Machine Learning

Assignment 01: Data Pre processing

Step 01: Importing the Libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler, LabelEncoder
```

Step 02: Loading the dataset

```
In [2]: def load_data(file_path):
            return pd.read_csv(file_path)
        data = load data("titanic data.csv")
        data.shape
Out[2]: (418, 12)
In [3]: # Identify numeric and categorical columns
        numeric_cols = data.select_dtypes(include=['int64', 'float64']).columns
        categorical_cols = data.select_dtypes(include=['object']).columns
        print("Columns:", data.columns)
        print("Numeric Columns:", numeric_cols)
        print("Categorical Column:", categorical cols)
        Columns: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'S
        ibSp',
                'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
              dtype='object')
        Numeric Columns: Index(['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp',
        'Parch', 'Fare'], dtype='object')
        Categorical Column: Index(['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], dty
        pe='object')
```

In [4]: data.head()

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabir
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	fema l e	22.0	1	1	3101298	12.2875	Nal
4											•

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Survived	418 non-null	int64
2	Pclass	418 non-null	int64
3	Name	418 non-null	object
4	Sex	418 non-null	object
5	Age	332 non-null	float64
6	SibSp	418 non-null	int64
7	Parch	418 non-null	int64
8	Ticket	418 non-null	object
9	Fare	417 non-null	float64
10	Cabin	91 non-null	object
11	Embarked	418 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 39.3+ KB

```
In [6]: data.describe()
```

Out[6]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	0.363636	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.481622	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	0.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	0.000000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	0.000000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	1.000000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	1.000000	3.000000	76.000000	8.000000	9.000000	512.329200

Step 03: Data Cleaning

01: Remove duplicates

```
In [7]: print("Duplicate rows", data.duplicated().sum())
if data.duplicated().sum() > 0:
    data = data.drop_duplicates()
```

Duplicate rows 0

02: Missing Value Analysis

```
In [8]: | def missing value analysis(data):
            print("=== Missing Value Analysis ===")
            # Check for duplicates
            duplicates = data.duplicated().sum()
            print(f"\nNumber of duplicate rows: {duplicates}")
            data = data.drop duplicates()
            # Missing values analysis
            missing values = data.isnull().sum()
            missing_percentages = (missing_values / len(data)) * 100
            missing df = pd.DataFrame({
                 'Missing Values': missing_values,
                 'Percentage': missing percentages
            print("\nMissing Values Summary:")
            print(missing df[missing df['Missing Values'] > 0])
            # Handle missing values
            # Age: Fill with median by passenger class
            for pclass in [1, 2, 3]:
                median_age = data[data['Pclass'] == pclass]['Age'].median()
                data.loc[(data['Age'].isna()) &
                                 (data['Pclass'] == pclass), 'Age'] = median age
            # Fare: Fill with median by passenger class
            data['Fare'] = data.groupby('Pclass')['Fare'].transform(
                lambda x: x.fillna(x.median()))
            # Embarked: Fill with mode
            data['Embarked'] = data['Embarked'].fillna(
                data['Embarked'].mode()[0])
            # Cabin: Create 'Unknown' category for missing values
            data['Cabin'] = data['Cabin'].fillna('Unknown')
            return data, missing df
        data, missing_df = missing_value_analysis(data)
        print(data.head())
```

```
=== Missing Value Analysis ===
```

Number of duplicate rows: 0

```
Missing Values Summary:
```

	Missing	Values	Perce	ntage	
Age		86	20.5	74163	
Fare		1	0.2	39234	
Cabin		327	78.2	29665	
Pas	sengerId	Surviv	ed Pc	lass	١
0	892		0	3	
1	893		1	3	
2	894		0	2	
3	895		0	3	
4	896		1	3	

	Name	Sex	Age	SibSp	Parch
\					
0	Kelly, Mr. James	male	34.5	0	0
1	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0
2	Myles, Mr. Thomas Francis	male	62.0	0	0
3	Wirz, Mr. Albert	male	27.0	0	0
4	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1

	Ticket	Fare	Cabin	Embarked
0	330911	7.8292	Unknown	Q
1	363272	7.0000	Unknown	S
2	240276	9.6875	Unknown	Q
3	315154	8.6625	Unknown	S
4	3101298	12.2875	Unknown	S

03: Categorical Encoding

