INTRODUCCION A PROFINET Y OTROS BUSES DE CAMPO.

<u>PROFINET</u> (Process Field Network) es un protocolo abierto de comunicación Ethernet industrial basado en estándares abiertos TCP/IP e IT. Nace como una continuación de PofiBus, aprovecha su experiencia y añade las ventajas de las redes Ethernet.

Proporciona comunicación en tiempo real entre controladores y dispositivos. Los controladores, por norma general, son autómatas programables (<u>PLC</u>) y Sistemas de Control Distribuido (<u>DCS</u>), mientras que los dispositivos pueden ser módulos de E/S, sistemas de visión artificial, lectores de sistemas RFID, Variadores de frecuencia, servomotores, instrumentos de proceso, robots o incluso otros autómatas. PROFINET permite la integración de sistemas de bus de campo existentes como PROFIBUS, AS-Interface, INTERBUS, Foundation Fieldbus y DeviceNet, sin necesidad de modificar los dispositivos existentes.

Video: ProfiBus vs ProfiNet: https://www.youtube.com/watch?v=4sKFmWCJcwM

DIFERENCIAS FUNDAMENTALES ENTRE PROFIBUS Y PROFINET

Las redes PROFIBUS por lo general se caracterizan por un cableado RS-485 de un solo par de color púrpura. Estos cables utilizan conectores DB9 o M12 estándar. Las redes PROFINET, por otro lado, por lo general utilizan cables Ethernet de grado industrial de color verde. Para las redes PROFINET, el tipo de conector más común es RJ45, pero también se utilizan conectores M12 para entornos de alta exposición y BFOC para aplicaciones de fibra óptica.

REDES PROFIBUS

PROFIBUS está basado en RS-485, el cual es un método común de comunicación serie. En una red PROFIBUS, existen maestros y esclavos PROFIBUS. Los maestros pueden ser, por ejemplo, PLC, PAC o DCS. Y los esclavos pueden ser una amplia gama de dispositivos: drives, motores, I/O, sensores, dispositivos en campo, robots, actuadores y mucho más.

COMPARACIÓN TÉCNICA: PROFIBUS VERSUS PROFINET

Las redes PROFIBUS (basadas en RS-485) pueden lograr velocidades hasta de 12 Mbit/s, aunque la mayoría funciona a 1,5 Mbit/s. El tamaño del telegrama puede ser hasta 244 bytes y el espacio de direccionamiento está limitado a 126 dispositivos por red. Las redes PROFINET logran velocidades de 100 Mbit/s o incluso 1 Gbit/s y superiores. El tamaño del telegrama puede ser hasta de 1440 bytes, y el espacio de direccionamiento no tiene límite.

Resumen comparativo

La siguiente tabla resume la mayoría de la diferencias y similitudes técnicas entre PROFIBUS y PROFINET:

	PROFIBUS	PROFINET
Organización	PI	
Perfiles de aplicación	Igual	
Conceptos	Ingeniería, GSD	
Capa física	RS-485	Ethernet
Velocidad	12 Mbit/ s	1 Gbit/s o 100 Mbit/s
Telegrama	244 bytes	1440 bytes (cíclico)*
Espacio de direccionamiento	126	sin límite
Tecnología	maestro/esclavo	proveedor/consumidor
Conectividad	PA + otros*	muchos buses
Inalámbrico	posible**	IEEE 802.11, 15.1
Movimiento	32 ejes	Mas de 150 ejes
Máquina a máquina	No	Sí
Integración vertical	No	Sí
*Con múltiples telegramas: hasta 2 ³² -	65 (acíclico)	

PERFILES DE APLICACIÓN

**No está en la especificación, pero hay soluciones disponibles

Partiendo de una conectividad básica, y mediante una interpretación especifica de los datos transmitidos, ProfiNet crea nuevas funcionalidades denominadas Perfiles de Aplicación. Estos perfiles corresponden al nivel 7 (Aplicación) del Modelo OSI y permitir que un controlador o maestro trabaje con su código específico de aplicación.

