

# Estimación probabilística y calibración con ML para el control de desvíos respecto al baseline en proyectos bajo PMI/PMBOK

Autor:

Lic. Osvaldo Daniel Muñoz

Director:

MBA Ing. Luis Villanueva Canales (Capgemini North Latam)

# Índice

| 1. Descripción técnica-conceptual del proyecto a realizar | 5         |
|-----------------------------------------------------------|-----------|
| 1.1 Introducción                                          | 5         |
| 1.2 Motivación                                            | 5         |
| 1.3 Conociendo al cliente                                 | 6         |
| 1.4 Situación actual $(as-is)$                            | 7         |
| 1.5 Preguntas centrales                                   | 9         |
| 1.6 Estado del arte                                       | 9         |
| 2. Identificación y análisis de los interesados           | 11        |
| 3. Propósito del proyecto                                 | 11        |
| 4. Alcance del proyecto                                   | 11        |
| 5. Supuestos del proyecto                                 | <b>12</b> |
| 6. Requerimientos                                         | <b>12</b> |
| 7. Historias de usuarios ( $Product\ backlog$ )           | 13        |
| 8. Entregables principales del proyecto                   | 14        |
| 9. Desglose del trabajo en tareas                         | 14        |
| 10. Diagrama de Activity On Node                          | 15        |
| 11. Diagrama de Gantt                                     | 15        |
| 12. Presupuesto detallado del proyecto                    | 19        |
| 13. Gestión de riesgos                                    | 19        |
| 14. Gestión de la calidad                                 | 21        |
| 15 Procesos de cierre                                     | 21        |



# Registros de cambios

|   | Revisión | Detalles de los cambios realizados | Fecha                |
|---|----------|------------------------------------|----------------------|
| Ī | 0        | Creación del documento             | 26 de agosto de 2025 |



#### Acta de constitución del proyecto

CDMX, 26 de agosto de 2025

Por medio de la presente se acuerda con el Lic. Osvaldo Daniel Muñoz que su Trabajo Final de la Carrera de Especialización en Inteligencia Artificial se titulará "Estimación probabilística y calibración con ML para el control de desvíos respecto al baseline en proyectos bajo PMI/PMBOK" y consistirá en diseñar y validar un sistema de estimación probabilística para la gestión de proyectos que, a partir de evidencias observadas en el tiempo, entregue pronósticos calibrados y accionables, buscando mejorar con modelos de ML la calibración de las predicciones, indicadores y ratios. El trabajo tendrá un presupuesto preliminar estimado de TBD horas y un costo estimado de \$ XXX, con fecha de inicio el 26 de agosto de 2025 y fecha de presentación pública el TBD.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Fernando Calatayud Cataño ITSC Digital Value

MBA Ing. Luis Villanueva Canales Director del Trabajo Final



#### 1. Descripción técnica-conceptual del proyecto a realizar

#### 1.1. Introducción

La compañía ITSC Digital Value ofrece servicios de <u>reject management</u> para la planificación, gestión, control y entrega de proyectos de techniques de la información bajo los estándares y mejores prácticas dictadas por el PMI (*Project Management Institute*), desarrolladas en su guía PMBOK (*Project Management Body Of Knowledge*).

Los lineamientos del PMI establecen el ciclo de vida de un proyecto en 5 fases, que representamos en la figura 1, y donde delimitamos el alcance de este proyecto a las fases 3 de ejecución, y 4 de monitoreo y control:



Figura 1. Ciclo de vida de un proyecto según PMI/PMBOK. Fases 3 (Ejecución) y 4 (Monitoreo y Control) como alcance del proyecto.

#### 1.2. Motivación

En el recorrido profesional de los *projects managers* han tenido que enfrentar retos y desafíos íntimamente relacionados a la gestión, seguimiento y control de proyectos, donde principalmente la planificación de los mismos se realiza con argumentos y bases de verosimilitud razonable, pero en el despliegue surgen desfases, incumplimientos y subestimaciones, entre otros factores, que derivan en impactos como:



- Objetivos estratégicos
- Reprogramación de entregables y sus fechas
- Sobrecostos
- Incumplimiento parcial o total de la relación costo/beneficio establecida
- Credibilidad y confianza en el equipo de trabajo
- Otras iniciativas dependientes en la organización

En este sentido, podemos identificar que los métodos clásicos de la gestión de proyectos tienen limitaciones por el enfoque determinístico, y no proporcionan suficiente información ni predicciones asertivas para tomar decisiones oportunas que mitiguen y/o eviten los impactos en los proyectos descriptos en el párrafo anterior.

