Вложения и погружения многообразий

Гладкое отображение $F: M \to N$ гладких многообразий называется *погружением*, если dF инъективен всюду на M (то есть для всех $p \in M$ линейное отображение $d_pF: T_pM \to T_{F(p)}N$ инъективно). Отображение F называется вложением, если оно является погружением и M диффеоморфно F(M).

Пусть $F: M \to N$ — гладкое отображение гладких многообразий M и N. Точка $p_0 \in M$ называется pегулярной точкой отображения F, если линейное отображение $d_{p_0}F: T_{p_0}M \to T_{F(p_0)}N$ является эпиморфизмом, то есть сюръективно.

Точка $q \in N$ называется регулярным значением отображения $F: M \to N$, если или все точки прообраза $F^{-1}(q)$ являются регулярными точками отображения F, или $q \in N \setminus F(M)$.

Унитарная группа: $U_n(\mathbf{C}) = \{A \in \operatorname{GL}_n(\mathbf{C}) \mid AA^* = E\}$, а специальная унитарная группа задается дополнительным условием $\det A = 1$. Заметим, что группа

$$SU_2(\mathbf{C}) = \left\{ \begin{pmatrix} a & -\overline{b} \\ b & \overline{a} \end{pmatrix} | a, b \in \mathbf{C}, |a|^2 + |b|^2 = 1 \right\}$$

диффеоморфна ${f S}^3$ как гладкое вещественное многообразие, т.к. по сути задается условием $a_1^2+a_2^2+b_1^2+b_2^2=1.$

Вариант I

ДГТ 2 \diamond **1.** Определить, является ли отображение γ : $\mathbf{R} \to \mathbf{R}^2$ вложением или погружением, если $\gamma(t) = (x(t), y(t))$, где $x(t) = \frac{2+t^2}{1+t^2}$, $y(t) = \frac{2t+t^2}{1+t^2}$.

ДГТ $2 \diamond 2$. Найти критические точки и значения отображения $F: SO_2(\mathbf{R}) \to SO_2(\mathbf{R})$, где $F(A) = A^7$.

Вариант II

ДГТ 2\diamond3. Выяснить, является ли гладким подмногообразием в $\mathbf{R}^2 = \langle x, y \rangle$ подмножество, заданное уравнением $x^4 + y^4 = 8xy^2$.

ДГТ 2 \diamond 4. Найти критические точки и значения отображения $F: \mathcal{O}_2(\mathbf{R}) \to \mathcal{O}_2(\mathbf{R})$, где $F(A) = A^7$.

Вариант III

ДГТ 2\diamond5. Определить, является ли отображение γ : $\mathbf{R} \to \mathbf{R}^2$ вложением или погружением, если $\gamma(t) = (x(t), y(t))$, где $x(t) = \frac{t^2}{1+t^2}$, $y(t) = \frac{1+t^2}{2+t^2}$.

ДГТ $2 \diamond 6$. Найти критические точки и значения отображения $F: \mathrm{SU}_2(\mathbf{C}) \to \mathrm{SU}_2(\mathbf{C})$, где $F(A) = A^3$.

Вариант IV

ДГТ 2\diamond7. Выяснить, является ли гладким подмногообразием в $\mathbf{R}^3 = \langle x, y, z \rangle$ подмножество, заданное уравнением $x^2(z-1) + y^2z = 0$.

ДГТ $2 \diamond 8$. Найти критические точки и значения отображения $F: \mathrm{SO}_3(\mathbf{R}) \to \mathrm{SO}_3(\mathbf{R})$, где $F(A) = A^3$.

Дополнительные задачи

ДГТ 2\diamond9. Доказать, что всякое произведение сфер вкладывается в \mathbf{R}^N как гиперповерхность (т.е. подмногообразие коразмерности 1).

ДГТ 2◇**10.** Доказать, что двумерное многообразие ориентируемо тогда и только тогда, когда не содержит в себе Мb.

ДГТ 2\diamond11. Построить такое погружение листа Мебиуса **M**b в **R**³, что его граничная окружность **S**¹ = ∂ **M**b стадартно вложена в двумерную плоскость.