# PTCL Gene Expression based classification

Integration of Transcriptional and Mutational Data Improves the Stratification of Peripheral T-Cell Lymphoma series

## true true 2018/07/18

## Contents

| Libraries                                                                                     | 2          |
|-----------------------------------------------------------------------------------------------|------------|
| Ensembl Library                                                                               | 3          |
| Gene Expression Data                                                                          | 3          |
| Patients Data                                                                                 | 4          |
| Database metrics                                                                              | Ę          |
| PCA                                                                                           | Ę          |
| PCA                                                                                           | $\epsilon$ |
| Heatmap of hierarchical clustering on most variable genes                                     | 7          |
| Check relative log expression after batch correction                                          | 8          |
| Build Gene Expression Matrix                                                                  | g          |
| Model fitting procedure                                                                       | 10         |
| Check Differentially Expressed Genes                                                          | 11         |
| Calculate significant effects per covariate                                                   | 12         |
| Extract the list of differentially expressed genes by mutations                               | 12         |
| Example of single gene extraction                                                             | 12         |
| Plot significant effects per covariate (q<0.01) $\dots$                                       | 13         |
| Print the list of differently expressed genes using the Ensembl annotation                    | 15         |
| Generate a heatmap with AITL, PTCL-NOS with the extracted differentially expressed genes.     | 16         |
| LOOCV on AILT, PTCLnos based on 16-gene model                                                 | 20         |
| Extracting the most significant clusters based on 19-gene signature                           | 21         |
| Plot heatmap AITL, PTCL-NOS, ALCL-neg and the 19-gene model                                   | 32         |
| Cibersort to characterize tumour microenviroment composition of each cluster                  | 36         |
| Boxplot comparing the contribution of each cibersort signature between all extracted clusters | 38         |

R tmod analysis 43

```
Built with R version: 3.5.0
```

Built with R version: 3.5.0

## Libraries

Load necessary libraries

```
library(affy)
library(ComplexHeatmap)
library(plot3D)
library(gplots)
library(circlize)
library(AnnotationDbi)
library(limma)
library(lattice)
library(org.Hs.eg.db)
library(MASS)
library(RColorBrewer)
library(AnnotationDbi)
library(rglwidget)
###library(hgu133plus2hsentrezgcdf)
library(VennDiagram)
library(org.Hs.eg.db)
library(GenomicRanges)
library(GenomicFeatures)
library(rtracklayer)
library(biomaRt)
library(glmnet)
library(survival)
library(Hmisc)
library(ConsensusClusterPlus)
library(pheatmap)
library(ggplot2)
library(heatmap.plus)
library(rgl)
#library(caret) ## unselect to generate LOOCV accuracy table
#library(e1071) ## unselect to generate LOOCV accuracy table
library(tmod)
set1 = c(brewer.pal(9, "Set1"), brewer.pal(8, "Dark2"))
violinJitter <- function(x, magnitude=1){</pre>
  d <- density(x)</pre>
  data.frame(x=x, y=runif(length(x),-magnitude/2, magnitude/2) * approxfun(d$x, d$y)(x))
}
```

```
rotatedLabel <- function(x0 = seq_along(labels), y0 = rep(par("usr")[3], length(labels)), labels, pos =
  w <- strwidth(labels, units="user", cex=cex)
 h <- strheight(labels, units="user",cex=cex)
 u <- par('usr')</pre>
  p <- par('plt')</pre>
  f <- par("fin")</pre>
  xpd <- par("xpd")</pre>
  par(xpd=NA)
  text(x=x0 + ifelse(pos==1, -1, 1) * w/2*cos(srt/360*2*base::pi), y = y0 + ifelse(pos==1, -1, 1) * w/2 *
  par(xpd=xpd)
avefc = function (y, log=TRUE, replace= FALSE) {
     if (\log) y = 2^y
   if (replace) y = y + (1-min(y))
   m = apply(y, 1, mean)
    y.n = y/m
     y.n2 = y.n
     y.n2 [y.n2 < 1] = 1/ (y.n2 [y.n2 < 1])
     ave.fc = apply (y.n2, 1, mean)
     return(ave.fc)
```

## **Ensembl Library**

For gene convertion from array to HUGO

```
ensembl = useMart( "ensembl", dataset = "hsapiens_gene_ensembl" )
```

## Gene Expression Data

Upload or generate GEP normalized matrix

```
### choice 1: import processed matrix
# data.dir="./Rmd.files/"
data.dir = '/Users/emagene/Dropbox/codes/github/PTCL/'
setwd(data.dir)
load (file.path(data.dir,"/Rmd.files/541_PTCL_batch_adjusted_geo.id.Rdata"))

geneExpr = adj.data
# import batch and re-order accordingly
load(file.path(data.dir,"/Rmd.files/PTCL.batch.Rdata"))
batch = batch [order(batch$nameNEW),]
batch.series = as.vector(batch$center)
batch$cancer = "cancer"

# ### OPTIONAL: CHECK BATCH ON FINAL.MOLEC
#
# #mod = model.matrix(~as.factor(center), data=batch)
# mod = model.matrix(~as.factor(final.molec), data=design)
```

```
# mod0 = model.matrix(~1, data= batch)
# library(sva)
# n.sv = num.sv(adj.data,mod,method="leek")
\# svobj = sva(adj.data, mod, mod0, n. <math>sv=n.sv)
# pValues = f.pvalue(adj.data,mod,mod0)
# qValues = p.adjust(pValues,method="BH")
\# modSv = cbind(mod, svobj\$sv)
\# modOSv = cbind(modO, svobj\$sv)
# pValuesSv = f.pvalue(adj.data,modSv,modOSv)
# qValuesSv = p.adjust(pValuesSv,method="BH")
### end of choice 1
### choice 2: generate your own affy object and custom data
# download CEL files from GEO series GSE6338, GSE19067, GSE19069, GSE40160, GSE58445, GSE65823 and EBI
# GSM368580.CEL, GSM368582.CEL, GSM368584.CEL, GSM368586.CEL, GSM368589.CEL, GSM368591.CEL, GSM368594.C
### celfiles <- dir("~/Documents/DATI/PTCL.nos/GSE6338-GSE19067-GSE19069-GSE40160-GSE58445-GSE65823-ETA
### library(affy)
### gset = justRMA(celfile.path = "/Users/emagene/Documents/DATI/PTCL.nos/GSE6338-GSE19067-GSE19069-GSE
### geneExpr = exprs(gset)
### batch adjustment
### library(sva)
### # import batch and re-order accordingly
### load("./Rmd.files/PTCL.batch.Rdata")
### batch = batch [order(rownames(batch)),]
### batch.series = as.vector(batch$center)
### geneExprNEW = geneExpr [ , order(colnames(geneExpr)) ]
### geneExprNEW = geneExprNEW[grep("AFFX",rownames(geneExprNEW), invert=TRUE),]
### # check order correspondence and, if correct, adjust data
### if (all(colnames(geneExprNEW) == rownames(batch))) {
###
      adj.data = ComBat (geneExprNEW, batch.series, mod = NULL, par.prior = TRUE, prior.plots = TRUE)
### } else {
###
      cat("Error: colnames and batch did not correspond")
### }
### geneExpr = adj.data
### colnames(geneExpr) = as.vector(batch$nameNEW)
### end of choice 2
```

#### **Patients Data**

## [7] "T.CD30"

Upload patients information with mutational data

"T.CD4"

"T.CD8"

```
pts.info.data <- read.table("./Rmd.files/541_paz_info_MUT.txt", sep="\t", header=TRUE, check.names=FALS.
# customize colors for categories
levels(as.factor(pts.info.data$final.molec))
## [1] "AITL" "ALCL.neg" "ALCL.pos" "ATLL" "NKT" "PTCL.nos"</pre>
```

"T.reg"

"TCR-HL"

"T.DR"

```
# "AITL" "ALCL.neg" "ALCL.pos" "ATLL" "NKT" "PTCL.nos" "T.CD30" "T.CD4" "T.CD8"
colorz = c("black", "yellow", "dodgerblue2", "brown2", "darkorchid1", "orange", "grey42", "grey52", "grey62
temp = split ( pts.info.data$sample.nameNEW, pts.info.data$final.molec )
colorx = colnames(geneExpr)
length(colorz)
## [1] 12
length(temp)
## [1] 12
for (i in 1:length(colorz)) colorx [ which(colorx %in% unlist(temp[i])) ] = colorz[i]
library(gplots)
colorx = col2hex(colorx)
### build design matrix and transform to numerical
design <- pts.info.data[,c(1:2,6:8,14:17)]</pre>
rownames(design)<- design[,1]</pre>
design<- design[,-c(1:2)]</pre>
#design<-na.omit(design) ### select onyl patients with all mutations data available (n=53)
design$age<- as.numeric(as.character(design$age))</pre>
design$age<- design$age - median(design$age)</pre>
design[design == "WT"] <- 0</pre>
design[design == "MUT"] <- 1</pre>
design$final.molec[design$final.molec=="AITL"] <- 0</pre>
design$final.molec[design$final.molec=="PTCL.nos"] <- 1</pre>
design$final.molec[design$final.molec=="ALCL.neg"] <- 2</pre>
design$final.molec[design$final.molec=="ALCL.pos"] <- 3</pre>
design$final.molec[design$final.molec=="ATLL"] <- 4</pre>
design$final.molec[design$final.molec=="NKT"] <- 5</pre>
design$final.molec[477:541] <- 6
design$gender[design$gender=="M"] <- 1</pre>
design$gender[design$gender=="F"] <- 0</pre>
design$age = NULL
all(pts.info.data$sample.nameNEW == batch$nameNEW)
```

## [1] TRUE

## Database metrics

## **PCA**

```
slices <- table(pts.info.data$final.molec)
lbls <- names(table(pts.info.data$final.molec))
pct <- round(slices/sum(slices)*100)
lbls <- paste(lbls, ": ", slices, " (", pct, "%)", sep="" ) # add percents to labels
#pdf("Figure_1a_pie_plot.pdf", width = 5, height = 5)</pre>
```

```
par(mfrow=c(1,1))
par(mar=c(3,3,3,3), xpd=F)
pie(slices,labels = lbls, init.angle = 0, col=colorz, main="", cex=0.6, radius=0.8)
```



## #dev.off()

rglwidget()

