Calculating elasticities with PythonBiogeme

Michel Bierlaire

May 11, 2017

Report TRANSP-OR 170511
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
transp-or.epfl.ch

SERIES ON BIOGEME

1 Elasticities

Consider any choice model $P_n(i|x_n, C_n)$ providing the probability that individual n chooses alternative i within the choice set C_n , given the explanatory variables x_n . In order to calculate the market shares in the population of size N, a sample of N_s individuals is drawn. As it is rarely possible to draw from the population with equal sampling probability, it is assumed that stratified sampling has been used, and that each individual n in the sample is associated with a weight w_n correcting for sampling biases. The weights are normalized such that

$$N = \sum_{n=1}^{N_s} w_n. \tag{1}$$

An estimator of the market share of alternative i in the population is

$$W_{i} = \frac{1}{N} \sum_{n=1}^{N_{s}} w_{n} P_{n}(i|x_{n}, \mathcal{C}_{n}).$$
 (2)

Consider now one of the variables involved in the model: x_{ink} . The objective is to anticipate the impact of a change of the value of this variable on the choice of individual n, and on the market share of alternative i.

1.1 Point elasticities

We assume that the relative (infinitesimal) change of the variable is the same for every individual in the population, that is

$$\frac{\partial x_{ink}}{x_{ink}} = \frac{\partial x_{ipk}}{x_{ipk}} = \frac{\partial x_{ik}}{x_{ik}},\tag{3}$$

where

$$x_{ik} = \frac{1}{N} \sum_{n=1}^{N} x_{ink}.$$
 (4)

The disaggregrate direct point elasticity of the model with respect to the variable x_{ink} is defined as

$$\mathsf{E}_{\mathsf{x}_{\mathsf{ink}}}^{\mathsf{P}_{\mathsf{n}}(\mathsf{i})} = \frac{\partial \mathsf{P}_{\mathsf{n}}(\mathsf{i}|\mathsf{x}_{\mathsf{n}},\mathcal{C}_{\mathsf{n}})}{\partial \mathsf{x}_{\mathsf{ink}}} \frac{\mathsf{x}_{\mathsf{ink}}}{\mathsf{P}_{\mathsf{n}}(\mathsf{i}|\mathsf{x}_{\mathsf{n}},\mathcal{C}_{\mathsf{n}})}.$$
 (5)

It is called

• disaggregate, because it refers to the choice model related to a specific individual,

- direct, because it measures the impact of a change of an attribute of alternative i on the choice probability of the same alternative,
- point, because we consider an infinitesimal change of the variable.

The aggregate direct point elasticity of the model with respect to the average value x_{ik} is defined as

$$\mathsf{E}_{\mathsf{x}_{ik}}^{W_{i}} = \frac{\partial W_{i}}{\partial \mathsf{x}_{ik}} \frac{\mathsf{x}_{ik}}{W_{i}}.\tag{6}$$

Using (2), we obtain

$$\mathsf{E}_{\mathsf{x}_{ik}}^{W_{i}} = \frac{1}{\mathsf{N}} \sum_{\mathsf{n}=1}^{\mathsf{N}_{\mathsf{s}}} w_{\mathsf{n}} \frac{\partial \mathsf{P}_{\mathsf{n}}(\mathsf{i}|\mathsf{x}_{\mathsf{n}}, \mathcal{C}_{\mathsf{n}})}{\partial \mathsf{x}_{ik}} \frac{\mathsf{x}_{ik}}{W_{i}}. \tag{7}$$

From (3), we obtain

$$E_{x_{ik}}^{W_i} = \frac{1}{N} \sum_{n=1}^{N_s} w_n \frac{\partial P_n(i|x_n, C_n)}{\partial x_{ink}} \frac{x_{ink}}{W_i} = \frac{1}{N} \sum_{n=1}^{N_s} w_n E_{x_{ink}}^{P_n(i)} \frac{P_n(i|x_n, C_n)}{W_i}, \quad (8)$$

where the second equation is derived from (5). Using (2) again, we obtain

$$\mathsf{E}_{\mathsf{x}_{\mathsf{i}\mathsf{k}}}^{W_{\mathsf{i}}} = \sum_{\mathsf{n}=1}^{\mathsf{N}_{\mathsf{s}}} \mathsf{E}_{\mathsf{x}_{\mathsf{i}\mathsf{n}\mathsf{k}}}^{\mathsf{P}_{\mathsf{n}}(\mathsf{i})} \frac{w_{\mathsf{n}} \mathsf{P}_{\mathsf{n}}(\mathsf{i}|\mathsf{x}_{\mathsf{n}}, \mathcal{C}_{\mathsf{n}})}{\sum_{\mathsf{n}=1}^{\mathsf{N}_{\mathsf{s}}} w_{\mathsf{n}} \mathsf{P}_{\mathsf{n}}(\mathsf{i}|\mathsf{x}_{\mathsf{n}}, \mathcal{C}_{\mathsf{n}})}. \tag{9}$$

This equation shows that the calculation of aggregate elasticities involves a weighted sum of disaggregate elasticities. However, the weight is not w_n as for the market share, but a normalized version of $w_n P_n(i|x_n, \mathcal{C}_n)$.

