```
BACS HW (Week16)
106070038
2021-06-13
Question 1 Composite Path Models using PLS-PM
# install.packages("seminr")
# install.packages("semPlot")
# install.packages("DiagrammeR")
library(seminr)
library(semPlot)
library(DiagrammeR)
a. Create a PLS path model using SEMinR, with all the follow-
ing characteristics:
sec = read.csv("security_data_sem.csv")
# head(sec)
a-i. Measurement model – all constructs are measured as compos-
ites:
1.Trust in website (TRUST): items TRST1 - TRST4
  2.Perceived security of website (SEC): items PSEC1 - PSEC4
  3. Reputation of website (REP): items PREP1 - PREP4
  4.Investment in website (INV): items PINV1 - PINV3
  5. Perception of privacy policies (POL): items PPSS1 - PPSS3
  6. Familiarity with website (FAML): item FAML1
  (see the documentation of SEMinR for making single item con-
structs)
  7.Interaction between REP and POL (use orthogonalized product
a-ii. Structural Model – paths between constructs as shown in this
causal model:
REP + INV + POL + FAML + (REP POL) \rightarrow SEC \rightarrow TRUST
# a-i. Measurement Model
sec_mm <- constructs(</pre>
  composite("TRUST", multi_items("TRST", 1:4)), ##1.
  composite("SEC", multi_items("PSEC", 1:4)), ##2.
  composite("REP", multi items("PREP", 1:4)), ##3.
  composite("INV", multi_items("PINV", 1:3)), ##4.
```

```
composite("POL", multi_items("PPSS", 1:3)), ##5.
  composite("FAML", single_item("FAML1")), ##6.
  interaction_term(iv="REP", moderator="POL", method=orthogonal) ##7.
)
# a-ii Structural Model
sec_sm <- relationships(</pre>
  paths(from = c("REP", "POL", "REP*POL"), to = "SEC"),
  paths(from = "INV", to = "SEC"),
  paths(from = "FAML", to = "SEC"),
  paths(from = "SEC", to = "TRUST")
sec_intxn_pls <- estimate_pls(</pre>
  data = sec,
 measurement_model = sec_mm,
  structural_model = sec_sm
## Generating the seminr model
## All 405 observations are valid.
summary(sec_intxn_pls)
##
## Results from package seminr (2.1.0)
##
## Path Coefficients:
##
              SEC TRUST
## R^2
            0.420 0.367
           0.412 0.365
## AdjR^2
## REP
            0.247
## POL
            0.339
## REP*POL -0.105
## INV
            0.181
## FAML
            0.011
## SEC
                . 0.606
##
## Reliability:
##
           alpha rhoC
                         AVE rhoA
           0.857 0.904 0.704 0.882
## REP
## POL
           0.870 0.920 0.794 0.872
## REP*POL 0.938 0.853 0.352 1.000
           0.875 0.923 0.801 0.879
## INV
## FAML
           1.000 1.000 1.000 1.000
```

```
## SEC
           0.859 0.905 0.704 0.862
## TRUST
           0.911 0.937 0.789 0.911
##
\#\# Alpha, rhoC, and rhoA should exceed 0.7 while AVE should exceed 0.5
```

- b. Show us the following results in table or figure formats:
- b-i. Plot a figure of the estimated model

plot(sec_intxn_pls)

PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed, pleas

Figure 1: The figure of the estimated model

b-ii. Weights and loadings of composites

summary(sec_intxn_pls)\$weights

##	REP	POL	REP*POL	INV	FAML	SEC	TRUST
## TRST	0.000	0.000	0.000	0.000	0.000	0.000	0.282
## TRST	0.000	0.000	0.000	0.000	0.000	0.000	0.280
## TRST	0.000	0.000	0.000	0.000	0.000	0.000	0.286
## TRST	0.000	0.000	0.000	0.000	0.000	0.000	0.278

