Unit 1: Algorithmic Fundamentals

- Course contents:
 - On algorithms
 - Mathematical foundations
 - Asymptotic notation
 - Growth of functions
 - Recurrences
- Readings:
 - Chapters 1, 2, 3, 4
 - Appendix A

On Algorithms

- Algorithm: A well-defined procedure for transforming some input to a desired output.
- Major concerns:
 - Correctness: Does it halt? Is it correct? Is it stable?
 - Efficiency: Time complexity? Space complexity?
 - Worst case? Average case? (Best case?)
- Better algorithms?
 - How: Faster algorithms? Algorithms with less space requirement?
 - Optimality: Prove that an algorithm is best possible/optimal? Establish a lower bound?
- Applications?
 - Everywhere in computing!

Example: Traveling Salesman Problem (TSP)

- □ **Input:** A set of points P (cities) together with a distance d(p, q) between any pair $p, q \in P$.
- Output: The shortest circular route that starts and ends at a given point and visits all the points.

Correct and efficient algorithms?

Nearest Neighbor Tour

- 1. pick and visit an initial point p_0
- 2. i = 0
- 3. while there are unvisited points
- 4. visit p_i 's nearest unvisited point p_{i+1}
- 5. i = i + 1
- 6. return to p_0 from p_i
- Simple to implement and very efficient, but incorrect!

A Correct, But Inefficient Algorithm

```
1. d = \infty

2. for each of the n! permutations \pi_i of the n points

3. if (\cos t(\pi_i) \le d)

4. d = \cos t(\pi_i)

5. T_{min} = \pi_i

6. return T_{min}
```

- □ Correctness? Tries all possible orderings of the points ⇒
 Guarantees to end up with the shortest possible tour.
- Efficiency? Tries n! possible routes!
 - 120 routes for 5 points, 3,628,800 routes for 10 points, 20 points?
- No known efficient, correct algorithm for TSP!
 - TSP is "NP-complete".

Example of Permutations

5! = 120 permutations for only 5 points!!

Insertion Sort and Asymptotic Analysis

Sorting

- □ **Input:** A sequence of *n* numbers $< a_1, a_2, ..., a_n > ...$
- □ **Output:** A permutation $\langle a_1', a_2', ..., a_n' \rangle$ such that $a_1' \leq a_2' \leq ... \leq a_n'$.
- Example:
 - _ Input: <8, 6, 9, 7, 5, 2, 3>
 - _ Output: <2, 3, 5, 6, 7, 8, 9 >
- Correct and efficient algorithms?

Insertion Sort Illustration

What is the invariant of this sort?

Insertion Sort

```
InsertionSort(A)

1. for j = 2 to A.length do

2. key = A[j]
3. /* Insert A[j] into the sorted sequence A[1..j-1] */

4. i = j - 1
5. while i > 0 and A[i] > key do

4. A[i+1] = A[i]
7. A[i+1] = key

2. A[i+1] = key
```


Correctness?

Loop invariant

At the start of each iteration of the for loop of lines 1--8, subarray
 A[1..j-1] consists of the elements originally in A[1..j-1] but in sorted order.

A[11]							
A[12]	6	8	9	7	5	2	<i>j</i> = 3
A[13]	6	8	9				<i>j</i> = 4
A[14]	6	7	8	9	5	2	<i>j</i> = 5
	5	6	7	8	9	2	<i>j</i> = 6
	2	5	6	7	8	9	<i>j</i> = 7

Loop Invariant for Proving Correctness

```
InsertionSort(A)

1. for j = 2 to A.length do

2. key = A[j]

3. /* Insert A[j] into the sorted sequence A[1..j-1] */

4. i = j - 1

5. while i > 0 and A[i] > key do

6. A[i+1] = A[i]

7. i = i - 1

8. A[i+1] = key
```

We may use loop invariants to prove the correctness.