1.2 Arc elasticities

A similar derivation can be done for arc elasticities. In this case, the relative change of the variable is not infinitesimal anymore. The idea is to analyze a before/after scenario. As above, we assume that the relative change of the variable is the same for every individual in the population, that is

$$\frac{\Delta x_{ink}}{x_{ink}} = \frac{\Delta x_{ipk}}{x_{ipk}} = \frac{\Delta x_{ik}}{x_{ik}},\tag{10}$$

where x_{ik} is defined by (4). The disaggregrate direct arc elasticity of the model with respect to the variable x_{ink} is defined as

$$\mathsf{E}_{\mathsf{x}_{\mathsf{ink}}}^{\mathsf{P}_{\mathsf{n}}(\mathsf{i})} = \frac{\Delta \mathsf{P}_{\mathsf{n}}(\mathsf{i}|\mathsf{x}_{\mathsf{n}}, \mathcal{C}_{\mathsf{n}})}{\Delta \mathsf{x}_{\mathsf{ink}}} \frac{\mathsf{x}_{\mathsf{ink}}}{\mathsf{P}_{\mathsf{n}}(\mathsf{i}|\mathsf{x}_{\mathsf{n}}, \mathcal{C}_{\mathsf{n}})}. \tag{11}$$

The aggregate direct arc elasticity of the model with respect to the average value x_{ik} is defined as

$$\mathsf{E}_{\mathsf{x}_{\mathsf{i}\mathsf{k}}}^{W_{\mathsf{i}}} = \frac{\Delta W_{\mathsf{i}}}{\Delta \mathsf{x}_{\mathsf{i}\mathsf{k}}} \frac{\mathsf{x}_{\mathsf{i}\mathsf{k}}}{W_{\mathsf{i}}}.\tag{12}$$

The two quantities are also related by (9).

A Complete specification files

A.1 01simpleIntegral.py

```
2
  \# File: 01simpleIntegral.py
3
  # Author: Michel Bierlaire, EPFL
  # Date: Sat Jul 25 11:41:13 2015
5
6
  7
  from biogeme import *
  from headers import *
10
11
  integrand = exp(bioDraws('U'))
  simulatedI = MonteCarlo(integrand)
13
14
  trueI = exp(1.0) - 1.0
15
16
  sampleVariance = \setminus
17
    MonteCarlo(integrand*integrand) - simulatedI * simulatedI
18
  stderr = (sample Variance / 200000.0)**0.5
   error = simulatedI - trueI
20
21
  simulate = { '01 Simulated Integral ': simulated I,
22
23
              '02 Analytical Integral': trueI,
              '03 Sample variance': sample Variance,
24
              '04 Std Error': stderr,
25
              '05 Error': error}
26
27
  rowIterator('obsIter')
28
29
  BIOGEME_OBJECT.SIMULATE = Enumerate(simulate, 'obsIter')
30
BIOGEME_OBJECT.PARAMETERS['NbrOfDraws'] = "5"
32 BIOGEME_OBJECT.PARAMETERS['RandomDistribution'] = "PSEUDO"
  _rowId__ = Variable('__rowId__')
  BIOGEME\_OBJECT.EXCLUDE = \_rowId\_. >= 1
  BIOGEME_OBJECT.DRAWS = { 'U': 'UNIFORM'}
```

A.2 02 antithetic .py

```
7
   from biogeme import *
9
   from headers import *
10
11
   integrand = 0.5 * (exp(bioDraws('U'))) + exp(1.0-bioDraws('U')))
12
   simulatedI = MonteCarlo(integrand)
13
14
   trueI = exp(1.0) - 1.0
15
16
   sampleVariance = \setminus
17
     MonteCarlo(integrand*integrand) - simulatedI * simulatedI
18
   stderr = (sampleVariance / 10000.0)**0.5
19
   error = simulatedI - trueI
20
21
   simulate = {'01_Simulated Integral': simulatedI,
22
                '02_Analytical Integral': trueI,
23
               '03_Sample variance': \operatorname{sampleVariance},
24
25
               '04_Std Error': stderr,
               '05_Error': error}
26
27
   rowIterator('obsIter')
28
29
  BIOGEME_OBJECT.SIMULATE = Enumerate(simulate, 'obsIter')
30
31
  BIOGEME_OBJECT.PARAMETERS['NbrOfDraws'] = "5"
32
   _rowId__ = Variable('__rowId__')
33
  BIOGEME_OBJECT.EXCLUDE = __rowId__ >= 1
  BIOGEME_OBJECT.DRAWS = { 'U': 'UNIFORM'}
```

