Machine Learning and Forecasting

SEMINAR IN CRIMINOLOGY, RESEARCH AND ANALYSIS— CRIM 7301
WEEK 11, 11/3/16
ANDREW WHEELER

Class Overview

- Different goals prediction vs inference
- Overview of different algorithms
 - Regression, e.g. logistic or linear
 - Random forest
 - Boosting and ensemble methods
- Evaluating predictions
 - Hold out sample and cross validation
 - Different cost functions
 - False negatives vs False positives
 - ROC Curve
 - Calibration
- Clinical vs actuarial decision making
- Potential Disparity due to prediction

Prediction vs Inference

$$\hat{y} = f(x_1, x_2, x_3)$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

Machine learning *only* cares about how good a prediction \hat{y} is.

Inference only cares about whether β are unbiased.

Different Algorithms

- Regression is still pretty standard for many problems:
- Logistic to predict classes

$$\hat{p} = \text{Logistic}(X_k \beta_k)$$

Linear to predict continuous outputs

$$\hat{y} = X_k \beta_k$$

• Can use generalized linear to predict whatever type of outcome, may not give better predictions than linear though....

Different Algorithms

Random Forest

- Generates a bootstrapped sample
- Creates a decision tree
- Repeats many times
- The end prediction is the modal category

Generalized Boosted Models

- a) Estimate base model
- b) Calculate residuals
- c) Train new model on residuals
- d) Updated model based on base model (a) and new model (c)
- e) Repeat many times

Different Algorithms

Other methods

- SVM [support vector machine] very similar to logistic regression in practice (n < p) [includes non-linear basis functions]
- K-nearest neighbors
- Neural networks very similar to many different logistic regressions, and predict intermediate latent classes [Deep Learning], can predict many different classes

How to choose each technique:

- Additive and linear regression will probably be best (for noisy data this is often true)
- Highly non-linear and/or many interactions, random forests can work well
- If you want a non-linear model (e.g. survival), boosted regressions can work well

Hold Out sample, Cross-validation

 Estimate model on one sample, test the predictions on a new sample

Different cost functions

- For continuous inputs, typically try to minimize $(y \hat{y})^2$, also see Brier Score for probabilities
- For categorical inputs, try to minimize false positives and false negatives
- Can give unequal weight though to over-predictions, or try to minimize false negatives

	Predicted Negative	Predicted Positive
True Negative	Correct Negative	False Positive
True Positive	False Negative	Correct Positive

- False negative rate =
 False Negatives / [False negative + Correct Positive]
- False positive rate =
 False Positive / [Correct negative + False Positive]

Cut-Off at predicted value of 0.5

	Predicted Negative	Predicted Positive
True Negative	1,560	556
True Positive	653	759

$$FNR = 653 / (653 + 759) = 0.46$$

$$FPR = 556 / (556 + 1560) = 0.26$$

Cut-Off at predicted value of 0.2

	Predicted Negative	Predicted Positive
True Negative	357	1,759
True Positive	63	1,349

$$FNR = 63 / (63 + 1349) = 0.04$$

$$FPR = 1759 / (1759 + 357) = 0.83$$

- ROC Curve, receiver operating characteristic
 - X axis is the false positive rate (sometimes labelled as 1 specificity)
 - Y axis is the true positive rate (sometimes labelled as sensitivity)

- Area Under the Curve (AUC)
 - Can be used for model selection
 - Random classifier (taking into account baseline prevalence) has AUC of 0.5

Calibration

 If the model predicts an outcome 5% of the time, does it happen 5% of the time, etc.

Clinical vs Actuarial Decision Making

- Simple actuarial models are always better than human opinions
- The robust beauty of linear regression models, can swap out different variables and still get very similar predictions
- The past is the best predictor of the future
- Static vs dynamic indicators
- Can combine the two, see Tetlock's *Superforecasting* or structured clinical decision making

Potential Disparity

- Many of the machine learning models are black boxes
 - Plausible deniability or ignorance?
- Should you be allowed to include different factors? Gender, Age, Race?
- Even if you don't include race factors, biases can be carried via other mechanisms
 - Race can be proxied by other factors, such as where you live
 - Biases in one part of the criminal justice system are carried forward to others
 - The training data can only predict past instances

Homework & Next Weeks Class

Lab Assignment

Predict recidivism using logistic regression, random forests, or generalized boosted models. Data taken from ProPublica series on racial bias in machine learning models. Code in R or SPSS (SPSS just calls R programs!). Stata has no machine learning capabilities.

Evaluate predictions using a hold out sample and ROC curves.

For Next Week

Come prepared to work on projects, get feedback & help if you need it.