#### 12.2. System Check Plots

This appendix contains the following system check distribution scans.

| Scan Reference Number | Title                                         |
|-----------------------|-----------------------------------------------|
| 001                   | System Performance Check 900MHz Head 19 08 15 |
| 002                   | System Performance Check 900MHz Body 17 08 15 |
| 003                   | System Performance Check 900MHz Body 24 08 15 |

001: System Performance Check 900MHz Head 19 08 15

Date: 19/8/2015

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:035



0 dB = 2.87 W/kg = 4.58 dBW/kg

Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used: f = 900 MHz;  $\sigma = 0.952$  S/m;  $\varepsilon_r = 41.135$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.17, 6.17, 6.17); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM A (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe) 2/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.87 W/kg

SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe) 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 57.71 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.60 W/kg

SAR(1 g) = 2.62 W/kg; SAR(10 g) = 1.73 W/kg

Maximum value of SAR (measured) = 2.84 W/kg

002: System Performance Check 900MHz Body 17 08 15

Date: 17/8/2015

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:035



0 dB = 2.82 W/kg = 4.50 dBW/kg

Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz;  $\sigma$  = 1.033 S/m;  $\epsilon_r$  = 53.253;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 - SN1586; ConvF(6.06, 6.06, 6.06); Calibrated: 22/5/2015;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: ELI v5.0 (30deg probe tilt); Type: QDOVA002AA; Serial: TP:xxxx
- -; SEMCAD X Version 14.6.10 (7331)

SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe) 2 2 2/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.82 W/kg

SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe) 2 2 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.39 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.59 W/kg; SAR(10 g) = 1.71 W/kg Maximum value of SAR (measured) = 2.82 W/kg 003: System Performance Check 900MHz Body 24 08 15

Date: 24/8/2015

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:035



0 dB = 2.88 W/kg = 4.59 dBW/kg

Communication System: UID 0, CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz;  $\sigma = 1.069$  S/m;  $\epsilon_r = 54.054$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.06, 6.06, 6.06); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

**SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe) 2 2 2 2/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 2.88 W/kg

SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe) 2 2 2 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 46.02 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.66 W/kg; SAR(10 g) = 1.75 W/kg

Maximum value of SAR (measured) = 2.88 W/kg

#### 12.3. SAR Test Plots

This appendix contains the following SAR distribution scans.

| Scan Reference Number | Title                                          |
|-----------------------|------------------------------------------------|
| 001                   | Touch Left of DUT Open WCDMA 5 CH4183          |
| 002                   | Tilt Left of DUT Open WCDMA 5 CH4183           |
| 003                   | Touch Right of DUT Open WCDMA 5 CH4183         |
| 004                   | Tilt Right of DUT Open WCDMA 5 CH4183          |
| 005                   | Front of DUT Open WCDMA 5 CH4183               |
| 006                   | Back of DUT Open WCDMA 5 CH4183                |
| 007                   | Back of DUT Open WCDMA 5 CH4132                |
| 008                   | Back of DUT Open WCDMA 5 CH4233                |
| 009                   | Front of DUT Closed WCDMA 5 CH4183             |
| 010                   | Back of DUT Closed WCDMA 5 CH4183              |
| 011                   | Back of DUT Closed WCDMA 5 CH4132              |
| 012                   | Back of DUT Closed WCDMA 5 CH4233              |
| 013                   | Back of DUT Closed with PHF Kit WCDMA 5 CH4233 |
| 014                   | Back of DUT Closed WCDMA 5 RMC + HSDPA CH4233  |
| 015                   | Back of DUT Closed WCDMA 5 RMC + HSUPA CH4233  |

001: Touch Left of DUT Open WCDMA 5 CH4183

Date: 19/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.571 W/kg = -2.43 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.903$  S/m;  $\epsilon_r = 41.538$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.31, 6.31, 6.31); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM A (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Touch Left - Middle/Area Scan (61x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.580 W/kg

Configuration/Touch Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.67 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.697 W/kg

