Fundamentals of Power Electronics

SECOND EDITION

Fundamentals of **Power Electronics**

SECOND EDITION

Robert W. Erickson Dragan Maksimović University of Colorado Boulder, Colorado eBook ISBN: 0-306-48048-4 Print ISBN: 0-7923-7270-0

©2004 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow

Print ©2001 Kluwer Academic/Plenum Publishers New York

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com

and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dedicated to Linda, William, and Richard Lidija, Filip, Nikola, and Stevan

Contents

Pre	reface			
1	Intro	duction	1	
	1.1	Introduction to Power Processing	1	
	1.2	Several Applications of Power Electronics	7	
	1.3	Elements of Power Electronics	9	
	Refe	rences		
I	Co	nverters in Equilibrium	11	
2	Pri	nciples of Steady State Converter Analysis	13	
	2.1	Introduction	13	
	2.2	Inductor Volt-Second Balance, Capacitor Charge Balance, and the Small-Ripple		
		Approximation	15	
	2.3	Boost Converter Example	22	
	2.4	Ćuk Converter Example	27	
	2.5	Estimating the Output Voltage Ripple in Converters Containing Two-Pole		
		Low-Pass Filters	31	
	2.6	Summary of Key Points	34	
	Refe	rences	34	
	Prob	olems	35	
3	Stea	ly-State Equivalent Circuit Modeling, Losses, and Efficiency	39	
	3.1	The DC Transformer Model	39	
	3.2	Inclusion of Inductor Copper Loss	42	
	3.3	Construction of Equivalent Circuit Model	45	

		3.3.1	Inductor Voltage Equation	46	
		3.3.2	Capacitor Current Equation	46	
		3.3.3	Complete Circuit Model	47	
		3.3.4	Efficiency	48	
	3.4	How t	o Obtain the Input Port of the Model	50	
	3.5	Examp	ple: Inclusion of Semiconductor Conduction Losses in the Boost		
		Conve	rter Model	52	
	3.6	Summ	nary of Key Points	56	
	Refe	rences		56	
	Prob	olems		57	
4	Swit	ch Reali	zation	63	
	4.1	Switch	h Applications	65	
		4.1.1	Single-Quadrant Switches	65	
		4.1.2	Current-Bidirectional Two-Quadrant Switches	67	
		4.1.3	Voltage-Bidirectional Two-Quadrant Switches	71	
		4.1.4	Four-Quadrant Switches	72	
		4.1.5	Synchronous Rectifiers	73	
	4.2	A Brie	ef Survey of Power Semiconductor Devices	74	
		4.2.1	Power Diodes	75	
		4.2.2	Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)	78	
		4.2.3	Bipolar Junction Transistor (BJT)	81	
		4.2.4	Insulated Gate Bipolar Transistor (IGBT)	86	
		4.2.5	Thyristors (SCR, GTO, MCT)	88	
	4.3		hing Loss	92	
		4.3.1	Transistor Switching with Clamped Inductive Load	93	
		4.3.2	Diode Recovered Charge	96	
		4.3.3	Device Capacitances, and Leakage, Package, and Stray Inductances	98	
		4.3.4	Efficiency vs. Switching Frequency	100	
	4.4		ary of Key Points	101 102	
		References			
	Prob	lems		103	
5	The l	Disconti	nuous Conduction Mode	107	
	5.1	Origin	of the Discontinuous Conduction Mode, and Mode Boundary	108	
	5.2	Analys	sis of the Conversion Ratio $M(D,K)$	112	
	5.3	Boost (Converter Example	117	
	5.4	Summ	ary of Results and Key Points	124	
	Prob			126	
6	Conv	erter Ci	ircuits	131	
	6.1	Circuit	t Manipulations	132	
		6.1.1	Inversion of Source and Load	132	
		6.1.2	Cascade Connection of Converters	134	
		6.1.3	Rotation of Three-Terminal Cell	137	

