기초 통계 및 ML 보고서

민세희

July 17, 2025

1 Iris 데이터셋 기반 기초 통계 분석

1.1 데이터 준비 및 탐색

데이터 로드

seaborn 라이브러리의 load_dataset() 함수를 이용하여 Iris 데이터셋을 불러오고, head() 함수를 통해 전체 데이터의 구조를 확인하였다.

기술통계량 산출

groupby() 함수를 통해품종별로 Petal Length에 대한 평균, 표준편차, 사분위수 등의 통계치를 산출하였다. Setosa의 평균은 1.46cm로 가장 짧았고, Virginica는 5.55cm로 가장 길었다.

Species	count	mean	std	min	25%	50%	75%	max
Setosa	50	1.46	0.17	1.0	1.4	1.5	1.575	1.9
Versicolor	50	4.26	0.47	3.0	4.0	4.35	4.6	5.1
Virginica	50	5.55	0.55	4.5	5.1	5.55	5.875	6.9

Table 1: Species별 Petal Length에 대한 기술통계량

시각화

Boxplot을 통해 그룹 간 Petal Length의 분포 차이를 시각화하였다. 종별로 비교한 결과, 평균 Petal Length는 virginica > versicolor > setosa 순으로 높게 나타났다.

Figure 1: Species별 Petal Length 분포

1.2 통계적 검정

정규성 검정

- 귀무가설 (H_0) : 데이터는 정규성을 따른다

- 대립가설 (H_1) : 데이터는 정규성을 따르지 않는다

- 유의수준: $\alpha = 0.05$

Shapiro-Wilk 검정을 통해 품종별로 정규성을 검정하였다. 유의수준 $\alpha=0.05$ 기준으로, 모든 품종의 p-value는 각각 0.0548 (Setosa), 0.1585 (Versicolor), 0.1098 (Virginica)로, 모두 유의수준보다 크기 때문에 귀무가설을 기각하지 못하였다. 즉, 세 그룹 모두 정규성을 만족하다고 판단하였다.

등분산성 검정

- 귀무가설 (H_0) : 데이터는 등분산을 따른다

- 대립가설 (H_1) : 데이터는 등분산을 따르지 않는다

- 유의수준: $\alpha = 0.05$

Levene 검정을 통해 그룹 간 분산이 동일한지를 검정하였다. 세 그룹 간 쌍별로 비교한 결과:

• Setosa와 Versicolor: p = 2.74e-07 < 0.05 → 등분산 아님

• Setosa와 Virginica: p = 8.87e-09 < 0.05 → 등분산 아님

• Versicolor와 Virginica: p = 0.304 > 0.05 → 등분산 만족

이처럼 일부 쌍에서는 등분산 가정이 성립하지 않았지만, 전체 분석에서는 과제 지시에 따라 등분산성을 가정하고 이후 ANOVA를 진행하였다.

가설 수립

- 귀무가설 (H_0) : 3개 Species 간 Petal Length의 평균이 모두 같다
- 대립가설 (H_1) : 적어도 하나의 Species는 Petal Length의 평균이 다르다
- 유의수준: $\alpha = 0.05$

ANOVA

세 그룹 간 평균 Petal Length의 차이를 검정하기 위해 one-way ANOVA를 실시하였다. 그 결과 F값은 약 1180.16, p-value는 2.86×10^{-91} 로, 유의수준보다 매우 작게 나타났다. 따라서 귀무가설을 기각하고, 적어도 한 그룹 이상에서 평균 차이가 존재함을 확인하였다.

사후 검정

Tukey HSD 사후검정을 통해 어떤 그룹 간 차이가 유의한지를 확인하였다. 결과는 다음과 같다:

- Setosa vs. Versicolor: 평균 차이 2.798, p < 0.001 → 유의미한 차이
- Setosa vs. Virginica: 평균 차이 4.09, p < 0.001 → 유의미한 차이
- Versicolor vs. Virginica: 평균 차이 1.292, p < 0.001 → 유의미한 차이

즉, 모든 그룹 간 평균 Petal Length에 통계적으로 유의한 차이가 있었다.

1.3 결과 요약

Boxplot, ANOVA, 그리고 Tukey HSD 사후검정 결과를 종합하면 다음과 같다.

Boxplot을 통해 각 품종별 평균 Petal Length는 virginica > versicolor > setosa 순으로 높은 경향을 보였다. ANOVA 결과, 세 그룹 간 평균에 통계적으로 유의미한 차이가 있음이 확인되었으며, Tukey HSD 사후검정을 통해 모든 그룹 쌍 간에 유의미한 평균 차이가 존재함이 드러났다.

