العلامة		/ • 511 - • • • • • • • • • • • • • • • • • •					
العلامة	مجزأة	عناصر الإجابة (الموضوع الأول)					
التمرين الأول (04 نقاط)							
	0,5×2	$P(B) = \frac{C_8^3}{C_{11}^3} = \frac{56}{165}$ $P(A) = \frac{C_4^3 + C_5^3}{C_{11}^3} = \frac{14}{165}$ (1)					
1,75	0,25	$P(C) = 1 - P(B) = \frac{109}{165}$	(1 (I				
	0,5	$P_A(B) = \frac{P(A \cap B)}{P(A)} = \frac{1}{7} (\rightarrow$					
	0,25×4	$\begin{array}{c ccccc} x_i & 0 & 1 & 2 & 3 \\ \hline P(X = x_i) & \frac{56}{165} & \frac{84}{165} & \frac{24}{165} & \frac{1}{165} \\ \end{array}$					
1,75	0,25	$E(X) = \frac{9}{11}$	(2				
	0,5	$P(X > 1) = P(X = 2) + P(X = 3) = \frac{5}{33}$ (φ					
0,5	0,5	$P(D) = 1 - P(\overline{D}) = 1 - \frac{A_9^3}{A_{11}^3} = \frac{27}{55}$ $P(D) = \frac{3A_2^1 \times A_9^2 + 3A_2^2 \times A_9^1}{A_{11}^3} = \frac{27}{55}$	(II)				
التمرين الثاني (04 نقاط)							
1,5	0,5×3	$S = \left\{1 - 2\sqrt{3} ; 1 - \sqrt{3} - i ; 1 - \sqrt{3} + i\right\}$	(I				
1,5	0,5×3	$z_A - 1 = 2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$ $z_C - 1 = 2\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right)$ $z_B = \left(2\sqrt{3} - 1\right)\left(\cos\pi + i\sin\pi\right)$	(1 (II				
0,5	0,5	$z_D = \frac{z_A - z_B + z_C}{1 - 1 + 1} = 1$	(2				
0,5	0,5	(AB=AD=2 معیّن $(ABCD)$ متوازي أضلاع و $ABCD$	(3				
التمرين الثالث (05 نقاط)							
1,75	$0,25 \times 3$ 0,75 + 0,25	$u_3=\frac{7}{5}$ و $u_2=\frac{1}{2}$ ، $u_1=2$ $0 \le u_n \le 2 : \mathbb{N}$ من n من أجل كل n من أجل كل	(1				

2,25. $0,5$ $0,5 $			-333 .	
$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(\frac{5}{1 + \frac{1}{4} \left(-\frac{2}{3}\right)^n} - 4 \right) = 1$ $0,5$ $0,25 \times 2$ $T_n = 405 + \frac{3}{100} \left(-\frac{2}{3}\right)^n \left(1 + \left(\frac{2}{3}\right)^{2025}\right)$ $0,25 \times 2$ $T_n = 405 + \frac{3}{100} \left(-\frac{2}{3}\right)^n \left(1 + \left(\frac{2}{3}\right)^{2025}\right)$ $0,25 \times 2$ $T_n = 405 + \frac{3}{100} \left(-\frac{2}{3}\right)^n \left(1 + \left(\frac{2}{3}\right)^{2025}\right)$ $T_n = \frac{1}{5}(2025 - S_n)$ $T_n = \frac{1}{5}(2025 - S$		0,5+0,75		
