Homework 6

CMPSC 360

Kinner Parikh March 2, 2022

Question 1: Suppose $a, b \in \mathbb{Z}$. If $4|(a^2+b^2)$, then a and b are not both odd.

Proof: Suppose $a,b\in\mathbb{Z}$. For sake of contradiction, assume that a and b are both odd. By definition of odd, a=2x+1 and b=2y+1 such that $x,y\in\mathbb{Z}$ By definition of divides, $a^2+b^2=4z$ such that $z\in\mathbb{Z}$ $a^2+b^2=(2x+1)^2+(2y+1)^2=4z$ $=4x^2+4x+1+4y^2+4y+1=4z$ $=4x^2+4x+4y^2+4y+2=4z$ =4t+2 such that $t\in\mathbb{Z}$ where $t=x^2+x+y^2+y$ So, $4t+2\neq 4z$, which means $a^2+b^2\neq 4z$

We have arrived at a contradiction, where $a^2 + b^2 = 4z$ and $a^2 + b^2 \neq 4z$ when a and b are odd Therefore, by sake of proof by contradiction, if $4|(a^2 + b^2)$, then a and b are not both odd. \Box

Question 2: Show that $\forall a, b \in \mathbb{Z}$, $gcd(a, b) = b \leftrightarrow b \mid a$.

```
Proof: Suppose a,b\in\mathbb{Z} Case 1: gcd(a,b)=b\to b\mid a By definition, gcd(a,b)=b means that b\mid b and b\mid a where b\neq 0 Therefore, gcd(a,b)=b\to b\mid a Case 2: b\mid a\to gcd(a,b)=b Suppose b\mid a We also know that b\mid b By definition of gcd and since b\mid a and b\mid b, we can say that gcd(a,b)=b. Therefore, b\mid a\to gcd(a,b)=b Therefore, \forall a,b,\in\mathbb{Z},\ gcd(a,b)=b\leftrightarrow b\mid a
```

Question 3: Is $\mathbb{R} = \{(x,y) \mid (x-y) \text{ is divisible by 17} \}$ an equivalence relation?

Question 4: Suppose Neverland country (which is a fictional one), contains N cities. We define relation \mathbb{R} as follows: If there is a route between two cities (c_i, c_j) for $1 \leq i, j \leq N$, then we have $(c_i, c_j) \in \mathbb{R}$. We also assume that roads are in both directions in Neverland country. Is \mathbb{R} an equivalence relation? If so, what are the equivalence classes?

Question 5: For *n*-dimensional vectors $x, y \in \mathbb{R}^n$, we would say $x \leq y$ if for every $0 \leq i \leq n$, we would have $x_i \leq y_i$ where x_i is the *i*-th element of x. Is \leq a partial order? Prove or disprove.

Question 6:

Question 7: Let f(x) = 2x where the domain is the set of real numbers. What is

- (a) $f(\mathbb{N})$
- (b) $f(\mathbb{Q})$
- (c) $f(\mathbb{R})$

Question 8:

Question 9: Let $A = \{a_1, a_2, \ldots\}$ such that there are 4 elements in A. That is, |A| = 4. Similarly, let $B = \{b_1, b_2, \ldots\}$ such that |B| = 2. How many possible relations can be defined from A to B?

Question 10: Consider the set A = 1, 2, 9, 11, 18 having relation $R = \{(1,1), (2,2), (9,9), (11,11), (18,18), (1,2), (2,1), (11,1), (1,11), (18,9), (9,18)\},$ find equivalence class of the following:

- a) [|1|]
- b) [|2|]
- c) [|9|]
- d) [|11|]
- e) [|18|]

Question 11: Let: $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{5x}{3} - 2$. Prove that f is a one to one function.

Proof:

Assume that x_1 and x_2 belong to \mathbb{R}

Suppose $f(x_1) = f(x_2)$

Suppose
$$f(x_1) = f(x_2)$$

Definition of the function $\frac{5x_1}{3} - 2 = \frac{5x_2}{3} - 2$
 $\frac{5x_1}{3} = \frac{5x_2}{3}$ Add 2 to both sides
 $5x_1 = 5x_2$ Multiply 3 by both sides
 $x_1 = x_2$ Divide both sides by 5

Therefore, since $x_1 = x_2$, this is an injective function. \square

Question 12: Let: $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \frac{x}{2} + 3$ a surjection (onto)? If it is, constructs the proof, otherwise, give a counterexample.

Proof:

Assume that $a \in \mathbb{R}$

We must show that $\exists x \in \mathbb{R}$ such that f(x) = a

So,
$$a = \frac{x}{2} + 3$$

 $a - 3 = \frac{x}{2}$

$$a - 3 = \frac{x}{2}$$

$$2a - 6 = x$$

So, substituting for x, $f(x) = \frac{2a-6}{2} + 3$ = a - 3 + 3

Since f(x) = a, we know that it is onto. \square