Finals Review

Lecture 13 — CS 577 Deep Learning

Instructor: Yutong Wang

Computer Science Illinois Institute of Technology

November 20, 2024

• Computing gradients by hand

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:
 - convolution layer

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:
 - convolution layer
 - recurrent layer

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:
 - convolution layer
 - recurrent layer
 - transformer layer

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:
 - convolution layer
 - recurrent layer
 - transformer layer
- Performance issues:

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:
 - convolution layer
 - recurrent layer
 - transformer layer
- Performance issues:
 - Efficiently computing convolution ("lower" to BLAS, i.e., im2col)

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ag.Scalar
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:
 - convolution layer
 - recurrent layer
 - transformer layer
- Performance issues:
 - Efficiently computing convolution ("lower" to BLAS, i.e., im2col)
 - Memory usage (tensor rematerialization/gradient checkpointing)

- Computing gradients by hand
 - perceptron, linear regression, 1-layer neural network, transformer
- Computing gradients automatically
 - ♡ ag.Scalar ♡
 - ag.Tensor
- Two optimzers:
 - Stochastic gradient descent (SGD)
 - SGD with momentum
- Three key building blocks of deep learning models:
 - convolution layer
 - recurrent layer
 - \heartsuit transformer layer \heartsuit
- Performance issues:
 - ♥ Efficiently computing convolution ("lower" to BLAS, i.e., im2col) ♥
 - \heartsuit Memory usage (tensor rematerialization/gradient checkpointing) \heartsuit

• What you will be given

- What you will be given
 - The code for the forward computation

- What you will be given
 - The code for the forward computation
 - The (non-reversed) topological ordering

- What you will be given
 - The code for the forward computation
 - The (non-reversed) topological ordering
- What you'll have to do

- What you will be given
 - The code for the forward computation
 - The (non-reversed) topological ordering
- What you'll have to do
 - Draw the computational graph

- What you will be given
 - The code for the forward computation
 - The (non-reversed) topological ordering
- What you'll have to do
 - Draw the computational graph
 - Calculate gradient at the leaves using backpropagation, iteration-by-iteration

Problem 1.1 forward pass

```
x = ag.scalar(2.0, label="z1\nleaf(x)")
z1 = x
z2 = z1*z1 # z2.label = "z2:mul"
z3 = z2*z2
z3.backward()
print(x.grad)
```


Problem 1.1 forward pass

```
x = ag.scalar(2.0, label="z1\nleaf(x)")
z1 = x
z2 = z1*z1
z3 = z2*z2
z3.backward()
print(x.grad)
```


Problem 1.1 forward pass

```
x = ag.scalar(2.0, label="z1\nleaf(x)")
z1 = x
z2 = z1*z1
z3 = z2*z2
z3.backward()
print(x.grad)
```



```
def topological_sort(self):
    topo_order = []
    visited = set()
    def dfs(node):
        if node not in visited:
            visited.add(node)
            for input in node.inputs:
                 dfs(input)
                 topo_order.append(node)
    dfs(self)
    return topo_order
```



```
def topological_sort(self):
    topo_order = []
    visited = set()
    def dfs(node):
        if node not in visited:
            visited.add(node)
            for input in node.inputs:
                 dfs(input)
                 topo_order.append(node)
    dfs(self)
    return topo_order
```



```
def topological_sort(self):
    topo_order = []
    visited = set()
    def dfs(node):
        if node not in visited:
            visited.add(node)
            for input in node.inputs:
                 dfs(input)
                 topo_order.append(node)
    dfs(self)
    return topo_order
```


Problem 1.1 backward pass

```
def backward(self):
    self.grad = 1.0
    topo_order = self.topological_sort()
    for node in reversed(topo_order):
        node._backward()
```


Problem 1.1 backward pass iteration 0

```
def __mul__(self, other):
    output = ag.Scalar(self.value * other.value, inputs=[self, other])
    def _backward():
        self.grad += other.value * output.grad
        other.grad += self.value * output.grad # [lines omitted...]
```


