การทดลองที่ 10

เรื่อง การหาค่าความยาวคลื่นของสเปกตรัมต่อเนื่องของแสงขาว

วัตถุประสงค์

เพื่อศึกษาสเปกตรัมของแหล่งกำเนิดแสงขาวที่มีสเปกตรัมต่อเนื่อง และหาความยาวคลื่นของสเปกตรัม แสงที่เกิดขึ้น

ทฤษฎี

แสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีสีต่างกัน ส่งผลทำให้แสงมีความยาวคลื่นต่างกันด้วย ความยาวคลื่นแสง มีทั้งที่ตามองเห็นและตามองไม่เห็น แสงที่ตามองเห็นความยาวคลื่นจะอยู่ในช่วง 400-700 nm ส่วนแสงที่ตา มองไม่เห็น จะมีทั้งความยาวคลื่นย่านคลื่นวิทยุ อินฟราเรด อัลตราไวโอเลต ขึ้นไปจนถึงย่านรังสีเอ็กซ์

รูปที่ 1.1 สเปกตรัมของคลื่นแม่เหล็กไฟฟ้า

เกรตติงเลี้ยวเบน

เกรตติงเลี้ยวเบน คือ อุปกรณ์ที่มีประโยชน์สำหรับการวิเคราะห์สมบัติของแหล่งกำเนิดแสง ประกอบด้วย สลิตที่ขนานกันและมีระยะห่างเท่ากันจำนวนมาก *เกรตติงส่องผ่าน*สามารถทำได้โดยการขีดให้ เกิดร่องขนานกันบนแผ่นแก้วโดยใช้เครื่องมือที่มีการควบคุมอย่างแม่นยำ ช่องว่างระหว่างร่องจะโปร่งแสงและ เพราะเหตุนี้มันจะประพฤติตัวคล้ายกับสลิตหลายอันที่วางแยกจากกัน เทคโนโลยีปัจจุบันสามารถผลิตเกรตติง ซึ่งมีช่องว่างของสถิตน้อยมากๆ ตัวอย่างเช่น เกรตติงทั่วไปถูกขีดให้มีจำนวนช่องต่อความยาวเป็น 5000 ช่อง/cm มีช่องว่าง d=(1/5000) cm $=2.00\times10^{-4}$ cm

ส่วนของเกรตติงเลี้ยวเบนแสดงไว้ในรูปที่ 1.2 คลื่นระนาบเคลื่อนที่จากด้านซ้ายตกกระทบลงบนเกรต ติงซึ่งตั้งฉากกับระนาบของเกรตติง รูปแบบที่สังเกตได้บนฉากรับภาพที่อยู่ห่างออกไปทางด้านขวาของเกรตติง เป็นผลมาจากการรวมกันของการแทรกสอดและการเลี้ยวเบน สลิตแต่ละอันจะทำให้เกิดการเลี้ยวเบน และ ลำแสงเลี้ยวจะเกิดการแทรกสอดกับลำแสงอื่นเกิดเป็นรูปแบบสุดท้ายขึ้น

คลื่นจากสลิตทั้งหมดทุกอันจะมีเฟสตรงกันเมื่อออกจากสลิต อย่างไรก็ตาม สำหรับทิศทางใดๆ θ ที่วัด เทียบกับแนวระดับ คลื่นจะต้องเดินทางด้วยผลต่างทางเดินแสงที่แตกต่างกันก่อนที่จะไปถึงฉากรับภาพ ให้ สังเกตจะเห็นว่าในรูปที่ 1.2 ผลต่างทางเดินแสง δ ระหว่างรังสีจากสลิตสองอันที่อยู่ติดกันจะเท่ากับ $d\sin\theta$ ถ้าผลต่างทางเดินแสงนี้มีค่าเท่ากับหนึ่งความยาวคลื่นหรือเท่ากับผลคูณของจำนวนเต็มกับความยาวคลื่น จะทำ ให้คลื่นจากสลิตทุกอันมีเฟสตรงกันบนฉากรับภาพและจะสังเกตเห็นริ้วสว่าง ดังนั้น เงื่อนไขสำหรับค่ามากที่สุด ในรูปแบบการแทรกสอดที่มุม θ_{bright} คือ

$$d\sin\theta_{\text{bright}} = m\lambda \qquad m = 0, \pm 1, \pm 2, \pm 3, \dots \tag{1.1}$$

