MIPS Reference Data

1	

				_		
CORE INSTRUCTI	ON SE				OPCODE	
NAME, MNEMO	NIC	FOR- MAT			/ FUNCT (Hex)	
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}	
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}	
Add Imm. Unsigned	addiu	Ι	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}	
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}	
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}	
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c _{hex}	
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}	
Branch On Not Equa	bne	Ι	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$	
Jump	j	J	PC=JumpAddr	(5)	2_{hex}	
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}	
Jump Register	jr	R	PC=R[rs]		$0 / 08_{hex}$	
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}	
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}	
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{ m hex}$	
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f _{hex}	
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	$23_{ m hex}$	
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		$0/27_{ m hex}$	
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		$0/25_{ m hex}$	
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0/2a_{hex}$	
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a_{hex}	
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}	
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}	
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		$0 / 00_{ m hex}$	
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}	
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	$28_{ m hex}$	
Store Conditional	sc	Ι	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$	
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	$29_{\rm hex}$	
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$	
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}	
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$	
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{immediate[15]}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atom						
BASIC INSTRUCTI	ON EO	DMA	TC			

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	•
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

ARITHMETIC CORE INSTRUCTION SET

ARITHWETIC CO	TE IIV	JINU		OFCODE
				/ FMT /FT
		FOR-	-	/ FUNCT
NAME, MNEMC		MAT		(Hex)
Branch On FP True		FI	if(FPcond)PC=PC+4+BranchAddr (4)	11/8/1/
Branch On FP False	bc1f	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	11/8/0/
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	add.d	TIX	{F[ft],F[ft+1]}	11/11//0
FP Compare Single	cx.s*	FR	FPcond = (F[fs] op F[ft])? 1:0	11/10//y
FP Compare	cx.d*	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//v
Double			{F[ft],F[ft+1]})?1:0	
			==, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
	div.s	FK	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double		ED	{F[ft],F[ft+1]}	11/10/ /2
FP Multiply Single	muı.s	FR		11/10//2
FP Multiply Double	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
FP Subtract Single	sub.s	FR	{F[ft],F[ft+1]} F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract	Sub.S			11/10//1
Double	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[ft],F[ft+1]}$	11/11//1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP	IWCI	1		
Double	ldc1	I	F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned	multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith.	sra	R	$R[rd] = R[rt] \gg shamt$	0///3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP			M[R[rs]+SignExtImm] = F[rt]; (2)	
Double	sdc1	I	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	2
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME NU	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

