You are working on a spam classification system using regularized logistic regression.
 "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F_1 score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

2. Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Wrong

We train a learning algorithm with a large number of parameters (that is able to learn/represent fairly complex functions).
We train a model that does not use regularization.
The features x contain sufficient information to predict y accurately. (For example, one way to verify this is if a human expert on the domain can confidently predict y when given only x).
We train a learning algorithm with a small number of parameters (that is thus unlikely to

overfit).

3.	Suppo	suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.		
	Currently, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) < ext{threshold}$, where currently the threshold is set to 0.5.			
	Suppose you increase the threshold to 0.9. Which of thefollowing are true? Check all to apply.			
		The classifier is likely to have unchanged precision and recall, and		
		thus the same F_1 score.		
		The classifier is likely to have unchanged precision and recall, but		
		higher accuracy.		
		The classifier is likely to now have higher recall.		
		The classifier is likely to now have higher precision.		
4	Suppos	e you are working on a spam classifier, where spam Wrong		
4.		are positive examples ($y=1$) and non-spam emails are		
	negative examples ($y=0$). You have a training set of emails			
	in which 99% of the emails are non-spam and the other 1% is			
	spam. V	Which of the following statements are true? Check all		
	that ap	ply.		
		If you always predict non-spam (output		
		y=0), your classifier will have an accuracy of		
		99%.		
		If you always predict non-spam (output		
		y=0), your classifier will have 99% accuracy on the		
		training set, and it will likely perform similarly on		
		the cross validation set.		
		If you always predict non-spam (output		
		y=0), your classifier will have 99% accuracy on the		
		training set, but it will do much worse on the cross		
		validation set because it has overfit the training		
		data.		
		A good classifier should have both a		
		high precision and high recall on the cross validation		
		set.		

Which of the following statements are true? Check all that apply.		
	Using a very large training set	
	makes it unlikely for model to overfit the training	
	data.	
	On skewed datasets (e.g., when there are	
	more positive examples than negative examples), accuracy	
	is not a good measure of performance and you should	
	instead use ${\cal F}_1$ score based on the	
	precision and recall.	
	After training a logistic regression	
	classifier, you must use 0.5 as your threshold	
	for predicting whether an example is positive or	
	negative.	
	It is a good idea to spend a lot of time	
	collecting a large amount of data before building	
	your first version of a learning algorithm.	
	If your model is underfitting the	
	training set, then obtaining more data is likely to	
	help.	

5.

2.		Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.		
	Which	hich are the two?		
		We train a learning algorithm with a		
		small number of parameters (that is thus unlikely to		
		overfit).		
		The features \boldsymbol{x} contain sufficient		
		information to predict \boldsymbol{y} accurately. (For example, one		
		way to verify this is if a human expert on the domain		
		can confidently predict y when given only x).		
		We train a model that does not use regularization.		
		We train a learning algorithm with a		
		large number of parameters (that is able to		
		learn/represent fairly complex functions).		
3.	Suppo	suppose you have trained a logistic regression classifier which is outputing $h_{ heta}(x)$.		
		atly, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) < ext{threshold}$, currently the threshold is set to 0.5.		
	Supporthat ap	se you increase the threshold to 0.7. Which of the following are true? Check all oply.		
		The classifier is likely to now have lower recall.		
		The classifier is likely to now have lower precision.		
		The classifier is likely to have unchanged precision and recall, but		
		higher accuracy.		
		The classifier is likely to have unchanged precision and recall, but		
		lower accuracy.		

4.			
	emails are	positive examples $(y=1)$ and non-spam emails are	
	negative e	xamples ($y=0$). You have a training set of emails	
	in which 99% of the emails are non-spam and the other 1% is		
	spam. Which of the following statements are true? Check all		
	that apply.		
	A {	good classifier should have both a	
	hig	ph precision and high recall on the cross validation	
	se	t.	
	If y	ou always predict non-spam (output	
	y	= 0), your classifier will have 99% accuracy on the	
	tra	ining set, and it will likely perform similarly on	
		e cross validation set.	
		ou always predict non-spam (output	
		= 0), your classifier will have an accuracy of	
	99		
		ou always predict non-spam (output	
		= 0), your classifier will have 99% accuracy on the	
	training set, but it will do much worse on the cross		
		lidation set because it has overfit the training	
	Ua	td.	
3.	Suppo	se you have trained a logistic regression classifier which is outputing $h_{ heta}(x).$	
		ntly, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) < ext{threshold}$, currently the threshold is set to 0.5.	
	Suppo that a	ise you decrease the threshold to 0.3. Which of the following are true? Check all oply.	
		The classifier is likely to have unchanged precision and recall, but	
		higher accuracy.	
		The classifier is likely to now have higher precision.	
		The classifier is likely to now have higher recall.	
		The classifier is likely to have unchanged precision and recall, but	
		lower accuracy.	

emails are positive examples ($y=1$) and non-spam emails are	
negative examples ($y=0$). You have a training set of emails	
in which 99% of the emails are non-spam and the other 1% is	
spam. Which of the following statements are true? Check all	
that apply.	
$oxed{ }$ If you always predict spam (output $y=1$),	
your classifier will have a recall of 0% and precision	
of 99%.	
lacksquare If you always predict spam (output $y=1$),	
your classifier will have a recall of 100% and precision	
of 1%.	
If you always predict non-spam (output	
y=0), your classifier will have an accuracy of	
99%.	
If you always predict non-spam (output	
y=0), your classifier will have a recall of	

0%.