# Телекомуникациски мрежи

Local Area Networks (LAN)

### Што e LAN?

### Local area подразбира:

- Приватна сопственост
  - слобода од регулаторните ограничувања на WAN мрежите
- Кратко растојание (~1km) помеѓу терминалите
  - Ниска цена
  - Голема податочна брзина, "error-free" комуникација
  - Контрола на грешка
- Мобилност на терминалите
  - Транспарентност на локацијата на терминалите
  - Единствена адреса на секој терминал
  - Дифузија на пораките до сите станици во мрежата
- Потреба од *medium access control протокол*

## LAN структура



Проф. д-р Владимир Атанасовски, Телекомуникациски мрежи

## Local Area Networks (LAN)



## IEEE 802.2: Logical Link Control (LLC)

- LLC служи за подобрување на датаграм сервисот кој го нуди MAC поднивото преку поддршка за дел од HDLC сервисите на податочното ниво
  - ⇒ На мрежното ниво му се нуди стандарден сет од сервиси прикривајќи ги деталите од долните МАС протоколи
  - ⇒ Можна е размена на рамки помеѓу LAN мрежи кои користат различни МАС протоколи
- LLC нуди три типа на HDLC сервиси:
  - Тип 1: непотврден неконекциски сервис (unacknowledged connectionless service) кој користи ненумерирани рамки за трансфер на информација без следење на секвентност
    - Најчесто користен тип на LLC сервис кај LAN
  - Тип 2: надежен конекциски-ориентиран сервис (reliable connection-oriented service) во форма на ABM
    - Згоден за користење кога нема транспортен протокол
  - Тип 3: потврден неконекциски сервис (acknowledged connectionless service)
     односно неконекциски трансфер на индивидуални рамки со потврди

## Енкапсулација на LLC PDUs





# Ethernet и IEEE 802.3 LAN стандард

- Ethernet LAN е развиен во раните 1970-ти години од страна на Xerox PARC
  - Базиран на CSMA/CD
  - Поддржува брзина од 2.94 Mbps
  - Овозможува поврзување на преку 100 станици со кабел од 1 km
- "DIX" Ethernet стандард за 10 Mbps LAN по коаксијален кабел (рани 1980-ти)
  - Основа за IEEE 802.3 LAN
- Основната разлика помеѓу Ethernet и IEEE 802.3 стандардите е во структурата на рамката

# IEEE 802.3 MAC рамка (1/3)



- Преамбулата се користи за синхронизација помеѓу предавателот и приемникот
  - Повторување на 7 бајти со распоред 10101010
- SD: означува почеток на рамката (10101011)

# IEEE 802.3 MAC рамка (2/3)



# IEEE 802.3 MAC рамка (3/3)



- Length: должина на рамката
  - Мах должина 1518В (без преамбула & SD)
  - Max payload 1500B: **05DC**
- Раd: Врши дополнување до 64В (кога е потребно)
- FCS: CCITT-32 CRC (Address, Length, Information, Pad)
  - NIC ги отфрла рамките со несоодветна должина или CRC

# Ethernet рамка (DIX стандард)



- Идентификува протокол од повисоко ниво
  - IP, ARP, RARP ...
  - Вредностите почнуваат од 0600
- Клучна разлика со IEEE 802.3 кој претпоставува секогаш користење на LLC

# Физички нивоа кај IEEE 802.3 (1/5)

- Мах. број на рипитери 4
  - $-\,$  двојното време на пропагација од крај до крај е 51.2  $\mu s$
  - минималната должина на рамката 64 бајти ( $X >= 2\tau$  за 10 Mbps)

|            | 10Base5         | 10Base2      | 10BaseT   | 10BaseF     |
|------------|-----------------|--------------|-----------|-------------|
| Медиум     | "Дебел"         | "Тенок"      | Впредена  | Оптичко     |
|            | коаксијален     | коаксијален  | парица    | влакно      |
|            | кабел           | кабел        |           |             |
| Максимална | 500 m           | 200 m        | 100 m     | 2 km        |
| должина на |                 |              |           |             |
| сегмент    |                 |              |           |             |
| Максимален | 100             | 30           | 1024      | 1024        |
| број уреди |                 |              |           |             |
| по јазел   |                 |              |           |             |
| Топологија | Магистрала      | Магистрала   | Ѕвезда    | Точка-точка |
| Предности  | За скелетен дел | Ефтин систем | Лесен за  | Поврзување  |
|            | од мрежа        |              | одржување | меѓу згради |