Algunos perfiles son : *ProfiSafe*, el cual se utiliza para transmitir datos de Seguridad (safety). *ProfiEnergy*, datos y comandos para el ahorro y control energético, *ProfiDrive* define el comportamiento de los dispositivos y el método de acceso a datos internos de accionamientos eléctricos, que pueden ser desde simples convertidores de frecuencia, Variadores para control de velocidad, posición o servos para control de movimiento (Motion Control) de uno o varios ejes.

HMS NETWORKS PREDICE UN CRECIMIENTO CONTINUO EN ETHERNET INDUSTRIAL Y
REDES INALÁMBRICAS PARA 2023: https://automatizacionweb.com/news/67467crecimiento-continuado-de-ethernet-industrial-y-las-redes-inal%C3%A1mbricas-cuotasde-mercado-de-redes-industriales-para-2023-seg%C3%BAn-hms-networks

Proyecto 10a. Regulación de velocidad con SINAMICS G120 y PLC por Bus PROFINET, utilizando Telegramas (Standard Telegram 1).

Haciendo uso de Telegramas ProfiDrive (concretamente el Standard Telegram 1), donde el convertidor recibe datos desde el PLC y devuelve datos al PLC de manera cíclica.

1.- USO DE TELEGRAMAS PROFIDRIVE

a) Debemos utilizar el Ajuste Predeterminado 7 de los Interfaces.

b) Control utilizando los Telegramas.

4.6.1 Telegramas

Para la comunicación IO-RT con el convertidor de frecuencia se pueden seleccionar distintos telegramas con diferentes longitudes de datos de proceso y contenidos.

El telegrama más sencillo y ajustado de forma estándar es el telegrama estándar 1.

4.6.2 Asignación de datos de proceso (PZD) para SINAMICS G120 con el telegrama estándar 1

Con los datos de proceso se pueden transferir palabras de mando y consignas (PLC -> SINAMICS) o palabras de estado y valores reales (SINAMICS -> PLC). La estructura de la zona de PZD en el telegrama 1 para un acoplamiento a través de PROFINET tiene el siguiente aspecto:

	PZD 1	PZD2
Telegrama de tarea	Palabra de mando	Consigna principal
(PLC -> SINAMICS)	(STW1)	(NSOLL_A)
Telegrama de respuesta	Palabra de estado	Valor real principal
(SINAMICS -> PLC)	(ZSW1)	(NIST_A)

