Prova scritta di Logica Matematica 27 giugno 2016

Cognome Nome Matricola

Scrivete **subito** il vostro nome, cognome e numero di matricola, e tenete il tesserino universitario sul banco. Svolgete gli esercizi direttamente sul testo a penna. Dovete consegnare solo il foglio del testo: nessun foglio di brutta.

Per ogni esercizio è indicato il relativo punteggio. Nella prima parte se la riposta è corretta, il punteggio viene aggiunto al totale, mentre se la risposta è errata il punteggio viene sottratto (l'assenza di risposta non influisce sul punteggio totale). Per superare l'esame bisogna raggiungere 18 punti, di cui almeno 5 relativi alla prima parte.

PRIMA PARTE

Barrate la risposta che ritenete corretta. Non dovete giustificare la risposta.

1. $\neg (p \lor (q \to p) \lor \neg r) \equiv \neg p \land (p \land \neg q \to r) \land q$.	$ \mathbf{V} \mathbf{F} $	1pt
2. Se F è soddisfacibile, G è insoddisfacibile e $F \vee G \models H$		
allora H è soddisfacibile.	$\mathbf{V} \mathbf{F}$	1pt
3. L'algoritmo di costruzione dei tableaux proposizionali		
non gode della proprietà della terminazione forte.	$ \mathbf{V} \mathbf{F} $	1pt
4. Esiste un insieme di Hintikka che contiene le formule		
$\neg (q \to r), q \to s \in s \to r.$	$\mathbf{V} \mathbf{F} $	1pt
5. Quante sono le variabili libere nella formula		
$\forall y(\forall x r(x, f(y, x)) \to \exists z p(z) \lor r(f(z, z), y))? $	1 2 3	1pt
6. Sia I un'interpretazione con $D^I = \{0, 1, 2, 3\}, f^I(0) = f^I(2) = 2,$		
$f^{I}(1) = 0, f^{I}(3) = 1, p^{I} = \{0, 2\} \text{ e } r^{I} = \{(1, 0), (1, 2), (3, 2), (3, 3)\}.$		
Allora $I \models \forall x (p(x) \to \exists y (\neg p(f(y)) \land r(y, f(x)))).$	$\mathbf{V} \mathbf{F}$	1pt
7. $\forall x (p(x) \land \neg q(x)) \equiv \forall x p(x) \land \neg \exists x q(x).$	$\mathbf{V} \mathbf{F} $	1pt
8. Se \sim è una relazione di congruenza su I allora $I \equiv_{\mathcal{L}} I/\sim$.	$\mathbf{V} \mathbf{F}$	1pt
9. Se $T \models_{-} F$ allora $T \triangleright_{=} F$.	$\mathbf{V} \mathbf{F}$	1pt

SECONDA PARTE

10. Sia $\mathcal{L} = \{f, r\}$ un linguaggio in cui f è un simbolo di funzione unario e r è un simbolo di relazione binario. Sia I l'interpretazione per \mathcal{L} definita da 4pt

$$D^{I} = \{A, B, C, D, E, F\}; \qquad r^{I} = \{(A, E), (E, E), (F, E)\}$$

$$f^{I}(A) = E;$$
 $f^{I}(B) = C;$ $f^{I}(C) = C;$ $f^{I}(D) = B;$ $f^{I}(E) = D;$ $f^{I}(F) = E.$

Sul retro del foglio definite una relazione di congruenza \sim su I che abbia tre classi d'equivalenza, giustificando la vostra risposta.

4pt

(Se si descrive l'interpretazione quoziente I/\sim , 1pt in più.)

11. Sul retro del foglio dimostrate che

$$\forall x (p(f(x)) \lor q(x) \to q(h(x))), p(f(a)) \lor q(b) \models \exists z \, q(h(h(z))).$$

12. Sia $\mathcal{L} = \{b, m, p, c, g, a\}$ un linguaggio dove b e m sono simboli di costante, p è un simbolo di funzione unario, c e g sono simboli di relazione unari e a è un simbolo di relazione binario. Interpretando b come "Bobi", m come "Micio", p(x) come "il padrone di x", c(x) come "x è un cane", g(x) come "x è un gatto", a(x,y) come "x ama y", traducete le seguenti frasi:

(i) Bobi è un cane, Micio un gatto, e i loro padroni si amano l'un l'altra; 3pt

(ii) c'è un cane che non ama nessun gatto, ma il cui padrone ama qualche gatto.

3pt

5pt

13. Mostrate che

$$F \vee \neg G, H \rightarrow \neg F, K \rightarrow G \wedge F \triangleright K \rightarrow \neg H.$$

Usate solo le regole della deduzione naturale proposizionale, comprese le quattro regole derivate. (Utilizzate il retro del foglio)

14. Usando il metodo dei tableaux stabilite sul retro del foglio che

 $\{\exists x\, p(x), \neg \forall x\, p(x), \forall x (\exists y\, r(x,y) \rightarrow \neg p(x)), \forall x (\neg p(x) \rightarrow \forall z\, r(z,x))\}$

è insoddisfacibile.

15. Usando l'algoritmo di Fitting e utilizzando lo spazio qui sotto, mettete in forma normale disgiuntiva la formula

$$\neg \big((\neg p \land \neg (q \lor \neg r)) \lor (\neg (s \to t) \to u) \big).$$

Soluzioni

- 1. **F** un'interpretazione che soddisfa la seconda formula ma non la prima è data da $v(p) = \mathbf{F}$, $v(q) = \mathbf{V}$ e $v(r) = \mathbf{F}$, come si verifica per esempio con le tavole di verità.
- **2. V** se v è un 'interpretazione che soddisfa F (esiste perché F è soddisfacibile) allora $v(F \vee G) = \mathbf{V}$ e quindi $v(H) = \mathbf{V}$ (perché $F \vee G \models H$). Abbiamo dunque un'interpretazione che soddisfa H.
- 3. F l'affermazione contraddice il Teorema 4.11 delle dispense.
- **4. F** se un insieme di Hintikka contiene $\neg(q \to r)$ deve contenere sia q che $\neg r$. Allora, se contiene $q \to s$ deve contenere s, mentre se contiene $s \to r$ deve contenere $\neg s$. Questo è impossibile perché un insieme di Hintikka non contiene coppie complementari di letterali.
- **5.** 1 le ultime due occorrenze di z sono libere.
- **6.** V come si verifica considerando stati che assegnino ad x ognuno degli elementi di D^I .
- 7. V come segue dai lemmi 7.47 e 7.56 delle dispense.
- 8. V per il Corollario 9.29 delle dispense.
- ${f 9.~V}$ è il teorema di completezza per la deduzione naturale con uguaglianza: Teorema ${f 11.52}$ delle dispense.
- 10. Definiamo \sim in modo che le sue classi d'equivalenza siano $\{A, F\}$, $\{B, C, D\}$ e $\{E\}$. Bisogna verificare le condizioni della definizione di relazione di congruenza.

Inoltre $D^{I/\sim} = \{[A], [B], [E]\}, r^{I/\sim} = \{([A], [E]), ([E], [E])\}, f^{I/\sim}([A]) = [E], f^{I/\sim}([B]) = [B], f^{I/\sim}([E]) = [B].$

11. Supponiamo che un'interpretazione I soddisfi i due enunciati (che indichiamo con F e G) a sinistra del simbolo di conseguenza logica. L'obiettivo è mostrare che I soddisfa anche l'enunciato sulla destra. Per comodità indichaimo con H la formula $p(f(x)) \lor q(x) \to q(h(x))$, in modo che F sia $\forall x H$ e $I, \sigma[x/d] \models H$ per ogni $d \in D^I$.

Dato che $I \models G$ si ha $f^I(a^I) \in p^I$ oppure $b^I \in q^I$.

Nel primo caso utilizziamo $I, \sigma[x/a^I] \models H$ per ottenere $h^I(a^I) \in q^I$. Abbiamo anche $I, \sigma[x/h^I(a^I)] \models H$ che ci conduce a $h^I(h^I(a^I)) \in q^I$. Abbiamo dunque $I \models \exists z \, q(h(h(z)))$.

Nel secondo caso si parte da $I, \sigma[x/b^I] \models H$ ottenendo $h^I(b^I) \in q^I$ e quindi, utilizzando $I, \sigma[x/h^I(b^I)] \models H$, si arriva a $h^I(h^I(b^I)) \in q^I$. Anche in questo caso $I \models \exists z \, q(h(h(z)))$.

Abbiamo ottenuto $I \models \exists z \, q(h(h(z)))$ in ogni caso, come volevamo.

- **12.** (i) $c(b) \wedge g(m) \wedge a(p(b), p(m)) \wedge a(p(m), p(b))$;
 - (ii) $\exists x (c(x) \land \forall y (g(y) \rightarrow \neg a(x,y)) \land \exists z (g(z) \land a(p(x),z))).$
- 13. Ecco la deduzione naturale che avevo in mente quando ho preparato il problema:

$$\underbrace{F \vee \neg G} \qquad \underbrace{ \begin{bmatrix} H \end{bmatrix}^2 \qquad H \rightarrow \neg F}_{[F]} \qquad \underbrace{ \begin{bmatrix} [K]^3 \qquad K \rightarrow G \wedge F \\ \hline G & \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^2 \qquad H \rightarrow \neg F \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [K]^3 \qquad K \rightarrow G \wedge F \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^2 \qquad H \rightarrow \neg F \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^2 \qquad H \rightarrow \neg F \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad K \rightarrow G \wedge F \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline G & \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]} \qquad \underbrace{ \begin{bmatrix} [H]^3 \qquad H \rightarrow \neg F \\ \hline \end{bmatrix} }_{[T]}$$

Alcuni studenti hanno trovato questa deduzione naturale che non usa l'ipotesi $F \vee \neg G$ e quindi mostra che $H \to \neg F, K \to G \wedge F \rhd K \to \neg H$:

$$\frac{[K]^3 \quad K \to G \land F}{\underbrace{\frac{G \land F}{F}} \qquad \underbrace{\frac{[H]^1 \quad H \to \neg F}{\neg F}}_{}$$

$$\frac{\frac{\bot}{\neg H} \quad 1}{K \to \neg H} \quad 2$$

14. Per stabilire la conseguenza logica utilizziamo l'algoritmo 10.47 delle dispense e costruiamo un tableau chiuso con la radice etichettata dall'insieme di enunciati di cui dobbiamo dimostrare l'insoddisfacibilità. Indichiamo con F, G, H e K le γ -formule $\forall x(\exists y\, r(x,y) \to \neg p(x)), \, \forall x(\neg p(x) \to \forall z\, r(z,x)), \, \neg \exists y\, r(a,y)$ e $\forall z\, r(z,b)$. Utilizziamo la convenzione 10.22 delle dispense e in ogni passaggio sottolineiamo la formula su cui agiamo.

$$\frac{\exists x \, p(x), \, \neg \forall x \, p(x), F, G}{|} \\ p(a), \, \frac{\neg \forall x \, p(x), F, G}{|} \\ p(a), \, \neg p(b), \underline{F}, G \\ | \\ p(a), \, \neg p(b), F, \underline{\exists} y \, r(a, y) \to \neg p(a), G \\ | \\ p(a), \, \neg p(b), F, H, \underline{G} \\ p(a), \, \neg p(b), F, H, G, \underline{\neg p(b)} \to \forall z \, r(z, b) \\ \\ p(a), \, \neg p(b), F, H, G, p(b) \\ \otimes \\ p(a), \, \neg p(b), F, H, \neg r(a, b), G, \underline{K} \\ | \\ p(a), \, \neg p(b), F, H, \neg r(a, b), G, K, r(a, b) \\ \otimes \\ \otimes$$

15. Utilizziamo l'Algoritmo 3.20 delle dispense, adottando le semplificazioni suggerite nella Nota 3.28:

$$\begin{split} & \left[\left\langle \neg \left((\neg p \wedge \neg (q \vee \neg r)) \vee (\neg (s \to t) \to u) \right) \right\rangle \right] \\ & \left[\left\langle \neg (\neg p \wedge \neg (q \vee \neg r)), \neg (\neg (s \to t) \to u) \right\rangle \right] \\ & \left[\left\langle \neg (\neg p \wedge \neg (q \vee \neg r)), \neg (s \to t), \neg u \right\rangle \right] \\ & \left[\left\langle \neg (\neg p \wedge \neg (q \vee \neg r)), s, \neg t, \neg u \right\rangle \right] \\ & \left[\left\langle p, s, \neg t, \neg u \right\rangle, \left\langle q \vee \neg r, s, \neg t, \neg u \right\rangle \right] \\ & \left[\left\langle p, s, \neg t, \neg u \right\rangle, \left\langle q, s, \neg t, \neg u \right\rangle, \left\langle \neg r, s, \neg t, \neg u \right\rangle \right] \end{split}$$

La formula in forma normale disgiuntiva ottenuta è

$$(p \land s \land \neg t \land \neg u) \lor (q \land s \land \neg t \land \neg u) \lor (\neg r \land s \land \neg t \land \neg u).$$