$SS_{XY} = \sum_{i=1}^{N} (X_i - \bar{X}) (y_i - \bar{y})$ Investigating Factors that **Affect Perceived Threat Level** of Individuals Involved in **Police Shootings**

TAIRA BHARGAVA, MADELEINE DEAN, CHLOE VAN VOORHIS, KIDEST WOLDE

rean

-Z = -1.886

Research Question:

How does region, race and age impact the perceived threat level of an individual in a police shooting?

Background & Motivation

YOUR NUMBER ONE SOURCE FOR HEADLINES

A report by The Washington Post found that Black Americans are disproportionately impacted by police use of lethal force. Despite making up only 13% of the US population, Black Americans accounted for 24% of all people killed by police in 2020 (1)

A study by the Ruderman Family Foundation found that in some cities, such as Los Angeles, people with mental illness accounted for nearly 40% of all police shootings (2)

\$1.00

ince 1883

target and address ways to minimize the number of dangerous and fatal police shootings due to biases.

WITNESS FOUND

DATA

Gathered by **the Washington post** in a compilation database of every fatal shooting in the United States by a police officer in the line of duty since Jan. 1, 2015.

CORGIS Dataset Project

collected by Dennis Kafura, Joung Min Choi, and Bo Guan.

https://think.cs.vt.edu/corgis/csv/police_shootings/

Key Descriptions					
Кеу	List of	Comment	Example Value		
Person.Name	String	Full name of the individual or "Unknown" if not reported	"Tim Elliot"		
Person.Age	Integer	Age in years of the individual or 0 (zero) if not reported	53		
Person.Gender	String	One of Male, Female, or Unknown	"Male"		
Person.Race	String	One of Asian, African American, White, Hispanic, Native American, Other, or Unknown.	"Asian"		
Incident.Date.Month	Integer	Month (1-12) in which the shooting occurred	1		
Incident.Date.Day	Integer	Day (1-31) in which the shooting occurred	2		
Incident.Date.Year	Integer	Year (2015-2019) in which the shooting occurred	2015		

Variables:

6569 observations

Race, region, Perceived Threat Level → Qualitative Age → Quantitative

Explanatory Variables: race, region, age Response Variable: perceived threat level

https://www.washingtonpost.com/national/how-the-washington-post-is-examining-police-shootings-in-the-united-states/2016/07/07/d9c52238-43ad-11e6-8856-f26de2537a9d_story.html

Methodology

Visualizations

Showing relationship between explanatory and response variable

Linear Regression Model

Explanatory Variable: region, race, and age

Response Variable: threat level

Summary Statistics

Contexualizing findings with mean values for explanatory and response variables

Predict function

Modeling individual explanatory variable's effect on response variable

VISUALIZATIONS

Linear Regression Model

Predicted Linear Regression Values

estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
3.623166714	0.0374061222	96.860260	0.000000000
-0.026575875	0.0081641381	-3.255197	0.001142048
0.001992737	0.0006137483	3.246830	0.001176068
-0.014470555	0.0082674403	-1.750307	0.080137833
	<dbl> 3.623166714 -0.026575875 0.001992737</dbl>	<dbl> <dbl> 3.623166714 0.0374061222 -0.026575875 0.0081641381 0.001992737 0.0006137483</dbl></dbl>	<dbl> <dbl> 3.623166714 0.0374061222 96.860260 -0.026575875 0.0081641381 -3.255197 0.001992737 0.0006137483 3.246830</dbl></dbl>

Predicted Linear Regression Equation

```
threat\_level\_num = 1.377 + 0.0266 * race\_num - 0.0019927 * Person. Age + 0.01447 * region\_num \\ threat\_level\_num: \{1 \text{ if unnkown; 2 if undetermined; 3 if other; 4 if attack}\} \\ region\_num: \{1 \text{ if Midwest; 2 if Northeast; 3 if South; 4 if West}\} \\ race\_num: \{1 \text{ if White; 2 if Black; 3 if Hispanic; 4 if Asian; 5 if Native American}\} \\
```

Summary Statistics & Predictions

Summary Statistics

• mean race: 1.670755

• mean age: 35.38469

• mean region: 2.960725

mean threat level:

3.612726

Predictions for Region (all other variables held constant)

- Midwest = 3.634807
- Northeast = 3.620336
- South = 3.605866
- West 3.591395

Predictions for Race (all other variables held constant)

- White = 3.62426
- Black = 3.597684
- Hispanic = 3.571108
- Asian = 3.544532
- Native American
 - = 3.517956

Predictions for Age (all other variables held constant)

- 25 years = 3.58574
- 35 years = 3.605667
- 45 years = 3.625595

LIMITATIONS

The data used in this analysis was gathered from media reports and may contain errors or inaccuracies.

LIMITATION 1

The dataset may not be completely representative of all police shootings in the United States, as not all incidents are reported by the media. Also the data set stops at 2021.

LIMITATION 2

The dataset does not provide information on the circumstances of the incident or the actions of the individuals involved.

LIMITATION 3

Team Abele

Future Work

- Investigate other overarching factors
 Further research should be conducted to investigate the factors that contribute to police shootings, such as police training, policies, and procedures.
- Understand scope of the issue
 It would be valuable to collect more comprehensive and accurate data on police shootings in order to better understand the scope of the issue and identify trends.
- Review Implicit and Explicit Bias
 Research could be conducted to explore the impact of implicit bias on police shootings and how this can be addressed through training and education.

THANK YOU