

Fonctions - Primitives À rendre le 23 septembre

Exercice

Le plan est muni d'un repère orthonormé. L'unité de mesure des longueurs choisie est le cm. On considère la fonction f définie sur ${\bf R}$ par :

$$f(x) = \frac{1}{\sqrt{1+x^2}}$$

ainsi que la fonction F définie par :

$$F(x) = \ln\left(x + \sqrt{1 + x^2}\right).$$

- **1. a)** Déterminer le domaine de définition \mathcal{D}_F de la fonction F
 - **b)** Étudier la parité de F. Expliquez comment déduire du tracé de sa courbe \mathscr{C}_F sur $\mathscr{D}_F \cap \mathbf{R}_+$ déduire le tracé complet de \mathscr{C}_F .
- **2.** a) Justifier que F est dérivable sur \mathcal{D}_F et donner l'expression de F'(x) pour tout réel x dans \mathcal{D}_F .
 - **b)** En déduire que F est l'unique primitive de f sur un intervalle à préciser vérifiant la condition F(0) = 0.
 - **c)** Étudier les limites de *F* aux bornes de son domaine de définition.
- **3.** Soit $\lambda > 1/2$ un réel. On note $\mathcal{A}(\lambda)$ l'aire exprimée en cm² de la partie du plan constitué des points M(x; y) du plan tels que $1 \le x \le 2\lambda$ et $0 \le y \le f(x)$.
 - **a)** Exprimer $\mathcal{A}(\lambda)$ en fonction de λ .
 - **b)** Calculer $\mathcal{A}(1)$.
 - **c)** Étudier la limite quand $\lambda \to +\infty$ de $\mathcal{A}(\lambda)$.
- **4.** On considère la suite réelle (u_n) définie par :

$$u_0 = \int_0^1 \frac{1}{\sqrt{1+x^2}} \mathrm{d}x$$
 et $\forall n \in \mathbf{N}^*$ $u_n = \int_0^1 \frac{x^n}{\sqrt{1+x^2}} \mathrm{d}x$.

- **a)** Donner la valeur de u_0 .
- **b)** Par une intégration par parties, calculer u_3 . (on pourra remarquer que $\frac{x^3}{\sqrt{1+x^2}} = x^2 \times \frac{x}{\sqrt{1+x^2}}$).
- c) Établir que :

$$\forall n \in \mathbb{N}^* \quad \forall x \in [0;1] \quad 0 \le \frac{x^n}{\sqrt{1+x^2}} \le x^n.$$

d) En intégrant cet encadrement sur l'intervalle [0,1], conclure quant à la convergence de la suite (u_n) et, le cas échéant, calculer sa limite.