

Project Report

Batch details	PGPDSE-FT Online Jul22
Team members	Chaturima M Aishwarya Mishra Mohit Changlani Sejal Baweja
Proposed project title	SLR, SLC and USL Mini Project
Group Number	Group 11

Date: 14-05-2023

Table of Contents

Sr. No.	Торіс	Page No.
1	Overview	3
2	Exploratory Data Analysis	4
3	Part A	22
4	Part B	27
5	References	29

Project Details

OVERVIEW:

Zomato is an Indian multinational restaurant aggregator and food delivery company founded by Deepinder Goyal and Pankaj Chaddah in 2008. Zomato provides information, menus, and user reviews of restaurants as well as food delivery options from partner restaurants in select cities.

Attributes:

- 1. URL Website of the Zomato for each restaurant. Object datatype
- 2. Address Address of the Restaurant. Object datatype
- 3. Name Name of the restaurant. Object datatype
- 4. Online Order The customer ordered the menu online or not. Object datatype
- 5. Book table The customer has booked the table or not. Object datatype
- 6. Rate Rating of the restaurant that was given by the customer. Numerical datatype
- 7. Votes The votes have been given by the customer to the restaurant. Numerical Datatype
- 8. Phone Contact number of the Restaurant. Object datatype
- 9. Location The city name where the restaurant is located. Object datatype
- 10. Rest Type The type of restaurant. Object datatype
- 11. Dish liked Dishes liked by the customer from the restaurant. Object datatype
- 12. Cuisines The cuisines that have been prepared by the restaurant. Object datatype
- 13. Approx Cost for two people The approximate cost of the customer for 2 people. -

Number datatype

14. Reviews list - The reviews made by the customers in the restaurant. - Object

Datatype

15. Menu Item - The menu items that are usually available at the restaurant. - Object Datatype

- 16. Listed in (type) Contains the type of the meal. Object datatype
- 17. Listed in (city) This contains the neighborhood in which the restaurant is listed. -

Object datatype

Importing Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from warnings import filterwarnings
filterwarnings('ignore')
from scipy import stats
import statistics
import statsmodels.api as sm
from scipy import stats
import statistics
from scipy.stats import shapiro
from statsmodels.stats import weightstats as stests
import statsmodels.api as sm
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova lm
from scipy.stats import chi2 contingency
from scipy.stats import chi2
from scipy.stats import chisquare
import statsmodels.stats.multicomp as mc
from sklearn import datasets, linear_model, metrics
from sklearn.model selection import train test split
from statsmodels.api import add constant
from sklearn.metrics import mean squared error
from sklearn.metrics import mean absolute error
from sklearn.metrics import r2_score
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import RandomizedSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsRegressor
print('imported all libraries')
```

imported all libraries

Data

https://www.zomato.com/bangalore/spice-elephan 2nd Floor, 80 Feet Road, Near Big Bazaar, 6th 2nttps://www.zomato.com/SanchurroBangalore? cont 2nd Floor, 80 Feet Road, Near Big Bazaar, 6th Spice Elephant Churro Cafe Coffe Coffe Cont 3 https://www.zomato.com/bangalore/addhuri-udupi 4 https://www.zomato.com/bangalore/grand-willage 10, 3rd Floor, Lakshmi Associates Village No		url	address	name	online_order	book_table	rate	votes	phone	location
https://www.zomato.com/bangalore/spice-elephan https://www.zomato.com/SanchurroBangalore? cont https://www.zomato.com/SanchurroBangalore? cont https://www.zomato.com/sanchurroBangalore? cont https://www.zomato.com/bangalore/addhuri-udupi https://www.zomato.com/bangalore/addhuri-udupi https://www.zomato.com/bangalore/addhuri-udupi https://www.zomato.com/bangalore/grand-willage https:	(Road, 2nd Stage, Banashankari,	Jalsa	Yes	Yes	4.1/5	775	42297555\r\n+91	Banashankari
https://www.zomato.com/SanchurroBangalore? cont KIMS Medical College, 17th Cross **Total Floor, Annakuteera, 3rd Stage, Banashankar **Total Floor, Banashankar **Total Floo			Feet Road, Near Big		Yes	No	4.1/5	787	080 41714161	Banashankari
https://www.zomato.com/bangalore/addhuri- udupi Annakuteera, 3rd Stage, Banashankar Https://www.zomato.com/bangalore/grand- https://www.zomato.com/bangalore/grand- willage Addurr Udupi No No 3.7/5 88 +91 9620009302 Banashankar Hopsing No N	:		KIMS Medical College, 17th	Churro	Yes	No	3.8/5	918	+91 9663487993	Banashankari
https://www.zomato.com/bangalore/grand- https://www.zomato.com/bangalore/grand- willage Associates Village No No 3.8/5 166 8026612447\r\n+91 Basavanag	;		Annakuteera, 3rd Stage,	Udupi	No	No	3.7/5	88	+91 9620009302	Banashankari
Gandhi Baza	4		Lakshmi Associates,		No	No	3.8/5	166		Basavanagudi

- # checking shape of data
 df_zomato.shape
- (51717, 17)
- [] # checking datatypes of data df_zomato.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51717 entries, 0 to 51716
Data columns (total 17 columns):

Data	COLUMNIS (COCAL 17 COLUMNIS).						
#	Column	Non-Null Count	Dtype				
0	url	51717 non-null	object				
1	address	51717 non-null	object				
2	name	51717 non-null	object				
3	online_order	51717 non-null	object				
4	book_table	51717 non-null	object				
5	rate	43942 non-null	object				
6	votes	51717 non-null	int64				
7	phone	50509 non-null	object				
8	location	51696 non-null	object				
9	rest_type	51490 non-null	object				
10	dish_liked	23639 non-null	object				
11	cuisines	51672 non-null	object				
12	approx_cost(for two people)	51371 non-null	object				
13	reviews_list	51717 non-null	object				
14	menu_item	51717 non-null	object				
15	listed_in(type)	51717 non-null	object				
16	listed_in(city)	51717 non-null	object				
dtyp	dtypes: int64(1), object(16)						
memo	memory usage: 6.7+ MB						

Cleaning the data

a. Removing unwanted columns

