

Real Time Voice Transfer

What is Voice Transfer?

- Voice cloning
- Artificial simulation of a person's voice
- Applications
 - For people who lost their voice
 - Transferring a voice across languages
 - Generate speech from text in low resource settings

Context: Voice Cloning

- Large amounts of high quality recordings is impractical for many speakers
- Deep neural network trained on a corpus of hours of recorded speech from a single speaker
- Giving a new voice to such a model
 - highly expensive
 - record a new dataset
 - retrain the model

Goal: Transfer Learning

- Key idea of Transfer Learning
 - transfer knowledge from one task with a lot of labelled data
 - o to related tasks with very little labelled data
- Text to speech
- Zero-shot setting
 - transfer to voices unseen in the training set

Approach: Voice Cloning

- Decouple speaker modeling from speech synthesis
- Speaker-discriminative embedding network
- Text to speech network
 - o conditioned on embedding unique to speaker

Framework: Overview

- Real-time Voice Cloning (Jia et al., 2018)
 - A speaker encoder: GE2E loss (Wan et al., 2017)
 - A synthesizer: Tacotron (Wang et al., 2017)
 - A vocoder: Wavenet (van den Oord et al., 2016)

datarots

Figure from Jemine (2019).

Stage 1: Speaker Encoder

- A speaker encoder: GE2E loss (Wan et al., 2017)
 - The reference speech is a sequence of log-mel spectrogram from a speech utterance
 - Embedding captures the unique characteristics of the speaker
 - Embeddings of utterances from the same speaker have high cosine similarity

Stage 2: Synthesizer

- Synthesizer: Tacotron (Wang et al., 2017)
 - Extend attention Tacotron 2 to support multiple speakers (Jia et al., 2018)
 - Embedding vector is concatenated with the synthesizer encoder output at each time step.

datarots

Figure from Jemine (2019).

Stage 2: Synthesizer

- Synthesizer: Tacotron (Wang et al., 2017)
 - The synthesizer is trained on pairs of text transcript and target audio.
 - The text is mapped to a sequence of phonemes,
 - Trained in a transfer learning configuration

"Hello world"

Stage 2: Synthesizer

Figure from Jia et al. (2018)

Stage 3: Vocoder

- Vocoder WaveNet (Kalchbrenner et al., 2018)
 - autoregressive WaveNet [19] as a vocoder to invert synthesized mel spectrograms into time-domain waveforms

datarots Figure from Jemine (2019).

Stage 3: Vocoder

- Vocoder WaveNet (Kalchbrenner et al., 2018)
 - synthesized mel spectrogram captures all details for high quality synthesis of a variety of voices
 - o allowing a multispeaker vocoder by training on data from many speakers

Datasets

- VCTK
 - 44 hours of clean speech
 - o 109 speakers
 - British accents
- LibriSpeech
 - 2 clean training sets
 - o comprising 436 hours of speech
 - o from 1,172 speakers

Building Voice Transfer with Streamlit

What is Streamlit?

- Data scientists build apps
 - o dashboard, data browser, etc.
- Ad hoc building flow
 - jupyter notebook > python script > flask app > need more features...
 - maintainability

What is Streamlit?

- Streamlit is an app framework for data scientists
- Key Idea
 - Make webapps as easy as writing python scripts
 - Use traditional iterative scripting process
 - Instead of layout and event flow
- Workflow
 - Start with python script
 - Slightly annotate to make it an app

What is Streamlit?

- Embrace python scripting
 - everything you can do in a python script
 - you can do in streamlit
- Treat widgets as variables
 - substitute variables with a widget such as st.slider()
 - o reuse variables as widgets iteratively
- Reuse data and computation
 - cache computation

Demo

More info

- https://www.streamlit.io/
- https://github.com/datarootsio/rootslab-streamlit-demo

References (1)

- Jia, Ye, et al. "Transfer learning from speaker verification to multispeaker text-to-speech synthesis." Advances in neural information processing systems. 2018.
- Wan, Li, et al. "Generalized end-to-end loss for speaker verification." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

References (2)

- Shen, Jonathan, et al. "Natural tts synthesis by conditioning wavenet on mel spectrogram predictions." 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.
- Kalchbrenner, Nal, et al. "Efficient neural audio synthesis." arXiv preprint arXiv:1802.08435 (2018).

References (3)

Jemine, C. (2019). Master thesis: Real-Time Voice Cloning. (Unpublished master's thesis). Université de Liège, Liège, Belgique. Retrieved from https://matheo.uliege.be/handle/2268.2/6801

The End