Capstone project: Providing data-driven suggestions for HR

- The stakeholder is the HR department at Salifort Motors.
- The task is to create a predictive model and use it to assist the department in identifying employees in risk of leaving the company.
- The dataset contains observations relevant to the task.
- There's no information in the dataset for observations that represent different groups in the workplace.

Import packages

```
import packages
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from xgboost import XGBClassifier
from xgboost import plot_importance
```

Load dataset

```
In []: # Load dataset into a dataframe
    df0 = pd.read_csv("HR_capstone_dataset.csv")

# Display first few rows of the dataframe
    df0.head()
```

Out[]:		satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_co
	0	0.38	0.53	2	157	
	1	0.80	0.86	5	262	
	2	0.11	0.88	7	272	
	3	0.72	0.87	5	223	
	4	0.37	0.52	2	159	
	4					>

Step 2. Data Exploration (Initial EDA and data cleaning)

Gather basic information about the data

```
In [ ]: # Gather basic information about the data
         df0.info()
        <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 14999 entries, 0 to 14998
       Data columns (total 10 columns):
           Column
                                     Non-Null Count Dtype
             satisfaction_level 14999 non-null float64
last_evaluation 14999 non-null float64
            last evaluation
            number_project
                                    14999 non-null int64
            average_montly_hours 14999 non-null int64
            time_spend_company 14999 non-null int64
Work_accident 14999 non-null int64
            left
                                    14999 non-null int64
             promotion_last_5years 14999 non-null int64
            Department 14999 non-null object 14999 non-null object
       dtypes: float64(2), int64(6), object(2)
       memory usage: 1.1+ MB
```

Gather descriptive statistics about the data

```
In [ ]: # Gather descriptive statistics about the data
df0.describe(include='all')
```

Out[]

:		satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spe
	count	14999.000000	14999.000000	14999.000000	14999.000000	1
	unique	NaN	NaN	NaN	NaN	
	top	NaN	NaN	NaN	NaN	
	freq	NaN	NaN	NaN	NaN	
	mean	0.612834	0.716102	3.803054	201.050337	
	std	0.248631	0.171169	1.232592	49.943099	
	min	0.090000	0.360000	2.000000	96.000000	
	25%	0.440000	0.560000	3.000000	156.000000	
	50%	0.640000	0.720000	4.000000	200.000000	
	75%	0.820000	0.870000	5.000000	245.000000	
	max	1.000000	1.000000	7.000000	310.000000	
	4					•

Rename columns

As a data cleaning step, rename the columns as needed. Standardize the column names so that they are all in snake_case, correct any column names that are misspelled, and make column names more concise as needed.

```
In [ ]: # Display all column names
        df0.columns
Out[ ]: Index(['satisfaction_level', 'last_evaluation', 'number_project',
                'average_montly_hours', 'time_spend_company', 'Work_accident', 'left',
                'promotion_last_5years', 'Department', 'salary'],
               dtype='object')
In [ ]: # Rename columns as needed
        df0.rename(columns = {'satisfaction_level': 'satisfaction',
                               'number_project': 'projects',
                               'average_montly_hours': 'avg_monthly_hours',
                               'time_spend_company': 'tenure',
                               'Work_accident': 'accidents',
                               'left': 'churn',
                               'promotion_last_5years': 'promoted',
                               'Department': 'department',
                               'salary': 'compensation'}, inplace = True)
        # Display all column names after the update
        df0.columns
```

Check missing values

Check for any missing values in the data.

```
In [ ]: # Check for missing values
        df0.isna().sum()
Out[]: satisfaction
        last_evaluation
        projects
                              0
        avg_monthly_hours
                              0
        tenure
        accidents
        churn
                              0
        promoted
        department
                              0
                              0
        compensation
        dtype: int64
```

Check for duplicates

```
In [ ]: # Check for duplicates
        dp_mask = df0.duplicated()
        dp_mask
Out[]: 0
                  False
         1
                  False
         2
                  False
         3
                  False
                  False
                  . . .
         14994
                  True
         14995
                  True
         14996
                  True
         14997
                  True
         14998
                  True
        Length: 14999, dtype: bool
In [ ]: # Inspect some rows containing duplicates as needed
        df0[dp_mask]
```

Out[]:		satisfaction	last_evaluation	projects	avg_monthly_hours	tenure	accidents	churn
	396	0.46	0.57	2	139	3	0	1
	866	0.41	0.46	2	128	3	0	1
	1317	0.37	0.51	2	127	3	0	1
	1368	0.41	0.52	2	132	3	0	1
	1461	0.42	0.53	2	142	3	0	1
	•••							
	14994	0.40	0.57	2	151	3	0	1
	14995	0.37	0.48	2	160	3	0	1
	14996	0.37	0.53	2	143	3	0	1
	14997	0.11	0.96	6	280	4	0	1
	14998	0.37	0.52	2	158	3	0	1

3008 rows × 10 columns

←

Check for outliers

```
In [ ]: # Create a boxplot to visualize distribution of `tenure` and detect any outliers
sns.boxplot(y = df0['tenure'])
```



```
In []: # Determine the number of rows containing outliers
    percentile_25 = df0['tenure'].quantile(0.25)
    percentile_75 = df0['tenure'].quantile(0.75)
    iqr = percentile_75 - percentile_25

upper_limit = percentile_75 + 1.5 * iqr
```

```
df0[df0['tenure'] > upper_limit]
```

ıt[]:		satisfaction	last_evaluation	projects	avg_monthly_hours	tenure	accidents	churn
	1	0.80	0.86	5	262	6	0	1
	17	0.78	0.99	4	255	6	0	1
	34	0.84	0.87	4	246	6	0	1
	47	0.57	0.70	3	273	6	0	1
	67	0.90	0.98	4	264	6	0	1
	•••					•••		•••
	14942	0.20	0.50	5	135	6	0	1
	14947	0.91	0.98	4	242	6	0	1
	14977	0.81	0.85	4	251	6	0	1
	14986	0.85	0.85	4	247	6	0	1
	14993	0.76	0.83	6	293	6	0	1
		ws × 10 colum	nns					
	4							•

Step 2. Data Exploration (Continue EDA)

```
In []: # Get numbers of people who left vs. stayed
left = df0[df0['churn'] == 1].count()[0]
stayed = df0[df0['churn'] == 0].count()[0]

print("Employees left: {:>6}".format(left))
print("Employees stayed: {}".format(stayed))

# Get percentages of people who left vs. stayed
print("Employees left: {:>4.0f}%".format((left/df0.shape[0])*100))
print("Employees stayed: {:.0f}%".format((stayed/df0.shape[0])*100))
Employees left: 3571
Employees stayed: 11428
```

Data visualizations

24%

Employees left:

Employees stayed: 76%

```
In [ ]: # Create a plot as needed
plt.figure(figsize=(15,8))
v = sns.lineplot(x = df0['department'], y = df0['churn'])
v.set_title('Churn by Department')
v.set(ylim=(0, max(df0['churn'])))
```

```
Out[]: [(0.0, 1.0)]
```

```
Churn by Department
1.0
0.8
0.6
0.4
0.2
        sales
                                                   technical
                                                                               management
                                                                                                    ΙŤ
                                                                                                                                               RandD
                     accounting
                                                                                                                              marketing
                                                                   support
                                                                                                              product_mng
                                                                         department
```

```
In [ ]: # Create a plot as needed
plt.figure(figsize=(15,8))
v = sns.lineplot(x = df0['compensation'], y = df0['satisfaction'])
v.set_title('Compensation Satisfaction')
v.set(ylim=(0, max(df0['satisfaction'])))
```

Out[]: [(0.0, 1.0)]


```
In [ ]: # Create a plot as needed
plt.figure(figsize=(15,8))
v = sns.lineplot(x = df0['avg_monthly_hours'], y = df0['satisfaction'])
```

```
v.set_title('Work Hours Satisfaction')
v.set(ylim=(0, max(df0['satisfaction'])))
```

```
Out[]: [(0.0, 1.0)]
```



```
In [ ]: # Create a plot as needed
plt.figure(figsize=(15,8))
v = sns.lineplot(x = df0['avg_monthly_hours'], y = df0['churn'])
v.set_title('Churn to Working Hours')
v.set(ylim=(0, max(df0['churn'])))
```

Out[]: [(0.0, 1.0)]


```
In [ ]: # Create a plot as needed
plt.figure(figsize=(15,8))
```

```
v = sns.lineplot(x = df0['projects'], y = df0['avg_monthly_hours'])
v.set_title('Working Hours by Number of Projects')
v.set(ylim=(0, max(df0['avg_monthly_hours'])))
```

```
Out[]: [(0.0, 310.0)]
```



```
In [ ]: # Create a plot as needed
plt.figure(figsize=(15,8))
v = sns.lineplot(x = df0['projects'], y = df0['satisfaction'])
v.set_title('Number of Projects and Satisfaction')
v.set(ylim=(0, max(df0['satisfaction'])))
```

Out[]: [(0.0, 1.0)]


```
In []: # Create a plot as needed
plt.figure(figsize=(15,8))
v = sns.lineplot(x = df0['avg_monthly_hours'], y = df0['promoted'])
v.set_title('Working Hours and Promotions')
v.set(ylim=(0, max(df0['promoted'])))
```

Out[]: [(0.0, 1.0)]


```
In []: # Create a plot as needed
  plt.figure(figsize=(15,8))
  v = sns.lineplot(x = df0['tenure'], y = df0['promoted'])
  v.set_title('Promotions by Tenure')
  v.set(ylim=(0, max(df0['promoted'])))
```

Out[]: [(0.0, 1.0)]


```
In [ ]: # Create a plot as needed
plt.figure(figsize=(15,8))
v = sns.lineplot(x = df0['churn'], y = df0['tenure'])
v.set_title('Churn by Tenure')
v.set(ylim=(0, max(df0['tenure'])))
```


Insights

• There's strong correlation between average work hours, number of projects, satisfaction and churn.

