Polinômios Ciclotômicos e o Teorema dos Primos de Dirichlet

Antonio Caminha

15 de fevereiro de 2003

Resumo

Neste artigo definimos e provamos as principais propriedades dos polinômios ciclotômicos, objetivando demonstrar um caso particular do famoso teorema de Dirichlet sobre primos em progressões aritméticas.

1 Preliminares.

No que segue, denotaremos por \mathbb{Z} o conjunto dos inteiros e por \mathbb{N} o conjunto dos inteiros positivos. Dado um primo p, \mathbb{Z}_p é o anel das classes de congruência módulo p, i.e.,

$$\mathbb{Z}_p = \{\overline{0}, \overline{1}, \dots, \overline{p-1}\}$$

munido com as operações $+ e \cdot dadas$ por

$$\overline{x} + \overline{y} = \overline{x + y}$$
 e $\overline{x} \cdot \overline{y} = \overline{xy}$,

onde $x, y \in \mathbb{Z}$ e as operações sob as barras nos segundos membros das igualdades acima são a adição e a multiplicação usuais de \mathbb{Z} . É imediato verificar que tais operações sobre \mathbb{Z}_p gozam de propriedades análogas às operações correspondentes sobre \mathbb{Z} . Ademais, dado $\overline{x} \neq \overline{0}$ em \mathbb{Z}_p , existe um único $\overline{y} \in \mathbb{Z}_p$ tal que $\overline{x} \cdot \overline{y} = \overline{1}$, de modo que \mathbb{Z}_p é um $corpo^1$. Doravante, sempre que não houver perigo de confusão, denotaremos $\overline{x} \in \mathbb{Z}_p$ simplesmente por x.

A letra \mathbb{K} representará sempre um dos corpos $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ ou \mathbb{Z}_p , p primo, ao passo que $\mathbb{K}[X]$ denotará o anel dos polinômios sobre (i.e., com coeficientes em) \mathbb{K} . Dado $f \in \mathbb{K}[X]$, digamos

$$f(X) = a_n X^n + a_{n-1} X^{n-1} + a_{n-2} X^{n-2} + \dots + a_2 X^2 + a_1 X + a_0,$$

¹Veja também [3] e o capítulo 1 de [2].

sua $\operatorname{derivada} f'$ é o polinômio sobre $\mathbb K$ dado por

$$f'(X) = na_n X^{n-1} + (n-1)a_{n-1} X^{n-2} + \dots + 2a_2 X + a_1.$$

Dados $f, g \in \mathbb{K}[X]$, é imediato verificar que

$$(f+g)'(X) = f'(X) + g'(X)$$
 e $(fg)'(X) = f'(X)g(X) + f(X)g'(X)$.

Por fim, um polinômio sobre \mathbb{K} é dito *mônico* quando seu coeficiente líder for $1 \in \mathbb{K}$.

2 Fatoração de polinômios.

Definição 1 (Polinômio irredutível). Seja $f \in \mathbb{K}[X]$ um polinômio não constante. Dizemos que f é irredutível sobre \mathbb{K} (ou simplesmente irredutível, quando \mathbb{K} estiver subentendido) se f não puder ser escrito como um produto de dois polinômios sobre \mathbb{K} , não constantes. Caso contrário, f é redutível sobre \mathbb{K} .

Note que um polinômio não constante em $\mathbb{K}[X]$, de grau 1, é automaticamente irredutível. Os polinômios em $\mathbb{K}[X]$ irredutíveis desempenham, em $\mathbb{K}[X]$, papel análogo ao desempenhado pelos números primos em \mathbb{Z} . O resultado a seguir, análogo do teorema fundamental da aritmética em \mathbb{Z} , dá mais clareza a tal observação. O leitor interessado pode encontrar uma demonstração do mesmo, para \mathbb{K} corpo qualquer, em [2].

Proposição 2 (Fatoração única). Todo polinômio sobre \mathbb{K} , mônico e não constante, pode ser expresso como produto de polinômios sobre \mathbb{K} , mônicos, não constantes e irredutíveis. Ademais, tal representação é única a menos de uma reordenação dos fatores.

