Игровые модели планирования

- Модели с противодействием (конкуренция)
- Модели без противодействия (игры с природой)

Основные понятия:

- правила;
- стратегии.
- Оптимальная стратегия приносящая максимальный выигрыш.
- Конечная игра содержит конечное число возможных стратегий.
- <u>Игра с нулевой суммой</u> общая сумма выигрыша всех игроков равна нулю

Цель:

выработка оптимальной стратегии поведения, обеспечивающей гарантированный минимальный выигрыш либо сведение к минимуму проигрыша исходя из возможности выбора противниками наилучших стратегий

Стратегии игрока А:

$$a_1, a_2, ..., a_m$$
 $(a_i, i=1,...m)$

Стратегии игрока В:

$$b_1, b_2, ..., b_n$$
 $(b_i, j=1,...n)$

$$(b_i, j=1,...n)$$

Таблица стратегий (доход)

Стратегии	<i>b</i> ₁	b_2	 b_n
a ₁	C ₁₁	C ₁₂	 C _{1<i>n</i>}
a_2	<i>C</i> ₂₁	<i>C</i> ₂₂	 c_{2n}
a_m	<i>C_{m1}</i>	C _{m2}	 C _{mn}

Пример

Стратегии	<i>b</i> ₁	b_2	b_3	<i>b</i> ₄	<i>b</i> ₅
a_1	5	8	7	5	4
a_2	1	10	5	5	6
a_3	2	4	3	6	2
a_4	3	5	4	4	3

Мин. прибыли и макс. убытки

Стратегии	<i>b</i> ₁	b_2	b_3	b_4	<i>b</i> ₅	MIN прибыль А
a_1	5	8	7	5	4	<u>4</u>
a_2	1	10	5	5	6	1
a_3	2	4	3	6	2	2
a_4	3	5	4	4	3	3
МАХ убыток В	<u>5</u>	10	7	6	6	

Нижняя цена игры:

$$\max_{i} c_{ij} = 4$$

Верхняя цена игры:

$$\min_{j} \max_{i} c_{ij} = 5$$

Задача с седловой точкой

Стратегии	<i>b</i> ₁	b_2	b_3	b_4	<i>b</i> ₅	MIN прибыль А
a ₁	4	8	7	5	4	<u>4</u>
a_2	1	10	5	5	6	1
a_3	2	4	3	6	2	2
a_4	3	5	4	4	3	3
МАХ убыток В	<u>4</u>	10	7	6	6	

$$\max_{i} c_{ij} = \min_{j} \max_{i} c_{ij} = 4$$
 - цена игры

Графический метод решения задач с нулевой суммой

<u>Суть:</u>

удаление дублирующих и поглощаемых строк и столбцов.

<u>Дублирующие</u> строки (столбцы) содержат одинаковые элементы.

Поглощаемые строки (столбцы) содержат самые плохие стратегии

Доминирующая (поглощающая) строка содержит элементы >= элементам другой строки (поглощаемой).

Доминирующий (поглощающий) столбец содержит элементы <= элементам другого столбца (поглощаемого).

Стратегии	<i>b</i> ₁	b_2	b_3	<i>b</i> ₄	<i>b</i> ₅
a ₁	5	8	7	5	4
a_2	1	10	5	5	6
a_3	2	4	3	6	2
a_4	3	5	4	4	3

$$a_1 >= a_4$$

Стратегии	<i>b</i> ₁	b_2	b_3	<i>b</i> ₄	<i>b</i> ₅
a ₁	5	8	7	5	4
a_2	1	10	5	5	6
a_3	2	4	3	6	2

$$b_1 \le b_2, b_3, b_4$$

Стратегии	<i>b</i> ₁	<i>b</i> ₅
a ₁	5	4
a_2	1	6
a_3	2	2

$$a_1 >= a_3$$

Стратегии	<i>b</i> ₁	<i>b</i> ₅
a ₁	5	4
a_2	1	6

Пусть

 X_1

– в-ть выбора *A* стр. *a*₁

 $x_2 = 1 - x_1$ — в-ть выбора A стр. a_2

Ожидаемый выигрыш *A* при реализации *B* стратегии *b*₁:

$$PA_{b1} = c_{11}x_1 + c_{21}x_2 = (c_{11} - c_{21}) x_1 + c_{21} =$$

= $(5 - 1)x_1 + 1 = 4x_1 + 1$

Ожидаемый выигрыш A при реализации B стратегии b_5 :

$$PA_{b5} = c_{15}x_1 + c_{25}x_2 = (c_{15} - c_{25}) x_1 + c_{25} =$$

= $(4 - 6)x_1 + 6 = -2x_1 + 6$

Оптимальная стратегия А:

$$PA_{b1} = PA_{b5}$$

 $4x_1 + 1 = -2x_1 + 6$
 $x_1 = 5/6 \sim 0.83$
 $X_2 = 1/6 \sim 0.17$

Стратегии	<i>b</i> ₁	<i>b</i> ₅
a ₁	5	4
a_2	1	6

Пусть

$$y_1$$

– в-ть выбора *В* стр. *b*₁

$$y_5 = 1 - y_1$$

 $y_5 = 1 - y_1$ — в-ть выбора *B* стр. b_5

Ожидаемый выигрыш *В* при реализации *А* стратегии *a*₁:

$$PB_{a1} = c_{11}y_1 + c_{15}y_5 = (c_{11} - c_{15}) y_1 + c_{15} =$$

$$= (5 - 4)y_1 + 4 = y_1 + 4$$

Ожидаемый выигрыш *В* при реализации *А* стратегии *a*₂:

$$PB_{a2} = c_{21}y_1 + c_{25}y_5 = (c_{21} - c_{25}) y_1 + c_{25} =$$

$$= (1 - 6)y_1 + 6 = -5y_1 + 6$$

Оптимальная стратегия В:

$$PB_{a1} = PB_{a2}$$

 $y_1 + 4 = -5y_1 + 6$
 $y_1 = 1/3 \sim 0.33$
 $Y_5 = 2/3 \sim 0.67$

Общий метод решения задач с нулевой суммой, без седловой точки

Общая таблица стратегий

Стратегии	<i>b</i> ₁	b_2	 b_n
a ₁	C ₁₁	C ₁₂	 C _{1<i>n</i>}
a_2	<i>c</i> ₂₁	<i>C</i> ₂₂	 c _{2n}
a_m	<i>C_{m1}</i>	C _{m2}	 C _{mn}

<u>Найти:</u>

смешанную стратегию игрока А:

$$S_A = p_1 + p_2 + ... + p_n$$

И

смешанную стратегию игрока В:

$$S_B = q_1 + q_2 + \dots + q_m$$

$$\begin{cases} c_{11}q_{1} + c_{12}q_{2} + \dots + c_{1n}q_{n} \ge \omega \\ c_{21}q_{1} + c_{22}q_{2} + \dots + c_{2n}q_{n} \ge \omega \\ \dots \\ c_{m1}q_{1} + c_{m2}q_{2} + \dots + c_{mn}q_{n} \ge \omega \end{cases}$$

где

— гарантированный MIN выигрыш

$$\xi_1 = \frac{q_1}{\omega}, \quad \xi_2 = \frac{q_2}{\omega}, \quad \dots \quad \xi_n = \frac{q_n}{\omega}$$

тогда

$$\begin{cases} c_{11}\xi_{1} + c_{12}\xi_{2} + \dots + c_{1n}\xi_{n} \geq 1 \\ c_{21}\xi_{1} + c_{22}\xi_{2} + \dots + c_{2n}\xi_{n} \geq 1 \\ \dots \\ c_{m1}\xi_{1} + c_{m2}\xi_{2} + \dots + c_{mn}\xi_{n} \geq 1 \end{cases}$$

$$c_{m1}\xi_1 + c_{m2}\xi_2 + ... + c_{mn}\xi_n \ge 1$$

где

$$\xi_i \geq 0, \quad \sum_{i=1}^n \xi_i = \frac{1}{\omega}$$

Задача линейного программирования с целевой функцией

$$F(\xi) = \sum_{i=1}^{n} \xi_i \rightarrow MIN$$

так как необходимо

$$\omega \rightarrow MAX$$

<u>Решение</u>:

симплекс-метод (прямая задача для *В*, двойственная задача для *А*)

Игры с природой (без противодействия)

Суть:

выбор стратегии игроком *В* (природа) случайным образом.

Критерии оценки результатов исследования игровой модели

- Вальде (пессимистический)
- максимума (оптимистический)
- Гурвица
- Сэвиджа

Критерий Вальде (пессимистический): минимизация вероятности (риска) проигрыша или гарантированная минимальная прибыль:

 $\max_{i} \min_{j} c_{ij}$

т.е. *нижняя цена игры*

Критерий максимума (оптимистический): максимизация возможного выигрыша:

 $\max_{i} \max_{j} c_{ij}$

(авантюрная стратегия)

Критерий Гурвица (эвристический):

$$\max_{i} \left(\alpha \min_{j} c_{ij} + (1 - \alpha) \max_{j} c_{ij} \right)$$

$$\alpha \in [0, 1]$$

(промежуточный между кр. Вальде и кр. максимума)

Критерий Сэвиджа (анализ рисков). Матрица рисков:

$$r_{ij} = \max_{i} c_{ij} - c_{ij}$$

(риски – недополученная прибыль при неоптимальной стратегии для каждого текущего состояния природы)

Оптимальная стратегия:

$$\min_{i} \max_{j} r_{ij} =$$

$$= \min_{i} \max_{j} \left(\max_{i} c_{ij} - c_{ij} \right)$$

Таблица стратегий

Стратегии	<i>b</i> ₁	b_2	b_3	<i>b</i> ₄	<i>b</i> ₅
a ₁	5	8	7	5	4
a_2	1	10	5	5	6
a_3	2	4	3	6	2
a_4	3	5	4	12	3
max	5	10	7	12	6

Таблица рисков

Стратегии	<i>b</i> ₁	b_2	b_3	<i>b</i> ₄	<i>b</i> ₅
a ₁	0	2	0	7	2
a_2	4	0	2	7	0
a_3	3	6	4	6	4
a_4	2	5	3	0	3

Оптимальная стратегия a_4 , т.к.

$$\min_{i} \max_{j} \left(\max_{i} c_{ij} - c_{ij} \right) = \\
= \min \left\{ 7, 7, 6, 5 \right\} = 5$$