Hanwen Zhang

CONTACT INFORMATION	Department of Applied and Computational Mathematics Yale University 12 Hillhouse Avenue, New Haven CT 06511, USA	(203) 392-2522 hanwen.zhang@yal https://han-wen-	
RESEARCH INTERESTS	Numerical analysis, computational physics, PDE-constrained optimization		
EMPLOYMENT	Gibbs Assistant Professor, Yale University Graduate Research Assistant, Yale University Optical Scientist, Facebook Reality Lab		07/2022- 09/2017-05/2022 06/2021-08/2021
Education	Ph.D., Applied Physics, Yale University B.Sc., Physics, National University of Singapor B.Eng., Material Science, National University		09/2017-05/2022 08/2012-05/2017 08/2012-05/2017
Publications	1. A. Gopal, H Zhang . "A highly accurate procedure for computing globally optimal Wannier functions in one-dimensional crystalline insulators." <i>Preprint</i> (2024).		

- 2. H. Zhang, V. Rokhlin. "Finding roots of complex analytic functions via generalized colleague matrices." Advances in Computational Mathematics (2024).
- 3. W. Xue, H. Zhang, A. Gopal, V. Rokhlin, O. Miller. "Fullwave design of cmscale cylindrical metasurfaces via fast direct solvers." *Preprint* (2023).
- 4. H. Zhang, Z. Kuang, S. Puri and O. Miller. "Conservation-law-based global bounds to quantum optimal control." Physical Review Letters (2021).
- 5. H. Zhang, O. Miller. "Quasinormal coupled mode theory." *Preprint* (2020).
- 6. H. Zhang, C.-W. Hsu, and O. Miller. "Scattering concentration bounds: brightness theorems for waves." *Optica* (2019).
- 7. Solutions manual to Quantum Mechanics by Julian Schwinger with Berthold-Georg Englert. (To appear.)

Talks

- Finding scattering resonances via generalized colleague matrices, UMass Lowell Mathematics & Statistics Colloquium
- An efficient scheme for fullwave inverse design of large-scale metasurfaces, SPIE (2022)
- Conservation-law-based global bounds to quantum optimal control, SUTD Mathematics and Technology Seminar (2021)
- Brightness theorems for nanophotonics, CLEO (2019)

Teaching

Yale University, Department of Mathematics

- Instructor MATH 246 Ordinary Differential Equations, Fall 2024
- Instructor MATH 222 Linear Algebra with Applications, Spring 2024
- Instructor MATH 246 Ordinary Differential Equations, Fall 2023
- Instructor MATH 222 Linear Algebra with Applications, Spring 2023
- Instructor MATH 222 Linear Algebra with Applications, Fall 2022

Yale University, Department of Physics

 \bullet Teaching assistant – PHYS 502 Electromagnetic Theory I, Spring 2019