A.3 03controlVariate.py

```
1
2
  # File: 03controlVariate.py
  # Author: Michel Bierlaire, EPFL
  # Date: Sat Jul 25 12:24:25 2015
5
6
  7
8
9
  from biogeme import *
10
  from headers import *
12
  integrand = exp(bioDraws('U'))
13
  simulatedI = MonteCarloControlVariate(integrand, bioDraws('U'), 0.5)
14
15
  trueI = exp(1.0) - 1.0
16
17
```

```
error = simulatedI - trueI
18
19
   simulate = {'01_Simulated Integral': simulatedI,
20
                '02_Analytical Integral': trueI,
21
                '05_Error': error}
22
23
   rowIterator('obsIter')
25
  BIOGEME_OBJECT.SIMULATE = Enumerate(simulate, 'obsiter')
26
27
  BIOGEME_OBJECT.PARAMETERS['NbrOfDraws'] = "5"
28
   __rowId__ = Variable(',__rowId__')
29
  BIOGEME_OBJECT.EXCLUDE = __rowId__ >= 1
  BIOGEME_OBJECT.DRAWS = { 'U': 'UNIFORM'}
```

A.4 05normalMixtureTrueAnalytical.py

```
1
2
  \# File: 05normalMixtureTrueAnalytical.py
  # Author: Michel Bierlaire, EPFL
  # Date: Sat Jul 25 18:50:11 2015
5
6
7
  8
  from biogeme import *
9
  from headers import *
11
  from distributions import *
  from loglikelihood import *
12
13
  #Parameters
14
  ASC\_CAR = 0.137
15
  ASC_TRAIN = -0.402
16
  ASC\_SM = 0
17
  B_{-}TIME = -2.26
  B_TIME_S = 1.66
  B_{-}COST = -1.29
20
21
  # Define a random parameter, normally distributed,
22
  # designed to be used for integration
23
  omega = RandomVariable('omega')
24
  density = normalpdf(omega)
  B_TIME_RND = B_TIME + B_TIME_S * omega
27
  # Utility functions
28
29
  #If the person has a GA (season ticket) her
  #incremental cost is actually 0
31
  #rather than the cost value gathered from the
```

```
\# network data.
   SM\_COST = SM\_CO
                      * (GA = 0)
   TRAIN\_COST = TRAIN\_CO
                            * ( GA == 0
36
   \# For numerical reasons, it is good practice to scale the data to
37
   # that the values of the parameters are around 1.0.
   \# A previous estimation with the unscaled data has generated
   \# parameters around -0.01 for both cost and time.
40
   # Therefore, time and cost are multipled my 0.01.
41
42
   TRAIN\_TT\_SCALED = \
43
     Define Variable ('TRAIN_TT_SCALED', TRAIN_TT / 100.0)
44
   TRAIN\_COST\_SCALED = \
45
     Define Variable ('TRAIN_COST_SCALED', TRAIN_COST / 100)
46
   SM_TT_SCALED = DefineVariable('SM_TT_SCALED', SM_TT / 100.0)
47
   SM_COST_SCALED = DefineVariable('SM_COST_SCALED', SM_COST / 100)
48
   CAR_TT_SCALED = Define Variable ('CAR_TT_SCALED', CAR_TT / 100)
49
   CAR_CO_SCALED = Define Variable ('CAR_CO_SCALED', CAR_CO / 100)
51
   V1 = ASC\_TRAIN + \setminus
52
        B\_TIME\_RND * TRAIN\_TT\_SCALED + \setminus
53
        B_COST * TRAIN_COST_SCALED
54
   V2 = ASC\_SM + \setminus
55
        B_TIME_RND * SM_TT_SCALED + \
56
        B_COST * SM_COST_SCALED
57
   V3 = ASC\_CAR + \setminus
58
        B_TIME_RND * CAR_TT_SCALED + \
59
        B_COST * CAR_CO_SCALED
60
61
62
   # Associate utility functions with the numbering of alternatives
63
   V = \{1: V1,
64
        2: V2,
65
        3: V3}
66
67
   # Associate the availability conditions with the alternatives
68
69
   CAR_AV_SP = Define Variable ('CAR_AV_SP', CAR_AV * (SP
   TRAIN_AV_SP = Define Variable ('TRAIN_AV_SP', TRAIN_AV * (SP
71
   0)
72
   av = \{1: TRAIN\_AV\_SP,
73
         2: SM_AV,
74
         3: CAR_AV_SP}
75
76
   # The choice model is a logit, with availability conditions
77
   integrand = bioLogit(V, av, CHOICE)
78
```

```
analyticalI = Integrate(integrand*density, 'omega')
simulate = {'Analytical': analyticalI}

rowIterator('obsIter')

BIOGEME.OBJECT.PARAMETERS['decimalPrecisionForSimulation'] = "12"
BIOGEME.OBJECT.SIMULATE = Enumerate(simulate, 'obsIter')

-rowId_ = Variable('__rowId__')
BIOGEME.OBJECT.EXCLUDE = __rowId__ >= 1
```

