Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks: Basics

Prof. Alexander Ihler

Linear Classifiers (Perceptrons)

- Linear Classifiers
 - a linear classifier is a mapping which partitions feature space using a linear function (a straight line, or a hyperplane)
 - separates the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

Linearly separable data

Linearly non-separable data

Perceptron Classifier (2 features)

Decision Boundary at f(x) = 0

Solve:
$$X_2 = -w_1/w_2 X_1 - w_0/w_2$$
 (Line)

Perceptron (Linear classifier)

Decision boundary = "x such that $T(w_1 x + w_0)$ transitions"

Features and perceptrons

- Recall the role of features
 - We can create extra features that allow more complex decision boundaries
 - Linear classifiers
 - Features [1,x]
 - Decision rule: T(ax+b) = ax + b >/< 0
 - Boundary ax+b =0 => point
 - Features [1,x,x²]
 - Decision rule T(ax²+bx+c)
 - Boundary $ax^2+bx+c=0=?$

Features and perceptrons

- Recall the role of features
 - We can create extra features that allow more complex decision boundaries
 - For example, polynomial features

$$\Phi(x) = [1 \ x \ x^2 \ x^3 \dots]$$

- What other kinds of features could we choose?
 - Step functions?

Multi-layer perceptron model

- Step functions are just perceptrons!
 - "Features" are outputs of a perceptron
 - Combination of features output of another

Multi-layer perceptron model

- Step functions are just perceptrons!
 - "Features" are outputs of a perceptron
 - Combination of features output of another

Regression version: Remove activation function from output

- Simple building blocks
 - Each element is just a perceptron f' n
- Can build upwards

- Simple building blocks
 - Each element is just a perceptron f' n
- Can build upwards

- Simple building blocks
 - Each element is just a perceptron f' n
- Can build upwards

- Simple building blocks
 - Each element is just a perceptron f' n
- Can build upwards

Current research:
"Deep" architectures
(many layers)

- Simple building blocks
 - Each element is just a perceptron function
- Can build upwards
- Flexible function approximation
 - Approximate arbitrary functions with enough hidden nodes

Neural networks

- Another term for MLPs
- Biological motivation
- Neurons
 - "Simple" cells
 - Dendrites sense charge
 - Cell weighs inputs
 - "Fires" axon

(c) Alexander Ihler

"How stuff works: the brain"

Activation functions

$$\sigma(z) = \frac{1}{1 + \exp(-z)}$$

$$\frac{\partial \sigma}{\partial z}(z) = \sigma(z)(1 - \sigma(z))$$

Hyperbolic Tangent

$$\sigma(z) = \frac{1 - \exp(-2z)}{1 + \exp(-2z)}$$

$$\frac{\partial \sigma}{\partial z}(z) = 1 - (\sigma(z))^2$$

$$\sigma(z) = \exp(-z^2/2)$$

$$\frac{\partial \sigma}{\partial z}(z) = -z\sigma(z)$$

Linear

$$\sigma(z) = z$$

$$\frac{\partial \sigma}{\partial z}(z) = 1$$

And others...

Feed-forward networks

- Information flows left-to-right
 - Input observed features
 - Compute hidden nodes (parallel)
 - Compute next layer…

```
X1 = [ones(m,1) X]; % constant feature
T = W1 * X1; % linear response
H = Sig(T); % activation f'n

H1 = [ones(m,1) H]; % constant feature
S = W2 * H1; % linear response
H2 = Sig(S); % activation f'n
```

Alternative: recurrent NNs...

(c) Alexander Ihler

Feed-forward networks

A note on multiple outputs:

- Regression:
 - Predict multi-dimensional y
 - "Shared" representation= fewer parameters
- Classification
 - Predict binary vector
 - Multi-class classification
 y = 2 = [0 0 1 0 ...]
 - Multiple, joint binary predictions (image tagging, etc.)
 - Often trained as regression (MSE),
 with saturating activation

Machine Learning and Data Mining

Multi-layer Perceptrons & Neural Networks: Backpropagation

Prof. Alexander Ihler

Training MLPs

- Observe features "x" with target "y"
- Push "x" through NN = output is "ŷ"
- Error: $(y-\hat{y})^2$ (Can use different loss functions if desired...)
- How should we update the weights to improve?
- Single layer
 - Logistic sigmoid function
 - Smooth, differentiable
- Optimize using:
 - Batch gradient descent
 - Stochastic gradient descent

Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = -2\sum_{k'} (y_{k'} - \hat{y}_{k'}) \ (\partial \hat{y}_{k'})$$

$$= -2(y_k - \hat{y}_k) \ \sigma'(s_k) \ h_j \quad \text{(Identical to logistic mse regression with inputs "hi")}$$

