

THE POWER TO KNOW.

An Introduction to Generalized Linear Mixed Models Using SAS PROC GLIMMIX

Phil Gibbs Advanced Analytics Manager SAS Technical Support November 22, 2008 UC Riverside

What We Will Cover Today

- What is PROC GLIMMIX and how do I get access to the procedure?
- What does the procedure do and how does it compare to PROC MIXED?
- What are the new features in PROC GLIMMIX?
- Are there any pitfalls in using PROC GLIMMIX?

But first ... Let's talk about SAS Technical Support

Who Can contact Tech Support?

- Available to all SAS customers
- Free, Unlimited Support
- Telephone: (919)-677-8008
- Email: <u>support@sas.com</u>
- Web: http://support.sas.com/techsup/contact/index.html

When is Tech Support Available?

- New Problems
 - 9:00 AM 8:00 PM ET (limited support from 6:00-8:00 PM)
- Tracked Problems
 - 9:00 AM 5:00 PM ET
- Emergencies (system down situations)
 - 24 hour support

What sets SAS Tech Support Apart?

- Tech Support is a career at SAS
- Statistics Group average of 12 years experience in tech support
- Talk to an actual live person

... Back to GLIMMIX

What is PROC GLIMMIX?

- PROC GLIMMIX is a procedure for fitting Generalized Linear Mixed Models
- GLiM's (or GLM's) allow for non-normal data and random effects
- GLiM's allow for correlation amongst responses

How can I access PROC GLIMMIX?

- SAS 9.1
 - Download add-on (Windows, Unix, Linux) from http://support.sas.com http://www.sas.com/statistics
 - Supported on a limited number of platforms and platform configurations
- SAS 9.2 (available now for most academic sites)

Distributions Supported in PROC GLIMMIX

- Discrete
 - Binary
 - Binomial
 - Poisson
 - Geometric
 - Negative Binomial
 - Multinomial (nominal and ordinal)

- Continuous
 - Beta
 - Normal
 - "Lognormal"
 - Gamma
 - Exponential
 - Inverse Gaussian
 - Shifted T

Distributions specified through DIST= (and LINK=) options on the MODEL statement

Syntax: PROC GLIMMIX vs. PROC MIXED

PROC GLIMMIX PROC MIXED

BY BY

CLASS CLASS

CONTRAST CONTRAST

EFFECT

ESTIMATE ESTIMATE

FREQ

ID ID

LSMEANS LSMEANS

LSMESTIMATE

MODEL MODEL

NLOPTIONS

OUTPUT

PARMS

RANDOM RANDOM

WEIGHT

<Programming Statements>

REPEATED

PARMS

PRIOR

Ooops!

Did we miss

something?

11

G- and R-side Random Effects in MIXED and GLIMMIX

 MIXED uses RANDOM statement for G-side effects and REPEATED statement for R-side effects.

G- and R-side Random Effects in MIXED and GLIMMIX

Both types of effects are specified with the RANDOM statement in GLIMMIX

What are G- and R-side Random Effects?

- Remember from mixed models: Y = X*Beta + Z*Gamma + E
- G-side effects enter through Z*Gamma
- R-side effects apply to the covariance matrix on E
- G-side effects are "inside" the link function, making them easier to interpret and understand
- R-side effects are "outside" the link function and are more difficult to interpret

What PROC GLIMMIX Is Not ...

- PROC GLIMMIX is NOT PROC MIXED with a DIST= and LINK= option
- PROC GLIMMIX is NOT a direct replacement for the %GLIMMIX macro
- PROC GLIMMIX has its own set of specialized options and features not found in other procedures or macros

Introductory Example: Logistic Regression with Random Effect

- Observed a binary response Y on 3 groups of patients (j= 1 to 3)
- 10 patients in each group
- Each patient could have received 1 of 3 treatments (i=1 to 3)
- Two covariates X1 and X2
- Assume patient group is a random effect
- LOG(p/(1-p)) = B0 + TRTi + B1*X1 + B2*X2 + GRPj
- GRPj ~ N(0,SIGMA**2)

