5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities

Lagrangian

Standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, ..., m$
 $h_i(x) = 0, \quad i = 1, ..., p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

Lagrangian: $L: \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with dom $L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
- v_i is Lagrange multiplier associated with $h_i(x) = 0$

Lagrange dual function

Lagrange dual function: $g : \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
$$= \inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x))$$

- a concave function of λ , ν
- can be $-\infty$ for some λ , ν ; this defines the domain of g

Lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$

proof: if x is feasible and $\lambda \geq 0$, then

$$f_0(x) \ge L(x, \lambda, \nu) \ge \inf_{\tilde{x} \in \mathcal{D}} L(\tilde{x}, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible x gives $p^* \ge g(\lambda, \nu)$

Least norm solution of linear equations

minimize
$$x^T x$$

subject to $Ax = b$

Lagrangian is

$$L(x, \nu) = x^T x + \nu^T (Ax - b)$$

• to minimize *L* over *x*, set gradient equal to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \implies x = -\frac{1}{2}A^T \nu$$

• plug in in *L* to obtain *g*:

$$g(v) = L(-\frac{1}{2}A^{T}v, v) = -\frac{1}{4}v^{T}AA^{T}v - b^{T}v$$

a concave function of ν

Lower bound property: $p^* \ge -\frac{1}{4} v^T A A^T v - b^T v$ for all v

Standard form LP

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$

Lagrangian is

$$L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x$$
$$= -b^T \nu + (c + A^T \nu - \lambda)^T x$$

• *L* is affine in *x*, hence

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^{T} \nu & A^{T} \nu - \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$$

g is linear on affine domain $\operatorname{dom} g = \{(\lambda, \nu) \mid A^T \nu - \lambda + c = 0\}$, hence concave

Lower bound property: $p^* \ge -b^T v$ if $A^T v + c \ge 0$

Equality constrained norm minimization

minimize
$$||x||$$
 subject to $Ax = b$

∥ · ∥ is any norm; dual norm is defined as

$$||v||_* = \sup_{\|u\| \le 1} u^T v$$

- define Lagrangian $L(x, v) = ||x|| + v^{T}(b Ax)$
- dual function (proof on next page):

$$g(v) = \inf_{x} (\|x\| - v^{T} A x + b^{T} v)$$
$$= \begin{cases} b^{T} v & \|A^{T} v\|_{*} \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

Lower bound property: $p^* \ge b^T v$ if $||A^T v||_* \le 1$

proof of expression for g: follows from

$$\inf_{x} (\|x\| - y^T x) = \begin{cases} 0 & \|y\|_* \le 1\\ -\infty & \text{otherwise} \end{cases} \tag{1}$$

Case $||y||_* \le 1$:

$$\inf_{x} \left(\|x\| - y^T x \right) = 0$$

- $y^T x \le ||x|| ||y||_* \le ||x||$ for all x (by definition of dual norm)
- $y^T x = ||x|| \text{ for } x = 0$

Case $||y||_* > 1$:

$$\inf_{x} (\|x\| - y^T x) = -\infty$$

- there exists an \tilde{x} with $\|\tilde{x}\| \le 1$ and $y^T \tilde{x} = \|y\|_* > 1$; hence $\|\tilde{x}\| \|y\|_* < 0$
- consider $x = t\tilde{x}$ with t > 0:

$$||x|| - y^T x = t(||\tilde{x}|| - ||y||_*) \to -\infty$$
 as $t \to \infty$

Two-way partitioning

minimize
$$x^T W x$$

subject to $x_i^2 = 1, i = 1, ..., n$

- a nonconvex problem; feasible set $\{-1,1\}^n$ contains 2^n discrete points
- interpretation: partition $\{1, \ldots, n\}$ in two sets, $x_i \in \{-1, 1\}$ is assignment for i
- cost function is

$$x^{T}Wx = \sum_{i=1}^{n} W_{ii} + 2\sum_{i>j} W_{ij}x_{i}x_{j}$$
$$= \mathbf{1}^{T}W\mathbf{1} + 2\sum_{i>j} W_{ij}(x_{i}x_{j} - 1)$$