- Initialization: True before the 1st iteration.
- Maintenance: If it is true before an iteration, it remains true before the next iteration.
- Termination: When the loop terminates, the invariant leads to the correctness of the algorithm.

Loop Invariant of Insertion Sort

```
InsertionSort(A)
1. for j = 2 to A.length do
2. key = A[j]
3. /* Insert A[j] into the sorted sequence A[1..j-1] */
4. i = j - 1
5. while i > 0 and A[i] > key do
6. A[i+1] = A[i]
7. i = i - 1
8. A[i+1] = key
```

- **Loop invariant:** subarray *A*[1..*j*-1] consists of the elements originally in *A*[1..*j*-1] but in sorted order.
 - _ **Initialization**: $j = 2 \Rightarrow A[1]$ is sorted.
 - **Maintenance:** Move A[j-1], A[j-2],... one position to the right until the position for A[j] is found.
 - Termination: $j = n+1 \Rightarrow A[1..n]$ is sorted. Hence the entire array is sorted!

Exact Analysis of Insertion Sort

InsertionSort(A)	cost	time
1. for $j = 2$ to A.length do	c_1	n
2. key = A[j]	c_2	n-1
3. /* Insert A[j] into the sorted sequence A[1j-1] */	0	n-1
4. $i = j - 1$	C_4	n-1
5. while $i > 0$ and $A[i] > key$ do	C ₅	$\sum_{j=2}^{n} t_j$
$6. \qquad A[i+1] = A[i]$	c ₆	$\sum_{j=2}^{n} (t_j - 1)$
7. $i = i - 1$	C ₇	$\sum_{j=2}^{n} (t_j - 1)$
8. $A[i+1] = key$	C ₈	n-1

- □ The **for** loop is executed (n-1) + 1 times. (why?)
- t_j : # of times the while loop test for value j (i.e., 1 + # of elements that have to be slid right to insert the j-th item).
- \square Step 5 is executed $t_2 + t_3 + ... + t_n$ times.
- Step 6 and 7 are executed $(t_2 1) + (t_3 1) + ... + (t_n 1)$ times.
- Runtime: $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j 1) + c_7 \sum_{j=2}^n (t_j 1) + c_8 (n-1)$

Exact Analysis of Insertion Sort

InsertionSort(A)	cost	time
1. for $j = 2$ to A.length do	C ₁	n
2. key = A[j]	c_2	n-1
3. /* Insert A[j] into the sorted sequence A[1j-1] */	0	n-1
4. $i = j - 1$	C_4	n-1
5. while $i > 0$ and $A[i] > key$ do	C ₅	$\sum_{j=2}^{n} t_j$
$6. \qquad A[i+1] = A[i]$	C ₆	$\sum_{j=2}^{n} (t_j - 1)$
7. $i = i - 1$	C ₇	$\sum_{j=2}^{n} (t_j - 1)$
8. $A[i+1] = key$	C ₈	n-1

- $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^n t_j + c_6 \sum_{j=2}^n (t_j 1) + c_7 \sum_{j=2}^n (t_j 1) + c_8 (n-1)$
- \square **Best case:** If the input is already sorted, all t_i 's are 1.

Linear:
$$T(n) = (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

- Worst case: If the array is in reverse sorted order, $t_i = j$, $\forall j$.
 - Quadratic: $T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} \frac{c_6}{2} \frac{c_7}{2} + c_8\right)n \left(c_2 + c_4 + \frac{c_5}{2} \frac{c_6}{2} \frac{c_7}{2} + c_8\right)n$

Exact analysis is often hard (and tedious)!

