

## planetmath.org

Math for the people, by the people.

## net

Canonical name Net

Date of creation 2013-03-22 12:54:03 Last modified on 2013-03-22 12:54:03

Owner yark (2760) Last modified by yark (2760)

Numerical id 12

Author yark (2760) Entry type Definition Classification msc 54A20

Synonym Moore-Smith sequence

Related topic Filter

Related topic NetsAndClosuresOfSubspaces Related topic ContinuityAndConvergentNets

Related topic CompactnessAndConvergentSubnets

Related topic AccumulationPointsAndConvergentSubnets

Related topic TestingForContinuityViaNets

Defines subnet

Defines Moore-Smith convergence

Defines cluster point

Let X be a set. A *net* is a map from a directed set to X. In other words, it is a pair  $(A, \gamma)$  where A is a directed set and  $\gamma$  is a map from A to X. If  $a \in A$  then  $\gamma(a)$  is normally written  $x_a$ , and then the net is written  $(x_a)_{a \in A}$ , or simply  $(x_a)$  if the direct set A is understood.

Now suppose X is a topological space, A is a directed set, and  $(x_a)_{a \in A}$  is a net. Let  $x \in X$ . Then  $(x_a)$  is said to *converge* to x if whenever U is an open neighbourhood of x, there is some  $b \in A$  such that  $x_a \in U$  whenever  $a \geq b$ .

Similarly, x is said to be an accumulation point (or cluster point) of  $(x_a)$  if whenever U is an open neighbourhood of x and  $b \in A$  there is  $a \in A$  such that  $a \ge b$  and  $x_a \in U$ .

Nets are sometimes called *Moore–Smith sequences*, in which case convergence of nets may be called *Moore–Smith convergence*.

If B is another directed set, and  $\delta: B \to A$  is an increasing map such that  $\delta(B)$  is cofinal in A, then the pair  $(B, \gamma \circ \delta)$  is said to be a *subnet* of  $(A, \gamma)$ . Alternatively, a subnet of a net  $(x_{\alpha})_{\alpha \in A}$  is sometimes defined to be a net  $(x_{\alpha_{\beta}})_{\beta \in B}$  such that for each  $\alpha_0 \in A$  there exists a  $\beta_0 \in B$  such that  $\alpha_{\beta} \geq \alpha_0$  for all  $\beta \geq \beta_0$ .

Nets are a generalisation of http://planetmath.org/Sequencesequences, and in many respects they work better in arbitrary topological spaces than sequences do. For example:

- If X is Hausdorff then any net in X converges to at most one point.
- If Y is a subspace of X then  $x \in \overline{Y}$  if and only if there is a net in Y converging to x.
- if X' is another topological space and  $f: X \to X'$  is a map, then f is continuous at x if and only if whenever  $(x_a)$  is a net converging to x,  $(f(x_a))$  is a net converging to f(x).
- X is compact if and only if every net has a convergent subnet.