第七周作业

1. 假设 X 和 Y 的联分布的概率合密度函数为

$$f(x,y) = \begin{cases} \frac{e^{-x/y}e^{-y}}{y} & x > 0, y > 0\\ 0 & 其他 \end{cases},$$

求P(X>1|Y=y).

- 2. 甲乙两人约定在某个地点见面,如果每个人到达的时间是独立的,且在下午 1 点至 2 点之间均匀分布,求先到的人需要等待 10 分钟以上的概率.
- 3. 考虑n个随机变量 X_i ($i=1,\dots,n$).
 - (1) 证明: 如果对于任意区间 I_i ,事件 $A_i = \{X_i \in I_i\}$ ($i = 1, \dots, n$)满足 $P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2) \cdots P(A_n)$,则对于任意区间 I_i ,事件 $A_i = \{X_i \in I_i\}$ ($i = 1, \dots, n$)独立.
 - (2) 比较(1)的结论与n个事件独立的概念,试简单说明区别以及理由.
- 4. 设 (X_1, X_2) 服从二维正态分布 $N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$,证明: $Y = X_1 + X_2$ 服从正态分布 $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2)$.
- 5. (自由度为n的卡方分布)证明: 若n个随机变量 X_i ($i=1,\cdots,n$)相互独立,且都服从标准正态分布,则 $Y=X_1^2+\cdots+X_n^2$ 服从自由度为n的卡方分布 χ_n^2 ,即Y的概率密度函数为

$$k_n(x) = \begin{cases} \frac{1}{\Gamma(\frac{n}{2})} 2^{n/2} e^{-x/2} x^{(n-2)/2} & x > 0\\ 0 & x \le 0 \end{cases},$$

这里 $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$ 为 Gamma 函数.

- 6. 陈希孺书第二章习题 13, 17, 22.
 - 13. 设 X_1, \dots, X_r 独立同分布,其公共分布为几何分布(1.12).用归纳法证明: $X_1 + \dots + X_r$ 服从负二项分布(1.11).又:对这个结果作一直观上的解释,因而得出一简单证法.
 - 17. 设 X, Y 独立, 各有概率密度函数 f(x)和 g(y), 且 X 只取大于 0 的值. 用以下两种方法计算 Z=XY 的概率密度, 并证明结果一致:
 - (a) 利用变换 Z = XY, W = X.
 - (b) 把 XY 表为 Y/X^{-1} . 先算出 X^{-1} 的密度, 再用商的密度公式 (4.29).
 - 22. 设 X_1, \dots, X_n 独立同分布, X_1 有分布函数 F(x) 和密度函数 f(x). 记

$$Y = \max(X_1, \dots, X_n), Z = \min(X_1, \dots, X_n)$$

证明: Y, Z 分别有概率密度函数 $nF^{n-1}(x)f(x)$ 和 $n[1-F(x)]^{n-1} \cdot f(x)$.

7. 了解统计上的三大分布: 卡方分布, t 和 F 分布 (参阅陈希孺书或维基百科).