Teoremi

Agostino Cesarano

January 2024

Part I Successioni

1 Una successione convergente non può avere due limiti distinti

Supponiamo per assurdo che una successione convergente (a_n) abbia due limiti distinti l_1 e l_2 con $l_1 \neq l_2$. Secondo la definizione di limite, per ogni $\varepsilon > 0$, esistono due numeri naturali N_1 e N_2 tali che:

- $|a_n l_1| < \varepsilon$ per ogni $n > N_1$
- $|a_n l_2| < \varepsilon$ per ogni $n > N_2$

Scegliamo $\varepsilon=\frac{|l_1-l_2|}{2}>0$. Allora, per $n>\max\{N_1,N_2\}$, abbiamo sia $|a_n-l_1|<\varepsilon$ che $|a_n-l_2|<\varepsilon$. Ma questo implica che $|l_1-l_2|\le |a_n-l_1|+|a_n-l_2|<2\varepsilon=|l_1-l_2|$, che è un assurdo. Quindi, una successione convergente non può avere due limiti distinti.

2 Ogni successione convergente è limitata

Supponiamo che a_n converga ad l e scegliamo $\varepsilon = 1$, In base alla definizione di limite esiste un indice N_1 per cui $|a_n - l| < 1$ per ogni $n > N_1$. Utilizzando la diseguaglianza triangolare $|a_n| = |(a_n - l) + l| \le |a_n - l| + |l| < 1 + |l|$. Ma allora, per ogni $n \in N$ si ha $|a_n| \le M = max(|a_1|, |a_2|, ..., |a_{N_1}|, 1 + |l|)$

Attenzione

Ricorda, tuttavia, che il viceversa non è necessariamente vero: una successione limitata potrebbe non essere convergente. Ad esempio, la successione $(-1)^n$ oscilla tra -1 e +1. È limitata ma non è convergente.

3 Teorema della permanenza del segno

Se $\lim_{n\to\infty}a_n=l\neq 0$, esiste un numero \overline{n} tale che $a_n>0$ per ogni $n>\overline{n}$ (esiste un numero \overline{n} tale che $a_n<0$ per ogni $n<\overline{n}$). Possiamo scegliere $\varepsilon=\frac{l}{2}$. Esiste quindi un numero \overline{n} per cui $|a_n-l|<\frac{l}{2}$, per ogni $n>\overline{n}$. <u>Definizione di limite</u> Ciò equivale $Per\ la\ proèprietà\ del\ modulo$

$$\begin{cases} a_n - l < \frac{l}{2} \\ -(a_n - l) < \frac{l}{2} \end{cases} \begin{cases} a_n < \frac{l}{2} + l \\ -a_n + l < \frac{l}{2} \end{cases}$$
 (1)

$$\begin{cases} a_n < \frac{l}{2} + l \\ -a_n < \frac{l}{2} - l \end{cases} \begin{cases} a_n < \frac{l+2l}{2} \\ -a_n < \frac{l-2l}{2} \end{cases}$$
 (2)

$$\begin{cases}
a_n < \frac{3}{2}l \\
a_n > \frac{1}{2}l
\end{cases}$$
(3)

$$\frac{3}{2}l < a_n < \frac{1}{2}l$$

Se l > 0 a_n è compreso tra due numeri positivi quindi è positivo. Se l < 0 a_n è compreso tra due numeri negativi quindi è negativo.

4 Teorema dei carabinieri

Siano $a_n \leq c_n \leq b_n \forall n \in \mathbb{N}$. Se $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = l$ allora anche la successione c_n è convergente a $\lim_{n\to\infty} c_n = l$. Per ipotesi per ogni $\varepsilon > 0$

$$\exists N_1 \text{ tale che } |a_n - l| < \varepsilon, \forall n > N_1$$

$$\exists N_2 \text{ tale che } |b_n - l| < \varepsilon, \forall n > N_2$$

Ricordiamo che le diseguaglianze con il valore assoluto si posso anche scrivere

$$\begin{cases} a_n - l < \varepsilon \\ -(a_n - l) < \varepsilon \end{cases} \begin{cases} a_n < \varepsilon + l \\ -a_n + l < \varepsilon \end{cases}$$
 (4)

$$\begin{cases} a_n < \varepsilon + l \\ -a_n < \varepsilon - l \end{cases} \begin{cases} a_n < \varepsilon + l \\ -a_n < \varepsilon - l \end{cases}$$
 (5)

$$\begin{cases}
 a_n < l + \varepsilon \\
 a_n > l - \varepsilon
\end{cases}$$
(6)

$$l - \varepsilon < a_n < l + \varepsilon$$

$$l - \varepsilon < b_n < l + \varepsilon$$

Quindi se $n > N = max(N_1, N_2)$ risulta,

$$l - \varepsilon < a_n < l + \varepsilon \le c_n \le l - \varepsilon < b_n < l + \varepsilon$$

Perciò $|c_n - l| < \varepsilon$ per ogni n > N, come volevasi dimostrare.

