Drone flights data planning and processing

Team: "Neon Genesis Tetrahedron"

Captain: Dmytro Kolisnyk Danylo Levoshko Andriy Agarkov

Background

At present drones are widely used in express delivery, journalism, medicine transportation, saving lives, observing wildlife, combating crime, assistance in catastrophes, helping farmers, etc.

Prerequisites in Ukraine

Using drones in agriculture is one of the promising areas for Ukraine, which can help to increase productivity and reduce agribusiness costs. Agriculture is one of the leading sectors of Ukraine's economy - as of 2018, agriculture covers almost 17% of Ukraine's GDP and brings in about 38% of foreign exchange earnings. However, its efficiency can be

greatly enhanced. Drones equipped with thermal imagers measure plant growth. Multispectral sensors allow to monitor the application of irrigation, fertilizers, and pesticides in the required places. It can be monitored the health of crops, fungal or bacterial infections.

Problem Decomposition

Design Assumptions

Ability to enter custom Drone characteristics

Ability to choose from predefined Drones

Route Visualization in maps

Available 24/7

Available from desktops, tablets, mobiles

Ability to enter base GPS coordinates

Ability to choose start point from map

Cross-platform solution

Application Architecture

Drone Flight Planning + Visualizing

HTML + IS Server HTML + JS Node.js + Python + OpenLayers Lib Start GPS coordinates Flight attitude, **h** Flight Area on Map Define Flight Area Viewing angle, α Battery capacity, *C* Route on Map Photo Frequency Calc Battery usage per photo, **u**_{photo} Travelling salesman Battery usage per **Photo Points** problem move, u_{move}

Define Area Model

$$m = l \sqrt{\frac{C - \sqrt{2}lu_{move}}{lu_{move} + u_{photo}}}$$

$$l = 2h \tan \frac{\alpha}{2}$$

Photo Enhancement

Sharpening Algorithm

C _{x-1y-1}	C _{x-1y}	C _{x-1y+1}
C _{xy-1}	C _{xy}	C _{xy+1}
C _{x+1y-1}	C _{x+1y}	C _{x+1y+1}

$$\mathbf{m}_{ij}$$

-1	-1	-1
-1	9	-1
-1	-1	-1

$$\begin{pmatrix}
R_{x_{i}y_{j}} \cdot m_{ij} \xrightarrow{\theta_{R}} R'_{x_{i}y_{j}} \\
G_{x_{i}y_{j}} \cdot m_{ij} \xrightarrow{\theta_{G}} G'_{x_{i}y_{j}} \\
B_{x_{i}y_{i}} \cdot m_{ij} \xrightarrow{\theta_{B}} B'_{x_{i}y_{i}}
\end{pmatrix}
\begin{pmatrix}
R'G'B')_{xy} \\
\theta_{c} > 255 \Rightarrow \theta_{c} = 255 \\
\theta_{c} < 0 \Rightarrow \theta_{c} = 0
\end{pmatrix}$$

$$\theta_c = \sum_{i=1}^3 \sum_{v=1}^3 C_{x_i y_j} \cdot m_{i,j}$$

$$\begin{cases} \theta_c > 255 \Rightarrow \theta_c = 255 \\ \theta_c < 0 \Rightarrow \theta_c = 0 \end{cases}$$

C – color, R – red, G – green, B - blue

Photo Stitching - PIL(Pillow) vs OpenCV

PIL (Pillow)	OpenCV	
Python Image Library	Mainly aimed at real-time Computer Vision	
Conversion between image types		
Image transformation (flip, rotate, warp etc)		
Image filtering (blur, sharpen, etc)		
Easy to use	Loaded with algorithms well-suited for data science and vision-based robotics	
Lightweight	Machine learning: neural network, SVM, K-NN, etc	
Use when you want to cut and resize images, or do simple manipulation	Agile tool for more complicated problems like stitching multiple images	

Flight Area Scenarios

Flight Area Characteristics

Base Coordinates

41.793687, -93.429902

Drone

Select Model:

Custom Drone

Flight height, m

Viewing angle, °

Battery capacity, mAh

Battery usage for flight, mAh/m

Battery usage per photo, mAh

Submit

Photo Enhancement Result

Next Steps

Crop Analysis Module

- Gathering data for various crops in different conditions (to be able to compare with actual photo and make a decision regarding watering, fertilizing etc)
- Using thermal sensors, multispectral images analysis

Cost-Benefit Analysis Module

- Financial efficiency calculation
- Dashboard with tables and charts with recommendations (needs identification, observations frequency, costs etc)

• Using in other areas

- Search & Rescue
- Nature observations and research

Team members contribution

