Асимптотическая оптимальность

1 Описание модели

Пусть $(\Omega, \mathcal{F}, \mathsf{P})$ – вероятностное пространство. Пусть $\mathbb{F} = \{\mathcal{F}_t, t \in \mathbb{Z}_+\}$ – фильтрация этого вероятностного пространства, характеризующая общее состояние рынка в момент времени $t = 0, 1, \ldots$ Пусть на финансовом рынке существует n активов. Каждый актив характеризуется величиной $A_t^k(\omega)$ – доходом на единицу вложенных средств за временной отрезок (t-1,t]. Процесс $(A_t = (A_t^1, \ldots, A_t^n), \ t \geq 1)$ согласован с фильтрацией \mathbb{F} . Будем предполагать, что для любых $\omega \in \Omega$ и $t \geq 1$ выполнется:

$$A_t^k(\omega) > 0. (1)$$

Положим $\Lambda = \{\lambda \in \mathbb{R}^n : \lambda^1 + \dots + \lambda^n = 1, \ \forall i \ \lambda^i \geq 0\}$ – множество всевозможных вариантов распределения инвестором собственного капитала по активам (λ – вектор долей). Пусть $\lambda_t : \Omega \to \Lambda$ – вектор-функция, показывающая как инвестор будет распределять свой капитал в момент времени t при событии ω . Пусть последовательность функций $\lambda(\omega) = \{\lambda_t(\omega), t \geq 0\}$ является предсказуемой относительно фильтрации \mathbb{F} . Тогда назовём $\lambda(\omega)$ инвестиционной стратегией.

При выбранной инвестиционной стратегии λ и начальном капитале X_0 ($X_0 \in \mathbb{R}, X_0 > 0$) капитал инвестора в момент времени $t = 1, 2, \ldots$ будет рекурсивно определяться как:

$$X_t = \langle \lambda_{t-1}, A_t \rangle X_{t-1}, \tag{2}$$

где $\langle \lambda_{t-1}, A_t \rangle = \sum_{k=1}^n \lambda_{t-1}^k A_t^k$ – скалярное произведение, которое показывает, какое количество денег получит инвестор на каждую вложенную денежную единицу в момент t, действуя по инвестиционной стратегии $\lambda(\omega)$.

Из выражений (??) и (??) следует, что $X_t(\omega) > 0 \; \forall \; t.$

Наш основной интерес составляют те инвестиционные стратегии, которые будут гарантировать наискорейший (асимптотически) рост капитала. Для этого введём несколько определений.

Определение 1. Назовём инвестиционную стратегию λ^* *логоптимальной*, если для любой стратегии λ выполняется:

$$\mathsf{E}(\ln \frac{X_{t+1}^{\lambda}}{X_{t+1}^{\lambda^*}} \mid \mathcal{F}_t) \le \ln \frac{X_t^{\lambda}}{X_t^{\lambda^*}}.$$

Определение 2. Назовём инвестиционную стратегию λ^* *асимптотически опти-мальной*, если её скорость роста выше скорости роста любой другой стратегии λ :

$$\overline{\lim_{t \to \infty}} \frac{1}{t} \ln X_t^{\lambda} \le \overline{\lim_{t \to \infty}} \frac{1}{t} \ln X_t^{\lambda^*}$$

или иначе:

$$\overline{\lim}_{t\to\infty}(\frac{1}{t}\cdot\ln\frac{X_t^\lambda}{X_t^{\lambda^*}})\leq 0.$$

2 Существование логоптимальной стратегии

Для начала введём вспомогательные понятия, которые понадобятся в ходе доказательства.

Определение 3. *Соответствие* $\varphi: X \to Y$ из множества X в множество Y сопоставляет каждому значению $x \in X$ подмножество $\varphi(x) \subset Y$.

Определение 4. Пусть (S, Σ) — измеримое пространство и пусть X и Y— топологические пространства. Назовём функцию $f: S \times X \to Y$ функцией Каратеодори, если:

- 1) Для каждого $x \in X$ функция $f^x = f(\cdot, x)S \to Y$ (Σ, \mathcal{B}_Y) -измерима.
- 2) Для каждого $s \in S$ функция $f_s = f(s, \cdot) : X \to Y$ непрерывна.

