

SIMILAR DRESS SELECTION

Problem Outline

- Online shopping is a new reality
- Spending lots of time to select dresses to buy
- Impossible just to look at nearby hanging ones
- No online shopping consultant (like store representative)
- Selected desired dress is too expensive, does not have needed size, etc.

SOLUTION: Similar Dress Selection Tool

Solution Outline

Data Acquisition

- For training custom CNN:
 - Deep Fashion dataset: over 200,000 images in 42 clothing categories with 1000 attribute labels
 - Low resolution images
 - High resolution images
 - Select dress images only and relevant attributes (61, 414 images with 38 attributes)
 - Train-validation-test split
- For testing:
 - Test part from Deep Fashion Dresses of 11,651 images
 - Small unlabeled testing set of 101 images scrapped from Google
 - Large unlabeled testing set of over 8,000 images from <u>data.world</u>

Image Size Selection for Training

Selected size: 300x200 pixels

Selected size: 450x300 pixels

CNN Building and Exploration

Experiments with low resolution images to build custom CNN and explore it:

- Gradually adding hidden convolutional layers
- Changing layer parameters:
 - Kernel size (3x3 and 5x5)
 - Number of neurons in hidden layers (128 and 256)
 - Activation function (ReLU and Leaky ReLU)
- Adding extra hidden Dense layers

Final CNN for Feature Extraction

Feature Extraction

- For:
 - Test part of Deep Fashion dresses subset
 - 101 Google dress images
 - Large test set from data.world

- From:
 - CNN trained on low resolution images
 - CNN trained on high resolution images (same structure)
 - Inception V3 pre-trained computer vision model with ImageNet weights

Unsupervised k Nearest Neighbors

- Input:
 - set of extracted features from neural networks
- Process:
 - groups items by vector distances
- Output:
 - specified number of closest images

- From test part of Deep Fashion • **Dresses**
- Inception V3 feature selection • provides the best results
- Even finds the exact same image - not accomplished by other models

- **Dresses**

From test part of Deep Fashion

- results
- enough really similar looking

From 101 Google dress images •

Small amount of images = not ones

- From large unlabeled test set •
- Inception V3 captures dress • characteristics better:
 - Floral pattern
 - Midi length
 - Fit and flare style
- Other models select some

CNN on low res

similar items

Ways to Improve Outcome

- Experiments with features from Inception V3
- Changing grouping algorithm (Ball Tree, KD Tree, Brute) no changes in results
- Changing number of leaves (10, 20, 30, 40) no changes in results
- Changing metric for distance calculation (Minkowski with p=2 (same as Euclidean), with p=3, Manhattan and Chebyshev)
 - Slight result differences, but no actual improvement Euclidean distance is default