Problem 1.1 backward pass iteration 0

```
def __mul__(self, other):
    output = ag.Scalar(self.value * other.value, inputs=[self, other])
    def _backward():
        self.grad += other.value * output.grad
        other.grad += self.value * output.grad # [lines omitted...]
```

```
topo_order: [z1:leaf(x), z2:mul, z3:mul]

z1
leaf(x)

mul

z2
mul

z2.grad += z2.value * z3.grad
z2.grad += z2.value * z3.grad
```

Problem 1.1 backward pass iteration 0

```
def __mul__(self, other):
    output = ag.Scalar(self.value * other.value, inputs=[self, other])
    def _backward():
        self.grad += other.value * output.grad
        other.grad += self.value * output.grad # [lines omitted...]
```

```
topo_order: [z1:leaf(x), z2:mul, z3:mul]

z1
leaf(x)
mul

z2
mul

z2.grad = 8
```

```
def __mul__(self, other):
    output = ag.Scalar(self.value * other.value, inputs=[self, other])
    def _backward():
        self.grad += other.value * output.grad
        other.grad += self.value * output.grad # [lines omitted...]
```



```
def __mul__(self, other):
    output = ag.Scalar(self.value * other.value, inputs=[self, other])
    def _backward():
        self.grad += other.value * output.grad
        other.grad += self.value * output.grad # [lines omitted...]
```

```
topo_order: [z1:leaf(x), z2:mul, z3:mul]

z1
leaf(x)

mul

z1
z2
mul

z1.grad += z1.value * z2.grad
z1.grad += z1.value * z2.grad
```

```
def __mul__(self, other):
    output = ag.Scalar(self.value * other.value, inputs=[self, other])
    def _backward():
        self.grad += other.value * output.grad
        other.grad += self.value * output.grad # [lines omitted...]
```

```
topo_order: [z1:leaf(x), z2:mul, z3:mul]

z1
leaf(x)
mul

z3
mul

z1.grad = 2*8 + 2*8 = 32
```

```
def __mul__(self, other):
    output = ag.Scalar(self.value * other.value, inputs=[self, other])
    def _backward():
        self.grad += other.value * output.grad
        other.grad += self.value * output.grad # [lines omitted...]
```


