

ΑΣΦΑΛΕΙΑ ΠΛΗΡΟΦΟΡΙΩΝ & ΣΥΣΤΗΜΑΤΩΝ:

Υπηρεσίες Απομακρυσμένης Αυθεντικοποίησης

Ιωάννης Κ. Μαυρίδης mavridis@uom.gr

Τεχνικές αυθεντικοποίησης χρήστη

- Κάτι που γνωρίζει
 - password/PIN
- ★ Κάτι που κατέχει
 - token
- ★ Κάτι που είναι
 - biometrics
- ★ Κάτι που κάνει
 - actions

Απομακρυσμένη αυθεντικοποίηση πολλαπλών παραγόντων (Multifactor Remote Authentication)

 Όσο περισσότεροι παράγοντες, τόσο πιο ισχυρή η αυθεντικοποίηση, αλλά και πιο υψηλά τα κόστη υλοποίησης και συντήρησης.

- Η ισχυρή απομακρυσμένη αυθεντικοποίηση βασίζεται σε ένα μυστικό κλειδί:
 - που είναι αποθηκευμένο σε ένα hard token
 - και προστατεύεται με ένα συνθηματικό

Τύποι κουπονιών (token)

- Password / PIN
 - με συμβατικό πρωτόκολλο
- ◆ One Time Password (OTP)

- Συσκευή με οθόνη (συνδυασμός κλειδιού,χρονοσφραγίδας και απαριθμητή) FIPS 140-2 level 1
- Κανάλι out-of-band (π .χ. SMS)
- Soft Token
 - κρυπτογραφικό κλειδί αποθηκευμένο σε δίσκο με προστασία password FIPS 140-2 Level 1
- Hard Token

- κρυπτογραφικό κλειδί μέσα σε συσκευή ασφαλείας
- προστασία με password / biometrics
- αδύνατη η εξαγωγή κλειδιού από τη συσκευή
- FIPS 140-2 level 2

Πρωτόκολλο απομακρυσμένης αυθεντικοποίησης

- Είναι μια καθορισμένη ακολουθία μηνυμάτων μεταξύ διεκδικούντος (Claimant) και επιβεβαιώνοντος (Verifier) που:
 - αποδεικνύει ότι ο Claimant κατέχει ένα νόμιμο token
 για να αποδεικνύει την ταυτότητά του
 - Και, προαιρετικά, αποδεικνύει στον Claimant ότι επικοινωνεί με τον σκοπούμενο Verifier.
- ◆ Βασίζεται στην απόδειξη κατοχής (proving possession PoP) ενός token
- Με την προϋπόθεση ότι ο χρήστης μπορεί να κρατήσει μυστικό ένα: ιδιωτικό ή μυστικό κλειδί ή Password ή PIN

Κίνδυνοι για πρωτόκολλα αυθεντικοποίησης

- Eavesdroppers
- Password guessing / cracking
- Replay / playback
- Hijackers
- Impersonation
- Man-in-the-middle

Επίπεδο διασφάλισης αυθεντικοποίησης

Για την επιτυχή υλοποίηση μιας υπηρεσίας eGov, πρέπει να αποφασιστεί το απαιτούμενο επίπεδο διασφάλισης.

Περιγράφει το βαθμό βεβαιότητας του οργανισμού για το ότι ο χρήστης παρουσίασε ένα διαπιστευτήριο (credential) που αναφέρεται στην ταυτότητά του.

Διασφάλιση (assurance)

ο βαθμός εμπιστοσύνης για τη διαδικασία εξέτασης της ταυτότητας αυτού για τον οποίο εκδόθηκε το credential

και

• ο βαθμός εμπιστοσύνης για το ότι αυτός που χρησιμοποιεί το credential είναι αυτός για τον οποίο εκδόθηκε

US E-Authentication

- OMB Memorandum M-04-04
 - E-Authentication Guidance for Federal Agencies, 2003
 - http://www.whitehouse.gov/omb/memoranda/fy04/m04-04.pdf
- NIST Electronic Authentication Guidelines
 - SP 800-63-3 suite (Digital Identity Guidelines)

NIST: National Institute of Standards and Technology

OMB: Office of Management and Budget

e-Authentication: αρχιτεκτονικό μοντέλο

Proof of Possession (PoP)

