On the Game Push

Max Fan

January 21, 2021

For the following lemmas, I'm considering all games in which left has a winning strategy (values > 0). By swapping \underline{L} and \underline{R} , you can get the same results for \underline{R} and thus for all valid positions of the game.

Notation:

- Each literal symbol will be underlined (\underline{L} or \underline{R})
- \mathbb{X}_n represents, without loss of generality any sequence of characters or spaces of length n. \mathbb{X}'_n represents the sequence \mathbb{X} with the rightmost space removed, if one exists. If a rightmost space does not exist, then $\mathbb{X}_n = \mathbb{X}'_n$
- ullet Upper case symbols (like $G,\ A,\ {\rm and}\ B$) represent sequences/game states
- Greek symbols will be used to denote a single character, that can either be <u>L</u>, <u>R</u>, or _.
- The entire game state will be completely underlined (e.g. <u>LLR</u>)
- "+" means concatenation of a sequence

The evaluation of a sequence will be denoted like so, where G is the current game state and the number preceding the colon is the square being pushed:

$$G := \underline{LLR}$$

$$G_0 : \underline{LLR} \to \underline{LR}$$

$$G_1 : \underline{LLR} \to \underline{LR}$$

$$G_2 : \underline{LLR} \to \underline{LR}$$

The game is zero-indexed and always ends in \underline{R} or \underline{L} . Different game positions can be compared like so:

$$G > G_1 \ge G_2$$

Lemmas

Left Accessibility Axiom (done)

If one game position Q is accessible from another game position P, ending in \underline{L} , by a series of moves, then P > Q.

Rationale: Whenever a move is played, by \underline{L} or \underline{R} , the value of the game is always closer to zero.

Right Accessibility Axiom (done)

If one game position Q is accessible from another game position P, ending in \underline{R} , by a series of moves, then P < Q.

Rationale: Whenever a move is played, by \underline{L} or \underline{R} , the value of the game is always closer to zero.

Negation Axiom (done)

Swapping all values of \underline{L} and \underline{R} in the game state is logically equivalent to negating the value of the game.

Left Reduction Lemma (done)

If X_n has spaces and ends in \underline{L} , then:

$$X_n > X_n'$$

If \mathbb{X}_n has no spaces and ends in \underline{L} , then:

$$X_n = X_n'$$

Right Reduction Lemma (done)

If \mathbb{X}_n has spaces and ends in \underline{R} , then:

$$X_n < X_n'$$

If \mathbb{X}_n has no spaces and ends in \underline{R} , then:

$$X_n = X_n'$$

Same-Length Concat Lemma

If P>Q and P and Q are of the same length and A ends in \underline{L} , then P+A>Q+A. Proof.

Starting from the rightmost square, if P > Q then $P \neq Q$ and P and Q must differ at a location n. Let $P = P_1 + \underline{\alpha} + A$ and $Q = Q_1 + \underline{\beta} + A$ where β is the symbol at the location n where P and Q differ. By construction, $\underline{\alpha} \neq \underline{\beta}$. Suppose for contradiction that $\underline{\alpha} < \underline{\beta}$. Then,

Suppose P is positive. Q is either positive, zero, or negative. If zero, done.

General Prepend Lemma (done)

If A ends in \underline{L} , then for any characters $\underline{\alpha}$ and $\underline{\beta}$ such that $\underline{\alpha} > \underline{\beta}$, then $P := \underline{\alpha} + A > Q := \underline{\beta} + A$. Proof.

There are six cases to examine since $\underline{\alpha}$ and β can either be \underline{L} , \underline{R} , $\underline{}$:

- $\underline{\alpha} = \underline{L}, \underline{\beta} = \underline{\underline{\hspace{0.1cm}}}$ In this case, $P_0 : \underline{\underline{\alpha} + A} \to \underline{\underline{\beta} + A}$, so P > Q by the left accessibility axiom.
- $\underline{\alpha} = \underline{}, \ \underline{\beta} = \underline{R}$ In this case, we want to show that P > Q. It is equivalent to show -Q > -P. By the negation axiom, -Q and -P both end in \underline{R} . -Q and -P only differ at the zeroth place. \$\$

Previous proof of this point: In this case, Q has more \underline{R} values than P and the same number and location of \underline{L} values. Since right has more moves available in Q than in P, P > Q (TODO: better justification).

• $\underline{\alpha} = \underline{L}, \underline{\beta} = \underline{R}$ From the first case and the second case and the transitive property, P > Q follows.

In all three cases, P > Q, so necessarily, P > Q.

Append Lemma (unproven)

For any sequence of characters (empty or not), X_n :

$$\underline{\mathbb{X}_n}\underline{L} > \underline{\mathbb{X}_n}$$

Prepend Lemma (WIP)

For any sequence of characters (empty or not), X_n :

$$P := \underline{\mathbb{X}_n \underline{L}} > Q := \underline{\mathbb{X}_n \underline{L}}$$

Proof.

Suppose that \mathbb{X}_n does not contain spaces. Then,

$$P_n: \underline{\mathbb{X}_n\underline{L}} \to \underline{\mathbb{X}_n\underline{L}}$$

So, $P_n = Q$ and Q is accessible from P. Therefore, by the left accessibility axiom, P > Q.

Suppose that \mathbb{X}_n does contain spaces. Then, $\underline{\mathbb{X}_n\underline{L}} \to \underline{\mathbb{X}'_n\underline{L}}$. Without loss of generality, split \mathbb{X}_n by its rightmost space. Define $\mathbb{X}_n = A + \underline{} + B$ where \mathbb{X}_b contains no spaces. Then, $\mathbb{X}'_n = A + B$

 X_n either contains or does not contain spaces, so by disjunction elimination, the lemma holds.

Scratch (problematic because it depends on the concat lemma): Suppose that \mathbb{X}_n does contain spaces. Then, $\underline{\mathbb{X}_n\underline{L}} \to \underline{\mathbb{X}'_n\underline{L}}$. By the left reduction lemma, since the sequence \mathbb{X}_n has spaces, $\mathbb{X}_n > \overline{\mathbb{X}'_n}$.

The Fundamental Theorem of Push

Statement: For any given game, pushing the leftmost piece is always the optimal move.

A valid game ends in either \underline{L} or \underline{R} . We first induct over all games that end in \underline{L} .

Base case: Pushing the first \underline{L} is the optimal move in the game: \underline{LL} . Inductive hypothesis: Given any sequence of character(s) \mathbb{X} , the most

Acknowledgements

Sophie Vulpe provided excellent feedback and encouragement.