

on Time: 2015-09-02 12:48:14.192

Arduino-IOT [wk05]

Arduino + Node

Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining data using Python

Drone-IoT-Comsi, INJE University

2nd semester, 2023

Email: chaos21c@gmail.com

My ID

ID를 확인하고 github에 repo 만들기

ID	성명		
AA01	강동하		
AA02	고서진		
AA03	김민재		
AA04	김예원		
AA05	김주호		
AA06	김창욱		
AA07	김현서		
AA08	박종혁		
AA09	서명진		
AA10	유동기		
AA11			
AA12	이근보		
AA13	정호기		

위의 id를 이용해서 github에 repo를 만드시오.

Option: ^{아두이노}응용 실습 과제 – AAnn

Public, README.md check

[Review]

- ◆ [wk04]
- Arduino sensors
- Complete your project
- Upload folder: aann-rpt05
- Use repo "aann" in github

wk04: Practice-04: aann-rpt04

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload 3 figures in github

Upload folder: aann-rpt04

- 제출할 파일들

- ① AAnn_multi_Signals.png
- ② All *.ino

wk04: Practice-05: aann-rpt05

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload figures in github

Upload folder: aann-rpt05

- 제출할 파일들
 - ① AAnn_AnalogVoltage.png
 - 2 AAnn_TMP36.png
 - 3 AAnn_LCD_lux.png
 - 4 All *.ino

Purpose of AA

주요 수업 목표는 다음과 같다.

- 1. Node.js를 이용한 아두이노 센서 신호 처리
- 2. Plotly.js를 이용한 아두이노 센서 신호 시각화
- 3. MongoDB에 아두이노 센서 데이터 저장 및 처리

4. 저장된 IoT 데이터의 마이닝 (파이썬 코딩)

Layout [H S C]

Analog Signal

A2.5.1 AnalogReadSerial (circuit)

Standard potentiometer (가변 저항기)

Arduino

Sensors

A3.1.1 Temperature sensor [TMP36]

Parts: TMP36

- Size: TO-92 package (about 0.2" x 0.2" x 0.2") with three leads
- Price: \$2.00 at the Adafruit shop
- Temperature range: -40°C to 150°C / -40°F to 302°F
- Output range: 0.1V (-40°C) to 2.0V (150°C) but accuracy decreases after 125°C
- Power supply: 2.7V to 5.5V only, 0.05 mA current draw

A3.1.2 Temperature sensor [TMP36]

Simple code

```
TMP36§
       AA00, TMP36 sensor
3 1 / /
5 #define TEMP_INPUT 0
6// or int TEMP_INPUT = 0;
8 void setup() {
    Serial.begin(9600);
10 }
11
12 void loop() {
13
    int value = analogRead(TEMP INPUT);
14
    Serial.println(value);
16
    delay(1000);
18 }
```

Serial output (0 ~ 1023)

A3.1.3 Temperature sensor [TMP36]

Sensor property

2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.4 0.2 0.4 0.2 0.5 TEMPERATURE (°C)

Figure 6. Output Voltage vs. Temperature

Output Voltage (mV) vs. Temperature (°C)				
V	0	500	1000	
Т	-50	0	50	

https://github.com/Redwoods/Arduino/blob/ master/ar-iot/py-ml/tmp36 LR.ipynb

Temperature conversion

Temp (
$$^{\circ}$$
 C) = (Vout – 500) / 10


```
// converting that reading to voltage
float voltage = value * 5.0 * 1000; // in mV
voltage /= 1023.0;
float temperatureC = (voltage - 500) / 10;
```


A3.1.4 Temperature sensor [TMP36]

Working code

Serial output (°C)

```
TMP36
10|}
                                                                  11
12 void loop() {
                                                                  AA00, value = 131 : 640.27 mV, 14.03 degrees C
     //getting the voltage reading from the temperature sensor
                                                                  AA00, value = 130 : 635.39 mV, 13.54 degrees C
    int value = analogRead(TEMP_INPUT);
                                                                  AA00, value = 132 : 645.16 mV, 14.52 degrees C
15 Serial.print("AA00, value = ");
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
    Serial.print(value);
                                                                  AA00, value = 129 : 630.50 mV, 13.05 degrees C
    Serial.print(" : ");
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
18
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
19
     // converting that reading to voltage
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
20
     float voltage = value * 5.0 * 1000; // in mV
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
21
     voltage /= 1023.0;
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
22
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
23
     // print out the voltage
                                                                  AA00, value = 130 : 635.39 mV, 13.54 degrees C
24
     Serial.print(voltage);
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
25
     Serial.print(" mV, ");
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
26
                                                                  AA00, value = 132 : 645.16 mV, 14.52 degrees C
     // now print out the temperature
                                                                  AA00, value = 129 : 630.50 mV, 13.05 degrees C
     float temperatureC = (voltage - 500) / 10;
28
                                                                  AAOO, value = 132 : 645.16 mV, 14.52 degrees C
29
     Serial.print(temperatureC);
                                                                  AA00, value = 129 : 630.50 mV, 13.05 degrees C
     Serial.println(" degrees C");
30
                                                                  AAOO. value = 130 : 635.39 mV, 13.54 degrees C
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
    delay(1000);
                                                                  AA00, value = 128 : 625.61 mV, 12.56 degrees C
33 }
```


