

# Nonsmooth Optimization on Riemannian manifolds

### Ronny Bergmann

joint work with

O. P. Ferreira, R. Herzog, H. Jasa, E. M. Santos, and J. C. O. Souza.

### NAMColloquium

Institut für Numerische und Angewandte Mathematik, Göttingen, June 11, 2024.



# Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} f(p)$$

#### where

- $ightharpoonup \mathcal{M}$  is a Riemannian manifold
- ▶  $f: \mathcal{M} \to \overline{\mathbb{R}}$  is a function
- $\Lambda$  f might be nonsmooth and/or nonconvex
- $\Lambda$  might be high-dimensional



# A Riemannian Manifold ${\mathcal M}$

A d-dimensional Riemannian manifold can be informally defined as a set  $\mathcal{M}$  covered with a "suitable" collection of charts, that identify subsets of  $\mathcal{M}$  with open subsets of  $\mathbb{R}^d$  and a continuously varying inner product on the tangent spaces.

[Absil, Mahony, and Sepulchre 2008]



# A Riemannian Manifold ${\mathcal M}$

### Notation.

- lacksquare Logarithmic map  $\log_{
  ho}q=\dot{\gamma}(0;
  ho,q)$
- ightharpoonup Exponential map  $\exp_{p} X = \gamma_{p,X}(1)$
- Geodesic  $\gamma(\cdot; p, q)$
- ▶ Tangent space  $\mathcal{T}_p\mathcal{M}$
- ▶ inner product  $(\cdot, \cdot)_p$

### Numerics.

 $\exp_p$  and  $\log_p$  maybe not available efficiently/ in closed form

⇒ use a retraction and its inverse instead.



 $\mathcal{M}$ 



# (Geodesic) Convexity

[Sakai 1996; Udriște 1994]

A set  $\mathcal{C} \subset \mathcal{M}$  is called (strongly geodesically) convex if for all  $p, q \in \mathcal{C}$  the geodesic  $\gamma(\cdot; p, q)$  is unique and lies in  $\mathcal{C}$ .

A function  $f: \mathcal{C} \to \overline{\mathbb{R}}$  is called (geodesically) convex if for all  $p, q \in \mathcal{C}$  the composition  $f(\gamma(t; p, q)), t \in [0, 1]$ , is convex.



## The Riemannian Subdifferential

Let  $\mathcal{C}$  be a convex set.

The subdifferential of f at  $p \in \mathcal{C}$  is given by

[Lee 2003; Udriște 1994]

$$\partial_{\mathcal{M}} f(p) \coloneqq ig\{ \xi \in \mathcal{T}_p^* \mathcal{M} \, ig| f(q) \ge f(p) + \langle \xi \, , \log_p q 
angle_p \; ext{ for } q \in \mathcal{C} ig\},$$

where

- $ightharpoonup \mathcal{T}_p^*\mathcal{M}$  is the dual space of  $\mathcal{T}_p\mathcal{M}$ , also called cotangent space
- $ightharpoonup \langle \cdot\,,\cdot \rangle_p$  denotes the duality pairing on  $\mathcal{T}_p^*\mathcal{M} imes \mathcal{T}_p\mathcal{M}$



# The Riemannian Convex Bundle Method



# The $\varepsilon$ -Subdifferential

Let  $\varepsilon > 0$ .

The  $\varepsilon$ -subdifferential of a convex function  $f \colon \mathbb{R}^n \to \mathbb{R}$  reads

$$\partial_{\varepsilon} f(x) = \left\{ s \in \mathbb{R}^n \left| f(y) \ge f(x) + s^{\mathsf{T}}(y - x) - \varepsilon \right. \right.$$
 for all  $y \in \mathbb{R}^n \right\}$ 

Let  $\varepsilon > 0$  and  $\mathcal{C} \subset \mathcal{M}$  be a convex set.

