Planche 1.

Exercice 1. Soit u un endomorphisme nilpotent de \mathbb{R}^n . Montrer que $u^n = 0$.

Exercice 2. Soit $A, B \in M_n(\mathbb{C})$ telles que AB = BA et B est nilpotente. Montrer que $\det(A + B) = \det(A)$.

Planche 2.

Exercice 1. Montrer que la famille des $\ln(p)$ pour p premier est libre sur \mathbb{Q} .

Exercice 2. Soit $n \ge 1$ et x_0, \ldots, x_n des réels distincts. Montrer qu'il existe $\lambda_0, \ldots, \lambda_n$ des réels tels que pour tout $P \in \mathbb{R}_n[X]$

$$\int_{-1}^{1} \frac{P(t)}{1+t^2} dt = \sum_{i=0}^{n} \lambda_i P(x_i)$$

Planche 3.

Exercice 1. Calculer le déterminant suivant

$$\begin{vmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & \ddots & 0 \\ 0 & \ddots & \ddots & -1 \\ 0 & 0 & -1 & 1 \end{vmatrix}$$

Exercice 2. Soit p et q deux projecteurs d'un espace vectoriel de dimension finie tels que $\mathsf{Im}(p) \subset \ker(q)$. On pose r = p + q - pq. Montrer que r est un projecteur et calculer son noyau et son image.