Digital Logic Circuit Experiment Project Report

-Rock Paper Scissors Game Machine-

SEUNGHYUN KIM

seunghyunkim821@gmail.com

1. Final file, design summary and pin mapping

Schematic diagram

Number of unique control sets	21			
Number of slice register sites lost to control set restrictions	98	4,800	2%	
Number of bonded IOBs	40	106	37%	
Number of LOCed IOBs	40	40	100%	
Number of RAMB16BWERs	0	12	0%	
Number of RAMB8BWERs	0	24	0%	
Number of BUFI02/BUFI02_2CLKs	0	32	0%	
Number of BUFIO2FB/BUFIO2FB_2CLKs	0	32	0%	
Number of BUFG/BUFGMUXs	2	16	12%	
Number used as BUFGs	2			
Number used as BUFGMUX	0			
Number of DCM/DCM_CLKGENs	0	4	0%	
Number of ILOGIC2/ISERDES2s	0	200	0%	
Number of IODELAY2/IODRP2/IODRP2_MCBs	0	200	8%	
Number of OLOGIC2/OSERDES2s	0	200	0%	
Number of BSCANs	0	4	8%	
Number of BUFHs	0	128	0%	
Number of BUFPLLs	0	8	0%	
Number of BUFPLL_MCBs	0	4	0%	
Number of DSP48A1s	0	8	8%	
Number of ICAPs	0	1	0%	
Number of PCILOGICSEs	0	2	0%	
Number of PLL_ADVs	0	2	0%	
Number of PMVs	0	1	0%	
Number of STARTUPs	0	1	0%	
Number of SUSPEND_SYNCs	0	1	0%	
Average Fanout of Non-Clock Nets	2,96			

Performance Summary							
Final Timing Score:	0 (Setup: 0, Hold	: 0)	Pinout Data:				
Routing Results:	All Signals Comp	pletely Routed	Clock Data:		Clock Report		
Timing Constraints:	All Constraints N	<u>fet</u>					
		Detailed Reports				[-]	
Report Name S	tatus	Generated	Errors	Warnings	Infos		
Synthesis Report C	urrent		0	30 Warnings (5 new)	19 Infos (2 r	iew)	
Translation Report C	urrent		0	8 Warnings (8 new)	Warnings (0 new) 0		
Map Report C	urrent		0	6 Warnings (8 new)	6 Infos (8 no	rw)	
Place and Route Report C	urrent		0	0	3 Infos (0 na	rw)	
Power Report							
Post-PAR Static Timing Report C	urrent		0	0	4 Infos (0 na	2W)	
Bitgen Report C	urrent	수 12 22 16:53:33 2021	0	6 Warnings (0 new)	0		
		Secondary Reports				[-]	
Report Name	ort Name Status			Generated			
WebTalk Report Current							
WebTalk Log File	Current \$\dip 12 22 17:00:05 2021						
Date Generated: 12/22/2021 - 17:28:42							

Design summary

Pin mapping

2. Module-level Functionality

(1) Keyscan4x4

When a button on a 4x4 key matrix is pressed, it triggers the scan process to determine the number corresponding to the pressed button. Additionally, the fact that a button has been pressed is signaled as "buttonpressed."

(2) Debouncing

The "bouncing" effect in the "buttonpressed" signal is mitigated using two flip-flops in a debounce circuit. This circuit ensures that a stable signal is generated without noise or multiple transitions caused by the button's mechanical bouncing. The debounced signal can then be used to trigger or control signals at various frequencies. (slowedCLK: 2¹²Hz doubleslowedCLK: :2⁷Hz quadrupleddsCLK: :2⁹Hz)

(3) Level2timing

This circuit outputs the time variable T(7:0), and during the game, T(7:0) increases by 1 on the positive edge of CLK_LFC (every 1 second). The operation of the circuit is determined based on the value of T(7:0).

t3t2t1t0	output of Dot
0000~0001	off
0010~0011	R
0100~0101	Р
0110~0111	S
1000~1011	off
1100~1111	Result

t6t5t4	output of d1 in 4dig7seg(=the number of games played)
000	5
001	4
010	3

011	2
100	1
101	0

(4) Level2randomxgenerator

This circuit outputs a random x using a 2-bit counter

How to determine the random variable "x":

A CLK signal with a frequency of 223Hz is connected to "CB2CE" as the clock input "C."