Asymptotic Analysis

- □ Asymptotic analysis looks at growth of T(n) as $n \to \infty$.
- θ notation: drop low-order terms and ignore the leading constant.
 - = E.g., $T(n) = 8n^3 4n^2 + 5n 2 = \theta(n^3)$.
- As n grows large, lower-order θ algorithms outperform higher-order ones.
 - Ex: for large inputs, a $\theta(n^2)$ algorithm will run more quickly in the worst case than a $\theta(n^3)$ algorithm.
- Asymptotic analysis of insertion sort
 - Worst case: input reverse sorted, while loop is executed j times each iteration: $T(n) = \sum_{j=2}^{n} j = \Theta(\sum_{j=2}^{n} j) = \Theta(n^2)$
 - Average case: while loop is executed about j/2 times each iteration: $T(n) = \sum_{j=2}^{n} \frac{j}{2} = \Theta(\sum_{j=2}^{n} \frac{j}{2}) = \Theta(n^2)$

$$\sum_{j=2}^{n} j = \frac{(n+2)(n-1)}{2} = \frac{n^2 + n - 2}{2} = \Theta(n^2)$$

$$\sum_{j=2}^{n} \frac{j}{2} = \frac{1}{2} \sum_{j=2}^{n} j = \Theta(n^2)$$

O: Upper Bounding Function

- □ **Def**: f(n)= O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.
- □ Intuition: f(n) " ≤ " g(n) when we ignore constant multiples and small values of n.
- How to verify O (Big-Oh) relationships?

= f(n) = O(g(n)) implies that $\lim_{n\to\infty} \frac{f(n)}{g(n)} = c$ for some $c \ge 0$, if the limit exists. ♠

Big-Oh Examples

- □ **Def**: f(n)= O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.
- Examples

$$-3n^2 + n = O(n^2)? \quad \text{Yes! } \lim_{n \to \infty} \frac{3n^2 + n}{n^2} = 3$$

$$-3n^2 + n = O(n)$$
? No! $\lim_{n \to \infty} \frac{3n^2 + n}{n} = \infty$

$$-3n^2 + n = O(n^3)? \quad \text{Yes! } \lim_{n \to \infty} \frac{3n^2 + n}{n^3} = 0$$

■ Take
$$c = 4$$
, $n_0 = 1$

Ω : Lower Bounding Function

- □ **Def**: $f(n) = \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.
- □ Intuition: f(n) " ≥ " g(n) when we ignore constant multiples and small values of n.
- \square How to **verify** Ω (Big-Omega) relationships?

= f(n) = Ω(g(n)) implies that $\lim_{n\to\infty} \frac{g(n)}{f(n)} = c$ for some c ≥ 0, if the limit exists.

Big-Omega Examples

- □ **Def**: $f(n) = \Omega(g(n))$ if $\exists c > 0$ and $n_0 > 0$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.
- Examples

$$-3n^2 + n = \Omega(n^2)? \quad \text{Yes! } \lim_{n \to \infty} \frac{n^2}{3n^2 + n} = \frac{1}{3}$$

$$-3n^{2} + n = \Omega(n)? \quad \text{Yes! } \lim_{n \to \infty} \frac{n}{3n^{2} + n} = 0$$

$$-3n^{2} + n = \Omega(n^{3})? \text{ No! } \lim_{n \to \infty} \frac{n^{3}}{3n^{2} + n} = \infty$$

- $-3n^2 + n ≥ cn^2$?
 - Take c = 2, $n_0 = 1$

θ: Tightly Bounding Function

- □ **Def**: $f(n) = \theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
- □ Intuition: f(n) " = " g(n) when we ignore constant multiples and small values of n.
- \square How to **verify** θ relationships?
 - Show both "big Oh" (O) and "Big Omega" (Ω) relationships.

 $= f(n) = \theta(g(n))$ implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some c > 0, if the limit exists.

