Gait Event Detection Using an LSTM Network 10-701 Project Presentation

Pablo Iturralde Yin Zhong Jakob Bauer

April 22, 2015

Introduction

- ► Goal: accurately detect gait events (heel strike, toe off) in video-based motion capture data of human walking gait
- ► Necessary to analysis of changes in gait that arise from training, disease, aging, etc.

Figure 1: Gait events [Rueterbories et al., 2010]

Data

- All data are time series
- ▶ **Input:** 3D locus of 18 motion capture markers (54*N reals)
- Output:
 - ▶ Raw: Event takes place \Rightarrow 1; else \Rightarrow 0 (4*N bools)
 - ▶ Equivalent: Leg in stance phase \Rightarrow 1; else \Rightarrow 0 (2*N bools)
- Training dataset:
 - ► Sample rate: 100 Hz
 - ▶ 240 000 samples (8 subjects \times 3 trials \times 10 000 samples)
 - Ground truth from force plates on treadmills (very accurate)

Baseline Methods

- Signal processing approach [O'Connor et al., 2007]
 - Heuristic based on position and speed of heel and toe markers
 - Pros:
 - No training is needed
 - Good accuracy when input data is clean
 - Cons:
 - Sensitive to noise in input; resulting in gross mis-predictions
 - Need to manually specify sensitive thresholds
 - Heavy pre-filtering helps reduce noise but reduces accuracy
- ► Feed-forward Neural Network [Miller, 2009]
 - Sliding window centered around the desired marker
 - Pros:
 - ► TODO
 - Cons:
 - Heavy preprocessing (dimensionality reduction, windowing, etc.); requires manual picking of parameters
 - TODO

Our Approach: LSTM

- Motivation:
 - Avoid manual picking of sensitive parameters (window size, threshold, filter cutoff, etc.)
 - Human walking can be modeled as a dynamic system; RNN (Recurrent Neural Network) learns dynamic systems
 - Any gait cycle may depend on ones preceding it
- ► LSTM cell: RNN building block for variable time-dependence
- Network architecture:
 - ▶ Inputs (54 reals)
 - ▶ n LSTM cells (n reals in [-1, +1])
 - Output layer (softmax/sigmoid)
 - ▶ Outputs (2 reals in [0,1])
- Implementation:
 - ► Torch/Lua
 - ▶ LSTM cell by de Freitas (Oxford University, Google Deepmind)
 - ► AWS EC2 GPU instance (g2.2xlarge)

Results

	mean	std	mistake
O'Connor	XXXXXXX	XXXXXX	XXXXXX
Miller	XXXXXXX	XXXXXXX	XXXXXXX
LSTM	XXXXXXX	XXXXXXX	XXXXXX

Results

Figure 2: Histogram Miller

Thank you for your attention!