МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 6 дисциплина: Информатика

тема: «Обнаружение и исправление однократной ошибки в сообщении»

Выполнил: ст. группы ПВ-211 Чувилко Илья Романович

Проверил: Бондаренко Татьяна Владимировна

Цель работы: изучить основные принципы помехоустойчивого кодирования; изучить способ определение позиции и значения корректирующих бит кода Хемминга; получить практические навыки построения кода Хемминга, корректирующего однократные ошибки; изучить способ построения линейно-группового кода и возможность коррекции однократной ошибки с помощью линейно-группового кода.

Часть 1. Обнаружение и коррекция однократной ошибки в сообщении с помощью кода Хемминга

Задания к работе

- 1. Выполнить кодирование текстового сообщения М1 по буквам, используя русский или латинский алфавит, размер сообщения не менее 4 букв. Определить размер n в битах закодированного сообщения М.
- 2. Определить количество k контрольных разрядов кода Хемминга, необходимых для кодирования сообщения M размер n бит.
- 3. Определить позиции и значения k контрольных разрядов кода Хемминга: двумя способами:
- подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
- использование двоичного представления номеров разрядов сообщения.
- 4. Записать полученное сообщение размера (n +k) в коде Хемминга.
- 5. Смоделировать коррекцию ошибки: внести однократную, двукратную и k-кратную ошибки в произвольные биты сообщения и найти эти ошибки с помощью кода Хемминга, используя:
- подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
- двоичное представление номеров разрядов сообщения.

Часть 2. Обнаружение и коррекция однократной ошибки в сообщении с помощью линейно-группового кода

Задание к работе:

- 1. Выполнить построение порождающей матрицы G линейно-группового кода, необходимой для кодирования сообщения M1 по буквам. Определить необходимое число информационных и проверочных столбцов матрицы G. Вычислить значение проверочных столбцов и доказать соответствие полученной порождающей матрицы G требованиям.
- 2. Выполнить кодирование сообщения М1 по буквам с помощью порождающей матрицы G.
- 3. Смоделировать коррекцию ошибки: внести в линейно-групповой код одной из букв сообщения M1 однократную ошибку, выполнить проверку сообщения на наличие ошибки и найти бит с ошибкой в сообщении.

Провести аналогичную проверку для двукратной ошибки.

Часть 1. Обнаружение и коррекция однократной ошибки в сообщении с помощью кода Хемминга

1. Выполнил кодирование текстового сообщения **M1** по буквам, используя русский алфавит, размер сообщения — 4 буквы. Определил размер в **n** битах закодированного сообщения **M**.

$$M = (ИЛЬЯ) = 001010.001101.011110.100001$$

 $n = 4 * 6 = 24$

2. Определил количество k контрольных разрядов кода Хемминга, необходимых для кодирования сообщения M рамера n бит.

$$2^{k} \ge M + k + 1$$
$$2^{k} \ge 25 + k$$
$$k = 5$$

- 3. Определил позиции и значения k контрольных разрядов кода Хемминга двумя способами:
 - подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения:
 - использование двоичного представления номеров разрядов сообщения.

$$N = 24 + 5 = 29$$

1 способ:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	0	0	1	0	0	0	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	6	0
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			6	0
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	6	0
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

Код Хемминга: 00101000.11010111.11010100.00100

2 способ:

3	00011
10	01010
12	01100
13	01101
14	01110
15	01111
18	10010
20	10100
21	10101
25	11001
27	11011
XOR	11000

Код Хемминга: 00101000.11010111.11010100.00100

4. Записал полученное сообщение размера (n + k) в коде Хемминга: Код Хемминга: 00101000.11010111.11010100.00100

- **5.** Смоделировал коррекцию ошибки: внести однократную, двукратную и k-кратную ошибки в произвольные биты сообщения и найти эти ошибки с помощью кода Хемминга, используя:
- подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
- двоичное представление номеров разрядов сообщения.

