One Population t Test

Test Statistic:

$$t = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} \sim \mathcal{N}(0, 1)$$

- 1. $H_0: \mu \le \mu_0$ vs. $H_I: \mu_0 > \mu_0$ Reject H_0 if $t > t_{\alpha,n-1}$
- 2. $H_0: \mu \ge \mu_0$ vs. $H_I: \mu_0 < \mu_0$ Reject H_0 if $t <_{\alpha,n-1}$
- 3. $H_0: \mu = \mu_0 \quad vs. \quad H_I: \mu_0 \neq \mu_0$ Reject H_0 if $|t| > t_{\frac{\alpha}{2}, n-1}$

Two Population t Test

Test Statistic:

$$t = \frac{\bar{x} - \bar{y}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- 1. $H_0: \mu \leq \mu_0 \quad vs. \quad H_I: \mu_0 > \mu_0$ Reject H_0 if $t > t_{\alpha, n_1 + n_2 - 2}$
- 2. $H_0: \mu \ge \mu_0$ vs. $H_I: \mu_0 < \mu_0$ Reject H_0 if $t <_{\alpha, n_1 + n_2 - 2}$
- 3. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 \neq \mu_0$ Reject H_0 if $|t| > t_{\frac{\alpha}{2}, n_1 + n_2 - 2}$

NonParametric One Population Test

Test Statistic:

Let y = # of observations that excede η_0 among the population.

$$Z = \frac{y - \frac{n}{2}}{\sqrt{\frac{n}{4}}}$$

- 1. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 > \mu_0$ Reject H_0 if $Z > Z_\alpha$
- 2. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 < \mu_0$ Reject H_0 if $Z < -Z_{\alpha}$
- 3. $H_0: \mu = \mu_0 \quad vs. \quad H_I: \mu_0 \neq \mu_0$ Reject H_0 if $|Z| > Z_{\alpha}$

NonParametric Two Population Test

Method: Form n differences $d_i = x_i - y_i$ for $i = 1, 2, \ldots$, n and rank the absolute differences $|d_i|$ in increasing order. Write the ranks of $|d_i|$ as 1 to n, then attack the sign of d_i to its rank. The ranks with the appropriate signs attached are called the signed ranks, R_i . If a tie occurs, replace tied ranks by their average rank. Compute the sum of the signed ranks, $T = \sum_{i=1}^{n} R_i$. If $d_i = 0$ remove it from the calculation and reduce n accordingly.

Test Statistic:

$$Z = \frac{T}{\sqrt{\frac{n(n+1)(2n+1)}{6}}}$$

- 1. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 > \mu_0$ Reject H_0 if $Z > Z_{\alpha}$
- 2. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 < \mu_0$ Reject H_0 if $Z < -Z_{\alpha}$
- 3. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 \neq \mu_0$ Reject H_0 if $|Z| > Z_{\alpha}$

Exact Test:

 $T_{+} = \text{sum of the positive ranks}$ $T_{-} = \text{sum of the negative ranks}$ $T_{min} = Min(T_{+}, T_{-})$

- 1. $H_0: \mu = \mu_0 \quad vs. \quad H_I: \mu_0 > \mu_0$ Reject H_0 if $T_- < T_{\alpha(1),n}$
- 2. $H_0: \mu = \mu_0 \quad vs. \quad H_I: \mu_0 < \mu_0$ Reject H_0 if $T_+ < T_{\alpha(1),n}$
- 3. $H_0: \mu = \mu_0 \quad vs. \quad H_I: \mu_0 \neq \mu_0$ Reject H_0 if $T_{min} > T_{\alpha(2),n}$

Mann-Whitney Test

Used to determine if there is a difference between two independent populations. Let $x_1, x_2, \ldots, x_{n_2}$ be a random sample of size n_2 from the first population and $y_1, y_2, \ldots, y_{n_2}$ be a random sample of size n_2 from the second population. Method:

Rank the combined sample observations from lowest to highest, with tied values assigned as the average of the rankings. compute T_1 - the sum of the ranks of the first sample. Test Statistic:

Let
$$\mu_{T_1} = \frac{1}{2}n_1(n_1 + n_2 + 1)$$
 and $\sigma_{T_1} = \sqrt{\frac{1}{12}n_1n_2(n_1 + n_2 + 1)}$

$$Z = \frac{T_1 - \mu_{T_1}}{\sigma_{T_1}}$$

- 1. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 > \mu_0$ Reject H_0 if $Z > Z_\alpha$
- 2. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 < \mu_0$ Reject H_0 if $Z < -Z_{\alpha}$
- 3. $H_0: \mu = \mu_0$ vs. $H_I: \mu_0 \neq \mu_0$ Reject H_0 if $|Z| > Z_{\alpha}$

One Way ANOVA

Total number of observations:

$$N = n_1 + n_2 + \ldots + n_k$$

Grand total:

$$G = T_1 + T_2 + \ldots + T_k$$

Correction Term:

$$CT = \frac{G^2}{N}$$

Treatment Sum of Squares:

$$SS_{TR} = \left(\frac{T_1^2}{n_1} + \frac{T_2^2}{n_2} + \ldots + \frac{T_k^2}{n_k}\right) - CT$$

Total Sum of Squares:

$$SS_T = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - CT$$

Error Sum of Squares:

$$SS_E = SS_T - SS_{TR}$$

ANOVA Table:

Source	dof	SS	MS	F
Treatment	k-1	SS_{TR}	$MS_{TR} = \frac{SS_{TR}}{k-1}$	$F = \frac{MS_{TR}}{MS_E}$
Error	N-k	SS_E	MS_E	-
Total	N-1	SS_T		

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k$$

Reject H_0 if $F > F_{\alpha,k-1,N-k}$

1 Hartley's Test

 $H_0\colon \sigma_1^2=\sigma_2^2=\dots\sigma_k^2$ vs. $H_I\colon$ At least one different Test Statistic:

For S_i^2 = sample variance for ith population.

$$F_{max} = \frac{max(S_i^2)}{min(S_i^2)}$$

Reject
$$H_0$$
 if $F_{max} > F_{max(\alpha),k,\nu}$
for k = number of groups
and $\nu = max(n_1 - 1, n_2 - 1, \dots, n_i - 1)$

2 Brown-Forsythe-Levene (BFL) Test