

Who are our stakeholders?

• In the context of the problem presented, our stakeholders would be doctors healthcare professionals and medical insurance companies. The analysis can be used by the stakeholders to provide patients with adequate preventative care and allow insurance companies to provide clients with cover at a lower risk factor.

What Problem are we solving?

• The purpose of this project is to predict the likelihood of a stroke in patients dependent on various factors such as: Smoker status, Age, Gender, Etc.

Features in data

RangeIndex: 5110 entries, 0 to 5109						
Data columns (total 12 columns):						
#	Column	Non-Null Count	Dtype			
0	id	5110 non-null	int64			
1	gender	5110 non-null	object			
2	age	5110 non-null	float64			
3	hypertension	5110 non-null	int64			
4	heart_disease	5110 non-null	int64			
5	ever_married	5110 non-null	object			
6	work_type	5110 non-null	object			
7	Residence_type	5110 non-null	object			
8	avg_glucose_level	5110 non-null	float64			
9	bmi	4909 non-null	float64			
10	smoking_status	5110 non-null	object			
11	stroke	5110 non-null	int64			

Introduction to data

- A stroke occurs when the blood supply to part of the brain is interrupted or reduced,
 preventing brain tissue from getting oxygen and nutrients. Brain cells begin to die in minutes.
 A stroke is a medical emergency, and prompt treatment is crucial. Early action can reduce
 brain damage and other complications.
- According to the World Health Organization (WHO) stroke is the 2nd leading cause of death globally, responsible for approximately 11% of total deaths.
- This dataset is used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status. Each row in the data provides relevant information about the patient.

Visual: 1

- The above depicted graph displays a count of predicted stroke VS individual work type
- As we can see the private sector has the highest counts for stroke and no stroke.

Visual: 2

- Looking at visual 2, we can see a bar plot for age vs stroke(yes or no)
- The graph shows us that individuals who are older are at greater risk of experiencing a stroke.

<u>Strengths and limitations of my model</u>

- The model chosen for production would be a logistic regression model.
- The limitations within the data set would be mainly the class imbalance, seeing as this would be a binary classification problem (0 or 1! / Yes or NO) we had many no stroke predictions and few stroke predictions.
- This could cause Bias towards a no stroke prediction within our model!
- In seeing the class imbalance we've also made use of SMOTE to balance our classes.
- False negatives would mean that we would have patients classified as not being likely to have a stroke when they may be at risk! Thus, I've chosen to reduce the number of false negatives in the model
- False positives would classify patients that are not likely to have a stroke as being at risk!

Train					
	precision	recall	f1-score	support	
9	0.99	0.75	0.85	3645	
1	0.14	0.79	0.24	187	
accuracy			0.75	3832	
macro avg	0.56	0.77	0.54	3832	
weighted avg	0.94	0.75	0.82	3832	
Test					
Test	precision	recall	f1-score	support	
Test	precision	recall	f1-score	support	
Test 0	precision 0.98	recall 0.74	f1-score 0.84	support 1216	
0	0.98	0.74	0.84	1216	
0	0.98	0.74	0.84	1216	
0	0.98	0.74	0.84 0.22	1216 62	
0 1 accuracy	0.98 0.13	0.74 9.77	0.84 0.22 0.74	1216 62 1278	
0 1 accuracy macro avg	0.98 0.13	9.74 9.77 9.76	0.84 0.22 0.74 0.53	1216 62 1278 1278	

Model metrics and evaluation

<u>Final Recommendations</u>

- The logistic regression model was able to predict the probability of stroke with an accuracy of 74%
- The false negative rate for this model is still present and may require patients to be examined manually to pick up any indicators that may have been overlooked by the model.
- Patients that are older should take extra as they may be at greater risk for having a stroke. This may be amplified in patients that suffer from heart disease, high blood pressure, or high blood glucose levels.
- A patients work type may also play a role in indicating whether they are at risk of a stroke or not.