The  $\varepsilon$ -subdifferential of a convex function  $f: \mathcal{C} \to \mathbb{R}$  reads

$$\partial_{\varepsilon}f(x) = \left\{X \in \mathcal{T}_{p}\mathcal{M} \left| f(q) \geq f(p) + (X, \log_{p} q) - \varepsilon \text{ for all } q \in \mathcal{C} \right. \right\}$$

Clearly in both cases  $\partial f(x) = \partial_0 f(x) \subset \partial_{\varepsilon} f(x)$ 



### The Riemannian Convex Bundle Method

[RB, Herzog, and Jasa 2024]

- ▶ Given  $f: \mathcal{C} \to \mathbb{R}$  on a (geodesically) convex set  $\mathcal{C} \subset \mathcal{M}$
- collect
  - ightharpoonup subgradients  $X_{q^{(k)}} \in \partial f(q^{(k)})$
  - stabilisation centers  $p^{(k)}$  ("best" iterates)
- use this information to
  - lacktriangle determine the next descent direction  $d^{(k)} \in \mathcal{T}_{p^{(k)}}\mathcal{M}$  by solving a QP in  $\mathcal{T}_{p^{(k)}}\mathcal{M}$
  - ▶ where  $d^{(k)} \in \partial_{c^{(k)}} f(p^{(k)})$
- we stop when both
  - ▶ the approximation  $\partial_{c^{(k)}} f(p^{(k)})$  of  $\partial f(p^{(k)})$  is "good enough"
  - $ightharpoonup \|d^{(k)}\|$  is "small enough"



# Approximating the $\varepsilon$ -Subdifferential

For  $f: \mathbb{R}^n \to \mathbb{R}$ , given  $x^{(0)}, \dots, x^{(k)} \in \mathbb{R}^n$ , and  $s^{(j)} \in \partial f(x^{(j)})$ , define the linearization errors

$$e_i^{(k)} := f(x^{(k)}) - f(x^{(j)}) - (s^{(j)})^T (x^{(k)} - x^{(j)}), \qquad j = 0, \ldots, k.$$

Then (Geiger and Kanzow 2002, Theorem 6.68)

$$s^{(j)} \in \partial_{e_i^{(k)}} f(x^{(k)})$$

and we can characterize an inner approximation  $G_{\varepsilon}^{(k)} \subseteq \partial_{\varepsilon} f(x^{(k)})$  as

$$G_{\varepsilon}^{(k)} := \left\{ \sum_{j=0}^k \lambda_j \mathbf{s}^{(j)} \, \middle| \, \sum_{j=0}^k \lambda_j \, \mathbf{e}_j^{(k)} \le \varepsilon, \, \sum_{j=0}^k \lambda_j = 1, \, \lambda_j \ge 0 \text{ for all } j = 0, \dots, k \right\}$$

Challenge on manifolds.

How can we take into account curvature in the error terms?



# **Curvature Correction**

Let  $\Omega \in \mathbb{R}$  be an upper bound on the curvature. Define

[RB, Herzog, and Jasa 2024]

$$c_j^{(k)} := f(p^{(k)}) - f(p^{(j)}) - \left(X_{p^{(j)}}, \log_{p^{(j)}} p^{(k)}\right) \quad \text{if } \Omega \le 0,$$

$$c_j^{(k)} := f(p^{(k)}) - f(p^{(j)}) + \|X_{p^{(j)}}\| \|\log_{p^{(j)}} p^{(k)}\| \quad \text{if } \Omega > 0.$$

Then we get

$$G_{\varepsilon}^{(k)} := \left\{ \sum_{j=0}^{k} \lambda_{j} \mathsf{P}_{\rho^{(k)} \leftarrow \rho^{(j)}} \mathsf{X}_{\rho^{(j)}} \,\middle|\, \sum_{j=0}^{k} \lambda_{j} \,e_{j}^{(k)} \leq \varepsilon, \, \sum_{j=0}^{k} \lambda_{j} = 1, \, \lambda_{j} \geq 0, j = 0, \ldots, k \right\}$$

with 
$$G_{\varepsilon}^{(k)} \subseteq \partial_{\varepsilon} f(p^{(k)})$$
, and  $P_{p^{(k)} \leftarrow p^{(j)}} X_{p^{(j)}} \in \partial_{c_i^{(k)}} f(p^{(k)})$ .



