

Linear and Discrete Optimization

The simplex method

- Bases and degeneracy
- Moving to a better neighbor

Bases

A subset $B \subseteq \{1, ..., m\}$ of the row-indices with |B| = n and A_B non-singular is called *basis* of the LP.

If in addition $A_B^{-1}b_B$ is feasible, then B is called *feasible basis*.

$$X^* \in P = L \times \text{cNe}^n : A \times = b \text{ is vertex} \iff \exists B = d \text{1,..., m} \text{s}$$
 $M \times C^{T. \times} \times C^{T.$

Vertices and bases

A vertex $x^* \in P$ is represented by a basis B.

A vertex x^* can be represented by several bases.

xx = 4.8. p8

Degeneracy

A linear program $\max\{c^Tx\colon x\in\mathbb{R}^n,\,Ax\leqslant b\}$ is *degenerate* of there exists an $x^*\in\mathbb{R}^n$ such that there are more than n constraints of $Ax\leqslant b$ that are active at x^* .

Simplex algorithm

George Dantzig (1914 - 2005)

Basic idea:

Start with vertex x^*

P= dxer": Axeb}

while x^* is not optimal

Find vertex x' adjacent to x^* with $c^Tx' > c^Tx^*$ update $x^* := x'$

Or assert that LP is unbounded.

Optimal bases

A basis B is called *optimal* if it is feasible and the unique $\mathfrak{J} \in \mathbb{R}^m$ with

$$\hat{\beta}^T A = c^T \text{ and } \hat{\beta}_i = 0, i \notin B$$

$$\lambda_B^T A = c^T A_B = c^T$$

$$\lambda_B^T A = c^T A_B = c^T$$

satisfies $n \ge 0$.

Theorem

If *B* is optimal basis, then $x^* = A_B^{-1}b_B$ is optimal solution of LP.

$$aT \times \leq b_A$$
 (*\lambda,) Y valid imp. $Y^{T,A} \times \leq X^{T,b} = X^$

Quiz

Which bases are optimal?

The non-degenerate case

marct.x, AXED ABXEDB wherefx*

ABXEDB inactive.

Theorem

Suppose the LP is non-degenerate and B is a feasible but not optimal basis, then $x^* = A_p^{-1}b_B$ is not an optimal solution.

$$\lambda^{T}A = C^{T}, \ \lambda_{j} = 0 + 5 \neq B$$
, $\lambda_{i} \geq 0$ for some is B .

Compute $d \in \mathbb{R}^{N}$ s.th. $A_{B \mid A \mid j} \cdot d = 0$, $Q_{i}^{T} \cdot d = -1$ (Ag non-sing)

 $C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d = \lambda_{i} \cdot a_{i}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot A_{B} \cdot d$$

$$C^{T} \cdot d = \lambda_{B}^{T} \cdot d$$

$$C^{T} \cdot d = \lambda$$

Moving to a better neighbor

- ▶ B not an optimal basis
- ► $x^* = A_B^{-1}b_B$ corresponding basic feasible solution
- ▶ $\beta_i < 0$ for some $i \in B$
- $a_j^T d = 0, j \in B \setminus \{i\}$

 $x^* + \varepsilon d$ feasible

- $a_i^T d = -1$
- $c^T d > 0$ • there exists $\varepsilon > 0$ such that

Question: How large can ε be?

CASEL: K=P

LP UNBOUNDED

Simplex algorithm

George Dantzig (1914 - 2005)

Basic idea:

Start with vertex x^*

while x^* is not optimal

Find vertex x' adjacent to x^* with $c^Tx' > c^Tx^*$ update $x^* := x'$

Or assert that LP is unbounded. $K = \emptyset$

P= XXEIR": AXEBZ

Moving to a better neighbor

- ▶ B not an optimal basis
- $x^* = A_B^{-1}b_B$ corresponding basic feasible solution
- $\beta_i < 0$ for some $i \in B$
- $a_j^T d = 0, j \in B \setminus \{i\}$ $a_i^T d = -1$
- $c^T d > 0$
- there exists ε > 0 such that x* + εd feasible

Question: How large can ε be?

Moving to a better neighbor

- B not an optimal basis
- $x^* = A_B^{-1}b_B$ corresponding basic feasible solution
- $\beta_i < 0$ for some $i \in B$
- $a_j^T d = 0, j \in B \setminus \{i\}$ $a_i^T d = -1$
- $c^T d > 0$
- there exists $\varepsilon > 0$ such that $x^* + \varepsilon d$ feasible

Question: How large can ε be?

The ineq. at x = b; , j \ 8' on active at x'.

=) X' IS A VERTEX, ADJACENT TO X*

Simplex algorithm

George Dantzig (1914 - 2005)

Basic idea:

Start with vertex x*

while x^* is not optimal

Find vertex x' adjacent to x^* with $c^Tx' > c^Tx^*$ $\swarrow \neq \phi$

update $x^* := x'$

Or assert that LP is unbounded. $K = \emptyset$