CLAIMS

1	1. A method for etching oxide on a semiconductor substrate,		
2	comprising exposing the oxide on the substrate to hydrofluoric acid vapor and		
3	water vapor in a process chamber held at temperature and pressure		
4	conditions that are controlled to form on the substrate no more than a sub-		
5	monolayer of etch reactants and products produced by the vapor as the oxide		
6	is etched by the vapor.		

- 2. The method of claim 1 wherein the semiconductor substrate comprises a silicon wafer and the oxide comprises silicon dioxide.
- 3. The method of claim 1 wherein the temperature and pressure conditions are controlled to etch the oxide on the substrate at a rate of no more than about 100 Å/minute.
- 4. A method for cleaning a contaminant on a semiconductor substrate, comprising exposing the contaminant on the substrate to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a sub-monolayer of reactants and products produced by the vapor as the contaminant is removed by the vapor.
- 5. A method for removing etch residue from a metal structure on a semiconductor substrate, comprising exposing the residue to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than

a sub-monolayer of reactants and products produced by the vapor as the residue is removed by the vapor.

- 6. A method for cleaning a metal contact region of a semiconductor substrate, comprising exposing the metal contact region to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a sub-monolayer of reactants and products produced by the vapor as the residue is removed by the vapor.
- 7. A method for etching oxide on a semiconductor substrate, comprising the steps of:

exposing the oxide on the substrate to a stream of frozen particles; and exposing the oxide on the substrate to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a multilayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.

8. A method for cleaning a contaminant on a semiconductor substrate, comprising the steps of:

exposing the contaminant on the substrate to a stream of frozen particles; and

exposing the contaminant on the substrate to hydrofluoric acid vapor and water vapor in a process chamber held at temperature and pressure conditions that are controlled to form on the substrate no more than a multilayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.

	9.	The method of either of claims 7 or 8 wherein the process
	chamber ten	nperature and pressure conditions are controlled to from on the
	substrate no	more than a saturated monolayer of etch reactants and products
	produced by	the vapor as the oxide is etched by the vapor.
04		
M	10.	The method of either of claims 7 or 8 wherein the process
, (chamber ten	nperature and pressure conditions are controlled to from on the
		more than a sub-monolayer of etch reactants and products
	produced by	the vapor as the oxide is etched by the vapor.

- 11. The method of either of claims 7 or 8 wherein the stream of frozen particles comprises a stream of frozen CO₂ particles.
- 12. A method for etching oxide on a semiconductor substrate, comprising the steps of:

producing a positive electrical charge on the oxide; and
exposing the oxide on the substrate to hydrofluoric acid vapor and
water vapor in a process chamber held at temperature and pressure
conditions that are controlled to form on the substrate no more than a
saturated monolayer of etch reactants and products produced by the vapor as
the oxide is etched by the vapor.

13. A method for etching oxide on a semiconductor substrate, comprising the steps of:

producing a <u>positive electrical charge on</u> the oxide; and exposing the oxide on the substrate to hydrofluoric acid vapor and methanol vapor in a process chamber held at temperature and pressure

2.

6	conditions that are controlled to form on the substrate no more than a	
7	saturated monolayer of etch reactants and products produced by the vapor a	
8	the oxide is etched by the vapor.	
1	14. A method for etching oxide on a semiconductor substrate,	

14. A method for etching oxide on a semiconductor substrate, comprising the steps of:

producing a positive electrical charge on the oxide; and
exposing the oxide on the substrate to hydrofluoric acid vapor and
isopropyl alcohol vapor in a process chamber held at temperature and
pressure conditions that are controlled to form on the substrate no more than
a saturated monolayer of etch reactants and products produced by the vapor
as the oxide is etched by the vapor.

- The method of any of claims 12, 13, or 14 wherein the process chamber temperature and pressure conditions are controlled to from on the substrate no more than a sub-monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.
- 16. The method of any of claims 12, 13, or 14 wherein the positive electrical charge is produced on the oxide by exposure of the oxide to an electron beam.
- 17. The method of any of claims 12, 13, or 14 wherein the positive electrical charge is produced on the oxide by exposure of the oxide to ultraviolet light through a metallic screen.
- 18. The method of any of claims 12, 13, or 14 wherein the positive electrical charge is produced on the oxide by exposure of the oxide to a

3	plasma environment wherein the substrate is biased by a negative-polarity		
4	DC voltage.		
1	19. A method for etching oxide on a semiconductor substrate,		
2	comprising the steps of:		
3	producing a negative electrical charge on the oxide; and		
4	exposing the oxide on the substrate to hydrofluoric acid vapor and		
5	water vapor in a process chamber held at temperature and pressure		
6	conditions that are controlled to form on the substrate no more than a		
7	multilayer of etch reactants and products produced by the vapor as the oxide		
8	is etched by the vapor.		
1	20. The method of claim 19 wherein the negative electrical charge is		
2	produced on the oxide by exposure of the oxide to a plasma environment		
3	wherein the wherein the substrate is biased by a RF voltage.		
1	21. The method of claim 19 wherein the negative electrical charge is		
2	produced on the oxide by exposure of the oxide to a plasma environment		
3	wherein the substrate is biased by a positive-polarity DC voltage.		
1	22. A method for etching oxide on a semiconductor substrate,		
2	comprising the steps of:		
3	releasing electrical charge from the oxide by exposing the oxide on the		
4	substrate to a stream of frozen particles, the substrate temperature		
5	remaining uncontrolled during the exposure; and		
6	exposing the oxide on the substrate to hydrofluoric acid vapor and		
7	water vapor in a process chamber held at temperature and pressure		

conditions that are controlled to form on the substrate no more than a

2

3

- 9 multilayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.
 - 23. The method of claim 22 wherein the process chamber temperature and pressure conditions are controlled to from on the substrate no more than a saturated monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.
 - 24. The method of claim 20 wherein the process chamber temperature and pressure conditions are controlled to from on the substrate no more than a sub-monolayer of etch reactants and products produced by the vapor as the oxide is etched by the vapor.