NASA TECHNICAL MEMORANDUM

N73-24033 NASA TM X-2697

CASE FILE COPY

OVERALL AND BLADE-ELEMENT PERFORMANCE
OF A MULTIPLE-CIRCULAR-ARC BLADED
TRANSONIC COMPRESSOR ROTOR WITH
TIP SPEED OF 1375 FEET PER SECOND

by George Kovich and Lonnie Reid Lewis Research Center Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON D. C. . MAY 1973

		•		
1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog	No.
NASA TM X-2697	455 51 51 51 51 51 51 51 51 51 51 51 51 5	PERFORMANCE	5. Report Date	
 Title and Subtitle OVERALL AND BI OF A MULTIPLE-CIRCULAR- 	ADE-ELEMENT ARC BLADED T	RANSONIC	May 1973	
COMPRESSOR ROTOR WITH T	TIP SPEED OF 13	75 FEET PER	6. Performing Organia	ration Code
7. Author(s)			8. Performing Organiz	ation Report No.
George Kovich and Lonnie Reid	keiroza dámaás	7 3059	E-7155	
***************************************	Later water com.		10. Work Unit No.	
9. Performing Organization Name and Address			501-24	
Lewis Research Center			11. Contract or Grant	No.
National Aeronautics and Space	Administration			
Cleveland, Ohio 44135			13. Type of Report ar	nd Period Covered
2. Sponsoring Agency Name and Address			Technical Me	emorandum
National Aeronautics and Space Washington, D.C. 20546	Administration		14. Sponsoring Agency	Code
5. Supplementary Notes		- <u></u>		
6. Abstract				
The design and experimental pe	orformance of a S	00_inch_diameter m	ultinle-circular	-arc bladed
axial-flow transonic compresso				
were made. At design speed the				
64.0 pounds per second. At th				
1.79 and 1.205, respectively.	-	-		
weight flows and total-pressure				
measured stall margin was 20				· ·
measured staff margin was 20	percent at design	weight flow and sp	ceu.	
		•		
			•	
7. Key Words (Suggested by Author(s))				
Compressor		18. Distribution Statement		
Axial flow		18. Distribution Statement Unclassified -		
Blade profile	·			
Blade profile	20. Security Classif. (o	Unclassified -		22. Price*

OVERALL AND BLADE-ELEMENT PERFORMANCE OF A MULTIPLE-CIRCULAR-ARC BLADED TRANSONIC COMPRESSOR ROTOR WITH TIP SPEED OF 1375 FEET PER SECOND

by George Kovich and Lonnie Reid

Lewis Research Center

SUMMARY

A 20-inch-diameter multiple-circular-arc bladed axial-flow transonic compressor rotor with a design tip speed of 1375 feet per second was tested. Radial surveys of the flow conditions at the blade inlet and outlet were made. The flow and performance parameters were calculated at the blade leading and trailing edges at 11 radial positions. The radial surveys were made over the stable operating flow range at equivalent rotative speeds from 50 to 100 percent of design speed.

At the near-design weight flow of 65.6 pounds per second (design weight flow, 65.3 lbm/sec or 41.6 (lbm/sec)/ft² of annulus area), the experimental overall efficiency was 0.878. Total-pressure and total-temperature ratios at this equivalent weight flow were 1.715 and 1.190, and the design values were 1.650 and 1.186, respectively.

Experimental peak efficiency at design speed was 0.882 at the equivalent weight flow of 64.0 pounds per second. Total-pressure and total-temperature ratios at equivalent weight flow corresponding to peak efficiency were 1.790 and 1.205, respectively.

The stall margin at design speed was 8 percent based on weight flows and totalpressure ratios at experimental peak efficiency and near stall. The measured stall margin was 20 percent at design weight flow and speed.

Losses were lower than design over the blade span except behind the blade vibration damper.

Minimum loss incidence angles at design speed were within 1.0° of the design incidence angles of zero for all blade elements.

INTRODUCTION

The Lewis Research Center of the National Aeronautics and Space Administration is engaged in a research program on axial-flow fans and compressors for advanced air-

breathing engines. The program is directed primarily toward developing the technology to reduce the size and weight of fans and compressors while maintaining a high level of performance.

As part of this program experimental studies are being conducted to improve blade shapes for operating in the transonic flow regime. The basic objective of the study is to optimize the blade shape such that, for a given blade loading and inlet relative Mach number, the total loss is minimized. This can be accomplished by minimizing the shock loss and the shock - boundary-layer interactions through proper selection of blade profiles.

Three transonic compressor rotors have been designed and tested to evaluate the effect of blade profile on efficiency and flow range. All three rotors had the same overall design values of pressure ratio, weight flow, and blade speed. The flow paths were the same, and the rotors were designed for the same solidity and aspect ratio. The performance for two of these rotors is reported in references 1 and 2.

The design blade shape for all three rotors used the multiple-circular-arc profiles over a portion of the blade span. The multiple-circular-arc blade profile was used to minimize the suction surface Mach number and therefore the shock loss, by minimizing the camber over the forward portion of the blade where the flow is supersonic. The rotor of reference 1 was designed for multiple-circular-arc blade sections over the outer 32 percent of the blade span only and double-circular-arc sections over the remainder. The multiple-circular-arc blades sections were confined to the outer 32 percent of the span because of a resriction in the blade definition program, which was that the maximum thickness and the transition point of the two arcs be located at a common point on the blade. This restriction did not apply in the blade design of the remaining two rotors used in this investigation.

The rotor in reference 2 has tandem blades with multiple-circular-arc sections over 86-percent of the span from the rotor tip; this includes all span locations with supersonic-inlet relative Mach numbers. The objective of this design was to use the multiple-circular-blade shape to minimize the shock loss and to use the tandem blade concept to minimize the shock - boundary-layer interactions by allowing a new boundary layer to start on the suction surface just downstream of the normal shock at the blade entrance.

The purpose of this report is to present the design and experimental results for the third transonic compressor rotor for this investigation. This rotor also has multiple-circular-blade sections over 86 percent of the span from the rotor tip. The suction-surface camber on the forward portions of the blade is identical to that for the tandem rotor in reference 2. This blade was designed to minimize the shock loss through the use of multiple-circular-arc blade profiles and also to minimize the subsonic diffusion losses by making the throat area in the blade passage just sufficient to pass the design mass flow.

