Queens' College Cambridge

Information Theory

Alistair O'Brien

Department of Computer Science

May 4, 2022

Contents

1	Intr	Introduction 4												
	1.1 Information and Entropy													
		1.1.1	Principal of Maximal Entropy											
		1.1.2	Mutual Information											
	1.2													
	1.3	Distances												
		1.3.1	Connection to Machine Learning											
		1.3.2	Information and Correlation											
2	Coc	ling Pı	roblems 15											
2.1 Shannon's Source Coding Theorem														
		2.1.1	Block Codes											
		2.1.2	Lossy Codes											
		2.1.3	Typical Sets											
		2.1.4	Source Coding Theorem											
2.2 Symbol Codes														
		2.2.1	Prefix Codes											
		2.2.2	Source Coding Theorem for Symbol Codes 24											
		2.2.3	Huffman Codes											
		2.2.4	Arithmetic Codes											
		2.2.5	Lempel-Ziv Codes											
3	Cha	nnel F	Problems 34											
	3.1	Shann	on's Channel Coding Theorem											
		3.1.1	Definitions											
		3.1.2	Jointly Typical Sets											
		3.1.3	Channel Coding Theorem											
	3.2 Capacity													
		3.2.1	Binary Symmetric Channels											
		3.2.2	Binary Erasure Channels 41											

Alistair O'Brien							Information Theo											ory			
	3.2.3	Gaussian (Channel	S																	4^{2}
3.3	Error	Correcting	Codes .																		44
	3.3.1	Repitition	Codes																		4
	3.3.2	Hamming	Codes																		46

1 Introduction

1.1 Information and Entropy

• Motivation: Need to measure the *information content* of random variables on probability space (Ω, \mathcal{F}, P) .

Definition 1.1.1. (Shannon Information) The Shannon information of the discrete random variable X on (Ω, \mathcal{F}, P) is a total function $h : \overrightarrow{X}(\Omega) \to \mathbb{R}$ defined as

$$h(x) = -\log_2 p_X(x)$$

where h(x) is measured in Shannon bits.

• Shannon bits \neq encoded bits. Example: Bias coin result with $p_{\text{head}} = 0.25$. Then h(1) = 2 bits, but result only requires 1 bit to encode outcome.

Definition 1.1.2. (Axioms of Information) Let $h : [0,1] \to \mathbb{R}$ be the measure of information with a given probability, satisfying the following axioms:

- (I) $\forall p \in [0, 1].h(p) \geq 0.$ Notion of a **negative** number of bits is nonsensical.
- (II) h is monotonically decreasing.
 Intuition of "surprisal". Events w/ high probability = low surprisal
 ⇒ low information content, and vice versa.
- (III) h(1) = 0. No information gained if an event is certain.

(IV) $h(p_X \cdot p_Y) = h(p_X) + h(p_Y)$. Information is **additive**. Information of 2 independent events is the sum of information from each event.

Theorem 1.1.1. (Axiomatic Derviation of Information) Let $h : [0,1] \to \mathbb{R}$ be a measure of information satisfying (I)–(IV), then I is of the form:

$$h(p) = -k \log p$$

for some k > 0.

Proof. Let h be as described. Let us assume that it satisfies (I)-(IV). By (IV) we have:

$$h(p_X \cdot p_Y) = h(p_X) + h(p_Y)$$

Taking derivatives wrt $p_X p_Y$ yields:

$$\frac{\partial}{\partial p_X p_Y} h(p_X \cdot p_Y) = \frac{\partial}{\partial p_X p_Y} h(p_X) + h(p_Y)$$

$$\iff \frac{\partial}{\partial p_X} h'(p_X \cdot p_Y) \cdot p_X = \frac{\partial}{\partial p_X} h'(p_Y)$$

$$\iff h'(p_X \cdot p_Y) + h''(p_X \cdot p_Y) \cdot p_X \cdot p_Y = 0$$

Let $p = p_X \cdot p_Y$, so we have the following ODE:

$$h''(p) \cdot p + h'(p) = 0$$

By the inverse product rule, we have

$$h'(p) + h''(p) \cdot p = \frac{d}{dp} (h'(p) \cdot p) = 0$$

$$\iff h'(p) \cdot p = k_1$$

$$\iff h'(p) = \frac{k_1}{p}$$

$$\iff h(p) = k_1 \log p + k_2$$

where k_1, k_2 are constants of integration. By (II) and (III), k_1, k_2 must satisfy

$$k_1 \log p + k_2 \ge 0$$

$$k_1 \log 1 + k_2 = 0$$

giving us

$$k_1 < 0$$
$$k_2 = 0$$

Writing $k_1 = -k$ for some k > 0, we have

$$h(p) = -k \log p$$

Definition 1.1.3. (Entropy) Entropy is defined as the expected information content of a discrete random variable X on (Ω, \mathcal{F}, P) :

$$H(X) = \mathbb{E}[h(X)] = -\sum_{x \in \overrightarrow{X}(\Omega)} p_X(x) \log_2 p_X(x)$$

Definition 1.1.4. (Joint Entropy) The entropy of the joint distribution of discrete random variables X, Y on (Ω, \mathcal{F}, P) is given by:

$$H(X,Y) = \mathbb{E}\left[h(X,Y)\right] = -\sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 p_{X,Y}(x,y)$$

Definition 1.1.5. (Conditional Entropy) For two discrete random variables X, Y on (Ω, \mathcal{F}, P) , the conditional entropy of X given Y = y is defined as:

$$H(X\mid Y=y) = \mathbb{E}\left[h(X\mid Y=y)\right] = -\sum_{x\in\overrightarrow{X}(\Omega)} p_X(x\mid Y=y) \log_2 p_X(x\mid Y=y)$$

Definition 1.1.6. (Iterated Conditional Entropy) The iterated conditional entropy $H(X \mid Y)$, for discrete random variables X, Y on (Ω, \mathcal{F}, P) , is given by:

$$H(X \mid Y) = \mathbb{E}_{Y} [H(X \mid Y)]$$

$$= -\sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X}(x \mid Y = y) p_{Y}(y) \log_{2} p_{X}(x \mid Y = y)$$

$$= -\sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x, y) \log_{2} p_{X}(x \mid Y = y)$$

This is the expected uncertainty/information of X given Y, averaged over all possible values of X and Y.

Theorem 1.1.2. (Chain Rule of Entropy) The joint, conditional and marginal entropies of discrete random variables X, Y on (Ω, \mathcal{F}, P) satisfy

$$H(X,Y) = H(X) + H(Y \mid X) = H(Y) + H(X \mid Y)$$

Proof. Let X, Y be discrete random variables on (Ω, \mathcal{F}, P) . So

$$\begin{split} H(X,Y) &= -\sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 p_{X,Y}(x,y) \\ &= -\sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 p_X(x) p_Y(y \mid x) \\ &= -\sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \left[\log_2 p_X(x) + \log_2 p_Y(y \mid x) \right] \\ &= -\sum_{x \in \overrightarrow{X}(\Omega)} \left(\sum_{y \in \overrightarrow{Y}(\Omega)} p_Y(y \mid x) \right) p_X(x) \log_2 p_X(x) \\ &- \sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 p_X(x \mid y) \\ &= H(X) + H(Y \mid X) \end{split}$$

Symmetric proof for $H(X,Y) = H(Y) + H(X \mid Y)$.

Theorem 1.1.3. (Independence Bound of Entropy) For the set of discrete random variables X_1, \ldots, X_n on (Ω, \mathcal{F}, P) :

$$H(X_1,\ldots,X_n) \le \sum_{i=1}^n H(X_i)$$

with equality when the random variables X_1, \ldots, X_n are i.i.d.

1.1.1 Principal of Maximal Entropy

• Entropy is maximized when all outcomes are equiprobable.

Theorem 1.1.4. Let X be a discrete random variable on (Ω, \mathcal{F}, P) . The entropy H(X) satisfies:

$$H(X) \le \log_2 |\overrightarrow{X}(\Omega)|$$

Proof. Let X be as described. Proof Idea:

- 1. Formalize statement as an optimization problem.
- 2. Use Lagrangian multipliers to find the optimal solution.

Wlog. $\mathcal{X} = \{1, \dots, n\}$ and $p_i = p_X(i)$. We wish to maximize H(X) (varying **p**) subject to the constraint $\sum_{i=1}^{n} p_i = 1$. We now solve the optimization problem using Lagrange Multipliers. We have the following Lagrangian:

$$\mathcal{L}(p_1, \dots, p_n, \lambda) = -\sum_{i=1}^n p_i \log_2 p_i + \lambda \left(\sum_{i=1}^n p_i - 1\right)$$

Computing the partial derivation wrt p_i and equating to 0 yields:

$$\frac{\partial}{\partial p_i} - \sum_{j=1}^n p_j \log_2 p_j + \lambda \left(\sum_{j=1}^n p_j - 1\right) = 0$$

$$\iff -\log_2 p_i - \frac{p_i}{p_i \ln 2} - \lambda = 0$$

$$\iff p_i = 2^{-(\lambda + 1/\ln 2)}$$

Hence p_i is constant. Given that $\sum_{i=1}^n p_i = 1$, we deduce that $p_i = 1/|\mathcal{X}|$. Substituting p_i into H(X) yields

$$H(X) = -\sum_{i=1}^{n} \frac{1}{|\mathcal{X}|} \log_2 |\mathcal{X}|$$
$$= \log_2 |\mathcal{X}|$$

So we conclude that $H(X) \leq \log_2 |\mathcal{X}|$, with equality when $p_X(x) = 1/|\mathcal{X}|$ (when X is uniformly distributed).

• This theorem is key for many optimization problems: maximal information/entropy gained \implies best algorithm. See Coding Problems.

1.1.2 Mutual Information

• Motivation: Measure information that one variable contains about another – useful for inference.

