TST_model_testing

May 24, 2023

Testing a pre-trained TST Model Various TST models for crystallization (i.e., CrystalGPT) were pretrained and fine-tuned for certain tasks. This file imports the model of choice, and tests them for a new unseen crystal system to 1. Visualize attention scores 2. Compare time-series forecasting results

```
[]: import numpy as np
  import torch.nn as nn
  from torch.utils.data import Dataset, DataLoader, random_split
  from sklearn.metrics import r2_score
  import pandas as pd
  import math, random
  import torch, os
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  print(f'Current Device: {device}')

from matplotlib import pyplot as plt
  import seaborn as sns
```

Current Device: cpu

```
[]:  # Choice of Model model_name_1 = 'crysGPT_double_12_fine_tuned'
```

Importing Test Dataset This dataset will be used to test and compare the different ML models

```
[]: window_size, prediction_horizon = 12, 6
    chunk_size = int(prediction_horizon/2)
    input_features, output_features = 6, 4
    batch_size = 16 # batch_size for fine-tuning much be less as it is ensures more_
    iterations during training
```

A new and unseen crystal system is imported that has data for \sim 7000 operating conditions. Each of the operating conditions are arbitary with varying temperature, concentration, seeding, and other characteristis, thereby encompasing a very large variable space.

```
[]: size_single_dataset = 145 #Max lenght of an individual dataset / 7000 of such⊔

→ are generated.
```

```
df_one = pd.read_csv('LSTM_controller_training_6000_dataset.csv')
     df_two = pd.read_csv('ML_model_testing_7000_dataset.csv')
     # Concatenate the two data frames vertically
     df_combined = pd.concat([df_one, df_two], axis=0, ignore_index=True)
     print(f'Shape of ORIGINAL dataset: {df_combined.shape}')
     ###remove error and setpoint columns
     df_combined = df_combined.iloc[:,0:-2]
     df combined = df combined[['jacket temp', ]]
     concentration','temperature','crystal_size','suspension_density','time']]
     # Rename columns
     df_combined = df_combined.rename(columns={'jacket_temp': 'T_jacket',__
      concentration': 'conc.', 'temperature': 'temp.', 'crystal size': 'SMD'})
     # df_combined =df_combined.round(1)
     df_combined.head()
     # df_combined=df_combined.iloc[0:data_limiter, :]
     print(f'Shape of CUT_DOWN dataset: {df_combined.shape}')
    Shape of ORIGINAL dataset: (725000, 11)
    Shape of CUT_DOWN dataset: (725000, 6)
[]: # Load normalization parameters
     norm_params = np.load('norm_params.npy', allow_pickle=True).item()
     mean = norm params['mean']
     std = norm_params['std']
     df_combined_norm = (df_combined - mean) / std
     print(f'Mean values: {mean}')
     print(f'Std. values: {std}')
     #Print normalized df
     df combined norm.head()
    Mean values: T_jacket
                                           28.609945
    conc.
                              0.157804
    temp.
                             28.899302
                            198.910277
    suspension_density
                              0.669336
    time
                          43200.000000
    dtype: float64
    Std. values: T_jacket
                                           7.783112
    conc.
                              0.169761
    temp.
                              7.611891
    SMD
                             59.447470
```

```
suspension_density
                             0.190218
                          25114.140310
    time
    dtype: float64
                                               suspension_density
[]:
       T_{jacket}
                    conc.
                              temp.
                                          SMD
                                                                       time
    0 0.680969 2.816002 0.658272 -1.019855
                                                        -2.861645 -1.720146
    1 0.680969 2.789907 0.658272 -0.992893
                                                        -2.838355 -1.696256
    2 0.680969 2.763459 0.658272 -0.966188
                                                        -2.814751 -1.672365
    3 0.680969 2.736676 0.658272 -0.939748
                                                        -2.790848 -1.648474
    4 0.680969 2.709574 0.658272 -0.913582
                                                        -2.766660 -1.624583
```

