USN	1			8				0		E								1	0MAT11
.50550		-	1	70	1	Firs	st Se	mest	er B	E.	Degre	e Ex	aminat	ion, Ja	nuar	y 2013	3		
													hema			56			
Tin	ne:	3 hrs.							0.000		250							Max.	Marks:100
				e: 1	Ansu	ver a	nv Fi	VE fi	ull qu	esti	ons, che	osing	at least	two fron	n each	part.			
				2	4nsu	er a	ll obj	ective	type	que:	stions of	nly in	OMR sh	eet page	5 of t	he answ		det.	
				3	Ansu	er te	obje	ctive i	type q	jues			ts other t	han OM	R will	not be	valued.		
1	a.	Choose the correct answers for the following: i) The Leibnitz theorem is the formula to find the n th derivative of																	
		i)												5 5 9	5. 1	l le	Ø 2		Q.
		75226											fuct of twe						lions
		ii) The n th derivative of 5^x is: A) $\log 5$, 5^x B) $(\log 5)^n$ 5^n C) $e^{(\log 5)x}$ D) $(\log 5)^n$ e $(\log 5)^n$ iii) The value of $(\log 5)^n$ c iii) $(\log 5)^n$ B) 3 C) 0 I											D) 4						
		iii) The value of e of the Cauchy mean value theorem for $f(x) = e$, $g(x) = e$ in $(3, 7)$ is $(3,$											DIT						
		A) Taylor series B) Exponential series C) Logarithmic series D) Trigonometric series												(04 Marks)					
	b.															lue of c.			(04 Marks)
	C.												$)y_{n+1} + (n$						(66 Marks)
	d.	Expa	ınd by	using	, Мас	laurii	i's ser	ies, the	functi	ion I	og(1+si	nx) u	pto fifth de	egree term	ıs.				(86 Marks)
2	a.	41,5000						ie follo			.n.n.r						.0.	u	Si Wi
		1)	the	urve	r =	a cos 0	interse	ect orth	ogona	Hy w	ith the fo	llowin	g curve : A	$T = \frac{h}{1 - \omega}$	es a	$\tau = \frac{c}{1 + \sin \tau}$	e C)t=	b L l sm 0	$T = \frac{\cos \theta}{\theta}$
		ii)	Ifot	e the	angle	betw	een th	e tange	nt and	rad	ius vector	at any	point on t	he curve i	$r = f(\theta)$	then sin	o equals	to	
			A) 5	tr				В),	d0			C) r <u>d0</u>		1	D) r <u>dr</u>			
		300%	1 146	is amital	's Dad	a can	ha an	aliad t	ds thati	imite	of the fo		dr A v O O	B) 0		d 0		D) ∞"	
		ivi	I t (all X	- Dx	is of	the fol	lowing	form	iiiiiis	of the to		$\begin{array}{c} r \frac{d\theta}{dr} \\ A) 0/0 \\ A) 0 \times z \end{array}$	6 B) x		C) ∞"	D) 0'	15,0	(04 Marks)
	**						0.000	19009948A	* 18191			Ti.	SA ARRIBA A	SO, TEMPO		HAVEN	STORE STORE		
	h.	Eval	uate	lim (1	an x)	11199													(04 Marks)
	c.	Find	the ra	idius c	of curv	vature	e for th	ie curv	e x²y	$t = \mathbf{a}$	$(\mathbf{x}^2 + \mathbf{y}^2)$) at th	ne point (-2	2a, 2a).					(06 Marks)
	d.	Find	the P	edal e	quatic	on for	the cu	irve n l	cos	s θ) =	= 2a.								(06 Marks)
3	а,							ne follo			1993								
											$\frac{\partial f}{\partial y}$ is:		A) 0	B) 9		C)		D) -3f	
		ii)	If x =	p cos	θ, y	= p s	in θ, z	= z the	en <u>2(x</u>	х. у.:	<u>z) :</u>		Α) ρ	B) 1		C) 0		D) 0	
												W. W.					LIF		
	iii) If an error of 1% is made in measuring its base and height, the percentage error in the area of a triangle is A) 9.2% B) 0.02% C) 1% D) 2%																		
		iv) One of the necessary and sufficient condition for a function to have a maximum value is																	
) AC – B	<0, A>	0 1	D) AC -	$B^* \ge 0$, A	$t \ge 0$	(04 Marks)
	b.	If V	$=e^{it}$	cos	(a log	gr),	prove	that $\frac{c}{3}$	V + 1	CV	$+\frac{1}{r^2}\frac{\partial^2 v}{\partial \theta^2}$	= 0							(06 Marks)
	c.							70 YO	***		for extre		ratues						(05 Marks)
	d.						87:900 . i			1555 VII				de in heig	ht and	radius of	the base	respectiv	ely. Find the
	(1932)			error						124128		edszahen		30162710137018				ear Partie	(05 Marks)
4	a.							ie follo	wing	3									
							url F				olenoidal	杨	B) irrotat		C) rot		100	none of t	these
		ii) If $V = x^2 + y^2 + 3$ then grad V is : A) $2xi + 2yj$ B) $2x + 2y$ C) $2xi + 2yj + k$ D) $xi + yj$																	
		[1878 - 1921년 1927년 1927년 1일 1927년 1																	
	No.												B) x - y	-z ().	2(x + y	1 2)	D) 2()	(- y + z)	
	b.										³ – 3xyz	1.							(06 Marks)
	c.				F11.517 - 35	C 351		i + gra is ortho											(06 Marks)
	d.	2001	w that	me cy	mort	cal S	ystem	is onne	ogonal	200	PA	RT –	D						(04 Marks)
												K 1 -							
5	4,	1 1	v. (i sem	(%), (2))	SH	20: 2		11.24		ng a wa	<u>K1 –</u>	inked ev						

