

Repeated multiplication

From the school book

Remember

Understand

Problem Solving

Interactive test

1 Calculate each of the following, then put the result in the simplest form:

$$1 \square \left(\frac{1}{3}\right)^4$$

$$(-\frac{3}{4})^4$$

$$(0.04)^2$$

$$\left(\frac{3}{5}\right)^2$$

$$[\frac{5}{9}]^0$$

$$(1.5)^3$$

$$(-\frac{1}{7})^3$$

$$\left(-2\frac{1}{2}\right)^3$$

2 Calculate each of the following , then put the result in the simplest form :

$$18 \times (\frac{1}{2})^3$$

$$\left(\frac{3}{5}\right)^2 \div \left(-\frac{9}{125}\right)$$

$$(2\frac{1}{2})^2 \times \frac{4}{25}$$

$$(-\frac{3}{4})^2 \times \frac{8}{27}$$

$$(2\frac{1}{2})^2 \times \frac{4}{25}$$
 $(-1\frac{2}{3})^2$

$$(-\frac{3}{4})^2 \times \frac{8}{27}$$
 $(-\frac{3}{5})^3 \times (-\frac{25}{27})$

$$\left(\frac{3}{5}\right)^2 \div \left(-\frac{9}{125}\right)$$
 $\left(\frac{4}{3}\right)^2 \times \left(\frac{3}{2}\right)^3$ $\left(\frac{3}{2}\right)^3$

3 Calculate each of the following, then put the result in the simplest form:

$$\mathbf{1} \left(\frac{4}{5}\right)^2 \times \frac{5}{16} \times \left(\frac{2}{3}\right)^0$$

$$\left(-\frac{5}{3}\right)^4 \times \left(-\frac{3}{5}\right)^3 \times (-1)^7$$

$$\frac{3}{4} \times \left(-\frac{2}{3}\right)^3 \times \left(\frac{3}{2}\right)^2$$

5
$$\square \left[\left(\frac{5}{2} \right)^3 \div \left(\frac{3}{2} \right)^4 \right] \times \left(\frac{3}{5} \right)^3$$
 6 $\square \left(-\frac{1}{2} \right)^3 \div \left[8 \times \left(-\frac{1}{2} \right) \times \frac{3}{4} \right]$

4 Choose the correct answer from those given :

- 1 The multiplicative inverse of the number $\left(\frac{2}{5}\right)^0$ is
 - (a) $\frac{3}{2}$

- (c) 1

(d) 0

- The additive inverse of the number $(-3)^0$ is
 - (a) 1

- (c) 3
- $(d) (3)^0$
- \blacksquare The multiplicative inverse of the number $(-1)^3$ is
- (b) $(-1)^2$
- (d) 1^2

- The additive inverse of the number $\left(-\frac{2}{5}\right)^2$ is

- (b) $-\frac{4}{25}$
- (c) $\frac{25}{4}$
- (d) $-\frac{25}{4}$

- $(\frac{1}{4})^0 + \frac{1}{4} = \cdots$

(b) $\frac{3}{4}$

- (c) $\frac{5}{4}$
- (d) $\frac{2}{4}$

- (b) $\frac{25}{9}$
- (c) 1)
- (d) 1

- of If x = y, then $\left(\frac{3}{5}\right)^{x-y} = \dots$

- (c) 1
- (d) 0

- (b) $\left(\frac{a}{b}\right)^4$
- $(c) (ab)^0$
- $(d)\frac{a}{b}$

- If $X = -\frac{1}{2}$ and y = 3, then $X^y = \cdots$
 - (a) $\frac{1}{9}$

- (b) $-\frac{1}{8}$
- (c) $\frac{1}{6}$
- $(d) \frac{1}{6}$

- 10 If $y^{26} + y^{27} = 0$, then $y = \dots$
 - (a) 1

- (b) 1
- (c) 2
- (d) 2

5 Complete the following :

- $\frac{1}{27} = \left(\frac{2}{3}\right)^{3}$
- $\frac{3}{125} = \left(-\frac{4}{5}\right)^{\frac{3}{125}}$
- $\boxed{5} 0.027 = \left(\frac{3}{10}\right)^{10}$
- $\frac{9}{16} = \left(\frac{3}{4}\right)^{\dots}$
- $\frac{4}{4} 2 \frac{1}{4} = \left(\frac{3}{2}\right)^{\dots}$
- **6** 64 % = $\left(\frac{4}{5}\right)^{1}$
- 7 If $\frac{x}{y} = -\frac{2}{5}$, then $\left(\frac{x}{y}\right)^3 = \dots$ B If $x = \frac{1}{2}$ and $y = \frac{2}{3}$, then $x^2 y^2 = \dots$

$$\Box (-\frac{1}{2})^3 - (-\frac{1}{2})^2 = \cdots$$

$$10^{2^2} + 2^2 = 2^{\dots}$$

$$\frac{3}{4}$$
, $\frac{9}{16}$, $\frac{27}{64}$, (in the same pattern)

The greater number of the two numbers
$$\left(\frac{1}{4}\right)^2$$
 and $\left(-\frac{8}{3}\right)^5$ is

If
$$x = -\frac{2}{3}$$
 and $y = -\frac{1}{3}$, find the value of : $x^2 + y^3$

If
$$a = \frac{2}{3}$$
 and $b = -\frac{4}{3}$, find the value of : $\left| a^3 \div b^3 \right|$

8 If
$$x = 0.5$$
, $y = -\frac{2}{3}$ and $z = -3$, find the value of : $9 \times y^2 - z^3$ «29»

If
$$a = -\frac{1}{2}$$
, $b = 2$ and $c = \frac{3}{4}$, find the numerical value of : $a^3 b^2 + b^2 c - 8$ abc $(8 \frac{1}{2})$

If
$$x = -\frac{3}{2}$$
, $y = \frac{1}{2}$ and $z = -\frac{4}{3}$, find the numerical value of each of the

following in its simplest form:

$$\frac{3}{3} x^2 - y z^2$$
 $\frac{49}{36}$ $\frac{x^2 y^2 z^2}{x + y}$ $\frac{x^2 y^2 z^2}{x + y}$

Geometric Application

If $V = \ell^3$ where V is the volume of a cube and ℓ is its edge length, then calculate the volume of the cube whose edge length is $1\frac{1}{2}$ cm. $\frac{27}{8}$ cm. $\frac{27}{8}$ cm.

For excellent pupils

Choose the correct answer from those given :

If
$$y = \left(\frac{1}{2}\right)^X$$
 where $X \in \{0, 1, 2, 3\}$, then y takes its maximum value when $X = \dots$
(a) 0 (b) 1 (c) 2 (d) 3

If
$$y = \left(-\frac{2}{5}\right)^X$$
 where $X \in \{0, 1, 3, 4\}$, then y takes its minimum value when $X = \cdots$

Arrange the following numbers ascendingly without expanding :

$$\left(\frac{2}{3}\right)^2, \left(-\frac{2}{3}\right)^3, \left(-\frac{1}{3}\right)^2, \left(-\frac{1}{3}\right)^3$$

(d) 4

Non-negative integer powers

1 Calculate each of the following, then put the result in the simplest form:

$$\left(\frac{1}{6}\right)^9 \div \left(\frac{1}{6}\right)^8$$

$$\left(-\frac{5}{2}\right)^2 \div 2\frac{1}{2}$$

$$(-\frac{2}{3})^3 \times (\frac{2}{3})^2$$
 $(-\frac{1}{5})^4$

5
$$\square$$
 $(\frac{2}{7})^5 \div (\frac{2}{7})^3$

$$\frac{1}{5} \times \left(-\frac{1}{5}\right)^4$$

Calculate each of the following, then put the result in the simplest form:

$$\frac{3^7 \times 3^3}{3^6}$$

$$\frac{(-2)^5 \times 2^4}{(-2)^3 \times 2^2}$$

$$\frac{2^6 \times 2}{2^3 \times 2^4}$$

$$\frac{(-3)^5 \times (-2)^7}{(-3)^3 \times (-2)^5}$$

$$\frac{(-5)^4 \times 5^2}{5^3}$$

$$\frac{x^4 \times y^3 \times x^5}{x^6 \times y^2}$$

3 Find each of the following in the simplest form:

$$1 \square \left(\frac{ab}{c}\right)^5$$

$$\left(\frac{5 X}{3 y} \right)^2$$

$$\left(\frac{a^3b^2}{c^5}\right)^3$$

$$\frac{(4 \times ^3 y^2)^7}{(2 \times ^2 y)^7}$$

$$\boxed{3} \left(-\frac{2 \text{ a b}}{3 \text{ c}} \right)^4$$

$$\Box \left(-\frac{c^2}{d}\right)^3$$

$$\frac{(2 \text{ a})^3 \times (2 \text{ a})^4}{(-2 \text{ a})^6 \times \text{a}}$$

Calculate each of the following, then put the result in the simplest form:

$$1 \left[\left(\frac{1}{2} \right)^2 \right]^2$$

$$[(-\frac{3}{2})^2]^2$$

$$(2\frac{1}{2})^2 \times (-\frac{2}{5})^2$$

5 Choose the correct answer from those given :

$$13^2 \times 3^5 = \dots$$

(a)
$$3^7$$

(b)
$$3^3$$

(c)
$$3^{10}$$

(d)
$$3^{25}$$

$$5^2 + 5^2 = \cdots$$

(a)
$$10^2$$

(a)
$$10^2$$
 (b) 10^4

(c)
$$5^4$$

$$3^5 \times 2^5 = \dots$$

(a)
$$5^{10}$$

(a)
$$5^{10}$$
 (b) 6^{10}

(c)
$$6^5$$

$$(5a)^0 = \cdots$$
, $a \neq 0$

(a)
$$3^6$$

(b)
$$3^5$$

(c)
$$3^8$$

(d)
$$3^{23}$$

(a)
$$5^6$$
 (b) 5^5

(c)
$$5^{23}$$

(a)
$$3^{10}$$

(a)
$$3^{10}$$
 (b) 3^{30}

(c)
$$9^{10}$$

(d)
$$3^{11}$$

(a)
$$4^{x+4}$$
 (b) 4^{4x}

(a)
$$4^{x+4}$$

(b)
$$4^{4\lambda}$$

(c)
$$4^{x+1}$$

(d)
$$4 X^4$$

$$9 \quad \frac{(3^2)^5}{(3^5)^2} = \dots$$

(a)
$$3^{10}$$

(b)
$$3^{52}$$

(c)
$$3^{25}$$

$$\frac{10}{x^3} = \dots, x \neq 0$$

(a)
$$\chi^6$$
 (b) χ^2

(b)
$$X^2$$

(c)
$$\chi^3$$

(d)
$$X$$

 $(2 \text{ y})^3 = \cdots$

(a)
$$2 y^3$$

(c)
$$8y^3$$

 $(b^3)^4 = \cdots$

(a)
$$b^{34}$$

(b)
$$b^{7}$$

(c)
$$b^3 \times b^3 \times b^3$$

(d)
$$b^4 \times b^4 \times b^4$$

13 \square The quarter of the number $4^{20} = \cdots$

(a)
$$4^5$$

(b)
$$4^{10}$$

(c)
$$4^{19}$$

(d)
$$2^{10}$$

6 Simplify to the simplest form :

$$\frac{(2 \text{ y})^4 \times (3 \text{ y})^2}{12 \text{ y}^5}$$
, then find the value of the result at $y = -\frac{1}{6}$

If $a = \frac{5}{3}$, $b = -\frac{3}{2}$ and $c = \frac{2}{5}$, find the numerical value of each of:

$$\frac{(a^2 c^2)^2}{b}$$

$$\left(\frac{2 a b}{5 c}\right)^3$$

8 \square If $x = -\frac{1}{2}$, $y = \frac{3}{4}$ and $z = -\frac{3}{2}$,

find the numerical value of each of the following in the simplest form:

$$1 \chi^3 y^2$$

$$y^3 x^2$$

$$\frac{x^3}{y^2 z^2}$$

9 Complete the following:

$$\left(\left(\frac{7}{9} \right)^3 \right)^4 = \frac{7^{12}}{3 \cdot \dots \cdot }$$

$$\mathbb{E} \operatorname{If} \left(\frac{3}{4}\right)^5 \times X = \left(\frac{3}{4}\right)^7$$
, then $X = \cdots$

The greater number of the two numbers $((-3)^5)^3$ and $((-3)^2)^4$ is

$$((-1)^5)^2 - ((-1)^3)^2 = \cdots$$

$$\boxed{5} \frac{4^4}{4^3} + \frac{4^3}{4^2} + \frac{4^2}{4} + 4 = 2 \dots$$

$$2^{2X} \times 4^X = 4^{\dots}$$

Geometric Applications

Find the area of the square whose side length is $\frac{2 x}{5}$ cm.

Find the volume of the cube whose edge length is $\frac{3 \text{ a}^3}{7}$ cm.

12 In the opposite figure:

A square is drawn inside another square. Find the area of the shaded part.

For excellent pupils

If four times a number is 4^3 , find $\frac{3}{4}$ this number.

«12»

If $X = \frac{1}{5}$ and y = 5, find the value of: X^{15} y¹⁴

 $\ll \frac{1}{5} \gg$

15 Prove that:

$$15^{X+2} - 5^{X+1} = 20 \times 5^X$$

$$2^{315} + 3^{14}$$
 is divisible by 4

Negative integer powers

- From the school book
 - Remember

- Understand
 Apply
 Problem Solving

1 Evaluate each of the following:

- 1 4-1
- $\left(-\frac{2}{3}\right)^{-2}$

- **2 1** 5⁻²
- $(0.2)^{-2}$

- $(\frac{1}{2})^{-1}$
- $(1.2)^{-1}$

2 Evaluate each of the following:

- $1 \square 3^7 \times 3^{-3}$
- $2^{-2} \times 2^{-3}$
- $\frac{3}{3}$ $\frac{3}{3^{-2}}$ $\frac{6^{-2}}{6^{-3}}$

3 Evaluate each of the following:

 $1 \square (5^{-1})^{-3}$

 $(3^{-2})^2$

 $(0.25)^{-2}$

 $[4](2^{-1}\times 2^{-2})^3$

- $(\frac{3^{-1}}{3})^2$
- $\left(\frac{8^4}{8^{-4}}\right)^0$

4 Evaluate each of the following:

- $1 \square \frac{8 \times 8^{-2}}{8^{-3}}$
- $\frac{2^3 \times 2^{-3}}{(2^2)^2}$
- $\frac{7}{3^4 \times 2^3}$ $\left(\frac{2^5 \times 3^2}{3^4 \times 2^3}\right)^{-1}$

- $\frac{2}{7^3}$
- $\frac{(3^{-2})^3}{3^{-2} \times 3^{-6}}$
- \square (3⁰ × 2⁻²)⁻²
- $\frac{2^5 \times 2^{-2}}{2^{-4} \times 2^3}$
- $\frac{(10)^2 \times (0.01)^3}{(10)^{-3}}$

5 Simplify each of the following and write the result in terms of positive exponents, where the denominator does not equal zero:

1
$$\square$$
 7 x^{-1}

5
$$\chi^3 \times \chi^{-2} \times \chi^{-1}$$
 6 $\square \frac{c^{-5}}{c^2}$ **7** $\square (a^{-2})^3$ **8** $\square (b^{-1})^{-3}$

