

BACHARELADO EM ENGENHARIA DA COMPUTAÇÃO

TÍTULO

Belo Jardim, Pernambuco DATA

MINISTÉRIO DA EDUCAÇÃO – (MEC SECRETARIA DE ENSINO MÉDIO E TECNOLÓGICO – (SETEC) INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE PERNAMBUCO - Campus Belo Jardim PRÓ-REITORIA DE ENSINO

TÍTULO

Autore(s): AUTOR

Orientador: ORIENTADOR

Trabalho de conclusão de Curso (TCC) apresentado como requisito parcial para obtenção do grau de Bacharel em Engenharia de Software.

Banca de Qualificação:

NOME IFPE NOME INSTITUIÇÃO

Belo Jardim, Pernambuco, DATA.

Agradecimentos

Em construção! São muitas pessoas.

Resumo

 $\acute{\rm E}$ apresentada

Keywords: CHAVE 01, CHAVE 02, CHAVE N.

Abstract

ABSTRACT

Keywords: KEY 01, KEY 02.

Lista de Abreviaturas

Configuração em dois níveis hierárquicos e 4 domínios constituídos por

16nós da rede de comunicação formada por $64. \,$

ASIC Application Specific Integrated Circuit BGP-4 Border Gateway Protocol Version 4

EDCA Matrizes de Blocos Lógicos Programáveis em Campo (Field

FPGA Matrizes de Biocos Lógicos F Programmable Gate Array)

GA Genetic Algorithm

WDM Wavelength-division multiplexing

Lista de Símbolos

 δ Função Delta de Kronecker δt Passo incremental de tempo

 λ Grau de inclinação da função de ativação

 $\mu_1; \mu_2; \mu_3; \mu_4; \mu_5$ Constantes da equação de energia ρ Matriz de conexão dos enlaces

Constante de tempo da equação de atualização da entrada τ

do neurônio do modelo de Hopfield

Sumário

Re	esumo	ii
Li	sta de Abreviaturas	iv
Li	sta de Símbolos	\mathbf{v}
1	Introdução 1.1 Estrutura da Dissertação	1 1
2	Redes Neurais de Hopfield 2.1 Neurônio Artificial	2 2
3	Modelos de HNN para Redes de Comunicação3.1HNN para roteamento3.1.1Execução do algoritmo3.1.2Modelo de Bastos-Filho et al3.1.3Paralelismo	5 6 6 6
4	Redes Neurais de Hopfield Hierárquicas 4.1 Pseudo Código	8 9
5	Arranjo Experimental 5.1 Implementações HNN e HHNN em Java	10 10 11 11
6	Resultados 6.1 Resultados do modelo codificado em Java	12 12 12 13
7	Conclusões e Trabalhos Futuros 7.1 Trabalhos Futuros	14 14
Bi	ibliografia	15
\mathbf{A}	Artigos Publicados	17

Lista de Figuras

Neurônio biológico. Extraído de [8]	
Resultado parcial do roteamento interdomínio entre os nós 0 e 15 (Cenário I)	8

Lista de Tabelas

5.1	Características estruturais das HHNNs correspondentes aos cenários topo-	
	lógicos das duas redes de comunicação utilizadas nos experimentos	10
5.2	Tabela contendo os parâmetros da simulação em Java	10
5.3	Constantes utilizadas na implementação de HHNN em VHDL	11
6.1	Características estruturais das HHNN referentes ao cenários topológicos	
	das duas redes neurais de comunicação utilizados nos experimentos	12
6.2	Redução da quantidade de neurônios e sinapses obtidos com a utilização	
	do modelo HHNN	12
6.3	Resultado do roteamento utilizando uma HHNN composta por 5 HNNs	
	numa rede com 16 nós e 4 domínios.	13

Introdução

Roteamento é o processo de determinação do caminho ou rota no qual o dados entre o remetente e o destinatário devem fluir. Os algoritmos que calculam esse caminho são denominados Algoritmos de Roteamento. Um algoritmo de roteamento deve selecionar uma rota em tempo real e também deve ser adaptativo, se adequando às alterações da topologia da rede de comunicação, assim como deve manter uma QoS estipulada. O processo de roteamento tem significante impacto no desempenho da rede. Alguns algoritmos usam heurísticas baseadas em métricas predefinidas, como por exemplo: menor caminho (SP - Shortest Path), Menor número de saltos (MH - Minimum Hops), Least Resistance Weight (LRW) [13], Optical Signal to Noise Ratio Routing (OSNR-R) [10], Physical Impairments Aware Adaptive Weight Function (PIAWF) [5], Power Series Routing (PSR) [9]. Dentre os algoritmos de roteamento usados em rede de comunicação que utilizam estas métricas, pode-se destacar o algoritmo de Dijkstra (Estado do Enlace) [6] e o algoritmo de Bellman-Ford (Vetor Distância) [3], [4].

