Tegra 3

Danilo Souza, Hugo Santos, Welton Araújo Emails: {dhcsouza, hugoleonardoeng07, weltonmaxx007}@gmail.com Matrículas: 10080000801, 10080000701, 10080000501

Abstract—
Index Terms—

Tabela I VARIÁVEIS DE CONTROLE

I. DESCRIÇÃO DA IMPLEMENTAÇÃO

O algoritmo de funcionamento do programa funciona com o auxílio das variáveis da Tabela I onde também são descritas suas funções de controle. A Tabela II contém os pinos do PIC utilizados como saídas e entradas.

Inicialmente, no *loop* da rotina *START*, o programa tem somente dois botões como entrada, *BOTAO_START* para iniciar e *BOTAO_N_PS* para definir o número de jogadores da partida. Na seleção do número de jogadores, os bits *BOT*,2 e *BOT*,3 são setados ou limpados enquanto que a variável *COUNTER* inicia como 0, 1 ou 2 para 4, 3 ou 2 jogadores, respectivamente. Isso se deve porque, logo que o contador atinge um valor igual a 3, o perdedor deve levar um choque.

Ao pressionar o botão de selecionar o número de jogadores, a rotina SET_N_PS é chamada onde os bits EN-ABLED_LED_P3 e ENABLED_LED_P4 são lidos, caso tenham valor lógico alto, significa que os jogadores 3 e 4, respectivamente, estão habilitados e a rotina DISABLE_P3P4 é chamada para desabilitá-los. Caso somente 2 estiverem habilitados, o jogador 3 é habilitado pela rotina SET_P3 onde bit ENABLED_LED_P3 é setado para alto. Em último caso, se houverem 3 habilitados, a rotina SET_P4 é chamada para setar como 1 o bit ENABLED_LED_P4.

No começo de uma partida, o programa passa a operar no delay da rotina *DELAY_LED*. Sua função é manter *START_LED* setado até o momento de limpá-lo e os botões do jogo serem apertados, porém também checa constantemente, na sua "subrotina" *DELAY2_LED*, as entradas do botões do jogo para punir com um choque, através das rotinas *SHOCK_P1*, *SHOCK_P2*, *SHOCK_P3* e *SHOCK_P4*, o jogador que apertar o botão antes da hora certa e, em seguida. esperar o início de uma nova partida.

Quando o *START_LED* apagar, o programa estará rodando no loop da rotina *MAIN*, definido como momento de decisão, onde os botões do jogo são novamente checados. Caso algum seja apertado, alguma das rotinas *BOTAO_P1_PRESS*, *BOTAO_P2_PRESS*, *BOTAO_P3_PRESS* ou *BOTAO_P4_PRESS* são chamadas para, além de incrementar 1 no valor de *COUNTER*, setar o bit *BOT*,0 , *BOT*,1 , *BOT*,2 ou *BOT*,3 , respectivamente para cada jogador.

Durante o momento de decisão, os botões *BOTAO_P1*, *BO-TAO_P2*, *BOTAO_P3* e *BOTAO_P4* passam a ser funcionais. No entanto, realmente funcionarão somente o botão daqueles

Engenharia da Computação, Universidade Federal do Pará, Belém-PA, Brasil

Variáveis	Endereco	Descrição
COUNTER	0x20	Contador do número de botões apertados ant
		quem perdeu a partida
LAST_COUNTER	0x21	Backup da configuração de CONT
BOT	0x22	Campo de 8 bits responsável por memoriza
		apertado ou não durante o momento de decis
LAST_BOT	0x23	Backup da configuração de BOT
COUNT1	0x24	Contador 1 para o delay de duração do cho
COUNT2	0x25	Contador 2 para o delay de duração do cho
COUNT3	0x26	Contador 3 para o delay de duração do cho

1

jogadores que foram habilitados. Por exemplo, caso sejam somente dois oponentes, os botões BOTAO_P3 e BOTAO_P4 ainda funcionam como entrada, porém os seus estados de pressionado ou não já foram setados para o estado pressionado durante a selecão do número de jogadores, isto é, neste caso, BOT,2 e BOT,3 estão setados como 1 fazendo-os indeferentes neste momento. Ademais, a variável COUNTER já foi incrementada em 1 para cada jogador desabilitado ou vice-versa para cada jogador é reabilitado. Os valores de BOT e COUNTER são armazenados em LAST_COUNTER e LAST_BOT.

