MTH204: ODEs/PDEs Semester: Winter 2024

Section:

Problem 1. Solve the ODE

$$x^2y'' - 3xy' + 10y = 0.$$

Problem 2. Solve the ODE

$$x^2y'' + xy' + 9y = 0$$
, given that $y(1) = 0$, $y'(1) = 2.5$

Problem 3. Find the solution of

(a)
$$y'' + y' + \left(\pi^2 + \frac{1}{4}\right)y = e^{-x/2}\sin \pi x$$
.

(b)
$$8y'' - 6y' + y = 6\cosh x$$
, given that $y(0) = 0.2$, $y'(0) = 0.05$.

Problem 4. Find the transient motion of the mass-spring system modeled by the ODE

$$y'' + y = \cos \omega t, \quad \omega^2 \neq 1$$

Problem 5. Find the motion of the mass-spring system modeled by the ODE and the initial conditions

$$y'' + 5y = \cos \pi t - \sin \pi t$$
, $y(0) = 0$, $y'(0) = 0$

Problem 6. Model the RC circuit of the figure below.

- (a) Find the current due to a constant E.
- (b) Find the current when $E = E_0 \sin \omega t$ and, E_0 and ω are arbitrary.