Quiz 4

9/9 points earned (100%)

Back to Week 4

Continue Course

Quiz passed!

1/1

points

A pharmaceutical company is interested in testing a potential blood pressure lowering medication. Their first examination considers only subjects that received the medication at baseline then two weeks later. The data are as follows (SBP in mmHg)

Subject	Baseline	Week 2
1	140	132
2	138	135
3	150	151
4	148	146
5	135	130

Consider testing the hypothesis that there was a mean reduction in blood pressure? Give the P-value for the associated two sided T

(Hint, consider that the observations are paired.)

0.043

 $H_0: \mu_d = 0$ versus $H_0: \mu_d
eq 0$ where μ_d is the mean difference between followup and baseline.

```
1 bl <- c(140, 138, 150, 148, 135)
2 fu <- c(132, 135, 151, 146, 130)
3 t.test(fu, bl, alternative = "two.sided", paired = TRUE)
```

```
1 Paired t-test
   data: fu and bl
  t = -2.262, df = 4, p-value = 0.08652
4 alternative hypothesis: true difference in means is not equal to \boldsymbol{\theta}
5 95 percent confidence interval:
  -7.5739 0.7739
  sample estimates:
8
   mean of the differences
9
   -3.4
```

Note the equivalence with this

```
1 t.test(fu - bl, alternative = "two.sided")
```

```
One Sample t-test
  data: fu - bl
  t = -2.262, df = 4, p-value = 0.08652
   alternative hypothesis: true mean is not equal to \theta
  95 percent confidence interval:
   -7.5739 0.7739
   sample estimates:
   mean of x
8
   -3.4
9
```

Note the difference if the test were one sided

1081 to 1119

1080 to 1120

```
1 -t.test(fu, bl, alternative = "less", paired = TRUE)
        Paired t-test
     2 data: fu and bl
     3 t = -2.262, df = 4, p-value = 0.04326
     4 alternative hypothesis: true difference in means is less than \boldsymbol{0}
     5 95 percent confidence interval:-Inf -0.1951
     6 sample estimates:
     7 mean of the differences
     8 -3.4
 0.10
       0.05
           1/1
          points
A sample of 9 men yielded a sample average brain volume of 1,100cc and a standard deviation of 30cc. What is the complete set of
values of \mu_0 that a test of H_0: \mu=\mu_0 would fail to reject the null hypothesis in a two sided 5% Students t-test?
       1077 to 1123
  Correct
  This is the 95% student's T confidence interval.
                                                           x+c(-1,1)*qt(1-(a/2),n-1)*s/sqrt(n)
=1100+c(-1,1)*qt(0.975,8)*30/3
=1100+c(-1,1)*23
     1 1100 + c(-1, 1) * qt(0.975, 8) * 30/sqrt(9)
     1 [1] 1077 1123
  Potential incorrect answers
     1 1100 + c(-1, 1) * qnorm(0.975) * 30/sqrt(9)
     1 [1] 1080 1120
     1 1100 + c(-1, 1) * qt(0.95, 8) * 30/sqrt(9)
     1 [1] 1081 1119
     1 1100 + c(-1, 1) * qt(0.975, 8) * 30
     1 [1] 1031 1169
```


 $H_0: \lambda = 0.01$ versus $H_a: \lambda < 0.01$. X=11, t=1,787 and assume $X \sim_{H_0} Poisson(0.01 \times t)$

```
1 ppois (10, lambda = 0.01 * 1787)
```

