_____TABLE DES MATIÈRES

Chapitre	e I : Matrices et Déterminants	1
1.1	Matrices	1
	1.1.1 Remarques et définitions	. 1
	1.1.2 Multiplication des matrices	. 2
1.2	$D\'{e}terminants \dots \dots$	3
	1.2.1 Déterminants d'ordre 2	. 3
	$1.2.2$ Déterminants d'ordre $3\ldots\ldots\ldots$. 4
	1.2.3 Déterminants d'ordre n	. 6
1.3	Applications des déterminants	8
	1.3.1 Calcul de l'inverse d'une matrice	. 8
	1.3.2 Rang d'une matrice	. 9
1.4	Systèmes d'équations linéaires	9
	1.4.1 Systèmes de Cramer	. 9
	1.4.2 Cas général	. 11
	1.4.3 Méthode d'élimination de Gauss	. 12
Chapitre	e II :Espaces vectoriels et Applications linéaires	16
2.1	Espaces vectoriels	16
	2.1.1 Base d'un espace vectoriel	. 17
	2.1.2 Dimension d'un espace vectoriel	. 19
	2.1.3 Somme directe	. 20
2.2	Applications linéaires	21
	2.2.1 Rang d'une application linéaire	. 23
Chapitre	III :Matrices et applications linéaires	25
3.1	Généralités	25

TABLE DES MATIÈRES

Bibliogra	nhie	35
	3.4.4 Diagonalisation	32
	3.4.3 Polynôme caractéristique	
	3.4.2 Valeurs et vecteurs propres d'une matrice	31
	3.4.1 Valeurs et vecteurs propres	30
3.4	Valeurs et vecteurs propres. Diagonalisation	30
3.3	Changement de base et matrice de passage	28
	3.2.1 Rang d'un système de vecteurs, d'une matrice	27
3.2	Matrice d'une application linéaire	25

chapitre 1	
	MATRICES ET DÉTERMINANTS

1.1 Matrices

Dans tout ce cours la lettre \mathbb{K} désignera un corps commutatif. Soient $m, n \in \mathbb{N} - \{0\}$.

Définition 1.1. Une matrice A de type (n,m) à coefficients dans le corps \mathbb{K} est un tableau rectangulaire de n lignes et m colonnes formées d'éléments de \mathbb{K} , qu'on note :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}.$$

La matrice A est notée aussi par $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$, et les a_{ij} s'appellent les coefficients de la matrice A.

On désigne par $\mathcal{M}_{n,m}(\mathbb{K})$ l'ensemble des matrices de type (n,m) à coefficients dans \mathbb{K} , sur lequel on définit deux lois :

Addition:
$$(a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} + (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} = (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}.$$

Loi externe : Pour $\lambda \in \mathbb{K}$, on pose $\lambda \cdot (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} = (\lambda a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}$.

Muni de l'addition, $\mathcal{M}_{n,m}(\mathbb{K})$ est un groupe commutatif.

1.1.1 Remarques et définitions

- 1. L'élément neutre de l'addition dans $\mathcal{M}_{n,m}(\mathbb{K})$ est la matrice nulle, dont tous les coefficients sont nuls.
- 2. Une matrice de type (n,n) est appelée une matrice carrée d'ordre n, et on note $\mathcal{M}_{n,n}(\mathbb{K}) = \mathcal{M}_n(\mathbb{K})$.

- 3. Si $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ est une matrice carrée d'ordre n, les coefficients a_{ii} pour $1 \leq i \leq n$ sont appelés les éléments de la diagonale principale.
- 4. Soit $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$, on appelle transposée de A, et on note tA , la matrice ${}^tA = (b_{k\ell})_{\substack{1 \le k \le m \\ 1 \le \ell \le n}}$ telle que $b_{k\ell} = a_{\ell k}$ pour tous $1 \le k \le m$ et $1 \le \ell \le n$. tA est donc la matrice de type (m,n) dont les lignes (resp. les colonnes) sont les colonnes (resp. les lignes) de A.
- 5. Si $A = {}^tA$ (nécessairement A est une matrice carrée), on dit que A est une matrice symétrique. Si $A = -{}^tA$, on dit que A est une matrice antisymétrique.
- 6. Une matrice carrée est dite diagonale si elle est de la forme :

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix},$$

c-à-d que tous ses coefficients sont nuls sauf peut être ceux qui sont sur la diagonale principale. Par exemple la matrice carrée d'ordre n

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix},$$

est une matrice diagonale dite la matrice unité carrée d'ordre n.

