

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 130 016 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 05.09.2001 Bulletin 2001/36

(21) Application number: 99971804.2

(22) Date of filing: 10.11.1999

(51) Int CI.7: **C07D 263/22**, C07D 413/12, C07D 417/10, A61K 31/421, A61K 31/435, A61K 31/445, A61K 31/496, A61K 31/541, A61K 31/55, A61K 31/44

(86) International application number: PCT/JP99/06260

(11)

(87) International publication number: WO 00/27830 (18.05.2000 Gazette 2000/20)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 11.11.1998 JP 32013798 27.09.1999 JP 27323099

(71) Applicant: HOKURIKU SEIYAKU CO., LTD. Katsuyama-shi, Fukui 911-0813 (JP)

(72) Inventors:

 KADO, Noriyuki Katsuyama-shi, Fukul 911-0813 (JP) TOKUYAMA, Ryukou
 Katsuyama-shi, Fukui 911-0813 (JP)

 TSUBOUCHI, Masatoshi Katsuyama-shi, Fukui 911-0813 (JP)

TOMITA, Yayoi
 Katsuyama-shi, Fukui 911-0813 (JP)

(74) Representative:
 Sternagel, Fleischer, Godemeyer & Partner
 Patentanwälte
 An den Gärten 7
 51491 Overath (DE)

(54) THIOCARBAMIC ACID DERIVATIVES

(57) Thiocarbamic acid derivatives represented by the following general formula or salts thereof which are useful as antibacterial agents:

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; and R², R³, and R⁴ independently represent hydrogen atom, a halogen atom, an alkyl group which may be substituted, an alkogyl group which may be substituted, an alkanoyl group which may be substituted, an alkanoyl group which may be substituted, a cycloalkyloxy group which has a heteroatom as a ring constituting atom and which may be substituted, or a saturated heterocyclic group which may be substituted; or any two of R², R³, and R⁴ may bind to each other to form, together with the benzene ring, a condensed hydrocarbon ring which may be substituted.

Description

Technical Field

5 [0001] The present invention relates to novel thiocarbamic acid derivatives or salts thereof which are useful as medicaments, particularly as antibacterial agents.

Background Art

10

20

30

[0002] As compounds having the 3-aryl-2-oxooxazolidine structure which are analogous to the compounds according to the present invention, Japanese Patent Unexamined Publication No. (Sho) 60-8277, Journal of Medicinal Chemistry, Vol. 39, p.673 (1996) and the like disclose N-[(3-aryl-2-oxooxazolidin-5-yl)methyl]acetamide derivatives; Current Pharmaceutical Design, Vol. 2, p.175 (1996), Journal of Medicinal Chemistry, Vol. 32, p.1673 (1989) and the like disclose 3-aryl-5-hydroxymethyl-2-oxooxazolidine derivatives, 3-aryl-5-halogenomethyl-2-oxooxzolidine derivatives and the like; and Japanese Patent Unexamined Publication No. (Hei) 9-316073 and the like disclose N-(3-heteroaryl-2-oxooxazolidin-5-yl)methylthioacetamide derivatives, N-(3-heteroaryl-2-oxooxazolidin-5-yl)methyl-N'-methylthiourea derivatives and the like. These compounds are described to have antibacterial activities against Gram-positive bacteria. However, the antibacterial activities of these compounds are insufficient, and development of more excellent antibacterial agents has been desired.

[0003] Various antibacterial agents such as antibiotics and synthetic antibacterial agents, each having different mechanism of action, have been clinically used as therapeutic agents for infectious diseases. Upon the use of these antibacterial agents, appearance of multiple drug-resistant bacteria including bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) has become a worldwide problem. In patients having an underlying disease and being subjected to chemotherapy, those being subjected to administration of an immunosuppressive agent in organ transplantation, and those suffering from AIDS or another disease as so-called immunocompromized hosts, increase in opportunistic infection has been recognized, and development of chemotherapy for diseases caused by atypical acid-fast microorganism has especially desired for which only a few effective antibacterial - agents are available. Moreover, need of chemotherapy of infectious diseases caused by Mycobacterium avium complex (Mycobacterium avium, Mycobacterium intracellulare) among atypical acid-fast microorganisms have become a serious problem. The object of the present invention is to provide compounds which have excellent antibacterial activity against clinically isolated strains and atypical acid-fast microorganisms including multiple drug-resistant bacteria as well as type bacteria.

Disclosure of the Invention

35 [0004] The inventors of the present invention made intensive studies to achieve the aforementioned object. As a result, they found that novel thiocarbamic acid derivatives represented by the following general formula or salts thereof have excellent antibacterial activity against clinically isolated strains and atypical acid-fast microorganisms including multiple drug-resistant bacteria as well as type bacteria. The present invention was achieved on the basis of the above findings.

[0005] The present invention thus relates to novel thiocarbamic acid derivatives represented by the following general formula (I) or salts thereof:

50

45

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; and R², R³ and R⁴ independently represent hydrogen atom, a halogen atom, an alkyl group which may be substituted, an alkoxyl group which may be substituted, an amino group which may be substituted, an alkanoyl group which may be substituted, a cycloalkyloxy group which has a heteroatom as a ring constituting atom and which may be substituted, or a saturated heterocyclic group which may be substituted; or any two of R², R³ and R⁴ may bind to each other to form, together with the benzene ring, a condensed hydrocarbon ring which may be substituted.

[0006] According to the second embodiment of the present invention, there are provided novel thiocarbamic acid derivatives represented by the following general formula (II) or salts thereof:

wherein R⁵ and R⁶ independently represent hydrogen atom, or a halogen atom; and symbol "a" represents an integer of from 0 to 2; and R¹ has the same meaning as that defined above.

[0007] According to the third embodiment of the present invention, there are provided novel thiocarbamic acid derivatives represented by the following general formula (III) or salts thereof:

$$R^7$$
 (CH₂)_b-N N R^5 O H (III)

wherein R⁷ represents an alkyl group which may be substituted, an amino group which may be substituted, or an alkoxyl group which may be substituted; and symbol "b" represents an integer of from 1 to 4; and R¹, R⁵ and R⁶ have the same meanings as those defined above.

[0008] According to the forth embodiment of the present invention, there are provided novel thiocarbamic acid derivatives represented by the following general formula (IV) or salts thereof:

$$R^{8} X - (CH_{2})_{d} Y$$

$$(CH_{2})_{f} R^{5}$$

$$R^{5} O$$

$$(CH_{2})_{f} R^{5}$$

$$R^{5} O$$

$$(CH_{2})_{f} R^{5}$$

$$R^{5} O$$

$$(CH_{2})_{f} R^{5}$$

$$(CH_{2})_{f} R^{5}$$

$$(CH_{2})_{f} R^{5}$$

$$(CH_{2})_{f} R^{5}$$

35

40

45

50

5

10

15

20

25

30

wherein R⁸ represents an alkyl group which may be substituted, a cycloalkyl group which may be substituted, an alkenyl group which may be substituted, an alkyl group which may be substituted, an alkyl group which may be substituted, an alkyl group which may be substituted, an amino group which may be substituted, a saturated heterocyclic group which may be substituted, an aryl group which may be substituted, or an aralkyl group which may be substituted; Y represents CH or nitrogen atom; X represents NH or single bond; symbol "d" represents an integer of from 0 to 3; symbols "e" and "f" independently represent an integer of from 1 to 3; and R¹, R⁵ and R⁶ have the same meanings as those defined above.

[0009] According to another aspect of the present invention, there is provided a medicament which comprises as an active ingredient the aforementioned thiocarbamic acid derivative or the salt thereof. The medicament provided by the present invention can be suitably used, for example, as an antibacterial agent.

[0010] According to a further aspect, there are provided a use of the aforementioned thiocarbamic acid derivative or the salt thereof for the manufacture of the aforementioned medicament; and a method for preventive and/or therapeutic treatment of infectious diseases, which comprises the step of administering a preventively and/or therapeutically effective amount of the aforementioned thiocarbamic acid derivative or the salt thereof to a mammal including a human.

Best Mode for Carrying Out the Invention

[0011] Specific explanations of the novel thiocarbamic acid derivatives represented by the aforementioned general formulas (I) to (IV) of the present invention will be given below. The compounds represented by the aforementioned general formulas (II) to (IV) are characterized in that any two of R², R³ and R⁴ are independently hydrogen atom or a halogen atom in the aforementioned general formula (I). However, the scope of the present invention is not limited to the compounds represented by the aforementioned general formulas (II) to (IV), and it should be understood that any compounds which have, as any two of R², R³ and R⁴, substituents other than hydrogen atom or a halogen atom among

those defined in the aforementioned general formula (I) fall within the scope of the present invention.

10

15

20

25

30

40

[0012] In the aforementioned general formulas (I) to (IV) according to the present invention, the alkyl group represented by R¹, R², R³, R⁴, R² or R³ includes a straight or branched chain alkyl group, or cyclic alkyl group or an alkyl group as a combination thereof having from 1 to 6 carbon atoms, preferably a straight or branched chain alkyl group. Examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group and the like. The cycloalkyl group represented by R¹ or R³ includes a cycloalkyl group having from 3 to 6 carbon atoms. Examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like. The halogen atom represented by R², R³, R⁴, R⁵ or R⁵ includes fluorine atom, chlorine atom, bromine atom, and iodine atom. The alkoxyl group represented by R², R³, R⁴, R⁵ or R⁵ includes a straight or branched chain alkyl group having from 1 to 6 carbon atoms. Examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, n-hexyloxygroup and the like.

[0013] In the aforementioned general formulas (I) and (IV) according to the present invention, the alkanoyl group represented by R², R³ or R⁴ includes, for example, formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, hexanoyl group, heptanoyl group and the like. The cycloalkyloxy group represented by R², R³ or R⁴ which has a heteroatom as a ring constituting atom includes, for example, aziridinyloxy group, azetidinyloxy group, pyrrolidinyloxy group, piperidyloxy group, hexahydro-1H-azepin-1-yloxy group, oxetanyloxy group, tetrahydrofuranyloxy group, tetrahydropyranyloxy group, thietanyloxy group, tetrahydrothiophenyloxy group, tetrahydrothiophenyloxy group, thiazolidinyloxy group, piperazinyloxy group, morpholinyloxy group, thiomorpholinyloxy group, 1,1-dioxidothiomorpholinyloxy group, hexahydro-1H-1,4-diazepin-1-yloxy group, azabicyclo[3.3.0]octanyloxy group, 3,7-diazabicyclo[3.3.0]octanyloxy group, azetidinyl group, pyrrolidinyl group, oxazolidinyl group, thiazolidinyl group, piperidyl group, piperazinyl group, oxetanyl group, tetrahydrofuranyl group, tetrahydropyranyl group, thietanyl group, tetrahydrothiopyranyl group, tetrahydrothiopyranyl group, tetrahydrothiopyranyl group, tetrahydrothiopyranyl group, hexahydro-1H-azepin-1-yl group, hexahydro-1H-1,4-diazepin-1-yl group, 3-azabicyclo[3.3.0]octanyl group, 3,7-diazabicyclo[3.3.0]octanyl group and the like.

[0014] In the aforementioned general formula (I) according to the present invention, when any two of R², R³ and R⁴ bind to each other to form a condensed hydrocarbon ring together with the benzene ring, the condensed ring group includes, for example, indan-5-yl group, 1-indanon-5-yl group, inden-5-yl group, inden-6-yl group, 1-indanon-6-yl group, 2-indanon-5-yl group, 1,3-indandion-5-yl group, naphthalen-2-yl group, 1(2H)-naphthalenon-6-yl group, 1,2,3,4-tetrahydro-1-naphthalenon-6-yl group, 1,2,3,4-tetrahydro-1-naphthalenon-6-yl group, 1,2,3,4-tetrahydro-2-naphthalenon-6-yl group, 1,2-naphthoquinon-6-yl group, 1,2-naphthoquinon-7-yl group, 1,2-naphthoquinon-7-yl group, 1,2-naphthoquinon-6-yl group, 1,2-naphtho

[0015] In the aforementioned general formula (IV) according to the present invention, the alkenyl group represented by R8 includes a straight or branched chain alkenyl group having from 2 to 4 carbon atoms, for example, vinyl group, propenyl group, 2-methylpropenyl group, butenyl group, butadienyl group and the like. The alkynyl group includes an alkynyl group having from 2 to 4 carbon atoms, for example, ethynyl group, propynyl group, butynyl group and the like. The alkylthio group represented by R8 includes an alkylthio group which comprises a straight or branched chain alkyl group having from 1 to 6 carbon atoms, for example, methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, n-pentylthio group, isopentylthio group, neopentylthio group, n-hexylthio group and the like. The aryl group represented by R8 means an aromatic ring group which encompasses ring systems containing two or more rings optionally having a heteroatom as a ring constituting atom. Examples include phenyl group, pyridin-2-yl group, pyridin-3-yl group, pyridin-4-yl group, pyrazin-2-yl group, pyrimidin-2-yl group, pyrimidin-4-yl group, pyrimidin-5-yl group, furan-2-yl group, furan-3-yl group, thiophen-2-yl group, thiophen-3-yl group, pyrrol-1-yl group, pyrrol-2-yl group, pyrrol-3-yl group, pyrazol-1-yl group, pyrazol-3-yl group, pyrazol-4-yl group, imidazol-1-yl group, imidazol-2-yl group, imidazol-4-yl group, 1H-1,2,3-triazol-1-yl group, 1H-1,2,3-triazol-4-yl group, 1H-1,2,4-triazol-1-yl group, 1H-1,2,4-triazol-3-yl group, 1H-1,2,4-triazol-5-yl group, tetrazol-1-yl group, tetrazol-5-yl group, oxazol-2-yl group, oxazol-4-yl group, oxazol-5-yl group, thiazol-2-yl group, thiazol-4-yl group, thiazol-5-yl group, naphthalen-1-yl group, naphthalen-2-yl group, benzofuran-2-yl group, benzofuran-3-yl group, benzofuran-4-yl group, benzofuran-5-yl group, benzofuran-6-yl group, benzofuran-7-yl group, benzofb]thiophen-2-yl group, benzo[b]thiophen-3-yl group, benzo[b]thiophen-4-yl group, benzo[b]thiophen-5-yl group, benzo[b]thiophen-6-yl group, benzo[b]thiophen-7-yl group, indol-1-yl group, indol-2-yl group, indol-3-yl group, indol-4-yl group, indol-5-yl group, indol-6-yl group, indol-7-yl group, benzimidazol-1-yl group, benzimidazol-2-yl group, benzimidazol-4-yl group, benzimidazol-5-yl group, benzotriazol-1-yl group, benzotriazol-4-yl group, benzotriazol-5-yl group, benzoxazol-2-yl

group, benzoxazol-4-yl group, benzoxazol-5-yl group, benzoxazol-6-yl group, benzoxazol-7-yl group, benzothiazol-2-yl group, benzothiazol-4-yl group, benzothiazol-5-yl group, benzothiazol-6-yl group, benzothiazol-7-yl group and the like. The aralkyl group represented by R8 means an alkyl group having from 1 to 4 carbon atoms which is substituted with the aforementioned anyl group at any position. Examples include benzyl group, phenethyl group, phenylpropyl group, phenylbutyl group, triphenylmethyl group, (pyridin-2-yl)methyl group, (pyrazin-2-yl)methyl group, (pyrimidin-2-yl)methyl group, (furan-2-yl)methyl group, (thiophen-2-yl)methyl group, (pyrrol-1-yl)methyl group, (pyrazol-1-yl)methyl group, (imidazol-1-yl)methyl group, (1H-1,2,3-triazol-1-yl)methyl group, (1H-1,2,4-triazol-1-yl)methyl group, (tetrazoi-5-vi)methyl group, (oxazoi-2-vi)methyl group, (thiazoi-2-vi)methyl group, (naphthalen-1-vi)methyl group, (benzofuran-2-yl)methyl group, (benzo[b]thiophen-2-yl)methyl group, (indol-1-yl)methyl group, (benzimidazol-1-yl)methyl group, (benzotriazol-1-yl)methyl group, (benzoxazol-2-yl)methyl group, (benzothiazol-2-yl)methyl group and the like. [0016] In the present specification, a substituting/binding position of "cycloalkyloxy group which has a heteroatom as a ring constituting atom", "saturated heterocyclic group", "condensed hydrocarbon ring formed together with the benzene ring", "aryl group" and "aralkyl group" may be at any position on a substitutable/bindable atom among ringconsituting elements, otherwise a substituting/binding position is specifically limited as some examples given above. [0017] In the present specification, when certain functional groups are defined as "which may be substituted," the number and kind of substituents are not particularly limited. When two or more substituents exist, they may be the same or different. Such substituents include, for example, alkyl groups, cycloalkyl groups, hydroxyl group, mercapto group, alkoxyl groups, alkylthio groups, halogen atoms, amino group, alkylamino groups, dialkylamino groups, cyano group, cyanoalkyl groups, nitro group, formyl group, alkoxycarbonyl groups, alkoxycarbonylalkyl groups, carboxyalkyl groups, hydroxyalkanoyl groups, alkoxyalkoxyl groups, alkoxyalkanoyl groups, benzyloxycarbonyl group, benzyloxyalkanoyl groups, alkylaminoalkoxyl groups, dialkylaminoalkoxyl groups, alkylaminoalkyl groups, dialkylaminoalkyl groups, halogenoalkyl groups, oxo group, hydroxyimino group, alkoxyimino groups, aryloxyimino groups, carboxyl group, alkanoyl groups, alkanoylalkyl groups, carbamoyl group, aryl groups, aralkyl groups, phthalimido group, phthalimidoalkyl groups, alkylsulfonylamino groups, alkylcarbonylamino groups, alkylthiocarbonyl groups, alkenylthiocarbonyl groups, alkoxythiocarbonyl groups, alkoxythiocarbonylalkyl groups, thiocarbamoyl group, Nalkylthiocarbamoyl groups, N,N-dialkylthiocarbamoyl groups, azetidinylthiocarbonyl group, pyrrolidinylthiocarbonyl group, piperazinylthiocarbonyl group, morpholinylthiocarbonyl group, thiomorpholinylthiocarbonyl group, alkylthiothiocarbonyl groups, arylthiocarbonyl groups, aralkylthiocarbonyl groups, alkylthiocarbonylamino groups, alkylthiocarbonylaminoalkyl groups, alkoxythiocarbonylamino groups, alkoxythiocarbonylaminoalkyl groups, N-alkylthiocarbamoylamino groups, N,N-dialkylthiocarbamoylamino groups, alkylthiothiocarbonylamino groups, alkylthiothiocarbonylaminoalkyl groups, arylthiocarbonylamino groups, aralkylthiocarbonylamino groups, thiocarbamoylalkyl groups, Nalkylthiocarbamoylalkyl groups, N,N-dialkylcarbamoylalkyl groups, alkanoylaminoalkyl groups, alkoxythiocarbonylaminoalkyl groups, alkylsulfonylaminoalkyl groups, alkanoylalkylthiocarbonyl groups, alkylthiocarbonylalkylthiocarbonyl groups, thiocarbamoylaminoalkyl groups, N-alkylthiocarbamoylaminoalkyl groups, N,N-dialkylthiocarbamoylaminoalkyl groups, alkanoylalkylaminothiocarbonyl groups, alkylthiocarbonylalkylaminothiocarbonyl groups, alkylthiocarbonylalkyl groups, alkylthiothiocarbonylalkyl groups, alkoxythiocarbonylalkyl groups, thiocarbamoylamino group, cycloalkylthiocarbonyl groups, cycloalkylthiocarbonylamino groups, alkynylthiocarbonyl groups, alkynylthiocarbonylamino groups, thiocarbamoylalkylaminothiocarbonyl groups, N-alkylthiocarbamoylalkylaminothiocarbonyl groups, N,N-dialkylthiocarbamoylalkylaminothiocarbonyl groups and the like.

10

15

20

25

30

40

45

50

[0018] The thiocarbamic acid derivatives of the present invention have one asymmetric carbon atom in the oxazolidine ring, and may further have one or more asymmetric carbons depending on type of a substituent. The asymmetric carbons existing in the compounds of the present invention may be independently in the (R)- or (S)-configuration, and stereoisomers such as optical isomers and diastereoisomers may exist on the basis of one or more asymmetric carbons. Any stereoisomers in pure forms, any mixure of the stereoisomers, racemates and the like fall within the scope of the present invention.

[0019] The thiocarbamic acid derivatives of the present invention can be converted into salts, preferably pharmacologically acceptable salts, if desired; and the salts generated can also be converted into compounds in free forms. The salts of the compounds of the present invention are preferably the pharmacologically acceptable salts. As the acid-additive salts, there can be used, for example, salts with mineral acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, hydroiodic acid, and phosphoric acid; and salts with organic acids such as acetic acid, propionic acid, butyric acid, formic acid, valeric acid, maleic acid, fumaric acid, citric acid, oxalic acid, malic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, trifluoroacetic acid, benzoic acid, p-toluenesulfonic acid, mandelic acid, 10-camphorsulfonic acid, tartaric acid, lactic acid, stearic acid, nicotinic acid, gluconic acid, 5-oxotetrahydrofuran-2-carboxylic acid, and 2-hydroxyglutaric acid. As the alkali-additive salts, there can be used, for example, inorganic alkali salts such as sodium salt, potassium salt, calcium salt, magnesium salt, and ammonium salt; and salts with organic bases such as ethanolamine, N,N-dialkylethanolamine, triethanolamine, piperidine, piperazine, morpholine, and thiomorpholine.

[0020] The thiocarbamic acid derivatives of the present invention or the salts thereof may exist as any crystal form

depending on manufacturing conditions, or may exist as any hydrate or solvate. These crystal forms, hydrates, and solvates, and mixtures thereof fall within the scope of the present invention.

[0021] Preferred compounds of the present invention include the following compounds; however, the present invention is not limited to these examples. The abbreviations in the tables have the following meanings: Me: methyl group; Et: ethyl group; n-Pr: n-propyl group; i-Pr: isopropyl group; n-Bu: n-butyl group; i-Bu: isobutyl group; tert-Bu: tert-butyl group; n-Pent: n-pentyl group; n-Hex: n-hexyl group; Ph: phenyl group; Bn: benzyl group; Ms: mesyl group; and, Boc: tert-butoxycarbonyl group.

	No.	R	No.	R
10	1		2	· > -
15	3	Me()	4	Ma — F
	5	Et-	6	Et — F
20	7	n-Pr-	8	n-Pr———
25	9	LPr —	10	i-Pr ————————————————————————————————————
	11	n-Bu—	12	n-Bu————————————————————————————————————
30	13	MeO —	14	MeO —
35	15	EtO-	16	E10-
	17	n-PrO-	18	n-PrO-
40	19	LPrO-C	20	I-Pro
45	21	n-BuO—	22	n-BuO————————————————————————————————————
	23	Me	24	Me
50	25	Me ———	26	F
	27	F-S-	28	o Me

R-N H O Me

No.	R	No.	R
29	Me F	30	
31	Et F	32	n-Pr
33	n-Pr F	34	i-Pr
35	i.pr F	36	n-Bu
37	n-Bu F	38	MeO-(CH ₂) ₂ -0-
39	MeO-(CH ₂) ₂ -O-	40	Me N
41	Me Me	42	
43	\\\-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	44	
45		46	
47		48	_\-_\-
49	○	50	\$_\
51	\$\\n-_\-	52	s
53	s	54	s N-

No.	R	No.	R
55	0=\$_N-_	56	0=S\\N-__
57	\$___	58	
59	HN_N-{_}-	60	HN
61	Me-\\N-\\\	62	Me — N — F
63	Et N	64	
65	n-Pr-_N-_}-	66	n-Pr-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
67	n-Bu—\N-\	68	n-Bu—N———————————————————————————————————
69	MeO-_N-\	70	MeO N
71	MeO-(CH3)2-O-N-	72	MeO-(CH ₂) ₂ -0-\N-\F
73	Me O — N — ()—	74	MeO — N — F
75	EtO-_N-\	76	EtO—N———————————————————————————————————
77	n-PrO-N-N-	78	n-PrO-\\N-\\F
79	I-PrON	80	⊩ProN
81	n-BuO — N—	82	n-BuO—N———————————————————————————————————

No.	R	No.	R
83	MaQ-(CH ₂) ₂ -0-\\N-\\\	84	MeO-(CH ₂) ₂ -O-N-F
85	Me -N N	86	Me-N_N-
87	Et-N N-	88	Et-N N-
89	n-Pr-N N-	90	n-Pr-N N-S
91	I-Pr-N N-	92	i-Pr-N N-S-
93	n-Bu-N_N-	94	n-Bu-N N-
95	0 MeO N————	96	MeO N N
97	0 N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	98	Eto N N
99	MeO-CH ₂ -N-N-	100	MeO-CH ₂ -N-N-F
101	MeO-(CH ₂) ₂ N N	102	MeO-(CH ₂) ₂ N N-
103	0 MeO N-CH ₂ -N N-C	104	O MeO N—CH ₂ —N N—F
105	0 CH2-N N-	106	CH ₂ -NN-
107	0 MeO N (CH ₂) ₂ -N N (CH ₂) ₂ -N	108	0 MeO (CH ₂) ₂ -N N-(F
109	0 Et0 N-(CH ₂) ₂ -N N-(CH ₂) ₂ -N	110	O EtO N-(CH ₂) ₂ -N N-

10		;
15		,
20		
25		
30		
35		
40		
45		
50		

No.	R	No.	R
111	O MeO N—(CH ₂) ₃ -N N—	112	O MeO (CH ₂) ₃ -N N-
113	0 ENO N N N	114	O (CH ₂) ₃ -N N - F
115	0 MeO N-(CH ₂) ₄ -N N-(CH ₂)	116	O MeO N-(CH ₂) ₄ -N N-(F
117	0 Et0 N—(CH ₂) ₄ -N N—(118	0 Et0 N-(CH ₂) ₄ -NNN- F
119	Me-NO	120	Me - N _ O _ F
121	Et-N	122	Et-NO
123	n-Pr-N O-	124	n-Pr-N -0-
125	n-Bu-N 0-	126	n-Bu-N O-
127	0 MeO N -0-(128	MeO N O F
129	0 N O N O	130	EtO P
131	HO-CH ₂ -N-O-C	132	HO-CH ₂ -N-O
133	HO-(CH ₂) ₂ -N-O-(-)-	134	HO-(CH ₂) ₂ -N-O-F
135	Ma O - CH ₂ - N - O - C	136	MaO-CH ₂ -N-O-F
137	MeO-(CH ₂) ₂ -II-N-O-(CH ₂) ₂ -II-N	138	MeO-(CH ₂) ₂ -N-O
139	0 EHO - CH ₂ -N - O - C	140	0 EKO CH ₂ -N O- F

No.	R	No.	R
141	0 EtO —(CH ₂) ₂ -N —0———	142	0 Et0 CH ₂) ₂ -N 0-F
143	EtO (CH ³)3-N 0-(CH ³)3-N	144	O (CH ₂) ₃ -N O F
145	Me-N >	146	Me-N O-S
147	0 MeO N \>-0 - \{_}-	148	MeO N O F
149	MeO-(CH ₂) ₂ -N-O-(-)-	150	MeO-(CH ₂) ₂ —N O-F
151	O (CH ₂) ₂ -N -O-	152	O EtO (CH ₂) ₂ -N O-O-F
153		154	
155	•	156	
157		158	
159	0 Me N-(2-N)N-(2)	160	Me CH ₂ -N N-
161	0 Et	162	
163	O Me CH ₂) ₂ -N N-	164	O Me (CH ₂) ₂ -N N-
165	0 E1 N-(CH ₂) ₂ -N N-(CH ₂)	166	O E1 N-(CH ₂) ₂ -NN-(F
167	0 Me (CH ₂) ₃ −N N− (N	168	O Me CH ₂) ₃ -N N-F
169	0 Et N-(CH ₂) ₃ -N N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N-(N	170	O (CH ₂) ₃ -N N-

	R-N H	O Me
No.	R	No.
171	O Mo (CH ₂) ₄ -N N-	172

5

		<u> </u>	
No.	R	No.	R
171	0 Me CH ₂) ₄ -N N-	172	O Me (CH ₂) ₄ -N N- N- F
173	O (CH ₂) ₄ -N N-(CH ₂) ₄ -N	174	0 Et
175	Me N (CH ₂) ₂ -N N -	176	Me N (CH ₂) ₂ -N N F
177	0 H (CH ₂) ₃ −N N −	178	Ma H_(CH ₂) ₃ -N N F
179	Ms-N-(CH2)3-N-N-	180	Ms-N-(CH ₂) ₃ -N-N
181	N-(CH ₂) ₂ -N N-	182	N-(CH ₂) ₂ -N N-
183	NC-(CH ₂)2-N	184	NC-(CH ₂) ₂ -N N-
185	H ₂ N-11-N-N-	186	H ₂ N — N — N — N — N — N — N — N — N — N —
187	H ₂ N N N N	188	H ₂ N N N N
189	Me N N N	190	Me N N N F
191	S N N N	192	Et. N N N
193	n-Pr N N N	194	n-Pr N N N
195	Me N N N	196	Me N N N

R-N I	H.	
	^N ¥ °	Me

[No.	R	No.	R
	197	Me-N-N-N-	198	Ma N N N N N N N N N N N N N N N N N N N
	199	Et N N N	200	Et N N N N
·	201		202	
	203		204	
	205		206	
	207		208	
!	209		210	
	211	Me N N	212	Me N N
	213	Et N N	214	
	215	n-Pr N N-	216	n-Pr N N-
	217	S N N	218	I-PT N N-
	219	* N_N-()-	220	

R-N H O Me

No.	R	No.	R
221	Me N N N	222	Me N N N
223	Me S	224	Me - S N N N
225	Ph N—N—	226	Ph N N-S
227	Bn N N	228	Bn N N-
229		230	
231		232	
233	S N N N	234	
235	Meo N N	236	MeO N N N
237	E40 N N-	238	Eto N N-
239	n-Pro N-N-	240	n-Pro N N—
241	i-pro N N N	242	LPTO N N F
243	Mes N—N—	244	Mes N N
245	EIS N N-	246	E13 N N-

5		
	No.	
10	247	O Me
15	249	Me
,,	251	S
20	253	H ₂ N
25	255	Mo.
30	257	H ₂ N
	259	Me.
35	261	H ₂ N
40	263	Mə
45	265	Me
İ	267	Et
50	269	Me

No.	R	No.	R
247	O CH2 N N	248	O CH ₂ N N N F
249	O (CH ₂)2 N N-(D-	250	0 Me (CH ₂) ₂ N N N F
251	S CH2 N N-C	252	S S N N N N N N N N N N N N N N N N N N
253	H ₂ N H ₂ N N N	254	H ₂ N CH ₂ -N N F
255	Mo J J CH2 N N	256	Me-N-H2-N
257	H ₂ N CH ₂) ₂ N N	258	H ₂ N CH ₂) ₂ N N F
259	Me N N CH ₂) ₂ N N	260	Mo H (CH3)2 N N
261	S H ₂ N H (CH ₂) ₃ N N	262	H ₂ N N (CH ₂) ₃ N N
263	Mo N CH2)3 - N N	264	Me N (CH2)3 N
265	Me N CH2 N N N	266	Me H ₂ N N F
267	S N CH2 N N	268	Et NCH2-NN-N-
269	Me N (CH ₂) ₂ N N	270	Mo N (CH ₂) ₂ N N
271	Me CH ₂) ₃ N N —	272	Me CH ₂) ₃ N N

R-N H O Me

5

No.	R	No.	Ř
273	Mac N CH2 N N	274	Med N CH2 N N
275	S CH ₂ -N N	276	EtO H2-N F
277	MeO H (CH ₂) ₂ N N—	278	MeO N (CH ₂) ₂ N N F
279	MeO H (CH ₂) ₃ N N	280	MeO H (CH ₂) ₃ N H
281	Mes H2-N-N-	282	Mes CH ₂ N N
283	MoS N (CH ₂)2-N N	284	MoS H (CH ₂) ₂ N N
285	Mes N (CH2)3 N N	286	Mes N (CH ₂)s N F
287	No CH2- H N N N N	288	Me CH2-N N
289	Me CH32-N N N	290	Mo (CH ₂) ₂ H
291	MeO CH3 / N	292	MeO CH2 T
293	Mo CH2 N N	294	Me CH2-N N N N
295	Mo (CH ₃)2- N N N — N	296	Me (CH ₂) ₂ -N N N F
297	H ₂ N CH ₂ N N N	298	H ₂ N CH ₂ N N F

R-N H O Me

		<u> </u>	
No.	R	No.	R
299	Me H CH2 H N N - C	300	No H CH2 H CH2 H
301	H ₂ N N—	302	H ₂ N N-
303	Me · H	304	Me N F
305	Et. N. N.	306	Et. N
307	n-Pr. N	308	n-Pr-N-N
309	Me N N	310	Me N F
311	Me N N	312	Me N Et
313	Et N N	314	S Et N-Et
315	₩	316	∇N
317	Me N-N-	318	Me N-
319	Et N-C	320	E1 N-
321	n-Pr N-C	322	n-Pr N-
323	i-Pr	324	i-Pr

R-N H N Me

·		<u> </u>	
No.	R	No.	R
325	Me	326	Me Thomas No.
327		328	
329	+Pr \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	330	1-Pr
331		332	
333		334	Me N N N N N N N N N N N N N N N N N N N
335	Me H N	336	Me N N N N N N N N N N N N N N N N N N N
337	MeO THOUSE	338	Mea H N F
339		340	EtO N F
341	HPTO THE N-C	342	LPTO THE N-F
343	MeS N N	344	MeS N N F
345	E13 Y N N	346	EIS N N
347	1-PTS \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	348	LP/S T N-S-
349	Me CH ₂ N—	350	Me CH ₂
351	Me-N-CH2-N-	352	Me-N CH ₂ N-

R-N N NO NO

No.	R	No.	R
353	MeO CH ₂ N	354	MeO CH ₂ N
355	MeS CH ₂ N	356	Mes CH ₂ N-
357	Me (CH ₂) ₂ N	358	Ma (CH ₂) ₂ N
359	Me-N-(CH ₂) ₂ \ N-\(\)	360	Me (CH ₂) ₂
361	MeQ (CH ₂) ₂ N	362	MeO (CH ₂) ₂ N
363	MeS (CH ₂) ₂ N	364	MeS (GH ₂) ₂ N
365	May (CH ₂) ₃ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	366	Me (CH ₂) ₃ N
367	Me N (CH ₂) ₃ N	368	Me-N (CH ₂) ₃ N-
369	Me O (CH ₂) ₃ N N	370	MeO (CH ₂) ₃ N
371	MeS (CH ₂) ₃ N	372	MeS (CH ₂) ₃ N
373	Me N CH2 N	374	Me H CH ₂
375	Ma N CH2 V	376	Me-H-CH2-CH2-F
377	Me O N CH2 N	378	Mao H2 N-CH2
379	Mes CH ₂ CH ₂	380	MoS H CH2 N
381	3 N ₀ (CH ₂) ₂ N	382	Me N (CH ₂) ₂

R-N H Me

No.	R	No.	R
383	Me \ \	384	Me y CH ₂) ₂ CH ₂) ₂
385	MeO H (CH ₂) ₂ \ N - \ N	386	S HeO H (CH ₂) ₂ N F
387	Mas H (CH ₂) ₂ N N	388	MaS (CH ₂) ₂
389	8 Me N (CH ₂) ₃ N N	390	Me N (CH ₂) ₃ N F
391	Me. N. CH2/3	392	Me N CH2)3
393	MeO TO MECHANIST CHANGE	394	Me O H (CH ₂)3
395	Nes Nes N-(CH ₂)	396	Mos (CH ₂) ₂
397	Me No	398	Me N P
399	H ₂ N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	400	H ₂ N H ₂ N F
401	MeO H	402	Meo N-
403	Mes N	404	Mes N F
405	M• → H ← N ← ← N ← ← N ← ← N ← ← N ← ← N ← ← N ← ← N	406	May N-
407	H ₂ N Y N N N N N N N N N N N N N N N N N N	408	
409	MeO THON N	410	MeO N N N
411	Mes Thomas N	412	MeS THOUSE N-F

	R-N Me			
		· · · · · · · · · · · · · · · · · · ·		
No.	R	No.	R	
413	Me T N-C	414	Me T H	
415	MeQ THE COLUMN	416	MeO N	
417	HaN THE COLOR	418	H ₂ N	
419	Mes N	420	MeS S	
421	8 Me N N N	422	Ma N N F	
423	Meo N N	424	MeO N N	
425	H ₂ N N N N	426	H ₂ N N N	
427	Mes N N	428	Mes N—N—	
429	\$ (\)	430		
431	\$ N-Q-	432		
433		434		
435		436		
437		438		
439		440		

R-N H

·

No.	R	No.	· R
441	MeHN—	442	MeHN————
443	Mdo, N————————————————————————————————————	444	Me Et F
445	Et.)N—()—	446	Et F
447		448	S N— Me
449	·	450	
451	Boc-N N-	452	Boc-NN-N-
453	s ————————————————————————————————————	454	5 N-C _{C1}

	Q.
	La
s N-	NIH
_/	N, O,
F [']	'R'
	e

No.	R¹	No.	R ¹
455	Et	456	n-Pr
457	i-Pr	458	n-Bu
459	i–Bu	460	tert-Bu
461	n-Pent	462	n-Hex
463	\neg	464	\rightarrow
465		466	

No.	R ¹	No.	· R1
467	Et	468	n-Pr

No.	R	No.	R
469	s	470	s

[0022] The thiocarbamic acid derivatives of the present invention which are represented by the aforementioned general formulas (I) to (IV) can be prepared, for example, by the following method. However, the preparation methods of the aforementioned compounds are not limited thereto. In the following preparation methods, specific explanations will be given as for the compounds represented by the aforementioned general formula (I), and it is obvious that these preparation methods include the compounds represented by the aforementioned general formulas (II) to (IV). In addition, specific and detailed explanations will be given in the examples of the present specification as for preparations of typical compounds of the thiocarbamic acid derivatives of the present invention. Accordingly, persons skilled in the art can readily prepare the compounds of the present invention which are encompassed within the aforementioned general formula (I) by referring to the following general explanation and specific explanation in the examples, appropriately choosing starting materials, reagents, and reaction conditions, and if necessary, suitably modifying or altering these methods.

[0023] The first preparation method of the compounds of the present invention include a method which involves the use of a compound represented by the general formula (V) as a starting material and synthesis of the thiocarbamic acid derivative represented by the general formula (I) via a novel compound represented by the general formula (VI):

$$\begin{array}{c|c}
R^4 & O \\
R^2 & N \\
R^3 & (V)
\end{array}$$

$$\begin{array}{c|c}
R^4 & O \\
R^2 & N \\
R^3 & (VI)
\end{array}$$

$$\begin{array}{c|c}
R^4 & O \\
R^2 & N \\
R^3 & (VI)
\end{array}$$

$$\begin{array}{c|c}
R^4 & O \\
R^2 & N \\
R^3 & (VI)
\end{array}$$

$$\begin{array}{c|c}
R^4 & O \\
R^2 & N \\
R^3 & (VI)
\end{array}$$

$$\begin{array}{c|c} R^{2}-OH \text{ (VII)} \\ \hline R^{2} & R^{3} \\ \hline \end{array}$$

wherein R1, R2, R3 and R4 have the same meanings as those defined above.

[0024] In this method, the compound represented by the general formula (VI) can be prepared by reacting the compound represented by the general formula (V) with carbon disulfide in the presence of a base such as triethylamine in a solvent such as tetrahydrofuran, and reacting the resulting dithiocarbamate with ethyl chlorocarbonate, copper sulfate, iron nitrate, iron sulfate, zinc sulfide or other reagent at a temperature ranging from ice-cooling temperature to 200°C. As other preparation methods, the compound represented by the general formula (VI) can directly be synthesized by a preparation method which comprises the step of reacting the compound represented by the general formula (V) with thiophosgene in the presence of a base such as triethylamine in a solvent such as tetrahydrofuran, and by a method disclosed in Organic Synthesis Collective Volume, Vol. 1, p.447.

[0025] Then, the compound represented by the general formula (I) can be prepared by reacting the compound represented by the general formula (VII) in the presence or absence of a base without solvent or in a solvent.

[0026] As the solvent used in the aforementioned reaction, any solvents may be used so far that they do not inhibit the reaction. Examples include aprotic polar solvents such as acetone, acetonitrile, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, tetramethylene sulfone, tetramethylene sulfoxide, and hexamethylphosphoric triamide; etheric solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran; ester solvents such as methyl acetate and ethyl acetate; aromatic hydrocarbon solvents such as benzene and toluene; organic base solvents such as pyridine, picoline, lutidine, and collidine; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, and chloroform; and mixtures thereof. Examples of the base include inorganic bases such as lithium, sodium, sodium hydride, potassium, potassium tert-butoxide, potassium carbonate, sodium carbonate, and sodium hydrogencarbonate; and organic bases such as triethylamine and diisopropylethylamine. The reaction is carried out at a temperature ranging from an ice-cooling temperature to 200°C.

[0027] The second preparation method of the compounds of the present invention includes a method comprising the step of reacting the compound represented by the general formula (V) with an appropriate O-alkyl chlorothiocarbonate in the presence of a base such as triethylamine in a solvent such as tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent to obtain the compound of the general formula (I). [0028] In the third preparation method of the compounds of the present invention, a compound represented by the general formula (I), wherein any one of R², R³ and R⁴ is a cycloalkyloxy group having a heteroatom as a ring constituting atom or a saturated heterocyclic group and wherein said group has a protected nitrogen atom, may be subjected to deprotection of the nitrogen to prepare the corresponding deprotected compound of the general formula (I).

[0029] The deprotection can be carried out by various methods depending on the type of a protecting group for the nitrogen atom. For example, when the protecting group is an amide-type protecting group such as an alkanoyl group and an arylcarbonyl group, the deprotection may be carried out by hydrolysis using an acid or a base to prepared the desired compound. The hydrolysis of the amide may be carried out by a known method. In acidic hydrolysis, an acid such as hydrochloric acid, sulfuric acid, and trifluoroacetic acid may be used, and in basic hydrolysis, a base such as sodium hydroxide and potassium hydroxide may be used. These acids or bases may be used as aqueous solutions. The deprotection may be carried out in an organic solvent including alcoholic solvents such as methanol, ethanol, n-butanol, sec-butanol, and tert-butanol; etheric solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran;

and ester solvents such as methyl acetate and ethyl acetate, or in a water-containing organic solvent at a temperature ranging from room temperature to a refluxing temperature of a solvent. When the protecting group is an urethane-type protecting group such as a lower alkoxycarbonyl group, the deprotection can be carried out by treatment with an acid such as hydrochloric acid, hydrobromic acid, and trifluoroacetic acid without a solvent or in a solvent such as acetic acid, ethyl acetate, 1,4-dioxane, water, methanol, ethanol, and a mixture thereof at a temperature ranging from an ice-cooling temperature to 200°C to prepare the desired compound.

[0030] In the forth preparation method of the present invention, the compound of the general formula (I) obtained in the third preparation method wherein any one of R², R³ and R⁴ is a cycloalkyloxy group having a heteroatom as a ring constituting atom or a saturated heterocyclic group and wherein said group has a deprotected nitrogen atom can be subjected to appropriate alkylation, acylation, urethane-introduction, urea-introduction, thioacylation, thiourea-introduction, thiocarbamation or other reaction; or the compound can be subjected to an appropriate reaction such as acylation and urethane-introduction, and then the resulting carbonyl group can be converted into a thiocarbonyl group by using the Lawesson's reagent or other reagent, to obtain the corresponding compound of general formula (I) wherein the nitrogen atom is substituted.

[0031] The introduction of a substituent into the nitrogen atom can be carried out by various methods depending upon the kind of the substituent. For example, for alkylation, alkylation using an alkyl halide, alkyl sulfonate, or other reagent, or the Michael addition using an acrylic acid ester or other reagent can be carried out in the presence or absence of a base without a solvent or in a solvent to obtain the corresponding compound of the general formula (I). Alternatively, acylation or urethane-introduction using an acyl halide and the like; urea-introduction using sodium cyanate and the like; thioacylation using a thioacyl halide and the like; thiourea-introduction using an alkylisothiocyanate and the like; or thiocarbamation using an O-alkyl chlorothiocarbonate and the like can be carried out in the presence of a base without a solvent or in a solvent, and if necessary, conversion of the carbonyl group of the compound having a nitrogen atom substituted with an acyl group or the like into thiocarbonyl group can be carried out using the Lawesson's reagent without a solvent or in a solvent to obtain the corresponding compound of the general formula (I).

[0032] As for the solvents used in these reactions, any solvents may be used so far that they do not inhibit the reactions. Examples include water; alcoholic solvents such as methanol and ethanol; aprotic polar solvents such as acetone, acetonitrile, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, tetramethylene sulfone, tetramethylene sulfoxide, and hexamethylphosphoric triamide; etheric solvents such as diethyl ether, diisopropyl ether, and tetrahydrofuran; ester solvents such as methyl acetate and ethyl acetate; aromatic hydrocarbon solvents such as benzene and toluene; organic acid solvents such as acetic acid; organic base solvents such as pyridine, picoline, lutidine, and collidine; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, and chloroform; and mixtures thereof. The base includes, for example, inorganic bases such as lithium, sodium, potassium, potassium tert-butoxide, potassium carbonate, sodium carbonate, and sodium hydrogencarbonate; and organic bases such as triethylamine and diisopropylethylamine. The reaction is carried out at a temperature ranging from an ice-cooling temperature to 200°C.

[0033] Some of the compounds represented by the general formulas (V) which are used as starting materials for the preparation methods of the compounds of the present invention are known compounds, which are disclosed in Japanese Patent Unexamined Publication No.(Hei) 8-73455, Journal of Medicinal Chemistry, Vol. 39, p. 673 and 680 (1996) and the like, and can be prepared according to the method described therein. Several novel compounds can be prepared, for example, by the following method, and the details of the preparation will be described in reference examples:

wherein Boc represents tert-butoxycarbonyl group; Z represents benzyloxycarbonyl group; n-Bu represents n-butyl group; Ms represents mesyl group; Ph represents phenyl group; and R², R³ and R⁴ have the same meanings as those defined above.

[0034] In process 1, the compound of the general formula (IX) can be obtained by reducing the nitro group of the compound of the general formula (VIII) by an appropriate reducing method, for example, a hydrogenation reduction which is carried out by using a catalyst such as platinum oxide, Raney nickel, and palladium-carbon in a solvent such as ethyl acetate and methanol at a temperature ranging from room temperature to 50°C under hydrogen pressure ranging from normal pressure to 50 atm; a reduction which is carried out by using iron powder and hydrochloric acid, acetic acid or another reagent; or other reducing method.

[0035] In process 2, the compound of the general formula (X) can be obtained by subjecting the amino group of the compound of the general formula (IX) to appropriate urethane-introduction, for example, using di-tert-butyl dicarbonate in an appropriate organic solvent such as methanol and tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent; or using benzyloxycarbonyl chloride in the presence of a base such as triethylamine, potassium carbonate, sodium carbonate, and sodium hydrogencarbonate in a solvent such as water; an organic solvent including acetone, methanol, and tetrahydrofuran; and a mixed solvent thereof at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent; then treating the resulting compound with a base such as n-butyllithium in an appropriate aprotic organic solvent such as tetrahydrofuran and N,N-dimethylformamide at a temperature ranging from -78°C to room temperature, and then reacting the resulting compound with glycidyl butylate.

[0036] In process 3, the compound of the general formula (XI) can be obtained by reacting the compound of the general formula (X) with methanesulfonyl chloride in the presence of a base such as triethylamine in an appropriate organic solvent such as dichloromethane and tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent.

[0037] In process 4, the compound of the general formula (XII) can be obtained by reacting the compound of the general formula (XI) with sodium azide in an appropriate organic solvent such as tetrahydrofuran and N,N-dimethyl-formamide at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent.

[0038] In the compound of the general formula (XI), when any one of R², R³ and R⁴ has a protected nitrogen atom in the substituent, deprotection may be carried out in accordance with the third preparation method of the compound of the present invention after the azidation in process 4, and then if necessary, appropriate alkylation, acylation, ure-thane-introduction, thioacylation, thiourea-introduction, thiocarbamation or other reaction may be carried out in accordance with the forth preparation method to obtain the respective corresponding compounds of the general formula (XII). [0039] In the compound of the general formula (XI), when any one of R², R³ and R⁴ is thiomorpholinyl group, the sulfur atom may be subjected to appropriate oxidation for conversion into S-oxide or S,S-dioxide, and then the corre-

sponding compound represented by the general formula (XII) can be prepared according to the process 4.

[0040] The oxidation of the sulfur atom can be carried out by various methods depending on target compounds. The conversion into S-oxide group can be carried out, for example, by using an oxidizing agent such as chromic acid, hydrogen peroxide, metachloroperbenzoic acid, sodium metaperiodate, and potassium metaperiodate in a solvent such as water, an organic solvent including tetrahydrofuran, methanol, acetonitrile, acetone, and dichloromethane, and a mixed solvent thereof at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent. The conversion into S,S-dioxide group can be carried out, for example, by using an oxidizing agent such as chromic acid, hydrogen peroxide, metachloroperbenzoic acid, osmium tetraoxide, and ruthenium tetraoxide in a solvent such as water, an organic solvent including tetrahydrofuran, methanol, acetone, and dichloromethane, and a mixed solvent thereof at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent.

[0041] In process 5, the compound represented by the general formula (V) can be obtained by reducing the azide group of the compound of the general formula (XII) by an appropriate reducing method, for example, a hydrogenation reduction which is carried out by using a catalyst such as platinum oxide and palladium carbon in a solvent such as methanol at a temperature ranging from room temperature to 50°C under hydrogen pressure ranging from normal pressure to 50 atom; a reducing method which is carried out by using triphenylphosphine and water in a solvent such as tetrahydrofuran at a temperature ranging from an ice-cooling temperature to a refluxing temperature of a solvent or other reducing method.

[0042] The medicament of the present invention is characterized to comprise the thiocarbamic acid derivative represented by the aforementioned general formulas (I) to (IV) or a salt thereof as an active ingredient. As the active ingredient of the medicament of the present invention, a substance selected from the group consisting of the aforementioned compound in free form and a pharmacologically acceptable salt thereof, and any crystal form thereof, a solvate thereof, and a hydrate thereof can be used, and two or more substances may be used in combination. As the medicament of the present invention, the aforementioned substance may be used *per se*. In general, the medicament is desirably provided in a form of a pharmaceutical composition which comprises the aforementioned substance as an active ingredient and one or more pharmaceutical additives.

[0043] The form of the pharmaceutical composition is not particularly limited, and the composition can be prepared, for example, as an oral preparation in the forms of capsules, tablets, fine granules, granules, powders, syrups and the like, or as a parenteral preparation in the forms of injections, suppositories, eye drops, eye ointments, ear drops, nasal drops, transdermal and transmucosal agents, inhalations, dermatologic preparation and the like. These preparations can be manufactured according to conventional methods after the addition of pharmacologically and pharmaceutically acceptable additives. For oral preparations and suppositories, pharmaceutical ingredients such as excipients such as lactose, D-mannitol, corn starch, and crystalline cellulose; disintegrators such as carboxymethylcellulose and carboxymethylcellulose calcium; binders such as hydroxypropyl cellulose, hydroxypropyl methylcellulose, and polyvinylpyrrolidone; lubricants such as magnesium stearate and talc; coating agents such as hydroxypropyl methylcellulose, sucrose, and titanium oxide; plasticizers such as poly(ethylene glycol); bases such as poly(ethylene glycol) and hard fat and the like may be used. For injections, eye drop, ear drop, or nasal drop, pharmaceutical ingredients including solubilizers or solubilizing aids which may constitute aqueous dosage forms or forms dissolved upon use such as distilled water for injection, physiological saline, and propylene glycol; pH modifiers such as inorganic or organic acids or bases; isotonicities such as sodium chloride, glucose, and glycerin; stabilizers and the like may be used. For eye ointments and dermatologic preparations, pharmaceutical ingredients which are suitable for ointments, creams, and patches such as white vaseline, macrogols, glycerin, liquid paraffin, and cotton cloth may be used.

[0044] The medicament of the present invention can be administered, for example, as an antibacterial agent for therapeutic or preventive treatment of infectious diseases of mammals including humans. A dose of the medicament of the present invention is not particularly limited, and an appropriate dose can be chosen depending on the kind of pathogenic bacteria, the age and body weight of a patient, severity of a disease and the like. For example, a daily dose is usually from about 10 to 2,000 mg for oral administration, and from about 1 to 1,000 mg for parenteral administration for an adult. The aforementioned dose can be administered once a day or several times a day as divided portions. However, it is desirable that the dose is suitably increased or decreased depending on purpose of therapeutic or preventive treatment, a body part suffering from infection, the kind of pathogenic bacteria, the age or symptom of a patient and the like.

Examples

10

15

20

30

40

50

55

[0045] The present invention will be explained by referring to Reference examples and Working Examples. However, the scope of the present invention is not limited to these examples. The abbreviations in the tables have the following meanings: Me: methyl group; Et: ethyl group; n-Pr: n-propyl group; i-Pr: i-propyl group; n-Bu: n-butyl group; Boc: tert-butoxycarbonyl group; Z: benzyloxycarbonyl group; Ms: mesyl group; cyc-Hex: cyclohexyl group; Ph: phenyl group.

Reference example 1

[0046] N-tert-Butoxycarbonyl-4-piperidinol

[0047] To a suspension of 50.0 g of 4-piperidinol in 250 ml of dried tetrahydrofuran, 125 ml of di-tert-butyl dicarbonate was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 30 minutes. After the reaction was completed, the solvent was evaporated under reduced pressure to obtain 120.5 g of a pale yellow liquid.

NMR spectrum (CDCl₃) δ ppm:

1.46(9H,s),1.47-1.50(2H,m),1.81-1.87(2H,m),3.01-3.10(2H,m),3.73-3.87(3H,m)

10 IR spectrum v (liq.) cm⁻¹: 1698,3684

Mass spectrum (m/z): 201(M+)

[0048] The compound of Reference example 2 was obtained in the same manner as in Reference example 1.

Reference example 2

15

[0049] N-tert-Butoxycarbonyl-3-azetidinol

Appearance: yellow liquid

NMR spectrum (DMSO-d₆) δ ppm :

1.37(9H,s),3.55-3.60(2H,m),3.95-4.00(2H,m),4.30-4.40(1H,m),5.50(1H,d,J=6Hz)

P IR spectrum v (liq.) cm⁻¹: 1678,3416

Reference example 3

[0050] N-tert-Butoxycarbonyl-4-methoxypiperidine

[0051] To a suspension of 8.77 g of 60% sodium hydride in 300 ml of dried N,N-dimethylformamide, a solution of 49.0 g of N-tert-butoxycarbonyl-4-piperidinol in 190 ml of dried N,N-dimethylformamide was added under stirring at room temperature. Then, the mixture was added dropwise with 30.4 ml of methyl iodide, and stirred at the same temperature for 5 hours. The reaction solution was poured into ice water, and extracted with ethyl acetate. The extract was washed with saturated brine and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:2 to 1:1) to obtain 44.1 g of a colorless liquid.

NMR spectrum (CDCl₃) δ ppm :

1.45-1.55(2H,m),1.46(9H,s),1.80-1.90(2H,m),3.05-3.15(2H,m),3.30-3.40(1H,m),3.35(3H, s),3.70-3.80(2H,m)

IR spectrum v (liq.) cm⁻¹: 1698

5 Mass spectrum (m/z): 215 (M+)

Reference example 4

[0052] N-tert-Butoxycarbonyl-3-(2-methoxyethoxy)azetidine

40 [0053] To a suspension of 0.25 g of 60% sodium hydride in 5 ml of dried N,N-dimethylformamide, a solution of 1.00 g of N-tert-butoxycarbonyl-3-azetidinol in 3 ml of dried N,N-dimethylformamide was added under stirring at room temperature. The mixture was stirred at room temperature for 30 minutes, then added dropwise with a solution of 0.98 g of 2-methoxyethyl methanesulfonate in 2 ml of dried N,N-dimethylformamide, and stirred at the same temperature for 4 hours. The reaction solution was poured into ice water, and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:3) to obtain 0.67 g of a colorless liquid.

NMR spectrum (DMSO-d₆) δ ppm:

1.37(9H,s),3.25(3H,s),3.41-3.45(2H,m),3.46-3.49(2H,m),3.64(2H,dd,J=9,4Hz),3.98(2H,dd,J=9,6.5Hz),4.21-4.26(1H,m)

IR spectrum v (liq.) cm⁻¹: 1706

Reference example 5

50

[0054] 4-Methoxypiperidine hydrochloride

[0055] To 220ml of 9 % hydrogen chloride ethyl acetate solution, a solution of 43.9 g of N-tert-butoxycarbonyl-4-methoxypiperidine in 220 ml of ethyl acetate was added under ice-cooling and with stirring, and the mixture was stirred under ice-cooling for 2.5 hours. After the reaction, the precipitated crystals were collected by filtration to obtain 29.1 g

of colorless crystals.

NMR spectrum (CDCl₃) δ ppm:

1.95-2.05(2H,m),2.10-2.20(2H,m),3.15-3.30(4H,m),3.33(3H,s),3.50-3.60(1H,m)

IR spectrum v (liq.) cm⁻¹: 3448

5 Mass spectrum (m/z): 115(M+)

[0056] The compound of Reference example 6 was obtained in the same manner as in Reference example 5.

Reference example 6

10 [0057] 3-(2-Methoxyethoxy)azetidine hydrochloride

Appearance : pale yellow liquid NMR spectrum (DMSO-d₆) δ ppm :

3.26(3H,s),3.43(2H,t,J=4.5Hz),3.54(2H,t,J=4.5Hz),3.75-3.80(2H,m),4.05-4.10(2H,m),4. 35-4.40(1H,m)

IR spectrum ν (liq.) cm⁻¹: 3436

15 Mass spectrum (m/z): 131(M+)

Reference example 7

[0058] 3-Fluoro-4-(4-methoxypiperidin-1-yl)nitrobenzene

[0059] To a solution of 15.0 g of 3,4-difluoronitrobenzene and 41 ml of N,N-diisopropylethylamine in 150 ml of dried acetonitrile, 15.8 g of 4-methoxypiperidine hydrochloride was added, and the mixture was heated under reflux for 5 hours. The solvent was evaporated under reduced pressure, the residue was added with water and 10% aqueous sodium hydroxide, and the resulting alkaline mixture was extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 24.1 g of a yellowish brown liquid.

NMR spectrum (DMSO-d₆) δ ppm:

1.54-1.62(2H,m), 1.92-2.00(2H,m), 3.08-3.16(2H,m), 3.28(3H,s), 3.38-3.46(1H,m), 3.49-3.5 7(2H,m), 7.16(1H,t,J=8.5Hz), 7.95(1H,dd,J=14,3Hz), 7.97(1H,dd,J=8.5,3Hz)

IR spectrum v (liq.) cm⁻¹: 1336,1518

30 Mass spectrum (m/z): 254(M+)

[0060] The compounds of Reference examples 8 through 18 were obtained in the same manner as in Reference example 7.

35

20

40

45

50

	Reference		Physical properties
	example		[recrystallization solvent]
5			yellow needles[i-PrOH]
		540	mp,62~63℃
	8	ESO NO2	Elemental analysis for C ₁₈ H ₁₇ FN ₂ O ₃
		F [']	Calcd. %: C,58.20;H,6.39;N,10.44
			Found %: C,58.10;H,6.60;N,10.45
10			yellow crystals[i-Pr2O-n-Heptane]
Í	1	MBO-(CH ₂) ₂ -O-N-N-NO ₂	mp,58.5~59.5°C
	9 .		Elemental analysis for C ₁₄ H ₁₉ FN ₂ O ₄
		·	Calcd. %: C,56.37;H,6.42;N,9.39
15			Found %: C,56.36;H,6.54;N,9.34
1			yellowish brown prisms[i-Pr ₂ O]
			mp,68~68.5°C
'	10	Me-N N-NO2	Elemental analysis for C11H14FN3O2
		f'	Calcd. %: C,55.22;H,5.90;N,17.56
20			Found %: C,55.24;H,5.71;N,17.63
			yellow liquid
			NMR(DMSO-d ₆) & ppm:3.27(3H,s),3.47(2
			H,t,J=4.5Hz),3.56(2H,t,J=4.5Hz),3.95-
25	11	MeO-(CH ₂) ₂ -0-(N-)-NO ₂	4.00(2H,m),4.35-4.40(2H,m),4.45-4.50(
	11		1H,m),6.57(1H,t,J=9Hz),7.89(1H,dd,J)
			=13,2.5Hz),7.93(1H,dd,J=9,2.5Hz)
			IR ν (liq.) cm ⁻¹ :1326,1532
20			MS(m/z):270(M+)
30			yellowish brown liquid
	{		$ NMR(DMSO-d_6) \delta ppm:1.50-1.60(4H,m), $
		N	1.70-1.85(4H,m),3.55-3.65(4H,m),6.96(
	12		1H,t,J=9Hz),7.88(1H,dd,J=16,3Hz),7.9
35		F .	0(1H,dd,J=9,3Hz)
			IR ν (liq.) cm ⁻¹ :1324,1522
	<u></u>		MS(m/z):238(M+)
	ļ		yellowish brown liquid
40	ĺ	(NMR(DMSO-d ₆) & ppm:0.95(3H,d,J=6Hz
40	13	Me—NO ₂),1.20-1.35(2H,m),1.55-1.65(1H,m),1.6
			5-1.80(2H,m),2.85-3.00(2H,m),3.60-3.7
			5(2H,m),7.13(1H,t,J=9Hz),7.93(1H,dd,
	1	}	J=13.5,2.5Hz),7.97(1H,dd,J=9,2.5Hz)
45			IR ν (liq.) cm ⁻¹ :1334,1512
			MS(m/z):238(M+)

_	Reference	·	Physical properties
5	example		[recrystallization solvent]
			yellowish brown liquid
			NMR(CDCl ₃) δ ppm:0.93(3H,t,J=7.5Hz),1.
			25-1.45(5H,m),1.82(2H,d,J=5.5Hz),2.86(
10		Et N-\(\bigcap_NO_2\)	2H,t,J=12Hz), $3.71(2H,d,J=12Hz)$, $6.91(1)$
	14	۔ سے ب	H,t,J=9Hz),7.88(1H,dd,J=13.5,2.5Hz),7.
		F	96(1H,dd,J=9,2.5Hz)
			IR ν (liq.) cm ⁻¹ :1338,1518
			MS(m/z):252(M+)
15			yellow needles[i-PrOH]
:		Me /==	mp.95~96°C
	15	N-NO ₂	Elemental analysis for C ₈ H ₉ FN ₂ O ₂
	10		Calcd. %: C,52.17;H,4.93;N,15.21
20			Found %: C,51.93;H,4.72;N,15.21
20			yellow needles[n-Heptane]
	16	Et N-NO2	mp.40~41°C
			Elemental analysis for C9H11FN2O2
		Me	Calcd. %: C,54.54;H,5.59;N,14.13
25		F	Found %: C,54.26;H,5.76;N,14.19
			yellow prisms[n-Heptane]
	[Et 🥽	mp,49.5~50.5°C
	17	N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, -,
20	11	Et'	Elemental analysis for C ₁₀ H ₁₃ FN ₂ O ₂
30		F	Calcd. %: C,56.60;H,6.17;N,13.20
			Found %: C,56.41;H,6.01;N,13.06
	18		yellow needles[i-PrOH]
		N-NO2	mp,125~125.5°C
35			Elemental analysis for C ₁₃ H ₁₅ FN ₂ O ₄
			Calcd. %: C,55.32;H,5.36;N,9.92
			Found %: C,55.21;H,5.18;N,9.88

Reference example 19

40

45

50

[0061] 3-Fluoro-4-(2-methoxyethoxy)nitrobenzene

[0062] To a suspension of 4.20 g of 60 % sodium hydride in 100 ml of dried tetrahydrofuran, a solution of 7.90 g of ethylene glycol monomethyl ether in 50 ml of dried tetrahydrofuran was added dropwise under ice-cooling and with stirring, and the mixture was stirred at room temperature for 15 minutes. The reaction mixture was added dropwise with a solution of 15.0 g of 3,4-difluoronitrobenzene in 50 ml of dried tetrahydrofuran under ice-cooling and with stirring, and stirred at the same temperature for 30 minutes. The reaction solution was added with ice water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was

evaporated under reduced pressure. The residue was washed with n-hexane to obtain 19.0 g of yellow crystals. Recrystallization from disopropyl ether gave yellow needles having the melting point of from 62.5 to 63°C.

Elemental analysis for C ₉ H ₁₀ FNO ₄						
Calculated % C, 50.24; H, 4.68; N, 6.51					6.51	
Found %	C,	50.18;	Н,	4.54;	N,	6.50

[0063] The compounds of Reference examples 20 through 21 were obtained in the same manner as in Reference example 19.

Reference example		Physical properties [recrystallization solvent]
20	Boc-N -0-NO ₂	pale yellow columns[i-PrOH] mp,91.5~93°C Elemental analysis for C ₁₆ H ₂₁ FN ₂ O ₅ Calcd. %: C,56.46;H,6.22;N,8.23 Found %: C,56.36;H,6.34;N,8.29
21	Boc-NO2	pale yellow needles [EtOH] mp,117~117.5°C Elemental analysis for C ₁₄ H ₁₇ FN ₂ O ₅ Calcd. %: C,53.84;H,5.49;N,8.97 Found %: C,53.73;H,5.44;N,8.97

Reference example 22

[0064] 3-Fluoro-4-(4-methylpiperazin-1-yl)aniline

[0065] A suspension of 19.0 g of 3-fluoro-4-(4-methylpiperazin-1-yl)nitrobenzene and 0.190 g of platinum(IV) oxide in 190 ml of methanol was stirred at a hydrogen pressure of 2 atm at ordinary temperature for 2 hours. The catalyst was filtered off, and then the filtrate was concentrated under reduced pressure to obtain 17.0 g of dark brown crystals. Recrystallization from diisopropyl ether gave dark brown prisms having the melting point of from 87 to 88°C.

Elemental analysis for C ₁₁ H ₁₆ FN ₃						
Calculated %	C,	63.13;	Н,	7.71;	N,	20.08
Found %	C,	63.10;	Н,	7.46;	N,	20.08

[0066] The compounds of Reference examples 23 through 36 were obtained in the same manner as in Reference example 22.