13
$$\frac{(\chi^2)^{-3} \times (\chi^{-1})^2}{\chi^{-3} \times \chi^{-4}}$$
 14 $\square \frac{a^{-1}}{b^2} \left(\frac{a^{-1}}{2b^2}\right)^{-2}$ 15 $(\chi + \chi^{-1})^2$

$$\mathbf{z} \mathbf{\square} \mathbf{x}^{-1} \mathbf{y}^2$$

$$10(X^2)^{-3} \times (X^{-3})^{-2}$$

$$\frac{a^{-1}}{b^2} \left(\frac{a^{-1}}{2 b^2} \right)^{-2}$$

$$a^{-2}b^{-3}$$

$$7 \square (a^{-2})^3$$

15
$$(X + X^{-1})^2$$

$$a^{-2}b^{-3}$$
 $x^3 \times x^{-5}$

$$(b^{-1})^{-3}$$

$$\frac{x^2 \times x^{-3}}{x^{-4} \times x}$$

6 Complete the following :

$$1 2^{-3} \times c^0 = \cdots$$

4
$$\square$$
 $(3 \times 1)^2 = 9 \times \dots = \frac{9}{\dots}$ 5 $(3 \times 1)^{-2} = \dots$ 6 \square $(3 \times 2)^{-1} = \frac{1}{\dots}$

7
$$\square$$
 2 X^{-2} $y^{-3} = \frac{2}{}$

$$10 (X^2)^{\dots} = \frac{1}{X^4}$$

$$11 2^{10} \times 2^{-10} = 3^{\dots}$$

$$(b^{-1})^{-3} = b^{\cdots}$$
 3 $(2 \times x^{-3}) = \frac{2}{x^{-3}}$

$$(3 y^{-2})^{-2} = \cdots$$

$$\frac{x^{-5}}{v^{-5}} = (\cdots)^5$$

$$11 2^{10} \times 2^{-10} = 3^{\cdots}$$

3
$$\square$$
 2 $x^{-3} = \frac{2}{}$

$$\bigcirc$$
 (3 a²)⁻¹ = $\frac{1}{}$

7 \(\text{1} \)
$$2 \times x^{-2} \text{y}^{-3} = \frac{2}{\text{....}} \\
\text{8} \frac{\chi^{-5}}{\chi^{-5}} = (\text{......})^5 \\
\text{9} \left(\frac{1}{2} \right)^2 + 2^0 - (2)^{-2} = \text{......}$$

12
$$a^{-5} + 1 = a^{-5}$$
 (..................................), where $a \neq 0$

13 If
$$X = \frac{1}{2}$$
, $y = \frac{1}{4}$, then $(X - y)^{-1} = \dots$

7 Choose the correct answer from those given:

• If
$$a^{-1} = \frac{2}{3}$$
, then $a = \dots$

(a)
$$-\frac{2}{3}$$

(b)
$$\frac{3}{2}$$

(c)
$$-\frac{3}{2}$$

If $a = 7^{x}$ and $b = 7^{-x}$, then $a \times b = \cdots$

(a)
$$7^{2x}$$

(b)
$$49^{2}$$

$$\frac{5^{X}}{5^{-y}} = \cdots$$

(a)
$$5^{x + y}$$

(b)
$$5^{x-1}$$

(c)
$$5^{X+y}$$

$$(d) - \frac{x}{y}$$

$$\frac{6 a^2 x^4}{2 a^3 x^3} = \cdots$$

(b)
$$3 a^5 x^7$$

(c)
$$\frac{3 \chi}{a}$$

$$(d) \frac{3}{a x}$$

$$(a) - \frac{s^3}{2t}$$

(a)
$$-\frac{s^3}{2t}$$
 (b) $-\frac{s^4}{2t}$

(c)
$$\frac{s^5}{2 t^2}$$

$$(d) \frac{s^4}{t}$$

$\left(\frac{m^2}{n^{-3}}\right)^{-1} \left(\frac{3 m^{-2}}{n^{-2}}\right)^{-2} = \cdots$

- (a) $\frac{9 \text{ m}^2}{\text{n}^7}$ (b) $\frac{\text{m}^2}{9 \text{ n}^7}$

- (c) $\frac{m^2}{9 \text{ n}}$ (d) $\frac{9 \text{ m}^6}{\text{n}}$

$\frac{(2 \text{ a b}^{-2})^0}{3^0 \text{ a}^{-2} \text{ b}} = \cdots$

- (a) $\frac{a^3}{24^3}$ (b) a^2

- (c) 1
- $(d) \frac{a^2}{b}$

B If $a^{x} = 2$ and $a^{-y} = 3$, then $a^{x-y} = \dots$

- (c) $\frac{2}{3}$
- (d) 6

If $x y^{-1} = \frac{1}{2}$, then $\frac{y}{x} = \cdots$

- (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$
- (c) 1
- (d) 2

- (a) 3^{-3} (b) 3^3

- (c) 9^{-3}
- (d) 1

11 The multiplicative inverse of 5⁻¹ is

- (b) 5

- (c) 5
- $(d) \frac{1}{5}$

$(\frac{3}{5})^2 \times (\frac{5}{3})^{-2} = \cdots$

- (a) $(\frac{3}{5})^4$
- (b) 1

- (c) $(\frac{3}{5})^{-4}$
- (d) 0

8 Complete each of the following by the suitable sign of (>), (<) or (=):

- 1 2¹⁰ 2⁻¹⁰

- 1 2^{10} 2^{-10} 2 3^{-20} 3^2 3 5^{-15} 2^{-15} 4 $(-7)^{-2}$ $(-7)^{19}$ 5 $(-1)^{-6}$ $(-1)^{-9}$ 6 $(-1)^{-20}$ $(1)^{-10}$

9 Why b^{-3} is not defined when b = 0?

Calculate the value of $\left(-\frac{3}{5}\right)^x \times \left(\frac{3}{5}\right)^y$ in each of the following cases:

- $1 \quad x = -2 \text{ and } y = 2$
- x = -1 and y = 2

If
$$x = -\frac{1}{3}$$
, $y = \frac{2}{3}$, then find in the simplest form the numerical value of the

expression: $\left(\frac{y}{x^2}\right)^{-2}$

 $\ll \frac{1}{36} \gg$

Simplify to the simplest form : $\frac{2^{10} \times 3^4}{(12)^5}$

13 Simplify to the simplest form:

$$\frac{6^{2 n+1} \times 4^{-n}}{2^n \times 3^{2 n+1}}$$
, then find the value of the result when $n=3$

14 The flea can jump at a height of 200 times of its length. If a flea of length 2^{-4} inches can jump at a height of 2^3 inches What does this height represent according to the length of the flea?

- 15 🛄 The population of a city has been growing exponentially. It is estimated that in (t) years the population (p) will be: $p = 2 (1.03)^t$ million.

 - 3 What was the population last year?

For excellent pupils

- 16 If $2^n = 3$, find the value of:
 - $1 2^{n+1}$
- 2 4ⁿ
- $3 4^{-n}$
- $4 2^{n-1}$ «6,9, $\frac{1}{9}$, $\frac{3}{2}$ »
- 17 If a = 5 and $b = 5^{-1}$, find the value of: $a^{51} b^{50}$

- 18 Without expanding , arrange the following ascendingly by inspection :

$$(-2)^{-15}$$
, $(-5)^{20}$, $(-2)^{15}$, 2^{-20} , $(-5)^{15}$, $(-2)^{20}$

Now at all bookstores

in

Science

for all educational stages

on Algebra and Statistics

Test

1

Total mark

10

Answer the following questions:

1 Choose the correct answer from the given ones:

(3 Marks)

1 The multiplicative inverse of $\left(\frac{-3}{5}\right)^2$ is

$$(a) - \left(\frac{5}{3}\right)^2$$

(b)
$$\frac{-9}{25}$$

(c)
$$\frac{25}{9}$$

$$\left(\frac{3}{5}\right)^2$$

$$\frac{x^{-5}}{y^{-5}} = (\dots)^5, y \neq 0, x \neq 0$$

(b)
$$\frac{y}{x}$$

(c)
$$X - y$$

$$\frac{(d)}{y}$$

3 If
$$2^{10} + 2^{10} = 2^k$$
, then $k = \dots$

Complete :

(3 Marks)

$$1 6^2 + 6 \times 6 \div 6 - 6 = \dots$$

$$\frac{-27}{125} = \left(\frac{-3}{5}\right) \cdots$$

If the standrad form of
$$-0.0002$$
 is -2×10^n , then $n = \dots$

3 If x = 0.4, $y = \frac{1}{2}$, z = -2

(2 Marks)

Find the value of: $2 \times y + z^2$

4 Simplify: $\frac{b^3 \times b^{-5}}{b^{-2} \times b^6}$ (where $b \neq 0$)

(2 Marks)

, then find the value of the result when b = 2

2

Total mark

10

Answer the following questions:

1 Choose the correct answer from the given ones:

(3 Marks)

1 If
$$2^{-5} \times 3^{-5} = 6^k$$
, then $k = \dots$

(a) 6

- (b) 10
- (c) 25
- (d) 5

- 2 If $0.0028 = 2.8 \times a$, then $a = \cdots$
 - (a) 3

- (b) 3
- (c) 10^3
- (d) 10^{-3}

3 4
$$\chi^{-1}$$
 y⁻² = $\frac{4}{1}$ (where $\chi \neq 0$, y $\neq 0$)

(a)
$$y^2 x^{-1}$$

(b)
$$\chi y^{-2}$$

(c)
$$\chi y^2$$

(d) $y x^2$

2 Complete:

(3 Marks)

1 The additive inverse of $(-1)^3$ is

$$\mathbf{3} \text{ If } \left(\frac{x-3}{5}\right)^0 = 1 \text{ , then } x \neq \dots$$

3 Find the following in the standard form:

(2 Marks)

$$(18 \times 10^9) \div (3 \times 10^4)$$

Simplify to the simplest form :
$$\frac{4^{n+1} \times 3^{n-1}}{12^n}$$

(2 Marks)

Deductive proof

From the school book

Remember

Understand

O Apply

Problem Solving

In the apposite figure .

1 In the opposite figure :

 \overrightarrow{AD} // \overrightarrow{BC} , m (\angle DAB) = 50° and m (\angle DAE) = 70°

Find the measures of the angles of \triangle ABC

Complete the following table by writting the reason of each step of the solution steps:

Mathematical Statement

$$m (\angle DAB) = 50^{\circ}, m (\angle DAE) = 70^{\circ}$$

$$m (\angle CAB) = 180^{\circ} - (50^{\circ} + 70^{\circ}) = 60^{\circ}$$

$$\overrightarrow{AD} // \overrightarrow{BC}$$

$$m (\angle C) = m (\angle DAE) = 70^{\circ}$$

$$m (\angle B) = m (\angle DAB) = 50^{\circ}$$

The reason

2 In the opposite figure :

m (
$$\angle$$
 AMB) = 50°, m (\angle EMD) = 80°, \overrightarrow{MC} bisects \angle BMD and m (\angle CMD) = 65°

Complete the following proof to find m (∠ AME)

Given

R.T.F.

Proof

$$\because m \ (\angle \ AMB) + m \ (\angle \ BMC) + m \ (\angle \ CMD) + m \ (\angle \ DME) + m \ (\angle \ AME) = \cdots \cdots \circ$$

(The req.)

3 In the opposite figure :

$$\overrightarrow{AC} \cap \overrightarrow{BD} = \{M\}, m (\angle BMC) = 120^{\circ}$$

and ME bisects ∠ AMD

Complete the following proof to find $m (\angle EMC)$

Given

R.T.F.

Proof

$$\therefore$$
 m (\angle BMC) = m (\angle ·······) (V.O.A.)

$$\therefore$$
 m (\angle ·······) = m (\angle ·······)

$$: M \in \overrightarrow{BD}$$

$$m (\angle EMC) = m (\angle \cdots) + m (\angle \cdots)$$

120° M
C ** A

(The req.)

4 In the opposite figure :

$$AB = AC \cdot BD = CD$$

Complete the following proof to prove that \overrightarrow{AD} bisects \angle BAC

Given

R.T.P.

Proof

.....

: In $\triangle \triangle ADB$,:

$$\begin{cases}
AB = \cdots & \text{(given)} \\
\cdots & \text{= CD} & \text{(given)} \\
\overline{AD} & \cdots & \text{= CD}
\end{cases}$$

 $\therefore \triangle ADB \equiv \triangle \cdots$, then we deduce that :

$$m\;(\angle\;\cdots\cdots\cdots)=m\;(\triangle\;\cdots\cdots\cdots)$$

(Q.E.D.)

5 🛄 In the opposite figure :

m (
$$\angle$$
 ABC) = 110°, m (\angle CBD) = 35°
and m (\angle ABE) = 140°

Find: m (∠ EBD)

6 In the opposite figure :

$$\overrightarrow{CE} \cap \overrightarrow{FD} = \{B\}$$
,
m (\angle ABC) = 40° and m (\angle ABF) = 30°

Find: m (∠ DBE)

🚺 🛄 In the opposite figure :

$$B \in \overrightarrow{AC}$$
, m (\angle CBE) = 116°
and \overrightarrow{BD} bisects \angle ABE

Find: m (∠ ABD)

8 In the opposite figure :

$$\overrightarrow{AC} \cap \overrightarrow{DE} = \{B\}$$
, m ($\angle ABD$) = 40°
and \overrightarrow{BE} bisects $\angle CBF$

Find: m (∠ ABF)

In the opposite figure :

$$\overrightarrow{EA} \cap \overrightarrow{EB} \cap \overrightarrow{EC} \cap \overrightarrow{ED} = \{E\}$$

If
$$m (\angle BEC) = m (\angle AED)$$

, m (
$$\angle$$
 AEB) = 65° , m (\angle CED) = 85°

Find: m (∠ BEC)

Are A, E and C on the same straight line? Why?

« 105° »

10 In each of the following figures,

If $\overrightarrow{AD} /\!/ \overrightarrow{BC}$ Find: $m (\angle ABC)$, giving reason.

2

3

11 In the opposite figure:

 $\overrightarrow{AB} / / \overrightarrow{CD}$

, m (
$$\angle$$
 EAC) = 130°

and m (\angle EAB) = 90°

Find: $1 \text{ m } (\angle BAC)$

2 m (∠ C)

12 In the opposite figure :

AB // CD, AB // EF

, m (
$$\angle$$
 A) = 60° and m (\angle E) = 35°

Find: m (∠ ACE)

13 In the opposite figure :

 $\overrightarrow{DE} // \overrightarrow{BC}$, $A \in \overrightarrow{DE}$, m ($\angle DAB$) = 80°

and m (\angle EAC) = 50°

Find the measures of the angles of Δ ABC

« m (
$$\angle$$
 BAC) = 50°, m (\angle B) = 80°, m (\angle C) = 50° »

14 In each of the following figures,

If MN intersects AB, CD at E and F respectively,

Prove that : AB // CD

15 In the opposite figure :

 $\overrightarrow{AB} // \overrightarrow{CD}$, m ($\angle A$) = 50°,

 \angle ACE is right and m (\angle E) = 40°

Prove that : $\overrightarrow{AB} / / \overrightarrow{EF}$

16 In the opposite figure :

$$\overrightarrow{EF} / / \overrightarrow{CD}$$
, m ($\angle CEF$) = 95°,

$$m (\angle ACE) = 30^{\circ}, m (\angle BAC) = 115^{\circ}$$

Prove that : $\overrightarrow{AB} / / \overrightarrow{EF}$

17 In the opposite figure :

$$\overline{AD} \cap \overline{BC} = \{M\},$$

$$MA = MD$$
 and $MB = MC$

Prove that :

$$1 \text{ AB} = \text{CD}$$

18 Drove that:

- 1 A straight line which is perpendicular to one of two parallel lines in the same plane is also perpendicular to the other.
- 2 A straight line that is parallel to one of two parallel lines is also parallel to the other.

19 🛄 In the opposite figure :

$$AD = CD$$
 and $AB = BC$

Use the properties of congruent triangles

to show that:

- 1 DB bisects ∠ ADC
- 2 AC and DB are perpendicular to each other.

