(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-243463 (P2001-243463A)

(43)公開日 平成13年9月7日(2001.9.7)

		F I	· 5	7]}*(参考)
(51) Int.Cl.' G 0 6 T H 0 4 N	徽別記号	G 0 6 F H 0 4 N		5 B O 5 7 5 C O 7 7

審査請求 未請求 請求項の数8 OL (全 11 頁)

(21)出願番号	特顧2000-51446(P2000-51446) 平成12年2月28日(2000.2.28)	(71)出願人 000006079 ミノルタ株式会社 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル (72)発明者 栗飯原 述宏 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内
		(74)代理人 100089233 弁理士 吉田 茂明 (外2名)

最終頁に続く

記録媒体、並びに、画像処理装置および画像処理方法 (54) 【発明の名称】

(57)【要約】

【課題】 画像を単位領域に分割した後に単位領域ごと にコントラスト補正を行うコントラスト補正装置におい て、画像の濃度むらを適切に抑える。

【解決手段】 濃度ヒストグラム算出部201において 画像の濃度ヒストグラムを求め、シーン判定部202が 画像の状態を判定する。判定の結果、画像の状態が露出 オーバー、露出アンダー、コントラスト不足、ハイコン トラスト等の場合には、領域サイズ決定部204が単位 領域のサイズを大きなものに決定する。決定された単位 領域のサイズおよびコントラスト補正量決定部203に より決定されたコントラスト補正量に基づいて各単位領 域の濃度変換曲線を求め、これを用いて各単位領域のコ ントラスト補正を行う。これにより、コントラスト補正 量 (強調量) が大きいにも関わらず単位領域のサイズが 小さいために画像に濃度むらが生じてしまうことを適切 に抑えることができる。

【特許請求の範囲】

【請求項1】 画像のコントラストを補正するプログラムを記録したコンピュータ読み取り可能な記録媒体であって、コンピュータによる前記プログラムの実行は、前記コンピュータに、

前記画像においてコントラストを補正する単位となる単 位領域のサイズを決定する工程と、

前記単位領域のサイズに従って前記画像を複数の単位領域へと分割する工程と、

前記複数の単位領域に対応する複数の濃度変換特性を求 10 める工程と、

前記複数の濃度変換特性を用いて前記複数の単位領域の コントラストを補正する工程と、を実行させることを特 徴とする記録媒体。

【請求項2】 請求項1に記載の記録媒体であって、 前記単位領域のサイズが、前記画像の濃度ヒストグラム の分布に基づいて決定されることを特徴とする記録媒 体。

【請求項3】 請求項1に記載の記録媒体であって、 前記単位領域のサイズが、前記画像が撮影された際の撮 20 影条件に基づいて決定されることを特徴とする記録媒 体。

【請求項4】 請求項1に記載の記録媒体であって、 前記単位領域のサイズが、操作者により設定された情報 に基づいて決定されることを特徴とする記録媒体。

【請求項5】 請求項1に記載の記録媒体であって、前記単位領域のサイズが、前記画像のコントラスト補正量が大きいほどおよそ大きくなるように決定されることを特徴とする記録媒体。

【請求項6】 請求項1に記載の記録媒体であって、 前記単位領域のサイズが、前記画像において所定の色要 素の値が所定の範囲内である領域の大きさに基づいて決 定されることを特徴とする記録媒体。

【請求項7】 画像のコントラストを補正する画像処理 装置であって、

前記画像においてコントラストを補正する単位となる単 位領域のサイズを決定する手段と、

前記単位領域のサイズに従って前記画像を複数の単位領域へと分割し、前記複数の単位領域に対応する複数の濃度変換特性を求める手段と、

前記複数の濃度変換特性を用いて前記複数の単位領域の コントラストを補正する手段と、を備えることを特徴と する画像処理装置。

【請求項8】 画像のコントラストを補正する画像処理 方法であって、

前記画像においてコントラストを補正する単位となる単 位領域のサイズを決定する工程と、

前記単位領域のサイズに従って前記画像を複数の単位領域へと分割する工程と、

前記複数の単位領域に対応する複数の濃度変換特性を求 50

める工程と、

前記複数の濃度変換特性を用いて前記複数の単位領域の コントラストを補正する工程と、を有することを特徴と する画像処理方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、画像のコントラストを補正する技術に関する。

[0002]

【従来の技術】従来より、デジタルカメラやスキャナを 用いて取得された画像のコントラストを強調するコント ラスト補正が行われている。なお、コントラストとは一 般に、画像中の背景部分と主被写体部分との濃度の差や 画像中の最高濃度と最低濃度との差を指すが、ここで は、単に画像中に分布する明暗部の差の度合いをいうも のとする。したがって、以下の説明におけるコントラス トの補正とは、画素の濃度値を変換することにより画像 の濃度ヒストグラムを補正する処理に実質的に相当す る。

【0003】コントラストの補正の一例としては、補正 対象となる注目画素の周囲の一定領域において濃度ヒス トグラムを求め、この濃度ヒストグラムを変形した後、 累積ヒストグラムを求め、さらに、求められた累積ヒス トグラムを濃度変換曲線として利用して注目画素の濃度 値を変換するという手法がある。

【0004】しかしながら、この手法(以下、「局所的 ヒストグラム均等化法」という。)では各画素に関して 濃度ヒストグラムを求める必要があり、計算量が膨大に なるという問題を有する。

【0005】そこで、局所的ヒストグラム均等化法を修正した手法として、画像を複数の矩形領域に分割し、各領域の濃度ヒストグラムを作成し、この濃度ヒストグラムを変形した上で累積ヒストグラムを求め、これを濃度変換曲線と利用して領域中の全画素の濃度値を変換するという手法がある。これにより、分割された領域の数だけ濃度変換曲線を求めてコントラストの補正を行うことができ、計算時間が短縮される。

[0006]

30

【発明が解決しようとする課題】ところが、画像を複数の領域へと分割し、各領域をコントラスト補正の単位とする従来のコントラスト補正方法では、領域のサイズは固定とされてきた。その結果、領域間において濃度変換曲線が大きく異なる場合、領域の境界の両側で濃度が大きく異なることとなる。もちろん、線形補間等を用いて領域間の濃度の相違を緩和することも可能であるが、境界の両側にて濃度が著しく相違する場合には、補正後の画像においても濃度のむらが目立つこととなる。

【0007】そこで、この発明は、画像のコントラストを領域ごとに補正する際に、適切に濃度むらを抑えることを目的としている。

2

[8000]

【課題を解決するための手段】請求項1の発明は、画像のコントラストを補正するプログラムを記録したコンピュータ読み取り可能な記録媒体であって、コンピュータによる前記プログラムの実行は、前記コンピュータに、前記画像においてコントラストを補正する単位となる単位領域のサイズを決定する工程と、前記単位領域のサイズに従って前記画像を複数の単位領域へと分割する工程と、前記複数の単位領域に対応する複数の濃度変換特性を求める工程と、前記複数の濃度変換特性を用いて前記複数の単位領域のコントラストを補正する工程とを実行させる。

【0009】請求項2の発明は、請求項1に記載の記録 媒体であって、前記単位領域のサイズが、前記画像の濃 度ヒストグラムの分布に基づいて決定される。

【0010】請求項3の発明は、請求項1に記載の記録 媒体であって、前記単位領域のサイズが、前記画像が撮 影された際の撮影条件に基づいて決定される。

【0011】請求項4の発明は、請求項1に記載の記録 媒体であって、前記単位領域のサイズが、操作者により 設定された情報に基づいて決定される。

【0012】請求項5の発明は、請求項1に記載の記録 媒体であって、前記単位領域のサイズが、前記画像のコントラスト補正量が大きいほどおよそ大きくなるように 決定される。

【0013】請求項6の発明は、請求項1に記載の記録 媒体であって、前記単位領域のサイズが、前記画像にお いて所定の色要素の値が所定の範囲内である領域の大き さに基づいて決定される。

【0014】請求項7の発明は、画像のコントラストを補正する画像処理装置であって、前記画像においてコントラストを補正する単位となる単位領域のサイズを決定する手段と、前記単位領域のサイズに従って前記画像を複数の単位領域へと分割し、前記複数の単位領域に対応する複数の濃度変換特性を求める手段と、前記複数の濃度変換特性を用いて前記複数の単位領域のコントラストを補正する手段とを備える。

