2007 年全国硕士研究生入学统一考试数学二试卷

一、**选择题:** (本题共 10 小题,每小题 4 分,共 40 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)

(1)当 $x \to 0^+$ 时,与 \sqrt{x} 等价的无穷小量是

(A)
$$1 - e^{\sqrt{x}}$$
. (B) $\ln \frac{1+x}{1-\sqrt{x}}$. (C) $\sqrt{1+\sqrt{x}}-1$. (D) $1-\cos \sqrt{x}$.

(2) 函数
$$f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)}$$
 在 $[-\pi, \pi]$ 上的第一类间断点是 $x = x$

(A) 0. (B) 1. (C)
$$-\frac{\pi}{2}$$
. (D) $\frac{\pi}{2}$.

(3)如图,连续函数 y=f(x)在区间[-3, -2],[2, 3]上的图形分别是直径为 1 的上、下半圆周,在区间[-2, 0],[0, 2]的图形分别是直径为 2 的下、上半圆周,设 $F(x)=\int_0^x f(t)dt$.则下列结论正确的是

(A)
$$F(3) = -\frac{3}{4}F(-2)$$
. (B) $F(3) = \frac{5}{4}F(2)$.
(C) $F(-3) = \frac{3}{4}F(2)$. (D) $F(-3) = -\frac{5}{4}F(-2)$.

(4)设函数 f(x)在 x=0 处连续,下列命题错误的是:

(A) 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在,则 $f(0)=0$. (B) 若 $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则 $f(0)=0$.

(C) 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
 存在,则 $f'(0)$ 存在. (D) 若 $\lim_{x\to 0} \frac{f(x) - f(-x)}{x}$ 存在,则 $f'(0)$ 存在

(5)曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
,渐近线的条数为
(A) 0. (B) 1. (C) 2. (D) 3.

(6) 设函数 f(x)在 $(0,+\infty)$ 上具有二阶导数,且 f''(x) > 0. 令 $u_n = f(n)(n = 1,2,\cdots,)$,则下列结论正确的是.

则下列结论正确的是: (A) 若
$$u_1 > u_2$$
,则 $\{u_n\}$ 必收敛. (B) 若 $u_1 > u_2$,则 $\{u_n\}$ 必发散.

(C) 若
$$u_1 < u_2$$
,则 $\{u_n\}$ 必收敛. (D) 若 $u_1 < u_2$,则 $\{u_n\}$ 必发散. 【 】

(7) 二元函数 f(x, y)在点(0, 0) 处可微的一个充分条件是

(A)
$$\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)] = 0$$
.

(B)
$$\lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$
, $\mathbb{H} \lim_{y\to 0} \frac{f(0,y) - f(0,0)}{y} = 0$.

(C)
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0.$$

(D)
$$\lim_{x\to 0} [f_x'(x,0) - f_x'(0,0)] = 0$$
, $\lim_{y\to 0} [f_y'(0,y) - f_y'(0,0)] = 0$.

(8) 设函数
$$f(x, y)$$
连续,则二次积分 $\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x, y) dy$ 等于

(A)
$$\int_0^1 dy \int_{\pi+\arcsin y}^{\pi} f(x,y) dx.$$
 (B)
$$\int_0^1 dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx.$$

(C)
$$\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi + \arcsin y} f(x, y) dx$$
. (D) $\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi - \arcsin y} f(x, y) dx$.

(9) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组线性相关的是

(A)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$
. (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$.

(C)
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$
. (D) $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$.

(10) 设矩阵
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,则 $A \ni B$

- (A)合同, 且相似.
- (B) 合同, 但不相似.
- (C)不合同, 但相似.
- (D) 既不合同, 又不相似.

二、填空题 (11-16 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.)

(11)
$$\lim_{x\to 0} \frac{\arctan x - \sin x}{x^3} = \underline{\hspace{1cm}}$$
.

(12) 曲线
$$\begin{cases} x = \cos t + \cos^2 t, \\ y = 1 + \sin t \end{cases}$$
 上对应于 $t = \frac{\pi}{4}$ 的点处的法线斜率为_______.

(13) 设函数
$$y = \frac{1}{2x+3}$$
, 则 $y^{(n)}(0) = ______$.

(15) 设
$$f(u,v)$$
是二元可微函数, $z = f(\frac{y}{x}, \frac{x}{y})$,则 $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} =$ _______.

(16) 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 则 A^3 的秩为______.

三、解答题: 17-24 小题, 共 86 分.

(17) (本题满分10分)

设 f(x)是区间 $[0,\frac{\pi}{4}]$ 上的单调、可导函数,且满足

$$\int_0^{f(x)} f^{-1}(t)dt = \int_0^x t \frac{\cos t - \sin t}{\sin t + \cos t} dt,$$

其中 f^{-1} 是 f 的反函数,求 f(x).

(18) (本题满分11分)

设 D 是位于曲线 $y = \sqrt{x}a^{-\frac{x}{2a}}(a > 1, 0 \le x < +\infty)$ 下方、x 轴上方的无界区域。

- (I) 求区域 D 绕 x 轴旋转一周所成旋转体的体积 V(a);
- (II) 当 a 为何值时, V(a)最小? 并求此最小值.
- (19) (本题满分10分)

求微分方程 $y''(x+y'^2) = y'$ 满足初始条件 y(1) = y'(1) = 1的特解。

(20) (本题满分11分)

已知函数 f(u)具有二阶导数,且 f'(0)=1,函数 y=y(x)由方程 $y-xe^{y-1}=1$ 所确定,

设
$$z = f(\ln y - \sin x)$$
, 求 $\frac{dz}{dx}\Big|_{x=0}$, $\frac{d^2z}{dx^2}\Big|_{x=0}$.

(21)(本题满分11分)

设函数 f(x), g(x)在[a, b]上连续,在(a, b)内具有二阶导数且存在相等的最大值,f(a)=g(a), f(b)=g(b), 证明:存在 $\xi\in(a,b)$,使得 $f''(\xi)=g''(\xi)$.

(22)(本题满分11分)

设二元函数

$$f(x,y) = \begin{cases} x^2, & |x| + |y| \le 1, \\ \frac{1}{\sqrt{x^2 + y^2}}, 1 < |x| + |y| \le 2, \end{cases}$$

计算二重积分 $\iint_D f(x,y)d\sigma$, 其中 $D = \{(x,y)||x|+|y| \le 2\}$.

(23) (本题满分 11 分)

设线性方程组

$$\begin{cases} x_1 + x_2 + x_3 &= 0, \\ x_1 + 2x_2 + ax_3 &= 0, \\ x_1 + 4x_2 + a^2x_3 &= 0. \end{cases}$$

与方程
$$x_1 + 2x_2 + x_3 = a - 1$$
 ②

有公共解, 求 a 的值及所有公共解.

(24) (本题满分 11 分)

设 3 阶对称矩阵 A 的特征值 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2, \quad \alpha_1 = (1,-1,1)^T$ 是 A 的属于 λ_1 的一个特征向量,记 $B = A^5 - 4A^3 + E$ 其中 E 为 3 阶单位矩阵.

- (I) 验证 α_1 是矩阵B的特征向量,并求B的全部特征值与特征向量.
- (II) 求矩阵 B.

2007 年全国硕士研究生入学统一考试数学二试题分析、详解和评注

一、**选择题:**(本题共 10 小题,每小题 4 分,共 40 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)

(1)当 $x \to 0^+$ 时,与 \sqrt{x} 等价的无穷小量是

(A)
$$1 - e^{\sqrt{x}}$$
. (B) $\ln \frac{1+x}{1-\sqrt{x}}$. (C) $\sqrt{1+\sqrt{x}}-1$. (D) $1-\cos \sqrt{x}$.

【答案】 应选(B).

【分析】利用已知无穷小量的等价代换公式,尽量将四个选项先转化为其等价无穷小量,再进行比较分析找出正确答案.

【详解】当
$$x \to 0^+$$
时,有 $1 - e^{\sqrt{x}} = -(e^{\sqrt{x}} - 1) \sim -\sqrt{x}$; $\sqrt{1 + \sqrt{x}} - 1 \sim \frac{1}{2}\sqrt{x}$; $1 - \cos\sqrt{x} \sim \frac{1}{2}(\sqrt{x})^2 = \frac{1}{2}x$. 利用排除法知应选(B).

【评注】 本题直接找出 $\ln \frac{1+x}{1-\sqrt{x}}$ 的等价无穷小有些困难,但由于另三个的等价无穷小

很容易得到, 因此通过排除法可得到答案。事实上,

$$\lim_{x \to 0^{+}} \frac{\ln \frac{1+x}{1-\sqrt{x}}}{\sqrt{x}} = \lim_{x \to 0^{+}} \frac{\ln(1+x) - \ln(1-\sqrt{x})}{\sqrt{x}} \stackrel{\sqrt{x}=t}{=} \lim_{t \to 0^{+}} \frac{\ln(1+t^{2}) - \ln(1-t)}{t}$$

$$= \lim_{t \to 0^{+}} \frac{\frac{2t}{1+t^{2}} + \frac{1}{1-t}}{1} = \lim_{t \to 0^{+}} \frac{2t(1-t) + 1 + t^{2}}{(1+t^{2})(1-t)} = 1.$$

完全类似例题见《经典讲义》P.28 例 1.63, 例 1.64, 例 1.65 及辅导班讲义例 1.6.

(2) 函数
$$f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)}$$
 在 $[-\pi, \pi]$ 上的第一类间断点是 $x = x$

(A) 0. (B) 1. (C)
$$-\frac{\pi}{2}$$
. (D) $\frac{\pi}{2}$.

