



→ ⇒ y

WIND TUNNEL DATA REPORT

HEAT-TRANSFER AND PRESSURE TESTS ON AN OBLATE ELLIFTIC NOSETIP IN THE NSWC/WO HYPERSONIC TUNNEL AT MACH NUMBER 5 (WTR-1346).

₿Y

M. D./JOBE

STRATEGIC SYSTEMS DEPARTMENT

JUN 81

DTIC

OCT 23 1981

E

App. oved for public release; distribution unlimited.

ME FILE COPY



# **NAVAL SURFACE WEAPONS CENTER**

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

81 10 22

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                              | READ INSTRUCTIONS BEFORE COMPLETING FORM                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER 2. GOVT ACCESSION NO.                                                                                                                                                                                                                                 | 3. RECIPIENT'S CATALOG NUMBER                                                                                                          |
| NSWC MP 81-259 AD-A106 058                                                                                                                                                                                                                                             |                                                                                                                                        |
| HEAT-TRANSFER AND PRESSURE TESTS ON AN OBLATE                                                                                                                                                                                                                          | 5. TYPE OF REPORT & PERIOD COVERED                                                                                                     |
| ELLIPTIC NOSETIP IN THE NSWC/WO HYPERSONIC                                                                                                                                                                                                                             | }                                                                                                                                      |
| TUNNEL AT MACH NUMBER 5 (WTR 1346)                                                                                                                                                                                                                                     | 6. PERFORMING ORG. REPORT NUMBER                                                                                                       |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
| AUTHGR(e)                                                                                                                                                                                                                                                              | S. CONTRACT OR GRANT NUMBER(s)                                                                                                         |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
| M. D. JOBE                                                                                                                                                                                                                                                             |                                                                                                                                        |
| PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                               | 10. PROGRAM ELEMENT. PROJECT, TASK                                                                                                     |
| NAVAL SURFACE WEAPONS CENTER (K24)                                                                                                                                                                                                                                     | AREA & WORK UNIT NUMBERS                                                                                                               |
| WHITE OAK                                                                                                                                                                                                                                                              | FY7653~8100301                                                                                                                         |
| SILVER SPRING, MARYLAND 20910                                                                                                                                                                                                                                          | <u> </u>                                                                                                                               |
| CONTROLLING OFFICE NAME AND ADDRESS                                                                                                                                                                                                                                    | 12. REPORT DATE                                                                                                                        |
|                                                                                                                                                                                                                                                                        | JUNE 1981                                                                                                                              |
|                                                                                                                                                                                                                                                                        | 13. NUMBER OF PAGES                                                                                                                    |
| MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)                                                                                                                                                                                                 | 15. SECURITY CLASS. (of this report)                                                                                                   |
| SMO/MNRTE<br>NORTON AFB                                                                                                                                                                                                                                                |                                                                                                                                        |
| LOS ANGELES, CALIFORNIA                                                                                                                                                                                                                                                | UNCLASSIFIED                                                                                                                           |
| ESS ANGELLS, CALL CHILA                                                                                                                                                                                                                                                | 15. DECLASSIFICATION DOWNGRADING                                                                                                       |
| DISTRIBUTION STATEMENT (of this Report)                                                                                                                                                                                                                                | <u> </u>                                                                                                                               |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
| 7. DISTRIBUTION STATEMENT (of the eletract entered in Black 20, if different from                                                                                                                                                                                      | en Report)                                                                                                                             |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
| . SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                  |                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
|                                                                                                                                                                                                                                                                        |                                                                                                                                        |
| . KEY WORDS (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                       |                                                                                                                                        |
| Elliptic nosetip Surface roughness                                                                                                                                                                                                                                     | Enthalpy ratio                                                                                                                         |
|                                                                                                                                                                                                                                                                        | Hypersonic                                                                                                                             |
| Heat transfer Augmented heating                                                                                                                                                                                                                                        |                                                                                                                                        |
|                                                                                                                                                                                                                                                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                |
|                                                                                                                                                                                                                                                                        | 7.00                                                                                                                                   |
| Pressure distribution Transition                                                                                                                                                                                                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                |
| Pressure distribution Transition  ABSTRACT (Continue on reverse side if necessary and identify by block number)                                                                                                                                                        |                                                                                                                                        |
| Pressure distribution Transition  ABSTRACT (Continue on reverse side if necessary and identify by block number)  An extensive data base on a 2:1 elliptical noset                                                                                                      | io shape to be utilized for                                                                                                            |
| Pressure distribution Transition  ABSTRACT (Continue on reverse side if necessary and identify by block number)  An extensive data base on a 2:1 elliptical noset verification of the AVCO MTSCT three-dimensional t                                                   | ip shape to be utilized for ransition code was generated                                                                               |
| Pressure distribution Transition  ABSTRACT (Continue on reverse side it necessary and identity by block number)  An extensive data base on a 2:1 elliptical noset verification of the AVCO MTSCT three-dimensional tin the NSWC Hypersonic Tunnel at Mach Number 5. Fo | ip shape to be utilized for ransition code was generated our nosetip models in which                                                   |
| Pressure distribution Transition  ABSTRACT (Continue on reverse side if necessary and identify by block number)                                                                                                                                                        | ip shape to be utilized for ransition code was generated our nosetip models in which I to a roughness value of a instrumented with 112 |

ness) instrumentation consisted of 67 thermocouples and 31 Statham pressure

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS DESOLETE 5/N 0102-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

| LUL HITY CLASSIFICATION OF THIS PAGE(When Data Entered)                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| transducers. The test matrix consisted of sixty runs where the variables included angle-of-attack, tunnel Reynolds number, and wall enthalpy ratio. |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |
|                                                                                                                                                     |

UNCLASSIFIED

#### **FOREWORD**

An extensive data base on a 2:1 elliptical nosetip shape to be utilized for verification of the AVCO MTSCT three-dimensional transition code was generated in the NSWC/WO Hypersonic Tunnel at Mach Number 5. The tests were conducted during the period 7-17 April 1981. Four nosetip models with surface roughness values based on a 30% probability of exceedence (K30) of 0, 1.29, 3.26, and 10 mils were tested. The first three nosetip models were instrumented with 112 back-faced chromel-alumel thermocouples. The fourth model (i.e., 10-mil roughness) instrumentation consisted of 67 thermocouples and 31 Statham pressure transducers. The test matrix consisted of 60 runs where the variables included angle of attack, tunnel Reynolds number, and wall enthalpy ratio.

This work was performed at the request of the Ballistic Missile Office in support of the Maneuvering Thermodynamics and Shape Change Technology (MTSCT) Program. These tests were directed by Mr. A. Todisco, AVCO Systems Division, Wilmington, Massachusetts. This report describes the test procedures and the data reduction and transmittal methods.

| Accession | n For   |       |
|-----------|---------|-------|
| NTIS GI   | T&AF    | X     |
| DIIC TA   | 2       |       |
| Use more  |         | []    |
| J. His    | ontion. |       |
|           |         |       |
| 1         |         |       |
|           | 11.5/   |       |
|           | tv      | Codes |
|           | 1, 1110 | 2/or  |
| ¥**<br>3  | piela.  | l     |
| A         |         |       |

C. A. FISHER
By direction

# CONTENTS

|                                                                                    |                                                                                                                            | Page                                               |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| MODELS AND<br>TEST CONDI<br>DATA ACQUIS<br>SURFACE ROI<br>DATA FORMA<br>BIBLIOGRAP | CN. INSTRUMENTATION. TIONS. SITION AND REDUCTION. UGHNESS CHARACTERIZATION. T. HY RE. Surface Roughness Characterization   | 5<br>5<br>14<br>21<br>224<br>26<br>47<br>49<br>A-1 |
|                                                                                    | ILLUSTRATIONS                                                                                                              |                                                    |
| Figure                                                                             |                                                                                                                            | Page                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                          | Model Drawing                                                                                                              | 8<br>9<br>10<br>11<br>12<br>13<br>15               |
| 11<br>12<br>13<br>14<br>15                                                         | Pitot Probe Surveys and Mach Number Profiles at Various Reynolds Numbers                                                   | 25<br>27<br>28<br>30                               |
| 16<br>17<br>18<br>19<br>20<br>21                                                   | 'Quick-Look' QDOT Vs. Thermocouple Location Along Lee-ward Ray'Quick-Look' QDOT Vs. Thermocouple Location Along Major Axis | 32<br>33<br>34<br>35<br>36<br>37                   |
| 22                                                                                 | CP Vs. Tap Location on Ray N - Run #51                                                                                     | 38                                                 |

# ILLUSTRATIONS (Con't)

| Figure                |                                                                                                                                                                        | Page           |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 23<br>24<br>25        | P/PT2 Vs. Tap Location on Ray J - Run #51<br>Shadowgraph of Model G-2 at $\alpha$ = 25 Degrees (Run #13)<br>Shadowgraph of Model G-2 at $\alpha$ = 0 Degrees (Run #30) | 39<br>45<br>46 |
|                       | TABLES                                                                                                                                                                 |                |
| Table                 |                                                                                                                                                                        | Page           |
| 1<br>2<br>3<br>4<br>5 | AVCO MTSCT Test Matrix                                                                                                                                                 | 41             |
| 6<br>7                | Sample of Tabulated CP Data                                                                                                                                            | 42<br>44       |

#### INTRODUCTION

This report summarizes the results of a heat-transfer and limited pressure test series run in the Naval Surface Weapons Center/White Oak Laboratory (NSWC/WO) Hypersonic Wind Tunnel (T-8) as part of the AVCO Maneuvering Thermodynamics and Shape Change Technology (MTSCT) Program. The purpose of this wind tunnel test series was to provide data which will be utilized for verification of the AVCO MTSCT computer models. Specifically, the data generated in this test series will be used to:

- a. Extend nosetip transition modeling to three-dimensional flow,
- b. extend nosetip roughness heating augmentation modeling to three-dimensional flow at large roughness Reynolds number, and
- c. verify/refine basic flow field models for three-dimensional nosetip configurations.

