Algebra

 $Hoyan\ Mok^1$

2020年7月21日

 $^{^{1}}$ E-mail: victoriesmo@hotmail.com

目录

Conter	nts	i
第一章	群. 环. 域	1
§ 1	代数运算	1
§ 2	群	2
参考文献	献	4
索引		5

ii

第一章 群.环.域

§1 代数运算

Definition 1.1 (二元运算). 集合的 Cartesian 平方到自身的映射 *: $X^2 \to X$ 称为其上的一个二元运算. 通常我们记 *(a,b) := a * b. 当 X 上定义了二元运算 * 后, 称 * 定义了 X 上的一种代数结构 (X,*), 也称代数系统.

当指代是明确的时候, 我们将混用集合及其代数结构.

作为习惯, 如果 \cdot , $+ \in X^{X^2}$, 我们记 $ab := a \cdot b$ 并称其为a和b的积, 称a + b为a和b的和. 这些只是约定.

若 a*b=b*a 则称 * 或 (X,*) 是交换的, 而若 (a*b)*c=a*(b*c) 则称 * 或 (X,*) 为结合的.

若 $\exists e \in X$ 满足 $\forall x \in A(e * x = x * e = x)$, 则称其为 * 的一个**单位元** (identity), 这时可把 (X,*) 记作 (X,*,e). 可以证明一个代数结构最多只有一个单位元. 乘法单位元通常记为 1, 而加法单位元 (也叫零元) 记为 0.

Definition 1.2 (半群和幺半群). 若 * 是结合的, 称 (X,*) 是**半群** (semigroup); 若 * 还有一个单位元, 则称 (X,*,e) 是**幺半群** (monoid).

倘若幺半群 (M,*,e) 是有限的 (即其元素有限), 称 $\operatorname{card} M$ 为有限幺半群的阶.

作为重要的例子,**置换幺半群**定义为 (X^X, \circ, id_X) ,有幺半群结构的 X^X 通常记作 M(X). 半群中,括号的位置是不重要的 (可用数学归纳法证明). 通常我们记 $x_1x_2\cdots x_n$ 为:

$$\prod_{i=1}^{1} x_i = x_1, \ \prod_{i=1}^{n+1} x_i = \left(\prod_{i=1}^{n} x_i\right) x_n; \tag{1-1}$$

同理 $x_1 + x_2 + \cdots + x_n$ 为:

$$\sum_{i=1}^{1} x_i = x_1, \ \sum_{i=1}^{n+1} x_i = \left(\sum_{i=1}^{n} x_i\right) + x_n.$$
 (1-2)

在半群不交换的场合,指出递推式右端的顺序是重要的.这种记法称为左正规.

若 $x := x_1 = x_2 = \cdots = x_n$, 记 $\sum_{i=1}^n x_i = nx$, $\prod_{i=1}^n x_i = x^n$, 分别表示 x 的 n 倍和 x 的 n 次幂. 它们满足:

$$nx + mx = (n+m)x, \ n(mx) = nmx, \qquad n, m \in \mathbb{N}_+;$$
 (1-3)

$$x^n x^m = x^{n+m}, (x^m)^n = x^{nm}, \quad n, m \in \mathbb{N}_+.$$
 (1-4)

在幺半群中, 还可以令 $x^0 = 1$, 0x = 0.

若半群 S 有子集 S', 使得 (S',*) 是半群, 那么称其为半群 (S,*) 的子半群. 同理有幺半 群M 的子幺半群 M'.

若半群 (S, *, e) 的元素 a 满足 $\exists a' \in S(aa' = a'a = e)$, 那么称 a 为**可逆的** (invertible), a' 称为其**逆元** (inverse element) 或**逆** (inverse). 通常加法逆元记为 -a, 乘法逆元记为 a^{-1} , 且为可逆元素引入 na, a^n 的概念, 其中 $n \in \mathbb{Z}$. 当 n 为负数时, na = -(-na), $a^n = (a^{-n})^{-1}$.

§**2** 群

可逆幺半群 G 称为群, 即:

Definition 2.1 (群). 设有集合 G. 若:

- G1) 定义了二元运算 $:: G^2 \to G; (x, y) \mapsto xy.$
- G2) 结合性: $\forall x, y, z \in G$, (xy)z = x(yz).
- G3) 单位元: $\exists e \in G \forall x \in G, xe = ex = x.$
- G4) 可逆性: $\forall x \in G \exists x^{-1} \in G, xx^{-1} = x^{-1}x = e.$

则称 (G,\cdot) 为群.

交换群又叫做Abelian 群.

作为重要的例子, 设 X 是一个集合, $S(X) = \{f \in X^X \mid f \text{ 是双射}\}$. 我们断言, $(S(X), \circ, \mathrm{id}_X)$ 是一个群, 称为**变换群**或**置换群**, 其中 \circ 是函数的复合, id_X 是恒等变换. 当它的阶数 $\mathrm{card}\, X = n$ 是有限的时候, 记 $S_n := S(X)$.

群也有子群的概念. 设 (G,\cdot,e) 是一个群. 当一个集合 $G'\subset G$ 满足: SG1) $e\in G'$; SG2) $\forall x,y\in G',\,xy\in G';$ SG3) $x\in G'\to x^{-1}\in G',\,$ 则称 (G',\cdot,e) 是一个 G 的子群. 倘若还有 $G'\neq G$ 则称其为一个真子群¹.