$\begin{array}{c} 1 \\ 0,5 \\ 0,25\times 2 \end{array} \begin{array}{c} S_n = -\frac{3}{20}\left(-\frac{2}{3}\right)^n \left(1+\left(\frac{2}{3}\right)^{2025}\right) \\ 0,25\times 2 \end{array} \begin{array}{c} T_n = 405 + \frac{3}{100}\left(-\frac{2}{3}\right)^n \left(1+\left(\frac{2}{3}\right)^{2025}\right) \\ 1 \\ 0,75 \end{array} \begin{array}{c} 0,5+0,25 \\ 0,5+0,25 \end{array} \begin{array}{c} g(x)<0 \text{ id} \\ \lim_{x\to+\infty} f(x) = -\infty \text{ id} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ 0,75 \end{array} \begin{array}{c} \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ 0,75 \end{array} \begin{array}{c} \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ 0,75 \end{array} \begin{array}{c} \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ 0,75 \end{array} \begin{array}{c} \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ 0,75 \end{array} \begin{array}{c} \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} \\ \lim_{x\to+\infty} \left[f(x) - (-2x+3)\right] = 0 \text{ (i)} $	2,25.	0,5	$u_n = \frac{5}{1 - v_n} - 4 \ (\because)$	(2
1 $0,25 \times 2$ $T_n = 405 + \frac{3}{100} \left(-\frac{2}{3}\right)^n \left(1 + \left(\frac{2}{3}\right)^{2025}\right)$ $409 T_n = \frac{1}{5}(2025 - S_n)$ (3) (billing of $1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 $		0,5	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \left(\frac{5}{1 + \frac{1}{4} \left(-\frac{2}{3} \right)^n} - 4 \right) = 1$	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1	0,5		(3
$g(x) < 0$ قان \mathbb{R} من أجل كان x من أجل كان \mathbb{R} المعادلة بالتجزئة، نجد: $g(x) < 0$ المعادلة بالتجزئة المعادلة بالتجزئة المعادلة بالتجزئة المعادلة بالتجزئة المعادلة بالتجزئة المعادلة بالتحدد التحدد التحدد ألم المعادلة بالتحدد التحدد التحدد المعادلة المعادلة بالتحدد التحدد المعادلة المعادلة المعادلة التحدد التحدد المعادلة المعادلة التحدد التحدد المعادلة المعادلة التحدد التحدد المعادلة المعادلة المعادلة التحدد المعادلة المعادلة المعادلة التحدد التحدد المعاد	-	$0,25\times2$	$T_n = 405 + \frac{3}{100} \left(-\frac{2}{3} \right) \left(1 + \left(\frac{2}{3} \right)^{2025} \right)$ ومنه $T_n = \frac{1}{5} (2025 - S_n)$	
$0,5+0,25$ $\lim_{x\to +\infty} f(x) = -\infty$ $\lim_{x\to +\infty} f(x) = +\infty$ (1) $0,5+0,25$ $\lim_{x\to +\infty} f(x) = -\infty$ $\lim_{x\to +\infty} f(x) = +\infty$ (1) $0,75$ $\lim_{x\to +\infty} f(x) = -\infty$ $\lim_{x\to +\infty} f(x) = +\infty$ (1) $0,75$ $\lim_{x\to +\infty} f(x) = -(2x+3) = 0$ (1) $0,75$ $\lim_{x\to +\infty} (C_f) : x < 0$ $\lim_{x\to +\infty} (C_f) : x <$			التمرين الرابع (07 نقاط)	
