

FM2113(文件编号: S&CIC1162)

单节锂电池保护 IC

概述

FM2113 内置高精度电压检测电路和延迟电路,是用于单节锂离子/锂聚合物可再充电电池的保护 IC。此 IC 适合 于对单节锂离子/锂聚合物可再充电电池的过充电、过放电和过电流进行保护。

特点

- 高精度电压检测电路
- 各延迟时间由内部电路设置(无需外接电容)
- 有过放自恢复功能
- 工作电流: 典型值 3uA, 最大值 6.0uA (VDD=3.9V)
- 连接充电器的端子采用高耐压设计(CS端和OC端,绝对最大额定值是20V)
- ▶ 允许 **0V** 电池充电功能
- 宽工作温度范围: -40℃~+85℃
- 采用 SOT23-6 封装

产品应用

- ▶ 1节锂离子可再充电电池组
- 1 节锂聚合物可再充电电池组

引脚示意图及说明

SOT23-6	引脚号	引脚名称	引脚说明
	1	OD	放电控制用 MOSFET 门极连接端
VSS VDD NC	2	CS	过电流检测输入端,充电器检测端
	3	OC	充电控制用 MOSFET 门极连接端
•	4	NC	悬空
0D CS OC	5	VDD	电源端,正电源输入端
	6	VSS	接地端,负电源输入端

SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

FM2113(文件编号: S&CIC1162)

单节锂电池保护 IC

内部框图

绝对最大额定值

(VSS=0V, TA=25℃, 除非特别说明)

项目	符号	规格	单位
VDD 和 VSS 之间输入电压	V_{DD}	VSS-0.3~VSS+10	V
OC 输出端电压	V _{oc}	VDD-20~VDD+0.3	V
OD 输出端电压	V _{OD}	VSS-0.3~VSS+0.3	V
CS 输入端电压	V _{CS}	VDD-20~VDD+0.3	V
工作温度范围	T _{OP}	-40~+85	$^{\circ}$ C
储存温度范围	T _{ST}	-40~+125	$^{\circ}$ C
容许功耗	P _D	250	mW

FM2113(文件编号: S&CIC1162)

单节锂电池保护 IC

电气特性

电气参数(延迟时间除外。VSS=0V, TA=25℃, 除非特别说明)

项目		符号	测试条件	最小值	典型值	最大值	单位
输入电压							
V _{DD} -V _{SS} 工作电压		V _{DSOP1}		1.5		8	V
V _{DD} -CS 工作电压		V _{DSOP2}		1.5		20	V
耗电流							
工作电流		I _{DD}	V _{DD} =3.9V		3.0	6.0	uA
静态电流		I _{OD}	V _{DD} =2.0V			0.1	uA
检测电压							
	FM2113A.			4.350		4.375	
过充电检测电压	FM2113B.	V_{CU}		4.375	4.400	4.425	V
	FM2113C.			4.425		4.450	
过充电释放电压		V_{CR}		4.150	4.200	4.250	V
过放电检测电压		V_{DL}		2.720	2.800	2.880	V
过放电释放电压		V_{DR}		2.920	3.000	3.080	V
放电过流检测电压		V_{DIP}	V _{DD} =3.6V	120	150	180	mV
负载短路检测电压		V _{SIP}	V _{DD} =3.0V	0.7	1.0	1.3	V
控制端输出电压							
OD 端输出高电压		V_{DH}		V _{DD} -0.1	V _{DD} -0.02		V
OD 端输出低电压		V_{DL}			0.1	0.5	V
OC 端输出高电压		V _{CH}		V _{DD} -0.1	V _{DD} -0.02		V
OC 端输出低电压		V _{CL}			0.1	0.5	V
向 0V 电池充电的功	能						•
充电器起始电压		V _{0CH}	允许向 0V 电池充电功能	1.2			V

SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

FM2113(文件编号: S&CIC1162)

