Binomial Heaps

Priority Queues

- Supports the following operations.
 - Insert element x.
 - Return min element.
 - Return and delete minimum element.
 - Decrease key of element x to k.
- Applications.
 - Dijkstra's shortest path algorithm.
 - Prim's MST algorithm.
 - Event-driven simulation.
 - Huffman encoding.
 - Heapsort.

– ...

Dijkstra's Algorithm

```
set S:={s} and d(s):=0 while S\neqV do pick a node v not from S such that the value d'(v) := \min_{e=(u,v),u\in S} \{d(u) + len(e)\} is minimal set S:=S\cup{v}, and d(v):=d'(v) endwhile
```

Dijkstra's Algorithm: PQ Style

```
call PQinit
set S:=V
set key(s) := 0
PQinsert(s)
for each v \in V - \{s\}
   key(v):=∞
   call PQinsert(v)
while not PQisempty
   set v:=Pqdelmin
   set S:=S-{v}
   for each w \in Q such that (v, w) \in E
      if key(w)>key(v)+len(v,w) then
          call PQdecrease(w,key(v)+len(v,w))
```

Priority Queues

		Heaps			
Operation	Linked List	Binary	Binomial	Fibonacci *	Relaxed
make-heap	1	1	1	1	1
insert	1	log N	log N	1	1
find-min	N	1	log N	1	1
delete-min	N	log N	log N	log N	log N
union	1	N	log N	1	1
decrease-key	1	log N	log N	1	1
delete	N	log N	log N	log N	log N
is-empty	1	1	1	1	1

Dijkstra/Prim
1 make-heap
|V| insert
|V| delete-min
|E| decrease-key

Binomial Tree

Recursive definition:

- B₀ is a single node
- B_k is obtained from attaching one copy of B_{k-1} as the leftmost child of another B_{k-1}

Binomial Tree

Lemma

For a binomial tree B_k .

- (a) Number of nodes equals 2k.
- (b) Height equals k.
- (c) Degree of root equals k.
- (d) Deleting root yields binomial trees B_{k-1}, \ldots, B_0 .
- (e) B_k has $\binom{k}{i}$ nodes at depth i.

Binomial Tree

Proof Induction on k

Base case: For B_0 all claims are obvious.

Induction Step: Suppose the lemma is true for B_{k-1}

(a)
$$|B_k| = |B_{k-1}| + |B_{k-1}| = 2^k$$

(b), (c), (d) Exercise

(d) Denote the number of nodes of B_k at depth i by N(k,i)Then N(k,i) = N(k-1, i) + N(k-1, i-1)

$$= \binom{k-1}{i} + \binom{k-1}{i-1}$$

$$= \binom{k}{i} \qquad \qquad \text{Pascal's identity}$$

Binomial Heap

Binomial heap.

- Sequence of binomial trees that satisfy binomial heap property.
 - each tree is min-heap ordered

Binomial Heap: Implementation

Represent trees using left-child, right-child pointers.

three links per node (parent, left, right)

Roots of trees connected with singly linked list.

Binomial Heap

Leftist Power-of-2 Heap

Binomial Heap: Properties

Properties of N-node binomial heap.

- Min key contained in root of B_0, B_1, \ldots, B_k .
- Contains binomial tree B_i iff $b_i = 1$ where $b_n b_2 b_1 b_0$ is binary representation of N.
- At most $\lfloor \log_2 N \rfloor + 1$ binomial trees.

Create heap H that is union of heaps H' and H".

- "Mergeable heaps."
- Easy if H' and H" are each order k binomial trees.
 - connect roots of H' and H"

choose smaller key to be root of H

Union: Running Time

Theorem

Union can be executed in O(n) time

Proof

The running time is proportional to the number of trees in root lists, which is at most $2(\lfloor \log_2 N \rfloor + 1)$.

Delete Minimal

Delete node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete
- H' := broken binomial trees
- H := Union(H', H)

Delete Minimal

Delete node with minimum key in binomial heap H.

- Find root x with min key in root list of H, and delete
- H' := broken binomial trees
- H := Union(H', H)

Running time: O(log N)

Decrease Key

Decrease key of node x in binomial heap H.

- Suppose x is in binomial tree B_k .
- Bubble node x up the tree if x is too small.

Running time: O(log N)

- Proportional to depth of node $x \leq \lfloor \log_2 N \rfloor$.

Delete

Delete node x in binomial heap H.

- Decrease key of x to $-\infty$.
- Delete min.

Running time: O(log N)

Insert

Insert a new node x into binomial heap H.

- $H' \leftarrow MakeHeap(x)$
- $H \leftarrow Union(H', H)$

Running time: O(log N)