20 In the opposite figure :

ABCD is a square in which F

is the midpoint of $\overline{\text{CD}}$

and
$$\overrightarrow{AF} \cap \overrightarrow{BC} = \{E\}$$

Prove that : CE = CB

21 In the opposite figure:

AD = BC and $m (\angle ADB) = m (\angle DBC) = 90^{\circ}$

Prove that:

- 1 AB = CD
- 2 AB // CD

22 In the opposite figure :

EC = DB and

DXYE is a rectangle.

Prove that : $m (\angle ADE) = m (\angle AED)$

23 In the opposite figure :

AD = AE and

 $m (\angle ADC) = m (\angle AEB)$

Show that:

1 BE = CD

2 BD = CE

\square Find the values of X and y in each of the following:

3

4

5

6

For excellent pupils

25 In the opposite figure :

1 Is \triangle ADE congruent to \triangle CBF? Give your reason (s).

2 Prove that:

First : \triangle DEF $\equiv \triangle$ BFE Second : $\triangle ABE \equiv \triangle CDF$

26 🛄 In the opposite figure :

1 Is \triangle PAQ congruent to \triangle QBO? Give your reason (s).

2 Show that:

First : $\triangle PQR \equiv \triangle OQR$ Second : $\triangle PDR \equiv \triangle RCO$

The polygon

III From the school book

Remember

Understand

Apply

Problem Solving

1 Complete the following:

1 The regular polygon is the one in which:

(a)

(b)

B If the perimeter of a regular hexagon is 30 cm., then its side length = cm.

9 If the perimeter of a regular polygon = 80 cm. and its side length = 10 cm. then the measure of each interior angle in it = ······· °

2 Choose the correct answer from those given:

1 The sum of measures of the interior angles of a polygon of n sides equals

(b)
$$(n-2) \times 180^{\circ}$$

(b)
$$(n-2) \times 180^{\circ}$$
 (c) $\frac{(n-2) \times 180^{\circ}}{2}$ (d) $\frac{(n-2) \times 180^{\circ}}{2 \text{ n}}$

(d)
$$\frac{(n-2) \times 180^{\circ}}{2 \text{ n}}$$

- 2 The measure of the interior angle of a regular polygon of n sides equals

 - (a) $\frac{(n-2)\times 90^{\circ}}{n}$ (b) $\frac{(n-2)\times 180^{\circ}}{2}$ (c) $\frac{(n-2)\times 180^{\circ}}{n}$ (d) $180^{\circ}\times (n-1)$
- 3 The measure of the interior angle of the regular polygon of 10 sides equals
 - (a) 72°
- (b) 108°
- (c) 144°
- (d) 150°
- 4 The measure of the interior angle of a regular polygon of 18 sides equals
 - (a) 130°
- (b) 140°
- (c) 150°
- (d) 160°
- 5 If the measure of an interior angle of a regular polygon is 135°, then the number of its sides is
 - (a) 6
- (b) 4

(c) 7

- (d) 8
- 6 The sum of measures of the exterior angles of the triangle equals
 - (a) 90°
- (b) 180°
- (c) 360°
- (d) 720°
- In the quadrilateral ABCD, if m (\angle A) = 2 m (\angle B) = m (\angle C) = 96°, then m (\angle D) = ·······
 - (a) 96°
- (b) 48°
- (c) 120°
- (d) 144°
- 3 Find the number of the diagonals of each of the following figures:
 - 1 Triangle.
 - 2 Quadrilateral.

Hint: The number of diagonals of the polygon of n sides = $\frac{n(n-3)}{2}$

- 3 Pentagon.
- 4 In each of the following , find the measure of the angle marked by (?):

« 90° , 118° »

5 In the opposite figure :

 $F \in \overrightarrow{YZ}$, m ($\angle L$) = 70°,

 $m (\angle Y) = 90^{\circ} \text{ and } m (\angle LZF) = 120^{\circ}$

Find: $m (\angle X)$

6 In the opposite figure:

$$\overline{\text{CE}} \cap \overline{\text{AD}} = \{B\}$$
, m (\angle A) = 50°
, m (\angle C) = 70°, m (\angle D) = 130° and
m (\angle F) = 90°

Find: $m (\angle E)$

7 In the opposite figure :

$$\overline{AE} \cap \overline{CF} = \{D\}$$
,

 Δ DEF is an equilateral triangle ,

$$m (\angle A) = 120^{\circ} \text{ and } m (\angle C) = 105^{\circ}$$

Find: $m (\angle B)$

8 In the opposite figure :

$$\overline{\mathrm{ED}} \cap \overline{\mathrm{RB}} = \{ A \}, \mathrm{m} (\angle \mathrm{F}) = 45^{\circ},$$

m (
$$\angle$$
 R) = 120°, m (\angle E) = 105°,

 $m (\angle D) = 130^{\circ} \text{ and } m (\angle C) = 80^{\circ}$

Find: $m (\angle B)$

« 60° »

9 In the opposite figure :

$$\overline{BD} \cap \overline{AF} = \{C\}, \overline{AB} // \overline{ED},$$

 $m (\angle A) = 30^{\circ} \text{ and } m (\angle ACB) = 58^{\circ}$

m (∠ CFE) = 125°

Find: $m (\angle E)$

10 In the opposite figure :

$$m (\angle A) = 120^{\circ}, m (\angle D) = 90^{\circ},$$

m (
$$\angle$$
 ABC) = 85° and \overrightarrow{BE} // \overrightarrow{CD}

Find: $m (\angle ABE)$

11 In the opposite figure:

ABCDEF is a hexagon.

$$m (\angle A) = m (\angle C)$$

Find:

The value of X

12 In the opposite figure :

ABCD is a quadrilateral

in which: $m (\angle A) = 90^{\circ}$

Find: The value of X

13 In the opposite figure :

m (
$$\angle$$
 A) = 85°, m (\angle C) = 95°
and m (\angle B) = $\frac{1}{2}$ m (\angle D)

Find the measure of each of them.

In each of the following , if the polygon is regular, find the measures of the unknown angles:

1

2

3

4

15 In each of the following, find the values of the unknown symbols:

1

2

3

4

16 In the opposite figure :

$$m (\angle A) = 110^{\circ}, m (\angle B) = 60^{\circ},$$

$$m (\angle D) = 130^{\circ}$$
, CF bisects $\angle DCE$ and $C \subseteq \overrightarrow{BE}$

Prove that : $\overrightarrow{CF} / / \overrightarrow{AB}$

17 In the opposite figure:

ABCDEF is a regular hexagon,

 $Y \in \overrightarrow{CB}$, $\overrightarrow{XY} \perp \overrightarrow{YB}$ and $m (\angle X) = 60^{\circ}$

Prove that : \overrightarrow{BX} bisects $\angle ABY$

- 18 If the ratio among the measures of the angles of a pentagon is 3:3:2:3:4
 - , find the greatest measure of the angles of this pentagon.

« 144° »

- If the measure of the exterior angle of a regular polygon is 30°, how many sides does it have? What is the sum of the measures of its interior angles? «12,1800°»
- Is it possible that a regular polygon has an interior angle of measure 100°? Why?
- 21 A polygon of 9 sides. The sum of measures of eight angles of it is 1140°
 - 1 Find the measure of the remained angle.
 - 2 Is it possible that this polygon is regular? Explain your answer.
- A polygon has 15 sides:
 - 1 Calculate the sum of the measures of its interior angles.

« 2340° »

« 120° »

2 If the sum of the measures of five of its exterior angles is 200°, calculate the sum of the measures of the ten interior angles which are not adjacent to the five exterior angles.

For excellent pupils

23 In the opposite figure :

 \overrightarrow{AM} bisects \angle BAD, \overrightarrow{DM} bisects \angle ADC and m (\angle AMD) = 71°

Prove that : $m (\angle B) + m (\angle C) = 142^{\circ}$

In the opposite figure :

 $\overline{AE} // \overline{BC}$,

$$m (\angle A) = m (\angle E) = m (\angle D) = m (\angle C)$$

Find : $m (\angle B)$

1

Total mark

10

Answer the following questions:

(3 Marks)

- 1 Choose the correct answer from the given ones:
 - 1 The number of diagonals of the pentagon is
 - (a) 5
- (b) 9
- (c) 15
- (d) 2
- 2 If ABCD is a parallelogram, $m (\angle B) + m (\angle C) = \cdots$
 - (a) 70°
- (b) 180°
- (c) 90°
- (d) 360°
- 3 The parallelogram in which the two diagonals are equal in length is
 - (a) a trapezium.
- (b) a rhombus.
- (c) a rectangle.
- (d) a square.

Complete :

(3 Marks)

- 1 The sum of measures of the interior angles of the quadrilateral equals°
- 2 The measure of the exterior angle of the equilateral triangle at any one of its vertices equals
- 3 In the opposite figure :

If
$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{M\}$$

, then
$$X = \cdots \circ$$

In the opposite figure :

(2 Marks)

$$m (\angle D) = 144^{\circ}$$

$$m (\angle X) = 136^{\circ}$$

Find with proof : $m (\angle BAC)$

4 In the opposite figure :

$$A \in \overrightarrow{CB}$$
, m ($\angle D$) = 140°

, m (
$$\angle$$
 ABE) = 120°, $\overline{DC} \perp \overline{CB}$

Find: $m (\angle E)$

Total mark

Answer the following questions:

(3 Marks)

1 Choose the correct answer from the given ones:

- 1 In \triangle XYZ: If m (\triangle X) = m (\triangle Y) + m (\triangle Z), then \triangle X is
 - (a) acute.
- (b) right.
- (c) obtuse.
- (d) straight.
- The rhombus in which its two diagonals are equal in length is called
 - (a) a parallelogram.

(b) a square.

(c) a rectangle.

- (d) a trapezium.
- 3 If two straight lines intersect, then each two vertically opposite angles are
 - (a) equal in measure.

(b) complementary.

(c) supplementary.

(d) adjacent.

2 Complete :

(3 Marks)

- 1 The sum of measures of the exterior angle of a pentagon equals°
- 2 If ABCD is a parallelogram, $m (\angle C) = 70^{\circ}$, then $m (\angle B) = \cdots$
- 3 The number of sides of a regular polygon in which the measure of one of its interior angles 108° is sides.

In the opposite figure :

$$\overline{AD} \cap \overline{BF} = \{C\}$$

, m (
$$\angle$$
 A) = 30°, m (\angle B) = 50°

, m (
$$\angle$$
 F) = 130° , m (\angle E) = 70°

Find with proof: $m (\angle D)$

4 In the opposite figure :

(2 Marks)

ABCD is a quadrilateral its two diagonals intersect at M

$$m (\angle AMB) = 110^{\circ} , m (\angle MBA) = 25^{\circ}$$

$$, MA = MC , MB = MD$$

- 1 Prove that : ABCD is a parallelogram
- **2** Find: m (∠ ACD)

Mathematics (Algebra and Statistics)

Prep.

Total mark

5

Test

- 1 Choose the correct answer: (3 marks) 1 Twice the number 2²⁰ is

 \bigcirc 2²¹

(d) 4^{20}

- $2\left(-\frac{3}{5}\right)^{-2} = \cdots$
 - $(a)\frac{25}{9}$

- 3 (-4)^{zero} = ······
 - (a) 4

(b) - 4

(c) 1

(d)-1

2 Simplify to the simplest form: $\frac{X^{-2} \times X^{7}}{Y^{3}}$ where $X \neq \text{zero}$

(2 marks)

, then find the numerical value of the result when X = 2

Test

Total mark

1 Choose the correct answer:

(3 marks)

© 4⁴

(d) 4^{12}

2 If $X = \frac{1}{2}$, then $X^{-3} = \dots$

 $1 \cdot 4^3 + 4^3 + 4^3 + 4^3 = \dots$

- (a) $\frac{1}{8}$

(c) 8

(d) 6

- $30.027 = \left(\frac{3}{10}\right)^{\dots}$
 - (a) 4

(b) 3

(c) 2

(d) 1

2 Put the result in the simplest form: $\frac{3^{-2} \times 3^{7}}{3^{-3} \times 3^{6}}$

(2 marks)

Total mark

5

(3 marks)

- 1 Choose the correct answer:
 - 1 Three times the number 3⁴ is
 - (a) 3^{12}

(b) 9⁴

 $(c) 3^5$

 $(d) 9^{12}$

- 2 The additive inverse of the number $(-2)^3$ is
 - (a) 8

(b) - 8

 $\bigcirc \frac{-1}{8}$

(d) $\frac{1}{6}$

- 3 If $a = 5^X$ and $b = 5^{-X}$, then $a \times b = \cdots$
 - (a) $5^{2} x$
- (b) 25^{2} X
- (c) zero
- (d) 1

2 If $X = -\frac{1}{2}$ and $y = \frac{2}{3}$

(2 marks)

Find the value of : $4 x^2 + 27 y^3$

Test 4

Total mark

5

(3 marks)

- 1 Choose the correct answer:
 - $1 \left(\frac{1}{2}\right)^3 = \cdots$
 - (a) 50 %
- (b) 12.5 %
- © 37.5 %
- (d) 12.5

- $\mathbf{Z} \mathbf{X}^9 \div \mathbf{X}^{-6} = \cdots \text{ where } \mathbf{X} \neq \text{zero}$
 - $(a) x^{-3}$
- $\textcircled{b} x^3$

- © x^{-15}
- $\textcircled{d} x^{15}$

- 3 If $a^{26} + a^{27} = zero$, then $a = \cdots$
 - (a) 1

(b) - 1

(c) 2

- (d) 2
- 2 Simplify to the simplest form: $\frac{(-4 a^3 b^4)^2}{(-2 a b^2)^4}$ where $ab \neq zero$

(2 marks)

, then find the value of the result at a = 2 and b = 1

Total mark

5

(3 marks)

- CS

1 Choose the correct answer:

$$12 x^{-3} = \frac{2}{\dots}$$

Test

(a)
$$x^{-3}$$

$$\textcircled{b} x^3$$

$$\bigcirc x^2$$

(d)
$$x^{-2}$$

2 If X = y, then $\left(\frac{3}{5}\right)^{X-y} = \cdots$

ⓑ
$$\frac{3}{5}$$

©
$$\frac{5}{3}$$

 $(0.3)^{-1} + (0.3)^{-1} + (0.3)^{-1} = \cdots$

$$(b) - 0.9$$

$$\bigcirc \frac{1}{9}$$

2 Calculate the value of: $\frac{(10)^4 \times (0.001)^2}{(10)^{-3}}$

(2 marks)

Total mark 5

1 Choose the correct answer:

(3 marks)

- 1 The number of diagonals of a regular pentagon is
 - (a) 3

(b) 5

(c) 7

- (d) 8
- The measure of the interior angle of the regular octagon is
 - (a) 108°
- (b) 120°
- (c) 135°
- (d) 144°
- 3 The sum of measures of the accumulative angles at a point is ...
 - (a) 90°

- (b) 180°
- (c) 270°
- (d) 360°

2 In the opposite figure :

(2 marks)

ABCD is a quadrilateral in which

$$\mathbf{m} (\angle \mathbf{A}) = 90^{\circ} \mathbf{m} (\angle \mathbf{B}) = 3 \mathbf{X}$$

, m (
$$\angle$$
 C) = 5 X and m (\angle D) = 2 X

Find: The value of X

Test

5

1 Choose the correct answer:

(3 marks)

- 1 The sum of measures of the exterior angles of any convex polygon equals
 - (a) 720°
- (b) 360°
- © 180°
- (d) 270°
- 2 The sum of measures of the interior angles of a polygon of n sides equals

(b)
$$(n-2) \times 180^{\circ}$$

$$\bigcirc \frac{(n-2) \times 180^{\circ}}{n}$$

$$\textcircled{d} \, \frac{(n-2)\times 180^{\circ}}{2\; n}$$

- 3 The measure of the interior angle of the regular pentagon is
 - (a) 135°
- (b) 540°
- (c) 108°
- (d) 110°

2 In the opposite figure :

(2 marks)

$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}, F \in \overrightarrow{AB}$$

, m (
$$\angle$$
 MFB) = 40° , m (\angle AEC) = 40°

- 1 Find with proof: $m (\angle DEF)$
- 2 Prove that : DC // FM

3

Total mark

5

1 Choose the correct answer:

(3 marks)

- 1 If the measure of an interior angle of a regular polygon is 135°, then the number of its sides is
 - (a) 6

(b) 4

(c) 7

- (d) 8
- 2 If two straight lines intersect, then each two vertically opposite angles are
 - (a) corresponding.
- (b) equal in measure.
- (c) alternate.
- (d) interior.

