

⑯日本国特許庁
公開特許公報

⑮特許出願公開
昭52—155614

⑯Int. Cl².
C 03 C 3/14
C 03 C 3/30

識別記号
21 A 22
101

⑯日本分類
21 A 22
7417—41

⑯公開 昭和52年(1977)12月24日
発明の数 1
審査請求 有

(全 5 頁)

⑯高屈折低分散光学ガラス

⑯発明者 中原宗雄

相模原市小山1の15の46

⑯特 願 昭51—72737
⑯出 願 昭51(1976)6月22日
⑯発明者 小森田藤夫
八王子市東浅川町202

⑯出願人 株式会社小原光学硝子製造所
相模原市小山1丁目15番30号
⑯代理人 弁護士 羽柴隆

明細書

1.発明の名称 高屈折低分散光学ガラス

2.特許請求の範囲

質量%で、B₂O₃ 10～17%未満、La₂O₃ 20～55%、Gd₂O₃ 0.5～38%、W₂O₃ 0.5～45%、ZrO₂ 0～10%、Ta₂O₅ 0～30%、但し、ZrO₂ + Ta₂O₅ 2～35%、SiO₂ 0～8%、GeO₂ 0～5%、Y₂O₃ 0～16%、Tb₂O₃ 0～5%、Yb₂O₃ 0～38%、但し、Y₂O₃ + Tb₂O₃ + Yb₂O₃ 0～40%、TiO₂ 0～20%、Nb₂O₅ 0～31%、PbO 0～20%、SnO₂ 0～3%、Al₂O₃ 0～5%、In₂O₃ 0～5%、Bi₂O₃ 0～5%、MgO、CaO、SrO、BaO およびZnOの一種または二種以上の合計0～17%、Li₂O、Na₂O およびK₂Oの一種または二種以上の合計0～0.5%の組成からなる高屈折低分散光学ガラス

3.発明の詳細な説明

本発明は、有害なThO₂、CdO およびBeO等を含

有せず、Nd = 1.85～1.96、Vd = 43～28の範囲の高屈折低分散性能を有し、かつ、失透しがたい安定なB₂O₃—La₂O₃—Gd₂O₃—W₂O₃—ZrO₂ および(または)Ta₂O₅系からなる光学ガラスに関する。

従来、上記のような有害成分を含有する高屈折低分散光学ガラスが種々知られており、これらを改良して無害化する試みが英國特許明細書第1,183,996号、日本特許公開公報昭48-37410号および同昭49-55705号等に示されている。しかしながら、これらに示されたガラスは、いずれも改良前のガラスにみられる高性能領域範囲に及ぶ高屈折低分散性を十分發揮し得ず、また高性能なものほど失透しやすく不安定で量産に適さない等の欠点がある。

本発明は、上述の明細書および公報に示されたガラスにみられる諸欠点を解消し、上記有害成分を用いることなく、しかも、高屈折低分散性に卓効のある新規の光学ガラスを得ることを目的とする。

本発明者等は、多くの試験研究の結果、La₂O₃を含有する光学ガラスとしては、従来から研究開発データーが未知の分野に属するB₂O₃—La₂O₃—Gd₂O₃

および WO_3 の一種または二種以上の合計 0 ~ 0.5 %

本発明にかかる光学ガラスの各成分の組成範囲を、上記のように限定した理由は次のとおりである。

即ち、 B_2O_3 の含有量は、10 % より少ないと失透傾向が著しく増大し、量産規模の製造に適さない。また、この量が 17 % 以上では、本発明の光学性能を満足し得なくなる。

La_2O_3 は、ガラスに高屈折低分散性を与えるのに重要な成分であるが、本発明の目的とする光学性能を得るには 20 % 以上含有する必要があり、またこの量が 55 % より多いと失透傾向が著しく増大し安定なガラスとはなりがたい。

Gd_2O_3 は、本発明のガラスにおいて、 La_2O_3 とほぼ同様の光学的特性をガラスに与えるが、失透傾向を防止して量産し得るほどの安定性を維持するため必要であり、 Gd_2O_3 の量が 0.5 % より少ないとその効果が乏しくなり、また 38 % より多いと分相を生じて均質なガラスを得ることが困難となる。