# Физички нивоа кај IEEE 802.3 (2/5)



Проф. д-р Владимир Атанасовски, Телекомуникациски мрежи

# Физички нивоа кај IEEE 802.3 (3/5)

### 10Base5



# Физички нивоа кај IEEE 802.3 (4/5)

From Computer Desktop Encyclopedia

### 10Base2



# Физички нивоа кај IEEE 802.3 (5/5)

### 10BaseT

- Користи hub мрежен уред
- Еден колизионен домен
- UTP тип на каблирање



# Кодирање на сигналот кај IEEE 802.3

- Манчестер кодирање
  - "1" е претставена со ниско ниво (-0.85 V) односно високо ниво (+0.85 V)
  - Кај бинарната "0" имаме обратен случај
  - Лесна синхронизација на двете страни
  - Двојно поголема сигнализациска брзина (20Mbaud)



# Бинарен експоненцијален backoff алгоритам

- Слот на backoff  $\rightarrow$   $2\tau$
- После i-та колизија станицата чека меѓу 0 и  $2^i-1$ слота.
- После 10 колизии бројачот се замрзнува на 1023 слота
- После 16 колизии се сигнализира за грешка на погорните нивоа
- Backoff алгоритамот е така избран да соодветствува на бројот на станици во LAN мрежата

# Комутиран Ethernet

 Hub (L1) уредот е заменет со нов елемент "комутатор" (анг. switch) (L2)

#### • Способен е за:

- Адресирање (кон конкретна порта се врши испорака)
- Баферирање на повеќе пораки кон иста порта
- Комутациска матрица (од 10 до 100 пати поголема брзина)



 Секоја порта различен колизионен домен

## Перформанси на Ethernet



- CSMA-CD  $\rightarrow$  максимална пропустност зависи од нормализираниот **delay-bandwidth product**  $a=t_{prop}/X$
- 10-кратно зголемување на капацитетот = 10-кратно намалување на Х
- За константно a мора да се или намали  $t_{prop}$  (растојанието) или да се зголеми должината на рамката

$$o = \frac{X}{t_v} = \frac{1}{1 + 2 \cdot a \cdot \frac{1 - v}{v}} = \frac{1}{1 + 2 \cdot \frac{l \cdot R}{v_p \cdot L} \cdot \frac{1 - v}{v}}$$

# IEEE 802.3u LAN стандард (Fast Ethernet) (1/4)

- Наменет да поддржува до 100Mbps
  - 10-кратно намалување на битскиот интервал
    - Коаксијален кабел и магистрала (напуштени)
    - UTPcat3 и UTPcat5 кабли

|            | 100BaseT4   | 100BaseTX   | 100BaseF       |
|------------|-------------|-------------|----------------|
| Медиум     | UTPcat3     | UTPcat5     | 2 мултимодни   |
|            |             |             | оптички влакна |
| Максимална | 100 m       | 100 m       | 2 km           |
| должина на |             |             |                |
| сегмент    |             |             |                |
| Топологија | Ѕвезда      | Ѕвезда      | Ѕвезда         |
| Пренос     | Half-duplex | Full-duplex | Full-duplex    |

# IEEE 802.3u LAN стандард (Fast Ethernet) (2/4)



Проф. д-р Владимир Атанасовски, Телекомуникациски мрежи

# IEEE 802.3u LAN стандард (Fast Ethernet) (3/4)

#### 100BaseT4

- Потребна сигнализација од 200Mbaud (невозможно со UTP)
- 4 впредени парици со по 25MHz
- Мах. 3 парици во една насока
- Тернарно кодирање наместо Манчестер (0,1,2)
- 27 комбинации  $\rightarrow$  4 бити + редунданса (100Mbps)
- 8В6Ткодирање (8 bits map to 6 trits)

#### 100BaseTX

- UTPcat5 → 125MHz
- Се користат само две парици
- 4В5В кодирачка шема

#### 100BaseF

Користи исклучиво комутатори

# IEEE 802.3u LAN стандард (Fast Ethernet) (4/4)



Проф. д-р Владимир Атанасовски, Телекомуникациски мрежи

# IEEE 802.3z LAN стандард (Gigabit Ethernet) (1/3)

- 2 битни новитета
  - Минималната големина на рамката е зголемена на 512В
    - Carrier Extension u Frame Padding
  - Групирање на повеќе последователни рамки (анг. Packet Bursting)

|            | 1000BaseSX       | 1000BaseLX     | 1000BaseCX | 1000BaseT |
|------------|------------------|----------------|------------|-----------|
| Медиум     | 2 мултимодни     | 2 мономодни    | STP        | UTPcat5   |
|            | оптички влакна   | оптички влакна |            |           |
|            | (50 или 62.5 μm) | (10 µm)        |            |           |
| Максимална | 550 m            | 5 km           | 25 m       | 100 m     |
| должина на |                  |                |            |           |
| сегмент    |                  |                |            |           |
| Топологија | Ѕвезда           | Sвезда         | Ѕвезда     | Ѕвезда    |