Problem 1.1a (not on the guide)

```
x = ag.Scalar(2.0, label="z1:leaf(x)")
z1 = x
z2 = z1*z1
z3 = z1*z2
z4 = z1*z3
z4.backward()
print(x.grad)
```

```
x = ag.Scalar(2.0, label="z1\nleaf(x)")
y = ag.Scalar(3.0, label="z2\nleaf(y)")

z1 = x
z2 = y
z3 = z1*z2
z4 = ag.exp(z3)
z5 = ag.log(z4)
z5.backward()
print(x.grad, y.grad)
```



```
x1 = ag.Scalar(2.0, label="z1:leaf(x1)")
h0 = ag.Scalar(3.0, label="z2:leaf(h0)")
wr = ag.Scalar(4.0, label="z3:leaf(wr)")
wi = ag.Scalar(5.0, label="z4:leaf(wi)")
wo = ag.Scalar(6.0, label="z5:leaf(wo)")
z1 = x1
z2 = h0
z3 = wr
z4 = wi
z5 = z3*z2 # wr*h0
z6 = z4*z1 # wi*x1
z7 = z5 + z6
z8 = ag.relu(z7) # relu(wr*h0 + wi*x1)
z9 = wo
z10 = z8*z9
z10.backward()
print(wr.grad, wi.grad, wo.grad)
                                                                          43 / 127
```

```
x1 = ag.Scalar(2.0, label="z1:leaf(x1)")
h0 = ag.Scalar(3.0, label="z2:leaf(h0)")
wr = ag.Scalar(4.0, label="z3:leaf(wr)")
wi = ag.Scalar(5.0, label="z4:leaf(wi)")
wo = ag.Scalar(6.0, label="z5:leaf(wo)")
z1 = x1
z2 = h0
z3 = wr
z4 = wi
z5 = z3*z2 \# wr*h0 <---- start here
z6 = z4*z1 # wi*x1
z7 = z5 + z6
z8 = ag.relu(z7) # relu(wr*h0 + wi*x1)
z9 = wo
z10 = z8*z9
z10.backward()
print(wr.grad, wi.grad, wo.grad)
                                                                         44 / 127
```

```
z5 = z3*z2 # wr*h0 <----
z6 = z4*z1 # wi*x1
z7 = z5+z6
z8 = ag.relu(z7) # relu(wr*h0 + wi*x1)
z9 = wo
z10 = z8*z9
```

```
z5 = z3*z2 # wr*h0

z6 = z4*z1 # wi*x1 <----

z7 = z5+z6

z8 = ag.relu(z7) # relu(wr*h0 + wi*x1)

z9 = wo

z10 = z8*z9
```

```
z5 = z3*z2 # wr*h0
z6 = z4*z1 # wi*x1
z7 = z5+z6
z8 = ag.relu(z7) # relu(wr*h0 + wi*x1) <----
z9 = wo
z10 = z8*z9
              mul
                                         add
```

```
z5 = z3*z2 # wr*h0
z6 = z4*z1 # wi*x1
z7 = z5+z6
z8 = ag.relu(z7) # relu(wr*h0 + wi*x1)
z9 = wo
z10 = z8*z9 <----
                                           z7
                                                     relu
              mul
                                           add
                                                                 mu1
                                   mu1
```

```
z5 = z3*z2 # wr*h0
z6 = z4*z1 # wi*x1
z7 = z5+z6
  = ag.relu(z7) # relu(wr*h0 + wi*x1)
z9 = wo
z10 = z8*z9
              mu1
                                           add
                                                                mu1
```

```
z5 = z3*z2 # wr*h0
  = z4*z1 # wi*x1
z7 = z5+z6
  = ag.relu(z7) # relu(wr*h0 + wi*x1)
z9 = wo
z10 = z8*z9
                                                                  mu1
               mu1
                                            add
                                                                       132
                                    mu1
```


Make sure that...

- Draw your graph from left (input) to right (output)
- Write down intermediate values
- If a node has two inputs (e.g., add or mul):
 - left input: top
 - right input: bottom
- Explain what happens during each iteration of the backward pass. Either...
 - Some computation, or
 - Do nothing (leaf node)

• Xin.shape == (N, Cin, Hin, Win)

- Xin.shape == (N, Cin, Hin, Win)
- Xout.shape == (N, Cout, Hout, Wout)

- Xin.shape == (N, Cin, Hin, Win)
- Xout.shape == (N, Cout, Hout, Wout)
- F.shape == (Cout, Cin, K, K)

for wker in range(K): # Kernel width
 Xout[i, cout, hout, wout] += (
 F[cout, cin, hker, wker] *

• Xin.shape == (N, Cin, Hin, Win)

Xout.shape == (N, Cout, Hout, Wout)
F.shape == (Cout, Cin, K, K)
Convolution naively: 7 nested for-loops
Suppose i, c_out, h_out, w_out are already defined, and
X_out is initialized to all zeros
for cin in range(Cin): # Input channels
for hker in range(K): # Kernel height

Xin[i, cin, hout + hker, wout + wker])

Input image tensor with shape $(N, C_{in}, H_{in}, W_{in})$

A single convolution layer (C_{out}, C_{in}, K, K)

Flatten the weights

1a	1b	1c
2a	2b	2c
3a	3b	3c

1a	1b	1c
2a	2b	2c
3a	3b	3c

- weight_flat ————

1a	1b	1c
2a	2b	2c
3a	3b	3c

• im2col "lowers" convolution to linear algebra

- im2col "lowers" convolution to linear algebra
 - Xin

- im2col "lowers" convolution to linear algebra
 - Xin
 - Xin_flat = Xin.reshape(-1, Cin * Hin * Win)
 - (reshape is "free")