## MODELS AND INSTRUMENTATION

Three models were supplied by AVCO and instrumented at the Naval Surface Weapons Center. All nosetip models were oblate spheriod shapes (5.0" major axis) with an ellipticity  $\varepsilon=1/2$ . The model size for the 2:1 elliptical shapes was selected to provide natural transition on the smooth wall model at the maximum test Reynolds number. The test models were fabricated from wroughtnickel with a nominal thickness of 0.060-inch. Model layout and sting adapter are shown in Figure 1.

Two models were instrumented with 112 chromel-alumel thermocouples of 5-milwire diameter. The wires were fused into a bead of approximately 1/32-inch-diameter and then spot welded to the interior surface of the model. Model G-1 was a highly polished model with a surface roughness < 0.01 mils. The second model (G-2) was grit blasted at NSWC to a surface roughness of  $K_{30} = 3.26$  mils. The K<sub>3D</sub> roughness value is a measure of surface roughness based on a 30% exceedence height and is discussed in detail later in this report. After model G-1 was tested, it was grit blasted to a  $K_{30} = 1.29$ -mil roughness and then identified as model G-3. Model G-4 (10-mil-brazed roughness) instrumentation consisted of 67 chromel-alumel thermocouples and 31 Statham pressure transducers. The pressure transducers were housed in an external pressure bank outside of the test cell. Twelve feet of 3/32-inch O.D. stainless steel tubing was required to connect each Statham transducer to the respective model port. Number 51 holes (.067-inchdiameter) were drilled by AVCO at the desired locations. The holes were then tapped with a 3-56 thread. This resulted in about four threads in the .060-inch model wall. Small lengths (less than four inches) of the 3/32-inch tubing were then screwed into the tapped holes until they were flush with the model surface. Loctite was then used to seal the threads. Finally, as an "insurance policy" to prevent leakage, RTV silicone rubber was placed at the tube/model interior surface junction. Approximately one foot of Tygon tubing then connected the model port to the 12-foot length of tubing. A sketch of the pressure port is given in Figure 2. Pressure measurements were obtained only with the 10-mil roughness model. It was felt that the large hole size may induce boundary-layer transition



FIGURE 1 MODEL AND STING ADAPTER DRAWING

for the smooth or small roughness models, whereas for the 10-mil roughness model a fully turbulent boundary layer should already exist.



FIGURE 2 PRESSURE PORT CONNECTION

The location of the thermocouple and pressure tap coordinates are defined as the intersection of the 'radial' planes that emanate from the rotation axis of the ellipsoid (i.e., minor axis) with the semicircles centered on the rotating axis. The geometry is best visualized in Figure 3. A planform view of the model shows 'radial' planes A through H and J through N. The  $\phi=0^{\rm O}$  ray (plane A-A') is shown to illustrate thermocouple locations. Note that for models G-1, G-2, and G-3 thermocouples are located on only half the model because of symmetry. For model G-4, pressure ports (rays J through N) are located on the other half of the model.

The thermocouples and pressure taps are identified by an alpha-numeric code. Thermocouples or pressure taps located at the intersection of the model surface and major axis are identified by the ray name followed by zero (two-digit code). For the remaining thermocouple and pressure taps, the meridian plane identifier is followed by the thermocouple or tap number in sequence from the 'zero' plane followed by either a 'W' (windward or bottom of model) or a 'L' (leeward or top of model). See Figure 3 for clarification.

Two views of a model in the test cell are shown in Figures 4 and 5. Figure 4 shows a top view of the G-3 model retracted into the cooling box. Figure 5 shows a side view of the G-1 model with the model oriented with the minor axis in the pitch plane ( $\alpha \approx 0^{\circ}$ ). Photographs of the models are given in Figures 6 through 8.



FIGURE 3 ILLUSTRATION OF THERMOCOUPLE AND PRESSURE TAP LOCATIONS

PLAN VIEW

SECTION A-A'



q

FIGURE 4 MODEL G-3 RETRACTED INTO COOLING BOX-TOP VIEW



FIGURE 5 MODEL G-1 INJECTED INTO TEST CELL-SIDE VIEW





FIGURE 7 MODEL G-3 (K<sub>30</sub> 1.29 MIL)



FIGURE 8 MODEL G 4 (10 MIL)

14745

### TEST CONDITIONS

These tests were conducted in the NSWC Hypersonic Tunnel (T-8) with the axisymmetric Mach number 5 nozzle. This tunnel is a blow-down-type tunnel utilizing high-pressure air as the working medium. A line diagram of the Hypersonic Tunnel is shown in Figure 9. A more detailed description of the tunnel and its performance capability may be found in reference (1).

The tunnel Reynolds numbers were varied from 1.25 x 10<sup>6</sup> to 23.8 x 10<sup>6</sup> per foot. The test matrix with computed Reynolds numbers is given in Table 1. For most runs the model was oriented with the minor axis in the pitch plane. This was referred to as the 'wing' orientation with zero roll angle (PSI = 0). For runs #46 and #60 the model was rolled 90 degrees with the thermocouple instrumentation located on the windward side when pitched to angle of attack. For run #59 the model was rolled 180 degrees to provide leeward heat-transfer data. Data was recorded at 0, 10, and 25 degrees angle of attack.\*

The enthalpy ratio  $(H_W/H_S)$  is assumed to be equal to the initial wall temperature  $(T_{W_1})$  divided by the stagnation temperature  $(T_0)$ 

$$H_{w}/H_{s} = T_{w_{i}}/T_{o} \tag{1}$$

where

The initial wall temperature is the average temperature of all the thermocouples just prior to model injection for that particular run. The supply conditions ( $T_0$ ,  $P_0$ ) are averaged values over the data interval. The data interval is 0.8 seconds except for runs #49, 50, and 51. For these three runs heat-transfer and pressure data were recorded simultaneously, where the data interval for the heat transfer data is 2.0 seconds and 6.7 seconds for the pressure data.

For the 'cold-wall' enthalpy runs ( $H_W/H_S=.3$ ) the models were precooled to a temperature as low as -150°F before injection into the test cell. The models were precooled using nitrogen and air. Liquid nitrogen was first evaporated and preheated to about -150°F. Dry air was then passed through a heat exchanger where it was cooled to approximately -100°F. The gaseous nitrogen was directed over the model from an inner annular jet of four inches in diameter. The precooled air fed into the periphery of the annular jet to provide additional cooling and to shield the model surface from any moisture in the tunnel test cell. Additionally, nitrogen was fed into the cooling box manifold to cool the sting. A schematic of the precooling setup is given in Figure 10.

Baltakis, F. P., "NSWC Hypersonic Tunnel User's Manual," NSWC/WOL MP 76-10, Jun 1976.

<sup>\*</sup>For run #48, maximum angle of attack is 8.5 degrees because pitch mechanism froze due to long exposure to the cooling box.



FIGURE 9 NSWC HYPERSONIC TUNNEL

NSWC MP 81-259

| COMMENTS                  |              |             |             | No Photo    | No Photo    |             |             |       |       |          |        |        |        |        |        |        | ٠           |          |
|---------------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|-------|----------|--------|--------|--------|--------|--------|--------|-------------|----------|
| I TIME (Sec.)             | 2.05         | 1.90        | 1.82        | 1.45        | 1.35        | 1.87        | 1.70        | 1.85  | 1.92  | 1.87     | 2.15   | 2.55   | 2,35   | 2.37   | 1.05   | 1.75   | 2.80        | 1.92     |
| ALPHA<br>(Deg.)           | 0            | 25          | 0           | 25          | 10          | 0           | 25          | 25    | 25    | 25       | 0      | 0      | 25     | 25     | 10     | 10     | 0           | 10       |
| HW/HS                     | .301         | .304        | .303        | .315        | .317        | . 508       | .514        | .630  | .614  | .632     | .303   | .303   | .307   | .303   | .293   | .298   | .299        | 306      |
| Twi<br>(°F)               | -114.8       | -111.7      | -102.5      | -94.1       | 0.79-       | 89.7        | 6.5         | 86.2  | 78.3  | 83.8     | -113.2 | -113.8 | -108.3 | -118.6 | -130.2 | -126.8 | -128.0      | -122.7   |
| To (0F)                   | £38.0        | 634.0       | 7.717       | 702.4       | 683.8       | 622.1       | 623.0       | 407.2 | 416.2 | 400.3    | 682.1  | 682.6  | 683.0  | 666.2  | 665.0  | 658.4  | 650.0       | 641.4    |
| Po<br>(PSIA)              | 582.6        | 581.1       | 870.8       | 877.8       | 573.0       | 1202.0      | 1198.1      | 148.1 | 258.1 | 368.7    | 117.1  | 169.3  | 169.5  | 108.9  | 119.4  | 171.1  | 8.49        | 63.7     |
| RE<br>10 <sup>6</sup> /FT | 10.50        | 10.60       | 15.10       | 15.60       | 10.40       | 23.80       | 23.70       | 4.20  | 7.11  | 10.40    | 2.16   | 3.12   | 3.13   | 2.06   | 2.07   | 3.26   | 1.25        | 1.24     |
| MODEL                     | 6-1          | <del></del> | <del></del> | <del></del> | <del></del> | <del></del> | <del></del> |       |       | <b>→</b> | 6-2    |        |        |        |        |        | <del></del> | <b>→</b> |
| RUN<br>NO.                | <del>-</del> | 7           | m           | 4           | ۲           | 9           | <b>~</b>    | w     | 6     | 10       | =      | 12     | 13     | 14     | 15     | 16     | 17          | 18       |

