Curso de Curvas e Superfícies - Parte II

Wellington José Leite da Silva¹

¹Escola de Matemática Aplicada da FGV (EMAP), Brazil

Apresentação

Continuando com o que foi construído na parte I apresentamos aqui uma linha de aprendizado do curso de curvas e superfícies apresentando definições, teoremas, exemplos, etc. Separados em Superfícies abordando definições e visualizações, Topologia abordando a teoria e primeira e segunda formas fundamentais onde é abordado a teoria e implementação.

Com intuído de auxiliar o aprendizado aos tópicos apresentados e fornecer uma forma de visualização computacional apresentamos exemplos com códigos em *Sage-Math* [The Sage Developers 2022]. Aqui seguimos o livro [de Lima 2016] como principal e o [do Carmo 2010] como complementar. Adicionando sempre que possível, exemplos de visualizações em *SageMath*. As implementações, códigos usados para as mesmas assim como o *Tex* deste documento se concentram no repositório curvas-superficies ¹ que está disponível abertamente no github.

Todos os códigos apresentados nos exemplos podem ser facilmente generalizados para outros casos, é recomendável como forma de aprendizado rodar os códigos apresentados com outros exemplos de escolha do leitor.

1. Superfícies

Definição 1 (Superfície) O subconjunto S de \mathbb{R}^3 é uma superfície se $\forall p \in S$, existe um aberto U em \mathbb{R}^2 e um aberto W em \mathbb{R}^3 contendo p tal que $S \cap W$ é homeomorfo a U.

Exemplo 1.1 Como exemplo de superfície temos a esfera de raio unitário no \mathbb{R}^3 . Que pode ser obtida da seguinte forma em SageMath

```
# Define the superficie

2 hip(u,v) = (cosh(u)*cos(v), cosh(u)*sin(v), u)

3 # Plot

5 parametric\_plot3d(hip, (u, -2, 2), (v, 0, 2*pi), mesh=True)
```

https://github.com/wellington36/curvas-superficies

Figure 1. Hiperboloide

Definição 2 (Atlas) Uma coleção de parametrizações que cobrem uma superfície S é dita atlas de S e cada uma das parametrizações é dita uma carta.

Exemplo 1.2 (Um atlas para a esfera) *Uma esfera não pode ser coberta por uma única parametrização, porem podemos cobrir ela com 2 parametrizações da seguinte forma*

```
1 # Define the parameterizations
   esferal(u, v) = (2 * u/(1 + u^2 + v^2),
3
                    2 * v/(1 + u^2 + v^2),
4
                     (u^2 + v^2 - 1)/(1 + u^2 + v^2)
5
6
   esfera2(u, v) = (2 * u/(1 + u^2 + v^2),
7
                    2 * v/(1 + u^2 + v^2),
8
                     -(u^2 + v^2 - 1)/(1 + u^2 + v^2)
9
10 # Plot
  E1 = parametric_plot3d(esferal, (u, -1, 1), (v, -1, 1),
11
12
                           mesh=True, color='white')
13
  E2 = parametric\_plot3d(esfera2, (u, -1, 1), (v, -1, 1),
14
                           mesh=True, color='red')
15
16
17
  show(E1 + E2)
```


Figure 2. Esfera com 2 parametrizações

Definição 3 (Curvas regulares enquanto subconjuntos) Diz-se que um subconjunto $C \subset \mathbb{R}^3$ é uma curva regular, quando para cada $p \in C$, existe um intervalo aberto $I \subset \mathbb{R}$ e um difeomorfismo $\alpha : I \to \alpha(I) \subset C$ em que $\alpha(I)$ é um aberto relativo de C.

Definição 4 (Superfícies Regulares) Um conjunto $S \subset \mathbb{R}^3$ é dito uma **superfície regular**, quando é localmente difeomorfo a \mathbb{R}^2 . Mais precisamente, quando, $\forall p \in S$, exite um difeomorfismo

$$X: U \subset \mathbb{R}^2 \to V \subset S$$

onde U é um aberto de \mathbb{R}^2 e V é um aberto relativo de S. A aplicação X é dita, então uma parametrização local de S em p.