Определение 5. Измеримой выборочной функцией из соответствия $\varphi: S \twoheadrightarrow X$ между измеримыми пространствами назовём измеримую функцию $f: S \to X$ такую, что $f(s) \in \varphi(s)$ для каждого $s \in S$.

Теорема 1. (Measurable Maximum Theorem, D.Aliprantis, C.Border "Infinite Dimensional Analysis", Theorem 18.19)

Пусть X- сепарабельное метрическое компактное пространство и $(S,\Sigma)-$ измеримое пространство. Пусть $f:S\times X\to\mathbb{R}-$ функция Каратеодори. Определим действительную функцию $m:S\to\mathbb{R}$ как:

$$m(s) = \max_{x \in X} f(s, x)$$

и соответствие $\mu: S \twoheadrightarrow X$ как:

$$\mu(s)=\{x\in X: f(s,x)=m(s)\}.$$

Тогда:

- 1) Действительная функция m(s) измерима.
- 2) Соответствие $\mu(s)$ имеет непустые и компактные значения.
- 3) Соответствие $\mu(s)$ измеримо и допускает существование измеримой выборочной функции.

Теперь приступим непосредственно к основной теореме.

Теорема 2. Логоптимальная стратегия λ^* существует.

Доказательство. Необходимо доказать, что существует стратегия λ^* , такая что $\ln \frac{X_{t+1}^{\lambda}}{X_{t+1}^{\lambda^*}}$ - супермартингал. Для этого достаточно показать, что:

$$\mathsf{E}(\ln \frac{X_{t+1}^{\lambda}}{X_{t}^{\lambda}} \mid \mathcal{F}_{t}) - \mathsf{E}(\ln \frac{X_{t+1}^{\lambda^{*}}}{X_{t}^{\lambda^{*}}} \mid \mathcal{F}_{t}) \le 0 \tag{3}$$

Будем искать логоптимальную стратегию в виде

$$\lambda^*(\omega) = \operatorname*{argmax}_{\lambda(\omega)} \mathsf{E}(\ln \frac{X_{t+1}^{\lambda}}{X_t^{\lambda}} \mid \mathcal{F}_t) = \operatorname*{argmax}_{\lambda(\omega)} \mathsf{E}(\ln \sum_{k=1}^n \lambda_{t+1}^k A_{t+1}^k \mid \mathcal{F}_t) \tag{4}$$

Для того, чтобы существование математического ожидания из предыдущей формулы не вызывало сомнения, нормируем случайный вектор A_t . Введём случайные величины

$$R_t^k = \frac{A_t^k}{\sum_{i=1}^n A_t^i}$$

Далее, преобразуем выражение из неравенства (??):

$$\begin{split} \mathsf{E}(\ln \frac{X_{t+1}^{\lambda}}{X_{t}^{\lambda}} - \ln \frac{X_{t+1}^{\lambda^{*}}}{X_{t}^{\lambda^{*}}} \mid \mathcal{F}_{t}) &= \mathsf{E}(\ln \frac{X_{t+1}^{\lambda}}{X_{t}^{\lambda}} \cdot \frac{X_{t}^{\lambda^{*}}}{X_{t+1}^{\lambda^{*}}} \mid \mathcal{F}_{t}) = \mathsf{E}(\ln \frac{\sum\limits_{k=1}^{n} \lambda_{t+1}^{k} A_{t+1}^{k}}{\sum\limits_{k=1}^{n} \lambda_{t+1}^{k} A_{t+1}^{k}} \mid \mathcal{F}_{t}) = \\ &= \mathsf{E}(\ln \frac{\sum\limits_{k=1}^{n} \lambda_{t+1}^{k} A_{t+1}^{k} / \sum\limits_{i=1}^{n} A_{t+1}^{i}}{\sum\limits_{k=1}^{n} \lambda_{t+1}^{k} A_{t+1}^{k} / \sum\limits_{i=1}^{n} A_{t+1}^{i}} \mid \mathcal{F}_{t}) = \mathsf{E}(\ln \frac{\sum\limits_{k=1}^{n} \lambda_{t+1}^{k} R_{t+1}^{k}}{\sum\limits_{k=1}^{n} \lambda_{t+1}^{k} R_{t+1}^{k}} \mid \mathcal{F}_{t}) = \\ &= \mathsf{E}(\ln \sum\limits_{k=1}^{n} \lambda_{t+1}^{k} R_{t+1}^{k} \mid \mathcal{F}_{t}) - \mathsf{E}(\ln \sum\limits_{k=1}^{n} \lambda_{t+1}^{k} R_{t+1}^{k} \mid \mathcal{F}_{t}) \end{split}$$