单节锂电池保护 IC

延迟时间参数

项目	符号	测试条件	最小值	典型值	最大值	单位
过充电检测延迟时间	T _{OC}	V _{DD} =3.9V→4.5V	70	100	150	ms
过放电检测延迟时间	T _{OD}	V _{DD} =3.6V→2.0V	70	100	150	ms
放电过流检测延迟时间	T _{DIP}	V _{DD} =3.6V, CS=0.4V	5	10	15	ms
充电过流检测延迟时间	T _{CIP}	V _{DD} =3.6V, CS=-0.2V	4	7	11	ms
负载短路检测延迟时间	T _{SIP}	V _{DD} =3.0V, CS=0.3V	200	300	400	us

应用电路图

标记	器件名称	用途	最小值	典型值	最大值	说明
R1	电阻	限流、稳定 VDD、加强 ESD	100 Ω	100 Ω	200 Ω	*1
R2	电阻	限流	1K Ω	2K Ω	2K Ω	*2
C1	电容	滤波,稳定 VDD	0.01uF	0.1uF	1.0uF	*3
M1	N-MOSFET	放电控制				*4
M2	N-MOSFET	充电控制				*5

备注: *1、R1连接过大电阻,由于耗电流会在R1上产生压降,影响检测电压精度。当充电器反接时,电流从充电 器流向IC,若R1过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。

^{*2、}R2连接过大电阻,当连接高电压充电器时,有可能导致不能切断充电电流的情况发生。但为控制充电器 反接时的电流,请尽可能选取较大的阻值。

FM2113(文件编号: S&CIC1162)

单节锂电池保护 IC

- *3、C1有稳定VDD电压的作用,请不要连接0.01uF以下的电容。
- *4、使用MOSFET的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
- *5、门极和源极之间耐压在充电器电压以下时,N-MOSFET 有可能被损坏。

工作说明

▶ 正常工作状态

此IC持续侦测连接在VDD和VSS之间的电池电压,以及CS与VSS之间的电压差,来控制充电和放电。当电池 电压在过放电检测电压(VDL)以上并在过充电检测电压(VCU)以下,且CS端子电压在充电过流检测电压(VCIP) 以上并在放电过流检测电压(VDIP)以下时,IC的OC和OD端子都输出高电平,使充电控制用MOSFET和放电控 制用MOSFET同时导通,这个状态称为"正常工作状态"。此状态下,充电和放电都可以自由进行。

注意:初次连接电芯时,会有不能放电的可能性,此时,短接CS端子和VSS端子,或者连接充电器,就能恢 复到正常工作状态。

过充电状态

正常工作状态下的电池,在充电过程中,一旦电池电压超过过充电检测电压(VCU),并且这种状态持续的时 间超过过充电检测延迟时间(TOC)以上时,FM2113会关闭充电控制用的MOSFET(OC端子),停止充电,这 个状态称为"过充电状态"。

过充电状态在如下2种情况下可以释放:

不连接充电器时,

- (1) 由于自放电使电池电压降低到过充电释放电压(VCR)以下时,过充电状态释放,恢复到正常工作状态。
- (2) 连接负载放电,放电电流先通过充电控制用MOSFET的寄生二极管流过,此时,CS端子侦测到一个"二极 管正向导通压降(Vf)"的电压。当CS端子电压在放电过流检测电压(VDIP)以上且电池电压降低到过 充电检测电压(VCU)以下时,过充电状态释放,恢复到正常工作状态。

注意:进入过充电状态的电池,如果仍然连接着充电器,即使电池电压低于过充电释放电压(VCR),过充 电状态也不能释放。断开充电器,CS端子电压上升到充电过流检测电压(VCIP)以上时,过充电状态才能释放。

过放电状态

正常工作状态下的电池,在放电过程中,当电池电压降低到过放电检测电压(VDL)以下,并且这种状态持续 的时间超过过放电检测延迟时间(TOD)以上时,FM2113会关闭放电控制用的MOSFET(OD端子),停止放电, 这个状态称为"过放电状态"。

过放电状态的释放,有以下三种方法:

- (1) 连接充电器, 若CS端子电压低于充电过流检测电压(VCIP), 当电池电压高于过放电检测电压(VDL) 时,过放电状态释放,恢复到正常工作状态。
- (2) 连接充电器,若CS端子电压高于充电过流检测电压(VCIP),当电池电压高于过放电释放电压(VDR) 时,过放电状态释放,恢复到正常工作状态。
- (3)没有连接充电器时,如果电池电压自恢复到高于过放电释放电压(VDR)时,过放电状态释放,恢复到 正常工作状态,即"有过放自恢复功能"。