1.1 Estrutura da Dissertação

O capítulo 2 é composto por uma breve introdução às Redes Neurais Artificiais e pela descrição do modelo de Redes Neurais de John Hopfield, conhecido como Redes Neurais de Hopfield (HNN). Também é feito neste capítulo um resumo sobre implementações de algoritmos inteligentes em plataformas paralelas - Matrizes de Blocos Lógicos Programáveis em Campo (FPGA, Field Programmable Gate Array) e Application Specific Integrated Circuit (ASIC).

O capítulo 3 é constituído pela descrição da abordagem de HNN desenvolvida para solucionar o problema de estabelecimento de rotas entre um par origem-destino em redes de comunicação.

Redes Neurais de Hopfield

O sistema nervoso é constituído por células nervosas, chamadas de neurônios. Como ilustrado na Figura 2.1, ...

Figura 2.1: Neurônio biológico. Extraído de [8].

2.1 Neurônio Artificial

Neurônio Artificial (NA) é um modelo do Neurônio Biológico (NB). O NA implementa um mapeamento não-linear de \mathbb{R}^N usualmente para [0,1] ou [-1,1], dependendo da função de ativação usada, onde N é o número de sinais de entrada da Rede Neural Artificial (RNA). A Figura 2.2 apresenta uma ilustração de um NA com as notações convencionais.

O sinal de entrada *net* é usualmente computado como a soma do produto dos sinais de entrada pelo respectivo peso sináptico,

$$net = \sum_{i=1}^{N} z_i v_i \tag{2.1}$$

Os tipos de funções de ativação mais utilizados são [7]:

Figura 2.2: Um Neurônio Artificial. Extraído de [7].

• Função Linear: A função linear produz uma saída linearmente modulada. λ determina a inclinação da reta;

$$f(net - \theta) = \lambda(net - \theta) \tag{2.2}$$

• Função Degrau: A função degrau produz uma saída composta por um de dois valores, dependendo de um limiar. Usualmente, um valor binário é utilizado $\gamma_1 = 1$ ou $\gamma_2 = 0$; ou um valor bipolar $\gamma_1 = 1$ ou $\gamma_2 = -1$;

$$f(net - \theta) = \begin{cases} \gamma_1 & \text{se } net \ge \theta \\ \gamma_2 & \text{se } net < \theta \end{cases}$$
 (2.3)

• Função Rampa: A função rampa é uma combinação das funções linear e degrau.

$$f(net - \theta) = \begin{cases} \gamma & \text{se } net - \theta \ge \epsilon \\ net - \theta & \text{se } -\epsilon < net - \theta < \epsilon \\ \gamma & \text{se } net - \theta \le \epsilon \end{cases}$$
 (2.4)

• Função Sigmoide Logística: A função sigmóide é uma versão contínua da função rampa. Os valores variam continuamente de 0 a 1.

$$f(net - \theta) = \frac{1}{1 + e^{-\lambda(net - \theta)}}$$
 (2.5)

• Função Tangente Hiperbólica: A função tangente hiperbólica é uma versão contínua da função rampa. Os valores variam continuamente de -1 a 1.

$$f(net - \theta) = \frac{e^{\lambda(net - \theta)} - e^{-\lambda(net - \theta)}}{e^{\lambda(net - \theta)} + e^{-\lambda(net - \theta)}}$$
(2.6)

