

**METHOD AND APPARATUS FOR RECEIVING DIGITAL
VIDEO SIGNALS**

5

Field of the Invention

The present invention generally relates to a video capture system and its methods, and more particularly relates to capturing compressed and uncompressed digital video data.

10

Background of the Invention

Digital Video Broadcast (DVB) transmission standards have been developed in order to support the emergence of digital television. As illustrated in prior art Figure 1, the DVB signal is sent via an analog carrier and received by a tuner. The tuner receives the transmitted analog signal and provides an analog representation of the signal to a demodulator portion. The 15 demodulator portion converts the analog signal into its digital format. The digital signal provided by the demodulator is in a compressed MPEG 2 format. The compressed MPEG 2 format is referred to as a transport stream. The transport stream from the demodulator comprises a plurality of packets. Each of the transport stream packets comprises one synchronization byte, followed by one of 187 data bytes or 187 data bytes plus 16 extra bytes depending on the format. 20 The resulting transmission stream packets have a total byte size of one of 188 bytes, or 204 bytes.

The data contained within each packet of the transmission stream can represent video data, audio data, system data, and other user data such as programming information. In other words, more than just video data is provided within the transmission stream. For example, user 25 guides indicating channel selection information or stock market information could be included within a transmission stream packet. Because the transport stream data is contained in a compressed format, when video is being transmitted, there is not a one-to-one correspondence

between the actual bytes being transmitted in the transport stream and the pixels which the data represents. Because the data is compressed, one packet of transmission stream data can represent varying numbers of pixels in a video system.

A transport demultiplexor receives the digital transport stream as illustrated in prior art
5 Figure 1. The transport demultiplexor is capable of routing the individual components represented within the transport stream to the respective clients. In other words, audio data could be provided to an audio client while video data would be provided to a video client. For example, the transport demultiplexor can route data by providing address information to the PCI bridge of Figure 1.

10 Also illustrated in the prior art of Figure 1 is a Peripheral Component Interconnect (PCI) Bus supporting conventional computer-type peripherals. Connected to the PCI Bus of Figure 1 are a Memory, a central Processor Unit (CPU), and a Video Adapter. In order to support the reception and subsequent transmission of the transport stream to one of the system components, such as to the Memory or the Video Adapter, a Converter/PCI Bridge has been used. The
15 converter portion is necessary in order to change the transport stream into data packets capable of being transmitted across a system bus, such as through the PCI bridge. Such a conversion would require converting the 188-byte packet of the transport stream into 32-bit or 64-bit wide words of information and transporting the words to Memory or the Video Adapter across the PCI Bus.

20 In order to provide data to the video adapter of the prior art, it is necessary for separate printed circuit boards to be used to implement the transport stream converter and video adapter. Separate boards allows a PCI interface to the video memory associated with the video adapter. Separate board increase overall system costs. In addition to increasing overall system costs, the data stream data requires approximately 5 Mbytes of PCI bandwidth, thereby limiting the
25 bandwidth available to other system resources. In addition, when analog video is received and digitized (not illustrated), by the prior art system the PCI band data bandwidth is approximately 25 Mbytes.

Another proposed method for receiving DVB data was to use the side port of a video graphics adapter in order to receive the transport stream information. However, the video side

port is designed to only receive uncompressed digital video instead of compressed MPEG transport stream. A format conversion chip is needed between the DVB demodulator output and video side port to convert a transport stream into a compatible ITU-656 ancillary stream (digital video or data format) like format. This will add cost to system implementation. Another problem
5 is that the data in the transport stream is not fully compliant with ITU-656 data. (values such as 00 and FF are not allowed in an ITU-656 stream but allowed in a transport stream. So this implementation cannot work if the video side port is strictly designed for ITU-656 data streams.

Therefore, a method and apparatus, which overcome the problems of the prior art, would be advantageous.

