Fragment Assembly

--overview of the genome sequencing process

Introduction

- Q: What is Fragment Assembly?
- A: Aligning and merging fragments of a much longer DNA sequence in order to reconstruct the original sequence.

Shotgun Sequencing

3 Sequence each fragment

Order the sequences into one overall sequence with computer software

···ATCGCCATCAGTCCGCTATACGATACTGGTCAA···

Introduction

- Solution
- Break the DNA into small fragments randomly
- Sequence the readable fragment directly
- Assemble the fragment together to reconstruct the original DNA

Solving a one-dimensional jigsaw puzzle with millions of pieces(without the box)!

- 1. Break
- 2. Sequence
- 3. Assemble
- 4. Conclusion

Break

DNA can be cutten into pieces through mechanical means

Issues in Break

❖ How?

- Coverage: The whole fragments provide an 8X oversampling of the genome
- Random Libraries with pieces sizes of 2,4,6,10, 12 and 40 k bp were produced
- Clone: Obtaining several copies of the original genome and fragments

- 1. Break
- 2. Sequence
- 3. Assemble
- 4. Conclusion

Sequence

- 1. Break
- 2. Sequence
- 3. Assemble
- 4. Conclusion

3. Assemble

A Simple Example

ACCGT

CGTGC

TTAC

--ACCGT

----CGTGC

TTAC

TTACCGTGC

Overlap: The suffix of a fragment is same as the prefix of another.

Assemble: align multiple fragments into single continuous sequence based on fragment overlap

3. Assemble

A simple model

The simplest, naive approximation of DNA assemble corresponds to **Shortest Common Superstring Problem (3CS)**: Given a set of string s1, ..., sn, find the shortest string s such that each si appears as a substring of s.

--ACCGT

----CGTGC

TTAC

TTACCGTGC

(1) Overlap step <u></u>

Create an overlap graph in which every node is a fragment and edges indicate an overlap

(2) Layout step

Determine which overlaps will be used in the final assembly, find an optimal spanning forest on the overlap graph

Overlap step

Finding overlap 🔑

 Compare each fragment with other fragments to find whether there's overlap on its end part and another's beginning part.

We call 'a overlap b' when a's suffix equal to b's prefix

Overlap step

Overlap graph

- Directed, weighted graph G(V,E,w)
- V: set of fragments
- E : set of directed edge indicates the overlap between two fragments. An edge <a.b,w> means an overlap between a and b with weight w. this equal to suffix(a,w)=prefix(b,w)

Example

W=AGTATTGGCAATC

Z=AATCGATG

U=ATGCAAACCT

X=CCTTTTGG

Y=TTGGCAATCA

S=AATCAGG

Layout step

- Looking for shortest common superstring is the same as looking for path of maxium weight
- Using greedy algorithm to select a edge with the best weight at every step
- The selected edge is checked by Rule. If this check is accepted, the edge is accepted, otherwise omit this edge
- Rule: for either node on this edge, indegree and outdegree <= 1; Acyclic

At last the fragments merged together, from the point of graph, it is a forest of hamitonian paths(a path through the graph that contains each node at most once)., each path correspond to a contig

Example

W=AGTATTGGCAATC

Z=AATCGATG

U=ATGCAAACCT

X=CCTTTTGG

Y=TTGGCAATCA

S=AATCAGG

AGTATTGGCAATC TTGGCAATCA AATCAGG

Z->U->X

AATCGATG

ATGCAAACCT

CCTTTTGG

MATCGATGCAAACCT TITGG

Geedy Algorithm is neither optimal nor complete, and will introduce gap

 Can't correctly model the assembly problem due to complication in the real problem instance

Complication with Assemble

- Sequencing errors. Most sequencers have around
 1% error in the best case.
- Unknown orientation. Could have sequenced either strand.
- will be covered equally.
- Bepeats. There is much repetitive sequence, especially in human and higher plants

Sequenceing Errors

Fragments contains 3 kinds of errors: insert, deletion, substitution

Possibility: Substitutions (0.5-2%), insert and deletion occur roughly 10 times less frequently

Problems with the simple model - Errors

X:ACCGT

Y: CGTGC

Z:TTAC

U:TACCGT

Ğ

X

--ACCGT

----CGTGC

TTAC

-TACCGT

TTACCGTGC

(z)

y

Problems with the simple model - Errors

Solution

Allow for bounded number of mismatches between overlapping fragments ----- Approximate overlaps

Criterion: minimum overlap length(40 bps), error rate(less than 6% mismatches)

How?

Using semi-global alignment to find the best match between the suffix of one sequence and the prefix of another.

Semi-global alignment

Score system: 1 for matches. -1 for mismatches, -2 for gaps Initializing the first row and first column of zero, ignore gap in both extremities

Algorithm is same as global comparision

Search last column for higest score and obtain alignment by tracing back to start point (overlap of x over y). overlap of y over x corresponds to the max in the last row

Problems with the simple model - Errors

Y: ÇÇTGC

Z:TTXC

U:TACCGT

Criterion

1.Score>-3

2. Mismatch<2

--ACCGT

----CGTGC

TTAC

-TACCGT

TTACCGTGC

--ACCG-T

----CGATGC

TT-C

-TAGCGT

TTACCGTGC

Problems with the simple model - Unkown orientation

Unknowns Orientation:

Fragments can be read from both of the DNA strands.

Solution

Try all possible combination

CACGT

ACGT

ACGT

ACGT

ACGT

ACTACG

CGTAGT

GTACT

AGTAC

CACGTAGTACTGA

Problems with the simple model - Repeat

Problems with the simple model - Repeat

Problems with the simple model -Lack of coverage

Lack of coverage

Not all regions of the sequence will be covered equally

Target DNA

Solution

Do more sampling to increase the coverage level Using scaffolder technology

- **Break**
- 2. Sequence
- 3. Assemble
- 4. Conclusion

4. Conclusion

- The whole genome sequencing process
 Break-> Sequence -> Assemble
- Using overlap graph to construct the shortest common string

 However, it can't correctly model the assembly problem