MVC 2 PS#27 Compiled May 5, 2022

1 | Electric Change

We are finally taking a surface integral! This is essentially multiplying the surface area of the shape of the function to the value of the function itself.

Firstly, taking the area dA by dV:

$$dA = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \tag{1}$$

$$=\sqrt{1+(3)^2+(2)^2}$$
 (2)

$$=\sqrt{14}\tag{3}$$

Supplying the value into the function:

$$\int_0^7 \int_0^{11} (3x + 2y + 7)\sqrt{14} \, dy \, dx \tag{4}$$

$$\Rightarrow \sqrt{14} \int_0^7 \int_0^{11} (3x + 2y + 7) \ dy \ dx$$
 (5)

$$\Rightarrow \sqrt{14} \int_0^7 (3xy + y^2 + 7y) \Big|_0^{11} dy dx$$
 (6)

$$\Rightarrow \sqrt{14} \left(\frac{33x^2}{2} + 198x \right) \Big|_0^7 \tag{7}$$

$$\Rightarrow \frac{4389\sqrt{14}}{2} \tag{8}$$

The charge, therefore, is proportional to $\frac{4389\sqrt{14}}{2}\rho$.

2 | Infinite wire

Recall first that a semicircle with radius 7 can be defined as:

$$y = \sqrt{7^2 - x^2} {9}$$

$$= \sqrt{49 - x^2}$$
 (10)

Let's first figure the value of this function dA:

$$dA = \sqrt{1 + \left(\frac{d}{dx}\sqrt{49 - x^2}\right)^2} \tag{11}$$

$$=\sqrt{1+\left(\frac{d}{dx}\sqrt{49-x^2}\right)^2} \tag{12}$$

$$=\sqrt{1-\frac{x^2}{x^2-49}}\tag{13}$$

MVC 2 PS#27 Compiled May 5, 2022

We will take the line integral of this function, and proceed to multiply by the value of xy at that point.

$$\int_0^7 \int_0^7 xy \sqrt{1 - \frac{x^2}{x^2 - 49}} \, dx \, dy \tag{14}$$

$$f(x,y) = x*y*sqrt(1-x^2/(x^2-49))$$

f.integrate(x, 0,7).integrate(y,0,7)

Looks like the solution for the wire's weight is about $\frac{2401}{2}$ grams.

3 | More Difficult Polar Coordinates

Recall that, to figure the unit sphere volume, we can convert an $\mathbb{R}^2 \to \mathbb{R}^1$ result into circular coordinates. That, by pythagoras, $x^2 + y^2 = r^2$. Therefore, the expression of:

$$f(x,y) = \frac{1}{(x^2 + y^2)^k} \Rightarrow f(r,\theta) = \frac{1}{r^{2k}}$$
 (15)

We also note that, due to the correction factor, $dA = r dr d\theta$.

Taking the actual integral, therefore, will result in:

$$\int_0^{2\pi} \int_0^1 r^{-k} \, dr \, d\theta \tag{16}$$

$$\Rightarrow \int_0^{2\pi} \lim_{x \to 0} \left(\frac{1}{-k+1} - \frac{1}{x^{k-1}} \frac{1}{-k+1} \right) d\theta \tag{17}$$

Evidently, when $k \leq 1$, the second term would become infinity large.

Now, we essentially want to take this idea and expand it to n dimensions, to figure the correct spherical coordinates.

Turns out, the na $\ddot{\text{u}}$ version of the n sphere integral is the same correction factor multiplied by $\sin^{n-\{2...(n-1)}$.