4th Semester

Course Title	Course Structure			Pre-
				Requisite
SE 204	${f L}$	T	P	Digital
Computer	3	0	2	Electronics
System				
Architecture				

Course Objective:

To provide knowledge about the principles, concepts and applications of Computer Architecture.

Course Outcome (CO):

- 1. Describe the functionalities of various units of a computer
- 2. Illustrate the logic design of Control Unit
- 3. Understand the architecture and functionality of central processing unit.
- 4. Learn the different types of serial communication techniques.
- 5. Illustrate various memory components and memory mapping techniques

S.No.	Content	Contact Hours
Unit 1	Introduction: Digital computer generation, computer types and classifications, functional units and their interconnections, bus architecture, types of buses and bus arbitration. Register, bus and memory transfer. REGISTER TRANSFER LANGUAGE: Data movement around registers. Data transfer from/to memory, arithmetic, logic and shift micro operations. Concept of bus and timing in register transfer.	8
Unit 2	Control Unit: Instruction types, Instruction formats, Instruction cycles and sub-cycles (fetch and execute etc.), micro-operations, execution of a complete instruction. Hardwired Control Unit and Microprogrammed Control Unt: microprogrammed sequencing, wide branch addressing, and micro-instruction with next address field, pre-fetching microinstructions, concept of horizontal and vertical microprogramming.	8
Unit 3	Central Processing Unit: Processor organization, general register organization, stack organization and addressing modes. Computer Arithmetic: Addition and subtraction of signed numbers, Signed operand multiplication, Booth's algorithm and array multiplier. Division	9

	and logic operations. Floating point arithmetic operation	
Unit 4	Input/Output organization: Peripheral devices, I/O interface, I/O ports, Interrupts: interrupt hardware, types of interrupts and exceptions.	9
	Modes of Data Transfer: Programmed I/O, interrupt initiated I/O and Direct Memory Access. I/O channels and processors. Serial Communication: Synchronous & asynchronous communication, standard communication interfaces.	
Unit 5	Memory: Basic concept and hierarchy, Main memory, Auxiliary memory, Associative memory, Cache memories: concept and design issues, associative mapping, direct mapping, setassociative mapping, cache writing and initialization.	8
	Total	42

Books:-

S.No.	Name of Books/Authors/Publisher
1)	Patterson, Computer Organization and Design, Elsevier Pub. 2009
2)	Morris Mano, Computer System Architecture, PHI 1992
3)	William Stalling, Computer Organization, PHI 2012
4)	Vravice, Hamacher&Zaky, Computer Organization, TMH 2009
5)	Tannenbaum, Structured Computer Organization, PHI 2006