SAR(1 g) = 0.533 W/kg; SAR(10 g) = 0.378 W/kg Maximum value of SAR (measured) = 0.571 W/kg 002: Tilt Left of DUT Open WCDMA 5 CH4183

Date: 19/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.239 W/kg = -6.22 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.903$  S/m;  $\epsilon_r = 41.538$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 - SN1586; ConvF(6.31, 6.31, 6.31); Calibrated: 22/5/2015;

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015

- Phantom: SAM A (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836

-; SEMCAD X Version 14.6.10 (7331)

Configuration/Tilt Left - Middle/Area Scan (61x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.239 W/kg

Configuration/Tilt Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.97 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.275 W/kg

SAR(1 g) = 0.227 W/kg; SAR(10 g) = 0.171 W/kg

Maximum value of SAR (measured) = 0.239 W/kg

003: Touch Right of DUT Open WCDMA 5 CH4183

Date: 20/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.530 W/kg = -2.76 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.903$  S/m;  $\epsilon_r = 41.538$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.31, 6.31, 6.31); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM A (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Touch Right - Middle 2/Area Scan (61x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.530 W/kg

Configuration/Touch Right - Middle 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.28 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.635 W/kg

SAR(1 g) = 0.494 W/kg; SAR(10 g) = 0.352 W/kg

Maximum value of SAR (measured) = 0.530 W/kg

This report shall not be reproduced except in full, without the written approval of UL VS Ltd.

004: Tilt Right of DUT Open WCDMA 5 CH4183

Date: 20/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.216 W/kg = -6.66 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.903$  S/m;  $\epsilon_r = 41.538$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.31, 6.31, 6.31); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM A (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Touch Right - Middle 2/Area Scan (61x161x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm.

Maximum value of SAR (interpolated) = 0.224 W/kg

Configuration/Touch Right - Middle 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.88 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.248 W/kg

SAR(1 g) = 0.206 W/kg; SAR(10 g) = 0.158 W/kg Maximum value of SAR (measured) = 0.216 W/kg 005: Front of DUT Open WCDMA 5 CH4183

Date: 20/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.465 W/kg = -3.33 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.993$  S/m;  $\epsilon_r = 53.522$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

**DASY4** Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Front of EUT - Middle 2 2 2/Area Scan (91x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.465 W/kg

Configuration/Front of EUT - Middle 2 2 2/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.59 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.439 W/kg; SAR(10 g) = 0.319 W/kg Maximum value of SAR (measured) = 0.466 W/kg 006: Back of DUT Open WCDMA 5 CH4183

Date: 20/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.907 W/kg = -0.42 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 0.993$  S/m;  $\epsilon_r = 53.522$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2/Area Scan (91x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.907 W/kg

Configuration/Back of EUT - Middle 2/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 31.48 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.852 W/kg; SAR(10 g) = 0.601 W/kg

Maximum value of SAR (measured) = 0.911 W/kg

007: Back of DUT Open WCDMA 5 CH4132

Date: 24/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.886 W/kg = -0.52 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 826.4 MHz;  $\sigma = 1.022$  S/m;  $\epsilon_r = 54.448$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2/Area Scan (91x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.886 W/kg

Configuration/Back of EUT - Middle 2/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.16 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.833 W/kg; SAR(10 g) = 0.584 W/kg

Maximum value of SAR (measured) = 0.891 W/kg

008: Back of DUT Open WCDMA 5 CH4233

Date: 20/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.986 W/kg = -0.06 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 846.6 MHz;  $\sigma = 1$  S/m;  $\varepsilon_f = 53.48$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2 2/Area Scan (91x201x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.986 W/kg

Maximum value of SAR (interpolated) = 0.986 W/Rg

Configuration/Back of EUT - Middle 2 2/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.71 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.762 W/kg; SAR(10 g) = 0.533 W/kg Maximum value of SAR (measured) = 0.815 W/kg 009: Front of DUT Closed WCDMA 5 CH4183

Date: 24/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.352 W/kg = -4.53 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 1.029$  S/m;  $\epsilon_r = 54.412$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Front of EUT - Middle 2/Area Scan (91x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.352 W/kg

