

FS9721_LP3

4,000格 数字多用电表专用集成电路

产品说明书

TD-0412010 Rev. 1.7

⚠ 注 意

- 1. 为了用好 FS9721 LP3, 请仔细阅读本说明书。
- 2. 本说明书提供的各应用电路图及各图中的组件规格,仅供参考,实际应用中电路形式、组件规格和参数要根据各具体情况而定,才能保证达到设计要求。
- 3. 用 FS9721_LP3 作测量仪表时,要注意各输入端的过电压、过电流保护,以免 在过电压、过电流情况下造成 FS9721 LP3 和仪表的损坏。
- 4. 本器件的"自动关机",是指一种休眠状态,在休眠状态下,仍要消耗微小的电流(小于 **5** μ A),若长期不用,最好切断电源。
- 5. FS9721_LP3 是带微处理器的高精度、多功能模/数变换器,应用 FS9721_LP3 时 PCB 的设计、元器件的摆放要考虑抗干扰的措施,尽量减少外部引入的干扰和内部的交叉干扰,以期求得满意的效果。
- 6. 本说明书是 2004 年 11 月版,随着产品的改进和提高,有些参数和电路会有些变动,变动时,恕不一一通知,若有问题,请直接与本公司联系。

当心,

ESD(electrostatic discharge) 敏感器件,输入端虽有保护,由于器件没有安装在板上会招致高压静电的击穿而造成永久性损坏。没使用的器件应存放导电膜中或将所有输入端短路。在器件插入板上插座之前,保护膜应与插座短路放电。芯片的邦定要注意环境的温、湿度。湿度不要低于75%RH。邦定设备要良好接地,操作人员要穿防静电服,戴好接地环。

目 录

	页	数
一、简介	• • • • • • • • • • • • • • • • • • • •	3
二、FS9721 与 FS9711 的异同点 ······	•••••	3
三、特征	• • • • • • • • • • • • • • • • • • • •	3
四、可测量种类	• • • • • • • • • • • • • • • • • • • •	3
五、可应用产品领域	• • • • • • • • • • • • • • • • • • • •	4
六、方框图		4
七、脚位图		4
八、脚位描述		5
九、技术规格	••••••	• 6
十、测量种类选择	• • • • • • • • • • • • • • • • • • • •	• 8
十一、按键定义	••••••	• 9
十二、其它功能 ······	••••••	• 9
十三、应用说明······	••••••	•10
十四、RS232 传输协议······	••••••	·17
十五、液晶显示器		·18
十六、封装片外形尺寸	••••••	·19
十七、采购信息	••••••	•20
十八、更新纪录	••••••	·21

一、简介

FS9721_LP3 是高性能、低功耗、3 3/4 位(4000 Counts)带微处理器的模/数变换器(ADC+MCU),内部包含有 8 位微处理器,低噪声、高稳定运算放大器,交流整流运算放大器,电压提升电路及稳压电源,高稳定带隙基准电源,自动量程转换及功能控制电路,蜂鸣器驱动电路,时钟振荡电路,背光显示控制电路,液晶显示驱动电路等。

由于 FS9721_LP3 带有微处理器,通过输入/输出口(I/0)可以进行逻辑功能控制,用 MEA1~MEA4 脚进行编码的组合,就可以实现各种功能的测量; 可以通过编码设置,构成全自动量程测量仪表。设置 RANGE, SELECT, HOLD/BLCTR, REL, HZ/DUTY, RS232, RESET 按键,可以通过触发这些按键实现量程选择,功能切换,读数保持,背光显示,相对值、频率和占空比测量,数据传输和复位等功能。

FS9721_LP3 有串行数据输出功能,用户可将仪表与计算机等设备相连,便于对测量数据进行记录、分析、处理和打印。

有自动关机功能,当仪表旋钮和按键在30分钟内均无动作时,它会进入休眠状态,以节省电能。仪表使用过程中若不需要自动关机时,也可以在使用时取消该功能。

FS9721_LP3 以大规模集成电路技术制造,极大地提高了产品的可靠性,使设计简单,体积小,电源电压低,功耗小,便于使用电池供电,特别适用于掌上型仪表。

FS9721_LP3 是带微处理器的多功能测量模/数变换器,只要加上少量外部元器件,就可以构成一台精度高、功能多、成本低的测量仪表。

二、FS9721 与 FS9711 的异同点

FS9721 是 FS9711 的改进版本和替代品,引出脚和基本功能与 FS9711 完全相同, FS9721_LP1 完全可以替换 FS9711-LP1。FS9721 是在 FS9711 的基础上加以改进的, FS9721 的一些特性优于 FS9711, 具体如下:

- 2.1 VB 与 VSS 之间的 $1M\Omega$ 电阻换成 0.1 μ F 的电容, VDD 与 98 脚之间反接一只二极管;
- 2.2 FS9721 工作电流为 1.0mA 左右, 而 FS9711 为 1.3mA;
- 2.3 FS9721 在电压、电流测量模式下测量频率的灵敏度高于 FS9711 一倍以上;
- 2.4 FS9721 电容测量时受电源电压的影响较小;
- 2.5 FS9721 电流测量的取样电压有所改善,可达 40mV/400mV;
- 2.6 FS9721 交流电压测量回零情况比 FS9711 好;
- 2.7 FS9721 的裸片面积略小于 FS9711。

