รายงานการนำเสนอและเปรียบเทียบค่าใช้จ่าย ระหว่างการใช้ระบบรดน้ำต้นไม้อัตโนมัติ แทนการใช้คนสวนและรถบรรทุกน้ำ

จัดทำโดย

กลุ่มบริษัทกรีนกรุ๊ป บริษัท กรีน คิสคัฟเวอรี่ จำกัด บริษัท วอเตอร์โปร (ประเทศไทย) จำกัด

บทน้ำ

น้ำมีความจำเป็นอย่างสูงสุดสำหรับการหล่อเลี้ยงพืชพรรณในสวนให้ยั่งยืนสวยงาม แม้ว่าปัจจุบันมีการติดตั้งระบบให้น้ำในงานจัดสวนจำนวนมาก แต่มีไม่มากนักที่มีการออกแบบ ระบบให้น้ำในปริมาณที่สภาพดินรับไว้ได้พอดี และตรงตามความต้องการของพืช โดยที่ไม่ สูญเสียน้ำไปโดยเปล่าประโยชน์

สวนที่จัดเพื่อความรื่นรมย์และมีการติดตั้งระบบให้น้ำที่ถูกต้อง ต้นไม้จะได้รับน้ำอย่าง พอเหมาะ ลดค่าใช้จ่ายค่าแรงงานรดน้ำ ลดปริมาณการใช้น้ำที่ไม่จำเป็น ลดเวลาในการคูแลพืช พรรณ ทำให้เจ้าของบ้านมีเวลาพักผ่อนหรือทำกิจกรรมอื่นๆ ได้มากขึ้น นี่จึงเป็นเป้าหมายสำคัญ ของการออกแบบระบบให้น้ำอย่างแท้จริง

จากหนังสือระบบให้น้ำในสวน

วัตถุประสงค์ของการจัดทำรายงานชุดนี้

- การศึกษาเบื้องลึกของค่าใช้จ่าย การทำตารางเปรียบเทียบระหว่างการใช้ระบบรดน้ำ
 อัตโนมัติและการใช้คนรดน้ำหรือรถบรรทุกน้ำ เพื่อหาจุดคุ้มทุน
- ❖ เพิ่มประสิทธิภาพการรดน้ำ ควบคุมปริมาณน้ำที่ใช้ให้เหมาะสมกับความต้องการของ
 พืช ลดปัญหาการรดน้ำมากหรือน้อยเกินไป
- ◆ ประหยัดเวลาและแรงงาน ลดภาระงานของคนสวนและลดความจำเป็นในการใช้
 รถบรรทุกน้ำ ทำให้สามารถนำแรงงานไปใช้กับงานดูแลสวนด้านอื่น ๆ ได้
- ❖ ลดต้นทุนการดำเนินงาน ลดค่าใช้จ่ายด้านแรงงาน ค่าน้ำมันเชื้อเพลิง และค่าบำรุงรักษา รถบรรทุกน้ำ
- ❖ ลดการสูญเสียน้ำ ระบบอัตโนมัติสามารถกำหนดเวลาและปริมาณน้ำให้เหมาะสม ลด การระเหยหรือใหลทิ้งโดยไม่จำเป็น
- ❖ เพิ่มความสม่ำเสมอในการรดน้ำ ควบคุมการรดน้ำให้เป็นไปตามตารางเวลาที่แน่นอน
 ช่วยให้พืชได้รับน้ำอย่างสม่ำเสมอ ส่งผลดีต่อการเจริญเติบโต
- ❖ รองรับการขยายพื้นที่สีเขียว สามารถติดตั้งระบบให้ครอบคลุมพื้นที่กว้างขึ้นได้โดยไม่ ต้องเพิ่มแรงงานหรือทรัพยากรเพิ่มเติม
- ❖ เป็นมิตรกับสิ่งแวดล้อม ลดการใช้พลังงานเชื้อเพลิงจากรถบรรทุกน้ำ ลดการใช้
 ทรัพยากรน้ำอย่างสิ้นเปลือง และช่วยอนุรักษ์ระบบนิเวศ

ภาพรวมของ LEED v4 และเครดิตประสิทธิภาพการใช้น้ำกลางแจ้ง

เป็นระบบการให้คะแนนที่คิดค้นโดยสภาอาคารสีเขียวแห่งสหรัฐอเมริกา (USGBC) เพื่อ ประเมินประสิทธิภาพด้านสิ่งแวดล้อมของอาคารตลอดอายุการใช้งานและเพื่อกระตุ้นให้เกิด การเปลี่ยนแปลงในตลาดสู่การออกแบบที่ยั่งยืน ระบบสมัครใจนี้ใช้คะแนนเป็นหลัก เพื่อให้ โครงการต่างๆ ได้รับคะแนนสำหรับการก่อสร้างอาคารและสถานที่ที่เป็นมิตรต่อสิ่งแวดล้อม