A3.1.5 Temperature sensor [TMP36]

Save as AAnn_TMP36.png

A3.2 Luminosity sensor [Photocell LDR]

CdS 센서- photoresistor

CDS특성

- 1. 감도
 - -빛의 파장에 따라 감도가 다름
- 2. 허용손실
 - -비교적 <mark>큰 전류를</mark> 흘릴 수 있음
- 3. 암 전류
 - -빛이 없어도 <mark>약간의 전류</mark>가 흐름
- 4. 명 전류
 - 빛을 비추면 흐르는 전류
- 5. 응답특성
 - 응답 시간 지연
- 빛의 세기에 따라 응답시간 다름
- 6. 가변저항
 - -빛에 따른 가변저항

A3.2.2 Luminosity sensor [Photocell LDR]

CdS 센서 회로

Parts: 20 mm photocell LDR, R (10 k Ω X 1)

광센서에서의 전압 강하 값을 A0로 측정

A3.2.4 Luminosity sensor [Photocell LDR]

CdS 센서 회로 - 측정 1.

```
CdS_start
 1 #define CDS_INPUT_0
 3 void setup() {
    Serial.begin(9600);
 5}
 7 void loop() {
 8
     int value = analogRead(CDS_INPUT);
    Serial.println(value);
10
11
    delay(1000);
13 }
14
```


어두우면 측정 값이 커지고 밝을수록 값이 작아진다 ???

CdS 센서 회로 분석 (2/2)

$$(a) \ V_{out} = \frac{R_{ldr}}{(R_1 + R_{ldr})} * V_{CC} \; ,$$

(b)
$$R_{ldr} = \frac{10 * V_{out}}{(5 - V_{out})} (k\Omega)$$
,

(c)
$$V_{out} = value * V_{CC}/1023$$
,

$$(d) \ Lux = \frac{500}{R_{ldr}} \ ,$$

$$(e) \ \ Lux = (\frac{2500}{V_{out}} - 500)/10 \ (lux).$$

$$V_{out} = \frac{R_{ldr}}{R_1 + R_{ldr}} * V_{cc}$$

A0에서 측정되는 **LDR** 양단의 전압 = **V**out

A3.2.6 Luminosity sensor [Photocell LDR]

CdS 센서 회로 - 측정 2.

```
sketch08_CdS2
 1 // lux
 2 #define CDS_INPUT 0
 4 void setup() {
5 Serial.begin(9600);
6 }
7 void loop() {
    int value = analogRead(CDS_INPUT);
   Serial.println(int(luminosity(value)));
   delay(1000);
10
11 }
1 //Voltage to Lux
14 double luminosity (int RawADCO){
    double Yout=RawADC0*5.0/1023; // 5/1023 (Yin = 5 V)
    double lux=(2500/Yout-500)/10;
    // lux = 500 / Rldr, Yout = Ildr*Rldr = (5/(10 + Rldr))*Rldr
    return lux;
```


밝을수록 측정 값이 커지고 어두을수록 값이 작아진다 !!!

Arduino

Sensors

+ Node.js

IOT: HSC

Layout [H S C]

on WEB monitoring Arduino data

IoT Signal from Arduino

Real-time Signals

on Time: 2021-10-06 09:49:49.818

Signals (조도,습도,온도): 166,60,-5

Arduino data + plotly

Single sensor: tmp36

A3.1.1 Temperature sensor [TMP36]

Parts: TMP36

- Size: TO-92 package (about 0.2" x 0.2" x 0.2") with three leads
- Price: \$2.00 at the Adafruit shop
- Temperature range: -40°C to 150°C / -40°F to 302°F
- Output range: 0.1V (-40°C) to 2.0V (150°C) but accuracy decreases after 125°C
- Power supply: 2.7V to 5.5V only, 0.05 mA current draw

A4.1.1 tmp36 node project

Start tmp36-node project

- Go to my working folder: aann-rpt06
- md iot & cd iot
- md tmp36
- cd tmp36
- **Open terminal**
- npm init 6.