Both overall and blade-element performance data are presented over the stable operating range for 50 to 100 percent of design speed. Surveys of the flow conditions were taken at 11 radial positions. The tests were conducted in the single-stage compressor test facility at Lewis.

AERODYNAMIC DESIGN

Three computer programs were used in the design of this compressor rotor: the streamline analysis program, the blade geometry program, and the blade coordinate program. These three computer programs are described in detail in references 3 and 4, and only a brief description of each is presented in this report.

The streamline analysis program was used to calculate the flow-field parameters at several axial locations, including planes approximating the blade leading and trailing edges of the rotor. The weight flow, rotative speed, flow-path geometry, and radial distributions of total pressure and temperature are inputs to this program. The program accounts for both streamline curvature and entropy gradients; boundary-layer blockage factors are also included.

The distributions of velocity vector, total pressure, and total temperature calculated in the streamline analysis program are used in the blade geometry program to compute blade geometry parameters. The blade-element total loss is calculated within the program. It is based on a calculated shock loss (as related to the selected blade shape) and a profile loss. The profile losses used for this rotor are based on loss-diffusion factor correlations that include the data presented in reference 5.

The blade geometry parameters are used in the blade coordinate program (ref. 4) to compute blade elements on conical surfaces approximating the stream surfaces passing through the blade. The blade elements are then stacked on a line passing through their centers of gravity. The computed Cartesian blade coordinates are used directly in fabrication.

The overall performance parameters, the blade-element performance parameters, and the blade geometry compiled from the three design programs are listed in tables I to III. The flow path profile is shown in figure 1. The rotor, designated as rotor 6, was designed for a radially uniform pressure ratio of 1.65 at a weight flow of 65.3 pounds per second (41.6 (lbm/sec)/ft² of annulus area). The design tip speed was 1375 feet per second. The rotor has 48 blades with an aspect ratio of 2.8 and a tip solidity of 1.315.

The symbols used in this report are defined in appendix A. The equations used for calculating the overall blade-element performance parameters are presented in appendix B. All definitions along with units presented in the tables are shown in appendix C.

APPARATUS AND PROCEDURE

Compressor Test Facility

The compressor rotor was tested in a single-stage compressor facility (described in detail in ref. 2). A schematic diagram of the facility is shown in figure 2. Atmospheric air enters the test facility at an inlet located on the roof of the building; it flows through the flow measuring orifice and into the plenum chamber upstream of the test rotor. The air then passes through the experimental compressor rotor into the collector and is exhausted to the atmosphere.

Test Rotor

A photograph of rotor 6 is shown in figure 3. Each rotor blade has a vibration damper located at about 45 percent span from the outlet rotor tip. The maximum thickness of the damper was 0.075 inch. The nonrotating radial tip clearance was a nominal 0.020 inch at ambient conditions.

Instrumentation

The compressor weight flow was determined from measurements on a calibrated thin-plate orifice that was 15.3 inches in diameter. The orifice temperature was determined from an average of two chromel-alumel thermocouples.

Radial surveys of the flow were made upstream and downstream of the rotor. Photographs of the survey probes are shown in figure 4. Total pressure, total temperature, and flow angle were measured with the combination probe (fig. 4(a)), and the static pressure was measured with an 8°, C-shaped wedge probe (fig. 4(b)). Each probe was positioned with a null-balancing, stream-directional, sensitive control system that automatically alined the probe to the direction of flow. The probes were angularly alined in an air tunnel. Two combination probes and two wedge static probes were used at each of the measuring stations. The probe thermocouple material was iron constantan.

Inner and outer wall static-pressure taps were located at the same axial stations as the survey probes. The circumferential locations of both types of survey probes along with inner and outer wall static-pressure taps are shown in figure 5. All pressures were obtained with calibrated strain-gage transducers.

An electronic speed counter, in conjunction with a magnetic pickup, was used to measure rotative speed (in rpm).

The estimated errors of the data, based on inherent accuracies of the instrumentation and recording system, are as follows:

Flow rate, lbm/sec	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	±	. 0. 5
Rotative speed, rpm																	•				•							±30
Flow angle, deg															•		•											±1
Temperature, OR																												±1
Rotor inlet total pressure, psi .																•	•										±0	. 02
Rotor outlet total pressure, psi							•				•						•										±0	. 15
Rotor inlet static pressure, psi																											±Ο	0.05
Rotor outlet static pressure, psi																											±0	. 10

Test Procedure

The stage survey data were taken over a range of weight flows from maximum flow to the near-stall conditions at six rotative speeds from 50 to 100 percent of design speed (design speed, 16 000 rpm). Radial surveys were taken at five weight flows at each speed. At each selected flow the radial distributions of flow conditions were surveyed at measuring stations located approximately 1 inch upstream of the blade leading edge and 0.7 inch downstream of the blade trailing edge (see fig. 5). Measurements of total pressure, total temperature, and flow angle were recorded at streamlines corresponding to 5, 10, 30, 40, 42.5, 45, 47.5, 50, 70, 90, and 95 percent of the passage height from the outer wall at the trailing edge of the rotor blade. Static pressure measurements were recorded only at the 30-, 40-, 42.5-, 45-, 47.5-, 50-, 70-, and 90-percent streamlines.

At each of the six rotative speeds the back pressure on the rotor was increased by closing the sleeve valve in the collector until a stalled condition was detected by a sudden drop in rotor-outlet total pressure. This pressure was measured by a probe located at midpassage and was recorded on an X-Y plotter. Stall was corroborated by large increases in the measured blade stresses on the rotor along with a sudden increase in noise level. The near stall data were taken within 1 pound per second of the recorded stall condition.

Calculation Procedure

Measured total temperatures and total pressures were corrected for Mach number and streamline slope. These corrections were based on instrument probe calibrations

given in reference 6. The stream static pressure was corrected for Mach number and streamline slope based on an average calibration for the type of probe used.

Because of the size of the C-shaped static-pressure wedges, it was impossible to obtain static-pressure measurements at 5-, 10-, and 95-percent span. The static pressure at 95-percent span was obtained by assuming a linear variation in static pressure between the values at the inner wall and the probe measurement at 90-percent span. A similar variation was assumed between the static-pressure measurements at the outer wall and the 30-percent span to obtain the static pressure at 5- and 10-percent span. To obtain the overall performance, the radial values of total temperature were mass averaged, and the values of total pressure were energy averaged. At each measuring station the integrated weight flow was computed based on the radial survey data.