cost of assigning i, j to different sets is $-4W_{ij}$

Lagrange dual of two-way partitioning problem

Dual function

$$g(v) = \inf_{x} (x^{T}Wx + \sum_{i=1}^{n} v_{i}(x_{i}^{2} - 1))$$

$$= \inf_{x} x^{T}(W + \operatorname{diag}(v))x - \mathbf{1}^{T}v$$

$$= \begin{cases} -\mathbf{1}^{T}v & W + \operatorname{diag}(v) \geq 0 \\ -\infty & \text{otherwise} \end{cases}$$

Lower bound property

$$p^* \ge -\mathbf{1}^T \nu \quad \text{if } W + \mathbf{diag}(\nu) \ge 0$$

example: $\nu = -\lambda_{\min}(W)\mathbf{1}$ proves bound $p^* \geq n\lambda_{\min}(W)$

Lagrange dual and conjugate function

minimize
$$f_0(x)$$

subject to $Ax \le b$
 $Cx = d$

Dual function

$$g(\lambda, \nu) = \inf_{x \in \text{dom } f_0} (f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

- recall definition of conjugate $f^*(y) = \sup_{x} (y^T x f(x))$
- simplifies derivation of dual if conjugate of f_0 is known

Example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

The dual problem

Lagrange dual problem

maximize
$$g(\lambda, \nu)$$
 subject to $\lambda \geq 0$

- finds best lower bound on p^* , obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted by d^*
- often simplified by making implicit constraint $(\lambda, \nu) \in \text{dom } g$ explicit
- λ , ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \text{dom } g$
- $d^* = -\infty$ if problem is infeasible; $d^* = +\infty$ if unbounded above

Example: standard form LP and its dual (page 5.5)

minimize
$$c^Tx$$
 maximize $-b^Tv$ subject to $Ax = b$ subject to $A^Tv + c \ge 0$

Weak and strong duality

Weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems for example, solving the SDP

maximize
$$-\mathbf{1}^T \nu$$
 subject to $W + \mathbf{diag}(\nu) \geq 0$

gives a lower bound for the two-way partitioning problem on page 5.8

Strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- sufficient conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

Convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

Slater's constraint qualification: the problem is strictly feasible, i.e.,

$$\exists x \in \text{int } \mathcal{D}: \quad f_i(x) < 0, \quad i = 1, \dots, m, \quad Ax = b$$

- guarantees strong duality: $p^* = d^*$
- also guarantees that the dual optimum is attained if $p^* > -\infty$
- can be sharpened: e.g., can replace int \mathcal{D} with relint \mathcal{D} (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, ...
- there exist many other types of constraint qualifications

Inequality form LP

Primal problem

minimize
$$c^T x$$

subject to $Ax \le b$

Dual function

$$g(\lambda) = \inf_{x} ((c + A^{T}\lambda)^{T}x - b^{T}\lambda) = \begin{cases} -b^{T}\lambda & A^{T}\lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T \lambda \\ \text{subject to} & A^T \lambda + c = 0 \\ & \lambda \geq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- in fact, $p^* = d^*$ except when primal and dual are infeasible $(p^* = \infty, d^* = -\infty)$

Quadratic program

Primal problem (assume $P \in \mathbf{S}_{++}^n$)

minimize
$$x^T P x$$

subject to $Ax \le b$

Dual function

$$g(\lambda) = \inf_{x} (x^T P x + \lambda^T (Ax - b)) = -\frac{1}{4} \lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

Dual problem

$$\begin{array}{ll} \text{maximize} & -\frac{1}{4}\lambda^TAP^{-1}A^T\lambda - b^T\lambda \\ \text{subject to} & \lambda \geq 0 \end{array}$$

- from Slater's condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}
- in fact, $p^* = d^*$ always

