Visualising and Analysing Running Tracks

Simon Schoemaker & Daniel Schumacher Tuesday, March 31, 2015

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Import Tracks

```
ddir1 <- "dat/2014-08-14-Running.gpx"
ddir2 <- "dat/2015-02-01-Running.gpx"

Tr1 <- getTr(ddir1)
Tr2 <- getTr(ddir2)</pre>
```

Get Statistics

```
## GetStats
getStats(Tr1)
##
           Date Start
                               Meters Minutes min/km SpeedMax[km/h]
                        End
## 1 2014-08-14 15:30 16:46 14398.35
                                        76.53
                                                5.32
                                                               20.02
     Temperature[?C] Humidity[%]
                                           Weather-Description Windspeed[m/s]
## 1
               14.65
                               87 thunderstorm with light rain
##
     Pressure[hPa]
## 1
              1009
getStats(Tr2)
                               Meters Minutes min/km SpeedMax[km/h]
##
           Date Start
                        End
## 1 2015-02-01 11:16 13:17 22535.05 121.17
                                                5.38
     Temperature[?C] Humidity[%] Weather-Description Windspeed[m/s]
## 1
                3.73
                             88.5
                                        broken clouds
                                                                 2.42
##
     Pressure[hPa]
## 1
           1004.27
```

Plot Track on a Map

```
## Plot with Basic Map
df <- as.data.frame(Tr2@sp@coords)
x <- df[,1]
y <- df[,2]
plotMap(Tr2, x, y)</pre>
```



```
df <- as.data.frame(Tr1@sp@coords)
x <- df[,1]
y <- df[,2]
plotMap(Tr1, x, y)</pre>
```


Plot Elevation with Speed

plotEleSpeed (Tr1)

plotEleSpeed (Tr2)

Calculate Slope

calculateSlope(Tr1)

##		distance	[metres]	slope [%]
##	1		1934.04	-0.65
##	2		450.22	0.40
##	3		1374.69	-0.45
##	4		192.85	0.36
##	5		495.10	-0.26
##	6		2435.24	0.41
##	7		517.27	-1.24
##	8		970.38	1.88
##	9		134.32	-3.95
##	10		930.86	2.71
##	11		1079.48	-2.95
##	12		629.76	2.57
##	13		913.16	-1.01
##	14		360.59	0.92
##	15		1139.87	-0.88
##	16		840.51	0.67

calculateSlope(Tr2)

##		distance	[metres]	slope [%]
##	1		932.26	-0.79
##	2		1462.67	0.72
##	3		3871.21	-0.53
##	4		2058.53	0.39
##	5		3148.41	-0.37
##	6		536.30	0.17
##	7		628.79	-0.24
##	8		2764.68	0.42
##	9		221.16	-0.90
##	10		1811.02	0.43
##	11		352.62	-1.05
##	12		1238.25	0.61
##	13		757.62	-0.46
##	14		99.56	1.71
##	15		915.23	-0.97
##	16		488.57	0.72
##	17		287.85	-0.80
##	18		960.31	1.21

Plot Speed on a Map

plotSpeed(Tr1)

plotSpeed(Tr2)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.