เนื่องจาก **LEED v4** ครอบคลุมประเภทอาคารและหมวดหมู่ที่หลากหลาย เพื่อ วัตถุประสงค์ของบทความนี้ เราจึงเน้นเฉพาะการเปลี่ยนแปลงในหมวดหมู่ประสิทธิภาพการใช้ น้ำเท่านั้น เพื่อทำความเข้าใจว่า **LEED v4** ทำงานอย่างไร ต่อไปนี้คือคำอธิบายสั้นๆ เกี่ยวกับ หมวดหมู่เครดิต ระบบการให้คะแนนและประเภทโครงการ คะแนนสามารถได้รับจากหมวดหมู่ เครดิต 9 หมวดหมู่ โดยหมวดหมู่ที่เราจะได้รับคือ ประสิทธิภาพการใช้น้ำ

โครงการ LEED จะได้รับคะแนนหนึ่งในสี่ระดับจากจำนวนคะแนนที่ได้รับในหมวด เครดิตเหล่านี้ LEED CERTIFICATE, LEED SILVER, LEED GOLD, LEED PLATINUM

หมวดหมู่เครดิตประสิทธิภาพการใช้น้ำ LEED v4 ข้อกำหนดเบื้องต้นและข้อกำหนด เครดิตสำหรับหมวดหมู่ประสิทธิภาพการใช้น้ำใน LEED v4 หมวดหมู่เครดิตนี้ได้รับการขยาย ขอบเขตให้รวมถึงการใช้น้ำจากกระบวนการของอาคาร รวมถึงการเปลี่ยนแปลงประสิทธิภาพ การใช้น้ำกลางแจ้ง มีคะแนนรวมทั้งหมด 11 คะแนน ซึ่งระบบรดน้ำต้นไม้ได้สูงสุด 2 คะแนน

การลดการใช้น้ำในงานพื้นที่กลางแจ้ง ไม่จำเป็นต้องมีระบบรดน้ำแต่พืชสามารถอยู่รอด ได้ตลอดระยะเวลาสูงสุด 2 ปี ได้ 2 คะแนน หากมีระบบรดน้ำต้นไม้แล้วประหยัดน้ำ 30% ได้ 1 คะแนน ประหยัดน้ำได้ 40% ได้ 2 คะแนน หากเป็นคนสวนรดน้ำจะไม่ได้รับคะแนน

ตัวเลขที่ถูกมองข้าม

คนกรุงเทพฯ ใช้น้ำเฉลี่ยวันละ 200 ลิตร ขณะที่คนต่างจังหวัด ใช้เพียงวันละ 50 ลิตร ซึ่ง ความต้องการใช้สอยน้ำเพื่อบริโภค อาบน้ำ ซักผ้า และอื่นๆ จะแตกต่างกันไปตามฐานะและ ความเป็นอยู่ของผู้บริโภค ตลอดจนลักษณะการใช้สอยของอาคาร

ซึ่งหากจากข้อมูลข้างต้นแล้ว บ้านเดี่ยวในกรุงเทพฯและปริมณฑล 1 หลังพื้นที่ประมาณ 270 ตารางเมตร โดยจะแบ่งพื้นที่สวนเป็น 70 ตารางเมตร ครอบครัว 3 คน จะใช้น้ำวันละ ประมาณ 600 ลิตร จึงแบ่งเป็นกิจกรรมตามตารางคังนี้

กิจกรรม	จำนวน	หน่วย
อาบน้ำ	100	ถิตร
ซักผ้า	150	ลิตร
ล้างจาน	20	ลิตร
ดื่มและทำอาหาร	10	ลิตร
รคน้ำต้นไม้	350	ลิตร

สนามหญ้า 1 ไร่หรือ 1,600 ตารางเมตร จะใช้น้ำประมาณ 8,000 ถิตรต่อวัน หรือ 5 ถิตรต่อ 1 ตารางเมตร ซึ่งบ้านพื้นที่ 270 ตารางเมตรจะแบ่งเป็นพื้นที่บ้าน 200 ตารางเมตร และเป็น พื้นที่สวน 70 ตารางเมตร พื้นที่ดังกล่าวจะใช้น้ำ 5 ถิตร x 70 ตารางเมตร = 350 ถิตร ใช้เวลารดน้ำ มากกว่า 30 นาที โดยจะสรุปเป็นแผนภูมิวงกลมในหน้าถัดไป