A nonconvex problem with strong duality

minimize
$$x^T A x + 2b^T x$$

subject to $x^T x \le 1$

we allow $A \not\geq 0$, hence problem may be nonconvex

Dual function (derivation on next page)

$$g(\lambda) = \inf_{x} (x^{T} (A + \lambda I)x + 2b^{T} x - \lambda)$$

$$= \begin{cases} -b^{T} (A + \lambda I)^{\dagger} b - \lambda & A + \lambda I \geq 0 \text{ and } b \in \mathcal{R}(A + \lambda I) \\ -\infty & \text{otherwise} \end{cases}$$

Dual problem and equivalent SDP:

$$\begin{array}{lll} \text{maximize} & -b^T(A+\lambda I)^\dagger b - \lambda & \text{maximize} & -t - \lambda \\ \text{subject to} & A+\lambda I \geq 0 & \left[\begin{array}{ccc} A+\lambda I & b \\ b \in \mathcal{R}(A+\lambda I) & \lambda \geq 0 \end{array} \right] \geq 0 \\ & \lambda \geq 0 & \lambda \geq 0 \end{array}$$

strong duality holds although primal problem is not convex (not easy to show)

proof of expression for g: unconstrained minimum of $f(x) = x^T P x + 2q^T x + r$ is

$$\inf_{x} f(x) = \begin{cases} -q^{T} P^{-1} q + r & P > 0 \\ -q^{T} P^{\dagger} q + r & P \neq 0, P \geq 0, q \in \mathcal{R}(P) \\ -\infty & P \geq 0, q \notin \mathcal{R}(P) \\ -\infty & P \not\geq 0 \end{cases}$$

• if $P \not\geq 0$, function f is unbounded below: choose y with $y^T P y < 0$ and x = t y

$$f(x) = t^2(y^T P y) + 2t(q^T y) + r \to -\infty$$
 if $t \to \pm \infty$

- if $P \ge 0$, decompose q as q = Pu + v with $u = P^{\dagger}q$ and $v = (I PP^{\dagger})q$ Pu is projection of q on $\mathcal{R}(P)$, v is projection on nullspace of P
- if $v \neq 0$ (i.e., $q \notin \mathcal{R}(P)$), the function f is unbounded below: for x = -tv,

$$f(x) = t^2(v^T P v) - 2t(q^T v) + r = -2t||v||^2 + r \to -\infty$$
 if $t \to \infty$

• if v = 0, $x^* = -u$ is optimal since f is convex and $\nabla f(x^*) = 2Px^* + 2q = 0$;

$$f(x^{\star}) = -q^T P^{\dagger} q + r$$

Geometric interpretation of duality

for simplicity, consider problem with one constraint $f_1(x) \leq 0$

Interpretation of dual function

$$g(\lambda) = \inf_{(u,t)\in\mathcal{G}} (t + \lambda u), \quad \text{where} \quad \mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects t-axis at $t = g(\lambda)$

Geometric interpretation of duality

Epigraph variation: same interpretation if \mathcal{G} is replaced with

$$\mathcal{A} = \{(u, t) \mid f_1(x) \le u, f_0(x) \le t \text{ for some } x \in \mathcal{D}\}$$

Strong duality

- holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^*)$
- for convex problem, \mathcal{A} is convex, hence has supporting hyperplane at $(0, p^*)$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical

Optimality conditions

if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

- 1. $f_i(x) \le 0$ for i = 1, ..., m and $h_i(x) = 0$ for i = 1, ..., p
- 2. $\lambda \geq 0$
- 3. $f_0(x) = g(\lambda, \nu)$

conversely, these three conditions imply optimality of x, (λ, ν) , and strong duality next, we replace condition 3 with two equivalent conditions that are easier to use

Complementary slackness

assume x satisfies the primal constraints and $\lambda \geq 0$

$$g(\lambda, \nu) = \inf_{\tilde{x} \in \mathcal{D}} \left(f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^p \nu_i^* h_i(\tilde{x}) \right)$$

$$\leq f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

$$\leq f_0(x)$$

equality $f_0(x) = g(\lambda, \nu)$ holds if and only if the two inequalities hold with equality:

- first inequality: x minimizes $L(\tilde{x}, \lambda, \nu)$ over $\tilde{x} \in \mathcal{D}$
- 2nd inequality: $\lambda_i f_i(x) = 0$ for i = 1, ..., m, *i.e.*,

$$\lambda_i > 0 \implies f_i(x) = 0, \qquad f_i(x) < 0 \implies \lambda_i = 0$$

this is known as complementary slackness

Optimality conditions

if strong duality holds, then x is primal optimal and (λ, ν) is dual optimal if:

- 1. $f_i(x) \le 0$ for i = 1, ..., m and $h_i(x) = 0$ for i = 1, ..., p
- 2. $\lambda \geq 0$
- 3. $\lambda_i f_i(x) = 0$ for i = 1, ..., m
- 4. x is a minimizer of $L(\cdot, \lambda, \nu)$

conversely, these four conditions imply optimality of x, (λ, ν) , and strong duality if problem is convex and the functions f_i , h_i are differentiable, #4 can written as 4'. the gradient of the Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

conditions 1,2,3,4' are known as Karush-Kuhn-Tucker (KKT) conditions

Convex problem with Slater constraint qualification

recall the two implications of Slater's condition for a convex problem

- strong duality: $p^* = d^*$
- if optimal value is finite, dual optimum is attained: there exist dual optimal λ , ν

hence, if problem is convex and Slater's constraint qualification holds:

- x is optimal if and only if there exist λ , ν such that 1–4 on p. 5.22 are satisfied
- if functions are differentiable, condition 4 can be replaced with 4'

Example: water-filling

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$
 subject to
$$x \ge 0$$

$$\mathbf{1}^{T} x = 1$$

- we assume that $\alpha_i > 0$
- Lagrangian is $L(\tilde{x}, \lambda, \nu) = -\sum_{i} \log(\tilde{x}_{i} + \alpha_{i}) \lambda^{T} \tilde{x} + \nu (\mathbf{1}^{T} \tilde{x} 1)$

Optimality conditions: x is optimal iff there exist $\lambda \in \mathbb{R}^n$, $\nu \in \mathbb{R}$ such that

1.
$$x \ge 0$$
, $\mathbf{1}^T x = 1$

2. $\lambda \geq 0$

3. $\lambda_i x_i = 0$ for i = 1, ..., n

4. *x* minimizes Lagrangian:

$$\frac{1}{x_i + \alpha_i} + \lambda_i = \nu, \quad i = 1, \dots, n$$

Example: water-filling

Solution

- if $v \le 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/v \alpha_i$
- if $v \ge 1/\alpha_i$: $x_i = 0$ and $\lambda_i = v 1/\alpha_i$
- two cases may be combined as

$$x_i = \max\{0, \frac{1}{\nu} - \alpha_i\}, \qquad \lambda_i = \max\{0, \nu - \frac{1}{\alpha_i}\}$$

• determine ν from condition $\mathbf{1}^T x = 1$:

$$\sum_{i=1}^{n} \max\{0, \frac{1}{\nu} - \alpha_i\} = 1$$

Interpretation

- n patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/v^*$

Example: projection on 1-norm ball

minimize
$$\frac{1}{2}||x - a||_2^2$$

subject to $||x||_1 \le 1$

Optimality conditions

- 1. $||x||_1 \le 1$
- 2. $\lambda \geq 0$
- 3. $\lambda(1 ||x||_1) = 0$
- 4. x minimizes Lagrangian

$$L(\tilde{x}, \lambda) = \frac{1}{2} ||\tilde{x} - a||_2^2 + \lambda(||\tilde{x}||_1 - 1)$$
$$= \sum_{k=1}^n (\frac{1}{2} (\tilde{x}_k - a_k)^2 + \lambda |\tilde{x}_k|) - \lambda$$