## PCA

```
# apply variational filter

afc2 = avefc(geneExpr, log=TRUE, replace=FALSE)
data541exprs.vf = geneExpr [afc2 >= 2, ]
dim(data541exprs.vf)

## [1] 1840 541

# retry PCA on shorted gene list
data541m = t(as.matrix(data541exprs.vf))
pca<-prcomp(data541m,scale=T)
mfrow3d(nr = 1, nc = 1, sharedMouse = T)
plot3d(pca$x,rgl.use=F,col=colorx,size=0.6,type="s")</pre>
```

## Heatmap of hierarchical clustering on most variable genes

```
mat = as.matrix(data541exprs.vf)
base_mean = rowMeans(mat)
mat_scaled = t(apply(mat, 1, scale))
types = pts.info.data$final.molec
color.annot = col2hex(colorz); names (color.annot) = names(temp)
ha = HeatmapAnnotation(df = data.frame(type = types) , col = list(type = c( color.annot ) ) )
ha@anno_list[[1]]@color_mapping@colors = col2hex(colorz)
names(ha@anno_list[[1]]@color_mapping@colors) = names(temp)
ht = Heatmap(mat_scaled, name = "expression", km = 7, clustering_method_columns = "ward.D", col = color
column_order(ht)
##
     [1] 91 236 85 86 429 88 64 311 270 271 229 231 180 257 87 227 258
    [18] 304 309 436 431 234 148 147 31 29 450 281 500 521 499 273 272 269
    [35] 522 520 501 519 498 518 497 505 506 504 486 485 482 483 484 502 503
##
    [52] 524 527 529 528 530 532 531 525 526 523 434 61 182 176 63 83
   [69] 445 230 515 517 513 296 298 516 494 492 496 493 314 297 294 295 293
   [86] 289 292 512 507 511 510 509 291 290 514 508 448 447 444 440 396 397
```

```
## [103] 395 394 391 50 51 187 192 433 349 363 385 428 435 427 389 366 491
## [120] 401 334 459 392 402 388 457 463 446 380 351 474 372 376 489 487 537
## [137] 488 534 536 495 490 535 533 481 479 478 480 477 264 261 268 259 262
## [154] 253 267 265 266 263 65 254 256 255 318 308 320 319 315 324 326 313
## [171] 280 299 285 316 286 278 344 330 430 331 275 305 307 136 426 184 162
## [188] 167 422 421 469 341 245 160 179 153 443 449 181 149 368 186 164 141
## [205] 194 218 161 98 300 312 84 442 323 301 174 306 248 329 325 178 139
## [222] 145 142 144 185 157 249 172 177 158 183 150 170 171 152 131 134 137
## [239] 216 214 213 241 202 205 203 191 130 133 195 215 244 211 246 238 197
## [256] 224 226 225 169 538 168 539 540 219 223 220 221 222 206 204 232 242
## [273] 200 243 143 250 154 207 198 235 240 247 252 163 155 383 188 239 417
## [290] 276 406  93 303 339 109  53 124  82  26  32  23  22  20 189  18 398
## [307] 41 44 10 193 217 129
                                  2 140 208 251 199 201 209 210 212 233 237
## [324] 288 284 420 439 274 352 287 441 328 283 282 321 317 310 279 322 332
## [341] 302 348 419 399 387 166 159 337 467 151 277 355 359 410 353 470 475
## [358] 466 175 370 42 411 374 393 404 327 456 94 432 541 156 173 146 165
## [375] 135 128 106 458 361 364 354 90 454
                                            27 403 138 196 462 453 338 415
## [392] 407 379 371 464 461 110 79 121 45 405 425
                                                    96 102 424 423 360 452
## [409] 451 365 358 89
                          1 28 19 347 101 260 455 59 418 367
                                                                 48
## [426] 333 132 17 378 350 468 346
                                      9 414 409 413 412 408 116
                                                                 70 122 123
## [443] 340 381 460 382 77
                             38 108 37 228
                                            49
                                                 68 67 416
                                                            62
                                                                 92
## [460] 103 126 36 120 127 56 74 13 12
                                             72 104 105 100
                                                                 30
## [477] 24 465 345 117 343 342 471 336 476 356
                                                 15
                                                     60 390 357 362
                                                                         97
                78 438
                         80 375 40 113 112
                                             52 58 400
## [494] 437
            39
                                                        57
                                                             55
                                                                 54
                                                                     76
                                                                         11
## [511] 114 73 75 472
                          3
                              6 377 119 47
                                             35 125
                                                      5
                                                        95 81
                                                                     46
                                                                        43
## [528] 16 14 386
                      8 473 335 111 384
                                          7 118 373 369 107 115
```

## Check relative log expression after batch correction

```
rle.custom = function (a, logged2 = TRUE, file = NULL, colorbox= NULL, labels=NULL, legend = NULL) {
    a.m <- apply(a,1,median)
if (logged2) {
   for (i in 1:dim(a)[2]) {
         a [,i] \leftarrow a [,i] - a.m
   }
   } else {
        for (i in 1:dim(a)[2]) {
         a [,i] <- log (a [,i] / a.m )
   }
   }
   # pnq(file,10240,3840)
   \# par(mar=c(10,4,6,2))
  \# boxplot (a, ylim=c(-5,5), outline=F, col=colorbox, xlab="pts", names=labels, las=2, cex.axis=1.
  # legend("bottomright",legend = c(levels(as.factor(pts.info.data$final.molec))),
       fill = colorz, # 6:1 reorders so legend order matches graph
       title = "Legend",
       cex = 5)
  # dev.off()
   a.c = apply(a, 2, stats::quantile)
    return(a.c)
}
```

```
#rle.medians = rle.custom(geneExpr, colorbox=colorx, file="./RLE.541.png", labels=pts.info.data$sample.
#plot(rle.medians[3,], type="l", xlab="pts", ylab="RLE median")
rle.medians = rle.custom(geneExpr, colorbox=colorx, file="./RLE.541.png", labels=pts.info.data$sample.n
plot(rle.medians[3,], type="l", xlab="pts", ylab="RLE median")
```



## **Build Gene Expression Matrix**

Define design file and filter geneExpr for patients included in design data frame and

```
design <- pts.info.data[,c(1:2,6:8,14:17)]
rownames(design)<- design[,1]
design<- design[,-c(1:2)]
design<-na.omit(design) ### select onyl patients with all mutations data available (n=53)
design$age<- as.numeric(as.character(design$age))
design$age<- design$age - median(design$age)
design[design == "WT"] <- 0
design[design == "MUT"] <- 1
design$final.molec[design$final.molec=="ATTL"] <- 0
design$final.molec[design$final.molec=="PTCL.nos"] <- 1
design$gender[design$gender=="M"] <- 1
design$gender[design$gender=="F"] <- 0
design$fiset <- rep(1, nrow(design))
design<-design[,c(8,1:7)]</pre>
```

```
all(pts.info.data$sample.nameNEW == colnames(geneExpr)) ## check correspondence

## [1] TRUE

# geneExpr = geneExpr [ , order (pts.info.data$geo.id)] ### do only to set correspondence in case of cu
# colnames(geneExpr) = pts.info.data$sample.nameNEW [ order (pts.info.data$geo.id)]

geneExpr2<- (geneExpr[, rownames(design)])
geneExpr2<- data.matrix(geneExpr2, rownames.force = NA)
design<- data.matrix(design, rownames.force = NA)</pre>
```

## Model fitting procedure

We use the lmFit function from the limma package. This comes with a whole series of powerful and reliable tests.

```
glm = lmFit(geneExpr2[,rownames(design)], design = design )
glm = eBayes(glm)
F.stat <- classifyTestsF(glm[,-1],fstat.only=TRUE)
glm$F <- as.vector(F.stat)</pre>
df1 <- attr(F.stat, "df1")</pre>
df2 <- attr(F.stat, "df2")</pre>
if(df2[1] > 1e6){
  glm$F.p.value <- pchisq(df1*glm$F,df1,lower.tail=FALSE)</pre>
}else
  glm$F.p.value <- pf(glm$F,df1,df2,lower.tail=FALSE)</pre>
set.seed(12345678)
rlm <- lmFit(geneExpr[,rownames(design)], apply(design, 2, sample))</pre>
rlm <- eBayes(rlm)</pre>
F.stat <- classifyTestsF(rlm[,-1],fstat.only=TRUE)
rlm$F <- as.vector(F.stat)</pre>
df1 <- attr(F.stat, "df1")</pre>
df2 <- attr(F.stat, "df2")</pre>
if(df2[1] > 1e6){
  rlm$F.p.value <- pchisq(df1*rlm$F,df1,lower.tail=FALSE)</pre>
}else
  rlm$F.p.value <- pf(rlm$F,df1,df2,lower.tail=FALSE)</pre>
F.stat <- classifyTestsF(glm[,2:5],fstat.only=TRUE)
df1 <- attr(F.stat, "df1")</pre>
df2 <- attr(F.stat, "df2")</pre>
F.p.value <- pchisq(df1*F.stat,df1,lower.tail=FALSE)
R.stat <- classifyTestsF(rlm[,2:5],fstat.only=TRUE)</pre>
Rall = 1 - \frac{1}{1 + glm} * (ncol(design) - 1)/(nrow(design) - ncol(design)))
Rgenetics = 1 - 1/(1 + F.stat * 4/(nrow(design)-ncol(design)))
Pgenetics = 1 - 1/(1 + R.stat * 4/(nrow(design)-ncol(design)))
names(Rgenetics) <- names(Pgenetics) <- names(Rall) <- rownames(geneExpr)</pre>
```

## Check Differentially Expressed Genes

```
par(bty="n", mgp = c(2,.33,0), mar=c(3,2.5,1,1)+.1, las=1, tcl=-.25, xpd=NA)
d <- density(Pgenetics,bw=1e-3)
f <- 40 #nrow(gexpr)/512

#pdf("Figure_2a_MAY.pdf", width = 10, height = 7)
par(mfrow=c(1,1))
par(mar=c(8,5,5,5), xpd=F)
plot(d$x, d$y * f, col='grey', xlab=expression(paste("Explained variance per gene ", R^2)), main="", lwtitle(ylab="Density", line=2.5, cex.lab=1.5)
d <- density(Rgenetics, bw=1e-3)
r <- min(Rgenetics[p.adjust(F.p.value,"BH")<0.01]) ####### threshold to select 412 genes x0 <- which(d$x>r)
polygon(d$x[c(x0[1],x0)], c(0,d$y[x0])* f, col=paste(set1[1],"44",sep=""), border=NA)
lines(d$x, d$y* f, col=set1[1], lwd=2)
text(d$x[x0[1]], d$y[x0[1]]*f +20, pos=4, paste(sum(Rgenetics > r), "genes q < 0.01"))
legend("topright", bty="n", col=c(set1[1], "grey"), lty=1, c("Observed","Random"), lwd=2)</pre>
```



```
#dev.off()
glmPrediction <- glm$coefficients %*% t(design)
rlmPrediction <- rlm$coefficients %*% t(design)</pre>
```

