OVETVIEW

- · Recap: sequences and series
- · Functions of multiple variables
- · Continuity and Limits in 2 dimensions
- · Partial derivatives
- · Chain rule in multiple dimensions

Adams' Ch. 12.1-5

Sequences and series • sequence {an}: ordered list of numbers

• es
$$\frac{1}{n}$$
. The , $a_{n+1} = \frac{1}{n}(a_n)$ (recursive definition).
• can converge ($\lim_{n\to\infty} a_n = L, a_n \to L$) $\frac{1}{n}$ $\frac{1}{2n}$,

diverge

• If there is a real function
$$f(x)$$
, such that $a_n = f(n)$,

if $\lim_{x\to\infty} f(x) = L$; then $a_n \to L$

• if $f(x)$ is amonotonous, then $lany$ as well.

[·] show whether land is bounded / converges / increases or decreases.

· Series Zan: num of infinitely many terns · sequence of portial sums $S_n = \sum_{k=1}^n a_k$ Ly if the sequence land does NOT converge to 0,

the snes $\sum_{n=1}^{\infty} a_n$ Diverges. · if an >0, \sum an indeterminate form · (sum of infinitely many terms that approach o) Ly you need to recognize 2 types of nemes

1) Geometric series, $a_n = a \cdot r^{n-1}$ $a_1 \cdot ar_1 \cdot ar_2^2$, ar_2^3 if $|r| \langle 1|$, $\sum_{n=0}^{\infty} (a \cdot r^n) = \sum_{n=1}^{\infty} a \cdot r^n = \frac{a}{1-r}$ converges if Irl> 1, the series diverges (to as for r>1) 2) p.-series, $a_n = \frac{1}{nP}$ of $\frac{dx}{xP}$ diverges (we cannot calculate the num explicitly) Types of questions: so for a geometric mies calculate Zan for a geometric mies does Zan converge or diverge? Explain.

Functions of multiple variables

domain of
$$19-x^2-y^2$$
 $x^2+y^2 \leq 9$

tomain of
$$\sqrt{x^2-y^2}$$

Continuity

for 1D (univariate functions).

g(x) is continuous at a <=> , for x ∈ domain(f)

VE > 0 3 8> 0 : [x-a] < 8 => 1g(x)-f(a)] < E

. (i) x approaches a, then J(x) approaches f.(a.)

Continuity for multivariate gunctions.)

. f(x,y) is continuous at (a,b) iff for (x,y) &

∀ ∈ > 0 ∃ S > 0 : 1(x-a)2+ (y-h)2 < 8

=> |f(xy)-plab) | < E

Evry regular function is continuous

on its domain

Partial derivatives

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a+h)}{h}$$

the derivative f'(x) indicates how f(x) changes (around x=a) if we change x la little).

$$\frac{\partial f(x,y)}{\partial y} = \lim_{h \to 0} \frac{f(x,y,h) - f(x,y)}{h}$$

$$\frac{\partial}{\partial x} f(x,y) = \int_{\Omega} (x,y) = \int_{X} (x,y) = D_{x} f(x,y)$$

$$\frac{\partial f}{\partial x} \Big|_{a} = f_{x}(a,b)$$

 $\frac{\partial}{\partial x} (xy) - \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = \lim_{h \to 0} \frac{(x+h) - y - xy}{h}$ $= \lim_{h \to 0} \frac{x \cdot y + h \cdot y - xy}{h} = y$ $= \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} = \lim_{h \to 0} \frac{(x+h) + y}{h} - (x+y)$

+ how to calculate: like "normal derivatives". If you calculate if, you treat y like a constant. If you calculate if, you treat x like a constant.

$$\frac{9x}{9}$$
 (xy) = y

$$\frac{\partial}{\partial y} (x + y) = 1$$

$$\frac{\partial}{\partial x} \left(\left[o \left[\frac{\lambda}{\lambda} \right] \right] \right) = \frac{x}{\lambda} \cdot \frac{1}{\lambda} = \frac{1}{\lambda}$$

$$\frac{\partial}{\partial y}\left(\sqrt{x^2+y^2}\right) = \frac{2y}{2\sqrt{x^2+y^2}} = \frac{y}{\sqrt{x^2+y^2}}$$

The tangent plane

$$\frac{1D}{g(a)} + \frac{(a,f(a))}{a} \quad \text{Equation of tangent line: } y = g(a) + g'(a)(x-a)$$

$$\lambda(x,y) = \int (a,b) + \frac{\partial f}{\partial x} \left(x-a \right) + \frac{\partial f}{\partial y} \left(y-b \right)$$

Example:
$$f(x,y) = 8n(xy)$$
. Tangent plane at $(-1, \frac{\pi}{3}, f(1, \frac{\pi}{3}))$?

$$\frac{\partial f}{\partial x} = \cos(xy) \quad y \quad \Rightarrow \quad \frac{\partial f}{\partial x} \left(-\frac{\pi}{3}\right) = \cos(\frac{\pi}{3}) \cdot \frac{\pi}{3} = \frac{1}{2} \cdot \frac{\pi}{3}$$

•
$$\frac{\partial f}{\partial y} = \cos(xy) \cdot x \rightarrow \frac{\partial f}{\partial y} \left(-1, \frac{1}{3}\right) = -\frac{1}{2}$$

Tangent plane:
$$z = -\frac{13}{2} + \frac{\pi}{6} (x+1) - \frac{1}{2} (y - \frac{\pi}{3})$$

Higher order derivatives

$$\frac{9^{\times}}{9_5^{\times}} = \frac{9^{\times}}{9} \left(\frac{9^{\times}}{9} \right)$$

then
$$\frac{\partial^2}{\partial x \partial y} = \frac{\partial^2}{\partial y}$$

Example
$$\frac{\partial}{\partial x \partial y} \left(8\pi (x + y) \right) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} 8\pi (x + y) \right) = \frac{\partial}{\partial x} \left(\cos(x + y) \right)$$

$$\frac{\partial^2}{\partial y \, \partial x} \left(8n(x+y) \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} \, 8n(x+y) \right) = \frac{\partial}{\partial y} \left(\cos(x+y) \right)$$

$$= -\sin(x+y)$$

$$\frac{\partial^{2}}{\partial x \partial y} \left(sin(xy) \right) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} sin(xy) \right) = \frac{\partial}{\partial x} \left(cos(xy) \cdot x \right)$$

$$= cos(xy) - x \cdot sin(xy) y$$

$$= cos(xy) - xy \cdot sin(xy)$$

Chain rule in multiple dimensions

$$D = \frac{d}{dx} \left(f(g(x)) = f'(g(x)) \cdot g'(x) \right)$$

$$\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

$$\frac{\partial v}{\partial t} = \frac{\partial x}{\partial t} \frac{\partial v}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial v}{\partial x}$$

$$\frac{99}{91} = \frac{9\times}{91} \frac{99}{9\times} + \frac{27}{91} \frac{99}{99}$$

Example
$$z = \frac{1}{(x+y)^2}$$
, $x = n\cos\theta$, $y = r\sin\theta$.

$$\frac{d^2}{dr} =$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{dy}{dt}$$

$$= \frac{x}{\sqrt{x^2 + y^2}} \cdot 2 + \frac{y}{\sqrt{x^2 + y^2}} \left(-1\right) = \frac{2x - y}{\sqrt{x^2 + y^2}} = \frac{4t + t - 5}{\sqrt{x^2 + y^2}}$$

-> i) you write
$$z = \sqrt{x^2 + y^2} = \sqrt{5+2-10+25}$$
, and compute $\frac{dz}{dt}$, you get the same cesult.