Example: projection on 1-norm ball

Solution

• optimization problem in condition 4 is separable; solution for $\lambda \geq 0$ is

$$x_k = \begin{cases} a_k - \lambda & a_k \ge \lambda \\ 0 & -\lambda \le a_k \le \lambda \\ a_k + \lambda & a_k \le -\lambda \end{cases}$$

- therefore $||x||_1 = \sum_k |x_k| = \sum_k \max\{0, |a_k| \lambda\}$
- if $||a||_1 \le 1$, solution is $\lambda = 0$, x = a
- otherwise, solve piecewise-linear equation in λ :

$$\sum_{k=1}^{n} \max \{0, |a_k| - \lambda\} = 1$$

Perturbation and sensitivity analysis

(Unperturbed) optimization problem and its dual

minimize
$$f_0(x)$$
 maximize $g(\lambda, \nu)$ subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ subject to $\lambda \geq 0$ $h_i(x) = 0, \quad i = 1, \dots, p$

Perturbed problem and its dual

minimize
$$f_0(x)$$
 maximize $g(\lambda, \nu) - u^T \lambda - v^T \nu$ subject to $f_i(x) \leq u_i, \quad i = 1, \dots, m$ subject to $\lambda \geq 0$ $h_i(x) = v_i, \quad i = 1, \dots, p$

- x is primal variable; u, v are parameters
- $p^*(u, v)$ is optimal value as a function of u, v
- we are interested in information about $p^*(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual

Global sensitivity result

- assume strong duality holds for unperturbed problem, and that λ^* , ν^* are dual optimal for unperturbed problem
- apply weak duality to perturbed problem:

$$p^{\star}(u,v) \geq g(\lambda^{\star}, v^{\star}) - u^{T}\lambda^{\star} - v^{T}v^{\star}$$
$$= p^{\star}(0,0) - u^{T}\lambda^{\star} - v^{T}v^{\star}$$

Sensitivity interpretation

- if λ_i^* is large: p^* increases greatly if we tighten constraint i ($u_i < 0$)
- if λ_i^* is small: p^* does not decrease much if we loosen constraint i ($u_i > 0$)
- if v_i^* is large and positive: p^* increases greatly if we take $v_i < 0$; if v_i^* is large and negative: p^* increases greatly if we take $v_i > 0$
- if v_i^{\star} is small and positive: p^{\star} does not decrease much if we take $v_i > 0$; if v_i^{\star} is small and negative: p^{\star} does not decrease much if we take $v_i < 0$

Local sensitivity result

if (in addition) $p^*(u, v)$ is differentiable at (0, 0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial v_i}$$

proof (for λ_i^*): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \searrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \ge -\lambda_{i}^{\star}$$
$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \nearrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \le -\lambda_{i}^{\star}$$

hence, equality

 $p^*(u)$ for a problem with one (inequality) constraint:

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

Common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- transform objective or constraint functions
 - *e.g.*, replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

minimize
$$f_0(Ax + b)$$

- dual function is constant: $g = \inf_{x} L(x) = \inf_{x} f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless

Reformulated problem and its dual

minimize
$$f_0(y)$$
 maximize $b^T v - f_0^*(v)$ subject to $Ax + b - y = 0$ subject to $A^T v = 0$

dual function follows from

$$g(v) = \inf_{x,y} (f_0(y) - v^T y + v^T A x + b^T v)$$
$$= \begin{cases} -f_0^*(v) + b^T v & A^T v = 0\\ -\infty & \text{otherwise} \end{cases}$$

Example: norm approximation

minimize
$$||Ax - b|| \longrightarrow$$
 minimize $||y||$ subject to $y = Ax - b$

Dual function

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T A x + b^T \nu)$$

$$= \begin{cases} b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\ -\infty & \text{otherwise} \end{cases}$$

$$= \begin{cases} b^T \nu & A^T \nu = 0, & \|\nu\|_* \le 1 \\ -\infty & \text{otherwise} \end{cases}$$

(last step follows from (1)