#### 1.3. Conociendo al cliente

ITSC Digital Value es una empresa mexicana fundada en el año 2013 a quienes los clientes le solicitan sus servicios de consultoría en *project management* (PM). Su *staff* de profesionales generalmente son ingenieros certificados en las metodologías del PMI/PMBOK, y en ocasiones también en tecnologías específicas que les permiten desarrollar su labor principal como PM, así como el complemento de conocimientos específicos como telecomunicaciones o ingeniería civil para proyectos de construcción.

La misión y visión de la empresa está expresada en estos términos en la figura 2:



#### NUESTRA HISTORIA

ITSC se constituyó en el mes de marzo de 2013, como una sociedad civil mexicana iniciando actividades en la Ciudad de México.

Nuestro compromiso es ofrecer a nuestros clientes servicios de consultoría estratégica de negocios bajo los estándares más altos de calidad.

#### MISIÓN Y VISIÓN

#### MISIÓN

Proveer consultoría estratégica de negocios y soluciones empresariales a nuestros clientes, brindándoles un servicio de calidad, siendo rentable y financieramente estable en beneficio de nuestros socios y colaboradores.

#### VISIÓN

Ser una empresa reconocida por sus clientes como líder en consultoría estratégica de negocios, y por la calidad de los servicios brindados.

Figura 2. Misión y visión de ITSC Digital Value



# 1.4. Situación actual (as-is)

El macro proceso clásico compuesto de 5 fases para la gestión de proyectos, según los lineamientos del PMI/PMBOK, es el que adoptan y despliegan los profesionales asignados a los contratos con los clientes, este proceso lo representamos en la figura 3:



Figura 3. Macro-proceso del ciclo de vida de un proyecto (PMI/PMBOK).

Las entradas y salidas que requieren cada una de las <mark>5</mark> fases se describen en la figura 4 a 8 como sigue:



Figura 4. Fase 1: Inicio — Entradas y salidas principales.



Figura 5. Fase 2: Planificación — Entradas y salidas principales.





Figura 6. Fase 3: Ejecución — Entradas y salidas principales.



Figura 7. Fase 4: Monitoreo y Control — Entradas y salidas principales.



Figura 8. Fase 5: Cierre — Entradas y salidas principales.



Como ya se ha mencionado, y de acuerdo a la experiencia del cliente, los proyectos se gestionan en las fases 3 (ejecución) y 4 (monitoreo y control), con un grado de incertidumbre variable, dependiendo de:

- La complejidad
- Experiencia de los recursos asignados
- Claridad y fluidez en la comunicación
- Grado de compromiso hacia la producción de los entregables
- Disponibilidad de los recursos financieros y materiales presupuestados
- Eficiencia del modelo de gobierno
- Habilidades y conocimientos de la oficina de gerencia del proyecto (PMO)

Debido a los grados de incertidumbre que existen en las fases 3 y 4 de la gestión de proyectos, el cliente requiere contar con un modelo que le proporcione, a partir de los datos que genera el modelo clásico, información oportuna mediante indicadores para la toma de decisión oportuna. Y así anticipar, mitigar y, en lo posible, evitar los desvíos y sus impactos en los resultados esperados del proyecto en alcance, tiempo, costo y calidad propuestos en el statement of work (SOW) al inicio del proyecto.

## 1.5. Preguntas centrales

Dado el historial de un proyecto y sus artefactos:

- ¿Cuál es la probabilidad de exceder el baseline vigente en cada dimensión (tiempo, alcance, costo)?
- ¿Cómo evolucionan los indicadores de riesgos e incidentes para anticipar desvíos?
- Con modelos de machine learning (ML) (boosting cuantílico; TCN/LSTM), ¿mejoran el error y la calibración de los pronósticos de  $\frac{\Delta_d}{EAC}$  y P(atraso/sobrecosto) frente a EVM/PERT/ARIMA?

#### 1.6. Estado del arte

Aunque los métodos estadísticos clásicos constituyen una base sólida, resultan limitados para capturar no linealidades y efectos de interacción entre variables (p. ej., SPI/CPI, cambios de alcance, riesgos, incidentes). En este contexto, los enfoques de ML tabular y secuencial permiten explotar dichas interacciones y patrones temporales, ofreciendo bandas de predicción y probabilidades mejor calibradas. Asimismo, se priorizará la interpretabilidad (SHAP, PDP) y se establecerán comparaciones rigurosas frente a los baselines estadísticos, en línea con el enfoque requerido.

