TEST REPORT

Reference No. : WTS16S0551176-1E

FCC ID 2AC7ISOLEC200

Applicant..... : Interglobe Connection Corp

Address...... 7500 NW 25th Street 112 Miami, Florida 33122 USA

Manufacturer : The same as above

Address..... : The same as above

Product Name...... : 2G Mobile Phone

Model No..... : SOLE C200

Brand.....: SOLE

Standards.....: FCC CFR47 Part 15.247:2015

Date of Receipt sample : May 23, 2016

Date of Test : May 26, 2016 –May 28, 2016

Date of Issue..... : Jun. 07, 2016

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Approved by:

Philo Zhong / Manager

Reference No.: WTS16S0551176-1E Page 2 of 59

2 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
	15.247(d)	
Conducted Spurious emissions	15.247(d)	PASS
Dond odge	15.247(d)	DACC
Band edge	15.205(a)	PASS
Conduct Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	Complies
Maximum Permissible Exposure	1.1207/b\/1\	DACC
(Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	5
	 4.1 GENERAL DESCRIPTION OF E.U.T. 4.2 DETAILS OF E.U.T. 4.3 CHANNEL LIST 4.4 TEST MODE 	
5		7
	5.1 EQUIPMENTS LIST5.2 DESCRIPTION OF SUPPORT UNITS5.3 MEASUREMENT UNCERTAINTY	
6	CONDUCTED EMISSION	9
	6.2 EUT SETUP 6.3 MEASUREMENT DESCRIPTION	
7	RADIATED SPURIOUS EMISSIONS	12
	 7.2 TEST SETUP 7.3 SPECTRUM ANALYZER SETUP 7.4 TEST PROCEDURE 7.5 CORRECTED AMPLITUDE & MARGIN OF CORRE	
8	CONDUCTED SPURIOUS EMISSIONS	19
9	8.2 TEST RESULT	
9	9.1 TEST PROCEDURE	
10		
	10.1 Test Procedure	
11		
	11.2 TEST RESULT	
12		44
10	12.2 TEST RESULT	44
13		50
		50 50

Reference No.: WTS16S0551176-1E Page 4 of 59

14	DWEL	LL TIME	52
	14.1	Test Procedure	52
	14.2	TEST RESULT	52
15	ANTE	NNA REQUIREMENT	58
16	RF EX	KPOSURE	59

Reference No.: WTS16S0551176-1E Page 5 of 59

4 General Information

4.1 General Description of E.U.T.

Product Name :2G Mobile Phone

Model No. :SOLE C200

Model Description : N/A

GSM Band(s) : GSM 850/900/1800/1900MHz

GPRS Class : 12

Bluetooth Version : Bluetooth v2.1+EDR

GPS : N/A

NFC : N/A

Hardware Version : HS002

Software Version : D129-HS002

Storage Location : Internal Storage

4.2 Details of E.U.T.

Operation Frequency : GSM/GPRS 850: 824~849MHz

PCS/GPRS1900: 1850~1910MHz

Bluetooth: 2402~2480MHz

Max. RF output power : GSM 850: 33.01dBm

PCS1900:30.30dBm

Blue to oth: 0.31 dBm

Type of Modulation : GSM,GPRS: GMSK

Bluetooth: GFSK, Pi/4 DQPSK,8DPSK

Antenna installation : GSM: internal permanent antenna

Bluetooth: internal permanent antenna

Antenna Gain GSM 850: 0.8dBi

PCS1900: 0.7dBi

Bluetooth: 1.1dBi

Technical Data : Battery DC 3.7V 1050mAh

DC 5V, 1A, charging from adapter (Adapter Input: 100-240V~50/60Hz)

Adapter : Manufacture: Shenzhen Jialeyuan Electronics Co., Ltd.

Model No.: BL-5C

4.3 Channel List

Normal

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
0	2402	1	2403	2 2404		3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests; the worst data were recorded and reported.

Test mode	Test mode Low channel		High channel	
Transmitting	2402MHz	2441MHz	2480MHz	

4.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Waltek Services (Shenzhen) Co.,Ltd.

