Data Shapley: Equitable Valuation of Data for Machine Learning

October 31, 2024

Citation

Ghorbani, A. Zou, J. Data Shapley: Equitable Valuation of Data for Machine Learning. in International Conference on Machine Learning 2242–2251 (2019).

Contents

Problem Introduction

Truncated Monte Carlo Algorithm

Gradient Algorithm

Experiment Result

Data Valuation and ML

Leave One Out Method

$$LOO$$
 for point $i = Performance(D) - Performance(D - {i})$

Leave One Out Method

Data Shapley Value

$$SV \ for \ point \ i = C \sum_{S \subseteq D - \{i\}} \frac{Performance(S \bigcup \{i\}) - Performance(S)}{\binom{|D| - 1}{|S|}}$$

Data Shapley Value

Truncated Monte Carlo

Algorithm 1 Truncated Monte Carlo Shapley

```
Input: Train data D = \{1, \dots, n\}, learning algorithm
\mathcal{A}, performance score V
Output: Shapley value of training points: \phi_1, \ldots, \phi_n
Initialize \phi_i = 0 for i = 1, \dots, n and t = 0
while Convergence criteria not met do
   t \leftarrow t + 1
   \pi^t: Random permutation of train data points
   v_0^t \leftarrow V(\emptyset, \mathcal{A})
   for j \in \{1, ..., n\} do
      if |V(D) - v_{i-1}^t| < Performance Tolerance then
         v_{i}^{t} = v_{i-1}^{t}
      else
         v_i^t \leftarrow V(\{\pi^t[1], \dots, \pi^t[j]\}, \mathcal{A})
      end if
      \phi_{\pi^t[i]} \leftarrow \frac{t-1}{t} \phi_{\pi^{t-1}[i]} + \frac{1}{t} (v_i^t - v_{i-1}^t)
   end for
end for
```

Truncation

- V (S) performance on a test set after being trained on S
- as S increases, change in performance by adding only one point decreases
- Truncate based on the marginal contribution within V

Example

Assume 4 data points: A,B,C,D

- Sample a permutation of data points say B, C, A, D
- > scan from left to right in one such sample of permutation B- > C- > A- > D
- Marginal Contribution for each sample At Step 3, V (B, C, A)
 V (B, C), will be less than V (B, C) V (B) At step 2
- ▶ Truncate at a predefined tolerance: Only do B->C->A and assign zero as marginal contribution to the rest

Gradient Based Approximation

Algorithm 2 Gradient Shapley

```
Input: Parametrized and differentiable loss function
\mathcal{L}(.;\theta), train data D=\{1,\ldots,n\}, performance score
function V(\theta)
Output: Shapley value of training points: \phi_1, \ldots, \phi_n
Initialize \phi_i = 0 for i = 1, \dots, n and t = 0
while Convergence criteria not met do
   t \leftarrow t + 1
   \pi^t: Random permutation of train data points
   \theta_0^t \leftarrow \text{Random parameters}
   v_0^t \leftarrow V(\theta_0^t)
   for j \in \{1, ..., n\} do
       \theta_i^t \leftarrow \theta_{i-1}^t - \alpha \nabla_{\theta} \mathcal{L}(\pi^t[j]; \theta_{j-1})
       v_i^t \leftarrow V(\theta_i^t)
       \phi_{\pi^t[i]} \leftarrow \frac{t-1}{t} \phi_{\pi^{t-1}[i]} + \frac{1}{t} (v_i^t - v_{i-1}^t)
   end for
end for
```

Experiment Result

Synthesis Data

Mislabeled Data

Noisy Image and Group Data

Figure 5. (a) Value and data quality: White noise is added to 10% of training points. As the noise level increases, the average TMC-Shapley value of noisy images becomes decreases compared to that of clean images. (b) **Group Shapley:** Removing the valuable groups degrades the performance more than removing groups with the highest leave-one-out score.

Conclusion

- Introduces a fair data pricing approach based on Shapley values to quantify the contribution of each data point to machine learning models.
- the value of individual datum depends on the learning algorithm, evaluation metric as well as other data points in the training set
- Demonstrates the effectiveness of this approach across various tasks and models

Thoughs

- Explore combining Shapley value estimation with different optimization algorithms to achieve faster convergence rates.
- Assuming Shapley values are sparse, investigate the potential of using compressed sensing techniques to reconstruct true Shapley values with fewer samples.

Thanks!