WO_3 は、本発明においてガラスの屈折率を高め、また失透傾向を防止するため広範囲に導入し得ると

- WO_3 - ZrO_3 および (または) Ta_2O_5 系のガラスによつて、上記の目的を達成し、 $Nd = 1.85 \sim 1.96$ 、 $\sqrt{d} = 43 \sim 28$ の高屈折低分散光学ガラスが得られることをみいだし、本発明をなすに至つた。

即ち、本発明のガラスは、比較的少量の B_2O_3 、比較的多量の La_2O_3 、比較的広範囲にわたる量の Gd_2O_3 と WO_3 のほか適量の ZrO_3 および / または Ta_2O_5 を必須成分として含有し、上記所定の光学性能と安定性を有することを特徴としており、その成分組成を重量%で示すと、つぎのとおりである。

B_2O_3 10 ~ 17 % 未満、 La_2O_3 20 ~ 55 %、 Gd_2O_3 0.5 ~ 38 %、 WO_3 0.5 ~ 45 %、 ZrO_3 0 ~ 10 %、 Ta_2O_5 0 ~ 30 %、但し、 $\text{ZrO}_3 + \text{Ta}_2\text{O}_5$ 2 ~ 35 %、 SiO_2 0 ~ 8 %、 GeO_2 0 ~ 5 %、 Y_2O_3 0 ~ 16 %、 Tb_2O_3 0 ~ 5 %、 Yb_2O_3 0 ~ 38 %、但し、 $\text{Y}_2\text{O}_3 + \text{Tb}_2\text{O}_3 + \text{Yb}_2\text{O}_3$ 0 ~ 40 %、 TiO_2 0 ~ 20 %、 Nb_2O_5 0 ~ 31 %、 PbO 0 ~ 20 %、 SnO_2 0 ~ 3 %、 Al_2O_3 0 ~ 5 %、 In_2O_3 0 ~ 5 %、 Bi_2O_3 0 ~ 5 %、 MgO 、 CaO 、 SrO 、 BaO および ZnO の一種または二種以上の合計 0 ~ 17 %、 Li_2O 、 Na_2O

とをみいだした直要成分である。 WO_3 の量は 0.5 % 未満ではこれらの効果が乏しくなり、また 45 % を超えるとかえつて失透傾向が増大するので好ましくない。

ZrO_3 は、ガラスの失透傾向を防止し、 La_2O_3 に比較し屈折率を高めるのに有効であるが、その量が 10 % を超えると、逆に失透傾向が著しく増大するので好ましくない。

Ta_2O_5 は、 La_2O_3 とほぼ同じ屈折率をガラスに与え、30 % までは失透しがたい安定なガラスを得るのに有効であるが、その量を超えると熔融中に未溶融物を生じやすくなり、均質なガラスを得ることが困難となる。

また、本発明のガラスにおいては、目的とする光学性能を維持しつつ失透傾向を防止するために、 ZrO_3 と Ta_2O_5 の一種または二種を存在させることができあり、これらの合計量が 2 % 未満ではその効果を期待しがたく、また 35 % を超えるとガラスの屈折率が悪化したり、失透傾向を生ずるようになる。

つぎに述べる成分は、本発明において必須成分で

はないが、それぞれの限定範囲内で用いるならば、ガラスの光学性能を補正したり、失透傾向を一層防止するのに有効である。

即ち、 SiO_2 および GeO_2 は熔融の際ガラスの粘性を高めて失透傾向を防止するのに有効であるが、 SiO_2 の量は、8 % を超えると未溶融物が生じ、均質なガラスを得ることが困難となる。また、 GeO_2 の量は、5 % を超えるとかえつて失透傾向が増大し、安定なガラスを得ることが困難となる。

Y_2O_3 、 Tb_2O_3 および Yb_2O_3 は、本発明においてガラスの光学性能に与える効果が La_2O_3 と類似しており、それぞれ Y_2O_3 16 % まで、 Tb_2O_3 5 % まで、 Yb_2O_3 38 % までの導入は失透傾向を防止するのに有効である。しかし、 Y_2O_3 と Yb_2O_3 は、それぞれ上記限界量を超えると、かえつて失透傾向が増大し、ガラスは不安定となる。また Tb_2O_3 の場合は、上記限界量を超えるとガラスに着色を与えるので好ましくない。さらに、これらの成分の合計量が 40 % を超えるとガラスは失透し不安定となりやすい。

