ТВиМС

Содержание

1	Случайная величина		
	1.1 ^U	Iисловые характеристики случайных величин	2
	1	.1.1 Распределение Бернулли	3
	1	.1.2 Биномиальное распределение	3
	1	.1.3 Геометрическое распределение	3
	1	.1.4 Гипергеометрическое распределение	4
	1	.1.5 Распределение Паскаля	5
2	Ковар	риация !	5
3	Корреляция		6
4	Мера Жордана		6
5	Распределение Пуассона		6
6	Ветвя	ищиеся процессы	7
	6.1 I	<u> Гепи Маркова</u>	7
		.1.1 Классификация состояний Марковских цепей	
	6	.1.2 Эргодичность	
	6	.1.3 Процесс Гальтона-Ватсона	9
	6.2 T	ождество Вальда	9
7	Произ	зводящие функции	9
	7.1 C	Эперации с производящими функциями	S

1 Случайная величина

Определение 1. Случайной величиной ξ называется функция, заданная на множестве Ω , принимающая значения в \mathbb{R} .

Задать случайную величину, значит указать все ее реализации и соответственные вероятности.

Определение 2. Индикатором события А называется случайная величина:

$$\mathbb{I}(A) \sim \begin{pmatrix} 0 & 1\\ 1 - \mathbb{P}(A) & \mathbb{P}(A) \end{pmatrix}$$

Определение 3. Законом распределения случайной величины называется некоторое правило, позволяющее однозначно определить значение вероятности по значению случайной величины.

1.1 Числовые характеристики случайных величин

Определение 4. Математическим ожиданием дискретной случайной величины, если оно существует, называется число:

$$\mathbb{E}(\xi) = \sum_{i=1}^{n} \omega_i \cdot \mathbb{P}(\xi = \omega_i)$$

Определение 5. Дисперсией случайной величины называется $\mathbb{D}(\xi) = \mathbb{E}(\xi - \mathbb{E}(\xi))^2$.

Теорема 1.1.
$$\mathbb{E}(a\xi + b\eta + c) = a\mathbb{E}(\xi) + b\mathbb{E}(\xi) + c; \ a, b, c \in \mathbb{R}$$

Доказательство.

$$\mathbb{E}(a\xi + b\eta + c) =$$

$$= \sum_{i=1}^{n} \widehat{\omega}_{i} \cdot \mathbb{P}(a\xi + b\eta + c = \widehat{\omega}_{i}) =$$

$$= c + \sum_{i=1}^{n} \widehat{\omega}_{i}^{c} \cdot \mathbb{P}(a\xi + b\eta = \widehat{\omega}_{i}^{c}) =$$

$$= c + \sum_{i=1}^{n} \omega_{i}^{\xi} \cdot \mathbb{P}(a\xi = \omega_{i}^{\xi}) + \sum_{i=1}^{n} \omega_{i}^{\eta} \cdot \mathbb{P}(b\eta = \omega_{i}^{\eta}) =$$

$$= c + a\mathbb{E}(\xi) + b\mathbb{E}(\eta)$$

Теорема 1.2. Дисперсия случайной величины ξ может быть вычислена, как $\mathbb{D}(\xi) = \mathbb{E}(\xi^2) - (\mathbb{E}(\xi))^2$

Доказательство.

$$\mathbb{D}(\xi) = \mathbb{E}(\xi - \mathbb{E}(\xi))^{2} =$$

$$= \mathbb{E}(\xi^{2} - 2\xi\mathbb{E}(\xi) + (\mathbb{E}(\xi))^{2}) =$$

$$= \mathbb{E}(\xi^{2}) - 2(\mathbb{E}(\xi))^{2} + (\mathbb{E}(\xi))^{2} =$$

$$= \mathbb{E}(\xi^{2}) - (\mathbb{E}(\xi))^{2}$$

Определение 6. Стандартным отклонением случайной величины ξ называется $\sigma(\xi) = \sqrt{\mathbb{D}(\xi)}$.

1.1.1 Распределение Бернулли

Определение 7. Случайная величина ξ распределена по Бернулли, если ее распределение суть индикатор.

$$Ber(p) \sim \begin{pmatrix} 0 & 1 \\ 1 - p & p \end{pmatrix}$$

1.1.2 Биномиальное распределение

Определение 8. Случайная величина ξ распределена биномиально, если она моделирует схему испытаний Бернулли или является суммой бернулиевых случайных величин.

$$B(p, n) \sim \begin{pmatrix} 0 & \cdots & k & \cdots & n \\ (1-p)^n & \cdots & C_n^k p^k (1-p)^{n-k} & \cdots & p^n \end{pmatrix}$$

Теорема 1.3. Математическое ожидание биномиально распределенной случайной величины ξ может быть вычислено, как $\mathbb{E}(\xi) = np$.