【0015】請求項8の発明は、画像のコントラストを補正する画像処理方法であって、前記画像においてコントラストを補正する単位となる単位領域のサイズを決定する工程と、前記単位領域のサイズに従って前記画像を複数の単位領域へと分割する工程と、前記複数の単位領域に対応する複数の濃度変換特性を求める工程と、前記複数の濃度変換特性を用いて前記複数の単位領域のコントラストを補正する工程とを有する。

[0016]

【発明の実施の形態】<1. 第1の実施の形態>図1 は第1の実施の形態に係るコントラスト補正装置1およびその周辺機器を示す図である。コントラスト補正装置 1は、画像中の明暗部の差の度合いに相当するコントラ 50 ストが適切となるように画像中の各画素の濃度値を補正 する装置である。

【0017】図1に示すコントラスト補正装置1は、主としてコンピュータ10により実現されており、コンピュータ10には操作者の入力を受け付けるキーボード11aおよびマウス11bが接続された構成となっている。また、コンピュータ10にはディスプレイ91およびプリンタ92が接続されており、さらに、デジタルカメラ93からメモリカードや通信ケーブル等を介して画像データが入力可能とされている。

【0018】コンピュータ10やキーボード11a、マウス11bをコントラスト補正装置1として機能させるために、コンピュータ10には予め光ディスク、磁気ディスク、光磁気ディスク、メモリカード等の記録媒体8を介してコントラスト補正のためのプログラムがインストールされる。なお、プログラムのインストールはインターネット等のコンピュータ通信を介して行われてもよい。この場合、送信元の記録装置内のコントラスト補正用プログラムがWebサーバからコンピュータ10へと転送される。

【0019】図2はコンピュータ10の内部構成を周辺 機器とともに示すブロック図である。図2に示すよう に、コンピュータ10は通常のコンピュータと同様の構 成となっており、各種演算処理を行うCPU101、基 本プログラムを記憶するROM102、コントラスト補 正用のプログラム131を記憶したり、演算処理の作業 領域となるRAM103等をバスラインに接続した構成 となっている。また、バスラインには、周辺機器である ディスプレイ91およびプリンタ92、コントラスト補 正用のプログラム131を含む各種プログラムを記憶す る固定ディスク104、記録媒体8からプログラム等を 読み出す読出部105、デジタルカメラ93との間でメ モリカードを介して画像データの受け渡しを行うカード スロット106、並びに、操作者からの入力を受け付け るキーボード11aおよびマウス11bが適宜インター フェイス(I/F)を介して接続される。

【0020】コントラスト補正用のプログラム131 は、読出部105(通信により得られる場合には別途設けられたや通信部)を介して固定ディスク104に取り込まれ、このプログラム131がRAM103にコピーされる。そして、CPU101がプログラム131に従って演算処理を行うことによりキーボード11aおよびマウス11bが接続されたコンピュータ10がコントラスト補正装置1として機能する。

【0021】図3は図2中のCPU101、ROM102、RAM103等により実現される機能構成を周辺機器とともに示すプロック図である。図3では、受け渡しされるデータについても適宜図示している。また、図4および図5はコントラスト補正装置1の動作の流れを示す流れ図である。以下、図3ないし図5を参照しなが

ものとする。なお、コントラスト補正量決定部203に は画像データ51も入力されるようになっていてもよ く、シーン情報のみならず画像データ51を用いてコン

【0028】また、シーン情報は領域サイズ決定部204へも渡され、画像を分割する際の分割領域のサイズが決定される(ステップS16)。

トラスト補正量が決定されてもよい。

【0029】図8は画像の分割例を示す図であり、分割された矩形の各領域61は同一の濃度変換特性(後述する濃度変換曲線)により濃度値が変換される単位となる。以下の説明では、コントラスト補正の単位となるこれらの領域を「単位領域」と呼ぶ。

【0030】その後、決定された単位領域61のサイズ が濃度変換曲線作成部205へと渡され、単位領域61 のサイズに従って画像の分割が行われる(ステップS1 7)。

【0031】次に、1つの単位領域61が注目領域として特定され、濃度変換曲線作成部205により注目領域の濃度ヒストグラムが作成される(ステップS21)。図9は注目領域の濃度ヒストグラムの例を示す図である。図9に示すクリップ値はコントラスト補正量決定部203から濃度変換曲線作成部205へと与えられるコントラスト補正量に相当する値であり、濃度変換曲線作成部205はこのクリップ値を用いて濃度ヒストグラム501の変形を行う。

【0032】図10は、変形された濃度ヒストグラム502を示す図である。図10において平行斜線を付した領域512は、図9におけるクリップ値よりも上の領域512を同じ面積を有する。すなわち、図9の濃度ヒストグラム501から領域511を削除し、領域512を加えることにより図10の濃度ヒストグラム502が生成される。濃度ヒストグラムを適宜、クリップ値でクリッピングする操作は、後述の累積ヒストグラムを濃度変換曲線として利用する場合において過度のコントラスト強調を抑えることを目的としている。

【0033】続いて、濃度変換曲線作成部205により、図11に示すように濃度ヒストグラム502の累積ヒストグラム701が生成される(ステップS22)。そして、図11において横軸を0から255までの入力濃度値とし、縦軸も0から255までの出力濃度値として扱うことにより、累積ヒストグラム701が注目領域内の各画素の濃度値を変換する濃度変換曲線として利用される。なお、実際には、濃度変換曲線は変換テーブルとして求められる。

【0034】注目領域について濃度変換曲線が求められると、注目領域を次の単位領域61に切り替え、再度、濃度変換曲線の算出が行われる。その後、注目領域を順次切り替えることにより、全単位領域61について濃度変換曲線が求められる(ステップS23)。

【0035】複数の濃度変換曲線が求められると、各画

ら、コントラスト補正装置1の動作について説明する。 【0022】まず、コントラスト補正装置1は、デジタ ルカメラ93からの画像データ51を内部のRAM10 3に入力する(ステップS11)。もちろん、デジタル カメラ93以外の画像取得機器としてスキャナ等が用い られてもよく、予め固定ディスク104に記録されてい る画像データ51をRAM103に読み出してもよい。 【0023】画像データ51の準備が完了すると、濃度 ヒストグラム算出部201により画像データ51が示す 画像の画素値がRGB値からHSL値(色相、彩度、明 度(濃度))に変換される(ステップS12)。その 後、画像全体における濃度値に対する画素数のヒストグ ラム(以下、「濃度ヒストグラム」という。)が求めら れる(ステップS13)。なお、実際にCPU101の 処理の対象となるものは「画像データ」であるが、以下 の説明では、適宜、単に「画像」と呼ぶ。

【0024】濃度ヒストグラムが作成されると、次に、シーン判定部202により濃度ヒストグラムに基づいて画像の状態が判定される(ステップS14)。画像の状態とは、露出アンダー、露出オーバー、コントラスト不足、ハイコントラスト等をいい、以下の説明では、このような画像の状態を示す情報をシーン情報と呼ぶ。シーン情報は予め複数準備されており、シーン判定部202は濃度ヒストグラムに基づいて適宜シーン情報の選択を行う。

【0025】図6および図7は、画像から得られる濃度ヒストグラムを例示する図である。これらの図では、濃度の最小値を0とし、最大値を255としている。一般に適正なコントラストの画像の場合、濃度ヒストグラムは濃度値に対しておよそ一定の状態(あるいは、中央部がやや盛り上がった状態)となる。しかしながら、図6中、符号51にて示すように、ヒストグラムの分布が低濃度領域に偏っている場合にはシーン判定部202により画像が露出アンダーの状態であると判定され、符号52にて示すように、ヒストグラムの分布が高濃度領域に偏っている場合には露出オーバーの状態であると判定される。

【0026】また、符号53にて示すように、ヒストグラムの分散が小さく、かつ、中間濃度領域に偏って分布している場合にはシーン判定部202により画像がコントラスト不足の状態であると判定され、図7中、符号54にて示すように、ヒストグラムが高濃度領域と低濃度領域とに分かれて分布している場合にはハイコントラストの状態であると判定される。

【0027】シーン判定部202により選択されたシーン情報はコントラスト補正量決定部203へと渡され、コントラスト補正量が求められる(ステップS15)。コントラスト補正量とは、画像のコントラストの補正の度合いを示すパラメータであり、ここでは、便宜上、画像全体に対して同一のコントラスト補正量が用いられる

素の濃度値が対応する濃度変換曲線を用いて変換される。具体的には、1つの注目画素を決定し、コントラスト補正部206により注目画素の濃度値が、注目画素が属する単位領域61の濃度変換曲線を用いて変換される(ステップS24)。そして、注目画素を順次切り替えることにより画像全体について濃度値の変換、すなわち、コントラストの補正が行われる(ステップS25)。