ร**ูปที่ 1.2** มุมมองค้านข้างของเกรตติงเลี้ยวเบน สลิตอยู่ห่างจากกัน d และผลต่างทางเดินแสง ระหว่างสลิตที่อยู่ติดกันคือ $d \sin \theta$

รูปที่ 1.3 ความเข้มแสงกับ $\sin \theta$ สำหรับเกรตติงเลี้ยวเบน ซึ่งแสดงริ้วสว่างลำดับที่ศูนย์ ลำดับที่ หนึ่ง และลำดับที่สอง

เราสามารถใช้การอธิบายนี้เพื่อคำนวณหาความยาวคลื่นแสงได้ถ้าเราทราบระยะห่างของสลิต d และมุม $heta_{
m bright}$ ถ้ารังสีตกกระทบประกอบด้วยความยาวคลื่นหลายค่า ความสว่างลำดับที่ m สำหรับแต่ละความยาวคลื่น จะปรากฏที่มุมเฉพาะค่าหนึ่ง ความยาวคลื่นทั้งหมดจะถูกสังเกตเห็นที่ heta=0 ซึ่งตรงกับความสว่างลำดับที่ศูนย์ m=0 ความสว่างลำดับแรก (m=1) จะถูกสังเกตเห็นได้ที่มุมซึ่งสอดคล้องกับความสัมพันธ์ $\sin heta_{
m bright}=\lambda/d$ ความสว่างลำดับที่สอง (m=2) จะถูกสังเกตเห็นได้ที่มุม $heta_{
m bright}$ ที่มีค่ามากขึ้นและเป็นเช่นนี้ต่อไปเรื่อยๆ สำหรับ ค่า d น้อยๆ ในเกรตติงเลี้ยวเบน มุม $heta_{
m bright}$ จะมีค่ามาก

ในการวัดและคำนวณเพื่อหาค่าของความยาวคลื่นของแสงนั้น เครื่องมือที่สำคัญในการใช้แยกความยาว คลื่นของแสงออกจากกันคือ เกรติงเลี้ยวเบน (diffraction grating) โดยมีสมการที่ใช้ช่วยในการคำนวณ คือ

$$\lambda = \frac{\mathrm{d}\ell}{\sqrt{\mathrm{s}^2 + \ell^2}} \tag{1.2}$$

เมื่อ λ คือ ความยาวคลื่นของแสง

d คือ ความกว้างของเกรตติง

 ℓ คือ ระยะทางจากตรงกลางของแหล่งกำเนิด (ตรงกลางของสเปกตรัม) ถึงสีของสเปกตรัมที่ ต้องการหาความยาวคลื่น

s คือ ระยะทางจากเกรตติงถึงแหล่งกำเนิดแสง

รูปที่ 1.4 การหาค่าความยาวคลื่นของแสง

รูปที่ 1.5 ชุดทดลองการหาความยาวคลื่นของสเปกตรัมต่อเนื่องของแสงขาว

อุปกรณ์

1.	รางอลูมิเนียมยาว 1 m	1	อัน
2.	แหล่งกำเนิดแสงขาว	1	หลอด
3.	ไม้บรรทัดสำหรับวัดระยะ	1	แพ่ง
4.	เกรตติง (500 lines/mm)	1	อัน
5.	Grating Holder	1	อัน
6.	ตลับเมตร	1	อัน
7.	แหล่งจ่ายไฟ 12 V DC	1	เครื่อง