5 Teorema sulle successioni monotone

Ogni successione monotona ammette limite. In particolare ogni successione monotona e limita è convergente, cioè ammette limite finito. Sia $(a_n)_n$ una successione reale monotona decrescente e sia l l'estremo inferiore della successione. Consideriamo il caso in cui l è finito. Per definizione di estremo inferiore abbiamo che:

$$l \le a_n \quad \forall n \in N$$

ed inoltre, fissato $\varepsilon > 0$, esiste n_{ε} tale che:

$$l \le a_{n_{\varepsilon}} < l + \varepsilon$$

Per ipotesi sappiamo che la successione è decrescente, ne segue che:

$$l \le a_n \le a_{n_{\varepsilon}} < l + \varepsilon \quad \forall n \ge n_{\varepsilon}$$

Dalla definizione di limite si ha che:

$$\lim_{n \to \infty} a_n = l = \inf_{n \in N} a_n$$

Supponiamo ora che $\inf_{n\in N} a_n = -\infty$. Allora $\forall M > 0, \exists n_M \in N$ tale che $a_{n_M} < -M$ e per la decrescenza della successione segue che:

$$a_n \le a_{n_M} < -M \quad \forall n \ge n_M$$

e quindi $\lim_{n\to\infty} a_n = -\infty = \inf_{n\in\mathbb{N}} a_n$.

6 Teorema di Bolzano-Weierstrass

Sia a_n una successione limitata. Allora esiste almeno una sua estratta convergente. Per ipotesi la successione a_n è limitata; pertanto esistono due costanti $A, B \in \mathbb{R}$ tali che $A \leq a_n \leq B, \forall n \in \mathbb{N}$.

Suddividiamo l'intervallo [A, B] mediante il punto di mezzo

$$C = \frac{A+B}{2}$$

e consideriamo due intervalli [A, C], [C, B]. Uno almeno dei due intervalli [A, C], [C, B] contiene infiniti termini della successione $(a_n)_n$, più precisamente, dato che l'insieme $\mathbb N$ dei numeri naturali è infinto risulta anche infinito uno tra i due sottoinsiemi di $\mathbb N$.

Scegliamo questo intervallo (o uno dei due se entrambi contengono un numero infinito di termini della successione) e lo chiamiamo $[A_1, B_1]$. Si ha

$$B_1 - A_1 = \frac{B - A}{2}$$

Sia a_{n_1} qualunque elemento della successione (a_n) che appartiene a $[A_1, B_1]$. Sia ora

$$C_1 = \frac{A_1 + B_1}{2}$$

e, ripetendo il ragionamento, consideriamo quello tra i due intervalli $[A_1, C_1]$ e $[C_1, B_1]$ che contenga $a_n(n > n_1)$ per un numero infinito di n e lo chiamiamo $[A_2, B_2]$. Sia a_{n_2} un qualunque elemento della successione $(a_n)(n > n_1)$ che appartiene a $[A_2, B_2]$. Continuando in questa maniera costruiamo tre successioni A_k, B_k e a_{n_k} tali che

1. A_k e B_k è monotona e limitata;

$$A \le A_k \le A_{k+1} < B_{k+1} \le B_k \le B$$

- 2. $B_k A_k = \frac{B-A}{2^k}, \forall k \in \mathbb{N};$
- 3. $(a_{n_k})k \in \mathbb{N}$ è una sottosuccessione di (a_n) ;
- 4. $A_k \leq a_{n_k} \leq B_k, \forall k \in \mathbb{N}$.

Poichè (a_{n_k}) è monotona e limitata (superiormente da B e inferiormente da A) <u>Per il teorema sulle successioni monotone</u> allora esiste il $\lim_{k\to\infty} A_k = l$ e per la 2. anche $\lim_{k\to\infty} B_k = l$, per la 4. e il teorema del confronto, <u>Teorema dei carabinieri</u> si ha $\lim_{k\to+\infty} a_{n_k} = l$.