【0036】ここで、濃度変換曲線は単位領域61ごとに異なるため、単位領域61の境界の両側において濃度 10値の顕著な相違が表れないように、濃度変換の際に濃度変換曲線の補間処理が行われてもよい。

【0037】図12は濃度変換曲線の補間の一例を説明するための図である。図12において単位領域604中の画素641の濃度値を変換する際に、互いに隣接する単位領域601,602,603,604の濃度変換曲線が関数f(x),g(x),h(x),i(x)(xは入力濃度値)として表現されるものとし、単位領域601,602,603,604の重心から画素641までの距離(符号611,612,613,614にて示す距離)をa,b,c,dとすると、補間後の濃度変換曲線は数1にて求められる。

[0038]

【数1】

 $\hat{d} \cdot \hat{f}(x) + c \cdot g(x) + b \cdot h(x) + a \cdot i(x)$

a+b+c+d

【0039】このような補間処理を濃度変換の際に行う ことにより、単位領域の境界の両側における濃度値の相 違を緩和することができる。もちろん、補間処理として は、他の様々な手法が利用されてもよい。

【0040】画像のコントラスト補正が完了すると、各画素の画素値がHSL値から出力機器に応じた形式の値へと変換される。例えば、画像がディスプレイ91に表示される場合にはHSL値がRGB値へと変換され、プリンタ92にて印刷される場合にはCMYK値へと変換される(ステップS26)。その後、補正後の画像を示す画像データ52が指定された出力機器へと出力される(ステップS27)。

【0041】以上、コントラスト補正装置1の動作について説明してきたが、次に、図3におけるコントラスト補正量決定部203および領域サイズ決定部204の役割について説明する。

【0042】図13ないし図15は、図9ないし図11 に対応した図であり、図13および図14は、図9よりもクリップ値が大きい場合の濃度ヒストグラムの変形の様子を示す図である。すなわち、図13における濃度ヒストグラム503のうち、クリップ値よりも上の領域513の面積と、図14における濃度ヒストグラム504の領域514の面積とが等しくされている。

8

【0043】クリップ値が大きい場合、領域513の面積は図9に示した領域511よりも小さくなり、濃度ヒストグラム504の累積ヒストグラム702は図15に示すように最大傾斜がきつい曲線となる。したがって、図15に示す濃度変換曲線を用いて濃度変換を行うと、図11に示す濃度変換曲線を用いて濃度変換を行う場合よりもコントラストの強調の度合いが高くなる。このように、通常、クリップ値が大きいほど、コントラストの強調の度合いが高くなる。

【0044】また、クリップ値(すなわち、コントラスト補正量)は、既述のように、シーン情報や画像データに基づいてコントラスト補正量決定部203により決定される。シーン情報には露出アンダー、露出オーバー、コントラスト不足、ハイコントラスト等が含まれるが、一般に、これらのシーン情報が得られる画像では、濃度ヒストグラムの分布に偏りがあるため、全体的あるいは部分的にコントラスト不足が生じている。したがって、これらのシーン情報が得られた場合には、通常の画像の場合よりも大きなコントラスト補正量がコントラスト補正量決定部203により決定される。

【0045】一方、通常よりも大きなコントラスト補正量が決定されるシーン情報の場合、領域サイズ決定部204では単位領域のサイズが通常よりも大きくなるように決定される。

【0046】図16ないし図20は、コントラスト補正量を大きくしたにも関わらず、単位領域のサイズをそのままにした場合の問題点を説明するための図である。図16に例示する画像おいて、単位領域62は背景のみを含む領域であり、濃度ヒストグラムを求めると図17に示すようにハイライト側に偏ったものとなる。したがって、濃度変換曲線はおよそ図18に示すようにハイライト側で最大傾斜を有する曲線となる。

【0047】一方、単位領域63は背景と主被写体とを含む領域であり、濃度ヒストグラムを求めると図19のように複数のピークを有するものとなる。したがって、濃度変換曲線はおよそ図20に示すようになり、図18とは大きく異なる曲線となる。

【0048】これに対し、図21に示すように、単位領域のサイズを大きくした場合、図21中の単位領域64 および単位領域65の双方に背景と主被写体とが含まれるため、これらの単位領域から導かれる濃度変換曲線の相違は少なくなる。換言すれば、単位領域を大きくすると広範囲の画像の情報から濃度変換曲線が導かれることから、単位領域ごとの濃度変換曲線の相違が抑えられる。

【0049】以上のように、濃度変換曲線(すなわち、変換特性)の単位領域間の相違は、単位領域のサイズが小さいほど顕著となる。また、この相違は、一般にコントラスト補正量(クリップ値)が大きいほど顕著となる。したがって、画像の細部まで反映したコントラスト

補正を行うためにコントラスト補正量を大きくしたにも 関わらず単位領域のサイズを通常の画像の場合と同一に すると、単位領域の境界の両側で濃度値が大きく異なっ てしまう(すなわち、画像の濃度むらが大きくなる)と いう問題が生じる。

【0050】そこで、この実施の形態に係るコントラスト補正装置1では、コントラスト補正量が大きくなるシーン情報が得られた場合には、領域サイズ決定部204にて単位領域のサイズとして大きなサイズが決定される。その結果、濃度むらを適切抑えることができるようになっている。

【0051】例えば、通常のコントラスト補正量では、単位領域のサイズとして64×64画素のサイズが採用される場合において、コントラスト補正量が大きい場合には、単位領域のサイズが128×128画素に決定される。コントラスト補正量がさらに大きい場合には、単位領域のサイズが256×256画素に決定される。このように、単位領域のサイズはコントラスト補正量が大きいほどおよそ大きくなるように決定される。

【0052】<2. 第2の実施の形態>第1の実施の 形態では、シーン情報を画像の濃度ヒストグラムの分布 に基づいて求めるようにしているが、第2の実施の形態 として他のシーン情報を利用する形態について説明す る。

【0053】図22は第2の実施の形態におけるコントラスト補正装置1の機能構成の一部を示すブロック図であり、図23はコントラスト補正装置1の動作の一部を示す流れ図である。図22および図23は第1の実施の形態における図3および図4の一部に対応しており、第2の実施の形態に係るコントラスト補正装置1は、図3における濃度ヒストグラム算出部201を判定領域算出部201aに置き換え、図4におけるステップS13をステップS13aに置き換えた点を除いて、第1の実施の形態と同様である。

【0054】第2の実施の形態では、判定領域算出部201aにより、入力された画像の画素値がHSL値へと変換された後(ステップS12)、シーン判定を行うための判定領域の抽出が行われる(ステップS13a)。判定領域は、濃度値が所定の範囲内の画素が存在する領域として求められたり、色相が所定の範囲内の画素が存在する領域として求められる。そして、求められた判定領域に基づいてシーン判定部202によりシーン判定が行われ、シーン情報が特定される(ステップS14)。その後、第1の実施の形態と同様に、シーン情報に基づいてコントラスト補正量および単位領域のサイズが求められ、単位領域ごとにコントラストの補正が行われる(図4:ステップS15~S17、図5:ステップS21~S27)。

【0055】シーン判定(ステップS14)では、例えば、所定の濃度値よりも高い濃度値を有する領域が画像 50

の周辺部に存在し、所定の濃度値よりも低い濃度値を有する領域が画像の中央部に存在する場合は、逆光の環境にて撮影された画像であると判定される。また、所定の 濃度値よりも低い濃度値を有する領域が画像全体に渡る 場合には夜景の画像であると判定される。

10

【0056】色相についても同様にシーン判定に利用することが可能であり、例えば、赤色から黄色に偏っている領域が大きい場合には夕焼けの画像であると判定され、中央に同一の色の大きな領域が存在する場合には顔等のアップ撮影の画像であると判定される。

【0057】このように、濃度、色相等(彩度、RGB値、L°a°b°値等であってもよい。)の所定の色の要素の値が、所定の範囲内である判定領域を抽出することによりシーン判定を行うことができる。特に、判定領域が大きい場合には、濃度や色相等がほぼ一定の領域(いわゆる、ベタ領域)が大きいことを示しており、このような画像では、単位領域のサイズを小さくすると単位領域間の濃度変換曲線の相違が濃度むらとして顕著に表れてしまう。

【0058】そこで、コントラスト補正装置1ではコントラスト補正量とは無関係に、各種判定領域の大きさから逆光、夜景、夕焼け、アップ撮影等のシーン情報が導かれた場合には、領域サイズ決定部204が単位領域のサイズを大きなものに決定するようになっている。

