Licence Info (2ème an.)

Durée: 1 h 30 mn

NOTER BIEN:

(1)- CALCULATRICES INTERDITES

MOBILES ETEINTS.

(2)- TOUS DOCUMENTS

PERSONNELS

SONT

AUTORISES

(3)- La question (3) de l'exo1 est INDEPENDANTE.

Exercice 1 (5 Pts)

(Temps recommandé: 20 mn)

On considère la fonction booléenne (F) définie par le schéma ci-dessous :

1- Déduire du schéma ci-haut l'expression de la fonction (F). Simplifier (F) par la méthode algébrique. (2 pts)

$$F = S_1 + \overline{S_2 + S_3} + S_4$$

avec:

$$S_1 = \overline{a + \overline{b} + c} = \overline{a}.b.\overline{c}$$
; $S_2 = a.b.c$; $S_3 = \overline{S_2.c} = \overline{S_2}$ et $S_4 = \overline{a.\overline{b}} = \overline{a} + b$

donc:

$$F = \overline{a} + b$$

2- <u>Dresser</u> la table de Karnaugh pour la fonction (F₁) suivante, puis <u>simplifier</u> en utilisant <u>la méthode de Karnaugh</u>

$$F_1 = F + \overline{a} \, \overline{b} \, c + \overline{a} \, \overline{b} \, \overline{c} + a \, \overline{b} \, \overline{c} + a \, \overline{b} \, \overline{c}$$
 (2 pts)

Licence Info (2ème an.)

Durée: 1 h 30 mn

	\ a b	0 0	0 1	1 1	1 0
С					
	0	1	1	1	1
	1	1	1	1	1

Donc

 $F_1 = 1$

3- Donner l'expression (Gnor) de la fonction G suivante, exprimée en <u>NOR à 2 entrées</u> <u>exclusivement</u> :

$$G = (\overline{a} \, \overline{b} \, \overline{c} \, \overline{d} \, e + \overline{a} \, \overline{b} \, \overline{c} \, d \, e + \overline{a} \, \overline{b} \, \overline{c} \, \overline{d} + e + \overline{a} \, \overline{b} \, \overline{c} + \overline{de})$$
 (1 pt)

Exercice 2 (15 Pts) (Temps recommandé: 45 mn)

Rédiger un programme en ASM 80x86, permettant de réaliser <u>en même temps</u> les 2 opérations suivantes :

- Transférer un bloc de 50 données de 2 octets chacune de l'@ [DS:SI] = [1000 : 0500 h] vers l'@ [ES:DI]=[5000:0550h] ;
- Sauvegarder les dix premières données de ce même bloc de données vers la pile.

NB: toutes les valeurs numériques seront exprimées en HEXADECIMAL.

PROGRAMME « ASM »

	MOV CX, DDDAh ;	(1) Les "10" premières données
	MOV SI, 0500h ;	(2) Source
	MOV DI, 0550h i	(3) Destination
BCL1:	; [[Z] rXA VOM	(4) Transf Source -> AX (2 oct)
	MOV EDII JAX ;	(5) Transf AX -> Destinat (2 oct)
	F XA HZUP	(b) Save en pile
	F SrIZ dda	(7) Incrément @ Source
	ADD DI 12 i	(音) Incrément @ Destination
	LOOP BCLl ;	(9) Fin des 10 premières datas
	MOV CX, 0028h ;	(1) Compteur pr les "40" données suivantes
BCL2:	; [[Z] rXA VOM	(1) Transf Source -> AX (2 oct)
	MOV EDII AX ;	(2) Transf AX -> Destinat (2 oct)
	F IZ DD SI 12 i	(3) Incrément @ Source
	ADD DI 12 i	(4) Incrément @ Destination
	LOOP BCL2 i	(5) Fin des 40 dernières datas
	end :	(Ь) Fin des 40 dernières datas