1

Assignment 20

Sri Harsha CH

Download latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment20

1 Problem

Let N_1 and N_2 be 6×6 nilpotent matrices over the field F. Suppose that N_1 and N_2 have the same minimal polynomial and the same nullity. Prove that N_1 and N_2 are similar. Show that this is not true for 7×7 nilpotent matrices.

2 EXPLANATION

Statement	Derivation
Given	N_1 and N_2 be 6×6 nilpotent matrices. N_1 and N_2 have the same minimal polynomial and the same nullity.
	To prove N_1 and N_2 are similar.
From given statement	Two matrices are similar if they have the same Jordan Canonical form.
	1. As N_1 and N_2 are nilpotent matrices, 0 is the only eigen value. 2. As minimal polynomial is same, $pN_1 = pN_2$, the two matrices should
	have the same maximum block size.
	3. As they have same nullity, they will have same total number of blocks.
	If J_1 and J_2 are similar, then N_1 and N_2 are similar.
	Let us consider all the possibilities for the dimensions of the block matrices
	for both Jordan forms.
Matrix size - 6 and Jordan size - 6	If Jordan form J_1 consists of one block of dimension 6, then by (3) above J_2 also has one block of dimension 6.
SIZE	
	$\mathbf{J_1} = \left(\mathbf{J}_{11}\right) \mathbf{J_2} = \left(\mathbf{J}_{21}\right)$
	$\mathbf{J}_{11}: 6 \times 6 \mathbf{J}_{21}: 6 \times 6$
	$\mathbf{J}_{11},\mathbf{J}_{21}$ are similar,
	$\mathbf{J}_1, \mathbf{J}_2$ are similar
	$\implies \mathbf{N}_1, \mathbf{N}_2$ are similar
Matrix size - 6 and Jordan	If Jordan form J_1 consists of one block of dimension 5 and other 1, then
size - 5 + 1	by (2), J_2 also has same maximum block of dimension 5 and by (3) have other block of size 1.

	$\mathbf{J_1} = \begin{pmatrix} \mathbf{J_{11}} & 0 \\ 0 & \mathbf{J_{12}} \end{pmatrix} \mathbf{J_2} = \begin{pmatrix} \mathbf{J_{21}} & 0 \\ 0 & \mathbf{J_{22}} \end{pmatrix}$ $\mathbf{J_{11}} : 5 \times 5 \mathbf{J_{21}} : 5 \times 5$ $\mathbf{J_{12}} : 1 \times 1 \mathbf{J_{22}} : 1 \times 1$ $\mathbf{J_{11}}, \mathbf{J_{21}} \text{ and } \mathbf{J_{12}}, \mathbf{J_{22}} \text{ are similar },$ $\mathbf{J_1}, \mathbf{J_2} \text{ are similar}$ $\implies \mathbf{N_1}, \mathbf{N_2} \text{ are similar}$
Matrix size - 6, Jordan size - 4+2, Jordan size - 4+1+1	Although there are two different possibilities for Jordan blocks,
4+2, Joidan Size - 4+1+1	From (2) J_{11} , J_{21} are of dimension 4, From (3) J have same number of Jordan blocks Case 1:
	$\mathbf{J_1} = \begin{pmatrix} \mathbf{J}_{11} & 0 \\ 0 & \mathbf{J}_{12} \end{pmatrix} \mathbf{J_2} = \begin{pmatrix} \mathbf{J}_{21} & 0 \\ 0 & \mathbf{J}_{22} \end{pmatrix}$
	$\mathbf{J}_{11}:4\times4 \mathbf{J}_{21}:4\times4$
	$\mathbf{J}_{12}:2\times2$ $\mathbf{J}_{22}:2\times2$
	$\mathbf{J}_{11},\mathbf{J}_{21}$ and $\mathbf{J}_{12},\mathbf{J}_{22}$ are similar,
	$\mathbf{J}_1, \mathbf{J}_2$ are similar
	\implies $\mathbf{N}_1, \mathbf{N}_2$ are similar
	Case 2:
	$\mathbf{J_1} = \begin{pmatrix} \mathbf{J}_{11} & 0 & 0 \\ 0 & \mathbf{J}_{12} & 0 \\ 0 & 0 & \mathbf{J}_{13} \end{pmatrix} \mathbf{J_2} = \begin{pmatrix} \mathbf{J}_{21} & 0 & 0 \\ 0 & \mathbf{J}_{22} & 0 \\ 0 & 0 & \mathbf{J}_{23} \end{pmatrix}$
	$\mathbf{J}_{11}: 4 \times 4 \mathbf{J}_{21}: 4 \times 4$
	$\mathbf{J}_{12}:1\times1\mathbf{J}_{22}:1\times1$
	$\mathbf{J}_{13}: 1 \times 1 \mathbf{J}_{23}: 1 \times 1$
	$\mathbf{J}_{11}, \mathbf{J}_{21}$ $\mathbf{J}_{12}, \mathbf{J}_{22}$ and $\mathbf{J}_{13}, \mathbf{J}_{23}$ are similar,
	$\mathbf{J}_1, \mathbf{J}_2$ are similar $\Longrightarrow \mathbf{N}_1, \mathbf{N}_2$ are similar
Matrix size - 6, Jordan size - 3+3, Jordan size - 3+2+1, Jordan size - 3+1+1+1	There are three different possibilities for Jordan blocks,
	From (2) J_{11} , J_{21} are of dimension 3, From (3) J have same number of Jordan blocks Case 1:

$$\mathbf{J_1} = \begin{pmatrix} \mathbf{J_{11}} & 0 \\ 0 & \mathbf{J_{12}} \end{pmatrix} \quad \mathbf{J_2} = \begin{pmatrix} \mathbf{J_{21}} & 0 \\ 0 & \mathbf{J_{22}} \end{pmatrix}$$

$$\mathbf{J_{11}} : 3 \times 3 \quad \mathbf{J_{21}} : 3 \times 3$$

$$\mathbf{J_{12}} : 3 \times 3 \quad \mathbf{J_{22}} : 3 \times 3$$

$$\mathbf{J_{11}}, \mathbf{J_{21}} \text{ and } \mathbf{J_{12}}, \mathbf{J_{22}} \text{ are similar },$$

$$\mathbf{J_1}, \mathbf{J_2} \text{ are similar}$$

$$\implies \mathbf{N_1}, \mathbf{N_2} \text{ are similar}$$

Case 2:

$$\mathbf{J_{1}} = \begin{pmatrix} \mathbf{J}_{11} & 0 & 0 \\ 0 & \mathbf{J}_{12} & 0 \\ 0 & 0 & \mathbf{J}_{13} \end{pmatrix} \quad \mathbf{J_{2}} = \begin{pmatrix} \mathbf{J}_{21} & 0 & 0 \\ 0 & \mathbf{J}_{22} & 0 \\ 0 & 0 & \mathbf{J}_{23} \end{pmatrix}$$

$$\mathbf{J}_{11} : 3 \times 3 \quad \mathbf{J}_{21} : 3 \times 3$$

$$\mathbf{J}_{12} : 2 \times 2 \quad \mathbf{J}_{22} : 2 \times 2$$

$$\mathbf{J}_{13} : 1 \times 1 \quad \mathbf{J}_{23} : 1 \times 1$$

$$\mathbf{J}_{11}, \mathbf{J}_{21} \quad \mathbf{J}_{12}, \mathbf{J}_{22} \text{ and } \mathbf{J}_{13}, \mathbf{J}_{23} \text{ are similar },$$

$$\mathbf{J}_{1}, \mathbf{J}_{2} \text{ are similar }$$

$$\implies \mathbf{N}_{1}, \mathbf{N}_{2} \text{ are similar }$$

Case 3:

$$\mathbf{J_{1}} = \begin{pmatrix} \mathbf{J_{11}} & 0 & 0 & 0 \\ 0 & \mathbf{J_{12}} & 0 & 0 \\ 0 & 0 & \mathbf{J_{13}} & 0 \\ 0 & 0 & 0 & \mathbf{J_{14}} \end{pmatrix} \quad \mathbf{J_{2}} = \begin{pmatrix} \mathbf{J_{21}} & 0 & 0 & 0 \\ 0 & \mathbf{J_{22}} & 0 & 0 \\ 0 & 0 & \mathbf{J_{23}} & 0 \\ 0 & 0 & 0 & \mathbf{J_{24}} \end{pmatrix}$$

$$\mathbf{J_{11}} : 3 \times 3 \quad \mathbf{J_{21}} : 3 \times 3$$

$$\mathbf{J_{12}} : 1 \times 1 \quad \mathbf{J_{22}} : 1 \times 1$$

$$\mathbf{J_{13}} : 1 \times 1 \quad \mathbf{J_{23}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{15}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{15}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

$$\mathbf{J_{25}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

 J_1, J_2 are similar \implies N₁, N₂ are similar

Matrix size - 6, Jordan size - 2+2+2, Jordan size -2+2+1+1, Jordan size -2+1+1+1+1