# The Riemannian Subproblem

Let  $k \in \mathbb{N}$  and  $j \in \{0, \dots, k\} = J^{(k)}$  and  $X_{p^{(j)}} \in \partial f(p^{(j)})$ ,  $p^{(j)} \in \mathbb{R}^n$ For a coefficients  $\lambda_j \geq 0$  with  $\sum_j \lambda_j = 1$ , we have

$$\sum_{j \in J^{(k)}} \lambda_j \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} \underset{\mathsf{X}_q^{(j)}}{\mathsf{X}_{q^{(j)}}} \in \partial_\varepsilon \mathit{f}(p^{(k)}) \qquad \text{if and only if} \qquad \sum_{j \in J^{(k)}} \lambda_j \mathit{C}_j^{(k)} \leq \varepsilon$$

Solving the constrained quadratic problem

yields the new search direction

$$d^{(k)} := -\sum_{i \in I^{(k)}} \lambda_j \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} \overset{\mathsf{X}}{\mathsf{Y}_{q^{(j)}}}.$$



# The Riemannian Convex Bundle Method

Input: 
$$p^{(0)} = q^{(0)} \in C$$
,  $g^{(0)} = X_{p_0} \in \partial f(p^{(0)})$ ,  $m \in (0, 1)$ ,  $\varepsilon^{(0)} = e^{(0)}c^{(0)} = 0$ ,  $f^{(0)} = \{0\}$ , and  $k = 0$ .

- 1: while not converged do
- 2: Set k = k + 1
- 3: Compute a solution  $\lambda^{(k)} \in \mathbb{R}^{|\mathcal{V}^{(k)}|}$  of the subproblem.

4: Set 
$$\mathbf{g}^{(k)} := \sum_{j \in J^{(k)}} \lambda_j^{(k)} \mathsf{P}_{p^{(k)} \leftarrow q^{(j)}} X_{q^{(j)}}, \qquad \varepsilon^{(k)} := \sum_{j \in J^{(k)}} \lambda_j^{(k)} e_j^{(k)} c_j^{(k)},$$

$$\mathbf{d}^{(k)} := -\mathbf{g}^{(k)}, \qquad \qquad \xi^{(k)} := -\|\mathbf{g}^{(k)}\|^2 - \varepsilon^{(k)},$$

- 5: Set  $q^{(k+1)} = \exp_{p^{(k)}} \frac{d^{(k)}}{d^{(k)}}$  and take  $X_{q^{(k+1)}} \in \partial f(q^{(k+1)})$ ,
- 6: If  $f(q^{(k+1)}) \le f(p^{(k)}) + m\xi^{(k)}$  set  $p^{(k+1)} = q^{(k+1)}$  else  $p^{(k+1)} = p^{(k)}$
- 7: Update  $J^{(k+1)} = \{j \in J^{(k)} \mid \lambda_i^{(k)} > 0\} \cup \{k+1\}, \text{ and } c_i^{(k+1)}\}$
- 8: end while

**Output:**  $p^{(k_*)}$  from the final  $k_* \in \mathbb{N}$ .

<sup>&</sup>lt;sup>1</sup>Perform a backtracking if  $q^{(k+1)} \notin \text{int}(\text{dom } f)$  or equal to  $p^{(k)}$ 



# Convergence

### Theorem (Geiger and Kanzow 2002, Theorem 6.80)

Let the solution set  $S = \{x^* \in \mathbb{R}^n | f(x^*) = \inf_{x \in \mathbb{R}^n} f(x)\}$  of the minimization problem be nonempty. Then every sequence  $\{x^{(k)}\}$  generated by the bundle method algorithm converges to a minimizer of f.

On Hadamard manifolds ( $\Omega \leq 0$ ) we have the analogous, if

[RB, Herzog, and Jasa 2024]

- 1. the backtracking step size  $t^{(k)} > m$  for all  $k \ge k_*$ , if a finite number of serious steps  $k_*$  occur
- **2.** no accumulation point of  $p^{(k)}$  is allowed to lie on the boundary of C



# **Numerical Examples**



# Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.



```
Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) ⇒ an algorithm in the Manopt.jl interface
```

**Highlevel interface**s like gradient\_descent(M, f, grad\_f) on any manifold M from Manifolds.jl.

All provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

### Manopt family.









# List of Algorithms in Manopt.jl

Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES

Subgradient-based Subgradient Method, Convex Bundle Method,

Proximal Bundle Method

Gradient-based Gradient Descent, Conjugate Gradient, Stochastic, Momentum, Nesterov, Averaged, ...

Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC) nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe nonconvex Difference of Convex Algorithm, DCPPA





# The Convex Bundle Method in Manopt.jl

In Manopt.jl a solver call looks like<sup>2</sup>

```
p = convex_bundle_method(M, f, \partialf, p0; diameter = \delta, k_max = \Omega, m = 10^{-3}, kwargs...
```

#### where

- ► M is a Riemannian manifold
- ▶ f is the objective function
- ▶ ∂f is a subgradient of the objective function
- ▶ p0 is an initial point on the manifold

The default stopping criterion for the algorithm is set to

$$-\xi^{(k)} \le 10^{-8}$$
.

<sup>&</sup>lt;sup>2</sup>full documentation: manoptil.org/stable/solvers/convex bundle method/



# Denoising a Signal on Hyperbolic Space $\mathcal{H}^2$

- ▶ signal  $q \in \mathcal{M}$ ,  $(\mathcal{H}^2)^n$ , n = 496
- ▶ noisy signal  $\bar{q} \in \mathcal{M}$ ,  $\bar{q}_i = \exp_{q_i} X_i$ ,  $\sigma = 0.1$
- ► ROF Model:

$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} \quad \frac{1}{n} \, \mathrm{d}_{\mathcal{M}}(p,q)^2$$

$$+ \alpha \sum_{i=1}^{n-1} \mathsf{d}_{\mathcal{H}^2}(p_i, p_{i+1})$$

▶ Setting  $\alpha = 0.05$  yields

reconstruction &

• in RCBM: set diam(dom f) = b > 0.

(in practice:  $b = floatmax() \approx 10^{308}$ )



# Algorithms for Denoising a Signal

► Riemannian Convex Bundle Method (RCBM)

[RB, Herzog, and Jasa 2024]

Proximal Bundle Algorithm (PBA)

[Hoseini Monjezi, Nobakhtian, and Pouryayevali 2021]

Subgradient Method (SGM)

[O. Ferreira and Oliveira 1998]

► Cyclic Proximal Point Algorithm (CPPA)

[Bačák 2014]

| Algorithm | Iter.  | Time (sec.) | Objective               | Error                   |
|-----------|--------|-------------|-------------------------|-------------------------|
| RCBM      | 3417   | 51.393      | $1.7929 \times 10^{-3}$ | $3.3194 \times 10^{-4}$ |
| PBA       | 15 000 | 102.387     | $1.8153 \times 10^{-3}$ | $4.3874 \times 10^{-4}$ |
| SGM       | 15 000 | 99.604      | $1.7920 \times 10^{-3}$ | $3.3080 \times 10^{-4}$ |
| CPPA      | 15 000 | 94.200      | $1.7928 \times 10^{-3}$ | $3.3230 \times 10^{-4}$ |



# The Riemanniann Median on $S^d$

- ▶ Consider the d-dimensional sphere  $\mathcal{M} = \mathcal{S}^d$
- ightharpoonup north pole
- $ightharpoonup B_r(p)$  (geodesic) ball around p with radius r.
- ightharpoonup n=1000 Gaussian random data points  $q^{(1)},\ldots,q^{(n)}\in B_{rac{\pi}{2}}(ar{p})$
- ▶ Riemannian median on  $B_{\frac{\pi}{8}}(\bar{p})$ :

$$f(p) = egin{cases} rac{1}{n} \sum_{j=1}^n \mathsf{d}_{\mathcal{M}}(p,q^{(j)}) & ext{ if } p \in B_{rac{\pi}{8}}(ar{p}), \ +\infty & ext{ otherwise}. \end{cases}$$



Solve

$$p^* \coloneqq \arg\min_{p \in \mathcal{S}^d} f(p)$$

for different manifold-dimensions d.



