Summary: Singularities and improper integrals

Definition of singularity

A **singularity** of a function f(x) is a point x = s such that the function f(x) does not exist at x = s.

There are three main ways that the function can fail to exist at a point:

- $\lim_{x\to s^+}|f(x)|$ and/or $\lim_{x\to s^-}|f(x)|$ tends to ∞ . This is the case of most interest in this section.
- $\lim_{x\to s^{\pm}} f(x)$ does not exist. In this case the function f may oscillate, or have a jump discontinuity.
- $\lim_{x\to s^{\pm}} f(x)$ exists and is finite. In this case, the function f has a removable discontinuity.

Definition of improper integrals of the 2nd type

An **improper integral of the 2nd type** is an integral $\int_a^b f(x) dx$ such that the function f(x) has a singularity at x = s for some s with $a \le s \le b$.

For example, if f(x) has a singularity at x = b, then

$$\int_{a}^{b} f(x) dx = \lim_{C \to b^{-}} \int_{a}^{C} f(x) dx.$$
We say

- the integral **converges** if the limit exists and is finite.
- the integral diverges if the limit does not exist (which includes the case that the limit is $\pm \infty$.)

Figure 1: From left to right, we see the areas for $0 \le x \le 1$ and $1 \le x < \infty$ under the graphs of $\frac{1}{x}$, $\frac{1}{x^2}$, and $\frac{1}{\sqrt{x}}$. The areas shaded in pink are infinite. The areas shaded in green are finite.

Overview of improper integrals

The improper integral
$$\int_a^\infty \frac{dx}{x^p}$$
 $\begin{cases} \text{diverges} & \text{if } p \leq 1 \\ \text{converges to } \frac{a^{1-p}}{p-1} & \text{if } p > 1 \end{cases}$.

The improper integral $\int_0^a \frac{dx}{x^p}$ $\begin{cases} \text{diverges} & \text{if } p \leq 1 \\ \text{converges to } \frac{a^{1-p}}{1-p} & \text{if } p < 1 \end{cases}$

Comparison tests for improper integrals of 2nd type

Suppose that f(x) and g(x) both have a singularity at x = s.

Suppose that
$$f(x)$$
 and $g(x)$ both have a singularity at $x = s$.
Suppose $f(x) > g(x) \ge 0$ for all $a \le x \le b$ except at $x = s$.
If $\int_a^b f(x) dx$ converges, then $\int_a^b g(x) dx$ converges also.
If $\int_a^b g(x) dx$ diverges, then $\int_a^b f(x) dx$ diverges also.

More notation

Suppose that f(x) and g(x) have a singularity at x = s. ($f, g \longrightarrow \pm \infty$ as $x \to s^+$ and/or as $x \to s^-$.)

We say that f(x) is **similar** to g(x), and write $f(x) \sim g(x)$ as $x \to s^+$ or $x \to s^-$ if

$$\frac{f(x)}{g(x)} \longrightarrow 1 \quad \text{as} \quad x \longrightarrow s^{\pm}.$$
 (1)

We say that f(x) grows faster than g(x) as x tends towards s, and write

$$f(x) >> g(x) \text{ as } x \to s^{\pm}, \text{ if } \begin{cases} f(x) \longrightarrow \infty \\ g(x) \longrightarrow \infty \\ \frac{g(x)}{f(x)} \longrightarrow 0 \end{cases} \text{ as } x \longrightarrow s^{\pm}.$$

Limit comparison tests for improper integrals of 2nd type

Suppose that f(x) and g(x) both have a singularity at x = s. Suppose $f(x), g(x) \ge 0$ for all $a \le x \le b$ except at x = s.

- 1. If $f(x) \sim g(x)$ as $x \to s^{\pm}$, then the two integrals $\int_a^b f(x) \, dx$ and $\int_a^b g(x) \, dx$ either **both converge** or **both diverge**.
- 2. Suppose that f(x) grows faster than g(x) as x tends towards s^{\pm} . In other words, f(x) >> g(x) as $x \to s^{\pm}$.
 - If $\int_a^b f(x) dx$ converges, then $\int_a^b g(x) dx$ converges.
 - If $\int_a^b g(x) dx$ diverges, then $\int_a^b f(x) dx$ diverges.

Note that this notation is exactly the same notation that we had before. The only difference is that instead of having $x \to \infty$, we have $x \to s^+$ or $x \to s^-$, where s is a finite number that is a singularity of the function of interest.