Fundaments of Machine learning for and with engineering applications

Reidar B. Bratvold, Enrico Riccardi¹

Department of Energy Resources, University of Stavanger (UiS).1

Feb 6, 2024

© 2024, Reidar B. Bratvold, Enrico Riccardi. Released under CC Attribution 4.0 license

Statistics

Let's start from the definition

 Statistics (origin "description of a state/country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data.

Statistics, Machine learning or Artificial intelligence?

Artificial Intelligence

Machine Learning

What is the main difference between the three fields?

- It is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal".
- Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.[Wikipedia]

How Machine Learning Started?

Machine learning

Definitions:

- Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy. [IBM]
- Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [WIKI]
- Machine learning is a subfield of artificial intelligence that uses algorithms trained on data sets to create models that enable machines to perform tasks that would otherwise only be possible for humans, such as categorizing images, analyzing data, or predicting price fluctuations. [Coursera]

Machine learning

One technical definition

Machine learning is a set of computer based statistical approaches that aim to minimise the loss function to maximise inference accuracy. [Enrico, 5.2.2024]

The loss function is the actual engine in machine learning.

Loss function

It quantifies the difference between the predicted outputs of a machine learning algorithm and the actual target values.

Artificial intelligences

And more definitions:

- Artificial intelligence is the intelligence of machines or software, as opposed to the intelligence of humans or other animals. It is a field of study in computer science that develops and studies intelligent machines. [WIKI]
- Artificial intelligence (AI) is the theory and development of computer systems capable of performing tasks that historically required human intelligence, such as recognizing speech, making decisions, and identifying patterns [Coursera]
- It is the science and engineering of making intelligent machines, especially intelligent computer programs. It is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable. [IBM]

Data properties

- All starts from data: what are data-properties?
- Are there such things as good data and bad data?

Main lesson (Exam question)

- Data DO NOT always have value.
- TRASH in TRASH out

MetaData properties

Data without metadata are just numbers (i.e. if they are integers, they are still good to play lottery)

Metadata can be pretty much anything. Depending on the application, we can distinguish between:

- Descriptive: used for discovery and identification. It includes elements such as title, abstract, author, and keywords.
- Structural: describe how compound objects are put together. It describes the types, versions, relationships, and other characteristics of digital materials.
- Administrative: to help manage a resource, like resource type, permissions, and when and how it was created.
- Reference: to indicate the information about the contents and quality of statistical data.
- Statistical: (or process data), may describe processes that collect, process, or produce statistical data.
- Legal: creator, copyright, licensing.

MetaData for sharing and re-use

More considerations:

- Metadata is more and more important in a digital open world.
- Researchers and automatic algorithms would benefit from importing data directly.
- FAIR research is an important part of Open Science revolution (Findable, Accessible, interoperable, Reusable)
- New applications, business, discoveries can be thus enabled.
- ChatGPT, Bard, Gemini, and all the LLMs are functional only thanks to this!

Super controversial

- Who would be responsible for them then?
- What is the advantage for who releases the data?
- Who gets the money for what?
- Copyright for data and/or for data processing?

MetaData aim

These characteristics shall all be considered when constructing data repositories.

They are a must for:

- Code repositories
- Data repositories

Please click on the link and explore. Those are just some of the open (scientific) repositories. The aim/hope is to allow people to extract information. How to make value from that information... is another story.

Good examples

- Norwegian offshore directorate
- Norway Statistics
- World statistics
- Code repositories
- Data repositories

Data Representation

A representation should **capture** the nature of the subject being

Example: If you want to evaluate the 3D structure of a wind turbine, a set of descriptors an be:

- Blade length
- Turbine height
- Geographical position
- Output power
- Wind direction

which are two decimal numbers, a 2d tuple, a 1D time series and a 2D time series (or 3D even).

Comparability

Same meaning represenations for different objects (inputs).

Discussion point!

How do we compare two wind turbines accounting for the 5 variables previously introduced?

Data properties

- All starts from data: what are data-properties?
- Are there such things as good data and bad data?

Life lesson (or exam question, same thing;))

- Data DO NOT always have value.
- TRASH in TRASH out

Sampling point representation (SPR)

- An intuitive way to represent curves and spectra is the sampling point representation.
- We sample at regular intervals where each sample point is represented by a variable

Data structures

Given a representation, it is then needed to decide on a suitable data structure for the problem.

Definition

A data structure is a way of storing and organising data in a computer so that it can be used effectively.

Typical data structures used in data analysis are:

- Data points
- Arrays (vectors, matrices, N-mode (way) arrays)
- Graphs (trees)
- Databases

Spatial and Temporal Data

Statistics is collecting, organising, and interpreting data

Spatial and temporal statistics is a branch of applied statistics that emphasises:

- the geo context of the data
- 2 the spatial and time dependent relationship between data
- 3 the different relative value and precision of the data.