Introductory Example: Simulating Data

```
data test;
   call streaminit(25345278);
   do grp=1 to 3;
      rgrp=rand('normal')*.7;
      do i=1 to 10;
         x1=rand('uniform');
         x2=rand('uniform');
         trt=ceil(rand('uniform')*3);
         logit=-2 + 2*x1 + x2 + (trt-2) + rgrp;
         p=exp(-logit)/(1+exp(-logit));
         if rand('uniform')>p then y=1; else y=0;
         output:
      end:
   end:
   drop rgrp i logit p;
run:
```


Introductory Example: The Data

Obs	grp	x1	x2	trt	у
1	1	0.03473	0.02817	1	0
2	1	0.06804	0.47722	2	0
3	1	0.30478	0.74750	2	1
4	1	0.71212	0.30261	1	0
5	1	0.35231	0.92217	2	1
6	1	0.14616	0.19462	2	0
7	1	0.29740	0.16734	2	0
8	1	0.66109	0.63280	2	0
9	1	0.88732	0.53281	2	0
10	1	0.28241	0.29755	2	0
11	2	0.57008	0.57124	2	0
12	2	0.77971	0.69519	3	1
13	2	0.73923	0.64358	1	0
14	2	0.08526	0.64158	2	0
15	2	0.61839	0.99100	1	1

Introductory Example: PROC GLIMMIX Code

```
proc glimmix data=test;
   class trt grp;
   model y=trt x1 x2;
   random int /subject=grp;
run;
```

Model Information						
Data Set	WORK.TEST					
Response Variable	у					
Response Distribution	Gaussian					
Link Function	Identity					
Variance Function	Default					
Variance Matrix Blocked By	grp					
Estimation Technique	Restricted Maximum Likelihood					
Degrees of Freedom Method	Containment					

Oops!

Introductory Example: Specifying the LINK= and DIST= Options

```
proc glimmix data=test;
   class trt grp;
   model y=trt x1 x2 / link=logit dist=binomial;
   random int / subject=grp;
run;
```

You will not get the correct model without the LINK= and DIST= options!

Introductory Example: Output

Model Information						
Data Set	WORK.TEST					
Response Variable	у					
Response Distribution	Binomial					
Link Function	Logit					
Variance Function	Default					
Variance Matrix Blocked By	grp					
Estimation Technique	Residual PL					
Degrees of Freedom Method	Containment					

	Class L							
	Class	Class Levels Values						
	trt	3	123					
	grp	3	123					
Number of Observations Read 30								
Number of Observations Used 30								

Dimensions					
G-side Cov. Parameters	1				
Columns in X	6				
Columns in Z per Subject	1				
Subjects (Blocks in V)	3				
Max Obs per Subject	10				

Optimization Information							
Optimization Technique	Dual Quasi-Newton						
Parameters in Optimization	1						
Lower Boundaries	1						
Upper Boundaries	0						
Fixed Effects	Profiled						
Starting From	Data						

Iteration History									
Iteration	Restarts	Subiterations	Objective Function	Change	Max Gradient				
0	0	5	123.44818639	0.41987088	6.769E-8				
1	0	4	130.00304388	0.18471388	8.274E-7				
2	0	4	132.59220249	0.04430941	6.55E-8				
3	0	3	133.03032197	0.00613896	4.786E-8				
4	0	2	133.07142356	0.00057998	9.41E-8				
5	0	1	133.07492066	0.00007304	9.381E-6				
6	0	0	133.07535621	0.00000000	6.892E-6				
Convergence criterion (PCONV=1.11022E-8) satisfied.									

Introductory Example: Output (cont.)

Where are the information criteria statistics???