The data, recorded at the measuring stations, have been translated to the blade leading and trailing edges by the method presented in reference 3.

Orifice weight flow, total pressure, static pressures, and temperatures were all corrected to standard day conditions based on the rotor inlet conditions.

RESULTS AND DISCUSSION

The performance results of rotor 6 are presented in two sections entitled Overall Performance and Blade-Element Performance. The data presented in these sections are computer plotted; occasionally, a data point will be omitted because it falls outside the range of the parameter shown in the figure. All plotted data together with some additional performance parameters are presented in tabular form. The overall and the blade-element performance data are presented in tables IV and V. The definitions and units used for the tabular data are presented in appendix C.

Overall Performance

The overall performance curves for the range of speeds tested are shown in figure 6 where the values of total-pressure ratio, total-temperature ratio, and temperature-rise efficiency are plotted as functions of equivalent weight flow. Data are presented from choke to the near-stall condition at six speeds from 50 to 100 percent of design speed. Design-point values are shown as solid symbols.

At the near-design weight flow of 65.6 pounds per second, the experimental overall efficiency was 0.878. The total-pressure and total-temperature ratios of 1.715 and 1.190 compare favorably with the design values of 1.650 and 1.186, respectively. Peak efficiency for the rotor at the design tip speed of 1375 feet per second was 0.882, which occurred at an equivalent weight flow of 64.0 pounds per second. Total-pressure and

total-temperature ratios at the equivalent weight flow corresponding to peak efficiency were 1.790 and 1.205, respectively. The stall margin at design speed was 8 percent, based on the equivalent weight flow and pressure ratio at which experimental peak efficiency occurred as compared with the values just before stall. The measured stall margin was 20 percent at the design weight flow and speed.

The momentum rise efficiencies tabulated in table IV are consistently lower than the adiabatic efficiencies. At design speed the difference is 6 to 7 points. The integrated rotor exit mass flows are also lower than the measured orifice flows by as much as 5 percent. Analysis of the data indicates that inaccuracy in the measurement of the rotor exit flow angle is the most probable cause of the deviations in both momentum rise efficiency and integrated rotor exit mass flow. A change of 3° to 4° toward the axial direction in exit absolute flow angle would result in a more reasonable agreement of the values of these parameters with the calculated values of adiabatic efficiency and measured orifice mass flow, respectively. The deviation angle is the only blade-element parameter significantly affected by the measurement of the rotor exit absolute flow angle. The blade-element loss coefficient is based on measured local total temperatures and pressures that are not affected by the small change in flow direction relative to the measuring probe. The effect of a 3° to 4° change in exit absolute flow angle on the calculation of the diffusion factor is also negligible.

Blade-Element Performance

Radial distributions. - The radial distributions of selected flow and performance parameters at design speed are shown in figure 7. The data shown represent the flow conditions at near stall, peak efficiency, and choke. The design values are shown by solid symbols.

The pressure ratios at the measured peak efficiency weight flow were greater than the design values over the entire blade span with the largest differences occurring from the tip to the 40-percent span. The temperature rise efficiency at all weight flows at 100 percent of design speed was greater than design except in the regions at the damper and rotor hub.

Experimental deviation angles were less than the design values except at the tip and the region of the damper. These angles were within 2^{0} of design value except at the rotor hub. However, these values are directly affected by the questionable measurement of rotor exit absolute flow angle previously discussed.

The total loss parameter distribution shows the losses to be less than design except in the damper region. The blade loading, as indicated by the diffusion factor, exceeded the design values over the entire blade span. Design losses for this rotor were overestimated.

Variations with incidence angle. - The variations of selected blade-element performance parameters with incidence angle are presented in figure 8. The data are presented for 60, 80, and 100 percent of design speed at blade elements located at 5, 10, 30, 50, 70, 90, and 95 percent of blade span as measured from the rotor tip. Design values are shown by solid symbols. These blade-element performance curves are presented primarily for future reference, to be compared with results for other blade forms. Only a few brief observations are made in this section.

The blades were designed for a zero incidence angle at the blade suction surface. Measured suction-surface incidence angles corresponding to minimum losses were within 1.0° of the design value for all blade elements. Minimum loss occurs at slightly negative incidence angles over most of the blade span; however, no well-defined minimums were established. At all elements except the 50-percent blade span in the region of the damper, the measured losses were less than the design values at design incidence.

SUMMARY OF RESULTS

This report presents the aerodynamic design and both the overall and blade-element performance of a transonic compressor rotor having a blade shape formed of multiple-circular-arc sections over 86 percent of the blade span from the rotor tip; the remainder of the span was formed of double-circular-arc blade sections. The rotor has a design weight flow of 65.3 pounds per second (41.6 (lbm/sec)/ft² of annulus area) at a blade tip speed of 1375 feet per second. Radial surveys of the flow conditions at the blade inlet and outlet were made over the stable operating flow range at equivalent rotating speeds from 50 to 100 percent of design speed. Flow and performance parameters were calculated across a number of selected blade elements.

- 1. At a near design weight flow of 65.6 pounds per second, the experimental overall efficiency was 0.878. The experimental total pressure and total temperature ratios of 1.715 and 1.190 compare favorably with the design values of 1.650 and 1.205, respectively.
- 2. Peak efficiency for the rotor at the design tip speed of 1375 feet per second was 0.882 and occurred at an equivalent weight flow of 64.0 pounds per second. The total-pressure and total-temperature ratios at the peak efficiency equivalent weight flow was 1.790 and 1.205.
- 3. Stall margin at design speed was 8 percent, based on weight flows and total-pressure ratios at experimental peak efficiency and near stall. The measured stall margin was 20 percent at design weight flow and speed.
- 4. The measured total loss parameter distribution for this rotor showed the loss to be lower than the design values except for the region at the damper.

5. At design speed the suction surface incidence angle corresponding to minimum loss was within 1.0° of the design incidence angle of zero.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 13, 1972,
501-24.

