

Management Report

Implementation of a Real-Time Ethernet with Quality-of-Service mechanisms

AFDX network using P4 language

28/04/2022

EMS 2021/2022 - Integrated Team Project

CHAMPAIN Florian GRENIER Célestin ILLI Adil ZEMZEM Mehdi

Table of contents

I.	Introduction	2
II.	Scope of project	3
	1 – Objectives	3
	2 – Stakeholders	3
	3 – Assumptions	4
	4 - List of requirements	4
III	ORGANISATION AND DEVELOPMENT PROCESS	4
	1 – OBS	4
	2 – Development logic / Master Schedule	5
	3 – WBS	6
	4 – RASCI	6
	5 – Milestones definition	7
	6 – Project schedule (Gantt chart)	8
ΙV	– DETAILLED PROJECT DEFINITION	. 10
	1 - Work Packages (tasks) description	. 10
	2 - Project costs assessment	. 10
	3 - Life cycle	. 10
V	- PROJECT'S DELIVERABLES	. 11
	1 - List of deliverables to customer (end products)	. 11
	2 - List of intermediate deliverables (enabling products)	. 11
VI	- RISK ASSESSMENT	. 11

I. Introduction

The main aim of the project is the implementation of a Real-time Ethernet network with quality-of-service mechanisms. For embedded systems, Real-time communications are a necessity. More specifically for avionics systems, real-time networks are the prominent form of communications due to baud rate, latency and overall system weight.

The current situation in IRIT-ENSEEIHT is that all the research related to Real-time networks, are only implemented on simulation tools (such as Mininet). Hence, the implementation of such a network in the labs of ENSEEIHT, will have a great impact on the progress of research in this field. At the end, it will serve as a base ground for future work related to Real-time networking.

This document will outline the project plan and will provide the subsidiary project management plans for the implementation of a Real-time Ethernet network with quality-ofservice mechanisms.

II. Scope of project

1 – Objectives

The objectives of this project can be divided into two sub-categories (mandatory and optional):

Mandatory objectives:

- Implementation of P4 on Raspberry (using P4Pi) and on computer (using DPDK)
- Implementation of QoS using WRR and SPQ mechanisms

Optional objectives:

- Implementation of DRR QoS mechanism
- Study and implementation of Ethernet 802.1TSN mechanisms such as CBS

Given these objectives we can deduce a roadmap to be followed:

- 1. Test of P4₁₆ compilation tools to generate Mininet architecture
- 2. 2 parts:
 - a. Implementation of real-time Ethernet architecture using P4 and T4P4S 2 possible targets: PC, Raspberry Pi using P4Pi tools
 - b. Implementation of Quality-of-Service mechanisms such as SPQ, WRR, DRR in $P4_{16}$
- 3. Implementation of a configuration tool that creates and configures the network architecture
- 4. Study and implementation of Ethernet 802.1TSN mechanisms such as CBS

Out of scope tasks:

Some extra work might be needed to validate the architecture as an aircraft capable network, so extra tests using real avionics equipment could be done for this purpose.

2 – Stakeholders

The main stakeholder of this project is the ENSEEIHT IT laboratory and, specifically, the project tutor, Jérôme Ermont, and the roles related to this stakeholder are:

- Provide the project objectives.
- List the requirements and specifications to be respected in the process.
- Provide the infrastructure needed for hardware testing.
- Provide Raspberry Pi cards and multi-network cards computer needed to validate the hardware part of the objectives.

3 – Assumptions

Main project assumptions are as follows:

- P4 generation file (python base) for AFDX network
- Pseudo-code of SPQ, WRR and DRR

4 - List of requirements

Required skills:

- Real time networks
- Programming language such C and Python

III. ORGANISATION AND DEVELOPMENT PROCESS

1 - OBS

 $\underline{\text{Hardware Team}} \colon \text{CHAMPAIN Florian} + \underline{\text{ZEMZEM Mehdi}}$

QoS Team: ILLI Adil + GRENIER Celestin

2 – Resources (internal / external)

Human resources:

4 embedded systems master students with different background:

- Mechanical engineer & python developer
- Avionics system maintenance & upgrade
- Cognitive engineering school
- Embedded software developer for automobile

Time:

6 weeks of full-time work:

- 1 week from 25/10/2021 to 29/10/2021
- 1 week from 21/02/2021 to 25/02/2021
- 4 weeks from 01/04/2021 to 29/04/2021

Hardware:

- Raspberry Pi
- Computer with multiple network interfaces

Software tools:

- P4 APP
- Mininet
- DPDK
- P4PI
- T4P4S
- Wireshark

2 – Development logic / Master Schedule

The project is decomposed into 2 main phases:

- First Phase (Preliminary phase from October to January) where the following tasks are performed:
 - Kick-Off, project discovery and technical apprehension of the existing (No milestone in this phase)
 - Preparation of the Project Management Report (Draft needs to be delivered the December 11th)
 - o Redaction of the MBSE report (Delivery date due the January 7th)
- Second phase (Realization Phase from February to April) with a global due date to the April 27th:
 - o Technical realization
 - o Redaction of final report
 - Management project update
 - o Presentation preparation

3 - WBS

4 - RASCI

R – Resp	onsible	A – Accountable	S – Suppo	rtive	C – Consulted	I – Informed
C.F	Champ	ain Florian	G.	<i>C</i> Gr	enier Celestin	
I.A	Illi Adil		Z.,	M Ze	Zemzem Mehdi	
J.E	Jérôme	Ermont	V.	H. Va	nderstricht Helene	2
J.C	Jean-Ch	narles Chaudemar				

WP	Tasks	C.F	G.C	I.A	Z.M	J.E	V.H	J.C
	State of the art							
WP0	Project Management Report							
	System Engineering Report							
	SPQ							
WP1	WRR							
	DRR							
WP2	Implementation on Raspberry PI							
VVPZ	Implementation on multi network interface PC							
	P4 configuration tool							
WP3	P4 monitoring tool							
	P4 Multi-source packet sender							
	Hardware network: integration							
WP4	QoS on hardware network							
VVP4	Test & delay measurements							
	Implementation of Ethernet TSN on P4							
WP5	Project Report redaction							
VVPS	Project Presentation							

5 – Milestones definition

Milestone	Date				
WP0 - PM report draft	09/12/2021				
WP0 - SE report draft	07/01/2022				
WP3 - P4 configuration, monitoring and testing tools	21/03/2022				
completed					
WP1 - QoS implementation completed	07/04/2022				
WP2 - Hardware network implementation completed	17/04/2022				
WP4 - Implementation of QoS on hardware	21/04/2022				
WP5 - Reports and presentation completed	27/04/2022				

6 – Project schedule (Gantt chart)

First Phase (Preliminary phase from October to January):

Second phase (Pre-Production Phase from February to March):

Third Phase (Production and finalization phase in April:

IV - DETAILLED PROJECT DEFINITION

1 - Work Packages (tasks) description

The project can be segmented into 6 main packages:

- WP0: State of the art, PM management, System engineering
- WP1: Implementation of QoS mechanisms and simulation under Mininet
- WP2: AFDX hardware architecture implementation
- WP3: P4 tools development
- WP4: Integration of QoS on hardware network
- WP5: Report and presentation

See §III-3 and §III-4 for tasks details for each work package.

2 - Project costs assessment

The project costs are estimated in number of hours:

4 students with 6 total work weeks, with 5 days per week and 8 hours per day: 960 hours

3 - Life cycle

V - PROJECT'S DELIVERABLES

1 - List of deliverables to customer (end products)

- Hardware network architecture with implementation tools
- Quality of service (SPQ and WRR) P4 codes
- Project report

2 - List of intermediate deliverables (enabling products)

The only intermediate deliverable is a draft of the management report (present document) in order to be discussed with the project tutor, along with a system engineering report.

VI - RISK ASSESSMENT

The main risks can be listed, as follows:

- The technical complexity and the lack of documentation on Internet can be time consuming
 - o Criticality: High
 - o Probability: Medium
 - This risk can be mitigated with the technical support of the project tutor.
- Difficulty to access to ENSEEIHT labs, due to covid situation
 - o Criticality: Medium
 - o Probability: Low
 - o A substantial part of the study can be done in working from home