# Algorithms for the Riemanniann Median on $\mathcal{S}^d$

|           | RCBM  |                       |           | PBA   |                       |           |
|-----------|-------|-----------------------|-----------|-------|-----------------------|-----------|
| Dimension | Iter. | Time (sec.)           | Objective | Iter. | Time (sec.)           | Objective |
| 2         | 19    | $6.50 \times 10^{-3}$ | 0.19289   | 20    | $5.30 \times 10^{-3}$ | 0.19289   |
| 4         | 28    | $1.01 \times 10^{-2}$ | 0.19881   | 23    | $5.99 \times 10^{-3}$ | 0.19881   |
| 32        | 58    | $2.29 \times 10^{-2}$ | 0.19576   | 28    | $1.13 \times 10^{-2}$ | 0.19576   |
| 1024      | 48    | $3.91 \times 10^{-1}$ | 0.19775   | 40    | $3.31 \times 10^{-1}$ | 0.19775   |
| 32 768    | 43    | 7.54                  | 0.19290   | 21    | 4.16                  | 0.19290   |

|           | SGM   |                       |           |
|-----------|-------|-----------------------|-----------|
| Dimension | Iter. | Time (sec.)           | Objective |
| 2         | 5000  | 1.14                  | 0.19289   |
| 4         | 3270  | $8.09 \times 10^{-1}$ | 0.19881   |
| 32        | 5000  | 2.18                  | 0.19576   |
| 1024      | 122   | $9.75 \times 10^{-1}$ | 0.19775   |
| 32 768    | 172   | $5.25 \times 10^{1}$  | 0.19290   |



# The Riemannian Difference of Convex Algorithm



## **Difference of Convex**

We aim to solve

$$\underset{p \in \mathcal{M}}{\operatorname{arg\,min}} f(p)$$

### where

- ► M is a Riemannian manifold
- $lackbox{} f \colon \mathcal{M} o \mathbb{R}$  is a difference of convex function, i. e. of the form

$$f(p) = g(p) - h(p)$$

 $lackbox{\ \ }$   $g,h\colon \mathcal{M} o \overline{\mathbb{R}}$  are convex, lower semicontinuous, and proper



### The Euclidean DCA

**Idea 1.** At  $x_k$ , approximate h(x) by its affine minorization

$$h_k(x) := h(x^{(k)}) + \langle x - x^{(k)}, y^{(k)} \rangle$$
 for some  $y^{(k)} \in \partial h(x^k)$ 

$$\Rightarrow$$
 iteratively minimize  $g(x) - h_k(x) = g(x) - h(x^{(k)}) - \langle x - x^{(k)}, y^{(k)} \rangle$ 

**Idea 2.** Using duality theory finding a new  $y^{(k)} \in \partial h(x^{(k)})$  is equivalent to

$$y^{(k)} \in \operatorname*{arg\,min}_{y \in \mathbb{R}^n} \Bigl\{ h^*(y) - g^*(y^{(k-1)}) - \langle y - y^{(k-1)}, x^{(k)} 
angle \Bigr\}$$

Idea 3. Reformulate 2 using a proximal map ⇒ DCPPA on manifolds this was done in [Almeida, Neto, Oliveira, and Souza 2020; Souza and Oliveira 2015]

In the Euclidean case, all three models are equivalent.



# A Fenchel Duality on a Hadamard Manifold

Let

- $ightharpoonup T\mathcal{M} = \bigcup_{p} T_{p} \mathcal{M}$  denote the tangent bundle
- ightharpoonup analogously  $T^*\mathcal{M}$  denotes the cotangent bundle
- $\triangleright$   $\mathcal{M}$  be a Hadamard manifold (non-positive sectional curvature).

### **Definition**

[Silva Louzeiro, RB, and Herzog 2022]

Let  $f \colon \mathcal{M} \to \overline{\mathbb{R}}$ .