	Reference		Physical properties
	example		[recrystallization solvent]
5			black liquid NMR(DMSO-de) & ppm:1.49-1.59(2H,m),
10	23	MeO N− NH₂	1.86-1.94(2H,m),2.59-2.67(2H,m),2.97 -3.04(2H,m),3.22-3.29(1H,m),3.25(3H, s),4.83(2H,br-s),6.29(1H,dd,J=8.5,2.5 Hz),6.33(1H,dd,J=14.5,2.5Hz),6.75(1 H,t,J=8.5Hz) IR ν (liq.) cm ⁻¹ :3360,3448 MS(m/z):224(M+)
15			blackish brown liquid NMR(DMSO-d ₆) δ ppm:1.11(3H,t,J=7.5H 2),1.50-1.60(2H,m),1.85-1.95(2H,m),2.
20	24	EtO—N—NH ₂	60-2.70(2H,m),2.95-3.05(2H,m),3.30-3. 40(1H,m),3.47(2H,q,J=7.5Hz),4.83(2H,br-s),6.30(1H,dd,J=8.5,2.5Hz),6.30(1H,dd,J=14,2.5Hz),6.75(1H,dd,J=9.5,8.5Hz)
25			IR ν (liq.) cm ⁻¹ :3360,3456 MS(m/z):238(M*)
30	25	MeO-(CH ₂₎₂ -O-NH ₂	brown liquid NMR(DMSO-d ₆) & ppm:1.50-1.60(2H,m), 1.85-1.95(2H,m),2.60-2.65(2H,m),2.95- 3.05(2H,m),3.26(3H,s),3.35-3.40(1H,m),3.44(2H,t,J=5Hz),3.54(2H,t,J=5Hz),4 .83(2H,br-s),6.28(1H,dd,J=8.5,2.5Hz), 6.32(1H,dd,J=14.5,2.5Hz),6.75(1H,t,J
35			=8.5Hz) IR ν (liq.) cm ⁻¹ :3364,3464 MS(m/z):268(M+)
40	26	N-\ST-NH ₂	blackish purple liquid NMR(DMSO-d ₆) δ ppm:1.50-1.65(4H,m), 1.65-1.75(4H,m),3.07(4H,t,J=6Hz),4.7 0(2H,br-s),6.26(1H,dd,J=8.5,2.5Hz),6. 31(1H,dd,J=14.5,2.5Hz),6.71(1H,t,J=8 .5Hz)
45			IR ν (liq.) cm ⁻¹ :3224,3356 MS(m/z):208(M ⁺)

	Reference		Physical properties
	example		[recrystallization solvent]
5		·	black liquid NMR(DMSO-de) δ ppm:0.93(3H,d,J=6.5 Hz),1.20-1.30(2H,m),1.35-1.50(1H,m),
10	27	Ma-N-NH2	1.60-1.70(2H,m),2.45-2.60(2H,m),3.00-3.10(2H,m),4.81(2H,br-s),6.28(1H,dd,J=9,2.5Hz),6.32(1H,dd,J=14.5,2.5Hz),6.74(1H,t,J=9Hz) IR ν (liq.) cm ⁻¹ :3224,3356,3464 MS(m/z):208(M+)
15			blackish brown liquid
			NMR(CDCl ₃) & ppm:0.91(3H,t,J=7.5Hz), 1.15-1.30(1H,m),1.32(2H,quin,J=7.5H z),1.38(1H,dd,J=12,4Hz),1.43(1H,dd,J
20	28	Et N-NH ₂	=12,4Hz),1.76(2H,d,J=4Hz),2.56(2H,t d,J=11.5,2Hz),3.26(2H,d,J=11.5Hz),3. 34(2H,br-s),6.39(1H,dd,J=9,2.5Hz),6.4 2(1H,dd,J=13.5,2.5Hz),6.82(1H,t,J=9 Hz)
25	! !		IR ν (liq.) cm ⁻¹ :3352,3464
25			MS(m/z):222(M+)
30	29	M6Q-(CH ₂) ₂ -0-\N-\F	black liquid NMR(DMSO-d ₆) ô ppm:3.25(3H,s),3.40-3 .45(4H,m),3.50(2H,t,J=4.5Hz),3.90-4.0 0(2H,m),4.25-4.35(1H,m),4.61(2H,br-s),6.25-6.35(3H,m) IR \(\nu\) (liq.) cm ⁻¹ :3360,3430 MS(m/z):240(M+)
			blackish brown liquid
40	30	MeO-(CH ₂) ₂ -0-NH ₂	NMR(CDCl ₃) δ ppm:3.44(3H,s),3.49(2H, br-s),3.71(2H,t,J=5Hz),4.10(2H,t,J=5Hz),6.30-6.40(1H,m),6.45(1H,dd,J=12.5,2.5Hz),6.84(1H,t,J=8.5Hz) IR ν (liq.) cm ⁻¹ :3368,3460
			MS(m/z):185(M+)

ſ	Reference		Physical properties
	example		[recrystallization solvent]
5	example		pale green crystals
9			NMR(DMSO-d ₆) δ ppm:2.58(6H,s),4.79(2
		Me	H,br-s),6.30(1H,dd,J=8.5,2.5Hz),6.33(
	31	Ma Hn2	1H,dd,J=14,2.5Hz),6.73(1H,t,J=8.5Hz)
		Me F	IR ν (KBr) cm ⁻¹ :3328,3456
10			MS(m/z):154(M+)
			blackish purple liquid
		Me 🥽	NMR(DMSO-d ₆) δ ppm:0.95(3H,t,J=7.5
15	00	N-()-NH ₂	Hz),2.57(3H,s),2.88(2H,q,J=7.5Hz),4.8
15	32	Et'	2(2H,br-s),6.29(1H,dd,J=9,2.5Hz),6.32
		F	(1H,dd,J=16,2.5Hz),6.75(1H,t,J=9Hz)
			IR ν (liq.) cm ⁻¹ :3224,3348
			MS(m/z):168(M+)
20 .		Et N—NH ₂	grayish brown crystals
٠			NMR(DMSO-d ₆) δ ppm:0.89(6H,t,J=7Hz
	33),2.91(4H,q,J=7Hz),4.89(2H,br-s),6.25-
			6.35(2H,m),6.78(1H,t,J=9Hz) IR ν (KBr) cm ⁻¹ :3208,3332
25			MS(m/z):182(M+)
			dark brown liquid
			NMR(DMSO-d ₆) δ ppm:1.40(9H,s),1.45-1
	ļ	·	.55(2H,m),1.75-1.85(2H,m),3.05-3.20(2
		Boc-N NH ₂	H,m),3.55-3.70(2H,m),4.05-4.15(1H,m)
30	34		,4.90(2H,br-s),6.29(1H,ddd,J=8.5,2.5,1
	34	₽	Hz),6.38(1H,dd,J=13.5,2.5Hz),6.84(1H
		1	,t,J=8.5Hz)
			IR ν (liq.) cm ⁻¹ :1682,3368
35	}		MS(m/z):310(M+)
			yellowish brown prisms[i-Pr2O]
		Boc-N O-NH	mp,85.5~86°C
	35	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Elemental analysis for C ₁₄ H ₁₉ FN ₂ O ₃
) F	Calcd. %: C,59.56;H,6.78;N,9.92
40			Found %: C,59.43;H,7.06;N,9.89
			dark brown needles[i-PrOH]
			mp,113.5~114°C
	36	F NH ₂	Elemental analysis for C ₁₈ H ₁₇ FN ₂ O ₂
45			Calcd. %: C,61.89;H,6.79;N,11.10
			Found %: C,61.72;H,6.55;N,11.14

Reference example 37

50

55

[0067] N-Benzyloxycarbonyl-4-(thiomorpholin-4-yl)aniline

[0068] To a mixture of a solution of 19.0 g of 4-(thiomorpholin-4-yl)aniline in 190 ml of 10% aqueous sodium carbonate and 190 ml of acetone, 21.0 ml of benzyloxycarbonyl chloride was added dropwise under ice-cooling and with stirring. The resulting mixture was stirred at room temperature for 30 minutes, and then the precipitated crystals were collected by filtration, and washed with diisopropyl ether to obtain 25.5 g of pale brown crystals. Recrystallization from a mixture of ethyl acetate-diisopropyl ether gave colorless needles having the melting point of from 145 to 146.5°C.

Elemental analysis for C ₁₈ H ₂₀ N ₂ O ₂ S						
Calculated %	C,	65.83;	Н,	6.14;	N,	8.53
Found %	C,	65.69;	Н,	6.12;	N,	8.38

[0069] The compounds of Reference examples 38 through 53 were obtained in the same manner as in Reference example 37.

	Reference		Physical properties		
	example		[recrystallization solvent]		
5			pale purple needles[i-PrOH]		
			mp,120~121°C		
	38	N-W-NHZ	Elemental analysis for C ₁₈ H ₁₉ FN ₂ O ₂		
		F	Calcd. %: C,68.77;H,6.09;N,8.91		
10			Found %: C,68.88;H,6.00;N,8.88		
			colorless crystals[AcOEt-i-Pr2O]		
			mp,107~108°C		
	39	MeO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Elemental analysis for C20H28FN2O8		
			Calcd. %: C,67.02;H,6.47;N,7.82		
15			Found %: C,66.90;H,6.35;N,7.73		
			pale purple crystals[i-PrOH]		
			mp,123.5~125°C		
	40	EtO N-NHZ	Elemental analysis for C ₂₁ H ₂₅ FN ₂ O ₃		
20		_ _F /	Calcd. %: C,67.72;H,6.77;N,7.52		
			Found %: C,67.63;H,6.81;N,7.47		
			pale brown needles [AcOEt-i-Pr2O]		
	41	N—NHZ	mp,78~78.5°C		
25			Elemental analysis for C ₂₀ H ₂₃ FN ₂ O ₂		
25			Calcd. %: C,70.15;H,6.77;N,8.18		
			Found %: C,70.10;H,6.77;N,8.17		
			pale purple needles [AcOEt-i-Pr2O]		
	42	N- / NUZ	mp,124.5~126°C		
30		MB	Elemental analysis for C20H28FN2O2		
		F [']	Calcd. %: C,70.15;H,6.77;N,8.18		
			Found %: C,70.11;H,6.83;N,8.12		
			pale purple needles [i-PrOH]		
35	į	EA NUZ	mp,114~115℃		
	43		Elemental analysis for C ₂₁ H ₂₅ FN ₂ O ₂		
		, f	Calcd. %: C,70.76;H,7.07;N,7.86		
			Found %: C,70.66;H,7.17;N,7.84		
40			pale brown crystals[AcOEt-i-Pr2O]		
40	Į.	MeO-(CH ₂) ₂ -O-(N-(-)-NHZ	mp,97~98.5°C		
	44		Elemental analysis for C22H27FN2O4		
			Calcd. %: C,65.66;H,6.76;N,6.96		
			Found %: C,65.59;H,6.98;N,6.96		
45			colorless needles [i-PrOH]		
	45	Me-N N-N-NHZ	mp,136.5~137°C		
			Elemental analysis for C ₁₉ H ₂₂ FN ₃ O ₂		
			Calcd. %: C,66.46;H,6.46;N,12.24		
50	L	L	Found %: C,66.50;H,6.49;N,12.14		

	Reference		Physical properties	
į	example		[recrystallization solvent]	
5			colorless crystals[i-Pr2O]	
		Ma - / NUZ	mp,77.5~78℃	
	46	Me—NHZ	Elemental analysis for C ₁₆ H ₁₇ NO ₂	
		Me	Calcd. %: C,75.27;H,6.71;N,5.49	
10	İ		Found %: C,75.16;H,6.63;N,5.51	
10			colorless crystals[AcOEt]	
			mp,91~92°C	
	47	MeO-(CH ₂) ₂ -0-NHZ	Elemental analysis for C ₁₇ H ₁₈ FNO ₄	
		F	Calcd. %: C,63.94;H,5.68;N,4.39	
15			Found %: C,63.71;H,5.59;N,4.35	
			colorless needles [i-PrOH]	
		/=\ .	mp,100~100.5°C	
	48	NHZ	Elemental analysis for C ₁₈ H ₁₉ NO ₂	
20			Calcd. % : C,76.84;H,6.81;N,4.98	
			Found %: C,76.85;H,7.07;N,4.98	
			colorless crystals[AcOEt-i-Pr2O]	
	:	Me /=	mp,106.5~107.5°C	
05	49	N—\ \ \>—NHZ	Elemental analysis for C ₁₆ H ₁₈ N ₂ O ₂	
25		Me —	Calcd. %: C,71.09;H,6.71;N,10.36	
			Found %: C,71.15;H,6.89;N,10.35	
•			gray crystals	
	Į		NMR(DMSO-d ₆) & ppm:3.64(6H,s),5.03(2	
30		Me NHZ	H,s),7.13(2H,d,J=7.5Hz),7.26(1H,dd,J	
	50	Me >	=9,2.5Hz),7.30-7.55(4H,m),7.70-7.75(1	
	ļ	F F	H,m),10.3(1H,br-s)	
			IR ν (KBr) cm-1:1740	
35			MS(m/z):288(M+)	
	İ		colorless crystals[AcOEt-n-Heptane]	
	-	N——NHZ	mp,60~61°C	
	51	Et'	Elemental analysis for C ₁₇ H ₁₉ FN ₂ O ₂	
		F	Calcd. %: C,67.53;H,6.33;N,9.27	
40	ļ		Found %: C,67.32;H,6.33;N,9.29	
	1		brackish brown liquid NMR(DMSO-ds) & ppm:0.96(6H,t,J=7.5H	
		Et 🥏	z),3.06(4H,q,J=7.5Hz),5.15(2H,s),6.95(
	52	Et F	2),3.00(411,4,0-7.5H2),3.15(2H,8),6.95(1H,t,J=9Hz),7.12(1H,dd,J=9,2Hz),7.25	
45			-7.45(6H,m),9.62(1H,br-s)	
			IR ν (liq.) cm ⁻¹ :1706	
			MS(m/z):316(M*)	
		<u> </u>	140(111 b).010(111)	

Reference example		Physical properties [recrystallization solvent]
53	Boc-N—O—NHZ	reddish brown liquid NMR(DMSO-d ₆) δ ppm:1.40(9H,s),1.49-1 .57(2H,m),1.82-1.88(2H,m),3.13-3.20(2 H,m),3.60-3.66(2H,m),4.35-4.41(1H,m) ,5.14(2H,s),7.10-7.16(2H,m),7.30-7.44(6H,m),9.68(1H,br-s) IR ν (liq.) cm ⁻¹ :1668,3304 MS(m/z):444(M+)

15 Reference example 54

[0070] N,N'-Di-tert-butoxycarbonyl-3-fluoro-4-(piperazin-1-yl)aniline

[0071] To a solution of 5.56 g of di-tert-butyl dicarbonate in 10 ml of methanol, a solution of 2.00 g of 3-fluoro-4-(piperazin-1-yl)aniline in 10 ml of methanol was added dropwise under stirring at room temperature, and the mixture was stirred overnight at room temperature. The precipitated crystals were collected by filtration, and washed with ethanol to obtain 3.12 g of yellow crystals. Recrystallization from ethyl acetate gave pale yellow crystals having the melting point of from 194 to 195°C.

Elemental analysis for C₂₀H₃₀FN₃O₄

Calculated % C, 60.74; H, 7.65; N, 10.63

Found % C, 60.47; H, 7.93; N, 10.53

30 [0072] The compounds of Reference examples 55 through 57 were obtained in the same manner as in Reference example 54.

Reference		Physical properties
example		[recrystallization solvent]
55	MeO-(CH ₂) ₂ -O-\N-\F-NHBoc	brown liquid NMR(DMSO-d ₆) δ ppm:1.45(9H,s),3.26(3 H,s),3.44(2H,t,J=4.5Hz),3.52(2H,t,J=4.5Hz),3.55-3.60(2H,m),4.00-4.10(2H,m),4.35-4.40(1H,m),6.46(1H,t,J=8.5Hz),7.04(1H,dd,J=8.5,2Hz),7.22(1H,dd,J=1.5,2Hz),9.03(1H,br-s) IR ν (liq.) cm ⁻¹ :1724,3328 MS(m/z):340(M+)
56	Boc-N O-NHBoc	pale brown scales [CH ₈ CN] mp,220~221°C Elemental analysis for C ₁₉ H ₂₇ FN ₂ O ₅ Calcd. %: C,59.67;H,7.12;N,7.33 Found %: C,59.45;H,7.24;N,7.37
57	NHBoc F	reddish brown prisms[i-PrOH] mp,139~140.5°C Elemental analysis for C ₁₈ H ₂₆ FN ₂ O ₄ Calcd. %: C,61.35;H,7.15;N,7.95 Found %: C,61.30;H,7.37;N,7.98

Reference example 58

[0073] (R)-5-Hydroxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine

[0074] To a solution of 25.0 g of N-benzyloxycarbonyl-4-(thiomorpholin-4-yl)aniline in 250 ml of dried tetrahydrofuran, 50 ml of 1.63 mol/L n-butyl lithium n-hexane solution was added dropwise with stirring at -78°C under nitrogen flow. Then, the mixture was stirred at the same temperature for 1 hour, added dropwise with 11.5 ml of (R)-(-)-glycidyl butyrate, and stirred at the same temperature for 1 hour, and then at room temperature for 23 hours. The reaction mixture was added with 250 ml of 10% aqueous ammonium chloride, and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 18.8 g of grayish brown crystals. Recrystallization from ethyl acetate gave colorless crystals having the melting point of from 126.5 to 127.5°C.

Elemental analysis for C ₁₄ H ₁₈ N ₂ O ₃ S						
Calculated % C, 57.12; H, 6.16; N, 9.52						
Found %	C,	56.85;	Н,	6.13;	N,	9.25

Specific rotation $[\alpha]_D^{20}$ -40.9° (c = 0.1, DMSO)

[0075] The compounds of Reference examples 59 through 79 were obtained in the same manner as in Reference example 58.

R-N OH

		ОН
Reference	R	Physical properties
example	, ,	[recrystallization solvent]
		pale purple needles[EtOH]
		mp,178~179°C
		Elemental analysis for C ₁₄ H ₁₇ FN ₂ O ₈
59		Calcd. %: C,59.99;H,6.11;N,9.99
	F	Found %: C,59.97;H,6.06;N,9.98
1	·	Specific rotation
	1	$[\alpha]_{D^{20}-54.9}^{\circ}$ (c=0.1,DMSO)
		pale brown crystals[AcOEt]
		mp,139.5~141°C
		Elemental analysis for C ₁₆ H ₂₁ FN ₂ O ₄
60	MeO N	Calcd. %: C,59.25;H,6.53;N,8.64
	ا حرا	Found %: C,58.95;H,6.46;N,8.39
	•	Specific rotation
[$[\alpha]_{D^{20}-43.1}^{\circ}$ (c=0.1,DMSO)
		colorless crystals[i-PrOH]
		mp,131~132℃
1	EtO—N————	Elemental analysis for C ₁₇ H ₂₃ FN ₂ O ₄
61		Calcd. %: C,60.34;H,6.85;N,8.28
1		Found %: C,60.20;H,7.07;N,8.11
		Specific rotation
		$[\alpha]_{D^{20}-37.0^{\circ}}$ (c=0.1,DMSO)
		pale purple needles[AcOEt-i-Pr2O]
		mp,141.5~143°C
}	()	Elemental analysis for C ₁₆ H ₂₁ FN ₂ O ₃
62	Me N	Calcd. %: C,62.32;H,6.86;N,9.09
		Found %: C,62.21;H,6.94;N,9.01
1		Specific rotation
		$[\alpha]_{D^{20}-42.9}^{\circ}$ (c=0.1,DMSO)
		colorless needles[i-PrOH]
1		mp,149~149.5°C
Ì	Et-_N-\	Elemental analysis for C ₁₇ H ₂₈ FN ₂ O ₃
63		Calcd. %: C,63.34;H,7.19;N,8.69
	{ F	Found %: C,63.17;H,7.35;N,8.67
		Specific rotation
		$[\alpha]_{D^{20}-43.0^{\circ}}$ (c=0.1,DMSO)
		colorless crystals[AcOEt]
		mp,94.5~96°C
}	MeO-(CH ₂) ₂ -O-N-F	Elemental analysis for C ₁₈ H ₂₅ FN ₂ O ₅
64		Calcd. %: C,58.68;H,6.84;N,7.60
		Found %: C,58.41;H,7.11;N,7.56
		Specific rotation
L		$[\alpha]_{D^{20}-37.9^{\circ}}$ (c=0.1,DMSO)

5

Reference	R	Physical properties		
example		[recrystallization solvent]		
		pale brown prisms[AcOEt-i-Pr ₂ O]		
	_	mp,118~119°C		
1		Elemental analysis for C ₁₆ H ₂₁ FN ₂ O ₃		
65		Calcd. %: C,62.32;H,6.86;N,9.09		
{	F	Found % : C,62.13;H,6.98;N,9.07		
		Specific rotation		
		$[\alpha]_{D^{20}-36.9^{\circ}}$ (c=0.1,DMSO)		
		colorless needles[AcOEt]		
		mp,113~114°C		
1	MeO-(CH ₂) ₂ -O-\N-\N-\N-\N-\N-\N-\N-\N-\N-\N-\N-\N-\N-	Elemental analysis for C ₁₆ H ₂₁ FN ₂ O ₅		
66	ر ن ن	Calcd. % : C,56.46;H,6.22;N,8.23		
		Found % : C,56.30;H,6.33;N,8.24		
		Specific rotation		
		$[\alpha]_{D^{20}-41.2}^{\circ}$ (c=0.1,DMSO)		
		colorless prisms[i-PrOH]		
		mp,150~151°C		
1	Me-N N-	Elemental analysis for C ₁₅ H ₂₀ FN ₃ O ₃		
67		Calcd. %: C,58.24;H,6.52;N,13.58		
		Found %: C,58.33;H,6.31;N,13.56		
		Specific rotation		
		$[\alpha]_{D^{20}\text{-}38.9}^{\circ} \text{ (c=0.1,DMSO)}$		
		pale brown prisms[i-PrOH]		
l	ļ	mp,130~132°C		
ļ	Boc-N N-	Elemental analysis for C ₁₉ H ₂₆ FN ₈ O ₅		
68		Calcd. %: C,57.71;H,6.63;N,10.63		
{		Found %: C,57.55;H,6.87;N,10.57		
		Specific rotation		
		[α] _D 20-36.0° (c=0.1,DMSO)		
		pale yellow crystals [EtOH]		
1	{	mp,127.5~128.5°C		
		Elemental analysis for C ₁₁ H ₁₃ NO ₃		
69	Me	Calcd. %: C,63.76;H,6.32;N,6.76		
		Found %: C,63.59;H,6.39;N,6.78		
		Specific rotation		
		$[\alpha]_{D^{20}-55.0}^{\circ}$ (c=0.1,DMSO)		
		colorless prisms[EtOH]		
		mp,150~151°C		
50	Ma	Elemental analysis for C ₁₂ H ₁₅ NO ₃		
70		Calcd. %: C,65.14;H,6.83;N,6.33		
	Me	Found %: C,65.01;H,6.64;N,6.28		
}		Specific rotation		
	<u> </u>	$[\alpha]_{D^{20}\text{-}45.9}^{\circ} \text{ (c=0.1,DMSO)}$		

R-N OH

Reference	R	Physical properties		
example		[recrystallization solvent]		
		pale brown needles[i-PrOH] mp,119~120°C		
71	MeO-{CH ₂ } ₂ -O-	Elemental analysis for C ₁₃ H ₁₆ FNO ₅ Calcd. %: C,54.73;H,5.65;N,4.91 Found %: C,54.58;H,5.55;N,4.89 Specific rotation [α] _D ²⁰ -40.9° (c=0.1,DMSO)		
		colorless needles[CH3CN]		
		mp,183~185°C		
72	Me N-	Elemental analysis for C ₁₂ H ₁₆ N ₂ O ₃ Calcd. %: C,61.00;H,6.83;N,11.86 Found %: C,60.90;H,6.95;N,11.86 Specific rotation		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		[α] _D ²⁰ -53.8° (c=0.1,DMSO)		
		colorless prisms[AcOEt]		
1		mp,128~130°C		
73	Me N N N N N N N N N N N N N N N N N N N	Elemental analysis for C ₁₂ H ₁₅ FN ₂ O ₃ Calcd. %: C,56.69;H,5.95;N,11.02 Found %: C,56.66;H,6.24;N,10.97		
}		Specific rotation		
		$[\alpha]_{D^{20}-51.1^{\circ}}$ (c=0.1,DMSO)		
		colorless needles[AcOEt-i-Pr2O]		
	Ma	mp,95~96°C		
74	Et F	Elemental analysis for C ₁₃ H ₁₇ FN ₂ O ₈		
74		Calcd. %: C,58.20;H,6.39;N,10.44		
		Found %: C,58.06;H,6.53;N,10.36 Specific rotation		
		[α]p ²⁰ -54.8° (c=0.1,DMSO)		
	ļ	brown liquid		
}		NMR(DMSO-d ₆) & ppm:0.99(3H,t,J=7.5H		
		z),3.11(2H,q,J=7.5Hz),3.56(1H,dd,J=1)		
		2,3.5Hz),3.66(1H,dd,J=12,3.5Hz),3.79(
	Et. /=\	1H,dd,J=9,6.5Hz),4.04(1H,t,J=9Hz),4.		
75		60-4.70(1H,m),5.09(1H,br-s),7.03(1H,t		
1	Et' F	J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.44(1		
		H,dd,J=15,2.5Hz)		
1		IR ν (liq.) cm ⁻¹ :1748,3416		
		MS(m/z):282(M+)		
		Specific rotation [α] α 0.1,DMSO)		
<u> </u>	<u></u>	1 [@ JD===03.2 (C=0.1,DMISO)		

10	Reference example	R	Physical properties [recrystallization solvent]
15	76		colorless prisms [AcOEt] mp,145.5~146.5°C Elemental analysis for C ₁₄ H ₁₇ NO ₃ Calcd. %: C,68.00;H,6.93;N,5.66 Found %: C,67.88;H,7.23;N,5.68 Specific rotation [α] _D ²⁰ -51.1° (c=0.1,DMSO)
20	77	Boc-N 0-5	colorless crystals [EtOH] mp,109~110°C Elemental analysis for C ₂₀ H ₂₇ FN ₂ O ₆
25			Calcd. %: C,58.53;H,6.63;N,6.83 Found %: C,58.28;H,6.54;N,6.83 Specific rotation [α]p ²⁰ -32.0° (c=0.1,DMSO)
30	78	Bac-N \-0-\	pale yellowish brown prisms[AcOEt] mp,157~158°C Elemental analysis for $C_{18}H_{23}FN_2O_6$ Calcd. %: C,56.54;H,6.06;N,7.33 Found %: C,56.42;H,6.32;N,7.26 Specific rotation [α] $_{\rm D}^{20}$ -30.1° (c=0.1,DMSO)
35			pale purple prisms[i-PrOH] mp,163~165.5°C Elemental analysis for C ₁₇ H ₂₁ FN ₂ O ₅
40	79	~~~`` <i>}</i> ~	Calcd. %: C,57.95;H,6.01;N,7.95 Found %: C,57.89;H,6.04;N,7.92 Specific rotation [α] _D 20-41.1° (c=0.1,DMSO)

Reference example 80

 $\textbf{[0076]} \hspace{0.3in} \textbf{(R)-5-Mesyloxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine} \\$

[0077] To a solution of 10.0 g of (R)-5-hydroxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine and 10.5 ml of triethylamine in 200 ml of dichloromethane, 3.20 ml of methanesulfonyl chloride was added dropwise under ice-cooling and with stirring, and then the mixture was stirred at room temperature for 2 hours. The reaction solution was added with 200 ml of water, and extracted with dichloromethane. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 11.5 g of grayish brown crystals. Recrystallization from ethyl acetate gave colorless prisms having the melting point of from 174.5 to 175.5°C.

Elemental analysis for C ₁₅ H ₂₀ N ₂ O ₅ S ₂						
Calculated %	C,	48.37;	Н,	5.41;	N,	7.52

55

45

(continued)

Elemental anal	ysis for	C ₁₅ H ₂₀ N	2O ₅ S ₂			
Found %	C,	48.41;	Н,	5.33;	N,	7.36

· 20

Specific rotation $[\alpha]_D^{20}$ -54.2° (c = 0.1, DMSO) [0078] The compounds of Reference examples 81 through 101 were obtained in the same manner as in Reference example 80.

10	Reference example	R	Physical properties [recrystallization solvent]
15	81		colorless crystals [AcOEt-i-Pr ₂ O] mp,111~112°C Elemental analysis for $C_{15}H_{19}FN_2O_5S$ Calcd. %: C,50.27;H,5.34;N,7.82 Found %: C,50.10;H,5.30;N,7.73 Specific rotation [α] _D 20-50.1° (c=0.1,DMSO)
20	82	MeQ - N- F	colorless prisms [AcOEt] mp,124.5~125.5°C Elemental analysis for $C_{17}H_{23}FN_2O_6S$ Calcd. %: C,50.74;H,5.76;N,6.96 Found %: C,50.50;H,5.66;N,6.87 Specific rotation [α] _D 20-49.9° (c=0.1,DMSO)
25	83	EtO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	colorless needles[i-PrOH] mp,128~128.5°C Elemental analysis for $C_{16}H_{25}FN_2O_6S$ Calcd. %: C,51.91;H,6.05;N,6.73 Found %: C,51.80;H,6.29;N,6.69 Specific rotation [α] $_{D}^{20}$ -47.9° (c=0.1,DMSO)
35	84	Me — N— F	pale purple prisms [i-PrOH] mp,155~156.5°C Elemental analysis for $C_{17}H_{28}FN_2O_5S$ Calcd. %: C,52.84;H,6.00;N,7.25 Found %: C,52.65;H,6.22;N,7.07 Specific rotation [α] $_{D^{20}}$ -52.9° (c=0.1,DMSO)
40	85	Et-N-F	colorless plates [EtOH] mp,155~156°C Elemental analysis for C ₁₈ H ₂₅ FN ₂ O ₅ S Calcd. %: C,53.99;H,6.29;N,7.00 Found %: C,53.74;H,6.40;N,6.87 Specific rotation [α] _D ²⁰ -51.1° (c=0.1,DMSO)
45	86	MeO-(CH ₂) ₂ -O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	pale brown needles[AcOEt] mp,124~124.5°C Elemental analysis for C ₁₉ H ₂₇ FN ₂ O ₇ S Calcd. %: C,51.11;H,6.10;N,6.27 Found %: C,50.82;H,6.34;N,6.25 Specific rotation [α] _D ²⁰ -47.8° (c=0.1,DMSO)

10	
15	
20	
25	

Reference	R	Physical properties
example		[recrystallization solvent]
	·	colorless needles[AcOEt-i-Pr2O]
		mp,121~122.5°C
87	[<u>}</u>	Elemental analysis for C ₁₇ H ₂₃ FN ₂ O ₅ S
"		Calcd. %: C,52.84;H,6.00;N,7.25
	r	Found %: C,52.57;H,6.16;N,7.20
		Specific rotation [α] _D 20-52.8° (c=0.1,DMSO)
		brown liquid
}		$NMR(DMSO-d_6) \delta ppm:3.22(3H,s),3.26(3H,s),$
		3.45(2H,t,J=5Hz),3.53(2H,t,J=5Hz),3.60-3.7
		0(2H,m),3.77(1H,dd,J=9.5,6.5Hz),4.10-4.15(
	15:0 (SU) =0	3H,m,4.35-4.45(1H,m),4.44(1H,dd,J=11.5,5
88	MeO-(CH ₂) ₂ -0-N-	.5Hz),4.49(1H,dd,J=11.5,3Hz),4.90-5.00(1H,
Į	f	m),6.58(1H,t,J=9Hz),7.12(1H,dd,J=9,2.5Hz)
		,7.37(1H,dd,J=14.5,2.5Hz)
}		IR ν (liq.) cm ⁻¹ :1754
]		MS(m/z):418(M+)
		Specific rotation [\alpha] \text{p}^{20}-45.7° (c=0.1,DMSO)
İ		colorless prisms[AcOEt]
1	Me-N N-	mp,159.5~160.5°C
		Elemental analysis for C ₁₆ H ₂₂ FN ₃ O ₅ S
89		Calcd. %: C,49.60;H,5.72;N,10.85
	•	Found %: C,49.58;H,5.46;N,10.75
		Specific rotation [α] $_{D^{20}}$ -49.0° (c=0.1,DMSO)
		colorless prisms[MeOH]
		mp,182.5~183.5°C
90	Boc-N N-	Elemental analysis for C20H28FN3O7S
30		Calcd. %: C,50.73;H,5.96;N,8.87
		Found %: C,50.63;H,6.11;N,8.88
		Specific rotation [α] _D ²⁰ -46.0° (c=0.1,DMSO)
	}	pale brown crystals[i-PrOH]
		mp,128~130°C
91	Ma	Elemental analysis for C ₁₂ H ₁₅ NO ₅ S
91	Me	Calcd. %: C,50.52;H,5.30;N,4.91
		Found %: C,50.23;H,5.30;N,4.83
		Specific rotation [α] n^{20} -54.0° (c=0.1,DMSO)

i	Reference		Physical properties
	example	R	[recrystallization solvent]
10	vaum pro		pale yellow prisms[i-PrOH]
			mp,113~113.5°C
		Me—(=)	Elemental analysis for C ₁₂ H ₁₇ NO ₅ S
	92		Calcd. %: C,52.16;H,5.72;N,4.68
15		Me	Found %: C,51.91;H,5.56;N,4.63
			Specific rotation [α] D^{20} -52.9° (c=0.1,DMSO)
			colorless crystals[EtOH]
		/ =\	mp,72.5~74°C
		MeO-(CH ₂) ₂ -O-	Elemental analysis for C14H18FNO7S
20	93	F	Calcd. %: C,46.28;H,4.99;N,3.85
		•	Found %: C,46.22;H,4.95;N,3.83
			Specific rotation [α] $_{D^{20}}$ -51.2° (c=0.1,DMSO)
			colorless prisms[AcOEt-i-Pr2O]
25			mp,141.5~143°C
	94	Me	Elemental analysis for C ₁₈ H ₁₈ N ₂ O ₅ S
	34	Me	Calcd. %: C,49.67;H,5.77;N,8.91
			Found %: C,49.41;H,5.64;N,8.84
			Specific rotation [α] _D ²⁰ -55.9° (c=0.1,DMSO)
30	j	·	pale yellowish brown amorphous solid
			NMR(DMSO-d _θ) δ ppm:2.88(6H,s),3.23(3H,s),3
			.82(1H,dd,J=9,6Hz),4.18(1H,t,J=9Hz),4.45(1
		N-(=)	H,dd,J=11.5,5.5Hz),4.50(1H,dd,J=11.5,3Hz),
35	95	Me >	4.95-5.05(1H,m),7.20-7.30(2H,m),7.52(1H,d,
	1	f F	J=14Hz)
	1	1	IR ν (liq.) cm ⁻¹ :1758
			$MS(m/z):332(M+)$ Specific rotation [α] p^{20} -41.5° (c=0.1,DMSO)
			pale purple crystals[AcOEt-i-Pr ₂ O]
40			mp.66~67°C
		Me	Elemental analysis for C ₁₄ H ₁₉ FN ₂ O ₅ S
	96	Et F	Calcd. %: C,48.55;H,5.53;N,8.09
			Found %: C,48.20;H,5.64;N,7.94
45			Specific rotation $\{\alpha\}_{D^{20}}$ -58.5° (c=0.1,DMSO)
	L		1-1

R-N OMs

9			OMS
	Reference example	R	Physical properties [recrystallization solvent]
15	97	Et N————————————————————————————————————	brown liquid NMR(DMSO-de) δ ppm:1.00(6H,t,J=7Hz),3.15(4 H,q,J=7Hz),3.23(3H,s),3.81(1H,dd,J=9,6Hz),4. 16(1H,t,J=9Hz),4.45(1H,dd,J=11.5,5.5Hz),4.50 (1H,dd,J=11.5,3Hz),4.95-5.05(1H,m),7.05-7.15 (1H,m),7.15-7.25(1H,m),7.40-7.50(1H,m) IR ν (liq.) cm-1:1178,1360,1756 MS(m/z):360(M+) Specific rotation [α] $_{\rm D}^{20}$ -42.2° (c=0.1,DMSO)
20	98		colorless needles[i-PrOH] mp,100.5~102.5°C Elemental analysis for $C_{15}H_{19}NO_{5}S$ Calcd. %: C,55.37;H,5.89;N,4.30 Found %: C,55.11;H,6.02;N,4.27 Specific rotation [α] $_{0}^{20}$ -58.1° (c=0.1,DMSO)
<i>30</i>	99	Boe-N 0-5-	colorless prisms [i-PrOH] mp,126~127.5°C Elemental analysis for $C_{21}H_{29}FN_2O_8S$ Calcd. %: C,51.63;H,5.98;N,5.73 Found %: C,51.44;H,6.18;N,5.68 Specific rotation [α] _D 20-37.9° (c=0.1,DMSO)
35	100	Bac-NQ-O-S	colorless prisms[i-PrOH] mp,114.5~117°C Elemental analysis for $C_{19}H_{25}FN_2O_8S$ Calcd. %: C,49.56;H,5.47;N,6.08 Found %: C,49.46;H,5.67;N,6.03 Specific rotation [α] $_{\mathbf{D}^{20}}$ -46.0° (c=0.1,DMSO)
40	101		pale purple scales [AcOEt] mp,147.5~149°C Elemental analysis for $C_{18}H_{23}FN_2O_7S$ Calcd. %: C,50.22;H,5.39;N,6.51 Found %: C,50.06;H,5.66;N,6.49 Specific rotation [α] $_{D^{20}-45.8^{\circ}}$ (c=0.1,DMSO)

Reference example 102

45

5

[0079] (R)-5-Azidomethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine
[0080] A suspension of 11.5 g of (R)-5-mesyloxymethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine and 8.35 g of sodium azide in 110 ml of dried N,N-dimethylformamide was stirred with heating to 65°C for 5 hours. The reaction solution was cooled, then added with 200 ml of water, and extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 8.85 g of grayish brown crystals. Recrystallization from ethyl acetate gave colorless crystals having the melting point of from 110 to 111°C.

