(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 15 mars 2001 (15.03.2001)

PCT

(10) Numéro de publication internationale WO 01/18853 A1

(51) Classification internationale des brevets7: H01L 21/18

(21) Numéro de la demande internationale:

PCT/FR00/02468

PC1/FR00/02468

(22) Date de dépôt international:

7 septembre 2000 (07.09.2000)

(25) Langue de dépôt:

français

(26) Langue de publication:

français

(30) Données relatives à la priorité:

99/11224

8 septembre 1999 (08.09.1999) F

(71) Déposant (pour tous les États désignés sauf US): COM-MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31-33, rue de la Fédération, F-75752 Paris 15ème (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (pour US seulement): JAUS-SAUD, Claude [FR/FR]; 6, allée des Tonnelles, F-38240

Meylan (FR). JALAGUIER, Eric [FR/FR]; 205, chemin des Roux, Le Penet, F-38410 Saint-Martin-d'Uriage (FR). MADAR, Roland [FR/FR]; 11, allée des Arcelles, F-38320 Eybens (FR).

(74) Mandataire: LEHU, Jean; Brevatome, 3, rue du Docteur Lancereaux, F-75008 Paris (FR).

(81) États désignés (national): JP, KR, SG, US.

(84) États désignés (régional): brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Publiée:

Avec rapport de recherche internationale.

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: METHOD FOR ELECTRICALLY CONDUCTIVE BONDING BETWEEN TWO SEMICONDUCTOR ELEMENTS

(54) Titre: REALISATION D'UN COLLAGE ELECTRIQUEMENT CONDUCTEUR ENTRE DEUX ELEMENTS SEMI-CONDUCTEURS

(57) Abstract: The invention concerns a method for electrically conductive bonding between a surface of a first semiconductor element (10) and a surface of a second semiconductor element (12) using heat treatment. The method consists in: pressing said surfaces against each other with at least an intermediate layer (11, 15, 16, 13) of a material designed to ensure, after the heat treatment, an electrically conductive bonding between the two surfaces, the deposited layers being selected so that the heat treatment does not cause a reaction product between said material and the semiconductor elements (10, 12); then in carrying out the heat treatment. For example, the first and second semiconductor elements (10, 12) are SiC, the intermediate layer comprising a tungsten film (11, 13) and a silicon film (15, 16), the resulting mixture (14) comprising WSi2.

(57) Abrégé: L'invention concerne un procédé de réalisation d'un collage électriquement conducteur entre une face d'un premier élément semi-conducteur (10) et une face d'un deuxième élément semi-conducteur (12) au moyen d'un traitement thermique. Le procédé consiste à: appliquer lesdites faces l'une contre l'autre avec interposition d'au moins une couche (11, 15, 16, 13) d'un matériau destiné à assurer, après traitement thermique, un collage électriquement

conducteur entre les deux faces, les couches déposées étant choisies pour que le traitement thermique n'induise pas de produit de réaction entre ledit matériau et les éléments semi-conducteurs (10, 12), réaliser ledit traitement thermique. Par exemple, le premier et deuxième élément semi-conducteur (10, 12) est du SiC, l'interposition comprenant une couche de tungstène (11, 13) et une couche de silicium (15, 16), le mélange formé (14) comprenant du WSi2.

REALISATION D'UN COLLAGE ELECTRIQUEMENT CONDUCTEUR ENTRE DEUX ELEMENTS SEMI-CONDUCTEURS

Domaine technique

5

15

20

25

30

35

La présente invention concerne un procédé permettant la réalisation d'un collage électriquement conducteur entre deux éléments semi-conducteurs.

