암유전체 정보 분석

질병 유전체 분석법

2015.10.20 Mi-Kyoung Seo

mkseo82@yuhs.ac

The stages of tumor development

Stages of Tumor Development: Cancer is a Disease of the Genome

Image from 질병유전체분석법

- Clonal heterogeneity in primary tumor
- Clonal evolution after metastasis/treatment

4 types of genetic heterogeneity in tumors

Somatic mutations in tumors

Cancer is a Disease of the Genome: Somatic Mutations in Cancer Genes

Group	Mechanism	Detection method	Typical genes	Targeting drug(s)
• Point mutation	Somatic mutation	sequencing	EGFR, BRAF, PIK3CA, AKT1	Gefitinib or Erlotinib (EGFR inhibitors)
• Fusion gene	Chromosomal rearrangement (Inter-/intra-translocation)	FISH, paired-end sequencing	BCR-ABL, TMPRSS2+ETS- family genes (ERG/ETV1/ETV4)	Imatinib mesylate (ABL inhibitor)
• Gene copy number	Gene amplification	arrayCGH	ERBB2=Her2	Trastuzumab (mAb specific to ERBB2)

Somatic mutation frequencies across cancers

Cancer genes

Cancer Drugs

Average Response Rate to Drug Treatment:

Most Cancer Drugs Have Low Efficacy & Strong Side-Effects

Due to Various mutations

Drug resistance

Slide: Paul Waring, Genentech (modified)

Targeted cancer therapy

Typical Examples of Targeted Cancer Therapy: Gleevec and Iressa

Dr. Wartman Leukemia cell Normal skin cell Sequencing machines AATCCCA AATGCCA TTATGTC Finished genetic TCATGTC sequences GGTATCG GGTATCA CAGG ... CAGC ... Chromosome 13 ▶ Location of the FLT3 gene Chromosomes Signaling protein FLT3 receptors Normal marrow cell Leukemia cell Sunitinib Blocked Treated cell

SAMPLE

The sequencing process began with two small tissue samples taken from Dr. Wartman, abnormal leukemia cells removed from his bone marrow and normal skin cells.

Personalized medicine

SEQUENCE

The team extracted both DNA and RNA from his cells, giving it two types of genetic material to test. After a month of work to sequence the material, the team had a large set of results to feed to a supercomputer for analysis.

COMPARE

Dr. Wartman's DNA sequences showed some genetic mutations possibly related to his leukemia, but none seemed treatable. But RNA sequencing revealed that a normal gene, FLT3, was overactive in his leukemia cells.

Wartman

TARGET

The FLT3 gene helps create new white blood cells in the marrow. The cells in Dr. Wartman's marrow were covered with an extremely high number of FLT3 receptors, which appeared to be driving the growth of his leukemia.

An expensive drug called sunitinib, typically used to treat kidney cancer, was known to block FLT3 receptors. Two weeks after Dr. Wartman began taking the drug, tests revealed that his leukemia was in remission.

Steve Jobs
Pancreatic cancer

Christopher Hitchens Esophageal cancer

Drug and Fusion location in the human body

Personalized cancer treatment

Personalized Cancer Diagnosis and Targeted Therapy

Actionable mutations

Linking Somatic Variants to Therapies: Therapeutic Interpretation of Variants

dGene: TTD: collection of Druggable Genes therapeutic targets drug

The importance of Early diagnosis

Why Early Detection Is the Best Way to Beat Cancer

ctDNA sequencing

Cancer Genome Analysis from Cancer Patient's Blood (Plasma)

Applications of Circulating Tumor DNA (ctDNA)

- 1. Detection or screening of early cancers
- 2. Monitoring of disease progression
- 3. Determination of patient prognosis
- 4. Prediction of treatment response
- 5. Early detection of recurrence or resistance

ctDNA sequencing

Tumor-Associated Genetic Aberrations in Circulating Free DNA

Tumor type	Tumor-specific aberration	Source	Technique
Colorectal cancer	APC, KRAS, PIK3CA, TP53	Plasma and/or serum	BEAMing, PCR-SSCP, ME-PCR
Breast cancer	PIK3CA, TP53	Plasma and/or serum	ARMS-Scorpion PCR, BEAMing, TAm-Seq and digital PCR
Ovarian cancer	TP53, PTEN, EGFR, BRAF, KRAS, PIK3CA	Plasma or serum	Tam-seq, Digital PCR, Fluorescent-PCR
Hepatocellular carcinoma	SNV	Plasma	WGS
Pancreatic cancer	KRAS	Plasma	MASA PCR, RFLP-PCR
Oral squamous-cell carcinoma	Microsatellite loci	Serum	PCR
Non-small-cell lung cancer	KRAS	Plasma	ARMS-qPCR
Breast and osteosarcoma	Genomic alterations	Plasma and serum	Nested-real time PCR
Colorectal and breast cancer	Chromosomal alterations	Plasma	WGS

Crowley E et al. Nat Rev Clin Oncol. 2013;10(8):472-84

Tumor-Associated Genetic Aberrations in Circulating Free DNA

Tumor type	Tumor-specific aberration	Source	Technique
Colorectal cancer	APC, KRAS, PIK3CA, TP53	Plasma and/or serum	BEAMing, PCR-SSCP, ME-PCR
Breast cancer	PIK3CA, TP53	Plasma and/or serum	ARMS-Scorpion PCR, BEAMing, TAm-Seq and digital PCR
Ovarian cancer	TP53, PTEN, EGFR, BRAF, KRAS, PIK3CA	Plasma or serum	Tam-seq, Digital PCR, Fluorescent-PCR
Hepatocellular carcinoma	SNV	Plasma	WGS
Pancreatic cancer	KRAS	Plasma	MASA PCR, RFLP-PCR
Oral squamous-cell carcinoma	Microsatellite loci	Serum	PCR
Non-small-cell lung cancer	KRAS	Plasma	ARMS-qPCR
Breast and osteosarcoma	Genomic alterations	Plasma and serum	Nested-real time PCR
Colorectal and breast cancer	Chromosomal alterations	Plasma	WGS