Time-Frequency Analysis with Python

Jaidev Deshpande¹ Stuart Mumford² Nabil Freij²

¹Enthought, Inc ²University of Sheffield, UK

SciPy.In 2012, IIT Bombay

International Year of Statistics 2013

Recap

- pyhht (github.com/jaidevd/pyhht) is a Python implementation of the Hilbert-Huang transform
- scikit-signal (github.com/scikit-signal) is a scikit for advanced signal processing
 forks, 6 active :(
- Developer Talks
 - Filter Design
 - Interpolation Splines
 - Periodograms/Spectrograms
 - Wavelets
 - Time-Frequency Analysis

The Problem: Chirp

• Analytical signals via the Hilbert Transform:

$$\nu_{inst} = \tan^{-1} \frac{Im(\hat{x})}{Re(\hat{x})} \tag{1}$$

where $\hat{x} = x + jH(x)$

Short-time Fourier Transform

• The Wigner-Ville Class

$$W_{x}(t,\nu) = \int_{-\infty}^{\infty} x(t+\frac{\tau}{2})x^{*}(t-\frac{\tau}{2})e^{-j2\pi\nu\tau}d\tau$$
 (2)

scikit.signal.timefreq

- Generators
 - Linear chirps
 - Gaussian modulations
 - Other AM/FM modulations
- Representations
 - Spectrograms
 - Instantaneous frequencies based on IMFs
 - Wigner/Cohen class of distributions
- Other
 - Group delay
 - Time-bandwidth products
 - Analytical signals
 - Windowed operations

Instantaneous Frequencies/Group Delay

- Heisenberg-Gabor Inequality / The Uncertainty Principle
- Time-Bandwidth Product: $T \times B \ge 1$
- '(The uncertainty principle) is a statement about two variables whose associated operators do not commute.' Leon Cohen
- \bullet For any two quantities a and b represented by the respective operators α and β

$$\Delta a \times \Delta b \ge \frac{1}{2} \times |\langle \alpha, \beta \rangle| \tag{3}$$

where Δ denotes the standard deviation

Heisenberg-Gabor Inequality / The Uncertainty Principle

- Ideal decompositions must have a large time-bandwidth product
- Gaussian signals show the lower bound
- Hence, work on gaussian decompositions with large $T \times B$

Future work - What the scikit needs

- Time-Frequency Analysis
 - Better spectrograms
 - Wavelet-based spectra
 - Time-frequency representations via the HHT
- Wavelets!
- Better filter design
- Better interpolation

Read the discussion here - http://goo.gl/elRp3 and the summary here - http://goo.gl/YHo7G Find the repository at github.com/scikit-signal

Thank You! Questions?