Определим логоптимальную стратегию как:

$$\lambda^*(\omega) = \underset{\lambda}{\operatorname{argmax}} \ \mathsf{E}(\ln \sum_{k=1}^n \lambda_{t+1}^k R_{t+1}^k \mid \mathcal{F}_t)(\omega) \tag{5}$$

Все величины R_{t+1}^k можно оценить сверху: $R_{t+1}^k \le 1$. К тому же, всегда существует k', т.ч. $\lambda_{t+1}^{k'}R_{t+1}^{k'}>0$. Тогда:

$$-\infty < \ln \lambda_{t+1}^{k'} R_{t+1}^{k'} \le \ln \sum_{k=1}^{n} \lambda_{t+1}^{k} R_{t+1}^{k} \le \ln \sum_{k=1}^{n} \lambda_{t+1}^{k} = \ln 1 = 0$$

Следовательно, $\mathsf{E}|\ln\sum_{k=1}^n \lambda_{t+1}^k R_{t+1}^k| < \infty$ и условное ожидание из формулы (??) существует. Преобразуем:

$$\mathsf{E}(\ln \sum_{k=1}^{n} \lambda_{t+1}^{k} R_{t+1}^{k} \mid \mathcal{F}_{t}) = \mathsf{E}(\ln \sum_{k=1}^{n} \lambda_{t+1}^{k} R_{t+1}^{k} \mid \mathcal{F}_{t})(\omega) =$$

$$= \int_{[0,1]^{n}} \ln \sum_{k=1}^{n} \lambda_{t+1}^{k} r^{k} \cdot \mathsf{P}_{t}(\omega, dr), \tag{6}$$

где $P_t(\omega, dr)$ - условное распределение вектора R_{t+1} при условии \mathcal{F}_t . Для каждого фиксированного ω в уравнении (??) мы имеем интеграл от выпуклой вверх функции от λ , поэтому сам интеграл - тоже выпуклая функция от λ . Следовательно, существует её максимум λ^* . Объединяя результаты по всем ω , получаем, что существует стратегия $\lambda^*(\omega)$, удовлетворяющая условию логоптимальности.

Теперь докажем, что функцию $\lambda^*(\omega)$ всегда можно выбрать так, чтобы она была измеримой. Введём обозначения:

$$f(\omega,\lambda) = \int_{S} \ln \sum_{k=1}^{n} \lambda_{t+1}^{k} r^{k} \mathsf{P}(\omega,dr), \text{ где } S = \{x \in [0,1]^{n} : x^{1} + \dots x^{n} = 1\}$$
$$m(\omega) = \max_{\lambda \in \Lambda} f(\omega,\lambda), \quad M(\omega) = \{\lambda \in \Lambda : f(\omega,\lambda) = m(\omega)\}$$
$$\lambda^{*}(\omega) = \operatorname*{argmax}_{\lambda \in \Lambda} f(\omega,\lambda)$$

и удостоверимся, что функции в нашей ситуации полностью удовлетворяют утверждению теоремы об измеримом максимуме (Measurable Maximum Theorem).

 $\Lambda = \{x \in \mathbb{R}^n : x^1 + \dots + x^n = 1, \ \forall i \ x^i \geq 0\}$ – компакт на гиперплоскости в \mathbb{R}^n – очевидно, является сепарабельным метрическим пространством (метрика индуцирована с $\mathbb{R}^n, \Lambda \cap \mathbb{Q}^n$ – счётное всюду плотное множество).

 (Ω, \mathcal{F}) – измеримое пространство.

 $f(\omega,\lambda):\Omega\to\Lambda$ – функция Каратеодори, т.к. для любого фиксированного $\lambda\in\Lambda$ она, как функция ω , измерима в силу определения условного математического ожидания. Для любого фиксированного $\omega\in\Omega$ она, как функция λ , непрерывна в силу теоремы Лебега о мажорируемой сходимости.