【0059】なお、逆光の場合には、部分的にコントラスト不足になりがちとなることから、逆光を示すシーン情報の場合にはコントラスト補正量決定部203にてコントラスト補正量として大きな値が設定される。

【0060】また、上記動作では、判定領域の大きさや状態から導かれるシーン情報に応じて単位領域のサイズを大きくするようにしているが、判定領域の大きさと単位領域のサイズとを直接関連付けてもよい。例えば、判定領域の大きさは逆光、夜景、夕焼け、アップ撮影等の程度を示す指標として利用することができ、判定領域が大きいほど単位領域のサイズをおよそ大きなものに設定するようにしてもよい。

【0061】<3. 第3の実施の形態>第1および第2の実施の形態では、シーン情報を画像の状態から自動的に導き出すようにしているが、シーン情報は画像の状態を特定する情報として予め与えられていてもよい。以下に、第3の実施の形態としてシーン情報が予め与えられる例について説明する。

【0062】図24は第3の実施の形態に係るコントラスト補正装置1の機能構成の一部を示すプロック図であり、図25はコントラスト補正装置1の動作の流れの一部を示す流れ図である。図24では、図3における濃度ヒストグラム算出部201およびシーン判定部202が省略された様子を示しており、図25では、図4におけるステップS13およびステップS14が省かれ、ステップS11aが追加された様子を示している。他の構成

および動作については第1の実施の形態と同様である。 【0063】図24に示すように第3の実施の形態では、画像データとともにシーン情報もデジタルカメラ93からコントラスト補正量決定部203および領域サイズ決定部204に与えられるようになっている(ステップS11、S11a)。画像データは、濃度変換曲線作成部205へと与えられHSL値へと変換される(ステップS12)。

【0064】コントラスト補正量決定部203では、シーン情報(および、必要ならば画像データ)を用いてコントラスト補正量を求める(図4:ステップS15)。一方、領域サイズ決定部204では、デジタルカメラ93から与えられたシーン情報に基づいて単位領域のサイズを決定する(ステップS16)。その後、画像の分割が行われた後、第1の実施の形態と同様に、各単位領域の濃度変換曲線が求められ、画像のコントラストの補正が行われる(ステップS17、図5:ステップS21~S27)。

【0065】ここで、デジタルカメラ93からコントラスト補正装置1へと与えられるシーン情報には大きく分けて2種類のものがある。一つは、露出値(シャッタスピードや絞り値)、フラッシュの自動ON/OFF、測光センサの値等の撮影の際のデジタルカメラ93の撮影条件であり、もう一つは、風景モード、夜景モード、室内モード等の撮影モード、固定露出値、フラッシュの強制ON/OFF等の操作者によりデジタルカメラ93に入力された情報である。これらには、実質的に互いに共通の項目もあるが、前者は撮影の際に(あるいは、撮影後に)確定するシーン情報であるという点で相違する。

【0066】そして、領域サイズ決定部204では、例えば、測光センサの値に比べて露出値が大きい場合には単位領域のサイズを大きなものに決定したり、夜景モードであることを参照して単位領域のサイズを大きなものに決定する。

【0067】このように、シーン情報としてデジタルカメラ93から伝達される撮影に係る情報を利用することにより、適切なコントラスト補正を実現することができる。

【0068】図24に示す例では、デジタルカメラ93からシーン情報が与えられるものとして説明したが、操作者がディスプレイ91に表示された画像を見ながらキーボード11aやマウス11bを介して露出アンダー、露出オーバー、コントラスト不足、ハイコントラスト等のシーン情報をコントラスト補正装置1に設定するようになっていてもよい。この場合、デジタルカメラ93のみならず、スキャナやコンピュータ通信を用いて取得された画像に対しても単位領域の大きさがシーン情報に基づいて決定されることにより、適切なコントラスト補正 50

が実現される。

【0069】<4. 変形例>以上、この発明に係る実施の形態について説明してきたが、この発明は上記実施の形態に限定されるものではなく、様々な変形が可能である。

【0070】例えば、上記実施の形態では、単位領域の 濃度値に関する累積ヒストグラムを濃度変換曲線として 利用しているが、小林直樹他「自然画像表示のための高 速な局所的コントラスト強調」(電子情報通信学会論文 誌、D-II、vol.J77-D-II、No.3、pp.502-509、1994/3) のように単位領域の平均濃度から予め準備された濃度変 換曲線が選択されるようになっていてもよい。

【0071】また、コントラスト補正量の変更は、単に、濃度変換曲線の状態を変更することにより行われてもよい。この場合、濃度変換曲線のハイライト部を上げ、シャドウ部を下げる度合いがコントラスト補正量に相当する。さらに、コントラスト補正は、濃度値の最大値と最小値との差を大きくすることにより行われてもよく、この場合、濃度値の最大値と最小値との差の変更量がコントラスト補正量に相当する。

【0072】また、コントラスト補正量は単位領域ごとに同一である必要はない、例えば、逆光の場合に、中央部のみコントラスト補正量を大きくしてもよい。

【0073】また、単位領域のサイズ、形状も上記実施の形態に限定されるものではなく、単位領域ごとにコントラストを補正するのであるならばどのような手法が用いられてもよい。

【0074】また、上記第1および第2の実施の形態では、濃度ヒストグラムからシーン情報を求める際に、画素値をHSL値に変換しているが、濃度値が特定される他の値(例えば、L'a'b'値)に変換されてもよい。また、第1の実施の形態においてシーン情報を導くヒストグラムは濃度ヒストグラムに限定されるものではなく、彩度ヒストグラム、色相ヒストグラム、あるいは、RGB値それぞれのヒストグラム等であってもよい。例えば、色相ヒストグラムにより、夕焼けや夜景といったシーンを判定することができる。

【0075】また、上記実施の形態では、記録媒体8からコントラスト補正用のプログラム131がコンピュータ10にインストールされるようになっているが、記録媒体8は可搬性の媒体に限定されるものではなく、固定ディスクのように固定設置された記録装置が含められてもよい。記録装置はインターネット等の通信網を介してコンピュータ10に接続されてもよい。

【0076】また、上記実施の形態では、主としてコンピュータ10をコントラスト補正装置1として機能させる場合について説明したが、図3に示す機能構成の全部または一部が専用の電気的回路として構築されていてもよい。また、プログラム131は他のプログラムと協調してコンピュータ10をコントラスト補正装置1として

機能させるようになっていてもよい。

[0077].

【発明の効果】請求項1ないし8に記載の発明では、コントラスト補正による濃度むらを適切に抑えることができる。

【0078】また、請求項2ないし6に記載の発明では、単位領域のサイズを適切なものとすることができる。

【図面の簡単な説明】

【図1】コントラスト補正装置であるコンピュータおよ 10 びその周辺機器の示す図である。

【図2】コンピュータの内部構成を示すプロック図である。

【図3】第1の実施の形態におけるコントラスト補正装置の機能構成を示すプロック図である。

【図4】第1の実施の形態におけるコントラスト補正装置の動作の流れを示す流れ図である。

【図5】第1の実施の形態におけるコントラスト補正装 置の動作の流れを示す流れ図である。

【図6】濃度ヒストグラムを例示する図である。

【図7】 濃度ヒストグラムを例示する図である。

【図8】単位領域を例示する図である。

【図9】濃度変換曲線を求める様子を説明するための図 である。

【図10】濃度変換曲線を求める様子を説明するための 図である。

【図11】濃度変換曲線を例示する図である。

【図12】 濃度変換曲線の補間の様子を説明するための 図である。

【図13】濃度変換曲線を求める様子を説明するための 30 図である。

【図14】濃度変換曲線を求める様子を説明するための 図である。

【図15】 濃度変換曲線を例示する図である。

【図16】サイズの小さい単位領域を例示する図である。

【図17】単位領域における濃度ヒストグラムを例示する図である。

【図18】単位領域における濃度変換曲線を例示する図である。

【図19】他の単位領域における濃度ヒストグラムを例示する図である。

【図20】他の単位領域における濃度変換曲線を例示する図である。

【図21】サイズの大きい単位領域を例示する図である。

【図22】第2の実施の形態におけるコントラスト補正 装置の機能構成の一部を示すブロック図である。

【図23】第2の実施の形態におけるコントラスト補正 装置の動作の一部を示す図である。

【図24】第3の実施の形態におけるコントラスト補正 装置の機能構成の一部を示すブロック図である。

【図25】第3の実施の形態におけるコントラスト補正 装置の動作の一部を示す図である。

【符号の説明】

1 コントラスト補正装置

9 記録媒体

20

10 コンピュータ

51~54 濃度ヒストグラム

61~65, 601~604 単位領域

131 プログラム

101 CPU

102 ROM

103 RAM

104 固定ディスク

204 領域サイズ決定部

205 濃度変換曲線作成部

206 コントラスト補正部

701,702 濃度変換曲線

S13, S13a, S13b, S16, S17, S21 ~S25 ステップ

[図7]

