

Compte Rendu TP1part II

Filtrage numérique d'un signal d'entrée

Réalisé par : Hachem Squalli ElHoussaini N°29

Dirigé par : Pr. H. TOUZANI

Exercice:

I. Etude temporelle

1. Calculez la réponse impulsionnelle (RI), sur le papier, en fonction de b0 et b1, en supposant le système causal, et les conditions initiales éventuelles nulles

La réponse impulsionnelle est donc :

$$h(n) = \begin{cases} b_0 & \text{pour } n = 0\\ b_1 & \text{pour } n = 1\\ 0 & \text{pour } n \ge 2 \end{cases}$$

2. En utilisant la fonction lfilter, calculer la Réponse Impulsionnelle du filtre, puis contrôlez graphiquement l'allure de la RI, avec b1 = b2 = 0.8.

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import lfilter

b0, b1 = 0.8, 0.8
b = [b0, b1]
a = [1]

impulsion = np.zeros(10)
impulsion[0] = 1
h = lfilter(b, a, impulsion)

# Visualisation
plt.stem(h)
plt.title('Réponse impulsionnelle pour b0=b1=0.8')
plt.ylabel('h(n)')
plt.grid()
plt.show()
```


3. Calculez et visualisez la réponse impulsionnelle pour différentes valeurs de b0 et b1. Conclusions.

```
# Différentes combinaisons de coefficients
coeffs = [[(1.0, 0.5), (0.5, 1.0), (0.8, -0.8), (0.2, 0.2)]]

plt.figure(figsize=(12, 8))
for i, (b0, b1) in enumerate(coeffs, 1):

b = [b0, b1]
h = lfilter(b, a, impulsion)

plt.subplot(2, 2, i)
plt.stem(h)
plt.title(f'b0={b0}, b1={b1}')
plt.xlabel('n')
plt.ylabel('h(n)')
plt.grid()

plt.tight_layout()

plt.show()
```

Résultat

Conclusions:

- La réponse impulsionnelle est finie (FIR) et ne dure que 2 échantillons
- Les coefficients b0 et b1 déterminent directement l'amplitude des deux premiers échantillons
- Le signe de b1 influence la phase du filtre

I. Etude fréquentielle

1. Donnez l'expression de la fonction de transfert en z correspondant à cette équation aux différences :

$$H(z) = b_0 + b_1 z^{-1}$$

- 2. Donnez l'expression de la fonction de transfert H(f), puis de |H(f)| pour b1 et b2 quelconque .
 - En substituant $z=e^{j2\pi f}z=e^{j2\pi f}$ (où f est la fréquence normalisée par Fe), on obtient :

$$H(f) = b_0 + b_1 e^{-j2\pi f}$$

- Le module de H(f) est :

$$|H(f)| = \sqrt{b_0^2 + b_1^2 + 2b_0b_1\cos(2\pi f)}$$

3. Préciser les amplitudes théoriques en f=0 et f=1/2

Pour f = 0:

$$H(0) = b_0 + b_1$$

 $|H(0)| = |b_0 + b_1|$

Pour f = 1/2:

$$H\left(\frac{1}{2}\right) = b_0 + b_1 e^{-j\pi} = b_0 - b_1$$
$$\left| H\left(\frac{1}{2}\right) \right| = |b_0 - b_1|$$

4. Sous Python, calculez la TF du filtre en utilisant la TF (fonction fft) de la RI, visualisez les résultats. Conclusions.