A) symmetric about the x-axis B) symmetric about the x & y axis C) symmetric about the y-axis iii) The length of the arc y = f(x) from x = a to x = b is

$$\frac{1}{x^2 + x^2} \int_{-x^2 + x^2} \frac{1}{x^2 + x^2} \int_{-x^2 + x^2$$

iii) The length of the arc
$$y = f(x)$$
 from $x = a$ to $x = b$ is

A) $\sqrt[n]{1 + \left(\frac{dy}{dx}\right)^2} dx$
B) $\sqrt[n]{1 + \left(\frac{dx}{dy}\right)^2} + \left(\frac{dy}{dx}\right)^2} dx$
C) $\sqrt[n]{1 + \left(\frac{dx}{dy}\right)^2} + \left(\frac{dy}{dx}\right)^2} dx$
D) none of these

iv) The value of $\int \sin^4 x \, dx$ is equal to : A) $3\pi/8$ D) 70/4 (04 Marks

Obtain the reduction formula for \sin x dx. (84 Marks (06 Marks)

Evaluate $\int x \sqrt{ax - x^2} dx$. Find the area of an arch of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$.

(06 Marks) Choose the correct answers for the following:

The order and degree of the differential equation $\left[1+\left(\frac{dy}{dx}\right)^2\right]^2=c\frac{d^2y}{dx^2}$ respectively is A) one, two D) three, two

ii) The differential equation $\left[1 + e^{x/x}\right] dx + e^{x/x} \left[1 - \frac{x}{v}\right] dy = 0$ is B) homogeneous and exact C) non-homogeneous and exact A) homogeneous and linear

iii) The solution of the differential equation $\frac{dy}{dx} = e^{y+1}$; A) $e^y + e^y - e^z$ B) $e^x + e^y = e^z$ C) $e^y - e^y = e^z$ D) $e^{x+y} = e^y$ iv) Replacing dy/dx by -dx/dy in the differential equation of (x, y, dy/dx) = 0, we get the differential equation of B) orthogonal trajectory C) trajectory D) none of these (04 Marks)

Solve $\frac{dy}{dx} = \frac{2x - y + 1}{x + 2x - 3}$ (06 Marks) Solve $dr + (2r \cot \theta + \sin 2\theta)d\theta = 0$. (06 Marks)

Find the orthogonal trajectory of the family of coaxial circles
$$\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$$
. (04 Marks)

Choose the correct answers for the following:

i) The normal form of the matrix are A) $\begin{bmatrix} I_a, 0 \end{bmatrix}$ B) $\begin{bmatrix} I^2 \\ 0 \end{bmatrix}$ C) $\begin{bmatrix} I_1 & 0 \\ 0 & 0 \end{bmatrix}$ D) all of these

The solution of the simultaneous equations x + y = 3, x - y = 3 is A) only trivial B) only unique C) unique and trivial D) none of these

iii) In Gauss Jordan method, the coefficient matrix reduces to matrix A) diagonal B) unit matrix C) triangular matrix D) none of these iv) If r is the rank of the matrix [A] of order $m \times n$ then r is: A) $r \le m$ B)r≤n C)r≥n D)r≥m (04 Marks)

Find the rank of the following matrix by elementary transform: A = 2 1 5 4 b. (04 Marks) Find for what value of k the system of equations x + y + z = 1, x + 2y + 4z = k, $x + 4y + 6z = k^2$, posses a solution. Solve C.

completely in each case. (06 Marks) d. Solve the following system of equations by Gauss elimination method: x + y + z = 9; x - 2y + 3z = 8; 2x + y - z = 3 (06 Marks) Choose the correct answers for the following:

If the determinant of the coefficient matrix is zero, then there exist A) trivial solution B) non-trivial solution C) unique solution D) no solution

If P is the modal matrix of an orthogonal matrix, then its inverse matrix is equal to A) P-C) diagonal matrix D) none of these

iii) The quadratic form for the matrix $A = \begin{bmatrix} a & h \\ h & b \end{bmatrix}$ is: A) $ax^2 + 2hxy + by^2 = B$) $ax^2 + by$ C) $ax^2+2bxy+2by^2$

D) none of these iii) The nature of the quadratic function of the matrix having the eigen values [0, 2, 4] is

A) positive definite B) positive semi-definite C) negative definite D) negative semi-definite (04 Marks)

b. (06 Marks)

Reduce the matrix $A = \begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$ to the diagonal form and hence find A^* .

(04 Marks)

Find all the eigen values of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

the face the quadratic form $2x^2+3y^2+3x^2+2xy+2xx$ into canonical torin.

