Book Data Linkage Statistics

This notebook presents statistics of the book data integration.

Setup

```
library(tidyverse, warn.conflicts=FALSE)
library(arrow, warn.conflicts=FALSE)
library(jsonlite)
```

I want to use theme_minimal() by default:

```
theme_set(theme_minimal())
```

And default image sizes aren't great:

Load Link Stats

We compute dataset linking statistics as gender-stats.csv as part of the integration. Let's load those:

```
link_stats = read_csv("book-links/gender-stats.csv")
glimpse(link_stats)
Rows: 46 Columns: 4
— Column specification
Delimiter: ","
chr (2): dataset, gender
dbl (2): n_books, n_actions
i Use `spec()` to retrieve the full column specification for this
data.
i Specify the column types or set `show_col_types = FALSE` to
quiet this message.
Rows: 46
Columns: 4
$ dataset
            <chr> "LOC-MDS", "LOC-MDS", "LOC-MDS", "LOC-MDS",
"LOC-MDS", "LOC-...
```

Now let's define variables for our variou codes. We are first going to define our gender codes. We'll start with the resolved codes:

```
link_codes = c('female', 'male', 'ambiguous', 'unknown')
```

We want the unlink codes in order, so the last is the first link failure:

```
unlink_codes = c('no-author-rec', 'no-book-author', 'no-book')
all_codes = c(link_codes, unlink_codes)
```

Processing Statistics

replace(is.na(.), 0) %>%

Now we'll pivot each of our count columns into a table for easier reference.

```
book_counts = link_stats %>%
    pivot_wider(id_cols=dataset, names_from=gender, values_from=n_books) %>%
    replace(is.na(.), 0) %>%
    mutate(total=rowSums(across(-dataset)))
glimpse(book counts)
Rows: 7
Columns: 9
                   <chr> "LOC-MDS", "BX-I", "BX-E", "AZ14",
$ dataset
"AZ18", "GR-I", "G...
$ male
                   <dbl> 2424009, 102756, 58484, 550877, 670899,
338411, 334136
                   <dbl> 1084460, 31440, 15281, 239915, 300300,
$ unknown
108333, 106501
                   <dbl> 306292, 11562, 5692, 155511, 239917,
$ `no-author-rec`
61601, 60515
                   <dbl> 73989, 9528, 5596, 24064, 27977, 18709,
$ ambiguous
18516
$ `no-book-author` <dbl> 600214, 10861, 5428, 167948, 152438,
750118, 738282
$ female
                   <dbl> 743105, 71441, 40256, 248863, 318004,
228142, 225840
                   <dbl> 0, 35009, 17481, 870268, 1144899, 0, 0
$ `no-book`
$ total
                   <dbl> 5232069, 272597, 148218, 2257446,
2854434, 1505314, 1...
act_counts = link_stats %>%
    filter(dataset != "LOC-MDS") %>%
    pivot_wider(id_cols=dataset, names_from=gender, values_from=n_actions) %>%
```

```
mutate(total=rowSums(across(-dataset)))
glimpse(act_counts)
Rows: 6
Columns: 9
$ dataset
                    <chr> "BX-I", "BX-E", "AZ14", "AZ18", "GR-I",
"GR-E"
$ male
                    <dbl> 468156, 183945, 7105363, 15603235,
69977512, 33249747
                   <dbl> 69361, 24554, 2157265, 4692726, 10242726,
$ unknown
3570086
$ female
                    <dbl> 401483, 142252, 4977284, 12377052,
82889862, 36335167
                    <dbl> 47275, 19920, 3879190, 10008921, 0, 0
$ `no-book`
                   <dbl> 104008, 41768, 849025, 1844630, 22091068,
$ ambiguous
13230835
$ `no-author-rec` <dbl> 18597, 7130, 1100127, 3312340, 3545964,
1039410
$ `no-book-author` <dbl> 18882, 7234, 2359170, 2820794, 29784689,
11168052
                   <dbl> 1127762, 426803, 22427424, 50659698,
$ total
218531821, 98593...
We're going to want to compute versions of this table as fractions, e.g. the fraction
of books that are written by women. We will use the following helper function:
fractionalize = function(data, columns, unlinked=NULL) {
    fracs = select(data, dataset | all_of(columns))
    if (!is.null(unlinked)) {
        fracs = mutate(fracs, unlinked=rowSums(select(data,
        all_of(unlinked))))
    totals = rowSums(select(fracs, !dataset))
    fracs %>% mutate(across(!dataset, ~ .x / totals))
fractionalize(book_counts, link_codes) %>% glimpse()
Rows: 7
Columns: 5
            <chr> "LOC-MDS", "BX-I", "BX-E", "AZ14", "AZ18", "GR-
$ dataset
I", "GR-E"
$ female
            <dbl> 0.1717938, 0.3320289, 0.3365408, 0.2339556,
0.2414279, 0.328...
$ male
            <dbl> 0.5603916, 0.4775684, 0.4889272, 0.5178783,
0.5093450, 0.487...
$ ambiguous <dbl> 0.01710506, 0.04428229, 0.04678265, 0.02262252,
0.02124007, ...
$ unknown
            <dbl> 0.2507096, 0.1461204, 0.1277494, 0.2255436,
0.2279871, 0.156...
And a helper function for plotting bar charts:
plot_bars = function(data, what="UNSPECIFIED") {
```

tall = data %>%

```
pivot_longer(!dataset, names_to="status", values_to="fraction")
codes = c(all_codes, "unlinked")
codes = intersect(codes, unique(tall$status))
tall = tall %>% mutate(status=ordered(status, codes))
ggplot(tall) +
    aes(y=dataset, x=fraction, fill=status) +
    geom_col(position=position_stack(reverse=TRUE), width=0.5) +
    geom_text(aes(label=if_else(fraction >= 0.1,
                                sprintf("%.1f%", fraction *
    100),
                                "")),
              position=position_stack(reverse=TRUE, vjust=0.5),
              colour="white", fontface="bold") +
    scale_fill_brewer(type="qual", palette="Dark2") +
    ylab("Dataset") +
    xlab(paste("Fraction of", what)) +
    labs(fill="Author Gender")
```

