Introduction à CUDA C

Amina Guermouche

- Basé sur le standard C
- Extension du langage pour la programmation hétérogène
- API pour gérer les GPU, la mémoire, . . .
- 3 niveaux d'abstraction : groupe de threads, mémoire partagée et une barrière de synchronisation

Fonctionnement

CPU (Host)

int main(int
argc, char
**argv)

GPU (Device)

__device__
ma_fonction_gpu
()

Fonctionnement

CPU (Host)

int main(int argc, char **argv)

__global__ ma_fonction_interface GPU (Device)

__device__ ma_fonction_gpu

Fonctionnement

- 1 Host : Copier les données d'entrée de la mémoire du CPU à la mémoire du GPU
- 2 Device : Charger les instructions sur le GPU
- 3 Device : Copier les données vers la mémoire du CPU

- Quel est le nombre de GPUs disponibles
- Quelle est la taille de la mémoire disponible?
- Quelles sont les caractéristiques des GPUs?

 On peut même choisir le GPU qu'on veut selon des critères!!!!

```
cudaChooseDevice(&dev, &prop)
```

Exercice 1

```
int main (void) {
  printf (''Hello, World!\n'');
  return 0:
```

- Compilation avec nvcc (compilateur NVIDIA)
- nvcc ne se plaint pas s'il n'y a pas de code pour le device

```
__global__ void kernel (void){}
int main (void) {
  kernel<<<1,1>>>();
  printf (''Hello, World!\n'');
  return 0;
}
```

- Compilation avec nvcc (compilateur NVIDIA)
- nvcc ne se plaint pas s'il n'y a pas de code pour le device

Hello, World!

Code du device

```
__global__ void kernel (void)
```

- __global__ indique que :
- → Le code s'exécute sur le device
- → Le code est appelé du host
 - La partie device et interface est gérée par le compilateur nvidia
 - La partie host par le compilateur C
 - La syntaxe est obligatoire
 - __global__ ne retourne pas de valeur, JAMAIS

ok on utilise le GPU pour appeler la fonction kernel qui ne fait rien, super!!!!

```
_{-global}_{-} void add (int *a, int *b, int *c){
*c = *a + *b;
```

- add(...) sera appelé du host
- add(...) sera exécutée sur le device
- et la mémoire?

Et si on faisait faire quelque chose au GPU

```
_{-global}_{-} void add (int *a, int *b, int *c){
*c = *a + *b:
```

- add(...) sera appelé du host
- add(...) sera exécutée sur le device
- et la mémoire?
 - a, b, et c pointent sur la mémoire du device
 - Comment allouer de la mémoire sur le GPU? cudaMalloc(), cudaFree(), cudaMemcpy()

Et si on faisait faire quelque chose au GPU (1/2)

```
__global__ void add (int *a, int *b, int *c){
  *c = *a + *b;
}
int main ( void ){
  int a, b, c;
  int *gpu_a, *gpu_b, *gpu_c;
  int size = sizeof(int);
```

Et si on faisait faire quelque chose au GPU (1/2)

```
global void add (int *a, int *b, int *c){
*c = *a + *b:
int main ( void ){
  int a.b.c:
  int *gpu a, *gpu b, *gpu c;
  int size = size of (int);
 // allocation de l'espace pour le device
  cudaMalloc( (void **)&gpu a, size);
  cudaMalloc( (void **)&gpu b, size);
  cudaMalloc( (void **)&gpu c, size);
  a = 2:
  b = 7:
```

Et si on faisait faire quelque chose au GPU (2/2)

```
// Copie des donnees vers le Device
  cuda Memcpy (gpu a, &a, size,
      cuda Memcpy HostToDevice );
  cuda Memcpy (gpu b, &b, size,
      cuda Memcpy HostToDevice );
  add <<<1, 1>>> (gpu a, gpu b, gpu c);
```

```
return O
```

```
// Copie des donnees vers le Device
  cuda Memcpy (gpu a, &a, size,
      cuda Memcpy HostToDevice );
  cuda Memcpy (gpu b, &b, size,
      cuda Memcpy Host To Device );
  add \ll 1, 1 \gg (gpu a, gpu b, gpu c);
  cudaMemcpy (&c, gpu c, size, cudaMemcpyDeviceToHost);
```

Et si on faisait faire quelque chose au GPU (2/2)

```
// Copie des donnees vers le Device
  cuda Memcpy (gpu a, &a, size,
      cuda Memcpy HostToDevice );
  cuda Memcpy (gpu b, &b, size,
      cuda Memcpy Host To Device);
  add \ll 1, 1 \gg (gpu a, gpu b, gpu c);
  cudaMemcpy (&c, gpu c, size, cudaMemcpyDeviceToHost);
  //Liberation de l'espace alloue
  cudaFree(gpu a);
  cudaFree( gpu b);
  cudaFree (gpu c);
  return O
```

```
// Copie des donnees vers le Device
  checkCudaErrors(cudaMemcpy (gpu a, &a, size,
      cuda Memcpy Host To Device ) );
  cuda Memcpy (gpu b, &b, size,
      cuda Memcpy Host To Device);
  add \ll 1, 1 \gg (gpu a, gpu b, gpu c);
  cudaMemcpy (&c, gpu c, size, cudaMemcpyDeviceToHost);
  //Liberation de l'espace alloue
  cudaFree(gpu a);
  cudaFree( gpu b);
  cudaFree (gpu c);
  return O
```

