04/04/2006 16:23 9147624126 RODNEY T HODGSON PAGE 03

AMENDMENTS TO THE CLAIMS

 (Original) An apparatus for amplifying two collinearly propagating beams of monochromatic coherent radiation at optical frequencies v₀ and v₀', comprising:

a vessel for containing a gas and maintaining an excitation in the gas volume;

3

5

6

7

8

9

10

11

1

2

- wherein intense narrow-band fluorescence is emitted from said excitation at frequencies ν_0 and ν_0 ' of allowed optical transitions of constituents of the gas, wherein said optical transitions share a common upper energy level and form a Λ type structure, and wherein one or both lower energy levels are populated in said gas volume, whereby monochromatic laser beams at frequencies ν_0 and ν_0 ' propagating collinearly through said gas volume containing vessel nonlinearly convert photons from said fluorescence
- 2. The apparatus of claim 1, further comprising:

2

1

means for producing monochromatic laser beams at frequencies v_0 and v_0 .

into photons of said propagating beams, thus amplifying said beams.

- 3. (Original) The apparatus of claim 2, wherein the monochromatic laser beams at frequencies

 w and w are continuous (CW) laser beams.
- 4. (Original) The apparatus of claim 2, wherein the monochromatic laser beams at frequencies v_0 and v_0 are pulsed laser beams.
- 5. (Original) The apparatus of claim 2, wherein the monochromatic laser beams at frequencies ν_0 and ν_0 are laser beams are each a continuous series of Q-switched pulses.

3

5

7

2

6. (Original) The	apparatus of claim 2,	wherein the monochromatic laser beams at frequencies
v_0 and v_0	' are laser beams are e	each a continuous series of mode-locked-pulses.

- 7. (Original) The apparatus of claim 6, wherein the monochromatic laser beams at frequencies v_0 and v_0 are laser beams are each a continuous series of femtosecond pulses.
- 8. (Original) The apparatus of claim 2, further comprising:
- 6 reflective mirrors forming a optical cavity about the gas volume containing vessel; and
- means for directing said beams to propagate collinearly in said optical laser cavity for the time required for amplification of light at frequencies v_0 and v_0 .
- 9. (Original) The apparatus of claim 1, further comprising:
- reflective mirrors forming a optical cavity about said gas volume containing vessel, wherein light at frequencies ν_0 and ν_0 is amplified.
- 10. (Presently amended) The apparatus of claim I, wherein continuous and efficient conversion
 2 of photons of fluorescence into photons of coherent light beams at frequencies v_0 and v_0 3 'occurs by the nonlinear process of stimulated hyper-Raman scattering (SHRS) occurring
 4 at every point within said gas volume containing vessel whereat wherin both said
 5 emitted fluorescence intensity and said two collinearly propagating beams of
 6 monochromatic coherent radiation propagating light beam intensities are present.
- 1 11. (Presently amended) The apparatus of claim 1, wherein said three specified-species levels 2 forming a Λ -type structure with resonance frequencies at ν_0 and ν_0 are both hyperfine

04/04/2006 16:23 9147624126 RODNEY T HODGSON PAGE 05

levels of the Cs $6S_{1/2}$ ground electronic state and one hyperfine level of the Cs $6P_{1/2}$ excited electronic state.

- 1 12. (Presently amended) The apparatus of claim 1, wherein said three specified-species levels
 2 forming a Λ-type structure with resonance frequencies at ν₀ and ν₀' are both hyperfine
 3 levels of the 6P 1/2 ground electronic state of ²⁰³Tl and the F'=1 hyperfine level of the
 4 7S_{1/2} excited electronic state-of said same thallium isotope.
- 13. (Presently amended) The apparatus of claim 1, wherein said three specified-species levels
 2 forming a Λ-type structure with resonance frequencies at ν₀ and ν₀' are both hyperfine
 3 levels of the 6S _{1/2} ground electronic state of either singly ionized ¹⁹⁹Hg or ²⁰¹Hg and a
 4 hyperfine level of the 6P _{1/2} excited electronic state of the same singly ionized isotope
 5 that is coupled by dipole-allowed transitions to both said lower levels.
- 14. (Presently amended) The apparatus of claim 1, wherein said- three specified-species levels
 2 forming a Λ-type structure with resonance frequencies at ν₀ and ν₀' are both two
 3 hyperfine levels of the 5P_{3/2} ground electronic state of any singly ionized odd isotope of
 4 Xe and one hyperfine level of the 5S_{1/2} excited electronic state of the same-singly ionized
 5 xenon isotope-that is coupled by dipole-allowed transitions to both lower levels.
- 15. (Original) The apparatus of claim 1, further comprising a plurality of gas volume
 containing vessels wherein each vessel is a source emitting two output beams of highly
 monochromatic coherent radiation at frequencies ν_0 and ν_0 .
- 16. (Original) The apparatus of claim 15, wherein the output beams of each of the plurality of
 2 gas volume containing vessels are arranged as an array and directed to point in the same
 3 direction, and wherein the phase of each beam is varied to form a phased directional
 4 array.

04/04/2006 16:23 9147624126 RODNEY T HODGSON PAGE 06

17. (Original The apparatus of claim 16, further comprising a cascaded series of increasingly sized gas volume containing vessels for each beam, wherein the output of each of the plurality of sources is directed into a cascade of increasingly sized gas volume containing vessels.

18. (Original) The apparatus of claim 1, further comprising a cascaded series of increasingly sized gas volume containing vessels, wherein the amplified light at frequencies ν_0 and ν_0 is amplified in the cascade of increasingly sized gas volume containing vessels.

1

2

3

19. (Original) The apparatus of claim 1, wherein said gas volume containing vessel is a heat pipe discharge tube (HPDT).