Topic 11 – Multiple Linear Regression

ENVX1002 Introduction to Statistical Methods

Si Yang Han

The University of Sydney

Apr 2025

Module overview

- Week 9. Describing Relationships
 - Correlation (calculation, interpretation)
 - Regression (model structure, model fitting
 - → What/when/why/how
- Week 10. Simple Linear Regression
 - Can we use the model?(assumptions, hypothesis testing)
 - → How good is the model?(interpretation, model fit)
- Week 11. Multiple Linear Regression
 - Multiple Linear Regression (MLR) modelling
 - Assumptions, interpretation and the principle of parsimony
- Week 12. Nonlinear Regression
 - Common nonlinear functions
 - Transformations

Last week: simple linear regression

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Ideal for predicting a continuous response variable from a single predictor variable: "How does y change as x changes?"

- Identify/quantify relationships between variables
- Predict future values

What if we have more than one predictor?

What is the model and how do we interpret the results?

Multiple linear regression

Nearly identical to simple linear regression, just more predictors!

History

- First suggested by **Francis Galton** in 1886 while studying genetic variations in sweet peas over several generations
- **Karl Pearson** developed the mathematical formula for multiple linear regression model later (early 1900s)

Francis Galton and Karl Pearson

"The somewhat complicated mathematics of multiple correlation, with its repeated appeals to the geometrical notions of hyperspace, remained a closed chamber to him."

- Pearson (1930), on Galton's work with MLR

Steps for Regression

- 1. Understand the variables
- 2. Explore data
- 3. Fit model
- 4. Check assumptions
- 5. Assess fit of model/s (parsimony)
- 6. Interpret output

Example: Air Quality in New York (1973)

Code

Ozone (O_3) is a harmful air pollutant at ground level - the main component of smog:

- Ozone: ozone concentration (ppb)
- Solar.R: solar radiation (lang, Langleys)
- Wind: wind speed (mph)
- Temp: ambient temperature (degrees F)
- Month: month (1-12)
- Day: day of the month (1-31)

Scatterplots

Correlations via base R

```
Ozone Solar.R Wind Temp Month
                                      Day
        1.00
               0.35 -0.61 0.70 0.14 -0.01
Ozone
Solar.R 0.35
             1.00 -0.13 0.29 -0.07 -0.06
Wind
       -0.61
             -0.13 1.00 -0.50 -0.19 0.05
       0.70
             0.29 -0.50 1.00 0.40 -0.10
Temp
Month
      0.14
             -0.07 -0.19 0.40 1.00 -0.01
Day
       -0.01
             -0.06 0.05 -0.10 -0.01 1.00
```


Correlations via corrplot

Correlations via psych

▶ Code

What predictors could be useful to predict Ozone?

Temp (r = 0.70), Wind (r = -0.60) and Solar.R (r = 0.35) are the most correlated with Ozone.

What can we understand about the relationship between $\frac{0zone}{2zone}$ and $\frac{1}{2zone}$ (r = 0.70)?

Relationship

What can we understand about the relationship between $\frac{\text{Ozone}}{\text{Ozone}}$ and $\frac{\text{Temp}}{\text{Cone}}$ (r = 0.70)?

► Code

Fitting a simple model

- ▶ Code
 - Simple linear regression between Ozone and Temp
 - This is our baseline or control model

Assumptions via base R

Assumptions via ggfortify

Code

Interpretation

▶ Code

```
Call:
lm(formula = Ozone ~ Temp, data = airquality)
Residuals:
   Min
           10 Median 30
-40.729 -17.409 -0.587 11.306 118.271
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
2.4287 0.2331 10.418 < 2e-16 ***
Temp
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 23.71 on 114 degrees of freedom
 (37 observations deleted due to missingness)
Multiple R-squared: 0.4877, Adjusted R-squared: 0.4832
F-statistic: 108.5 on 1 and 114 DF, p-value: < 2.2e-16
```

- Temp is a statistically significant predictor of Ozone (p < .001).
- The (simple linear) model explains 49% of variance ($R^2 = 0.49$).

Can we improve the model in other ways? Maybe - by transforming or adding more variables.

Principle of parsimony

Also known as Occam's razor;

Entia non sunt multiplicanda praeter necessitatem. "Entities should not be multiplied without necessity."

Oxford definition;

The most acceptable explanation of an occurrence, phenomenon, or event is the simplest, involving the fewest entities, assumptions, or changes.