summary(sec_intxn_pls)\$loadings

##		REP	POL	REP*POL	INV	FAML	SEC	TRUST
##	TRST1	0.000	0.000	-0.000	0.000	0.000	0.000	0.900
##	TRST2	0.000	0.000	-0.000	0.000	0.000	0.000	0.909
##	TRST3	0.000	0.000	-0.000	0.000	0.000	0.000	0.905
##	TRST4	0.000	0.000	-0.000	0.000	0.000	0.000	0.838
##	PSEC1	0.000	0.000	-0.000	0.000	0.000	0.813	0.000
##	PSEC2	0.000	0.000	-0.000	0.000	0.000	0.865	0.000
##	PSEC3	0.000	0.000	-0.000	0.000	0.000	0.868	0.000
##	PSEC4	0.000	0.000	-0.000	0.000	0.000	0.807	0.000
##	PREP1	0.800	0.000	0.000	0.000	0.000	0.000	0.000
##	PREP2	0.913	0.000	0.000	0.000	0.000	0.000	0.000
##	PREP3	0.908	0.000	0.000	0.000	0.000	0.000	0.000
##	PREP4	0.718	0.000	0.000	0.000	0.000	0.000	0.000
##	PINV1	0.000	0.000	-0.000	0.903	0.000	0.000	0.000
##	PINV2	0.000	0.000	-0.000	0.925	0.000	0.000	0.000

```
## PINV3
               0.000 0.000
                             -0.000 0.855
                                            0.000
                                                   0.000
                                                          0.000
## PPSS1
               0.000
                      0.868
                              0.000 0.000
                                            0.000
                                                   0.000
                                                          0.000
                                            0.000
                                                   0.000
## PPSS2
               0.000 0.893
                              0.000 0.000
                                                          0.000
## PPSS3
                              0.000 0.000
               0.000 0.911
                                            0.000
                                                   0.000
                                                          0.000
## FAML1
               0.000 0.000
                             -0.000 0.000
                                            1.000
                                                   0.000
## PREP1*PPSS1 -0.000 -0.000
                              0.581 -0.000 -0.000 -0.000 -0.000
## PREP1*PPSS2 -0.000
                     0.000
                              0.510 -0.000 -0.000 -0.000 -0.000
## PREP1*PPSS3 -0.000 -0.000
                              0.506 -0.000 -0.000 -0.000 -0.000
## PREP2*PPSS1 -0.000 -0.000
                              0.509 -0.000 -0.000 -0.000 -0.000
## PREP2*PPSS2 -0.000 0.000
                              0.421 -0.000 -0.000 0.000
                                                         0.000
## PREP2*PPSS3 -0.000 -0.000
                              0.336 -0.000
                                           0.000
                                                   0.000
                                                          0.000
## PREP3*PPSS1 -0.000 -0.000
                              0.236 -0.000 0.000
                                                   0.000
## PREP3*PPSS2 -0.000 0.000
                              0.555 -0.000 -0.000 -0.000 -0.000
## PREP3*PPSS3 -0.000 -0.000
                              0.466 -0.000 0.000 -0.000 -0.000
## PREP4*PPSS1 0.000
                      0.000
                              0.900 -0.000 0.000 -0.000 -0.000
## PREP4*PPSS2 -0.000 -0.000
                              0.836 -0.000 -0.000 -0.000 0.000
## PREP4*PPSS3 0.000 0.000
                              0.859 -0.000 0.000 -0.000 0.000
```

b-iii. Regression coefficients of paths between factors

summary(sec_intxn_pls)\$paths

```
SEC TRUST
## R^2
             0.420 0.367
## AdjR^2
             0.412 0.365
             0.247
## REP
## POL
             0.339
## REP*POL -0.105
## INV
             0.181
## FAML
             0.011
## SEC
                 . 0.606
```

```
b-iv. Bootstrapped path coefficients: t-values, 95% CI
boot_pls <- bootstrap_model(sec_intxn_pls, nboot = 1000)</pre>
## Bootstrapping model using seminr...
## SEMinR Model successfully bootstrapped
summary(boot_pls)
```

```
Results from Bootstrap resamples: 1000
##
##
## Bootstrapped Structural Paths:
##
                    Original Est. Bootstrap Mean Bootstrap SD T Stat. 2.5% CI
```