Time: 3 hrs.

First Semester B.E. Degree Examination, January 2013

cincotti	Dilli Degi	ce Examination, vanuary	4.V.
Engi	ineerina	Mathematics – I	

Tin	ne: 3	e: 3 hrs.	Max. Marks:100
		Note: 1. Answer any FIVE full questions, choosing at least two f 2. Answer all objective type questions only on OMR sheet 3. Answer to objective type questions on sheets other than	page 5 of the answer booklet.
		PART – A	
Ĭ	a.	Change parrent pressure for the following	logs D) 3 ²⁵ (2 log3)" (04 Marks
		i) If $y = 3^{2x}$ then $y_n = \underline{} : A) 2^{3x} (2 \log 3)^n$ B) $3^{2x} (\log 3)^n$ C) 3^2 ii) If $y = \log (1 - x)$ the $y_n = \underline{} : A) \frac{(-1)^{n-1} n!}{(1 - x)!n}$ B) $\frac{(-1)^{2n+1} (n-1)!}{(1 + x)^n}$ C) $\frac{(-1)^{2n+1} (n-1)!}{(1 - x)!}$ C)	$\frac{(n-1)^{2n-1}(n-1)^n}{(n-1)^n}$ D) $\frac{(-1)^{2n+1}(n-1)^n}{(n-1)^{n+1}}$
		iii) By Rolle's theorem the number $C = $ when $f(x) - x^2 - 4x + 8$ in [1,]	(): A) 1 B) 2 C) 3 D) 4
	W	iv) By Maclaurins series, the expansion $x = \frac{x^3}{3^3} + \frac{x^5}{5!} =$ is equal to	(A) e B) cosx C) sinx D) x cosx
	b.	b. Find the n" derivative of x' sin 3x.	(04 Marks
	C.	1+h2 1-a2 1-a2 4 25	$-1\frac{4}{3} \cdot \frac{\pi}{4} + \frac{1}{6}$. (06 Marks
2	d. a.	The same of the sa	(06 Marks (04 Marks
		1) $\frac{1.\text{imit}}{x \to 0} \left \frac{\log \sin ax}{\log \sin bx} \right = \frac{1}{100} (A) 1$ B) a/b C) b/a	D) ab
		ii) The angle between the radius vector and the tangent of the curve $r = \sin\theta$	cosθ is
		A) $\pi/2 + \theta$ B) $\pi/4 + \theta$ C) $\pi/3 + \theta$	D) π/6 + θ
		iii) Derivative of arc length for polar curve, the value ds/dθ =	
		A) $\sqrt{r^2 + \frac{d^2r}{d\theta^2}}$ B) $\sqrt{r + \left(\frac{dr}{d\theta}\right)^2}$ C) $\sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2}$	D) $\sqrt{r^2 + \left(\frac{d\theta}{dr}\right)^2}$
		iv) Radius of curvature of $y - x^2$ at $x = 1$ is $= (A) 5\sqrt{5}$ B) $\frac{4\sqrt{5}}{2}$	C) $\frac{3\sqrt{5}}{2}$ D) $\frac{5\sqrt{5}}{2}$
	b.	b. Evaluate $\frac{\text{Limit}}{x \to 0} \left[\frac{a^x + b^x + c^x + d^x}{4} \right]^{\frac{1}{x}}$	(04 Marks
	c. d.	The mis angle of microscopic between the cut res single 4 did 10sin20.	(06 Marks
3	a.	the same of the sa	y a sint. (06 Marks (04 Marks
		i) If $F(u) = \sin u = \frac{x^2 y^2}{y^2 + y^2}$ the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = $ (A) cot u B) ta	- T
		ii) Jacobian for $x = r \cos \theta$, $y = r \sin \theta$ is; A) r B) $1/r^2$ C) $1/r$	D) e ²
		iii) The necessary condition for $u = f(x, y)$ have maxima or minima is A) $\partial u/\partial x \neq 0$, $\partial u/\partial y \neq 0$ B) $\partial u/\partial x = 0$, $\partial u/\partial y = 0$ C) $\partial u/\partial x \geq 0$, $\partial u/\partial y$	> 0 D) $\partial y/\partial y < 0$ $\partial (y/\partial y < 0)$
		iv) The percentage error in the area of the rectangle when an error of 1.0% is is : A) 4 B) 3 C) 2 D) 1	made in measuring the sides x and
	b.	The same and the same of the s	espect to r, θ, φ. (04 Marks)
	C.	c. Find the percentage error in computing resistance r of two resistances r ₁ and r ₂ c are in error by 2%.	onnected in parallel of both r, and r
	d.	100 100 100 100 100 100 100 100 100 100	(06 Marks)
4	a.	100 ACRES (ACRES) 100 (100 ACRES) 100 (100 ACRES) 100 ACRES (100	(04 Marks)
		i) If R is a position vector of any point $P(x, y, z)$ then $V - R$ is: A) 0	B) 1 C) 2 D) 3
		ii) Any motion in which the curl of the velocity vector is zero, then the vector	
		A) solenoidal B) Vector C) Constant iii) If ϕ is the scalar point function then the value of curl (grad ϕ) = (A)	D) Irrotational 0 B) ≤ 0 C) 0 D) ∞
		iv) In orthogonal curvilinear coordinates the value of $\frac{\partial(x,y,t)}{\partial(u,v,w)}$ is =	200 200 (200 (200 (200 (200 (200 (200 (
	b.	A) $h_1 h_2 h_3$ B) $1/h_1 h_2 h_3$ C) $h_1/h_2 h_3$	D) h _i h ₂ /h ₃
	e.	f 42 - 43	(06 Marks)

