Lab 3: Feature Selection - Filter Method

R Abhijit Srivathsan 2448044

Loading California Housing Dataset from sklearn

```
In [13]: import numpy as np
    import pandas as pd
    from sklearn.datasets import fetch_california_housing
    from sklearn.feature_selection import VarianceThreshold

# DownLoad the dataset as a pandas DataFrame.
data = fetch_california_housing(as_frame=True)
df = data.frame

# Separate features and target.
X = df.drop('MedHouseVal', axis=1)
y = df['MedHouseVal']

print("Feature names:", X.columns.tolist())
print("Data shape:", X.shape)
```

Feature names: ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup', 'Latitude', 'Longitude']
Data shape: (20640, 8)

In this lab, we load the California housing dataset from sklearn and apply three filter-based feature selection methods:

- Variance Threshold
- Correlation Threshold
- Mean Absolute Deviation (MAD)

Each section shows how adjusting the threshold affects the number of features retained.

Variance Threshold Filtering

The **Variance Threshold** method removes features with low variability. Here we demonstrate:

- The default threshold (0.0) which only removes constant features.
- A higher threshold (0.5) to remove features with variance lower than 0.5.

```
In [14]: # (a) Using the default threshold (0.0) - removes only constant features.
vt_default = VarianceThreshold(threshold=0.0)
X_vt_default = vt_default.fit_transform(X)
print("[VarianceThreshold] With threshold=0.0, shape:", X_vt_default.shape)

# Check the variance of each feature to help decide on a threshold.
variances = X.var()
print("\nVariances of features:\n", variances)

# (b) Increasing the threshold to 0.5.
vt_higher = VarianceThreshold(threshold=0.5)
X_vt_higher = vt_higher.fit_transform(X)
print("\n[VarianceThreshold] With threshold=0.5, shape:", X_vt_higher.shape)

# Get the names of the features that pass the threshold.
selected_features_vt = X.columns[vt_higher.get_support()]
print("Features retained with VarianceThreshold (threshold=0.5):", selected_features_vt.tolist())
```

```
[VarianceThreshold] With threshold=0.0, shape: (20640, 8)
Variances of features:
MedInc
            3.609323e+00
HouseAge
             1.583963e+02
AveRooms
             6.121533e+00
AveBedrms
             2.245915e-01
Population
             1.282470e+06
Ave0ccup
             1.078700e+02
Latitude
             4.562293e+00
Longitude
             4.014139e+00
dtype: float64
[VarianceThreshold] With threshold=0.5, shape: (20640, 7)
Features retained with VarianceThreshold (threshold=0.5): ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'AveOccup', 'Latitud
e', 'Longitude']
```

Correlation Threshold Filtering

The **Correlation Filter** examines pairwise correlations among features. If a pair of features has a correlation above a specified threshold, one of them is dropped.

- We first use a threshold of 0.8.
- Then, we use a stricter threshold of 0.6.

```
corr matrix = X.corr().abs()
     # Use only the upper triangle of the correlation matrix.
     upper = corr matrix.where(np.triu(np.ones(corr matrix.shape), k=1).astype(bool))
     # Identify columns that have any correlation above the threshold.
     to drop = [column for column in upper.columns if any(upper[column] > threshold)]
     return to drop
 # (a) Using a correlation threshold of 0.8.
 to drop 08 = correlation threshold selector(X, threshold=0.8)
 print("[Correlation Filter] Features dropped (threshold=0.8):", to drop 08)
 selected features corr 08 = [col for col in X.columns if col not in to drop 08]
 print("Features retained (correlation threshold=0.8):", selected features corr 08)
 # (b) Using a stricter threshold of 0.6.
 to drop 06 = correlation threshold selector(X, threshold=0.6)
 print("\n[Correlation Filter] Features dropped (threshold=0.6):", to drop 06)
 selected features corr 06 = [col for col in X.columns if col not in to drop 06]
 print("Features retained (correlation threshold=0.6):", selected features corr 06)
[Correlation Filter] Features dropped (threshold=0.8): ['AveBedrms', 'Longitude']
Features retained (correlation threshold=0.8): ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'AveOccup', 'Latitude']
[Correlation Filter] Features dropped (threshold=0.6): ['AveBedrms', 'Longitude']
Features retained (correlation threshold=0.6): ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'AveOccup', 'Latitude']
```