Print signficiant genes

```
kk<-as.data.frame((p.adjust(F.p.value,"BH")<0.01))
kk$gene<- rownames(kk)
colnames(kk)[1]<-"code"
kk2<-kk[kk$code=="TRUE",]
### sort(kk2$gene) ##### if you want to print the entire list of differentially expressed genes</pre>
```

## Calculate significant effects per covariate

Extract the list of differentially expressed genes by mutations

```
### customize colors in colMutations
\# colMutations = c(brewer.pal(8, "Set1")[-6], rev(brewer.pal(8, "Dark2")), brewer.pal(7, "Set2"))[c(1:12,12]]
# o <- order(apply(col2rgb(colMutations),2,rgb2hsv)[1,])
# colMutations <- colMutations[rev(o)][(4*1:19 +15) %% 19 + 1][1:7]
colMutations = col2hex(c("magenta", "purple", "gray60", "red", "lightblue", "green", "orange"))
names(colMutations) <- colnames(design)[-1]</pre>
gene_code<- kk2$gene
tab=NULL
for(i in (1:length(kk2$gene)))
 gene_single<- gene_code[i]</pre>
  y <- glm$coefficients[gene_single,-1]+glm$coefficients[gene_single,1]
  w <- glm$p.value[gene_single,-1] < 0.05
  int<-c(gene_single, as.character(w))</pre>
 tab<- rbind(tab, int)
}
rownames(tab)<-seq(1:nrow(tab))</pre>
colnames(tab)<- c("gene",colnames(design)[-1])</pre>
# Write to disk a file with all significant genes
\#write.table(tab, "table_differentially_expressed_gene.txt", sep="\t", quote=F, row.names = F, col.names
```

#### Example of single gene extraction

```
y <- glm$coefficients[gene_single,-1]+glm$coefficients[gene_single,1]
u <- par("usr")
x0 <- rep(u[3]+1,ncol(design)-1)
y0 <- u[4] + 0.05*(u[4]-u[3]) - rank(-y)/length(y) * (u[4]-u[3])/1.2
d <- density(y)
lines(d$x, d$y/5+1+u[3], col="grey")
lines(d$x, -d$y/5+1+u[3], col="grey")
points(x=y, y=x0+violinJitter(y, magnitude=0.25)$y, col=colMutations, pch=16, cex=1.5)
text(x=glm$coefficients[gene_single,1], y= 5.2, "Model coefficients", cex=0.8)
legend("topleft",names(colMutations), col = colMutations, bty= "n", cex = 1.2, pch = 16)</pre>
```



```
#dev.off()
```

Plot significant effects per covariate (q<0.01)

```
testResults <- decideTests(glm, method="hierarchical",adjust.method="BH", p.value=0.01)[,-1]
significantGenes <- sapply(1:ncol(testResults), function(j){
    c <- glm$coefficients[testResults[,j]!=0,j+1]
    table(cut(c, breaks=c(-5,seq(-1.5,1.5,l=7),5)))
})

colnames(significantGenes) <- colnames(testResults)
rownames(tab)<-c(1:nrow(tab))</pre>
```

```
tab2<- as.data.frame(tab)</pre>
tab2$gene<-as.character(as.character(tab2$gene))
tab2$final.molec<-as.character(as.character(tab2$final.molec))</pre>
tab2$TET2<-as.character(as.character(tab2$TET2))
tab2$RHOA<-as.character(as.character(tab2$RHOA))</pre>
tab2$IDH2<-as.character(as.character(tab2$IDH2))
tab2$DNMT3A<-as.character(as.character(tab2$DNMT3A))</pre>
# pdf("Figure_2c.pdf", width = 10, height = 7)
 par(mfrow=c(1,1))
 par(mar=c(8,8,5,5), xpd=F)
par(mfrow=c(1,1))
par(bty="n", mgp = c(2.5, .33, 0), mar=c(5, 5.5, 5, 0)+.1, las=2, tcl=-.25)
b <- barplot(significantGenes, las=2, ylab = "Differentially expressed genes", col=brewer.pal(8,"RdYlBu
rotatedLabel(x0=b-0.1, y0=rep(-0.5, ncol(significantGenes)), labels=colnames(significantGenes), cex=1.2
rotatedLabel(b-0.1, colSums(significantGenes), colSums(significantGenes), pos=3, cex=, srt=45)#dev.off(
clip(0,30,0,1000)
x0 < -7.5
image(x=x0+c(0,0.8), y=par("usr")[4]+seq(-1,1,1=9) -4, z=matrix(1:8, ncol=8), col=brewer.pal(8,"RdYlBu"
text(x=x0+1.1, y=par("usr")[4]+c(-1,0,1)-4, format(seq(-1,1,1=3),2), cex=0.66)
lines(x=rep(x0+0.9, 2), y=par("usr")[4]+c(-1,1) -4)
segments(x0+0.9,par("usr")[4] + 1-4,x0+0.95,par("usr")[4] + 1-4)
segments(x0+0.9, par("usr")[4] + 0-4,x0+0.95, par("usr")[4] + 0-4)
segments(x0+0.9, par("usr")[4] + -1-4, x0+0.95, par("usr")[4] + -1-4)
text(x0 + 0.45, par("usr")[4] + 1.5-4, "log2 FC", cex=.66)
```



```
#dev.off()

# par(bty="n", mgp = c(2.5, .33, 0), mar=c(3, 3.3, 3, 0)+.1, las=1, tcl=-.25)

# t <- table(rowSums(abs(testResults[,1:6])))

# b <- barplot(t[-1], ylab="Differentially expressed genes", col=rev(brewer.pal(7, "Spectral")[-(4:5)]),

# rotatedLabel(b-0.1, t[-1], t[-1], pos=3, cex=1, srt=45)

# title(xlab="Associated drivers", line=2)
```

#### Print the list of differently expressed genes using the Ensembl annotation

```
select_hist<- pts.info.data[pts.info.data$final.molec == "AITL" | pts.info.data$final.molec == "PTCL.n</pre>
gene<- as.data.frame(testResults)</pre>
sig_genes<- gene[gene$final.molec!= 0 |gene$IDH2 != 0 | gene$TET2 != 0 | gene$DNMT3A != 0 | gene$RHOA !
list_genes<-sort(rownames(sig_genes)) ##### list of signficiant genes</pre>
geneannotation1 <- getBM( attributes = c("ensembl_transcript_id", "entrezgene", "external_gene_name"),</pre>
sort(unique(geneannotation1$external_gene_name))
    [1] "ADRA2A"
                      "AL441992.1" "ARHGEF10"
                                                  "C3"
                                                               "COL4A4"
##
    [6] "DZIP1"
                                                 "ID2"
                                                               "NET02"
##
                      "EFNB2"
                                    "HS3ST3A1"
## [11] "OSMR"
                      "PRRX1"
                                    "R0B01"
                                                 "SLC5A3"
                                                               "XKR4"
## [16] "YAP1"
```

Generate a heatmap with AITL, PTCL-NOS with the extracted differentially expressed genes.

```
gep<- geneExpr[,select_hist$sample.nameNEW]</pre>
mat<- gep[list_genes,]</pre>
setdiff(rownames(mat), paste0(unique(geneannotation1$entrezgene),"_at"))
## character(0)
for (ii in 1:nrow(mat)) {
  \#if(length\ (which\ (paste0(unique(geneannotation1\$entrezgene),"_at") == rownames(mat)[ii])) \ != 0) rownames(mat)[ii])
 rownames(mat) [ii] = unique(geneannotation1$external_gene_name) [ which (pasteO(unique(geneannotation
mycol= c("red","white","yellow")
mylabel = select_hist[,c("sample.nameNEW", "final.molec", "IDH2", "RHOA", "TET2", "DNMT3A")]
rownames(mylabel) = mylabel$sample.nameNEW
mylabel$sample.nameNEW = NULL
mylabel.nocol = mylabel
mylabel.col = mylabel
mylabel.col[is.na(mylabel.col)]<-0</pre>
#head(mylabel.col)
mylabel.col$final.molec[mylabel.col$final.molec == "AITL"] = "black"; mylabel.col$final.molec[mylabel.c
for (a in 2:5) mylabel.col[,a] = factor(mylabel.col[,a], levels = levels(as.factor(mylabel.col[,a])), l
mat <- mat - rowMeans(mat)</pre>
par(mfrow=c(1,1))
cluster.pts.nr = pheatmap(mat, annotation_col = mylabel.nocol, annotation_colors = list(final.molec = c
                                   IDH2 = c(MUT=mycol[1], "NA"=mycol[2], WT=mycol[3]),
                                   RHOA = c(MUT=mycol[1], "NA"=mycol[2], WT=mycol[3]),
                                   TET2 = c(MUT=mycol[1], "NA"=mycol[2], WT=mycol[3]),
                                   DNMT3A = c(MUT=mycol[1],"NA"=mycol[2],WT=mycol[3]) ) , show_colnames
         border_color= NA, color = colorRampPalette(rev(brewer.pal(n = 5 , name = "RdYlBu")))(20), scal
```



```
### export pts order
cluster.pts.nr$tree_col$labels [cluster.pts.nr$tree_col$order]
```

```
##
     [1] "PTCL.nos..23"
                          "PTCL.nos..428" "PTCL.nos..448" "PTCL.nos..124"
##
     [5] "PTCL.nos..247"
                         "PTCL.nos..463" "PTCL.nos..89"
                                                          "PTCL.nos..156"
                         "PTCL.nos..216" "PTCL.nos..25"
##
     [9] "PTCL.nos..432"
                                                          "PTCL.nos..87"
##
    [13] "PTCL.nos..94"
                         "PTCL.nos..98"
                                          "PTCL.nos..105" "PTCL.nos..93"
##
    [17] "PTCL.nos..195"
                         "AITL..413"
                                          "PTCL.nos..531" "PTCL.nos..143"
##
    [21] "PTCL.nos..46"
                         "PTCL.nos..28"
                                         "PTCL.nos..185" "PTCL.nos..416"
##
    [25] "PTCL.nos..112" "PTCL.nos..424" "PTCL.nos..134" "PTCL.nos..32"
    [29] "PTCL.nos..22"
                         "PTCL.nos..194" "PTCL.nos..30"
                                                          "PTCL.nos..211"
##
##
    [33] "PTCL.nos..52"
                         "PTCL.nos..97"
                                          "PTCL.nos..201" "PTCL.nos..27"
##
    [37] "PTCL.nos..68"
                         "PTCL.nos..139" "PTCL.nos..72"
                                                          "PTCL.nos..120"
##
    [41] "PTCL.nos..444"
                         "PTCL.nos..24"
                                         "PTCL.nos..15"
                                                          "PTCL.nos..109"
    [45] "PTCL.nos..29"
                         "PTCL.nos..100" "PTCL.nos..171" "PTCL.nos..104"
##
    [49] "PTCL.nos..99"
                         "PTCL.nos..126" "PTCL.nos..258" "AITL..536"
##
##
    [53] "PTCL.nos..535" "PTCL.nos..20"
                                         "PTCL.nos..102" "PTCL.nos..452"
                         "PTCL.nos..90" "PTCL.nos..230" "PTCL.nos..231"
##
    [57] "PTCL.nos..529"
##
    [61] "PTCL.nos..232" "PTCL.nos..236" "PTCL.nos..16"
                                                          "PTCL.nos..189"
##
    [65] "PTCL.nos..506" "PTCL.nos..519" "PTCL.nos..151" "PTCL.nos..186"
                         "PTCL.nos..455" "PTCL.nos..47" "PTCL.nos..213"
##
    [69] "AITL..419"
```

```
[73] "PTCL.nos..161" "PTCL.nos..61" "PTCL.nos..209" "PTCL.nos..119"
##
                                          "PTCL.nos..440" "AITL..19"
##
    [77] "PTCL.nos..80"
                          "PTCL.nos..34"
                          "PTCL.nos..504" "PTCL.nos..118" "PTCL.nos..293"
    [81] "AITL..18"
                          "PTCL.nos..251" "PTCL.nos..101" "PTCL.nos..446"
##
    [85] "PTCL.nos...92"
##
    [89] "AITL..479"
                          "PTCL.nos..469" "AITL..411"
                                                           "AITL..473"
                          "AITL..481"
##
    [93] "AITL..472"
                                          "AITL..487"
                                                           "PTCL.nos..434"
   [97] "PTCL.nos..180"
                          "PTCL.nos..135" "PTCL.nos..445" "PTCL.nos..408"
## [101] "PTCL.nos..409"
                          "PTCL.nos..460" "PTCL.nos..468" "PTCL.nos..470"
## [105] "PTCL.nos..471" "PTCL.nos..441" "PTCL.nos..451" "AITL..12"
## [109] "PTCL.nos..237"
                         "AITL..165"
                                          "PTCL.nos...178" "AITL...458"
## [113] "AITL..191"
                          "AITL..163"
                                           "AITL..187"
                                                           "AITL..62"
## [117] "PTCL.nos..249"
                          "AITL..250"
                                          "AITL..257"
                                                            "AITL..110"
## [121] "AITL..260"
                          "AITL..60"
                                          "AITL..77"
                                                           "AITL..84"
## [125] "AITL..106"
                          "AITL..74"
                                          "AITL..133"
                                                           "AITL..113"
## [129] "AITL..127"
                          "AITL..44"
                                           "AITL..82"
                                                           "AITL..197"
## [133] "AITL..223"
                          "AITL..17"
                                           "AITL..523"
                                                           "AITL..530"
                                                           "AITL..2"
## [137] "AITL..154"
                          "AITL..45"
                                          "AITL..505"
## [141] "AITL..238"
                          "AITL..11"
                                          "AITL..259"
                                                           "AITL..10"
## [145] "AITL..234"
                          "AITL..435"
                                          "PTCL.nos..239"
                                                           "AITL..6"
## [149] "AITL..438"
                          "AITL..518"
                                           "AITL..532"
                                                            "AITL..256"
                                          "AITL..9"
## [153] "AITL..449"
                          "AITL..129"
                                                           "AITL..450"
                          "AITL..66"
## [157] "AITL..534"
                                          "AITL..255"
                                                           "AITL..207"
## [161] "AITL..8"
                          "AITL..1"
                                           "AITL..152"
                                                           "AITL..229"
## [165] "AITL..248"
                          "AITL..235"
                                           "AITL..420"
                                                           "AITL..483"
## [169] "AITL..157"
                          "AITL..179"
                                          "AITL..67"
                                                           "AITL..70"
## [173] "AITL..225"
                          "AITL..71"
                                           "AITL..58"
                                                           "AITL..78"
## [177] "AITL..137"
                          "AITL..206"
                                           "AITL..459"
                                                            "AITL..144"
## [181] "AITL..222"
                          "PTCL.nos..294"
                                          "AITL..198"
                                                            "AITL..453"
## [185] "AITL..210"
                          "AITL..26"
                                          "AITL..114"
                                                           "PTCL.nos..226"
## [189] "AITL..51"
                          "AITL..224"
                                           "AITL..69"
                                                           "AITL..123"
## [193] "AITL..221"
                          "AITL..150"
                                           "AITL..43"
                                                            "AITL..153"
## [197] "AITL..520"
                          "AITL..159"
                                           "AITL..79"
                                                           "AITL..204"
## [201] "AITL..214"
                          "PTCL.nos..246" "AITL..167"
                                                           "AITL..190"
## [205] "PTCL.nos..289"
                          "PTCL.nos..287"
                                          "PTCL.nos..288"
                                                           "PTCL.nos..128"
                         "PTCL.nos..91"
## [209] "PTCL.nos..136"
                                          "PTCL.nos..86"
                                                           "PTCL.nos..196"
## [213] "PTCL.nos..212" "PTCL.nos..13"
                                          "PTCL.nos..96"
                                                           "PTCL.nos..95"
## [217] "PTCL.nos..208"
                          "PTCL.nos..290"
                                          "PTCL.nos..115" "PTCL.nos..219"
## [221] "AITL..484"
                          "AITL..7"
                                           "AITL..457"
                                                            "AITL..454"
## [225] "PTCL.nos..200" "PTCL.nos..215" "PTCL.nos..252" "PTCL.nos..166"
## [229] "PTCL.nos..218" "PTCL.nos..291" "PTCL.nos..292" "PTCL.nos..467"
## [233] "PTCL.nos..482" "AITL..502"
                                           "AITL..515"
                                                            "AITL..406"
## [237] "PTCL.nos..162" "PTCL.nos..465"
                                          "PTCL.nos..203" "PTCL.nos..63"
## [241] "PTCL.nos..240" "PTCL.nos..33"
                                          "AITL..510"
                                                           "AITL..513"
## [245] "AITL..147"
                          "AITL..426"
                                          "PTCL.nos..527" "PTCL.nos..414"
## [249] "PTCL.nos..415"
                          "AITL..14"
                                           "AITL..456"
                                                            "AITL..205"
## [253] "AITL..55"
                          "AITL..64"
                                           "AITL..199"
                                                            "AITL..65"
                                                           "PTCL.nos..174"
## [257] "PTCL.nos..3"
                          "AITL..121"
                                           "AITL..517"
## [261] "PTCL.nos..524"
                         "PTCL.nos..243"
                                          "PTCL.nos..242" "PTCL.nos..244"
## [265] "AITL..392"
                          "AITL..466"
                                           "AITL..4"
                                                           "AITL..5"
## [269] "PTCL.nos..241" "AITL..417"
                                           "AITL..461"
```

cluster.pts.nr\$tree\_col\$labels

## [1] "AITL..1" "AITL..10" "AITL..106" "AITL..11"

```
[5] "AITL..110"
                                                           "AITL..12"
##
                          "AITL..113"
                                          "AITL..114"
                          "AITL..123"
##
     [9] "AITL..121"
                                                           "AITL..129"
                                          "AITL..127"
                                                           "AITL..144"
##
    [13] "AITL..133"
                          "AITL..137"
                                          "AITL..14"
    [17] "AITL..147"
                          "AITL..150"
                                          "AITL..152"
                                                           "AITL..153"
##
##
    [21] "AITL..154"
                          "AITL..157"
                                          "AITL..159"
                                                           "AITL..163"
                          "AITL..167"
                                          "AITL..17"
                                                           "AITL..179"
##
    [25] "AITL..165"
    [29] "AITL..18"
                          "AITL..187"
                                          "AITL..19"
                                                           "AITL..190"
##
##
    [33] "AITL..191"
                          "AITL..197"
                                          "AITL..198"
                                                           "AITL..199"
##
    [37] "AITL..2"
                          "AITL..204"
                                          "AITL..205"
                                                           "AITL..206"
##
    [41] "AITL..207"
                          "AITL..210"
                                          "AITL..214"
                                                           "AITL..221"
##
    [45] "AITL..222"
                          "AITL..223"
                                          "AITL..224"
                                                           "AITL..225"
    [49] "AITL..229"
                          "AITL..234"
##
                                          "AITL..235"
                                                           "AITL..238"
##
    [53] "AITL..248"
                          "AITL..250"
                                          "AITL..255"
                                                           "AITL..256"
    [57] "AITL..257"
                          "AITL..259"
##
                                          "AITL..26"
                                                           "AITL..260"
    [61] "AITL..392"
                          "AITL..4"
                                          "AITL..406"
                                                           "AITL..411"
##
    [65] "AITL..413"
                          "AITL..417"
                                          "AITL..419"
                                                           "AITL..420"
##
##
    [69] "AITL..426"
                          "AITL..43"
                                          "AITL..435"
                                                           "AITL..438"
    [73] "AITL..44"
                          "AITL..449"
                                          "AITL..45"
                                                           "AITL..450"
##
    [77] "AITL..453"
                          "AITL..454"
                                          "AITL..456"
                                                           "AITL..457"
##
##
    [81] "AITL..458"
                          "AITL..459"
                                          "AITL..461"
                                                           "AITL..466"
##
    [85] "AITL..472"
                         "AITL..473"
                                          "AITL..479"
                                                           "AITL..481"
   [89] "AITL..483"
                          "AITL..484"
                                          "AITL..487"
                                                           "AITL..5"
##
    [93] "AITL..502"
                          "AITL..505"
                                                           "AITL..510"
                                          "AITL..51"
##
##
   [97] "AITL..513"
                          "AITL..515"
                                          "AITL..517"
                                                           "AITL..518"
## [101] "AITL..520"
                          "AITL..523"
                                          "AITL..530"
                                                           "AITL..532"
## [105] "AITL..534"
                          "AITL..536"
                                          "AITL..55"
                                                           "AITL..58"
## [109] "AITL..6"
                          "AITL..60"
                                          "AITL..62"
                                                           "AITL..64"
                          "AITL..66"
## [113] "AITL..65"
                                          "AITL..67"
                                                           "AITL..69"
## [117] "AITL..7"
                         "AITL..70"
                                          "AITL..71"
                                                           "AITL..74"
## [121] "AITL..77"
                          "AITL..78"
                                          "AITL..79"
                                                           "AITL..8"
## [125] "AITL..82"
                          "AITL..84"
                                          "AITL..9"
                                                           "PTCL.nos..100"
## [129] "PTCL.nos..101" "PTCL.nos..102" "PTCL.nos..104" "PTCL.nos..105"
## [133] "PTCL.nos..109" "PTCL.nos..112" "PTCL.nos..115" "PTCL.nos..118"
## [137] "PTCL.nos..119" "PTCL.nos..120" "PTCL.nos..124" "PTCL.nos..126"
## [141] "PTCL.nos..128" "PTCL.nos..13" "PTCL.nos..134" "PTCL.nos..135"
## [145] "PTCL.nos..136" "PTCL.nos..139" "PTCL.nos..143" "PTCL.nos..15"
## [149] "PTCL.nos..151" "PTCL.nos..156" "PTCL.nos..16" "PTCL.nos..161"
## [153] "PTCL.nos..162" "PTCL.nos..166" "PTCL.nos..171" "PTCL.nos..174"
## [157] "PTCL.nos..178" "PTCL.nos..180" "PTCL.nos..185" "PTCL.nos..186"
## [161] "PTCL.nos..189" "PTCL.nos..194" "PTCL.nos..195" "PTCL.nos..196"
## [165] "PTCL.nos..20" "PTCL.nos..200" "PTCL.nos..201" "PTCL.nos..203"
## [169] "PTCL.nos..208" "PTCL.nos..209" "PTCL.nos..211" "PTCL.nos..212"
## [173] "PTCL.nos..213" "PTCL.nos..215" "PTCL.nos..216" "PTCL.nos..218"
## [177] "PTCL.nos..219" "PTCL.nos..22" "PTCL.nos..226" "PTCL.nos..23"
## [181] "PTCL.nos..230" "PTCL.nos..231" "PTCL.nos..232" "PTCL.nos..236"
## [185] "PTCL.nos..237" "PTCL.nos..239" "PTCL.nos..24" "PTCL.nos..240"
## [189] "PTCL.nos..241" "PTCL.nos..242" "PTCL.nos..243" "PTCL.nos..244"
## [193] "PTCL.nos..246" "PTCL.nos..247" "PTCL.nos..249" "PTCL.nos..25"
## [197] "PTCL.nos..251" "PTCL.nos..252" "PTCL.nos..258" "PTCL.nos..27"
                         "PTCL.nos..287" "PTCL.nos..288" "PTCL.nos..289"
## [201] "PTCL.nos..28"
## [205] "PTCL.nos..29" "PTCL.nos..290" "PTCL.nos..291" "PTCL.nos..292"
## [209] "PTCL.nos..293" "PTCL.nos..294" "PTCL.nos..3" "PTCL.nos..30"
## [213] "PTCL.nos..32" "PTCL.nos..33" "PTCL.nos..34" "PTCL.nos..408"
## [217] "PTCL.nos..409" "PTCL.nos..414" "PTCL.nos..415" "PTCL.nos..416"
```

```
## [221] "PTCL.nos..424" "PTCL.nos..428" "PTCL.nos..432" "PTCL.nos..434"
## [225] "PTCL.nos..440" "PTCL.nos..441" "PTCL.nos..444" "PTCL.nos..445"
## [229] "PTCL.nos..446" "PTCL.nos..448" "PTCL.nos..451" "PTCL.nos..452"
## [233] "PTCL.nos..455" "PTCL.nos..46" "PTCL.nos..460" "PTCL.nos..463"
## [237] "PTCL.nos..465" "PTCL.nos..467" "PTCL.nos..468" "PTCL.nos..469"
## [241] "PTCL.nos..47" "PTCL.nos..470" "PTCL.nos..471" "PTCL.nos..482"
## [245] "PTCL.nos..504" "PTCL.nos..506" "PTCL.nos..519" "PTCL.nos..52"
## [249] "PTCL.nos..524" "PTCL.nos..527" "PTCL.nos..529" "PTCL.nos..531"
## [253] "PTCL.nos..535" "PTCL.nos..61"
                                        "PTCL.nos..63"
                                                        "PTCL.nos..68"
## [257] "PTCL.nos..72"
                        "PTCL.nos..80"
                                        "PTCL.nos..86"
                                                        "PTCL.nos..87"
## [261] "PTCL.nos..89"
                        "PTCL.nos..90"
                                        "PTCL.nos..91"
                                                        "PTCL.nos..92"
## [265] "PTCL.nos..93"
                        "PTCL.nos..94"
                                        "PTCL.nos..95"
                                                        "PTCL.nos..96"
## [269] "PTCL.nos..97" "PTCL.nos..98" "PTCL.nos..99"
#pheatmap::pheatmap(test, filename="test.pdf")
```

## LOOCV on AILT, PTCLnos based on 16-gene model

```
y = t(mat)
cl.orig = c()
for (u in 1:nrow(y)) cl.orig [u] = unlist(strsplit(rownames(y)[u],"\\."))[1]
perm.mother = rownames(y)
perm.son = combn (perm.mother, length(perm.mother)-1)
output <- cbind(perm.mother, NA)
for (i in 1:length(perm.mother)) {
 train <- y [ perm.son[,i], ]</pre>
  test <- y [ ! ( rownames(y) %in% perm.son[,i]) , ]</pre>
  cl <- cl.orig [which(rownames(y)%in%perm.son[,i])]</pre>
  z <- lda(train, cl)
 p <- predict(z,test)$class</pre>
 output [setdiff(1:271, which(rownames(y) %in% perm.son[,i])), 2] = as.character(p)
# output [ output[,1] == rownames(test) , 3 ] = z$scaling [1,1]
# output [output[,1] == rownames(test), 4] = z$scaling [2,1]
\# output [ output[,1] == rownames(test) , 5 ] = z$scaling [3,1]
}
colnames(output) = c("true", "LOOCV.predicted")
output = as.data.frame(output)
output$true.class = cl.orig
table(output$true.class, output$L00CV.predicted )
```

```
## ## AITL PTCL
## AITL 106 21
## PTCL 16 128
```

```
## unselect to build confusionMatrix
# confusionMatrix(table(output$true.class, output$LOOCV.predicted ))
# Confusion Matrix and Statistics
#
#
        AITL PTCL
#
   AITL 106 21
#
   PTCL 16 128
#
#
                Accuracy : 0.8635
#
                   95% CI : (0.8168, 0.902)
#
     No Information Rate: 0.5498
#
     P-Value [Acc > NIR] : <2e-16
#
#
                   Kappa : 0.7252
#
  Mcnemar's Test P-Value : 0.5108
#
#
             Specificity: 0.8591
#
          Pos Pred Value : 0.8346
          Neg Pred Value : 0.8889
#
#
              Prevalence: 0.4502
#
          Detection Rate: 0.3911
#
    Detection Prevalence: 0.4686
#
       Balanced Accuracy: 0.8640
#
         'Positive' Class : AITL
```

## Extracting the most significant clusters based on 19-gene signature

Analyze sample stratification based on the extracted differentially expressed genes betwee AILT and PTCL-nos and the ALCL ALK-negative 3-gene model.

```
select_hist<- pts.info.data[pts.info.data$final.molec == "AITL" | pts.info.data$final.molec == "PTCL.no
# Add three classifier genes for ALCL ALK-neg [Agnelli et al, Blood, 2012]
# Check on array
anaplastic_gene<- c("TNFRSF8","BATF3","TMOD1")</pre>
geneannotation2 <- getBM( attributes = c("entrezgene", "external_gene_name"), filters = "external_gene_</pre>
anaplastic_gene_ARRAY<- paste0(geneannotation2$entrezgene, "_at")</pre>
# Append 16-gene model to 3-gene model
list_genes_all<- c(list_genes, anaplastic_gene_ARRAY)</pre>
# Redo consensus cluster analysis
gep<- geneExpr[,select_hist$sample.nameNEW]</pre>
mat<- gep[list_genes_all,]</pre>
title=tempdir()
d<- data.matrix(mat)</pre>
d = sweep(d,1, apply(d,1,median,na.rm=T))
results = ConsensusClusterPlus(d, maxK=8,
                                 pFeature=1,
                                 title=title,
```

```
clusterAlg="hc",
  innerLinkage="ward.D2",
  finalLinkage="ward.D2",
  distance="euclidean",
  seed=123456789)
```

## end fraction

## clustered

# consensus matrix legend























## consensus CDF



## Delta area



## tracking plot



## samples

```
kk<- as.data.frame((results[[5]]$consensusClass)) ##### 4 significant cluster
kk$geo.id<- rownames(kk)
colnames(kk)[1]<- "cluster"
table(kk$cluster)

##
## 1 2 3 4 5
## 87 103 32 63 55</pre>
```

Plot heatmap AITL, PTCL-NOS, ALCL-neg and the 19-gene model

```
heat<- merge(t(mat), kk, by.x = 0, by.y="geo.id")
heat2<- merge(heat, pts.info.data, by.x = 1, by.y="sample.nameNEW")
heat2<- heat2[order(heat2$cluster),]
mycol= c("red", "white", "yellow")
mylabel = heat2[,c("Row.names", "cluster", "final.molec", "TET2", "RHOA", "IDH2", "DNMT3A")]
colnames(mylabel)<- c("sample.names", "clusters", "Histology", "TET2", "RHOA", "IDH2", "DNMT3A"))
rownames(mylabel) = mylabel$sample.names
mylabel$sample.names = NULL
mylabel.nocol = mylabel
mylabel.col = mylabel
mylabel.col [is.na(mylabel.col)]<-0
#head(mylabel.col)</pre>
```

```
mylabel.col$Histology[mylabel.col$Histology == "AITL"] = "black"; mylabel.col$Histology[mylabel.col$His
for (a in c(3:6)) mylabel.col[,a] = factor(mylabel.col[,a], levels = levels(as.factor(mylabel.col[,a]))
mycol_plus<- c(brewer.pal(11, "Paired"), brewer.pal(6, "Set2"))</pre>
for (a in 1) mylabel.col[,a] = factor(mylabel.col[,a], levels = levels(as.factor(mylabel.col[,a])), lab
mylabel.nocol$clusters<-as.numeric(as.character(mylabel.nocol$clusters))</pre>
mylabel.nocol$clusters<-as.character(paste("cluster",mylabel.nocol$clusters, sep=""))
par(mfrow=c(1,1))
par(mar=c(5,5,5,5), xpd=F)
mat3<- t(data.matrix(heat2[,2:20]))</pre>
colnames (mat3) <-heat2$Row.names</pre>
mat3= mat3[order(rownames(mat3)),]
temp_name = getBM( attributes = c("ensembl_transcript_id", "entrezgene", "external_gene_name"), filters
temp_name = temp_name[!duplicated(temp_name[,1]),]
rownames(mat3) = temp_name$external_gene_name
mat3 <- mat3 - rowMeans(mat3)</pre>
par(mfrow=c(1,1))
\#pheatmap(mat3, annotation\_col = mylabel.nocol, annotation\_colors = list(clusters = c(cluster1 = mycol\_p)
#dev.off()
# print with gaps
num_clust<- as.numeric(table(mylabel.nocol$clusters))</pre>
num<- c(num_clust[1], sum(num_clust[1:2]),sum(num_clust[1:3]),sum(num_clust[1:4]),sum(num_clust[1:5]))
par(mfrow=c(1,1))
pheatmap(mat3, annotation_col = mylabel.nocol, annotation_colors = list(clusters = c(cluster1= mycol_pl
```



```
# gaps_col=c(0,rep(0,num[1]-1), 40,rep(0,num[2]-1), 1000,rep(0,num[3]-1), 40,rep(0,num[4]-1), 40,rep(0,
gep<- geneExpr[,select_hist$sample.nameNEW]</pre>
mat<- gep[list_genes_all,]</pre>
geneannotation1 <- getBM( attributes = c("ensembl_transcript_id", "entrezgene", "external_gene_name"),</pre>
sort(unique(geneannotation1$external_gene_name))
                                                              "C3"
   [1] "ADRA2A"
                      "AL441992.1" "ARHGEF10"
                                                 "BATF3"
## [6] "COL4A4"
                      "DZIP1"
                                   "EFNB2"
                                                 "HS3ST3A1"
                                                              "ID2"
## [11] "NETO2"
                      "OSMR"
                                                              "SLC5A3"
                                   "PRRX1"
                                                 "ROB01"
## [16] "TMOD1"
                     "TNFRSF8"
                                   "XKR4"
                                                "YAP1"
setdiff(rownames(mat), paste0(unique(geneannotation1$entrezgene),"_at"))
## character(0)
for (ii in 1:nrow(mat)) {
  \#if(length\ (which\ (paste0(unique(geneannotation1\$entrezgene),"_at") == rownames(mat)[ii])) != 0) rownames(mat)[ii])) != 0)
 rownames(mat) [ii] = unique(geneannotation1$external gene name) [ which (paste0(unique(geneannotation
}
mycol= c("red","white","yellow")
mylabel = select_hist[,c("sample.nameNEW", "final.molec", "IDH2", "RHOA", "TET2", "DNMT3A")]
rownames(mylabel) = mylabel$sample.nameNEW
mylabel$sample.nameNEW = NULL
mylabel.nocol = mylabel
mylabel.col = mylabel
mylabel.col[is.na(mylabel.col)]<-0</pre>
#head(mylabel.col)
mylabel.col$final.molec[mylabel.col$final.molec == "AITL"] = "black"; mylabel.col$final.molec[mylabel.c
for (a in 2:5) mylabel.col[,a] = factor(mylabel.col[,a], levels = levels(as.factor(mylabel.col[,a])), l
## unselect below to cluster data
# mat <- mat - rowMeans(mat)</pre>
# par(mfrow=c(1,1))
\# pheatmap(mat, annotation_col = mylabel.nocol, annotation_colors = list(final.molec = c(AITL = "black"))
                                     IDH2 = c(MUT=mycol[1], "NA"=mycol[2], WT=mycol[3]),
                                     RHOA = c(MUT=mycol[1], "NA"=mycol[2], WT=mycol[3]),
#
#
                                     TET2 = c(MUT=mycol[1], "NA"=mycol[2], WT=mycol[3]),
                                     DNMT3A = c(MUT=mycol[1], "NA"=mycol[2], WT=mycol[3])), show_colname
#
           border\_color=NA, color=colorRampPalette(rev(brewer.pal(n=5, name="RdYlBu")))(20), sc
### export pts order
cluster.pts.nr$tree_col$labels [cluster.pts.nr$tree_col$order]
##
     [1] "PTCL.nos..23" "PTCL.nos..428" "PTCL.nos..448" "PTCL.nos..124"
     [5] "PTCL.nos..247" "PTCL.nos..463" "PTCL.nos..89" "PTCL.nos..156"
##
     [9] "PTCL.nos..432" "PTCL.nos..216" "PTCL.nos..25" "PTCL.nos..87"
##
  [13] "PTCL.nos..94" "PTCL.nos..98" "PTCL.nos..105" "PTCL.nos..93"
```

```
[17] "PTCL.nos..195" "AITL..413"
                                          "PTCL.nos..531" "PTCL.nos..143"
##
                         "PTCL.nos..28" "PTCL.nos..185" "PTCL.nos..416"
##
    [21] "PTCL.nos..46"
    [25] "PTCL.nos..112" "PTCL.nos..424" "PTCL.nos..134" "PTCL.nos..32"
                         "PTCL.nos..194" "PTCL.nos..30" "PTCL.nos..211"
##
    [29] "PTCL.nos..22"
##
    [33] "PTCL.nos..52"
                         "PTCL.nos..97" "PTCL.nos..201" "PTCL.nos..27"
##
                         "PTCL.nos..139" "PTCL.nos..72" "PTCL.nos..120"
    [37] "PTCL.nos..68"
    [41] "PTCL.nos..444" "PTCL.nos..24" "PTCL.nos..15" "PTCL.nos..109"
##
                          "PTCL.nos..100" "PTCL.nos..171" "PTCL.nos..104"
##
    [45] "PTCL.nos..29"
##
    [49] "PTCL.nos..99"
                         "PTCL.nos..126" "PTCL.nos..258" "AITL..536"
                                         "PTCL.nos..102" "PTCL.nos..452"
##
    [53] "PTCL.nos..535" "PTCL.nos..20"
    [57] "PTCL.nos..529" "PTCL.nos..90" "PTCL.nos..230" "PTCL.nos..231"
    [61] "PTCL.nos..232" "PTCL.nos..236" "PTCL.nos..16" "PTCL.nos..189"
##
##
    [65] "PTCL.nos..506" "PTCL.nos..519" "PTCL.nos..151" "PTCL.nos..186"
    [69] "AITL..419"
                          "PTCL.nos..455" "PTCL.nos..47" "PTCL.nos..213"
    [73] "PTCL.nos..161"
                         "PTCL.nos..61" "PTCL.nos..209" "PTCL.nos..119"
##
##
    [77] "PTCL.nos..80"
                          "PTCL.nos..34" "PTCL.nos..440" "AITL..19"
                          "PTCL.nos..504" "PTCL.nos..118" "PTCL.nos..293"
##
    [81] "AITL..18"
    [85] "PTCL.nos..92"
                         "PTCL.nos..251" "PTCL.nos..101" "PTCL.nos..446"
    [89] "AITL..479"
                          "PTCL.nos..469" "AITL..411"
                                                           "AITL..473"
##
##
    [93] "AITL..472"
                          "AITL..481"
                                          "AITL..487"
                                                           "PTCL.nos..434"
##
   [97] "PTCL.nos..180" "PTCL.nos..135" "PTCL.nos..445" "PTCL.nos..408"
## [101] "PTCL.nos..409" "PTCL.nos..460" "PTCL.nos..468" "PTCL.nos..470"
## [105] "PTCL.nos..471" "PTCL.nos..441" "PTCL.nos..451" "AITL..12"
## [109] "PTCL.nos..237" "AITL..165"
                                          "PTCL.nos..178" "AITL..458"
## [113] "AITL..191"
                          "AITL..163"
                                          "AITL..187"
                                                           "AITL..62"
## [117] "PTCL.nos..249"
                         "AITL..250"
                                          "AITL..257"
                                                           "AITL..110"
## [121] "AITL..260"
                          "AITL..60"
                                          "AITL..77"
                                                           "AITL..84"
                          "AITL..74"
## [125] "AITL..106"
                                          "AITL..133"
                                                           "AITL..113"
                          "AITL..44"
                                          "AITL..82"
                                                           "AITL..197"
## [129] "AITL..127"
## [133] "AITL..223"
                          "AITL..17"
                                          "AITL..523"
                                                           "AITL..530"
## [137] "AITL..154"
                          "AITL..45"
                                          "AITL..505"
                                                           "AITL..2"
## [141] "AITL..238"
                          "AITL..11"
                                          "AITL..259"
                                                           "AITL..10"
## [145] "AITL..234"
                          "AITL..435"
                                          "PTCL.nos..239"
                                                          "AITL..6"
## [149] "AITL..438"
                          "AITL..518"
                                          "AITL..532"
                                                           "AITL..256"
## [153] "AITL..449"
                          "AITL..129"
                                          "AITL..9"
                                                           "AITL..450"
                         "AITL..66"
                                                           "AITL..207"
## [157] "AITL..534"
                                          "AITL..255"
## [161] "AITL..8"
                          "AITL..1"
                                          "AITL..152"
                                                           "AITL..229"
## [165] "AITL..248"
                          "AITL..235"
                                          "AITL..420"
                                                           "AITL..483"
                          "AITL..179"
                                          "AITL..67"
                                                           "AITL..70"
## [169] "AITL..157"
## [173] "AITL..225"
                          "AITL..71"
                                          "AITL..58"
                                                           "AITL..78"
## [177] "AITL..137"
                          "AITL..206"
                                          "AITL..459"
                                                           "AITL..144"
## [181] "AITL..222"
                                          "AITL..198"
                                                           "AITL..453"
                          "PTCL.nos..294"
                                                           "PTCL.nos..226"
## [185] "AITL..210"
                          "AITL..26"
                                          "AITL..114"
## [189] "AITL..51"
                          "AITL..224"
                                          "AITL..69"
                                                           "AITL..123"
## [193] "AITL..221"
                          "AITL..150"
                                          "AITL..43"
                                                           "AITL..153"
## [197] "AITL..520"
                                          "AITL..79"
                          "AITL..159"
                                                           "AITL..204"
                                                           "AITL..190"
## [201] "AITL..214"
                          "PTCL.nos..246" "AITL..167"
## [205] "PTCL.nos..289" "PTCL.nos..287" "PTCL.nos..288" "PTCL.nos..128"
## [209] "PTCL.nos..136" "PTCL.nos..91"
                                          "PTCL.nos..86"
                                                           "PTCL.nos..196"
## [213] "PTCL.nos..212" "PTCL.nos..13"
                                          "PTCL.nos..96"
                                                           "PTCL.nos..95"
## [217] "PTCL.nos..208" "PTCL.nos..290" "PTCL.nos..115" "PTCL.nos..219"
## [221] "AITL..484"
                         "AITL..7"
                                          "AITL..457"
                                                           "AITL..454"
## [225] "PTCL.nos..200" "PTCL.nos..215" "PTCL.nos..252" "PTCL.nos..166"
## [229] "PTCL.nos..218" "PTCL.nos..291" "PTCL.nos..292" "PTCL.nos..467"
```

```
## [233] "PTCL.nos..482" "AITL..502"
                                         "AITL..515"
                                                          "AITL..406"
## [237] "PTCL.nos..162" "PTCL.nos..465" "PTCL.nos..203" "PTCL.nos..63"
## [241] "PTCL.nos..240" "PTCL.nos..33"
                                         "AITL..510"
                                                          "AITL..513"
## [245] "AITL..147"
                         "AITL..426"
                                         "PTCL.nos..527" "PTCL.nos..414"
## [249] "PTCL.nos..415" "AITL..14"
                                         "AITL..456"
                                                          "AITL..205"
## [253] "AITL..55"
                                                          "AITL..65"
                         "AITL..64"
                                         "AITL..199"
## [257] "PTCL.nos..3"
                                                          "PTCL.nos..174"
                         "AITL..121"
                                         "AITL..517"
## [261] "PTCL.nos..524" "PTCL.nos..243" "PTCL.nos..242" "PTCL.nos..244"
## [265] "AITL..392"
                         "AITL..466"
                                         "AITL..4"
                                                          "AITL..5"
## [269] "PTCL.nos..241" "AITL..417"
                                         "AITL..461"
```

## Cibersort to characterize tumour microenviroment composition of each cluster

```
##### cibersort and origical molecular histologies
load("./Rmd.files/cibersort.all.Rdata")
ciber_all<-as.data.frame.matrix(t(cibersort.percentages))</pre>
ciber_all$sample.nameNEW <- rownames(ciber_all)</pre>
colnames(kk)[2]<-"sample.nameNEW"</pre>
require(plyr)
final <-join(ciber_all, kk, by = "sample.nameNEW", type="left")</pre>
final2<-merge(pts.info.data[,c(1,6,14:17)], final, by="sample.nameNEW")
final3<- subset(final2, final.molec %in% c("AITL","ALCL.neg","ALCL.pos","ATLL","NKT","PTCL.nos"))</pre>
final3<- final3[order(final3$final.molec),]</pre>
library(RColorBrewer)
n <- 22
qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
par(mar=c(2,5,7,10), xpd=TRUE)
x<- barplot(t(final3[7:28]), names.arg = rep("", length(final3$final.molec)), cex.names = 0.7, col=col_
            space=rep(0, nrow(final3)))
legend("topright", legend=colnames(final3)[7:28], col=col_vector, pch=c(15), inset=c(-0.11,0), pt.cex= 1
cex = 1, bty = "n", x.intersp = 0.7)
names_hist<- unique(final3$final.molec)</pre>
col_hist<- c("orange","yellow","dodgerblue2","brown2","darkorchid1","black")</pre>
num<- as.numeric(table(final3$final.molec))</pre>
for(i in (1:length(num)))
{
  segments(x[sum(num[1:i])+1-num[i]], 1.05,x[sum(num[1:i])],1.05,lwd=4, col=col_hist[i])
  text(x[(sum(num[1:i])-num[i] +1+ sum(num[1:i]))/2], 1.1, names_hist[i], cex=1.2, srt=0)
}
```



```
##### plot cibersort profile of patients stratified according to histology and clusters
for(i in (1:nrow(final3)))
final3$cluster[i][is.na(final3$cluster[i])]<- final3$final.molec[i]</pre>
}
final3$cluster <- factor(final3$cluster, levels = c( "1","2","4","NKT","3","5","ALCL.pos", "ATLL"))</pre>
final3<- final3[order(final3$cluster),]</pre>
#pdf("barplot_cibersort.pdf", width = 20, height = 7)
par(mar=c(2,5,7,10), xpd=TRUE)
x<- barplot(t(final3[7:28]), names.arg = rep("", length(final3$final.molec)), cex.names = 0.7, col=col_
            space=rep(0, nrow(final3)))
legend("topright", legend=colnames(final3)[7:28], col=col_vector, pch=c(15), inset=c(-0.11,0), pt.cex= 1
cex = 1, bty = "n", x.intersp = 0.7)
mycol_plus<- c(brewer.pal(11, "Paired"), brewer.pal(6, "Dark2"))</pre>
names_hist<- c("C-1","C-2", "C-4","NKT","C-3","C-5","ALCL.pos","ATLL")
col_hist<- c(mycol_plus[1],mycol_plus[2],mycol_plus[4],"darkorchid1",mycol_plus[3],mycol_plus[5],"dodge.
num<- as.numeric(table(final3$cluster))</pre>
  par(new=TRUE)
for(i in (1:(length(num))))
  segments(x[sum(num[1:i])+1-num[i]], 1.05,x[sum(num[1:i])],1.05,lwd=4, col=col_hist[i])
  text(x[(sum(num[1:i])-num[i] +1+ sum(num[1:i]))/2], 1.1, names_hist[i], cex=1.2, srt=0)
```



Boxplot comparing the contribution of each cibersort signature between all extracted clusters

```
par(mfrow=c(1,2))
par(mar=c(3,3,3,3), xpd=F)
for(i in (7:27))
{
  \#pdf(sprintf("\%s\_cibersort\_ptcl.pdf",i), height=8, width=10)
  k<- as.numeric(final2[,i])</pre>
  table_wilk<- pairwise.wilcox.test(k,final2$cluster,p.adjust.methods = "bonferroni") $p.value
  df_wilk <- data.frame(expand.grid(dimnames(table_wilk)),array(table_wilk))</pre>
  df_wilk2<-na.omit(df_wilk)</pre>
  df_wilk2_sig<- df_wilk2[df_wilk2$array.table_wilk.<0.05,]</pre>
  df_wilk2_sig$Var1<-as.numeric(as.character(df_wilk2_sig$Var1))</pre>
  df_wilk2_sig$Var2<-as.numeric(as.character(df_wilk2_sig$Var2))</pre>
  if(nrow(df_wilk2_sig)>0)
  boxplot(k~final2$cluster, ylim=c(0,(max(k)+0.2)), main=colnames(final2)[i], cex.main=2, col=mycol_plu
  for(j in (1:nrow(df_wilk2_sig)))
    segments(df_wilk2_sig\$Var1[j], max(k)-0.01+j/30, df_wilk2_sig\$Var2[j], max(k)-0.01+j/30)
    p<-df_wilk2_sig$array.table_wilk.[j]</pre>
    if(p<0.00001){p2 = "<0.00001"}else{
    p2<-as.numeric(formatC(p,digits=6,format="f"))}</pre>
    pval <- paste("p =",p2,sep=" ")</pre>
    text((df_wilk2_sig$Var1[j]+ df_wilk2_sig$Var2[j])/1.9, max(k) +j/30, pval, cex=0.8)
  }
    }
  #dev.off()
```