- im2col "lowers" convolution to linear algebra
 - Xin
 - Xin_flat = Xin.reshape(-1, Cin * Hin * Win)
 - (reshape is "free")
 - Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat)
 - ("memory expensive")

- im2col "lowers" convolution to linear algebra
 - Xin
 - Xin_flat = Xin.reshape(-1, Cin * Hin * Win)
 (reshape is "free")
 - Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat)
 ("memory expensive")
 - Xin_patches_flat = Xin_im2col.reshape(N, P, patch_size)
 ("free")

- im2col "lowers" convolution to linear algebra
 - Xin
 - Xin_flat = Xin.reshape(-1, Cin * Hin * Win)
 (reshape is "free")
 - Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat)
 ("memory expensive")
 - Xin_patches_flat = Xin_im2col.reshape(N, P, patch_size)
 ("free")
 - Xout_flat = (Xin_patches_flat @ self.weight) + self.bias
 ("compute expensive")

- im2col "lowers" convolution to linear algebra
 - Xin
 - Xin_flat = Xin.reshape(-1, Cin * Hin * Win)
 (reshape is "free")
 - Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat)
 ("memory expensive")
 - Xin_patches_flat = Xin_im2col.reshape(N, P, patch_size)
 ("free")
 - Xout_flat = (Xin_patches_flat @ self.weight) + self.bias
 ("compute expensive")
 - Xout_flat = ag.moveaxis(Xout_flat, 1, 2)
 ("free")

• im2col "lowers" convolution to linear algebra Xin • Xin_flat = Xin.reshape(-1, Cin * Hin * Win) — (reshape is "free") • Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat) — ("memory expensive") • Xin_patches_flat = Xin_im2col.reshape(N, P, patch_size) — ("free") • Xout_flat = (Xin_patches_flat @ self.weight) + self.bias — ("compute expensive") • Xout_flat = ag.moveaxis(Xout_flat, 1, 2) — ("free") • Xout = Xout_flat.reshape(N, Cout, Hout, Wout)

— ("free")

- im2col "lowers" convolution to linear algebra Xin • Xin_flat = Xin.reshape(-1, Cin * Hin * Win) — (reshape is "free") • Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat) — ("memory expensive") • Xin_patches_flat = Xin_im2col.reshape(N, P, patch_size) — ("free") • Xout_flat = (Xin_patches_flat @ self.weight) + self.bias — ("compute expensive") • Xout_flat = ag.moveaxis(Xout_flat, 1, 2) — ("free") • Xout = Xout_flat.reshape(N, Cout, Hout, Wout) — ("free")
- self.im2col_mat.shape =

- im2col "lowers" convolution to linear algebra • Xin • Xin_flat = Xin.reshape(-1, Cin * Hin * Win) — (reshape is "free") • Xin_im2col = ag.spcmatmul(Xin_flat, self.im2col_mat) — ("memory expensive") • Xin_patches_flat = Xin_im2col.reshape(N, P, patch_size) — ("free") • Xout_flat = (Xin_patches_flat @ self.weight) + self.bias — ("compute expensive") • Xout_flat = ag.moveaxis(Xout_flat, 1, 2) — ("free") • Xout = Xout_flat.reshape(N, Cout, Hout, Wout) — ("free")
- self.weight.shape =
- Cost of computing Xout_flat =

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\mathtt{attention}(\mathbf{X};\theta) := \mathrm{softmax}\left(\mathbf{X}\mathbf{W}^{(Q)}\mathbf{W}^{(K)\top}\mathbf{X}^{\top}\right)\mathbf{X}\mathbf{W}^{(V)} \in \mathbb{R}^{d \times C}.$$

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\mathtt{attention}(\mathbf{X};\theta) := \mathrm{softmax}\left(\mathbf{X}\mathbf{W}^{(Q)}\mathbf{W}^{(K)\top}\mathbf{X}^{\top}\right)\mathbf{X}\mathbf{W}^{(V)} \in \mathbb{R}^{d \times C}.$$