A.5 06normalMixture.py

```
1
2
  #
  # File: 06normalMixture.py
3
  # Author: Michel Bierlaire, EPFL
  # Date: Sat Jul 25 18:37:37 2015
6
  7
8
  from biogeme import *
9
  from headers import *
10
  from loglikelihood import *
11
  from statistics import *
12
13
14 #Parameters
ASC\_CAR = 0.137
ASC_TRAIN = -0.402
ASC\_SM = 0
  B_{-}TIME = -2.26
  B_TIME_S = 1.66
19
  B_{-}COST = -1.29
20
21
  # Define a random parameter, normally distributed,
  # designed to be used for integration
23
  omega = bioDraws('B_TIME_RND')
  B_TIME_RND = B_TIME + B_TIME_S * omega
26
  # Utility functions
27
28
  #If the person has a GA (season ticket) her
30 #incremental cost is actually 0
  #rather than the cost value gathered from the
31
  \# network data.
32
  SM\_COST = SM\_CO
                   * ( GA == 0
                        * ( GA == 0
  TRAIN\_COST = TRAIN\_CO
34
35
```

```
# For numerical reasons, it is good practice to scale the data to
   # that the values of the parameters are around 1.0.
37
   # A previous estimation with the unscaled data has generated
   \# parameters around -0.01 for both cost and time. Therefore, time and
39
   \# cost are multipled my 0.01.
40
41
   TRAIN\_TT\_SCALED = \setminus
42
     Define Variable ('TRAIN_TT_SCALED', TRAIN_TT / 100.0)
43
   TRAIN\_COST\_SCALED = \setminus
44
     Define Variable ('TRAIN_COST_SCALED', TRAIN_COST / 100)
45
   SM_TT_SCALED = Define Variable ('SM_TT_SCALED', SM_TT / 100.0)
46
   SM_COST_SCALED = DefineVariable('SM_COST_SCALED', SM_COST / 100)
47
   CAR_TT_SCALED = Define Variable ('CAR_TT_SCALED', CAR_TT / 100)
48
   CAR_CO_SCALED = Define Variable ('CAR_CO_SCALED', CAR_CO / 100)
49
50
   V1 = ASC_TRAIN + 
51
        B_TIME_RND * TRAIN_TT_SCALED + \
52
        B_COST * TRAIN_COST_SCALED
53
   V2 = ASC\_SM + \setminus
54
        B_TIME_RND * SM_TT_SCALED + \
55
        B\_COST * SM\_COST\_SCALED
56
   V3 = ASC\_CAR + \setminus
57
        B_TIME_RND * CAR_TT_SCALED + \
58
        B_COST * CAR_CO_SCALED
59
60
   # Associate utility functions with the numbering of alternatives
61
   V = \{1: V1,
62
        2: V2,
63
        3: V3
64
   # Associate the availability conditions with the alternatives
66
67
   CAR_AV_SP = DefineVariable('CAR_AV_SP', CAR_AV * ( SP
   TRAIN_AV_SP = Define Variable ('TRAIN_AV_SP', TRAIN_AV * ( SP
69
   0)
70
   av = \{1: TRAIN\_AV\_SP,
71
          2: SM_AV,
72
         3: CAR_AV_SP}
73
74
   # The choice model is a logit, with availability conditions
75
   integrand = bioLogit (V, av, CHOICE)
76
   simulatedI = MonteCarlo(integrand)
77
78
   trueI = 0.637849835578
79
80
   sampleVariance = \
81
     MonteCarlo(integrand*integrand) - simulatedI * simulatedI
```

```
stderr = (sample Variance / 200000.0)**0.5
83
   error = simulatedI - trueI
84
   simulate = {'01 Simulated Integral': simulatedI,
86
                '02 Analytical Integral': trueI,
87
                '03 Sample variance': sample Variance,
88
                '04 Std Error': stderr,
89
                '05 Error': error}
90
91
   rowIterator('obsIter')
92
93
  BIOGEME_OBJECT.SIMULATE = Enumerate(simulate, 'obsIter')
94
95
   __rowId__ = Variable(',__rowId__')
96
  BIOGEME\_OBJECT.EXCLUDE = \_rowId\_. >= 1
97
98
  BIOGEME_OBJECT.PARAMETERS['NbrOfDraws'] = "5"
99
  BIOGEME_OBJECT.DRAWS = { 'B_TIME_RND': 'NORMAL' }
```

