### Cours 2 - Visualisation des données

Neila Mezghani

2 & 9 février 2021



# Plan du cours

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Représentation des proportions
- 5 Visualisation de l'évolution

# Introduction

- Tout le monde connait l'expression « une image vaut mille mots » ⇒
   L'objectif de ce cours
- Aujourd'hui'hui, à l'ère des données numériques des méga données, ....nous sommes inondées d'informations provenant de différentes modalités 

  ce vieux proverbe est devenu encore plus pertinent.
- La visualisation des données rend l'analyse beaucoup plus facile et plus rapide d'où le besoin de choisir les outils appropriés de visualisation

Visualisation de la distribution Visualisation de la corrélation Visualisation du rang Représentation des proportions Visualisation de l'évolution



# Librairies à utiliser

- Outre la librairie Matplotlib, la librairie Seaborn est très utile et efficace pour la visualisation des données
- Les fonctions Seaborn ont presque toutes la même structure :

```
Options

Sns.fonction (x,y,data,hue,size,style)

Les données à visualiser
```

# Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Représentation des proportions
- 5 Visualisation de l'évolution

# Visualisation de la distribution





# Diagramme en boite

- Diagramme en boite (boxplot) est l'un des graphiques les plus couramment utilisés.
- Il résume cinq paramètres importants de la variable : la valeur minimale, le premier quartile (Q1), la médiane (ou deuxième quartile Q2), le troisième quartile (Q3) et la valeur maximale.
- La ligne qui divise la boîte en deux parties représente la médiane.

### Diagramme en boite



- Les limites de la boite montrent les quartiles supérieur (Q3) et inférieur (Q1).
- Les lignes extrêmes montrent la valeur la plus élevée et la plus basse de la variable tout en excluant les valeurs aberrantes.
- seaborn.boxplot

#### **Exemple: Diagramme en boite**



Q3 = 29 ce qui veut dire que l'âge de 75% des joueurs est <29 ans

Visualisation de la distribution Visualisation de la corrélation Visualisation du rang Représentation des proportions Visualisation de l'évolution

#### Histogramme

- Un histogramme représente une estimation de la densité d'une variable quantitative.
- La forme de l'histogramme est obtenue suite à la répartition des données selon un ensemble d'intervalles. De ce fait celle-ci peut être différente selon le nombre d'intervalles défini.

# Histogramme : Principe de construction

- Identification de la valeur minimale *min* et maximale *max* de la variable à explorer
- Division de l'intervalle [min; max] en I sous-intervalles
- Dénombrement des observations pour lesquels la valeur de la variable tombe dans chacun des intervalles (appelés aussi classes)
- Représentation du nombre d'observations par intervalle par une barre dont la surface est proportionnelle aux décomptes.

# Histogramme : Principe de construction

- Un histogramme est dit symétrique lorsque son profil à gauche est identique ou très similaire à son profil à droite autour d'un mode.
- Les modes d'un histogramme correspondent aux classes (intervalles) les plus abondantes localement.
- Un histogramme peut avoir un ou plusieurs modes.
- seaborn.histplot

# Histogramme



#### **Exemple:** Histogramme (1)

L'histogramme est unimodal et asymétrique

La médiane est < à la moyenne —> La majorité des joueurs ont un âge < à la moyenne d'âge



| In [27]: | df1['                                                   | Age' | ].de                                                       | sc                                     | ribe()                                   |
|----------|---------------------------------------------------------|------|------------------------------------------------------------|----------------------------------------|------------------------------------------|
| Out[27]: | count<br>mean<br>std<br>min<br>25%<br>50%<br>75%<br>max |      | 64.00<br>26.61<br>4.23<br>19.00<br>24.00<br>26.00<br>29.00 | 538<br>359<br>000<br>000<br>000<br>000 | 55 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|          | Name:                                                   | Age, | dtyp                                                       | e:                                     | float64                                  |

