Distribuţia normală standard

Statistica z

Intervalul de incredere

Tendinţa generală + dispersia → media valorilor + deviaţia standard

printre toate valorile ce caracterizează populatia de interes valori, trebuie determinata *probabilitatea de apariție a acelei valori* Dacă dorim să ştim cum arată evoluția în timp a unei anumite

a unei valori particulare. deviația standard pentru a face predictii despre probabilitatea de aparitia *particulare*, care pot fi exploatate în combinație cu *media aritmetică și* aproape normal distribuit), datele vor determina *probabilități foarte* Dacă setul de date al esantionului este *normal distribuit* (sau

Statistica inferentiala permite enuntarea unor:

- afirmaţii cantitative probabilistice
- afirmaţii cantitative predictive

Distribuţia normală

mediana si modul vor avea *valori identice* (sau foarte apropiate). Un set de date are o **distributie normala** daca media aritmetică,

simetric) față de valoarea mediană Graficul unei distributii normale este simetric (sau aproape

standard matematic în funcție de doi parametri: media aritmetică și deviația Înălţimea si lătimea unei distribuţii normale pot fi exprimate

Carl Friedrich Gauss (1777-1855)

O distributie de date este normala daca:

- graficul distributiei are forma de clopot, atingand inaltimea maxima pentru media aritmetica (μ)
- este simetrica fata de media aritmetica (μ)
- este unimodala
- este o distributie continua
- se apropie de axa orizontala, dar nu o atinge niciodata

Caracteristica cea mai folositoare:

aria de sub grafic - se converteste in probabilitate

probabilitatea de 100% = probabilitate egală cu 1,0

Afirmatii logice:

între cele două extreme este 100% probabilitatea ca toate măsurătorile din setul de date să se afle

mică decât valoarea medie, este 50% -probabilitatea ca orice dată din setul de date considerat să fie mai

- mare decât valoarea medie, este 50% probabilitatea ca orice dată din setul de date considerat să fie mai
- cele mai multe valori din setul de date se află în apropierea mediei
- valoarea medie decât de valorile extreme este mai probabil ca o valoare individuală să fie mai aproape de
- apropierea mediei in apropierea extremităților se afla mai putine valori decat in

Afirmatii deduse matematic:

 există o probabilitate de ~68% ca orice valoare dintr-un set de date deviaţie standard deasupra şi sub medie: normal distribuit să se afle în intervalul definit de punctele care se află la o

$$\overline{X} - S, \overline{X} + S$$

există o probabilitate de ~95% ca orice valoare dintr-o distribuţie normală de date să se afle la cel mult două deviaţii standard de medie:

$$\overline{x} - 2s$$
, $\overline{x} + 2s$

distribuție normală de date să fie mai mică decât: există o probabilitate de ~16% ca orice valoare dintr-o

$$x-s$$

Probabilitatea cumulativă

dintr-un set de date să aibă valoarea într-un anumit domeniu. Probabilitatea cumulativă: probabilitatea ca o variabilă aleatoare

aleatoare să fie mai mică sau egală cu o valoare dată. Probabilitatea cumulativă este probabilitatea ca o variabilă

deviatie standard fata de aleatoare sa se afle sub o media aritmetica este 15,87 % - probabilitatea ca o valoare

aritmetica este 50 %: aleatoare sa se afle sub media probabilitatea ca o valoare

Excel: functia NORMDIST: determina probabilitatea cumulativa asociata unei valori (distributie normala):

 probabilitatea ca o valoare din setul de date sa fie mai mica sau egala cu valoarea indicata (aria de la -∞ la valoarea indicata)

Cumulative = TRUE

Se indica:

- valoarea
- media
- deviatia standard

descrierea functiei!

cumulative (distributie normala) Excel: functia NORMINV: determina valoarea asociata unei probabilitati

Se indica:

- probabilitatea de aparitie
- media
- deviatia standard

Distribuţia normală standard

O distribuţie normală standard are:

media aritmetică = 0 deviația standard = 1

Distribuţia normală standard este denumită *distribuţia z*

- Orice distribuţie normală poate fi transformată într-o distribuţie normală standard
- Aria de sub curba unei distribuţii normale standard este egală cu 1!
- Aria de sub graficul distribuţiei standard normale = Probabilitatea de a avea date intre valorile extreme (100%!)

distributie normala standard Relatia de transformare a unei distributii normale (x_i) intr-o

$$punctajul z \longrightarrow Z_i = \frac{(x_i - \overline{x})}{s}$$

z_i reprezinta numărul deviațiilor standard la care se află valoarea x_i fată de media aritmetică: deasupra (> 0), sub (< 0).

- O valoare egală cu media aritmetică se transformă în 0!
- O valoarea mai mare cu o deviație standard decât media aritmetică se transforma in +1.
- O valoare mai mica cu doua deviații standard decât media aritmetică se transforma in -2

standard tață de media aritmetică Punctajul z: valoarea x corespunzatoare se afla la z deviaţiii

Tabelul probabilităților pentru statistica Z

Probabilitatea asociată unei valori ce este mai mare (sau mai mica) decat media aritmetica, dar nu la un număr întreg de deviaţii standard poate fi determinata folosind tabelul probabilităţilor normale (sau folosind functii Excel dedicate).

standard normale la valori mai mici decât punctajul z corespunzator. Valorile din acest tabel indică *aria* ce se află sub graficul distribuției

Aria de sub grafic cuprinsă între orice două valori este egală cu probabilitatea de a avea date între aceste două valori!