A4.1.2 tmp36 node project: npm init

문제 출력 디버그 콘솔 터미널 D:\aann\aann-rpt06\iot\tmp36>npm init This utility will walk you through creating a package.json file. It only covers the most common items, and tries to guess sensible defaul ts. See `npm help init` for definitive documentation on these fields and exactly what they do. Use `npm install <pkg>` afterwards to install a package and save it as a dependency in the package. json file. Press ^C at any time to quit. package name: (tmp36) version: (1.0.0) description: tmp36-node project entry point: (index.js) tmp36_node.js test command: git repository: keywords: tmp36 node arduino author: aa00 license: (ISC) MIT

A4.1.3 tmp36 node project: package.json

found 0 vulnerabilities

A4.1.4 tmp36 node project: install modules

npm install --save serialport

```
D:\aann\aann-rpt06\iot\tmp36\npm install --save serialport
> @serialport/bindings@9.2.4 install D:\aann\aann-rpt06\iot\tmp36\node m
odules\@serialport\bindings
> prebuild-install --tag-prefix @serialport/bindings@ | node-gyp rebuil
npm notice created a lockfile as package-lock.json. You should commit th
is file.
npm WARN tmp36@1.0.0 No repository field.
+ serialport@9.2.4
added 74 packages from 45 contributors and audited 74 packages in 11.774
17 packages are looking for funding
  run `npm fund` for details
```

31

npm install --save serialport

```
D:\aann\aann-rpt06\Node>npm install serialport

added 21 packages, and audited 22 packages in 5s

14 packages are looking for funding
  run `npm fund` for details

found 0 vulnerabilities
```


socket.io

https://socket.io/docs/v4/server-installation/

npm install --save socket.io@2.3.0

```
D:\aann\aann-rpt06\iot\tmp36xnpm install --save socket.io@2.3.0
npm WARN tmp36@1.0.0 No repository field.
+ socket.io@2.3.0
added 52 packages from 33 contributors and audited 126 packages in 3.878
S
17 packages are looking for funding
  run `npm fund` for details
found 4 vulnerabilities (2 moderate, 1 high, 1 critical)
  run `npm audit fix` to fix them, or `npm audit` for details
 D:\aann\aann-rpt06\iot\tmp36 디렉터리
 2021-10-05 오전 10:23
                         <DIR>
 2021-10-05 오전 10:23
                         <DIR>
                                       node modules
 2021-10-05 오전 10:23
                         <DIR>
                                28,477 package-lock.json
 2021-10-05 오전 10:23
 2021-10-05 오전 10:23
                                   367 package.json
                                   28,844 바이트
               2개 파일
               3개 디렉터리 2,424,474,251,264 바이트 남음
```


npm install --save socket.io@2.3.0

```
found 4 vulnerabilities (2 moderate, 1 high, 1 critical)
 run `npm audit fix` to fix them, or `npm audit` for details
D:\aann\aann-rpt06\iot\tmp36>npm audit fix
npm WARN tmp36@1.0.0 No repository field.
+ socket.io@2.4.1
added 1 package, removed 11 packages, updated 11 packages and moved 1 pa
ckage in 1.33s
17 packages are looking for funding
 run `npm fund` for details
fixed 1 of 4 vulnerabilities in 126 scanned packages
  1 package update for 3 vulnerabilities involved breaking changes
  (use `npm audit fix --force` to install breaking changes; or refer to
`npm audit` for steps to fix these manually)
```


npm install -- save socket.io [N.A.]

4.x 버전 설치는 좀 더 검토가 필요.

D:\aann\aann-rpt06\iot\tmp36\npm install --save socket.io npm WARN tmp36@1.0.0 No repository field.

```
+ socket.io@4.2.0
added 20 packages from 66 contributors and audited 94 packages in 2.046s
```

17 packages are looking for funding run `npm fund` for details

found 0 vulnerabilities

D:\aann\aann-rpt06\iot\tmp36 디렉터리

```
2021-10-05 오전 10:23 <DIR>
2021-10-05 오전 10:23 <DIR>
2021-10-05 오전 10:23 <DIR>
2021-10-05 오전 10:23 <DIR>
2021-10-05 오전 10:23 28,477 package-Iock.json
2021-10-05 오전 10:23 367 package.json
2개 파일 28,844 바이트
3개 디렉터리 2,424,474,251,264 바이트 남음
```


A4.1.4 tmp36 node project: install modules

```
정상 동작 버전을 설치!
```

npm install --save serialport@9.2.4

npm install --save socket.io@2.4.1

```
"author": "aa00",
"license": "MIT",
"dependencies": {
   "serialport": "^9.2.4",
   "socket.io": "^2.4.1"
}
```


A4.1.5 tmp36 node project (Arduino code)

AAnn_TMP36_NodeJS.ino

```
12 void loop() {
     //getting the voltage reading from the temperature sensor
14 int value = analogRead(TEMP_INPUT);
15 Serial.print("value = ");
16 Serial.print(value);
    Serial.print(" : ");
18
19
     // converting that reading to voltage
     float voltage = value * 5.0 * 1000; // in mV
     voltage /= 1023.0;
22
23
     // print out the voltage
     Serial.print(voltage);
24
     Serial.print(" mV, ");
26
     // now print out the temperature
28
     float temperatureC = (voltage - 500) / 10;
     Serial.print(temperatureC);
29
     Serial.println(" degrees C");
301
    delay(1000);
33|}
```