10/3/2024 ISS

ΟΜΒ επίπεδα διασφάλισης

- Επίπεδο1: μικρή ή καθόλου εμπιστοσύνη
- Επίπεδο 2: κάποια εμπιστοσύνη
- Επίπεδο 3: υψηλή εμπιστοσύνη
- Επίπεδο 4: πολύ υψηλή εμπιστοσύνη

Τύπος token ανά επίπεδο

Allowed Token Types	1	2	3	4
Hard token	1	1	1	1
Soft token	1	1	1	
1TPD	1	1	1	
Password	1	1		

Προστασία ανά επίπεδο

	Protection Against	1	2	3	4
1	Replay	1	1	~	✓
90	On-line guessing	1	1	V	1
	Eavesdropper		1	V	1
	Verifier impersonation			√	√
	Man-in-the-middle			1	√
	Session hijacking				1

Τύπος πρωτοκόλλου αυθεντικοποίησης ανά επίπεδο

Authentication Protocol Types	1	2	3	4
Private key PoP	√	1	1	√
Symmetric key PoP	V	V	V	√
Tunneled password	1	√		
Challenge-reply password	1			

E-Auth Guidance Process

• Εκτίμηση επικινδυνότητας (risk assessment)

- Electronic Risk and Requirements Assessment
 (Ε-RA): μεθοδολογία και εργαλείο
- Αντιστοίχιση επικινδυνοτήτων με το κατάλληλο επίπεδο διασφάλισης
 - OMB M0404-0404 Guidance
- Επιλογή κατάλληλων τεχνολογικών λύσεων
 - NIST SP800-63 Guidance
- Επικύρωση του υλοποιημένου συστήματος
 - NIST SP800-53A, SP800-37
- Περιοδική Επανεκτίμηση
 - NIST SP800-53A

EU: Interchange of Data between Administrations (IDA)

Μοντέλο Αναφοράς Διαδικασίας Αυθεντικοποίησης (Authentication Process Reference Model)

IDA επίπεδα διασφάλισης

- ◆ Επίπεδο1: Ελάχιστη διασφάλιση
- ◆ Επίπεδο 2: Χαμηλή διασφάλιση
- ◆ Επίπεδο 3: Επαρκής διασφάλιση
- ◆ Επίπεδο 4: Υψηλή διασφάλιση

Τύποι token ανά επίπεδο

Allowed Token Types	1	2	3	4
Hard crypto token	1	\	1	1
Soft crypto token	1	1	1	
One-time password	V	V		
device token				
Password or PIN token	1			

Πρωτόκολλα αυθεντικοποίησης ανά επίπεδο

Allowed Protocol Types	1	2	3	4
Private key PoP	1	1	1	V
Symmetric key PoP	1	√	1	√
One-time (or strong) Password PoP	V	√	√	
Tunneled password PoP	V	1		
Challenge-reply password PoP	√			

Απαιτούμενη προστασία ανά επίπεδο

	Protection Against	1	2	3	4
200	Replay	1	1	1	1
	On-line guessing	1	1	1	1
	Eavesdropper		1	1	1
	Verifier impersonation			1	1
	Man-in-the-middle			V	V
	Session hijacking			1	1

Μηχανισμοί βεβαίωσης

 για την επικοινωνία των αποτελεσμάτων μιας απομακρυσμένης αυθεντικοποίησης σε τρίτα μέρη

Expiration time	1	2	3	4
Immediate	1	1	1	1
2 hours	1	1	1	
12 hours	1	1		
24 hours	√			

Ανάπτυξη μιας κατάλληλης e-Gov πολιτικής αυθεντικοποίησης

- Βήμα 1: Διεξαγωγή μιας γρήγορης εκτίμησης επικινδυνότητας στο σύστημα εφαρμογών
- Βήμα 2: Αντιστοίχιση επικινδυνοτήτων με το εφαρμόσιμο επίπεδο διασφάλισης αυθεντικοποίησης
- Βήμα 3: Επιλογή κατάλληλων διαδικασιών και τεχνολογιών
- Βήμα 4: Υπογραφή Συμφωνητικού Αμοιβαίας Αναγνώρισης μεταξύ των συμμετεχόντων μερών
- Βήμα 5: Επικύρωση της επίτευξης του απαιτούμενου επιπέδου διασφάλισης από το υλοποιημένο σύστημα
- Βήμα 6: Περιοδική επανεκτίμηση του συστήματος για πιθανή επικαιροποίηση των τεχνολογικών απαιτήσεων