# IEEE 802.3z LAN стандард (Gigabit Ethernet) (2/3)



# IEEE 802.3z LAN стандард (Gigabit Ethernet) (3/3)

#### 1000BaseCX

- Користи STP каблирање
- Ретко се употребува

#### 1000BaseT

- Користи UTPcat5 каблирање
- 4 симболи (5 можни напонски нивоа) → 2 бити по симбол, 125MHz → 1Gbps
- За секоја парица:
  - 1 еквализатор
  - 1 поништувач на ехо
  - 3 NEXT поништувачи

#### PoE

UTPcat5e

# 10 Gigabit Ethernet (10GbE)

- Зачувана структурата на рамката
- CSMA-CD официјално напуштен
- Исклучиво point-to-point full-duplex линкови и комутатори
- Иницијално дефиниран со IEEE 802.3ae-2002
- Се предвидува широка распространетост во метро мрежи

|                               | 10GbaseSR                                                     | 10GBaseLR                                                     | 10GbaseEW                                                    | 10GbaseLX4                                                   |
|-------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Медиум                        | Две мултимодни<br>оптички влакна 850 nm<br>64B66B линиски код | Две мономодни оптички<br>влакна 1310 nm<br>64B66B линиски код | Две мономодни оптички влакна 1550 nm Компатибилност со SONET | Две мономодни оптички<br>влакна 1310 nm<br>8В10В линиски код |
| Мах.<br>должина на<br>делница | 300 m                                                         | 10 km                                                         | 40 km                                                        | 300 m – 10 km                                                |

## Типови на кабли

| Common Industry Acronyms | ISO/IEC11801 Name | Cable Shielding Type | Twisted Pair Shielding Type | Example |
|--------------------------|-------------------|----------------------|-----------------------------|---------|
| UTP                      | U/UTP             | None                 | None                        |         |
| FTP, STP, ScTP           | F/UTP             | Foil                 | None                        |         |
| STP, ScTP                | S/UTP             | Braiding             | None                        |         |
| SFTP, S-FTP, STP         | SF/UTP            | Braiding & foil      | None                        |         |
| STP, ScTP, PiMF          | U/FTP             | None                 | Foil                        |         |
| FFTP                     | F/FTP             | Foil                 | Foil                        |         |
| SSTP, SFTP, STP, PiMF    | S/FTP             | Braiding             | Foil                        |         |
| SSTP, SFTP               | SF/FTP            | Braiding & foil      | Foil                        |         |

## LAN со магистрала





## LAN co HUB



# LAN со комутатор



## IEEE 802.5 Token Ring LAN

- Унидирекциона прстенеста мрежа
- 4 и 16 Mbps на twisted pair медиум
  - Диференцијално Manchester кодирање
- Пристап базиран на жетон
  - **√**Праведност
  - **√** Приоритетност
  - ⋆ Дефект на прстенот → испад на цел LAN
- Мах 250 станици

## Sвездест LAN

- Sвездестиот LAN поефикасен од прстенестиот LAN
- Станиците се поврзани во ѕвездеста топологија
  - Може да се користи телефонска линија
- Може да се заобиколат станиците во испад



Проф. д-р Владимир Атанасовски, Телекомуникациски мрежи

# IEEE 802.5 формат



Проф. д-р Владимир Атанасовски, Телекомуникациски мрежи

## Одржување на прстенот

- IEEE 802.5 дефинира процедура за селекција на **мониторинг станица**
- Задачи на мониторинг станицата:
  - Детекција и отстранување на заталкани рамки
  - Идентификација и замена на загубени жетони
- МАС контролна рамка
  - Идентификација на испад на линк
  - Идентификација на активна мониторинг станица
  - Откривање на соседи

#### Споредба на перформанси



## IEEE 802.11: Wireless LAN (1/3)

- WLAN = безжично омрежување во домашни и канцелариски услови
- Предности
  - Флексибилност во рамките на приемната област
  - Можност за ад-хок омрежување без потреба од претходно планирање
  - Робустност во вонредни ситуации (пр. земјотрес, пожар и сл.)
- Недостатоци
  - Типично, брзините се далеку помали во споредба со жичани мрежи, битските грешки се поголеми
  - Многу различни решенија (т.н. proprietary), особено за големи битски брзини; стандардизацијата оди побавно
  - Производите мораат да почитуваат многу национални ограничувања; потребно е многу долго време за да се воспостави глобален стандард како на пр. IMT-2000