	1 ## [1] 0.03237		
0	0.52		
/	1/1 points		
neasu ip to t tanda n BMI	ured at a baseline and again after having the baseline (followup - baseline) was –3 ard deviations of the differences was 1.5	g received to B kg/m2 for B kg/m2 for Ind placebo	h, to a new diet pill and a placebo. Subjects' body mass indices (BMIs) were the treatment or placebo for four weeks. The average difference from follow-rethe treated group and 1 kg/m2 for the placebo group. The corresponding rethe treatment group and 1.8 kg/m2 for the placebo group. Does the change o groups? Assuming normality of the underlying data and a common
0	Less than 0.10 but larger than 0.05		
0	Less than 0.01		此题是比较两样本均值是否相等的情况,又根据两独立样 本大小均为9<30,用T检验,自由度为n1+n2-2=16
Corr	rect		
	H	$ ilde{\mu}_{differ}$	$_{ence,treated} = \mu_{difference,placebo}$
2 2 4	1 n1 <- n2 <- 9 2 x1 <3 ##treated 3 x2 <- 1 ##placebo 4 s1 <- 1.5 ##treated 5 s2 <- 1.8 ##placebo 6 s <- sqrt(((n1 - 1) * s1^2 + (n2 - 1) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 - x2)/(s * sqrt(1/n1 + 1/n) * s1 <- (x1 -		(n1 + n2 - 2))
:	1 [1] 0.0001025		
0	Larger than 0.10 Less than 0.05, but larger than 0.01		
•	1/1 points		
S. Brain v of	volumes for 9 men yielded a 90% confid	ence inter	val of 1,077 cc to 1,123 cc. Would you reject in a two sided 5% hypothesis test
$H_0: \mu$	u=1,078?		
0	Yes you would reject.		
0	No you wouldn't reject.		
Corr	rort		

Correct

No, you would fail to reject. The 95% interval would be wider than the 90% interval. Since 1,078 is in the narrower 90% interval, it would also be in the wider 95% interval. Thus, in either case it's in the interval and so you would fail to reject.

Where does Brian come up with these questions?

1/1 points

7.

Researchers would like to conduct a study of 100 healthy adults to detect a four year mean brain volume loss of $.01\ mm^3$. Assume that the standard deviation of four year volume loss in this population is $.04\ mm^3$. About what would be the power of the study for a 5% one sided test versus a null hypothesis of no volume loss?

Or note that is under the alternative and we want the under .

```
1 pnorm(1.645 * 0.004, mean = 0.01, sd = 0.004, lower.tail = FALSE)
```

1 [1] 0.8037

0.70

0.60

1/1 points

8.

Researchers would like to conduct a study of n healthy adults to detect a four year mean brain volume loss of $.01~mm^3$. Assume that the standard deviation of four year volume loss in this population is $.04~mm^3$. About what would be the value of n needed for 90% power of type one error rate of 5% one sided test versus a null hypothesis of no volume loss?

power.t.test(power=0.9, delta=0.01, sd=0.04, sig.level=0.05, type="one.sample", alt="one.sided")\$n ceiling(n)=ceiling(138.3856)=140
One-sample t test power calculation

n = 138.3856
delta = 0.01
sd = 0.04
sig.level = 0.05
power = 0.9
alternative = one sided

$$P\left(\frac{\bar{X}_{\Delta}}{\sigma_{\Delta}/\sqrt{n}} > 1.645 \mid \mu_{\Delta} = .01\right) = P\left(\frac{\bar{X}_{\Delta} - .01}{.04/\sqrt{n}} > 1.645 - \frac{.01}{.04/\sqrt{n}} \mid \mu_{\Delta} = .01\right) = P(Z > 1.645 - \sqrt{n}/4) = .90$$

So we need $1.645-\sqrt{n}/4=Z_{.10}=-1.282$ and thus

$$n = (4 * (1.645 + 1.282))^2$$

1	ceiling((4 * (qnorm(0.95) - qnorm(0.1)))^2)
1	[1] 138
0	160
0	120
	1/1
~	points
9. As you	increase the type one error rate, $lpha$, what happens to power?
0	You will get larger power.
Corr As y	rect rou require less evidence to reject, i.e. your $lpha$ rate goes up, you will have larger power.
0	You will get smaller power.
0	No, for real, where does Brian come up with these problems?
0	It's impossible to tell given the information in the problem.

