Question Number	Scheme	Marks
8(a)	$x = -\frac{2}{3}$	B1 (1)
(b)	$\frac{dy}{dx} = \frac{6x(3x+2) - 3(3x^2 - 1)}{(3x+2)^2}$	M1A1A1
	$18x^2 + 12x - 9x^2 + 3 = 0 \text{oe}$	M1
	$3x^2 + 4x + 1 = 0$	A1
	$(3x+1)(x+1)=0$ $x=-\frac{1}{3}$ $x=-1$	M1A1
	$\left(-\frac{1}{3}, -\frac{2}{3}\right) \left(-1, -2\right)$	A1 (8)
(c)	$\left(-\frac{1}{3}, -\frac{2}{3}\right) (-1, -2)$ $A \text{ is } \left(0, -\frac{1}{2}\right)$	B1 (1)
(d)	x = -2/3 (Curve should not bend away from the asymptote.)	B1 two branches with turning points
	(-1, -2) No diagonal asymptote need be shown or implied but each branch must have a turning point.	B1 Asymptote parallel to <i>y</i> -axis B1 Required coords
(e)	grad at $A = \frac{0-3(-1)}{2^2} = \frac{3}{4}$ grad normal $-\frac{4}{3}$	(3) B1
	$y + \frac{1}{2} = -\frac{4}{3}x$ oe	M1A1 (3)
	2 3	[16]

8 (a)	
B1	$x = -\frac{2}{3}$ oe eg $3x = -2$, $3x + 2 = 0$ Must be an equation
(b)	5
M1	Attempt to differentiate using the quotient or product rule.
	For quotient rule, the numerator must be the difference of 2 terms and the denominator must
	be $(3x+2)^2$
	For the product rule the difference of 2 terms is required and both terms must contain
	$(3x+2)^{-k}$, where $k=1$ or 2
A1	For quotient rule, either term correct apart from sign
A1	For product rule, either term correct
M1	Completely correct derivative. Equate their numerator to 0. (For product rule use, equate their whole derivative to 0)
A1	Simplify to the correct 3 term quadratic. Terms can be in any order.
M1	Attempt the solution of their 3 term quadratic
A1	Two correct values for x
A1 (c)	Corresponding correct values for y. No need to write in coordinate brackets.
	($1)$ 1
B1	$\left(0, -\frac{1}{2}\right)$ or $x = 0, y = -\frac{1}{2}$
(d)	
B1	Two branches with turning points. One to be in all 4 quadrants, the other in the third
D4	quadrant only
B 1	Vertical asymptote drawn and labelled either with its equation or by the point where it crosses the <i>x</i> -axis. At least one branch of the curve must be asymptotic to the line and
	neither branch should cross it.
B1	Show the required coordinates on their sketch beside their turning points or indicated by
	arrow(s).
(e) B1	Credient of the normal seen explicitly on year
ы М1	Gradient of the normal seen explicitly or used. Any complete method for the equation of a line using their gradient of the normal at <i>A</i> and
1411	their coordinates of A
A1	Correct equation, any equivalent form.