"CB2CE" generates an output "TC" (T7T6T5T4T3T2T1T0) that is connected to the CLR (Clear) input.

When "TC" reaches a value of 11 (binary Q1=1, Q0=1), the circuit is reset. This reset condition ensures that the circuit restarts when "TC" reaches 11.

The outputs "x1" and "x0" of "CB2CE" are connected to the inputs of two Flip-Flop D-Elements (FDE).

Each FDE has a CE (Clock Enable) and a C (Clock) input. CE is set as CE = T7'T3' and C = bpdebounced. This means that when a button is pressed during each of the five games, while "R," "P," and "S" are sequentially displayed on the screen, the values of "x1" and "x0" at the moment the button is pressed determine the values of "RX1" and "RX0."

The mappings change according to the values of "RX1" and "RX0" as follows:

If RX1RX0 = 00, it corresponds to "R."

If RX1RX0 = 01, it corresponds to "P."

If RX1RX0 = 10, it corresponds to "S."

In essence, the circuit generates a random variable "x" based on the moment a button is pressed during the game, and this random variable corresponds to the game outcomes "R," "P," or "S."

(5) Level2bridgekssm1, 2

These two circuits serve to convert the output "O(3:0)" of the keyscan into "I(2:0)." The signal "I(2:0)" is then input into the "statememory" to determine the state of the circuit, represented by "Q(2:0)."

The condition "T7'T3'T2'T1'T0=1" is connected to the CLR input of each FDCE in "bridgekssm1." Therefore, one second after the start of each game, "I(2:0)=110" is set, which signifies the state of 'nothing has been pressed.'

How to apply a time limit:

In the "bridgekssm2" circuit, the CE (Clock Enable) of each FDCE is set as CE = T7'T3'. Therefore, during each round of the game when "R," "P," or "S" is displayed on the screen, only the button presses that occur during that time are reflected in "I." Button presses that occur after the game screen changes are not taken into account.

If no buttons are pressed during the time "R," "P," or "S" is displayed on the screen, "I" will maintain the value "110" (signifying that nothing has been pressed) until the end of that particular game round.

(6) Level2statememory

The transition table for this circuit, which determines the output Q(2:0) representing the state of the circuit based on the input I, is provided below.

		Q2*Q1*0	Q2*Q1*Q0*						
State	Q2Q1Q0	I=000	001	011	010	100	101	111	110
		reset	start	P	R	S	other	illegal	none
OFF	000	000	001	000	000	000	000	xxx	000
ON	001	000	101	011	010	100	101	xxx	110
PA	011	000	101	011	010	100	101	xxx	110
RO	010	000	101	011	010	100	101	xxx	110
SCI	100	000	101	011	010	100	101	xxx	110
OTH	101	000	101	011	010	100	101	xxx	110
NULL	111	xxx	xxx	xxx	xxx	xxx	xxx	xxx	xxx
NONE	110	000	101	011	010	100	101	xxx	110

(7) Level2bridgesmds1, 2, Projectdotscan

형태	D2D1D0	col0	coll	col2	col3	col4	col5	col6	col7
None	000	00	00	00	00	00	00	00	00
Rock	001	00	18	3C	7E	7E	3C	18	00
Paper	010	F8	FF	E0	FF	E0	FF	E0	FF
Scissor	011	80	40	5F	30	30	5F	40	80
Question mark	100	00	06	05	A1	B1	1F	0E	00
Solid line	101	18	18	18	18	18	18	18	18
None	110	00	00	00	00	00	00	00	00
None	111	00	00	00	00	00	00	00	00

The "Bridgesmds1" and "Bridgesmds2" circuits operate based on the time "T," the comparison of "Q(2:0)," and "RX(1:0)." They generate an output "D(2:0)" that represents the picture to be displayed on the dot matrix. This "D(2:0)" value is then passed to the "projectdotscan," which is responsible for displaying the corresponding picture on the dot matrix. The "projectdotscan" circuit takes the "D(2:0)" value and uses it to determine which picture to display on the dot matrix.

