Problem 1a) - Hypothesis Testing and Confidence Intervals

Data: 9 successes in 10 trials, H_0 : $\pi = 0.5$

i) Tests and Confidence Intervals

1. Wald Test:

o Statistic:
$$Z = \frac{\hat{\pi} - 0.5}{\sqrt{\hat{\pi}(1 - \hat{\pi})/n}} = \frac{0.9 - 0.5}{\sqrt{0.9 \times 0.1/10}} = 4.216$$

• 95% CI:
$$\hat{\pi} \pm z_{0.975} \sqrt{\hat{\pi}(1-\hat{\pi})/n} = [0.714, 1.086]$$

2. Score Test:

• Statistic:
$$Z = \frac{\hat{\pi} - 0.5}{\sqrt{0.5 \times 0.5/10}} = 2.529$$

• 95% CI: Solve
$$\frac{|\hat{\pi}-\pi|}{\sqrt{\pi(1-\pi)/10}} \le 1.96 \to [0.595, 0.982]$$

3. Likelihood Ratio Test:

• Statistic:
$$-2 \ln(\Lambda) = 2 [\ell(\hat{\pi}) - \ell(0.5)] = 5.796$$

• 95% CI:
$$\{\pi: -2\ln(\Lambda) \le 3.841\} \approx [0.634, 0.985]$$

ii) Exact p-values

• One-sided p-value:
$$P(X \ge 9) = \sum_{k=9}^{10} {10 \choose k} 0.5^{10} = 0.0107$$

• Two-sided p-value: $2 \times 0.0107 = 0.0214$

Problem 1b) - Relative Risk and CI

Contingency Table:

Race	Yes	No/Undecided	Total
White	31	12	43
Black	9	4	13

• Relative Risk (RR):

$$RR = \frac{31/43}{9/13} = 1.03$$

• 95% CI for RR:

$$\ln(RR) \pm 1.96\sqrt{\frac{12}{31 \times 43} + \frac{4}{9 \times 13}} \rightarrow [0.57, 1.86]$$

Problem 2a) - Contingency Table

HAART Data:

• Total patients: 1464

• Females: 63.52% (930)

• Defaulters: 22.61% (331), including 142 males

Contingency Table:

	Default	Non-Default	Total
Male	142	392	534
Female	189	741	930
Total	331	1133	1464

Joint/Marginal Distributions:

• P(Male, Default) = 142/1464 = 0.097

• P(Female) = 930/1464 = 0.635

Problem 2b) - Probabilities

1. $P(\text{Female} \cap \text{Default}) = 189/1464 = 0.129$

2. P(Male) = 534/1464 = 0.365

3. P(Default | Female) = 189/930 = 0.203

Problem 3) - Logistic Model for Case-Control Study

Data:

	Lung Cancer	Control
Smoking	452	215
Non-Smoking	548	785

(i) Logistic Model:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 \operatorname{Smoking}$$

• Fit:
$$\hat{\beta}_0 = -0.366$$
, $\hat{\beta}_1 = 0.785$

(ii) Probabilities:

• Smokers:
$$p = \frac{e^{-0.366+0.785}}{1+e^{-0.366+0.785}} = 0.678$$

• Non-smokers: $p = \frac{e^{-0.366}}{1+e^{-0.366}} = 0.410$

• Non-smokers:
$$p = \frac{e^{-0.366}}{1 + e^{-0.366}} = 0.410$$

(iii) Log-Odds:

• Smokers: -0.366 + 0.785 = 0.419

• Non-smokers: -0.366

(iv) Odds Ratio:

$$OR = e^{0.785} = 2.$$

Problem 4) - Logistic Regression for SBP

Data:

High SBP (y_i)	Total (n_i)
7	32
4	16
10	25
14	32
	7 4 10

(i) Logistic Model:

$$\log\left(\frac{p_i}{1 - p_i}\right) = -2.30 + 0.056$$
Age

(ii) Predicted Proportions:

- Age 30: $\hat{p} = 0.219$
- Age 45: $\hat{p} = 0.437$

(iii) Odds Ratio (5-year increase):

$$OR = e^{5 \times 0.056} = 1.32$$

Problem 5) - Multiple Logistic Regression

Data:

Gestational Age (x_1)	Weight Gain (x_2)	Normal Birth Weight (y)	Total (n)
30	14	15	25
32	8	18	35
34	12	6	15
36	11	4	16
38	10	1	8

(i) Model:

$$\log\left(\frac{p}{1-p}\right) = 1.92 - 0.12x_1 + 0.08x_2$$

(ii) Prediction:

For
$$x_1 = 31$$
, $x_2 = 9$:

$$\hat{p} = \frac{e^{1.92 - 0.12 \times 31 + 0.08 \times 9}}{1 + e^{1.92 - 3.72 + 0.72}} = 0.324$$

Problem 6) - Three-Way Table Analysis

Death Penalty Data:

Victim	Defendant	Yes	No	Total
White	White	2	13	15
	Black	1	5	6
Black	White	0	5	5
	Black	1	15	16

(a) Conditional Odds Ratios (with +0.5 adjustment):

- White victims: $OR = \frac{2.5 \times 5.5}{13.5 \times 1.5} = 0.68$
- Black victims: $OR = \frac{0.5 \times 15.5}{5.5 \times 1.5} = 0.94$

(b) Marginal OR:

$$OR = \frac{3 \times 20}{1 \times 18} = 3.33$$

Conclusion: Marginal OR suggests bias, but conditional ORs (stratified by victim race) do not.

(c) Cochran-Mantel-Haenszel Test:

$$\chi^2_{CMH} = 0.24 \quad (p = 0.624)$$

→ Fail to reject independence.

Problem 7) - Loglinear Models

- (a) Model (XY, XZ, YZ):
- Holds iff X and Y have homogeneous association across Z levels (i.e., $\theta_{XY(k)} = \theta_{XY}$ for all k).
- (b) Model (XZ, YZ):
 - Holds iff $X \perp \!\!\! \perp Y \mid Z$ (conditional independence).