

HW2

Speaker: Alan

Advisor: Prof. An-Yeu Wu

Date: 2022/09/20

Roofline Visual Performance Model

- A simple performance model : Execution vs. Data Transfer
- Three key factors
 - System Spec (Hardware Level)
 - Computation : peak floating point performance
 - Floating-point ops /sec
 - Memory: peak memory bandwidth
 - > Bytes per sec
 - Program characteristics (Algorithm Level)
 - Arithmetic intensity : Floating-Point Ops/ byte
 - Ratio of floating-point operations in a program to the number of data types accessed by a program from main memory

Simplistic view

Max. Performance P_{peak}

Execution units

Memory (Data Source/Sink)

- How fast can tasks be processed?
- The Bottleneck:
 - The execution of Work:
 - $\triangleright P_{peak}$ [flops : flop/s]
 - The data path
 - $\triangleright I * b_s$ [flop/byte * byte/s]
 - > *I* : Arithmetic Intensity
- Roofline Model Equation

$$P = \min(P_{peak}, I * bs)$$

Roofline Diagram

Roofline Analysis

- The Roofline model gives an upper bound to performance.
 - Need some techniques to achieve the ceiling

*TLP : Thread-Level Parallelism ILP : Instruction-Level Parallelism

HW2 – Roofline Model

TPU Example

Peak Performance:

$$64 * 1024 * 2 * 700 * 10^6 = 91.7504 Tops$$

Number of PE MAC Frequency

Bandwidth:

$$30 * \frac{2^{30}}{10^9} = 32.2GB/s$$

HW2 – Roofline Model

Operational Intensity: Ops/weight byte (log scale)

Roofline Model: TPU

Application	CNN0	CNN1
Array active cycles	78.2%	46.2%
Useful MACs in 64K matrix (% peak)	78.2%	22.5%
Unused MACs	0.0%	23.7%
Weight stall cycles	0.0%	28.1%
Weight shift cycles	0.0%	7.0%
Non-matrix cycles	21.8%	18.7%
RAW stalls	3.5%	22.8%
Input data stalls	3.4%	0.6%
TeraOps/sec (92 Peak)	86.0	14.1

Low Utilization

Operational Intensity: Ops/weight byte (log scale)

- Fully connected layer is less operation-intensive than convolution layer.
- CNN1 has some layers with shallow feature depths.
 - Utilization is not high
 - The actual efficiency is far away from ceiling

Problem 1 (20 points)

- Recap the concept of arithmetic intensity (AI)
 - Compare and discuss the arithmetic intensity of <u>LSTM</u>, <u>MLP</u>, and <u>CNN</u>

Operational Intensity: Ops/weight byte (log scale)

Problem 2 (20 points)

- Goal
 - Understand the meaning of the roofline model
 - Adjust the roofline according to different specification
- Plot the roofline curve if the TPU has upgraded its PE array
 - From 256x256 to 320x320

Operational Intensity: Ops/weight byte (log scale)

Problem 3 (60 points)

- Goal
 - Understand the meaning of the roofline model
 - Adjust the roofline according to different specification
- Plot the roofline model if we change the hardware
 - CPU (Haswell), GPU (Nvidia K80), and TPU

Model		Die								Benchmarked Servers					
	mm²	$m^2 \mid nm \mid \Lambda$	MHz	TDP	Measured		TOPS/s		GB/s	On-Chip	Dias	es DRAM Size	TDP	Measured	
					Idle	Busy	8b	FP	GD/S	Memory	Dies	DKAM Size	IDP	Idle	Busy
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB	2	256 GiB	504W	159W	455W
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W	1	2.8	160	8 MiB	8	256 GiB (host) + 12 GiB x 8	1838W	357W	991W
TPU	NA*	28	700	75W	28W	40W	92		34	28 MiB	4	256 GiB (host) + 8 GiB x 4	861W	290W	384W

Requirements

- The report should be merged as a single pdf file and uploaded to NTU COOL.
 - Example of filename: AVLSI_HW2_d09943011.pdf
 - ❖ Note that you have to replace d09943011 with your <u>student ID number</u>
- Deadline: 2022/09/26 23:59
 - ❖ Late submission will only get half score (deadline: 2022/09/30 23:59)