【分析】 本题 f(x)为初等函数,找出其无定义点即为间断点,再根据左右极限判断其类型。

【**详解**】 f(x)在[$-\pi$, π]上的无定义点,即间断点为 $x = 0,1,\pm \frac{\pi}{2}$.

$$\lim_{x \to 0^{+}} \frac{(e^{\frac{1}{x}} + e) \tan x}{\sum_{x \to 0^{+}} \frac{1}{x}} = \lim_{x \to 0^{+}} \frac{\tan x}{x} \cdot \frac{e^{\frac{1}{x}} + e}{e^{\frac{1}{x}} - e} = 1 \cdot 1 = 1,$$

可见 x=0 为第一类间断点,因此应选(A).

【评注】本题尽管可计算出 $\lim_{x\to 1} f(x) = \infty$, $\lim_{x\to \pm \frac{\pi}{2}} f(x) = \infty$, 从而 $x=1,\pm \frac{\pi}{2}$ 均为第二类间

断点,但根据四个选项的答案,已经确定 x=0 为第一类间断点后,后面三个极限问题事实上没必要再计算。

完全类似例题见《经典讲义》P.30 例 1.69, P.32 例 1.72 及辅导班讲义例 1.11.

(3)如图,连续函数 y=f(x)在区间[-3, -2],[2, 3]上的图形分别是直径为 1 的上、下半圆周,在区间[-2, 0],[0, 2]的图形分别是直径为 2 的下、上半圆周,设 $F(x)=\int_0^x f(t)dt$.则下列结论正确的是

(A)
$$F(3) = -\frac{3}{4}F(-2)$$
. (B) $F(3) = \frac{5}{4}F(2)$.
(C) $F(-3) = \frac{3}{4}F(2)$. (D) $F(-3) = -\frac{5}{4}F(-2)$.

【答案】 应选(C).

【分析】 本题考查定积分的几何意义,应注意 f(x)在不同区间段上的符号,从而搞清楚相应积分与面积的关系。

【详解】 根据定积分的几何意义,知 F(2)为半径是 1 的半圆面积: $F(2) = \frac{1}{2}\pi$,

$$F(3)$$
是两个半圆面积之差: $F(3) = \frac{1}{2} [\pi \cdot 1^2 - \pi \cdot (\frac{1}{2})^2] = \frac{3}{8} \pi = \frac{3}{4} F(2)$,
$$F(-3) = \int_0^{-3} f(x) dx = -\int_0^0 f(x) dx = \int_0^3 f(x) dx = F(3)$$

因此应选(C).

【评注 1】 本题 F(x)由积分所定义,应注意其下限为 0,因此

$$F(-2) = \int_0^{-2} f(x) dx = \int_{-2}^0 -f(x) dx$$
,也为半径是 1 的半圆面积。可知(A) (B) (D)均不成立.

【评注 2】若试图直接去计算定积分,则本题的计算将十分复杂,而这正是本题设计的 巧妙之处。

完全类似例题见《经典讲义》P.152 例 7.15, 例 7.16, 例 7.18 及辅导班讲义例 7.12

(4)设函数 f(x)在 x=0 处连续,下列命题错误的是:

(A) 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
存在,则 $f(0)=0$. (B) 若 $\lim_{x\to 0} \frac{f(x)+f(-x)}{x}$ 存在,则 $f(0)=0$.

(C) 若
$$\lim_{x\to 0} \frac{f(x)}{x}$$
存在,则 $f'(0)$ 存在. (D) 若 $\lim_{x\to 0} \frac{f(x)-f(-x)}{x}$ 存在,则 $f'(0)$ 存在

【答案】 应选(D).

【分析】 本题为极限的逆问题,已知某极限存在的情况下,需要利用极限的四则运算等进行分析讨论。

【详解】(A),(B)两项中分母的极限为 0, 因此分子的极限也必须为 0, 均可推导出 f(0)=0. 若 $\lim_{x\to 0} \frac{f(x)}{x}$ 存在,则 f(0)=0, $f'(0)=\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}=\lim_{x\to 0} \frac{f(x)}{x}=0$,可见(C)也正确,故应选(D). 事实上,可举反例: f(x)=|x|在 x=0 处连续,且

$$\lim_{x \to 0} \frac{f(x) - f(-x)}{x} = \lim_{x \to 0} \frac{|x| - |-x|}{x} = 0$$
存在,但 $f(x) = |x|$ 在 $x = 0$ 处不可导.

重要知识点提示见《经典讲义》P.39, 完全类似例题见 P.41 例 2.1, P.42 例 2.6 及 P.60 习题 2 及辅导班讲义例 2.5.

(5)曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
,渐近线的条数为 (A) 0. (B) 1. (C) 2. (D) 3.

【答案】 应选(D).