หากสรุปจากแผนภูมิวงกลมจะสังเกตได้ว่า การรคน้ำต้นไม้จะใช้น้ำมากที่สุดในทุกๆ กิจกรรมซึ่งแบ่งเป็นร้อยละ 55 และมากกว่าการอาบน้ำและซักผ้ารวมกัน ซึ่งการรคน้ำโคยไม่มี ระบบรคน้ำต้นไม้อัตโนมัติอาจจะทำให้ตัวเลขเพิ่มขึ้นหรือลดลง

หากตัวเลขเพิ่มขึ้นหมายถึงค่าน้ำค่าไฟที่เพิ่มขึ้น น้ำอาจจะเกินความจำเป็นและระเหยไม่ ทันอาจทำให้รากเฉาหรือตายได้

หากตัวเลขลดลงอาจจะหมายถึงการประหยัดกว่า แต่หากมองถึงปัจจัยอื่นๆ เช่น หญ้า หรือพืชได้รับน้ำไม่พอจึงทำให้ต้นไม้เสียหายหรือตายจึงต้องมีงบประมาณในการเปลี่ยนแปลง สวนเพิ่มขึ้น

ปัจจัยที่สำคัญที่สุดก็คือค่าความเสียเวลา การรดน้ำต้นไม้ในพื้นที่ 70 ตารางเมตรใน ปริมาณน้ำที่ 350 ลิตรอาจจะใช้เวลามากสูงสุดถึง 35 นาที ซึ่งสามารถใช้เวลาที่เสียไปตรงนี้ทำ กิจกรรมอื่นที่เป็นประโยชน์ได้

ความหมายและความสำคัญของการให้น้ำพืช

ความหมายของการให้น้ำพืช

การให้น้ำแก่พืช หมายถึง การเติมน้ำลงในช่องว่างระหว่างเม็ดคิน เพื่อให้ดินมีความชุ่มชื้น พอเหมาะกับการเจริญเติบโตของพืช น้ำที่เติมลงไปจะต้องไม่มากเกินไปจนเป็นอันตรายต่อราก พืชโดยทั่วไป น้ำที่เติมลงไปจะต้องมีสัดส่วนที่เหมาะสมหรือประมาณร้อยละ 25 ของ องค์ประกอบของดินที่ดี

วัตถุประสงค์ของการให้น้ำพืช

เพื่อให้ดินมีความชุ่มชื้น พอเหมาะกับการเจริญเติบโตของพืชพืชสามารถนำไปใช้ได้ทั้งหมด น้ำ ยังช่วยชะล้างหรือควบคุมความเข้มข้นของเกลือในดิน บริเวณเขตรากพืชไม่ให้มีความเข้มข้น มากเกินไปจนเป็นอันตรายต่อพืช และเพื่อให้ดินอ่อนนุ่มสะดวกต่อการไถเตรียมดินและรากพืช สามารถขยายตัวได้ดีในดิน

ความสำคัญของการให้น้ำพืช

เพื่อให้พืชมีน้ำใช้อย่างเพียงพอ และทันต่อความต้องการอยู่ตลอดเวลาที่ทำการเพาะปลูก ป้องกัน ความเสียหายของพืชจากการขาดน้ำและเพิ่มผลผลิตพืชไม่ชะงักการเจริญเติบโตจากการขาดน้ำ และช่วยเพิ่มประสิทธิภาพการใช้ปุ๋ยของพืช เนื่องจากรากพืชจะดูดซึมแร่ชาตุอาหารในรูปของ สารละลายซึ่งจำเป็นต้องใช้น้ำเป็นตัวทำละลาย

ประเภทการให้น้ำพืชที่หน่วยงานรัฐและเอกชนนิยมใช้ในปัจจุบัน

แรงงานคน

ในการทำงานของระบบต้องใช้แรงงานคน เดิน ใช้สายยางรดน้ำทั้งโครงการที่มีพื้นที่สีเขียวโดย ใช้สายยางเชื่อมกับจุดจ่ายน้ำที่ทางงานระบบน้ำได้ทำจุดเชื่อมต่อเอาไว้ให้ทีมงานสวน

ข้อดี ค่าใช้จ่ายครั้งแรกไม่สูงมาก การบำรุงรักษาที่ง่ายและค่าใช้จ่ายบำรุงรักษาไม่เยอะ

