

Mini Project Presentation

UVM based Verification & Physical Design of APB Bridge

by

Vaishnavi Holla Abhilash N Nithin S

221038018 221038023 221038024

VLSI Design VLSI Design VLSI Design

Group ID: VL05

Under the guidance of

Dr. Madhushankara M

Associate Professor

Manipal School of Information Sciences

MAHE, Manipal

Presentation Outline

- 1. Introduction
- 2. Objectives
- 3. Block Diagram
- 4. FSM
- 5. Work done/Results
- 6. Conclusion
- 7. References

1. Introduction

- Advanced Peripheral Bus (APB) Connects peripheral devices to a
 CPU in embedded systems.
- Highly configurable and allow multiple devices on a single bus.
- Compatible with other bus-based protocols.
- Widespread use highlights its value in electronics and computing.

- 1. To verify RTL design code associated with APB bridge using Universal Verification Methodology.
- 2. To obtain Physical Design of APB bridge.

3. Block Diagram

Figure 1: APB interface diagram

Figure 2: FSM states

Fig 3: Previous UVM report summary

Sl.no	Operation type	Test case	
1	Normal Operation Testing	Write on to the slave -1 (8x i.e contiguous memory)	
2		Write on to the slave -2 (8x)	
3		Write using generated random data	
4		Read from Slave 1	
5		Read from Slave 2	
6	Error injection	Write transfer without write address	
7		Read transfer without read address	
8		Write transfer without valid write data	

Table 1: Test cases for verification (UVM)

Fig 4: Previous GUI schematic

Fig 5: Previous Physical Design

Fig 6: GUI schematic

Fig 7: GUI schematic displaying Memory blocks

Property	Value
Library	fast.lib MEM2_128X16.lib
Clock frequency	50MHz
Area	1,00,000 squm
Slack	19336.2ps
Cell count	191

Fig 8: Constraints and Report summary

Fig 9: Floor planning

Fig 10: Power planning

Fig 11: Standard cell placement with wiring

Fig 12: Standard cells placement

Fig 13: Standard cells placement

Fig 14: Pre-CTS setup timing report

Fig 15: Pre-CTS hold timing report

Fig 16: Pre & Post CTS design Optimization changes

Fig 17: Post-CTS setup timing report

Fig 18: Post-CTS hold timing report

Fig 19: Post Routing

Fig 20: Post Routing standard cell connection close up

Fig 21: Post Routing setup timing report

Fig 22: Post Routing hold timing report

Fig 23: Adding fillers

Fig 24: Final Design

Timing Report Summary

SI. No	Stage	Setup timing (in ns)	Hold timing (in ns)
1	Pre CTS	17.699	-0.07
2	Post CTS	17.756	0.019
3	Post Routing	17.779	0.018

Fig 25: DRC check

UVM

Sl.no	Operation type	Test case	
1	Normal Operation Testing	Write on to the slave -1 (8x i.e contiguous memory)	
2		Write on to the slave -2 (8x)	
3		Write using generated random data	
4		Read from Slave 1	
5		Read from Slave 2	
6	Error injection	Write transfer without write address	
7		Read transfer without read address	
8		Write transfer without valid write data	

Table 1: Test cases for verification

Fig 26: Simulation Results

Fig 27: Write to Slave 1

Fig 28: Write to Slave 2

Fig 29: Driving Randomized Values

Fig 30: Read from Slave 1

Fig 31: Read from Slave 2

Fig 32: Invalid write data

Fig 33: Invalid Write address

Fig 34: Invalid Read address

Fig 35: Verification Metrics

Fig 36: FSM Coverage

6. Conclusion

- Physical Design implemented for the design by creating macros for both the slaves and optimizing the design complexity.
- Verified using Universal Verification Methodology (UVM) and verification metrics generated.

7. References

- AMBA APB Protocol Specification ARM
- Verification of Advanced Peripheral Bus Protocol (APB V2.0) Meghana Jain H K1, Dr. Punith Kumar M B, Student, Professor, Dept of Electronics and Communication Engineering, P.E.S College of Engineering, Karnataka, India

THANK YOU...