GROUPES, ANNEAUX, CORPS: II*

www.eleves.ens.fr/home/yhuang

13.1 Exemples d'anneaux

13.1.1 Anneaux des polynômes

Montrer que l'anneaux des polynômes à coefficients réels $\mathbb{R}[X]$ (muni de l'addition et la multiplication usuelles) et un anneau.

13.1.2 Entiers de Gauss¹

Considérons $\mathbb{Z}[i]$ formé de tous les nombres complexes de la forme a+b.i avec $(a,b) \in \mathbb{Z}^2$. Montrer que munissant de l'addition et la multiplication usuelles, il s'agit d'un sous-anneau de \mathbb{C} . Déterminer son groupe des unités.

Montrer que c'est un anneau euclidien (donc factoriel par l'exercice 13.2.1).

On définit la norme d'un élément dans $\mathbb{Z}[i]$ comme la somme des carrés de ses deux coefficients. Montrer que la norme est une fonction multiplicative.

*Montrer que si p est un nombre premier positif, $p = a^2 + b^2$, $(a, b) \in \mathbb{Z}^2$ ssi $p \equiv 1 \mod 4$ (on pourra appliquer le théorème de Wilson pour voir que l'équation $x^2 \equiv -1 \mod p$ admet une solution). *Étudier l'anneau $\mathbb{Z}[\sqrt{2}]$.

13.1.3 Anneaux des fonctions

Montrer que l'ensemble des fonctions réelles continues sur [0,1] est un anneau. Est-il intègre? Montrer que l'ensemble des fonctions qui s'annulent en 0 est un idéal maximal de cet anneau. Trouver tous les idéaux maximaux de cet anneau.

13.2 Exercices sur les anneaux

13.2.1 Un anneau euclidien est factoriel

- 1) Montrer qu'un anneau euclidien est principal.
- 2) Montrer qu'un anneau principal est factoriel.

^{*}Les anneaux sont supposés commutatifs unitaires sauf mention contraire.

¹Tiré de Neukirch, P1-P2.

13.2.2 1-ab et 1-ba

Soit A un anneau. Soient a, b deux éléments dans A. On suppose que 1 - ab est inversible dans A. Montrer que 1 - ba est inversible dans A. Montrer que le résultat est encore valable même si A n'est pas commutatif.

13.2.3 Anneau local

On dit qu'un anneau R est local s'il ademt un et un seul idéal maximal \mathfrak{m} .

Montrer qu'alors \mathfrak{m} est exactement l'ensemble des éléments non-inversible de R.

On admet le résultat suivant, qui résulte du lemme de Zorn: tout élément non inversible est contenu dans un idéal maximal.

13.3 Exemples de corps

13.3.1 Idéal maximal et corps

- 1) Montrer que le quotient d'un anneau par un idéal maximal est un corps. Réciproque?
- 2) Montrer que le quotient d'un anneau par un idéal premier est un anneau intègre. Réciproque?

13.3.2 Anneaux intère fini

Montrer que tout anneau intègre fini est un corps.

13.3.3 Exemple d'un anneau booléen

Soient E un ensemble fini et $\mathcal{P}(E)$ l'ensemble de ses sous-ensembles. Munissons E de:

Une loi additive: la différence symétrique;

Une loi multiplicative: l'intersection.

Montrer que $\mathcal{P}(E)$, muni de ces lois, est un anneau.

13.4 Exercices sur les corps

13.4.1 Caractéristique d'un corps

Soit K un corps. On regarde $n.1 = 1 + 1 + \cdots + 1$ (n fois). Deux choses peuvent se passer:

- Ou bien $\forall n, n.1 \neq 0$. Montrer que dans ce cas, K contient une copie de \mathbb{R} . On dit dans ce cas que le corps K est de caractéristique 0.
- Ou bien $\exists n, n.1 = 0$. Montrer que dans ce cas, il existe un et un seul nombre premier p tel que $\forall x \in K, p.x = 0$. On dit dans ce dernier cas que le corps K est de caractéristique p.

13.4.2 Sous-corps et espaces vectoriels

Soit $k \subset K$ un sous-corps d'un corps K. Montrer que K est un k-espace vectoriel.

13.4.3 *Cardinal d'un corps fini

Montrer que le cardinal tout corps fini s'écrit comme p^n avec p premier positif et n entier strictement positif.

*A-t-on la réciproque?