OPCOD	ES. BASI	E CONVER	SI	ON. A	SCII	SYME	OLS		3	
MIPS	(1) MIPS	(2) MIPS		,-			ASCII		Hexa-	ASCII
opcode	funct	funct	Ri	nary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	-		mal	mal	acter	mal	mal	acter
(1)	s11	add.f	00	0000	0	0	NUL	64	40	(a)
(1)		sub.f		0001	1	1	SOH	65	41	Ã
j	srl	mul.f		0010	2	2	STX	66	42	В
jal	sra	div.f		0011	3	3	ETX	67	43	Č
beq	sllv	sqrt.f		0100	4	4	EOT	68	44	D
bne	0111	abs.f		0101	5	5	ENQ	69	45	E
blez	srlv	mov.f		0110	6	6	ACK	70	46	F
bgtz	srav	neg.f		0111	7	7	BEL	71	47	G
addi	jr	negy		1000	- 8	8	BS	72	48	H
addiu	jalr			1001	9	9	HT	73	49	I
slti	movz			1010	10	a	LF	74	4a	Ĵ
sltiu	movn			1011	11	b	VT	75	4b	K
andi	syscall	round.w.f		1100	12	c	FF	76	4c	L
ori	break	trunc.w.f		1101	13	d	CR	77	4d	M
xori	Dreak			1110	14		SO	78	4e	N
		ceil.w.f				e f	SI	79	4e 4f	O
lui	sync mfhi	floor.w.f		0000	15 16	10	DLE	80	50	P
(2)	mrni mthi							81		
(2)		_		0001	17	11	DC1		51	Q
	mflo	movz.f		0010	18	12	DC2	82	52	R
	mtlo	movn.f		0011	19	13	DC3	83	53	S
				0100	20	14	DC4	84	54	T
				0101	21	15	NAK	85	55	U
				0110	22	16	SYN	86	56	V
				0111	23	17	ETB	87	57	W
	mult			1000	24	18	CAN	88	58	X
	multu			1001	25	19	EM	89	59	Y
	div			1010	26	1a	SUB	90	5a	Z
	divu			1011	27	1b	ESC	91	5b	[
				1100	28	1c	FS	92	5c	/
				1101	29	1d	GS	93	5d]
			01	1110	30	1e	RS	94	5e	Ā
			01	1111	31	1f	US	95	5f	_
lb	add	cvt.s.f		0000	32	20	Space	96	60	
lh	addu	$\operatorname{cvt.d} f$		0001	33	21	!	97	61	a
lwl	sub		10	0010	34	22	"	98	62	b
lw	subu		10	0011	35	23	#	99	63	c
lbu	and	cvt.w.f	10	0100	36	24	\$	100	64	d
lhu	or		10	0101	37	25	%	101	65	e
lwr	xor		10	0110	38	26	&	102	66	f
	nor		10	0111	39	27	,	103	67	g
sb			10	1000	40	28	(104	68	h
sh			10	1001	41	29)	105	69	i
swl	slt			1010	42	2a	*	106	6a	i
SW	sltu			1011	43	2b	+	107	6b	k
				1100	44	2c	,	108	6c	1
				1101	45	2d	_	109	6d	m
swr			10	1110	46	2e		110	6e	n
cache				1111	47	2f	/	111	6f	0
11	tge	c.f.f		0000	48	30	0	112	70	р
lwc1	tgeu	c.un.f		0001	49	31	1	113	71	q
lwc2	tlt	c.eq.f		0010	50	32	2	114	72	r
pref	tltu	c.ueq.f		0011	51	33	3	115	73	S
7	teq	c.olt.f		0100	52	34	4	116	74	t
ldc1		c.ult.f		0101	53	35	5	117	75	u
ldc2	tne	c.ole.f		0110	54	36	6	118	76	v
		c.ule.f		0111	55	37	7	119	77	w
sc		c.sf.f		1000	56	38	8	120	78	X
swc1		c.sij		1000	57	39	9	121	79	
swc2		c.seq.f		1010	58	3a	:	122	7a	y z
SWCZ		c.seq.f		1010	59	3b	:	123	7b	{
		c.lt.f		1100	60	3c		123	7c	-
sdc1		c.nge.f		1100	61	3d	=	125	7d	}
sdc1		c.le.f		1110	62	3e	>	126	7e	<i>``</i> ~
Sucz				1111	63	3f	?	127	7f	DEL
(1)	1 (21.20)	c.ngt.f	111	1111	03	J1		12/	/1	DEL

(1) opcode(31:26) = 0(2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if $fmt(25:21) = 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S$ (1 + Fraction) $2^{(Exponent - Bias)}$ where Single Precision Bias = 127,

Double Precision Bias = 1023. **IEEE Single Precision and Double Precision Formats:**

4

Exponent Fraction 23 22 S Fraction Exponent 52 51 MEMORY ALLOCATION

DATA ALIGNMENT

	Double Word									
		Wo	rd		Word					
	Halfw	vord	Halfword		Halfword		Halfword			
	Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte		
- 1)	1	2	3	4	5	6	7		

Value of three least significant bits of byte address (Big Endian)

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Number	Name	Cause of Exception	Number	Name	Cause of Exception									
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception									
4	AdEL	Address Error Exception		RI	Reserved Instruction									
4	Auel	load or instruction fetch)		Exception										
5	AJEC	AJEC	VAEC	VAEC	Adec	AdES	Ades	Ades	Ades	Ades	Address Error Exception	11	CpU	Coprocessor
,	AuEs	(store)	111	Сро	Unimplemented									
6	IBE	Bus Error on	12	Ov	Arithmetic Overflow									
0	IDE	Instruction Fetch	12	Ov	Exception									
7	DBE	Bus Error on	13	Tr	Trap									
	DDE	Load or Store	13	11										
8	Sys	Syscall Exception	15	FPE	Floating Point Exception									

SIZE PREFIXES (10x for Disk, Communication; 2x for Memory)

	PRE-		PRE-		PRE-		PRE-
SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX
$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-
$10^6, 2^{20}$	Mega-	$10^{18}, 2^{60}$	Exa-	10 ⁻⁶	micro-	10 ⁻¹⁸	atto-
$10^9, 2^{30}$	Giga-	$10^{21}, 2^{70}$	Zetta-	10-9	nano-	10-21	zepto-
$10^{12}, 2^{40}$	Tera-	$10^{24}, 2^{80}$	Yotta-	10-12	pico-	10-24	yocto-
he symbol	for each	prefix is ju	st its first	letter, e	except µ	is used	for micro