Probabilitatea unei distribuţii normale standard

Tabelul indică probabilitatea (p) ca o variabilă standard normală, să aibă o valoare mai mică sau egală cu z (zona haşurată din diagramă).

STANDARD STATISTICAL TABLES

1. Areas under the Normal Distribution

The table gives the cumulative probability up to the standardised normal value z i.e.

P[Z < z] =
$$\int_{-\sqrt{2\pi}}^{2} \exp(-\frac{1}{2}\mathbb{Z}^{2}) d\mathbb{Z}$$

					7/	///	/ / /	1 / / /	/	
					4			Ö	Z	
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5159	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7854
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9773	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9865	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9980	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
2	3.00	3.10	3.20	3.30	3.40	3.50	3.60	3.70	3.80	3.90
P	0.9986	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

Appendix 4 - Values of the Standard Normal distribution

The table gives the probability that a standard Normal variable lies between 0 and x (which is equivalent shaded area on the figure).

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.03040 0.0040 0.0160 0.0179 0.033 0.059 0.1 0.03090 0.0436 0.0167 0.0567 0.0568 0.0627 0.0313 0.0539 0.1 0.03290 0.0323 0.0329 0.0313 0.0539 0.2 0.07733 0.03282 0.0871 0.0948 0.0867 0.1026 0.1143 0.1443 0.1406 0.3 0.1177 0.1265 0.1263 0.1368 0.1406 0.1443 0.1480 0.1401 0.2 0.2561 0.2561 0.2564 0.2567 0.2396 0.2422 0.2454 0.2579 0.2383 0.3263 0.3215 0.3365 0.3283 0.3264 0.2734 0.2764 0.2779 0.2386 0.3380 0.2 0.2561 0.2564 0.2235 0.2364 0.3289 0.3315 0.3340 0.3365							
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 0.0440 0.0808 0.0112 0.0160 0.0199 0.0239 0.0279 0.0319 0 0.0432 0.0478 0.0517 0.0561 0.0562 0.05675 0.07114 3 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1644 0.1701 4 0.1591 0.1255 0.1293 0.1331 0.1388 0.1406 0.1443 0.1480 0.1217 0.1255 0.1293 0.2612 0.2622 0.2627 0.2627 0.2704 0.2734 0.2442 0.2486 0.2123 0.2511 0.2522 0.2527 0.2267 0.2996 0.3023 0.3051 0.3340 0.3365 0.3186 0.3812 0.3238 0.3264 0.3289 0.3340 0.3365 0.3486 0.3231 0.3253 0.3341 0.3370 0.3365 0.3231 0.3571 0.3370 <th></th> <th>226</th> <th>2.0 2.1 2.2 2.4</th> <th>115 116 118</th> <th>110</th> <th>0.5</th> <th>0.0 0.1 0.2 0.3</th>		226	2.0 2.1 2.2 2.4	115 116 118	110	0.5	0.0 0.1 0.2 0.3
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0 0.0478 0.0617 0.0557 0.0536 0.0675 0.0714 2 0.0871 0.0917 0.0319 0.0239 0.0279 0.0319 1 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 1 0.1255 0.1293 0.2123 0.2454 0.2486 0.2511 0.2190 1 0.1285 0.2267 0.2389 0.2422 0.2454 0.2486 0.2518 1 0.2324 0.2328 0.3264 0.2389 0.2531 0.3340 0.3283 1 0.2328 0.3228 0.3223 0.351 0.3340 0.3365 0.3212 0.3238 0.3224 0.3289 0.3315 0.3340 0.3385 0.3422 0.4242 0.4242 0.3481	3.0 0 4987	0.4953 0.4965 0.4974 0.4981	0.4772 0.4821 0.4861 0.4893 0.4918	0.4332 0.4452 0.4564 0.4641 0.4713	0.3413 0.3643 0.3849 0.4032 0.4192	0.1915 0.2258 0.2580 0.2881 0.3159	0.00 0.0000 0.0398 0.0793 0.1179 0.1554
0.03 0.04 0.05 0.06 0.07 0.08 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0517 0.0557 0.0556 0.0636 0.0675 0.0714 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1293 0.1331 0.1368 0.1406 0.1433 0.1480 0.1293 0.1331 0.1368 0.1406 0.1433 0.1484 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2364 0.2389 0.2422 0.2454 0.2486 0.2518 0.2673 0.2794 0.2323 0.351 0.3279 0.3106 0.2967 0.2386 0.3523 0.351 0.3540 0.3523 0.3708 0.3524 0.3289 0.3315 0.3540 0.3565 0.3709 0.3524 0.3289 0.3316 0.3790 0.3810 0.3729 0.3524 0.3524 0.3570 <td>3.1 0.4990</td> <td>0.4955 0.4966 0.4975 0.4982</td> <td>0.4778 0.4826 0.4864 0.4896 0.4920</td> <td>0.4345 0.4463 0.4564 0.4649 0.4719</td> <td>0.3438 0.3665 0.3869 0.4049 0.4207</td> <td>0.1950 0.2291 0.2612 0.2910 0.3186</td> <td>0.01 0.0040 0.0438 0.0832 0.1217 0.1591</td>	3.1 0.4990	0.4955 0.4966 0.4975 0.4982	0.4778 0.4826 0.4864 0.4896 0.4920	0.4345 0.4463 0.4564 0.4649 0.4719	0.3438 0.3665 0.3869 0.4049 0.4207	0.1950 0.2291 0.2612 0.2910 0.3186	0.01 0.0040 0.0438 0.0832 0.1217 0.1591