A.6 07normalMixtureAntithetic.py

```
1
2
  \# File: 07normalMixtureAntithetic.py
3
  # Author: Michel Bierlaire, EPFL
  # Date: Sat Jul 25 19:14:42 2015
5
  #
6
  8
  from biogeme import *
9
  from headers import *
10
  from loglikelihood import *
11
  from statistics import *
12
13
14 #Parameters
ASC\_CAR = 0.137
ASC_TRAIN = -0.402
ASC\_SM = 0
18 B_TIME = -2.26
  B_TIME_S = 1.66
  B_{\text{-}COST} = -1.29
20
21
 # Define a random parameter, normally distributed,
# designed to be used for integration,
\# and its antithetic.
25 B_TIME_RND = B_TIME + B_TIME_S * bioDraws('B_TIME_RND')
  B_TIME_RND_MINUS = B_TIME - B_TIME_S * bioDraws('B_TIME_RND')
27
28 # Utility functions
```

```
29
   #If the person has a GA (season ticket) her
30
   #incremental cost is actually 0
   #rather than the cost value gathered from the
32
   \# network data.
33
   SM\_COST = SM\_CO
                       * ( GA == 0
   TRAIN\_COST = TRAIN\_CO
                             * ( GA == 0
36
   \# For numerical reasons, it is good practice to scale the data to
37
   # that the values of the parameters are around 1.0.
39
   # A previous estimation with the unscaled data has generated
   # parameters around -0.01 for both cost and time.
40
   # Therefore, time and cost are multipled my 0.01.
41
42
   TRAIN\_TT\_SCALED = \setminus
43
     Define Variable ('TRAIN_TT_SCALED', TRAIN_TT / 100.0)
44
   TRAIN\_COST\_SCALED = \setminus
45
     Define Variable ('TRAIN_COST_SCALED', TRAIN_COST / 100)
   SM_TT_SCALED = Define Variable ('SM_TT_SCALED', SM_TT / 100.0)
47
   SM_COST_SCALED = Define Variable ('SM_COST_SCALED', SM_COST / 100)
48
   CAR_TT_SCALED = Define Variable ('CAR_TT_SCALED', CAR_TT / 100)
49
   CAR_CO_SCALED = Define Variable ('CAR_CO_SCALED', CAR_CO / 100)
51
   V1 = ASC\_TRAIN + \setminus
52
        B_TIME_RND * TRAIN_TT_SCALED + \
53
        B_COST * TRAIN_COST_SCALED
54
   V2 = ASC\_SM + \setminus
55
        B_TIME_RND * SM_TT_SCALED + \
56
        B_COST * SM_COST_SCALED
57
   V3 = ASC\_CAR + \setminus
        B_TIME_RND * CAR_TT_SCALED + \
59
        B_COST * CAR_CO_SCALED
60
61
   V1\_MINUS = ASC\_TRAIN + 
62
               B_TIME_RND_MINUS * TRAIN_TT_SCALED + \
63
               B_COST * TRAIN_COST_SCALED
64
   V2\_MINUS = ASC\_SM + \setminus
               B_TIME_RND_MINUS * SM_TT_SCALED + \setminus
66
               B_COST * SM_COST_SCALED
67
   V3_MINUS = ASC_CAR + \
68
               B_TIME_RND_MINUS * CAR_TT_SCALED + \
69
               B_COST * CAR_CO_SCALED
70
71
   # Associate utility functions with the numbering of alternatives
72
   V = \{1: V1,
73
        2: V2,
74
        3: V3}
75
76
   V_{MINUS} = \{1: V1_{MINUS},
```

```
2: V2_MINUS,
78
               3: V3_MINUS}
79
   # Associate the availability conditions with the alternatives
81
82
   CAR_AV_SP = DefineVariable('CAR_AV_SP', CAR_AV * ( SP
   TRAIN_AV_SP = DefineVariable('TRAIN_AV_SP', TRAIN_AV * ( SP
84
   0)
85
   av = \{1: TRAIN\_AV\_SP,
86
          2: SM_AV,
87
          3: CAR_AV_SP}
88
89
   # The choice model is a logit, with availability conditions
90
   integrand_plus = bioLogit (V, av, CHOICE)
91
   integrand\_minus = bioLogit(V\_MINUS, av, CHOICE)
92
   integrand = 0.5 * (integrand_plus + integrand_minus)
   simulated I = MonteCarlo (integrand)
94
95
   trueI = 0.637849835578
96
97
   sampleVariance = \
98
      MonteCarlo(integrand*integrand) - simulatedI * simulatedI
99
   stderr = (sample Variance / 200000.0) **0.5
100
   error = simulatedI - trueI
101
102
   simulate = { '01 Simulated Integral': simulatedI,
103
                 '02 Analytical Integral': trueI,
104
                 '03 Sample variance': sampleVariance,
105
                 '04 Std Error': stderr,
106
                 '05 Error': error}
107
108
   rowIterator('obsIter')
109
110
   BIOGEME_OBJECT.SIMULATE = Enumerate(simulate, 'obsIter')
111
112
    __rowId__ = Variable('__rowId__')
113
   BIOGEME_OBJECT.EXCLUDE = __rowId__ >= 1
114
115
   BIOGEME_OBJECT.PARAMETERS['NbrOfDraws'] = "5"
116
   BIOGEME_OBJECT.DRAWS = { 'B_TIME_RND': 'NORMAL' }
```