TiO_2 と Nb_2O_5 は、屈折率を高め、失透傾向の防止

効に作用するが、これらの成分の内の一種または二種以上の合計量が17%を超えると失透しやすくなるので好ましくない。

PbO は、屈折率を高め、ガラスの溶融温度を下げ、さらに失透傾向を防止するのに有効である。しかし、その量が20%を超えると急激に失透傾向が増大するので好ましくない。

Li_2O 、 Na_2O および K_2O の導入は、ガラスを溶融する際、 SiO_2 原料の触剤として有効に働くが、これらの成分の内の一種または二種以上の合計量が0.5%を超えると極端に失透しやすくなるので好ましくない。

SnO_2 は、失透傾向を防止するのに有効であるが、その量が3%を超えるとガラスの着色が増すので好ましくない。

Al_2O_3 は、ガラスを溶融する際に粘性を高め、失透傾向を防止し、さらに Gd_2O_3 による分相を防止する効果がある。しかし、その量が5%を超えると失透しやすくなる。

In_2O_3 および Hf_2O_3 は、屈折率を高め、かつ、失透傾向を防止するのに有効であるが、いずれもその量が5%を超えると着色が増すので好ましくない。

MgO 、 CaO 、 SrO 、 BaO および ZnO は、溶融の際 SiO_2 原料の触剤として、また防失透剤として有

効に作用するが、これらの成分の内の一種または二種以上の合計量が17%を超えると失透しやすくなるので好ましくない。

なお、上述の酸化物ガラス成分例えは Y_2O_3 、 Al_2O_3 、あるいは MgO 等の一部をそれぞれ YF_3 、 AlF_3 あるいは MgF_2 等の弗化物で置換し、ガラスを溶融しやすくしたり、失透の防止に役立てたりすることができる。しかし、ガラス中の弗素の含有量は、2%程度以内にとどめておくことが望ましい。

つぎに、本発明にかかる光学ガラスの実施組成例を第1表に、またこれに対応するガラスの光学性能(Nd 、 ν_d)と失透析出温度(C)を第2表に示した。ここで、失透析出温度は、約1mmの大きさのガラス粒を温度調節炉で30分間保温して測定した結果である。

表にみられるとおり、実施例のガラスは、いずれも高度の高屈折低分散性能を有し、また失透析出温度から十分安定であることがわかる。また、これらのガラスは B_2O_3 の含有量が比較的少ないため、公知の B_2O_3 、 La_2O_3 を含有する光学ガラスより一般に溶融時の粘度が高く、したがつて、比較的高い溶融温度(1340~1420°C)を要する。しかし、これらのガラスは白金るっぽ等を用いて溶融し、泡切れを行い十分攪拌し均質化した後、適当な温度で金型に封込んでアニールすることにより、容易に製造することができる。

このように、本発明の光学ガラスは、 TbO_3 、 CdO および BeO 等の有効な成分を含有していないにも拘らず、 $\text{Nd} = 1.85 \sim 1.96$ 、 $\nu_d = 43 \sim 28$ の範囲の極めて高度の高屈折低分散性能を有し、しかも失透しがたく安定であるので、工業的量産に適しており、有用である。

出願人代理人 羽柴 隆

第 1 表

(単位: 質量パーセント)

α	B ₂ O ₃	La ₂ O ₃	Gd ₂ O ₃	WO ₃	ZrO ₃	Ta ₂ O ₅	SiO ₂	Y ₂ O ₃				
1	16.3	38.4	9.6	1.4	5.0	15.7	5.0	8.6				
2	11.0	33.0	25.0	7.0	4.0	9.0	6.0	5.0				
3	11.0	38.0	3.0	13.5	4.5	15.0	3.0	12.0				
4	16.9	41.1	4.0	15.0	4.0	19.0						
5	14.0	28.0	30.0	5.0	6.0	14.0	3.0					
6	14.0	24.0	1.0	13.0	6.0	26.0		16.0				
7	15.0	55.0	0.5	5.0		24.5						
8	10.5	25.0	26.0	30.0		6.0	2.5					
9	15.0	25.0	5.0	45.0	10.0							
10	16.0	39.0	1.0	14.0		30.0						
11	15.0	30.0	20.0	0.5	7.0	27.5						
12	10.0	34.5	15.0	15.0	4.0	17.0	4.5					
13	14.0	40.0	1.0	10.0	7.0	28.0						
14	16.0	20.0	38.0	5.0	6.0	15.0						
15	14.0	20.0	1.5	10.0	3.0	11.0	3.0					
16	16.5	21.0	0.5	5.0	3.0	15.0		12.0	Yb ₂ O ₃ 37.5 24.0	Tb ₂ O ₃ 3.0	Nb ₂ O ₅ 7.0 10.0	YF ₃
17	15.0	36.0	4.0	32.0	2.0		4.0					
18	16.6	31.0	9.4	6.9	3.4	9.3	3.0	5.4				
19	12.0	40.0	2.0	25.0	3.0	15.0						
20	13.0	41.5	1.5	20.0	3.5	17.0		2.0				
21	16.9	41.7	3.3	5.0	3.5	9.6						
22	16.7	33.0	2.0	5.3	3.5	8.5						
23	16.8	30.0	9.2	9.0	8.0	10.0	8.0					