Доказательство.

$$\mathbb{E}(\xi) = C_n^1 p q^{n-1} + 2C_n^2 p^2 q^{n-2} + \ldots + kC_n^k p^k q^{n-k} + \ldots + nC_n^n p^n =$$

$$= np \cdot (C_{n-1}^0 q^{n-1} + C_{n-1}^1 p q^{n-2} + \ldots + C_{n-1}^{k-1} p^{k-1} q^{n-k} + \ldots + C_{n-1}^{n-1} p^{n-1}) =$$

$$= np \cdot (q+p)^{n-1} =$$

$$= np$$

Теорема 1.4. Дисперсия независимых случайных величин линейна: $\mathbb{D}(\xi + \eta) = \mathbb{D}(\xi) + \mathbb{D}(\eta)$

Лемма 1.5. Дисперсия биномиально распределенной случайной величины ξ может быть вычислена, как $\mathbb{D}(\xi) = npq$.

Доказательство. Пусть η — число успехов в одном испытании Бернули. Тогда:

$$\eta \sim B(p, 1) \sim \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$

В таком случае $\mathbb{D}(\eta)=\mathbb{E}(\eta^2)-(\mathbb{E}(\eta))^2=p-p^2=pq.$ Тогда по теореме 1.4:

$$\mathbb{D}(\xi) = \sum_{i=1}^{n} \mathbb{D}(\xi_i) = pq \cdot n = npq$$

1.1.3 Геометрическое распределение

Определение 9. Случайная величина ξ распределена геометрически, если она моделирует схему испытаний до первого успеха с вероятностью p.

$$Geom(p) \sim \begin{pmatrix} 1 & 2 & \cdots & n & \cdots \\ p & qp & \cdots & q^{n-1}p & \cdots \end{pmatrix}$$

Лемма 1.6. Математическое ожидание геометрически распределенной случайной величины ξ может быть вычислено, как $\mathbb{E}(\xi) = \frac{1}{p}$.

Доказательство.

$$\mathbb{E}(\xi) = p + 2qp + 2q^{2}p + \dots + kq^{k-1}p + \dots =$$

$$= (p + qp + q^{2}p + \dots + q^{k-1}p + \dots) + (qp + 2q^{2}p + \dots + (k-1)q^{k-1}p + \dots) =$$

$$= \frac{p}{1-q} + q(p + 2pq + \dots + (k-1)q^{k-2}p + \dots)$$

$$\mathbb{E}(\xi) = 1 + q\mathbb{E}(\xi)$$

$$\mathbb{E}(\xi)(1-q) = 1$$

$$\mathbb{E}(\xi) = \frac{1}{p}$$

Лемма 1.7. Дисперсия геометрически распределенной случайной величины ξ может быть вычислена, как $\mathbb{D}(\xi) = \frac{q}{p^2}$.

Доказательство.

$$\mathbb{D}(\xi) = \mathbb{E}(\xi^2) - (\mathbb{E}(\xi))^2$$

$$\mathbb{E}(\xi^2) = p + 2qp + 9q^2p + \dots + k^2q^{k-1}p + \dots =$$

$$= p + qp + 3qp + 4q^2p + 5q^2p + \dots =$$

$$= (qp + 4q^2p + \dots) + (p + 3qp + 5q^2p + \dots)$$

$$\mathbb{E}(\xi^2) = q\mathbb{E}(\xi^2) + \mathbb{E}(2\xi - 1) =$$

$$= (1 - p)\mathbb{E}(\xi^2) + \frac{2}{p} - 1 =$$

$$= \frac{2 - p}{p^2}$$

$$\mathbb{D}(\xi) = \frac{2 - p}{p^2} - \frac{1}{p^2} =$$

$$= \frac{q}{p^2}$$

1.1.4 Гипергеометрическое распределение

Определение 10. Случайная величина ξ распределена гипергеометрически, если она моделирует выбор n элементов из множества мощности N с K помеченными и является числом помеченных в выборке.

$$\xi \sim HG(N, K, n)$$
$$\mathbb{P}(\xi = k) = \frac{C_K^k \cdot C_{N-K}^{n-k}}{C_N^n}$$

Утверждение 1.8. Математическое ожидание гипергеометрически распределенной случайной величины ξ может быть вычислено, как $\mathbb{E}(\xi) = \frac{n \cdot K}{N}$.

