 \le ||f(x_i) - f(x_j)||^2 \le (1 + \epsilon)||x_i - x_j||^2$$
(3)

Note: The proof involves Markov's inequality