10 Etat de la technique antérieure

Le report d'un film mince de matériau semiconducteur sur un support est souvent utilisé dans le
domaine de la microélectronique. C'est le cas notamment
pour les dispositifs élaborés sur GaAs pour lesquels il
est préférable de disposer d'un substrat constitué d'un
film mince de GaAs sur un support en silicium. Cette
solution apporte plusieurs avantages. Elle permet de
réduire les coûts puisque le GaAs est un matériau cher
par rapport au silicium. Elle permet de simplifier la
mise en œuvre puisque le GaAs est fragile et donc
délicat à manipuler. Elle permet aussi de réduire le
poids des composants, ce qui est un paramètre important
pour les applications spatiales, puisque le silicium
est plus léger que le GaAs.

Un tel report se fait de façon classique par collage par l'intermédiaire d'un oxyde, ce type de collage étant bien maîtrisé. Cependant, ce collage au moyen d'un oxyde présente la particularité d'isoler électriquement le film mince de son support. Or, pour certaines applications, il est nécessaire d'établir une conduction électrique verticale au travers du substrat. C'est le cas notamment des diodes élaborées sur un film de SiC formé sur un support en silicium et des cellules solaires réalisées par dépôt de GaAs sur du silicium.

2

Par ailleurs, certains types de transistors (par exemple les transistors à base perméable ou à base métallique) nécessitent d'avoir une couche métallique enterrée sous la couche de semi-conducteur à partir de laquelle ils sont élaborés. Ce type de couche est difficile à réaliser et le collage conducteur est la solution la plus simple pour réaliser ce type de structure.

Plusieurs solutions ont été proposées pour réaliser un collage conducteur de deux plaques de 10 On peut citer l'article "Buried Cobalt Silicide layers in Silicon Created by Wafer Bonding" de K. LJUNGBERG et al., paru dans J. Electrochem. Soc., Vol. 141, No 10, octobre 1994, pages 2829-2833 Wafer-to-Wafer Temperature Silicon l'article "Low 15 Bonding with Nickel Silicide" de Zhi-Xiong Xiao et al., paru dans J. Electrochem. Soc., Vol. 145, No 4, avril 1998, pages 1360-1362. Toutes ces solutions consistent à former, à partir d'un métal déposé sur les faces des plaques à coller, un siliciure par réaction du métal et 20 du matériau semi-conducteur. Ces solutions présentent la formation D'une part, deux inconvénients. siliciure consomme une partie du film semi-conducteur, ce qui peut être un inconvénient dans le cas de films très minces. D'autres part, il y a diffusion du métal 25 dans le semi-conducteur, ce qui a pour conséquence de dégrader ses propriétés. C'est en particulier le cas si on utilise du nickel. De plus, les composés formés ne sont pas stables à haute température, ce qui limite les possibilités de traitement thermique après réalisation 30 deux aspects peuvent être collage. Ces importants si l'on désire, après le collage, effectuer une épitaxie qui peut mettre en œuvre des températures élevées (de l'ordre de 1600°C dans le cas du SiC).

5

10

15

20

Exposé de l'invention

Afin de remédier aux inconvénients cités ci-dessus, il est proposé selon la présente invention d'utiliser un collage par l'intermédiaire d'une ou de plusieurs couches ne réagissant pas avec au moins l'un des deux matériaux semi-conducteurs à relier électriquement.

L'invention a donc pour objet un procédé de réalisation d'un collage électriquement conducteur entre une face d'un premier élément semi-conducteur et une face d'un deuxième élément semi-conducteur au moyen d'un traitement thermique, consistant à :

- déposer au moins une couche de matériau sur ladite face du premier élément semi-conducteur et au moins une couche de matériau sur ladite face du deuxième élément semi-conducteur, ces couches déposées se combinant lors dudit traitement thermique pour constituer une couche assurant un collage électriquement conducteur entre les deux faces,

- appliquer lesdites faces l'une contre l'autre avec interposition desdites couches de matériau déposées,

ledit traitement thermique, - réaliser 25 caractérisé en ce que la couche de matériau déposée sur ladite face du premier élément semi-conducteur et la couche de matériau déposée sur ladite face du deuxième élément semi-conducteur sont choisies pour réagir en phase solide lors du traitement thermique et former un 30 mélange stable en température respectivement vis-à-vis du premier et du deuxième élément semi-conducteur, le traitement thermique n'induisant pas de produit de réaction entre les matériaux déposés et au moins l'un des éléments semi-conducteurs. 35

5

20

25

30

Selon un mode particulier de mise en œuvre, le matériau de la couche déposée sur la face du premier élément semi-conducteur est distinct du matériau de la couche déposée sur la face du deuxième élément semi-conducteur, le traitement thermique formant un mélange n'induisant pas de produit de réaction avec le premier et le deuxième élément semi-conducteur.