As HNNs são formadas por neurônios de McCulloch e Pitts (MCP). Esta rede possui uma arquitetura do tipo recorrente na qual cada neurônio possui um somatório do con-

junto de entradas ponderadas net_i , uma saída V_i que é o resultado da aplicação de uma função de ativação sobre net_i . A saída V_i após um atraso de tempo, é aplicada à entrada dos outros neurônios ponderada por um peso sináptico T_{ij} somado a uma polarização externa $(bias)\ I_i$, modificando posteriormente a entrada do neurônio, e alterando assim o estado da rede neural. As saídas dos neurônios podem ser calculadas usando a Equação (2.7).

$$V_{i} = g_{i}(net_{i}) = \frac{1}{1 + e^{-\lambda_{i}net_{i}}}.$$
em que $net_{i}(t+1) = \sum_{\substack{j=1\\j \neq i}}^{n} T_{ij}V_{j}(t) + I_{i}(t).$

$$(2.7)$$

Modelos de HNN para Redes de Comunicação

Neste capítulo são descritos os principais modelos de redes neurais de Hopfield utilizados em redes de comunicação...

3.1 HNN para roteamento

A utilização de HNN para solucionar o problema do menor caminho a partir de um determinado par origem-destino foi iniciado por Rauch e Winarske [12].

A função de energia da HNN de roteamento é descrita como:

$$E = \frac{\mu_1}{2} \sum_{\substack{x=1\\(x,i)\neq(d,s)}}^{N} \sum_{\substack{i=1\\i\neq x}}^{N} C_{xi} V_{xi} + \frac{\mu_2}{2} \sum_{\substack{x=1\\(x,i)\neq(d,s)}}^{N} \sum_{\substack{i=1\\i\neq x}}^{N} \rho_{xi} V_{xi}$$

$$+ \frac{\mu_3}{2} \sum_{x=1}^{N} \left\{ \sum_{\substack{i=1\\i\neq x}}^{N} V_{xi} - \sum_{\substack{i=1\\i\neq x}}^{N} V_{ix} \right\}^2$$

$$+ \frac{\mu_2}{2} \sum_{x=1}^{N} \sum_{\substack{i=1\\i\neq x}}^{N} V_{xi} (1 - V_{xi}) + \frac{\mu_5}{2} (1 - V_{ds}),$$

$$(3.1)$$

onde C_{xi} é a matriz de custo, ρ_{xi} é a matriz topológica e μ_1 , μ_2 , μ_3 , μ_4 e μ_5 são constantes. μ_1 minimiza o custo total de um caminho considerando o custo dos enlaces existentes. μ_2 previne a inclusão de enlaces não existentes no caminho escolhido. μ_3 é zero para cada nó contido em um caminho válido. μ_4 força a HNN convergir para um estado estável. Por fim, μ_5 é introduzido para assegurar que os nós origem e destino estejam contidos na solução.

3.1.1 Execução do algoritmo

O pseudocódigo do algoritmo de Ali e Kamoun [1] e abordagens similares é apresentado no Algoritmo 1.

Algoritmo 1: Pseudocódigo do algoritmo Hopfield Neural Networks.

```
início

Recebe parâmetros (A,B,C,\mu_1, \mu_2, \mu_3, \mu_4e\mu_5);
Recebe C_{xi};
Recebe p_{xi};
Recebe origem e destino;
Insere ruído em U_{xi};
repita

Atualiza os neurônios (U_{xi} e V_{xi});
até \Delta V_{xi} < limiar;
Calcula V_{xi} (binarização de V_{xi});
Retorna o caminho.
```

3.1.2 Modelo de Bastos-Filho et al.

Bastos-Filho et al. [2] propuseram uma simples equação de diferença finita e discreta em substituição à equação diferencial proposta por Ali e Kamoun [1], como descrito a seguir:

$$U_{xi}[k+1] = U_{xi}[k] + AU_{xi}[k-1] + BU_{xi}[k-2] + C\left(\sum_{y=1}^{N} \sum_{\substack{j=1\\j\neq y}}^{N} T_{xi,yj}V_{yj}[k] + CI_{xi}[k]\right)$$
(3.2)

3.1.3 Paralelismo

Os níveis paralelismo variam desde paralelizar os cálculos dos bits até paralelizar a execução de diferentes treinamentos ao mesmo tempo [11]. Os tipos de paralelismo são:

- Paralelismo dos Neurônios: Uma vez que as entradas são inseridas nos neurônios, o processamento de cada um pode ser feito em paralelo.
- Paralelismo na Saída: O produto presente no somatório da saída de um neurônio pode ser feito em paralelo e a soma deles pode ser feita com alto grau de paralelismo;
- Paralelismo de Camada: Em redes multicamadas, diferentes camadas podem ser processadas em paralelo;
- Paralelismo entre Redes Neurais: Num sistema constituído por mais de uma rede neural, essas redes neurais podem ser processadas em paralelo;

• Paralelismo no Treinamento: Várias sessões de treinamento numa rede neural podem ser executada paralelamente.