La figura 9 es un esquema de bloques con la solución propuesta:





Figura 9. To-be - esquema vertical en bloques de la solución propuesta.



Revisar como explicar mejor las siglas, si en una tabla a continuación o alguna otra forma.

#### 2. Identificación y análisis de los interesados

| Rol           | Nombre y Apellido   | Organización       | Puesto                     |
|---------------|---------------------|--------------------|----------------------------|
| Cliente       | Ing. Fernando Cala- | ITSC Digital Value | Director de Operaciones    |
|               | tayud Cataño        |                    |                            |
| Responsable   | Lic. Osvaldo Daniel | FIUBA              | Alumno                     |
|               | Muñoz               |                    |                            |
| Orientador    | MBA Ing. Luis Vi-   | Capgemini North    | Director del Trabajo Final |
|               | llanueva Canales    | Latam              |                            |
| Equipo        | TBD 1               | _                  | _                          |
|               | TBD2                |                    |                            |
| Opositores    | Team leaders        | Cliente y contrac- | _                          |
|               |                     | tors               |                            |
| Usuario final | Project Managers    | ITSC Digital Value |                            |

- Orientador: el MBA Ing. Luis Villanueva Canales es un reconocido profesional en ciencias de la computación y electrónica y colaborará en refinar los requerimientos, así como dar las guías desde su experiencia para lograr los propósitos del proyecto.
- Cliente: el Ing. Fernando Calatayud Cataneo es exigente y detallista con vasta experiencia en entrega de servicios de consultoría. Conoce a profundidad los retos y desafíos de las disciplinas, con lo cual será riguroso en la definición de los requerimientos y en la calidad del producto final.
- Equipo: el equipo de trabajo se definirá a partir del dimensionamiento de las áreas de conocimiento que requiera el proyecto para su construcción. Es muy importante tener las definiciones para poder seleccionarlo.

# 3. Propósito del proyecto

Diseñar y validar un sistema de estimación probabilística que, a partir de evidencias observadas en el tiempo, entregue pronósticos calibrados y accionables, buscando mejorar con modelos de ML la calibración de las predicciones, indicadores y ratios.

# 4. Alcance del proyecto

El proyecto incluye:

• Formalizar las variables y artefactos (*work breakdown structure* (WBS), cronograma, costo, registros de riesgo/incidentes, cambios).



- Definir un modelo de probabilidad de desvío por dimensión (tiempo/alcance/costo)
   y su relación con riesgos/incidentes.
- Entrenar y validar modelos (Bayes/Monte Carlo/series de tiempo) con backtesting.
- Evaluar calibración y utilidad (curvas S con bandas, alertas tempranas, what-if).
- Entregar un tablero/notebooks reproducibles y una guía de uso para PMs.

El presente proyecto no incluye proyectos sin *baseline*; datos no estructurados si no es posible normalizarlos; estimación de recursos humanos a nivel individual (si carece de datos).

#### 5. Supuestos del proyecto

Para el desarrollo del presente provecto se establecen las siguientes hipótesis:

- La inclusión de variables de riesgo e incidentes mejora la predicción de desvíos en plazo y costo.
- Un modelo jerárquico bayesiano por paquete de trabajo (WBS) produce estimaciones mejor calibradas que una línea de base determinista + tendencia.
- Dado que el boosting cuantílico aprende relaciones no lineales e interacciones (SPI, CPI,  $\Delta_{\text{scope}}$ , riesgos, incidentes) y genera bandas de predicción directamente, luego entonces, mejora la cobertura  $(q_{10}/q_{50}/q_{90})$  y CRPS (Continuous Ranked Probability Score).
- TCN/LSTM (Temporal Convolutional Network/Long Short-Term Memory) reduce el Mean Absolute Error (MAE) cuando existen dependencias temporales fuertes.

Criterio de decisión: se privilegiarán modelos con mejor calibración (*Expected Calibration Error* (ECE) / cobertura) y de utilidad para el PM (alertas útiles), aun si los métodos clásicos fueran competitivos.

#### 6. Requerimientos

Los requerimientos deben enumerarse y de ser posible estar agrupados por afinidad, por ejemplo:

- 1. Requerimientos funcionales:
  - 1.1. El sistema debe...
  - 1.2. Tal componente debe...



- 1.3. El usuario debe poder...
- 2. Requerimientos de documentación:
  - 2.1. Requerimiento 1.
  - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

# ¡¡¡No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

# 7. Historias de usuarios (*Product backlog*)

Descripción: en esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

Se debe indicar explícitamente el criterio para calcular los story points de cada historia.