(単位: 質量パーセント)

α	B ₂ O ₃	La ₂ O ₃	Gd ₂ O ₃	WO ₃	ZrO ₃	Ta ₂ O ₅	SiO ₂	Y ₂ O ₃				
24	15.0	32.0	2.3	13.3	6.0	20.0	1.4		PbO 10.0			
25	15.0	30.6	5.0	0.5	6.0	17.5	5.4		PbO 20.0			
26	12.0	31.0	6.0	25.0		18.0			GeO ₂ 5.0	SnO ₂ 3.0		A ₁ O ₃
27	12.0	45.0	1.0	17.0	4.0	14.0	2.0		In ₂ O ₃ 5.0			
28	14.0	33.0	7.0	23.0	3.0	15.0				Bi ₂ O ₃ 5.0		
29	14.0	34.0	5.0	21.0	4.0	17.0				MgO 5.0		
30	16.0	38.0	10.0	7.0	3.0	14.0	4.0			CaO 3.0		
31	15.5	39.0	3.0	18.0	3.5	15.5	4.5				SrO	
32	16.4	36.0	1.0	18.5	3.5	17.5	4.6			BaO 3.5		
33	12.0	40.0	2.0	18.0	4.5	15.0	7.0			BaO 4.0	ZnO 12.9	
34	16.5	28.8	2.0	5.0	7.0	7.8	4.6			Nb ₂ O ₅ 11.4		
35	14.0	31.7	3.0	17.0	5.0	22.0	7.0			Li ₂ O 0.3		
36	12.0	32.0	13.0	17.0	4.0	15.0	6.5				Nd ₂ O ₃ 0.5	K ₂ O 0.5
37	12.0	29.0	16.0	17.0	4.0	15.0	6.5					
38	15.3	40.0	2.0	17.5	3.0	16.2	3.8			MgF ₂ 2.2		

第 2 表

α	N d	\sqrt{d}	失速所生 温度(℃)	α	N d	\sqrt{d}	失速所生 温度(℃)
1	1.8538	42.6	1160	24	1.9166	32.5	1160
2	1.8800	40.7		25	1.8846	34.7	1140
3	1.9193	36.0	1200	26	1.9098	32.2	1085
4	1.8932	36.5	1150	27	1.8720	36.4	1110
5	1.9013	37.6	1160	28	1.9178	32.8	1080
6	1.9178	30.1	1170	29	1.9254	29.3	1045
7	1.9083	35.4	1160	30	1.8581	37.2	1075
8	1.9123	34.1	1145	31	1.8576	32.5	1060
9	1.8733	30.3		32	1.8502	31.2	1050
10	1.8894	31.0	1150	33	1.8717	32.5	1055
11	1.9147	34.8	1180	34	1.8531	35.5	1150
12	1.9166	36.0	1190	35	1.8536	37.6	1145
13	1.9218	30.5	1140	36	1.8715	36.0	1075
14	1.9103	37.4	1190	37	1.8705	35.9	1070
15	1.8802	36.1	1180	38	1.8651	32.3	1080
16	1.8945	37.0	1195				
17	1.8633	32.1	1130				
18	1.8843	29.1	1120				
19	1.9581	30.8					
20	1.9402	33.2					
21	1.9542	28.5	1070				
22	1.9582	28.0	1080				
23	1.8556	28.3	1090				