Тогда по пункту 3) Теоремы об Измеримом Максимуме существует измеримая выборочная функция $\lambda^*(\omega)$ из соответствия $M(\omega)$.

3 Существование асимптотически оптимальной стратегии

Теорема 3. Логоптимальная стратегия является также и асимптотически оптимальной.

4

Доказательство. Пусть λ^* - логоптимальная стратегия. Тогда $\ln \frac{X_{\lambda}^{\lambda}}{X_{\lambda}^{**}}$ — супермартингал. Достаточно доказать, что он ограничен сверху, тогда условие асимптотической оптимальности почти автоматически выполнено. Для этого ограничим его сверху:

$$\ln \frac{X_t^{\lambda}}{X_t^{\lambda^*}} \le \ln(1 + \frac{X_t^{\lambda}}{X_t^{\lambda^*}}) = \ln \frac{X_t^{\lambda} + X_t^{\lambda^*}}{X_t^{\lambda^*}}$$
 (7)

Докажем, что $\ln \frac{X_t^{\lambda} + X_t^{\lambda^*}}{X_t^{\lambda^*}}$ - супермартингал. Для простоты будем в дальнейшем писать $\mathsf{E}(\cdot \mid \mathcal{F}_t) = \mathsf{E}_t(\cdot)$.

$$\begin{split} \mathsf{E}_{t-1} \ln \frac{X_{t}^{\lambda} + X_{t}^{\lambda^{*}}}{X_{t}^{\lambda^{*}}} &= \mathsf{E}_{t-1} \Big[\ln \frac{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^{*}}}{X_{t-1}^{\lambda^{*}}} - \ln \langle R_{t}, \lambda_{t-1}^{*} \rangle + \\ &+ \ln \Big(\langle R_{t}, \lambda_{t-1} \rangle \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^{*}}} + \langle R_{t}, \lambda_{t-1}^{*} \rangle \frac{X_{t-1}^{\lambda^{*}}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^{*}}} \Big) \Big] = \\ &= \ln \frac{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^{*}}}{X_{t-1}^{\lambda^{*}}} + \mathsf{E}_{t-1} \ln \Big(\frac{\langle R_{t}, \lambda_{t-1} \rangle}{\langle R_{t}, \lambda_{t-1}^{*} \rangle} \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^{*}}} + \frac{X_{t-1}^{\lambda^{*}}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^{*}}} \Big) \end{split}$$

Достаточно показать, что

$$\mathsf{E}_{t-1} \ln \left(\frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} + \frac{X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) \le 0 \tag{8}$$

Разобьём это математическое ожидание на 2 части индикатором:

$$\mathsf{E}_{t-1}\ln\left(\cdot\right) = \mathsf{E}_{t-1}\ln\left(\cdot\right)\mathbb{I}\left\{\frac{\langle R_t, \lambda_{t-1}\rangle}{\langle R_t, \lambda_{t-1}^*\rangle} \le 1\right\} + \mathsf{E}_{t-1}\ln\left(\cdot\right)\mathbb{I}\left\{\frac{\langle R_t, \lambda_{t-1}\rangle}{\langle R_t, \lambda_{t-1}^*\rangle} \ge 1\right\}$$

Теперь оценим обе части:

1)
$$\mathsf{E}_{t-1} \ln \left(\frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} + \frac{X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) \mathbb{I} \left\{ \frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \le 1 \right\} \le$$

$$\le \mathsf{E}_{t-1} \ln \left(1 \cdot \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} + \frac{X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) \mathbb{I} \left\{ \frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \le 1 \right\} \le$$

$$\le \mathsf{E}_{t-1} \ln \left(1 \cdot \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} + \frac{X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) \cdot 1 = \mathsf{E}_{t-1} \ln \left(\frac{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) = 0$$

$$2) \; \mathsf{E}_{t-1} \ln \left(\frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} + \frac{X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) \mathbb{I} \left\{ \frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \ge 1 \right\} \le$$

$$\le \mathsf{E}_{t-1} \ln \left(\frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} + \frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \frac{X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) \cdot 1 \le$$

