

UNIVERSIDAD DE LAS FUERZAS ARMADAS

SISTEMAS OPERATIVOS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Evolución de los Sistemas Operativos

Estudiantes:

Josué Merino, Adrián Ramos, Paúl Sánchez

Docente:

Ing. Washington Loza

Génesis y crecimiento inicial de los sistemas informáticos (décadas de 1950 - 1970)

1. Contexto histórico y sistemas pioneros

Los sistemas operativos surgieron en la década de 1950 como una solución para supervisar procesos en computadoras centrales. General Motors diseñó el sistema de E/S inaugural, conocido como GM-NAA I/O, para la computadora IBM 704 en 1956. Este sistema permitía operaciones por lotes, en las que se ejecutaban múltiples tareas de manera sucesiva sin requerir la intervención del usuario (Denning & Dennis, 1978). El Sistema de Tiempo Compartido Compatible (CTSS), creado en el MIT a principios de la década de 1960, fue pionero en la idea del tiempo compartido de computadora para permitir que muchas personas lo usaran a la vez (Corbato et al., 1962).

Figura 1: Pioneros

La evolución del sistema Multics en los Laboratorios Bell en la década de 1960 significó un hito importante en la progresión del sistema operativo. Multics reveló controles de acceso y administración de memoria estructurada, conceptos pioneros que dieron forma a sistemas posteriores como Unix y Linux (Corbato y Vyssotsky, 1965). IBM System/360, lanzado en 1964, fue otra plataforma fundamental que estableció un punto

de referencia para el software estandarizado en entornos empresariales. Este método permitió a las empresas realizar la transición entre varias máquinas sin alterar sus programas, lo que dio lugar a una utilización generalizada en entornos comerciales (Pugh, 1991).

2. Aspectos Técnicos y Avances Importantes

Los primeros sistemas se centraron.

- Procesamiento por lotes: Los sistemas, como GM-NAA I/O, manejaban las operaciones en orden (Denning y Dennis, 1978). Este enfoque redujo la participación de los usuarios pero aumentó la utilización de activos computacionales.
- Multiprogramación y tiempo compartido: sistemas como CTSS y Multics permitieron la utilización simultánea por varios usuarios, optimizando la productividad y la duración de la CPU (Corbato et al., 1962).
- Gestión de la memoria primaria: la supervisión fundamental de la memoria administra fundamentalmente la historia, estableciendo un comando rudimentario para permitir la ejecución secuenciada.

3. Material visual

Creación de una línea de tiempo que abarque los desarrollos clave en el procesamiento por lotes, texto y sus correspondientes innovaciones, incluida una representación gráfica que capture.

Persona 2: Expansión y popularización (décadas de 1980 - 1999)

1. Contexto Histórico y Desarrollo de Sistemas Clave

La década de 1980 fue testigo de una proliferación sin precedentes de sistemas operativos, atribuible a la expansión de la industria de la informática personal. Uno de los sistemas operativos más importantes de esta época fue MS-DOS, lanzado en 1981 y utilizado en las primeras PC de IBM. Aunque MS-DOS no incorporaba una interfaz gráfica de usuario, su simplicidad de uso y compatibilidad lo convirtieron en una norma de la industria (Gates, 1996). Fue creado para ser fácil y amigable para el usuario (Isaacson, 2011).

Microsoft Windows debutó en 1985 como una extensión gráfica de MS-DOS y su éxito llevó a versiones posteriores como Windows 95, que integraba MS-DOS y proporcionaba

una interfaz de usuario mejorada con la barra de tareas y el explorador de archivos (Reed, 2008). En entornos corporativos y académicos, Unix ganó renombre como un marco resistente para la creación de redes y la multitarea. Se trata de un sistema abierto que captó el interés de creadores y empresas (Moody, 2001).

2. Aspectos Técnicos y Avances Importantes

Esta época estuvo marcada por.

