

,

Machine Learning and our Focus

- □ Humans learn from past experiences
- □ A computer does not have "experiences"
- □ A computer system learns from "data", which represent some "past experiences" of an application domain
- □ Our focus: learn a target function that can be used to predict the values of:
 - * A discrete class attribute, e.g., car or truck; approve or not-approved; high-risk or low risk, etc.
 - An attribute having continuous value
- □ The task is commonly called: supervised learning, classification, unsupervised learning, regression or inductive learning

pra-sâmi

10

How am I Doing?

- □ Assumption: The distribution of training examples is identical to the distribution of test examples (including future unseen examples)
 - In practice, this assumption is often violated to certain degree
 - * Strong violations will clearly result in poor classification accuracy
- □ Ever suffered crash and burn in Prod?
 - No one wants to see a failure in Prod
- ☐ How well a model will generalize to new cases?
 - Try it out on new cases
 - . It's better to test and validate in Dev itself
- □ To achieve good accuracy on the test data, training examples must be sufficiently representative of the test data

4/6/2024

Train – Test – Validate

□ Split your data into Three sets

Data Set	Up to 10,000 records	From 10,000 to 1 Million	Above 1 Million
Training	64 %	80%	90%
Testing	16%	10%	5%
Validation	20%	10%	5%

- ☐ Train your model using the training set
- □ Test it using the test set
- ☐ The error rate on new cases (Validation Set) is called the generalization error (or out-of-sample error)

pra-sâmi

Train – Test – Validate

- ☐ First indication of how well model will perform
- □ Case 1: Training Error High, Test Error High
 - Model is under fitting
- ☐ Case 2: Training Error Low, Test Error High
 - Model is over-fitting the training data.
- $\hfill \square$ In train-test cycle, hyper parameters are tuned keeping test data as target
 - Model is indirectly exposed to test set
- □ Results on previously "unexposed" Validation Set will still be a better indication of what to expect in Production

4/6/2024 **pra-sâmi**

Cross Validation

 $\hfill\Box$ Worried about more than $\frac{1}{3}$ data being used in test-validate

- ☐ The training set is split into complementary subsets,
 - * Each model is trained against a different combination of these subsets
 - Test against the remaining parts.
 - Happy with the model type and hyper-parameters
 - Final model is trained using these hyper-parameters on the full training set
 - The generalized error is measured on the validation set.

pra-sâmi

Machine Learning Structure Training Text vectors vectors (Machine Learning Algorithm Labels) New Toxt Document, Image, Sound Sound Supervised Learning Sound Supervised Learning Sound Supervised Learning Supervised Supervised Learning Supervised Supe

Definitions

- Weak AI
 - The idea that machines could act as if they were intelligent
- □ Strong AI
 - Machines can actually think consciously thinking
 - · Not just simulating thinking
- □ Over time new level was introduced as "human-level AI" or "general AI"
 - * Programs that can solve an arbitrarily wide variety of tasks, including novel ones,
 - and perform as well as a human

4/6/2024

23

Classification of Al

Weak	ΑI
------	----

- □ Also known as narrow Al
- □ Focuses on performing a specific task
 - Answering questions based on user input
 - Playing chess
 - Can perform only one type of task
- □ Relies on human interference to
 - Define the parameters of its learning algorithms
 - Provide the relevant training data to ensure accuracy
- □ Examples : Self-driving cars , games and virtual assistants, like Siri

Strong Al

- □ Constantly learning
- Eventually teaching itself to solve for new problems
- □ While human input accelerates the growth phase of Strong AI, it is not required
- Over time, it develops a human-like consciousness instead of simulating it
- □ Chess would fall in strong AI if a novice system can learn from opponents and out play them

Weak AI is learning by example and Strong AI is learning from experience

4/6/2024

Most of current implementations fall under weak AI or a marginal improvement thereof

pra-sâmi

Why "Learn"?