```
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq
b0, b1 = 0.8, 0.8
b = [b0, b1]
a = [1]
N_{fft} = 1024
h_padded = np.zeros(N_fft)
h_padded[:2] = [b0, b1]
H = fft(h_padded)
freqs = fftfreq(N_fft, d=1/44e3)
plt.figure()
plt.plot(freqs[:N_fft//2], np.abs(H[:N_fft//2]))
plt.title('Réponse fréquentielle du filtre')
plt.xlabel('Fréquence (Hz)')
plt.ylabel('|H(f)|')
plt.grid()
plt.show()
```

Résultat:

Conclusion:

- La réponse fréquentielle montre un comportement de filtre passe-bas ou passe-bande selon les valeurs de b0 et b1
- Les valeurs aux extrêmes (f=0 et f=Fe/2) correspondent aux calculs théoriques

•

II. Filtrage:

1. Créer une sinusoïde x, à la fréquence fo = 3, échantillonnée à Fe = 44, sur N = 128 points

```
import numpy as np
     import matplotlib.pyplot as plt
    N = 128
    Fe = 44
     fo = 3
7
    t = np.arange(N)/Fe
    x = np.sin(2*np.pi*fo*t)
12
    plt.figure(figsize=(12, 5))
13
    plt.plot(t, x)
    plt.xlabel('Temps (s)')
    plt.ylabel('Amplitude')
    plt.title('Signal sinusoïdal')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```


2. Filtrez cette sinusoïde par le filtre précédent en utilisant la fonction lfilter, y1=lfilter(b,a,x)

```
import numpy as np
import matplotlib.pyplot as plt
import scipy
N = 128
Fe = 44
t = np.arange(N)/Fe
x = np.sin(2*np.pi*3*t)
b0, b1 = 0.8, 0.8
b = [b0, b1]
a = [1] # Pas de terme récursif
y1 = scipy.signal.lfilter(b,a,x)
plt.figure(figsize=(10,5))
plt.plot(t,x,label="Signal original (sinusoide)",linestyle="--")
plt.plot(t,y1,label="Signal filtré",linewidth=2)
plt.title(f"Filtrage d'une sinusoide à 3 Hz par un filtre récursif (b0=b1=0.8)", pad=20)
plt.xlabel('Temps (s)')
plt.ylabel('Amplitude')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```


- 3. Filtrez cette sinusoïde par le filtre précédent :
- en utilisant une convolution : y2=lfilter(h,[1],x)

```
import numpy as np
import matplotlib.pyplot as plt
import scipy
N = 128
Fe = 44
b0, b1 = 0.8, 0.8
b = [b0, b1]
a = [1]
t = np.arange(N)/Fe
x = np.sin(2*np.pi*3*t)
h = np.array([b0, b1])
y2= scipy.signal.lfilter(h,[1],x)
plt.figure(figsize=(10,5))
plt.plot(t,x,label="Signal original (sinusoide)",linestyle="--")
plt.plot(t,y2,label="Signal filtré",linewidth=2)
plt.title(f"Filtrage d'une sinusoide à 3 Hz par un filtre récursif (b0=b1=0.8)", pad=20)
plt.xlabel('Temps (s)')
plt.ylabel('Amplitude')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```


4. Comparez graphiquement ces deux résultats. Affichez les deux courbes, voire la différence des signaux entre y1 et y2

```
#affichage

plt.figure(figsize=(12, 6))

plt.plot(t, x, 'g', label='Entrée x(n)')

plt.plot(t, y1, 'b', label='y1 (lfilter)')

plt.plot(t, y2, 'r--', label='y2 (convolution)')

plt.title('Comparaison des méthodes de filtrage')

plt.xlabel('Temps (s)')

plt.ylabel('Amplitude')

plt.legend()

plt.grid()

plt.show()

# Différence entre les deux méthodes

plt.figure()

plt.plot(t, y1-y2)

plt.xlabel('Temps (s)')

plt.xlabel('Temps (s)')

plt.ylabel('Amplitude')

plt.grid()

plt.grid()

plt.grid()

plt.grid()

plt.show()
```


5. Calculez la TF : X(f) du signal x et la TF : H(f) de la réponse impulsionnelle h et des sorties y1 et y2. Visualisez ces deux résultats. Interpréter.

Interprétation :

- Les deux méthodes de filtrage (lfilter et convolution) donnent des résultats identiques (différence nulle)
- La TF du signal filtré montre l'effet du filtre sur la sinusoïde
- Le gain du filtre à la fréquence f0=3Hz peut être vérifié en comparant les amplitudes de X(f) et Y(f)