Vale salientar que alguns dos tipos de paralelismo não são passíveis de serem implementados em determinados modelos de FPGA. Em alguns casos, quando dois ou mais tipos de paralelismo são utilizados em conjunto, pode levar ao esgotamento dos recursos do dispositivo.

Redes Neurais de Hopfield Hierárquicas

A Figura 4.1 ilustra o cenário I de roteamento interdomínio...

(a) Resultado do cálculo da rota (b) Resultado do cálculo da rota interdomínio mostrado na interdomínio. camada inferior da rede de comunicação.

Figura 4.1: Resultado parcial do roteamento interdomínio entre os nós 0 e 15 (Cenário I).

4.1 PSEUDO CÓDIGO 9

4.1 Pseudo Código

O pseudocódigo do modelo ...

Algoritmo 2: Pseudocódigo do algoritmo de roteamento utilizando Redes Neurais de Hopfield Hierárquicas.

```
início
   obterMelhorRota(parOrigemDestino)
       se os nós origem e destino estiveren no mesmo nível hierárquico então
           calcularRota(parOrigemDestino);
       fim
   calcularRota(par)
       parAtual =
        obterParentesQueEstejamNoMesmoDominio(parOrigemDestino);
       hnn = obterHNN(obterDominio(parAtual));
       hnn.calcularRotaHNN(parAtual);
       se se o nivel do par for maior do que nível do parAtual então
          pares = gerarNovosPares(par, parAtual, hnn.listaNeuroniosAtivos);
           para todo pares faça
              calcularRota(par);
           _{\text{fim}}
       fim
   calcularRotaHNN(parOrigemDestino)
       Recebe parâmetros (A,B,C,\mu_1, \mu_2, \mu_3, \mu_4e\mu_5);
       Recebe C_{xi};
       Recebe p_{xi};
       Recebe origem e destino;
       Insere ruído em U_{xi};
       repita
           Atualiza os neurônios (U_{xi} e V_{xi});
       até \Delta V_{xi} < limiar;
       Calcula V_{xi} (binarização de V_{xi});
   Retorna o caminho.
_{\rm fim}
```

Arranjo Experimental

Este capítulo tem o objetivo de descrever como a HHNN foi validada... A Tabela 5.1 contém as características estruturais das HNNs correspondentes ao cenários topológicos das duas redes de comunicação utilizados nos experimentos.

	Topologias									
Qtd. Nós	Qtd. Níveis	Configuração	Qtd Domínios	Qtd. HNNs	Qtd. Neurônios Qtd. Conexões					
16	1	1x16	4	1	$16 \times 15 = 240$	$240 \times 240 = 57600$				
16	16 2 4x4 4		5	$5 \times (4 \times 3) = 60$	$5 \times (12 \times 12) = 720$					
64	1	1x64	1	1	$64 \times 63 = 4032$	$4032 \times 4032 = 16257024$				
64	2	4x16	4	5	$(4 \times 3) + 4 \times (16 \times 15) = 972$	$12 \times 12 + 4 \times (240 \times 240) = 230544$				
64	2	8x8	8	9	$9 \times (8 \times 7) = 504$	$9 \times (56 \times 56) = 28224$				
64	3	4x4x4 16 21		21	$21 \times (4 \times 3) = 252$	$21 \times (12 \times 12) = 3024$				

Tabela 5.1: Características estruturais das HHNNs correspondentes aos cenários topológicos das duas redes de comunicação utilizadas nos experimentos.

5.1 Implementações HNN e HHNN em Java

Como prova de conceito da ...

Parâmetro	Valor
μ_1	950
μ_2	2500
μ_3	2500
μ_4	475
μ_5	2500
A	10^{-3}
B	10^{-3}
C	10^{-3}
δV_{th}	10^{-5}
λ	1

Tabela 5.2: Tabela contendo os parâmetros da simulação em Java.