Corolário 3. Seja $f \in \mathbb{K}[X]$ irredutível e $g, h \in \mathbb{K}[X] \setminus \{0\}$ tais que $f \mid gh$. Então $f \mid g$ ou $f \mid h$.

Prova. Podemos supor, sem perda de generalidade, f mônico. Se g ou h for constante, nada há a fazer. Senão, seja $l \in \mathbb{K}[X]$ tal que fl = gh (*). Pela proposição 2, podemos escrever cada um dos polinômios g, h, l como um produto de polinômios irredutíveis sobre \mathbb{K} . Segue então de (*) e da parte unicidade na proposição 2 que f é um dos fatores de g ou um dos fatores de g, i.e., que g que

Proposição 4 (Fatores múltiplos). Seja $f \in \mathbb{K}[X]$ um polinômio não constante. Se f tiver um fator múltiplo g então $g \mid f'$ em $\mathbb{K}[X]$. Reciprocamente, se $g \in \mathbb{K}[X]$ irredutível for tal que $g \mid f$ e $g \mid f'$, com $p \nmid \partial g$ caso $\mathbb{K} = \mathbb{Z}_p$, p primo, então $g^2 \mid f$.

Prova. Seja $h \in \mathbb{K}[X]$ tal que $f(X) = g(X)^2 h(X)$. Então

$$f'(X) = g(X)[2g'(X)h(X) + g(X)h'(X)].$$

donde $g \mid f'$. Reciprocamente, seja $g \in \mathbb{K}[X]$ irredutível tal que $g \mid f, g \mid f'$. Então existem $u, v \in \mathbb{K}[X]$ tais que f = gu, f' = gv. As hipóteses sobre g garantem que $g' \neq 0$. Por outro lado, a igualdade f = gu nos dá f' = g'u + gu', ou ainda g(v - u') = g'v. Logo, g divide g'u e segue do corolário anterior que $g \mid u$. Se $t \in \mathbb{K}[X]$ for tal que u = gt, temos então $f = g^2t$. \square

Em princípio, poderia ocorrer de um polinômio $f \in \mathbb{Z}[X]$ não poder ser escrito como produto de dois polinômios não constantes sobre \mathbb{Z} mas ser redutível sobre \mathbb{Q} . Mostremos que tal não pode acontecer.

Lema 5 (Gauss).

- (a) Seja $f \in \mathbb{Z}[X]$. Se f não puder ser escrito como produto de dois polinômios não constantes de coeficientes inteiros então f é irredutível sobre \mathbb{Q} .
- (b) Para cada $f \in \mathbb{Z}[X]$, seja c(f) o mdc dos coeficientes $n\tilde{a}o$ nulos de f. Dados $f, g \in \mathbb{Z}[X]$, $temos\ c(fg) = c(f)c(g)$.

PROVA.

(a) Sejam $g, h \in \mathbb{Q}[X]$ polinômios não constantes tais que f = gh. Então existe um menor $m \in \mathbb{N}$ tal que $mf(X) = g_1(X)h_1(X)$, com $g_1, h_1 \in \mathbb{Z}[X]$ múltiplos inteiros de g, h, respectivamente. Sejam

$$g_1(X) = a_r X^r + \dots + a_1 X + a_0, \quad h_1(X) = b_s X^s + \dots + b_1 X + b_0.$$

Se m > 1, tome um primo p que divide m. Provemos que $p \mid a_i$ para todo i ou $p \mid b_j$ para todo j. Supondo o contrário, existem índices i, j tais que $p \nmid a_i$ e $p \nmid b_j$, mínimos com tal propriedade. Como $p \mid m$, segue que p divide o coeficiente de X^{i+j} em $mf(X) = g_1(X)h_1(X)$, quer dizer, p divide

$$\cdots + a_{i+2}b_{j-2} + a_{i+1}b_{j-1} + a_ib_j + a_{i-1}b_{j+1} + a_{i-2}b_{j+2} + \cdots \quad (*)$$

Mas a minimalidade de i e j garante que p divide $a_0, a_1, \ldots, a_{i-1}$ e $b_0, b_1, \ldots, b_{j-1}$. Portanto, segue de (*) que $p \mid a_i b_j$, o que é um absurdo.