0.04 0.05 0.06 0.07 0.08 0.0160 0.0199 0.0239 0.0279 0.0319 7 0.0557 0.0596 0.0636 0.0675 0.0714 0 0.0948 0.0987 0.1026 0.1064 0.1103 3 0.1331 0.1368 0.1406 0.1443 0.1480 4 0.1700 0.1736 0.1772 0.1808 0.1804 9 0.2054 0.2088 0.2123 0.2157 0.2190 0.2389 0.2422 0.2454 0.2794 0.2823 8 0.2704 0.2734 0.2764 0.2794 0.2823 8 0.3264 0.3289 0.3315 0.3340 0.3365 8 0.3264 0.3289 0.3315 0.3340 0.3365 8 0.3729 0.3749 0.3770 0.3900 0.3916 6 0.4251 0.4265 0.4279 0.4292 0.4162 6 0.4251 0.4265 0.4279 0.4292 0.4306 0 0.4382 0.4394 0.4406 0.4418 0.4429 4 0.4495 0.4505 0.4515 0.4525 0.4535 2 0.4591 0.4599 0.4608 0.4616 0.4625 4 0.4671 0.4678 0.4886 0.4693 0.4694 2 0.4793 0.4798 0.4803 0.4808 0.4693 2 0.4793 0.4842 0.4846 0.4854 0.4854 1 0.4875 0.4876 0.4896 0.4911 0.4913 8 0.4969 0.4970 0.4931 0.4932 0.4934 1 0.4969 0.4970 0.4931 0.4962 0.4936 0.4969 0.4971 0.4978 0.4986 0.4993 0.4993 0.4987 0.4984 0.4985 0.4986 0.4986 0.4997 0.4984 0.4985 0.4986 0.4997 0.4998 0.4998 0.4999 0.4999	3.2	0.4956 0.4967 0.4976 0.4982	0.4783 0.4830 0.4868 0.4898 0.4922	0.4357 0.4474 0.4573 0.4656 0.4726	0.3461 0.3686 0.3888 0.4066 0.4222	0.1985 0.2324 0.2642 0.2939 0.3212	0.02 0.0080 0.0478 0.0871 0.1255 0.1628
0.05 0.06 0.07 0.08 0.0199 0.0239 0.0279 0.0319 0.0596 0.0636 0.0675 0.0714 0.10596 0.0636 0.0675 0.0714 0.1368 0.1368 0.1406 0.1443 0.1480 0.1736 0.1772 0.1808 0.1844 0.2088 0.2123 0.2157 0.2190 0.2422 0.2454 0.2486 0.2518 0.2734 0.2764 0.2764 0.2823 0.3023 0.3051 0.3078 0.3106 0.3289 0.3315 0.3340 0.3365 0.3531 0.3554 0.3577 0.3599 0.3749 0.3770 0.3790 0.3810 0.3944 0.3962 0.3980 0.3997 0.4115 0.4131 0.4147 0.4162 0.4265 0.4279 0.4292 0.4306 0.4515 0.4525 0.4535 0.4505 0.4515 0.4525 0.4535 0.4678 0.4686 0.4616 0.4625 0.4678 0.4886 0.4693 0.4808 0.4881 0.4829 0.4806 0.4834 0.4886 0.4884 0.4887 0.4929 0.4931 0.4932 0.4931 0.4966 0.4941 0.4966 0.4931 0.4932 0.4931 0.4966 0.4961 0.4962 0.4963 0.4966 0.4961 0.4962 0.4963 0.4961 0.4962 0.4963 0.4961 0.4962 0.4963 0.4966 0.4961 0.4962 0.4963 0.4966 0.4961 0.4962 0.4963 0.4966 0.4961 0.4962 0.4963 0.4966 0.4961 0.4962 0.4963 0.4966 0.4966 0.4961 0.4962 0.4963 0.4966 0.4961 0.4962 0.4963 0.4966 0.	3.3 0.4995	0.4957 0.4968 0.4977 0.4983	0.4788 0.4834 0.4871 0.4901 0.4925	0.4370 0.4484 0.4582 0.4664 0.4732	0.3485 0.3708 0.3907 0.4082 0.4236	0.2019 0.2357 0.2673 0.2967 0.3238	0.03 0.0120 0.0517 0.0910 0.1293 0.1664
0.06 0.07 0.08 0.0239 0.0279 0.0319 0.0636 0.0675 0.0714 7 0.1026 0.1064 0.1103 0.1406 0.1443 0.1480 0.1772 0.1808 0.1844 8 0.2123 0.2157 0.2190 0.2454 0.2486 0.2518 4 0.2764 0.2794 0.2823 0.3051 0.3078 0.3106 9 0.3315 0.3340 0.3565 1 0.3554 0.3577 0.3599 0.3770 0.3790 0.3810 4 0.4362 0.3980 0.3997 0.4131 0.4147 0.4162 0.4279 0.4292 0.4306 1 0.4406 0.4418 0.4429 1 0.4515 0.4525 0.4535 0.4608 0.4616 0.4625 1 0.4866 0.4693 0.4693 1 0.4866 0.4884 0.4854 0.4881 0.4884 0.4854 0.4909 0.4911 0.4913 0.4931 0.4932 0.4934 0.4948 0.4949 0.4951 0.4961 0.4962 0.4963 0.4971 0.4972 0.4963 0.4979 0.4979 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.4986 0.4998 0.4999 0.4999	3.4 0.4997	0.4959 0.4969 0.4977 0.4977	0.4793 0.4838 0.4875 0.4904 0.4927	0.4382 0.4495 0.4591 0.4671 0.4738	0.3508 0.3729 0.3925 0.4099 0.4251	0.2054 0.2389 0.2704 0.2996 0.3264	0.04 0.0160 0.0557 0.0948 0.1331 0.1700
0.07 0.08 0.0279 0.0319 0.0675 0.0714 0.1064 0.1103 0.1443 0.1480 0.1808 0.1844 0.2157 0.2190 0.2486 0.2518 0.2794 0.2823 0.3078 0.3106 0.3340 0.3365 1 0.3577 0.3599 0.3790 0.3810 0.3980 0.3997 0.4147 0.4162 0.4292 0.4306 0.4292 0.4306 0.4525 0.4535 0.4616 0.4625 0.4693 0.4699 0.4756 0.4761 0.4884 0.4887 0.4911 0.4913 0.4932 0.4934 0.4932 0.4931 0.4962 0.4963 0.4973 0.4963 0.4979 0.4986 0.4986 0.4986 0.4986 0.4986	3.5 0.4998	0.4960 0.4970 0.4978 0.4984	0.4798 0.4842 0.4878 0.4906 0.4929 0.4946	0.4394 0.4505 0.4599 0.4678 0.4744	0.3531 0.3749 0.3944 0.4115 0.4265	0.2088 0.2422 0.2734 0.3023 0.3289	0.05 0.0199 0.0596 0.0987 0.1368 0.1736
0.08 0.0319 0.0319 0.0714 0.1103 0.1480 0.1844 0.2518 0.2518 0.2518 0.3365 0.3365 0.3365 0.3365 0.3810 0.3897 0.4162 0.4306 0.4429 0.4306 0.4429 0.4535 0.4625 0.4625 0.4625 0.4854 0.4887 1.04934 0.4933 0.4933 0.4933 0.4933 0.4933 0.4933 0.4936 0.4938	3.6 0.4998	0.4961 0.4971 0.4979 0.4985	0.4803 0.4846 0.4881 0.4909 0.4931	0.4406 0.4515 0.4608 0.4686 0.4750	0.3554 0.3770 0.3962 0.4131 0.4279	0.2123 0.2454 0.2764 0.3051 0.3315	0.06 0.0239 0.0636 0.1026 0.1406 0.1772
000001 00000000000000000000000000000000	3.7 0.4999	0.4962 0.4972 0.4979 0.4985	0.4808 0.4850 0.4884 0.4911 0.4932	0.4418 0.4525 0.4616 0.4693 0.4756	0.3577 0.3790 0.3980 0.4147 0.4292	0.2157 0.2486 0.2794 0.3078 0.3340	0.07 0.0279 0.0675 0.1064 0.1443 0.1808
0.09 0.0359 0.0359 0.0754 0.1141 0.1517 0.1879 0.2224 0.2549 0.2852 0.3133 0.3389 0.3621 0.3830 0.4015 0.4177 0.4319 0.4545 0.4633 0.4767 0.4857 0.4857 0.4896 0.4952 0.4964 0.4974 0.4986 0.4986 0.4986 0.4986	3.8 0.4999	0.4963 0.4973 0.4980 0.4986	0.4812 0.4854 0.4887 0.4913 0.4934	0.4429 0.4535 0.4625 0.4699 0.4761	0.3599 0.3810 0.3997 0.4162 0.4306	0.2190 0.2518 0.2823 0.3106 0.3365	0.08 0.0319 0.0714 0.1103 0.1480 0.1844
	3.9 0.5000	0.4964 0.4974 0.4981 0.4986	0.4817 0.4857 0.4890 0.4916 0.4936	0.4441 0.4545 0.4633 0.4706 0.4767	0.3621 0.3830 0.4015 0.4177 0.4319	0.2224 0.2549 0.2852 0.3133 0.3389	0.09 0.0359 0.0754 0.1141 0.1517 0.1879

