Introduction à la Recherche Opérationnelle

Rodéric Moitié, Christophe Osswald, Jordan Ninin

ENSTA Bretagne

2016

- Coloration de graphes
- 2 Flots dans un graphe
- 3 Théorème de la coupe min

- Coloration de graphes

- Coloration de graphes
 - Origine : théorème des quatre couleurs
 - Définitions
 - Nombre chromatique
 - Application
 - Algorithme

Origine : théorème des quatre couleurs

Théorème des quatre couleurs

Théorème (quatre couleurs)

Toute carte géographique peut être colorée de manière à ce que deux zones adjacentes n'aient pas la même couleur, en utilisant au plus 4 couleurs.

 Problème posé en 1852 par Francis Guthrie — élève de Augustus De Morgan — (carte d'Angleterre)

Théorème des quatre couleurs

Théorème (quatre couleurs)

- Problème posé en 1852 par Francis Guthrie élève de Augustus De Morgan — (carte d'Angleterre)
- trois couleurs insuffisantes : évident

Origine : théorème des quatre couleurs

Théorème des quatre couleurs

Théorème (quatre couleurs)

- Problème posé en 1852 par Francis Guthrie élève de Augustus De Morgan — (carte d'Angleterre)
- trois couleurs insuffisantes : évident
- cing couleurs suffisantes : relativement facile

Origine : théorème des quatre couleurs

Théorème des quatre couleurs

Théorème (quatre couleurs)

- Problème posé en 1852 par Francis Guthrie élève de Augustus De Morgan — (carte d'Angleterre)
- trois couleurs insuffisantes : évident
- cing couleurs suffisantes : relativement facile
- quatre couleurs suffisantes ???

Origine : théorème des quatre couleurs

Théorème des quatre couleurs

Théorème (quatre couleurs)

- Problème posé en 1852 par Francis Guthrie élève de Augustus De Morgan — (carte d'Angleterre)
- trois couleurs insuffisantes : évident
- cinq couleurs suffisantes : relativement facile
- quatre couleurs suffisantes ???
- Utilisation d'un theorem prover

Origine : théorème des quatre couleurs

Historique

• Premier article en 1878 par Arthur Cayley

Moitié, Osswald, Ninin Recherche Opérationnelle

112 . . .

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe
 - 1880 par Peter Guthrie Tait

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe --- réfutée en 1890 par Heawood
 - 1880 par Peter Guthrie Tait --> réfutée en 1891 par Petersen

Historique

Coloration de graphes

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe → réfutée en 1890 par Heawood
 - 1880 par Peter Guthrie Tait --> réfutée en 1891 par Petersen
- 1890 : Heawood démontre le théorème des 5 couleurs

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe → réfutée en 1890 par Heawood
 - 1880 par Peter Guthrie Tait --> réfutée en 1891 par Petersen
- 1890 : Heawood démontre le théorème des 5 couleurs
- 1960-1970 Heesch : méthodes d'utilisation d'ordinateurs pour le recherche de preuves

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe --> réfutée en 1890 par Heawood
 - 1880 par Peter Guthrie Tait --> réfutée en 1891 par Petersen
- 1890 : Heawood démontre le théorème des 5 couleurs
- 1960-1970 Heesch : méthodes d'utilisation d'ordinateurs pour le recherche de preuves
- 1977 : preuve par Kenneth Appel et Wolfgang Haken (étude de 1936 configurations)

2016

6 / 44

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe --> réfutée en 1890 par Heawood
 - 1880 par Peter Guthrie Tait --> réfutée en 1891 par Petersen
- 1890 : Heawood démontre le théorème des 5 couleurs
- 1960-1970 Heesch : méthodes d'utilisation d'ordinateurs pour le recherche de preuves
- 1977 : preuve par Kenneth Appel et Wolfgang Haken (réduction du nombre de configurations à 1476)