1.1.2 Multiplication des matrices

Soient $A=(a_{ij})_{\substack{1\leq i\leq m\\1\leq j\leq n}}$ une matrice de type (m,n) et $B=(b_{pq})_{\substack{1\leq p\leq n\\1\leq q\leq s}}$ une matrice de type (n,s) à coefficients dans \mathbb{K} . On définit le produit de A par B comme étant la matrice de type (m,s), notée $AB=(c_{k\ell})_{\substack{1\leq k\leq m\\1\leq \ell\leq s}}$, et dont les coefficients $c_{k\ell}$ sont donnés par :

$$c_{k\ell} = a_{k1}b_{1\ell} + a_{k2}b_{2\ell} + \ldots + a_{kn}b_{n\ell} = \sum_{j=1}^{n} a_{kj}b_{j\ell},$$

où $1 \le k \le m$ et $1 \le \ell \le s$.

En fait, le coefficient $c_{k\ell}$ est obtenu en faisant le produit de la $k^{\text{ième}}$ ligne de A par la $\ell^{\text{ième}}$ colonne de B.

Exemple 1.1. Soient
$$A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 1 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix}$. A est de type $(3,2)$ et B est

de type (2,3). Le produit $A\dot{B}$ est défini et BA l'est aussi. De plus, la matrice AB est de type (3,3)

$$AB = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 2 & 4 \\ 2 & -1 & -1 \end{pmatrix},$$

et la matrice BA est de type (2,2).

$$BA = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 1 & -1 \end{pmatrix}.$$

Propriétés

- 1. Si A est de type (m,n), B et C de type (n,s) et $\lambda \in \mathbb{K}$, alors :
 - i. A(B+C) = AB + AC.
 - ii. $\lambda(AB) = (\lambda A)B = A(\lambda B)$.
- 2. Si A est de type (m,n), B de type (n,r) et C de type (r,s), alors:

$$(AB)C = A(BC).$$

- 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée d'ordre n, on dit que A est inversible s'il existe une matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que $AB = BA = I_n$, où I_n est la matrice unité carrée d'ordre n. On note B par A^{-1} , qu'on appelle l'inverse de A. Si A est inversible, son inverse est unique. I_n est l'élément neutre de la multiplication.
- 4. $(\mathcal{M}_n(\mathbb{K}), +, .)$ est un anneau. Pour $n \geq 2$, $\mathcal{M}_n(\mathbb{K})$ n'est jamais commutatif, ni intègre puisque :

$$\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \text{ et } \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right).$$

1.2 Déterminants

1.2.1 Déterminants d'ordre 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice carrée d'ordre 2 à coefficients dans \mathbb{K} .

Définition 1.2. Le déterminant de A est le scalaire ad – bc, qu'on note :

$$det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$

Le déterminant de A peut être vu comme une fonction des colonnes $C_1=\begin{pmatrix}a\\c\end{pmatrix}$ et $C_2=\begin{pmatrix}b\\d\end{pmatrix}$ de A et on note $\det(A)=D(C_1,C_2)$.

Propriétés fondamentales

- 1. Le déterminant est une fonction linéaire par rapport à chaque colonne c-à-d
 - a. $D(C_1, C_2 + \lambda C_3) = D(C_1, C_2) + \lambda D(C_1, C_3)$.
 - b. $D(C_1 + \lambda C_2, C_3) = D(C_1, C_3) + \lambda D(C_2, C_3)$.

$$\left| \begin{array}{cc} a & b+\lambda c \\ a' & b'+\lambda c' \end{array} \right| = a(b'+\lambda c') - a'(b+\lambda c) = ab'-a'b+\lambda (ac'-a'c) = \left| \begin{array}{cc} a & b \\ a' & b' \end{array} \right| + \lambda \left| \begin{array}{cc} a & c \\ a' & c' \end{array} \right|.$$

$$2. \left| \begin{array}{cc} a & a \\ a' & a' \end{array} \right| = 0.$$

- 3. $D(C_1, C_2) = D(C_1, C_2 + \lambda C_1) = D(C_1 + \mu C_2, C_2).$ En effet, $D(C_1, C_2 + \lambda C_1) = D(C_1, C_2) + \lambda D(C_1, C_1) = D(C_1, C_2).$
- $4. \left| \begin{array}{cc} b & a \\ d & c \end{array} \right| = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right|.$
- 5. $\det(A) = \det({}^t A)$, puisque $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc = ad cb = \begin{vmatrix} a & c \\ b & d \end{vmatrix}$.

1.2.2 Déterminants d'ordre 3

Soit
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(\mathbb{K}).$$

Définition 1.3. Le déterminant de A est le scalaire :

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
 (1.1)

La formule (1.1) s'appelle le développement du déterminant de A suivant la première ligne.