```
# dropping unwanted columns

df.drop(['name','url', 'address', 'phone','dish_liked','reviews_list','menu_item'], axis=1, inplace=True)
```

b. Checking for duplicate entries & treating them

```
# checking for duplicate entries
df.duplicated().sum()

372

[ ] #calculating ratio of duplicated values to entire dataset
df.duplicated().sum()/df.shape[0]
0.007192992632983352

[ ] # dropping duplicate rows
df = df.drop_duplicates()
# checking shape of data after dropping duplicates
df.shape
(51345, 10)
```

c. Renaming column names for better understanding

d. Checking for missing values

```
# checking for missing values
   df.isnull().sum()
online_order
   book_table
                     0
                  7520
   rate
   votes
   location
                   19
   rest_type
                  225
   cuisines
                   341
   cost
   service
                    0
   city
   dtype: int64
```


e. Treating missing values

```
[ ] # # getting index of all rows having missing value in 'location' column
                                                                          [ ] # converting datatype of 'rate' column to string
    indexLocation = df[df.location.isnull()].index
                                                                                df['rate'] = df['rate'].astype(str)
[ ] # # dropping rows with missing value in 'location' column
                                                                           [ ] #dropping rows having 'rate' as '-' or 'NEW'
    df = df.drop(indexLocation)
                                                                                df = df[~((df['rate'] == '-') | (df['rate'] == 'NEW'))]
[ ] # # checking for missing values in 'location' column
                                                                                (49086, 10)
   df['location'].isnull().sum()
    0
                                                                          [ ] df['rate'] = df['rate'].apply(lambda x: x.replace('/5',''))
[ ] df.shape
                                                                           [ ] # converting datatype of 'rate' column to float
                                                                                df['rate'] = df['rate'].astype(float)
    (51326, 10)
 df['rate'].isnull().sum()
```

```
df['rate'].isnull().sum()

formulation of the properties of t
```

```
[] df['cuisines'].isnull().sum()/df['cuisines'].shape[0] [] df['rest_type'].isnull().sum()/df['rest_type'].shape[0] 0.0003895917488568558 0.004143589743589743
```

As number of missing values in 'cuisines' column has very small ratio as compared to entire datset, we can remove these rows.

```
as compared to entire datset,we can remove these rows.

[ ] indexLocation = df[df['rest_type'].isnull()].index
```

df = df.drop(indexLocation)

As number of missing values in 'rest_type' column has very small ratio