Mean Absolute Deviation (MAD) Filtering

The **MAD Filter** removes features with low dispersion (spread). We:

- Calculate the MAD for each feature.
- Select features whose MAD is above a given threshold.
- Experiment with thresholds of 0.5 and 1.0.

```
In [16]: # Calculate the MAD for each feature manually.
         mad values = X.apply(lambda col: np.mean(np.abs(col - col.mean()))))
         print("Mean Absolute Deviation (MAD) for each feature:\n", mad values)
         def mad threshold selector(X, threshold):
             # Manually calculate MAD for each column.
             mad values = X.apply(lambda col: np.mean(np.abs(col - col.mean()))))
             selected features = mad values[mad values >= threshold].index.tolist()
             return selected features
         # (a) Applying MAD threshold = 0.5.
         selected features mad 05 = mad threshold selector(X, threshold=0.5)
         print("\n[MAD Filter] Features retained (MAD threshold=0.5):", selected features mad 05)
         # (b) Increasing the threshold to 1.0.
         selected features mad 10 = mad threshold selector(X, threshold=1.0)
         print("[MAD Filter] Features retained (MAD threshold=1.0):", selected features mad 10)
        Mean Absolute Deviation (MAD) for each feature:
         MedInc
                         1.401614
        HouseAge
                       10.551539
        AveRooms
                        1.117619
        AveBedrms
                        0.114093
        Population
                     714.237277
        Ave0ccup
                        0.748172
        Latitude
                        1.975024
        Longitude
                        1.830206
        dtype: float64
        [MAD Filter] Features retained (MAD threshold=0.5): ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'AveOccup', 'Latitude', 'L
        ongitude']
        [MAD Filter] Features retained (MAD threshold=1.0): ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'Latitude', 'Longitude']
```

Mutual Information for Feature Selection

In this section, we use mutual information to assess the dependency between each feature and the target variable. Mutual information (MI) is a non-negative value that measures the amount of information obtained about one random variable (the target) through another random variable (the feature). A higher MI indicates a more informative feature.

For regression problems, we use mutual_info_regression. We then experiment with selecting features that have MI scores above a chosen threshold.

```
In [17]: from sklearn.feature_selection import mutual_info_regression

# Compute the mutual information scores between each feature and the target.
mi_scores = mutual_info_regression(X, y, random_state=0)
mi_series = pd.Series(mi_scores, index=X.columns)

print("Mutual Information Scores (unsorted):")
print(mi_series)

# Sort the scores in descending order for better visualization.
mi_series_sorted = mi_series.sort_values(ascending=False)
print("\nMutual Information Scores (sorted):")
print(mi_series_sorted)
```

```
Mutual Information Scores (unsorted):
        MedInc
                      0.387646
                      0.032114
        HouseAge
                      0.103623
        AveRooms
        AveBedrms
                      0.024482
        Population
                      0.021994
        Ave0ccup
                      0.072549
        Latitude
                      0.370657
        Longitude
                      0.401820
        dtype: float64
        Mutual Information Scores (sorted):
        Longitude
                      0.401820
        MedInc
                      0.387646
        Latitude
                      0.370657
                      0.103623
        AveRooms
        Ave0ccup
                      0.072549
                      0.032114
        HouseAge
        AveBedrms
                      0.024482
        Population
                      0.021994
        dtype: float64
In [18]: # Define a threshold for selecting features.
         # (The threshold value is somewhat arbitrary and may need tuning based on your dataset.)
         mi threshold = 0.1
         # Select features that have a mutual information score greater than or equal to the threshold.
         selected features mi = mi series[mi series >= mi threshold].index.tolist()
         print("\nFeatures selected with mutual information score >= {}:".format(mi threshold))
         print(selected features mi)
        Features selected with mutual information score >= 0.1:
        ['MedInc', 'AveRooms', 'Latitude', 'Longitude']
```