P1. Care este probabilitatea ca o valoare, dintr-un set de date cu distribuţie normală, să se afle la cel mult 1,5 deviaţii standard deasupra mediei? (p=? daca z ≤ 1,5)

0.50	0.49	0.48	0.47	0.46	0.45	\leftarrow	\leftarrow	←	0.05	0.04	0.03	0.02	0.01	0.00	Z
0.6915	0.6879	0.6844	0.6808	0.6772	0.6736	←	←	\leftarrow	0.5199	0.5160	0.5120	0.5080	0.5040	0.5000	σ
1.00	0.99	0.98	0.97	0.96	0.95	\leftarrow	←	←	0.55	0.54	0.53	0.52	0.51	0.5	Z
0.8413	0.8389	0.8365	0.8340	0.8315	0.8289	\leftarrow	←	←	0.7088	0.7054	0.7019	0.6985	0.6950	0.6915	σ
1.50	1.49	1.48	1.47	1.46	1.45	\leftarrow	\leftarrow	←	1.05	1.04	1.03	1.02	1.01	1.00	Z
0.9332	0.9319	0.9306	0.9292	0.9279	0.9265	←	←	←	0.8531	0.8508	0.8485	0.8461	0.8438	0.8413	σ

$$z = 1,5$$

p = 0,933 (93,3%)

Atentie!

