Stress, Strain and Deformation **Buckling**

Dr Luiz Kawashita

Luiz.Kawashita@bristol.ac.uk

07 February 2018

- Failure of slender members
- Euler buckling theory
- End conditions
- Imperfections in geometry & end conditions
- Failure in bending

for struts

- Tension force
 - Failure by plastic yielding or fracture
- Compression force
 - Failure by buckling (before yielding or fracture)

"Instability leading to increasing bending deflection"

- Depends on bending stiffness (EI) not strength
- Buckling can also lead to torsional deflection
 - Therefore may depend on torsional stiffness
 - But this will be considered later (StM2)

- Buckling strength will depend on:
 - The shape of the cross-section (I)
 - The material modulus (E)

• Buckling will occur about the axis which has the least 2^{nd} moment of area I

E.g. this strut would buckle about axis *Y-Y*

Z

Assumptions:

- Linear elastic material response
- Initially perfectly straight strut
- Uniform cross-section
- Load applied along the centroidal axis
- Small deformations
- Pin-jointed ends
- Classic stability, e.g. consider whether a small disturbance tends to <u>decay</u> or <u>grow</u>

"Load at which the strut is *neutrally stable* for small deflections"

• *I.e.* the strut is still in equilibrium in its deformed state

- Remember: v = f(x)
- Using the 2nd order differential equation of bending for small deflections:

$$EI\frac{\mathrm{d}^2 v}{\mathrm{d} x^2} = M$$

• Rotational equilibrium:

$$\sum M_{@x}^{CCW} = 0$$

$$M - (P_{crit})(-v) = 0$$

$$M = -P_{crit} v$$

$$EI \frac{d^2 v}{d x^2} = -P_{crit} v$$

Rearranging it as a <u>linear differential equation</u>:

$$\frac{\mathrm{d}^2 v}{\mathrm{d} x^2} - \frac{P_{\text{crit}}}{EI} v = 0$$

• We can define a variable μ as:

$$\mu^2 = \frac{P_{\text{crit}}}{EI}$$

So that:

$$\frac{\mathrm{d}^2 v}{\mathrm{d} x^2} - \mu^2 v = 0$$

Which has solution of the form:

$$v = A \sin \mu x + B \cos \mu x$$

Where A and B are constants of integration

$$v = A \sin \mu x + B \cos \mu x$$

$$\frac{\mathrm{d}v}{\mathrm{d}x} = A\mu \cos \mu x - B\mu \sin \mu x$$

i.e. differentiating to get back to the differential equation of bending

$$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} = -A\mu^2 \sin\mu x - B\mu^2 \cos\mu x$$

So
$$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} + \mu^2 v = 0$$

$$(-A\mu^2\sin\mu x - B\mu^2\cos\mu x) + \mu^2(A\sin\mu x + B\cos\mu x) = 0$$

Apply boundary conditions to solve for constants A and B

@
$$x = 0$$
, $v = 0$ $\Longrightarrow B = 0$ $\Longrightarrow v = A \sin \mu x$

@
$$x = L$$
, $v = 0$ $\longrightarrow A \sin \mu L = 0$ $\longrightarrow A = 0 \text{ or } \sin \mu L = 0$

gives zero deflection for all x – not relevant $\sin \mu L = 0$ is possible for $\mu L = 0$, π , 2π , 3π , ...

Consider values of μL in turn:

For
$$\mu L = 0$$
, either $L = 0$ or

$$P_c = 0$$
, which is trivial

For $\mu L = \pi$, $P_c = \text{lowest non-zero value*}$ i.e. most critical* buckling strength

Substituting $\mu = \pi/L$ into

$$\mu^2 = \frac{P_{\text{crit}}}{EI}$$

Gives the "Euler buckling load" $\implies P_{\text{crit}} = \frac{\pi^2 EI}{I^2}$

$$ightharpoonup P_{\text{crit}} = \frac{\pi^2 I}{I}$$

$$P_{\rm crit} = \frac{\pi^2 EI}{I^2}$$

- Note, P_{crit} depends on *EI*, *i.e.* 'bending rigidity'
- Therefore, buckling will take place about the axis with least 2^{nd} moment of area, I_{min}

Also, note relationship to L^2

Long struts have low P_{crit} (many times lower than the load required to yield the strut)

(5)
$$v = A \sin \mu x$$
 where $\mu = \pi/L$ And $A = v_{max}$ $V = v_{max} \sin \pi x$

@
$$x = 0$$
 or L , $v = 0$

Note:

Different to circular arc

Note: we can determine the deflected shape, but not the amplitude at the critical buckling condition because neutral equilibrium is not associated with a specific displacement

