| Wydział        | Imię i nazwisko  |                | Rok          | Grupa           | Zespół |  |  |  |  |
|----------------|------------------|----------------|--------------|-----------------|--------|--|--|--|--|
| WFiIS          | 1.Mateusz Kulig  |                | 2021         | 1               | 3      |  |  |  |  |
|                | 2.Przemysław Ryś |                |              |                 |        |  |  |  |  |
| PRACOWNIA      | Temat:           | Temat:         |              |                 |        |  |  |  |  |
| FIZYCZNA       | Zależność okres  | 2              |              |                 |        |  |  |  |  |
| WFiIS AGH      |                  |                |              |                 |        |  |  |  |  |
| Data wykonania | Data oddania     | Zwrot do popr. | Data oddania | Data zaliczenia | OCENA  |  |  |  |  |
| 22.11.2021     |                  |                |              |                 |        |  |  |  |  |
|                |                  |                |              |                 |        |  |  |  |  |

W sprawozdaniu opisaliśmy pomiary zależności okresu drgań wahadła od jego amplitudy. W pierwszej części eksperymentu wykonaliśmy siedemnaście pomiarów dla różnych wartości amplitudy. W drugiej części stukrotnie zmierzyliśmy okres wahadła nie zatrzymując jego drgań. W pierwszym przypadku otrzymana zależność okresu od amplitudy pokrywa się z zależnością teoretyczną. W drugim przypadku histogram utworzony z otrzymanych danych jest słuszny z rozkładem Gaussa.

### 1. Wstęp

Jeśli kulka zawieszona na nitce zostanie wychylona o mały kąt, to zacznie się poruszać ruchem harmonicznym. Dzieje się tak ponieważ dla małych kątów słuszne jest przybliżenie  $\sin\theta=\theta$  i równanie ruchu kulki przyjmuje postać

$$I\frac{d^2\theta}{dt^2} = -mga\theta,\tag{1}$$

gdzie:

g – przyspieszenie grawitacyjne,

I – moment bezwładności,

m – masa,

a - długość wahadła,

 $\theta$  – wychylenie.

Dla tego równania ruchu otrzymujemy, że okres drgań wahadła nie jest zależny od amplitudy i przyjmuje postać

$$T_0 = 2\pi \sqrt{\frac{l}{g}}. (2)$$

Gdy wychylenie kulki jest na tyle duże, że nie można zastosować powyższego przybliżenia równanie ruchu przyjmuje postać

$$I\frac{d^2\theta}{dt^2} = -mga\sin\theta\tag{3}$$

Jest to równanie różniczkowe nieliniowe, ponieważ zmienna  $\theta$  nie występuje w pierwszej potędze, lecz jest argumentem funkcji sinus. Równanie to można rozwiązać metodą

analityczną za pomocą rozwinięcia funkcji szereg. W tym przypadku okres drgań wahadła jest zależny od amplitudy początkowej. Ostateczna formuła na okres drgań wahadła przyjmuje postać nieskończonego szeregu zadanego poniższym wzorem

$$T = T_0 \left[ 1 + \frac{1}{16} \theta_m^2 + \frac{11}{3072} \theta_m^4 + \dots \right]. \tag{4}$$

Gdzie  $\theta_m$  jest maksymalnym wychyleniem, a  $T_0$  jest okresem dla małego wychylenia, danym wzorem (2).

# 2. Aparatura

W eksperymencie, mającym na celu wyznaczenie okresu drgań użyliśmy następujących przyrządów:

- Stoper marki Q&Q użyliśmy go do zmierzenia okresu wahadła. Jego dokładność wynosiła 0,01[s],
- Kątomierz Jego dokładność wynosiła 1[deg].
- Kulka zawieszona na nitce, reprezentująca wahadło.

# 3. Metodyka doświadczenia

Wykonanie doświadczenia zaczęliśmy od pomiaru długości okresu drgań wahadła dla małych kątów. Pomiar ten wykonaliśmy ze zwiększoną dokładnością mierząc 7-krotnie 40 okresów, podczas gdy kulka wychylona była o nie więcej niż 3 stopnie. Następnie zbadaliśmy zależność długości okresu drgań od amplitudy. W tym celu wykonaliśmy po jednym pomiarze dla każdego wychylenia w zakresie od 6 do 54 stopni z przeskokiem co 3 stopnie. Amplitudę mierzyliśmy przed rozpoczęciem ruchu kulki oraz po wykonaniu ostatniego okresu, a następnie wyciągaliśmy średnią wartość z tych wyników. W drugiej części ćwiczenia zmierzyliśmy stukrotnie dwa okresy użytego wahadła. Nie zatrzymywaliśmy jednak kulki, tylko za pomocą funkcji stopera wykonywaliśmy kolejne pomiary. W tym przypadku amplituda była mniejsza niż 3 stopnie.

