§ 3.3 有限自动机(FA)

§ 3.3.1 确定的有限自动机(DFA)

一个DFA有以下五个元素组成:

DFA M=
$$(K, \sum, f, S_0, Z)$$

其中 K: 状态的集合 (有限个状态)

 Σ : 允许输入的字符的集合 V_t

f: 状态转换函数,单值函数 $K imes \sum o K$

$$f(S_i,a)=S_i$$

S₀: 初始状态S0∈K

Z: 终止状态集 $Z \in K$

f单值函数K×∑→K

讨论:

(1) (1)确定性 f是单值函数

从某一状态读一字符的下一状态唯一确定

- ②有限的 K集合元素个数有限
- (2) f 定义的推广

 $f^{:}K \times \Sigma^* \rightarrow K$ 单值映射

$$K \times \Sigma^* \rightarrow K$$

①
$$f^{(S, \epsilon)} = S$$

②
$$f^{(S,a\omega)} = f^{(f(S,a),\omega)}$$

$$a \in \Sigma, \omega \in \Sigma^*$$

=
$$f^{(S_k, \omega)}$$

$$f(S,a)=S_k$$

$$=$$
... $=$ S_t

$$S_t \in K$$

- ③ f ^是在Σ*上定义,f是在∑上定义, f ^包含f,将 f ^和f合并为一个f,记为f(推广后)
- (3) 有限自动机的功能:识别句子

$$L(M) = \{x \mid f(S_0, x) \in \mathbb{Z}, x \in \Sigma^* \}$$

特别:
$$f(S_0, \varepsilon) = S_0 且 S_0 \in Z$$

称 E 可为DFA M识别

(4) DFA可非形式地表示成状态图和状态矩阵

例:DFA M=({S,A,B,C},{0,1},δ,S,{S})

$$δ(S,0)=B$$
 $δ(S,1)=A$
 $δ(A,0)=C$ $δ(A,1)=S$
 $δ(B,0)=S$ $δ(B,1)=C$
 $δ(C,0)=A$ $δ(C,1)=B$

\bigcirc	1	\rightarrow $\stackrel{\frown}{A}$
	1	
$0 \mid 0$	1	\mathbf{C}

状态	输入 ()	输入 1
S	В	A
A	С	S
В	S	С
С	A	В

101011

$$δ$$
 (S, 101011)
= $δ$ ($δ$ (S, 1), 01011)
= $δ$ (A, 01011) = $δ$ (C, 1011)
= $δ$ (B, 011) = $δ$ (S, 11)
= $δ$ (A, 1) = $δ$

§ 3.3.2 非确定的有限自动机(NFA M')

一个NFA M'有以下五个元素组成,

DFA M'= (K',Σ,f',S_0',Z')

其中: K':状态的集合(有限状态)

Σ: 允许输入的字符集合

f':状态转换函数, 多值函数,

$$K' \times \Sigma \rightarrow 2^{k'}(K$$
的所有子集的集合)
$$f(S_i,a) = \{ S_k, S_t \dots \}$$

 S_0 :初始状态 $S_0 \in \mathbb{K}'$

7: 终止状态集 2 ∈ K ′

讨论:

- 1) ①不确定:f'是多值函数,一对多
 - ②有限: K'有限
- 2) f' 定义推广到 Σ^* 上,

$$K' \times \Sigma^* \rightarrow 2^k$$
, 记为 f[']

- (1) f^{\prime} (S, ϵ) = {S}
- ② $f^{'}$ (S, aw) \mathfrak{Z} : f' (S, a) = {S₁, S₂,, S_k} = $f^{'}$ (f' (S, a), w)

$$= \mathbf{f}^{\prime} (\{S_1, S_2, \dots, S_k\}, \mathbf{w})$$

$$= \bigcup_{i=1}^{k} \mathbf{f}^{\prime} (S_i, \mathbf{w})$$

③将 f ^'和f'合并为一个f',记为f'

(3) NFA M '所确定的语言

 $L(M')=\{x\mid f'(S_0',x)\cap Z\neq\emptyset,x\in\Sigma^*\}$

(4) NFA M / 通常用状态转换图来表示

例: NFA M '=({S,A,B,C}, {a,b}, f', S, {C})

符号串ababb可由此NFA M '所识别.

