# G. Explain which method you select to solve each of the problems and explain why.

All of the three problems were solved using the Hill Climber, Gradient descent with wolfe conditions and Newton Method. In general, the fastest method was the Newton Method and achieved more exact solutions, when there was no local minima. If the problem had local minima all of the methods got stuck in there (you could modify the ball radius of hill climber to get around this by seeing the graph and choosing a more optimal value, but this wouldn't be possible for black boxes problem).

## H. Can evolutionary algorithms help to solve any of the previous problems? Why?

Evolutionary algorithms, such as Differential Evolution (DE), can help solve many of the previous optimization problems.

#### 1. Global Search Capability:

Differential Evolution is designed to explore the entire solution space, making it effective for finding global minima in functions that have multiple local minima. 2. No Need for Gradient Information: DE does not rely on gradient information, which is particularly useful when dealing with functions that are non-differentiable, noisy, or complex.

## 1. Classical optimization methods

### F\_A

| Algorithm           | Point Found                | Evaluation | Iterations | Real<br>Minimum | Two Norm<br>Error |
|---------------------|----------------------------|------------|------------|-----------------|-------------------|
| Hill Climber        | [-0.0023754,<br>0.0010439] | 1.30002043 | 600        | 1.30            | 0.0025946         |
| Gradient<br>Descent | [0.0003116,<br>0.0004382]  | 1.3000001  | 50         | 1.30            | 0.0005378         |
| Newton<br>Method    | [0.0000000,<br>0.0000000]  | 1.3000000  | 1          | 1.30            | 7.64e-08          |

#### Hill Climber

```
In [ ]: x_init = np.array([0.5,1])
constraints = [[-3, 3],[-2, 2]]
```

x\_best, fx\_best, x\_history, fx\_history = hill\_climber(f\_A, delta=0.1, n\_iter=600, n
print()
plot\_function\_with\_paths(f\_A, constraints, x\_history, fx\_history)

i = 600, x1 = -0.0023754, x2 = 0.0010439, fx best = 1.30002043



True minimum found by differential evolution at x1 = -0.00, x2 = -0.00, with value = 1.30

Model minimum at x1 = -0.00, x2 = 0.00, with value = 1.30 L2 norm error for parameters: 0.0025946260183605913

#### **Gradient Descent with Wolfe Conditions**

In [ ]: x\_best, fx\_best, x\_history, fx\_history, i = grad\_descent(f\_A, tol=0.0005, max\_iter=
print()
plot\_function\_with\_paths(f\_A, constraints, x\_history, fx\_history)

i = 50, x1 = 0.0003116, x2 = 0.0004382,  $fx_best = 1.3000001$ 



True minimum found by differential evolution at x1 = -0.00, x2 = -0.00, with value = 1.30

Model minimum at x1 = 0.00, x2 = 0.00, with value = 1.30 L2 norm error for parameters: 0.0005378301063052097

#### Newton Method

In [ ]: x\_best, fx\_best, x\_history, fx\_history, i = newton\_method(f\_A, tol=0.0005, max\_iter
print()
plot\_function\_with\_paths(f\_A, constraints, x\_history, fx\_history)

i = 1, x1 = 0.0000000, x2 = 0.0000000,  $fx_best = 1.3000000$ 



True minimum found by differential evolution at x1 = -0.00, x2 = -0.00, with value = 1.30

Model minimum at x1 = 0.00, x2 = 0.00, with value = 1.30

L2 norm error for parameters: 7.640523731205057e-08

### F\_B

| Algorithm           | Point Found                | Evaluation | Iterations | Real<br>Minimum | Two Norm<br>Error |
|---------------------|----------------------------|------------|------------|-----------------|-------------------|
| Hill Climber        | [-1.7052825,<br>0.7924012] | -0.2152794 | 300        | -1.03           | 1.6174076         |
| Gradient<br>Descent | [-1.7036022,<br>0.7960998] | -0.2154638 | 17         | -1.03           | 2.3436695         |
| Newton<br>Method    | [-1.7038120,<br>0.8000063] | -0.2152910 | 27         | -1.03           | 1.6163322         |

