Step 1: Import necessary libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.pipeline import Pipeline

df = pd.read_csv("kc_house_data.csv")
df.head()

₹		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	• • •	grade	sqft_abov
	0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1.0	0	0		7	1180.
	1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2.0	0	0		7	2170.
	2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1.0	0	0		6	770.
	3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1.0	0	0		7	1050.
	4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1.0	0	0		8	1680.

5 rows × 21 columns

Step 3: Display data types of each column
df.describe()

₹	id		price	bedrooms	bathrooms sqft_living		sqft_lot floors		waterfront	view	
	count	2.161300e+04	2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e+04	21613.000000	21613.000000	21613.000000	216
	mean	4.580302e+09	5.400881e+05	3.370842	2.114757	2079.899736	1.510697e+04	1.494309	0.007542	0.234303	
	std	2.876566e+09	3.671272e+05	0.930062	0.770163	918.440897	4.142051e+04	0.539989	0.086517	0.766318	
	min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000	5.200000e+02	1.000000	0.000000	0.000000	
	25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	0.000000	0.000000	
	50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0.000000	0.000000	
	75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	0.000000	0.000000	
	max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	1.000000	4.000000	

floor_counts = df["floors"].value_counts().to_frame()
floor_counts.columns = ['count']
print(floor_counts)

```
count floors

1.0 10680
2.0 8241
1.5 1910
3.0 613
2.5 161
3.5 8
```

Step 6: Boxplot to check price outliers by waterfront view
sns.boxplot(x="waterfront", y="price", data=df)
plt.title("Price Distribution by Waterfront")
plt.show()


```
# Step 7: regplot to check correlation between 'sqft_above' and 'price'
sns.regplot(x="sqft_above", y="price", data=df)
plt.title("Price vs Sqft Above")
plt.show()
```



```
# Step 8: Linear Regression with single feature 'sqft_living'
lr = LinearRegression()
lr.fit(df[['sqft_living']], df['price'])
print("R^2 (sqft_living):", lr.score(df[['sqft_living']], df['price']))
```

R^2 (sqft_living): 0.4928532179037931

R^2 (multiple features): 0.6577312410909923

```
# Step 10: Train/Test split for model validation
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)
# Step 11: Pipeline - Scale, Polynomial Transform, Linear Regression
pipe = Pipeline([
    ('scale', StandardScaler()),
    ('poly', PolynomialFeatures(degree=2)),
    ('model', LinearRegression())
])
pipe.fit(X_train, y_train)
print("R^2 (Pipeline Polynomial Regression):", pipe.score(X_test, y_test))
R^2 (Pipeline Polynomial Regression): 0.7530582530920498
# Step 12: Ridge Regression (Linear)
ridge = Ridge(alpha=0.1)
ridge.fit(X_train, y_train)
print("R^2 (Ridge Regression):", ridge.score(X_test, y_test))
→ R^2 (Ridge Regression): 0.673131854065206
# Step 13: Ridge Regression (Polynomial Features)
poly = PolynomialFeatures(degree=2)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.transform(X_test)
ridge_poly = Ridge(alpha=0.1)
ridge_poly.fit(X_train_poly, y_train)
\label{lem:print("R^2 (Polynomial Ridge):", ridge_poly.score(X_test_poly, y_test))} \\
```

R^2 (Polynomial Ridge): 0.7442033165284614