RICHIAMI MATEMATICI

Corso di Fondamenti di Informatica - modulo I

Giorgio Gambosi

a.a. 2023-2024

Insiemi di particolare interesse

simbolo	descrizione			
N	naturali			
\mathbb{N}^+	naturali positivi			
\mathbb{Z}	interi			
\mathbb{Z}^+	interi positivi (coincide con ${f N}^+$)			
\mathbb{Z}^-	interi negativi			
Q	razionali			
Q Q ⁺ Q ⁻	razionali positivi			
\mathbb{Q}^{-}	razionali negativi			
$ m I\!R$	reali			
\mathbb{R}^+	reali positivi			
\mathbb{R}^-	reali negativi			

Sintassi del calcolo proposizionale

- \odot Insieme non vuoto di elementi denominati *simboli proposizionali* $A = \{A, B, C, ...\}$.
- \odot Costanti proposizionali \top e \bot . Per contrapposizione, i simboli proposizionali sono anche denominati *variabili proposizionali*.
- ⊙ *Connettivi logici* \neg , \lor e \land .
- ⊙ Separatori '(' e ')'.

Proposizioni

- \odot se a è una variabile o costante proposizionale allora a è una proposizione;
- ⊚ se α è una proposizione allora $(\neg \alpha)$ è una proposizione;
- \odot se α e β sono proposizioni allora $(\alpha \vee \beta)$ e $(\alpha \wedge \beta)$ sono proposizioni;
- $\odot\;$ tutte le proposizioni sono ottenute mediante le regole descritte.

Esempi di proposizioni e non

- \bigcirc ((¬⊥) ∨ (($A \lor B$) ∧ C)) è una proposizione.
- $\odot~A \vee B$ non è una proposizione
- $\odot (A \land B)A \top B$ non è una proposizione

Semantica del calcolo proposizionale

- \odot Dominio: insieme $B = \{0, 1\}$, in cui 0 è associato al valore di verità falso e 1 al valore vero
- \odot Insieme di operatori $O=\{o_\neg,o_\lor,o_\land\}$, contiene un elemento per ciascuno dei connettivi logici del calcolo proposizionale

Negazione logica (not)

$$o_{\neg}: B \mapsto B$$
, tale che $o_{\neg}(0) = 1$ e $o_{\neg}(1) = 0$

$$\begin{array}{c|cc}
a & \neg a \\
0 & 1 \\
1 & 0
\end{array}$$

Congiunzione logica (and)

$$o_{\wedge} : B \times B \mapsto B$$

Definito dalla seguente tabella di verità

a	b	$a \wedge b$
0	0	0
0	1	0
1	0	0
1	1	1

Disgiunzione logica (or)

$$o_{\vee}: B \times B \mapsto B$$

Definito dalla seguente tabella di verità

а	b	$a \lor b$
0	0	0
0	1	1
1	0	1
1	1	1

Assegnazione booleana V

Funzione $V:A\mapsto B$: un'assegnazione booleana alle variabili proposizionali altro non è che una associazione di valori di verità alle variabili stesse.

Valutazione booleana

Prop insieme delle proposizioni, V assegnazione booleana su A.

$$\odot$$
 se $A \in A$, $I_V(A) = V(A)$

$$\odot$$
 $I_V(\top) = 1$

$$\odot$$
 $I_V(\perp) = 0$

$$\odot$$
 se $\alpha \in PROP$, $I_V(\neg \alpha) = o_{\neg}(I_V(\alpha))$

$$\odot$$
 se $\alpha, \beta \in \text{Prop}$, $I_V(\alpha \vee \beta) = o_{\vee}(I_V(\alpha), I_V(\beta))$

$$\odot \ \operatorname{se} \, \alpha, \beta \in \operatorname{Prop}, \, \mathit{I}_{V}(\alpha \wedge \beta) = \mathit{o}_{\wedge}(\mathit{I}_{V}(\alpha), \mathit{I}_{V}(\beta))$$

Soddisfacibilità

Una formula proposizionale α viene detta:

- \odot *soddisfatta* da una valutazione booleana I_V se $I_V(\alpha) = 1$.
- o soddisfacibile se è soddisfatta da almeno una valutazione booleana
- tautologia se è soddisfatta da ogni valutazione booleana
- o contraddizione se non è soddisfatta da nessuna valutazione booleana

Implicazione

$$o_{\rightarrow} : B \times B \mapsto B$$

Definito dalla seguente tabella di verità

a	b	$a \rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

 $a \rightarrow b$ equivalente a $\neg a \lor b$

Equivalenza

$$o_{\leftrightarrow} : B \times B \mapsto B$$

Definito dalla seguente tabella di verità

а	b	$a \leftrightarrow b$
0	0	1
0	1	0
1	0	0
1	1	1

$$a \leftrightarrow b$$
 equivalente a $(a \leftrightarrow b) \land (b \leftrightarrow a)$

Operatori k-ari

Dato k, esistono 2^{2^k} operatori differenti $B^k \mapsto B$.

