משתנה מקרי רציף: משתנה מקרי שקבוצת ערכיו האפשריים אינה בת-מניה.

ברוב המקרים קבוצה זו היא קטע של מספרים ממשיים (או מספר סופי של קטעים).

פונקציית הצפיפות של משתנה מקרי רציף: אם X הוא משתנה מקרי רציף, אז פונקציית הצפיפות שלו : המוגדרת לכל x ומקיימת היא פונקציה ממשית f(x)

- $f(x) \ge 0$ א.
- . $P\{a \leq X \leq b\} = \int\limits_{-\infty}^{b} f(x) \, dx$: ממשיים a < b ממשיים . $P\{X \in B\} = \int\limits_{-\infty}^{b} f(x) \, dx$ ב. לכל מאורע b ועד לנקודה a ועד מהנקודה a המשתרע מהנקודה a המשתרע מהנקודה לפיכך, a היא השטח שמתחת לעקומת הצפיפות
 - .1- אווה (x ומעל לציר) ומעל הצפיפות העקומת השטח שמתחת שמתחת (ומעל לציר ; $\int\limits_{-\infty}^{\infty}f(x)dx=1$...
 - $P\{X \le a\} = P\{X < a\}$ ולכן , $P\{X = a\} = 0$ ממשי מקרי רציף אז לכל מקרי רציף אז לכל .1 . אם X הערות
- .1 פונקציית הצפיפות אינה חייבת להיות חסומה מלעיל, כל עוד השטח הכלוא תחתיה מתכנס ל-1.

 $F(x)=P\{X\leq x\}=\int\limits_{-\infty}^{x}f(t)\,dt$ לכל אלות המצטברת של משתנה מקרי רציף:

. x לכל $f(x) = \frac{d}{dx} F(x)$: הקשר בין פונקציית ההתפלגות המצטברת לפונקציית הצפיפות

 $.E[X]=\int\limits_{-\infty}^{\infty}x\,f(x)dx$ התוחלת של X מסומנת ב- E[X] , ומוגדרת על-ידי התוחלת: התוחלת של X מסומנת ב- $E[X]=\int\limits_{0}^{\infty}P\{X>x\}dx$ אם X הוא משתנה מקרי אי-שלילי, כלומר X

תוחלת של פונקציה של משתנה מקרי:

 $\chi(x)$ אם של משתנה של האפשריים לכל הערכים המוגדרת ממשית ממשית ממשית g(x)

.
$$E[g(X)] = \int_{0}^{\infty} g(x) f(x) dx$$
 אא

E[aX+b] = aE[X]+b לכן, התוחלת מקיימת את השוויון

. $\operatorname{Var}(X) = E[(X - E[X])^2] = \int\limits_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$ שונות: השונות של $\operatorname{Var}(X) = \operatorname{Var}(X)$, ומוגדרת על-ידי

. $\operatorname{Var}(X) = E[X^2] - (E[X])^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - (E[X])^2$ אפשר להראות שמתקיים

. $Var(aX+b) = a^2 Var(X)$ השונות מקיימת את השוויון

 σ_X או $\mathrm{SD}(X)$: סטיית סימון של $\mathrm{SD}(X)$ היא השורש אחיובי של שונותו. סימון

. SD(aX+b) = |a|SD(X) סטיית התקן מקיימת את השוויון

X פונקציה של משתנה מקרי: יהי X משתנה מקרי ויהי Y = g(X) ויהי פונקציה של משתנה מקרי:

; $F_Y(y) = P\{Y \leq y\} = P\{g(X) \leq y\} = P\{X \leq g^{-1}(y)\} = F_X(g^{-1}(y))$ אם g היא פונקציה מונוטונית עולה, אז אום g

. $F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \ge g^{-1}(y)\} = 1 - F_X(g^{-1}(y))$ ואם g היא פונקציה מונוטונית יורדת, אז

. אפשר לקבל את f_{y} אפשר לקבל אפשר F_{y} -ידי גזירה

משתנים מקריים מיוחדים

$$X \sim U(a\,,b)$$
 משתנה מקרי אחיד: a ו- a ממשיים ו- a

$$F(x) = \frac{x-a}{b-a}$$
 ; $f(x) = \frac{1}{b-a}$ $a \le x \le b$
 $F(x) = \frac{a+b}{b-a}$ $a \le x \le b$
 $Var(x) = \frac{(b-a)^2}{b-a}$

$$E[X] = \frac{a+b}{2}$$
 $Var(X) = \frac{(b-a)^2}{12}$ $Var(X) = \frac{a+b}{12}$

$$X \sim Exp(\lambda)$$
 משתנה מקרי מעריכי:

$$f(x) = \lambda e^{-\lambda x}$$
; $F(x) = 1 - e^{-\lambda x}$ $x > 0$

$$E[X] = \frac{1}{\lambda} \qquad \Rightarrow \quad E[X^2] = \int_0^\infty x^2 f(x) dx = \frac{1}{\lambda^2} + \left(\frac{1}{\lambda}\right)^2 = \frac{2}{\lambda^2}$$

תכונת חוסר-הזיכרון:

. $P\{X>s+t \, \big| \, X>t\} = P\{X>s\}$ משתנה מקרי אי-שליליים אם לכל s ו- t אי-שליליים מתקרי נקרא תסר-זיכרון אם לכל היחיד שמקיים את תכונת חוסר-הזיכרון.

הערה: המשתנה המקרי הגיאומטרי מקיים את תכונת חוסר-הזיכרון, אך רק עבור t -ו s שלמים אי-שליליים. הערה: המשתנה המקרי הגיאומטרי מקיים את תכונת חוסר-הזיכרון.)

טענה: אם המופעים, המתרחשים במרווח-זמן כלשהו, מקיימים את שלושת ההנחות של תהליך פואסון עם קצב λ , אז הזמן החולף (מתחילת מרווח-הזמן) עד להתרחשות המופע הראשון הוא משתנה מקרי מעריכי עם הפרמטר λ .

$$Z \sim N(0,1)$$
 משתנה מקרי נורמלי סטנדרטי:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
 ; $F(z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$ z

$$E[Z] = 0$$
 $Var(Z) = 1$

 $\Phi(-z) = 1 - \Phi(z)$, כלומר, $P\{Z \le -z\} = P\{Z \ge z\}$ מתקיים $\Phi(-z) = 1 - \Phi(z)$ סימטרית סביב $\Phi(-z) = 1 - \Phi(z)$

$$X \sim N(\mu, \sigma^2)$$
 משתנה מקרי נורמלי: μ ממשי ו- $\sigma^2 > 0$ משתנה מקרי נורמלי:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad ; \quad F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$E[X] = \mu \qquad \qquad \text{Var}(X) = \sigma^2$$

 $AX + b \sim N(a\mu + b, a^2\sigma^2)$ אז $X \sim N(\mu, \sigma^2)$ טענה:

 $Z = \frac{X-\mu}{\sigma} \sim N(0,1)$ אז $X \sim N(\mu,\sigma^2)$ ולכן: תוצאה: אם אם $X \sim N(\mu,\sigma^2)$

$$F_X(x) = P\{X \le x\} = P\left\{\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right\} = P\left\{Z \le \frac{x - \mu}{\sigma}\right\} = \Phi\left(\frac{x - \mu}{\sigma}\right)$$