addition de 2 entiers : super utilisation du parallélisme

 Comment exécuter le code en parallèle? On veut faire N fois add en parallèle add<<<1, 1>>> (gpu_a, gpu_b, gpu_c)

addition de 2 entiers : super utilisation du parallélisme

 Comment exécuter le code en parallèle? On veut faire N fois add en parallèle add<<<1, 1>>> (gpu_a, gpu_b, gpu_c) $add <<< N, 1>>> (gpu_a, gpu_b, gpu_c)$ Comment exécuter le code en parallèle?
 On veut faire N fois add en parallèle
 add<<<1, 1>>> (gpu_a, gpu_b, gpu_c)

$$add <<< N, 1>>> (gpu_a, gpu_b, gpu_c)$$

Dans ce cas, autant faire un add sur un vecteur

 Comment sont exprimés les indices sur le GPU?

c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7]

- Chaque appel parallèle à add(...) est appelé block
- L'accès à un block donné se fait via blockIdx.x
- Chaque blockIdx.x référence un élément du tableau

```
_{-global}_{-void} add (int *a, int *b, int *c){
c[blockldx.x] = a[blockldx.x] + b[blockldx.x];
```

- Chaque appel parallèle à add(...) est appelé block
- L'accès à un block donné se fait via blockIdx.x
- Chaque blockIdx.x référence un élément du tableau

```
#define N 512 //nombre d'elements du tableau
int main (void){
  int *a, *b, *c;
  int *gpu a, *gpu b, *gpu c;
  int size = N * size of (int);
  // allocation de l'espace pour le device}
  cudaMalloc((void **)&gpu a, size);
  cudaMalloc((void **)&gpu b, size);
  cudaMalloc((void **)&gpu c, size);
  a=(int*) malloc (size);
  b = (int *) malloc (size);
  random ints(a, N);
  random ints(b, N);
```

Programmation parallèle en CUDA : le main

```
// Copie des donnees vers le Device
cudaMemcpy (gpu a,a,size,cudaMemcpyHostToDevice);
cudaMemcpy (gpu b, b, size , cudaMemcpyHostToDevice);
add \ll N, 1 \gg (gpu a, gpu b, gpu c);
//Copie du resultat
cuda Memcpy(c, gpu c, size, cuda MemcpyDeviceToHost);
free(a); free(b); free(c);
cudaFree(gpu a);
cuda Free (gpu b):
cudaFree(gpu c);
return 0:
```

Et si on avait un vecteur à 2 dimensions (une matrice donc)?

- Le nombre de blocks lancés représentent une grille (grid)
- Le nombre de blocks par dimension est limité (maxGridSize[3])
- blockIdx.x, blockIdx.y, blockIdx.z
- dim3 grid(DIM, DIM) initialise la variable grid de type dim3 qui indique la dimension de la grille (2D)
- gridDim.x, gridDim.y donnent la dimension de la grille

Addition de deux matrices

```
#define N 512 //taille d'une dimension de la
global void add (int *a, int *b, int *c){
  int x = b|ock|dx.x:
  int y = blockldx.y;
  int indice = x + y * gridDim.x;
  c[indice] = a[indice] + b[indice];
int main (void){
  int *a, *b, *c;
  int *gpu a, *gpu b, *gpu_c;
  int size = N * size of (int);
  dim3 grid (N, N);
  add \ll grid, 1 \gg (dev a, dev b, dev c);
```

Exercice 2

Threads

• Un block peut être divisé en plusieurs threads parallèles

- CUDA définit un unique id par thread threadIdx.x
- On utilise threadIdx.x au lieu de blockIdx.x

```
__global__ void add (int *a, int *b, int *c){
  c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
}
```

Programmation parallèle en CUDA : le main

```
#define N 512 //nombre d'elements du tableau
int main (void){
  int *a, *b, *c;
  int *gpu a, *gpu b, *gpu c;
  int size = N * size of (int);
  // allocation de l'espace pour le device}
  cudaMalloc((void **)&gpu a, size);
  cudaMalloc((void **)&gpu b, size);
  cudaMalloc((void **)&gpu c, size);
  a=(int*) malloc (size);
  b = (int *) malloc (size);
  random ints(a, N);
  random ints(b, N);
```

Programmation parallèle en CUDA : le main

```
// Copie des donnees vers le Device
cudaMemcpy (gpu a,a,size,cudaMemcpyHostToDevice);
cudaMemcpy (gpu b, b, size , cudaMemcpyHostToDevice);
//Lancement de l'operation avec N threads
add <<<1, N >>> (gpu a, gpu b, gpu c);
//Copie du resultat
cuda Memcpy(c, gpu c, size, cuda MemcpyDeviceToHost);
free(a); free(b); free(c);
cudaFree(gpu a);
cudaFree(gpu b);
cudaFree(gpu c);
return 0;
```

Des blocks et des threads

- Les threads sont numérotés de 0 à nb_thread par block
- threadIdx.x est par block