Однократная ошибка: 00101000.11010111.11010101.00100

Первый способ:

	-																														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	0	1	1	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	6	0
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			7	1
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	7	1
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

Различное значение принимают 2 и 4 биты, следовательно ошибка в 6 бите.

Второй способ:

3	00011
6	00110
10	01010
12	01100
13	01101
14	01110
15	01111
18	10010
20	10100
21	10101
25	11001
27	11011
XOR	11110

Различное значение принимают 2 и 4 биты, следовательно ошибка в 6 бите.

Двукратная ошибка: 00101000.11010111.11010100.00111

Первый способ:

					•																										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	0	0	1	0	0	0	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	6	0
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			6	0
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	6	0
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

ошибка в разряде с номером 11000

2 способ:

2 (1100	001
3	00011
10	01010
12	01100
13	01101
14	01110
15	01111
18	10010
20	10100
21	10101
25	11001
27	11011
XOR	11000

ошибка в разряде с номером 11000

Трехкратная ошибка: 00101000.11010111.11010100.00011

Первый способ:

	PD				•																										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	0	0	0	0	0	0	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	5	1
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			5	1
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	6	0
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

ошибка в разряде с номером 11011

2 способ:

2 CHUC	00.
10	01010
12	01100
13	01101
14	01110
15	01111
18	10010
20	10100
21	10101
25	11001
27	11011
XOR	11011

ошибка в разряде с номером 11011

Вывод: С помощью кода Хемминга можно обнаруживать и корректировать ошибки в сообщении.

Часть 2. Обнаружение и коррекция однократной ошибки в сообщении с помощью линейно-группового кода

1. Выполнил построение порождающей матрицы G линейно-группового кода, необходимой для кодирования сообщения M1 по буквам. Определил необходимое число информационных и проверочных столбцов матрицы G. Вычислил значение проверочных столбцов и доказал соответствие полученной порождающей матрицы G требованиям.

1	2	3	4	5	6	1⊕2⊕3⊕5	1⊕2⊕4	1⊕3⊕4⊕6	1⊕2⊕3⊕4⊕5⊕6	ω
1	0	0	0	0	0	1	1	1	1	5
0	1	0	0	0	0	1	1	0	1	4
0	0	1	0	0	0	1	0	1	1	4
0	0	0	1	0	0	0	1	1	1	4
0	0	0	0	1	0	1	0	0	1	3
0	0	0	0	0	1	0	0	1	1	3

1	1000001111	5
2	0100001101	4
3	0010001011	4
4	0001000111	4
5	0000101001	3
6	0000010011	3
1⊕2	1100000010	3
1⊕3	1010000100	3
1⊕4	1001001000	3
1⊕5	1000100110	4
1⊕6	1000011100	4
2⊕3	0110000110	4
2⊕4	0101001010	4
2⊕5	0100100100	3
2⊕6	0100011110	5
3⊕4	0011001100	4
3⊕5	0010100010	3
3⊕6	0010011000	3
4⊕5	0001101110	5
4⊕6	0001010100	3
5⊕6	0000111010	4
1⊕2⊕3	1110001001	5
1⊕2⊕4	1101000101	5

