Digital Electronic Circuits Section 1 (EE, IE)

Lecture 6

Two-Variable Karnaugh Map

$$Y = F(A,B) = \sum m(2,3)$$

A	В	Y
0	0	0
0	1	0
1	0	1
1	1	1

$$\begin{array}{c|cc}
\overline{B} & B \\
\hline{A} & 0 & 0 \\
A & 1 & 1 \\
Y = A
\end{array}$$

$$Y = F(A,B) = \sum m(2,3)$$
 $Y = F(A,B) = \sum m(1,2,3)$

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

	\overline{B}	В
\overline{A}	0	1
\boldsymbol{A}	1	1

$$Y = A + B$$

SOP: Simplification

Three Variable Karnaugh Map

- Largest logically adjacent group of size 2ⁱ
- Minimum no. of groups to cover all 1s
- Each group gives one product term
- Variables remaining constant form product term (1:unprimed, 0:primed)
- All product terms are summed.

	AB	$\frac{\overline{C}}{C}$	<i>C</i>
$\overline{A}\overline{B}$	00	0	1
$\overline{A}B$	01	2	3
AB	11	6	7
$A\overline{B}$	10	4	5

F(A,B,C) minterm numbers

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

 $= \sum m(2,4,5,6,7)$

Y = F(A,B,C)

$$Y = A + B.C'$$

Four-Variable Karnaugh Map

		\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
		00	01	11	10
$\overline{A}\overline{B}$	00	0	1 5 13 9	3	2
$\overline{A}B$	01	4	5	7	6
AB	11	12	13	15	14
$A\overline{B}$	10	8	9	11	10

F(A,B,C,D) minterm numbers

A	В	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Don't Care in Karnaugh Map

Design: Y is H when BCD (Binary Coded Decimal) input is odd.

$$Y = F(A,B,C,D)$$

= $\sum m(1,3,5,7,9) +$
d(10,11,12,13,14,15)

A	B	C	D	Y
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	Χ
1	0	1	1	Χ
1	1	0	0	Χ
1	1	0	1	Χ
1	1	1	0	Χ
1	1	1	1	X

Not considering X

$$Y = A'D + B'C'D$$

Considering X

- If not considered, X = 0.
- If considered, X = 1.
- Consideration wherever helps.

Karnaugh Map: POS

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$Y = F(A,B,C)$$

= $\sum m(2,4,5,6,7)$
= $\prod M(0,1,3)$

$$Y = (A + B).(A + C')$$

$$Y = F(A,B,C,D)$$

= $\prod M(0,2,4,6,8).D(10,$
11,12,13,14,15)

- To cover all 0s
- Variables remaining constant form sum term (1:primed, 0:unprimed)
- Product of all sum terms generate output
- X is considered 0 wherever helps

Dual Circuit

- NAND → NOR,
 NOR → NAND,
 Complement all input and output
- AND → OR,
 OR → AND,
 Complement all input and output

Self-Dual Function

Consider,
$$F(A,B) = A.B' + A'.B$$

Its dual, $F_D(A,B) = (A+B').(A'+B)$
(on simplification) = $A'.B' + A.B$
 $F(A,B) \neq F_D(A,B)$

Consider,
$$F(A,B,C) = A.B + B.C + C.A$$

Then, $F_D(A,B,C) = (A+B).(B+C).(C+A)$
(on simplification) = $A.B + B.C + C.A$
 $F(A,B) = F_D(A,B)$: Self-dual

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

A'.B	
A.B'	

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Conditions:

- Neutral: No. of minterms is same as no. of Maxterms
- Function not to contain any mutually exclusive minterm

$$A.B.C \stackrel{\text{mutually}}{\longleftarrow} A'.B'.C'$$
exclusive

A'.B.C

A.B'.C

A.B.C'

A.B.C

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ M. Morris Mano, and Michael D. Ciletti, Digital Design 5e, Pearson