ข้อเสีย ค่าใช้จ่ายรายเคือนที่สูง ยิ่งพื้นที่ใหญ่ค่าใช้จ่ายยิ่งเยอะ แรงงานคนไม่สามารถควบคุม ประสิทธิภาพได้ ใช้เวลาการรดน้ำที่เยอะ การให้น้ำที่ไม่ครอบคลุมทั้งพื้นที่ สามารถสร้างความ เสียหายแก่พืชปลูกได้

รถบรรทุกน้ำ

เป็นการใช้งานที่หน่วยภาครัฐนิยมใช้มากที่สุด บริเวณเกาะกลางถนน สวนสาธารณะ โดยจะมี การเติมน้ำใส่รถที่มีขนาดตามความเหมาะสมตามพื้นที่ใช้งานและขับรถไปบริเวณที่มีพื้นที่สวน ข้อดี มีความรวดเร็วกว่าใช้คนรดน้ำหลายเท่าตัว การบำรุงรักษาอยู่ในระดับปานกลาง ข้อเสีย สามารถสร้างความเสียหายแก่พืชได้จากแรงดันน้ำที่มากเกินไป การรดน้ำที่ไม่ทั่วถึงและ ไม่สามารถควบคุมน้ำให้อยู่ในพื้นที่สีเขียวได้ ค่าใช้จ่ายซื้อหรือเช่ารถบรรทุกที่แพงกว่างาน ระบบหลายเท่า การจราจรติดขัดสามารถเกิดอุบัติเหตุกับผู้ใช้รถใช้ถนนได้

ระบบรดน้ำต้นไม้อัตโนมัติ

เป็นการใช้เทคโนโลยีมาควบคุมการรคน้ำต้นไม้แทนมนุษย์ 100% ต้องใช้หลักวิชาการในการ ออกแบบเพื่อคำนวณปริมาณน้ำที่ถูกต้องและแม่นยำที่สุด

ข้อดี ประหยัดน้ำ ประหยัดไฟ ประหยัดเวลา ประหยัดงบประมาณ สามารถรักษาสวนที่มีพันธุ์ ไม้ทุกประเภทได้อย่างมีประสิทธิภาพ การให้น้ำอย่างมีประสิทธิภาพ พื้นที่สีเขียวได้น้ำใน ปริมาณที่พันธุ์ไม้ต้องการ สามารถคำนวณค่าใช้จ่ายได้อย่างชัดเจน

ข้อเสีย การลงทุนมีค่าใช้จ่ายที่ค่อนข้างสูง ต้องมีการบำรุงรักษาบ่อยครั้งแล้วแต่สภาพน้ำ

อุปกรณ์หลักที่ใช้ในระบบรดน้ำต้นไม้

- 1. ท่อส่งน้ำ HDPE, PVC
- 2. เครื่องสูบน้ำ
- หัวฉีดรดน้ำ หัวสปริงเกลอร์
- 4. วาล์วไฟฟ้า
- 5. ตู้ควบคุมระบบรดน้ำแบบตั้งเวลาอัตโนมัติ

อุปกรณ์รองที่ใช้ในระบบรดน้ำต้นไม้

- 1. ข้อต่อระบบท่อส่งน้ำ เมื่อท่อส่งน้ำมีทางแยกหรือทางโค้ง
- 2. สายไฟฟ้าควบคุมวาล์ว
- 3. เครื่องกรองคักเศษตะกอนน้ำ
- 4. กล่องครอบวาลั๋ว
- 5. ชุดยกหัวสปริงเกลอร์
- 6. อุปกรณ์ข้อต่อระบบปั้ม
- เทคโนโลยีระบบน้ำ (ตัววัดปริมาณน้ำฝน, ควบคุมผ่านมือถือ)

แนวทางการวางหัวสปริงเกลอร์อย่างมีประสิทธิภาพ

- เลือกหัวสปริงเกลอร์ที่มีระยะฉีดเหมาะสมกับพื้นที่ เพื่อง่ายต่อการจัดการระบบโดยรวม
 อาทิเช่น การใช้รัศมีให้เหมาะสมกับพื้นที่
- การออกแบบตำแหน่งสปริงเกลอร์ควรให้ปลายน้ำชนกับหัวสปริงเกลอร์อีกฝั่งนึง เพื่อให้น้ำครอบคลุม 100% เผื่อกรณีของลมที่สามารถทำให้รัศมีลดลง (ตามภาพที่ 1)
- การออกแบบและวางหัวสปริงเกลอร์ควรวางเป็นรูปสีเหลี่ยมหรือสามเหลี่ยมเท่านั้น เพื่อ เพิ่มประสิทธิภาพและประหยัดอุปกรณ์สูงที่สุด (ตามภาพที่ 2)