5.2 Implementações HNN e HHNN em FPGA

Com o objetivo de validar e avaliar a eficiência das ...

5.2.1 Decisões Arquiteturais do Modelo

Paralelismo

Além do paralelismo ...

Matriz de Sinapses

Para realizar o cálculo da matriz de sinapses $T_{xi,yj}, \dots$

Os tipos de sinais definidos no modelo e as constantes utilizadas são mostrados nas Tabelas $5.3 \dots$

Nome	Tipo	Objetivo				
yLBits	INTEGER	Define a quantidade de bits da parte decimal utilizada na saída dos neurônio				
LBits	INTEGER	Define a quantidade de bits da parte decimal da função de energia.				
RBits	INTEGER	Define a quantidade de bits da parte fracionária de diversos sinais e tipos.				
nodes	INTEGER	Define a quantidade de nós nas HNNs .				
neurons	INTEGER	Define a quantidadede neurônios em cada HNN.				
total_nodes	INTEGER	Define a quantidade total de nós na topologia de rede.				
nodes_level_1	INTEGER	Define a quantidade total de nós na camada 1 da topologia de rede.				
nodes_level_2	INTEGER	Define a quantidade total de nós na camada 2 da topologia de rede.				
nodes_level_3	INTEGER	Define a quantidade total de nós na camada 3 da topologia de rede.				
levels INTEGER		Define a quantidade de níveis hierárquicos.				
qtd_interfaces	INTEGER	Define a quantidade de Interfaces no somador.				
qtd_hnns	INTEGER	Define a quantidade de HHNs.				
+l ll 0	tl ll 9	Define o mapeamento entre os nós dos neurônios de diferentes níveis				
topology_map_level_2	topology_map_level_2_array	(Neste caso, níveis 1 e 2).				
topology man level 3	topology map level 2 array	Define o mapeamento entre os nós dos neurônios de diferentes níveis				
topology_map_lever_3	topology_map_level_2_array	(Neste caso, níveis 2 e 3).				

Tabela 5.3: Constantes utilizadas na implementação de HHNN em VHDL.

Resultados

Após a conclusão das implementações dos modelos codificados em Java e VHDL das Redes Neurais de Hopfield Hierárquicas para roteamento de redes de comunicação, ...

6.1 Resultados do modelo codificado em Java

...

6.1.1 Análise estrutural

A Tabela 6.1 contém as ...

Topologias								
Configuração	Qtd. HNNs	Qtd. Neurônios	Qtd. Conexões					
1x16	1	240	57600					
4x4	5	60	720					
1x64	1	4032	16257024					
4x16	5	972	230544					
8x8	9	504	28224					
4x4x4	21	252	3024					

Tabela 6.1: Características estruturais das HHNN referentes ao cenários topológicos das duas redes neurais de comunicação utilizados nos experimentos.

Configuração	Redução Estrutural					
Comiguração	Neurônios	Conexões				
4x4	75,00 %	98,75 %				
4x16	75,89 %	98,58 %				
8x8	87,50 %	99,83 %				
4x4x4	93,75 %	99,98 %				

Tabela 6.2: Redução da quantidade de neurônios e sinapses obtidos com a utilização do modelo HHNN.

