Cohomology theory of monoids with a single defining relation

Robert D. Gray¹ (joint work with B. Steinberg (City College of New York))

From permutation groups to model theory: a workshop inspired by the interests of Dugald Macpherson, on the occasion of his 60th birthday ICMS, Edinburgh, September 2018

¹Research supported by the EPSRC grant EP/N033353/1 "Special inverse monoids: subgroups, structure, geometry, rewriting systems and the word problem".

One-relator groups and monoids

	One-relator groups $\langle A \mid r \rangle = FG(A)/\langle r \rangle$	One-relator monoids $\langle A \mid u = v \rangle$
Word problem	Magnus 1932	? (Some special cases solved by Adjan, Oganesyan, Lallament)
Topological & homological properties	Lyndon 1950	RG & Steinberg 2018

Lyndon says:

"Magnus has solved the word problem in the case of a single defining relation. A complementary problem is that of determining *all identities among the relations*. The main theorem of this paper solves this problem."

Groups and topology

X - a space (path connected)

Fundamental group

 $\pi_1(X) = \{ \text{ homotopy classes of loops } \}$

Higher homotopy groups

 $\pi_n(X) = \{ \text{ homotopy classes of }$ maps $S^n \to X \}$ S^n the *n*-sphere

X is called aspherical if $\pi_n(X)$ is trivial for $n \neq 1$.

Theorem (Hurewicz (1936)) An aspherical space is determined up to homotopy equivalence by its fundamental group.

Classifying spaces of groups

CW complex - a space equipped with a sequence of subspaces

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \dots$$

The *n*-skeleton X_n is obtained from X_{n-1} by attaching *n*-cells B^n via maps $\varphi : S^{n-1} \to X_{n-1}$.

Definition

A classifying space Y for a group G is an aspherical CW complex with fundamental group G.

• Classifying spaces exist and are unique up to homotopy equivalence.

Whitehead theorem implies: a CW complex is aspherical ⇔ its universal cover is contractible.

If *Y* is a classifying space for *G* then the universal cover of *Y* is a free *G*-CW complex which is contractible.

Free group

$$G = \langle \alpha_3 b | \rangle = FG(\alpha_3 b)$$

Bouquet of

Classifying space Y for G

Universal cover X is a contractible free G-CW complex

Free abelian group

$$G = G_p \langle a,b | aba'b'=i \rangle \cong \mathbb{Z} \times \mathbb{Z}$$

Classifying space Y for G

Universal cover $X = \mathbb{R}^2$ is a contractible free G-CW complex

Finiteness properties

Geometric dimension

 $\operatorname{gd} G$ is the minimum dimension of a classifying space for G

- ▶ $gdG = 1 \Leftrightarrow G$ is a non-trivial free group.
- $gd(\mathbb{Z} \times \mathbb{Z}) = 2$ and more generally $gd(\mathbb{Z})^n = n$.

Property F_n (C. T. C. Wall (1965))

G is of type F_n if there is a classifying space with only finitely many *k*-cells for each $k \le n$.

- G is of type $F_1 \Leftrightarrow$ it is finitely generated.
- G is of type $F_2 \Leftrightarrow$ it is finitely presented.
- ▶ $\mathbb{Z} \times \mathbb{Z}$ is of type F_{∞} (finitely many cells in every dimension).

Corresponding homological finiteness properties:

cohomological dimension $\operatorname{cd} G$ & property FP_n .

The word problem

Definition

A monoid M with a finite generating set A has decidable word problem if there is an algorithm which for any two words $w_1, w_2 \in A^*$ decides whether or not they represent the same element of M.

```
Example. M = \langle a, b \mid ba = ab \rangle has decidable word problem. Normal forms = \{a^i b^j : i, j \ge 0\}.
```

Some history

There are finitely presented monoids / groups with undecidable word problem.

 Markov (1947) and Post (1947), Turing (1950), Novikov (1955) and Boone (1958)

Theme. Study interesting classes with decidable word problem e.g.

hyperbolic groups

- automatic groups
- finite complete presentations

Connection to topology. Groups / monoids in these classes are all type F_{∞} .

Finiteness properties of monoids

Definition (RG & Steinberg (2017))

An equivariant classifying space for a monoid *M* is a free *M*-CW complex which is contractible.

• Equivariant classifying spaces exist and are unique up to *M*-homotopy equivalence.

Geometric dimension

gdM is the minimum dimension of an equivariant classifying space for M.

Property F_n

M is of type F_n if there is an equivariant classifying space X for M such that the set of k-cells is a finitely generated free M-set for all $k \le n$.

One-relator monoids

Longstanding open problem

Is the word problem decidable for one-relation monoids $\langle A \mid u = v \rangle$?

Related open problem

Does every one-relation monoid $\langle A \mid u = v \rangle$ admit a finite complete presentation?

If yes then every one-relation monoid would be of type F_{∞} .

This motivates the following question of Kobayashi (2000)

Question: Is every one-relator monoid $\langle A \mid u = v \rangle$ of type F_{∞} ?

One relator groups

Magnus (1932): Proved one-relator groups have decidable word problem.

Theorem (Lyndon 1950)

Let $G = \langle A \mid r = 1 \rangle$ be a one-relator group. Then

- (a) G is of type F_{∞} and
- (b) If r is not a proper power then $\operatorname{gd} G \leq 2$, otherwise $\operatorname{gd} G = \infty$. i.e. torsion free one-relator groups have geometric dimension at most 2.

For (b) Lyndon proved that the presentation 2-complex X of any torsion free one-relator group $G = \langle A \mid r = 1 \rangle$ is aspherical and thus is a classifying space for G.

X has a single 0-cell, a 1-cell for each generator $a \in A$, and a single 2-cell with boundary reading the word r.

One-relator monoids

We obtain a positive answer to the question of Kobayahi (2000).

Theorem (RG & Steinberg 2018)

Every one relator monoid $\langle A \mid u = v \rangle$ is of type F_{∞} .

Our methods also allow us to prove:

Theorem (RG & Steinberg 2018)

Let M be a monoid defined by a one-relator presentation $\langle A \mid u = v \rangle$. Suppose without loss of generality that $|v| \le |u|$. Let $z \in A^*$ be the longest word which is a prefix and a suffix of both u and of v. Then

- (i) $gd(M) = \infty$ if M has a maximal subgroup with torsion; and
- (ii) $gd(M) \le 2$ if and only if M is torsion free and either z is the empty word or z = v.

$$M = \langle A \mid u = 1 \rangle$$
 G - group of units

 $P(M, A)$
 $R \cong G * C^*$