三、特征

- 3.1 最大显示: 4000 (频率 4999)。
- 3.2 转换速率: 3次/秒。
- 3.3 极性指示: 自动。
- 3.4 工作电压: 2.4V~3.6V。
- 3.5 工作电流: ≤1mA
- 3.6 低电指示:约为 2.4 V。
- 3.7 蜂鸣频率:约为2.7kHz。
- 3.8 数据输出: RS232 (串行)。
- 3.9 交流整流: 内置运算放大器。
- 3.10 功能按键: RANGE, SELECT, HOLD/BLCTR, REL, HZ/DUTY, RS232, RESET。
- 3.11 自动关机: 30 分钟。
- 2.12 有单位符号和背光显示。

四、可测量种类

- 4.1 直流电压: 400.0mV, 4.000V, 40.00V, 400.0V, 1000V。
- 4.2 交流电压: 400.0mV, 4.000V, 40.00V, 400.0V, 750V。
- 4.3 直流电流: 400.0μA / 4000μA, 40.00mA / 400.0mA, 10.00A。
- 4.4 交流电流: 400.0μA / 4000μA, 40.00mA / 400.0mA, 10.00A, 400.0A / 4000A(ACA)。
- 4.5 电 阻: 400.0Ω , $4.000 k \Omega$, $40.00 k \Omega$, $400.0 k \Omega$, $4.000 M \Omega$, $40.00 M \Omega$.
- 4.6 电 容: 51. 20nF, 512. 0nF, 5. 120 μF, 51. 20 μF, 100. 0 μF(30Sec)。
- 4.7 频率: 5.000Hz, 50.00Hz, 500.0Hz, 5.000kHz, 50.00kHz, 500.0kHz, 5.000MHz
- 4.8 占空比: 0.1%~99.9%。
- 4.9 二极管: 0V~1.5 V。
- 4.10 通断检测: 低于 30 Ω 时发声。

- 3 -

五、可应用产品领域

- 5.1 自动量程掌上型数字多用表。
- 5.2 自动量程名片型数字多用表。
- 5.3 自动量程笔式数字多用表。
- 5.4 自动量程钳型表。
- 5.5 数字面板表。

六、方框图

图 1 方框图

七、脚位图

图 2 100PIN 封装

八、脚位描述

FS9721_LP3

4,000 格 数字多用电表专用集成电路

8.1 脚位描述	术			
封装片	裸片	符号	I/O	描述
1	1	OP2N	I	交/直流转换运算放大器反向输入端
2		NC		空脚
3	2	OP2O	О	交/直流转换运算放大器输出端
4	3	AD1P	I	交流测量之 ADC 正输入端
5		NC		空脚
6	4	AD1N	I	交流测量之 ADC 负输入端
7	-	NC		空脚
8	5	SA	I	电流测量之 ADC 输入端
9	6	SGND	I	模拟接地之 ADC 负输入端
10	7	ADP	Ī	额外 ADC 输入正端
11	8	DT	I/O	二极管测量分压电阻连接点
12		NC	-, -	空脚
13	9	SMV	I	高阻电压输入端/电阻/二极管测量分压电阻连接点
14	10	CRES1	I/O	电阻测量待测点的滤波电容连接点
15	11	RL	I	电阻测量参考电压负输入端
16	12	NC	-	空脚
17	13	RCAP	I/O	电容测量校准电阻连接点
18	14	ONEK	I/O	1kΩ电阻连接点
19	17	NC	1, 0	空脚
20	15	TENK	I/O	10kΩ电阻连接点
21	13	NC NC	1/0	空脚
22	16	HUNK	I/O	101.010kΩ电阻连接点
23	10	NC	1/0	空脚
24	17	ONEM	I/O	1.111MΩ电阻连接点
25	17	NC	1/0	空脚
26	18	TENM	I/O	10MΩ电阻连接点
27	19	CRES2	I/O	电压、电阻测量稳压电压源电容连接点
28	20	TSTB	I	电流测量模式选择(见13.14电流测量)
29	21	ADPC1	I	最大输入电压 400mV/40mV 选择(见 10.4 说明)
30	22	ADPC2	I	量测信号直流/交流选择(见 10.4 说明)
31	23	SELECT SELECT	I	测量功能选择
32	24	RANGE	I	自动/手动量程选择
33	25	REL	I	相对值测量
34	26	HOLD/ BLCTR	I	读数保持/背光控制
35	27	HZ/DUTY	I	频率/占空比测量选择
36	28	CAP	I	电容测量功能选择
37	29	MEA4	I	测量功能选择
38	30	MEA3	I	测量功能选择
39	31	MEA3	I	测量功能选择
40	32	MEA1	I	测量功能选择
40	33	LCDC1	I	则重功能选择 与 LCDC2 作自定义符号显示组合(见 10.3)
42	34	LCDC1	I	与 LCDC2 作自定义符号显示组合(见 10.3)
42	35		I	到 LCDC1 作目足又付亏並小组音(见 10.3) 测试用
43	36	TSTA VSS	I	电源输入负端
44	30	NC	1	空脚
	27	1	т	至脚 模拟信号接地点
46	37	AGND NC	I	
47	20	NC VDD	т	空脚
48	38	VDD	I	电源输入正端
49		NC NC		空脚
50		NC NC		空脚
51	20	NC VD	т .	空脚
52	39	VB	I	偏置电压输入端
53	1	NC		空脚

8.2 脚位描述(续)

封装片	裸片	符	号	I/O	描	述	

FS9721_LP3

4,000 格 数字多用电表专用集成电路

54	40	СВ	I/O	倍压电容负端连接点
55	41	CA	I/O	倍压电容正端连接点
56	42	VGG	О	倍压电路输出端
57		NC		空脚
58	43	VDDA	О	稳压电源输出/模拟电路电源
59	44	RLCD	I	LCD 驱动电压调整电阻连接点
60		NC		空脚
61	45	XIN	I	振荡晶体连接点
62	46	XOUT	О	振荡晶体连接点
63		NC		空脚
64	47	TXD	О	RS232 串行数据输出端
65		NC		空脚
66 ~ 79	48~61	SEG14∼SEG1	0	笔段 14~笔段 1
80~83	62~65	COM1∼COM4	0	公共背极 1~公共背极 4
84	66	ENTX	I	RS232 输出控制端
85	67	BEEPER	О	蜂鸣器驱动输出端
86	68	BLOUT	О	背光驱动输出端
87	69	RST	I	CPU 复位
88		NC		空脚
89	70	REFI	I	ADC 参考电压输入端
90	71	REFO	О	带隙基准电源(Bandgap)输出端
91	72	FTA	О	ADC 前置滤波器正输出端
92		NC		空脚
93	73	FTB	I	ADC 前置滤波器正输入端
94	74	FTC	I/O	ADC 前置滤波器负端
95	75	TSTC	I	测试用
96	76	OP1N	I	交流信号缓冲运算放大器反向输入端
97		NC		空脚
98	77	OP1O	О	交流信号缓冲运算放大器输出端
99		NC		空脚
100	78	OP2P	I	交/直流转换运算放大器同向输入端

九、技术规格 (VDD=3V, Ta=25℃)

9.1 最大值定额

参数	符 号	定额	单 位
电源电压	VDD—AGND	1.8	V
	VDD—VSS	3.6	V
I/O 输入输出电平	Vid	-0.3 — VDD +0.3	V
工作环境温度	Ta	0 + 70	$^{\circ}\mathbb{C}$
储存温度	Tstg	-40 — + 125	$^{\circ}\mathbb{C}$
焊接温度	Temp	280℃,	
焊接时间	Time	5 秒	

9.2 电气参数

符号	参数	测试条件	最小	典型	最大	单位

4,000 格 数字多用电表专用集成电路

VDD	推荐工作电压		2.4	3.0	3.6	V
IDD	工作电流	在 DCV 模式		1.5	2	mA
IPO	休眠电流	在自动关机状态			5	μА
VIH	数字高电平	E I 1/1/2/CVCVCVC	VDD-0.5			V
VIL	数字低电平				0.5	V
AGND	模拟地		VDD/2	VDD/2	VDD/2	V
			-3%		+3%	
VDDA	模拟电源		3.6	3.9	4.2	V
VBAND	内置带隙电源	相对 AGND	1.1	1.25	1.4	V
	带隙电源随电源 电压波动系数	VDD=2. 4~3. 6			2	mV/V
REFI	推荐使用基准电压	相对 AGND		0.4		V
VBATT	低电压检测		2.25	2.4	2.55	V
FLCD	液晶显示基频			32		Hz
VLCD	液晶显示峰对峰驱动电压		2.8	3	3.2	V
FBEEP	蜂鸣器频率			2.7		kHz
FRS232	RS232 传输率			2400		bps
IRSOUT	RS232 传输高电平电流	VOH=2V	2			mA
	"0"输入读数	DC ADPxl,输入=0V	-0.001	0.000	0.001	
	线性 (线性最大偏差)	DC ADPxl,	-1	0	+1	digits
		输入满量程±400.0mV				
	交流测量带宽误差	AC ADPxl 输入			0.2	%
Rcc	通断检测值	240mVrms20Hz~1kHz	10		60	Ohm
KCC	ADC 测量溢出数		10	4050	00	
	自动量程向上跳档数位			4000		counts
	自动量程向下跳档数位			360		counts
VFREA	频率计数电平	VIL(对 AGND)	-60	300		counts mV
VIKLA	////////////////////////////////////	VIL(对 AGND) VIH(对 AGND)	-00		60	mV
FMAXA	最大频率输入	$Vpp=\pm 100mV$	500k		00	Hz
1 1017 1717 1	取入频率制入 (Hz/Duty 控制)	方波输入	JOOK			112
*1	占空比测量误差	Vpp=±100mV			1	μs
•	(Hz/Duty 控制)	方波输入			-	F 3
VFRED	频率计数器输入电平	VIL(对 AGND)	-600			mV
	(MEAS=0101)	VIH(对 AGND)			600	mV
FMAXD	频率计数器输入频率	$Vpp=\pm 600mV$	5M			Hz
	(MEAS=0101)	方波输入				
*1	占空比测量误差	$Vpp=\pm 600mV$			100	ns
	(MEAS=0101)	方波输入				
	在相对值测量状态	5.120nF 档位			5%+25	digits
	下电容测量精度	51.20 nF 档位			2%+10	digits
	(以 400.0nF 档位	512.0 nF 档位			0.5%+3	digits
	标准调整)	5.120 μ F 档位			1%+2	digits
		51.20μF 档位			1.5%+2	digits
*1 Duty	Cvcle测量方波时, 其测量语	美士更卖自比较哭太自己	一般标的脉冲	審度提美	梅山加、油	量 100㎏

^{*1} Duty Cycle 测量方波时,其测量误差主要来自比较器本身可解析的脉冲宽度误差。例如:测量 100kHz 方波信号时,可将方波信号分成 1000 等份(1000Counts),每一等份为 10 ns,所以在 Duty Cycle 测量时最大误差为(100ns /10ns)=10Counts,输出 50.0%信号可能量到 50.0%±1.0%,大于 99%或小于 1%的信号,可能无法测量到,将显示 0.00%。

十、测量种类选择

10.1 测量种类选择 (MEA1~MEA4 悬空为"1",接 VSS 为"0")

4,000 格 数字多用电表专用集成电路

MEA	MEA	MEA	MEA	测量功	 能及	HZ/DUTY	REL	HOLD	RANGE	SELECT	Jump
4	3	2	1	SELECT 键	功能切换	键切换					1
1	1	1	1	DCV/AC2	DCV/ACV	V/Hz/Duty	•	•	•	•	J4
1	1	0	1	$\Omega/{ m Diode}$	6						J3, J5
				/Cont./C			•	•	Ohm●	•	Ј9
				ap							
1	0	1	0	DCV 无 mV		V/ Hz/Duty	•	•	•		J4
1	0	0	1	ACV2		V/ Hz/Duty	•	•	•		J4
1	0	1	1	DCmV		V/Hz/Duty	•	•			Ј3
1	0	0	0	10A③	DCA/ACA	A/Hz/Duty	•	•		•	J2
1	1	1	0	mA③	DcmA ACmA	mA/Hz/Duty	•	•	•	•	J1, J2
1	1	0	0	μ А③	DC µ A	μ	•	•	•	•	Ј2 Ј7
					АСμА	A/Hz/Duty					
0	1	1	1	Cap			•	•			Ј3Ј5 Ј9
0	1	0	1	Hz/Duty		Hz/Duty		•			J6, J8
				4							J9
0	0	1	1	由 ADP 输			•	•			
0	0	1	0	入参见表			•	•			
0	0	0	1	10.2说明			•	•			
0	0	0	0				•	•			
0	1	1	0	ADP⑤			•	•	•		
0	1	0	0	ACA400. 0A/	′4000A		•	•	•		

- 注:①Jump栏中JX表示在图3和4图通用线路总图上该测量功能的JX是接通的。
 - ②在Auto模式下,ACV档位按RANGE键才能选择到ACmV量程。
 - ③TSTB=1, 电流档以400mV/4V输入; TSTB=0, 电流档以40mV/400mV输入。详见"13.14 电流测量"说明。
 - ④此档位是以ADP路径输入测量 Hz/Duty。
 - ⑤ADP可输入400.0mV/40.00mV, 自动跳档,分别显示4000, 400.0。
 - ⑥在 "1101" 编码下,当CAP=1按SELECT是 Ω /Diode/Continuity切换;当CAP=0按SELECT是 Ω /Diode/Continuity/ Cap. 切换。

10.2 ADP输入与自定义符号及小数点位置的确定(MEA1~MEA4悬空为"1",接VSS为"0")

MEA4	MEA3	MEA2	MEA1	输入电压范围	输入信道	小数点位置	符号位置	符 号
0	0	1	1			4000		
0	0	1	0	± 400 mV	ADP	400.0	由 LCDC1	用户自
0	0	0	1			40.00	LCDC2 确定	己定义
0	0	0	0			4. 000		

10.3 用LCDC1、LCD2的组合确定自定义符号在LCD上的位置

LCDC1	LCDC2	符号位置	说明
0	0	COM1, SEG14	
1	0	COM2, SEG14	LCDC1和LCDC2悬空时为"1",接VSS为"0"
0	1	COM3, SEG14	
1	1	COM4, SEG14	

10.4 ADPC1与ADPC2在ADP输入中的作用(ADPC1和ADPC2悬空为"1",接VSS为"0"。)

10. I fibi of Jibi of Hill	or July (H J L) I (TIDI O I) HIDDI	102/01/1 1 1 1 1 1 1 1 1 1 1	, , ,
ADPC1	ADPC2	DC/AC状态	ADP最大输入电压
1	1	DC	400mV
1	0	AC	
0	1	DC	40mV
0	0	AC	

十一、按键定义

11.1 RANGE (自动 / 手动量程切换)

4,000 格 数字多用电表专用集成电路

RANGE 键为自动/手动量程键,以触发方式动作,开机时预设为自动量程。按一下即切换为手动量程。 在手动量程模式下每按一下往上跳一档,到最高档后继续再按此键则跳至最低档, 依次循环。如按此键 超过2秒则切换回自动量程状态。频率及电容测量不能手动量程。

11.2 HOLD /BLCTR (读数保持/背光控制)

HOLD /BLCTR键为读数保持/背光控制键,以触发方式动作,功能为:保持显示读数/背光控制。按此键时显示值被锁定,一直保持不变,再按此键时,锁定状态被解除,进入通常测量状态;频率测量时,没有Hold功能。

