Differential and Integral Calculus : Recitations

Aakash Jog

2014-15

Contents

1	Instructor Information	3
Ι	Sequences and Series	4
1	Sequences	4
	Recitation 1 – Exercise 1	. 4
	Recitation 1 – Solution 1	. 4
	Recitation 1 – Exercise 2	. 4
	Recitation 1 – Solution 2	. 5
	Recitation 1 – Exercise 3	. 5
	Recitation 1 – Solution 3	. 5
	Recitation 1 – Exercise 4	. 5
	Recitation 1 – Solution 4	. 6
	Recitation 1 – Exercise 5	. 6
	Recitation 1 – Solution 5	. 6
	1.1 Limit of a Function by Heine	. 7
	Recitation 2 – Exercise 1	. 7
	Recitation 2 – Solution 1	. 7

© (§ (§)

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

	1.2 Sub-sequences	7
	Recitation 2 – Exercise 2	8
	Recitation 2 – Solution 2	8
2	Series	9
	Recitation 2 – Exercise 3	Ö
	Recitation 2 – Solution 3	10
	Recitation 2 – Exercise 4	10
	Recitation 2 – Solution 4	10
	Recitation 2 – Exercise 5	10
	Recitation 2 – Solution 5	10
	2.1 Comparison Tests for Positive Series	11

1 Instructor Information

Michael Bromberg

 $\hbox{E-mail: micbromberg@gmail.com}$

Part I

Sequences and Series

1 Sequences

Recitation 1 – Exercise 1.

Prove:

$$\lim_{n \to \infty} \frac{2n^2 + n + 1}{n^2 + 3} = 2$$

Recitation 1 – Solution 1.

Let

$$\varepsilon > 0$$

$$\left| \frac{2n^2 + n + 1}{n^2 + 3} - 2 \right| = \left| \frac{2n^2 + n + 1 - 2n^2 - 6}{n^2 + 3} \right|$$

$$= \left| \frac{n - 5}{n^2 + 3} \right|$$

$$\leq \left| \frac{n - 5}{n^2} \right|$$

$$\leq \frac{1}{n}$$

$$< \varepsilon$$

Therefore, let $N = \left[\frac{1}{\varepsilon}\right] + 1$. Hence, for this N, $|a_n - L| < \varepsilon$. Therefore, $\lim_{n \to \infty} \frac{2n^2 + n + 1}{n^2 + 3} = 2$.

Recitation 1 – Exercise 2.

Prove

$$\lim_{n \to \infty} \frac{n^3 + \sin n + n}{2n^4} = 0$$

Recitation 1 – Solution 2.

Let $\varepsilon > 0$

$$\left| \frac{n^3 + \sin n + n}{2n^4} \right| \le \left| \frac{n^3 + 1 + n}{2n^4} \right|$$
$$\le \left| \frac{3n^3}{2n^4} \right| = \frac{3}{2} \cdot \frac{1}{n} < \varepsilon$$

Therefore, let $N = \left[\frac{3}{2\varepsilon}\right] + 1$. Hence, for this N, $|a_n - L| < \varepsilon$. Therefore, $\lim_{n \to \infty} \frac{n^3 + \sin n + n}{2n^4} = 0$

Recitation 1 – Exercise 3.

Calculate $\sqrt[3]{n^3 + 3n} - n$.

Recitation 1 – Solution 3.

$$a^{n} - b^{n} = (a - b) \cdot (a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

Therefore, let

$$a = \sqrt[3]{n^3 + 3n}$$
$$b = \sqrt[3]{n^3}$$

$$a - b = \frac{a^3 - b^3}{a^2 + ab + b^2}$$

$$\therefore \sqrt[3]{n^3 + 3n} - n = \frac{n^3 + 3n - n^3}{(n^3 + 3n)^{2/3} + (n^3 + 3n)^{1/3}n + n^2}$$

$$= \frac{3}{\left(\frac{n^3 + 3n}{n^{3/2}}\right)^{2/3} + \left(\frac{n^3 + 3n}{n^3}\right)^{1/3n} + n}$$

Therefore, the limit is 0.

Recitation 1 – Exercise 4.

Prove

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Recitation 1 – Solution 4.

$$0 \le \frac{n!}{n^n} = \frac{1}{n} \frac{2}{n} \dots \frac{n}{n} \le \frac{1}{n}$$

Therefore, by the Sandwich Theorem, $\lim_{n\to\infty} \frac{n!}{n^n} = 0$.

Recitation 1 – Exercise 5.

Let $a_1 = 3$, $a_{n+1} = 1 + \sqrt{6 + a_n}$. Prove that a_n converges and find its limit.

Recitation 1 – Solution 5.

If possible, let $\lim_{n\to\infty} a_n = l$.

$$a_{n+1} = 1 + \sqrt{6 + a_n}$$

Taking the limit on both sides,

$$l = 1 + \sqrt{6 + l}$$

$$\therefore l - 1 = \sqrt{6 + l}$$

$$\therefore l = \frac{3 \pm \sqrt{29}}{2}$$

As
$$a_n \ge 0$$
, $l = \frac{3 + \sqrt{29}}{2}$.

$$a_2 = 1 + \sqrt{6 + a_1}$$
$$= 1 + \sqrt{6 + 3}$$
$$= 4$$

$$a_1 > a_1 > a_1$$

If possible, let $a_n \ge a_{n-1}$. Therefore,

$$a_{n+1} = 1 + \sqrt{6 + a_n}$$

$$\geq 1 + \sqrt{6 + a_{n+1}} = a_n$$

Therefore by induction, $\{a_n\}$ is monotonically increasing.

$$a_1 = 3$$

$$\therefore a_1 \le 5$$

If possible, let $a_n \leq 5$. Therefore,

$$a_{n+1} = 1 + \sqrt{6 + a_n} \le q + \sqrt{11} \le 5$$

Therefore by induction, $\{a_n\}$ is bounded from above by 5.

1.1 Limit of a Function by Heine

Definition 1.

$$\lim_{x \to x_0} f(x) = l$$

if for every sequence x_n , such that $\lim_{n\to\infty} x_n = x_0$,

$$\lim_{n \to \infty} f(x_n) = l$$

Theorem 1. If f is continuous at x_0 and $x_n \to x_0$, then

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f_{x_0}$$

Recitation 2 – Exercise 1.

Calculate $\lim_{n\to\infty} \sqrt[n]{n}$.

Recitation 2 – Solution 1.

Let

$$f(x) = x^{1/x}$$

Therefore,

$$\lim_{x \to \infty} x^{1/x} = \lim_{x \to \infty} e^{\frac{\ln x}{x}}$$

$$= 1$$

1.2 Sub-sequences

Recitation 2 – Exercise 2.

Find all partial limits and $\overline{\lim}$ and $\underline{\lim}$ of

$$a_n = \left(\cos\frac{\pi n}{4}\right)^n$$

Recitation 2 – Solution 2.

Let $k, z \in \mathbb{Z}$

$$\cos \frac{\pi n}{4} = \cos \frac{\pi (n+k)}{4}$$

$$\therefore \frac{\pi n}{4} = \frac{\pi (n+k)}{4} + 2\pi z$$

$$\therefore \pi n = \pi (n+k) + 8\pi z$$

$$\therefore k = 8z$$

Therefore,

$$a_{8k} = \left(\cos\frac{\pi \cdot 8k}{4}\right)^{8k}$$

$$= (\cos(2\pi k))^{8k}$$

$$= 1$$

$$a_{8k+1} = \left(\cos\frac{\pi \cdot (8k+1)}{4}\right)^{8k+1}$$

$$= \left(\cos\frac{\pi}{4}\right)^{8k+1}$$

$$= \left(\frac{\sqrt{2}}{2}\right)^{8k+1}$$

$$= \left(\cos\frac{\pi}{4}\right)^{8k+2}$$

$$= \left(\cos\frac{\pi}{2}\right)^{8k+2}$$

$$= \left(\cos\frac{\pi}{2}\right)^{8k+2}$$

Therefore,

$$\lim_{k \to \infty} a_{8k} = 1$$

$$\lim_{k \to \infty} a_{8k+1} = \lim_{k \to \infty} \left(\frac{\sqrt{2}}{2}\right)^{8k+1}$$

$$= 0$$

Similarly,

$$\lim_{k \to \infty} a_{8k+2} = 0$$

$$\lim_{k \to \infty} a_{8k+3} = 0$$

$$\lim_{k \to \infty} a_{8k+4} = \lim_{k \to \infty} (-1)^{8k+4}$$

$$= 1$$

$$\lim_{k \to \infty} a_{8k+5} = 0$$

$$\lim_{k \to \infty} a_{8k+6} = 0$$

$$\lim_{k \to \infty} a_{8k+7} = 0$$

Therefore, $\{a_n\}$ has two partial limits, 0 and 1.

$$\overline{\lim}a_n = 1$$
$$\underline{\lim}a_n = 0$$

2 Series

Definition 2 (Convergence of a series). Let $\{a_n\}$ be a sequence. Let S_n be a sequence of partial sums of a_n , s.t.

$$S_n = \sum_{k=1}^n a_k$$

The series $\sum_{k=1}^{\infty} a_k$ is said to converge to l if

$$\lim_{n \to \infty} S_n = l$$

that is,

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \sum_{k=1}^{n} a_k = \lim_{n \to \infty} S_n$$

Recitation 2 - Exercise 3.

Does
$$\sum_{k=0}^{\infty} q^k$$
 where $-1 < q < 1$ converge?

Recitation 2 – Solution 3.

$$\sum_{k=0}^{\infty} q^k = \lim_{n \to \infty} \sum_{k=0}^n q^k$$
$$= \lim_{n \to \infty} \frac{1 - q^{n+1}}{1 - q}$$
$$= \frac{1}{1 - q}$$

Therefore, the series converges.

Recitation 2 – Exercise 4.

Does
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$
 converge?

Recitation 2 – Solution 4.

$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)$$

$$= 1$$

Recitation 2 – Exercise 5.

Does
$$\sum_{k=1}^{\infty} \left(1 + \frac{1}{k}\right)^k$$
 converge?

Recitation 2 – Solution 5.

$$\lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k = e$$
$$\therefore \lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k \neq 0$$

Therefore, the necessary condition is nt satisfied. Hence, the series does not converge.

2.1 Comparison Tests for Positive Series

Theorem 2 (First Comparison Test). If $a_n \ge 0$, $b_n \ge 0$, and $a_n \le b_n$, then

- 1. If $\sum b_n$ converges, then $\sum a_n$ converges.
- 2. If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Theorem 3 (Second Comparison Test). If $a_n \geq 0$, $b_n \geq 0$ and

$$\lim_{n \to \infty} \frac{a_n}{b_n} = l$$

where $0 < l < \infty$, then $\sum a_n$ and $\sum b_n$ converge or diverge simultaneously.