Contents	ix

		6.1.4	Differential Connection of the Load	138	
	6.2	A Sho	rt List of Converters	143	
	6.3	Transf	ormer Isolation	146	
		6.3.1	Full-Bridge and Half-Bridge Isolated Buck Converters	149	
		6.3.2	Forward Converter	154	
		6.3.3	Push-Pull Isolated Buck Converter	159	
		6.3.4	Flyback Converter	161	
		6.3.5	Boost-Derived Isolated Converters	165	
		6.3.6	Isolated Versions of the SEPIC and the Ćuk Converter	168	
	6.4	Conve	rter Evaluation and Design	171	
		6.4.1	Switch Stress and Utilization	171	
		6.4.2	Design Using Computer Spreadsheet	174	
	6.5	Summ	ary of Key Points	177	
	Refe	rences		177	
	Prob	lems		179	
П	Con	verter	Dynamics and Control	185	
7	AC Equivalent Circuit Modeling				
	7.1	Introdu	action	187	
	7.2	The Ba	sic AC Modeling Approach	192	
		7.2.1	Averaging the Inductor Waveforms	193	
		7.2.2	Discussion of the Averaging Approximation	194	
		7.2.3	Averaging the Capacitor Waveforms	196	
		7.2.4	The Average Input Current	197	
		7.2.5	Perturbation and Linearization	197	
		7.2.6	Construction of the Small-Signal Equivalent Circuit Model	201	
		7.2.7	Discussion of the Perturbation and Linearization Step	202	
		7.2.8	Results for Several Basic Converters	204	
	7 0	7.2.9	Example: A Nonideal Flyback Converter	204	
	7.3		pace Averaging	213	
		7.3.1	The State Equations of a Network	213	
		7.3.2 7.3.3	The Basic State-Space Averaged Model Discussion of the State-Space Averaging Result	216 217	
		7.3.3 7.3.4	Example: State-Space Averaging of a Nonideal Buck–Boost Converter	217	
	7.4		Averaging and Averaged Switch Modeling	226	
	7.4	7.4.1	Obtaining a Time-Invariant Circuit	228	
		7.4.2	Circuit Averaging	229	
		7.4.3	Perturbation and Linearization	232	
		7.4.4	Switch Networks	235	
		7.4.5	Example: Averaged Switch Modeling of Conduction Losses	242	
		7.4.6	Example: Averaged Switch Modeling of Switching Losses	244	
	7.5	The Ca	nonical Circuit Model	247	
		7.5.1	Development of the Canonical Circuit Model	248	

x Contents

		7.5.2	Example: Manipulation of the Buck-Boost Converter Model	• • •
		7.50	into Canonical Form	250
		7.5.3	Canonical Circuit Parameter Values for Some Common Converters	252
	7.6		ing the Pulse-Width Modulator	253
	7.7	Summa	ary of Key Points	256
	Refe	erences		257
	Prob	olems		258
8	Con	verter Tr	ransfer Functions	265
	8.1	Review	v of Bode Plots	267
		8.1.1	Single Pole Response	269
		8.1.2	Single Zero Response	275
		8.1.3	Right Half-Plane Zero	276
		8.1.4	Frequency Inversion	277
		8.1.5	Combinations	278
		8.1.6 8.1.7	Quadratic Pole Response: Resonance The Low-Q Approximation	282
		8.1.7	Approximate Roots of an Arbitrary-Degree Polynomial	287 289
	8.2		sis of Converter Transfer Functions	293
	0.2	8.2.1	Example: Transfer Functions of the Buck–Boost Converter	293
		8.2.2	Transfer Functions of Some Basic CCM Converters	300
		8.2.3	Physical Origins of the RHP Zero in Converters	300
	8.3		cal Construction of Impedances and Transfer Functions	302
	0.5	8.3.1	Series Impedances: Addition of Asymptotes	303
		8.3.2	Series Resonant Circuit Example	305
		8.3.3	Parallel Impedances: Inverse Addition of Asymptotes	308
		8.3.4	Parallel Resonant Circuit Example	309
		8.3.5	Voltage Divider Transfer Functions: Division of Asymptotes	311
	8.4	Graphi	cal Construction of Converter Transfer Functions	313
	8.5	Measur	rement of AC Transfer Functions and Impedances	317
	8.6	Summa	ary of Key Points	321
	Refe	rences		322
	Prob	lems		322
9	Cont	roller D	esign	331
	9.1	Introdu	action	331
	9.2	Effect	of Negative Feedback on the Network Transfer Functions	334
		9.2.1	Feedback Reduces the Transfer Functions	
			from Disturbances to the Output	335
		9.2.2	Feedback Causes the Transfer Function from the Reference Input	
			to the Output to be Insensitive to Variations in the Gains in the	
			Forward Path of the Loop	337
	9.3		uction of the Important Quantities $1/(1 + T)$ and $T/(1 + T)$	
			e Closed-Loop Transfer Functions	337
	9.4	Stabilit	ty	340

