EAIiIB	Piotr Morawiecki, Tymoteusz Paszun		Rok II	Grupa 3a	Zespół 6
Temat: Wahadła fizyczne			Numer ćwiczenia: 1		
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:
26.10.2017r.	8.11.2017r.				

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie momentu bezwładności brył sztywnych przez pomiar okresu drgań wahadła oraz na podstawie wymiarów geometrycznych. Badane bryły to pręt oraz pierścień.

2 Wstęp teoretyczny

2.1 Wahadło fizyczne

Wahadłem fizycznym nazywamy bryłę sztywną mogącą obracać się wokół osi obrotu O nie przechodzącej przez środek masy S. Wahadło odchylone od pionu o kąt θ , a następnie puszczone swobodnie będzie wykonywać drgania zwane ruchem wahadłowym. W ruchu tym mamy do czynienia z obrotem bryły sztywnej wokół osi O, opisuje go zatem druga zasada dynamiki dla ruchu obrotowego. Zasada dynamiki dla ruchu obrotowego wyrażona jest wzorem

$$I\varepsilon = M$$

gdzie I - moment bezwładności, ϵ - przyspieszenie kątowe, M - moment siły. Wartość przyspieszenia kątowego opisuje wzór

$$\varepsilon = \frac{d^2\theta}{dt^2}$$

2.2 Moment bezwładności na podstawie okresu drgań

Dla wahadła fizycznego moment siły powstaje pod wpływem siły ciężkości. Dla wychylenia θ jest równy

$$M = mqa\sin\theta$$

gdzie a - odległość środka masy S od osi obrotu O. Zatem równanie ruchu wahadła można zapisać jako

$$I_0 \frac{d^2 \theta}{dt^2} = -mga \sin \theta$$

gdzie I_0 - moment bezwładności względem osi obrotu przechodzącej przez punkt zawieszenia O. Jeżeli ograniczyć ruch do małych kątów wychylenia, to sinus kąta można zastąpić samym kątem w mierze łukowej, czyli $\sin\theta\approx\theta$. Przyjmując częstość określoną wzorem $\omega_0^2=\frac{mga}{I_0}$ równanie ruchu przyjmuje postać równania oscylatora harmonicznego

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \theta(t) = 0$$

. Okres drgań związany z częstością wynosi

$$T = 2\pi \sqrt{\frac{I_0}{mga}}$$

Przekształcając wzór otrzymujemy wzór na moment bezwładności

$$I_0 = \left(\frac{T}{2\pi}\right)^2 mga = \frac{mgaT^2}{4\pi^2}$$

2.3 Moment bezwładności na podstawie prawa Steinera

Dla wyznaczenia momentu bezwładności I_S względem równoległej osi przechodzącej przez środek masy możemy posłużyć się związkiem między I_0 i I_S znanym jako twierdzenie Steinera:

$$I_0 = I_S + ma^2$$

Po przekształceniu wzór na moment bezwładności względem osi przechodzącej przez środek ciężkości ma postać:

$$I_S = I_0 - ma^2$$

Wzór na moment bezwładności cienkiego pręta względem osi obrotu umieszczonej na końcu pręta to

$$I = \frac{1}{3}mL^2$$

gdzie L - długość pręta.

Wzór na moment bezwładności pierścienia względem osi obrotu przechodzącej przez jego środek to

$$I = \frac{1}{2}m(R^2 + r^2)$$

gdzie R - zewnętrzny promień, r - wewnętrzny promień.

3 Opis doświadczenia

Doświadczenie składa się z dwóch części: pomiaru masy i wymiarów badanych ciał oraz pomiarów okresów drgań ciał wprawionych w ruch wahadłowy. Badane bryły to cienki metalowy pręt z dodatkową poprzeczką stanowiącą punkt zawieszenia (w odległości b od końca pręta) oraz metalowy pierścień zawieszony na wycięciu znajdującym się na jego krawędzi. Punkty zawieszenia ciał stanowiły oś obrotu brył.

