University of Washington Department of Computer Science and Engineering CSE 417, Winter 2020 Yiliang Wang

Homework 2 Problem 3

Problem 3 (10 points):

The diameter of an undirected graph is the maximum distance between any pair of vertices. If a graph is not connected, its diameter is infinite. Let G be an n node undirected graph, where n is even. Suppose that every vertex has degree at least n/2. Show that G has diameter at most 2.

Answer:

For graph G = (V, E), $\forall v_1 \text{ and } v_2 \in V$:

There are only two conditions:

- 1. $\exists e \in E \text{ that } e = \{v_1, v_2\} \ v_1 \text{ and } v_2 \text{ are connected, hence } dist(v_1, v_2) = 1, \text{ therefore this condition guarantee diameter to less than 2.}$
- 2. $\exists e \in E \text{ that } e = \{v_1, v_2\}$, assume neighbors set of N_1 and neighbors set of N_2 . since $deg(v_1) \geq n/2$ and $deg(v_2) \geq n/2$, and they are not connected, therefore v_1 (and v_2 itself) $\notin N_2$ and v_2 (and v_1 itself) $\notin N_1$, by pigeon hole principle, since $|n_1 \cup n_2|$ at most n-2, and $n-2 \leq |V|$, hence $n_1 \cap n_2 \neq \emptyset$, $\exists v$ that $v \in n_1$ and $v \in n_2$, therefore $dist(v_1, v_2) = 2$.

This two conditions hold true for any pair of vertices, so the diameter or distance between any two vertices as large as 2, therefore G has diameter at most 2.