This model estimated using pseudo-likelihood, so no IC's available

Pseudo-likelihoods are not comparable across models

Introductory Example: Quadrature Approximation

```
proc glimmix data=test method=quad;
  class trt grp;
  model y=trt x1 x2 / link=logit dist=binomial;
  random int / subject=grp;
run;
```

METHOD=QUAD uses Quadrature to approximate the likelihood, ala PROC NLMIXED

Quadrature only works on subset of models that GLIMMIX can fit

Introductory Example: Quadrature Output

Model Information							
Data Set	WORK.TEST						
Response Variable	у						
Response Distribution	Binomial						
Link Function	Logit						
Variance Function	Default						
Variance Matrix Blocked By	grp						
Estimation Technique	Maximum Likelihood						
Likelihood Approximation	Gauss-Hermite Quadrature						
Degrees of Freedom Method	Containment						

	-2	Log Likeli	ihood	30.	00	
	Al	C (smalle	r is better)	42.	00	
	Al	CC (small	er is better)	45.	65	
	ВІ	C (smalle	r is better)	36.	59	
	CA	AIC (small	er is better)	42.	59	
	н	QIC (small	er is better)	31.	13	
	F:4 04-4	-4: 5 4	N 1141 1	Diet	.: 1	4:
	Fit Stat	istics for C	Conditional	DIST	ribu	tion
	-2 log L	(y r. effe	cts)		2	4.82
	Pearso	n Chi-Squ	are		2	0.48
	Pearson Chi-Square / DF					
	Pearso	n Chi-Squ	are / DF			0.68
			are / DF arameter Es	stima		
Co		ariance P			ates	

Introductory Example: Adding Odds Ratios and Predicted Probabilities

```
proc glimmix data=test method=quad;
  class trt grp;
  model y=trt x1 x2 / link=logit dist=binomial or;
  random int / subject=grp;
  lsmeans trt / ilink cl;
run;
  Odds Ratios
```

Predicted Probabilities

Introductory Example: Odds Ratio Output

	Odds Ratio Estimates										
trt	x1	x2	_trt	_x1	_x2	Estimate	DF	95% Confidence Limits			
1	0.4409	0.5538	3	0.4409	0.5538	0.196	23	0.012	3.240		
2	0.4409	0.5538	3	0.4409	0.5538	0.271	23	0.016	4.734		
	1.4409	0.5538		0.4409	0.5538	10.300	23	0.120	886.851		
	0.4409	1.5538		0.4409	0.5538	39.075	23	0.376	>999.999		

Effects of continuous variables are assessed as one unit offsets from the mean. The AT suboption modifies the reference value and the UNIT suboption modifies the offsets.

Introductory Example: Predicted Probabilities Output

	trt Least Squares Means											
trt	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	Mean	Standard Error Mean	Lower Mean	Upper Mean
1	-1.3627	1.1792	23	-1.16	0.2597	0.05	-3.8020	1.0765	0.2038	0.1913	0.02184	0.7458
2	-1.0386	1.1037	23	-0.94	0.3565	0.05	-3.3219	1.2446	0.2614	0.2131	0.03483	0.7764
3	0.2663	1.1722	23	0.23	0.8223	0.05	-2.1586	2.6912	0.5662	0.2879	0.1035	0.9365

Statistics on Predicted Probabilities

Interpretation depends on the distribution and link function used

New Features in GLIMMIX: EFFECT Statement

- The EFFECT statement allows you to create constructed effects from sets of columns in the design matrix
- COLLECTION effects allow you to collect one or more columns and create a single effect for testing and inference with multiple df
- MULTIMEMBER effects allow for effects with possibly more than one nonzero column for an observation
- SPLINE effects
- POLYNOMIAL effects for multivariate polynomials

