EXPERIMENT-5

MEASUREMENT OF SELF INDUCTANCE BY MAXWELL BRIDGE.

AIM:

• To determine the self-inductance of an unknown coil.

THEORY:

Introduction

To determine the self-inductance of an unknown coil.

Theory

This bridge circuit measures an inductance by comparison with variable standard self inductance. The connections for balance condition is shown in Fig. 1.

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

Let, L₁= Unknown self Inductance of resistance R₁,

L₂= variable inductance of fixed resistance r₂,

R₂= variable resistance connected in series with inductor L₂,

 R_3 , R_4 = known non inductive resistances,

At balance condition,

$$(R_1 + j\omega L_1) * R_4 = (R_2 + r_2 + j\omega L_2) * R_3...(1)$$

Equating both the real and imaginary parts in eq.(1) and seperating them,

$$L_1=(rac{R_3}{R_4})L_2\ldots(2)$$

$$R_1 = (rac{R_3}{R_4}) * (R_2 + r_2) \dots (3)$$

Resistors R_3 and R_4 are normally a selection of values from 10, 100, 1000 and $10,000\Omega$. r_2 is a decade resistance box.

PROCEDURE:

Fig 1: Circuit Diagram for Measurement of Self Inductance by Maxwell Bridge

- 1. Apply Supply voltage from the signal generator with arbitrary frequency. (V =3v). Also set the unknown Inductance value from 'Set Inductor Value' tab.
- 2. Then switch on the supply to get millivoltmeter deflection.
- 3. Choose the values of L_2 , r_2 , R_2 , R_3 and R_4 from the inductance and resistance box. Varry the values to some particular values to achieve "NULL".
- 4. Observe the millivoltmeter pointer to achieve "NULL".
- 5. If "NULL" is achieved, switch to 'Measure Inductor Value' tab and click on 'Simulate'. Observe the calculated values of unknown inductance (L₁) and it's internal resistance (R₁) of the inductor.
- 6. Also observe the Dissipation factor of the unknwown inductor which is defined as

$rac{\omega L}{R} \; Where, \omega = 2\pi f$

SIMULATION:

AIR CORE:

MEASUREMENT INDUCTOR VALUE:

IRON CORE:

MEASUREMENT INDUCTOR VALUE:

RESULT:

Thus ,the unknow inductance is found using maxwell bridge.