Semaine du 22/01/2024

Chapitre O3 – Propagation d'un signal

Tout sauf les interférences.

Plan du cours

I Exemples de signaux

→ Identifier les grandeurs physiques correspondant à des signaux acoustiques, électriques, électromagnétiques.

II Onde progressive à une dimension

II.1 Expression d'une onde progressive

- \rightarrow Écrire les signaux sous la forme f(t-x/c) ou g(t+x/c).
- \rightarrow Écrire les signaux sous la forme F(x-ct) ou G(x+ct).
- \rightarrow Prévoir, dans le cas d'une onde progressive, l'évolution temporelle à position fixée et l'évolution spatiale à différents instants.

II.2 Onde progressive sinusoïdale

- \rightarrow Citer quelques ordres de grandeur de fréquences dans les domaines acoustique, mécanique et électromagnétique.
- → Établir la relation entre la fréquence, la longueur d'onde et la vitesse de phase.
- ightarrow Relier le déphasage entre les signaux perçus en deux points distincts au retard dû à la propagation.

III Diffraction

III.1 Observations expérimentales

→ Caractériser le phénomène de diffraction dans des situations variées et en citer des conséquences

III.2 Caractérisation du phénomène de diffraction

→ Exploiter la relation exprimant l'angle caractéristique de diffraction en fonction de la longueur d'onde et de la taille de l'ouverture.

IV Interférences

IV.1 Superposition de deux ondes

- ightarrow Caractériser le phénomène d'interférences de deux ondes et en citer des conséquences concrètes.
- → Établir les conditions d'interférences constructives et destructives de deux ondes issues de deux sources ponctuelles en phase dans le cas d'un milieu de propagation homogène.

IV.2 Interférences lumineuses

- \rightarrow Déterminer les lieux d'interférences constructives et les lieux d'interférences destructives dans le cas des trous d'Young.
- → Relier le déphasage entre les deux ondes à la différence de chemin optique.
- → Établir l'expression littérale de la différence de chemin optique linéarisée entre les deux ondes.
- \rightarrow Établir l'expression de l'interfrange.

Questions de cours

- \rightarrow Donner l'expression générale d'une onde progressive à une dimension, sinusoïdale ou non, se propageant dans une direction et un sens donnés.
- → Prévoir l'évolution temporelle ou spatiale d'une onde dont la forme est donnée (App. 1).
- \rightarrow En s'appuyant sur un schéma, donner l'expression de l'ordre de grandeur de l'angle caractéristique de diffraction.
- ightarrow Donner les conditions d'interférences constructives et destructives de deux ondes issues de sources ponctuelles.
- → Établir l'expression de la différence de chemin optique dans le cas des trous d'Young (App. 6).

Chapitre M4 – Mouvement d'une particule chargée dans un champ électromagnétique

Plan du cours

I Force de Lorentz

- I.1 Champ électromagnétique
- I.2 Force de Lorentz
 - \rightarrow Évaluer les ordres de grandeur des forces électrique ou magnétique et les comparer à ceux des forces gravitationnelles.

I.3 Puissance de la force de Lorentz

→ Justifier qu'un champ électrique peut modifier l'énergie cinétique d'une particule alors qu'un champ magnétique peut courber la trajectoire sans fournir d'énergie à la particule.

II Mouvement dans un champ électrique

II.1 Potentiel électrostatique

 $\rightarrow\,$ Effectuer un bilan énergétique pour déterminer la valeur de la vitesse d'une particule chargée accélérée par une différence de potentiel.

II.2 Équation du mouvement

 \rightarrow Mettre en équation le mouvement et le caractériser comme un mouvement à vecteur accélération constant.

III Mouvement dans un champ magnétique

III.1 Expérimentations

III.2 Rayon de la trajectoire

ightarrow Déterminer le rayon de la trajectoire sans calcul en admettant que celle-ci est circulaire.

Questions de cours

- → Donner l'expression de la force de Lorentz en s'appuyant sur un schéma et en donnant les unités des grandeurs.
- → Représenter sur un schéma la force de Lorentz associée à une configuration donnée par le colleur.
- → Déterminer le rayon de la trajectoire circulaire d'une particule chargée dans un champ magnétique uniforme et stationnaire, orthogonal à la vitesse.