01234567012345670123456701234567

blockIdx.x=0 bloc

blockIdx.x=1

blockIdx.x=2

lockIdx.x=3

 Si on a M threads/block, l'indice dans un vecteur est calculé par :

```
indice = threadIdx.x + blockIdx.x * M
```

 Le nombre de threads par block est donné par la variable blockDim.x

```
indice = threadIdx.x + blockIdx.x * blockDim.x
```

add avec blocks et threads

```
\#define N (2048 * 2048) //taille du tableau
#define THREAD PER BLOCK 512 //nombre de threads
global void add (int *a, int *b, int *c){
  int indice = threadIdx.x + blockIdx.x * blockDim.
     x :
  c[indice] = a[indice] + b[indice];
int main (void){
  int *a, *b, *c;
  int *gpu a, *gpu b, *gpu c;
  int size = N * size of (int);
  // allocation de l'espace pour le device}
  cudaMalloc((void **)&gpu a, size);
  cudaMalloc((void **)&gpu b, size);
  cudaMalloc((void **)&gpu c, size);
```

Programmation parallèle en CUDA : le main

```
a = (int *) malloc (size);
b=(int*) malloc (size);
random ints(a, N);
random ints(b, N):
// Copie des donnees vers le Device
cudaMemcpy (gpu a,a,size,cudaMemcpyHostToDevice);
cudaMemcpy (gpu b, b, size , cudaMemcpyHostToDevice);
//Lancement de l'operation avec THREAD PER BLOCK
   par block
add <<< N/THREAD PER BLOCK, THREAD PER BLOCK >>>
     (gpu a, gpu b, gpu c);
//Copie du resultat
cuda Memcpy(c, gpu c, size, cuda MemcpyDeviceToHost);
```

Programmation parallèle en CUDA : le main

```
free(a); free(b); free(c);
cudaFree(gpu_a);
cudaFree(gpu_b);
cudaFree(gpu_c);
return 0;
}
```

Exercice 3

Vecteurs de taille quelconque

• Vecteur de taille non multiple de blockDim.x

```
__global___ void add (int *a, int *b, int *c,
    int n) {
    int indice = threadIdx.x + blockIdx.x *
        blockDim.x;
    if (indice < n)
        c[indice] = a[indice] + b[indice];
}</pre>
```

Au niveau du main

```
add <<< (N+THREAD_PER_BLOCK-1)/
THREAD_PER_BLOCK, THREAD_PER_BLOCK >>> (
    gpu_a, gpu_b, gpu_c, N);
```


- colonne = blockTdx.x*blockDim.x+theadTdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y

Addition de deux matrices

```
#define N 2048 //taille de la matrice
#define THREAD PER BLOCK 512 //nombre de threads
global void add (int *a, int *b, int *c){
  int colonne = blockIdx.x*blockDim.x+theadIdx.x;
  int ligne = blockldx.y*blockDim.y+theadldx.y;
  int indice = ligne * N + colonne;
  //N = gridDim.x * blockDim.x;
  c[indice] = a[indice] + b[indice];
int main (int argc, char** argv)
  dim3 block (THREAD PER BLOCK, THREAD PER BLOCK);
  dim3 grid(N/blockDim.x, N/blockDim.y);
  add <<<gri>d, block >>> (dev a, dev b, dev c);
```

Pourquoi s'embêter avec des threads et des blocks?

- 1 thread = 1 coeur
- 1 block = 1SM
- 1 block est exécuté sur 1SM
- Blocks:
 - Les blocks sont exécutés dans n'importe quel ordre, séquentiellement ou en parallèle
 - L'avantage est que ça scale automatiquement avec le nombre de SM

Pourquoi s'embêter avec des threads et des blocks?

- 1 thread = 1 coeur
- 1 block = 1SM
- 1 block est exécuté sur 1SM
- Blocks:
 - Les blocks sont exécutés dans n'importe quel ordre, séquentiellement ou en parallèle
 - L'avantage est que ça scale automatiquement avec le nombre de SM
- Threads
 - Contrairement aux blocks, les threads peuvent
 - Communiquer
 - Se synchroniser
 - Ces opérations sont à l'intérieur d'un block

Les paramètres du kernel

- Les blocks :
 - Le nombre de blocks doit être supérieur au nombre de SM (pour que tous travaillent)
 - Il devrait y avoir plusieurs blocks par SM, afin que d'autres blocks s'exécutent pendant une synchronisation
 - → Si une synchronisation est utilisée, il vaut mieux utiliser plusieurs petits blocks qu'un grand
- Les threads
 - Les SM ordonnancent les threads par groupe SIMD de 32 (warp) sur Quadro 620
 - Les threads d'un warp sont synchronisés
 - → Les threads dans un block sont exécutés par groupe de 32
 - Un SM peut exécuter plusieurs blocks de manière concurrente

Les paramètres du kernel

Les blocks :