Exemplo 1.3 (Superfícies regulares) Pela definição de superfície regular, temos que, as seguintes superfícies são regulares: plano, gráficos de funções de 2 variáveis, esferas, superfícies de revolução, etc.

Definição 5 Sendo o difeomorfismo de uma superfície da forma

$$X(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) \in V$$

definimos as derivadas parciais de X como sendo

$$X_u(u,v) = \left(\frac{\partial x}{\partial u}(u,v), \frac{\partial y}{\partial u}(u,v), \frac{\partial z}{\partial u}(u,v)\right)$$

$$X_v(u,v) = \left(\frac{\partial x}{\partial v}(u,v), \frac{\partial y}{\partial v}(u,v), \frac{\partial z}{\partial v}(u,v)\right)$$

e se X_u e X_v são L.I. então produzem um plano tangente no ponto p.

Proposição 1 Se S é uma superfície regular temos que:

- (a) A aplicação X(u,v) = (x(u,v),y(u,v),z(u,v)) é diferenciável de C^{∞} quando $x, y \in z$ tem derivadas parciais de todas as ordens.
- (b) Para todo $q:(u,v) \in U$, a diferencial de X em q, $dX_q: \mathbb{R}^2 \to \mathbb{R}^3$ é injetiva, nesse caso, garante-se a existência do plano tangente T_pS .

Teorema 1 (Função Inversa) Seja F diferenciável e $p \in A$ tal que dF_p é injetora. Então existe uma vizinhança $U \subset A$ de p. Tal que F(U) é aberto em \mathbb{R}^n e a restrição F_U é um difeomorfismo de U sobre F(U).

Definição 6 (Valor Regular) Dados um aberto $O \subset \mathbb{R}^3$ e uma função diferenciável $\varphi : O \to \mathbb{R}$. Dizemos que $q \in \mathbb{R}$ é valor regular de φ quando $\forall p \in \varphi^-1(\{q\}) \subset O$ a derivada

$$d\varphi_p: \mathbb{R}^3 \to \mathbb{R}$$

é não nula, isto é, $\nabla \varphi(p) \neq 0$

Proposição 2 A **imagem inversa** de um valor regular de uma função diferenciável definida em um aberto do \mathbb{R}^3 , quando não vazia, é uma superfície regular.

Topologia

Definição 7 (Bola aberta) Dado $a \in \mathbb{R}^n$ e um número real r > 0, a **bola aberta** de centro a e raio r em \mathbb{R}^n é o conjunto

$$B(a,r) = \{x \in \mathbb{R}^n \mid ||x - a|| \le r\}$$

e respectivamente definimos bola fechada como

$$B(a,r) = \{x \in \mathbb{R}^n \mid ||x - a|| \ge r\}$$

Definição 8 (Conjunto Limitado) *Um conjunto é dito limitado quando existe uma bola que o contém, ou seja,*

$$\exists a \in \mathbb{R}^n \text{ e } r > 0 \text{ t.q. } X \subset B(a,r)$$

Definição 9 (Aplicação limitada) Dado um conjunto A uma **aplicação** $f:A\to\mathbb{R}^n$ é dita limitada quando seu conjunto imagem é limitada.

Definição 10 (Conjunto aberto) Um conjunto $A \subset \mathbb{R}^n$ é dito **aberto** quando $\forall a \in A \exists r > 0$ tal que $B(a, r) \subset A$ (e a é dito ponto interior de A).

Definição 11 (Aplicação aberta) Diz-se que uma aplicação $f: \mathbb{R}^n \to \mathbb{R}^m$ é aberta quando $\forall A \subset \mathbb{R}^n$ aberto, $f(A) \subset \mathbb{R}^m$ é aberto.

Proposição 3 (Propriedades dos abertos) Propriedades fundamentais dos conjuntos abertos

- 1. O conjunto vazio e o espaço \mathbb{R}^n são abertos.
- 2. A intersecção de uma família finita de abertos é aberta.
- 3. A união de uma família qualquer de abertos é aberta.