当按着该键不动超过2秒时,背光打开,在背光打开的状态下按该键超过2秒,背光即关闭。

11.3 REL (相对值测量)

REL键为相对值测量键,以触发方式动作,除Hz/Duty功能外都可作相对值测量。

11.4 SELECT (功能切换)

SELECT为功能选择键,以触发方式动作,用此按键可作为测量功能选择。

11.5 RS232(串行输出控制)

RS232为串行输出控制键,以锁定方式工作,该键合上时,LCD上显示RS232符号,表示仪表进入数据传输状态,可以向外传输数据,该键开路则退出,数据传输状态即停止。

11.6 HZ/DUTY(频率/占空比)

HZ/DUTY为频率/占空比选择键,以触发方式动作,在频率测量档位,按该键可以选择频率或占空比测量模式;在交/直流电压或交/直流电流档位,按该键可以进行电压/频率/占空比或电流/频率/占空比测量模式选择。

11.7 RESET(复位键)

RESET为复位键,以触发方式动作,按该键使微处理器复位。

注意:若无需手动复位功能,就不要使用S2。

十二、其它功能

12.1 自动关机

在测量过程中,功能按键和档位开关在30分钟内均无动作时,仪表会"自动关机"(等待模式)。按着SELECT键打开电源,自动关机功能被取消。

在RS232工作状态下,自动关机功能被取消。

12.2 蜂鸣器

当按任何按键时,如果该功能按键有效,蜂鸣器会发一声(约0.25秒~1秒)。通断检测时电阻小于 50Ω 蜂鸣器发声。

12.3 背光

有背光驱动输出,以控制背光电路的开和关,当光线暗淡视觉不好时提供读数的方便,按HOLD/BLCTR 键超过约2秒时背光打开;再按该键超过2秒,背光关闭。

注意: 背光驱动输出只能提供控制背光开关信号,而不能直接驱动发光组件。

12.4 串行数据输出

有串行数据输出功能,当仪表与有串行输入接口(RS232)的设备如计算机等连接时,可将测量的数据(包括符号)输出,便于对测量结果进行记录、分析、处理和打印等。

十三、应用说明

13.1 通用电路总图

A. 100脚封装IC

图 3 100 PIN 通用电路总图

B. 78脚裸片IC

图4 78 PIN 通用电路总图

- 注: 1、电流测量处于A模式(见"13.13 电流测量");
- 2、0P10与VDD之间接一只二极管,是为了防止在交流mV电压测量时若输入较高的直流电压造成"死机"现象。

13.2 FS9721 LP3(图 6、图 7) 组件表

			**		.,, • •				
代号	规格	代号	规格	代号	规格	代号	规格	代号	规格

4,000 格 数字多用电表专用集成电路

R1	100k Ω	R14	$22k \Omega$	R27	100k Ω	С9	27nF	D4	接收
R2	1ΜΩ	R15	100k Ω	R28	0. 01 Ω	C10	0. 47 μ F	D6, D5	稳压管
R3	200k Ω	R16	9.99Ω	R29	1MΩ	C11	4.7 µ F	Q1	9013
R4	100k Ω	R17	990 Ω	R30	1kΩ	C12	27nF	Q2	9013
R5	220Ω	R18	100k Ω	R31	1k Ω	C13	27nF	Q3	9013
R6	20k Ω	R19	900k Ω	C1	10 μ F	C14	47nF	VR1	10k Ω
R7	10k Ω	R20	100k Ω	C2	10 μ F	C15	10 μ F	VR2	2k Ω
R8	40k Ω	R21	57. 4k Ω	C3	10 μ F	C16	0.1 µ F	LCD	LCD
R9	90k Ω	R22	1kΩ	C4	10 μ F	C17	0.1 µ F	XTAL	4MHz
R10	500k Ω	R23	10k Ω	C5	10 μ F	C18	0.1 µ F	IC	FS9721_LP3
R11	100k Ω	R24	101. 010k Ω	C6	10nF	D1	1N914	BT1	3V
R12	22k Ω	R25	1.111ΜΩ	C7	27nF	D2	1N914	BP1	BEEPER
R13	28. 5k Ω	R26	$10 \text{M}\Omega$	C8	0.47 µ F	D3	发射	PTC	1k Ω