APPENDIX A

SYMBOLS

- A_{an} annulus area at rotor leading edge, ft²
- A_f frontal area at rotor leading edge, ft²
- a distance from blade leading edge to maximum camber point, in.
- C_n specific heat at constant pressure, 0.24 (Btu/lbm)/ 0R
- c chord length, in.
- D diffusion factor
- g acceleration of gravity, 32.17 ft/sec²
- i_{mc} mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
- iss suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
- J mechanical equivalent of heat, 778. 16 ft-lbf/Btu
- N rotative speed, rpm
- P total pressure, psia
- p static pressure, psia
- r radius, in.
- SM stall margin, percent
- T total temperature, OR
- U wheel speed, ft/sec
- V air velocity, ft/sec
- W weight flow, lbm/sec
- z axial distance referenced from rotor blade hub leading edge, in.
- α_{c} cone angle, deg
- $\alpha_{_{\mathbf{S}}}$ streamline slope, deg
- β air angle, angle between air velocity and axial direction, deg
- eta_{c}^{\prime} relative meridional air angle based on cone angle, $\arctan\left[\taneta_{m}^{\prime}(\coslpha_{c}/\coslpha_{s})
 ight]$, deg

```
ratio of specific heats (1.40)
γ
        blade setting angle, deg
\gamma_{\mathbf{h}}
        ratio of rotor-inlet total pressure to standard pressure of 14.69 psia
        deviation angle, angle between exit air direction and blade mean camber line at
           trailing edge, deg
        ratio of rotor-inlet total temperature to standard temperature of 518.70 R
θ
        efficiency
        angle between blade mean camber line and meridional plane, deg
\kappa_{\rm mc}
        angle between the blade suction-surface camber line at leading edge and merid-
Kss
           ional plane, deg
        solidity, ratio of chord to spacing
σ
        camber angle, deg
        equivalent camber, deg
\varphi_c
\overline{\omega}
        total-loss coefficient
\overline{\omega}_{p}
        profile-loss coefficient
\overline{\omega}_{s}
        shock-loss coefficient
Subscripts:
        adiabatic (temperature rise)
ad
id
        ideal
LE
        blade leading edge
        meridional direction
m
        momentum
mom
        radial direction
r
        reference
ref
TE
        blade trailing edge
        axial direction
\mathbf{z}
        tangential direction
1
        instrument plane upstream of rotor
2
        instrument plane downstream of rotor
```

Superscript:

relative to rotor

APPENDIX B

EQUATIONS

Performance parameters are defined as follows:

Suction-surface incidence angle -

$$i_{SS} = \left(\beta_{C}^{\dagger}\right)_{LE} - (\kappa_{SS})$$
 (B1)

Mean incidence angle -

$$i_{mc} = (\beta_c')_{T.E} - (\kappa_{mc})_{T.E}$$
 (B2)

Deviation angle -

$$\delta^{O} = \left(\beta_{C}^{\prime}\right)_{TE} - \left(\kappa_{mC}\right)_{TE} \tag{B3}$$

Diffusion factor -

$$D = 1 - \frac{(V')_{TE}}{(V')_{LE}} + \frac{(rV_{\theta})_{TE} - (rV_{\theta})_{LE}}{[(r)_{LE} + (r)_{TE}]\sigma(V')_{LE}}$$
(B4)

Total loss coefficient -

$$\overline{\omega} = \frac{\left(P'_{id}\right)_{TE} - \left(P'\right)_{TE}}{\left(P'\right)_{I,E} - \left(p\right)_{I,E}}$$
(B5)

Profile loss coefficient -

$$\overline{\omega}_{p} = \overline{\omega} - \overline{\omega}_{s}$$
 (B6)

Total loss parameter -

$$\frac{\overline{\omega} \cos \left(\beta_{\mathrm{m}}^{\prime}\right)_{\mathrm{TE}}}{2\sigma} \tag{B7}$$

Profile loss parameter -

$$\frac{(\omega - \omega_{s})\cos(\beta_{m}^{i})_{TE}}{2\sigma}$$
 (B8)

Adiabatic efficiency -

$$\eta_{\text{ad}} = \frac{\left[\frac{(P)_{\text{TE}}}{(P)_{\text{LE}}}\right]^{(\gamma-1)/\gamma} - 1}{\frac{(T)_{\text{TE}}}{(T)_{\text{LE}}} - 1}$$
(B9)

Momentum rise efficiency -

$$\eta_{\text{mom}} = \frac{\left[\frac{(P)_{\text{TE}}}{(P)_{\text{LE}}}\right]^{(\gamma-1)/\gamma} - 1}{\left[\frac{(UV_{\theta})_{\text{TE}} - (UV_{\theta})_{\text{LE}}}{gJC_{\text{p}}T_{\text{LE}}}\right]}$$
(B10)

Equivalent weight flow -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta} \tag{B11}$$

Equivalent rotative speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B12)

Stall margin -

$$SM = \left\{ \frac{\left[\frac{\mathbf{(P)}_{TE}}{\mathbf{(P)}_{LE}}\right]_{stall}}{\left[\frac{\mathbf{(P)}_{TE}}{\mathbf{(P)}_{LE}}\right]_{ref}} \times \frac{\left[\frac{\mathbf{W}\sqrt{\theta}}{\delta}\right]_{ref}}{\left[\frac{\mathbf{W}\sqrt{\theta}}{\delta}\right]_{stall}} - 1\right\} 100$$
(B13)

Weight flow per unit frontal area -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta}$$

$$\mathbf{A_f}$$
(B14)

Weight flow per unit annulus area -

$$\frac{\mathbf{W}\sqrt{\theta}}{\delta}$$

$$\mathbf{A}_{2n}$$
(B15)

Head-rise coefficient -

$$\frac{gJC_{p}T_{LE}}{U_{Tip}^{2}}\left[\left(\frac{P_{TE}}{P_{LE}}\right)^{(\gamma-1)/\gamma}-1\right]$$
(B16)

Flow coefficient -

$$\left(\frac{V_{z}}{U_{Tip}}\right)_{LF} \tag{B17}$$

APPENDIX C

DEFINITIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, in.

AREA RATIO ratio of actual flow area to critical area (where Mach number is 1)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing blade

element, deg

DELTA INC difference between mean camber blade angle and suction-surface

blade angle at leading edge, deg

DEV deviation angle (see eq. (B3)), deg

D-FACT diffusion factor (see eq. (B4))

EFF adiabatic efficiency (see eq. (B9))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction-surface defined by eq. (B1) and mean de-

fined by eq. (B2))

KIC angle between blade mean camber line at leading edge and meridio-

nal plane, deg

KOC angle between blade mean camber line at trailing edge and meridio-

nal plane, deg

KTC angle between blade mean camber line at transition point and merid-

ional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B5) and profile defined by

eq. (B6))

LOSS PARAM loss parameter (total defined by eq. (B7) and profile defined by

eq. (B8))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor outlet

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, psia

PROF profile

RADII radius, in.