Definição 12 (Espaço topológico) Um espaço topológico é um par (X,T) em que X é um conjunto e T é uma família de subconjuntos de X, chamados abertos, que satisfazem as propriedades acima. Diz-se, então, que a família T define uma topologia

Teorema 2 Uma sequência (X_k) em \mathbb{R}^n converge para $a \in \mathbb{R}^n$ se, e somente se, $\forall r > 0$, $\exists k_0 \in \mathbb{N}$ tal que se $k \geq k_0$ então $x_k \in B(a, r)$.

Definição 13 (Conjunto fechado) *Um conjunto* $F \subset \mathbb{R}^n$ *é dito fechado quando seu complementar é aberto.*

Proposição 4 (Propriedades dos fechados) Propriedades fundamentais dos conjuntos fechados

- 1. O conjunto vazio e o espaço \mathbb{R}^n são fechados.
- 2. A intersecção de uma família qualquer de fechados é um conjunto fechado.
- 3. A **união** de uma família finita de fechados é fechado.

Definição 14 (Aplicação fechada) Diz-se que uma aplicação $f: \mathbb{R}^n \to \mathbb{R}^m$ é **fechada** quando leva fechados de \mathbb{R}^n em fechados de \mathbb{R}^m .

Definição 15 (Aderência) Um ponto $a \in \mathbb{R}^n$ é dito **aderente** a um conjunto $X \subset \mathbb{R}^n$ se existe uma sequência de pontos de X que convergem para a.

Definição 16 (Fecho) O fecho de X, denotado por \overline{X} , é o conjunto formado por todos os pontos de \mathbb{R}^n que são aderentes a X.

Teorema 3 $F \subset \mathbb{R}^n \text{ \'e fechado} \Longleftrightarrow \overline{F} = F.$

Definição 17 (Bordo) A fronteira (ou bordo) de um conjunto $X \subset \mathbb{R}^n$ é o conjunto $\partial X = \overline{X} \cap \overline{\mathbb{R}^n - X}$.

Definição 18 (Aberto relativo) Sejam X subconjunto de \mathbb{R}^n e $A \subset X$. Diz-se que A é aberto relativo a X ou aberto relativamente à X quando existe um aberto $U \subset \mathbb{R}^n$ tal que $A = U \cap C$.

Definição 19 (Cisão) Uma cisão de um conjunto $X \subset \mathbb{R}^n$ é uma decomposição do mesmo em dois conjuntos disjuntos que são ambos, abertos em X, isto é, $A, B \subset \mathbb{R}^n$ tais que

- $X = A \cup B$
- $A \cap B = \emptyset$
- A e B abertos em X

Definição 20 (Conexidade) Um conjunto $X \subset \mathbb{R}^n$ é dito **conexo** se a única cisão que admite é a trivial $(X = X \cup \emptyset)$ caso contrario é dito desconexo.

Definição 21 (Homeomorfismo) Diz-se que dois espaços (X_1, T_1) e (X_2, T_2) . São homeomorfos quando existe bijeção $\varphi: X_1 \to X_2$ tal que para quaisquer abertos $A_1 \in T_1$ e $A_2 \in T_2$ tem-se que $\varphi(A_1) \in T_2$ e $\varphi^{-1}(A_2) = T_1$. Logo φ é dito homeomorfismo.

Definição 22 (Continuidade) Dados $X,Y \subset \mathbb{R}^n$, $f: X \to Y$ é contínua em $a \in X$ se $\forall \varepsilon > 0, \ \exists \delta > 0$ tal que $x \in X$ e $\|x - a\| < \delta \Rightarrow \|f(x) - f(a)\| < \varepsilon$.

Teorema 4 Dados $X \subset \mathbb{R}^n$ e $Y \subset \mathbb{R}^m$ uma bijeção $f: X \to Y$ é um homeomorfismo se e só se f e f^{-1} são continuas.

Definição 23 (Isomorfismo) \acute{E} uma aplicação que preserva uma estrutura e pode ser revertida com uma aplicação inversa.