Serial monitor

```
COM4 (Arduino/Genuino Uno)
value = 150 : 733.14 mV, 23.31 degrees C
value = 153 : 747.80 mV, 24.78 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 149 : 728.25 mV, 22.83 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 149 : 728.25 mV, 22.83 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 150 : 733.14 mV, 23.31 degrees C
value = 149 : 728.25 mV, 22.83 degrees C
```


A4.1.6 tmp36 node project (node code)

tmp36_node_start.js

```
var serialport = require("serialport");
     var portName = "COM3"; // check your COM port!!
     var port = process.env.PORT | 3000;
     var io = require("socket.io").listen(port);
     const Readline = require("@serialport/parser-readline");
     // serial port object
10
     var sp = new serialport(portName, {
11
       baudRate: 9600, // 9600 38400
12
       dataBits: 8,
13
       parity: "none",
14
      stopBits: 1,
15
       flowControl: false,
16
       parser: new Readline("\r\n"),
17
18
```

```
const parser = sp.pipe(new Readline({ delimiter: "\r\n"
22
    // Read the port data
   sp.on("open", () => {
23
   console.log("serial port open");
24
   1);
25
26
27
     var tdata = []; // Array
28
     parser.on("data", (data) => {
29
      // call back when data is received
30
31
     // raw data only
      //console.log(data);
33
      tdata = data; // data
34
35
      console.log("AA00," + tdata);
36
       io.sockets.emit("message", tdata); // send data to all clie
37
```


A4.1.7 tmp36 node project (node cmd message)

[Terminal] node tmp36_node.js

```
D:\aann\aann-rpt06\iot\tmp36\node tmp36 node
serial port open
67.35 mV, 26.74 degrees C
67.35 mV, 26.74 degrees C
7 : 767.35 mV, 26.74 degrees C
7 : 767.35 mV, 26.74 degrees C
AA00, value = 157 : 767.35 mV, 26.74 degrees C
AA00, value = 157 : 767.35 mV, 26.74 degrees C
AA00, value = 157 : 767.35 mV, 26.74 degrees C
AA00, value = 157 : 767.35 mV, 26.74 degrees C
AA00, value = 155 : 757.58 mV, 25.76 degrees C
AA00, value = 155 : 757.58 mV, 25.76 degrees C
AA00, value = 156 : 762.46 mV, 26.25 degrees C
AA00, value = 156 : 762.46 mV, 26.25 degrees C
AA00, value = 156 : 762.46 mV, 26.25 degrees C
AA00, value = 156 : 762.46 mV, 26.25 degrees C
AA00, value = 155 : 757.58 mV, 25.76 degrees C
AA00, value = 155 : 757.58 mV, 25.76 degrees C
AA00, value = 156 : 762.46 mV, 26.25 degrees C
AA00, value = 156 : 762.46 mV, 26.25 degrees C
```


A4.1.8 tmp36 node project (all messages)

tmp36_node.js

```
var dStr = "";
var tdata = []; // Array

parser.on("data", (data) => {
    // call back when data is received
    // raw data only
// console.log(data);

dStr = getDateString();
   tdata[0] = dStr;
   tdata[1] = data; // data
   console.log("AA00," + tdata.toString());
   io.sockets.emit("message", tdata); // set
});
```

```
function getDateString() {
  var time = new Date().getTime();
  // 32400000 is (GMT+9 Korea, GimHae)
  // for your timezone just multiply +/-GMT by 3600000
  var datestr = new Date(time + 32400000)
    .toISOString()
    .replace(/T/, " ")
    .replace(/Z/, "");
  return datestr;
}
```

[Terminal] node tmp36_node

```
D:\aann\aann-rpt06\iot\tmp36>node tmp36_node
serial port open
AA00,2021-10-05 11:21:24.062,lue = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:24.062,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:24.062,value = 157 : 767.35 mV, 26.74 degrees C
AA00,2021-10-05 11:21:24.062,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:24.063, value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:24.063, value = 157 : 767.35 mV, 26.74 degrees C
AA00,2021-10-05 11:21:25.644, value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:26.648, value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:27.651,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:28.651,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:29.655,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:30.658, value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:31.662,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:32.661,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:33.665, value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:34.669,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:35.672,value = 156 : 762.46 mV, 26.25 degrees C
AA00,2021-10-05 11:21:36.676,value = 155 : 757.58 mV, 25.76 degrees C
AA00,2021-10-05 11:21:37.675,value = 156 : 762.46 mV, 26.25 degrees C
```


AAnn_tmp36_message.png 로 저장

A4.1.9 tmp36 node project (only data)

