

Chapter 8: Switching

Sunghyun Cho
School of Computer Science
Hanyang University
chopro@hanyang.ac.kr

Outline

- Network
 - is a set of connected devices
- How to connect them (devices)?
 - point-to-point connection between each pair of all devices (mesh topology)
 - point-to-point connection between a central device and every other device (star topology)→ impractical
 - multipoint connection
- A better solution is <u>switching</u>
 - switched network

Outline (continued)

- Switched network
 - consists of a series of interlinked nodes, called switches
- Switches
 - are devices capable of creating temporary connections between two or more devices linked to the switch
 - some of switches are connected to the end systems (computers, telephones, etc.) and others are connected to the other switches (those are used only for routing)

Outline (continued)

- Switching
 - to create temporary connections between two or more devices linked to the switch
 - is performed in several layers
 - Circuit-switching : in physical layer
 - Packet-switching: in data-link and network layers
 - Message-switching: in application layer

Data Communications Figure 8.2 Taxonomy of switched networks Switched networks 예전에 사용하던 Circuit-switched Packet-switched Message-switched networks networks networks 인터넷 Virtual-circuit Datagram networks networks

Switching can happen at several layers of the TCP/IP protocol suite: at the physical layer, at the data-link layer, and at the network layer.

UNP

Outline

Circuit Switching

- Connection-oriented networks
- Physical layer
- No packetizing
- Low efficiency, less delay

Packet Switching

- Connectionless networks
- Network layer
- Packetizing (sequence # is required)
- High efficiency, more delay
- Structure of a Switch

Data Communications

-

8-1 CIRCUIT-SWITCHED NETWORKS

A circuit-switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. However, each connection uses only one dedicated channel on each link. Each link is normally divided into n channels by using FDM or TDM.

Topics discussed in this section:

Three Phases Efficiency Delay

Three Phases

- Setup phase
- Data transfer
- Teardown phase

Note

A circuit-switched network is made of a set of switches connected by physical links, in which each link is divided into *n* channels.

In circuit switching, the resources need to be reserved during the setup phase; the resources remain dedicated for the entire duration of data transfer until the teardown phase.

Data Communications

(

Figure 8.3 A trivial circuit-switched network

As a trivial example, let us use a circuit-switched network to connect eight telephones in a small area. Communication is through 4-kHz voice channels. We assume that each link uses FDM to connect a maximum of two voice channels. The bandwidth of each link is then 8 kHz. Figure 8.4 shows the situation. Telephone 1 is connected to telephone 7; 2 to 5; 3 to 8; and 4 to 6. Of course the situation may change when new connections are made. The switch controls the connections.

Data Communications

Figure 8.4 Circuit-switched network used in Example 8.1

Figure 8.6 Delay in a circuit-switched network

Low efficiency, less delay

Data Communications

13

Note

Switching at the physical layer in the traditional telephone network uses the circuit-switching approach.

8-2 DATAGRAM NETWORKS

In data communications, we need to send messages from one end system to another. If the message is going to pass through a packet-switched network, it needs to be divided into packets of fixed or variable size. The size of the packet is determined by the network and the governing protocol.

Topics discussed in this section:

Routing Table
Efficiency
Delay
Datagram Networks in the Internet

Data Communications

15

Note

In a packet-switched network, there is no resource reservation; resources are allocated on demand.

Figure 8.7 A datagram network with four switches (routers)

17

Figure 8.8 Routing table in a datagram network

Destination address		Output port
1232 1 4150 2		1 2
:		:
9130		3
1 4		

Data Communications

3

Note

A switch in a datagram network uses a routing table that is based on the destination address.

Data Communications

19

Note

The destination address in the header of a packet in a datagram network remains the same during the entire journey of the packet.

Figure 8.9 Delay in a datagram network

21

Switching in the Internet is done by using the datagram approach to packet switching at the network layer.

8-3 VIRTUAL-CIRCUIT NETWORKS

A virtual-circuit network is a cross between a circuitswitched network and a datagram network. It has some characteristics of both.

Topics discussed in this section:

Addressing
Three Phases
Efficiency
Delay
Circuit-Switched Technology in WANs

Data Communications

2

Virtual-Circuit Networks

- Characteristics
 - as in a c-s, there are setup and teardown phases
 - resources can be allocated during the setup phase or on demand
 - data are packetized and each packet carries an address in the header
 - global and local addresses
 - all packets follow the same path established during the connection
 - v-c network is implemented in the data link layer c-s network is implemented in the physical layer datagram network is implemented in the network layer
- Addressing
 - global address
 - used only to create a v-c identifier
 - virtual-circuit identifier
 - small number that has only switch scope
 - used by a frame between two switches

Figure 8.11 Virtual-circuit identifier

Figure 8.12 Switch and tables in a virtual-circuit network

Data Communications

Figure 8.13 Source-to-destination data transfer in a virtual-circuit network

Figure 8.14 Setup request in a virtual-circuit network

Figure 8.15 Setup acknowledgment in a virtual-circuit network

29

In virtual-circuit switching, all packets
belonging to the same source and
destination travel the same path;
but the packets may arrive at the
destination with different delays
if resource allocation is on demand.

Figure 8.16 Delay in a virtual-circuit network

3:

Note

Switching at the data link layer in a switched WAN is normally implemented by using virtual-circuit techniques.

8-4 STRUCTURE OF A SWITCH

We use switches in circuit-switched and packetswitched networks. In this section, we discuss the structures of the switches used in each type of network.

Topics discussed in this section:

Structure of Circuit Switches Structure of Packet Switches

Data Communications

3:

8.4.1 Structure of Circuit Switches

Circuit switching today can use either of two technologies: the space-division switch or the time-division switch

Figure 8.17 Crossbar switch with three inputs and four outputs

3!

Figure 8.19 Time-slot interchange

Figure 8.20 Time-space-time switch

3

8.4.2 Structure of Packet Switches

- A switch used in a packet-switched network has a different structure from a switch used in a circuit-switched network.
- A packet switch has four components:
 - input ports
 - output ports
 - the routing processor
 - the switching fabric

Figure 8.21 Packet switch components

30

Figure 8.22 Input port

Figure 8.23 Output port

Data Communications