Elemental analysis for C ₁₄ H ₁₇ N ₅ O ₂ S						
Calculated %	C,	52.65;	Н,	5.37;	N,	21.93
Found %	C,	52.47;	Н,	5.35;	N,	21.65

Specific rotation $[\alpha]_D^{20}$ -124.4° (c = 0.1, DMSO) [0081] The compounds of Reference examples 103 through 123 were obtained in the same manner as in Reference example 102.

Reference example			
103	Reference	R	
mp,109~109.5°C	example		[recrystallization solvent]
103 F Elemental analysis for C ₁₄ H ₁₆ FN ₅ O ₂ Calcd. % : C,55.08;H,5.28;N,22.94 Found % : C,54.88;H,5.12;N,22.70 Specific rotation [α lp ²⁰ -136.4° (c=0.1,DMSO) colorless needles [ACOEt-i-Pr ₂ O] mp,89~90°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₃ Calcd. % : C,55.01;H,5.77;N,20.05 Found % : C,54.83;H,5.72;N,19.88 Specific rotation [α lp ²⁰ -118.5° (c=0.1,DMSO) pale brown needles [i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. % : C,56.19;H,6.10;N,19.27 Found % : C,56.05;H,6.36;N,19.23 Specific rotation [α lp ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms [AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. % : C,57.65;H,6.05;N,21.01 Found % : C,57.69;H,6.21;N,20.90 Specific rotation [α lp ²⁰ -122.4° (c=0.1,DMSO) colorless plates [EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. % : C,58.78;H,6.38;N,20.16 Found % : C,58.66;H,6.47;N,20.06			colorless crystals[AcOEt]
Calcd. %: C,55.08;H,5.28;N,22.94 Found %: C,54.88;H,5.12;N,22.70 Specific rotation [α]n ²⁰ -136.4° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,89~90°C Elemental analysis for C _{1e} H _{2o} FN ₅ O ₃ Calcd. %: C,55.01;H,5.77;N,20.05 Found %: C,54.83;H,5.72;N,19.88 Specific rotation [α]n ²⁰ -118.5° (c=0.1,DMSO) pale brown needles [i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α]n ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms [AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H _{2o} FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α]p ²⁰ -122.4° (c=0.1,DMSO) colorless plates [EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06		1 (=)	mp,109~109.5°C
Calcd. %: C,55.08;H,5.28;N,22.94 Found %: C,54.88;H,5.12;N,22.70 Specific rotation [α]n ²⁰ -136.4° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,89~90°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₈ Calcd. %: C,55.01;H,5.77;N,20.05 Found %: C,54.83;H,5.72;N,19.88 Specific rotation [α]n ²⁰ -118.5° (c=0.1,DMSO) pale brown needles[i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.05;H,6.36;N,19.23 Specific rotation [α]n ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α]n ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	100	[N-()	Elemental analysis for C14H16FN6O2
Specific rotation [α]p ²⁰ -136.4° (c=0.1,DMSO)	103	<u> بر</u> ،~	Calcd. % : C,55.08;H,5.28;N,22.94
Colorless needles [AcOEt-i-Pr ₂ O] mp,89~90°C Elemental analysis for C _{1e} H _{2o} FN ₅ O ₃ Calcd. % : C,55.01;H,5.77;N,20.05 Found % : C,54.83;H,5.72;N,19.88 Specific rotation [α] _D ²⁰ -118.5° (c=0.1,DMSO) pale brown needles [i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. % : C,56.19;H,6.10;N,19.27 Found % : C,56.05;H,6.36;N,19.23 Specific rotation [α] _D ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms [AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H _{2o} FN ₅ O ₂ Calcd. % : C,57.65;H,6.05;N,21.01 Found % : C,57.69;H,6.21;N,20.90 Specific rotation [α] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates [EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. % : C,68.78;H,6.38;N,20.16 Found % : C,58.66;H,6.47;N,20.06	1	r	Found %: C,54.88;H,5.12;N,22.70
mp,89~90°C Elemental analysis for C _{1e} H _{2o} FN ₅ O ₈ Calcd. %: C,55.01;H,5.77;N,20.05 Found %: C,54.83;H,5.72;N,19.88 Specific rotation [α] _D 20-118.5° (c=0.1,DMSO) pale brown needles[i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] _D 20-110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C _{1e} H _{2o} FN ₅ O ₂ Calcd. %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D 20-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			Specific rotation [α] 20 -136.4° (c=0.1,DMSO)
Elemental analysis for C _{1e} H _{2o} FN ₅ O ₃ Calcd. %: C,55.01;H,5.77;N,20.05 Found %: C,54.83;H,5.72;N,19.88 Specific rotation [α] _D 20-118.5° (c=0.1,DMSO) pale brown needles[i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] _D 20-110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H _{2o} FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D 20-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			colorless needles[AcOEt-i-Pr2O]
Calcd. %: C,55.01;H,5.77;N,20.05 Found %: C,54.83;H,5.72;N,19.88 Specific rotation [\alpha]p^{20}-118.5° (c=0.1,DMSO) pale brown needles[i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [\alpha]p^{20}-110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [\alpha]p^{20}-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	·		mp,89~90°C
Calcd. %: C,58.01;H,5.77;N,20.05	104	MeO	Elemental analysis for C16H20FN5O3
Found %: C,54.83;H,5.72;N,19.88 Specific rotation [α] lo20-118.5° (c=0.1,DMSO) pale brown needles[i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] lo20-110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] lo20-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	104	F	Calcd. %: C,55.01;H,5.77;N,20.05
pale brown needles[i-PrOH] mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] _D 20-110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D 20-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			
mp,66~67°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] _D ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₆ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			Specific rotation [α] $_{D}^{20}$ -118.5° (c=0.1,DMSO)
Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃ Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [\alpha] _D ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [\alpha] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			pale brown needles[i-PrOH]
Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] _D ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	}	Et0-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	mp,66~67°C
F Calcd. %: C,56.19;H,6.10;N,19.27 Found %: C,56.05;H,6.36;N,19.23 Specific rotation [α] _D ²⁰ -110.5° (c=0.1,DMSO) pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	105		Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₃
Specific rotation [α] _D ²⁰ -110.5° (c=0.1,DMSO)	105		Calcd. %: C,56.19;H,6.10;N,19.27
pale purple prisms[AcOEt-i-Pr ₂ O] mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			Found %: C,56.05;H,6.36;N,19.23
mp,97.5~98.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D 20-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			Specific rotation [α] $_{D^{20}-110.5^{\circ}}$ (c=0.1,DMSO)
Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			pale purple prisms[AcOEt-i-Pr2O]
Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D 20-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	1		mp,97.5~98.5°C
Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.69;H,6.21;N,20.90 Specific rotation [α] _D ²⁰ -122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	100	Me \N	Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂
Specific rotation [α] _D 20-122.4° (c=0.1,DMSO) colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	100	F F	Calcd. %: C,57.65;H,6.05;N,21.01
colorless plates[EtOH] mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06		Ì	Found %: C,57.69;H,6.21;N,20.90
mp,99~100°C Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			Specific rotation [α] $_{D^{20}}$ -122.4° (c=0.1,DMSO)
107 Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂ Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06			colorless plates[EtOH]
Calcd. %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	ŀ		mp,99~100°C
Found %: C,58.78;H,6.38;N,20.16 Found %: C,58.66;H,6.47;N,20.06	107	Et-()N-()-	Elemental analysis for C ₁₇ H ₂₂ FN ₅ O ₂
1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	10'		Calcd. %: C,58.78;H,6.38;N,20.16
Specific rotation [α] D^{20} -117.3° (c=0.1,DMSO)			1 ' ' ' ' '
			Specific rotation [α] _D ²⁰ -117.3° (c=0.1,DMSO)

R-N N.

Reference	R	Physical properties
example		[recrystallization solvent]
108	MeO(CH ₂) ₂ -ON	pale brown liquid NMR(DMSO-d ₆) δ ppm:1.55-1.65(2H,m),1.90-2.00(2H,m),2.75-2.80(2H,m),3.15-3.25(2H,m),3.27(3H,s),3.40-3.50(1H,m),3.45(2H,t,J=5Hz),3.56(2H,t,J=5Hz),3.67(1H,dd,J=13.5,6Hz),3.70-3.80(2H,m),4.10(1H,t,J=9Hz),4.80-4.90(1H,m),7.06(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2.5Hz) IR ν (liq.) cm ⁻¹ :1756,2112 MS(m/z):393(M+) Specific rotation [α] $_{\rm p}^{20}$ -100.3° (c=0.1,DMSO)
109	MeO{CH ₂ } ₂ -O\N\N	brown liquid NMR(DMSO-d ₆) δ ppm:3.26(3H,s),3.45(2H,t,J =4.5Hz),3.53(2H,t,J=4.5Hz),3.60-3.75(5H, m),4.08(1H,t,J=9Hz),4.05-4.15(2H,m),4.35-4.45(1H,m),4.80-4.90(1H,m),6.58(1H,t,J=8.5Hz),7.12(1H,dd,J=8.5,2Hz),7.38(1H,dd,J=14.5,2Hz) IR ν (liq.) cm ⁻¹ :1752,2112 MS(m/z):365(M+) Specific rotation [α] _D ²⁰ -91.4° (c=0.1,DMSO)
110	~~~~	colorless crystals [AcOEt-i-Pr ₂ O] mp,67~67.5°C Elemental analysis for C ₁₆ H ₂₀ FN ₅ O ₂ Calcd. %: C,57.65;H,6.05;N,21.01 Found %: C,57.66;H,6.09;N,21.05 Specific rotation [α] _D ²⁰ -122.6° (c=0.1,DMSO)
111	Me-N_N-\	colorless scales [i-PrOH] mp,106.5~107°C Elemental analysis for $C_{15}H_{19}FN_6O_2$ Calcd. %: C,53.88;H,5.73;N,25.14 Found %: C,53.88;H,5.63;N,25.14 Specific rotation [α] α 20-118.5° (c=0.1,DMSO)

_			•		
ĺ	Reference	R	Physical properties		
ļ	example	N	[recrystallization solvent]		
10			pale brown needles[i-PrOH]		
			mp,112~113°C		
	110	Boc-N N-	Elemental analysis for C19H25FN6O4		
	112	سر ب	Calcd. %: C,54.28;H,5.99;N,19.99		
- (r	Found %: C,54.20;H,6.09;N,20.07		
ĺ			Specific rotation [\alpha]p ²⁰ -101.9° (c=0.1,DMSO)		
15			reddish brown liquid		
			NMR(CDCl ₃) & ppm:2.33(3H,s),3.59(1H,dd,J=13.5		
			,4.5Hz),3.68(1H,dd,J=13.5,4.5Hz),3.84(1H,dd,J		
	113	140	=9,6Hz),4.08(1H,t,J=9Hz),4.74-4.80(1H,m),7.18		
20	110	ma —	(2H,d,J=8Hz),7.41(2H,d,J=8Hz)		
.20			$ \text{IR } \nu \text{ (liq.) cm}^{-1}:1754,2112 $		
			MS(m/z):232(M+)		
L			Specific rotation [α] p^{20} -119.1° (c=0.1,DMSO)		
			pale brown crystals[i-Pr2O]		
25		Me Me	mp,85~85.5°C		
	114		Elemental analysis for C ₁₂ H ₁₄ N ₄ O ₂		
	114		Caled. %: C,58.53;H,5.73;N,22.75		
			Found %: C,58.30;H,5.59;N,22.46		
30			Specific rotation [α] _D 20-140.4° (c=0.1,DMSO)		
30	}		colorless plates[EtOH]		
		MeO-(CH ₂) ₂ -0-	mp,75~76°C		
	115)	Elemental analysis for C ₁₈ H ₁₅ FN ₄ O ₄		
	1110	F	Calcd. %: C,50.32;H,4.87;N,18.06		
35	1		Found %: C,50.27;H,4.94;N,18.01		
ļ	<u> </u>		Specific rotation [α] _D 20-119.8° (c=0.1,DMSO)		
40	l		colorless prisms[AcOEt]		
		Me (=	mp,112~113°C		
	116)-()-	Elemental analysis for C ₁₂ H ₁₅ N ₅ O ₂		
		Me	Calcd. %: C,55.16;H,5.79;N,26.80 Found %: C,55.12;H,5.60;N,26.73		
	1		Specific rotation [α] $_{\rm D}^{20}$ -142.0° (c=0.1,DMSO)		
		<u> </u>	Specific rotation (& jo142.0 (C-0.1,DMSO)		

R-N

10	
15	
20	
25	
30	
35	
40	

Reference	R	Physical properties
example		[recrystallization solvent]
117	Me N N N N N N N N N N N N N N N N N N N	pale brown crystals NMR(DMSO-d ₆) δ ppm:2.75(6H,s),3.66(1H,dd,J=13.5,5.5Hz),3.70-3.75(2H,m),4.10(1H,t,J=9Hz),4.80-4.90(1H,m),6.98(1H,t,J=9Hz),7.15(1H,dd,J=9,2.5Hz),7.43(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1752,2108 MS(m/z):279(M+) Specific rotation [α]p ²⁰ -137.8° (c=0.1,DMSO)
118	Me N	brown liquid NMR(DMSO-de) δ ppm:1.03(3H,t,J=7Hz),2.73(3H,s),3.12(2H,q,J=7Hz),3.67(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m),4.10(1H,t,J=9Hz),4.80-4.90(1H,m),6.98(1H,t,J=9Hz),7.16(1H,dd,J=9,2.5Hz),7.42(1H,dd,J=15.5,2.5Hz) IR ν (liq.) cm ⁻¹ :1756,2112 MS(m/z):293(M+) Specific rotation [α] _D 20-134.8° (c=0.1,DMSO)
119	Et F	brown liquid NMR(DMSO-d ₆) δ ppm:0.99(6H,t,J=7.5Hz),3.12(4 H,q,J=7.5Hz),3.67(1H,dd,J=13.5,5.5Hz),3.70-3. 80(2H,m),4.11(1H,t,J=9Hz),4.80-4.90(1H,m),7. 03(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),7.42(1 H,dd,J=15.5,2.5Hz) IR ν (liq.) cm ⁻¹ :1756,2112 MS(m/z):307(M*) Specific rotation [α]p ²⁰ -105.8° (c=0.1,DMSO)
120		colorless needles [i-PrOH] mp,104~105.5°C Elemental analysis for C ₁₄ H ₁₆ N ₄ O ₂ Calcd. %: C,61.75;H,5.92;N,20.58 Found %: C,61.64;H,5.73;N,20.54 Specific rotation [α] _D ²⁰ -135.9° (c=0.1,DMSO)

Reference	R	Physical properties
example		[recrystallization solvent]
		colorless prisms[i-PrOH]
		mp,111~112.5℃
121	Boc-N >-0-	Elemental analysis for C ₂₀ H ₂₆ FN ₅ O ₅
121	ر ک	Calcd. %: C,55.16;H,6.02;N,16.08
	•	Found %: C,55.07;H,6.15;N,15.88
		Specific rotation [\alpha] _D 20-86.3° (c=0.1,DMSO)
		colorless prisms[i-PrOH]
		mp,122~123°C
122	Boc-N 0-()-	Elemental analysis for C ₁₈ H ₂₂ FN ₅ O ₅
122	نظر ا	Calcd. %: C,53.07;H,5.44;N,17.19
		Found %: C,53.02;H,5.66;N,17.22
		Specific rotation [α]p ²⁰ -96.8° (c=0.1,DMSO)
		pale brown prisms[i-PrOH]
		mp,114.5~116°C
100	(X)n-()-	Elemental analysis for C17H20FN5O4
123	سر پر	Calcd. %: C,54.11;H,5.34;N,18.56
}		Found %: C,54.32;H,5.32;N,18.26
}	l	Specific rotation [α] p^{20} -113.0° (c=0.1,DMSO)

30 Reference example 124

[0082] (R)-5-Azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine

[0083] To 1.00 g of (R)-5-azidomethyl-3-[4-(4-tert-butoxycarbonylpiperazin-1-yl)-3-fluorophenyl]-2-oxooxazolidine, 20 ml of 16 % hydrogen chloride ethyl acetate solution was added, and the mixture was stirred at room temperature for 30 minutes. The precipitated crystals were collected by filtration. The crystals were added with aqueous sodium hydroxide, and then the resulting alkaline mixture was extracted with ethyl acetate. The extract was washed with saturated brine and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 0.72 g of pale brown crystals. Recrystallization from isopropanol gave colorless crystals having the melting point of from 114 to 115°C.

A	,	٦	

45

35

Elemental analysis for C ₁₄ H ₁₇ FN ₆ O ₂						
Calculated % C, 52.49; H, 5.35; N, 26.24						
Found % C, 52.24; H, 5.21; N, 26.15						26.15

Specific rotation $[\alpha]_D^{20}$ -127.3° (c = 0.1, DMSO)

[0084] The compounds of Reference examples 125 through 126 were obtained in the same manner as in Reference example 124.

55

R-N

colorless prisms [MeOH]

mp,169~170°C

pale brown crystals

IR ν (KBr) cm⁻¹:1744.2116

Physical properties

[recrystallization solvent]

Elemental analysis for C15H18FN5O3. HCl

Specific rotation [α]_D²⁰-99.8° (c=0.1,DMSO)

NMR(DMSO-d₆) δ ppm:3.67(1H,dd,J=14,6Hz),3. 70-3.80(2H,m),4.02(2H,dd,J=12,5Hz),4.12(1H,t,J=9Hz),4.41(2H,dd,J=12,7Hz),4.80-4.90(1H,m),5.05-5.15(1H,m),7.05(1H,t,J=9Hz),7.22(1

H,dd,J=9,2Hz),7.60(1H,dd,J=13.5,2Hz),9.46(

Specific rotation [α] p^{20} -108.6° (c=0.1,DMSO)

Calcd. %: C,48.46;H,5.15;N,18.84 Found %: C,48.23;H,5.12;N,18.65

5

10

15

20

25

30

35

40

45

Reference example 127

Reference

example

125

126

R

· HCI

[0085] (R)-5-Azidomethyl-3-[4-(4-ethylpiperazin-1-yl)-3-fluorophenyl]-2-oxo-oxazolidine

[0086] To a solution of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine and 2.16 g of potassium carbonate in 50 ml of dried N,N-dimethylformamide, 1.40 ml of ethyl iodide was added dropwise at room temperature, and the mixture was stirred at room temperature for 3 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.53 g of pale brown crystals. Recrystallization from a mixture of ethyl acetate and n-heptane gave colorless crystals having the melting point of from 90 to 91°C.

1H.br-s)

Elemental analysis for C ₁₆ H ₂₁ FN ₆ O ₂						
Calculated %	C,	55.16;	Н,	6.08;	N,	24.12
Found %	c,	55.22;	Н,	6.20;	N,	24.03

Specific rotation $[\alpha]_D^{20}$ -120.9° (c = 0.1, DMSO)

[0087] The compounds of Reference examples 128 through 136 were obtained in the same manner as in Reference example 127.

50

R-N N₂

Reference	R	Physical properties [recrystallization solvent]
example		†
		pale brown needles[i-PrOH]
		mp,113.5~114.5°C
128	n-Pr-N N-	Elemental analysis for C ₁₇ H ₂₃ FN ₆ O ₂
120	سر س	Calcd. % : C,56.34;H,6.40;N,23.19
	•	Found %: C,56.32;H,6.48;N,23.17
		Specific rotation [α] p^{20} -114.3° (c =0.1,DMSO)
		pale yellow scales[i-PrOH]
		mp,102~103°C
100	n-Bu-N N-	Elemental analysis for C ₁₈ H ₂₅ FN ₆ O ₂ · 1/8H ₂ O
129		Calcd. %: C,57.09;H,6.72;N,22.19
!	F	Found %: C,57.10;H,6.86;N,22.20
		Specific rotation [α] p^{20} -104.8° (c=0.1,DMSO)
		colorless needles[AcOEt-i-Pr2O]
	9, /	mp,125~126.5°C
400	EtO CH2-N N	Elemental analysis for C18H28FN6O4
130	F	Calcd. %: C,53.20;H,5.70;N,20.68
		Found %: C,53.03;H,5.47;N,20.49
		Specific rotation [α]n ²⁰ -101.5° (c=0.1,DMSO)
		colorless crystals[AcOEt-i-Pr2O]
	9,	mp,64.5~66°C
101	EtO (CH ₂) ₃ -N N	Elemental analysis for C20H27FN6O4
131	F F	Calcd. %: C,55.29;H,6.26;N,19.34
	} '	Found %: C,55.25;H,6.33;N,19.31
		Specific rotation [α] p^{20} -89.0° (c=0.1,DMSO)

R-N

5	,	

Reference	R	Physical properties
example		[recrystallization solvent]
		pale brown prisms[EtOH]
		mp,105~106℃
		Elemental analysis for C ₁₆ H ₁₉ FN ₆ O ₄
132	Meo	Calcd. %: C,50.79;H,5.06;N,22.21
	F'	Found %: C,50.66;H,5.16;N,22.20
		Specific rotation
		$[\alpha]_{D^{20}-103.9^{\circ}}$ (c=0.1,DMSO)
		pale brown prisms[i-PrOH]
1		mp,80~81.5℃
	% <u>/</u>	Elemental analysis for C ₁₇ H ₂₀ FN ₅ O ₅
133	MeO	Calcd. %: C,51.91;H,5.12;N,17.80
·	F F	Found %: C,51.91;H,4.87;N,17.75
		Specific rotation
	<u> </u>	$[\alpha]_{D^{20}-98.6}^{\circ}$ (c=0.1,DMSO)
		pale yellow prisms[EtOH]
	0	mp,99~101°C
		Elemental analysis for C ₁₈ H ₂₈ FN ₆ O ₄
134 MeO-(CH ₂) ₂ N N-	M90-(CH2/2 R. A.	Calcd. %: C,53.20;H,5.70;N,20.68
	F [*]	Found %: C,53.07;H,5.68;N,20.75
		Specific rotation
		$[\alpha]_{D^{20}-106.9^{\circ}}$ (c=0.1,DMSO)
		pale yellow liquid
		$NMR(DMSO-d_6) \delta ppm:1.50-1.70(2H,m),1.8$
		0-2.00(2H,m), 2.57(2H,t,J=6Hz), 3.20-3.40
		(2H,m),3.23(3H,s),3.56(2H,t,J=6Hz),3.65
	a	3.85(4H,m),3.67(1H,dd,J=13.5,5.5Hz),4.1
135	Manager Andrews	2(1H,t,J=9Hz),4.50-4.60(1H,m),4.80-4.90
139		(1H,m),7.22(1H,dd,J=9,2.5Hz),7.27(1H,t,
	,	J=9Hz),7.54(1H,dd,J=13.5,2.5Hz)
		IR ν (liq.) cm ⁻¹ :1756,2112
		MS(m/z):421(M+)
		Specific rotation
		$[\alpha]_{D^{20}-86.2}^{\circ}$ (c=0.1,DMSO)
		pale brown prisms[i-PrOH]
		mp,82~83°C
	1 % ~	Elemental analysis for C ₁₅ H ₁₆ FN ₅ O ₅
136	MeO	Calcd. %: C,49.32;H,4.41;N,19.17
	F F	Found %: C,49.05;H,4.32;N,19.18
1	l	Specific rotation
		$[\alpha]_{D^{20}-103.9}^{\circ}$ (c=0.1,DMSO)

Reference example 137

[0088] Ethyl (R)-3-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazin-1-yl]propionate

[0089] A solution of 7.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine and 3.56 ml of ethyl acrylate_ in 70 ml of ethanol was heated under reflux for 1 hour. The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (silica gel, diethyl ether) to obtain 7.50 g of colorless crystals. Recrystallization from isopropanol gave colorless crystals having the melting point of from 82 to 83°C.

Elemental analysis for C ₁₉ H ₂₅ FN ₆ O ₄						
Calculated %	C,	54.28;	Н,	5.99;	N,	19.99
Found %	C,	53.99;	Н,	5.88;	N,	19.97

Specific rotation $[\alpha]_D^{20}$ -95.0° (c = 0.1, DMSO)

5

10

15

20

25

30

35

40

50

55

[0090] The compounds of Reference examples 138 through 139 were obtained in the same manner as in Reference example 137.

0	
\mathcal{I}	
R-N	Ó
W-W	人 N .
K-N	人 .N

		~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Reference	R	Physical properties [recrystallization solvent]
example	<u> </u>	
ļ		pale brown needles[MeOH]
į		mp,110~112°C
	NC (CH ₂) ₂ N N	Elemental analysis for C ₁₇ H ₂₀ FN ₇ O ₂
138	\ \tag{\tau}	Calcd. %: C,54.68;H,5.40;N,26.26
	F	Found %: C,54.65;H,5.39;N,26.04
]]	Specific rotation
Ì		$[\alpha]_{D^{20}}$ -114.8° (c=0.1,DMSO)
		colorless needles[AcOEt]
	Me	mp,130.5~131.5°C
1	Me N (CH ₂) ₂ N N	Elemental analysis for C ₁₉ H ₂₆ FN ₇ O ₃
139		Calcd. %: C,54.40;H,6.25;N,23.38
	F	Found %: C,54.37;H,6.35;N,23.20
		Specific rotation
_		$[\alpha]_{D^{20}}$ -100.0° (c=0.1,DMSO)

Reference example 140

[0091] (R)-5-Azidomethyl-3-[3-fluoro-4-[4-(3-phthalimidopropyl)piperazin-1-yl]-phenyl]-2-oxooxazolidine [0092] To a suspension of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine and 2.16 g of potassium _ carbonate in 110 ml of dried N,N-dimethyformamide, 4.60 g of N-(3-bromopropyl)phthalimide was added, and the mixture was stirred with heating at an outer temperature of 50°C for 3 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with diisopropyl ether to obtain 6.54 g of pale brown crystals. Recrystallization from ethyl acetate gave colorless needles having the melting point of from 153 to 154.5°C.

Elemental analysis for C ₂₅ H ₂₆ FN ₇ O ₄						
Calculated % C, 59.16; H, 5.16; N, 19.32						
Found % C, 58.99; H, 5.02; N, 19.29						

Specific rotation $[\alpha]_D^{20}$ -95.3° (c = 0.1, DMSO)

[0093] The compound of Reference example 141 was obtained in the same manner as in Reference example 140.

Reference example 141

 $\textbf{[0094]} \quad \textbf{(R)-5-Azidomethyl-3-[3-fluoro-4-[4-(2-phthalimidoethyl)piperazin-1-yl]-phenyl]-2-oxooxazolidine}$

Appearance: pale yellow crystals (recrystallization solvent: DMF-H₂O)

Melting point: 210.5 to 212°C

Elemental analysis for C ₂₄ H ₂₄ FN ₇ O ₄						
Calculated %	C,	58.41;	Н,	4.90;	N,	19.87
Found %	C,	58.04;	Н,	4.67;	N,	19.72

Specific rotation [α]_D²⁰ -95.1° (c = 0.1, DMSO)

Reference example 142

10

15

20

25

30

35

40

[0095] (R)-3-[4-[4-(3-Aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine

[0096] To a solution of 6.24 g of (R)-5-azidomethyl-3-[3-fluoro-4-[4-(3-phthalimidopropyl)piperazin-1-yl]phenyl]-2-oxooxazolidine in 60 ml of ethanol, 0.66 ml of hydrazine hydrate was added, and the mixture was heated under reflux for 4 hours. The reaction solution was added with water, and acidified with 10 % hydrochloric acid, and the aqueous layer was washed with ethyl acetate. The aqueous layer was alkalified with aqueous sodium hydroxide, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.35 g of a pale brown liquid.

NMR spectrum (DMSO-d₆) δ ppm:

1.55(2H,quin,J=7Hz),2,37(2H,t,J=7Hz),2.51(4H,t,J=4.5Hz),2.62(2H,t,J=7Hz), 2.99(4H,t,J=4.5Hz),3.67(1H,dd, J=13.5,5.5Hz),3.70-3.80(2H,m),4.10(1H,t,J=9Hz), 4.80-4.90(1H,m),7.04(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.46 (1H,dd,J=15,2.5Hz)

IR spectrum v (liq.) cm⁻¹: 1752,2112

Mass spectrum (m/z): 377(M+)

Specific rotation $[\alpha]_D^{20}$ -116.9° (c = 0.1, DMSO)

Reference example 143

[0097] (R)-3-[4-[4-(3-Acetylaminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine

[0098] To a solution of 2.00 g of (R)-3-[4-[4-(3-aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine in 20 ml of pyridine, 1.50 ml of acetic anhydride was added under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 1 hour. The solvent was evaporated under reduced pressure, and then the residue was added with aqueous sodium hydroxide, and the resulting alkaline mixture was extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (alumina, ethyl acetate to ethyl acetate: methanol = 20:1) to obtain 1.63 g of a pale brown liquid.

NMR spectrum (DMSO-d₆) δ ppm:

NMR spectrum (DMSO-d₆) δ ppm:

 $1.57(2H,quin,J=7.5Hz),1.79(3H,s),2.34(2H,t,J=7.5Hz),2.51(4H,t,J=5Hz),2.99(4H,t,J=5Hz),3.00-3.10(2H,m),3.67(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m), \\ 4.10(1H,t,J=9Hz),4.80-4.90(1H,m),7.05(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),\\ 7.46(1H,dd,J=15,2.5Hz),7.68(1H,br-s)$

45 Mass spectrum (m/z): 419(M+)

Specific rotation $[\alpha]_D^{20}$ -96.2° (c = 0.1, DMSO)

Reference example 144

[0099] (R)-5-Azidomethyl-3-[3-fluoro-4-[4-(3-mesylaminopropyl)piperazin-1-yl]-phenyl]-2-oxooxazolidine
[0100] To a solution of 0.90 g of (R)-3-[4-[4-(3-aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine in 20 ml of dried tetrahydrofuran, 0.21 ml of methanesulfonyl chloride was added under ice-cooling and with stirring, and the mixture was stirred under ice-cooling for 2 hours. The reaction solution was alkalified with aqueous sodium hydroxide, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (alumina, ethyl acetate: n-heptane = 1:1) to obtain 0.62 g of pale brown crystals.