The Fenchel conjugate of f is the function  $f^*: \mathcal{T}^*\mathcal{M} \to \overline{\mathbb{R}}$  defined by

$$f^*(p,\xi) \coloneqq \sup_{q \in \mathcal{M}} \Bigl\{ \langle \xi, \log_p q 
angle - f(q) \Bigr\}, \qquad (p,\xi) \in \mathcal{T}^* \mathcal{M}.$$



### The Dual Difference of Convex Problem

Given the Difference of Convex problem

$$\operatorname{arg\,min}_{p\in\mathcal{M}}g(p)-h(p)$$

and the Fenchel duals  $g^*$  and  $h^*$  we can state the dual difference of convex problem as [RB, O. P. Ferreira, Santos, and Souza 2024]

$$\underset{(p,\xi)\in T^*\mathcal{M}}{\operatorname{arg\,min}}\ h^*(p,\xi)-g^*(p,\xi).$$

On  $\mathcal{M} = \mathbb{R}^n$  this indeed simplifies to the classical dual problem.

Theorem.

[RB, O. P. Ferreira, Santos, and Souza 2024]

$$\inf_{(q,X)\in\mathcal{T}^*\mathcal{M}}\Big\{h^*(q,X)-g^*(q,X)\Big\}=\inf_{p\in\mathcal{M}}\left\{g(p)-h(p)\right\}.$$



## The Dual Difference of Convex Problem

The primal and dual Difference of Convex problem

$$\underset{p \in \mathcal{M}}{\operatorname{arg \, min}} \, g(p) - h(p)$$
 and  $\underset{(p,\xi) \in \mathcal{T}^* \mathcal{M}}{\operatorname{arg \, min}} \, h^*(p,\xi) - g^*(p,\xi)$ 

are equivalent in the following sense.

#### Theorem.

[RB, O. P. Ferreira, Santos, and Souza 2024]

If  $p^*$  is a solution of the primal problem, then  $(p^*, \xi^*) \in T^*\mathcal{M}$  is a solution for the dual problem for all  $\xi^* \in \partial_{\mathcal{M}} h(p^*) \cap \partial_{\mathcal{M}} g(p^*)$ .

If  $(p^*, \xi^*) \in T^*\mathcal{M}$  is a solution of the dual problem for some  $\xi^* \in \partial_{\mathcal{M}} h(p^*) \cap \partial_{\mathcal{M}} g(p^*)$ , then  $p^*$  is a solution of the primal problem.



### **Derivation of the Riemannian DCA**

We consider the first order Taylor approximation of h at some point  $p^{(k)}$ : With  $\xi \in \partial h(p^{(k)})$  we set

$$h_k(p) \coloneqq h(p^{(k)}) + \langle \xi \,, \log_{p^{(k)}} p \rangle_{p^{(k)}}$$

Using musical isomorphisms we identify  $X = \xi^{\sharp} \in T_p \mathcal{M}$ , where we call X a subgradient. Locally  $h_k$  minorizes h, i. e.

$$h_k(q) \leq h(q)$$
 locally around  $p^{(k)}$ 

$$\Rightarrow$$
 Use  $-h_k(p)$  as upper bound for  $-h(p)$  in  $f = g - h$ .

**Note.** On  $\mathbb{R}^n$  the function  $h_k$  is linear.

On a manifold  $h_k$  is nonlinear and not even necessarily convex, even on a Hadamard manifold.

# The Riemannian DC Algorithm

[RB, O. P. Ferreira, Santos, and Souza 2024]

**Input:** An initial point  $p^{(0)} \in \text{dom}(g)$ , g and  $\partial_{\mathcal{M}} h$ 

- 1: Set k = 0.
- 2: while not converged do
- 3: Take  $X^{(k)} \in \partial_{\mathcal{M}} h(p^{(k)})$
- 4: Compute the next iterate  $p^{(k+1)}$  as

$$p^{(k+1)} \in \operatorname*{arg\,min}_{p \in \mathcal{M}} g(p) - \left( X^{(k)}, \, \log_{p^{(k)}} p \right)_{p^{(k)}}.$$
 (\*)

- 5: Set  $k \leftarrow k + 1$
- 6: end while

**Note.** In general the subproblem (\*) can not be solved in closed form. But an approximate solution yields a good candidate.

For example: Given g,  $p^{(k)}$ , and  $X^{(k)}$  and grad  $g \Rightarrow$  Gradient descent.



