

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.03 ПРИКЛАДНАЯ ИНФОРМАТИКА

Вычислитель SHA-256

Техническое задание на курсовую работу по дисциплине Схемотехника

Листов 4

Студент	<u>гр. ИУ6-64Б</u> (Группа)	(Подпись, дата)	<u>С.П.Пантелеев</u> (И.О. Фамилия)
Руководит	гель курсовой работы,		О.Ю.Ерёмин
(кандидат технических наук)		(Подпись, дата)	(И.О. Фамилия)

1 ВВЕДЕНИЕ

Настоящее техническое задание распространяется на разработку «Вычислителя SHA-256», именуемого в дальнейшем «устройством». Данное устройство предназначено для расчета результатов выполнения внутреннего цикла алгоритма хеширования SHA-256. Устройство необходимо выполнить на основе ПЛИС.

Вычислитель используется при вычислении контрольных сумм от данных для последующего обнаружения в них ошибок, при выработке электронной подписи.

2 ОСНОВАНИЯ ДЛЯ РАЗРАБОТКИ

Устройство разрабатывается на основе учебного плана кафедры ИУ6 «Компьютерные системы и сети» Московского государственного технического университета им. Н.Э.Баумана.

3 ЦЕЛИ И ЗАДАЧИ

3.1. Цель работы

Целью курсового проектирования является разработка вычислителя результатов выполнения внутреннего цикла хеш-функции SHA-256.

- 3.2. Решаемые задачи
- 3.2.1. Анализ технического задания и возможных путей решения поставленной задачи.
 - 3.2.2. Обоснование и синтез электрической функциональной схемы устройства.
 - 3.2.3. Выбор элементной базы на основании технических требований.
 - 3.2.4. Разработка электрической принципиальной схемы устройства.
 - 3.2.5. Построение временных диаграмм.
 - 3.2.6. Расчет параметров мощности устройства.

4 ТРЕБОВАНИЯ К РАЗРАБАТЫВАЕМОМУ УСТРОЙСТВУ

- 4.1. Требования к составу и параметрам технических средств
- 4.1.1. Количество информационных входов 7, информационных выходов 6.
- 4.1.2. Разрядность информационных входов и выходов 32.
- 4.1.3. Устройство реализуется на базе ПЛИС..
- 4.1.4. Тактовая частота 10 МГц.
- 4.1.5. Мощность потребления не более 3 Вт.
- 4.2. Требования к эксплуатации
- 4.2.1. Условия эксплуатации в соответствие с СанПиН2.2.2/2.4.1340-03.

4.3. Требования к маркировке и упаковке

Требования к маркировке и упаковке не предъявляются.

4.4. Требования к транспортированию и хранению

Требования к транспортировке и хранению не предъявляются.

5 ОПИСАНИЕ РАБОТЫ УСТРОЙСТВА

Устройство должно рассчитывать результаты выполнения внутреннего цикла хеш-функции SHA-256. В начале каждого раунда хеширования (каждые 64 итерации внутреннего цикла) на информационные входы подаются новые значения вспомогательных переменных, запись которых в память устройства обеспечивается соответствующим управляющим сигналом. В ходе каждой итерации на седьмой информационный вход подается фрагмент информационного сообщения. Расчет результатов итерации выполняется по положительному фронту тактирующего сигнала. Результаты вычислений записываются в память устройства в следующем такте.

6 ТРЕБОВАНИЯ К ДОКУМЕНТАЦИИ

- 6.1 В состав сопровождающей документации должны входить:
- 6.1.1 Расчетно-пояснительная записка на 25 30 листах формата А4;
- 6.1.2 Техническое задание;
- 6.1.3 Спецификация.
- 6.2 Графическая часть должна быть включена в расчетно-пояснительную записку в качестве приложений и иллюстраций:
 - 6.2.1 Временные диаграммы;
 - 6.2.2 Схема электрическая структурная;
 - 6.2.3 Схема электрическая функциональная;
 - 6.2.4 Схема электрическая принципиальная.

7 СТАДИИ И ЭТАПЫ РАЗРАБОТКИ

Таблица 1 – Этапы разработки

№	Название этапа	Срок, %	Отчетность
		выполнения	
1	Исследование предметной	1 – 4 нед., 15%	Описание общего
	области		принципа работы
			устройства.
2	Разработка технического задания	5 нед., 20%	Техническое задание
3	Проектирование и разработка	6 – 7 нед. 40%	Функциональная схема
	функциональной электрической		
	схемы		
4	Проектирование и разработка	8 – 10 нед. 60%	Принципиальная схема
	принципиальной электрической		
	схемы		
5	Оформление расчетно-	11 – 14 нед. 90%	Расчетно-пояснитель-
	пояснительной записки		ная записка
6	Защита курсовой работы	15 – 16 нед., 100%	Доклад (3 – 5 минут)

8 ПОРЯДОК КОНТРОЛЯ И ПРИЕМА

8.1 Порядок контроля

Контроль выполнения осуществляется руководителем еженедельно.

8.2 Порядок защиты

Защита осуществляется перед комиссией, состоящей из преподавателей кафедры ИУ6.

8.3 Срок защиты

Срок защиты: 15-16 недели.

9 ПРИМЕЧАНИЕ

В процессе выполнения работы возможно уточнение отдельных требований технического задания по взаимному согласованию руководителя и исполнителя.