TABLE 1 AVCO MTSCT TEST MATRIX

NSWC MP 81-259

|                                         |                     |        |        |             |             |          |        |        | <b>-</b> | J     |       |       |          |        |        |        |             |        |              |          |
|-----------------------------------------|---------------------|--------|--------|-------------|-------------|----------|--------|--------|----------|-------|-------|-------|----------|--------|--------|--------|-------------|--------|--------------|----------|
|                                         | COMMENTS            |        |        |             |             |          |        |        |          |       |       |       |          |        |        |        |             |        |              |          |
|                                         | I TIME (Sec.)       | 1.75   | 2.50   | 2.07        | 1.55        | 2.10     | 2.12   | 1.90   | 1.72     | 0.25  | 1.75  | 1.60  | 1.62     | 2.70   | 4.22   | 2.17   | 2.17        | 1.97   | 1.92         | 2.13     |
| T'D)                                    | ALPHA<br>(Deg.)     | 25     | 0      | 25          | 10          | 0        | 25     | 10     | 0        | 0     | 10    | 25    | 0        | 0      | 10     | 52     | 0           | 10     | 52           | 0        |
| TABLE 1 AVCO MTSCT TEST MATRIX (CONT'D) | Hw/Hs               | .311   | .312   | .318        | .308        | .314     | .304   | .303   | . 502    | .514  | . 508 | .521  | .529     | . 288  | .299   | .299   | .303        | .303   | .304         | .296     |
| /CO MTSCT TES                           | Twi (0F.)           | -116.6 | -109.5 | -108.0      | -124.1      | -138.7   | -150.0 | -153.6 | 33.1     | 37.9  | 28.6  | 35.2  | 0.04     | -118.1 | -100.6 | 7.79 - | - 97.2      | - 97.2 | 6.96 -       | -102.5   |
| TABLE 1 AV                              | (°F.)               | 8.479  | 0.499  | 644.7       | 628.6       | 561.8    | 557.6  | 553.6  | 521.1    | 508.7 | 502.4 | 491.0 | 485.9    | 728.4  | 740.4  | 748.9  | 737.0       | 737.4  | 733.0        | 7.747    |
| •                                       | Po<br>(PSIA)        | 64.3   | 539.3  | 540.4       | 519.9       | 230.0    | 229.6  | 238.5  | 129.9    | 207.6 | 206.3 | 202.0 | 169.0    | 281.1  | 285.1  | 297.3  | 169.1       | 174.0  | 169.1        | 397.8    |
|                                         | 10 <sup>6</sup> /FT | 1.25   | 10.10  | 10.40       | 10.20       | 5.01     | 5.03   | 5.04   | 3.03     | 4.91  | 4.88  | 4.93  | 4.17     | 4.87   | 7.86   | 5.02   | 2.91        | 2.99   | 2.93         | 6.70     |
|                                         | MODEL               | 6-2    |        | <del></del> | <del></del> | <u>.</u> |        |        |          |       |       |       | <b>→</b> | 6-3    |        |        | <del></del> | ·      | <del>-</del> | <b>→</b> |
|                                         | NO.                 | 19     | 20     | 21          | 22          | 23       | 54     | 52     | 56       | 23    | 28    | 56    | 30       | 31     | 32     | 33     | 34          | 35     | 36           | 37       |

NSWC MP 81-259

|      |               |           | TABLE 1      |       | AVCO MTSCT TEST MATRIX (CONT'D) | X (CONT'D) |                 |               |                    |
|------|---------------|-----------|--------------|-------|---------------------------------|------------|-----------------|---------------|--------------------|
| No.  | MODEL         | RE 10 /FT | Po<br>(PSIA) | (°F)  | Twi                             | Hw/Hs      | ALPHA<br>(Deg.) | I TIME (Sec.) | COMMENTS           |
| 38   | 6-3           | 6.95      | 410.9        | 7.947 | 8.89 -                          | .299       | 10              | 1.85          |                    |
| 39   |               | 9-95      | 402.2        | 736.4 | - 92.4                          | 307        | 25              | 2.00          |                    |
| 07   |               | 7.88      | 451.5        | 722.2 | -111.6                          | .295       | 0               | 1.62          |                    |
| 1,1  |               | 7.93      | 456.2        | 725.4 | -104.9                          | .299       | 10              | 1.72          |                    |
| 25   |               | 78.7      | 450.6        | 721.8 | - 96.2                          | 308        | 25              | 1.80          |                    |
| 43   | <del></del>   | 11.18     | 611.6        | 686.3 | 125.8                           | .511       | 0               | 1.85          |                    |
| 77   |               | 11.40     | 622.5        | 685.0 | 136.0                           | .520       | 25              | 1.80          | •                  |
| 45   |               | 9.70      | 523.0        | 9.899 | -133.8                          | .291       | 0               | 1.75          |                    |
| 97   |               | 65.6      | 520.0        | 672.5 | -129.8                          | .291       | 25              | 1.70          |                    |
| 25   |               | 2.90      | 9.607        | 645.9 | -131.9                          | .297       | 0               | 1.97          | <sub>0</sub> 06≃∳  |
| 84   | <b>→</b>      | 7.96      | 411.8        | 641.8 | -114.3                          | .314       | 8.5             | 2.12          | <sub>0</sub> 06≃⁄h |
| 67   | 9-9           | 69.4      | 148.3        | 345.4 | 59.9                            | 809.       | 0               | 1.50          | Pressur            |
| 50   |               | 7.90      | 152.7        | 338.9 | 38.4                            | .624       | 10              | 2.20          | Pressur            |
| 51   | <del></del>   | 68-7      | 152.6        | 338.8 | 58.5                            | 679-       | 25              | 1.90          | Pressur            |
| 52   | <del></del> - | 9.88      | 481.4        | 596.4 | 74.1                            | .505       | 0               | 1.81          |                    |
| 53   | <del></del>   | 9.88      | 481.6        | 596.4 | 86.5                            | .517       | 10              | 2.05          |                    |
| 54   |               | 10.30     | 498.3        | 593.0 | 89.3                            | .522       | 25              | 1.81          |                    |
| . 55 | <b>→</b>      | 10.50     | 561.2        | 663.9 | -110.0                          | .311       | 25              | 1.93          |                    |
|      |               |           |              |       |                                 |            |                 |               |                    |

TABLE 1 AVCO MTSCT TEST MATRIX (CONT'D)

| COMMENTS        |        |        |        | ψ=180 <sup>0</sup> | <sub>0</sub> 06 =⁄h |
|-----------------|--------|--------|--------|--------------------|---------------------|
| I TIME (Sec.)   | 1.97   | 1.93   | 1.93   | 2.25               | 1.93                |
| ALPHA<br>(Deg.) | 0      | 0      | 25     | 52                 | 52                  |
| Hw/Hs           | .303   | .317   | .321   | 967.               | .527                |
| Cop.)           | -122.7 | -103.6 | -103,4 | 73.7               | 103.7               |
| To (0F)         | 652.0  | 8.499  | 8.649  | 616.7              | 6.809               |
| Po<br>(PSIA)    | 543.9  | 1090.5 | 1049.1 | 513.8              | 529.0               |
| 10 /FT          | 10.30  | 20.30  | 20.00  | 10.20              | 10.70               |
| MODEL           | 6-4    |        |        |                    | <b>&gt;</b>         |
| No.             | 26     | 23     | 28     | 59                 | 90                  |



FIGURE 10 MODEL PRECOOLING SETUP FOR AVCO MTSCT TR TEST

## DATA ACQUISITION AND REDUCTION

Tunnel supply conditions and thermocouple/pressure transducer outputs are recorded on a 16-channel analog-to-digital recorder (DARE V). By multiplexing the 16 amplifiers, DARE V is capable of recording 128 inputs. For runs 49, 50, and 51 data sampling rate was ten samples per second. The low sampling rate was necessary to allow for the longer time required for the pressure measurements. For all other runs the input sampling rate was 25 samples per second.