注: 电路总图及组件表中电阻、电容等组件的精度,功率,耐压等技术指标,要根据自己的实际需要而定。

13.3 电源系统

VB为IC内部偏置电压输入点,R4的增加会减小IC内部电流的消耗,但偏置电压不够会影响交流测量的输入范围。

AGND是模拟接地点,其电位相当于电池电压的中点。 该点电位是由IC内部产生的,不可与电池的中点相连。

C4和C5一方面作旁路电容,另一方面可使AGND对VDD和VSS稳定。 C2是电荷泵电容,IC将VDD电压通过C2充放电使VGG提高到约为VDD电压的2倍。

VDDA是IC 内部将VGG经稳压后输出的电压,相对于VSS约为3.9V。

REF0为IC内部的带隙基准电源,相对于AGND约为1.2V,有100ppm/℃的稳定度。

图6 各点相对电压

图7 电源开/关电路

注意: 为了避免FS9721_LP3在迅速关机又开机时出现 "死机"现象,电源在关机状态,一定要使C4和C5放电。所以在关机时,S1要接到VSS。

13.4 供电电路

用户的不同应用,供电的方式也不同,当在某些测量时,所用运算放大器,霍尔组件等传感器要求电压较高,3V供电有困难,则可以参考以下的一些供电方法。

图 8 3V 电源供电

图 9 4.5V 电源供电

- 11 -

VDD VDD VDD VDD AGND VSS FS9721_LP3 图10 6V电源供电

VDD VDD VDD VDD AGND VSS FS9721_LP3 图 11 4.5V~9V 电源供电

图 12 6V~12V 电源供电

图 13 9V~12V 电源供电

13.5 基准电源

图 14 利用内部基准电源

图 15 利用外部基准电源

13.6 触发式复位电路

图16 复位电路

注意: 1. RI和C6是复位组件, 电源打开时自动复位。 2. S2为手动复按键, 若无需手动复位功能, 就不要使用S2。

13.7 石英振荡电路

图 17 石英振荡电路

图中 R2 为反向器提供静态工作点, CX2 为频率 微调, CX1 为温度补偿。在要求不高的场合, CX1 和 CX2 可以不用。

13.8 蜂鸣器驱动电路

图 18 低阻蜂鸣器接法

图 19 高阻蜂鸣器接法

13.9 档位切换及功能控制电路

S3~S4, S10~S13 和 S15~S16 为档位切换开关, S3~S4 的功能说明见 10.3; S15~S16 的功能说明见 10. 4; S10~ S13 的功能的说明见 10. 1; S14 是 RS232 输出控制开关。S2及S5~S9为功能选择开关,为触 发式开关, 其功能见"按键定义"和"其它功能" 说明。

实际应用中,这些开关和按键哪些该用和不该 用要视具体情况而定。

图 20 档位切换及功能控制电路

13.10 交流整流电路

图 21 是 FS9721_LP3 是平均值整流电路图, 电路中, 交流信号经 R26 进入 IC, 由 R26 与 R25, R24, R23, R22 进行分压,分压后的交流信号由 OP10 脚出来,整流后由 ADIP 脚和 ADIN 脚进入 IC, VR2 可调整信号的 大小以作交流测量的校准。

交流 400mV 档经 10 倍放大器放大。

图 22 是峰值整流电路图,图 23、图 24 和图 25 是真有效值整流电路图,三种形式用户可以根据需要 任选其一。

图 21 平均值整流电路

- 13 -

峰值整流电路 图 22

图 23 真有效值整流电路(1)

图 24 真有效值整流电路(2)

图 25 真有效值整流电路(3)

13.11 电压测量

电压测量见图 26。

电压测量时,被测电压由电阻 R26 输入,DCmV 不分压,直接进入 IC; 4V、40V、400V、1000V 档电压由 R25、R24、R23、R22 与 R26 分压取得输入电压的 1/10、1/100、1/1000、1/1000,再送入 IC。调整 VR1 的阻值可以对测量进行校准。

ACmV 电压是由 R26 进入通过 R25、R26 的分压得到其电压的 1/10 再经内部放大 10 倍而完成测量,所以 R9、R7 的精度也决定 ACmV 电压的测量精度。

图 26 电压测量

分压公式为: Vout=Vin × [Rs/(R26+Rs)] Rs 为 R25、R24、R23 或 R22,因此,R22、R23、 R24、R25、R26 的精度决定各量程的测量精度。 电压测量分压示意如图 27。

图 27 分压电路示意图

13.12 交/直流 mV 电压测量

交/直流 mV 电压测量见图 28。

交/直流 mV 电压由 ADP 输入线性较好, 但要注意过压保护, 以免造成损坏。

图 28 交/直流 mV 电压测量

13.13 电流测量

电流测量有 A、B 两种模式,区别如下:

品加肉重自1110万年快入,色为第一。								
模式	A		В					
	TSTB 7	干路	TSTB 接 VSS					
档位	量 程	取样	量 程	取样				
		电阻		电阻				
A	10A	0.01	10A	0.01				
		Ω	4A	Ω				
mA	400mA	10 Ω	400mA	1 Ω				
	40mA		40mA					
μА	4000 μ A	1kΩ	4000 μ A	100				
	400 μ A		400 μ A	Ω				
最大	4V	•	0. 4V					
压降								

在 TSTB 脚悬空模式中,电流信号由 R19 进入IC。

 μ A 档的取样电阻是 R16+R17+R29,mA 档的取样电阻是 R16+R29,10A 档的取样电阻是 R29。通过切换拨盘档位开关分别测量,当测 μ A 时,J10 断开,J11、J3 合上;当测 mA 时,J11 断开,J10、J3 合上;当用 10A 档测大电流时,J10、J11 断开,J3 合上。

μA, mA 和 10A 三档产生的电压降最大为 4V。 这些电压送入电压比较器进行比较, 若小于 400mV, 该电压信号直接进入 A/D 变换器, 若大于 400mV 则 产生自动跳档信号, 内部电子开关 K 合上, 使 SMV 和 DT (SA) 接通,由 R18 和 R19 分压,取其电压信 号的 1/10 送入 A/D 变换器。