REL relative to blade

RI inlet radius (leading edge of blade), in.

RO outlet radius (trailing edge of blade), in.

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, ft/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, ^OR

TI thickness of blade at leading edge, in.

TM thickness of blade at maximum thickness, in.

TO thickness of blade at trailing edge, in.

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber line, deg

VEL velocity, ft/sec

WT FLOW equivalent weight flow, lbm/sec

X-FACTOR ratio of suction-surface camber ahead of assumed shock loca-

tion of a multiple-circular-arc blade section to that of a

double-circular-arc blade section

ZMC axial distance to blade maximum thickness point from inlet, in.

ZOC axial distance to blade trailing edge from inlet, in.

ZTC axial distance to transition point from inlet, in.

REFERENCES

- 1. Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet Per Second. NASA TM X-2484, 1972.
- 2. Lewis, George W., Jr.; and Urasek, Donald C.: Comparison of the Effect of Two Damper Sizes on the Performance of a Low-Solidity Axial-Flow Transonic Compressor Rotor. NASA TM X-2536, 1972.
- 3. Ball, Calvin L.; Janetzke, David C.; and Reid, Lonnie: Performance of 1380-Foot-Per-Second-Tip-Speed Axial-Flow Compressor Rotor with Blade Tip Solidity of 1.5. NASA TM X-2379, 1972. (Rotor 5).
- 4. Crouse, James E.; Janetzke, David C.; and Schwirian, Richard E.: A Computer Program for Composing Compressor Blading from Simulated Circular-Arc Elements on Conical Surfaces. NASA TN D-5437, 1969.
- 5. Johnson, Irving A.; and Bullock, Robert O., eds.: Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, 1965.
- Glawe, George E.; Krause, Lloyd N.; and Dudzinski, Thomas J.: A Small Combination Sensing Probe for Measurement of Temperature, Pressure, and Flow Direction. NASA TN D-4816, 1968.

TABLE I. - DESIGN OVERALL PARAMETERS FOR ROTOR 6

TOTAL PRESSURE RATIO	1.650
TOTAL TEMPERATURE RATIO	1.186
EFFICIENCY	
WT FLOW PER UNIT FRONTAL AREA	30.819
MT FLOW PER UNIT ANNULUS AREA	
HT FLOW	65.261
RPM	000.000
TIP SPFED	375.599

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 6

RP TIP 1 2 3 4 5 6 7 8 9	RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB	RP TIP 1 2 3 4 5 6 7 8 9 10 11 HUB
PERCENT SPAN 0. 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 790.00 95.00	ABS M. 1N 0.636 0.658 0.693 0.693 0.693 0.691 0.661 0.540 0.522	ABS IN 682.8 690.0 704.7 735.6 739.4 739.3 738.7 737.5 707.3 620.8 585.9 567.1	RAD IN 9.852 9.717 9.508 8.635 8.180 8.065 7.943 7.714 6.726 5.592 5.266 5.014
INC1 MEAN 2.6 2.8 3.0 4.2 4.8 4.9 5.1 5.2 5.4 6.5 7.4	OUT 0.655 0.655 0.653 0.652 0.663 0.675 0.678 0.686 0.686 0.728 0.775 0.788	VEL 0UT 784.5 776.5 7771.1 773.9 784.3 787.8 791.6 795.4 799.4 881.9 894.0 907.8	0UT 9.818 9.623 9.429 8.651 8.261 8.164 8.067 7.969 7.872 7.872 7.872 6.315 6.121 5.926
DENCE SS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	REL M 1.430 1.419 1.404 1.324 1.276 1.253 1.253 1.253 1.098 0.923 0.866 0.829	REL IN 1535.7 1522.1 1503.3 1360.6 1347.1 1333.3 1319.2 1304.8 1175.6 997.5 940.1 900.9	ABS IN 0. -0. -0. 0. 0. 0. 0. 0.
7.6 6.7 6.0 5.0 4.9 4.9 4.9 5.5 6.9	ACH NO OUT 0.812 0.826 0.836 0.772 0.763 0.773 0.736 0.637 0.637	VEL 0UT 972.0 982.5 988.5 938.7 897.0 885.7 874.2 863.1 4778.2 729.7 722.3 718.9	BETAM OUT 46.1 43.8 41.7 39.0 39.1 39.2 39.4 39.5 39.6 40.4 41.1 41.3 41.3
D-FACT 0.508 0.485 0.466 0.450 0.458 0.461 0.463 0.464 0.464	MERID M. 1N 0.636 0.658 0.658 0.693 0.693 0.693 0.691 0.661 0.574 0.540	MERI IN 682.8 690.0 704.7 735.6 739.4 739.3 738.7 737.8 736.5 707.3 620.8 585.9 567.1	REL IN 63.6 63.0 62.0 58.1 56.4 56.6 55.0 55.0 51.5
0.619 0.664 0.709 0.814 0.840 0.847 0.851 0.855 0.892 0.937 0.951	ACH NO OUT 0.454 0.472 0.515 0.524 0.525 0.529 0.529 0.554 0.554 0.584 0.592	D VEL OUT 543.9 560.9 575.7 601.4 608.7 611.8 613.8 636.5 664.4 672.0 681.8	BETAM OUT 56.0 55.2 47.3 46.4 45.6 44.7 43.8 35.1 24.4 21.5
LOSS C TOT. 0.343 0.290 0.244 0.153 0.136 0.132 0.130 0.128 0.108 0.079	STREAML II IN -8.64 -7.79 -6.45 -0.71 2.40 3.21 4.04 4.89 5.77 14.10 26.07 29.84 32.84	IN 0. -0. -0. 0. 0. 0.	TCTA 1N 518.7 518.7 518.7 518.7 518.7 518.7 518.7 518.7 518.7 518.7
OEFF PROF 0.235 0.186 0.179 0.072 0.073 0.074 0.074 0.075 0.075	NE SLOPE OUT -6.48 -5.48 -4.29 0.83 3.62 4.35 5.10 6.66 14.04 24.46 27.76 31.19	G VEL 0UT 565.3 537.0 487.1 494.6 498.0 502.1 505.9 509.9 542.6 579.9 589.6 599.4	L TEMP RATIO 1.248 1.232 1.217 1.183 1.182 1.181 1.181 1.181 1.172 1.164 1.162 1.159
LOSS F TOT 0.073 0.061 0.053 0.029 0.029 0.028 0.028 0.028 0.028		IN 1375.6 1356.7 1327.6 1205.6 1142.2 1126.1 1109.9	TCTAL IN 14.69 14.69 14.69 14.69 14.69 14.69 14.69 14.69 14.69 14.69 14.69
PARAM PROF 0.050 0.039 0.031 0.017 0.015 0.016 0.016 0.016 0.016	PEAK SS MACH NO 1.605 1.593 1.578 1.527 1.508 1.504 1.504 1.504 1.496 1.496 1.496 1.288 1.211	1316.5 1207.8 1153.5 1139.9 1126.3 1112.7	PRESS RATIO 1.650 1.650 1.650 1.650 1.650 1.650 1.650 1.650 1.650 1.650