ตารางเปรียบเทียบระหว่าง คนรดน้ำ รถบรรทุกรดน้ำ ระบบรดน้ำอัตในมัติ บนพื้นที่ 1 ไร่

หมายเหตุ

- 1. สนามหญ้า 1 ใร่ใช้ปริมาณน้ำ 8,000 ลิตร / วัน หรือ 5 ลิตรต่อตารางเมตร
- 2. หากใช้คน 1 คนในการรดน้ำจะใช้เวลารดน้ำนาทีละ 5 10 ตารางเมตร ซึ่ง 1 ไร่จะใช้ เวลาประมาณ 3 4 ชั่วโมง
- 3. หากใช้รถบรรทุกรคน้ำจะใช้เวลา 200-300 ลิตรต่อนาที ใช้เวลาทั้งหมด 32 นาที หากรวม การเคลื่อนย้ายตัวรถแล้วจะใช้ประมาณ 40 – 60 นาที / 1 ไร่
- 4. ระบบรคน้ำอัตโนมัติใช้เวลาอยู่ที่ 30 45 นาทีต่อ 1 ไร่ วาล์วไฟฟ้า 5 โซน ใช้เวลาโซนละ 8 - 9 นาที

แผนผังแสดงค่าใช้จ่ายโดยใช้คนสวนดูแล 100% ในพื้นที่ 1 ไร่

ต้นทุนคงที่ (FIXED COST) สำหรับคนงาน 2 คน

ลำคับ	คำอธิบาย	จำนวน	หน่วย	ราคาต่อหน่วย	ราคารวม
1	ปั๊มน้ำ Booster Pump 2HP	1	ชุค	45,000.00	45,000.00
2	ถังพักน้ำ 6000 ถิตร	2	ใบ	36,000.00	72,000.00
3	กุญแจไขก๊อก ทองเหลือง	2	ตัว	1,700.00	3,400.00
4	ก๊อกสนาม (ทองเหลือง)	13	ตัว	2,200.00	28,600.00
5	อุปกรณ์ท่อ	250	เมตร	35.00	8,750.00
6	ข้อต่อ	1	ชุค	3,500.00	3,500.00
7	สายยางรดน้ำต้นไม้ TOYOX 30 เมตร	2	เส้น	1,210.00	2,420.00
8	ค่าแรงติดตั้ง	1	งาน	35,000.00	35,000.00
		รวม			198,670.00

ต้นทุนผันแปร (Variable COST)

ลำคับ	คำอธิบาย	จำนวน	หน่วย	ราคา / หน่วย	ราคารวม
1	ค่าแรงคนสวน	2	คน	15,000.00	30,000.00
2	ค่าน้ำประปา	240	หน่วย	14.00	3,360.00
3	ค่าไฟ	220	หน่วย	4.40	968.00
4	ค่าบำรุงรักษา	200	ต่อเดือน	1.00	200.00
		รวม / เดือน			34,528.00

สรุปรายปี

ต้นทุนคงที่ (FIXED)	150,000.00
ต้นทุนผันแปร (VARIABLE)	414,336.00
รวมต่อปี	564,336.00

หมายเหตุ

ในความเป็นจริงต้องใช้คนสวนรคน้ำทั้งหมด 2 คนเพื่อลดเวลาการทำงานและไปทำงานในส่วนอื่นๆ

แผนผังแสดงค่าใช้จ่ายโดยใช้รถบรรทุกน้ำ ในพื้นที่ 1 ไร่

ต้นทุนคงที่ (FIXED COST)

ลำคับ	คำอธิบาย	จำนวน	หน่วย	ราคาต่อหน่วย	ราคารวม
1	รถบรรทุกน้ำ 12,000 ลิตร พร้อมสเปรย์	1	คัน	2,160,000.00	2,160,000.00
		รวม			2,160,000.00

ต้นทุนผันแปร (Variable COST)

ลำคับ	คำอธิบาย	จำนวน	หน่วย	ราคา / หน่วย	ราคารวม
1	ค่าแรงงาน (ขับ + คุมสเปรย์)	2	คน	12,000.00	24,000.00
2	ค่าน้ำมัน	90	ลิตร	34.5	3,105.00
3	ค่าน้ำประปา	240	ลิตร/เคือน	14.00	3,360.00
4	ค่าเสื่อมรถ น้ำมันเครื่อง เบรก	1	เดือน	5,000.00	5,000.00
		รวม / เดือน			35,465.00

สรุปรายปี

ต้นทุนคงที่ (FIXED)	2,160,000.00
ต้นทุนผันแปร (VARIABLE)	425,580.00
รวมต่อปี	2,585,580.00

หมายเหตุ

รถบรรทุกใช้เวลารดน้ำ 40 - 60 นาทีต่อการรดน้ำ 1 ไร่ ขึ้นอยู่กับสภาพจราจรหรือพื้นที่การเข้าถึง หรือ จำเป็นต้องประหยัดงบโดยใช้รถที่คันเล็กกว่า อาจจะต้องใช้เวลาการเติมน้ำอีก 15 - 30 นาทีต่อครั้ง ส่วนการรดน้ำประเภทนี้ไม่สามารถทำได้ทุกวัน อาจจะต้องรดน้ำเผื่อหลายวัน และใช้เวลาที่มากขึ้น

แผนผังแสดงค่าใช้จ่ายโดยใช้ระบบสปริงเกลอร์ 100% ในพื้นที่ 1 ไร่

ต้นทุนคงที่ (FIXED COST)

ลำคับ	คำอธิบาย	จำนวน	หน่วย	ราคาต่อหน่วย	ราคารวม
1	ปั๊มน้ำ 3 HP/220	1	ชุด	56,000.00	56,000.00
2	ถังพักน้ำ 6000 ลิตร	2	ใบ	36,000.00	72,000.00
3	ตู้ควบคุมระบบสปริงเกลอร์	1	ชุด	4,950.00	4,950.00
4	ตัววัดปริมาณน้ำฝน	1	ตัว	2,150.00	2,150.00
5	วาล์วไฟฟ้าขนาด 1"	5	ตัว	1,150.00	5,750.00
6	หัวสปริงเกลอร์ รัศมี 10 - 15 ม.	25	ชุด	1,270.00	31,750.00
7	อุปกรณ์ท่อ	350	เมตร	35.00	20,000.00
8	ข้อต่อ	1	ชุด	5,640.00	7,000.00
9	สายไฟ + ท่อร้อยสายไฟ	660	เมตร	33.00	21,780.00
10	ค่าแรงติดตั้ง	1	งาน	59,521.40	59,521.40
		รวม			280,901.40

ต้นทุนผันแปร (Variable COST)

ลำคับ	คำอธิบาย	จำนวน	หน่วย	ราคา / หน่วย	ราคารวม
1	ค่าแรงคนสวน (ใช้ทีมเคียวกัน)	0	คน	12,000.00	-
2	ค่าน้ำประปา	240.00	หน่วย	14.00	3,360.00
3	ค่าไฟ	150	หน่วย	4.40	660.00
4	ค่าซ่อมแซมระบบ	500.00	ต่อเดือน		500.00
		รวม / เดือน			4,520.00

สรุปรายปี

ต้นทุนคงที่ (FIXED)	280,901.40
ต้นทุนผันแปร (VARIABLE)	54,240.00
รวมต่อปี	335,141.40

ตัวอย่างการออกแบพื้นที่หญ้าขนาด 1 ไร่

หัวสปริงเกลอร์ Rain Bird รุ่น 5004 ทำรัศมีได้ 15 เมตร ใช้ปริมาณน้ำต่อหัวอยู่ที่ 10.2 ถิตรต่อนาที สนามหญ้า 1 ไร่ต้องการ 8,000 ถิตร พื้นที่ 1 ไร่ใช้หัวสปริงเกลอร์ 25 หัว จะได้น้ำ 225 ถิตร / นาที เปิดวาล์วละ 5 หัว วาล์วละ 8 นาที ต้องเปิดทีละวาล์วจะใช้เวลาทั้งหมด 40 นาที ในเวลา 40 นาทีใช้ไฟทั้งหมด 5 หน่วย / วัน ราคาค่าไฟหน่วยละ 4.4 บาท ตกวันละ 22 บาท 1 เดือนใช้ไฟเดือนละ 660 บาท