- Le nombre de blocks doit être supérieur au nombre de SM (pour que tous travaillent)
- Il devrait y avoir plusieurs blocks par SM, afin que d'autres blocks s'exécutent pendant une synchronisation
- → Si une synchronisation est utilisée, il vaut mieux utiliser plusieurs petits blocks qu'un grand
- Les threads :
 - Les SM ordonnancent les threads par groupe SIMD de 32 (warp) sur Quadro 620
 - Les threads d'un warp sont synchronisés
 - → Les threads dans un block sont exécutés par groupe de 32
 - Un SM peut exécuter plusieurs blocks de manière concurrente
 - Utiliser des blocks de taille multiple de la taille du warp

- Les instructions de contrôle (if, while, for, switch, do) affectent les performances, car les thread d'un warp vont diverger
- Les différents chemins sont sérialisés
- Lorsque toutes les exécutions sur les différents chemins sont finies, les threads convergent vers le même chemin
- Les conditions doivent minimiser les divergences
 - Par exemple une condition dépendant de (threadIdx/warp_size)
- Il faut utiliser plus de threads CUDA que de nombre de cœurs CUDA pour augmenter le parallélisme

Exercice 4

$$c = (a_0, a_1, a_2, a_3, a_4, a_5).(b_0, b_1, b_2, b_3, b_4, b_5)$$

= $a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3 + a_4 b_4 + a_5 b_5$

Produit scalaire (dot product): 1 seul block

```
__global__ void dot (int *a, int *b, int *c){
  // chaque thread calcule le produit d'une paire
  int tmp = a[threadIdx.x] * b[threadIdx.x];
}
```

```
__global__ void dot (int *a, int *b, int *c){
  // chaque thread calcule le produit d'une paire
  int tmp = a[threadIdx.x] * b[threadIdx.x];
}
```

- Le calcul est local au processus
- → Les variables temp ne sont pas accessibles aux autres processus
- → Mais il faut partager les données pour faire la somme finale

Partager les données entre les threads (d'un même block)

- Les threads d'un block partagent une zone mémoire appelée shared memory
- Caractéristiques
 - Extrêmement rapide
 - on-chip
 - Déclarée avec __shared__
- Des blocks sur le même SM partage la même mémoire partagée globale. Donc pour une mémoire de 48KB avec N blocks sur le même SM, chaque block possédera 48/N de mémoire partagée

Produit scalaire (dot product): 1 seul block

```
#define N 512 //taille du tableau
global void dot (int *a, int *b, int *c){
  shared int tmp[N]
  // chaque thread calcule le produit d'une paire
  tmp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x]
     ];
  //Le thread O effectue la somme
  if (0 = threadIdx.x){
    int sum = 0:
    for (int i = 0; i < N; i++)
      sum = sum + temp[i];
    *c = sum:
```

Synchronisation des threads d'un même block

- Grâce à la fonction __syncthreads()
- Synchronise uniquement les threads d'un même block

```
#define N 512 //taille du tableau
global void dot (int *a, int *b, int *c){
  shared int tmp[N]
  // chaque thread calcule le produit d'une paire
  tmp[threadIdx.x] = a[threadIdx.x] * b[threadIdx.x]
      ];
  //Synchronisation pour etre sur que tout les
     threads ont fini
  syncthreads();
  //Le thread 0 effectue la somme
  if (0 = threadIdx.x){
    int sum = 0;
    for (int i = 0; i < N; i++)
      sum = sum + temp[i];
    *c = sum;
```

```
int main (void){
  int *a, *b, *c;
  int *gpu a, *gpu b, *gpu c;
  int size = N * size of (int);
  // allocation de l'espace pour le device}
  cudaMalloc((void **)&gpu a, size);
  cudaMalloc((void **)&gpu b, size);
  cudaMalloc((void **)&gpu c, sizeof(int));
  a=(int*) malloc (size);
  b = (int *) malloc (size);
  random ints(a, N);
  random ints(b, N);
```

Programmation parallèle en CUDA : le main

```
// Copie des donnees vers le Device
cuda Memcpy (gpu a, a, size, cuda MemcpyHostToDevice);
cudaMemcpy (gpu b, b, size , cudaMemcpyHostToDevice);
//Lancement de l'operation avec N threads et un
    seul block
dot <<< 1, N >>> (gpu a, gpu b, gpu c);
//Copie du resultat
cuda Memcpy (&c, gpu c, size of (int),
    cuda Memcpy Device To Host );
free(a); free(b);
cudaFree(gpu a);
cudaFree(gpu b);
cudaFree(gpu c);
return 0;
```

Plus de parallélisme : plusieurs blocks


```
\#defin N (2048 * 2048)
#define THREAD PER BLOCK 512 //taille du tableau
global void dot (int *a, int *b, int *c){
  shared int tmp[THREADS PER BLOCK]
  // chaque thread calcule le produit d'une paire
  int indice = threadIdx.x + blockIdx.x * blockDim.
  tmp[threadIdx.x] = a[indice] * b[indice];
  //Synchronisation (dans le block)
  syncthreads();
  //Le thread 0 effectue la somme
  if (0 = threadIdx.x){
    int sum = 0:
    for (int i = 0; i < THREADS PER BLOCK; <math>i++)
      sum = sum + temp[i];
    *c = sum:
```

Race condition

- c est dans la mémoire globale
- plusieurs thread 0 peuvent y accéder en même temps

