NP-hardness and NP-completeness.

NP: Problems that can be efficiently verified
P: Publems that can be solved eff.
Circuit SAT: NP-hard
NP-hard: Problems when solved in PTIME
NP=P. NP=P. MP-hand if any MP-bellew in NP can be Solved with T'as a Subroutine.
Reductions $\Pi \leq_{p} \Pi$
Hanstonian Cycle
$\phi \in \Pi'$ $\phi \in Ckf-SAT.$
instance n n ckt-SAT problem Ckt has a f(N) time

"Ghow a vertex cover of stize at most k If and only if Cq has a satisfiable assignment".

" (CG) is at most poly(n)".

Thursta G can be solved in

ITI+f(n).

Further if ITI & poly(n); and f(N)= NO(1) then GETT can be solved in NO(1).

"CKT SAT is NP-hand"

"Every instance of every problem in NP can be reduced to an instance of ckt satisfiability of give at most poly(linstance), and reduction takes at most poly(linstance) time".

- Traveling Salesperson publicum
- Minhmum vertex Cover = Maximum Independent Set
- le- Vertex Cover, le-chane.

NP-complete: Problems that are NP-hard and also in NP.

" CKT SAT is NP-complete!"

To show P + NP:

- Suff to show that

I publish NP\P

that admids no
polytime algos.

Suff:

- Polynomial time algorithms for any NP-hard problem => P=NP.
- Proving that a NP-complete problem has no polytome algorithms \Rightarrow P \neq NP.
- Proving that a problem in NP\ (PUNP-complete) admists no polytime algo \Rightarrow P≠NP
- Proving that a problem in NP\ (PUNP-complete) admits a polytime algo \neq P=NP

where as

- Proving that a NP-complete problem has a polytone algorithm > P=NP.

3-SAT (3-CNF): A Boolean formula that can be expressed as a conjunction of clauses each of the conformal of the conformal con

Reduction:

CKTSAT

Boolean circust C 3 a satisfying assignment

Given a 3-CNF, is there or satisfying assignment.

$$S_1, S_2, \dots, S_k \subseteq \{1, 2, \dots, n\}$$

$$L_i = \begin{cases} A \approx_i = 0 \end{cases} \stackrel{?}{>} V \stackrel{?}{>} = 1$$

$$k \qquad \qquad k \qquad$$

Claim: 3-SAT is NP-hard.

- Maximum Independent set is NP-hard.

Algorithms" - Jeff Encsson. (Uluc)