# Convergence of the Riemannian DCA

Let  $\{p^{(k)}\}_{k\in\mathbb{N}}$  and  $\{X^{(k)}\}_{k\in\mathbb{N}}$  be the iterates and subgradients of the RDCA.

### Theorem.

[RB, O. P. Ferreira, Santos, and Souza 2024]

If  $\bar{p}$  is a cluster point of  $\{p^{(k)}\}_{k\in\mathbb{N}}$ , then  $\bar{p}\in \text{dom}(g)$  and there exists a cluster point  $\bar{X}$  of  $\{X^{(k)}\}_{k\in\mathbb{N}}$  s. t.  $\bar{X}\in\partial g(\bar{p})\cap\partial h(\bar{p})$ .

 $\Rightarrow$  Every cluster point of  $\{p^{(k)}\}_{k\in\mathbb{N}}$ , if any, is a critical point of f.

### Proposition.

[RB, O. P. Ferreira, Santos, and Souza 2024]

Let g be  $\sigma$ -strongly (geodesically) convex. Then

$$f(p^{(k+1)}) \le f(p^{(k)}) - \frac{\sigma}{2}d^2(p^{(k)}, p^{(k+1)})$$

and 
$$\sum_{k=0}^{\infty} d^2(p^{(k)},p^{(k+1)}) < \infty$$
, so in particular  $\lim_{k \to \infty} d(p^{(k)},p^{(k+1)}) = 0$ .



# **A** Numerical Example



# The Difference of Convex Algorithm in Manopt.jl

The algorithm is implemented and released in Julia using Manopt.jl<sup>3</sup>. It can be used with any manifold from Manifolds.jl

A solver call looks like

```
q = difference_of_convex_algorithm(M, f, g, \partial h, p0) where one has to implement f(M, p), g(M, p), and \partial h(M, p).
```

- ► a sub problem is generated if keyword grad\_g= is set
- ▶ an efficient version of its cost and gradient is provided
- you can specify the sub-solver using sub\_state= to also set up the specific parameters of your favourite algorithm

<sup>&</sup>lt;sup>3</sup>see https://manoptjl.org/stable/solvers/difference of convex/



# Rosenbrock and First Order Methods

**Problem.** We consider the classical Rosenbrock example<sup>4</sup>

$$\underset{x \in \mathbb{R}^2}{\arg \min} \, \alpha (x_1^2 - x_2)^2 + (x_1 - b)^2,$$

where a, b > 0, usually b = 1 and  $a \gg b$ , here:  $a = 2 \cdot 10^5$ .

**Known Minimizer** 
$$x^* = \begin{pmatrix} b \\ b^2 \end{pmatrix}$$
 with cost  $f(x^*) = 0$ .

Goal. Compare first-order methods, e.g. using the (Euclidean) gradient

$$\nabla f(x) = \begin{pmatrix} 4a(x_1^2 - x_2) \\ -2a(x_1^2 - x_2) \end{pmatrix} + \begin{pmatrix} 2(x_1 - b) \\ 0 \end{pmatrix}$$

<sup>&</sup>lt;sup>4</sup>available online in ManoptExamples.il



# A "Rosenbrock-Metric" on $\mathbb{R}^2$

In our Riemannian framework, we can introduce a new metric on  $\mathbb{R}^2$  as

$$G_{\!
ho} \coloneqq egin{pmatrix} 1 + 4 p_1^2 & -2 p_1 \ -2 p_1 & 1 \end{pmatrix}, \ ext{with inverse} \ G_{\!
ho}^{-1} = egin{pmatrix} 1 & 2 p_1 \ 2 p_1 & 1 + 4 p_1^2 \end{pmatrix}.$$

We obtain  $(X, Y)_p = X^T G_p Y$ 

The exponential and logarithmic map are given as

$$\exp_p(X) = \begin{pmatrix} p_1 + X_1 \\ p_2 + X_2 + X_1^2 \end{pmatrix}, \qquad \log_p(q) = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 - (q_1 - p_1)^2 \end{pmatrix}.$$

### Manifolds.jl:

Implement these functions on  $MetricManifold(\mathbb{R}^2)$ , RosenbrockMetric()).



