

COMP0130 Robot Vision and Navigation

1C: Introduction to GNSS Positioning

Dr Paul D Groves

Session Objectives

- Introduce the language of satellite positioning
- Explain how 'basic' satellite positioning works
- Present some details of GPS and other satellite positioning systems
- Show some applications

Contents

- 1. Introduction
- 2. Components of GNSS
- 3. How GNSS Positioning Works
- 4. General Applications

What is GPS? (1)

- GPS = Global Positioning System
- Developed by the United States government as a military navigation system, originally for precision bombing
- GPS Development programme started in **1973** following the merger of separate Air Force, Navy and Army projects
- First operational satellite: 1978
- Initial operational capability: 1993
- Full operational capability: 1994
- GPS is now undergoing a modernization programme

The First GPS Receiver from 1977 Image: Rockwell Collins

What is GPS? (2)

The term "Global Positioning System" (GPS) refers to the whole system

Image: GPS for Land Surveyors

The device that determines your position is a "GPS receiver" or "GPS user equipment"

NOT "a GPS"

Unless it is very old, it is probably actually a GNSS receiver

Image: Garmin

What is GNSS?

GNSS = Global Navigation Satellite System(s)

A generic term covering GPS and similar satellite navigation systems

Four global systems:

GPS (United States)

GLONASS (Russia)

Galileo (European Union)

Beidou (China)

And various regional augmentation systems

Most modern receivers use two or more of these systems

GLONASS, Galileo and Beidou

GLONASS (Russia)

Developed in parallel with GPS from the 1970s Fully operational in 1995, but not maintained Fully operational again in 2011 and modernization

Galileo (European Union)

Development started in 1999 First main satellite launch in 2012 Initial operational capability in 2016

Beidou (China)

Development started in the 2000s Regional system fully operational from 2012 Global system fully operational from 2020

Terminology

In this session:

- "GNSS" is used for anything applicable to GPS, GLONASS, Galileo and Beidou
- "GPS" is used only for things that apply specifically to GPS

BUT lots and lots of people say "GPS" when they mean "GNSS", including many receiver manufacturers - Ignorance Rules!

How does GNSS work? (1)

Contrary to what you may have read in the newspapers:

- GNSS is NOT a "Spy in the Sky"
- It does **NOT** track users
- User equipment only receives GNSS signals
- The satellites **only transmit** to users
- Satellites only receive signals from the control segment
- Where equipment does report user position, this is completely independent of GNSS itself

How does GNSS work? (2)

- Each satellite continuously transmits ranging signals
- GNSS user equipment measures signal axival time, t_{sa} , from 4 (or more) satellites
- Each transmission time, t_{st} , is derived from the signal modulation

$$\rho = c(t_{sa} - t_{st})$$

- This is pseudo-range, not range, because of unknown receiver clock offset
- With four pseudo-range measurements, the 3D user position and clock offset may be determined

Contents

- 1. Introduction
- 2. Components of GNSS
- 3. How GNSS Positioning Works
- 4. General Applications

The Segments

Each GNSS comprises three segments

Space Segment: GPS

- Designed with at least 24 satellites
- Currently **31** active satellites
- Mid Earth orbit (MEO):
 - 26 600 km orbital radius
 - 20 100 km height
- 6 orbit planes at 55° inclination separated by 60° longitude

Multiple non-parallel planes are needed for:

- Good coverage of the Earth
- Adequate signal geometry

Space Segment: GLONASS, Galileo, Beidou

GLONASS

- 24 satellites
- Radius **25 600** km
- 3 orbit planes at 64.8° inclination separated by 120° longitude

Galileo

- Nominally **30** satellites
- **24** currently working
- Radius **29 720** km
- 3 orbit planes at 56° inclination separated by 120° longitude

- **27** MEO satellites
- Radius **28 000** km
- 3 orbit planes at 55° inclination
- +8 geosynchronous satellites

Images: GPS for Land Surveyors

GNSS Signal Structure

Modulation comprises

- Pseudo-random noise (PRN) ranging code, known to the receiver
 - Used to measure pseudo-range
 - Between 1,000,000 and 10,000,000 symbols per second
- On many signals, an unknown Navigation Data Message,
 - Contains satellite position, velocity, clock and other information
 - Between 50 and 1000 symbols per second

GNSS Signal Types

Each satellite transmits multiple signals

Three main types:

- Low-cost Open Access
- High-precision Open Access
- Encrypted

Multiple Frequencies are used for enhanced resilience

- L1 (1575 MHz) for GPS, Galileo
 & Beidou low-cost signals
- L5 (1176 MHz) for GPS, Galileo
 & Beidou high-precision signals
- Further frequencies are unique to each system

This Photo by Unknown Author is licensed under CC BY-SA-NC

GPS, Galileo and Beidou use Code division multiple access (CDMA)

Satellites use the same frequencies with different ranging codes

The Control Segment

- GPS, GLONASS, Galileo and Beidou have separate control segments
- Monitor stations around the world receive signals from the satellites
- As these stations are at known locations and have synchronised clocks, their measurements can be used to determine the positions, velocities and clock parameters of the satellites
- The measurements are sent to the master control station, which performs these calculations and generates commands for the satellites
- These are transmitted to the satellites using uplink stations near the equator

Example: GPS Operational Control Segment

GNSS User Equipment

User **Antenna**

Converts GNSS signals from radio to electrical

Receiver **Hardware**

Downconverts, Samples & Correlates Signals

Ranging **Processor**

Acquires and tracks the signals

Navigation Processor

> Computes position solution

Contents

- 1. Introduction
- 2. Components of GNSS
- 3. How GNSS Positioning Works
- 4. General Applications

Code Correlation of GNSS Signals

GNSS signals are modulated with a known pseudo-random noise (PRN) code

This is correlated with a receiver-generated replica to determine pseudo-range

Correlation of Aligned and Misaligned Codes

Pseudo-range measurement

- Reference signal timing is adjusted to find the correlation maximum
- Pseudo-range is proportional to this time shift

The reference is actually correlated with the sum of *all* incoming signals on a given frequency, BUT...

- Each satellite transmits a different PRN code
- The correlator output with non-matching codes is always very low
- Thus interference is minimised, so code division multiple access (CDMA) works RVN Lecture 1D – Introduction to GNSS Positioning 23

The Positioning Process

Positioning geometry in 3 dimensions (1)

Positioning geometry in 3 dimensions (2)

Positioning geometry in 3 dimensions (3)

Positioning geometry in 3 dimensions (4)

The position solution is determined by the ranges

With GNSS, we have pseudo-ranges, due to the receiver clock error

A 4th satellite is needed to determine this

An unknown correction must be applied to the pseudo-ranges to obtain spheres that intersect

Contents

- 1. Introduction
- 2. Components of GNSS
- 3. How GNSS Positioning Works
- 4. General Applications

4. General Applications

"Satnav" for cars

4. General Applications

Public Transport

QANTAS SP warman

Safety critical

4. General Applications

Mobile Phones

Mobile gaming