PCT

世界知的所有権機関 国 事 務 際 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

C07D 213/73, 417/06, 401/06, 413/06, 233/88, A61K 31/44, 31/4439, 31/444, 31/506, 31/501, 31/5355, 31/427, 31/4168, A91P 43/00, 25/28

(11) 国際公開番号 A1

WO00/53582

(43) 国際公開日

2000年9月14日(14.09.00)

(21) 国際出願番号

PCT/JP00/01190

(22) 国際出願日

2000年3月1日(01.03.00)

(30) 優先権データ

特願平11/57993

1999年3月5日(05.03.99)

(71) 出願人(米国を除くすべての指定国について) サントリー株式会社(SUNTORY LIMITED)[JP/JP]

〒530-8203 大阪府大阪市北区堂島浜2丁目1番40号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人 (米国についてのみ)

井本昌宏(IMOTO, Masahiro)[JP/JP]

〒662-0054 兵庫県西宮市大谷町11-96-401 Hyogo, (JP)

岩浪辰也(IWANAMI, Tatsuya)[JP/JP]

〒326-0824 栃木県足利市八幡町2丁目34-2-903 Tochigi, (JP)

赤羽美奈子(AKABANE, Minako)[JP/JP]

〒567-0801大阪府茨木市総持寺1丁目1-37-201 Osaka, (JP)

谷 吉弘(TANI, Yoshihiro)[JP/JP]

〒567-0843大阪府茨木市星見町9-38 Osaka, (JP)

(74) 代理人

草間 攻(KUSAMA, Osamu)

〒102-0072 東京都千代田区飯田橋4丁目5番12号 岩田ビル7階 草間特許事務所 Tokyo, (JP)

(81) 指定国 AU, CA, CN, JP, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,

添付公開書類

国際調査報告書

HETEROCYCLIC COMPOUNDS HAVING EFFECT OF ACTIVATING NICOTINIC ACETYLCHOLINE $\alpha 4\beta 2$ (54) Title: RECEPTOR

ニコチン性アセチルコリン α 4 β 2 受容体の活性化作用を有する複素環化合物 (54)発明の名称

(57) Abstract

Heterocyclic compounds showing an affinity for nicotinic acetylcholine α4β2 receptor and activating the same to thereby exert a preventive or therapeutic effect on brain diseases. Namely, nicotinic acetlycholine α4β2 receptor activators comprising, as the active ingredient, compounds represented by general formula (I) or pharmacologically acceptable salts thereof and drugs containing the same: wherein A represents optionally substituted aryl or an optionally substituted heterocycle; X represents oxygen, sulfur, carbon or nitrogen; dotted lines represent each the presence or absence of a bond; n is an integer of 1 or 2; and Y represents alkylene, etc.

ニコチン性アセチルコリン α 4 β 2受容体に親和性を示し、活性化することにより、脳疾患の予防または治療等の効果を発揮する、ニコチン性アセチルコリン α 4 β 2受容体の活性化作用を有する複素環化合物の提供であり、次式(I):

(式中、Aは、置換されていてもよいアリール基または置換されていてもよい複素環基を表わし、Xは酸素原子、硫黄原子、炭素原子または窒素原子を表わし、点線は結合の存在あるいは非存在を表わし、nは1または2の整数を表わし、Yはアルキレン等を表わす。)で表わされる化合物またはその薬理学的に許容される塩を有効成分とするニコチン性アセチルコリン α 4 β 2受容体の活性化剤、それを含有する医薬である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報) アアンアアン デンルファッシュ デン・ループ デンン デンン アンフログライル アスローディー アスローディー アスコース シャック アン・カー ドアエスフフガボワンンフサインフスペインランンフランン DM SD SG SG SK AM AT AZ BB レエフ・レオ セネガル スワッテンド チャゴ・ GGBGEHMNRW BE T T T T T T U U U V Y Z Z W BF タジキスタン トルクメニスタン MD B J B B Y C C G トルクメニステン トルコ トリコダッド・トバゴ トリンザニア ウクライナ ウガンダ MK 共和国マリ HR HU MN MR I D I E I L I N MXZELOZLT NDZLT IS IT IF KG KR コキプ・バスコープ・バスコー・バスコープ・バスコーク ロ本 ケニア キルギスタン 北朝鮮 韓国 ーランド

明細書

ニコチン性アセチルコリン α 4 β 2 受容体の活性化作用を有する複素環化合物

5 技術分野

本発明は、ニコチン性アセチルコリン受容体に親和性を示し、ニコチン性アセチルコリン受容体を活性化する作用を有する化合物に関する。

本発明が提供する化合物は、アルツハイマー(Alzheimer)病、パーキンソン(Parkinson)病などの神経変性性疾患、脳血管性痴呆などの痴呆、ツレット(
10 Tourette)症候群などの運動失調症、脳梗塞慢性期の神経症状、不安および精神分裂病などの神経および精神障害、頭部外傷による脳機能障害などに対する予防薬、または治療薬として有用なものである。

背景技術

15 ニコチンは多彩な薬理作用を示すことが知られている。例えば、中枢神経系の作用として、アセチルコリンの遊離促進作用といったコリン作動性神経系の活性化作用 (De Sarno P. & Giacobini E., *J. Neurosci. Res.*, **22**, 194-200(1984)) を示すほか、さらには、モノアミン神経系に対する賦活作用を示すとも報告されている(Levin E. D. & Simon B. B., *Psychopharmacology*, **138**, 217-230(19 98))。

また、ニコチンには、脳血流量の増加作用や、脳内のグルコース利用率の上昇作用など、脳機能を改善する多くの有用な作用が認められている (Decker M. W. et al., *Life Sci.*, **56**, 545-570(1995))。

さらにニコチンには、アルツハイマー(Alzheimer)病進行中に認められる神 25 経細胞死の原因であると考えられている β - ペプチドのアミロイド化を阻害したり(Salomon A. R. et al., Biochemistry, **35**, 13568-13578(1996))、 β - アミロイド(A β)によって惹起される神経細胞死を抑制する細胞保護作用を

有すると報告されている (Kihara T. et al., Ann. Neurol., **42**, 159-163(1997))。 さらに最近、ニコチンが炎症性腸炎の治療薬となりうる可能性も示唆されている (Sandborn W. J. et al., Ann. Intern. Med., **126**, 364 (1997))。

5 一方、アルツハイマー(Alzheimer)病患者においては、注意力・学習・記憶など認知機能を司る重要な神経系の一つであるアセチルコリン神経系の変性が認められており、それに伴い大脳皮質や海馬などのニコチン性アセチルコリン受容体が、顕著に減少していることが知られている(Nordberg A. et al., J. Neurosci. Res., 31, 103-111(1992))。

また、ニコチン性アセチルコリン受容体のアゴニストあるいはモジュレーターにより、ニコチン性アセチルコリン受容体を活性化し、アセチルコリン神経系の機能を回復させることが、アルツハイマー(Alzheimer)病の治療に有益な手段となる可能性が示唆されている(Newhouse P. A. et al., *Psychopharmacology*, 95, 171-175(1988))。

15

20

ところで、ニコチン性アセチルコリン受容体は、5つのサブユニットから構成されているイオンチャンネル型の神経伝達物質受容体である。すなわち、アセチルコリンやニコチンなどのアゴニストが、受容体に結合することにより受容体が活性化され、それに伴いチャンネルが開口して、ナトリウムイオンなどのカチオンを細胞外から流入させて、細胞の興奮を引き起こす(Galzi J. L. & Changeux J. P., Neuropharmacology, 34, 563-582(1995))。このアセチルコリンやニコチンなどのアゴニストは、 α サブユニットに存在する特定の部位に結合してその作用を発現しており、この部位はアゴニスト結合部位と呼ばれている。

一方、ニコチン性アセチルコリン受容体に対して直接アゴニスト作用は示さな いものの、アセチルコリンの作用を増強して細胞を活性化するガランタミン (Ga lanthamine) 等の化合物の存在が知られている。これらの化合物は、アゴニスト 結合部位とは明らかに異なるアロステリック部位を介して作用しているものであ

る(Schrattenholz A. et al., Mol. Pharmacol., 49, 1-6(1996))。このような、間接的にニコチン性アセチルコリン受容体を活性化する化合物は、モジュレーターと呼ばれており、その医薬品としての応用が期待されている(Lin N.-H. & Meyer M. D., Exp. Opin. Ther. Patents, 8, 991-1015(1998))。

5 本明細書においては、アゴニストおよびモジュレーターという用語は、この意味で使用している。

ニコチン性アセチルコリン受容体は、アルツハイマー(Alzheimer)病以外にもパーキンソン(Parkinson)病などの神経変性性疾患や、痴呆、不安、精神分裂病など、数多くの神経あるいは精神疾患に関与すると考えられている(Barrantes F. J., in *The Nicotinic Acetylcholine Receptor*, ed Barrantes F. J., Springer, 1997, p175-212; Lena C. & Changeux J.-P., *J. Physiol. (Paris)*, 92, 63-74(1998))。

とりわけ、脳梗塞等によって起こる脳血管性痴呆の患者においては、脳血流量は低下していることが知られていることから(高木繁治、現代医療、**28巻**、 115 7-1160(1996); Tachibana H. et al., *J. Gerontol.*, **39**, 415-423(1984))、脳血流量増加作用を示すニコチン性アセチルコリン受容体のアゴニストあるいはモジュレーターは、この分野での治療薬としての可能性が示唆されている。

さらに、ニコチン性アセチルコリン受容体アゴニストあるいはそのモジュレー 20 ターは、鎮痛作用を示すことも最近になって明らかにされてきた (Bannon A. W. et al., *Science*, **279**, 77-81(1998))。

ニコチン自身は、当然ニコチン性アセチルコリン受容体アゴニストとして作用する。例えば、実際にニコチンをアルツハイマー(Alzheimer)病患者に投与すると、注意力や短期記憶力の回復が認められて、その症状を改善することが明らかにされている(Newhouse P. A. et al., Drugs & Aging, 11, 206-228(1997))。しかしながら、ニコチンには一般によく知られている嗜癖性があることに加

15

え、経口投与した際の生物学的利用率が低いことや、循環器系への副作用が強い ことなどの欠点も合わせ持つ。

したがって、ニコチンに代わる嗜癖性が少なく、経口投与した際の生物学的利用率が高く、また循環器系などへの副作用が少ないニコチン性アセチルコリン受容体のアゴニストあるいはモジュレーターが医薬品として求められている(Maelicke A. & Albuquerque E. X., *Drug Discovery Today*, 1, 53-59(1996); Holladay M. W. et al., *J. Med. Chem.*, **40**, 4169-4194(1997))。

一方、ニコチン性アセチルコリン受容体には、いくつかのサブタイプが知られており(Shacka J. J. & Robinson S. E. T. , *Med. Chem. Res.*, **1996**, 444-464)、中枢神経系には主として α 4 β 2 サブタイプの受容体が存在する。また、運動神経系の神経-筋接合部には、 α 1 β 1 γ δ (あるいは α 1 β 1 ϵ δ)サブタイプの受容体が存在し、自律神経系の神経節や副腎には α 3 β 4サブタイプの受容体が存在する。

コリン作動性神経系の活性化や脳血流量の増加作用などは、中枢神経系の α 4 β 2 サブタイプの受容体を介して起こると考えられており、上述したニコチンの循環器系に対する作用は、主に末梢神経系に存在するサブタイプの受容体に作用することによって惹起される。

したがって、α1β1γδサブタイプ、およびα3β4サブタイプ受容体に 20 親和性を持たず、α4β2サブタイプの受容体のみに選択的に作用する化合物 を創製すれば、そのような化合物は、副作用のない医薬品として極めて有用であ ると考えられる。

かかる観点より、中枢神経系のニコチン性アセチルコリン受容体に選択的なア ゴニストあるいはモジュレーターを医薬品として開発しようとする試みが検討さ れており、例えば、ABT-418 (Arneric S. P. et al., *J. Pharmacol. Ex* p. Ther., 270, 310-318(1994); Decker M. W. et al., *J. Pharmacol. Exp. Th* er., 270, 319-328 (1994))、ABT-089 (Sullivan J. P. et al., J. Ph armacol. Exp. Ther., 283, 235-246(1997); Decker M. W. et al., J. Pharmacol. Exp. Ther., 283, 247-258 (1997))、GTS-21 (Arendash G. W. et al., Brain Res., 674, 252-259(1995); Briggs C. A. et al., Pharmacol. Biochem. Behav., 57, 231-241 (1997))、RJR-2403 (Bencherif M. et al., J. Pharmacol. Exp. Ther., 279, 1413-1421(1996); Lippiello P. M. et al., J. Pharmacol. Exp. Ther., 279, 1422-1429 (1996))、SIB-1508Y (Cosford N. D. P. et al., J. Med. Chem., 39, 3235-3237(1996); Lloyd. G. K. et al., Life Sci., 62, 1601-1606(1995))、およびSIB-1553A(Lloyd. G. K. et al., Life Sci., 62, 1601-1606(1995))などの開発コードで示される化合物が研究されている。

また、欧州特許出願公開公報EP679397-A2には、次式で示される置換アミン誘導体を脳機能障害の予防および治療に使用する医薬に関する開示がある。

「式中、Rは水素、あるいは場合により置換されたアシル、アルキル、アリール、アラルキル、ヘテロアリールまたはヘテロアリールアルキル基を表わし、Aは水素、アシル、アルキル、またはアリール系の単官能基を表わすか、あるいはZ 基に結合する二官能基を表わし、Eは電子吸引基を表わし、Xは一CH=または=N-基を表わし、-CH=基はH原子の代わりにZ基に結合することが可能であり、Zはアルキル、-O-R、-S-R、-NR2系の単官能基を表わすか、あるいはA基またはX基に結合する二官能基を表わす]。

しかしながら、この特許出願に開示された化合物群が、ニコチン性アセチルコリン α 4 β 2 受容体を選択的に活性化するものであることは、教示されていない。

- 方、本発明に含まれる化合物群と同じ骨格を持つ化合物として、農薬イミダクロプリド(Imidacloprid)が知られている。イミダクロプリドは、PC12細胞のニコチン性アセチルコリン受容体に対して、電気生理学的に部分的アゴニストとして作用すること(Nagata K. et al., *J. Pharmacol. Exp. Ther.*, **285**, 731-738(1998))や、イミダクロプリド(Imidacloprid)あるいはその代謝物および類縁化合物が、マウス脳のニコチン性アセチルコリン受容体に親和性を有していること(Lee Chao S. & Casida E., *Pestic. Biochem. Physiol.*, **58**, 77-88(1997); Tomizawa T. & Casida J. E., Br. *J. Pharmacol.*, **127**, 115-122(1999); Latli B. et al., *J. Med. Chem.*, **42**, 2227-2234(1999))は明らかになっているが、イミダクロプリド誘導体がニコチン性アセチルコリンα4β2受容体を選択的に活性化させるという報告はない。

また、特開平10-226684号公開公報には、次式の(N-(ピリジニルメチル)-ヘテロサイクリック)イリデンアミン化合物、ならびにその薬剤学的に許容しうる塩類、およびそのプロドラッグが開示されている。

20

$$R^3$$
 $A-B$

[式中、Aは-CH(R)-であり、R 3 は水素原子または所望により置換された(C $_1\sim$ C $_6$)アルキルであり、Bは次式の基を示す]

$$(R^1)_n$$
 NH
 W
 $(R^2)_m$

しかしながら、ここに記載された化合物群は、ニコチン受容体に弱い親和性を示すことは開示されているものの、中枢神経系のニコチン性アセチルコリン α 4 β 2 受容体へ選択的に作用すること、また、これらの化合物がニコチン性アセチルコリン受容体のアゴニストあるいはモジュレーターとして作用することは開示されていない。

このように、ニコチンに代わる、経口投与が可能であり、中枢神経系のニコチン性アセチルコリン受容体に選択的なアゴニスト、あるいはモジュレーターを医薬として開発しようとする試みは、これまでに数多く行われてきているものの、いまだ満足する医薬品が得られていないのが実状である。