Ainda dentro do loop da *MAIN*, existe uma rotina chamada *CHECK_COUNTER*. Nesta rotina, a variável *COUNTER* é checada à procura de um valor igual a 3 para fazer a chamada da rotina *FIND_LOSER*.

A rotina *FIND_LOSER* procura pelo primeiro 0 entre os bits de *BOT*,0 , *BOT*,1 , *BOT*,2 e *BOT*,3 , nesta ordem, para setar algum dos bits de *SHOCK_LED_P1*, SHOCK_LED_P2, SHOCK_LED_P3 e SHOCK_LED_P4 como 1 simbolizando o choque, respectivamente para o jogadores 1, 2, 3 e 4. Em sequência, chama a rotina *DELAY_SHOCK* que limita a duração do choque, limpa os bits *SHOCK_LED_P1*, *SHOCK_LED_P2*, *SHOCK_LED_P3* e *SHOCK_LED_P4*, carrega os valores de *LAST_COUNTER* e *LAST_BOT* em *COUNTER* e *BOT*, respectivamente, para recomeçar o jogo com a última configuração de jogadores.

II. DESCRIÇÃO DO PROJETO

O projeto baseia-se em um jogo, onde o objetivo é não levar choque, o brinquedo possui 4 controles com um botão cada e uma luz no meio, usada para indicar a hora em os jogadores devem apertar os botões, o último que apertar leva um choque. Ao começo do jogo o LED fica piscando, a rodada termina quando o LED mudar de cor, a partir desse momento o último jogador que apertar o botão leva um choque, que é descarregado no próprio controle, feito de metal. Caso algum

Tabela II BITS DE CONTROLE

Bits	Pino	Descrição
BOTAO_P1	PORTA,0	Botão para mudar o estado do jogador 1 durante o
		momento de decisão da partida
BOTAO_P2	PORTA,1	Botão para mudar o estado do jogador 2 durante o
		momento de decisão da partida
BOTAO_P3	PORTA,2	Botão para mudar o estado do jogador 3 durante o
		momento de decisão da partida
BOTAO_P4	PORTA,3	Botão para mudar o estado do jogador 4 durante o
		momento de decisão da partida
BOTAO_START	PORTA,4	Botão para iniciar a partida
BOTAO_N_PS	PORTA,5	Botão para escolher o número de jogadores da partida
SHOCK_LED_P1	PORTB,0	LED que simboliza o sinal de choque no jogador 1
SHOCK_LED_P2	PORTB,1	LED que simboliza o sinal de choque no jogador 2
SHOCK_LED_P3	PORTB,2	LED que simboliza o sinal de choque no jogador 3
SHOCK_LED_P4	PORTB,3	LED que simboliza o sinal de choque no jogador 4
ENABLED_LED_P3	PORTB,4	LED indicador de participação do jogador 3 na partida
ENABLED_LED_P4	PORTB,5	LED indicador de participação do jogador 4 na partida
START_LED	PORTB,6	LED que sinaliza o início do momento de decisão

Fig. 1. Ilustração do jogo

jogador aperte o botão antes do tempo, este também levará choque como punição.

Para o projeto foram usados 4 botões, cada botão com 2 LED's, um para indicar que aquele jogador está participando do jogo e outro para indicar que aquele jogador levou um choque, um botão para representar o *start*, um botão para escolher o número de jogadores, sendo no mínimo 2 e no máximo 4 e um led para indicar o começo e término de uma rodada. Quando o jogo começa, a luz do LED fica constante e quando o LED apaga, a rodada termina um LED amarelo do último botão pressionado acende indicando que aquele jogador levou um choque. Os LED's são somente para representar o circuito do choque que poderia ser acionado usando o mesmo sinão de saida utilizado par aacender o LED.