Suponhamos pois, sem perda de generalidade que $p \mid a_i$ para todo i. Então existe um polinômio $g_2 \in \mathbb{Z}[X]$ tal que $g_1(X) = pg_2(X)$. Se $m = pm_1$, com $m_1 \in \mathbb{N}$, obtemos $m_1 f(X) = g_2(X)h_1(X)$, o que contraria a minimalidade de m. Logo, m = 1 e f pode ser escrito como um produto de dois polinômios não constantes e de coeficientes inteiros.

Dado $f \in \mathbb{Z}[X]$ não constante, dizemos que f é primitivo quando c(f) = 1. Em $\mathbb{Q}[X]$, seja $f = f_1 \cdots f_k$, onde f_1, \ldots, f_k são irredutíveis em $\mathbb{Q}[X]$. Pelo item (a) do lema de Gauss podemos supor que $f_1, \ldots, f_k \in \mathbb{Z}[X]$. Pelo item (b), temos

$$1 = c(f) = c(f_1) \cdots c(f_k),$$

de modo que $c(f_i) = 1$ para todo i, ou seja, cada f_i é primitivo. Obtivemos então, essencialmente a seguinte

Proposição 6. Todo polinômio de coeficientes inteiros, primitivo e não constante, pode ser expresso, de modo único a menos de reordenação dos fatores, como um produto de polinômios de coeficientes inteiros, primitivos e não constantes, irredutíveis sobre \mathbb{Q} .

Dado um primo p, definimos a aplicação de projeção

$$\pi_p: \mathbb{Z}[X] \longrightarrow \mathbb{Z}_p[X]$$

pondo, para $f(X) = a_n X^n + \dots + a_1 X + a_0 \in \mathbb{Z}[X],$

$$\overline{f}(X) = \pi_p(f(X)) = \overline{a}_n X^n + \dots + \overline{a}_1 X + \overline{a}_0.$$

Observe que se $p \nmid a_n$ então $\partial \overline{f} = \partial f$.

Proposição 7. Seja $f \in \mathbb{Z}[X]$ e p um número primo então $\overline{f}(X^p) = \overline{f}(X)^p$.

PROVA. Seja $f(X) = a_n X^n + \cdots + a_1 X + a_0$. Queremos mostrar que

$$\overline{a_n}X^{np} + \overline{a_{n-1}}X^{(n-1)p} \cdots + \overline{a_1}X^p + \overline{a_0} = (\overline{a_n}X^n + \overline{a_{n-1}}X^{n-1} \cdots + \overline{a_1}X + \overline{a_0})^p. \quad (*)$$

Façamos indução sobre $n \ge 1$. Para n = 1 temos de mostrar que

$$\overline{a_1}X^p + \overline{a_0} = (\overline{a_1}X + \overline{a_0})^p$$
. (**)

Se $p \mid a_1$, (**) é o pequeno teorema de Fermat. Senão, (**) segue imediatamente a partir do desenvolvimento do binômio e do fato de que $p \mid \binom{p}{k}$ para todo inteiro $1 \le k < p$.

Suponha agora a validez de (*) para n < m e todo polinômio de coeficientes inteiros e grau m. Seja $f \in \mathbb{Z}[X]$ de grau m, digamos $f(X) = a_m X^m + g(X)$, com $\partial g < m$. Por hipótese de indução, temos $\overline{g}(X^p) = \overline{g}(X)^p$. O mesmo argumento acima, juntamente com o pequeno teorema de Fermat, nos dão

$$\overline{f}(X)^p = (\overline{a_m}X^m + \overline{g}(X))^p = (\overline{a_m})^p X^{mp} + \overline{g}(X)^p$$
$$= \overline{a_m}X^{mp} + \overline{g}(X^p) = \overline{f}(X^p).$$

Corolário 8 (Critério de Eisenstein). Seja $f(X) = a_n X^n + \cdots + a_1 X + a_0$ um polinômio não constante de coeficientes inteiros e p um primo tal que:

- (a) $p \mid a_0, a_1, \dots, a_{n-1}$.
- (b) $p^2 \nmid a_0 \ e \ p \nmid a_n$.

