ROBÓTICA CINEMÁTICA DE MANIPULADORES

Prof. Leonardo Paiva
Universidade Federal de Lavras

Notação de Denavit-Hartenberg

- a_i : é a distância (em módulo) entre z_{i-1} e z_i , medida ao longo do eixo x_i , que é a normal comum entre z_{i-1} e z_i , ou seja, é a distância H_iO_i ;
- α_i : é o ângulo (com sinal) entre o eixo z_{i-1} e o eixo z_i , medido em torno do eixo x_i , segundo a regra da mão direita, ou seja, é o ângulo de rotação em torno do eixo x_i , que o eixo z_{i-1} deve girar para que fique paralelo ao eixo z_i ;
- d_i : é a distância (com sinal) entre os eixos x_{i-1} e x_i , medida sobre o eixo z_{i-1} (que é a normal comum entre x_{i-1} e x_i), partindo-se de O_{i-1} e indo em direção à H_i . O sinal de d_i é positivo, se para ir de O_{i-1} até H_i , caminha-se no sentido positivo de z_{i-1} , e negativo, se caminha-se no sentido oposto de z_{i-1} ;
- θ_i : é o ângulo (com sinal) entre o eixo x_{i-1} e o eixo x_i , medido em torno do eixo z_{i-1} , segundo a regra da mão direita, ou seja, é o ângulo de rotação em torno do eixo z_{i-1} , que o eixo x_{i-1} deve girar para que fique paralelo ao eixo x_i .

NOTAÇÃO DE DENAVIT-HARTENBERG

Com estes quatro parâmetros, a posição e orientação do sistema de coordenadas i em relação ao sistema i-1 pode ser definida como uma sequência de quatro transformações:

- A primeira transformação, consiste em uma rotação em torno de z_{i-1} , de um ângulo θ_i , medido segundo a regra da mão direita, de forma a alinhar x_{i-1} com x_i :
- A segunda transformação, é uma translação ao longo do eixo z_{i-1} , de uma distância d_i , medida a partir do ponto O_{i-1} , até encontrar a intercessão da normal comum entre z_{i-1} e z_i (ponto H_i);
- A terceira transformação, consiste em uma translação ao longo do eixo x_i , de uma distância a_i , partindo-se do ponto H_i até encontrar o eixo z_i (ponto O_i); e
- A quarta transformação consiste em uma rotação em torno do eixo x_i , de um ângulo α_i , medido segundo a regra da mão direita, de forma a alinhar o eixo z_{i-1} com o eixo z_i .

Notação de Denavit-Hartenberg

Assim, tem-se, em resumo, as seguintes transformações:

$$\mathbf{A}_{i-1}^{i} = Rot(z, \theta_i) Trans(z, d_i) Trans(x, a_i) Rot(x, \alpha_i)$$
,

$$\mathbf{A_{i-1}^{i}} = \begin{bmatrix} C\theta_i & -S\theta_i & 0 & 0 \\ S\theta_i & C\theta_i & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_i & -S\alpha_i & 0 \\ 0 & S\alpha_i & C\alpha_i & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} C\theta_i & -S\theta_i C\alpha_i & S\theta_i S\alpha_i & a_i C\theta_i \\ S\theta_i & C\theta_i \cos\alpha_i & -C\theta_i S\alpha_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Código Matlab

```
% DENAVIT Matriz de transformação homogênea.
```

% DH = DENAVIT(TETA, D, A, ALFA) devolve a matriz de transformação homogênea 4 x 4 a partir dos parâmetros de Denavit-Hartenberg % D, ALFA, A e TETA.

%

PARÂMETROS DA JUNTA 1

Se a junta 1 for prismática:

$$\mathbf{q}_{1} = \text{var}$$

$$\mathbf{q}_{1} = 0$$

Se a junta 1 for de rotação:

$$d_1 = 0$$
 $q_1 = var$

ALGORITMO DE DH

- Passo 1: Localizar os eixos das articulações, ou seja, os eixos z_0 , z_1 , até z_{n-1} , de forma que o eixo da articulação i seja o eixo z_{i-1} .
- Passo 2: Estabelecer o sistema de coordenadas da base. A origem deste sistema pode ser escolhida em qualquer lugar do eixo z_0 . Os eixos x_0 e y_0 podem ser escolhidos arbitrariamente, desde que satisfaçam a regra da mão direita.

Repetir os passos 3 a 5 para i = 1,...,n-1.

- Passo 3: Localizar a origem do sistema i, ponto O_i , onde a normal comum entre os eixos z_i e z_{i-1} intercepta o eixo z_i . Se o eixo z_i intercepta o eixo z_{i-1} , localizar o ponto O_i na interseção. Se os eixos z_i e z_{i-1} são paralelos, localizar o ponto O_i na articulação i.
- Passo 4: Estabelecer o eixo x_i ao longo da normal comum entre os eixos z_i e z_{i-1} , a partir do ponto O_i . O sentido do eixo x_i é na direção do eixo z_{i-1} para o eixo z_i . Se os eixos z_i e z_{i-1} se cruzam, então o eixo x_i é normal a ambos com qualquer direção.
- Passo 5: Tendo os eixos z_i e x_i , estabelecer o eixo y_i segundo a regra da mão direita.

ALGORITMO DE DH

- Passo 6: Estabelecer o sistema de coordenadas do efetuador, sistema O_n - $x_ny_nz_n$. A origem deste sistema é escolhida de forma arbitrária, porém, de maneira geral é escolhida como sendo o centro da garra ou algum outro ponto de interesse do efetuador. Os eixos deste sistema são definidos de forma arbitrária, desde que o eixo x_n seja perpendicular ao eixo z_{n-1} . Normalmente tem-se, o eixo z_n na direção de ataque, o eixo x_n na direção normal e o eixo y_n na direção de escorregamento, como mostra a Figura 5-4.
- <u>Passo 7</u>: Criar uma tabela com os parâmetros de *Denavit-Hartenberg* referentes a cada um dos ligamentos ou articulações.
- <u>Passo 8</u>: Montar as matrizes de transformação homogênea, $\mathbf{A}_{i-1}^{i}(q_i)$, a partir dos parâmetros de *Denavit-Hartenberg*
 - Passo 9: Obter a matriz de transformação homogênea $\mathbf{A}_{\mathbf{0}}^{\mathbf{n}}(q_i,...,q_n)$

SIMPLIFICAÇÃO DO ALGORITMO DE DH

A simplificação do modelo de DH será baseada em 4 regras

- 1°) Para juntas rotacionais, o eixo Z deve estar sempre em direção ao eixo das juntas (Para juntas prismáticas, o eixo Z deve estar na direção do movimento da junta)
- 2°) O eixo X deve ser perpendicular aos eixos Zn e Zn-1 (Se houver mais de uma opção, colocar o eixo X na direção do próximo eixo)
- 3°) O eixo Y deve seguir a regra da mão direita
- 4°) O eixo Xn deve interceptar o eixo Zn-1

Obs: O end-effector segue a mesma notação do eixo anterior a ele (caso seja verificado as 4 regras acima)

SIMPLIFICAÇÃO DO ALGORITMO DE DH