Remarques 1.1. 1. En notant par A_{ij} la matrice extraite de A, en supprimant la $i^{i\`{e}me}$ ligne et la $j^{i\`{e}me}$ colonne de A, on a :

$$\det(A) = a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + a_{13} \det(A_{13}) = \sum_{j=1}^{3} (-1)^{1+j} a_{1j} \det(A_{1j}).$$

2. On peut considerer le déterminant comme une fonction des colonnes C_1 , C_2 et C_3 de A, et on note $det(A) = D(C_1, C_2, C_3)$.

Propriétés fondamentales

- 1. Le déterminant est linéaire par rapport à chaque colonne.
- 2. $\det(I_3) = 1$.

- 3. Si on échange deux colonnes alors le déterminant change de signe.
- 4. Si deux colonnes sont égales alors le déterminant est nul.
- 5. On ne change pas la valeur du déterminant si on ajoute à une colonne une combinaison linéaire des deux autres.
- 6. $\det(A) = \det({}^t A)$.
- 7. Pour $1 \leq i \leq 3$ on a : $\det(A) = \sum_{j=1}^{3} (-1)^{i+j} a_{ij} \det(A_{ij})$, c'est le développement du déterminant suivant la $i^{\text{lème}}$ ligne de A.
- 8. Pour $1 \leq j \leq 3$ on a : $\det(A) = \sum_{i=1}^{3} (-1)^{i+j} a_{ij} \det(A_{ij})$, c'est le développement du déterminant suivant la $j^{\text{lème}}$ colonne de A.
- 9. Si on multiplie par un scalaire λ tous les coefficients d'une même colonne de A, alors le déterminant est multiplié par λ .
- 10. Pour tout $\lambda \in \mathbb{K}$, on a : $\det(\lambda A) = \lambda^3 \det(A)$.
- 11. det(AB) = det(A) det(B).
- 12. Toutes les propriétés énoncées pour les colonnes de A restent valables pour les lignes de A.

Règle pratique pour calculer un déterminant d'ordre 3 : Règle de Sarrus

Soit à calculer le déterminant $\left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right|$ par la règle de Sarrus :

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + dhc + gbf - dbi - ahf - gec.$$

$$\begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix}$$

Exemple 1.2. Soit à calculer le déterminant $\Delta = \left| \begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 5 & 2 & 2 \end{array} \right|$ La règle de Sarrus donne :

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 5 & 2 & 2 \end{vmatrix} = 2.2.2 + 1.2.1 + 5.1.3 - 1.1.2 - 2.2.3 - 5.2.1.$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 5 & 2 & 2 \end{vmatrix} = 2.2.2 + 1.2.1 + 5.1.3 - 1.1.2 - 2.2.3 - 5.2.1.$$

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = 1.$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

$$\begin{vmatrix} 2 & 1 & 1 \\ - & + \end{vmatrix}$$

Moyennant la définition, on a :

$$\Delta = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 5 & 2 & 2 \end{vmatrix} = 2 \cdot \begin{vmatrix} 2 & 3 \\ 2 & 2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 3 \\ 5 & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 \\ 5 & 2 \end{vmatrix}$$
$$= 2(4 - 6) - (2 - 15) + (2 - 10)$$
$$= -4 + 13 - 8 = 1.$$

En utilisant les propriétés fondamentales, on a :

$$\begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 5 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 1 \\ -5 & 2 & 3 \\ 1 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ -5 & -1 & 3 \\ 1 & 0 & 2 \end{vmatrix} = 1. \begin{vmatrix} -5 & -1 \\ 1 & 0 \end{vmatrix} = -(-1) = 1.$$

1.2.3 Déterminants d'ordre n

Soit $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$ une matrice carrée d'ordre n à coefficients dans \mathbb{K} .

Définition 1.4. Soit A_{ij} la matrice d'ordre n-1 extraite de A, en supprimant la $i^{i\grave{e}me}$ ligne et la $j^{i\grave{e}me}$ colonne de A. On appelle déterminant de A, le scalaire

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(A_{1j}). \tag{1.2}$$

C'est le développement du déterminant suivant la première ligne.

En notant C_i la $j^{\text{ième}}$ colonne de A, on écrit aussi $\det(A) = D(C_1, \dots, C_j, \dots, C_n)$.