- 3 The concave polygon has at least angle.
 - an acute
- (b) a right
- (c) an obtuse
- (d) a reflex

2 In the opposite figure :

 $\overline{AD} \cap \overline{CE} = \{F\}$, m ($\angle B$) = 90°, m ($\angle C$) = 120°, m ($\angle E$) = 60°, m ($\angle D$) = 70°

Find: m ($\angle A$)

Test

4

1 Choose the correct answer:

(3 marks)

5

- - (a) 4

b 5

(c) 6

- (d) 9
- 2 The measure of the interior angle of a regular polygon of 10 sides equals
 - (a) 72°

- (b) 108°
- © 144°
- (d) 150°

3 In the opposite figure :

If m (\angle AMB) = 130°, m (\angle BMC) = 100°

- , m (\angle AMD) = 90°, then m (\angle CMD) =
- (a) 360°
- (b) 320°

- (c) 40°
- d) 140°

2 In the opposite figure :

(2 marks)

ABCD is a quadrilateral in which

, m (\angle B) = 90°, m (\angle A) = 130°, m (\angle DCE) = 120°

Find with proof: $m (\angle D)$

Total mark

1 Choose the correct answer from those given:

(3 marks)

- 1 The polygon in which the sum of measures of its exterior angles equals the sum of measures of its interior angles is called
 - (a) triangle.

(b) quadrilateral.

(c) pentagon.

- (d) hexagon.
- 2 The measure of the interior angle of the regular hexagon equals
 - (a) 60°

(b) 108°

© 120°

- (d) 135°
- 3 A regular polygon of side length 5 cm. and the measure of its interior angle is 144°, then its perimeter = cm.
 - (a) 10

(b) 15

© 50

(d) 60

2 In the opposite figure :

(2 marks)

, m (
$$\angle$$
 C) = 150°, m (\angle D) = 80°

Find by proof: $m (\angle E)$

(Algebra and Statistics)

Answers of Test

11(c)

2 (a)

3 (c)

$$\frac{x^{-2} \times x^7}{x^3} = \frac{x^{-2+7}}{x^3} = \frac{x^5}{x^3} = x^{5-3} = x^2$$

The numerical value of the result = $2^2 = 4$

Answers of Test

11(c)

2(c)

3 (b)

$$2\frac{3^{-2} \times 3^{7}}{3^{-3} \times 3^{6}} = \frac{3^{-2+7}}{3^{-3+6}} = \frac{3^{5}}{3^{3}} = 3^{5-3} = 3^{2} = 9$$

Answers of Test 3

11c

2 (a)

3 (d)

2
$$4 \times x^2 + 27 y^3 = 4 \times \left(-\frac{1}{2}\right)^2 + 27 \times \left(\frac{2}{3}\right)^3 = 4 \times \frac{1}{4} + 27 \times \frac{8}{27} = 1 + 8 = 9$$

Answers of Test

11(b)

2 (d

3 (b)

$$\frac{(-4 a^3 b^4)^2}{(-2 a b^2)^4} = \frac{(-4)^2 \times a^3 \times 2 \times b^4 \times 2}{(-2)^4 \times a^4 \times b^2 \times 4} = \frac{16 a^6 b^8}{16 a^4 b^8} = a^{6-4} = a^2$$

The numerical value of result = $2^2 = 4$

Answers of Test 5

11(b)

2 (d

3 (d)

$$\frac{(10)^4 \times (10^{-3})^2}{(10)^{-3}} = \frac{(10)^4 \times (10)^{-6}}{(10)^{-3}} = (10)^{4-6+3} = 10$$

Answers of Mathematics

Prep.

(Geometry and Measurement)

Answers of Test

1

11b

2 (C)

3 (d)

2 ∵ The sum of the measures of the interior angles of the quadrilateral ABCD = 360°

$$\therefore 3 x + 5 x + 2 x + 90^{\circ} = 360^{\circ}$$

$$\therefore 10 x + 90^{\circ} = 360^{\circ}$$

$$\therefore 10 \ x = 360^{\circ} - 90^{\circ} = 270^{\circ}$$

$$x = \frac{270^{\circ}}{10} = 27^{\circ}$$

(The req.)

Answers of Test

2

11b

2 (b)

3 C

$$\therefore$$
 m (\angle DEF) = m (\angle AEC) = 40° (V.O.A.)

(First req.)

 $\therefore m (\angle DEF) = m (\angle MFB) = 40^{\circ}$

and they are two corresponding angles.

∴ DC // FM

(Second req.)

Answers of Test

3

11d

2 (b)

3 (d)

2 In Δ DEF:

:
$$m (\angle DEF) = 180^{\circ} - (70^{\circ} + 60^{\circ}) = 50^{\circ}$$

$$\therefore \overline{AD} \cap \overline{CE} = \{F\}$$

$$\therefore$$
 m (\angle AFC) = m (\angle DFE) = 50° (V.O.A.)

 \rightarrow : the sum of the measures of the interior angles of the quadrilateral ABCF = 360°

$$\therefore$$
 m (\angle A) = 360° – (120° + 90° + 50°) = 100°

(The req.)

Answers of Test

11(d)

2 C

3 C

:.
$$m (\angle DCB) = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

, :: the sum of the measures of the interior angles of the quadrilateral ABCD = 360°

(The req.)

Answers of Test

11b

2(c)

3(c)

 \therefore m (\angle A) + m (\angle B) = 180°

(Two interior angles in the same side of the transversal)

, \therefore the sum of the measures of the interior angles of the pentagon ABCDE = 540°

$$\therefore$$
 m (\angle E) = 540° – (70° + 150° + 80° + 110°) = 130°

(The req.)

Exams 2024

Marks

Model (1)

1 Complete:

- a If $2^x = 3$, then the value of $4^x = \dots$
- **b** If $\frac{x}{y} = -\frac{2}{3}$, then $(\frac{x}{y})^3 = ...$
- **c** The additive inverse of the number $\left(\frac{3}{5}\right)^0$ is
- 2 Choose the correct answer:

- **a** $3^2 \times 3^5 = \dots$
 - **1** 3¹⁰ **2** 3⁷

3 3⁵

4 3²⁵

- **b** If $x = \frac{-1}{3}$ and y = 3, then $x^y = ...$
 - $\frac{1}{27}$
- **2** 27

4 -27

- $\mathbf{c} \ 2^2 + 2^2 = \dots$
 - $1 2^4$ $2 2^5$

4 2³

3 Answer the following:

a If $x = \frac{2}{3}$ and $y = \frac{-4}{3}$, find $\frac{x^3}{v^3}$

Solution:

b Simplify:

$$\left(\frac{-2}{3}\right)^0 \times \left(\frac{-3}{5}\right)^2 \times \sqrt{\frac{25}{36}}$$

Solution:

Model (2)

1 Complete:

- a If 2x = 6, then 5x =
- **b** If $x = 2^5 + 2^5$, $x = \dots = \dots$
- **c** $36\% = \left(\frac{3}{5}\right)^{...}$
- 2 Choose the correct answer:

- a The multiplicative inverse of the number (-2)³ is
 - 1 8

 $\frac{1}{8}$

- **b** $\left(\frac{-3}{5}\right)^2 = \dots$

- $\mathbf{c} \ 3^x + 3^x + 3^x = \dots$

 - 1 3^{3x} 2 3^{x+1}

- 4 1

3 Answer the following:

a If $x = \frac{1}{2}$ and $y = \frac{-1}{4}$, find $x^4 - y^2$

Solution:

b Simplify:

$$\frac{3^3 \times 3^4}{(-3)^5}$$

Model (3)

1 Complete:

- a If $\left(\frac{5}{3}\right)^x = \frac{125}{27}$, then $x = \dots$
- **b** If $3^x = 7^x$, then $5^x = \dots$
- c The multiplicative inverse of 7¹ is
- 2 Choose the correct answer:

a $\left(\frac{1}{2}\right)^5 \div \left(\frac{1}{2}\right)^3 = \dots$

b The quarter of 4¹² is

$$(4^{10}, 4^3, 4^{11}, 4^8)$$

c If $(\frac{2}{5})^2 \times y = (\frac{2}{5})^8$, then y =

 $\left(\left(\frac{2}{5}\right)^7, \left(\frac{2}{5}\right)^6, \left(\frac{2}{5}\right)^5, \left(\frac{2}{5}\right)^4\right)$

a If $x = \frac{-3}{2}$ and $y = \frac{1}{2}$, find the value of $\frac{x^2}{y^2}$

Solution:

b Calculate the following:

 $\left(\left(\frac{2}{3}\right)^2\right)^3 \times \left(\frac{3}{2}\right)^5$

Model (4)

1 Complete:

- a If $\frac{x}{y} = \frac{-2}{3}$, then $\left(\frac{x}{y}\right)^3 = \dots$
- **b** $7 (13a)^{zero} = \dots$ (where $a \neq 0$)
- c If $a^x = 2$, $a^y = 3$, then $a^{x+y} = \dots = \dots$
- 2 Choose the correct answer:

a $(y^3 \times y^2)^2 = \dots$

$$(y^5, y^{11}, y^8, y^{10})$$

b The additive inverse of the number 3² is

$$(9, \frac{1}{9}, \frac{-1}{9}, -9)$$

c If $2^x = 5$, then $2^{x+1} = \dots$

3 Answer the following:

a Calculate the following:

$$\frac{(-3)^5 \times (-2)^7}{(-3)^3 \times (-2)^5}$$

Solution:

Model (5)

1 Complete:

- a If $3^{2x} \times 9^x = 3^{\dots}$
- **b** If $x = 2^5 + 2^5$, then $x = 2^{\dots}$
- $((-1)^3)^2 ((-1)^3)^4 = \dots$
- 2 Choose the correct answer:

- $\frac{6a^2b^4}{2a^3b^3} = \dots$
 - 1 $3a^5b^7$ 2 $\frac{3b}{a}$

- **3** 3*ab*
- $4 \frac{3}{ab}$

- **b** $\left(\frac{-3}{5}\right)^2 = \dots$

 - 1 $\frac{9}{25}$ 2 $\frac{-25}{9}$

- $\mathbf{c} \ 3^x + 3^x + 3^x = \dots$

 - 1 3^{3x} 2 3^{x+1}

- 3 3^{x-1}
- 4 1

3 Answer the following:

Solution:

a Simplify: $\frac{(2x)^3 \times (2x)^4}{(-2x)^6}$, then find the value when $x = \frac{-1}{2}$

b Simplify:

$$\frac{3\times3^7}{(-3)^5}$$

Model (1)

1 Complete:

- a The sum of measures of the interior angles of the quadrilateral =°
- **b** Any triangle has at leastacute angles.
- c The sum of measures of the interior angles of pentagon equals°

2 Choose the correct answer:

a The measure of each angle of the regular hexagon is

(150°, 120°, 108°, 90°)

b The quadrilateral ABCD, if $m(\angle A) = 2m(\angle B) = m(\angle C) = 100$, then $m(\angle D) = \dots$

(120°, 60°, 90°, 110°)

c The polygon which has a number of sides equals the number of diagonals is

(triangle, quadrilateral, pentagon, hexagon)

3 Answer the following:

a In the opposite figure:

 $m(\angle ABC) = 110^{\circ}, m(\angle CBD) = 35^{\circ}$ and $m(\angle ABE) = 140^{\circ},$

find m(\angle EBD)

Proof:

b In the opposite figure:

ABCD is quadrilateral in which

$$m(\angle A) = 90^{\circ}$$

Find the value of x.

Proof:

Model (2)

1 Complete:

- a The sum of measures of the accumulative angles at a point is°
- **b** The obtuse-angled triangle hasacute angles.
- c The perimeter of a regular hexagon is 48 cm, then its side length iscm and the measure of each interior angle in it =°

2 Choose the correct answer:

a The sum of the measures of the exterior angles of a triangle =

(180°, 360°, 630°, 90°)

- The measure of the interior angle of the regular octagon = $(1080^{\circ}, 540^{\circ}, 135^{\circ}, 108^{\circ})$

3 Answer the following:

a The length of the side of a regular pentagon is 6 cm.

Calculate:

- 1 Its perimeter.
- 2 The measure of each interior angle of it.

Solution:

b In the opposite figure:

$$B \subseteq (\overrightarrow{AC}), m(\angle CBE) = 116^{\circ}$$

and \overrightarrow{BD} bisects $\angle ABE$
Find $m(\angle ABD)$

Proof:

1 Complete:

2 Choose the correct answer:

a The sum of measures of the interior angles of a polygon of n sides equals

$$(l \times 180^{\circ}, (l - 2) \times 180^{\circ}, \frac{l - 2 \times 180^{\circ}}{2}, \frac{l - 2 \times 180^{\circ}}{2l})$$

b In triangle ABC, if $m(\angle B) = m(\angle A) + m(\angle C)$, then $m(\angle B) = \dots$

c The measure of the interior angle of a polygon with 8 sides =

3 Answer the following:

a ABCDE is a pentagon:

if
$$m(\angle A) = 110^\circ$$
, $m(\angle B) = 120^\circ$, $m(\angle E) = 115^\circ$ and $m(\angle D) = 90^\circ$, Find $m(\angle C)$. Solution:

b If the measure of the exterior angle of a regular polygon is 30°, how many sides does it have? What is the sum of the measures of its interior angles?

1 Complete:

- a XYZL is a parallelogram, $m(\angle X) = 70^{\circ}$, then $m(\angle L) = \dots$
- **b** The sum of measures of the interior angles of a polygon of n sides equals
- c If the measures of two angles in a triangle are 50°, 60°, then the triangle is a/an triangle.

2 Choose the correct answer:

a In \triangle ABC, if m(\angle A) = 60°, m(\angle B) = 2 m(\angle C), then m(\angle B) =

 $(80^{\circ}, 70^{\circ}, 60^{\circ}, 40^{\circ})$

b The measure of the interior angle of a regular polygon of 18 sides equals

(160°, 150°, 140°, 130°)

c The number of the diagonals of the pentagon =

(0,2,5,10)

3 Answer the following:

a If the sum of measures of the interior angles of a polygon is 1620°, find the number of sides.

Solution:

b In the opposite figure:

Solution:

What is the value of x?

Model (5)

1 Complete:

- a The sum of measures of the interior angles of the triangle =°
- c The sum of measures of the accumulative angles at a point is°

2 Choose the correct answer:

- a The number of diagonals of the quadrilateral = (3, 4, 5, 2)
- b The quadrilateral which has two only parallel sides is called

(parallelogram, rhombus, trapezium, rectangle)

c The measures of the interior angle of a regular polygon of n sides equal

$$(\frac{(l-2)\times90^{\circ}}{l}, \frac{(l-2)\times180^{\circ}}{2}, \frac{(l-2)\times180^{\circ}}{l}, 180^{\circ}\times(l-1))$$

3 Answer the following:

a If the ratio among the measures of the angles of a pentagon is 3:3:2:3:4, find the greatest measure of the angles of this pentagon.

Cal	lution:
201	HITION
	MCIOII.

