date: 2024-03-01

TFE4188 - Lecture 7

Voltage regulation

Goal

Why do we need voltage regulation

Introduction to linear regulators

Introduction to switched regulators

Carsten Wulff 2023

2

Voltage source

	Chemistry	Voltage [V]
Primary Cell	LiFeS2, Zn/ Alk/MnO2, LiMnO2	0.8 - 3.6
Secondary Cell	Li-lon	2.5 - 4.3
USB	_	4.0 - 6.5 (20)

Fig. 2. NMOS cross-section. In addition to stress from cap layers and Ge raised source-drain (S-D) implants, device dimensions such as distance from source-channel boundary to nearby STI (SA and SB), proximity and regularity of overlying metal patterns, and short distances to other device patterns within the local ($< 2 \mu m$) stress field induce transverse (F_y) and lateral (F_x and F_z) stress components, which affect threshold and mobility calculated distance to P+ ties increases local tub (bulk) resistance components R1 and R2, which isolate the device MOS model 5 substrate node from the device subcircuit symbol V_b node and degrade HF performance. Hot carrier reliability stress is dependent on the sum of

Core voltage

IO voltage

Voltage [V]	Voltage [V]	Node [nm]
5.0	1.8	180
3.0	1.5	130
1.8	1.2	55
1.2	0.8	22

Name	Voltage	Min [nA]	Max [mA]	PWR DR [dB]
VDD_VBUS	5	10	500	77
VDD_VBAT	4	10	400	76
VDD_IO	1.8	10	50	67
VDD_CORE	0.8	10	350	75

Figure 1. Regulators used in nRF5340

Linear Regulators

PMOS pass-fet

12

Parameter	Description	Unit
Load regulation	How much does the output voltage change with load current	V/A
Line regulation	How much does the output voltage change with input voltage	V/V
Power supply rejection ratio	What is the transfer function from input voltage to output voltage? The PSRR at DC is the line regulation	dB
Max current	How much current can be delivered through the pass-fet?	A
Quiescent current	What is the current used by the regulator	A
Settling time	How fast does the output voltage settle at a current step	S

NMOS pass-fet

Testbench for LDO pass-fet

```
* Pass-fet
XM1 OUT G VDD VDD sky130_fd_pr__pfet_01v8 L=0.252 W=11.52 nf=2 ... m=1000
* Reference
VREF VREF 0 dc 0.8
* OTA
BOTA G 0 V=(1 + tanh(-1000*(v(vref) - v(out))))/2*{AVDD}
* Load cap
CL OUT 0 1u
* Current load
ILOAD OUT 0 pwl 0 0 1u 0 50u 0.5
```


Switched Regulators

Principles of switched regulators

There is a big difference between the idea for a circuit, and the actual implementation. A real DC/DC implementation may seem overwhelming.

Just look at figure 7 in A 10-MHz 2-800-mA 0.5-1.5-V 90% Peak Efficiency Time-Based Buck Converter With Seamless Transition Between PWM/PFM Modes

Inductive BUCK DC/DC

Capacitive BUCK DC/DC

Inductive BOOST DC/DC

Capacitive BOOST DC/DC

Inductive DC/DC converter details

$$I_x(t) = rac{1}{L} \int V_x(t) dt$$

$$V_o(t) = rac{1}{C} \int \left(I_x(t) - I_o(t)
ight) dt$$

Pulse width modulation (PWM)

Jupyter PWM BUCK model

Pulsed Frequency Mode (PFM)

Carsten Wulff 2023

30

Jupyter PFM BUCK model

Thanks!