Se k = 2:

а	b	zero	and (△)	n-implicazione (↔)	operando-1	n-implicato (↔)	operando-2	ex-or (⊕)	or (v)	nor (Ÿ)	equivalenza (↔)	n-operando-2	implicato (←)	n-operando-1	implicazione (→)	nand (٨)	oun	
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	

Completezza di $\{\neg, \lor, \land\}$

Ogni operatore binario è equivalente ad una opportuna composizione degli operatori $\{\neg, \lor, \land\}$

Proprietà degli operatori 1

idempotenza	$\alpha \wedge \alpha \equiv \alpha$
ιαεπιροτεπίζα	$\alpha \vee \alpha \equiv \alpha$
	$\alpha \wedge (\beta \wedge \gamma) \qquad \equiv (\alpha \wedge \beta) \wedge \gamma$
associatività	$\alpha \vee (\beta \vee \gamma) \qquad \equiv (\alpha \vee \beta) \vee \gamma$
	$\alpha \leftrightarrow (\beta \leftrightarrow \gamma) \equiv (\alpha \leftrightarrow \beta) \leftrightarrow \gamma$
	$\alpha \wedge \beta \equiv \beta \wedge \alpha$
commutatività	$\alpha \lor \beta \equiv \beta \lor \alpha$
	$\alpha \leftrightarrow \beta \equiv \beta \leftrightarrow \alpha$
distributività	$\alpha \wedge (\beta \vee \gamma) \equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$
aistributivita	$\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$

Proprietà degli operatori 2

assorbimento	$\begin{array}{ccc} \alpha \wedge (\alpha \vee \beta) & \equiv & \alpha \\ \alpha \vee (\alpha \wedge \beta) & \equiv & \alpha \end{array}$
doppia negazione	$\neg \neg \alpha \equiv \alpha$
leggi di De Morgan	$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$ $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
terzo escluso	$\alpha \vee \neg \alpha \equiv \top$
contrapposizione	$\alpha \to \beta \equiv \neg \beta \to \neg \alpha$
contraddizione	$\alpha \wedge \neg \alpha \equiv \bot$

Quantificatori

Calcolo dei predicati

- ⊚ quantificatore universale, indicato con il simbolo $\forall x P(x)$, P è vero per qualunque valore di x
- ⊚ *quantificatore esistenziale*, indicato con il simbolo $\exists x P(x)$, P è vero per almeno un valore di x

Relazioni

 \odot Prodotto cartesiano di A e B, denotato con $C = A \times B$

$$C = \{ \langle x, y \rangle \mid x \in A \land y \in B \},\$$

 \odot A^n indica il prodotto cartesiano di A con se stesso, ripetuto n volte

$$\underbrace{A \times \cdots \times A}_{n \text{ volte}}$$

 $\odot\;$ Relazione $n\text{-aria}\;R$ su A_1,A_2,\dots,A_n è un sottoinsieme del prodotto cartesiano $A_1\times\dots\times A_n$

$$R \subseteq A_1 \times \cdots \times A_n$$
.

Relazione d'ordine

Una relazione $R \subseteq A^2$ si dice relazione d'ordine se per ogni $x, y, z \in A$ valgono le seguenti proprietà

- 1. $\langle x, x \rangle \in R$ (riflessività),
- 2. $\langle x, y \rangle \in R \land \langle y, x \rangle \in R \iff x = y$ (antisimmetria),
- 3. $\langle x, y \rangle \in R \land \langle y, z \rangle \in R \iff \langle x, z \rangle \in R$ (transitività).