5 Equipment Used during Test

5.1 Equipments List

l	Conducted Emissions Test Site 1#								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.15,2015	Sep.14,2016			
2.	LISN	R&S ENV216 101215 Sep.15,2015		Sep.14,2016					
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.15,2015	Sep.14,2016			
Condu	cted Emissions Test S	Site 2#							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.15,2015	Sep.14,2016			
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.15,2015	Sep.14,2016			
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.15,2015	Sep.14,2016			
4.	4. Cable LARGE		RF300	-	Sep.15,2015	Sep.14,2016			
3m Ser	ni-anechoic Chamber	for Radiation Emis	sions Test site	1#					
Item	Equipment Manufactu		Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016			
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Sep.15,2015	Sep.14,2016			
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.18,2016	Apr.17,2017			
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.15,2015	Sep.14,2016			
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.18,2016	Apr.17,2017			
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.18,2016	Apr.17,2017			
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Mar.17,2016	Mar.16,2017			
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.09,2016	Apr.08,2017			
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date			
1	Test Receiver	R&S	ESCI	101296	Sep.15,2015	Sep.14,2016			
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Sep.15,2015	Sep.14,2016			
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2015	Sep.14,2016			
4	Cable	HUBER+SUHNER	CBL2	525178	Sep.15,2015	Sep.14,2016			

RF Conducted Testing								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2015	Sep.14,2016		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2015	Sep.14,2016		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2015	Sep.14,2016		

5.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.	
1	1	1	/	

5.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Padiated Spurious Emissions tost	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0551176-1E Page 9 of 59

6 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2009

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB_{\mu}V$ between 0.5MHz & 5MHz $60~dB_{\mu}V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

6.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in BT link mode, the test data were shown in the report.

6.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

6.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

6.4 Conducted Emission Test Result

Live line:

Neutral line:

Reference No.: WTS16S0551176-1E Page 12 of 59

7 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10

Test Result: PASS
Measurement Distance: 3m

Limit:

Liffic.	Field Stre	nath	Field Strength Limit at 3m Measurement Dist			
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m		
0.009 ~ 0.490	90 2400/F(kHz) 300		10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

7.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in BT link mode, the test data were shown in the report.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber Antenna Elevation Varies From 1 to 4 m Turn Table From 0 $^{\circ}$ to 360 $^{\circ}$ 3m H **EUT** 0.8m Turn Table Absorbers PC Combining Spectrum AMP Network System Analyzer

The test setup for emission measurement above 1 GHz.

7.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	<u>z</u>	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S0551176-1E Page 15 of 59

7.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTS16S0551176-1E Page 16 of 59

7.6 Summary of Test Results

Test Frequency: 26MHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data (GFSK modulation mode) were reported.

	Receiver	Turn	RX An	tenna	Corrected	Corrected			
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Low Channel									
178.60	20.89	QP	341	1.2	Н	11.65	32.54	42.51	-9.97
178.60	18.80	QP	242	1.4	V	11.65	30.45	42.51	-12.06
4804.00	51.64	PK	338	1.3	V	-1.00	50.64	74.00	-23.36
4804.00	42.19	Ave	338	1.3	V	-1.00	41.19	54.00	-12.81
7206.00	52.21	PK	280	1.3	Н	1.80	54.01	74.00	-19.99
7206.00	45.00	Ave	280	1.3	Н	1.80	46.80	54.00	-7.20
2340.74	46.23	PK	295	1.9	V	-12.20	34.03	74.00	-39.97
2340.74	38.96	Ave	295	1.9	V	-12.20	26.76	54.00	-27.24
2363.39	42.55	PK	218	1.5	Н	-14.10	28.45	74.00	-45.55
2363.39	37.65	Ave	218	1.5	Н	-14.10	23.55	54.00	-30.45
2483.55	43.94	PK	51	1.8	V	-12.87	31.07	74.00	-42.93
2483.55	38.14	Ave	51	1.8	V	-12.87	25.27	54.00	-28.73

Frequency	Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected	Corrected		
				Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Middle Channel									
178.60	20.41	QP	191	1.3	Н	12.90	33.31	42.51	-9.20
178.60	20.30	QP	78	1.2	V	12.90	33.20	42.51	-9.31
4882.00	54.16	PK	316	1.1	V	-0.10	54.06	74.00	-19.94
4882.00	41.06	Ave	316	1.1	V	-0.10	40.96	54.00	-13.04
7323.00	50.73	PK	24	2.0	Н	2.50	53.23	74.00	-20.77
7323.00	43.54	Ave	24	2.0	Н	2.50	46.04	54.00	-7.96
2349.49	46.66	PK	111	2.0	V	-12.39	34.27	74.00	-39.73
2349.49	39.29	Ave	111	2.0	V	-12.39	26.90	54.00	-27.10
2385.04	42.61	PK	195	1.1	Н	-14.24	28.37	74.00	-45.63
2385.04	38.22	Ave	195	1.1	Н	-14.24	23.98	54.00	-30.02
2494.44	44.11	PK	80	1.7	V	-13.00	31.11	74.00	-42.89
2494.44	36.82	Ave	80	1.7	V	-13.00	23.82	54.00	-30.18

