Chapitre I Introduction

Computer
Networking: A Top
Down Approach
7ème édition
Jim Kurose, Keith Ross
Addison-Wesley
2017

Chapitre I: introduction

Objectifs:

- Avoir un premier contact et la terminologie
- Laisser les détails pour plus tard
- approche:
 - l'exemple de « Internet »

sommaire:

- Internet?
- Protocole?
- Réseaux d'accès; terminaux, liens
- Réseau d'infrastructure: commutation, transmission

Chapitre 1: première partie

- I.I Qu'est ce que Internet?
- 1.2 réseaux d'accès
 - terminaux,
 - clients serveurs,
 - liens
- 1.3 réseau d'infrastructure
 - commutation de paquets,
 - commutation de circuits,
 - structure du réseau

Qu'est ce que l'Internet: vue concrète

PC

- millions d'équipements connectés:
 - hôtes = terminaux
 - Exécutent des apps réseaux

❖ liens de communication

- fibre, câble, radio, satellite
- Taux de transmission: bande passante

 Routeurs: transfèrent les paquets (des morceaux de données)

nternet est partout

Cadre photo numérique http://www.ceiva.com/

Réfrigérateur connecté

Tweet-a-watt:
Moniteur d'énergie intelligent

Téléphonie IP

Internet: une vue de base

- Internet: "réseau de réseaux"
 - hiérarchique
 - interconnexions de FAIs
- protocoles contrôlent l'émission et la réception des messages
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- standards d'Internet
 - *RFC*: Request for comments
 - IETF: Internet Engineering Task Force

Internet: une vue fonctionnelle

- L'infrastructure de communication permet des applications distribuées:
 - Web, VoIP, courriels, jeux, ecommerce, réseaux sociaux,...

Fournit des APIs

- permet aux applications de communiquer via Internet
- fournit des services analogues à la poste

Protocole?

protocoles humains:

- "quelle heure est-il?"
- "J'ai une question"
- Introductions
- ...msgs spécifiques émis
- ...actions spécifiques prises quand les msgs sont reçus, ou autre événement

protocoles réseaux:

- Il s'agit plutôt de machines et pas d'humains
- Toutes les activités de communication dans Internet sont gérées par des protocoles

protocoles définissent le format, l'ordre des msgs échangés entre les entités du réseau, et les actions prises au moment de leurs transmissions/réceptions

Protocole?

protocole humain ou protocole réseau:

Q: d'autres protocoles humains?

Chapitre 1: première partie

- I.I Qu'est ce que Internet?
- 1.2 réseaux d'accès
 - terminaux,
 - clients serveurs,
 - liens
- 1.3 réseau d'infrastructure
 - commutation de paquets,
 - commutation de circuits,
 - structure du réseau

Structure du résau: vue rapprochée

- Sur les bords du réseau:
 - hôtes: clients et serveurs
 - Serveurs souvent dans les centres de données
- Réseaux d'accès, média physique:
 - filaire, ou sans fil
- réseau d'infrastructure:
 - routeurs interconnectés
 - réseau de réseaux

Réseaux d'accès et média physique

Q: Comment connecter un terminal au premier routeur?

- réseau résidentiel
- réseau institutionnel (université, entreprise)
- * réseau mobile

Notes:

- bande passante (bits par seconde) d'un réseau d'accès?
- Partagé ou dédié?

Réseaux d'accès: DSL

- * utilise les lignes téléphoniques existantes jusqu'au DSLAM
 - données sur DSL partent vers l'Internet
 - voix sur DSL partent vers le réseau téléphonique
- < 2.5 Mbps taux montant (souvent < I Mbps)</p>
- < 24 Mbps taux descendant (souvent < 10 Mbps)</p>

Réseaux d'accès: réseau câblé

Multiplexage par répartition de fréquence: transmission sur différentes bandes de fréquence

Réseaux d'accès: réseau câblé

- HFC: hybrid fiber coax
 - asymétrique: jusqu'à 30Mbps débit descendant, 2 Mbps débit montant
- * réseau de câble et de fibres reliant les maisons aux FAIs
 - Accès partagée par les maisons
 - Différent de DSL (partagée vs. dédiée)

Réseaux d'accès: un réseau résidentiel

Réseaux d'accès: réseau d'entreprise

- entreprises, universités, etc
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps taux de transmission

Réseaux d'accès sans fil

- * Accès sans fil partagé connectant les terminaux à un routeur
 - via une station de base alias "point d'accès"

LANs sans fil (WLAN):

- Une trentaine de mètres
- 802.11b/g (WiFi): 11,54 Mbps

Réseau étendu sans fil (WWAN)

- Fournit par les opérateurs téléphoniques, I 0's km
- entrelet 100 Mbps
- 3G, 4G: LTE

Terminal: émet des paquets de données

Fonctionnement:

- *Reçoit le message de l'app
- *Divise en petits morceaux, appelés *paquets*, de tailles *L* bits
- transmet chaque paquet au réseau d'accès avec un taux
 - Taux de transmission, alias capacité, bande passante

Délai de Temps pour transmission = transmettre paquet du paquet de L-bit vers le lien $\frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Média physique

- bit: se propage entre émetteur et récepteur
- lien physique: se qui sépare l'émetteur et le récepteur
- support de transmission guidé:
 - les signaux se propagent sur un média solide
- support non guidé:
 - les signaux se propagent librement, ex. radio

paire torsadée (TP)

- Deux fils de cuivre isolés
 - Catégorie 5: 100 Mbps, 1 Gpbs Ethernet
 - Catégorie 6: I0Gbps

Média physique : coax, fibre

câble coaxial:

- Deux conducteurs de cuivre concentriques
- bidirectionnel
- Large bande:
 - plusieurs canaux sur le câble
 - HFC

fibre optique:

- Fibre de verre transportant des impulsions lumineuses, impulsion = un bit
- Opère à haute vitesse:
 - transmission point-à-point (e.g., 10's-100's Gps)
- * Taux d'erreur très bas:
 - peu de répétiteurs;
 - immune au bruit électromagnétique

Média physique: radio

- Le signal est porté dans le spectre électromagnétique
- Pas de "fil" physique
- bidirectionnel
- Environnement de propagation influence par:
 - réflexion
 - obstruction par objets
 - interférence

radio link types:

- Micro-onde
- WLAN (ex., WiFi)
 - de I I Mbps à 600 Mbps
- WWAN (ex., cellulaire)
 - 3G cellulaire: quelques Mbps
 - 4G : quelques dizaines de Mbps
- satellite
 - Kbps à 45Mbps
 - un délai de 270 msec
 - géostationnaire vs. orbite basse

Chapitre 1: première partie

- I.I Qu'est ce que Internet?
- 1.2 réseaux d'accès
 - terminaux,
 - clients serveurs,
 - liens
- 1.3 réseau d'infrastructure
 - commutation de paquets,
 - commutation de circuits,
 - structure du réseau

Le réseau d'infrastructure

- un ensemble de routeurs interconnectés
- commutation de paquets: les messages sont découpés en plusieurs paquets
 - les paquets sont transférés de routeur en routeur dans un chemin de la source vers la destination
 - chaque paquet utilise la capacité totale du lien

Commutation de paquets: store-and-forward (mode différé)

- prend L/R secondes pour transmettre tout le paquet au lien à R bps
- store and forward: tout le paquet doit arriver au routeur avant le transfert vers l'autre lien
- délai = 2L/R (en supposant un délai de propagation nul)

exemple numerique (1 saut):

- L = 7.5 Mbits
- R = 1.5 Mbps
- délai pour un saut=5sec

tout sur les délais la semaine prochaine...

Commutation de paquets : délai dans la file, perte

file d'attente et perte:

- Si le taux d'arrivée (en bits) est supérieur au taux de transmission pendant une période:
 - paquets vont se mettre dans la file en attente de transmission
 - paquets peuvent être supprimer si la file est pleine

Commutation de paquets : acheminement

routage: déterminer les routes entre sources et destinations

algorithmes de routage

Acheminement: passer les paquets de l'entrée vers la bonne sortie

Commutation de circuits

Réservation des ressources de bout en bout pour la durée de l'<appel> :

- chaque lien possède quatre circuits
 - l'appel prend le circuit 2 en haut et le circuit I à droite.
- ressources dédiées
 - pas de partage
 - performances garanties
- un segment du circuit reste non utilisé si libre
- besoin d'établissement de connexion

Commutation de circuits: FDM vs. TDM

Exemple numérique

Quelle est la durée nécessaire pour transmettre 640,000 bits de A vers B sur un réseau à commutation de circuits?

- ❖ Tous les liens sont à 1.536 Mbps
- Chaque lien utilise TDM avec 24 slots/sec
- 500 msec pour établir un circuit

Alors!

Commutation: Paquet vs. Circuit

Commutation de paquets permet plus d'utilisateurs dans le réseau!

exemple:

- lien à I Mb/s
- chaque utilisateur:
 - 100 kb/s si "actif"
 - actif pendant I 0% du temps

Commutation de circuits:

- I0 utilisateurs
- Commutation de paquets:
 - avec 35 utilisateurs, probabilité > 10 actifs en même temps est moins que 0.0004

^{*} Check out the online interactive exercises for more examples

Commutation: Paquet vs. Circuit

Est-ce que la commutation de circuits est déjà "KO?"

- Très bon pour le trafic sporadique
 - Partage de ressources
 - Plus simple, pas d'établissement de connexion
- congestion excessive possible: délai et perte
 - Besoin de protocoles pour un transfert fiable de données, contrôle de congestion
- Q: Comment imiter une commutation de circuits?
 - certaines applications ont besoin d'une garantie de bande passante
 - un grand défi de recherche (chapitre 7)
- Q: analogies avec la vie quotidienne?