TABLE III. - BLADE GEOMETRY FOR ROTOR 6

	PERCENT	RAD		BLA	DE ANGLE	ES	DELTA
RP	SPAN	RI	R0	KIC	KTC	KOC	INC
TIP	<u>0</u> .	9.852	9.818	61.27	59.53	48.55	2.57
1	5.	9.717	9.623	60.39	58.83	48.51	2.75
2	10.	9.508	9.429	59.08	57.74 53.07	48.33	3.03 4.18
3 4	30. 40.	8.635 8.180	8.650 8.261	54.43 52.27	50.40	45.16 42.35	4.77
5	43.	8.065	8.164	51.75	49.69	41.52	4.91
6	45.	7.949	8.067	51.22	48.96	40.63	5.06
7	48.	7.832	7.969	50.70	48.23	39.71	5.21
8	50.	7.714	7.872	50.19	47.49	38.76	5.35
9	70.	6.726	7.094	46.38	41.40	29.63	6.46
10	90.	5.592	6.315	44.06	36.61	17.09	7.30
11	95.	5.266	6.121	43.89	36.11	13.27	7.42
HUB	100.	5.014	5.926	43.87	35.93	9.32	7.48
00		THICKN			L DIMEN		CONE
RP	17	TM	TO 030	ZMC 0.421	ZTC 0.560	Z0C	ANGLE
TIP 1	0.020 0.020	0.059	0.020	0.432	0.561	0.893 0.922	-2.181 -5.794
2	0.020	0.066	0.020	0.449	0.563	0.951	-4.776
3	0.020	0.083	0.020	0.509	0.551	1.069	0.842
4	0.020	0.092	0.020	0.538	0.535	1.132	4.083
5	0.020	0.094	0.020	0.545	0.530	1.148	4.922
6	0.020	0.096	0.020	0.552	0.524	1.165	5.771
7	0.020	0.099	0.020	0.560	0.518	1.181	6.638
8	0.020	0.101	0.020	0.567	0.512	1.197	7.520
9	0.020	0.120	0.020	0.624	0.445	1.328	15.492
10 11	0.020 0.020	0.142	0.020	0.669 0.676	0.351 0.324	1.438 1.459	26.702
HUB	0.020	0.153	0.020	0.680	0.302	1.477	30.363 31.686
HOD	0.020	055	0.020	0.000	0.302		J1.600
	AERO	SETTING	TOTAL		X		AREA
RP	CHORD			SOLIDITY			
TIP		58.28	12,72	1.308	0.514	5,14	1.083
1	1.745	57.50	11.88	1.350	0.532	5.11	1.075
2	1,744	56.39	10.74	1.378	0.559	5.12	1.063
3 4	1.742	51.62	9.27	1.508	0.672	5.88	1.042
5	1,744	48.84 48.09	9.92 10.23	1.587 1.609	0.730 0.745	6.61 6.83	1.038 1.038
6	1.746	47.31	10.59	1.631	0.760	7.06	1.037
7	1.748	46.52	10.99	1.655	0.775	7.30	1.037
8	1.750	45.71	11.43	1.679	0.790	7.54	1.036
9	1.781	38.55	16.75	1.929	.0.915	9.63	-1.033-
10	1.889	30.54	26.96	2.374	1.000	11.35	1.050
11	1.944	28.55	30.62	2.555	1.000	11,41	1.063
HUB	1.963	26.69	34.54	2.685	1.000	11.35	1.074

TABLE IV. - OVERALL PERFORMANCE FOR ROTOR 6

(a) Percent of design speed, 100

-			Reading number	number		
	961	197	198	199	200	208
ROTOR TOTAL PRESSURE RATIO	1.577	1.715	1.790	1.819	1.826	1.821
ROTOR TOTAL TEMPERATURE RATIO	1.164	1.190	1,205	1.216	1.221	1.218
ROTOR TEMP, RISE EFFICIENCY	0.848	0.878	0.882	0.854	0.851	0.859
ROTOR MOMENTUM RISE EFFICIENCY	0.764	0.806	0.814	0.805	0.792	0.803
ROTOR HEAD RISE COEFFICIENT	0.230	0.275	0.299	0.308	0.310	0.309
FLOW COEFFICIENT	0.437	0.432	0.418	0.397	0.385	0.392
MT FLOW PER UNIT FRONTAL AREA	31.308	30.974	30,238	29.199	28.473	28.231
MT FLOW PER UNIT ANNULUS AREA	42.252	41.801	40.808	39.406	38.426	33.100
MT FLOW AT ORIFICE	66.298	65.590	64.032	∴	•	
HT FLOW AT ROTOR INLET	66.169	•		61.905	60.470	60.171
WT FLOW AT ROTOR OUTLET	62.973	•		57.722	55.655	56.693
RPM	15958.898	15986.408	15979.492	15974.784	15966.192	15959.623
PERCENT OF DESIGN SPEED	99.743	99.915	99.872	99.842	99.789	99.741

