

Cahier-réponses Examen final

PHS1101

Sigle du cours

Identification de l'étudiant(e)			
Nom:	Prénom :		
Signature :	Matricule :	Groupe :	

Sigle et titre du cours		Groupe	Trimestre	
PHS1101 Mécanique pour ingénieurs		Tous	Été 2020	
Chargé de cours		Courriel		
Djamel Seddaoui		djamel.seddaoui@polymtl.ca		
Jour	Date	Durée	Heures	
Mardi	23 juin 2020	2h30 + 30 minutes pour la remise sur Moodle	9h40 à 12h40	

Directives particulières

- Vous vous engagez à faire cet examen individuellement.
- Toute documentation est permise (examen à livre ouvert). Un aide-mémoire pour les centres de masse et les moments d'inertie se trouve à la dernière page de ce cahier.
- Détaillez les étapes de vos solutions. Une réponse sans justification ne vaut aucun point. Toute réponse finale doit être accompagnée des unités appropriées.
- Si vous pensez qu'il y a une erreur dans le questionnaire, vous pouvez écrire au chargé de cours à l'adresse courriel ci-dessus.

Cet examen contient	4	questions sur un total de	16	pages
(excluant cette page)	١.			

La pondération de cet examen est de 40 %.

Rédigez vos réponses lisiblement, à la main, soit en utilisant un outil électronique (écran tactile, tablette) pour répondre directement sur ce cahier-réponses, soit en répondant sur ce cahier-réponses imprimé ou sur des feuilles de papier vierge et en numérisant/photographiant les feuilles ensuite.

Remettez vos réponses sous forme d'un seul fichier PDF lisible, de taille inférieure à 10 Mo, dans le dépôt Moodle « Examen final – Été 2020 » avant l'heure de fin. Vous devez nommer ce fichier en respectant le format suivant :

Matricule_NomPrénom.pdf

Tout fichier qui ne sera pas rédigé à la main ne sera pas corrigé. Une pénalité de 5 % (10/200) sera appliquée si le nom du fichier ne respecte pas le format demandé.

Res	serve	
Q1	:	/40
Q2	:	/65
Q3	:	/50
Q4	:	/45
Tot	al:	
		_
200		

L'étudiant doit honorer l'engagement pris lors de la signature du code de conduite.

Important

Question 1 (40 points) - Questions conceptuelles et à réponses courtes

Répondez aux sous-questions suivantes en **expliquant votre raisonnement**. **Une réponse sans justification ne vaut aucun point.**

Les sous-questions A et B sont indépendantes l'une de l'autre.

- **A.** On considère l'expérience de l'homme assis sur une chaise tournante qui tient une roue en rotation autour de son axe.
 - i. Dans, donner l'expression du vecteur moment cinétique \vec{H} du système homme+roue par rapport à l'axe de la chaise en fonction de I_h , I_r , $\vec{\omega}_h$, $\vec{\omega}_r$, m_r et \vec{R} . On néglige le moment cinétique de la chaise. (10 points)
 - I_h et I_r sont les moments d'inertie de l'homme et de la roue respectivement.
 - m_r est la masse de la roue.
 - $\vec{\omega}_h$ et $\vec{\omega}_r$ sont les vitesses angulaires de l'homme et de la roue respectivement.
 - \vec{R} est le vecteur position de l'axe de la roue par rapport à l'axe de rotation de la chaise.

- ii. Si l'homme tend ses bras pour augmenter \vec{R} pendant la rotation, quel effet cela aurait-il sur $\vec{\omega}_h$ et sur $\vec{\omega}_r$? Justifiez. (10 points)
- **B.** Dans la figure ci-dessous, le disque de rayon R roule sans glisser sur une surface horizontale avec une vitesse constante $v_{\mathcal{C}M}$ vers la gauche. Le pivot A est situé sur la circonférence du disque. Le pivot B relie l'extrémité de la tige AB au manchon susceptible de glisser horizontalement sur son guide.