There are three different possibilities for Jordan blocks,

From (2) \mathbf{J}_{11} , \mathbf{J}_{21} are of dimension 2, From (3) **J** have same number of Jordan blocks Case 1:

$$\begin{split} \boldsymbol{J_1} = \begin{pmatrix} \boldsymbol{J_{11}} & 0 & 0 \\ 0 & \boldsymbol{J_{12}} & 0 \\ 0 & 0 & \boldsymbol{J_{13}} \end{pmatrix} \quad \boldsymbol{J_2} = \begin{pmatrix} \boldsymbol{J_{21}} & 0 & 0 \\ 0 & \boldsymbol{J_{22}} & 0 \\ 0 & 0 & \boldsymbol{J_{23}} \end{pmatrix} \\ & \boldsymbol{J_{11}} : 2 \times 2 \quad \boldsymbol{J_{21}} : 2 \times 2 \\ & \boldsymbol{J_{12}} : 2 \times 2 \quad \boldsymbol{J_{22}} : 2 \times 2 \\ & \boldsymbol{J_{13}} : 2 \times 2 \quad \boldsymbol{J_{23}} : 2 \times 2 \\ & \boldsymbol{J_{13}} : 2 \times 2 \quad \boldsymbol{J_{23}} : 2 \times 2 \end{split}$$

 J_1, J_2 are similar \implies N₁, N₂ are similar

Case 2:

$$\mathbf{J_{1}} = \begin{pmatrix} \mathbf{J_{11}} & 0 & 0 & 0 \\ 0 & \mathbf{J_{12}} & 0 & 0 \\ 0 & 0 & \mathbf{J_{13}} & 0 \\ 0 & 0 & 0 & \mathbf{J_{14}} \end{pmatrix} \quad \mathbf{J_{2}} = \begin{pmatrix} \mathbf{J_{21}} & 0 & 0 & 0 \\ 0 & \mathbf{J_{22}} & 0 & 0 \\ 0 & 0 & \mathbf{J_{23}} & 0 \\ 0 & 0 & 0 & \mathbf{J_{24}} \end{pmatrix}$$

$$\mathbf{J_{11}} : 2 \times 2 \quad \mathbf{J_{21}} : 2 \times 2$$

$$\mathbf{J_{12}} : 2 \times 2 \quad \mathbf{J_{22}} : 2 \times 2$$

$$\mathbf{J_{13}} : 1 \times 1 \quad \mathbf{J_{23}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

 J_{11}, J_{21} J_{12}, J_{22} and J_{13}, J_{23} J_{14}, J_{24} are similar, J_1, J_2 are similar \implies N₁, N₂ are similar

Case 3:

$$\mathbf{J_{1}} = \begin{pmatrix} \mathbf{J_{11}} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{J_{12}} & 0 & 0 & 0 \\ 0 & 0 & \mathbf{J_{13}} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{J_{14}} & 0 \\ 0 & 0 & 0 & 0 & \mathbf{J_{15}} \end{pmatrix} \quad \mathbf{J_{2}} = \begin{pmatrix} \mathbf{J_{21}} & 0 & 0 & 0 & 0 \\ 0 & \mathbf{J_{22}} & 0 & 0 & 0 \\ 0 & 0 & \mathbf{J_{23}} & 0 & 0 \\ 0 & 0 & 0 & \mathbf{J_{24}} & 0 \\ 0 & 0 & 0 & \mathbf{J_{24}} & 0 \\ 0 & 0 & 0 & \mathbf{J_{25}} \end{pmatrix}$$

$$\mathbf{J_{11}} : 2 \times 2 \quad \mathbf{J_{21}} : 2 \times 2$$

$$\mathbf{J_{12}} : 1 \times 1 \quad \mathbf{J_{22}} : 1 \times 1$$

$$\mathbf{J_{13}} : 1 \times 1 \quad \mathbf{J_{23}} : 1 \times 1$$

$$\mathbf{J_{14}} : 1 \times 1 \quad \mathbf{J_{24}} : 1 \times 1$$

$$\mathbf{J_{15}} : 1 \times 1 \quad \mathbf{J_{25}} : 1 \times 1$$

 $J_{11},J_{21}\quad J_{12},J_{22}$ and $J_{13},J_{23}\quad J_{14},J_{24}\quad J_{15},J_{25}$ are similar , $\mathbf{J}_1, \mathbf{J}_2$ are similar \implies **N**₁, **N**₂ are similar

1+1+1+1+1+1

Matrix size - 6, Jordan size- $| \mathbf{J_1}$ and $\mathbf{J_2}$ will have same number of blocks because of (3).

Table1:Solution