Lecture 1: Introduction

Lan Xu SIST, ShanghaiTech Fall, 2021

Outline

- Course logistics
 - Overall objective
 - Grading policy
 - □ Pre-requisite / Syllabus
- Introduction to deep learning
- Machine learning review
- Artificial neurons

Course objectives

- Learning to use deep networks
 - □ How to write from scratch, debug and train neural networks
 - □ Toolboxes commonly used in practice
- Understanding deep models
 - Key concepts and principles
- State of the art
 - Some new topics from research field
 - Focusing on vision-related problems

- Piazza:
 - □ piazza.com/shanghaitech.edu.cn/fall2021/cs280_2021
 - □ The schedule for the latter half of the semester may vary a bit
- Part I: Basic neural networks (1~1.5 weeks)
 - Linear models
 - Multiple layer networks
 - Gradient descent and BP
- Part II: Convolutional neural networks
- Part III: Recurrent neural networks
- Part IV: Generative neural networks
- Part V: Advanced Topics

- Piazza:
 - □ piazza.com/shanghaitech.edu.cn/fall2021/cs280_2021
 - ☐ The schedule for the latter half of the semester may vary a bit
- Part I: Basic neural networks (1~1.5 weeks)
- Part II: Convolutional neural networks (4 weeks)
 - CNN basics
 - Understanding CNN
 - CNN in Vision
- Part III: Recurrent neural networks
- Part IV: Generative neural networks
- Part V: Advanced Topics

- Piazza:
 - □ piazza.com/shanghaitech.edu.cn/fall2021/cs280_2021
 - ☐ The schedule for the latter half of the semester may vary a bit
- Part I: Basic neural networks (1~1.5 weeks)
- Part II: Convolutional neural networks (4 weeks)
- Part III: Recurrent neural networks (3 weeks)
 - □ LSTM, GRU
 - Attention modeling
 - □ RNN in Vision/NLP
 - Transformer and Graph Neural Networks
- Part IV: Generative neural networks
- Part V: Advanced Topics

- Piazza:
 - □ piazza.com/shanghaitech.edu.cn/fall2021/cs280_2021
 - ☐ The schedule for the latter half of the semester may vary a bit
- Part I: Basic neural networks (1~1.5 weeks)
- Part II: Convolutional neural networks (4 weeks)
- Part III: Recurrent neural networks (3 weeks)
- Part IV: Generative neural networks (3 weeks)
 - Variational Auto Encoder (VAE)
 - □ Generative deep nets (GAN)
- Part V: Advanced Topics (2 weeks)
- Note: no lectures in the following weeks
 - □ Nov 9 ~ Nov 16 (CVPR)

Reference books and materials

- Deep learning:
 - □ http://www.deeplearningbook.org/
 - □ https://d2l.ai/
- Online deep learning courses:
 - ☐ Stanford: CS230, CS231n
 - □ CMU: 11-785
 - MIT: 6.S191
- Additional reading materials on Piazza
 - Survey papers, tutorials, etc.

Instructor and TAs

- Instructor: Prof Lan Xu
 - □ xulan1@shanghaitech.edu.cn
 - ☐ SIST 1C-303D
- TAs:
 - Han Liang, Liao Wang, Yuheng Jiang, Chuanyang Hu, Youjia
 Wang
- Office hours: To be announced on Piazza
- We will use Piazza as the main communication platform

м

Grading policy

- 4 Problem sets: 10% x 4 = 40%
 - □ Write-up problem sets + Programming tasks
- Final course project: 40% (+10%)
 - Proposal
 - □ Final report (Conference format)
 - Presentation
 - Bonus points for novel results: 10%
- 10 Quizzes (in class): 2% x 10 = 20%
- Late policy
 - □ A total of 7 free late (calendar) days to use, but no more than 4 late days can be used on any single assignment.
 - □ After that, 25% off per day late
 - Does not apply to Final course project/Quizzes
- Collaboration policy
 - □ Project team: 4~5 students
 - Grading according to each member's contribution