Aerodynamic heating rates  $(\tilde{Q})$  and heat-transfer coefficients (H) were computed from the standard heat balance equation assuming a thin-wall model transient technique with no lateral conduction. The heat balance equation is:

$$\dot{\mathbf{Q}} = \rho \, \mathbf{c} \, \delta \, \frac{d\mathbf{T}_{\mathbf{W}}}{dt} \tag{2}$$

where

d = heating rate (BTU/ft<sup>2</sup>—sec)

= density of the model material ( $lb/ft^3$ )

c = heat capacity of the model (BTU/lb-OF)

S = measured model wall thickness at TC location (inches)

 $T_{ij}$  = measured wall temperature ( ${}^{O}F$ )

t<sup>W</sup> = time (sec)

For model G-4, equation (2) is modified to account for the nonhomogenity. The equation is now written as:

$$\dot{Q} = \frac{dT_W}{\rho c \delta} \frac{dT_W}{dt}$$
 (3)

where

$$\frac{\partial}{\partial c} = (\rho c \delta)_{\text{Nickel}} + (\rho c \delta)_{\text{Silver Alloy}} + (\rho c \delta)_{\text{Copper}}$$
(4)

The values for (pc6) silver Alloy and (pc6) copper were obtained by weighing the silver alloy and copper particles applied to the model and then computing an average thickness of the material. Average thickness values are  $\delta_{\mbox{Silver}} = .0004$  inches and  $\delta_{\mbox{Copper}} = .0052$  inches. An average model wall thickness of  $\delta_{\mbox{Nickel}} = 0.057$  inches was used in the data reduction program. Material properties are dependent upon the temperature and are summarized in Table 2.

TABLE 2 MATERIAL PROPERTIES

| Temp. |     | Density (lb | /ft <sup>3</sup> ) | Specific Heat (BTU/lb- <sup>O</sup> F) |      |       |  |  |  |
|-------|-----|-------------|--------------------|----------------------------------------|------|-------|--|--|--|
| (°R)  | Ni  | Cu          | Ag                 | Ni                                     | Cu   | Ag    |  |  |  |
| 500   | 555 | 560         | 655                | .098                                   | .092 | .0560 |  |  |  |
| 750   | "   | ***         | n                  | .122                                   | .096 | .0570 |  |  |  |
| 1000  | **  | Ħ           | "                  | .133                                   | .099 | .0585 |  |  |  |
| 1160  | "   | **          | ,,                 | .146                                   | .101 | .0600 |  |  |  |
| 1250  | "   | H           | "                  | .130                                   | .103 | .0605 |  |  |  |
|       |     |             |                    |                                        |      |       |  |  |  |

The temperature-time derivative values ( $dT_w/dt$ ) were determined by curvefitting the recorded temperature-time data. A second order polynomial curve fit using twenty data points was used to compute the temperature-time slope. A critical parameter in determining the heat-up rate was the initial transient or start-up time. It was necessary to choose a starting time (Ti) for the twentypoint curve fit as close as possible to the time when the model first became fully exposed to the flow. The starting time for a particular run was determined by examining the temperature-time plots and digital data and then selecting the time when the thermocouple response became free of the model injection transients. Typically, the injection transients were between 0.1 and 0.25 seconds.

The heating rate  $(\hat{\mathbf{Q}})$  is the initial value based on the  $dT_{\mathbf{W}}/dt$  value at the start of the fitted data. The heat-transfer coefficient (H) is obtained by dividing the initial heating rate by the temperature differential  $(T_0-T_{wi})$  or

$$H = \hat{Q}/(T_O \sim T_{W_1}) \tag{5}$$

= heat-transfer coefficient (BTU/ft<sup>2</sup>-sec-oF)

= adiabatic wall temperature (i.e., tunnel stagnation temperature,

= average initial wall temperature (OF).

The Stanton number (St) is a nondimensional number obtained by dividing the initial heat-transfer coefficient by the freestream values of  $C_{D_{n}}$ ,  $\Omega_{\infty}$ , and  $U_{\infty}$ ,

$$St = \frac{H}{C_{p_{\infty}} \rho_{\infty} U_{\infty}}$$
 (6)

where

 $c_{p_{\infty}}$  = specific heat of air (0.24 BTU/lb- $^{o}$ F)  $\rho_{\infty}$  = freestream density (lb/ft $^{3}$ )

= freestream velocity (ft/sec)

The specific heat of air was assumed to be  $0.24~BTU/lb^{-0}F$ , and the density and velocity values were computed from the tunnel air supply pressure and temperature values averaged over the curve-fitting period (typically 0.8~seconds).

Pressure data for runs 49, 50, and 51 consisted of the measured surface pressure normalized by the freestream static pressure ( $P/P_{\infty}$ ); surface pressure normalized by the total pressure behind a normal shock ( $P/P_{t_2}$ ); and a non-dimensional pressure coefficient (CP). The pressure coefficient was defined as:

$$CP = \frac{P}{\rho_{\infty} U_{\infty}^2} \tag{7}$$

where

 $P = measured surface pressure (lb/ft^2)$   $\rho_{\infty} = freestream density (lb/ft^3)$  $U_{\infty} = freestream velocity (ft/sec)$ .

The response time of the twelve feet of tubing was of concern. To reduce the response time the transducer bank was 'opened' before model injection. This produced almost a step pressure input to the flow. The pressure data was then averaged over a 6.7-second time interval.

The tunnel Reynolds number was calculated from the familiar expression:

$$RE = \frac{\rho_{\infty} U_{\infty}}{11}$$
 (8)

where

RE = Reynolds number ( /ft)
u = coefficient of viscosity (lb~sec/ft2)

The coefficient of viscosity (µ) was calculated from Sutherland's formula where

$$\mu = 2.27 * 10^{-8} * \frac{T_{\infty}^{3/2}}{T_{\infty} + 198.6}$$
 (9)

where

 $\mu$  = coef. of viscosity (lb-sec/ft2)  $T_{\infty}$  = freestream static temperature (OR)

Finally, an expression that computes the required tunnel supply pressure in terms of the Reynolds number and tunnel supply temperature for the Mach number 5 nozzle is given by:

$$P_{0} = \frac{RE + T_{0}^{2}}{1.02736 \times 10^{7} (T_{0} + 1.1922 \times 10^{3})}$$
 (10)

where

P<sub>o</sub> = supply pressure (psi) T<sub>o</sub> = supply temperature (OR)

RE = desired tunnel Reynolds number (per foot)

The freestream Mach numbers used in the computations were obtained from pitot probe surveys. The pitot rake surveys were taken at an axial distance of 5.5 inches from the nozzle  $\varepsilon$ xit plane. The pitot probe orientation and Mach number profiles at various Reynolds numbers are given in Figure 11. The criteria for the Mach number determination is summarized in Table 3. The Mach number values are based on the average of probes 2 through 5.

TABLE 3 MACH NUMBER CRITERIA

| Re x 10 <sup>6</sup> /ft | Mach Number |
|--------------------------|-------------|
| >10                      | 5.02        |
| 6 < Re < 10              | 5.01        |
| <b>≈5</b>                | 5.00        |
| <4                       | 4.99        |

The NSWC 'Quick-Look' System provided reduced thermocouple data immediately following a run. Sixteen pre-selected thermocouple inputs were recorded and reduced on a 4052 Tektronix computer. Temperature-time and heating rate (Q) plots were available to determine the desired Reynolds number for the next run.

### SURFACE ROUGHNESS CHARACTERIZATION

Standard grit blasting techniques were used by NSWC to produce the small roughness on models G-2 and G-3. One-inch-diameter nickel samples were roughned along with the models. Photomicrograph measurements were then made on the samples to determine the surface roughness on models G-2 and G-3. In the photomicrograph method of surface roughness characterization the roughned specimen is sectioned, mounted in a room temperature setting resin for maximum edge retention, and then polished on its sectioned face to highlight the surface roughness elements. Then the sample was photomicrographed at either 50 or 100 magnification.

The approach taken in determining the surface roughness was based on roughness element height results. Polaroid photomicrographs of the sample were connected in a continuous strip. An 'arbitrary' straight line was drawn on the strip of polaroids and was defined as the reference surface  $(y_0)$ . Using a seven-power calibrated eye piece, measurements from  $y_0$  to the sample surface were made at specified intervals. A probability of exceedence vs.  $y-y_0$  curve was generated and a best fit straight line calculated from the data between 0.1 and 0.9 probability. By definition the 'optically apparent surface'  $(h_0)$  was the value



FIGURE 11 PITOT PROBE SURVEY METHOD AND MACH NUMBER PROFILES AT VARIOUS REYNOLDS NUMBERS

of  $(y-y_0)$  when the probability of exceedence curve-fit equals one. Figure 12a illustrates the approach taken in defining the optically apparent reference surface  $(h_0)$  based on a tangent slope determination from the photomicrograph data. The  $h_0$  value is an adjustment to the original reference line  $(y_0)$  and will move the reference line up  $(+h_0)$  on down  $(-h_0)$ . The 'significant peaks' were measured from the  $h_0$  line. A probability of exceedence vs.  $(h-h_0)$  was generated for the roughness elements. It was now assumed that the 'larger' roughness elements are primarily responsible for triggering transition. Therefore, the 30 percent exceedence height  $(h_{30})$  was chosen as the roughness value for the sample. See Figure 12b for an example. Since the plane of measurement does not pass through the peak of each roughness element, the  $h_{30}$  value is multiplied by a shape factor of  $4/\pi$  (hemispherical shaped elements) to arrive at the  $K_{30}$  value.

For the 10-mil model (G-4) copper particles were brazed to the model surface in a vacuum furnace.

Prior to grit blasting the models, NSWC generated calibration curves for the grit blasting apparatus.\* Nominal roughness values of  $K_{30} = 3.0$  mil and 1.5 mil were desired for models G-2 and G-3 respectively. Calibration curves and statistical data are included in the Appendix.

