Likelihood Function: Coin example

Adopting the MLE approach, we aim to find the value of θ which maximizes $\mathcal{L}(\theta) = \theta^7 (1 - \theta)^3$. We can arrive at this answer using derivatives:

$$\log (\chi(\Theta)) = \chi(\Theta) = 7\log(\Theta) + 3\log(1-\Theta)$$

 $\chi'(\Theta) = \frac{7}{9} + \frac{-3}{1-\Theta}$

Set = 0 solve for
$$\Theta$$

$$\frac{7}{8} = \frac{3}{1-\Theta}$$

$$\Rightarrow \hat{\Theta} = \frac{7}{10} = \frac{7}{10}$$
= maximum likelihood estimator (M.L.E).

• While the above assumed n=10 independent Bernoulli observations, we could have just as easily modeled this using $X \sim \text{Binomial}(n,\theta)$ having pmf given by:

$$p(x \mid \theta) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x} \tag{3}$$

for $x = 0, 1, \ldots, n$ and $\theta \in (0, 1)$

Since we observed 7 heads in 10 trials the likelihood is:

$$\mathcal{L}(\theta) = \binom{10}{7} \theta^7 (1 - \theta)^3 \tag{4}$$

Discrete

Considers three types of coins: Type A, B, and C. Each has a different probabilities of landing heads when tossed.

A coins are fair, with probability 0.5 of heads $\theta = 0.5$

B coins are bent and have probability 0.6 of heads $\theta = 0.6$

C coins are bent and have probability 0.9 of heads $\theta = 0.9$

Suppose I have a drawer containing 5 coins: 2 of type A, 2 of type B, and 1 of type C. I reach into the drawer and pick a coin at random. Without showing you the coin, I flip it once and get heads. What is the probability it is type A? Type B? Type C?

Source: Jeremy Orloff, and Jonathan Bloom. 18.05 Introduction to Probability and Statistics. Spring 2014. Massachusetts Institute of Technology: MIT OpenCourseWare, https://ocw.mit.edu.

Bayes numerator (unnormalized posterior)

Step 2: Likelihood

If we define a random variable $X \sim \text{Bernoulli}(\theta)$ then we can summarizing our data x = 1 in the following likelihood.

$$\mathcal{L}(\theta) = \prod_{i=1}^{1} \theta^{x_i} (1 - \theta)^{1 - x_i}$$

$$= \begin{cases} p(x \mid \theta = 0.5) = 0.5^{1} (1 - 0.5)^{1 - 0} = 0.5 \\ p(x \mid \theta = 0.6) = 0.6^{1} (1 - 0.6)^{1 - 0} = 0.6 \\ p(x \mid \theta = 0.9) = 0.9^{1} (1 - 0.9)^{1 - 0} = 0.9 \end{cases}$$

Notice how these probabilities do NOT sum to 1.

	H_i	θ	prior	likelihood	Bayes num.	posterior*
suppor	A	0.5	<u>2</u> 5	0.5	$\frac{2}{5} \times 0.5 = 0.2$	0.2
	В	0.6	<u>2</u> 5	0.6	$\frac{2}{5} \times 0.6 = 0.24$	0.24
	C	0.9	<u>1</u> 5	0.9	$\frac{1}{5}\times0.9=0.18$	0.18
	Total:		1	2	0.62	0.62

^{*}this is an unnormalized posterior because it is not yet a proper pmf that sums to 1.

• More generally, the marginal distribution p(x) is given by:

$$\rho(x) = \sum_{y} p(x, y) = \sum_{y} p(x \mid y) p(y) \qquad \text{for discrete RVs}$$

$$\rho(x) = \int p(x, y) dy = \int p(x \mid y) p(y) dy \qquad \text{for continuous RVs}$$

 Often this marginal is hard if not impossible to compute so we'd like to avoid calculating it if we can.

Second study:

 \mathcal{D} ata $x_2 = 1$ and using a prior equal to the unnormalized posterior obtained from the first experiment (i.e. 3rd column from slide 67)

	prior	likelihood	Bayes numerator	posterior
	<i>p</i> (<i>θ</i>)	$p(x_2=1\mid\theta)$	$p(x_2 = 1 \mid \theta)p(\theta)$	$p(\theta \mid x_2)$
	0.20	0.5	0.5*0.20 = 0.100	$\frac{0.100}{0.406} = 0.2463$
	0.24	0.6	0.6*0.24 = 0.144	$\frac{0.144}{0.406} = 0.3547$
	0.18	0.9	0.9*0.18 = 0.162	$\frac{0.162}{0.406} = 0.3990$
\sum	COL	_	0.406	1