Do pomiarów masy użyto wagi o dokładności 1 g. Wymiary zostały zmierzone linijką z podziałką o dokładności 1 mm. Schemat badanych brył prezentuje rysunek 1

Rysunek 1: Bryły (pręt i pierścień) użyte w ćwiczeniu

Pomiary okresu drgań brył wprawionych w ruch wahadłowy o niewielkim wychyleniu zostały dokonane stoperem o dokładności $0,01\,\mathrm{s}.$

4 Wyniki pomiarów

4.1 Pomiary masy i długości

4.2 Pomiary okresu drgań

Tablica 1: Pomiary masy i długości dla pretu

	Wartość	Niepewność
m [g]	658	1
$l \; [\mathrm{mm}]$	738	1
$b \; [\; \mathrm{mm}]$	99	1
a [mm]	270	1

Tablica 2: Pomiary masy i długości dla pierścienia

	Wartość	Niepewność
m [g]	1360	1
$D_w [\mathrm{mm}]$	249	1
$D_z [\mathrm{mm}]$	279	1
$R_w [\mathrm{mm}]$	124,5	1
$R_z \; [\mathrm{mm}]$	139,5	1
e [mm]	9,7	0,05
a [mm]	129,8	0,05

Tablica 3: Pomiary okresu drgań dla prętu

Lp.	Liczba okresów k	Czas t dla k okresów [s]	Czas 1 okresu $[s]$
1	30	39,72	1,324
2	30	39,61	1,320
3	30	$39{,}58$	1,319
4	30	39,66	1,322
5	30	39,48	1,316
6	30	39,60	1,320
7	30	39,46	1,315
8	30	39,33	1,311
9	50	$65,\!68$	1,314
10	50	65,75	1,315

Wartość średnia okresu T: 1,318

Niepewność u(T): 0,000015

Tablica 4: Pomiary okresu drgań dla pierścienia

Lp.	Liczba okresów k	Czas t dla k okresów $[s]$	Czas 1 okresu [s]
1	30	31,04	1,035
2	30	$30,\!83$	1,028
3	30	31,01	1,034
4	30	31,05	1,035
5	30	31,12	1,037
6	30	30,96	1,032
7	30	30,91	1,030
8	30	31,16	1,039
9	30	31,17	1,039
10	30	30,86	1,029
	7	Wartość średnia okresu T : $1{,}03$	1

Niepewność u(T): 0,000014

5 Opracowanie wyników dla pręta

5.1 Moment bezwładności I_0

Wartość momentu bezwładności względem osi obrotu O:

$$I_0 = \frac{mgaT^2}{4\pi^2} = 0,07665 [\text{kg} \cdot \text{m}^2]$$

5.2 Moment bezwładności I_S

Wartość momentu bezwładności względem środka masy:

$$I_S = I_0 - ma^2 = 0,0287 [\text{kg} \cdot \text{m}^2]$$

5.3 Moment bezwładności względem osi przechodzącej przez środek masy

Wartość momentu bezwładności względem osi przechodzącej przez środek masy wyliczona z wartości geometrycznych:

$$I_S^{(geom)} = \frac{1}{12} m l^2 = 0,02987 \, [\mathrm{kg} \cdot \mathrm{m}^2]$$

5.4 Niepewności pomiaru

Niepewność pomiaru masy (ważonej na wadze o dokładności 1 g):

$$u(m) = 0,001 \,\mathrm{kg}$$

Niepewność pomiaru długości pręta (mieżonego linijką o dokładności 1 mm):

$$u(l) = 0,001 \,\mathrm{m}$$

Niepewność pomiaru odległości a = l/2 - b:

$$u(a)=0,0005\,\mathrm{m}$$

Niepewność typu A pomiaru okresu T:

$$\overline{T} = \frac{\sum T_i}{n} = 1,318 [s]$$

$$u(T) = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}} = 0,00000167 [s]$$

gdzie: n - ilość pomiarów, \overline{T} - średni okres drgań.

5.5 Niepewność złożona

Niepewność złożona momentu bezwładności I_0 :

$$\frac{u(I_0)}{I_0} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[\frac{u(a)}{a}\right]^2 + \left[2\frac{u(T_0)}{T_0}\right]^2}$$
$$u(I_0) = 0,000306 \,\mathrm{kg} \cdot \mathrm{m}^2$$

Niepewność złożona momentu bezwładności I_S :

$$u(I_S) = \sqrt{[u(I_0)]^2 + [a^2 \cdot u(m)]^2 + [-2am \cdot u(m)]^2}$$

$$u(I_S) = 0,000475 \,\mathrm{kg} \cdot \mathrm{m}^2$$

Niepewność złożona momentu bezwładności obliczonego geometrycznie $I_S^{(geom)}$:

$$\frac{u(I_S^{(geom)})}{I_S^{(geom)}} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[2\frac{u(l)}{l}\right]^2}$$
$$u(I_S^{(geom)}) = 0,000012 \,\mathrm{kg} \cdot \mathrm{m}^2$$

5.6 Sprawdzenie zgodności wyników

Wyniki nie są zgodne, gdyż wartość:

$$\frac{\left|I_{S} - I_{S}^{(geom)}\right|}{\sqrt{u^{2}(I_{S}) + u^{2}(I_{S}^{(geom)})}} = 2,49$$

jest większa od k=2.

6 Opracowanie wyników dla pierścienia

6.1 Moment bezwładności I_0

Wartość momentu bezwładności względem osi obrotu O:

$$I_0 = \frac{mgaT^2}{4\pi^2} = 0,0469 \,[\text{kg} \cdot \text{m}^2]$$

6.2 Moment bezwładności I_S

Wartość momentu bezwładności względem środka masy:

$$I_S = I_0 - ma^2 = 0,024 \,[\text{kg} \cdot \text{m}^2]$$

6.3 Moment bezwładności względem osi przechodzącej przez środek masy

Wartość momentu bezwładności względem osi przechodzącej przez środek masy wyliczona z wartości geometrycznych:

$$I_S^{(geom)} = \frac{1}{12} m l^2 = 0,0238 \, [\text{kg} \cdot \text{m}^2]$$

6.4 Niepewności pomiaru

Niepewność pomiaru masy (ważonej na wadze o dokładności 1 g):

$$u(m) = 0.001 \,\mathrm{kg}$$

Niepewność pomiaru promienia $R = \frac{D_z}{2}$ (mierzonego linijką o dokładności 1 mm):

$$u(R) = 0,0005 \,\mathrm{m}$$

Niepewność pomiaru promienia $r = \frac{D_w}{2}$ (mierzonego linijką o dokładności 1 mm):

$$u(r) = 0,0005 \,\mathrm{m}$$

Niepewność pomiaru odległości a (mierzonej suwmiarką o dokładności 0,05 mm):

$$u(a) = 0,00005 \,\mathrm{m}$$

Niepewność typu A pomiaru okresu T:

$$\overline{T} = \frac{\sum T_i}{n} = 1,0337 [s]$$

$$u(T) = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}} = 0,00000016 [s]$$

gdzie: n - ilość pomiarów, \overline{T} - średni okres drgań.

6.5 Niepewność złożona

Niepewność złożona momentu bezwładności I_0 :

$$\frac{u(I_0)}{I_0} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[\frac{u(a)}{a}\right]^2 + \left[2\frac{u(T_0)}{T_0}\right]^2}$$

$$u(I_0) = 0,0000389 \,\mathrm{kg} \cdot \mathrm{m}^2$$

Niepewność złożona momentu bezwładności I_S :

$$u(I_S) = \sqrt{[u(I_0)]^2 + [a^2 \cdot u(m)]^2 + [-2am \cdot u(m)]^2}$$

$$u(I_S) = 0.000356 \,\mathrm{kg \cdot m^2}$$

Niepewność złożona momentu bezwładności obliczonego geometrycznie $I_S^{(geom)}$:

$$u(I_S^{(geom)}) = \sqrt{\left[\frac{R^2 + r^2}{2}u(m)\right]^2 + \left[mRu(R)\right]^2 + \left[mru(r)\right]^2}$$

$$u(I_S^{(geom)}) = 0,000128 \,\mathrm{kg}\cdot\mathrm{m}^2$$

6.6 Sprawdzenie zgodności wyników

Wyniki są zgodne, gdyż wartość:

$$\frac{\left|I_{S} - I_{S}^{(geom)}\right|}{\sqrt{u^{2}(I_{S}) + u^{2}(I_{S}^{(geom)})}} = 0,49$$

jest większa od k=2.

7 Wnioski