§ 3.3.3 DFA M与NFA M '的等价性

二、方法:

确定化 1、读 ε 不动作的NFA M '2、读ε动作的NFA M '

最小化

1、读 ε 不动作的NFA M '的确定化 $K' \times \Sigma \to 2^{k'}$

问题: 设有一NFA M'=(K',
$$\sum$$
,f',S $_0$ ',Z') 现构造一 \sum 上的DFA M=(K, \sum ,f,S $_0$,Z) 使L(M')=L(M)

- ①K由K'的全部子集组成 $K=2^{K'}$ 特别 $S_0=[S_0']$
- (2) 映射f的定义

$$S_{i, K} R_{j} \in K'$$

当且仅当
$$f'({S_1,S_2,...S_i},a)={R_1,R_2,...R_j}$$
时,

则
$$f([S_1,S_2,...S_i],a)=[R_1,R_2,...R_j]$$
 q_i

$$f(q_i, a) = q_i$$

思想: 状态合并为

状态集合 ॥

③DFA M的终态集Z的定义是:

$$M$$
的某一状态 $[R_1,R_2,...R_j],$ 其中至少含有一个 M' 的一个终态
$$\mathbb{D}[R_1,R_2,...R_j] \in \mathbb{Z}$$
 $\mathbb{Z}= \{[R_1,R_2,...,R_j] | [R_1,R_2,...,R_j] \in \mathbb{K}$ $\mathbb{E}\{R_1,R_2,...,R_j\} \cap \mathbb{Z}' \neq \emptyset\}$

$$f'(\{s_0\},a)=\{s_0,s_1\}$$

 $f(q_0,a)=q_3$

	a	b
$q_0 = [s_0]$	q_3	q_0
$q_1 = [s_1]$	Ø	q_2
$q_2 = [s_2]$	Ø	Ø
$q_3 = [s_0, s_1]$	q_3	q_4
$q_4 = [s_0, s_2]$	q_3	q_0
$q_5 = [s_1, s_2]$	Ø	q_2
$q_6 = [s_0, s_1, s_2]$	q_3	q_4
Ø		

$\left \begin{array}{c} a,b \\ S_0 \end{array}\right $	<u>a</u>	$(S_1)^{-}$	b	$-S_2$
		b ₁		

	a	b
q_0	$q_1 \{S_0, S_1\}$	$q_0 \{S_0\}$
q_1	$q_1 \{S_0, S_1\}$	$q_3 \{ S_0 S_2 \}$
q_2	Ø	Ø
q_3	$q_1 \{S_0, S_1\}$	$q_0 \{S_0\}$

其中 q_3 包含 $S_{2,}$ 为终端符号, 故可删除表中的 q_2 ,并调整 q_3 为 q_2 .

2、读ε动作的NFA M '的确定化

目的:

 $\mathbb{K}' \times \Sigma \cup \{\epsilon\} \rightarrow 2^{k'}$

为了把识别各类单词的DFA用ε链接起来,组成一个单一的NFA,然后把NFA确定化,最后再以此设计词法分析器定义:

- (1) 米态q的 ϵ 闭包 ϵ _closure(q) q \in K'
 - ① $q \in \epsilon_{closure}(q)$
 - ② q $\varepsilon\{\epsilon\}$ 到达的状态均属于 ϵ _closure(q)
- (2) 状态集P的ε闭包 ε_closure(P) $P \in K'$
 - ① 若q \in P,则 q \in ε_closure(P)
 - ② **若q**∈**P**,
 - q $\xrightarrow{\epsilon\{\epsilon\}}$ **到达的状态均属于** ϵ _closure(p) \Rightarrow **全部合并**

- (3) 重新定义 $f': S \in K', a \in Vt, w \in \Sigma^*$
 - ① $f'(S,\varepsilon) = \varepsilon_{closure}(S)$
 - ② $f'(S,aw) = \epsilon_{closure}(p)$

上述定义同样适用读 8 不动作的有限自动机

方法:

设有一 NFA M'=(K',
$$\sum$$
,f',S₀,Z')
现构造一 \sum 上的 DFA M=(K, \sum ,f,q₀,Z)
使L(M')=L(M)

- (1) $q_0 = \varepsilon_{closure}(S_0)$ $q_0 \in K$
- (2) 对K中任一尚未标记的状态 $q_i = \{S_{i1}, S_{i2}, ..., S_{im}\}$ $S_{ik} \in K'$
 - 做①标记q_i;
 - ②对于每一 $a \in \Sigma$,置

$$T=f'({S_{i1},S_{i2},...,S_{im}}, a);$$

$$q_j = \varepsilon_{closure}(T);$$

- (3) 重复步骤(2), 直到 《中不再含有未标记的 状态为止。
- (4) 若某一 $q_j \cap Z' \neq \emptyset$,则 $q_j \in Z$

3、DFA状态数的最小化

- --对DFA中具有"同一性"的状态进行合并
- -- 寻找状态数比DFA M少的DFA M_1 , 使 $L(M) = L(M_1)$

DFA M的两个不同状态S, T

(1) S和T等价 $\alpha \in \Sigma^*$

称S和T等价,否则,称S和T不等价,是可区别的。

- (2) S和T是可区别的: S和T不等价 如终态和非终态是可区别的。 对DFA终态可读 8, 而非终态不可。
- (3) 最小化的思路
 - ■将DFA M的状态集分割成一些不相交的子集;
 - ■使任何不同子集的状态是可区别的;
 - ■同一子集的任何两个状态都是等价的:
 - ■每一个子集选出一个代表,消去其它等价状态。