```
[ ] indexLocation = df[df['cuisines'].isnull()].index
df = df.drop(indexLocation)
```


Interpretation:

- 1. For 'votes' column, mean>>median. Hence, we can say that this column is highly skewed and also there is huge difference between 75% of the data and the maximum value. So, we can say that this column contains outliers.
- 2. Similarly, for 'cost' column we can say that this column is also skewed and contains outliers.

f. Checking for outliers

g. Treating outliers

h. Univariate Data Analysis

[] # plotting heatmap of numerical columns to check correlation between numerical columns
 sns.heatmap(data=df.corr(),annot=True)
 plt.show()

- # ploting scatter plot between 'cost' and 'rate' columns with 'online_order' column
 sns.scatterplot(x='cost', y='rate', hue='online_order', data=df)
- <Axes: xlabel='cost', ylabel='rate'>

- # ploting scatter plot between 'cost' and 'rate' columns with 'book_table' column
 sns.scatterplot(x='cost', y='rate', hue='book_table', data=df)
- <Axes: xlabel='cost', ylabel='rate'>

- # ploting scatter plot between 'cost' and 'votes' columns with 'online_order' column
 sns.scatterplot(x='cost', y='votes', hue='online_order', data=df)
- Axes: xlabel='cost', ylabel='votes'>

 17500

 15000

 12500

 7500

 5000

cost

ploting scatter plot between 'cost' and 'votes' columns with 'book_table' column
sns.scatterplot(x='cost', y='votes', hue='book_table', data=df)

ploting count plot of 'service' column with 'online_order' column
sns.countplot(x=df.service, hue=df.online_order)
plt.xticks(rotation=90)
plt.show()

ploting count plot of 'service' column with 'book_table' column
sns.countplot(x=df.service, hue=df.book_table)
plt.xticks(rotation=90)
plt.show()

PART A

Objective:- To help new and upcoming restaurants by letting them know the various reasons that customers look for and build a model which is able to predict the cost for two people.

Statistical Tests

We have checked the variation inflation factor for each variable in our dataset excluding the target variable i.e. cost, to check if there is any multicollinearity.

Below screenshot shows the VIF factor for each variable.

0 1 2 3	2.370882 2.345675 1.737804	cuisines rest_type book_table
2		-7.
	1.737804	book table
3		DOOK_table
	1.386206	rate
4	1.376801	votes
5	1.265810	service
6	1.183315	location
7	1.091175	online_order
8	1.019180	city

From the above table we can see that the VIF of all the variables is less than 10 (we set 10 as threshold). So,we can conclude that there is no multicollinearity in the data.

Below screenshot shows the OLS Regression Summary result.

OLS Regression Results							
Dep. Variable:		cost	R-square	 ed:		0.830	
Model:		OLS	Adj. R-s	quared:		0.830	
Method:	L	east Squares	F-statis	stic:	1.	846e+04	
Date:	Tue,	09 May 2023	Prob (F-	statistic):		0.00	
Time:		15:46:35	Log-Like	elihood:		-17871.	
No. Observation	s:	33983	AIC:		3.	576e+04	
Df Residuals:		33973	BIC:		3.	585e+04	
Df Model:		9					
Covariance Type	:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.0001	0.002	-0 . 055	0.957	-0.004	0.004	
online_order	0.0097	0.002	4.168	0.000	0.005	0.014	
book_table	0.1107	0.003	37.996	0.000	0.105	0.116	
rate	0.0308	0.003	11.783	0.000	0.026	0.036	
votes	-0.0078	0.003	-3.038	0.002	- 0.01 3	-0.003	
location	0.0724	0.002	30.071	0.000	0.068	0.077	
rest_type	0.4398	0.003	128.159	0.000	0.433	0.446	
cuisines	0.4248	0.003	123.655	0.000	0.418	0.432	
service	0.0076	0.002	3.039	0.002	0.003	0.012	
city 	0.0132	0.002 	5.862	0.000	0.009	0.018	
Omnibus:		 20042.536	 Durbin-W	latson:		2.005	
Prob(Omnibus):		0.000	Jarque-E	Bera (JB):	654	592.920	
Skew:		2.286	Prob(JB)			0.00	
Kurtosis:		24.009	Cond. No).		3.45	

From the above summary we can conclude the below points:

1. Did a hypothesis for Prob(F-statistic), the alternate and null hypothesis are as shown below.

#HO: none of the features are useful/significant while making the prediction #H1: atleast one of the features is useful while making the prediction

- a. As Prob(F-statistic) < 0.05, we reject null hypothesis.
- b. Hence, we can infer that at least one of the features is useful/significant while making the prediction
- 2. Did a hypothesis for pltl which when pval > 0.05 indicates that feature probability is a junk feature. The alternate and null hypothesis are as shown below.

#HO:Feature is not contributing towards the prediction #H1:Feature is contributing towards the prediction

- a. As pval < 0.05 for all the independent variables, we reject the null hypothesis.
- b. Hence, we can conclude that these features are impacting cost.
- 3. As Cond.no. < 100, we can say that the data has no multicollinearity.
- 4. Did a hypothesis to check normality of the data. The alternate and null hypothesis are as shown below.

#H0:data is normal and kurtosis is mesokurtic
#H1:data is not normal and kurtosis is not mesokurtic

- a. As Prob(JB) < 0.05, we can say that the data is not normal and kurtosis is not mesokurtic
- b. As kurtosis = +ive, we can say that data is leptokurtic.
- 5. As Durbin-Watson is close to 2,there is no autocorrelation.
- 6. We have even tested the normality of the data using the qq plot as shown below.

a. The diagonal line (red line) is the regression line and the blue points are the cumulative distribution of the residuals. As some of the points are close to the diagonal line, we conclude that the residuals do not follow a normal distribution

Model Building

We have tried multiple linear regression models to check the accuracies and conclude with one best model out of all of them. Below are the models that we have built.

- 1. Linear Regression
- 2. Support Vector Machine
- 3. Decision Tree
- 4. Random Forest Extra Tree Regressor
- 5. KNN Regressor
- 6. Gradient Boosting
- 7. Xtreme Gradient Boosting
- 8. Ada Boosting

We have checked the RMSE values with train and test data with respective R2 score as shown in below screenshot.

Model	RMSE Train Value	RMSE Test Value	R2 SCORE Train	R2 SCORE Test
Ada Boosting regressor	248.01	252.67	67.77	67.28
Decision Tree Regressor	209.14	216.06	77.08	76.07
Gradient Boosting Regressor	174.97	178.41	83.96	83.68
KNN regressor	115.36	149.64	93.03	88.52
Linear regression	213.90	217.10	76.02	75.84
Random Forest Extra Trees Regressor	32.96	82.51	99.43	96.51
Support Vector Machine	246.36	250.42	68.20	67.86
Xtreme Gradient Boosting	128.86	138.44	91.30	90.18

From the above table we have observed there was overfitting and high multicollinearity occurring. Hence we have changed a bit for EDA and the issue is solved as shown in the below screenshot.

Below screenshot gives all the RMSE values that were achieved with train and test data set with respective R2 score as well.

Mode	el RMSE Train Value	RMSE Test Value	R2 SCORE Train	R2 SCORE Test
Ada Boosting regressor	0.59	0.60	64.51	65.06
Decision Tree Regressor	0.48	0.48	76.87	77.83
Gradient Boosting Regressor	0.41	0.41	82.65	83.32
KNN regressor	0.25	0.33	93.49	89.60
Linear regression	0.41	0.41	83.02	83.85
Random Forest Extra Trees Regress	or 0.09	0.19	99.16	96.40
Support Vector Machine	0.44	0.44	80.41	81.21
Xtreme Gradient Boosting	0.29	0.30	91.36	91.12

PART B

Objective:-The aim is to classify the orders that have been ordered online and offline.And identify the patterns that lead to order online as well as offline orders.

Step 1:- We have done the required data processing and cleaning.

Step 2:- Splitting the data into train data and test data.