#### Hill Climber

```
In [ ]: x_init=np.array([-4,4])
    constraints = [[-6, 6],[-6, 6]]
    x_best, fx_best, x_history, fx_history = hill_climber(f_B, delta=0.2, n_iter=300, n_print()
    plot_function_with_paths(f_B, constraints, x_history, fx_history)
```

i = 300, x1 = -1.7052825, x2 = 0.7924012, fx\_best = -0.2152794



True minimum found by differential evolution at x1 = -0.09, x2 = 0.71, with value = -1.03

Model minimum at x1 = -1.71, x2 = 0.79, with value = -0.22

L2 norm error for parameters: 1.6174076087924738

#### Gradient Descent with Wolfe Conditions

```
In [ ]: x_init=np.array([-4,4])
    x_best, fx_best, x_history, fx_history, i = grad_descent(f_B, tol=0.0005, max_iter=
    print()
    plot_function_with_paths(f_B, constraints, x_history, fx_history)
```

i = 17, x1 = -1.7036022, x2 = 0.7960998, fx\_best = -0.2154638



True minimum found by differential evolution at x1 = 0.09, x2 = -0.71, with value = -1.03

Model minimum at x1 = -1.70, x2 = 0.80, with value = -0.22 L2 norm error for parameters: 2.343669541364297

#### **Newton Method**

```
In [ ]: x_init=np.array([-4,4])
    x_best, fx_best, x_history, fx_history, i = newton_method(f_B, tol=0.0008, max_iter
    print()
    plot_function_with_paths(f_B, constraints, x_history, fx_history)
```

i = 27, x1 = -1.7038120, x2 = 0.8000063,  $fx_best = -0.2152910$ 



True minimum found by differential evolution at x1 = -0.09, x2 = 0.71, with value = -1.03

Model minimum at x1 = -1.70, x2 = 0.80, with value = -0.22 L2 norm error for parameters: 1.6163322504051563

## F\_C

| Algorithm           | Point Found                | Evaluation | Iterations | Real<br>Minimum | Two Norm<br>Error |
|---------------------|----------------------------|------------|------------|-----------------|-------------------|
| Hill Climber        | [-1.9861292,<br>2.0028127] | 7.9954832  | 500        | 0               | 2.8206325         |
| Gradient<br>Descent | [-2, 2]                    | 8          | 500        | 0               | 2.8284271         |
| Newton<br>Method    | [-2, 2]                    | 8          | 150        | 0               | 2.8284271         |

#### Hill Climber

```
In [ ]: x_init=np.array([-2,2])
    x_best, fx_best, x_history, fx_history = hill_climber(f_C, delta=0.2, n_iter=500, x
    print()
    plot_function_with_paths(f_C, constraints, x_history, fx_history)
```

i = 500, x1 = -1.9861292, x2 = 2.0028127,  $fx_best = 7.9954832$ 

#### Contour Plot with Optimization Paths



True minimum found by differential evolution at x1 = -0.00, x2 = -0.00, with value = 0.00

Model minimum at x1 = -1.99, x2 = 2.00, with value = 8.00 L2 norm error for parameters: 2.820632543626884

#### Gradient Descent with Wolfe Conditions

```
In [ ]: x_init=np.array([-2,2])
    x_best, fx_best, x_history, fx_history, i = grad_descent(f_C, tol=0.0005, max_iter=
    print()
    plot_function_with_paths(f_C, constraints, x_history, fx_history)
```

i = 500, x1 = -2.0000000, x2 = 2.0000000,  $fx_best = 8.0000000$ 

#### Contour Plot with Optimization Paths



True minimum found by differential evolution at x1 = 0.00, x2 = 0.00, with value = 0.00

Model minimum at x1 = -2.00, x2 = 2.00, with value = 8.00 L2 norm error for parameters: 2.8284271244387718

#### Newton Method

```
In [ ]: x_init=np.array([-2,2])
    x_best, fx_best, x_history, fx_history, i = newton_method(f_C, tol=0.0005, max_iter
    print()
    plot_function_with_paths(f_C, constraints, x_history, fx_history)
```

i = 150, x1 = -2.0000000, x2 = 2.0000000, fx best = 8.0000000

#### Contour Plot with Optimization Paths



True minimum found by differential evolution at x1 = 0.00, x2 = 0.00, with value = 0.00

Model minimum at x1 = -2.00, x2 = 2.00, with value = 8.00 L2 norm error for parameters: 2.8284271256217197