Configuration/Front of EUT - Middle 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.11 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.420 W/kg

SAR(1 g) = 0.330 W/kg; SAR(10 g) = 0.242 W/kg Maximum value of SAR (measured) = 0.350 W/kg 010: Back of DUT Closed WCDMA 5 CH4183

Date: 24/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.817 W/kg = -0.88 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz;  $\sigma = 1.029$  S/m;  $\epsilon_r = 54.412$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2/Area Scan (91x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.817 W/kg

Configuration/Back of EUT - Middle 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.19 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.765 W/kg; SAR(10 g) = 0.544 W/kg

Maximum value of SAR (measured) = 0.817 W/kg

011: Back of DUT Closed WCDMA 5 CH4132

Date: 19/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.858 W/kg = -0.66 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 826.4 MHz;  $\sigma$  = 0.987 S/m;  $\epsilon_r$  = 53.565;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle/Area Scan (91x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 0.858 W/kg

Configuration/Back of EUT - Middle/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 30.28 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.790 W/kg; SAR(10 g) = 0.562 W/kg

Maximum value of SAR (measured) = 0.841 W/kg

012: Back of DUT Closed WCDMA 5 CH4233

Date: 25/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 1.10 W/kg = 0.43 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 846.6 MHz;  $\sigma = 1.036$  S/m;  $\varepsilon_r = 54.376$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2/Area Scan (91x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.10 W/kg

Configuration/Back of EUT - Middle 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.93 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 1.04 W/kg; SAR(10 g) = 0.742 W/kg

Maximum value of SAR (measured) = 1.10 W/kg

013: Back of DUT Closed with PHF Kit WCDMA 5 CH4233

Date: 25/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 0.865 W/kg = -0.63 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 846.6 MHz;  $\sigma$  = 1.036 S/m;  $\epsilon_r$  = 54.376;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2/Area Scan (111x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.865 W/kg

Configuration/Back of EUT - Middle 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.95 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.815 W/kg; SAR(10 g) = 0.574 W/kg Maximum value of SAR (measured) = 0.870 W/kg 014: Back of DUT Closed WCDMA 5 RMC + HSDPA CH4233

Date: 20/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 1.04 W/kg = 0.19 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 846.6 MHz;  $\sigma = 1$  S/m;  $\epsilon_r = 53.48$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

- Probe: ET3DV6 - SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2/Area Scan (91x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.04 W/kg

Configuration/Back of EUT - Middle 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 33.39 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.972 W/kg; SAR(10 g) = 0.693 W/kg Maximum value of SAR (measured) = 1.03 W/kg 015: Back of DUT Closed WCDMA 5 RMC + HSUPA CH4233

Date: 24/8/2015

DUT: Panasonic; Type: P-01H; Serial: 351772070005110



0 dB = 1.07 W/kg = 0.28 dBW/kg

Communication System: UID 0, UMTS FDD (0); Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 846.6 MHz;  $\sigma = 1.036$  S/m;  $\epsilon_r = 54.376$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

**DASY4** Configuration:

- Probe: ET3DV6 SN1586; ConvF(6.22, 6.22, 6.22); Calibrated: 22/5/2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1438; Calibrated: 29/4/2015
- Phantom: SAM B (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:1836
- -; SEMCAD X Version 14.6.10 (7331)

Configuration/Back of EUT - Middle 2/Area Scan (91x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.07 W/kg

Configuration/Back of EUT - Middle 2/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 32.85 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.991 W/kg; SAR(10 g) = 0.707 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

#### 12.4. Calibration Certificate for E-Field Probe

This sub-section contains Cal Certificates for E-Field Probes, and is not included in the total number of pages for this report.