ตารางการใช้น้ำของหัวสปริงเกลอร์

Rotors 5000 Series

> Precip mm/h

Pressure psi	Nozzle	Radius ft.	Flow gpm	Precip In/h	Precip In/h
5	1.5	33	1.12	0.20	0.23
	2.0	35	1.50	0.24	0.27
	2.5	35	1.81	0.28	0.33
	3.0	36	2.26	0.34	0.39
	4.0	36	2.91	0.43	0.49
	5.0	37	3.72	0.52	0.60
	6.0	37	4.25	0.60	0.69
	8.0	33	5.90	1.26	1.50
5	1.5	34	1.35	0.22	0.26
-	2.0	36	1.81	0.27	0.20
	2.5	37	2.17	0.27	0.31
		38	2.17		
	3.0		3.50	0.36	0.42
	4.0	40		0.42	0.49
	5.0	41	4.47	0.51	0.59
	6.0	43	5.23	0.54	0.63
_	8.0	41	7.06	0.94	1.10
5	1.5	35	1.54	0.24	0.28
	2.0	37	2.07	0.29	0.34
	2.5	37	2.51	0.35	0.41
	3.0	39	3.09	0.37	0.43
	4.0	42	4.01	0.44	0.51
	5.0	43	5.09	0.48	0.56
	6.0	44	6.01	0.59	0.69
	8.0	44	8.03	0.92	1.06
5	1.5	35	1.71	0.27	0.31
	2.0	37	2.30	0.32	0.37
	2.5	37	2.76	0.39	0.45
	3.0	40	3.47	0.42	0.48
	4.0	42	4.44	0.48	0.56
	5.0	45	5.66	0.54	0.62
	6.0	50	6.63	0.51	0.59
	8.0	47	8.86	0.80	0.93
5	1.5	34	1.86	0.31	0.93
5	2.0	35	2.52	0.40	0.36
	2.5	37	3.01	0.42	0.49
	3.0	40	3.78	0.45	0.53
	4.0	42	4.83	0.53	0.61
	5.0	45	6.16	0.59	0.68
	6.0	50	7.22	0.55	0.64
	8.0	48	9.63	0.84	0.97

Precipitation rates based on half-circle operation

■ Square spacing based on 50% diameter of throw

▲ Triangular spacing based on 50% diameter of throw Performance data collected in zero wind conditions

Performance data derived from tests that conform with ASABE Standards; ASABE S398.1. See page 198 for complete ASABE Test Certification Statement.

2000 Serie	s Std. And	gle Rain C	urtain' N	lozzle i
Pressure bar	Nozzle	Radius m	Flow m³/h	Flow I/m
2.0	1.5	10.2	0.28	4.8
	2.0	10.8	0.36	6.0
	2.5	10.9	0.44	7.2
	3.0	11.2	0.55	9.0
	4.0	11.6	0.71	12.0
	5.0	12.1	0.91	15.0
	6.0	12.4	1.05	17.4
2.5	8.0	11.8	1.45	24.0
2.5	1.5	10.4	0.31	5.4
	2.0	11.0 11.3	0.41	6.6 8.4
	3.0	11.2	0.62	10.2
	4.0	12.3	0.02	13.2
	5.0	12.7	1.03	17.4
	6.0	13.2	1.21	20.4
	8.0	13.3	1.63	27.0
3.0	1.5	10.6	0.34	6.0
	2.0	11.2	0.45	7.8
	2.5	11.3	0.56	9.6
	3.0	12.1	0.69	11.4
	4.0	12.7	0.89	15.0
	5.0	13.5	1.13	18.6
	6.0	13.4	1.34	22.2
	8.0	13.4	1.79	30.0
3.5	1.5	10.7	0.37	6.0
	2.0	11.3	0.49	8.4
	2.5 3.0	11.3 12.2	0.60	10.2
	4.0	12.2	0.74	16.2
	5.0	13.7	1.23	20.4
	6.0	14.2	1.45	24.0
	8.0	14.9	1.93	32.4
4.0	1.5	10.6	0.40	6.6
acoustiti	2.0	11.1	0.52	9.0
	2.5	11.3	0.64	10.8
	3.0	12.2	0.80	13.2
	4.0	12.8	1.04	17.4
	5.0	13.7	1.32	22.2
	6.0	14.9	1.55	25.8
4.5	8.0	15.2	2.06	34.2
	1.5	10.4	0.42	7.2
	2.0	10.7	0.55	9.0
	2.5	11.3	0.68	11.4
	3.0	12.2	0.84	13.8
	4.0	12.8 13.7	1.10 1.40	18.0 23.4
	5.0 6.0	14.6	1.64	28.2

The Intelligent Use of Water."

