	Note
Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	
Unterschrift der Kandidatin/des Kandidaten	4
TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik	6
Klausur Mathematik für Physiker 4 (Analysis 3)	\sum
Prof. Dr. H. Spohn 17. Februar 2012, 8:00 – 9:30 Uhr	I Erstkorrektur
Hörsaal: Reihe: Platz: Hinweise: Überprüfen Sie die Vollständigkeit der Angabe: 6 Aufgaben	Zweitkorrektur
Bearbeitungszeit: 90 min Erlaubte Hilfsmittel: zwei selbsterstellte DIN A4 Blätter Bei Multiple-Choice-Aufgaben sind genau die zutreffenden Aussagen anzukreuzen. Bei Aufgaben mit Kästchen werden nur die Resultate in diesen Kästchen berücksichtigt.	

Vorzeitig abgegeben um

Besondere Bemerkungen:

Gegeben ist die Menge $K=\{(x,y,z)\in\mathbb{R}^3\,|\,\sqrt{x^2+y^2}\leq 1-\frac{z}{4},\,x\geq 0,y\geq 0,z\geq 0\}\subset [0,\infty[^3 \text{ und das Vektorfeld }v(x,y,z)=(x^2+y^2,1,z^2).$

(a) Skizzieren Sie die Menge K.

(b) Geben Sie eine Parametrisierung des Mantelflächenstücks $M:=\partial K\cap\,]\,0,\infty[^3$ an

Fortsetzung: nächste Seite

	_		
Oberflächenintegrale I (Fortsetzung)			
(c) Berechnen Sie den Fluss F von v durch das Flächenstück M , wobei der Normalenvektor vom Ursprung weg zeigt.			
(d) Berechnen Sie den Gesamtfluss G von v durch ∂K mit Hilfe des Satzes von Gauß.			

2. Oberflächenintegrale II

[9 Punkte]

Sei $S := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + (z - 4)^2 = 9, x \ge 0\}$ so orientiert, dass der Normalenvektor vom Punkt (0, 0, 4) wegzeigt, und $v(x, y, z) = \begin{pmatrix} 23\sin(e^{x+y}) + \arctan(y + 4z^2) \\ \sin x - z \\ y \end{pmatrix}$ ein Vektorfeld.

(a) Was besagt allgemein der Satz von Stokes für den Fluss von rotv durch S?

(b) Geben Sie eine Parametrisierung der Randlinie ∂S von S an.

 $\gamma(t) =$

(c) Berechnen Sie den Fluss von rot v durch S.

 $\int\limits_{S} \langle \operatorname{rot} v, n \rangle d\sigma =$

3. Residuen Sei $f(z) = \prod_{k=1}^{n} \frac{1}{z-k}, n \in \mathbb{N}.$	[8 Punkte]
(a) f hat bei $z = 1$	
\square eine hebbare Singularität \square einen Pol erster C \square eine wesentliche Singularität \square eine einfache N	
(b) Bestimmen Sie das Residuum von f bei $z=1$.	
$\mathrm{Res}_1(f) =$	
(c) Wie lautet der Hauptteil $H_1(z)$ der Laurent-Reihe von $z=1$?	n f in einer punktierten Kreisscheibe um
$H_1(z) =$	
(d) Welchen Konvergenzradius R hat der Nebenteil der La	urent-Reihe von f um $z = 1$?
R =	

4. Komplexe Wegintegrale

[10 Punkte]

Gegeben ist die Menge $G:=\{z\in\mathbb{C}\,|\,\operatorname{Re} z\geq 0,\,\operatorname{Im} z\geq 0,\,|z|\leq 2\}.$

(a) Geben Sie eine Parametrisierung von ∂G durch drei Wegstücke an.

$$\gamma_1(t) =$$

$$\gamma_2(t) =$$

$$\gamma_3(t) =$$

- (b) Berechnen Sie $\int\limits_{\partial G} f(z) dz$ für $f(z) = |z| \operatorname{Re} z \operatorname{Im} z.$
- (c) Bestimmen Sie, mit Begründung, den Wert des Integrals $\int\limits_{\partial G} \frac{z^3}{z^2-2i} dz.$

_	т .	• 1
h	Hanri	rroihon

[10 Punkte]

Sei $f:[-\pi,\pi]\to\mathbb{R}$ Riemann-integrierbar.

(a) Beweisen Sie für g(x) = f(-x), dass $\widehat{g}_k = \widehat{f}_{-k}$.

(b) Was besagt die Parsevalsche Gleichung (Parseval 1) für f?

(c) Sei nun $f(x) = \frac{\pi - |x|}{2}$. Die Fourierkoeffizienten von f lauten $\widehat{f}_k = \begin{cases} \frac{\pi}{4} & \text{für } k = 0, \\ \frac{(-1)^k - 1}{2\pi k^2} & \text{für } k \neq 0. \end{cases}$ Berechnen Sie mit Hilfe von (b) den Wert der Reihe $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4}$.

[6 Punkte]

Sei
$$f(x) = \begin{cases} xe^{-x} & \text{für } x \ge 0, \\ 0 & \text{sonst.} \end{cases}$$

(a) Ist die Fouriertransformierte $\widehat{f}(k)$ quadratintegrabel?

 \square Ja

 \square Nein

(b) Berechnen Sie $\widehat{f}(k)$.