我们把半群的公式 (1-4) 推广到整数次幂, 证明在此忽略了.

 $^{^{1}}$ [1] 等文献把**平凡群** $\{e\}$ 也排在真子群的定义外.

Theorem 2.1. $\forall g \in G, \forall n, m \in \mathbb{Z},$

$$g^m g^n = g^{m+n}, \quad (g^m)^n = g^{mn}.$$
 (2-1)

Definition 2.2 (循环群). 设 $(G,\cdot,1)$ 是一个乘法群, $\exists g_0 \in G$, 使得 $\forall g \in G$, $\exists n \in \mathbb{Z}$, $a^n = g$, 那么我们称它是一个**循环**群, g_0 是一个生成元 (generator), 并记作 $G = \langle g_0 \rangle$.

对于群 G 中任意元素 g, 我们称 $\operatorname{card}\langle g\rangle$ 为元 g 的**阶数**, 或称 g 为 n **阶元**. 而且它将满足:

Theorem 2.2. 任意群 G 中若有 $q \in \mathbb{Z}$ 阶元 g, 则 $\langle g \rangle = \{e, g, \dots, g^{q-1}\}$, 且:

$$g^n = e \leftrightarrow n = kq, \qquad n \in \mathbb{Z}.$$
 (2-2)

证明利用带余除法和定理 2.1, 证明是显然的.

Definition 2.3 (同构). 两个群 (G,*), (G',\circ) 如若满足: $\exists f: G \to G'$ s.t.

- i) $\forall a, b \in G, f(a * b) = f(a) \circ f(b);$
- ii) f 是双射,

则称 f 是一个**同构映射**或**同构**, 并认为两个群是互相**同构**的, 记为 $G \simeq G'$.

同构关系的自反性, 传递性和对称性是平凡的.

Theorem 2.3. 设群 $(G, *, 1), (G', \circ, 1')$ 被 f 见证同构, 那么 f(1) = 1'.

Proof. $\forall g' \in G'$, 记 $g := f^{-1}(g')$, 那么 $f(g) \circ f(1) = f(g*1) = g' = f(1*g) = f(1) \circ f(g)$. 从 而 f(1) = 1'.

Theorem 2.4. 设群 $(G, *, 1), (G', \circ, 1')$ 被 f 见证同构, 那么 $\forall g \in G, f(g^{-1}) = f(g)^{-1}$.

Proof.
$$f(g) \circ f(g^{-1}) = f(g * g^{-1}) = f(1) = 1' = f(g^{-1} * g) = f(g^{-1}) \circ f(g).$$

Theorem 2.5. $\operatorname{card}\langle g_0 \rangle = \operatorname{card}\langle g_0' \rangle \to \langle g_0 \rangle \simeq \langle g_0' \rangle$.

Proof. 倘若 $\operatorname{card}\langle g_0 \rangle = \infty$, 那么 $\nexists n \in \mathbb{Z} - \{0\}$,s.t. $g_0^n = e$; 这意味着, 存在这样的双射 $f: \mathbb{Z} \to \langle g_0 \rangle$, 满足 $f(n) = g_0^n$, 见证了 $(\mathbb{Z}, +, 0) \simeq (\langle g_0 \rangle, *, e)$.

如果阶数是有限的, 只需令
$$f: g^k \to g'^k$$
, 其中 $k = 0, 1, \dots, \operatorname{card}(g_0)$.

Theorem 2.6 (Cayley 定理). 设 (G, *, e) 任意 n 阶有限群. $\exists H \subset S_0$ s.t. (H, \circ, id_X) 是 S_n 的子群且 $G \simeq H$.

Proof. 取 $H := \{L_g \mid g \in G\}$, 其中 $L_g \colon G \to G; g' \mapsto gg'$ 可以证明是双射. 那么 $L \colon G \to H; g \mapsto L_g$ 见证了 $H \simeq G$.

若 φ : $G \to G$ 见证了 $G \simeq G$ (如 id_G), 那么称 φ 是群 G 的一个 **自同构**. 所有自同构组成的集合 $\mathrm{Aut}(G)$ 和其上定义的函数复合。构成了 S(G) 的一个子群.

参考文献

[1] A.I. Kostrikin. *Introduction to Algebra*. Universitext - Springer-Verlag. Springer-Verlag, 1982. ISBN: 9783540907114. URL: https://www.springer.com/gp/book/9780387907116.

索引

n 阶元、 3 使用的符号 $\langle g_0 \rangle$ 、 3 $G \simeq G'$ 、 3 S_n , 2 $S(X)$, 2 $(X,*)$, 1	子半群, 2 子幺半群, 2 子群, 2 左正规, 2 平凡群, 2 幺半群, 1 循环群, 3
(X, *, e), 1	有限幺半群,1
Abelian 群, 2	生成元, 3
Cayley 定理, 3	真子群, 2 积, 1
二元运算, 1 交换的, 1 代数系统, 1 代数结构, 1	结合的, 1 置换幺半群, 1 置换群, 2 群, 2
半群, 1 单位元, 1 变换群, 2 可逆的, 2 同构, 3 同构映射, 3	自同构, 3 逆, 2 逆元, 2 阶, 1 阶数, 3
和, <mark>1</mark>	零元, <u>1</u>