フロントページの続き

F ターム(参考) 58057 BA02 CA01 CA08 CA12 CA16 CB01 CB08 CB12 CB16 CC02 CE01 CE03 CE18 CE20 CH18 DA06 DA08 DC23 DC36 5C077 LL04 LL19 MP08 PP15 PP21 PP32 PP35 PP36 PP68 PQ08 P019 SS05 TT09

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Are the record medium which recorded the amendment program and in which computer reading is possible, and the aforementioned program execution by the computer the contrast of a picture The process which determines the size of the unit field which becomes with an amendment unit about contrast as the aforementioned computer in the aforementioned picture, The process which divides the aforementioned picture to two or more unit fields according to the size of the aforementioned unit field, The process which asks for two or more concentration transfer characteristics corresponding to two or more aforementioned unit fields, and the record medium characterized by performing an amendment process for the contrast of two or more aforementioned unit fields using two or more aforementioned concentration transfer characteristics.

[Claim 2] The record medium with which it is a record medium according to claim 1, and size of the aforementioned unit field is characterized by what it opts for based on the distribution of the gray level histogram of the aforementioned picture.

[Claim 3] The record medium which is a record medium according to claim 1, and is characterized by determining the size of the aforementioned unit field based on the photography conditions at the time of the aforementioned picture being photoed.

[Claim 4] The record medium which is a record medium according to claim 1, and is characterized by determining the size of the aforementioned unit field based on the information set up by the operator.

[Claim 5] The record medium which is a record medium according to claim 1, and is characterized by determining that the size of the aforementioned unit field will become large about, so that the amount of contrast amendments of the aforementioned picture is large.

[Claim 6] The record medium which is a record medium according to claim 1, and is characterized by what it opts for based on the size of the field whose size of the aforementioned unit field is within the limits predetermined in the value of a predetermined color element in the aforementioned picture.

[Claim 7] It is an amendment image processing system about the contrast of a picture characterized by providing the following. A means to determine the size of the unit field which serves as an amendment unit in contrast in the aforementioned picture According to the size of the aforementioned unit field, the aforementioned picture is divided to two or more unit fields, a means to ask for two or more concentration transfer characteristics corresponding to two or more aforementioned unit fields, and two or more

aforementioned concentration transfer characteristics are used, and it is an amendment means about the contrast of two or more aforementioned unit fields.

[Claim 8] It is the amendment image-processing method about the contrast of a picture characterized by providing the following. The process which determines the size of the unit field which serves as an amendment unit in contrast in the aforementioned picture The process which divides the aforementioned picture to two or more unit fields according to the size of the aforementioned unit field The process which asks for two or more concentration transfer characteristics corresponding to two or more aforementioned unit fields Two or more aforementioned concentration transfer characteristics are used, and it is an amendment process about the contrast of two or more aforementioned unit fields.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] This invention relates the contrast of a picture to amendment technology.

[0002]

[Description of the Prior Art] Contrast amendment which emphasizes conventionally the contrast of the picture acquired using the digital camera or the scanner is performed. In addition, generally, although contrast points out the difference of the concentration of the part for a background and the main photographic subject portion in a picture, and the difference of the highest concentration in a picture, and the least concentration, it shall mean the degree of the difference of the light-and-darkness section only distributed in a picture here. Therefore, with amendment of the contrast in the following explanation, it is substantially equivalent to amendment processing in the gray level histogram of a picture by changing the concentration value of a pixel.

[0003] After asking for a gray level histogram as an example of amendment of contrast in the fixed field around the attention pixel used as the candidate for amendment and transforming this gray level histogram, it asks for an accumulation histogram and there is technique of changing the concentration value of an attention pixel as a concentration conversion curve using the called-for accumulation histogram further.

[0004] However, it is necessary to ask for a gray level histogram about each pixel, and has the problem that computational complexity becomes huge, by this technique (henceforth the "local histogram equating method").

[0005] Then, as the technique of having amended the local histogram equating method, a picture is divided into two or more rectangle fields, and the gray level histogram of each field is created, after transforming this gray level histogram, it asks for an accumulation histogram, and there is technique of changing the concentration value of all the pixels in a field with a concentration conversion curve using this. Thereby, only the number of the divided fields can amend contrast in quest of a concentration conversion curve, and machine

time is shortened.

[0006]

[Problem(s) to be Solved by the Invention] However, the picture was divided to two or more fields, and size of a field has been considered as fixation by the conventional contrast amendment method which makes each field the unit of contrast amendment. Consequently, when concentration conversion curves differ greatly between fields, concentration will differ greatly on both sides of the boundary of a field. Of course, it is possible to ease a difference of the concentration between fields using linear interpolation etc., and when concentration is remarkably different on bordering both sides, also in the picture after amendment, the unevenness of concentration will be conspicuous.

[0007] Then, this invention aims at suppressing concentration unevenness for the contrast of a picture appropriately for every field in the amendment case.

[8000]

[Means for Solving the Problem] Invention of a claim 1 is a record medium which recorded the amendment program for the contrast of a picture and in which computer reading is possible, and the aforementioned program execution by the computer The process which determines the size of the unit field which becomes with an amendment unit about contrast as the aforementioned computer in the aforementioned picture, An amendment process is performed for the contrast of two or more aforementioned unit fields using the process which divides the aforementioned picture to two or more unit fields according to the size of the aforementioned unit field, the process which asks for two or more concentration transfer characteristics corresponding to two or more aforementioned unit fields, and two or more aforementioned concentration transfer characteristics.

[0009] Invention of a claim 2 is a record medium according to claim 1, and the size of the aforementioned unit field is determined based on the distribution of the gray level histogram of the aforementioned picture.

[0010] Invention of a claim 3 is a record medium according to claim 1, and the size of the aforementioned unit field is determined based on the photography conditions at the time of the aforementioned picture being photoed.

[0011] Invention of a claim 4 is a record medium according to claim 1, and the size of the aforementioned unit field is determined based on the information set up by the operator.

[0012] Invention of a claim 5 is a record medium according to claim 1, and the size of the aforementioned unit field is determined that it will become large about, so that the amount of contrast amendments of the aforementioned picture is large.

[0013] Invention of a claim 6 is a record medium according to claim 1, and it is determined based on the size of the field whose size of the aforementioned unit field is within the limits predetermined in the value of a predetermined color element in the aforementioned picture.

[0014] Invention of a claim 7 is an amendment image processing system about the contrast of a picture, and is equipped with an amendment means for the contrast of two or more aforementioned unit fields using a means determine the size of the unit field which serves as an amendment unit in contrast in the aforementioned

picture, a means ask for two or more concentration transfer characteristics which divide the aforementioned picture to two or more unit fields according to the size of the aforementioned unit field, and correspond to two or more aforementioned unit fields, and two or more aforementioned concentration transfer characteristics.

[0015] The process which determines the size of the unit field which invention of a claim 8 is the amendment image-processing method about the contrast of a picture, and serves as an amendment unit in contrast in the aforementioned picture, It has an amendment process for the contrast of two or more aforementioned unit fields using the process which divides the aforementioned picture to two or more unit fields according to the size of the aforementioned unit field, the process which asks for two or more concentration transfer characteristics corresponding to two or more aforementioned unit fields, and two or more aforementioned concentration transfer characteristics.

[0016]

[Embodiments of the Invention] <1. Gestalt > drawing 1 of the 1st operation is drawing showing the contrast compensator 1 concerning the gestalt of the 1st operation, and its peripheral device. The contrast compensator 1 is amendment equipment about the concentration value of each pixel in a picture so that the contrast equivalent to the degree of the difference of the light-and-darkness section in a picture may become suitable.

[0017] The computer 10 mainly realizes and the contrast compensator 1 shown in drawing 1 has the composition that keyboard 11a and mouse 11b which receive an operator's input were connected to the computer 10. Moreover, the display 91 and the printer 92 are connected to the computer 10, and the input of image data is further enabled through memory card, the telecommunication cable, etc. from the digital camera 93.

