Max Wisniewski, Alexander Steen

Tutor: Adrian Steffens

Aufgabe 24: Stetige Abbildungen auf Punktmengen

(i) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig. Zeigen Sie, dass für jede Menge $A \subset \mathbb{R}^n$ gilt

$$f(\overline{A}) \subset \overline{f(A)}$$
.

Beweis:

Wir benutzten für den Beweis das Folgenkonvergenzkriterium für Abgeschlossene Menge.

D.h. wenn B eine abgeschlossene Menge ist muss für jede Folge $(x)_{k\in\mathbb{N}}$ aus B, $\left(\lim_{n\to\infty}x_k\right)\in B$ gelten.

Nun gilt, aber, für jeden Punkt $x_0 \in \overline{A}$, dass es eine Folge $(x)_{n \in \mathbb{N}}$ gibt mit $\lim_{n \to n, \infty} x_k = x_0$.

$$f(x_0) = f(\lim_{n \to \infty} x_n)$$
$$= \lim_{n \to \infty} f(x_n)$$

Wir haben eine Folge von Bildern der Funktion. Wir wissen, dass in einer abgeschlossenen Menge jede konvergente Folge gegen einen Punkt innerhalb der Menge konvergiert. Da $f(x_0)$ eine konvergente Folge $f(x_k)$ besitzt, da die x_k konvergieren und f stetig ist, muss das Bild des Abschluss des Quellbereiches auch im Abschluss des Bild liegen.

(ii) Ist das stetige Bild f(M) einer beliebigen offenen bzw. abgeschlossenen Menge $M \subset \mathbb{R}^n$ wieder offen bzw. abgeschlossen? Geben Sie ein Beispiel an.

Lösung:

(1) Sei $M \subset \mathbb{R}^n$ offen, und sei $f \equiv c \in \mathbb{R}^m$.

Dann ist f stetig und $f(M) = \{c\}$. Die Menge $\{c\}$ ist aber nicht offen, da für alle $\varepsilon > 0$ die Kugel $B_{\varepsilon}(c)$ nicht Teilmenge von $\{c\}$ ist.

(2) Sei $M \subset \mathbb{R}$ mit $M = (-\infty, 0]$ und $f : \mathbb{R} \to \mathbb{R}$, mit $x \mapsto e^x$ (also hier: n = 1, m = 1).

Dann ist M abgeschlossen, da für alle konvergenten Folgen (x_k) , mit $x_k \in M$ gilt: $\lim_{k\to\infty} x_k = \alpha < \infty$ und $\alpha \ge 0$ und damit $\alpha \in M$.

Es gilt weiterhin: $f(M) = f((-\infty, 0]) = (0, 1]$ wobei (0, 1] nicht abgeschlossen ist in \mathbb{R} .

 \Rightarrow stetiger Bilder von beliebigen offenen bzw. abgeschlossen
en Mengen müssen nicht wieder offen bzw. abgeschlossen sein.

(iii) Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig. Erfülle $M \subset \mathbb{R}^n$ die Heine-Borell-Eigenschaft. Dann erfüllt f(M) diese Eigenschaft auch.

Lösung:

Sei $\bigcup_{i \in I} U_i$ eine offene Überdeckungvon f(M), mit I Indexmenge.

Aus der Vorlesung wissen wir, dass für eine stetige Funktion $f: \mathbb{R}^n \to \mathbb{R}^m$ gilt: $f^{-1}(V)$ ist offen in \mathbb{R}^n , für alle offenen Mengen $V \subseteq \mathbb{R}^m$.

Also folgt aus der Stetigkeit von $f: V_i := f^{-1}(U_i)$ ist offen, $i \in I$.

Da $M \subseteq \bigcup_{i \in I} V_i$ und M die Heine-Borell-Eigenschaft erfüllt, existieren $i_1, i_2, ..., i_k \in$ $I, k \in \mathbb{N}$ mit $M \subseteq \bigcup_{j=1}^k V_{i_j}$. Daraus folgt $f(M) \subseteq f(\bigcup_{j=1}^k V_{i_j}) = \bigcup_{j=1}^k f(V_{i_j})$. Durch Einsetzen erhalten wir dann $f(M) \subseteq \bigcup_{i=1}^k f(f^{-1}(U_{i_i})) = \bigcup_{i=1}^k U_{i_i}$.

Also existiert eine endliche offene Überdeckung von f(M) $\Rightarrow f(M)$ erfüllt die Heine-Borell-Eigenschaft.

Aufgabe 25: Wachstum spezieller Funktionen

Sei $f: \mathbb{R}^n \to \mathbb{R}$ stetig mit folgenden Eigenschaften:

$$\begin{split} f(x) > 0 & \text{ für alle } x \neq 0 \\ f(cx) = cf(x) & \text{ für alle } x \in \mathbb{R}^n \text{ und alle } c > 0. \end{split}$$

Zeigen Sie, dass es Konstanten a, b > 0 gibt, so dass

$$a|x| \le f(x) \le b|x|$$
 für alle $x \in \mathbb{R}^n$.

Beweis:

Für x = 0 gilt f(x) = 0, denn

 $f(0) = f(c \cdot 0) = c \cdot f(0)$, für alle c > 0.

Und damit $f(0) = c \cdot f(0) \Leftrightarrow (1-c)f(0) = 0 \Rightarrow f(0) = 0, c > 0$.

Da auch |x| = 0 ist, gilt die Ungleichung in diesem Fall für alle a, b > 0.

Für $x \neq 0$ gilt:

$$a|x| \leq f(x) \leq b|x| \stackrel{|x| \neq 0}{\Leftrightarrow} a \leq \frac{f(x)}{|x|} \leq b$$

Durch die Eigenschaften von f können wir nun Umformen:

 $\frac{f(x)}{|x|} = \frac{1}{|x|} f(x) \stackrel{\stackrel{1}{|x|}>0}{=} f(\frac{x}{|x|})$, wobei der Ausdruck $\frac{x}{|x|}$ einen normierten Vektor aus dem \mathbb{R}^n beschreibt, es gilt also $|\frac{x}{|x|}| = 1$.

Sei nun $M := \{x \in \mathbb{R}^n | |x| = 1\} \subseteq \mathbb{R}^n$ die Menge der normierten Vektoren.

Dann gilt: M ist kompakt.

Beweis: $M \subset \mathbb{R}^n \Rightarrow (M \text{ kompakt} \Leftrightarrow M \text{ beschränkt und abgeschlossen}).$

TBA: M beschränkt und abgeschlossen.

Da M kompakt und f stetig, gilt: f(M) nimmt in M sein Maximum und Minimum an, es existieren also $p, q \in M$ mit $f(p) = \sup f(M)$ und $f(q) = \inf f(M)$.

Setze nun a := f(q) > 0, b := f(q) > 0, also folgt

 $a = f(q) = \inf f(M) \le \frac{f(x)}{|x|} \le \sup f(M) = f(q) = b$ und daraus die Behauptung.

Aufgabe 26: Wegzusammenhang

Eine Menge $A \subset \mathbb{R}^n$ heißt wegzusammenhängend, wenn es für je zwei Punkte $x, y \in A$ eine stetige Funktion $\gamma: [0,1] \to A$ gibt, mit $\gamma(0) = x$ und $\gamma(1) = y$. Man nennt γ einen stetigen Weg von x nach y.

(i) Seien $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ stetig und A wegzusammenhängend. Zeigen Sie, dass dann auch f(A) wegzusammenhängend ist.

Beweis:

Seien $x, y \in f(A)$. Nun wissen wir, dass es 2 Punkte $a, b \in A$ geben muss, mit f(a) = x bzw. f(b) = y, da x, y sonst nicht im Bild liegen würden.

Nach Vorraussetzung ist A wegzusammenhängend, d.h. es gibt eine stetige Funktion $\gamma: [0,1] \to A$, mit $\gamma(0) = a$ und $\gamma(1) = b$.

Da die Komposition von 2 stetigen Funktionen wiederum stetig ist, wählen wir als Wegfunktion in f(A) die Funktion $(f \circ \gamma)$.

Diese Funktion ist stetig und es gilt:

$$(f \circ \gamma)(0) = f(\gamma(0)) = f(a) = x \text{ und}$$

 $(f \circ \gamma)(1) = f(\gamma(1)) = f(b) = y.$

Diese Funktion können wir also für 2 beliebige Punkte in f(A) angeben. Damit existiert ein stetiger Weg von x nach y in f(A) und damit ist auch f(A) wegzusammenhängend.

(ii) Zeige Sie, dass genau dann $A \subset \mathbb{R}$ wegzusammenhängend ist, wenn A ein Intervall ist, d.h. wenn für alle $x, y \in A, x \leq y, [x, y] \subset A$.

Beweis:

Nehmen wir an, dass A kein Intervall ist, aber wegzusammenhängend.

Da A kein Interval ist gilt

 $\exists x,y \in A \ x < y, [x,y] \not\subset A$, insbesondere muss also ein Wert $z \in [x,y]$ existieren, mit $z \not\in A$.

Da A aber wegzusammenhängend sein soll, existiert eine stetige Funktion γ , mit $\gamma(0) = x$ und $\gamma(1) = y$.

Nach dem Zwischenwertsatz, muss die Funktion γ jeden Wert zwischen x und y einmal annehmen, da γ stetig ist.

Sei $\xi \in [0,1]$ der Wert mit $\gamma(\xi) = z$. Wir untersuchen γ nun im Punkt ξ .

Da [0,1] abgeschlossen ist, existiert eine Folge $(x)_{n\in\mathbb{N}}$ in [0,1] mit $\lim_{n\to\infty}x_n=\xi$.

Da f stetig ist, muss gelten $f(\xi)f(\lim_{n\to\infty}x_n)=\lim_{n\to\infty}f(x_n)=z$. Da wir nun aber eine konvergente Folge angeben konnten, muss ξ im Bild liegen. Dies ist aber nach Vorraussetzung unmöglich.

(iii) Können Sie den bekannten Zwischenwertsatz aus der Analysis I auch auf Funktionen $f:A\subset\mathbb{R}^n\to\mathbb{R}$ verallgemeinern.

Beweis:

Ich hab keine Ahnung, was das sein soll.

Aufgabe 27 Stetigkeit der Umkehrfunktion

(i) Zeigen Sie, dass die Funktion

$$\begin{array}{cccc} f \ : \ (-1,1) & \longrightarrow & \mathbb{R} \\ & x & \mapsto & \frac{x}{1-x^2} \end{array}$$

einen Homöomorphismus von (0,1) nach \mathbb{R}^+ definiert, d.h. f ist invertierbar zwischen den angegebenen Mengen und sowohl f als auch f^{-1} ist stetig.

Beweis.:

Sei $g:(0,1)\to\mathbb{R}^+$, mit $x\mapsto \frac{x}{1-x^2}$.

Z.z.: (1) g bijektiv, (2) g stetig, (3) g^{-1} stetig.

(1) g bijektiv

(1a) g injektiv, also $g(a) = g(b) \Rightarrow a = b$, für alle $a, b \in (0, 1)$.

Seien $a, b \in (0, 1)$. Dann gilt:

$$g(a) = g(b)$$

$$\Leftrightarrow \frac{a}{1 - a^2} = \frac{b}{1 - b^2}$$

$$\Leftrightarrow a - ab^2 = b - ba^2$$

$$\Leftrightarrow a = b$$

(1b) g surjektiv, also $\forall c \in \mathbb{R}^+ \exists x \in (0,1) : g(x) = c$.

Sei $c \in \mathbb{R}^+$. Wähle $x := \frac{\sqrt{1+4c^2}-1}{2c}$.

Dann gilt x > 0, da c > 0 ist steht im Zähler immer eine positive Zahl ($\sqrt{1+x} \ge 1$ für x > 0), und der Nenner 2c > 0.

Es gilt darüber hinaus, dass x < 1, da

$$\begin{array}{cccc} & \frac{\sqrt{1+4c^2}-1}{2c} & < & 1\\ \Leftrightarrow & \sqrt{1+4c^2}-1 & < & 2c\\ \Leftrightarrow & \sqrt{1+4c^2} & < & 2c+1\\ > & \sqrt{1+4c^2} & < & 2c+1\\ > & (siehe\ eben) & \Rightarrow & 1+4c^2 & < & 4c^2+4c+1\\ \Leftrightarrow & 0 & < & 2c \end{array}$$

Und dies gilt, da c > 0 ist. $\Rightarrow g$ bijektiv.

(2) q stetig

Da die Funktion im Nenner $1-x^2$ stetig ist und auf dem Intervall (0,1) keine Nullstellen hat, sowie x stetig ist, ist nach Sätzen aus Ana I der Quotient aus den beiden wieder eine stetige Funktion.

(3) g^{-1} stetig

blablabla

(ii) Sei die Funktion $f \ : \ [0,1) \cup [2,3] \to [0,2]$ gegeben durch

$$f(x) = \begin{cases} x & , x \in [0, 1) \\ x - 1 & , x \in [2, 3] \end{cases}.$$

Zeigen Sie, dass f stetig und invertierbar ist, aber die Umkehrfunktion f^{-1} : $[0,2] \to [0,1) \cup [2,3]$ nicht stetig ist.

Beweis:

 tbd