#### **Exemple:** Histogramme (2)

```
In [23]: hist,bin_edges = np.histogram(df['Age'].dropna(), bins=10)
         display(hist)
         display(bin edges)
         df.hist(column='Age', bins =10, figsize=(6,3))
         None
         array([40, 67, 92, 77, 59, 53, 27, 19, 14, 9])
         array([19., 21.1, 23.2, 25.3, 27.4, 29.5, 31.6, 33.7, 35.8, 37.9, 40.])
                                Age
                                                          Les valeurs des limites des intervalles
          80
          60
          40
          20
                                                         La médiane est < à la movenne --->
                                                         La majorité des observations ont un âge
                                                              < à la movenne d'âge
                20
                         25
                                  30
                                           35
```

#### Visualisation de la distribution Visualisation de la corrélation Visualisation du rang Représentation des proportions Visualisation de l'évolution

# **Exemple: Histogramme (3)**



#### Densité

- La densité est aussi une représentation graphique de la distribution d'une variable numérique.
- Elle se présente comme un histogramme lissé.
- Le passage d'un histogramme à une courbe de densité consiste à lisser les pics plus ou moins fort dans l'histogramme. Ceci se fait souvent par des techniques d'estimation
- seaborn.kdeplot

#### **Exemple : Densité**

```
In [29]:
         sns.distplot(df1["Age"], hist=True, bins=10, kde=True,
                         kde kws={'linewidth': 4});None
          0.10
                                   Lissage des pics
          0.08
          0.06
          0.04
          0.02
          0.00
                      20
                            25
                                         35
          Extensions des limites minimales et maximales ---> Lissage
```

# Diagramme en violon

- Le diagramme en violon (*violin plot*) permet de visualiser la distribution d'une variable numérique.
- Il est constitué en même temps de deux graphiques de densité en miroir et d'un boxplot => permet une compréhension plus approfondie de la densité.
- seaborn.violinplot

#### Visualisation de la distribution Visualisation de la corrélation Visualisation du rang Représentation des proportions Visualisation de l'évolution



#### Comparaison des diagrammes en boite et en violon



#### **Exemple: Digramme en violon**



# Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Représentation des proportions
- 5 Visualisation de l'évolution

# Visualisation de la corrélation





Connected







Correlogram

Bubble

# Diagramme de dispersion

• Un nuage de point (*Scatterplot*) permet de représenter une variable numérique en fonction d'une autre variable numérique :

$$Y \sim X$$

- Chaque point représente une observation.
- Les positions sur l'axe X (horizontal) et Y (vertical) représentent les valeurs des 2 variables.
- seaborn.scatterplot

#### Exemple : Digramme de dispersion



Le diagramme représente la variation de Poids ~ Taille

Lorsque la taille augmente, le poids augmente

Le poids est une fonction linéaire de la taille

# Diagramme de dispersion connecté

- Un nuage de points connectés (Connected Scatterplot) est très proche d'un nuage de points, sauf que les points sont reliés les uns aux autres par des lignes.
- Cela signifie que les valeurs des observations sur l'axe des X sont ordonnées pour que ce type de représentation soit utile.
- Les diagrammes de dispersions connectés sont souvent utilisés pour les séries chronologiques où l'axe X représente le temps.
- seaborn.scatterplot

### Exemple : Diagramme de dispersion connecté (1)

Variation du nombre de passagers / année Chaque année comprend plusieurs mois

|     | year | month | passerigers |
|-----|------|-------|-------------|
| 139 | 1960 | Aug   | 606         |
| 140 | 1960 | Sep   | 508         |
| 141 | 1960 | Oct   | 461         |
| 142 | 1960 | Nov   | 390         |
| 143 | 1960 | Dec   | 432         |

La base de données comprend 144 observations

Chacune est décrite par l'année, le mois et le nombre de passagers



#### Exemple : Diagramme de dispersion connecté (2)



Variation du nombre de passagers par année (mois de May)

Année

Diagramme de dispersion connecté possible parce que les valeurs de X sont ordonnées

#### Exemple : Diagramme de dispersion connecté (3)

|   | year | month    | passengers |
|---|------|----------|------------|
| 0 | 1949 | January  | 112        |
| 1 | 1949 | February | 118        |
| 2 | 1949 | March    | 132        |
| 3 | 1949 | April    | 129        |
|   |      |          |            |