【分析】 先找出无定义点,确定其是否为对应垂直渐近线; 再考虑水平或斜渐近线。

【详解】 因为
$$\lim_{x\to 0} \left[\frac{1}{x} + \ln(1+e^x)\right] = \infty$$
,所以 $x = 0$ 为垂直渐近线;

又
$$\lim_{x\to\infty} [\frac{1}{r} + \ln(1+e^x)] = 0$$
,所以 y=0 为水平渐近线;

进一步,
$$\lim_{x \to +\infty} \frac{y}{x} = \lim_{x \to +\infty} \left[\frac{1}{x^2} + \frac{\ln(1 + e^x)}{x} \right] = \lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x} = \lim_{x \to +\infty} \frac{e^x}{1 + e^x} = 1,$$

$$\lim_{x \to +\infty} \left[y - 1 \cdot x \right] = \lim_{x \to +\infty} \left[\frac{1}{x} + \ln(1 + e^x) - x \right] = \lim_{x \to +\infty} \left[\ln(1 + e^x) - x \right]$$

$$= \lim_{x \to +\infty} \left[\ln e^x (1 + e^{-x}) - x \right] = \lim_{x \to +\infty} \ln(1 + e^{-x}) = 0,$$

于是有斜渐近线: y = x. 故应选(D).

【评注】 一般来说,有水平渐近线(即 $\lim_{x\to\infty} y=c$)就不再考虑斜渐近线,但当 $\lim_{x\to\infty} y$ 不存在时,就要分别讨论 $x\to-\infty$ 和 $x\to+\infty$ 两种情况,即左右两侧的渐近线。本题在 x<0 的一侧有水平渐近线,而在 x>0 的一侧有斜渐近线。关键应注意指数函数 e^x 当 $x\to\infty$ 时极限不存在,必须分 $x\to-\infty$ 和 $x\to+\infty$ 进行讨论。

重点提示见《经典讲义》P.145, 类似例题见 P.150 例 7.13, 例 7.14 及辅导班讲义例 7.8.

(6) 设函数
$$f(x)$$
在 $(0,+\infty)$ 上具有二阶导数,且 $f''(x) > 0$. 令 $u_n = f(n)(n = 1,2,\dots,)$

则下列结论正确的是:

(A) 若 $u_1 > u_2$,则 $\{u_n\}$ 必收敛.

(B) 若 $u_1 > u_2$, 则 $\{u_n\}$ 必发散.

(C) 若 $u_1 < u_2$,则 $\{u_n\}$ 必收敛.

(D) 若 $u_1 < u_2$,则 $\{u_n\}$ 必发散. 【 】

【答案】 应选(D).

【分析】 利用反例通过排除法进行讨论。

【详解】 设 $f(x)=x^2$,则 f(x)在 $(0,+\infty)$ 上具有二阶导数,且 f''(x)>0, $u_1< u_2$,但 $\{u_n\}=\{n^2\}$ 发散,排除 (C);设 $f(x)=\frac{1}{x}$,则 f(x)在 $(0,+\infty)$ 上具有二阶导数,且 f''(x)>0, $u_1>u_2$,但 $\{u_n\}=\{\frac{1}{n}\}$ 收敛,排除 (B);又若设 $f(x)=-\ln x$,则 f(x)在 $(0,+\infty)$ 上具有二阶导数,且 f''(x)>0, $u_1>u_2$,但 $\{u_n\}=\{-\ln n\}$ 发散,排除 (A). 故应选 (D).

【评注】也可直接证明(D)为正确选项. 若 $u_1 < u_2$,则存在k > 0,使得 $u_2 - u_1 > k > 0$. 在区间[1,2]上应用拉格朗日中值定理,存在 $\xi_1 \in (1,2)$ 使得

$$\frac{u_2 - u_1}{2 - 1} = \frac{f(2) - f(1)}{2 - 1} = f'(\xi_1) > k > 0,$$

又因为在 $(0,+\infty)$ 上f''(x)>0,因此f'(x)在 $(\xi_1,+\infty)$ 上单调增加,于是对 $\forall x \in (\xi_1,+\infty)$ 有

$$f'(x) > f'(\xi_1) > k > 0.$$

在区间[ξ_1 ,x]上应用拉格朗日中值定理,存在 $\xi_2 \in (\xi_1,x)$ 使得 $\frac{f(x)-f(\xi_1)}{x-\xi_1} = f'(\xi_2)$,

故应选(D).

重要提示与例题见《经典讲义》P.19 例 1.40, 例 1.41、《真题(二)P.80 题 2》及辅导班讲义例 1.12

(7) 二元函数 f(x, y)在点(0, 0) 处可微的一个充分条件是

(A)
$$\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)] = 0$$
.

(B)
$$\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = 0$$
, $\mathbb{H}\lim_{y\to 0} \frac{f(0,y)-f(0,0)}{y} = 0$.

(C)
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0.$$

(D)
$$\lim_{x\to 0} [f'_x(x,0) - f'_x(0,0)] = 0$$
, $\lim_{y\to 0} [f'_y(0,y) - f'_y(0,0)] = 0$.

【答案】 应选(C).