4.6.3 Palabra de mando 1 (STW1)

BIT	Significado		Significado	Interconexión
	Telegrama 20	Todos los		de señales en el
	relegionia 20	demás		convertidor
		telegramas		
0	0 = DES1		El motor frena con el tiempo de deceleración	P0840[0] =
			p1121 del generador de rampa. En parada, el	r2090.0
			convertidor desconecta el motor.	
	0 → 1 = CON		El convertidor pasa al estado "operativo". Si	1
			adicionalmente el bit 3 = 1, el convertidor	
			conecta el motor.	
1	0 = DES2		Desconectar inmediatamente el motor; luego	P0844[0] =
			el motor gira en inercia hasta detenerse.	r2090.1
	1 = Sin DES2		Es posible conectar el motor (comando CON).	
2	0 = Parada rápi	ida (DES3)	Detención rápida: el motor frena con el tiempo	P0848[0] =
			de deceleración DES3 p1135 hasta pararse.	r2090.2
	1 = Sin parada	rápida (DES3)	Es posible conectar el motor (comando CON).	
3	0 = Bloquear se	ervicio	Desconectar inmediatamente el motor	P0852[0]
			(suprimir impulsos).	=r2090.3
	1 = Habilitar se	rvicio	Conectar el motor (habilitación de impulsos	
			posible).	
4	0 = Bloquear G	dR	El convertidor ajusta inmediatamente a 0 su	p1140[0] =
			salida del generador de rampa.	r2090.4
	1 = No bloquea	r GdR	Es posible la habilitación del generador de]
			rampa.	
5	0 = Detener Gd	R	La salida del generador de rampa permanece	P1141[0]=
			en el valor actual.	r2090.5
	1 = Habilitar GdR		La salida del generador de rampa sigue a la	
			consigna.	
6	0 = Bloquear co	onsigna	El convertidor frena el motor con el tiempo de	P1142[0]=
			deceleración p1121 del generador de rampa.	r02090.6
	1 = Habilitar co	nsigna	El motor acelera con el tiempo de aceleración	
			p1120 hasta alcanzar la consigna.	
7	0 → 1 = Confirm	nar fallos	Confirmar el fallo. Si todavía está presente el	p2103[0] =
			comando CON, el convertidor conmuta al	r2139.7
			estado "Bloqueo de conexión".	
8, 9	Reservado			
10	0 = Ningún mar	ndo por PLC	El convertidor ignora los datos de proceso del	P0854[0]=
			bus de campo.	r2090.10
	1 = Mando por	PLC	Mando a través del bus de campo; el	
			convertidor adopta los datos de proceso desde	
			el bus de campo.	
11	1 = Cambio de	sentido	La velocidad es mayor o igual a la velocidad	p2080[10]=
			máxima correspondiente.	r2199.1
11	1 = Cambio de	sentido	Invertir la consigna en el convertidor.	p1113[0] =
40	No. 420			r2090.11
12	No utilizado	4 800 000 000		B4005101
13	1)	1 = PMot Subir	Aumentar la consigna almacenada en el	P1035[0] =
			potenciómetro motorizado.	r2090.13
14	1)	1 = PMot Bajar	Reducir la consigna almacenada en el	P1036[0]=
4.5	000176		potenciómetro motorizado.	r2090.14
15	CDS bit 0	Reservado	Conmutación entre ajustes para distintas	P0810 =
			interfaces de manejo (juegos de datos de	r2090.15
			mando).	

¹⁾ Si conmuta de un telegrama al telegrama 20, se mantiene la asignación del telegrama anterior.

4.6.4 Palabra de estado 1 (ZSW1)

BIT	Significado		Significado	Interconexio	ón
	Telegrama 20	Todos los		de señales	
		demás telegramas		el convertid	or
0	1= Listo para co	nectar	La alimentación está conectada, la	P2080[0]	=
			electrónica inicializada y los impulsos bloqueados.	r0899.0	
1	1 = Operativo		El motor está conectado (CON/DES1 = 1),	p2080[1]	=
			ningún fallo activo. Con el comando "Habilitar servicio" (STW1.3), el convertidor	r0899.1	
			conecta el motor.		
2	1 = Servicio hab	ilitado	El motor sigue a la consigna. Véase	p2080[2]	=
_	4 5-11-		Palabra de mando 1, bit 3.	r0899.2	
3	1 = fallo		Existe un fallo en el convertidor. Confirmar fallo mediante STW1.7.	p2080[3] r2139.3	=
4	1 = DES2 inactiv	<i>r</i> a	La parada natural no está activada.	p2080[4]	=
_	4 - DE00 :			r0899.4	
5	1 = DES3 inactiv		La parada rápida no está activada.	p2080[5] r0899.5	=
6	1 = Bloqueo de o	conexión activo	La conexión del motor es posible tras DES1	p2080[6]	=
7	1 = Advertencia		y CON.	r0899.6	\longrightarrow
<i>'</i>	1 = Advertencia	acuva	El motor permanece conectado; no se requiere confirmación.	p2080[7] r2139.7	=
8	1 = Divergencia	de la velocidad	Divergencia consigna-valor real en el rango	p2080[8]	=
	en el rango de to	olerancia	de tolerancia.	r2197.7	
9	1 = Mando solici	tado	Se solicita al sistema de automatización	p2080[9]	=
			que asuma el mando del convertidor.	r0899.9	
10		l de referencia	La velocidad es mayor o igual a la	p2080[10]	=
44	alcanzada o sup		velocidad máxima correspondiente.	r2199.1	
11	1 = Límite de intensidad o	1 = Límite de par alcanzado	Se ha alcanzado o superado el valor de referencia para la intensidad o el par.	p2080[11] r0056.13	=
	de par	pai aicanzado	referencia para la intensidad o el par.	r1407.7	٠,
	alcanzado			11407.7	
12	1)	1 = Freno de	Señal para la apertura o el cierre de un	p2080[12]	=
		mantenimiento	freno de mantenimiento del motor.	r0899.12	
		abierto			
13	0 = Alarma		_	p2080[13]	=
4.	temperatura Mot		Vales and internal data consultation of	r2135.14	
14	1 = Motor gira	0 = Motor gira	Valor real interno del convertidor > 0.	p2080[14]	=
1 <i>E</i>	a derecha	a izquierda	Valor real interno del convertidor < 0.	r2197.3	
15	1 = Indicación CDS	0 = Alarma		p2080[15] r0836.0	=
	CDS	Sobrecarga térmica		r2135.15	'
		Convertidor		12 133, 13	
		Conventidor			

