

MANUAL DO USUÁRIO

DESCRIÇÃO

A CPU Volcano é uma placa eletrônica desenvolvida pela Embtech Tecnologia Embarcada que permite a criação de soluções computacionais robustas prontas para uso, de tamanho reduzido, alto poder de processamento e presença de várias interfaces industriais e de conectividade. Compatível com módulos Toradex da Família Arm® Verdin (adquirido separadamente), esta placa-base oferece acesso aos principais periféricos do módulo*: portas USB (Host/Device/OTG), Ethernet Gigabit, Wi-Fi, Bluetooth, Interface para Display MIPI-DSI (compatíveis com displays HTMG de 7" e 10.1") e LVDS (plugin requerido), interface Mini PCI-e com slot para Nano SIM Card, interface para câmeras MIPI-CSI, slot para Micro SD Card, interface de Áudio (Line In, Line Out e HeadPhone) e UART. A CPU Volcano disponibiliza ainda recursos complementares como: Conversor DC/DC interno (permite alimentação de 8 a 24V_{DC} ou 30 a 48V_{DC}), Sensor de Temperatura on-board, Interface para redes CAN e RS-485, Barramentos de Expansão para controle de energia, conexão de plugins Embtech de expansão e acesso a periféricos do módulo (UART/ SPI/ I2C/ PWM/ CAN/ ADC/ GPIOs). Por fim, possui suporte também a RTC, JTAG, chaves tácteis, LEDs de sinalização e sinal independente de habilitação de energia para dispositivos alimentados à bateria.

* Algumas funcionalidades podem não estar disponíveis em todos os módulos da Família Verdin ou em todos os modelos de placa Volcano. Em caso de dúvidas, consulte nosso suporte técnico.

SUMÁRIO

1. PERIFÉRICOS DISPONÍVEIS	2
2. DIAGRAMA FUNCIONAL	3
3. ALIMENTAÇÃO DA CPU VOLCANO	4
4. ALIMENTAÇÃO DE DISPOSITIVOS EXTERNOS	4
5. RECURSOS DE HARDWARE	5
5.1 SoM Arm Verdin Toradex	5
5.2 Wi-Fi e Bluetooth	5
5.3 Ethernet Gigabit	5
5.4 Interface SD/MMC Card	5
5.5 USB DRP	5
5.6 USB Host	6
5.7 Mini PCI-e	6
5.8 RS-485	7
5.9 CAN	7
5.10 Sensor de Temperatura	7
5.11 LVDS	8
5.12 Áudio	8
5.13 JTAG	9
5.14 UARTs para Debug	9
5.14.1 Debug MPU	9
5.14.2 Debug MCU	9
5.15 MIPI-DSI	9
5.16 MIPI-CSI	10
5.17 Bateria CR2032	10
5.18 LED de Uso Geral	10
5.19 LEDs de sinalização de alimentação	10
5.20 Botão Reset	10
5.21 Botão ON/OFF	10
5.22 Botão Recovery	11
5.23 Botão de Uso Geral	11
5.24 Expansão PMIC	11
5.25 Expansão 40 Pinos	11
5.26 Plugin Volcano	11
6. CONDIÇÕES RECOMENDADAS DE OPERAÇÃO	12
7. REFERÊNCIAS MECÂNICAS	13
8. ABREVIAÇÕES	14
9. REVISÕES DO DOCUMENTO	14

1. PERIFÉRICOS DISPONÍVEIS

Figura 1 - Periféricos da CPU Volcano do lado Superior

Figura 2 - Periféricos da CPU Volcano do lado inferior

2. DIAGRAMA FUNCIONAL

Figura 3 - Diagrama funcional da CPU Volcano

3. ALIMENTAÇÃO DA CPU VOLCANO

A alimentação da placa CPU Volcano é feita através do conector CN1 POWER. A faixa de tensão de alimentação pode variar de acordo com o modelo da placa. Os modelos com alimentação convencional (DEFAULT) possuem alimentação de 8 a 30V_{DC} enquanto os modelos com tensão estendida (EXTENDED) permitem alimentação de 30 a 48V_{DC}. É recomendada a utilização de fonte de alimentação com potência mínima de 36W.

É possível identificar se a Volcano possui suporte à tensão estendida através da presença do componente DC1 (Conversor DC/DC de 30 a 48V) apresentado na Figura 1.

