Sheet 1

Solutions to be handed in before class on Friday October 18.

Problem 7. Consider \mathbb{C}^n with basis e_1, \ldots, e_n . Let V be a d-dimensional subspace (so a point of Gr(d, n)). If v_1, \ldots, v_d is a basis for V we can express it in terms of the e_1, \ldots, e_n and obtain an $d \times n$ -matrix A. Show that

$$v_1 \wedge \ldots \wedge v_d = \sum_I p_I e_I \tag{1}$$

where p_I are the d-minors of A.

(3 points)

Problem 8. Consider the group S_n with its standard generators $s_i = (i, i+1)$ for $1 \le i \le n-1$.

- 1. Show that the set $\{e, s_{n-1}, s_{n-2}s_{n-1}, \ldots, s_1s_2 \ldots s_{n-1}\}$ is a system of shortest coset representatives for $S_n/(S_{n-1} \times S_1)$.
- 2. Give a similar description for the cosets of $S_n/(S_d \times S_{n-d})$ for any $1 \le d \le n-1$.

(5 points)

Problem 9. Show that $Gr(d, n) \cong Gr(n - d, n)$ as varieties. (3 points)

Hint: Use the notion of orthogonal complement to construct a set-theoretic map. You can use without proof that it is enough for a globally defined map to be an isomorphism that it is locally an isomorphism.

Problem 10 (Segre embedding). Consider $\mathbb{P}^n_{\mathbb{C}} = \operatorname{Proj} \mathbb{C}[x_0, \dots, x_n]$ and $\mathbb{P}^m_{\mathbb{C}} = \operatorname{Proj} \mathbb{C}[y_0, \dots, y_m]$. Set N := (n+1)(m+1)-1 and consider $\mathbb{P}^N_{\mathbb{C}} = \operatorname{Proj} \mathbb{C}[z_{0,0}, \dots, z_{n,m}]$. Consider the set-theoretic map $f : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ given by $z_{i,j} = x_i y_j$.

- 1. Show that the image is again a projective variety, cut out by the ideal generated by $z_{i,j}z_{k,l}-z_{i,l}z_{k,j}$ for all $0 \le i,k \le n$ and $0 \le j,l \le m$.
- 2. Show that this map is in fact an isomorphism (if you are uncomfortable, it suffices to show it is a bijection).

In this way we obtain that products of projective varieties are again projective varieties.

(3 points)

Problem 11. Give a presentation of the homogeneous coordinate of Gr(3,6) in terms of generators and relations. (2 point)