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe --- réfutée en 1890 par Heawood
 - 1880 par Peter Guthrie Tait --> réfutée en 1891 par Petersen
- 1890 : Heawood démontre le théorème des 5 couleurs
- 1960-1970 Heesch : méthodes d'utilisation d'ordinateurs pour le recherche de preuves
- 1977: preuve par Kenneth Appel et Wolfgang Haken (réduction du nombre de configurations à 1476)
- 1996 : preuve vérifiant 633 cas particuliers

- Premier article en 1878 par Arthur Cayley
- Tentatives de preuves :
 - 1879 par Alfred Kempe → réfutée en 1890 par Heawood
 - ullet 1880 par Peter Guthrie Tait wo réfutée en 1891 par Petersen
- 1890 : Heawood démontre le théorème des 5 couleurs
- 1960-1970 Heesch : méthodes d'utilisation d'ordinateurs pour le recherche de preuves
- 1977 : preuve par Kenneth Appel et Wolfgang Haken (réduction du nombre de configurations à 1476)
- 1996 : preuve vérifiant 633 cas particuliers
- 2004 : preuve de *Benjamin Werner* and *Georges Gonthier* utilisant l'assistant de peuve *Coq*

- Coloration de graphes
 - Origine : théorème des quatre couleurs
 - Définitions
 - Nombre chromatique
 - Application
 - Algorithme
- 2 Flots dans un graphe
- 3 Théorème de la coupe min

Coloration

Soit G = (S, A) un graphe non orienté.

- Plusieurs types de colorations
 - sommets
 - arcs

Coloration

Soit G = (S, A) un graphe non orienté.

- Plusieurs types de colorations
 - sommets
 - arcs
- Bonne coloration : deux sommets adjacents ont des couleurs différentes

Coloration

Soit G = (S, A) un graphe non orienté.

- Plusieurs types de colorations
 - sommets
 - arcs
- Bonne coloration : deux sommets adjacents ont des couleurs différentes
- Coloration utilisant k couleurs : k-coloration

Coloration

Soit G = (S, A) un graphe non orienté.

- Plusieurs types de colorations
 - sommets
 - arcs
- Bonne coloration : deux sommets adjacents ont des couleurs différentes
- Coloration utilisant k couleurs : k-coloration

Applications:

- ordonnancement
- allocation de registres de μP
- affectation de fréquences radio

2016

Exemple de coloration

Exemple

Combien de couleurs faut-il pour colorer le graphe représenté ci-dessous?

Exemple de coloration

Exemple

Combien de couleurs faut-il pour colorer le graphe représenté ci-dessous ?

- Coloration de graphes
 - Origine : théorème des quatre couleurs
 - Définitions
 - Nombre chromatique
 - Application
 - Algorithme
- 2 Flots dans un graphe
- 3 Théorème de la coupe mir

Définition (Nombre chromatique)

Soit G un graphe. On appelle nombre chromatique de G, noté $\chi(G)$ la plus petite valeur de k telle que G soit k-colorable.

Nombre chromatique

Définition (Nombre chromatique)

Soit G un graphe. On appelle nombre chromatique de G, noté $\chi(G)$ la plus petite valeur de k telle que G soit k-colorable.

- Problème NP-Difficile
- Problème de décision associé NP-Complet

Définition (Nombre chromatique)

Soit G un graphe. On appelle nombre chromatique de G, noté $\chi(G)$ la plus petite valeur de k telle que G soit k-colorable.

- Problème NP-Difficile
- Problème de décision associé NP-Complet

Exemple

Graphe G déconnecté. $\chi(G) = ?$

Nombre chromatique

Définition (Nombre chromatique)

Soit G un graphe. On appelle nombre chromatique de G, noté $\chi(G)$ la plus petite valeur de k telle que G soit k-colorable.

- Problème NP-Difficile
- Problème de décision associé NP-Complet

Exemple

Graphe G déconnecté. $\chi(G) = 1$

Définition (Nombre chromatique)

Soit G un graphe. On appelle nombre chromatique de G, noté $\chi(G)$ la plus petite valeur de k telle que G soit k-colorable.

