Examples of Sound as a Signal in Research

Speaker produces and ultrasonic tone of 18-22 kHz

Sound Wave. Gupta et al. 2012

Speaker produces and ultrasonic tone of 18-22 kHz

Sound Wave. Gupta et al. 2012

- 2048-point FFT
 - 1024 valid points
- 0 to 22 kHz
- Then completely heuristics based

BLUI: Low-cost Localized Blowable User Interfaces

Shwetak N. Patel and Gregory D. Abowd

Georgia Institute of Technology

- 0 to 22 kHz
- 2048-point FFT
 - 1024 valid points

- Used the 1024 magnitude values as features (binned)
- PCA to reduce the feature space

Figure 2. Amplitude profiles for different gestures.

Figure 3. Distinct multi-part gestures composed of taps, lines and circles.

- 1024-point FFT
 - 512 valid points
- [6 x 10] bin of spectrogram

- [10] time bins for 5-15 kHz range of spectrogram
- Energy in the first half
- Energy in the second half

A quick look at some code

Body Beat. Rahman et al. 2014

Group	Frame level descriptors	Acronym
	log power of 8 subbands	LogSubband[i]
Energy	Total RMS Energy	RMSenergy
	Spectral Centroid	SpectCent
	Spectral Flux	SpectFlux
Spectral	Spectral Variance	SpectVar
	Spectral Skewness	SpectSkew
	Spectral Kurtosis	SpectKurt
	Spectral Slope	SpectSlope
	Spectral Rolloff 25%	SpectROff25
	Spectral Rolloff 50%	SpectROff50
	Spectral Rolloff 75%	SpectROff75
	Spectral Rolloff 90%	SpectROff90
Crossing Rate	Zero Crossing Rate	ZCR
MFCC	12 Mel Frequency Cepstral Coefficients	mfcc[i]

Туре	Statistical Functions	Acronym
	Minimum	min
Extremes	Maximum	max
	Mean	mean
Average	Root Mean Square	RMS
	Median	median
Quartiles	1st and 3rd Quartile	qrtl1, qrtl3
Quartiles	Interquartile Range	iqrl
	Standard Deviation	std
Moments	Skewness	skew
	Kurtosis	kurt
	Number of peaks	numOfPeaks
Peaks	Mean Distance of Peaks	meanDistPeaks
	Mean Amplitude of Peaks	meanAmpPeaks
Rate of Change	Mean Crossing Rate	mcr
Shape	Linear Regression Slope	slope

- 3 Axes data
- Combined FFT of the 3 axes by removing DC component and taking Max of 3 axes
- Average 20 consecutive FFT frames
 - mean, sum, min, max frequencies, standard deviation
 - ratios of different frequency regions
 - number of peaks

Assignment 2

- Sound-based Activity/Event Detection
- Collect sound data for 5 classes (20 samples): (5% grade)
 - Microwave (run for approx. 30 seconds and record the whole session including opening and closing the door, and beeps)
 - Blender (run for approximately 30 seconds)
 - Fire-alarm or any kind of siren (can be from videos or apps)
 - Vacuum cleaner (run for approximately 30 seconds)
 - Music (each instance for appoximately 30 seconds)

 Record blanks too (of approx. 30 seconds in length) to develop segmentation

Pipeline Components

- Signal conditioning (5%)
- Two approaches to feature engineering:
 - Binning (15%)
 - Domain-specific features (15%)
- Window and non-window approach (15% each)
 - Window length is up to you
 - In window approach, combine data/decisions from multiple windows
 - In non-window approach, assign one decision per "recording"
- 10-fold cross-validation
- Aim for above 80% performance in at least 3 cases, and above 90% in at least 1. *i.e.*, it is fine if the classification accuracy is below 80% for one of the case

Write-Up

- 30% value
- Describe:
 - Data collection process
 - Rationale for features
 - Graph results for different conditions