BIOESTATÍSTICA

Análise de regressão

Análise de correlação

 Existe uma associação estatística entre duas variáveis? As duas variáveis são independentes (ou seja, qual o grau da variação das duas juntas)?

Correlação positiva: Educação e salário.

Correlação negativa: festa com notas dos alunos.

Sem correlação: notas dos alunos e número de irmãos.

Teste de correlação.

 O coeficiente de correlação de Pearson, r, é calculado pela fórmula:

$$r = \frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{(\sum X^2 - \frac{(\sum X)^2}{N}) - (\sum Y^2 - \frac{(\sum Y)^2}{N})}}$$

- Os valores do coeficiente de correlação sempre variarão de -1 a +1.0s maiores valores (se negativo ou positivo) implicam em maior grau de correlação.
- Os teste de correlção são realizados pelo SAS através do Proc Corr.

Valores de r e os gráficos respectivos

O PROC CORR DO SAS

```
DATA SOLO:
INPUT PONTO PH MO P CA;
 15.039927
 25.140723
 3 4.7 37 8 24
 4 5.9 45 10 31
 5 4.9 38 7 22
 6 4.5 35 11 33
 7 6.0 46 9 28
 8 6.2 48 10 29
 9 5.2 40 6 18
10 4.0 31 7 20
ODS PDF FILE='C:\Arquivos2012\Bioestatistica2012\SOLO.PDF';
TITLE2'*** Análise de correlação entre variáveis do solo ***';
TITLE4'*** Experimento na Fazenda Cerradinho - Catanduva - SP ***';
PROC CORR DATA=SOLO:
VAR PH MO P CA;
RUN:
ODS PDF CLOSE:
```

RESULTADO DA ANÁLISE DE CORRELAÇÃO

The SAS System

*** Análise de correlação das propriedades do solo ***

*** Experimento na Fazenda Cerradinho - Catanduva - SP ***

The CORR Procedure

4 Variables:	PH	MO	P	CA
--------------	----	----	---	----

	Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum		
PH	10	5.14347	0.71111	51.43474	3.98277	6.20259		
MO	10	39.84571	5.29896	398.45707	31.06792	47.71510		
P	10	8.28539	1.55779	82.85389	5.85324	10.55488		
CA	10	25.39057	4.73955	253.90574	18.25328	32.50041		

Pears	Pearson Correlation Coefficients, N = 10						
	Prob > r	under H	0: Rho=0				
	PH	MO	P	CA			
PH	1.00000	0.99918	0.43796	0.44121			
		<.0001	0.2055	0.2018			
MO	0.99918	1.00000	0.42892	0.43180			
	<.0001		0.2161	0.2127			
P	0.43796	0.42892	1.00000	0.99835			
	0.2055	0.2161		<.0001			
CA	0.44121	0.43180	0.99835	1.00000			
	0.2018	0.2127	<.0001				

Análise de regressão: estudo da relação linear entre duas ou mais variáveis.

A mais usada das técnicas estatísticas para análise de dados.

Também chamada de Análise de Regressão Linear

Teste de hipótese e predição

Por quê usar regressão?

- Uma variável ou conjunto de variáveis independentes ou preditoras possuem um efeito causal sobre a variável dependente ou resposta (exemplo: será que a temperatura influencia na germinação das sementes)?
- As suposições sobre a normalidade de Y, independência das observações e normalidade dos erros são cruciais.

Regressão Linear Simples

$$y = b_0 + b_1 x$$

O modelo de regressão linear

Fórmula para a linha reta

$$y = b_0 + b_1 x + e$$

Procuramos estimar esses valores

O método dos quadrados mínimos.

- O Método dos
 Quadrados Mínimos
 Ordinários (OLS)
 encontra o modelo
 linear que minimiza a
 soma do quadrado
 dos erros.
- Este modelo apresenta a melhor explicação/predição dos dados.

SQNC =
$$\sum_{i} (\widehat{Y}_{i} - Y_{i})^{2}$$

= $\sum_{i} e_{i}^{2}$

Fórmulas para calcular os valores dos parâmetros pelo MQMO.

$$\widehat{b}_{1} = \frac{n\sum X_{i}Y_{i} - \sum X_{i}\sum Y_{i}}{n\sum X_{i}^{2} - (\sum X_{i})^{2}}$$

$$= \frac{\sum (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum (X_{i} - \overline{X})^{2}}$$

$$\widehat{a} = \overline{Y} - \widehat{b}_{1}\overline{X}$$

Testes de inferência

- Teste t para os coeficientes.
- Teste F para o modelo.