		9.4.1	The Phase Margin Test	341
		9.4.2	The Relationship Between Phase Margin	2.42
		9.4.3	and Closed-Loop Damping Factor	342
	9.5		Transient Response vs. Damping Factor ator Design	346 347
	9.5	9.5.1	Lead (PD) Compensator	348
		9.5.1	Lag (PI) Compensator	3 4 8
		9.5.3	Combined (PID) Compensator	353
		9.5.4	Design Example 1	354
	9.6	Measur	rement of Loop Gains	362
		9.6.1	Voltage Injection	364
		9.6.2	Current Injection	367
		9.6.3	Measurement of Unstable Systems	368
	9.7		ary of Key Points	369
		rences		369
	Prob	lems		369
10	Inpu	t Filter I	Design	377
	10.1	Introdu	action	377
		10.1.1	Conducted EMI	377
		10.1.2	The Input Filter Design Problem	379
	10.2		of an Input Filter on Converter Transfer Functions	381
		10.2.1	Discussion	382
		10.2.2	Impedance Inequalities	384
	10.3		Converter Example	385
		10.3.1	1 1	385
	10.4	10.3.2	Damping the Input Filter	391
	10.4	_	of a Damped Input Filter	392
		10.4.1	R_f - C_b Parallel Damping	395
		10.4.2	, 0	396
		10.4.3	, ,	398
		10.4.4	e	398 400
	10.5	10.4.5	Example: Two Stage Input Filter ary of Key Points	400
		rences	if y of Key I offits	405
	Probl			406
11			Equivalent Circuit Modeling of the Discontinuous Conduction Mode	409
	11.1		Averaged Switch Model	410
	11.1		Signal AC Modeling of the DCM Switch Network	420
	11.2	11.2.1		720
		11.2.1	of a DCM Boost Converter	428
		11.2.2	Example: Control-to-output Frequency Responses	.20
			of a CCM/DCM SEPIC	429

Contents

хi

	11.3	High-Frequency Dynamics of Converter	rs in DCM	431			
	11.4	Summary of Key Points		434			
	References						
	Prob	lems		435			
12	Curr	ent Programmed Control		439			
	12.1	Oscillation for $D > 0.5$		441			
	12.2	A Simple First-Order Model		449			
		12.2.1 Simple Model via Algebraic A	pproach: Buck-Boost Example	450			
		12.2.2 Averaged Switch Modeling	•	454			
	12.3	A More Accurate Model		459			
		12.3.1 Current-Programmed Controlle	r Model	459			
		12.3.2 Solution of the CPM Transfer F	Gunctions	462			
		12.3.3 Discussion	E C CAL COMP I C	465			
		12.3.4 Current-Programmed Transfer12.3.5 Results for Basic Converters	Functions of the CCM Buck Converter	466 469			
		12.3.6 Quantitative Effects of Curren	t-Programmed Control	409			
		on the Converter Transfer Func	C	471			
	12.4	Discontinuous Conduction Mode		473			
	12.5	Summary of Key Points		480			
	Refe	rences		481			
	Probl	ems		482			
Ш	Mag	netics		489			
13	Basic	Magnetics Theory		491			
	13.1	Review of Basic Magnetics		491			
		13.1.1 Basic Relationships		491			
		13.1.2 Magnetic Circuits		498			
	13.2	Transformer Modeling		501			
		13.2.1 The Ideal Transformer		502			
		13.2.2 The Magnetizing Inductance		502			
		13.2.3 Leakage Inductances		504			
	13.3	Loss Mechanisms in Magnetic Devices		506			
		13.3.1 Core Loss		506			
	12.4	13.3.2 Low-Frequency Copper Loss		508			
	13.4	Eddy Currents in Winding Conductors	T 100	508			
		13.4.1 Introduction to the Skin and Pro 13.4.2 Leakage Flux in Windings	oximity Effects	508			
		13.4.2 Leakage Flux in Windings 13.4.3 Foil Windings and Layers		512 514			
		13.4.4 Power Loss in a Layer		515			
		13.4.5 Example: Power Loss in a Trans	sformer Winding	518			
		13.4.6 Interleaving the Windings		520			
		13.4.7 PWM Waveform Harmonics		522			