[0018] In order to operate a computer 10, keyboard 11a, and mouse 11b as a contrast compensator 1, the program for contrast amendment is beforehand installed in a computer 10 through the record media 8, such as an optical disk, a magnetic disk, a magneto-optic disk, and memory card. In addition, installation of a program may be performed through online communications, such as the Internet. In this case, the program for contrast amendment in the recording device of a transmitting agency is transmitted to a computer 10 from a Web server. [0019] Drawing 2 is the block diagram showing the internal configuration of a computer 10 with a peripheral device. As shown in drawing 2, the computer 10 has the same composition as the usual computer, memorizes the program 131 CPU101 which performs various data processing, ROM102 which memorizes a basic program, and for contrast amendment, or has the composition of having connected the RAM103 grade used as the working area of data processing to the bus line. Moreover, keyboard 11a which receives the read-out section 105 which reads a program etc. from the display 91 which is a peripheral device and a printer 92, the fixed disk 104 which memorizes various programs including the program 131 for contrast amendment, and a record medium 8, the card slot 106 which delivers image data through memory card between digital cameras 93, and the input from an operator, and mouse 11b are suitably connected to a bus line through an interface (UF).

[0020] The program 131 for contrast amendment is incorporated by the fixed disk 104 through the read-out section 105 (******* separately prepared when obtained by communication), and this program 131 is copied

to RAM103. And when CPU101 performs data processing according to a program 131, the computer 10 to which keyboard 11a and mouse 11b were connected functions as a contrast compensator 1.

[0021] <u>Drawing 3</u> is the block diagram showing the functional composition realized by CPU101 and ROM102 in <u>drawing 2</u>, and RAM103 grade with a peripheral device. In <u>drawing 3</u>, it is illustrating suitably also about the data delivered. Moreover, <u>drawing 4</u> and <u>drawing 5</u> are the flow charts showing the flow of operation of the contrast compensator 1. Hereafter, operation of the contrast compensator 1 is explained, referring to <u>drawing 3</u> or <u>drawing 5</u>.

[0022] First, the contrast compensator 1 inputs the image data 51 from a digital camera 93 into internal RAM103 (Step S11). Of course, a scanner etc. may be used as picture acquisition devices other than digital camera 93, and the image data 51 currently beforehand recorded on the fixed disk 104 may be read to RAM103.

[0023] Completion of preparation of image data 51 changes into a HSL value (a hue, saturation, lightness (concentration)) the pixel value of the picture which image data 51 shows by the gray-level-histogram calculation section 201 from a RGB value (Step S12). Then, the histogram (henceforth a "gray level histogram") of the number of pixels to the concentration value in the whole picture is called for (Step S13). In addition, although it is "the image data which is actually set as the object of processing of CPU101", it only calls it a "picture" suitably in the following explanation.

[0024] If a gray level histogram is created next, the state of a picture will be judged by the scene judging section 202 based on a gray level histogram (Step S14). The state of a picture means an exposure undershirt, overexposure, the shortage of contrast, high contrast, etc., and the information which shows the state of such a picture is called scene information in the following explanation. Two or more scene information is prepared beforehand, and the scene judging section 202 chooses scene information suitably based on a gray level histogram.

[0025] Drawing 6 and drawing 7 are drawings which illustrate the gray level histogram obtained from a picture. In these drawings, the minimum value of concentration is set to 0 and maximum is set to 255. Generally in the case of the proper picture of contrast, a gray level histogram will be in an about fixed state (or state in which the center section rose a little) to a concentration value. However, when the distribution of a histogram inclines toward the high concentration field as a sign 51 shows among drawing 6, and it is judged with a picture being in the state of an exposure undershirt by the scene judging section 202 when the distribution of a histogram inclines toward the low concentration field, and a sign 52 shows, it is judged with it being in the state of overexposure.

[0026] Moreover, as a sign 53 shows, distribution of a histogram is small, and it is judged with it being in the state of high contrast, when the histogram is divided and distributed over the high concentration field and the low concentration field, as it is judged with a picture being in the state where contrast is insufficient by the scene judging section 202 when partially distributed over the middle concentration field, and a sign 54 shows among drawing 7.

[0027] The scene information chosen by the scene judging section 202 is passed to the amount determination

section 203 of contrast amendments, and the amount of contrast amendments is calculated (Step S15). The amount of contrast amendments shall be a parameter which shows the degree of amendment of the contrast of a picture, and the same amount of contrast amendments shall be used to the whole picture for convenience here. In addition, image data 51 is also inputted into the amount determination section 203 of contrast amendments, and the amount of contrast amendments may be determined not only using scene information but using the image data 51.

[0028] Moreover, scene information is also passed to the area-size determination section 204, and the size of the division field at the time of dividing a picture is determined (Step S16).

[0029] <u>Drawing 8</u> is drawing showing the example of division of a picture, and each field 61 of the divided rectangle serves as a unit from which a concentration value is changed by the same concentration transfer characteristic (concentration conversion curve mentioned later). In the following explanation, these fields used as the unit of contrast amendment are called "unit field."

[0030] Then, the size of the determined unit field 61 is passed to the concentration conversion curvilinear creation section 205, and division of a picture is performed according to the size of the unit field 61 (Step S17). [0031] Next, one unit field 61 is pinpointed as an attention field, and the gray level histogram of an attention field is created by the concentration conversion curvilinear creation section 205 (Step S21). Drawing 9 is drawing showing the example of the gray level histogram of an attention field. The clip value shown in drawing 9 is a value equivalent to the amount of contrast amendments given from the amount determination section 203 of contrast amendments to the concentration conversion curvilinear creation section 205, and the concentration conversion curvilinear creation section 205 transforms a gray level histogram 501 using this clip value.

[0032] <u>Drawing 10</u> is drawing showing the gray level histogram 502 which deformed. The field 512 which attached the parallel slash in <u>drawing 10</u> has the same area as the field 511 above the clip value in <u>drawing 9</u>. That is, a field 511 is deleted from the gray level histogram 501 of <u>drawing 9</u>, and the gray level histogram 502 of <u>drawing 10</u> is generated by adding a field 512. The operation which carries out clipping of the gray level histogram with a clip value suitably is aimed at suppressing too much contrast emphasis when using the below-mentioned accumulation histogram as a concentration conversion curve.

[0033] Then, as shown in <u>drawing 11</u>, the accumulation histogram 701 of a gray level histogram 502 is generated by the concentration conversion curvilinear creation section 205 (Step S22). And the accumulation histogram 701 is used as a concentration conversion curve which changes the concentration value which is each pixel in an attention field by making a horizontal axis into the input concentration values from 0 to 255 in <u>drawing 11</u>, and treating as an output concentration value from a vertical axis 0 to 255. In addition, a concentration conversion curve is called for as a translation table in fact.

[0034] If a concentration conversion curve is called for about an attention field, an attention field will be changed to the next unit field 61, and calculation of a concentration conversion curve will be performed again. Then, a concentration conversion curve is called for about all the unit fields 61 by changing an attention field one by one (Step S23).

[0035] If two or more concentration conversion curves are called for, it will be changed using the concentration conversion curve to which the concentration value of each pixel corresponds. Specifically, one attention pixel is determined and it is changed by the contrast amendment section 206 using the concentration conversion curve of the unit field 61 where an attention pixel belongs [the concentration value of an attention pixel] (Step S24). And conversion of a concentration value, i.e., amendment of contrast, is performed about the whole picture by changing an attention pixel one by one (Step S25).

[0036] Here, since concentration conversion curves differ every unit field 61, interpolation processing of a concentration conversion curve may be performed in the case of concentration conversion so that a remarkable difference of a concentration value may not appear in the both sides of the boundary of the unit field 61.

[0037] Drawing 12 is drawing for explaining an example of interpolation of a concentration conversion curve. In case the concentration value of the pixel 641 in the unit field 604 is changed in drawing 12 The concentration conversion curve of the unit field 601,602,603,604 which adjoins mutually Function f(x), g(x) h(x) i(x) (x shall be expressed as input concentration value). If distance (distance shown with a sign 611,612,613,614) from the center of gravity of the unit field 601,602,603,604 to a pixel 641 is set to a, b, c, and d, the concentration conversion curve after interpolation will be called for in several 1.

[0038]

[Equation 1]

[0039] By performing such interpolation processing in the case of concentration conversion, a difference of the concentration value in the both sides of the boundary of a unit field can be eased. Of course, other various technique may be used as interpolation processing.