- Problème NP-Difficile
- Problème de décision associé NP-Complet

Exemple

Graphe G déconnecté. $\chi(G) = 1$

Exemple

$$\chi(K_n) = ?$$

Nombre chromatique

Définition (Nombre chromatique)

Soit G un graphe. On appelle nombre chromatique de G, noté $\chi(G)$ la plus petite valeur de k telle que G soit k-colorable.

- Problème NP-Difficile
- Problème de décision associé NP-Complet

Exemple

Graphe G déconnecté. $\chi(G) = 1$

Exemple

$$\chi(K_n) = n$$

Définition (sous-graphe)

Un sous graphe de G = (S, A) est un graphe G' = (S', A') avec $S' \subset S$ et $A' = \{u \in A/I(u) \in S' \text{ et } T(u) \in S'\}.$

Définition (clique)

Une clique de G est un sous-graphe complet de G. On note $\omega(G)$ le degré maximum des cliques de G.

Clique

Exemple (clique)

Quelles sont les cliques de degré 3 du graphe ci-dessous ?

Clique

Exemple (clique)

Quelles sont les cliques de degré 3 du graphe ci-dessous ? $\{d,g,h\}$

Clique

Exemple (clique)

Quelles sont les cliques de degré 3 du graphe ci-dessous ? $\{d,g,h\}$ $\{d,e,h\}$

On note n le nombre de sommets de G, et $\Delta(G)$ le degré maximum de ses sommets.

- $\chi(G) \leqslant n$
- $\chi(G) \geqslant 3$ ssi G possède un cycle impair (cycle de longueur impaire).
- $\chi(G) \geqslant \omega(G)$
- $\chi(G) \leqslant \Delta(G) + 1$
- $\chi(G) \leq 4$ pour un graphe planaire.

Sommaire

- Coloration de graphes
 - Origine : théorème des quatre couleurs
 - Définitions
 - Nombre chromatique
 - Application
 - Algorithme

Problème d'emploi du temps

Problème :

- cours de durée identique
- incompatibilités entre certains cours
- trouver un emploi du temps minimisant le nombre de créneaux utilisés

Moitié, Osswald, Ninin Recherche Opérationnelle 2016 16 / 44

2016

16 / 44

Problème d'emploi du temps

Problème :

- cours de durée identique
- incompatibilités entre certains cours
- trouver un emploi du temps minimisant le nombre de créneaux utilisés

Modélisation sous forme de graphe

- sommets : cours
- arêtes : incompatibilités

16 / 44

Problème d'emploi du temps

Problème :

- cours de durée identique
- incompatibilités entre certains cours
- trouver un emploi du temps minimisant le nombre de créneaux utilisés

Modélisation sous forme de graphe

sommets : cours

arêtes : incompatibilités

Nombre chromatique : nombre de créneaux

Sommaire

- Coloration de graphes
 - Origine : théorème des quatre couleurs
 - Définitions
 - Nombre chromatique
 - Application
 - Algorithme
- 2 Flots dans un graphe
- 3 Théorème de la coupe min

Repérer le degré de chaque sommet.

- 1 Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)

- Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)
- Attribuer au premier sommet (A) de la liste une couleur.

- Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)
- Attribuer au premier sommet (A) de la liste une couleur.
- Suivre la liste en attribuant la même couleur au premier sommet (B) qui ne soit pas adjacent à (A).

- Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)
- Attribuer au premier sommet (A) de la liste une couleur.
- Suivre la liste en attribuant la même couleur au premier sommet (B) qui ne soit pas adjacent à (A).
- Suivre (si possible) la liste jusqu'au prochain sommet (C) qui ne soit adjacent ni à A ni à B.