A alimentação incorreta pode provocar danos permanentes na placa. Em caso de dúvidas, consulte o suporte técnico da Embtech.

A placa CPU Volcano possui um sinal de habilitação (enable) da alimentação para permitir o controle da alimentação da placa através de um sinal de controle independente da fonte de alimentação principal. Este recurso é utilizado principalmente em sistemas alimentados à bateria e que possuem um sinal específico para controle de energização (Ex: Sinal pós-chave de automóveis). Recomenda-se utilizar o mesmo nível de tensão da alimentação principal no sinal de enable. A figura 4 apresenta o esquema de alimentação para sistemas que possuem sinal independente de habilitação.

Figura 4 - Alimentação com sinal de enable independente

Já em sistemas que não necessitam de controle independente de habilitação da fonte, a alimentação principal pode ser derivada para o sinal de *enable* conforme exemplificado na figura 5.

Figura 5 - Alimentação com sinal de enable independente

A placa CPU Volcano possui em seu conector de alimentação o sinal de TERRA que fornece um caminho exclusivo de baixa impedância para ruídos e surtos. Em aplicações específicas ou onde deseja-se uma maior imunidade a ruídos, este sinal pode ser utilizado para conectar os dispositivos de proteção da placa e a carcaça dos conectores metálicos (Ethernet, USB, micro SD) ao TERRA da instalação. Caso não haja este requisito, este pino pode ser desconectado.

4. ALIMENTAÇÃO DE DISPOSITIVOS EXTERNOS

A placa CPU Volcano possui diversos níveis de tensão sendo alguns deles disponibilizados nos conectores de expansão ou nos conectores de periféricos específicos como USB, Mini PCI-e, UART, MIPI-DSI, MIPI-CSI e Áudio.

A capacidade de fornecimento de tensão e corrente para dispositivos externos à placa depende dos periféricos em uso na própria placa Volcano e devem ser avaliados cuidadosamente na aplicação para evitar sobrecargas de alimentação e, consequentemente, falhas de operação do equipamento.

Os conversores de tensão internos da CPU Volcano podem fornecer seguintes potências máximas:

- 5V / 5A (25W)
- 3.3V / 3A (9W)
- 1.8V / 2A (3,6W)

5. RECURSOS DE HARDWARE

A seguir, são descritos os principais recursos de hardware disponíveis na CPU Volcano. Estes recursos podem variar de acordo com a montagem da placa e também com o módulo Toradex família Verdin utilizado.

5.1 SoM Arm Verdin Toradex

A Família Arm® Verdin da Toradex é composta por Sistemas em Módulo (SoM) com conexão DDR4 SODIMM que permitem designs robustos e otimizados em custo-performance. A família oferece módulos miniaturizados baseados em SoCs NXP® i.MX8 e AM62 com pinagens compatíveis.

Apesar da compatibilidade de pinos, alguns recursos não estão disponíveis em todos os módulos da família Verdin. A placa CPU Volcano foi desenvolvida para aproveitar ao máximo os principais recursos dos módulos Toradex. Em caso de dúvidas em relação ao suporte entre periféricos, módulos e placa Volcano, consulte o suporte técnico da Embtech.

Os recursos disponíveis na CPU Volcano serão descritos nos próximos itens.

5.2 Wi-Fi e Bluetooth

Alguns módulos da família Verdin disponibilizam interfaces Wi-Fi e Bluetooth on-module. As especificações técnicas destas interfaces variam de acordo com o módulo utilizado.

Para mais informações acesse:

https://www.toradex.com/pt-br/computer-on-modules/verdin-arm-family

5.3 Ethernet Gigabit

Suporte ao padrão Ethernet 10/100/1000Mbps.

Interface através de conector RJ-45 com LEDs de sinalização de link e velocidade da conexão.

Acessível via conector CN6 ETHERNET. A seguir são apresentados os principais sinais utilizados na interface ethernet:

Nome	Verdin sodimm
ETH_1_MDI0_P	225
ETH_1_MDI0_N	227
ETH_1_MDI1_N	231
ETH_1_MDI1_P	233
ETH_1_MDI2_P	239
ETH_1_MDI2_N	241
ETH_1_MDI3_N	245
ETH_1_MDI3_P	247
ETH1_LINK	237
ETH1_ACT	235

5.4 Interface SD/MMC Card

Interface para cartão micro SD Card (4 bit SDIO) com suporte a controle de alimentação e detecção de presença do cartão por software.