电阻 R16, R17, R29 及 R18, R19 的精度影响 电流测量的精度。

图 29 电流测量 (A)

在 TSTB 接 VSS 模式中, 电流信号由 SA 进入 IC。 电流测量时, μ A 档的取样电阻是 R16+R17+R28, mA 档的取样电阻是 R16+R28,10A 档的取样电阻是 R28。通过切换拨盘档位开关分别测量。当测 μ A 时,J1 断开,J7 合上;当测 mA 时,J7 断开,J1 合上;大电流则由 10A 端口进入。

μA,mA 和10A 三档产生的电压降最大为0.4V。这些电压送入电压比较器进行比较,若小于40mV,则送入10倍放大器放大后再送入A/D变换器;若大于40mV则作自动跳档信号,在微处理器控制下往上跳一档并将该电流信号直接送入A/D变换器。

电阻 R16, R17, R28 及 R7, R9 的精度影响电流测量的精度。

- 15 -

4,000 格 数字多用电表专用集成电路

图 30 电流测量 (B)

13.14 电阻测量

电阻测量见图 31。

电阻的测量是以标准电阻作参考,将待测电阻与标准电阻进行比较测量求得待测电阻值的。40M Ω 档的标准电阻为 10M Ω (R26),其它各档的标准电阻是 R26 分别与 R25,R24,R23,R22 并联的到的 1M Ω , 100k Ω , 10k Ω , 1k Ω 电阻的 (4k Ω 和 400 Ω 档的标准电阻都是 1k Ω)。电阻测量时,IC 内部产生 0.4V (相对于 AGND)的电压,此电压分别由电阻 R26 与 R25,R24,R23,R22 输出到待测电阻上,进行比较测量。

R20接 RL,是标准电阻取得参电压的负输入端。 J3, J5 为档位开关,电阻测量时 J3, J5 合上。 C13 为电阻测量待测点的滤波电容。

13.15 二极管测试

二极管测量见32。

二极管测量由 IC 内部产生 1.5V (相对于 AGND) 电压,由 R22 输出,经 PTC1 加到二极管正端。二极管产生的正向压降 VD 约 0.5V-0.7V, VD 经 R20和 R19 分压得 VD 的 1/10,送入 ADC, 显示 VD 读数。 J3和 J5 是拨盘档位开关。二极管测量时 J3,J5 合上。

13.16 通断检测

通断检测见图 33。

通断检测时, IC 内部产生 0.4V 电压(相对于AGND)由 R22输出,经 PTC1加到通断待检测点。

J3 和 J5 是拨盘档位开关,通断检测时合上,Rx 取 得电压 V_{Rx} ,经 R19 输入 IC。由图可知,

Rx = (R22 + PTC1) /50.

因此,PTC 的阻值会影响到通断检测的电阻的上限值。当不接 PTC1 时,若 R22 为 $1k\Omega$,则蜂鸣器发声的电阻小于 30Ω 。

13.17 电容测量

电容测量见图 34

电容测量是通过 R21 对待测电容充放电形成振荡,计算振荡周期求电容值。可以通过调整 R21 来校准电容测量读数。J3 和 J5 为拨盘档位开关,电容测量时,J3 和 J5 合上。

(在实际应用的中,若发现 5.120nF 量程在测量时线性较差,设计时可考虑在电容测量输入端并接一个 1000pF 左右的电容,测量时按 REL 键使读数为零再测量,这样小量程电容档位的线性较好。)

图 34 电容测量

输入端的典型波形见图 35。

图 35 电容测量输入端典型波形

13.18 频率测量

频率测量见图 36。

图 36 频率测量

十四、RS232传输协议

- 14.1 方向: 单向至计算机。
- 14.2 波特率: 2400 bps。
- 14.3 数据位: 8 bit。
- 14.4 奇偶校验: 无。
- 14.5 数据制式: Hex。
- 14.6 数据长度: 14 Bytes。
- 14.7 数据资料: LCD table on-off information。
- 14.8 数据格式: 1st byte \rightarrow 1X (X is seg1, 4 bits represent the data on the LCD table) , 2nd byte \rightarrow 2X (X is seg2, 4 bits represent the data on the LCD table) ,

3rd byte \rightarrow 3X (X is seg3, 4 bits represent the data on the LCD table),

等等。

 $1\mbox{X} \rightarrow 4 \mbox{ bit,} \quad 2\mbox{X} \rightarrow 4 \mbox{ bit,} \quad 3\mbox{X} \rightarrow 4 \mbox{ bit,}$

•••••

 $EXH \rightarrow 4 \text{ bit.}$

- 14.9 X 表示: Bit3~Bit 0→ segn (COM4-COM1) 。
- 14.10 采样速率: 40kHz。
- 14.11 ADC 输出频率: 40Hz。
- 14.12 ADC 值平均后输出频率: 10Hz。
- 14.13 Auto-Zero 后输出频率: 4Hz。