Primeira Forma Fundamental

Teorema 5 (Teorema da função inversa) Seja $F:U\subset\mathbb{R}^n\to\mathbb{R}^m$ diferenciável e $dF_p:\mathbb{R}^n\to\mathbb{R}^m$ isomorfismo. Então, existem abertos $V\subset U$ e $W\subset F(U)$, tais que se $p\in V$, então $F(p)\in W$ e $F|_v:V\to W$ é um difeomorfismo.

Definição 24 (Vetor tangente) Dado um ponto p de uma superfície regular S, diz-se que $w \in \mathbb{R}^n$ é um **vetor tangente** a S em p, se existe uma curva $\alpha: (-\varepsilon, \varepsilon) \to S$, $\varepsilon > 0$, tal que, $\alpha(0) = p$ e $\alpha'(0) = w$.

Teorema 6 (Primeira forma fundamental) Seja S uma superfície regular e $p \in S$. A primeira forma fundamental de S em p

$$I_p:T_pS\to\mathbb{R}$$

é a forma quadrática associada à restrição do produto interno canônico de \mathbb{R}^3 ao plano tangente de S em p, T_pS , isto é

$$I_p(w) = \langle w, w \rangle^2 = ||w||^2, \ w \in T_p S$$

Dada uma parametrização $X:U\subset\mathbb{R}^2\to X(U)\subset S$ de S, as funções

$$E(u,v) = \langle X_u(u,v), X_u(u,v) \rangle$$

$$F(u,v) = \langle X_u(u,v), X_v(u,v) \rangle$$

$$G(u,v) = \langle X_v(u,v), X_v(u,v) \rangle$$

São os coeficientes da primeira forma fundamental de S relativos a X, isto é, a matriz de $I_{X(u,v)}$ com respeito a base $\{X_u, X_v\}$, de $T_{X(u,v)}S$

$$\begin{bmatrix} E & F \\ F & G \end{bmatrix}$$

$$E \forall w = aX_u(u, v) + bX_v(u, v) \in T_{X(u,v)}S$$
 tem-se

$$I_{X_{(u,v)}}(w) = a^2 E(u,v) + 2abF(u,v) + b^2 G(u,v)$$

Exemplo 1.4 (A primeira forma numa superfície) *Em sagemath vamos calcular os coeficientes da primeira forma fundamental de uma superfície enneper.*

```
# Define a cart (for exemple enneper)

card(u,v) = (u - (u^3)/3 + u*v^2, v - (v^3)/3 + v*u^2, u^2 - v^2)

# Partial derivatives

x_u = derivative(card, u)

x_v = derivative(card, v)

# First fundamental form

E = x_u.dot_product(x_u)

G = x_v.dot_product(x_v)

# Simplificacao

E = E. full_simplify(). canonicalize_radical()

F = F. full_simplify(). canonicalize_radical()

G = G. full_simplify(). canonicalize_radical()

pretty_results((r"E", E), (r"F", F), (r"G", G))
```

$$E = u^4 + v^4 + 2(u^2 + 1)v^2 + 2u^2 + 1$$

$$F = 0$$

$$G = u^4 + v^4 + 2(u^2 + 1)v^2 + 2u^2 + 1$$

Teorema 7 (Área) Seguindo a primeira forma fundamental a área de uma superfície S um certo conjunto D é dada por

$$A_S(D) = \int_D \sqrt{EG - F^2} du dv$$

Segunda forma fundamental

Definição 25 (Campo) Dada uma parametrização regular S, chama-se **campo** em S toda aplicação $f: S \to \mathbb{R}^3$

Proposição 5 Um campo é dito:

- unitário, se $||f(p)|| = 1, \forall p \in S$.
- tangente, se $f(p) \in T_pS$, $\forall p \in S$. normal, se $f(p) \in T_pS^{\perp}$, $\forall p \in S$.

