6. Backpropagation

GEV6135 Deep Learning for Visual Recognition and Applications

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
Oct 6, 2022

Assignment Policy

- Please read the instruction carefully!
 - Some students used functions prohibited by instruction explicitly.
 - Some students changed file names.
 - Do not write or modify any code outside of the designated blocks.
 - Some students wrote some code outside of TODO blocks.
 - Do **not add or delete cells** from the notebook.
 - Some students added cells.
 - Do not import additional libraries.
 - Some students imported/used uninstructed libraries, e.g., numpy, torch.nn
 - Run all cells, and do not clear out the outputs, before submitting.
 - Some students did not run some cells.
 - Do **not zip by yourself**, run the provided code.
 - Some students changed folder structure.

Assignment Policy

- Please read the instruction carefully!
- If you are not sure, please
 - 1. Re-download clean files
 - 2. Copy-paste your solution to clean py
 - **3. Re-run** clean ipynb only once

For any question on grading, contact our TA (see Classum for details)

Assignment

- A3 due Monday 10/10, 11:59pm KST
- Training linear classifiers (Lec 3) with
 - SVM/Softmax loss (Lec 3)
 - SGD (Lec 4)

- A4 due Wednesday 10/19, 11:59pm KST
- Training two-layer neural networks (Lec 5) with
 - Softmax loss (Lec 3)
 - SGD (Lec 4)
- If you feel difficult, consider to take option 2.

Recap: Neural Networks

From linear classifiers to fully-connected networks

$$s(x) = W_2 f(W_1 x + b_1) + b_2$$

Space Warping

Universal Approximation

Nonconvex

Problem: How to compute gradients?

$$s = W_2 f(W_1 x + b_1) + b_2$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Per-element data loss

$$R(W) = \sum_{k} W_k^2$$

L2 Regularization

$$L(W_1, W_2, b_1, b_2) = \frac{1}{N} \sum_{i=1}^{N} L_i + \lambda R(W_1) + \lambda R(W_2)$$
 Total loss

If we can compute $\frac{\partial L}{\partial W_1}$, $\frac{\partial L}{\partial W_2}$, $\frac{\partial L}{\partial b_1}$, $\frac{\partial L}{\partial b_2}$ then we can optimize with SGD

(Bad) Idea: Derive $abla_W L$ on paper

$$s = f(x; W) = Wx$$

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$= \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1)$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_{i} + \lambda \sum_{k} W_{k}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2}$$

Problem: Very tedious: Lots of matrix calculus, need lots of paper

Problem: What if we want to change loss? E.g. use softmax instead of SVM? Need to re-derive from scratch. Not modular!

Problem: Not feasible for very complex models!

$$\nabla_{W} L = \nabla_{W} \left(\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max(0, W_{j,:} \cdot x + W_{y_{i},:} \cdot x + 1) + \lambda \sum_{k} W_{k}^{2} \right)$$

Better Idea: Backpropagation by Chain Rule

$$\frac{\text{e.g., }(i,j)\text{-th}}{\partial W_2(i,j)} = \left(\frac{\partial h_2}{\partial W_2(i,j)}\right) \left(\frac{\partial h_3}{\partial h_2}\right) \left(\frac{\partial L}{\partial h_3}\right) \left(\frac{\partial L}{\partial h_3}\right)$$

Better Idea: Computational Graphs

Neural Turing Machine input image loss

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Graves et al, arXiv 2014

Kibok Lee

Neural Turing Machine

Graves et al, arXiv 2014

$$f(x,y,z) = (x+y) \cdot z$$

$$f(x, y, z) = (x + y) \cdot z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y) \cdot z$$

e.g. $x = -2$, $y = 5$, $z = -4$

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y) \cdot z$$

e.g. $x = -2$, $y = 5$, $z = -4$

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

2. Backward pass: Compute derivatives

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

 $\frac{\partial f}{\partial f}$

$$f(x, y, z) = (x + y) \cdot z$$

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$\frac{\partial f}{\partial z} = q$$

$$f(x, y, z) = (x + y) \cdot z$$

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

Kibok Lee

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y) \cdot z$$

e.g. $x = -2$, $y = 5$, $z = -4$

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y) \cdot z$$

e.g. $x = -2$, $y = 5$, $z = -4$

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

2. Backward pass: Compute derivatives

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain Rule

$$\frac{\partial f}{\partial y} = \frac{\partial q}{\partial y} \frac{\partial f}{\partial q}$$

$$\frac{\partial q}{\partial y} = 1$$

Downstream Local Upstream
Gradient Gradient Gradient

$$f(x, y, z) = (x + y) \cdot z$$

e.g. $x = -2$, $y = 5$, $z = -4$

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

2. Backward pass: Compute derivatives

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$\frac{\partial q}{\partial y} = 1$$

Downstream Local Upstream
Gradient Gradient Gradient

$$f(x, y, z) = (x + y) \cdot z$$

e.g. x = -2, y = 5, z = -4

1. Forward pass: Compute outputs

$$q = x + y$$
 $f = q \cdot z$

2. Backward pass: Compute derivatives

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

Chain Rule

$$\frac{\partial f}{\partial x} = \frac{\partial q}{\partial x} \frac{\partial f}{\partial q}$$

$$\frac{\partial q}{\partial x} = 1$$

Downstream Local Upstream
Gradient Gradient Gradient

Forward pass: Compute outputs

Backward pass: Compute gradients

Backward pass: Compute gradients

Kibok Lee

Another Example $f(x,w) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}} = \sigma(w_0x_0 + w_1x_1 + w_2)$

Backward pass: Compute gradients

Sigmoid local gradient:
$$\frac{\partial}{\partial x} \left[\sigma(x) \right] = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = \left(1 - \sigma(x) \right) \sigma(x)$$

Another Example
$$f(x, w) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}} = \sigma(w_0 x_0 + w_1 x_1 + w_2)$$

Backward pass: Compute gradients

$$\frac{\partial}{\partial x}[\sigma(x)] = \frac{e^{-x}}{(1+e^{-x})^2} =$$

Sigmoid local gradient:
$$\frac{\partial}{\partial x} \left[\sigma(x) \right] = \frac{e^{-x}}{(1 + e^{-x})^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left(\frac{1}{1 + e^{-x}} \right) = \left(1 - \sigma(x) \right) \sigma(x)$$

Patterns in Gradient Flow

add gate: gradient distributor

copy gate: gradient adder

mul gate: "swap multiplier"

max gate: gradient router

Backprop Implementation: "Flat" gradient code:

"Flat" gradient code:

Forward pass:

Compute output


```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

"Flat" gradient code:

Forward pass:

Compute output


```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad_x0 = grad_s0 * w0
```

"Flat" gradient code:

Forward pass:

Compute output


```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad x0 = grad s0 * w0
```

Kibok Lee

"Flat" gradient code:

Forward pass:

Compute output


```
def f(w0, x0, w1, x1, w2):
    s0 = w0 * x0
    s1 = w1 * x1
    s2 = s0 + s1
    s3 = s2 + w2
    L = sigmoid(s3)
```

```
grad L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3
grad_s2 = grad_s3
grad_s0 = grad_s2
grad_s1 = grad_s2
grad_w1 = grad_s1 * x1
grad_x1 = grad_s1 * w1
grad_w0 = grad_s0 * x0
grad x0 = grad s0 * w0
```

Kibok Lee

"Flat" gradient code:

Forward pass:

Compute output

Add

```
def f(w0, x0, w1, x1, w2):
  s0 = w0 * x0
  s1 = w1 * x1
  s2 = s0 + s1
  s3 = s2 + w2
 L = sigmoid(s3)
  grad_L = 1.0
  grad_s3 = grad_L * (1 - L) * L
 grad_w2 = grad_s3
  grad_s2 = grad_s3
  grad_s0 = grad_s2
  grad_s1 = grad_s2
  grad_w1 = grad_s1 * x1
  grad_x1 = grad_s1 * w1
  grad_w0 = grad_s0 * x0
  grad x0 = grad s0 * w0
```

"Flat" gradient code:

Forward pass:

Compute output

Add

```
def f(w0, x0, w1, x1, w2):
  s0 = w0 * x0
  s1 = w1 * x1
  s2 = s0 + s1
  s3 = s2 + w2
  L = sigmoid(s3)
  grad_L = 1.0
  grad_s3 = grad_L * (1 - L) * L
  grad_w2 = grad_s3
  grad_s2 = grad_s3
 grad_s0 = grad_s2
  grad_s1 = grad_s2
  grad_w1 = grad_s1 * x1
  grad_x1 = grad_s1 * w1
  grad_w0 = grad_s0 * x0
  grad x0 = grad s0 * w0
```

Kibok Lee

"Flat" gradient code:

Forward pass:

Compute output

Multiply

```
def f(w0, x0, w1, x1, w2):
  s0 = w0 * x0
  s1 = w1 * x1
  s2 = s0 + s1
  s3 = s2 + w2
  L = sigmoid(s3)
  grad_L = 1.0
  grad_s3 = grad_L * (1 - L) * L
  grad_w2 = grad_s3
  grad_s2 = grad_s3
  grad_s0 = grad_s2
  grad_s1 = grad_s2
 grad_w1 = grad_s1 * x1
  grad_x1 = grad_s1 * w1
  grad_w0 = grad_s0 * x0
  grad x0 = grad s0 * w0
```

"Flat" gradient code:

Forward pass:

Compute output

Multiply

```
def f(w0, x0, w1, x1, w2):
  s0 = w0 * x0
  s1 = w1 * x1
  s2 = s0 + s1
  s3 = s2 + w2
  L = sigmoid(s3)
  grad_L = 1.0
  grad_s3 = grad_L * (1 - L) * L
  grad_w2 = grad_s3
  grad_s2 = grad_s3
  grad_s0 = grad_s2
  grad_s1 = grad_s2
  grad_w1 = grad_s1 * x1
  grad_x1 = grad_s1 * w1
 grad_w0 = grad_s0 * x0
  grad_x0 = grad_s0 * w0
```

Kibok Lee

"Flat" Backprop: Do this for Assignment 2!

Your gradient code should look like a "reversed version" of your forward pass!

"Flat" Backprop: Do this for Assignment 2!

Your gradient code should look like a "reversed version" of your forward pass!

E.g. for two-layer neural net:

```
# receive W1,W2,b1,b2 (weights/biases), X (data)
# forward pass:
h1 = \#... function of X,W1,b1
scores = #... function of h1, W2, b2
loss = #... (several lines of code to evaluate Softmax loss)
# backward pass:
dscores = #...
dh1, dW2, db2 = #...
dW1, db1 = #...
```

Backprop Implementation: Modular API

Graph (or Net) object (rough pseudo code)

```
class ComputationalGraph(object):
   # . . .
   def forward(inputs):
       # 1. [pass inputs to input gates...]
       # 2. forward the computational graph:
       for gate in self.graph.nodes topologically sorted():
            gate.forward()
       return loss # the final gate in the graph outputs the loss
   def backward():
       for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
       return inputs gradients
```

Example: PyTorch Autograd Functions

(x,y,z are scalars)

```
class Multiply(torch.autograd.Function):
 @staticmethod
  def forward(ctx, x, y):
                                               Need to stash some
    ctx.save_for_backward(x, y)
                                               values for use in
                                               backward
    z = x * y
    return z
 @staticmethod
                                               Upstream
  def backward(ctx, grad_z):
                                               gradient
    x, y = ctx.saved_tensors
    grad_x = y * grad_z # dz/dx * dL/dz
                                              Multiply upstream
    grad_y = x * grad_z # dz/dy * dL/dz
                                              and local gradients
    return grad_x, grad_y
```

Example: PyTorch operators

SpatialClassNLLCriterion.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialFullDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingBilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
SpatialUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
THNN.h	Canonicalize all includes in PyTorch. (#14849)	4 months ago
Tanh.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReflectionPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalRowConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingLinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
TemporalUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
$ \begin{tabular}{ll} \hline \blacksquare & Volumetric Adaptive Average Poolin \\ \hline \end{tabular}$	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricAdaptiveMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
■ VolumetricAveragePooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricConvolutionMM.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedConvolution.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricDilatedMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
■ VolumetricFractionalMaxPooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
$\ensuremath{\trianglerighteq} \ensuremath{VolumetricFullDilatedConvolution.c}$	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricMaxUnpooling.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricReplicationPadding.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
VolumetricUpSamplingNearest.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
■ VolumetricUpSamplingTrilinear.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago
linear_upsampling.h	Implement nn.functional.interpolate based on upsample. (#8591)	9 months ago
pooling_shape.h	Use integer math to compute output size of pooling operations (#14405)	4 months ago
unfold.c	Canonicalize all includes in PyTorch. (#14849)	4 months ago

```
#ifndef TH_GENERIC_FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
     void THNN_(Sigmoid_updateOutput)(
               THNNState *state,
               THTensor *input,
               THTensor *output)
 9
10
       THTensor_(sigmoid)(output, input);
11
12
     void THNN_(Sigmoid_updateGradInput)(
14
               THNNState *state,
               THTensor *gradOutput,
15
               THTensor *gradInput,
16
17
               THTensor *output)
18
       THNN_CHECK_NELEMENT(output, gradOutput);
19
       THTensor_(resizeAs)(gradInput, output);
20
       TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
         scalar_t z = *output_data;
         *gradInput_data = *gradOutput_data * (1. - z) * z;
23
       );
24
25
26
    #endif
```

PyTorch sigmoid layer

<u>Source</u>

```
#ifndef TH_GENERIC_FILE
    #define TH_GENERIC_FILE "THNN/generic/Sigmoid.c"
    #else
     void THNN (Sigmoid updateOutput)(
                                                           Forward
               THNNState *state,
               THTensor *input,
               THTensor *output)
 9
10
       THTensor_(sigmoid)(output, input);
11
12
     void THNN_(Sigmoid_updateGradInput)(
14
               THNNState *state,
               THTensor *gradOutput,
               THTensor *gradInput,
16
17
               THTensor *output)
18
19
       THNN_CHECK_NELEMENT(output, gradOutput);
      THTensor_(resizeAs)(gradInput, output);
20
      TH_TENSOR_APPLY3(scalar_t, gradInput, scalar_t, gradOutput, scalar_t, output,
         scalar_t z = *output_data;
         *gradInput data = *gradOutput data * (1. - z) * z;
23
      );
24
25
26
    #endif
```

PyTorch sigmoid layer

```
static void sigmoid_kernel(TensorIterator& iter) {
   AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "sigmoid_cpu", [&]() {
      unary_kernel_vec(
        iter,
      [=](scalar_t a) -> scalar_t {      return (1 / (1 + std::exp((-a)))); },
      [=](Vec256<scalar_t> a) {
        a = Vec256<scalar_t>((scalar_t)(0)) - a;
        a = a.exp();
        a = Vec256<scalar_t>((scalar_t)(1)) + a;
        a = a.reciprocal();
        return a;
      });
      Forward actually defined elsewhere...
```

```
return (1 / (1 + std::exp((-a))));
```

Source

THTensor *output)

THTensor_(sigmoid)(output, input);

9

10 11 12

14

15 16

17

18

19

20

23 24

25

PyTorch sigmoid layer

Backward

$$(1-\sigma(x))\,\sigma(x)$$

Source

#endif

Forward

Attendance Check

So far: backprop with scalars

What about vector-valued functions?

Recap: Vector Derivatives

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Kibok Lee

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N,$$

$$\left(\frac{\partial y}{\partial x}\right)_i = \frac{\partial y}{\partial x_i}$$

For each element of x, if it changes by a small amount then how much will y change?

$$x \in \mathbb{R}^N, y \in \mathbb{R}^M$$

Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M}$$
$$\left(\frac{\partial y}{\partial x}\right)_{i,j} = \frac{\partial y_j}{\partial x_i}$$

For each element of x, if it changes by a small amount then how much will each element of y change?

Kibok Lee

Jacobian is **sparse**: off-diagonal entries all zero! Never **explicitly** form Jacobian; instead use **implicit** multiplication

Jacobian is **sparse**: off-diagonal entries all zero! Never **explicitly** form Jacobian; instead use **implicit** multiplication

$$f(x) = max(0,x)$$
[3] (elementwise)

4D
$$dL/dx$$
: $[dy/dx] [dL/dy]$

$$\begin{bmatrix} 4 \end{bmatrix} \leftarrow \begin{bmatrix} 0 \\ -1 \end{bmatrix} \leftarrow \begin{bmatrix} \frac{\partial L}{\partial x} \\ 0 \end{bmatrix}_i = \begin{cases} \left(\frac{\partial L}{\partial y}\right)_i, & if \ x_i > 0 \leftarrow [-1] \leftarrow \\ 0, & otherwise \end{cases} \leftarrow \begin{bmatrix} 5 \\ 9 \end{bmatrix} \leftarrow gradient$$

Backprop with Matrices (or Tensors):

Loss L still a scalar!

Backprop with Matrices (or Tensors):

Loss L still a scalar!

Backprop with Matrices (or Tensors):

Loss L still a scalar!

dL/dx always has the same shape as x!

Upstream gradient

For each element of z, how much does it influence L?

Backprop with Matrices (or Tensors):

Loss L still a scalar!

dL/dx always has the same shape as x!

Upstream gradient

For each element of z, how much does it influence L?

x: [N×D] w: [D×M] [2 1 -3] [3 2 1 -1] [-3 4 2] [2 1 3 2] [3 2 1 -2] $y_{i,j} = \sum_{k} x_{i,k} w_{k,j}$

For a neural net we may have
N=64, D=M=4096
Each Jacobian takes 256 GB of memory! Must
work with them implicitly!

 $dy/dw: [(D\times M)\times (N\times M)]$

```
w: [D×M]
 x: [N×D]
                               Matrix Multiply y = xw
 2 1 -3 [ 3 2 1 -1]
                               y_{i,j} = \sum x_{i,k} w_{k,j}
[-3 4 2] [2 1 3 2]
             [321-2]
dL/dx: [N×D]
                                 Local Gradient Slice:
                                       dy/dx_{1.1}
                                      [;;;]
dL/dx_{1,1}
                                      [;;;]
= (dy/dx_{1.1}) \cdot (dL/dy)
```

y: [N×M]
[-1-1 2 6]
[5 2 11 7]
dL/dy: [N×M]

[2 3 -3 9]

[-8 1 4 6]

$$\frac{dL/dx_{1,1}}{= (dy/dx_{1,1}) \cdot (dL/dy)}$$

$$\frac{dy/dx_{1,1}}{dy_{1,1}/dx_{1,1}} = x_{1,1}w_{1,1} + x_{1,2}w_{2,1} + x_{1,3}w_{3,1}$$

Local Gradient Slice:

$$dL/dx_{1,1}$$
= $(dy/dx_{1,1}) \cdot (dL/dy)$

$$\frac{dy/dx_{1,1}}{dy_{1,2}/dx_{1,1}} \begin{bmatrix} 3 & ? & ? & ? \\ ? & ? & ? & ? \end{bmatrix}$$
$$\begin{bmatrix} ? & ? & ? & ? \end{bmatrix}$$
$$y_{1,2} = x_{1,1}w_{1,2} + x_{1,2}w_{2,2} + x_{1,3}w_{3,2}$$

$$\frac{dL/dx_{1,1}}{= (dy/dx_{1,1}) \cdot (dL/dy)}$$

$$dy/dx_{1,1}$$

$$dy/dx_{1,1}$$

$$[32??]$$

$$[????]$$

$$y_{1,2} = x_{1,1} w_{1,2} + x_{1,2} w_{2,2} + x_{1,3} w_{3,2}$$

$$=> dy_{1,2}/dx_{1,1} = w_{1,2}$$

```
[-1 -1 2 6]
             w: [D×M]
 x: [N×D]
                                Matrix Multiply y = xw
                                                                      [5 2 11 7]
 2 1 -3 ] [ 3 2 1 -1
                                y_{i,j} = \sum x_{i,k} w_{k,j}
                                                                     dL/dy: [N×M]
             [321-2]
                                                                      [23-39]
dL/dx: [N×D]
                                                                     [-8 1 4 6]
                                 Local Gradient Slice:
                                       dy/dx_{1}
                           dy_{1,:}/dx_{1,1} [3 2 1 - 1]
dL/dx_{1,1}
```

DL for Visual Recognition and Applications

y: [N×M]

 $= (dy/dx_{1.1}) \cdot (dL/dy)$

Local Gradient Slice:

$$dy/dx_{1,1}$$

$$dy_{2,1}/dx_{1,1} [3 2 1 -1]$$

$$[?]????]$$

$$y_{2,1} = x_{2,1}w_{1,1} + x_{2,2}w_{2,1} + x_{2,3}w_{3,1}$$

y: [N×M]

 $= (dy/dx_{1.1}) \cdot (dL/dy)$

 $dL/dx_{1,1}$

$$dL/dx_{1,1}$$
= $(dy/dx_{1,1}) \cdot (dL/dy)$

Kibok Lee

$$\frac{dy/dx_{1,1}}{dy_{2,1}/dx_{1,1}} \begin{bmatrix} 3 & 2 & 1 & -1 \\ 0 & ? & ? & ? \end{bmatrix}$$

$$y_{2,1} = x_{2,1}w_{1,1} + x_{2,2}w_{2,1} + x_{2,3}w_{3,1}$$

$$=> dy_{2,1}/dx_{1,1} = 0$$

```
w: [D×M]
 x: [N×D]
                                  Matrix Multiply y = xw
 2 1 -3 [ 3 2 1 -1]
                                  y_{i,j} = \sum x_{i,k} w_{k,j}
[-3 4 2] [2 1 3 2]
              [ 3 2 1 - 2]
dL/dx: [N×D]
                                    Local Gradient Slice:
                                         dy/dx_{1.1}
                             dy_{2,:}/dx_{1,1} [3 2 1-1]
dL/dx_{1,1}
= (dy/dx_{1.1}) \cdot (dL/dy)
```

y: [N×M]
[-1-1 2 6]
[5 2 11 7]

dL/dy: [N×M] —— [2 3 -3 9]

[-8 1 4 6]

```
w: [D×M]
 x: [N×D]
                                 Matrix Multiply y = xw
 2 1 -3 [ 3 2 1 -1]
                                 y_{i,j} = \sum x_{i,k} w_{k,j}
[-3 4 2] [2 1 3 2]
              [321-2]
dL/dx: [N×D]
                                         dy/dx_{1.1}
                                       [3 2 1 -1]
dL/dx_{1,1}
                                        [0 \ 0 \ 0 \ 0]
= (dy/dx_{1.1}) \cdot (dL/dy)
```

Local Gradient Slice:

```
w: [D×M]
  x: [N \times D]
                                         Matrix Multiply y = xw
                                          y_{i,j} = \sum x_{i,k} w_{k,j}
                  [321-2]
dL/dx: [N×D]
                                                    dy/dx_{1}
dL/dx_{1.1}
= (dy/dx_{1.1}) \cdot (dL/dy)
= (\mathbf{w}_{1::}) \cdot (\mathsf{dL/dy}_{1::})
= 3*2 + 2*3 + 1*(-3) + (-1)*9 = 0
```

Local Gradient Slice:

```
w: [D×M]
 x: [N \times D]
                                  Matrix Multiply y = xw
[21-3][321-1]
                                   y_{i,j} = \sum x_{i,k} w_{k,j}
             [ 2 1 3 2]
[-3 4 2]
dL/dx: [N×D]
[0??]
                                           dy/dx_{2,3}
dL/dx_{2.3}
= (dy/dx_{2.3}) \cdot (dL/dy)
= (w_{3::}) \cdot (dL/dy_{2::})
= 3*(-8) + 2*1 + 1*4 + (-2)*6 = -30
```

Local Gradient Slice:

```
w: [D×M]
 x: [N×D]
[21-3][321-1]
[-3 4 2] [2 1 3 2]
             [ 3 2 1 - 2]
dL/dx: [N×D]
[ 0 16 -9 ]
[-24 9 -30]
dL/dx_{i,i}
= (dy/dx_{i,i}) \cdot (dL/dy)
```

Matrix Multiply
$$y = xw$$

$$y_{i,j} = \sum_{k} x_{i,k} w_{k,j}$$

$$dL/dx = (dL/dy) w^T$$

[N x D] [N x M] [M x D]

Easy way to remember: It's the only way the shapes work out!

 $= (w_{i::}) \cdot (dL/dy_{i::})$

Kibok Lee

Matrix Multiply y = xw

$$y_{i,j} = \sum_{k} x_{i,k} w_{k,j}$$

$$dL/dx = (dL/dy) w^T$$

[N x D] [N x M] [M x D]

$$dL/dw = x^{T} (dL/dy)$$

[D x M] [D x N] [N x M]

y: [N×M]
[-1-1 2 6]
[5 2 11 7]

dL/dy: [N×M]
[2 3-3 9]
[-8 1 4 6]

Easy way to remember: It's the only way the shapes work out!

Backpropagation: Another View

$$X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2 \xrightarrow{f_3} X_3 \xrightarrow{f_4} L$$
 $D_0 D_1 D_2 D_3 scalar$

Matrix multiplication is associative: we can compute products in any order

Thain rule
$$\frac{\partial L}{\partial x_0} = \left(\frac{\partial x_1}{\partial x_0}\right) \left(\frac{\partial x_2}{\partial x_1}\right) \left(\frac{\partial x_3}{\partial x_2}\right) \left(\frac{\partial L}{\partial x_3}\right) \left(\frac{\partial L}{\partial x_$$

Reverse-Mode Automatic Differentiation

$$X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} X_2 \xrightarrow{f_3} X_3 \xrightarrow{f_4} L$$
 $D_0 D_1 D_2 D_3 scalar$

Matrix multiplication is associative: we can compute products in any order Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

Chain rule
$$\frac{\partial L}{\partial x_0} = \left(\frac{\partial x_1}{\partial x_0}\right) \left(\frac{\partial x_2}{\partial x_1}\right) \left(\frac{\partial x_3}{\partial x_2}\right) \left(\frac{\partial L}{\partial x_3}\right) \left(\frac{\partial L}{\partial x_3}\right) \text{ What if we want grads of scalar input w/respect to vector output state all vector inputs.}$$

Compute grad of scalar output w/respect to all vector inputs

Forward-Mode Automatic Differentiation

Computing products <u>left-to-right</u> avoids matrix-matrix products; only needs matrix-vector

Beta implementation in PyTorch! https://pytorch.org/tutorials/intermediate/forward_ad_usage.html

Chain rule
$$\frac{\partial x_3}{\partial a} = \left(\frac{\partial x_0}{\partial a}\right) \left(\frac{\partial x_1}{\partial x_0}\right) \left(\frac{\partial x_2}{\partial x_1}\right) \left(\frac{\partial x_3}{\partial x_2}\right) \left[D_0 \times D_1\right] \left[D_1 \times D_2\right] \left[D_2 \times D_3\right]$$

You can also implement forward-mode AD using two calls to reverse-mode AD! (Inefficient but elegant)

Summary

Represent complex expressions as **computational graphs**

Forward pass computes outputs

Backward pass computes gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients**

Summary

Backprop can be implemented with "flat" code where the backward pass looks like forward pass reversed

```
def f(w0, x0, w1, x1, w2):
  s0 = w0 * x0
 s1 = w1 * x1
 s2 = s0 + s1
 s3 = s2 + w2
 L = sigmoid(s3)
  grad L = 1.0
  grad_s3 = grad_L * (1 - L) * L
  grad_w2 = grad_s3
  grad_s2 = grad_s3
  grad_s0 = grad_s2
  grad_s1 = grad_s2
  grad_w1 = grad_s1 * x1
  grad_x1 = grad_s1 * w1
  grad_w0 = grad_s0 * x0
  grad_x0 = grad_s0 * w0
```

Backprop can be implemented with a modular API, as a set of paired forward/backward functions

```
class Multiply(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x, y):
   ctx.save_for_backward(x, y)
   z = x * y
   return z
 @staticmethod
 def backward(ctx, grad_z):
   x, y = ctx.saved_tensors
   grad_x = y * grad_z # dz/dx * dL/dz
   grad_y = x * grad_z # dz/dy * dL/dz
    return grad_x, grad_y
```

$$f(x,W) = Wx$$

$$f=W_2\max(0,W_1x)$$

Problem: So far our classifiers don't respect the spatial structure of images!

Stretch@pixels@nto@column

Next: Convolutional Neural Networks