• parameters

$$\boldsymbol{\theta}^{(\mathtt{att})} = [\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)}]$$

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\mathtt{attention}(\mathbf{X}; \theta) := \mathrm{softmax}\left(\mathbf{X}\mathbf{W}^{(Q)}\mathbf{W}^{(K)\top}\mathbf{X}^{\top}\right)\mathbf{X}\mathbf{W}^{(V)} \in \mathbb{R}^{d \times C}.$$

• parameters

$$heta^{(extsf{att})} = [\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)}]$$

• ("Q, K, V" stands for "query", "key", "value", respectively) where

$$\mathbf{W}^{(Q)}$$
 and $\mathbf{W}^{(K)}$ and $\mathbf{W}^{(V)} \in \mathbb{R}^{d \times d}$.

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\mathtt{attention}(\mathbf{X};\theta) := \mathrm{softmax}\left(\mathbf{X}\mathbf{W}^{(Q)}\mathbf{W}^{(K)\top}\mathbf{X}^\top\right)\mathbf{X}\mathbf{W}^{(V)} \in \mathbb{R}^{d \times C}.$$

• parameters

$$heta^{(exttt{att})} = [\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)}]$$

• ("Q, K, V" stands for "query", "key", "value", respectively) where

$$\mathbf{W}^{(Q)}$$
 and $\mathbf{W}^{(K)}$ and $\mathbf{W}^{(V)} \in \mathbb{R}^{d \times d}$.

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\mathtt{attention}(\mathbf{X};\theta) := \mathrm{softmax}\Big(\underbrace{\mathbf{X}\mathbf{W}^{(Q)}}_{\mathbf{Q}}\underbrace{\mathbf{W}^{(K)\top}\mathbf{X}^{\top}}_{\mathbf{K}^{\top}}\Big)\underbrace{\mathbf{X}\mathbf{W}^{(V)}}_{\mathbf{V}} \in \mathbb{R}^{d\times C}.$$

• parameters

$$\theta^{(\mathtt{att})} = [\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)}]$$

• ("Q, K, V" stands for "query", "key", "value", respectively) where

$$\mathbf{W}^{(Q)}$$
 and $\mathbf{W}^{(K)}$ and $\mathbf{W}^{(V)} \in \mathbb{R}^{d \times d}$.

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\operatorname{attention}(\mathbf{X}; \theta) := \operatorname{softmax}\Big(\underbrace{\mathbf{Q}\mathbf{K}^{\top}}_{\mathbf{S}}\Big)\mathbf{V} \in \mathbb{R}^{d \times C}.$$

parameters

$$heta^{(\mathtt{att})} = [\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)}]$$

• ("Q, K, V" stands for "query", "key", "value", respectively) where

$$\mathbf{W}^{(Q)}$$
 and $\mathbf{W}^{(K)}$ and $\mathbf{W}^{(V)} \in \mathbb{R}^{d \times d}$.

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\mathtt{attention}(\mathbf{X};\theta) := \underbrace{\mathrm{softmax}\Big(\underbrace{\mathbf{Q}\mathbf{K}^{\top}}_{\mathbf{S}}\Big)}_{\mathbf{P} = \mathrm{softmax}(\mathbf{S})} \mathbf{V} \in \mathbb{R}^{d \times C}.$$

parameters

$$heta^{(\mathtt{att})} = [\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)}]$$

• ("Q, K, V" stands for "query", "key", "value", respectively) where

$$\mathbf{W}^{(Q)}$$
 and $\mathbf{W}^{(K)}$ and $\mathbf{W}^{(V)} \in \mathbb{R}^{d \times d}$.