A placa CPU SoM possui LED SD V. de sinalização de presença de alimentação no circuito do cartão SD/MMC.

Acessível via conector SD1. A seguir são apresentados os principais sinais utilizados na interface SD Card:

Nome	Verdin sodimm
SD_1_D2	70
SD_1_D3	72
SD_1_CMD	74
SD_1_PWR_EN	76
SD_1_CLK	78
SD_1_D0	80
SD_1_D1	82
SD_1_CD#	84

5.5 USB DRP

Interface com uma porta USB DRP (dual-role-port) (conector tipo C) que pode ser utilizada como *host* ou *client*. Esta porta é comumente utilizada no modo recovery do módulo para o carregamento de um novo software.

A determinação da função host, client ou ambos é realizada pelos sinais de configuração de canal (CC) gerenciados por um controlador embarcado na placa

e previstos nos pinos do conector tipo C. Este controlador também é responsável por determinar a operação da USB como UFP (*upstream-facing port*), DFP (*downstream-facing port*), ou DRP (*dual-role port*).

A placa CPU SoM possui LED USB C de sinalização da alimentação da porta.

Acessível via conector CN7 USB DRP . A seguir são apresentados os principais sinais utilizados na interface USB DRP:

Nome	Verdin sodimm
USB_1_EN	155
USB_1_OC#	157
USB_1_VBUS	159
USB_1_ID	161
USB_1_D_N	163
USB_1_D_P	165

5.6 USB Host

Interface com duas portas USB Host (conector tipo A) com suporte aos padrões USB 3.x/2.0. No entanto, alguns módulos da família Verdin não possuem suporte para USB 3.x.

O LED USB A L sinaliza a alimentação da porta USB inferior (Lower) enquanto o LED USB A U sinaliza tensão na porta superior (Upper). Já o LED USB HB faz a sinalização da alimentação do HUB USB presente na placa. Neste mesmo HUB está conectada a interface USB usada no conector mini PCI-e que será detalhada a seguir.

Acessível via conector CN8 USB HOST. A seguir são apresentados os principais sinais utilizados na interface USB HOST:

Nome	Verdin sodimm
USB_2_SSTX_N	169
USB_2_SSTX_P	171
USB_2_SSRX_N	175
USB_2_SSRX_P	177
USB_2_D_N	181
USB_2_D_P	183
USB_2_EN	185
USB_2_OC#	187

As portas USB presentes no conector CN8 estão conectadas ao hub USB (USB5744/2G - Microchip) presente na placa Volcano. Este hub é conectado à porta USB2 do módulo Verdin e fornece três portas adicionais, sendo duas delas disponíveis em CN8 (USB Host) e a terceira em CN14 (interface Mini PCI-e).

5.7 Mini PCI-e

Interface compatível com módulos do padrão Mini PCI Express com múltiplas interfaces no barramento, sendo:

- PCIE express 1 (com SMBUS);
- USB 2.0;
- LEDs de sinalização WLAN, WWAN, WPAN e PCIE V (Alimentação da interface Mini PCI-e);
- Slot para Nano SIM Card disponível no conector CN15 do lado inferior da placa.

A interface Mini PCI-e está disponível no conector CN14 do lado inferior da placa. A seguir são listados os sinais presentes no conector:

Pino	Nome	Verdin SODIMM	Pino	Nome	Verdin SODIMM
1	PCIE_1_WAKE#	252	2	+V3.3_PCIE_1	
3	NC		4	GND	
5	NC		6	+V1.5_PCIE_1	
7	NC		8	PCIE_1_UIM_PWR	
9	GND		10	PCIE_1_UIM_DATA	
11	PCIE_1_CLK_N	226	12	PCIE_1_UIM_CLK	
13	PCIE_1_CLK_P	228	14	PCIE_1_UIM_RESET	
15	GND		16	PCIE_1_UIM_VPP	
17	NC		18	GND	
19	NC		20	PCIE_1_WDISABLE#	
21	GND		22	PERST#	244
23	PCIE_1_L0_RX_N	232	24	+V3.3_SW	
25	PCIE_1_LO_RX_P	234	26	GND	
27	GND		28	+V1.5_PCIE_1	
29	GND		30	PCIE_1_SMCLK	12
31	PCIE_1_L0_TX_N	238	32	PCIE_1_SMDAT	14
33	PCIE_1_L0_TX_P	240	34	GND	
35	GND		36	USBH4_D_N	
37	GND		38	USBH4_D_P	
39	+V3.3_PCIE_1		40	GND	
41	+V3.3_PCIE_1		42	PCIE_1_WWLAN#	
43	GND		44	PCIE_1_WLAN#	
45	NC		46	PCIE_1_WPAN#	
47	NC		48	+V1.5_PCIE_1	
49	NC		50	GND	
51	NC		52	+V3.3_PCIE_1	