We can select a random operating condition from all the 7000 ones. Also, for time-series forecasting, a window size of W is required to provide as the input tensor, and get predictions over the next H time-steps.

```
[]: data_set_selector = random.randrange(0, len(df_combined_norm),_
      ⇔size_single_dataset)
     sample_df = df_combined_norm.iloc[data_set_selector:

data_set_selector+size_single_dataset,:]

     # Generating input tensor of a certain window size (W)
     def df_to_X_y(df_train, input_window_size, output_window_size):
         df_train_labels = df_train.iloc[:,1:]
         df as np x = df train.to numpy()
         df_as_np_y = df_train_labels.to_numpy()
         X = \Gamma
         y = []
         flag = True
         for i in range(len(df_as_np_x)-2*output_window_size):
             if ((i+window_size+output_window_size-1)%size_single_dataset ==0):
                 flag =False
             elif (i%size_single_dataset ==0):
                 flag=True
             if (flag):
                 row = [a for a in df_as_np_x[i:i+input_window_size]]
                 X.append(row)
                 label = [b for b in df_as_np_y[i+output_window_size:

int(i+output_window_size+output_window_size)]]
                 y.append(label)
         y = np.array(y)
```

```
y_outputs = y[:,:,0:-1]
   time_stamp = y[:,:,-1]
   return np.array(X), np.array(y_outputs), np.array(time_stamp)
X_enc_combined, y_combined, time_array = df_to_X_y(sample_df,__
 →window_size,prediction_horizon)
X_dec_combined = np.concatenate((X_enc_combined[:,-chunk_size:,1:-1],_
 #Predicting Y = [Temp, Conc, Size] using X= [Temp, Conc, Size, Time]
print('X_enc Shape: ', X_enc_combined.shape)
print('X_dec Shape: ', X_dec_combined.shape)
print('y Shape: ', y_combined.shape)
print(f'time array Shape: {time_array.shape}')
# %%
##### Converting to TORCH TENSOR #########
X_enc_combined = torch.tensor(X_enc_combined, dtype=torch.float32)
X_dec_combined= torch.tensor(X_dec_combined,dtype=torch.float32)
y_combined = torch.tensor(y_combined,dtype=torch.float32)
```

X_enc Shape: (128, 12, 6)
X_dec Shape: (128, 6, 4)
y Shape: (128, 6, 4)
time array Shape: (128, 6)

Importing the Base TST Model Although we have chosen a certain TST model at the top, it is in form of a .pt file, which only has the learned parameters of the model. Thus, the structure of the model (in pytorch form) is required to be fed in the code.

