Интеграл (продолжение)

Определение. Если оказалось, что $\int_X f^+, \int_X f^-$ оба конечны, то f называется суммируемой.

Примечание.

1. Если f измеримо и \geq , то интеграл определения 3 = интегралу определения 2.

Определение (4).

- $E \subset X$ измеримо
- f измеримо на X

$$\int_{E} f d\mu := \int_{X} f \cdot \chi_{E}$$

Примечание.

- $f = \sum \alpha_k \chi_{E_k} \Rightarrow \int_E f = \sum \alpha_k \mu(E_k \cap E)$
- $\int_E f d\mu = \sup\{\int_E g: 0 \leq g \leq f$ на E,g ступ. $\}$ и мы считаем, что $g \equiv 0$ вне E.
- $\int_E f$ не зависит от значений f вне множества E.

Свойства. (X,\mathfrak{A},μ) — пространство с мерой, $E\subset X$ — измеримо, g,f — измеримо.

1. Монотонность $f \leq g: \int_E f \leq \int_E g$

Доказательство.

- (a) При $f, g \ge 0$ очевидно из определения.
- (b) При произвольных f,g $f^+ \leq g^+$ и $f^- \geq g^-$ (очевидно из определения). Из предыдущего случая $\int_E f^+ \leq \int_E g^+, \int_E f^- \geq \int_E g^-$.

2. $\int_{E} 1 d\mu = \mu E, \int_{E} 0 d\mu = 0$

3.
$$\mu E = 0 \Rightarrow \int_E f = 0$$

Доказательство.

- (a) f ступ. Тривиально.
- (b) f измеримо, $f \ge 0$. $\sup 0 = 0$, поэтому искомое выполнено.
- (c) $\int f^+, \int f^- = 0 \Rightarrow \int f = 0$

 Π римечание. f — измерима. Тогда f суммируема $\Leftrightarrow \int |f| < +\infty$

Доказательство.

 \Leftarrow следует из $f^+, f^- \leq |f|$

⇒ будет доказано позже на этой лекции.

4. $\int_E (-f) = -\int_E f, \forall c \in \mathbb{R} \quad \int_E cf = c \int_E f$

Доказательство.

- (a) $(-f)^+ = f^-, (-f)^- = f^+$, тогда искомое очевидно.
- (b) Можно считать c>0 без потери общности, тогда для $f\geq 0$ тривиально.
- 5. $\exists \int_E f d\mu$. Тогда | $\int_E f d\mu | \leq \int_E |f| d\mu$

Доказательство.

$$-|f| \le f \le |f|$$

$$-\int |f| \le \int f \le \int |f|$$

$$\left| \int f \right| \le \int |f|$$

6. $\mu E < +\infty, a \le f \le b$. Тогда

$$a\mu E \le \int_E f \le b\mu E$$

 $\mathit{Следствие}$ 1. f — измеримо на $E,\,f$ — ограничено на $E,\,\mu E<+\infty.$ Тогда f суммируемо на E

7. f суммируема на E. Тогда f почти везде конечна.

Доказательство.

- (a) $f \geq 0$ и $f = +\infty$ на $A \subset E$. Тогда $\int_E f \geq n \mu A \ \ \forall n \in \mathbb{N} \Rightarrow \mu A = 0$
- (b) В произвольном случае аналогично со срезками.

Лемма 1.

•
$$A = \coprod_{i=1}^{+\infty} A_i$$
 — измеримо

• *g* — ступенчато

•
$$g \ge 0$$

Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu$$

Доказательство.

$$\begin{split} \int_{A} g d\mu &= \sum_{\text{\tiny KOH.}} \alpha_{k} \mu(E_{k} \cap A) \\ &= \sum_{k} \sum_{i} \underbrace{\alpha_{k} \mu(E_{k} \cap A_{i})}_{\geq 0} \\ &\stackrel{\text{(1)}}{=} \sum_{i} \sum_{k} \dots \\ &= \sum_{i} \int_{A_{i}} g d\mu \end{split}$$

1: переставлять можно, т.к. члены суммы ≥ 0 .

Теорема 1.