Conforme já adiantado no item USB Host, a porta USB presente no conector Mini PCI-e é conectada ao hub USB (USB5744/2G - Microchip) presente na placa Volcano. Este hub é conectado à porta USB2 do módulo Verdin e fornece três portas adicionais, sendo duas delas disponíveis em CN8 (USB Host) e a terceira em CN14 (interface Mini PCI-e).

5.8 RS-485

Interface de comunicação compatível com o padrão RS-485, Half Duplex, com taxa de comunicação máxima de 5Mbps (dependendo do módulo Verdin utilizado) e possibilidade de conexão de até 256 dispositivos no barramento.

Acessível via conector CN10 RS-485 . A correta posição dos sinais pode ser verificada na imagem X ou nas legendas existentes na própria placa CPU Volcano.

De acordo com o padrão RS-485, o início e o fim do barramento devem ser ligados com terminadores de rede. A figura 6 exemplifica a conexão dos terminadores.

Figura 6 - Exemplo de rede RS-485 com terminadores

A placa CPU Volcano possui terminador de rede de 120Ω habilitado via jumper JP1 conforme figura 7.

Figura 7 - Conexão RS-485

A seguir são apresentados os principais sinais utilizados na interface RS-485:

Nome	Verdin sodimm
UART1_RXD	129
UART1_TXD	131
UART1_RTS	133

5.9 CAN

Interface de comunicação compatível com a especificação CAN (Control Area Network) 2.0B com taxa de comunicação máxima de 1Mbps.

Acessível via conector CN11 CAN. A correta posição dos sinais pode ser verificada na imagem X ou nas legendas existentes na própria placa CPU Volcano.

Assim como o padrão RS-485, a especificação da rede CAN determina que o início e o fim do barramento devem ser ligados com terminadores de rede conforme exemplificado na figura 6.

O terminador de 120Ω da rede CAN pode ser habilitado via jumper JP2 conforme figura 8.

Figura 8 - Conexão CAN

A seguir são apresentados os principais sinais utilizados na interface CAN:

Nome	Verdin sodiмм
CAN1_TX	20
CAN1_RX	22

5.10 Sensor de Temperatura

Sensor de temperatura *on-board* PCT2075GVX com faixa de medição de -55°C a +125°C e precisão de ±1°C

(na faixa de -25°C e +100°C). Comunicação I2C com frequência de operação entre 20KHz e 1MHz e resolução do ADC de 11bits (0.125°C).

Endereço I2C de 7 bits: 0b1001 001.

Sinais utilizados na interface I2C:

Nome	Verdin sodimm
I2C1_SDA	12
I2C1_SCL	14

5.11 LVDS

Fornece uma interface de comunicação com sinais compatíveis com o padrão LVDS, comumente utilizado para comunicação com displays. No entanto, alguns módulos da família Verdin não possuem suporte nativo para LVDS.

Acessível via conector CN21 LVDS (CONECTOR FFC/FPC, 0.5MM, 50 VIAS, TOP CONTACT). A seguir, são apresentados os sinais presentes no conector CN21 e sua respectiva referência no módulo Verdin:

Pino	Nome	Verdin sodimm
1	GND	
2	LVDS_1_A_CLK_N	88
3	LVDS_1_A_CLK_P	90
4	GND	
5	LVDS_1_A_TX0_N	94
6	LVDS_1_A_TX0_P	96
7	GND	
8	LVDS_1_A_TX1_N	100
9	LVDS_1_A_TX1_P	102
10	GND	
11	LVDS_1_A_TX2_N	106
12	LVDS_1_A_TX2_P	108
13	GND	
14	LVDS_1_A_TX3_N	112
15	LVDS_1_A_TX3_P	114
16	GND	
17	LVDS_1_B_CLK_N	118
18	LVDS_1_B_CLK_P	120
19	GND	
20	LVDS_1_B_TX0_N	124
21	LVDS_1_B_TX0_P	126
22	GND	
23	LVDS_1_B_TX1_N	130
24	LVDS_1_B_TX1_P	132
25	GND	