Step 3. Model Building, Step 4. Results and Evaluation

Modeling

```
In [ ]: # Selecting features
        df = df0.drop(['compensation', 'department', 'accidents', 'last_evaluation'], axis=
        df.head(5)
Out[ ]:
           satisfaction projects avg_monthly_hours tenure churn promoted
                             2
                                                        3
                                                               1
                                                                         0
        0
                  0.38
                                              157
         1
                  0.80
                             5
                                              262
                                                                         0
                                                        6
                                                               1
        2
                             7
                                              272
                  0.11
                                                                         0
        3
                  0.72
                             5
                                                        5
                                              223
                                                               1
                                                                         0
         4
                             2
                                                        3
                  0.37
                                              159
                                                               1
                                                                         0
In [ ]: # Splitting data
        y = df['churn']
        X = df.drop(columns=['churn'])
        X_tr, X_test, y_tr, y_test = train_test_split(X, y, test_size = 0.3, stratify=y)
        X_train, X_val, y_train, y_val = train_test_split(X_tr, y_tr, stratify=y_tr, test_s
In [ ]: # XGBoost Model construction
        xgb = XGBClassifier(objective='binary:logistic', random_state=42)
        cv params = {'max depth': [6, 12],
                      'min_child_weight': [3, 5],
                      'learning_rate': [0.01, 0.1],
                      'n_estimators': [300]
        scoring = {'accuracy', 'precision', 'recall', 'f1'}
        xgb cv = GridSearchCV(xgb, cv params, scoring=scoring, cv=4, refit='recall')
In [ ]: # Fitting the data
        xgb_cv.fit(X_train, y_train)
```

```
Out[]: GridSearchCV(cv=4, error_score=nan,
                      estimator=XGBClassifier(base_score=None, booster=None,
                                              callbacks=None, colsample bylevel=None,
                                              colsample_bynode=None,
                                              colsample_bytree=None,
                                              early_stopping_rounds=None,
                                              enable categorical=False, eval metric=None,
                                              gamma=None, gpu_id=None, grow_policy=None,
                                              importance_type=None,
                                              interaction_constraints=None,
                                              learning_rate=None, max...
                                              num_parallel_tree=None,
                                              objective='binary:logistic',
                                              predictor=None, random_state=42,
                                              reg_alpha=None, ...),
                      iid='deprecated', n_jobs=None,
                      param_grid={'learning_rate': [0.01, 0.1], 'max_depth': [6, 12],
                                  'min_child_weight': [3, 5], 'n_estimators': [300]},
                      pre dispatch='2*n jobs', refit='recall', return train score=False,
                      scoring={'precision', 'f1', 'accuracy', 'recall'}, verbose=0)
In [ ]: # Best score
        xgb_cv.best_score_
Out[]: 0.9408019426676142
In [ ]: # Best parameters
        xgb_cv.best_params_
Out[]: {'learning_rate': 0.1,
          'max_depth': 12,
          'min_child_weight': 3,
          'n estimators': 300}
In [ ]: # Model validation
        xgb_val_prediction = xgb_cv.best_estimator_.predict(X_val)
        xgb_val_prediction
Out[]: array([0, 0, 1, ..., 0, 1, 0])
In [ ]: # Scores helper function
        def get_test_scores(model_name:str, preds, y_test_data):
            Generate a table of test scores.
            In:
                model_name (string): Your choice: how the model will be named in the output
                preds: numpy array of test predictions
                y_test_data: numpy array of y_test data
            Out:
                table: a pandas df of precision, recall, f1, and accuracy scores for your m
            accuracy = accuracy_score(y_test_data, preds)
            precision = precision_score(y_test_data, preds)
```

```
In [ ]: # Evaluate model scores
    xgb_scores = get_test_scores('XGB val', xgb_val_prediction, y_val)
    xgb_scores
```

```
        Out[]:
        model
        precision
        recall
        F1
        accuracy

        0
        XGB val
        0.973554
        0.9424
        0.957724
        0.98019
```

```
In [ ]: # Test data predictions
    xgb_test_prediction = xgb_cv.best_estimator_.predict(X_test)
    xgb_test_scores = get_test_scores('XGB test', xgb_test_prediction, y_test)
    xgb_test_scores
```

```
        Out[]:
        model
        precision
        recall
        F1 accuracy

        0
        XGB test
        0.976879
        0.946779
        0.961593
        0.982
```

```
In [ ]: # Confusion matrix
cm = confusion_matrix(y_test, xgb_test_prediction, labels=xgb_cv.classes_)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['retained', 'chu
disp.plot(values_format='')
```



```
In [ ]: plot_importance(xgb_cv.best_estimator_)
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb0f4e8fc50>

Summary of model results

- Using the provided observations, a model with accuracy of 96% was constructed.
- The model shows minimal False Positive and False Negative results.

Conclusion, Recommendations, Next Steps

- With high confidence, one of the most important contributors to churn for the company is "working hours" and "number of projects".
- This indicates that workload is distributed in an unfavorable way, with strong correlation between identified contributors and churn increase.
- Salifort Motors can take steps to remedy the issue by distributing tasks in an advantageous way.