Propriétés fondamentales

- 1. Le déterminant est linéaire par rapport à chaque colonne.
- 2. $\det(I_n) = 1$.
- 3. Si on échange deux colonnes alors le déterminant change de signe.
- 4. Si deux colonnes sont égales alors le déterminant est nul.
- 5. On ne change pas la valeur du déterminant si on ajoute à une colonne une combinaison linéaire des autres.
- 6. $\det(A) = \det({}^t A)$.
- 7. Pour $1 \leq i \leq n$ on a : $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$, c'est le développement du déterminant suivant la $i^{\text{ième}}$ ligne de A.
- 8. Pour $1 \leq j \leq n$ on a : $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$, c'est le développement du déterminant suivant la $j^{\text{ième}}$ colonne de A.

- 9. Si on multiplie par un scalaire λ tous les coefficients d'une même colonne de A, alors le déterminant est multiplié par λ .
- 10. Pour tout $\lambda \in \mathbb{K}$, on a : $\det(\lambda A) = \lambda^n \det(A)$.
- 11. det(AB) = det(A) det(B).
- 12. Toutes les propriétés énoncées pour les colonnes de A restent valables pour les lignes de A.

Exemple 1.3. Le tableau des signes est formé en commençant par le signe +, et en respectant le fait que deux signes consécutifs dans une ligne ou une colonne sont opposés

$$\begin{pmatrix} + & - & + & \cdots \\ - & + & - & \cdots \\ + & - & + & \cdots \\ \vdots & \vdots & \vdots & \cdots \end{pmatrix}.$$

1. Soit à calculer le déterminat : $\Delta = \begin{vmatrix} 1 & 3 & 0 & 2 \\ -2 & -5 & 7 & 4 \\ 3 & 5 & 2 & 1 \\ 1 & -1 & 2 & -3 \end{vmatrix}$.

On a

$$\Delta = \begin{vmatrix} 1 & 3 & 0 & 2 \\ -2 & -5 & 7 & 4 \\ 3 & 5 & 2 & 1 \\ 1 & -1 & 2 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 2 \\ -2 & 1 & 7 & 4 \\ 3 & -4 & 2 & 1 \\ 1 & -4 & 2 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 7 & 8 \\ 3 & -4 & 2 & -5 \\ 1 & -4 & 2 & -5 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & 7 & 8 \\ -4 & 2 & -5 \\ -4 & 2 & -5 \end{vmatrix} = 0, \ car \ la \ deuxi\`eme \ et \ la \ troisi\`eme \ ligne \ sont \ \'egales.$$

2.

$$\begin{vmatrix} 1 & 3 & -1 & 0 & -2 \\ 0 & 2 & -4 & -1 & -6 \\ -2 & -6 & 2 & 3 & 9 \\ 3 & 7 & -3 & 8 & -7 \\ 3 & 5 & 5 & 2 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -1 & 0 & -2 \\ 0 & 2 & -4 & -1 & -6 \\ 0 & 0 & 3 & 5 \\ 0 & -2 & 0 & 8 & -1 \\ 0 & -4 & 8 & 2 & 13 \end{vmatrix} = \begin{vmatrix} 2 & -4 & -1 & -6 \\ 0 & 0 & 3 & 5 \\ -2 & 0 & 8 & -1 \\ -4 & 8 & 2 & 13 \end{vmatrix}$$
$$= -8 \begin{vmatrix} 1 & 1 & -1 & -6 \\ 0 & 0 & 3 & 5 \\ -1 & 0 & 8 & -1 \\ -2 & -2 & 2 & 13 \end{vmatrix} = -8 \begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 5 \\ -1 & 0 & 8 & -1 \\ 0 & -2 & 0 & 1 \end{vmatrix}$$
$$= 8 \times 3 = 24.$$

3. Une matrice carrée d'ordre n, $A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ est dite triangulaire supérieure si, $a_{ij} = 0$ pour i > j, auquel cas la matrice A est de la forme :

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn} \end{pmatrix}.$$

On définit de même une matrice triangulaire inférieure par les conditions : $a_{ij} = 0$ pour i < j. On vérifie (par récurrence) que si A est une matrice triangulaire, alors $\det(A) = a_{11}a_{22} \dots a_{nn}$.

1.3 Applications des déterminants

1.3.1 Calcul de l'inverse d'une matrice

Théorème 1.1. Soit $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq n}}$ une matrice carrée d'ordre n, et soit A_{ij} la matrice d'ordre n-1 extraite de A, en supprimant la $i^{i\grave{e}me}$ ligne et la $j^{i\grave{e}me}$ colonne de A, alors

- 1. A est inversible si et seulement si $det(A) \neq 0$.
- 2. Si A est inversible , l'inverse A^{-1} de A est donnée par la formule :

$$A^{-1} = \frac{1}{\det(A)}^{t} \left((-1)^{i+j} \det(A_{ij}) \right)_{\substack{1 \le i \le n \\ 1 \le j \le n}}$$
 (1.3)

La matrice $C = ((-1)^{i+j} \det(A_{ij}))_{\substack{1 \le i \le n \\ 1 \le j \le n}}$, s'appelle la comatrice associée à A qu'on note Com(A), et le coefficient $C_{ij} = (-1)^{i+j} \det(A_{ij})$ s'appelle le cofacteur d'indice ij.