##	REP -	->	SEC	0.247	0.242	0.056	4.384	0.131
##	POL -	->	SEC	0.339	0.344	0.055	6.195	0.235
##	REP*P	OL	-> SEC	-0.105	-0.015	0.125	-0.838	-0.196
##	INV -	->	SEC	0.181	0.184	0.058	3.129	0.073
##	FAML	->	SEC	0.011	0.011	0.057	0.184	-0.107
##	SEC -	->	TRUST	0.606	0.609	0.035	17.195	0.537
##			97	.5% CI				
##	REP -	->	SEC	0.345				
##	POL -	->	SEC	0.452				
##	REP*P	OL	-> SEC	0.192				
##	INV -	->	SEC	0.304				
##	FAML	->	SEC	0.119				
##	SEC -	->	TRUST	0.675				
##								

Bootstrapped Weights: ## Original Est. Bootstrap Mean Bootstrap SD T Stat. 0.282 ## TRST1 0.281 0.014 19.834 -> TRUST ## TRST2 TRUST 0.280 0.280 0.016 17.978 -> TRST3 -> TRUST 0.286 0.285 0.016 17.625 ## TRST4 -> TRUST 0.278 0.278 0.020 13.752 ## PSEC1 SEC 0.278 0.016 17.421 -> 0.277 ## PSEC2 18.685 -> SEC 0.315 0.313 0.017 ## PSEC3 -> SEC 0.307 0.308 0.017 18.581 ## PSEC4 0.292 0.291 0.018 16.143 -> SEC ## PREP1 REP 0.215 0.214 0.025 8.456 -> ## PREP2 -> REP 0.334 0.333 0.018 18.204 ## PREP3 -> REP 0.349 0.349 0.022 15.965 ## PREP4 0.287 0.286 0.026 11.051 -> REP ## PINV1 -> INV 0.363 0.362 0.025 14.669 ## PINV2 -> INV 0.395 0.395 0.025 15.734 ## PINV3 INV 0.358 0.358 0.028 12.639 -> ## PPSS1 -> POL 0.360 0.360 0.022 16.097 ## PPSS2 -> POL 0.395 0.396 0.024 16.751 ## PPSS3 -> POL 0.367 0.367 0.018 19.899 ## FAML1 -> 1.000 0.000 FAML 1.000 ## PREP1*PPSS1 0.239 -> REP*POL 0.091 0.152 1.568 ## PREP1*PPSS2 0.069 0.361 -> REP*POL 0.031 0.087 ## PREP1*PPSS3 -> REP*POL 0.021 0.065 0.107 0.198 ## PREP2*PPSS1 REP*POL 0.046 0.082 0.098 0.469 -> ## PREP2*PPSS2 REP*POL -0.104 0.059 0.159 -0.654 ## PREP2*PPSS3 -> REP*POL -0.228 0.050 0.233 -0.981 ## PREP3*PPSS1 REP*POL -> -0.3410.019 0.302 -1.129## PREP3*PPSS2 -> REP*POL 0.095 0.092 0.133 0.711 ## PREP3*PPSS3 REP*POL 0.822 0.108 0.095 0.132