AAnn_TMP36_NodeJS.ino 수정

```
AA00_TMP36_NodeJS
12 void loop() {
    //getting the voltage reading from the temperature sensor
14 int value = analogRead(TEMP INPUT);
15 // Serial.print("AA00, value = ");
16 // Serial.print(value);
17 // Serial.print(" : ");
18
     // converting that reading to voltage
    float voltage = value * 5.0 * 1000; // in mV
    voltage /= 1023.0;
     // print out the voltage
24 // Serial.print(voltage);
25 |// Serial.print(" mV, ");
26
     // now print out the temperature
    float temperatureC = (voltage - 500) / 10 ;
29 // Serial.print(" Temperature, ");
    Serial.println(temperatureC);
31 // Serial.println(" degrees C");
32
    delay(1000);
34|}
```

실행 결과

\bigcirc A4.1.10 tmp36 node project (date & data \rightarrow IOT)

[Terminal] node tmp36_node

```
D:\aann\aann-rpt06\iot\tmp36>node tmp36 node
serial port open
AA00,2021-10-05 11:31:03.941,26.25
AA00,2021-10-05 11:31:04.944,26.25
AA00,2021-10-05 11:31:05.945,26.25
AA00,2021-10-05 11:31:06.948,26.25
AA00,2021-10-05 11:31:07.951,26.25
AA00,2021-10-05 11:31:08.951,26.25
AA00,2021-10-05 11:31:09.954,25.76
AA00,2021-10-05 11:31:10.954,26.25
AA00,2021-10-05 11:31:11.958,26.25
AA00,2021-10-05 11:31:12.957,26.25
AA00,2021-10-05 11:31:13.961,26.25
AA00,2021-10-05 11:31:14.964,26.25
AA00,2021-10-05 11:31:15.964,26.25
                시가
```

IOT data format 시간, data 시간, 온도

AAnn_tmp36_IOT_data.png 로 저장

공백없이 ","로 시간과 온도 구분

A4.1.11 tmp36 node project (web monitoring)

[Web monitoring] client_signal_tmp36.html

IoT Signal from Arduino

Real-time Signals

on Time: 2023-10-11 16:51:47.582

Signal (temp): 24.78

AAnn_tmp36_IOT_WEB.png 로 저장

Single sensor: CdS

Node project

A3.2.2 Luminosity sensor [Photocell LDR]

CdS 센서 회로

Parts: 20 mm photocell LDR, R (10 k Ω X 1)

광센서에서의 전압 강하 값을 A0로 측정

A3.2.6 Luminosity sensor [Photocell LDR]

CdS 센서 회로 - 측정 2.

```
AAnn cds start.ino
 1 // lux
2 #define CDS_INPUT 0
 4 void setup() {
5 Serial.begin(9600);
6 }
7 void loop() {
   int value = analogRead(CDS_INPUT);
   Serial.println(int(luminosity(value)));
    delay(1000);
10
11 }
$ //Voltage to Lux
14 double luminosity (int RawADCO){
    double Yout=RawADC0*5.0/1023; // 5/1023 (Vin = 5 V)
    double lux=(2500/Yout-500)/10;
    // lux = 500 / Rldr, Yout = Ildr*Rldr = (5/(10 + Rldr))*Rldr
    return lux;
```


밝을수록 측정 값이 커지고 어두을수록 값이 작아진다 !!!

A4.2.1 Luminosity sensor [npm init]

Start cds-node project

- Go to my working folder
- Go to iot folder
- md cds
- cd cds
- **Open terminal in cds**
- npm init

```
✓ □ iot

  cds
   package.json
    tmp36
```

```
"main": "cds_node.js"
"author": "aann"
```


A4.2.2 Luminosity sensor [install node modules]

npm install --save serialport@9.2.4 npm install --save socket.io@2.4.1

```
"name": "cds",
       "version": "1.0.0",
       "description": "cds node project",
 5
       "main": "cds node.js",
       ▶ Debug
       "scripts": {
6
         "test": "echo \"Error: no test specified\" && exit 1"
       "keywords":
         "cds",
10
         "node"
11
12
       "author": "aa00",
13
       "license": "MIT",
14
15
       "dependencies": {
16
         "serialport": "^9.2.4",
17
         "socket.io": "^2.4.1"
18
19
```


A4.2.3 Luminosity sensor [node code]

Save tmp36_node.js as cds_node.js in cds folder (code 재활용)

```
D:\aann\aann-rpt06\iot\cds>node cds_node
serial port open
AA00,2021-10-06 11:22:58.665,82
AA00,2021-10-06 11:22:59.669,83
AA00,2021-10-06 11:23:00.668,82
AA00,2021-10-06 11:23:01.672,83
AA00,2021-10-06 11:23:02.672,82
AA00,2021-10-06 11:23:03.675,82
AA00,2021-10-06 11:23:04.675,82
AA00,2021-10-06 11:23:05.678,82
AA00,2021-10-06 11:23:06.678,83
```


A4.2.4 CdS node project (web monitoring)

[Web monitoring] client_signal_cds.html

[Practice]

- **♦** [wk05]
- Arduino sensors + Node.js
- Complete your project
- Upload folder: aann-rpt06
- Use repo "aann" in github

wk05: Practice: aann-rpt06

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github repo.