$$\le \mathsf{E}_{t-1} \ln \left(\frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \cdot \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) = \mathsf{E}_{t-1} \ln \langle R_t, \lambda_{t-1} \rangle - \mathsf{E}_{t-1} \ln \langle R_t, \lambda_{t-1}^* \rangle$$

$$\le \mathsf{E}_{t-1} \ln \left(\frac{\langle R_t, \lambda_{t-1} \rangle}{\langle R_t, \lambda_{t-1}^* \rangle} \cdot \frac{X_{t-1}^{\lambda^*}}{X_{t-1}^{\lambda} + X_{t-1}^{\lambda^*}} \right) = \mathsf{E}_{t-1} \ln \langle R_t, \lambda_{t-1} \rangle - \mathsf{E}_{t-1} \ln \langle R_t, \lambda_{t-1}^* \rangle$$

В силу того, что $\ln \frac{X_t^{\lambda}}{X_t^{\lambda*}}$ - супермартингал, имеем:

$$\begin{split} \mathsf{E}_{t-1} \ln \frac{X_{t}^{\lambda}}{X_{t}^{\lambda^{*}}} & \leq \ln \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda^{*}}} = \mathsf{E}_{t-1} \ln \frac{X_{t-1}^{\lambda}}{X_{t-1}^{\lambda^{*}}} \\ \mathsf{E}_{t-1} \ln X_{t}^{\lambda} - \mathsf{E}_{t-1} \ln X_{t}^{\lambda^{*}} & \leq \mathsf{E}_{t-1} \ln X_{t-1}^{\lambda} - \mathsf{E}_{t-1} \ln X_{t-1}^{\lambda^{*}} \\ \mathsf{E}_{t-1} \ln X_{t}^{\lambda} - \mathsf{E}_{t-1} \ln X_{t-1}^{\lambda} & \leq \mathsf{E}_{t-1} \ln X_{t}^{\lambda^{*}} - \mathsf{E}_{t-1} \ln X_{t-1}^{\lambda^{*}} \\ \mathsf{E}_{t-1} \ln \frac{X_{t}^{\lambda}}{X_{t-1}^{\lambda}} & \leq \mathsf{E}_{t-1} \ln \frac{X_{t}^{\lambda^{*}}}{X_{t-1}^{\lambda^{*}}} \\ \mathsf{E}_{t-1} \ln \frac{\langle R_{t}, \lambda_{t-1} \rangle X_{t-1}^{\lambda}}{X_{t-1}^{\lambda}} & \leq \mathsf{E}_{t-1} \ln \frac{\langle R_{t}, \lambda_{t-1}^{*} \rangle X_{t-1}^{\lambda^{*}}}{X_{t-1}^{\lambda^{*}}} \\ \mathsf{E}_{t-1} \ln \langle R_{t}, \lambda_{t-1} \rangle - \mathsf{E}_{t-1} \ln \langle R_{t}, \lambda_{t-1}^{*} \rangle & \leq 0 \end{split}$$

Таким образом, неравенство ?? доказано, и $\ln \frac{X_t^{\lambda} + X_t^{\lambda^*}}{X_t^{\lambda^*}}$ - супермартингал. Что важно, супермартингал неотрицательный:

$$\ln \frac{X_t^{\lambda} + X_t^{\lambda^*}}{X_t^{\lambda^*}} = \ln(1 + \frac{X_t^{\lambda}}{X_t^{\lambda^*}}) \ge \ln 1 = 0$$

Одно из следствий теоремы Дуба - неотрицательный супермартингал сходится почти наверное, то есть существует конечная случайная величина $A_{\infty} = \lim_{t \to \infty} \ln \frac{X_t^{\lambda} + X_t^{\lambda^*}}{X_t^{\lambda^*}}$. Отсюда:

$$\overline{\lim}_{t \to \infty} \left(\frac{1}{t} \cdot \ln \frac{X_t^{\lambda}}{X_t^{\lambda^*}} \right) \le \overline{\lim}_{t \to \infty} \left(\frac{1}{t} \cdot \ln \frac{X_t^{\lambda} + X_t^{\lambda^*}}{X_t^{\lambda^*}} \right) = \frac{A_{\infty}}{\lim_{t \to \infty} t} = 0,$$

то есть стратегия λ^* асимптотически оптимальна.