26 LVDS_1_B_TX2_N 27 LVDS_1_B_TX2_P 28 GND 29 LVDS_1_B_TX3_N	136 138
28 GND	138
29 IVDS 1 B TX3 N	
1 1	142
30 LVDS_1_B_TX3_P	144
31 GND	
32 I2C1_SCL	12
33 I2C1_SDA	14
34 GND	
35 I2S2_D_IN	48
36 I2S2_D_OUT	46
37 I2S2_SYNC	44
38 12S2_BCLK	42
39 5V	
40 5V	
41 5V	
42 5V	
43 3.3V	
44 3.3V	
45 1.8V	
46 1.8V	
47 NC	
48 NC	
49 NC	
50 NC	

5.12 Áudio

Fornece sinais de áudio analógicos como saída de fone de ouvido (esquerdo / direito), entrada de microfone, entrada e saída de áudio (esquerda / direita).

Esta interface analógica de áudio é baseada no codec de áudio WM8904CGEFL/RV do fabricante Cirrus Logic.

Acessível via conectores CN13 e CN12. A seguir são apresentados os sinais presentes nos conectores de áudio:

CN12	CN12		CN13	
Pino	Nome	Pino	Nome	
1	1.8V	1	HEADPHONE LEFT	
2	LINE IN LEFT	2	HEADPHONE RIGHT	
3	LINE IN RIGHT	3	GND	
4	GND	4	MICROPHONE IN	
5	LINE OUT LEFT			
6	LINE OUT RIGHT			
7	GND			

5.13 JTAG

Acessível via conector CN4 JTAG . Sinais presentes no conector:

Pino	Nome	Verdin sodimm
1	JTAG1_VREF	7
2	JTAG1_TMS	13
3	GND	
4	JTAG1_TCK	9
5	GND	
6	JTAG1_TDO	5
7	NC	
8	JTAG1_TDI	1
9	GND	
10	JTAG1_TRST#	3

5.14 UARTs para Debug

A placa CPU Volcano possui acesso às duas principais portas reservadas para debug dos módulos Verdin: UART 3 (debug do sistema operacional) e UART 4 (debug do microcontrolador).

As portas de comunicação UART3 e UART4 devem ser conectadas exclusivamente em dispositivos que operam com a tensão de 3.3V e, portanto, **são incompatíveis** com conversores USB/UART que operam em 5V.

A utilização desta interface com dispositivos com tensões diferentes da especificada pode provocar danos permanentes na placa.

5.14.1 Debug MPU

Interface para acesso à UART3 do módulo Verdin. Esta interface é a principal porta de entrada/saída para debug do sistema operacional e, por este motivo, é fortemente recomendado que esta interface seja reservada para essa finalidade.

Acessível via conector CN18 UART3 . Sinais presentes no conector:

Pino	Nome	Verdin sodimm
1	3.3V	
2	UART3 RX	147
3	UART3 TX	149

4	GND	

5.14.2 Debug MCU

Interface para acesso à UART4 do módulo Verdin. Esta interface pode ser utilizada como uma UART de propósito geral ou para debug do microcontrolador dos módulos Verdin que possuem esta funcionalidade.

Acessível via conector CN19 UART4. Sinais presentes no conector:

Pino	Nome	Verdin sodimm
1	3.3V	
2	UART4 RX	151
3	UART4 TX	153
4	GND	

5.15 MIPI-DSI

A placa CPU Volcano foi desenvolvida para ser compatível elétrica e mecanicamente com alguns modelos de displays disponíveis no mercado que utilizam a interface MIPI-DSI. Esta característica permite a criação de IHMs modernas, de alta resolução e sensível ao toque (interface touch capacitiva).

A HTMG (High Technology and Materials Group) possui em seu portfólio, modelos de displays de 7" e 10.1" que podem ser facilmente integrados à placa Volcano. Para maiores informações sobre displays compatíveis, consulte o suporte técnico da Embtech.