- □ Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- ☐ There is no need to "learn" to calculate payroll
- □ Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

4/6/2024

pra-sâmi

27

Machine Learning

- □ "Learning is any process by which a system improves performance from experience."
 - Herbert Simon
- □ Definition by Tom Mitchell (1998):
 - Machine Learning is the study of algorithms that
 - > improve their performance P
 - > at some task T
 - > with experience E
 - ❖ A well-defined learning task is given by < P, T, E>
- □ Role of Statistics: Inference from a sample
- □ Role of Computer science: Efficient algorithms to
 - Solve the optimization problem
 - * Representing and evaluating the model for inference

4/6/2024

ML Algorithms in Short

- □ Tens of thousands of machine learning algorithms
 - Hundreds new every year
- □ Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

4/6/2024

pra-sâmi

Various Function Representations

- Numerical functions
- Linear regression
- Neural networks
- Support vector machines
- Symbolic functions
 - Decision trees
 - Rules in propositional logic
 - Rules in first-order predicate logic

- □ Instance-based functions
 - Nearest-neighbor
 - Case-based
- □ Probabilistic Graphical Models
 - Naïve Bayes
 - * Bayesian networks
 - Hidden-Markov Models (HMMs)
 - * Probabilistic Context Free Grammars (PCFGs)
 - Markov networks

4/6/2024

Various Search / Optimization Algorithms □ Gradient descent Perceptron Back-propagation □ Dynamic Programming · Hidden Markov Model (HMM) Learning * Probabilistic Context Free Grammar (PCFG) Learning □ Divide and Conquer * Decision tree induction Rule learning □ Evolutionary Computation Genetic Algorithms (GAs) Genetic Programming (GP) * Neuro-evolution 4/6/2024 pra-sâmi

Applications

- Association
 - Basket analysis: P (Y | X) probability that somebody who buys X also buys Y where X and Y are products/services.
 - > Example: P (chips | beer) = 0.7
- Supervised Learning
 - ❖ Given: training data + desired outputs (labels) → fit a hypothesis to it
- □ Types of supervised learning
 - Classification
 - Regression

- Unsupervised Learning
 - Given: training data (without desired outputs);
 Try and determining structure in the data
 - Clustering algorithm groups data together based on data features
- □ Semi-supervised learning
 - ❖ Given: training data + a few desired outputs
- □ Reinforcement learning
 - · Rewards from sequence of actions

4/6/2024 **pra-sâmi**

Supervised vs. Unsupervised APPLE? ARE ONE THESE SOMETHING. Supervised Learning Unsupervised Learning Pra-sâmi

Supervised Learning Categories and Techniques

- □ Linear classifier (numerical functions)
- □ Parametric (Probabilistic functions)
 - Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden Markov models (HMM), Probabilistic graphical models
- □ Non-parametric (Instance-based functions)
 - * K-nearest neighbors, Kernel regression, Kernel density estimation, Local regression
- □ Non-metric (Symbolic functions)
 - * Classification and regression tree (CART), decision tree
- □ Aggregation
 - Bagging (bootstrap + aggregation), Adaboost, Random forest, XGBOOST

4/6/2024

pra-sâmi

Classification and Regression

- Classifications
 - Naïve Bayes
 - Support Vector Machines
 - Decision trees
 - Random Forest
 - ❖ K-Nearest Neighbor
 - Neural Networks
- □ Classification predicts labels (class)

- □ Regression
 - Linear Regression
 - Random Forest
 - Gradient Boosting
 - Neural Networks
 - Others
- □ Regression predicts continuous value

pra-sâmi

4/6/2024

Advantages and Disadvantages Advantages Disadvantages □ Effective in high dimensional spaces. □ If the number of features is much greater than the number of samples, the method is likely to give poor performances. □ Still effective in cases where number of dimensions is greater than the number of samples. □ SVMs do not directly provide probability estimates, these are calculated using an ☐ Uses a subset of training points in the decision expensive five-fold cross-validation function (called support vectors), so it is also memory efficient □ Versatile: different Kernel functions can be specified for the decision function. □ Common kernels are provided, but it is also possible to specify custom kernels. pra-sâmi