6.1.2 Análise da convergência

Após terem sido analisadas as

Pair	HN	N 00	HNI	N 01	HN	N 02	HN	N 03	HN	IN 04	Т	otal
l an	Tempo (μs)	Iterações										
00-01	00.00	00.00	3790,58	60,00	00.00	00.00	00.00	00.00	00.00	00.00	4076,18	60,00
00-01	(00.00)	(00.00)	(2543,21)	(0,00)	(00.00)	(00.00)	(00.00)	(00.00)	(00.00)	(00.00)	(1,74)	(0,00)
00-02	00.00	00.00	787,89	66,00	00.00	00.00	00.00	00.00	00.00	00.00	935,28	66,00
00-02	(00.00)	(00.00)	(378,75)	(0,00)	(00.00)	(00.00)	(00.00)	(00.00)	(00.00)	(00.00)	(0,62)	(0,00)
00-03	00.00	00.00	577,63	77,00	00.00	00.00	00.00	00.00	00.00	00.00	761,06	77,00
00-03	(00.00)	(00.00)	(95,48)	(0,00)	(00.00)	(00.00)	(00.00)	(00.00)	(00.00)	(00.00)	(0,37)	(0,00)
00-04	466,38	60,00	464,52	60,00	470,43	61,70	00.00	00.00	00.00	00.00	1724,46	181,70
00-04	(87,69)	(0,27)	(62,15)	(0,00)	(90,76)	(2,13)	(00.00)	(00.00)	(00.00)	(00.00)	(0,47)	(2,13)
00-05	411,75	60,00	411,75	60,00	415,47	60,00	00.00	00.00	00.00	00.00	1576,67	180,00
00-05	(46,88)	(0,00)	(50,76)	(0,00)	(57,25)	(0,00)	(00.00)	(00.00)	(00.00)	(00.00)	(0,37)	(0,00)
00-06	378,58	60,00	374,12	60,00	410,20	66,00	00.00	00.00	00.00	00.00	1518,87	186,00
00-00	(42,98)	(0,00)	(38,11)	(0,00)	(49,21)	(0,00)	(00.00)	(00.00)	(00.00)	(00.00)	(0,43)	(0,00)
00-07	379,25	60,00	373,58	60,00	452,68	77,00	00.00	00.00	00.00	00.00	1577,06	197,00
00-07	(59,99)	(0,00)	(34,74)	(0,00)	(51,03)	(0,00)	(00.00)	(00.00)	(00.00)	(00.00)	(0,45)	(0,00)
00-08	398,56	66,00	373,49	60,00	397,91	66,00	374,85	60,00	00.00	00.00	2014,35	252,00
00-08	(30,11)	(0,00)	(39,02)	(0,00)	(39,11)	(0,00)	(57,75)	(0,00)	(00.00)	(00.00)	(0,46)	(0,00)
00-09	403,57	66,00	367,85	60,00	410,20	66,00	380,28	62,17	00.00	00.00	1951,00	254,17
00-09	(53,29)	(0,05)	(36,19)	(0,22)	(48,00)	(0,09)	(38,12)	(1,51)	(00.00)	(00.00)	(0,45)	(1,51)
00-10	531,70	66,00	376,39	60,00	399,40	66,00	393,15	66,00	00.00	00.00	2104,78	258,00
00-10	(754,27)	(0,00)	(34,22)	(0,00)	(47,99)	(0,00)	(29,18)	(0,00)	(00.00)	(00.00)	(0.87)	(0,00)
00-11	410,66	66,00	394,78	60,00	421,01	66,00	461,62	76,00	00.00	00.00	2168,22	268,00
00-11	(63,45)	(0,00)	(90,78)	(0,00)	(83,35)	(0,00)	(62,06)	(0,00)	(00.00)	(00.00)	(0,59)	(0,00)
00-12	433,70	77,00	303,30	60,00	325,98	66,00	373,00	76,00	308,86	61,93	2187,04	340,93
00-12	(243,78)	(0,04)	(63,65)	(0,09)	(38,09)	(0,05)	(47,17)	(0,23)	(50,48)	(1,57)	(0,72)	(1,57)
00-13	353,38	77,00	276,90	60,00	301,10	66,00	346,12	76,00	273,00	60,00	1933,01	339,00
00-13	(53,39)	(0,00)	(36,06)	(0,00)	(29,69)	(0,00)	(42,26)	(0,00)	(32,30)	(0,00)	(0,44)	(0,00)
00-14	361,28	77,00	280,79	60,00	314,27	66,00	356,05	76,00	299,43	66,00	2010,97	345,00
00-14	(18,38)	(0,00)	(24,40)	(0,00)	(39,54)	(0,00)	(62,61)	(0,00)	(3,22)	(0,00)	(0,42)	(0,00)
00-15	401,36	77,00	287,75	60,00	310,18	66,00	355,97	76,00	373,94	77,00	2183,63	356,00
00-19	(173,95)	(0,00)	(60,73)	(0,00)	(44,03)	(0,00)	(42,62)	(0,00)	(85,69)	(0,00)	(0,61)	(0,00)

Tabela 6.3: Resultado do roteamento utilizando uma HHNN composta por 5 HNNs numa rede com 16 nós e 4 domínios.

