ELSEVIER

Списки содержания доступны на ScienceDirect

Робототехника и автономные системы

Домашняя страница журнала: www.elsevier.com/locate/robot

Кинематическое моделирование и управление роботизированной рукой с использованием блока двойных кватернионов

Эрол Озгюр а * Юсеф Мезуар 6

Университет Оверни, Франция

Университет Блеза Паскаля, Франция

Основные моменты

- Кинематическое моделирование и управление позой роботизированного оружия с несколькими степенями свободы.
- Компактная и простая формулировка.
- Использование единичных двойных кватернионов и его алгебры

articleinfo

История статьи:
Получено 15 сентября 2015 г. Принято 9
декабря 2015 г. Доступно в сети 17 декабря
2015 г.

Ключевые слова:

Двойной кватернионный манипулятор Kinematics

Абстрактные

Эта статья использует теорию винтов, выраженную через единичное двойное кватернионное представление и ее алгебру, чтобы сформулировать как прямое (положение + скорость) кинематика и позы управления *п*- DOF рука робота эффективным способом. Эффективность заключается в меньшем использовании компьютерной памяти, в быстром вычислении уравнений, в представлении пространства задач без особенностей, в устойчивости к числовым ошибкам и в компактности представлений. Формулировка проста, интуитивно понятна и проста в реализации. Мы подтвердили эту формулировку экспериментально на руке робота с 7 степенями свободы.

© 2015 Elsevier BV Все права защищены.

1. Введение

Единичный двойной кватернионный (UDQ) представление позы (позиция + ориентация) получила большое внимание сообщества робототехники как для кинематического моделирования, так и для целей управления [1-8] недавно, хотя его эффективность хранения и вычислений над матрицей однородного преобразования (HTM) была известна уже более двух десятилетий [9, 10]. Исследование в [11] показывает превосходную производительность UDQ по сравнению с HTM при кинематическом моделировании *п*- DOF рука робота, а недавно в [12] для пропорционального управления. Другими привлекательными преимуществами UDQ являются беспрепятственное представление евклидова пространства, устойчивость к числовым ошибкам и компактность представления. UDQ также эффективно используется в компьютерной графике [13], в автоматизированном проектировании [14], в компьютерном зрении [15], в навигации [16] и так далее.

Наиболее известный метод кинематики роботов основан на нотациях Денавита и Хартенберга (DH) [17] и однородное преобразование точек через HTM [18]. Так

далеко все существующие работы [4-6 , 11] Моделирование кинематики роботов с помощью UDQ продолжает следовать подходу DH. *Мы думаем, что DH тратит некоторую часть UDQ, так как первый дизайн DH основан на точечных преобразованиях с HTM.*

В этой статье для кинематического моделирования мы использовали подход теории винтов, основанный на преобразованиях линий, представленных в [19], и мы адаптировали его к единичному двойному кватернионному представлению и его алгебре, поскольку UDQ был найден как наиболее компактный и эффективный способ выражения смещения винта [9 , 10 1. Для целей кинематического управления мы использовали логарифм единицы измерения двойного кватерниона в качестве обобщенного закона пропорционального управления. впервые введенного в [1] и мы также проанализировали его глобальную стабильность с точки зрения диапазонов значений винтовых параметров. Определение ошибки позы между двумя единичными позными двойными кватернионами должно выполняться с помощью оператора умножения алгебры двойных кватернионов, а не с помощью оператора вычитания, как это делается в [5 , 6], что не правильно (хотя стабильность закона о контроле доказана). Некоторые недавние работы [7,8] использовал UDQ для разработки устойчивых законов управления и для гибкого моделирования кооперативных пространств задач, передавая № «многообразие для получения недостающего коммутативного свойства обратно через операторы Гамильтона (8 × 8 матриц), однако оставляя вычислительные преимущества алгебры UDQ. Можно также подумать, чтобы использовать Родригес

Адрес электронной почты: erol.ozgur@udamail.fr (Э. Озгюр).

^{*} Корреспондент автора.

Таблица 1
Требования к стоимости для различных представлений о преобразовании твердого тела. Представление

	Место хранения	Место хранения Умножения и дополнения	
НТМ	12	64 ×	48+
UDQwH	8	64 ×	56+
TAA	7	43 ×	26+
UDQ	8	48 ×	40+

эффективная формула вращения через позу твердого тела, представленную трехмерным вектором перемещения и четырехмерным вектором вращения с параметрами оси-угла Родрига. Мы здесь называем это представление как ТАА. Отметим, что ТАА имеет особенность. Всякий раз, когда результирующий угол в ТАА равен нулю, осевая часть представления вращения не определена [20]. Таблица 1 перечислены требования к хранению и вычислительным затратам для преобразования твердого тела в 4 различных представлениях: матрицы однородного преобразования (НТМ), единичные двойные кватернионы с операторами Гамильтона (UDQwH), поза с параметрами Родригеса (ТАА) и единичные двойные кватернионы (UDQ) , Хотя ТАА требуется меньше места для хранения, отметим, что для него требуется 7 тригонометрических функций и 1 вычисление функции с квадратным корнем. Более того, перечисленные в Таблица 1 , ТАА также не хватает эффективной алгебры.