Definition 1.1.7. (Relative Entropy) The relative entropy between two distributions p_X and q_X for the discrete random variable X on (Ω, \mathcal{F}, P) is

$$D(p_X \parallel q_X) = \sum_{x \in \overrightarrow{X}(\Omega)} p_X(x) \log_2 \frac{p_X(x)}{q_X(x)} = \mathbb{E}_{p_X} \left[\log_2 \frac{p_X(X)}{q_X(X)} \right]$$

Theorem 1.1.5. (Properties of Rel. Entropy) Relative entropy satisfies the following properties:

- (i) $D(p_X \parallel q_X) \geq 0$ for all discrete distributions p_X, q_X .
- (ii) $D(p_X || p_X) = 0$.
 - Intuitively, $D(p_X \parallel q_X)$ quantifies how 'close' q_X is to p_X . It is **not** a distance metric (not symmetric, nor does it satisfy the triangle eq.).

Definition 1.1.8. (Mutual Information) The mutual information of discrete random variable X, Y on (Ω, \mathcal{F}, P) is defined as the relative entropy between their joint distribution and the product of their marginal distributions:

$$I(X;Y) = D(p_{X,Y} \parallel p_X \cdot p_Y)$$

$$= \sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 \frac{p_{X,Y}(x,y)}{p_X(x)p_Y(y)}$$

Theorem 1.1.6. The mutual information and marginal and conditional entropies of discrete random variables X, Y on (Ω, \mathcal{F}, P) satisfies

$$I(X;Y) = H(X) - H(X \mid Y) = H(Y) - H(Y \mid X)$$

Proof. Let X, Y be discrete random variables on (Ω, \mathcal{F}, P) . So

$$\begin{split} I(X;Y) &= \sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 \frac{p_{X,Y}(x,y)}{p_X(x) p_Y(y)} \\ &= \sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 \frac{p_Y(x \mid y)}{p_X(x)} \\ &= \sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 p_Y(x \mid y) - \sum_{x \in \overrightarrow{X}(\Omega), y \in \overrightarrow{Y}(\Omega)} p_{X,Y}(x,y) \log_2 p_X(x) \\ &= H(X) - H(X \mid Y) \end{split}$$

Figure 1.1: Mutual Information Visualization

Symmetric proof for
$$I(X;Y) = H(Y) - H(Y \mid X)$$
.

Corollary 1.1.6.1.
$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

Definition 1.1.9. (Conditional Mutual Information) The conditional mutual information between discrete random variables X, Y, Z on (Ω, \mathcal{F}, P) is

$$I(X; Y \mid Z) = \mathbb{E}\left[\log_2 \frac{p_{X,Y}(X, Y \mid Z)}{p_X(X \mid Z)p_Y(Y \mid Z)}\right]$$
$$= H(X \mid Z) - H(X \mid Y, Z)$$

Theorem 1.1.7. (Properties of Mutual Information) Mutual entropy satisfies:

- (i) $I(X;Y) \ge 0$
- (ii) Chain rule: $I(X,Y;Z) = I(X;Z) + I(Y;Z \mid X)$

1.2 Continuous Information Measures

- **Idea**: Extend information measures for continuous random variables, required for signal processing + noisy channels.
- **Problem**: Entropy doesn't extend to continuous random variables. Considering the discretization of the random variable $X \sim f_X$ into X_{Δ} with period Δx is given by:

$$p_{i} = \int_{i\Delta x - \Delta x/2}^{i\Delta x + \Delta x/2} f_{X}(x) dx \approx f(i\Delta x) \Delta x$$

$$H(X_{\Delta}) = -\sum_{i} p_{i} \log_{2} p_{i}$$

$$\approx -\sum_{i} f_{X}(i\Delta x) \Delta x \log_{2} f_{X}(i\Delta x) \Delta x$$

$$= -\sum_{i} f_{X}(i\Delta x) \Delta x \log_{2} f_{X}(i\Delta x) - \left(\sum_{i} f_{X}(i\Delta x) \Delta x\right) \log_{2} \Delta x$$

$$= -\sum_{i} f_{X}(i\Delta x) \Delta x \log_{2} f_{X}(i\Delta x) - \log_{2} \Delta x$$

Considering the limit of $\Delta x \to 0$ yields

$$H(X_{\Delta}) = -\int_{x \in \overrightarrow{X}(\Omega)} f_X(x) \log_2 f_X(x) dx - \underbrace{\lim_{\Delta x \to 0} \log_2 \Delta x}_{\Delta x}$$

RHS is undefined!

Definition 1.2.1. (**Differential Entropy**) The differential entropy of the continuous random variable X on (Ω, \mathcal{F}, P) is defined as:

$$dH(X) = \mathbb{E}\left[-\log_2 f_X(X)\right] = -\int_{x \in \overrightarrow{X}(\Omega)} f_X(x) \log_2 f_X(x) dx$$

• Hence $H(X_{\Delta}) = dH(X) - \lim_{\Delta x \to 0} \log_2 \Delta x$.

• Differential entropy has no physical meaning (as opposed to discrete entropy), but may be used to compute differences between discretized continuous entropies:

$$H(X_{\Delta}) - H(Y_{\Delta}) = dH(X) - \lim_{\Delta x \to 0} \log_2 \Delta x - (dH(Y) - \lim_{\Delta y \to 0} \log_2 \Delta y)$$
$$= dH(X) - dH(Y)$$

- Differences between entropies and differential entropies:
 - (i) $\forall k \in \mathbb{R}. dH(X+k) = dH(X)$
 - (ii) $\forall k \in \mathbb{R}. dH(kX) = dH(X) + \log_2 k$, for $k \neq 0$.

Definition 1.2.2. (Relative Entropy) The relative entropy between two continuous distributions f_X and g_X for the continuous random variable X on (Ω, \mathcal{F}, P) is

$$D(f_X \parallel g_X) = \int_{x \in \overrightarrow{X}(\Omega)} f_X(x) \log_2 \frac{f_X(x)}{g_X(x)} dx = \mathbb{E}_{f_X} \left[\log_2 \frac{f_X(X)}{g_X(X)} \right]$$

• When the integral is undefined, $D(f_X \parallel g_X) = \infty$ by convention.

Definition 1.2.3. (Mutual Information) Mutual information for two continuous random variables X, Y is anlogous to the discrete definition:

$$I(X;Y) = D(f_{X,Y} \parallel f_X \times f_Y)$$

$$= \iint_{x,y \in \overrightarrow{X}(\Omega) \times \overrightarrow{Y}(\Omega)} f_{X,Y}(x,y) \log_2 \frac{f_{X,Y}(x,y)}{f_X(x)f_Y(y)} dx dy$$

1.3 Distances

- **Idea**: Relative entropy is the *entropic 'distance'* between two distributions.
- Problem: It doesn't satisfy axioms of distance!

Definition 1.3.1. (Entropic Distance) The entropic distance between two random variables X, Y on (Ω, \mathcal{F}, P) is:

$$D(X,Y) = H(X,Y) - I(X;Y)$$

Lemma 1.3.1. (Properties of Entropic Distance) Distance satisfies the following properties:

- (i) $D(X,Y) \ge 0$
- (ii) D(X, X) = 0
- (iii) D(X,Y) = D(Y,X)
- (iv) $D(X, Z) \le D(X, Y) + D(Y, Z)$

1.3.1 Connection to Machine Learning

- Idea: Relative entropy is the **cost** incurred if q_X is used to encode X when p_X is the *true* distribution.
- Suppose we wish to fit a model $q_X(\cdot \mid \boldsymbol{\theta})$ to the distribution p_X minimizing the cost $D(p_X \parallel q_X(\cdot \mid \boldsymbol{\theta}))$:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{arg \, min}} D(p_X \parallel q_X(\cdot \mid \boldsymbol{\theta}))$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg \, min}} \sum_{x \in \overrightarrow{X}(\Omega)} p_X(x) \log_2 \frac{p_X(x)}{q_X(x \mid \boldsymbol{\theta})}$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg \, min}} H(X) - \sum_{x \in \overrightarrow{X}(\Omega)} p_X(x) \log_2 q_X(x \mid \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg \, max}} \sum_{x \in \overrightarrow{X}(\Omega)} p_X(x) \log_2 q_X(x \mid \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg \, max}} \mathbb{E}_{p_X} \left[\log_2 q_X(X \mid \boldsymbol{\theta}) \right]$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg \, max}} \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \log_2 q_X(x_i \mid \boldsymbol{\theta})$$

$$\underbrace{MLE}$$

Hence minimizing relative entropy is MLE!

• Similar relations exist for reinforcement learning (on the right):

Definition 1.3.2. (Cross Entropy) The cross-entropy between the distributions p_X, q_X for X on (Ω, \mathcal{F}, P) is defined as:

$$H(p_X, q_X) = -\sum_{x \in \overrightarrow{X}(\Omega)} p_X(x) \log_2 q_X(x)$$

• Minimizing the cross entropy is also equivalent to MLE (see above).

1.3.2 Information and Correlation

• Motivation: Mutual information and the correlation coefficient both numerically encode a relationship between random variables X, Y.

Definition 1.3.3. (Correlation Coefficient) For random variables X, Y on (Ω, \mathcal{F}, P) , the correlation coefficient is defined by

$$\rho(X, Y) = \frac{\text{Cov}[X, Y]}{\sqrt{\text{Var}[X] \cdot \text{Var}[Y]}}$$

Lemma 1.3.2. (Properties of Correlation and Mutual Information) The correlation coefficient $\rho(X,Y)$ and mutual information I(X;Y) satisfy the following properties:

- (i) $\rho(X,Y) \neq 0 \implies I(X;Y) > 0$. Correlation implies shared information.
- (ii) $\rho(X,Y) = 0 \implies I(X;Y) = 0$. No correlation doesn't necessarily imply no shared information since $\rho(X,Y)$ attempts to fit a linear relation between random variables (relationship may be non-linear).

2 Coding Problems

- **Idea**: Reducing size of message sent over a *channel* while maximizing information content, this is known as the *coding problem*.
- Notation: $\mathcal{X} = \overrightarrow{X}(\Omega)$.

Definition 2.0.1. (Communication Channel) A communication channel in medium in which a message is encoded before being sent over the channel, potentially adding *noise*. The channel output is decoded, to recover the message:

• **Most** problems in information theory are instantiations of a communication channel problem.

Definition 2.0.2. (Codes) A code \mathscr{C} with respect to discrete random variable X on (Ω, \mathcal{F}, P) , is a function $C : \mathcal{X} \to \Sigma^*$, where Σ is a finite alphabet.

- We write $\mathscr{C}(x)$ for the codeword of x. We write l(x) = |C(x)|.
- We often assume $\Sigma = \{0, 1\}$.
- We extend $\mathscr C$ to $\mathscr C^+:\mathcal X^+\to\Sigma^*,$ defined by:

$$\mathscr{C}^+(x_1x_2\dots x_n) = \mathscr{C}(x_1)\mathscr{C}(x_2)\dots\mathscr{C}(x_n)$$

• Codewords of C is $C = \overrightarrow{C}(\mathcal{X})$

Definition 2.0.3. (Coding Problem) The *coding problem* is defined as the problem of finding a code \mathscr{C} that minimizes codeword length $\mathbb{E}[l(X)]$ (transmitted) via a noiseless channel:

• 2 approaches to the coding problem:

Lossless Fully recover the message s

Lossy Cannot fully recover s – formally, due to collisions in encoding with probability δ . If δ is sufficiently small \implies compressor (or coding) is *practical*.

2.1 Shannon's Source Coding Theorem

• **Idea**: Shannon's Source Coding Theorem focuses on theoretical limit of lossy compression with *fixed length encodings*.

2.1.1 Block Codes

• Motivation: Encoding of blocks symbols for fixed length encodings.

Definition 2.1.1. (Block) For a discrete random variable X on (Ω, \mathcal{F}, P) , a block of n, denoted X^n is defined as:

$$X^n = (X_1, \dots, X_n)$$

where $(X_i)_{1 \leq i \leq n}$ are i.i.d random variables distributed by p_X .

• By additivity, $H(X^n) = nH(X)$.

Definition 2.1.2. (Block Code) A *n*-block code \mathscr{C}^n wrt. to the block X^n on (Ω, \mathcal{F}, P) is a function $\mathscr{C}^n : \mathcal{X}^n \to \Sigma^*$.

- Block codes are a formalization for fixed length encodings.
- We can characterise effeciency of a n-block code \mathscr{C}^n via the expected per-symbol codeword length:

$$\mathbb{E}\left[\frac{1}{n}l(X^n)\right] = \frac{1}{n}\mathbb{E}\left[l(X^n)\right]$$

2.1.2 Lossy Codes

• Motivation: Characterize lossy compression with lossy codes for a given probability of error ϵ .

Definition 2.1.3. (Lossy Code) A ϵ -lossy code \mathscr{C}_{ϵ} wrt. the discrete random variable X on (Ω, \mathcal{F}, P) is a code $\mathscr{C}_{\epsilon} : \mathcal{X} \to \Sigma^*$ with a *probability of error* ϵ satisfying:

$$\epsilon \ge P(\mathscr{C}(X) \ne \mathscr{C}^{-1}(X))$$

- Write $p_e(\mathscr{C}) = P(\mathscr{C}(X) \neq \mathscr{C}^{-1}(X)).$
- Course touches on smallest ϵ -sufficient sets (not required for our proof).

Definition 2.1.4. (Smallest ϵ -sufficient Set) For the discrete random variable X on (Ω, \mathcal{F}, P) , we define the *smallest* ϵ -sufficient set $\mathcal{X}_{\epsilon} \subseteq \mathcal{X}$ s.t:

$$P(x \in \mathcal{X}_{\epsilon}) > 1 - \epsilon$$

• Algorithm for computing \mathcal{X}_{ϵ} :

```
let smallest_sufficient_set X \in \mathbb{R} \mathcal{X} \leftarrow \mathbb{R} List.sort \mathcal{X} ~compare:(reverse order induced by p_X); \mathcal{X}_{\epsilon} \leftarrow \mathbb{R}; while \mathcal{X}_{\epsilon} \mid \mathbb{R} List.map ~f:p_X \mid \mathbb{R} List.sum < 1 - \epsilon do \mathcal{X}_{\epsilon} \leftarrow \mathbb{R} List.pop \mathcal{X} :: \mathcal{X}_{\epsilon} done; \mathcal{X}_{\epsilon}
```

• The maximum entropy of \mathcal{X}_{ϵ} is $H_{\epsilon}(X) = \log_2 |\mathcal{X}_{\epsilon}|$.

2.1.3 Typical Sets

• Motivation: Consider a *typical* (expected) set of blocks and its asymptotic properties.

Definition 2.1.5. (Typical String) A typical string $\mathbf{x} \in \mathcal{X}^n$ satisfies:

$$\forall x_i \in \mathcal{X}. \sum_{x \in \mathbf{x}} I_{x=x_i} = \mathbb{E}\left[\sum_{x \in \mathbf{x}} I_{x=x_i}\right] = p_X(x_i)n$$

- A typical string contains the expected number of each symbol
- \bullet The probability of a typical string **x** is:

$$p(\mathbf{x}) = \prod_{x_i \in \mathcal{X}} p_X(x_i)^{p_X(x_i)n}$$

Hence the *information* of typical string:

$$h(\mathbf{x}) = -\log_2 \prod_{x_i \in \mathcal{X}} p_X(x_i)^{p_X(x_i)n}$$

$$= -\sum_{x_i \in \mathcal{X}} \log_2 p_X(x_i)^{p_X(x_i)n}$$

$$= -n\sum_{x_i \in \mathcal{X}} p_X(x_i) \log_2 p_X(x_i)$$

$$= nH(X)$$

Hence $p(\mathbf{x}) = 2^{-nH(X)}$.

Definition 2.1.6. (Typical Set) A typical set $A^n_{\epsilon}(X)$ with respect to the discrete random variable X is the set of strings $\mathbf{x} \in \mathcal{X}^n$ s.t

$$2^{-n(H(X)+\epsilon)} < p(\mathbf{x}) < 2^{-n(H(X)-\epsilon)}$$

We write $A_{\epsilon}^{n}(X)$ as an ϵ -typical set wrt. to X, we have,

$$A_{\epsilon}^{N} = \left\{ \mathbf{x} \in \mathcal{X}^{n} : \left| \frac{1}{N} h(\mathbf{x}) - H(X) \right| < \epsilon \right\}$$

Theorem 2.1.1. (Asymptotic equipartition property) If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p_X$, then

$$\forall \epsilon > 0. \lim_{n \to \infty} P\left(\left|\frac{1}{N}h(X^n) - H(X)\right| < \epsilon\right) = 1$$

Proof. Let $\epsilon > 0$ be arbitrary. Recall that the WLL states that

$$\lim_{n \to \infty} P\left(\left|\overline{X_n} - \mu\right| < \epsilon\right) = 1$$

Instating for the random variable h(X) yields

$$\mu = H(X)$$

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^{N} h(X_i)$$

$$= -\frac{1}{n} \sum_{i=1}^{N} \log_2 p_X(X_i)$$

$$= -\frac{1}{n} \log_2 \prod_{i=1}^{n} p_X(X_i)$$

$$= \frac{1}{n} h(X^n)$$

So we are done.

Lemma 2.1.1. (Properties of $A^n_{\epsilon}(X)$)

• For sufficiently large n,

$$P(X^n \in A^n_{\epsilon}(X)) > 1 - \epsilon$$

• For sufficiently large n,

$$(1 - \epsilon)2^{n(H(X) - \epsilon)} < |A_{\epsilon}^n(X)| < 2^{n(H(X) + \epsilon)}$$

2.1.4 Source Coding Theorem

Theorem 2.1.2. (Shannon's Source Coding Theorem) Shannon's source coding theorem states that for a discrete random variable X on (Ω, \mathcal{F}, P) , for all $0 \le \delta \le 1$, there exists a δ -lossy block code \mathscr{C}^n_{δ} s.t

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[l(X^n)] = H(X)$$

Proof. Let X, δ be as described. By the $\epsilon - \delta$ def. of a limit, we wish to show that

$$\forall \epsilon > 0. \exists n_0. \forall n > n_0. \left| \frac{1}{n} \mathbb{E}[l(X^n)] - H(X) \right| < \epsilon$$

for some δ -lossy block code \mathscr{C}_{δ}^{n} .

Let $\epsilon > 0$ be arbitrary. We define n_0 s.t $n_0 > (\epsilon - \delta/2)^{-1}$. Let $n > n_0$ be arbitrary. Let us define the δ -lossy n-block code $\mathscr{C}^n_{\delta} : \mathcal{X}^n \to \{0,1\}^*$ as

$$\mathscr{C}^n_{\delta}(\mathbf{x}) = \begin{cases} \text{encoding of } \mathbf{x} & \text{if } \mathbf{x} \in A^n_{\delta/2}(X) \\ 1 & \text{otherwise} \end{cases}$$

where $|\mathcal{C}| = |A_{\delta/2}^n(X)| + 1$. Thus the expected codeword length is

$$\mathbb{E}[l(X^n)] = \log_2 |\mathcal{C}|$$

We verify \mathscr{C}^n_{δ} is δ -lossy. By Lemma 2.1.1, we have

$$p_e(\mathscr{C}^n_{\delta}) = P(X^n \notin A^n_{\delta/2}(X)) < \frac{\delta}{2} \le \delta$$

By AEP, we have

$$|A_{\delta/2}^n(X)| + 1 < 2^{n(H(X) + \delta/2)} + 1$$

 $\leq 2 \times 2^{n(H(X) + \delta/2)}$ $n(H(X) + \delta/2) \geq 0$
 $< 2^{n(H(X) + \epsilon)}$ $n\epsilon > 1 + n\delta/2$

Hence

$$\mathbb{E}[l(X^n)] = \log_2(|A^n_{\delta/2}(X)| + 1)$$

$$< n(H(X) + \epsilon)$$

$$\iff \frac{1}{n}\mathbb{E}[l(X^n)] - H(X) < \epsilon$$

We now show that $-\frac{1}{n}\mathbb{E}[l(X^n)] + H(X) < \epsilon$. By AEP, we have

$$\begin{split} |A^n_{\delta/2}(X)| + 1 &> \left(1 - \frac{\delta}{2}\right) 2^{n(H(X) - \delta/2)} + 1 \\ &> \frac{1}{2} 2^{n(H(X) - \delta/2)} \\ &= 2^{n(H(X) - \delta/2) - 1} \\ &> 2^{n(H(X) - \epsilon)} \\ \end{split} \qquad n\epsilon > 1 + n\delta/2 \end{split}$$

Hence

$$\mathbb{E}[l(X^n)] = \log_2(|A^n_{\delta/2}(X)| + 1)$$

$$> n(H(X) - \epsilon)$$

$$\iff -\frac{1}{n}\mathbb{E}[l(X^n)] + H(X) < \epsilon$$

Completing the proof.

• Intuitition: \mathcal{X}_{δ}^{n} contains all probability of sequences in \mathcal{X}^{n} up to an error δ , and typical set $A_{\epsilon}^{n}(X)$ contains most of the probability of the sequences in X^{n} , hence

$$|\mathcal{X}_{\delta}^n| \approx |A_{\epsilon}^n(X)| \approx 2^{nH(X)}$$

2.2 Symbol Codes

• Motivation: Symbol codes formalize the theoretical limits of lossless compression for *variable length codes*.

Definition 2.2.1. (Characterization of Variable-Length Codes) A variable-length (symbol) code \mathscr{C} has the following properties:

Non-Singular Codes $\forall x_1, x_2 \in \mathcal{X}.x_1 \neq x_2 \implies \mathscr{C}(x_1) \neq \mathscr{C}(x_2)$. This property is necessary for lossless and perfectly decodable encodings.

Unique Decodability A code is uniquely decodable if \mathscr{C}^+ is non-singular.

2.2.1 Prefix Codes

Motivation: Additional desirable properties for codes include 'easy' decodability \impressip prefix codes

Definition 2.2.2. (Prefix Codes) A symbol code \mathscr{C} is said to be a prefix code if the following holds:

$$\forall x_1, x_2 \in \mathcal{X}.x_1 \neq x_2 \implies \mathscr{C}(x_1) \neq \mathsf{prefix}(\mathscr{C}(x_2))$$

where a prefix of a string $u \in \Sigma^*$ is a string v s.t

$$\exists w \in \Sigma^*. u = vw$$

- Prefix codes can easily be decoded by traversing a prefix tree.
- Prefix codes are uniquely decodable!

Theorem 2.2.1. (Kraft's Inequality) For a *n*-ary uniquely decodable code \mathscr{C} wrt. X on (Ω, \mathcal{F}, P) ,

$$\sum_{x \in \overrightarrow{X}(\Omega)} \frac{1}{n^{l(x)}} \le 1$$

Proof. Let X be an arbitrary discrete random variable on (Ω, \mathcal{F}, P) . Let \mathscr{C} be a n-ary $(|\Sigma| = n)$ uniquely decodable code. Let us define $S = \sum_{x \in \overrightarrow{X}(\Omega)} n^{-l(x)}$. Proof Idea:

- 1. Find upper bound for S^m for all $m \in \mathbb{N}$.
- 2. Show upper bound only holds if $S \leq 1$

Let $m \in \mathbb{N}$ be arbitrary. We have

$$S^{m} = \left[\sum_{x \in \overrightarrow{X}(\Omega)} n^{-l(x)}\right]^{m}$$

$$= \sum_{x_{1} \in \overrightarrow{X}(\Omega)} \sum_{x_{2} \in \overrightarrow{X}(\Omega)} \cdots \sum_{x_{m} \in \overrightarrow{X}(\Omega)} n^{-\sum_{i=1}^{m} l(x_{i})}$$

We note that $l(\mathbf{x}) = \sum_{i=1}^{m} l(x_i)$ for $\mathbf{x} = (x_1, \dots, x_m) \implies$ each string \mathbf{x} of length $l(\mathbf{x})$ constributes $n^{-l(\mathbf{x})}$ to the sum. So we re-write the summation as:

$$S^m = \sum_{l=1}^{m \cdot l_{\text{max}}} q_l n^{-l}$$

where q_l is the number of codewords with length l. Since \mathscr{C} is uniquely decodable $\implies q_l \leq n^l$. Hence

$$S^m = \sum_{l=1}^{m \cdot l_{\text{max}}} q_l n^{-l} \le \sum_{l=1}^{m \cdot l_{\text{max}}} 1 = m l_{\text{max}}$$

As a result, we have $\sum_{x \in \overrightarrow{X}(\Omega)} n^{-l(x)} \leq (ml_{\max})^{1/m}$ for any $m \in \mathbb{N}$. Since the lhs doesn't depend on m, the inequality holds in the limit $m \to \infty$, and since

$$\lim_{m \to \infty} (ml_{\max})^{1/m} = 1,$$

we conclude that,

$$\sum_{x\in\overrightarrow{X}(\Omega)} n^{-l(x)} \leq 1.$$

• Cases:

- If $< \implies$ redundancy in the code
- $\text{ If} = \implies \text{ the code } C \text{ is } complete \text{ (often achieved w/ prefix codes with no empty leaves)}$

Lemma 2.2.1. For a code \mathscr{C} with codeword lengths $(l_i)_{i\geq 1}$, there is a prefix code P with equal codeword lengths, if and only if:

$$\sum_{i=1}^{m} n^{-l_i} \le 1$$

Proof. Without loss of generality, we have:

Proof Idea:

- 1. Find a constraint on whether prefix code exists
- 2. Show equivalence to Kraft's inequality

A prefix code \mathscr{P} must satisfy for all $1 \leq i \leq m$ codeword $\mathscr{P}(x_i)$ for x_i is not a prefix of any codewords $\mathscr{P}(x_j)$, for all $1 \leq j < i$. The set of 'ruled-out' (or forbidden) codewords is given by:

$$\mathcal{F}_{1} = \emptyset$$

$$\mathcal{F}_{i+1} = \{ \mathscr{P}(x_{i})u \in \Sigma^{*} : u \in \Sigma^{*}, l_{i} + |u| = l_{i+1} \}$$

$$\cup \{ cu \in \Sigma^{*} : u \in \Sigma^{*}, c \in \mathcal{F}_{i}, |c| + |u| = l_{i+1} \}$$

Thus we have the following recursion relation:

$$|\mathcal{F}_1| = 0$$

 $|\mathcal{F}_{i+1}| = (|\mathcal{F}_i| + 1)n^{l_{i+1}-l_i}$

A prefix code exists iff the number of possible prefix codewords > number of forbidden codewards, that is:

$$\forall 1 \le i \le m. \quad n^{l_i} > |\mathcal{F}_i| = \sum_{i=1}^{i-1} n^{l_i - l_j}$$

We have

$$\sum_{j=1}^{i-1} n^{l_i - l_j} < n^{l_i}$$

$$\iff 1 + \sum_{j=1}^{i-1} n^{l_i - l_j} \le n^{l_i}$$

$$\iff \sum_{j=1}^{i} n^{l_i - l_j} \le n^{l_i}$$

$$\iff \sum_{j=1}^{i} n^{-l_j} \le 1$$

So we are done.

• Remark: The above Lemma allows to work with prefix codes under the assumption of unique decodability, due to Kraft's equality.

2.2.2 Source Coding Theorem for Symbol Codes

• Motivation: Consider theoretical limit of expected codeword length (compressed size)

Lemma 2.2.2. (Source Coding Theorem Part I) For a discrete random variable X on (Ω, \mathcal{F}, P) and uniquely decodable code $\mathscr{C} : \mathcal{X} \to \Sigma^*$,

$$\mathbb{E}\left[l(X)\right] \ge H(X)$$

Proof. Let X be an arbitrary discrete random variable on (Ω, \mathcal{F}, P) . This is an optimization problem *subject to* Kraft's inequality:

$$\min_{\text{u.d } C: \overrightarrow{X}(\Omega) \to \Sigma^*} \sum_{x \in \overrightarrow{X}(\Omega)} l(x) p_X(x)$$
subject to
$$\sum_{x \in \overrightarrow{X}(\Omega)} |\Sigma|^{-l(x)} \le 1$$

Proof Idea:

- 1. Relax the optimization problem to use Lagrange Multipliers.
- 2. Solve.

We write $l_i = l(x_i)$ and $p_i = p_X(x_i)$. Thus the problem is:

$$\min_{(l_i)\in\mathbb{N}} \sum_{i} l_i p_i \quad \text{subject to} \quad \sum_{i} |\Sigma|^{-l_i} \le 1$$

Given we're interested in a *lower bound*, we relax our feasible region from \mathbb{N} to \mathbb{R} . We now assert the following (both proved by contradictions):

- Kraft's inequality $\implies l_i > 0$.
- Optimiality is only achieved when $\sum_i |\Sigma|^{-l_i} = 1$.

As a result, our optimization problem is now given by:

$$\min_{(l_i) \in \mathbb{R}} \sum_{i} l_i p_i \quad \text{subject to} \quad \sum_{i} |\Sigma|^{-l_i} = 1$$

We now change variables, resulting in a simpler problem definition. Let us define $q_i = |\Sigma|^{-l_i}$, so we have $l_i = -\log_{|\Sigma|} q_i$. Giving the following optimization problem:

$$\min_{(q_i) \in \mathbb{R}} - \sum_i p_i \log_{|\Sigma|} q_i$$
 subject to $\sum_i q_i = 1$

We now solve this optimization problem using Lagrange Multipliers. To do so, we form the Lagrangian:

$$\mathcal{L}(q_1, \dots, q_m, \lambda) = -\sum_{i=1}^m p_i \log_{|\Sigma|} q_i + \lambda \left(\sum_{i=1}^m q_i - 1\right)$$

Computing the partial derivatives wrt to q_i and equating to 0 yields:

$$\frac{\partial}{\partial q_i} - \sum_{j=1}^m p_j \log_{|\Sigma|} q_j + \lambda \left(\sum_{j=1}^m q_j - 1 \right) = 0$$

$$\iff -\frac{p_i}{q_i \ln |\Sigma|} + \lambda = 0$$

$$\iff q_i = \frac{p_i}{\lambda \ln |\Sigma|}$$

Substituting q_i into the constraint $\sum_{i=1}^m q_i = 1$ gives us:

$$\lambda = \frac{1}{\ln|\Sigma|}$$

Hence $q_i = p_i$. Thus $\mathbb{E}[l(X)] = -\sum_i p_i \log_{|\Sigma|} p_i = H(X)$ (in $|\Sigma|$ -shannon bits).

• Remarks: $l_i = -\log_{|\Sigma|} p_i$ may be an optimal codeword length, but its not necessarily a *feasible* length (e.g. could be fractional).

Lemma 2.2.3. (Source Coding Theorem Part II) For an arbitrary discrete random variable X on (Ω, \mathcal{F}, P) , there exists a prefix code \mathscr{C} s.t

$$\mathbb{E}[l(X)] < H(X) + 1$$

Proof. Let X be an arbitrary discrete random variable on (Ω, \mathcal{F}, P) . Proof Idea:

- Determine lengths (l_i) that satisfy inequality.
- Show (l_i) satisfy Kraft's inequality \implies existence of prefix code with specified lengths.

Let us define $(l_i)_{1 \leq i \leq m}$ for $m = |\mathcal{X}|$, as

$$l_i = \lceil -\log_2 p_i \rceil$$

We have

$$\mathbb{E}[l(X)] = \sum_{i=1}^{m} p_i \lceil -\log_2 p_i \rceil$$

$$< \sum_{i=1}^{m} p_i \left(-\log_2 p_i + 1 \right)$$

$$= -\sum_{i} p_i \log_2 p_i + 1$$

$$= H(X) + 1$$

We now show there exists a prefix code with lengths $(l_i)_{1 \leq i \leq m}$. By Lemma 2.2.1, it is sufficient to show that

$$\sum_{i=1}^{m} 2^{-l_i} \le 1$$

We have

$$\sum_{i=1}^{m} 2^{-l_i} = \sum_{i=1}^{m} 2^{-\lceil -\log_2 p_i \rceil}$$

$$\leq \sum_{i=1}^{m} 2^{\log_2 p_i}$$

$$= \sum_{i=1}^{m} p_i = 1$$

Thus completing the proof.

Theorem 2.2.2. (Source Coding Theorem for Symbol Codes) For a discrete random variable X on (Ω, \mathcal{F}, P) , there exists a prefix code $C : \mathcal{X} \to \Sigma^*$ such that

$$H(X) \le \mathbb{E}[l(X)] < H(X) + 1$$

2.2.3 Huffman Codes

• **Idea**: Huffman codes are a realization of an optimal symbol code according to the source coding theorem.

Definition 2.2.3. (Huffman Coding Algorithm) A Huffman code \mathscr{C} : $\mathcal{X} \to \{0,1\}^*$ for the discrete random variable X on (Ω, \mathcal{F}, P) , defined by the algorithm:

```
let rec huffman (p_1, \ldots, p_m) = if m=2 then \mathscr{C} s.t \mathscr{C}(x_1)=0, \mathscr{C}(x_2)=1 else List.sort p_1\geq p_2\geq \ldots \geq p_m; let \mathscr{C}' = huffman (p_1, \ldots, p_{m-2}, p_{m-1}+p_m) in \mathscr{C} s.t \forall i\leq m-2.\mathscr{C}(x_i)=\mathscr{C}'(x_i) \wedge \mathscr{C}(x_{m-1})=\mathscr{C}'(x_{m-1})\cdot 0 \wedge \mathscr{C}(x_m)=\mathscr{C}'(x_m)\cdot 1
```

- Time complexity: $O(|\mathcal{X}|)$ (using bucket sort for sorting)
- Problems:
 - The additional bit in H(X) + 1 can be significant if H(X) < 1. **Solution**: Encode blocks of size $N \implies \frac{1}{N}$ (at most) additional bits.

Problem: Blocks result in exponential increase in $|\mathcal{X}|$.

- Distribution of X must be known and fixed.

Solution: Estimate distribution from compressed data and transmit in compressed file.

Problem: Distirbution may be large, and may change on each compression (e.g. videos), not efficient!

- Extension is not i.i.d.

Solution: Blocks

Adaptive coding schemes must process blocks in a top-down manner (as opposed to Huffman's bottom up approach).

Optimality

Let $X \sim \mathbf{p}$ be an arbitrary discrete random variable. Wlog. $\mathcal{X} = \{1, 2, \dots, m\}$ and $p_1 \geq p_2 \geq \dots \geq p_m$. Let us define X_{m-1} to be the random variable over

 $\mathcal{X}_{m-1} = \{1, 2, \dots, m-1\}$ and

$$P(X_{m-1} = i) = \begin{cases} p(i) & \text{if } 1 \le i \le m-2\\ p(m-1) + p(m) & \text{if } i = m-1 \end{cases}$$

We define the *huffman split* of prefix code \mathscr{C}_{m-1} as a prefix code for X given by:

$$\mathscr{C}(i) = \begin{cases} \mathscr{C}_{m-1}(i) & \text{if } 1 \le i \le m-2\\ \mathscr{C}_{m-1}(i-1) \cdot 0 & \text{if } i = m-1\\ \mathscr{C}_{m-1}(i-1) \cdot 1 & \text{if } i = m-2 \end{cases}$$

Lemma 2.2.4. Let \mathscr{C}_{m-1}^{opt} be an optimal prefix code for X_{m-1} . Let \mathscr{C} the huffman split of \mathscr{C}_{m-1}^{opt} . Then \mathscr{C} is an optimal prefix code for X.

Proof. We note the following properties of an optimal prefix code \mathscr{C} :

(i) If $p(x) > p(y) \implies l(x) \le l(y)$. Assume there exists p(x) > p(y) s.t l(x) > l(y), then p(x)l(x) > p(y)l(y). Supposing we swapped the codewords of x and y, yielding code \mathscr{C}' . Then we have

$$\mathbb{E}_{\mathscr{C}'}[l(X)] - \mathbb{E}_{\mathscr{C}}[l(X)] = p(x)l(y) + p(y)l(x) - (p(x)l(x) + p(y)l(y))$$

$$= p(x)(l(y) - l(x)) - p(y)(l(y) - l(x))$$

$$= \underbrace{(p(x) - p(y))}_{>0} \underbrace{(l(y) - l(x))}_{<0}$$

$$< 0$$

Contradicting the assumption that \mathscr{C} is optimal!

- (ii) $l(m-1) = l(m) = l_{\text{max}}$. Assume $l(m-1) < l(m) = l_{\text{max}}$. Since the prefix property of C holds \implies we can truncate codeword of m to l(m-1), preserving prefix property and reducing $\mathbb{E}[l(X)]$. A contradiction!
- (iii) $\mathscr{C}(m-1)$ and $\mathscr{C}(m)$ differ by last bit. Follows from the above property.

Properties (ii) and (iii) imply there is an optimal prefix code that is a result of a huffman split. We have the following expected length for a Huffman

split:

$$\mathbb{E}[l(X)] = \sum_{i=1}^{m} p(i)l(i)$$

$$= \sum_{i=1}^{m-2} p(i)l(i) + p(m-1)l(m-1) + p(m)l(m)$$

$$= \sum_{i=1}^{m-2} p(i)l(i) + (p(m-1) + p(m))(l_{m-1}(m-1) + 1)$$

$$= \sum_{i=1}^{m-2} p_{m-1}(i)l(i) + p_{m-1}(m-1)(l_{m-1}(m-1) + 1)$$

$$= \mathbb{E}[l_{m-1}(X_{m-1})] + p(m-1) + p(m)$$

If $\mathbb{E}[l_{m-1}(X_{m-1})]$ is optimal, then it follows $\mathbb{E}[l(X)]$ is optimal for some fixed distribution **p**.

2.2.4 Arithmetic Codes

• Idea: Adaptive compression using dependence between symbols. Requires top-down encoding for variable-length blocks (strings).

Definition 2.2.4. (Segment Code) A segment code \mathscr{S} for the discrete random variable X on (Ω, \mathcal{F}, P) , is a mapping from strings $\mathbf{x} \in \mathcal{X}^+$ to segments (or intervals) $\mathscr{S}(\mathbf{x}) = [l_{\mathbf{x}}, h_{\mathbf{x}})$ satisfying:

- (i) $h_{\mathbf{x}} l_{\mathbf{x}} = p(\mathbf{x})$
- (ii) $\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{X}^n. \mathbf{x}_1 \neq \mathbf{x}_2 \implies \mathscr{S}(\mathbf{x}_1) \cap \mathscr{S}(\mathbf{x}_2) = \emptyset$
- (iii) $\bigcup_{\mathbf{x} \in \mathcal{X}^n} \mathscr{S}(\mathbf{x}) = [0, 1)$
- (iv) $\mathbf{x}_1 = \mathsf{prefix}(\mathbf{x}_2) \implies \mathscr{S}(\mathbf{x}_1) \subseteq \mathscr{S}(\mathbf{x}_2)$
 - A segment code is a prefix code by property (ii) and (iv). Properties (i) and (iii) are required for optimality.
 - Examples:

- Non-adaptive segment codes: A non-adaptive (static) segment code \mathscr{S} for X where $\mathcal{X} = \{x_1, x_2, \dots, x_m\}$ is defined by:

$$\mathscr{S}(\mathbf{x}x_i) = [l_{\mathbf{x}} + p(\mathbf{x})F(x_{i-1}), l_{\mathbf{x}} + p(\mathbf{x})F(x_i))$$

where F is the cdf:

$$F(x_i) = \sum_{j=1}^{i} p_X(x_j)$$

- Adaptive segment codes: An adaptive segment code \mathscr{S} for X where $\mathcal{X} = \{x_1, x_2, \dots, x_m\}$ is defined by:

$$\mathscr{S}(\mathbf{x}x_i) = [l_{\mathbf{x}} + p(\mathbf{x})F(x_{i-1} \mid \mathbf{x}), l_{\mathbf{x}} + p(\mathbf{x})F(x_i \mid \mathbf{x}))$$

where the conditional cdf F is:

$$F(x_i \mid \mathbf{x}) = \sum_{j=1}^{i} p_X(x_j \mid \mathbf{x})$$

• Idea: Arithmetic coding is a segment code with a binary encoder that represents the segment using the minimal number of bits.

Definition 2.2.5. (Arithmetic Code) An arithmetic code $\mathscr{A}: \mathcal{X}^+ \to \{0,1\}^*$ is defined as a tuple $(\mathscr{S},\mathscr{I})$ where $\mathscr{S}: \mathcal{X}^+ \to [0,1)$ is a segment code and $\mathscr{I}: [0,1) \to \{0,1\}^*$ is a (binary) interval encoder, such that

$$\mathscr{A}(\mathbf{x}) = \mathscr{I}(\mathscr{S}(\mathbf{x}))$$

where the interval encode \mathscr{I} returns the binary representation of n for the interval \mathcal{I} s.t the binary interval $\mathcal{I}_b = [n/2^k, (n+1)/2^k)$ is the largest interval satisfying $\mathcal{I}_b \subseteq \mathcal{I}$.

Analysis of Encoder

- **Problem**: Selecting binary interval $\mathcal{I}_{n,k} = \left[\frac{n}{2^k}, \frac{n+1}{2^k}\right)$ of length $\frac{1}{2^k}$ s.t $\mathcal{I}_{n,k} \subseteq [a,b)$.
- Maximizing length $1/2^k$ subject to $\frac{1}{2^k} \le b a$ yields $k = \lceil -\log_2(b-a) \rceil$.

- Also require constraint $a \leq n/2^k$ hence $n_k = \lceil 2^k a \rceil$.
- Remaining constraint: $\frac{n_k+1}{2^k} \le b$. Cases:

- If
$$\frac{n_k+1}{2^k} \leq b$$
. Return n_k

- If
$$\frac{n_k+1}{2^k} > b$$
. Then $I_{k+1} \subseteq [a,b)$, as

$$n_{k+1} - 1 = \lceil 2^{k+1}a \rceil - 1 < 2^{k+1}a$$

hence

$$\frac{n_{k+1}+1}{2^{k+1}} < a + \frac{2}{2^{k+1}} = a + \frac{1}{k} \le a + (b-a) = b$$

Return n_{k+1}

Lemma 2.2.5. For a non-adaptive arithmetic encoding \mathscr{A} ,

$$H(X^n) \le \mathbb{E}[l(X^n)] \le H(X^n) + 2$$

Proof. Analysis of encoder yields

$$l(\mathbf{x}) \le k + 1 = \lceil -\log_2 p(\mathbf{x}) \rceil + 1 \le -\log_2 p(\mathbf{x}) + 2$$

Hence

$$\mathbb{E}[l(X^n)] \le H(X^n) + 2$$

The lower bound follows from Theorem 2.2.2

• Given $H(X^n) = nH(X)$, then

$$H(X) \le \mathbb{E}[l(X)] \le H(X) + \frac{2}{n}$$

So for large n, we achieve optimal encoding (by squeeze theorem)!

- Remark: Upper bound holds for adaptive encoding
- Algorithm:

```
let \mathscr{A} x = let [l_u, h_u) = \mathscr{S} x in let r = \text{first differing bit of } l_u \text{ and } h_u \text{ in } (* l_u = 0.b_1b_2\cdots b_{r-1}0\cdots \text{ and } l_u = 0.b_1b_2\cdots b_{r-1}1\cdots *) if 0.b_1b_2\cdots b_{r-1}1 < h_u then b_1b_2\cdots b_{r-1}1 else (* assert: 0.b_1b_2\cdots b_{r-1}1 = h_u *) match l_u with 0.b_1b_2\cdots b_{r-1}0 > b_1b_2\cdots b_{r-1}0 0.b_1b_2\cdots b_{r-1}0x when x = 0 \cdots -> b_1b_2\cdots b_{r-1}01 0.b_1b_2\cdots b_{r-1}0x when x = 0 \cdots -> b_1b_2\cdots b_{r-1}0x 0.b_1b_2\cdots b_{r-1}0x when x = 0 \cdots -> b_1b_2\cdots b_{r-1}0x
```

• Problems: Still requires distribution prior to encoding

2.2.5 Lempel-Ziv Codes

- Idea: Replace previously seen substrings with pointers (or keys in a dictionary). Asymptotically optimal (especially for text).
- Algorithm:
 - Traverse string $\mathbf{x} = x_1 x_2 \dots x_m$ emitting substrings that have not previously been seen.

For example: $1011010100010 \rightarrow \square$, 1, 0, 11, 01, 010, 00, 10 where \square is the first (empty) substring.

- Create a dictionary D mapping substrings to codewords (or pointers) in Σ .
- Traverse substrings, applying dictionary.

3 Channel Problems

• Motiviation: Study of communication in the presence of noise

Definition 3.0.1. (**Discrete Channel**) A discrete channel Q is a tuple $(\mathcal{X}, p_{Y,X}, \mathcal{Y})$ where \mathcal{X}, \mathcal{Y} are the input,output alphabets of the channel and $p_{Y,X}$ is the conditional pmf of discrete random variables X, Y over \mathcal{X}, \mathcal{Y} .

• A channel is *memoryless* if the current output *only* depends on the current input:

$$p_{Y_n|X^n}(y_n \mid x_1, \dots, x_n) = p_{Y_n|X_n}(y_n \mid x_n)$$

• Discrete memoryless channel = DMC

Definition 3.0.2. (Rate) The rate R of a channel Q with code \mathscr{C} is defined as the expected information (in bits) transmitted per a symbol:

$$R = \mathbb{E}\left[\frac{h(S)}{l(S)}\right] = \frac{H(S)}{\mathbb{E}[l(S)]}$$

Definition 3.0.3. (Error Probability) The error probability of a code \mathscr{C} , for source S and channel $Q = (\mathcal{X}, p_{Y|X}, \mathcal{Y})$ is

$$p_e(\mathscr{C}) = P(\hat{S} \neq S) = \sum_{s \in \overrightarrow{X}(\Omega)} \lambda_s p_S(s)$$

where the conditional probability of error λ_s is

$$\lambda_s = P(\hat{S} \neq s \mid S = s) = P(\mathscr{C}^{-1}(Y^n) \neq s \mid X^n = \mathscr{C}(s))$$

Definition 3.0.4. (Achievable) A rate R is achievable for the channel Q if there exists a sequence of codes $(\mathscr{C}_i)_{i\geq 1}$ s.t

- (i) $R_i < R$ for all codes $i \ge 1$
- (ii) $\lim_{n\to\infty}p_e^n=0$ where $p_e^n=p_e(\mathscr{C}_i)$

3.1 Shannon's Channel Coding Theorem

3.1.1 Definitions

Definition 3.1.1. ((M, n) codes) An (M, n) code for the channel $Q = (\mathcal{X}, p_{Y|X}, \mathcal{Y})$ consists of:

- (i) A domain of messages $M = \{1, 2, ..., M\}$ (we use M interchangably for the set and it's cardinality).
- (ii) An encoding function $\mathscr{C}: M \to \mathcal{X}^n$. The set of codewords is called the codebook $\mathcal{C} = \{\mathscr{C}(1), \dots, \mathscr{C}(|M|)\}$.
- (iii) A decoding function $\mathscr{C}^{-1}: \mathcal{Y}^n \to M$
 - Wlog. we use (M, n) codes where $S \sim U(M)$ is uniformly distributed.

Lemma 3.1.1. (Properties of (M, n) codes)

- (i) Rate of a (M, n) code is $R = \log_2(|\mathcal{C}|)/n$.
- (ii) Rate R is achievable if there exists a sequence of $(\lceil 2^{nR} \rceil, n)$ codes s.t $\lim_{n\to\infty} p_e^n = 0$.

Definition 3.1.2. (Capacity) The capacity C of a channel Q is defined as:

$$C = \sup\{R : R \text{ is achievable}\}\$$

• See Section 3.2 for properties and examples.

3.1.2 Jointly Typical Sets

• Motivation: Extend typicality to joint distributions as noisy channel problems deal w/ joint distributions.

Definition 3.1.3. (Jointly Typical Set) A jointly typical set $A_{\epsilon}^{n}(X,Y)$ wrt discrete random variables X,Y is the set of string pairs $(\mathbf{x},\mathbf{y}) \in \overrightarrow{X^{n}}(\Omega) \times \overrightarrow{Y^{n}}(\Omega)$ s.t

$$2^{-n(H(X)+\epsilon)} < p(\mathbf{x}) < 2^{-n(H(X)-\epsilon)}$$
$$2^{-n(H(Y)+\epsilon)} < p(\mathbf{y}) < 2^{-n(H(Y)-\epsilon)}$$
$$2^{-n(H(X,Y)+\epsilon)} < p(\mathbf{x},\mathbf{y}) < 2^{-n(H(X,Y)-\epsilon)}$$

We have

$$A_{\epsilon}^{n}(X,Y) = \left\{ (\mathbf{x},\mathbf{y}) \in \overrightarrow{X}^{n}(\Omega) \times \overrightarrow{Y}^{n}(\Omega) : \left| \frac{1}{n}h(\mathbf{x}) - H(X) \right| < \epsilon, \left| \frac{1}{n}h(\mathbf{y}) - H(Y) \right| < \epsilon, \left| \frac{1}{n}h(\mathbf{x},\mathbf{y}) - H(X,Y) \right| < \epsilon \right\}$$

Theorem 3.1.1. (Joint asymptotic equipartition property) Let (X^n, Y^n) be i.i.d sequences of length n distributed by $p_{X^n,Y^n}(\mathbf{x},\mathbf{y}) = \prod_{i=1}^n p_{X,Y}(x_i,y_i)$. Then

$$\lim_{n \to \infty} P((X^n, Y^n) \in A_{\epsilon}^n(X, Y)) = 1$$

Proof. Follows directly from Theorem 2.1.1.

Lemma 3.1.2. (Properties of $A_{\epsilon}^{n}(X,Y)$)

• For sufficiently large n, and $(X^n, Y^n) \sim p_{X^n} p_{Y^n}$,

$$(1 - \epsilon)2^{-n(I(X;y)+3\epsilon)} \le P((X^n, Y^n) \in A_{\epsilon}^n(X, Y)) \le 2^{-n(I(X;y)-3\epsilon)}$$

• For sufficiently large n,

$$|A_{\epsilon}^{n}(X,Y)| < 2^{n(H(X,Y)+\epsilon)}$$

• For sufficient large n,

$$P((X^n, Y^n) \in A^n_{\epsilon}(X, Y)) \ge 1 - \epsilon$$

3.1.3 Channel Coding Theorem

Theorem 3.1.2. (Channel Coding Theorem) The capacity of a DMC $(\mathcal{X}, p_{Y|X}, \mathcal{Y})$ is

$$C = \max_{p_X} I(X;Y)$$

where Y is distributed by $p_Y(y) = \sum_{x \in \mathcal{X}} p_{Y|X}(y \mid x) p_X(x)$

- Theorem is proved in 2 parts:
 - (I) $R \leq \max_{p_X} I(X;Y) \implies R$ is achievable.
 - (II) R is achievable $\implies R \leq \max_{p_X} I(X;Y)$

Theorem 3.1.3. (Channel Coding Theorem Part I) For the DMC $Q = (\mathcal{X}, p_{Y|X}, \mathcal{Y})$,

$$R \le \max_{p_X} I(X;Y) \implies R$$
 is achievable (on Q)

Proof. Let R be arbitrary. We assume there exists p_X s.t $R \leq \max_{p_X} I(X;Y)$. Proof Idea:

- 1. Construct sequence of $(\lceil 2^{nR} \rceil, n)$ codes using typical sets.
- 2. Perform error analysis.

Let $M = \lceil 2^{nR} \rceil$. Let $s \in M$ be a message. We exhibit the (M, n) code \mathscr{C} as the matrix:

$$\mathscr{C} = \begin{bmatrix} \mathscr{C}(1) \\ \mathscr{C}(2) \\ \vdots \\ \mathscr{C}(\lceil 2^{nR} \rceil) \end{bmatrix} = \begin{bmatrix} X_1(1) & X_2(1) & \cdots & X_n(1) \\ X_1(2) & X_2(2) & \cdots & X_n(2) \\ \vdots & \vdots & \ddots & \vdots \\ X_1(\lceil 2^{nR} \rceil) & X_2(\lceil 2^{nR} \rceil) & \cdots & X_n(\lceil 2^{nR} \rceil) \end{bmatrix}$$

where the i.i.d random variable X_j on (M, \mathcal{F}, P) is distributed by p_X .

The code \mathscr{C} is known both to the sender and reciever. The encoded message \mathbf{x} has probability $p(\mathbf{x}) = \prod_{i=1}^n p_X(x_i)$. The recieved code \mathbf{y} has probability $p(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^n p_{Y|X}(y_i \mid x_i)$.

Typical set decoding. The decoder iterates over $\hat{s} \in M$ decoding \mathbf{y} as \hat{s} if \hat{s} is the unique message s.t $(\mathscr{C}(\hat{s}), \mathbf{y}) \in A^n_{\epsilon}(X, Y)$ Otherwise, set $\hat{s} = 0$ (fail).

We now consider the error analysis. Given that $S \sim U(M)$, we have

$$p_e^n = P(\hat{S} \neq S) = \sum_{s \in \overrightarrow{S}(\Omega)} \lambda_s p_S(s)$$
$$= \frac{1}{\lceil 2^{nR} \rceil} \sum_{s=1}^{\lceil 2^{nR} \rceil} \lambda_s$$

Let E_s denote the event $(\mathscr{C}(s), Y^n) \in A^n_{\epsilon}(X, Y)$. Considering λ_s yields

$$\lambda_{s} = P(\hat{S} \neq s \mid S = s)$$

$$= P(\mathcal{C}^{-1}(Y^{n}) \neq s \mid X^{n} = \mathcal{C}(s))$$

$$= P\left(\overline{E_{s}} \cup \bigcup_{s' \neq s} E_{s'}\right)$$

$$\leq P(\overline{E}_{s}) + \sum_{s \neq s'} P(E_{s'})$$

By the Joint AEP (Theorem 3.1.1)

$$\lim_{n \to \infty} P((X^n, Y^n) \in A_{\epsilon}^n(X, Y)) \ge 1 - \epsilon$$

Given that $E_s \subseteq (X^n, Y^n) \in A^n_{\epsilon}(X, Y)$, we have

$$\lambda_s \le \epsilon + \sum_{s' \ne s} 2^{-n(I(X;Y) - 3\epsilon)}$$

$$= \epsilon + (\lceil 2^{nR} \rceil - 1) 2^{-n(I(X;Y) - 3\epsilon)}$$

$$\le \epsilon + 2^{-n(I(X;Y) - 3\epsilon - R)}$$

Since $R < I(X;Y) - 3\epsilon$, it follows that $\lim_{n\to\infty} p_e^n = 0$.

Theorem 3.1.4. (Fano's Inequality) Let X, Y be a discrete random variable on (Ω, \mathcal{F}, P) and $\hat{X} = f(Y)$, where $f : \mathcal{Y} \to \mathcal{X}$. Let $p_e = p(\hat{X} \neq X)$, then $H(X \mid \hat{X}) \leq H_2(p_e) + p_e \log_2 |\overrightarrow{X}(\Omega)|$

Theorem 3.1.5. (Channel Coding Theorem Part II) For the DMC $Q = (\mathcal{X}, p_{Y|X}, \mathcal{Y}),$

$$R$$
 is achievable (on Q) \Longrightarrow $R \leq \max_{p_X} I(X;Y)$

Proof. Applying Fano's inequality to the channel coding theorem yields

$$H(S \mid \hat{S}) \le H_2(p_e) + p_e \log_2 |S|$$

$$\le 1 + p_e nR$$

Given that $S \sim U(\lceil 2^{nR} \rceil)$, we have

$$H(S) = nR$$

$$= H(S \mid \hat{S}) - I(S; \hat{S})$$

$$\leq 1 + p_e nR + I(X^n; Y^n)$$

$$\leq 1 + p_e nR + n \max_{p_X} I(X; Y) \qquad \text{(Memoryless)}$$

$$\iff R \leq \frac{1}{n} + p_e R + \max_{p_X} I(X; Y)$$

Assuming R is achievable, hence $\lim_{n\to\infty} p_e^n = 0$, then $R \leq \max_{p_X} I(X;Y)$.

3.2 Capacity

Definition 3.2.1. (Capacity) The capacity of a channel is defined as

$$C = \max_{p_X} I(X; Y)$$

- Above defn. follows from Shannon's Coding Theorem.
- We assume the memoryless property: $p_{Y^n|X^n}(y^n \mid x^n) = \prod_{i=1}^n p_{Y|X}(y_i \mid x_i)$.
- Transition probabilities may be written as a matrix:

$$Q_{ij} = p_{Y|X}(y_j \mid x_i)$$

Hence $\mathbf{p}_Y = \mathbf{Q}\mathbf{p}_X$.

3.2.1 Binary Symmetric Channels

• Let X and Y be discrete random variables s.t $\overrightarrow{X}(\Omega) = \overrightarrow{Y}(\Omega) = \{0, 1\}$, distributed by $X \sim \mathsf{Bern}(p_X)$ and

$$p_{Y|X}(y \mid x) = \begin{cases} p_e & \text{if } x \neq y\\ 1 - p_e & \text{if } x = y \end{cases}$$

• Considering I(X;Y), we have

$$I(X;Y) = H(Y) - H(Y \mid X)$$

Considering the distribution of Y yields:

$$p_Y = p_Y(1) = \sum_{x \in \{0,1\}} p_{Y|X}(y \mid x) p_X(x)$$
$$= p_X(1 - p_e) + (1 - p_X) p_e$$

Hence

$$H(Y) = -\sum_{y \in \{0,1\}} p_Y(y) \log_2 p_Y(y)$$

= $-p_Y \log_2 p_Y - (1 - p_Y) \log_2 (1 - p_Y)$
= $H_2(p_Y)$

where $H_2(p) = -p \log_2 p - (1-p) \log_2 (1-p)$ is the binary entropy function. The conditional entropy is given by:

$$H(Y \mid X) = -\sum_{x \in \{0,1\}} p_X(x) \sum_{y \in \{0,1\}} p_{Y|X}(y \mid x) \log_2 p_{Y|X}(y \mid x)$$

Considering $H(Y \mid X = x)$ for $x \in \{0, 1\}$ gives us:

$$-\sum_{y \in \{0,1\}} p_{Y|X}(y \mid 0) \log_2 p_{Y|X}(y \mid 0) = -(1 - p_e) \log_2 (1 - p_e) - p_e \log_2 p_e = H_2(p_e)$$

$$-\sum_{y \in \{0,1\}} p_{Y|X}(y \mid 1) \log_2 p_{Y|X}(y \mid 1) = -p_e \log_2 p_e - (1 - p_e) \log_2 (1 - p_e) = H_2(p_e)$$

$$-\sum_{y \in \{0,1\}} p_{Y|X}(y \mid 1) \log_2 p_{Y|X}(y \mid 1) = -p_e \log_2 p_e - (1 - p_e) \log_2 (1 - p_e) = H_2(p_e)$$

So

$$H(Y \mid X) = \sum_{x \in \{0,1\}} p_X(x)H(Y \mid X = x)$$
$$= H_2(p_e) \sum_{x \in \{0,1\}} p_X(x) = H_2(p_e)$$

Thus the mutual information is

$$I(X;Y) = H(Y) - H(Y \mid X)$$

= $H_2(p_X(1 - p_e) + (1 - p_X)p_e) - H_2(p_e)$

• Maximizing I(X;Y) gives the capacity $C=1-H_2(p_e)$.

3.2.2Binary Erasure Channels

• Let X and Y be discrete random variables s.t $\overrightarrow{X}(\Omega) = \{0,1\}, \overrightarrow{Y}(\Omega) =$ $\{0,1,?\}$, distributed by $X \sim \mathsf{Bern}(p_X)$ and

$$p_{Y|X}(y \mid x) = \begin{cases} p_e & \text{if } y = ?\\ 1 - p_e & \text{if } y = x \end{cases}$$

• Considering the mutual information I(X;Y) given by

$$I(X;Y) = H(X) - H(X \mid Y)$$

So we have:

$$\begin{split} H(X) &= H_2(p_X) \\ H(X \mid Y) &= \sum_{y \in \{0,1,?\}} p_Y(y) H(X \mid Y = y) \\ &= p_Y(0) H(X \mid Y = 0) + p_Y(1) H(X \mid Y = 1) + p_Y(?) H(X \mid Y = ?) \\ &= 0 + 0 + p_e H_2(p_X) = p_e H_2(p_X) \end{split}$$
 Thus $I(X;Y) = (1 - p_e) H_2(p_X)$.

• Maximizing I(X;Y) gives the capacity $C=1-p_e$.

3.2.3 Gaussian Channels

• Motivation: Signals are continuous, so is noise. Noise is the sum of many induvidual signals (Fourier series) \implies by CLT, noise is normally distributed.

Definition 3.2.2. (Gaussian Channel) A gaussian channel G is a discrete-time channel with input X_t and output Y_t , and noise Z_t at time t s.t

$$Y_t = X_t + Z_t,$$
 $Z_t \sim \mathcal{N}(0, \sigma^2)$

- If $\sigma^2 = 0$ or input is unconstrainted, then $C = \infty$!
- Power limitation: Limitation is on the power of the input $\mathbb{E}[X^2] \leq P$ (Physics: amplitude is bounded by power)

Theorem 3.2.1. The capacity of a Gaussian channel G with power constraint P and noise variance σ^2 is

$$C = \max_{f_X: \mathbb{E}[X^2] \le P} I(X; Y) = \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right)$$

Proof. (Assuming capacity result for DMCs generalizes to gaussian channels)

We have

$$I(X;Y) = dH(Y) - dH(Y \mid X)$$

$$= dH(Y) - dH(X + Z \mid X)$$

$$= dH(Y) - dH(Z)$$

$$\leq dH(\mathcal{N}(0, P + \sigma^2)) - dH(\mathcal{N}(0, \sigma^2))$$

$$= \frac{1}{2} \log 2\pi e(P + \sigma^2) - \frac{1}{2} \log 2\pi e\sigma^2$$

$$= \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2}\right)$$

(Assuming X is a Gaussian) Hence capacity is

$$C = \frac{1}{2}\log\left(1 + \frac{P}{\sigma^2}\right)$$

• Proof that DMC result generalizes to continuous information is fiddly.

 \bullet Proof that X is Gaussian relies on Lagrangian Multipliers.

Definition 3.2.3. (Bandlimited Channel) A bandlimited channel B is a Gaussian channel G with an impluse response function h(t) of an ideal bandpass filter, which cuts off all frequencies > W, where

$$Y_t = (X_t + Z_t) \otimes h(t)$$

Definition 3.2.4. (Nyquist-Shannon Sampling Theorem) Suppose that f(t) is bandlimited to W. Then the function is completely determined by samples of the function spaced $\frac{1}{2W}$ seconds apart.

• By Nquist-Shannon theorem, power constraint is P/2W (per sample) and noise variance is σ^2 (per sample), hence capacity is

$$C = 2W \frac{1}{2} \log \left(1 + \frac{P}{2W} \right)$$
$$= W \log \left(1 + \frac{P}{2W\sigma^2} \right)$$

• Minimize power usage by using larger bandwidth W (UWB).

3.3 Error Correcting Codes

Definition 3.3.1. (Error Correcting Code) Error correcting codes are codes $\mathscr{C}: \mathcal{X} \to \Sigma^*$ s.t probability of error $p_e(\mathscr{C})$ is minimized (ideally 0) over a noisy channel.

- Primarily split into 2 categories:
 - Block Codes: (M, n) block codes which encode M bits using n bits $\implies n M$ error correction bits.
 - Convolution Codes: Similar to streaming codes (See segment codes). Often decoded using the Viterbi algorithm (modelling a sliding window of bits as a Markov Process).

3.3.1 Repitition Codes

Definition 3.3.2. (Repitition Codes) A r-repitition code $\mathscr{C}^r : \mathcal{X} \to \Sigma^*$ of a code $\mathscr{C} : \mathcal{X} \to \Sigma^*$ is defined as:

$$\mathscr{C}^r(x) = \underbrace{\mathscr{C}(x)\mathscr{C}(x)\cdots\mathscr{C}(x)}_{r \text{ times}}$$

- **Problem**: Optimal decoding for a DMC $Q = (\mathcal{X}, p_{Y|X}, \mathcal{Y})$.
- Considering $P(S = s \mid Y^r = \mathbf{y})$:

$$\begin{split} P(S=s \mid Y^r = \mathbf{y}) &= P(X^r = \mathscr{C}^r(s) \mid Y^r = \mathbf{y}) \\ &= \frac{P(Y^r = \mathbf{y} \mid X^r = \mathscr{C}^r(s))P(X^r = \mathscr{C}^r(s))}{P(Y^r = \mathbf{y})} \end{split}$$

By memorylessness:

$$P(Y^r = \mathbf{y}) = \prod_{i=1}^r p_Y(y_i)$$
$$P(X^r = \mathscr{C}^r(s)) = p_S(s)$$

Now consider $P(Y^r = \mathbf{y} \mid X^r = \mathscr{C}^r(s))$:

$$P(Y^r = \mathbf{y} \mid X^r = \mathscr{C}^r(s)) = \prod_{i=1}^r P(Y_i = y_i \mid X_i = \mathscr{C}(s))$$
$$= \prod_{i=1}^r p_{Y|X}(y_i \mid \mathscr{C}(s))$$

So:

$$P(S = s \mid Y^r = \mathbf{y}) = p_S(s) \prod_{i=1}^r \frac{p_{Y|X}(y_i \mid \mathscr{C}(s))}{p_Y(y_i)}$$

• Optimal repitition decoder is given by

$$\mathscr{C}^{-r}(\mathbf{y}) = \underset{s \in \mathcal{S}}{\operatorname{arg \, max}} P(S = s \mid Y^r = \mathbf{y})$$
$$= \underset{s \in \mathcal{S}}{\operatorname{arg \, max}} p_S(s) \prod_{i=1}^r \frac{p_{Y|X}(y_i \mid \mathscr{C}(s))}{p_Y(y_i)}$$

Often assume uniform source $S \sim U(M)$

$$\mathscr{C}^{-r}(\mathbf{y}) = \underset{s \in S}{\operatorname{arg max}} \prod_{i=1}^{r} p_{Y|X}(y_i \mid \mathscr{C}(s))$$

• Examples:

BSC Channel given by

$$p_{Y|X}(y \mid x) = \begin{cases} p_e & \text{if } x \neq y\\ 1 - p_e & \text{if } x = y \end{cases}$$

$$\mathscr{C}^{-r}(\mathbf{y}) = \underset{s \in S}{\arg \max} \prod_{i=1}^{r} p_{Y|X}(y_i \mid \mathscr{C}(s))$$
$$= \underset{s \in S}{\arg \max} p_e^{N_s} (1 - p_e)^{r - N_s}$$

where
$$N_s = \sum_{i=1}^r I_{y_i \neq \mathscr{C}(s)}$$
.

$$p_{e}(\hat{S} \neq S) = P\left(\frac{p_{e}^{N_{\hat{S}}}(1 - p_{e})^{r - N_{\hat{S}}}}{p_{e}^{N_{S}}(1 - p_{e})^{r - N_{\hat{S}}}} > 1\right)$$

$$= P(\gamma^{N_{\hat{S}} - N_{S}} > 1)$$

$$= P(p_{e} < 0.5 \land N < 0) + P(p_{e} \ge 0.5 \land N > 0)$$

$$= P\left(\text{number of bit flips} > \left\lceil \frac{r}{2} \right\rceil \right)$$

$$= \sum_{n = \frac{r+1}{2}}^{r} p_{e}^{n} (1 - p_{e})^{r - n}$$

3.3.2 Hamming Codes

• (N, k) block codes = N total bits encoding k bits (N - k error bits).

Definition 3.3.3. ((7, 4) Hamming Code) A (7, 4) Hamming Code is a code $\mathscr{C}^{(7,4)}: \{0,1\}^4 \to \{0,1\}^7$ defined by

$$\mathscr{C}^{(7,4)}(b_1b_2b_3b_4) = b_1b_2b_3b_4p_1p_2p_3$$

where p_1, p_2, p_3 are parity bits given by:

• 'Syndrome' Decoding:

1. Count number of circles that a 'unhappy' (parity-check fails). Forms a 3-bit 'syndrome' \mathbf{z} .

2. Decoding consists of finding a unique bit inside all the 'unhappy' circles and outside the 'happy' circles that would fix the syndrome.

- (7,4) Codes cannot deal with > 1 bit-flip. Most channels have $p_e \ll 1 \implies > 1$ bit-flip is v. unlikely.
- Linear Codes: Codes of the form $\mathbf{x} = \mathbf{G}^T \mathbf{s}$ for source input \mathbf{s} and channel input $\mathbf{x} \pmod{2}$.

Decoding given $\hat{\mathbf{s}} = \mathbf{H}\mathbf{y}$. \mathbf{H} must satisfy $\mathbf{H}\mathbf{G}^T = \mathbf{0}$.

• Linear 'Syndrome' Decoding: Given $\mathbf{y} = \mathbf{G}^T \mathbf{s} + \boldsymbol{\eta}$, syndrome decoding is the process (using MLE) of finding the most probable $\boldsymbol{\eta}$ s.t $\mathbf{H}\boldsymbol{\eta} = \mathbf{z}$.