# 4. Analiza danych

Dane doświadczalne zebrane zostały w poniższych tabelach .

**Tab.1.** Tabela zestawia wyniki siedmiu pomiarów. W lewej kolumnie zebrane są wyniki 40-stu okresów dla małych wychyleń. W prawej kolumnie natomiast obliczyliśmy wartość pojedynczego okresu.

| Lp. | $40T_0$ [s] | $T_0$ [s] |
|-----|-------------|-----------|
| 1.  | 51,683      | 1,292     |
| 2.  | 51,543      | 1,289     |
| 3.  | 51,641      | 1,291     |
| 4.  | 51,759      | 1,294     |
| 5.  | 51,661      | 1,292     |
| 6.  | 51,644      | 1,291     |
| 7.  | 51,721      | 1,293     |

Średni okres drgań wahadła dla małego wychylenia wynosi  $\overline{T_0}=1,\!292$  [s].

**Tab.2.** W tabeli w kolejnych kolumnach zestawiono początkową amplitudę wychylenia  $\theta_0$ , końcową amplitudę  $\theta_k$  jak i średnią z nich  $\overline{\theta}$ . Następnie podane są wartości okresu dla 30-stu drgań w zależności od danego kąta oraz obliczona na jego podstawie średnia wartość okresu. W ostatnich dwóch kolumnach otrzymane wartości podstawiliśmy do prawej i lewej strony równania (4).

|     | 1                  | 1                | 1                      |                  | 1                      | I                        |                 |              |                     |                                                  |
|-----|--------------------|------------------|------------------------|------------------|------------------------|--------------------------|-----------------|--------------|---------------------|--------------------------------------------------|
| Lp. | θ <sub>0</sub> [°] | $\theta_0$ [rad] | $	heta_k[ m ^{\circ}]$ | $\theta_k$ [rad] | $\overline{	heta}$ [°] | $\overline{	heta}$ [rad] | 30 <i>T</i> [s] | <i>T</i> [s] | $\frac{T-T_0}{T_0}$ | $\frac{1}{16}\theta^2 + \frac{11}{3072}\theta^4$ |
| 1.  | 6                  | 0,105            | 5                      | 0,087            | 5,5                    | 0,096                    | 38,797          | 1,293        | 0,0012535           | 0,0005762                                        |
| 2.  | 9                  | 0,157            | 8                      | 0,140            | 8,5                    | 0,148                    | 38,827          | 1,294        | 0,0020277           | 0,0013773                                        |
| 3.  | 12                 | 0,209            | 10                     | 0,175            | 11,0                   | 0,192                    | 38,856          | 1,295        | 0,0027761           | 0,0023085                                        |
| 4.  | 15                 | 0,262            | 13                     | 0,227            | 14,0                   | 0,244                    | 38,941          | 1,298        | 0,0049698           | 0,0037443                                        |
| 5.  | 18                 | 0,314            | 16                     | 0,279            | 17,0                   | 0,297                    | 38,975          | 1,299        | 0,0058472           | 0,0055299                                        |
| 6.  | 21                 | 0,367            | 19                     | 0,332            | 20,0                   | 0,349                    | 39,054          | 1,302        | 0,0078860           | 0,0076686                                        |
| 7.  | 24                 | 0,419            | 21                     | 0,367            | 22,5                   | 0,393                    | 39,118          | 1,304        | 0,0095377           | 0,0097234                                        |
| 8.  | 27                 | 0,471            | 24                     | 0,419            | 25,5                   | 0,445                    | 39,305          | 1,310        | 0,0143637           | 0,0125203                                        |
| 9.  | 30                 | 0,524            | 28                     | 0,489            | 29,0                   | 0,506                    | 39,472          | 1,316        | 0,0186736           | 0,0162465                                        |
| 10. | 33                 | 0,576            | 30                     | 0,524            | 31,5                   | 0,550                    | 39,576          | 1,319        | 0,0213575           | 0,0192182                                        |
| 11. | 36                 | 0,628            | 33                     | 0,576            | 34,5                   | 0,602                    | 39,625          | 1,321        | 0,0226221           | 0,0231314                                        |
| 12. | 39                 | 0,681            | 35                     | 0,611            | 37,0                   | 0,646                    | 39,856          | 1,329        | 0,0285836           | 0,0266865                                        |
| 13. | 42                 | 0,733            | 38                     | 0,663            | 40,0                   | 0,698                    | 39,923          | 1,331        | 0,0303128           | 0,0313123                                        |
| 14. | 45                 | 0,785            | 40                     | 0,698            | 42,5                   | 0,742                    | 40,242          | 1,341        | 0,0385453           | 0,0354725                                        |
| 15. | 48                 | 0,838            | 44                     | 0,768            | 46,0                   | 0,803                    | 40,463          | 1,349        | 0,0442488           | 0,0417733                                        |
| 16. | 51                 | 0,890            | 46                     | 0,803            | 48,5                   | 0,846                    | 40,759          | 1,359        | 0,0518878           | 0,0466220                                        |
| 17. | 54                 | 0,942            | 49                     | 0,855            | 51,5                   | 0,899                    | 40,839          | 1,361        | 0,0539524           | 0,0528324                                        |