Selon un autre mode particulier de mise en œuvre, l'une des couches de matériau est déposée avec 1.0 une surépaisseur telle qu'une partie de cette couche, en contact avec l'autre couche de matériau, se combine avec l'autre couche de matériau déposée pour former ledit mélange stable, l'autre partie de la couche surépaisseur, contact en une avec 15 l'élément semi-conducteur sur lequel elle est déposée, lors du traitement thermique avec cet réagissant élément semi-conducteur pour former un film de contact ohmique.

Il peut être prévu une couche d'oxyde entre les couches de matériau déposées, l'oxyde étant choisi pour réagir avec au moins un matériau desdites couches déposées, les épaisseurs de la couche d'oxyde et de la couche de matériau avec lequel l'oxyde réagit étant telles que l'oxyde formé se présente sous la forme de précipités isolés qui n'altèrent pas sensiblement le collage électriquement conducteur. Cette couche d'oxyde peut être déposée sur l'une des couches de matériau déposées ou sur les deux, par exemple par une méthode choisie parmi le dépôt sous vide et le dépôt de type sol-gel.

Pour améliorer le collage, les premier et deuxième éléments semi-conducteurs peuvent être pressés l'un contre l'autre lors du traitement thermique.

5

Le collage électriquement conducteur peut résulter d'un mélange de matériaux identiques. A titre d'exemple, le premier élément semi-conducteur est du SiC et le deuxième élément semi-conducteur est du SiC, l'interposition comprenant une couche de tungstène et une couche de silicium sur ladite face du premier élément semi-conducteur et une couche de tungstène et une couche de silicium sur ladite face du deuxième élément semi-conducteur, le mélange formé après le traitement thermique comprenant du WSi2.

5

10

15

20

25

30

Si l'un des éléments semi-conducteurs est le procédé peut comprendre une étape un film mince, préliminaire consistant à définir ce film mince comme couche superficielle d'un substrat, destinée à être séparée du reste du substrat. Selon un premier exemple l'étape préliminaire, lors de réalisation. substrat est formé par empilement d'un support, d'une couche sacrificielle et du film mince, la séparation du film mince du reste du substrat étant obtenue, après réalisation du collage, par dissolution de la couche de exemple deuxième un Selon sacrificielle. réalisation, lors de l'étape préliminaire, mince est délimité dans un substrat par une couche de implantation ionique, obtenue par microcavités séparation du film mince du reste du substrat étant consécutive au traitement thermique de collage ou à un encore thermique spécifique ou traitement l'application de forces mécaniques ou à la combinaison d'un traitement thermique et de l'application de forces mécaniques.

Brève description des dessins

L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture

6

de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :

- les figures 1A à 1D illustrent un premier exemple de réalisation d'un collage électriquement conducteur entre deux éléments semi-conducteurs, selon le procédé de l'invention,

5

10

15

35

- les figures 2A à 2E illustrent un deuxième exemple de réalisation d'un collage électriquement conducteur entre deux éléments semi-conducteurs, selon le procédé de l'invention,
- les figures 3A à 3D illustrent un troisième exemple de réalisation d'un collage électriquement conducteur entre deux éléments semi-conducteurs, selon le procédé de l'invention.

Description détaillée de modes de réalisation de l'invention

L'invention propose de réaliser un collage par l'intermédiaire de couches qui ne réagissent pas avec l'un ou l'autre des éléments semi-conducteurs à relier électriquement.

