Chapter 24

The chemistry of life: organic and biological chemistry

Review Definitions:

- **Hydrocarbons:** compounds composed of only carbon and hydrogen.
 - 1) Alkanes: contain only single C-C bonds.
 - 2) Alkenes: contain at least one C=C double bond.
 - 3) Alkynes: contain at least one C≡C triple bond.
 - 4) Aromatic hydrocarbons: the carbon atoms are connected in a planar ring structure, joined by both σ and delocalized π bonds between carbon atoms.
- Saturated hydrocarbons: alkanes have only single bonds, they contain the largest possible number of hydrogen atoms per carbon atom, they are saturated hydrocarbons.
- Unsaturated hydrocarbons: alkenes, alkynes, and aromatic hydrocarbons contain multiple carbon-carbon bonds, they contain less hydrogen than alkane with the same number of carbon atoms, they are unsaturated hydrocarbons.
- **Structural isomers:** compounds that have the same molecular formula but different bonding arrangements (and hence different structures).
- **Geometric isomers:** compounds that have the same molecular formula and the same groups bonded to one another but differ in the spatial arrangement of these groups.
- Combustion reaction: combustion usually occurs when a hydrocarbon reacts with oxygen to produce carbon dioxide and water.

$$2 C_2 H_6(g) + 7 O_2(g) \longrightarrow 4 CO_2(g) + 6 H_2 O(l)$$
 $\Delta H^{\circ} = -2855 \text{ kJ}$

• Addition reaction: a reactant added to the two atoms that form the multiple bond.

$$CH_3CH = CHCH_3 + H_2 \xrightarrow{Ni,500\,^{\circ}C} CH_3CH_2CH_2CH_3$$

• **Substitution reaction:** one hydrogen atom of the molecule is removed and replaced (substituted) by another atom or group of atoms.

$$+ HNO_3 \xrightarrow{H_2SO_4} NO_2 + H_2O$$

- Organic Functional Group: collection of atoms at a site that have a characteristic behavior in all molecules where it occurs. It determines the chemistry of organic molecules.
- **Alcohols:** compounds in which one or more hydrogens of a parent hydrocarbon have been replaced by the functional group −OH, called either the hydroxyl group or the alcohol group.
- Ethers: compounds in which two hydrocarbon groups are bonded to one oxygen.
- Aldehydes: the carbonyl group has at least one hydrogen atom attached.
- **Ketones:** the carbonyl group occurs at the interior of a carbon chain and is therefore flanked by carbon atoms.
- Carboxylic acids: contain the carboxyl functional group, often written —COOH.
- Esters: compounds in which the H atom of a carboxylic acid is replaced by a carbon containing group.
- Amines: compounds in which one or more of the hydrogens of ammonia (NH₃) are replaced by an alkyl group.
- Amide: an amine with at least one H bonded to N can undergo a condensation reaction with a carboxylic acid to form an amide, which contains the carbonyl

	Example									
Functional Group	Compound Type	Suffix or Prefix	Structural Formula	Ball-and-stick Model	Systematic Name (common name)					
\c=c\	Alkene	-ene	H C=C H		Ethene (Ethylene)					
-c≡c-	Alkyne	-yne	н−с≡с−н	-0-0	Ethyne (Acetylene)					
—ç— <u>ё</u> —н	Alcohol	-ol	н—с—ё—н Н—й—н		Methanol (Methyl alcohol					
-ç- <u>ö</u> -ç-	— Ether	ether	H—C—Ö—C—H H H		Dimethyl ether					
	Alkyl halide or haloalkane	-ide	H—Ç—Çİ:		Chloromethane (Methyl chloride)					
_c -i -i -	Amine	-amine	H H H—C—C—Ü—H H H H		Ethylamine					
:0: CH	Aldehyde	-al	H :O: H—C—C—H H		Ethanal (Acetaldehyde)					
-ç-c-ç-	- Ketone	-one	H :O: H 		Propanone (Acetone)					
−С—Ö—н .ю: :о:	Carboxylic acid	-oic acid	H—C—C—Ö—H		Ethanoic acid (Acetic acid)					
:0: 	— Ester	-oate	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Methyl ethanoate (Methyl acetate)					
:0: -CN 	Amide	-amide	H :0: H—C—C—N—H 		Ethanamide (Acetamide)					

- Alkyl group: the partial structure that results from the removal of a H atom from an alkane. Name: replace –ane ending of alkane with –yl ending.
- Nomenclature of Alkanes:

- 1) Find the longest continuous chain of carbon atoms, and use the name of this chain as the base name;
- 2) Number the carbon atoms in the longest chain, beginning with the end nearest

- a substituent;
- 3) Name each substituent;
- 4) Begin the name with the number or numbers of the carbon or carbons to which each substituent is bonded:
- 5) When two or more substituents are present, list them in alphabetical order;

No. of carbons	1	2	3	4	5	6	7	8	9	10
Parent	meth	eth	prop	but	pent	hex	hept	oct	non	dec

- **Chiral:** a molecule possessing a nonsuperimposable mirror image, the images are called optical isomers or enantiomers.
 - 1) Compounds containing carbon atoms with four different attached groups are inherently chiral, the carbon atom is the chiral center;
 - 2) The two members of an enantiomer pair have identical physical and chemical properties when they react with nonchiral reagents, only in a chiral environment do they behave differently from each other;
- Racemic mixture: when a chiral substance is synthesized in a typical reaction, the two enantiomers are formed in precisely the same quantity, the resulting mixture is racemic mixture.

• Biopolymers: proteins, carbohydrates and nucleic acids.

- 1) Proteins are macromolecules present in all living cells, being composed of amino acids;
 - ✓ Primary structure: the sequence of amino acids in the polypeptide/protein chain
- ✓ Secondary structure: interactions between the chain atoms (C=O and N—H atoms) that give structure to proteins
- ✓ Tertiary structure: "intermolecular" forces between side-chain atoms that give structure to proteins
- ✓ Quaternary structure: arrangement of multiple units and/or incorporation of non–amino acid portions of proteins
- 2) Carbohydrates are biological molecules consisting of C, H, and O atoms, usually with the empirical formula $C_m(H_2O)_n$;
 - ✓ Monosaccharide: C₆H₁₂O₆; glucose (-OH, -CHO) and fructose (-OH, -CO-)
 - ✓ Disaccharide: C₁₂H₂₂O₁₁; sucrose, lactose. Dehydration between two monosaccharides forms a disaccharide.
 - ✓ Polysaccharide: (C₆H₁₀O₅)_n; starch, glycogen, and cellulose are the three most common polysaccharides.
- 3) Nucleic acids are a class of biopolymers that are the chemical carriers of an organism's genetic information;
- 4) Lipids are a diverse class of nonpolar biological molecules used by organisms for long term energy storage and as elements of biological structures;
- 5) Fats and oils are made from long-chain carboxylic acids and glycerol.
 - ✓ Fats have only saturated carboxylic acids. They are solids.
 - ✓ Oils have at least one unsaturated carboxylic acid. They are liquids.
- 6) Phospholipids are similar in chemical structure to fats but have only two fatty acids attached to a glycerol. The third alcohol group of glycerol is joined to a phosphate group.