Następnie wyznaczamy niepewność kąta  $\overline{\theta}$  za pomocą standardowej niepewności typu A, w tym celu korzystamy z wbudowanej funkcji "ODCH.STANDARD.PRÓBKI()" w programie Excel i dzielimy przez pierwiastek z liczby pomiarów. Otrzymujemy w ten sposób niepewność równą

$$u_A(\bar{\theta}) = 0.062 \text{ [rad]}.$$

Analogicznie postępujemy w przypadku obliczania niepewności  $\frac{T-T_0}{T_0}$  . Wynosi ona

$$u_A\left(\frac{T-T_0}{T_0}\right) = 0.0043$$

.



**Rys.1.** Wykres przedstawiający zależność błędu względnego okresu od średniej amplitudy. Wyniki oznaczone kolorem pomarańczowym są wynikami wynikającymi z rozwinięcia równania na okres z dokładnością do trzeciego składnika. Niebieskim natomiast oznaczone zostały wyniki otrzymane z przeprowadzonego doświadczenia.

Znaczna większość wyników otrzymanych doświadczalnie pokrywa się z wynikami teoretycznymi w granicach niepewności. Po zastosowaniu niepewności rozszerzonej są to wszystkie wyniki.

W drugiej części doświadczenia otrzymaliśmy wyniki dla stu pomiarów okresu wahadła dla małego wychylenia. Zostały one zestawione w poniżej tabeli

**Tab.3.** W tabeli w kolumnach przedstawiono naprzemiennie zmierzoną wartość 2T i wartość obliczoną dla pojedynczego okresu.