Race condition

- c est dans la mémoire globale
- plusieurs thread 0 peuvent y accéder en même temps
- Les opérations atomiques :
 - Les opération de lecture, modification et écriture sont ininterruptibles
 - Plusieurs opérations atomiques possibles avec CUDA :
- atomicAdd()
- atomicSub()
- atomicMin()
- atomicMax()

- atomicInc()
- atomicDec()
- atomicExch()
- atomicCAS()

```
\#defin N (2048 * 2048)
#define THREAD PER BLOCK 512 //taille du tableau
global void dot (int *a, int *b, int *c){
  shared int tmp[THREADS PER BLOCK]
  // chaque thread calcule le produit d'une paire
  int indice = threadIdx.x + blockIdx.x * blockDim.
  tmp[threadIdx.x] = a[indice] * b[indice];
  //Synchronisation (dans le block)
  syncthreads();
  //Le thread 0 effectue la somme
  if (0 = threadIdx.x){
    int sum = 0:
    for (int i = 0; i < THREADS PER BLOCK; <math>i++)
      sum = sum + temp[i];
    atomicAdd(*c, sum);
```

```
int main (void){
  int *a, *b, *c;
  int *gpu a, *gpu b, *gpu c;
  int size = N * size of (int);
  // allocation de l'espace pour le device}
  cudaMalloc((void **)&gpu a, size);
  cudaMalloc((void **)&gpu b, size);
  cudaMalloc((void **)&gpu c, size);
  a=(int*) malloc (size);
  b = (int *) malloc (size);
  c=(int*) malloc (sizeof(int));
  random ints(a, N);
  random ints(b, N);
```

```
// Copie des donnees vers le Device
cuda Memcpy (gpu a, a, size, cuda MemcpyHostToDevice);
cudaMemcpy (gpu b,b,size ,cudaMemcpyHostToDevice);
//Lancement de l'operation avec THREAD PER BLOCK
   par block
add <<< N/THREAD PER BLOCK, THREAD PER BLOCK >>> (
   gpu a, gpu b, gpu c);
//Copie du resultat
cudaMemcpy(c, gpu c, size, cudaMemcpyDeviceToHost);
free(a); free(b);
cudaFree(gpu a);
cudaFree(gpu b);
cudaFree(gpu c);
return 0;
```

Exercice 5

```
http:
//docs.nvidia.com/cuda/cuda-c-best-practices-guide/
```

- √ Les paramètres du kernel
- √ Les instructions de contrôle
 - x Les mémoires

- Minimiser les transferts de faible BW
 - Minimiser les transfert Host<->Device

- Minimiser les transferts mémoire globale<->Device
 - → Favoriser la mémoire partagée et les caches
 - La mémoire partagée est équivalente à un cache géré par L'utilisateur

La mémoire globale

- Lorsque tous les threads font un load, le hardware détecte si les threads accèdent à un espace mémoire contigu
- Dans ce cas, le hardware groupe (coalesces) les accès en un seul accès à différentes location de la DRAM

- Lorsque tous les threads font un load, le hardware détecte si les threads accèdent à un espace mémoire contigu
- Dans ce cas, le hardware groupe (coalesces) les accès en un seul accès à différentes location de la DRAM

La mémoire partagée

- À utiliser pour éviter les accès non alignés
- La mémoire est partagée en modules de taille égale, appelés bank
- Il y a autant de bank que de threads dans un warp
- L'accès aux bank est simultané
- → Toute lecture/écriture de *n* adresses dans *n* bank différents est simultané

La mémoire partagée

Bank conflict

- Si deux accès sont dans différentes adresses du même bank, il y a conflit
- ¿ L'accès en cas de conflit est sérialisé
 - La mémoire partagée est rapide tant qu'il n'y a pas de bank conflict
- Le hardware divise un accès mémoire avec conflit en autant d'accès nécessaire pour ne plus avoir de conflit
- © La BW est réduite par un facteur égal au nombre d'accès créés pour éviter les conflits

Bank conflict

Mesure du temps

Premiers pas Les blocks Threads

- Les transferts de données sont synchrones
- L'appel au kernel ne l'est pas

```
cudaMemcpy(d_x, x, N*sizeof(float),
    cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N*sizeof(float),
    cudaMemcpyHostToDevice);

t1 = myCPUTimer();
saxpy <<<(N+255)/256, 256>>>(N, 2.0, d_x, d_y);
cudaDeviceSynchronize();
t2 = myCPUTimer();

cudaMemcpy(y, d_y, N*sizeof(float),
    cudaMemcpyDeviceToHost);
```

- CUDA event API
- Les opérations sont séquentielles sur le GPU

```
cuda Event t start, stop;
cudaEventCreate(& start);
cudaEventCreate(&stop);
cudaEventRecord(start);//le temps est sauvegarde
   sur le GPU
saxpy <<<(N+255)/256, 256>>>(N, 2.0 f, d x, d y);
cudaEventRecord(stop);
cudaEventSynchronize(stop);//Garantit que l'
   evenement s'est execute : le CPU se bloque en
   attendant le record de l'evenement
f | oat milliseconds = 0:
cudaEventElapsedTime(&milliseconds, start, stop);
```

Profiling d'une application CUDA

- nvprof (deprecated)
 - nvprof ./saxpy
 - nvprof -o trace.prof ./saxpy
 - Ensuite ouverture de la trace avec : nvvp -import trace.prof

- 2 nsys
 - nsys profile ./saxpy
 - Visualisation de la trace avec : nsys-ui fichier.qdrep
 - Statistiques sur une exécution : nsys stats fichier.qdrep

Mesure de la puissance consommée

- nvidia-smi (System Management Interface) permet de questionner l'état du GPU
- Pour afficher la mesure toutes les secondes nvidia-smi -query-gpu=power.draw -format=csv -l 1

Exercice 6

Nombre de threads dans les blocks pour le produit de matrices

- Chaque SM du GeForce RTX 2070 possède 48KB de mémoire partagée par block
- TILE WIDTH = 16 :
 - 2 vecteur de mémoire partagée de float d'une taille de
 - \rightarrow 2 x 4B x 16 x 16 = 2KB pour un block
 - Donc jusqu'à 24 blocks pouvant s'exécuter sur le même SM
- TILE WIDTH = 32
 - 2 vecteur de mémoire partagée de float d'une taille de
 - \rightarrow 2 x 4B x 32 x 32 = 8KB pour un block
 - Donc jusqu'à 6 blocks pouvant s'exécuter sur le même SM
- Mais dans la vraie vie, on utilise des bibliothèques (cuBlas)

Parallélisme de tâches avec des GPU : les streams

Les streams

- Un stream : Une séquence d'opérations (comme une file d'attente pour le device)
- Stream par défaut : stream 0
 - Opérations de lecture et d'écriture synchrone (HostToDevice et DeviceToHost) avec le host
 - Les kernels sont asynchrones avec le host par défaut (des opérations CPU sont possibles)

Les streams

- Stream différents du stream 0
- Les opérations sur un même stream sont ordonnées (FIFO) et syncrhones
- Les opérations dans des streams différents peuvent s'exécuter en parallèle
- Les opérations entre les différents streams peuvent s'intercaler
- Le stream par défaut est synchrones avec les autres streams

Exemple d'exécution

Exemple de code avec streams

```
cudaStream T stream1, stream2, stream3, stream4;
cudaStream Create(&stream1);
cudaMalloc(&data dev1, size);
cuda Memcpy Async (data dev1, data host1, size,
   cuda MemcpyHostToDevice, stream1);
kernel2 \ll grid, block, 0, stream2 >>> (...,
   data dev2, ...);
kernel3 \ll grid, block, 0, stream3 >>> (...,
   data dev3, ...);
cuda Memcpy Async (data host 4, data dev 4, size,
   cuda MemcpyDeviceToHost , stream 4 );
. . .
```

- Stream 1 : K1a, K1b
- Stream 2 : K2a, K2b

- Stream 1 : K1a, K1b
- Stream 2 : K2a, K2b

- Stream 1 : K1a, K1b
- Stream 2 : K2a, K2b

- Stream 1 : K1a, K1b
- Stream 2 : K2a, K2b

- Stream 1 : K1a, K1b
- Stream 2 : K2a, K2b

• Problèmes de performances simple à corriger (à vous de jouer : exercice 7)

- Problèmes de performances simple à corriger (à vous de jouer : exercice 7)
- Symptômes
 - Un stream ne s'overlap pas avec les autres

- Problèmes de performances simple à corriger (à vous de jouer : exercice 7)
- Symptômes
 - Un stream ne s'overlap pas avec les autres
 - ⇒ Chercher le stream par défaut

- Problèmes de performances simple à corriger (à vous de jouer : exercice 7)
- Symptômes
 - Un stream ne s'overlap pas avec les autres
 - ⇒ Chercher le stream par défaut
- Solutions
 - Lancer bien un kernel par stream (on évite le stream par défaut)

- Problèmes de performances simple à corriger (à vous de jouer : exercice 7)
- Symptômes
 - Un stream ne s'overlap pas avec les autres
 - ⇒ Chercher le stream par défaut
 - ⇒ Cherchez cudaEventRecord
- Solutions
 - Lancer bien un kernel par stream (on évite le stream par défaut)

- Problèmes de performances simple à corriger (à vous de jouer : exercice 7)
- Symptômes
 - Un stream ne s'overlap pas avec les autres
 - ⇒ Chercher le stream par défaut
 - ⇒ Cherchez cudaEventRecord
- Solutions
 - Lancer bien un kernel par stream (on évite le stream par défaut)
 - Associer le stream à cudaEventRecord

- Problèmes de performances simple à corriger (à vous de jouer : exercice 7)
- Symptômes
 - Un stream ne s'overlap pas avec les autres
 - ⇒ Chercher le stream par défaut
 - ⇒ Cherchez cudaEventRecord
 - Les copies mémoires ne s'overlapent pas
- Solutions
 - Lancer bien un kernel par stream (on évite le stream par défaut)
 - Associer le stream à cudaEventRecord

- Problèmes de performances simple à corriger (à vous de jouer : exercice 7)
- Symptômes
 - Un stream ne s'overlap pas avec les autres
 - ⇒ Chercher le stream par défaut
 - ⇒ Cherchez cudaEventRecord
 - Les copies mémoires ne s'overlapent pas
- Solutions
 - Lancer bien un kernel par stream (on évite le stream par défaut)
 - Associer le stream à cudaEventRecord
 - Utiliser la version asynchrone cudaMemcpyAsync
 - Associer un stream différent à cudaMemcpyAsync

Référence: https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

- Beaucoup de temps est passé dans l'API pour la copie (cudaMemCpy)
- Cuda indique que la mémoire est pageable
- ⇒ La mémoire est transférée via le host
- ⇒ La mémoire peut-être page-in et out par le système

Afin que cudaMemCpyAsync soit réellement asynchrone (en plus des streams), il faut que la mémoire soit pinnée, sinon les opérations sur le GPU sont sérialisées.

