Universid	ad Tecnológica Nacioi	nal – Facultad Regio	onal Avellaneda			
	Administra	ación General				
	T.P. № 2 - Est	udio de Tendencias				
Año: 2do	División: -	Entregado	Vencimientc			
Responsable	Responsable Docente Jefe TP Hoja de Datos					
	Ing. Ruben Fonte					

Estudio de Tendencias

Objetivo

Aplicar distintos modelos de forecast para una serie de datos y analizar la precisión de cada uno de ellos a fin de escoger el que mejor se adapte a la realidad.

Introducción

La estimación de la demanda consiste básicamente en el análisis de la demanda futura para un producto en particular, componentes o servicios. Para esto se utilizan distintas técnicas de previsión tomando como input los datos históricos de venta, estimaciones de marketing o información de mercado.

El objetivo principal de la utilización de esta técnica consiste en mejorar el flujo de información de la cadena de suministro a fin de preparar a toda la organización (medios técnicos, humanos y financieros) para soportar las futuras operaciones de la empresa: estimaciones de compras, producción, necesidades de almacenaje, energía, transporte, etc.

Caso número 1

La siguiente tabla muestra las ventas de una empresa fabricante de automóviles. Se requiere hallar la cantidad estimada a vender para el período Enero de 2020 utilizando los métodos de promedio simple y suavizamiento exponencial (para los parámetros α = 0,2 y α = 0,8).

En todos los casos deberá analizar el error de pronóstico de cada modelo a fin de escoger aquél que mejor se adapte a la serie de datos original.

Año	Mes	Ventas
2019	Enero	44.500
2019	Febrero	49.700
2019	Marzo	54.900
2019	Abril	48.300
2019	Mayo	56.100
2019	Junio	38.100
2019	Julio	41.800
2019	Agosto	32.700
2019	Septiembre	31.900
2019	Octubre	35.600
2019	Noviembre	34.700
2019	Diciembre	40.400

Universid	Universidad Tecnológica Nacional – Facultad Regional Avellaneda					
	Administración General					
	T.P. № 2 - Estudio de Tendencias					
Año: 2do	División: -	Entregado	Vencimiento			
Responsable	Docente Ing. Ruben Fonte	Jefe TP	Hoja de Datos			

Antes de comenzar el desarrollo y como observación general para todos los métodos, a fines de visualizar la información de manera prolija y como estamos pronosticando unidades a fabricar, no se muestran en las fórmulas y valores ningún dígito decimal. Independientemente de ello, a la hora de utilizar los valores para los cálculos, deberán conservarse al menos 2 o 3 posiciones decimales a fines de **no propagar errores** en las cuentas.

Promedio Simple

Este modelo se caracteriza por su sencillez y rapidez para su cálculo. No requiere gran cantidad de datos y funciona relativamente bien para demandas de productos que ya alcanzaron su madurez.

En caso de requerir un pronóstico para varios períodos futuros se debe extender el mismo valor obtenido hacia adelante, ya que no tiene ninguna tendencia.

$$D_i = \frac{\sum V_i}{n}$$

Donde:

- D_i: Demanda estimada para el periodo i
- V_i: Ventas reales para el periodo i
- n: Número de periodos

A continuación, calculamos con los datos del ejemplo, como todos los periodos tendrán el mismo valor promedio, usamos el genérico D_{i.}

$$D_i = \frac{508.700}{12} = 42.392$$

A fines de verificar que tan preciso resultó nuestro modelo de previsión de la demanda, podemos comparar su resultado contra los valores históricos reales, y a partir de la diferencia entre lo proyectado y lo real establecer una medida de Error del modelo. En nuestro caso utilizaremos la fórmula del Error Absoluto Medio (Mean Absolute Error), más info de los distintos tipos de errores la encontrarán en el siguiente video: https://www.youtube.com/watch?v=F7xj8H p288

Al tratarse de una predicción de demanda, es tan malo predecir valores más altos que la realidad, como predecir por debajo (en un caso podremos no cumplir con la demanda real, y en el otro incurriremos en costos extras por capacidad ociosa).

$$E_i = |D_i - V_i|$$

Utilizando esta fórmula podemos calcular los primeros valores del ejemplo:

$$E_1 = |D_1 - V_1| = |42.392 - 44.500| = 2.108$$

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. Nº 2 - Estudio de Tendencias Año: 2do División: - Entregado Vencimiento Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

$$E_2 = |D_2 - V_2| = |42.392 - 49.700| = 7.308$$

$$E_3 = |D_3 - V_3| = |42.392 - 54.900| = 12.508$$

Finalmente:

$$MAE = \frac{\sum E_i}{n} = \frac{E_1 + E_2 + \dots + E_n}{n} = \frac{83.083}{12} = 6.924$$

De esta manera, la tabla completa de valores es la siguiente:

Año	Mes	i	Ventas	Demanda	Error
2019	Ene	1	44.500	42.392	2.108
2019	Feb	2	49.700	42.392	7.308
2019	Mar	3	54.900	42.392	12.508
2019	Abr	4	48.300	42.392	5.908
2019	May	5	56.100	42.392	13.708
2019	Jun	6	38.100	42.392	4.292
2019	Jul	7	41.800	42.392	592
2019	Ago	8	32.700	42.392	9.692
2019	Sep	9	31.900	42.392	10.492
2019	Oct	10	35.600	42.392	6.792
2019	Nov	11	34.700	42.392	7.692
2019	Dic	12	40.400	42.392	1.992
2020	Ene	13		42.392	
	Totales		508.700		83.083

Nótese que en el periodo que se está pronosticando (Ene 2020), el valor de la Demanda Proyectada no tiene Error asociado, ya que para ese mes aún no existe un valor de Ventas reales.

Gráficamente:

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. № 2 - Estudio de Tendencias Año: 2do División: - Entregado Vencimiento Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

Suavizamiento Exponencial

Este modelo tiene como característica que toma el valor real anterior y lo compara con su pronóstico, realizando un ajuste a fin de obtener el pronóstico del siguiente período.

Este ajuste es proporcional al error anterior, y se calcula multiplicando el error del pronóstico por una constante α que toma valores entre cero y uno elegidos por quien está realizando el pronóstico. A efectos prácticos, resolveremos el caso utilizando dos valores de α distintos (0,2 y 0,8) de manera de evaluar las diferencias entre ellos.

A medida que los valores de α son más elevados, más alta es su respuesta de impulso y menor es su capacidad de amortiguación, o viceversa; dicho de otra manera, valores de α pequeños devolverán un pronóstico más suavizado, y valores más altos tenderán a ajustarse más hacia los valores reales anteriores.

Este método además brinda mayor peso a los datos de períodos más recientes que a los de períodos más alejados, y al igual que con el promedio simple, si requerimos un pronóstico para varios períodos hacia adelante simplemente debemos reiterar el valor calculado hasta tanto tengamos valores de demanda reales para recalcular los próximos.

$$D_i = \alpha \times V_{(i-1)} + (1 - \alpha) \times D_{(i-1)}$$

Donde:

- α: Factor de suavizado
- D_i: Demanda estimada para el periodo i
- V_(i-1): Ventas reales del periodo anterior
- D_(i-1): Demanda proyectada del periodo anterior

Como para el periodo i₁ no existe un valor de venta real anterior, tomamos como norma que D₁=V₁, y calculamos con la fórmula anterior el resto:

Para α =0,2

$$D_2 = 0.2 \times 44.500 + 0.8 \times 44.500 = 44.500$$

$$D_3 = 0.2 \times 49.700 + 0.8 \times 44.500 = 45.540$$

$$D_4 = 0.2 \times 54.900 + 0.8 \times 45.540 = 47.412$$

Al igual que antes calculamos los errores en la estimación de cada periodo con la fórmula:

$$E_i = |D_i - V_i|$$

Y calculamos los primeros valores del ejemplo:

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. Nº 2 - Estudio de Tendencias Año: 2do División: - Entregadc Vencimiento Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

$$E_1 = |D_1 - V_1| = |44.500 - 44.500| = 0$$

$$E_2 = |D_2 - V_2| = |44.500 - 49.700| = 5.200$$

$$E_3 = |D_3 - V_3| = |45.540 - 54.900| = 9.360$$

Finalmente:

$$MAE = \frac{\sum E_i}{n} = \frac{E_1 + E_2 + \dots + E_n}{n} = \frac{77.355}{12} = 6.446$$

De esta manera, la tabla completa de valores es la siguiente:

Año	Mes	i	Ventas	Demanda	Error
2019	Ene	1	44.500	44.500	0
2019	Feb	2	49.700	44.500	5.200
2019	Mar	3	54.900	45.540	9.360
2019	Abr	4	48.300	47.412	888
2019	May	5	56.100	47.590	8.510
2019	Jun	6	38.100	49.292	11.192
2019	Jul	7	41.800	47.053	5.253
2019	Ago	8	32.700	46.003	13.303
2019	Sep	9	31.900	43.342	11.442
2019	Oct	10	35.600	41.054	5.454
2019	Nov	11	34.700	39.963	5.263
2019	Dic	12	40.400	38.910	1.490
2020	Ene	13		39.208	
	Totales		508.700		77.355

Igual que antes, para el periodo que se está pronosticando (Ene 2020) el valor de la Demanda Proyectada no tiene Error asociado, ya que para ese mes aún no existe un valor de Ventas reales.

Gráficamente:

Universidad Tecnológica Nacional – Facultad Regional Avellaneda						
	Administra	ción General				
	T.P. Nº 2 - Estudio de Tendencias					
Año: 2do	División: -	Entregado	Vencimiento			
Responsable	Responsable Docente Jefe TP Hoja de Dato					

Por último, calcularemos el pronóstico utilizando el mismo método pero con un α =0,8:

$$D_1 = 44.500$$

$$D_2 = 0.8 \times 44.500 + 0.2 \times 44.500 = 44.500$$

$$D_3 = 0.8 \times 49.700 + 0.2 \times 44.500 = 48.660$$

$$D_4 = 0.8 \times 54.900 + 0.2 \times 48.660 = 53.652$$

Al igual que antes calculamos los primeros valores de los errores:

$$E_1 = |D_1 - V_1| = |44.500 - 44.500| = 0$$

$$E_2 = |D_2 - V_2| = |44.500 - 49.700| = 5.200$$

$$E_3 = |D_3 - V_3| = |48.660 - 54.900| = 6.240$$

Finalmente:

$$MAE = \frac{\sum E_i}{n} = \frac{E_1 + E_2 + \dots + E_n}{n} = \frac{61.267}{12} = 5.106$$

De esta manera, la tabla completa de valores es la siguiente:

Año	Mes	i	Ventas	Demanda	Error
2019	Ene	1	44.500	44.500	-
2019	Feb	2	49.700	44.500	5.200
2019	Mar	3	54.900	48.660	6.240
2019	Abr	4	48.300	53.652	5.352
2019	May	5	56.100	49.370	6.730
2019	Jun	6	38.100	54.754	16.654
2019	Jul	7	41.800	41.431	369
2019	Ago	8	32.700	41.726	9.026
2019	Sep	9	31.900	34.505	2.605
2019	Oct	10	35.600	32.421	3.179
2019	Nov	11	34.700	34.964	264
2019	Dic	12	40.400	34.753	5.647
2020	Ene	13		39.271	
	Totales		508.700		61.267

Universid	Universidad Tecnológica Nacional – Facultad Regional Avellaneda						
	Administra	ción General					
	T.P. Nº 2 - Estudio de Tendencias						
Año: 2do	Año: 2do División: - Entregado: Vencimiento						
Responsable	Responsable Docente Jefe TP Hoja de D						

Gráficamente:

Resumen de resultados

A fines de tomar una decisión acerca de cuál modelo es el más apropiado para efectuar el pronóstico, realizamos un cuadro a modo de resumen de los principales valores:

	Pronóstico de	Error Absoluto	
Método	la Demanda	Medio	
	Ene 2020	(MAE)	
Promedio Simple	42.392	6.924	
Suavizamiento Exp. Simple (α =0,2)	39.208	6.446	
Suavizamiento Exp. Simple (α =0,8)	39.271	5.106	

Como vemos, el valor del Error Absoluto Medio es menor para el Método de Suavizamiento Exponencial Simple utilizando un α =0,8. De esta manera podemos decir que dicho método es el que mejor se ajusta a nuestra serie de datos y es el que utilizaremos para el pronóstico de futuras demandas.

Conclusión

Hecho nuestro estudio de tendencias, pronosticamos para Enero 2020 una demanda de 39.271u, basada en el método de Suavizamiento Exponencial Simple con α =0,8.

Universid	Universidad Tecnológica Nacional – Facultad Regional Avellaneda						
	Administr	ación General					
	T.P. № 2 - Estudio de Tendencias						
Año: 2do	División: -	Entregado:	Vencimiento				
Responsable							

Caso número 2

La siguiente tabla muestra las ventas de una empresa fabricante de televisores LCD en un escenario de demanda creciente.

Se pide hallar la cantidad estimada a vender para el período siguiente utilizando el método de suavizamiento con ajuste de tendencia (para los parámetros α = 0,5; β = 0,1 y α = 0,5; β = 0,9), y finalmente el método de Aproximación Lineal. Al igual que antes deberá analizar el error de pronóstico de cada modelo a fin de escoger aquél que mejor se adapte a la serie de datos original.

Año	Mes	Ventas
2019	Enero	24.000
2019	Febrero	27.000
2019	Marzo	25.000
2019	Abril	29.000
2019	Mayo	34.000
2019	Junio	30.000
2019	Julio	33.000
2019	Agosto	40.000
2019	Septiembre	42.000
2019	Octubre	44.000
2019	Noviembre	47.000
2019	Diciembre	50.000

Suavizamiento Exponencial con Ajuste de Tendencia

Este modelo también es conocido como Suavizamiento Exponencial Doble, y al igual que el método de suavizamiento exponencial simple, tiene la característica que toma el valor anterior y lo compara con su pronóstico, realizando ahora un doble ajuste para también obtener el pronóstico del siguiente período.

Este ajuste es proporcional al error anterior, y se calcula utilizando dos parámetros: α como constante de suavización de los promedios, y β como constante de suavización de la tendencia.

Este método es especialmente útil en series de demanda creciente o decreciente, las cuales pueden pertenecer al período de lanzamiento o declive del ciclo de vida de un producto. Se calcula haciendo uso de dos componentes (de suavizado y de ajuste), para luego finalmente sumarlas y hallar la Demanda Estimada.

$$F_i = \alpha \times V_{(i-1)} + (1 - \alpha) \times D_{(i-1)}$$

Donde:

- α: Factor de suavizado
- F_i: Componente de suavizado del periodo a calcular
- V_(i-1): Ventas reales del periodo anterior

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. Nº 2 - Estudio de Tendencias Año: 2do División: - Entregado: Vencimiento Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

• D_(i-1): Demanda proyectada del periodo anterior

$$T_i = \beta \times (F_i - F_{(i-1)}) + (1 - \beta) \times T_{(i-1)}$$

Donde:

- β: Factor de ajuste de tendencia
- F_i: Componente de suavizado del periodo a calcular
- T_i: Componente de ajuste del periodo a calcular
- F_(i-1): Componente de suavizado del periodo anterior
- T_(i-1): Componente de ajuste del periodo anterior

$$D_i = F_i + T_i$$

Al igual que antes, tenemos problemas para calcular los valores F_1 y T_1 , por no contar con periodos anteriores. Para esos casos se toma como convención las siguientes fórmulas:

$$F_1 = V_1$$

$$T_1 = \frac{V_2 - V_1}{2}$$
; Finalmente $D_1 = F_1 + T_1$

Tomando α =0,5 y β =0,1

$$F_1 = 24.000$$

$$T_1 = \frac{27.000 - 24.000}{2} = 1.500$$

$$D_1 = 24.000 + 1.500 = 25.500$$

$$F_2 = 0.5 \times 24.000 + 0.5 \times 25.500 = 24.750$$

$$T_2 = 0.1 \times (24.750 - 24.000) + 0.9 \times 1.500 = 1.425$$

$$D_2 = 24.750 + 1.425 = 26.175$$

$$F_3 = 0.5 \times 27.000 + 0.5 \times 26.175 = 26.588$$

$$T_3 = 0.1 \times (26.588 - 24.750) + 0.9 \times 1.425 = 1.466$$

$$D_3 = 26.588 + 1.466 = 28.054$$

Al igual que antes calculamos los primeros valores de los errores:

$$E_1 = |D_1 - V_1| = |25.500 - 24.000| = 1.500$$

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. Nº 2 - Estudio de Tendencias Año: 2do División: - Entregado Vencimiento Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

$$E_2 = |D_2 - V_2| = |26.175 - 27.000| = 825$$

$$E_3 = |D_3 - V_3| = |28.054 - 25.000| = 3.054$$

Finalmente:

$$MAE = \frac{\sum E_i}{n} = \frac{E_1 + E_2 + \dots + E_n}{n} = \frac{28.589}{12} = 2.382$$

De esta manera, la tabla completa de valores es la siguiente:

Año	Mes	i	Ventas	Fi	T _i	Demanda	Error
2019	Ene	1	24.000	24.000	1.500	25.500	1.500
2019	Feb	2	27.000	24.750	1.425	26.175	825
2019	Mar	3	25.000	26.588	1.466	28.054	3.054
2019	Abr	4	29.000	26.527	1.314	27.840	1.160
2019	May	5	34.000	28.420	1.372	29.792	4.208
2019	Jun	6	30.000	31.896	1.582	33.478	3.478
2019	Jul	7	33.000	31.739	1.408	33.147	147
2019	Ago	8	40.000	33.073	1.401	34.474	5.526
2019	Sep	9	42.000	37.237	1.677	38.914	3.086
2019	Oct	10	44.000	40.457	1.831	42.288	1.712
2019	Nov	11	47.000	43.144	1.917	45.061	1.939
2019	Dic	12	50.000	46.031	2.014	48.044	1.956
2020	Ene	13		49.022	2.112	51.134	
	Totales		425.000				28.589

Gráficamente:

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. Nº 2 - Estudio de Tendencias Año: 2do División: - Entregado Vencimiento: Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

Tomando α =0,5 y β =0,9

$$F_1 = 24.000$$

$$T_1 = \frac{27.000 - 24.000}{2} = 1.500$$

$$D_1 = 24.000 + 1.500 = 25.500$$

$$F_2 = 0.5 \times 24.000 + 0.5 \times 25.500 = 24.750$$

$$T_2 = 0.9 \times (24.750 - 24.000) + 0.1 \times 1.500 = 825$$

$$D_2 = 24.750 + 825 = 25.575$$

$$F_3 = 0.5 \times 27.000 + 0.5 \times 25.575 = 26.288$$

$$T_3 = 0.9 \times (26.288 - 24.750) + 0.1 \times 825 = 1.466$$

$$D_3 = 26.288 + 1.466 = 27.754$$

Al igual que antes calculamos los primeros valores de los errores:

$$E_1 = |D_1 - V_1| = |25.500 - 24.000| = 1.500$$

$$E_2 = |D_2 - V_2| = |25.575 - 27.000| = 1.425$$

$$E_3 = |D_3 - V_3| = |27.754 - 25.000| = 2.754$$

Finalmente:

$$MAE = \frac{\sum E_i}{n} = \frac{E_1 + E_2 + \dots + E_n}{n} = \frac{29.010}{12} = 2.417$$

De esta manera, la tabla completa de valores es la siguiente:

Año	Mes	i	Ventas	Fi	Ti	Demanda	Error
2019	Ene	1	24.000	24.000	1.500	25.500	1.500
2019	Feb	2	27.000	24.750	825	25.575	1.425
2019	Mar	3	25.000	26.288	1.466	27.754	2.754
2019	Abr	4	29.000	26.377	227	26.604	2.396
2019	May	5	34.000	27.802	1.305	29.107	4.893
2019	Jun	6	30.000	31.554	3.507	35.061	5.061
2019	Jul	7	33.000	32.530	1.230	33.760	760
2019	Ago	8	40.000	33.380	888	34.268	5.732
2019	Sep	9	42.000	37.134	3.467	40.601	1.399

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. Nº 2 - Estudio de Tendencias Año: 2do División: - Entregado: Vencimiento Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

Año	Mes	i	Ventas	Fi	T _i	Demanda	Error
2019	Oct	10	44.000	41.301	4.097	45.397	1.397
2019	Nov	11	47.000	44.699	3.468	48.167	1.167
2019	Dic	12	50.000	47.583	2.943	50.526	526
2020	Ene	13		50.263	2.706	52.969	
	Totales						29.010

Gráficamente:

Aproximación Lineal

Con este método se establece una relación entre una variable dependiente y una independiente, tomando la forma de una recta cuya pendiente positiva o negativa indicará una tendencia de crecimiento o declive, según sea el caso.

Una vez obtenida la ecuación puede trasladarse hacia adelante para los períodos que se requieran pronosticar (aunque sean más de uno).

El método a utilizar para calcular la pendiente y la ordenada al origen que dan lugar a la recta, es el de los "Cuadrados Mínimos", para lo que deberemos calcular algunos valores intermedios:

Promedio de demanda (D) y promedio de número de periodo (t):

$$\overline{D} = \frac{\sum V_i}{n} = \frac{425.000}{12} = 35.416,67$$

$$\bar{t} = \frac{\sum t_i}{n} = \frac{78}{12} = 6,50$$

Universidad Tecnológica Nacional – Facultad Regional Avellaneda Administración General T.P. Nº 2 - Estudio de Tendencias Año: 2do División: - Entregado Vencimiento Responsable Docente Jefe TP Hoja de Datos Ing. Ruben Fonte

Pendiente de la Recta

$$b = \frac{n \times \sum (V_i \times t_i) - \sum V \times \sum t}{n \sum (t_i)^2 - (\sum t_i)^2} = \frac{12 \times 3.105.000 - 425.000 \times 78}{12 \times 650 - 6.084} = 2.395,10$$

Ordenada al origen

$$a = \overline{D} - b \times \overline{t} = 35.416,67 - 2.395,10 \times 6,50 = 19.848,48$$

Demanda estimada (función de la Recta)

$$D_i = a + b \times t_i$$

$$D_{13} = 19.848,48 + 2.395,10 \times 13 = 50.985$$

Al igual que antes calculamos los primeros valores de los errores:

$$E_1 = |D_1 - V_1| = |22.244 - 24.000| = 1.756$$

$$E_2 = |D_2 - V_2| = |24.639 - 27.000| = 2.361$$

$$E_3 = |D_3 - V_3| = |27.034 - 25.000| = 2.034$$

Finalmente:

$$MAE = \frac{\sum E_i}{n} = \frac{E_1 + E_2 + \dots + E_n}{n} = \frac{20.592}{12} = 1.716$$

De esta manera, la tabla completa de valores es la siguiente:

Año	Mes	t _i	Ventas	Vxt	txt	Demanda	Error
2019	Ene	1	24.000	24.000	1	22.244	1.756
2019	Feb	2	27.000	54.000	4	24.639	2.361
2019	Mar	3	25.000	75.000	9	27.034	2.034
2019	Abr	4	29.000	116.000	16	29.429	429
2019	May	5	34.000	170.000	25	31.824	2.176
2019	Jun	6	30.000	180.000	36	34.219	4.219
2019	Jul	7	33.000	231.000	49	36.614	3.614
2019	Ago	8	40.000	320.000	64	39.009	991
2019	Sep	9	42.000	378.000	81	41.404	596
2019	Oct	10	44.000	440.000	100	43.800	200
2019	Nov	11	47.000	517.000	121	46.195	805
2019	Dic	12	50.000	600.000	144	48.590	1.410
2020	Ene	13				50.985	
Tot	ales	78	425.000	3.105.000	650		20.592

Universidad Tecnológica Nacional – Facultad Regional Avellaneda						
Administración General						
T.P. № 2 - Estudio de Tendencias						
Año: 2do	Año: 2do División: - Entregado Vencimiento					
Responsable	Docente Ing. Ruben Fonte	Jefe TP	Hoja de Datos			

Gráficamente:

Resumen de resultados

A fines de tomar una decisión acerca de cuál modelo es el más apropiado para efectuar el pronóstico de este nuevo caso, realizamos un cuadro a modo de resumen de los principales valores:

	Pronóstico de	Error Absoluto	
Método	la Demanda	Medio	
	Ene 2020	(MAE)	
Suavizamiento Exp. Doble (α =0,5; β =0,1)	51.134	2.382	
Suavizamiento Exp. Doble (α =0,5; β =0,9)	52.969	2.417	
Aproximación Lineal	50.985	1.716	

Como vemos, el valor del Error Absoluto Medio es menor para el Método de Aproximación Lineal. De esta manera podemos decir que dicho método es el que mejor se ajusta a nuestra serie de datos y es el que utilizaremos para el pronóstico de futuras demandas.

Conclusión

Hecho nuestro estudio de tendencias, pronosticamos para Enero 2020 una demanda de 50.985u, basada en el método de Aproximación Lineal.

Universidad Tecnológica Nacional – Facultad Regional Avellaneda						
Administración General						
T.P. № 2 - Estudio de Tendencias						
Año: 2do	Año: 2do División: - Entregado: Vencimiento					
Responsable	Docente Ing. Ruben Fonte	Jefe TP	Hoja de Datos			

Contenido del trabajo práctico a entregar

- Carátula completa incluyendo número de grupo y participantes.
- Caso 1
 - o Método de Promedio Simple
 - Fórmulas generales (Demanda y Errores)
 - Fórmulas desarrolladas con primeros valores
 - Cuadro de resultados
 - Gráfico
 - o Método de Suavizamiento Exponencial Simple (α =0,2)
 - Fórmulas generales (Demanda y Errores)
 - Fórmulas desarrolladas con primeros valores
 - Cuadro de resultados
 - Gráfico
 - o Método de Suavizamiento Exponencial Simple (α =0,8)
 - Fórmulas generales (Demanda y Errores)
 - Fórmulas desarrolladas con primeros valores
 - Cuadro de resultados
 - Gráfico
 - o Cuadro resumen de resultados de los distintos métodos
 - o Selección del método que mejor se ajusta a la demanda
 - Conclusión
- Caso 2
 - o Idem Caso 1 para los métodos:
 - Método de Suavizamiento Exponencial Simple (α =0,5; β =0,1)
 - Método de Suavizamiento Exponencial Simple (α =0,5; β =0,9)
 - Método de Aproximación Lineal
 - Cuadro resumen de resultados de los distintos métodos
 - o Selección del método que mejor se ajusta a la demanda
 - Conclusión

La entrega deberá hacerla en formato de Word en un único archivo que contenga todo lo anterior, no debe entregar gráficos en archivos aparte o tablas en Excel; todos los elementos deben estar embebidos en el mismo documento y debe subirlo al campus con el nombre de archivo: "TP2 – Gxx.docx" reemplazando xx por el número de grupo correspondiente.

En caso de requerir alguna corrección, les devolveremos el Word con los comentarios pertinentes también a través del campus. Una vez corregido deberán volver a subirlo como "TP2 – Gxx v2.docx", indicando que se trata de una versión 2 o la que corresponda.