Preuve.

- 1. Si A est inversible, alors $AA^{-1} = A^{-1}A = I_n$, d'où $\det(AA^{-1}) = \det(A)\det(A^{-1}) = \det(A) \det(A^{-1}) = \det(I_n) = 1$, par suite $\det(A) \neq 0$ et $\det(A^{-1}) = \frac{1}{\det(A)}$.
- 2. Si $det(A) \neq 0$, on vérifie que :

$$\frac{1}{\det(A)}^t Com(A)A = A \frac{1}{\det(A)}^t Com(A) = I_n.$$

Exemple 1.4. Trouver l'inverse de la matrice $A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2 \end{pmatrix}$.

$$\det(A) = \begin{vmatrix} 2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 3 & -1 & 4 \\ -7 & 4 & -14 \end{vmatrix} = -(-14.3 + 14.2) = 14.$$

La comatrice associée à A est $Com(A)=\begin{pmatrix} -2 & 3 & 5 \\ 14 & -7 & -7 \\ 4 & 1 & -3 \end{pmatrix}$, donc l'inverse de A est la matrice

$$A^{-1} = \frac{1}{14} \left(\begin{array}{ccc} -2 & 14 & 4 \\ 3 & -7 & 1 \\ 5 & -7 & -3 \end{array} \right).$$

1.3.2 Rang d'une matrice

Définition 1.5. Soit $A = (a_{ij})_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ une matrice de type (m,n). On appelle rang de A, et on note rg(A), le plus grand entier r tel qu'on puisse extraire de A une matrice carrée d'ordre r de déterminant non nul.

Propriétés fondamentales

Soit $A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ une matrice de type (m, n)

- 1. $rg(A) \leq \inf(m, n)$.
- 2. L'entier r est le rang de A si et seulement si il existe un déterminant d'ordre r non nul extrait de A et tous les déterminants d'ordre strictement supérieur à r extraits de A sont nuls.
- 3. $rg(A) = rg(^tA)$.

1.4 Systèmes d'équations linéaires

1.4.1 Systèmes de Cramer

Un système linéaire (S) de n équations à n inconnues dans $\mathbb K$ est la donnée de n équations de la forme :

$$(S): \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

où les a_{ij} et les b_j sont dans \mathbb{K} et x_1, x_2, \ldots, x_n sont les inconnues. La matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

s'appelle la matrice associée au système (S) et la matrice

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$
 s'appelle le terme constant du système. Si on pose $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ alors le système

(S) est équivalent à l'égalité matricielle Ax = b.

Résoudre le système (S) dans \mathbb{K} consiste à trouver les scalaires x_1, x_2, \ldots, x_n dans \mathbb{K} vérifiant les n équations du systèmes, et lorsque la matrice A associée au système (S) est inversible $(c-\hat{a}-d \det(A) \neq 0)$, on dit que (S) est un système de Cramer.

Théorème 1.2. $Si\ le\ système\ (S)$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

est un système de Cramer, alors il admet une solution unique $(x_1, x_2, ..., x_n) \in \mathbb{K}^n$ donnée par :

$$\forall 1 \le j \le n, \quad x_j = \frac{\begin{vmatrix} a_{11} & \dots & a_{1j-1} & b_1 & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & b_n & a_{nj+1} & \dots & a_{nn} \end{vmatrix}}{\det(A)}.$$
 (1.4)

Preuve. Notons par C_j , $1 \le j \le n$ les n colonnes de la matrice A associée au système (S), et

par
$$b=\begin{pmatrix}b_1\\b_2\\\vdots\\b_n\end{pmatrix}$$
 le terme constant du système. Alors le système (S) est équivalent à l'égalité

$$\sum_{i=1}^{n} x_i C_i = b. \text{ Par suite, pour } 1 \leq j \leq n \text{ on a :}$$

$$\det(A) = D(C_1, \dots, C_{j-1}, b, C_{j+1}, \dots, C_n) = D(C_1, \dots, C_{j-1}, \sum_{i=1}^n x_i C_i, C_{j+1}, \dots, C_n)$$

$$= \sum_{i=1}^n x_i D(C_1, \dots, C_{j-1}, C_i, C_{j+1}, \dots, C_n) = x_j D(C_1, \dots, C_{j-1}, C_j, C_{j+1}, \dots, C_n)$$

