Laboratorio di Fisica 1 R1: Misura indiretta della densità di solidi

Riccardo Bergamaschi, Elia Graiani, Simone Moglia 27/09/2023

Sommario

Il gruppo di lavoro ha misurato la densità di solidi ignoti per individuarne la natura.

1 Materiali utilizzati e strumenti di misura

Abbiamo misurato la densità di quattro campioni solidi: un parallelepipedo, una sfera e due cilindri. Di seguito gli strumenti di misura utilizzati:

Nome	Soglia	Portata	Sensibilità
Micrometro ad asta filettata	0.01 mm	25.00 mm	$0.01~\mathrm{mm}$
Calibro ventesimale	$0.05~\mathrm{mm}$	150.00 mm	$0.05~\mathrm{mm}$
Bilancia di precisione	0.01 g	2000.00 g	0.01 g
Metro a nastro*	$0.1~\mathrm{cm}$	$300~\mathrm{cm}$	0.1 cm
Cilindro graduato*	1 mL	???	1 mL

^{*}questi strumenti di misura, seppur disponibili, non sono stati utilizzati a causa della loro elevata sensiblità.

2 Desrizione dell'esperimento e del procedimento di misura

- 1. Misuriamo per ogni campione la sua massa m con la bilancia di precisione.
- 2. Misuriamo tre volte per ogni campione le distanze necessarie al calcolo del suo volume, tenendo come valore migliore quello più vicino alla media delle misure e come incertezza la sensibilità degli strumenti utilizzati. Quando possibile, utilizziamo il micrometro; altrimenti, il calibro ventesimale.
- 3. Per ogni campione, ne calcoliamo il volume V (e la sua incertezza):

• Parallelepipedo:

$$V_{\mathrm{best}} = x_{\mathrm{best}} y_{\mathrm{best}} z_{\mathrm{best}}$$

$$\frac{\delta V}{V_{\mathrm{best}}} = \frac{\delta x}{x_{\mathrm{best}}} + \frac{\delta y}{y_{\mathrm{best}}} + \frac{\delta z}{z_{\mathrm{best}}}$$

• Cilindri:

$$V_{\text{best}} = \pi \left(\frac{d_{\text{best}}}{2}\right)^2 h_{\text{best}}$$
 $\frac{\delta V}{V_{\text{best}}} = 2 \cdot \frac{\delta d}{d_{\text{best}}} + \frac{\delta h}{h_{\text{best}}}$

• Sfera:

$$V_{\text{best}} = \frac{4\pi}{3} \left(\frac{d_{\text{best}}}{2} \right)^3$$
 $\frac{\delta V}{V_{\text{best}}} = 3 \cdot \frac{\delta d}{d_{\text{best}}}$

4. Sempre tenendo conto delle incertezze, troviamo la densità ρ (e il relativo errore) del campione:

$$\rho = \frac{m}{V} \qquad \frac{\delta \rho}{\rho_{\text{best}}} = \frac{\delta m}{m_{\text{best}}} + \frac{\delta V}{V_{\text{best}}}$$

- 5. Infine, cerchiamo di capire di che materiale siano composti i vari campioni, confrontando i valori di rho misurati con quelli indicati in letteratura ($\rho_{\text{lett.}}$).
- 6. Per valutare numericamente la consistenza dei risultati ottenuti con i valori indicati in letteratura, abbiamo calcolato il seguente valore (numero puro):

$$\varepsilon = \frac{|\rho_{\text{best}} - (\rho_{\text{lett.}})_{\text{best}}|}{\delta \rho + \delta \rho_{\text{lett.}}}$$

Allora ρ è consistente con $\rho_{\text{lett.}}$ se e solo se $\varepsilon \leq 1$.

Di seguito sono riportate tutte le misure effettuate direttamente, così come quelle calcolate come descritto.

Parallelepipedo	x (mm)	y (mm)	z (mm)
Misura 1	39.90 ± 0.05	64.60 ± 0.05	5.01 ± 0.01
Misura 2	39.90 ± 0.05	64.40 ± 0.05	4.99 ± 0.01
Misura 3	39.90 ± 0.05	64.40 ± 0.05	4.98 ± 0.01
Misura tenuta	39.90 ± 0.05	64.40 ± 0.05	4.99 ± 0.01

Cilindro 1	h (mm)	d (mm)
Misura 1	24.83 ± 0.01	27.95 ± 0.05
Misura 2	24.82 ± 0.01	28.05 ± 0.05
Misura 3	24.83 ± 0.01	28.00 ± 0.05
Misura tenuta	24.83 ± 0.01	28.00 ± 0.05

Sfera	d (mm)
Misura 1	20.63 ± 0.01
Misura 2	20.63 ± 0.01
Misura 3	20.64 ± 0.01
Misura tenuta	20.63 ± 0.01

Cilindro 2	h (mm)	d (mm)
Misura 1	77.75 ± 0.05	6.97 ± 0.01
Misura 2	77.80 ± 0.05	6.97 ± 0.01
Misura 3	77.80 ± 0.05	6.98 ± 0.01
Misura tenuta	77.80 ± 0.05	6.97 ± 0.01

Campione	m (g)	$V (\rm cm^3)$	$\rho (\mathrm{g/cm^3})$
Parallelepipedo	107.40 ± 0.01	12.87 ± 0.05	8.34 ± 0.03
Cilindro 1	41.21 ± 0.01	15.29 ± 0.06	2.695 ± 0.011
Sfera	35.81 ± 0.01	4.597 ± 0.007	7.789 ± 0.014
Cilindro 2	8.00 ± 0.01	2.97 ± 0.01	2.695 ± 0.013

Campione	$\rho \ (\mathrm{g/cm^3})$	Materiale	$\rho_{\rm lett.}~({\rm g/cm^3})$	ε
Parallelepipedo	8.34 ± 0.03	Ottone giallo (high brass)	8.47 ± 0.01	2.5
Cilindro 1	2.695 ± 0.011	Lega di Al laminato 3003	2.73 ± 0.01	1.7
Sfera	7.789 ± 0.014	Acciaio	7.8 ± 0.1	0.1
Cilindro 2	2.695 ± 0.013	Lega di Al laminato 3003	2.73 ± 0.01	1.5

L'inconsistenza non trascurabile tra ρ (le nostre misure) e $\rho_{\rm lett.}$ (i rispettivi valori riportati in letteratura) è dovuta principalmente al fatto che si tratta di leghe; probabilmente, i nostri campioni presentavano concentrazioni diverse dei vari elementi.