```
def categorical_encoding(data):
        # Label Encoding
        le = LabelEncoder()
        for col in categorical_cols:
             if col in data.columns:
                 data[f'{col} encoded'] = le.fit transform(data[col].astype(st
r))
        return data
data = categorical encoding(data)
print(data.head())
   PassengerId
                Survived
                           Pclass
                                    \
0
           892
                        0
                                 3
                        1
                                 3
1
           893
2
            894
                        0
                                 2
                        0
                                 3
3
           895
           896
                        1
                                 3
4
                                              Name
                                                       Sex
                                                                   SibSp
                                                                          Parch
                                                              Age
\
                                 Kelly, Mr. James
                                                                       0
0
                                                      male
                                                            34.5
                                                                               0
                Wilkes, Mrs. James (Ellen Needs)
1
                                                    female
                                                            47.0
                                                                       1
                                                                               0
2
                       Myles, Mr. Thomas Francis
                                                      male
                                                                       0
                                                                               0
                                                            62.0
3
                                 Wirz, Mr. Albert
                                                      male
                                                            27.0
                                                                       0
                                                                               0
   Hirvonen, Mrs. Alexander (Helga E Lindqvist)
                                                    female 22.0
                                                                       1
                                                                               1
    Ticket
                Fare
                        Cabin Embarked
                                         Name_encoded
                                                        Sex encoded
    330911
                      Unknown
                                                   206
0
              7.8292
                                      Q
                                                                   1
                                      S
                                                                   0
1
    363272
                      Unknown
                                                   403
              7.0000
2
    240276
                      Unknown
                                      Q
                                                   269
                                                                   1
              9.6875
                                      S
                                                                   1
3
    315154
             8.6625
                      Unknown
                                                   408
                                      S
   3101298
            12.2875
                      Unknown
                                                   178
                                                                   0
   Ticket_encoded Cabin_encoded
                                    Embarked_encoded
0
              152
                                76
                                                    1
1
               221
                                76
                                                    2
2
                73
                                76
                                                    1
3
               147
                                76
                                                    2
                                                    2
4
               138
                                76
```

04: Feature Scaling

```
In [10]:
         def feature_scaling(data):
                  scaler = StandardScaler()
                  # Create scaled versions of numeric columns
                  for col in numeric cols:
                      if col in data.columns:
                          data[f'{col} scaled'] = scaler.fit transform(data[[col]])
                  return data
          data = feature_scaling(data)
          # Display the data to visualize changes
          print(data.head())
            PassengerId Survived Pclass
                                             \
                     892
         0
                                 0
                                          3
         1
                     893
                                 1
                                          3
         2
                                 0
                                          2
                     894
                                 0
         3
                     895
                                          3
                                 1
         4
                     896
                                          3
                                                      Name
                                                                Sex
                                                                          SibSp
                                                                                 Parch
                                                                      Age
         \
         0
                                         Kelly, Mr. James
                                                              male
                                                                    34.5
                                                                               0
                                                                                      0
                         Wilkes, Mrs. James (Ellen Needs)
         1
                                                            female
                                                                    47.0
                                                                               1
                                                                                      0
                                Myles, Mr. Thomas Francis
         2
                                                                               0
                                                              male 62.0
                                                                                      0
                                         Wirz, Mr. Albert
                                                                    27.0
                                                                               0
         3
                                                              male
                                                                                      0
            Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0
                                                                               1
                                                                                      1
             Ticket
                         Fare
                               ... Ticket_encoded Cabin_encoded
                                                                  Embarked_encoded
             330911
         0
                       7.8292
                                               152
                                                              76
                                                                                  1
                                                                                  2
                                               221
                                                              76
         1
             363272
                       7.0000
         2
                                                              76
                                                                                  1
             240276
                       9.6875
                                                73
         3
             315154
                       8.6625
                                               147
                                                              76
                                                                                  2
            3101298 12.2875
                                               138
                                                              76
                                                                                  2
            PassengerId_scaled Survived_scaled Pclass_scaled
                                                                  Age_scaled \
         0
                      -1.727912
                                        -0.755929
                                                        0.873482
                                                                     0.393048
                                                                     1.356309
         1
                      -1.719625
                                        1.322876
                                                        0.873482
         2
                      -1.711337
                                        -0.755929
                                                       -0.315819
                                                                     2.512223
                                        -0.755929
         3
                      -1.703050
                                                        0.873482
                                                                    -0.184909
         4
                      -1.694763
                                        1.322876
                                                        0.873482
                                                                    -0.570214
            SibSp scaled Parch scaled Fare scaled
         0
                -0.499470
                              -0.400248
                                            -0.497071
         1
                0.616992
                              -0.400248
                                           -0.511934
         2
                                            -0.463762
                -0.499470
                              -0.400248
         3
               -0.499470
                              -0.400248
                                           -0.482135
                0.616992
                               0.619896
                                            -0.417159
         [5 rows x 24 columns]
```

05: Feature Engineering

2/19/25, 3:51 PM

```
In [11]: | def feature engineering(data):
              # 1. Family Size Processing
              data['family_size'] = data['SibSp'] + data['Parch'] + 1
              data['family_category'] = pd.cut(
                  data['family_size'],
                  bins=[0, 1, 4, 7, np.inf],
                  labels=['Solo', 'Small', 'Medium', 'Large']
              )
              # 2. Age Processing
              data['age_group'] = pd.cut(
                  data['Age'],
                  bins=[0, 12, 30, 50, np.inf],
                  labels=['Child', 'Young_Adult', 'Adult', 'Elderly']
              )
              # 3. Fare Processing
              data['fare per person'] = data['Fare'] / data['family size']
              data['fare_category'] = pd.qcut(
                  data['Fare'],
                  q=4,
                  labels=['Low', 'Medium', 'High', 'Very High']
              )
              # 4. Name Title Processing
              data['title'] = data['Name'].str.extract(
                    ([A-Za-z]+)\\.', expand=False)
              title mapping = {
                  'Mr': 'Mr',
                  'Miss': 'Miss',
                  'Mrs': 'Mrs',
                  'Master': 'Master',
                  'Dr': 'Rare',
                  'Rev': 'Rare',
                  'Col': 'Rare',
                  'Major': 'Rare',
                  'Mlle': 'Miss',
                  'Countess': 'Rare',
                  'Ms': 'Miss',
                  'Lady': 'Rare',
                  'Sir': 'Rare',
                  'Mme': 'Mrs',
                  'Don': 'Rare',
                  'Capt': 'Rare',
                  'Jonkheer': 'Rare'
              data['title'] = data['title'].map(title mapping)
              # 5. Cabin Processing
              data['deck'] = data['Cabin'].str.extract('([A-Z])', expand=False)
              data['has cabin'] = data['Cabin'].notna().astype(int)
              data['deck'] = data['deck'].fillna('Unknown')
```

return data

data.loc[~data['deck'].isin(

['A', 'B', 'C', 'D', 'E', 'F']), 'deck'] = 'Other'