$$= x_j \det(A),$$

car pour $i \neq j$, on a $D(C_1, \ldots, C_{j-1}, C_i, C_{j+1}, \ldots, C_n) = 0$ puisque c'est le déterminant d'une matrice ayant deux colonnes identiques, à savoir les colonnes C_i et C_j . Par suite,

$$x_j = \frac{D(C_1, \dots, C_{j-1}, b, C_{j+1}, \dots, C_n)}{\det(A)}.$$

1.4.2 Cas général

Un système linéaire (S) de m équations à n inconnues dans \mathbb{K} est la donnée de m équations de la forme :

$$(S): \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

où les a_{ij} et les b_i sont dans \mathbb{K} et x_1, x_2, \ldots, x_n sont les inconnues. La matrice

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

s'appelle la matrice associée au système (S) et la matrice

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
 s'appelle le terme constant du système. Si on pose $x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ alors le système

(S) est équivalent à l'égalité matricielle Ax = b.

Résoudre le système (S) dans \mathbb{K} consiste à trouver tous les scalaires x_1, x_2, \ldots, x_n dans \mathbb{K} vérifiant les m équations du systèmes. Le système Ax = 0 s'appelle le système homogène associé à (S), et la matrice

$$A_b = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

s'appelle la matrice augmentée.

Théorème 1.3. Le système (S) admet des solutions si et seulement si $rg(A) = rg(A_b)$.

Preuve. Il suffit de remarquer que le système (S) admet des solutions si et seulement si le terme constant b appartient à l'e.v. engendrée par les vecteurs colonnes C_1, \ldots, C_n de la matrice A si et seulement si $rg(A) = rg(C_1, \ldots, C_n) = rg(C_1, \ldots, C_n, b) = rg(A_b)$.

Pour résoudre le système (S), on calcule le rang de la matrice A associée à (S). Si r = rg(A), alors il existe un déterminant non nul d'ordre r, qu'on note Δ_r , appelé déterminant principal. Les équations correspondant aux lignes de Δ_r s'appellent les équations principales, et les inconnues correspondant aux colonnes de Δ_r s'appellent les inconnues principales. Les autres inconnues s'appellent des paramètres. Sans perte de généralité, on peut supposer que le

déterminant Δ_r est formé des r premières lignes et des r premières colonnes de A. Le système (S) implique le système de Cramer (S_r) suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r = b_1 - a_{1r+1}x_{r+1} - \dots - a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2r}x_r = b_2 - a_{2r+1}x_{r+1} - \dots - a_{2n}x_n \\ \vdots & \vdots & \vdots \\ a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rr}x_r = b_1 - a_{rr+1}x_{r+1} - \dots - a_{rn}x_n \end{cases}$$

où x_{r+1}, \ldots, x_n sont des paramètres. On calcule ensuite, x_1, \ldots, x_r , en fonction de x_{r+1}, \ldots, x_n et b_1, \ldots, b_r . Puis on vérifie si les (m-r) équations non principales sont satisfaites. Si l'une des équations non principales n'est pas satisfaite, le système n'admet pas de solutions.

1.4.3 Méthode d'élimination de Gauss

Cette méthode peut être utilisée dans la résolution des systèmes de Cramer, et des systèmes linéaires de n équations à n inconnues.

Soit donc (S) le système linéaire de n équations à n inconnues suivant :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

On peut supposer que $a_{11} \neq 0$. Pour éliminer l'inconnue x_1 de l'équation $i, i \geq 2$, on multiplie l'équation 1 par $\frac{a_{i1}}{a_{11}}$, puis on fait la différence avec l'équation i. Le système (S) est équivalent au système (S_1) :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a'_{22}x_2 + \dots + a'_{2n}x_n = b'_2 \\ \vdots & \vdots \\ a'_{n2}x_2 + \dots + a'_{nn}x_n = b'_n. \end{cases}$$

Si $a'_{22} \neq 0$, on élimine l'inconnue x_2 de l'équation $i, i \geq 3$, en multipliant l'équation 2 par $\frac{a'_{i2}}{a'_{22}}$, puis on fait la différence avec l'équation i, et ainsi de suite, jusqu'à ce qu'on trouve la valeur de x_n , puis on en déduit successivement celle de x_{n-1}, \ldots, x_1 .

