Programmation Linéaire Notions fondamentales

Fabian Bastin DIRO Université de Montréal

Solutions de base

$$\min_{\mathbf{x}} \mathbf{c}^{T} \mathbf{x}$$
s.c. $\mathbf{A}\mathbf{x} = \mathbf{B}$, $\mathbf{x} \ge 0$.

Supposons $m \le n$ et rang(\mathbf{A}) = m. Sans perte de généralité, supposons les m premières colonnes de \mathbf{A} indépendantes, et formons

$$\mathbf{A} = \begin{pmatrix} \mathbf{B} & \mathbf{D} \end{pmatrix}$$

Solution de base : $\mathbf{x} = (\mathbf{x}_b \ 0)$, avec $\mathbf{B}\mathbf{x}_b = \mathbf{b}$. Solution de base dégénérée : si \mathbf{x}_b contient des composantes nulles. Solution de base réalisable : solution de base telle que $\mathbf{A}\mathbf{x} = \mathbf{B}$ et $\mathbf{x} \ge 0$.

Rappel: base d'un espace vectoriel

Considérons un ensemble $B = \{u_1, u_2, \dots, u_m\}$ d'un sous-espace vectoriel V.

• Les éléments de B sont linéairement indépendants si

$$\sum_{i=1}^m \alpha_i u_i = 0$$

admet pour seule solution $\alpha_i = 0$, i = 1, ..., m.

• B est un ensemble générateur de V si $\forall y \in V$, $\exists \alpha_i$, i = 1, ..., m tels que

$$\sum_{i=1}^m \alpha_i u_i = y.$$

 B est une base, si B est un ensemble linéairement indépendant et générateur de V.

Théorème fondamental de la programmation linéaire

Soit un PL sous forme standard, avec **A** de dimension $m \times n$ et de rang plein (i.e. rang(**A**) = m).

- S'il y a une solution réalisable, alors il y a une solution de base réalisable.
- S'il y a une solution réalisable optimale, alors il y a une solution de base réalisable optimale.

Théorème fondamental de la programmation linéaire : preuve

Écrivons

$$\mathbf{A} = \begin{pmatrix} \vdots & \vdots & & \vdots \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \\ \vdots & \vdots & & \vdots \end{pmatrix}$$

et

$$\mathbf{x}=(\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_n)$$

Si x est réalisable, alors

$$x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \ldots + x_n \boldsymbol{a}_n = \boldsymbol{b}.$$

Supposons qu'il y a exactement p composantes > 0, et s.p.d.g., qu'il s'agit des p premières composantes : x_1, \ldots, x_p :

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_p \mathbf{a}_p = \mathbf{b}.$$

Cas 1 : a_1, \ldots, a_p linéairement indépendants.

Dès lors, $p \leq m$.

Si p = m, la preuve est complète.

Supposons donc p < m.

Comme A est de rang plein, on peut choisir m-p vecteurs (colonnes de A) à partir des n-p vecteurs restants pour former un ensemble de m vecteurs linéairement indépendants.

En affectant la valeur 0 aux m-p variables correspondantes, on obtient une solution de base réalisable (dégénérée).

Cas 2 : a_1, \ldots, a_p linéairement dépendants.

Dès lors, $\exists \mbox{\it y} = (y_1, y_2, \dots, y_p, 0, \dots, 0) \ (\in \mathcal{R}^n)$, avec au moins un $y_i > 0$, tel que

$$y_1\mathbf{a}_1+y_2\mathbf{a}_2+\ldots y_p\mathbf{a}_p=\mathbf{0},$$

de sorte que $\forall \epsilon$,

$$(x_1-\epsilon y_1)\boldsymbol{a}_1+(x_2-\epsilon y_2)\boldsymbol{a}_2+\ldots(x_p-\epsilon y_p)\boldsymbol{a}_p=\boldsymbol{b}.$$

Autrement dit,

$$A(x - \epsilon y) = b.$$

Pour $\epsilon > 0$, et croissant,

- si $y_k < 0$, $(x_k \epsilon y_k)$ augmente,
- si $y_k > 0$, $(x_k \epsilon y_k)$ diminue,
- si $y_k = 0$, $(x_k \epsilon y_k)$ reste constant.