Note: I do have a separate file (TST.py), which does this, and keeps it modular. However, since I am combining the code for Tesla, I have included it here for easy access.

```
def __init__(self, input_size, d_model):
        super(EmbeddingLayer, self).__init__()
        self.fc = nn.Linear(input_size, d_model)
   def forward(self, x):
       x = self.fc(x)
        return x
# %% [markdown]
# Positional Encoding (PE): Sinusoidal
# %%
class PositionalEncoding(nn.Module): #@save
    """Positional encoding."""
   def __init__(self, d_model, dropout, max_len=1000):
       super().__init__()
        self.dropout = nn.Dropout(dropout)
        # Create a long enough P
        self.P = torch.zeros((1, max_len, d_model))
       position = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1)
       div_term = torch.pow(10000, torch.arange(0, d_model, 2, dtype=torch.
 →float32) / d_model)
       X = position/div_term
        # X = torch.arange(max_len, dtype=torch.float32).reshape(
              -1, 1) / torch.pow(10000, torch.arange(
              0, d_model, 2, dtype=torch.float32) / d_model)
        self.P[:, :, 0::2] = torch.sin(X)
        self.P[:, :, 1::2] = torch.cos(X)
   def forward(self, X):
       X = X + self.P[:, :X.shape[1], :].to(X.device)
       return self.dropout(X)
# %% [markdown]
# Single Encoder Block
# %%
class TransformerEncoderBlock(nn.Module): #@save
    """The Transformer encoder block."""
   def __init__(self, d_model, nhead, dim_feedforward, dropout):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead,__
 →dropout=dropout,batch_first=True)
        self.feedforward = nn.Sequential(
```

```
nn.Linear(d_model, dim_feedforward),
            nn.ReLU(),
            nn.Dropout(p=dropout),
            nn.Linear(dim_feedforward, d_model),
            nn.Dropout(p=dropout)
        )
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(p=dropout)
        self.dropout2 = nn.Dropout(p=dropout)
   def forward(self, x):
       residual = x
       x = self.norm1(x)
       x, self_attn_weights = self.self_attn(x, x, x)
       x = self.dropout1(x)
       x = residual + x
       residual = x
       x = self.norm2(x)
       x = self.feedforward(x)
       x = self.dropout2(x)
       x = residual + x
       return x, self_attn_weights
# %% [markdown]
# Multiple Encoder Block
# %%
class Multiple_Encoders(nn.Module):
   def __init__(self, input_size, output_size, d_model, nhead,__
 dim_feedforward, num_encoder_blocks, w, h, dropout):
        super(Multiple_Encoders, self).__init__()
        self.w = w
        self.h = h
        self.encoder_blocks = nn.ModuleList([TransformerEncoderBlock(d_model,__
 nhead, dim_feedforward,dropout=dropout) for _ in range(num_encoder_blocks)])
        self.encoder_linear = EmbeddingLayer(input_size, d_model)
        self.pos_encoder = PositionalEncoding(d_model,max_len = self.
 →w,dropout=dropout)
```

```
def forward(self, x):
        self_attn_weights_array = [] # List to store cross-attention weights
        x = self.encoder_linear(x) # Pass through the encoder linear layer
        x = self.pos_encoder(x) # Add positional encoding
        for block in self.encoder_blocks:
            x, self_attn_weights = block(x) # Pass through the encoder_
 \hookrightarrow TSTBlock modules
            self_attn_weights_array.append(self_attn_weights) # Save the_
 ⇔cross-attention weights
        return x, self_attn_weights_array
# %% [markdown]
# Single Decoder Block
# %%
class TransformerDecoderBlock(nn.Module): #@save
    """The Transformer Decoder Block."""
    def __init__(self, d_model, nhead, dim_feedforward, dropout):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead,__

¬dropout=dropout,batch_first=True)
        self.cross attn = nn.MultiheadAttention(d model, nhead,

dropout=dropout,batch_first=True)

        self.feedforward = nn.Sequential(
            nn.Linear(d_model, dim_feedforward),
            nn.ReLU(),
            nn.Dropout(p=dropout),
            nn.Linear(dim_feedforward, d_model),
            nn.Dropout(p=dropout)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(p=dropout)
        self.dropout2 = nn.Dropout(p=dropout)
        self.dropout3 = nn.Dropout(p=dropout)
    def forward(self, x, memory):
        residual = x
        x = self.norm1(x)
        x, _ = self.self_attn(x, x, x)
        x = self.dropout1(x)
        x = residual + x
```

```
residual = x
        x = self.norm2(x)
        x, cross_attn_weights = self.cross_attn(x, memory, memory)
        x = self.dropout2(x)
        x = residual + x
        residual = x
        x = self.norm3(x)
        x = self.feedforward(x)
        x = self.dropout3(x)
        x = residual + x
        return x, cross_attn_weights
# %% [markdown]
# Multiple Decoder Blocks
# %%
class Multiple_Decoders(nn.Module):
    def __init__(self, input_size, output_size, d_model, nhead,__
 dim_feedforward, num_decoder_blocks, w, h, chunk_size, dropout):
        super(Multiple_Decoders, self).__init__()
        self.w = w
        self.h = h
        self.decoder blocks = nn.ModuleList([TransformerDecoderBlock(d model,__
 →nhead, dim_feedforward,dropout=dropout) for _ in range(num_decoder_blocks)])
        # self.cross_attn_weights = [] # List to store cross-attention weights
        self.decoder_linear = EmbeddingLayer(output_size, d_model)
        self.pos_decoder = PositionalEncoding(d_model,max_len =__
 →2*chunk_size,dropout=dropout)
    def forward(self, x, memory):
        cross_attn_weights_array = [] # List to store cross-attention weights
        x = self.decoder_linear(x) # Pass through the encoder linear layer
        x = self.pos_decoder(x) # Add positional encoding
        for block in self.decoder_blocks:
            x, cross_attn_weights = block(x, memory) # Pass through the_
 \hookrightarrow decoder TSTBlock modules
            cross_attn_weights_array.append(cross_attn_weights) # Save the_
 ⇔cross-attention weights
        return x,cross_attn_weights_array
```

```
# %% [markdown]
# Combining all Elements for TST Model
# %%
class TimeSeriesTransformer(nn.Module):
   def __init__(self, input_size, output_size, d_model=d_model, nhead=nhead,_
 →dim_feedforward=dim_FFN,
                 num_encoder_blocks=num_encoder_blocks,u
 →num_decoder_blocks=num_decoder_blocks,
                 dropout=dropout,
                 window size=window size,
 prediction_horizon=prediction_horizon, chunk_size = chunk_size):
        super(TimeSeriesTransformer, self).__init__()
        # Set the model parameters
        self.d_model = d_model
        self.nhead = nhead
       self.num_encoder_blocks = num_encoder_blocks
       self.num_decoder_blocks = num_decoder_blocks
        self.window_size = window_size
        self.prediction_horizon = prediction_horizon
        # Encoder blocks
        self.multiple_encoder_blocks =_
 -Multiple_Encoders(input_size=input_features,output_size=output_features,
 →d_model=d_model,nhead=nhead,dim_feedforward=dim_FFN
                                   ,num_encoder_blocks=num_encoder_blocks,
                                   w=window_size,h=prediction_horizon,
                                   dropout=dropout)
        # Decoder blocks
        self.multiple_decoder_blocks =_u
 →Multiple_Decoders(input_size=input_features, output_size=output_features,
 ⇒d_model=d_model,nhead=nhead,dim_feedforward=dim_FFN,
 →num_decoder_blocks=num_decoder_blocks,
                                            w=window_size,h=prediction_horizon,_
 ⇔chunk_size=chunk_size,
                                            dropout=dropout)
        # self.cross_attention_weights =
```

```
# Output layer
self.output_FFN = EmbeddingLayer(d_model,output_features)

def forward(self, x_enc, x_dec):
    # Encode the input time series data
    encoder_output, self_attn_weights_array = self.

omultiple_encoder_blocks(x_enc)

# Decode the input time series data
decoder_output, cross_attn_weights_array = self.
omultiple_decoder_blocks(x_dec, encoder_output[:, -(2*chunk_size):, :])
# cross_attention_weights = self.multiple_decoder_blocks.
ocross_attn_weights

# Pass the decoded output through the output layer
final_output = self.output_FFN(decoder_output)

# Return the predicted values
return final_output, self_attn_weights_array, cross_attn_weights_array
```

```
[]: model_1 = torch.load(f'{model_name_1}.pt', map_location=device)
model_1.to(device)
print(f'Current Model: {model_name_1}.pt')

######### FIND NUMBER OF PARAMETERS #########
def count_parameters(model_1):
    return sum(p.numel() for p in model_1.parameters() if p.requires_grad)

num_params = int(count_parameters(model_1)/1000)
print(f"Model 1: Number of parameters: {num_params}K")
```

```
Current Model: crysGPT_double_12_fine_tuned.pt Model 1: Number of parameters: 10547K
```

