FINAL REPORT

Web Phishing Detection

TEAM MEMBERS:

E.GAJALAKSHMI

KIRUTHIKA.P

MAGHNAA.S

HARIHARAN.P.K

TABLE OF CONTENTS

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Project Description

2. LITERATURE SURVEY

- 2.1 Problem Statement Definition
- 2.2 References
- 2.3 Problem Statement

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule

7. CODING & SOLUTIONING

7.1 Libraries to be installed

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

- 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX
 - 13.1 GitHub & Project Demo Link

Web Phishing Detection

1. INTRODUCTION

1.1 Project Overview

Phishing is a type of cybersecurity attack during which malicious actors send messages pretending to be a trusted person or entity. Phishing messages manipulate a user, causing them to perform actions like installing a malicious file, clicking a malicious link, or divulging sensitive information such as access credentials. Phishing is the most common type of social engineering, which is a general term describing attempts to manipulate or trick computer users. Social engineering is an increasingly common threat vector used in almost all security incidents. Social engineering attacks, like phishing, are often combined with other threats, such as malware, code injection, and network attacks.

1.2 Project Description

We have developed our project using a website as a platform for all the users. This is an interactive and responsive website that will be used to detect whether a website is legitimate or phishing. This website is made using different web designing languages which include HTML, CSS, Javascript and Django. The basic structure of the website is made with the help of HTML. CSS is used to add effects to the website and make it more attractive and user-friendly. It must be noted that the website is created for all users, hence it must be easy to operate with and no user should face any difficulty while making its use. Every naïve person must be able to use this website and avail maximum benefits from it. The dataset consists of different features that are to be taken into consideration while determining a website URL as legitimate or phishing.

The components for detection and classification of phishing websites are as follows:

- 1. Address Bar based Features
- 2. Abnormal Based Features
- 3. HTML and JavaScript Based Features
- 4. Domain Based Features

2. LITERATURE SURVEY

2.1 Problem Statement Definition

Phishing attacks are becoming more and more sophisticated, and our algorithms are suffering to keep up with this level of sophistication. They have low detection rate and high false alarm especially when novel phishing approaches are use. The blacklist-based method is unable to keep up with the current phishing attacks as registering new domains has become easier. Moreover, comprehensive blacklist can ensure a perfect up-to-date database. Various other techniques such as page content inspection algorithms have been used to combat the false negatives but as each algorithm uses a different approach, their accuracy varies. Therefore, a combination of the two can increase the accuracy while implementing different error detection methods.

2.2 References

- [1] Jin-Lee Lee, Dong-Hyun Kim, Chang-Hoon Lee, 'Heuristic based approach for phishing site detection using URL features' in Proceedings of 3rd International Conference in Computing, Electronics and Electrical Technology CEET 2015.
- [2] Sadia Afroz, Rachel Greenstadt Department of Computer Science Drexel University Philadelphia, PA 19104 Email: sa499@drexel.edu, 2011 'PhishZoo: Detecting Phishing Websites By Looking at Them' in 2011 Fifth IEEE International Conference on Semantic Computing.
- [3] Michael Blasi Iowa State University, 'Techniques for detecting zero day phishing websites', 2009.
- [4] Chen Jin, Luo De-lin* School of Information Science and Technology Xiamen University Xiamen, 361005, China, 'An Improved ID3 Decision Tree Algorithm' in Proceedings of 2009 4th International Conference on Computer Science & Education.
- [5] Zou Futai, Gang Yuxiang, Pei Bei Key Lab of Information Network Security Ministry of Public Security, Pan Li, Li Linsen, 'Web Phishing Detection Based on Graph Mining' in 2016 2nd IEEE International Conference on Computer and Communications.
- [6] Phoebe Barraclough, Graham Sexton, 'Phishing Website Detection Fuzzy System Modelling', in proceedings of Science and Information Conference 2015.
 - [7] https://www.phishtank.com/
 - [8] http://dmoztools.net/

2.3 Problem Statement

Problem Statement 1:

Problem Statement 2:

Problem Statement 3:

Problem Statement 4:

Problem	l am	I'm trying to	But	Because	Which makes
Statement	(Customer)				me feel
(PS)					
PS-1	Vendor	Use online	I find illegal	Of counterfeit	Unsafe about
		transactions	pages who	websites who	online
			indulge in	steal	transactions
			bankruptcy	credentials	
PS-2	Account	Use credit and	I find	an attacker	doubtful about
	holder in Bank	withdraw	fraudulent	masquerades	using those
		money from	webpages who	a reputable	features
		bank account	steal account	entity	
			details		
PS-3	enterprise user	open mails in	I detect	they are not	Emails are not
		the cloud	malicious	cryptographica	verified and
		server	mails	lly signed	third party
					intrusions
PS-4	internet user	browse the	I identify a	an attacker	unsafe about
		internet	scam	mimics a	my
				authorized	information
				webpage	that is shared
					over the
					network

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

The phishing attack is used to steal confidential information of a user. Fraud websites appear like genuine websites with the logo and graphics of genuine websites. This project aims to detect fraud or phishing website using machine learning techniques.

3.2 Ideation & Brainstorming

3.3 Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to	This is an interactive and
	be solved)	responsive website that will be
		used to detect whether a
		website is legitimate or
		phishing. Phishing becomes a
		main area of concern for
		security researchers because it
		is not difficult to create the fake
		website which looks so close to
		legitimate website. Experts can
		identify fake websites but not
		all the users can identify the
		fake website and such users
		become the victim of phishing
		attack, as an example,
		passwords associate degree
		open-end credit unpretentious
		elements by presumptuous the
		highlights of a reliable
		individual or business in
		electronic correspondence.
		Phishing makes use of parody
		messages that square measure
		created to seem substantial
		and instructed to start out from
		true blue sources like money
		connected institutions, online
		business goals, etc, to draw in
		customers to go to phoney
		destinations through joins gave
		within the phishing websites.
2.	Idea / Solution description	Determine whether the provided
		URL is real or a phishing URL,
		and then output the answer
		with the proportion of risk
		factors.

3.	Novelty / Uniqueness	Proposed web technology
	1 1 3 3 4 1 1 1 1	features improve phishing
		detection accuracy.
		• The usage of 10 machine
		learning algorithms produces
		the results with an accuracy of
		96% approximately.
		• Simple, Easy-to-Understand UI.
		A successful detection
		mechanism is developed by
		using an ideal dataset
4.	Social Impact / Customer	• It is based on URL feature
	Satisfaction	extraction that helps in
		detecting phishing attacks that
		are relatively new and which is
		not possible for most of the
		other phishing detectors.
		• The system involves just ten
		algorithms that act as filters to
		determine the legitimacy of the
		URL
		Users just need to provide the
		URL of the website whose
		legitimacy needs to be
		determined. Nothing else needs
		to be done by the user.
5.	Business Model (Revenue	B2C Model (end product sold
	Model)	to individuals such as children's
		gadgets and senior citizens at
		risk of assaults) and B2B Model
		(Machine Learning model/API
		can be sold to multiple
		enterprises for their employees)
		• The Application Programming
		Interface can be purchased in
		bulk by businesses at a
		subsidised rate (API)
		Premium subscribers will get
		access to the URL's data and

3.4 Problem Solution fit

Project Title: Project Design Phase-I

1. CUSTOMER SEGMENT(S)

Who is your customer? i.e. working parents of 0-5 y.o. kids

· Users with access to Internet and who share secure information using the Internet and are prone to

- malicious attacks. · Online Transactions and Business management using the Internet.
- · People using secure data transfer for confidential and sensitive.

- Solu on Fit Template

What constraints prevent your customers from taking action or limit their ch of solutions? i.e. spending power, budget, no cash, network connection, avai

- · Lack of technical awareness among the website users and lack of experience.
- The attacker gains access to the users personal information which makes them more vulnerable.
- · Phishing attacks perfectly mimic the websites of the original owners which results in losing of confidentiality.

Team ID: PNT2022TMIDxxxxxx

Which solutions are available to the customers when they face the problem or need to get the job done? What have they tried in the past? What pros & cons do these solutions have? i.e. pen and paper is an alternative to dig

- · Presence of Lock symbol to ensure the URL secureness.
- · Firewalls, Activity Trackers

5. AVAILABLE SOLUTIONS

- Cross verifying link with Phishing database.
- · VPNs, Proxies
- · Using Antivirus Software

2. JOBS-TO-BE-DONE / PROBLEMS

Which jobs-to-be-done (or problems) do you address for you customers? There could be more than one; explore different

- Data leaks, system malfunctioning.
- · Confidential threat
- · Motive is to ensure end users privacy.
- · Ensure customers feel safe to trust and use the internet without hesitation.
- · Should be able to identify URLs without SSL certificate.

9. PROBLEM ROOT CAUSE

6. CUSTOMER CONSTRAINTS

What is the real reason that this problem exis What is the back story behind the need to do this job? i.e. customers have to do it because of the change in regulations.

- New methods adapted by attackers to gain users
- · Scam can benefit a attacker illegally and they can exploit the users for their benefits.
- · Algorithms efficiency are low.

7. BEHAVIOUR

RC

omer do to address the problem and get the job What does your customer do to address the problem and get the job dong? Let directly related: find the right solar panel installer, calculate usage and benefits; indirectly associated: customers spend free time on volunteering work (i.e.

- · Using a custom extension that analysis the current link. Users access the extension which provide the
- · Show the percentage by which how much a website is unsafe for proceeding.
- · Block the website URL using ad blockers or web protection software.

3. TRIGGERS

- In form or alerts or the temptation to commit.
- Loss of Data
- Increase in Spam Mails

4. EMOTIONS: BEFORE / AFTER

- · Worried, Frustrated, Insecure due to trust issues while transffering data or money
- · Confident and secure when assured safety of transactions.

10. YOUR SOLUTION

- · Tool that avoids users to using the URL or getting
- Automated analysis and awareness.
- · Detecting Phishing websites by Machine Learning & Classification Algorithm.
- Use of Pre-defined blacklisted website database

8. CHANNELS of BEHAVIOUR

What kind of actions do customers take offline? Extract offline channels from #7 and use them for customer development.

- · Use prior knowledge and experience if performing online transactions on legitimate websites to identify phishing websites.
- · File police complaint on service provider or bank for stealing their credentials and money.

AS,

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-
		Task)
FR-1	User Registration	Users must sign up using their
		email and Google accounts.
FR-2	User Confirmation	User has to Confirm their Email.
FR-3	User Input	The necessary field is filled up
		by the user with a suspect URL.
FR-4	URL Processing	The model will handle the new
		input by utilising the dataset
		and the proper machine
		learning methods.
FR-5	Classification	The URL will be marked as a
		legitimate or phishing URL.
FR-5	Result	The user will see the model's
		projected result, and if the URL
		turns out to be harmful, they
		will be warned about the
		website and given further
		instructions.

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Users won't have any trouble
		using the solution and
		navigating the system with an
		effective, simple-to use UI
NFR-2	Security	Using Google authentication,
		which automatically offers
		email-based and multi-factor
		authentication.
NFR-3	Reliability	Probability of error-free
		operations in the designated
		usage environment.
NFR-4	Performance	For effectiveness and efficiency,
		the performance should be
		quicker and more user-friendly.
NFR-5	Availability	The model should always be
		usable, exportable to users, and
		executable on local computers.
NFR-6	Scalability	This might be turned into an
		API that other people could use
		and incorporate.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution & Technical Architecture

Solution Architecture Diagram for Phishing Web Detection:

5.3 User Stories

User Type	Functional	User Story	User Story /	Acceptance	Priority	Release
	Requireme	Number	Task	criteria		
	nt (Epic)					
Customer	Registration	USN-1	I can sign	I can access	High	Sprint-1
(Web user)			up for the	my		
			application	dashboard		
			as a user by	or account.		
			providing			
			my email			
			address, a			
			password,			
			and a			
			password			
			confirmatio			
			n.			
		USN-2	When I	I can get a	High	Sprint-1
			register for	confirmati		
			the	on email		
			application	and confirm		
			as a user, l	it.		
			will get a			
			confirmati			
			on email.			
		USN-3	I can sign	I may use	Medium	Sprint-2
			up for the	Google		
			application	Login to		
			as a user	sign up and		
			using	access the		
			Google	dashboard.		
			authenticati			
			on.			
	Login	USN-4	I can access		High	Sprint-1
			the			
			application			
			as a user by			
			providing			
			my email			

			address and			
			password.			
	Dashboard	USN-5				
	Website	USN-6	I can enter		High	Sprint-1
			the suspect			
			URL and			
			view the			
			forecast as			
			a user.			
Customer	Feature	USN-1	I am able to	I can obtain	High	Sprint-1
Care	Extraction		apply	a feature		
Executive			feature	matrix for		
			selection	training that		
			algorithms	solely		
			to extract	contains		
			URL-based	numerical		
			features and	data.		
			Interaction			
			Features			
			(Indegree of			
			URL,			
			Outdegree			
			of URL, etc.)			
Administrat	Machine	USN-1	Use of 10	The	High	Sprint-1
or	Learning		machine	classifier		
	Prediction		learning	can provide		
			models to	me with an		
			forecast the	accurate		
			real-world	ground truth		
			data using	class label.		
			the chosen			
			feature			
			matrix.			

