Mini Project 3

House Price Classification Modelling Report

Objectives

- Multiple different factors influencing house price and it is difficult to estimate house price with just few features

- Indicate house buyers to know the price range of their dream house

- Provide property investors to understand the trend of housing prices

- Help developers to determine the selling price range of a house

Dataset

- Data source from Kaggle
 - https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/overview
 - Containing various features with house prices stated
- Size & Volume
 - The dataset contains 1460 records of house prices with 79 features
- Data Dictionaries examples
 - GrLivArea: Above grade (ground) living area square feet
 - LotArea: Lot size in square feet
 - SalePrice the property's sale price in dollars. This is the target variable that you're trying to predict.
 - OverallQual: Overall material and finish quality
 - GarageArea: Size of garage in square feet
 - Fence: Fence quality
 - Kitchen: Number of kitchens

Target Variable

- Target Variable: Sale Price
 - Our target variable is stated as exact amount of the sales price. Divide these prices into 4 different categories (based on quantile) to predict range of prices that a house will fall into.

Category	Range		
0	<=110K		
1	Between 110K - 163K		
2	Between 163K - 214K		
3	>214K		

Relationship

Base Modelling

Model	Accuracy	ROC AUC	Precision	Recall	F1-Score
Logistic Regression	0.67	0.88	0.67	0.67	0.67
KNN	0.66	0.85	0.67	0.66	0.67
SVC	0.53	0.81	0.39	0.53	0.42
Decision Tree	0.75	0.89	0.75	0.75	0.75
Random Forest	0.78	0.94	0.78	0.78	0.78

- **Logistic Regression**: High area under the curve but poor score in class 0 & 2 with overall not a good model score
- KNN: Similar to Logistic Regression model with poor score in class 2
- **SVC**: Low overall accuracy with 0 precision and recall for class 0
- **Decision Tree:** High accuracy and area under the curve. Overall balanced values across all classes for precision and recall
- Random Forest: Highest accuracy with area under curve. Overall better score for precision and recall for all classes than decision tree

Bagging & Boosting

- Attempt bagging and boosting technique to improve on our models.

Bagging Model	Accuracy	ROC AUC	Precision	Recall	F1-Score
Logistic Regression	0.68	0.88	0.68	0.68	0.68
vs Base	+0.01	-	+0.01	+0.01	+0.01
KNN	0.66	0.86	0.67	0.66	0.66
vs Base	-	+0.01	-	-	-0.02
SVC	0.53	0.82	0.52	0.52	0.52
vs Base	-	+0.01	+0.13	-	+0.10
Decision Tree	0.74	0.93	0.74	0.74	0.74
vs Base	-	+0.06	-	-	+0.01
Random Forest	0.79	0.94	0.79	0.79	0.79
vs Base	+0.01	-	-	+0.01	+0.01

Bagging & Boosting

AdaBoosting Model	Accuracy	ROC AUC	Precision	Recall	F1-Score
Logistic Regression	0.66	0.83	0.65	0.66	0.65
vs Base	-0.01	-0.05	-0.02	-0.01	-0.02
SVC	0.47	0.81	0.49	0.47	0.39
vs Base	-0.06	-	+0.10	-0.06	-0.03
Decision Tree	0.74	0.91	0.76	0.74	0.74
vs Base	-	+0.04	+0.02	-	+0.01
Random Forest	0.77	0.94	0.77	0.77	0.77
vs Base	-0.01	-	-0.02	-0.01	-0.01

No boosting for KNN since it did not have the attributes for supporting sample weighting

Modelling Summary

- Overall, random forest had highest performance out of these models. Boosting method mostly decreased the performance
- From the summary, we can observe random forest with bagging achieved the highest results but has very small improvement on accuracy comparing to the base model (+0.1%)

Feature Importance

 Using Random Forest to see what are the important features to consider when deciding the price range of the house

Conclusion

- Train multiple classification models with number of different features of houses
- Observed that the feature that strongly correlated with house price is the living area size and overall material quality
- Best base model performance was from random forest. There were slight improvement on the accuracy for this model from bagging, however, there was no significant improvement.
- Potentially further optimized through parameter adjustment as there are still room for improvement since highest performance at the moment is 0.79 accuracy rate
- As time pass, the trend and feature importance can be change. In order to be a practical use, we need to input latest sales price and features.

Reference

- https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/overview
- https://www.kaggle.com/code/pmarcelino/comprehensive-data-exploration-with-python