

National University Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

<u>A</u>]	I 2002 Artificial Intelligence Course Instructor Ms. Mahzaib Younas	<u>e</u>		
Time allowed = 40 min Quiz 6 Total Marks = 3				
	BCS Section E			
Roll No	Name	Signature		

Question No 01: Choose the correct one.	[6]
1. Which of the following is the correct formula for	2. In the perceptron feed-forward phase, what is
updating weights in the delta rule?	computed?
a) $\Delta w_i = \eta(t - o)x_i$	a) The gradient of the error function
b) $\Delta w_i = \eta(o - t)x_i$	b) The weighted sum of inputs plus bias
$c) \Delta w_i = \eta(t * o)x_i$	c) The threshold value
d) $\Delta w_i = \eta(t / o)x_i$	d) The learning rate
3. What does the learning rate parameter control in	4. Which of the following is NOT a phase in the delta
gradient descent?	rule?
a) The accuracy of the final solution	a) Feed forward phase
b) The step size in weight updates	b) Error phase
c) The threshold for activation	c) Update weight phase
d) The number of training iterations	d) Backpropagation phase
5. if $x=[1,1,0]$, $t=1$, $\eta=0.5$, and initial weights $w_0=-$	6. Which algorithm is faster and less
0.3 , $w_1=0.5$, $w_2=0.5$, what is the output of the linear	computationally expensive?
unit?	
a) 0.2	a) Standard Gradient Descent
b) 0.7	b) Stochastic Gradient Descent
c) 0.5	c) Both are equally efficient
d) -0.3	d) Depends on the dataset size

Question No 02: Consider the following single layer perceptron which takes two binary inputs: x1 and $x2 \in \{0, 1\}$, and outputs h (x). Given the weights parameters below, which of the following logical functions does'it (approximately) compute? Select only one option and show your working to get any credit. [14 Marks]

- (A) OR
- (B) AND
- (C) NAND
- (D) XOR

National University
Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Truth Table For each Gate:

x1	x2	x1 AND x2	x1 OR x2	x1 NAND x2	x1 XOR x2
0	0	0	0	1	0
0	1	0	1	1	1
1	0	0	1	1	1
1	1	1	1	0	0

AND Gate

X1	X2	Output= b -	- Threshold	Perceptron	Target output
		w1x2 + w2x2		<mark>output</mark>	
0	0	-30	-30< 0	0	0
0	1	<mark>-10</mark>	-10 < 0	0	0
1	0	<mark>-10</mark>	-10 < 0	0	0
1	1	10	10 > 0	1	1

OR Gate

X1	X2	Output= b +	Threshold	Perceptron	Target output
		w1x2 + w2x2		<mark>output</mark>	
0	<mark>0</mark>	<mark>-30</mark>	-30< 0	<mark>0</mark>	0
0	1	<mark>-10</mark>	-10 < 0	<mark>0</mark>	1
1	0	<mark>-10</mark>	-10 < 0	0	1
1	1	10	10 > 0	1	1

NAND Gate

X1	X2		+ Threshold	Perceptron	Target output
		w1x2 + w2x2	<u>.</u>	<mark>output</mark>	
0	0	<mark>-30</mark>	-30< 0	0	1
0	1	<mark>-10</mark>	-10 < 0	0	1
1	0	<mark>-10</mark>	-10 < 0	0	1
1	1	<mark>10</mark>	10 > 0	1	0

National University
Of Computer & Emerging Sciences Faisalabad-Chiniot Campus

Question No 03: [4 + 6 Marks]
(a) Draw a multilayer perceptron with three inputs, 2 hidden layers with 3 neurons, and an output layer
with 2 neurons.
(b) Write the parameters of above network in matrices form and compute the size of each layer.
(b) Write the parameters of above network in matrices form and compute the size of each layer.
Input layer = 3
Hidden layer $1 = (3*3) + 3 = 12$
Hidden layer $1 - (3 \cdot 3) + 3 - 12$
Hidden layer $2 = (3*3) + 3 = 12$
Output layer = $(3*2) + 2 = 8$
TI 4 1
Total parameters = 12 + 12 + 8 = 32