Farrukh Nauman

farrukhnauman@gmail.com | (+46) 0702984959 | LinkedIn: fnauman | Github: fnauman | Krokslätts parkgata 18B LGH 1202, 43168 Mölndal (Sweden)

Objective: Seeking a full-time position as a data scientist.

SKILLS

• Languages: Python (2+ years), IDL, C, Fortran

- Technologies: GitHub, Bitbucket
- Machine Learning Libraries: SCIKIT-LEARN, TENSORFLOW/KERAS, STATSMODELS, PYSPARK
- Computational Fluid Dynamics: ATHENA, SNOOPY, PLUTO, PENCIL, SHENFUN
- Modeling: (Current) Using machine and deep learning to construct surrogate models of high fidelity simulations of astrophysical fluids.
 (Previous) Theoretical and classical numerical models for astrophysical fluids.

EXPERIENCE

(Current) Chalmers University of Technology

Gothenburg, Sweden

Sep 2018 - Present

Origins Fellow (Machine Learning, Astrophysical Fluid Modeling)

- Machine Learning models of dynamos (1+ years, one paper accepted in Astronomy & Astrophysics): (Blog: fnauman.github.io, Data/code: github.com/fnauman/ML alpha2):
 - * Designed and setup 10+ high resolution simulations of forced helical magnetohydrodynamic turbulence (FORTRAN).
 - * Lasso, Random Forests (SCIKIT-LEARN), Randomized Lasso (SCIKIT-LEARN-CONTRIB), Bayesian MCMC (EMCEE). Best: Lasso.
 - * Feature selection using model ensembling/stacking.
- GlobalDisks: Used a grid-based code PLUTO (written in C) to setup plasma simulations of astrophysical disks around massive stars.

Niels Bohr Institute

Copenhagen, Denmark

Postdoctoral Fellow (Astrophysical Fluid Modeling)

Sep 2015 - Sep 2018

- LocalDisks: Setup a pseudospectral fluid code SNOOPY (written in C) to simulate of astrophysical turbulence.
- TransitionToTurbulence: Highlighted the importance of aspect ratio of simulation domains in the transition to turbulence.

MACHINE LEARNING PROJECTS

- Time series: My experience in modeling highly non-linear physical systems (turbulence) has introduced me to a wide variety of algorithms (github.com/fnauman/timeseries):
 - Deep learning (TENSORFLOW): CNNs, RNNs, LSTMs, wavenet.
 - Machine learning (SKLEARN): Lasso, Random forests, XGBOOST.
 - Econometrics (STATSMODELS): Seasonal Autoregressive Integrated Moving Average.
 - Dynamical systems (NUMPY, SCIPY, SKLEARN): SINDy algorithm for identifying differential equations (and for forecasting).
- Package for SCIKIT-LEARN models: (github.com/fnauman/template travis sklearn):
 - Modular design: preprocessing, training, testing of SCIKIT-LEARN models.
 - CONTINUOUS INTEGRATION, UNIT TESTING.

PhD in Physics and Astronomy (Advisor: Eric G. Blackman)

- LOGGING, versioning to address reproducibility.
- API (FLASK) for SCIKIT-LEARN models inside a DOCKER container: (github.com/fnauman/flask_api_for_sklearn_docker):
- PYSPARK, SCIKIT-LEARN, DASK_ML applied to the iris dataset: (https://github.com/fnauman/pyspark models):

EDUCATION

University of Rochester

Rochester, New York (USA)

Oct 2015

Thesis: Turbulence in Rotating and Non-Rotating Magnetohydrodynamic Shear Flows.

Quaid-i-Azam University

Islamabad, Pakistan

M. Phil. Physics

June 2009

Thesis: Modified gravity as an explanation for cosmic acceleration.

AWARDS AND & ACHIEVEMENTS

- HPC-Europa3 travel+computing: (i) NORDITA (March-April 2018: Stockholm, Sweden), (ii) ZARM (March 2019: Bremen, Germany).
- Horton fellowship from Laboratory for Laser Energetics.

2010-2015

• Susumu Okubo Prize for the highest performance on the graduate physics written comprehensive exam and excellence in coursework. 2011

REFEREEING SERVICE FOR JOURNALS

Monthly Notices of Royal Astronomical Society, Journal of Cosmology and Astrophysics, Astrophysical Journal, European Physical Journal Plus

PUBLICATIONS (RECENT)

- Farrukh Nauman, Joonas Nättilä. 2019. *Exploring helical dynamos using machine learning*. accepted by Astronomy and Astrophysics (arxiv.org/abs/1905.08193)
- Farrukh Nauman, Martin E. Pessah. 2018. Transport properties of Keplerian flows in extended domains with no imposed field. MNRAS, 480, 204.
- Farrukh Nauman, Eric G. Blackman. 2017. Shearing box simulations in the Rayleigh unstable regime. MNRAS, 467, 1652, (arxiv.org/abs/1507.04711)
- Farrukh Nauman, Eric G. Blackman. 2017. Sustained turbulence and magnetic energy in non-rotating shear flows. Phys. Rev. E, 95, 033202, (arxiv.org/abs/1701.03531)

SELECTED TALKS & POSTERS

- Machine learning and dynamos
 - Star and Planet Formation, Chalmers Gothenburg, Sweden, June 17th-20th, 2019.
- Using machine learning to model astrophysical flows
 - Advancing AI, CHAIR (Chalmers) Gothenburg, Sweden, March 4-5th, 2019
- Energy transfers in turbulent MHD shear flows
- ZARM, University of Bremen, Germany. July 25th, 2018
- Magnetized accretion disks
- Chalmers, Sweden. May 23rd, 2018