AKKODIS INTERVIEW

Analysis of an oncological dataset

Erik De Luca

SUMMARY

- Assignment description
- Setting the environment
- Descriptive Analysis
- Survival Analysis
- Deeper Analysis

DATASET DESCRIPTION

The response variable, SurvTime, is the survival time in days of a lung cancer patient.

The covariates are:

- Cell (type of cancer cell),
- Therapy (type of therapy: standard or test),
- •Prior (prior therapy: 0=no, 10=yes),
- Age (age in years),
- DiagTime(time in months from diagnosis to entry into the trial)
- •Kps(performance status).

A censoring indicator variable Censor is created from the data, with the value 1 indicating a censored time and the value 0 indicating an event time. Since there are only two types of therapy, an indicator variable, Treatment, is constructed for therapy type, with: value 0 for standard therapy and value 1 for test therapy.

EXERCISES

- 1. what was the maximum survival time for the cell type adeno?
- 2. what is the average age of subjects in this study?
- 3. which cell type appeared the most during this study?
- 4. Calculate descriptive statistics for all numeric variables within this dataset?
- 5. Perform a survival analysis to assess the survival time (variable SurvTime)? based on the cancerous cells (var Cell)? Consider applying survival functions/kaplan meier quartiles/cumulative incidence function/cox regression etc.
- 6. Perform an appropriate multivariable analysis to analyze the effect of independent variables age on the hazard ratio between the different cancerous cells (var Cell)?

LOAD LIBRARIES

```
1 pacman::p_load(
     tidyverse, # A set of many useful libraries
     readxl, # To import the dataset from Excel
     here, # To avoid problems with file directories
 4
     janitor, # To clean data in a fast way
 6
                # Output tables
     gt,
     gtsummary, # Output tables for models and survival data
     survival, # To manage survival data
     ggsurvfit, # To plot survival analysis
 9
     tidycmprsk # To fit survival models
10
11 )
```

IMPORT DATA

```
1 data_imported <- read_xlsx(</pre>
     here("Akkodis interview", "Oncology dataset for R.xlsx")
 3
 4
   data_cleaned <- data_imported |>
     clean names() |>
 6
     remove empty() |>
     remove_constant()
 8
 9
   data cleaned |>
10
     slice_sample(n = 1, by = c(therapy, cell)) |>
11
     gt() |>
12
     tab header("Sample of the dataset cleaned",
13
                 "The sample was stratified by the variables therapy and cell")
14
```

	Sample of the dataset cleaned									
	The sample was stratified by the variables therapy and cell									
obs	therapy	cell	surv_time	kps	diag_time	age	prior	treatment	censor	event
6	Standard	Squamous	10	20	5	49	10	0	0	1
16	Standard	Small	30	60	3	61	10	0	0	1
49	Standard	adeno	117	80	2	38	0	0	0	1
60	Standard	large	12	40	12	68	0	0	0	1
72	Test	Squamous	87	80	3	48	0	1	1	0
97	Test	Small	7	20	11	66	10	1	0	1

WHAT WAS THE MAXIMUM SURVIVAL TIME FOR THE CELL TYPE ADENO?

```
1 data cleaned |>
     filter(
       surv time == max(surv time),
       .by = cell
      ) |>
     select(obs, cell, surv time, kps, age) |>
 6
     gt() |>
     tab header("Maximum Survival Time by Cell",
                 "Adeno's row is bolded") |>
 9
10
     tab style(
       style = cell text(weight = "bold"),
11
       locations = list(
12
         cells body(rows = cell == "adeno")
13
14
15
```

Maximum Survival Time by Cell Adeno's row is bolded								
obs	cell	surv_time	kps	age				
44	Small	392	40	68				
52	adeno	162	80	64				
58	large	553	70	47				
70	Squamous	999	90	54				

WHAT IS THE AVERAGE AGE OF SUBJECTS IN THIS STUDY?

```
1 data cleaned |>
     summarise(
       across(age, list(
 4
         mean = mean,
         median = median,
      sd = \sim round(sd(.)),
     Q1 = \sim quantile(., .25),
      03 = \sim \text{quantile}(., .75),
 8
 9
      min = min,
10
         max = max
11
12
        .names = \{fn\}
13
14
15
     pivot longer(everything(), names to = "statistics") |
     gt() |>
16
     tab_header(
17
18
       "Age",
       "Mean and other position and variance indicators"
19
20
        ) |>
21
     tab style(
22
       style = cell text(weight = "bold"),
23
       locations = list(
          cells body(rows = statistics == "mean")
24
25
```

Age	
Mean and other position and variance	e indicators
statistics	value
mean	57.60
median	62.00
sd	11.00
Q1	50.00
Q3	65.25
min	34.00
max	81.00