Solution.	

b In the opposite figure:

$$(\overrightarrow{AC}) \cap (\overrightarrow{DE}) = \{B\}, m(\angle ABD) = 40^{\circ}$$

and (\overrightarrow{BE}) bisects $\angle CBF$
Find $m(\angle ABF)$

Proof:

Model (1)

1 Complete:

- a If $2^x = 3$, then the value of $4^x = 9$
- **b** If $\frac{x}{v} = -\frac{2}{3}$, then $\left(\frac{x}{v}\right)^3 = -\frac{8}{27}$
- **c** The additive inverse of the number $\left(\frac{3}{5}\right)^0$ is -1

2 Choose the correct answer:

- **a** $3^2 \times 3^5 = \dots$
 - **1** 3¹⁰ **2** 3⁷

3 3⁵

4 3²⁵

- **b** If $x = \frac{-1}{3}$ and y = 3, then $x^y = ...$
 - $\frac{1}{27}$

4 -27

- $\mathbf{c} \ 2^2 + 2^2 = \dots$
- **2** 2⁵

4 2³

3 Answer the following:

a If $x = \frac{2}{3}$ and $y = \frac{-4}{3}$, find $\frac{x^3}{y^3}$

Solution:

$$x^{3} \div y^{3} = \left(\frac{2}{3}\right)^{3} \div \left(\frac{-4}{3}\right)^{3} = \frac{8}{27} \div \frac{-64}{27}$$
$$= \frac{8}{27} \times \frac{-27}{64} = \frac{-1}{8}$$

b Simplify:

$$\left(\frac{-2}{3}\right)^0 \times \left(\frac{-3}{5}\right)^2 \times \sqrt{\frac{25}{36}}$$

$$1 \times \frac{9}{25} \times \frac{5}{6} = \frac{3}{10}$$

Model (2)

1 Complete:

- a If 2x = 6, then 5x = 15
- **b** If $x = 2^5 + 2^5$, $x = 2 \times 2^5 = 2^6$
- **c** $36\% = \left(\frac{3}{5}\right)^2$
- 2 Choose the correct answer:

- a The multiplicative inverse of the number (-2)³ is
 - 1 8

 $\frac{1}{8}$

 4^{-1}

- **b** $\left(\frac{-3}{5}\right)^2 = \dots$

 - $2\frac{9}{25}$ $2\frac{-25}{9}$

 $\frac{25}{9}$

 $\frac{-9}{25}$

- $3^x + 3^x + 3^x = \dots$

- 3^{x-1}
- 4 1

3 Answer the following:

a If $x = \frac{1}{2}$ and $y = \frac{-1}{4}$, find $x^4 - y^2$

Solution:

$$x^4 - y^2 = \left(\frac{1}{2}\right)^4 - \left(\frac{-1}{4}\right)^2 = \frac{1}{16} - \frac{1}{16} = 0$$

b Simplify:

$$\frac{3^3 \times 3^4}{(-3)^5}$$

$$\frac{3^3 \times 3^4}{(-3)^5} = \frac{3^{3+4}}{(-3)^5} = \frac{-3^7}{(3)^5} = -3^2 = -9$$

Model (3)

1 Complete:

a If
$$\left(\frac{5}{3}\right)^x = \frac{125}{27}$$
, then $x = 3$

b If
$$3^x = 7^x$$
, then $5^x = 1$

c The multiplicative inverse of
$$7^1$$
 is $\frac{1}{7}$

2 Choose the correct answer:

$$\left(\frac{1}{2}\right)^5 \div \left(\frac{1}{2}\right)^3 = \dots$$

$$\left(\frac{1}{32}, \frac{1}{16}, \frac{1}{8}, \frac{1}{4}\right)$$

$$(4^{10}, 4^3, 4^{11}, 4^8)$$

c If
$$(\frac{2}{5})^2 \times y = (\frac{2}{5})^8$$
, then $y =$

$$\left(\left(\frac{2}{5}\right)^7, \left(\frac{2}{5}\right)^6, \left(\frac{2}{5}\right)^5, \left(\frac{2}{5}\right)^4\right)$$

3 Answer the following:

a If
$$x = \frac{-3}{2}$$
 and $y = \frac{1}{2}$, find the value of $\frac{x^2}{y^2}$

Solution:

$$\frac{x^2}{v^2} = \left(\frac{-3}{2}\right)^2 \div \left(\frac{1}{2}\right)^2 = \frac{9}{4} \div \frac{1}{4} = \frac{9}{4} \times 4 = 9$$

b Calculate the following:

$$\left(\left(\frac{2}{3}\right)^2\right)^3 \times \left(\frac{3}{2}\right)^5$$

$$\left(\left(\frac{2}{3}\right)^2\right)^3 \times \left(\frac{3}{2}\right)^5 = \left(\frac{2}{3}\right)^6 \times \left(\frac{3}{2}\right)^5 = \frac{2^6}{3^6} \times \frac{3^5}{2^5} = \frac{2}{3^6}$$

Model (4)

1 Complete:

a If
$$\frac{x}{y} = \frac{-2}{3}$$
, then $(\frac{x}{y})^3 = \frac{-8}{27}$

b
$$7 (13a)^{zero} = 7$$
 (where $a \ne 0$)

c If
$$a^x = 2$$
, $a^y = 3$, then $a^{x+y} = 2 \times 3 = 6$

2 Choose the correct answer:

$$(y^3 \times y^2)^2 = \dots$$

$$(y^5, y^{11}, y^8, y^{10})$$

$$(9, \frac{1}{9}, \frac{-1}{9}, -9)$$

c If
$$2^x = 5$$
, then $2^{x+1} = \dots$

3 Answer the following:

a Calculate the following:

$$\frac{(-3)^5 \times (-2)^7}{(-3)^3 \times (-2)^5}$$

Solution:

$$(-3)^{5-3} \times (-2)^{7-5} = (-3)^2 \times (-2)^2 = 9 + 4 = 13$$

b If
$$a = \frac{-1}{2}$$
 and $b = \frac{2}{3}$, find a^3b^2

$$a^3 b^2 = \left(\frac{-1}{2}\right)^3 \times \left(\frac{2}{3}\right)^2 = \frac{-1}{8} \times \frac{4}{9} = \frac{-1}{2} \times \frac{1}{9} = \frac{-1}{18}$$

Model (5)

1 Complete:

a If
$$3^{2x} \times 9^x = 3^{4x}$$

b If
$$x = 2^5 + 2^5$$
, then $x = 2^6$

$$((-1)^3)^2 - ((-1)^3)^4 = 0$$

2 Choose the correct answer:

a
$$\frac{6a^2b^4}{2a^3b^3} = \dots$$

1
$$3a^5b^7$$
 2 $\frac{3b}{a}$

$$\frac{3b}{a}$$

$$4 \frac{3}{ab}$$

b
$$\left(\frac{-3}{5}\right)^2 = \dots$$

$$1\frac{9}{25}$$

1
$$\frac{9}{25}$$
 2 $\frac{-25}{9}$

$$\frac{25}{9}$$

$$\frac{-9}{25}$$

$$\mathbf{c} \ 3^x + 3^x + 3^x = \dots$$

$$1 3^{3x}$$

1
$$3^{3x}$$
 2 3^{x+1}

3
$$3^{x-1}$$

4 1

3 Answer the following:

a Simplify: $\frac{(2x)^3 \times (2x)^4}{(-2x)^6}$, then find the value when $x = \frac{-1}{2}$

Solution:

$$\frac{(2x)^3 \times (2x)^4}{(-2x)^6} = \frac{(2x)^3 \times (2x)^4}{(2x)^6} = (2x)^{3+4-6} = 2x = 2 \times \frac{-1}{2} = -1$$

b Simplify:

$$\frac{3\times3^7}{(-3)^5}$$

$$\frac{3 \times 3^7}{(-3)^5} = \frac{3^{1+7}}{(-3)^5} = \frac{-3^8}{(3)^5} = -3^3 = -27$$

Model (1)

1 Complete:

- 3
- a The sum of measures of the interior angles of the quadrilateral = 360°
- **b** Any triangle has at least two acute angles.
- The sum of measures of the interior angles of pentagon equals 540°

2 Choose the correct answer:

a The measure of each angle of the regular hexagon is

b The quadrilateral ABCD, if $m(\angle A) = 2m(\angle B) = m(\angle C) = 100$, then $m(\angle D) = \dots$

(120°, 60°, 90°, 110°)

c The polygon which has a number of sides equals the number of diagonals is

(triangle, quadrilateral, pentagon, hexagon)

3 Answer the following:

a In the opposite figure:

$$m(\angle ABC) = 110^{\circ}, m(\angle CBD) = 35^{\circ}$$

and $m(\angle ABE) = 140^{\circ},$
find $m(\angle EBD)$

Proof:

$$\cdots$$
 m(\angle EBD) + m(\angle CBD) + m(\angle ABC) + m(\angle ABE) = 360°

$$\therefore m(\angle EBD) + 35^{\circ} + 110^{\circ} + 140^{\circ} = 360^{\circ}$$

$$\therefore$$
 m(\angle EBD) = 360° – 285° = 75°

b In the opposite figure:

ABCD is quadrilateral in which

$$m(\angle A) = 90^{\circ}$$

Find the value of x.

Proof:

From the quadrilateral ABCD

$$\cdots$$
 m(\angle A) + m(\angle B) + m(\angle C) + m(\angle D) = 360°

$$\therefore 90^{\circ} + 3x + 5x + 2x = 360^{\circ}$$

$$10x = 360^{\circ} - 90^{\circ}$$

$$10x = 270^{\circ}$$

$$\therefore x = 27^{\circ}$$

Model (2)

1 Complete:

- The sum of measures of the accumulative angles at a point is 360°.
- **b** The obtuse-angled triangle has two acute angles.
- c The perimeter of a regular hexagon is 48 cm, then its side length is 8 cm and the measure of each interior angle in it = 120°

2 Choose the correct answer:

a The sum of the measures of the exterior angles of a triangle =

b The measure of the interior angle of the regular polygon of 10 sides equals

$$(72^{\circ}, 108^{\circ}, 144^{\circ}, 150^{\circ})$$

c The measure of the interior angle of the regular octagon =

3 Answer the following:

a The length of the side of a regular pentagon is 6 cm.

Calculate:

- 1 Its perimeter.
- 2 The measure of each interior angle of it.

Solution:

The perimeter =
$$6 \times 5 = 30$$
 cm

The measure of each angle =
$$\frac{(5-2) \times 180^{\circ}}{5} = 108^{\circ}$$

b In the opposite figure:

$$B \in (\overrightarrow{AC})$$
, $m(\angle CBE) = 116^{\circ}$

and
$$\overrightarrow{BD}$$
 bisects $\angle ABE$

Proof:

$$\cdot \cdot B \in \overrightarrow{AC}$$

$$\therefore m(\angle ABE) + m(\angle CBE) = 180^{\circ}$$

$$\therefore m(\angle ABE) = 180^{\circ} - 116^{\circ} = 64^{\circ}$$

$$\therefore \overrightarrow{BD}$$
 bisect $\angle ABE$

$$\therefore m(\angle ABD) = m(\angle DBE) = \frac{64^{\circ}}{2} = 32^{\circ}$$

Model (3)

1 Complete:

- a If two straight lines intersect, then the measures of each two vertically opposite angles are equal in measure.
- **b** The polygon which has no diagonals is the triangle.
- **c** Each line segment joining two non–adjacent vertices of the polygon is called a diagonal.

2 Choose the correct answer:

a The sum of measures of the interior angles of a polygon of n sides equals

$$(n \times 180^{\circ}, (n-2) \times 180^{\circ}, \frac{n-2 \times 180^{\circ}}{2}, \frac{n-2 \times 180^{\circ}}{2n})$$

b In triangle ABC, if $m(\angle B) = m(\angle A) + m(\angle C)$, then $m(\angle B) = \dots$

c The measure of the interior angle of a polygon with 8 sides =

3 Answer the following:

a ABCDE is a pentagon:

if
$$m(\angle A) = 110^\circ$$
, $m(\angle B) = 120^\circ$, $m(\angle E) = 115^\circ$ and $m(\angle D) = 90^\circ$, Find $m(\angle C)$.

Solution:

- · ABCDE is a pentagon
- \therefore The sum measures of the interior angle in it = (5 2) x 180° = 540°

$$\therefore m(\angle C) = 540^{\circ} - (110^{\circ} + 120^{\circ} + 115^{\circ} + 90^{\circ})$$
$$= 540^{\circ} - 435^{\circ} = 105^{\circ}$$

b If the measure of the exterior angle of a regular polygon is 30°, how many sides does it have? What is the sum of the measures of its interior angles?

Solution:

- \because The measure of exterior angle of the polygon = 30°
- \therefore The measure of the interior angle of the polygon = $180^{\circ} 30^{\circ} = 150^{\circ}$

$$\therefore \frac{(n-2)\times 180^{\circ}}{2} = 150^{\circ}$$

$$\therefore 180^{\circ} \, n - 360^{\circ} = 150^{\circ} \, n$$

$$\therefore 30^{\circ} \, \boldsymbol{n} = 360^{\circ}$$

$$n = \frac{360^{\circ}}{30^{\circ}} = 12$$

 \therefore The sum of measures of the interior angles = $(12 - 2) \times 180^{\circ} = 1800^{\circ}$

Model (4)

1 Complete:

- a XYZL is a parallelogram, $m(\angle X) = 70^{\circ}$, then $m(\angle L) = 110^{\circ}$
- b The sum of measures of the interior angles of a polygon of n sides equals $(n-2) \times 180^{\circ}$
- c If the measures of two angles in a triangle are 50°, 60°, then the triangle is a/an acute triangle.

2 Choose the correct answer:

a In \triangle ABC, if m(\angle A) = 60°, m(\angle B) = 2 m(\angle C), then m(\angle B) =

$$(80^{\circ}, 70^{\circ}, 60^{\circ}, 40^{\circ})$$

b The measure of the interior angle of a regular polygon of 18 sides equals

c The number of the diagonals of the pentagon =

3 Answer the following:

a If the sum of measures of the interior angles of a polygon is 1620°, find the number of sides.

Solution:

 \cdot : The sum of measures of the interior angles of a polygon of n sides equals $(n-2) \times 180^{\circ}$

$$\therefore 1620^{\circ} = (n-2) \times 180^{\circ}$$

$$n - 2 = \frac{1620^{\circ}}{180^{\circ}}, n - 2 = 9, n = 11$$

- \therefore the number of sides of the polygon is 11 sides
- **b** In the opposite figure:

What is the value of x?

$$x + 3x - 8 = 180^{\circ}$$

$$\therefore 4x - 8^{\circ} = 180^{\circ}$$

$$...4x = 188^{\circ}$$

$$\therefore x = 47^{\circ}$$

Model (5)

1 Complete:

- 3
- a The sum of measures of the interior angles of the triangle = 180° .
- **b** The rhombus which has a right angle is square.
- The sum of measures of the accumulative angles at a point is 360°.

2 Choose the correct answer:

a The number of diagonals of the quadrilateral =

b The quadrilateral which has two only parallel sides is called

(parallelogram, rhombus, trapezium, rectangle)

c The measures of the interior angle of a regular polygon of n sides equal

$$(\frac{(n-2)\times90^{\circ}}{n},\frac{(n-2)\times180^{\circ}}{2},\frac{(n-2)\times180^{\circ}}{n},180^{\circ}\times(n-1))$$

3 Answer the following:

a If the ratio among the measures of the angles of a pentagon is 3:3:2:3:4, find the greatest measure of the angles of this pentagon.

