Manifold-Integrated-Gradients

Repository for Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution

Datasets

Downloading and Preparing the Datasets

Oxford-IIIT Pet Dataset

- 1. **Download**: Visit Oxford-IIIT Pet Dataset (https://www.robots.ox.ac.uk/%7Evgg/data/pets/) and download the dataset
- 2. Extract: Unzip the dataset into the datasets/oxford pets directory

112 Flowers Dataset

- Download: Access the <u>112 Flowers Dataset (http://www.robots.ox.ac.uk/%7Evgg/data/flowers/102/)</u> and download it.
- 2. Extract: Decompress the dataset into the datasets/oxford flowers directory

Configuration

Update the project's configuration file to reflect the path and name of the dataset to use.

Training Instructions

Environment Setup

Before proceeding with training, ensure the listed requirements in requirements.txt are installed

Training Models

- 1. Training the Variational Autoencoder (VAE) First, train the VAE model using the train_vae.py script: python train_vae.py
- 2. Training the Classifier After training the VAE and saving the model, train the classifier using the train_classifier.py script: python train classifier.py
- 3. Interactive session: Using the Jupyter Notebook main_geodesic_ig.ipynb for a more interactive training session and to explore our methods and results, use the provided Jupyter notebook. It guides you through the entire process, from data loading to model training and feature attributions.

Minimum Hardware Requirements

GPU: Tesla V100-SXM2-32GB Compute Environment: Single node on a Slurm-based HPC Ensure your hardware setup matches or exceeds these specifications to replicate our results.