1.65(2H,quin,J=7Hz),2.39(2H,t,J=7Hz),2.52(4H,t,J=4.5Hz),2.88(3H,s), 2.99(4H,t,J=4.5Hz),3.00(2H,t,J=7Hz),3.67

(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m), 4.10(1H,t,J=9Hz),4.80-4.90(1H,m),6.87(1H,t,J=5.5Hz),7.05(1H,t,J=9Hz), 7.18(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz)

IR spectrum v (KBr) cm⁻¹: 1734,2112

Mass spectrum (m/z): 455(M+)

Specific rotation $[\alpha]_D^{20}$ -93.3° (c = 0.1, DMSO)

Reference example 145

10

15

20

25

30

35

40

45

50

55

[0101] (R)-5-Azidomethyl-3-[3-fluoro-4-(1-oxidothiomorpholin-4-yl)phenyl]-2-oxo-oxazolidine

[0102] To a solution of 5.30 g of sodium metaperiodate in 56 ml of water, a mixture of 8.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidine in 80 ml of acetonitrile and 80 ml of methanol was added dropwise, and the mixture was stirred at room temperature for 18 hours. The reaction solution was added with water, and extracted with 1,2-dichloroethane. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 7.98 g of pale brown crystals. Recrystallization from isopropanol gave colorless prisms having the melting point of from 123.5 to 125°C.

Elemental analysis for C ₁₄ H ₁₆ FN ₅ O ₃ S						
Calculated %	C,	47.58;	Н,	4.56;	N,	19.82
Found %	C,	47.58;	Н,	4.56;	N,	19.69

Specific rotation [α]_D²⁰ -114.1° (c = 0.1, DMSO)

Reference example 146

[0103] (R)-5-Azidomethyl-3-[3-fluoro-4-(1,1-dioxidothiomorpholin-4-yl)phenyl]-2-oxo oxazolidine

[0104] To a suspension of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidine in 25 ml of water and 75 ml of acetone, 10 ml of 50 % aqueous 4-methylmorpholine-N-oxide and 3.77 g of osmium tetroxide were added under stirring at room temperature, and the mixture was stirred at the same temperature for 10 minutes. The reaction solution was added with water, and extracted with 1,2-dichloroethane. The extract was washed with saturated brine and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.71 g of pale brown crystals. Recrystallization from acetone gave pale brown prisms having the melting point of from 146 to 148°C.

Elemental analysis for C ₁₄ H ₁₆ FN ₅ O ₄ S						
Calculated %	C,	45.52;	Н,	4.37;	N,	18.96
Found %	C,	45.63;	Н,	4.32;	N,	18.84

Specific rotation $[\alpha]_D^{20}$ -108.8° (c = 0.1, DMSO)

Reference example 147

[0105] (R)-1-[4-[4-(5-Azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazine]-carbothioamide

- 1) To a solution of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidine and 2.60 ml of triethylamine in 40 ml of dried tetrahydrofuran, 1.40 ml of thiophosgene was added dropwise under ice-cooling, and the mixture was stirred at the same temperature for 30 minutes. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 4.32 g of (R)-5-azidomethyl-3-[4-(4-chlorothiocarbonylpiperazin-1-yl)-3-fluorophenyl]-2-oxooxazolidine as brown crystals.
- 2) A solution of 4.32 g of the crystals obtained in 1) in 43 ml of dried tetrahydrofuran was stirred with bubbling of ammonia gas at room temperature for 3 hours. The reaction solution was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel, 1,2-dichloroethane: methanol = 20: 1) to obtain 2.95 g of pale brown crystals.

NMR spectrum (DMSO-d_s) δ ppm:

2.99(4H,t,J=5Hz),3.66(1H,dd,J=13.5,5.5Hz),3.70-3.80(2H,m),3.91(4H,t,J=5Hz), 4.11(1H,t,J=9Hz),4.80-4.90(1H,m),7.09(1H,t,J=9Hz),7.20(1H,dd,J=9,2.5Hz), 7.39(2H,br-s),7.50(1H,dd,J=14.5,2.5Hz)

IR spectrum v (KBr) cm⁻¹: 1738,2108,3184,3286,3424 Specific rotation $[\alpha]_D^{20}$ -109.1° (c = 0.1, DMSO)

Reference example 148

5

10

15

20

25

30

35

40

45

50

55

[0106] (R)-N,N-Dimethyl-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazine]carbothioamide [0107] To a solution of 5.00 g of the crystals obtained by the method of Reference example 147-1) in 20 ml of dried tetrahtdrofuran, 10 ml of 50% aqueous dimethylamine was added at room temperature, and the mixture was stirred at the same temperature for 18 hours. The reaction solution was concentrated under reduced pressure, and the residue was washed successively with water and ethanol to obtain 4.25 g of pale brown crystals. Recrystallization from acetonitrile gave pale brown prisms having the melting point of from 160 to 162°C.

Elemental analysis for C ₁₇ H ₂₂ FN ₇ O ₂ S					
Calculated %	C,	50.11;	Н,	5.44;	N, 24.06
Found %	C,	50.38;	Н,	5.44;	N, 23.95

Specific rotation $[\alpha]_D^{20}$ -101.7° (c = 0.1, DMSO)

Reference example 149

[0108] O-Methyl (R)-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazine]thiocarboxylate [0109] A solution of 5.00 g of the crystals obtained by the method of Reference example 147-1) in 50 ml of methanol was stirred with heating to 60°C for 30 minutes, and then stirred at room temperature for 1 hour. The precipitated crystals were collected by filtration, and washed with disopropyl ether to obtain 4.00 g of pale brown crystals. Recrystallization from methanol gave pale brown needles having the melting point of from 138 to 139°C.

Elemental analysis for C ₁₆ H ₁₉ FN ₆ O ₃ S						
Calculated %	C,	48.72;	Н,	4.86;	N,	21.31
Found %	C,	48.79;	Н,	4.84;	N,	20.94

Specific rotation $[\alpha]_D^{20}$ -105.4° (c = 0.1, DMSO)

[0110] The compounds of Reference examples 150 through 151 were obtained in the same manner as in Reference example 149.

Physical properties Reference R example [recrystallization solvent] brown crystals [EtOH] mp,122.5~125.5℃ Elemental analysis for C₁₇H₂₁FN₆O₃S 150 Calcd. %: C,49.99;H,5.18;N,20.58 Found %: C,50.16;H,5.06;N,20.54 Specific rotation $[\alpha]_{D^{20}-104.5}^{\circ}$ (c=0.1,DMSO) pale brown crystals[MeOH] mp,122.5~124.5℃ Elemental analysis for C18H28FN6O3S 151 Calcd. %: C,51.17;H,5.49;N,19.89 Found %: C,51.09;H,5.26;N,19.78 Specific rotation $[\alpha]_{D^{20}-100.3}^{\circ}$ (c=0.1,DMSO)

Reference example 152

5

10

15

20

25

30

35

40

45

[0111] Methyl (R)-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazine]carbodithioate [0112] To a solution of 5.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine and 2.20 ml of triethylamine in 50 ml of dried tetrahydrofuran, 2.00 ml of carbon disulfide was added dropwise under ice-cooling, and the mixture was stirred at room temperature for 18 hours. Furthermore, the mixture was added with 1.00 ml of methyl iodide under ice-cooling, and stirred at the same temperature for 30 minutes. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with ethanol to obtain 5.96 g of colorless crystals. Recrystallization from acetonitrile gave pale brown prisms having the melting point of from 139.5 to 140°C.

Elemental analysis for C ₁₆ H ₁₉ FN ₆ O ₂ S ₂						
Calculated %	C,	46.81;	Н,	4.67;	N,	20.47
Found %	C,	46.96;	Н,	4.68;	N,	20.41

Specific rotation $[\alpha]_D^{20}$ -104.6° (c = 0.1, DMSO)

Reference example 153

[0113] (R)-N-Methyl-1-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazine]carbothioamide [0114] To a solution of 3.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine in 30 ml of dried tetrahydrofuran, 0.71 ml of methyl isothiocyanate was added under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 1 hour. The reaction solution was added with water, and the precipitated crystals were collected by filtration, and then washed with diisopropyl ether to obtain 3.63 g of colorless crystals. Recrystallization from ethyl acetate gave colorless needles having the melting point of from 156.5 to 158°C.

Elemental analysis for C ₁₆ H ₂₀ FN ₇ O ₂ S						
Calculated %	C,	48.84;	Н,	5.12;	N,	24.92
Found %	C,	48.70;	Н,	5.09;	N,	24.88

Specific rotation $[\alpha]_D^{20}$ -111.7° (c = 0.1, DMSO)

5

10

15

20

25

30

35

40

45

50

[0115] The compounds of Reference examples 154 through 156 were obtained in the same manner as in Reference example 153.

R-N

Reference	R	Physical properties
example		[recrystallization solvent]
]		colorless prisms[EtOH]
		mp,174~175.5°C
		Elemental analysis for C17H22FN7O2S
154		Calcd. % : C,50.11;H,5.44;N,24.06
	,	Found % : C,50.16;H,5.28;N,23.98
1	·	Specific rotation
		$[\alpha]_{D^{20}-108.8^{\circ}}$ (c=0.1,DMSO)
		colorless crystals[EtOH]
		mp,172.5~174.5℃
		Elemental analysis for C ₁₈ H ₂₄ FN ₇ O ₂ S
155	""" N N N N N N N N	Calcd. % : C,51.29;H,5.74;N,23.26
	F	Found %: C,51.49;H,5.72;N,23.08
ļ		Specific rotation
		$[\alpha]_{D^{20}-104.0^{\circ}}$ (c=0.1,DMSO)
		colorless crystals
		NMR(DMSO-d ₆) δ ppm:1.68(2H,quin,J=7
	·	Hz),2.37(2H,t,J=7Hz),2.53(4H,t,J=5H
		z),2.83(3H,d,J=4.5Hz),3.00(4H,t,J=5H
	s	z),3.30-3.45(2H,m),3.67(1H,dd,J=13.5,
	Ma_ (CH ₂) ₃ _ (CH ₂) _ (CH ₂) ₃ _ (CH ₂) _ (CH ₂) ₃ _ (CH ₂) _ (CH ₂	5.5Hz),3.74(1H,dd,J=13.5,3.5Hz),3.74(
156	H H \	1H,dd,J=9,6Hz),4.11(1H,t,J=9Hz),4.80
	ŗ	-4.90(1H,m),7.05(1H,t,J=9Hz),7.18(1H
		,dd,J=9,2.5Hz),7.31(1H,br-s),7.37(1H,
		br-s),7.46(1H,dd,J=15,2.5Hz)
		IR ν (KBr) cm ⁻¹ :1764,2104,3240
		Specific rotation
	1	$[\alpha]_{D^{20}}-89.8^{\circ}$ (c=0.1,DMSO)

Reference example 157

[0116] (R)-3-[4-[4-(5-Azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazin-1-yl]propyl isothiocyanate [0117] To a solution of 2.00 g of (R)-3-[4-[4-(3-aminopropyl)piperazin-1-yl]-3-fluorophenyl]-5-azidomethyl-2-oxooxazolidine and 0.74 ml of triethylamine in 20 ml of dried tetrahydrofuran, 0.64 ml of carbon disulfide was added dropwise under ice-cooling, and the mixture was stirred at the same temperature for 5 hours. The mixture was added with 0.51 ml of ethyl chlorocarbonate, and further stirred at the same temperature for 1.5 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate) to obtain 0.85 g of a brown liquid.

NMR spectrum (DMSO-d₆) δ ppm:

 $1.84(2H,quin,J=6.5Hz),2.43(2H,t,J=6.5Hz),2.53(4H,t,J=4.5Hz),3.00(4H,t,J=4.5Hz), \quad 3.60-3.80(5H,m),4.11(1H,t,J=9Hz),\\ 4.80-4.90(1H,m),7.05(1H,t,J=9Hz), \quad 7.18(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=14.5,2.5Hz)\\ 1R spectrum v (liq.) cm⁻¹: 1754,2112,2184\\ Mass spectrum (m/z): 419(M+)$

Specific rotation $[\alpha]_D^{20}$ -89.1° (c = 0.1, DMSO)

Reference example 158

10

20

35

40

50

55

5 [0118] Methyl (R)-N-[3-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]-piperazin-1-yl]propyl]thiocarbarnate

[0119] To 25 ml of dried methanol, 0.87 g of 60 % sodium hydride was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 30 minutes. Then, the mixture was added with a solution of 4.56 g of (R)-3-[4-[4-(5-azidomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazin-1-yl]propyl isothiocyanate in 30 ml of dried methanol-dried tetrahydrofuran (2:1), and stirred at room temperature for 1.5 hours. The reaction mixture was acidified with ice water and 10 % hydrochloric acid, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 2:1) to obtain 4.32 g of a brown liquid.

15 NMR spectrum (DMSO-d₆) δ ppm:

 $\begin{array}{lll} 1.60-1.75(2H,m), 2.39(2H,t,J=6.5Hz), 2.53(4H,t,J=5Hz), 3.02(4H,t,J=5Hz), & 3.40-3.50(2H,m), 3.65(1H,dd,J=13.5,5.5Hz), 3.72(1H,dd,J=13.5,3.5Hz), & 3.74(1H,dd,J=9,6Hz), 3.87(3H,s), 4.10(1H,t,J=9Hz), 4.80-4.90(1H,m), 7.03(1H,t,J=9Hz), 7.17(1H,dd,J=9,2.5Hz), 7.41(1H,dd,J=15.5,2.5Hz), 8.77(1H,br-s) & 3.40-3.50(2H,m), 3.65(1H,dd,J=16.5Hz), 3.40-3.50(2H,m), 3.40-3.50(2H,m), 3.65(1H,dd,J=16.5Hz), 3.40-3.50(2H,m), 3.65(1H,dd,J=16.5Hz), 3.40-3.50(2H,m), 3.65(1H,dd,J=16.5Hz), 3.40-3.50(2H,m), 3.65(1H,dd,J=16.5Hz), 3.40-3.50(2H,m), 3$

IR spectrum v (liq.) cm⁻¹: 1748,2112,3284 Mass spectrum (m/z) : 451(M⁺)

Specific rotation $\left[\alpha\right]_{D}^{20}$ -85.5° (c = 0.1, DMSO)

Reference example 159

[0120] (R)-5-Azidomethyl-3-[3-fluoro-4-(4-oxopiperidin-1-yl)phenyl]-2-oxooxazolidine
[0121] A suspension of 1.45 g of (R)-5-azidomethyl-3-[4-(1,4-dioxa-8-azaspiro[4.5]-decan-8-yl)-3-fluorophenyl]-2-oxooxazolidine and 1.10 g of p-toluenesulfonic acid in 60 ml of acetone-water (1:1) was heated under reflux for 18 hours. The solvent was evaporated under reduced pressure, and the residue was neutralized with aqueous sodium hydrogencarbonate, and then extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:1) to obtain 1.20 g of colorless crystals. Recrystallization from ethanol gave colorless crystals having the melting point of from 99.5 to 101°C.

Elemental analysis for C ₁₅ H ₁₆ FN ₅ O ₃						
Calculated %	C,	54.05;	Н,	4.84;	N,	21.01
Found %	C,	54.02;	Н,	4.87;	N,	21.18

Specific rotation $[\alpha]_D^{20}$ -118.4° (c = 0.1, DMSO)

Reference example 160

[0122] (R)-5-Azidomethyl-3-[3-fluoro-4-(4-hydroxyiminopiperidin-1-yl)phenyl]-2-oxo-oxazolidine

[0123] A suspension of 6.75 g of (R)-5-azidomethyl-3-[3-fluoro-4-(4-oxopiperidin-1-yl)phenyl]-2-oxooxazolidine, 1.55 g of hydroxylamine hydrochloride and 3.66 g of sodium acetate in 135 ml of methanol was stirred at room temperature for 1 hour. The reaction solution was added with water, and the precipitated crystals were collected by filtration, and then washed with diisopropyl ether to obtain 6.52 g of pale brown crystals. Recrystallization from ethyl acetate gave colorless prisms having the melting point of from 155 to 156°C.

Elemental analysis for C ₁₅ H ₁₇ FN ₆ O ₃						
Calculated %	C,	51.72;	Н,	4.92;	N,	24.13
Found %	C,	51.72;	Н,	4.81;	N,	24.22

Specific rotation $[\alpha]_D^{20}$ -131.7° (c = 0.1, DMSO)

Reference example 161

[0124] (R)-5-Azidomethyl-3-[3-fluoro-4-(4-thiobenzoylpiperazin-1-yl)phenyl]-2-oxo-oxazolidine

[0125] To a solution of 2.00 g of (R)-5-azidomethyl-3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidine and 1.97 ml of triethylamine in 20 ml of dried 1,2-dichloroethane, 10.0 g of thiobenzoyl chloride was added dropwise under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 1 hour. The reaction solution was added with water, and extracted with 1,2-dichloroethane. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, ethyl acetate: n-heptane = 1:4) to obtain 3.30 g of a green liquid.

NMR spectrum (CDCl₃) δ ppm:

10

20

30

35

40

 $3.04(2H,t,J=5Hz),3.27(2H,t,J=5Hz),3.59(1H,dd,J=13.5,4.5Hz),\ 3.71(1H,dd,J=13.5,4.5Hz),3.76(2H,t,J=5Hz),3.88(1H,dd,J=8.5,6Hz),\ 4.05(1H,t,J=8.5Hz),4.61(2H,t,J=5Hz),4.75-4.80(1H,m),6.94(1H,t,J=9Hz),\ 7.13(1H,d,J=9Hz),7.30-7.40(5H,m),7.48(1H,dd,J=14,2.5Hz)$

Mass spectrum (m/z): 440(M+)

Specific rotation $[\alpha]_D^{20}$ -85.3° (c = 0.1, DMSO)

Reference example 162

[0126] (S)-5-Aminomethyl-2-oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidine

[0127] A solution of 8.50 g of (R)-5-azidomethyl-2-oxo-3-[4-(thiomorpholin-4-yl)-phenyl]oxazolidine and 7.68 g of triphenylphosphine in 130 ml of dried tetrahydrofuran was stirred at room temperature for 15 hours. Furthermore, the mixture was added with 4.8 ml of water, and stirred with heating to 40°C for 14 hours. The reaction solution was cooled, then added with 100 ml of water, acidified with 10 % hydrochloric acid, and then extracted with diethyl ether. The aqueous layer was alkalified with potassium carbonate, and extracted with a mixture of dichloromethane-methanol (30:1). The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 6.88 g of colorless crystals. Recrystallization from ethyl acetate gave colorless crystals having the melting point of from 119.5 to 121°C.

Elemental analysis for C ₁₄ H ₁₉ N ₃ O ₂ S						
Calculated %	C,	57.31;	Н,	6.53;	N,	14.32
Found %	C,	57.36;	Н,	6.45;	N,	14.06

Specific rotation $[\alpha]_D^{20}$ -35.9° (c = 0.1, DMSO)

[0128] The compounds of Reference examples 163 through 212 were obtained in the same manner as in Reference example 162.

66

50

45

R-N NH

5	
10	
15	
20	
25	
30	
35	
40	

Reference example	R	Physical properties [recrystallization solvent]
163	0=\$_N-\\\\	pale brown crystals NMR(CDCl ₃) δ ppm:1.36(2H,br-s),2.95-3.00(5H, m),3.13(1H,dd,J=13.5,4Hz),3.20-3.30(2H,m),3 .70-3.80(2H,m),3.83(1H,dd,J=8.5,7Hz),4.01(1 H,t,J=8.5Hz),4.60-4.70(1H,m),7.03(1H,t,J=9 Hz),7.12(1H,dd,J=9,2Hz),7.54(1H,dd,J=14,2 Hz) IR ν (KBr) cm ⁻¹ :1750,3400 MS(m/z):327(M+) Specific rotation [α] _D 20-39.0° (c=0.1,DMSO)
164	\$\$_____	colorless prisms [EtOH] mp,162~163°C Elemental analysis for C ₁₄ H ₁₈ FN ₃ O ₄ S Calcd. %: C,48.97;H,5.28;N,12.24 Found %: C,48.92;H,5.28;N,12.08 Specific rotation [α] _D ²⁰ -32.9° (c=0.1,DMSO)
165	__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	colorless crystals[AcOEt] mp,100~101.5°C Elemental analysis for $C_{14}H_{18}FN_3O_2$ Calcd. %: C,60.20;H,6.50;N,15.04 Found %: C,60.16;H,6.44;N,15.18 Specific rotation [α] $_{D^{20}}$ -38.9° (c=0.1,DMSO)
166		pale brown crystals [i-PrOH-i-Pr ₂ O] mp,90~92°C Elemental analysis for $C_{15}H_{20}FN_3O_2$ Calcd. %: C,61.42;H,6.87;N,14.32 Found %: C,61.16;H,6.56;N,14.40 Specific rotation [α]p ²⁰ -36.1° (c=0.1,DMSO)
167	MeO — N——————————————————————————————————	colorless needles [AcOEt-i-Pr ₂ O] mp,102~102.5°C Elemental analysis for $C_{16}H_{22}FN_3O_3$ Calcd. %: C,59.43;H,6.86;N,12.99 Found %: C,59.13;H,6.72;N,12.89 Specific rotation [α] α 0-20-35.0° (c=0.1,DMSO)

R-N NH₂

Reference	R	Physical properties
example		[recrystallization solvent]
	EtO—N—F	pale brown crystals[i-PrOH]
		mp,85~86.5°C
100		Elemental analysis for C17H24FN3O3
168		Calcd. %: C,60.52;H,7.17;N,12.45
		Found %: C,60.28;H,7.42;N,12.42
		Specific rotation [α] $_{D}^{20}$ -29.1° (c=0.1,DMSO)
		colorless needles[AcOEt-i-Pr2O]
}		mp,111.5~113°C
100	Me—\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Elemental analysis for C16H22FN3O2
169		Calcd. %: C,62.52;H,7.21;N,13.67
		Found %: C,62.43;H,7.43;N,13.59
		Specific rotation [α] _D ²⁰ -35.9° (c=0.1,DMSO)
	Et-\N-\	colorless plates[i-PrOH]
		mp,113~114°C
170		Elemental analysis for C ₁₇ H ₂₄ FN ₃ O ₂
170		Calcd. %: C,63.53;H,7.53;N,13.07
<u> </u>		Found %: C,63.34;H,7.84;N,12.97
		Specific rotation [α] _D ²⁰ -35.9° (c=0.1,DMSO)
		pale brown crystals
1	MeO —(CH ₂) ₂ —0 — N — F	NMR(DMSO-d ₆) & ppm:1.52(2H,br-s),1.55-1.65
		(2H,m),1.90-2.00(2H,m),2.70-2.85(3H,m),2.8
		5(1H,dd,J=13.5,5Hz),3.15-3.25(2H,m),3.27(3
		H,s),3.40-3.50(1H,m),3.45(2H,t,J=5Hz),3.56(
171		2H,t,J=5Hz),3.81(1H,dd,J=9,6.5Hz),4.01(1H
		,t,J=9Hz),4.55-4.65(1H,m),7.05(1H,t,J=9Hz)
		7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J=15,2.5
		Hz) MS(m/z):367(M+)
		Specific rotation [α] p^{20} -30.1° (c=0.1,DMSO)
172	MeO — N— F	pale brown crystals[AcOEt]
		mp,105~106.5°C
		Elemental analysis for C ₁₄ H ₁₈ FN ₃ O ₃
		Calcd. %: C,56.94;H,6.14;N,14.23
		Found %: C,56.68;H,5.92;N,14.00
	}	Specific rotation [α] _D 20-36.1° (c=0.1,DMSO)
	<u> </u>	Discourse research for Innort (c-0.1,Distro)

R-N NH

Physical properties Reference R [recrystallization solvent] example brown liquid 10 $NMR(DMSO-d_6) \delta ppm:1.54(2H,br-s),2.79(1H,$ dd,J=13.5,5Hz),2.84(1H,dd,J=13.5,5Hz),3.2 6(3H,s),3.45(2H,t,J=4.5Hz),3.53(2H,t,J=4.5Hz)Hz),3.60-3.65(2H,m),3.78(1H,dd,J=8.5,6.5H z),3.98(1H,t,J=8.5Hz),4.05-4.15(2H,m),4.35-15 173 4.45(1H,m), 4.50-4.60(1H,m), 6.57(1H,t,J=8.5Hz),7.12(1H,dd,J=8.5,2Hz),7.38(1H,dd,J=1)4.5,2HzIR ν (liq.) cm⁻¹:1744,3384 MS(m/z):339(M+)20 Specific rotation [α] p^{20} -27.9° (c=0.1,DMSO) colorless crystals[AcOEt-i-Pr2O] mp.87~87.5℃ Elemental analysis for C₁₆H₂₂FN₃O₂ 25 174 Calcd. %: C,62.52;H,7.21;N,13.67 Found %: C,62.23;H,7.28;N,13.51 Specific rotation [α] $_{D^{20}-44.0^{\circ}}$ (c=0.1,DMSO) colorless amorphous solid NMR(DMSO-d₆) & ppm:2.27(3H,s),2.80(1H,dd, 30 J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),3.07(2 H,br-s),3.82(1H,dd,J=8.5,6Hz),4.02(1H,t,J=8.5Hz),4.53-4.61(1H,m),7.18(2H,d,J=8.5Hz)175 ,7.43(2H,d,J=8.5Hz)35 $IR \nu (KBr) cm^{-1}:1748,3356$ MS(m/z):206(M+)Specific rotation [α] p^{20} -38.1° (c=0.1,DMSO) pale yellow crystals $NMR(DMSO-d_6) \delta ppm:1.60(2H,br-s),2.19(3H,$ 40 s),2.22(3H,s),2.80(1H,dd,J=13.5,5.5Hz),2.85(1H,dd,J=13.5,5.5Hz),3.81(1H,dd,J=9,6Hz),4.01(1H,t,J=9Hz),4.50-4.60(1H,m),7.11(1H,176 $d_{J}=8.5Hz$), $7.27(1H,dd_{J}=8.5,2.5Hz$), 7.32(1H,d,J=2.5Hz45 IR ν (KBr) cm⁻¹:1730,3420 MS(m/z):220(M+)Specific rotation [α] 20 -37.0° (c=0.1,DMSO)

55

50

R-N NHa

Reference	R	Physical properties
example		[recrystallization solvent]
177	MeO(CH ₂) ₂ -O	pale yellow crystals NMR(CDCl ₃) δ ppm:1.31(2H,br-s),2.98(1 H,dd,J=13.5,4.5Hz),3.11(1H,dd,J=13.5 ,4.5Hz),3.45(3H,s),3.76(2H,t,J=4.5Hz) 3.82(1H,dd,J=8.5,6.5Hz),4.00(1H,t,J=8.5Hz),4.18(2H,t,J=4.5Hz),4.60-4.70(1H,m),7.00(1H,t,J=9Hz),7.10-7.20(1H,m),7.47(1H,dd,J=13,3Hz) IR ν (KBr) cm ⁻¹ :1746,3328,3396 MS(m/z):284(M ⁺) Specific rotation
	<u></u>	$[\alpha]_{D^{20}}$ -33.0° (c=0.1,DMSO)
178	ble N————————————————————————————————————	pale brown needles [AcOEt-i-Pr ₂ O] mp,91.5~92°C Elemental analysis for $C_{12}H_{17}N_8O_2$ Calcd. %: C,61.26;H,7.28;N,17.86 Found %: C,60.90;H,7.16;N,17.60 Specific rotation [α] $_{\rm D}^{20}$ -32.9° (c=0.1,DMSO)
179	Me N	reddish brown crystals NMR(DMSO-ds) δ ppm:1.88(2H,br-s),2.7 4(6H,s),2.79(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),3.80(1H,dd,J=9,6Hz),4.00(1H,t,J=9Hz),4.50-4.65(1H,m),6 97(1H,t,J=8.5Hz),7.16(1H,dd,J=8.5,2.5Hz),7.44(1H,dd,J=15.5,2.5Hz) IR ν (KBr) cm ⁻¹ :1732,3336,3372 MS(m/z):253(M+) Specific rotation [α] α 20-45.0° (c=0.1,DMSO)
180	Me N	colorless crystals[AcOEt-i-Pr ₂ O] mp,51~52°C Elemental analysis for C ₁₃ H ₁₈ FN ₃ O ₂ Calcd. %: C,58.41;H,6.79;N,15.72 Found %: C,58.42;H,6.78;N,15.52 Specific rotation [α] _D ²⁰ -45.8° (c=0.1,DMSO)

. 45

R-N NH2

5

Reference

181

example

182		Elemental analysis for $C_{14}H_{18}N$ Calcd. %: C,68.27;H,7.37;N, Found %: C,68.03;H,7.53;N, Specific rotation [α] $_{D}^{20}$ -36.0° (c=0.1,DMSO)
183	EtO CH ₂ -N N-	pale brown crystals NMR(DMSO-d6) δ ppm:1.21(3] z),2.15(2H,br-s),2.68(4H,t,J 80(1H,dd,J=13.5,5Hz),2.85(3.5,5Hz),2.99(4H,t,J=4.5Hz)),3.81(1H,dd,J=9,6.5Hz),4.0 Hz),4.11(2H,q,J=7.5Hz),4.5 m),7.05(1H,t,J=9Hz),7.18(1.5Hz),7.47(1H,dd,J=14.5,2.5) IR ν (KBr) cm ⁻¹ :1740,3388 MS(m/z):380(M+) Specific rotation [α] \mathbf{p}^{20} -34.0° (c=0.1,DMSO)
184	O (CH ₂) ₂ -N N-	colorless crystals [i-PrOH-i-Promp,88~88.5°C Elemental analysis for C ₁₉ H ₂₇] Calcd. %: C,57.85;H,6.90;N, Found %: C,57.57;H,7.15;N Specific rotation [α] _D ²⁰ -30.0° (c=0.1,DMSO)

R

Physical properties [recrystallization solvent] brown liquid NMR(DMSO-de) δ ppm:0.99(6H,t,J=7.5H z),1.55(2H,br-s),2.80(1H,dd,J=14,5Hz) .2.85(1H,dd,J=14.5Hz).3.11(4H,a,J=7.5Hz),3.81(1H,dd,J=9,6.5Hz),4.02(1H,t, J=9Hz),4.55-4.65(1H,m),7.02(1H,t,J=9 .5Hz),7.17(1H,dd,J=9.5,2.5Hz),7.43(1H,dd,J=15.5,2.5Hz) IR ν (liq.) cm⁻¹:1750,3392 MS(m/z):281(M+)Specific rotation $[\alpha]_{D^{20}-33.3}^{\circ}$ (c=0.1,DMSO) colorless prisms[i-PrOH-n-Hexane] mp,81~82.5℃ tal analysis for C14H18N2O2 d. %: C,68.27;H,7.37;N,11.37 d %: C,68.03;H,7.53;N,11.31 c rotation 10 -36.0° (c=0.1,DMSO) own crystals OMSO-d₆) δ ppm:1.21(3H,t,J=7.5H 15(2H,br-s),2.68(4H,t,J=4.5Hz),2.H,dd,J=13.5,5Hz),2.85(1H,dd,J=1)Hz),2.99(4H,t,J=4.5Hz),3.26(2H,s 1(1H,dd,J=9.6.5Hz),4.02(1H,t,J=9)4.11(2H,q,J=7.5Hz),4.55-4.65(1H, .05(1H,t,J=9Hz),7.18(1H,dd,J=9,2)),7.47(1H,dd,J=14.5,2.5Hz)Br) cm⁻¹:1740,3388 z):380(M+)c rotation ²⁰-34.0° (c=0.1,DMSO) ss crystals[i-PrOH-i-Pr2O] ~88.5℃ ntal analysis for C19H27FN4O4 d. %: C,57.85;H,6.90;N,14.20 nd %: C,57.57;H,7.15;N,14.06 c rotation

55

45

R-N NHa

Physical properties Reference R [recrystallization solvent] example pale brown crystals 10 NMR(DMSO-d₆) δ ppm:1.19(3H,t,J=7.5H z),1.71(2H,quin,J=7.5Hz),1.71(2H,br-s),2.31(2H,t,J=7.5Hz),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=5Hz),2.80(1H,dd,J=13. 5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.97(4 15 H,t,J=5Hz),3.81(1H,dd,J=9,6.5Hz),4.0 185 1(1H,t,J=9Hz),4.06(2H,q,J=7.5Hz),4.55-4.65(1H,m), 7.03(1H,t,J=9Hz), 7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=15.5,2. 5Hz) 20 MS(m/z):408(M+)Specific rotation $[\alpha]_{D^{20}-26.9}^{\circ}$ (c=0.1,DMSO) colorless prisms[i-PrOH] 25 mp,109~111℃ Elemental analysis for C16H21FN4O4 Calcd. %: C,54.54;H,6.01;N,15.90 186 Found %: C,54.31;H,6.00;N,15.83 Specific rotation 30 $[\alpha]_{D^{20}-29.7}^{\circ}$ (c=0.07,DMSO) pale yellow crystals[i-PrOH] mp,134~135℃ Elemental analysis for C18H25FN4O4 Calcd. %: C,56.83;H,6.62;N,14.73 35 187 Found %: C,56.86;H,6.74;N,14.66 Specific rotation $[\alpha]_{D^{20}-35.0}^{\circ}$ (c=0.1,DMSO) colorless crystals [AcOEt-i-Pr2O] 40 mp,138~139°C Elemental analysis for C19H27FN4O4 Calcd. %: C,57.85;H,6.90;N,14.20 188 Found %: C,57.75;H,7.14;N,14.06 Specific rotation 45 $[\alpha]_{D^{20}-26.9}^{\circ}$ (c=0.1,DMSO)