Exemple 1.5. 1. Soit à résoudre dans \mathbb{R} le système (S):

$$\begin{cases} x_1 - x_2 + x_3 - x_4 + x_5 &= 1\\ 2x_1 - x_2 + 3x_3 + 4x_5 &= 2\\ 3x_1 - 2x_2 + 2x_3 + x_4 + x_5 &= 1\\ x_1 + x_3 + 2x_4 + x_5 &= 0. \end{cases}$$

La matrice A associée au système (S) est :

$$A = \left(\begin{array}{rrrrr} 1 & -1 & 1 & -1 & 1 \\ 2 & -1 & 3 & 0 & 4 \\ 3 & -2 & 2 & 1 & 1 \\ 1 & 0 & 1 & 2 & 1 \end{array}\right).$$

Calculons d'abord le rang de A. Comme A est de type (4,5), alors $rg(A) \leq 4$. On a :

$$\begin{vmatrix} 1 & -1 & 1 \\ 2 & -1 & 3 \\ 3 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 0 & -1 & 0 \\ 1 & -1 & 2 \\ 1 & -2 & 0 \end{vmatrix} = -2 \neq 0, \ d'où \ rg(A) \geq 3.$$

On vérifie ensuite que tous les déterminants d'ordre 4 extraits de A sont nuls, méthode déconseillée!, pour conclure que rg(A) = 3. La méthode à suivre sera donnée après avoir introduit la notion de rang d'un système de vecteurs d'un espace vectoriel donné.

Ainsi,
$$rg(A)=3$$
. On peut donc considérer que $\Delta_3=\left|\begin{array}{cccc}1&-1&1\\2&-1&3\\3&-2&2\end{array}\right|=-2$ est

un déterminant principal, par suite les trois premières équations sont les équations principales et x_1, x_2 et x_3 sont les inconnues principales. x_4 et x_5 seront considérées comme des paramètres. Le système (S) implique donc le système de Cramer suivant :

$$\begin{cases} x_1 - x_2 + x_3 &= 1 + x_4 - x_5 \\ 2x_1 - x_2 + 3x_3 &= 2 - 4x_5 \\ 3x_1 - 2x_2 + 2x_3 &= 1 - x_4 - x_5. \end{cases}$$

Pour résoudre ce système, on va appliquer la méthode d'élimination de Gauss, qui donne :

$$\begin{cases} x_1 - x_2 + x_3 &= 1 + x_4 - x_5 \\ x_2 + x_3 &= -2x_4 - 2x_5 \\ x_2 - x_3 &= -2 - 4x_4 + 2x_5. \end{cases}$$

Ce qui implique :

$$\begin{cases} x_1 - x_2 + x_3 &= 1 + x_4 - x_5 \\ x_2 + x_3 &= -2x_4 - 2x_5 \\ -2x_3 &= -2 - 2x_4 + 4x_5. \end{cases}$$

 $Donc, \ x_3 = 1 + x_4 - 2x_5 \Rightarrow x_2 = -2x_4 - 2x_5 - x_3 = -1 - 3x_4 \Rightarrow x_1 = 1 + x_4 - x_5 + x_2 - x_3 = -1 - 3x_4 + x_5.$

Il faut maintenant voir si la dernière équation est satisfaite. On a : $x_1 + x_3 + 2x_4 + x_5 = -1 - 3x_4 + x_5 + 1 + x_4 - 2x_5 + 2x_4 + x_5 = 0$. Donc, le système (S) est resoluble et l'ensemble des solutions est : $\{(-1 - 3x_4 + x_5, -1 - 3x_4, 1 + x_4 - 2x_5, x_4, x_5) | x_4, x_5 \in \mathbb{R}\}$.

2. Soit à résoudre le système (S) suivant :

$$\begin{cases} x_1 + 2x_2 + x_3 &= -1 \\ 6x_1 + x_2 + x_3 &= -4 \\ 2x_1 - 3x_2 - x_3 &= 0 \\ -x_1 - 7x_2 - 2x_3 &= 7 \\ x_1 - x_2 &= 1 \end{cases}$$

La matrice A associée au système est :

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 6 & 1 & 1 \\ 2 & -3 & -1 \\ -1 & -7 & -2 \\ 1 & -1 & 0 \end{array}\right).$$

Comme A est une matrice de type (5,3), alors $rg(A) \le 3$, et comme $\begin{vmatrix} 1 & 2 & 1 \\ 6 & 1 & 1 \\ 2 & -3 & -1 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 0 \\ 8 & -2 & 0 \\ 2 & -3 & -1 \end{vmatrix} = -2 \ne 0$, alors rg(A) = 3. on peut donc choisir $\Delta_3 = \begin{vmatrix} 1 & 2 & 1 \\ 6 & 1 & 1 \\ 2 & 2 & 1 \end{vmatrix}$

$$\begin{vmatrix} 3 & -1 & 0 \\ 8 & -2 & 0 \\ 2 & -3 & -1 \end{vmatrix} = -2 \neq 0, \text{ alors } rg(A) = 3. \text{ on peut donc choisin } \Delta_3 = \begin{vmatrix} 1 & 2 & 1 \\ 6 & 1 & 1 \\ 2 & -3 & -1 \end{vmatrix}$$

comme déterminant principal, par suite, toutes les inconnues x_1, x_2 et x_3 sont principales et les trois premières équations sont les équations principales. Le système (S) implique donc le système de Cramer suivant :

$$\begin{cases} x_1 + 2x_2 + x_3 &= -1 \\ 6x_1 + x_2 + x_3 &= -4 \\ 2x_1 - 3x_2 - x_3 &= 0. \end{cases}$$