Entropy

- ☐ Entropy is measure of impurity of a collection.
 - All the samples are of same type
 - ⇒ low impurity
 - \Rightarrow entropy = 0
 - * Evenly spread sample

⇒ high impurity

 \Rightarrow entropy = 1

4/6/2024

- \square Entropy = $\sum p_i \log_2 p_i$
 - * Example: $= -0.5 \cdot \log_2 0.5 \cdot 0.5 \cdot \log_2 0.5$

$$= 0.5 + 0.5$$

$$= 1.0$$

If we split them based on color

 \Rightarrow 6 circles and 3 stars

$$pStars = 3/9$$

* Entropy =
$$-\frac{6}{9} \cdot \log_2 \frac{6}{9} + \frac{3}{9} \cdot \log_2 \frac{3}{9}$$

= 0.918

$$= 0.3115$$

pra-sâmi

Advantages and Disadvantages

Advantages

- □ Easy to understand.
 - * Human inspection (physical) is possible
- □ Can give valuable results even with little data
- □ Scalable : addition of new possible scenarios
- □ Help determine worst, best and expected values for different scenarios
- □ Can be combined with other decision techniques

Disadvantages

- □ Extremely sensitive to change in data: can result in a drastically different tree
- ☐ Prone to overfitting : Can be negated by validation methods and pruning.
- □ Difficulty in dealing with multicollinearity: when two variables both explain the same thing, a decision tree will greedily choose the best one, other is ignored.
- □ Lack of a principled probabilistic framework.
- Poor resolution if data has complex relationships among the features
- Practically Limited to Classification
 - · Poor resolution with continuous variables

4/6/2024

Wisdom of Crowds

- □ Ensemble methods
 - * Combine multiple classifiers to make "better" classifier
 - Predictions are averaged out reducing error
 - Can use weighted combinations
 - Can use even different classifiers
- □ Two types of ensemble:
 - Bagging
 - > Weak learners are trained in parallel
 - > Used on weak learners that exhibit high variance and low bias
 - > Avoids overfitting
 - > Being leveraged for loan approval processes and statistical genomics
 - Boosting
 - > They learn sequentially a series of models are constructed and with each new model iteration, the weights of the misclassified data in the previous model are increased.
 - > Redistribution of weights helps to focus on the parameters which will lead to performance improvement
 - > Leveraged when low variance and high bias is observed
 - > Prone to overfitting
 - > Boosting has been used more within image recognition apps and search engines

4/6/2024

pra-sâmi

56

Random Forest

- □ Random Forests are ensembles of decision trees
- □ Random Record Selection
 - $\begin{tabular}{ll} & \end{tabular} \begin{tabular}{ll} & \end{$
 - * Create hundreds of trees each gain diversity from examining different examples
 - Over fits the data extensively
- Random Feature Selection
 - * A random subset of variables
 - \diamond Number of variables to consider is $\sqrt{\text{(features)}}$ its configurable though
 - $\ensuremath{\diamondsuit}$ Forces the trees to find alternative ways to predict the target

4/6/2024

Clustering Distance Measures

pra-sâmi

Dissimilarity or Distance matrix Classification of observations into groups requires Some methods for computing the distance or The (dis)similarity between each pair of observations Distance measures is a critical step in clustering. Wide varieties methods available Method of calculations of the similarity of two elements (x, y) influences the shape of the clusters

Methods for Distance Measures

- □ The classical methods for distance measures :
 - * Euclidean Distances
 - Manhattan Distances
 - Minkowski Distances
 - Hamming Distance
- □ Others:
 - · Pearson correlation distance
 - * Eisen cosine correlation distance (Eisen et al., 1998)
 - * Spearman correlation distance
 - Kendall correlation distance
- □ Pearson correlation analysis is the most commonly used method.
 - * Also known as a parametric correlation which depends on the distribution of the data
- ☐ Kendall and Spearman correlations are non-parametric
 - Used to perform rank-based correlation analysis

4/6/2024

pra-sâmi

76

Euclidean distance

- ☐ Most common method of distance measurement
- $\ \square$ The distance between two real-valued vectors : x, y $\in \mathbb{R}$
- □ Used for calculating the distance between numerical values Floats or integers.

$$d_{euc}(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

- □ If columns have values with differing scales:
 - normalize or standardize the numerical values to prevent one column prevail over other

4/6/2024

Manhattan Distance

- □ Names allude to the grid layout of most streets on the island of Manhattan
- □ Causes the shortest path a car could take between two intersections to have length equal to the intersections' distance
- ☐ Manhattan Distance is calculated as follows:

$$d_m(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

4/6/2024

pra-sâmi

Minkowski Distances

- □ Both Euclidean and Manhattan Distances are special case of Minkowski Distance
- ☐ The formula for Minkowski Distance is given as:

$$d_{m}(x, y) = (\sum_{i=1}^{n} (x_{i} - y_{i})^{p})^{1/p}$$

❖ For p = 1 and p = 2, it becomes Manhattan and Euclidean Distances

4/6/2024

Hamming Distance

- □ Measures the similarity between two strings of the same length.
- □ The number of positions at which the corresponding characters are different

Р	R	Α	М	0	D	-	
Р	R	0	М	0	Т	E	
0	0	1	0	0	1	1	3
							3/7 = 0.43

4/6/2024

pra-sâmi

80

Pearson correlation distance

- □ A correlation-based distances
- □ Widely used for gene expression data analyses
- $\hfill\Box$ Correlation-based distance is defined by subtracting the correlation coefficient from 1
- Pearson correlation measures the degree of a linear relationship between two profiles
- □ It is calculated as follows:

$$d_{cor}(x, y) = 1 - \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \cdot \sum_{i=1}^{n} (y_i - \bar{y})^2}$$

4/6/2024

Self-Supervised Learning

A specific type of supervised learning,

Labels generated from the input data, typically using a heuristic algorithm

Examples:
Autoencoders
Next frame in a video, given past frames,
Next word in a text, given previous words,

Semi-supervised learning

- ☐ A combination of supervised and unsupervised
- uses a small amount of labeled data and a large amount of unlabeled data
 - * E.g. text document classifier

4/6/2024

pra-sâmi

91

How Semi Supervised Learning Works

- □ Train the model with small amount of training data similar to supervised learning
 - The labels for this small training data are known
- □ Use the trained model with training set to predict the output
 - This output may be far-far away from the ground truth
- ☐ Link the labels from labeled training data with the predicted labels created above
- □ Link the input data in the labeled training set and that in unlabeled training set
- ☐ Train the model like supervised model using this pseudo labeled data and reduce the error

4/6/2024

Q-Learning

- □ Q-learning is a popular algorithm used in reinforcement learning
- □ It is based on the Bellman equation
- □ The agent tries to learn the policies that can provide the best actions to perform for "maximizing" the rewards under particular circumstances
- $\ensuremath{\square}$ The agent learns these optimal policies from past experiences
- □ In Q-learning, the Q is used to represent the quality of the actions at each state, and the goal of the agent is to maximize the value of Q

4/6/2024 **pra-sâmi**

Descriptive Models

- □ Descriptive models are more flexible compared to predictive models
- □ A descriptive model describes the data in a form that allows for future action strategies
 - · But it is not a precise event yet
 - * It is a perspective looking at the data, so business can make sense of the data
- ☐ In Social Network Analysis
 - * Between two person, if their views are closely associated one set of messaging is needed
 - Otherwise you may need different messaging!
- Personas are descriptive models of users that embody important and realistic user characteristics
 - * Can be helpful in situations where iterative, rapid development is necessary,
 - · Obtaining sufficient participants is not feasible, or
 - When user testing may require challenging situations for the target participant group(s)

4/6/2024

pra-sâmi

99

Reflect...