(b) Percent of design speed, 90

		X	Reading number		
	203	204	502	206	207
ROTOR TOTAL PRESSURE RATIO	1,458	1.567	1.597	1.621	1,625
TOTAL TEMPER	1.125	1.148	1,155	1.164	1.169
TOR TENP.	606.0	0.924	0.923	0.901	0.879
ROTOR MOMENTUM RISE EFFICIENCY	0.804	0.851	0.844	0.824	0.804
ROTOR HEAD RISE COEFFICIENT	0.234	0.283	0.296	0.303	0.304
FLOW COEFFICIENT	0.448	0.431	0.415	0.383	0.363
3	29.282	28.364	27.506	25.972	24.883
MT FLOW PER UNIT ANNULUS AREA		38.279	37,122	35.051	33.581
RIFICE	62.008	60.064	58.248	54.999	52.692
FLOW AT ROTOR	62.437	60.541	58.777	55,426	53.082
A AT ROTOR (59.816	58.041	55.819	51.866	49.302
_	14314,733	14275.537	14286.732	14351.398	14362.780
PERCENT OF DESIGN SPEED	89.467	89.222	89.292	•	89.767

TABLE IV. - Continued. OVERALL PERFORMANCE FOR ROTOR 6

(c) Percent of design speed, 80

	į	&	Reading number		į
	209	210	211	212	213
ROTOR TOTAL PRESSURE RATIO	1.340	1.425	1,446	1,453	1,450
ROTOR TOTAL TEMPERATURE RATIO	1.090	1.110	1.118	1.125	1.129
TEVP. RISE	0.865	0.966	0.943	0.905	0.868
ROTOR MOMENTUM RISE EFFICIENCY	0.856	0.869	0.852	0.818	0.789
ROTOR HEAD RISE COEFFICIENT	0.226	0.273	0.285	0.289	0.287
FLOW COEFFICIENT	0.448	0.416	0.394	0.364	0.338
T FRONTAL	26.792	25.281	24.215	22.656	21.410
MT FLOW PER UNIT ANNULUS AREA	•	34.118		30.576	28.894
ON AT	56.735	53.534	51.278	47.977	45.337
MT FLOM AT ROTOR INLET	57.196	54.035	51.736	48.296	45.418
FLOW AT ROTOR		52.085	49.363	45.823	43.123
RPM	•	12825.298	12828.898	12818.854	12824.368
PERCENT OF DESIGN SPEED	79.723	80.158	80.181	80.118	80.152

(d) Percent of design speed, 70

			Reading number		
	215	216	217	218	219
ROTOR TOTAL PRESSURE RATIO	1.246	1.287	1.310	1.319	1.323
16.2	1.063	1.075	1,086	1.091	1.096
16.7	1.028	0.993	0.936	0.905	0.866
~	0.892	0.878	0.864	0.832	0.795
ROTOR HEAD RISE COEFFICIENT	0.217	0.249	0.274	0.284	0.282
FLOW COEFFICIENT	0.450		0.382	0.358	0.329
PER UNIT FRONTAL	24.246	22.837	20.906	19,671	18.462
MT FLOW PER UNIT ANNULUS AREA	32.721		28.214	26.548	24.915
MT FLOW AT ORIFICE	_:		44.271	41.656	39.094
AT ROTOR	51,751	. 48.716	44.476	41.822	
WI FLOW AT ROTOR OUTLET	50.534	47.090	43,155	40.309	37.309
MDM MDM	11235.738	11252.563	11100.446	11056.350	•
PERCENT OF DESIGN SPEED	70.223	70.329	69.378	69.102	69.664

TABLE IV. - Concluded. OVERALL PERFORMANCE FOR ROTOR 6

(e) Percent of design speed, 60

		R	Reading number		
	222	223	224	922	222
ROTOR TOTAL PRESSURE RATIO	1.160	1.198	1.212	1.221	1.227
ROTOR TOTAL TEMPERATURE RATIO	1.046	1.058	1.064	1.068	1.074
ROTOR TEMP. RISE EFFICIENCY	0.931	0.917	0.888	0.863	0.811
OR MOMENTUM R	0.905	0.892	0.861	0.832	0.783
ROTOR HEAD RISE COEFFICIENT	0.198	0.242	0.257	0.267	0.274
FLOW COEFFICIENT	0.454	0.407	0.378	0.351	0.315
FLOW PER UNIT FRONTAL	21.335	19.314	18,197	16.997	15.423
FLOW PER UNIT	28.793	26.065	24.558	22.938	20.814
WT FLOW AT ORIFICE	45,180	40.899	38.534	35.992	32.659
8	45,527	41.380	38,769	36.230	32.758
FLOM	44.414	40.092	37,335	34.828	30.914
RPM	9607.661	9616.918	9635.848	9631.016	9633.316
PERCENT OF DESIGN SPEED	60.048	60.106	60.224	60.194	60.208

(f) Percent of design speed, 50

		R	Reading number		
	529	230	122	222	233
ROTOR TOTAL PRESSURE RATIO	1.097	1.107	1.135	1.147	1,157
ROTOR TOTAL TEMPERATURE RATIO		1.031	1.040	1.046	1.051
ROTOR TEMP. RISE EFFICIENCY	0.942	0.937	0.915	0.866	0.826
ROTOR MOMENTUM RISE EFFICIENCY	0	0.908	0.883	0.843	0.790
ROTOR HEAD RISE COEFFICIENT		0.194	0.245	0.267	0.278
FLOW COEFFICIENT	0.471	0.448	0.391	0.357	0.306
MT FLOW PER UNIT FRONTAL AREA	18.544	17.856	15.680	14.327	12.529
MT FLOW PER UNIT ANNULUS AREA	"	24.098	21.161	19.335	16.909
WT FLOW AT ORIFICE		37.813	33.204	30.338	26.531
MT FLOW AT ROTOR INLET		38.164	33,538	30,625	26.755
MT FLOW AT ROTOR OUTLET	38.580	37.022	32.267	29.430	25.420
RPM	79	7988.674	7972.741	7931.008	8024.349
PERCENT OF DESIGN SPEED	49.558	49.929	49.830	49.569	50.152