ISS

Διαχείριση Επικινδυνότητας

Το αποδεκτό επίπεδο επικινδυνότητας εξαρτάται από:

- Assets (data) valuation
- Correct Identification of Risks
- Potential Damages
- Overall Likelihood Rating
- Impact Severity Scaling
- Measure of Risks by Level:

IDA Reference Matrix

		Impact of damages					
	Likelihood	Very High	High	Medium	Low	Negligible	
	Almost certain	(1)	(1)	Level 4	Level 3	Level 3	
	Likely	(1)	Level 4	Level 3	Level 3	Level 2	
Risk i	Moderate	Level 4	Level 3	Level 3	Level 2	Level 2	
	Unlikely	Level 3	Level 3	Level 2	Level 2	Level 1	
	Rare	Level 3	Level 2	Level 2	Level 1	Level 1	

(1):Not applicable to remote authentication over open networks

10/3/2024 ISS

Πλαίσιο Ψηφιακής Αυθεντικοποίησης

 παρέχει οδηγίες για αναγνώριση και αυθεντικοποίηση χρηστών για υπηρεσίες ηλεκτρονικής διακυβέρνησης

Εγκεκριμένες μέθοδοι αυθεντικοποίησης για υπηρεσίες e-gov

- Passwords
- One-Time Passwords (OTP)
- Soft Digital Certificates
- Hard Digital Certificates

Αντιστοίχιση επιπέδων και μηχανισμών

Trust level	Registration level	Authentication level	Authentication mechanism
0	0	0	-
1	1		Passwords
2	2	1	OTP
3	3	2	Soft digital certificates
			Hard digital certificates

ISS

26

ΠΨΑ - Βασικές αρχές

- Επιλογή των κατάλληλων μηχανισμών αυθεντικοποίησης και διαδικασιών εγγραφής και ταυτοποίησης χρηστών
 - Κατηγοριοποίηση των δεδομένων που επεξεργάζονται οι ηλεκτρονικές υπηρεσίες με βάση την προστασία της ιδιωτικότητας.
 - Καθορισμός Επιπέδων Εμπιστοσύνης (ΕΕ) για τις ηλεκτρονικές υπηρεσίες, με βάση την κατηγορία των δεδομένων και τις πιθανές επιπτώσεις σε περίπτωση μη ορθής λειτουργίας της υπηρεσίας.
 - Συσχέτιση κάθε ΕΕ με κατάλληλα Επίπεδα Αυθεντικοποίησης (ΕΑ)
 - Συσχέτιση κάθε ΕΑ με κατάλληλες Διαδικασίες
 Εγγραφής (ΔΕ) χρηστών.

Εφαρμογή ΠΨΑ

- 1. Απλή πληροφόρηση
- 2. Ηλεκτρονικές Φόρμες
 - 3. Ηλεκτρονική Αίτηση
 - 4. Πλήρης συναλλαγή

Επίπεδα Ολοκλήρωσης Υπηρεσιών ΗΔ (4)

Επίπεδα Ιδιωτικότητας Πληροφοριών (3)

- 0. Δημόσια Διαθέσιμα Δεδομένα
- 1. Προσωπικά Δεδομένα
- 2. Ευαίσθητα Δεδομένα

- 0. Καμία αυθεντικοποίηση
- 1. Συνθηματικά χρηστών
- 2. Ψηφιακά Πιστοποιητικά

Επίπεδα Αυθεντικοποίησης (3)

Επίπεδα Εμπιστοσύνης (4)

- 1.Προσπέλαση Δημόσιων Δεδομένων
- 2.Δεδομένα μικρής κρισιμότητας
- 3. Προσωπικά Δεδομένα
- 4. Ευαίσθητα Δεδομένα

1. Ανά Υπηρεσία

2. Μέσω Ερμή,

χωρίς αποθήκευση

3. Ερμής, με αποθήκευση

Μηχανισμοί Ταυτοποίησης Χρηστών (3)

Όχι Μοναδικό Αναγνωριστικό

Μηχανισμοί Εγγραφής Οντοτήτων (3)

- 1. Φυσικά Πρόσωπα (3 επίπεδα)
- 2. ΝΠΔΔ
- 3. ΝΠΙΔ

10/3/2024