Forward pass

Loss function

$$J_i(W) = \sum_k (y^{(i)} - \hat{y}_k^{(i)})^2$$

Output layer

$$\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$$

Hidden layer

Hidden layer
$$h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$$

Backpropagation

- Just gradient descent…
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = -2\sum_{k'} (y_{k'} - \hat{y}_{k'}) \ (\partial \hat{y}_{k'})$$

$$= \frac{-2(y_k - \hat{y}_k) \ \sigma'(s_k)}{\beta^2} h_j \quad \text{(Identical to logistic mse regression with inputs "h_j")}$$

$$\frac{\partial J}{\partial w_{ji}^{1}} = \sum_{k} -2(y_{k} - \hat{y}_{k}) (\partial \hat{y}_{k})$$

$$= \sum_{k} -2(y_{k} - \hat{y}_{k}) \sigma'(s_{k}) w_{kj} \partial h_{j}$$

$$= \sum_{k} -2(y_{k} - \hat{y}_{k}) \sigma'(s_{k}) w_{kj} \sigma'(t_{j}) x_{i}$$

$$\beta_{k}^{2} \text{ (c) Alexander Ihler}$$

Forward pass

 $J_i(W) = \sum_k (y^{(i)} - \hat{y}_k^{(i)})^2$

 $\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$

Loss function

Output layer

Backpropagation

- Just gradient descent...
- Apply the chain rule to the MLP

$$\frac{\partial J}{\partial w_{kj}^2} = \boxed{-2(y_k - \hat{y}_k) \ \sigma'(s_k) \ h_j}$$

$$\frac{\partial J}{\partial w_{ji}^1} = \sum_k \boxed{-2(y_k - \hat{y}_k) \ \sigma'(s_k) \ w_{kj} \ \sigma'(t_j) \ x_i}$$

B2 = (Y-Yhat) .* dSig(S); % (1xN3) G2 = B' * H; % (N3x1) * (1xN2) = (N3xN2) B1 = (B*W2)' .* dSig(T); % (1xN3) * (N3*N2) .* (1xN2) G1 = B' * X; % (N2 x N1+1)

Forward pass

Loss function

$$J_i(W) = \sum_k (y^{(i)} - \hat{y}_k^{(i)})^2$$

Output layer

$$\hat{y}_k = \sigma(s_k) = \sigma(\sum_j w_{kj}^2 h_j)$$

Hidden layer

$$h_j = \sigma(t_j) = \sigma(\sum_i w_{ji}^1 x_i)$$

```
% X : (1xN1)
H = Sig(W1 * X1');
% W1 : (N2 x N1+1)
% H : (1xN2)
Yh = Sig(W2 * H1');
% W2 : (N3 x N2+1)
% Yh : (1xN3)
```

Example: Regression, MCycle data

- Train NN model, 2 layer
 - 1 input features => 1 input units
 - 10 hidden units
 - 1 target => 1 output units

Data:

Logistic sigmoid activation for hidden layer, linear for output layer

Responses of hidden nodes (= features of linear regression): select out useful regions of "x"

Example: Classification, Iris data

- Train NN model, 2 layer
 - 2 input features => 2 input units
 - 10 hidden units
 - 3 classes => 3 output units (y = [0 0 1], etc.)
 - Logistic sigmoid activation functions
 - Optimize MSE of predictions using stochastic gradient

MLPs in practice

- Example: Deep belief nets (Hinton et al. 2007)
 - Handwriting recognition
 - Online demo
 - 784 pixels \Leftrightarrow 500 mid \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels $\overset{\bullet}{\mathsf{h}}^{\mathsf{1}}$ $\overset{\bullet}{\mathsf{h}}^{\mathsf{2}}$ $\overset{\bullet}{\mathsf{h}}^{\mathsf{3}}$ $\overset{\bullet}{\mathsf{V}}$

MLPs in practice

- Example: Deep belief nets (Hinton et al. 2007)
 - Handwriting recognition
 - Online demo
 - 784 pixels \Leftrightarrow 500 mid \Leftrightarrow 500 high \Leftrightarrow 2000 top \Leftrightarrow 10 labels

MLPs in practice

- Example: Deep belief nets (Hinton et al. 2007)
 - Handwriting recognition
 - Online demo
 - 784 pixels ⇔ 500 mid ⇔ 500 high ⇔ 2000 top ⇔ 10 labels

Neural networks & DBNs

- Want to try them out?
- Matlab "Deep Learning Toolbox"
 https://github.com/rasmusbergpalm/DeepLearnToolbox

Matlab/Octave toolbox for deep learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolutional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. Each method has examples to get you started.

Also:

- A built-in toolbox for Matlab: need a license...
- Netlab: free but older, not updated in some time

Summary

- Neural networks, multi-layer perceptrons
- Cascade of simple perceptrons
 - Each just a linear classifier
 - Hidden units used to create new features
- Together, general function approximators
 - Enough hidden units (features) = any function
 - Can create nonlinear classifiers
 - Also used for function approximation, regression, ...
- Training via backprop
 - Gradient descent; logistic; apply chain rule