Dual of norm approximation problem

maximize
$$b^T v$$

subject to $A^T v = 0$
 $\|v\|_* \le 1$

Implicit constraints

LP with box constraints: primal and dual problem

minimize
$$c^Tx$$
 maximize $-b^Tv - \mathbf{1}^T\lambda_1 - \mathbf{1}^T\lambda_2$ subject to $Ax = b$ subject to $c + A^Tv + \lambda_1 - \lambda_2 = 0$ $\lambda_1 \geq 0, \quad \lambda_2 \geq 0$

Reformulation with box constraints made implicit

minimize
$$f_0(x) = \begin{cases} c^T x & -1 \le x \le 1 \\ \infty & \text{otherwise} \end{cases}$$
 subject to $Ax = b$

dual function

$$g(v) = \inf_{-1 \le x \le 1} (c^T x + v^T (Ax - b))$$
$$= -b^T v - ||A^T v + c||_1$$

Dual problem: maximize $-b^T v - ||A^T v + c||_1$

Problems with generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

 \leq_{K_i} is generalized inequality on \mathbf{R}^{k_i}

Lagrangian and dual function: definitions are parallel to scalar case

- Lagrange multiplier for $f_i(x) \leq_{K_i} 0$ is vector $\lambda_i \in \mathbf{R}^{k_i}$
- Lagrangian $L: \mathbf{R}^n \times \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$L(x, \lambda_1, \dots, \lambda_m, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

• dual function $g: \mathbf{R}^{k_1} \times \cdots \times \mathbf{R}^{k_m} \times \mathbf{R}^p \to \mathbf{R}$, is defined as

$$g(\lambda_1,\ldots,\lambda_m,\nu)=\inf_{x\in\mathcal{D}}L(x,\lambda_1,\cdots,\lambda_m,\nu)$$

Lagrange dual of problems with generalized inequalities

Lower bound property: if $\lambda_i \geq_{K_i^*} 0$, then $g(\lambda_1, \ldots, \lambda_m, \nu) \leq p^*$

proof: if x is feasible and $\lambda \geq_{K_i^*} 0$, then

$$f_0(x) \geq f_0(x) + \sum_{i=1}^m \lambda_i^T f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

$$\geq \inf_{\tilde{x} \in \mathcal{D}} L(\tilde{x}, \lambda_1, \dots, \lambda_m, \nu)$$

$$= g(\lambda_1, \dots, \lambda_m, \nu)$$

minimizing over all feasible x gives $p^* \ge g(\lambda_1, \dots, \lambda_m, \nu)$

Dual problem

maximize
$$g(\lambda_1, \ldots, \lambda_m, \nu)$$

subject to $\lambda_i \geq_{K_i^*} 0, \quad i = 1, \ldots, m$

- weak duality: $p^* \ge d^*$ always
- strong duality: $p^* = d^*$ for convex problem with constraint qualification (for example, Slater's: primal problem is strictly feasible)

Semidefinite program

minimize
$$c^T x$$

subject to $x_1 F_1 + \cdots + x_n F_n \leq G$

matrices F_1, \ldots, F_n, G are symmetric $k \times k$

Lagrangian and dual function

• Lagrange multiplier is matrix $Z \in \mathbf{S}^k$; Lagrangian is

$$L(x,Z) = c^T x + \operatorname{tr} \left(Z(x_1 F_1 + \dots + x_n F_n - G) \right)$$
$$= \sum_{i=1}^n (\operatorname{tr}(F_i Z) + c_i) x_i - \operatorname{tr}(G Z)$$

dual function

$$g(Z) = \inf_{x} L(x, Z) = \begin{cases} -\operatorname{tr}(GZ) & \operatorname{tr}(F_{i}Z) + c_{i} = 0, & i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

Dual semidefinite program

$$\begin{array}{ll} \text{maximize} & -\operatorname{tr}(GZ) \\ \text{subject to} & \operatorname{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n \\ & Z \geq 0 \end{array}$$