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	User input	USN 1	User inputs an URL in the required field to check its validation.	1	Medium	Hariharan P K
Sprint-1	Registration	USN 1	The user registers their details in the website	1	Medium	Gajalakshmi E
Sprint-1	Website Comparison	USN-2	Model compares the websites using Blacklist and Whitelist approach.	1	High	Kiruthika P
Sprint-2	Feature Extraction	USN-3	After comparison, if none found on comparison then it extracts feature using heuristic and visual similarity.	2	High	Maghnaa S

Sprint-2	Prediction	USN-4	Model	1	Medium	Hariharan F
			predicts the			K
			URL using			
			Machine			
			learning			
			algorithms			
			such as			
			logistic			
			Regression,			
			KNN.			
Sprint-3	Classifier	USN-5	Model		Medium	Maghnaa S
			sends all the			
			output to			
			the			
			classifier			
			and			
			produces			
			the final			
			result.			
Sprint-4	Announcem	USN-6	Model then	1	High	Kiruthika P
	ent		displays			
			whether the			
			website is			
			legal site or			
			a phishing			
			site.			

6.2 Sprint Delivery Schedule

Sprint	Total Story	Duration	Sprint Start	Sprint End	Story Points	Sprint
	Points		Date	Date	Completed	Release
				(Planned)	(as on	Date
					Planned End	(Actual)
					Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov	20	05 Nov
				2022		2022
Sprint-3	20	6 Days	07 Nov	12 Nov	20	12 Nov
			2022	2022		2022
Sprint-4	20	6 Days	14 Nov	19 Nov	20	19 Nov
			2022	2022		2022

7. CODING & SOLUTIONING

7.1 Libraries to be installed

- 1. beautifulsoup4==4.9.3
- 2. Flask==2.0.2
- 3. googlesearch_python==1.0.1
- 4. numpy==1.21.4
- 5. pandas==1.3.4
- 6. python_dateutil==2.8.2
- 7. requests==2.25.1
- 8. scikit_learn==1.0.1
- 9. whois==0.9.13
- 10. gunicorn==20.1.0

8. TESTING

8.1 Test Cases

Testing is defined as an activity to check whether the actual results match the expected results and to ensure that the software system is defect free. It involves the execution of a software component or system component to evaluate one or more properties of interest. Software testing also helps to identify errors, gaps, or missing requirements in contrary to the actual requirement

1. Unit Testing:

When the testing happens for some individual group or some related units then that type of testing is called Unit Testing. It is often done by a programmer to test the part of the program he or she has implemented. Unit Testing is successful means all the modules have been successfully tested and it can proceed further.

2. Functional Testing:

This type of testing is tested to check the functional components, or the functionality required from the system is gained or not. It falls under the testing of Black Box testing of Software Engineering. This part includes the feeding of the inputs in the system or the project and checking if that system or the project is getting the same value or not as expected if not then calculate the error as wanted and check for more. Functional Testing of this project mainly involves below things. All of these are tested successfully, and errors are also calculated.

- a. (i) Verifying the input image
 - (ii) Verifying the workflow
- b. Correct recognition and calculate the error

a. Integration Testing:

In a total project or system, many groups of components are getting added or summed up for the purpose of the project query. Integration testing is about checking the interaction between various modules of the project or the system. This module also includes the hardware and software requirements of the project. All the individual modules are integrated and tested together. All the best and extreme cases that the modules are interacting or not are successfully checked and passed, and errors are calculated for the deep learning platforms.

b. System Testing:

This type of testing is actually meant for the system or the project and also the platform and the integrated software and tools, technologies are also tested. The idea or purpose behind the system testing is to check all the requirements that will be provided by the system. This application of the project along with the tools and technologies has been tested in both windows and Linux. It passed successfully.

