CÁC PHƯƠNG PHÁP PHÂN CỰC CHO BJT

- ❖ PHÂN CỰC BẰNG DÒNG CỐ ĐỊNH
- * PHÂN CỰC ỔN ĐỊNH CỰC PHÁT
- ❖ PHÂN CỰC BẰNG HỒI TIẾP ĐIỆN ÁP
- ❖ PHÂN CỰC BẰNG CẦU PHÂN ÁP

3. PHÂN CỰC BẰNG HỒI TIẾP ĐIỆN ÁP

3A. Sơ đồ mạch phân cực

Hình 3a: Mạch phân cực có hồi tiếp điện áp Collector.

 $(R_B duợc kết nối vào cực C)$

Mạch phân cực ổn định cực phát

3. PHÂN CỰC BẰNG HỒI TIẾP ĐIỆN ÁP

3A. Sơ đồ mạch phân cực

Hình 3b: Mạch tương đương một chiều.

3. PHÂN CỰC BẰNG HỔI TIẾP ĐIỆN ÁP

3B. Tìm điểm làm việc tĩnh Q

Hình 3c: Vòng mạch Base – Emitter.

riangle Tính dòng I_R :

$$V_{CC} = I_{C}R_{C} + I_{B}R_{B} + V_{BE} + I_{E}R_{E}$$

$$I_{C} = I_{E} = (\beta + 1)I_{B}$$

$$\Rightarrow I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)(R_{C} + R_{E})} \quad (7)$$

Tính dòng I_C:

$$I_{C} = \beta I_{B} = \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)(R_{C} + R_{E})}$$
 (8)

3. PHÂN CỰC BẰNG HỒI TIẾP ĐIỆN ÁP

3B. Tìm điểm làm việc tĩnh Q

Vòng mạch E-C

\bullet Tính điện áp V_{CE} :

$$V_{CC} = I'_{C}R_{C} + V_{CE} + I_{E}R_{E}$$
$$= V_{CE} + (I_{C} + I_{B})(R_{C} + R_{E})$$

$$\Rightarrow V_{CE} = V_{CC} - (I_C + I_B)(R_C + R_E)$$
$$= V_{CC} - I_B(\beta + 1)(R_C + R_E)$$

3. PHÂN CỰC BẰNG HỒI TIẾP ĐIỆN ÁP

Ví dụ: Tìm thông số điểm Q của BJT, biết $\beta = 100$ và $V_{BE} = 0.7V$?

Giải:

3. PHÂN CỰC BẰNG HÒI TIẾP ĐIỆN ÁP

3C. Đường tải tĩnh

* Phương trình đường tải tĩnh:

$$I_C = \frac{V_{CC} - V_{CE}}{\left(1 + \frac{1}{\beta}\right) \cdot (R_C + R_E)}$$

Q: Xây dựng phương trình đường tải?

Hình 3d: Vòng mạch Collector – Emitter.

3. PHÂN CỰC BẰNG HỘI TIẾP ĐIỆN ÁP

3D. Khả năng ổn định điểm làm việc tĩnh Q

 \Leftrightarrow Dòng I_B :

$$I_{B} = \frac{V_{CE} - V_{BE}}{R_{B}}$$

 \Rightarrow I_C tăng \to điện áp rơi trên R_C và R_E tăng \to $V_{CE} \text{ giảm} \to I_B \text{ giảm} \to I_C \text{ giảm và ngược lại.}$

 \Rightarrow R_B ổn định điểm Q theo cơ chế hồi tiếp điện áp Collector.

3. PHÂN CỰC BẰNG HỘI TIẾP ĐIỆN ÁP

- 3D. Khả năng ổn định điểm làm việc tĩnh Q
 - ightharpoonup I_C ít thay đổi khi β thay đổi vì:

$$I_{C} = \beta \frac{V_{CC} - V_{BE}}{R_{B} + (\beta + 1)(R_{C} + R_{E})}$$

$$\approx \beta \frac{V_{CC} - V_{BE}}{R_{B} + \beta (R_{C} + R_{E})} = \frac{V_{CC} - V_{BE}}{\frac{R_{B}}{\beta} + (R_{C} + R_{E})}$$

Mạch có khả năng ổn định điểm làm việc Q khá tốt.

4A. Sơ đồ mạch phân cực

Hình 4a:

Mạch phân cực bằng cầu phân áp.

Hình 4b:

Mạch tương đương một chiều.

2 PHƯƠNG PHÁP GIẢI TÍCH:

- * PHƯƠNG PHÁP PHÂN TÍCH CHÍNH XÁC \rightarrow ÁP DỤNG ĐỊNH LÝ THEVENIN NORTON.
- * PHƯƠNG PHÁP PHÂN TÍCH GẦN ĐÚNG

Q: Định lý Thevenin – Norton?