Эта статья эффективно объединяет все преимущества теории винтов, основанной на UDQ и ее алгебре для кинематического моделирования, и позволяет управлять роботом-манипулятором и экспериментально проверяет его. Каждая соответствующая работа в рецензируемой литературе каким-то образом упускает один момент, объединяя все это вместе, как это обсуждалось выше.

Затем мы перечислим вклад этой статьи следующим образом:

- Все преимущества (т.е. компактность, хранение, вычислительная эффективность и
 т. д.) единичного двойного кватернионного представления и его алгебры.
- Кинематика прямого положения (FPK), впервые, записывается в двойном пространстве с формулой экспоненты (POE) формулы винтовой теории, заменяя матричные экспоненты единичными двойными кватернионами. Все выражено в единой системе отсчета (т.е. робот дома кадр). Это делает FPK более простым и интуитивно понятным. Следствием этой формулировки является то, что вычисление робота Якобиана является простым и быстрым.
- Проблемы кинематического моделирования и управления позой манипулятора
 робота решаются компактно с меньшим количеством арифметических операций и
 требований к хранению, чем у многих существующих подходов, предложенных в
 литературе по робототехнике.
- Корректность предложенных подходов кинематического моделирования и управления подтверждена экспериментально на манипуляторе с 7 степенями свободы.
- Все переменные и уравнения объясняются четко и без какой-либо двусмысленности. То есть, например, переменная позы точно указывается, в каком кадре она определена и в каком кадре она выражена. Документ также самодостаточен, так что можно реализовать все, что представлено здесь, без поиска какой-либо другой соответствующей справки или книги.

Остальная часть статьи идет следующим образом: Раздел 2 объясняет позу (позиция + ориентация) представление конечного эффектора, прямого положения и кинематики скорости робота; Раздел 3

сначала определяется ошибка позы, затем предлагается закон управления для регулирования этой ошибки позы и, наконец, анализируется стабильность предлагаемого закона управления; Раздел 4 экспе проверяет предложенную теорию кинематического моделирования и управления на руке робота Кука 7 степеней свободы; наконец раздел 5 завершает работу

Также отметим, что для лучшего понимания статьи читатель может аппендикс для получения дополнительной информации о кватернионах, двойных числах и двойных кватернионах.

2. Кинематическое моделировани

2.1. Представление представления

Мы представляем положение и ориентацию конечного эффектора руки робота с единичным двойным кватернионом [13 , 15 , 21]:

$$\hat{\mathbf{x}} = \exp \begin{pmatrix} \hat{\theta} \\ -s \end{pmatrix}$$
 s ahak paaho $\cos \frac{\hat{\theta}}{2} + \hat{s} \operatorname{rpex} \begin{pmatrix} \hat{\theta} \\ -s \end{pmatrix}$ (1)

где $\theta \in D$ а также $s \in D_3 \times 1$ соответственно двойной угол и

единичный сдвоенный вектор направленной трехмерной линии:

$$\hat{\theta} = \theta + \varepsilon A$$
, $\hat{s} = \ell + \varepsilon M$, $\varepsilon_2 = 0$, $\varepsilon_3 + \varepsilon M$ (2)

Выше, { *θ*, *д*, *ℓ*, **м**} параметры смещения винта. *θ* угол поворота вокруг оси винта, *d* это перевод по той же винтовой оси, *ℓ* является вектором направления единицы этой винтовой оси. и

м является вектором момента этой винтовой оси, вычисленным относительно начала домашнего каркаса манипулятора робота. Eq. (1) можно переписать в терминах кватернионной пары следующим образом:

$$\hat{\mathbf{x}} = \mathbf{g}_{R} \cdot \boldsymbol{\varepsilon} \mathbf{Q}_{T} \tag{3}$$

где Q, единица кватерниона для вращения и Q, является кватернионом для перевода. Эти кватернионы вращения и перемещения могут быть записаны с известными параметрами смещения винта [15] как показано ниже:

$$\mathbf{Q}_{P}$$
, $\cos \frac{\theta}{2}$, $\epsilon_{\text{rpex}} = \frac{\theta}{2}$ (4)

$$\mathbf{Q}_{T} = -d - \frac{\theta}{2 \operatorname{cos}^{2}} , \ell d - \frac{\theta}{2} + \operatorname{M} \operatorname{rpex} = \frac{\theta}{2} , \tag{5}$$

Это представление компактно, быстро, устойчиво и не имеет особенностей [9 , 10].

2.2. Кинематика прямого положения

Мы отмечаем здесь текущие совместные ценности робота с

$$\hat{\boldsymbol{\theta}} = \int_{-\infty}^{\infty} \boldsymbol{\theta}_{1}, \quad \boldsymbol{\theta}_{2}, \quad \boldsymbol{\theta}_{3}, \dots, \quad \boldsymbol{\theta}_{n} \in \mathbf{D}_{N \times 1}$$

и его домашняя конфигурация с $\underline{\theta}_0 \in D$ и× 1. Тогда для простоты

вычислений, сначала мы перемещаем руку к $\underline{\theta}$ а затем мы размещаем рука дома кадр a_0 на конец рукоятки a. Таким образом, относительная поза между рукой дома кадр a_0 и рамка рукоятки endeffector является единичным двойным кватернионом, $\hat{\theta}$ 1, пока $\hat{\theta}$ $\hat{\theta}$ $\hat{\theta}$ $\hat{\theta}$

Позвом быть единым двойным кватернионом, который либо вращается, либо переводит (или оба ₁) кадр-эффектор о я ось винтового соединения, а остальные соединения заблокированы.

$$^{a0}\widehat{\mathbf{MKC}}_{B0B=a0}\widehat{} \delta_{1\,a0}\widehat{} \delta_{2\,a0}\widehat{} \delta_{3,1\,a0}\widehat{} \delta_{n}. \tag{6}$$

рименты представляет собой новое предложение рамы торцевого эффектора руки в отношении ас выражено в ас.