10

Brief Description of the Drawings

Figure 1 illustrates, in block diagram form, a prior art system for receiving a transport stream;

15

Figure 2 illustrates, in block diagram form, a system in accordance with the present invention;

Figure 3 illustrates, in block diagram form, a detailed view of a portion of Figure 2;

Figures 4 and 5 illustrate, in block diagram form, a detailed view of a portion of Figure 3;

Figure 6 illustrates an active video area in a video frame.

20

Figures 7 and 8 illustrate, in timing diagram form, timing signals associated with one type of digital video;

Figure 9 illustrates, in timing diagram form, timing signal associated with a transport stream;

Figure 10 illustrates, in block form, a memory associated with Figure 5; and

Figure 11 illustrates, in flow diagram form, a method in accordance with the present invention.

Detailed Description of the Drawings

5 A method and apparatus for receiving one of a compressed video stream and an
uncompressed video stream is disclosed. The uncompressed video stream may be Zoom Video
data or a digitized analog video signal. The compressed video stream may be an MPEG
transport stream data from a High Definition television (HDTV) broadcast. A Video Graphics
Adapter is configured to properly receive one of the two types of video data. The received data
and control signals are monitored to provide a second set of control signals that are used by a
10 packer, a window control, and an address generator. The packer packs data into a format which
is compatible with the frame buffer memory. The window controller controls the amount of data
written into frame buffer memory. The address generator generates proper frame buffer
addresses for the data. The data is stored within a pre-defined area of graphics memory such as a
15 frame buffer. The data can be transferred to system memory when a buffer is full.

20 Figure 2 illustrates a system in accordance with the present invention. A digital video
broadcast (DVB) signal is received by the tuner 210. The tuner 210 provides a representation of
the received analog signal to the demodulator 220. The demodulator 220 demodulates the signal
to provide a digital TRANSPORT STREAM to one or both of the Transport Demultiplexor 240,
and the Video Adapter 230. In accordance with the present invention, the Video Adapter 230
receives the TRANSPORT STREAM and buffers it into a video memory, or frame buffer. Upon
filling the frame buffer, the transport stream data is either further utilized by the Video Adapter
230, or at least partially provided to system components, such as the central processing unit
(CPU) 250, or the memory 260. A second data path receives an analog signal, such as would
25 normally be associated with television broadcasts, at tuner 211. The signal from tuner 211 is
provided to a NTSC/PAL/SECAM demodulator 221 to provide a digital representation of the
received analog signal. Note that the tuner 211 and demodulator 221 may be the same, or
different, from the tuner 210 and demodulator 211.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921

Sub P10

5 Figure 4 illustrates the capture block 310 in greater detail. Specifically, the capture block 310 is shown to receive a number of different types of video data. As indicated, 8-bit DVS (Digital Video Stream) video and ZOOM VIDEO is received. Generally, the 8-bit DVS and ZOOM VIDEO data are ITU-601 or ITU-656 related digital video streams. These streams are not compressed video streams. However, the HDTV transport stream received by the capture block 310 of Figure 4, as previously mentioned, is a compressed video stream, such as MPEG 2. While the DVS, ZOOM and TRANSPORT STREAM are illustrated in Figure 4 separately, in operation, the signals will share inputs that can be multiplexed, or de-multiplexed as needed. For example, the data bits from each format can be received by a common set of pins

10 A signal labeled VIDEO SELECT is used to indicate to the Capture Block 310, which type of video is to be received. By allowing for one of a plurality of types of digital video data to be received, greater flexibility is realized within the video graphics adapter (VGA). This reuse of common circuitry allows for an efficient implementation of the present invention. Yet another advantage of the system as illustrated in Figures 3 is that it reduces system costs over the prior art in that the PCI interface 340 already residing within the VGA is used to store transport buffered stream data.

Sub P11

15 Figure 5 illustrates the capture block 310 in greater detail. Figure 5 will be discussed with reference to Figures 6-10, which illustrate specific embodiments of the present invention including various timing diagrams.