Transformation de la matrice des données Pour une meilleure exploration des données

| month | January | February | March | April | May | June | July | August | September | October | November | December |
|-------|---------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------|
| year  |         |          |       |       |     |      |      |        |           |         |          |          |
| 1949  | 112     | 118      | 132   | 129   | 121 | 135  | 148  | 148    | 136       | 119     | 104      | 118      |
| 1950  | 115     | 126      | 141   | 135   | 125 | 149  | 170  | 170    | 158       | 133     | 114      | 140      |
| 1951  | 145     | 150      | 178   | 163   | 172 | 178  | 199  | 199    | 184       | 162     | 146      | 166      |
| 1952  | 171     | 180      | 193   | 181   | 183 | 218  | 230  | 242    | 209       | 191     | 172      | 194      |
| 1953  | 196     | 196      | 236   | 235   | 229 | 243  | 264  | 272    | 237       | 211     | 180      | 201      |

#### Exemple : Diagramme de dispersion connecté (4)



On remarque que la tendance de croissance est la même pour tout les mois au fil des années

#### Carte de chaleur

- Une carte de chaleur (*heatmap*) est une représentation graphique des données où les valeurs individuelles contenues dans une matrice sont représentées sous forme de couleurs.
- Permet d'afficher une vue générale des données numériques.
- seaborn.heatmap

#### Exemple : Carte de chaleur



# Diagramme à bulles

- Un diagramme à bulles (bubbleplot) est un nuage de points où d'autres dimensions sont ajouter pour avoir plus d'informations.
- Besoin de 3 variables numériques en entrée : une est représentée par l'axe X, une par l'axe Y, et une par la taille des bulles.
- La surface des bulles doit être proportionnelle à la valeur des données.
- seaborn.scatterplot

#### **Exemple: Diagramme à bulles**



## Diagramme de densité 2D

- Un diagramme de densité 2D ou histogramme 2D est une extension de l'histogramme (1D).
- Il montre la distribution des valeurs d'un ensemble de données sur la plage de deux variables quantitatives.
- seaborn.kdeplot

### Exemple : Diagramme de densité 2D



## Corrélogramme

- Un corrélogramme permet d'analyser la relation entre chaque paire de variables numériques d'une matrice.
- La corrélation entre chaque paire de variables est visualisée par un nuage de points, ou un symbole qui représente la corrélation (bulle, ligne, nombre..).
- La diagonale représente la distribution de chaque variable, en utilisant un histogramme ou un diagramme de densité.
- seaborn.pairplot

### **Exemple: Corrélogramme**



## Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Représentation des proportions
- 5 Visualisation de l'évolution

## Visualisation du rang









Parrallel plot

Radar Chart





Lollipop plot

Box Plot

## Diagramme en bâtons

- Le diagramme en bâtons ou graphique en barres permet de représenter les effectifs des différentes modalités d'une variable qualitative.
- Le diagramme en bâton peut être représenté horizontalement ou verticalement
- Dans certains cas, le diagramme en batons peut être aussi employé pour résumer des données numériques via la moyenne.
- seaborn.barplot

### Exemple : Diagramme en bâtons



### le graphique « Lollipop »

- Le graphique « Lollipop » (en forme de bâtons de sucette) est un diagramme de plus en plus attrayant grâce à sa simplicité
- Comme le diagramme en bâton, il permet de représenter les effectifs des différentes modalités d'une variable qualitative.
- matplotlib.pyplot.stem

### **Exemple: Graphique « Lollipop »**



### Les coordonnées parallèles

- Coordonnées parallèles permettent de représenter une observation de dimension n par n axes parallèles sur un plan, chaque axe représentant une dimension.
- L'intérêt des coordonnées parallèles se trouve dans le fait que certaines propriétés géométriques des variables se transforment et s'interprètent facilement en 2D.
- pandas.plotting.parallel\_coordinates