- Interfaz gráfica de usuario (GUI): Apple y Microsoft presentaron la GUI en Mac OS y Windows, simplificando la interacción con la computadora para el profano (Isaacson, 2011).
- Multitarea y redes: Unix y las iteraciones iniciales de Windows mejoraron las funciones de multitarea, permitiendo a los usuarios operar varias aplicaciones simultáneamente. Unix también facilitó la creación de redes de computadoras (Reed, 2008).

3. Material visual

Interfaz de usuario: - DOS: -

Persona 3: Sistemas operativos actuales y tendencias contemporáneas (2000 – Presente)

1. Contexto histórico y evolución reciente

A partir del año 2000, Linux se convirtió en un sistema de código abierto ampliamente utilizado en todo el mundo en infraestructuras y aparatos portátiles. Su generalización proviene de la comunidad cooperativa que permite su modificación y mejora continua (Torvalds, 2016). Los sistemas Android e iOS surgieron a finales de la década de 2000 para satisfacer las necesidades de los dispositivos móviles. Android e iOS, fundados sobre la plataforma Linux y diseñados por Apple respectivamente, transformaron el sector con sus mercados de aplicaciones y simplificaron las interacciones de los usuarios (Buni & Hughes, 2014).

Tienen sólidas funciones de seguridad para proteger su computadora (Reed, 2008). Frase: Los grandes avances en Internet han hecho que sistemas informáticos como Windows y Linux utilicen mejor los recursos en diferentes lugares (Anderson, 2015).

2. Aspectos Técnicos y Avances Importantes

Los sistemas operativos modernos se caracterizan por.

- Sistemas en la nube y virtualización: instrumentos como VMware y Docker permiten que numerosos sistemas funcionen en un único dispositivo físico, mejorando la asignación de recursos (Anderson, 2015).
- Seguridad mejorada: los marcos actuales han instalado ciberdefensas sofisticadas, que abarcan la ofuscación del disco y la validación multifactor, lo que aumenta la protección de la información (Buni & Hughes, 2014).
- Sistemas para IoT: los dispositivos IoT necesitan plataformas operativas optimizadas, como FreeRTOS, diseñadas para conservar recursos sin renunciar a la funcionalidad (Dunkels et al., 2004).

3. Material visual

Además, brinde una breve descripción general de lo que vendrá a continuación con más espacio virtual, servicios en la nube y tecnología de inteligencia artificial inteligente.

Referencias

- Anderson, C. (2015). Diseño de la nube: planos para modelos de servicios de computación en la nube (SaaS, PaaS e IaaS) Wiley.
- Buni, C. y Hughes, S. (2014). Explorando la protección de iOS: la narrativa oculta de los libros de tecnología de seguridad de iOS.
- Corbato, F., et al. (1962). .^{El} sistema de tiempo compartido compatible (CTSS)". Actas de la Spring Joint Computer Conference.ACM.
- Corbato, F. y Vyssotsky, V. (1965). Întroducción y descripción general del sistema Multics". Actas de la conferencia conjunta de computación de otoño. ACM.
- Denning, P. v Dennis, J. (1978). Teoría de sistemas operativos. Prentice Hall.
- Dunkels, A., y col. (2004). Contiki: un marco operativo liviano y maleable para detectores diminutos en red. Actas del primer taller IEEE sobre sensores integrados en red.
- Gates, B. (1996). El camino por delante. Viking Press.
- Isaacson, W. (2011). Steve Jobs. Simon & Schuster.

- Moody, G. (2001). Código rebelde: Linux y la revolución del código abierto. Penguin Books.
- Pugh, E. (1991). Construyendo IBM: dando forma a una industria y su tecnología.
 MIT Press.
- Reed, D. (2008). Windows Internals: Windows Server 2008 y Windows Vista. Microsoft Press.
- Torvalds, L. (2016). Sólo por diversión: la historia de un revolucionario accidental.
 Harper Perennial.