Então f é irredutível sobre \mathbb{Q} .

PROVA. Suponha f = gh, com $g \in h$ polinômios não constantes de coeficientes inteiros. Como $p \nmid a_n, p$ não divide os coeficientes líderes b de $g \in c$ de h. Projetando $f \in \mathbb{Z}_p[X]$, obtemos

$$\overline{a_n}X^n = \overline{g}(X)\overline{h}(X).$$

A proposição 2 garante que $\overline{g}(X) = \overline{b}X^k$ e $\overline{h}(X) = \overline{c}X^l$, onde $k = \partial g \ge 1$ e $l = \partial h \ge 1$. Então existem $u, v \in \mathbb{Z}[X]$ tais que

$$g(X) = bX^k + pu(X)$$
 e $h(X) = cX^l + pv(X)$.

Por fim,

$$f(X) = g(X)h(X) = bcX^{n} + p(cX^{l}u(X) + bX^{k}v(X)) + p^{2}u(X)v(X),$$

de modo que $a_0=f(0)=g(0)h(0)=p^2u(0)v(0),$ um múltiplo de $p^2,$ o que é um absurdo. \square

Lema 9. Seja f um polinômio não constante de coeficientes racionais, a um racional dado e g(X) = f(X + a). Então f é irredutível sobre \mathbb{Q} se e só se g o for.

Corolário 10. Seja p um número primo e $f(X) = X^{p-1} + X^{p-2} + \cdots + X + 1$. Então f é irredutível sobre \mathbb{Q} .

Prova. Basta mostrarmos que g(X) = f(X+1) é irredutível sobre \mathbb{Q} . Mas

$$g(X) = (X+1)^{p-1} + (X+1)^{p-2} + \dots + (X+1) + 1$$

e é fácil vermos que, para $1 \leq k \leq p-2$, o coeficiente a_k de X^k em g é

$$a_k = \binom{p-1}{k} + \binom{p-2}{k} + \binom{p-3}{k} + \dots + \binom{k}{k} = \binom{p}{k+1},$$

que sabemos ser múltiplo de p. Como

$$g(X) = X^{p-1} + a_{p-2}X^{p-2} + \dots + a_1X + p,$$

segue do critério de Eisenstein aplicado ao primo p que g é irredutível sobre \mathbb{Q} .

No que segue, dados $f \in \mathbb{C}[X]$ e $\alpha \in \mathbb{C}$, dizemos que f anula α se $f(\alpha) = 0$. Um número complexo α é dito algébrico sobre \mathbb{Q} se existir um polinômio $f \in \mathbb{Q}[X] \setminus \{0\}$ que anula α . Nesse caso, o conjunto

$$\mathcal{A}_{\alpha} = \{ f \in \mathbb{Q}[X] \setminus \{0\}; f(\alpha) = 0 \}$$

é, por definição, não-vazio; portanto, é também não-vazio o conjunto

$$\partial_{\alpha} = \{\partial f; f \in \mathcal{A}_{\alpha}\},\$$

de modo que existe $p_{\alpha} \in \mathcal{A}_{\alpha}$ mônico e de grau mínimo.

Definição 11 (Polinômio minimal). Dado $\alpha \in \mathbb{C}$ algébrico sobre \mathbb{Q} , o polinômio $p_{\alpha} \in \mathbb{Q}[X] \setminus \{0\}$, mônico, de grau mínimo e que anula α é denominado o polinômio minimal de α .

Proposição 12 (Propriedades do polinômio minimal). Seja α algébrico sobre \mathbb{Q} e p_{α} seu polinômio minimal. Então:

- (a) p_{α} é irredutível sobre \mathbb{Q} .
- (b) p_{α} divide, em $\mathbb{Q}[X]$, todo polinômio de coeficientes racionais que anula α .

PROVA.

