# CENG 384 - Signals and Systems for Computer Engineers Spring 2020

# Written Assignment 2

Özalp, Zeynep e2237691@ceng.metu.edu.tr

Yıldırım, Hilmi Cihan e2237949@ceng.metu.edu.tr

March 9, 2020

#### 1. (a) memory

y[0]=y[-1]+y[-2]+... so we need memory because the output y[5] depends upon the past value of x[-1] so we need memory

#### stability

we have to find bounded inputs give or give not bounded outputs so

it is unstable because if B<sub>i</sub>x[n]<sub>i</sub>B y[n] goes infinity because there is infity sum of B's

## Linearity

Let us apply superposition property to determine linearity

y1[n] = x1[n-1] + x1[n-2] + ...

y2[n] = x2[n-1] + x2[n-2] + ...

now let us consider a third input x3[n] such that it is linear combination of x1[n] and x2[n]

x3[n]=ax1[n]+bx2[n]

therefore ,the output y3[n] is given as

y3[n]=x3[n-1]+x3[n-2]+...

y3[n] = ax1[n-1]+bx2[n-1]+ax1[n-2]+bx2[n-2]...

y3[n] = a(x1[n-1]+x1[n-2]+...)+b(x2[n-1]+x2[n-2]+...)

y3[n] = y1[n] + y2[n]

From the above expressions we conclude system is linear we can easily see that both additivity and homogeneity proporteis hold.

## Invertibilty

A system is invertible if distinct inputs lead distinct outputs

we can easily see that system performs summation of inputs .For different inputs the outputs are different. so system is invertible

## Time -Invariance

To check that this system is time invariant, we must determine whether the timeinvariance property holds for any input and any time shift no Thus, let x1[n-n0] be an arbitrary input to this system, and let y1[n] = x1[n-1] + x1[n-2] + ...

x2[n]=x1[n-n0]

y2[n]=x2[n-1]+x2[n-2]+...=x1[n-n0-1]+x1[n-n0-2]+...

SC

y2[n]=y1[n-n0] therefore the system is time invariant.

# Conculusion

the system is has memory, unstable, linear, invertible and time invariant

## (b) memory

A system is said to be memory less if its output for each value of the independent variable at a given time is dependent only on the input at that same time.

y(1)=y(5) so system **need memory** because is not dependent only on the input at that same time.

## stability

let us consider  $|x(t)| < \infty$ 

|y(t)| = |ty(2t+3)|

 $|y(t)| \le |t||y(2t+3)|$ 

even if  $|x(t)| < \infty$  the magnitude of the output depends upon the variable n, which states that the output is unstable

### Linearity

y1(t) = t x1(2t+3)

$$y2(t) = t x2(2t+3)$$

$$x3(t) = ax1(t) + bx2(t)$$

$$y3(t) = tx3(2t+1)$$

$$y3(t) = atx1(2t+3) + btx2(2t+3) = ay1(t) + by2(t)$$
 so this system is linear

## Invertibilty

A system is invertible if distinct inputs lead distinct outputs

this system is not invertible because for example if x(1)=5 and x(5)=1 then y(1)=1\*5 and y(5)=5\*1 so system give same output for different inputs system is **not invetible**.

## Time -Invariance

To check that this system is time invariant, we must determine whether the time invariance property holds for any input and any time shift no Thus, let x1[n-n0] be an arbitrary input to this system, and let

 $x(t-t0) \rightarrow y(n) = nx(n-n0)$  but y(n-n0) = (n-n0)x(n-n0) tehy are not equal so system is **not time invariant** 

2. (a) 
$$y(t) = \int_{-\infty}^{\infty} (x(\tau) - 5y(\tau)) d\tau$$
  
Differentiate both sides.

$$\frac{dy(t)}{dt} = x(t) - 5y(t)$$

$$\frac{dy(t)}{dt} + 5y(t) = x(t)$$
$$y'(t) + 5y(t) = x(t)$$

$$y'(t) + 5y(t) = x(t)$$

(b) 
$$y'(t) + 5y(t) = e^{-t} + e^{-3t}$$

First, homogenous solution:

$$\lambda + 5 = 0 \Rightarrow \lambda = -5$$

$$y_H(t) = Ke^{-5t}$$

For particular solution, since the system is linear, find particular solution to  $x_1(t) = e^{-t}$  and  $x_2(t) = e^{-3t}$ separately. Then combine.

