

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE COMPUTAÇÃO E AUTOMAÇÃO

DCA0133 - Aprendizagem de Máquina e Mineração de Dados

Aluno: Fernando Lucas Sousa Silva

Atividade avaliativa – Unidade 1 – Questão 5

- 5. Uma rede de crença (ou rede bayesiana), modela a relação entre as variáveis: oil (price of oil), inf (inflation), eh (economy health), bp (British Petroleum Stock price), rt (retailer stock price). Cada variável tem dois estados (l:low) e (h:high), exceto a variável bp que tem adicionalmente o estado (n: normal). A rede de crença modela as variáveis de acordo com a tabela abaixo.
- a) Apresente a rede de crença para este problema.
- b) Dado que a bp=n e rt=h, qual é a probabilidade de que a inflação seja alta?

P(eh=1)=0.2	
P (bp=l oil=l)=0.9	P(bp=n oil=1)=0.1
P(bp=l oil=h)=0.1	P(bp=n oil=h)=0.4
P(oil=l eh=l)=0.9	P(oil=1 eh=h)=0.05
P(rt=1 inf=1,eh=1)=0.9	P(rt=1 inf=1,eh=h)=0.1
P(rt=l inf=h,eh=l)=0.1	P(rt=1 inf=h,eh=h)=0.01
P(inf=l oil=l, eh=l)=0.9	P(inf=l oil=l, eh=h)=0.1
P(inf=l oil=h, eh=l)=0.1	P(inf=l oil=h, eh=h)=0.01

- **R_a):** A rede de crença é construída analisando as variáveis e como elas influenciam as outras. Dessa forma, podemos perceber verificando na tabela de probabilidades, temos as seguintes análises:
 - A variável "oil" influencia diretamente "bp" e "inf";
 - A variável "eh" influencia diretamente "oil", "inf" e "rt";
 - A variável "inf" influencia diretamente "rt";

Com isso, podemos construir a representação gráfica da rede bayesiana, denotada abaixo:

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE COMPUTAÇÃO E AUTOMAÇÃO

R b):

Para o desenvolvimento dessa questão, precisamos encontrar as probabilidades para casos em que as variáveis dependem de outras variáveis. Nesse caso, a probabilidade de a inflação ser alta é:

$$P(inf = h \mid bp = n, rt = h) = \frac{P(inf = h \mid eh, oil) * P(bp = n \mid oil) * P(rt = h \mid eh, inf = h)}{P(bp = n, rt = h)}$$

- Calculando P(inf = h | eh, oil):

 - o Resposta obtida: P(inf = h | eh, oil) = 0.8244
- Calculando $P(bp = n \mid oil)$:
 - o $P(bp = n \mid oil) = P(bp = n \mid oil = l) * [P(oil = l \mid eh = l) * P(eh = l) + P(oil = l \mid eh = h) * P(eh = h)] + P(bp = n \mid oil = h) * [P(oil = h \mid eh = l) * P(eh = l) + P(oil = h \mid eh = h) * P(eh = h)]$
 - o Resposta obtida: $P(bp = n \mid oil) = 0,444$

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE COMPUTAÇÃO E AUTOMAÇÃO

- Calculando $P(rt = h \mid eh, inf=h)$:
 - $P(rt = h \mid eh, inf = h) = P(rt = h \mid eh = l, inf = h) * P(inf = l)$ $h \mid eh = l$, oil = l) * $P(oil = l \mid eh = l)$ * $P(eh = l) + P(inf = h \mid eh = l)$ l, oil = h) * P(oil = h | eh = l) * P(eh = l)] * P(eh = l)] + [P(rt = $h \mid eh = h, inf = h) * [P(inf = h \mid eh = h, oil = l) * P(oil = l \mid eh = h) * [P(inf = h \mid eh = h, oil = l) * P(oil = l \mid eh = h, oil = l) * [P(inf = h \mid eh$ h) * P(eh = h) + P(inf = h | eh = h, oil = h) * P(oil = h | eh = h) * P(eh = h)] * P(eh = h)]
 - o Resposta obtida: $P(\text{rt} = h \mid \text{eh}, \text{inf} = h) = 0.8129$
- Calculando P(bp = n, rt = h):
 - $P(bp = n, rt = h) = P(bp = n \mid oil) * P(rt = h \mid inf, eh) = 0$ 0.444 * (P(rt = h | inf = l, eh = l) * P(inf = l | eh = l, oil) * P(eh = l, oil) * P(eh = l, oil) * O(eh =l) + (P(rt = h | inf = l, eh = h) * P(inf = l | eh = h, oil) * P(eh = l)h)) + $(P(\text{rt} = h \mid \text{inf} = h, eh = l) * P(\text{inf} = h \mid eh = l, \text{oil}) * P(eh = l$ $P(rt = h \mid inf = h, eh = h) * P(inf = h \mid eh = h, oil) * P(eh = h) * P(eh =$ h))
 - $P(bp = n, rt = h) = P(bp = n \mid oil) * P(rt = h \mid inf, eh) = 0$ 0.444*(0.1*(1-0.036)*0.2+(0.9*(1-0.7884)*0.8)+(0.9*0.036 * 0.2) + (0.99 * 0.7884 * 0.8)
 - o Resposta obtida: P(rt = h|eh, inf = h) = 0.3563
- Calculando agora na fórmula final:
 - $O \quad P(inf = h \mid bp = n, rt = h) = \frac{P(inf = h \mid eh, oil) * P(bp = n \mid oil) * P(rt = h \mid eh, inf = h)}{P(inf = h \mid bp = n, rt = h)}$ P(bp=n,rt=h)
 - $P(inf = h \mid bp = n, rt = h) = \frac{0.8244 * 0.444 * 0.8129}{0.3563}$
 - o Resposta obtida: $P(\inf = h | bp = n, rt = h) = 0.8351$