Deep Reinforcement Learning for Dialogue Generation

Artificial Intelligence Laboratory 오 주민

Introduction

• 2016년 Cornell Archive(arXiv.org)에 게재

- Seq2Seq를 이용한 Dialogue generation model의 한계점
 - ① 입력에 상관없이 빈번한 Dull reponse의 발생
 - ② 대화가 무한한 반복에 빠지는 현상

A: Where are you going? (1)	A: how old are you? (1)
B: I'm going to the restroom. (2)	B: I'm 16. (2)
A: See you later. (3)	A: 16? (3)
B: See you later. (4)	B: I don't know what you are talking about. (4)
A: See you later. (5)	A: You don't know what you are saying. (5)
B: See you later. (6)	B: I don't know what you are talking about . (6)
	A: You don't know what you are saying. (7)
••••	•••

Introduction

• 목표

① 개발자가 원하는 형태의 Rewards 구성하고 학습하기

② 현재 진행되고 있는 대화에서 Context를 유지하는 답변 제시하기

➤ Neural reinforcement learning generation method를 통해 해결하자!

- Neural reinforcement learning generation method 란?
 - ① Seq2Seq 모델을 통해 구성된 Agent 2개를 서로 대화 상대라고 가정하고 각각의 Parameter를 Policy로써 학습하는 모델

Introduction

- Neural reinforcement learning generation method 란?
 - ① Seq2Seq 모델을 통해 구성된 Agent 2개를 서로 대화 상대라고 가정하고 각각의 Parameter를 Policy로써 학습하는 모델

② Seq2seq의 Semantic meaning 추출과 Reinforcement learning의 long-term goal 최적화의 강점을 합친 방법

• 강화학습의 요소가 Generation model의 요소로 표현 가능!

Method

- Agent: p, q
 ex) p₁, q₁, p₂, q₂, ..., p_i, q_i
- Action(utterance to generate) : a
- State(two turn dialogue history, Input) : $[p_i, q_i]$
- Policy(foam of Seq2Seq) : $p_{RL}(p_{i+1}|p_i,q_i)$

① Ease of Answering

$$r_1 = -\frac{1}{N_{\mathbb{S}}} \sum_{s \in \mathbb{S}} \frac{1}{N_s} \log p_{\text{seq2seq}}(s|a)$$

S: Dull response (ex."I don't know what you are talking about")

(2) Information Flow

$$r_2 = -\log \cos(h_{p_i}, h_{p_{i+1}}) = -\log \underbrace{\frac{h_{p_i} \cdot h_{p_{i+1}}}{\|h_{p_i}\| \|h_{p_{i+1}}\|}}_{(2)}$$

 h_{p_i} : Encoder state of p_i

(3) Semantic Coherence

$$r_3 = \frac{1}{N_a} \log p_{\text{seq2seq}}(a|q_i, p_i) + \frac{1}{N_{q_i}} \log p_{\text{seq2seq}}^{\text{backward}}(q_i|a)$$

 $p_{\rm seq2seq}^{\rm backward}(q_i|a)$: pre-trained Seq2Seq Model with source and target swapped

(4) Total Reward

$$r(a, [p_i, q_i]) = \lambda_1 r_1 + \lambda_2 r_2 + \lambda_3 r_3$$
$$\lambda_1 + \lambda_2 + \lambda_3 = 1.$$

Simulation

Pre-training

- RL Model을 pre-trained Seq2Seq Model로 initialize 했을 때,
 Dull response가 나타날 확률이 높음
- Pre-trained Seq2Seq Model로는 $[p_i, q_i]$ 를 통해 Response Candidate List A를 생성 $(A = \{\hat{a} \mid \hat{a} \sim p_{Ri}\}) \rightarrow \hat{a}$ 은 Response Candidate
- â을 통해 Mutual Information을 계산해서 이를 통해 Pre-train 하자!

Mutual Information

• Semantic Coherence(Reward r_3) 에서...

