Problem: Trigonometrical Identities in Triangles – Bài Tập: Hệ Thức Lượng Trong Tam Giác

Nguyễn Quản Bá Hồng*

Ngày 9 tháng 7 năm 2024

Muc luc

1	Giá Trị Lượng Giác Của 1 Góc & Hệ Thức Lượng Trong Tam Giác	1
2	Giải Tam Giác	2
3	Miscellaneous	9
Th.	i lian	•

1 Giá Trị Lượng Giác Của 1 Góc & Hệ Thức Lượng Trong Tam Giác

 $\boxed{1} \ \forall \alpha \in [0^\circ; 180^\circ], \ \sin \alpha \in [-1; 1], \ \cos \alpha \in [-1; 1]. \ \boxed{2} \ \cos \alpha > 0 \Leftrightarrow \alpha \in (0^\circ; 90^\circ) \Leftrightarrow \alpha \ \text{nhọn.} \ \cos \alpha < 0 \Leftrightarrow \alpha \in (90^\circ; 180^\circ) \Leftrightarrow \alpha \ \text{tù}.$ $\boxed{3} \ \text{Dịnh lý cosin:} \ a^2 = b^2 + c^2 - 2bc \cos A, b^2 = c^2 + a^2 - 2ca \cos B, c^2 = a^2 + b^2 - 2ab \cos C \ \text{hay cos} \ A = \frac{b^2 + c^2 - a^2}{2bc}, \cos B = \frac{c^2 + a^2 - b^2}{2ca}, \cos C = \frac{a^2 + b^2 - c^2}{2ab}. \ \boxed{4} \ \text{Dịnh lý sin:} \ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \ \text{hay} \ a = 2R \sin A, b = 2R \sin B, c = 2R \sin C.$ $\boxed{5} \ \text{Công thức tính diện tích tam giác:} \ S = \frac{1}{2}ah_a = \frac{1}{2}bh_b = \frac{1}{2}ch_c = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C = \sqrt{p(p-a)(p-b)(p-c)}$ $\text{với } p = \frac{a+b+c}{2}.$

- **1.** Cho $\alpha \in [0^{\circ}; 360^{\circ})$. Tìm các khoảng giá trị của α để các hàm $\sin \alpha, \cos \alpha, \tan \alpha, \cot \alpha$ lần lượt bằng 0, âm, dương.
- 2. Dùng định lý sin, giải thích vì sao trong 1 tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn & góc đối diện với cạnh lớn hơn là góc lớn hơn.
- 3 ([Hải+22], BD1, p. 22). Cho ΔABC , đường phân giác AD. Chứng minh $AD^2 < bc$.
- 4 ([Håi+22], VD1, p. 22). Cho $\triangle ABC$ vuông tại A, 2 phân giác trong BE, CF cắt đường cao AH lần lượt tại P, Q. M là trung điểm BC. Chứng minh PE+QF < AM.
- $\mathbf{5} \,\, ([\text{H\'ai}+22],\, \text{VD2},\, \text{p. 22}). \,\, \textit{Cho} \,\, \Delta \textit{ABC} \,\, \textit{vu\^ong} \,\, \textit{tại} \,\, \textit{A}, \,\, \textit{đường} \,\, \textit{cao} \,\, \textit{AH}, \,\, \textit{D} \in \textit{AB} \,\, \textit{th\'oa} \,\, \textit{BH} = \textit{BD} = \textit{CD}. \,\, \textit{Chứng} \,\, \textit{minh} \,\, \frac{\textit{AD}}{\textit{RD}} = \sqrt[3]{2} 1.$
- $\mathbf{6} \ ([\underline{\mathrm{H\'ai}} + 22], \ \mathrm{VD3}, \ \mathrm{p.} \ 23). \ \ \mathit{Cho} \ \Delta \mathit{ABC}. \ \ \mathit{Ch\'ang} \ \mathit{minh} \ \widehat{\mathit{A}} = 90^{\circ} \Leftrightarrow (\sqrt{a+b} + \sqrt{a-b})(\sqrt{a+c} + \sqrt{a-c}) = \sqrt{2}(a+b+c).$
- 7 ([Håi+22], BĐ1, p. 23). $\triangle ABC$ có $\widehat{A}=2\widehat{B}$. Chứng minh $a^2=b^2+bc$.
- 8 ([Hải+22], VD4, p. 23). Cho $\triangle ABC$ vuông tại A. Lấy $D \in AC$ thỏa $\widehat{C} = 2\widehat{CBD}$. Chứng minh $AB + AD = BC \Leftrightarrow \widehat{C} = 30^\circ$ hoặc $\widehat{C} = 45^\circ$.
- 9 ([Hải+22], VD5, p. 23). Cho $\triangle ABC$, trung tuyến AM. Giả sử $\widehat{B}+\widehat{AMC}=90^{\circ}$. Chứng minh $\triangle ABC$ vuông hoặc cân.
- $\frac{\mathbf{10} \ ([\underline{\mathsf{H}}\mathring{\mathrm{ai}} + 22], \ \mathsf{VD6}, \ \mathsf{p.} \ 24). \ \mathit{Cho} \ \Delta \mathit{ABC}, \ \mathit{tâm} \ \mathit{dường} \ \mathit{tròn} \ \mathit{nội} \ \mathit{tiếp} \ \mathit{I.} \ \mathit{IA}, \mathit{IB}, \mathit{IC} \ \mathit{cắt} \ (\mathit{ABC}) \ \mathit{lần} \ \mathit{lượt} \ \mathit{tại} \ \mathit{D}, \mathit{E}, \mathit{F.} \ \mathit{Chứng} \ \mathit{minh} }{ \underline{S_{\mathit{DBC}}} + \frac{1}{S_{\mathit{FAB}}} + \frac{1}{S_{\mathit{FAB}}} \geq \frac{9}{S_{\mathit{ABC}}}.$

