Algunas indicaciones respecto a la tarea 2 de IIC 1005

1. Base de datos

Para hacer joins entre las tablas, hay algunos campos que deben considerarse con cuidado:

Para hacer join de la table **about** (estos son los usuarios que tienen perfil en la red social mySecondLife) con tablas que tengan información de los usuarios en el marketplace (como **reviews**, **comments**, **customers** o **sellers**) se debe poner atención en los campos que hacen de identificador de usuario:

y para la relación entre **products**, **reviews** y **comments** (conectar reviews.id = comments.rid para obtener los comentarios sobre un review)

products								
product_id	int(11)							
product_name	varchar(128)	,						
product_link	varchar(256)							
product_price	int(8)							
product_description	varchar(1024							
product_rating	float		rev	iews				
product_ratings	int(11)		id	int(11)	辶			
store_id	int(8)		product id	int(11)	НП			
			name	varchar(128	IJ			
			date	date				
			rating	int(11)			con	nments
			comments	int(11)			id	int(11)
			review_id	int(11)	l	_	rid	int(11)
			review	text		L	name	varchar(128)
							date	date
							comment	text

2. Minería de Datos

Respecto al uso de la regresión logística y su interpretación, los apuntes están disponibles en el siding (Carpeta Clases, archivo "Week08 class15 ML.pptx") pero aquí un resumen:

En la tarea, P = Probabilidad de que el usuario sea vendedor. Por otro lado, los coeficientes x_i representan variables (features) como el número de comentarios, la polaridad de los comentarios del usuario, etc.

$$\log\left(\frac{P}{1-P}\right) = \alpha + \beta_1 x_1 + \dots + \beta_p x_p$$

En sk-learn, pueden obtener los coeficientes beta (β) de un modelo de regresión usando el atributo **coef**_ del modelo:

```
37 print logistic.get_params()
38 print logistic.coef_
```

Para interpreter los valores de los coeficientes beta, usar:

Interpretar valores de β

- β_j es la cantidad de cambio en logit por cada unidad que cambia X_i
- A diferencia de regresión lineal, los β_j no se interpretan directamente, sino que exp(β_j)
- exp(β_i): odds ratio (razón de disparidad)
 - $-\exp(\beta_i) = 1$, no hay cambio en los odds ratio
 - $-\exp(\beta_j)$ < 1 odds ratio decrece
 - $-\exp(\beta_j) > 1$ odds ratio crece
 - $-\exp(\beta_0)$: baseline
- Ejemplo: en la tarea, si exp(β_j) = 1.2 y X_j es "número de amigos", por cada amigo adicional mi chance (odds) de ser dueño de tienda es 20% mayor.
- Recomiendo revisar: http://www.ats.ucla.edu/stat/ mult_pkg/faq/general/odds_ratio.htm