したがって、本発明は、中枢神経系のニコチン性アセチルコリン α 4 β 2 \emptyset 容体に選択的に結合し、血圧や心拍数など循環器系への副作用を極力抑えつつ、ニコチン性アセチルコリン受容体を活性化することによって、予防または治療が可能と考えられる疾患に対する、より安全な予防薬または治療薬を提供するものである。

より具体的には、ニコチン性アセチルコリン受容体を活性化することによって 予防または治療が可能と考えられる疾患、例えば、痴呆、老年痴呆、初老期痴呆 、アルツハイマー (Alzheimer) 病、パーキンソン (Parkinson) 病、脳血管性痴 20 呆、エイズ関連痴呆、ダウン症における痴呆、ツレット (Tourette) 症候群、脳 梗塞慢性期の神経症状、頭部外傷による脳機能障害、不安、精神分裂病、うつ病 、ハンチントン病、疼痛などの予防または治療に用いることができる医薬品を提

5

10

供するものである。

発明の開示

本発明者らは、中枢神経系のニコチン性アセチルコリン α 4 β 2 受容体を選択的に活性化する物質の検索について鋭意研究を重ねた結果、一般式(I)で示される化合物、またはそれらの薬理学的に許容される塩が、ニコチン性アセチルコリン α 4 β 2 受容体に対する結合能が高く、受容体に対するアゴニストまたはモジュレーターとして作用して、受容体を活性化するものであることを新規に見出して、本発明を完成させた。

10

5

すなわち、本発明は、次の一般式(I):

(式中、

Aは、置換されていてもよいアリール基または置換されていてもよい複素環基を 15 表わし、

Xは、酸素原子、硫黄原子、炭素原子または窒素原子を表わし、

点線は、結合の存在あるいは非存在を表わし、

nは、1または2の整数を表わし、そして、

Yは、

- 20 (1) Xが酸素原子の時、-Y-X-で、 $-CH_2-CH_2-O-$ または $-CH_2$ $-CH_2-CH_3-O-$ を表わし、
 - (2) Xが硫黄原子の時、-Y-X-で、 $-CH(R^1)-CH_2-S-$, $-C(R^2)$ $=C(R^3)-S-$ または $-CH_2-CH_2-CH_2-S-$ [式中、 $R^1\sim R^3$ は、水素原子、炭素数 $1\sim 4$ のアルキル基、置換されていてもよいフェニル基を示す

〕を表わし、

5

10

- (3) Xが炭素原子の時、-Y-X-で、 $-CH_2-CH_2-CH_2-$ 、-CH=C (R^4) $-C(R^5)=C(R^6)-$ 、 $-CH_2-CH_2-CH_2-CH_2-$ または -N=C (R^7) -CH=CH- [式中、 $R^4\sim R^7$ は、水素原子、炭素数 $1\sim 4$ のアルキル基、置換されていてもよいフェニル基、ハロゲン原子、ニトロ基を示す〕を表わし、
- (4) Xが窒素原子の時、-Y-X-で、 $-CH_2-CH_2-NH-$, $-CH_2-CH_2-NH-$, -C

で表わされる化合物、およびこれらの薬理学的に許容される塩に関する。

また本発明は、これらの化合物およびその塩を有効成分とする、ニコチン性アセチルコリン α 4 β 2 受容体活性剤にも関する。

15 さらに本発明は、これら化合物およびその塩の、脳循環疾患、神経変性性疾患 などの予防または治療薬としての使用に関する。

発明を実施するための最良の方法

本発明化合物の薬理学的に許容される塩としては、塩酸塩、臭化水素酸塩、硫 20 酸塩、リン酸塩等の無機酸塩、およびフマル酸塩、マレイン酸塩、シュウ酸塩、 クエン酸塩、酒石酸塩、リンゴ酸塩、乳酸塩、コハク酸塩、安息香酸塩、メタン スルホン酸塩、pートルエンスルホン酸塩などの有機酸塩等をあげることができる。

本発明が提供する式(I)の化合物において、置換基「A」は、置換されてい でもよいアリール基または置換されていてもよい複素環基を表わすが、そのよう なアリール基の好ましい例としては、フェニル基、ナフチル基等があげられる。また、アリール基の環上に置換基を有する場合の好ましい置換基の例としては、

炭素数1~4の低級アルキル基、ハロゲン原子、ニトロ基、シアノ基等があげられ、置換アリール基の具体例としては、メチルフェニル基、トリフルオロメチルフェニル基、クロロフェニル基、ジクロロフェニル基、ニトロフェニル基、シアノフェニル基等を例示できる。

- 5 また、置換基「A」で示される複素環基としては、1~3個の同一または異なる硫黄原子、窒素原子、酸素原子を含む5員環、6員環の複素環基、およびこれらが縮環した複素環、例えばチオフェン、フラン、ピラン、ピロール、ピラゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、イミダゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、キノリン、イソキノリン、アザインドール、テトラヒドロピリミジン等があげられる。
 - これらの複素環基が、その環上に置換基を有する場合において、その好ましい 置換基の例としては、炭素数 1~4の低級アルキル基、ハロゲン原子等があげられる。したがって、置換複素環基の具体例としては、2-メチルピリジン、2-クロロピリジン、2-フルオロピリジン、2-ブロモピリジン、3-ブロモピリジン、2,3-ジクロロピリジン、2-クロロチアゾール、3-メチルイソキサゾール等を例示できる。
 - 式(I)中の点線は、結合の存在あるいは非存在を表わし、nの数と一緒になって次の構造を表わしている。すなわち、

nが1の場合には、二重結合は複素環を構成する炭素原子と当該炭素原子上の置 20 換基の窒素原子との間に存在してイミノ基を表わし、

nが2の場合は、二重結合は複素環を構成する炭素原子とXで表わされる炭素原子または窒素原子との間に存在し、複素環を構成する炭素原子上の置換基はアミノ基となっていることを表わす。

また、Xは酸素原子、硫黄原子、炭素原子または窒素原子を表わし、Yととも25 にその部分構造として、

(1) Xが酸素原子の時、-Y-X-で、 $-CH_2-CH_2-O-$ または $-CH_2$ $-CH_2-CH_2-O-$ を表わし、

- (2) Xが硫黄原子の時、-Y-X-で、 $-CH(R^1)-CH_2-S-$, $-C(R^2)=C(R^3)-S-$ または $-CH_2-CH_2-CH_2-S-$ [式中、 $R^1\sim R^3$ は、水素原子、炭素数 $1\sim 4$ のアルキル基、置換されていてもよいフェニル基を示す] を表わし、
- 5 (3) Xが炭素原子の時、-Y-X-で、 $-CH_2-CH_2-CH_2-$ 、-CH=C (R^4) -C(R^5) =C(R^6) , $-CH_2-CH_2-CH_2-CH_2-$ または -N=C(R^7) $-CH=CH-[式中、<math>R^4\sim R^7$ は、水素原子、炭素数 $1\sim 4$ のアルキル基、置換されていてもよいフェニル基、ハロゲン原子、ニトロ基を示す〕を表わし、
- 10 (4) Xが窒素原子の時、-Y-X-で、 $-CH_2-CH_2-NH-$, $-CH_2-CH_2-CH_2-NH-$, $-CH_2-CH_2-CH_2-NH-$, $-CH=C(R^8)-N=$ または $-CH=C(R^9)-CH=N-$ [式中、 R^8 および R^9 は、水素原子または置換されていてもよいフェニル基を示す]を表わす、などがあげられる。

具体例として、 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 および R^9 の炭素数 $1\sim4$ のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル等があげられる。

また、置換されていてもよいフェニル基としては、無置換のフェニル基のほか x メチル基、エチル基などの炭素数 1 ~ 4 の低級アルキル基や、ハロゲン原子で 置換されていてもよいフェニル基等があげられる。

ハロゲン原子としてはフッ素、塩素、臭素、ヨウ素があげられる。

本発明の有効成分として用いられる一般式(I)で示される化合物は、種々の 25 方法により製造できるが、例えば以下の方法1~4を挙げることができる。 なお、以下の反応式においてA, X, Yおよびnは前記の意味を有する。

方法1

次の反応式に従い、式(II)で表わされる化合物を、式(III)で表わされる化合物と反応させることにより、化合物(I)が得られる。

$$A-CH_2-Z + N X A-CH_2-N X$$
(II)
(III)

5

(式中、Zは、含窒素複素環の窒素原子との反応を促進しうる脱離基、例えば、 ハロゲン原子、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、 トリフルオロメタンスルホニルオキシ基、アシルオキシ基、置換アシルオキシ基 等を表わす)

10

15

反応させる式(III)の化合物の多くは市販されているが、当技術分野において公知の方法を用いて合成することもできる。

式(II)の化合物と式(III)の化合物から化合物(I)を得る反応は、 通常、アルコール類、ケトン類、ニトリル類、エステル類、アミド類、炭化水素 類、エーテル類等を単独、あるいは混合して溶媒とし、必要に応じて有機塩基ま たは無機塩基の存在下に、-20℃から反応混合物の還流温度までの範囲で実 施できる。

溶媒として用いるアルコール類としては、メタノール、エタノール、プロパノール、2-プロパノール、2-メチル-2-プロパノール等を、ケトン類としては、アセトン、メチルエチルケトン等を、ニトリル類としては、アセトニトリル、プロピオニトリル等を、エステル類としては酢酸エチルを、アミド類としては、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、N-メチル

ピロリドン、ヘキサメチルホスホロアミド等を、炭化水素類としては、ベンゼンやトルエン等の芳香族炭化水素、およびペンタンやヘキサン等の脂肪族炭化水素を、エーテル類としては、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等を挙げることができる。

5 反応に用いる有機塩基としては、トリエチルアミン、コリジン、ルチジン、カリウム t ーブトキシド等を、無機塩基としては、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等を例示することができる。

10 方法2

次の反応式に従い、式(IV)で表わされる化合物の二トロ基を除去することにより、化合物(I)が得られる。

$$A-CH_2-N$$

$$(IV)$$

$$A-CH_2-N$$

$$(IV)$$

$$(I)$$

15 上記の反応式で、式(IV)で表わされる化合物は、公知の方法(Moriya K. et al., *J. Pesticides Sci.*, **18**, 119-123(1993))により合成することができる。

式 (IV) の化合物の二トロ基を除去する方法は、二トロアルギニンを含むペプチドの脱保護に利用された公知の方法 (Freidinger R. M. et al., *J. Org. C hem.*, **43**, 4800-4803(1978)) に準じて行うことができる。

この反応は、通常水またはアルコール類、アミド類、酸類等を単独あるいは混合して溶媒とし、必要に応じて緩衝作用のある有機塩類または無機塩類の存在下

に、-20℃から50℃までの範囲で、還元剤を作用させて行う。

溶媒として用いるアルコール類としては、メタノール、エタノール、プロパノール、2-プロパノール、2-メチル-2-プロパノール等を、アミド類としては、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、N-メチルピロリドン、ヘキサメチルホスホロアミド等を、酸類としてはギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、塩酸等を挙げることができる。

また、緩衝作用のある有機塩類または無機塩類としては、酢酸アンモニウム、 トリエチルアミン、ピリジン、リン酸塩等が例示できる。還元剤としては三塩化 チタンが好ましい。

10

方法3

次の反応式に従い、式(V)で表わされる化合物を、式(V I)で表わされる化合物と反応させて中間体(V I I)に誘導した後、環化反応を行うことにより化合物(I)が得られる。

15

(式中、 Z は前記と同じ意味を表わす)

式(V)の化合物は市販されているか、または当技術分野において公知の方法 を用いて合成可能である。式(VI)の化合物としては、4-ブロモブチロニト 20 リルあるいは5-ブロモバレロニトリルを例示できる。

式(V)の化合物と式(VI)の化合物と反応させて中間体(VII)を得る反応は、通常アルコール類、ケトン類、ニトリル類、エステル類、アミド類、炭化水素類、エーテル類等を単独あるいは混合して溶媒とし、必要に応じて有機塩基または無機塩基の存在下に、-20℃から反応混合物の還流温度までの範囲で実施できる。

溶媒として用いるアルコール類としては、メタノール、エタノール、プロパノール、2ープロパノール、2ーメチルー2ープロパノール等を、ケトン類としては、アセトン、メチルエチルケトン等を、ニトリル類としては、アセトニトリル、プロピオニトリル等を、エステル類としては酢酸エチルを、アミド類としては、N, Nージメチルホルムアミド、N, Nージメチルアセトアミド、Nーメチルピロリドン、ヘキサメチルホスホロアミド等を、炭化水素類としては、ベンゼンやトルエン等の芳香族炭化水素、およびペンタンやヘキサン等の脂肪族炭化水素を、エーテル類としては、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1, 4ージオキサン等を挙げることができる。

15 反応に使用する有機塩基としては、トリエチルアミン、コリジン、ルチジン、カリウム t ーブトキシド等を、また、無機塩基としては、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等を例示できる。

化合物 (VII) を環化反応により化合物 (I) へ変換する反応は、通常の場 20 合、無溶媒または炭化水素類を単独あるいは混合して溶媒とし、必要に応じてア ルミニウム試薬の存在下に、室温から 200℃までの範囲で実施できる。

溶媒として用いる炭化水素類としては、ベンゼンやトルエン等の芳香族炭化水素、およびペンタンやヘキサン等の脂肪族炭化水素を挙げることができる。

アルミニウム試薬の例としては、トリメチルアルミニウム、トリエチルアルミ 25 ニウム、塩化ジメチルアルミニウム、塩化ジエチルアルミニウム、二塩化エチルアルミニウム等が挙げられる。

方法4

次の反応式に従い、式(VIII)で表わされる化合物を、式(IX)で表わされる化合物と反応させることにより、化合物(I)が得られる。

$$A-CH_2-NH \qquad XH \qquad WS \qquad NH \qquad (IX) \qquad NH_n \qquad XH \qquad (VIII) \qquad (I)$$

5

15

(式中、Wはアルキル基、置換アルキル基、アリール基または置換アリール基を示す)

式 (VIII) の化合物は、公知の方法 (Moriya K. et al., *J. Pesticides* 10 *Sci.*, **18**, 119-123(1993)) により合成できる。また、式 (IX) の化合物は、公知の方法 (Habicher W-D. & Mayer R., *Z. Chem.*, **12**, 459-460(1968)) により合成できる。

式(VIII)の化合物と式(IX)の化合物から化合物(I)を得る反応は、通常、アルコール類、アミド類、炭化水素類、エーテル類等を単独あるいは混合して溶媒とし、必要に応じて有機塩基または無機塩基の存在下に、室温から反応混合物の還流温度までの範囲で実施できる。

溶媒として用いるアルコール類としては、メタノール、エタノール、プロパノール、2ープロパノール、2ーメチルー2ープロパノール等を、アミド類としては、N,Nージメチルホルムアミド、N,Nージメチルアセトアミド、Nーメチルピロリドン、ヘキサメチルホスホロアミド等を、炭化水素類としては、ベンゼンやトルエン等の芳香族炭化水素、およびペンタンやヘキサン等の脂肪族炭化水素を、エーテル類としては、ジメトキシエタン、テトラヒドロフラン、1,4ー

ジオキサン等を挙げることができる。

反応に使用する有機塩基としては、トリエチルアミン、コリジン、ルチジン、カリウム tーブトキシド等を、また、無機塩基としては、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等を例示することができる。

以上の各方法により得られた本発明化合物(I)は、必要に応じて上記した種々の有機酸あるいは無機酸と造塩することにより、薬理学的に許容される塩へ誘導することができる。また、再結晶やクロマトグラフィー等の手段により精製することもできる。

さらに、本発明化合物(I)の中には異性体が存在するものもあるが、本発明においてはこれら異性体も本発明の化合物に含まれ、これらは種々の方法により分離して単一の化合物とすることができるほか、これら異性体の混合物も本発明に含まれる。

15

10

- 一般式(I)で表わされる本発明により提供される化合物は、中枢神経系のニコチン性アセチルコリン α 4 β 2 受容体と選択的に結合し、アゴニストまたはモジュレーターとして作用してニコチン性アセチルコリン α 4 β 2 受容体を活性化することができる。したがってこれら化合物は、例えば、痴呆、老年痴呆、
- 20 初老期痴呆、アルツハイマー(Alzheimer)病、パーキンソン(Parkinson)病、 脳血管性痴呆、エイズ関連痴呆、ダウン症における痴呆、ツレット(Tourette) 症候群、脳梗塞慢性期の神経症状、頭部外傷による脳機能障害、不安、精神分裂 病、うつ病、ハンチントン病、疼痛等に対する予防薬および治療薬として有用で ある。
- 25 本発明化合物、またはその薬理学的に許容される塩を医薬組成物として投与する場合、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤等の剤型で経口的に、あるいは、注射用蒸留水もしくはそれ以外の薬学的に許容しうる液との溶

液剤または懸濁剤などの注射剤や、経皮パッチ、経鼻スプレー、坐剤等の剤型で 非経口的に投与することができる。

これらの製剤を製造する場合には、本発明に係る化合物と、薬学的に認められる製剤用の担体、賦形剤、香味剤、安定剤等とを製剤化の常法に従って混和することによって調製することができる。

製剤用の担体や賦形剤などの例としては、ポリビニルピロリドン、アラビアゴム、ゼラチン、ソルビット、シクロデキストリン、ステアリン酸マグネシウム、タルク、ポリエチレングリコール、ポリビニルアルコール、シリカ、乳糖、結晶セルロース、砂糖、デンプン、リン酸カルシウム、植物油、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ラウリル硫酸ナトリウム、水、エタノール、グリセリン、マンニトール、シロップ等が挙げられる。

注射用の水溶液としては、ブドウ糖等を含む等張液等があげられ、ポリエチレングリコールのような適当な溶解補助剤等と併用してもよい。また、緩衝剤、安定剤、保存剤、酸化防止剤等を配合してもよい。

15 このようにして得られる製剤は、例えばヒトをはじめとする哺乳動物に対して 投与することができる。投与経路としては、経口投与、経皮投与、経鼻投与、直 腸内投与、局所投与などが好ましい。

これら化合物の投与量は、投与方法、投与対象者の体重・年齢・症状等により変動するが、経口投与の場合、一般的に成人においては、1日につき約0.00 1~100mg/kg体重、好ましくは約0.01~100mg/kg体重、より好ましくは約0.1~10mg/kg体重である。非経口的に投与する場合は、例えば注射剤の場合、一般的に成人においては、1日につき約0.0001~10mg/kg体重程度、好ましくは約0.0001~1mg/kg体重程度、より好ましくは約0.001~0.1mg/kg体重程度、より投与するのが好ましい。これらの量を、1日1回から3回程度に分けて投与する。

ニコチン性アセチルコリン受容体への結合能を調べる方法は、サブタイプ毎に異なる。 α 4 β 2 サブタイプニコチン性アセチルコリン受容体に対する化合物の結合能は、ラットの全脳をホモジナイズして膜標品を調製し、これに [3 H] ーサイチシン(Cytisine)が結合するのを、被験物質が阻害する割合を測定することで調べることができる。

また、 α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体に対する化合物の結合能は、ラットの筋肉をホモジナイズして、これに $[^3$ H] $-\alpha$ - ブンガロトキシン(Bungarotoxin)が結合するのを、被験物質が阻害する割合を測定することで調べることができる。

10 ヒトα4β2サブタイプニコチン性アセチルコリン受容体におけるアゴニスト作用は、クローニングしたヒトニコチン性アセチルコリンレセプターα4サブユニットおよびβ2サブユニットのcDNAから対応するcRNAを調製し、これをアフリカツメガエル(Xenopus laevis)の卵母細胞(Oocytes)に注入して形成させたヒトニコチン性アセチルコリン受容体を用いて、膜電位固定法により被験物質を灌流液に添加した時に惹起される応答反応を、電気的に測定することで調べることができる。

実施例

次に、実施例により、本発明をさらに具体的に説明する。

20 実施例1:方法1による合成例

<u>2-(6-クロロ-3-ピリジル)メチル-3-イミノ-6-フェニル-2,3</u> -ジヒドロピリダジン [化合物44] の合成

2-クロロ-5-クロロメチルピリジン塩酸塩300mg(1.5mmol)をジクロロメタンに溶解して、飽和炭酸水素ナトリウム水溶液を加えて振り混ぜたのち、有機層を分離して炭酸カリウムで乾燥して溶媒を減圧で溜去した。得られた油状残分と、3-アミノ-6-フェニルピリダジン171mg(1mmol)を、ジメチルホルムアミド5mlに溶かして80℃で8時間加熱した。室温

まで冷却したのち2-プロパノールで希釈し、析出した結晶を濾取して、減圧加熱乾燥することにより表題化合物の塩酸塩243mg(収率73%)を得た。

以下の化合物は、この実施例1の方法に準じて合成した。

化合物1:2-イミノ-3-(3-ピリジル)メチル-2,3-ジヒドロチアゾ

5 ール;

化合物2:3-(6-クロロ-3-ピリジル)メチル-2-イミノ-4-メチル-2,3-ジヒドロチアゾール;

化合物 3:3-(6-2) ロロー 3-2 リジル)メチルー 2-4 ミノー 5-4 チルー 2-4 ミノー 3-4 チルー 2-4 ミノー 3-4 ドロチアゾール :

10 化合物4:2-イミノ-3-(3-ピリジル)メチルチアゾリジン;

化合物5:3-(6-クロロ-3-ピリジル)メチル-2-イミノチアゾリジン;

化合物 6:6-クロロ-2-(6-クロロ-3-ピリジル)メチル-3-イミノ-2, 3-ジヒドロピリダジン;

15 化合物7:1-(6-クロロ-3-ピリジル)メチル-2-イミノ-1,2-ジ ヒドロピリジン;

化合物8:3-(6-クロロ-3-ピリジル)メチル-2-イミノ-2,3-ジ ヒドロチアゾール;

化合物9:2-アミノ-1-(6-クロロ-3-ピリジル)メチルイミダゾール

20 :

化合物10:1-(6-クロロ-3-ピリジル)メチル-2-イミノ-1,2-ジヒドロピリミジン;

25 化合物12:3-(6-フルオロ-3-ピリジル)メチル-2-イミノ-2,3-ジヒドロチアゾール;

化合物 16:3-(6-200-3-200) メチルー 2-4 ミノー 3,4

5, 6-テトラヒドロ-2H-1, 3-オキサジン;

化合物17:3-(6-クロロ-3-ピリジル)メチル-2-イミノ-3、4、

化合物18:3-(6-フルオロ-3-ピリジル)メチル-2-イミノ-4-メ

5 チルー2, 3-ジヒドロチアゾール;

化合物 19:3-(6-) ロモー3- ピリジル)メチルー2- イミノー4- メチルー2, 3- ジヒドロチアゾール:

化合物 20:3-(6-2) ロロー 3-2 リジル)メチルー 2-4 ミーグメチルー 2 ステンヒドロチアゾール;

10 化合物 21:3-(6-2) ロロー3-2 ピリジル)メチルー4-1 エチルー2-1 ミノー2 、3-3 ビドロチアゾール;

化合物 2 2 : 5 -クロロ-1 - (6 -クロロ-3 -ピリジル) メチル-2 -イミノ-1, 2 -ジヒドロピリジン;

化合物23:1-(6-クロロ-3-ピリジル)メチル-2-イミノ-3-メチ

15 ルー1, 2ージヒドロピリジン:

化合物 24:1-(6-2) ロロー 3-2 リジル)メチルー 2-4 ミノー 5-3 チルー 1 、 2-3 ヒドロピリジン :

化合物 25:1-(6-クロロ-3-ピリジル) メチルー2-イミノ-4-メチルー1, 2-ジヒドロピリジン;

20 化合物 2 6:2-イミノ-1-(3-ピリジル)メチル-1, 2-ジヒドロピリジン;

化合物27:3-(6-クロロ-3-ピリジル)メチル-2-イミノ-4-メチルチアゾリジン;

合物28:3-(6-クロロ-3-ピリジル)メチル-2-イミノオキサゾリジ

 $25 \quad \mathcal{\Sigma}$:

化合物 30:3-(5-7) ロモー 3-2 ピリジル)メチルー 2-4 ミノー 4-3 ルー 2 、3-3 ビドロチアゾール :

化合物31:3-(4-クロロベンジル)-2-イミノチアゾリジン;

化合物32:2-イミノ-3-(6-メチル-3-ピリジル)メチルチアゾリジン;

化合物33:2-イミノ-3-(4-ピリダジニル)メチルチアゾリジン;

5 化合物34:3-(2-クロロ-5-チアゾリル)メチル-2-イミノチアゾリジン:

化合物35:2-イミノ-3-(3-メチル-5-イソオキサゾリル)メチルチアゾリジン;

化合物36:2-イミノ-4-メチル-3-(3-メチル-5-イソオキサゾリ

10 ル)メチルー2,3ージヒドロチアゾール;

化合物 37:3-(2-2) (2-2) ステルー 2-4 (2-4) メチルー 2-4 (2-4) メチルー 2 (3-ジヒドロチアゾール;

化合物 40:3-(6-2) ロロー 3-2 ピリジル)メチルー 2-4 ミノー 5-2 エルー 2 、3-3 ビドロチアゾール;

化合物41:3-(6-クロロ-3-ピリジル)メチル-2-イミノ-4-フェ

20 ニルー2, 3-ジヒドロチアゾール;

化合物 42:4-(4-) ロロフェニル)-3-(6-) ロロー3- ピリジル) メチルー2- イミノー2, 3- ジヒドロチアゾール;

化合物 43:3-(6-200-3-ピリジル) メチルー 2-7 ミノー 4-7 エルチアゾリジン;

25 化合物44:2-(6-クロロ-3-ピリジル)メチル-3-イミノ-6-フェ ニル-2,3-ジヒドロピリダジン;

化合物45:3-イミノ-6-フェニル-2-(3-ピリジル)メチル-2,3

ージヒドロピリダジン:

化合物 46:1-(6-200-3-ピリジル) メチルー 2-4 ミノー 5-7 エルー 1 、 2-3 ヒドロピリミジン :

化合物47:1-(6-クロロ-3-ピリジル)メチル-2-イミノ-5-ニト

5 ロー1, 2ージヒドロピリジン:

化合物 48:2-1-1-(6-メチル-3-ピリジル) メチル-1,2-ジヒドロピリジン;

化合物49:2-イミノ-3-(3-ピリダジニル)メチルチアゾリジン;

化合物50:2-アミノ-1-(2-クロロ-5-チアゾリル)メチルイミダゾ

10 ール;

化合物 51:2-アミノ-1-(6-クロロ-3-ピリジル) メチルー 4,5-ジメチルイミダゾール;

化合物52:2-アミノ-1-(5-ピリミジル)メチルイミダゾール;

化合物53:2-アミノ-1-(6-クロロ-3-ピリジル)メチル-4-メチ

15 ルイミダゾール:

化合物 54:2-アミノー1-(5,6-ジクロロー3-ピリジル)メチルイミダゾール;

化合物55:2-アミノ-1-(3-ピリジル)メチルイミダゾール;

化合物56:2-アミノ-1-(6-メチル-3-ピリジル)メチルイミダゾー

20 ル:

化合物 57:3-(4-クロロベンジル)-2-イミノー2,3-ジヒドロチア ゾール;

化合物58:2-アミノ-1-(4-クロロベンジル)イミダゾール;

化合物59:2-アミノ-1-(7-アザ-3-インドリル)メチルイミダゾー

25 ル;

化合物 60:3-(3,4-ジクロロベンジル) -2-イミノー 2,3-ジヒドロチアゾール;

5 化合物63:2-イミノ-3-(4-メチルベンジル)-2,3-ジヒドロチア ゾール:

化合物 64:2-4 ミノー 3-(3-1) フルオロメチルベンジル) -2,3-1 ジヒドロチアゾール:

化合物 65:3-(4-シアノベンジル)-2-イミノー2,3-ジヒドロチア ゾール:

化合物 66:3-(7-アザ-3-インドリル)-2-イミノ-2,3-ジヒドロチアゾール:

実施例2:方法2による合成例

15 1-(6-クロロ-3-ピリジル)メチル-2-イミノイミダゾリジン [化合物 13]の合成

窒素雰囲気下に、1-(6-2)000-3-ピリジル)メチルー2-ニトロイミノイミダゾリジン335mg(1.3mmol)を20mlのメタノールに懸濁して、これに20%三塩化チタン6mlを加えて室温で1時間20分攪拌した。

反応混合物を減圧濃縮したのち、残分を氷冷して50%水酸化ナトリウム水溶液を加え、析出した不溶物を、セライトを用いて濾去し濾液を減圧濃縮した。得られた残分にジクロロメタン+メタノール(20:1)混合溶媒を加えて、再び不溶物を濾去し濾液を減圧濃縮した。この濃縮残分を、アミノプロピル化シリカゲル(Chromatorex NH-type;富士シリシア製)を用いたカラムクロマトグラフィー(溶出溶媒;ジクロロメタン:メタノール=20:1)により精製して、1-

(6-クロロー3-ピリジル)メチルー2-イミノイミダゾリジンを無色結晶性

固体として182mg(収率66%)得た。これをメタノールに溶解し、フマル

酸100mg(0.862mmol)を加えて均一溶液としたのち減圧濃縮した。得られた結晶性残分に、アセトニトリルを加えて濾取して減圧加熱乾燥することにより表題化合物のフマル酸塩222mgを得た。

5 実施例3:方法3による合成例

<u>1-(6-クロロ-3-ピリジル)メチル-2-イミノピロリジン[化合物14</u>]の合成

(6-クロロ-3-ピリジル) メチルアミン713mg (5mmol)、4-ブロモブチロニトリル745mg (5mmol) および炭酸カリウム1.04g (7.5mmol)を15mlのジメチルホルムアミド中で室温17時間攪拌した 10 。溶媒を減圧溜去したのち、残分にジクロロメタンと水を加えて振り混ぜた。有 機層を分離して硫酸マグネシウムで乾燥して減圧濃縮した。得られた粗生成物を アミノプロピル化シリカゲル(Chromatorex NH-type;富士シリシア製)を用い たカラムクロマトグラフィー(溶出溶媒;n-ヘキサン:酢酸エチル=3:1) により精製すると4-(6-クロロ-3-ピリジル)メチルアミノブチロニトリ ルが無色油状物として505mg(収率48%)得られた。この4-(6-クロ u-3-ピリジル) メチルアミノブチロニトリル500mg (2.38mmol) をアルゴンガス雰囲気下に15mlのトルエンに溶解し、1Mトリメチルアル ミニウム/n-ヘキサン溶液2.6mlを加えて、90℃で14時間加熱還流 20 した。室温まで冷却したのちクロロホルム10ml、メタノール5ml、水1m 1を順に加え、析出したゲルを濾去した。濾液を減圧濃縮し得られた残分を、ア ミノプロピル化シリカゲル(Chromatorex NH-type;富士シリシア製)を用いた カラムクロマトグラフィー(溶出溶媒;ジクロロメタン:メタノール=50:1) により精製して、1-(6-クロロ-3-ピリジル) メチル-2-イミノピロ 25 リジンを黄色油状物として452mg(収率90%)得た。この化合物の一部2^{*} 10mg (1mmol) をメタノールに溶解し、フマル酸 116mg (1mmo 1)を加えて均一溶液としたのち減圧濃縮した。得られた油状残分にアセトニト