A interface MIPI-DSI é acessível via conector CN5 MIPI-DSI presente no lado inferior da placa. Sinais presentes no conector:

Nome	Verdin sodimm
GND	
DSI_1_D0_P	49
DSI_1_D0_N	47
GND	
DSI_1_D1_P	43
DSI_1_D1_N	41
GND	
DSI_1_CLK_P	37
DSI_1_CLK_N	35
GND	
DSI_1_D2_P	31
DSI_1_D2_N	29
	GND DSI_1_D0_P DSI_1_D0_N GND DSI_1_D1_P DSI_1_D1_N GND DSI_1_CLK_P DSI_1_CLK_N GND DSI_1_CLK_N

13	GND	
14	DSI_1_D3_P	25
15	DSI_1_D3_N	23
16	GND	
17	DSI_1_BKL_EN	21
18	PWM_3_DSI	19
19	DSI_1_INT#	17
20	I2C2_DSI_SCL	55
21	I2C2_DSI_SDA	53
22	RST_DISP (3.3V)	
23	1.8V	
24	1.8V	
25	3.3V	
26	5V	
27	5V	
28	5V	
29	5V	
30	GND	
31	NC	
32	NC	
33	NC	
34	NC	

5.16 MIPI-CSI

Acessível via conector CN9 MIPI-CSI. Sinais presentes no conector:

Pino	Nome	Verdin sodimm
1	GND	
2	CS1_D0_N	125
3	CS1_D0_P	123
4	GND	
5	CS1_D1_N	119
6	CS1_D1_P	117
7	GND	
8	CS1_CLK_N	113
9	CS1_CLK_P	111
10	GND	
11	CAM1_RST	216
12	CSI_1_MCLK	91
13	I2C_4_CSI_SCL	93
14	I2C_4_CSI_SDA	95
15	3.3V	
16	CS1_D2_N	107
17	CS1_D2_P	105
18	GND	
19	CS1_D3_N	101
20	CS1_D3_P	99
21	5V	
22	CAM_1_PWRDWN	218
23	CAM_1_IC_DETECT	220
24	CAM_1_PWRCTRL	222

5.17 Bateria CR2032

Soquete para utilização de bateria CR2032 de 3V para alimentação do sinal VCC_BACKUP disponível no pino 249 do SODIMM.

Acessível via BAT1 presente no lado inferior da placa.

5.18 LED de Uso Geral

LED vermelho de propósito geral identificado na placa como US.LED e conectado ao pino 52 do módulo Verdin.

5.19 LEDs de sinalização de alimentação

A placa CPU Volcano possui diversos LEDs para fornecer sinalizações sobre a presença de tensões e habilitação de determinados recursos do hardware.

5V : Alimentação geral de 5V habilitada;

5V MPU: Alimentação de 5V para o módulo Verdin;

5V SW : Alimentação de 5V habilitada via PMIC do módulo Verdin;

3.3V SW : Alimentação de 3.3V habilitada via PMIC do módulo Verdin;

SLEEP: Modo Sleep do módulo habilitado;

PERIPH: Alimentação dos periféricos da placa habilitada via PMIC do módulo Verdin.

5.20 Botão Reset

Chave táctil conectada ao sinal CTRL_RESET_MICO# disponível no pino 260 do SODIMM.

Acessível via chave táctil S2 RESET.

5.21 Botão ON/OFF

Chave táctil conectada ao sinal CTRL_PWR_BTN_MICO# disponível no pino 248 do SODIMM.

Esta funcionalidade também está disponível no conector CN3 para possibilitar a conexão de um botão externo à placa em aplicações onde é necessário o acesso ao botão ON/OFF no gabinete ou painel do equipamento.

Acessível via chave táctil S3 ON/OFF e conector CN3.

5.22 Botão Recovery

Chave táctil identificada na placa como RECOV. utilizada para acessar o modo RECOVERY do módulo Verdin.

Por questões de segurança, a chave S1 pode não ser montada em alguns modelos de placas Volcano. Para acessar o modo RECOVERY nestes casos, basta energizar a placa CPU Volcano com os pinos laterais direitos de S1 interligados conforme figura 9.

Figura 9 - Inicialização do módulo Verdin em modo Recovery

5.23 Botão de Uso Geral

Chave táctil de propósito geral identificada na placa como US.BUT. e conectada ao pino 54 do módulo Verdin.