- (a) Se $p_{\alpha} = fg$, com f e g não constantes e de coeficientes racionais, então f e g teriam graus menores que o grau de p_{α} e ao menos um deles anularia α , contradizendo a minimalidade do grau de p_{α} . Logo, p_{α} é irredutível.
- (b) Seja $f \in \mathbb{Q}[X] \setminus \{0\}$ um polinômio que anula α . Pelo algoritmo da divisão existem polinômios $q, r \in \mathbb{Q}[X]$ tais que

$$f(X) = p_{\alpha}(X)q(X) + r(X),$$

com r(X) = 0 ou $0 \le \partial r < \partial p_{\alpha}$. Se $r \ne 0$ então

$$r(\alpha) = f(\alpha) - p_{\alpha}(\alpha)q(\alpha) = 0,$$

com $\partial r < \partial p_{\alpha}$, o que é um absurdo. Logo, r = 0 e daí $p_{\alpha} \mid f$.

Corolário 13. Se α é algébrico sobre \mathbb{Q} e $f \in \mathbb{Q}[X]$ é um polinômio mônico irredutível que anula α então $f = p_{\alpha}$.

Prova. Pela proposição anterior, p_{α} divide f em $\mathbb{Q}[X]$. Mas como f é irredutível, existe um racional não nulo r tal que $f = rp_{\alpha}$. Por fim, desde que f e p_{α} são mônicos temos r = 1.

Corolário 14. Se $f \in \mathbb{Q}[X]$ é irredutível então f não possui raízes múltiplas.

PROVA. Podemos supor, sem perda de generalidade, que f é mônico. Se algum $z \in \mathbb{C}$ fosse raiz múltipla de f, segue da proposição 4 que z também seria raiz da derivada f' de f. Mas f mônico e irredutível assegura, pelo corolário anterior, que $f = p_z$. Então, o item (b) da proposição 12 garante que $f \mid f'$ em $\mathbb{Q}[X]$, o que é um absurdo.

3 Polinômios ciclotômicos e o teorema de Dirichlet.

Dizemos que um número complexo z é uma raiz n-ésima da unidade quando $z^n=1$, ou seja, quando $z\in\mathbb{C}$ for uma das raízes do polinômio $X^n-1\in\mathbb{C}[X]$. Segue então das fórmulas de de Moivre que as raízes n-ésimas da unidade são os números complexos da forma

$$\cos\frac{2k\pi}{n}; \quad 0 \le k \le n - 1.$$

Uma raiz n-ésima da unidade ω é dita primitiva quando os números ω^k , $0 \le k \le n-1$, forem todos distintos. Em particular, o número $\cos \frac{2\pi}{n}$ é uma raiz primitiva n-ésima da unidade e não é difícil verificar que $\cos \frac{2k\pi}{n}$ é uma raiz primitiva n-ésima da unidade se e só se mdc (k,n)=1.

Definição 15 (Polinômios ciclotômico). Para cada $n \in \mathbb{N}$, o polinômio minimal Φ_n da raiz primitiva n-ésima da unidade $\omega_n = \cos 2\pi/n$ é denominado o n-ésimo polinômio ciclotômico.

Teorema 16 (Polinômios ciclotômicos). Os itens a seguir se verificam:

- (a) $\Phi_1(X) = X 1$.
- (b) Se p é primo então $\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1$.
- (c) Se $r, s \in \mathbb{N}$ são distintos então Φ_r e Φ_s não têm fatores comuns não constantes.
- (d) Se $n \in \mathbb{N}$ e $0 < d \mid n$ então $\Phi_d \mid (X^n 1)$ em $\mathbb{Q}[X]$. Em particular, $\Phi_n(X) \in \mathbb{Z}[X]$ para todo $n \in \mathbb{N}$.

(e)
$$X^n - 1 = \prod_{d|n} \Phi_d(X)$$
.

(f)
$$\Phi_n(X) = \prod_{\substack{1 \le k < n \\ \operatorname{mdc}(k,n) = 1}} (X - \omega^k).$$

(g) $\partial \Phi_n = \varphi(n)$, onde $\varphi : \mathbb{N} \to \mathbb{N}$ é a função de Euler².