Pre-training with Mutual Information

- Pre-train Reward : $J(\theta) = \mathbb{E}[m(\hat{a},[p_i,q_i])]$
- Gradient by likeligood : $\nabla J(\theta) = m(\hat{a}, [p_i, q_i]) \nabla \log p_{RL}(\hat{a}|[p_i, q_i])$
- Curriculum Learning

Optimazation

- Expected future reward : $J_{RL}(\theta) = \mathbb{E}_{p_{RL}(a_{1:T})}[\sum_{i=1}^{t-1} R(a_i, [p_i, q_i])]$
- Reward gradient : $\nabla J_{RL}(\theta) \approx \sum_{i} \nabla \log p(a_i|p_i,q_i) \sum_{i=1}^{n-1} R(a_i,[p_i,q_i])$
- Curriculum Learning (Different with previous Section)

- Automatic Evaluation Traditional Method
 - BLEU Score : n-gram을 이용하여 측정하는 방식

BLEU = min
$$\left(1, \frac{\text{output-length}}{\text{reference-length}}\right) \left(\prod_{i=1}^{4} \text{precision}_i\right)^{\frac{1}{4}}$$

- Example:
 - Reference: "the Iraqi weapons are to be handed over to the army within two weeks"
 - MT output: "in two weeks Iraq's weapons will give army"
- BLUE metric:
 - 1-gram precision: 4/8
 - 2-gram precision: 1/7
 - 3-gram precision: 0/6
 - 4-gram precision: 0/5
 - BLEU score = 0 (weighted geometric average)

Automatic Evaluation - Traditional Method

• Perplexity : 어떤 확률 모델이 실제로 관측되는 값을 얼마나 잘 예측하였는가?

•
$$Perplexity = e^{Entropy(p)}$$

= e^{loss}

• But...

- Syntactic 한 유사도는 측정할 수 있으나 Semactic 유사도 측정 불가
- Long-term success의 척도로 적합하지 않음

Automatic Evaluation

• Length of the dialogue : 한 Agent가 Dull response를 말할 때 까지의 turn

Model	# of simulated turns
SEQ2SEQ	2.68
mutual information	3.40
RL	4.48

• Diversity : Generated response에서 distinct한 uni-gram과 bi-gram의 갯수

Model	Unigram	Bigram
SEQ2SEQ	0.0062	0.015
mutual information	0.011	0.031
RL	0.017	0.041

Automatic Evaluation

Human evaluation (RL Model vs Mutual Information Model)

Setting	RL-win	RL-lose	Tie
single-turn general quality	0.40	0.36	0.24
single-turn ease to answer	0.52	0.23	0.25
multi-turn general quality	0.72	0.12	0.16

Input Message	Mutual Information Model	RL
How old are you?	I'm 16.	I'm 16, why are you asking?
What's your full name?	I have no idea.	What's yours?
I don't want to go home tonight.	Really?	Why?
Do you have any feelings for me?	I don't know what you are talking about.	I don't want to hurt your feelings.
How much time do you have here?	Not long enough. Sorry, sir.	Ten seconds.
Shall we get started?	Of course!	Yes. We've got a lot of work to do here.
Do you play football?	No, i don't	Yes. I love football!
We'd have to talk to him.	I mean, he's a good guy	About what ?
How come you never say it?	Because I don't want to hurt you.	I don't think it's a good idea to say it.

Limitation

Dialogue with multi-cycle problem

```
A: What's your name?
```

B: Daniel.

A: How old are you?

B. Twelve. What's your name?

A. Daniel.

B: How old are you?

A: Twelve. What's your name?

B: Daniel.

A: How old are you?

В ...

Conclusion

- 의미 있는 답변을 하면서 Dialouge의 형태를 유지하는 모델을 제시
- Long-term influence를 잘 반영하는 모델
- Heuristic에 따라 얼마나 다양하고 의미있는 답변을 할 지 결정된다.
 - 여기서 Heuristic은 아마 training dataset과 pre-train dataset을 의미