MAB298-Elements of Topology: Problem Sheet 6 Homeomorphic or not?

- 1. Divide the topological spaces indicated below into classes of pairwise homeomorphic spaces:
 - \mathbb{R} with discrete topology
 - Z with discrete topology
 - R with indiscrete topology
 - \mathbb{N} as a subset of \mathbb{R} (with the induced topology)
 - \mathbb{R} (standard topology)
 - \mathbb{R} with the topology $\tau = \{\emptyset, \mathbb{R}, (a, +\infty), a \in \mathbb{R}\}$
 - $\bullet \mathbb{R}^2$
 - \bullet (a,b)
 - [*a*, *b*)
 - (a, b]
 - [*a*, *b*]
 - open half plane $\{(x,y): y>0\}$
 - closed half plane $\{(x,y): y \ge 0\}$
 - open quadrant $\{(x,y) : x > 0, y > 0\}$
 - closed quadrant $\{(x,y): x \geq 0, y \geq 0\}$
 - sphere $\{x^2 + y^2 + z^2 = 1\}$
 - open disc $\{x^2 + y^2 < 1\}$
 - closed disc $\{x^2 + y^2 < 1\}$
 - $\{(x,y) : 0 \le y < 1\}$
 - $\{(x,y) : xy = 0\}$
 - annulus $\{1 < x^2 + y^2 < 4\}$
 - punctured plane $\mathbb{R}^2 \setminus \{(0,0)\}$
 - punctured sphere $\{x^2 + y^2 + z^2 = 1\} \setminus \{(0, 0, 1)\}$
 - $\mathbb Q$ as a subset in $\mathbb R$