## IEEE 802.11: Wireless LAN (2/3)

- Industrial, Scientific and Medical (ISM) опсезите првично биле резервирани интернационално за индустриски, научни и медицински истражувања
- ISM опсезите ги дефинира ITU-T со препораките S5.138 и S5.150 на Radio Regulations (на национално ниво може да варираат)
- ISM има 3 нелиценцирани опсези:
  - 900 MHz ен опсег (902 928 MHz)
  - 2.4 GHz ен опсег (2.4 2.4835 GHz)
    - Во Европа:
      - » FH => вкупна трансмисиона моќност < 100 mW и густина на моќност < 100 mW / 100 kHz</p>
      - » DSSS => вкупна трансмисиона моќност < 100 mW и густина на моќност < 10 mW / 1 MHz</p>
  - 5.8 GHz ен опсег (5.725 5.850 GHz)

# IEEE 802.11: Wireless LAN (3/3)

PCF за delay-sensitive real-time сервиси



# CSMA/CA







# Споредба на WLAN технологии

| Protocol | Op.<br>Frequency    | Throughput<br>(typical) | Data rate<br>(max)    | Range<br>(indoor)     | Range<br>(outdoor) |
|----------|---------------------|-------------------------|-----------------------|-----------------------|--------------------|
| Legacy   | 2.4 GHz             | 0.7 Mbps                | 2 Mbps                | ~ depends<br>on walls | ~ 75 m             |
| 802.11b  | 2.4 GHz             | 4 Mbps                  | 11 Mbps               | ~ 35 m                | ~ 110 m            |
| 802.11a  | 5 GHz               | 23 Mbps                 | 54 Mbps               | ~ 30 m                | ~ 100 m            |
| 802.11g  | 2.4 GHz             | 19 Mbps                 | 54 Mbps               | ~ 35 m                | ~ 110 m            |
| 802.11n  | 2.4 and/or<br>5 GHz | 74 Mbps                 | 248 Mbps<br>= 2x2 ant | ~ 70 m                | ~ 160 m            |

#### Меѓумрежно поврзување (Internetworking)

- Inter Working Unit (IWU) = централен елемент во ѕвездеста топологија
- Во зависност од тоа на кое протоколно ниво се врши поврзувањето меѓу две или повеќе мрежи, постојат неколку опции:
  - поврзување на физичко ниво уред за меѓумрежно поврзување на физичко ниво е repeater или hub
  - поврзување на податочно ниво уред за меѓумрежно поврзување на податочно ниво е switch или мост (анг. bridge)
  - поврзување на мрежно ниво уред за меѓумрежно поврзување на мрежно ниво е рутер
  - поврзување на повисоки нивоа уред за меѓумрежно поврзување на повисоки нивоа е gateway



## LAN мостови (1/3)

- Два типа на мостови
  - Транспарентни мостови (Ethernet LAN)
    - Упатуваат рамки од една LAN мрежа кон друга LAN мрежа
    - Учат каде станиците се закачени на LAN (Backward learning)
    - Спречуваат јамки во топологијата (spanning tree протокол)
  - Мостови со рутирање од изворот (анг. source routing bridges)
    - Token ring
    - FDDI

# LAN мостови (2/3)



- Во најголем случај се користат за ист тип на LAN
- Рутирањето се врши на МАС ниво

# LAN мостови (3/3)



- Работа на data link ниво подразбира способност да се работи со повеќе различни технологии
- Мостот мора да се справува со:
  - Различни МАС формати
  - Различни битски брзини; бафери; тајмери
  - Различна големина на рамка

#### Транспарентни мостови

- Транспарентна интерконекција на повеќе LAN-ови
- Користење на look-up табели
  - Отфрлање на рамка → извор и дестинација во ист LAN
  - Проследување на рамка → извор и дестинација во различен LAN
  - Flooding → дестинацијата е непозната
- Backward learning за формирање на табела
  - Се набљудуваат изворните адреси на пристигнатите пакети
  - Справување со промени во топологијата → бришење на стари записи



#### Адаптивно учење

- Во статичка мрежа нема потреба од константно ажурирање на табелите
- Во реалност станиците се додаваат и отстрануваат од мрежата
  - Потреба од тајмери (во ред на минути) заради пребришување на старите записи
  - Моментално ажурирање на табелата доколку стигне рамка на порта различна од запишаната

## Spanning tree протокол — IEEE 802.1D

- Да нема јамки за правилно функционирање на backward learning
  - Spanning tree протокол
  - Учествуваат само мостовите во мрежата
    - Транспарентен за станиците во мрежата
  - Секој мост мора да има
    - Уникатна bridge ID
    - Уникатни port ID во секој мост
    - Групна МАС адреса
  - Чекори во алгоритмот
    - Се одбира root мост (најмал bridge ID)
    - Одредување на root порт во секој мост, освен root мостот
    - Секој LAN бира designated мост → root мост (designated порт)