

DM-Spring-2020-Q5-Grade

0% (0/16)

- 1. In the multiple linear regression, we assume that...
 - A The number of observations is much larger than the number of variables (n>>p)
 - B The number of observations is slightly larger than the number of variables (n>p)
 - C The number of observations equals than the number of variables (n=p)
 - D The number of observations is lees than the number of variables (n<p)
 - **E** It is not important
 - F I do not know
- **2.** The way of solving the problem of a large number of variables is...
 - A Subset Selection & Shrinkage (Regularization)
 - B Shrinkage (Regularization) & Maximum Likelihood estimation
 - C Dimension Reduction & OLS estimation
 - **D** I do not know
 - **E** The absence of the right answer
- **3.** The bias of an estimator (e.g. z^) equals
 - $A E(z^{-}) z$
 - **B** $E(z^2) [E(z)]^2$
 - c $[E(z^2) E(z)]^2$
 - $D E(z^2)$
 - E I do not know
- **4.** The main idea of regularization is
 - A To introduce a small amount of bias in order to have less variance.
 - B To introduce a small amount of variance in order to have less bias.
 - C To introduce a small amount of variance and bias in order to have less bias.
 - D I do not know

X	5.	With which function we can show regularization in R
	A	glmnet()
	В	regular()
	C	lm()
	D	glm()
	E	I do not know
X	6.	How the tune of any parametr can be made
	A	using Cross validation
	В	It is impossible
	C	I do not now
	D	using larger sample
	E	only having population
X	7.	Elastic Net is
	A	the combination of L1 and L2 regularization
	В	the combination of L2 and L3 regularization
	C	is independent from other types of refularization
	D	I do not know
	E	not a type of regularization
X	8.	Regularization is used only for
	A	Poisson Regression
	В	Linear Regression
	C	Logistic Regression
	D	any regression
	E	I do not know
X	9.	Regularization can solve the problem of
	A	heteroscedasticity
	В	multicollinearity

c autocorrelation

D I do not know

×	10.	As a result of regularization, we will have
	A	smaller slope than in case of OLS
	В	larger slope than in case of OLS
	C	the slope remains the same
	D	I do not know
X	11.	The ridge coefficient estimates shrink towards zero
	A	when lambda increases
	В	when lambda decreases
	C	when lambda = 0
	D	I do not know
X	12.	Which one can shrink the slope all the way to 0?
	A	Lasso
	В	Ridge
	C	Regression
	D	I do not know
X	13.	When lambda = 0, we have
	A	Ridge
	В	Lasso
	C	EL
	D	Regression
	E	I do not know
X	14.	When alpha = 0, we have
	Α	Ridge
	В	Lasso
	С	EL
	D	Regression
	E	I do not know

X	15.	Which function can help to perform cross-validation for regularization in R?
	Α	cv.glmnet()
	В	cros_val()
	C	glmnet(method = "cv)
	D	I do not know
V	16	Why we use set seed() in D2

- X 16. Why we use set.seed() in R?
 - A To have universal result
 - B To perform better result
 - c To have random models
 - **D** I do not know