따라서, virginica의 Petal Length가 가장 길고, setosa가 가장 짧으며, versicolor는 중간 수준이라는 결론을 내릴 수 있다.

2 신용카드 사기 분류 모델

2.1 데이터 전처리

데이터 로드 맟 기본 탐색

신용카드 사기 탐지 데이터셋 creditcard.csv를 불러오고, head() 함수를 통해 전체 데이터의 구조를 확인하였다. 데이터의 Class 변수 분포는 다음과 같았다.

- 정상 거래 (Class=0): 27,725건
- 사기 거래 (Class=1): 93건

Class=1의 비율은 약 0.33%로, 극심한 클래스 불균형을 보이는 데이터임을 확인하였다.

샘플링

Class=1 (사기 거래) 데이터는 전체 93건을 모두 유지하였고, Class=0 (정상 거래) 데이터 중 10,000건을 무작위로 추출하였다. 이후 두 데이터를 병합하여 학습용 데이터셋 credit_sample을 구성하였다. 샘플링 이후 Class 비율은 다음과 같다:

• Class=0: 약 99.08%

• Class=1: 약 0.92%

데이터 전처리

금액 변수인 Amount만 표준화를 적용하였다. StandardScaler를 이용해 Amount_Scaled 라는 새로운 컬럼으로 대체하고, 기존 Amount 컬럼은 제거하였다. 이후 데이터셋을 다음과 같이 분리하였다:

- X: 입력 변수 (Class 제외한 모든 컬럼)
- y: 타깃 변수 (Class)

데이터 분할

전체 데이터를 학습용(train)과 테스트용(test)으로 8:2 비율로 분할하였다. 이때 train_test_split() 함수의 stratify=y 옵션을 통해 클래스 비율이 유지되도록 하였다. 분할 후 클래스 비율은 다음과 같이 확인되었다:

• Train set - Class=1: 0.009165

• Test set - Class=1: 0.009411

SMOTE

모델이 소수 클래스를 충분히 학습할 수 있도록 유도하기 위하여 SMOTE를 적용하였다. 학습 데이터에 대해 SMOTE를 적용하여 소수 클래스(Class=1)를 오버샘플링하였다. 적용 전에는 소수 클래스의 수가 74건에 불과했지만, SMOTE 적용 후 8000건으로 균형이 맞춰졌다. 이를 통해 모델이 소수 클래스를 충분히 학습할 수 있는 기반을 마련하였다.

• Before SMOTE - Class=1: 743

• After SMOTE - Class=1: 8,0007

2.2 모델 학습 및 성능 평가

모델 학습

Logistic Regression 모델을 기반으로 GridSearchCV를 이용해 하이퍼파라미터 튜닝을 수행하였다. 탐색한 파라미터는 다음과 같다:

• C: [0.01, 0.05, 0.1, 0.2, 0.5, 1, 5, 10]

• penalty: 12

• solver: liblinear

• class_weight: balanced

교차검증은 cv=5, 평가 지표는 average_precision으로 설정하였다. 최적의 파라미터는 다음과 같이 선정되었다:

• C = 10, penalty = l2, solver = liblinear, class_weight = balanced

최종 모델은 테스트 데이터에 대해 예측 확률(predict_proba)을 기반으로 threshold를 조정하여 F1-score가 최대가 되는 최적 threshold를 탐색하였다. 탐색 결과, threshold = 0.8일 때 F1-score가 0.9744로 가장 높았다.

최종 성능 평가

최적 threshold = 0.8을 기준으로 최종 예측을 수행한 결과, 다음과 같은 성능을 확인하였다:

Class	Precision	Recall	F1-score	Support			
0 (정상)	1.00	1.00	1.00	2000			
1 (사기)	0.95	1.00	0.97	19			
Accuracy	1.00						
Macro avg	0.97	1.00	0.99	2019			
Weighted avg	1.00	1.00	1.00	2019			

Table 2: Logistic Regression 모델 성능 요약 (threshold = 0.8)

또한, PR-AUC (Average Precision Score)는 **0.9974**로 매우 높은 값을 기록하였다.

과제에서 제시한 성능 기준:

- Recall > 0.80
- F1-score > 0.88
- PR-AUC > 0.90

모든 항목을 초과 달성하였으며, Logistic Regression 모델이 불균형 데이터 상황에서도 SMOTE와 threshold 조정, 하이퍼파라미터 조정을 통해 충분히 효과적으로 작동했음을 확인할 수 있다.