50

5

5	NH ₂			
	Reference	R	Physical properties	
	example_	K	[recrystallization solvent]	
			pale yellow crystals	
10			NMR(DMSO-d ₆) & ppm:1.89(2H,br-s),2.22(3H,s	
10),2.46(4H,t,J=5Hz),2.79(1H,dd,J=14,5Hz),2.	
			84(1H,dd,J=14,5Hz),2.98(4H,t,J=5Hz),3.81(
	189	Ma-N N-	1H,dd,J=9,6Hz),4.01(1H,t,J=9Hz),4.54-4.61(
	109	سر پ	1H,m),7.03(1H,t,J=8.5Hz),7.18(1H,dd,J=8.5,	
15		r	2Hz),7.46(1H,dd,J=15.5,2Hz)	
			IR ν (KBr) cm ⁻¹ :1734,3328,3372	
			MS(m/z):308(M+)	
			Specific rotation [α] \mathbf{p}^{20} -34.0° (c=0.1,DMSO)	
20		Et-N N-	colorless needles[AcOEt-i-Pr ₂ O]	
20			mp,104~105.5°C	
•	190		Elemental analysis for C ₁₆ H ₂₃ FN ₄ O ₂	
	130	ے ا	Calcd. %: C,59.61;H,7.19;N,17.38	
		r	Found %: C,59.46;H,7.17;N,17.37	
25			Specific rotation [\alpha] \text{p20-37.0} (c=0.1, DMSO)	
			pale brown crystals[AcOEt-i-Pr2O]	
			mp,93~95°C	
	191	n-Pr-N_N-	Elemental analysis for C ₁₇ H ₂₅ FN ₄ O ₂	
30			Calcd. %: C,60.70;H,7.49;N,16.65	
00			Found %: C,60.47;H,7.38;N,16.55	
	<u></u>		Specific rotation [α] _D ²⁰ -37.9° (c=0.1,DMSO)	
35		n-Bu-N_N-\	pale yellow crystals[i-PrOH-i-Pr ₂ O]	
	192		mp,98~100°C	
			Elemental analysis for C ₁₈ H ₂₇ FN ₄ O ₂ ·2/5H ₂ O	
			Calcd. %: C,60.45;H,7.83;N,15.67	
			Found %: C,60.62;H,7.81;N,15.46	
	1 .	1	Specific rotation [α] p^{20} -34.1° (c=0.1,DMSO)	

R-N NH-

Reference Physical properties R [recrystallization solvent] example pale yellowish brown liquid NMR(DMSO-d₆) δ ppm:1.54-1.62(2H,m), 10 1.82(2H,br-s),1.85-1.92(2H,m),2.81(1H $dd_{J}=14.5Hz$),2.86(1H,dd,J=14.5Hz),3 .22-3.29(2H,m),3.60(3H,s),3.64-3.70(2 H,m),3.82(1H,dd,J=9,6Hz),4.03(1H,t,J15 193 =9Hz),4.45-4.52(1H,m),4.57-4.63(1H, m),7.22(1H,dd,J=9,2.5Hz),7.25(1H,t,J)=9Hz),7.54(1H,dd,J=13.5,2.5Hz) IR ν (liq.) cm⁻¹:1688,1748,3368 MS(m/z):367(M+)20 Specific rotation $[\alpha]_{D^{20}-26.0^{\circ}}$ (c=0.1,DMSO) colorless prisms[AcOEt] mp,119.5~122°C Elemental analysis for 25 C₁₅H₁₈FN₈O₅·1/6H₂O 194 Calcd. %: C,52.63;H,5.40;N,12.28 Found %: C,52.49;H,5.29;N,12.27 Specific rotation $[\alpha]_{D^{20}-30.9}^{\circ}$ (c=0.1,DMSO) 30 pale yellow liquid $NMR(DMSO-d_6) \delta ppm:1.50-1.70(2H,m),$ 1.80-2.00(2H,m),1.91(2H,br-s),2.57(2H t,J=6.5Hz,2.81(1H,dd,J=13.5,5Hz),2. 35 86(1H,dd,J=13.5,5Hz),3.20-3.40(2H,m)),3.23(3H,s),3.56(2H,t,J=6.5Hz),3.82(1H,dd,J=9,6Hz),4.03(1H,t,J=9Hz),4.45-195 4.55(1H,m),4.55-4.65(1H,m),7.22(1H,d $d_{J}=9,2.5Hz$,7.25(1H,t,J=9Hz),7.54(1 40 H,dd,J=13.5,2.5Hz) IR ν (liq.) cm⁻¹:1634,1750,3464 MS(m/z):395(M+)Specific rotation $[\alpha]_{D^{20}-34.7^{\circ}}$ (c=0.1,DMSO) 45

50

5

_		~?		
5	Reference	R	Physical properties	
	example	K	[recrystallization solvent]	
			pale brown crystals	
			NMR(DMSO-d ₆) δ ppm:2.45-2.65(6H,m),2.90	
10			-3.10(4H,m),3.30-3.40(3H,m),3.50-3.65(2H	
		, , , ,	,m),4.00-4.15(1H,m),4.75-4.85(1H,m),7.00(
	100	(CH ₂) ₂ ·N	1H,t,J=9Hz), $7.10-7.25(2H,m)$, $7.35-7.55(4H)$	
	196		,m)	
'		J	IR ν (KBr) cm ⁻¹ :1712,1750,3424	
15			MS(m/z):467(M+)	
			Specific rotation	
			$[\alpha]_{D^{20}-30.0^{\circ}}$ (c=0.1,DMSO)	
			pale brown amorphous solid	
20			NMR(DMSO-de) & ppm:1.57(2H,quin,J=7.5H	
20			z),1.62(2H,br-s),1.79(3H,s),2.34(2H,t,J=7.	
			5Hz),2.51(4H,t,J=5Hz),2.80(1H,dd,J=13.5,	
		0	5Hz),2.85(1H,dd,J=13.5,5Hz),2.98(4H,t,J=	
	·	, (CH ₂) ₃ . (CH	5Hz),3.00-3.10(2H,m),3.81(1H,dd,J=9,6.5	
25	197		Hz),4.01(1H,t,J=9Hz),4.55-4.65(1H,m),7.0	
			4(1H,t,J=9Hz),7.18(1H,dd,J=9,2.5Hz),7.47	
			(1H,dd,J=15.5,2.5Hz),7.68(1H,br-s)	
			IR ν (KBr) cm-1:1724,1744,3304	
			MS(m/z):393(M+)	
30			Specific rotation	
			$[\alpha]_{D^{20}-28.9}^{\circ}$ (c=0.1,DMSO)	
			pale brown crystals	
	ļ	1	NMR(DMSO-d ₆) δ ppm:1.65(2H,quin,J=7Hz)	
35	İ		,1.77(2H,br-s),2.39(2H,t,J=7Hz),2.52(4H,t,	
		1	J=4.5Hz),2.80(1H,dd,J=13.5,5Hz),2.85(1H,	
	Į	į	dd,J=13.5,5Hz),2.88(3H,s),2.98(4H,t,J=4.5	
		Ms(CH ₂)3	Hz),3.00(2H,t,J=7Hz),3.81(1H,dd,J=9,6.5	
	198		Hz),4.02(1H,t,J=9Hz),4.55-4.65(1H,m),6.8	
40		F'	7(1H,br-s),7.04(1H,t,J=9Hz),7.18(1H,dd,J)	
			=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz)	
			IR ν (KBr) cm ⁻¹ :1726,3276	
			MS(m/z):429(M+)	
45			Specific rotation	
43			$[\alpha]_{D^{20}-23.0^{\circ}}$ (c=0.1,DMSO)	

R-N NH,

5		ſ
10		
15		
20		
25		
30		
35		

Reference	R	Physical properties
example R		[recrystallization solvent]
		colorless needles[i-PrOH]
		mp,115.5~117°C
	(CH ₂) ₂ -N	Elemental analysis for C17H22FN5O2
199	NC N	Calcd. %: C,58.78;H,6.38;N,20.16
[F [′]	Found %: C,58.60;H,6.38;N,20.09
}		Specific rotation
		$[\alpha]_{D^{20}-36.9}^{\circ}$ (c=0.1,DMSO)
		colorless crystals[AcOEt]
	Me	mp,142~144°C
	Ma_N (CH ₂) ₂ N N—(Elemental analysis for C ₁₉ H ₂₈ FN ₅ O ₃
200		Calcd. %: C,58.00;H,7.17;N,17.80
	F	Found %: C,57.82;H,7.41;N,17.59
	,	Specific rotation
		$[\alpha]_{D^{20}-27.9^{\circ}}$ (c=0.1,DMSO)
		colorless crystals
		NMR(DMSO-d ₆) δ ppm:1.62(2H,br-s),2.8
		0(1H,dd,J=14,5Hz),2.85(1H,dd,J=14,4.
	H ₂ N N N F	5Hz),2.98(4H,t,J=5Hz),3.82(1H,dd,J=
		9,6.5Hz),3.90(4H,t,J=5Hz),4.02(1H,t,J
201		=9Hz),4.55-4.65(1H,m),7.08(1H,t,J=9
		Hz),7.20(1H,dd,J=9,2.5Hz),7.39(2H,br
		-s),7.50(1H,dd,J=15,2.5Hz) IR ν (KBr) cm ⁻¹ :1714,3384
1		1
1		Specific rotation [α] $_{D^{20}-37.0^{\circ}}$ (c=0.1,DMSO)
-		colorless crystals[DMF-H ₂ O]
	Me N N N	mp,167.5~169.5°C
		Elemental analysis for C ₁₆ H ₂₂ FN ₅ O ₂ S
202		Calcd. %: C,52.30;H,6.03;N,19.06
1 202	H \\\	Found %: C,52.13;H,5.99;N,19.08
	F	Specific rotation
	}	$[\alpha]_{D^{20}-47.0^{\circ}}$ (c=0.1,DMSO)
	<u> </u>	L FAID ELIG (O.O.T.) TATEOUT

R-N NH2

10	
15	
20	
25	
30	
35	
40	
45	

	Nn ₂			
Reference	R	Physical properties		
example	K	[recrystallization solvent]		
		colorless needles[CH3CN]		
	_	mp,172.5~174°C		
		Elemental analysis for C ₁₇ H ₂₄ FN ₅ O ₂ S		
203	Er. N N N >-	Calcd. %: C,53.53;H,6.34;N,18.36		
	" كر	Found %: C,53.37;H,6.16;N,18.11		
	•	Specific rotation		
		$[\alpha]_{D^{20}}$ -32.0° (c=0.1,DMSO)		
		colorless crystals[MeOH]		
	s	mp,171~173°C		
	n-Pr	Elemental analysis for C ₁₈ H ₂₆ FN ₅ O ₂ S		
204		Calcd. %: C,54.66;H,6.63;N,17.71		
	F [']	Found %: C,54.53;H,6.45;N,17.37		
	· 	Specific rotation		
		$[\alpha]_{D^{20}-34.9}^{\circ}$ (c=0.1,DMSO)		
		colorless prisms[MeOH]		
	_	mp,178~179.5°C		
}	s \frown	Elemental analysis for C ₁₇ H ₂₄ FN ₅ O ₂ S		
205	Me F	Calcd. %: C,53.53;H,6.34;N,18.36		
		Found %: C,53.54;H,6.25;N,18.19		
		Specific rotation		
		$[\alpha]_{D^{20}-31.0^{\circ}}$ (c=0.1,DMSO)		
		pale brown crystals		
1	}	$NMR(DMSO-d_6) \delta ppm:1.70(2H,br-s),2.80(1H,$		
		dd,J=13.5,5Hz),2.85(1H,dd,J=13.5,5Hz),2.9		
		5-3.10(4H,m),3.81(1H,dd,J=9,6.5Hz),3.81-3		
]	\$.90(2H,m),3.98(3H,s),4.02(1H,t,J=9Hz),4.1		
206	MeO N N	0-4.20(2H,m),4.55-4.65(1H,m),7.08(1H,t,J=		
200		9Hz),7.21(1H,dd,J=9,2.5Hz),7.50(1H,dd,J=		
	F	14.5,2.5Hz)		
		IR ν (KBr) cm ⁻¹ :1730,3388		
		MS(m/z):368(M+)		
		Specific rotation		
		$[\alpha]_{D^{20}-29.1}^{\circ} \text{ (c=0.1,DMSO)}$		
	_	pale brown scales [H ₂ O]		
	S C	mp,240~243.5°C		
0.07	Eto N N	Elemental analysis for C ₁₇ H ₂₃ FN ₄ O ₃ S·HCl		
207		Calcd. %: C,48.74;H,5.77;N,13.37		
	1101	Found %: C,48.57;H,5.53;N,13.27		
	- HCI	Specific rotation		
l		$[\alpha]_{D^{20}-39.8}^{\circ}$ (c=0.1,DMSO)		

R-N J

Reference Physical properties R example [recrystallization solvent] brown crystals 10 NMR(DMSO-de) δ ppm:0.94(3H,t,J=7Hz) 1.67(2H,br-s),1.71(2H.sex,J=7Hz),2.79(1H,dd,J=13.5,5Hz),2.85(1H,dd,J=13 .5,5Hz),2.90-3.10(4H,m),3.75-3.90(3H, m),4.02(1H,t,J=9Hz),4.10-4.20(2H,m),15 208 4.38(2H,t,J=7Hz),4.55-4.65(1H,m),7.08(1H,t,J=9Hz),7.20(1H,d,J=9Hz),7.50(1H,dd,J=14.5,2Hz) IR ν (KBr) cm⁻¹:1738.3380 MS(m/z):396(M+)20 Specific rotation $[\alpha]_{D^{20}-28.9}^{\circ}$ (c=0.1,DMSO) grayish brown crystals NMR(DMSO-d₆) δ ppm:2.61(3H,8),3.11(4 H,t,J=5Hz),3.15-3.25(2H,m),3.86(1H,d25 $d_{J}=9,6.5Hz$),4.15(1H,t,J=9Hz),4.20-4. 40(4H,m),4.85-4.95(1H,m),7.12(1H,t,J)209 =9Hz),7.19(1H,dd,J=9,2.5Hz),7.49(1H, $dd_{J}=14.5,2.5Hz$,7.98(2H,br-s) 30 IR ν (KBr) cm⁻¹:1754,3464 MS(m/z):384(M+)Specific rotation $[\alpha]_{D^{20}-36.8}^{\circ}$ (c=0.1,DMSO) pale brown liquid 35 NMR(DMSO-d₆) δ ppm:1.68(2H,quin,J=7 Hz),2.37(2H,t,J=7Hz),2.53(4H,t,J=4.5 Hz),2.80-2.90(2H,m),2.83(3H,d,J=4.5 Hz),3.00(4H,t,J=4.5Hz),3.38(2H,br-s), 3.81(1H,dd,J=9,6.5Hz),4.03(1H,t,J=9)40 210 Hz),4.55-4.65(1H,m),7.04(1H,t,J=9Hz) ,7.18(1H,dd,J=9,2.5Hz),7.32(1H,br-s),7.39(1H,br-s),7.47(1H,dd,J=15.5,2.5H z) IR ν (liq.) cm⁻¹:1740.3308 45 Specific rotation $[\alpha]_{D^{20}-21.0^{\circ}}$ (c=0.1,DMSO)

55

50

Reference	R	Physical properties	
example		[recrystallization solvent]	
211	Me O N P	brown amorphous solid NMR(DMSO-de) δ ppm:1.55-1.80(4H,m),2.38(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),2.83(1H,d d,J=13.5,5Hz),2.87(1H,dd,J=13.5,5Hz),3.0 1(4H,t,J=5Hz),3.40-3.50(2H,m),3.79(1H,dd ,J=9,6.5Hz),3.87(3H,s),4.01(1H,t,J=9Hz),4. 50-4.60(1H,m),7.02(1H,t,J=9Hz),7.17(1H,d d,J=9,2.5Hz),7.42(1H,dd,J=15.5,2.5Hz),8.7 7(1H,br-s) IR ν (liq.) cm ⁻¹ :1746,3284 MS(m/z):425(M+) Specific rotation [α]p ²⁰ -28.4° (c=0.1,DMSO)	
212	Ph N N	yellow crystals [ClCH ₂ CH ₂ Cl-AcOEt] mp,183~186°C Elemental analysis for C ₂₁ H ₂₃ FN ₄ O ₂ S·1/4H ₂ O Calcd. %: C,60.20;H,5.65;N,13.37 Found %: C,60.28;H,5.50;N,13.14 Specific rotation [α] _p ²⁰ -26.9° (c=0.1,DMSO)	

Reference example 213

5

10

15

20

25

30

50

55

[0129] (S)-5-Aminomethyl-3-[4-(4-aminopiperidin-1-yl)-3-fluorophenyl]-2-oxooxazoli dine dihydrochloride [0130] A suspension of 4.70 g of (S)-5-azidomethyl-3-[3-fluoro-4-(4-hydroxyiminopiperidin-1-yl)phenyl]-2-oxooxazolidine and 4.70 ml of Raney nickel in 95 ml of 10 % ammonia methanol solution was stirred at 40°C at a hydrogen pressure of under 30 atm for 6 hours. The catalyst was filtered off, and the filtrate was concentrated under reduced pressure. The residue was added with ethanol and 33% hydrogen chloride ethanol solution, and the mixture was stirred under ice-cooling for 1 hour. The precipitated crystals were collected by filtration to obtain 5.66 g of pale brown crystals. NMR spectrum (DMSO-d₆) δ ppm:

 $1.65-1.80(2H,m), 2.00-2.10(2H,m), 2.70-2.80(2H,m), 3.10-3.25(3H,m), 3.30-3.40(2H,m), \qquad 3.89(1H,dd,J=9,6.5Hz), 4.15(1H,t,J=9Hz), 4.90-5.00(1H,m), 7.10(1H,t,J=9Hz), \qquad 7.17(1H,dd,J=9,2.5Hz), 7.45(1H,dd,J=14.5,2.5Hz), 8.29(3H,br-s), 8.47(3H,br-s)$

IR spectrum v (KBr) cm⁻¹: 1744,3440 Specific rotation [α]_D²⁰ -33.8° (c = 0.1, DMSO)

Reference example 214

[0132] To a mixture of 1.0 g of (S)-5-aminomethyl-2-oxo-3-[4-(thiomorpholin-4-yl)-phenyl]oxazolidine in 10 ml of benzene and 1 ml of N,N-dimethylformamide, 0.50 ml of triethylamine and 0.20 ml of carbon disulfide were added, and the mixture was stirred at room temperature for 6 hours. The reaction solution was concentrated under reduced pressure, and the residue was added with 10 ml of dichloromethane and 0.50 ml of triethylamine. The mixture was added with 0.35 ml of ethyl chlorocarbonate under ice-cooling and with stirring, and stirred at the same temperature for 30 minutes. The reaction solution was added with water, and the precipitated crystals were collected by filtration to obtain 0.98 g of colorless crystals. Recrystallization from a mixture of N,N-dimethylformamide-water gave colorless crystals

[0131] (R)-N-[2-Oxo-3-[4-(thiomorpholin-4-yl)phenyl]oxazolidin-5-yl]methyl isothiocyanate

having the melting point of from 194.5 to 195.5°C.

Elemental analysis for C ₁₅ H ₁₇ N ₃ O ₂ S ₂						
Calculated %	C,	53.71;	Н,	5.11;	N,	12.53
Found %	C,	53.53;	Н,	5.07;	N,	12.54

Specific rotation $[\alpha]_D^{20}$ -151.8° (c =0.1, DMSO) [0133] The compounds of Reference examples 215 through 264 were obtained in the same manner as in Reference example 214.

R-N NCS

55	

Reference		Physical properties
example	. R	[recrystallization solvent]
		pale yellow columns [CH3CN]
		mp,135.5~136.5°C
1		Elemental analysis for C ₁₅ H ₁₆ FN ₃ O ₂ S ₂
215	\$N	Calcd. %: C,50.97;H,4.56;N,11.89
	F F	Found % : C,51.01;H,4.60;N,11.85
1		Specific rotation
		$[\alpha]_{D^{20}}$ -151.9° (c=0.1,DMSO)
		colorless amorphous solid
		NMR(CDCl ₃) δ ppm:2.95-3.10(4H,m),3.25-3.
		30(2H,m),3.75-3.85(2H,m),3.85-3.95(2H,m
),3.97(1H,dd,J=14.5,5.5Hz),4.17(1H,t,J=9
216	0=\$\ N-\ \-\ \-	Hz),4.80-4.90(1H,m),7.05-7.15(2H,m),7.52
210	تر ب	(1H,d,J=13.5Hz)
	, r	IR ν (KBr) cm ⁻¹ :1754,2096
1		MS(m/z):369(M+)
		Specific rotation
	·	$[\alpha]_{D^{20}-94.4^{\circ}}$ (c=0.1,DMSO)
		yellow liquid
		NMR(DMSO-d ₆) δ ppm:3.23(4H,t,J=5Hz),3.4
		9(4H,t,J=5Hz),3.80(1H,dd,J=9,5.5Hz),4.0
ļ		2(1H,dd,J=15.5,5.5Hz),4.10(1H,dd,J=15.5,
217		3.5Hz),4.19(1H,t,J=9Hz),4.90-5.00(1H,m),
		7.15-7.25(2H,m),7.50(1H,dd,J=15,2Hz)
		IR ν (liq.) cm ⁻¹ :1754,2100
		MS(m/z):385(M+) Specific rotation
		[α] $_{\rm D}^{20}$ -123.3° (c=0.1,DMSO)
		pale yellow crystals[i-PrOH]
		mp,109.5~110°C
		Elemental analysis for C ₁₅ H ₁₆ FN ₃ O ₂ S
218		Calcd. %: C,56.06;H,5.02;N,13.08
	F F	Found %: C,56.09;H,5.32;N,13.12
		Specific rotation
		$[\alpha]_{D^{20}-166.3^{\circ}}$ (c=0.1,DMSO)
		pale brown crystals[i-PrOH]
		mp.107~109°C
		Elemental analysis for C ₁₆ H ₁₈ FN ₃ O ₂ S
219		Calcd. %: C,57.30;H,5.41;N,12.53
	F F	Found %: C,57.25;H,5.63;N,12.52
Ì		Specific rotation
	}	$[\alpha]_{D^{20}-154.2}^{\circ}$ (c=0.1,DMSO)
	L.,	1

R-N NCS

Reference	R	Physical properties
example	· · · · · · · · · · · · · · · · · · ·	[recrystallization solvent]
220	MeO-N-F	colorless prisms[AcOEt-i-Pr ₂ O] mp,118.5~120°C Elemental analysis for C ₁₇ H ₂₀ FN ₃ O ₃ S Calcd. %: C,55.88;H,5.52;N,11.50 Found %: C,55.89;H,5.58;N,11.41
		Specific rotation [α] _{D²⁰-146.6°} (c=0.1,DMSO)
221	EtO-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	colorless crystals[i-PrOH] mp,114.5~116°C Elemental analysis for C ₁₈ H ₂₂ FN ₃ O ₃ S Calcd. %: C,56.98;H,5.84;N,11.07 Found %: C,56.97;H,5.88;N,10.93 Specific rotation [α]p ²⁰ -136.4° (c=0.1,DMSO)
222	Me——N——F	colorless needles[AcOEt-i-Pr ₂ O] mp,133.5~134.5°C Elemental analysis for $C_{17}H_{20}FN_3O_2S$ Calcd. %: C,58.43;H,5.77;N,12.03 Found %: C,58.39;H,5.67;N,11.95 Specific rotation [α] \mathbf{p}^{20} -153.5° (c=0.1,DMSO)
223	Et-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	colorless needles[Toluene] mp,94~95°C Elemental analysis for $C_{18}H_{22}FN_3O_2S$ Calcd. %: C,59.48;H,6.10;N,11.56 Found %: C,59.27;H,6.12;N,11.43 Specific rotation [α] $_{D}^{20}$ -147.9° (c=0.1,DMSO)
224	MeO-(CH ₂) ₂ -O-\\N-\\F	colorless crystals[AcOEt-i-Pr ₂ O] mp,63~64°C Elemental analysis for C ₁₉ H ₂₄ FN ₃ O ₄ S Calcd. %: C,55.73;H,5.91;N,10.26 Found %: C,55.64;H,5.99;N,10.27 Specific rotation [α] _D ²⁰ -130.7° (c=0.1,DMSO)

I-N NCS

Reference		Physical properties
example	R	[recrystallization solvent]
225	MeO-\\N-\\F	brown liquid NMR(DMSO-d ₆) δ ppm:3.24(3H,s),3.60-3.7 0(2H,m),3.75(1H,dd,J=9,5.5Hz),3.95-4.2 0(5H,m),4.25-4.35(1H,m),4.85-4.95(1H,m),6.59(1H,dd,J=10.5,8.5Hz),7.12(1H,dd,J=8.5,2Hz),7.36(1H,dd,J=14.5,2Hz) IR ν (liq.) cm ⁻¹ :1754,2100 MS(m/z):337(M+) Specific rotation [α]p ²⁰ -129.3° (c=0.1,DMSO)
226	MeO-(CH ₂) ₂ -O-\\N-\\F	colorless needles[AcOEt-i-Pr ₂ O] mp,78.5~79.5°C Elemental analysis for $C_{17}H_{20}FN_3O_4S$ Calcd. %: C,53.53;H,5.29;N,11.02 Found %: C,53.47;H,5.47;N,10.93 Specific rotation [α] $_{D}^{20}$ -140.4° (c=0.1,DMSO)
227		colorless crystals [AcOEt-i-Pr ₂ O] mp,128~129°C Elemental analysis for $C_{17}H_{20}FN_3O_2S$ Calcd. %: C,58.43;H,5.77;N,12.03 Found %: C,58.50;H,5.97;N,11.95 Specific rotation [α] α 20-153.8° (α 5-153.8° (α 5-153.8°)
228	Me-{\bar{\bar{\bar{\bar{\bar{\bar{\bar	pale brown liquid NMR(DMSO-de) δ ppm:2.28(3H,s),3.79 (1H,dd,J=9,5.5Hz),4.04(1H,dd,J=15,5Hz),4.10(1H,dd,J=15,3Hz),4.19(1H,t,J=9Hz),4.90-4.96(1H,m),7.20(2H,d,J=8.5Hz),7.43(2H,d,J=8.5Hz) IR ν (liq.) cm ⁻¹ :1756,2096 MS(m/z):248(M+) Specific rotation [α]p ²⁰ -178.3° (c=0.1,DMSO)
229	Me ———	colorless prisms[i-PrOH] mp,92~92.5°C Elemental analysis for C ₁₃ H ₁₄ N ₂ O ₂ S Calcd. %: C,59.52;H,5.38;N,10.68 Found %: C,59.54;H,5.39;N,10.65 Specific rotation [α]n ²⁰ -175.1° (c=0.1,DMSO)

R-N NCS

5

Reference	R	Physical properties
example		[recrystallization solvent]
{		pale brown crystals[AcOEt]
		mp,71.5~73.5°C
	MeO-(CH ₂) ₂ -O-	Elemental analysis for C ₁₄ H ₁₅ FN ₂ O ₄ S
230		Calcd. %: C,51.53;H,4.63;N,8.58
	F	Found %: C,51.46;H,4.56;N,8.49
		Specific rotation
		$[\alpha]_{D^{20}-137.7^{\circ}}$ (c=0.1,DMSO)
		colorless needles[AcOEt-i-Pr2O]
į į		mp,140.5~141.5°C
	Me /=	Elemental analysis for C ₁₃ H ₁₅ N ₈ O ₂ S
231	N-\\	Calcd. %: C,56.30;H,5.45;N,15.15
		Found %: C,56.45;H,5.35;N,14.95
		Specific rotation
		$[\alpha]_{D^{20}-172.5^{\circ}}$ (c=0.1,DMSO)
		pale yellow needles[i-PrOH]
	Me N	mp,74.5~75°C
200		Elemental analysis for C ₁₈ H ₁₄ FN ₃ O ₂ S
232		Calcd. %: C,52.87;H,4.78;N,14.23
		Found %: C,52.81;H,4.99;N,14.18
		Specific rotation [α] _D 20-172.7° (c=0.1,DMSO)
		colorless needles[AcOEt-i-Pr ₂ O]
		mp,78~79°C
	Me N	Elemental analysis for C ₁₄ H ₁₆ FN ₃ O ₂ S
233		Calcd. %: C,54.35;H,5.21;N,13.58
255		Found %: C,54.42;H,5.30;N,13.63
1		Specific rotation
		[α] _D 20-177.5° (c=0.1,DMSO)
		pale brown liquid
1		$NMR(DMSO-d_6)\delta ppm:1.00(6H,t,J=7.5Hz),$
	-	3.13(4H,q,J=7.5Hz),3.78(1H,dd,J=9.5,6H
	E .	z),4.03(1H,dd,J=15.5,5.5Hz),4.11(1H,dd,
604	Et P	J=15.5,3.5Hz),4.17(1H,t,J=9.5Hz),4.90-5.
234		00(1H,m),7.04(1H,t,J=9Hz),7.17(1H,dd,J
		=9,2.5Hz), $7.41(1$ H, dd , $J=14.5,2.5$ Hz)
		MS(m/z):323(M+)
		Specific rotation
		$[\alpha]_{D^{20}-162.3}^{\circ}$ (c=0.1,DMSO)