20 In Figure 5, the TRANSPORT STREAM, and any other type of digital video, such as ZOOM VIDEO, is received by the Video-In Controller 510 of Figure 5. The TRANSPORT STREAM includes the signals 501, which include a multi-bit data signal (DATA), a synchronization signal (SYNCH), a data valid signal (DVALID), and a clock signal (TCK). The ZOOM VIDEO data is illustrated as a bus. However, it should be noted, that the signals 501 can be multiplexed and/or de-multiplexed (not shown) to receive either ZOOM VIDEO or TRANSPORT STREAM data.

Sub P12

25 The Video-In-Controller 510 acts as a stream interface control to convert the received signal, whether ZOOM VIDEO or a TRANSPORT STREAM, into a Start of Field (SOF) signal, a Start of Active (SOA) signal, an End of Active (EOA) signal, a Data Active (DACTIVE)

Sub P13

Sub P13
~~signal, and a Video Data (VDATA) signal. For ZOOM video, these signals are represented in Figures 6 and 7.~~

Sub P14
5
~~Figure 6 represents a frame of video 610. In a specific embodiment, the video is representative of ZOOM VIDEO. The frame of video 610 has a Vertical Blanking Interval (VBI) which resides in the first few lines of video. The VBI information is not displayed, but can be used to provide data for other operations or functions. Following the VBI portion, VIDEO is provided. Within the VIDEO portion, an Active Video 620 is illustrated which represents a portion of the VIDEO to actually be displayed. At the beginning of each line of the frame 610, a Start of Active (SOA) pulse is provided. At the end of each line of the frame 610, an End of Active video (EOA) signal is provided. At the beginning of the first line of the frame 610, the start of a new frame is indicated by a Start of Frame (SOF) indicator. Note that the SOA and EOA refers to the active video relative to the ZOOM VIDEO standard which is the entire VIDEO portion is considered active video relative to the transmitted data. The Active Video 620 is the Active Video relative to the user.~~

Sub P15
15
~~The Active Video 620 of Figure 6 indicates the portion of the received VIDEO to be displayed. One example of the Active Video 620 varying from the received VIDEO is when the received video is High Definition Television (HDTV), which has a different aspect ratio than standard television, is to be displayed on a standard television. In this mode of operation, it is desirable to select only a portion of the HDTV frame for display on a standard television screen. In order to specify the desired Active Video 620, it is necessary to specify a Y OFFSET indicated where the first line of Active Video 620 begins, a X OFFSET indicating which pixel is the first pixel of Active Video 620, a WIDTH indicating the number of pixels in a containing Active Video 620, and a HEIGHT indicating the number of lines containing the active Video. Note that the X OFFSET, and Y OFFSET are illustrated to be relative to the first line and pixel of the frame 610. However, in other embodiments, other reference locations can be indicated.~~

Sub P16
20
25

Sub P16
~~Figure 7 illustrates the signals associated with ZOOM VIDEO. The ZOOM VIDEO signals received by the Video-In Controller 510 are substantially similar to the signals provided by the Video-In Controller 510, except that no DACTIVE signal is received. Therefore, since~~

there is no equivalent signal to DACTIVE in Zoom video, the DACTIVE signal from video-in controller 510 specified is asserted when the Video-In Controller 510 receives data.

In operation, the Window Control 520 receives the SOF, SOA, and EOA signals from the Video-In Controller 510. In addition, the Window Controller 510 receives, and/or has access to values indicating the X OFFSET, Y OFFSET, WIDTH, AND HEIGHT values associated with Figure 6. These values can be provided in any number of manners, including inputs to the Window Controller 520, or by accessing register locations. From the received values and signals, the Window Control 520 generates a second set of control signals: Window control Start of Field (WSOF); Window control End of Field (WEOF); Window control End of Line (WEOL); Vertical Active (VACTIVE); and Horizontal Active (HACTIVE). These signals are further described with reference to the table below, and the relationship of the signal WSOF, WEOF, AND WEOL are illustrated in Figure 8.

VIDEO-IN OPERATION FOR ZOOM VIDEO

SIGNAL	DESCRIPTION
WSOF	Pulse active when at first pixel of Active Video.
WEOF	Pulse active at last pixel of Active Video.
WEOL	Pulse active at end of each line of Active Video.
HACTIVE	Asserted when pixel count within Width.
VACTIVE	Asserted when line count is within HEIGHT.