- în tabelul statistici z toate valorile z sunt pozitive!
- distribuţia normală este simetrică

sub medie? (p=? daca $z \le -0.8$). normală, să se fie mai mică decât valoarea situată la 0,8 deviații standard P2. Care este probabilitatea ca o valoare, dintr-un set de date cu distribuţie

valoarea pentru $z = 0.80 \rightarrow p = 0.7881$ (simetrie fata de medie, aria totala =1!)

	٠	٠	Ξ	1.0	و:	٠) .	•	.0	Z
	2	•	.2713	.3173	.3681		- : • :		1.000	0.00
•		7 4 7	.2670	.3125	.3628	٠	7 4 %		.9920	0.01
٠	٠	٠	.2627	.3077	.3576	٠	(a)	Ť	.9840	0.02
•	•	٠	ě	•	٠	٠	٠		•	• 7
•	Ŀ	•	•	*:	•	٠	•	*=	*	٠
	•	٠	•	•	5,00	*	101	٠	•	•
•	·	٠	8	•	٠	٠	•		*	0.09

(Two-Sided Tail Probabilities of the Normal Curve)

(Two-Sided Tail Probabilities of the Normal Curve)

0

1.000

0.00

limitate la ambele capete

0.9545

tabele "two -tail"

0.0455

.0455 .0357

.0574

Excel: functia NORMSDIST determina probabilitatea ca o valoare sa se afle la cel mult z deviatii standard fata de medie.

standard deasupra cel mult 1,5 deviaţii de date cu distribuţie valoare, dintr-un set normală, să se afle la probabilitatea ca o mediei? P1. Calculati

(p=? daca z ≤ 1,5)

Valoarea punctajului z poate sa fie si negativa!

4.0 -3.0 -2.0 -1.0 0.0 Z = -0.805 <u>ه</u> 3.0 4.0

standard sub medie? P2. Care este situată la 0,8 deviații valoare, dintr-un set de date cu distribuţie probabilitatea ca o (p=? daca z ≤ -0,8). mică decât valoarea normală, să se fie mai

Microsoft Excel - Book1

File Edit View Insert Format

Tools

Data

Window

뜮

Aria

6

M 4

N⊅ NA NA

Ġ.

G

エ

8.0- =

= 0,211855334

z = -0.8

p = 0.21

Cancel

Excel: functia NORMSINV calculeaza punctajul z asociat unei probabilitati.

Ex: la câte deviaţii standard sub media aritmetică trebuie să fie o măsurătoare dintr-o distribuţie normală pentru a avea 21% probabilitate de apariţie?

$$p = 0.21$$

- o deviatie standard de 12,5 pg/ml. sangele adolescentelor este normal distribuita, avand o medie de 65 pg/ml si P3. Se considera ca valoarea nivelului seric al 1,25 dihidroxivitamina D in
- a) ce procentaj din totalul adolescentelor au nivelul seric al dihydroxivitaminei D mai mare (mic) de 65 pg/ml?
- b) cat la suta din totalul adolescentelor au nivelul seric al dihydroxivitaminei D situat intre 40pg/ml si 90 pg/ml?

grupuri hidroxil: $1,25-(OH)_2D_3$). forma hormonal activa a vitaminei D (are 3 1,25-dihydroxivitamin D3 (*Calcitriol*)

Calcitriolul creste nivelul de calciu (Ca²⁺) din organism prin:

- (1) cresterea absorbtiei de calciu din intestin in sange
- (2) posibila crestere a eliberarii in sange a calciului din oase.

a)
$$P(z>65) = P(z<65) = 50\%$$

b)
$$P(45 < z < 90) = ?$$

$$z_1 = \frac{40 - 65}{12,5} = -2$$
 $z_2 = \frac{90 - 65}{12,5} = 2$

$$P_{(45$$

Teorema limitei centrale

aritmetice a eşantioanelor va fi o distribuție normală Dacă mărimea eşantionului este mare (>30), distribuția mediei

din care provin eşantioanele are o distribuție normală *aritmetice a eşantioanelor* va fi o distribuție normală *numai dacă* populația Dacă mărimea eşantionului este mică (<30), distribuția *mediei*

Media aritmetică a distribuției mediei eşantioanelor este egală cu media aritmetica a populaţiei (μ):

$$\mu_{\overline{x}} = \mu$$

eşantıoanelor Eroarea standard a **mediei** este *deviația standard a distribuției mediei*

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

σ = deviaţia standard a întregii populaţii

$$S_{\frac{1}{x}} = \frac{1}{\sqrt{n}}$$

s = deviaţia standard a eşantionului

Distributia valorilor individuale ale unei populatii

Distributia valorilor medii ale tuturor esantioanelor unei populatii

 $\mathbf{x} \pm 1\mathbf{\sigma}_{\mathbf{x}}$ $x \pm 2\sigma_{\overline{x}}$ × | | | × distribuţia mediei eşantioanelor

