

ン

Speed of last driver = Broduct of dramaters of drivers Speed of First driver Product of dramaters of drawers

Bett slippage priva

Si -> Slip of belt over driver Ni -> rpm/speed of driver in rpm

let 52 - slip of bet bett over driven

$$\frac{\int I dN_2}{60} = V - \left(\frac{V. S_2}{100.}\right) = V \left(1 - \frac{S_2}{100}\right)$$

$$\frac{\text{FidN2}}{60} = \overline{\text{FidNI}} \left(1 - \frac{51}{100} \right) \left(1 - \frac{52}{100} \right)$$

$$\frac{N_2}{N_1} = \frac{dy}{dz} \left(1 - \frac{\delta_1 + \delta_2}{100} \right)$$

$$\frac{N_2}{N_1} = \frac{d_1 + t}{d_2 + t} \left(\frac{1 - \left(\frac{S_1 + S_2}{100} \right)}{100} \right) \quad \text{if 't' is considered}$$

Length of bett = $\gamma_1 \left(\pi + 2\alpha \right) + \hat{\gamma}_2 \left(\pi - 2\alpha \right) + \xi + \alpha \sigma$ $= \pi \left(\gamma_1 + \gamma_2 \right) + \partial_{\alpha} \left(\gamma_1 - \gamma_2 \right) + \partial_{\alpha} - \left(\underline{\gamma}_1 - \gamma_2 \right)^2$ $= \pi \left(\gamma_1 + \gamma_2 \right) + 2 \left(\underline{\gamma}_1 - \gamma_2 \right)^2 + 2\alpha - \left(\underline{\gamma}_1 - \gamma_2 \right)^2$ $= \pi \left(\gamma_1 + \gamma_2 \right) + \left(\underline{\gamma}_1 - \gamma_2 \right)^2 + 2\alpha$ $= \pi \left(\gamma_1 + \gamma_2 \right) + \left(\underline{\gamma}_1 - \gamma_2 \right)^2 + 2\alpha$

ANALYSUS OF BELT TENSIONS : FLAT BELTS

$$\int_{0}^{\beta} \frac{d\rho}{(\rho - mv^{2})} = \int_{0}^{\alpha} \frac{d\rho}{d\rho}$$

$$\int_{0}^{\beta} \frac{d\rho}{(\rho - mv^{2})} \int_{0}^{\beta} \frac{d\rho}{\rho} = \int_{0}^{\alpha} \frac{d\rho}{\rho}$$

$$\int_{0}^{\beta} \frac{d\rho}{(\rho - mv^{2})} \int_{0}^{\beta} \frac{d\rho}{\rho} = \int_{0}^{\alpha} \frac{d\rho}{\rho}$$

$$\int_{0}^{\beta} \frac{d\rho}{(\rho - mv^{2})} \int_{0}^{\beta} \frac{d\rho}{\rho} = \int_{0}^{\alpha} \frac{d\rho}{\rho} = \int_{0}^{\alpha}$$

ANALYSIS OF BELT TENSIONS: 'V' BELTS

> Hargantal equilinum,

7 Vertical eglors

WASH + ANsma = bag

$$mv^2d\phi + dNsm_2^2 = Pd\phi \Rightarrow (P - mv^2)d\phi = dP sm_2^2$$

$$dP = fd\phi$$

(h. (p-mv2)) Ps = f (x) $lu\left(\frac{P_t-mv^2}{P_s-mv^2}\right) = \frac{f \, x}{8u \, y_2}$ Pt-WAS = 6 (tomoto) of - The equations (5) and (3) show that for (v' belts, the effective friction coefficient = f Due to this increased frictional force, the slip in V-belt is much less compared to flat, belts

- The effect of best speed is to reduce the net tension in the best types the best speed, lower the effective tension in the best.

Condution for maximum power to be transmitted Poury transmitted, Let (Pt-mv2) = Pn and (Ps-mv2) = Pc -> P) Theupere, Q = (Ph-PE) V. But $k = \frac{P_h}{P_0} = e^{fk} \Rightarrow P_k = |P_k/k|$ $\therefore Q = (P_h - P_k) V = (P_h - P_W/k) V = P_h \left(\frac{k-1}{k}\right) V$ $Q = (Pt - mv^2) \begin{bmatrix} k - 1 \end{bmatrix} v \quad [Using 6]$ To find belt velocity at which transmitted power is maximum, dq = (k-1) (Pt-mv2) + 4 (-2mv) = $\frac{dQ}{dv} = \frac{k-1}{v} \left[P_t - 3mv^2 \right]$ for maximum gover to be transmitted da = 0 = Vopt = Pt