Assignment 1 - due March 30th

Answer 1. (a) We will prove that $U^*U=I$. We know U is diagonalizable, so U can be written as

$$U = \sum_{i=0}^{n} \lambda_i |v_i\rangle\langle v_i|$$

where all λ_i are eigenvalues and $|v_i\rangle$ are there respective eigenvectors. Then,

$$U^* = \sum_{i=0}^n \overline{\lambda_i} \langle v_i | v_i \rangle$$

Note that all eigenvectors are orthogonal, each means that, $\langle v_i | v_i \rangle | v_j \rangle \langle v_j | = 0$ when $i \neq j$, and $\langle v_i | v_i \rangle | v_j \rangle \langle v_j | = 1$ when i = j. So we have,

$$U^*U = \sum_{i=0}^n \overline{\lambda_i} \lambda_i$$

and by the hypothesis $\overline{\lambda_i}\lambda_i = |\lambda_i| = 1$. Therefore $U^*U = I$.

(b) Take λ a eigenvalue of U unitary, and $|v\rangle$ his associated eigenvector, so the equity bellow is true,

$$U|v\rangle = \lambda |v\rangle$$

Note that, $= \overline{\lambda} \langle v|$. Then, when we multiply the first equation for $\langle v|U^*$ on the left, we get

$$\langle v|U^*U|v\rangle = \langle v|U^*\lambda|v\rangle$$
$$\langle v|v\rangle = \langle v|\overline{\lambda}\lambda|v\rangle$$
$$\langle v|v\rangle = \overline{\lambda}\lambda\langle v|v\rangle$$

By the property of the inner product, we have that $\langle v|v\rangle \neq 0$, so we can divide the last equation on both sides for $\langle v|v\rangle$. And then,

$$1 = \overline{\lambda}\lambda = |\lambda|$$

(c) blank

Answer 2. blank

Answer 3. First, we will show that $A \otimes I$ and $I \otimes B$ are diagonalizable. Since A is diagonalizable, we can write A as $A = PDP^{-1}$, where D is a diagonal matrix and P is invertible. Then, by the properties of the kronecker product

$$A \otimes I = (PDP^{-1}) \otimes I = (P \otimes I)(D \otimes I)(P^{-1} \otimes I) = (P \otimes I)(D \otimes I)(P \otimes I)^{-1}$$

Is easy to see that, since D and I are diagonal $D\otimes I$ is also diagonal. So now we've found a diagonalizable representation of $A\otimes I$, with $P\otimes I$ invertible and $D\otimes I$ diagonal. By a analogous reasoning, is easy to see that $I\otimes B$ is also diagonalizable, just noticing that if $B=QEQ^{-1},\ I\otimes E$ is diagonal. Let P be a invertible matrix, since I is the identity matrix, we can comute it in the product. So we have $P^{-1}IP=IP^{-1}P=I$. Now, to show that $A\otimes I+I\otimes B$ is diagonalizable, we need to find a matrix that diagonalizes it. Let $P\otimes Q$ be this candidate.

$$(P \otimes Q)^{-1}(A \otimes I + I \otimes B)(P \otimes Q) = (P \otimes Q)^{-1}(A \otimes I)(P \otimes Q) + (P \otimes Q)^{-1}(I \otimes B)(P \otimes Q)$$
$$= (P^{-1}AP) \otimes (Q^{-1}IQ) + (P^{-1}IP) \otimes (Q^{-1}BQ)$$
$$= D \otimes I + I \otimes E$$

Since $D \otimes I$ and $I \otimes E$ are diagonal, their sum is also diagonal. And then $A \otimes I + I \otimes B$ is diagonalizable. Now, we know D and E are the diagonal matrixes with the eigenvalues for A and B respectively. Note that $D \otimes I$ and $I \otimes E$ are diagonal matrixes with the same eigenvalues of D and E, because the kronecker product, now the eigenvalues have multiplicity of the "size" of the square matrixes. So if the eigenvalues of A are λ_i and the eigenvalues of B are δ_i , then the eigenvalues of $A \otimes I + I \otimes B$ are δ_i .

Answer 4. blank

Answer 5. (a) Assume $P_1 + P_2$ is an orthogonal projection. We have

$$(P_1 + P_2)^2 = (P_1)^2 + 2P_1P_2 + (P_2)^2$$

Note that, we know from the classes that, if M is a orthogonal projection, then $M^2 = M$. Since P_1 and P_2 are orthogonal projections, we have

$$(P_1)^2 + 2P_1P_2 + (P_2)^2 = P_1 + P_2$$

$$P_1 + 2P_1P_2 + P_2 = P_1 + P_2$$

$$2P_1P_2 = 0$$

$$P_1P_2 = 0$$

Now assume that $P_1P_2 = 0$. To prove that $P_1 + P_2$ is a orthogonal projection, we need to verify that $(P_1 + P_2)^2 = P_1 + P_2$ and $(P_1 + P_2)^* = P_1 + P_2$. Since P_1 and P_2 are orthogonal projections, we have

$$(P_1 + P_2)^2 = (P_1)^2 + 2P_1P_2 + (P_2)^2$$
$$= P_1 + 0 + P_2$$
$$= P_1 + P_2$$

and

$$(P_1 + P_2)^* = (P_1)^* + (P_2)^* = P_1 + P_2$$

(b) We will use an analogous reasoning from the last item. Assume that $(P_1 + \cdots + P_k)$ is an orthogonal projection. So is true that $(P_1 + \cdots + P_k)^2 = (P_1 + \cdots + P_k)$. But from the other hand, since for all i, P_i is an orthogonal projection, we have

$$(P_1 + \dots + P_k)^2 = \sum_{i=1}^k (P_i)^2 + 2 \sum_{1 \le i < j \le k} P_i P_j$$
$$= \sum_{i=1}^k P_i + 2 \sum_{1 \le i < j \le k} P_i P_j$$

Then, because $(P_1 + \cdots + P_k)$ is an orthogonal projection

$$\sum_{i=1}^{k} P_i + 2 \sum_{1 \le i < j \le k} P_i P_j = \sum_{i=1}^{k} P_i$$
$$\sum_{1 \le i < j \le k} P_i P_j = 0$$

Again, since for all i, P_i is an orthogonal projection, we have that P_iP_j are positive semi-definite operators, $P_iP_j \ge 0$. Thus

$$\sum_{1 \le i < j \le k} P_i P_j = 0 \Rightarrow P_i P_j = 0 \quad \forall i \ne j$$

Now assume, that $P_i P_j = 0 \quad \forall i \neq j$. Similarly from the last item:

$$(P_1 + \dots + P_k)^2 = \sum_{i=1}^k (P_i)^2 + 2 \sum_{1 \le i < j \le k} P_i P_j$$
$$= \sum_{i=1}^k P_i + 0$$
$$= (P_1 + \dots + P_k)$$

and also

$$(P_1 + \dots + P_k)^* = (P_1)^* + \dots + (P_k)^*$$

= $P_1 + \dots + P_k$

Answer 6. bla bla bla