Introduction to Application of Polymer Composite materials in structural engineering

Dr. M. Motavalli

- 1. Write a computer program to calculate the general orthotropic elastic constants $Qbar_{ij}$ in terms of the orthotropic elastic constants Q_{ij} . Plot \bar{Q}_{ij} for the graphite/epoxy prepreg as a function of θ for the range $0 \le 180^{\circ} \le \theta$
- 2. Based on the requirement that at least one ply each of θ =0°,45°,-45° and 90° be used and that all plies are the same material and thickness, construct a minimum thickness laminate and evaluate A_{ij} , B_{ij} and D_{ij} for the following situations.
 - a. Orthotropic with respect to in-plane forces. That is $A_{16}=A_{26}=0$.
 - b. $B_{ii}=0$
 - c. Orthotropic with respect to bending force. That is $D_{16}=D_{26}=0$.
 - d. Requirements (a) and (b) simultaneously
 - e. Requirements (a) and (c) simultaneously

If it isn't possible to satisfy any of above, explain why.

3. A symmetric laminate is composed of four plies with ply angles $\pm \theta$. If the total thickness of the laminate is (t), determine the individual thicknesses that will guarantee that the laminate is orthotropic with respect to bending force. That is $D_{16}=D_{26}=0$.

Graphite/epoxy Mechanical properties:

 $E_{11} = 164.0 \text{ GPa}$

 $E_{22} = 8.30 \text{ GPa}$

 $G_{12} = 2.10 \text{ GPa}$

 $v_{12} = 0.34$

Thermal properties:

$$\alpha_1 = -4.5e-7 / ^{\circ}C$$

 $\alpha_2 = 3.17e-5 / ^{\circ}C$

Please bear in mind following points:

- 1) All code's source files must be provided.
- 2) Exercises must be sent before the due date.
- 3) Illustrations of problems must be provided.
- 4) Please send only one zipped file containing the source codes and the report.

Ali Jafarabadi 2020-2021