18 / 44

- Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)
- Attribuer au premier sommet (A) de la liste une couleur.
- Suivre la liste en attribuant la même couleur au premier sommet (B) qui ne soit pas adjacent à (A).
- Suivre (si possible) la liste jusqu'au prochain sommet (C) qui ne soit adjacent ni à A ni à B.
- O Continuer jusqu'à ce que la liste soit finie.

18 / 44

- Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)
- Attribuer au premier sommet (A) de la liste une couleur.
- Suivre la liste en attribuant la même couleur au premier sommet (B) qui ne soit pas adjacent à (A).
- Suivre (si possible) la liste jusqu'au prochain sommet (C) qui ne soit adjacent ni à A ni à B.
- Ontinuer jusqu'à ce que la liste soit finie.
- Prendre une deuxième couleur pour le premier sommet (D) non encore colorié de la liste.

- 1 Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)
- Attribuer au premier sommet (A) de la liste une couleur.
- Suivre la liste en attribuant la même couleur au premier sommet (B) qui ne soit pas adjacent à (A).
- Suivre (si possible) la liste jusqu'au prochain sommet (C) qui ne soit adjacent ni à A ni à B.
- Ontinuer jusqu'à ce que la liste soit finie.
- Prendre une deuxième couleur pour le premier sommet (D) non encore colorié de la liste.
- 8 Répéter les operations 4 à 6.

- 1 Repérer le degré de chaque sommet.
- Ranger les sommets par ordre de degrés décroissants. (dans certains cas plusieurs possibilités)
- Attribuer au premier sommet (A) de la liste une couleur.
- Suivre la liste en attribuant la même couleur au premier sommet (B) qui ne soit pas adjacent à (A).
- Suivre (si possible) la liste jusqu'au prochain sommet (C) qui ne soit adjacent ni à A ni à B.
- Ontinuer jusqu'à ce que la liste soit finie.
- Prendre une deuxième couleur pour le premier sommet (D) non encore colorié de la liste.
- 8 Répéter les operations 4 à 6.
- Ontinuer jusqu'à avoir colorié tous les sommets.

2016

19 / 44

Algorithme

Remarque

Cette méthode n'aboutit pas forcément à une coloration minimale. Il faut donc observer si on peut faire mieux (c'est-à-dire avec moins de couleurs).

Sommaire

- Coloration de graphes
- 2 Flots dans un graphe
- 3 Théorème de la coupe min

Sommaire

- 1 Coloration de graphes
- 2 Flots dans un graphe
 - Réseau de transport
 - Réseaux à sources et à puits multiples
 - Flots max
 - Algorithme de Ford-Fulkerson
 - Exemples
- Théorème de la coupe mir

Définition

Définition (Réseau de transport)

Un réseau de transport est un graphe orienté G=(S,A) pour lequel chaque arc u=(x,y) se voit associé une capacité c(u):

$$c:A\to\mathbb{R}^+\cup\{+\infty\}$$

On note le réseau R = (S, A, c)

Définition

Définition (Réseau de transport)

Un réseau de transport est un graphe orienté G=(S,A) pour lequel chaque arc u=(x,y) se voit associé une capacité c(u):

$$c: A \to \mathbb{R}^+ \cup \{+\infty\}$$

On note le réseau R = (S, A, c)

Deux sommets particuliers : la source s et le puits t.

Définition

Définition (Réseau de transport)

Un réseau de transport est un graphe orienté G=(S,A) pour lequel chaque arc u=(x,y) se voit associé une capacité c(u):

$$c: A \to \mathbb{R}^+ \cup \{+\infty\}$$

On note le réseau R = (S, A, c)

Deux sommets particuliers : la source s et le puits t.