• Let $\mathbf{X} \in \mathbb{R}^{C \times d}$ (note everything is transposed compared to last time)

$$\mathtt{attention}(\mathbf{X}; \theta) := \operatorname{softmax}\left(\mathbf{Q}\mathbf{K}^{\top}\right)\mathbf{V} \in \mathbb{R}^{d \times C}.$$

parameters

$$heta^{(\mathsf{att})} = [\mathbf{W}^{(Q)}, \mathbf{W}^{(K)}, \mathbf{W}^{(V)}]$$

• ("Q, K, V" stands for "query", "key", "value", respectively) where

$$\mathbf{W}^{(Q)}$$
 and $\mathbf{W}^{(K)}$ and $\mathbf{W}^{(V)} \in \mathbb{R}^{d \times d}$.

- "seq-2-seq": maps the sequence X to another sequence attention($X; \theta$)
- Queries, Keys, KQ, expKQ, softmaxKQ, P.

```
class SingleHeadAttention:
   def __init__(self, n_features):
        self.Wq = ag.Tensor(np.random.randn(n_features, n_features),
   label="Wq")
        self.Wk = ag.Tensor(np.random.randn(n_features, n_features),
   label="Wk")
        self.Wv = ag.Tensor(np.random.randn(n_features, n_features),
   label="Wv")
   def __call__(self, Xin):
        # Xin is a (n_samples, n_context, n_features) tensor
        # Xout is *also* a (n_samples, n_context, n_features) tensor
        Queries = Xin @ self.Wq
        Kevs = Xin @ self.Wk
        KQ = (Keys @ ag.moveaxis(Queries, 1,2))
        expKQ = ag.exp(KQ)
        softmaxKQ = expKQ / ag.sum(expKQ, axis=1, keepdims=True)
        P = ag.moveaxis(Xin,1,2) @ softmaxKQ
        Xout = ag.moveaxis(P, 1,2) @ self.Wv
        return Yout
                                                                        97/127
```

```
class TransformerBlock:
    def __init__(self, n_features, n_hidden):
        self.att = SingleHeadAttention(n_features)
        self.mlp = MLP(n_features, n_hidden)
    def __call__(self, Xin):
        return self.mlp(self.att(Xin))
```

```
class MLP:
   def __init__(self, n_features, n_hidden):
        self.Wh = ag.Tensor(np.random.randn(n_features, n_hidden), label
   ="Whidden")
        self.bh = ag.Tensor(np.random.randn(n_hidden), label="bhidden")
        self.wo = ag.Tensor(np.random.randn(n_hidden, n_features), label
   = " Wout " )
        self.bo = ag.Tensor(np.random.randn(n_features), label="bout")
   def __call__(self, Xin):
        hidden = ag.relu((Xin @ self.Wh) + self.bh)
        return hidden @ self.wo + self.bo
```

Forward without rematerialization

(Inside constructor for Z2)...

self.value = 1.0*value
self.grad = np.zeros_like(self.value)

Rematerialization: forward phase

• Architecture design

- Architecture design
 - Skip connection

- Architecture design
 - Skip connection
 - U-net

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design
 - Pruning

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design
 - Pruning
 - Adam

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design
 - Pruning
 - Adam
 - Shampoo

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design
 - Pruning
 - Adam
 - Shampoo
 - $\bullet\,$ Soap (Shampo O with Adam in the Preconditioner's) Vya et. al., 2024

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design
 - Pruning
 - Adam
 - Shampoo
 - Soap (ShampoO with Adam in the Preconditioner's) Vya et. al., 2024
- Theory of deep learning

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design
 - Pruning
 - Adam
 - Shampoo
 - Soap (ShampoO with Adam in the Preconditioner's) Vya et. al., 2024
- Theory of deep learning
 - Implicit regularization

- Architecture design
 - Skip connection
 - U-net
 - Batch normalization
 - Quantization
- Optimizer design
 - Pruning
 - Adam
 - Shampoo
 - Soap (ShampoO with Adam in the Preconditioner's) Vya et. al., 2024
- Theory of deep learning
 - Implicit regularization
 - Benign overfitting

References I