Prenons

$$\epsilon = \min_{k \in (1,2,\dots,p)} \left\{ \frac{x_k}{y_k} \,\middle|\, y_k > 0 \right\} (>0),$$

$$j \in \arg\min_{k \in (1,2,\dots,p)} \left\{ \frac{x_k}{y_k} \,\middle|\, y_k > 0 \right\}.$$

Alors

$$x_j - \epsilon y_j = 0$$
,

et $x - \epsilon y$ a au plus p - 1 variables positives.

En répétant ce processus si nécessaire, on peut éliminer des variables positives jusqu'à obtenir une solution réalisable avec des colonnes correspondantes qui sont linéairement indépendantes. Le cas 1 s'applique alors.

Théorème fondamental de la PL : optimalité

Soit $\mathbf{x} = (x_1, x_2, \dots, x_n)$ une solution optimale réalisable, et comme précédemment, supposons qu'il y a exactement p variables positives x_1, x_2, \dots, x_p .

À nouveau deux cas.

- Cas 1 : correspond à l'indépendance linéaire, et se traite comme pour la question de réalisabilité.
- Cas 2 : similaire à la réalisabilité, à ceci près que nous devons montrer que pour n'importe quel ϵ , la solution $x \epsilon y$ est optimale.

Théorème fondamental de la PL : optimalité

Prenons à nouveau \mathbf{y} t.q. $A\mathbf{y}=0$ et $\exists i \in \{1,\ldots,p\}$ t.q. $y_i>0$. Pour ϵ suffisamment proche de 0, positif ou négatif, $\mathbf{x}-\epsilon\mathbf{y}\geq0$ (réalisable).

Supposons $\boldsymbol{c}^T \boldsymbol{y} \neq 0$, et $\epsilon > 0$ si $\boldsymbol{c}^T \boldsymbol{y} > 0$, $\epsilon < 0$ sinon. Alors

$$c^{T}(x - \epsilon y) = c^{T}x - \epsilon c^{T}y < c^{T}x,$$

donc x n'est pas optimal. Dès lors, $c^T y = 0$.

On peut alors appliquer le procédé du cas 2 sur la réalisabilité, pour diminuer le nombre de composantes non-nulles de la solution, tout en maintenant l'optimalité, puis se ramener au cas 1.

Conséquences du théorème

On peut résoudre un PL en énumérant les solutions de base réalisables.

Problème : il peut y en avoir beaucoup.

Pour n variables et m contraintes, nous avons

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

matrices à considérer pour déterminer des solutions de base.

Exemple: 100 variables, 40 contraintes

$$\binom{100}{40} = 13746234145802811501267369720 \approx 1,375.10^{28}$$

Exemple

Considérons le programme

$$\max 2x + 3y$$
t.q. $x \ge 1$

$$2x + 3y \le 5$$

$$x \ge 0, y \ge 0.$$

On voit immédiatement que la valeur optimale est 5 (pourquoi?).

Sous forme standard, nous obtenons

- min
$$-2x - 3y$$

t.q. $x - u = 1$
 $2x + 3y + s = 5$
 $x \ge 0, y \ge 0, s \ge 0, u \ge 0$.

Exemple: graphiquement

Solutions de base

Sous forme matricielle, le problème se définit à partir de

$$c = \begin{pmatrix} -2 \\ -3 \\ 0 \\ 0 \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 2 & 3 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

Nombre de sous-matrices carrées 2 par 2 :

$$\frac{4!}{2!2!} = 6$$

Le nombre de bases est toutefois strictement plus petit puisqu'il y a forcément des colonnes linéairement dépendantes.