Доказательство.

$$\xi=\mathbb{I}(A_1)+\mathbb{I}(A_2)+\ldots+\mathbb{I}(A_n)$$
, где $A_i=\{i$ -ый элемент выборки помечен $\}$ $\mathbb{I}(A_i)\sim\begin{pmatrix}0&1\\1-\frac{K}{N}&\frac{K}{N}\end{pmatrix}$ $\mathbb{E}(\xi)=\sum_{i=1}^n\mathbb{E}(\mathbb{I}(A_i))=n\cdot\frac{K}{N}$

1.1.5 Распределение Паскаля

Определение 11. Случайная величина ξ распределена по Паскалю, если она моделирует испытания до первых k успехов.

Определение 12.

$$\xi \sim NB(p,\,k), \, ext{если} \,\, \xi = \sum_{i=1}^k \eta_i: \, \forall i \in \{1,\,2,\,\dots,\,k\}: \,\, \eta_i \sim Geom(p)$$
 $\mathbb{P}(\xi=n) = C_{n-1}^{k-1} p^k q^{n-k}$

Утверждение 1.9. Математическое ожидание случайной величины ξ , распределенной по Паскалю, может быть вычислено, как $\mathbb{E}(\xi) = \frac{k}{p}$.

Доказательство. Поскольку математическое ожидание линейно:

$$\mathbb{E}(\xi) = \sum_{i=1}^{k} \mathbb{E}(\xi_i) = \frac{1}{p} \cdot k = \frac{k}{p}$$

2 Ковариация

Определение 13. Пусть ξ и η – случайные величины, тогда ковариацией называется:

$$cov(\xi; \eta) = \mathbb{E}((\xi - \mathbb{E}(\xi))(\eta - \mathbb{E}(\eta)))$$

Теорема 2.1. Для $cov(\xi; \eta)$ выполняются свойства:

1.
$$cov(\xi; \xi) \ge 0$$

2.
$$cov(\xi; \eta) = cov(\eta; \xi)$$

3.
$$cov(\lambda \xi; \eta) = \lambda \cdot cov(\xi; \eta)$$

4.
$$cov(\xi_1 + \xi_2; \eta) = cov(\xi_1; \eta) + cov(\xi_2; \eta)$$

5.
$$cov(\xi; \eta) \leq \mathbb{D}(\xi) \cdot \mathbb{D}(\eta)$$

Теорема 2.2.

$$cov(\xi; \eta) = \mathbb{E}(\xi \cdot \eta) - \mathbb{E}(\xi) \cdot \mathbb{E}(\eta)$$

Доказательство.

$$\begin{split} & \mathbb{E}((\xi - \mathbb{E}(\xi))(\eta - \mathbb{E}(\eta))) = \\ = & \mathbb{E}(\xi \cdot \eta - \xi \mathbb{E}(\eta) - \eta \mathbb{E}(\xi) + \mathbb{E}(\xi) \cdot \mathbb{E}(\eta)) = \\ = & \mathbb{E}(\xi \cdot \eta) - \mathbb{E}(\xi \mathbb{E}(\eta)) - \mathbb{E}(\eta \mathbb{E}(\xi)) + \mathbb{E}(\xi) \cdot \mathbb{E}(\eta) = \\ = & \mathbb{E}(\xi \cdot \eta) - \mathbb{E}(\xi) \cdot \mathbb{E}(\eta) \end{split}$$

Теорема 2.3.

$$\mathbb{D}(\xi + \eta) = \mathbb{D}(\xi) + \mathbb{D}(\eta) + 2 \cdot cov(\xi; \eta)$$

3 Корреляция

Определение 14. Пусть ξ и η – случайные величины: $\mathbb{D}(\xi) \neq 0$, $\mathbb{D}(\eta) \neq 0$, $cov(\xi; \eta)$ определена корректно. Тогда коэффициентом корреляции ξ и η называется:

$$corr(\xi; \eta) = r_{\xi\eta} = \frac{cov(\xi; \eta)}{\sigma(\xi) \cdot \sigma(\eta)}$$

Свойства:

1.
$$|r_{\xi\eta}| \le 1$$

2. $|r_{\xi\eta}| = 1 \iff \exists \, k \ne 0, \, b: \, \eta = k\xi + b \,$ (почти наверное).