FM2113(文件编号: S&CIC1162)

单节钾电池保护 IC

放电过流状态(放电过流检测功能和负载短路检测功能)

正常工作状态下的电池,FM2113通过检测CS端子电压持续侦测放电电流。一旦CS端子电压超过放电过流检 测电压(VDIP),并且这种状态持续的时间超过放电过流检测延迟时间(TDIP),则关闭放电控制用的MOSFET(OD 端子),停止放电,这个状态称为"放电过流状态"。

而一旦CS端子电压超过负载短路检测电压(VSIP),并且这种状态特续的时间超过负载短路检测延迟时间 (TSIP),则也关闭放电控制用的MOSFET(OD端子),停止放电,这个状态称为"负载短路状态"。

当连接在电池正极 (PB+) 和电池负极 (PB-) 之间的阻抗大于放电过流/负载短路释放阻抗 (典型值约300kΩ) 时,放电过流状态和负载短路状态释放,恢复到正常工作状态。另外,即使连接在电池正极(PB+)和电池负极(PB-) 之间的阻抗小于放电过流/负载短路释放阻抗,当连接上充电器,CS端子电压降低到放电过流保护电压(VDIP)以 下, 也会释放放电过流状态或负载短路状态, 回到正常工作状态。

注意:

(1) 若不慎将充电器反接时,回路中的电流方向与放电时电流方向一致,如果CS端子电压高于放电过流检 测电压(VDIP),则可以进入放电过流保护状态,切断回路中的电流,起到保护的作用。

充电过流状态

正常工作状态下的电池,在充电过程中,如果CS端子电压低于充电过流检测电压(VCIP),并且这种状态持 续的时间超过充电过流检测延迟时间(TCIP),则关闭充电控制用的MOSFET(OC端子),停止充电,这个状态 称为"充电过流状态"。

进入充电过流检测状态后,如果断开充电器使CS端子电压高于充电过流检测电压(VCIP)时,充电过流状态 被解除,恢复到正常工作状态。

▶ 允许**0V**电池充电功能

此功能用于对已经自放电到0V的电池进行再充电。当连接在电池正极(PB+)和电池负极(PB-)之间的充电 器电压,高于"向0V电池充电的充电器起始电压(V0CH)"时,充电控制用MOSFET的门极固定为VDD端子的电位, 由于充电器电压使MOSFET的门极和源极之间的电压差高于其导通电压,充电控制用MOSFET导通(OC端子), 开始充电。这时,放电控制用MOSFET仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放 电检测电压(VDL)时,FM2113进入正常工作状态。

注意:

- 1. 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所 购买的电池是否具备"允许向0V电池充电"的功能,还是"禁止向0V电池充电"的功能。
- 2. "允许向0V电池充电功能"比"充电过流检测功能"优先级更高。因此。使用"允许向0V电池充电"功能的IC,在 电池电压较低的时候会强制充电。电池电压低于过放电检测电压(VDL)以下时,不能进行充电过流状态的检测。

SHEN ZHEN FINE MAD ELECTRONICS GROUP CO., LTD.

FM2113(文件编号: S&CIC1162)

单节锂电池保护 IC

封装信息

SYM BOL	ALL DIMENSIONS IN MILLIMETERS				
BUL	MINIMUM	NOMINAL	MAXIMUM		
Α	856	1.30	1.40		
A1	0		0.15		
A2	0.90	1.20	1.30		
b	0.30	-	0.50		
b1	0.30	0.40	0.45		
b2	0.30	0.40	0.50		
С	0.08	-	0.22		
c1	0.08	0.13	0.20		
D	2.90 BSC				
E	2.80 BSC				
E1	1.60 BSC				
е		0.95 BSC			
e1		1.90 BSC			
L	0.30	0.45	0.60		
L1	0.60 REF				
L2	0.25 BSC				
R	0.10	-	2 m 20 m		
R1	0.10	-	0.25		
θ	0°	4°	8°		
θ1	5° - 15°				
θ2	5° - 15°				

