# Planimetria

część 1

# Spis treści

# 1 Definicje

#### 1.1 Odcinek

Odcinkiem o końcach A i B nazywamy zbiór składający z punktu A i B oraz wszystkich punktów leżącymi między punktami A i B.



## 1.2 Półprosta

Jeżeli A i B są różnymi punktami, to półprostą o początku A przechodzącą przez B nazywamy zbiór składający się z punktu A i wszystkich punktów leżących po tej samej stronie punktu A co punkt B.



### 1.3 Proste równoległe

Dwie proste k i l nazywamy równoległymi, wtedy i tylko wtedy, gdy nie mają żadnego punktu wspólnego lub gdy są równe.



## 1.4 Odległość

Liczbę  $|\overline{AB}|$  nazywamy odległością odcinka  $\overline{AB}$  albo odległością między punktami A i B.  $AB=d(A,\ B)$  - odległość między punktami A i B

#### 1.5 Łamana

Dane są punkty:  $A_1,\ A_2,\ A_3,\ ...,\ A_{n-1},\ A_n.$  Łamaną nazywamy figurę złożoną z odcinków  $\overline{A_1A_2},\ \overline{A_2A_3},\ ...,\ \overline{A_{n-1}A_n}.$ 



Łamaną nazywamy zamkniętą, gdy  $A_1 = A_n$ .



#### 1.6 Wielokat

Wielokątem nazywamy część płaszczyzny ograniczoną łamaną zamkniętą wraz z tą łamaną.



### 1.7 Okrąg

Okręgiem o środku O i promieniu r nazywamy zbiór punkt płaszczyzny, których odległość od punktu O wynosi r.

$$o(O,r) = \{X \in \Pi : OX = r\}$$

#### 1.8 Koło

Kołem o środku O i promieniu r nazywamy zbiór punktów płaszczyzny, których odległość od środka jest mniejsza bądź równa r.

$$o(O,r) = \{X \in \Pi : OX \leq r\}$$

#### 1.9 Kat

Kątem nazywamy dwie półproste o wspólnym początku wraz z jednym z dwóch obszarów, na które te półproste dzielą płaszczyznę.



### 1.10 Proste prostopadle

Proste, które przecinają się pod kątem prostym nazywamy prostopadłymi.



### 1.11 Przekątna

Przekątną wielokąta jest odcinkiem wielokąta łączącym wierzchołki wielokąta, który nie jest bokiem.



# 1.12 Figura wypukła

Figurę nazywamy wypukłą, wtedy i tylko wtedy, gdy każdy odcinek o końcach w tej figurze zawiera się w tej figurze.

Figura F jest wypukła wtedy i tylko wtedy, gdy  $\bigvee_{A,B} (A, B \in F \implies \overline{AB} \subset C)$ .



## 1.13 Odległości punktu od prostej



Odległością od punktu P od prostej l nazywamy długość odcinka  $\overline{PQ}$ .

$$d(P, l) = PQ$$

### 1.14 Kat przyległy



$$\alpha,\beta$$
- kąty przyległe 
$$\alpha+\beta=180^{\circ}$$

## 1.15 Kąta zewnętrznego

Kątem zewnętrznym wielokąta wypukłego nazywamy każdy kąt przyległy do kąta wewnętrznego tego wielokąta.



### 1.16 Trójkątów przystających

Dwa trójkąty nazywamy przystającymi, wtedy i tylko wtedy, gdy mają takie same miary kątów i długości boków.

$$\Delta ABC \equiv \Delta A'B'C'$$

Cechy przystawania trójkątów:

• bok-bok(BBB): Jeżeli  $AB=A'B',\ BC=B'C',\ AC=A'C'$  to  $\Delta ABC\equiv\Delta A'B'C'.$ 



• bok-kąt-bok(BKB): Jeżeli  $AB=A'B',\ AC=A'C',\ \sphericalangle A=\sphericalangle A'$  to  $\Delta ABC\equiv A'B'C'.$ 



• kąt-bok-kąt(KBK): Jeżeli AB = A'B',  $\triangleleft A = \triangleleft A'$ ,  $\triangleleft B = \triangleleft B'$  to  $\triangle ABC \equiv \triangle A'B'C'$ .



### 1.17 Symetralna odcinka

Symetralną niezerowego odcinka nazywamy prostą prostopadłą do tego odcinka przechodzącą przez jego środek.

#### 1.18 Środkowa boku

Środkową boku nazywamy odcinek łączący wierzchołek z środkiem przeciwległego boku.



C'- środek odcinka AB CC'- środekowa odcinka AB

## 1.19 Okrąg opisany

Okręgiem opisanym na wielokącie nazywamy okrąg do którego należą wszystkie wierzchołki tego wielokąta.

## 1.20 Kąt środkowy



Kąt  $\triangleleft AOB$  jest środkowy.

### 1.21 Kat wpisany



Kat  $\triangleleft ACB$  jest wpisany.

### 1.22 Okrąg opisany

Okręgiem wpisanym w wielokąt wypukły nazywamy okrąg, który jest styczny do wszystkich prostych zawierających boki wielokąta, którego środek jest wewnątrz wielokąta.

#### 1.23 Podobieństwa trójkątów

Dwa trójkąty nazywamy podobnym, jeżeli mają równe kąty i boki jednego trójkąta są proporcjonalne do odpowiednich boków drugiego trójkąta



 $\Delta ABC \sim \Delta A'B'C'$ Cechy podobieństwa trójkątów:

• bok-bok-bok(BBB): Jeżeli  $\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}$ , to  $\Delta ABC \sim \Delta A'B'C'$ .



$$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'} = \frac{1}{2}$$
  
Wówczas:  
 $\Delta ABC \sim \Delta A'B'C'$ 

• bok-kąt-bok(BKB): Jeżeli $\frac{AB}{A'B'}=\frac{CA}{C'A'}$ oraz  $\lessdot A=\lessdot A',$  to  $\Delta ABC\sim \Delta A'B'C'.$ 



• kąt-kąt(KK): Jeżeli  $\triangleleft A = \triangleleft A'$  oraz  $\triangleleft B = \triangleleft B'$ , to  $\triangle ABC \sim \triangle A'B'C'$ .



# 2 Aksjomaty

**Aksjomat 1.** Przez dwa różne punkty przechodzi dokładnie jedna prosta.