Selon l'invention, les matériaux interposés
25 entre les deux éléments à coller réagissent lors du
traitement thermique pour former un mélange stable visà-vis de ces éléments à des températures importantes et
notamment supérieures à celle du traitement thermique.
Cette stabilité à haute température est
particulièrement importante lorsque les éléments sont
en SiC et que l'un d'entre eux doit subir une épitaxie.

Le procédé selon l'invention ne nécessite pas l'utilisation d'une barrière de diffusion bien qu'une barrière de diffusion puisse être quand même utilisée.

7

Préférentiellement, les matériaux interposés sont :

-W (ou composé à base de W)/Si,

-W (ou un composé à base de W)/Si/W (ou un composé à base de W).

5

10

15

20

25

30

35

Les épaisseurs des couches interposées sont que la totalité des généralement paramétrées pour matériaux de ces couches interagissent pour former un nouveau matériau stable. Cependant, dans certains cas, il peut être avantageux d'utiliser au moins une couche présentant une surépaisseur. matériau réagit alors matériau surépaisseur de traitement thermique à haute température avec l'élément avec lequel elle est en contact pour former un film de contact ohmique.

A titre d'exemple, pour des éléments à coller en SiC et des couches interposées en W et Si, pour que la totalité des couches interposées réagisse, le rapport de l'épaisseur totale de la ou des couches de Si avec l'épaisseur totale de la ou des couches de W doit être égal ou voisin de 2,5 pour obtenir une couche homogène de WSi₂. Pour disposer d'une surépaisseur apte à réagir, il faut se placer légèrement en dessous de 2,5. Ceci permet d'avoir un film mince à base de WSi et WC qui est stable aussi à haute température.

Selon une approche cinétique, on utilise des couches qui ne sont stables thermo-dynamiquement avec l'un ou l'autre des matériaux semi-conducteurs aux températures utilisées lors de la réalisation des dispositifs, et lors de leur utilisation, qu'après le traitement thermique de collage des deux éléments semi-conducteurs. Par exemple, dans le cas du report de carbure de silicium sur du carbure de silicium, on peut utiliser les empilements suivants: élément en SiC/couche de W/couche de Si-couche de Si/couche de

5

10

15

20

25

30

35

W/SiC, le silicium pouvant être amorphe ou cristallin. Lors du traitement thermique, le tungstène réagit avec le silicium pour former du WSi2. Pour une structure SiC/W (épaisseur 0,1 $\mu m)/Si$ (épaisseur 0,25 $\mu m)-Si$ (épaisseur 0,25 $\mu m)/W$ (épaisseur 0,1 $\mu m)/SiC$, on obtient SiC/WSi2/SiC. La réaction se produit à partir de 650°C, en impliquant la réaction du silicium avec le tungstène, sans consommation du film mince de SiC et le système est stable à plus de 1600°C.

à 1D des figures 1A Les transversales qui illustrent un premier exemple de mise en œuvre du procédé selon l'invention pour lequel le collage est réalisé selon une approche cinétique. La figure 1A montre une plaque 10 en SiC recouverte successivement d'une couche 11 de tungstène et d'une couche 15 de silicium. La figure 1B montre une plaque 12 de SiC recouverte successivement d'une couche 13 de tungstène et d'une couche 16 de silicium. La figure 10 montre l'association des structures représentées aux figures 1A et 1B, ces structures étant mises en contact par leurs couches 15 et 16. Après traitement thermique à partir de 650°C, on obtient l'assemblage représenté à la figure 1D. La plaque 10 en SiC est reliée par un collage électriquement conducteur à la plaque 12 en SiC grâce à la couche intermédiaire 14 formée entre les deux plaques et comprenant du WSi_2 .