Theta Examples

- □ **Def**: $f(n) = \theta(g(n))$ if $\exists c_1, c_2 > 0$ and $n_0 > 0$ such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
- Examples

$$-3n^2 + n = \theta(n^2)? \quad \text{Yes! } \lim_{n \to \infty} \frac{3n^2 + n}{n^2} = 3$$

$$-3n^2 + n = \theta(n)$$
? No! $\lim_{n \to \infty} \frac{3n^2 + n}{n} = \infty$

$$-3n^2 + n = \theta(n^3)? \quad \text{No! } \lim_{n \to \infty} \frac{3n^2 + n}{n^3} = 0$$

- $-c_1n^2 \le 3n^2 + n \le c_2n^2$?
 - Take $c_1 = 2$, $c_2 = 4$, $n_0 = 1$

o, ω: Untightly Upper, Lower Bounding Functions

- □ Little Oh o: f(n) = o(g(n)) if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le n$ f(n) < cg(n) for all $n \ge n_0$.
- □ Intuition: f(n) "<" any constant multiple of g(n) when we ignore small values of n.
- **Little Omega** ω : $f(n) = \omega(g(n))$ if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.
- □ Intuition: f(n) is ">" any constant multiple of g(n) when we ignore small values of n.
- How to verify o (Little-Oh) and ω (Little-Omega) relationships (if the limit exists)?
 - = f(n) = o(g(n)) implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.
 - $= f(n) = \omega(g(n))$ implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

Little-Oh Examples

Little Oh o: f(n) = o(g(n)) if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.

1.
$$3n^2 + n = o(n^2)$$
? No

2.
$$3n^2 + n = o(n)$$
?

3.
$$3n^2 + n = o(n^3)$$
? Yes

$$f(n) = o(g(n))$$
 implies that $\lim_{n \to \infty}$

$$\frac{f(n)}{g(n)}$$
 = 0, if the limit exists

Little-Omega Examples

Little Omega ω : $f(n) = \omega(g(n))$ if $\forall c > 0$, $\exists n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

1.
$$3n^2 + n = \omega(n^2)$$
? No

2.
$$3n^2 + n = \omega(n)$$
? Yes

3.
$$3n^2 + n = \omega(n^3)$$
? No

$$f(n) = \omega(g(n))$$
 implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$, if the limit exists

Algorithms with Asymptotic Notation

- □ "Insertion sort is a $O(n^2)$ algorithm" or "The running time of insertion sort is $O(n^2)$ " => correct!
 - The worst-case running time of insertion sort is $O(n^2)$
 - For any input of size n, the running time is at most cn^2
- □ "Insertion sort is a $\Omega(n)$ algorithm" or "The running time of insertion sort is $\Omega(n)$ " => correct!
 - The best-case running time of insertion sort is $\Omega(n)$
 - For any input of size n, the running time is at least cn
- □ "Insertion sort is a $\theta(n^2)$ algorithm" or "The running time of insertion sort is $\theta(n^2)$ " => wrong!!
 - For a sorted input, insertion sort runs in $\theta(n)$

Asymptotic Functions

- **Polynomial-time complexity:** O(p(n)),
 - n: the input size.
 - = p(n): a polynomial function of $n(p(n) = n^{O(1)})$.

Polynomial-time complexity

An Example

- □ Rank the following functions by the order of growth:
 - $-n^2$
 - $-n^{\lg n}$

Computational Complexity

- Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as functions of its "input size".
 - Sort *n* words of bounded length \Rightarrow input size: *n*
 - The input is the graph $G(V, E) \Rightarrow$ input size: |V| and |E|
- Runtime comparison

Time	Big-Oh	n = 10	n = 100	n = 10 ⁴	n = 10 ⁶	n = 10 ⁸
500	O(1)	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec	5*10 ⁻⁷ sec
3n	O(n)	3*10 ⁻⁸ sec	3*10 ⁻⁷ sec	3*10 ⁻⁵ sec	0.003 sec	0.3 sec
nlgn	O(n lg n)	3*10 ⁻⁸ sec	6*10 ⁻⁷ sec	1*10 ⁻⁴ sec	0.018 sec	2.5 sec
n ²	O(n ²)	1*10 ⁻⁷ sec	1*10 ⁻⁵ sec	0.1 sec	16.7 min	116 days
n ³	O(n³)	1*10 ⁻⁶ sec	0.001 sec	16.7 min	31.7 yr	∞
2 ⁿ	O(2 ⁿ)	1*10 ⁻⁶ sec	4*10 ¹¹ cent.	8	∞	∞
n!	O(n!)	0.003 sec	8	8	∞	_∞