Weak duality: $p^* \ge d^*$ always

proof: for primal feasible x, dual feasible Z,

$$c^{T}x = -\sum_{i=1}^{n} \operatorname{tr}(F_{i}Z)x_{i}$$

$$= -\operatorname{tr}(GZ) + \operatorname{tr}(Z(G - \sum_{i=1}^{n} x_{i}F_{i}))$$

$$\geq -\operatorname{tr}(GZ)$$

inequality follows from $tr(XZ) \ge 0$ for $X \ge 0$, $Z \ge 0$

Strong duality: $p^* = d^*$ if primal SDP or dual SDP is strictly feasible

Complementary slackness

(P) minimize
$$c^Tx$$
 (D) maximize $-\operatorname{tr}(GZ)$ subject to $\sum\limits_{i=1}^n x_i F_i \leq G$ subject to $\operatorname{tr}(F_iZ) + c_i = 0, \ i = 1, \ldots, n$ $Z \geq 0$

the primal and dual objective values at feasible x, Z are equal if

$$0 = c^{T}x + \operatorname{tr}(GZ)$$

$$= -\sum_{i=1}^{n} x_{i} \operatorname{tr}(F_{i}Z) + \operatorname{tr}(GZ)$$

$$= \operatorname{tr}(XZ) \quad \text{where } X = G - x_{1}F_{1} - \dots - x_{n}F_{n}$$

for $X \ge 0$, $Z \ge 0$, each of the following statements is equivalent to tr(XZ) = 0:

- ZX = 0: columns of X are in the nullspace of Z
- XZ = 0: columns of Z are in the nullspace of X

(see next page)

proof: factorize X, Z as

$$X = UU^T$$
, $Z = VV^T$

- columns of U span the range of X, columns of V span the range of Z
- tr(XZ) can be expressed as

$$tr(XZ) = tr(UU^TVV^T) = tr((U^TV)(V^TU)) = ||U^TV||_F^2$$

• hence, tr(XZ) = 0 if and only if

$$U^TV = 0$$

the range of X and the range of Z are orthogonal subspaces

Example: two-way partitioning

recall the two-way partitioning problem and its dual (page 5.8)

(P) minimize $x^T W x$ (D) maximize $-\mathbf{1}^T v$ subject to $x_i^2 = 1, \quad i = 1, \dots, n$ subject to $W + \mathbf{diag}(v) \geq 0$

- by weak duality, $p^* \ge d^*$
- the dual problem (D) is an SDP; we derive the dual SDP and compare it with (P)
- to derive the dual of (D), we first write (D) as a minimization problem:

minimize
$$\mathbf{1}^T y$$

subject to $W + \mathbf{diag}(y) \ge 0$ (2)

the optimal value of (2) is $-d^*$

Example: two-way partitioning

Lagrangian

$$L(y, Z) = \mathbf{1}^{T} y - \operatorname{tr}(Z(W + \operatorname{diag}(y)))$$
$$= -\operatorname{tr}(WZ) + \sum_{i=1}^{n} y_{i}(1 - Z_{ii})$$

Dual function

$$g(Z) = \inf_{y} L(y, Z) = \begin{cases} -\operatorname{tr}(WZ) & Z_{ii} = 1, i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

Dual problem: the dual of (2) is

maximize
$$-\operatorname{tr}(WZ)$$

subject to $Z_{ii}=1, \quad i=1,\ldots,n$
 $Z\geq 0$

by strong duality with (2), optimal value is equal to $-d^*$

Example: two-way partitioning

replace (D) on page 5.41 by its dual

(P) minimize
$$x^TWx$$
 (P') minimize $\operatorname{tr}(WZ)$ subject to $x_i^2 = 1, \quad i = 1, \dots, n$ subject to $\operatorname{diag}(Z) = 1$ $Z \geq 0$

optimal value of (P') is equal to optimal value d^* of (D)

Interpretation as relaxation

• reformulate (P) by introducing a new variable $Z = xx^T$:

minimize
$$tr(WZ)$$

subject to $diag(Z) = 1$
 $Z = xx^T$

• replace the constraint $Z = xx^T$ with a weaker convex constraint $Z \ge 0$