Порядок умножения единичных двойных кватернионов важен. Должно быть написано последовательно справа налево

¹ Два сустава имеют одинаковую ось для вращения и перемещения

Рисунок 1. Простая иллюстрация того, как кинематика переднего положения применяется к манипуляру робота с 3 степенями свободы.

начиная с последнего сустава (r.e. ближайший к конечному эффектору, например, Вот $\tilde{\mathcal{O}}_{n}$) к первому суставу (r.e. ближайший к базе роботов, например, Вот $\tilde{\mathcal{O}}_{n}$)

Отныне в этом разделе, если не указано иное, все переменные выражены в домашней рамке робота. a_0 .

Для того, чтобы вычислить (6) Выражаем единицу двойного кватерниона δ_* квк следующим образом:

$$\hat{\boldsymbol{\delta}}_{\boldsymbol{\sigma}} = \exp \qquad \frac{\hat{\boldsymbol{\theta}}_{\boldsymbol{\sigma}}}{2} \mathbf{s}_{\boldsymbol{\sigma}_0} \tag{7}$$

где двойной угол *родственник* Совместное перемещение по отношению к домашнему совместному положению:

$$\hat{\boldsymbol{\theta}}_{\boldsymbol{\beta}} = \boldsymbol{1}\boldsymbol{\theta}_{\boldsymbol{\beta}} + \boldsymbol{\varepsilon} \, \boldsymbol{1} \, \boldsymbol{d}_{\boldsymbol{\beta}} \tag{8}$$

Если сустав является революционным, то $\hat{\boldsymbol{\theta}}_{\textit{Я}}$ = 1 $\boldsymbol{\theta}_{\textit{А}}$ Если сустав призматический, то $\hat{\boldsymbol{\theta}}_{\textit{Я}}$ = $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\theta}_{\textit{A}}$ Елок двойной вектор $\hat{\boldsymbol{\theta}}_{\textit{A}}$ = $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\theta}_{\textit{A}}$ Елок двойной вектор $\hat{\boldsymbol{\theta}}_{\textit{A}}$ = $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\theta}_{\textit{A}}$ Елок двойной вектор $\hat{\boldsymbol{\theta}}_{\textit{A}}$ = $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\theta}_{\textit{A}}$ Если сустав призматический, то $\hat{\boldsymbol{\theta}}_{\textit{A}}$ = $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\theta}_{\textit{A}}$ = $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\varepsilon}$ 2 $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\varepsilon}$ 2 $\boldsymbol{\varepsilon}$ 1 $\boldsymbol{\varepsilon}$ 2 $\boldsymbol{\varepsilon}$ 2 $\boldsymbol{\varepsilon}$ 2 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 2 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 2 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 3 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 5 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 6 $\boldsymbol{\varepsilon}$ 4 $\boldsymbol{\varepsilon}$ 6 $\boldsymbol{\varepsilon}$ 7 $\boldsymbol{\varepsilon}$ 6 $\boldsymbol{\varepsilon}$ 7 $\boldsymbol{\varepsilon}$ 6 $\boldsymbol{\varepsilon}$ 7 $\boldsymbol{\varepsilon}$ 6 $\boldsymbol{\varepsilon}$ 7

с участием ℓ_{n0} единичный вектор, показывающий направление оси соединения, и с м $_{n0}$ вектор момента этой совместной оси относительно начала домашнего кадра:

$$\mathbf{M}_{S0} = \mathbf{\Pi}_{S0} \times \boldsymbol{\ell}_{S0} \tag{10}$$

измеримая относительная стоимость суставов $^{\circ}$ θ и известный { п $_{so}$, ℓ $_{so}$ дома конфигурации. Конфигурация дома $^{\circ}$ θ $_{o}$ можно выбрать так, чтобы

п "ва также ℓ "впросто писать. рисунок 1 иллюстрирует, как переднее положение кинематики наносится постепенно на 3 степенями свободы руки робота. В

рисунок 1, Форма самого левого робота выбран в качестве домашней конфигурации, и мы хотим, чтобы найти самый правый конец робота-эффектор позе относительно робота конечных эффекторных создают дома конфигурации. Для этого мы сначала вычисляем совместные перемещения, а затем применить единичные сдвоенные кватернионные преобразования этих смещений последовательно, начиная с последним соединением к первому суставу.

Анализ цен. n- степенями свободы руки робота, который использует (6) вычислить его вперед кинематику

$$48 \times$$
 Стоммость (n) = [(n - 1), (N - 1), n] $40 + 8 e$ (11)

операций умножения и сложения и память с плавающей точкой единицы. Например, 6-степени свободы рука робота нуждается 240 × и 200 + ор- ражений и 48 e блоки памяти, чтобы вычислить ее вперед кинематику позиции.