Runtime Analysis

Two rules

- A number of operations are performed in an algorithm, the runtime is dominated by the most expensive operation
- If an operation is repeatedly performed a number of times, the total runtime is the runtime of the operation multiplied by the iteration count

Example

if (condition) then
$$O(1)$$
op1 $T_1(n)$ elseop2 $T_2(n)$

$$-$$
 T(n) = $O(\max(T_1(n), T_2(n)))$

Runtime Analysis (cont'd)

Example

```
for i = 1 to n

if A[i] > maxVal then O(1)

maxVal = A[i] O(1)

maxIdx = i O(1)
```

$$-$$
 T(n) = O(n)

$$-$$
 T(n) = $O(n^2)$

Merge Sort and Asymptotic Analysis

Divide-and-Conquer Algorithms

The divide-and-conquer paradigm

- Divide the problem into a number of subproblems.
- Conquer the subproblems (solve them).
- Combine the subproblem solutions to get the solution to the original problem.
- Merge sort: a divide-and-conquer algorithm
 - Divide the *n*-element sequence to be sorted into two *n*/2-element sequences.
 - Conquer: sort the subproblems, recursively using merge sort.
 - Combine: merge the resulting two sorted n/2-element sequences.

Merge Sort

MergeSort(A, p, r) T(n)1. **if** p < r $\theta(1)$ 2. $q = \lfloor (p+r)/2 \rfloor$ $\theta(1)$ 3. MergeSort (A, p, q) T(n/2)4. MergeSort (A, q+1, r) T(n/2)5. Merge(A, p, q, r) $\theta(n)$

Merge(A, p, q, r): merge two sorted subarrays A[p..q] and A[q+1..r] into sorted A[p..r].

Merge

```
Merge (A, p, q, r)
1. n_1 = q - p + 1
2. n_2 = r - q
3. let L[1..n_1+1] and R[1..n_2+1] be new arrays
4. for i = 1 to n_1
5. L[i] = A[p + i - 1]
6. for j = 1 to n_2
                                                  \boldsymbol{A}
7. R[j] = A[q + j]
8. L[n_1+1] = \infty
9. R[n_2+1] = \infty
10. i = 1
11. j = 1
12. for k = p to r
13.
    if L[i] \leq R[j]
14.
    A[k] = L[i]
15.
    i = i + 1
16. else A[k] = R[j]
                                      \Theta(n) time!
    j = j + 1
17.
```

Merge(A, p, q, r): merge two sorted subarrays A[p..q] and A[q+1..r] into sorted A[p..r].

sort subarray A[p..r]

Merge (cont'd)

```
Merge (A, p, q, r)
1. n_1 = q - p + 1
2. n_2 = r - q
3. let L[1..n_1+1] and R[1..n_2+1] be new arrays
4. for i = 1 to n_1
   L[i] = A[p + i - 1]
6. for j = 1 to n_2
7. R[j] = A[q + j]
                        \boldsymbol{A}
8. L[n_1+1] = \infty
                             sort subarray A[p..r]
9. R[n_2+1] = \infty
10. i = 1
                               L[1..n_1+1]
11. j = 1
12. for k = p to r
                               R[1..n_2+1]
13.
       if L[i] \leq R[j]
14.
    A[k] = L[i]
15.
    i = i + 1
16. else A[k] = R[j]
17.
         j = j + 1
```

Loop invariant:

At the start of each iteration of the **for** loop (lines 12—17):

- ➤ The subarray
 A[p..k-1] contains
 the k-p smallest
 elements of
 L[1..n₁+1] and
 R[1..n₂+1], in sorted order.
- ➤ L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.