²Para a definição e algumas propriedades importantes da função de Euler, veja [3] ou [5].

PROVA.

(a) Óbvio.

(b) Já mostramos que o polinômio $X^{p-1} + X^{p-2} + \cdots + X + 1$ é irredutível. Como

$$(X-1)(X^{p-1}+X^{p-2}+\cdots+X+1)=X^p-1$$

e ω_p é raiz de X^p-1 mas não de X-1, segue que ω_p é raiz de $X^{p-1}+X^{p-2}+\cdots+X+1$. Portanto, segue do corolário 13 que $\Phi_p(X)=X^{p-1}+X^{p-2}+\cdots+X+1$.

- (c) Sejam r e s naturais distintos e suponha que Φ_r e Φ_s tivessem um fator comum não constante. Então eles seriam idênticos, como polinômios minimais de uma qualquer de suas raízes comuns.
- (d) Sejam $n \in \mathbb{N}$ e $0 < d \mid n$. Como toda raiz d-ésima da unidade é também raiz n-ésima da unidade, segue que toda raiz de Φ_d é raiz de $X^n 1$. Portanto, Φ_d divide $X^n 1$ em $\mathbb{Q}[X]$, por ser Φ_d o polinômio minimal de uma qualquer de suas raízes. O resto segue do lema de Gauss.
- (e), (f) e (g). Seja $\omega = \operatorname{cis} \frac{2\pi}{n}$. Mostremos primeiro que

$$\Phi_n(X) = \prod_{\substack{1 \le k < n \\ \text{mdc}(k,n) = 1}} (X - \omega^k).$$

Se ζ é uma raiz n—ésima da unidade então $p_{\zeta}(X)$ divide X^n-1 em $\mathbb{Q}[X]$. Portanto, segue da proposição 6 que $p_{\zeta} \in \mathbb{Z}[X]$. Tome $1 \leq k < n$ primo com n, p um primo que divide k e faça $\zeta = \omega^p$. Por contradição, suponha que $p_{\zeta} \neq p_{\omega} = \Phi_n$. Como ambos estes polinômios são irredutíveis e dividem X^n-1 , existe um polinômio $u \in \mathbb{Z}[X]$ tal que

$$p_{\zeta}(X)p_{\omega}(X)u(X) = X^n - 1.$$
 (*)

Se $g(X) = p_{\zeta}(X^p)$, temos

$$g(w) = p_{\zeta}(\omega^p) = p_{\zeta}(\zeta) = 0.$$

Daí, p_{ω} divide g em $\mathbb{Z}[X]$. Seja $v \in \mathbb{Z}[X]$ tal que $p_{\omega}v = g$. Em $\mathbb{Z}_p[X]$, temos

$$\overline{p}_{\omega}(X)\overline{v}(X) = \overline{g}(X) = \overline{p}_{\zeta}(X^p) = \left(\overline{p}_{\zeta}(X)\right)^p.$$

Então existe $\overline{h} \in \mathbb{Z}_p[X]$ mônico, irredutível e tal que \overline{h} divide p_{ω} e \overline{p}_{ζ} em $\mathbb{Z}_p[X]$. Assim, (*) garante que \overline{h}^2 divide $X^n - \overline{1}$ em $\mathbb{Z}_p[X]$. Pela proposição 4, segue que \overline{h} divide $(X^n - \overline{1})' = \overline{n}X^{n-1}$ em $\mathbb{Z}_p[X]$. Como $p \nmid n$, segue então da fatoração única em $\mathbb{Z}_p[X]$ que $\overline{h}(X) = X^l$ para algum $1 \leq l \leq n-1$, o que contraria o fato de \overline{h} dividir $X^n - \overline{1}$. Concluímos então que $p_{\zeta} = p_{\omega}$, ou ainda que $p_{\omega^p} = p_{\omega}$.

