2014《计算机组成原理》参考答案

一、(每题 2 分, 共 20 分)选择题

题号	答案								
1	D	2	В	3	C	4	В	5	C
6	D	7	D	8	C	9	C	10	В

二、(每空1分,共20分)填空题

题号	空 ① 答案	空 ② 答案	空 ③ 答案
1	存储区域	访问方式	/
2	全相联	直接	组相联
3	浮点	指	对阶
4	存储容量	存取时间	存储周期
5	触发器	电荷存储器件(电容)	/
6	独立请求	链式查询	/
7	集中式	分布式	/
8	停止 CPU 访内	周期挪用	DMA 和 CPU 交替访内

三、(共20分)计算题

1. (8分)解: $[x]_{\bar{p}}=1.01111$ $[x]_{\bar{p}}=1.10001$ $[-x]_{\bar{p}}=0.01111$ (2分) $[y]_{\bar{p}}=0.11001$ $[y]_{\bar{p}}=0.11001$ $[-y]_{\bar{p}}=1.00111$ (2分)

 $[x]_{2}$ 11.10001 $[x]_{2}$ 11.10001 $+ [y]_{2}$ 00.11001 $+ [-y]_{2}$ 11.00111

[x+y]料 00.01010 [x-y]料 10.11000 (2分)

所以: x+y=+0.01010 因为符号位相异,结果发生溢出 (2分)

2. (6分)解: 已知 $t_c = 40$, $t_m = 200$, $t_a = 50$

主存慢于 cache 的倍率: r=t_m/t_c=200ns/40ns=5 (2分)

访问效率: e= t_c /t_a=40ns/50ns=0.8 (2分)

命中率: $h=(t_m-t_a)/(t_m-t_c)=(200-50)/(200-40)=93.75\%$ (2分)

3. (6分)解: (1) 有效存储区域=17-10=7 (cm)

柱面数量为: 40×7=280 (2分)

- (2) 每道记录信息容量=400×2×3.14×10=3140 B=25120 bit 每个记录面信息容量=3140×280=879200 B=7033600 bit 组总存储容量=879200×10=8792000 B=70336000 bit=8585.94 MB (2分)
- (3) 磁盘传输率 D_r=r•N

r=2400/60=40 转/秒 N=3140 B D_r=r×N=40×3140=125600 B/s=1004800 bit/s (2分)

四、(共40分)分析、设计题

- 1. (9 分)解: (1)假设判别测试字段中每一位为一个判别标志,那么由于有 4 个转移条件,故该字段为 4 位 (如采用字段译码只需 3 位),下地址字段为 9 位,因此控制存储器容量为 512 个单元,微命令字段是 (48-4-9) = 35 位。(4 分)
 - (2) 对应上述微指令格式的微程序控制器逻辑框图如图 SA-1 所示:

2. (6分)解: PCI 总线有三种桥,即 HOST/PCI 桥(简称 HOST 桥), PCI/PCI 桥, PCI/LAGACY 桥。(3分)

在 PCI 总线体系结构中,桥起着重要作用:

- (1) 它连接两条总线, 使总线间相互通信。(1分)
- (2) 桥是一个总线转换部件,可以把一条总线的地址空间映射到另一条总线的地址空间上,从而使系统中任意一个总线主设备都能看到同样的一份地址表。(1分)
 - (3) 利用桥可以实现总线间的猝发式传送。(1分)
- 3. (8分)解:原码转换为补码的电路图如图 SA-2 所示:

其逻辑表达式为 $C_{-1}=0$ (1分), $C_{i}=a_{i}+C_{i-1}$ (1分) $a_{i}*=a_{i}\oplus EC_{i-1}$, $0\leqslant i\leqslant n$ (1分)

4. (10分)解:由已知条件,机器字长 16位,主存容量 128KB / 16=64K 字,因此 MAR = 16位,共 128条指令,故 OP 字段占 7位。采用单字长和双字长两种指令格式,其中单字长指令用于算术逻辑和 I / O 类指令,双字长用于访问主存的指令。

计算机指令格式如下:

OP X R₂

D
(2分)

寻址方式由寻址模式 X 定义如下:

X = 000 直接寻址 E = D(64K)(1分)

X = 001 立即数 D = 操作数 (1分)

X = 010 相对寻址 E = PC + D PC = 16 位 (1分)

X = 011 基值寻址 $E = R_b + D$, $R_b = 16$ 位 (1分)

X = 100 间接寻址 E = (D)(1分)

X = 101 变址寻址 $E = R_X + D$, $R_X = 10$ 位 (1分)

5. (7 分)解: 此指令为 RS 型指令,一个操作数在 R_1 中,另一个操作数在 R_2 为地址的内存单元中,相加结果放在 R_1 中。"ADD R_1 ,(R_2)"指令的指令 周期流程图如图 SA-3 所示。

上图中每框正确得(1分)