Solution:

- \therefore Let the measure of the interior angles of the pentagon be 3x, 3x, 2x, 3x, 4x
- $\ensuremath{\boldsymbol{.}}$. The sum of the measures of the interior angles of the pentagon

$$= (5 - 2) \times 180^{\circ} = 540^{\circ}$$

$$3x + 3x + 2x + 3x + 4x = 540^{\circ}$$

$$15x = 540$$

$$x = \frac{540}{15} = 36^{\circ}$$

 \therefore The greatest measure = $4 \times 36^{\circ} = 144^{\circ}$

b In the opposite figure:

$$(\overrightarrow{AC}) \cap (\overrightarrow{DE}) = \{B\}, m(\angle ABD) = 40^{\circ}$$

and (\overrightarrow{BE}) bisects $\angle CBF$

Proof:

$$\therefore (\overrightarrow{AC}) \cap (\overrightarrow{DE}) = \{B\}$$

$$\therefore$$
 m(\angle CBE) = m(\angle ABD) = 40° (V.O.A)

$$\therefore (\overrightarrow{BE})$$
 bisects $\angle CBF$

$$\therefore$$
 m(\angle FBE) + m(\angle EBC) = 80°

$$\therefore$$
 m(\angle FBC) = 80°

$$\cdot \cdot B \in \overleftrightarrow{AC}$$

$$\therefore m(\angle ABF) = 180^{\circ} - 80^{\circ} = 100^{\circ}$$

FIRST ALGERBA

Q1: Choose the correct answer:

24			
	The additive inverse of	the number	(- 5)° is
	THE additive inverse of	the maniber	(3) 13

$$(b) - 5$$

$$(d) - (7)^{\circ}$$

$$(-1)^{43}$$

3 If
$$a = b$$
, then $(\frac{x}{3y})^{b-a} = \dots$

$$\frac{\alpha}{3y}$$

$$\bigcirc$$
 $\frac{3y}{x}$

$$4 \left(-\frac{3}{5}\right)^{-3} = \dots$$

(a)
$$\frac{-27}{125}$$
 (b) $\frac{-125}{27}$

$$\frac{27}{125}$$

$$\frac{125}{27}$$

$$(\frac{a}{b})^5 \times \frac{b^5}{a^5} = \dots (where a \neq zero, b \neq zero)$$

$$(a)$$
 (a) (b) (a) (b) (a) (b) (a)

$$(d) - 2$$

$$7 4^{10} + 4^{10} + 4^{10} + 4^{10} = \dots$$

8 Half of
$$4^{20} = \dots$$
 b 2^{39}

$$\frac{(x^2)^3}{x^3} = \dots (x \neq zero)$$

$$\bigcirc$$
 χ^6

$$(c) x^3$$

يمكنك الحصول على مراجعات ,امتحانات و شرح من خلال مسح الكود

FIRST ALGERBA

12 If
$$3^x = 7$$
, then $a^{x+1} = \dots$

13
$$(\frac{2}{3})^{-2} = \dots$$

$$\frac{-9}{4}$$

b
$$\frac{-4}{9}$$

$$\frac{4}{9}$$

$$\frac{0}{4}$$

$$\frac{(-2 s^2 t)^3}{(-4 s t^2)^2} = \dots$$

$$\frac{a}{2t}$$

$$\frac{s^4}{t}$$

$$\mathbf{15} \ \mathbf{4^{-1}} + \mathbf{4^{-1}} + \mathbf{4^{-1}} + \mathbf{4^{-1}} = \dots$$

16 If
$$xy^{-1} = \frac{1}{3}$$
, then $\frac{y}{x} = \dots$

$$\frac{1}{3}$$

$$\frac{3^{x}}{3^{-y}} = \dots$$

$$\frac{a}{y}$$

18 The greatest value of
$$(\frac{1}{8})^m$$
, when $m = \dots$

Q2: Complete the following: A S S R

1 If
$$\frac{x}{y} = \frac{5}{7}$$
, then $\frac{7x}{5y} = \dots$

$$3 2 \frac{1}{4} = (\frac{3}{2})^{\dots}$$

$$5 9 x^{-3} = \frac{9}{...}$$

يمكنك الحصول على مراجعات امتحانات و شرح من خلال مسح الكود

FIRST ALGERBA

- 6 If $x = \frac{2}{5}$, and $y = \frac{5}{6}$, then $x^2y^2 = \dots$
- $((\frac{3}{5})^5)^3 = \frac{3^{15}}{\dots}$
- 8 If $(\frac{3}{5})^3 \times y = (\frac{3}{5})^6$, then the value of y =
- $9 (\frac{3^{-1}}{5})^2 = \dots$
- $\frac{x^{-7}}{y^{-7}} = (.....)^7$
- 11 3¹⁰ × 3⁻¹⁰ = 9.....
- 12 $y^{-7} + 1 = y^{-7}$ (..................................) where $y \neq 0$

Q3: Answer the following:

Calculate the following:

$$A]\left(\frac{3^4\times7^3}{7^4\times3^3}\right)^{-1}$$

B]
$$(7^0 \times 2^{-2})^{-3}$$

C]
$$\frac{8 \times 8^{-3}}{8^{-4}}$$

- 2 If $x = \frac{2}{3}$, and $y = -\frac{1}{2}$, Find the value of: x^2y^2 and $(a b)^{-1}$
- 3 Simplify: $\frac{x^3 \times x^{-2}}{x^{-5} \times x}$, Then find the numerical value of the result when: x = -2
- 4 Simplify to the simplest form : $\frac{2^{10} \times 3^4}{12^5}$
- 5 Prove that: $4^{y+2} 4^{y+1} = 12 \times 4^{y}$
- 6 If $x = -\frac{1}{2}$, $y = -\frac{3}{4}$, Find in the simplest form: $(\frac{y}{x^2})^{-2}$

بمكنك الحصول على مراجعات امتحانات وشرح من خليل مسح الكود

SECOND GEOMETRY

Q1	: Choose the	correct ans	wer:	
1	The measure of an ir	nterior angle of regu	lar pentagon is	·····
	a 540 °	b 120 °	© 108°	d 72 °
2	The sum of measure	s of the interior ang	les of any quadrilate	ral equals
	a 360 °	b 720 °	© 540 °	d 180°
3	The sum of measure	s of the accumulativ	e angles at a point e	quals
	a 360°	b 90 °	© 540 °	d 180 °
4	The measure of the i	nterior <mark>angle</mark> of the	equilateral triangle	is
	a 120°	b 60 °	C 180 °	d 72 °
5	The measure of the i			
	(a) 72 °	(p) 60 °	C 120°	(d) 135 °
6	The number of diago	onal of t <mark>riangle is</mark>		
	(a) 3	(b) 2	C 1	d zero
7	The number of diago	onal of hep <mark>tagon is</mark>		
	a 7	b 5	(c) 9	d 14
8	The measure of the i	nterior an <mark>gle of the</mark>		
	(a) 72 °	(b) 120°	C 135°	d) 150°
9	If the measure of an	interior angle of a re	<mark>egular po</mark> lygon is 160)°,
	then the number of	its sides is		
	(a) 18 A H	(b) 16	C 14 S R	d 12
10	In the quadrilateral A	ABCD, If m(\angle A) = 3	$m (\angle B) = m(\angle C) = 1$	20°,
	then $m(\angle D) = \dots$	•	_	_
	a 60°	b 40 °	© 80°	d 160°
11	The number of axes	of symmetry of isos	celes triangle is	
	a 0	b 1	C 2	d 3
12	The polygon which n	number of its diagon	al equal to number of	of its side is

يمكنك الحصول على مراجعات امتحانات و شرح من خلال مسح الكود

a quadrilateral

(b) pentagon

c hexagon

(d) triangle

February Revision

SECOND GEOMETRY

Q2: Complete the following:

- 1 The perimeter of hexagon is 48 cm, then its side length is cm
- The sum of the interior angles of any triangle is
- 3 The meseaure of an interior angle of regular octagon is
- 4 If the perimeter of regular pentagon is 42 cm, then its side length is
- 5 The number of axes of symmetry of square is
- 6 In any triangle, there are at least two angles.
- Each line segement joining between two non-adjacent vertices of the polygon is called
- 8 The sum of measures of the interior angles of the heptagon =
- The polygon which has no diagonal is
- 10 The polygon which the measure of its interior angle is 108 ° is

Q3: Answer the following:

1 In opposite figure:

 $m(\angle AMB) = 110^{\circ}$, $m(\angle AMD) = 90^{\circ}$

 $m(\angle DMC) = 40^{\circ}$

Find: $m(\angle BMC)$

AIIMLUNASSK

In the opposite figure:

AB // DC, m(\angle EBC) = 53°, m(\angle D) = 127°,

Prove that: BC // AD

يمكنك الحصول على مراجعات امتحانات و شرح من خلال مسح الكود

SECOND GEOMETRY

4 Δ ABC is an equilateral triangle
BD ∩ AE = {C}, m(∠D) = 130°
m(∠E) = 90°.
Find by proof: m(∠X)

In the opposite figure:
AD ∩ BE = {C}, AC = CD, BC = CE
AB = 7 cm, m(∠B) = 80°
1) Is Δ ABC ≡ Δ DEC? why?
2) Find: The length of ED, m(∠E)

اللهم اجعل هذا العمل خالصا لوجهك الكريم واكتب له القبول والنفع ياكريم يا وهّاب.

بمكنك الحصول على مراجعات .امتحانات و شرح من خلال مسح الكود

1. Choose the correct answer:

The sum of measures of the interior angles of a polygon of n sides equals

(a) $n \times 180^{\circ}$ (b) $(n-2) \times 180^{\circ}$ (c) $\frac{(n-2) \times 180^{\circ}}{2}$ (d) $\frac{(n-2) \times 180^{\circ}}{2}$

The measure of the interior angle of a regular polygon of n sides equals

(a) $\frac{(n-2)\times 90^{\circ}}{n}$ (b) $\frac{(n-2)\times 180^{\circ}}{2}$ (c) $\frac{(n-2)\times 180^{\circ}}{n}$ (d) $180^{\circ}\times (n-1)$

The measure of the interior angle of the regular polygon of 10 sides equals

(a) 72°

(b) 108°

(c) 144°

(d) 150°

4 The measure of the interior angle of a regular polygon of 18 sides equals

(a) 130°

(b) 140°

(c) 150°

(d) 160°

5 If the measure of an interior angle of a regular polygon is 135°, then the number of its sides is

(a) 6

(b) 4

(c) 7

(d) 8

6 The sum of measures of the exterior angles of the triangle equals

(a) 90°

(b) 180°

(c) 360°

(d) 720°

7 In the quadrilateral ABCD, if m ($\angle A$) = 2 m ($\angle B$) = m ($\angle C$) = 96°, then m (\angle D) = ·······

(a) 96°

(b) 48°

(c) 120°

(d) 144°

- 8 ABCD is a parallelogram in which : $m (\angle A) = 50^{\circ}$, then $m (\angle C) = \dots$
 - (a) 50°

(b) 60°

(c) 130°

- (d) 150°
- 9 ABCD is a parallelogram in which : $m (\angle A) + m (\angle C) = 140^{\circ}$
 - then m (\angle B) =
 - (a) 70°

(b) 40°

(c) 110°

- (d) 220°
- If the lengths of two consecutive sides of a parallelogram are 3 cm. and 5 cm., then its perimeter equals cm.
 - (a) 12

(b) 14

(c) 16

- (d) 18
- If the perimeter of a parallelogram is 25 cm. and if one of its sides is of length 7 cm., then the consecutive side is of length cm.
 - (a) 7

(b) 18

(c) 12.5

(d) 5.5

12 In the opposite figure:

If ABCD is a parallelogram

,
$$E \in \overrightarrow{AB}$$
 , $CD = 5$ cm., $AE = 9$ cm.

- , AD = 8 cm., the perimeter of Δ BEC = 18 cm.
- , then the length of $\overline{EC} = \cdots cm$.
- (a) 8

(b) 6

(c) 5

13	The two diagonals of	a rectangle ······		
	(a) are perpendicular.		(b) are equ	al in length.
	(c) are perpendicular	and equal in length.	(d) bisect i	ts interior angles.
14	The two diagonals of	a rhombus are		ē
	(a) perpendicular and	not equal in length.		
	(b) equal in length an	d not perpendicular.		
	(c) perpendicular and	l equal in length.		
	(d) not equal in lengt	h and not perpendicu	lar.	
15	The two diagonals of	the square are		
	(a) just perpendicular	r.		
	(b) just equal in leng	th.		
	(c) perpendicular and	l equal in length.		
	(d) not equal in lengt	h and not perpendicu	ılar.	
16	The adjacent sides are	e equal in length in a	parallelogram, then	the figure is a
	(a) square.	(b) rhombus.	(c) rectangle.	(d) trapezium.
17	If ABCD is a rectang	le in which $AC = 5$ c	$m.$, then $BD = \cdots$	·· cm.
	(a) 2.5	(b) 5	(c) 10	(d) 20
18	If ABCD is a square	then m (\angle CAB) =		
	(a) 90°	(b) 45°	(c) 60°	(d) 30°
19	If ABCD is a paralle	logram in which m (2	$\angle A$) = m ($\angle B$), the	n ABCD is a
	(a) rectangle.	(b) rhombus.	(c) square.	(d) trapezium.
20	If ABCD is a rhomb	ıs in which m (∠ AC	$(B) = 32^{\circ}$, then m (\angle	. D) = ·······
	(a) 32°	(b) 64°	(c) 116°	(d) 26°

The two vertically op			
(a) complementary.		(b) supplementary.	
(c) adjacent.		(d) equal in measure	•
The sum of measures	of the accumulative angle	es at a point equals	
(a) 45°	(b) 90°	(c) 180°	(d) 360°
23 The sum of measures	of the interior angles of a	ny quadrilateral equals	
(a) 180°	(b) 170°	(c) 90°	(d) 360°
24 The number of diago	nals of the quadrilateral ed	quals	
(a) 2	(b) 3	(c) 4	(d) 5
25 If ABCD is a square	, then m (\angle CAD) =		
(a) 90°	(b) 60°	(c) 45°	(d) 30°
26 The two diagonals in	the rectangle are	••	*
(a) parallel.		(b) perpendicular.	
(c) equal in length.		(d) equal in length as	nd perpendicular.
· /		(a) equal in length as	
	two diagonals are equal ir	•	
	two diagonals are equal ir	•	
The rhombus whose (a) square.	C8787	length is called(c) parallelogram.	(d) trapezium.
The rhombus whose (a) square.	(b) rectangle.	length is called(c) parallelogram.	(d) trapezium.
The rhombus whose (a) square. The rhombus whose (a) 20	(b) rectangle. perimeter is 60 cm., its si (b) 18	(c) parallelogram. (de length equals	(d) trapezium. cm. (d) 10
The rhombus whose (a) square. The rhombus whose (a) 20	(b) rectangle. perimeter is 60 cm., its si	(c) parallelogram. (de length equals	(d) trapezium. cm. (d) 10
The rhombus whose (a) square. 28 The rhombus whose (a) 20 29 The measure of the in (a) 135°	(b) rectangle. perimeter is 60 cm., its si (b) 18 nterior angle of a regular p (b) 540°	(c) parallelogram. (de length equals	(d) trapezium cm. (d) 10
The rhombus whose (a) square. 28 The rhombus whose (a) 20 29 The measure of the in (a) 135°	(b) rectangle. perimeter is 60 cm., its si (b) 18 nterior angle of a regular p	(c) parallelogram. (de length equals	(d) trapezium cm. (d) 10
The rhombus whose (a) square. 28 The rhombus whose (a) 20 29 The measure of the interpretation (a) 135° 30 The measure of the interpretation (a) 60°	(b) rectangle. perimeter is 60 cm., its si (b) 18 nterior angle of a regular p (b) 540° nterior angle of a regular l	(c) parallelogram. (de length equals	(d) trapezium cm. (d) 10 (d) 110°
The rhombus whose (a) square. 28 The rhombus whose (a) 20 29 The measure of the interpretation (a) 135° 30 The measure of the interpretation (a) 60°	(b) rectangle. perimeter is 60 cm., its si (b) 18 nterior angle of a regular p (b) 540° nterior angle of a regular l (b) 108°	(c) parallelogram. (de length equals	(d) trapezium cm. (d) 10 (d) 110°
The rhombus whose (a) square. 28 The rhombus whose (a) 20 29 The measure of the interpretation (a) 135° 30 The measure of the interpretation (a) 60° 31 The number of diagonal (a) 3	(b) rectangle. perimeter is 60 cm., its si (b) 18 nterior angle of a regular p (b) 540° nterior angle of a regular l (b) 108° onals of pentagon equals	ide length is called	(d) trapezium. cm. (d) 10 (d) 110° (d) 135° (d) 9
The rhombus whose (a) square. 28 The rhombus whose (a) 20 29 The measure of the interpretation (a) 135° 30 The measure of the interpretation (a) 60° 31 The number of diagonal (a) 3	(b) rectangle. perimeter is 60 cm., its si (b) 18 Interior angle of a regular p (b) 540° Interior angle of a regular l (b) 108° Interior angle of a regular l (b) 50° Interior angle of a regular l (b) 50°	ide length is called	(d) trapezium. cm. (d) 10 (d) 110° (d) 135° (d) 9