##	PREP4*	PPSS	1 ->	REP*POL		0.443	0.114	0.282	1.572
##	PREP4*	PPSS:	2 ->	REP*POL		0.382	0.100	0.268	1.429
##	PREP4*	PPSS	3 ->	REP*POL		0.271	0.090	0.192	1.411
##					2.5% CI	97.5% CI			
##	TRST1	->	TRUST		0.254	0.311			
##	TRST2	->	TRUST		0.248	0.310			
##	TRST3	->	TRUST		0.252	0.319			
##	TRST4	->	TRUST		0.239	0.318			
##	PSEC1	->	SEC		0.248	0.309			
##	PSEC2	->	SEC		0.280	0.346			
##	PSEC3	->	SEC		0.278	0.342			
##	PSEC4	->	SEC		0.255	0.327			
##	PREP1	->	REP		0.159	0.259			
##	PREP2	->	REP		0.302	0.374			
##	PREP3	->	REP		0.307	0.394			
##	PREP4	->	REP		0.236	0.337			
##	PINV1	->	INV		0.314	0.415			
##	PINV2	->	INV		0.343	0.444			
##	PINV3	->	INV		0.303	0.413			
##	PPSS1	->	POL		0.315	0.403			
##	PPSS2	->	POL		0.357	0.447			
##	PPSS3	->	POL		0.330	0.402			
##	FAML1	->	FAML		1.000	1.000			
##	PREP1*	PPSS	1 ->	REP*POL	-0.258	0.354			
##	PREP1*	PPSS:	2 ->	REP*POL	-0.141	0.222			
##	PREP1*	PPSS	3 ->	REP*POL	-0.176	0.265			
##	PREP2*	PPSS	1 ->	REP*POL	-0.142	0.254			
##	PREP2*	PPSS:	2 ->	REP*POL	-0.263	0.371			
##	PREP2*	PPSS	3 ->	REP*POL	-0.369	0.440			
##	PREP3*	PPSS	1 ->	REP*POL	-0.603	0.609			
##	PREP3*	PPSS:	2 ->	REP*POL	-0.226	0.329			
##	PREP3*	PPSS	3 ->	REP*POL	-0.224	0.317			
##	PREP4*	PPSS	1 ->	REP*POL	-0.473	0.539			
##	PREP4*	PPSS:	2 ->	REP*POL	-0.472	0.566			
##	PREP4*	PPSS	3 ->	REP*POL	-0.334	0.408			
##									

##

##	Bootst	rapp	ed Loadings:				
##				Original Est.	Bootstrap Mean	Bootstrap SD	T Stat.
##	TRST1	->	TRUST	0.900	0.899	0.015	58.443
##	TRST2	->	TRUST	0.909	0.909	0.020	45.522
##	TRST3	->	TRUST	0.905	0.905	0.021	42.993
##	TRST4	->	TRUST	0.838	0.839	0.032	26.184
##	PSEC1	->	SEC	0.813	0.813	0.025	32.712
##	PSEC2	->	SEC	0.865	0.864	0.026	33.740