Un tel collage électriquement conducteur peut être utilisé pour coller un film mince semiconducteur sur un support semi-conducteur. Afin d'obtenir ce film mince on peut réduire l'épaisseur de l'une des deux plaques collées. Ceci présente deux inconvénients majeurs. D'une part il est difficile d'obtenir un film mince homogène en épaisseur et, d'autre part, il y a perte du reste de plaque semiconductrice fournissant ce film. La présente invention

permet également de remédier à ces inconvénients. Une première solution met en œuvre une couche sacrificielle. Une seconde solution met en œuvre une méthode de clivage après implantation ionique.

5

10

15

20

25

30

35

à 2E sont des vues figures 2A Les réalisation la illustrent qui transversales collage électriquement conducteur, selon une approche cinétique, entre une plaque semi-conductrice de SiC et film mince en SiC obtenu par dissolution d'une couche sacrificielle. La figure 2A montre une plaque 30 en silicium recouverte d'une couche 31 d'oxyde ou de servira de couche aui silicium de nitrure sacrificielle 31 couche est sacrificielle. La recouverte successivement d'une couche 32 en SiC, qui fournira le film mince, d'une couche 33 de tungstène et d'une couche 37 de silicium. La figure 2B montre une recouverte d'une couche plaque 34 de SiC tungstène et d'une couche 38 en silicium. La figure 20 montre l'association des structures représentées aux figures 2A et 2B, ces structures étant mises en contact par leurs couches 37 et 38. Après traitement thermique à partir de 650°C, on obtient l'assemblage représenté à la figure 2D. La couche 32 en SiC est reliée par un collage électriquement conducteur à la plaque 34 en SiC grâce à la couche intermédiaire 36 constituée de WSi_2 . La couche sacrificielle est ensuite dissoute par une technique connue de l'homme de l'art. On obtient d'une part la structure représentée à la figure 2E, c'est-àdire un film mince de SiC collé par une liaison électrique à un support en SiC, et d'autre part une plaque de silicium réutilisable.

Les figures 3A à 3D sont des vues transversales qui illustrent la réalisation d'un collage électriquement conducteur, selon une approche cinétique, entre une plaque semi-conductrice de SiC et

5

10

15

20

25

30

35

par clivage après SiC obtenu en film mince un implantation ionique. La figure 3A montre une plaque 50 en SiC dans laquelle une couche 51 de microcavités a été engendrée par implantation ionique, au travers de l'une des faces de la plaque 50, selon la technique divulguée par le document FR-A-2 681 472. Une couche 52 de tungstène et une couche 57 de silicium ont été successivement déposées sur la face implantée de la plaque 50. La figure 3B montre une plaque 53 de SiC recouverte d'une couche 54 en tungstène et d'une couche 58 en silicium. La figure 3C montre l'association des structures représentées aux figures 3A et structures étant mises en contact par leurs couches 57 thermique, on traitement 58. Après et l'assemblage représenté à la figure 3D. Le traitement thermique a provoqué le clivage de la plaque 50 le long de la couche de microcavités. Il subsiste un film mince collage un électriquement SiC relié par conducteur à la plaque 53 en SiC grâce à la couche intermédiaire 56 comprenant du WSi2. Le reste de la plaque 50 peut alors être réutilisé.

De façon avantageuse, afin d'améliorer le collage, on peut appliquer une pression entre les structures assemblées. On peut aussi, conjointement ou non, utiliser une fine couche d'oxyde sur la surface d'au moins l'une des structures pour diminuer la pression nécessaire pour le collage, voire l'annuler. Cette couche d'oxyde doit être suffisamment fine (quelques angströms) et apte à interagir avec au moins l'un des matériaux de collage pour former à l'issue du procédé des précipités qui ne feront pas obstacle à la conduction électrique. Lors du traitement thermique, la fine couche d'oxyde réagit avec le métal qui lui est présenté, si celui-ci est suffisamment électropositif, pour former des oxydes métalliques qui se présentent

précipités isolés. C'est la forme de sous particulier le cas du titane qui réagit avec l'oxyde SiO₂ pour former TiO₂ en libérant du silicium. Ainsi, un empilement SiC/SiO_2 (de 0,01 μm d'épaisseur)- SiO_2 (de 0,01 μm d'épaisseur)/Ti (de 0,1 μm d'épaisseur)/Si fournit la structure SiC/(TiSi₂ + TiO_x)/Si. La réaction se produit à 1000°C, en impliquant la réaction du silicium avec le titane et la réduction du SiO_2 par le titane, sans consommation du film mince de SiC. Le SiO_2 doit être mince pour que le TiO_2 ne forme pas de couche continue. Le système est stable jusqu'à 1330°C (limité par la formation d'un eutectique entre TiSi2 et Si à cette température).

5

10

La description faite ci-dessus peut s'appliquer au collage d'autres éléments. Ainsi par exemple on peut coller une couche de GaN épitaxiée sur un substrat de saphir ou de SiC avec un substrat de SiC en interposant au moins deux couches de matériaux, respectivement de W et de Si.

PCT/FR00/02468

5

10

35

REVENDICATIONS

- 1. Procédé de réalisation d'un collage électriquement conducteur entre une face d'un premier élément semi-conducteur (10, 32, 55) et une face d'un deuxième élément semi-conducteur (12, 34, 53,) au moyen d'un traitement thermique, consistant à :
- déposer au moins une couche de matériau sur ladite face du premier élément semi-conducteur et au moins une couche de matériau sur ladite face du deuxième élément semi-conducteur, ces couches déposées se combinant lors dudit traitement thermique pour constituer une couche assurant un collage électriquement conducteur entre les deux faces,
- appliquer lesdites faces l'une contre l'autre avec interposition desdites couches de matériau déposées,
- traitement thermique, ledit - réaliser caractérisé en ce que la couche de matériau (11, 15, 33, 37, 52, 57) déposée sur ladite face du premier 20 élément semi-conducteur et la couche de matériau (13, 16, 35, 38, 54, 58) déposée sur ladite face du deuxième élément semi-conducteur sont choisies pour réagir en phase solide lors du traitement thermique et former un mélange stable en température respectivement vis-à-vis 25 du premier (10, 32, 55) et du deuxième (12, 34, 53) semi-conducteur, le traitement thermique élément n'induisant pas de produit de réaction entre matériaux déposés et au moins l'un des éléments semiconducteurs. 30
 - 2. Procédé selon la revendication 1, caractérisé en ce que le matériau de la couche déposée sur la face du premier élément semi-conducteur est distinct du matériau de la couche déposée sur la face

du deuxième élément semi-conducteur, le traitement thermique formant un mélange n'induisant pas de produit de réaction avec le premier et le deuxième élément semi-conducteur.

5

10

15

30

35

- 3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'une des couches de matériau est déposée avec une surépaisseur telle qu'une partie de cette couche, en contact avec l'autre couche de matériau, se combine avec l'autre couche de matériau déposée pour former ledit mélange stable, l'autre partie de la couche déposée avec une surépaisseur, en contact avec l'élément semi-conducteur sur lequel elle est déposée, réagissant lors du traitement thermique avec cet élément semi-conducteur pour former un film de contact ohmique.
- 4. Procédé selon la revendication 1, caractérisé en ce qu'il est prévu une couche d'oxyde entre lesdites couches de matériau déposées, l'oxyde étant choisi pour réagir avec au moins un matériau desdites couches déposées, les épaisseurs de la couche d'oxyde et de la couche de matériau avec lequel l'oxyde réagit étant telles que l'oxyde formé se présente sous la forme de précipités isolés qui n'altèrent pas sensiblement le collage électriquement conducteur.
 - 5. Procédé selon la revendication 4, caractérisé en ce que ladite couche d'oxyde est déposée sur l'une des couches de matériau déposées ou sur les deux.
 - 6. Procédé selon la revendication 1, caractérisé en ce que les premier et deuxième éléments semi-conducteurs sont pressés l'un contre l'autre lors du traitement thermique.

14

la 7. Procédé selon revendication 1, caractérisé en ce que le premier élément semiconducteur est du SiC et le deuxième élément semiconducteur est du SiC, l'interposition comprenant une couche de tungstène et une couche de silicium ladite face du premier élément semi-conducteur et une couche de tungstène et une couche de silicium sur ladite face du deuxième élément semi-conducteur, le mélange formé après le traitement thermique comprenant du WSi2.

5

10

- 8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, l'un des éléments semi-conducteurs étant un film mince (32, 55), le procédé comprend une étape préliminaire consistant à définir ce film mince comme couche superficielle d'un substrat, destinée à être séparée du reste du substrat.
- 9. Procédé selon la revendication 8, caractérisé en ce que, lors de l'étape préliminaire, le substrat est formé par empilement d'un support (30), d'une couche sacrificielle (31) et du film mince (32), la séparation du film mince du reste du substrat étant obtenue, après réalisation du collage, par dissolution de la couche sacrificielle (31).
- 10. Procédé selon la revendication 8, caractérisé en ce que, lors de l'étape préliminaire, le film mince est délimité dans un substrat (50) par une couche de microcavités (51) obtenue par implantation ionique, la séparation du film mince du reste du substrat étant consécutive au traitement thermique de collage ou à un traitement thermique spécifique ou encore à l'application de forces mécaniques ou à la

15

combinaison d'un traitement thermique et de l'application de forces mécaniques.

1/3

FIG. 1 A

FIG. 1B

FIG. 1C

FIG. 1D

2/3

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

INTERNATIONAL SEARCH REPORT

Interns .ial Application No PCT/FR 00/02468

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 H01L21/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 - H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

INSPEC, COMPENDEX, EPO-Internal, WPI Data, PAJ

C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	SHIEH C L ET AL: "A 1.3 mu m ridge waveguide laser on GaAs and substrates by thin-film transfer THIRD INTERNATIONAL CONFERENCE (PHOSPHIDE AND RELATED MATERIALS UK, 8 - 11 April 1991, pages 272-2 XP002140746 IEEE, New York, USA ISBN: 0-87942-626-8 the whole document	nd silicon c" ON INDIUM , CARDIFF,	9
X Furti	ner documents are listed in the continuation of box C.	X Patent family members are li	isted in annex.
Special ca	tegories of cited documents :	*T* later document published after the	international filing date
consid	ent defining the general state of the art which is not ered to be of particular relevance document but published on or after the international	or priority date and not in conflict cited to understand the principle invention	with the application but

.C.	other means		or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
P	document published prior to the international filing date but later than the priority date claimed	'&'	in the art. document member of the same patent family
Dat	te of the actual completion of the international search		Date of mailing of the international search report

27 November 2000 04/12/2000

Name and mailing address of the ISA

European Palent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Authorized officer

Köpf, C

INTERNATIONAL SEARCH REPURI

Intern. .ial Application No PCT/FR 00/02468

		PCT/FR 00/02468		
`	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	10.000		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
Х	LU Y ET AL: "Eutectic bonding for inducing in-plane strain in GaAs and GaAs-AlGaAs MQW thin films" ADVANCED METALLIZATION FOR DEVICES AND CIRCUITS - SCIENCE, TECHNOLOGY AND MANUFACTURABILITY SYMPOSIUM, SAN FRANCISCO, CA, USA, 4 - 8 April 1994, pages 607-612, XP000921252 Mater. Res. Soc, Pittsburgh, PA, USA page 608	1,6,8		
X	EP 0 587 996 A (MOTOROLA INC) 23 March 1994 (1994-03-23) column 1, line 7 -column 3, line 37; figure 1	1,2		
X	US 5 441 911 A (MALHI SATWINDER)	1,6		
A	15 August 1995 (1995-08-15)	7		
	column 4, line 13 -column 5, line 5; figure 5			
X	WOLFFENBUTTEL R F: "Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond" SENSORS AND ACTUATORS A (PHYSICAL), vol. A62, no. 1-3, July 1997 (1997-07), pages 680-686, XP004119709 Elsevier, Switzerland	1		
A	ISSN: 0924-4247 page 684, left-hand column	4		