Pour aller plus loin dans la gestion de la mémoire

- Utiliser un mécanisme pour pin la mémoire
- Elle devient accessible directement depuis le GPU
- Il n'est pas possible pour le système de faire page-in ou page-out
- ⇒ La mémoire transférée via le moteur DMA
 - cudaHostMalloc à la place de malloc (ou cudaHostRegister)
 - Bande passante plus élevée
 - Libère le CPU pour une exécution asynchrone

Device

On remarquera que le MemcpyAsync a disparu

Memory Type

Destination

Accès à la mémoire

- La mémoire du GPU
 - Allouée via cudaMalloc
 - Ne peut pas être paged
- La mémoire du CPU
 - Allouée avec malloc(callo, new, . . .)
 - Peut-être page-in et page-out par le système
- La mémoire pinned sur le CPU
 - Allouée via cudaMallocHost
 - Ne peut-être page-in et page-out par le système
- La mémoire mapped
 - Mémoire pinned mais mappéedans la mémoire du GPU
 - Les données ne sont pas sur le GPU : elles sont copiées à l'exécution
- Mémoire unifiée : une même zone mémoire accessible directement depuis le CPU et le GPU (le meilleur des deux mondes)

Référence: https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

- Accès via des memcpy explicites
 - Bonnes performances (car les données sont disponibles)
 - © Code assez lourd et erreurs fréquentes
 - ② Accès uniquement à la mémoire du GPU
- Accès via un mécanisme Zero Copy (non abordé dans ce cours): les thread GPU accèdent directement à l'espace mémoire du CPU (via les fonctions cudaHostAlloc et cudaHostGetDevicePointer).
 - Accès à toute la mémoire
 - © Vitesse limitée par le bus PCI et NVLink
 - ② Pas de localité des données : les données ne sont pas copiées sur le GPU. Le transfert se fait à l'exécution
- Mémoire unifiée : une même zone mémoire accessible directement depuis le CPU et le GPU (le meilleur des deux mondes)

Référence: https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/

Exemple d'utilisation de la mémoire unifiée

```
int *a. *b:
int *gpu a, *gpu b;
cudaMalloc((void **)\&gpu a, N*sizeof(int));
cudaMalloc((void **)&gpu b, N*sizeof(int));
a=(int*) malloc (N*sizeof(int));
b=(int*) malloc (N*sizeof(int));
for (int i = 0; i < N; i++) {
    x[i] = 1.0 f;
    y[i] = 2.0 f;
cudaMemcpy (gpu a,a,N*sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy (gpu b,b,N*sizeof(int),cudaMemcpyHostToDevice);
add \ll N, 1 >>> (gpu a, gpu b);
cudaMemcpy(b, gpu b, N*sizeof(int), cudaMemcpyDeviceToHost);
free(a); free(b);
cudaFree(gpu a);
cudaFree(gpu b);
```

Exemple d'utilisation de la mémoire unifiée

```
int *gpu a, *gpu b;
cudaMalloc((void **)&gpu a, N*sizeof(int));
cudaMalloc((void **)&gpu b, N*sizeof(int));
a=(int*) malloc (N*sizeof(int));
b=(int*) malloc (N*sizeof(int));
for (int i = 0; i < N; i++) {
     x[i] = 1.0 f;
     y[i] = 2.0 f;
cudaMemcpy (gpu a,a,N*sizeof(int),cudaMemcpyHostToDevice);
cudaMemcpy (gpu b,b,N*sizeof(int),cudaMemcpyHostToD
add \ll N, 1 >>> \frac{gpu - a, gpu - b}{;}
cudaMemcpy(b, gpu b, N*sizeof(int), cudaMemcpyDeviceTol
free(a); free(b);
cuda Free (gpu a);
cuda Free (gpu b);
```

Exemple d'utilisation de la mémoire unifiée

```
int *a, *b;
cudaMallocManaged(a, N*sizeof(int));
cudaMallocManaged(b, N*sizeof(int));
for (int i = 0; i < N; i++) { // operations effectuees
    par le CPU
    x[i] = 1.0 f;
   y[i] = 2.0 f:
add <<< N, 1 >>> (a, b);
cuda Free (a);
cuda Free (b);
```