Intervalul de încredere pentru media aritmetică

Intervalul de incredere = Confidence Interval = Cl

aritmetică a întregii populații. *acuratețea* cu care <u>media aritmetică a eşantionului</u> estimează *media* Intervalul de încredere (CI) în jurul mediei aritmetice indica

nivel de încredere de 95%, folosind un eşantion de 100 calculi Ex: Dimensiunea medie a calculilor biliari este 2,5 cm ± 0,20 cm pentru un

populației în discuție se află între 2,3 cm și 2,7 cm În formularea de mai sus se afirmă că: suntem 95% siguri că media

de interes), data cu o probabilitate specificata **Intervalul de incredere** = regiunea care contine valoarea reala (parametrul

distanță de 2 erori standard față de media întregii populații. Există o probabilitate de 95,4% ca media oricărui eşantion să fie la

distanță de 1 eroare standard față de media întregii populații. Există o probabilitate de 68,2% ca media oricărui eşantion să fie la

$$p(\overline{x}-1\hat{\sigma}_{\overline{x}}<\mu<\overline{x}+1\hat{\sigma}_{\overline{x}})=0,68$$

$$p(\overline{x}-2\hat{\sigma}_{\overline{x}}<\mu<\overline{x}+2\hat{\sigma}_{\overline{x}})=0,95$$
 tia mediei

$$CI = \overline{x} \pm z \hat{\sigma}_{\overline{x}}$$

$$p(\bar{x} - z\hat{\sigma}_{\bar{x}} < \mu < \bar{x} + z\hat{\sigma}_{\bar{x}}) = \text{din tabelul probabilitation}$$

$$CI = \overline{x} \pm z\sigma_{\overline{x}}$$

$$\sigma_{\overline{x}} = \frac{3}{\sqrt{n}}$$

σ_x - eroarea standard a mediei

s - deviaţia standard a eşantionului

Valoarea z se calculeaza în funcție de *nivelul de siguranta* (probabilitatea)!

Nivel de siguranță (p) – cât de siguri dorim să fim că media aritmetică a populației se află în intervalul de încredere

$$(90\%; 95\%; 99\% \rightarrow p = 0,90; 0,95; 0,99)$$

Nivel de semnificație (a sau α) – cât de puțin vrem să greșim

$$(10\%; 5\%; 1\% \rightarrow a = 0,10; 0,05; 0,01)$$

Relatia dintre nivelul de siguranta (p) si nivelul de semnificatie (a):

$$a = 1 - p$$

P4. Calculaţi intervalul de încredere în jurul mediei, corespunzător unei probabilităţi de 95%, cunoscand urmatoarele: media aritmetica = 2,5; deviatia standard = 0,2; marimea esantionului = 100
$$\overline{x} = 2,5 \quad s = 0,2 \quad n = 100$$

$$CI = \overline{x} \pm z \cdot \sigma_{\overline{x}}$$

$$CI = \overline{x} \pm z \cdot \sigma_{\overline{x}}$$

$$\sigma_{\overline{x}} = \frac{s}{\sqrt{n}} = \frac{0,2}{\sqrt{100}} = 0,02$$

$$\sigma_{\overline{x}} = \frac{s}{\sqrt{n}} = \frac{0,2}{\sqrt{100}} = 0,02$$

$$CI = 2,5 \pm z \cdot 0,02$$

nivelul de siguranta (se considera in jurul mediei!): p = 0,95

Valoarea z va fi asociata unei valori **p'** diferita de 0,95!!!

determinata valoarea lui z asociata unei valori p' = 0,975 Aria unui singur interval este [(1-0,95)/2] = 0,025, deci trebuie

1.50	1.49	1.48	1.47	1.46	1.02	1.01	1.00	Z
0.9332	0.9319	0.9306	0.9292	0.9279	0.8461	0.8438	0.8413	q
2.00	1.99	1.98	1.97	1.96	1.52	1.51	1.50	Z
0.9772	0.9767	0.9761	0.9756	0.9750	0.9357	0.9345	0.9332	р
2.50	2.49	2.48	2.47	2.46	2.02	2.01	2.00	Z
0.99379	0.99361	0.99343	0.99324	0.99305	0.97831	0.97778	0.97725	þ

$$p' = 0.975$$

$$z = 1,96$$

$$CI = 2,5 \pm 1,96 \cdot 0,02$$

$$CI = 2,5 \pm 0,04$$

99%	95%	90%	nivelul de siguranta
0,99+0,005	0,95+0,025	0,90+0,05	p'
2,58	1,96	1,65	Z

(tip "one tail") la deducerea punctajului z trebuie folosita probabilitatea p' Atentie: Pentru un tabel al probabilitatilor limitat la un singur capat

Excel: functia CONFIDENCE: determina intervalul de incredere $z \cdot \sigma_{\overline{x}}$

Obs.: rezultatul obtinut se adauga/scade la media esantionului!

$$CI = \overline{X} \pm Z \cdot \sigma_{\overline{X}}$$

P4. Calculaţi intervalul de încredere în jurul mediei, corespunzător unei probabilităţi de 95%, cunoscand: media aritmetica = 2,5; s = 0,2; n = 100

Raspuns: Media populatiei din care a fost extras esantionul va fi situata in domeniul: 2,5 ± 0,39199

P5. Timpul de spitalizare dupa interventia chirurgicala in cazul protezei totale de genunchi a fost inregistrat pentru 90 pacienti ai spitalului Z.

