1830

Доцент К2, к.т.н.

Министерство науки и высшего образования Российской Федерации Мытищинский филиал

Федерального государственного автономного образовательного учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	космический
и а же пра	
КАФЕДРА	<u>K-2</u>
	отчет
	•
	ПО ЛАБОРАТОРНОЙ РАБОТЕ
	№ 2
	по дисциплине
	подисциилипе
"I	Конструкторско-технологическое
1	ОБЕСПЕЧЕНИЕ ПРОИЗВОДСТВА ЭВМ»
Студент К3-66Б	<u> Чернов В.Д.</u>

Удалов М.Е.

Вариант №21

Цель работы: создать изображение элемента в электрической схеме в программной среде EasyEDA.

Задание: в порядке разработки экономичного импульсного стабилизатора напряжения (Рис. №1.), создать библиотечный элемент и посадочное место к нему в программной среде EasyEDA.

Рис. №1. экономичный импульсный стабилизатор напряжения на микросхеме К140УД12.

Набор элементов:

- R1 R11 резисторы
- C1 C7 конденсаторы
- Микросхема DA1 K140УД12
- VD1 стабилитрон
- VD2 диод
- VT1 VT5 транзисторы
- L1 дроссель

Выполнение лабораторной работы

Для создания электрического элемента (резистор R4 150 кОм)
использую команды: Файл → Новый → Символ (Рис №2):

Рис. №2. Добавление нового символа

2) Символ резистора R4 нарисован в соответствии с ГОСТ 2.728-74. Во вкладке «Рисование» выбираю режим рисования линий и рисую прямоугольник (Рис. №3):

Рис. №3. Прямоугольник

Добавляю контакты из вкладки «Рисование» (Рис. №4):

Рис. №4. Добавление контактов

Соединяю контакты с прямоугольником. Ниже представлено итоговое изображение резистора R4 (Рис. №5):

Рис. №5. Итоговое изображение резистора R4 Чтобы добавить этот элемента в библиотеку электрических элементов я последовательно использую следующие команды:

Файл -> Сохранить как -> Сохранить(Рис. №6 и Рис. №7) :

Рис. №6. Команды «Файл» -> «Сохранить как»

Рис. №7. Команда «Сохранить»

После этого, я импортирую резистор в библиотеку электрических элементов (Рис. №8):

Рис. №8. Содержимое библиотеки электрических элементов

 Для создания библиотеки посадочных мест я использую следующие команды: Файл -> Новый -> Посадочное место (Рис. №9)

Рис. №9. Создание библиотеки посадочных мест

4) Размеры для посадочного места резистора R4, согласно полученному заданию, взяты из размеров посадочного места RES-TH_BD2.7-L6.2-P10.20-D0.4 для резистора CR1/4W-150K±5%-OT52, которое находится в LCSC библиотеке. В открывшемся окне рисую

посадочное место для резистора. Сначала площадь посадочного места (Рис. №10):

Рис. №10. Площадь посадочного места

Затем рисую контактные площадки. Ниже представлено итоговое изображение посадочного места резистора R4 (Рис. №11):

Рис. №11. Выбранное посадочное место

Для добавления этого посадочного места в библиотеку посадочных мест использую команды: Файл → Сохранить как (Рис. №6), и затем Сохранить (Рис. №12):

Рис. №12. Действие «Сохранить»

После этого, я импортирую посадочное место в библиотеку посадочных мест (Рис. №13):

Рис. №13. Содержимое библиотеки посадочных мест

5) Для того чтобы сопрячь получившийся резистор R4 и посадочное место (см. Рис. №5), использую команды Инструменты → Менеджер посадочных мест (Рис. №14):

Рис. №14 Команды «Инструменты» — «Менеджер посадочных мест»

В менеджере посадочных мест в поиске ввожу название посадочного места для резистора, произвожу сопряжение электрического элемента и посадочного места (Рис. №15):

Рис. №15 Сопряжение резистора R4 и посадочного места

Вывод: в работе показано, как были построены УГО резистора R4 и посадочного места к нему в программной среде EasyEDA.

Список источников

1. Учебное пособие. Базовые навыки Easy EDA.

URL: https://docs.easyeda.com/en/Introduction/Basic-Skill/index.html

(дата обращения: 14.03.2025)

2. ГОСТ 2.728-74 — резисторы, конденсаторы.

URL: https://files.stroyinf.ru/Data2/1/4294847/4294847788.pdf

(дата обращения: 14.03.2025)