The signal WSOF (Window control Start of Field) provides an asserted pulse when the first pixel of the Active Video 620 is encountered. The first pixel location can be determined by comparing the X OFFSET and Y OFFSET values to the current pixel and line numbers, which are maintained by the system. For example, in one implementation, the Y OFFSET represents the first line of Active Video 620, while the X OFFSET represents the first pixel of Active Video 620 within a line. This is represented in Figure 8, where the signal WSOF is active at the same

Sub D10

time as the clock pulse labeled L. The clock pulse L represents the time at which the first pixel of the Active Video 640 is available.

Sub D20

5 The signal WEOF provides an asserted pulse when the last pixel of the Active Video 620 is encountered. The last pixel location can be determined by comparing the sum of the WIDTH and X OFFSET values to the current pixel number, and comparing the sum of the HEIGHT and the Y OFFSET values to the line number. For example, in one implementation, the X OFFSET plus the WIDTH less one indicates the last bit of Active video 620 associated with a line. Likewise, Y OFFSET plus the HEIGHT less one indicates the last line of Active Video 620. Therefore, by monitoring these values, the WEOF signal can provide an asserted pulse when 10 both the last line and pixel of an Active Video 620 region is encountered. This is illustrated in Figure 8, where the signal WEOF is active at a time in conjunction with the clock pulse labeled N. The clock pulse N represents the time at which the last pixel of the Active Video 640 is available.

Sub D30

15 The signal WEOL provides an asserted pulse when the last pixel of a line of Active Video 620 is encountered. The last pixel of a line can be determined by comparing the sum of the WIDTH and X OFFSET values to the current pixel number. For example, in one implementation, the X OFFSET plus the WIDTH minus one represents the last bit of a line of Active Video 620. This number can be compared to the current pixel number to determine whether the end of line has occurred. WEOL is represented in Figure 8, where the signal WEOL is active at a time in conjunction with the clock pulses labeled M and N. The clock pulses M and 20 N represents the time at which the last pixel of a line of data is available.

Sub D40

25 The signal HACTIVE is asserted when the current pixel location is within the WIDTH region. Note that a pixel does not have to be in the Active Video 620 in order for HACTIVE to be asserted. This allows for an embodiment whereby only the pixel number is monitored and compared to the values associated with the WIDTH of the Active Video 620. Likewise, the VACTIVE signal is asserted when the current line number is within the HEIGHT region indicated in Figure 6.

Sub D50

It will be understood by one skilled in the art, that the exact time at which the Window Controller 510 provides a given control signal can vary depending upon specific embodiments.

For example, the WEOL signal can be asserted in conjunction with the last pixel, or after the last pixel.

Referring to Figure 5, the signals generated by the Window Controller 510 are used by the Packer 640 and the Address Generator 630 to provide data and address to the buffer. In one embodiment, the Packer 640 receives 8-bit bytes of data, and combines them to form larger data words labeled VIDEO DATA. For example, the VIDEO DATA signal can comprise 32, 64, or 128 bit words of video data. The width of VIDEO DATA can be fixed or programmable. The DACTIVE, HACTIVE, and VACTIVE signals qualify the VDATA received by the Packer 640.

For ZOOM VIDEO, DACTIVE is always asserted. Therefore, the Packer 640 uses the HACTIVE and VACTIVE data to qualify VDATA. For example, when both DACTIVE and VACTIVE are asserted, the data value received on VDATA is within the ACTIVE VIDEO 620, and will be included by the Packer 640 within the VIDEO DATA. If either of DACTIVE and VACTIVE are inactive, the data value received on VDATA is not within the ACTIVE VIDEO 620, and will not be included by the Packer 640 as part of the VIDEO DATA.

