

Module 3 | Linear Regression

of 1. Learning Goals

In this section, you will learn how to:

- Understand what Linear Regression is and how it works
- Know how to **measure error** and **model fit**
- Apply linear regression models using Python (Scikit-learn)

2. Introduction to Linear Regression

General Concept

Linear Regression is a statistical method that models a linear relationship between a dependent variable y and one or more independent variables x_1, x_2, \ldots, x_n

General Equation

$$\hat{y_i} = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_n x_{in}$$

Parameter Explanation

Symbol	Name	Explanation
$\hat{y_i}$	Predicted value	The predicted value of the dependent variable (output) for observation \boldsymbol{i}
eta_0	Intercept	The average value of \boldsymbol{y} when all independent variables equal 0
eta_j	Coefficient	The average change in y when x_j increases by 1 unit, holding other variables constant
x_{ij}	Independent variable	Independent variable (input feature)
$arepsilon_i$	Error term	The deviation between the actual value y_i and the predicted value $\hat{y_i}$

Example

Sample Data:

Hours Studied (x)	Exam Score (y)
2	50
4	60
6	70
8	80

ightarrow Trained model: $\hat{y}=40+5x$

Interpretation:

- β_0 = 40: If no hours studied, predicted score = **40 points**
- β_1 = 5: Each additional hour studied increases score by an average of 5 points

3. Calculating the Residuals

Residual Formula:

$$e_i = y_i - \hat{y_i}$$

The residual measures the difference between the actual and predicted values.

Explanation

Symbol	Meaning
y_i	Actual value (observed value)
$\hat{y_i}$	Predicted value from the model
e_i	Residual – error at data point \$ i \$, showing how much the model deviates from reality

Population = 2.26 (Year) - 4235.96

4. Minimizing the Error Function

Goal: Minimize the Sum of Squared Errors (SSE)

$$SSE = \sum_{i=1}^n (y_i - \hat{y_i})^2$$

Key Terms

Symbol	Meaning
SSE	Sum of Squared Errors – total squared error
n	Number of observations (samples)
$y_i - \hat{y_i}$	Distance between actual and predicted values

-**□**- SMA

-o- 30 mm trans.

-ж- 18 mm long.

We find the coefficients $\beta_0, \beta_1, \dots, \beta_n$ such that:

$$\min_{\beta} SSE$$

Example Calculation

x	У	ŷ	е	e²
2	52	50	2	4
4	58	60	-2	4
6	70	70	0	0

Result: SSE = 4 + 4 + 0 = 8

→ Total sum of squared errors = 8

5. Other Measures of Error

(1) Total Sum of Squares (TSS)

$$TSS = \sum_{i=1}^n (y_i - ar{y})^2$$

TSS measures the total variation in the actual data.

Symbol	Meaning	
TSS	Total variation in the actual data	
$ar{y}$	Mean of actual values y_i	

(2) Explained Sum of Squares (ESS)

$$ESS = \sum_{i=1}^n (\hat{y_i} - ar{y})^2$$

ESS measures the **variation explained** by the model.

Symbol	Meaning
ESS	Variation explained by the model
$\hat{y_i} - ar{y}$	Deviation between predicted value and actual mean

(3) Relationship Between the Three Metrics

The Fundamental Equation:

$$TSS = ESS + SSE$$

Total variation = Explained variation + Unexplained error

(4) Coefficient of Determination (R2)

R² Formula:

$$R^2 = 1 - \frac{SSE}{TSS}$$

R² measures how well the model fits the data (ranges from 0 to 1).

Symbol	Meaning
R^2	Coefficient of determination – measures model fit quality
SSE/TSS	Proportion of variation not explained by the model

Example:

$$SSE = 8$$
, $TSS = 168 \Rightarrow R^2 = 1 - \frac{8}{168} = 0.952$

→ The model explains **95.2**% of the variation in the data!

6. Code Implementation (Python)

```
import numpy as np
from sklearn.linear_model import LinearRegression
# Sample data
X = np.array([[2], [4], [6], [8]])
y = np.array([50, 60, 70, 80])
# Train the model
LR = LinearRegression()
LR.fit(X, y)
# Results
print("β<sub>o</sub> (Intercept):", LR.intercept_)
print("β<sub>1</sub> (Coefficient):", LR.coef_[0])
# Predictions
y_pred = LR.predict(X)
# Calculate SSE, TSS, R<sup>2</sup>
residuals = y - y_pred
SSE = np.sum(residuals**2)
TSS = np.sum((y - np.mean(y))**2)
R2 = 1 - SSE/TSS
print("SSE:", SSE)
print("R2:", R2)
```


7. Summary Table of Formulas & Parameters

Symbol	Name	Formula	Explanation
$\hat{y_i}$	Prediction	$\hat{y_i} = eta_0 + eta_1 x_{i1} + \ \cdots + eta_n x_{in}$	Linear regression function
e_i	Residual	$e_i = y_i - \hat{y_i}$	Error of observation i
SSE	Sum of Squared Errors	$SSE = \sum (y_i - \hat{y_i})^2$	Total squared error
TSS	Total Sum of Squares	$TSS = \sum (y_i - ar{y})^2$	Total variation in data
ESS	Explained Sum of Squares	$ESS = \sum (\hat{y_i} - ar{y})^2$	Variation explained by model
MSE	Mean Squared Error	$MSE = rac{1}{n} \sum (y_i - \hat{y_i})^2$	Average squared error
R^2	Coefficient of Determination	$R^2=1-rac{SSE}{TSS}$	Model fit assessment

🧠 8. Recap

Key Takeaways:

- Linear Regression is a linear model between \boldsymbol{x} and \boldsymbol{y}
- Parameters β are estimated by **minimizing SSE**
- Metrics SSE, MSE, R^2 are used to **evaluate accuracy**
- Higher $R^2 o$ better model fit