【**详解**】 选项(A)相当于已知f(x, y)在点(0,0)处连续,选项(B)相当于已知两个一阶偏导数 $f'_{x}(0,0), f'_{y}(0,0)$ 存在,因此(A),(B) 均不能保证f(x, y)在点(0,0)处可微。

选项(D)相当于已知两个一阶偏导数 $f_x'(0,0), f_y'(0,0)$ 存在,但不能推导出两个一阶偏导 函数 $f_x'(x,y), f_y'(x,y)$ 在点(0,0) 处连续,因此也不能保证 f(x,y) 在点 (0,0) 处可微。

若
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$$
,则

$$\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = \lim_{x\to 0} \frac{f(x,0)-f(0,0)}{\sqrt{x^2+0^2}} \cdot \frac{\sqrt{x^2}}{x} = 0, \quad \text{if } f'_x(0,0) = 0, \text{ fill } f'_x(0,0) = 0, \text{ fil$$

 $f_{v}'(0,0) = 0.$

从而
$$\lim_{\rho \to 0} \frac{[f(\Delta x, \Delta y) - f(0,0)] - (f'_x(0,0)\Delta x + f'_y(0,0)\Delta y)}{\rho}$$

$$= \lim_{\rho \to 0} \frac{f(\Delta x, \Delta y) - f(0,0)}{\rho} = \lim_{(\Delta x, \Delta y) \to 0} \frac{f(\Delta x, \Delta y) - f(0,0)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$$

根据可微的定义,知函数 f(x,y) 在(0,0) 处可微,故应选(C).

几乎原题见《经典讲义》P.182 例 9.2, 本题难度较大,概念性强

(8) 设函数
$$f(x, y)$$
连续,则二次积分 $\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x, y) dy$ 等于

(A)
$$\int_0^1 dy \int_{\pi+\arcsin y}^{\pi} f(x,y) dx$$
. (B) $\int_0^1 dy \int_{\pi-\arcsin y}^{\pi} f(x,y) dx$.

(C)
$$\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi + \arcsin y} f(x, y) dx$$
. (D) $\int_0^1 dy \int_{\frac{\pi}{2}}^{\pi - \arcsin y} f(x, y) dx$.

【答案】 应选(B).

【分析】 先确定积分区域,画出示意图,再交换积分次序。

【详解】 积分区域 D:
$$\frac{\pi}{2} \le x \le \pi, \sin x \le y \le 1$$
, 也可表示为

D:
$$0 \le y \le 1, \pi - \arcsin y \le x \le \pi$$
,

故
$$\int_{\frac{\pi}{2}}^{\pi} dx \int_{\sin x}^{1} f(x, y) dy = \int_{0}^{1} dy \int_{\pi-\arcsin y}^{\pi} f(x, y) dx$$
, 应选(B).

【评注】确定 y 的取值范围时应注意: 当 $\frac{\pi}{2} \le x \le \pi$ 时, $y=\sin x=\sin(\pi-x), 0 \le \pi-x \le \frac{\pi}{2}$,于是 $\pi-x=arc\sin y$,从而 $x=\pi-\arcsin y$.

完全类似例题见《经典讲义》P.208 例 10.13, 例 10.14,例 10.15 及辅导班讲义例 10.9

(9) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,则下列向量组线性相关的是

(A)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$$
. (B) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$.

(C)
$$\alpha_1 - 2\alpha_2, \alpha_2 - 2\alpha_3, \alpha_3 - 2\alpha_1$$
. (D) $\alpha_1 + 2\alpha_2, \alpha_2 + 2\alpha_3, \alpha_3 + 2\alpha_1$.

【答案】应选(A).

【详解 1】直接可看出(A)中 3 个向量组有关系

$$(\alpha_1 - \alpha_2) + (\alpha_2 - \alpha_3) = -(\alpha_3 - \alpha_1)$$

即(A)中3个向量组有线性相关, 所以选(A).

【详解 2】用定义进行判定:令

$$x_1(\alpha_1 - \alpha_2) + x_2(\alpha_2 - \alpha_3) + x_3(\alpha_3 - \alpha_1) = 0$$
,

得
$$(x_1-x_3)\alpha_1+(-x_1+x_2)\alpha_2+(-x_2+x_3)\alpha_3=0$$
.

因
$$\alpha_1, \alpha_2, \alpha_3$$
线性无关,所以
$$\begin{cases} x_1 & -x_3 = 0, \\ -x_1 + x_2 & = 0, \\ -x_2 + x_3 = 0. \end{cases}$$

 $\begin{vmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 0,$ 又

故上述齐次线性方程组有非零解,即 $\alpha_1 - \alpha_2, \alpha_3 - \alpha_4$ 线性相关. 类似可得(B), (C), (D)中的向量组都是线性无关的.

这是一个基本题,完全类似的问题见《经典讲义》P.314 例 3.5 和辅导班上对应章节的例题

(10) 设矩阵
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,则 $A \ni B$

(A)合同, 且相似.

(B) 合同, 但不相似.

(C)不合同, 但相似.

(B) 百円, 二 ... (D) 既不合同, 又不相似.

1

【答案】应选 (B).

【详解】 由 $\lambda E - A = 0$ 得 A 的特征值为 A 0, 3, 3, A 6 的特征值为 A 0, 1, 1, A 5 B 不 相似.

又 r(A)=r(B)=2, 且 $A \times B$ 有相同的正惯性指数, 因此 $A \subseteq B$ 合同. 故选(A).

【评注】1)若 A 与 B 相似、则 $A \models B \mid : r(A) = r(B) : tr(A) = tr(B) : A 与 B 有相同的特征值.$ 2)若 $A \times B$ 为实对称矩阵, 则 $A \subseteq B$ 合同 $\Leftrightarrow r(A) = r(B)$, 且 $A \times B$ 有相同的正惯性指数.

这是数学二首次要求考查的内容,完全类似的问题见《历年真题(一)》P307的小结

二、填空题 (11-16 小题,每小题 4 分,共 24 分. 把答案填在题中横线上.)

(11)
$$\lim_{x\to 0} \frac{\arctan x - \sin x}{x^3} = \underline{\hspace{1cm}}$$
.

【答案】 应填 $-\frac{1}{6}$.

【详解】
$$\lim_{x \to 0} \frac{\arctan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\frac{1}{1+x^2} - \cos x}{3x^2} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{1}{1+x^2} \cdot \frac{1 - (1+x^2)\cos x}{x^2}$$
$$= \frac{1}{3} \lim_{x \to 0} \frac{-2x\cos x + (1+x^2)\sin x}{2x} = \frac{1}{3} \cdot (-1+\frac{1}{2}) = -\frac{1}{6}.$$

完全类似例题见《经典讲义》P.14 例 1.24, 例 1.25 及辅导班讲义例 1.7.

(12) 曲线
$$\begin{cases} x = \cos t + \cos^2 t, \\ y = 1 + \sin t \end{cases}$$
 上对应于 $t = \frac{\pi}{4}$ 的点处的法线斜率为_______.

【答案】 应填 $1+\sqrt{2}$.

【详解】 因为
$$\frac{dy}{dx} = \frac{y'_t}{x'_t} = \frac{\cos t}{-\sin t - 2\cos t \sin t}$$
, 于是 $\frac{dy}{dx}\bigg|_{t=\frac{\pi}{4}} = -\frac{1}{1+\sqrt{2}}$, 故法线斜率

为 $1+\sqrt{2}$.

完全类似例题见《经典讲义》P. 46 例 2.15, 例 2.16 及辅导班讲义例 2.14.

(13) 设函数
$$y = \frac{1}{2x+3}$$
,则 $y^{(n)}(0) = ______$.

【答案】 应填
$$\frac{1}{3}(-1)^n n!(\frac{2}{3})^n$$
.

【详解】
$$y = (2x+3)^{-1}$$
, $y' = -1 \cdot 2(2x+3)^{-2}$, $y'' = -1 \cdot (-2) \cdot 2^2 (2x+3)^{-3}$

一般地,
$$y^{(n)} = (-1)^n n! 2^n (2x+3)^{-n-1}$$
,

从而
$$y^{(n)}(0) = \frac{1}{3}(-1)^n n!(\frac{2}{3})^n.$$

完全类似例题见《经典讲义》P.56 例 2.49, 例 2.50 及辅导班讲义例 2.16.

(14) 二阶常系数非齐次线性微分方程 $y'' - 4y' + 3y = 2e^{2x}$ 的通解为 .

【答案】 $y = C_1 e^x + C_2 e^{3x} - 2e^{2x}$. 其中 C_1, C_2 为任意常数.

【详解】 特征方程为 $\lambda^2 - 4\lambda + 3 = 0$,解得 $\lambda = 1, \lambda, = 3$.可见对应齐次线性微分方

程 y'' - 4y' + 3y = 0 的通解为 $y = C_1 e^x + C_2 e^{3x}$.

设非齐次线性微分方程 $y''-4y'+3y=2e^{2x}$ 的特解为 $y^*=ke^{2x}$,代入非齐次方程可得 k=-2 . 故通解为 $y=C_1e^x+C_2e^{3x}-2e^{2x}$.

完全类似例题见《经典讲义》P.172 例题 8.7 及辅导班讲义例 8.9.

(15) 设
$$f(u,v)$$
是二元可微函数, $z = f(\frac{y}{x}, \frac{x}{y})$,则 $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = \underline{\qquad}$

【答案】
$$-\frac{2y}{x}f_1' + \frac{2x}{y}f_2'$$
.

【详解】
$$\frac{\partial z}{\partial x} = f_1' \cdot (-\frac{y}{x^2}) + f_2' \cdot \frac{1}{y}$$
, $\frac{\partial z}{\partial y} = f_1' \cdot \frac{1}{x} + f_2' \cdot (-\frac{x}{y^2})$, 于是有
$$x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = x[-\frac{y}{x^2} f_1' + \frac{1}{y} f_2'] - y[\frac{1}{x} f_1' - \frac{x}{y^2} f_2'] = -\frac{2y}{x} f_1' + \frac{2x}{y} f_2'.$$

完全类似例题见辅导班讲义例 9.6 及《经典讲义》P199 习题三 1-3.

(16) 设矩阵
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, 则 A^3 的秩为______

【答案】应填1.

完全类似的问题见《经典讲义》P300 题型七和辅导班上对应章节的例题

三、解答题: 17-24 小题, 共 86 分.

(17) (本题满分10分)

设f(x)是区间 $[0,\frac{\pi}{4}]$ 上的单调、可导函数,且满足

$$\int_0^{f(x)} f^{-1}(t)dt = \int_0^x t \frac{\cos t - \sin t}{\sin t + \cos t} dt$$

其中 f^{-1} 是 f 的反函数, 求 f(x).

【分析】 等式两端先对x求导,再积分即可。

【详解】 在等式
$$\int_0^{f(x)} f^{-1}(t)dt = \int_0^x t \frac{\cos t - \sin t}{\sin t + \cos t} dt$$
 两端先对 x 求导,得
$$f^{-1}[f(x)]f'(x) = x \frac{\cos x - \sin x}{\sin x + \cos x},$$
 即 $xf'(x) = x \frac{\cos x - \sin x}{\sin x + \cos x},$ 也即 $f'(x) = \frac{\cos x - \sin x}{\sin x + \cos x}.$ 于是 $f(x) = \int \frac{\cos x - \sin x}{\sin x + \cos x} dx = \int \frac{d(\sin x + \cos x)}{\sin x + \cos x} = \ln(\sin x + \cos x) + c.$

由题设知, f(0)=0, 于是 c=0, 故 $f(x)=\ln(\sin x + \cos x)$.

几乎原题见《经典讲义》P.50 例 2.28.

(18) (本题满分11分)

设 D 是位于曲线 $y = \sqrt{x}a^{-\frac{x}{2a}}(a > 1, 0 \le x < +\infty)$ 下方、x 轴上方的无界区域。

- (I) 求区域 D 绕 x 轴旋转一周所成旋转体的体积 V(a);
- (II) 当 a 为何值时, V(a)最小? 并求此最小值.

【分析】V(a)的可通过广义积分进行计算,再按通常方法求V(a)的最值即可。

【详解】 (I)
$$V(a) = \pi \int_0^{+\infty} y^2 dx = \pi \int_0^{+\infty} x a^{-\frac{x}{a}} dx = -\frac{a}{\ln a} \pi \int_0^{+\infty} x da^{-\frac{x}{a}} dx$$

$$= -\frac{a}{\ln a} \pi \left[x a^{-\frac{x}{a}} \Big|_0^{+\infty} - \int_0^{+\infty} a^{-\frac{x}{a}} dx \right] = \frac{a^2 \pi}{(\ln a)^2}.$$

(II)
$$V'(a) = \pi \cdot \frac{2a(\ln a)^2 - a^2(2\ln a) \cdot \frac{1}{a}}{(\ln a)^4} = 0$$
,

得
$$\ln a[\ln a - 1] = 0$$
, 即 $a = e$.

由于 a=e 是惟一的驻点,是极小值点,也是最小值点,最小值为 $V(e)=\pi e^2$.

【评注】事实上, 当 1 < a < e 时, V'(a) < 0, V(a)单调减少, 当 a > e 时, V'(a) > 0, V(a)单调增加, 所以 a = e 是 V(a)的极小值点, 也是最小值点

完全类似例题见辅导班讲义例 7.16 及《经典讲义》P162 习题 17.

(19) (本题满分10分)

求微分方程 $v''(x+v'^2) = v'$ 满足初始条件 v(1) = v'(1) = 1的特解。

【分析】本题为可降阶的二阶微分方程,作变量代换即可。

【详解】令y'=u,则原方程化为

$$u'(x+u^2) = u \qquad 即 \quad \frac{dx}{du} - \frac{1}{u}x = u ,$$

其解为
$$x = e^{-\int -\frac{1}{u}du} (\int ue^{\int -\frac{1}{u}du} du + C) = u(u+C),$$

利用 u=v'(1)=1,有 C=0,于是 $x=u^2$,由 v'(1)=1知应取 $u=\sqrt{x}$.

再由 $y' = \sqrt{x}$, 积分得 $y = \int \sqrt{x} dx = \frac{2}{3} x^{\frac{3}{2}} + C_1$, 代入初始条件 y(1)=1, 得 $C_1 = \frac{1}{3}$,

故满足初始条件 y(1) = y'(1) = 1的特解为 $y = \frac{2}{3}x^{\frac{3}{2}} + \frac{1}{3}$.

完全类似例题见辅导班讲义例 8.9 及《经典讲义》P.171 例 8.6.

(20) (本题满分11分)

已知函数 f(u)具有二阶导数,且 f'(0)=1,函数 y=y(x)由方程 $y-xe^{y-1}=1$ 所确定,

设
$$z = f(\ln y - \sin x)$$
, 求 $\frac{dz}{dx}\Big|_{x=0}$, $\frac{d^2z}{dx^2}\Big|_{x=0}$.

【详解】
$$\frac{dz}{dx} = f'(\ln y - \sin x) \cdot (\frac{y'}{y} - \cos x)$$
,

$$\frac{d^2z}{dx^2} = f'' \cdot (\frac{y'}{y} - \cos x)^2 + f' \cdot (\frac{y''y - y'^2}{y^2} + \sin x)$$

在 $y-xe^{y-1}=1$ 中,令 x=0 得 y=1 . 而由 $y-xe^{y-1}=1$ 两边对 x 求导得

$$y' - e^{y-1} - xe^{y-1}y' = 0$$

再对
$$x$$
 求导得 $y'' - e^{y-1}y' - e^{y-1}y' - xe^{y-1}y'^2 - xe^{y-1}y'' = 0$

将 x=0, y=1 代入上面两式得 y'(0)=1, y''(0)=2.

故
$$\frac{dz}{dx}\Big|_{x=0} = f'(0)(0-0) = 0,$$

$$\frac{d^2z}{dx^2}\Big|_{x=0} = f'(0) \cdot (2-1) = 1.$$

完全类似例题见辅导班讲义例 2.16 及《经典讲义》P.54 例 2.42,P.55 例 2.45.

(21)(本题满分11分)

设函数 f(x), g(x)在[a,b]上连续, 在(a,b)内具有二阶导数且存在相等的最大值, f(a)=g(a), f(b)=g(b), 证明: 存在 $\xi \in (a,b)$, 使得 $f''(\xi) = g''(\xi)$.

【分析】需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令 F(x) = f(x) - g(x),则问题转化为证明 $F''(\xi) = 0$,只需对 F'(x) 用罗尔定理,关键是找 到 F'(x) 的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用 F(a) = F(b) = 0, 若能再找一点 $c \in (a,b)$,使得 F(c) = 0,则在区间 [a,c],[c,b] 上两次利用罗尔定理有一阶导函数相等的两点,再对 F'(x) 用罗尔定理即可。

【证明】构造辅助函数 F(x)=f(x)-g(x),由题设有 F(a)=F(b)=0. 又 f(x),g(x)在(a,b) 内具有相等的最大值,不妨设存在 $x_1 \le x_2$, $x_1,x_2 \in (a,b)$ 使得

$$f(x_1) = M = \max_{[a,b]} f(x), g(x_2) = M = \max_{[a,b]} g(x),$$

若 $x_1 = x_2$,令 $c = x_1$,则F(c) = 0.

若 $x_1 < x_2$,因 $F(x_1) = f(x_1) - g(x_1) \ge 0$, $F(x_2) = f(x_2) - g(x_2) \le 0$,从而存在 $c \in [x_1, x_2] \subset (a, b)$,使F(c) = 0.

在区间[a,c],[c,b]上分别利用罗尔定理知,存在 $\xi_1 \in (a,c)$, $\xi_2 \in (c,b)$,使得

$$F'(\xi_1) = F'(\xi_2) = 0.$$

再对F'(x)在区间 $[\xi_1,\xi_2]$ 上应用罗尔定理,知存在 $\xi\in(\xi_1,\xi_2)\subset(a,b)$,有

$$F''(\xi) = 0$$
, $\emptyset''(\xi) = g''(\xi)$.

完全类似例题见《经典讲义》P. 120 例 5. 11, 例 5. 12, 例 5. 13, P. 127 例 5. 27 及辅导班讲义例 5. 3-5.

(22)(本题满分11分)

设二元函数

$$f(x, y) = \begin{cases} x^2, & |x| + |y| \le 1, \\ \frac{1}{\sqrt{x^2 + y^2}}, 1 < |x| + |y| \le 2, \end{cases}$$

计算二重积分 $\iint\limits_D f(x,y)d\sigma$, 其中 $D=\{(x,y)\big|\big|x\big|+\big|y\big|\leq 2\}.$

【分析】被积函数为分区域函数,利用积分的可加性分区域积分,在计算过程中注意利用区域的对称性和被积函数的奇偶性进行化简。

【详解 1】由区域的对称性和被积函数的奇偶性有

$$\iint\limits_{D} f(x, y)d\sigma = 4\iint\limits_{D_{1}} f(x, y)d\sigma$$

其中 D_1 为D在第一象限的部分.

设
$$D_{11} = \{(x, y) \mid 0 \le y \le 1 - x \ 0 \le x \le 1\}$$