Both model and sample were grit blasted for a period of time to produce uniform and complete coverage as determined by visual inspection. Typical grit blasting time was 2–3 minutes per square inch of surface area. Model G–2 and its sample were grit blasted with #12 chilled iron grit at 30 psi. The resulting surface roughness was  $K_{30} = 3.26$  mils. The calibration curve for the G–3 model required an extrapolation to determine the lower pressure setting. A linear extrapolation was assumed and resulted in a pressure setting lower than what was required to produce the 1.5-mil roughness. Model G–3 and its sample were grit blasted at 22 psi with #25 Norton Alundum grit producing a  $K_{30}$  value of 1.29 mils. Traces of portions of the photomicrographs are given in Figure 13.

## DATA FORMAT

The data generated for this wind tunnel test series included the following:

- (1) 'Quick-Look' temperature-time plots and heating rates for 16 pre-selected thermocouples for each run.
  - (2) Digital time record of model wall temperatures.
  - (3) Temperature-time plots.
  - (4) Heat-transfer parameter values (Q, H, St) in tabulated form.
  - (5) Plotted heat-transfer data along a given ray.
  - (6) Tabulated pressure data (P/P $_{\infty}$ , P/P $_{t_2}$ , CP).

<sup>\*</sup>Montgomery Ward Sand Blast Gun - Model XER-6351 modified with a 3/8-inch I.D. nozzle.





FIGURE 12 SURFACE ROUGHNESS CHARACTERIZATION AND DEFINITION



MODEL G-3 SAMPLE, 100X

FIGURE 13 TRACES FROM PHOTOMICROGRAPHS

28

- (7) Plotted pressure data along a given ray.
- (8) Shadowgraph negatives and enlarged prints.
- (9) Photomicrographs and surface roughness analysis.

Samples of the plotted and tabulated data are included in the report for purposes of clarification of the format and notation used. Figures 14 through 23 are representative of the plotted data, and Tables 4 through 7 are samples of the tabulated data that was transmitted to AVCO.

'Quick-Look' heat-transfer plots were available approximately five minutes following a run. From the 16 temperature-time plots the initial time to be used for the 'Quick-Look' heating rate plots were chosen. Heat-transfer rate plots consisted of Qdot versus distance along the 'A' ray from AO for 11 thermocouples. The remaining five 'Quick-Look' thermocouples were located on the major axis. Samples of 'Quick-Look' plots are given in Figures 14 through 17.

The reduced data temperature-time plots were presented in groups of either three, four, or five thermocouples per plot. The thermocouple outputs are off-set vertically by  $50^{\circ}$ F. A representative temperature-time plot is given in Figure 18.

The tabulated heat-transfer data was in the standard computer printout format and is illustrated in Table 4. The values are listed versus thermocouple number (see Figure 5 for numbering scheme). A summary page listing average initial model wall temperature and tunnel supply conditions is shown in Table 5.

The initial heating rate  $(\hat{\mathbf{Q}})$  and convective heat-transfer coefficient (H) plotted versus the distance (S) from the 'zero' thermocouple for a given ray are illustrated in Figures 19 and 20 respectively. Note that an individual plot is for thermocouple data along either the windard (W) or leeward (L) ray.

Tabulated pressure data are shown in Tables 6 and 7. Pressure measurements were taken only on runs 49, 50, and 51. Plotted pressure data for rays J and ray N on run #51 is given in Figures 21, 22, and 23.

Photographic data consists of 70-mm shadowgraphs using approximately 0.02-second exposure. The photographs were taken when the model was in the fully inserted position (i.e., at the center of the test jet). Exposure sensitivity was changed from model to model. For the smooth wall and 1.29-mil roughness models the shock shapes were of primary concern. For the 3.26- and 10-mil models, the sensitivity was increased to enhance the disturbances due to the roughness elements. Samples of enlarged shadowgraphs are shown in Figures 24 and 25.



FIGURE 14 'QUICKLOOK' TEMPERATURE VS. TIME



FIGURE 15 'QUICKLOOK' QDOT VS. TC LOCATION ALONG WINDWARD RAY



FIGURE 16 'QUICKLOOK' QDOT VS. TC LOCATION ALONG LEEWARD RAY



FIGURE 17 'QUICKLOOK' QDQT VS. TC LOCATION ALONG MAJOR AXIS



FIGURE 18 REPRESENTATIVE TEMPERATURE VS. TIME PLOT



FIGURE 19 REPRESENTATIVE QDOT VS. S PLOT FOR RAY AW



FIGURE 20 REPRESENTATIVE H VS. S PLOT FOR RAY AW



FIGURE 21 P/PINF VS. TAP LOCATION ON RAY J, RUN #51



FIGURE 22 CP VS. TAP LOCATION ON RAY N, RUN #51



FIGURE 23 P/PT2 VS. TAP LOCATION ON RAY J, RUN #51

TABLE 4 SAMPLE OF TABULATED HEAT TRANSFER DATA

WIR 1346 HUN 43 MACH FO. 5.02 ALPHATUELD 0.00

DATA WEINICTION SHAWANY - FINAL H VALUE SELECTED BY METHOD 1

| ر   | DEL FA<br>(IN) | ^ <del>(</del> | 5 H I | 177Mt<br>(SEC) | 404      | 14/10 | 0001<br>810/612-5 | H<br>Alize 12-5-14 (if | 15             |
|-----|----------------|----------------|-------|----------------|----------|-------|-------------------|------------------------|----------------|
| 0   | . 0540         | 0.000          | 9     | 15.1           | 1.051    | 412.  | 50+3545*          | 46234                  | 54 lt -42      |
| =   | .0580          | .100           | 0     | 1.47           | 1.051    | 514.  | 5418.02           | 14-316-01              | 1300-02        |
| 3   | .0540          | <b>202</b> •   | c     | 1.97           | 7-01-1   | \$14. | 24-1-42.          | 10-1444                | . 3420-112     |
| 3   | .0580          | .310           | 0     | 1.67           | 1 10 1   | \$15. | 25. H + 12        | .45KE-U]               | 20-1645        |
| *   | .0580          | 424.           | 6     | 1.97           | 5.0F L   | 414.  | . 301F • 02       | ,542£-01               | Su- 1814.      |
| * 5 | .0580          | .552           | c     |                | 1 40 - 1 | ١٠٠٠  | -377F . U.Z       | 10-14/4.               | 20- 4615°      |
| 101 | .0580          | 069.           | 0     | 1.47           | 1 10.2   | \$15. | 50. Jun 2.        | 10-30 74.              | Con part to    |
|     | .0580          | ***            | c     | 15.1           | 7.54     | \$18. | .2641.02          | 10-3<24.               | . 36. 46 . t > |
| E C | .0580          | 1.030          | c     | 1.97           | 1244     | .514  | \$24 3£ + 11 Z    | 10-115.                | 2)- Inct.      |
| *   | .0540          | 1.235          | 0     | 1.41           | 154.6    | 214.  | .2416.02          | 10-316-01              | . 332 62       |
| 2   | <150.          | 1.495          | 0     | 1.41           | 129.6    | 41.7  | 542F + 02         | 10-3564.               | 3334-02        |
| =   | .0570          | 1.623          | 0     | 1.97           | 126.3    | 114.  | . 111F • 02       | 10-144                 | 211-1241.      |
| *>  | .0570          | 2.303          | 0     | 1.41           | 1.1.1    | \$05° | .7045 .01         | 10-3571.               | 4 45 76 - 11 4 |

# TABLE 5 AVERAGE WIND TUNNEL CONDITIONS AND INITIAL MODEL CONDITIONS FOR RUN #43

#IN 1sen rath 43 MACH 110. 5.02 ALPHA (DEC) 4.00

AVERAGE WIND TUNNEL CONDITIONS

Ę BETWEEN NSTART = 50 AND NEND =

611.6 PSIA

ŧ

tures s Ot of

2

.1116 • 03

HH0.