À l'instant représenté sur la figure ci-dessous, où A est à la même hauteur que l'axe du disque, déterminer :

- i. L'expression du module de la vitesse v_A du point A en fonction de v_{CM} . (10 points)
- ii. L'expression du module de la vitesse angulaire ω_{AB} de la tige AB en fonction de v_{CM} , R et L. (10 points)

Question 2 (65 points)

Une tige ABC de masse $m_t=6~{\rm kg}$ et de longueur $L=2~{\rm m}$ est soudée à un demi-disque plein de masse $m_d=10~{\rm kg}$ de rayon $R=30~{\rm cm}$ et d'épaisseur négligeable. Le système est susceptible de pivoter sans frottement autour de l'axe du pivot B qui correspond à l'axe du demi-disque. Le point A est relié à un ressort attaché au sol grâce à une corde tendue qui peut s'enrouler autour du demi-disque tel que représenté sur la figure ci-dessous. La largeur et l'épaisseur de la tige ABC sont négligeables. La constante du ressort est $K=981~{\rm N/m}$.

Initialement, le système est immobile à sa position d'équilibre qui correspond à la position horizontale de la tige ABC ($\theta = 0$). La gravité agit vers le bas de la page.

- A. Calculer le moment d'inertie du corps composé de la tige ABC et du demi-disque par rapport à l'axe du pivot B. (15 points)
- B. Déterminer l'allongement Δl_0 du ressort lorsque le système est à sa position d'équilibre. (15 points)

Un projectile de masse $m_p=0.5~{\rm kg}$ voyageant à une vitesse $v_0=100~{\rm m/s}$ orientée d'un angle $\alpha=30^{\circ}$ par rapport à l'horizontale percute le dispositif au point C puis ricoche dans la direction horizontale.

- C. Quelle est la vitesse angulaire ω_0 du dispositif immédiatement après le choc? (15 points)
- D. Déterminer la vitesse angulaire ω du dispositif lorsque la tige atteint sa position verticale $\theta = 90^{\circ}$. (20 points)

Question 3 (50 points)

Afin de profiter des vacances, vous ressortez votre Nintendo GameCube pour jouer à *Super Mario Sunshine*. Pour vous rendre au prochain niveau, vous devez réussir à atteindre une plateforme située plus haut.

Pour se propulser, Mario utilise son *Rocket Nuzzle* (le nom donné au *jetpack* qu'il porte sur son dos). Le réservoir du *Rocket Nuzzle*, qui contient 60 L d'eau, se vide en 0,3 seconde à un taux constant. L'ouverture du réservoir par lequel l'eau s'échappe a une surface de 100 cm² et on suppose que l'eau est toujours éjectée en direction du sol.

La masse de Mario seul est M=60 kg. La plateforme est à une hauteur h=6 m au-dessus du sol. La masse volumique de l'eau est $\rho=1000$ kg/m³. Considérez que 1 m³ d'eau équivaut à 1000 L d'eau.

- A. Faites le DCL-DCE de Mario durant la phase de poussée. (10 points)
- **B.** Quelle est la grandeur de la force de poussée exercée par le *Rocket Nuzzle* ? (10 points)
- C. Quelle est la vitesse de Mario à la fin de la poussée ? (20 points).
- **D.** À la fin de la phase de poussée, Mario est à une hauteur de 1,40 m au-dessus du sol. Parviendra-t-il à atteindre la plateforme ? Justifiez par les calculs appropriés. (10 points)

Note: L'intégrale suivante pourrait vous être utile.

$$\int \frac{1}{a - bx} dx = -\frac{1}{b} \ln(a - bx)$$

Question 4 (45 points)

À l'instant t = 0, on fait glisser une roue de masse m sur un sol horizontal avec une vitesse initiale $V_{CM0} = 10 \text{ m/s}$ et une vitesse angulaire nulle. À cause de la rugosité du sol, la roue se met alors à rouler et à glisser simultanément jusqu'à ce que la condition de roulement sans glissement soit satisfaite. Dès que cette condition est remplie, elle commence alors à rouler sans glisser.

