Lab1 - R basics

Klimov, Titova

null

Part 1. RStudio as the IDE for R

- Free software
- Object-oriented
- Available for all major operating systems (Mac OS, Linux, Windows)
- Can easily be extended through the use of user-defined functions
- Widely used in political science, statistics, econometrics, actuarial sciences, sociology, finance, etc.

For more details on authoring R presentations please visit https://support.rstudio.com/hc/en-us/articles/200486468.

Howto run code

summary(cars)

```
## speed dist

## Min. : 4.0 Min. : 2.00

## 1st Qu.:12.0 1st Qu.: 26.00

## Median :15.0 Median : 36.00

## Mean :15.4 Mean : 42.98

## 3rd Qu.:19.0 3rd Qu.: 56.00

## Max. :25.0 Max. :120.00
```

Slide With Plot


```
Part 2. Intro in R Language - python-alike console
```

```
# A comment
5 # print a number
## [1] 5
```

```
2+2 # calculations
```

```
x <- 10 # store
```

[1] 4

[1] 10

```
x # print
```

```
(x <- 11) # store and print
```

Vector - basic array

c, which is short for concatenate (paste together) [https://cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf]

Ages <- c(32, 45, 15, 22, 29, 54, 35) # store a specified Ages

[1] 32 45 15 22 29 54 35

Vector - basic array (2)

Generate vector with seq and set it to Participant_id

```
(Participant_id <- seq(1,7)) # define vector as a sequence
```

[1] 1 2 3 4 5 6 7

[1] 1 2 3 4 5 6 7

Seq could have additional parameters: seq(1,20, by=2)

[1] 1 3 5 7 9 11 13 15 17 19

Operations with vectors

Builtin statistics (mean, sd, statistical tests ...)

```
mean(Ages)
```

[1] 33.14286

length(Ages)

[1] 7

Matrices

```
mymatrix <- cbind(Participant_id, Ages, TestingSkills)</pre>
is.matrix(mymatrix); is.vector(TestingSkills) # to stack es
## [1] TRUE
## [1] TRUE
Let's check how much rows and colums we have
nrow(mymatrix)
## [1] 7
ncol(mymatrix)
## [1] 3
```

Matrices is good but dataframe is better

Didn't work in matrics:

```
mymatrix$Participant_id
```

Error in mymatrix\$Participant_id: \$ operator is invalid

But works in Dataframes:

```
as.data.frame(mymatrix)$Participant_id
```

[1] 1 2 3 4 5 6 7

mydataframe <- as.data.frame(mymatrix)</pre>

Building a plot


```
plot(mydataframe$Ages, mydataframe$TestingSkills
    , xlab="Ages", ylab="TestingSkills"
    , main="Proficiency"
```

Lists, dataframes

Can be viewed with:

- data
- str(data)
- View(data)
- DT(data)
- kable(data)

Motor Trend Car Road dataset

Description The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Show 5 entries								5	Search:		
	mpg 🛊	cyl 🏺	disp 🏺	hp 🌲	drat 🛊	wt 🛊	qsec 🏺	$\mathbf{vs} \ \ \ \\ \ \ \\$	am 🏺	gear 🌲	carb 🌲
Mazda RX4	21	6	160	110	3.9	2.62	16.46	0	1	4	4
Mazda RX4 Wag	21	6	160	110	3.9	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.32	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.44	17.02	0	0	3	2
Showing 1 to 5 of 32 entri	es				Pre	vious	1 2	3 4	5	6 7	Next

last 5 rows

Load mtcars_data in a variable and display its - summary -

- ▶ Display the number of variables
- ► Display the number of records
- ▶ Add a new column "#" and number all the rows

- Describe (Display all the info for) car #7
- ▶ Display the summary for column "qsec"
- Display first 6 values of "qsec"

rows #4, #7, #9 in one line

For first column display: - values from 10 to 20 rows - values for

- ► Copy kilometers per liter to a new column "kml2"
- ▶ Declare new "kml2" variable from values of "miles per gallon", knowing that 1 mile per liter = 0,425144 kilometer per

liter

 Display True/False table for all the rows of column cyl, checking if they are the same as 6 (+ Find the Median of cylinder numbers)

▶ Display top 5 rows, where *disp* is lesser than 150

▶ Display *car names*, for which *disp* is greater than 200

► Count the *Mean Value* of *wt*, rounded to the nearest 10th.

- ► Count those car models, that have 8 cylinders and horsepower greater than 150.
- From the subset above name a car with minimal qsec.