Institute of Computer Technology Ganpat University (2CSE301) DATABASE MANAGEMENT SYSTEM

Practical 8 MySQL Views (2)

Database and tables:

https://drive.google.com/file/d/12ukAhPUqcms9dobK XKLQgamMO9vVCn0/view?usp=sharing

 Create a view that contains the addresses (department_name, location_id, street_address, city, state_province, country_name) of all the departments CREATE VIEW department_addresses AS

SELECT

d.DEPARTMENT_NAME,

l.LOCATION_ID,

I.STREET_ADDRESS,

l.CITY,

l.STATE_PROVINCE,

c.COUNTRY_NAME

FROM

departments d

JOIN locations I ON d.LOCATION_ID = I.LOCATION_ID

JOIN countries c ON l.COUNTRY_ID = c.COUNTRY_ID;

select * from department_addresses;

	DEPARTMENT_NAME	LOCATION_ID	STREET_ADDRESS	CITY	STATE_PROVINCE	COUNTRY_NAME
	Administration	1700	2004 Charade Rd	Seattle	Washington	United States of America
	Marketing	1800	147 Spadina Ave	Toronto	Ontario	Canada
1	Purchasing	1700	2004 Charade Rd	Seattle	Washington	United States of America
	Human Resources	2400	8204 Arthur St	London		United Kingdom
!	Shipping	1500	2011 Interiors Blvd	South San Francisco	California	United States of America
1	Π	1400	2014 Jabberwocky Rd	Southlake	Texas	United States of America
1	Public Relations	2700	Schwanthalerstr. 7031	Munich	Bavaria	Germany
	Executive	1700	2004 Charade Rd	Seattle	Washington	United States of America

2. Create a view that contains the full name (e.g. Steven King) of all employees along with the country in which they are working

CREATE VIEW employee_country_names AS

SELECT

CONCAT(e.FIRST_NAME, '', e.LAST_NAME) AS full_name,

```
c.COUNTRY_NAME

FROM

employees e

JOIN departments d ON e.DEPARTMENT_ID= d.DEPARTMENT_ID

JOIN locations l ON d.LOCATION_ID = l.LOCATION_ID

JOIN countries c ON l.COUNTRY_ID = c.COUNTRY_ID;
```

select * from employee_country_names;

3. Create a view to find the name (first_name, last_name) and salary of the employees whose salary is greater than the average salary.

CREATE VIEW high_salary_employees AS

SELECT

FIRST_NAME,

LAST_NAME,

SALARY

FROM

employees

WHERE

SALARY > (SELECT AVG(SALARY) FROM employees);

select * from high_salary_employees;

4. Create a view to get the job_ID, JOB_title and maximum salary of the employees where the maximum salary is greater than or equal to \$4000.

```
CREATE VIEW high_salary_jobs AS
SELECT
 j.JOB_ID,
 j.JOB_TITLE,
 MAX(e.SALARY) AS max_SALARY
FROM
 employees e
 JOIN jobs j ON e.JOB_ID = j.JOB_ID
GROUP BY
 j.JOB_ID, j.JOB_TITLE
HAVING
  MAX(e.SALARY) >= 4000;
```

select * from high_salary_jobs;

high_salary_jobs 14 ×

5. Create a view that displays the first_name and last_name of employees who are managers.

CREATE VIEW manager_names AS

SELECT

e.FIRST_NAME,

e.LAST_NAME

FROM

employees e

WHERE

e.EMPLOYEE_ID IN (SELECT DISTINCT MANAGER_ID FROM employees);

select * from manager_names ;

6. Create a view to list the department ID, department_name and city of all the departments where no employee is working.

CREATE VIEW departments_with_no_employees AS

SELECT

d.DEPARTMENT_ID,

d.DEPARTMENT_NAME,

l.CITY

FROM

departments d

JOIN locations I ON d.LOCATION_ID = I.LOCATION_ID

LEFT JOIN

employees e ON d.DEPARTMENT_ID = e.DEPARTMENT_ID

WHERE

e.EMPLOYEE_ID IS NULL;

select * from departments_with_no_employees;

7. Create a view to list the full names and hire_date of the employees who were hired before Susan Mavris.

CREATE VIEW employees_hired_before_susan AS SELECT

CONCAT(FIRST_NAME, '', LAST_NAME) AS full_name, HIRE_DATE

FROM

employees

WHERE

HIRE_DATE < (SELECT HIRE_DATE FROM employees WHERE FIRST_NAME = 'Susan' AND LAST_NAME = 'Mavris');

select * from employees_hired_before_susan;

8. Create a view to find the employee ID, job title, number of days between ending date and starting date for all jobs in department 80 and 90.

CREATE VIEW job duration view AS

SELECT

e.EMPLOYEE_ID,

j.JOB_TITLE,

 ${\tt DATEDIFF(jh.END_DATE, jh.START_DATE)} \ AS \ duration_days$

FROM

```
employees e

JOIN job_history jh ON e.EMPLOYEE_ID = jh.EMPLOYEE_ID

JOIN jobs j ON jh.JOB_ID = j.JOB_ID

WHERE

e.DEPARTMENT_ID IN (80, 90);

select * from job_duration_view;
```


9. Create a view to display the department names in which the difference between minimum and maximum salary is more than 4000

CREATE VIEW departments_salary_difference AS

SELECT

d.DEPARTMENT_NAME

FROM

departments d

JOIN employees e ON d.DEPARTMENT_ID = e.DEPARTMENT_ID

GROUP BY

d.DEPARTMENT_NAME

HAVING

MAX(e.SALARY) - MIN(e.SALARY) > 4000;

select * from departments_salary_difference;

10.For all above created views, Update at least 1 record from each and verify whether the update gets reflected in the base table(s) or not

UPDATE high_salary_employees

SET SALARY = SALARY + 1000

WHERE FIRST_NAME = 'John' AND LAST_NAME = 'Doe';