# The Riemannian Gradient w.r.t. the new Metric

Let  $f: \mathcal{M} \to \mathbb{R}$ . Given the Euclidean gradient  $\nabla f(p)$ , its Riemannian gradient grad  $f: \mathcal{M} \to T\mathcal{M}$  is given by

$$\operatorname{\mathsf{grad}} f(p) = G_p^{-1} \nabla f(p).$$

While we could implement this denoting  $abla f(p) = ig(f_1'(p) \ f_2'(p)ig)^{\mathsf{T}}$  using

$$\left\langle \operatorname{grad} f(q), \log_q p \right\rangle_q = (p_1 - q_1) f_1'(q) + (p_2 - q_2 - (p_1 - q_1)^2) f_2'(q),$$

but it is automatically done in Manopt.jl.



# The Experiment Setup

Algorithms. We now compare

- **1.** The Euclidean gradient descent algorithm on  $\mathbb{R}^2$ ,
- **2.** The Riemannian gradient descent algorithm on  $\mathcal{M}$ ,
- **3.** The Difference of Convex Algorithm on  $\mathbb{R}^2$ ,
- **4.** The Difference of Convex Algorithm on  $\mathcal{M}$ .

For DCA third we split f into f(x) = g(x) - h(x) with

$$g(x) = a(x_1^2 - x_2)^2 + 2(x_1 - b)^2$$
 and  $h(x) = (x_1 - b)^2$ .

Initial point. 
$$p_0 = \frac{1}{10} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 with cost  $f(p_0) \approx 7220.81$ .

Stopping Criterion.

$$d_{\mathcal{M}}(p^{(k)}, p^{(k-1)}) < 10^{-16} \text{ or } \|\text{grad } f(p^{(k)})\|_p < 10^{-16}.$$





| Algorithm      | Runtime (sec.) | # Iterations |  |
|----------------|----------------|--------------|--|
| Euclidean GD   | 305.567        | 53 073 227   |  |
| Euclidean DCA  | 58.268         | 50 588       |  |
| Riemannian GD  | 18.894         | 2 454 017    |  |
| Riemannian DCA | 7.704          | 2 459        |  |



# **Summary**

▶ Introduced the Convex Bundle Method on manifolds to solve

$$\operatorname*{arg\;min}_{p\in\mathcal{M}}f(p)$$

- igoplus Provide an inner approximation of  $\partial_{\varepsilon} f(p)$
- A quadratic sub problem in a tangent space
- Convergence of the Method on Hadamard manifolds
- ► Introduced the Difference of Convex Algorithm to solve

$$rg \min_{p \in \mathcal{M}} g(p) - h(p)$$

- Relation to Fenchel Duality on Hadamard manifolds
- Convergence on Hadamard manifolds



### **Selected References**



RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866. DOI: 10.21105/joss.03866.



RB, O. P. Ferreira, E. M. Santos, and J. C. d. O. Souza (2024). "The difference of convex algorithm on Hadamard manifolds". In: *Journal of Optimization Theory and Applications*. DOI: 10.1007/s10957-024-02392-8, arXiv: 2112.05250.



RB, R. Herzog, and H. Jasa (2024). The Riemannian convex bundle method. arXiv: 2402.13670.



Geiger, C. and C. Kanzow (2002). *Theorie und Numerik restringierter Optimierungsaufgaben*. New York: Springer. DOI: 10.1007/978-3-642-56004-0.



Silva Louzeiro, M., RB, and R. Herzog (2022). "Fenchel Duality and a Separation Theorem on Hadamard Manifolds". In: *SIAM Journal on Optimization* 32.2, pp. 854–873. DOI: 10.1137/21M1400699. arXiv: 2102.11155



Souza, J. C. d. O. and P. R. Oliveira (2015). "A proximal point algorithm for DC fuctions on Hadamard manifolds". In: *Journal of Global Optimization* 63.4, pp. 797–810. DOI: 10.1007/s10898-015-0282-7.

Interested in Numerical Differential Geometry? Join amount numerical Differential Geometry? Join numdiffgeo.zulipchat.com!

Pronnybergmann.net/talks/2024-Goettingen-Nonsmooth.pdf