populatiei: zile de spitalizare in cazul protezarii totale a genunchiului. Determinati cu o probabilitate de 90% intervalul de incredere pentru media Media esantionului este 4,2 zile, iar deviatia standard este 1,05 zile

 $n = 90 \rightarrow esantion$ mare,

media = 4,2

$$s = 1,05$$

$$90 \% \rightarrow z = 1,65$$

$$CI = \overline{x} \pm 1,65 \frac{s}{\sqrt{n}}$$

$$CI = 4.2 \pm 1.65 \frac{1.05}{\sqrt{90}}$$

$$CI = 4,2 \pm 0,1826$$

Excel: $z \cdot \sigma = 0,18205$

Distribuţia 't-student'

usor diferita, numita "distributie t". valori) trebuie folosita o distributie In cazul esantioanelor mici (<30

eşantioanelor Distribuția t descrie o familie de distribuții dependente de mărimea

devine identică cu o distribuția z. Pentru un eşantion ce conține mai mult de 30 măsurători, distribuția t

$$CI = \overline{x} \pm t \cdot \hat{\sigma}_{\overline{x}}$$

Tablul distribuţiei "t"

(Student's t Distribution)

20 21	18 19	3	2	1		Of Freedom	Degrees
1.325 1.323	1.330 1.328	1.638	1.886	3.078	20%	$\alpha = 0.2$	Significance Level
1.725 1.721	1.734 1.729	2.353	2.920	6.314	10%	$\alpha = 0.1$	e Level
2.086 2.080	2.101 2.093	3.182	4.303	12.706	5%	$\alpha = 0.05$	
2.423 2.414	2.445 2.433	4.177	6.205	25.452	2.5%	$\alpha = 0.025$	
2.845 2.831	2. \$ 78 2.861	5.841	9.925	63.656	1.0%	$\alpha = 0.01$	
3.850 3.819	3.922 3.883	12.924	31.600	636.578	0.1%	$\alpha = 0.001$	

a (lpha) este probabilitatea ca o valoare să fie mai extremă decât t

Obs.:

- tabelul distribuţiei t este taiat la ambele capete!
- valorile sunt grupate în funcție de nivelul de semnificație (α =1-p) - gradul de libertate (df = n-1).

Excel: functia TINV: determina valoarea distributiei t daca se cunoaste probabilitatea (α = 1 - p) si marimea esantionului (df = n - 1)

valoarea distributiei t = punctajul t corespunzator probabilitatii date

Distributia t este de tipul "two tail"!

Se indica:

- nivelul de semnificatie (notat "Probability" in fereastra functiei TDIST!)
- gradul de libertate

Excel: functia TDIST: determina *nivelul de semnificație* (α =1-p)

Se indica:

- valoarea distributiei t (notata "x" in fereastra functiei TDIST!)
- gradul de libertate
- tipul de distributie (onetailed/two tailed)

t – Table (tail probabilities of the t-distributions)

Degrees of Freedom	2Q (Q)	0.10 (0.05)	0.05 (0.025)	0.01 (0.005)	0.005 (0.0025)	0.001 (0.0005)
-		63138	12.706	63.657	127.32	636.62
2		2,9200	43026	9.9251	M0911	31,6075
3		2.3534	3.1825	800-812	7. 4 633	12,9258
		2.1318	27764	45040	5,5980	8.6087
VI.		2.0151	25706	40323	47734	6.8701
o		1962	2,469	37075	43169	5,9590
7		1,896	2366	¥	40298	5.4088
CO.	Ī	1898	23060	3305	3836	5,0421
· ·		18881	23621	3,2498	3,6895	47805
8		1,8125	2,2281	3,889	3.5814	45871
Ħ		17959	22010	3,1057	34967	4.874
r2		17823	21788	3056	3.4085	43184
ದ		17709	21604	3,0122	3.37%	42215
¥		1.7613	2148	29768	3.3258	41412
ਰ		17530	2.814	2967	SHEET	40735
ਗੱ		1748	2,189	2,9007	32521	40157
77		173%	2,1098	28982	3,7726	3.9659
ø		17341	21009	28784	31967	3.9224
ø		1,7291	20930	2,8609	3.1738	3.8841
8		17247	2,0860	28453	31535	3.8502
21		17207	20796	2,8313	3.053	3,8200
22		17171	20739	28187	3.1789	3.7918
23		1,7139	2,0687	2.8073	3.1041	3.7683
¥		17109	2,0639	27969	3,0906	3,7461
bi		17081	20595	27874	3.0783	37728
×		17056	2,0555	27787	3.0670	3,7073
a		17033	2,0518	27707	3.0566	3,6903
28	Ī	1,7011	20484	27632	3,0470	3.6746
R		16891	20452	27564	3,0382	3,6601
3		16973	20423	27500	3.0299	3,6466

Student's t Distribution Table

	636.6192	63.6567	31.8205	12.7062	6.3138	3.0777
2-Tail Alpha	0.001	0.01	0.02	0.05	0.10	0.20
1-Tail Alpha	0.0005	0.005	0.010	0.025	0.050	0.100
2-Tail Confidence Level	99.9%	99%	98%	95%	90%	80%
1-Tail Confidence Level	99.95%	99.5%	99%	97.5%	95%	90%
₃ ⁴ tvalue	1 2	2 4 0	4.			
			1	0.05).	interval (2-Tail $\alpha = 0.05$).	interval
$\frac{2}{2} = 0.025$	2 1 5	25	$\frac{\alpha}{2} = 0.025$	ıfidence	is 2.101 for 95% confidence	is 2.101
		\		om	18 degrees of freedom	18 degre
				alue for	For example, the tvalue for	Forexam

26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	df	
1.3150	1.3163	1.3178	1.3195	1.3212	1.3232	1.3253	1.3277	1.3304	1.3334	1.3368	1.3406	1.3450	1.3502	1.3562	1.3634	1.3722	1.3830	1.3968	1.4149	1.4398	1.4759	1.5332	1.6377	1.8856	3.0777	0.20	
1.7056	1.7081	1.7109	1.7139	1.7171	1.7207	1.7247	1.7291	1.7341	1.7396	1.7459	1.7531	1.7613	1.7709	1.7823	1.7959	1.8125	1.8331	1.8595	1.8946	1.9432	2.0150	2.1318	2.3534	2.9200	8:15:9	0.10	
2.0555	2.0595	2.0639	2.0687	2.0739	2.0796	2.0860	2.0930	2.1009	2.1098	2.1199	2.1314	2.1448	2.1604	2.1788	2.2010	2.2281	2.2622	2.3060	2.3646	2.4469	2.5706	2.7764	3.1824	4.3027	12.7062	0.05	
2.4786	2.4851	2,4922	2,4999	2.5083	2.5176	2.5280	2.5395	2.5524	2.5669	2.5835	2.6025	2.6245	2.6503	2.6810	2.7181	2.7638	2.8214	2.8965	2.9980	3.1427	3.3649	3.7469	4.5407	6.9646	31.8205	0.02	
2.7787	2.7874	2.7969	2.8073	2.8188	2.8314	2.8453	2.8609	2.8784	2.8982	2.9208	2.9467	2.9768	3.0123	3.0545	3.1058	3.1693	3.2498	3.3554	3.4995	3.7074	4.0321	4.6041	5.8409	9.9248	63.6567	0.01	
3.7066	3.7251	3.7454	3.7676	3.7921	3.8193	3.8495	3.8834	3.9216	3.9651	4.0150	4.0728	4.1405	4.2208	4.3178	4.4370	4.5869	4.7809	5.0413	5.4079	5.9588	6.8688	8.6103	12.9240	31.5991	636.6192	0.001	
	\.a							•					•			•										2-T	

Table VI The t Distribution

(1/1)=	
7-8	
$\sqrt{\pi r} \Gamma(r/2) (1 + w^2/r)^{(r+1)/2} dw$	$\Gamma[(r+1)/2]$

$$P(T \le -t) = 1 - P(T \le t)$$

18		1				N		N		1	ı	
10	9	8	7	6	2	4	1	12	7	7		
0.260	0.261	0.262	0.263	0.265	0.267	0.271	0.277	0.289	0.325	10.40(r)	0.60	
0.700	0.703	0.706	0.711	0.718	0.727	0.741	0.765	0.816	1.000	10.25(r)	0.75	
1.372	1.383	1.397	1.415	1.440	1.476	1.533	1.638	1.886	3.078	10.10(r)	0.90	4
1.812	1.833	1.860	1.895	1.943	2.015	2.132	2.353	2.920	6,314	11/0.05(0)	0.95	$P(T \leq t)$
2.228	2.262	2.306	2.365	2.447	2.571	2.776	3.182	4.303	12,706	to.025(r)	0.975	
2.764	2.821	2.896	2.998	3.143	3.365	3.747	4.541	6,965	31.821	10.01(r)	0.99	
3.169	3.250	3.355	3,499	3.707	4.032	4.604	5.841	9.925	63.657	10.005(r)	0.995	
1	J	N	JV	A.	r		1					

28 27

1.3137

1.7033 1.7011

3.6896 3.6739

29

1.3114 1.3125

2.0452 2.0423

2.0484 2.0518

1.3104

1.6973 1.6991

2,4573 2.4620 2.4671 2,4727

2.7500 2.7564 2.7633 2.7707

3.6460 3.6594

P6. Calculați intervalul de încredere în jurul mediei corespunzător unei probabilități de 95% $\overline{\mathcal{X}}=2,5 \quad s=0,2 \quad n=$ n = 20

n = 90 \rightarrow esantion mic \rightarrow distributia t, df = 19 95 %, a = 0,05 \rightarrow t = 2,093

$$CI = \overline{X} \pm t \cdot \sigma_{\overline{X}}$$

$$CI = \overline{x} \pm t \cdot \frac{s}{\sqrt{n}}$$

$$CI = 2,5 \pm 2,093 \cdot 0,0447$$

$$CI = 2,5 \pm 0.09$$

cazul pacientilor sanatosi (> 50 ani, barbati) din satul X. A efectuat cerute. Media valorilor obtinute: 0,94 mg/dl, deviatia standard: 0,15 mg/dl. (nivelul de creatinina serica) cu un nivel de siguranta de 95%. masuratori ale creatininei serice la 15 pacienti ce indeplinesc criteriile **P7.** Un medic doreste sa masoare nivelul mediu al creatininei serice in Determinati intervalul de incredere pentru media populatiei tinta

nivelul de semnificatie: a = 1-p = 0,05

gradul de libertate: df = n-1

$$CI = \overline{x} \pm t \cdot \frac{s}{\sqrt{n}}$$

$$t = 2,1448$$

$$CI = 0,94 \pm 0,08$$