4 Мера Жордана

Определение 15. A измеримо по Жордану, если $\mu^{j}(A) = \mu_{j}(A)$, где $\mu^{j}(A) = \inf\{\mu(\delta) : A \subset \delta\}$, $\mu_{j}(A) = \sup\{\mu(\delta) : \delta \subset A\}$.

Определение 16. Пусть $A \subset \Omega$, тогда $\mathbb{P}(x \in A) = \frac{\mu(A)}{\mu(\Omega)}$.

5 Распределение Пуассона

Теорема 5.1 (Теорема Пуассона). Пусть $n \to \infty$, $p \to 0$, $np \to \lambda$, $\lambda = \text{const}$, тогда если ξ – количество успехов в серии испытаний Бернулли, то она распределена по Пуассону:

$$\xi \sim P(\lambda) : \mathbb{P}(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Доказательство.

$$P(\xi = k) = C_n^k p^k q^{n-k} \to \frac{n!}{(n-k)! \cdot k!} \cdot p^k q^{n-k} \to \frac{p^k}{k! \cdot q^k} \cdot \frac{n!}{(n-k)!} \cdot q^n \to \frac{p^k q^n}{k! \cdot q^k} \cdot n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k+1) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \to \frac{p^k q^n n^k}{k! \cdot q^k} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n$$

$$\ln q^n = n \cdot \ln(1-p) \to -np \to -\lambda \Longrightarrow \frac{\lambda^k}{k!} q^n = \frac{\lambda^k}{k!} e^{-\lambda}$$

Теорема 5.2.

$$\lim_{n \to \infty} \sum_{i=0}^{n} \frac{x^{i}}{i!} = e^{x}, \ x \in \mathbb{R}$$

Теорема 5.3. Пусть $\xi \sim P(\lambda)$. Тогда $\mathbb{E}(\xi) = \mathbb{D}(\xi) = \lambda$.

Доказательство.

$$\mathbb{E}(\xi) = \sum_{k=0}^{\infty} k \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{(k-1)!} = e^{-\lambda} \cdot \lambda \sum_{k=0}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = e^{-\lambda} \cdot \lambda \cdot e^{\lambda} = \lambda$$

Лемма 5.4. Пусть $\xi \sim P(\lambda_{\xi}), \ \eta \sim P(\lambda_{\eta}), \ \xi \$ и $\ \eta \$ независимы. Тогда $(\xi + \eta) \sim P(\lambda_{\xi} + \lambda_{\eta}).$ Доказательство.

$$\mathbb{P}(\xi + \eta = n) =$$

$$= \sum_{i=0}^{n} \mathbb{P}(\xi = i) \cdot \mathbb{P}(\eta = n - i) =$$

$$= \sum_{i=0}^{n} \frac{\lambda_{\xi}^{i}}{i!} \cdot e^{-\lambda_{\xi}} \cdot \frac{\lambda_{\eta}^{n-i}}{(n-i)!} \cdot e^{-\lambda_{\eta}} =$$

$$= e^{-(\lambda_{\xi} + \lambda_{\eta})} \sum_{i=0}^{n} \frac{\lambda_{\xi}^{i} \cdot \lambda_{\eta}^{n-i}}{i! \cdot (n-i)!} \cdot \frac{n!}{n!} =$$

$$= \frac{e^{-(\lambda_{\xi} + \lambda_{\eta})}}{n!} \sum_{i=0}^{n} C_{n}^{i} \lambda_{\xi}^{i} \lambda_{\eta}^{n-i} =$$

$$= e^{-(\lambda_{\xi} + \lambda_{\eta})} \cdot \frac{(\lambda_{\xi} + \lambda_{\eta})^{n}}{n!}$$

6 Ветвящиеся процессы

6.1 Цепи Маркова

Определение 17. Последовательность случайных величин $\xi_0,\,\xi_1,\,\ldots\,,\,\xi_n$ называется Цепью Маркова, если

$$\forall n, i_0, i_1, \ldots, i_n : \mathbb{P}(\xi_{n-1} = x_{i_{n-1}}, \ldots, \xi_0 = x_{i_0})$$

верно, что:

$$\mathbb{P}(\xi_n = x_{i_n} | \xi_{n-1} = x_{i_{n-1}}, \dots, \xi_0 = x_{i_0}) = \mathbb{P}(\xi_n = x_{i_n} | \xi_{n-1} = x_{i_{n-1}})$$

Определение 18. Цепь Маркова называется однородной, если:

$$\forall i, j: \ \mathbb{P}(\xi_n = x_j \, | \, \xi_{n-1} = x_i) = p_{i,j}$$
 не зависит от $n.$

Определение 19. Матрица $A = (a_{i,j})$ называется стохастической, если:

$$\forall i, j: a_{i,j} \in [0; 1], \sum_{i} (a_{i,j}) = 1$$

Определение 20. Матрица $\pi = (p_{i,j})$ называется матрицей переходных вероятностей.