				Contents	XIII
	12.5	Carramal	Tunes of Manustia Davines Their D. H. Leons		
	13.5		Types of Magnetic Devices, Their <i>B–H</i> Loops, ore vs. Copper Loss		525
		13.5.1	Filter Inductor		525
		13.5.2	AC Inductor		527
			Transformer		528
		13.5.4	Coupled Inductor		529
		13.5.5	Flyback Transformer		530
	13.6	Summa	ary of Key Points		531
	Refe	rences			532
	Prob	lems			533
14	Indu	ctor Des	ign		539
	14.1	Filter I	nductor Design Constraints		539
		14.1.1	Maximum Flux Density		541
		14.1.2	Inductance		542
		14.1.3	2		542
			Winding Resistance		543
		14.1.5	g		543
	14.2	_	-by-Step Procedure		544
	14.3		le-Winding Magnetics Design via the K_g Method		545
		14.3.1	Window Area Allocation		545
		14.3.2 14.3.3	Coupled Inductor Design Constraints Design Procedure		550 552
	14.4	Examp			554
	1	14.4.1	Coupled Inductor for a Two-Output Forward Converter		554
		14.4.2	CCM Flyback Transformer		557
	14.5	Summa	ary of Key Points		562
		rences			562
	Prob	lems			563
15	Trans	sformer	Design		565
	15.1	Transfo	ormer Design: Basic Constraints		565
		15.1.1	Core Loss		566
		15.1.2	Flux Density		566
		15.1.3	Copper Loss		567
		15.1.4			568
			Optimum Flux Density		569
	15.2	•	-by-Step Transformer Design Procedure		570
	15.3	Examp			573
		15.3.1	Example 1: Single-Output Isolated Ćuk Converter		573
		15.3.2	Example 2: Multiple-Output Full-Bridge Buck Converter		576
	15.4		luctor Design		580
		15.4.1	Outline of Derivation		580
		15.4.2	Step-by-Step AC Inductor Design Procedure		582

	15.5 Summary References Problems					
IV	Mod	dern Rectifiers and Power System Harmonics	587			
16	Powe	er and Harmonics in Nonsinusoidal Systems	589			
	16.1	Average Power	590			
	16.2	Root-Mean-Square (RMS) Value of a Waveform	593			
	16.3	Power Factor	594			
		16.3.1 Linear Resistive Load, Nonsinusoidal Voltage	594			
		16.3.2 Nonlinear Dynamic Load, Sinusoidal Voltage	595			
	16.4	Power Phasors in Sinusoidal Systems	598			
	16.5	Harmonic Currents in Three-Phase Systems	599			
		16.5.1 Harmonic Currents in Three-Phase Four-Wire Networks	599			
		16.5.2 Harmonic Currents in Three-Phase Three-Wire Networks	601			
	166	16.5.3 Harmonic Current Flow in Power Factor Correction Capacitors	602			
	16.6	AC Line Current Harmonic Standards	603			
		16.6.1 International Electrotechnical Commission Standard 1000 16.6.2 IEEE/ANSI Standard 519	603			
	Rihli	liography	604 605			
		blems	605			
17		-Commutated Rectifiers	609			
	17.1	The Single-Phase Full-Wave Rectifier	609			
	17.1	17.1.1 Continuous Conduction Mode	610			
		17.1.2 Discontinuous Conduction Mode	611			
		17.1.3 Behavior when C is Large	612			
		17.1.4 Minimizing <i>THD</i> when <i>C</i> is Small	613			
	17.2	The Three-Phase Bridge Rectifier	615			
		17.2.1 Continuous Conduction Mode	615			
		17.2.2 Discontinuous Conduction Mode	616			
	17.3	Phase Control	617			
		17.3.1 Inverter Mode	619			
		17.3.2 Harmonics and Power Factor 17.3.3 Commutation	619 620			
	17.4	Harmonic Trap Filters	620			
	17.5	Transformer Connections	628			
	17.6	Summary	630			
		prences	631			
		olems	632			
18		e-Width Modulated Rectifiers	637			
	18.1	Properties of the Ideal Rectifier	638			
		A	550			