PCA Scores Lets first simple plot heatmaps of different features to understand their relative importance

```
[]: import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

# Reshape the tensor to [batch * w, features]
X = X_enc_combined
X_reshaped = X.reshape(-1, X.shape[-1])
```


Visualizing Attention Scores We can visualize self-attention scores (in encoders), and cross-attention scores (in decoders).

Encoder Self Attention

Randomly choosing an operating condition from the dextrose fine tuning dataset, and visualizing the attention scores for it.

```
[]: with torch.no grad():
                      y_preds, self_attn_weights_array, cross_attn_weights_array =_
               →model 1(X enc combined, X dec combined)
            num_blocks = len(self_attn_weights_array)
            # Create a single figure with subplots
            # Generate an array of alpha values
            alpha_array = np.linspace(1, 1, num_blocks)
            batch_index = np.round(np.linspace(0, len(X_enc_combined) - 1, 5)).astype(int).
              →tolist()
            # batch_index = random.randint(0, len(X_enc_combined) - 1
            print(f"Time Index: {np.round(np.array(batch_index)*10/60)} h.")
            for batch in batch_index:
                      # Iterate over the attention weights and plot them
                      fig, axes = plt.subplots(1, num_blocks, figsize=(num_blocks * 5,10),dpi = __
                      fig.set label(f'Time Step: {batch}')
                      for i, weights in enumerate(self_attn_weights_array):
                                # Select the attention weights for the specified batch
                                weights = weights[batch, :, :]
                                # Select the corresponding subplot
                                ax = axes[i]
                                # Plot the attention weights with the specified alpha value
                                img = ax.imshow(weights.squeeze(0).detach().numpy(), cmap='cool',_u
                \# ax.set\_title('Self-Attention Weights (Decoder Block {})'.format(i + Lange of the content of 
               →1))
                                ax.set_xlabel('Query')
                                ax.set_ylabel('Key')
                                # Set xlim and ylim to match weights.shape[-1]
                                xlim = weights.shape[-1]
                                ylim = weights.shape[-1]
                                ax.set_xlim(1, xlim-1)
                                ax.set_ylim(1, ylim-1)
```

```
# Set xticks and yticks to display exact integers
ax.set_xticks(np.arange(1, xlim, 1))
ax.set_yticks(np.arange(1, ylim, 1))

# Add a color bar to the subplot
cbar = fig.colorbar(img, ax=ax, shrink=0.3)
cbar.ax.set_ylabel('Attention Score')

plt.tight_layout()
plt.show()
```

Time Index: [0. 5. 11. 16. 21.] h.