Medidas de ajustamento do modelo

- o O Coeficiente de Correlação.
- O R² (Coeficiente de determinação).

$$R^{2} = \left(1 - \frac{\text{SQResíduo}}{\text{SQTotal}}\right) \times 100$$

Programa SAS para análise de regressão simples

```
DATA A;
INPUT DAP BIOMASSA;
DATALINES;
12 34
14 45
23 89
56 138
87 379
;
PROC REG DATA = A;
MODEL BIOMASSA = DAP;
RUN;
```

Outros modelos

```
DATA A;
 INPUT DAP BIOMASSA;
 LBIOMA=LOG(BIOMASSA);
 LDAP=LOG(DAP);
DATALINES;
0 12 34
0 14 45
0 23 89
0 56 138
0 87 379
0
O PROC REG DATA = A;
 MODEL LBIOMA = DAP;
 MODEL LBIOMA = LDAP;
 RUN;
```

Colocar os comandos ODS e TITLE

The SAS System

*** ANÁLISE DE REGRESSÃO - BIOMASSA E DAP ***

The REG Procedure

Model: MODEL1

Dependent Variable: LBIOMA

Number of Observations Read	
Number of Observations Used	5

Analysis of Variance							
Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F		
Model	1	3.43791	3.43791	44.26	0.0069		
Error	3	0.23302	0.07767				
Corrected Total	4	3.67092					

Root MSE	0.27870	R-Square	0.9365
Dependent Mean	4.53729	Adj R-Sq	0.9154
Coeff Var	6.14236		

Parameter Estimates							
		Parameter Standard					
Variable	DF	Estimate	Error	t Value	Pr > t		
Intercept	1	3.43881	0.20687	16.62	0.0005		
DAP	1	0.02861	0.00430	6.65	0.0069		

The SAS System *** ANÁLISE DE REGRESSÃO - BIOMASSA E DAP ***

The REG Procedure Model: MODEL2

Dependent Variable: LBIOMA

Number of Observations Read	
Number of Observations Used	5

Analysis of Variance								
	Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F			
Model	1	3.47696	3.47696	53.78	0.0052			
Error	3	0.19396	0.06465					
Corrected Total	4	3.67092						

Parameter Estimates						
Parameter Standard						
Variable	DF	Estimate	Error	t Value	Pr > t	
Intercept	1	0.93137	0.50469	1.85	0.1622	
LDAP	1	1.07635	0.14677	7.33	0.0052	

Root MSE	0.25427	R-Square	0.9472
Dependent Mean	4.53729	Adj R-Sq	0.9295
Coeff Var	5.60405		

Regressão Linear Múltipla.

O modelo de regressão linear múltipla é uma extensão do modelo simples com apenas duas variáveis (independente e dependente). Ao adicionar no modelo mais uma variável independente é criado um espaço de mútipla dimensão. Por exemplo, se existirem duas variáveis independentes estamos ajustando os pontos a um "plano no espaço".

O modelo linear básico.

$$Y_i = a + b_1 X_{1i} + b_2 X_{2i} + ... + b_k X_{ki} + e_i$$

As suposições do modelo:

- Os erros possuem a distribuição normal.
- Os resíduos são homoscedásticos.
- Não há correlação serial.
- Não há multicolinearidade.
- As variáveis independentes são fixas.
 (não-estocásticas)
- Existem mais dados que estimativas de parâmetros.
- o O modelo é linear.

PROGRAMA SAS PARA ANÁLISE DE REGRESSÃO MÚLTIPLA

- O DATA A:
- INPUT DAP ALT BIOMASSA;
- LBIOMA=LOG(BIOMASSA);
- LDAP=LOG(DAP);
- LALT=LOG(ALT);
- DATALINES;
- 0 12 10 34
- 0 14 11 45
- 0 18969
- 0 23 16 89
- 0 31 14 80
- o 56 18 138
- 0 66 19 190
- 0 87 23 379
- 0 91 22 408
- 0;
- \circ **PROC REG** DATA = A;
- MODEL BIOMASSA = DAP ALT;
- O MODEL LBIOMA = DAP ALT;
- MODEL LBIOMA = LDAP LALT;
- o RUN;

Colocar os comandos ODS e TITLE

The REG Procedure

Model: MODEL1

Dependent Variable:

BIOMASSA

Number of Observations Read	
Number of Observations Used	9

Analysis of Variance							
Sum of Mean							
Source	DF	Squares	Square	F Value	Pr > F		
Model	2	145243	72622	30.21	0.0007		
Error	6	14422	2403.61163				
Corrected Total	8	159665					

Root MSE	49.02664	R-Square	0.9097
Dependent Mean	159.11111	Adj R-Sq	0.8796
Coeff Var	30.81283		

Parameter Estimates								
		Parameter	Standard					
Variable	DF	Estimate	Error	t Value	Pr > t			
Intercept	1	-9.39304	97.84918	-0.10	0.9267			
DAP	1	4.65325	1.71180	2.72	0.0347			
ALT	1	-2.36237	10.45763	-0.23	0.8288			

*** ANÁLISE DE REGRESSÃO - BIOMASSA COM DAP E ALT *** The REG Procedure

Model: MODEL2

Dependent Variable:

LBIOMA

N	Number of Observations Read	9
I	Number of Observations Used	9

Analysis of Variance						
Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F	
Model	2	5.86419	2.93209	65.55	<.0001	
Error	6	0.26837	0.04473			
Corrected Total	8	6.13256		·		

Root MSE	0.21149	R-Square	0.9562
Dependent Mean	4.72899	Adj R-Sq	0.9417
Coeff Var	4.47222		

Parameter Estimates							
Variable	DF	Estimate	Error	t Value	Pr > t		
Intercept	1	3.18668	0.42210	7.55	0.0003		
DAP	1	0.02127	0.00738	2.88	0.0280		
ALT	1	0.03814	0.04511	0.85	0.4303		