Теорема 6.1. Пусть $p^{(0)}=(p_1^{(0)},\,p_2^{(0)},\,\dots,\,p_n^{(0)})$ и $p^{(k)}=(p_1^{(k)},\,p_2^{(k)},\,\dots,\,p_n^{(k)})$ – начальное распределение и распределение на k-ом шаге соответственно вероятностей Марковской цепи, где $p_i^{(k)}=\mathbb{P}(\xi_k=x_i)$. Тогда:

 $p^{(k)} = p^{(0)} \cdot \pi^k$

6.1.1 Классификация состояний Марковских цепей

Определение 21. Состояние x_j достижимо из x_i , если:

$$\exists k: P_{ij}^k = \mathbb{P}(\xi_{m+k} = x_j | \xi_m = x_i) > 0$$

Определение 22. Состояния называются сообщающимися, если они достижимы друг для друга.

Определение 23. Состояние x_i называется несущественным, если существует такое состояние x_i , что x_i достижимо из x_i , но x_i недостижимо из x_i .

Определение 24. Состояние x_i называется существенным, если существует такое состояние x_i , что x_i достижимо из x_i и x_i достижимо из x_i .

Определение 25. Марковская цепь, все состояния которой составляют один класс сообщающихся состояний, называется неразложимой.

Определение 26. Состояние x_i называется возвратным, если вероятность возвращения в это состояние равна 1.

Определение 27. Состояние x_i называется невозвратным, если вероятность возвращения в это состояние не равна 1.

Определение 28. Возвратное состояние x_i называется возвратным положительным, если среднее время возвращения в него конечно.

Определение 29. Возвратное состояние x_i называется возвратным нулевым, если среднее время возвращения в него бесконечно.

Определение 30. Состояние x_i называется периодическим, если НОД $\{k: P_{ii}^{(k)} > 0\} = d > 1$, где d – период состояния.

6.1.2 Эргодичность

Определение 31. Марковская цепь называется эргодической, если:

$$\forall i, j: \exists \lim_{k \to \infty} P_{ij}^{(k)} = p_{ij} > 0, \sum_{i} p_{j} = 1$$

Теорема 6.2 (Критерий эргодичности). Марковская цепь эргодична, если:

$$\exists k: \forall i, j: P_{ij}^{(k)} > 0$$

6.1.3 Процесс Гальтона-Ватсона

Определение 32. Пусть $p_0, p_1, \ldots, p_m: p_m \ge 0; p_0 + p_1 + \ldots + p_m = 1$ – начальное распределение. Пусть для $i \ge 2$ определено:

$$p_i^{*k} = \sum_{i_1+i_2+\ldots+i_k=i} p_{i_1} \cdot p_{i_2} \cdot \ldots \cdot p_{i_k}$$

Процесс Гальтона-Ватсона есть марковская цепь Z(n), $n \in \mathbb{N}_0$ с начальным распределением $\mathbb{P}_0(k) = \mathbb{P}(Z(0) = k)$ и переходными вероятностями:

$$\mathbb{P}_{ij} = \mathbb{P}(Z(n+1) = j \mid Z(n) = i) = \begin{cases} p_j^{*i}, \text{ если } i \geq 1, j \geq 0 \\ \delta_{0j}, \text{ если } i \geq 0, j \geq 0 \end{cases}$$

Если не оговорено иного, $\mathbb{P}(1) = \mathbb{P}(Z(0) = 1) = 1$.

6.2 Тождество Вальда

Теорема 6.3. Пусть $\xi_0, \, \xi_1, \, \ldots$ – независимые одинаково распределенные случайные величины. Пусть τ – случайный момент времени, не зависящий от (ξ_i) . Пусть $S_n = \xi_0 + \xi_1 + \ldots + \xi_n$. Тогда:

$$\mathbb{E}(S_{\tau}) = \mathbb{E}(\xi) \cdot \mathbb{E}(\tau)$$

Доказательство.