Tous les sommets se trouvent sur un chemin entre s et t

$$\forall x \in S, s \leadsto x \leadsto t$$

Dans un réseau R = (S, A, c) on définit la notion de flot

Définition (flot)

Un flot de R est une fonction $f:A\to\mathbb{R}$ qui vérifie les trois propriétés suivantes :

Dans un réseau R = (S, A, c) on définit la notion de flot

Définition (flot)

Un flot de R est une fonction $f:A\to\mathbb{R}$ qui vérifie les trois propriétés suivantes :

• Capacité : $\forall u \in A, f(u) \leqslant c(u)$

Dans un réseau R = (S, A, c) on définit la notion de flot

Définition (flot)

Un flot de R est une fonction $f:A\to\mathbb{R}$ qui vérifie les trois propriétés suivantes :

1 Capacité : $\forall u \in A, f(u) \leq c(u)$

2 Symétrie : $\forall u \in A, f(u) = -f(-u)$

Dans un réseau R = (S, A, c) on définit la notion de flot

Définition (flot)

Un flot de R est une fonction $f:A\to\mathbb{R}$ qui vérifie les trois propriétés suivantes :

- Capacité : $\forall u \in A, f(u) \leqslant c(u)$
- 2 Symétrie : $\forall u \in A, f(u) = -f(-u)$
- Conservation :

$$\forall x \in S - \{s, t\}, \sum_{u \in A/I(u)=x} f(u) - \sum_{u \in A/T(u)=x} f(u) = 0$$

Réseau de transport

Signification des propriétés :

24 / 44

Signification des propriétés :

 le flux au travers d'un arc ne doit pas dépasser la capacité de cet arc

Signification des propriétés :

- le flux au travers d'un arc ne doit pas dépasser la capacité de cet arc
- commodité notationnelle

Signification des propriétés :

- le flux au travers d'un arc ne doit pas dépasser la capacité de cet arc
- commodité notationnelle
- pour chaque sommet, le flot entrant est égal au flot sortant (première loi de Kirchhoff)

- le flux au travers d'un arc ne doit pas dépasser la capacité de cet arc
- commodité notationnelle
- pour chaque sommet, le flot entrant est égal au flot sortant (première loi de Kirchhoff)

Définition (Valeur d'un flot)

Soit f un flot sur un réseau. On appelle valeur de f, et on note

$$|f| = \sum_{x \in S} f(s, x)$$

Réseau de transport

Exemple

Exemple

Sommaire

- 1 Coloration de graphes
- 2 Flots dans un graphe
 - Réseau de transport
 - Réseaux à sources et à puits multiples
 - Flots max
 - Algorithme de Ford-Fulkerson
 - Exemples
- Théorème de la coupe min

sources multiples

 Possibilité de généraliser la notion de flot dans un réseau à plusieurs sources.

sources multiples

- Possibilité de généraliser la notion de flot dans un réseau à plusieurs sources.
- ajout supersource et superpuits

sources multiples

- Possibilité de généraliser la notion de flot dans un réseau à plusieurs sources.
- ajout supersource et superpuits
- capacités infinies

Sommaire

- 1 Coloration de graphes
- Plots dans un graphe
 - Réseau de transport
 - Réseaux à sources et à puits multiples
 - Flots max
 - Algorithme de Ford-Fulkerson
 - Exemples
- Théorème de la coupe mir

Flots max

Flots de valeur maximum

- Problème : trouver un flot maximal
- maximiser |f|

Moitié, Osswald, Ninin Recherche Opérationnelle 2016 29 / 44

Flots de valeur maximum

- Problème : trouver un flot maximal
- maximiser |f|

Algorithme 2 : Méthode de Ford-Fulkerson

```
Entrées : graphe g, noeud source, noeud puits Données : flot f initialiser f à 0 ; tant que \exists p chemin améliorant faire | augmenter f le long de p ;
```

Flots max

Chemins améliorants

Questions:

- Qu'est-ce qu'un chemin améliorant ?
- Comment le déterminer ?

Flots max

Chemins améliorants

Questions:

- Qu'est-ce qu'un chemin améliorant ?
- Comment le déterminer ?

Nécessité d'introduire des notions supplémentaires

Questions:

- Qu'est-ce qu'un chemin améliorant ?
- Comment le déterminer ?