1) For 
$$x_1(t) = e^{-t}$$
, assume  $y_{P1} = A_1 e^{-t}$   
 $-A_1 e^{-t} + 5A_1 e^{-t} = e^{-t} \Rightarrow A_1 = 1/4$ 

$$-A_1e^{-t} + 5A_1e^{-t} = e^{-t} \Rightarrow A_1 = 1/4$$

$$y_{P1} = (1/4)e^{-}$$

$$y_{G1} = Ke^{-5t} + (1/4)e^{-t}$$

$$y_{P1} - (1/4)e$$
  
 $y_{G1} = Ke^{-5t} + (1/4)e^{-t}$   
2) For  $x_2(t) = e^{-3t}$ , assume  $y_{P2} = A_2e^{-3t}$   
 $-3A_2e^{-3t} + 5A_2e^{-3t} = A_2e^{-3t} \Rightarrow A_2 = 1/2$ 

$$-3A_2e^{-3t} + 5A_2e^{-3t} = A_2e^{-3t} \Rightarrow A_2 = 1/2$$

$$y_{P2} = (1/2)e^{-3t}$$

$$y_{G2} = Ke^{-5t} + (1/2)e^{-3t}$$

So, general solution is  $y(t) = 2Ke^{-5t} + (1/4)e^{-t} + (1/2)e^{-3t}$ 

$$y(0) = 2K + 3/4 = 0 \Rightarrow K = -3/8$$

$$y(t) = -(3/4)e^{-5t} + (1/4)e^{-t} + (1/2)e^{-3t}$$

3. (a) 
$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$\mathbf{x}[\mathbf{n}] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

$$\begin{aligned} \mathbf{x}[\mathbf{n}] &= \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] \\ \text{according to above equations from book} \\ \mathbf{y}[\mathbf{n}] &= \sum_{k=-\infty}^{\infty} x[k] \delta[n-1-k] + 2 \sum_{k=-\infty}^{\infty} x[k] \delta[n+1-k] \end{aligned}$$

$$\mathbf{x}[\mathbf{n}\text{-}1] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-1-k]$$

$$\mathbf{x}[\mathbf{n}+1] = \sum_{k=-\infty}^{\infty} x[k]\delta[n+1-k]$$

$$y[n] = y[n-1] + 2y[n+1]$$

$$\begin{aligned} \mathbf{y}[\mathbf{n}] &= \mathbf{x}[\mathbf{n}\text{-}1] + 2\mathbf{x}[\mathbf{n}\text{+}1] \\ \mathbf{y}[\mathbf{n}] &= 2\delta[n-1] + \delta[n] + 2(2\delta[n+1] + \delta[n+2]) \end{aligned}$$

(b) 
$$\frac{d}{dt}u(t-t0) = \delta(t-t0)$$
 from book therefore

$$\frac{d}{dt}x(t) = \delta(t-1) + \delta(t+1)$$

$$y(t) = (\delta(t-1) + \delta(t+1))h(t)$$

from distribution property of convolution

$$y(t) = \delta(t-1) * h(t) + \delta(t+1) * h(t)$$

from book 
$$x(t)\delta(t-t0) = x(t-t0)$$
 therefore

$$y(t) = h(t-1) + h(t+1)$$



Figure 1: n vs. x[n].

$$y(t) = e^{-t+1}sin(t-1)u(t-1) + e^{-t-1}sin(t+1)u(t+1)$$
  

$$y(t) = 0 \text{ for } t < -1$$
  

$$y(t) = e^{-t-1}sin(t+1)u(t+1) \text{ for } -1 \le t < 1$$
  

$$y(t) = e^{-t+1}sin(t-1)u(t-1) + e^{-t-1}sin(t+1)u(t+1) \text{ for } 1 \le t$$

- 4. (a) The product of  $x(\tau)$  and  $h(t-\tau)$  is non zero for only  $0 < \tau < t$ For  $t \ge 0$ :  $\int_0^t x(\tau)h(t-\tau)d\tau = \int_0^t e^{-\tau}e^{-2t}e^{2\tau}d\tau = e^{-2t}\int_0^t e^{\tau}d\tau = e^{-2t}(e^t-1) = (e^{-t}-e^{-2t})$ For t < 0: y(t)=0Thus,  $y(t) = (e^{-t} - e^{-2t})u(t)$ 
  - (b) The product of  $x(\tau)$  and  $h(t-\tau)$  is nonzero for only  $0 \le \tau \le 1$ . Also, because  $x(\tau) = 1$  for  $0 \le \tau \le 1$ , we do not need to write it in the product.