### **Exemple : Les coordonnées parallèles**

```
In [2]: data = sns.load_dataset('iris')
parallel_coordinates(data, 'species', colormap=plt.get_cmap("Set2"))
plt.show()

setosa
versicolor
virginica

Chaque ligne est une observation
```



Visualisation de la distribution Visualisation de la corrélation Visualisation du rang Représentation des proportions Visualisation de l'évolution

## Nuage de mots-clés

- Le Nuage de mots-clés est une représentation visuelle des mots-clés les plus utilisés dans un texte
- Les mots-clés s'affichent dans des tailles et épaisseurs de caractères proportionnelles à leurs visibilités
- wordcloud

### **Exemple : Nuage de mots-clés**



## Diagramme en radar

- Plusieurs appellations : le diagramme en radar = Diagramme de Kiviat = diagramme en étoile = toile d'araignée
- Un diagramme bidimensionnelle conçue pour tracer une ou plusieurs séries de valeurs sur plusieurs variables quantitatives.
- Formé par autant d'axes que de variables. Les valeurs (ou des séries) sont affichées à l'intérieur de la toile
- Les valeurs doivent être normalisées pour qu'on puisse les superposer

### Exemple : Diagramme en radar



## Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Représentation des proportions
- 5 Visualisation de l'évolution

# Représentation des proportions



Stacked Bar





Pie plot

## Graphique à barres groupées ou empilées

- Les diagrammes à barres groupées ou empilées affichent la taille relative (sous la forme d'un nombre total, d'un pourcentage, ou d'une autre métrique) d'une variable catégorielle, subdivisée par couleur en fonction d'un sous-groupe.
- matplotlib.pyplot.bar

#### Exemple : Graphique à barres groupées ou empilées



Graphique du nombre d'immigrants dont le pays d'origine est l'un de ces 4 pays

Permet de voir comment le nombre d'immigrants est distribué selon le pays d'origine

## Diagramme à tarte/Diagramme à anneau

- Diagramme circulaire = Camembert = Diagramme à tarte
- Permettent de présenter les proportions de données qualitatives (catégorielles)
- La taille de chaque partie représentant la proportion de chaque catégorie.
- Le diagramme en anneau (Doughnut) a le même le principe que le diagramme à tarte
- matplotlib.pyplot.pie

#### **Exemple: Diagramme à tarte**



## Table of Contents

- Visualisation de la distribution
- Visualisation de la corrélation
- Visualisation du rang
- Représentation des proportions
- 5 Visualisation de l'évolution

## Visualisation de l'évolution







AreaPlot



Parallel Plot

## Diagrammes linéaires

- Les diagrammes linéaires présentent les informations sous forme d'une série de points de données reliés par des lignes droites.
- Les catégories apparaissent le long de l'axe des x et les statistiques le long de l'axe des y.
- Les diagrammes chronologiques peuvent être considérés comme un cas particulier de diagrammes linéaires.
- matplotlib.pyplot.plot

## Diagramme chronologique

- Un diagramme chronologique permet de visualiser des tendances des totaux ou valeurs numériques dans le temps.
- Les diagrammes chronologiques permettent d'extraire des connaissances sur la tendance d'évolution d'une variable dans le temps.
- matplotlib.pyplot.plot

### **Exemple: Diagramme chronologique**



### **Exemple: Diagrammes chronologiques superposés**

On peut voir la tendance d'évolution de nombre d'immigrants d'une année à l'autre pour les trois provenances suivantes : l'Inde, la Chine, le Siri Lanka



### Graphique en aires

- Le graphique en aires représente l'évolution d'une variable quantitative en fonction d'une autre variable quantitative.
- La zone entre l'axe et la ligne est généralement soulignée par des couleurs, des textures ou des hachures.
- Généralement avec un graphique en aires, on compare au moins deux quantités.
- matplotlib.pyplot.plot

### **Exemple: Graphique en aires**

Graphique représentant une comparaison de la variation du nombre d'immigrants provenants de l'inde par rapport au nombre d'immigrants provenant de la chine



## Take-home message....