Solutions de base

Bases potentielles:

$$egin{aligned} m{B}_1 &= egin{pmatrix} 1 & 0 \ 2 & 3 \end{pmatrix}, \quad m{B}_2 &= egin{pmatrix} 1 & -1 \ 2 & 0 \end{pmatrix}, \quad m{B}_3 &= egin{pmatrix} 1 & 0 \ 2 & 1 \end{pmatrix}, \ m{B}_4 &= egin{pmatrix} 0 & -1 \ 3 & 0 \end{pmatrix}, \quad m{B}_5 &= egin{pmatrix} 0 & 0 \ 3 & 1 \end{pmatrix}, \quad m{B}_6 &= egin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}. \end{aligned}$$

Seules \boldsymbol{B}_1 , \boldsymbol{B}_2 , \boldsymbol{B}_3 , \boldsymbol{B}_4 , \boldsymbol{B}_6 sont des bases. Les solutions de base respectives sont

$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} \frac{5}{2} \\ 0 \\ \frac{3}{2} \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 0 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 0 \\ \frac{5}{3} \\ -1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ -1 \\ 5 \end{pmatrix}$$

Solutions de base réalisables

De ces solutions, seules les trois premières sont réalisables.

Elles correspondent aux sommets du polytope réalisable.

Relations à la convexité

But : faire le lien entre solutions de base réalisables et points extrêmes d'un polytope.

- Un ensemble C dans E^n est dit *convexe* si pour tout x_1 , $x_2 \in C$, et pour n'importe quel réel α tel que $0 \le \alpha \le 1$, le point $\alpha x_1 + (1 \alpha)x_2 \in C$.
- Le point $z = \alpha x_1 + (1 \alpha)x_2$, $\alpha \in [0, 1]$, est dit être une combinaison convexe de x_1 et x_2 .
- La combinaison convexe est dite *stricte* si $\alpha \in (0,1)$.
- L'ensemble des combinaisons convexes de x₁ et x₂ est le segment de droite qui relie x₁ et x₂.

Convexité : propriétés

1. Si C est en ensemble convexe et β un nombre réel, l'ensemble

$$\beta C = \{ \boldsymbol{x} \mid \boldsymbol{x} = \beta \boldsymbol{c}, \ \boldsymbol{c} \in C \},$$

est convexe.

2. Si C et D sont deux ensembles convexes, l'ensemble

$$C + D = \{ x \mid x = c + D, c \in C, D \in D \},\$$

est convexe.

3. L'intersection de n'importe quelle collection d'ensembles convexes est convexe.

Points extrêmes

Polytope P = {x | Ax ≤ b}.
 Note : K = {x | Ax = b, x ≥ 0} est aussi un polytope. En effet, K peut se réécrire comme

$$K = \{ x \mid Ax \le b, -Ax \le -b, -x \le 0 \}.$$

- Polyèdre : polytope borné non vide.
- Voir Annexe B de Luenberger et Ye pour plus de détails.
- D'autres auteurs utilisent une convention opposée. Ainsi, dans "Convex optimization" (Boyd et Vandenberghe, 2004), un polytope est un polyèdre fermé (section 2.2.4).

Points extrêmes

Un point ${\bf x}$ d'un ensemble convexe C est un point extrême de C s'il n'existe pas deux points distincts ${\bf x}_1$ et ${\bf x}_2$ dans C tels que ${\bf x}=\alpha{\bf x}_1+(1-\alpha){\bf x}_2$ pour un certain α , $0<\alpha<1$. En d'autres termes, il ne peut pas s'écrire comme une combinaison convexe stricte de deux points de C. Intuitivement, un point extrême est un "sommet" de C.

Équivalence des points extrêmes et des solutions de base

- Soit **A** une matrice m × n de rang m et **b** un vecteur de dimension m.
- Soit K le polytope convexe constitué de l'ensemble des vecteurs x de dimension n satisfaisant

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 $\mathbf{x} > 0$.

Un vecteur x est un point extrême de K si et seulement si x est une solution de base réalisable pour le système précédent.

 \Leftarrow Supposons tout d'abord que $\mathbf{x} = (x_1, x_2, \dots, x_n)$ est une solution de base réalisable. Dès lors, \mathbf{x} a k composantes non nulles, et n-k composantes nulles, avec $k \le m$. k < m si la solution de base est dégénérée.

