Rechnerorganisation

Jonas Milkovits

Last Edited: 1. Mai 2020

Inhaltsverzeichnis

1	Einführung			
	1.1	Begrifflichkeiten und Grundlagen	1	
	1.2	Streifzug durch die Geschichte	2	
	1.3	Ethik in der Informatik	2	

1 Einführung

1.1 Begrifflichkeiten und Grundlagen

• Abstraktion

- Wichtiges und zentrales Konzept der Informatik
- Verstecken unnötiger Details (für spezielle Aufgabe unnötig)

• Schichtenmodell

- Untere Schicht erbringt Dienstleistungen für höhere Schicht
- Obere Schicht nutzt Dienste der niedrigeren Schicht
- Eindeutige Schnittstellen zwischen den Schichten
- Vorteile:
 - Austauschbarkeit einzelner Schichten
 - Nur Kenntnis der bearbeitenden Schicht notwendig
- Nachteile:
 - ggf. geringere Leistungsfähigkeit des Systems

• Grundbegriffe

- Computer:
 - Datenverarbeitungssystem
 - Funktionseinheit zur Verarbeitung und Aufbewahrung von Daten
 - Auch Rechner, Informationsverarbeitungssystem, Rechnersystem,...
 - Steuerung eines Rechnersystems folgt über ladbares Programm (Maschinenbefehle)
- Grundfunktionen, die ein Rechner ausführt
 - Verarbeitung von Daten (Rechnen, logische Verknüpfungen,...)
 - Speichern von Daten (Ablegen, Wiederauffinden, Löschen)
 - Umformen von Daten (Sortieren, Packen, Entpacken)
 - Kommunizieren (Mit Benutzer, mit anderen Rechnersystemen)

• Komponenten eines Rechnersystems

- Prozessor
 - Zentraleinheit, Central Processing Unit (CPU)
 - Ausführung von Programmen
- Speicher
 - Enthält Programme und Daten (Speichersystem)
- Kommunikation
 - Transfer von Informationen zwischen Speicher und Prozessor
 - Kommunikation mit der Außenwelt (Ein-/Ausgabesystem)

1.2 Streifzug durch die Geschichte

• Übersicht über die geschichtliche Entwicklung mit wichtigsten Meilensteinen

Bezeichnung	Technik und Anwendung	Zeit
Abakus,	mechanische Hilfsmittel	bis ca.
Zahlenstäbchen	zum Rechnen	18. Jahrhundert
mechanische	mechanische Apparate zum Rechnen	1623 - ca. 1960
Rechenmaschinen		
elektronische	elektronische Rechenanlagen zum	seit 1944
Rechenanlagen	Lösen von numerischen Problemen	
Datenverarbeitungs-	Rechner kann Texte und Bilder	seit ca. 1955
anlage	bearbeiten	
Informations-	Rechner lernt, Bilder und Sprache	seit 1968
verarbeitungssystem	zu erkennen (KI)	

• Fünf Rechnergenerationen im Überblick:

Generation	Zeitdauer (ca.)	Technologie	Operationen/sec
1	1946 - 1954	Vakuumröhren	40000
2	1955 - 1964	Transistor	200000
3	1965 - 1971	Small und medium scale	1000000
		integration (SSI, MSI)	
4	1972 - 1977	Large scale integration (LSI)	10000000
5	1978 - ????	Very large scale integration (VLSI)	100000000

• Rechner im elektronischen Zeitalter

- 1954: Entwicklung der Programmiersprache Fortran
- 1955: Erster Transistorrechner
- 1957: Entwicklung Magnetplattenspeicher, Erste Betriebssysteme für Großrechner
- 1968: Erster Taschenrechner
- 1971: Erster Mikroprozessor
- 1981: Erster IBM PC, Beginn des PC-Zeitalters

1.3 Ethik in der Informatik

- Ethik in der Informatik
 - Ethik: Bewertung menschlichen Handelns
 - Verbindung zur Informatik: Anwendung von Rechnern für kriegisches Handelns
 - Dual-Use-Problematik: Verwendbarkeit von Rechnern für zivile als auch militärische Zwecke
- Digitale Souveränität
 - Souveränität: Fähigkeit zur Selbstbestimmung (Eigenständigkeit, Unabhängigkeit)
 - Digitale Souveränität: Souveränität im digitalen Raum