Lecture 3: More technology

Wednesday, January 9, 2019 6:40 PM

Outline

- · Energy and power of CMOS devices
- Trends in technology
- Start on ISA/instructions, if time

IF A RESEARCHER SAYS A COOL NEW TECHNOLOGY SHOULD BE AVAILABLE TO CONSUMERS IN ...

WHAT THEY MEAN IS...

THE FOURTH QUARTER OF NEXT YEAR	THE PROJECT WILL BE CANCELED IN SIX MONTHS.
FIVE YEARS	I'VE SOLVED THE INTERESTING RESEARCH PROBLEMS. THE REST IS JUST BUSINESS, WHICH IS EASY, RIGHT?
TEN YEARS	WE HAVEN'T FINISHED INVENTING IT YET, BUT WHEN WE DO, IT'LL BE AWESOME.
25+ YEARS	IT HAS NOT BEEN CONCLUSIVELY PROVEN IMPOSSIBLE.
WE'RE NOT REALLY LOOKING AT MARKET APPLICATIONS RIGHTNOW.	I LIKE BEING THE ONLY ONE WITH A HOVERCAR.

Energy and Power of CMOS devices

How do energy and power relate?

P= E/time

Energy =

Static energy: (onstant out put

Dynamic energy: Depends on Switching

Static energy increases we smaller transistors

Enersy of a system = dC · VZ

activation

throwing capacitance

Power:

Power:

Energy costs money of probable Battery for nobile

Battery for nob

Month Dower of hip = LCV2. f

If we are power/energy constrained: How do we reduce power/energy?

E = d (V²

P = d (V²

Fewer transistors

Loc gaes down

Fewer features on chip

Retter instruction sets

Lomitiple things per cycle

Parullel ism

Modure freq

Trends

35 Years of Microprocessor Trend Data

Slides from Intel

Intel Tick-Tock Model

Other trends

DIE STACKING IS IDEAL FOR INTEGRATION

• All they do is reduce metal interconnect by improving proximity of disparate technologies

40 | DIE STACKING IS HAPPENING! | DECEMBER 9, 2013

John Hennessy and David Patterson 2017 ACM A.M. Turing Award Lecture