Resolution of Books

What fraction of *unique books* are resolved from each source?

```
book_counts %>% fractionalize(all_codes)
```

A tibble: 7×8

dataset <chr></chr>	female <dbl></dbl>	male <dbl></dbl>	ambiguous <dbl></dbl>	unknown <dbl></dbl>	no-author- rec <dbl></dbl>	no-book- author <dbl></dbl>	no-book <dbl></dbl>
LOC- MDS	0.1420289	0.4632984	0.014141442	0.20727173	0.05854128	0.11471829	0.00000
BX-I	0.2620755	0.3769521	0.034952696	0.11533509	0.04241426	0.03984270	0.12842
ВХ-Е	0.2715999	0.3945810	0.037755198	0.10309814	0.03840289	0.03662173	0.11794
AZ14	0.1102410	0.2440267	0.010659834	0.10627718	0.06888803	0.07439735	0.38551
AZ18	0.1114070	0.2350375	0.009801243	0.10520474	0.08405064	0.05340393	0.40109
GR-I	0.1515577	0.2248109	0.012428636	0.07196704	0.04092236	0.49831331	0.00000
GR-E	0.1522048	0.2251909	0.012478855	0.07177633	0.04078407	0.49756502	0.00000

book_counts %>% fractionalize(all_codes) %>% plot_bars("Books")

book_counts %>% fractionalize(link_codes, unlink_codes)

A tibble: 7×6

dataset <chr></chr>	female <dbl></dbl>	male <dbl></dbl>	ambiguou s <dbl></dbl>	unknown <dbl></dbl>	unlinked <dbl></dbl>
LOC-MDS	0.1420289	0.4632984	0.0141414 42	0.2072717 3	0.1732596
BX-I	0.2620755	0.3769521	0.0349526 96	0.1153350 9	0.2106846
ВХ-Е	0.2715999	0.3945810	0.0377551 98	0.1030981 4	0.1929658
AZ14	0.1102410	0.2440267	0.0106598 34	0.1062771 8	0.5287954
AZ18	0.1114070	0.2350375	0.0098012 43	0.1052047 4	0.5385495
GR-I	0.1515577	0.2248109	0.0124286 36	0.0719670 4	0.5392357
GR-E	0.1522048	0.2251909	0.0124788 55	0.0717763 3	0.5383491

Resolution of Ratings

What fraction of rating actions have each resolution result?

act_counts %>% fractionalize(all_codes)

A tibble: 6×8

dataset <chr></chr>	female <dbl></dbl>	male <dbl></dbl>	ambiguous <dbl></dbl>	unknown <dbl></dbl>	no-author- rec <dbl></dbl>	no-book- author <dbl></dbl>	no-book <dbl></dbl>
BX-I	0.3559998	0.4151195	0.09222513	0.06150322	0.01649018	0.01674289	0.041919
BX-E	0.3332966	0.4309834	0.09786248	0.05753005	0.01670560	0.01694927	0.046672
AZ14	0.2219285	0.3168158	0.03785655	0.09618871	0.04905276	0.10519131	0.172966
AZ18	0.2443175	0.3080009	0.03641218	0.09263233	0.06538412	0.05568122	0.197571
GR-I	0.3793034	0.3202166	0.10108856	0.04687064	0.01622631	0.13629452	0.000000

dataset <chr></chr>	female <dbl></dbl>	male <dbl></dbl>	ambiguous <dbl></dbl>	unknown <dbl></dbl>	no-author- rec <dbl></dbl>	no-book- author <dbl></dbl>	no-book <dbl></dbl>
GR-E	0.3685359	0.3372415	0.13419609	0.03621023	0.01054240	0.11327395	0.000000

act_counts %>% fractionalize(all_codes) %>% plot_bars("Actions")

act_counts %>% fractionalize(link_codes, unlink_codes)

A tibble: 6×6

dataset <chr></chr>	female <dbl></dbl>	male <dbl></dbl>	ambiguous <dbl></dbl>	unknown <dbl></dbl>	unlinked <dbl></dbl>
BX-I	0.3559998	0.4151195	0.09222513	0.06150322	0.07515238
BX-E	0.3332966	0.4309834	0.09786248	0.05753005	0.08032746
AZ14	0.2219285	0.3168158	0.03785655	0.09618871	0.32721043
AZ18	0.2443175	0.3080009	0.03641218	0.09263233	0.31863702
GR-I	0.3793034	0.3202166	0.10108856	0.04687064	0.15252082
GR-E	0.3685359	0.3372415	0.13419609	0.03621023	0.12381635

Metrics

Finally, we're going to write coverage metrics.

LOC-MDS

0.619468703489958BX-I 0.673980271242897BX-E 0.703936094131617AZ14 0.364927444554598AZ18 0.356245756601834GR-I 0.388797287476234GR-E 0.389874577938927

```
json = toJSON(
    as.list(book_coverage),
    auto_unbox=TRUE,
)
write_file(json, "book-coverage.json")
```