##	PSEC3	->	SEC			0.868	0.869	0.021	40.691
##	PSEC4	->	SEC			0.807	0.807	0.025	32.407
##	PREP1	->	REP			0.800	0.799	0.039	20.411
##	PREP2	->	REP			0.913	0.913	0.016	56.682
##	PREP3	->	REP			0.908	0.909	0.021	44.005
##	PREP4	->	REP			0.718	0.718	0.032	22.259
##	PINV1	->	INV			0.903	0.904	0.024	36.934
##	PINV2	->	INV			0.925	0.925	0.022	42.637
##	PINV3	->	INV			0.855	0.855	0.026	32.638
##	PPSS1	->	POL			0.868	0.867	0.025	35.130
##	PPSS2	->	POL			0.893	0.893	0.014	62.613
##	PPSS3	->	POL			0.911	0.910	0.017	54.486
##	FAML1	->	FAML			1.000	1.000	0.000	
##	PREP1*	PPSS	1 ->	REP*POL		0.581	0.591	0.255	2.272
##	PREP1*	PPSS	2 ->	REP*POL		0.510	0.574	0.240	2.123
##	PREP1*	PPSS	3 ->	REP*POL		0.506	0.588	0.255	1.983
##	PREP2*	PPSS	1 ->	REP*POL		0.509	0.627	0.267	1.907
##	PREP2*	PPSS	2 ->	REP*POL		0.421	0.593	0.279	1.508
##	PREP2*	PPSS	3 ->	REP*POL		0.336	0.599	0.325	1.034
##	PREP3*	PPSS	1 ->	REP*POL		0.236	0.509	0.339	0.695
##	PREP3*	PPSS	2 ->	REP*POL		0.555	0.623	0.265	2.095
##	PREP3*	PPSS	3 ->	REP*POL		0.466	0.607	0.283	1.648
##	PREP4*	PPSS	1 ->	REP*POL		0.900	0.586	0.361	2.489
##	PREP4*	PPSS	2 ->	REP*POL		0.836	0.503	0.359	2.332
##	PREP4*	PPSS	3 ->	REP*POL		0.859	0.558	0.339	2.536
##					2.5% CI	97.5% CI			
##	TRST1	->	TRUST		0.865	0.929			
##	TRST2	->	TRUST		0.864	0.942			
##	TRST3	->	TRUST		0.857	0.938			
##	TRST4	->	TRUST		0.765	0.892			
##	PSEC1	->	SEC		0.761	0.858			
##	PSEC2	->	SEC		0.808	0.906			
##	PSEC3	->	SEC		0.823	0.907			
##	PSEC4	->	SEC		0.754	0.853			
##	PREP1	->	REP		0.707	0.863			
##	PREP2	->	REP		0.881	0.942			
##	PREP3	->	REP		0.860	0.941			
##	PREP4	->	REP		0.650	0.775			
##	PINV1	->	INV		0.851	0.946			
##	PINV2	->	INV		0.875	0.960			
##	PINV3	->	INV		0.797	0.902			
##	PPSS1	->	POL		0.809	0.906			
##	PPSS2	->	POL		0.864	0.919			
##	PPSS3	->	POL		0.870	0.937			

```
## FAML1 -> FAML
                               1.000
                                         1.000
## PREP1*PPSS1
                 ->
                     REP*POL
                              -0.036
                                         0.921
## PREP1*PPSS2
                     REP*POL
                              -0.067
                                         0.885
                ->
## PREP1*PPSS3
                     REP*POL
                              -0.098
                                         0.907
                ->
## PREP2*PPSS1
                     REP*POL
                              -0.078
                                         0.951
                ->
## PREP2*PPSS2
                     REP*POL
                ->
                              -0.149
                                         0.931
                     REP*POL
## PREP2*PPSS3
                ->
                              -0.296
                                         0.977
## PREP3*PPSS1
                ->
                     REP*POL
                              -0.313
                                         0.935
## PREP3*PPSS2
                ->
                     REP*POL
                              -0.067
                                         0.931
## PREP3*PPSS3
                     REP*POL
                              -0.183
                                         0.957
                ->
  PREP4*PPSS1
                ->
                     REP*POL
                              -0.283
                                         0.994
## PREP4*PPSS2
                     REP*POL
                              -0.361
                                         0.924
                ->
  PREP4*PPSS3
                ->
                     REP*POL
                              -0.263
                                         0.951
```