ĐỊNH LÝ THEVENIN - NORTON

 $U_{
m hm}$: điện áp hở mạch trên cửa a-b.

 I_{nm} : dòng ngắn mạch qua cửa a-b .

 Z_0 : Z_v mạng một cửa không nguồn.

PHÂN TÍCH CHÍNH XÁC

4A. Sơ đồ mạch phân cực

Hình 4c: Mạch lối vào.

Hình 4d:

Mạch tương đương Thevenin.

$$R_{Th} = R_1 / / R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$E_{Th} = V_{R_2} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

PHÂN TÍCH CHÍNH XÁC

4B. Tìm điểm làm việc tĩnh Q

Q: Viết phương trình theo K2 cho vòng mạch?

 \Leftrightarrow Dòng I_B :

$$I_{B} = \frac{E_{Th} - V_{BE}}{R_{Th} + (\beta + 1)R_{E}}$$
 (10)

 \bullet Dòng I_C :

$$I_{C} = \beta I_{B} = \beta \frac{V_{Th} - V_{BE}}{R_{Th} + (\beta + 1)R_{E}}$$
 (11)

Hình 4d:
Mạch tương đương Thevenin.

PHÂN TÍCH CHÍNH XÁC

4B. Tìm điểm làm việc tĩnh Q

 \bullet Điện áp V_{CE} :

$$V_{CE} = V_{CC} - I_{C}R_{C} - I_{E}R_{E}$$

$$\cong V_{CC} - I_{C}(R_{C} + R_{E}) \quad (12)$$

Hình 4e: Vòng mạch Collector – Emitter.

PHÂN TÍCH GẦN ĐÚNG

❖ Điều kiện phân tích gần đúng:

$$\beta.R_E \ge 10.R_2$$

❖ Dòng phân áp I_P:

$$I_{R1} \approx I_{R2} \equiv I_{P} = \frac{V_{CC}}{R_{1} + R_{2}} >> I_{B}$$

❖ Điện áp trên cực B:

$$V_{B} = V_{R2} = \frac{V_{CC}}{R_{1} + R_{2}}.R_{2}$$

PHÂN TÍCH GẦN ĐÚNG

❖ Các dòng điện:

$$V_B = V_{R2} = V_{BE} + V_E = VBE + I_E R_E$$

 $\rightarrow I_E \rightarrow I_B \text{ và } I_C$

\bullet Điện áp V_{CE} và V_{C} :

$$V_{CE} = V_{CC} - I_{C}.R_{C} - I_{E}.R_{E} \approx V_{CC} - I_{C}.(R_{C} + R_{E})$$

$$V_{C} = V_{CE} + V_{E}$$

Ví du:

a. Với $V_{BE}=0.7V$, tính các tham số 1 chiều của mạch theo 2 phương pháp?

b. Lặp lại phép tính trên với $\beta = 50$ và so sánh với kết quả

tính được ở câu a?

4C. Khả năng ổn định điểm làm việc tĩnh Q

Mạch phân áp gồm R_1 và R_2 giúp tạo ra 1 điện áp phân cực cho cực B không phụ thuộc vào β.

$$V_{B} = V_{R_2} \approx \frac{R_2 V_{CC}}{R_1 + R_2}$$

- 4C. Khả năng ổn định điểm làm việc tĩnh Q
 - \clubsuit Dòng I_C khá ổn định khi β thay đổi :

$$I_{C} = \beta I_{B} = \frac{E_{Th} - V_{BE}}{R_{Th} + (\frac{1}{\beta} + 1)R_{E}}$$

- * Điện trở R_E giúp cải thiện độ ổn định của điểm Q theo cơ chế hồi tiếp âm dòng điện.
- 🗪 Mạch có khả năng ổn định điểm làm việc tĩnh cho BJT cao.

4D. Đường tải tĩnh

Q: Xây dựng phương trình đường tải tĩnh?

* Phương trình đường tải tĩnh:

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$

$$I_{E} = I_{C} + I_{B} = I_{C} \left(\frac{1}{\beta} + 1 \right)$$

$$I_{C} = \frac{V_{CC} - V_{CE}}{R_{C} + \left(\frac{1}{\beta} + 1\right)R_{E}}$$

:Phương trình đường tải tĩnh

Tổng kết

Độ ổn định tăng dần

1. Tìm điểm làm việc tĩnh Q' của BJT trong hình 3e (slide 6) với β = 150? Đánh giá khả năng ổn định điểm Q của mạch khi β tăng?

2. Tính I_C, V_E, V_B và R₁ trong hình 6 với BJT nền Si và hệ số khuếch đại dòng điện là 99.

Câu hỏi

1. Vẽ mạch tương đương Thevenin của mạch dưới?