• Simple is best; i.e. if a simple (one variable) model and a complex (many variables) model predict similarly well, the simple model is preferred.

A parsimonius model:

- Has only *useful* predictors
- No redundant predictors

The problem with using too many predictors

- Generally, the more predictors we add, the better the model fits data
- However, adding too many may cause **overfitting**, i.e. the model becomes too complex
- An overfitted model won't be able to **generalise** to new data

The multiple linear regression model

An extension of simple linear regression to include **more than one** predictor variable: "How does y change as $x_1, x_2, ..., x_k$ change?"

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \epsilon_i$$

Therefore, estimating the model involves estimating the values of β_0 , β_1 , β_2 , ..., β_k .

- β_0 is the intercept
- ullet eta_1 to eta_k are the partial regression coefficients
- $oldsymbol{\epsilon}$ is the error (residual) term

Fit MLR model to Air Quality data

The variables Month and Day are not useful predictors, so we will exclude them from the model.

Code

Visualisation: not easy

Are the plots useful?

3D plot

▶ Code

WebGL is not supported by your browser - visit https://get.webgl.org for more info

Visualisation: not easy

Are the plots useful?

4D plot

▶ Code

WebGL is not supported by your browser - visit https://get.webgl.org for more info

Partial regression coefficients

Given the multiple linear model:

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + \epsilon_i$$

The partial regression coefficient for a predictor x_i is the amount by which the response variable Y changes when x_k is increased by one unit, while all other predictors are held constant.

$$eta_k = rac{\Delta Y}{\Delta x_k}$$

Code

Ozone =
$$\alpha + \beta_1(\text{Solar.R}) + \beta_2(\text{Wind}) + \beta_3(\text{Temp}) + \epsilon$$

With Wind and Solar. R held constant, how does Temp affect Ozone?

Partial regression coefficients: visualisation

Code

With Wind and Solar. R held constant, how does Temp affect Ozone?

Not necessary to do this - lecture content only.

Interpreting the partial regression coefficients

▶ Code

```
Call:
lm(formula = Ozone ~ Solar.R + Wind + Temp, data = airquality)

Coefficients:
(Intercept) Solar.R Wind Temp
-64.34208 0.05982 -3.33359 1.65209
```

Holding **all** other variables constant:

- For every 1 unit increase in Solar.R, Ozone increases by a mean value of 0.06 ppb.
- For every 1 degree increase in Temp, Ozone increases by a mean value of 1.65 ppb.
- For every 1 unit increase in Wind, Ozone decreases by a mean value of 3.33 ppb.

Caution

If the model is not "valid" (via assumptions or hypothesis), then the partial regression coefficients are not meaningful.

Assumptions

In SLR, the model is made up of the **deterministic** component (the line) and the **random** component (the error term).

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

This is the same for MLR:

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon_i$$

Since *only* the error term is random, the assumptions are *still* about the error term (residuals), $\hat{\epsilon}$, which is simple to assess!

Assumptions - CLINE

As with Simple Linear Regression, we need to check the assumptions of the model (LINE):

- Linearity: the relationships between the response and the predictors are all linear.
- Independence: the observations are independent of each other.
- Normality: the residuals are normally distributed.
- Equal variance: the variance of the residuals is constant.

With one extra assumption!

• **Collinearity**: there is no perfect linearity between predictors

Two predictors that have a *perfect* linear relationship (i.e. r = 1 or -1) breaks the assumption of collinearity. High (but not perfect) collinearity (e.g. strong/very strong r) does not break the assumption but can lead to unstable estimates and large standard errors.

The largest correlation between the predictors is between Temp and Wind (r = -0.5). This is not a problem.

Assumptions of MLR

Transformation using log()

Some evidence of non-linearity in the diagnostic plots. Transform and re-check assumptions.

