EC2.101 – Digital Systems and Microcontrollers

Lecture 8 – Boolean functions

Complement of a function

- The complement of a function F is F' and is obtained from an interchange of 0's for 1's and 1's for 0's in the value of F (truth table method)
- The complement of a function may be derived algebraically through DeMorgan's theorems
- Example: F = x + y'z. What is F'?
- But what if the function has more terms?
- DeMorgan's theorems can be extended to three or more variables
- The three-variable form of the DeMorgan's theorems:

$$(x + y + z)' = x'y'z'$$

 $(xyz)' = x' + y' + z'$

 The generalized form of DeMorgan's theorems states that the complement of a function is obtained by interchanging AND and OR operators and complementing each literal

Minterms

- A binary variable may appear either in its normal form (x)
 or in its complement form (x')
- Now consider two binary variables x and y combined with an AND operation
- Since each variable may appear in either form, there are four possible combinations: xy, x'y, xy', xy'
- Each of these four AND terms is called a minterm, or a standard product
- In a similar manner, n variables can be combined to form 2ⁿ minterms
- The binary numbers from 0 to 2^n 1 are listed under the n variables. Each minterm is obtained from an AND term of the n variables, with each variable being primed if the corresponding bit of the binary number is a 0 and unprimed if a 1
- A symbol for each minterm is m_j, where the subscript j denotes the decimal equivalent of the binary number of the minterm designated

			М	interms
x	y	z	Term	Designation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Maxterms

- In a similar fashion, *n* variables forming an OR term, with each variable being primed or unprimed, provide 2ⁿ possible combinations, called *maxterms*, or *standard sums*
- Each maxterm is obtained from an OR term of the *n* variables, with each variable being unprimed if the corresponding bit is a 0 and primed if a 1, and
- Maxterms are denoted by M_i

х	y	Z	Maxterms	Notation
0	0	0	x+y+z	M_0
0	0	1	x+y+z'	M_1
0	1	0	x + y' + z	M_2
0	1	1	x + y' + z'	M_3
1	0	0	x' + y + z	M_4
1	0	1	x' + y + z'	M_5
1	1	0	x' + y' + z	M_6
1	1	1	x' + y' + z'	M_7

Minterms and Maxterms

Minterms and Maxterms for Three Binary Variables

			М	interms	Maxte	erms
X	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	${M}_1$
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7

It is important to note that:

- 1. Each maxterm is the complement of its corresponding minterm and vice versa
- 2. Minterms are 1 for a unique combination of the variables, ie, x'y is only one when x is 0 and y is 1, in all other cases, it is zero
- 3. Maxterms are 0 for a single unique combination of variables

Boolean functions

 Any Boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms

• Example:

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7 = \sum (1,4,7)$$

 Thus, any Boolean function can be expressed as a sum of minterms (with "sum" meaning the ORing of terms)

y	Z	Function f ₁
0	0	0
0	1	1
1	0	0
1	1	0
0	0	1
0	1	0
1	0	0
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1

Boolean functions

- Now consider the complement of a Boolean function
- It may be read from the truth table by forming a minterm for each combination that produces a 0 in the function and then ORing those terms

$$f_1' = m_0 + m_2 + m_3 + m_5 + m_6$$

• If we again take a complement, we get f₁ back:

$$f_1 = (f_1')' = (m_0 + m_2 + m_3 + m_5 + m_6)'$$

$$f_1 = m_0' m_2' m_3' m_5' m_6'$$

$$f_1 = M_0 M_2 M_3 M_5 M_6 = \prod (0,2,3,5,6)$$

X	У	Z	Function f ₁	f_1'
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	0
				_

Boolean functions

- This shows a second property of Boolean algebra: Any Boolean function can be expressed as a product of maxterms (with "product" meaning the ANDing of terms)
- The procedure for obtaining the product of maxterms directly from the truth table is as follows: Form a maxterm for each combination of the variables that produces a 0 in the function, and then form the AND of all those maxterms
- Boolean functions expressed as a sum of minterms or product of maxterms are said to be in *canonical form*

X	y	Z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Canonical form

- To convert from one canonical form to another, interchange the symbols \sum and \prod and list those numbers missing from the original form
- In order to find the missing terms, one must realize that the total number of minterms or maxterms is 2^n , where n is the number of binary variables in the function
- This is because the function can either have 0 (maxterm) or 1 (minterm) as the output
- $F = \sum (1,3,6,7) = \prod (0,2,4,5)$

X	y	Z	F
0	0	0	0
0	0	1	$1 \stackrel{\checkmark}{\sim}$
0	1	0	0
0	1	1	$_{1}$ \times
1	0	0	0 <
1	0	1	0 —
1	1	0	1^{k}
1	1	1	$_{1}$

Standard form

- Another way to express Boolean functions is in standard form
- In this configuration, the terms that form the function may contain one, two, or any number of literals
- There are two types of standard forms: the sum of products and products of sums

$$F = x' + y'z + xz$$
 $G = (x' + y)(y' + z)(x + z)$

- The logic diagram of a sum-of-products expression consists of a group of AND gates followed by a single OR gate
- Each product term requires an AND gate, except for a term with a single literal
- The logic sum is formed with an OR gate whose inputs are the outputs of the AND gates
- It is assumed that the input variables are directly available in their complements, so inverters are not included in the diagram
- This circuit configuration is referred to as a two-level implementation