WHICH CELL TYPE APPEARED THE MOST DURING THIS STUDY?

```
1 data_cleaned |>
2  tabyl(cell) |>
3  adorn_pct_formatting(digits = 0) |>
4  gt() |>
5  tab_header("Cell's frequency") |>
6  tab_style(
7  style = cell_text(weight = "bold"),
8  locations = list(
9  cells_body(rows = n == max(n))
10  )
11  )
```

Cell's frequency							
cell	n	percent					
Small	41	41%					
Squamous	35	35%					
adeno	9	9%					
large	15	15%					

CALCULATE DESCRIPTIVE STATISTICS FOR ALL NUMERIC VARIABLES WITHIN THIS DATASET?

```
1 data cleaned |>
     select(-obs) |>
     summarise(
 4
       across(
         where(is.numeric),
 5
              list(
 6
 7
         mean = mean,
 8
         median = median,
       sd = \sim round(sd(.)),
 9
       01 = \sim quantile(., .25),
10
       Q3 = \sim quantile(., .75),
11
12
         min = min,
13
         max = max
14
15
       .names = "{col}-{fn}"
16
     ) |>
17
     pivot longer(everything(), names to = "statistics") |>
18
     separate(col = statistics, sep = "-", into = c("column", "statistics")) |>
19
     pivot_wider(names_from = statistics, values from = value) |>
20
     gt() |>
21
     tab header("Descriptive Statistics", "All numeric variables")
```

CALCULATE DESCRIPTIVE STATISTICS FOR ALL NUMERIC VARIABLES WITHIN THIS DATASET?

Descriptive Statistics All numeric variables								
column	mean	median	sd	Q1	Q3	min	max	
surv_time	135.60	93.5	176	21.75	162.00	1	999	
kps	58.65	60.0	20	40.00	80.00	20	90	
diag_time	8.95	6.0	9	3.00	12.00	1	58	
age	57.60	62.0	11	50.00	65.25	34	81	
prior	3.10	0.0	5	0.00	10.00	0	10	
treatment	0.31	0.0	0	0.00	1.00	0	1	
censor	0.09	0.0	0	0.00	0.00	0	1	
event	0.92	1.0	0	1.00	1.00	0	1	

A FOCUS ON SURVIVAL TIME

• We expect surv_time to follow an exponential distribution

1 ggstatsplot::gghistostats(data_cleaned, surv_time, binwidth = 70, title = "Histogram of surv_time")

SURVIVAL ANALYSIS

Perform a survival analysis to assess the survival time? based on the cancerous cells? Consider applying survival functions/kaplan meier quartiles/cumulative incidence function/cox regression etc.

KAPLAN-MEIER PLOT

```
1 survfit2(Surv(surv_time, event) ~ cell, data = data_cleaned) |>
     ggsurvfit(type = "survival") +
     labs(
     title = "Kaplan-Meier plot",
 4
       subtitle = "Survival time based on cancerous cells",
       x = "Days"
 6
 7
     ) +
     scale x continuous(breaks = c(0, 100, 250, 500, 1000)) +
8
     add risktable(times = c(0, 100, 250, 500, 1000)) +
9
     geom hline(yintercept = 0, color = "tomato", linetype = "dashed")
10
```

KAPLAN-MEIER PLOT

COMPARISON OF SURVIVAL CURVES

Calculate the Log Rank Test

```
1 survdiff(Surv(surv time, event) ~ cell, data = data cleaned)
Call:
survdiff(formula = Surv(surv time, event) ~ cell, data = data cleaned)
              N Observed Expected (0-E)^2/E (0-E)^2/V
cell=adeno
                              5.2
                                       2.78
                                                 3.04
cell=large
             15
                             19.8
                                       1.70
                                                 2.26
                      14
cell=Small
             41
                             23.8
                                       8.54
                                               12.44
                      38
cell=Squamous 35
                      31
                             43.2
                                       3.46
                                                7.27
 Chisq= 18.4 on 3 degrees of freedom, p= 4e-04
```

COX REGRESSION

• adeno is the reference category, so the hazard ratios are relative to it

```
1 cox model <- coxph(Surv(surv_time, event) ~ cell, data = data_cleaned)</pre>
 2 summary(cox model)
Call:
coxph(formula = Surv(surv time, event) ~ cell, data = data cleaned)
 n= 100, number of events= 92
            coef exp(coef) se(coef) z Pr(>|z|)
celllarge
          -1.0003
                 cellSmall
         -0.1062 0.8993 0.3741 -0.284 0.77653
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
          exp(coef) exp(-coef) lower .95 upper .95
celllarge
          0.3678
                      2.719
                             0.1565
                                     0.8640
cellSmall
           0.8993 1.112
                             0.4320 1.8721
            0.3540
cellSquamous
                  2.825
                             0.1619
                                     0.7738
Concordance= 0.604 (se = 0.033)
Likelihood ratio test= 17.32 on 3 df,
                                p=6e-04
Wald test = 17.33 on 3 df,
                                p=6e-04
```

VISUALIZE THE COEFFICIENTS

1 survminer::ggforest(cox_model)

MULTIVARIABLE ANALYSIS

Perform an appropriate multivariable analysis to analyze the effect of independent variables age on the hazard ratio between the different cancerous cells (var Cell)?

COX REGRESSION WITH cell AND age

```
1 multivariable_cox_model <- coxph(Surv(surv_time, event) ~ cell + age, data = data_cleaned)
2
3 multivariable_cox_model |>
4    tbl_regression(exponentiate = T) |>
5    add_global_p() |>
6    add_n(location = "level") |>
7    add_nevent(location = "level") |>
8    bold_labels() |>
9    bold_p() |>
10    italicize_levels()
```

Characteristic	N	Event N	HR	95% CI	p-value	
cell					<0.001	
adeno	9	9				
large	15	14	0.36	0.15, 0.85		
Small	41	38	0.85	0.40, 1.80		
Squamous	35	31	0.34	0.15, 0.74		
age	100	92	1.01	0.99, 1.03	0.5	
Abbreviations: CI = Confidence Interval, HR = Hazard Ratio						

20

DIAGNOSTIC OF THE MODEL

• Testing the proportional hazards assumption for the multivariable Cox regression model

1 survminer::ggcoxzph(cox.zph(multivariable_cox_model))

DEEPER ANALYSIS

```
1 data_cleaned |>
     select(surv_time, event, cell, age,
            therapy, diag time) |>
 4
     tbl uvregression(
      method = coxph,
       y = Surv(surv_time, event),
 6
       exponentiate = T
 8
     add global p() |>
 9
     add n(location = "level") |>
10
     add nevent(location = "level") |>
11
     bold labels() |>
12
13
     bold p() |>
14
     italicize levels()
```

Characteristic	N	Event N	HR	95% CI	p-value	
cell					<0.001	
adeno	9	9	_	_		
large	15	14	0.37	0.16, 0.86		
Small	41	38	0.90	0.43, 1.87		
Squamous	35	31	0.35	0.16, 0.77		
age	100	92	1.01	0.99, 1.03	0.4	
therapy					0.2	
Standard	69	64	<u>—</u>	_		
Test	31	28	0.72	0.45, 1.16		
diag_time	100	92	1.02	1.0, 1.05	0.14	
Abbreviations: CI = Confidence Interval, HR = Hazard Ratio						

JUST A CHECK

- kps (Key Performance Status) was not included because it's a measure of the patients that we observe during the therapy not before, as age, diag_time or cell
- If included, the model results are as follows:

WHAT ABOUT THE THERAPY PURPOSED?

```
1 data_cleaned |>
     semi join(data cleaned |> filter(therapy == "Test"), by = "cell") |>
     select(therapy, event, surv time, cell, kps, diag time) >
     tbl strata(
       strata = cell,
       .tbl fun =
       \(x) x |>
       tbl summary(
 8
           by = therapy,
 9
          type = kps ~ "continuous"
10
11
12
         add_p()
13
```

	Small		Squamous				
Standard $N = 30^{7}$	Test N = 11 ⁷	p-value ²	Standard N = 15 ⁷	Test N = 20 ⁷	p-value ^²		
28 (93%)	10 (91%)	>0.9	13 (87%)	18 (90%)	>0.9		
53 (20, 122)	21 (8, 87)	0.080	100 (25, 144)	157 (32, 373)	0.3		
60 (40, 70)	40 (30, 70)	0.2	60 (40, 70)	70 (50, 80)	0.3		
4 (3, 11)	4 (2, 11)	>0.9	9 (5, 11)	7 (3, 13)	0.5		
	N = 30 ⁷ 28 (93%) 53 (20, 122) 60 (40, 70)	Standard Test N = 30 ⁷ N = 11 ⁷ 28 (93%) 10 (91%) 53 (20, 122) 21 (8, 87) 60 (40, 70) 40 (30, 70)	Standard N = 30^7 Test N = 11^7 p-value²28 (93%) 10 (91%)>0.953 (20, 122) 21 (8, 87) 0.080 60 (40, 70) 40 (30, 70) 0.2	Standard N = 30^7 Test N = 11^7 p-value²Standard N = 15^7 28 (93%)10 (91%)>0.913 (87%)53 (20, 122)21 (8, 87)0.080100 (25, 144)60 (40, 70)40 (30, 70)0.260 (40, 70)	Standard N = 30^7 Test N = 11^7 p-value²Standard N = 15^7 Test N = 20^7 28 (93%)10 (91%)>0.913 (87%)18 (90%)53 (20, 122)21 (8, 87)0.080100 (25, 144)157 (32, 373)60 (40, 70)40 (30, 70)0.260 (40, 70)70 (50, 80)		

⁷ n (%); Median (Q1, Q3)

² Fisher's exact test; Wilcoxon rank sum test

LET'S PLOT IT!

THANKS