Si conmuta de un telegrama al telegrama 20, se mantiene la a del telegrama anterior.

4.6.5 Consigna principal (HSW/NSOLL_A; 16 bits)

La consigna principal es una palabra de 16 bits con la que se transfiere la velocidad necesaria al convertidor.

La consigna se transfiere como un número entero con signo (de -32768 a 32767). El valor 16384 (4000 hex) equivale a +100%.

Con el parámetro P2000 (Velocidad de giro de referencia) se ajusta el valor del 100% a una determinada velocidad. En este parámetro se introduce la velocidad que debe corresponderse con una consigna del 100% a través de la interfaz.

La velocidad del convertidor se calcula como sigue:

n= (HSW x P2000)/16384

Nota:

 El parámetro P2000 (Velocidad de giro de referencia) se calcula automáticamente al ejecutar la puesta en marcha del motor para el juego de datos de accionamiento 0 y se ajusta al valor del parámetro P1082 (Velocidad máx.).

4.6.6 Valor real principal (HIW/NIST_A; 16 bits)

El valor real principal es una palabra de 16 bits con la que se transfiere la velocidad real del convertidor. La normalización de este valor se corresponde con la de la consigna.

n= (HIW x P2000)/16384

Nota:

 El parámetro P2000 (Velocidad de giro de referencia) se calcula automáticamente al ejecutar la puesta en marcha del motor para el juego de datos de accionamiento 0 y se ajusta al valor del parámetro P1082 (Velocidad máx.).

4.6.7 Disposición del telegrama de tarea en formato de palabra doble

El telegrama de tarea se envía a SINAMICS G120 en formato de palabra doble.

La disposición de los bits puede consultarse en la tabla.

	Palabra de mando								Consigna principal																						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Α	B 2	256						Α	В	25	7	•				Α	В 2	258		•				Δ	В	2	59		
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

4.6.8 Disposición del telegrama de respuesta en formato de palabra doble

El telegrama de respuesta se envía de vuelta desde SINAMICS G120 en formato de palabra doble.

La disposición de los bits puede consultarse en la tabla.

	Palabra de estado										Valor real principal																				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Е	B 2	256						E	В	25	7					Е	B 2	258						E	В	2	59		
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0

Nota:

- En el programa de control se utiliza un bloque de datos para el telegrama de tarea y para el telegrama de respuesta en el que se guardan temporalmente los datos correspondientes. Los telegramas se forman con una estructura que se crea con la ayuda de los tipos de datos PLC.
- c) Áreas de Memoria del PLC para lectura y escritura.

d) Analizar los registros de lectura y escritura del Telegrama 1. Ejemplos de escritura de datos:

Bit	Valor	Comentario	Servicio / Parada	Rampa Directa	Rampa Inversa	Parada (Rampa)	Parada rápida
0	0 = DES1	El motor frena con el tiempo de deceleración p1121 del generador de rampa. El convertidor desconecta el motor durante la parada.	0	1	1	1	1
U	0→1 = CON	El convertidor pasa al estado "Listo para el servicio". Si además el bit 3 = 1, el convertidor conecta el motor.		1	1	1	1
1	0 = DES2	Desconectar inmediatamente el motor; a continuación, se produce parada natural.	1	1	1	1	1
1	1 = Sin DES2	Se puede conectar el motor (orden CON).	1	1	1	1	1
2	0 = Parada rápida DES3	Parada rápida: el motor frena hasta la parada con el tiempo de deceleración DES3 p1135	1	1	1	1	0
	1 = Sin parada rápida	Se puede conectar el motor (orden CON).	1	1	1	1	U
3	0 = Bloquear servicio	Desconectar inmediatamente el motor (suprimir impulsos)		1	1	1	1
3	1 = Sin bloquear servicio	Conectar el motor (habilitación de impulsos posible)	1	1	1	1	1
4	0 = Bloquear GdR	El convertidor ajusta inmediatamente a 0 su salida del generador de rampa	1	1	1	1	1
4	1 = No bloquear GdR	Es posible la habilitación del generador de rampa	1	1	1	1	1
5	0 = Detener GdR	La salida del generador de rampa permanece en el valor actual		1	1	1	1
5	1 = Habilitar GdR	La salida del generador de rampa sigue a la consigna	1	1	1	1	1
	0 = Bloquear consigna	El convertidor frena el motor con el tiempo de deceleración p1121 del generador de rampa.			4	•	•
ь	1 = Habilitar consigna	El motor acelera con el tiempo de aceleración p1120 hasta alcanzar la consigna	1	1	1	0	0
7	0 → 1 = Confirmar fallos	Confirmar el fallo. Si todavía está presente la orden ON, el convertidor conmuta al estado "Bloqueo conexión"	0	0	0	0	0
8	Siempre 0	Reservado	0	0	0	0	0
9	Siempre 0	Reservado	0	0	0	0	0
10	0 = Ningún mando por PLC	El convertidor ignora los datos de proceso del bus de campo		1	1	1	1
10	1 = Mando por PLC	Mando a través del bus de campo; adopta los datos de proceso desde el bus de campo	1	1	1	1	1
11	1 = Inversión de sentido	Invertir la consigna en el convertidor	0	0	1	0	0
12	Siempre 0	Reservado	0	0	0	0	0
13	1 = Subir PMot	Aumentar la consigna almacenada en el potenciómetro motorizado	0	0	0	0	0
14	1 = Bajar PMot	Reducir la consigna almacenada en el potenciómetro motorizado	0	0	0	0	0
15	Siempre 0	Reservado	0	0	0	0	0
			047E	047F	OC7F	043F	043D

- e) Con ayuda de la documentación y el video entregado, realizar un programa para controlar el SINAMICS G120 mediante el PLC por PROFINET y desde un SCADA. Todo ello utilizando el Standard Telegram 1.
 - Situar un pulsador de marcha adelante, uno de marcha atrás, y un pulsador de paro y realizar el control con la palabra de mando STW1.
 - Situar un potenciómetro para regular la consigna utilizando la palabra de control NSOLL A
 - Leer la palabra de estado ZSW1 para indicar el estado del convertidor. Por ejemplo, mediante unos pilotos: motor gira a la derecha, motor gira a la izquierda, piloto frecuencia alcanzada.
 - Leer el valor real principal NIST_A y mostrar el valor por pantalla.

Existen varios tipos de telegramas estándar, con interconexión automática con SIMATIC, los telegramas permiten varios tipos de control y lectura entre los que se pueden indicar:

- 1) Control de velocidad (Telegramas 1 / 2 / 3 / 5 / 105)
- 2) Control de posición (Telegrama 111)
- 3) Habilitación de fuentes de S120 (Telegrama 371)
- 4) Lectura de entradas rápidas de unidades de control (Telegrama 390 / 392)
- 5) Lectura de encoders externos (Telegrama 81 / 83)
- 6) De seguridad (Telegrama 30 / 31)
- 7) Libre (Telegrama 999)

Su estructura y composición se puede consultar en los manuales de lista de cada accionamiento.

2.- USO DE FUNCIONES ESPECIFICAS.

