

Praktikum Physik für Naturwissenschaftler

Bericht zum Versuch

Wechselstromkreise

Durchgeführt am 14. Dezember 2023

Gruppe 6

Moritz Wieland und Dominik Beck

(moritz.wieland@uni-ulm.de) (dominik.beck@uni-ulm.de)

Betreuer: TODO

Wir bestätigen hiermit, dass wir die Ausarbeitung selbständig erarbeitet haben un	d detaillierte
Kenntnis vom gesamten Inhalt besitzen.	

	und	
Moritz Wieland		Dominik Beck

Inhaltsverzeichnis

Seite 2	
Seite 3	
Augustus a	
Auswertung Seite 4	
Analog-Oszilloskop 4 • Ergebnisse — 5	
·	

1 Einleitung

2 Theorie

3 Versuchsdurchführung und Auswertung

3.1 Versuch 1 - Signaldarstellung mit dem Analog-Oszilloskop

3.1.1 Versuchsaufbau und -durchführung

Zunächst wurde uns ein Signal vom Betreuer vorgegeben, welches wir mit dem Oszilloskop untersuchen sollten. Diese ist für uns von unbekannter Form, Frequenz und Amplitude. Wir haben uns dann für folgende Einstellung am Oszilloskop entschieden:

Time/Div: 5µs Volt/Div: 0.5 V

 \Rightarrow Die Amplitude U_0 des Signals ist 1.2 V und die Periodendauer 45 μ s. Die Frequenz des Signals ist dann:

$$f = \frac{1}{T} = \frac{1}{45\mu s} = 21.7kHz \tag{3.1}$$

Das Schirmbild sah wie folgt aus:

Abbilding 5.1. Schimhibild des volgegebellen Signals

Abbildung 3.1: Schirmbild des vorgegebenen Signals

Nun können wir folgende Messwerte ablesen:

Tabelle 3.1: Messwerte des vorgegebenen Signals

Größe	Wert		
Amplitude U_0	$1.2 \text{ V} \pm 0.5 \text{ V}$		
Frequenz	$21.7 \text{ kHz} \pm 0.1 \text{ kHz}$		
Periodendauer	45 μ s \pm 5 μ s		

Wir können nun mit folgender Formel die Frequenz des Signals berechnen:

$$f = \frac{1}{T} \tag{3.2}$$

Und den Größtfehler mit folgender Formel berechnen:

$$\Delta f = \left| \frac{1}{T^2} \right| \cdot \Delta T$$

$$\Rightarrow f^2 \cdot \Delta T$$
(3.3)

Der Größtfehler der Frequenz beträgt nach 3.3~0.1~kHz. Die Frequenz des Signals beträgt also $21.7~kHz~\pm~0.1~kHz$. TODO: REchnung prüfen

3.1.2 Ergebnisse

TODO

3.2 Versuch 2 - Impedanzmessung an Widerstand, Kondensator und Spule

3.2.1 Versuchsaufbau und -durchführung

Abbildung 3.2: Schaltbild Versuch 2

TODO: Fehler mit angeben. Skala war 200mV/Div Nun lässt sich aus dem Aufbau 3.2 noch der Widerstand Z berechnen. Da gilt:

$$\frac{U_m}{U_z} = \frac{R_m}{|Z|}$$

$$\Rightarrow |Z| = \frac{U_z}{U_m} \cdot R_m$$
(3.4)

|Z| ist nach 3.4 99.82 Ω . Der Größtfehler beträgt:

$$\Delta |Z| = \left| \frac{R_m U_z}{U_m} \right| \cdot \Delta U_m + \left| \frac{R_m}{U_m} \right| \cdot \Delta U_z \tag{3.5}$$

3.2.2 Ergebnisse

3.3 Versuch 3 - Impedanzmessung an einem unbekannten Zweipol

3.3.1 Versuchsaufbau- und durchführung

3.3.2 Ergebnisse

Die gemessenen Werte befinden sich in folgender Tabelle:

Tabelle 3.2: Messwerte Versuch 3

f[Hz]	$U_m[mV]$	$U_z[mV]$	t [ms]	T[ms]	$ Z [\Omega]$	ϕ [°]
200	23.00	1000.00	-0.5	5	3644.44	-36.0
400	20.00	1000.00	-0.2	2.5	4100.00	-28.8
1000	20.0	1000.0	-0.1	1.0	4100.00	-36.0
2000	28.0	1000.0	-0.075	0.5	2928.57	-54.00
4000	44.0	1000.0	-0.05	0.25	1863.64	-72.00
10000	110.0	1000.0	-0.022	0.10	745.45	-79.2
20000	200.0	1000.0	-0.011	0.50	410.0	-79.2
40000	400.0	1000.0	-0.006	0.25	205.00	-86.4
80000	660.0	1000.0	-0.003	0.125	124.24	-86.4

Nun können wir mit folgender Formel die Kapazität des verbauten Kondensators berechnen:

$$C = \frac{1}{\omega \cdot |Z|}$$

$$\Rightarrow C = \frac{1}{2\pi f \cdot |Z|}$$
(3.6)

Für |Z| wählen wir das |Z| wo ϕ am nächsten an -90° ist.