A2112

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: ET3-1586\_May15

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

**UL RFI UK** 

### **CALIBRATION CERTIFICATE**

Object ET3DV6 - SN:1586

Calibration procedure(s) QA CAL-01.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: May 22, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 01-Apr-15 (No. 217-02128)         | Mar-16                 |
| Power sensor E4412A        | MY41498087      | 01-Apr-15 (No. 217-02128)         | Mar-16                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 01-Apr-15 (No. 217-02129)         | Mar-16                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 01-Apr-15 (No. 217-02132)         | Mar-16                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 01-Apr-15 (No. 217-02133)         | Mar-16                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-14 (No. ES3-3013_Dec14)    | Dec-15                 |
| DAE4                       | SN: 660         | 14-Jan-15 (No. DAE4-660_Jan15)    | Jan-16                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check; Apr-16 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |

Calibrated by:

Israe Elnaouq

Laboratory Technician

Signature

Welles of Chicagon

Approved by:

Katja Pokovic

Technical Manager

Issued: May 25, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ET3-1586\_May15 Page 1 of 11

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ET3-1586\_May15 Page 2 of 11

ET3DV6 - SN:1586

# Probe ET3DV6

SN:1586

Manufactured: May 7, 2001 Calibrated: May 22, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

#### **Basic Calibration Parameters**

| (d) 11/h                 | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.86     | 1.91     | 1.95     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 98.8     | 99.0     | 100.7    |           |

#### Modulation Calibration Parameters

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>±</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 223.5    | ±3.5 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 226.6    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 225.9    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>B</sup> Numerical linearization parameter: uncertainty not required.

<sup>&</sup>lt;sup>^</sup> The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 41.9                                  | 0.89                    | 6.60    | 6.60    | 6.60    | 0.31               | 3.00                       | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                    | 6.31    | 6.31    | 6.31    | 0.36               | 3.00                       | ± 12.0 %       |
| 900                  | 41.5                                  | 0.97                    | 6.17    | 6.17    | 6.17    | 0.38               | 3.00                       | ± 12.0 %       |
| 1450                 | 40.5                                  | 1.20                    | 5.36    | 5.36    | 5.36    | 0.56               | 2.32                       | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                    | 5.28    | 5.28    | 5.28    | 0.72               | 2.13                       | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                    | 5.07    | 5.07    | 5.07    | 0.80               | 2.07                       | ± 12.0 %       |
| 2100                 | 39.8                                  | 1.49                    | 5.11    | 5.11    | 5.11    | 0.80               | 1.94                       | ± 12.0 %       |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

#### Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>6</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------|
| 750                  | 55.5                                  | 0.96                    | 6.36    | 6.36    | 6.36    | 0.29               | 3.00                       | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                    | 6.22    | 6.22    | 6.22    | 0.31               | 3.00                       | ± 12.0 %       |
| 900                  | 55.0                                  | 1.05                    | 6.06    | 6.06    | 6.06    | 0.34               | 3.00                       | ± 12.0 %       |
| 1450                 | 54.0                                  | 1.30                    | 5.07    | 5.07    | 5.07    | 0.57               | 2.38                       | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                    | 4.81    | 4.81    | 4.81    | 0.76               | 2.56                       | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                    | 4.64    | 4.64    | 4.64    | 0.80               | 2.43                       | ± 12.0 %       |
| 2100                 | 53.2                                  | 1.62                    | 4.77    | 4.77    | 4.77    | 0.80               | 2.06                       | ± 12.0 %       |

 $<sup>^{\</sup>rm C}$  Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>&</sup>lt;sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

ET3DV6-SN:1586 May 22, 2015

## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ET3DV6-SN:1586 May 22, 2015

## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$







Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

ET3DV6-- SN:1586 May 22, 2015

## Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

ET3DV6- SN:1586 May 22, 2015

## **Conversion Factor Assessment**



Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz





ET3DV6- SN:1586

## DASY/EASY - Parameters of Probe: ET3DV6 - SN:1586

#### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 124.6      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 6.8 mm     |
| Probe Tip to Sensor X Calibration Point       | 2.7 mm     |
| Probe Tip to Sensor Y Calibration Point       | 2.7 mm     |
| Probe Tip to Sensor Z Calibration Point       | 2.7 mm     |
| Recommended Measurement Distance from Surface | 4 mm       |

#### 12.5. Calibration Certificate for Dipole

This sub-section contains Cal Certificates for Dipoles, and is not included in the total number of pages for this report.

