Machine Learning Task 1 - House Price Prediction

Internship Task Report
Name: Harshali Ramesh Upase
Internship: Credora - Machine Learning Internship
Task Title: House Price Prediction using Linear Regression
Objective:
To build a regression model that accurately predicts house prices based on real-world housing data
Dataset Source:
Kaggle - House Prices: Advanced Regression Techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data
Tools & Technologies:
- Python
- Pandas, NumPy
- Matplotlib, Seaborn
- Scikit-learn
- Google Colab
Workflow:
1. Data Preprocessing:
- Handled missing values

- Encoded categorical features

Machine Learning Task 1 - House Price Prediction

- Feature scaling where necessary
2. Feature Selection:
- Selected key features such as:
* GrLivArea (Above ground living area)
* BedroomAbvGr (Number of bedrooms)
* FullBath (Number of full bathrooms)
3. Model Building:
- Used Linear Regression model from scikit-learn
- Split the dataset into training and testing sets
4. Model Evaluation:
- Evaluation metrics such as MAE, RMSE, R ² score were used
- Compared actual vs predicted prices using graphs
Output:
- Predicted house prices for test data
- Visualization: Actual vs Predicted values (tabular & graphical)
Live Demo:
Google Colab Link - To be added
Conclusion:

Successfully implemented a regression model using Linear Regression to predict house prices. The

Machine Learning Task 1 - House Price Prediction

project helped in	understanding t	he process	of feature	selection,	preprocessing,	model	evaluation,
and visualization.							