リルを加えて結晶化させ、析出した結晶を濾取して減圧加熱乾燥することにより、表題化合物のフマル酸塩309mgを得た。

化合物 1 5: 1-(6-クロロ-3-ピリジル)メチルー2-イミノピペリジンも、この実施例 3 の方法に準じて合成した。

5

実施例4:方法4による合成例

<u>1-(6-クロロ-3-ピリジル)メチル-2-イミノ-1,2,3,4,5,</u> 6-ヘキサヒドロピリミジン[化合物29]の合成

 $N - (3 - 7 \le 1)^2 - (1 - 1) = (1 - 1)^2 - (1 - 1)^2$ アミン塩酸塩237mg(1mmol)と、イミド炭酸ジチオメチルエステル3 10 03mg(2.5mmol)を5mlのジメチルホルムアミドに溶かし、90 ℃で1時間50分加熱攪拌した。溶媒を減圧溜去したのち、残分をアミノプロ ピル化シリカゲル (Chromatorex NH-type;富士シリシア製) を用いたカラムク ロマトグラフィー(溶出溶媒:ジクロロメタンからジクロロメタン:メタノール 15 =9:1)に付して精製し、1-(6-クロロ-3-ピリジル)メチル-2-イ ミノー1,2,3,4,5,6-ヘキサヒドロピリミジンを無色油状物として7 7mg (収率34%) 得た。このものを5mlのメタノールに溶解し、0.01 mlの4M塩酸-ジオキサンを加えて室温で5分間攪拌したのち減圧濃縮した。 得られた油状残分にアセトンを加えて結晶化させ、析出した結晶を濾取して、減 20 圧加熱乾燥することにより、表題化合物の2塩酸塩14mgを無色結晶として得 た。

以上の実施例で合成した化合物1~化合物66の物性データを、まとめ第1表 ~第14表に示す。

第1表

			本井	おや書品	
智	# # #		<u> </u>		•
番号	允 平 韓 迪	酤	强点(°C)	東河値	H-NMR(DMSO-d ₆)
			結晶化溶媒	分子式	
			無色結晶		8.55 (d, J=1.7Hz, 1H), 8.51 (dd, J=1.3, 4.7Hz,
	X=			m/z 192 = (M+H)*	1H), 7.70 (d, J=7.8Hz, 1H), 7.38 (dd, J=4.7,
	S N	フマル酸	97-101°C		7.8Hz, 1H), 7.07 (d, J=4.8Hz, 1H), 6.55 (s, 2H), 6.31 (d, J=4.8Hz, 1H), 4.99 (s, 2H)
	, z		アセトン	C,H,N,S	
	IZ		乳白色結晶		8.31 (d, J=2.3Hz, 1H), 7.68 (dd, J=2.3, 8.2Hz,
2	N N N N N N N N N N N N N N N N N N N	フマル酸	156-159°C	m/z 240 = (M+H) ⁺	1H), 7.50 (d, J=8.2Hz, 1H), 6.55 (s, 2H), 5.99 (s, 1H), 5.10 (s, 2H), 2.03 (s, 3H)
	Ci N Me		アセトン	C ₁₀ H ₁₀ CIN ₃ S	
	T.		乳白色結晶		8.41 (d, J=2.3Hz, 1H), 7.80 (dd, J=2.3, 8.3Hz,
9	S Z	超いとし	160–162°C	m/z 240 = (M+H) ⁺	(s, 2H), 5.04 (s, 2H), 2.09 (s, 1H), 0.54 (s, 2H), 5.04 (s, 2H), 2.09 (s, 3H)
				C ₁₀ H ₁₀ CIN ₃ S	
			アセトン		
	IZ		無色結晶		8.53 (m, 2H), 7.73 (dd, J=1.5, 7.7Hz, 1H), 7.40
		二 1 1	134_120°C	m/z 194 = (M+H) [†]	(va., 5-4.0, 7.772, 177, 0.33 (s. 277, 4.03 (s. 27), 3.66 (t. J=7.1Hz, 2H), 3.30 (t. J=7.1Hz,
	<u>'</u>	アンプ	7 25 - 150	C,H.,N,S	2H)
	Z		アセトン) - - - - -	
			無色結晶		8.38 (d, J=2.2Hz, 1H), 7.81 (dd, J=2.2, 8.2Hz, 1H) 752 (d. 1=9.9Hz, 1H) 8.54 (c. 9H) 4.52
2		第三クロ	181-180°C	m/z 228 = (M+H)*	(s, 2H), 3.65 (t, J=6.9Hz, 2H), 3.28 (t,
		ă X	200	C ₉ H ₁₀ CIN ₃ S	J=6.9Hz, 2H)
			アセトン		

第2表

			4	質量分析	
	一种植物	如	融点(°C)	実測値	¹ H-NMR(DMSO-d ₆)
梅			結晶化溶媒	分子式	77 68
1	₹=<		淡褐色結晶	, 7 955 = (M+H)	8.43 (s, 1H), 7.84 (d, J=8.2Hz, 1H), 7.53 (d, J=8.2Hz, 1H), 7.42 (m, 2H), 6.55 (s, 2H), 5.35
	Z-z Z-z	フマル酸	170-174°C		(s, 2H)
	-ō		アセトニトリル	C101 18 C1214	(127
1			橙色結晶	*(H+M) = 000 =/	8.43 (d, J=2.4Hz, 1H), 8.16 (d, J=6.7Hz, 1H), 7.86 (dd, J=6.7, 8.6Hz, 1H), 7.75 (dd, J=2.4,
	Z Z	フマル酸	156-159°C	M/ Z 220 = (M+H)	8.3Hz, 1H), 7.56 (d, J=8.3Hz, 1H), 7.21 (d, J=8.3Hz, 1H), 6.90 (dd, J=6.8, 8.6Hz, 1H),
	-\		アセトニトリル	C ₁₁ H ₁₀ CIN ₃	6.42 (s, 2H), 5.56 (s, 2H)
 			乳白色結晶	+73 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	8.40 (d, J=2.5Hz, 1H), 7.79 (dd, J=2.5, 8.2Hz, 1H), 7.52 (d, J=8.2Hz, 1H), 7.09 (d, J=4.8Hz,
	₹=-(`	第二クロ	166-167°C	m/z 226 = (M+H)	1H), 6.55 (s, 2H), 6.33 (d, J=4.8Hz, 1H), 5.01
		4		C ₃ H ₈ OIN ₃ S	
	2		アセトニトリル		
 	2 1 2 -		淡黄色結晶	m/z 209 = (M+H) ⁺	8.35 (d, J=2.5Hz, 1H), 7.69 (dd, J=2.5, 8.3Hz, 1H), 7.53 (d, J=8.3Hz, 1H), 6.94 (br, 2H), 6.83 (d, J=1.8Hz, 1H), 6.88 (d, J=1.8Hz, 1H), 6.88 (d, J=1.8Hz, 1H), 6.88 (d, J=1.8Hz, 1H), 6.88 (d, J=1.8Hz, 1H), 6.84 (d, J=1.8Hz, 1H), 6
		フマル酸	168-169°C	2	(s, 2H), 5.06 (s, 2H)
	Z O		アセトン	4 () () () () () () () () () (
1	T _N =		乳白色結晶	m/2 221 = (M+H) ⁺	8.70 (dd, J=2.1, 4.1Hz, 1H), 8.50 (dd, J=2.1, 6.5Hz, 1H), 8.49 (d, J=2.4Hz, 1H), 7.86 (dd, J=0.4, 1H), 7.86 (dd, J=0.4, 1H), 8.88
	Z Z	フマル酸	155-158°C	ZO T	(dd, J=4.1, 6.5Hz, 1H), 6.47 (s, 2H), 5.42 (s, 2H)
	z		アセトニトリル	r	

第3表

		-	44.41	17 17 22 22	
との物	**	-	년 수 년	四面分中	
番号	化子锤 品	硘	配点(°C)	実測値	H-NMR(DMSO-ds)
			結晶化溶媒	分子式	
	2		乳白色結晶		8.38 (s. 1H), 7.68 (m, 2H), 7.11 (br, 1H), 6.55
	ξ <u></u>			$m/z 270 = (M+H)^{+}$	(s, 2H), 6.36 (br, 1H), 5.00 (s, 2H)
=	S.	フマル酸	149-152°C		
			アセトニトリル - エタノール	C ₉ H ₈ BrN ₃ S	
	₹=		無色結晶		8.25 (s, 1H), 7.95 (m, 1H), 7.19 (dd, J=2.7,
12	s) N	フマル酸	153-155°C	$m/z 210 = (M+H)^{2}$	(br, 1H), 5.04 (s, 2H)
	N		アセトン	C ₃ H ₈ FN ₃ S	
	r Z:		無色結晶		8.40 (d, J=2.5Hz, 1H), 7.82 (dd, J=2.5, 8.2Hz,
13	HN N	カイル酸	145-149°C	m/z 211 = (M+H)*	1H), /.56 (d, J=8.2Hz, 1H), 6.50 (s, 2H), 4.57 (s, 2H), 3.52 (m, 4H)
		S	2	CH. CIN.	
1			アセトニトリル	3	
	I.		無色結晶		8.43 (d, J=2.5Hz, 1H), 7.86 (dd, J=2.5, 8.2Hz,
4		‡ 1		$m/z 210 = (M+H)^{+}$	1H), 7.56 (d, J=8.2Hz, 1H), 6.41 (s, 2H), 4.80 (s, 2H), 3.56 (t, J=7.1Hz, 2H), 9.94 (+
		アイト図	142~145°C		J=8.0Hz, 2H), 2.02 (m, 2H)
			アセトニトリル	0.00120	
	Ĭ Z:		無色結晶		8.37 (d, J=2.5Hz, 1H), 7.80 (dd, J=2.5, 8.4Hz,
15	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	章 - P	0,70, 09,	m/z 224 = (M+H) ⁺ (((s, 2H), 4.73 (d, J=8.4Hz, 1H), 6.34 (s, 2H), 4.73 (s, 2H), 3.38 (t, J=6.0Hz, 2H), 2.68 (t
	CIN	受えて	103-104 C	, H.O.	J=6.3Hz, 2H), 1.76 (m, 4H)
-			アセトン	7	

第4表

			在状	質量分析	,
代 4 1 1 1 1 1 1	化学構造	桶	融点(°C)	実測値	1H-NMR(DMSO-d ₆)
梅			結晶化溶媒	分子式	
			無色結晶		8.42 (d, J=1.7Hz, 1H), 7.86 (dd, J=1.7, 8.2Hz,
	I			m/z 226 = (M+H) ⁺	1H), 7.55 (d, J=8.2Hz, 1H), 6.39 (s, 2H), 4.69
16	0- N-	フマル酸	126-127°C		(s, zn), 4.39 (t, d=3.3nz, zn), 3.33 (t, d=6.1Hz, 2H), 2.08 (m, 2H)
	\ \ \ \ \ \ \ \ \ \			C ₁₀ H ₁₂ CIN ₃ O	
	:		アセトン		
			無色結晶		8.39 (d, J=2.3Hz, 1H), 7.86 (dd, J=2.3, 8.2Hz,
	Z=			$m/z 242 = (M+H)^{+}$	
17	S N	フマル酸	122-124°C		(3, 211), 3.10 (t, 3-1), 112, 210, 2.03 (t, 1)=6.8Hz, 2H), 1.92 (m. 2H)
				C ₁₀ H ₁₂ CIN ₃ S	
	> ~ ~	٠	アセトン		
			無色結晶		8.14 (s, 1H), 7.85 (m, 1H), 7.17 (dd, J=2.7,
	Z=			$m/z 224 = (M+H)^{+}$	(8.3Hz, 1H), 6.54 (s, 1H), 5.92 (s, 1H), 5.02 (s,
<u>a</u>	S. N.	第二カー	182-184°C		(A), 2.03 (S, 3H)
2		(1/2分子)	- 20	C ₁₀ H ₁₀ FN ₃ S	
	e Maria		アセトン		
	T.V		無色結晶		8.29 (d, J=2.3Hz, 1H), 7.64 (d, J=8.2Hz, 1H),
	—< <			$m/z 284 = (M+H)^{+}$	7.37 (da, J-2.3, 8.2Hz, 1H7, 0.37 (s, 2H), 3.37 (s, 1H) 5.07 (s, 2H) 7.03 (s, 3H)
19	» —	フマル酸	187-188°C		
	Br N Me			$C_{10}H_{10}BrN_3S$	
			アセトン		
	IZ		乳白色結晶		8.30 (d, J=2.4Hz, 1H), 7.66 (dd, J=2.4, 8.2Hz, 1H) 751 (d. J=8.2Hz, 1H) 653 (e. 2H) 5.14
	- ($m/z 254 = (M+H)^{+}$	(s, 2H), 2.07 (s, 3H), 1.98 (s, 3H)
20		フマル酸	150-153°C		
	CI N Me' Me		アセトニトリル	15 (15)	
		T			

第5表

	0-4-)))	dd, J=2.3, 8.2Hz	.54 (s, 1H), 5.87	,711, 2117,		s, 1H), 7.81 (m,	(s, 2H)		, J=6.6Hz, 1H),	1, J=2.3, 8.3Hz,	13 (dd, J-0.0, (s. 2H) 2.22 (s.	(3) 27.7 (3)	(m, 2H), 7.56	, 6.36 (s, 2H),			J=6.9Hz, 1H),	5 (dd,J=8.2Hz	s, 2H), 2.41(s,
	1H-NMR(DMSO-dz)		8.29 (d, J=2.3Hz, 1H), 7.66 (dd, J=2.3, 8.2Hz,	(1H), 7.49 (d, J=8.2Hz, 1H), 6 (s, 1H), 5.02 (s, 2H), 2.33 (g,	1.65 (t, J=7.3Hz, 3H)		8.46 (d, J=2.3Hz, 1H), 8.42 (s, 1H), 7.81 (m, 2H) 7.44 (d, 1=9.91-3.14)	9.5Hz, 1.H), 6.43 (s, 2H), 5.46 (s, 2H)		8.40 (d, J=2.3Hz, 1H), 8.08 (d, J=6.6Hz, 1H),	7.78 (d, J=7.1Hz, 1H), 7.71(dd, J=2.3, 8.3Hz, 1H), 7.56 (d. 1=8.3Hz, 1H), 6.00 (dd, 1=6.5)	7.1Hz, 1H), 6.42 (s. 2H) 5.63 (s. 2H) 9.99 (s.	3H)	8.42 (s, 1H), 8.02 (s, 1H), 7.75	(a, J=8.3Hz, 1H), 7.09 (m, 1H), 6.36 (s, 2H), 5.47 (s, 2H), 2.17 (s, 3H)			8.27 (d, J=2.4Hz, 1H), 7.89 (d,J=6.9Hz, 1H),	14), 6.94 (d, J=1.7Hz, 1H), 6.85 (dd, J=1.7,	0.3⊓z 1H), 0.65 (s, 1H), 5.45 (s, 2H), 2.41(s, 3H) in CD ₃ OD
質量分析	実測値	分子式		m/z 254 = (M+H)*	\ \frac{1}{2}	011 115 CIN33		$m/z 254 = (M+H)^{2}$	$C_{11}H_9Cl_2N_3$		$m/z 234 = (M+H)^{+}$		G ₁₂ H ₁₂ QIN ₃		m/z 234 = (M+H)*	C ₁₂ H ₁₂ CIN ₃			$m/z 234 = (M+H)^{*}$	C ₁₂ H ₁₂ ClN ₃
在状	题点(°C)	結晶化溶媒	乳白色結晶	9,00	1/9-181°C	アセトン	淡赤褐色結晶	176-177°C	アセトン	淡黄色結晶		146-153°C	アセトン	淡黄色結晶	175-177°C		アセトン	無色結晶	204-207°C	
	型型			1 1	ノネケ殿 (1/2 4 4)			フマル酸			:	ノベル競			フマル酸				フマル酸	(1/2分子)
3	一 化平槽面		₹⇒⟨ ⟨		, [®] ₩		Ĭ Ž⇒(-D		¥.	> z	CI	Ξ=<		-W		¥.	Z -	CINN
化合物	番号			21				22			23				24				25	