Proyecto 10b. Regulación de velocidad con SINAMICS G120 y PLC por Bus PROFINET con funciones SINA_SPEED y SINA_PARA_S

En el proyecto anterior hemos controlado el SINAMICS G120 atacando directamente la palabras de control del Estándar Telegram 1 (QW 256 .. 258), (IW 256 .. 258).

Existen las siguientes librerías Sinamics que simplifican para ciertos casos particulares típicos, la comunicación entre accionamientos y controladores.

SINAMICS DriveLib. Incluye los siguientes bloques:

- a) Sina_Speed, para control de velocidad con telegrama 1.
- b) Sina_Pos, para control de posición con telegrama 111.
- c) Sina_Para / Sina_Para_S, para lectura acíclica de parámetros en el área PKW
- d) Sina_Infeed, para habilitar una fuente de S120 mediante telegrama 370

6 Function block SINA_SPEED (FB285)

Fig. 6-1(S7 1200/1500 CPU)

6.1.5 Input interface SINA_SPEED

Table 6-1

Input signal	Type	Default	Meaning
EnableAxis	BOOL	0	"EnableAxis" = 1 → switches on the drive
AckError	BOOL	0	Acknowledges axis faults → "AckFlt"=1
SpeedSp	REAL	0.0[rpm]	Speed setpoint
RefSpeed	REAL	0.0[rpm]	Rated speed of the drive → p2000
ConfigAxis	WORD	3	For more information, see Chapter 6.1.6
HWIDSTW (Block S7- 1200/1500)	HW_IO	0	Symbolic name or HW ID on the SIMATIC S7- 1200/1500 of the setpoint slot → see Chapter 10.3
LaddrSP (Block S7- 300/400)	HW_IO	0	Symbolic name or IO address on the SIMATIC S7- 300/400 of the setpoint slot → see Chapter 10.4
HWIDZSW (Block S7- 1200/1500)	HW_IO	0	Symbolic name or HW ID on the SIMATIC S7- 1200/1500 of the actual value slot → see Chapter 10.3
LaddrAV (Block S7- 300/400)	HW_IO	0	Symbolic name or IO address on the SIMATIC S7- 300/400 of the actual value slot → see Chapter 10.4

6.1.6 Default setting of the ConfigAxis input

Table 6-2

0 5 4 3		575	Interconnection in the	D ()
ConfigAxis	Meaning	PZD	drive	Default
Bit0	OFF2	1	r2090.1 = p 844[0]	1
Bit1	OFF3	1	r2090.2 = p 848[0]	1
Bit2	Inverter enable	1	r2090.3 = p 852[0]	1
Bit3	Enable ramp-function generator	1	r2090.4 = p1140[0]	1
Bit4	Continue ramp-function generator	1	r2090.5 = p1141[0]	1
Bit5	Enable speed setpoint	1	r2090.6 = p1142[0]	1
Bit6	Direction of rotation	1	r2090.11 = p1113[0]	0
Bit7	Unconditionally open holding brake	1	r2090.12 = p855[0]	0
	Motorized potentiometer increase			
Bit8	setpoint	1	r2090.13 = p1035[0]	0
	Motorized potentiometer, decrease			
Bit9	setpoint	1	r2090.14 = p1036[0]	0
	Reserve – can be used as required			
Bit10	below (bit 8)	1	r2090.8	0
	Reserve – can be used as required			
Bit11	below (bit 9)	1	r2090.9	0
	Reserve – can be used as required			
Bit12	below (bit 15)	1	r2090.15	0
Bit13				0
Bit14				0
Bit15				0

6.1.7 Output interface SINA_SPEED

Table 6-3

Output signal	Туре	Default	Meaning
AxisEnabled	BOOL	0	Mode is being executed or enabled
Lockout	BOOL	0	1 = switching-on inhibited active
ActVelocity	REAL	0.0[rpm]	Actual velocity →dependent on scaling factor
			RefSpeed
Error	BOOL	0	1 = group fault active
Status	INT	0	16#7002: No error – block is being processed
			16#8401: Fault in the drive
			16#8402: Switching-on inhibit
			16#8600: Error DPRD_DAT
			16#8601: Error DPWR_DAT
DiagID	WORD	0	Extended communication error → error during SFB
			call

