Example 1. If \mathcal{F} is a free ultrafilter on ω , let $L(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$ as a subspace of the Stone-Cech compactification $\beta\omega$ be the **single ultrafilter line**. There is some ultrafilter \mathcal{F} such that $K \uparrow_{pre} LF_{K,P}(L(\mathcal{F}))$ and $K \uparrow_{tact} LF_{K,P}(L(\mathcal{F}))$.

 $(L(\mathcal{F}) \text{ is not compactly generated, and thus not locally compact.})$

Proof. Let a_n be a sequence such that the sequence $\frac{a_n}{n}$ is unbounded above. Then there is an ultrafilter \mathcal{F} such that $\sigma(n) = (\sum_{m \leq n} a_m) \cup \{\mathcal{F}\}$ is a winning predetermined strategy for K in $LF_{K,P}(L(\mathcal{F}))$.

Let \mathcal{P} be the collection of all legal plays by P against the strategy σ . Consider a finite collection of plays $P_0, \ldots, P_{n-1} \in \mathcal{P}$. As $\frac{a_m}{m}$ is unbounded above, we may find infinitely many m such that $\frac{a_m}{m} > n \Rightarrow mn < a_m$. As the a_m partition ω such that P may only play at most m points in each part, there are infinitely many parts which are not filled, and thus $\bigcup_{m < n} P_m$ is not cofinite.

It then follows that the closure of \mathcal{P} under finite unions and subsets, along with all finite sets, is an ideal. Its dual filter may then be extended to an ultrafilter \mathcal{F} such that every possible play by P is the complement of some member of \mathcal{F} , making σ a winning predetermined strategy.

A winning tactic can then be easily constructed by using the moves by P as the round number in the predetermined strategy.

Example 2. Let $T(\mathcal{F}) = 2^{\leq \omega}$ where $2^{<\omega}$ is discrete and for each $c \in 2^{\omega}$, $\{c \upharpoonright \alpha : \alpha \leq \omega\}$ is homeomorphic to $L(\mathcal{F})$. This is called the **single ultrafilter tree**. There is some ultrafilter \mathcal{F} such that $K \uparrow_{pre} LF_{K,P}(L(\mathcal{F}))$ and $K \uparrow_{tact} LF_{K,P}(L(\mathcal{F}))$.

 $(T(\mathcal{F}) \text{ is not compactly generated, and thus not locally compact.})$

Proof. Assume without loss of generality that P does not play points in 2^{ω} .

We use a winning predetermined strategy $\sigma^*(n)$ for $L(\mathcal{F})$ and let $\sigma(n) = \bigcup_{m \in \sigma^*(n)} 2^m$. Note that if P has a counter which converges to some $c \in {}^{\omega}2$, then P would have a counter within a single branch. Since each branch is homeomorphic to $L(\mathcal{F})$; this is impossible.

A winning tactic can then be easily constructed by using the moves by P, taking the level of the tree played upon as the round number in the predetermined strategy.

Example 3. Let $M = \omega^2 \cup \{\infty\}$ be the **metric fan** where ω^2 is discrete and ∞ has neighborhoods of the form $M \setminus (n \times \omega)$ for any $n < \omega$. Then $K \not\uparrow LF_{K,P}(M)$. (In fact, $P \uparrow_{mark} LF_{K,P}(M)$.)

(M is not locally compact, but is compactly generated.)

Proof. For each compact set C in M, there exists a minimal dominating function f_C such that for each $(x,y) \in C \setminus \{\infty\}$, f(x) > y.

So let P respond to the move $C \in K[X]$ by K on round n with the point $p = (n, s_C)$ such that $s_C = \min(\{y < \omega : f_C(n) < y\}$. It is easy to see that $p_n \to \infty$, so P has a winning Markov strategy.

Example 4. Let $S = \omega^2 \cup \{\infty\}$ be the **sequential fan** where ω^2 is discrete and ∞ has neighborhoods of the form $M \setminus \{(x,y) : x < f(y)\}$ for any $f : \omega \to \omega$. Then $K \uparrow_{pre} LF_{K,P}(S)$ and $K \uparrow_{tact} LF_{K,P}(S)$.

(S is not locally compact, but is compactly generated.)

Proof. Let $\sigma(n) = \omega \times (n+1) \cup \{\infty\}$. By defining f(y) to be greater than the x-coordinate of all P's plays through round y, we see that $M \setminus \{(x,y) : x < f(y)\}$ misses every move by P, so P cannot converge to ∞ .

A winning tactic can be easily constructed by using the y-coordinate of P's moves as the round number in the predetermined strategy.