Если бы мы использовали Denavit-Хартенберг подход для вычисления позиции вперед кинематики *п*- степенями свободы руки робота с помощью блока двойного кватернионов, то мы должны были бы по крайней мере 3 *п* [48 ×, 40+, 8 *e*]*т* moremultiplication и аддитивных операций и памяти с плавающей точкой единиц, чем (11),

2.3. Вперед кинематика скорости

Рука робота якобиан относится скорости совместных движений к скорости конечного эффектора Поза:

$$a^{0}$$
 $\hat{\xi}_{a0a=0}$ \hat{J} θ (12)

где so^* $\xi so s = \omega + \varepsilon U \in D_3 \times 1$ является двойной объемная скорость поворот концевого эффектора-кадра по отношению к домашней раме so выраженное в роботе домашней раме so Выше U вектор скорости поступательных и ω это вектор скорости вращения. Матрица $so^* J \in D_3 \times N$

является сопряженным пространством якобиан руки робота выражается в домашней раме ao. Двойственное пространство якобиан ao. ^ J не что иное, как единичные двойные векторов совместных винтовых осей:

$$a_0 \hat{J} = a_0 \hat{s}_1 \qquad a_0 \hat{s}_2 \qquad a_0 \hat{s}_3 \qquad \cdots \qquad a_0 \hat{s}_N$$
 (13)

где блок двойной вектор s_0 s "выраженное в роботе домашней раме a_0 сапье вычисляется fromits известных значений s_0 s s_0 дома конфигурации

$$\hat{\mathbf{S}}_{S=a0} \hat{\mathbf{\delta}}_{a0(S-1)a0} \hat{\mathbf{S}}_{s0a0} \hat{\mathbf{\delta}}_{a0(S-1)}^*$$
 (14)

где $_{so}$ $\delta_{so(s-1)}$ представляет собой суммарный эффект смещения предыдущего s-1 на суставы s й ось сустава винта:

$${}^{a0}\widehat{\overline{O}}_{a0(s-1)=a0}\widehat{\overline{O}}_{1a0}\widehat{\overline{O}}_{2,s,a0}\widehat{\overline{O}}_{(s-1)}. \tag{15}$$

В (14) Оператор (·) * представляет собой классические кватернионы конъюгата связанного двойного кватерниона. Он используется либо для преобразования строки [15] Или вычислить обратные единичную позу двойного кватерниона. Следует также отметить, что в (14) , если s = 1, то s = 1 s = 1.

Анализ цен. п- степенями свободы руки робота, который использует (13) вычислить его якобиан через (14) , Необходимо:

операций умножения и сложения. Например, 6-степенями свободы манипулятора нуждается 480 × и 400+ операции для вычисления его якобиан.

Матрица-вектор форма представления. Для вычисления кинематики обратной скорости, можно переписать (12) в терминах действительных чисел, а не двойственных чисел, и положить его в матрично-векторной форме, как показано ниже:

где L ∈ $\Re s \times a$ M ∈ $\Re s \times a$ θ ∈ $\Re w \times a$ также d ∈ $\Re w \times a$ спедующие:

$$L = \bullet \ell_1 \ell_2 \ell_3 \qquad \cdots \qquad \ell_N \quad ,$$

$$M = \bullet M_1 M_2 M_3 \qquad \cdots \qquad M_N$$
(18)

$$\underline{\boldsymbol{\theta}} = \bullet \boldsymbol{\theta}_1 \boldsymbol{\theta}_2 \boldsymbol{\theta}_3 \qquad \cdots \qquad \boldsymbol{\theta}_N \qquad (19)$$

$$\underline{\boldsymbol{\pi}} = \bullet \boldsymbol{d}_1 \boldsymbol{d}_2 \boldsymbol{d}_3 \qquad \cdots \qquad \boldsymbol{d}_N \qquad (19)$$

Рис. 2. Первоначальная конфигурация робота Armand бутылки (слева). Желаемая досягаемость поза руки робота, чтобы схватить бутылку (средний). Желательно исправить положение бутылки после захвата и оставляя его на стол (споава).

Обратите внимание, что для 6-степеней свободы руки робота, который состоит только из книзу суставов, уравнения. (17) дает хорошо известную структуру робота якобиану:

Теперь можно использовать линейные алгоритмы алгебры на (17) решить для совместных движений.

3. Контроль Кинематического

3.1. End-эффектор создает ошибку

Определим блок ошибки двойного кватернионов, $^{\circ}$ е, как разница между текущим рабочим органом в позе и желаемая КОНЕЦ эффектор поза на a_d в домашнем кадре a_0 :

$$\hat{\mathbf{e}} = \mathbf{a} \mathbf{0}^{\bullet} \quad \mathbf{MKC} \mathbf{e}_{\mathbf{0}} \mathbf{e}_{\mathbf{0}} \mathbf{0}^{\bullet} \mathbf{MKC} \mathbf{e}_{\mathbf{0}} \mathbf{e$$

где ao Мкс ao это текущий конец эффектор позу и ao Мкс ao актоторый получен обратная желаемого конечного эффектора позе ao Мкс ao актоторый получен через классические кватернионы конъюгат двойного кватерниона.