33	The measure of the interior angle of a regular polygon of 10 sides equals				
	(a) 72°	(b) 108°	(c) 144°	(d) 150°	
34	The perimeter of a square	of side length 5 cm. is	cm.	17	
	(a) 10	(b) 20	(c) 15	(d) 25	
35	The sum of measures of tw	wo consecutive angles	in the parallelogram is	S	
10	(a) 90°	(b) 180°	(c) 120°	(d) 360°	
36	The parallelogram whose	angle is right is called			
	(a) square.	(b) rhombus.	(c) rectangle.	(d) trapezium.	
37	If two adjacent sides are e	qual in a parallelogram	then the figure is		
	(a) square.	(b) rhombus.	(c) rectangle.	(d) trapezium.	
38	ABCD is a parallelogram	in which m ($\angle A$) + m	$(\angle C) = 140^{\circ}$, then n	n (∠ B) = ······	
	(a) 40°	(b) 140°	(c) 110°	(d) 70°	
39	The two diagonals are equ	al in length and perpen	dicular in		
	(a) rhombus.	(b) rectangle.	(c) square.	(d) parallelogram.	
40	The two diagonals are equ	al in length and not per	pendicular in	•••	
	(a) square.	(b) rectangle.	(c) rhombus.	(d) parallelogram.	
41	The diagonal of the square of them is	divides the vertex ang	le into two angles , th	ne measure of each	
	(a) 45°	(b) 30°	(c) 90°	(d) 60°	
42	The diagonal of the square	make an angle of mea	sure with ar	y of its sides.	
	(a) 45°	(b) 60°	(c) 90°	(d) 120°	
43	ABCD is a parallelogram	in which m (\angle A) = 50	• , then m (\angle B) =	**********	
	(a) 50°	(b) 130°	(c) 180°	(d) 90°	
44	The sum of measures of th	e interior angles of a tr	iangle equals	••	
	(a) 180°	(b) 360°	(c) 90°	(d) 270°	
45	The sum of measures of th	e interior angles of a tr	iangle equals the mea	sure	
	of angle.			5	
	(a) right.	(b) straight. (c) acute. (e	d) reflex.	

Mr. Mohamed El-Shourbagy / 01093149109

2. Answer the following:

In the opposite figure :

$$m (\angle BMC) = 120^{\circ}$$

$$, m (\angle CMD) = 40^{\circ}$$

$$, m (\angle DMA) = 60^{\circ}$$

Find: $m (\angle AMB)$

In the opposite figure :

If
$$\overrightarrow{DE} / / \overrightarrow{AB}$$

$$\overrightarrow{AC} / / \overrightarrow{BD}$$

$$, m (\angle EDB) = 60^{\circ}$$

Find: $m(\angle B)$, $m(\angle A)$

In the opposite figure :

$$, m (\angle CEF) = 95^{\circ}$$

$$, m (\angle ACE) = 30^{\circ}$$

$$, m (\angle BAC) = 115^{\circ}$$

Prove that : $\overrightarrow{AB} / \overrightarrow{EF}$

In the opposite figure :

$$\overrightarrow{AB} / \overrightarrow{CD}$$

$$m (\angle A) = 50^{\circ}, m (\angle ACE) = 90^{\circ}$$

• m (
$$\angle$$
 E) = 40°

Prove that : $\overrightarrow{CD} /\!/ \overrightarrow{EF}$

5 In the opposite figure :

$$\overline{AE} // \overline{BC}$$
, m ($\angle B$) = 70°

$$m (\angle C) = 150^{\circ}$$

$$m (\angle D) = 80^{\circ}$$

Find by proof: $m (\angle E)$

6 In the opposite figure:

ABCD is a quadrilateral in which

$$m (\angle A) = 90^{\circ}$$

Find: The value of X

In the opposite figure :

Find with giving reason

The value of X

In the opposite figure :

Find: The value of a

In the opposite figure :

$$E \subseteq \overrightarrow{AB}$$
, m ($\angle A$) = 80°

$$m (\angle D) = 120^{\circ} , m (\angle CBE) = 130^{\circ}$$

Find: $m (\angle C)$

10 In the opposite figure:

$$E \in \overrightarrow{DA}$$
, m ($\angle EAB$) = 120°

$$, m (\angle C) = 60^{\circ}, \overrightarrow{DA} // \overrightarrow{CB}$$

Prove that: ABCD is a parallelogram

11 In the opposite figure:

ABCD is a parallelogram

in which: AB = 5 cm.

, BC = 8 cm. , m (
$$\angle$$
 B) = 120°

Find: 1 The perimeter of the parallelogram ABCD

2 m (∠ C)

12 In the opposite figure:

ABCD is a rhombus in which:

 $, m (\angle ABD) = 62^{\circ}$

Find with proof: $m (\angle A)$

13 In the opposite figure:

$$m (\angle BAE) = 45^{\circ}, m (\angle AEB) = 70^{\circ}$$

, m (
$$\angle$$
 D) = 65°, m (\angle C) = 115°

Prove that: ABCD is a parallelogram.

14 In the opposite figure :

ABCD is a parallelogram

$$m (\angle CBF) = 60^{\circ}$$

$$,BC = 5 \text{ cm. } ,F \in \overrightarrow{AB}$$

Find by proof: $m (\angle D)$, the length of \overline{AD}

15 In the opposite figure:

$$\overline{AB} /\!/ \overline{DC}$$
, $\overline{AC} \cap \overline{BD} = \{M\}$

$$m (\angle DAC) = 30^{\circ} , m (\angle DBC) = 40^{\circ}$$

$$m (\angle AMB) = 70^{\circ}$$

Prove that: ABCD is a parallelogram.

16 In the opposite figure :

ABCD ia a square, $E \in \overrightarrow{BC}$

where : $\overline{AC} / / \overline{DE}$

Prove that: ACED is a parallelogram.

In the opposite figure:

 \overline{AB} , \overline{DE} are perpendicular

on
$$\overline{BD}$$
, $\overline{BD} \cap \overline{AF} = \{C\}$

$$, m (\angle A) = 40^{\circ}, m (\angle F) = 130^{\circ}$$

Find by proof: $m (\angle E)$

18 In the opposite figure:

$$m (\angle E) = 50^{\circ}, m (\angle F) = 60^{\circ}$$

$$, m (\angle B) = 80^{\circ}, m (\angle D) = 110^{\circ}$$

Find: $m(\angle A)$

Model 1

(3 Marks)

1 Choose the correct answer from the given ones:

1 In the opposite figure :

If
$$\overrightarrow{AB} \cap \overrightarrow{CD} = \{C\}$$
, m ($\angle ACD$) = 30°

 $\frac{\chi^{\circ}}{B}$ C

then
$$x = \dots$$

- (a) 30°
- (b) 150°
- (c) 60°
- (d) 90°

2 The rhombus in which its two diagonals are equal in length is called

(a) a parallelogram.

(b) a square.

(c) a rectangle.

(d) a trapezium.

3 If two straight lines intersect, then each two vertically opposite angles are

(a) equal in measure.

(b) complementary.

(c) supplementary.

(d) adjacent.

2 In the opposite figure :

$$\overrightarrow{BA} / \overrightarrow{CD}, m (\angle ABC) = 60^{\circ}$$

, CE bisects ∠ BCD

Find: $m (\angle ECD)$

(2 Marks)

Model 2

1 Choose the correct answer from the given ones:

(3 Marks)

- 1 The number of diagonals of the pentagon is
 - (a) 5
- (b)9
- (c) 15
- (d)2
- 2 If ABCD is a parallelogram $m (\angle B) + m (\angle C) = \cdots$
 - (a) 70°
- (b) 180°
- (c) 90°
- (d) 360°
- 3 The parallelogram in which the two diagonals are equal in length is
 - (a) a trapezium.
- (b) a rhombus.
- (c) a rectangle.
- (d) a square.

2 In the opposite figure :

$$A \in \overrightarrow{CB}$$
, $m (\angle D) = 140^{\circ}$

$$, m (\angle ABE) = 120^{\circ}, \overline{DC} \perp \overline{CB}$$

Find: $m (\angle E)$

Choose the correct answer from the given ones:

(3 Marks)

- 1 The sum of measures of the accumulative angles at a point equals
 - (a) 45°

(b) 90°

- (c) 180°
- (d) 360°
- 2 The measure of the interior angle of a regular hexagon equals
 - (a) 60°

- (b) 108°
- (c) 120°
- (d) 135°

- The parallelogram whose angle is right is called
 - (a) square.

- (b) rhombus.
- (c) rectangle.
- (d) trapezium.

2 In the opposite figure :

$$\overline{AE} // \overline{BC}$$
, m ($\angle B$) = 70°

$$m (\angle C) = 150^{\circ}$$

$$, m (\angle D) = 80^{\circ}$$

Find by proof: $m (\angle E)$

Choose the correct answer from the given ones:

(3 Marks)

- 1 The sum of measures of the interior angles of any quadrilateral equals
 - (a) 180°

- (b) 170°
- (c) 90°

- (d) 360°
- The rhombus whose two diagonals are equal in length is called
 - (a) square.

- (b) rectangle. (c) parallelogram. (d) trapezium.
- The measure of the exterior angle of a regular polygon is 45°, then the number of its sides is
 - (a) 3 sides.

- (b) 6 sides.
- (c) 8 sides.
- (d) 9 sides.

In the opposite figure:

(2 Marks)

ABCD is a quadrilateral its two diagonals intersect at M

$$, m (\angle AMB) = 110^{\circ}, m (\angle MBA) = 25^{\circ}$$

$$, MA = MC, MB = MD$$

- 1 Prove that : ABCD is a parallelogram
- 2 Find: m (\angle ACD)

The Answers:(2.Essay questions)

- 11 : $m (\angle AMB) + (\angle CMD) + m (\angle DMA) + m (\angle CMB) = 360^{\circ}$
 - \therefore m (\angle AMB) + 40° + 60° + 120° = 360°
 - \therefore m (\angle AMB) = 360° 220° = 140° (The req.)
- $2 : \overrightarrow{DE} / / \overrightarrow{AB}$, \overrightarrow{BD} is a transversal to them
 - \therefore m (\angle B) = m (\angle EDB) = 60°

(Alternate angles) (First req.)

- $\rightarrow :: \overline{BD} // \overline{AC} \rightarrow \overline{AB}$ is a transversal to them.
- \therefore m (\angle A) + m (\angle B) = 180°

(two interior angles in the same side of the transversal)

 $m (\angle A) = 180^{\circ} - 60^{\circ} = 120^{\circ}$

(Second req.)

- 3 : $\overrightarrow{EF} // \overrightarrow{CD}$, \overrightarrow{EC} is a transversal to them.
 - \therefore m (\angle ECD) = m (\angle CEF) = 95°

(Alternate angles)

- :. $m (\angle ACD) = 95^{\circ} 30^{\circ} = 65^{\circ}$
- :. $m (\angle ACD) + m (\angle A) = 65^{\circ} + 115^{\circ} = 180^{\circ}$

and they are interior angles in the same side of the transversal

: AB // CD

 $, : \overrightarrow{CD} / \overrightarrow{EF}$

∴ AB // EF

(The req.)

- $\overrightarrow{AB} / \overrightarrow{CD}$, \overrightarrow{AC} is a transversal to them
 - \therefore m (\angle ACD) = m (\angle A) = 50°

(Alternate angles)

- $m (\angle ACE) = 90^{\circ}$
- ∴ m (\angle DCE) = 90° 50° = 40°
- \therefore m (\angle DCE) = m (\angle E) and they are alternate angles.
- ∴ CD // EF

(The req.)

- \overline{AE} // \overline{BC} , \overline{AB} is a transversal to them.
 - \therefore m (\angle A) + m (\angle B) = 180°

(Two interior angles in the same side of the transversal)

- $m (\angle A) = 180^{\circ} 70^{\circ} = 110^{\circ}$
- ∴ the sum of the measures of the interior angles of the pentagon ABCDE = 540°

:. m (
$$\angle$$
 E) = 540° - (70° + 150° + 80° + 110°)
= 130° (The req.)

- The sum of the measures of the interior angles of the quadrilateral ABCD = 360°
 - $\therefore 3 \times + 5 \times + 2 \times + 90^{\circ} = 360^{\circ}$
 - $\therefore 10 \times + 90^{\circ} = 360^{\circ}$
 - $\therefore 10 \ x = 360^{\circ} 90^{\circ} = 270^{\circ}$
 - $\therefore x = \frac{270^{\circ}}{10^{\circ}} = 27^{\circ}$

(The req.)

- The sum of the measures of the interior angles of the pentagon = 540°
 - $x + 2x + 2x + 2x + x + 2x = 540^{\circ}$
 - $x = 540^{\circ}$
 - $\therefore x = \frac{540^{\circ}}{8} = 67.5^{\circ}$

(The req.)

- The sum of the measures of the interior angles of the pentagon = 540°
 - $a + a + a + 90^{\circ} + 90^{\circ} = 540^{\circ}$
 - ∴ 3 a + 180° = 540°
 - \therefore 3 a = 540° 180° = 360°
 - ∴ $a = \frac{360^{\circ}}{3} = 120^{\circ}$

(The req.)

- 9 ∵ E∈AB
 - :. $m (\angle ABC) = 180^{\circ} 130^{\circ} = 50^{\circ}$
 - → the sum of the measures of the interior angles of the quadrilateral ABCD = 360°
 - :. m (\angle C) = 360° (50° + 80° + 120°) = 110°

(The req.)

- : DE // BC, AB is a transversal to them
 - \therefore m (\angle B) = m (\angle BAE) = 120°

(Alternate angles)

 \cdots m (\angle B) + m (\angle C) = 120° + 60° = 180°

and they are interior angles in the same side of the transversal

- ∴ AB // CD
- $, :: \overline{AD} // \overline{BC}$
- .. ABCD is a parallelogram.

(Q.E.D.)

111 The perimeter of the parallelogram ABCD

$$= (AB + BC) \times 2$$

 $= (5 + 8) \times 2 = 13 \times 2 = 26$ cm.

(First req.)

- : ABCD is a parallelogram
- \therefore m (\angle B) + m (\angle C) = 180°
- :. $m (\angle C) = 180^{\circ} 120^{\circ} = 60^{\circ}$ (Second req.)

12 : ABCD is a rhombus, BD is a diagonal

 \therefore m (\angle ABC) = 2 m (\angle ABD) = 2 × 62° = 124°

.. m ($\angle A$) = 180° – 124° = 56° (The req.)