Sampling point representation (SPR)

• SPR is useful until point *i* in a curve has the same meaning of the point *i* in another curve.

• Which parts of the profiles or shapes are comparable, i.e. have the same meaning?

Workflow

Data has to be prepared with these steps in mind

- Plan experiments: Use experimental design to set up experiments in a systematic way
- Pre-processing: Is there systematic variation in the data which should be removed Can cross-checking/validation procedures be designed?
- Examine the data: Look at data (tables and plots). Strange behaviours? Smooth behaviour? WARNING!
- Define desired model outcomes (speed, accuracy, false positive/negatives rate)
- Estimate and validate model: What do the results tell us? Is the generated model general (valid for future sampling)?
- Apply model to unknown samples

Actual data

The data matrix is an extremely common data structure.

$$X = \begin{bmatrix} 95 & 89 & 82 \\ 23 & 76 & 44 \\ 61 & 46 & 62 \\ 49 & 2 & 79 \end{bmatrix}$$

In python these can be saved as

- lists (vanilla python)
- numpy.arrays
- pandas dataframes

Nomenclature

There are different conventions. Commonly we will construct data matrix such that:

- Rows are called instances, objects or samples.
- Columns are called features, variables.

One can think of each row to be an experiment, and the rows its properties. Each row (experiment, object, sample, ...) is thus a list of values, one for property.

Note

Mathematically speaking, this is just a notation. As long as one keeps track and is consistent, columns can be used as rows and vice versa.

A quick example

Environmental measurements of rivers. The features (properties)

- pH
- Temperature
- Concentration of pollutants
- Flow rate
- water speed

The experiments/observations/sample can be:

- Po
- Danube
- Rio delle Amazzoni
- Sjoa
- Atna

Models allow us to predict 'the future', or describe the past and

Models allow us to predict 'the future', or describe the past and present (what is the present...?)

Last life lesson for today

Hard and soft modelling

Models are always wrong, but some are useful. (George Box)

Three main families:

- Hard models (physics)
- Soft models (statistic)
- Machine learning

Hard models are often deterministic.

Hard modelling

• Hard-modelling methods usually use optimization methods to find out the best values for the parameters of the model.

• Based on an accurate physical description of the system and

mathematical modelling (e.g. differential equations).

- Hard-modelling is preferable in laboratory experiments, where all the variables are controlled and the physicochemical nature of the dynamic model is known and can be fully described using a known mathematical model.
- Hard-modelling, if successful, usually gives better understanding of a system and better extrapolations. Wrong assumptions often leads to nonsense results.

Soft modelling

Characteristics:

- Soft-modelling describes systems without the need of an a priori physical or (bio)chemical model postulation. They are data driven models.
- Soft models are much easier to make than hard models.
- Soft modelling can be used to understand complex relationships.
- Soft modelling needs (much) more data than hard-modelling.
- Soft models have a poor extrapolating capabilities (compared with hard-modelling)

How to create hard models?

After understanding the problem to be solved we need to:

- Link mathematics to physics.
- 2 Define boundary conditions and constitutive equations.
- Make tons of assumptions.
- Solve the constitutive equation in space and time.
- 6 CHeck solution stability and sensitivity analysis.
- **o** A long set of judicious approximations have to be taken.
- 1 It is hard (but we are engineers!).
- 3 Get quite some money for the awesome job.

How to create soft models?

After understanding the general problem to be solved we need to:

- Determine a suitable numerical description .
- Choose a suitable model to which parameters are fitted.
- Train, test, validate the model.
- Perform data analysis with chosen method(s).
- Link predictions with expectations.

Data collection

On the data sources side

- Confidence intervals
- Relevance
- Significance
- Correlation
- Causation
- Data Filters
- Biases identification

Models and Methods

On the modelling side

- Regression
- Clustering
- Principal components
- Decision tree (random forests)
- Neural network
- Performance metrics

Spatial and Temporal Data

Remember the definition?

Statistics is collecting, organising, and interpreting data

Spatial and temporal statistics is a branch of applied statistics that emphasises:

- the geo context of the data
- ② the spatial and time dependent relationship between data
- 3 the different relative value and precision of the data.

Spatial and Temporal Modelling

It is a branch of statistical analysis and model that uses spatial and time dependent data.

- Only a subset of statistical models can be fed with time dependent data (most standard statistical method assume independent, identically distributed, data)
- Spatial and time related data come at a different range of scales. Data collection can be dependent of time and space, resulting in different representativity of a sample.

Tipical time and spatial data are:

- Spatial estimation of energy and mineral resources
- Weather modelling: from aviation to agriculture
- Maintenance forecasting
- Commodity, currency, stock and financial markets
- Market analysis
- Risk analysis

Fields of application

• ... and much much more!