Example 38.15: Creating Spline Effects

```
data spline;
     input group y 00;
    x = n_;
     datalines:
         -.020 1
                     0.199 2
                                            -.026
                                -1.36 1
         -.397 1
                     0.065 2
                                -.861 1
                                            0.251
         0.253 2
                     -.460 2
                                0.195 2
                                            -.108
         0.379 1
                                0.712 2
                                            0.811
    1
                     0.971 1
         0.574 2
                     0.755 1
                                0.316 2
                                            0.961
    2
         1.088 2
                     0.607 2
                                0.959 1
                                            0.653
         0.629 2
                     1.237 2
                                0.734 2
                                            0.299
         1.002 2
                     1.201 1
                                1.520 1
                                            1.105
   1
         1.329 1
                     1.580 2
                                1.098 1
                                            1.613
    2
         1.052 2
                    1.108 2
                                1.257 2
                                            2.005
         1.726 2
                     1.179 2
                                            1.707
                                1.338 1
         2.105 2
                    1.828 2
                                1.368 1
                                            2.252
   1
         1.984 2
                     1.867 1
                                2.771 1
                                            2.052
         1.522 2
                     2.200 1
                                2.562 1
                                            2.517
   1
         2.769 1
                     2.534 2
                                1.969 1
                                            2.460
         2.873 1
                     2.678 1
                                3.135 2
                                            1.705
         2.893 1
                     3.023 1
                                3.050 2
                                            2.273
    1
         2.549 1
                     2.836 2
                                2.375 2
                                            1.841
         3.727 1
                     3.806 1
                                3.269 1
                                            3.533
         2.948 2
                     1.954 2
                                2.326 2
                                            2.017
   1
         3.744 2
                     2.431 2
                                2.040 1
                                            3.995
                                            2.479
         1.996 2
                     2.028 2
                                2.321 2
         2.337 1
                     4.516 2
                                2.326 2
                                            2.144
         2.474 2
                                4.867 2
                                            2.453
                     2.221 1
   1
         5.253 2
                     3.024 2
                                2.403 1
                                            5.498
```

Two groups of data measured on X and Y

Example 38.15: Plotting the Data

```
ods html;
proc sgplot data=spline;
   scatter y=y x=x / group=group name="data";
   keylegend "data" / title="Group";
run;
ods html close;
```


Example 39.15: Fitting the Spline Model

EFFECT statement fits b-spline of degree 3 with 7 knot points

```
proc glimmix data=spline outdesign=x;
  class group;
  effect spl = spline(x);
  model y = group spl*group / s noint;
  output out=gmxout pred=p;
run;
```


Example 38.15: Seeing the Fit

```
proc sgplot data=gmxout;
    series y=p x=x / group=group name="fit";
    scatter y=y x=x / group=group;
    keylegend "fit" / title="Group";
run;
```


EFFECT Statement: Polynomial Effects

- Polynomial effects provide a programatic way to express polynomial fits in a model
- model y = x1 x2 x3 x1*x1 x1*x2 x1*x3 x2*x2 x2*x3 x3*x3;
- effect MyPoly = polynomial(x1-x3/degree=2); model y = MyPoly;

New Features in GLIMMIX: LSMEANS Statement Options

- SLICE= gives tests of simple effects
- Assume a model where A has 4 levels and B has 3 levels

```
proc glimmix data=test;
  class a b;
  model y=a b a*b;
  lsmeans a*b / slice=a;
run;
```

SLICE= will give tests for differences among the levels of B for each level of A

LSMEANS Statement: SLICE= Option Results

	Tests of Effect Slices for a*b Sliced By a									
а	Num DF Den DF F Value Pr > F									
1	2	48	2.43	0.0989						
2	2	48	81.61	<.0001						
3	2	48	49.38	<.0001						
4	2	48	79.21	<.0001						

LSMEANS Statement Options: SLICEDIFF=

 Use SLICEDIFF= to explore the differences in the levels of one effect inside the levels of another effect

```
proc glimmix data=test;
  class a b;
  model y=a b a*b;
  lsmeans a*b / slicediff=a;
run;
```


LSMEANS Statement: SLICEDIFF= Option Results

Simple Effect Comparisons of a*b Least Squares Means By a										
Simple Effect Level	b	_b	Estimate	Standard Error	DF	t Value	Pr > t			
a 1	1	2	-0.7680	0.5984	48	-1.28	0.2055			
a 1	1	3	-1.3125	0.5984	48	-2.19	0.0332			
a 1	2	3	-0.5445	0.5984	48	-0.91	0.3674			
a 2	1	2	-3.5416	0.5984	48	-5.92	<.0001			
a 2	1	3	-7.6379	0.5984	48	-12.76	<.0001			
a 2	2	3	-4.0964	0.5984	48	-6.85	<.0001			
a 3	1	2	-3.4324	0.5984	48	-5.74	<.0001			
a 3	1	3	-5.9214	0.5984	48	-9.90	<.0001			
a 3	2	3	-2.4890	0.5984	48	-4.16	0.0001			
a 4	1	2	-3.4859	0.5984	48	-5.83	<.0001			
a 4	1	3	-7.5245	0.5984	48	-12.58	<.0001			
a 4	2	3	-4.0387	0.5984	48	-6.75	<.0001			

Within each level of A we get pairwise comparisons of the levels of B

Use the PDIFF= option to get multiplicity adjustments within each level of A

New Features in GLIMMIX: LSMESTIMATE Statement

- Allows ESTIMATES that involve coefficients on the LSMEANS rather than on the parameter estimates
- Can dramatically shorten the length and complexity of an ESTIMATE statement

LSMESTIMATE Statement Syntax

```
proc glimmix data=test;
  class a b;
  model y=a b a*b;
  estimate 'ab12 vs ab21' a 1 -1 b -1 1 a*b 0 1 0 -1;
  run;
  [coefficient level_of_effect_A level_of_effect_B]
```


New Features in GLIMMIX: Multiplicity Adjustments in ESTIMATE Statement

- Multiple DF contrasts have been allowed before
- Now the ESTIMATE statement can accept multiple tests within the same statement
- This family of tests can be adjusted for multiplicity

Multiplicity Adjustments on an ESTIMATE Statement

Estimates Adjustment for Multiplicity: Bonferroni									
Label	Estimate	Standard Error	DF	t Value	Pr > t	Adj P			
1 vs 2	-0.3241	1.3518	23	-0.24	0.8126	1.0000			
1 vs 3	-1.6290	1.3558	23	-1.20	0.2418	0.4836			

Multiplicity Adjustments on an LSMESTIMATE Statement

Least Squares Means Estimates Adjustment for Multiplicity: Bonferroni									
Effect	Label	Estimate Standard Error DF t Value Pr > t							
trt	1 vs 2	-0.3241	1.3518	23	-0.24	0.8126	1.0000		
trt	1 vs 3	-1.6290	1.3558	23	-1.20	0.2418	0.4836		

Least Squares Means Ftest									
Effect	Num DF	Den DF	F Value	Pr > F					
trt	2	23	0.79	0.4637					

New Features in PROC GLIMMIX: ODS Graphics

- DIFFOGRAM from LSMEANS statement
- Interaction plots from LSMEANS statement
- Analysis of means plots from LSMEANS statement
- (Residual and Box Plots)

LSMEANS Diffogram Plot

```
proc glimmix data=test plots=diffogram;
  class a b;
  model y=a b;
  lsmeans a / pdiff cl;
run;
```


LSMEANS Statement Output

	a Least Squares Means									
а	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper		
1	2.0330	0.3687	54	5.51	<.0001	0.05	1.2938	2.7722		
2	8.2873	0.3687	54	22.48	<.0001	0.05	7.5481	9.0265		
3	5.8051	0.3687	54	15.74	<.0001	0.05	5.0659	6.5443		
4	7.8383	0.3687	54	21.26	<.0001	0.05	7.0991	8.5775		

	Differences of a Least Squares Means									
а	_a	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper	
1	2	-6.2543	0.5214	54	-11.99	<.0001	0.05	-7.2997	-5.2089	
1	3	-3.7721	0.5214	54	-7.23	<.0001	0.05	-4.8175	-2.7266	
1	4	-5.8053	0.5214	54	-11.13	<.0001	0.05	-6.8507	-4.7599	
2	3	2.4822	0.5214	54	4.76	<.0001	0.05	1.4368	3.5277	
2	4	0.4490	0.5214	54	0.86	0.3930	0.05	-0.5964	1.4944	
3	4	-2.0332	0.5214	54	-3.90	0.0003	0.05	-3.0786	-0.9878	

DIFFOGRAM Plot

Pitfalls in Working with PROC GLIMMIX

- Simplify, Simplify, Simplify!!!
- Just because you can syntactically estimate a model does not mean you will get results – or that you should even try to
- Check your data for sufficient variability before estimating a model
- NLOPTIONS TECH=NRRIDG for discrete responses
- Always specify DIST= and LINK= on MODEL statement