Decoder Cross Attention

Randomly choosing an operating condition from the dextrose fine tuning dataset, and visualizing the attention scores for it.

```
[]: with torch.no_grad():
         y_preds, self_attn_weights_array, cross_attn_weights_array =__
      →model_1(X_enc_combined, X_dec_combined)
     num_blocks = len(cross_attn_weights_array)
     # Create a single figure with subplots
     # Generate an array of alpha values
     alpha_array = np.linspace(1, 1, num_blocks)
     batch_index = np.round(np.linspace(0, len(X_enc_combined) - 1, 5)).astype(int).
      →tolist()
     # batch_index = random.randint(0, len(X_enc_combined) - 1
     print(f"Time Index: {np.round(np.array(batch_index)*10/60)} h.")
     for batch in batch_index:
         # Iterate over the attention weights and plot them
         fig, axes = plt.subplots(1, num_blocks, figsize=(num_blocks * 5,10),dpi = __
      →300)
         fig.set_label(f'Time Step: {batch}')
         for i, weights in enumerate(cross_attn_weights_array):
             # Select the attention weights for the specified batch
             weights = weights[batch, :, :]
             # Select the corresponding subplot
             ax = axes[i]
             # Plot the attention weights with the specified alpha value
             img = ax.imshow(weights.squeeze(0).detach().numpy(), cmap='cividis',__
      ⇔interpolation='nearest', alpha=alpha_array[i])
             # ax.set_title('Cross-Attention Weights (Decoder Block {})'.format(i +
      →1))
             ax.set_xlabel('Query')
             ax.set_ylabel('Key')
             # Set xlim and ylim to match weights.shape[-1]
             xlim = weights.shape[-1]
             ylim = weights.shape[-1]
             ax.set_xlim(1, xlim-1)
             ax.set_ylim(1, ylim-1)
             # Set xticks and yticks to display exact integers
             ax.set_xticks(np.arange(0, xlim, 1))
             ax.set_yticks(np.arange(0, ylim, 1))
```

```
# Add a color bar to the subplot
cbar = fig.colorbar(img, ax=ax, shrink=0.3)
cbar.ax.set_ylabel('Attention Score')

plt.tight_layout()
plt.show()
```

Time Index: [0. 5. 11. 16. 21.] h.

Plotting Model Predictions This section performs model validation (against experimental dataset) for key model predictions (i.e., temperature, concentration, crystal size, and others)

```
[]: # Plotting and error calculations
from sklearn.metrics import mean_squared_error as MSE
```

```
def single data_set_predictor(sample_model, norm_params, X_enc,X_dec,__
 →y_actuals, time_array, start=0, end=100):
   mean = np.array(norm_params['mean'])
   std = np.array(norm_params['std'])
    # Convert input data to PyTorch tensors
   # X_enc_tensor = torch.from_numpy(X_enc[start:end,:,:]).float()
    # X_dec_tensor = torch.from_numpy(X_dec[start:end,:,:]).float()
   # y_tensor = torch.from_numpy(y_actuals[start:end,:,:]).float()
   time= time_array[start:end,-1]
    # Generate predictions for y using model
   with torch.no_grad():
       y_preds, _, = sample_model(X_enc,X_dec)
        y_preds = y_preds.detach().numpy()
   df_preds=pd.DataFrame()
   df_preds['pred_concentration'] = y_preds[:,-1,0]
   df_preds['pred_temperature'] = y_preds[:,-1,1]
   df_preds['pred_size'] = y_preds[:,-1,2]
   df_preds['pred_suspension_density'] = y_preds[:,-1,3]
   df_preds['time'] = time
   df_actuals = pd.DataFrame()
   df_actuals['concentration'] = y_actuals[:,-1,0]
   df_actuals['temperature'] = y_actuals[:,-1,1]
   df_actuals['size'] = y_actuals[:,-1,2]
   df_actuals['suspension_density'] = y_actuals[:,-1,3]
   df_actuals['time'] = time
   df_actuals = df_actuals*std[1:]+ mean[1:]
   df_preds = df_preds * std[1:] + mean[1:]
   return df_preds, df_actuals
```

```
[]: model_choices = [model_1]  # List of model choices
model_names = ['crystalGPT']  # List of model names

colors = ['blue', 'magenta', 'blue', 'green']  # List of colors for plotting
linestyles = ['-', '--', '-.', ':']  # List of line styles for plotting
linewidths = [2, 3, 2, 1]  # List of line widths for plotting
dpi = 100  # Dots per inch for the figure

data_set = {}  # Dictionary to store the data sets
for name in np.arange(len(model_names)):
```

```
# Predict using the specified model and obtain the data set
    data_set[str(model_names[name])], df_actuals =_
    single_data_set_predictor(model_choices[name],

    norm_params,

    \( \time_\text{X_enc_combined}, \)

    \( \time_\text{X_dec_combined}, \)

    \( \time_\text{array}, 0, \text{len(y_combined)}) \)

# Augment with actual data
data_set['Actual'] = df_actuals # Add the actual data set to the dictionary
```

0.0.1 Suspension Density Plot

```
[]: ### Plotting on the same graph for comparison ######
    from matplotlib.pyplot import figure
    goodness_of_fit = {}
    plt.figure(dpi=dpi, figsize=(5,5))
    plt.scatter(df_actuals['time'][::5]/3600, df_actuals['suspension_density'][::
     for name in np.arange(len(model_names)):
        temp_df = data_set[model_names[name]]
        goodness_of_fit[model_names[name]] = ___
      ⇔r2_score(df_actuals['suspension_density'], ___
      →temp_df['pred_suspension_density'])
        label_name = model_names[name] + ': ' +__
     ⇔str(round(r2 score(df actuals['suspension density'],
     →temp_df['pred_suspension_density']),3))
        plt.plot(temp_df['time']/3600,__
     →temp_df['pred_suspension_density'],label=label_name,
                color = colors[name],
                linewidth = linewidths[name],
                linestyle= linestyles[name])
    plt.xlabel('time (h)')
    plt.ylabel('Suspension Density (kg/kg)')
    x_label = np.arange(0,25,step = 4)
    plt.xlim([0,24])
    plt.xticks(x_label)
```

```
plt.ylim([0,1])
plt.legend(loc = 'upper right')
plt.show()
```


0.0.2 Temperature Curve

```
for name in np.arange(len(model_names)):
    temp_df = data_set[model_names[name]]
    goodness_of_fit[model_names[name]] = r2_score(df_actuals['temperature'],_
 →temp_df['pred_temperature'])
    label_name = model_names[name] + ': ' +__
 ⇒str(round(r2_score(df_actuals['temperature'],
 →temp_df['pred_temperature']),3))
    plt.plot(temp_df['time']/3600,__
 otemp_df['pred_temperature'],label=label_name,color = colors[name],
             linewidth = linewidths[name],
             linestyle= linestyles[name])
plt.xlabel('time (h)', fontsize=16)
plt.ylabel('Temperature ($^{\circ}$C)', fontsize=16)
x_label = np.arange(0, 25, step=4)
plt.xlim([0, 24])
# plt.ylim([25, 45])
plt.xticks(x_label, fontsize=16)
plt.yticks(fontsize=16)
plt.legend(loc='lower left')
plt.show()
```


0.0.3 Concentration Curve

```
[]: ### Plotting on the same graph for comparison ######
    from matplotlib.pyplot import figure
    # figure(figsize=(4,4), dpi=300)
    goodness_of_fit = {}
    plt.figure(dpi=dpi, figsize=(5,5))
    plt.scatter(df_actuals['time'][::5]/3600, df_actuals['concentration'][::
     for name in np.arange(len(model_names)):
        temp_df = data_set[model_names[name]]
        goodness_of_fit[model_names[name]] = r2_score(df_actuals['concentration'],__
     otemp_df['pred_concentration'])
        label_name = model_names[name] + ': ' +__
      ⇒str(round(r2_score(df_actuals['concentration'],
      →temp_df['pred_concentration']),3))
        plt.plot(temp_df['time']/3600,__
     stemp_df['pred_concentration'],label=label_name,color = colors[name],
                 linewidth = linewidths[name],
                 linestyle= linestyles[name])
    plt.xlabel('time (h)')
    plt.ylabel('Solute Conc. (kg/kg)')
    x_{label} = np.arange(0,25,step = 4)
    plt.xlim([0,24])
    plt.ylim([0,1])
    plt.xticks(x_label)
    plt.legend(loc = 'upper right')
    plt.show()
```


0.0.4 Crystal Size Evolution