Nécessité d'introduire des notions supplémentaires

Définition (capacité résiduelle)

Soit R = (S, A, c) un réseau. On note $\delta(u)$ la capacité résiduelle d'un arc u, définie par : $\forall u \in A, \delta(u) = c(u) - f(u)$.

2016

30 / 44

Chemins améliorants

Questions:

- Qu'est-ce qu'un chemin améliorant ?
- Comment le déterminer ?

Nécessité d'introduire des notions supplémentaires

Définition (capacité résiduelle)

Soit R = (S, A, c) un réseau. On note $\delta(u)$ la capacité résiduelle d'un arc u, définie par : $\forall u \in A, \delta(u) = c(u) - f(u)$.

Définition (réseau résiduel)

Soit R = (S, A, c) un réseau. Le réseau résiduel de R est $R_f = (S, A_f, \delta)$ avec $A_f = \{u \in A/\delta(u) > 0\}$

Flots max

Chemins améliorants

Définition (chemin améliorant)

Soit R = (S, A, c) un réseau de source s et de puits t. Un chemin p améliorant est un chemin de p à t le long duquel aucun arc dans le sens direct n'est saturé, et aucun arc dans le sens inverse n'est nul.

Moitié, Osswald, Ninin Recherche Opérationnelle 2016 31 / 44

Définition (chemin améliorant)

Soit R = (S, A, c) un réseau de source s et de puits t. Un chemin p améliorant est un chemin de p à t le long duquel aucun arc dans le sens direct n'est saturé, et aucun arc dans le sens inverse n'est nul.

$$p^+$$
 : arcs de s vers $t, \delta_p^+ = \min_{u \in p^+} (\delta(u))$

Définition (chemin améliorant)

Soit R = (S, A, c) un réseau de source s et de puits t. Un chemin p améliorant est un chemin de p à t le long duquel aucun arc dans le sens direct n'est saturé, et aucun arc dans le sens inverse n'est nul.

$$p^+$$
: arcs de s vers $t, \delta_p^+ = \min_{u \in p^+} (\delta(u))$

$$p^-$$
: arcs de t vers $s, \delta_p^- = \min_{u \in p^-} (f(u))$

Définition (chemin améliorant)

Soit R = (S, A, c) un réseau de source s et de puits t. Un chemin p améliorant est un chemin de p à t le long duquel aucun arc dans le sens direct n'est saturé, et aucun arc dans le sens inverse n'est nul.

$$p^+$$
: arcs de s vers $t, \delta_p^+ = \min_{u \in p^+} (\delta(u))$

$$p^-$$
: arcs de t vers $s, \delta_p^- = \min_{u \in p^-} (f(u))$

Amélioration du flot : $\delta = \min(\delta_p^+, \delta_p^-)$

- ajout de δ aux arcs de p^+
- soustraction de δ aux arcs de p^-

Flots max

Exemple (amélioration de flot)

• p chemin (a, b, c, d, e)

Flots max

- p chemin (a, b, c, d, e)
- $p^+ = \{(a,b),(b,c),(d,e)\}, p^- = \{(c,d)\}$

- p chemin (a, b, c, d, e)
- $p^+ = \{(a,b),(b,c),(d,e)\}, p^- = \{(c,d)\}$

- p chemin (a, b, c, d, e)
- $p^+ = \{(a,b),(b,c),(d,e)\}, p^- = \{(c,d)\}$
- réseau résiduel

- p chemin (a, b, c, d, e)
- $p^+ = \{(a,b),(b,c),(d,e)\}, p^- = \{(c,d)\}$
- réseau résiduel
- $\delta_p^+ = \min(3, 2, 5) = 2$, $\delta_p^- = 1$ et $\delta = 1$

- p chemin (a, b, c, d, e)
- $p^+ = \{(a,b),(b,c),(d,e)\}, p^- = \{(c,d)\}$
- réseau résiduel
- $\delta_p^+ = \min(3, 2, 5) = 2$, $\delta_p^- = 1$ et $\delta = 1$