Conclusões e Trabalhos Futuros

Nesta dissertação foram descritas ...

7.1 Trabalhos Futuros

Para o algoritmo de roteamento baseado em HNN proposto, como melhorias pode-se citar:

Bibliografia

- [1] M. K. M. Ali e F. Kamoun. "Neural networks for shortest path computation and routing in computer networks". Em: Neural Networks, IEEE Transactions on 4.6 (nov. de 1993), pp. 941–954. ISSN: 1045-9227. DOI: 10.1109/72.286889.
- [2] C. J. A. Bastos-Filho, R. A. Santana e A. L. I. Oliveira. "A Novel Approach for a Routing Algorithm Based on a Discrete Time Hopfield Neural Network". Em: Foundations of Computational Intelligence, 2007. FOCI 2007. IEEE Symposium on. Abr. de 2007, pp. 363–369. DOI: 10.1109/FOCI.2007.371497.
- [3] R. Bellman. "On a Routing Problem". Em: Quarterly of Applied Mathematics 16.1 (1958), pp. 87–90. URL: http://wisl.ece.cornell.edu/ECE794/Jan29/bellman1958.pdf.
- [4] E. Bonabeau et al. "Routing in Telecommunications Networks With "smart"Ant-Like Agents". Em: In Proceedings of IATA'98, Second Int. Workshop on Intelligent Agents for Telecommunication Applications. Lectures Notes in AI. Springer Verlag, 1998.
- [5] D. A. R. Chaves et al. "Novel physical impairments aware adaptive weight function for routing in all optical networks". Em: Microwave and Optoelectronics Conference, 2007. IMOC 2007. SBMO/IEEE MTT-S International. 2007, pp. 194–198. DOI: 10.1109/IMOC.2007.4404244.
- [6] E. Dijkstra. "A Note on Two Problems in Connection with Graphs". Em: *Numerische Mathematik* 1 (1959), pp. 269–271.
- [7] A. P. Engelbrecht. *Computational Intelligence: An Introduction*. 2nd. Wiley Publishing, 2007. ISBN: 0470035617.
- [8] Portal São Francisco. Sistema Nervoso, Estrutura, Características, Função Sistema Nervoso. Disponível em: http://www.portalsaofrancisco.com.br/alfa/corpohumano-sistema-nervoso/sistema-nervoso-1.php. Acesso em 28/10/2014.
- [9] J. F. Martins-Filho et al. "Intelligent and fast IRWA algorithm based on power series and Particle Swarm Optimization". Em: Transparent Optical Networks, 2008. ICTON 2008. 10th Anniversary International Conference on. Vol. 3. Jun. de 2008, pp. 158–161. DOI: 10.1109/ICTON.2008.4598679.

BIBLIOGRAFIA 16

[10] J. F. Martins-Filho et al. "Novel routing algorithm for transparent optical networks based on noise figure and amplifier saturation". Em: *Microwave and Optoelectronics Conference*, 2003. IMOC 2003. Proceedings of the 2003 SBMO/IEEE MTT-S International. Vol. 2. 2003, 919–923 vol.2.

- [11] A. R. OMONDI e J. C. RAJAPAKSE. FPGA Implementations of Neural Networks. 2nd. Springer, 2006. ISBN: 0387284850.
- [12] H. E. Rauch e T. Winarske. "Neural networks for routing communication traffic".
 Em: Control Systems Magazine, IEEE 8.2 (abr. de 1988), pp. 26–31. ISSN: 0272-1708. DOI: 10.1109/37.1870.
- [13] Bo Wen, R. Shenai e K. Sivalingam. "Routing, wavelength and time-slot-assignment algorithms for wavelength-routed optical WDM/TDM networks". Em: *Lightwave Technology, Journal of* 23.9 (set. de 2005), pp. 2598–2609. ISSN: 0733-8724. DOI: 10.1109/JLT.2005.854039.

Apêndice A

Artigos Publicados

• H. O. da Silva e C. J. A. Bastos-Filho. Inter-Domain Routing for Communication Networks Using Hierarchical Hopfield Neural Networks. LA-CCI - 2014: *The Latin American Congress on Computational Intelligence*, San Carlos de Bariloche, Argentina, Jun. 2014.