Студент <u>Терековен</u>
Группы <u>КС-ИО</u>

Дата: «<u>13</u>» <u>април</u> 2020 г.

				Баллы в семестре							
№ зад.	1	2	3	3 4	5	6	.7	8	9	10	Итог
Оценка		-					1			-	1.

Максимально возможная оценка каждого задания 4 балла

Вариант № 13

- 1. Запишите логическую функцию «Исключающее ИЛИ» для трёх переменных в виде конъюнкции дизъюнкций с использованием функционально полного набора логических операций.
 - 2. Что называется окрестностью клеточного автомата? Какие бывают виды окрестностей?
- 3. Классифицируйте нечёткие множества по количеству их возможных элементов. Какие вы знаете способы задания функций принадлежности? Приведите примеры для каждого способа.
- 4. Перечислите и покажите на графических примерах операции, выполняемые с одним нечётким множеством.
- 5. Для заданной логической схемы составьте таблицу истинности и запишите соответствующую ей логическую функциональную зависимость:

6. Для приведённого фрагмента бесконечного клеточного автомата, состоящего из клеток без памяти, запишите вектора состояний окрестности фон-Неймана, используемых для определения нового состояния базовых клеток С53 и С85:

11.123	05.			
C_{53}	C_{54}	C_{55}	C_{56}	C_{57}
C_{63}	C ₆₄	C_{65}	C_{66}	C ₆₇
				C_{77}
		Beaders		C_{87}
				C ₉₇

- 7. Определите количество правил смены состояний в окрестности Мура, записанных с помощью таблицы истинности для бинарного клеточного автомата с клетками с памятью.
- 8. Определите высоту, носитель, точки перехода и срез (при $\alpha = 0.8$) нечёткого множества, заданного функцией принадлежности: $\mu(x) = \begin{cases} 0.2x + 0.2, & x \in [-1; 2]; \\ 0.8 - 0.1x, & x \in [2; 8]. \end{cases}$
- 9. Выполните графически операции дополнения, умножения на константу (k = 0.5), усечения (k=0,5) и растяжения $(\beta=0,5)$ нечёткого множества, заданного функцией принадлежности: $\mu(x) = 0.25(x-2)^2, x \in [0; 3].$
- 10. Выполните дефаззификацию нечёткого решения, описанного функцией принадлежности: $\mu(x) = |1-0.5|x-2|$, $x \in [-1; 5]$ методами левых, правых и средних максимумов, а также модифицированным методом центра тяжести в пределах среза $\alpha = 0.75$.

$$a \oplus b \oplus c = a \overline{b} \overline{c} + \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} c + a b c =$$

$$= \overline{a} (b \overline{e} + \overline{b} c) + a (b \overline{c} + b c) =$$

$$= (\overline{a} + \overline{a}) (b \overline{c} + \overline{b} c + a) (\overline{a} + \overline{b} \overline{c} + b c) (b \overline{e} + \overline{b} c + b \overline{c} + b c) =$$

$$= (b \overline{c} + \overline{b} c + a) (\overline{a} + \overline{b} \overline{c} + b c)$$

$$= (b \overline{c} + \overline{b} c + a) (\overline{a} + \overline{b} \overline{c} + b c)$$

Ифектность кисточного автомата - мижество жатдого ее жишента (киетки).

Bug oxpertioera zabuent or pazuepuveru, poperor KA.

Dus gbyuepnow Kbagharhow KA! co alalylmen Okpertho ett Oxpecthoese objecthocit Mypa ollapronyea from fleweran

3) Heretkue unonie esta: konernoie u Seckohernou Способог задания ф-ий принадменности (+смешан.) Fashwinder anaunTureexun thaguer come M= SO,X & I

A Or

Onepaiseu!

Monousience - anavor unbepeiner Mona (x) = 1 - Ma(x)

Униотение на конебанту - дня таентабирования или пориганизации отночнеетва

MKA(x) = k. MA(x)

· paemuperme - ybennirenne etenern upunaguernhocks go zagannow noporoboro znarenna k.

 $e^{M_{KUA}(x)} = max \{ k_{1} \mu_{A}(x) \}$

o Jeerenne - quenomenne crenen puragnemnoes

dunalx) = min {k, Ma (x)}

« Paetamenne - nobormenne znovermoera >11-706 C ususes crevenon upunas resundera

X	41	2	P
00	00	0	1
0	1	0	0
0	/	1	10
1	0	1	00
1	, ,	1	0

$$f(53) = \varphi(f(43), f(54), f(54), f(52))$$

$$2^9 = 512$$

$$(x-2)^2 = 0,5$$

 $(x-2)^2 = 2$
 $X = \pm \sqrt{2} + 2$
 $X, \approx 9,586$

paeremenne
$$\beta_{20,5}$$

 $M_{DI(X)}(x) = (0,25(x-2)^{2})^{0,5} =$
 $= 0,5 | x-2 |$

$$X_{NM} = 2$$
 $X_{NM} = 2$
 $X_{CM} = 2$