A.7 08normalMixtureControlVariate.py

```
# Date: Sat Jul 25 18:50:11 2015
5
  #
6
   8
   from biogeme import *
9
   from headers import *
   from loglikelihood import *
   from statistics import *
12
13
  \#Parameters
15
  ASC\_CAR = 0.137
  ASC_TRAIN = -0.402
16
  ASC\_SM = 0
17
  B_{-}TIME = -2.26
  B_TIME_S = 1.66
  B_{-}COST = -1.29
20
21
  # Define a random parameter, normally distributed,
22
23
  # designed to be used for Monte-Carlo simulation
  B_TIME_RND = B_TIME + B_TIME_S * bioDraws('B_TIME_RND')
24
25
  # Utility functions
26
27
  #If the person has a GA (season ticket) her
28
  #incremental cost is actually 0
29
  #rather than the cost value gathered from the
  \# network data.
31
  SM\_COST = SM\_CO
                      * ( GA == 0
32
  TRAIN\_COST = TRAIN\_CO
                           * ( GA == 0
  # For numerical reasons, it is good practice to scale the data to
35
  # that the values of the parameters are around 1.0.
36
  # A previous estimation with the unscaled data has generated
   \# parameters around -0.01 for both cost and time.
  # Therefore, time and cost are multipled my 0.01.
39
40
  TRAIN\_TT\_SCALED = \setminus
41
     Define Variable ('TRAIN_TT_SCALED', TRAIN_TT / 100.0)
42
  TRAIN\_COST\_SCALED = \
43
     Define Variable ('TRAIN_COST_SCALED', TRAIN_COST / 100)
44
  SM_TT_SCALED = Define Variable ('SM_TT_SCALED', SM_TT / 100.0)
45
  SM_COST_SCALED = Define Variable ('SM_COST_SCALED', SM_COST / 100)
46
  CAR_TT_SCALED = Define Variable ('CAR_TT_SCALED', CAR_TT / 100)
47
  CAR_CO_SCALED = Define Variable ('CAR_CO_SCALED', CAR_CO / 100)
48
49
  V1 = ASC\_TRAIN + \setminus
50
        B_TIME_RND * TRAIN_TT_SCALED + \
51
        B\_COST \ * \ TRAIN\_COST\_SCALED
52
  V2 = ASC\_SM + \setminus
```

```
B\_TIME\_RND * SM\_TT\_SCALED + \setminus
54
         B_COST * SM_COST_SCALED
55
   V3 = ASC\_CAR + \setminus
         B_TIME_RND * CAR_TT_SCALED + \setminus
57
         B_COST * CAR_CO_SCALED
58
59
   # Associate utility functions with the numbering of alternatives
60
   V = \{1: V1,
61
         2: V2,
62
         3: V3}
63
64
   # Associate the availability conditions with the alternatives
65
66
   CAR_AV_SP = DefineVariable('CAR_AV_SP', CAR_AV * ( SP
                                                                    !=
67
   TRAIN_AV_SP = Define Variable ('TRAIN_AV_SP', TRAIN_AV * ( SP
68
      ))
69
   av = \{1: TRAIN\_AV\_SP,
70
          2: SM_AV,
71
          3: CAR\_AV\_SP
72
73
   # The choice model is a logit, with availability conditions
74
   integrand = bioLogit (V, av, CHOICE)
75
76
   # Control variate
77
78
   # Recycle the uniform draws used to generate the
79
   #normal draws of B_TIME_RND
80
   UNIFDRAW = bioRecycleDraws('B_TIME_RND')
82
   # Utility function with the uniform draws instead of the normal.
83
   VCV = ASC\_TRAIN + \setminus
84
          (B_TIME + B_TIME_S * UNIFDRAW) * TRAIN_TT_SCALED + \
          B_COST * TRAIN_COST_SCALED
86
   \# The analytical integral of exp(VCV) between 0 and 1
87
   # is now calculated
88
   VCV_ZERO = ASC_TRAIN + \
89
                B_TIME * TRAIN_TT_SCALED + \
90
                B_COST * TRAIN_COST_SCALED
91
   VCV\_ONE = ASC\_TRAIN + 
92
               (B\_TIME + B\_TIME\_S) * TRAIN\_TT\_SCALED + \setminus
93
                B_COST * TRAIN_COST_SCALED
94
   VCV\_INTEGRAL = (exp(VCV\_ONE) - exp(VCV\_ZERO)) / 
95
                    (B_TIME_S * TRAIN_TT_SCALED)
96
97
98
   simulatedI = MonteCarloControlVariate(integrand, \
99
                                              \exp(VCV),
100
```

```
VCV_INTEGRAL)
101
102
   trueI = 0.637849835578
103
104
   error = simulatedI - trueI
105
106
   simulate = {'01 Simulated Integral': simulatedI,
107
                 '02 Analytical Integral': trueI,
108
                 '05 Error': error}
109
110
   rowIterator('obsIter')
111
112
   BIOGEME_OBJECT.SIMULATE = Enumerate(simulate, 'obsIter')
113
114
   __rowId__ = Variable(',__rowId__')
   BIOGEME_OBJECT.EXCLUDE = __rowId__ >= 1
116
117
   BIOGEME_OBJECT.PARAMETERS['NbrOfDraws'] = "5"
118
   BIOGEME_OBJECT.DRAWS = { 'B_TIME_RND': 'NORMAL' }
```

