Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 (BS) <11/02/2022>

CONTINUOUS INTERNAL EVALUATION - 1

Dopt. Do		Sub: ADDITIONAL MATHEMATICS I	
Date:24/02/202	Time:3:50-5:00 pm	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks			
	PARTA				
1 8	Express $\frac{3+4i}{3-4i}$ in $a+ib$ form.	8			
t	If $z_1 = 2 + 3i$, $z_2 = 3 - 4i$ then evaluate $ z_1 \overline{z_2} $	8			
0	Simplify the following: (i) $(\cos 3\theta + i \sin 3\theta)^{-2}$ (ii) $(\cos 3\theta - i \sin 3\theta)^{-2}$	9			
	OR				
2 a	Express $\frac{(1+i)(2+i)}{3+i}$ in $a+ib$ form.	8			
b	If $\vec{a}=3i-2j+4k$, $\vec{b}=i+j-2k$ then find $\vec{a}.\vec{b}$	8			
C	If $\vec{A}=i+2j-3k$, $\vec{B}=3i-j+2k$ then P.T. $(\vec{A}+\vec{B})$ and $(\vec{A}-\vec{B})$ are orthogonal.	9			
	PART B				
3 a	Find the sine of the angle between the vectors $\vec{a}=4i+3j+k$ and $\vec{b}=2i-j+2k$	8 1.			

b If $\vec{a}=2i+3j-4k$, $\vec{b}=8i-4j+k$ then P.T. \vec{a} is perpendicular to \vec{b}	8
c If $\vec{A}=i-2j-3k$, $\vec{B}=2i+j-k$, $\vec{C}=i+3j-k$ then find (i) $(\vec{A} \times \vec{B}) \times (\vec{B} \times \vec{C})$ (ii) $(\vec{A} \times \vec{B}) \cdot \vec{C}$	9
OR	
4 a Find the angle between the vectors $\vec{a}=5i-j+k$ and $\vec{b}=2i-3j+6k$	8
b Find the unit vector perpendicular to both \vec{a} and \vec{b} where $\vec{a}=i-2j+3k$, $\vec{b}=2i+j+k$	8
c If $\vec{a}=3i+7j-2k$, $\vec{b}=2i+5j+10k$ find $(\vec{a}+\vec{b}) \times (\vec{a}-\vec{b})$	9

Prepared by:

Nayaria P

23 02