- p chemin (a, b, c, d, e)
- $p^+ = \{(a,b),(b,c),(d,e)\}, p^- = \{(c,d)\}$
- réseau résiduel
- $\delta_p^+ = \min(3, 2, 5) = 2$, $\delta_p^- = 1$ et $\delta = 1$

Flots max

- p chemin (a, b, c, d, e)
- $p^+ = \{(a,b),(b,c),(d,e)\}, p^- = \{(c,d)\}$
- réseau résiduel
- ullet $\delta_p^+=\min(3,2,5)=2$, $\delta_p^-=1$ et $\delta=1$
- $+1 \operatorname{sur}(a, b)(b, c)(d, e) -1 \operatorname{sur}(c, d)$

Sommaire

- 1 Coloration de graphes
- 2 Flots dans un graphe
 - Réseau de transport
 - Réseaux à sources et à puits multiples
 - Flots max
 - Algorithme de Ford-Fulkerson
 - Exemples
- Théorème de la coupe min

Ford-Fulkerson

Algorithme 3 : Algorithme de Ford-Fulkerson

Entrées : reseau r, nœud source, nœud puits

pour tous
$$(x, y) \in A$$
 faire $f(x, y) \leftarrow 0$;

$$\begin{array}{c|c} f(x,y) \leftarrow 0 ; \\ f(y,x) \leftarrow 0 ; \end{array}$$

Ford-Fulkerson

Algorithme 4 : Algorithme de Ford-Fulkerson

Entrées : reseau r, nœud source, nœud puits pour tous $(x,y) \in A$ faire $f(x,y) \leftarrow 0$; $f(y,x) \leftarrow 0$;

tant que $\exists p \ dans \ R_f$ faire

$$\delta(p) \leftarrow \min_{u \in p} (\delta(u))$$
;

Ford-Fulkerson

Algorithme 5 : Algorithme de Ford-Fulkerson

Algorithme de Ford-Fulkerson

Analyse de Ford-Fulkerson

• Terminaison non garantie en général

- Terminaison non garantie en général
- ullet Terminaison garantie si capacités $\in \mathbb{Q}$

- Terminaison non garantie en général
- Terminaison garantie si capacités $\in \mathbb{Q}$
- Temps d'exécution ?

- Terminaison non garantie en général
- ullet Terminaison garantie si capacités $\in \mathbb{Q}$
- Temps d'exécution ?
 - ullet On suppose capacités $\in \mathbb{Q}$

- Terminaison non garantie en général
- Terminaison garantie si capacités $\in \mathbb{Q}$
- Temps d'exécution ?
 - ullet On suppose capacités $\in \mathbb{Q}$
 - capacités $\Rightarrow \mathbb{N}$

- Terminaison non garantie en général
- Terminaison garantie si capacités $\in \mathbb{Q}$
- Temps d'exécution ?
 - ullet On suppose capacités $\in \mathbb{Q}$
 - ullet capacités $\Rightarrow \mathbb{N}$
 - f* flot maximal

Analyse de Ford-Fulkerson

- Terminaison non garantie en général
- ullet Terminaison garantie si capacités $\in \mathbb{Q}$
- Temps d'exécution ?
 - ullet On suppose capacités $\in \mathbb{Q}$
 - ullet capacités $\Rightarrow \mathbb{N}$
 - f* flot maximal
 - Alors temps $\Theta(|A|.|f^*|)$

Sommaire

- 1 Coloration de graphes
- Plots dans un graphe
 - Réseau de transport
 - Réseaux à sources et à puits multiples
 - Flots max
 - Algorithme de Ford-Fulkerson
 - Exemples
- Théorème de la coupe mir

Que donne Ford-Fulkerson sur ce graphe ?

2016

38 / 44

Exemples

38 / 44

Exemples

Exemple

La réponse après 7.5 millions d'années

et 2000 itérations plus tard...