Les solutions sont donc :

$$x_{1} = \frac{\begin{vmatrix} -1 & 2 & 1 \\ -4 & 1 & 1 \\ 0 & -3 & -1 \end{vmatrix}}{\begin{vmatrix} -2 & -2 & 0 \\ -2 & -2 & -2 \end{vmatrix}} = \frac{\begin{vmatrix} -1 & -1 & 0 \\ -4 & -2 & 0 \\ 0 & -3 & -1 \end{vmatrix}}{\begin{vmatrix} -2 & -2 & -2 \\ -2 & -2 & -2 \end{vmatrix}} = \frac{2}{-2} = -1,$$

$$x_{2} = \frac{\begin{vmatrix} 1 & -1 & 1 \\ 6 & -4 & 1 \\ 2 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} -2 & -1 \\ 6 & 1 & -4 \\ 2 & -3 & 0 \end{vmatrix}} = \frac{\begin{vmatrix} 3 & -1 & 0 \\ 8 & -4 & 0 \\ 2 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} -2 & -1 \\ 2 & -7 & -4 \\ 2 & -3 & 0 \end{vmatrix}} = \frac{4}{-2} = -2 \ et$$

$$x_{3} = \frac{\begin{vmatrix} 1 & 2 & -1 \\ 6 & 1 & -4 \\ 2 & -3 & 0 \end{vmatrix}}{-2} = \frac{\begin{vmatrix} 0 & 0 & -1 \\ 2 & -7 & -4 \\ 2 & -3 & 0 \end{vmatrix}}{-2} = \frac{-8}{-2} = 4.$$

On vérifie si les équations non principales (équations 4 et 5) sont satisfaites. $-x_1 - 7x_2 - 2x_3 = 1 + 14 - 8 = 7$ et $x_1 - x_2 = -1 + 2 = 1$. Donc, le système admet une solution unique $(x_1, x_2, x_3) = (-1, -2, 4)$.

3. Soit à résoudre dans \mathbb{R} le système (S) :

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = & a \\ x_1 - x_2 - x_3 + x_4 & = & b \\ -x_1 - x_2 + x_3 + x_4 & = & c \\ -3x_1 + x_2 - 3x_3 - 7x_4 & = & d, \end{cases}$$

où a, b, c et d sont des nombres réels strictement positifs.

Le déterminant de la matrice A associée au système est .

 $-4 \neq 0$, alors la matrice A est de rang 3 et Δ_3 peut être considéré comme un déterminant principal. Ainsi, les trois premières équations sont les équations principales, et x_1 , x_2 et x_3 sont les inconnues principales. L'inconnue x_4 sera donc considérée comme un paramètre. Le système (S) implique le système :

$$\begin{cases} x_1 + x_2 + x_3 &= a - x_4 \\ x_1 - x_2 - x_3 &= b - x_4 \\ -x_1 - x_2 + x_3 &= c - x_4. \end{cases}$$

En ajoutant la première équation à la deuxième, on a :

 $2x_1 = a + b - 2x_4$, d'où $x_1 = \frac{a+b}{2} - x_4$.

En ajoutant la deuxième équation à la troisième, on a :

 $-2x_2 = c + b - 2x_4$, d'où $x_2 = x_4 - \frac{b+c}{2}$.

En ajoutant la première équation à la troisième, on a :

 $2x_3 = c + a - 2x_4$, d'où $x_3 = \frac{a+c}{2} - x_4$.

Vérifions si la dernière équation est satisfaite. En remplaçant x_1 , x_2 et x_3 par les valeurs trouvées, on obtient :

 $-3(\frac{a+b}{2}-x_4)+(x_4-\frac{b+c}{2})-3(\frac{a+c}{2}-x_4)-7x_4=d$, $c-\grave{a}-d-(3a+2b+2c)=d$. Comme a, b, c et d sont des nombres réels strictement positifs, alors l'égalité -(3a+2b+2c)=d est impossible, donc le système (S) n'admet pas de solutions.