Contents	373
	XV

	18.2	Realiza	ation of a Near-Ideal Rectifier	640	
		18.2.1	CCM Boost Converter	642	
		18.2.2	DCM Flyback Converter	646	
	18.3	Contro	l of the Current Waveform	648	
		18.3.1	Average Current Control	648	
		18.3.2		654	
			Critical Conduction Mode and Hysteretic Control	657	
			Nonlinear Carrier Control	659	
	18.4	Single-	Phase Converter Systems Incorporating Ideal Rectifiers	663	
		18.4.1	Energy Storage	663	
		18.4.2	Modeling the Outer Low-Bandwidth Control System	668	
	18.5	RMS V	alues of Rectifier Waveforms	673	
		18.5.1	Boost Rectifier Example	674	
		18.5.2	Comparison of Single-Phase Rectifier Topologies	676	
	18.6	Modelii	ng Losses and Efficiency in CCM High-Quality Rectifiers	678	
		18.6.1	Expression for Controller Duty Cycle $d(t)$	679	
		18.6.2	r	681	
		18.6.3		683	
			Design Example hree-Phase Rectifiers	684	
	18.7	685			
	18.8		ary of Key Points	691	
		rences		692	
	Probl	lems		696	
V	Reso	onant C	Converters	703	
19	Resonant Conversion				
	19.1	Sinuso	idal Analysis of Resonant Converters	709	
		19.1.1	Controlled Switch Network Model	710	
		19.1.2	Modeling the Rectifier and Capacitive Filter Networks	711	
		19.1.3	Resonant Tank Network	713	
		19.1.4	Solution of Converter Voltage Conversion Ratio $M = V/V_g$	714	
	19.2	Examp	les	715	
		19.2.1	Series Resonant DC-DC Converter Example	715	
		19.2.2		717	
		19.2.3	Parallel Resonant DC–DC Converter Example	718	
	19.3	Soft Sw	vitching	721	
		19.3.1	Operation of the Full Bridge Below Resonance:		
			Zero-Current Switching	722	
		19.3.2	Operation of the Full Bridge Above Resonance:	722	
	10.1		Zero-Voltage Switching	723	
	19.4		Dependent Properties of Resonant Converters	726	
	17.4				
	17.4	19.4.1	Inverter Output Characteristics	727	
	17.4				

		19.4.4	Another Example	737
19	9.5	Exact C	Characteristics of the Series and Parallel Resonant Converters	740
		19.5.1	Series Resonant Converter	740
		19.5.2	Parallel Resonant Converter	748
19	9.6	Summa	ry of Key Points	752
R	Refere	nces		752
P	Proble	ms		755
20 S	oft Sv	vitching		761
20	0.1	Soft-Sv	vitching Mechanisms of Semiconductor Devices	762
		20.1.1	Diode Switching	763
		20.1.2	MOSFET Switching	765
		20.1.3	IGBT Switching	768
20	0.2	The Zer	o-Current-Switching Quasi-Resonant Switch Cell	768
		20.2.1	Waveforms of the Half-Wave ZCS Quasi-Resonant Switch Cell	770
		20.2.2	The Average Terminal Waveforms	774
20		20.2.3	The Full-Wave ZCS Quasi-Resonant Switch Cell	779
20			nt Switch Topologies	781
		20.3.1	The Zero-Voltage-Switching Quasi-Resonant Switch	783
		20.3.2	The Zero-Voltage-Switching Multi-Resonant Switch	784
20		20.3.3	Quasi-Square-Wave Resonant Switches	787
20			ritching in PWM Converters	790
		20.4.1 20.4.2	The Zero-Voltage Transition Full-Bridge Converter The Auxiliary Switch Approach	791 794
		20.4.2	Auxiliary Resonant Commutated Pole	79 4 796
20			ry of Key Points	797
	o.o Refere		ry of Rey Foliats	798
	roble			800
Appe				803
Appen	dix A	R	MS Values of Commonly-Observed Converter Waveforms	805
A.	.1	Some C	ommon Waveforms	805
A	.2	General	Piecewise Waveform	809
Append	dix B	Si	mulation of Converters	813
B.	.1	Average	ed Switch Models for Continuous Conduction Mode	815
		B.1.1	Basic CCM Averaged Switch Model	815
		B.1.2	CCM Subcircuit Model that Includes Switch Conduction Losses	816
		B.1.3	Example: SEPIC DC Conversion Ratio and Efficiency	818
т.		B.1.4	Example: Transient Response of a Buck–Boost Converter	819
В.			ned CCM/DCM Averaged Switch Model	822
		B.2.1	Example: SEPIC Frequency Responses	825
		B.2.2	Example: Loop Gain and Closed-Loop Responses of a Buck Voltage Regulator	827
			of a Duck Voltage Regulator	041

