Rank-65611 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(4) is 1431659929

General information

Number of lines	5
Number of points	25
Number of singular points	3
Number of Eckardt points	2
Number of double points	2
Number of single points	15
Number of points off lines	6
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{5}
Type of lines on points	$3^2, 2^2, 1^{15}, 0^6$

Singular Points

The surface has 3 singular points:

0:
$$P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0)$$

1: $P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0)$

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{101}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \mathbf{Pl}(1, 0, 0, 1, 0, 0)_{10}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{Pl}(0, 1, 1, 0, 0, 0)_{6}$$

Rank of lines: (0, 16, 336, 84, 100)

Rank of points on Klein quadric: (0, 2, 101, 10, 6)

Eckardt Points

The surface has 2 Eckardt points: $0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$ $1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_{23} = (1,0,0,1) = \ell_3 \cap \ell_4$$

Single Points

The surface has 15 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_5 = (1,1,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_6 = (2,1,0,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_7 = (3,1,0,0) \ \text{lies on line} \ \ell_0 \\ 3: \ P_8 = (1,0,1,0) \ \text{lies on line} \ \ell_1 \\ 4: \ P_9 = (2,0,1,0) \ \text{lies on line} \ \ell_1 \\ 5: \ P_{10} = (3,0,1,0) \ \text{lies on line} \ \ell_1 \\ 6: \ P_{11} = (0,1,1,0) \ \text{lies on line} \ \ell_2 \\ 7: \ P_{15} = (0,2,1,0) \ \text{lies on line} \ \ell_2 \end{array}$

 $\begin{array}{l} 8: \ P_{19} = (0,3,1,0) \ \text{lies on line} \ \ell_2 \\ 9: \ P_{27} = (1,1,0,1) \ \text{lies on line} \ \ell_3 \\ 10: \ P_{31} = (1,2,0,1) \ \text{lies on line} \ \ell_3 \\ 11: \ P_{35} = (1,3,0,1) \ \text{lies on line} \ \ell_3 \\ 12: \ P_{39} = (1,0,1,1) \ \text{lies on line} \ \ell_4 \\ 13: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_4 \\ 14: \ P_{70} = (1,0,3,1) \ \text{lies on line} \ \ell_4 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 6 points not on any line: The points on the surface but not on lines are:

```
\begin{array}{lll} 0: \, P_{43} = (2,1,1,1) & 4: \, P_{79} = (2,2,3,1) \\ 1: \, P_{44} = (3,1,1,1) & 5: \, P_{80} = (3,2,3,1) \\ 2: \, P_{67} = (2,3,2,1) & & \\ 3: \, P_{68} = (3,3,2,1) & & \end{array}
```

Line Intersection Graph

	01234
0	01110
1	10101
2	11011
3	10101
4	$\begin{array}{c} 0\ 1\ 2\ 3\ 4 \\ \hline 0\ 1\ 1\ 1\ 0 \\ 1\ 0\ 1\ 0\ 1 \\ 1\ 1\ 0\ 1\ 1 \\ 0\ 1\ 1\ 1\ 0\ 1 \\ \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_1	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_0	P_2	P_2

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4
in point	P_1	P_2	P_1	P_2

Line 3 intersects

Line	ℓ_0	ℓ_2	ℓ_4
in point	P_1	P_1	P_{23}

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_2	P_2	P_{23}

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	9: $P_{11} = (0, 1, 1, 0)$	18: $P_{44} = (3, 1, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$10: P_{15} = (0, 2, 1, 0)$	19: $P_{54} = (1, 0, 2, 1)$
$2: P_2 = (0,0,1,0)$	11: $P_{19} = (0, 3, 1, 0)$	$20: P_{67} = (2, 3, 2, 1)$
$3: P_5 = (1, 1, 0, 0)$	$12: P_{23} = (1,0,0,1)$	$21: P_{68} = (3, 3, 2, 1)$
$4: P_6 = (2, 1, 0, 0)$	13: $P_{27} = (1, 1, 0, 1)$	$22: P_{70} = (1,0,3,1)$
$5: P_7 = (3, 1, 0, 0)$	$14: P_{31} = (1, 2, 0, 1)$	$23: P_{79} = (2, 2, 3, 1)$
$6: P_8 = (1, 0, 1, 0)$	$15: P_{35} = (1, 3, 0, 1)$	$24: P_{80} = (3, 2, 3, 1)$
$7: P_9 = (2,0,1,0)$	16: $P_{39} = (1, 0, 1, 1)$	
$8: P_{10} = (3, 0, 1, 0)$	$17: P_{43} = (2, 1, 1, 1)$	