S.p.d.g., les k premières composantes sont non-nulles et

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\ldots+x_k\mathbf{a}_k=\mathbf{b},$$

où a_1, a_2, \ldots, a_k sont les k premières colonnes de A, linéairement indépendantes. Comme A est de rang m, la matrice comprends m colonnes indépendantes. S.p.d.g., nous pouvons supposer que les m premières colonnes sont indépendantes, et on peut encore écrire

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \ldots + x_m \mathbf{a}_m = \mathbf{b}.$$

Supposons par l'absurde que x n'est pas un point extrême. Il est alors combinaison convexe stricte de deux autres points distincts de K:

$$\exists \ \mathbf{y}, \ \mathbf{z} \in \mathbf{K}, \ \mathbf{y} \neq \mathbf{z}, \ \alpha \in (0,1) \text{ tels que } \mathbf{x} = \alpha \mathbf{y} + (1-\alpha)\mathbf{z}.$$

Comme $x \ge 0$, $y \ge 0$, $z \ge 0$, les n - k dernières composantes de y et z sont nulles.

Par définition de K, on a aussi

$$y_1 a_1 + y_2 a_2 + \ldots + y_m a_m = b,$$

 $z_1 a_1 + z_2 a_2 + \ldots + z_m a_m = b$

Comme a_1, a_2, \ldots, a_m linéairement indépendantes,

$$x = y = z$$
.

 \Rightarrow Supposons à présent que x est un point extrême de K, et s.p.d.g. que les composantes non-nulles de x sont les k premières composantes. Dès lors :

$$x_1\mathbf{a}_1+x_2\mathbf{a}_2+\ldots+x_k\mathbf{a}_k=\mathbf{b},$$

avec $x_i > 0$, i = 1, ..., k.

Pour montrer que x est une solution de base, nous devons montrer que a_1, a_2, \ldots, a_k sont linéairement indépendants. Supposons par l'absurde que ce n'est pas le cas. Alors,

$$\exists \ {m y} = (y_1, y_2, \dots, y_k, 0 \dots, 0) \neq 0 \ \text{t.q.}$$

$$y_1 a_1 + y_2 a_2 + \ldots + y_k a_k = 0.$$

On peut prendre $\epsilon \neq 0$ suffisamment petit pour avoir

$$x + \epsilon y \ge 0$$
, $x - \epsilon y \ge 0$,

et

$$x = \frac{1}{2}(x + \epsilon y) + \frac{1}{2}(x - \epsilon y).$$

Clairement.

$$A(x + \epsilon y) = A(x - \epsilon y) = b,$$

aussi $\mathbf{x} + \epsilon \mathbf{y}$, $\mathbf{x} - \epsilon \mathbf{y} \in K$.

Dès lors, x peut être exprimé comme combinaison convexe de deux points distincts de K, et donc n'est pas un point extrême.

Ceci implique qu'on doit avoir a_1, \ldots, a_k linéairement indépendants, et de là, $k \leq m$. x est dès lors une solution de base.

Corollaires

Corollaire 1 Si l'ensemble convexe K est non vide, il y a au moins un point extrême.

Corollaire 2 S'il existe une solution optimale finie à un problème de programmation linéaire, il existe une solution optimale finie qui est un point extrême de l'ensemble de contraintes.

Corollaire 3 L'ensemble de contraintes K possède un nombre fini de points extrêmes.

Preuve. L'ensemble des points extrêmes de K est un sous-ensemble des solutions de base, qui sont en nombre fini (il y a un nombre fini de sélections possible de M colonnes de M parmi M colonnes).

Corollaire 4 Si le polytope convexe K est borné, alors K est un polyèdre convexe, i.e. K consiste de points qui sont combinaisons convexes d'un nombre fini de points.

Corollaire 4

Le corollaire 4 est un cas particulier du résultat plus général : (Krein-Milman) Soit $\mathcal C$ un convexe compact de $\mathbb R^n$. $\mathcal C$ est l'enveloppe convexe de ses points extrêmaux.

Note : l'enveloppe convexe d'un ensemble $\mathcal S$ est l'intersection de tous les ensembles convexes contenant $\mathcal S$. Si $\mathcal S=\{\pmb x_1,\dots,\pmb x_k\}$, l'enveloppe convexe de $\mathcal S$ est

$$\operatorname{conv}(\mathcal{S}) = \left\{ \sum_{i=1}^k \theta_i \boldsymbol{x}_i \, \middle| \, \boldsymbol{\theta} > 0, \sum_{i=1}^k \theta_i = 1 \right\}.$$