5.24 Expansão PMIC

Expansão para acesso aos pinos de controle e monitoramento do PMIC do módulo Verdin.

Acessível via conector CN17. Sinais presentes no conector:

Pino	Nome	Verdin sodimm
1	3.3V	
2	GND	
3	CTRL_RECOVERY_MICO#	246
4	CTRL_PWR_BTN_MICO#	248
5	CTRL_RESET_MICO#	260

CTRL_WAKE1_MICO#	252
CTRL_PWR_EN_MOCI	254
CTRL_SLEEP_MOCI#	256
CTRL_RESET_MOCI#	258
CTRL_FORCE_OFF_MOCI#	250
1.8V	
GND	
	CTRL_PWR_EN_MOCI CTRL_SLEEP_MOCI# CTRL_RESET_MOCI# CTRL_FORCE_OFF_MOCI# 1.8V

5.25 Expansão 40 Pinos

Expansão para acesso aos pinos adicionais do módulo Verdin. Os sinais disponíveis neste conector são conectados diretamente aos pinos de alimentação e ao SODIMM do módulo Verdin e por isso, devem respeitar as características e restrições de tensão e corrente especificadas.

Acessível via conector CN20 EXPANSION . Sinais presentes no conector:

Pino	Nome	Verdin	Pino	Nome	Verdin
	Função Principal	SODIMM		Função Principal	SODIMM
1	5V		2	5V	
3	1.8		4	3.3V	
5	GND		6	GND	
7	CAN2_TX	24	8	CAN2_RX	26
9	GND		10	GND	
11	I2C1_SCL	14	12	I2C1_SDA	12
13	GND		14	GND	
15	UART2_TXD	139	16	UART2_RTS	141
17	UART2_RXD	137	18	UART2_CTS	143
19	GND		20	GND	
21	ADC1	2	22	ADC2	4
23	ADC3	6	24	ADC4	8
25	GND		26	GND	
27	SPI1_CLK	196	28	SPI1_MISO	198
29	SPI1_CS	202	30	SPI1_MOSI	200
31	GND		32	GND	
33	PWM1	15	34	PWM2	16
35	GPIO_1	206	36	GPIO_2	208
37	GPIO_3	210	38	GPIO_4	212
39	GND		40	GND	

5.26 Plugin Volcano

Alguns recursos que não constam na placa CPU Volcano poderão ser utilizados através de plugins (hardwares) desenvolvidos sob demanda. Através dos plugins, é possível adicionar novas funcionalidades ao produto através da inserção de sensores, interfaces para condicionamento de sinais analógicos ou digitais, interfaces de comunicação com e sem fio, kits

educacionais, compatibilização com displays específicos, etc.

Alguns plugins previstos são:

- Plugin LVDS (Compatibilização de pinagem e alimentação de displays com interface LVDS);
- Plugins de conectividade (LoRa, ZigBee, SigFox, 4G, LTE, etc);
- Plugins de sensores (temperatura, umidade, qualidade do ar, pressão, etc);
- Kit Educacional com potenciômetros, push-buttons, LEDs, buzzer, sensores, etc;
- Adaptador LVDS para HDMI;

Acessível via conector CN16 PLUGIN . Sinais presentes no conector:

Pino	Nome	Verdin	Pino	Nome	Verdin
	Função Principal	SODIMM		Função Principal	SODIMM
1	5V		2	3.3V	
3	5V		4	3.3V	
5	5V		6	3.3V	
7	5V		8	GND	
9	5V		10	1.8V	
11	GND		12	1.8V	
13	GND		14	1.8V	
15	GND		16	GND	
17	CAN2_TX	24	18	CAN2_RX	26
19	GND		20	GND	
21	I2C1_SCL	14	22	I2C1_SDA	12
23	GND		24	GND	
25	UART2_TXD	139	26	UART2_RTS	141
27	UART2_RXD	137	28	UART2_CTS	143
29	GND		30	GND	
31	ADC1	2	32	ADC2	4
33	ADC3	6	34	ADC4	8
35	GND		36	GND	
37	SPI1_CLK	196	38	SPI1_MISO	198
39	SPI1_CS	202	40	SPI1_MOSI	200
41	GND		42	GND	
43	PWM1	15	44	PWM2	16
45	GND		46	GND	
47	GPIO_1	206	48	GPIO_2	208
49	GPIO_3	210	50	GPIO_4	212