13 In \triangle ABE: m (\angle B) = 180° - (45° + 70°) = 65°

 $\therefore \overline{AD} // \overline{BC} \tag{1}$

• : $m (\angle B) + m (\angle C) = 65^{\circ} + 115^{\circ} = 180^{\circ}$ and they are interior angles in the same side of the transversal

∴ AB // CD (2)

, from (1) and (2):

:. ABCD is a parallelogram. (Q.E.D.)

 $14 \cdot F \in \overrightarrow{AB}$

∴ m (\angle ABC) = 180° – 60° = 120°

, : ABCD is a parallelogram

 $\therefore m (\angle D) = m (\angle ABC) = 120^{\circ}$ (First req.)

AD = BC = 5 cm. (Second req.)

15 ∵ M∈AC

 \therefore m (\angle BMC) = 180° - 70° = 110°

∴ in Δ MBC :

 $m (\angle BCM) = 180^{\circ} - (110^{\circ} + 40^{\circ}) = 30^{\circ}$

 $m (\angle BCM) = m (\angle CAD)$

and they are alternate angles

:. AD // BC

, .: AB // DC

: ABCD is a parallelogram. (Q.E.D.)

16 : AD // BC (Two opposite sides in the square)

 $, E \in \overrightarrow{BC}$: AD // CE

, ∵ AC // DE (Given)

.. ACED is a parallelogram. (Q.E.D.)

1. Choose the correct answer:

- The multiplicative inverse of the number $\left(\frac{2}{5}\right)^0$ is
 - (a) $\frac{5}{2}$

(b) $-\frac{2}{5}$

(c) 1

(d) 0

- The additive inverse of the number $(-3)^0$ is
 - (a) 1

(b) - 3

(c) 3

- $(d) (3)^0$
- The multiplicative inverse of the number $(-1)^3$ is
 - (a) $(-1)^3$

- (b) $(-1)^2$
- (c) 1^3

(d) 1^2

- The additive inverse of the number $\left(-\frac{2}{5}\right)^2$ is
 - (a) $\frac{4^{-1}}{25}$

(b) $-\frac{4}{25}$

(c) $\frac{25}{4}$

(d) $-\frac{25}{4}$

- $\left(\frac{1}{4}\right)^0 + \frac{1}{4} = \dots$
 - (a) $\frac{1}{4}$

(b) $\frac{3}{4}$

(c) $\frac{5}{4}$

(d) $\frac{2}{4}$

- $\boxed{6} \left(\frac{5}{3}\right)^2 \times \left(\frac{3}{5}\right)^0 = \cdots$
 - (a) $\frac{5}{3}$

(b) $\frac{25}{9}$

(c) 0

(d) 1

- 7 If X = y, then $\left(\frac{3}{5}\right)^{X-y} = \dots$
 - (a) $\frac{3}{5}$

(b) $\frac{5}{3}$

(c) 1

(d) 0

- - (a) ab

- (b) $\left(\frac{a}{b}\right)^4$
- (c) $(ab)^0$
- (d) $\frac{a}{b}$

- 9 If $x = -\frac{1}{2}$ and y = 3, then $x^y = \dots$
 - (a) $\frac{1}{8}$

(b) $-\frac{1}{8}$

(c) $\frac{1}{6}$

 $(d) - \frac{1}{6}$

- 10 If $y^{26} + y^{27} = 0$, then $y = \dots$
 - (a) 1
- (b) 1

(c)2

(d) - 2

11 $3^2 \times 3^5 = \cdots$

- (a) 3^7
- (b) 3^3
- (c) 3^{10}

(d) 3^{25}

 $5^2 + 5^2 = \cdots$

- (a) 10^2
- (b) 10^4
- (c) 5^4

(d) 50

13 $3^5 \times 2^5 = \cdots$

- (a) 5^{10} (b) 6^{10}
- (c) 6^5

(d) 6^{25}

14 $(5a)^0 = \cdots , a \neq 0$

- (a) 5
- (b) a
- (c) 5 a

(d) 1

15 $3^{(2^3)} = \cdots$

- (a) 3^6
- (b) 3^5
- (c) 3^8

(d) 3^{23}

16 $(5^2)^3 = \cdots$

- (a) 5^6 (b) 5^5
- (c) 5^{23}

(d) 5

17 $3^{10} + 3^{10} + 3^{10} = \cdots$

- (a) 3^{10} (b) 3^{30}
- (c) 9^{10}

(d) 3^{11}

18 $4^{x} + 4^{x} + 4^{x} + 4^{x} = \dots$

- (a) 4^{x+4} (b) 4^{4x}
- (c) 4^{x+1}

(d) 4×4

 $19 \frac{(3^2)^5}{(3^5)^2} = \dots$

- (a) 3^{10}
- (b) 3^{52}
- (c) 3^{25}

(d) 1

 $\frac{(x^2)^3}{x^3} = \dots, x \neq 0$

- (a) χ^6
- (b) x^2
- (c) X^3

(d) X

21 $(2 y)^3 = \cdots$

- (a) $2 y^3$ (b) 8 y
- (c) $8y^3$

(d) 23 y

22 $(b^3)^4 = \cdots$

- (a) b^{34}
- (b) b⁷
- (c) $b^3 \times b^3 \times b^3$ (d) $b^4 \times b^4 \times b^4$

23 If $a^{-1} = \frac{2}{3}$, then $a = \dots$

(a)
$$-\frac{2}{3}$$

(b)
$$\frac{3}{2}$$

(c)
$$-\frac{3}{2}$$

(d) 1

If $a = 7^x$ and $b = 7^{-x}$, then $a \times b = \dots$

(a)
$$7^{2}$$
 x

(b)
$$49^{2x}$$

(d) 0

25 $\frac{5^{x}}{5^{-y}} = \dots$

(a)
$$5^{x \div y}$$

(b)
$$5^{x-y}$$

(c)
$$5^{x+y}$$

$$(d) - \frac{x}{v}$$

 $26 \quad \Box \frac{6 a^2 x^4}{2 a^3 x^3} = \cdots$

(b)
$$3 a^5 X^7$$

(c)
$$\frac{3 \chi}{a}$$

(d)
$$\frac{3}{a x}$$

 $27 \qquad (-2 s^2 t)^3 = \cdots$

$$(a) - \frac{s^3}{2t}$$

(a)
$$-\frac{s^3}{2t}$$
 (b) $-\frac{s^4}{2t}$

(c)
$$\frac{s^5}{2t^2}$$

(d)
$$\frac{s^4}{t}$$

28 $\left(\frac{m^2}{n^{-3}}\right)^{-1} \left(\frac{3 m^{-2}}{n^{-2}}\right)^{-2} = \dots$

(a)
$$\frac{9 \text{ m}^2}{\text{n}^7}$$

(b)
$$\frac{\text{m}^2}{9 \text{ n}^7}$$

(c)
$$\frac{\text{m}^2}{9 \text{ n}}$$

$$(d) \frac{9 \text{ m}^6}{\text{n}}$$

29 $\square \frac{(2 \text{ a b}^{-2})^0}{3^0 \text{ a}^{-2} \text{ b}} = \cdots$

(a)
$$\frac{a^3}{3 b^3}$$

(d)
$$\frac{a^2}{b}$$

30 If $a^x = 2$ and $a^{-y} = 3$, then $a^{x-y} = \dots$

(b)
$$-1$$

(c)
$$\frac{2}{3}$$

31 If $x^{-1} = \frac{1}{2}$, then $\frac{y}{x} = \dots$

(a)
$$\frac{1}{2}$$

(b)
$$-\frac{1}{2}$$

 $32 \quad 3^{-1} + 3^{-1} + 3^{-1} = \dots$

(a)
$$3^{-3}$$

(b)
$$3^3$$

(c)
$$9^{-3}$$

The multiplicative inverse of 5^{-1} is

(a)
$$\frac{1}{5}$$

$$(c) - 5$$

(d)
$$-\frac{1}{5}$$

34 $\left(\frac{3}{5}\right)^2 \times \left(\frac{5}{3}\right)^{-2} = \dots$

(a)
$$(\frac{3}{5})^4$$

(c)
$$\left(\frac{3}{5}\right)^{-4}$$

3.04 × 10⁷ = ········

(a) 340 000

(b) 304 000

(c) 3 400 000

(d) 30 400 000

 $2.37 \times 10^{-4} = \dots$

(a) 0.00237

(b) 0.000237

(c) 23700

(d) 0.0000237

If 0.00079 = 7.9 a, then $a = \dots$

(a) 10^3

(b) 10^{-3}

(c) 10^{-4}

(d) 10^4

If $0.0000503 = m \times 10^{-5}$, then $m = \dots$

(a) 503

(b) 5.03

(c) 50.3

(d) 0.503

If the thickness of a sheet of paper is 0.012 cm., then a ream of 400 sheets is of height

(a) 48×10^{-3} cm. (b) 48×10^{-2} cm. (c) 4.8×10^{0} cm.

(d) 48 cm.

Which of the following equals $\frac{1}{2}$ milliard?

(a) 50×10^8

(b) 5×10^8

(c) 0.5×10^8

(d) 500×10^7

Which of the following is the greatest?

(a) 6.3×10^5

(b) 9.8×10^4

(c) 5.2×10^5

(d) 7.3×10^4

Which of the following is the smallest?

(a) 0.6×10^5 (b) 0.25×10^5 (c) 7×10^4

(d) 17.5×10^4

43 6 000 × 50 = ·······

(a) 300×10^2 (b) 30×10^5

(c) 3×10^5

(d) 30×10^4

44 45 × 900 = ·······

(a) 4.05×10^2 (b) 4.05×10^3

(c) 4.05×10^4

(d) 45×10^2

45 0.7 × 0.005 = ·······

(a) 3.5×10^3 (b) 3.5×10^{-2}

(c) 3.5×10^2

(d) 3.5×10^{-3}

 \square The quarter of the number $4^{20} = \cdots$

(a) 4^5

(b) 4^{10}

(c) 4^{19}

(d) 2^{10}

2. Answer the following:

- 11 Find the value of the following in the simplest form: $\frac{2^4 \times 2^5}{2^6}$
- Find the value of the following in the simplest form: $\frac{a^5 \times a^8}{a^3 \times a^2 \times a^4}$ (where $a \neq zero$)
- Calculate: $\left(\frac{9^3 \times 9}{9^5}\right)^{-3}$
- Calculate : $\left(\frac{3^4 \times 7^2}{7^3 \times 3^2}\right)^{-1}$
- 5 Calculate: $\frac{(10)^2 \times (0.01)^3}{(10)^{-3}}$
- 6 Find the value of the following in the simplest form: $\left(-\frac{3}{5}\right)^3 \times \left(\frac{-25}{27}\right)$
- Put the expression : $\left(\frac{1}{2}\right)^2 \times \left(\frac{-1}{2}\right)^3$ in its simplest form.
- If $x = \frac{1}{2}$, $y = \frac{1}{3}$, find the numerical value of : $(x + y)^{-2}$
- If $x = -\frac{1}{2}$, $y = -\frac{3}{4}$, find the value of $\left(\frac{y}{x^2}\right)^{-2}$
- Simplify to the simplest form: $(x^2)^{-3} \div (x^{-1})^2$ where $x \neq 0$
- III Find the value of the following in the simplest form: $\left(\frac{-2}{3}\right)^3 \times \left(\frac{1}{3}\right)^3 \div \left(\frac{-2}{9}\right)^2$
- If $x = \frac{-3}{2}$, $y = \frac{1}{2}$, $z = \frac{4}{3}$ find in the simplest form the value of : $x^2 y^2 z^2$
- Calculate the value of : $\left(\frac{-2}{5}\right)^{x} + \left(\frac{2}{5}\right)^{y}$ If x = 4, y = 3
- If $a = -\frac{1}{2}$, b = 2 and $c = \frac{3}{4}$, find the numerical value of: $a^3 b^2 + b^2 c 8$ abc
- Write the following number in the standard form: 581 200 000 000
- 16 Find the result in the standard form: $(2.3 \times 10^3) + (6.3 \times 10^4)$
- Write the result of: $(4.4 \times 10^3) \times (2 \times 10)^5$ in the standard form.
- Calculate the value of the following in the standard form: $(3.6 \times 10^8) \div (1.8 \times 10^3)$

(3 Marks)

- 1 Choose the correct answer from the given ones:
 - 1 The additive inverse of the number $\left(-\frac{2}{3}\right)^4$ is
 - (a) $\frac{2}{3}$

- (b) $-\frac{16}{81}$ (c) $\frac{81}{16}$

 $(d) - \frac{81}{16}$

- 2 If $0.0028 = 2.8 \times a$, then $a = \dots$
 - (a) 3

- (b) 3
- (c) 10^3
- (d) 10^{-3}

- 3 If $2^{10} + 2^{10} = 2^k$, then $k = \dots$
 - (a) 4

(b) 20

(c) 100

(d) 11

2 Simplify: $\frac{b^3 \times b^{-5}}{b^{-2} + b^6}$

(2 Marks)

1

, then find the value of the result when b = 2

Model 2

(3 Marks)

Choose the correct answer from the given ones: 1 If $2^{-5} \times 3^{-5} = 6^k$, then $k = \dots$

$$(b) - 10$$

$$(d) - 5$$

- $23.04 \times 10^7 = \dots$
 - (a) 340 000
- (b) 304 000
- (c) 3 400 000
- (d) 30 400 000

34 $x^{-1}y^{-2} = \frac{4}{\dots}$ (where $x \neq 0, y \neq 0$)

(a)
$$y^2 x^{-1}$$

(b)
$$x y^{-2}$$
 (c) $x y^2$

(c)
$$\chi$$
 y²

(d) y χ^2

Simplify to the simplest form: $\frac{4^{n+1} \times 3^{n-1}}{12^n}$

(2 Marks)

(3 Marks)

11 Choose the correct answer from the given ones:

$$(a) \frac{-8}{27} = \dots$$

(b)
$$\frac{-27}{8}$$

(c)
$$\frac{8}{27}$$

(d)
$$\frac{27}{8}$$

 \square Half the number $2^{20} = \cdots$

(a)
$$2^{18}$$

(b)
$$2^{19}$$

(c)
$$2^4$$

(d)
$$2^5$$

The number which is in standard form from the following is

(a)
$$11 \times 10^8$$

(b)
$$9.7 \times 10^{-5}$$

(c)
$$10.2 \times 10^{-2}$$

(d)
$$0.87 \times 10^8$$

If $x = \frac{-3}{2}$, $y = \frac{1}{2}$, $z = \frac{4}{3}$ find in the simplest form the value of : $x^2 y^2 z^2$

(2 Marks)

Model 4

(3 Marks)

1 Choose the correct answer from the given ones:

 $1 \cdot a^{-4} \div a^{-6} = \dots$ (Where $a \neq zero$)

(b)
$$a^{-2}$$

$$(c) a^2$$

(d)
$$a^{10}$$

2 The multiplicative inverse of the number $(-3)^{zero}$ is

(a) 3

(b) 3

$$(c) - 1$$

 $\boxed{3}$ If $3500=3.5\times10^n$, then $n=\cdots$

(a) 3

(b) - 3

(c) 1

(d) 2

If $x = \frac{1}{2}$, $y = \frac{1}{3}$, find the numerical value of : $(x + y)^{-2}$

(2 Marks)

The Answers: (1.Choose)

1 (c)

2 (d)

3 (a)

4 (b)

5 (c)

6 (b)

7 (c)

8 (c)

9 (b)

10 (b)

11 (a)

12 (d)

13 (c)

14 (d)

15 (c)

16 (a)

17 (d)

18 (c)

19 (d)

20 (C)

21 (C)

22 (d)

²³ (b)

24 (c)

25 (C)

26 (C)

27 (b)

28 (b)

29 (d)

30 (d)

31 (d)

32 (d)

33 (b)

34 (a)

35 (d)

36 (b)

37 (c)

38 (b)

39 (c)

40 (b)

41 (a)

42 (b)

43 (c)

44 (c)

45 (d)

46 (c)