8.2 User Acceptance Testing

This is a type of system or software testing where a system has been tested for availability. The purpose of this test is to check the business requirements and assess whether it will be accepted for delivery.

9. RESULTS

9.1 Performance Metrics

The performance metrics of the classifiers are calculated and the result are as follows:

	ML Model	Accuracy	f1_score	Recall	Precision
0	Gradient Boosting Classifier	0.974	0.977	0.994	0.986
1	CatBoost Classifier	0.972	0.975	0.994	0.989
2	XGBoost Classifier	0.969	0.973	0.993	0.984
3	Multi-layer Perceptron	0.969	0.973	0.995	0.981
4	Random Forest	0.967	0.971	0.993	0.990
5	Support Vector Machine	0.964	0.968	0.980	0.965
6	Decision Tree	0.960	0.964	0.991	0.993
7	K-Nearest Neighbors	0.956	0.961	0.991	0.989
8	Logistic Regression	0.934	0.941	0.943	0.927
9	Naive Bayes Classifier	0.605	0.454	0.292	0.997

The percision of the model is 98.01

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES:

- 1. The system not only produces a classification of the phishing URLs but also a rich description of the features contributing to the co-relation mapping
- 2. The method involves a relatively small number of parameters and hence training is relatively easy and fast.

The use of the Random Forest Model helps with identifying the necessary corelation between features that help classify the URL.

DISADVANTAGES:

- 1. It can only classify malicious links which are direct links to malicious websites
- 2. Cannot extract latent features from the URL that characterizes certain URLs as malicious
- 3. Cannot check for batch inputs

11. CONCLUSION

Web Phishing Detection using Deep Learning methods has been implemented. Random Forest Model have been trained and tested on the same data in order to acquire the comparison between the classifiers. Utilizing these deep learning techniques, a high amount of accuracy can be obtained.

12. FUTURE SCOPE

The proposed system cannot extract the latent features from certain malicious URLs hence classifying them as safe, future works can include identifying these latent features and extracting them for the model to learn to provide more accurate predictions.

The following are the features that can be added in our application:

- A communication app can be built with the same set of features. The user can choose the
 appropriate mode (speech to sign or sign to speech) and accordingly the real time detection
 would take place on both the end users' application.
- The accuracy of the model shall be increased.
- Customization of languages shall be added.
- Users shall be allowed to write notes while on call.
- Customization of signs can also be added as a feature.

13. APPENDIX

Python:

Python is an interpreted, high-level, general-purpose programming language created by Guido Van Rossum and first released in 1991, Python's design philosophy emphasizes code Readability with its notable use of significant White space. Its language constructs and object-oriented approach aim to help programmers write clear, logical code for small and large-scale projects. Python is dynamically typed, and garbage is collected. It supports multiple programming paradigms, including procedural, object-oriented, and functional programming.

Keras:

Keras is a powerful and easy-to-use free open-source Python library for developing and evaluating deep learning models. It wraps the efficient numerical computation libraries Theano and TensorFlow and allows you to define and train neural network models in just a few lines of code. It uses libraries such as Python, C#, C++, or standalone machine learning toolkits. Theano and TensorFlow are very powerful libraries but difficult to understand for creating neural networks

Numpy:

NumPy is a Python library used for working with arrays. It also has functions for working in the domain of linear algebra, Fourier transform, and matrices. Numpy which stands for Numerical Python is a library consisting of multidimensional array objects and a collection of routines for processing those arrays. Using NumPy, mathematical and logical operations on arrays can be performed. This tutorial explains the basics of NumPy such as its architecture and environment. It also discusses the various array functions, types of indexing, etc. It is an open-source project, and you can use it freely. NumPy stands for Numerical Python. NumPy aims to provide an array object that is up to 50x faster than traditional Python lists. The array object in NumPy is called ndarray

Machine Learning:

Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns, and make decisions with minimal human intervention.

Deep Learning:

Deep learning is an artificial intelligence (AI) function that imitates the workings of the human brain in processing data and creating patterns for use in decision-making. Deep learning is a subset of machine learning in artificial intelligence that has networks capable of learning unsupervised from data that is unstructured or unlabelled. Also known as deep neural learning or deep neural network.

13.1 GitHub & Project Demo Link

GitHub: https://github.com/IBM-EPBL/IBM-Project-489-1658303709

Demo:

