ConvNet Case Study I: Alexnet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–1000.

Architectural details

http://www.image-net.org

Constructing ImageNet

Some statistics

July 2008: 0 images

o Dec 2008: 3 million images, 6K+ synsets

April 2010: 11 million images, 15K+ synsets

Currently: 14 million images, 21K synsets indexed

ImageNet Large Scale Visual Recognition Challenge

- Ran from 2010 to 2017
 - Today a Kaggle competition

- Main task: image classification
 - Automatically label 1.4M images with 1K objects
 - Measure top-5 classification error

Output
Scale
T-shirt
Steel drum
Drumstick
Mud turtle

Output
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

Deep learning at ImageNet classification challenge

CNN based, non-CNN based

Figures from Y. LeCun's CVPR 2015 plenary talk

Deep learning at ImageNet classification challenge

%error	2013 Teams	%error
15.3	Clarifai (NYU spinoff)	11.7
26.1	NUS (singapore)	12.9
26.9	Zeiler-Fergus (NYU)	13.5
27.0	A. Howard	13.5
29.6	OverFeat (NYU)	14.1
33.4	UvA (Amsterdam)	14.2
	Adobe	15.2
	VGG (Oxford)	15.2
	VGG (Oxford)	23.0
	15.3 26.1 26.9 27.0 29.6	Clarifai (NYU spinoff) NUS (singapore) Zeiler-Fergus (NYU) A. Howard OverFeat (NYU) UvA (Amsterdam) Adobe VGG (Oxford)

CNN based, non-CNN based

Figures from Y. LeCun's CVPR 2015 plenary talk

Deep learning at ImageNet classification challenge

CNN based, non-CNN based

2012 Teams %error 2013 Teams %error 2014 Teams %error Supervision (Toronto) 15.3 Clarifai (NYU spinoff) 11.7 GoogLeNet 6.6 ISI (Tokyo) 26.1 NUS (singapore) 12.9 VGG (Oxford) 7.3 VGG (Oxford) 26.9 Zeiler-Fergus (NYU) 8.0 13.5 **MSRA** 27.0 XRCE/INRIA 13.5 8.1 A. Howard A. Howard UvA (Amsterdam) 29.6 OverFeat (NYU) 14.1 DeeperVision 9.5 **INRIA/LEAR** 33.4 UvA (Amsterdam) 14.2 **NUS-BST** 9.7 Adobe 15.2 TTIC-ECP 10.2 VGG (Oxford) 11.2 15.2 XYZ VGG (Oxford) UvA 23.0 12.1

Figures from Y. LeCun's CVPR 2015 plenary talk

Removing layer 7

Removing layer 6, 7

Removing layer 3, 4

3.0% drop in performance, <u>1 million</u> less parameters. Why?

Removing layer 3, 4, 6, 7

Translation invariance

CNNs are translation invariant

Credit: R. Fergus slides in Deep Learning Summer School 2016

Scale invariance

- CNNs are scale invariant to some degree
 - The standard convolutional filters not scale invariant
 - Scale invariance learnt depends on scale variations present in data

Rotation invariance

- CNNs are not rotation invariant
 - The standard convolutional filters not rotation invariant
 - And only few rotated examples in the training set. Augmentation can help