(4) 最小化的方法

- ①将状态集k的终态和非终态分开,分成两个子集; 形成基本划分 $\Pi = \{Z,K-Z\}$
- ②令某时 $\Pi = \{I_1, I_2, ..., I_m\}$,并且属于不同子集的状态是可区分的

再划分某个 I_i = $\{S_1,S_2,...,S_k\}$,若有 $a \in \Sigma$,使 $f(I_i,a)$ 不全包含在现行 Π 的某一子集中,则将 I_i 一分为二。

$$\text{In} f(S_i,a) = R_i, f(S_j,a) = R_j, \text{In} R_i \in I_k, R_j \in I_t$$

则将
$$I_i$$
划分成
$$I_{i1} = \{S_i | S_i \subseteq I_i, \mathbf{LS} \leq a$$
 狐到 R_i
$$I_{i2} = I_t - I_{i1}$$

③重复上述过程,直到∏不再增大为止。

每一子集中的状态都是等价的, 不同子集中的状态都是可区分的。

- § 3.4正规表达式与正规集
- § 3.4.1正则表达式与正规集

正则式: 描述单词符号

正规集: 正规式描述的语言

1、正则式的递归定义

设有字汇表V,则: $(V_T$ 就是 $\Sigma)$

(1) ϵ , Ø, a, $a \in V_t$ 都是正则表达式,

正规集 $\{\varepsilon\}$, Ø, $\{a\}$

(2)如果e,和e,是正则式,正规集分别为L1和L2 则 e_1 e_2 是正则式,正规集为 L_1 \cup L_2 e₁·e₂是正则式,正规集为L₁L₂ e,*是正则式,正规集为L,* 注: *, ·, 的优先级依次降低 **狗:** $a \in V_t$, $b \in V_t$, $V_t = \{a,b\}$ a是正规式 a*, ba, a ba* 均是正规式 b是正规式 a|b,(a|b)*, a(a|b)*均是正规式

2、两个正则式相等:

两个正则式表示相同的语言

3、正则式的操作

结合律(ab)c=a(bc),(a|b)|c=a| (b|c)

交換律a|b=b|a

分配律 a(b|c)=ab|ac, (a|b)c=ac|bc

其他:
$$r|r=r$$
, $r^*=(r|\epsilon)^*=\epsilon|r|r^*$

§ 3.4.2 由正则文法构造相应的正则式

求出以{}、 |、. 表示的文法的语言就是正则式, 用=代替→, 用+代替|求出联立方程组的解

1、文法 $x \rightarrow rx \mid t$ 右线性 $r,t \in V_t^+$ $L_x = L_r \cdot L_x \cup L_t$

为求解方便写成 X=rX+t 解方程求X

x = rx = r...rx

 $L_{x} = \{t, rt, rrt, \dots\} \mathbb{P} r^{*}t$

可解得x=r*t

[论断3.1]:方程组x=rx+t有形如 $x=r^*t$ 的解

[论断3.2]:方程组x=xr+t有形如 $x=tr^*$ 的解

```
例:G[S]: S \rightarrow aA 求文法对应的正规式
   A \rightarrow bA|aB|b
   B \rightarrow aA
解:改写成 S=aA
                    (1)
     A=bA+aB+b
                    (2)
                    (3)
     B=aA
(3)代入(2)得 A=bA+aaA+b
     A=(b+aa)A+b
     A= (b+aa)*b (论断3.1)
     S=aA=a(b+aa)*b 再用 | 代替+
     即正规式为a(b|aa)*b
```

§ 3.4. 3 由正则式构造FA M

- 1、正则式与FA的等价性
- ① e为正则式,则存在-NFA M',它接受的语言为L(e)

② L(M)能为DFA M所识别,则L(M)能用正则式表示为L(e)

结论: e→NFA M'→DFA M→e

2、正则式与FA的转换

① e→NFA M'

规则: e存在状态图 唯一初态 唯一终态 $e_1|e_2$ 代之以 e₁e₂代之以 e₁*代之以

② DFA M →e

思考题 (一)

• 构造与正规式 1(0 | 1)*101相应的DFA

解: 转化为NFA (Step1) 状态转换矩阵

NFA转DFA (Step2) 状态图

	0	1
① [s]	Ø	2 [1]
2 [1]	2 [1]	③ [1,2]
③ [1,2]	4 [1,3]	③ [1,2]
4 [1,3]	2 [1]	⑤ [1,2,Z]
⑤ [1,2,Z]	4 [1,3]	③ [1,2]

思考题

• 构造与正规式 1(0 | 1)*101相应的DFA

解: DFA图

思考题 (二)

- 已知有穷自动机如图:
- 1. 表示的语言是什么?(可用 $L=\{W\mid ...\}$ 来描述)
- 2. 写出该语言的正规式和正规文法
- 3. 构造识别该语言的DFA