^{*}e-mail: nguyenquanbahong@gmail.com, website: https://nqbh.github.io, Bến Tre, Việt Nam.

2 Giải Tam Giác

- 11 ([Quỳ+20], VD1, p. 124). $\triangle ABC$ có đường cao AH=h, $\widehat{B}=\beta$, K trên cạnh BC thỏa BK=2CK, AK=AB. Giải $\triangle ABC$.
- 12 ([Quỳ+20], VD2, p. 124). Cho $x,y \in [1;+\infty)$. Dặt $a=x^2+1, b=y^2+1, c=x^2+y^2+1$. Chứng minh tồn tại 1 tam giác có độ dài 3 cạnh là a,b,c & tam giác đó là tam giác tù.
- 13 ([Quỳ+20], VD3, p. 126). Cho $\triangle ABC$ có $BC=a, \widehat{A}=\alpha, \widehat{B}=\beta, tâm$ đường tròn nội tiếp. Tính bán kính (IBC), (ICA), (IAB).
- 14 ([Quỳ+20], p. 124, hệ thức về bán kính các đường tròn nội tiếp & bàng tiếp). Cho $\triangle ABC$ có bán kính đường tròn nội tiếp r, bán kính 3 đường tròn bàng tiếp góc A,B,C lần lượt là r_a,r_b,r_c . Chứng minh: (a) $(p-a)\tan\frac{A}{2}=(p-b)\tan\frac{B}{2}=(p-c)\tan\frac{C}{2}=r$. (b) $r_a\cot\frac{A}{2}=r_b\cot\frac{B}{2}=r_c\cot\frac{C}{2}=p$.
- **15** ([Quỳ+20], p. 128). Chứng minh $S = \frac{abc}{4R} = pr = (p-a)r_a = (p-b)r_b = (p-c)r_c = \sqrt{p(p-a)(p-b)(p-c)}$.
- **16** ([Quỳ+20], VD4, p. 129). $\triangle ABC$, $\widehat{A} = 60^{\circ}$, R = 8, r = 3. Tinh S.
- 17 ($[Qu\dot{y}+20]$, VD5, p. 129). Tinh r theo a, b, c.
- **18** ([Quỳ+20], VD6, p. 130). Chứng minh $\frac{1}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c} = \frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}$.
- 19 ([Quỳ+20], VD7, p. 130, công thức độ dài phân giác). Gọi l_a, l_b, l_c lần lượt là độ dài 3 đường phân giác trong góc A, B, C.