Relazione d'equivalenza

Una relazione $R\subseteq A^2$ si dice relazione d'equivalenza se, per ogni $x,y,z\in A$, valgono le seguenti proprietà

- 1. $\langle x, x \rangle \in R$ (riflessività),
- 2. $\langle x, y \rangle \in R \iff \langle y, x \rangle \in R$ (simmetria),
- 3. $\langle x, y \rangle \in R \land \langle y, z \rangle \in R \iff \langle x, z \rangle \in R$ (transitività).

Relazione d'equivalenza

- \odot Un insieme A su cui sia definita una relazione d'equivalenza R si può partizionare in sottoinsiemi, detti classi d'equivalenza, ciascuno dei quali è un sottoinsieme massimale che contiene solo elementi tra loro equivalenti.
- \odot Dati un insieme A ed una relazione d'equivalenza R su A^2 , l'insieme delle classi d'equivalenza di A rispetto a R è detto insieme quoziente A/R.
- ⊚ I suoi elementi vengono denotati con [a], dove $a \in A$ è un *rappresentante* della classe d'equivalenza: [a] indica cioè l'insieme degli elementi equivalenti ad a.

Operazioni tra relazioni

- \odot Unione: $R_1 \cup R_2 = \{\langle x, y \rangle \mid \langle x, y \rangle \in R_1 \lor \langle x, y \rangle \in R_2\}$
- \odot Intersezione: $R_1 \cup R_2 = \{\langle x, y \rangle \mid \langle x, y \rangle \in R_1 \land \langle x, y \rangle \in R_2\}$
- \odot Complementazione: $\overline{R} = \{\langle x, y \rangle \mid \langle x, y \rangle \notin R\}$
- O Chiusura transitiva:

$$\begin{split} R^+ = & \{\langle x,y\rangle \mid \exists y_1,\ldots,y_n \in A, n \geq 2, y_1 = x, y_n = y, \\ & \langle y_i,y_{i+1}\rangle \in R, i = 1,\ldots,n-1 \} \end{split}$$

⊚ Chiusura transitiva e riflessiva: $R^* = R^+ \cup \{\langle x, x \rangle \mid x \in A\}$

Funzioni

 $R\subseteq X_1\times\ldots\times X_n$ $(n\ge 2)$ è una relazione funzionale tra una (n-1)-pla di elementi e l'n-esimo elemento, se $\forall \langle x_1,\ldots,x_{n-1}\rangle\in X_1\times\ldots\times X_{n-1}$ esiste al più un elemento $x_n\in X_n$ tale che $\langle x_1,\ldots,x_n\rangle\in R$

$$f: X_1 \times \cdots \times X_{n-1} \mapsto X_n.$$

$$f(x_1,\ldots,x_{n-1})=x_n.$$

Funzioni

- $\odot X_1 \times \cdots \times X_{n-1}$, dominio della funzione, dom(f)
- \odot X_n , codominio cod(f)
- o dominio di definizione:

$$def(f) = \{ (x_1, \dots, x_{n-1}) \in dom(f) \mid \\ \exists x_n \in cod(f) : f(x_1, \dots, x_{n-1}) = x_n \}$$

 \odot immagine imm(f):

$$\begin{aligned} \text{imm}(f) &= \big\{ x_n \in \text{cod}(f) \mid \\ &\exists \langle x_1, \dots, x_{n-1} \rangle \in \text{dom}(f) : \ f(x_1, \dots, x_{n-1}) = x_n \big\} \end{aligned}$$

Funzioni

- \odot f totale se def(f) = dom(f), parziale altrimenti
- \odot f surjettiva se imm(f) = cod(f)
- ⊚ f iniettiva o uno-ad-uno (1:1) se

$$\begin{split} \forall \left\langle x_1', \dots, x_{n-1}' \right\rangle, \left\langle x_1'', \dots, x_{n-1}'' \right\rangle \in X_1 \times \dots \times X_{n-1}, \\ \left\langle x_1', \dots, x_{n-1}' \right\rangle \neq \left\langle x_1'', \dots, x_{n-1}'' \right\rangle & \Longleftrightarrow \\ f(x_1', \dots, x_{n-1}') \neq f(x_1'', \dots, x_{n-1}'') \end{split}$$

f biiettiva se suriettiva e iniettiva

Pigeonhole principle

Dati due insiemi finiti *A* e *B*, tali che

non esiste alcuna funzione iniettiva totale $f\,:\,A\mapsto B$

Dato un insieme non vuoto $S \subseteq U$, si definisce operazione binaria \circ su S una funzione $\circ: S \times S \mapsto U$.

Un insieme non vuoto S si dice chiuso rispetto ad una operazione binaria \circ su S se imm(\circ) $\subseteq S$.

Dato un insieme S chiuso rispetto ad un'operazione binaria \circ .

La coppia $\langle S, \circ \rangle$ viene denominata semigruppo se l'operazione binaria \circ soddisfa la proprietà associativa:

$$\forall x \forall y \forall z \in S \ (x \circ (y \circ z)) = (x \circ y) \circ z).$$

Se inoltre vale la proprietà commutativa:

$$\forall x \forall y \in S \ (x \circ y) = (y \circ x)$$

il semigruppo è detto commutativo.

La coppia $(\mathbb{N}, +)$, dove + è l'usuale operazione di somma, è un semigruppo commutativo,

La terna $\langle S, \circ, e \rangle$ viene detta monoide se $\langle S, \circ \rangle$ è un semigruppo, e se $e \in S$ è tale che:

$$\forall x \in S \ (e \circ x) = (x \circ e) = x$$

L'elemento e viene detto elemento neutro o unità del monoide. Se · è anche commutativa, il monoide viene detto commutativo.

Le terne $\langle \mathbb{N}, +, 0 \rangle$ e $\langle \mathbb{N}, *, 1 \rangle$, dove + e * sono le usuali operazioni di somma e prodotto, sono monoidi commutativi.

Dati un insieme S ed una operazione associativa \circ , definiamo semigruppo libero sulla coppia $\langle S, \circ \rangle$ il semigruppo $\langle S^+, \circ^+ \rangle$, dove:

- 1. S^+ è l'insieme di tutte le espressioni $x=x_1\circ x_2\circ ...\circ x_n$, per ogni $n\geq 1$, con $x_1,\ldots,x_n\in S$;
- 2. l'operazione \circ^+ è definita nel modo seguente: se $x = x_1 \circ ... \circ x_n$ e $y = y_1 \circ ... \circ y_n$, allora $x \circ^+ y = x_1 \circ ... \circ x_n \circ y_1 \circ ... \circ y_n$.

Se estendiamo S^+ introducendo un elemento aggiuntivo ε , detto parola vuota, possiamo definire sull'insieme risultante $S^* = S^+ \cup \{\varepsilon\}$ l'operazione \circ^* , estensione di \circ^+ , tale che, $\forall x, y \in S^+ \ x \circ^* \ y = x \circ^+ \ y \in \forall x \in S^* \ (\varepsilon \circ^* x = x \circ^* \varepsilon = x)$.

La terna $\langle S^*, \circ^*, \varepsilon \rangle$ è allora un monoide e viene detto monoide libero.

La terna $\langle S, \circ, e \rangle$ viene detta gruppo se $\langle S, \circ, e \rangle$ è un monoide ed inoltre l'operazione \circ ammette inverso, cioè se

$$\forall x \in S \ \exists y \in S \ (x \circ y) = (y \circ x) = e.$$

L'elemento y viene detto inverso di x, e si denota come x^{-1} .

Se il monoide $\langle S, \circ, e \rangle$ è commutativo il gruppo viene detto commutativo (o abeliano).

Le terne $\langle \mathbb{N}, +, 0 \rangle$ e $\langle \mathbb{N}, \star, 1 \rangle$ non sono gruppi, in quanto l'insieme \mathbb{N} non è chiuso rispetto all'inverso di + e di \star . Al contrario, le terne $\langle \mathbb{Z}, +, 0 \rangle$ e $\langle \mathbb{Q}, \star, 1 \rangle$ sono gruppi abeliani.

Dato un semigruppo $\langle S, \circ \rangle$, una congruenza \equiv è una relazione d'equivalenza su S che soddisfa la seguente proprietà:

$$\forall x, y \in S \ x \equiv y \Longleftrightarrow \forall z \in S \ \big((x \circ z \equiv y \circ z) \land (z \circ x \equiv z \circ y) \big).$$

La relazione d'equivalenza \equiv_k delle classi resto rispetto alla divisione per k è una congruenza rispetto al semigruppo commutativo $\langle \mathbb{N}, + \rangle$: infatti, se $n \equiv_k m$, abbiamo che $\forall l \ (n+l \equiv_k m+l)$ e, chiaramente, anche $l+n \equiv_k l+m$. Viceversa, se $\forall l \ (n+l \equiv_k m+l)$ allora abbiamo, nel caso particolare l=0, $n \equiv_k m$