

Behavioral and Experimental Economics

ELICITING RISK ATTITUDES: LAB SESSION

Paolo Crosette

- ► A risk elicitation session
- A look at the raw data
- ► Data cleaning (pre-coded)
- **choices**: a look at your results
- ► Translating data to the *r* parameter (pre-coded)
- r: a look at your results

Let's play!

The tasks you ran

Questionnaires: SOEP

How likely are you to take risks in general, one a scale from 0 (not taking any risks) to 10 (taking many risks)?

Questionnaires: DOSPERT

Domain Specific Risk Taking Scale

- ▶ 6 domains: investing, gambling, health/safety, recreational, ethical, and social
- ▶ 1 to 7 scale: how likely are you to engage in X?

Examples:

- ► Riding a motorcycle without a helmet.
- Engaging in unprotected sex.
- ▶ Investing 10% of your annual income in a moderate growth diversified fund.

RETs, I: Holt and Laury

Ten binary lottery choices – risk attitude as switching point

	Option A					Option B			
1	1/10	4 €	9/10	3.2 €	1/10	7.7 €	9/10	0.2 €	
2	2/10	4 €	8/10	3.2 €	2/10	7.7 €	8/10	0.2 €	
3	3/10	4 €	7/10	3.2 €	3/10	7.7 €	7/10	0.2 €	
4	4/10	4 €	6/10	3.2 €	4/10	7.7 €	6/10	0.2 €	
5	5/10	4 €	5/10	3.2 €	5/10	7.7 €	5/10	0.2 €	
6	6/10	4 €	4/10	3.2 €	6/10	7.7 €	4/10	0.2 €	
7	7/10	4 €	3/10	3.2 €	7/10	7.7 €	3/10	0.2 €	
8	8/10	4 €	2/10	3.2 €	8/10	7.7 €	2/10	0.2 €	
9	9/10	4 €	1/10	3.2 €	9/10	7.7 €	1/10	0.2 €	
10	10/10	4 €	0/10	3.2 €	10/10	7.7 €	0/10	0.2 €	

Risk neutral should switch after 5 choices. > 5 safe \rightarrow risk averse

RETs, II: Binswanger

A single choice among 50-50 lotteries – chosen lottery is played.

Event	Probability	Outcome	
Α	50%	4 €	
В	50%	4 €	
Α	50%	6 €	
В	50%	3 €	
Α	50%	8 €	
В	50%	2 €	
Α	50%	10 €	
В	50%	1 €	
А	50%	12 €	
В	50%	0 €	
	A B A B A B A A B	A 50% B 50% A 50% B 50% A 50% B 50% A 50% B 50% A 50% A 50% A 50%	

Risk neutral should choose lottery 5. Extreme risk aversion to choose lottery 1.

RETs,IV: Investment game

Endowment X

How much would you like to invest?

Safe account 1:1

Risky investment 1: {1/2: 2.5; 1/2: 0}

Risk-neutral should invest all, as E(risky) = 1.25 > 1.

RETs, VI: BRET

Figure: The BRET interface at the start of the experiment

BRET: solution for the expected value maximizer

The expected value is maximized at $k^* = 50$.

Assuming a power CRRA utility function x^r , the optimal stopping point is:

$$k^* = 100 \frac{r}{1+r}.$$

But how do we compare across methods?

CRRA (à la Wakker)

$$u(x) = x^r$$

- ▶ simple
- captures risk aversion
- ► makes different tasks comparable

How big are these differences?

Certainty Equivalent of {0.5: 100; 0.5: 0} lottery

Mapping choices to r: risk levels