[0040] Completion of contrast amendment of a picture changes the pixel value of each pixel into the value of the form according to output equipment from a HSL value. For example, when a picture is displayed on a display 91, a HSL value is changed into a RGB value, and it is changed into a CMYK value when printed by the printer 92 (Step S26). Then, it is outputted to the output equipment the image data 52 which shows the picture after amendment was specified to be (Step S27).

[0041] In the above, although operation of the contrast compensator 1 has been explained next, the role of the amount determination section 203 of contrast amendments in <u>drawing 3</u> and the area-size determination section 204 is explained.

[0042] <u>Drawing 13</u> or <u>drawing 15</u> is drawing corresponding to <u>drawing 9</u> or <u>drawing 11</u>, and <u>drawing 13</u> and <u>drawing 14</u> are drawings showing the situation of deformation of a gray level histogram when a clip value is larger than <u>drawing 9</u>. That is, area of the field 513 above a clip value and area of the field 514 of the gray level histogram 504 in <u>drawing 14</u> are made equal among the gray level histograms 503 in <u>drawing 13</u>.

[0043] When a clip value is large, the area of a field 513 becomes smaller than the field 511 shown in <u>drawing</u> 9, and the accumulation histogram 702 of a gray level histogram 504 serves as a curve with the tight

maximum inclination, as shown in <u>drawing 15</u>. Therefore, if concentration conversion is performed using the concentration conversion curve shown in <u>drawing 15</u>, the degree of emphasis of contrast will become high rather than the case where concentration conversion is performed using the concentration conversion curve shown in <u>drawing 11</u>. Thus, usually, the degree of emphasis of contrast becomes high, so that a clip value is large.

[0044] Moreover, a clip value (namely, the amount of contrast amendments) is determined like previous statement by the amount determination section 203 of contrast amendments based on scene information or image data. Although an exposure undershirt, overexposure, the shortage of contrast, high contrast, etc. are contained in scene information, since a bias is in the distribution of a gray level histogram, generally by the picture from which these scene information is acquired, the shortage of contrast has arisen on the whole or partially. Therefore, when these scene information is acquired, the bigger amount of contrast amendments than the case of the usual picture is determined by the amount determination section 203 of contrast amendments.

[0045] When it is the scene information as which the bigger amount of contrast amendments than usual is determined on the other hand, in the area-size determination section 204, it is determined that the size of a unit field will become larger than usual.

[0046] Although <u>drawing 16</u> or <u>drawing 20</u> enlarged the amount of contrast amendments, it is drawing for explaining the trouble at the time of leaving the size of a unit field as it was. picture **** illustrated to drawing 16 -- the unit field 62 is a field only including a background, and if it asks for a gray level histogram, it will become what inclined toward the highlight side as shown in <u>drawing 17</u> Therefore, a concentration conversion curve turns into a curve which is a highlight side and has the maximum inclination as about shown in <u>drawing 18</u>.

[0047] On the other hand, the unit field 63 is a field including a background and the main photographic subject, and when it asks for a gray level histogram, it has two or more peaks like <u>drawing 19</u>. Therefore, a concentration conversion curve comes to be about shown in <u>drawing 20</u>, and turns into a greatly different curve from <u>drawing 18</u>.

[0048] On the other hand, since a background and the main photographic subject are contained to the both sides of the unit field 64 in <u>drawing 21</u>, and the unit field 65 when size of a unit field is enlarged as shown in <u>drawing 21</u>, the difference of the concentration conversion curve drawn from these unit fields decreases. If it puts in another way and a unit field will be enlarged, since a concentration conversion curve will be drawn from the information on a wide range picture, the difference of the concentration conversion curve for every unit field is suppressed.

[0049] As mentioned above, the difference between the unit fields of a concentration conversion curve (namely, transfer characteristic) becomes so remarkable that the size of a unit field is small. Moreover, this difference becomes so remarkable that the amount of contrast amendments (clip value) is generally large. Therefore, if size of a unit field is made the same as that of the case of the usual picture in spite of having enlarged the amount of contrast amendments, in order to perform contrast amendment reflected to the details of a picture, the problem that concentration values will differ greatly on both sides of the boundary of a unit

field (that is, the concentration unevenness of a picture becomes large) will arise.

[0050] Then, at the contrast compensator 1 concerning the gestalt of this operation, when the scene information to which the amount of contrast amendments becomes large is acquired, the big size as size of a unit field is determined in the area-size determination section 204. Consequently, concentration unevenness can be appropriately suppressed now.

[0051] For example, in the usual amount of contrast amendments, when the size of 64x64 pixels is adopted as size of a unit field, and the amount of contrast amendments is large, the size of a unit field is determined as 128x128 pixels. When the amount of contrast amendments is still larger, the size of a unit field is determined as 256x256 pixels. Thus, it is determined that the size of a unit field will become large about, so that the amount of contrast amendments is large.

[0052] <2. With the gestalt of gestalt > implementation of the 1st of the 2nd operation, although it is made to search for scene information based on the distribution of the gray level histogram of a picture, the gestalt which uses other scene information as a gestalt of the 2nd operation is explained.

[0053] <u>Drawing 22</u> is the block diagram showing a part of functional composition of the contrast compensator 1 in the gestalt of the 2nd operation, and <u>drawing 23</u> is the flow chart showing a part of operation of the contrast compensator 1. <u>Drawing 22</u> and <u>drawing 23</u> of the contrast compensator 1 which corresponds to a part of <u>drawing 3</u> in the gestalt of the 1st operation and <u>drawing 4</u>, and starts the gestalt of the 2nd operation are the same as that of the gestalt of the 1st operation except for the point which transposed the gray-level-histogram calculation section 201 in <u>drawing 3</u> to judgment field calculation section 201a, and transposed Step S13 in <u>drawing 4</u> to step S13a.

[0054] With the gestalt of the 2nd operation, after the pixel value of the inputted picture is changed into a HSL value by judgment field calculation section 201a (Step S12), extraction of the judgment field for performing a scene judging is performed (step S13a). A concentration value is calculated as a field where a predetermined pixel within the limits exists, or a judgment field is called for as a field where a pixel [predetermined in a hue] within the limits exists. And a scene judging is performed by the scene judging section 202 based on the called-for judgment field, and scene information is specified (Step S14). Then, like the gestalt of the 1st operation, based on scene information, the size of the amount of contrast amendments and a unit field is called for, and amendment of contrast is performed for every unit field (drawing 4: Steps S15-S17, drawing 5: steps S21-S27).

[0055] In a scene judging (Step S14), when the field which has a concentration value higher than a predetermined concentration value, for example exists in the periphery of a picture and the field which has a low concentration value rather than a predetermined concentration value exists in the center section of the picture, it is judged with it being the picture photoed in the environment of a backlight. Moreover, when the field which has a low concentration value rather than a predetermined concentration value includes the whole picture, it is judged with it being the picture of a night view.

[0056] When using for a scene judging similarly is possible also about a hue, for example, the field which inclines toward yellow from red is large, it is judged with it being the picture of evening glow, and when the

field where the same color is big exists in the center, it is judged with a face etc. being the picture of rise photography.

[0057] Thus, a scene judging can be performed by extracting the judgment field whose value of the element of predetermined (you may be saturation, a RGB value, a L*a*b* value, etc.) colors, such as concentration and a hue, is predetermined within the limits. Especially, when a judgment field is large, it is shown that the field (the so-called solid field) of simultaneously regularity of concentration, a hue, etc. is large, and if size of a unit field is made small, by such picture, the difference of the concentration conversion curve between unit fields will appear notably as concentration unevenness.

[0058] Then, in the contrast compensator 1, regardless of the amount of contrast amendments, when scene information, such as a backlight, a night view, evening glow, and rise photography, is drawn from the size of various judgment fields, the area-size determination section 204 determines the size of a unit field as a big thing.

[0059] In addition, in the case of the scene information which indicates from a bird clapper that a backlight tends to become the shortage of contrast partially in the case of a backlight, the big value as an amount of contrast amendments is set up in the amount determination section 203 of contrast amendments.

[0060] Moreover, although it is made to enlarge size of a unit field in the above-mentioned operation according to the scene information drawn from the size and state of a judgment field, you may associate the size of a judgment field, and the size of a unit field directly. For example, the size of a judgment field can be used as an index which shows grades, such as a backlight, a night view, evening glow, and rise photography, and you may make it set the size of a unit field as an about big thing, so that a judgment field is large.

[0061] <3. gestalt [of the 3rd operation] > -- with the gestalt of the 1st and the 2nd operation, although it is made to draw scene information from the state of a picture automatically, scene information may be beforehand given as information which specifies the state of a picture The example in which scene information is beforehand given to below as a gestalt of the 3rd operation is explained.

[0062] <u>Drawing 24</u> is the block diagram showing a part of functional composition of the contrast compensator 1 concerning the gestalt of the 3rd operation, and <u>drawing 25</u> is the flow chart showing a part of flow of operation of the contrast compensator 1. At <u>drawing 24</u>, signs that the gray-level-histogram calculation section 201 and the scene judging section 202 in <u>drawing 3</u> were omitted are shown, by <u>drawing 25</u>, Step S13 and Step S14 in <u>drawing 4</u> are skipped, and signs that step S11a was added are shown. About other composition and operation, it is the same as that of the gestalt of the 1st operation.

[0063] As shown in <u>drawing 24</u>, with the gestalt of the 3rd operation, scene information is also given to the amount determination section 203 of contrast amendments, and the area-size determination section 204 from a digital camera 93 with image data (Step S11, S11a). Image data is given to the concentration conversion curvilinear creation section 205, and is changed into a HSL value (Step S12).

[0064] In the amount determination section 203 of contrast amendments, the amount of contrast amendments is calculated using scene information (and if required image data) (<u>drawing 4</u>: step S15). On the other hand, in the area-size determination section 204, the size of a unit field is determined based on the scene information

given from the digital camera 93 (Step S16). Then, after division of a picture is performed, like the gestalt of the 1st operation, the concentration conversion curve of each unit field is called for, and amendment of the contrast of a picture is performed (Step S17, drawing 5 :steps S21-S27).

[0065] Here, it roughly divides into the scene information given to the contrast compensator 1 from a digital camera 93, and there are two kinds of things. One is the photography conditions of the digital camera 93 in the case of photography, such as a value of exposure value (shutter speed and drawing value), automatic ON/OFF of a flash plate, and a photometry sensor, and another is the information inputted into the digital camera 93 by operators, such as photography modes, such as scenery mode, night view mode, and indoor mode, fixed exposure value, and compulsive ON/OFF of a flash plate. Although there is also a common item in these mutually substantially, the latter is different in that it is the scene information determined before photography to the former being scene information decided in the case of photography (or after photography).

[0066] And in the area-size determination section 204, compared with the value of a photometry sensor, when exposure value is large, the size of a unit field is determined as a big thing, or with reference to being night view mode, the size of a unit field is determined as a big thing, for example.

[0067] Thus, suitable contrast amendment is realizable by using the information concerning the photography transmitted from a digital camera 93 as scene information.

[0068] Although the example shown in drawing 24 explained as what scene information is given from a digital camera 93, while an operator looks at the picture displayed on the display 91, scene information, such as an exposure undershirt, overexposure, a shortage of contrast, and high contrast, is set as the contrast compensator 1 through keyboard 11a or mouse 11b. In this case, suitable contrast amendment is realized by determining the size of a unit field based on scene information also to the picture acquired using not only the digital camera 93 but a scanner, or online communications.

[0069] <4. Although the gestalt of operation concerning this invention has been explained more than modification >, this invention is not limited to the gestalt of the above-mentioned implementation, and various deformation is possible for it.

[0070] For example, although the accumulation histogram about the concentration value of a unit field is used as a concentration conversion curve with the gestalt of the above-mentioned implementation Like besides Naoki Kobayashi "high-speed local contrast emphasis for natural image display" (an electronic-intelligence communication society paper magazine, D-II, vol.J77-D-II, No.3, pp.502-509, 1994/3) The concentration conversion curve prepared beforehand is chosen from the average concentration of a unit field.

[0071] Moreover, a change of the amount of contrast amendments may only be made by changing the state of a concentration conversion curve. In this case, the highlight section of a concentration conversion curve is raised and the degree which lowers the shadow section is equivalent to the amount of contrast amendments. Furthermore, contrast amendment may be performed by enlarging the difference of the maximum of a concentration value, and the minimum value, and the amount of change of the difference of the maximum of a concentration value and the minimum value is equivalent to the amount of contrast amendments in this case.

[0072] Moreover, for every unit field, it does not need to be the same, for example, as for the amount of

contrast amendments, in the case of a backlight, only a center section may enlarge the amount of contrast amendments.

[0073] Moreover, the size of a unit field and a configuration are not limited to the gestalt of the above-mentioned implementation, either, and for every unit field, in contrast, if it is an amendment, what technique may be used.

[0074] Moreover, it may be changed into other values (for example, L*a*b* value) as which a concentration value is specified although the pixel value is changed into the HSL value with the gestalt of the above 1st and the 2nd implementation in case scene information is searched for from a gray level histogram. Moreover, the histogram which draws scene information in the gestalt of the 1st operation may not be limited to a gray level histogram, and may be a saturation histogram, a hue histogram, or a histogram of each RGB value. For example, scenes, such as evening glow and a night view, can be judged with a hue histogram.

[0075] Moreover, with the gestalt of the above-mentioned implementation, although the program 131 for contrast amendment is installed in a computer 10 from a record medium 8, a record medium 8 may not be limited to the medium of portability, and the recording device by which fixed installation was carried out like a fixed disk may be included. A recording device may be connected to a computer 10 through communication networks, such as the Internet.

[0076] Moreover, although the gestalt of the above-mentioned implementation explained the case where a computer 10 was mainly operated as a contrast compensator 1, all or a part of functional composition shown in drawing 3 may be built as an electric circuit of exclusive use. Moreover, a program 131 operates a computer 10 as a contrast compensator 1 in harmony with other programs.

[0077]

[Effect of the Invention] In invention of a publication, the concentration unevenness by contrast amendment can be appropriately suppressed to a claim 1 or 8.

[0078] Moreover, let size of a unit field be a suitable thing by invention of a publication a claim 2 or 6.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is drawing which the computer which is a contrast compensator, and its peripheral device show.

[Drawing 2] It is the block diagram showing the internal configuration of a computer.

[Drawing 3] It is the block diagram showing the functional composition of the contrast compensator in the gestalt of the 1st operation.

[Drawing 4] It is the flow chart showing the flow of operation of the contrast compensator in the gestalt of the 1st operation.

[Drawing 5] It is the flow chart showing the flow of operation of the contrast compensator in the gestalt of the 1st operation.

[Drawing 6] It is drawing which illustrates a gray level histogram.

[Drawing 7] It is drawing which illustrates a gray level histogram.

[Drawing 8] It is drawing which illustrates a unit field.

[Drawing 9] It is drawing for explaining signs that it asks for a concentration conversion curve.

[Drawing 10] It is drawing for explaining signs that it asks for a concentration conversion curve.

[Drawing 11] It is drawing which illustrates a concentration conversion curve.

[Drawing 12] It is drawing for explaining the situation of interpolation of a concentration conversion curve.

[Drawing 13] It is drawing for explaining signs that it asks for a concentration conversion curve.

[Drawing 14] It is drawing for explaining signs that it asks for a concentration conversion curve.

[Drawing 15] It is drawing which illustrates a concentration conversion curve.

[Drawing 16] It is drawing which illustrates the unit field where size is small.

[Drawing 17] It is drawing which illustrates the gray level histogram in a unit field.

[Drawing 18] It is drawing which illustrates the concentration conversion curve in a unit field.

[Drawing 19] It is drawing which illustrates the gray level histogram in other unit fields.

[Drawing 20] It is drawing which illustrates the concentration conversion curve in other unit fields.

[Drawing 21] It is drawing which illustrates the unit field where size is large.

[Drawing 22] It is the block diagram showing a part of functional composition of the contrast compensator in the gestalt of the 2nd operation.

[Drawing 23] It is drawing showing a part of operation of the contrast compensator in the gestalt of the 2nd operation.

[Drawing 24] It is the block diagram showing a part of functional composition of the contrast compensator in the gestalt of the 3rd operation.

[Drawing 25] It is drawing showing a part of operation of the contrast compensator in the gestalt of the 3rd operation.

[Description of Notations]

1 Contrast Compensator

9 Record Medium

10 Computer

51-54 Gray level histogram

61-65,601-604 Unit field

131 Program

101 CPU

102 ROM

103 RAM

104 Fixed Disk

204 Area-Size Determination Section
205 Concentration Conversion Curvilinear Creation Section
206 Contrast Amendment Section
701,702 Concentration conversion curve
S13, S13a, S13b, S16, S17, S21-S25 Step

[Translation done.]