$$\int_0^1 x(\tau)h(t-\tau)d\tau = y(t) = \int_0^1 e^{3t-3\tau}d\tau = e^{3t} \int_0^1 e^{-3\tau}d\tau = e^{3t} \frac{e^{-3}-1}{-3} = \frac{-e^{3t-3}+e^{3t}}{3}$$
 Thus,

$$y(t) = \begin{cases} \frac{-e^{3t-3} + e^{3t}}{3} & 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$
 (1)

- 5. (a)
  - (b) we assume  $y(t)=Ae^{rt}$

$$y'(t) = Are^{rt}$$

$$y''(t) = Ar^2e^{rt}$$

$$y'''(t) = Ar^3 e^{rt}$$

$$r^3e^{rt} - 3(r^2e^{rt}) + 4(re^{rt}) - 2(e^{rt})$$

 $Ae^{rt}(r^3 - 3r^2 + 4r - 2) = 0$  e<sup>rt</sup>cannot be zero so  $(r^3 - 3r^2 + 4r - 2) = 0$  need to be true

so 
$$r1=1$$

$$r2=1-j$$

$$r3=1+j$$

$$y(t)=c1 e^{t}+e^{t} (c2\sin(t)+c3\cos(t))$$

$$y(0)=c1+c3=3$$

$$y'(t)=c1 e^{t}+e^{t} (c2\sin(t)+c3\cos(t))+e^{t} (c2\cos(t)-c3\sin(t))$$

$$y'(0)=c1+c2+c3=1$$

$$y"(t) = c1 \ e^t + e^t \ (c2\sin(t) + c3\cos(t)) + e^t \ (c2\cos(t) - c3\sin(t)) \ + e^t \ (c2\cos(t) + c3 - \sin(t)) \ + e^t \ (c2 - \sin(t) - c3\cos(t))$$

$$y''(0)=c1+2c2=2$$

$$c1 = 6$$

$$c2=-2$$

$$c3 = -3$$

6. (a)  $w[n] - \frac{1}{2}w[n-1] = x[n]$ 

Take the Fourier Transform of both sides to be in frequency domain.  $W(e^{jw})-\frac{1}{2}e^{-jw}W(e^{jw})=X(e^{jw})$ 

$$W(e^{jw}) - \frac{1}{2}e^{-jw}W(e^{jw}) = X(e^{jw})$$

$$W(e^{jw})(1 - \frac{1}{2}e^{-jw}) = X(e^{jw})$$

$$\begin{split} \frac{W(e^{jw})}{X(e^{jw})} &= H_0(e^{jw}) = \frac{1}{1-\frac{1}{2}e^{-jw}} \\ \text{Now, take the reverse fourier to be in time domain.} \\ h_0[n] &= (\frac{1}{2})^n u[n] \end{split}$$

$$h_0[n] = (\frac{1}{2})^n u[n]$$

- (b)  $h_0[k]h_0[n-k]$  is positive only for  $0 \le k \le n$ .  $h_0[n] * h_0[n] = \Sigma_0^n h_0[k]h_0[n-k] = \Sigma_0^n (\frac{1}{2})^n$  $h[n] = n(\frac{1}{2})^n u[n]$
- (c)  $X(e^{jw})H_0(e^{jw})H_0(e^{jw}) = W(e^{jw})$   $\frac{Y(e^{jw})}{X(e^{jw})} = (H_0(e^{jw}))^2 = \frac{1}{1 e^{-jw} \frac{1}{4}e^{-2jw}}$   $Y(e^{jw}) e^{-jw}Y(e^{jw}) \frac{1}{4}e^{-2jw}Y(e^{jw}) = X(e^{jw})$ Take the inverse fourier to be in time domain.