3.2. закон управления

Определим декартово закон управления \mathfrak{so}° $\mathfrak{g}_{\mathfrak{so}}$ в сопряженном пространстве в условия логарифма блока ошибки двойных кватернионы:

$$^{a0}\hat{\xi}_{a0a} = -\lambda 2 (\text{nep}^{\circ} \text{ e}) \tag{22}$$

где А положительный прирост скалярного управления. Закон управления (22) имеет глобальное экспоненциальное поведение сходимости. Доказательство этого поведения можно проследить через анализ раздела 3,3, Кроме того, можно найти другое доказательство в [1] Для того же закон управления для случая свободных жестких тел.

В оставшейся части этого раздела, для простоты уравнений, Wewill падения супер и **нижних индексов переменных (** *например*, \mathfrak{so} ***** $\mathfrak{E}_{\mathfrak{so}} \equiv \mathfrak{E}$ ***** \mathfrak{E}).

Эксплуатируя (1) , Мы можем переписать (22) как:

$$\hat{\xi} = -\lambda \hat{\theta} - \epsilon \lambda \theta \ell - \epsilon \lambda (\theta + d\ell)$$
 (23)

где { heta, heta, heta} Теперь параметры смещения винтов, полученные из блока ошибки двойного кватерниона $\hat{}$ е. В следующий

Подраздел, проанализирует устойчивость предлагаемого закона управления.

3.3. анализ устойчивости

Для анализа устойчивости предложенного закона управления, мы пишем следующую положительно определенную функцию Ляпунова кандидата:

$$V = \hat{e} \cdot \hat{e} > 0$$
 (24)

где " \circ «» Является би-оператор продукта вектора точки между элементами соответствующим левым и правыми двойными кватернионами. После этого мы различаем эту функцию кандидата Ляпунову B

по времени, чтобы мы могли проверить его отрицательную определенность. Это дает:

$$\dot{V} = 2^{\circ} e^{\circ} e^{\circ}$$
 (25)

где производная блока ошибки двойных кватернионов, • е, может быть переписать в терминах скорости закручивания (г.е. Декартов закон управления) выражается в роботе дома кадра (так называемом пространственным каркасом) следующим образом:

$$e = 1 - \xi_{\Lambda} \hat{e}.$$
 (26)

Подставляя (26) в (25) выходы:

$$\dot{V} = \hat{e} \cdot (\xi_{\Lambda} \hat{e})$$
 (27)

где $\hat{\xi}_{\Lambda}=(0,\omega)+\varepsilon$ $(0,\omega)$ декартова управления lawwritten в сопряженном пространстве кватернионов пути увеличения его реальную и двойную часть с нулевыми скалярами. расширяющийся (27) с точки зрения screwparameters, а затем упростить ее, мы получим следующее выражение:

$$\dot{V} = -\lambda \mathbf{1} - \frac{\mathbf{d}_{2}}{2} \|\mathbf{M}\|_{2} \boldsymbol{\theta} \operatorname{rpex} (\boldsymbol{\theta})^{\bullet}. \tag{28}$$

Позже, анализируя (28) , Мы приходим к выводу, что если - $\pi \le \theta \le \pi$ тогда

$$B < 0.$$
 (29)

Следовательно, если (29) является действительным, и робот armJacobian (13) неособо, то закон управления глобально экспоненциально устойчивый.

4. Эксперименты

Представлена композиция подтверждена на Куку ЛВР И.В. семь степеней свободы руки робота, который оснащен с тенью ловкой рукой [22]. В ходе эксперимента мы сначала достичь схватить бутылку, лежащую на столе с известной позы, то после захвата мы исправляем осанку бутылки и положить его обратно. В Рис. 2 Левое изображение показывает начальную конфигурацию манипулятора КUKA плюс Тень

Рис. 3. Эволюции ошибки блока двойных кватернионов (слева) и закон управления (справа) в зависимости от времени при достижении схватить бутылку

Рис. 4. Эволюции ошибки двойных кватернионов единицы (слева) и закон управления (справа) в зависимости от времени при коррекции осанки бутылки, чтобы положить его обратно.

ловкие руки и бутылка лежит на столе. В Рис. 2 среднее изображение показывает требуемую позу досягаемости руки робота, а правое изображение показывает желаемое положение скорректированнога бутылки.

Рис. 3 изображает эволюции единичной двойной ошибки кватернионов и закон управления в зависимости от времени во время движения к желаемой досягаемости позы показаны в середине изображения Fig. 2, Рис. 4 изображает эволюции единичной двойной ошибки кватернионов и закон управления в зависимости от времени при коррекции осанки бутылки в направлении желаемой позы, показанной в правильном образе Рис. 2, В заключение,

Рис. 5 показывает следы декартовых поз конечного эффектора, зарегистрированный во всей задаче манипулирования. Можно заметить из Рис. 3 а также 4 что оба идущие к бутылке и коррекция его осанка задачи успешно реализуется.

5. Выводы

В данной работе использованы двойные единицы кватернионов для моделирования кинематики и затем контролировать позу руки робота. Моделирование компактно и быстро. Таким образом, вычисление закона управления быстро. Кроме того, задача пространство особенность бесплатно. Эта формула обеспечивает важное преимущество, если использовать его для моделирования и управления роботизированной системы, которая имеет много степеней свободы, например, человекоподобный робот.

Эта работа может служить основой для дальнейших исследований динамического моделирования и управления робота оружия в Amore компактный и эффективный способ, чем существующие методы с использованием модульных сдвоенные кватеонионов.