The described embodiment for receiving ZOOM VIDEO provides for an efficient means to receive only a desired portion of video data, however, the data received needs be readily associated with a specific line and a pixel in order to determine where the ACTIVE VIDEO resides. In contrast, DVB data is compressed, and visibility as to the line and pixel locations is not readily available without decompression of the data first occurring. In specific embodiments, it is desirable to perform such decompression by other parts of the system, or at least to store the compressed data in other parts of the system. Therefore, one embodiment of the present invention further allows compressed data, such as DVB transport steam data, to be buffered within the Graphics Memory 330 of Figure 3.

Figure 9 illustrates a timing diagram representing signals associated with the TRANSPORT STREAM of Figure 2. The TRANSPORT STREAM includes a signal labeled TCK, which provides one clock pulse to qualify each byte of data.. A synchronization (SYNCH)

signal indicates the beginning of a new line or packet of information. In addition, a data valid signal (DVALID) indicates when the packet data being transmitted is valid.

In response to the TRANSPORT STREAM, the Video-In Controller 510 drives the signals SOF, SOA, EOA, DACTIVE, AND VDATA. The manner in which these signals are generated is different for a TRANSPORT STREAM than for the ZOOM VIDEO previously discussed. The table below indicates the operation of the Window Controller 510 for TRANSPORT STREAM reception.

OPERATION FOR RECEPTION OF A TRANSPORT STREAM

VIDEO-IN SIGNAL	DESCRIPTION
SOF	Pulse active to indicate the first byte of a transport stream packet to be stored in buffer.
SOA	Pulse active to indicate the first byte of a transport stream packet.
EOA	Pulse active to indicate the last byte of a transport stream packet.
DACTIVE	Asserted to indicate invalid bytes as indicated by DVALID.
DATA	Data from TRANSPORT STREAM.

During reception of the TRANSPORT STREAM, the SOF signal provides an asserted pulse to indicate that the first byte to be stored in the Graphics memory 330 is present. In one embodiment, the Video-In Controller 510 will use a counter to keep track of the number of lines and bytes of compressed data provided to the Window Controller 510. When the number of lines sent to the Window Controller 510 exceeds the number of lines available in the Graphics Memory 330, the SOF is pulsed again to indicate a new first byte to be stored in the graphics memory. The SOF signal of Figure 9 illustrates two pulses. The first pulse corresponds to TCK 1, which is associated with the first data byte to be stored in the Graphics memory 330. The second SOF pulse occurs on the first TCK after line N has been transmitted, where N is the total

number of lines to be stored in the Graphics memory 330. Note that in Figure 9, the number of bytes in a line of video memory is 88. Coincidentally, this is the same number of bytes that are in a DATA STREAM packet. In other embodiments, the line size is different than the packet size, such that a line of video memory will not necessarily contain an integer number of packets.

5 Note that the Graphics Memory 330 can have one or more buffer locations. Where multiple buffer locations are present, it is possible to switch between buffers when one buffer is full, and continue storing data without delay, or with minimal delay, in a second buffer. If only one frame buffer is available, and it becomes full, it will be necessary to write at least some of the Graphics Memory 330 contents to system memory, or lose data by writing over the stored
10 values. By using a dual ported Graphics Memory 330, it would be possible to buffer data and transmit it to the system simultaneously. In another embodiment, a single ported memory can also do the job, by interleaving between read and write operations.

15 The Video-In Controller 510 signal SOA indicates that the first byte of a TRANSPORT STREAM packet is being transported. The SOA signal can be qualified by the TRANSPORT STREAM's SYNCH signal. There are three such SOA pulsed indicated in Figure 9.

20 The EOA signal indicates that the last byte of a TRANSPORT STREAM packet is being transmitted, or has been transmitted. In one embodiment, the generation of the EOA signal is determined by utilizing a counter, state machine, or ALU to determine when the predetermined number of bytes have been transmitted. Because the signal can be corrupted, there may not be the predetermined number of clock signals before the next SYNCH pulse occurs. Therefore, in another embodiment, a clock independent of the TCK can be used to determine when to assert the EOA signal. Such a clock can be phase locked to the SYNCH signal to maintain an accurate indication of when EOA is to occur.