Comprehensive Observations on Feature Selection Methods

1. Variance Threshold

- Threshold = 0.0:
 - All 8 features are retained since only features with zero variance would be removed.
 - **Dataset Shape:** (20640, 8)
- Threshold = 0.5:
 - The feature **AveBedrms** is removed because its variance (~0.2246) is below 0.5.
 - Retained Features: ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'AveOccup', 'Latitude', 'Longitude']
 - **Dataset Shape:** (20640, 7)

2. Correlation Filter

- Thresholds 0.8 and 0.6:
 - Both thresholds resulted in the same outcome:
 - Features Dropped: ['AveBedrms', 'Longitude']
 - Retained Features: ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'AveOccup', 'Latitude']
- Insight:
 - AveBedrms is consistently identified as redundant or uninformative.
 - **Longitude** is removed due to its high correlation with other features—even though, as seen later, it carries significant predictive information according to mutual information analysis.

3. Mean Absolute Deviation (MAD) Filter

MAD Values for Each Feature:

■ MedInc: 1.4016

■ HouseAge: 10.5515

AveRooms: 1.1176

■ AveBedrms: 0.1141

■ Population: 714.2373

■ AveOccup: 0.7482

■ Latitude: 1.9750

■ Longitude: 1.8302

• Threshold = 0.5:

■ Removes features with MAD below 0.5, leading to the removal of **AveBedrms**.

■ **Retained Features:** ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'AveOccup', 'Latitude', 'Longitude']

• Threshold = 1.0:

- With a stricter threshold, features with MAD below 1.0 are removed; here, both AveBedrms and AveOccup (MAD ≈ 0.7482) are dropped.
- Retained Features: ['MedInc', 'HouseAge', 'AveRooms', 'Population', 'Latitude', 'Longitude']

• Insight:

■ The MAD filter highlights features with very low dispersion. **AveBedrms** consistently shows minimal variation, while **AveOccup** is borderline and only gets dropped at higher thresholds.

4. Mutual Information (MI) for Feature Selection

• Mutual Information Scores (Unsorted):

■ MedInc: 0.387646

■ HouseAge: 0.032114

■ AveRooms: 0.103623

■ AveBedrms: 0.024482

■ Population: 0.021994

AveOccup: 0.072549

■ Latitude: 0.370657

■ Longitude: 0.401820

• Mutual Information Scores (Sorted Descending):

- 1. **Longitude**: 0.401820
- 2. **MedInc**: 0.387646
- 3. **Latitude**: 0.370657
- 4. AveRooms: 0.103623
- 5. **AveOccup**: 0.072549
- 6. **HouseAge**: 0.032114
- 7. **AveBedrms**: 0.024482
- 8. **Population**: 0.021994
- Feature Selection (Threshold = 0.1):
 - **Selected Features:** ['MedInc', 'AveRooms', 'Latitude', 'Longitude']
- Insight:
 - The MI analysis reveals that **geographical features** (Longitude and Latitude) and MedInc are highly informative.
 - **AveRooms** is marginal but still passes the threshold.
 - Lower MI scores for HouseAge , AveBedrms , Population , and AveOccup indicate they contribute less unique predictive information.

Overall Synthesis

- Consistency:
 - **AveBedrms** is consistently removed or deemed uninformative across all methods (variance, correlation, MAD, and MI), reinforcing its limited value.
- Complementary Perspectives:
 - Variance and MAD filters assess the spread and dispersion of the feature values.
 - The Correlation filter targets redundancy between features.
 - Mutual Information evaluates how much predictive power each feature contributes toward the target variable.
- Notable Contrasts:

Although the Correlation filter removes Longitude due to high inter-feature correlation, the MI analysis shows that Longitude is one of the most informative features, indicating that even highly correlated features can be valuable predictors.

• Practical Implications:

- Combining these methods provides a more nuanced view of the data. It helps in balancing dimensionality reduction with the retention of informative features.
- Careful threshold tuning is essential to ensure that the final feature set is both non-redundant and rich in predictive content.