PC2: Exercices Méthodes bayésiennes

Exercice 1 Après obtention d'une mesure z d'un paramètre θ , la densité de probabilité conditionnelle a posteriori de θ est de la forme $f(\theta|z) = \exp(z - \theta)$, pour $z \leq \theta$.

1. Calculer les estimateurs du risque moyen en valeur absolue, du risque moyen quadratique et du maximum de vraisemblance a posteriori

risque moyen en valeur absolue : $r_{MVA} = \mathbf{E} |\theta - \hat{\theta}|$

risque moyen quadratique : $r_{MVA} = E_{\theta}(\theta - \hat{\theta})^2$

maximum de vraisemblance a posteriori : dans ce cas, maximiser $f(\theta|z)$

Exercice 2 Loi *a priori* de Jeffreys dans le cas gaussien. On considère la suite de variables aléatoires gaussiennes indépendantes de paramètres θ et σ^2 , où θ est une variable aléatoire.

- 1. Calculer $f(z|\theta)$
- 2. En déduire la vraisemblance $L(\theta; z_1, ..., z_N) = f(Z_1 = z_1, ..., Z_N = z_N; \theta)$
- 3. Déterminer la matrice d'information de Fisher $I(\theta)$
- 4. En déduire une forme de loi a priori de Jeffreys sur θ

Exercice 3 On considère une variable aléatoire représentant la réussite ou l'échec d'une réalisation. Cette variable, nommée Z dans la suite suit une loi de Bernoulli de paramètre θ

Le paramètre θ est supposé représenter une variable aléatoire de loi a priori définie par $\mathcal{P}(\theta = \theta_1) = p$ et $\mathcal{P}(\theta = \theta_2) = 1 - p$

- 1. Donner la loi $\pi(\theta|Z=z)$;
- 2. On considère l'estimateur défini par $T(z=0)=\mu_1, T(z=1)=\mu_2$. Calculer $\mathbb{E}^{\pi}[C(\theta,T)|z]$ pour $C(\theta,T)=(\theta-T)^2$ pour z=1 et z=0.
- 3. En déduire l'estimateur de Bayes associé à ce coût

Exercice 4 Soit Z une v.a. telle que $Z \propto \mathcal{N}(\theta, 1)$ où θ est un paramètre qui suit une loi de probabilité $\mathcal{N}(0, \sigma^2)$ où σ^2 est inconnu et fixé. Pour estimer θ , on considère la fonction de perte quadratique : $\mathcal{R}(\theta, a) = (\theta - a)^2$.

1. Déterminer l'estimateur de Bayes associé à cette fonction

Exercice 5 Soit l'estimateur $\hat{\theta} = arg \max_{\Theta} \pi(\theta|z) = arg \min_{\Theta} \left(\frac{||z - M\theta||^2}{2\sigma^2} + \frac{||\theta||^2}{2\mu^2} \right)$

1. Montrer que $\hat{\theta} = (M^t M + \lambda^2 I)^{-1} M^t x$ où on déterminera λ

Exercice 6 Loi a posteriori

Considérons un problème de trafic. On cherche à connaître le nombre moyen θ de passage par unité de temps, en un point donné. On sait que la durée t séparant deux passages successifs suit une loi exponentielle de paramètre θ , soit :

$$f_{\theta}(t) = \theta e^{-\theta t} \mathbf{1}_{\mathbb{R}^+}(t), \tag{1}$$

où
$$\mathbf{1}_{\mathbb{R}^+}(t) = \begin{cases} 1 & si \quad x \in \mathbb{R}^+ \\ 0 & sinon \end{cases}$$

On désire estimer le paramètre inconnu θ à l'aide d'observations successives $t_1,...,t_n.$

- 1. Dans cette question, on suppose qu'aucune information a priori n'est disponible sur $\theta > 0$ (à part $\theta > 0$). Déterminer à partir des observations t_i , l'estimateur du maximum de vraisemblance $\hat{\theta}_n^{MV}$ de θ .
- 2. On suppose à présent que le nombre moyen θ de passages pendant une unité de temps est distribué suivant une loi exponentielle de paramètre λ connu :

$$g(\theta) = \lambda e^{-\lambda \theta} \mathbf{1}_{\mathbb{R}^+}(\theta). \tag{2}$$

La densité $g(\theta)$ représente pour cet exemple la loi a priori sur le paramètre θ . Déterminer à partir des observations t_i l'estimateur $\hat{\theta}_n^{MAP}$ du maximum a posteriori.

3. Montrer que les estimateurs $\hat{\theta}_n^{MV}$ et $\hat{\theta}_n^{MAP}$ sont équivalents pour n grand. Interpréter ce résultat.