CONDIÇÕES RECOMENDADAS DE OPERAÇÃO

Parâmetros				Max	Unid		
Alimentação							
Alimentação da Tensão		DEFAULT	8	30	V _{DC}		
CPU (Nota 1)		EXTENDED	30	48	V _{DC}		
	Potênci	a	36	-	W		
Temperatura							
Temperatura de C	peração)	0	60	°C		
Limite de corrent	e total -	Periféricos externo	s	.			
Corrente Máxima	Total	1.5V	-	1.5	А		
(Nota 2)		1.8V	-	4.0	Α		
		3.3V	-	4.0	Α		
		5V	-	3.0	Α		
Corrente máxima	recome	ndada - Periféricos	extern	os	ļ		
MIPI-DSI		1.8V	-	300	mA		
		3.3V	-	100	mA		
		5V	-	700	mA		
LVDS		1.8V	-	300	mA		
		3.3V	-	100	mA		
		5V	-	700	mA		
USB-C		5V	-	500	mA		
USB-A		5V (Porta Superior)	-	900	mA		
		5V (Porta Inferior)	-	900	mA		
MIPI-CSI		3.3V	-	300	mA		
		5V	-	200	mA		
UART		3.3V (Debug MPU)	-	300	mA		
		3.3V (Debug MCU)	-	300	mA		
ÁUDIO		1.8 V	-	500	mA		
Mini PCI-e		1.5V	-	1.0	Α		
		3.3V	-	2.5	Α		
Plugin Volcano		1.8V	-	500	mA		
		3.3V	-	500	mA		
		5V	-	500	mA		
Expansão 40 Pino	s	1.8V	-	500	mA		
		3.3V	-	500	mA		

	5V	-	500	mA
Expansão PMIC	1.8V	-	500	mA
	3.3V	-	100	mA

Nota 1: A alimentação incorreta pode provocar danos permanentes e perda de garantia da placa. Antes de conectar a CPU Volcano à fonte de alimentação,

certifique-se de que os requisitos do modelo utilizado estão sendo atendidos. Em caso de dúvidas, consulte o suporte técnico da Embtech.

Nota 2: A soma das correntes de todos os periféricos conectados a uma tensão de alimentação nunca deve ultrapassar a Corrente Máxima Total especificada.

7. REFERÊNCIAS MECÂNICAS

Figura 10 - Dimensões - Vista Superior

Figura 11 - Dimensões - Vista Lateral

8. ABREVIAÇÕES

Sigla	Descrição
ADC	Analog to Digital Converter
CAN	Controller Area Network
CPU	Central Processor Unit
CSI	Camera Serial Interface
DFP	Downstream Facing Port
	USB tipo C que opera como Host
DRP	Dual-Role Port
	USB tipo C que pode operar fornecendo ou
	recebendo energia
DSI	Display Serial Interface
GND	Ground
GPIO	General Purpose Input/Output
I2C	Inter-Integrated Circuit
I2S	Integrated Interchip Sound
I/O	Input-Output
IHM	Interface Homem Máquina
JTAG	Joint Test Action Group
LVDS	Low-Voltage Differential Signaling
MCU	Microcontrolador
MIPI	Mobile Industry Processor Interface
Mini PCI-e	PCI Express Mini Card
MMC	Multi-Media Card
	Cartão de memória flash
PWM	Pulse-Width Modulation

PWR	Power
RJ45	Registered Jack
	Conector comumente utilizado em redes Ethernet
RS-485	Porta de comunicação serial com sinal
	diferencial
SD	Secure Digital
	Cartão de memória flash
SIM	Subscriber Identification Module
	Cartão de identificação para redes móveis
SoC	System on a Chip
SoM	System on a Module
SPI	Serial Peripheral Interface Bus
UFP	Upstream Facing Port
	USB tipo C que opera como Client
UART	Universal Asynchronous Receiver/
	Transmitter
USB	Universal Serial Bus

9. REVISÕES DO DOCUMENTO

• **Rev:01:** Versão inicial. Data: 05/09/2023

Última Atualização em 05/09/2023.

EMBTECH TECNOLOGIA EMBARCADA S/A 2023

Informações sujeitas a alteração sem aviso prévio. Para maiores informações, acesse: www.embtech.com.br