Frequency	Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected	Corrected		
				Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK High Channel									
178.60	20.47	QP	224	1.1	Н	12.50	32.97	42.51	-9.54
178.60	20.65	QP	56	1.8	V	12.50	33.15	42.51	-9.36
4960.00	53.29	PK	76	1.8	V	-0.28	53.01	74.00	-20.99
4960.00	42.77	Ave	76	1.8	V	-0.28	42.49	54.00	-11.51
7440.00	54.09	PK	175	1.2	Н	3.12	57.21	74.00	-16.79
7440.00	43.69	Ave	175	1.2	Н	3.12	46.81	54.00	-7.19
2341.20	45.12	PK	111	1.0	V	-14.69	30.43	74.00	-43.57
2341.20	38.88	Ave	111	1.0	V	-14.69	24.19	54.00	-29.81
2353.91	42.20	PK	78	1.1	Н	-12.74	29.46	74.00	-44.54
2353.91	36.43	Ave	78	1.1	Н	-12.74	23.69	54.00	-30.31
2493.54	43.12	PK	346	1.1	V	-13.66	29.46	74.00	-44.54
2493.54	38.61	Ave	346	1.1	V	-13.66	24.95	54.00	-29.05

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS16S0551176-1E Page 19 of 59

8 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

8.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

8.2 Test Result

GFSK Low Channel

GFSK Middle Channel

GFSK High Channel

Pi/4 DQPSK Low Channel

Pi/4 DQPSK Middle Channel

Pi/4 DQPSK High Channel

8DPSK Low Channel

8DPSK Middle Channel

8DPSK High Channel

Reference No.: WTS16S0551176-1E Page 25 of 59

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

9.2 Test Result

Test plots

Pi/4 DQPSK Hopping Band edge-left side

Reference No.: WTS16S0551176-1E Page 32 of 59

10 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Result

Modulation	Test Channel	Bandwidth(MHz)		
GFSK	Low	0.928		
GFSK	Middle	0.928		
GFSK	High	0.928		
Pi/4 DQPSK	Low	1.252		
Pi/4 DQPSK	Middle	1.252		
Pi/4 DQPSK	High	1.252		
8DPSK	Low	1.228		
8DPSK	Middle	1.228		
8DPSK	High	1.228		

-80 dBm-

CF 2.402 GHz

Test plots

Span 3.0 MHz

Reference No.: WTS16S0551176-1E Page 38 of 59

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.///

11.2 Test Result

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	0.31	30
GFSK	Middle	0.11	30
GFSK	High 0.04		30
Pi/4 DQPSK	Low 0.01		21
Pi/4 DQPSK	Middle	-0.16	21
Pi/4 DQPSK	High	-0.20	21
8DPSK	Low	0.12	21
8DPSK	Middle	-0.05	21
8DPSK	High	-0.03	21

Test plots

GFSK Low Channel

Reference No.: WTS16S0551176-1E Page 44 of 59

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto;
 Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result

Modulation	Test Channel	Separation (MHz)	Result	
GFSK	Low	1.000	PASS	
GFSK	GFSK Middle 1.000		PASS	
GFSK	High	1.000	PASS	
Pi/4 DQPSK	Low	1.000	PASS	
Pi/4 DQPSK	Middle	1.000	PASS	
Pi/4 DQPSK	High	1.000	PASS	
8DPSK	Low	1.000	PASS	
8DPSK	Middle	1.000	PASS	
8DPSK High		1.000	PASS	

Test plots

Reference No.: WTS16S0551176-1E Page 50 of 59

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

13.2 Test Result

Test Plots: 79 Channels in total

Reference No.: WTS16S0551176-1E Page 52 of 59

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*0.4*79*(MkrDelta)/1000		
DH3	1600/79/4*0.4*79*(MkrDelta)/1000		
DH1	1600/79/2*0.4*79*(MkrDelta)/1000		
Remark: Mkr Delta is once pulse time.			

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.880	0.307	0.4
		middle	2.880	0.307	0.4
		High	2.880	0.307	0.4
Pi/4DQPSK	DH5	Low	2.880	0.307	0.4
		middle	2.880	0.307	0.4
		High	2.880	0.307	0.4
8DPSK	DH5	Low	2.880	0.307	0.4
		middle	2.880	0.307	0.4
		High	2.880	0.307	0.4

Remark: only the worst data were recorded.

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna, fulfil the requirement of this section.

Reference No.: WTS16S0551176-1E Page 59 of 59

16 RF Exposure

Remark: refer to SAR test report: WTS16S0551175E

=====End of Report=====