аппендикс

А.1. Кватернионы

Ирландский математик сэр Уильям Гамильтон представил кватернион в 1843 г. [23] В качестве геометрического оператора для отображения два вектора друг с другом в 3D-пространстве. Вумарріпа, hemeans отражение, вращение и масштабирование. Большинство приложений используют чистые ротацию. Это ограничивает кватернионы тем, с единичной величиной и что используют только операцию умножения комбинировать различные повороты. Множество кватернионов ЧАС можно рассматривать как четырехмерное псевдо векторное пространство над вещественными числами 9₹ 4. кватернион Q ∈ ЧАС

может быть представлено с реальным скалярной части $s\in\Re$ и мнимая часть вектора $\mathbf{v}\in\Re$ s:

KB,
$$(s, v)$$
, $v = [V_{ibc}, V_{y}, V_{ij}\tau]$ (A.1)

Два кватернионы могут быть умножены друг с другом следующим образом:

$$Q_1Q_2 = (S_1S_2 - V_1 - V_2, S_1V_2 + S_2V_1 + V_1 \times V_2)$$
 (A.2)

где " · «» Представляет собой произведение вектора точки и «» × «» Это векторное произведение. Кватернионы умножение ассоциативно, но не коммутативное.

Сопряженные и норма. сопряженный **Q** • и норма **|| Q ||** кватерниона приведены ниже:

$$\mathbf{Q} \cdot (\mathbf{s}, -\mathbf{v}) \tag{A.3}$$

Рис. 5. Декартова поза траектория конечного эффектора при достижении понять (красный), а затем исправляя осанку (зеленый) бутылки, чтобы положить его обратно. (Для интерпретации ссылок на цвет в этой фигуре легенде, читатель отсылается к веб-версии этой статьи.)

$$\|Q\| = \circ \text{KB.KB}^* = \circ Q^* A = \circ S_2 + V \cdot \text{против}$$
(A.4)

Если | Q | = 1, то Q является единицей кватернионов и, а также ее обратное

Вращение. Можно написать 3D вращение, выраженное углом heta вокруг единичного вектора ℓ , с точки зрения единицы кватернион следующим образом:

$$\mathbf{Q}_{P,\ell}\cos\left(\frac{\theta}{2}\right)$$
, rpex ($\frac{\theta}{2}$). (A.5)

Для того, чтобы повернуть воображаемый кватернион (r.e. кватернион с нулевым скалярной частью) $\mathbf{n} \wedge \mathbf{n} = (\mathbf{0}, \mathbf{v})$ представляющие собой вектор в 3D-пространстве, нужно только предварительно и после умножения $\mathbf{n} \wedge \mathbf{c}$ единичным кватернионом

Q_Pи сопряженное, соответственно:

$$\mathbf{\Pi}' \mathbf{\lambda} = \mathbf{Q}_{\rho} \mathbf{\Pi} \mathbf{\Lambda} \mathbf{Q}^{\bullet}$$
 (A.6)

где п 'л это поворачивается воображаемая Кватернионный п л

А.2. Двойные номера

Английский математик сэр Уильям Клиффорд ввел множество двойных чисел D и ее алгебра в 1873 г. [24]. Он определил двойное число следующим образом:

$$\hat{r}$$
 = a + ϵ δ , ϵ ₂ = 0, ϵ знак равно= 0 (A.7)

где является действительной частью и б двойственная часть. Геометрический двойное число может представлять собой 2D вектор позиции в двойственной плоскости. Приведенное выше выражение можно переписать следующим образом:

$$\hat{r} = r(1 + \varepsilon \tau) \tag{A.8}$$

где модуль r = a и аргумент r = 6/y за знак равно= 0. операция умножения для двух чисел, еще раз, дает вкус геометрического отображения:

$$\hat{Z}_1 \hat{Z}_2 = p \left(1 + \varepsilon \tau \right) \left(a + \varepsilon \delta \right) = r \left(a + \varepsilon \left(\delta + a \tau \right) \right) \tag{A.9}$$

который масштабирует и ножницы. Если умножая двойное число $^{\circ}$ Z_1 это блок (r.e. r=1), то отображение чисто сдвига на позиции вектора 2D, выраженного $^{\circ}$ Z_2 Двойные номера можно также выразить 2D плоские

линии и их произвольные движения с помощью полярных координат параметров [25].

А.З. Плюккеровы линия как единичные векторы двойственных

Немецкий математик Исследование определил двойной угол обозначения,

$$\hat{\mathbf{s}} = \ell + \boldsymbol{\varepsilon} \,\mathbf{M} \tag{A.10}$$

где действительная часть ℓ это направление единичного вектор линии s, и двойная часть $t = (p \times \ell)$ является момент линии о происхождении O

двойной угол (μ инию к другой. (θ)) которая связывает одну линию к другой.

А.4. Двойные кватернионы

Устройство двойные кватернионы можно выразить либо позу (как ориентацию и положение) или перемещение твердого тела в 3D пространстве декартова. Твердое тело может быть смещено путем умножения его блок позы двойного кватерниона с единичным смещением двойного кватернионом. Двойные кватернионы отмечаются как двойственное число с компонентами кватернионов:

$$\hat{\mathbf{x}} = \mathbf{p} + \boldsymbol{\varepsilon} \mathbf{Q} \tag{A.11}$$

где п , ($S_{R_i} \vee n$) а также кв, ($S_{R_i} \vee n$) являются кватернионы.