a. Choose correct answers for the following: i) If $ u_1 = \int_0^1 \int_{\log x}^1 dx$ then $\frac{d(u_1)}{dx} = -(x) A/4(1+cx) B/3x(1+cx) C/2(1+cx) D/1/(1+cx)$ ii) The value of $\int_0^1 dx$ and	d.	If $F(u,v,w)$ be the vector point function given in terms of orthogonal curvilinear coordinates as $F=F_{\nu}e_{\Gamma}$	$+ F_2 e_2 + F_4 e_5$
2. Choose correct answers for the following: (i) If $h(x) = \int_{0}^{1} \frac{ x^{2}-1 }{ x ^{2}} dx$ then $\frac{dh(x)}{dx} = \frac{1}{2} x\lambda A dx (1+\alpha)$ (ii) The value of $\int_{0}^{1} \sin^{3} x dx$ is $\frac{1}{2} x\lambda A dx (1+\alpha)$ (iii) The value of $\int_{0}^{1} \sin^{3} x dx$ is $\frac{1}{2} x\lambda A dx (1+\alpha)$ (iii) A curver $\frac{1}{2} x\lambda A dx$ is $\frac{1}{2} x\lambda A dx (1+\alpha)$ (iv) Special points on x and y -axis for the asteroid $x^{2} + y^{2} = \frac{1}{2}^{2} ax$ (iv) Special points on x and y -axis for the asteroid $x^{2} + y^{2} = \frac{1}{2}^{2} ax$ (iv) Special points on x and y -axis for the asteroid $x^{2} + y^{2} = \frac{1}{2}^{2} ax$ (iv) Special points on x and y -axis for the asteroid $x^{2} + y^{2} = \frac{1}{2}^{2} ax$ (iv) Special points on x and y -axis for the asteroid $x^{2} + y^{2} = \frac{1}{2}^{2} ax$ (iv) Special points on x and y -axis for the asteroid $x^{2} + y^{2} = \frac{1}{2}^{2} ax$ (iv) A curver $\frac{1}{2} x\lambda A \frac{1}{2} = \frac{1}{2} x\lambda A \frac{1}{2} = \frac{1}{2} \frac{1}{2} x\lambda A \frac{1}{2} = \frac{1}{2} \frac{1}{2} x\lambda A \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} x\lambda A \lambda A \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \lambda A \lambda $		find curl F.	(06 Marks)
a. Choose correct answers for the autonomag. i) If $I(x) = \int_{0}^{ x ^2-1} \frac{dx}{\log x} dx$ is $= \frac{I(x)}{6x} = $		PART – B	md Marks)
ii) The value of $\int \sin^4 x dx$ is $=$ $A) 3\pi/8$ B) $3\pi/16$ C) $3\pi^2/8$ D) Zero iii) A curve $r = a$ ($1 + \cos \theta$) has the length on x-axis (the initial line) $A = a + b + b + b + b + b + b + b + b + b +$	a.	Choose correct answers for the following:	14.2 3.44.00.7
iii) A curver = a (1 + cos0) has the length on x-axis (the initial line) A) a B) 2a C) 2a D) 3a iv) Special points on x and y-axis for the asteroid $x^2 - y^2 - y^2 - a^2$ are A) a B) 2b C) 2b D) ±4a B) ±2a C) ±3a D) ±4a			/(I+a)
b. Differentiate under the integral sign and hence evaluate the integration $\int_{0}^{\ln n^{-1}(as)} ds. \qquad (06 \text{ Marks})$ c. Evaluate $\int_{0}^{2} x^{2} \left[\sqrt{x_{10} - x^{2}} \right] ds \qquad (06 \text{ Marks})$ d. Trace the curve $r = a$ ($1 + \cos \theta$) and hence find the total length. a. Choose correct answers for the following: i) The solution of the differential equation $dydx = e^{xy}$ is A) $e^{x}e^{x}e^{-x} = c$ ii) If Mix, $yds + N(x, y) dy = 0$ is said to be exact then the condition is A) $\partial M(x) \neq N(x) = B$, $\partial M(x) \neq N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) \neq N(x) = N(x) = B$, $\partial M(x) = N($			
c. Evaluate $\int_{0}^{2} \sqrt{2} \sqrt{2} w - x^{2} dx$ (06 Marks) d. Trace the curve $r = a (1 + \cos \theta)$ and hence find the total length. (06 Marks) 1. The solution of the differential equation $dy/dx = e^{-x^{2}}$ is $A e^{-x^{2}} e^{-x^{2}} e^{-x^{2}} = C$ $A e^{x^{2}} e^{-x^{2}} e^{-x^{2}} = C$ $A e^{-x^{2}} e^{-x^{2}$		iii) A curve $r = a(1 + \cos\theta)$ has the length on x-axis (the initial line) : A) a _ B) 2a _ C) -2a iv) Special points on x and y-axis for the asteroid $x^{2+} = y^{2+3} = a^{2+1}$ are : A) $\pm a$ _ B) $\pm 2a$ _ C) $\pm 3a$	D) 3a D) ±4a