```
data = feature_engineering(data)
# Display the data to visualize changes
print(data.head())
   PassengerId Survived Pclass
0
           892
                        0
                                3
1
           893
                        1
                                3
2
           894
                        0
                                2
                        0
3
           895
                                3
                        1
                                3
4
           896
                                             Name
                                                      Sex
                                                             Age SibSp
                                                                        Parch
\
0
                                Kelly, Mr. James
                                                     male
                                                           34.5
                                                                             0
1
               Wilkes, Mrs. James (Ellen Needs)
                                                  female
                                                           47.0
                                                                      1
                                                                             0
2
                       Myles, Mr. Thomas Francis
                                                     male
                                                           62.0
                                Wirz, Mr. Albert
                                                           27.0
3
                                                     male
                                                                             0
  Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0
                                                                      1
                                                                             1
    Ticket
               Fare
                      ... Parch_scaled Fare_scaled family_size
0
    330911
             7.8292
                             -0.400248
                                          -0.497071
                                                                2
1
    363272
             7.0000
                             -0.400248
                                          -0.511934
                                                                1
2
    240276
             9.6875
                             -0.400248
                                          -0.463762
3
    315154
             8.6625
                             -0.400248
                                          -0.482135
                                                                1
  3101298
           12.2875
                              0.619896
                                          -0.417159
                                                                3
   family_category
                       age_group fare_per_person fare_category
                                                                            deck
\
0
              Solo
                           Adult
                                          7.829200
                                                                       Mr
                                                                           0ther
                                                               Low
1
             Small
                           Adult
                                          3.500000
                                                               Low
                                                                      Mrs
                                                                           0ther
2
              Solo
                         Elderly
                                         9.687500
                                                                           Other
                                                           Medium
                                                                       Mr
                    Young_Adult
                                                           Medium
3
              Solo
                                         8.662500
                                                                       Mr
                                                                           0ther
4
             Small
                    Young_Adult
                                         4.095833
                                                           Medium
                                                                      Mrs
                                                                           Other
   has_cabin
0
           1
1
           1
2
           1
3
           1
           1
4
[5 rows x 32 columns]
```

Step: 04 Data visualization

01. Missing Values Visualization

```
In [12]: fig, ax = plt.subplots(figsize=(10, 6))
    missing = missing_df['Percentage']
    missing.plot(kind='bar')
    plt.title('Percentage of Missing Values by Column')
    plt.ylabel('Percentage')
```

Out[12]: Text(0, 0.5, 'Percentage')

02. Age Distribution Analysis

```
In [13]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))

# Histogram
sns.histplot(data=data, x='Age', bins=30, ax=ax1)
ax1.set_title('Age Distribution')

# Box plot by class
sns.boxplot(data=data, x='Pclass', y='Age', ax=ax2)
ax2.set_title('Age Distribution by Class')

# Violin plot by survival
sns.violinplot(data=data, x='Survived', y='Age', ax=ax3)
ax3.set_title('Age Distribution by Survival')

# KDE plot by survival
sns.kdeplot(data=data, x='Age', hue='Survived', ax=ax4)
ax4.set_title('Age Density by Survival')

plt.tight_layout()
```


03. Fare Analysis

```
In [14]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))

# Histogram
sns.histplot(data=data, x='Fare', bins=50, ax=ax1)
ax1.set_title('Fare Distribution')

# Box plot by class
sns.boxplot(data=data, x='Pclass', y='Fare', ax=ax2)
ax2.set_title('Fare by Class')

# Box plot by survival
sns.boxplot(data=data, x='Survived', y='Fare', ax=ax3)
ax3.set_title('Fare by Survival')

# Violin plot by class and survival
sns.violinplot(data=data, x='Pclass', y='Fare', hue='Survived', ax=ax4)
ax4.set_title('Fare by Class and Survival')

plt.tight_layout()
```


04. Categorical Variables Analysis

```
In [15]: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 10))

# Survival by sex
sns.barplot(data=data, x='Sex', y='Survived', ax=ax1)
ax1.set_title('Survival Rate by Gender')

# Survival by class
sns.barplot(data=data, x='Pclass', y='Survived', ax=ax2)
ax2.set_title('Survival Rate by Class')

# Survival by title
sns.barplot(data=data, x='title', y='Survived', ax=ax3)
ax3.set_title('Survival Rate by Title')

# Survival by deck
sns.barplot(data=data, x='deck', y='Survived', ax=ax4)
ax4.set_title('Survival Rate by Deck')
plt.tight_layout()
```


05. Correlation Analysis

```
In [16]: correlation_matrix = data[numeric_cols].corr()

fig, ax = plt.subplots(figsize=(10, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
    plt.title('Correlation Matrix of Numeric Variables')
```

Out[16]: Text(0.5, 1.0, 'Correlation Matrix of Numeric Variables')