Умножение. Умножение двух двойных кватернионов дает следующее уравнение:

$$\hat{\mathbf{H}}_{KC} = \mathbf{H}_{KC} = \mathbf{H}_{1} = \mathbf{H}_{2} + \mathbf{H}_{1} = \mathbf{H}_{2}$$
(A.12)

Конъюгаты. Есть три различных конъюгатов двойной quater- Nion:

 Классические кватернионы сопряженные. Это используется для 3D линии трансформационного Мация.

2. двойной конъюгат

$$\mathbf{x} = \mathbf{p} - \boldsymbol{\varepsilon} \, \mathbf{kB}. \tag{A.14}$$

3. Комбинированный сопряженный. Это используется для точечного преобразования 3D.

$$\mathbf{N}_{\mathbf{K}\mathbf{C}^*} = \mathbf{n}^* - \boldsymbol{\varepsilon} \mathbf{Q}^*. \tag{A.15}$$

Норма. Норма двойного кватернион определяется как:

$$\| \mathbf{MKC} \| = \sqrt{\mathbf{MKC^*}} = \sqrt{\mathbf{MKC^*}}$$
(A.16)

$$\| \text{ UKC} \| = \cdot (S_{2p} + \mathbf{v}_n \cdot \mathbf{v}_n, \mathbf{0}) + \mathcal{E}_2 (S_n S_n + \mathbf{v}_n \cdot \mathbf{v}_m, \mathbf{0}). \tag{A.17}$$

Если

тогда || Икс || = 1. То есть икс является единицей двойных кватернионов и ее обратное Икс -1 = икс ·.

Смещение. Можно построить блок двойной кватернион, чтобы выразить смещение следующим образом:

$$\hat{\mathbf{x}} = \mathbf{q}_{\rho}$$
 $\mathbf{1} + \varepsilon \mathbf{T}_{\Lambda}$ \mathbf{Q}_{ρ} (A.19)

Рис. А.б. Линии- (слева): Двойной угол выражает относительную позу линии по отношению к другой линии. (Справа): Геометрия линии плюккеровом.

где Q, является единицей кватернион, представляющий вращение, как показано на (A.5), 1 обозначает кватернион тождество: (1, 0), а также T л = (0, т) это кватернион, описывающий перевод с вектором т. Оставшись уравнение (A.19) (соответственно Уравнение правое) первое переводит затем вращается (соответственно вращается затем переводит) зD-геометрическую функцию (например, точка, линия). Устройство двойные кватернионы, что только вращается ("Икс -, или что только переводит ("Икс -, то можно записать из (A.19) следующее:

$$\hat{\mathbf{M}}_{\mathbf{K}\mathbf{C}R-\mathbf{Q}R+\mathbf{\mathcal{E}}}(\mathbf{0},\mathbf{0}), \qquad \hat{\mathbf{M}}_{\mathbf{K}\mathbf{C}T-\mathbf{\mathcal{E}}}(\mathbf{1},\mathbf{0}) + \mathbf{\mathcal{E}}\mathbf{T}_{\mathbf{A}} \qquad (A.20)$$

и, следовательно, модуль идентичности двойного кватернион $^{^{\circ}}$ 1 = (1, 0) + ε (0, 0). Относительное смещение $^{^{\circ}}$ Икс «между двумя твердыми телами может рассчитываются путем умножения единицы позы двойного кватерниона первого твердого тела с обратным (или конъюгатом) блок позы двойного кватерниона второго твердого тела:

$$\hat{\mathbf{M}}_{\mathbf{KC} \cdot \mathbf{e} = \hat{\mathbf{M}}_{\mathbf{KC} \cdot \mathbf{M}_{\mathbf{KC} \cdot \mathbf{e}}} \tag{A.21}$$

или наоборот.

А.5. От конечной поворот к единице двойному кватерниону

Позволять ζ конечный поворот в ce (3), то он может быть явно написано с конечным вращением и конечным переводом о геометрической винтовой линии следующим

После этого мы можем извлечь параметры винта $\{\theta, \ell, d, m\}$ of a displacement from this finite twist as below:

$$\theta = \| \omega \|,$$
 $\ell = \omega - d = \ell \tau \nu,$ $m = 1 - \theta (\nu - d\ell).$ (A.23)

Afterward, it is straightforward to write the corresponding unit dual quaternion representation, see (3) and (4).

A.6. From a unit dual quaternion to screw parameters

Let $\hat{\mathbf{x}} = \mathbf{q}_{r} \cdot \mathcal{E} \mathbf{q}_r$ be a unit dual quaternion with $\mathbf{q}_{r,(S_r, \mathbf{v}_r)}$ and $\mathbf{q}_{r,(S_r, \mathbf{v}_r)}$. We can then compute the rotation angle θ as follows:

$$\theta = 2 \arccos(s_R)$$
 (A.24)

Afterward, we have the following two cases to compute the rest of the screw parameters:

Case when $0 < \theta < 2 \pi$ and $\theta = 0$.

$$d = -2 \qquad \frac{s_{\text{T}}}{\sin(\theta/2)} \tag{A.25}$$

$$\ell = v_R \frac{1}{\sin(\theta/2)}$$
 (A.26)

$$\mathbf{m} = \mathbf{v} \quad \mathbf{v}_{7} = \mathbf{s}_{R} \quad \frac{d}{2 \ell} \qquad \frac{1 \sin(\theta/2)}{(A.27)}$$

Case when $\theta = 0$.

$$d = 2 \| \mathbf{v}_T \|_{1}$$
, $\ell = 2 \mathbf{v}_{T/2} d$, $\mathbf{m} = [0, 0, 0]_T$. (A.28)

References

[1] D. Han, Q. Wei, Z. Li, Kinematic control of free rigid bodies using dual quaternions, Int. J. Autom. Comput. (2008).