	0,75	0,5+0,25		(I
		0,5+0,25	$\lim_{x \to +\infty} f(x) = -\infty \lim_{x \to -\infty} f(x) = +\infty (1)$	
$(\Delta) \cap (C_f) = \{I(0;3)\}$ $0,5$ $f'(x) = g(x) - e^{-x+1} \text{ (i)}$ $0,25$ $0,25$ $0,25$ $0,5 + 0,25$ $0,5 + 0,25$ $0,25 + 0,25$	1,75	0,25	$\lim_{x \to +\infty} \left[f(x) - (-2x + 3) \right] = 0 (-2x + 3)$	(1 (II
y = -2x + 2 : (T) متناقصة تماما على $y = -2x + 2 : (T)$ متناقصة تماما على $y = -2x + 2 : (T)$ معادلة $y = -2x + 2 : (T)$ معاد		0,75		
(2) (2) (3) (3) (4) (2) (3) (2) (3) (3) (3) (4) (2) (3) (4) (5) (5) (5) (1) (1) (2) (3) (2) (3) (2) (3) (4) (2) (4) (2) (4) (2) (3) (4) (2) (4) (2) (4) (2) (4) (5) (5) (5) (5) (5) (7) (1) (1) (1) (2) (2) (3) (4) (2) (4) (2) (3) (4) (2) (4) (2) (4) (2) (4) (2) (4) (2) (4) (2) (3) (4) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (7) (8) (1)		0,5	$f'(x) = g(x) - e^{-x+1}$ (1	
0,25 $y=-2x+2:(T)$ معادلة $x=1$ تكافئ $f'(x)=-2$ (3 $y=-2x+2:(T)$ معادلة $f'(x)=-2$ (3 $f'(x)=-2$ (4 $f'(x)=-2$ (4 $f'(x)=-2$ (4 $f'(x)=-2$ (4 $f'(x)=-2$ (5 $f'(x)=-2$ (6 $f'(x)=-2$ (7 $f'(x)=-2$ (8 $f'(x)=-2$ (9 $f'(x)=-2$ (1 $f'(x)=-2$ (2 $f'(x)=-2$ (3 $f'(x)=-2$ (4 $f'(x)=-2$ (4 $f'(x)=-2$ (5 $f'(x)=-2$ (5 $f'(x)=-2$ (5 $f'(x)=-2$ (5 $f'(x)=-2$ (5 $f'(x)=-2$ (6 $f'(x)=-2$ (7 $f'(x)=-2$ (7 $f'(x)=-2$ (8 $f'(x)=-2$ (9 $f'(x)=-2$ (1 $f'(x)=-2$ (2 $f'(x)=-2$ (3 $f'(x)=-2$ (4 $f'(x)=-2$ (4 $f'(x)=-2$ (5 $f'(x)=-2$ (5 $f'(x)=-2$ (6 $f'(x)=-2$ (7 $f'(x)=-2$ (8 $f'(x)=-2$ (8 $f'(x)=-2$ (9 $f'(x)=-2$ (1 $f'(x)=-2$	1	0,25		(2
(C_f) (0,25	$\int f(x)$ $-\infty$	
(T) و Δ رسم (C_f) و (C_f) رسم (0,75	0,5+0,25	y = -2x + 2 : (T) معادلة ل $x = 1$ تكافئ $f'(x) = -2$	(3
0,5 $\int_0^1 x e^{-x+1} dx = e - 2 : 1$	1,75		رسم (Δ) و (T) و (Δ)	(4
1		0,5	2 < m < 3 حلّین مختلفین لمّا $f(x) = -2x + m$ ب) تقبل المعادلة	
0,5 $\mathcal{A} = 4(e-2)cm^2$ each: $\int_0^1 (-2x+3-f(x)) dx = e-2$ (4)	1	0,5	$\int_{0}^{1} x e^{-x+1} dx = e - 2$: i.e. i.e. i.e. i.e. i.e. (1	(5
	1	0,5	$A = 4(e-2) cm^2$ ومنه: $\int_0^1 (-2x+3-f(x)) dx = e-2$ (ب	

ملاحظة: تُقبل جميع طرائق الحلّ الصحيحة مع التقيّد بسلّم التنقيط.

