

Using the FEDOT framework functionality for the economics task

Timur Kutuev

Analysis of fraudulent operations with bank cards

```
node logit = PrimaryNode('logit')
node lda = PrimaryNode('lda')
node rf = SecondaryNode('rf')
node rf.nodes from = [node logit, node lda]
chain.add node(node rf)
chain.fit(train data)
results = chain.predict(test data)
#2 model
def get simple chain():
    first = PrimaryNode(model type='logit')
    second = PrimaryNode(model type='lda')
    final = SecondaryNode(model type='rf',
                           nodes from=[first, second])
    chain = Chain(final)
    return chain
#3 model
def get simple chain():
    first = PrimaryNode(model type='xgboost')
    second = PrimaryNode(model type='lda')
   final = SecondaryNode(model type='rf',
                          nodes from=[first, second])
    chain = Chain(final)
    return chain
```

#1 model chain = Chain()

```
Metric
                1 model
                          2 model
                                    3 model
Roc auc value 0.9892
                          0.9901
                                    1.0
Precision
                0.9971
                          0.9944
                                    1.0
                          0.9035
Recall
                0.9010
                                    1.0
               0.9998
                          0.9998
                                    1.0
Accuracy
```

•	7	_			_				
	Logistic Regression:								
			precision	recall	f1-score	support			
		0		0.99					
		1	0.99	0.90	0.94	99			
	accur	201			9.04	190			
			0.04	0.04					
	macro		0.94			190			
	weighted	avg	0.95	0.94	0.94	190			
	KNears Neighbors:								
			precision	recall	f1-score	support			
		0	0.87	1.00	0.93	91			
		1	1.00	0.86	0.92	99			
	accur	асу			0.93	190			
	macro	avg	0.93	0.93	0.93	190			
	weighted	avg	0.94	0.93	0.93	190			
	Support Vector Classifier:								
			precision	recall	f1-score	support			
		0	0.88	0.00	0.93	91			
		1	0.99	0.88	0.93	99			
	accur	acy			0.93	190			
	macro		0.94	0.93		190			
		•	0.94			190			
	morgineed .	avg	0.54	0.55	0.33	170			

Description of the dataset:

It is important that credit card companies can recognize fraudulent credit card transactions so that customers do not pay for goods they did not buy.

The main characteristics of the dataset:

Variables obtained with the help of PCA are the factors;

Dataset is not balanced;

The task of classification (detection of anomalies);

28 variables.

Composite model evaluation

return chain evo composed


```
ROC AUC metric is 0.975
      PRECISION metric is 0.9560439560439561
      RECALL metric is 0.8877551020408163
      ACCURACY metric is 0.9238578680203046
                                                                      mlp + xgboost + logit => mlp
def get model(train file path: str, cur lead time: datetime.timedelta = timedelta(minutes=10)):
   task = Task(task_type=TaskTypesEnum.classification)
   dataset_to_compose = InputData.from_csv(train_file_path, task=task)
   # the search of the models provided by the framework
   # that can be used as nodes in a chain for the selected task
   models repo = ModelTvpesRepositorv()
   available model types, = models repo.suitable model(task type=task.task type)
   metric function = MetricsRepository(). \
       metric by id(ClassificationMetricsEnum.ROCAUC penalty)
   composer requirements = GPComposerRequirements(
       primary=available model types, secondary=available model types,
       max lead time=cur_lead_time, max_arity=3,
       max depth=4, pop size=20, num of generations=100,
       crossover_prob = 0.8, mutation_prob = 0.8,
       add single model chains = False)
   # Create the genetic programming-based composer, that allow to find
   # the optimal structure of the composite model
   composer = GPComposer()
   # run the search of best suitable model
   chain evo composed = composer.compose chain(data=dataset to compose,
                                            initial chain=None,
                                            composer requirements=composer requirements,
                                            metrics=metric function, is visualise=False)
   chain evo composed.fit(input data=dataset to compose)
```

Models comparison – code sinppet


```
def apply_model_to_data(model: Chain, data path: str):
  Applying model to data and check metrics.
  dataset to validate = InputData.from csv(data path)
  predicted labels = model.predict(dataset to validate).predict
  roc auc st =
round(roc auc score(y true=dataset to validate.target,y score=predicted labels.round()), 4)
  p = round(precision score(y true=dataset to validate.target,y pred=predicted labels.round()), 4)
  r = round(recall_score(y_true=dataset_to_validate.target,y_pred=predicted_labels.round()), 4)
  a = round(accuracy score(y true=dataset to validate.target,y pred=predicted labels.round()),4)
  f = round(f1 score(y true=dataset to validate.target,y pred=predicted labels.round()), 4)
  return roc auc st, p, r, a, f
```

Models comparison - results

		SamplerUnder						
	roc_auc		precision		recall		accuracy	
	Kaggle	Result	Kaggle	Result	Kaggle	Result	Kaggle	Result
logit		0,969		0,956		0,897		0,928
lda		0,958		0,987		0,816		0,903
qda		0,961		0,935		0,887		0,913
dt		0,903		0,954		0,846		0,903
rf		<mark>0,978</mark>		0,946		0,897		0,923
mlp		0,963		0,936		0,897		0,918
knn		0,954		0,955		0,877		0,918
SVC		0,964		0,956		0,897		0,928
xgboost		0,973		0,936		0,897		0,918
bernb		0,951		<mark>0,987</mark>		0,806		0,898
logit+lda=>rf		0,9595		0,9565		0,8979		0,9289

ROC AUC metric is 0.978 PRECISION metric is 0.967032967032967 RECALL metric is 0.8979591836734694 ACCURACY metric is 0.934010152284264

direct_data_model+ logit => rf

ROC AUC metric is 0.969
PRECISION metric is 0.9263157894736842
RECALL metric is 0.8979591836734694
ACCURACY metric is 0.9137055837563451

mlp

Data balancing

Balancing of the sample


```
def balance class(file path):
  Function to balace our dataset to minority class.
  111111
  file name = file path.replace('.', '/').split('/')[-2]
  df = pd.read csv(file path)
  X = df.drop(columns=['Class'])
  y = df.iloc[:,[-1]]
  rus = RandomUnderSampler(sampling_strategy = 'all', random_state=42)
  X_res, y_res = rus.fit_resample(X, y)
  X res['Class'] = y res
  df balanced = shuffle(X res, random state = 42).reset index().drop(columns='index')
  df balanced.to csv(fr'./{file name} underSample.csv', index=False)
  full path = './' + file name + ' underSample.csv'
  return full path
```

Quality of single and composite models depending on the balance of the sample.

ITMO UNIVERSITY

Full Dataset

```
def get_simple_chain():
    first = PrimaryNode(model_type='mlp')
    chain = Chain(first)

    return chain

ROC_AUC = 0.9609
    PRECISION = 0.9286
    RECALL = 0.7959
    ACCURACY = 0.9995
    f1_score = 0.8571
```


Execution metrics and time

• X train = 787

```
def get simple chain():
    first = PrimaryNode(model_type='knn')
    chain = Chain(first)
    return chain
file path first = r'./creditcard scaling underSample.csv'
train file path = r'./examples/data/creditcard scaling underSample/train.csv
test_file_path = r'./examples/data/creditcard_scaling_underSample/test.csv'
 train data = InputData.from csv(train file path)
 test_data = InputData.from_csv(test_file_path)
 chain = get simple chain()
 start = time.time()
chain.fit(train_data, use_cache=False)
end = time.time()
 print(end-start)
3.235996723175049
                                           ROC AUC = 0.9716
ROC \ AUC = 0.9673
                                           PRECISION = 0.0296
PRECISION = 0.9167
                                           RECALL = 0.8902
RECALL = 0.8851
                                           ACCURACY = 0.9493
ACCURACY = 0.9137
                                           f1 \ score = 0.0572
f1 \ score = 0.9006
```

```
neigh = KNeighborsClassifier(n neighbors=5)
start = time.time()
neigh.fit(X train, y train)
end = time.time()
print(end-start)
 0.006994962692260742
                      ROC \ AUC = 0.9317
ROC \ AUC = 0.9268
                      PRECISION = 0.027
PRECISION = 0.9294
                      RECALL = 0.9207
RECALL = 0.908
                      ACCURACY = 0.9426
ACCURACY = 0.9289
                      f1 \ score = 0.0525
f1 \ score = 0.9186
```

Quality of single and composite models depending on the balance of the sample.

ITMO UNIVERSITY

underSample Dataset

```
def get_simple_chain():
    first = PrimaryNode(model_type='mlp')
    chain = Chain(first)
    return chain

ROC_AUC = 0.9886
PRECISION = 0.9762
RECALL = 0.9425
ACCURACY = 0.9645
f1_score = 0.9591
```


Quality of single and composite models depending on the balance of the sample.

ITMO UNIVERSITY

- Balance with the SamplerUnder
- 984 obs

```
composer_requirements = GPComposerRequirements(
    primary=available_model_types, secondary=available_model_types,
    max_lead_time=cur_lead_time, max_arity=3,
    max_depth=4, pop_size=20, num_of_generations=100,
    crossover_prob = 0.8, mutation_prob = 0.8,
    add_single_model_chains = False)
```

	Under_samler						
	test_size = 0.2			test_size=0.3			
	Single	Compose		Single	Compose		
roc_auc	0,969		0,96	0,971	0,971		
precision	0,92631		0,94623	0,94326	0,9635		
recall	0,89795		0,89795	0,91095	0,9041		
accuracy	0,9137		0,92385	0,92905	0,93581		
		qda+direct_data_mo	odel =>				
model_type	mlp	logit		mlp	svc+lda=>logit		
fitness	0,992337		0,992678	0,990352	0,989685		

Performance analyzis

Спасибо за внимание!

www.ifmo.ru

ITSMOre than a UNIVERSITY