제출폴더명: aann-rpt06 - 압축할 파일들 AAnn_tmp36_message.png AAnn_tmp36_IOT_data.png AAnn_tmp36_IOT_WEB.png AAnn_cds_IOT_data.png AAnn_cds_IOT_WEB.png All *.ino All *.js NO node_modules folder

Multiple sensors

CdS + TMP36 Node project

A4.3.1 TMP36 + CdS: circuit

A4.3.2 TMP36 + CdS : code

```
AAnn_TMP36_cds§

1 // temperature & lux
2 #define TMP36_INPUT 0
3 #define CDS_INPUT 1
4
5 void setup() {
6 Serial.begin(9600);
7 }
```

AAnn_tmp36_cds.ino

```
8 void loop() {
    // Temperature from TMP36
    int temp_value = analogRead(TMP36_INPUT);
    // converting that reading to voltage
    float voltage = temp_value * 5.0 * 1000; // in mV
    voltage /= 1023.0;
    float tempC = (voltage - 500) / 10;
   // Lux from CdS (LDR)
    int cds_value = analogRead(CDS_INPUT);
    int lux = int(luminosity(cds_value));
20 Serial.print(tempC);
    Serial.print(",");
   Serial.println(lux);
23
   delay(1000);
25 }
26
27 //Voltage to Lux
28 double luminosity (int RawADCO){
    double Yout=RawADCO+5.0/1023.0; // 5/1023 (Yin = 5 Y)
    int lux=(2500/Yout-500)/10:
    // lux = 500 / Rldr, Yout = Ildr*Rldr = (5/(10 + Rldr))*Rldr
31
32
    return lux;
33 }
```


A4.3.3 TMP36 + CdS: Monitoring

×

500

9600 보드레이트

A4.5.1 CdS + TMP36 + Node project

- 1. Make cds_tmp36 node project
- md cds_tmp36 in iot folder
- 2. Go to cds_tmp36 subfolder
- Start terminal
- > npm init

```
"main":

"cds_tmp36_node.js"

"author": "aann"
```

```
name: cds_tmp36
description: cds-tmp36-node project
entry point: cds_tmp36_node.js
author: aann
```


A4.5.2 CdS + TMP36 + Node project

- > npm install -save serialport@9.2.4
- npm install –save <u>socket.io@2.4.1</u>
- npm Error 발생하면,
- npm update

```
"keywords": [
    "cds",
    "tmp36",
    "node"
],
    "author": "aa00",
    "license": "MIT",
    "dependencies": {
        "serialport": "^9.2.4",
        "socket.io": "^2.4.1"
    }
}
```


A4.5.3 CdS + TMP36 + Node project

Recycling code:

코드 재활용

Save cds_node.js as cds_tmp36_node.js

A4.5.4.1 CdS + TMP36 + Node project : code-1

cds_tmp36_node.js

```
// cds tmp36 node.js
1
     var serialport = require("serialport");
     var portName = "COM3"; // check your COM port!!
     var port = process.env.PORT | 3000;
6
     var io = require("socket.io").listen(port);
     const Readline = require("@serialport/parser-readline");
     // serial port object
10
11
     var sp = new serialport(portName, {
       baudRate: 9600, // 9600 38400
12
     dataBits: 8,
13
14
     parity: "none",
     stopBits: 1,
15
     flowControl: false,
16
17
       parser: new Readline("\r\n"),
18
19
20
     const parser = sp.pipe(new Readline({ delimiter: "\r\n" }));
21
     // Read the port data
22
     sp.on("open", () => {
23
       console.log("serial port open");
24
25
```


A4.5.4.2 CdS + TMP36 + Node project : code-2

cds_tmp36_node.js - parsing data

```
var dStr = "";
27
28
     var readData = "";
     var temp = "";
29
     var lux = "";
30
     var mdata = [];
31
     var firstcommaidx = 0;
32
33
     parser.on("data", (data) => {
       // call back when data is received
35
       readData = data.toString();
36
       firstcommaidx = readData.indexOf(",");
37
       if (firstcommaidx > 0) {
38
         temp = readData.substring(0, firstcommaidx);
39
                                                                      Parsing
         lux = readData.substring(firstcommaidx + 1);
40
         readData = "";
                                                                      Data
41
42
         dStr = getDateString();
43
         mdata[0] = dStr; //date
44
         mdata[1] = temp; //data
45
         mdata[2] = lux;
46
         console.log("AA00," + mdata.toString());
47
         io.sockets.emit("message", mdata); // send data to all clients
48
       } else {
49
         console.log(readData);
50
51
52
```


