Homework 8

Madilyn Simons

- 1. (a) Since $(x^7+25x^6-25x+5)$ is a nonconstant polynomial in \mathbb{Q} , $\mathbb{Q}/(x^7+25x^6-25x+5)$ is a field if and only if $(x^7+25x^6-25x+5)$ is irreducible in \mathbb{Q} . We know that $(x^7+25x^6-25x+5)$ is irreducible in \mathbb{Q} by Eisenstein's Criterion for prime 5. Thus, $\mathbb{Q}/(x^7+25x^6-25x+5)$ is a field.
 - (b) Consider $\mathbb{Z}/2\mathbb{Z}$. If $f(x)=x^3+2x^2-x+1$, then $\overline{f}(x)=x^3-x+1$. We know that $\overline{f}(x)$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$ because $\overline{f}(0)=\overline{f}(1)=1$. Since $\overline{f}(x)$ is irreducible in $\mathbb{Z}/2\mathbb{Z}$, f(x) is irreducible in \mathbb{Q} , which means that $\mathbb{Q}[x]/(x^3+2x^2-x+1)$ is a field.
 - (c) Only first-degree and second-degree polynomials can be irreducible in $\mathbb{R}[x]$. Since $(x^5+42x^4+\pi x^3-1729x^2+ln(2)x-2019)$ is a fifth-degree polynomial, it is reducible in $\mathbb{R}[x]$. Therefore $\mathbb{R}[x]/(x^5+42x^4+\pi x^3-1729x^2+ln(2)x-2019)$ is NOT a field.

2. TODO