.... ERGERT TOTAL SEARCH REFURI

Information on patent family members

Intern. .nal Application No PCT/FR 00/02468

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
EP 0587996	A	23-03-1994	US DE DE JP US	5369304 A 69315929 D 69315929 T 6112148 A 5567649 A	29-11-1994 05-02-1998 18-06-1998 22-04-1994 22-10-1996
US 5441911	Α	15-08-1995	US	5349207 A	20-09-1994

RAPPORT DE RECHERCHE INTERNATIONALE

Demai. Internationale No PCT/FR 00/02468

A. CLASSEMENT	DE L'OB	JET DE	LA	DEMANDE
CIB 7 H	01L21/	′18		

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultee (système de classification suivi des symboles de classement) ${\tt CIB}\ 7\ {\tt H01L}$

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relevent des domaines sur lesquels a porté la recherche

Base de données electronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)
INSPEC, COMPENDEX, EPO-Internal, WPI Data, PAJ

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	SHIEH C L ET AL: "A 1.3 mu m InGaAsP ridge waveguide laser on GaAs and silicon substrates by thin-film transfer" THIRD INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS, CARDIFF, UK, 8 - 11 avril 1991, pages 272-275, XP002140746 IEEE, New York, USA ISBN: 0-87942-626-8 le document en entier -/	9

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
'A' document définissant l'état général de la technique, non considéré comme particulièrement pertinent 'E' document antérieur, mais publié à la date de dépôt international ou après cette date 'L' document pouvant jeter un doute sur une revendication de profité ou cité nour déterminer la date de publication d'une	T* document ultérieur publié après la date de dépôt international ou la date de priorité et n'apparlenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y* document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres document de même nature, cette combinaison étant évidente pour une personne du métier &* document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 27 novembre 2000	Date d'expédition du présent rapport de recherche internationale $04/12/2000$
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Köpf, C

RAPPORT DE RECHERCHE INTERNATIONALE

Demar. Internationale No PCT/FR 00/02468

		rC1/FK	00/02468
	OCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités, avec, le cas échéant, l'indicationdes passages p	ertinents	no. des revendications visées
X	LU Y ET AL: "Eutectic bonding for inducing in-plane strain in GaAs and GaAs-AlGaAs MQW thin films" ADVANCED METALLIZATION FOR DEVICES AND CIRCUITS - SCIENCE, TECHNOLOGY AND MANUFACTURABILITY SYMPOSIUM, SAN FRANCISCO, CA, USA, 4 - 8 avril 1994, pages 607-612, XP000921252 Mater. Res. Soc, Pittsburgh, PA, USA page 608		1,6,8
X	EP 0 587 996 A (MOTOROLA INC) 23 mars 1994 (1994-03-23) colonne 1, ligne 7 -colonne 3, ligne 37; figure 1		1,2
X	US 5 441 911 A (MALHI SATWINDER)		1,6
Α	15 août 1995 (1995-08 - 15)		7
	colonne 4, ligne 13 -colonne 5, ligne 5; figure 5		
X	WOLFFENBUTTEL R F: "Low-temperature intermediate Au-Si wafer bonding; eutectic or silicide bond" SENSORS AND ACTUATORS A (PHYSICAL), vol. A62, no. 1-3, juillet 1997 (1997-07), pages 680-686, XP004119709 Elsevier, Switzerland ISSN: 0924-4247		1
Α	page 684, colonne de gauche		4

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Demai internationale No PCT/FR 00/02468

Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
EP 0587996	A	23-03-1994	US DE DE JP US	5369304 A 69315929 D 69315929 T 6112148 A 5567649 A	29-11-1994 05-02-1998 18-06-1998 22-04-1994 22-10-1996
US 5441911	A	15-08-1995	US	5349207 A	20-09-1994