54.46 LB/FT2-5EC

HNDBIJBLF 47057. STILZFT2-HH-DEUF

MUJEL AVENAUE TUITTAL CONUITTIONS

TIME & TRANS DESP

1W/10 = .511

POLYNOMIAL CUMVE FIT ORDER = 2

MINATE OF CURVE FIT CYCLES = 1

NO. OF FITS NO. OF POINTS

₹

### TABLE 6 SAMPLE OF TABULATED PRESSURE DATA

| Pn = 157.67 | TO = 154. | .59       | ALPHA = | 10.0                                    | 00°5 = ±  |           | • ייע                                   | .49372+077FT | JN14    | - 2886      | 01NF = 3.35 |
|-------------|-----------|-----------|---------|-----------------------------------------|-----------|-----------|-----------------------------------------|--------------|---------|-------------|-------------|
| 7P 14TA     |           |           |         |                                         |           |           |                                         |              |         |             |             |
|             | ĭ         | č         | 3 K.    | 111                                     | ızr       | 116       | ×                                       | 714          | X 2 %   | ¥1          | K2t         |
| •           | -905      | .002₽     | -00 \$2 | .0023                                   | -00 15    | .0031     | . 00 35                                 | .012A        | *51J•   | .00,55      | . 40 v.     |
| .10 .0037   | .00.      | .0074     | 2100.   | 1250.                                   | .0035     | . 0031    | . 00 35                                 | .0028        | .0329   | .00 \$5     | .0035       |
| •           | -005      | .000      | 2,09.   | .0127                                   | .0935     | .0031     | 0                                       | .0024        | .6124   | .0035       | . 0 0 3 5   |
| •           | 2.00      | .007      | .0010   | .0323                                   | .0035     | . 0 9 3 1 | •                                       | .0028        | . 6024  | • 0 t. 35   | .35         |
| 200. 04.    | K 200.    | # 260°    | 25.03*  | .200.                                   | . 00 .    | . 0031    | 5:00                                    | .0.0         | 82:0.   | 2530.       | . U. S. S.  |
| •           | 206.      |           | 25.00   |                                         | 5000      | *****     | <b>&gt;</b> •                           | 6200         |         | 2000        | ري . ن<br>د |
| •           | 200       | 1200.     | > 00 ·  |                                         |           | ****      |                                         |              | /200°   | 7000        | 61.00       |
| •           | 7. P.     |           | 2.50    |                                         | 2000      |           | Э (                                     | 0000         |         |             |             |
| •           |           | 2000      |         | 0000                                    | 5000      | 1000      | 9 0                                     |              | 270     |             | 00000       |
| • •         | C00.      | 000       | . 554.  |                                         | 200       | 1200      | 1 C C C C C C C C C C C C C C C C C C C |              | * C U U | 5200        | 25.00       |
| •           | 7.00      | 8200      | 2.00    |                                         | 0.045     | 35.00     | , c                                     | 8210.        | 2000    | . 0035      | 25.69       |
| •           | 696       | 0.00      | 2860.   | .0030                                   | 0.00      | 1200      | , c                                     | 92.6         | 0:27    | 4560        | 9           |
| •           | .010      | .00.      | 6200    | 32.0                                    | .0031     | 0031      | , 0                                     | .0328        | .0027   | 25.00       | , ~         |
| •           | .00.      | .00       | 5.00.   | 0.00                                    | 1100.     | 100       |                                         | .0024        | 2209    | .0035       | 0.35        |
| •           | -000      | 1000      | 21 00 . | .03                                     | -0.35     | 75 0 0    | .000                                    | .0029        | .0327   | .0015       | .00.35      |
| •           | 2000      | # C U O . | P 200°  | 00.00                                   | 1.00.     | 4500      | 0                                       | 0.0378       | . 0127  | .0015       | .0035       |
| •           | -0 05     | .002A     | 6200    | .003                                    | .00 11    | .0034     | •                                       | . 0.32A      | .0.127  | .0035       | 25 00.      |
| •           | -0.0      | .002      | P 200°  | .00.53                                  | 1000      | .0034     | 0                                       | .002#        | . 0024  | .0035       | .0.32       |
| •           | -005      | .002A     | .002    | .0329                                   | .00 31    | .0034     | •                                       | .00.28       | .0027   | .0035       | .0032       |
| •           | -90%      | ₩200*     | 6260*   | .0379                                   | .0031     | .0034     | .0036                                   | .0024        | .0027   | .0635       | .0032       |
| •           | 2¥0.      | .0024     | 6203.   | .200.                                   | .00.31    | .0034     | •0036                                   | . 302A       | .0327   | .0035       | .0035       |
| •           | .00.      | .0n2      | . 200.  | .0053                                   | 15 00.    | .0034     | • 00 )6                                 | .0024        | . 6427  | .0635       | .0032       |
| •           | 200       | #200°     | 6260.   | .00.                                    | .00.1     | .0034     | •                                       | . 06.29      | .0027   | .0035       | . 30.35     |
| •           | 200*      | #200-     |         | 0260.                                   | 1100.     | *003      | 9                                       | 4200.        | .0027   | . 0035      | 2500.       |
| •           | 240.      | £200.     | .203.   | 200.                                    |           | # COO.    | 9                                       | £237.        | 1200.   |             | 25.00.      |
| •           | 200.      |           | 5/60.   |                                         | 15.00     | \$500.    | 3 (                                     |              | 7260.   | 66035       | 2500.       |
| •           |           |           | 7.00    |                                         | 1000      | 1000      | 4000                                    | #200·        | 2000    | 5500.       | 2000        |
| •           | 2000      |           |         |                                         | .007      |           | , ,                                     |              |         | 2000        | 2000        |
| •           |           |           | - 40    |                                         | 1500      | ****      |                                         | 2017         |         | 600         | 000         |
| •           | 756       | 1647      | 1251    | 0024                                    | 1527      | 04.50     | 7506                                    | 6.696.2      | 3761    | 4754        | 1512        |
| •           | 756       | 166.0     | 1673    |                                         | 1536      | 0.475     | 7536                                    | 66426        |         | 4.237       | 1540        |
| •           | .756      | . 1640    | 1576    | 1179.                                   | 1534      | .047      | .7536                                   | .6362        | . 374.9 | .4267       | . 1543      |
| •           | , 757     | . 1640    | .157£   | . 4413                                  | .1534     | * 8 4 D . | .7506                                   | . 6944       | .374.8  | .4264       | Š           |
| •           | .746      | . 1660    | .1579   |                                         | .1538     | . 0 4 AF  | .7506                                   | .6362        | .3755   | .4264       | .1543       |
| •           | .756      | .3640     | 5,7     | 1 441                                   | .1534     | .0487     | .7506                                   | 6940         | .3756   | .4253       | .1543       |
| •           | . 756     | . 166.    | .1579   | . 4413                                  | .1538     | . 0 486   | .7596                                   | 2,6369       | .3755   | <b>4764</b> | .1543       |
| •           | 754       | . * 6. K. | 1679    | . 4414                                  | .1534     | . 0 4AF   | . 750F                                  | .6969        | .3755   | . 4.761     | .1540       |
| •           | 7.5       | .3660     |         | ***                                     |           | . 0 4 4 6 | . 750k                                  | 6467         | .3755   | .4764       | .1.543      |
| •           |           | . 18.5.   |         |                                         | .1538     | 0.0       | 40.7                                    | 6769.        | 5.75°   | 9 6 6       | . 2         |
| •           |           |           | 47.1.   | c .                                     | 2 5 5 5   | 44.0      |                                         | . 0.00       | 4478.   | 14/4.       | 3           |
| •           |           | 144.      | 5 0     | 7 .                                     |           |           |                                         |              | 4478    | 9           | •           |
| •           |           |           |         | ***                                     | E 6 4 1 1 | າ         | * C * C * C * C * C * C * C * C * C * C | .6418        | 447.    | 30.3.       | 3 .         |
| •           |           |           | ***     |                                         | 90.1.     |           |                                         | 1,60         |         |             | 9.1         |
| •           | •         |           | 3       | * * * * * * * * * * * * * * * * * * * * | -         |           | <u> </u>                                | 46.9         |         | X           |             |
| •           |           |           | ****    |                                         | ~ .       |           |                                         | 52.0         |         |             | 3 7 1 .     |
| •           |           | Ė         |         |                                         |           |           |                                         |              |         |             |             |
| 4.44        | 71.       | ž         | ***     | - •                                     |           |           | 76.06                                   |              |         | 1,10        | 075         |