 Chứng minh $l_a = \frac{2bc\cos\frac{A}{2}}{b+c}, l_b = \frac{2ca\cos\frac{B}{2}}{c+a}, l_c = \frac{2ab\cos\frac{C}{2}}{a+b}$.
- **20** ([Quỳ+20], VD8, p. 131, tứ giác điều hòa). Cho $\triangle ABC$ nội tiếp đường tròn (O) có AM là trung tuyến đỉnh A. Đường thẳng qua A & đối xứng với AM qua phân giác trong góc A cắt (O) tại N. Chứng minh $AB \cdot CN = AC \cdot BN$.
- **21** ([Quỳ+20], 37., p. 131). Cho $\triangle ABC$ có 2 trung tuyến BM, CN cắt nhau tại G, $BM=\frac{3}{2}$, CN=3, $\widehat{BGC}=120^{\circ}$. Giải $\triangle ABC$.
- **22** ([Quỳ+20], 38., p. 132). Cho $\triangle ABC$ có $AC=b, AB=c, \widehat{A}=\alpha, M$ là trung điểm BC, N trên cạnh AB thỏa $\frac{NA}{NB}=\frac{3}{2}$. Tính MN.
- 23 ([Quỳ+20], 39., p. 132). Cho $\triangle ABC$ có BC=10, (I) là đường tròn có tâm I thuộc cạnh BC & tiếp xúc với 2 cạnh AB,AC. (a) $Bi\acute{e}t$ IA=3,2IB=3IC, tính AB,AC. (b) $Bi\acute{e}t$ (I) có bán kính bằng 3 & 2IB=3IC, tính R,AB,AC.
- **24** ([Quỳ+20], 40., p. 132). Hình thang ABCD ngoại tiếp được có 2 đáy BC = b, AD = d > b, góc giữa 2 cạnh bên bằng α . Tính bán kính đường tròn nội tiếp.
- 25 ([Quỳ+20], 41., p. 132). Cho hình thang cân ABCD với đáy lớn AB ngoại tiếp 1 đường tròn bán kính r. (a) Đặt $\widehat{BAD} = \alpha$. Tính độ dài 2 đáy & đường chéo theo r, α . (b) R là bán kính đường tròn ngoại tiếp hình thang. Biết $\frac{R}{r} = \frac{2}{3}\sqrt{7}$, tính \widehat{BAD} .
- **26** ([Quỳ+20], 42., p. 132). Chứng minh $\cos \frac{A}{2} = \sqrt{\frac{p(p-a)}{bc}}, \tan \frac{A}{2} = \sqrt{\frac{(p-b)(p-c)}{p(p-a)}}.$
- **Định nghĩa 1.** $a,b,c \in \mathbb{R}$ được gọi là lập thành cấp số cộng nếu a+c=2b. Lúc đó giá trị d=b-a=c-b được gọi là công sai của cấp số cộng.
- 27 ([Quỳ+20], 43., p. 132). Chứng minh 3 cạnh a, b, c của $\triangle ABC$ lập thành cấp số cộng khi $\mathcal E$ chỉ khi $\tan\frac{A}{2}\tan\frac{C}{2}=\frac{1}{3}$. Chứng minh khi đó công sai của cấp số cộng này là $d=\frac{3}{2}r\left(\tan\frac{C}{2}-\tan\frac{A}{2}\right)$.
- **28** ([Quỳ+20], 44., p. 132). Chứng minh: (a) $\sin A$, $\sin B$, $\sin C$ lập thành cấp số cộng khi \mathcal{E} chỉ khi $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ lập thành cấp số cộng. (b) $\cos A$, $\cos B$, $\cos C$ lập thành cấp số cộng khi \mathcal{E} chỉ khi $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ lập thành cấp số cộng.

