Offline2 Report

1905072 - Mahir Labib Dihan

Running the Code

- 1. Install Packages: pip install -r requirements.txt
- 2. Choosing the desired dataset to run.
 - There are Classes defined for each dataset. So, we need to create object of our desired class.
 - For example, if we want to run dataset 2, just assign Dataset 2 object to dataset variable like below. That's it.

• One thing to make sure that the dataset directory in each Class is set correctly. For example, in my machine dataset2 is in 'dataset2' folder of my working directory.

```
class Dataset2(Dataset):
    def __init__(self):
        super().__init__(
        target_column='income',
        one_hot_columns=['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'native-country'],
        label_columns=[],
        redundant_columns=[],
        learning_rate=1,
        epochs=1000,
        regularization=None,
        top_features=80,
        directory='dataset2',
        scaling_method='standard'
)
```

Dataset1 Evaluation

Scaling	Top Features	Learning Rate	Epochs
standard	20	1	1000

	Accuracy	Sensitivity	Specificity	Precision	F ₁ -score	AUROC	AUPR
LR*	0.8114 ±	0.5623 ±	0.8925 ±	0.6303 ±	0.5941 ±	$0.8575 \pm$	0.6238 ±
	0.0034	0.0180	0.0075	0.0113	0.0088	0.0014	0.0056
Voting	0.815658	0.568116	0.896226	0.640523	0.602151	0.858994	0.625409
ensemble							
Stacking	0.818505	0.602899	0.886792	0.638037	0.61997	0.857312	0.61891
ensemble							

dataset1 Performance Metric	Accuracy	Sensitivity	Specificity	Precision	F1-Score	AUROC	AUPR
LR	0.814235	0.568116	0.89434	0.636364	0.600306	0.858884	0.628012
LR*	0.8114 ± 0.0034	0.5623 ± 0.0180	0.8925 ± 0.0075	0.6303 ± 0.0113	0.5941 ± 0.0088	0.8575 ± 0.0014	0.6238 ± 0.0056
Voting Ensemble	0.815658	0.568116	0.896226	0.640523	0.602151	0.858994	0.625409
Stacking Ensemble	0.818505	0.602899	0.888679	0.638037	0.61997	0.857312	0.61891

Performance Metrics Distribution for 9 Bagging LR Learners

Dataset2 Evaluation

Scaling	Top Features	Learning Rate	Epochs
standard	50	1	1000

	Accuracy	Sensitivity	Specificity	Precision	F_1 -score	AUROC	AUPR
LR*	0.8519 ±	0.5938 ±	0.9318 ±	0.7293 ±	0.6546 ±	0.9031 ±	0.7577 ±
	0.0007	0.0049	0.0011	0.0019	0.0027	0.0002	0.0005
Voting	0.852298	0.593864	0.932261	0.730646	0.655192	0.903403	0.758316
ensemble							
Stacking	0.849226	0.572803	0.934755	0.730922	0.642274	0.902178	0.753568
ensemble							

dataset2 Performance Metric	Accuracy	Sensitivity	Specificity	Precision	F1-Score	AUROC	AUPR
LR	0.852359	0.591004	0.933226	0.732517	0.654195	0.903572	0.75842
LR*	0.8519 ± 0.0007	0.5938 ± 0.0049	0.9318 ± 0.0011	0.7293 ± 0.0019	0.6546 ± 0.0027	0.9031 ± 0.0002	0.7577 ± 0.0005
Voting Ensemble	0.852298	0.593864	0.932261	0.730646	0.655192	0.903403	0.758316
Stacking Ensemble	0.849226	0.572803	0.934755	0.730922	0.642274	0.902178	0.753568

Dataset3 Evaluation

Scaling	Top Features	Learning Rate	Epochs
standard	20	1	1000

	Accuracy	Sensitivity	Specificity	Precision	F ₁ -score	AUROC	AUPR
LR*	0.9951 ±	0.8177 ±	0.9990 ±	0.9494 ±	0.8786 ±	0.9802 ±	0.9024 ±
	0.0002	0.0047	0.0002	0.0121	0.0054	0.0041	0.0042
Voting	0.995357	0.820225	0.999251	0.960526	0.884848	0.981932	0.90616
ensemble							
Stacking	0.994624	0.808989	0.998751	0.935065	0.86747	0.965888	0.863091
ensemble							

dataset3 Performance Metric	Accuracy	Sensitivity	Specificity	Precision	F1-Score	AUROC	AUPR
LR	0.995112	0.820225	0.999001	0.948052	0.879518	0.983967	0.908289
LR*	0.9951 ± 0.0002	0.8177 ± 0.0047	0.9990 ± 0.0002	0.9494 ± 0.0121	0.8786 ± 0.0054	0.9802 ± 0.0041	0.9024 ± 0.0042
Voting Ensemble	0.995357	0.820225	0.999251	0.960526	0.884848	0.981932	0.90616
Stacking Ensemble	0.994624	0.808989	0.998751	0.935065	0.86747	0.965888	0.863091

Observation

For all the datasets we can see that Sensitivity is lowest. One solution for that I observed is to decrease the threshold of logistic regression. In Logistic regression we classify based on the output of sigmoid function. If the value ≥ 0.5 , then it is in Class 1, otherwise Class 0. If we decrease it to be less than 0.5 like 0.32 then Sensitivity increases. But this increases the false positive rate and decreases precision.

Dataset 1: Threshold 0.5 vs 0.32

Dataset 2: Threshold 0.5 vs 0.28

Dataset 3: Threshold 0.5 vs 0.2

dataset3 Performance Metric	Accuracy	Sensitivity	Specificity	Precision	F1-Score	AUROC	AUPR
LR	0.995357	0.865169	0.998251	0.916667	0.890173	0.983967	0.908289
LR*	0.9950 ± 0.0004	0.8539 ± 0.0130	0.9981 ± 0.0005	0.9102 ± 0.0196	0.8809 ± 0.0082	0.9802 ± 0.0041	0.9024 ± 0.0042
Voting Ensemble	0.995601	0.865169	0.998501	0.927711	0.895349	0.981932	0.90616
Stacking Ensemble	0.994379	0.853933	0.997502	0.883721	0.868571	0.967305	0.860423