## TABLE 6 SAMPLE OF TABULATED PRESSURE DATA (CONTINUED)

| NTO 1366<br>NORFE G-4 | وي      | HT 4<br>PRESSUOF | 1531<br>NSWC/MU | TODAYS PATE<br>RUN 50 | 416 41/04/27                            | .757       |                                       |          |                                       |          |         |                                         |
|-----------------------|---------|------------------|-----------------|-----------------------|-----------------------------------------|------------|---------------------------------------|----------|---------------------------------------|----------|---------|-----------------------------------------|
| PO = 1                | 152.67  | 10 = 336.        | . 59            | ALPHA =               | 10.0                                    | 03 ° 4 " * |                                       | = 1/30   | .49376+07/FT                          | PINE     | 2885    | OINF = 5.850                            |
| CP NATA               |         |                  |                 |                       |                                         |            |                                       |          |                                       |          |         |                                         |
| THE                   | 9       | 157              | HZſ             | 13H                   | 111                                     | 125        | 25.7                                  | K        | K1.4                                  | K 2.4    | 411     | K2L                                     |
| 5.01                  | .9266   | . 7 S to to      | .1660           | .1514                 | . 4413                                  | .1531      | .0486                                 | .7536    | 6469.                                 | . 3743   | ,4258   | .1535                                   |
| ۶. ۱۱                 | . 9266  | 7544             | 1649            | .1584                 | 1014.                                   | .1531      | . 0 4.85                              | . 7596   | 2569.                                 | .3755    | 1424.   | . 1540                                  |
| 5.21                  | . 927   | 45.4             | .3656           | .1547                 | 303                                     | .1531      | . 0 4 8 5                             | .7506    | 1469.                                 | . 3763   | 1929    | .1535                                   |
|                       | . 9273  |                  |                 |                       | 3033                                    | 16.51.     | 4000                                  | 36.95    |                                       | ****     | 2000    | .1539                                   |
|                       | 0.05    |                  |                 | 7851                  | 7 4                                     | 15.11      |                                       | 7506     | 646.0                                 | 1010     | . 4247  | 1535                                    |
| 2,0                   | 9266    | 7566             | 1.3667          | 3 6 6                 | * * * * * * * * * * * * * * * * * * * * | 15.51      | 9848                                  | 7506     | •                                     | 3763     | 4524    | .1535                                   |
| 5.71                  | 9273    | 75.66            | 2549            | 15.0                  |                                         | 1531       | 0486                                  | 7506     | • •                                   | 374.5    | 4.258   | .1545                                   |
| 5.4.5                 | . 927 3 | ,7551            | 1649            | .1594                 | 7044                                    | .1531      | . 0485                                | 7506     | •                                     | .3751    | 4544    | .1535                                   |
| 5.91                  | . 9244  | 7566             | . 1656          | •                     | . 4413                                  |            | .0488                                 | . 7506   | •                                     | .3751    | 14241   | .1535                                   |
| f.01                  | .9241   | 1557.            | . 3649          | .1547                 | . 4415                                  | .1531      | .0485                                 | .7546    | •                                     | 1928.    | 1+2+1   | .1535                                   |
| 6.11                  | 9240    | 7544             | . 3649          | .1544                 | .4413                                   | .1531      | .0468                                 | . 7506   | •                                     | .3751    | .4247   | .1535                                   |
| 5.71                  | 9886.   | . 15.44          | . 1669          | .1587                 | . 4415                                  | .1531      | P 4 4 0 .                             | .750£    | 6369.                                 | .3751    | .4261   | .1535                                   |
| ۴.3                   | 1926.   | . 7544           | 6792.           | .1547                 | . 6 4 1 4                               | .1541      | . 0495                                | . 7536   | .6947                                 | . 3743   | 4544    | .1535                                   |
| ۴.٤                   | . 9244  | . 7544           | 6492.           | .1547                 | . 4413                                  | .15 31     | . 6 497                               | .7536    | . 5 846                               | .3751    | . 4184  | .1535                                   |
| f. 5.                 | . 457   | 1536.            | 3649            | .15.44                | . 6 6 3 4                               |            | . 0 48                                | .75.05   | 1464.                                 | .3751    | . 4247  | .1535                                   |
| 6.41                  | 4466.   | . 7551           | . 1640          | .1547                 | -                                       | .1531      | • 0 484                               | . 7596   | •                                     | .3751    | . 4247  | .1535                                   |
| 6.71                  | : 956;  | 1556             | . 16,6 3        | .1594                 | AC 74.                                  | 15.27      | . 3444                                | . 7536   | •                                     | 1928.    | 1424.   | .1535                                   |
| 6.1                   | 1966.   | . 7546           | . * 64.9        | .1597                 | . 4415                                  | 11.11      | . 0 4.8.8                             | . 75.76  | •                                     | 1525     | 336     | .1535                                   |
|                       | . 4555  | 357.             | . 3649          | A 4 5 T .             | 9.                                      |            | . 0 4 3 6                             | 15.7°    | •                                     | .3751    | 1.24    | .1535                                   |
|                       | 9 2 2   |                  |                 | .1000                 |                                         | 2231.      | E .                                   | 4. c. 1. |                                       | 1675     | 1979    | 25.3.                                   |
|                       | 77/10   |                  |                 | .1.4.                 | * * * * * * * * * * * * * * * * * * *   | 1261       | 1031                                  | 16.7     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1676     | 1979    | 1535                                    |
|                       | 426.    | 1954             | 4.5             | 15.42                 |                                         | 15.27      |                                       | 7.57     | 790.9                                 |          | 7424    | 1535                                    |
| 7.41                  | 4766    | 755.1            | 4.44.           | 1547                  |                                         | 1527       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 75.36    | 1469.                                 | 1751     | 6.524   | 1535                                    |
| 7.51                  | 9236    | 7551             | 4.5.5           | 1542                  | 2144                                    |            | . 0485                                | 75.36    | 1469.                                 | 3751     | . 4247  | 1535                                    |
| 7.61                  | 4426.   | 2121.            | . 1668          | .1579                 | 1244.                                   | 1551       | .0485                                 | .7506    | 2469.                                 | .3751    | 1424.   | .1535                                   |
| 7.71                  | . 9251  | 1444             | .3649           | .1542                 | 1144.                                   | 1527       | .0485                                 | .75 36   | 1469.                                 | 1978.    | .4250   | .1535                                   |
| 7.41                  | . 9236  | . 75.75          | .3649           | -1542                 | .4414                                   | .1527      | .0485                                 | .7516    | ٠                                     | 1521     | 2424.   | .1535                                   |
| 10.1                  | . 4244  | .7551            | 1640            | .1542                 | . 4434                                  | .1522      | .0484                                 | . 748?   | •                                     | -3762    | 1454.   | .1543                                   |
| 4.04                  | 4464.   | ٠ ٧ د. له له     | 4649            | 2451.                 | . 4413                                  | 1231       | .0495                                 | 15.16    | •                                     | .3762    | 4424.   | .1546                                   |
|                       | 7926    | 3 3 4 7 4        | 5 4/3 2 .       | .1679                 | ~ ·                                     | .1522      | 1 K 1 D 1                             | 24.77    | •                                     | . 37.6.2 | 7474    | 174                                     |
|                       | 400     | 996              |                 | × 4.0                 | ~ !<br>!<br>!                           | 1551       |                                       | (3.5h    | /46.0                                 | > 2/4 <  | 1979    | 373.                                    |
|                       | ,,,,,   |                  |                 | 7 4 5 4               | * * -                                   | 2751.      |                                       | 26.26    | .040                                  | 37.00    | 7 2 4   | 374                                     |
|                       | 8 5 C B | 755.1            | 1.55.6          | 1579                  | 1177                                    | 15.75      | 1                                     | 76.07    |                                       | 3762     | 7 7 7 7 | 7 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
| A. 6. 1               | 4287    | 7544             | 644             | 75.62                 |                                         |            |                                       | 7647     | ٠                                     | 15/1     | 4.264   | 15.15                                   |
| A.71                  | . 9251  | 1554             | . 3666          | 1542                  | \$ 1 7 7 .                              | 1522       | . 0485                                | 1492     | •                                     | .3751    | 4253    | .1535                                   |
| 1.91                  | 1926.   | . 7 E. 4.        | 4694            | .1542                 | . 441.                                  |            | . 0485                                | . 74.82  | •                                     | .3758    | .4264   | .1535                                   |
| 10°4                  | . 9287  | . 7551           | . 35.64         | .1542                 | . 640                                   | .1522      | . 0 486                               | .7482    | •                                     | . 1754   | *454    | .1535                                   |
| 9.01                  | .9243   | . 756.4          | .3666           | .1582                 | » <b>.</b>                              | .1522      | - C + O                               | .7482    | 1,64.                                 | . 1751   | . 4247  | .1535                                   |
|                       | . 9266  | 7566             | . 3656          | .1542                 | . 6 6 1 5                               | .1522      | . 0 484                               | .7442    | .6954                                 | . 5770   | .4250   | .1540                                   |
| 1,21                  | . 9287  | 1534.            |                 | .1542                 | . 6 6 3 5                               | 11:22      | .0486                                 | .74.92   | 126.4.                                | 0242     | 4924    | . 1540                                  |
| - ·                   | 928     | 7576             | . 16.56         | . I . H 2             | . 441                                   | .1526      | . 0 489                               | . 7442   | 6 JE 9                                | .3758    | . 4.764 | .1535                                   |
| 3 3                   | 474.    |                  | . 3544          | C # 2 # *             | ( D + + +                               | .1522      | . 0 4 4 5                             | 21.74    |                                       | 1575.    | 2 P     | 95.1                                    |
|                       | 0.25    |                  | 35.46           |                       | 7                                       | 1524       | **                                    | 25.4     | £/54.                                 | 00.0     | , G     | 6464                                    |
|                       |         |                  | 0111            |                       | , ,                                     |            | 3 4                                   | C T 7 F  |                                       | 07.2     |         | 9 3 5 6 7 6                             |
|                       | 120     | # 44 4 A         |                 |                       |                                         | 4751       |                                       | 70.47.   | 27.7                                  |          | 746     | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |
|                       | 4366    | 75.5             | 1.56.           | 1579                  |                                         | 4551       | \$ 40°                                | 7.4.     | 3/69                                  | 45/2     | 5464    | .1535                                   |
|                       |         |                  |                 |                       | •                                       |            | :                                     |          |                                       |          |         |                                         |