Administrative Stuff

Plagiarism

- ☐ All assignments must be done individually
 - You may not look at solutions from any other source
 - You may not share solutions with any other students
 - Plagiarism detection software will be used on all the programming assignments
 - You may discuss together or help another student but you cannot give the exact solution

Plagiarism punishment

- When one student copies from another student, both students are responsible
- Zero point on the assignment or exam in question
- Repeated violation will result in an F grade for this course as well as further discipline at the school/university level

Pre-requisite

- Proficiency in Python
 - All class assignments will be in Python (and use numpy)
 - □ A Python tutorial available on Piazza
- Calculus, Linear Algebra, Probability and Statistics
 - Undergrad course level
- Equivalent knowledge of Andrew Ng's CS229 (Machine Learning)
 - Formulating cost functions
 - Taking derivatives
 - Performing optimization with gradient descent
- Will be evaluated in next quiz (Wednesday)

м

Outline

- Course logistics
- Introduction to deep learning
 - □ What & Why deep learning?
- Machine Learning review
- Artificial neurons

Introduction

- Our goal: Build intelligent algorithms to make sense of data
 - □ Example: Recognizing objects in images

red panda (Ailurus fulgens)

Example: Predicting what would happen next

Vondrick et al. CVPR2016

Introduction

- Our goal: Build intelligent algorithms to make sense of data
 - □ Example: Recognizing objects in images
 - Example: Predicting what would happen next

Given an initial still frame,

Introduction

- A broad range of real-world applications
 - □ Speech recognition
 - Input: sound wave → Output: transcript
 - Language translation
 - Input: text in language A (Eng) → Output: text in language B (Chs)
 - □ Image classification
 - Input: images → Output: image category (cat, dog, car, house, etc.)
 - □ Autonomous driving
 - Input: sensory inputs → Output: actions (straight, left, right, stop, etc.)
- Main challenges: difficult to manually design the algorithms

A data-driven approach

A data-driven approach

Each task as a mapping function (or a model)

Input data

Mapping function

Expected output

- input data: images
- expected output: object or action names
- Building such mapping functions from data

red panda (Ailurus fulgens)

A data-driven approach

Building a mapping function (model)

$$y = f(x; \theta)$$

- x: input data
- □ y: expected output
- $\square \theta$: parameters to be estimated

Learning the model from data

- □ Given a dataset $\mathcal{D} = \{(x_n, y_n)\}_{n=1}^N$
- \square Find the 'best' parameter $\hat{\theta}$, such that

$$y_n \simeq f(x_n; \hat{\theta}) \quad \forall n$$

And it can be generalized to unseen input data

What is deep learning?

- Using deep neural networks as the mapping function
- Model: Deep neural networks
 - A family of parametric models
 - Consisting of many 'simple' computational units
 - □ Constructing a multi-layer representation of input

Image from Jeff Clune's Deep Learning Overview

What is deep learning?

- Using deep neural networks as the mapping function
- Learning: Parameter estimation from data
 - □ Parameters: connection weights between units
 - □ Formulated as an optimization problem
 - ☐ Efficient algorithms for handling large-scale models & datasets

Why deep networks?

Inspiration from visual cortex

Why deep networks?

- A deep architecture can represent certain functions (exponentially) more compactly
- Learning a rich representation of input data

Recent success with DL

Some recent success with neural networks

EMERGING TECH

TECHNEWSWORLD

Microsoft Al Beats Humans at

Recent success with DL

Some recent success with neural networks

This guy didn't know about neural networks

This guy learned about neural networks

9/13/2021

Summary: Why deep learning?

- One of the major thrust areas recently in various pattern recognition, prediction and data analysis
 - □ Efficient representation of data and computation
 - Other key factors: large datasets and hardware
- The state of the art in many problems
 - Often exceeding previous benchmarks by large margins
 - □ Achieve better performances than human for certain "complex" tasks.
- But also somewhat controversial ...
 - □ Lack of theoretical understanding
 - Sometimes difficult to make it work in practice

Is it alchemy?

Questions to ask

- Understanding neural networks
 - □ What is different from traditional ML methods?
 - □ How it works for specific problems?
 - □ Why get great performance?
- Future development
 - Its limitation and weakness?
 - After more than 10 years, what is on-going or next?
 - □ The road to general-purpose AI?