8 Function block SINA_PARA_S (FB287)

Fig. 8-1(S7 1200/1500 CPU)

8.1.1 Input interface of SINA_PARA_S

Table 8-1

Input signal	Туре	Default	Meaning
Start	BOOL	0	Start of the job (0 = no job or cancel the actual job; 1= start job and perform the job)
ReadWrite	BOOL	0	Type of job 0=read, 1=write
Parameter	INT	1	Parameter number
Index	INT	0	Index of the parameter
ValueWrite1	REAL	0.0	Parameter value in the REAL format
ValueWrite2	DINT	0	Parameter value in the DINT format
AxisNo	BYTE	1	Axis number / axis ID for multi-axis system / DO - number
hardwareld (Block S7- 1200/1500)	HW IO	0	Hardware ID of the access points module/actual value telegram slot of the axis or drive → see Chapter 10.3
Laddr (Block S7- 300/400)	HW IO	0	Diagnostics address of the axis or drive → see Chapter 10.4

8.1.2 Output interface of the FB287

Table 8-2

Output signal	Type	Default	Meaning
Ready (Block S7- 1200/1500)	BOOL	0	Feedback signal to integrate in the LacycCom environment; 1 = job completed or job interrupted (for one cycle) See Chapter 7.2
Busy	BOOL	0	"Busy"=1 indicates that the job is being processed
Done	BOOL	0	Job completed without error means edge change from 0→1
ValueRead1	REAL	0.0	Value of read parameter (REAL format)
ValueRead2	DINT	0	Value of read parameter (DINT format)
Format	INT	0	Format of read parameter
ErrorNo	INT	0	Error number acc. To PROFIdrive profile *)
Error	BOOL	0	Group error active → "Error" =1
Errorld	DWORD	0	1st word → which parameter access is faulted in binary code 2nd word: Fault type
Diagld	WORD	0	Extended communication error → error during SFB call

8.1.4 Writing to parameters

The "Write" action initially means that the parameter value at input ValueWrite1 and ValueWrite2 is accepted. After the parameter format has been successfully read, the appropriate job field is transferred to the SINAMICS drive.

While this is being performed, the "Busy" bit is set to "1".

If the parameter to be written is incorrect, the associated parameter error numbers are read out and entered at the ErrorNo output. At the same time, the appropriate error bit is set in the first word of the "ErrorID" double word.

A successful write action is terminated with the edge change "1→0" of the "Busy" bit and the edge change "0→1" of the "Done" bit. It is NOT permissible that the "Error" bit is set. If this happens, the "ErrorID" double word must be evaluated.

8.1.5 Reading parameters

The "Read" action initially means that the parameter at the input parameter is read, and the drive displays the appropriate value at the ValueRead1 or Value Read2 output.

While this is being performed, the "Busy" bit is set to "1".

If the parameter to be read has an error, the associated parameter error numbers are output. At the same time, the appropriate error bit is set in the first word of the "ErrorID" double word.

A successful read action is terminated with the edge change "1→0" of the "Busy" bit and the edge change "0→1" of the "Done" bit. It is NOT permissible that the "Error" bit is set. If this happens, the "ErrorID" double word must be evaluated.

Con la ayuda de la documentación y de los videos entregados, realiza un proyecto para realizar un control de velocidad utilizando SINA_SPEED, también utilizar la función SINA_PARA_S para leer y/o escribir un parámetro del variador. Es un proyecto libre, no hay enunciado concreto. También puedes incorporar un SCADA o un terminal táctil de Siemens.

Por ejemplo:

- Utilizar SINA_SPEED para mover, parar e invertir el sentido de giro y variar la velocidad.
- Utilizar SINA_PARA_S para leer un parámetro (por ejemplo la corriente que consume el motor) y SINA_PARA_S para escribir un parámetro (por ejemplo cambiar la frecuencia máxima o la rampa de aceleración).