TABLE 7 SUMMARY OF AVERAGE PRESSURE DATA FOR RUN #50

| MTO 1766<br>MANNEL G6  | 16.K<br>17.8 | HT 4<br>PRESCHOF                               | MCMC/MU                                  | TODAY, DATE                             | .7.748/18 3180                         |                                                               |                                        |                                    |                                         |                                |                                   |                                 |              |
|------------------------|--------------|------------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------------------------|----------------------------------------|------------------------------------|-----------------------------------------|--------------------------------|-----------------------------------|---------------------------------|--------------|
| ,<br>E                 | Pn : 152.67  | 10 = 330                                       | 4.59                                     | ALPHA = 16.5                            | 11.5                                   | 4 - 5 36                                                      |                                        | . 7734                             | PEAL 4937F+ 377FF                       |                                | PINF = .74An                      | #II's                           | VIOF ( 5+65) |
| AVERAC                 | AVERACE DATA |                                                |                                          |                                         |                                        |                                                               |                                        |                                    |                                         |                                |                                   |                                 |              |
| 0.0 TWF CD             | 1300.        | 411<br>4554.45<br>4755<br>4755<br>4755<br>4755 | # 60 P P P P P P P P P P P P P P P P P P | M 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 11 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |                                                               | 1.101.                                 | 76.2351<br>.7456<br>.8556<br>.8556 | 711<br>24.3479<br>64.947<br>7446        | 13-1413<br>- 34765<br>- 4765   | 11,<br>14,833,<br>14354,          | 121<br>5.3405<br>1537<br>1668   |              |
| 9/8/14<br>60<br>9/817  |              | 124<br>17.6755<br>14755<br>14756               | 051<br>0394<br>0396<br>0386              | 2                                       | 2.4.2.<br>2.4.2.<br>3.7.5.<br>3.7.5.   | 1. 1.<br>0.45.0.47<br>0.48.0.48.0.48.0.48.0.48.0.48.0.48.0.48 | 1 et<br>1, 8676<br>, 1 fmq             |                                    | 41 K<br>7 + 33 42<br>+ 23 47<br>+ 23 37 | 424<br>5.6036<br>11601<br>1716 | 1111<br>3.4357<br>-03773<br>-2043 | M2L<br>1.8791<br>.0753<br>.6760 |              |
| 5/P114<br>CD<br>5/CT 1 | 7.5661.      | NIN<br>6-1 451<br>1457                         | 200 S                                    | 244<br>                                 | 111<br>2.277<br>2051<br>9694           | 100<br>1040<br>1045<br>1045<br>1046                           | 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                    |                                         |                                |                                   |                                 |              |



FIGURE 24 SHADOW GRAPH OF MODEL G-2 AT  $\alpha$  25 DEGREES, RUN = 13



FIGURE 25 SHADOW GRAPH OF MODEL G-2 AT  $\alpha$  0 DEGREES, RUN = 30

### **BIBLIOGRAPHY**

Baltakis, F. P., "NSWC Hypersonic Tunnel User's Manual," NSWC/WOL MP 76-10, Jun 1976.

Baltakis, F. P., "Wind Tunnel Study of Weather Cratering Effects on Nosetip Transition," NSWC, Strategic Systems Dept, Dec 1980.

Batt, R. G. and Legner, H. H., "A Review of Roughness Induced Nosetip Transition," AIAA Paper 81-1223, Jun 1981.

"NACA Report 1135, Equations, Tables and Charts for Compressible Flow," Ames Research Staff, 1953.

"Pretest Letter Report for MTSCT Test Series NI-1 and NI-2," AVCO Systems Division, Wilmington, MA, 15 Nov 1980.

### NOMENCLATURE

Alpha,  $\alpha$ Angle of attack (degrees) C Heat capacity (BTU/lb-OF)  $\mathsf{c}_{\mathsf{p}_{_{\infty}}}$ Heat capacity of air (.24 BTU/lb-OF) CP Pressure coefficient Delta, 6 Model wall thickness (inches) Ellipticity, ε Ratio of minor to major axis h Roughness element height measured from ho (mm) Optically apparent reference surface (mm)  $h_0$ 30% probability of exceedence height (mils) h30 Heat-transfer coefficient (BTU/ft<sup>2</sup>-sec-O<sub>F</sub>) Н Tunnel stagnation enthalpy Hs Initial model wall enthalpy Η<sub>ω</sub> ITIME,  $\tau_i$ Time at which data curve fit begins (seconds) Initial model wall temperature (OF) ITMP Surface roughness value (mils) K<sub>30</sub> Freestream Mach number Moo Millimeter One-thousandths of an inch mils Measured surface pressure (lb/ft<sup>2</sup>) Tunnel supply pressure (psia) Pa Phi, ¢ Meridian ray angle (degrees)

### NOMENCLATURE (Con't)

| PINF, $P_{\infty}$ | Freestream static pressure (psia)                                                      |
|--------------------|----------------------------------------------------------------------------------------|
| Psi, ψ             | Model roll orientation (degrees)                                                       |
| Pt <sub>2</sub>    | Total pressure behind normal shock (psia)                                              |
| QDOT, Q            | Heat-transfer rate (BTU/ft <sup>2</sup> -sec)                                          |
| RE                 | Reynolds number (per foot)                                                             |
| S                  | TC or tap location measured from intersection of major axis and model surface (inches) |
| St                 | Stanton number                                                                         |
| t                  | Time (seconds)                                                                         |
| $T_{\infty}$       | Freestream static temperature (°F)                                                     |
| T <sub>o</sub>     | Tunnel supply temperature (°F, °R)                                                     |
| T <sub>w</sub>     | Measured wall temperature ( <sup>O</sup> F)                                            |
| τ <sub>ωί</sub>    | Initial wall temperature (OR)                                                          |
| тс                 | Thermocouple                                                                           |
| $U_{\infty}$       | Freestream velocity (ft/sec)                                                           |
| У                  | Distance from $y_0$ to roughness sample surface (mm)                                   |
| Уo                 | Arbitrary straight line on photomicrograph                                             |
| μ                  | Coefficient of viscosity (lb-sec/ft <sup>2</sup> )                                     |
| ρ                  | Density of model material (lb/ft <sup>3</sup> )                                        |
| $ ho_{f \infty}$   | Freestream density (lb/ft <sup>3</sup> )                                               |

### APPENDIX A

### SURFACE ROUGHNESS CHARACTERIZATION

A. Calibration Curves -- NSWC Sand Blast Apparatus Material -- Nickel 200



Pressure Setting (psi)

| Sample | Pressure<br>Setting (psi) | K <sub>30(mils)</sub> | h(mils) | ĥ(mils) |
|--------|---------------------------|-----------------------|---------|---------|
| G-2    | 30                        | 3.26                  | 2.81    | 3.18    |
| G-3    | 22                        | 1.29                  | 1.07    | 1.17    |

$$K_{30} = h_{30} \times \frac{1}{M} \times \frac{4}{\pi}$$

where M = magnification  $4/\pi$ = shape factor

$$\bar{h} = (h-h_0)_{avg} = \frac{1}{n} \frac{n}{1} (h-h_0) \times \frac{4}{\pi}$$

$$\tilde{h} = (h-h_0)_{rms} = \left[\frac{1}{n} \sum_{i=1}^{n} (h_i - \bar{h})^2\right]^{1/2} \times \frac{4}{\pi}$$

where n = number of data points

APPENDIX A (CON'D)

B. PHOTOMICROGRAPHY DATA G-2 SAMPLE







APPENDIX A (CON'D)

C. PHOTOMICROGRAPHY DATA G-3 SAMPLE







A-5/A-6

### DISTRIBUTION

|                                                      | Copies |
|------------------------------------------------------|--------|
| Defense Technical Information Center Cameron Station |        |
| Alexandria, Virginia 22314                           | 12     |

TO AID IN UPDATING THE DISTRIBUTION LIST FOR NAVAL SURFACE WEAPONS CENTER, WHITE OAK TECHNICAL REPORTS PLEASE COMPLETE THE FORM BELOW:

TO ALL HOLDERS OF NSWC MP 81-259

By M. D. Jobe, Code K24

DO NOT RETURN THIS FORM IF ALL INFORMATION IS CURRENT

| A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)  NEW ADDRESS (Show Zip Code)  B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT. |                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  | A. FACILITY NAME AND ADDRESS (OLD) (Show Zip Code)                                     |
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  |                                                                                        |
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  |                                                                                        |
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  |                                                                                        |
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  |                                                                                        |
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  |                                                                                        |
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  |                                                                                        |
| B. ATTENTION LINE ADDRESSES:  C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                  | NOW A DAMPS (Cham Zin Code)                                                            |
| C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                | NEW ADDRESS (Snow Zip Code)                                                            |
| C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                |                                                                                        |
| C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                |                                                                                        |
| C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                |                                                                                        |
| C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                |                                                                                        |
| C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                |                                                                                        |
| C.  REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                |                                                                                        |
| REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                    | 8. ATTENTION LINE ADDRESSES:                                                           |
| REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                    |                                                                                        |
| REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                    |                                                                                        |
| REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                    |                                                                                        |
| REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                    |                                                                                        |
| REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT.                                                                                                                    |                                                                                        |
|                                                                                                                                                                                                           | C.                                                                                     |
|                                                                                                                                                                                                           |                                                                                        |
|                                                                                                                                                                                                           |                                                                                        |
| D.                                                                                                                                                                                                        | REMOVE THIS FACILITY FROM THE DISTRIBUTION LIST FOR TECHNICAL REPORTS ON THIS SUBJECT. |
| D.                                                                                                                                                                                                        |                                                                                        |
| D.                                                                                                                                                                                                        |                                                                                        |
| D.                                                                                                                                                                                                        |                                                                                        |
| $D_{a}$                                                                                                                                                                                                   |                                                                                        |
| MUMBER OF CORES DESIRED                                                                                                                                                                                   |                                                                                        |

DEPARTMENT OF THE NAVY
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MD. 20910

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, \$300

POSTAGE AND FEES PAID DEPARTMENT OF THE NAVY DOD 316



COMMANDER
NAVAL SURFACE WEAPONS CENTER
WHITE OAK, SILVER SPRING, MARYLAND 20910

ATTENTION: CODE K24, M. D. Jobe

### DATE ILME