Econ-5253

Problem Set 8

Mieon Seong

Due by Apr. 2th, 2024

Question 5: Using the matrices you just generated, compute $\hat{\beta}_{OLS}$, which is the OLS estimate of β using the closed-form solution. How does your estimate compare with the true value of β in (1)?

- V1
- 1 1.5010518
- 2 -1.0008296
- 3 -0.2516480
- 4 0.7490406
- 5 3.5005531
- 6 -2.0008185
- 7 0.4987148
- 8 1.0028269
- 9 1.2465102
- 10 2.0010012

It is almost the same as the actual the value of β .

Question 6: Compute $\hat{\beta}_{OLS}$ using gradient descent (as we went over in class). Make sure you appropriately code the gradient vector! Set the "learning rate" (step size) to equal 0.0000003.

```
[, 1]
[1,]
       1.5010518
[2,]
       -1.0008296
[3,]
       -0.2516480
[4,]
       0.7490406
[5,]
       3.5005531
[6,]
       -2.0008185
[7,]
       0.4987148
[8,]
       1.0028269
[9,]
       1.2465102
       2.0010012
[ 10, ]
```

Question 7 : Compute $\hat{\beta}_{OLS}$ using nloptr's L-BFGS algorithm. Do it again using the Nelder-Mead algorithm. Do your answers differ?

	L-BFGS	Nelder-Mead
1	1.4375000	1.29909653
2	-1.0312500	-1.11422148
3	-0.1718750	-0.13531271
4	0.8515625	-0.12435493
5	3.5249023	3.58933602
6	-2.0322266	-2.49532367
7	0.5234375	0.34502814
8	0.8945312	0.55734366
9	1.3437500	0.04687693
10	2.0781250	1.22608191

Yes. It is a little different.

Question 8 : Now Compute $\hat{\beta}_{MLE}$ using nloptr's L-BFGS algorithm.

- 1 -3.350324e-07
- 2 1.781591e-07
- 3 1.637747e-07
- 4 -8.340968e-08
- 5 -6.032341e-07
- 6 4.866040e-07
- 7 -6.535479e-08
- 8 -6.289788e-08
- 9 -2.755593e-07
- 10 -2.658273e-07

Question 9-1: Now compute $\hat{\beta}_{OLS}$ the easy way:using lm() and directly calling the matrices Y and X (no need to create a data frame). Make sure you tell lm() not to include the constant! This is done by typing lm(Y X -1)

- X1 1.5011
- X2 -1.0008
- X3 -0.2516
- X4 0.7490
- X5 3.5006
- X6 -2.0008
- X7 0.4987
- X8 1.0028
- X9 1.2465
- X10 2.0010

Question 9-2: Use modelsummary to export the regression output to a .tex file. In your .tex file, tell me about how similar your estimates of $\hat{\beta}$ are to the "ground truth" β that you used to create the data in (1).

X1 1.501 X2 -1.001 -0.252 X3 X4 0.749 3.501 X5 X6 -2.001 X7 0.499 X8 1.003 X9 1.247 X10 2.001

My estimates of $\hat{\beta}$ is almost same as the "ground truth" β .