Machine Learning-Based Network Attack Detection Using Graph Attention Networks

CYBERUS Master in Cybersecurity - Traffic Analysis Internship

Volonterio Luca

CYBERUS Master

Keywords: Graph Neural Networks, Network Anomaly Detection, Graph Attention Networks

The Problem

Modern LAN Security Challenges:

- Increasing network complexity with heterogeneous devices (IoT, traditional computers)
- Sophisticated cyber threats targeting LANs as entry points
- Encrypted communication protocols hiding malicious activities
- Evolution of malware techniques evading traditional detection

Limitations of Current Approaches:

- Signature-based detection fails against zero-day attacks
- Polymorphic malware and encrypted traffic bypass traditional methods
- Need for behavior-based solutions without predefined signatures

Challenge: Detect unknown threats in encrypted traffic

Comprehensive Open-Source Proof-of-Concept

Key Innovation: Graph-based traffic analysis + Machine Learning

Dual-Module Architecture:

- High-performance C++ component for graph construction
- Python module with Graph Attention Networks (GATs) for anomaly detection

Primary Contributions:

- Efficient real-time graph representation framework
- Hybrid ML detection combining graph analysis + attention networks
- Complete deployable open-source solution

Result: Behavioral anomaly detection without signatures

Related Work Foundation

Three Key Influences:

- **HyperVision**: Real-time encrypted malicious traffic detection
 - Flow interaction graph representation
 - Unsupervised ML approach
 - 0.92 AUC, 80.6 Gb/s throughput
- Oynamic Graph Survey: Comprehensive anomaly detection taxonomy
 - GNN advantages: topological adaptation, multimodal integration
 - Three anomaly types: point, contextual, collective
- AddGraph: Attention-based temporal GCN
 - Semi-supervised learning with limited labeled data
 - Edge-focused detection for suspicious connections

System Architecture Overview

Graph Builder (Log2Graph) Architecture

Core Classes & Roles:

- LogMonitor & ZeekLogParser: Log ingestion and parsing
- GraphBuilder (Singleton): Orchestrates graph construction
- TrafficGraph: Complete network representation
 - GraphNode: Network endpoints (IP addresses) with dynamic attributes
 - AggregatedGraphEdge: Connections aggregated by protocol/service/port
- GraphExporter: DOT format output for Python processing

Graph Monitor (Python) Architecture

Core Modules:

- main.py: Entry point and continuous monitoring
- workflow.py: High-level operational logic coordination
- neural_net.py: GAT-based autoencoder implementation
- evaluate.py: Performance assessment and feature quality rating

Two Operating Modes:

Train Mode Learn normal network behavior patterns Detect Mode **Identify deviations** from learned pat-

terns in real-time

GAT Architecture Fundamentals

Why Graph Neural Networks?

- Traditional NNs work on regular structures (images, sequences)
- Networks are irregular, non-Euclidean structures
- GNNs handle message-passing on graph topologies

Attention Mechanisms:

- Learn adaptive weights for neighboring nodes
- Focus on most relevant connections for each node

Our GAT Architecture Details

NodeGNNAnomalyDetector Components:

- **GAT Encoder:**
 - Multi-layer with edge feature integration
 - ullet Multi-head attention (4 heads ightarrow 1 head)
 - \bullet Dimensions: Input \rightarrow 64D \rightarrow 32D embeddings
- Oual Pathway Detection:
 - Reconstruction Decoder: Feature space recovery
 - Anomaly Scoring MLP: Direct pattern recognition
- Online Learning Framework: Continuous adaptation with replay buffer
- **Ombined Decision Rule:** Union of reconstruction + MLP-based detection

Enhanced Attention Mechanism

Attention coefficient:

$$\alpha_{ij} = \frac{\exp\left(\mathsf{LeakyReLU}\left(\mathbf{a^T}\left[\mathbf{W}h_i \mid\mid \mathbf{W}h_j \mid\mid \mathbf{W}_e e_{ij}\right]\right)\right)}{\sum_k \exp\left(\mathsf{LeakyReLU}\left(\mathbf{a^T}\left[\mathbf{W}h_i \mid\mid \mathbf{W}h_k \mid\mid \mathbf{W}_e e_{ik}\right]\right)\right)}$$

- Node feature projections Wh_i , Wh_j are the learned embeddings (hidden states) of nodes i and j transformed by weight matrix W.
- Edge feature projection $W_e e_{ij}$ transforms the edge features e_{ij} between nodes i and j.
- Attention vector a^T is a learnable vector that scores the combined features to produce a raw attention score.
- LeakyReLU activation introduces non-linearity

Network Graph Features

Node Features (IP Addresses):

- Behavioral: outgoing/incoming ratios, server/client scores
- Protocol Diversity: unique protocols, entropy measures
- Port Patterns: privilege ratios, diversity metrics
- Temporal: cyclical time features for daily rhythms
- Traffic Volume: bytes/packets sent/received

Edge Features (Connections):

- Metadata: protocol, service, destination port
- Traffic Statistics: bytes, packets, connection counts
- Aggregation: By source/dest IP, protocol, service, port

Rich Feature Set:

Captures behavioral patterns without payload inspection

Online Learning & Adaptation

Sophisticated Continuous Learning:

- Experience Replay: Reservoir sampling to prevent forgetting
- Statistical Monitoring: Welford's algorithm for stability
- Adaptive Learning Rate: Cosine annealing with warm restarts

Train vs Detect Mode Workflow:

- **Training:** 50 epochs initial + 25 steps online updates
- Detection: Pre-trained model inference without parameter updates
- Critical Dependency: Comprehensive training with normal traffic required

Normal Traffic
Learning Phase

Model Transfer
Anomaly Detection
Operational Phase

Continuous Adaptation

Anomaly Detection Methodology

Dual-Threshold Approach:

- Statistical Threshold (Reconstruction-based):
 - ullet Flag if: reconstruction_error $> \mu + 2\sigma$
 - 95% coverage under Gaussian assumptions
- Learned Threshold (MLP-based):
 - Flag if: anomaly_probability > 0.8
 - Direct pattern recognition

Combined Decision: Union of both approaches

Result: Maximized sensitivity with maintained interpretability

Key Technical Innovations

Performance Optimizations:

- C++ for high-speed graph construction
- Incremental graph updates
- Efficient memory management

ML Innovations:

- Edge-aware attention mechanisms
- Dual-pathway anomaly detection
- Online learning with catastrophic forgetting prevention
- Focal loss for class imbalance handling

Practical Features:

- Real-time processing capability
- Scalable architecture
- Open-source implementation

Core Innovation: Behavioral analysis of encrypted traffic through graph-based machine learning

Summary & Next Steps

What We've Built:

- Complete graph-based network anomaly detection system
- Sophisticated GAT architecture with dual detection pathways
- Real-time processing with online learning capabilities

Key Strengths:

- Handles encrypted traffic through behavioral analysis
- Adapts to evolving network patterns
- Combines multiple detection approaches for robustness

Next Steps:

- Evaluation on CIC-IDS2017 dataset
- Deployment architecture optimization
- Performance benchmarking
- Integration with existing security infrastructure

Ready for Real-world Deployment

Thank You

Questions & Discussion

Volonterio Luca CYBERUS Master in Cybersecurity June 25, 2025