Iterando o raciocínio acima, concluímos que $p_{\omega}=p_{\omega^p}=p_{\omega^p^2}=\cdots=p_{\omega^k}$. Em particular, ω^k é raiz de $p_{\omega}=\Phi_n$, de modo que Φ_n é divisível pelo polinômio

$$\prod_{\substack{1 \le k < n \\ \operatorname{mdc}(k,n) = 1}} (X - \omega^k).$$

Mas como o grau de tal polinômio é $\varphi(n)$, obtemos que $\partial \Phi_n \geq \varphi(n)$. Por outro lado, segue dos itens (c) e (d) que

$$\Phi(X) = \prod_{0 < d \mid n} \Phi_d(X)$$

divide $X^n - 1$. Mas então

$$n \ge \partial \Phi = \sum_{0 < d|n} \partial \Phi_d \ge \sum_{0 < d|n} \varphi(d) = n,$$

onde a última igualdade se deve a uma conhecida propriedade da função φ de Euler³. Então $\Phi(X) = X^n - 1$ e

$$\Phi_n(X) = \prod_{\substack{1 \le k < n \\ \text{mdc}(k,n) = 1}} (X - \omega^k).$$

A proposição a seguir mostra como estabelecer alguns itens do teorema acima sem o auxílio de polinômios sobre \mathbb{Z}_p .

Proposição 17. Para cada $n \in \mathbb{N}$, seja

$$\Phi_n(X) = \prod_{\substack{1 \le k \le n \\ \text{mdc}(k,n) = 1}} (X - \omega_n^k),$$

onde $\omega_n = \operatorname{cis} \frac{2\pi}{n}$. Então:

(a)
$$X^n - 1 = \prod_{0 < d|n} \Phi_d(X)$$
.

- (b) Φ_n é mônico de coeficientes inteiros e grau $\varphi(n)$.
- (c) $\Phi_n(0) = 1 \ para \ n > 1$.

 $^{^{3}}$ Ver [3].

PROVA.

(a) Basta ver que

$$\begin{split} \prod_{0 < d \mid n} \Phi_d(X) &= \prod_{0 < d \mid n} \prod_{\substack{1 \le k \le d \\ \text{mdc}(k,d) = 1}} (X - \omega_d^k) = \prod_{0 < d \mid n} \prod_{\substack{1 \le k \le n/d \\ \text{mdc}(k,n/d) = 1}} (X - \omega_n^{dk}) \\ &= \prod_{t = 0}^{n-1} (X - \omega_n^t) = X^n - 1. \end{split}$$

(b) Façamos indução sobre $n \ge 1$ para provar que Φ_n é mônico de coeficientes inteiros. $\Phi_1(X) = X - 1$, mônico e de coeficientes inteiros. Suponha que já provamos que a afirmativa é verdadeira para todos os naturais menores que um certo n. Então

$$\Phi(X) = \prod_{\substack{0 < d \mid n \\ d < n}} \Phi_d(X)$$

é mônico de coeficientes inteiros. Como $X^n - 1 = \Phi_n(X)\Phi(X)$, segue do algoritmo da divisão para polinômios que Φ_n é mônico de coeficientes inteiros. Por fim, note que o grau de Φ_n é igual ao número de inteiros k tais que $1 \le k \le n$ e mdc (k, n) = 1. Este número é exatamente $\varphi(n)$.

(c) Façamos nova indução sobre n>1. Se n=2 então $\Phi_1(X)\Phi_2(X)=X^2-1$, donde $\Phi_2(X)=X+1$ e daí $\Phi_2(0)=1$. Suponha que já provamos que $\Phi_k(0)=1$ para todo inteiro k tal que $2\leq k< n$. Como

$$X^{n} - 1 = (X - 1)\Phi_{n}(X) \prod_{\substack{d \mid n \\ 1 < d < n}} \Phi_{d}(X)$$

temos, fazendo X=0, que

$$-1 = (-1)\Phi_n(0) \prod_{\substack{d \mid n \\ 1 < d < n}} \Phi_d(0) = -\Phi_n(0),$$

e segue que $\Phi_n(0) = 1$.

Observação. Não podemos concluir diretamente que o polinômio Φ_n da proposição acima coincide com o n-ésimo polinômio ciclotômico porque tal proposição não garante que Φ_n é irredutível sobre \mathbb{Q} .

Um famoso teorema de Dirichlet afirma que se em uma progressão aritmética o primeiro termo e a razão forem inteiros positivos relativamente primos então a progressão contém uma infinidade de números primos dentre seus termos. Como aplicação das idéias acima vamos demonstrar um caso especial deste teorema, quando o termo inicial da progressão for igual a 1.

Teorema 18 (Dirichlet - caso particular). Se n > 1 é um inteiro então a progressão aritmética $1, 1 + n, 1 + 2n, \ldots$ contém infinitos números primos.

Prova. Sejam p_1, \ldots, p_k primos quaisquer e Φ_n o n—ésimo polinômio ciclotômico. Como Φ_n é mônico, podemos escolher um inteiro y tal que $\Phi_n(ynp_1 \ldots p_k) > 1$. Agora, fazendo $a = ynp_1 \ldots p_k$ temos, módulo $ynp_1 \ldots p_k$, que

$$\Phi_n(a) = \Phi_n(ynp_1 \dots p_k) \equiv \Phi_n(0) = 1 \, (mod. \, ynp_1 \dots p_k).$$

Seja então $\Phi_n(a) = ynp_1 \dots p_k + 1$. Se p for um fator primo de $\Phi_n(a)$ temos que $p \neq p_1, \dots, p_k$. Se provarmos que $p \equiv 1 \pmod{n}$ teremos terminado. Para tanto, note que mdc (p, a) = 1, de modo que faz sentido denotarmos $t = ord_p(a)$. Como $p \mid \Phi_n(a)$ e $\Phi_n(a)$ divide $a^n - 1$, vem que $a^n \equiv 1 \pmod{p}$, e daí $t \mid n$. Se mostrarmos que t = n teremos das propriedades da ordem e de $a^{p-1} \equiv 1 \pmod{p}$ que $n \mid (p-1)$, e daí $p \equiv 1 \pmod{n}$.

Seja c = a + p. Temos $c^t - 1 \equiv 0 \pmod{p}$. Além disso,

$$c^t - 1 = \prod_{0 < d|t} \Phi_d(c).$$

Daí, se t < n, temos

$$c^{n} - 1 = \prod_{0 < d \mid n} \Phi_{d}(c) = \Phi_{n}(c) \prod_{\substack{0 < d \mid n \\ d < n}} \Phi_{d}(c) = \Phi_{n}(c) \prod_{0 < d \mid t} \Phi_{d}(c) H(c)$$
$$= \Phi_{n}(c)(c^{t} - 1)H(c) \equiv 0 \, (mod. \, p^{2}),$$

uma vez que $c \equiv a(mod. p) \Rightarrow \Phi_n(c) \equiv \Phi_n(a) \equiv 0(mod. p)$ (aqui, $H \in \mathbb{Z}[X]$ é algum polinômio apropriado). Por outro lado, módulo p^2 temos

$$0 \equiv c^{n} - 1 = (a+p)^{n} - 1 = a^{n} - 1 + \sum_{j=1}^{n-1} a^{j} p^{n-j} \binom{n}{j} \equiv na^{n-1} p,$$

o que é um absurdo por serem a e n relativamente primos com p. Logo, t = n.

Para aprender mais sobre corpos e polinômios ciclotômicos, veja [1] ou [4].

12 Antonio Caminha

Referências

[1] Endler, Otto. Teoria dos Corpos. Monografias de Matemática nº 44. Rio de Janeiro: IMPA, 1987.

- [2] Garcia, Arnaldo. & Lequain, Yves. Elementos de Álgebra. Rio de Janeiro: IMPA, 2002.
- [3] Moreira, C. Gustavo. Divisibilidade, congruências e aritmética módulo n.. Eureka 2, 41-53.
- [4] Lang, Serge. Algebra. Reading: Addison Wesley, 1997.
- [5] Santos, A. Plínio dos. Introdução à Teoria dos Números. Rio de Janeiro: IMPA, 1998.