十五、液晶显示器及波形

15.1 液晶显示器结构

图37 液晶显示器结构

15.2 液晶显示器真值表

PIN	1	5	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
COM	COM4	CDM3	COM2	CDM1	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14
CDM1				CDM1	R\$232	A4	B4	A3	<i>B3</i>	A2	B2	A1	B1	*	*	HOLD	- 4	C2_C1 0_0
CDM2			COM2		AUT0	F4	G4	F3	G3	F2	G2	F1	G1	k	M	Δ	Hz	C2_C1 0_1
CDM3		CDM3			DC	E4	C4	E3	$\mathcal{C}3$	E2	<i>C2</i>	E1	C1	n	%	Ω	V	C2_C1 1_0
CDM4	CDM4				AC		D4	P1	D3	P2	D2	P3	D1	Ц	m	F	A	C2_C1 1_1

注: 1. 工作电压: 3V。

2. 驱动方法: 1/4 Duty, 1/3 Bias。

15.3 液晶显示器波形

图38 液晶显示器COM驱动波形

15.4 液晶显示器符号说明

符 号	说明	符 号	说明
	电池电压不足指示	H	数据保持模式
AUTO	自动量程	Δ	相对值测量模式
AC	交流电压或交流电流	mV, V	电压单位
DC	直流电压或直流电流	μA、mA、A	电流单位
	直流电压或直流电流负极性指 示	Ω, kΩ, ΜΩ	电阻单位
RS232	数据输出指示	nF、μF	电容单位
→	二极管测量模式指示	Hz、kHz、MHz	频率单位
>))))	通断测量指示	%	脉冲信号占空比百分数

十六、封装片外形及裸片尺寸

16.1 封装片外形

图 39 外形尺寸

16.2 裸片引出脚

脚距: 90 μm。

芯片尺寸: 3.24mm×2.58mm。

注意:使用时,裸片衬底应与电源负极(VSS)相连接。

16.2 裸片引出脚尺寸表

		44) < 1 1V					
Pad No.	Name	X [mm]	Y [mm]	PadNo.	Name	X [mm]	Y [mm]
1	OP2N	0. 264	0.077	40	СВ	2.974	2. 495
2	0P20	0. 404	0.077	41	CA	2.834	2. 495
3	ADIP	0. 544	0.077	42	VGG	2.694	2. 495
4	ADIN	0.669	0.077	43	VDDA	2. 569	2. 495
5	SA	0. 794	0.077	44	RLCD	2.444	2. 495
6	SGND	0. 919	0.077	45	XIN	2.319	2. 495
7	ADP	1. 044	0.077	46	XOUT	2. 194	2. 495
8	DT	1. 169	0.077	47	TXD	2.069	2. 495
9	SMV	1. 294	0.077	48	SEG14	1. 923	2. 495
10	CRES1	1. 419	0.077	49	SEG13	1. 798	2. 495
11	RL	1. 544	0.077	50	SEG12	1.673	2. 495
12	NC	1. 669	0.077	51	SEG11	1.548	2. 495
13	RCAP	1. 794	0.077	52	SEG10	1.423	2. 495
14	ONEK	1. 919	0.077	53	SEG9	1. 298	2. 495
15	TENK	2.044	0.077	54	SEG8	1. 173	2. 495
16	HUNK	2. 169	0.077	55	SEG7	1.048	2. 495z
17	ONEM	2. 294	0.077	56	SEG6	0. 923	2. 495
18	TENM	2. 419	0.077	57	SEG5	0. 798	2. 495
19	CRES2	2.544	0.077	58	SEG4	0.673	2. 495
20	TSTB	2.669	0.077	59	SEG3	0. 548	2. 495
21	ADPC1	2.809	0.077	60	SEG2	0.408	2. 495
22	ADPC2	2.949	0.077	61	SEG1	0. 268	2. 495
23	SELECT	3. 147	0.077	62	COM1	0.091	2. 495
24	RANGE	3. 157	0.396	63	COM2	0.077	2. 176
25	REL	3. 157	0.536	64	COM3	0.077	2.036
26	HOLD	3. 157	0.661	65	COM4	0.077	1. 911
27	Hz/DUTY	3. 157	0.786	66	ENTX	0.077	1. 786
28	CAP	3. 157	0.911	67	BEEPER	0.077	1.661
29	MEA4	3. 157	1.036	68	BLOUT	0.077	1. 536
30	MEA3	3. 157	1. 161	69	RST	0.077	1. 411
31	MEA2	3. 157	1. 286	70	REFI	0.077	1. 286
32	MEA1	3. 157	1.411	71	REF0	0.077	1. 161
33	LCDC1	3. 157	1.536	72	FTA	0.077	1.036
34	LCDC2	3. 157	1.661	73	FTB	0.077	0. 911
35	TSTA	3. 157	1.786	74	FTC	0.077	0.786
36	VSS	3. 157	1.911	75	TSTC	0.077	0.661
37	AGND	3. 157	2.036	76	OP1N	0.077	0. 536
38	VDD	3. 157	2. 176	77	0P10	0.077	0.396
39	VB	3. 148	2.495	78	OP2P	0.083	0.077

十七、采购信息

产品编号	封装形式
FS9721_LP3	裸片 (78 pins), 100-pin QFP

FS9721_LP3

4,000 格 数字多用电表专用集成电路

十八、更新纪录

版本	更新日	页次		说明
1.6	2004/04/09	21	1. 修	改文件格式以及校稿。
			2. 加/	入采购信息。
1.7	2004/11/18	2	1. 修	改目录十七以后的页数。
		19	2. 更	所图 40 裸片引出脚。
		21	3. 加/	入更新纪录。