A4.5.4.3 CdS + TMP36 + Node project : code-3

cds_tmp36_node.js

```
io.sockets.on("connection", function (socket) {
54
       // If socket.io receives message from the client browser then
55
       // this call back will be executed.
56
       socket.on("message", function (msg) {
57
         console.log(msg);
58
       });
59
       // If a web browser disconnects from Socket.IO then this callback is called.
60
       socket.on("disconnect", function () {
61
         console.log("disconnected");
62
       });
63
     });
64
65
     // helper function to get a nicely formatted date string for IOT
66
     function getDateString() {
67
       var time = new Date().getTime();
68
       // 32400000 is (GMT+9 Korea, GimHae)
69
       // for your timezone just multiply +/-GMT by 3600000
70
71
       var datestr = new Date(time + 32400000)
72
         .toISOString()
         .replace(/T/, " ")
73
74
         .replace(/Z/, "");
       return datestr;
75
76
```


A4.5.5 CdS + TMP36 + Node project : result

Terminal에서 실행

```
D:\aann\aann-rpt06\iot\cds tmp36>node cds tmp36 node
serial port open
AA00,2021-10-05 13:57:38.119,25.27,84
AA00,2021-10-05 13:57:39.119,25.27,84
AA00,2021-10-05 13:57:40.122,24.78,83
AA00,2021-10-05 13:57:41.125,24.78,84
AA00,2021-10-05 13:57:42.125,24.78,84
AA00, 2021-10-05 13:57:43.129, 25.27,84
AA00 2021-10-05 13:57:44.132 25.27,83
AA00 2021-10-05 13:57:45.132 25.76,83
AA00 2021-10-05 13:57:46.135,24.78,84
```

IOT data format

시간, 온도,조도

Save as

AAnn_cds_tmp36_IOT.png

A4.5.6 CdS + TMP36 + Node project : WEB

[Web monitoring] client_signal_cds_tmp36.html

IoT Signal from Arduino

Real-time Signals

on Time: 2021-10-05 14:02:26.657

Signal (temp, lumi) : 25.27,84

Save as AAnn_cds_tmp36_WEB.png

[DIY] Multi-signals

다중신호 시뮬레이션

+ node.js

DIY - 스케치

아두이노에서 LED와 저항을 모두 제거하고 USB만 컴퓨터와 연결한다.

전자 소자 연결 없이 마구잡이 수 생성 함수를 이용해서 조도, 습도, 온도에 해당되는 3개의 신호를 만든다.

온도는 값의 범위를 -10 ~ 30, 습도는 40 ~ 90, 그리고 조도는 150 ~ 250 으로 가상적 으로 설정한다.

직렬통신 모니터링을 이용해서 세 개의 신호의 변화를 모니터링 하는 코드를 만들어 결과를 확인한다.

▶ 스케치 구성

- 1.3 개의 신호를 담을 변수를 초기화한다.
- 2. setup()에서 직렬 통신 속도를 9600 bps 로 설정하고 컴퓨터와 연결한다.
- 3. loop()에서 마구잡이 수를 세 개 발생시켜서 직렬 통신으로 3 개의 pwm 값을 각각 컴퓨터로 전송한다.

DIY - code

```
10 // the setup routine runs once when you press reset:
11 void setup() {
    // initialize serial communication at 9600 bits per second:
   Serial.begin(9600);
13
14 }
15
16 // the loop routine runs over and over again forever:
17 void loop() {
18 // Multi signals
19 humi = random(40,90);
20 temp = random(-10, 30);
21 lux = random(150, 250);
   Serial.print("AA00, Ambient lux: ");
    Serial.print(lux);
24
    Serial.print(" , Humidity: ");
    Serial print (humi);
    Serial.print(" , Temperature: ");
    Serial.println(temp);
    delay(500); // delay in between reads for stability
28
29 }
```


DIY - result

DIY 결과

가상적인 세 개의 센서신호 시뮬레이션:조도(위), 습도(중간), 온도(아래).

DIY - New result 1

DIY 결과 [1] : 가상적인 세 개의 센서신호 시뮬레이션 → 조도, 습도, 온도

DIY - New result 2-1

DIY 결과 [2] : 가상적인 세 개의 센서신호 시뮬레이션 → 조도, 습도, 온도를 Node.js로 처리

[1 단계] Node cmd

- 1. Make multi_signals node project
- md multi_signals in iot folder
- cd multi_signals
- 2. Go to multi_signals subfolder
- > npm init

name: multi_signals

description: multi-signals-node project

entry point : aann_multi_signals.js

author: aann

- 3. Install node modules
- npm install –save serialport@9.2.4
- npm install -save socket.io@2.4.1


```
DIY 결과 [2] : 가상적인 세 개의 센서신호 시뮬레이션 → 조도, 습도, 온도를 Node.js로 처리
```

```
Recycling code:
Save cds_tmp36_node.js as

aann_multi_signals.js in multi_signals subfolder
Update code
```

```
var dStr ='';
var readData='';
var temp='';
var humi='';
var lux='';
var mdata=[];
var firstcommaidx = 0;
var secondcommaidx= 0;
```


