Winning model documentation

Name: Changsheng Gu

Location: Beijing, China

Email: gzs_iceberg@outlook.com

Competition: Avito Context Ad Clicks

Winning model documentation

- 1. Summary
- 2. Features Selection/Extraction
- 3. Modeling Techniques and Training
 - 3.1 Validation
 - 3.2 Training
- 4. Code Description
- 5. Dependencies
- 6. How To Generate the Solution
- 7. Additional Comments and Observations
- 8. Simple Features and Methods

1. Summary

This document describes the 2th prize solution to the Avito Context Ad Clicks. The solution uses FFM, FM, XGBoost as the basic models, then a NN model is used for model ensembling.

2. Features Selection/Extraction

We test new features in first 10M records of trainSearchStream.tsv. Here're features we used.

- Raw features: AdID, CategoryID, HistCTR, IPID, IsUserLoggedOn, Params,
 Position, Price, SearchParams, SearchQuery, UserAgentFamilyID, UserAgentID,
 UserAgentOSID, UserDeviceID, UserID, searchCategoryID, searchLocationID,
 Title
- Artificial Features:

Feature name	Description
adid_cnt	count of the ad id in stream data
af_3h_cnt	count of records in 3 hours after the search session
af_cnt	count of records after the search session
bf_3h_cnt	count of records in 3 hours before the search session
bf_cnt	count of records before the search session
bf_clk_cnt	count of click records before the search session
bf_ctr	click through rate before the search session
ca_match	matched category id
ca_pid_match	matched parent category id
clk_cnt	historic click count of user on some ad.
hl_lcnt	count of highlighted ads below the position in search sessio
hl_ucnt	count of highlighted ads above the position in search session
ot*_cnt	count of different object type in search session
pos_ot_type	hash value of object type tuple in search session
pos_type	hash value of position tuple in search session
price_pos	rank by price in search session
price_ratio	divide price by average price in search session
qe_ng_cnt	count of matched 2-ngram words between query and title
qe_ng_min_pos	earliest position of matched 2-ngram words between query and title
qe_ng_ratio	ratio of matched words 2-ngram between query and title
qe_w_cnt	count of matched words between query and title
qe_w_pos	earliest position of matched words between query and title

qe_w_ratio	ratio of matched words between query and title
record_cnt	count of records in search session
show_cnt	historic impression count of user on some ad.
t_cnt	total search count of user
t_match	check if query is in the title.
t_show_cnt	total impression count of user on some ad.
title_len	the length of title
u_aid_ctr	historic click through rate of user on some ad.

3. Modeling Techniques and Training

3.1 Validation

How to generate validation set.

- 1. take the 6 days before the end time as start time
- 2. take all last sessions for each user after start time

We choose 6 because of ratio of new user ids, it's more closer to test set.

3.2 Training

Because of data size and class imbalance, we use <u>negative down sampling</u>. Sample rate 0.1 reduce the data to 20M lines and 10GB, then we can train model in memory.

First, train different models with different settings by using tools below.

- FFM(basically follow the code of 3 idiots' winning solution to the Criteo competition)
- FM(basically follow the <u>libfm</u>)
- XGBoost

Second, train a neural network on validation set to combine all predictions of basic models.

4. Code Description

The implementation is organised in the following three parts.

- start point
 - o run.py
 - o run.sh
- data generator
 - o ins/
 - o ins2/
 - o ins3/
 - ins5/
 - o ins20/
 - ins_bag/
 - o xgb5/
- model
 - IceLR/ (FFM and FM)
 - xgb.py (XGBoost)
 - o ensemble/ (lasagne)

5. Dependencies

- Python 2.7
- pypy 2.1.0
- XGBoost
- scons
- numpy 1.9.2
- sklearn 0.15.2
- theano 0.7.0
- lasagne 0.1.dev0
- nolearn
- g++ (with C++11, OpenMp, gflags and protobuf)

6. How To Generate the Solution

- move all tsv files into ./data folder
- Compile the C++ code by

```
cd IceLR
scons
```

run script to generate data and basic models

```
bash run.sh
```

• generate final submission by

```
pypy run.py --type ensemble --method nn > nn_log.log
```

7. Additional Comments and Observations

- <u>Negative down sample</u> tends to make model converge quickly, but only a little impact in accuracy.
- The context features are very important.

8. Simple Features and Methods

Train a FFM model by following command.

```
IceLR/ffm --passes 10 --sr 0.1 --nthread 20 --12 1e-5 --alpha 0.25 --
train_path data/all.ins5 --validate_path data/te.ins5 --b 22 --shuffle --
seed 9
```

it will give you **0.04073** in private leaderboard and **0.04063** in public leaderboard.