25 The signal DACTIVE indicates when the data presented to the Packer 640 is valid. As indicated in Figure 9, the signal DACTIVE will generally mirror the signal DVALID of the TRANSPORT STREAM.

The signal VDATA will generally be the TRANSPORT STREAM data bytes (DATA(7:0)).

SAC R34

5 The Window Control 520 receives the SOF, SOA, and EOA signals from the Video-In Controller 510 representing the TRANSPORT STREAM. In addition, the Window Controller 510 receives, and/or has access to, values indicating the X OFFSET, Y OFFSET, WIDTH, AND HEIGHT values associated with Figure 6. For TRANSPORT STREAM reception, the X OFFSET AND Y OFFSET will generally be zero, the width will be number of bytes in the TRANSPORT STREAM, and the HEIGHT will indicate the number of lines to be stored in the Graphics Memory 330. From the received values and signals, the Window Control 510 generates the signals: Window control Start of Field (WSOF); Window control End of Field (WEOF); Window control End of Line (WEOL); Vertical Active (VACTIVE); and Horizontal Active (HACTIVE). These signals are further described with reference to the table below.

10

WINDOW CONTROL OPERATION FOR TRANSPORT STREAM DATA

SIGNAL	DESCRIPTION
WSOF	Pulse qualified to SYNCH signal and counter
WEOL	Pulse qualified to EOA.
WEOF	Pulse qualified to SOF and EOA.
HACTIVE	Assertion qualified to SOA and EOA when pixel count within Width.
VACTIVE	Asserted when between SOA pulse and EOA pulse.
HACTIVE	Asserted when between SOF pulse and WEOF.

SAC R34

25 The signal WEOL provides an asserted pulse when the last byte of a TRANSPORT STREAM packet is encountered. Generally, WEOL signal will be based on the EOA signal.

The signal WSOF signal provides an asserted pulse to indicate the first byte to be stored within a buffer of the Graphics Memory 330 buffer. For a specific embodiment, where the Video-In Controller 510 monitors and maintains the number of lines being written, the WSOF

Sub P41
signal for a TRANSPORT STREAM will be analogous to the SOF signal generated by the Video-In Controller.

Sub P3n⁵
The signal WSOF signal provides an asserted pulse to indicate the last byte to be stored in the current buffer location of the Graphics Memory 330. The Window Controller 510 generates the WSOF signal by comparing the number of EOA signal received since SOF was active, and comparing this number to the provided HEIGHT value. By setting the Y OFFSET to zero, and the HEIGHT value to the number of lines in the Graphics Memory 330, it is possible for the Window Controller 510 to generate the correct WEOF pulse without additional hardware.

Sub P38
10 The signal HACTIVE is asserted when the current byte location is within the WIDTH region which is set to the number of bytes in a packet (188 bytes). 6.

Sub P39
The signal VACTIVE is asserted when the current data being received is to be stored be stored in the current line of the buffer.

Sub P40
15 The Packer 640 provides a signal labeled ADDR GEN REQ, which indicates when a line of data is ready to be stored in the Graphics Memory 330. The Graphics Memory 330 address and control information, is provided to the Graphics Memory 330 by the Address Generator 630 when ADDR GEN REQ is active.

With TRANSPORT STREAM data, it is possible for invalid data to be received. In order to provide visibility to other system portions as to when the stored TRANSPORT STREAM data is valid, a VALID byte location can be included as part of the buffer. Figure 10 illustrates one such VALID byte. By storing a unique value in this byte location, subsequent systems can be notified of the invalid data. In another embodiment, specific values can be stored to indicate those times when invalid data is received. In yet another embodiment, the entire line could be flushed, thereby only permitting valid lines of data to be stored. For types of uncompressed video where the valid byte is not needed, normal video data can be stored at the VALID location.

Sub P41
25 An error signal can also be incorporated into the transport stream capture. When an error signal is received, a specific code can be generated and written with the data stream. Subsequent systems can be notified that an error occurred by monitoring the data and react accordingly.