$$\sum_{k=1}^{\infty} \mathbb{P}(\tau \ge k) = \sum_{k=1}^{\infty} \sum_{n=1}^{k} \mathbb{P}(\tau = n) = \sum_{n=1}^{\infty} \sum_{k=1}^{n} \mathbb{P}(\tau = n) = \sum_{n=1}^{\infty} n \cdot \mathbb{P}(\tau = n) = \mathbb{E}(\tau)$$

$$\mathbb{E}(S_{\tau}) = \sum_{n=1}^{\infty} \mathbb{E}(S_{\tau}; \tau = n) = \sum_{n=1}^{\infty} \mathbb{E}(\xi_{1} + \xi_{2} \dots + \xi_{n}; \tau = n) = \sum_{n=1}^{\infty} \sum_{k=1}^{n} \mathbb{E}(\xi_{k}; \tau = n) =$$

$$= \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \mathbb{E}(\xi_{k}; \tau = n) = \sum_{k=1}^{\infty} \mathbb{E}(\xi_{k}; \tau \ge k) = \sum_{k=i}^{\infty} \mathbb{E}(\xi_{k}) \cdot \mathbb{E}(\tau \ge k) = \mathbb{E}(\xi) \cdot \mathbb{E}(\tau)$$

7 Производящие функции

Определение 33. Производящей функцией произвольной последовательности (a_n) называется выражение вида:

$$a_0 + a_1 z + a_2 z^2 + \dots = \sum_{i=0}^{\infty} a_i z^i$$

7.1 Операции с производящими функциями

Определение 34. Суммой производящих функций $A(z) = a_0 + a_1 z + a_2 z^2 + \dots$ и $B(z) = b_0 + b_1 z + b_2 z^2 + \dots$ называется производящая функция:

$$A(z) + B(z) = (a_0 + b_0) + (a_1 + b_1)z + (a_2 + b_2)z^2 + \dots$$

Определение 35. Произведением производящих функций $A(z) = a_0 + a_1 z + a_2 z^2 + \dots$ и $B(z) = b_0 + b_1 z + b_2 z^2 + \dots$ называется производящая функция:

$$A(z) \cdot B(z) = a_0b_0 + (a_0b_1 + a_1b_0)z + (a_0b_2 + a_1b_1 + a_2b_0)z^2 + \dots$$

Определение 36. Пусть $A(z) = a_0 + a_1 z + a_2 z^2 + \dots$; $B(t) = b_0 + b_1 t + b_2 t^2 + \dots$; $b_0 = 0$ – производящие функции. Подстановкой производящей функции B в производящую функцию A будет называться производящая функция:

$$A(B(t)) = a_0 + a_1b_1t + (a_1b_2 + a_2b_1^2)t^2 + (a_1b_3 + 2a_2b_1b_2 + a_3b_1^3)t^3 + \dots$$

Теорема 7.1. Пусть $B(t)=b_0+b_1t+b_2t^2+\dots$; $b_0=0$; $b_1\neq 0$ – производящая функция. Тогда существуют единственные такие функции $A(z)=a_0+a_1z+a_2z^2+\dots$; $a_0=0$ и $C(u)=c_0+c_1u+c_2u^2=\dots$; $c_0=0$, что A(B(t))=t и B(C(u))=u. Функция A называется левой обратной, а функция C – правой обратной к функции B.

Доказательство. Рассмотрим левую обратную функцию:

$$A(B(t)) = a_1b_1t + (a_1b_2 + a_2b_1^2)t^2 + (a_1b_3 + 2a_2b_1b_2 + a_3b_1^3)t^3 + \dots = t$$

Чтобы равенство выполнялось, коэффициент при t должен равняться 1, а коэффициенты при $t^n, n \geq 2$ должны равняться 0. Отсюда $a_1b_1=1 \Longrightarrow a_1=\frac{1}{b_1}$. Пусть аналогично определены коэффициенты a_1, a_2, \ldots, a_n . Тогда коэффициент a_{n+1} будет определяться из условия, что многочлен $a_{n+1}b_1^{n+1}+\ldots$ от $a_1, a_2, \ldots, a_n, a_{n+1}$ и $b_1, b_2, \ldots, b_n, b_{n+1}$, являющийся коэффициентом при t^{n+1} , будет равен нулю. Поскольку $b_1 \neq 0$ по условию, получаем уравнение от a_{n+1} с единственным корнем. То есть мы однозначно можем задать такие коэффициенты a_1, a_2, \ldots , чтобы A(B(t))=t.

Доказательство для правой обратной функции аналогично.

Определение 37. Производящая функция называется рациональной, если ее можно представить в виде $\frac{P(x)}{Q(x)}$, где P(x) и Q(x) – многочлены.