Long Quiz

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

Name:	
Student ID:	

E-mail: _____@seoultech.ac.kr

- ► ITM426, Engineering Math, Long Quiz, 2019 Fall
- Sep 26, 2019
- Time for Quiz: 1 hour
- Weighting 10 %
- ▶ Justification is necessary unless stated otherwise.
- ▶ Partial points are given only sparingly for the most problems because you are expected to 1) carry out proper sanity check and 2) correct your mistake by doing so.

Let $\mathbf{x}=(3,4)$, $\mathbf{y}=(1,1)$, and $\mathbf{z}=(2,7)$. Find real numbers a_1 and a_2 that solves the following equation. $\mathbf{z}=a_1\mathbf{x}+a_2\mathbf{y}$. [10pts] (No justification is necessary)

Investigate whether the following sets of vectors are linearly independent or dependent: (4,1,0), (0,2,-1), (3,2,0). [10pts]

Complete the following proof that the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 span 3-dimensional vector space. (In other words, the set of the three vectors is a basis of 3-dimensional vector space.) [10pts]

- $\mathbf{v}_1 = (0, 1, 1)$
- $\mathbf{v}_2 = (1, 0, 1)$
- $\mathbf{v}_3 = (1, 1, 0)$

Proof: Let $\mathbf{v} = (x, y, z)$ be an arbitrary 3D vector. I shall show that \mathbf{v} can be expressed as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 such as

$$\mathbf{v} = (x, y, z) = a\mathbf{v}_1 + b\mathbf{v}_2 + c\mathbf{v}_3$$

Based on your answer of Problem 2 above, tell me whether the determinant of the following matrix (i.e. |A|) is zero or non-zero. [5pts]

$$A = \left[\begin{array}{ccc} 4 & 0 & 3 \\ 1 & 2 & 2 \\ 0 & -1 & 0 \end{array} \right]$$

Carry out the following matrix multiplication. Missing elements are all zeros. [5pts]

$$\left[\begin{array}{ccc} 1 & & \\ & 2 & \\ -1 & & 1 \end{array}\right] \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right]$$

Find the inverse matrix of the following. Make sure your answer is correct by checking $AA^{-1}=A^{-1}A=I$. [10pts]

$$A = \left[\begin{array}{cc} 3 & 2 \\ 2 & 2 \end{array} \right]$$

Express following system of linear equations using matrix notation and find a solution. [10pts]

$$3x + 2y = 3$$
$$2x + 2y = 1$$

For a $n \times n$ matrix. TFAE (The followings are all equivalent). Complete the other three bullet points. [each 5pts]

- Ax = b does not have a unique solution.
- 11x = b does not have a unique so

We have
$$L = \begin{bmatrix} 1 \\ 2 & 2 \end{bmatrix}$$
 and $U = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$. Find the matrix A , where $A = LU$. [5pts]

In upcoming lectures…

- ▶ L is called a Lower triangular matrix. (No non-zero element in upper diagonal)
- ► U is called a Upper triangular matrix. (No non-zero element in lower diagonal)
- A = LU is called a LU-decomposition, or a LU-factorization of matrix A.

We have

$$A = \left[\begin{array}{cc} 2 & -2 \\ 1 & 1 & -2 \\ & 1 \end{array} \right], \ \mathbf{x} = \left[\begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right]$$

1. Find Ax. [5pts]

2. Find A^2x . [5pts] (Hint: Remind that $A^2x = AAx = A(Ax)$. That is, using your answer above will help you avoid doing $A \times A$ by hand.)

3. Find A^3x . [5pts] (Hint: Remind that $A^3x = A(A^2x)$. That is, using your answer above will help you avoid doing $A \times A \times A$ by hand.)

4. Find A^n x. [5pts] (Hint: You already have good answers for n = 1, 2, and 3 from above. Now can you generalize your findings?)

"Linear Algebra"

[1] "Linear Algebra"

Write your name before detaching this page.
Your Name:

Write your name before detaching this page.
Your Name: