САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной работе по дисциплине

«Вычислительные комплексы» Тема: Вычисления в полной интервальной арифметике.

> Выполнил студент: Смирнова Дарья группа: 5030102/80201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2022 г.

Оглавление

		Страница
0.1	Поста	новка задачи
0.2	Теори	я
	0.2.1	Теорема Зюзина
	0.2.2	Разложение матрицы ИСЛАУ
		Релаксационный параметр метода Ньютона
		Субдифференциальный метод Ньютона
0.3		зация
0.4		ьтаты
		Разложение матрицы ИСЛАУ
		Итерационный процесс по субградиентному ме-
		тоду Ньютона
0.5	Обсух	кдение

Список иллюстраций

	Страни	Страница	
1	Изображение брусов последовательности в задаче 1	6	
2	Зависимость радиусов брусов от числа итераций в за-		
	даче 1	6	
3	Решение задачи 2 субградиентным методом Ньютона с		
	au=1	7	
4	Решение задачи 2.2 субградиентным методом Ньютона,		
	au=1	8	
5	Решение задачи 2.2 субградиентным методом Ньютона,		
	au = 0.05	9	

0.1 Постановка задачи

1. Дана ИСЛАУ 2х2

$$\begin{cases} [1,2]x_1 + [1,3]x_2 = [1,2] \\ x_1 - [1,3] \cdot x_2 = 0 \end{cases}$$
 (1)

Необходимо разложить матрицу на диагональную и недиагональную части итерационным процессом. Дополнительно необходимо проиллюстрировать:

- Последовательность брусов в итерационном процессе
- Зависимость радиуса бруса от номера итерации
- 2. Для двух ИСЛАУ:

$$\begin{cases} [3,4]x_1 + [5,6]x_2 = [-3,3] \\ [-1,1]x_1 + [-3,1]x_2 = [-1,2] \end{cases}$$
 (2)

$$\begin{cases} [3,4]x_1 + [5,6]x_2 = [-3,4] \\ [-1,1]x_1 + [-3,1]x_2 = [-1,2] \end{cases}$$
(3)

Построить субдеффиренциальную схему метода Ньютона и проиллюстрировать последовательность брусов в итерационном процессе.

0.2 Теория

0.2.1 Теорема Зюзина

Пусть в интервальной линейной системе уравнений

$$\mathbf{C}x = \mathbf{d}, \quad \mathbf{C} \in \mathbb{K}\mathbb{R}^{n \times n}, \ \mathbf{d} \in \mathbb{K}\mathbb{R}^n$$

правильная проекция матрицы **C** имеет диагональное преобладание. Тогда формальное решение системы существует и единственно.

0.2.2 Разложение матрицы ИСЛАУ

Итерационный процесс строится следующим образом: берется некоторое начальное $\mathbf{x}^{(0)}$ и элементы последовательности вычисляются по формуле

$$x^{(k+1)} = (\text{inv}\mathbf{D})(\mathbf{d} \ominus \mathbf{E}\mathbf{x}^{(k)}), \ k = 0, 1, 2, \dots$$

с $inv \mathbf{D} = diag\{inv \mathbf{c}_{ii}\}_{i=1}^n$ И по теореме Шрёдера о неподвижной точке, он будет сходиться к единственной неподвижной точке отображения.

 ${f E}={f C}\ominus {f D}$, т.е. матрица, полученная из ${f C}$ занулением ее диагональных элементов. Формальные решения исходной системы совпадают с формальными решениями системы ${f D}x+{f C}x={f d}$, которая, в свою очередь, равносильна ${f D}x={f d}\ominus {f E}x$.

0.2.3 Релаксационный параметр метода Ньютона

au в алгоритмах субдеффиренциального метода Ньютона является релаксационным параметром с помощью которого в методах ньютоновского типа удаётся расширить область сходимости. На практике рекомендуется сначала брать au=1 Тогда при сходимости субдифференциальный метод Ньютона даёт точное решение уравнений $\mathcal{F}(y)=0$ и $\mathcal{G}(y)=0$

за небольшое конечное число итераций (которое, как правило, не превосходит размерности n интервальной системы). Такая исключительно быстрая сходимость субдифференциального метода Ньютона при $\tau=1$ объясняется полиэдральностью функций, фигурирующих в решаемых уравнениях.

Если наблюдаются проблемы в сходимости метода Ньютона, то нужно попробовать уменьшить значение параметра τ .

0.2.4 Субдифференциальный метод Ньютона

Итерационная процедура субдифференциального метода Ньютона описывается следующей формулой:

$$x^{k} = x^{k-1} - \tau(D^{k-1})^{-1} \mathcal{F}(x^{k-1}),$$

где $\mathcal{F}(x) = \mathrm{sti}(C \cdot \mathrm{sti}^{-1}(x)) - x + \mathrm{sti}(d)$ (sti - операция стандартного погружения, отображения из KR^n в R^{2n}), D^{k-1} - какой-нибудь субградиент отображения \mathcal{F} в точке x^{k-1} .

0.3 Реализация

Лабораторная работа выполнена в среде Octave с использоанием библиотеки kinterval.

0.4 Результаты

Начальный брус последовательности обозначен зеленым цветом, а конечный - красным.

0.4.1 Разложение матрицы ИСЛАУ

Рис. 1: Изображение брусов последовательности в задаче 1

Рис. 2: Зависимость радиусов брусов от числа итераций в задаче 1

0.4.2 Итерационный процесс по субградиентному методу Ньютона

Решение задачи 2 для первой матрицы с параметром $\tau=1$ получено за 4 итерации.

Рис. 3: Решение задачи 2 субградиентным методом Ньютона с $\tau=1$

Решение задачи 2 для второй матрицы с параметром $\tau=1$. Число итераций - 200.

Рис. 4: Решение задачи 2.2 субградиентным методом Ньютона, $\tau=1$

Решение задачи 2 для второй матрицы с параметром $\tau=0.05.$ Число итераций - 200.

Рис. 5: Решение задачи 2.2 субградиентным методом Ньютона, $\tau = 0.05$

0.5 Обсуждение

При применении итерационной схемы относительно теоремы Зюзина на второй итерации метод выдал более адекватную внутреннюю оценку, а середина брусов практически не меняется по мере итераций, причем после 5 итерации радиусы брусов меняются несущественно.

При применении субградиентного метода Ньютона в задании с первой матрицей получили точную внутреннюю оценку допускового множества за 4 итерации. А при применении данной итерационной схемы для второй матрицы внутренняя оценка не была получена,

хотя результирующий брус все же более чем на половину совпадает с такой оценкой по площади. После уменьшения релаксационного параметра метода ньютона получаем другую оценку, которая еще удачней приближает правильную оценку.

Примечание

С кодом работы можно ознакомиться по ссылке: https://github.com/DariaWelt/IntAnalysis