(8) Level2comparator

Q2Q1Q0	RX1RX0	Result	Score				
	KAIKAU		Decimal	A7A6A5A4	A3A2A1A0		
010	00	Tie	0	0000	0000		
	01	Loss	-3	1111	1101		
	10	Victory	+3	0000	0011		
011	00	Victory	+3	0000	0011		
	01	Tie	0	0000	0000		
	10	Loss	-3	1111	1101		
100	00	Loss	-3	1111	1101		
	01	Victory	+3	0000	0011		
	10	Tie	0	0000	0000		
101	XX	Leftfield	-1	1111	1111		
110	XX	Retirement	-2	1111	1110		

To determine a win or draw, the comparison between "Q(2:0)" and "RX(1:0)" is used. Based on this comparison, the result is determined, and the score, represented by "A(7:0)," is generated as an output. The specific logic for comparing these values and determining the result is detailed in the provided table.

(9) Level2calculator

The scoring is calculated as follows:

The "Calculator" circuit receives the score for each round, represented as "A(7:0)," from the "Comparator" circuit. For each round, at T=10 seconds, the "Calculator" circuit inputs the score "A(7:0)" into "ADD8" to perform addition. The result from "ADD8" is "SCORE(7:0)." This score is input to "ADD8" again at T=9 seconds for each round, allowing the scores from each round to accumulate continuously. This process ensures that the scores are cumulative across rounds, and the total score is maintained.

(10) Level2sd1generator, Level2sd2generator

These circuits determine the outputs SD1(3:0) and SD2(3:0) for the first and second digits (d1 and d2) of the 4-digit 7-segment display based on the time T and the score Score(7:0).

(11) Level2sd3generator, Level2sd4generator

These circuits convert the score, Score(7:0) calculated in the Calculator circuit into decimal form so that it can be displayed on d3 and d4. Please refer to the following table:

SCORE(7:0)	SCORE(7:0)		
decimal number	binary number	SD3(3:0)	SD4(3:0)
+0	(0000)0000	0000	0000
+1	(0000)0001	0000	0001
+2	(0000)0010	0000	0010
+3	(0000)0011	0000	0011
+4	(0000)0100	0000	0100
+5	(0000)0101	0000	0101
+6	(0000)0110	0000	0110
+7	(0000)0111	0000	0111
+8	(0000)1000	0000	1000
+9	(0000)1001	0000	1001
+10	(0000)1010	0001	0000
+11	(0000)1011	0001	0001
+12	(0000)1100	0001	0010
+13	(0000)1101	0001	0011
+14	(0000)1110	0001	0100
+15	(0000)1111	0001	0101

SCORE(7:0)		OUTPUT	
decimal number	binary number	SD3(3:0)	SD4(3:0)
-1	(1111)1111	0000	0001
-2	(1111)1110	0000	0010
-3	(1111)1101	0000	0011
-4	(1111)1100	0000	0100
-5	(1111)1011	0000	0101
-6	(1111)1010	0000	0110
-7	(1111)1001	0000	0111
-8	(1111)1000	0000	1000
-9	(1111)0111	0000	1001
-10	(1111)0110	0001	0000
-11	(1111)0101	0001	0001
-12	(1111)0100	0001	0010
-13	(1111)0011	0001	0011
-14	(1111)0010	0001	0100
-15	(1111)0001	0001	0101

(12) Lab8step10

The received inputs SD4(3:0), SD3(3:0), SD2(3:0), and SD1(3:0) are used with the lut4segment to display the appropriate format on the display. The content stored in Lut4segment is as follows, based on the provided table.

LUT4_a	INIT=1101/0111/1110/1101=D7ED
LUT4_b	INIT=0010/0111/1001/1111=279F
LUT4_c	INIT=0010/1111/1111/1011=2FFB
LUT4_d	INIT=0111/1011/0110/1101=7B6D
LUT4_e	INIT=1111/1101/0100/0101=FD45
LUT4_f	INIT=1101/1111/1111/0001=DFF1
LUT4_g	INIT=1110/1111/0111/1100=EF7C

3. Verification of Operation

When the player wins in the game (left) and when the player loses in the game (right). The score is displayed correctly.

When a different button is pressed (left) and when no button is pressed within the designated time (right). The score is displayed correctly.

At the end of the game (left) and when the start button is pressed again (right). It works correctly.

While the game is running (left) and when the reset button is pressed (right). The game has been reset correctly.

4. Conclusion

The issue where occasionally unpressed buttons behaved as if they were pressed due to the Keyscan4x4 module's column scan signals K3 to K0 not being pulldown in the Pin mapping has been resolved. After resolving this problem, no other errors have been detected.