М

Outline

- Course logistics
- Introduction to deep learning
- Machine learning review
 - Math review
 - Supervised learning
- Artificial neurons

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes

Math review – Calculus

Gradient

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left[\frac{\partial}{\partial x_1} f(\mathbf{x}), \cdots, \frac{\partial}{\partial x_d} f(\mathbf{x}) \right]^{\mathsf{T}} = \begin{bmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_d} f(\mathbf{x}) \end{bmatrix}$$

Math review – Calculus

- Local and global minima
 - Necessary condition

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$$

- Sufficient condition
 - Hessian is positive definite

$$f(\mathbf{x}) \approx f(\mathbf{x}^*) + (\mathbf{x} - \mathbf{x}^*)^{\mathsf{T}} \nabla_{\mathbf{x}} f(\mathbf{x}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^{\mathsf{T}} \nabla_{\mathbf{x}}^2 f(\mathbf{x}) (\mathbf{x} - \mathbf{x}^*)$$

Math review – Probability

Factorization

- Probability chain rule: p(s,o) = p(s|o)p(o) = p(o|s)p(s)
 - in general:

$$p(\mathbf{x}) = \prod_i p(x_i | x_1, \dots, x_{i-1})$$

• Bayes rule:

$$p(O = o|S = s) = \frac{p(S=s|O=o)p(O=o)}{\sum_{o'} p(S=s|O=o')p(O=o')}$$

Math review - Probability

Common distributions

• Gaussian variable: $\mathbf{X} \in \mathbb{R}^d$

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

- $\mathbf{E}[\mathbf{X}] = \boldsymbol{\mu}$
- $\quad \text{Cov}[\mathbf{X}] = \Sigma$

Math review - Statistics

Monte Carlo estimation

a method to approximate an expensive expectation

$$E[f(\mathbf{X})] = \sum_{\mathbf{x}} f(\mathbf{x}) p(\mathbf{x}) \approx \frac{1}{K} \sum_{k} f(\mathbf{x}^{(k)})$$

• the $\mathbf{x}^{(k)}$ must be sampled from $p(\mathbf{x})$

Maximum likelihood

$$\widehat{\theta} = \arg\max_{\theta} p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)})$$

Independent and identically distributed

$$p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(T)}) = \prod_{t} p(\mathbf{x}^{(t)})$$

ML tasks

- Classification: assign a category to each item (e.g., document classification)
- Regression: predict a real value for each item (e.g., prediction of stock values, economic variables)
- Ranking: order items according to some criterion (e.g., relevant web pages returned by a search engine)
- Clustering: partition data into 'homogenous' regions (e.g., analysis of very large data sets)
- Dimensionality reduction: find lower-dimensional manifold preserving some properties of the data

Standard learning scenarios

- Unsupervised learning: no labeled data
- Supervised learning: uses labeled data for prediction on unseen points
- Semi-supervised learning: uses labeled and unlabeled data for prediction on unseen points
- Reinforcement learning: uses reward to learn prediction on action policies.
- **...**

Supervised learning

Task formulation

- Learning example: (\mathbf{x}, y)
- ullet Task to solve: predict target y from input ${f x}$
 - classification: target is a class ID (from 0 to nb. of class 1)
 - regression: target is a real number

Supervised learning

Task formulation

- Learning example: (\mathbf{x}, y)
- ullet Task to solve: predict target y from input ${f x}$
 - classification: target is a class ID (from 0 to nb. of class 1)
 - regression: target is a real number

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$
- Find y = f(x) using training data
- s.t. f correct on test data

What kind of functions?

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. f correct on test data

Hypothesis class

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. f correct on test data

Connection between training data and test data?

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. f correct on test data i.i.d. from distribution D

They have the same distribution

i.i.d.: independently identically distributed

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. f correct on test data i.i.d. from distribution D

What kind of performance measure?

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)] -$$

Various loss functions

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

- Examples of loss functions:
 - 0-1 loss: $l(f, x, y) = \mathbb{I}[f(x) \neq y]$ and $L(f) = \Pr[f(x) \neq y]$
 - l_2 loss: $l(f, x, y) = [f(x) y]^2$ and $L(f) = \mathbb{E}[f(x) y]^2$

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ using training data
- s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

How to use?

Problem setup

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$ i.i.d. from distribution D
- Find $y = f(x) \in \mathcal{H}$ that minimizes $\hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$
- s.t. the expected loss is small

$$L(f) = \mathbb{E}_{(x,y) \sim D}[l(f,x,y)]$$

Empirical loss

Learning as iterative optimization

Gradient descent

• choose initial $w^{(0)}$, repeat

$$w^{(t+1)} = w^{(t)} - \eta_t \cdot \nabla L(w^{(t)})$$

until stop

 \triangleright η_t is the learning rate, and

$$\nabla L(w^{(t)}) = \frac{1}{n} \sum_{i} \nabla_{w} L_{i}(w^{(t)}; y_{i}, x_{i})$$

► How to stop? $||w^{(t+1)} - w^{(t)}|| \le \epsilon$ or $||\nabla L(w^{(t)})|| \le \epsilon$

Two dimensional example:

- Stochastic gradient descent (SGD)
 - Suppose data points arrive one by one

•
$$\hat{L}(\mathbf{w}) = \frac{1}{n} \sum_{t=1}^n l(\mathbf{w}, x_t, y_t)$$
, but we only know $l(\mathbf{w}, x_t, y_t)$ at time t

- Idea: simply do what you can based on local information
 - Initialize W₀
 - $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \nabla l(\mathbf{w}_t, x_t, y_t)$

Supervised learning pipeline

Three steps

- Collect data and extract features
- Build model: choose hypothesis class $m{\mathcal{H}}$ and loss function l
- Optimization: minimize the empirical loss

Datasets & hyper-parameters

- Hyper-parameter: a parameter of a model that is not trained (specified before training)
 - ullet Training set $\mathcal{D}^{\mathrm{train}}$ serves to train a model
 - ullet Validation set $\mathcal{D}^{\mathrm{valid}}$ serves to select hyper-parameters
 - Test set $\mathcal{D}^{\mathrm{test}}$ serves to estimate the generalization performance (error)

- Model selection for better generalization
 - Capacity: flexibility of a model
 - Underfitting: state of model which could improve generalization with more training or capacity
 - Overfitting: state of model which could improve generalization with less training or capacity
 - Model Selection: process of choosing the best hyper-parameters on validation set

Generalization

Training/Validation curves

Questions

- Generalization
 - Interaction between training set size/capacity/training time and training error/generalization error
- If capacity increases:
 - □ Training error will ?
 - □ Generalization error will?
- If training time increases:
 - □ Training error will ?
 - Generalization error will ?
- If training set size increases:
 - Generalization error will ?
 - Gap between the training and generalization error will ?

Outline

- Course logistics
- Introduction to deep learning
- Machine learning review
- Artificial neurons
 - Math model
 - □ Perceptron algorithm

Acknowledgement: Hugo Larochelle's, Mehryar Mohri@NYU's & Yingyu Liang@Princeton's course notes

Artificial Neuron

Biological inspiration

https://www.youtube.com/watch?v=m0rHZ RDdyQ

Artificial Neuron

Biological inspiration

 \bullet Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^4$ other neurons

Figure: The basic computational unit of the brain: Neuron

Mathematical model of a neuron

input features $\underbrace{1}_{x_1} \underbrace{w_{eights}}_{x_2}$ sum non-linearity output $\underbrace{x_2}_{x_M}$

Activation functions

Most commonly used activation functions:

• Sigmoid:
$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

• Tanh:
$$\tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$$

• ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Capacity of single neuron

Sigmoid activation function

- A neuron (perceptron) fires if its input is within a specific angle of its weight
 - If the input pattern matches the weight pattern closely enough

Single neuron as a linear classifier

Binary classification

Summary

- Introduction to deep learning
- Course logistics
- Review of basic math & ML
- Artificial neurons
- Next time
 - Basic neural networks
 - First Quiz on prerequisite