	Contents	xvii
	B.2.3 Example: DCM Boost Rectifier	832
B.3	Current Programmed Control	834
	B.3.1 Current Programmed Mode Model for Simulation	834
	B.3.2 Example: Frequency Responses of a Buck Converter with	
	Current Programmed Control	837
Refe	rences	840
Appendix	C Middlebrook's Extra Element Theorem	843
C.1	Basic Result	843
C.2	Derivation	846
C.3	Discussion	849
C.4	Examples	850
	C.4.1 A Simple Transfer Function	850
	C.4.2 An Unmodeled Element	855
	C.4.3 Addition of an Input Filter to a Converter	857
D - f -	C.4.4 Dependence of Transistor Current on Load in a Resonant Inverter	859 861
Keie	rences	801
Appendix	D Magnetics Design Tables	863
D.1	Pot Core Data	864
D.2	EE Core Data	865
D.3	EC Core Data	866
D.4	ETD Core Data	866
D.5	PQ Core Data	867
D.6	American Wire Gauge Data	868
Refe	rences	869
Index		871

Preface

The objective of the First Edition was to serve as a textbook for introductory power electronics courses where the fundamentals of power electronics are defined, rigorously presented, and treated in sufficient depth so that students acquire the knowledge and skills needed to design practical power electronic systems. The First Edition has indeed been adopted for use in power electronics courses at a number of schools. An additional goal was to contribute as a reference book for engineers who practice power electronics design, and for students who want to develop their knowledge of the area beyond the level of introductory courses. In the Second Edition, the basic objectives and philosophy of the First Edition have not been changed. The modifications include addition of a number of new topics aimed at better serving the expanded audience that includes students of introductory and more advanced courses, as well as practicing engineers looking for a reference book and a source for further professional development. Most of the chapters have been significantly revised and updated. Major additions include a new Chapter 10 on input filter design, a new Appendix B covering simulation of converters, and a new Appendix C on Middlebrook's Extra Element Theorem. In addition to the introduction of new topics, we have made major revisions of the material to improve the flow and clarity of explanations and to provide additional specific results, in chapters covering averaged switch modeling, dynamics of converters operating in discontinuous conduction mode, current mode control, magnetics design, pulse-width modulated rectifiers, and resonant and soft-switching converters.

A completely new Chapter 10 covering input filter design has been added to the second addition. The problem of how the input filter affects the dynamics of the converter, often in a manner that degrades stability and performance of the converter system, is explained using Middlebrook's Extra Element Theorem. This design-oriented approach is explained in detail in the new Appendix C. Simple conditions are derived to allow filter damping so that converter transfer functions are not changed. Complete results for optimum filter damping are presented. The chapter concludes with a discussion about the design of multiple-section filters, illustrated by a design example.

Computer simulation based on the averaged switch modeling approach is presented in Appendix B, including PSpice models for continuous and discontinuous conduction mode, and current-mode control. Extensive simulation examples include: finding the dc conversion ratio and efficiency of a SEPIC, plotting the transient response of a buck-boost converter, comparing the control-to-output transfer functions of a SEPIC operating in CCM and DCM, determining the loop gain, line-to-output transfer function, and load transient response of a closed-loop buck voltage regulator, finding the input current

waveform and THD of a DCM boost rectifier, and comparing the transfer functions and output impedances of buck converters operating with current programmed control and with duty cycle control. The major purpose of Appendix B is to supplement the text discussions, and to enable the reader to effectively use averaged models and simulation tools in the design process. The role of simulation as a design verification tool is emphasized. In our experience of teaching introductory and more advanced power electronics courses, we have found that the use of simulation tools works best with students who have mastered basic concepts and design-oriented analytical techniques, so that they are able to make correct interpretations of simulation results and model limitations. This is why we do not emphasize simulation in introductory chapters. Nevertheless, Appendix B is organized so that simulation examples can be introduced together with coverage of the theoretical concepts of Chapters 3, 7, 9, 10, 11, 12, and 18.

Middlebrook's Extra Element Theorem is presented in Appendix C, together with four tutorial examples. This valuable design-oriented analytical tool allows one to examine effects of adding an extra element to a linear system, without solving the modified system all over again. The theorem has many practical applications in the design of electronic circuits, from solving circuits by inspection, to quickly finding effects of unmodeled parasitic elements. In particular, in the Second Edition, Middlebrook's Extra Element Theorem is applied to the input filter design of Chapter 10, and to resonant inverter design in Chapter 19.

In Chapter 7, we have revised the section on circuit averaging and averaged switch modeling. The process of circuit averaging and deriving averaged switch models has been explained to allow readers not only to use the basic models, but also to construct averaged models for other applications of interest. Examples of extensions of the averaged switch modeling approach include modeling of switch conduction and switching losses. Related to the revision of Chapter 7, in Appendix B we have included new material on simulation of converters based on the averaged switch modeling approach.

Chapter 8 contains a new substantial introduction that explains the engineering design process and the need for design-oriented analysis. The discussions of design-oriented methods for construction of frequency response have been revised and expanded. A new example has been added, involving approximate analysis of a damped input filter.

Chapter 11 on dynamics of DCM (discontinuous conduction mode) converters, and Chapter 12 on current-mode control, have been thoroughly revised and updated. Chapter 11 includes a simplified derivation of DCM averaged switch models, as well as an updated discussion of high-frequency DCM dynamics. Chapter 12 includes a new, more straightforward explanation and discussion of current-mode dynamics, as well as new complete results for transfer functions and model parameters of all basic converters.

The chapters on magnetics design have been significantly revised and reorganized. Basic magnetics theory necessary for informed design of magnetic components in switching power converters is presented in Chapter 13. The description of the proximity effect has been completely revised, to explain this important but complex subject in a more intuitive manner. The design of magnetic components based on the copper loss constraint is described in Chapter 14. A new step-by-step design procedure is given for multiple-winding inductors, and practical design examples are included for the design of filter inductors, coupled inductors and flyback transformers. The design of magnetic components (transformers and ac inductors) based on copper and core loss considerations is described in Chapter 15.

To improve their logical flow, the chapters covering pulse-width modulated rectifiers have been combined into a single Chapter 18, and have been completely reorganized. New sections on current control based on the critical conduction mode, as well as on operation of the CCM boost and DCM flyback as PWM rectifiers, have been added.

Part V consists of Chapter 19 on resonant converters and Chapter 20 on soft-switching converters. The discussion of resonant inverter design, a topic of importance in the field of high-frequency electronic ballasts, has been expanded and explained in a more intuitive manner. A new resonant inverter

design example has also been added to Chapter 19. Chapter 20 contains an expanded tutorial explanation of switching loss mechanisms, new charts illustrating the characteristics of quasi-square-wave and multi-resonant converters, and new up-to-date sections about soft-switching converters, including the zero-voltage transition full-bridge converter, the auxiliary switch approach, and the auxiliary resonant commutated pole approach for dc-dc converters and dc-ac inverters.

The material of the Second Edition is organized so that chapters or sections of the book can be selected to offer an introductory one-semester course, but yet enough material is provided for a sequence of more advanced courses, or for individual professional development. At the University of Colorado, we cover the material from the Second Edition in a sequence of three semester-long power electronics courses. The first course, intended for seniors and first-year graduate students, covers Chapters 1 to 6, Sections 7.1, 7.2, 7.5, and 7.6 from Chapter 7, Chapters 8 and 9, and Chapters 13 to 15. A project-oriented power electronics design laboratory is offered in parallel with this course. This course serves as a prerequisite for two follow-up courses. The second course starts with Section 7.4, proceeds to Appendices B and C, Chapters 10, 11 and 12, and concludes with the material of Chapters 16 to 18. In the third course we cover resonant and soft-switching techniques of Chapters 19 and 20.

The website for the Second Edition contains comprehensive supporting materials for the text, including solved problems and slides for instructors. Computer simulation files can be downloaded from this site, including a PSpice library of averaged switch models, and simulation examples.

This text has evolved from courses developed over seventeen years of teaching power electronics at the University of Colorado. These courses, in turn, were heavily influenced by our previous experiences as graduate students at the California Institute of Technology, under the direction of Profs. Slobodan Ćuk and R. D. Middlebrook, to whom we are grateful. We appreciate the helpful suggestions of Prof. Arthur Witulski of the University of Arizona. We would also like to thank the many readers of the First Edition, students, and instructors who offered their comments and suggestions, or who pointed out errata. We have attempted to incorporate these suggestions wherever possible.

ROBERT W. ERICKSON DRAGAN MAKSIMOVIĆ Boulder, Colorado