Référence: https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Exemple d'utilisation de la mémoire unifiée

```
int *a, *b;
cudaMallocManaged(a, N*sizeof(int));
cudaMallocManaged(b, N*sizeof(int));
for (int i = 0; i < N; i++) { // operations effectuees
    par le CPU
    x[i] = 1.0f;
    y[i] = 2.0f;
}
add <<< N, 1 >>> (a, b);
cudaDeviceSynchronize();
cudaFree(a);
cudaFree(b);
```

Référence: https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Pourquoi on s'est embêtés à parler des memcpy

- La mémoire unifiée n'est disponible que depuis CUDA 6.0
- Selon les architectures, le fonctionnement n'est pas le même (plus d'explication au slide suivant)

- 1 Pré-Pascal
 - Allocation de tout l'espace (les pages) sur le GPU
 - Lorsque le CPU rempli le tableau (la boucle for), les pages doivent être chargées sur le CPU (donc défauts de page)
 - Lorsque le kernel est appelé, les pages sont de nouveau rechargées sur le GPU (les défauts de page de sont pas possibles sur les anciennes architectures)
- 2 Pascal
 - Les pages peuvent n'être allouées que lors de l'accès
 - Les défauts de page sont possibles (donc de l'overhead)
 - → Pour éviter cela, nous pouvons utiliser des techniques de prefetching, ou initialiser le tableau dans un kernel GPU

Mémoire unifiée : le prefetching

- La migration on-demand permet un meilleur overlap entre le transfert des données et le calcul, mais il y les défauts de page.
- Si le schéma d'accès aux données est connu, il est possible d'utiliser cudaMemPrefetchAsync.

```
cudaGetDevice(&device); // recuperer |e
    numero du device
cudaMemPrefetchAsync(x, N*sizeof(float),
    device, stream);
```

Référence: https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/

Mémoire unifiée : le prefetching


```
• MPI + CUDA:
http://on-demand.gputechconf.com/gtc/2014/
presentations/S4236-multi-gpu-programming-mpi.pdf
```

```
• Mémoire unifiée CPU + GPU :
http://www.drdobbs.com/parallel/
unified-memory-in-cuda-6-a-brief-overvie/
240169095?pgno=1
```

Multiplication de matrice

- C(0,0) ->
 blockIdx.x=0,blockIdx.y=0
- C(0,1) -> blockldx.x=1,blockldx.y=0
- C(1,0) -> blockldx.x=0,blockldx.y=1
- C(1,1) -> blockldx.x=1,blockldx.y=1

Multiplication de matrice

- 1 block calcule une tuile
- 1 thread calcule un élément de la tuile

Multiplication de matrice

- Les blocks A(0,0) et B(0,0) sont chargés en mémoire partagée de façon collaborative par les threads (chacun charge un élément de chaque tuile)
- Les threads font le calcul partiel de C
- Chaque valeur est gardée dans le registre du thread

- Les blocks A(0,1) et B(1,0) sont chargés en mémoire partagée
- Les threads terminent le calcul de C
- À la fin, C est stockée en mémoire globale

- col = blockIdx.x*blockDim.x+theadIdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y

- col = blockIdx.x*blockDim.x+theadIdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y
- TILE WIDTH = blockDim.x

- col = blockIdx.x*blockDim.x+theadIdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y
- TILE_WIDTH = blockDim.x

- col = blockIdx.x*blockDim.x+theadIdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y
- TILE_WIDTH = blockDim.x

- col = blockIdx.x*blockDim.x+theadIdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y
- TILE_WIDTH = blockDim.x

- col = blockIdx.x*blockDim.x+theadIdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y
- TILE_WIDTH = blockDim.x
- indice = ligne * nb_colA + TILE_WIDTH * tileId +
 threadIdx.x

- La matrice est stockée par ligne :
 - Les 2 éléments sont séparés par le nombre d'éléments dans une ligne multiplié par la taille de la tuile
 - Une fois dans la bonne tuile, il faut accéder à la bonne ligne, en n'oubliant pas que le stockage est fait par ligne (ty*nb_col)

- La matrice est stockée par ligne :
 - Les 2 éléments sont séparés par le nombre d'éléments dans une ligne multiplié par la taille de la tuile
 - Une fois dans la bonne tuile, il faut accéder à la bonne ligne, en n'oubliant pas que le stockage est fait par ligne (ty*nb_col)

- La matrice est stockée par ligne :
 - Les 2 éléments sont séparés par le nombre d'éléments dans une ligne multiplié par la taille de la tuile
 - Une fois dans la bonne tuile, il faut accéder à la bonne ligne, en n'oubliant pas que le stockage est fait par ligne (ty*nb_col)

- La matrice est stockée par ligne :
 - Les 2 éléments sont séparés par le nombre d'éléments dans une ligne multiplié par la taille de la tuile
 - Une fois dans la bonne tuile, il faut accéder à la bonne ligne, en n'oubliant pas que le stockage est fait par ligne (ty*nb_col)


```
col = blockIdx.x*blockDim.x+theadIdx.x
```

- ligne = blockIdx.y*blockDim.y+theadIdx.y
- TILE_WIDTH = blockDim.x
- indice = col + (nb_colB * TILE_WIDTH * tileId + ty * nb_col)

- col = blockIdx.x*blockDim.x+theadIdx.x
- ligne = blockIdx.y*blockDim.y+theadIdx.y
- indice = nbCol * ligne + col

