

In the Claims

1. (Currently Amended) A method of stirring a solution ~~comprising:~~ for contacting a selective binding substance immobilized on a surface of a carrier with a solution containing an analyte substance reactive with the selective binding substance, comprising the steps of:

mixing adding fine particles or air bubbles into the solution,
sealing the fine particles or air bubbles in the solution with a seal and the carrier, and
stirring the solution by moving the fine particles or air bubbles sealed in the solution without allowing contact thereof with the selective binding substance-immobilized surface.
2. (Previously Presented) The method according to Claim 1, wherein the carrier has a structure that the fine particles or air bubbles do not come into contact with the selective binding substance-immobilized surface carrier.
3. (Previously Presented) The method according to Claim 1, wherein the solution is in a container having a structure such that the fine particles or air bubbles do not come into contact with the selective binding substance-immobilized surface.
4. (Previously Presented) The method according to Claim 1, wherein the carrier has convex-concave surface and the selective binding substance is immobilized on the top face of the convexes.
5. (Currently Amended) A method of stirring a solution ~~comprising:~~ for contacting a selective binding substance immobilized on a top face of convexes of a carrier with a solution containing an analyte substance reactive with the selective binding substance, comprising the steps of:

mixing adding fine particles or air bubbles into the solution containing the analyte substance,
sealing the fine particles or air bubbles in the solution with a seal and the carrier, and
moving the fine particles or air bubbles sealed in the solution.
6. (Previously Presented) The method according to Claim 1 or 5, wherein the solution is stirred by movement of the fine particles.
7. (Previously Presented). The method according to Claim 1 or 5, wherein the solution is in a container.
8. (Previously Presented) The method according to Claim 7, wherein the solution is stirred by movement of the fine particles and a minimum width of the fine particles is greater than a minimum distance between the selective binding substance-immobilized surface and the container.

9. (Previously Presented) The method according to Claim 1 or 5, wherein the solution is stirred by movement of the fine particles, the carrier has a convex-concave surface, the selective binding substance is immobilized on the top face of the convexes of the carrier, and the fine particles move in a concave area.
10. (Previously Presented) The method according to Claim 1 or 5, wherein the carrier has a flat area and a convex-concave area, the selective binding substance is immobilized on a top face of the convexes of the carrier, the height of the top face of the convexes is almost the same, and the difference in height between a flat area and the top face of the convexes is 50 μm or less.
11. (Previously Presented) The method according to Claim 6, wherein the fine particles are forced to move by gravity, magnetic force, vibration of carrier, or a combination thereof.
12. (Previously Presented) The method according to Claim 9, wherein a maximum width of the fine particles is 10 μm or more and less than the difference in height between the top face of convexes and the concave area.
13. (Previously Presented) The method according to Claim 1 or 5, wherein the selective binding substance is a nucleic acid.
14. (Previously Presented) The method according to Claim 1 or 5, wherein the selective binding substance reacts with the analyte substance.