Merge (cont'd)

Recurrence

- Describes a function recursively in terms of itself.
- Describes performance of recursive algorithms.
- Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n), & \text{if } n > 1 \end{cases}$$

MergeSort(A, p, r)		T(n)
1. if $p < r$		θ(1)
2.	$q = \lfloor (p+r)/2 \rfloor$	θ(1)
3.	MergeSort (A, p, q)	<i>T</i> (<i>n</i> /2)
4.	MergeSort (A , $q + 1$, r)	T(n/2)
5.	Merge(A, p, q, r)	$\theta(n)$

Recursion Tree for Asymptotic Analysis

- Thus merge sort asymptotically beats insertion sort in the worst case.
 - Insertion sort: stable, in-place
 - Merge sort: stable, not in-place

Insertion Sort vs. Merge Sort

	Insertion Sort	Merge Sort
Approach	Incremental	Divide-and-conquer
Runtime Complexity	$0(n^2)$	$\Theta(n \lg n)$
Stable?	Υ	Υ
In-place?	Υ	N

- In-place: Only a constant # of variables are stored outside the working array
- Stable: Numbers with the same value in the output array are in the same order as the input array

Analyzing Divide-and-Conquer Algorithms

Recurrence for a divide-and-conquer algorithms

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \le c \\ aT\left(\frac{n}{b}\right) + D(n) + C(n), \text{otherwise} \end{cases}$$

- a: # of subproblems
- $=\frac{n}{h}$: size of the subproblems
- -D(n): time to divide the problem of size n into subproblems
- $-\mathcal{C}(n)$: time to combine the subproblem solutions to get the answer for the problem of size *n*

■ Merge sort:
$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq c \\ 2T(\frac{n}{2}) + \Theta(n), \text{otherwise} \end{cases}$$

- $D(n) = \Theta(1)$: compute midpoint of array
- $-C(n) = \Theta(n)$: merging by scanning sorted subarrays

Solving Recurrences

- Three general methods for solving recurrences
 - Iteration: Convert the recurrence into a summation by expanding some terms and then bound the summation.
 - Substitution: Guess a solution and verify it by induction.
 - Master Theorem: if the recurrence has the form

$$T(n) = aT(n/b) + f(n),$$

then most likely there is a formula that can be applied.

- Two simplifications that won't affect asymptotic analysis
 - Ignore floors and ceilings.
 - Assume base cases are constant, i.e., $T(n) = \theta(1)$ for small n.

Solving Recurrences: Iteration

Example: T(n) = 4T(n/2) + n.

```
T(n) = 4T(n/2) + n
                                         /* expand */
        = 4(4T(n/4) + n/2) + n
                                       /* simplify */
        = 16T(n/4) + 2n + n
        = 16(4T(n/8) + n/4) + 2n + n /* expand */
        = 64T(n/8) + 4n + 2n + n
                                          /* simplify */
        = 4^{\lg n}T(1) + ... + 4n + 2n + n /* #level = \lg n */
        = 4^{\lg n}c + n \sum_{k=0}^{\lg n-1} 2^k
= cn^{\lg 4} + n \left(\frac{2^{\lg n}}{2-1}\right)
                                                 /* convert to summation */
                                                 /* a^{\lg b} = b^{\lg a} */
        = cn^2 + n(n^{|\hat{g}|^2} - 1)
                                                 /* 2^{\lg n} = n^{\lg 2} * /
        = (c+1)n^2 - n
        =\Theta(n^2)
                                                 S_n = \frac{a_1(r^n - 1)}{r - 1}
```

Iteration by Using Recursion Trees

- Root: computation (D(n) + C(n)) at top level of recursion.
- Node at level i: Subproblem at level i in the recursion.
- □ Height of tree: (#levels 1) in the recursion.
- T(n) = sum of all nodes in the tree, T(1) = 1.
- $T(n) = 4T(n/2) + n = n + 2n + 4n + ... + 2^{\lg n}n = \theta(n^2).$

Solving Recurrences: Substitution (Guess & Verify)