Finding a suitable model

Soft modeling is in most cases based on **multivariate statistical methods**. Many of these methods may be viewed as sophisticated ways of performing curve fitting to data.

What would be the best model?

- Straight?: y(x) = ax + b
- Parabolic?:
- $y(x) = ax^2 + bx + c$
- Trigonometric?:
 - y(x) = asin(x) + bcos(x)

Families of Machine learning

What can we do with that?

What about in this case?

Python Source code 1

```
import numpy as np
import matplotlib.pyplot as plt

# Generate some sample data
data = np.random.rand(100, 2) # 100 data points with 2 features
plt.scatter(data[:, 0], data[:, 1])
plt.show()
```

Python Source code 2

Unsupervised learning

The data decides

This is why we focus so much on the data type.

The data properties dictate what statistical model can be adopted.

An statistical model has leverages our understanding of the data structure to improve its **predictions** (inference).

The numerical recipe that we used to generate the data is defined the ${\bf truth}$

Psychology or data science?

Most Machine learning tools are aimed to find the truth. In most cases, we are happy to not find lies.

Supervised learning

Unsupervised learning

Unsupervised learning, a term that resonates with the autonomy of machine intelligence, operates on the principle of identifying patterns and structures in datasets without labelled responses.

This branch of machine learning is distinguished by its lack of explicit guidance, where algorithms are tasked with uncovering hidden structures from unlabeled data.

The most common clustering strategies are :

- filtering
- clustering
- dimensionality reduction
- association learning

Application of unsupervised learning

It is a bit of a holy grail: a computer that finds patterns without guidance. (Yes, it doesn't work, most of the time)

Still, it has been shown efficient for:

- Computer vision
- Anomaly detection
- Exploratory data analysis

Main challenge

The right result is quite undefined, Uncertain goal.

We will demonstrate it with a famous problem.

Uncertain goal

Wak supervised learning

A less popular type of machine learning problem is when labels are assigned to groups of instances.

The group of instances is called bag.

The question is, what is the level of a previously unforeseen bag?

This data structure and question type request a hybrid treatment between supervised and supervised learning.

Multiple instance learing

Multiple instances are needed to learn (quite clear name)

Weak Supervised learning

Weak Supervised learning

Reinforcement learning

Finally, there is a further approach.

Reinforcement learning (RL)

It aims to train an intelligent agent to take actions in a dynamic environment in order to maximise the cumulative reward.

It learns from outcomes and decides which action to take next. After each action, the algorithm receives feedback that helps it determine whether the choice it made was correct, neutral or incorrect.

It is a self-teaching system that essentially learns by trial and error.

It is a dependable tool for automated decision making.

Generative Al

A generative AI model is a type of artificial intelligence that is designed to generate new content, based on the data it has been trained on.

It started in 1932, with the mechanical brain by Georges Artsrouni that was suppoused to translate automatically between languages,

Here a nice recaps of Generative AI and its storyline

Generative Al

Key characteristics of generative AI models include:

- Learning from Data: They are trained on large datasets, enabling them to learn patterns, styles, or features inherent in the data.
- Generating New Content: Generative models can create new data instances. For example, a model trained on a dataset of paintings can generate new images in the style of those paintings.

Trained generative models are thus able to input information at a low resolution/dimension and give output with a much greater dimensionality.

Applications

Here a list of possible applications:

- Images/video: Image generation, Super-resolution, Deep fakes.
- Music: noise filter, voice and music generation, voice deep fake.
- Text(LLM): chatGPT, bard, Gemini, etc.
- Chemistry: DeepMind (Alphafold).
- Coding (co-pilot)
- Speech
- Attacks and Hacking (Security testing)
- Generating training sets
- And many more

Science fiction?

This is scary:

- Virtual best friends
- Medical images to show diseases consequences
- Synthetic data for digital twins
- Preemptive suggestions (e.g. driving)
- Matrix

Problems (currently)

New possibilities do not come with side effects.

- Lack of transparency: how the output is generated, and why?
- Accuracy: a lot of hallucinations
- Bias: human biases are kept, supported and eventually increased
- Intellectual properties (IP): who owns what is produced?
- Oppose Cybersecutiry and frauds: mass cyber attacks can be created
- Sustainability: massive quantity of electricity is used
- Responsibility (who to blame?): Will AI get citizenship everywhere?

Where generative Al is?

Image: https://iot-analytics.com

Structure of generative Al

Image: https://www.rapidops.com

A new field?

Generative AI is actually a new evolution.

It is based on Neural Network, and in comprises a set of advanced tools (numerical recepites):

- Generative Adversarial Networks
- Generative Pre-trained Transformers
- Variational Autoencoders
- Onditional Variational Autoencoders
- 6 Autoencoders

Types of generative Al

It is quite an advanced technique

Source: Lilian Weng