2,25	مجزاة 0,5 0,5×3 0,25×3 0,25 0,75	التمرين الأول (04) نقاط (الموضوع الثاني) التمرين الأول (04) نقاط (04) نقاط 04 05 05 05 05 05 05 05 05	(2 (3 (4			
1,25	$0,5 \times 3$ $0,25 \times 3$ $0,25$	شجرة الاحتمالات $S = \frac{\frac{3}{5}}{\frac{5}{5}} - \frac{S}{S}$ $\frac{\frac{3}{5}}{\frac{5}{5}} - \frac{S}{S}$ $\frac{\frac{3}{5}}{\frac{5}} - \frac{S}{S}$ $\frac{\frac{3}{5}}{\frac{5}{5}} - \frac{S}{S}$ $\frac{\frac{3}{5}}{\frac{5}{5}} - \frac{S}{S}$ $\frac{\frac{3}{5}}{\frac{5}{5}} - \frac{S}{S}$ $\frac{\frac{3}{5}}{\frac{5}{5}} - \frac{S}{S}$ $\frac{3}{5} - \frac{S}$	(2			
1,25	$0,5 \times 3$ $0,25 \times 3$ $0,25$	$ \frac{2}{5} = \frac{3}{5} = \frac{3}{5} = \frac{3}{5} = \frac{3}{5} = \frac{3}{5} $ $ P(B) = 3\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)^{2} = \frac{36}{125} P(A) = \frac{3}{5} $ $ P(C) = \left(\frac{3}{5}\right)^{3} + \left(\frac{3}{5}\right)\left(\frac{2}{5}\right)^{2} + 2\left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right) = \frac{3}{5} $ $ P_{C}(A) = \frac{P(A \cap C)}{P(C)} = \frac{3}{5} P(A \cap C) = \left(\frac{3}{5}\right)^{3} + \left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right) = \frac{9}{25} $ $ P_{C}(A) = P(A) P(A \cap C) = P(A) \times P(C) : 0 $ $ P_{C}(A) = P(A) P(A \cap C) = P(A) \times P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C) : 0 $ $ P_{C}(A) = P(A) P(A) P(C) P(A) P(C)$	(2			
1,25	0,25×3 0,25	$P(C) = \left(\frac{3}{5}\right)^{3} + \left(\frac{3}{5}\right)\left(\frac{2}{5}\right)^{2} + 2\left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right) = \frac{3}{5}$ $P_{C}(A) = \frac{P(A \cap C)}{P(C)} = \frac{3}{5} P(A \cap C) = \left(\frac{3}{5}\right)^{3} + \left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right) = \frac{9}{25}$ $P_{C}(A) = P(A) P(C) = P(A) \times P(C) = \frac{9}{25}$ $P_{C}(A) = P(A) P(C) = P(A) \times P(C) = \frac{9}{25}$ $P_{C}(A) = P(A) P(C) = \frac{9}{25}$ $P_{C}(A) = P(A) P(C) = \frac{9}{25}$ $P_{C}(A) = \frac{9}{25$	(3			
1,25	0,25	$P_{C}(A) = \frac{P(A \cap C)}{P(C)} = \frac{3}{5}$ و $P(A \cap C) = \left(\frac{3}{5}\right)^{3} + \left(\frac{3}{5}\right)^{2} \left(\frac{2}{5}\right) = \frac{9}{25}$ $P_{C}(A) = P(A)$ أو $P(A \cap C) = P(A) \times P(C)$ أو $P(A) = P(A)$ أو $P(A)$				
1		أ) تبرير أنّ قيم المتغير العشوائي هي: 30 - ، 10 - ، 10 ، 00. ب) قانون الاحتمال: 30 10 30 30 30 30 30 30	(4			
1		x_i -30 -10 10 30 : x_i -20 -20 -10 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	(4			
		123 123 125				