Definição 26 (vetor normal) Sendo S uma superfície, seja

$$X: U \subset \mathbb{R}^2 \to X(U) \subset S$$

 $\forall p \in S \text{ seja } q = X^{-1}(p), \text{ podemos então definir o vetor normal em S no ponto } p$ como $N: X(U) \to \mathbb{R}^2$, como

$$N(p) = \frac{X_u(q) \times X_v(q)}{\|X_u(q) \times X_v(q)\|}$$

Definição 27 (Superfície orientável) Uma superfície regular S é orientável quando se pode definir um campo normal unitário e diferenciável.

Definição 28 (Atlas coerente) Dada duas parametrizações de A, X e Y e p no conjunto imagem de ambas, então $Y^{-1} \circ X$ tem determinante jacobiano maior que 0 em $X^{-1}(p)$.

Teorema 8 Uma superfície regular S é orientável se, e só se, admite um atlas coerente.

Definição 29 (Aplicação normal de Gauss) Seja S uma superfície regular orientável, N campo normal unitário diferenciável em S, isto é, $||N(p)|| = 1, \forall p \in S$

$$N: S(superficie) \rightarrow E_1(esfera\ de\ raio\ 1)$$

é dita uma aplicação normal de Gauss, $\forall p \in S, T_pS = \{N(p)\}^{\perp} = T_{N(p)}E_1$, temos dN_p é um operador linear de T_pS .

Teorema 9 (Segunda forma fundamental) Seja S uma superfície regular orientável, N aplicação normal de Gauss de S

$$I_p(w)\langle -dN_pw, w\rangle, \ w\in T_pS$$

Dado uma parametrização

$$\alpha: (-\varepsilon, \varepsilon) \to V \subset S$$

tal que $\alpha(0)=p$ e $\alpha'(0)=w$, temos que, $\forall s\in (-\varepsilon,\varepsilon),\ \langle N(\alpha(s)),\alpha'(s)\rangle=0$, então

$$\langle -dN_n w, w \rangle = \langle N(p), \alpha''(0) \rangle$$

e os coeficientes da segunda forma são

$$e(u, v) = \langle -dN_p X_u, X_u \rangle = \langle N \circ X, X_u u \rangle$$

$$f(u, v) = \langle -dN_p X_u, X_v \rangle = \langle N \circ X, X_u v \rangle$$

$$g(u, v) = \langle -dN_p X_v, X_v \rangle = \langle N \circ X, X_v v \rangle$$

Exemplo 1.5 (A segunda forma numa superfície) Em sagemath vamos calcular os coeficientes da segunda forma fundamental de um toro.

```
1 # Define the cart (for exemple toro)
2 \quad a = var('a')
  cart(u,v) = ((a + cos(u))*cos(v), (a + cos(u))*sin(v), sin(u))
6 # Find partial derivatives
   x_u = derivative(cart, u)
8 x_v = derivative(cart, v)
9
10 \quad x_{-}uu = derivative(x_{-}u, u)
11 \quad x_{-}uv = derivative(x_{-}u, v)
12 \quad x_{-}vv = derivative(x_{-}v, v)
13
14 # Find normal vector
15 normal = x_u.cross_product(x_v)(u,v)
16
17 normal_unit = normal / normal.norm()
18 normal_unit = vector_simplify(normal_unit,
19
                                    use_canonical_form=True)
20
21 # Second fundamental form
l = normal\_unit.dot\_product(x\_uu)
23 m = normal\_unit.dot\_product(x\_uv)
24 \quad n = normal\_unit.dot\_product(x\_vv)
25
26 # Simplify
27  l = l.full_simplify().canonicalize_radical()
28 m = m. full_simplify(). canonicalize_radical()
29
   n = n.full_simplify().canonicalize_radical()
30
  pretty_results((r"L", l), (r"M", m), (r"N", n))
```

$$L = 1$$

$$M = 0$$

$$N = a \cos(u) + \cos(u)^{2}$$

References

de Lima, R. F. (2016). INTRODUÇÃO À GEOMETRIA DIFERENCIAL.

do Carmo, M. (2010). *Geometria diferencial de curvas e superfícies*. Textos Universitarios: Ciencias médicas. Sociedade Brasileira de Matemática.

The Sage Developers (2022). SageMath, the Sage Mathematics Software System (Version 9.5). https://www.sagemath.org.