A.8 11estimationNumerical.py

```
1
2
  \# File: 11estimationNumerical.py
3
  # Author: Michel Bierlaire, EPFL
  # Date: Thu Jul 30 10:40:49 2015
5
  #
  7
  from biogeme import *
9
  from headers import *
10
  from distributions import *
11
  from loglikelihood import *
  from statistics import *
14
  #Parameters to be estimated
15
  \# Arguments:
16
      1 Name for report. Typically, the same as the variable
17
  #
      2
         Starting value
18
         Lower bound
  #
      3
19
  #
         Upper bound
20
      4
         0: estimate the parameter, 1: keep it fixed
21
22
ASC_CAR = Beta ('ASC_CAR', 0, -10, 10, 0)
ASC_TRAIN = Beta ('ASC_TRAIN', 0, -10, 10, 0)
  ASC\_SM = Beta('ASC\_SM', 0, -10, 10, 1)
_{26} B_TIME = Beta('B_TIME', _{0}, _{-10}, _{10}, _{0})
_{27} B_TIME_S = Beta('B_TIME_S', _{9}, _{-10}, _{10}, _{0})
```

```
B_{-}COST = Beta(, B_{-}COST, 0, -10, 10, 0)
   \# Define a random parameter, normally distributed,
   # designed to be used for simulation
31
   omega = RandomVariable('omega')
32
   density = normalpdf(omega)
   B_TIME_RND = B_TIME + B_TIME_S * omega
35
   # Utility functions
36
37
   #If the person has a GA (season ticket) her
38
   #incremental cost is actually 0
39
   #rather than the cost value gathered from the
   \# network data.
                      * ( GA == 0
   SM\_COST = SM\_CO
   TRAIN\_COST = TRAIN\_CO
                             * ( GA == 0
43
44
   # For numerical reasons, it is good practice to scale the data to
   # that the values of the parameters are around 1.0.
46
   # A previous estimation with the unscaled data has generated
   \# parameters around -0.01 for both cost and time.
   # Therefore, time and cost are multipled my 0.01.
50
51
   TRAIN\_TT\_SCALED = \setminus
52
     Define Variable ('TRAIN_TT_SCALED', TRAIN_TT / 100.0)
53
   TRAIN\_COST\_SCALED = \setminus
54
     Define Variable ('TRAIN_COST_SCALED', TRAIN_COST / 100)
55
   SM_TT_SCALED = Define Variable ('SM_TT_SCALED', SM_TT / 100.0)
   SM_COST_SCALED = Define Variable ('SM_COST_SCALED', SM_COST / 100)
   CAR_TT_SCALED = Define Variable ('CAR_TT_SCALED', CAR_TT / 100)
   CAR_CO_SCALED = DefineVariable('CAR_CO_SCALED', CAR_CO / 100)
59
60
   V1 = ASC\_TRAIN + \setminus
61
        B_TIME_RND * TRAIN_TT_SCALED + \
62
        B_COST * TRAIN_COST_SCALED
63
   V2 = ASC\_SM + \setminus
        B_TIME_RND * SM_TT_SCALED + \
65
        B_COST * SM_COST_SCALED
66
   V3 = ASC\_CAR + \setminus
67
        B_TIME_RND * CAR_TT_SCALED + \setminus
68
        B_COST * CAR_CO_SCALED
69
70
   # Associate utility functions with the numbering of alternatives
71
   V = \{1: V1,
72
        2: V2,
73
        3: V3}
74
75
   # Associate the availability conditions with the alternatives
```

```
77
   CAR_AV_SP = Define Variable ('CAR_AV_SP', CAR_AV * (
   TRAIN_AV_SP = DefineVariable('TRAIN_AV_SP', TRAIN_AV * ( SP
   0)
80
   av = \{1: TRAIN\_AV\_SP,
81
          2: SM_AV,
82
          3: CAR_AV_SP}
83
   # The choice model is a logit, with availability conditions
85
   integrand = bioLogit (V, av, CHOICE)
86
   prob = Integrate(integrand*density, 'omega')
87
   1 = \log(\text{prob})
88
89
   # Defines an itertor on the data
90
   rowIterator('obsIter')
91
   # Define the likelihood function for the estimation
93
   BIOGEME_OBJECT.ESTIMATE = Sum(1, 'obsIter')
94
95
   \# All observations verifying the following expression will not be
96
   # considered for estimation
97
   # The modeler here has developed the model only for work trips.
98
   # Observations such that the dependent variable CHOICE is 0
99
   \# are also removed.
   exclude = ((PURPOSE != 1) * (
                                      PURPOSE
                                                != 3 ) + \
101
               (CHOICE = 0) > 0
102
103
   BIOGEME_OBJECT.EXCLUDE = exclude
104
105
   # Statistics
106
107
   nullLoglikelihood(av,'obsIter')
108
   choiceSet = [1,2,3]
109
   cteLoglikelihood(choiceSet,CHOICE, 'obsIter')
110
   availability Statistics (av, 'obsIter')
111
112
   BIOGEME\_OBJECT.PARAMETERS[\ 'RandomDistribution'] \ = \ "MLHS"
113
114
   BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm'] = "BIO"
115
   BIOGEME_OBJECT.FORMULAS['Train utility'] = V1
   BIOGEME\_OBJECT.FORMULAS['Swissmetro utility'] = V2
   BIOGEME\_OBJECT.FORMULAS['Car utility'] = V3
```