d. Trace the curve $\mathbf{r} = \mathbf{a} (1 + \cos \theta)$ and hence find the total length. a. Choose correct answers for the following: i) The solution of the differential equation $\mathbf{d} \cdot \mathbf{d} \mathbf{x} = \mathbf{c}^{-\kappa}$ is $A) e^{\kappa} e^{\kappa} = \mathbf{c}$ i) If $\mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{x} + \mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{y} = 0$ is said to be exact then the condition is $A) e^{\kappa} e^{\kappa} = \mathbf{c}$ ii) If $\mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{x} + \mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{y} = 0$ is said to be exact then the condition is $A) e^{\kappa} e^{\kappa} = \mathbf{c}$ ii) If $\mathbf{m}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{x} + \mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{y} = 0$ is said to be exact then the condition is $A) e^{\kappa} e^{\kappa} = \mathbf{c} = \mathbf{c}$ iii) The integrating factor for $(\mathbf{x} - \mathbf{z})^{\kappa} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} d$	b.	Differentiate under the integral sign and hence evaluate the integration $\int_{0}^{\tan^{-x}(4x^2)} \frac{dx}{x(1+x^2)} dx$	(04 Marks)
d. Trace the curve $\mathbf{r} = \mathbf{a} (1 + \cos \theta)$ and hence find the total length. a. Choose correct answers for the following: i) The solution of the differential equation $\mathbf{d} \cdot \mathbf{d} \mathbf{x} = \mathbf{c}^{-\kappa}$ is $A) e^{\kappa} e^{\kappa} = \mathbf{c}$ i) If $\mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{x} + \mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{y} = 0$ is said to be exact then the condition is $A) e^{\kappa} e^{\kappa} = \mathbf{c}$ ii) If $\mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{x} + \mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{y} = 0$ is said to be exact then the condition is $A) e^{\kappa} e^{\kappa} = \mathbf{c}$ ii) If $\mathbf{m}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{x} + \mathbf{M}(\mathbf{x}, \mathbf{y}) \mathbf{d} \mathbf{y} = 0$ is said to be exact then the condition is $A) e^{\kappa} e^{\kappa} = \mathbf{c} = \mathbf{c}$ iii) The integrating factor for $(\mathbf{x} - \mathbf{z})^{\kappa} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} \mathbf{d} d$	e,	Evaluate $\int_{-\infty}^{\infty} x^2 \left(\sqrt{z_{ax} - x^2} \right) dx =$	(06 Marks)
a. Choose correct answers for the following: i) The solution of the differential equation $\frac{1}{2}$ 1	d		
 j) The solution of the differential equation dy/dx = e⁻¹/8 A) e⁻²e⁻² = c B) e⁻²e⁻²e⁻² = c B) e⁻²e⁻²e⁻² = c B) e⁻²e⁻²e⁻² = c C) e⁻²e⁻²e⁻² = c C) A⁻¹e⁻²e⁻²e⁻²e⁻²e⁻²e⁻²e⁻²e⁻²		Chaose correct answers for the following:	(04 Marks)
ii) If $M(x, y)dx + N(x, y) dy = 0$ is said to be exact then the condition is A) $A(M/2y \neq N)(2x = B) \partial M/2y = \partial N/2x = B) \partial M/2y = \partial N/2x = A \log y = B) e CO(1/y = D) y + 1 iv) For r = 16), the replacement of dr/d0 to find the orthogonal trajectory is A) -r \frac{dr}{d0} = B) -r^2 \frac{dr}{d0} = C) -r^2 \frac{d\theta}{dr} = C $		i) The solution of the differential equation $dy/dx = e^{x}$ is $\frac{1}{(x^2+a^2)} = a$ $\frac{1}{(x^2+a^2)} = a$	
iii) The integrating factor for $(x-2y)$ dy/dx = y is $LF = (\lambda) \log y$ B) $e^{-(\lambda)} (y) = (\lambda) \log x$ B) $e^{-(\lambda)} ($		A) e.e. C	
iv) For $r = f(B)$, the replacement of drid0 to find the orthogonal trajectory is $A - r \frac{dr}{d0} = B - r \frac{dr}{d0} = C - r \frac{d\theta}{dr} = D - r \frac{d\theta}{dr}$ b. Solve $(4x + 6y + 5) dy = (3y - 2x + 4) dx$. (04 Marks) (66 Marks) d. Find the orthogonal trajectory of the system of confocal conics $x^2/(a^2 + \lambda) + y^2/(b^2 + \lambda) = 1$ where λ is the parameter. (06 Marks) i) The system of linear equations is said to be consistent then the relation between $R(A)$ and $R(A : B)$ in $AX = B$ is $A = A + A + A + A + A + A + A + A + A + $		A) $\partial M/\partial y \neq \partial N/\partial x$ B) $\partial M/\partial y = \partial N/\partial x$ C) $\partial M/\partial y \geq \partial N/\partial x$ D) $M = N$	
b. Solve $(4x + 6y + 5) dy = (3y + 2x + 4) dx$. (04 Marks) Solve $dy/dx + x \sin 2y = x' \cos y$. (05 Marks) (06 Marks) (07 Marks) (08 Marks) (08 Marks) (09 Ma		iii) The integrating factor for $(x + 2y^2) dy/dx = y$ is $I.F = $ A) $\log y$ B) c C) I/y	D) y + 1
 b. Solve (4x + 6y + 5) dy = (3y - 2x + 4) dx. (65 Marks) Solve dy/dx + x sin2y = x cos y. (a) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (a) (b) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (b) (b) Marks) (c) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (b) Marks) (c) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (b) Marks) (b) Find the matrix A =		iv) For $r = f(\theta)$, the replacement of dr/d θ to find the orthogonal trajectory is	
