Probability & Statistics

Problem set №6. Week starting April 1st

- 1. Suppose that random variable X has a geometric distribution $(X \sim \text{Geom}(p))$. Prove that $M_X(t)$ is of the form $M_X(t) = \frac{pe^t}{1 qe^t}$.
- 2. Let $X \sim \text{Geom}(p)$. Using $M_X(t)$ find E(X) and V(X).
- 3. Let $X \sim N(\mu, \sigma^2)$. That means $f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$, $x \in \mathbb{R}$. Prove (using definition $M_X(t) = E(e^{tX})$) that $M_X(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$.
- 4. Random variables X_1, \ldots, X_n are independent and $X_k \sim N(\mu, \sigma^2)$. Find MGF $M_{\bar{X}}(t)$ of random variable \bar{X} (\bar{X} is the mean of X_1, \ldots, X_n). Try to identify the distribution of \bar{X} .
 - [Ex. 5–6] Assuming that if $X \sim \text{Gamma}(b,p)$ then MGF is the form $M_X(t) = (1-\frac{t}{b})^{-p}$ give answers in form Gamma with (correct) parameters. If necessary you may use, without proof, that $\Gamma(1/2) = \sqrt{\pi}$.
- 5. Let $X \sim N(\mu, \sigma^2)$. Find distribution of $Y = \left(\frac{X \mu}{\sigma}\right)^2$.
- 6. Random variables X_1, \ldots, X_n are independent and $X_k \sim N(\mu, \sigma^2)$. Find distribution of random variable $Z_n = \sum_{k=1}^n \left(\frac{X_k \mu}{\sigma}\right)^2$.
 - [Ex. 7–8] What is the distribution of random variable $Z = \sum_{k=1}^{n} X_k$? We assume that random variables X_k are independent. Try find the solution using "MGFs".
- 7. $X_k \sim \text{Gamma}(b, p_k), k = 1, \dots, n.$
- 8. $X_k \sim B(m_k, p), k = 1, ..., n.$
- 9. 2-dimensional random variable (X,Y) has density of the form $f(x,y) = \frac{15}{2}x^2y$ (on triangle with vertices (0,0),(2,0),(0,1)). Find density function of T=X/Y.
- 10. Assume that profit of the firm is the random variable U. MGF of the profit is given by $M_U(t) = \frac{2}{2-3t}$. Find:
 - (a) expected value of the profit,
 - (b) variance of the profit,
 - (c) find MGF of netto profit when the flat tax ratio equals 0.9 (90%).
- 11. MGF of random variable X equals $M_X(t)$. Random variable Y is some function of r.vs with distributions like X. What we can say about Y (assumptions, distribution of initial random variables) if:
 - (a) $M_Y(t) = M_X(2t) \cdot M_X(4t)$,
 - (b) $M_Y(t) = e^{2t} M_X(t)$,
 - (c) $M_Y(t) = 4M_X(t)$.

Witold Karczewski