[2] X. Wang, C. Yu, Unit-dual-quaternion-based PID control scheme for rigid-body transformation, in: 18th IFAC World Congress, Italy, 2011. [3] X. Wang, D. Han, C. Yu, Z. Zheng, The geometric structure of unit dual quaternion with application in kinematic control, J. Math. Anal. Appl. (2012).

[4] M. Gouasmi, M. Ouali, F. Brahim, Robot kinematics using dual quaternions, Int.

[5] H. Pham, V. Perdereau, B.V. Adorno, P. Fraisse, Position and orientation control of robot manipulators using dual quaternion feedback, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010. [6] B.V. Adorno, A.P.L. Bó, P. Fraisse, P. Poignet, Towards a cooperative framework

for interactive manipulation involving a human and a humanoid, in: IEEE International Conference on Robotics and Automation, 2011. [7] L.F.C. Figueredo, B.V. Adorno, J.Y. Ishihara, G.A. Borges, Robust kinematic

control of manipulator robots using dual quaternion representation, in: IEEE International Conference on Robotics and Automation, 2013. [8] L.F.C. Figueredo, B.V. Adorno, J.Y. Ishihara, G.A. Borges, Switching strategy

flexible task execution using the cooperative dual task-space framework, in: IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2014. [9] J. Funda, R.H. Taylor, R.P. Paul, On homogeneous
transformations, quaternions, and computational efficiency, IEEE Trans. Robot. Autom. 6 (3) (1990) 382–388.

[10] J. Funda, R.P. Paul, A computational analysis of screw transformations in robotics, IEEE Trans. Robot. Autom.

[11] N.A. Asparagethos, J.K. Dimitros, A comparative study of three methods for robot kinematics, IEEE Trans. Syst. Man Cybern. B 28 (2) (1998).

[12] X. Wang, H. Zhu, On the comparisons of unit dual quaternion and homogeneous transformation matrix, Adv. Appl. Clifford Algebr. 24 (2014) 213–229.

[13] L. Kavan, S. Collins, C. O'Sullivan, J. Zara, Dual quaternions for rigid body transformation blending, 2006. [14] Q.J. Ge, B. Ravani, Computer aided geometric design of motion interpolants, ASME J. Mech. Des. 116 (3) (1994) 756–762.

[15] K. Daniilidis, Hand-eye calibration using dual quaternions, Int. J. Robot. Res. (1999).

[16] Y.X. Wu, X.P. Hu, D.W. Hu, J.X. Lian, Strapdown inertial navigation system algorithms based on dual quaternions, IEEE Trans. Aerosp. Electron. Syst. 41 (1) (2005) 110–132.

[17] J. Denavit, R.S. Hartenberg, A kinematic notation for the lower pair mechanism based on matrices, ASME J. Appl. Mech. (1955) 215–221.

[18] E.A. Maxwell, General Homogeneous Coordinates in Space of Three Dimen-sions, Cambridge University Press, Cambridge, UK, 1951.

[19] R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press, 1994.

[20] O.A. Bauchau, L. Trainelli, The vectorial parameterization frotation, Nonlinear Dynam. 32 (1) (2003) 71–92.

[21] J.M. McCarthy, Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA, USA, 1990.

[22] Shadow Company, Shadow Dexterous Hand C6M, Technical Specs., 2009. [23] W.R. Hamilton, On Quaternions, or a new system of imaginaries in algebra, Phil. Mag. (1844).

[24] W.K. Clifford, Mathematical Papers, London, 1882. [25] I.M. Yaglom, Complex Numbers in

Geometry, Academic Press, 1968.

[26] E. Study, Geometrie der Dynamen, Teubner, Leipzig, 1901.

[27] J. Rooney, On the principle of transference, in: 4th World Congress on the

Theory of Machines and Mechanisms, 1975. [28] S. Stramigioli, H. Bruyninckx, Geometry and screw theory for robotics, in:

Tutorial in ICRA'01, 2001.

Erol Özgür received the Ph.D. degree in Robotics and Vision from the University of Blaise Pascal, France, in 2012. Between 2012 and 2014, he was a postdoctoral fellow in Pascal Institute—UBP/CNRS/IFMA, France. Since 2015, he is an assistant professor inUniversité d'Auvergne. His research interests are vision-based robot control and computer vision.

Youcef Mezouar received the Ph.D. degree in Computer Science from the University of Rennes 1, France, in 2001. Hewas a Postdoctoral Associate in the Robotics Laboratory of the Computer Science Department, Columbia Univer-sity, NewYork, NY. Since 2002, he has beenwith the Pascal Institute—UBP/CNRS/IFMA, France. His research interests are vision-based robot control and computer vision.