Results - MLR vs SLR

▶ Code

```
Call:
lm(formula = log(Ozone) ~ Solar.R + Wind + Temp, data
= airquality)
Residuals:
     Min
              10 Median
                                       Max
-2.06193 -0.29970 -0.00231 0.30756 1.23578
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2621323 0.5535669 -0.474 0.636798
Solar.R
           0.0025152 0.0005567 4.518 1.62e-05 ***
          -0.0615625 0.0157130 -3.918 0.000158 ***
Wind
           0.0491711 0.0060875 8.077 1.07e-12 ***
Temp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
0.1 ' ' 1
Residual standard error: 0.5086 on 107 degrees of
```

Code

```
Call:
lm(formula = Ozone ~ Temp, data = airquality)
Residuals:
            10 Median
    Min
-40.729 -17.409 -0.587 11.306 118.271
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -146.9955
                     18.2872 -8.038 9.37e-13 ***
Temp
              2,4287
                         0.2331 10.418 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.'
0.1 ' ' 1
Residual standard error: 23.71 on 114 degrees of
freedom
  (37 observations deleted due to missingness)
Multiple R-squared: 0.4877, Adjusted R-squared:
```

- All three predictors are statistically significant (p < .001).
- The MLR model explains 66% of variance (adjusted $R^2 = 0.66$), whereas the SLR explains 48% of variance (multiple $R^2 = 0.48$).
- Thus the MLR is the better model.

Hypothesis Testing

For multiple linear regression, there are two hypothesis tests:

• Individual predictors, where the significance of each predictor is tested via t-tests

$$H_0: \beta_k = 0$$

$$H_1: eta_k
eq 0$$

- The overall model, which is tested with an F-test (to get F-stat). H_0 is an intercept-only model (i.e. the mean), so if at least one predictor is useful, the model is better than the intercept-only model.

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

$$H_1$$
: At least one $\beta_k \neq 0$

Interpreting coefficients

All three predictors are statistically significant (p < .001). Holding all other variables constant:

- For every 1 unit increase in Solar.R, log(Ozone) increases by a mean value of 0.0025,
- For every 1 unit increase in Wind, Log(Ozone) decreases by a mean value of 0.062,
- For every 1 degree increase in Temp, log(Ozone) increases by a mean value of 0.049.

OR

- For every 1 unit increase in Solar.R, Ozone increases by approximately a mean value of 0.25%,
- For every 1 unit increase in Wind, Ozone decreases by approximately a mean value of 6.2%,
- For every 1 degree increase in Temp, Ozone increases by approximately a mean value of 4.9%.

Model fit

```
1 Call:
2 lm(formula = log(Ozone) ~ Solar.R + Wind + Temp, data = airquality)
3
4 Residual standard error: 0.5086 on 107 degrees of freedom
5 (42 observations deleted due to missingness)
6 Multiple R-squared: 0.6644, Adjusted R-squared: 0.655
7 F-statistic: 70.62 on 3 and 107 DF, p-value: < 2.2e-16</pre>
```

On average, the model predicts Log(Ozone) within 0.51 ppb (**residual standard error**) of the true value. *Not bad?*

▶ Code

[1] 1.665291

- On average, the model predicts Ozone within 1.67 ppb of the true value.
- Degrees of freedom (107) = number of observations (111) number of predictors in the model (3) 1

If there are >1 predictors, use the **adjusted R-Squared** as it penalises the model for having more predictors that are not useful.

• The MLR model explains 66% of variance (adjusted $R^2 = 0.66$)

The R² value

The R-squared value is the proportion of variance explained by the model.

$$R^2 = rac{SS_{reg}}{SS_{tot}} = 1 - rac{SS_{res}}{SS_{tot}}$$

The adjusted R-squared value is the proportion of variance explained by the model, adjusted for the number of predictors.

$$R_{adj}^2 = 1 - rac{SS_{res}}{SS_{tot}} rac{n-1}{n-p-1}$$

where n is the number of observations and p is the number of predictors.

F-stat

```
1 Call:
2 lm(formula = log(Ozone) ~ Solar.R + Wind + Temp, data = airquality)
3
4 Multiple R-squared: 0.6644, Adjusted R-squared: 0.655
5 F-statistic: 70.62 on 3 and 107 DF, p-value: < 2.2e-16</pre>
```

- The F-statistic tests the null hypothesis that all the regression coefficients are equal to zero, i.e. $H_0:$ $\beta_1=\beta_2=...=\beta_k=0$.
- As a ratio, it tells us how much better the model is than the null model (i.e. a model with no predictors, the mean).
- If the p-value is less than our specified critical value (e.g. 0.05), we reject the null hypothesis and conclude that the current model is better than the null model.