- □ How can you handle missing or corrupted data in a dataset?
 - Drop missing rows or columns
 - * Assign a unique category to missing values
 - Replace missing values with mean/median/mode
 - All of the above
- Machine learning algorithms build a model based on _____data
 - Training Data
 - Transfer Data
 - Data Training
 - ❖ None of the above

- □ A Machine Learning technique that helps in detecting the outliers in data.
 - Clustering
 - Classification
 - Anamoly Detection
 - * All of the above
- Real-Time decisions, Game AI, Learning Tasks, Skill acquisition, and Robot Navigation are applications of
 - Reinforcement Learning
 - Supervised Learning: Classification
 - Unsupervised Learning: Regression
 - None of the above

4/6/2024

•• Reflect

- Which of the following is not a supervised learning?
 - Naive Bayesian
 - ❖ PCA
 - Linear Regression
 - Decision Tree
- □ Which of the following is not type of learning?
 - Unsupervised Learning
 - Supervised Learning
 - · Semi-unsupervised Learning
 - ❖ Reinforcement Learning

☐ Targeted marketing, Recommended Systems, and Customer Segmentation are applications in which of the following

Supervised Learning: Classification

Unsupervised Learning: Clustering

Unsupervised Learning: Regression

Reinforcement Learning

☐ Fraud Detection, Image Classification, Diagnostic, and Customer Retention are applications in which of the following

Unsupervised Learning: Regression

Supervised Learning: Classification

Unsupervised Learning: Clustering

* Reinforcement Learning

pra-sâmi

ADDITIONAL MATERIAL

Examples of Reinforcement Learning

- □ Fly stunt maneuvers in a helicopter
- □ Defeat the world champion at Backgammon
- □ Manage an investment portfolio
- □ Control a power station
- Make a humanoid robot walk
- □ Play many different Atari games better than humans

4/6/2024

pra-sâmi

103

Fly stunt maneuvers in a helicopter

- □ Stanford Computer Scientists have developed an artificial intelligence system that enables robotic helicopters to teach themselves to fly difficult stunts by watching other helicopters perform the same maneuvers.
- ☐ The technique is known as "apprenticeship learning."
- ☐ The result is an autonomous helicopter than can fly dazzling stunts on its own.

https://youtu.be/M-QUkgk3HyE

4/6/2024

Game Over: Kasparov and the Machine (trailer)

The documentary "Game Over: Kasparov and the Machine", about the 1997 chess match between Garry Kasparov and Deep Blue, the IBM computer. It also features Yasser Seirawan, Anatoly Karpov and others.

https://youtu.be/y9UMt-8gfW8

4/6/2024

pra-sâmi

105

DeepMind Made A Superhuman Al For 57 Atari Games!

- □ The Atari57 suite of games is a long-standing benchmark to gauge agent performance across a wide range of tasks. We've developed Agent57, the first deep reinforcement learning agent to obtain a score that is above the human baseline on all 57 Atari 2600 games. Agent57 combines an algorithm for efficient exploration with a meta-controller that adapts the exploration and long vs. short-term behaviour of the agent.
- □ https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark

□ https://youtu.be/dJ4rWhpAGFI

4/6/2024

Automated Cargo Wharf Yangshan, Shanghai

- □ World's biggest automated cargo wharf, the fourth phase of the Yangshan deep-water port started operation
- □ The core technology of the robotic port was developed independently by China
- ☐ The forth phrase of Yangshan port takes up an area of 2.23 million square meters
- □ Coastline stretches as long as 2,350 meters
- □ It consists of two 70,000 dead-weight tonnage (DWT) berths and five 50,000 DWT berths

https://youtu.be/IzOeAGAu60k

4/6/2024

pra-sâmi

07

Urban Logistics in Smart Cities

□ JD.com (Nasdaq: JD) With over 300 million customers, have a vast network of warehouses and delivery stations, and deliver most orders in less than a day

https://www.youtube.com/watch?v=XGSl9DCkxvo

4/6/2024

Advanced & Futuristic Animal Robots That Exist In Real World

- □ We all have seen robots
 - in our lives, in films and other times in real world,
- ☐ We are surrounded by robots at all walks of our life today.
- □ See animal robots that look 100 percent similar to their real counterparts?
- ☐ These futuristic animal robots can make our life simple!

https://www.youtube.com/watch?v=OKse21PN30A

4/6/2024