El formato propuesto es:

1. "Como [rol] quiero [tal cosa] para [tal otra cosa]."

Story points: 8 (complejidad: 3, dificultad: 2, incertidumbre: 3)



# 8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de usuario.
- Diagrama de circuitos esquemáticos.
- Código fuente del firmware.
- Diagrama de instalación.
- Memoria del trabajo final.
- etc...

# 9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1 (suma h)
  - 1.1. Tarea 1 (tantas h)
  - 1.2. Tarea 2 (tantas h)
  - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2 (suma h)
  - 2.1. Tarea 1 (tantas h)
  - 2.2. Tarea 2 (tantas h)
  - 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3 (suma h)
  - 3.1. Tarea 1 (tantas h)
  - 3.2. Tarea 2 (tantas h)
  - 3.3. Tarea 3 (tantas h)
  - 3.4. Tarea 4 (tantas h)
  - 3.5. Tarea 5 (tantas h)



Cantidad total de horas: tantas.

¡Importante!: la unidad de horas es h y va separada por espacio del número. Es incorrecto escribir "23hs".

Se recomienda que no haya ninguna tarea que lleve más de 40 h. De ser así se recomienda dividirla en tareas de menor duración.

# 10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Una herramienta simple para desarrollar los diagramas es el Draw.io (https://app.diagrams.net/). Draw.io



Figura 10. Diagrama de Activity on Node.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semi críticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color.

# 11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + *plugins*. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto





- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete *pgfgantt*http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS).

Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 11, se muestra un ejemplo de diagrama de gantt realizado con el paquete de pgfgantt. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Las fechas pueden ser calculadas utilizando alguna de las herramientas antes citadas. Sin embargo, el siguiente ejemplo fue elaborado utilizando esta hoja de cálculo.

Es importante destacar que el ancho del diagrama estará dado por la longitud del texto utilizado para las tareas (Ejemplo: tarea 1, tarea 2, etcétera) y el valor x unit. Para mejorar la apariencia del diagrama, es necesario ajustar este valor y, quizás, acortar los nombres de las tareas.





Figura 11. Diagrama de gantt de ejemplo

Osvaldo Daniel Muñoz



Figura 12. Ejemplo de diagrama de Gantt (apaisado).



# 12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

Incluir la aclaración de si se emplea como moneda el peso argentino (ARS) o si se usa moneda extranjera (USD, EUR, etc). Si es en moneda extranjera se debe indicar la tasa de conversión respecto a la moneda local en una fecha dada.

| COSTOS DIRECTOS   |          |                |             |  |  |
|-------------------|----------|----------------|-------------|--|--|
| Descripción       | Cantidad | Valor unitario | Valor total |  |  |
|                   |          |                |             |  |  |
|                   |          |                |             |  |  |
|                   |          |                |             |  |  |
|                   |          |                |             |  |  |
| SUBTOTAL          |          |                |             |  |  |
| COSTOS INDIRECTOS |          |                |             |  |  |
|                   | TOBOTOS  |                |             |  |  |
| Descripción       | Cantidad | Valor unitario | Valor total |  |  |
|                   |          | Valor unitario | Valor total |  |  |
|                   |          | Valor unitario | Valor total |  |  |
|                   |          | Valor unitario | Valor total |  |  |
|                   |          | Valor unitario | Valor total |  |  |

# 13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10).
   Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar
  - Justificar el motivo por el cual se asigna determinado número de (O).

#### Riesgo 2:

del 1 al 10).



| Severidad    | (S): $X$ . |
|--------------|------------|
| Justificació | ón í       |

Ocurrencia (O): Y.
 Justificación...

#### Riesgo 3:

- Severidad (S): X.
   Justificación...
- Ocurrencia (O): Y. Justificación...
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

| Riesgo | S | О | RPN | $S^*$ | O* | RPN* |
|--------|---|---|-----|-------|----|------|
|        |   |   |     |       |    |      |
|        |   |   |     |       |    |      |
|        |   |   |     |       |    |      |
|        |   |   |     |       |    |      |
|        |   |   |     |       |    |      |

#### Criterio adoptado:

Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (\*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación:

- Severidad (S\*): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O\*): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).



#### 14. Gestión de la calidad

Elija al menos diez requerimientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

- Req #1: copiar acá el requerimiento con su correspondiente número.
  - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar.
  - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar.

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc.

Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno.

En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

#### 15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
  - Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, los problemas que surgieron y cómo se solucionaron:
  - Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
  - Indicar esto y quién financiará los gastos correspondientes.