In this manner, compressed and uncompress data can be stored in the frame buffer represented by Graphics Memory 330. Once an entire frame of data is stored in the Graphics Memory 330 the data can be written to system memory, or it can be decompressed by the Graphics Engine 320.

5 By having the Video-In Controller 510 generate the SOF, SOA, EOA, DACTIVE, and VDATA in the manner indicated, it is possible to use much of the same hardware to implement a storage apparatus for both compressed and uncompressed video.

10 Figure 11 illustrates a method in accordance with the present invention. Generally, the method of Figure 11 has been discussed with respect to the specific system herein. At step 1101, a determination is made whether a first or second type of video data is to be received. Specifically, the first type of data represents TRANSPORT STREAM data as indicated in step 1102. The second type of data represents a digital video stream different from a TRANSPORT STREAM, such as the ZOOM VIDEO signal discussed herein, as indicated at step 1103

15 At steps 1102 and 1103 the system is configured for either a TRANSPORT STREAM or a different digital video stream respectively. As discussed with respect to TRANSPORT STREAM and ZOOM Video herein, these configurations indicate how a video controller will generates its output signals.

20 At step 1104, a secondary set of control signals is generated from the received data stream. This corresponds to the Video-In Controller 510 generating signals SOF, SOA, EOA, DACTIVE, AND VDATA, as discussed herein.

25 At step 1105, at least a portion of the data stream is stored. Step 1105 corresponds to the Window Controller 510, Packer 640, and Address Generator 530 working together as a data storage controller to store words of data in a buffer associated with Graphics Memory 330. These words of data will contain at least a portion of the data received by the Video-In Controller 510 in the manner discussed herein.

At step 1106, the information stored in the Graphics Memory 330 is written to a system bus via the PCI Interface 340 of figure 3.

10 The present invention has been described with reference to specific embodiment. One of ordinary skill in the art will recognize that other embodiment may exist. For example, the data storage described herein has been described with reference to using SOF/EOF/SOA/EOA video fields to store transport stream data. In a similar manner, fields such as Start of VBI and End of
5 VBI could be used to indicate when to store the transport stream data. Such an implementation would require the Window Controller 520 to provide indicators when VBI data is active and should be stored. By indicating the VBI data had the same number of lines of the buffer associated with the Graphics Memory 330, the transport stream data can be stored.

10 Another variation would allow the transport stream data to be stored in the buffer in a compressed form only when it is of a desired type of data. For example, the headers of the transport stream can be monitored to allow only a specific type of data, such as video or audio, to be buffered.

15 It should be further understood that specific functions and steps described may actually be implemented in hardware and/or in software. For example, the signal generation performed by the Window Controller 520 can be performed by a hardware engine, firmware, such as in microcode, executed on the processing engine, or it may even be performed fully in software. In general, such functions can be performed in a processing module that may be a single processing device or a plurality of processing devices. Such a processing device may be a microprocessor, microcontroller, digital signal processor, microcomputer, portion of the central processing unit, state machine, logic circuitry, and/or any device that manipulates signals (e.g., analog or digital) based on operational instructions. The memory may be a single memory device or a plurality of memory devices. Such a memory device may be a read-only memory, random access memory, floppy disk memory, magnetic tape memory, erasable memory, portion of system memory, and/or any device that stores operational instructions in a digital format. Note that when the
20 processing module implements one or more of its functions via a state machine or logic circuitry, the memory storing the corresponding operational instructions is embedded within the circuitry comprising the state machine and/or logic circuitry.
25

The specific embodiments of the present invention disclosed herein are advantageous in that transport stream data can be buffered in a portion of memory normally used by the Video

graphics adapter. Furthermore, the amount of overhead needed to store the transport stream data is minimal because the system hardware/firmware/software is largely in place to handle the data. This is an advantage over other prior art embodiments which had dedicated hardware to merely convert transport stream data into a useful format before being received by a VGA controller. By allowing transport stream data to be received directly by the VGA controller, cost savings and efficiencies are gained. In addition, variations of the specific embodiments are anticipated. For example, the uncompressed video may be digitized NTSC/PAL/SECAM signals as well.