### **GPUKV**: Towards a GPU-Driven Computing on Key-Value SSD

Min-Gyo Jung†, Chang-Gyu Lee†, Donggyu Park†, Sungyong Park†, Youngjae Kim† Jungki Noh‡, Woosuk Chung‡, Kyoung Park‡

†Sogang University, Seoul, Republic of Korea, ‡SK hynix







### Why is Key-Value Store + GPU important?



#### **GPU**

Massive Parallelism

Boost data-intensive applications



### **Key-Value Store**

Good to store unstructured data

Widely used for storing big data

More **powerful performance** and **usability** for data-intensive applications e.g. Map-Reduce, Graph Processing, Data Analysis ...



















































### What does GPUKV suppose to do?

#### GPU-driven computing model

GPU issues IO bypassing host architectures

#### Reduce data movement using PCIe P2P

- Data storage ↔ Accelerator (GPU)
- Save wasting memory bus bandwidth

#### Simple control path

 Implementing Key-Value store at SSD, reduce complex control paths



## Data Transfer Latency Breakdown





## Data Transfer Latency Breakdown



In ideal case, GPUKV only needs data transfer latency



### Data Transfer Latency Breakdown



**GPU-driven Computing is necessary!** 



### **GPUKV**'s Data Transfer Flow



No Redundant data copy

**Simple and short Control Path** 

Data request from GPU itself



### Streaming workload (W<sub>streaming</sub>)

- Predictable data access pattern
- The next dataset needed by GPU kernel can be prefetched

### **-** Dynamic workload ( $W_{dynamic}$ )

- Unpredictable data access pattern
- The next dataset GPU kernel needs cannot be prefetched
- Only can be loaded when current GPU kernel finishes.









Conventional way: Need powerful host resources







Our approach – GPUKV:

Always shows best performance with only 1 I/O thread Barely requires host resource



### **GPUKV**: Towards a GPU-Driven Computing on Key-Value SSD

Min-Gyo Jung†, Chang-Gyu Lee†, Donggyu Park†, Sungyong Park†, Youngjae Kim† Jungki Noh‡, Woosuk Chung‡, Kyoung Park‡

†Sogang University, Seoul, Republic of Korea, ‡SK hynix

jmg7173@u.sogang.ac.kr