# **B.cells.memory**



## Plasma.cells



## T.cells.CD4.naive



## T.cells.CD4.memory.activated



## T.cells.follicular.helper



## T.cells.regulatory..Tregs.



# T.cells.gamma.delta



## NK.cells.resting



## NK.cells.activated



## Macrophages.M0



## Macrophages.M1



## Macrophages.M2



## **Dendritic.cells.resting**



#### **Dendritic.cells.activated**



## Mast.cells.resting



#### Mast.cells.activated

#### 

#### **Eosinophils**



#### R tmod analysis

```
# for convenience: reimport annotated matrix
final <- read.delim("./Rmd.files/aitl_nos_alcl_clsutering.txt", sep="\t", header = T, stringsAsFactors = F)
final2<- final[,c("Row.names","hist","cluster")]</pre>
mat<- read.delim("./Rmd.files/ensembl_annotated_matrix.txt", sep="\t", stringsAsFactors = F)</pre>
design <- model.matrix(~ 0+factor(final2$cluster)) ##### create matrix</pre>
colnames(design)<-paste0("Cluster_",c(1:5))</pre>
contrast.matrix <- makeContrasts(Cluster_2-Cluster_1, Cluster_3-Cluster_1, Cluster_4-Cluster_1, Cluster_</pre>
                                  Cluster_3-Cluster_2, Cluster_4-Cluster_2, Cluster_5-Cluster_2,
                                  Cluster_4-Cluster_3, Cluster_5-Cluster_3,
                                  Cluster_4-Cluster_5,
                                  Cluster_2-(Cluster_1 + Cluster_3 + Cluster_4 + Cluster_5)/4,
                                  Cluster_3-(Cluster_1 + Cluster_2 + Cluster_4 + Cluster_5)/4,
                                  Cluster_4-(Cluster_1 + Cluster_2 + Cluster_3 + Cluster_5)/4,
                                  Cluster_1-(Cluster_2 + Cluster_3 + Cluster_4 + Cluster_5)/4,
                                  Cluster_5-(Cluster_2 + Cluster_3 + Cluster_4 + Cluster_1)/4,
                                  levels=design)
fit1 <- lmFit(mat, design)</pre>
fit2 <- contrasts.fit(fit1, contrast.matrix)</pre>
fit <- eBayes(fit2)</pre>
geneExpr = adj.data
geneExpr2<- geneExpr[,colnames(geneExpr) %in% final2$Row.names ]</pre>
geneExpr2<- geneExpr2[,final2$Row.names]</pre>
ensembl = useMart( "ensembl", dataset = "hsapiens gene ensembl" )
hgnc <- getBM(attributes=c('entrezgene', 'hgnc_symbol', 'hgnc_id'),filters = 'entrezgene', values = gsub(
## Batch submitting query [>-----] 5% eta: 9s Batch
```

```
## submitting query [===>-----] 15% eta: 10s Batch
## submitting query [===>-----] 17% eta: 10s Batch
## submitting query [===>-----] 20% eta: 10s Batch
## submitting query [====>-----] 22% eta: 10s Batch
## submitting query [====>-----] 24% eta: 10s Batch
## submitting query [=====>-----] 27% eta: 9s Batch
## submitting query [=====>-----] 29% eta: 9s Batch
## submitting query [=====>-----] 32% eta: 9s Batch
## submitting query [=====>----] 34% eta: 9s Batch
## submitting query [======>-----] 37% eta: 8s Batch
## submitting query [======>----] 39% eta: 8s Batch
## submitting query [======>-----] 41% eta: 8s Batch
## submitting query [======>----] 44% eta: 8s Batch
## submitting query [======>----] 46% eta: 7s Batch
## submitting query [======>----] 49% eta: 7s Batch
## submitting query [======>----] 51% eta: 7s Batch
## submitting query [=======>----] 54% eta: 6s Batch
## submitting query [======>----] 56% eta: 6s Batch
## submitting query [======>----] 59% eta: 6s Batch
## submitting query [=======>----] 61% eta: 5s Batch
## submitting query [========>----] 63% eta: 5s Batch
## submitting query [=======>----] 66% eta: 5s Batch
## submitting query [========>----] 68% eta: 4s Batch
## submitting query [======>----] 71% eta: 4s Batch
## submitting query [========>----] 73% eta: 4s Batch
## submitting query [=======>----] 76% eta: 3s Batch
## submitting query [========>----] 78% eta: 3s Batch
## submitting query [========>----] 80% eta: 3s Batch
## submitting query [========>----] 83% eta: 2s Batch
## submitting query [========>---] 85% eta: 2s Batch
## submitting query [=========>---] 88% eta: 2s Batch
## submitting query [==========>---] 90% eta: 1s Batch
## submitting query [========>--] 93% eta: 1s Batch
## submitting query [===========>-] 95% eta: 1s Batch submitting
## [======] 100% eta: 0s
geneExpr3<- as.data.frame.matrix(geneExpr2[which(rownames(geneExpr2) %in% paste0(hgnc$entrezgene,"_at")
levels_design<- c("Cluster_2-Cluster_1", "Cluster_3-Cluster_1", "Cluster_4-Cluster_1", "Cluster_5-Cluster_</pre>
              "Cluster_3-Cluster_2", "Cluster_4-Cluster_2", "Cluster_5-Cluster_2", "Cluster_4-Cluster_3
              "Cluster_5-Cluster_3", "Cluster_4-Cluster_5",
              "Cluster_2-(Cluster_1 + Cluster_3 + Cluster_4 + Cluster_5)/4",
              "Cluster_3-(Cluster_1 + Cluster_2 + Cluster_4 + Cluster_5)/4",
              "Cluster_4-(Cluster_1 + Cluster_2 + Cluster_3 + Cluster_5)/4",
              "Cluster_1-(Cluster_2 + Cluster_3 + Cluster_4 + Cluster_5)/4",
              "Cluster_5-(Cluster_2 + Cluster_3 + Cluster_4 + Cluster_1)/4")
df_diff_all=NULL
for(i in (1:length(levels_design)))
tt <- topTable(fit, coef=i, number=Inf, genelist=rownames(geneExpr3))</pre>
```

## submitting query [=>-----] 7% eta: 11s Batch ## submitting query [==>-----] 10% eta: 11s Batch ## submitting query [==>-----] 12% eta: 11s Batch

```
tt$ID<- rownames(tt)
colnames(tt)[1]<-"GENE_SYMBOL"</pre>
head(tt, 10)
fg <- tt$GENE_SYMBOL[tt$adj.P.Val < 0.001 & abs( tt$logFC ) > 2]
length(fg)
df_diff<- cbind(fg, rep(levels_design[i], length(fg)))</pre>
df_diff_all<-rbind(df_diff_all, df_diff)</pre>
#plot(tt$logFC, -log10(tt$adj.P.Val))
}
df_diff_all<- as.data.frame.matrix(df_diff_all)</pre>
annotation_col<- final2</pre>
colnames(annotation_col)<-c("sampleID","Hist","cluster")</pre>
A <- function(x) (as.factor(as.character(x))) ##### lapply function for all columns to generate the rel
annotation_col[,1:ncol(annotation_col)] = apply(annotation_col[,1:ncol(annotation_col)], 2, function(x)
annotation_col<- as.data.frame(annotation_col[,-1])</pre>
mycol_plus<- c(brewer.pal(11,"Paired"),brewer.pal(6,"Dark2"))</pre>
ann_colors = list(Hist=c( "AITL"="black", "ALCL"="yellow", "PTCL"="orange"),
                   cluster=c("1" = mycol_plus[1],"2" = mycol_plus[2],"3" = mycol_plus[3],"4" = mycol_plu
######## table of genes
df_diff_all_tab=NULL
for(i in (1:length(levels design)))
 tt <- topTable(fit, coef=i, number=Inf, genelist=rownames(geneExpr3))</pre>
  tt$ID<- rownames(tt)
  colnames(tt)[1]<-"GENE_SYMBOL"</pre>
 head(tt, 10)
  fg <- tt[tt$adj.P.Val < 0.001 & abs(tt<math>$logFC) > 2,]
  if(nrow(fg)>0){
    fg$design<- levels_design[i]</pre>
  df_diff_all_tab<-rbind.data.frame(df_diff_all_tab, fg)</pre>
  #plot(tt$logFC"," -log10(tt$adj.P.Val))
 }
nrow(df_diff_all_tab) #### number of genes differentially expressed between C-1, C-2, C-3, C-4, C-5
## [1] 668
##### list gene from Iqbal et al. blood 2014
iqbal<- unique(c("EFNB2", "ROB01", "S1PR3", "ANK2", "LPAR1", "SNAP91", "S0X8", "LPAR1", "RAMP3", "S1PR3", "ROB01"
                  "SOX8","ARHGEF10","DMRT1", "SLC19A21","STK3","PERP","TNFRSF8","TMOD1","BATF3","CDC14B
                  "TMOD1","ATP6VOD1","AXL","CD59","CHI3L1","CLTC","COL6A1","CREG1","CTSB","CTSC","NR1","
                  "PLSCR1", "PRDX3", "CTSS", "CYBB", "FABP3", "FPR1", "FTL", "GUCA2A", "HCK", "IFI30", "IL13RA1", "
                  "PRKG1PSAP", "SLC7A7", "SOD2", "TCN2", "THY1", "TYR", "UBE2L6", "WARS", "AXL", "FTL", "SIRPA", "S'
                  "SEPT6", "GATA3", "CD28", "STAT1", "AXL", "CD28", "CD40", "CD59", "CSF2", "FTL", "IFNG", "LILRB1"
                  "MSH6", "EGR1", "CAT", "EGR1", "CAT"))
intersect(iqbal, unique(df_diff_all_tab$GENE_SYMBOL))
   [1] "ROBO1"
                                "SOX8"
                                           "TUBB2B"
                                                       "TNFRSF8" "TMOD1"
                    "LPAR1"
```

```
## [7] "BATF3"
                   "ATP6VOD1" "CHI3L1" "CREG1"
                                                     "CTSB"
                                                                 "CTSC"
## [13] "FTL"
                   "HCK"
fit1 <- lmFit(mat, design)</pre>
fit2 <- contrasts.fit(fit1, contrast.matrix)</pre>
fit <- eBayes(fit2)</pre>
res.l <- tmodLimmaTest(fit, rownames(mat))</pre>
length(res.1)
## [1] 15
names(res.1)
  [1] "Cluster_2 - Cluster_1"
## [2] "Cluster_3 - Cluster_1"
## [3] "Cluster_4 - Cluster_1"
## [4] "Cluster_5 - Cluster_1"
## [5] "Cluster_3 - Cluster_2"
## [6] "Cluster_4 - Cluster_2"
   [7] "Cluster_5 - Cluster_2"
##
## [8] "Cluster_4 - Cluster_3"
## [9] "Cluster_5 - Cluster_3"
## [10] "Cluster_4 - Cluster_5"
## [11] "Cluster_2 - (Cluster_1 + Cluster_3 + Cluster_4 + Cluster_5)/4"
## [12] "Cluster_3 - (Cluster_1 + Cluster_2 + Cluster_4 + Cluster_5)/4"
## [13] "Cluster_4 - (Cluster_1 + Cluster_2 + Cluster_3 + Cluster_5)/4"
## [14] "Cluster_1 - (Cluster_2 + Cluster_3 + Cluster_4 + Cluster_5)/4"
## [15] "Cluster_5 - (Cluster_2 + Cluster_3 + Cluster_4 + Cluster_1)/4"
pie <- tmodLimmaDecideTests(fit, genes=rownames(mat))</pre>
par(mfrow=c(1,1))
res.12<- lapply(res.1, function(x) {x[x$adj.P.Val<10e-8,]})
tmodPanelPlot(res.12, pie=pie, text.cex=0.6) ##### zero = grey, blue down in the first factor and red u
```



res.12<- lapply(res.1, function(x)  $\{x[x$adj.P.Val>10e-8 & x$adj.P.Val<10e-5,]\}$ ) tmodPanelPlot(res.12, pie=pie, text.cex=0.6) ##### zero = grey, blue down in the first factor and red up