Le rayon de la roue est $R=20~{\rm cm}$ et son rayon de giration par rapport à son axe est $\kappa=15~{\rm cm}$. Les coefficients de frottement statique et cinétique entre la roue et le plan valent $\mu_s=1,2$ et $\mu_k=0,5$.

- **A.** Faire le DCL-DCE de la roue pendant son mouvement de roulement avec glissement. (15 points)
- **B.** Déterminer l'accélération a_{CM} du centre de masse de la roue et l'accélération angulaire α . (10 points)
- **C.** Quel est le temps Δt nécessaire pour que la roue commence à rouler sans glisser ? (10 points)
- **D.** Quelle est la puissance instantanée dissipée par la force de frottement à t = 0.5 s sachant que la masse de la roue est m = 4 kg ? (10 points)

Corps	Centre de masse	Moments d'inertie	Corps	Centre de masse	Moments d'inertie
z $e^{\ell/2}$ $e^{\ell/2}$ y		$I_{xx} = I_{yy} = \frac{1}{2}mr^2 + \frac{1}{12}m\ell^2$ $I_{zz} = mr^2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$I_{xx} = \frac{1}{12} m (a^{2} + \ell^{2})$ $I_{yy} = \frac{1}{12} m (b^{2} + \ell^{2})$ $I_{zz} = \frac{1}{12} m (a^{2} + b^{2})$
$\ell/2$ Z G X Y	$\bar{x} = \frac{2r}{\pi}$	$I_{xx} = \frac{1}{2}mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{yy} = \left(\frac{1}{2} - \frac{4}{\pi^{2}}\right)mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{zz} = \left(1 - \frac{4}{\pi^{2}}\right)mr^{2}$	$\frac{\ell/2}{G} \xrightarrow{\ell/2} C$	$\overline{x} = \overline{y}$ 2r	$I_{yy} = \frac{1}{12}m\ell^2$ $I_{xx} = I_{yy} = \frac{1}{2}mr^2$
$z = \frac{\ell/2}{\sqrt{2}}$		$I_{xx} = I_{yy} = \frac{1}{4}mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{zz} = \frac{1}{2}mr^{2}$	z y \overline{y} z	$= \frac{2r}{\pi}$ $\Rightarrow \bar{x} = \frac{2r}{\pi}$	$I_{zz} = mr^{2}$ $I_{xx} = I_{yy} = \frac{1}{2}mr^{2}$ $I_{zz} = mr^{2}$ $* \bar{I}_{yy} = \left(\frac{1}{2} - \frac{4}{\pi^{2}}\right)mr^{2}$
Z	$\overline{x} = \frac{3r}{8}$	$I_{xx} = \frac{2}{5} m r^2$ $I_{yy} = I_{zz} = \frac{83}{320} m r^2$	X Z V		$*\bar{I}_{zz} = \left(1 - \frac{4}{\pi^2}\right) m r^2$ $I_{xx} = I_{yy} = \frac{1}{2} m r^2$
$\ell/2$ $\ell/2$ Z	$\bar{x} = \frac{4r}{3\pi}$	$I_{xx} = \frac{1}{4}mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{yy} = \left(\frac{1}{4} - \frac{16}{9\pi^{2}}\right)mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{zz} = \left(\frac{1}{2} - \frac{16}{9\pi^{2}}\right)mr^{2}$	\overline{y} X A	$\bar{x} = \frac{2}{3}b$ $\bar{y} = \frac{1}{3}a$	$I_{zz} = mr^{2}$ $I_{xx} = \frac{1}{6}ma^{2}$ $I_{yy} = \frac{1}{2}mb^{2}$ Triangle rectangle mince

*Demi-cercle : les moments d'inertie avec une barre sont calculés par rapport à un axe qui passe par le centre de masse de l'objet.