Bootstrapped HTMT: ## Original Est. Bootstrap Mean Bootstrap SD 2.5% CI 97.5% CI 0.543 0.432 0.646 ## REP POL 0.543 0.056 -> REP*POL 0.000 0.000 0.000 0.000 0.000 ## REP -> REP -> INV 0.705 0.702 0.049 0.598 0.794 ## REP -> FAML 0.599 0.600 0.054 0.490 0.705 SEC 0.595 0.593 0.042 0.506 0.666 ## REP -> ## REP -> TRUST 0.682 0.682 0.044 0.593 0.762 ## POL -> REP*POL 0.000 0.000 0.000 0.000 0.000 0.057 0.384 0.608 ## POL -> INV 0.498 0.497 ## POL FAML 0.596 0.594 0.052 0.487 0.692 -> ## POL -> SEC 0.622 0.624 0.050 0.519 0.724 ## POL -> TRUST 0.458 0.460 0.061 0.341 0.573 ## REP*POL 0.085 0.055 0.177 -> INV 0.102 0.033 0.031 ## REP*POL -> FAML 0.046 0.065 0.025 0.126 REP*POL -> SEC 0.059 0.082 0.019 0.051 0.125 ## REP*POL TRUST 0.044 0.071 0.044 0.111 -> 0.017 0.494 0.378 0.603 ## INV -> FAML 0.494 0.057 INV -> SEC 0.568 0.565 0.049 0.460 0.663 ## INV -> TRUST 0.563 0.561 0.052 0.456 0.657 ## FAML -> SEC 0.455 0.455 0.051 0.351 0.552 ## FAML -> TRUST 0.471 0.472 0.052 0.371 0.574 0.609 ## SEC -> TRUST 0.685 0.685 0.037 0.757 ## ## Bootstrapped Total Paths: Original Est. Bootstrap Mean Bootstrap SD 2.5% CI 97.5% CI ## REP -> SEC 0.247 0.242 0.056 0.131 0.345 0.081 ## REP -> TRUST 0.150 0.147 0.036 0.216 POL -> SEC 0.339 0.344 0.055 0.235 0.452 ## POL 0.284 -> TRUST 0.205 0.209 0.036 0.138

## REP*POL -> SEC	-0.105	-0.015	0.125 -0.196	0.192
## REP*POL -> TRUST	-0.063	-0.009	0.076 -0.121	0.118
## INV -> SEC	0.181	0.184	0.058 0.073	0.304
## INV -> TRUST	0.109	0.112	0.036 0.043	0.185
## FAML -> SEC	0.011	0.011	0.057 -0.107	0.119
## FAML -> TRUST	0.006	0.007	0.035 -0.066	0.074
## SEC -> TRUST	0.606	0.609	0.035 0.537	0.675

Question 2 Common-Factor Models using CB-SEM

a. Create a common factor model using SEMinR, with the following characteristics:

a-i. Either respectfy all the constructs as being reflective(), or use the as.reflective() function to convert your earlier measurement model to being entirely reflective.

a-ii. Use the same structural model as before (you can just reuse it again!)

```
## a-i. Measurement Model
sec_cf_mm <- constructs(</pre>
  reflective("TRUST", multi_items("TRST", 1:4)), ##1.
  reflective("SEC", multi_items("PSEC", 1:4)), ##2.
  reflective("REP", multi_items("PREP", 1:4)), ##3.
  reflective("INV", multi_items("PINV", 1:3)), ##4.
  reflective("POL", multi_items("PPSS", 1:3)), ##5.
  reflective("FAML", single_item("FAML1")), ##6.
  interaction_term(iv="REP", moderator="POL", method=orthogonal) ##7.
)
## a-ii.
sec_cf_pls <- estimate_cbsem(</pre>
  data = sec,
  measurement_model = sec_cf_mm,
  structural_model = sec_sm
## Generating the seminr model for CBSEM
summary(sec_cf_pls)
##
## Results from package seminr (2.1.0)
## Estimation used package seminr (2.1.0)
##
```

```
## Fit metrics:
##
         npar
                    fmin
                                pnfi
                                           logl
                                                        aic
                                                                   bic
                                                                           ntotal
##
       77.000
                   3.529
                               0.663 -17296.241
                                                34746.482 35054.781
                                                                           405.000
##
         bic2
                     rmr
                                srmr
                                                        gfi
                                           crmr
                                                                  agfi
                                                                             pgfi
##
    34810.451
                   0.116
                               0.063
                                          0.065
                                                      0.742
                                                                 0.694
                                                                             0.627
##
          mfi
                    ecvi
##
        0.049
                   7.439
##
##
                      metric
                                scaled robust
## cfi
                       0.764
                                 0.772 0.799
                                 0.747 0.777
## tli
                       0.738
## nnfi
                       0.738
                                 0.747 0.777
## rni
                       0.764
                                 0.772 0.799
                                 0.072 0.107
## rmsea
                       0.120
## rmsea.ci.lower
                                 0.069
                       0.116
                                        0.100
## rmsea.ci.upper
                       0.124
                                 0.075
                                        0.114
## rmsea.pvalue
                       0.000
                                 0.000
## chisq
                    2858.871 1303.538
## df
                     419.000
                              419.000
## pvalue
                       0.000
                                 0.000
## baseline.chisq 10812.133 4340.588
## baseline.df
                     465.000
                              465.000
## baseline.pvalue
                       0.000
                                 0.000
## rfi
                       0.707
                                 0.667
## nfi
                       0.736
                                 0.700
## ifi
                       0.765
                                 0.774
##
## Reliability:
         rhoC AVE
##
## TRUST 0.91 0.72
## SEC
         0.86 0.60
         0.87 0.63
## REP
## INV
         0.88 0.71
## POL
         0.87 0.70
## FAML 1.00 1.00
##
## Path Coefficients:
##
               SEC TRUST
## R^2
              0.54 0.50
## REP
              0.30
## POL
              0.38
## REP_x_POL 0.01
## INV
              0.21
## FAML
             -0.01
```