第6表

5.) 東海値 分子式 か子式 m/z 186 = (M+H) ⁺ 。C C ₁₁ H ₁₁ N ₃ 目 m/z 242 = (M+H) ⁺ こ C ₁₀ H ₁₂ CIN ₃ S In m/z 212 = (M+H) ⁺ の C ₂ H ₁₀ CIN ₃ O C ₂ H ₁₀ CIN ₃ O In m/z 225 = (M+H) ⁺ In m/z 284 = (M+H) ⁺ S ₂ C C ₁₀ H ₁₃ CIN ₄				中华	整體 公拆	
1.5 子 情 追	化合物	#	ŧ	(C) 17 mg	車画電	'H-NMR(DMSO-ds)
157-158°C 157-158°C 157-158°C 157-158°C 157-158°C 157-158°C 157-158°C 167-158°C 16	梅中	⊬	īģ.	10) 11 11 14 14 14 14 14 14 14 14 14 14 14	1 1 1	
現自色結晶 m/2 186 = (M+H) [†]	ì			帕爾化洛珠	ガナガ	117 0 5 1 1 1 0 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
157-158°C				乳白色結晶		8.58 (d, J=1.6Hz, 1H), 8.50 (dd, J=1.6, 4.4Hz,
157-158°C		¥.			m/z 186 = (M+H) ⁺	(H), 8.20 (d, J=5.8Hz, 1H), 7.32 (M, 1H), 7.05
NH	96		数三クロ	157-158°C		(4, 9-6.012, 110, 7.11 (46, 5.11, 5.012, 117) 7 15 (4 ,1=8 7Hz 1H) 6.96 (m 1H) 6.51(s.
#色結晶 m/2 242 = (M+H) [*] 塩酸 141-153°C C ₁₀ H ₁₂ CIN ₃ S	0.7		X		C,H,N,	2H), 5.52 (s, 2H)
#色結晶) Z		アセトン		
(2分子) 7セトン				角化结晶		10.20 (s, 1H), 9.94 (s, 1H), 8.44 (d, J=2.4Hz,
(2分子) アセトン (2分子) アセトン (2分子) アセトン (2分子) アセトン (2分子) (2分子) アセトン (2分子) (111-113°C (3-H ₁₀ CIN ₃ O アセトン (2分子) (2分子) (2分子) (2分子) (111-113°C (3-H ₁₀ CIN ₃ O アセトン (2分子) (2分子) (2分子) (2分子) (2分子) (3-H ₁₀ CIN ₄ O (2分子) (2分子) (3-H ₁₀ CIN ₄ O (3-H ₁₀ CIN ₄ O (3-H ₁₀ CIN ₃		HN=			$m/_{2}$ 249 = (M+H) ⁺	1H), 7.86 (dd, J=2.4, 8.2Hz, 1H), 7.57 (d,
CI N Me (2分子) 7セトン C ₁₀ H ₁₂ CIN ₃ S 7セトン #色結晶 m/2 212 = (M+H) [†]		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 1	C000 + + + +	/·· · · · · · · · · · · · · · · · · · ·	J=8.2Hz, 1H), 5.13 (d, J=16.1Hz, 1H), 4./3 (d,
#色結晶 m/z 212 = (M+H) [†] #色結晶 m/z 212 = (M+H) [†]	27		1届数(04件)	7 501-14	C.H.,CIN,S	J=10.1Hz, 1H), 4.30 (m, 1H), 3.71 (m, 1H), 3.20 (m, 1H), 1.29 (d. J=6.3Hz, 3H)
#色結晶 m/z 212 = (M+H) [†]		CI. N	(7 7 7)	アセトン	31.00	
#世帝語 m/z 212 = (M+H) [†] m/z 212 = (M+H) [†] m/z 212 = (M+H) [†] #色結晶 m/z 225 = (M+H) [†] に (2分子) アセトン C ₁₀ H ₁₃ ClN ₄ アセトン #色結晶 m/z 284 = (M+H) [†] #色結晶 m/z 284 = (M+H) [†] #色結晶 m/z 284 = (M+H) [†]				加及社 目		8.45 (s. 1H), 7.99 (d. J=8.2Hz, 1H), 7.57 (d.
Ci N NH 塩酸 111-113°C C ₉ H ₁₀ CiN ₃ O アセトン 無色結晶 m/z 225 = (M+H) [†] は酸 170-173°C C ₁₀ H ₁₃ CiN ₄ アセトン 無色結晶 m/z 284 = (M+H) [†]		H		第四部	**************************************	J=8.2Hz, 1H), 6.49 (s, 2H), 4.65 (s, 2H), 4.53
CI N					m/z 212 = (M+H)	(t, J=8.1Hz, 2H), 3.61 (t, J=8.1Hz, 2H)
Ci N N	28	o	フマル酸	111-113°C		
#色結晶 m/z 225 = (M+H) [†] 塩酸 170-173°C C ₁₀ H ₁₃ ClN ₄ アセトン #色結晶 m/z 284 = (M+H) [†] #色結晶 m/z 284 = (M+H) [†] アセトン C ₁₀ H ₁₀ BrN ₃ S アセトン C ₁₀ H ₁₀ BrN ₃ S] 			C,H10CIN3O	
# 色結晶 m/z 225 = (M+H) [†] 塩酸 170-173°C C ₁₀ H ₁₃ CIN ₄ アセトン # 色結晶 m/z 284 = (M+H) [†] # 色結晶 m/z 284 = (M+H) [†] アセトン Tマル酸 188-190°C C ₁₀ H ₁₀ BrN ₃ S アセトン アセトン		;		アセトン		
La数 170-173°C C ₁₀ H ₁₃ CIN ₄				無色結晶		8.36 (s, 1H), 7.95 (br. 1H), 7.78 (d, J=8.0Hz,
CI N NH 塩酸 170-173°C C ₁₀ H ₁₃ CIN ₄ CIN		HZ:			m/z 225 = (M+H) [†]	1H), 1.30 (d, J=8.0Hz, 1H), 1.40 (br, 2H), 4.04 (c, 9H) 3.94 (m, 2H) 1.89 (m, 9H)
Ci N C ₁₀ H ₁₃ CiN ₄ C ₁₀ H ₁₃ CiN ₄ C ₁₀ H ₁₃ CiN ₄ A Heb計	29	₹	塩酸	170-173°C		
Ci N			(2分子)		C ₁₀ H ₁₃ CIN ₄	
# 任 任 報) N IS		アセトン		
Br m/z 284 = (M+H) m/z 284 = (M+H) m/z 284 = (M+H) m/s		TZ		無色結晶	•	8.63 (s, 1H), 8.42 (s, 1H), 7.87 (s, 1H), 6.57 (s, 2H) 5.99 (s, 1H), 5.04 (s, 2H), 2.03 (s,
Ne		Br. S.	İ	9	m/z 284 = (M+H)	(HE
アセトン	30		フマル酸	188-190 ⁻ C	C.H.BrN.S	
		Me.		アセトン	201.001	

第7表

1H-NMR(DMSO-d ₆)	7.44 (d, J=8.5Hz, 2H), 7.34 (d, J=8.5Hz, 2H), 6.52 (s, 2H), 4.64 (s, 2H), 3.66 (t, J=7.2Hz, 2H), 3.31 (t, J=7.2Hz, 2H)	8.36 (s, 1H), 7.57 (d, J=8.0Hz, 1H), 7.20 (d, J=8.0Hz, 1H), 6.49 (s, 2H), 4.53 (s, 2H), 3.57 (t, J=7.0Hz, 2H), 3.22 (t, J=7.0Hz, 2H), 2.41(s, 3H)	9.19 (d, J=2.9Hz, 1H), 9.18 (s, 1H), 7.57 (d, J=2.9Hz, 1H), 6.54 (s, 2H), 4.65 (s, 2H), 3.68 (t, J=6.9Hz, 2H)	7.65 (s, 1H), 6.60 (s, 2H), 4.67 (s, 2H), 3.53 (t, J=6.8Hz, 2H), 3.21 (t, J=6.8Hz, 2H)	6.59 (s, 2H), 6.29 (s, 1H), 4.68 (s, 2H), 3.66 (t, J=7.0Hz, 2H), 2.22 (s, 3H)
質量分析実測値分子式	m/z 227 = (M+H)* C ₁₀ H ₁₁ CIN ₂ S	m/z 208 = (M+H)* C ₁₀ H ₁₃ N ₃ S	m/z 195 = (M+H) ⁺ C ₈ H ₁₀ N ₄ S	m/z 234 = (M+H) ⁺ C ₇ H ₈ CIN ₃ S ₂	m/z 198 = (M+H)* C ₈ H ₁₁ N ₃ OS
性状 融点(°C) 結晶化溶媒	無色結晶 192-195°C アセトニトリル	無色結晶 158-160°C アセトン	淡褐色結晶 149-152°C アセトン	無色結晶 157-159°C アセトン	無色結晶 145-146°C アセトン
型型	カマル酸	フマル酸	フマル酸	フマル酸	フマル酸
化学構造	CI	Me N	Z Z Z	CI S N N S IS	Me N O N
化合物 番号	31	32	33	34	35

第8表

			44.44	计八回码	
₹ 4 4			T+ (+	月曜刀小	
17日本日本日本	化学構造	雪	(S) 型曜	天測価	H-NMR(DMSO-d ₆)
無			結晶化溶媒	分子式	
	HZ:		無色結晶	**	10.03 (s, 2H), 6.75 (s, 1H), 6.50 (s, 1H), 5.52 (s, 2H) 2.27 (s, 3H)
90	√N N	14.14	0000	m/z 210 = (M+H)	
9		超数(04年)	198-200	C.H.,N,OS	
	We		アセドン		
	HN		無色結晶		7.71 (s. 1H), 6.59 (s. 1H), 5.76 (s. 1H), 4.99 (s. 2H) 2.10 (s. 3H)
	- ≺			$m/z 246 = (M+H)^{2}$	(1) (2) (2) (1) (3)
37	S	フマル酸	165-167°C		
	CI N MB	(1/2分子)	•	C ₈ H ₈ CIN ₃ S ₂	
			アセトン		
	HX:		無色結晶	•	8.27 (d, J=1.9Hz, 1H), 7.96 (d, J=1.9Hz, 1H), 16.57 (s, 2H), 5.01 (s, 2H), 5.01 (s, 2H), 5.00 (s, 2H
ć	S N N N N N N N N N N N N N N N N N N N	4 		$m/z 274 = (M+H)^{-1}$	(s, 3H)
38		ノマル酸	2.881-/81		
	CI N We		-	C ₁₀ H ₉ Cl ₂ N ₃ S	
			アセトン		
	HN		淡黄色結晶		8.33 (d, J=2.0Hz, 1H), 7.48 (dd, J=2.0, 8.0Hz, 1H) 7.73 (d. J=8.0Hz, 1H) 6.54 (e. 2H) 6.07
	→ <			$m/z 220 = (M+H)^{2}$	(s. 1H) 5.04 (s. 2H) 2.44 (s. 3H) 2.03 (s. 3H)
39		フマル酸	155-159°C	2	
	Me N		アセトン		
	Ξ= (淡褐色結晶	******	8.46 (d, J=2.4Hz, 1H), 7.86 (dd, J=2.4, 8.2Hz, 1H), 7.64 (s. 1H), 7.52 (d. J=8.2Hz, 1H), 7.35
				m/z 302 = (M+H)	(m, 4H), 7.23 (t, J=6.8Hz, 1H), 6.61 (s, 2H),
40	Z Z	フマル酸	161-163°C	S.N.OHO	4.98 (s, 2H)
	1		アセトン	£ 7)61	
4	·				

第9表

行 牌	サ サ 型 型 型 型 で で で で で で で で で で で で で	コマル 選 フマト	性状 融点(°C) 結晶化溶媒 淡褐色結晶 168-172°C アセトニトリル 無色結晶 193-197°C アセトニトリル 無色結晶	質量分析 実測値 分子式 m/z 302 = (M+H)* C ₁₅ H ₁₂ CIN ₃ S m/z 336 = (M+H)* C ₁₅ H ₁₁ Cl ₂ N ₃ S	¹ H-NMR(DMSO-d ₆) 7.94 (d, J=2.2Hz, 1H), 7.44 (m, 5H), 7.29 (m, 2H), 6.60 (s, 2H), 6.27 (s, 1H), 4.93 (s, 2H) 7.98 (d, J=2.3Hz, 1H), 7.48 (d+m, J=8.5Hz, 3H), 7.42 (d, J=8.3Hz, 1H), 7.32 (d, J=8.5Hz, 2H), 6.60 (s, 2H), 6.28 (s, 1H), 4.91 (s, 2H)
		塩酸 (2分子) 塩酸 塩酸	199-201°C アセトン 淡褐色結晶 2-プロパノール 淡褐色結晶 >275°C >275°C	m/z 304 = (M+H) ² C ₁₅ H ₁₄ CIN ₃ S m/z 297 = (M+H) ² C ₁₆ H ₁₃ CIN ₄ C ₁₆ H ₁₄ N ₄ C ₁₆ H ₁₄ N ₄	9.7 (br, 2H), 8.60 (d, J=9.5Hz, 1H), 7.33–7.41 (m, 5H), 5.29–5.33 (m, 1H), 4.90–4.99 (m, 2H), 4.31–4.36 (m, 1H), 4.04–4.08 (m, 1H) 9.7 (br, 2H), 8.60 (d, J=2.2Hz, 1H), 8.44 (d, J=9.5Hz, 1H), 7.98 (dd, J=2.2, 8.3Hz, 1H), 7.93 (m, 2H), 7.82 (d, J=9.5Hz, 1H), 7.58 (m, 4H), 5.72 (s, 2H) 9.8 (br, 2H), 8.75 (d, J=2.0Hz, 1H), 8.59 (dd, J=1.4, 4.8Hz, 1H), 8.46 (d, J=9.6Hz, 1H), 7.94 (m, 2H), 7.90 (m, 1H), 7.84 (d, J=9.6Hz, 1H), 7.95 (m, 2H), 7.95 (m, 2H), 7.95 (dd, J=2.0Hz, 1H), 7.97 (m, 2H), 7.97 (dd, J=3.6Hz, 1H), 7.97 (s, 2H)

第10表

			3	计八百级	
			在状	員里力们	
化合物	4 9 4 4 6	並	题点(°C)	実測値	H-NMR(DMSO-d ₆)
無中	Ē	1	結晶化溶媒	分子式	
			K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		19 06 (d. 1=2 1Hz. 1H), 8.89 (d. J=1.7Hz, 1H),
	Ĭ.		乳白色結晶	†X1	8.55 (d, J=2.2Hz, 1H), 7.94 (m, 2H), 7.70 (d,
	z= z-			m/z 297 = (M+H)	J=7.5Hz, 2H), 7.52 (m, 2H), 7.42 (d, J=7.1Hz,
46		フマル酸	153-157°C		1H), 6.48 (s, 2H), 5.43 (s, 2H)
:	-√_			C ₁₆ H ₁₃ CIN ₄	
	>		アセトン		
			沙林氏结目		9.56 (d, J=2.4Hz, 1H), 8.56 (dd, J=2.4, 9.8Hz,
	Ŧ=		汉英氏语器	$m/z 265 = (M+H)^{+}$	1H), 8.47 (s, 1H), 7.84 (dd, J=2.2, 8.3Hz, 1H),
ŗ	Z-	田 フナ 単等	036-937°C		7.38 (q, 0-6.302, 10), 7.23 (dd, 0-5.7, 5.012, 11), 7.84 (dd, 0-5.7)
-		来 に 小米 既	0 107 007	C,1H,CIN402	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	NO ₂		アセトニトリル		
					19 94 (hr 1H) 8 46 (s 1H) 8 09 (d .)=6.6Hz.
	I N		無色結晶	•	14) 7 78 (m. 14), 7.56 (d. J=8.0Hz, 14), 7.28
				$m/z 200 = (M+H)^{T}$	(d. J=8.0Hz, 1H), 7.13 (d, J=8.9Hz, 1H), 6.81
48	/= /z- /=	フマル酸	155-157°C		(m, 1H), 6.34 (s, 2H), 5.45 (s, 2H), 2.45 (s,
	Me N N			C ₁₂ H ₁₅ N ₃	3H)
			アセトン		
			無色結晶		(9.19 (d, J=4.7Hz, 1H), 7.70 (m, 2H), 6.53 (s,
	IZ=			m/z 195 = $(M+H)^{+}$	307, 4.97 (S, 217), 3.80 (t, 3-7.21.2, 217, 3.83 (t, 1=7.21.2, 217)
49	S N	フマル酸	167-169°C		
2) = 2	(1.5分子)		C ₈ H ₁₀ N ₄ S	
	N.		アセトン		
			淡黄色結晶	•	7.70 (s, 1H), 7.14 (s, 2H), 6.84 (s, 1H), 6.68 (s, 1H), 6.54 (s, 2H)
	NH2			m/z 215 = (M+H)	
20	N N S	フマル酸	160-161°C	2	
			7447	C,H,CIN,	
			/ 11/		