| Lp. | 2 <i>T</i> | Τ      | Lp. | 2 <i>T</i> | T      | Lp. | 2 <i>T</i> | Τ      | Lp.  | 2 <i>T</i> | Τ      |
|-----|------------|--------|-----|------------|--------|-----|------------|--------|------|------------|--------|
| 1.  | 2,732      | 1,366  | 26. | 2,632      | 1,316  | 51. | 2,601      | 1,3005 | 76.  | 2,422      | 1,211  |
| 2.  | 2,700      | 1,35   | 27. | 2,526      | 1,263  | 52. | 2,694      | 1,347  | 77.  | 2,756      | 1,378  |
| 3.  | 2,247      | 1,1235 | 28. | 2,481      | 1,2405 | 53. | 3,657      | 1,8285 | 78.  | 2,335      | 1,1675 |
| 4.  | 2,446      | 1,223  | 29. | 2,693      | 1,3465 | 54. | 2,528      | 1,264  | 79.  | 2,549      | 1,2745 |
| 5.  | 2,626      | 1,313  | 30. | 2,606      | 1,303  | 55. | 2,659      | 1,3295 | 80.  | 2,741      | 1,3705 |
| 6.  | 2,493      | 1,2465 | 31. | 2,609      | 1,3045 | 56. | 2,653      | 1,3265 | 81.  | 2,479      | 1,2395 |
| 7.  | 2,576      | 1,288  | 32. | 2,476      | 1,238  | 57. | 2,703      | 1,3515 | 82.  | 2,697      | 1,3485 |
| 8.  | 2,743      | 1,3715 | 33. | 2,663      | 1,3315 | 58. | 2,540      | 1,27   | 83.  | 2,451      | 1,2255 |
| 9.  | 2,458      | 1,229  | 34. | 2,619      | 1,3095 | 59. | 2,558      | 1,279  | 84.  | 2,621      | 1,3106 |
| 10. | 2,493      | 1,2465 | 35. | 2,509      | 1,2545 | 60. | 2,605      | 1,3025 | 85.  | 2,534      | 1,267  |
| 11. | 2,534      | 1,267  | 36. | 2,408      | 1,204  | 61. | 2,484      | 1,242  | 86.  | 2,585      | 1,2925 |
| 12. | 2,772      | 1,386  | 37. | 2,606      | 1,303  | 62. | 2,567      | 1,2835 | 87.  | 2,588      | 1,294  |
| 13. | 2,391      | 1,1955 | 38. | 2,347      | 1,1735 | 63. | 2,672      | 1,336  | 88.  | 2,549      | 1,2745 |
| 14. | 2,581      | 1,2905 | 39. | 2,989      | 1,4945 | 64. | 2,502      | 1,251  | 89.  | 2,774      | 1,387  |
| 15. | 3,715      | 1,8575 | 40. | 2,564      | 1,282  | 65. | 2,646      | 1,323  | 90.  | 2,578      | 1,289  |
| 16. | 2,754      | 1,377  | 41. | 2,563      | 1,2815 | 66. | 2,600      | 1,3    | 91.  | 2,481      | 1,2405 |
| 17. | 2,606      | 1,303  | 42. | 2,710      | 1,355  | 67. | 2,704      | 1,352  | 92.  | 2,621      | 1,3105 |
| 18. | 2,524      | 1,262  | 43. | 2,499      | 1,2495 | 68. | 2,597      | 1,2985 | 93.  | 2,511      | 1,2555 |
| 19. | 2,637      | 1,3185 | 44. | 2,552      | 1,276  | 69. | 2,455      | 1,2275 | 94.  | 2,431      | 1,2155 |
| 20. | 2,590      | 1,295  | 45. | 2,758      | 1,379  | 70. | 2,612      | 1,306  | 95.  | 2,746      | 1,373  |
| 21. | 2,491      | 1,2455 | 46. | 3,579      | 1,7895 | 71. | 2,515      | 1,2575 | 96.  | 2,495      | 1,2475 |
| 22. | 2,600      | 1,3    | 47. | 2,677      | 1,3385 | 72. | 2,602      | 1,301  | 97.  | 2,712      | 1,356  |
| 23. | 2,576      | 1,288  | 48. | 2,548      | 1,274  | 73. | 2,644      | 1,322  | 98.  | 2,640      | 1,32   |
| 24. | 2,574      | 1,287  | 49. | 2,574      | 1,287  | 74. | 2,704      | 1,352  | 99.  | 2,613      | 1,3065 |
| 25. | 2,727      | 1,3635 | 50. | 2,721      | 1,3605 | 75. | 2,308      | 1,154  | 100. | 2,592      | 1,296  |

Na ich podstawie sporządzono histogram wraz z rozkładem normalnym. Przedstawione zostały one na **rys. 2.**.



**Rys.2.** Wykres przedstawiający histogram (niebieskie kolumny) wyników pomiaru stu okresów. Krzywa oznaczona kolorem pomarańczowym Jest rozkładem normalnym dla danych zawartych w histogramie.

### 5. Podsumowanie

W wyniku pomiaru okresów dla różnych wartości wychylenia i następnym porównaniu wartości wynikowych wraz ze wzorem z poprawką zawierającą rozwinięcie funkcji w szereg potęgowy otrzymujemy zgodność wyników z dokładnością do niepewności. Wartości obu funkcji, jednej zawierającej poprawkę o dwa kolejne składniki rozwinięcia i drugiej reprezentującej błąd względny rosną wraz ze zwiększaniem amplitudy wychylenia. Świadczy to o słuszności wyprowadzonego wzoru i jednocześnie poucza przed stosowaniem uproszczonej formuły na okres w przypadku kątów większych jak 3 [deg]. Na sam koniec przeprowadzono sto pomiarów i w konsekwencji centralnego twierdzenia granicznego średnie pomiary owego okresu ułożyły się na kształt krzywej Gaussowskiej (dzwonowej).