Exámen Final: MAT0123

Profesora: Yandira Cuvero

10/07/2017

La prueba tiene una duración de 120 minutos. Resultados sin procedimiento no tendrán calificación. No están permitidos ningún tipo de formularios, calculadora o aparatos electrónicas. Indique claramente sus respuestas. Sólo se pueden realizar preguntas sobre la redacción de los enunciados.

Nombre completo (dos nombres y dos apellidos):

Preguntas:	1	2	3	4	5	6	7	8	9	Total
Puntos:	15	15	15	15	10	15	15	0	0	100
Calificación:										

1. (15 puntos) Identifique el índice de masa corporal de la siguiente persona y de una recomendación nutricional (máximo dos líneas) en base a su clasificación de acuerdo a la siguiente tabla:

ÍNDICE MASA CORPORAL	CLASIFICACIÓN
< 16.00	Infrapeso: Delgadez Severa
16.00 - 16.99	Infrapeso: Delgadez moderada
17.00 - 18.49	Infrapeso: Delgadez aceptable
18.50 - 24.99	Peso Normal
25.00 - 29.99	Sobrepeso
30.00 - 34.99	Obeso: Tipo I
35.00 - 40.00	Obeso: Tipo II
> 40.00	Obeso: Tipo III

donde:

$$IMC = \frac{peso\left(kg\right)}{altura^2\left(metros\right)}$$

La persona pesa 3200 oz = (16*200) oz y tiene una altura de 50 pies.

- 2. (15 puntos) Calcule los siguientes límites:
 - (a) Utilizando la definición de derivada, calcule la derivada de la siguiente función $f(x) = 7x^2 + 5x + 2$.

(b)
$$\lim_{x \to 5} \frac{x^3 - 3x^2 - 13x + 15}{x - 5}$$

(c)
$$\lim_{x \to 1} \frac{\ln(x)}{\sin(x^2 - 1)}$$

- 3. (15 puntos) Calcule las siguientes integrales:
 - (a) $\int \sin(x)\cos(x)dx$

(b)
$$\int_0^1 x^2 + e^x + x^3 dx$$

(c)
$$\int \sin(x^4) 4x^3 dx$$

4. (15 puntos) Calcule los máximos y mínimos de las siguientes funciones:

(a)
$$f(x) = \frac{4}{3}x^3 - 2x^2 - 3x$$

(b)
$$f(x) = e^x + (e^2)x$$

5. (10 puntos) Mediante cobwebing indique los puntos de equilibrio y las características del mismo, si inicia en $m_0=8$ y $m_0=11$:

6. (15 puntos) Una constructora de apartamentos describe su cantidad de ventas de acuerdo a la siguiente tabla:

año	datos
2000	0
2001	5
2002	10
2003	15
2004	20
2005	25
2006	30
2007	35
2008	40
2009	45
2010	50

- (a) Calcule la pendiente de la recta.
- (b) Utilizando la ecuación de la recta, calcule el valor de los datos en 2011 y 2012.
- (c) Comente sobre el futuro de dicha empresa.

7. (15 puntos) Considere un sistema dinámico que varía de acuerdo a la siguiente función de actualización:

$$m_{t+1} = 2m_t - 1$$

Si $m_5 = 0$, calcule:

- (a) m_8 , m_{11} y m_{12} .
- (b) m_3 , m_1 y m_0 .
- 8. (5 puntos extra) Calcule

$$\sin\left(\frac{7}{2}\right) + \cos\left(\frac{11}{2}\right)$$

9. (5 puntos extra) La siguiente gráfico se representa a la función f. Grafique por pasos g(x) = 0.5(f(x - 5) + 3).