 b. Solve (4x + 6y + 5) dy = (3y - 2x + 4) dx. (65 Marks) Solve dy/dx + x sin2y = x cos y. (a) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (a) (b) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (b) (b) Marks) (c) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (b) Marks) (c) Find the orthogonal trajectory of the system of confocal conics x²/(a²+λ) + y²/(b²+λ) = 1 where λ is the parameter. (b) Marks) (b) Find the matrix A =		A) $-r\frac{dr}{d\theta}$ B) $-r^2\frac{dr}{d\theta}$ C) $-r^2\frac{dr}{dr}$ D) $-r\frac{dr}{dr}$	
 d. Find the orthogonal trajectory of the system of confocal cones x²(a+λ) + y²(b+λ) where λ is the palameter. (06 Marks) (04 Marks) (05 Marks) (05 Marks) (06 Marks) (06 Marks) (07 Marks) (08 Marks) (08 Marks) (09 Marks		Solve $(4x + 6y + 5) dy = (3y - 2x + 4) dx$.	(06 Marks)
a. Choose correct answers for the following: i) The system of linear equations is said to be consistent then the relation between R(A) and R(A:B) in AX = B is is A)R(A) ≥ R(A:B) B) R(A) ≤ R(A:B) C) R(A) ≠ R(A:B) D) R(A) = R(A:B) ii) The rank of the matrix A = \begin{cases} 2 & 3 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 4 & 15 & -1 & 15 & -1 & 15 & -1 & 15 & -1 & 15 & -1 & 15 & -1 & 15 & -1 & -1		Solve dy $ax + x \sin(2y - x) \cos y$. Find the orthogonal trajectory of the system of confocal conics $x^2/(a^2 + \lambda) + y^2/(b^2 + \lambda) = 1$ where λ is the	e parameter.
 a. Choose correct answers for the following: i) The system of linear equations is said to be consistent then the relation between R(A) and R(A,B) in AX = B is i A) R(A) > R(A;B) ii) The rank of the matrix A =			100 100 100 100 100 100 100 100 100 100
 ii) The rank of the matrix A =	a,	Choose correct answers for the following:	
 iii) A square matrix is said to be symmetric matrix is		is $A \setminus R(A) > R(A \mid B)$ B) $R(A) < R(A \mid B)$ C) $R(A) \neq R(A \mid B)$ D) $R(A) = R(A \mid B)$	R(A:B)
 iii) A square matrix is said to be symmetric matrix is		ii) The rank of the matrix $A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 4 \\ 1 & -11 & 14 \end{bmatrix}$ is : A) 0 B) 1 C) 2 D) 3	
 iv) In Gauss elimination method the system of equations is transformed into an A) Row matrix b. Find the rank of the matrix A =		iii) A square matrix is said to be symmetric matrix is $A : A : a_{ij} = a_{ij}$ $B : a_{ij} > a_{ij}$ $C : a_{ij} < a_{ij}$	$\mathbf{o}_{\mathbf{i}_{\mathbf{i}_{\mathbf{i}}}}=\mathbf{-a}_{\mathbf{i}_{\mathbf{i}}}$
 A) Row matrix B) Column matrix C) Null matrix D) Opper mangular matrix Eind the rank of the matrix A = (04 Marks) c. Investigate the value of λ and μ, so that the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8, 2x + 3y + λz = μ have i) Unique solution: ii) No solution: iii) An infinite number of solutions. (06 Marks) d. Solve the system of equations by Gauss Jordon method: 2x+5y+7z = 52, 2x+y-z = 0, x+y+z = 9. i) Vectors x₁, x₂, x₁ are said to be in a relation k₁x₁ + x₂k₂ + k₁x₁ + + k₂x₁ with k₁, k₂ k₂ are the scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent D) Inconsistent ii) A matrix A is called orthogonal if: A) A = A' B) A/A' = 1 C) AA' = 1 D) A'/A = 1 iii) Eigen values of the matrix A = (2 + 4) are (2 + 4) 1 3 B) 1.4 C) 1.5 D) 1.6 iv) A homogeneous polynomial of second degree in n variables x₁, x₂ is called a A) Canonical form B) Linear form C) Exponential form D) Quadratic form b. Show that the transformation y₁ = 2x₁ + x₂ + x₁, y₂ = x₁ + x₂ + 2x₃, y₃ = x₁ - 2x₃ is regular, write down the inverse transformation. c. Find the Eigen values and the corresponding Eigen vectors of the matrix A = (1 + 3) 1 + (06 Marks) 		iv) In Gauss elimination method the system of equations is transformed into an	naulae matrix