Sommaire

- Coloration de graphes
- 2 Flots dans un graphe
- 3 Théorème de la coupe min

Sommaire

- 1 Coloration de graphes
- 2 Flots dans un graphe
- Théorème de la coupe minCoupe

Moitié, Osswald, Ninin

41 / 44

Coupe

Coupe

Coupe $\mathcal C$: ensemble d'arcs divisant le réseau en deux parties : une partie contenant s et une partie contenant t.

Coupe C: ensemble d'arcs divisant le réseau en deux parties: une partie contenant s et une partie contenant t.

Notations

$$G = (S, A)$$
, et $X \subset S$
 $\Omega^+(X) = \{u \in A/I(u) \in X, T(u) \notin X\}$
 $\Omega^-(X) = \{u \in A/I(u) \notin X, T(u) \in X\}$

Coupe C: ensemble d'arcs divisant le réseau en deux parties: une partie contenant s et une partie contenant t.

Notations

$$G = (S, A)$$
, et $X \subset S$
 $\Omega^+(X) = \{u \in A/I(u) \in X, T(u) \notin X\}$
 $\Omega^-(X) = \{u \in A/I(u) \notin X, T(u) \in X\}$

Définition (coupe)

Soit un réseau R=(S,A,c) de source s et de puits t. Un ensemble $\mathcal C$ est appelé coupe séparant t de s si on peut trouver $X\subset A$ avec $s\in X, t\not\in X$ tel que :

$$C = \Omega^+(X) = \{ u \in A/I(u) \in X, T(u) \notin X \}$$

Réseau

42 / 44

Coupe

Partition

Arcs de la coupe

Coupe

Capacité d'une coupe

Définition (capacité d'une coupe)

On appelle capacité d'une coupe $\mathcal C$ séparant t de s la somme des capacités des arcs de $\mathcal C$.

$$c(\mathcal{C}) = \sum_{u \in \mathcal{C}} c(u)$$

Lemme

Pour tout réseau R=(S,A,c) de sommet s et de puits t, pour tout flot f réalisable sur R et pour toute coupe $\mathcal{C}=\Omega^+(E)$ séparant t de s, et pour T=S-E, on a :

$$\delta(\mathcal{C}) = f(E, T) = |f| \tag{1}$$

Corollaire

La valeur d'un flot f dans un réseau R est majorée par la capacité d'une coupe quelconque de R.

Corollaire

La valeur d'un flot f dans un réseau R est majorée par la capacité d'une coupe quelconque de R.

Théorème (flot maximum et coupe minimum)

Soit R = (S, A, c) un réseau de source s et de puits t, et f un flot dans ce réseau. Alors les conditions suivantes sont équivalentes :

Corollaire

La valeur d'un flot f dans un réseau R est majorée par la capacité d'une coupe quelconque de R.

Théorème (flot maximum et coupe minimum)

Soit R = (S, A, c) un réseau de source s et de puits t, et f un flot dans ce réseau. Alors les conditions suivantes sont équivalentes :

f est un flot maximal dans R

Corollaire

La valeur d'un flot f dans un réseau R est majorée par la capacité d'une coupe quelconque de R.

Théorème (flot maximum et coupe minimum)

Soit R = (S, A, c) un réseau de source s et de puits t, et f un flot dans ce réseau. Alors les conditions suivantes sont équivalentes :

- f est un flot maximal dans R
- 2 Le réseau résiduel R_f ne contient aucun chemin améliorant

Corollaire

La valeur d'un flot f dans un réseau R est majorée par la capacité d'une coupe quelconque de R.

Théorème (flot maximum et coupe minimum)

Soit R = (S, A, c) un réseau de source s et de puits t, et f un flot dans ce réseau. Alors les conditions suivantes sont équivalentes :

- f est un flot maximal dans R
- 2 Le réseau résiduel R_f ne contient aucun chemin améliorant
- **3** |f| = c(C) pour une certaine coupe C de R.