A.9 12estimationMonteCarlo.py

```
# File: 12estimationMonteCarlo.py
  # Author: Michel Bierlaire, EPFL
  # Date: Thu Jul 30 18:33:34 2015
6
  7
   from biogeme import *
   from headers import *
10
   from loglikelihood import *
11
   from statistics import *
12
13
  #Parameters to be estimated
14
  # Arguments:
15
         Name for report. Typically, the same as the variable
  #
       1
16
  #
          Starting\ value
17
       3 Lower bound
  #
18
  #
          Upper bound
19
       4
          0: estimate the parameter, 1: keep it fixed
20
21
  ASC\_CAR = Beta(`ASC\_CAR', 0, -10, 10, 0)
22
  ASC\_TRAIN = Beta('ASC\_TRAIN', 0, -10, 10, 0)
23
  ASC\_SM = Beta(,ASC\_SM,0,-10,10,1)
  B_{\text{TIME}} = \text{Beta}('B_{\text{TIME}}', 0, -10, 10, 0)
  B_{\text{TIME\_S}} = \text{Beta}(,B_{\text{TIME\_S}}, 9, -10, 10, 0)
  B_{-}COST = Beta('B_{-}COST', 0, -10, 10, 0)
27
  # Define a random parameter, normally distirbuted, designed to be used
29
  # for Monte-Carlo simulation
30
  B_TIME_RND = B_TIME + B_TIME_S * bioDraws('B_TIME_RND')
31
  # Utility functions
33
34
  #If the person has a GA (season ticket) her incremental cost is actually 0
35
   #rather than the cost value gathered from the
  \# network data.
37
  SM\_COST = SM\_CO
                      * ( GA == 0
38
                           * ( GA == 0
  TRAIN\_COST = TRAIN\_CO
40
  # For numerical reasons, it is good practice to scale the data to
41
  # that the values of the parameters are around 1.0.
42
  # A previous estimation with the unscaled data has generated
  \# parameters around -0.01 for both cost and time. Therefore, time and
  # cost are multipled my 0.01.
45
46
  TRAIN_TT_SCALED = DefineVariable('TRAIN_TT_SCALED', TRAIN_TT / 100.0)
  TRAIN_COST_SCALED = DefineVariable ('TRAIN_COST_SCALED', TRAIN_COST / 100)
48
  SM_TT_SCALED = DefineVariable('SM_TT_SCALED', SM_TT / 100.0)
49
  SM_COST_SCALED = Define Variable ('SM_COST_SCALED', SM_COST / 100)
50
  CAR\_TT\_SCALED = DefineVariable(`CAR\_TT\_SCALED', CAR\_TT / 100)
```

```
CAR_CO_SCALED = Define Variable ('CAR_CO_SCALED', CAR_CO / 100)
53
   V1 = ASC\_TRAIN + B\_TIME\_RND * TRAIN\_TT\_SCALED + B\_COST * TRAIN\_COST\_SCALED
   V2 = ASC\_SM + B\_TIME\_RND * SM\_TT\_SCALED + B\_COST * SM\_COST\_SCALED
55
  V3 = ASC\_CAR + B\_TIME\_RND * CAR\_TT\_SCALED + B\_COST * CAR\_CO\_SCALED
56
57
  # Associate utility functions with the numbering of alternatives
58
  V = \{1: V1,
59
        2: V2,
60
        3: V3}
61
62
  # Associate the availability conditions with the alternatives
63
64
  CAR_AV_SP = DefineVariable('CAR_AV_SP', CAR_AV * ( SP
  TRAIN\_AV\_SP = DefineVariable('TRAIN\_AV\_SP', TRAIN\_AV * (SP')
66
     ))
67
   av = \{1: TRAIN\_AV\_SP,
68
         2: SM_AV,
69
         3: CAR_AV_SP
70
71
  # The choice model is a logit, with availability conditions
72
  prob = bioLogit (V, av, CHOICE)
73
   l = mixedloglikelihood(prob)
74
75
   # Defines an itertor on the data
76
   rowIterator('obsIter')
77
78
  # Define the likelihood function for the estimation
79
  BIOGEME_OBJECT.ESTIMATE = Sum(1, 'obsIter')
80
81
   # All observations verifying the following expression will not be
82
   # considered for estimation
   # The modeler here has developed the model only for work trips.
84
   # Observations such that the dependent variable CHOICE is 0 are also removed.
85
   exclude = ((PURPOSE != 1) * (PURPOSE != 3) + (CHOICE == 0)) > 0
87
  BIOGEME_OBJECT.EXCLUDE = exclude
88
89
   # Statistics
90
91
   nullLoglikelihood(av,'obsIter')
92
   choiceSet = [1,2,3]
93
   cteLoglikelihood (choiceSet,CHOICE, 'obsIter')
   availabilityStatistics(av,'obsIter')
95
96
  BIOGEME_OBJECT.PARAMETERS[', NbrOfDraws', ] = "2000"
97
  BIOGEME_OBJECT.PARAMETERS['RandomDistribution'] = "MLHS"
```

```
BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm'] = "BIO"
BIOGEME_OBJECT.DRAWS = { 'B_TIME_RND': 'NORMAL' }
BIOGEME_OBJECT.FORMULAS['Train utility'] = V1
BIOGEME_OBJECT.FORMULAS['Swissmetro utility'] = V2
BIOGEME_OBJECT.FORMULAS['Car utility'] = V3
```

References