 c. Investigate the value of λ and μ, so that the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8, 2x + 3y + λz = μ have i) Unique solution: ii) No solution: iii) An infinite number of solutions. (06 Marks) d. Solve the system of equations by Gauss Jordon method: 2x+5y+7z = 52, 2x+y-z = 0, x+y+z = 9. (06 Marks) a. Choose correct answers for the following: i) Vectors x₁, x₂, x₃ are said to be in a relation k₁x₁ + x₂k₂ + k₃x₁ + + k₁x₂ with k₁, k₂ k₂ are the scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent D) Inconsistent ii) A matrix A is called orthogonal if: A) A = A' B) A/A' = 1 C) AA' = 1 D) A'/A = 1 iii) Eigen values of the matrix A = are in a relation k₁x₂ + x₁x₂ is called a in a relation k₂x₃ + x₂ is called a in a relation k₃x₄ in a relation k₄x₅ in a relation k₄x₅ in a relation k₅x₅ in a relation k₅x₅ in a relation k₆x₅ in a relation k₇x₅ in a relation k₇x₅ in a relation k₇x₇ in a relation k₇x₇		A) ROW mairix B) Column mairix	nggiai maurx
 c. Investigate the value of λ and μ, so that the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8, 2x + 3y + λz = μ have i) Unique solution: ii) No solution: iii) An infinite number of solutions. (06 Marks) d. Solve the system of equations by Gauss Jordon method: 2x+5y+7z = 52, 2x+y-z = 0, x+y+z = 9. (06 Marks) a. Choose correct answers for the following: i) Vectors x₁, x₂, x₃ are said to be in a relation k₁x₁ + x₂k₂ + k₃x₁ + + k₁x₂ with k₁, k₂ k₂ are the scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent D) Inconsistent ii) A matrix A is called orthogonal if: A) A = A' B) A/A' = 1 C) AA' = 1 D) A'/A = 1 iii) Eigen values of the matrix A = are in a relation k₁x₂ + x₁x₂ is called a in a relation k₂x₃ + x₂ is called a in a relation k₃x₄ in a relation k₄x₅ in a relation k₄x₅ in a relation k₅x₅ in a relation k₅x₅ in a relation k₆x₅ in a relation k₇x₅ in a relation k₇x₅ in a relation k₇x₇ in a relation k₇x₇		2 5 -4 6	(04 Marks)
 c. Investigate the value of λ and μ, so that the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8, 2x + 3y + λz = μ have i) Unique solution: ii) No solution: iii) An infinite number of solutions. (06 Marks) d. Solve the system of equations by Gauss Jordon method: 2x+5y+7z = 52, 2x+y-z = 0, x+y+z = 9. (06 Marks) a. Choose correct answers for the following: i) Vectors x₁, x₂, x₃ are said to be in a relation k₁x₁ + x₂k₂ + k₃x₁ + + k₁x₂ with k₁, k₂ k₂ are the scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent D) Inconsistent ii) A matrix A is called orthogonal if: A) A = A' B) A/A' = 1 C) AA' = 1 D) A'/A = 1 iii) Eigen values of the matrix A = are in a relation k₁x₂ + x₁x₂ is called a in a relation k₂x₃ + x₂ is called a in a relation k₃x₄ in a relation k₄x₅ in a relation k₄x₅ in a relation k₅x₅ in a relation k₅x₅ in a relation k₆x₅ in a relation k₇x₅ in a relation k₇x₅ in a relation k₇x₇ in a relation k₇x₇	b,	Find the rank of the matrix $A = \begin{bmatrix} -1 & -3 & 2 & -2 \end{bmatrix}$	9800
d. Solve the system of equations by Gauss Jordon method: $2x+5y+7z=52$, $2x+y-z=0$, $x+y+z=9$. a. Choose correct answers for the following: i) Vectors $x_1, x_2, x_3 = x_1$ are said to be a relation $x_1, x_2, x_3 = x_4$ are the scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent D) Inconsistent ii) A matrix A is called orthogonal if: A) $A = A'$ B) $A/A' = 1$ C) $AA' = 1$ D) $A'/A = 1$ iii) Eigen values of the matrix $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$ are A) $A = 1$ are A) $A = 1$ C) $AA' = 1$ D) $A'/A = 1$ iv) A homogeneous polynomial of second degree in n variables $x_1, x_2 = x_2$ is called a A) Canonical form B) Linear form C) Exponential form D) Quadratic form b. Show that the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular, write down the inverse transformation.			Na - u baca
 d. Solve the system of equations by Gauss Jordon method: 2x+5y+7z = 52, 2x-y-2 = 0, x-y-z = 9. a. Choose correct answers for the following: Vectors x₁, x₂, x₃, are said to be in a relation k₁x₁ + x₂k₂ + k₁x₁ + + k₂x₃ with k₁, k₂ k₃ are the scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent D) Inconsistent A matrix A is called orthogonal if: A) A = A' B) A/A' = 1 C) AA' = 1 D) A'/A = 1 Eigen values of the matrix A = are	C.	Investigate the value of λ and μ , so that the equations $2x + 3y + 5z = 9$, $7x + 3y - 2z - \delta$, $2x + 3y - \delta$	(06 Marks)