5	
10	
15	
20	
25	
30	
35	
40	
45	

Crecrystallization solvent Colorless needles[AcOEt] mp,103.5~104.5°C Elemental analysis for C ₁₄ H ₁₄ N ₂ O ₂ S Calcd. %: C,61.29;H,5.14;N,10.21 Found %: C,61.24;H,5.13;N,10.20 Specific rotation [α]p ^{30.1} 72.7° (c=0.1,DMSO) Colorless needles[i-PrOH] mp,122.5~124°C Elemental analysis for C ₁₆ H ₁₆ N ₂ O ₂ S Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α]p ^{30.1} 66.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-de) δ ppm:2.55(3H,8),3.89(1H,dd,J=9.5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.9-5(32(1H,m).7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ^{1.1} 748,2092 MS(m/z):276(M*) Specific rotation [α]p ^{30.1} 95.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,17~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ^{30.1} 103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,9.5.5~94°C Elemental analysis for C ₂₀ H ₂₃ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α]p ^{30.1} 121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~94°C Elemental analysis for C ₂₁ H ₂₃ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.29 Specific rotation [α]p ^{30.1} 15.75;N,12.29 Specific rota	Reference	R	Physical properties
mp,103.5~104.5°C Elemental analysis for Cl ₄ Hl ₄ N ₂ O ₂ S Calcd. %: C,61.29;H,5.14;N,10.21 Found %: C,61.24;H,5.13;N,10.20 Specific rotation [α]p ^{20.1} 72.7° (c=0.1,DMSO) colorless needles[i-PrOH] mp,122.5~124°C Elemental analysis for Cl ₆ Hl ₆ N ₂ O ₂ S Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α]p ^{30.1} 66.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-de) δ ppm:2.55(3H,s),3.89(1H,dd,J=9.5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J=15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m),7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α]p ^{20.1} 95.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for Cl ₂ H ₂ SFN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ^{20.1} 03.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,55.03;H,5.77;N,12.84 Found %: C,55.03;H,5.77;N,12.18 Colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.29 Specific rotation [α]p ^{20.1} 21.8° (c=0.1,DMSO) Colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.29 Specific rotation [α]p ^{20.1} 21.8° (c=0.1,DMSO) Colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.29 Specific rotation [α]p ^{20.1} 21.8° (c=0.1,DMSO) mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.29 Specific rotation [α]p ^{20.1} 21.8° (c=0.1,DMSO) mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S	example	Λ	
Elemental analysis for C ₁₄ H ₁₄ N ₂ O ₂ S Calcd. %: C,61.29;H,5.14;N,10.21 Found %: C,61.24;H,5.13;N,10.20 Specific rotation [α]p ²⁰ -172.7° (c=0.1,DMSO) colorless needles[i-PrOH] mp,122.5~124°C Elemental analysis for C ₁₅ H ₁₆ N ₂ O ₂ S Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α]p ²⁰ -166.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-d ₈) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J=15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) .7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) R ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.30;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			colorless needles[AcOEt]
Elemental analysis for C ₁₄ H ₁₄ N ₂ O ₂ S Calcd. %: C,61.29;H,5.14;N,10.21 Found %: C,61.24;H,5.13;N,10.20 Specific rotation [α]p ²⁰ -172.7° (c=0.1,DMSO) colorless needles[i-PrOH] mp,122.5~124°C Elemental analysis for C ₁₅ H ₁₆ N ₂ O ₂ S Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α]p ²⁰ -166.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-d ₈) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J=15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) .7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) R ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.30;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			mp,103.5~104.5°C
Calcd. %: C,61.29;H,5.14;N,10.21 Found %: C,61.24;H,5.13;N,10.20 Specific rotation [α]p ²⁰ -172.7° (c=0.1,DMSO) colorless needles[i-PrOH] mp,122.5~124°C Elemental analysis for C ₁₆ H ₁₆ N ₂ O ₂ S Calcd. %: C,62.48;H,5.61;N,9.65 Specific rotation [α]p ²⁰ -166.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-de) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 5.5.5Hz),4.08(1H,dd,J=15.5.5Hz),4.15(1H,dd,J=15.3.5Hz),4.28(1H,t,J=9.5Hz),4.18(1H,dd,J=16.3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) ,7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles[ACOEt-i-PraO] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.2° (c=0.1,DMSO) colorless needles [AcOEt-i-PraO] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation]		
Found % : C,61.24;H,5.13;N,10.20 Specific rotation [α]p ²⁰ -172.7° (c=0.1,DMSO)	235		
Specific rotation [α]p ²⁰ -172.7° (c=0.1,DMSO)] [~	
Colorless needles[i-PrOH] mp,122.5~124°C Elemental analysis for C1sH1s02O2S Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α]b²0.166.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-de)δ ppm:2.55(3H,s),3.89(1H,dd,J=9.5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J=15,3.5Hz),4.08(1H,dd,J=15,3.5Hz),4.98-5.03(1H,m),7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm '1.1748,2092 MS(m/z):276(M*) Specific rotation [α]b²0-195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr2O] mp,117~119°C Elemental analysis for C1sH2sFN4O4S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]b²0-103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C20H26FN4O4S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.48;H,5.87;N,12.71 Specific rotation [α]b²0-121.8° (c=0.1,DMSO) colorless needles (AcOEt-i-Pr2O] mp,95.5~97°C Elemental analysis for C21H27FN4O4S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation (α)c3.5.70;H,5.76;N,12.29 Specific rotation (α)c3.5.70;H,5.76;N,12.29 Specific rotation (α)c3.6.8 Cc,55.70;H,5.76;N,12.29 Specific	1		
mp,122.5~124°C Elemental analysis for C16H16N2O2S Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α lp·20-166.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-de) δ ppm:2.55(3H,s),3.89(1H,dd,J=9.5,5+2),4.28(1H,t,J=9.512),4.15(1H,dd,J=15,5.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) 7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α] lp·20-195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr2O] mp,117~119°C Elemental analysis for C19H23FN4O4S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.06 Found %: C,54.30;H,5.40;N,13.26 Found %: C,54.30;H,5.40;N,13.26 Found %: C,54.30;H,5.40;N,13.26 Found %: C,554.30;H,5.77;N,12.84 Found %: C,55.33;H,5.77;N,12.84 Found %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] lp·20-121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr2O] mp,95.5~97°C Elemental analysis for C21H27FN4O4S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation C,55.70;H,5.76;N,1			
Elemental analysis for C ₁₆ H ₁₆ N ₂ O ₂ S Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α] _D ²⁰ -166.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-d ₆) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J=15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) ,7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α] _D ²⁰ -195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.39;H,5.40;N,13.00 Specific rotation [α] _D ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.98;H,6.04;N,12.49 Specific rotation			
Calcd. %: C,62.48;H,5.59;N,9.71 Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α]h ²⁰⁻¹ 66.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-de) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J=15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) ,7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α]h ²⁰⁻¹ 95.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]h ²⁰⁻¹ 03.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,55.484;H,5.87;N,12.71 Specific rotation [α]h ²⁰⁻¹ 21.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation		~_	. • '
Found %: C,62.49;H,5.61;N,9.65 Specific rotation [α]p ²⁰ -166.8° (c=0.1,DMSO) pale yellow crystals NMR(DMSO-ds) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J =15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) ,7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	236		
Specific rotation [α] b ²⁰ -166.8° (c=0.1,DMSO)			
pale yellow crystals NMR(DMSO-de) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J =15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) ,7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M+) Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. % : C,54.02;H,5.49;N,13.26 Found % : C,54.30;H,5.49;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. % : C,55.03;H,5.77;N,12.84 Found % : C,54.84;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. % : C,55.98;H,6.04;N,12.24 Found % : C,55.70;H,5.76;N,12.29 Specific rotation			
NMR(DMSO-de) δ ppm:2.55(3H,s),3.89(1H,dd,J=9 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J =15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m) ,7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm-¹:1748,2092 MS(m/z):276(M*) Specific rotation [α]p²²-195.6° (c=0.1,DMSO) pale brown needles [AcOEt-i-Pr₂O] mp,117~119°C Elemental analysis for C₁9H₂₃FN₄O₄S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p²²-103.2° (c=0.1,DMSO) pale yellow needles [i-PrOH] mp,92.5~94°C Elemental analysis for C₂₀H₂₅FN₄O₄S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α]p²²-121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr₂O] mp,95.5~97°C Elemental analysis for C₂₁H₂₂FN₄O₄S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			
237 .5,5.5Hz),4.08(1H,dd,J=15,5.5Hz),4.15(1H,dd,J=15,3.5Hz),4.28(1H,t,J=9.5Hz),4.98-5.03(1H,m),7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles [AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles [i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	1	• •	-
237 Second S			
7.70(2H,d,J=9Hz),8.00(2H,d,J=9Hz) IR ν (KBr) cm·¹:1748,2092 MS(m/z):276(M*) Specific rotation [α]p²0-195.6° (c=0.1,DMSO) pale brown needles[AcOEt-i-Pr₂O] mp,117~119°C Elemental analysis for C₁9H₂₃FN₄O₄S Caled. % : C,54.02;H,5.49;N,13.26 Found % : C,54.30;H,5.40;N,13.00 Specific rotation [α]p²0-103.2° (c=0.1,DMSO) pale yellow needles[i-ProH] mp,92.5~94°C Elemental analysis for C₂0H₂₅FN₄O₄S Caled. % : C,55.03;H,5.77;N,12.84 Found % : C,54.84;H,5.87;N,12.71 Specific rotation [α]p²0-121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr₂O] mp,95.5~97°C Elemental analysis for C₂1H₂₂FN₄O₄S Caled. % : C,55.98;H,6.04;N,12.44 Found % : C,55.70;H,5.76;N,12.29 Specific rotation		0 =	
IR ν (KBr) cm ⁻¹ :1748,2092 MS(m/z):276(M*) Specific rotation [α] p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles [AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. % : C,54.02;H,5.49;N,13.26 Found % : C,54.30;H,5.40;N,13.00 Specific rotation [α] p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles [i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₆ FN ₄ O ₄ S Calcd. % : C,55.03;H,5.77;N,12.84 Found % : C,54.84;H,5.87;N,12.71 Specific rotation [α] p ²⁰ -121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. % : C,55.98;H,6.04;N,12.44 Found % : C,55.70;H,5.76;N,12.29 Specific rotation	237	>	
MS(m/z):276(M*) Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO) pale brown needles [AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles [i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation		Me 🐸	
Specific rotation [α]p ²⁰ -195.6° (c=0.1,DMSO)			
pale brown needles [AcOEt-i-Pr ₂ O] mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α] _D ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles [i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D ²⁰ -121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	1]
mp,117~119°C Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α] _D ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			
Elemental analysis for C ₁₉ H ₂₃ FN ₄ O ₄ S Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α] _D ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles [i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D ²⁰ -121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation]	_	1 -
Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [α]p ²⁰ -103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α]p ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation		\]
Calcd. %: C,54.02;H,5.49;N,13.26 Found %: C,54.30;H,5.40;N,13.00 Specific rotation [\alpha]_{p^{20}}-103.2° (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [\alpha]_{p^{20}}-121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	238	Eto Sing Time	
Specific rotation [α] $_{p^{20}-103.2^{\circ}}$ (c=0.1,DMSO) pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] $_{p^{20}-121.8^{\circ}}$ (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	-55	F	
pale yellow needles[i-PrOH] mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D ²⁰ -121.8° (c=0.1,DMSO) colorless needles[AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			
239 mp,92.5~94°C Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D 20-121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			
239 Elemental analysis for C ₂₀ H ₂₅ FN ₄ O ₄ S Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D 20-121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			, . ·
Calcd. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [\alpha]_{\text{D}}^{20}-121.8\tilde{c} (c=0.1,DMSO) colorless needles [AcOEt-i-Pr2O] mp,95.5~97\tilde{c} Elemental analysis for C21H27FN4O4S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			,
Caled. %: C,55.03;H,5.77;N,12.84 Found %: C,54.84;H,5.87;N,12.71 Specific rotation [α] _D 20-121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	239	EtO N	
Specific rotation [α] p^{20} -121.8° (c=0.1,DMSO) colorless needles [AcOEt-i-Pr $_2$ O] mp,95.5~97°C Elemental analysis for C $_{21}$ H $_{27}$ FN $_4$ O $_4$ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	203	j f	
colorless needles [AcOEt-i-Pr ₂ O] mp,95.5~97℃ Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			
240 mp,95.5~97°C Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation	L		
240 Eto Elemental analysis for C ₂₁ H ₂₇ FN ₄ O ₄ S Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			colorless needles[AcOEt-i-Pr2O]
240 Calcd. %: C,55.98;H,6.04;N,12.44 Found %: C,55.70;H,5.76;N,12.29 Specific rotation			mp,95.5~97℃
Found %: C,55.70;H,5.76;N,12.29 Specific rotation	}	(CH3)2-N N-()	Elemental analysis for C21H27FN4O4S
Specific rotation	240	Eto	
1 1 -			
$[\alpha]_{p^{20}-108.3^{\circ}}$ (c=0.1.DMSO)	1		Specific rotation
1 6 ·· 4 =	1		$[\alpha]_{D^{20}-108.3}^{\circ}$ (c=0.1,DMSO)

R-N NCS

MSO)
/4H ₂ O
MSO)
2500
MSO)
MSO)
MISO)
MSO)
MSO)

. 20

R-N NCS

Reference	R	Physical properties
example		[recrystallization solvent]
		pale yellow plates[i-PrOH]
		mp,101~102°C
		Elemental analysis for C19H25FN4O2S
247	n-Bu-N N-	Calcd. % : C,58.14;H,6.42;N,14.27
[[F [']	Found %: C,58.06;H,6.51;N,14.16
i i		Specific rotation
		[α] _D 20-133.8° (c=0.1,DMSO)
		yellowish brown liquid
İ		NMR(DMSO-de) δ ppm:1.50-1.70(2H,m),1.85-
1		1.95(2H,m),3.20-3.30(2H,m),3.60(3H,s),3.6
		0-3.70(2H,m),3.79(1H,dd,J=9,6Hz),4.02(1
}		H,dd,J=15.5,5.5Hz),4.11(1H,dd,J=15.5,3.5
,		Hz),4.19(1H,t,J=9Hz),4.45-4.55(1H,m),4.9
248	MeO	0-5.00(1H,m),7.22(1H,dd,J=9,2.5Hz),7.26(
	F	1H,t,J=9Hz),7.52(1H,dd,J=13.5,2.5Hz)
		IR ν (liq.) cm ⁻¹ :1696,1758,2096
1		MS(m/z):409(M+)
j	1	Specific rotation
		[α]p ²⁰ -108.0° (c=0.1,DMSO)
		colorless prisms[AcOEt]
1		mp,121~122°C
	9. ^	Elemental analysis for C ₁₆ H ₁₆ FN ₈ O ₅ S
249		Calcd. %: C,50.39;H,4.23;N,11.02
	MeO F	Found %: C,50.29;H,4.20;N,10.87
1		Specific rotation
		$[\alpha]_{D^{20}-133.1^{\circ}}$ (c=0.1,DMSO)
		colorless amorphous solid
		NMR(DMSO-d ₆) δ ppm:1.50-1.70(2H,m),1.80-
		2.00(2H,m), 2.57(2H,t,J=6.5Hz), 3.20-3.40(
		2H,m),3.23(3H,s),3.56(2H,t,J=6.5Hz),3.65-
	ļ	3.75(1H,m),3.80(2H,dd,J=9,6Hz),4.03(1H,
		dd,J=15,5.5Hz),4.10(1H,dd,J=15,3Hz),4.1
250	MeO-(CH ₂) ₂ N	9(1H,t,J=9Hz),4.50-4.60(1H,m),4.90-5.00(
200		1H,m),7.22(1H,dd,J=9,2.5Hz),7.27(1H,t,J=
		9Hz),7.52(1H,dd,J=13.5,2.5Hz)
		IR ν (KBr) cm ⁻¹ :1756,2120
		MS(m/z):437(M+)
	1	Specific rotation
1		$[\alpha]_{D^{20}-113.5}^{\circ}$ (c=0.1,DMSO)
		· · · · · · · · · · · · · · · · · · ·

R-N NCS

Physical properties Reference R example [recrystallization solvent] yellow crystals[DMF-H2O] 10 mp,209~211°C Elemental analysis for C25H24FN5O4S 251 Calcd. %: C,58.93;H,4.75;N,13.74 Found %: C,58.85;H,4.68;N,13.65 Specific rotation 15 $[\alpha]_{D^{20}-117.9}^{\circ}$ (c=0.1,DMSO) pale brown liquid $NMR(DMSO-d_6) \delta ppm:1.55-1.65(2H,m),1.7$ 9(3H,s),2.30-2.40(2H,m),2.40-2.50(4H,m),2.90-3.00(4H,m),3.00-3.10(2H,m),3.45-3. 20 55(2H,m),3.79(1H,dd,J=9,6.5Hz),4.13(1H252 t,J=9Hz,4.85-4.95(1H,m),7.04(1H,t,J=9 Hz),7.18(1H,dd,J=9,2.5Hz),7.47(1H,dd,J=14.5,2.5Hz),7.70(1H,br-s) IR ν (liq.) cm⁻¹:1746 25 Specific rotation $[\alpha]_{D^{20}-66.8^{\circ}}$ (c=0.1,DMSO) colorless crystals [AcOEt] mp,103.5~105.5℃ 30 Elemental analysis for C18H20FN5O2S 253 Calcd. %: C,55.51;H,5.18;N,17.98 Found %: C,55.45;H,5.11;N,17.89 Specific rotation $[\alpha]_{D^{20}-146.3}^{\circ}$ (c=0.1,DMSO) 35 pale brown crystals $NMR(DMSO-d_6) \delta ppm:2.50-2.70(4H,m),2.8$ 2(3H.s),2,90-3,10(4H,m),2,98(3H,s),3,78(1H,dd,J=9.5,6Hz),4.02(1H,dd,J=15,5Hz),4.10(1H,dd,J=15,3.5Hz),4.17(1H,t,J=9.5)40 Hz),4.90-5.00(1H,m),7.05(1H,t,J=9Hz),7. 254 19(1H,dd,J=9,2.5Hz),7.45(1H,dd,J=15,2)5Hz) IR ν (KBr) cm⁻¹:1630,1762,2132 MS(m/z):435(M+)45 Specific rotation $[\alpha]_{D^{20}-108.1}^{\circ}$ (c=0.1,DMSO)

50

55

	Reference	R	Physical properties
10	example		[recrystallization solvent]
			pale brown crystals[CH ₃ CN]
		S	mp,174~175.5°C
		Me	Elemental analysis for C ₁₇ H ₂₀ FN ₅ O ₂ S ₂
15	255		Calcd. %: C,49.86;H,4.92;N,17.10
	ļ	F [']	Found %: C,49.97;H,4.81;N,16.94
			Specific rotation
			$[\alpha]_{D^{20}}$ -125.7° (c=0.1,DMSO)
			pale brown crystals[CH3CN]
20		S	mp,233~235°C
		Et. J.	Elemental analysis for C18H22FN5O2S2
	256		Calcd. %: C,51.05;H,5.24;N,16.54
		F [']	Found %: C,51.08;H,5.18;N,16.36
25			Specific rotation
			$[\alpha]_{D^{20}-121.8^{\circ}}$ (c=0.1,DMSO)
			colorless crystals[ClCH2CH2Cl]
			mp,183.5~185.5°C
		n-Pr. I	Elemental analysis for
30	257		C ₁₉ H ₂₄ FN ₅ O ₂ S ₂ · 1/2H ₂ O
	201	F -	Calcd. %: C,51.10;H,5.64;N,15.68
			Found %: C,51.24;H,5.48;N,15.42
	ļ		Specific rotation
35			$[\alpha]_{D^{20}-118.1^{\circ}}$ (c=0.1,DMSO)
			colorless crystals[CH3CN]
		s	mp,197~198.5°C
		Me L	Elemental analysis for C ₁₈ H ₂₂ FN ₅ O ₂ S ₂
40	258		Calcd. %: C,51.05;H,5.24;N,16.54
40		Me F	Found %: C,51.23;H,5.19;N,16.65
	1		Specific rotation
			$[\alpha]_{D^{20}}$ -119.3° (c=0.1,DMSO)
			colorless crystals [AcOEt]
45		s	mp,132~133°C
	259	MeO N N	Elemental analysis for C ₁₇ H ₁₉ FN ₄ O ₃ S ₂
			Calcd. %: C,49.74;H,4.67;N,13.65
			Found %: C,49.87;H,4.74;N,13.44
50			Specific rotation
•		<u> </u>	$[\alpha]_{D^{20}-115.6^{\circ}}$ (c=0.1,DMSO)

5			NCS
	Reference	R	Physical properties
	example		[recrystallization solvent]
10	260	Eto N N F	pale yellow crystals NMR(DMSO- d_6) δ ppm:1.30(3H,t,J=6.5Hz),3.0 0-3.10(4H,m),3.79(1H,dd,J=9,6Hz),3.82-3.8 8(2H,m),4.02(1H,dd,J=15,5Hz),4.12(1H,dd, J=15,4Hz),4.10-4.15(2H,m),4.18(1H,t,J=9H z),4.47(2H,q,J=6.5Hz),4.90-5.00(1H,m),7.10 (1H,t,J=9Hz),7.21(1H,d,J=9Hz),7.50(1H,d,J=14.5Hz) IR ν (KBr) cm ⁻¹ :1748,2228 MS(m/z):424(M+) Specific rotation [α]p ²⁰ -131.4° (c=0.1,DMSO)
20			pale brown crystals[AcOEt]
25	261	n-Pro N N	mp,156~158°C Elemental analysis for $C_{19}H_{23}FN_4O_3S_2$ Calcd. %: C,52.04;H,5.29;N,12.78 Found %: C,52.32;H,5.29;N,12.70 Specific rotation [α]p ²⁰ -121.6° (c=0.1,DMSO)
<i>30</i>	262	Mes N N	pale brown crystals [AcOEt-i-Pr ₂ O] mp,138~140°C Elemental analysis for $C_{17}H_{19}FN_4O_2S_3$ Calcd. %: $C,47.87;H,4.49;N,13.13$ Found %: $C,47.75;H,4.59;N,12.84$ Specific rotation [α] $_{\rm D}^{20}$ -110.4° (c=0.1,DMSO)
40	263	SCN-N-F	pale brown crystals[AcOEt-i-Pr ₂ O] mp,113~115°C Elemental analysis for C ₁₇ H ₁₇ FN ₄ O ₂ S ₂ Calcd. %: C,52.02;H,4.37;N,14.28 Found %: C,51.82;H,4.46;N,14.00 Specific rotation [α] _D ²⁰ -125.4° (c=0.1,DMSO)

R-N NCS

10

5

15

20

Reference	R	Physical properties
example	<u> </u>	[recrystallization solvent]
264	S Ph N N F	yellow amorphous solid NMR(CDCl ₃) δ ppm:3.04(2H,t,J=5Hz),3. 27(2H,t,J=5Hz),3.76(2H,t,J=5Hz),3.80 -3.90(2H,m),3.96(1H,dd,J=15,5Hz),4.1 5(1H,t,J=9Hz),4.60(2H,t,J=5Hz),4.80- 4.85(1H,m),6.95(1H,t,J=9Hz),7.13(1H,dd,J=9,2.5Hz),7.30-7.40(5H,m),7.46(1H,dd,J=14,2.5Hz) IR ν (KBr) cm ⁻¹ :1754,2080 Specific rotation [α]p ²⁰ -106.6° (c=0.1,DMSO)

Reference example 265

25

30

[0134] (R)-1-[4-[2-Fluoro-4-(5-isothiocyanatomethyl-2-oxooxazolidin-3-yl)phenyl]-piperazine]carbothioamide [0135] To a solution of 0.79 g of 1,1'-thiocarbonyl diimidazole and 0.52 ml of triethylamine in 20 ml of 1,2-dichloroethane, 1.20 g of (R)-1-[4-[4-(5-aminomethyl-2-oxooxazolidin-3-yl)-2-fluorophenyl]piperazine]carbothioamide was added under ice-cooling, and the mixture was stirred at room temperature for 18 hours. The reaction solution was added with water and 1,2-dichloroethane, and the insoluble solid was removed. Then, the 1,2-dichloroethane layer was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 1,2-dichloroethane : methanol = 20 : 1) to obtain 0.25 g of yellow crystals.

NMR spectrum (DMSO-d₆) δ ppm:

 $\begin{array}{lll} 35 & 2.99(4H,t,J=5Hz),3.79(1H,dd,J=9.5,5.5Hz),3.90(4H,t,J=5Hz),4.02(1H,dd,J=15,5.5Hz), & 4.10(1H,dd,J=15,4Hz),4.18\\ & (1H,t,J=9Hz),4.90-5.00(1H,m),7.09(1H,t,J=9Hz), & 7.20(1H,dd,J=9,2.5Hz),7.39(2H,br-s),7.48(1H,dd,J=14.5,2.5Hz)\\ & 1R \ spectrum \ v \ (KBr) \ cm^{-1}: & 1746,2220 \end{array}$

Specific rotation $[\alpha]_D^{20}$ -130.4° (c = 0.1, DMSO)

[0136] The compounds of Reference examples 266 through 267 were obtained in the same manner as in Reference example 265.

45

40

50

	Reference	R	Physical properties	
	example		[recrystallization solvent]	
			pale yellow crystals	
10			$ NMR(DMSO-d_6)\delta $ ppm:1.69(2H,quin,J=7	
			Hz),2.42(2 H , t , J =7 Hz),2.58(4 H , s),2.82(
			3H,d,J=4.5Hz),3.02(4H,s),3.35-3.45(2	
		s	H,m),3.78(1H,dd,J=9,6Hz),4.02(1H,dd	
		Me N (CH2)2 N	,J=15,5Hz),4.11(1H,dd,J=15,3.5Hz),4.	
15	266		18(1H,t,J=9Hz),4.90-5.00(1H,m),7.06(
	,	P	1H,t,J=9Hz),7.19(1H,dd,J=9,2.5Hz),7.	
			32(1H,br-s),7.39(1H,br-s),7.46(1H,dd,	
			J=14.5,2.5Hz)	
20			IR ν (KBr) cm ⁻¹ :1744,2088,3280	
•	•		Specific rotation	
			$[\alpha]_{D^{20}-44.0^{\circ}}$ (c=0.1,DMSO)	
			orange liquid	
05			$ NMR(DMSO-d_6)\delta ppm:1.60-1.80(2H,m), $	
25			2.39(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),	
			3.02(4H,t,J=5Hz),3.40-3.50(2H,m),3.7	
			7(1H,dd,J=9,6Hz),3.87(3H,s),3.99(1H,	
		S (CH-)- ()	dd,J=15,5Hz),4.07(1H,dd,J=15,3.5Hz),	
30	267	MeO N N N	4.17(1H,t,J=9Hz),4.85-4.95(1H,m),7.0	
	ţ	f f	3(1H,t,J=9Hz),7.17(1H,dd,J=9,2.5Hz),	
			7.41(1H,dd,J=15.5,2.5Hz),8.77(1H,br-	
		l	s)	
35			IR ν (liq.) cm ⁻¹ :1752,2088,3296	
			Specific rotation	
			$[\alpha]_{D^{20}-67.5^{\circ}}$ (c=0.1,DMSO)	

40 Example 1

50

55

5

[0137] O-Methyl (S)-N-[3-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate [0138] To 44 ml of dried methanol, 0.53 g of 60 % sodium hydride was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 30 minutes. Then, the mixture was added with 4.41 g of (R)-N-[3-[3-fluoro-4-(thiomorpholin-4-yl)phenyl]-2-oxooxazolidin-5-yl]methyl isothiocyanate, and stirred at room temperature for 3 hours. The reaction mixture was neutralized with ice water and 10% hydrochloric acid, and the precipitated crystals were collected by filtration to obtain 4.68 g of pale brown crystals. Recrystallization from ethanol gave pale brown crystals having the melting point of from 141.5 to 143°C.

Elemental analysis for C ₁₆ H ₂₀ FN ₃ O ₃ S ₂						
Calculated % C, 49.85; H, 5.23; N, 10.90						
Found %	C,	49.58;	Н,	5.05;	N,	10.82

Speck rotation [α]_D²⁰ -25.9° (c =0.1, DMSO) [0139] The compounds of Examples 2 through 60 were obtained in the same manner as in Example 1.

	Example	R	Physical properties [recrystallization solvent]
10			colorless prisms[CH3CN]
			mp,206~207°C
	2	0=8 N-	Elemental analysis for C ₁₆ H ₂₀ FN ₃ O ₄ S ₂
	_	F	Calcd. %: C,47.87;H,5.02;N,10.47
15	·		Found %: C,48.04;H,5.00;N,10.51
			Specific rotation [\alpha]_D^20-25.0° (c=0.1,DMSO) yellow liquid
			yellow liquid NMR(DMSO-ds) δ ppm:3.19(4H,t,J=5.5Hz),3.5
i			1(4H,t,J=5.5Hz),3.80-3.90(3H,m),3.92(3H,s)
20		0,,/	,4.10(1H,t,J=9Hz),4.80-4.90(1H,m),7.15-7.2
•	3		5(2H,m),7.43(1H,dd,J=13.5,2.5Hz),9.10(1H,
		F	br-s)
			$MS(m/z):417(M^{+})$
25	1		Specific rotation [α] _{D²⁰-23.9° (c=0.1,DMSO)}
			pale brown crystals[EtOH]
	4	\(\sigma_F\)	mp,147~148.5°C
			Elemental analysis for C ₁₆ H ₂₀ FN ₃ O ₃ S
30			Calcd. %: C,54.38;H,5.70;N,11.89
30			Found %: C,54.27;H,5.75;N,11.91
			Specific rotation [\alpha]_D^20-26.9° (c=0.1,DMSO)
			colorless crystals[EtOH]
			mp,131~133°C
<i>35</i>	5	s n— —	Elemental analysis for C ₁₆ H ₂₁ N ₃ O ₃ S ₂
			Calcd. %: C,52.29;H,5.76;N,11.43 Found %: C,52.24;H,5.76;N,11.43
			Specific rotation [α] $_{\rm D}^{20}$ -24.1° (c=0.1,DMSO)
			pale brown crystals[i-PrOH]
40		·	mp,117~118°C
	6		Elemental analysis for C ₁₇ H ₂₂ FN ₃ O ₃ S
			Calcd. %: C,55.57;H,6.03;N,11.44
			Found %: C,55.35;H,6.24;N,11.33
45			Specific rotation [α] p^{20} -29.1° (c=0.1,DMSO)

	Example	R	Physical properties [recrystallization solvent]
10		<u> </u>	pale brown needles[i-PrOH] mp,124.5~125.5°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₃ S
15	7		Calcd. %: C,56.67;H,6.34;N,11.02 Found %: C,56.55;H,6.50;N,10.82 Specific rotation[\alpha]p^{20}-29.0° (c=0.1,DMSO)
20 _	8	Me — N— F	pale brown needles[i-PrOH] mp,135~136°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₃ S Calcd. %: C,56.67;H,6.34;N,11.02 Found %: C,56.67;H,6.24;N,10.91 Specific rotation[α] _D ²⁰ -25.9° (c=0.1,DMSO)
25	9	Et	colorless crystals[i-PrOH] mp,112~114°C Elemental analysis for C ₁₉ H ₂₆ FN ₃ O ₃ S Calcd. %: C,57.70;H,6.63;N,10.62 Found %: C,57.70;H,6.74;N,10.53 Specific rotation[α] _D ²⁰ -24.1° (c=0.1,DMSO)
<i>30</i>	10	NeON	colorless needles[i-PrOH] mp,112~113.5°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₄ S Calcd. %: C,54.39;H,6.09;N,10.57 Found %: C,54.19;H,6.21;N,10.47 Specific rotation[α] _D ²⁰ -24.1° (c≈0.1,DMSO)
40	11	EtO—N—F	colorless crystals [i-PrOH] mp,138~140°C Elemental analysis for C ₁₉ H ₂₆ FN ₃ O ₄ S Calcd. %: C,55.46;H,6.37;N,10.21 Found %: C,55.65;H,6.58;N,10.15 Specific rotation[α] _D ²⁰ -32.9° (c=0.1,DMSO)
45 50	12	MeO-(CH ₂) ₂ -O-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	pale brown crystals[i-PrOH] mp,99~100.5°C Elemental analysis for C ₂₀ H ₂₈ FN ₃ O ₅ S Calcd. %: C,54.41;H,6.39;N,9.52 Found %: C,54.20;H,6.50;N,9.50 Specific rotation [α] _D ²⁰ -23.9° (c=0.1,DMSO)

Example R [recrystallization solvent]	
mp,110~112°C Elemental analysis for C ₁₆ H ₂₀ FN ₃ O ₄ S Calcd. %: C,52.02;H,5.46;N,11.37 Found %: C,52.02;H,5.42;N,11.27 Specific rotation [α] _D ²⁰ -27.0° (c=0.1,DMS) pale brown needles [i-PrOH] mp,79~80°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.29;H,5.86;N,10.19 Specific rotation [α] _D ²⁰ -25.0° (c=0.1,DMS)	
Elemental analysis for C ₁₆ H ₂₀ FN ₃ O ₄ S Calcd. %: C,52.02;H,5.46;N,11.37 Found %: C,52.02;H,5.42;N,11.27 Specific rotation [α] _D ²⁰ -27.0° (c=0.1,DMSC) pale brown needles[i-PrOH] mp,79~80°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.29;H,5.66;N,10.19 Specific rotation [α] _D ²⁰ -25.0° (c=0.1,DMSC)	
Calcd. %: C,52.02;H,5.46;N,11.37 Found %: C,52.02;H,5.42;N,11.27 Specific rotation [α] _D ²⁰ -27.0° (c=0.1,DMS) pale brown needles [i-PrOH] mp,79~80°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D ²⁰ -25.0° (c=0.1,DMS)	
Calcd. %: C,52.02;H,5.46;N,11.37 Found %: C,52.02;H,5.42;N,11.27 Specific rotation [α] _D ²⁰ -27.0° (c=0.1,DMS) pale brown needles [i-PrOH] mp,79~80°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D ²⁰ -25.0° (c=0.1,DMS)	
Specific rotation [α] _D 20-27.0° (c=0.1,DMS) pale brown needles [i-PrOH] mp,79~80°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D 20-25.0° (c=0.1,DMS)	
pale brown needles [i-PrOH] mp,79~80°C Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D ²⁰ -25.0° (c=0.1,DMS)	
mp,79~80°C Elemental analysis for $C_{18}H_{24}FN_{3}O_{5}S$ Calcd. %: $C,52.29;H,5.85;N,10.16$ Found %: $C,52.20;H,5.66;N,10.19$ Specific rotation [α] α] α 20-25.0° (c=0.1,DMS)))
20 HeO-(CH ₂) ₂ -O-(N-) Elemental analysis for C ₁₈ H ₂₄ FN ₃ O ₅ S Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D 20-25.0° (c=0.1,DMS)))
Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D 20-25.0° (c=0.1,DMS)))
Calcd. %: C,52.29;H,5.85;N,10.16 Found %: C,52.20;H,5.66;N,10.19 Specific rotation [α] _D 20-25.0° (c=0.1,DMS)))
Specific rotation [α] _D 20-25.0° (c=0.1,DMS)))
))
nole millem amodele [: D_OIT : D_OI	
pate yettow crystats[1-Profil-1-Pr ₂ O]	1
25 mp,119.5~121.5℃	1
15 Me-N N- Elemental analysis for C ₁₇ H ₂₈ FN ₄ O ₃ S	
Calcd. %: C,53.39;H,6.06;N,14.65	
Found %: C,53.20;H,5.94;N,14.50	
Specific rotation[α] _D 20-30.1° (c=0.1,DMSO)
pale brown crystals[i-PrOH]	
mp,122~123℃	
16 Elemental analysis for C ₁₈ H ₂₅ FN ₄ O ₃ S	
Calcd. %: C,54.53;H,6.36;N,14.13	1
Found %: C,54.29;H,6.10;N,14.02	
Specific rotation [α] _D 20-19.1° (c=0.1,DMS)))
pale brown needles[i-PrOH]	
mp,128.5~129.5°C	
Elemental analysis for C ₁₉ H ₂₇ FN ₄ O ₃ S	
Calcd. %: C,55.59;H,6.63;N,13.65	l
Found %: C,55.36;H,6.57;N,13.57	.
Specific rotation [α] $_{D^{20}-25.0^{\circ}}$ (c=0.1,DMS)))
pale brown needles[i-PrOH]	
45 mp,118.5~120°C	
18 n-Bu-N N- Elemental analysis for C20H29FN4O3S	!
Calcd. %: C,56.58;H,6.89;N,13.20	į
Found %: C,56.50;H,7.03;N,13.14	
Specific rotation [α] \mathbf{p}^{20} -22.0° (c=0.1,DMS)	J)

	Example	R	Physical properties [recrystallization solvent]
10			colorless needles[i-PrOH]
15	19	Boc-N N-	mp,153.5~155°C Elemental analysis for C ₂₁ H ₂₉ FN ₄ O ₅ S Calcd. %: C,53.83;H,6.24;N,11.96 Found %: C,53.83;H,6.17;N,11.85 Specific rotation [α] _D ²⁰ -14.0° (c=0.1,DMSO)
20	20	MeO CH ₂ -N N F	colorless needles [i-PrOH] mp,147.5~149°C Elemental analysis for $C_{19}H_{25}FN_4O_5S$ Calcd. %: C,51.81;H,5.72;N,12.72 Found %: C,51.76;H,5.59;N,12.53 Specific rotation [α] $_{D}^{20}$ -22.0° (c=0.1,DMSO)
25	21	CH ₂ -N N-	colorless needles [i-PrOH] mp,126~127°C Elemental analysis for $C_{20}H_{27}FN_4O_5S$ Calcd. %: C,52.85;H,5.99;N,12.33 Found %: C,52.82;H,5.75;N,12.22 Specific rotation [α] $_{0}^{20}$ -24.0° (c=0.1,DMSO)
30	22	O (CH ₂) ₂ -N N-F	pale yellow crystals [i-PrOH-i-Pr ₂ O] mp,98~99°C Elemental analysis for C ₂₁ H ₂₉ FN ₄ O ₅ S Calcd. %: C,53.83;H,6.24;N,11.96 Found %: C,58.75;H,6.26;N,11.93 Specific rotation [α] _D ²⁰ -19.1° (c=0.1,DMSO)
40	23	0 (CH ₂) ₃ -N NeO	colorless needles [i-PrOH] mp,97~98°C Elemental analysis for $C_{21}H_{29}FN_4O_5S$ Calcd. %: C,53.83;H,6.24;N,11.96 Found %: C,53.77;H,6.34;N,11.89 Specific rotation [α] $_{0}^{20}$ -16.0° (c=0.1,DMSO)
<i>45</i>	24	Mao N	colorless crystals [i-PrOH-i-Pr ₂ O] mp,114~116°C Elemental analysis for $C_{18}H_{23}FN_4O_5S$ Calcd. %: $C,50.69;H,5.44;N,13.14$ Found %: $C,50.85;H,5.53;N,12.88$ Specific rotation [α] $_{D}^{20}$ -26.1° (c=0.1,DMSO)