• $A = \coprod A_i$ — измеримо

• $f:X o \overline{\mathbb{R}}$ — измеримо на A

f ≥ 0

Тогда

$$\int_{A} f d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} f d\mu$$

 $\ensuremath{\mathcal{A}}$ оказательство. Докажем, что части равенства \le и \ge , тогда равенство выполнено.

$$\leq \langle g: 0 \leq g \leq f$$

$$\int_A g \stackrel{(2)}{=} \sum \int_{A_i} g \le \sum \int_{A_i} f$$

$$\geq$$
 1. $A = A_1 \sqcup A_2$

 ${\lhd} 0 \leq g_1 \leq f\chi_{A_1}, 0 \leq g_2 \leq f\chi_{A_2}.$ Пусть E_k — совместное разбиение, у g_1 коэффициенты α_k , у $g_2:\beta_k.$

$$0 < q_1 + q_2 < f \chi_A$$

M3137y2019

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_A (g_1 + g_2) \le \int_A f$$

$$\int_{A_1} f + \int_{A_2} g_2 \le \int_A f$$

$$\int_{A_1} f + \int_{A_2} f \le \int_A f$$

2. $A = \coprod A_i$ тривиально по индукции.

3.
$$A = \bigsqcup_{i=1}^n A_i \cup B_n$$
, где $B_n = \bigsqcup_{i>n} A_i$

$$\int_{A} f = \sum_{i=1}^{n} \int_{A_{i}} f + \int_{B_{n}} f \ge \sum_{i=1}^{n} \int_{A_{i}} A_{i} f$$

2: по лемме об интеграле.

 $\mathit{Следствие}\ 2.\ f\geq 0$ — измеримо. Пусть $\nu:\mathfrak{A}\to\overline{\mathbb{R}}_+$ и $\nu E:=\int_E f d\mu.$ Тогда $\nu-$ мера.

 $\mathit{Следствие}$ 3 (Счётная аддитивность интеграла). f суммируема на $A=\bigsqcup A_i$ — измеримо. Тогда

$$\int_{A} f = \sum \int_{A_{i}} f$$

Доказательство. Очевидно, если рассмотреть срезки.

Спедствие 4. $A\subset B, f\geq 0\Rightarrow \int_A f\leq \int_B f$

Предельный переход под знаком интеграла

Пусть $f_n o f$. Можно ли утверждать, что $\int_E f_n o \int_E f$?

Пример (контр).

$$f_n:=rac{1}{n}\chi_{[0,n]}\quad f\equiv 0\quad f_n o f\quad ($$
даже $f_n
ightrightarrow f)$ $\int_{\mathbb{R}}f_n=rac{1}{n}\lambda[0,n]=1
eq 0=\int_{\mathbb{R}}f$

Теорема 2 (Леви).

- (X,\mathfrak{A},μ) пространство с мерой
- f_n измеримо
- $\forall n \ 0 \le f_n \le f_{n+1}$ почти везде.

• $f(x):=\lim_{n\to +\infty}f_n(x)$ — эта функция определена почти везде.

Тогда

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

 Π римечание. f задано везде, кроме множества e меры 0. Считаем, что f=0 на e. Тогда f измеримо на X.

Доказательство.

 \leq очевидно, т.к. $\int f_n \leq f$ почти везде, таким образом:

$$\int_{X} f_n = \int_{X \setminus e} f_n + \underbrace{\int_{e} f_n}_{0} = \int_{X \setminus e} f_n \le \int_{X \setminus e} f \le \int_{X} f$$

 \geq достаточно проверить, что \forall ступенчатой $g:0\leq g< f$ выполняется следующее $\lim \int_X f_n \geq \int_X g$

Сильный трюк: то достаточно проверить, что $\forall c \in (0,1) \; \lim \int_X f_n \geq c \int_X g$

$$E_n := X(f_n \ge cg) \quad E_1 \subset E_2 \subset \dots$$

 $\bigcup E_n = X$, т.к. c < 1

$$\int_X f_n \ge \int_{E_n} f_n \ge c \int_{E_n} g$$

Тогда $\lim \int_X f_n \geq c \cdot \lim \int_{E_n} g \stackrel{(3)}{=} c \int_X g$

3: по непрерывности снизу меры $\nu: E \mapsto \int_E g$

Теорема 3.

- f, q > 0
- f,g измеримо на E

Тогда $\int_E f + g = \int_E f + \int_E g$

Доказательство.

1. f,g — ступенчатые, т.е. $f=\sum \alpha_k \chi_{E_k}, g=\sum \beta_k \chi_{E_k}$

$$\int_{E} f + g = \sum (\alpha_k + \beta_k) \mu(E_k \cap E) = \sum \alpha_k \mu(E_k \cap E) + \sum \beta_k \mu(E_k \cap E) = \int_{E} f + \int_{E} g$$

2. $f \ge 0$, измеримо. \exists ступ. $f_n: 0 \le f_n \le f_{n+1} \le \dots$ $\lim f_n = f$ $g \ge 0$, измеримо. \exists ступ. $g_n: 0 \le g_n \le g_{n+1} \le \dots$ $\lim g_n = g$

$$f_n+g_n o f+g$$

$$\int_E f_n+g_n \xrightarrow{{\scriptscriptstyle {
m T. }} {
m Леви}} \int_E f+g$$

$$\int_E f_n+\int_E g_n o \int_E f+\int_e g$$

 $\mathit{Следствие}$ 5. f,g суммируемы на E. Тогда f+g суммируемо и $\int_E f+g=\int_E f+\int_E g.$ Таким образом, доказано 3.

суммируемости. $|f + g| \le |f| + |g|$. Пусть h = f + g. Тогда

$$h^{+} - h^{-} = f^{+} - f^{-} + g^{+} - g^{-}$$

$$h^{+} + f^{-} + g^{-} = f^{+} + g^{+} + h^{-}$$

$$\int_{E} h^{+} + \int_{E} f^{-} + \int_{E} g^{-} = \int_{E} f^{+} + \int_{E} g^{+} + \int_{E} h^{-}$$

$$\int_{E} h^{+} - \int_{E} f^{-} = \int_{E} f^{+} + \int_{E} g^{+} - \int_{E} f^{-} - \int_{E} g^{-}$$

Определение. $\mathcal{L}(X)$ — множество суммируемых функций на X

Следствие 6 (следствия). $\mathcal{L}(X)$ — линейное пространство, а отображение $f\mapsto \int_X f$ это линейный функционал на $\mathcal{L}(X)$, т.е. $\forall f_1\dots f_n\in\mathcal{L}(X)\ \forall \alpha_1\dots\alpha_n\in\mathbb{R}$

???

Теорема 4 (об интегрировании положительных рядов).

- (X, \mathfrak{A}, μ) пространство с мерой
- *E* ∈ **𝔄**
- $u_n: X \to \overline{\mathbb{R}}$
- $u_n \ge 0$ почти везде

M3137y2019

u_n измеримо

Тогда

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x) \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu$$

Доказательство. По теореме Леви:

$$S_n := \sum_{k=1}^n u_k \quad 0 \le S_n \le S_{n+1} \le \dots$$

Пусть $S_n o S$. Тогда $\int_E S_n o \int_E S$

Следствие 7. u_n измеримо и $\sum\limits_{n=1}^{+\infty}\int_E|u_n|<+\infty$. Тогда ряд $\sum u_n(x)$ абсолютно сходится при почти всех x.

Доказательство.

$$S(x) := \sum |u_n(x)|$$

$$\int_E S(X) = \sum \int_E |u_n| < +\infty \Rightarrow S$$
 суммируемо $\Rightarrow S$ почти везде конечно

Пример. $x_n \in \mathbb{R}$ — произвольная последовательность, $\sum a_n$ абсолютно сходится.

Тогда $\sum \frac{a_n}{\sqrt{|x-x_n|}}$ абсолютно сходится при почти всех x.

Доказательство. Достаточно проверить абсолютную сходимость на [-N,N] почти везде.

$$\int_{[-N,N]} \frac{|a_n| d\lambda}{\sqrt{|x - x_n|}} = \int_{-N}^{N} \frac{|a_n|}{\sqrt{|x - x_n|}} dx$$

$$= |a_n| \int_{-N - x_n}^{N - x_n} \frac{dx}{\sqrt{|x|}}$$

$$\leq |a_n| \int_{-N}^{N} \frac{dx}{\sqrt{|x|}}$$

$$4\sqrt{N} |a_n|$$