Reporting

A quick (but not complete) summary:

- New York air quality data was collected in 1973 by the New York State Department of Conservation and the National Weather Service (meteorological data). There were 111 observations of 6 variables.
- There were non-linear relationships between Ozone (the response) and Temp, Wind and Solar.R (the predictors), hence a natural log transformation was applied to Ozone.
- Multiple linear regression was conducted on these variables, and model assumptions (CLINE) were met.
- Solar radiation, wind speed and temperature are **significant predictors** of Ozone concentration (**p < 0.001**) with the model accounting for **66% of the variation** in weight. The model explained more variance than a one-predictor model and was found to be significantly better than the null model.

Abalone Quiz

Pop quiz! (No marks, just check your understanding.)

Context

Abalone are marine snails that are a considered a delicacy and very expensive. The older the abalone, the higher the price. Age is determined by counting the number of rings in the shell. To do this, the shell needs to be cut, stained and viewed under a microscope - which is a lot of effort. Researchers measured 9 attributes of the abalone: sex, length, diameter, height, whole, shucked, viscera, shell, and rings.

Note: whole, shucked, viscera and shell are weight measurements.

Code

```
'data.frame': 100 obs. of 8 variables:
$ length : num    0.52  0.71  0.33  0.67  0.65  0.35  0.695  0.52  0.6  0.61  ...
$ diameter: num    0.405  0.57  0.255  0.55  0.51  0.25  0.53  0.41  0.475  0.48  ...
$ height : num    0.14  0.195  0.095  0.17  0.19  0.1  0.15  0.14  0.15  0.17  ...
$ whole : num    0.692  1.348  0.188  1.247  1.542  ...
$ shucked : num    0.276  0.8985  0.0735  0.472  0.7155  ...
$ viscera : num    0.137  0.444  0.045  0.245  0.373  ...
$ shell : num  0.215  0.454  0.06  0.4  0.375  ...
$ rings : int  11  11  7  21  9  7  14  11  10  10  ...
```


Scatterplots and correlations

We remove sex from the dataset (not numerical), and subset 100 samples for a cleaner view.

Full model

We use natural log transformation on the response variable with Log() to account for non-linear relationships.

```
Call:
lm(formula = log(rings) ~ ., data = abalone)
Residuals:
             10 Median
    Min
                              30
                                     Max
-0.37297 -0.12727 -0.01584 0.08787 0.61636
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.34626
                     0.18219 7.389 6.57e-11 ***
length
          -1.25389 1.50969 -0.831 0.40837
diameter 3.24138
                   1.91481 1.693 0.09388 .
         2.26408
                   1.34813 1.679 0.09646 .
height
whole
         0.03089
                   0.29250 0.106 0.91612
shucked
         -1.30902
                   0.38861 -3.368 0.00111 **
         -0.24785 0.55098 -0.450 0.65389
viscera
          1.73328
                     0.60179 2.880 0.00494 **
shell
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```


All models

Here, the model is fit with all predictors, then the least significant predictor is removed. This process is repeated until only one predictor remains.

► Code

Model	n	r.squared	adj.r.squared
log(rings) ~ shell	1	0.445	0.439
log(rings) ~ shucked + shell	2	0.557	0.548
log(rings) ~ diameter + shucked + shell	3	0.604	0.591
log(rings) ~ diameter + height + shucked + shell	4	0.614	0.598
log(rings) ~ length + diameter + height + shucked + shell	5	0.618	0.597
log(rings) ~ length + diameter + height + shucked + viscera + , shell	6	0.619	0.594
log(rings) ~ .	7	0.619	0.590

Reduced model

How did you do?

Read exam questions carefully and use the process of elimination.

Model and variable selection

- Aim is to achieve the best balance between model fit and model complexity.
- Follow the rules of parsimony: the simplest model that explains the data is the best, given similar model fit.
 - Consider the effect of removing non-significant predictors from the model.
 - \rightarrow If model fit (i.e. R^2) reduces drastically, keep the predictor, else keep culling.
- Covered in more detail in **second year (ENVX2001)** (stepwise regression)

Summary

Multiple Linear Regression

- More than one predictor
- Fit y to multiple x multiple dimensions (hyperplane)
- Principle: minimise sum of squared residuals
- Assumptions: CLINE (collinearity)
- Adjusted R-squared

Simple Linear Regression

- One predictor, fit a straight line
- Fit straight line between y and x
- Principle: minimise sum of squared residuals
- Assumptions: LINE
- Multiple R-squared

Thanks!

This presentation is based on the **SOLES Quarto reveal.js template** and is licensed under a **Creative Commons Attribution 4.0 International License**.

