STANISLAS	
Exercices	

Algèbre linéaire Chapitre III

PSI 2019-2020

I. Familles de vecteurs

Indications pour l'exercice 1. On commence par montrer que (f_1, f_2) est libre. Ensuite, on vérifie que $f_3 \in \text{Vect}\{f_1, f_2\}$ et qu'il en va de même pour f_4 .

Indications pour l'exercice 2. Considérer $x_1 < \cdots < x_p$, écrire une combinaison linéaire de $(S_{x_1}, \ldots, S_{x_p})$, puis factoriser par x_p^n et faire tendre n vers l'infini pour montrer que la famille est libre.

Indications pour l'exercice 3. On peut raisonner par récurrence sur n. Pour l'hérédité, dériver deux fois la combinaison linéaire pour, ensuite, se séparer des termes en $\sin(nx)$ et $\cos(nx)$.

Indications pour l'exercice 4. Écrire la matrice de cette famille dans la base (cos, sin) puis discuter le rang de cette matrice en fonction des valeurs de a_1 , a_2 et a_3 .

II. Matrices & Applications linéaires

Indications pour l'exercice 5. Exprimer A^2 en fonction de A et de I_n . \square

Indications pour l'exercice 6.

- **1.** Classique. On écrit $f(x) = \lambda_x x$ et il faut montrer que si $x \neq y$, alors $\lambda_x = \lambda_y$. On distingue les cas (x, y) liée et (x, y) libre pour lequel on introduira le vecteur x + y.
- **2.** On applique le résultat précédent à u^2 et $u^2 = \lambda \operatorname{Id}_E$. On distingue alors les cas $\lambda = 0$, $\lambda > 0$ et $\lambda < 0$ Pour lequel on montre qu'il existe une base de E dans laquelle la matrice de u est diagonale par blocs.
- **3.** Le cas $n \leq 2$ est aisé. Ensuite, on montre qu'il existe un scalaire μ , un vecteur y et une application linéaire φ tels que $u: x \mapsto \varphi(x)y + \mu x$. \square

Indications pour l'exercice 7.

- **1.** Soit H un sous-espace vectoriel de dimension k+1. En exhibant une base de H, on peut écrire H comme sous-espaces vectoriels de dimension k.
- 2. Effectuer une récurrence.
- **3.** Montrer que, pour toute droite D, $u(D) \subset D$. En utilisant un raisonnement classique, montrer alors que u est une homothétie.

Indications pour l'exercice 8.

- **1.** On montre que Im $g \cap \text{Ker } f = \{0\}$.
- **2.** Raisonner par analyse / synthèse pour obtenir la décomposition. Ou alors, utiliser que $g \circ f$ est un projecteur.
- 3. Utiliser le théorème du rang pour montrer l'égalité.
- 4. On montre de la bijectivité.
- 5. Penser à l'application nulle.

Indications pour l'exercice 9. Commencer par vérifier que \mathscr{H} est bien un espace vectoriel.

Traiter en premier le cas où dim $E = \dim F = \operatorname{Rg} f$.

En général, si $g \in \mathcal{H}$, étudier ses restrictions sur Im f ainsi que sur un supplémentaire de Im f.

Indications pour l'exercice 10. Soit $x_0 \in E$ tel que $f^2(x_0) \neq 0_E$. En travaillant dans la base (le vérifier) $(x_0, f(x_0), f^2(x_0))$, montrer que g commute avec f si et seulement si $g \in \text{Vect}\{\text{Id}_E, f, f^2\}$.

III. Géométrie

Indications pour l'exercice 11.

- **1.** Déterminer une base de P puis une base de D et montrer que la réunion de ces deux familles forme une famille base de \mathbb{R}^3 .
- **2.** On peut décomposer tout vecteur (x, y, z) dans la base trouvée à la question précédente. \Box

Indications pour l'exercice 12. Le sens réciproque est trivial.

Pour le sens direct, utiliser que $q(x) - x \in \text{Ker } q$.

Chapitre 3 PSI

Indications pour l'exercice 13.

1. Calculer $q \circ q(x)$ en étant précis sur les indices de sommation et en étudiant l'effet des compositions sur le vecteur x.

2. Montrer que $E = \operatorname{Im} q$.

Indications pour l'exercice 14.

1. Montrer l'inclusion des images puis utiliser l'égalité des dimensions.

2. Montrer que $\operatorname{Im} p_i \subset \operatorname{Ker} p_j$. Pour cela, montrer que, si $x \in \operatorname{Im} p_i$, alors $\sum_{j \neq i} p_j(x) = 0$. En déduire que $p_j(x) = 0$ puis conclure. \square

IV. Formes linéaires & Hyperplans

Indications pour l'exercice 15. Penser aux applications coordonnées et à la formule de Taylor polynomiale. □

Indications pour l'exercice 16. Utiliser la base d'interpolation de Lagrange pour montrer que (f_a, f_b, f_c) est libre.

Évaluer ensuite la relation $f_4 = \alpha f_a + \beta f_b + \gamma f_c$ sur la famille $(1, X - a, (X - a)^2, (X - a)^3)$ pour déterminer si cette relation possède des solutions.

Indications pour l'exercice 17. Raisonner par l'absurde en exhibant ensuite une forme linéaire qui ne s'annule pas en v.

Indications pour l'exercice 18.

1. On remarque que $\Delta H_k = H_{k-1}$.

2. On raisonner par l'absurde en considérant une combinaison linéaire nulle qu'on évalue ensuite en H_{i_0} , où i_0 est bien choisi.

V. Avec Python

Indications pour l'exercice 19.

1. Utiliser les propriétés sur les séries convergentes.

2. Utiliser le module numpy.polynomial.

3. Penser aux polynômes de degrés étagés.

4. En écrivant $H_n(k)$ sous forme factorielle, on obtient $S(H_n) = e$.

5.

Mathématiciens

Kronecker Leopold (7 déc. 1823 à Liegnitz-29 déc. 1891 à Berlin).