Introduction to HDL

Name: Santos – Canoneo - Villamor Date: 10/10/23

Due Date: 10/14/23

Lab Exercise 1 : Labex VHDL Code and Simulation

Laboratory Exercise1:

Given the logic equation Y = AB' + C' implement this equation using two inverters, one OR gate and one AND under the Quartus 2 environment.

Upon completion of the schematic entry portion of the example, simulate the circuit and print out copies of the circuit & simulation results.

Draw a Logic Diagram and **Truth Table** (in counting order) for the inputs & output and you will later compare it with the simulation results.

Boolean Expression

What is the Boolean expression from the logic diagram given below: Y = (AB') + C'

Logic Diagram

Truth Table

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

VHDL Code

```
library IEEE;
use IEEE.STD_LOGIC_1164.all; ----- import libraries
entity Lab2 is
port (
   A, B, C : in STD_LOGIC; ----- port assignments
   Y: out STD_LOGIC
);
end Labex2;

architecture V1 of Lab2 is ----- logic function
begin
   Y <= (A AND Not B) OR Not C;
end V1; ----- end of VHDL code</pre>
```

Procedure

The following are the basic steps in implementing a project using Quartus 2. Details for each steps can be found in the handouts provided entitled **Graphical Gate Entry** from Quartus Tutorial.

All design entries can be taken from:

- a) Logic Diagram,
- b) Boolean Expression,
- c) Truth Table
- d) HDL Code (VHDL or Verilog)
- I. Creating a Project in Quartus
 - A. New Project Design Creation

```
Device----Cyclone II --- EP2C35F672C6
```

- B. Configuring Quartus Window
- II. Designing
 - A. Creating a Block Diagram/Schematic File (BDF) or VHDL code
 - B. Adding Text
 - C. Component Selection Process and Moving Components
 - D. Adding/Deleting Wires
 - E. Adding Input & Output Ports
 - F. Compiling
 - G. Functional Compiling
- III. Simulating
 - A. Creating a Vector Waveform File (VWF)
 - B. Adding signals
 - C. Changing Grid Size and End Time

- D. Manually Changing VWF
- E. Functional and Timing Simulation
- F. Grouping Signals and Using Count Value and Clock Value
- IV. Programming (Altera DE2 Board)
 - A. Assigning pins using Pin Planner
 - B. Tri-stating unused pins
 - C. Programming
 - E. Exporting Pin Assignments
 - F. Deleting Pin Assignments

Outputs:

Α	В	С	Υ
0	0	0	1

Α	В	С	Υ
0	0	1	0

Ī	А	В	С	Υ
Ī	0	1	0	1

Α	В	С	Υ
0	1	1	0

Ī	Α	В	С	Υ
ĺ	1	0	0	1

Α	В	С	Υ
1	0	1	1

Α	В	С	Υ
1	1	0	1

Α	В	С	Υ
1	1	1	0