第11表

1						
1 日	化合物	:		在状	質量分析	
11	華中	一 行 華	硒	融点(°C)	実測値	OSWO) GWIN-H
1				結晶化溶媒	分子式	
2 M/2 237 = (M+H) ⁷ (1/2分子) アセトニトリル 無色結晶 m/2 176 = (M+H) ⁷ (1/2分子) アセトニトリル (1/2分子) アセトニトリル (1/2分子) アセトニトリル (1/2分子) アセトン (1/2分子) (1/2分子) アセトン (1/2分子) (1/2分子) アセトン (1/2分子) (1/2分子) アセトン (1/2分子) (1/2分子) (1/2分子) アセトン (1/2分子) (1/2分				無色結晶		8.22 (d, J=2.5Hz, 1H), 7.59 (dd, J=2.5, 8.2Hz.
2 NN12 A在色結晶 MA (1/2分子) アセトニトリル C ₁₁ H ₁₃ ClN ₄ A (1/2分子) アセトニトリル C ₁₁ H ₁₃ ClN ₄ A (1/2分子) アセトン C ₁₀ H ₁₁ ClN ₄ A (1/2分子) アセトン C ₁₀ H ₁₁ ClN ₄ A (1/2分子) A セトン C ₁₀ H ₁₁ ClN ₄ A (1/2分子) A セトン C ₁₀ H ₁₁ ClN ₄ A (1/2分子) A (1/2) A	51	Z. Z.	フマル酸	231-232°C	m/z 237 = (M+H)*	1H), 7.48 (d, J=8.2Hz, 1H), 6.68 (s, 1H), 5.13 (s, 2H), 2.11 (s, 3H), 2.02 (s, 3H) in CD ₃ OD
2 NH12 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH			(1/2分子)	ルビトニトリル	C ₁₁ H ₁₃ CiN ₄	
2 N/2 176 = (M+H) ²		Ť		無色結晶		9.13 (s, 1H), 8.69 (s, 2H), 6.82 (s, 1H), 6.59
S CI N NH2	52	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	フマル酸	160-167°C	m/z 176 = (M+H)*	(s, 117, 0.53 (s, 2H), 6.45 (br, 2H), 5.07 (s, 2H),
S CI N NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH4H)* NH2] 		アセトン	C.H.	
S CI N NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH2 NH4H)* (1/2分子) アセトン 無色結晶 m/z 243 = (M+H)* (1/2分子) アセトン に0H1,GIN4 アセトン に0H6,GI2N4 アセトン (59H6,GI2N4 アセトン m/z 175 = (M+H)* (1/2分子) アセトン (59H6,GI2N4 アセトン アセトン アセトン (59H6,GI2N4 (59H6		NH2		淡褐色結晶		8.29 (s, 1H), 7.68 (dd, J=2.1, 8.2Hz, 1H), 7.47
CI N NH2	53	Z Z	フマル酸	202-206°C		(d, J=8.2Hz, 1H), 6.67 (s, 1H), 6.50 (s, 1H), 5.04 (s, 2H), 2.11 (s, 3H) in CD ₃ OD
CI NH2		CI N MA	(1/2分子)	アセトン		
CI N		NH ₂		無色結晶	1	8.34 (s, 1H), 8.02 (s, 1H), 6.88 (s, 1H), 6.71
Cohacign4 MH2 無色結晶 m/z 175 = (M+H) ⁺ アセトン CohloN4	54		フマル酸	188-190°C		(47 '8') 9.08 (8' ZH)
MH2 無色結晶 m/z 175 = (M+H)* コマル酸 154-156°C C ₉ H ₁₀ N ₄		N I I		アセトン	C ₆ H ₆ O ₂ N ₄	
m/z 175 = (M+H)* フマル酸 154-156°C C ₉ H ₁₀ N ₄		SHN H		無色結晶		8.54 (d, J=3.6Hz, 1H), 8.48 (s, 2H), 7.72 (d,
C ₀ H ₁₀ N ₄	55		フマル酸	154-156°C		J-0.2Hz, III., 1.47 (m, 1H), 6.89 (d, J=2.2Hz, IH), 6.86 (s, 2H), 5.16 (s, 2H)
		z		アセトン		

第12表

			4. 13	計ではいた	
			任状	月屋万仙	
との物	7 岁 貓 治	型	题点(°C)	実測値	(9p-OSWO)H-H.
神中	<u>E</u>	ı	結晶化溶媒	分子式	
			# 各 结 县		8.36 (d, J=1.8Hz, 1H), 7.63 (dd, J=1.8, 8.1Hz,
	ž			m/z 189 = (M+H) ⁺	(1H), 7.34 (d, J=8.1Hz, 1H), 6.86 (s, 2H), 6.68
56		フマル酸	155-156°C		
			7447	C10H12N4	
			無色結晶		7.44 (d, J=8.4Hz, 2H), 7.32 (d, J=8.4Hz, 2H),
	IN.			m/z 225 = $(M+H)^{+}$	7.07 (d, J=4.8Hz, 1H), 6.54 (s, 2H), 6.38 (d, 1=4.8Hz, 1H), 4.99 (s, 2H)
57		フマル酸	188-189°C		
			アカトン	C ₁₀ H ₀ CIN ₂ S	
	5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		7.44 (d, J=7.9Hz, 2H), 7.25 (d, J=7.9Hz, 2H).
	NH2		集の結合	m/> 208 = (M+H) ⁺	7.18 (br, 2H), 6.81 (s, 1H), 6.72 (s, 1H), 6.53
S	·	二 77	177°C.		(s, ZH), 5.02 (s, ZH)
28	Z)	強ノメノ)	C ₁₀ H ₁₀ ClN ₃	
	23		アセトン		
			淡褐色結晶		11.74 (s. 1H), 8.24 (d. J=4.5Hz, 1H), 8.02 (d.
	NH ₂			$m/z 214 = (M+H)^{+}$	(m. 1H), 6.89 (s, 1H), 6.77 (s, 1H), 6.52 (s,
95	Z N	フマル酸	185-187°C		2H), 5.14 (s, 2H)
3				CHITINS	
			アセトン		
			淡黄色結晶		7.63 (d, J=8.3Hz, 1H), 7.53 (s, 1H), 7.33 (d, J=4.5Hz, 1H), 7.33 (d, J=8.3Hz, 1H), 7.04 (d,
	I.			$m/z 258 = (M+H)^{T}$	J=4.6Hz, 1H), 6.72 (s, 2H), 4.93 (s, 2H) in
09	S N N N	フマル酸	203-204°C	2 2 2 0	CD ₃ OD
			アセトン		

第13表

			41.44	おいて出	
	1		T T	阿阿尔伯	
先 仆	: 構 造	硒	配点(°C)	実測値	'H-NMR(DMSO-d _e)
			結晶化溶媒	分子式	
			無色結晶		8.16 (m, 2H), 7.76 (d, J=7.6Hz, 1H), 7.67 (t,
N ₂ O	₹ = (フマル酸	199-208°C	m/z 236 = (M+H) ⁺	J=7.6Hz, 1H), 7.05 (d, J=4.8Hz, 1H), 6.53 (s, 1H), 6.23 (d, J=4.8Hz, 1H), 5.05 (s, 2H)
	^ <u>_</u>	-	アセトン	C ₁₀ H ₆ N ₃ O ₂ S	
			無色結晶		8.22 (d, J=8.6Hz, 2H), 7.50 (d, J=8.6Hz, 2H), 7.06 (d, J=4.8Hz, 1H), 6.55 (z, 5u), 6.50 (z, 5u)
		フマル酸	177-179°C	m/z 236 = (M+H)	J=4.8Hz, 1H), 5.10 (s, 2H)
0 ₂ N			アセトン	$C_{10}H_{\mathfrak{g}}N_{\mathfrak{z}}O_{2}S$	
	Ĭ.		無色結晶	*(1.1.44) = 300 -/	7.19 (m, 4H), 7.08 (d, J=4.7Hz, 1H), 6.52 (s, 2H), 6.46 (d, J=4.7Hz, 1H), 4.99 (s, 2H), 2.28
	S.	フマル酸	189-190°C	(H+H) = соз z /ш	(s, 3H)
4			F	C11H12N2S	
			747		
			無色結晶		7.61 (m, 4H), 7.08 (d, J=4.8Hz, 1H), 6.55 (s,
(I			m/z 259 = (M+H) ⁺	(2H), 6.31 (d, J=4.8Hz, 1H), 5.05 (s, 2H)
<u></u>	S\Z	フマル酸	187-190°C		
			アセトン	$C_{11}H_9F_3N_2S$	
			無色結晶		7.87 (d. J=7.8Hz, 2H), 7.49 (d. J=7.8Hz, 2H),
(=	1 1		m/z 216 = (M+H) ⁺	7.38 (d, J=4.5Hz, 1H), 7.09 (d, J=4.5Hz, 1H), 6.75 (s, 2H), 5.45 (s, 2H) in CD,OD
	, N	ノネト器	Z1Z-Z13°C	-	
]		744.	C: T ₉ N ₃ N	

第14表

				71 11 22	
			住状	質量分析	,
	化 學 榼 诟	硒	(SC) Y W Y	実測値	H-NMR(DMSO-d ₆)
神中			結晶化溶媒	分子式	
	IZ		無色結晶		11.76 (s, 1H), 8.24 (d, J=4.5Hz, 1H), 8.10 (d, J=7.8Hz, 1H), 7.67 (d, J=2.2Hz, 1H), 7.1 (m,
		i		m/z 231 = (M+H)	2H), 6.51 (s, 2H), 6.47 (m, 1H), 5.17 (s, 2H)
99		フマル酸	142-145°C	C1H10N4S	
	21		アセトン		

実験例1: <u>α 4 β 2 サブタイプニコチン性アセチルコリン受容体に対する結合 試験</u>

本発明化合物のα4β2サブタイプニコチン性アセチルコリン受容体に対する親和性は、下記の方法で測定した。これはPabreza L.A., Dhawan S. & Kellar K. J., Mol. Pharm., **39**, 9-12 (1990)およびAnderson D. J. & Arneric S. P. , Eur. J. Pharm., **253**, 261-267 (1994)の方法の変法である。

(1) α 4 β 2 サブタイプニコチン性アセチルコリン受容体を含む膜標品の調製

動物は日本チャールズリバー (Charles River Japan) から入手したフィッシャー344 (Fischer-344) 系雄性ラット (体重200-240g、9週令)を、室温(23±1℃) および湿度(55±5%) をコントロールした飼育室にて1~4週間飼育した。ラットは、12時間の明暗サイクル (午前7時から午後7時までの明期間) 環境下にて、ステンレス製ケージを用いグループ (1ケージあたり3-4匹) で飼育し、ラット用飼料および水は任意に与えた。

(2) α 4 β 2 サブタイプニコチン性アセチルコリン受容体結合実験

受容体結合実験は以下のように行った。すなわち、最終容量 200μ 1に被験化合物および [3 H] $^-$ サイチシン(Cytisine)(2nM)を含む試験管に膜標品($400-600\mu$ gの蛋白質を含む)を添加した。試料を氷冷した水浴中で75分間インキュベーションした。真空下でブランデル(Brandel)マルチマニホールド組織採集装置を用いて、0.5%ポリエチレンイミンにあらかじめ浸漬したワットマン(Whatman)GF/Bフィルターにより濾過した。緩衝液($3\times1m1$)でフィルターを洗浄した。フィルターは3m1のクリアゾルI(ナカライテスク製)中で計数した。非特異的結合は 10μ M(-)-ニコチン存在下で測定した。

実験結果の解析はアキュフィットコンペティションプログラム (Accufit Competition Program =ベックマン (Beckman) 製) によって行った。

実験例 $2: \alpha 1 \beta 1 \gamma \delta$ サブタイプニコチン性アセチルコリン受容体に対する 結合試験

本発明化合物の α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体に対する親和性は、下記の方法で測定される。これは Garcha H. S., Thomas P., Spivak C. E., Wonnacott S. & Stolerman I. P., *Psychopharmacology*, **110**, 347-354 (1993)の方法の変法である。

20

25

5

10

15

(1) α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体の調製動物は前記の実験例 1 と同様の動物を用いた。

 α 1 β 1 γ δ サブタイプニコチン性アセチルコリン受容体の抽出は、以下のように行った。ラットを断頭により屠殺した直後に後肢筋肉を摘出し、氷冷した生理食塩水ですすいだ後、液体窒素により凍結させ-80 $\mathbb C$ で保存した。凍結保存した後肢筋肉を解凍して、氷冷した緩衝液(2.5 mMリン酸ナトリウムバッファー(pH7.2)、90 mM NaC1、2 mM KC1、1 mM ED

10

15

20

(2) $\alpha 1 \beta 1 \gamma \delta$ サブタイプニコチン性アセチルコリン受容体結合実験

受容体結合実験は以下のように行った。被験化合物を含む試験管に筋肉抽出物 $(600-900\mu g)$ の蛋白質を含む)を加え37℃で15分間インキュベーションした。 $[^3H]-\alpha$ -ブンガロトキシン(α -Bgt)(1nM)を加え、さらに2時間インキュベーションした。真空下でブランデル(Brandel)マルチマニホールド組織採集装置を用いて、0.5%ポリエチレンイミンにあらかじめ浸漬したワットマン(Whatman)GF/Bフィルターにより濾過した。洗浄液($10mM \ KH_2PO_4, \ 150mM \ NaCl, \ pH7.2, 室温)(<math>5\times1m$ 1)でフィルターを洗浄した。フィルターは3mlのクリアゾル I(ナカライテスク製)中で計数した。非特異的結合は $1\mu M\alpha$ -Bgt存在下で測定した。 α -Bgt(標識、非標識共に)を含む溶液は0.25%BSAを含む緩衝液を用いて調整した。受容体結合実験では、BSAの最終濃度が0.05%となるように0.25%BSAを含む緩衝液を適宜添加した。

25 実験結果の解析は前記の実験例1と同様の方法で行った。

本発明化合物、および参考化合物である(-)-ニコチンの受容体結合試験結

果を、下記第15表ないし第17表に示した。

第15表

X7 1 0 4X		
化合物番号	α4β2*1	α 1 β 1 γ δ * 2
1	4.84nM	4. 9 μ Μ
2	3. 5 n M	12.8μM
3	5.8 n M	(69%, 28%)
4	7. 5 n M	(6%, 1%)
5	2. 2 n M	7. 6 5 μ M
6	1 5 n M	(44%, 15%)
7	3. 1 n M	71.2μM
8	0.5 n M	10. 2μΜ
9	22.2nM	(86%, 49%)
1 0	8. 7 n M	3 4 7 μ Μ
1 1	0.63nM	(13%, 5%)
1 2	1.89nM	(20%, -2%)
1 3	4. 6 n M	(26%, 8%)
1 4	1. 9 n M	(14%, 0%)
1 5	4.8 n M	(21%, 4%)
1 6	0.65nM	(14%, -2%)
1 7	5 2 0 n M	(68%, 23%)
1 8	10.8nM	5. 8 μ M
1 9	10.5nM	11. 7 μ Μ
2 0	7. 56 n M	(96%, 45%)
2 1	21.7nM	(57%, 19%)
2 2	33.7nM	(75%, 28%)
2 3	2 2 1 n M	(89%, 52%)
2 4	48.6nM	(80%, 36%)
2 5	171nM	(90%, 58%)
ニコチン	1.6 n M	182μΜ

* 1 :括弧内に示した数字は、化合物 1 $^\mu$ Mと、 1 0 $^\mu$ Mでの 3 H 3 1 - Cytis is in e 結合率を、コントロール%で示した。

 *2 :括弧内に示した数字は、化合物 100μ M と、 1000μ M での $[^3$ H] $-\alpha$ - B g t 結合率を、コントロール%で示した。

第16表

<u> </u>		
化合物番号	文谷 体税	和性 Ki
	α4β2*1	α 1 β 1 γ δ * 2
2 6	28. 2nM	41.6μΜ
2 7	53.1nM	1 6. ·3 μ M
2 8	2.77nM	3 9. 8 μ M
2 9	0. 25 n M	7. 0 2 μ M
3 0	26.7nM	2 2. 5 μ M
3 1	9 3 n M	(37%, 10%)
3 2	1 0 n M	1 4. 6 μ Μ
3 3	3 2 n M	(15%, 1%)
3 4	4. 9 n M	(14%, -1%)
3 5	4 1 n M	(12%, -3%)
3 6	2 6 3 n M	(10%, 2%)
3 7	16.4nM	22. 9 μ M
3 8	10.6nM	6 5. 2 μ M
3 9	30.5nM	1 0. 8 μ Μ
4 0	3 5 5 n M	(71%, 35%)
4 1	3 2 n M	(79%, 30%)
4 2	2 9 0 n M	(75%, 35%)
4 3	37. 1 n M	19.9μΜ
4 4	6 4 n M	(80%, 26%)
4 5	1 4 3 n M	(18%, 6%)
4 6	273nM	(88%, 66%)
4 7	2 2 7 n M	(93%, 73%)
4 8	47.9nM	5 6. 3 μ M
4 9	(62%, 16%)	(18%, 14%)
5 0	27. 1 n M	818μΜ
ニコチン	1.6 n M	182μΜ

* 1 : 括弧内に示した数字は、化合物 1 $^\mu$ M と、 1 0 $^\mu$ M での 3 H 3 $^$

*2:括弧内に示した数字は、化合物 100μ M と、 1000μ M での $[^3$ H] $-\alpha$ -B g t 結合率を、コントロール%で示した。

第17表

	受容体親和	D性 Ki
化合物番号	α4β2*1	α1β1γδ*2
5 1	(96%, 33%)	(103%, 53%)
5 2	24.9nM	3 0 2 μ M
5 3	2 2 6 n M	(98%, 56%)
5 4	9.72nM	(113%, 52%)
5 5	4 3 n M	6 6 μ M
5 6	165nM	5 4 5 μ M
5 7	11.9nM	1 3 μ Μ
5 8	(62%, 16%)	(62%, 37%)
5 9	50.2nM	1234μΜ
6 0	31.9nM	61. 3μM
6 1	65.4nM	219μΜ
6 2	29.1nM	79.8μM
6 3	160 n M	3 6 4 μ M
6 4	(60%, 15%)	(77%, 23%)
6 5	181nM	3 1 1 μ M
6 6	16.1nM	184μΜ
ニコチン	1. 6 n M	182μΜ

* 1 : 括弧内に示した数字は、化合物 $1~\mu$ M と、 $1~0~\mu$ M での $[^{3}$ H] - C y t i s i n e 結合率を、コントロール%で示した。

*2:括弧内に示した数字は、化合物 100μ Mと、 1000μ Mでの [3 H] $-\alpha$ -B g t 結合率を、コントロール%で示した。

実験例3: ヒトα4 β サブタイプニコチン性アセチルコリン受容体に対するア ゴニスト作用

本発明化合物のヒトα4β2サブタイプニコチン性アセチルコリン受容体に 10 おけるアゴニスト作用は、下記の方法で測定した。これは Papke R. L., Thinsc hmidt J. S., Moulton B. A. Meyer E. M. & Poirier A., *Br. J. Pharmcol.*, 1 20, 429-438 (1997)の方法の変法である。

(1) ヒトα4β2サブタイプニコチン性アセチルコリン受容体 c R N A の調

製

ヒトニコチン性アセチルコリンレセプター(hnACh-R) $\alpha 4$ および β 2 c DNAのクローニングは、常法に従い、h n A C h - R α 4 c D NAおよびhnACh-R β2 cDNAの塩基配列 (Monteggia et al., G ene, 155, 189-193 (1995)および Anand R. and Lindstrom J., Nucl. Acids Re s., 18, 4272 (1990)) に対応するDNAプライマーを合成し、Polymerase Cha in Reaction (PCR) 法によりhnACh-R α4 cDNAおよびhn ACh-R β 2 cDNAを得た。得られたhnACh-R α 4 cDNAおよびhnACh-R β2 cDNAを、SP6 RNAプロモーターを 有するcRNA発現用ベクター(pSP64 polyA)に挿入した(hnA 10 Ch-R α4/pSP64 polyAおよびhnACh-R β2/pSP・ 64 polyA)。制限酵素EcoRIで発現用ベクターを切断後、キャップ アナログ存在下で、SP6 RNAポリメラーゼを作用させてトランスクリプシ・ ョンを行い、hnACh-R α4 cRNAおよびhnACh-R β2 15 cRNAを得た。

(2) <u>アフリカツメガエル卵母細胞でのヒトα4β2サブタイプニコチン性ア</u>セチルコリン受容体の発現

アフリカツメガエル (Xenopus laevis) から既に摘出済みの卵母細胞 (Oocyte s)を購入(北日本生物教材)し、測定に用いた。室温下、コラゲナーゼ (Sig ma type I, 1mg/ml)を含むCa-free modified Barth液(88mM NaCl, 1mM KCl, 2.4mM NaHCO3, 0.82mM MgSO4, 15mM HEPES, pH7.6)で90分間ゆっくりと震盪後、酵素を洗い出し、ピンセットで濾胞細胞を除去しながら 卵母細胞を分離した。その後、抗生物質を加えたmodified Barth液(88mM NaCl, 1mM KCl, 2.4mM NaHCO3, 0.41mM CaCl2, 0.82mM MgSO4, 15mM HEPES, pH

15

20

25

:7. 6, 0. 1 V/V % Sigma製培養用ペニシリンおよびストレプトマイシン混液)中に移した。この卵母細胞にオートマチックインジェクター(DR UMMOND SCIENTIFIC CO., NANOJECT)を用いて1. 0 mg/ml に 調整した c RNAを50 n l (すなわち、1 卵母細胞あたりh n ACh - R α 4 c RNAとh n ACh - R β 2 c RNAをそれぞれ50 n g含む)を注入し、さらに4~14日間、19℃でインキュベートした。卵母細胞では、注入した c RNAが翻訳され、ヘテロ5量体 $[(\alpha 4)_2(\beta 2)_3]$ となり細胞膜上でイオンチャネルレセプターが形成される。

(3) ヒトα4β2サブタイプニコチン性アセチルコリン受容体に対するアゴニスト作用の測定

膜電位固定法によるヒトα4β2サブタイプニコチン性アセチルコリン受容 体応答の記録は、次のように行なった。卵母細胞を、容量50μ1のチャンバ 一に静置し、アトロピン (1μM) を含むRinger液 (115mM NaC 1, 2. 5 mM KCl, 1. 8 mM CaCl₂, 10 mM HEPES, p H:7.3)で灌流(流速:1ml/min)し、二電極膜電位固定法(日本光 電; CEZ-1250) により膜電位を-50mVに固定した。試験化合物は、 灌流液に添加し、惹起された内向き電流のピーク強度を計測した。試験化合物の 前後でアセチルコリン(ACh)による反応を記録し、試験化合物による反応を 標準化した。通常、摘出したばかりの卵母細胞では、内在性のムスカリン性アセ チルコリン受容体応答(受容体刺激により細胞内Ca濃度が上昇し、Ca依存性 Clチャネルを活性化することによる内向き電流)が観察されるが、これはコラ ゲナーゼ処理あるいはアトロピン(1μΜ)で完全に消失することを確認した 。また、コラゲナーゼ処理後、cRNAを注入しなかった卵母細胞では、ACh による応答は全く観察されなかった。したがって、nACh-R $\alpha 4$ cRNAおよびnACh-R β2 cRNAを注入した卵母細胞で観察される反 応(受容体刺激により、主にNaが細胞内に流入することで惹起される内向き電 流)は新たに発現したヒト α 4 β 2サブタイプニコチン性アセチルコリン受容体応答と考えられた。

本発明化合物、および参考化合物である(-) - ニコチンのアゴニスト作用試 5 験結果を、下記表 1 8 に示した。

表18

	アゴニスト作用		アゴニスト作用
化合物番号	(ED50) *1	化合物番号	(ED 5 0) *1
1	(20%)	2 9	0. 5 μ Μ
5	(4. 9%)	3 1	(4%)
6	86.0μM	3 3	(6%)
7	(16%)	3 4	(13%)
8	4. 2 μ Μ	4 4	(10%)
9	92.0μM	5 0	92. 4μM
1 1	(47%)	5 5	(17%)
1 2	(21%)	5 6	(11%)
1 3	14. 7μM	5 7	(23%)
1 4	27. 1μM	5 9	(21%)
1 6	1. 5 μ Μ	6 2	3 2 5 μ Μ
1 9	(3%)	-741	
2 8	15. 5μΜ	ニコチン	11.4μΜ

* 1 : アセチルコリン 1 0 $^$

10

以下に本発明化合物またはその薬理学的に許容される塩の、具体的な製剤例を示す。

製剤例1 (錠剤)

化合物16

2 5 g

15 乳糖

130g

結晶セルロース

20g

とうもろこし澱粉 20g

3%ヒドロキシプロピルメチルセルロース水溶液 100ml

ステアリン酸マグネシウム 2g

化合物16、乳糖、結晶セルロースおよびとうもろこし澱粉を、60メッシュ ふるいで篩過し、均一に混合したのち、練合機にいれ、3%ヒドロキシプロピルメチルセルロース水溶液を注加して練合した。次いで、16メッシュのふるいで 篩過造粒し、50℃で送風乾燥した。乾燥後16メッシュのふるいを通して整粒を行い、ステアリン酸マグネシウムを混合し、打錠機で直径8mm、重量200mgの錠剤を得た。

10

製剤例2(カプセル剤)

化合物 2 8 2 5. 0 g

乳糖 125.0g

コーンスターチ 48.5g

15 ステアリン酸マグネシウム 1.5g

上記成分を細かく粉末にし、均一な混合物となるよう十分に攪拌したのち、これを200mgずつゼラチンカプセルに充填し、カプセル剤を得た。

製剤例3(注射剤)

20 1 バイアル中に、化合物 2 9 の塩酸塩の 2 5 0 mg を、粉末のまま充填する。 用時、注射用蒸留水約 4 ~ 5 m l を添加して注射剤とする。

産業上の利用可能性

本発明に係る化合物は、中枢神経系のニコチン性アセチルコリン α 4 β 2 受 容体に対する結合能が高く、受容体に対するアゴニストまたはモジュレーターとして、ニコチン性アセチルコリン α 4 β 2 受容体を活性化することができるため、ニコチン性アセチルコリン α 4 β 2 受容体を活性化することによって予防

または治療が可能と考えられる疾患に対し有効である。

特に本発明のニコチン性アセチルコリン α 4 β 2受容体の活性化剤は、具体的には、痴呆、老年痴呆、初老期痴呆、アルツハイマー(Alzheimer)病、パーキンソン(Parkinson)病、脳血管性痴呆、エイズ関連痴呆、ダウン症における痴呆、またツレット(Tourette)症候群、脳梗塞慢性期の神経症状、頭部外傷による脳機能障害、不安、精神分裂病、うつ病、ハンチントン病、疼痛等に対する予防薬または治療薬として有用である。

請求の範囲

1. 次の一般式(I):

5

{式中、

Aは、置換されていてもよいアリール基または置換されていてもよい複素環基を表わし、

Xは酸素原子、硫黄原子、炭素原子または窒素原子を表わし、

10 点線は結合の存在あるいは非存在を表わし、

nは1または2の整数を表わし、そして、

Yは、

- (1) Xが酸素原子の時、-Y-X-で、 $-CH_2-CH_2-O-$ または $-CH_2$ $-CH_3-O-$ を表わし、
- 15 (2) Xが硫黄原子の時、-Y-X-で、 $-CH(R^1)-CH_2-S-$, $-C(R^2)$ $=C(R^3)-S-$ または $-CH_2-CH_2-CH_2-S-$ [式中、 $R^1\sim R^3$ は、水素原子、炭素数 $1\sim 4$ のアルキル基、置換されていてもよいフェニル基を示す] を表わし、
- (3) Xが炭素原子の時、-Y-X-で、 $-CH_2-CH_2-CH_2-$, -CH=C 20 $(R^4)-C(R^5)=C(R^6)-$, $-CH_2-CH_2-CH_2-CH_2-$ または $-N=C(R^7)-CH=CH-$ [式中、 $R^4\sim R^7$ は、水素原子、炭素数 $1\sim 4$ のアルキル基、置換されていてもよいフェニル基、ハロゲン原子、ニトロ基を示す〕を表わし、
 - (4) Xが窒素原子の時、-Y-X-で、 $-CH_2-CH_2-NH-$, $-CH_2-C$

 H_2-CH_2-NH- , $-CH=C(R^8)-N=$ または $-CH=C(R^9)-CH=N-$ [式中、 R^8 および R^9 は、水素原子または置換されていてもよいフェニル基を示す]を表す。}

で表わされる化合物またはその薬理学的に許容される塩を有効成分とする、ニコ 5 チン性アセチルコリン α 4 β 2 受容体の活性化剤。

2. ニコチン性アセチルコリン α 4 β 2 受容体のアゴニストまたはモジュレーターであることを特徴とする特許請求の範囲第 1 項に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤。

10

- 3. 特許請求の範囲第 1 項または第 2 項に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤からなる脳循環疾患の予防または治療薬。
- 4. 特許請求の範囲第1項また第2項に記載のニコチン性アセチルコリンα4 15 β2受容体の活性化剤からなる神経変性性疾患、痴呆、運動失調症、ならびに 神経および精神疾患の予防または治療薬。
 - 5. 神経変性性疾患がアルツハイマー(Alzheimer)病またはパーキンソン(Parkinson)病であり、痴呆が脳血管性痴呆であり、運動失調症がツレット(Tourette)症候群であり、神経および精神疾患が脳梗塞慢性期の神経症状、不安、または精神分裂病である特許請求の範囲第4項に記載の予防または治療薬。
- 6. 特許請求の範囲第1項または第2項に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤からなる脳代謝改善、神経伝達機能改善、脳保護、記 25 憶障害改善、または鎮痛作用を有する医薬品。
 - 7. 特許請求の範囲第1項または第2項に記載のニコチン性アセチルコリン α

- 4β2受容体の活性化剤からなる炎症性腸疾患の予防または治療薬。
- 8. 特許請求の範囲第1項に記載の一般式(I)で表わされる化合物またはその薬理学的に許容される塩の、ニコチン性アセチルコリンα4β2受容体の活性化剤としての使用。
 - 9. 特許請求の範囲第1項に記載の一般式(I)で表される以下の化合物または その薬理学的に許容される塩:
 - 1 (6 クロロ 3 ピリジル) メチル 2 イミノイミダゾリジン:
- $10 \quad 1 (6 0 0 3 2 2 2 2 4$
 - 1-(6-クロロ-3-ピリジル)メチル-2-イミノピペリジン:
 - 3-(6-2)00-3-ピリジル)メチルー2-イミノー3, 4, 5, 6-テトラヒドロー2H-1, 3-オキサジン:
 - 3-(6-クロロ-3-ピリジル)メチル-2-イミノ-3,4,5,6-テト
- - 3 (6 7) + 7 3 2 + 3 3 (6 7) + 7 3 2 4 3 4 -
 - 3-(6-ブロモ-3-ピリジル)メチル-2-イミノ-4-メチル-2, 3-ジヒドロチアゾール:
- 20 3-(6-クロロ-3-ピリジル) メチル-2-イミノ-4, 5-ジメチル-2, 3-ジヒドロチアゾール;
 - 3-(6-2)00-3-ピリジル)メチル-4-エチル-2-イミノ-2, 3-ジヒドロチアゾール:
 - 5-クロロー1-(6-クロロー3-ピリジル)メチルー2-イミノー1,2-
- 25 ジヒドロピリジン;
 - 1-(6-クロロ-3-ピリジル)メチル-2-イミノ-3-メチル-1, 2-ジヒドロピリジン:

- 1-(6-200-3-200) メチルー2-4ミノー5-3 チルー1, 2-5 ジヒドロピリジン;
- 5 2-イミノー1-(3-ピリジル)メチルー1,2-ジヒドロピリジン;
 3-(6-クロロー3-ピリジル)メチルー2-イミノー4-メチルチアゾリジン;
 - 3-(6-クロロ-3-ピリジル)メチル-2-イミノオキサゾリジン;
 - 1-(6-クロロ-3-ピリジル)メチル-2-イミノ-1,2,3,4,5,
- 10 6-ヘキサヒドロピリミジン;
 - 3-(5-) ロモー3- ピリジル)メチルー2- イミノー4- メチルー2, 3- ジヒドロチアゾール;
 - 3-(4-クロロベンジル)-2-イミノチアゾリジン;
 - 2-イミノ-3-(6-メチル-3-ピリジル)メチルチアゾリジン;
- 15 2-イミノー3-(4-ピリダジニル)メチルチアゾリジン;
 - 3-(2-クロロ-5-チアゾリル)メチル-2-イミノチアゾリジン;
 - 2-イミノ-3-(3-メチル-5-イソオキサゾリル)メチルチアゾリジン;
 - 2-イミノ-4-メチル-3-(3-メチル-5-イソオキサゾリル)メチル-
 - 2, 3-ジヒドロチアゾール:
- 20 3-(2-2) 3
 - 3-(5,6-ジクロロ-3-ピリジル) メチルー2-イミノー4-メチルー2 , 3-ジヒドロチアゾール ;
 - 2-イミノー4-メチルー3-(6-メチルー3-ピリジル)メチルー2、3-
- 25 ジヒドロチアゾール:
 - 3-(6-2)00-3-ピリジル)メチル-2-イミノ-5-フェニル-2, 3ージヒドロチアゾール;

- 3-(6-2)00-3-ピリジル)メチル-2-イミノ-4-フェニル-2, 3-20-ジヒドロチアゾール:
- 5 3-(6-クロロ-3-ピリジル)メチル-2-イミノ-4-フェニルチアゾリ ジン:
 - 2-(6-クロロ-3-ピリジル)メチル-3-イミノ-6-フェニル-2,3-ジヒドロピリダジン;
 - 3-イミノー6-フェニルー2-(3-ピリジル)メチルー2, 3-ジヒドロピ
- 10 リダジン;
 - 1-(6-クロロ-3-ピリジル)メチル-2-イミノ-5-フェニル-1,2 -ジヒドロピリミジン;
 - 1-(6-クロロ-3-ピリジル)メチル-2-イミノ-5-ニトロ-1,2-ジヒドロピリジン;
- 15 2-イミノー1-(6-メチル-3-ピリジル)メチル-1, 2-ジヒドロピリジン;
 - 2-イミノ-3-(3-ピリダジニル)メチルチアゾリジン:
 - 2-アミノ-1-(2-クロロ-5-チアゾリル)メチルイミダゾール;
 - 2-アミノ-1-(6-クロロ-3-ピリジル)メチル-4,5-ジメチルイミ
- 20 ダゾール;
 - 2-アミノ-1-(5-ピリミジル)メチルイミダゾール;
 - 2-アミノ-1-(6-クロロ-3-ピリジル)メチル-4-メチルイミダゾール:
 - 2-アミノ-1-(5,6-ジクロロ-3-ピリジル)メチルイミダゾール;
- 25 2-アミノ-1-(3-ピリジル)メチルイミダゾール;
 - 2-アミノ-1-(6-メチル-3-ピリジル)メチルイミダゾール;
 - 3 (4 7) ロロベンジル) -2 7 ミノー 2、 3 3 ビードロチアゾール;

- 2-アミノ-1-(4-クロロベンジル) イミダゾール:
- 2-アミノ-1-(7-アザ-3-インドリル)メチルイミダゾール;
- 3-(3, 4-ジクロロベンジル) -2-イミノ-2, 3-ジヒドロチアゾール:
- 5 2-イミノー3-(3-ニトロベンジル)-2,3-ジヒドロチアゾール;
 - 2-イミノ-3-(4-ニトロベンジル)-2, 3-ジヒドロチアゾール;
 - 2-1 (4-メチルベンジル) -2, 3-3 に ドロチアゾール;
 - 2-4 = 2-3-(3-1) = 3-3
- 10 3-(4-シアノベンジル) -2-イミノ-2, 3-ジヒドロチアゾール;
 - 3-(7-アザ-3-インドリル)-2-イミノ-2,3-ジヒドロチアゾール
- 10. 特許請求の範囲第 9 項に記載の化合物またはその薬理学的に許容される塩 15 を有効成分とするニコチン性アセチルコリン α 4 β 2 受容体の活性化剤。
 - 11. ニコチン性アセチルコリン α 4 β 2受容体のアゴニストまたはモジュレーターであることを特徴とする特許請求の範囲第10項に記載のニコチン性アセチルコリン α 4 β 2受容体の活性化剤。
- 20
- 12. 特許請求の範囲第10項または第11項に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤からなる脳循環疾患の予防または治療薬。
- 13. 特許請求の範囲第10項または第11項に記載のニコチン性アセチルコリン 25 ン α 4 β 2 受容体の活性化剤からなる神経変性性疾患、痴呆、運動失調症、ならびに神経および精神疾患の予防または治療薬。

14. 神経変性性疾患がアルツハイマー(Alzheimer)病またはパーキンソン(Parkinson)病であり、痴呆が脳血管性痴呆であり、運動失調症がツレット(Tourette)症候群であり、神経および精神疾患が脳梗塞慢性期の神経症状、不安、または精神分裂病である特許請求の範囲第13項に記載の予防または治療薬。

5

- 15. 特許請求の範囲第10項または第11項に記載の二コチン性アセチルコリン α4β2受容体の活性化剤からなる脳代謝改善、神経伝達機能改善、脳保護、記憶障害改善、または鎮痛作用を有する医薬品。
- 10 16. 特許請求の範囲第10項または第11項に記載のニコチン性アセチルコリン α 4 β 2 受容体の活性化剤からなる炎症性腸疾患の予防または治療薬。
 - 17. 特許請求の範囲第9項に記載の化合物またはその薬理学的に許容される塩の、ニコチン性アセチルコリン α 4 β 2 受容体の活性化剤としての使用。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/01190

A. CLAS	SSIFICATION OF SUBJECT MATTER		
Int	C1 ⁷ C07D213/73, 417/06, 401/	06, 413/06, 233/88, A61K3	1/44 4420 44
	506, 501, 5355, 427, 41	68, A91P43/00, 25/28	1/44, 4439, 444,
According	g to International Patent Classification (IPC) or to bot		
	OS SEARCHED		
	documentation searched (classification system follow	ed by alassification aumbala)	
1		ed by classification symbols)	
Int	.Cl ⁷ C07D213/00-73, 417/0 A61K31/00-5355, A91P	00-06, 401/00-06, 413/00 43/00, 25/00-28	-06, 233/00-88,
Documenta	tion searched other than minimum documentation to	the extent that such documents are included	dinaha Galda a da h
		and such documents are included	in the fields searched
Electronic e REG	data base consulted during the international search (na ISTRY (STN) , CAPLUS (STN)	ame of data base and, where practicable, sea	arch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
Х	US, 4956356, A (BAYER A. G.), 11:		
	& JP, 2-19378, A & EP, 3 (EXAMPLES 7,8)	344500, A1	9
Х	US, 4298734, A (MEAD JHONSON A 3 November, 1981(03.11.81)	AND CO.),	9
	& US, 4404380, A & US,	4366156 N	
	& US, 4489078, A	4300130, A	
	(Column 24, Formula XIX; Col	umn 32. Formula XV)	
PX	LATLI, B.; D'AMOUR, K; CASIDA,	J. E.	9
PA	Novel and potent 6-chloro-3-py	ridinyl ligands for the	1-8,10-17
	alpha4beta2 neuronal nicotinic	acetylcholine receptor.	
	J. Med. Chem., Vol.42, No.12, pp (Compounds 1-5, 8-10, 15)	.2227-2234 (17 June, 1999)	
	(Jompounds 1 3, 8-10, 13)		
A	US, 5736550, A (NISSINFLOUR MI	LLING CO. LTD)	1-17
	/ April, 1998(07.04.98)		1-1/
	& WO, 95/31442, A1 & EP, 7	60368, A	
}			
- [
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 			
Further	documents are listed in the continuation of Box C.	See patent family annex.	
A" documen	categories of cited documents:	"T" later document published after the inter	national filing date or
	nt defining the general state of the art which is not ed to be of particular relevance	priority date and not in conflict with the	application but cited to
E" earlier de	ocument but published on or after the international filing	"X" understand the principle or theory unde document of particular relevance; the cl	rlying the invention
date	nt which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered	ed to involve an inventive
cited to e	Stablish the publication date of another citation or other	"Y" step when the document is taken alone document of particular relevance; the cl	1
speciai re	eason (as specified) It referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step	when the document is
means		combined with one or more other such of	documents, such
P" documen	at published prior to the international filing date but later	"&" combination being obvious to a person s document member of the same patent fa	mily
	priority date claimed		
29 Ma	tual completion of the international search	Date of mailing of the international search	h report
	1, 23-1, 22.00,	13.06.00	
			1
ame and ma	iling address of the ISA/	Authorized officer	
Japan	ese Patent Office		
acsimile No.		Telephone No	
		Telephone No.	f

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/01190

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	US, 5547965, A (BAYER A. G.) 20 August, 1996(20.08.96) & JP, 7-300415, A & EP, 679397, A	1-17
PA	Zhao, S.; Freeman, J. P.; Bacon, C. L.; Fox, G. B.; O'Driscoll, E.; Foley, A. G.; Kelly, J.; Ferrell, U.; Regan, C.; Mizsak, S.A.; Szmuszkovicz, J. Syntheses of 1,2-diamino and 1,2-amino alcohol derivatives in the piperidine and pyrrolidine series as anti-amnesic agents. Bioorg. Med. Chem., Vol.7, No.8, pp.1647-1654 (1999 Aug.)	1-17
PA	D'AMOUR, K. A.; CASIDA, J. E. Desnitroimidacloprid and Nicotine Binding Site in Rat Recombinant alpha4beta2 Neuronal Nicotinc Acetylcholine Receptor. Pestic. Biochem. Physiol, Vol.64, No.1, pp.55-64 (1999 May)	1-17
	*	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

		国际出旗番号	PCT/JP(00/01190
A. 発明の Int. Cl. 7 C	の属する分野の分類(国際特許分類(IPC) 207D213/73, 417/06, 401/06, 413/06, 233/88, A61) K31/44, 4439, 444, 506, 501,	5355, 427, 4168,	A91P43/00, 25/28
B. 調査を	と行った分野	·		
調査を行った	二最小限資料(国際特許分類(IPC))			
1110.01.	07D213/00-73, 417/00-06, 401/00-06, 413/00-06	6, 233/00–88, A61K31/00–53!	55, A91P43/00, 2	5/00-28
最小限資料以	人外の資料で調査を行った分野に含まれるもの			
国際調本では	(B) + & 7			
国际調査で使 REGISTRY(用した電子データベース(データベースの名 STN), CAPLUS (STN)	你、調査に使用した用語)		
		•		
C. 関連す 引用文献の	ると認められる文献			
カテゴリー*	引用文献名 及び一部の箇所が関連する	ろときけ その間油ナス体ョ	E 0 = -	関連する
X	US, 4956356, A (BAYER A. G.) 11. 9月.	1990/11 00 00)	10)表示	請求の範囲の番号
	[&JP, 2-19378, A	. 1550 (11. 09. 90)		9
·	&EP, 344500, A1 (EXAMPLE 7, 8)			
X	US 4298734 A (MEAD THONSON AND OR)		
	US, 4298734, A (MEAD JHONSON AND CO &US, 4404380, A	ル)3.11月.1981(03.11	. 81)	9
	&US, 4366156, A			
	&US, 4489078, A			
	(Column 24 Formula XIX,Column 32	Pormula XV)		
X C欄の続き	とにも文献が列挙されている。	□ パテントファミ!	リーに関する別組	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
* 引用文献の	ンカテゴリー		· · · · · · · · · · · · · · · · · · ·	76 271110
「A」特に関連 もの	Eのある文献ではなく、一般的技術水準を示す		先日後に公表さ	れた文献であって「
「E」国際出願	日前の出願または特許であるが、国際出願日	て出願と矛盾する 論の理解のために	ものではなく、	発明の原理又は理
タ 後 に 公	※ 表されたもの	「X」特に関連のある文	歓であって、当	該文献のみで発明
口石しく	張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する	の新規性又は進歩	性がないと考え	られるもの
义 版(埋	由を付す) る開示、使用、展示等に言及する文献	「Y」特に関連のある文章 上の文献との、当	業者にとって自!	明である組合せに
「P」国際出願	る開介、使用、展示等に言及する文献 日前で、かつ優先権の主張の基礎となる出願	よって進歩性がない 「&」同一パテントファ	ハと考えられる	もの
際調査を完了	した日			
	29.05.00	国際調査報告の発送日	1 3.06.	00
際調査機関の	名称及びあて先	特許庁審査官(権限のある	5職員)	4P 9164
郵	特許庁(I S A / J P) 便番号 1 0 0 - 8 9 1 5	齊藤 恵		3104
東京都	千代田区霞が関三丁目4番3号	 電話番号 03-358]	خونت ≉ 1101 – ا	均線 3490
_			•	

様式PCT/ISA/210(第2ページ)(1998年7月)

国際調査報告

C (続き). 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号		
PX PA	LATLI, B.; D' AMOUR, K; CASIDA, J. E. Novel and potent 6-chloro-3-pyridinyl ligands for the alpha4beta2 neuronal nicotinic acetylcholine receptor. J. Med. Chem., Vol. 42, No. 12, p. 2227-2234 (1999 Jun 17) (Compounds 1-5, 8-10, 15)	9 1-8, 10-17		
A	US, 5736550, A (NISSINFLOUR MILLING CO. LTD.) 7.4月.1998(07.04.98) &WO, 95/31442, A1 &EP, 760368, A1	1-17		
A	US, 5547965, A (BAYER A. G.) 20.8月.1996 (20.08.96) &JP, 7-300415, A &EP, 679397, A	1-17		
PA	Zhao, S.; Freeman, J. P.; Bacon, C. L.; Fox, G. B.; O'Driscoll, E.; Foley, A. G.; Kelly, J.; Farrell, U.; Regan, C.; Mizsak, S. A.; Szmuszkovicz, J. Syntheses of 1, 2-diamino and 1, 2-aminoalcohol derivatives in the piperidine and pyrrolidine series as anti-amnesic agents. Bioorg. Med. Chem., Vol. 7, No. 8, p. 1647-1654 (1999 Aug.)	1-17		
PA	D'AMOUR, K. A.; CASIDA, J. E. Desnitroimidacloprid and Nicotine Binding Site in Rat Recombinant alpha4beta2 Neuronal Nicotinc Acetylcholine Receptor. Pestic. Biochem. Physiol, Vol. 64, No. 1, p. 55-64 (1999 May.)	1-17		

様式PCT/ISA/210 (第2ページの続き) (1998年7月)