a. Choose correct answers for the following: i) Vectors x_1, x_2, x_3 — are said to be — in a relation $k_1x_1 + k_2k_2 + k_3x_3 + \dots + k_nx_n$ with $k_1, k_2 + \dots + k_nx_n$ in $k_1, k_2 + \dots + k_nx_n$ with $k_1, k_2 + $	a	Solve the system of equations by Gauss Jordon method: $2x+5y+7z=52$, $2x+y-z=0$, $x-y+z=9$.	(06 Marks)
i) Vectors x_1, x_2, x_3 — are said to be — in a relation $x_1, x_2 + x_2 + x_3 + x_4 + x_4 + x_5 + $		and the contract of the contra	
scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent D) Archiver A matrix A is called orthogonal if: A) $A = A'$ B) $A/A' = 1$ C) $AA' = 1$ D) $A'/A = 1$ iii) Eigen values of the matrix $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$ are A) $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$ are A) A homogeneous polynomial of second degree in n variables x_1, x_2 is called a A) Canonical form B) Linear form C) Exponential form D) Quadratic form Show that the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular, write down the inverse transformation. c. Find the Eigen values and the corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix}$ (06 Marks)	- 04.		Inconsistent
iii) Eigen values of the matrix $A = \begin{bmatrix} 2 & 4 \\ 1 & 5 \end{bmatrix}$ are : A) 1, 3 _ B) 1, 4 _ C) 1, 5 _ D) 1, 6 iv) A homogeneous polynomial of second degree in n variables x_1, x_2, \dots is called a A) Canonical form B) Linear form C) Exponential form D) Quadratic form Show that the transformation $y_1 = 2x_1 + x_2 + x_3$, $y_2 = x_1 + x_2 + 2x_3$, $y_3 = x_1 - 2x_3$ is regular, write down the inverse transformation. c. Find the Eigen values and the corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix}$ (06 Marks)		scalars not all zero: A) Linearly independent B) Linearly dependent C) Consistent B) Linearly dependent C) $A A' = 1$ D) $A' A' = 1$	THEORSISTER
 iv) A homogeneous polynomial of second degree in n variables x₁, x₂ is called a A) Canonical form B) Linear form C) Exponential form D) Quadratic form b. Show that the transformation y₁ = 2x₁ + x₂ + x₁, y₂ = x₁ + x₂ + 2x₃, y₃ = x₁ - 2x₃ is regular, write down the inverse transformation. (04 Marks) c. Find the Eigen values and the corresponding Eigen vectors of the matrix A =		ii) A matrix A is called orthogonal it: A) A = A B) A A 1 C / A C C C C C C C C C C C C C C C C C	
 iv) A homogeneous polynomial of second degree in n variables x₁, x₂ is called a A) Canonical form B) Linear form C) Exponential form D) Quadratic form b. Show that the transformation y₁ = 2x₁ + x₂ + x₁, y₂ = x₁ + x₂ + 2x₃, y₃ = x₁ - 2x₃ is regular, write down the inverse transformation. (04 Marks) c. Find the Eigen values and the corresponding Eigen vectors of the matrix A =		iii) Eigen values of the matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 5 \end{bmatrix}$ are : A) 1. 3 B) 1. 4 C) 1. 5 D) 1. 6	
 A) Canonical form B) Linear form C) Exponential form D) Quadratic form Show that the transformation y₁ = 2x₁ + x₂ + x₁, y₂ = x₁ + x₂ + 2x₃, y₃ = x₁ - 2x₃ is regular, write down the inverse transformation. c. Find the Eigen values and the corresponding Eigen vectors of the matrix A =		iv) A homogeneous polynomial of second degree in n variables x ₁ , x ₂ is called a	ratic form
transformation. c. Find the Eigen values and the corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 1 & 5 & 1 \end{bmatrix}$. (06 Marks)		A) Canonical form B) Linear form C) Exponential form D) Quad-	own the inverse
c. Find the Eigen values and the corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{bmatrix}$ (06 Marks)	b	Show that the transformation $y_1 - 2x_1 + x_2 + x_3 + x_4 + x_2 + x_4 + x_4 + x_5 $	(04 Marks)
Perhaps the quadratic form $x^2 + 5y^2 + z^2 + 2yz + 6xz + 2xy$ to the canonical form and specify the matrix of	c	Find the Eigen values and the corresponding Eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 5 & 1 \end{bmatrix}$.	(06 Marks)
	4	Posture the quadratic form $x^2 + 5y^2 + z^2 + 2yz + 6xz + 2xy$ to the canonical form and specify	y the matrix of

2 of 2

5

transformation.