SFWR ENG 4E03

Kemal Ahmed Fall 2015 Vincent Maccio

Note: material covered in Stats 3Y03 Summary will not be covered in this summary

Contents

Statistics	1
Variance	
Exponential	
Uniform	2
Binomial	2
Operations Analysis	2
Visitation Trick	
DTMC	4
Matrices	4
CTMC	4
Poisson Process	4
Kendall notation	/

Statistics

Poisson parameter $[\lambda]$: rate Service rate $[\mu]$:

Continuous Random Variable (CRV):

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Think chemistry, i.e. cancelling units

Variance

$$\operatorname{var}(X) = E[X^2] - (E[X])^2$$

• <u>Don't change probability</u>, but square X for calculation only

$$var(x) = E[(X - \mu)^{2}]$$

$$= \sigma^{2}$$

$$= \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx$$

$$= \int x^{2} f(x) dx - \mu^{2}$$

Exponential

- Mean [E[X]]: 1/λ
 α.k.a. Expected value
- Variance:
- Probability Distribution Function (PDF) $[P(X)]: \lambda e^{-\lambda x}$
- Cumulative Distribution Function (CDF) [f(x)]: CDF = [PDF, i.e. $1 e^{-\lambda x}$
- Memoryless
- not always for time

Uniform

- Mean: (b-a)²/12
- Variance: (a+b)/2
- **PDF**: 1 / (b−a) , a ≤ x ≤ b
- CDF: 1
- Uniform Distribution: no memoryless property

Binomial

- Mean [E[X]]: n × probability
- Variance: $n \times p \times (1 p)$
- Probability Distribution Function (PDF) [P(X)]: $(n c x)p^x(1-p)^{n-x}$
- Cumulative Distribution Function (CDF) [f(x)]: $\sum_{i=0}^{\lfloor x \rfloor} \binom{n}{i} p_i (1-p)^{n-i}$

Operations Analysis

Device [i]: units that are in terms of *i* are specific to an individual device or node within a system **Total devices** [k]:

Service Time [S]: time per specific job

Visitation [V]: given or projected visits/jobs (closed system); cannot be calculated; basically a probability [E(V)]: calculated visit/job ratio P(visit)·total visits in previous node

Demand [D]: total service time for all jobs

$$D_i = E[S_i] \cdot V_i$$

$$D = \sum_{i=0}^{k} D_i$$

Bottleneck [D_{max}]: device with largest demand

Time in system [T]: time the job is in the system

$$\begin{split} E\big[T\big] &= \frac{N}{X} \\ E\big[T\big] &\geq \max\left(D, ND_{\max} - E\big[Z\big]\right) \end{split}$$
 If E[Z] = 0, T = R

Response Time [R]: time the job is *being processed* in the system If E[Z] = 0, R = T

Users [M]:

Optimal users [M*]:

$$M^* = \frac{D + E[Z]}{D_{\text{bottleneck}}}$$

Total Jobs [N]: N=M in a closed system

- Little's Law: $E[N] = \lambda E[T], \lambda = X$
- $E[N] = \lambda E[R], \lambda = X$

Think time [Z]: time it takes the user to put a request in and start, it's kinda like the frequency that users put in requests (seconds / request)

$$E[Z] = E[T] - E[R]$$

Throughput [X]: out-rate, max jobs / hour of full system

$$X \le \min\left(\frac{1}{D_{\max}}, \frac{N}{D + E[Z]}\right)$$

Note: $\frac{1}{D_{\max}}$ and $\frac{N}{D+E\big[Z\big]}$ converge at their lowest point, so equate them

$$X_i = E[V_i]X$$

Utilization [p]: ratio that the time is busy

$$\rho_i = X_i E[S_i]$$

$$\rho_i = XD_i$$

Visitation Trick

If determining visitation at a node, establish a reference node from one of the incoming nodes, usually the user node, that has a returning percentage

$$V_{user} = 1 = 0.1 \cdot V_{CPU}$$

DTMC

Discrete Time Markov Chains (DTMC):

Geometric Series: $\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$, where $0 \le r \le 1$ (because otherwise it would be unstable)

$$\sum_{i=1}^{\infty} r^i = \frac{r}{1-r}$$

$$S_n = \sum_{i=1}^n r^i = \frac{r(1-r^n)}{1-r}$$

Steady state: n->∞

For discrete: use the sum of the X's, so $E[X] = \Sigma(P(X=i)\cdot X_i)$ and $E[X^2] = \Sigma(P(X=i)\cdot X_i^2)$

Matrices

Rows: equations for nodes going out (add up to 1)

Columns: equations for nodes coming in

CTMC

Poisson Process

Poisson Process:

- Uses Exponential Distribution
- $\lambda_{total} = \Sigma \lambda_i$
 - \circ you can also split up λ into multiple λ s
- Not only do you see each second as time independent, each stream of probabilities is independent
- $P(x;\lambda) = e^{-\lambda} \lambda^x / x!$
 - [x]: things will happen
 - \circ [λ]: rate; $\lambda = \alpha t$
- $[\alpha]$: expected number of events during unit interval
- [t]: time interval length
- $\bullet \quad P_X(t) = \frac{e^{-\alpha t} \cdot (\alpha t)^X}{X!}$

Kendall notation

Job Processing time [μ]: rate of jobs leaving system

M/M/1 Queue

[M]: time between arrivals is Markovian (Memoryless) $\sim \exp(\lambda)$

[M]: job processing times are Markovian (Memoryless) $^{\sim}$ exp(μ)

[1]: single server

Attributes:

FIFO

Infinite buffer

Variations

• M/M/2 Queue: same, except 2 servers

• M/M/C Queue: C servers

• M/E_k/C: Erlang k, i.e. series of exponential

• H()/M/C: hyperexpontial distribution

• PH/M/C: phase type, i.e. any combination of any number of exponentials with any rate

• M/G/C: General distribution

• G/G/1: has not been solved yet

• M/M/1/1: 1 server, 1 job

Erlang-C Equation: P(job has to wait in queue) = $\sum_{i=0}^{\infty} \pi_i$

$$= \boxed{\frac{1}{c!} \left(\frac{\lambda}{\mu}\right)^c \left(\frac{1}{1-\rho}\right) \pi_0}$$