	0,25	E(X)=6 : الأمل الرياضياتي				
	التمرين الثاني (04 نقاط)					
1	$0,5\times2$	$\overline{z+i} = \overline{z} - i$ (الإجابة: أ				
1	$0,5\times2$	$\left(\frac{1+i}{1-i}\right)^{2024} = (i)^{2024} = 1$ (أيجابة: أ				
1	$0,5\times2$	$S_n = 2\ln 2(1+2+\dots+n) = n(n+1)\ln 2$ (الإجابة: ب)	(3			
1	0,5×2	$Z = \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}$ (الإجابة: ج	(4			
التمرين الثالث (05 نقاط)						
1,5	0,25×4	$ \begin{array}{c ccccc} \hline x & 2 & +\infty \\ \hline f'(x) & - & \\ \hline f(x) & \frac{3}{4} & & \\ \hline \end{array} $	(1			

2	0,75	$\frac{u_{n+1}}{u_n} \le \frac{3}{4}$ ومنه $\frac{u_{n+1}}{u_n} = f(n)$ فإنّ $n \ge 2$ ، $\mathbb N$ من أجل كُلّ n من أجل كُلّ من أجل أ	
	0,75+0,25	$u_n \le \frac{1}{2} \left(\frac{3}{4}\right)^{n-2} : 2 \le n$ بر هان أنّه من أجل كل n من n من n	(2
	0,25	$\lim_{n \to +\infty} \frac{n}{e^{n \ln 2}} = 0$ يمكن استعمال ، $\lim_{n \to +\infty} u_n = 0$	
1,5	0,5+1	$n=10$ تعني: $S_n = \frac{511}{1024}$ ، $S_n = \frac{1}{2} \left(1 - \left(\frac{1}{2} \right)^{n-1} \right)$ (ج.)	
		التمرين الرابع (07 نقاط)	
0,5	0,5	g(x) موجب تماما على المجال $g(x)$	(I
0,5	0,5	$\lim_{\substack{x \to 0}} f(x) = +\infty \lim_{\substack{x \to +\infty}} f(x) = -\infty$	(1(II
	0,5	$f'(x) = \frac{-2g(x)}{x^3} \text{ (f}$	
1,75	0,25	$x = 0$ الدّالة f متناقصة تماما على f : $+\infty$ متناقصة تماما على f : الدّالة f	
	0,25	جدول التغيرات مي التغيرات التغيرات مي التغيرات	(2
	0,75	$f(0,7) \times f(0,71) < 0$ و $[0,7;0,71]$ و $f(0,7) \times f(0,71)$	
		$0.7 < \alpha < 0.71$ ومنه $f(x) = 0$ تقبل حلا وحيدا م	
0,75	0,25	$\begin{pmatrix} C_f \end{pmatrix}$ ومنه $y = -x$ ومنه $\lim_{x \to +\infty} (f(x) + x) = 0$ (أ	
	0,5	$]0;1[$ علی (Δ) علی $f(x)+x=\frac{-\ln x}{x^2}$ ب) من $f(x)+x=\frac{-\ln x}{x^2}$	(3
		A(1;-1) على $]0+$; $]1$ ويقطعه في النقطة $A(1;-1)$	
0,75	0,5+0,25	$y = -x - \frac{1}{2e} : (T)$ ومعادلة ل $x = \sqrt{e}$ تكافئ $f'(x) = -1$	(4
1,5	$0,25\times2$	أ) الرسم. (T) (A)	
	0,5	رسم (Δ) و (T) رسم (C_f) رسم (C_f) رسم (C_f)	(5
	0,5	$0 < m < \frac{1}{2e}$ ب) للمعادلة: $m = \frac{\ln x}{x^2} = m$ حكن مختلفان لمّا	
1,25	0,5	$H'(x) = h(x)$ ، $]0; +\infty[$ من أجل كل x من أجل كل أ	
	0,5	$\int_{\alpha}^{1} \frac{-\ln x}{x^{2}} dx = H(\alpha) - H(1) = \frac{-1 - \ln \alpha}{\alpha} + 1 (\rightleftharpoons$	(6
	0,25	$\mathcal{A}(\alpha) = 4(\alpha^2 - \frac{1}{\alpha} + 1)$ ومنه $\ln \alpha = -\alpha^3$ نجد: $f(\alpha) = 0$	
			* .

ملاحظة: تُقبل جميع طرائق الحلّ الصحيحة مع التقيّد بسلّم التنقيط.