On the minimal number of generators of a finite group

Diogo Santos

November 4, 2024

Introduction

ullet Finding the minimal number of gentators of a finite group H

Introduction

- Finding the minimal number of gentators of a finite group H
 Can be reduced to:
 - Finding the minimal number of gentators of a finite group H such that $d(H/N) \le m$ for every non-trivial normal subgroup N, but d(H) > m

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

Proof.

• $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

- $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.
- If P_1, \ldots, P_n are cyclic, we obtain $H \cong \mathbb{Z}_{p_1 \ldots p_n}$ which contradicts d(H) > 1. Without loss of generality we can thus assume that P_1 is not cyclic.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

- $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.
- If P_1, \ldots, P_n are cyclic, we obtain $H \cong \mathbb{Z}_{p_1 \ldots p_n}$ which contradicts d(H) > 1. Without loss of generality we can thus assume that P_1 is not cyclic.
- $n \ge 2 \implies P_1 \cong H/(1 \times P_2 \dots \times P_n)$ and thus $d(P_1) = d(H/(1 \times P_2 \dots \times P_n)) = 1$, contradiction.

Theorem

Let H be a finite nilpotent group such that $d(H/N) \leq 1$ for every non-trivial normal subgroup N, but d(H) > 1. Then $H \cong \mathbb{Z}_p \times \mathbb{Z}_p$ for some prime p.

- $H = P_1 \times ... \times P_n$ where P_i is a Sylow p_i -subgroup for $1 \le i \le n$ and $p_1, ..., p_n$ are distinct primes.
- If P_1, \ldots, P_n are cyclic, we obtain $H \cong \mathbb{Z}_{p_1 \ldots p_n}$ which contradicts d(H) > 1. Without loss of generality we can thus assume that P_1 is not cyclic.
- $n \ge 2 \implies P_1 \cong H/(1 \times P_2 \dots \times P_n)$ and thus $d(P_1) = d(H/(1 \times P_2 \dots \times P_n)) = 1$, contradiction.
- Since $d(H) = d(H/\Phi(H))$, $\Phi(H) = 1$

Proof.

• $H \cong H/\Phi(H)$ is a \mathbb{Z}_{p_1} -vector space and thus $H = (\mathbb{Z}_{p_1})^q$

- $H \cong H/\Phi(H)$ is a \mathbb{Z}_{p_1} -vector space and thus $H = (\mathbb{Z}_{p_1})^q$
- *q* = 2 since

$$q-1=d((\mathbb{Z}_{p_1})^{q-1})=d(H/(\mathbb{Z}_{p_1}\times 1\times \ldots \times 1))=1.$$

The groups L_k

Definition

Given a positive integer k, the group L_k is a subgroup of L^k defined by:

$$L_k = \{(I_1, \ldots, I_k) \in L^k | I_1 M = \ldots = I_k M \}.$$

The groups L_k

Definition

Given a positive integer k, the group L_k is a subgroup of L^k defined by:

$$L_k = \{(I_1, \ldots, I_k) \in L^k | I_1 M = \ldots = I_k M \}.$$

The group L_k can be described as $diag(L^k)M^k$.

•
$$soc(L_k) = M^k$$

- $soc(L_k) = M^k$
- $L_k/M^k \cong L/M$

- $soc(L_k) = M^k$
- $L_k/M^k \cong L/M$
- If M is abelian and complemented by C in L, then M^k is complemented by $diag(C^k)$

- $soc(L_k) = M^k$
- $L_k/M^k \cong L/M$
- If M is abelian and complemented by C in L, then M^k is complemented by $diag(C^k)$
- The quotient of L_{k+1} by any of its minimal normal subgroups is isomorphic to L_k

General Case

Theorem

Let m be an integer with $m \ge 1$ and H a finite group such that $d(H/N) \le m$ for every non-trivial normal subgroup N, but d(H) > m. Then there exists a group L which has a unique minimal normal subgroup M and is such that M is either non-abelian or complemented in L and $H \cong L_{f(L,m)}$.