- Step 1 Guess form of a solution.
- Step 2 Apply math. induction to find the constant and verify the solution.
- Step 3 Use to find an upper or a lower bound.
- **Example**: Guess $T(n) = 2T(n/2) + n = O(n^2) (T(1) = 1)$
 - Show $T(n) \le cn^2$ for some c > 0 (we must find c).
 - _ Step 1 Basis: $T(2) = 2T(1) + 2 = 4 \le 2^2c$
 - _ Step 2 Assume $T(k) \le ck^2$ for k < n, and prove $T(n) \le cn^2$

$$T(n) = 2T(n/2) + n$$

$$\leq 2(c(n/2)^2) + n$$

$$= cn^2/2 + n$$

$$= cn^2 - (cn^2/2 - n)$$

$$\leq cn^2,$$

where $c \ge 2$ and $n \ge 1$.

Solving Recurrences: Master Theorem

Let $a \ge 1$ and b > 1 be constants, f(n) be an asymptotically positive function, and T(n) be defined on nonnegative integers as

$$T(n) = aT(n/b) + f(n).$$

- \Box Then, T(n) can be bounded asymptotically as follows:
 - 1. $T(n) = \Theta(n^{\log_b a})$ if $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$.
 - 2. $T(n) = \Theta(n^{\log_b a} | g n)$ if $f(n) = \Theta(n^{\log_b a})$.
 - 3. $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n.
- Intuition: compare f(n) with $\Theta(n^{\log_b a})$
 - Case 1: f(n) is polynomially smaller than $\Theta(n^{\log_b a})$
 - Case 2: f(n) is asymptotically equal to $\Theta(n^{\log_b a})$
 - Case 3: f(n) is polynomially larger than $\Theta(n^{\log_b a})$

Examples of Master Theorem

- Ex. 1: $T(n) = 4T(\frac{n}{2}) + n$
 - Compare f(n) = n with $n^{\log_b a} = n^2$: $f(n) = n = O(n^{2-\epsilon})$.
 - Case 1 applies: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$.
- Ex. 2: $T(n) = 2T(\frac{n}{2}) + n$
 - Compare f(n) = n with $n^{\log_b a} = n$: $f(n) = n = \Theta(n)$.
 - Case 2 applies: $T(n) = \Theta(n^{\log_b a} | g n) = \Theta(n | g n)$.

Examples of Master Theorem (cont'd)

- Ex. 3: $T(n) = 3T(\frac{n}{4}) + n \lg n$
 - Compare $f(n)=n\lg n$ with $n^{\log_b a}=n^{0.79}$: $f(n)=n\lg n=\Omega(n^{0.79+\epsilon})$.
 - Case 3 could apply: Need to check for "regularity" condition that $af(n/b) \le cf(n)$.
 - * Find c < 1 s.t. $af(n/b) \le cf(n)$ for large enough n.
 - * $3\frac{n}{4} | g \frac{n}{4} \le cn | g n$ which is true for $c = \frac{3}{4}$.
 - Case 3 applies: $T(n) = \Theta(f(n)) = \Theta(n | g n)$.

Examples of Master Theorem (cont'd)

$$T(n) = 2^n T\left(\frac{n}{2}\right) + n^n$$

Master theorem cannot be applied (a is not constant).

$$T(n) = 0.5T\left(\frac{n}{2}\right) + \frac{1}{n}$$

— Master theorem cannot be applied (a < 1).

$$T(n) = 64T\left(\frac{n}{8}\right) - n^2 \log n$$

— Master theorem cannot be applied (f(n)) is not positive).

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2 \lg n$$

- Master theorem cannot be applied
 - $n^{\log_b a} = n^2$, $f(n) = n^2 \lg n$, case 3 could apply
 - Regularity check: $4\left(\frac{n}{2}\right)^2 \lg\left(\frac{n}{2}\right) \le cn^2 \lg n$, for some c < 1 and large n?