วิธีทำการทดลอง

1. จัดตำแหน่งของอุปกรณ์ดังรูปที่ 1.6

รูปที่ 1.6 การจัดอุปกรณ์การทดลองการหาความยาวคลื่นของสเปกตรัมต่อเนื่องของแสงขาว

- 2. เปิดสวิตซ์ของแหล่งกำเนิดแสง
- เอาตามองผ่านเกรตติงไปยังแหล่งกำเนิดแสง สังเกตสเปกตรัมที่เกิดขึ้น
- 4. ในขณะที่ตามองผ่านเกรตติง ไปยังสเปกตรัมของแสง ให้บันทึกระยะห่างของแต่ละสีถึงจุดกึ่งกลางของ แหล่งกำเนิด (ใช้หนังยางสีดำที่ให้มาเป็นตัวกำหนดตำแหน่งของแต่ละสี)

รูปที่ 1.7 ตำแหน่งการวัดระยะในการทดลองการหาความยาวคลื่นของสเปกตรัมต่อเนื่องของแสงขาว

- 5. วัดระยะจากเกรคติงถึงแหล่งกำเนิดแสง (s)
- 6. บันทึกผลลงในตาราง คำนวณหาความยาวคลื่นแสง โดยใช้สมการที่ 1.2
- 7. เปลี่ยนค่าระยะจากเกรดติงถึงแหล่งกำเนิดแสง (s) ตามตารางบันทึกผล บันทึกผลลงในตาราง

บันทึกผลการทดลองที่ 10 การหาค่าความยาวคลื่นของสเปกตรัมต่อเนื่องของแสงขาว

ความกว้างของเกรตติง d=1/5000 lines/cm ระยะจากเกรดติงถึงแหล่งกำเนิดแสง (s) = $20~{\rm cm}$

สีของ	ขวา	ซ้าย	เฉลี่ย	λ ทดลอง	λ ทฤษฎี	เปอร์เซ็นต์	
สเปกตรัม	(cm)	(cm)	(cm)	(nm)	(nm)	ความ	
						ผิดพลาด	
Violet	4.35	4.40	4.375	427.394	400	6.8485	
Blue	4.73	4.73	4.730	460.302	450	2.2893	
Cyan	5.15	5.13	5.140	497.823	500	0.4354	
Green	5.68	5.65	5.665	545.057	550	0.8987	
Yellow	6.18	6.05	6.115	584.777	580	0.8236	
Orange	6.48	6.25	6.365	606.525	600	1.0875	
Red	7.03	6.80	6.915	653.539	650	0.5445	

20 CM

30 CM

40 CM

สีของ	ขวา	ซ้าย	เฉลี่ย	λ ทดลอง	λ ทฤษฎี	เปอร์เซ็นต์	
สเปกตรัม	(cm)	(cm)	(cm)	(nm)	(nm)	ความ	
						ผิดพลาด	
Violet	6.50	6.48	6.490	422.884	400	5.7210	
Blue	7.00	7.00	7.000	454.459	450	0.9909	
Cyan	7.65	7.63	7.640	493.579	500	1.2892	
Green	8.53	8.40	8.465	543.126	550	1.2498	
Yellow	9.23	9.03	9.130	582.298	580	0.3962	
Orange	9.48	9.25	9.365	595.970	600	0.6717	
Red	10.38	10.08	10.230	645.502	650	0.6920	

ระยะจากเกรคติงถึงแหล่งกำเนิดแสง (s) = 40 cm

สีของ	ขวา	ซ้าย	เฉลี่ย	λ ทดลอง	λ ทฤษฎี	เปอร์เซ็นต์
สเปกตรัม	(cm)	(cm)	(cm)	(nm)	(nm)	ความ
						ผิดพลาด
Violet	8.85	8.70	8.775	428.559	400	7.1348
Blue	9.60	9.40	9.500	462.145	450	2.6989
Cyan	10.30	10.20	10.250	496.459	500	0.70\$2
Green	11.00	11.40	11.20	539.260	550	1.9528
Yellow	12.40	11.95	12.175	582.371	580	0.4088
Orange	12.70	12.25	12.475	595.462	600	0.7563
Red	13.75	13.35	13.550	641.683	650	1.2795

วิธีการคำนวณ

สรุปและวิจารณ์ผลการทดลอง