```
X_train_norm (33983, 9)
y_train (33983,)
X_test_norm (14565, 9)
y_test (14565,)
```

Step 3:- Building a KNN model on a training dataset using hamming distance

```
[ ] knn_classification = KNeighborsClassifier(n_neighbors = 3, metric='hamming')
[ ] knn_model = knn_classification.fit(X_train_norm, y_train)
```


Step 4:- Calculating performance measures

```
#Calculate performance measures on the test set.
test_report = get_test_report(knn_model, test_data = X_test_norm)
# print the performace measures
print(test_report)
             precision
                           recall f1-score
                                             support
                  0.82
                            0.84
          0
                                      0.83
                                                 5871
                   0.89
                            0.88
                                      0.88
                                                 8694
                                      0.86
                                               14565
    accuracy
                                               14565
                            0.86
                                      0.86
  macro avg
                  0.86
weighted avg
                  0.86
                            0.86
                                      0.86
                                               14565
```

This shows that our KNN model has 86% accuracy.

Building model based on Naive-Bayes Theorem:-

```
# compute the performance measures on test data
# call the function 'get_test_report'
# pass the gaussian naive bayes model to the function
test_report = get_test_report(gnb_model, test_data=X_test_norm)
# print the performace measures
print(test_report)
              precision recall f1-score
                                             support
                   0.57
                             0.23
                                      0.32
                                                5871
           0
                                      0.74
           1
                   0.63
                             0.89
                                                8694
                                      0.62
                                               14565
    accuracy
   macro avg
                   0.60
                             0.56
                                      0.53
                                               14565
                   0.61
weighted avg
                             0.62
                                      0.57
                                               14565
```


In the naive-bayes classifier, we got 62% accuracy.

Hence,we can conclude that KNN Classifier gives better accuracy for the given dataset as compared to Naive-Bayes Classifier.

REFERENCES

- https://www.w3schools.com/python/
- https://www.geeksforgeeks.org/python-programming-examples/