AZZOI

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst

Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL RFI UK

Certificate No: D900V2-035\_Jan15

Checke

## CALIBRATION CERTIFICATE

Object D900V2 - SN: 035

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: January 23, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | iD#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 07-Oct-14 (No. 217-02020)         | Oct-15                 |
| Power sensor HP 8481A       | US37292783         | 07-Oct-14 (No. 217-02020)         | Oct-15                 |
| Power sensor HP 8481A       | MY41092317         | 07-Oct-14 (No. 217-02021)         | Oct-15                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 03-Apr-14 (No. 217-01918)         | Apr-15                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 03-Apr-14 (No. 217-01921)         | Apr-15                 |
| Reference Probe ES3DV3      | SN: 3205           | 30-Dec-14 (No. ES3-3205_Dec14)    | Dec-15                 |
| DAE4                        | SN: 601            | 18-Aug-14 (No. DAE4-601_Aug14)    | Aug-15                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |
|                             | Name               | Function                          | Signature              |
| Calibrated by:              | Michael Weber      | Laboratory Technician             | M. Weles               |
| Approved by:                | Katja Pokovic      | Technical Manager                 | ann                    |

Issued: January 26, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-035\_Jan15

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulatina liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

#### Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY5                  | V52.8.8                                        |
|------------------------|------------------------------------------------|
| Advanced Extrapolation |                                                |
| Modular Flat Phantom   |                                                |
| 15 mm                  | with Spacer                                    |
| dx, dy, dz = 5 mm      |                                                |
| 900 MHz ± 1 MHz        |                                                |
|                        | Modular Flat Phantom  15 mm  dx, dy, dz = 5 mm |

Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.97 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.4 ± 6 %   | 0.95 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | (helici)     | 100 100          |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.65 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 10.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.70 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.88 W/kg ± 16.5 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

| the state of the s | Temperature     | Permittivity | Conductivity     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.0 °C         | 55.0         | 1.05 mho/m       |
| Measured Body TSL parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (22.0 ± 0.2) °C | 55.7 ± 6 %   | 1.03 mho/m ± 6 % |
| Body TSL temperature change during test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.5 °C        |              |                  |

### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.65 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 10.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.72 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.97 W/kg ± 16.5 % (k=2) |

#### Appendix (Additional assessments outside the scope of SCS0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 51,9 Ω - 0.5 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 34.3 dB       |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.4 Ω - 2.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 30.2 dB       |  |

#### General Antenna Parameters and Design

| 1.403 ns |
|----------|
|          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG             |  |
|-----------------|-------------------|--|
| Manufactured on | February 26, 1998 |  |

Certificate No: D900V2-035 Jan15 Page 4 of 8

#### DASY5 Validation Report for Head TSL

Date: 22.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz;  $\sigma = 0.95 \text{ S/m}$ ;  $\varepsilon_r = 41.4$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.12 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.96 W/kg

SAR(1 g) = 2.65 W/kg; SAR(10 g) = 1.7 W/kg

Maximum value of SAR (measured) = 3.11 W/kg



## Impedance Measurement Plot for Head TSL



#### **DASY5 Validation Report for Body TSL**

Date: 23.01.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 035

Communication System: UID 0 - CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz;  $\sigma = 1.03 \text{ S/m}$ ;  $\varepsilon_r = 55.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.95, 5.95, 5.95); Calibrated: 30.12.2014;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.81 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.65 W/kg; SAR(10 g) = 1.72 W/kg

Maximum value of SAR (measured) = 3.10 W/kg



## Impedance Measurement Plot for Body TSL



#### 12.6. Tissues-Equivalent Media Recipes

The body mixture consists of water, Polysorbate (Tween 20) and salt. Visual inspection is made to ensure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the tissue.

| Ingredient       | Frequency 835/850/900 MHz |       |
|------------------|---------------------------|-------|
| (% by weight)    | Head                      | Head  |
| De-Ionized Water | 52.87                     | 52.87 |
| Polysorbate 20   | 46.10                     | 46.10 |
| Salt             | 1.03                      | 1.03  |