DOCKER FOR REPRODUCIBLE AND SHAREABLE SCIENCE

June Sallou, june.benvegnu-sallou@irisa.fr

https://github.com/Jnsll/ModelisationScientifique

- **X** Scalability
- Interactivity
- **X** Collaboration
- Version control
- **X** Reproducibility

Common challenges

- Needing different versions of the same library for different projects
- Losing track of the required libraries for a specific project
- Requiring a different Python versions
- Setting up projects on a new team member's machine (which could have a different OS as well)
- Automating deployment
- Control of environments (version control)

How to tackle them?

Docker? What's that?

Docker Container is stand-alone software that contains both application code and its dependencies, which can run in any platform smoothly. The motto of Docker is to build once anywhere and run anywhere.

Docker

Docker allows us to manage the following dependencies in a single place:

- OS dependencies
- CLI tools dependencies
- Python dependencies

Docker

Containerized Applications

Docker

You can use Docker to create an **image**, run it as a **container**, and ship it anywhere. You can use a container registry service like **Dockerhub** for storing application images, and it integrates with Bitbucket and Github, where you can host **Dockerfile**.

Overview of the commands

Docker Image

> Using a Docker Image from the DockerHub https://hub.docker.com/

>> docker pull jupyter/datascience-notebook

Create a Docker Image

> Using a Dockerfile

FROM ubuntu:xenial

RUN apt-get update

RUN apt-get install -y locales python3-pip python3-dev python3-virtualenv

Create a Docker Image

>> docker image build Dockerfile

>> docker build . -t my_project_image

>> docker images -all

Run a Docker Image

>> docker run -p 8888:8888 <image-name> --name <name>

- #Show the containers
- >> docker ps -a
- # Interactive connection to the container
- >> docker exec -it <container_name> bash

Stop a Docker container

>> docker stop <Container-name>

Remove a Docker container

>> docker rm <Container-name>

Remove a Docker image

>> docker rmi <image-container-id>

References

- https://blog.datasciencedojo.com/data-sciencewith-docker-containers/
- https://blog.cnvrg.io/docker-for-machine-learning-and-reproducible-data-science
- https://www.docker.com/products/container-runtime
- https://www.thoughtworks.com/insights/blog/r eproducible-work-environments-using-docker

THANKS!

Any questions?