	Example	R	Physical properties [recrystallization solvent]
10	,	MeO-(CH-)-	pale reddish brown crystals[i-PrOH] mp,157~160°C
15	25	. F	Elemental analysis for $C_{20}H_{27}FN_4O_5S$ Calcd.~%: C,52.85;H,5.99;N,12.33 Found $\%: C,52.60;H,6.20;N,12.27$ Specific rotation [α] $_{D^{20}-17.0^{\circ}}$ (c=0.1,DMSO)
20	26	Me (CH ₂) ₂ N N F	pale brown crystals[i-PrOH] mp,173~174°C Elemental analysis for $C_{21}H_{30}FN_5O_4S$ Calcd. %: C,53.95;H,6.47;N,14.98 Found %: C,53.72;H,6.78;N,14.71 Specific rotation [α] $_{D}^{20}$ -21.0° (c=0.1,DMSO)
25			pale yellow liquid NMR(DMSO-d ₆) δ ppm:1.57(2H,quin,J=7.5Hz), 1.79(3H,s),2.34(2H,t,J=7.5Hz),2.50(4H,t,J=4 .5Hz),2.98(4H,t,J=4.5Hz),3.00-3.10(2H,m),3.
30	27	Mie CH ₂) ₃ - N F	45-3.55(2H,m),3.75-3.85(1H,m),3.89(3H,s),4. 11(1H,t,J=9Hz),4.85-4.95(1H,m),7.03(1H,t,J) =9Hz),7.17(1H,dd,J=9,2.5Hz),7.46(1H,dd,J= 14.5,2.5Hz),7.68(1H,br-s),8.39(1H,br-s) IR ν (liq.) cm ⁻¹ :1748,3304 Specific rotation[α] $_{\rm D}^{20}$ -50.6° (c=0.1,DMSO)
35	28	NC (CH ₂) ₂ N N F	colorless crystals[i-PrOH] mp,115~117°C Elemental analysis for C ₁₉ H ₂₄ FN ₆ O ₃ S Calcd. %: C,54.14;H,5.74;N,16.62
40			Found %: C,54.08;H,5.93;N,16.51 Specific rotation [α] $_{0}^{20}$ -24.0° (c=0.1,DMSO) pale brown crystals[DMF-H ₂ O]
45	29	(CH ₂) ₃ N N	mp,193.5~195°C Elemental analysis for $C_{26}H_{28}FN_5O_5S$ Calcd. %: C,57.66;H,5.21;N,12.93 Found %: C,57.64;H,5.20;N,12.77 Specific rotation [α] α] α 0-19.1° (c=0.1,DMSO)

ſ	Example	R	Physical properties [recrystallization solvent]
	30	Me —	colorless crystals[i-Pr ₂ O] mp,102.5~103.5°C Elemental analysis for $C_{13}H_{16}N_{2}O_{3}S$ Calcd.~%: C,55.70;H,5.75;N,9.99 Found $\%: C,55.86;H,6.02;N,9.89$ Specific rotation[α] _{D²⁰-33.9° (c=0.1,DMSO)}
	31	Me Me	colorless needles[i-PrOH] mp,108~110°C Elemental analysis for $C_{14}H_{18}N_{2}O_{3}S$ Calcd. %: C,57.12;H,6.16;N,9.52 Found %: C,57.29;H,6.38;N,9.51 Specific rotation[α] $_{D}^{20}$ -32.0° (c=0.1,DMSO)
	32	o Ma	pale yellow needles[i-PrOH] mp,146.5~148.5°C Elemental analysis for $C_{14}H_{16}N_{2}O_{4}S$ Calcd.~%: C,54.53;H,5.23;N,9.08 Found $\%: C,54.51;H,5.11;N,9.05$ Specific rotation[α] $_{D}^{20}-45.0^{\circ}$ (c=0.1,DMSO)
	33	Me, N—————	pale brown crystals[i-PrOH] mp,149~150°C Elemental analysis for $C_{14}H_{19}N_3O_3S$ Calcd. %: C,54.35;H,6.19;N,13.58 Found %: C,54.54;H,6.14;N,13.45 Specific rotation [α] α 20-24.0° (c=0.1,DMSO)
	34	Me Me	pale yellow liquid NMR(DMSO-d ₆) δ ppm:2.77(6H,s),3.75-3.85(3 H,m),3.92(3H,s),4.06(1H,t,J=9Hz),4.80-4.90(1H,m),6.95(1H,t,J=9Hz),7.13(1H,dd,J=9,2.5 Hz),7.40(1H,dd,J=15.5,2.5Hz),9.10(1H,br-s) IR ν (liq.) cm ⁻¹ :1754,3268 MS(m/z):327(M+) Specific rotation[α] $_{\rm D}^{20}$ -38.1° (c=0.1,DMSO)

			701
	Example	R	Physical properties
10			[recrystallization solvent]
			pale brown needles[i-PrOH]
		Me 🥽	mp,91~92°C
	35	N-{ }-	Elemental analysis for C ₁₅ H ₂₀ FN ₈ O ₃ S
	33	· Et')—//	Calcd. % : C,52.77;H,5.90;N,12.31
15		r	Found %: C,52.83;H,6.16;N,12.26
			Specific rotation [α] 20 -25.1° (c=0.1,DMSO)
			pale brown liquid
			$NMR(DMSO-d_6) \delta ppm:1.01(6H,t,J=7Hz),3.13($
00			4H,q,J=7Hz),3.70-3.85(3H,m),3.92(3H,s),4.0
20		Et, /=\	9(1H,t,J=9Hz),4.80-4.90(1H,m),7.01(1H,t,J=
	36		9Hz), $7.10-7.20(1H,m)$, $7.36(1H,dd,J=14.5,2.5)$
		Et /	Hz),9.10(1H,br-s)
			IR ν (liq.) cm ⁻¹ : 1378,1460
25			MS(m/z):355(M+)
į		·	Specific rotation [α] D^{20} -35.8° (c=0.1,DMSO)
			colorless needles[EtOH]
,	'		mp,101~102°C
30	37	MeO-(CH ₂) ₂ -O-	Elemental analysis for C ₁₅ H ₁₉ FN ₂ O ₅ S
50			Calcd. %: C,50.27;H,5.34;N,7.82
			Found %: C,50.22;H,5.36;N,7.81
			Specific rotation [α] $_{D^{20}}$ -33.0° (c=0.1,DMSO)
			pale brown prisms[i-PrOH]
35	1		mp,134~135°C
	İ		Elemental analysis for C ₁₅ H ₁₈ N ₂ O ₃ S
	38		Calcd. %: C,58.80;H,5.92;N,9.14
	1		Found %: C,58.94;H,6.04;N,9.16
40			Specific rotation [α] $_{0}^{20}$ -31.0° (c=0.1,DMSO)
			pale brown prisms[i-PrOH]
	[mp.145.5~147°C
	1		Elemental analysis for C ₁₆ H ₂₀ N ₂ O ₈ S
	39		Calcd. %: C,59.98;H,6.29;N,8.74
45			Found %: C,60.10;H,6.40;N,8.70
			Specific rotation [α] _D ²⁰ -35.1° (c=0.1,DMSO)
	L	1	Decuie rotation (a man-20.1 (c-0.1,DMSO)

	Example	R	Physical properties
10	Bampic		[recrystallization solvent]
į			yellow liquid NMR(DMSO-d ₆)δ ppm:1.55-1.65(2H,m),1.80-
15	40	Meo N -o - F	1.95(2H,m),3.20-3.30(2H,m),3.61(3H,s),3.60 -3.70(2H,m),3.70-3.85(3H,m),3.92(3H,s),4.1 0(1H,t,J=8.5Hz),4.40-4.50(1H,m),4.80-4.90(1H,m),7.15-7.25(2H,m),7.40-7.50(1H,m),9.1
20			0(1H,br-s) IR ν (liq.) cm ⁻¹ :1696,1756 Specific rotation[α] $_{\rm D}^{20}$ -20.7° (c=0.1,DMSO)
			colorless amorphous solid NMR(DMSO-ds) & ppm:1.55-1.65(2H,m),1.85-
25	41	MeO-(CH ₂ I ₂) N O-O-	1.95(2H,m),2.56(2H,t,J=6.5Hz),3.24(3H,s),3 .25-3.35(2H,m),3.58(2H,t,J=6.5Hz),3.70-3.8 5(3H,m),3.92(3H,s),4.10(1H,t,J=9Hz),4.45-4 .55(1H,m),4.80-4.90(1H,m),7.15-7.25(2H,m) ,7.47(1H,d,J=13Hz),9.11(1H,br-s)
30			IR ν (liq.) cm ⁻¹ :1756 Specific rotation[α] _D ²⁰ -17.2° (c=0.1,DMSO)
50		0	pale yellow prisms[EtOH] mp,177~178.5°C
35	42	MeO N O F	Elemental analysis for C ₁₇ H ₂₀ FN ₃ O ₆ S Calcd. %: C,49.39;H,4.88;N,10.16 Found %: C,49.23;H,4.79;N,10.07 Specific rotation [α] _D ²⁰ -24.0° (c=0.1,DMSO)
40	43	H ₂ N N N N	colorless crystals NMR(DMSO-d ₆) δ ppm:3.03(4H,t,J=5Hz),3.75 -3.85(3H,m),3.85-3.90(4H,m),3.91(3H,s),4.1 1(1H,t,J=9Hz),4.80-4.90(1H,m),7.06(1H,t,J =9Hz),7.13(2H,br-s),7.17(1H,dd,J=9,2.5Hz), 7.43(1H,dd,J=15.5,2.5Hz),9.11(1H,br-s)
45		,	IR ν (KBr) cm ⁻¹ :3272 Specific rotation[α] _D ²⁰ -60.1° (c=0.1,DMSO)

ļ	Example	R	Physical properties
	Example		[recrystallization solvent]
10		•	pale brown needles[EtOH]
		Me	mp,168~169°C
	44		Elemental analysis for C ₁₈ H ₂₄ FN ₅ O ₃ S ₂
	44	ــر ـــ ـــ	Calcd. % : C,48.96;H,5.48;N,15.86
15		•	Found %: C,48.82;H,5.26;N,15.76
			Specific rotation $[\alpha]_{D^{20}-24.0^{\circ}}$ (c=0.1,DMSO)
			pale brown needles[CH3CN]
		ş	mp,157~158.5℃
	45	Et. N N N	Elemental analysis for C ₁₉ H ₂₆ FN ₅ O ₃ S ₂
20	40	H '_/'	Calcd. %: C,50.09;H,5.75;N,15.37
		F	Found %: C,50.10;H,5.69;N,15.26
			Specific rotation[\alpha] _D 20-28.0° (c=0.1,DMSO)
		e	colorless crystals[MeOH]
25		n-Pr. I	mp,162.5~164.5°C
	46	N N N N N N N N N N N N N N N N N N N	Elemental analysis for C ₂₀ H ₂₈ FN ₅ O ₃ S ₂
	40		Calcd. %: C,51.15;H,6.01;N,14.91
•	1		Found %: C,51.07;H,5.87;N,14.90
30			Specific rotation[\alpha]D^20-21.1° (c=0.1,DMSO)
50			pale brown crystals
	Į	s	NMR(DMSO-d ₆) δ ppm:3.09(4H,t,J=5Hz),3.11(6
		Me I	H,s),3.51(4H,t, $J=5Hz$),3.75-3.85(3H,m),3.92(3
	47	N N	H,s),4.10(1H,t,J=9Hz),4.80-4.90(1H,m),7.07(1
35	1	\ me F	H,t,J=9Hz),7.18(1H,dd,J=9,2Hz),7.42(1H,dd,J
	ļ		=14.5,2Hz),9.11(1H,br-s)
		1	IR ν (KBr) cm ⁻¹ :1748,3392
			Specific rotation[α]p ²⁰ -21.9° (c=0.1,DMSO)
40			colorless needles [i-PrOH]
	Ì	S C	mp,181~182.5°C
	48	MeO N N	Elemental analysis for C ₁₈ H ₂₈ FN ₄ O ₄ S ₂
	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Calcd. %: C,48.85;H,5.24;N,12.66 Found %: C,49.04;H,5.13;N,12.71
	}		Specific rotation[α] α 20-32.1° (c=0.1,DMSO)
45		1	Specific rotation (a In32.1 (c-0.1, DMSO)

			· S
	Example	R	Physical properties
10	•		[recrystallization solvent] colorless crystals[EtOH]
			mp,126.5~127°C
			Elemental analysis for C19H25FN4O4S2
15	49	EtO N N	Calcd. %: C,49.98;H,5.52;N,12.27
:		f	Found %: C,49.87;H,5.69;N,12.27 Specific rotation
			$[\alpha]_{D^{20}-25.9}^{\circ}$ (c=0.1,DMSO)
			colorless crystals[MeOH]
20		s	mp,148~149℃
			Elemental analysis for C20H27FN4O4S2
	50	n-Pro N N	Calcd. %: C,51.05;H,5.78;N,11.91
		F ∕	Found %: C,51.16;H,5.81;N,11.70
25	}		Specific rotation [α] $_{D}^{20}$ -24.0° (c =0.1,DMSO)
		<u> </u>	colorless crystals[i-PrOH]
			mp,160~162°C
		S —	Elemental analysis for C ₁₈ H ₂₃ FN ₄ O ₃ S ₃
30	51	Mes N N-	Calcd. %: C,47.14;H,5.06;N,12.22
			Found %: C,47.40;H,5.04;N,12.13
	}	,	Specific rotation
			$[\alpha]_{D^{20}-22.9}^{\circ}$ (c=0.1,DMSO)
35			yellow needles[AcOEt]
	ļ	s	mp,148~149°C
			Elemental analysis for C28H25FN4O3S2
	52		Calcd. %: C,56.54;H,5.16;N,11.47
40	1	F'	Found %: C,56.39;H,5.10;N,11.32 Specific rotation
40			[α] p^{20} -25.0° (c=0.1,DMSO)
			[La JD 20.0 (0 0.1,DM2.00)

	Example	R	Physical properties [recrystallization solvent]
15		Ma-N-CH2ba-N-N-	colorless amorphous solid NMR(DMSO-de) δ ppm:1.69(2H,quin,J=6. 5Hz),2.39(2H,t,J=6.5Hz),2.54(4H,t,J=5 Hz),2.85(3H,d,J=4.5Hz),3.03(4H,t,J=5 Hz),3.40-3.50(2H,m),3.70-3.85(3H,m),3 .92(3H,s),4.08(1H,t,J=9Hz),4.80-4.90(1
20	53	# # \	H,m),7.03(1H,t,J=9Hz),7.12(1H,br-s),7. 15(1H,dd,J=9,2.5Hz),7.16(1H,br-s),7.39 (1H,dd,J=15,2.5Hz),9.10(1H,br-s) IR ν (KBr) cm ⁻¹ :1746,3252 Specific rotation [α] _D ²⁰ -20.9° (c=0.1,DMSO)
25			pale brown liquid NMR(DMSO-d ₆) & ppm:1.60-1.80(2H,m),2 .39(2H,t,J=6.5Hz),2.53(4H,t,J=5Hz),3.0 2(4H,t,J=5Hz),3.40-3.50(2H,m),3.70-3.
30	54	Meo Moo Moo Moo Moo Moo Moo Moo Moo Moo	85(3H,m),3.87(3H,s),3.92(3H,s),4.08(1 H,t,J=9Hz),4.80-4.90(1H,m),7.02(1H,t, J=9Hz),7.15(1H,dd,J=9,2.5Hz),7.39(1H ,dd,J=15.5,2.5Hz),8.77(1H,br-s),9.10(1 H,br-s)
35			IR ν (liq.) cm ⁻¹ :1740,3268 Specific rotation [α] 20 -18.1° (c=0.1,DMSO)
40	55	MeO THOUSE NOT THE SECOND SECO	pale brown crystals NMR(DMSO-d ₆) δ ppm:1.60-1.75(2H,m),1 .90-2.05(1H,m),2.40-2.55(2H,m),2.70-2. 85(2H,m),3.25-3.35(2H,m),3.65-3.85(3 H,m),3.89(3H,s),3.92(3H,s),4.08(1H,t,J =9Hz),4.80-4.90(1H,m),7.05(1H,t,J=9H
45		F'	z),7.14(1H,dd,J=9,2.5Hz),7.39(1H,dd,J=14.5,2.5Hz),8.80(1H,br-s),9.11(1H,br-s) IR ν (KBr) cm ⁻¹ :1740,3272 Specific rotation [α]p ²⁰ -25.0° (c=0.1,DMSO)

SON-SON RI

Example	R ¹	Physical properties
		[recrystallization-solvent]
j		colorless crystals[i-PrOH]
]		mp,103.5~104.5℃
56	Et	Elemental analysis for C ₁₇ H ₂₂ FN ₃ O ₃ S ₂
36	יונע	Calcd. %: C,51.11;H,5.55;N,10.52
		Found %: C,51.20;H,5.67;N,10.38
		Specific rotation [α] _D ²⁰ -23.1° (c=0.1,DMSO)
		pale yellow crystals[i-PrOH]
		mp,124~125°C
		Elemental analysis for C ₁₈ H ₂₄ FN ₈ O ₃ S ₂
57	n-Pr	Calcd. %: C,52.28;H,5.85;N,10.16
		Found %: C,52.22;H,5.86;N,10.12
		Specific rotation [α] $_{D^{20}}$ -30.9° (c=0.1,DMSO)
		colorless crystals[i-PrOH-i-Pr2O]
		mp,164~166°C
50		Elemental analysis for C ₁₈ H ₂₄ FN ₈ O ₃ S ₂
58	i-Pr	Calcd. %: C,52.28;H,5.85;N,10.16
	-	Found %: C,52.06;H,5.56;N,10.01
		Specific rotation [α] _D ²⁰ -32.1° (c=0.1,DMSO)
		pale yellow crystals[MeOH]
		mp,150~152°C
59	сус-Нех	Elemental analysis for C21H28FN8O3S2
อฮ		Calcd. %: C,55.61;H,6.22;N,9.26
		Found %: C,55.49;H,5.97;N,9.07
		Specific rotation [α] $_{D^{20}}$ -26.9° (c=0.1,DMSO)

.

Example	R ¹	Physical properties [recrystallization solvent]
60	Et	pale yellow prisms [EtOH] mp,152~153°C Elemental analysis for C ₁₉ H ₂₆ FN ₅ O ₃ S ₂ Calcd. %: C,50.09;H,5.75;N,15.37 Found %: C,50.14;H,5.82;N,15.13 Specific rotation [α] _D ²⁰ -30.0° (c=0.1,DMSO)

20 Example 61

5

10

15

25

30

35

40

45

[0140] O-Methyl (S)-N-[3-[3-fluoro-4-[4-(3-mesylaminopropyl)piperazin-1-yl]-phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate

1) To a solution of 0.40 g of (S)-5-aminomethyl-3-[3-fluoro-4-[4-(3-mesylaminopropyl)piperazin-1-yl]phenyl]-2-oxooxazolidine and 0.13 ml of triethylamine in 4 ml of dried tetrahydrofuran, 0.12 ml of carbon disulfide was added under ice-cooling and with stirring, and the mixture was stirred at the same temperature for 5 hours. The mixture was added with 0.09 ml of ethyl chlorocarbonate under ice-cooling and with stirring, and further stirred at the same temperature for 2 hours. The reaction solution was added with water, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 0.39 g of a pale brown amorphous solid.

2) To 3.5 ml of dried methanol, 0.06 g of 60 % sodium hydride was added under stirring at room temperature, and the mixture was stirred at room temperature for 30 minutes. Then, the mixture was added with 0.35 g of the amorphous solid obtained in 1), and stirred at room temperature for 1 hour. The reaction mixture was neutralized with ice water and 10 % hydrochloric acid, and extracted with ethyl acetate. The extract was washed with saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (alumina, ethyl acetate) to obtain 0.14 g of pale brown crystals. Recrystallization from isopropanol gave colorless needles having the melting point of from 120 to 121.5°C.

Elemental analysis for C ₂₀ H ₃₀ FN ₅ O ₅ S ₂						
Calculated %	C,	47.70;	Н,	6.00;	N,	13.91
Found %	C,	47.76;	Н,	5.88;	N,	13.70

Specific rotation $[\alpha]_D^{20}$ -19.0° (c = 0.1, DMSO)

Example 62

[0141] O-Methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxooxazolidin-5-yl]-methylthiocarbamate
 [0142] To 4 ml of 10 % hydrogen chloride ethyl acetate solution, 0.20 g of O-methyl (S)-N-[3-[4-(4-tert-butoxycarb-onylpiperazin-1-yl)-3-fluorophenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate was added under ice-cooling and with stirring, and the mixture was stirred at room temperature for 6 hours. After the reaction, the solvent was evaporated under reduced pressure, and the residue was added with aqueous sodium hydrogencarbonate, and extracted with 1,2-dichloroethane. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure to obtain 0.10 g of a colorless amorphous solid. NMR spectrum (DMSO-d₆) δ ppm:

3.00(8H,s),3.21(1H,br-s),3.75-3.85(3H,m),3.89(3H,s),4.11(1H,t,J=9Hz), 4.85-4.90(1H,m),7.07(1H,t,J=9.5Hz),7.15-

7.19(1H,m),7.45(1H,dd,J=15,3Hz), 9.39(1H,br-s) IR spectrum v (KBr) cm⁻¹: 1750,3228 Specific rotation $[\alpha]_D^{20}$ -30.1° (c = 0.1, DMSO)

5 Example 63

[0143] O-Methyl (S)-N-[3-[3-fluoro-4-[4-(3-oxobutyl)piperazin-1-yl]phenyl]-2-oxo-oxazolidin-5-yl]methylthiocarbamate

[0144] To a solution of O-methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)phenyl]-2-oxo-oxazolidin-5-yl]methylthiocar-bamate in 1 ml of methanol, 0.01 ml of methyl vinyl ketone was added under stirring at room temperature, and the mixture was stirred at the same temperature for 30 minutes. After the reaction, the solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (alumina, ethyl acetate) to obtain 0.06 g of colorless crystals.

NMR spectrum (CDCl₃) δ ppm:

2.19(3H,s),2.63(4H,t,J=5Hz),2.66(2H,t,J=6.5Hz),2.74(2H,t,J=6.5Hz),3.07(4H,t,J=5Hz), 3.82(1H,dd,J=9,6.5Hz),4.00 (3H,s),3.90-4.15(3H,m),4.85-4.95(1H,m),6.69(1H,t,J=6Hz), 6.92(1H,t,J=9Hz),7.07(1H,dd,J=9,2.5Hz)17.41(1H,dd,J=14,2.5Hz)

IR spectrum v (KBr) cm⁻¹: 1714,1746,3284 Specific rotation $[\alpha]_D^{20}$ -20.8° (c = 0.1, DMSO)

Example 64

20

25

40

45

50

55

[0145] O-Methyl (S)-N-[3-[4-(4-carbamoylpiperazin-1-yl)-3-fluorophenyl]-2-oxo-oxazolidin-5-yl]methylthiocarbamate

[0146] To a solution of 0.50 g of O-methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate in 5.0 ml of acetic acid, a solution of 0.21 g of sodium cyanate in 5.0 ml of water was added under stirring at room temperature, and the mixture was stirred at the same temperature for 2 hours. The reaction solution was neutralized with 40% aqueous sodium hydroxide, and then extracted with ethyl acetate. The extract was washed successively with water and saturated brine, and dried over sodium sulfate, and then the solvent was evaporated under reduced pressure. The residue was washed with ethyl acetate to obtain 0.15 g of colorless crystals.

NMR spectrum (DMSO-d₆) δ ppm:

2.90-3.00(4H,m),3.40-3.50(5H,m),3.70-3.85(2H,m),3.92(3H,s),4.09(1H,t,J=9Hz), 4.70-4.90(1H,m),5.64(2H,br-s), 7.05(1H,t,J=9Hz),7.10-7.20(1H,m), 7.41(1H,dd,J=14.5,2.5Hz),9.10(1H,br-s) IR spectrum v (KBr) cm⁻¹: 1740

Specific rotation $[\alpha]_D^{20}$ -32.0° (c = 0.1, DMSO)

Example 65

[0147] O-Methyl (S)-N-[3-[3-fluoro-4-(4-thioacetylpiperazin-1-yl)phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate [0148] To a solution of 0.50 g of O-methyl (S)-N-[3-[3-fluoro-4-(piperazin-1-yl)-phenyl]-2-oxooxazolidin-5-yl]methylthiocarbamate in 5.0 ml of tetrahydrofuran, 0.17 ml of ethyl dithioacetate was added under stirring at room temperature, and the mixture was stirred at the same temperature for 18 hours. After the reaction, the solvent was evaporated under reduced pressure, and the residue was washed with ethyl acetate to obtain 0.27 g of colorless crystals. Recrystallization from acetonitrile gave colorless crystals having the melting point of from 176 to 178°C.

Elemental analysis for C ₁₈ H ₂₃ FN ₄ O ₃ S ₂						
Calculated %	C,	50.69;	Н,	5.44;	N,	13.14
Found %	C,	50.71;	Н,	5.34;	N,	13.26

Specific rotation $[\alpha]_D^{20}$ -33.0° (c = 0.1, DMSO)

[0149] To evaluate excellent effectiveness of the thiocarbamic acid derivatives of the present invention, antibacterial tests against type strains, clinical isolates, and atypical acid-fast bacteria were performed.

[Antibacterial spectra against type strains, clinical isolates, and atypical acid-fast bacteria]

[0150] Antibacterial activities (minimum inhibitory concentration: MIC) were determined according to the standard method of the Japan Society of Chemotherapy [Chemotherapy, Vol. 29, p.76 (1981)] by using type strains and strains

isolated from patients with infectious disease (including clinical isolates and atypical acid-fast bacteria), and applying 10⁶/ml of colony forming bacteria. Linezolid was used as the reference compound [a compound described in Journal of Medicinal Chemistry, Vol. 39, p.673 (1996), hereinafter referred to as "reference compound"].

[0151] The compounds of the present invention had excellent antibacterial activities compared to the reference compound against type strains, clinical isolates, and atypical acid-fast bacteria.

[0152] Names of the bacteria in the table are as follows:

Type strain	Staphylococcus aureus (S. aureus) Bacillus subtilis (B. subtilis)
Clinical isolates	Methicillin-resistant Staphylococcus aureus (MRSA) Staphylococcus epidermidis (S.
	epidermidis) Enterococcus faecalis (E. faecalis) Enterococcus faecium (E. faecium)
Atypical acid-fast	bacteria Mycobacterium avium (M. avium) Mycobacterium intracellulare (M. intracellulare)

O H Me

Reference compound (Linezolid)

Antibacterial spectr	um against	type strai	ns (MIC)	g/ml)	
Compound Names of bacteria	Example 1	Example 2	Example 3	Example 4	Reference compound
S.aureus Smith HPC023	1.56	0.78	0.78	0.39	3.13
S.aureus MS353 HPC017	0.78	0.78	0.78	0.39	3.13
B.subtilis ATCC 6633 HPR022	0.39	0.39	0.39	0.39	0.78
Antibacterial spectrum against clinical isolates (MIC μ g/ml)					
Compound Names of bacteria	Example 1	Example 2	Example 3	Example 4	Reference compound
MRSA HPC 432	0.78	0.78	0.78	0.39	3.13
MRSA HPC 1336	0.78	0.78	0.78	0.39	3.13
S.epidermidis HPC 1728	0.78	0.78	0.39	0.39	3.13
E.faecalis HPC 1321	0.78	0.39	0.39	0.39	1.56
E.faecium HPC 1322	0.78	0.39	0.39	0.39	1.56
Antibacterial spectrum against atypical acid-fast bacteria (MIC μ g/ml)					
Compound Names of bacteria	Example 1	Example 2	Example 3	Example 4	Reference compound
M.avium 20092	0.39	3.13	3.13	1.56	25
M.avium 20096	0.39	3.13	3.13	1.56	50
M.intracellulare 20067	0.39	6.25	3.13	1.56	12.5
M.intracellulare 20073	0.39	6.25	3.13	0.78	6.25

Industrial Applicability

[0153] The novel thiocarbamic acid derivatives or salts thereof according to the present invention have excellent antibacterial activity against clinical isolates and atypical acid-fast bacteria including multiple drug-resistant bacteria as well as type strains, and are extremely useful as antibacterial agents.

Claims

5

10

15

30

35

40

45

50

55

1. A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; and R², R³, and R⁴ independently represent hydrogen atom, a halogen atom, an alkyl group which may be substituted, an alkoxyl group which may be substituted, an amino group which may be substituted, an alkanoyl group which may be substituted, a cycloalkyloxy group which has a heteroatom as a ring constituting atom and which may be substituted, or a saturated heterocyclic group which may be substituted; or any two of R², R³, and R⁴ may bind to each other to form, together with the benzene ring, a condensed hydrocarbon ring which may be substituted.

2. A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

wherein R^1 represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; R^5 and R^6 independently represent hydrogen atom, or a halogen atom; and symbol "a" represents an integer of from 0 to 2.

3. A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; R⁵ and R⁶ independently represent hydrogen atom, or a halogen atom; R⁵ represents an alkyl group which may be substituted, an amino group which may be substituted, or an alkoxyl group which may be substituted; and symbol "b" represents an integer of from 1 to 4.

4. A thiocarbamic acid derivative represented by the following general formula or a salt thereof:

$$R^8$$
 $X \leftarrow (CH_2)_d$ $(CH_2)_d$ R^5 O H O R

wherein R¹ represents an alkyl group which may be substituted, or a cycloalkyl group which may be substituted; R⁵ and R⁶ independently represent hydrogen atom, or a halogen atom; R⁶ represents an alkyl group which may be substituted, an alkenyl group which may be substituted, an alkynyl group which may be substituted, an alkylthio group which may be substituted, an alkylthio group which may be substituted, an amino group which may be substituted, a saturated heterocyclic group which may be substituted, an aryl group which may be substituted, or an aralkyl group which may be substituted; Y represents CH or nitrogen atom; X represents NH or single bond; symbol "d" represents an integer of from 0 to 3; and symbols "e" and "f" independently represent an integer of from 1 to 3.

- A medicament which comprises the compound or a salt thereof according to any one of claims 1 to 4 as an active ingredient.
- 6. The medicament according to claim 5 which is an antibacterial agent.

- 7. A use of the compound or a salt thereof according to any one of claims 1 to 4 for the manufacture of the medicament according to claim 5 or 6.
- 8. A method for preventive and/or therapeutic treatment of an infectious disease, which comprises the step of administering a preventively and/or therapeutically effective amount of the compound or a salt thereof according to any one of claims 1 to 4 to a mammal including a human.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/06260

A. CLASSII Int.C	FICATION OF SUBJECT MATTER 17 C07D263/22, C07D413/12, A61K31/445, A61K31/496, A6					
According to 1	According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS						
	Gainnum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D263/22, C07D413/12, C07D417/10, A61K31/421, A61K31/435, A61K31/445, A61K31/496, A61K31/541, A61K31/55, A61K31/44					
Documentation	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN) REGISTRY (STN)						
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap		Relevant to claim No.			
Į.	WO, 98/54161, A1 (Pharmacia & U 03 December, 1998 (03.12.98) & AU, 9874883, A1	pjohn Company),	1-7			
	EP, 789025, A1 (Bayer AG.), 13 August, 1997 (13.08.97) & DE, 19604223, A1 & US, 57927 & JP, 9-316073, A	1-7				
☐ Further o	documents are listed in the continuation of Box C.	See patent family annex.				
"A" documen considere earlier do date "L" documen cited to e special re documen means "P" documen than the properties of the accommen than the properties of the accommentation	ategories of cited documents: It defining the general state of the art which is not d to be of particular relevance comment but published on or after the international filing at which may throw doubts on priority claim(s) or which is stablish the publication date of another citation or other tasson (as specified) at referring to an oral disclosure, use, exhibition or other the published prior to the international filing date but later priority date claimed trual completion of the international search ebruary, 2000 (04.02.00)	"X" comment of particular relevance; the considered novel or cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to particular relevance; the considered to involve an inventive step combined with one or more other such combination being obvious to a person document member of the same patent if	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family to of mailing of the international search report 22 February, 2000 (22.02.00)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/06260

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)	
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reas	ons:
 Claims Nos.: 8 because they relate to subject matter not required to be searched by this Authority, namely: 	
The subject matter of claim 8 relates to a method for treatment of the human or animal body by therapy, which does not require an international search report by this International Search Authority in accordance with PCT Article 17(2) (a)(i) and Rule 39.1(iv).	•
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such extent that no meaningful international search can be carried out, specifically:	ıan
 Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
	i
1. As all required additional search fees were timely paid by the applicant, this international search report covers all search claims.	hable
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payn of any additional fee.	nent
3. As only some of the required additional search fees were timely paid by the applicant, this international search report conly those claims for which fees were paid, specifically claims Nos.:	OVEIS
••	
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest The additional search fees were accompanied by the applicant's protest.	1
No protest accompanied the payment of additional search fees.	
<u> </u>	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)