SEC . 0.70

b. Show us the following results in table or figure formats

b-i. Plot a figure of the estimated model (it will look different from your PLS model!)

plot(sec_cf_pls)

Plotting of lavaan models using semPlot.

NULL

b-ii. Loadings of composites

summary(sec_cf_pls)\$loadings

##		TRUST	SEC	REP	INV	POL	FAML
##	TRST1	0.8800240	NA	NA	NA	NA	NA
##	TRST2	0.8886342	NA	NA	NA	NA	NA
##	TRST3	0.8690644	NA	NA	NA	NA	NA
##	TRST4	0.7575988	NA	NA	NA	NA	NA
##	PSEC1	NA	0.7308766	NA	NA	NA	NA
##	PSEC2	NA	0.8173481	NA	NA	NA	NA
##	PSEC3	NA	0.8151708	NA	NA	NA	NA
##	PSEC4	NA	0.7260444	NA	NA	NA	NA
##	PREP1	NA	NA	0.7551328	NA	NA	NA
##	PREP2	NA	NA	0.9199208	NA	NA	NA

##	PREP3	NA	NA	0.8871362	NA	NA	NA
##	PREP4	NA	NA	0.5650059	NA	NA	NA
##	PINV1	NA	NA	NA	0.8520004	NA	NA
##	PINV2	NA	NA	NA	0.9257476	NA	NA
##	PINV3	NA	NA	NA	0.7388750	NA	NA
##	PPSS1	NA	NA	NA	NA	0.8051533	NA
##	PPSS2	NA	NA	NA	NA	0.8272576	NA
##	PPSS3	NA	NA	NA	NA	0.8674335	NA
##	FAML1	NA	NA	NA	NA	NA	1

b-iii. Regression coefficients of paths between factors, and their pvalues

summary(sec_cf_pls)\$paths

```
## $coefficients
##
                      SEC
                              TRUST
## R^2
              0.540381651 0.4951084
## REP
              0.299536782
                                 NA
## POL
              0.376401499
                                 NA
## REP_x_POL 0.008355287
                                 NA
## INV
              0.214253245
                                 NA
## FAML
             -0.008837653
                                 NA
## SEC
                       NA 0.7036394
##
## $pvalues
                      SEC TRUST
##
## REP
             3.817181e-05
## POL
             4.380973e-09
                             NA
## REP_x_POL 8.516847e-01
                             NA
## INV
             3.534482e-03
                             NA
             8.996836e-01
## FAML
                             NA
## SEC
                       NA
                              0
```