

Semester S1 – Module 3

Module Fundamentals of coherent photonics

TUTORIAL LASERS_1

LASER EFFICIENCY

Exercise 1

A Fabry-Perot laser made up of two mirrors M_1 and M_2 and a 4-level amplifying medium. M_2 is the rear mirror of reflectivity R_2 . M_1 is the output coupler of reflectivity R_1 .

- **1-a)** Give the expression of the small-signal gain coefficient in the case of a four-level laser as a function of ΔN_0 and then as a function of the pumping rate Wp. We give the expression of population inversion in the case of low pumping $\Delta N_0 = \tau N_a W_p$.
- **1-b)** The pump power is related to the pumping rate by the relationship $W_p = \eta_P \frac{P_{pump}}{VN_ahv}$. η_P is the intrinsic efficiency, i. e. the percentage of the pump power transformed into laser power by removing the losses introduced by the resonator and by the output coupler. V is the pumping volume.

Find a new expression of the small-signal gain coefficient as a function of pump power and saturation intensity.

- **2-a)** From the expression of the intracavity intensity seen in class, put the intracavity power in the form $P = SI_{sat}\left(\frac{2\gamma_0 d}{\delta \ln R_1} 1\right)$ where S is the useful area of the gain medium, d is the length of the amplifying medium and δ the losses that do not include the output coupler. We will give the expression of δ .
- **2-b)** Calculate P_{out} , the output power of the laser, as a function of P_{pump} the pump power and of the transmission coefficient T_1 of the output coupler. The reflectivity R_1 of the output coupler is considered to be close to one.
- 2-c) Plot Pout according to Ppump. What does the abscissa at the origin represent?

Fundamentals of photonics A. Desfarges-Berthelemot -1-

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

3) The amplifying medium is a Nd:YAG crystal. The saturation intensity is 2.9 kW/cm². The reflection coefficient of the output coupler is R_1 = 0.9, the intrinsic efficiency η_p is 73% and the losses are δ = 5%. The diameter of the laser beam in the crystal is 300 μ m. Calculate the pump power at the threshold, the slope of the curve and the output power of the laser when the pump power is 2W.

Exercise 2

The laser output power is a function of the power transmission coefficient T_1 (or reflection coefficient R_1) of the output coupler.

- 1) Explain why there is an optimal value T_{1opt} of T_1 for which the output power P_{out} is maximum.
- 2) Determine $T_{1\text{opt}}$ and the corresponding power $P_{\text{out, opt}}$ corresponding as a function of γ_0 , d and δ . We will assume that R_1 is close to one. We recall the expression of the intracavity power $P = SI_{sat} \left(\frac{2\gamma_0 d}{\delta \ln R_1} 1 \right)$.
- 3) Make digital applications for Isat = 2.9 kW/cm2, $2\gamma_0 d = 1$, $\delta = 0.1$, S = 0.4 cm².