ตารางเปรียบเทียบรายปีแต่ละชนิดภายในระยะเวลา 5 ปี ต้นทุนคงที่ FIXED COST

ปีที่	คนรคน้ำต้นไม้	รถบรรทุกรดน้ำ	ระบบอัตโนมัติ
1	39,734.00	432,000.00	56,180.28
2	39,734.00	432,000.00	56,180.28
3	39,734.00	432,000.00	56,180.28
4	39,734.00	432,000.00	56,180.28
5	39,734.00	432,000.00	56,180.28
รวม	198,670.00	2,160,000.00	280,901.40

ต้นทุนผันแปร VARIABLE COST

ปีที่	คนรดน้ำต้นไม้	รถบรรทุกรดน้ำ	ระบบอัตโนมัติ
1	414,336.00	425,000.00	54,240.00
2	422,622.72	433,500.00	59,664.00
3	431,075.17	442,170.00	60,748.80
4	439,696.68	451,013.40	62,376.00
5	448,490.61	460,033.67	64,003.20
รวม	2,156,221.18	2,211,717.07	301,032.00

ในระเวลา 5 ปี พื้นที่ 1 ไร่ใช้ค่าใช้จ่ายทั้งหมดดังนี้

	คนรดน้ำต้นไม้	รถบรรทุกรดน้ำ	ระบบฮัตโนมัติ
ทุนคงที่	198,670.00	2,160,000.00	280,901.40
ทุนผันแปร	2,156,221.18	2,211,717.07	301,032.00
รวมทั้งหมด	2,354,891.18	4,371,717.07	581,933.40

สรุป: ในพื้นที่ปลูกหญ้า 1 ไร่ ภายใน 5 ปีระบบรดน้ำต้นไม้สามารถคืนทุนให้กับผู้ประกอบการ อย่างเห็นได้ชัด

สรุป:

- 1. **คนรดน้ำต้นไม้** มีค่าใช้จ่ายคงที่ ที่ต่ำที่สุด แต่จะมีต้นทุนผันแปรที่สูงมากกว่าหลายเท่าตัว และจะยิ่ง สูงขึ้นเมื่อผ่านไปหลายปี
- <u>2. รถบรรทุกรดน้ำ</u> จะมีค่าใช้จ่ายสูงที่สุดในทุกประเภท เป็นประเภทที่ควรยกเลิกโดยเร็ว
- 3. ระบบรดน้ำต้นไม้ มีค่าใช้จ่ายต่ำที่สุด อาจจะมีต้นทุนคงที่ที่จะดูสูงกว่าคนรดน้ำ แต่หากเทียบกับ ค่าใช้จ่ายผันแปรแล้วนั้นจะต่ำกว่ามาก ควรนำมาเป็นแนวทางปฏิบัติเพื่อประโยชน์สูงสุด

ขอขอบคุณ

รายงานเล่มนี้เกิดขึ้นมาได้เป็นเพราะการแลกเปลี่ยนข้อมูล ที่ทางทีมภูมิสถาปนิก ทีมที่
ปรึกษา และทีมงานผู้ติดตั้ง เผชิญกับคำถามหรือประสบการณ์ ที่ทางเจ้าของหรือผู้มีอำนาจ
ตัดสินใจได้มีข้อสงสัยกับประโยชน์และงบประมาณลงทุนในระบบรดน้ำต้นไม้อัตโนมัติไม่ว่า
จะในระยะสั้นหรือระยะยาว ซึ่งทางผู้จัดทำทั้ง 2 คือ บริษัท กรีนดิสกัฟเวอรี่ จำกัด และ
บริษัท วอเตอร์โปร (ประเทศไทย) จำกัด ได้นำชุดข้อมูลชุดนี้จากความเป็นจริงที่ทางเราได้เก็บ
ข้อมูลเหล่านี้จากประสบการณ์ที่ผ่านมามากกว่า 25 ปี และสามารถแสดงให้เห็นถึงผลประโยชน์
สูงสุดให้กับทางเจ้าของหรือผู้มีอำนาจตัดสินใจ อีกทั้งยังช่วยรักษาสิ่งแวดล้อมที่ทั้งทาง
ภาครัฐบาลและภาคเอกชนกำลังมุ่งเน้นที่จะเปลี่ยนแปลง

ขอขอบคุณทีมงานภูมิสถาปนิก ทีมงานที่ปรึกษา และทีมงานผู้ติดตั้ง ที่เห็นความสำคัญ ของการประหยัดน้ำจากการใช้ระบบรดน้ำต้นไม้แทนที่การใช้แรงงานคนและรถบรรทุกรดน้ำ ขอให้ท่านสามารถนำความรู้ความเข้าใจในรายงานชุดนี้ เผยแพร่กับทีมงานและเจ้าของโครงการ เพื่อตระหนักถึงความสำคัญของการใช้น้ำและการลงทุนสืบไป