1⊕2⊕5	1100101011	6
1⊕2⊕6	1100010001	4
1⊕3⊕4	1011000011	5
1⊕3⊕5	1010101101	6
1⊕3⊕6	1010010111	6
1⊕4⊕5	1001100001	4
1⊕4⊕6	1001011011	6
1⊕5⊕6	1000110101	5
2⊕3⊕4	0111000001	4
2⊕3⊕5	0110101111	7
2⊕3⊕6	0110010101	5
2⊕4⊕5	0101100011	5
2⊕4⊕6	0101011000	4
2⊕5⊕6	0100110111	6
3⊕4⊕5	0011100101	5
3⊕4⊕6	0011011111	7
3⊕5⊕6	0010110001	4
1⊕2⊕3⊕4	0001111101	6
1⊕2⊕3⊕5	1110100000	4
1⊕2⊕3⊕6	1110011010	6
1⊕2⊕4⊕5	1101101100	6
1⊕2⊕4⊕6	1101010100	5
1⊕2⊕5⊕6	1100111000	5
1⊕3⊕4⊕5	1011101010	6
1⊕3⊕4⊕6	1011010000	4
1⊕3⊕5⊕6	1010111110	7
1⊕4⊕5⊕6	1001110010	5
2⊕3⊕4⊕5	0111101000	5
2⊕3⊕4⊕6	0111010010	5
2⊕3⊕5⊕6	0110111100	6
2⊕4⊕5⊕6	0101110000	4
3⊕4⊕5⊕6	0011110110	6
1⊕2⊕3⊕4⊕5	1111100111	8
1⊕2⊕3⊕4⊕6	1111011101	8
1⊕2⊕3⊕5⊕6	1110110011	7
1⊕2⊕4⊕5⊕6	1101111111	9
1⊕3⊕4⊕5⊕6	1011111001	7

	2⊕3⊕4⊕5⊕6	0111111011	8
1	⊕2⊕3⊕4⊕5⊕6	1111110100	7

2. Выполнил кодирование сообщения М по буквам с помощью порождающей матрицы G М = (ИЛЬЯ) = 0010100010.0011011111.0111101000.1000011100

```
M = 10_{10} = 001010_2 = 3 \oplus 5
\Pi = 13_{10} = 001101_2 = 3 \oplus 4 \oplus 6
b = 30_{10} = 011110_2 = 2 \oplus 3 \oplus 4 \oplus 5
\mathfrak{A} = 33_{10} = 100001_2 = 1 \oplus 6
```

3. Смоделировал коррекцию ошибки: внести в линейно-групповой код одной из букв сообщения М1 однократную ошибку, выполнить проверку сообщения на наличие ошибки и найти бит с ошибкой в сообщении. Провел аналогичную проверку для двукратной ошибки.

A1	A2	A3	A4	A5	A6	P1	P2	Р3	P4	S1	S2	S3	S4	
1	0	0	0	0	0	0	0	0	0	1	1	0	0	
0	1	0	0	0	0	0	0	0	0	0	1	1	0	
0	0	1	0	0	0	0	0	0	0	1	0	1	1	
0	0	0	1	0	0	0	0	0	0	1	1	1	0	
0	0	0	0	1	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	1	0	0	0	0	0	0	1	1	
0	0	0	0	0	0	1	0	0	0	1	0	0	0	
0	0	0	0	0	0	0	1	0	0	0	1	0	0	
0	0	0	0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	0	0	0	0	0	1	0	0	0	1	

```
S1 = P1 \oplus A1 \oplus A3 \oplus A4
```

 $S4 = P4 \oplus A3 \oplus A6$

Однократная ошибка: 0010100010.0011011111.0111101000.1000011100

```
S1 = 0 \oplus 0 \oplus 0 \oplus 0 =
S2 = 0 \oplus 0 \oplus 0 \oplus 0 =
```

 $S3 = 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$

 $S4 = 0 \oplus 0 \oplus 1 =$

S = 0001 найдена ошибка

Двукратная ошибка: 0010100000.0011011111.0111101000.1000011100

```
S1 = 0 \oplus 0 \oplus 0 \oplus 0 =
S2 = 0 \oplus 0 \oplus 0 \oplus 0 =
S3 = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1
S4 = 0 \oplus 0 \oplus 1 =
```

S = 0011 найдены ошибки

Вывод: С помощью линейно-группового кода можно обнаруживать и корректировать ошибки в сообщении.

 $S2 = P2 \oplus A1 \oplus A2 \oplus A4$

 $S3 = P3 \oplus A2 \oplus A3 \oplus A4 \oplus A6$