DIY 결과 [2] : 가상적인 세 개의 센서신호 시뮬레이션 → 조도, 습도, 온도를 Node.js로 처리

```
parser.on("data", (data) => {
 // call back when data is received
 readData = data.toString();
 firstcommaidx = readData.indexOf(",");
 secondcommaidx = readData.indexOf(",", firstcommaidx + 1);
 if (firstcommaidx > 0) 
    아두이노가 직렬통신으로 전송하는 2 개의 comma (,)로 구분된
    조도, 습도, 온도 데이터 메시지를 parsing 하여 mdata 배열에 담는 코드를
               하셔하시요.
    substring() 함수에서 firstcommaidx, secondcommaidx를 잘 이용하시오.
   console.log("AA00," + mdata);
   io.sockets.emit("message", mdata); // send data to all clients
 } else {
   console.log(readData);
```


DIY 결과 [2] : 가상적인 세 개의 센서신호 시뮬레이션 → 조도, 습도, 온도를 Node.js로 처리

```
parser.on("data", (data) => {
 // call back when data is received
 readData = data.toString();
 firstcommaidx = readData.indexOf(",");
 secondcommaidx = readData.indexOf(",", firstcommaidx + 1);
  if (firstcommaidx > 0)
   lux = readData.substring(0, firstcommaidx);
   humi = readData.substring(firstcommaidx + 1, secondcommaidx);
   temp = readData.substring(secondcommaidx + 1);
   readData = "";
   dStr = getDateString();
   mdata[0] = dStr; //date
   mdata[1] = lux; //data
   mdata[2] = humi;
   mdata[3] = temp;
   console.log("AA00," + mdata.toString());
   io.sockets.emit("message", mdata); // send data to all clients
  } else {
   console.log(readData);
```


DIY - New result 2-4: js functions

DIY 결과 [2] : 가상적인 세 개의 센서신호 시뮬레이션 → 조도, 습도, 온도를 Node.js로 처리

Hint:

javascript function : indexOf()

https://www.w3schools.com/jsref/jsref_indexof.asp

Syntax

string.indexOf(searchvalue, start)

Parameter Values

Parameter	Description
searchvalue	Required. The string to search for
start	Optional. Default 0. At which position to start the search

javascript function: substring()

string.substring(start, end)

Parameter Values

Parameter	Description
start	Required. The position where to start the extraction. First character is at index 0
end	Optional. The position (up to, but not including) where to end the extraction. If omitted, it extracts the rest of the string

DIY 결과 [2] : 가상적인 세 개의 센서신호 시뮬레이션 → 조도, 습도, 온도를 Node.js로 처리

```
D:\aann\aann-rpt06\iot\multi_signals>node aann_multi_signals
serial port open
AA00,2021-10-05 14:21:10.805,223,47,-1
AA00,2021-10-05 14:21:11.804,222,48,0
AA00,2021-10-05 14:21:12.808,173,84,28
AA00,2021-10-05 14:21:13.811,215,49,-10
AA00,2021-10-05 14:21:14.811,237,82,-8
                                          ID,시간,조도,습도,온도
AA00,2021-10-05 14:21:15.815,179,43,-3
AA00,2021-10-05 14:21:16.814,153,80,2
AA00,2021-10-05 14:21:17.818,207,59,19
AA00,2021-10-05 14:21:18.817,249,50,3
AA00,2021-10-05 14:21:19.821,185,68,6
AA00,2021-10-05 14:21:20.820,162,87,16
```

Save this result as AAnn_multi_signals_node.png

A4.5.6 multi-signals + Node project: WEB

[Web monitoring] client_multi_signals.html

IoT Signal from Arduino

Real-time Signals

on Time: 2021-10-05 14:27:23.536

Signals (조도,습도,온도) : 161,41,22

Save as AAnn_multi_signals_WEB.png

Next week

Data visualization using ploy.ly

Real-time Temperature(°C) and Luminosity(lux) from sensors

on Time: 2017-11-14 17:14:53.321

[Practice]

- **♦** [wk05]
- Arduino sensors + Node.js
- Complete your project
- Upload folder: aann-rpt06
- Use repo "aann" in github

wk06: Practice: aann-rpt06

- **◆** [Target of this week]
 - Complete your works & update your repo.
 - Save your outcomes and upload outputs in github repo.

제출폴더명 : aann-rpt06 - 압축할 파일들 ① AAnn_cds_tmp36_serial.png ② AAnn_cds_tmp36_IOT.png ③ AAnn_cds_tmp36_WEB.png ④ AAnn_multi_signals_node.png ⑤ AAnn_multi_signals_WEB.png ⑥ All *.ino ⑦ All *.js ⑥ NO node_modules folder

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com

 By w3schools.com
- http://www.github.com GitHub

Target of this class

Real-time Weather Station from nano 33 BLE sensors

on Time: 2020-09-09 10:27:17.321