- **29** ([Quỳ+20], 45., p. 133). Cho $\triangle ABC$ & điểm M thay đổi trên cạnh BC, r_1, r_2 là bán kính đường tròn nội tiếp & ρ_1, ρ_2 là bán kính đường tròn bàng tiếp góc A của $\triangle ABM, \triangle ACM$. Chứng minh $\frac{r_1r_2}{\rho_1\rho_2}$ không đổi.
- 30 ([Quỳ+20], 46., p. 132). Cho $\triangle ABC$, M,N trên cạnh BC thỏa $\widehat{BAM} = \widehat{CAN}$, P,Q là tiếp điểm của đường tròn nội tiếp $\triangle BAM$, $\triangle CAN$ với cạnh BC. Chứng minh $\frac{1}{PB} + \frac{1}{PM} = \frac{1}{QC} + \frac{1}{QN}$.
- 31 ([Quỳ+20], 47., p. 132). Cho đường tròn (O;R) & A bên ngoài (O). 1 đường thẳng thay đổi qua A cắt (O) tại B,C. Đặt $\widehat{AOB} = \alpha, \widehat{AOC} = \beta$. Chứng minh tan $\frac{\alpha}{2} \tan \frac{\beta}{2}$ không đổi.
- 32 ([Quỳ+20], 48., p. 132). Cho $\triangle ABC$ có diện tích S. (a) Chứng minh $\cot A = \frac{b^2+c^2-a^2}{4S}$. (b) M là trung điểm BC, dặt $\widehat{AMB} = \varphi$. Chứng minh $\cot C \cot B = 2\cot \varphi$. (c) G là trọng tâm $\triangle ABC$. Đặt $\widehat{BGC} = \alpha$. Chứng minh $\cot \alpha = \frac{5bc\cos A 2(b^2+c^2)}{3bc\sin A}$.
- **33** ([Quỳ+20], 49., p. 132). Chứng minh: (a) $b^2 + c^2 = 2a^2 \Leftrightarrow \cot B + \cot C = 2\cot A$. (b) $b^4 + c^4 = a^4 \Leftrightarrow \tan B \tan C = 2\sin^2 A$.
- 34 ([Quỳ+20], 50., p. 132). Cho $\triangle ABC$ có 2 trung tuyến BM, CN. (a) Chứng minh $BM \perp CN \Leftrightarrow \cot B + \cot C = \frac{1}{2}\cot A$. (b) Chứng minh nếu $\triangle ABC$ không cân tại A thì $\frac{BM}{CN} = \frac{AB}{AC} \Leftrightarrow \cot B + \cot C = 2\cot A$.
- 35. Cho $\triangle ABC$ vuông tại A. (a) Cho trước 2 trong 6 số a,b,c,b',c',h. Tính 4 số còn lại theo 2 số đã cho. (c) Cho trước 2 trong 8 số a,b,c,b',c',h,p,S. Tính 6 số còn lại theo 2 số đã cho. (b) Cho trước 2 trong 14 số $a,b,c,b',c',h,m_a,m_b,m_c,d_a,d_b,d_c,p,S$ với d_a,d_b,d_c lần lượt là 3 đường phân giác ứng với BC,CA,AB. Tính 12 số còn lại theo 2 số đã cho. Viết các chương trình Pascal, Python, C/C++ để $m\hat{o}$ phỏng.
- **36.** Cho $\triangle ABC$ Cho trước 3 trong 14 số a,b,c,b',c',h, $m_a,m_b,m_c,d_a,d_b,d_c,p,S$ với d_a,d_b,d_c lần lượt là 3 đường phân giác ứng với BC,CA,AB. Tính 12 số còn lại theo 2 số đã cho. Viết các chương trình Pascal, Python, C/C++ $d\mathring{e}$ mô phỏng.
- **37.** Cho $\triangle ABC$. Tính $\sin A$, $\sin B$, $\sin C$, $\tan A$, $\tan B$, $\tan C$, $\cot A$, $\cot B$, $\cot C$ theo a, b, c.
- 38. Nếu chỉ cho số đo 3 góc của 1 tam giác, có thể giải tam giác đó không? Nếu có thì mô tả tập nghiệm các tam giác thỏa mãn.
- 39. Nếu cho trước độ dài 2 cạnh & số đo 1 góc không nằm giữa 2 cạnh đó của 1 tam giác thì có giải tam giác đó được không?
- 40. Nếu cho trước độ dài 1 cạnh & số đo 2 góc không cùng kề với cạnh đó của 1 tam giác thì có giải tam giác đó được không?
- **41** (Program: Solve triangle). (a) Nêu các bộ 3 yếu tố cần cho trước về cạnh & góc của 1 tam giác để tam giác đó có thể giải được. (b) Viết chương trình Pascal, Python, C/C++ để minh họa.
- 42. Cho độ dài 3 cạnh của 1 tam giác. Tính độ dài 3 đường trung tuyến & 6 góc tạo bởi 3 đường trung tuyến đó.
- **43.** Cho độ dài 3 cạnh của 1 tam giác. (a) Tính độ dài 3 đường phân giác & 6 đoạn tạo thành trên 3 cạnh. (b) Tính khoảng cách từ tâm đường tròn nội tiếp I đến 3 đỉnh & 3 cạnh.
- **44.** Cho độ dài 3 cạnh của 1 tam giác. (a) Tính độ dài 3 đường cao & 6 góc tạo bởi 3 đường cao đó & 6 đoạn tạo thành trên 3 cạnh. (b) Tính khoảng cách từ trực tâm đến 3 đỉnh & 3 cạnh.
- 45. Cho độ dài 3 cạnh của 1 tam giác. Tính khoảng cách từ tâm đường tròn ngoại tiếp O đến 3 cạnh của tam giác đó.

3 Miscellaneous

- 46. Cần cho trước bao nhiêu yếu tố về cạnh, góc, đường chéo để giải 1 đa giác lồi đều n cạnh?
- 47. Cho độ dài 4 cạnh của 1 tứ giác lồi, liệu có thể giải được tứ giác đó không?
- 48. Cần cho trước bao nhiều yếu tố về cạnh, góc, đường chéo của 1 tứ giác lồi để có thể giải được tứ giác đó?
- **49.** Đặt 3 điện tích q_1, q_2, q_3 tại 3 đỉnh của $\triangle ABC$. Tính các lực điện từ.

Tài liệu

- [Hải+22] Phạm Việt Hải, Trần Quang Hùng, Ninh Văn Thu, and Phạm Đình Tùng. Nâng Cao & Phát Triển Toán 10 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2022, p. 176.
- [Quỳ+20] Đoàn Quỳnh, Văn Như Cương, Trần Nam Dũng, Nguyễn Minh Hà, Đỗ Thanh Sơn, and Lê Bá Khánh Trình. *Tài Liệu Chuyên Toán Hình Học 10.* Nhà Xuất Bản Giáo Dục Việt Nam, 2020, p. 344.