Advanced Microeconomics II Problem Set 2

WISE, Xiamen University Spring 2011

Due 10:00 Apr 9, 2011

- 1. (Gibbons 1.2) Players 1 and 2 are bargaining over how to split one dollar. Both players simultaneously name shares they would like to have, s_1 and s_2 , where $0 \le s_i \le 1, i = 1, 2$. If $s_1 + s_2 \le 1$, then the players receive the shares they named; if $s_1 + s_2 > 1$, then both players receive zero.
 - (a) Formulate this as a strategic game.
 - (b) What are the pure-strategy Nash equilibria of this game?

Solution: From a, we can get the best response function of each player.

$$B_i(s_j) = \begin{cases} 1 - s_j, & \text{if } 0 \le s_j < 1, \\ [0, 1], & \text{if } s_j = 1. \end{cases}$$

Thus we know the pure-strategy Nash equilibria of this game are (s, 1 - s), where $s \in [0, 1]$ and (1, 1).

- (c) Derive a mixed strategy equilibrium where each player randomly choose one of two numbers.
- (d) Consider a symmetric mixed strategy equilibrium F(.), where the support of the mixed strategy is an interval [a, b].
 - i. Show that to be a mixed strategy equilibrium, a and b should satisfy $a + b \le 1$.
 - ii. Show that to be a mixed strategy equilibrium, a and b should satisfy $a + b \ge 1$.
 - iii. Show that to be a mixed strategy equilibrium the probability that $s_i = a$ is not atomless, i.e. F(a) > 0.
 - iv. Derive such a mixed strategy equilibrium.
- 2. (Gibbons 1.5) Consider the following two finite versions of the Cournot duopoly model. P(Q) = a Q is the market-clearing price when the aggregate quantity on the market is $Q = q_1 + q_2$. The total cost to firm i of producing quantity q_i is cq_i , where c < a.
 - (a) First, suppose each firm must choose either half the monopoly quantity, $q_m/2 = (a-c)/4$, or the Cournot equilibrium quantity, $q_c = (a-c)/3$. No other quantities are feasible. Show that this two-action game is equivalent to the Prisoner's Dilemma: each firm has a strictly dominated strategy, and both are worse off in equilibrium than they would be if they cooperated.
 - (b) Second, suppose each firm can choose either $q_m/2$, or q_c , or a third quantity, q'. Find a value for q' such that the game is equivalent to the Cournot model presented in class, in the sense that (q_c, q_c) is a unique Nash equilibrium and both firms are worse off

in equilibrium than they could be if they cooperated, but neither firm has a strictly dominated strategy.

- 3. Consider the strategic game $G = \{N, (A_i), (u_i)\}$. For each $i \in N$, let A_i be a nonempty compact convex subset of Euclidean space and the utility function u_i be continuous and quasi-concave on A_i .
 - (a) Prove that $B(a) = \times_{i \in N} B_i(a_{-i})$ is convex, where $B_i(a_{-i})$ is the best response function of player i, i.e. show that if $b \in B(a)$ and $c \in B(a)$ then for any $\lambda \in [0, 1]$, $\lambda b + (1 \lambda)c \in B(a)$.
 - (b) Let A_i be finite for each $i \in N$. Prove that for each player i, the U_i associated with the mixed extension of G is quasi-concave over $\times_{j \in N} \Delta(A_j)$.
- 4. Consider the following 2 player game.

$$\begin{array}{c|cc} & L & R \\ U & 6,6 & 2,7 \\ D & 7,2 & 0,0 \end{array}$$

- (a) Find the correlated equilibrium that maximizes the sum of the two players payoffs.
- (b) Construct a correlated equilibrium that generates a payoff for both players of (19/4, 19/4).
- 5. Consider the following three-player game where $A_1 = \{U, D\}$, $A_2 = \{L, R\}$ and $A_3 = \{M_1, M_2, M_3, M_4\}$. The number in each box represents the (equal) payoff to each player.

- (a) What are the set of rationalizable strategies if players beliefs allow correlation between opponents strategies?
- (b) What are the set of rationalizable strategies if players beliefs are restricted to be products of independent probability distributions over opponents strategies?
- 6. Show that if there is a unique profile of actions that survives iterated elimination of strictly dominated actions, this profile is a Nash equilibrium.

Solution:

Proof 2: Let a^* be the unique outcome that survives iterated elimination of strictly dominated strategies. Since X^T is a singleton it is clear that a^* is a Nash equilibrium of $\{N, (X_i^T), (u_i^T)\}$. Now assume that a^* is a Nash equilibrium of $\{N, (X_i^{t+1}), (u_i^{t+1})\}$ where $0 \le t < T$, i.e. $u_i^{t+1}(a_i^*, a_{-i}^*) \ge u_i^{t+1}(a_i, a_{-i}^*)$ for all $a_i \in X_i^{t+1}$. Let $a_i' \in X_i \setminus X_i^{t+1}$ for some $i \in N$. Since $a_i' \in X_i \setminus X_i^{t+1}$, a_i' is strictly dominated in $\{N, (X_i^t), (u_i^t)\}$. Hence, a_i' is a neverbest response in $\{N, (X_i^t), (u_i^t)\}$. Hence, $u_i^t(a_i', a_{-i}^*) < u_i^t(a_i', a_{-i}^*) < u_i^t(a^*)$. Since a_i' was chosen arbitrarily it must be that $u_i^t(a_i^*, a_{-i}^*) \ge u_i^t(a_i, a_{-i}^*)$ for all $a_i \in X_i^t$, i.e. a_i^* is a best response to a_{-i}^* in $\{N, (X_i^t), (u_i^t)\}$. Hence, a^* is a Nash equilibrium for $\{N, (X_i^0), (u_i^0)\} = \{N, (A_i), (u_i)\}$.

Proof 3: Let a^* be the unique outcome that survives iterated elimination of strictly dominated strategies. Since a^* survives iterated elimination of strictly dominated strategies a_i^* is rationalizable for each player. Since a^* is unique, the belief that supports a_i^* as a rationalizable action puts probability one on a_{-i}^* . Hence $a_i^* \in B(a_{-i}^*)$ for all $i \in N$, thus a^* is a Nash equilibrium.