Homework 9

	. Claim: Regularing is not recogizable, and not corecogizable.
	Proof:
	From Theorem , 5.3 Aim Em REGULARIM with reduction
	f(CM, N7) = < M. 7. Thus ATM En REGULARTA and
	ATM is not recognizable since ATM is recognizable
	and Aim is not accordable. So REGULARTM is not
	corecognizable since REGULARIM is not recognizable by
	inheritance of ATM & REGULARIA.
	Alsa from ATM Em REGULARTA EN REGULARTA
	ATN Em REGULARIM and RECULARIM inherits ATM'S Uniccognizatility
	and thus REGULARIM is also not recognizable,
Willey .	
2.	=> Assume A is recognizable by M. Then A En Arm
	with reduction f(w) = < M, w> because the assumption
	that M recognize, A means we A IFF we L(M).
	= Assume A = Arm. Then we can run the universal turing machine
	on reduction f, f(x) = < M, w7 to recognize A, x & A.
JUST -	Iff an ATM recognizer accepts f(x) = < M, w>. This A is
	recognizable
2	
3.	Not recognizable. F(KM, w7)=1KM, w7 is a mapping reduction for
W	ATM EMJ because f(x) & J (X E ATM, thus) inherits Arm's
	un recognizability
	Not corecognizable. FLKM, w>) 1/2 OKM, H7 15 a Mapping reduction for
	Aim En J bedanse FCX) & J (D) X & ATM and J then in herity

Fran's unrecognizability,

Claim; EQUBA is coracognizable and not recognizable, therefore not decidable Proof: Corecognizable Build recognizer for Earpa as Ashowy On input <M, M27! If KM, M27 are not a pair of LBAs ! accept For 1=0,1,2... For each string w of length Iwl= l Check Wf M. M2 accept w after Elas 18/1/ Elas 18/7/ If one accepts and not the other ! accept Not Deardyble ... a charles and Suppose EQUA Mis desposable, Since coury CFG. 11 can be represented by LBA, create two LBAs My and Mr. requiremental to two CFGs. check of KM, mrs are in Earsh, If yes: accept: Else reject Contradiction: EQUES is not decidable, thus EQUEA is not decidable Not recognizable: Since EQLOX is not decidable and is coregognizable EOLBA must not be recognizable, 50 We cannot prove undecidability of EQUEG by reduction from Euro because Ecfo is decidable b) The mapping reduction that shows Allers En Elected is Let M, be a TM that decides EDCF6 and we construct M2 to decide Alleffigs follows Me = On Input 667 where 6 is a CFG 1. Run Mi on input LG, out Go is CTG with L(Go) = EN 2. If M, accepts: accept, If M, rejects: reject.

It is a mapping reduction ATM = Allers Citation: Used Class Notes, textbook, online Lecture Slides from Stanford and University of IDwa