

R & dplyr

CONTENT

- Steps in Exploratory Data Analysis
- First Steps with R and RStudio
- Our Tool Set
- Data loading with {readr} / data management with {tibble}
- Data transformation with {dplyr}
 - Select columns
 - Filter rows
 - Sort rows
 - Add or change columns
 - Aggregate rows
- Exercise

RECOMMENDED LITERATURE

Wickham, Hadley, and Garrett Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. 2nd edition, O'Reilly, 2023. Online verfügbar: https://r4ds.hadley.nz/

→ Chapter 4 in the online version

Sauer, Sebastian. Moderne Datenanalyse mit R. Springer Gabler, 2019.

→ Chapter 7

STEPS IN EXPLORATORY DATA ANALYSIS

STEPS IN EXPLORATORY DATA ANALYSIS

Source: Wickham, Hadley, and Garrett Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. First edition, O'Reilly, 2016. URL: https://r4ds.hadley.nz/diagrams/data-science/base.png

FIRST STEPS WITH R & RStudio

FIRST STEPS WITH R AND RSTUDIO

DESKTOP OR CLOUD

Download, Installation R and RStudio

alternatively

Registration and Login RStudio Cloud

Walkthrough RStudio

- Console and script editor
- Installing packages
- Projects
- Environment
- Previews
- Getting Help

FIRST STEPS WITH R AND RSTUDIO

CREATE A NEW PROJECT

All code examples for this course are hosted publicly on GitHub

- File → New Project → New Directory
- Choose a location on your computer and enter the name for the new directory
- Check "Use renv with this project"

FIRST STEPS WITH R AND RSTUDIO

CHECKOUT GITHUB REPO

All code examples for this course are hosted publicly on GitHub

- File → New Project → Version Control → Git
- Paste the repository's URL and choose a location on your computer:

https://github.com/winf-hsos/<name_of_repo>.git

OUR TOOLSET

OUR TOOLSET

- Data loading, e.g., with {readr} or {readx1}
- Data management with {tibble}
- Data transformation with {dplyr}
 - o select()
 - o filter()
 - o arrange()
 - o mutate() / transmute()
 - o summarise() / group_by()
- Data visualization with {ggplot2}

- Working Environment(s)
 - R & Python
 - RStudio
 - o Databricks (for Big Data)

mutate
transmute

group_by
summarize

DATA LOADING {readr}

DATA LOADING

EXERCISE DATA

- Data loading with {readr} and {readx1} (Excel, CSV), {jsonlite} (JSON), or readRDS (R-format)
- {janitor} and clean_names for better column names
- Introductory data sets:

Campusbier Sales Orders (CSV)

REWE Online Products (CSV)

Politician's Tweets (JSON / RDS)

DATA MANAGEMENT {tibble}

DATA MANAGEMENT

HANDLE THE DATA

- Manage data with data frames and {tibble}
- Tibbles as modern data frames
 - Better printing
 - No string conversion into factors
 - No rownames
 - Original column names are kept when loading a tibble
 - Lazy processing

Tibbles or data frames? Both are like tables in a spreadsheet... just in R

DATA TRANSFORMATION {dplyr}

- Select specific columns with {dplyr}
 - o select
 - By name
 - By name pattern (starts_with, ends_with, contains)
 - By position or index (last_col)
 - By set (all_of, any_of)
 - By data type (where(is.numeric))
 - White vs. blacklist (!)

- Reduce rows with {dplyr}
 - o filter
 - Simple filter conditions (==, !=, <, >)
 - Multiple conditions (&, |, !, xor)
 - Set operators (%in%)
 - Missing values (NA, is.na)
 - Simple text searches (str_detect)

ZEILEN SORTIEREN

- Sort results with {dplyr}
 - arrange
 - Ascending order by one or more columns
 - Descending order (desc or -)

ADD OR CHANGE COLUMNS

- Add new calculated columns with {dplyr}
 - mutate
 - Add new calculated columns (+, -, /, *, %%, ^, paste0)
 - Vectorized calculations (mean, sum, max, min, lag, lead)
 - Keep only used columns (.keep = "used")
 - Determine position of new columns with .before and .after
 - transmute
 - Add new columns and remove all others (sometimes what we want)

SUMMARIZE ROWS

- Summarize data with {dplyr}
 - o count, tally, distinct for quick aggregations
 - summarise
 - Aggregate data using functions (mean, median, quantile, sd, IQR, mad, sum, max, min, n, n_distinct, first, nth, last)
 - group_by
 - Create groups by which to aggregate
 - The **janitor** package with **taby1** for quick percentages and cross-tables

EXERCISE

CAMPUSBIER SALES ORDERS

AD-HOC EXERCISE

You are new as a managing director in the Campusbier project and are supposed to get a first impression of the business. All you have are two datasets: orders.csv and line_items.csv.

- How do you approach this unknown dataset?
- With a partner, come up with at least 3 questions you want to ask the data! Look at the available columns for this!
- Create R commands to answer the questions (without visualization yet)!