TABLE V. - BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR ROTOR 6

(a) Percent of design speed, 100; reading number, 196

	(u)	1 01 001	10 01 00	3,3,, 3	, cca, 10	,,	u	,,,,,,	2,0	
RP 1 2 3 4 5 6 7 8 9	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.650 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM 0UT 40.1 38.7 38.4 42.0 42.1 42.7 42.7 42.5 38.6 40.0 44.0	REL IN 63.4 61.5 56.3 55.9 55.4 55.1 54.7 51.5	BETAM OUT 56.3 54.5 49.6 47.9 48.7 49.2 48.4 46.2 35.4 25.1 18.2	TOTAL IN 519.6 519.5 518.6 518.3 519.4 517.3 518.3 518.7 518.4	TEMP RATIO 1.205 1.192 1.169 1.163 1.160 1.159 1.157 1.146 1.153	TOTAL IN 14.38 14.65 14.74 14.74 14.74 14.74 14.74 14.73 14.68 14.61	PRESS RATIO 1.634 1.631 1.608 1.535 1.496 1.468 1.468 1.468 1.573 1.581
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 678.3 719.5 750.7 761.2 761.8 763.9 761.2 761.5 743.8 646.3 589.3	VEL OUT 747.8 763.7 782.1 772.1 749.6 735.3 736.2 759.3 836.7 877.0 916.1	IN 1514.2	VEL OUT 1031.3 1027.7 945.0 855.9 843.7 827.6 815.9 808.1 808.6 742.3 694.2	MER II IN 678.3 719.5 750.7 761.2 761.8 763.9 761.2 761.5 743.8 646.3 589.3	O VEL OUT 571.8 596.3 612.7 574.2 556.6 540.6 541.2 654.2 672.0 659.5	TAN 1N -0.5 -0.6 -0.6 -0.6 -0.7 -0.6 -0.6 -0.6 -0.4	G VEL OUT 481.9 477.3 486.2 516.3 502.1 498.4 499.1 5513.2 521.5 563.5 635.8	WHEEL IN 1353.2 1325.3 1203.6 1139.7 1122.4 1108.5 1090.6 1074.0 935.3 778.2 753.3	1314.3 1205.7 1151.0 1136.2 1125.0 1109.7
RP	ABS M	ACH NO OUT	REL M IN	ACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
12345678910	0.651 0.673 9.705 0.716 0.717 0.718 0.717 0.698 0.600 0.543	0.634 0.652 0.677 0.670 0.649 0.636 0.639 0.660 0.737 0.780 0.814	1.408 1.410 1.333 1.290 1.277 1.266 1.253 1.239 1.122 0.939 0.868	0.874 0.878 0.818 0.742 0.731 0.715 0.708 0.702 0.707 0.660 0.616	0.631 0.673 0.705 0.716 0.717 0.718 0.717 0.698 0.600 0.543	0.485 0.509 0.530 0.498 0.482 0.467 0.470 0.486 0.577 0.597			0.843 0.829 0.816 0.754 0.731 0.708 0.711 0.735 0.880 1.040	1.593 1.566 1.517 1.493 1.487 1.483 1.480 1.474 1.432 1.271 1.206
RP 1 23 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 47.50 50.00 70.00 95.00	MEAN 3.1 2.5 3.6 4.0 4.2 4.3 4.4 5.0 6.1	0.3 -0.5 -0.5 -0.8 -0.9 -0.9 -1.0 -1.5	7.8 6.2 4.4 5.5 7.2 8.5 7.4 5.6 4.5	D-FACT 0.436 0.433 0.448 0.495 0.494 0.501 0.504 0.445 0.391 0.405	0.735 0.783 0.859 0.802 0.761 0.729 0.739 0.768 0.948	LOSS C TOT 0.213 0.167 0.106 0.150 0.179 0.203 0.195 0.178 0.044 0.042	OEFF PROF 0.110 0.071 0.033 0.087 0.119 0.146 0.140 0.126 0.013 -0.000		PROF 0.023 0.015 0.007 0.018 0.024 0.029 0.028 0.026 0.003 -0.000

(b) Percent of design speed, 100; reading number, 197

	(D) I	ercen	t or aes	ign spe	ea, 100); read	ing nu	mber,	197	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.1 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0	BETAM OUT 49.8 45.9 44.0 47.1 47.8 48.3 48.4 46.8 43.2 43.8 47.4	REL IN 63.8 61.7 58.3 56.3 55.9 55.5 52.0 50.5	BETAM OUT 57.2 54.2 47.6 45.7 45.7 45.7 45.2 43.9 35.0 25.1	TOTAL IN 520.0 519.2 518.4 518.8 518.8 518.8 518.8 518.6 518.6	L TEMP RATIO 1.246 1.227 1.199 1.195 1.193 1.191 1.186 1.181 1.165 1.151 1.163	TOTAL IN 14.35 14.66 14.72 14.73 14.73 14.73 14.73 14.73 14.73	PRESS RAT10 1.783 1.792 1.794 1.712 1.666 1.654 1.659 1.666 1.625
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 668.2 714.4 743.6 752.2 750.1 751.2 751.8 733.8 643.9 594.4	VEL 0UT 761.0 780.5 814.2 803.9 796.1 788.0 785.4 791.3 828.0 854.4 903.9	REL 1N 1512.1 1506.6 1416.3 1368.5 1352.3 1340.2 1326.5 1313.2 1191.5 1011.7 945.7	VEL 0UT 906.6 929.7 868.2 786.0 765.3 750.4 740.1 751.8 768.9 640.4	MER II 168.2 714.4 743.6 752.2 750.9 752.1 751.2 751.8 733.8 643.9	D VEL 0UT 491.5 543.3 585.4 546.8 534.5 524.3 521.8 541.7 603.1 616.5 611.9	TAN(IN -0.6 -0.5 -0.7 -0.6 -0.7 -0.6 -0.6 -0.6	G VEL 0UT 581.0 560.4 565.9 589.3 590.0 588.2 587.0 576.8 567.3 591.6 665.3	HHEEL IN 1355.9 1325.9 1204.9 1142.5 1124.0 1092.7 1076.1 938.2 779.8 735.1	1314.9 1207.0 1153.8 1137.8 1125.0 1111.8
RP	ABS M IN	ACH NO OUT	REL M	IACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
1 25 4 5 6 7 8 9 10	0.620 0.667 0.698 0.707 0.706 0.707 0.706 0.706 0.688 0.597 0.548	0.634 0.658 0.698 0.690 0.683 0.676 0.675 0.682 0.722 0.753 0.797	1.404 1.408 1.329 1.286 1.271 1.259 1.246 1.233 1.117 0.938 0.872	0.755 0.783 0.744 0.674 0.657 0.643 0.636 0.648 0.642 0.600	0.620 0.667 0.698 0.707 0.706 0.706 0.706 0.688 0.597	0.409 0.458 0.502 0.469 0.459 0.450 0.448 0.467 0.526 0.543			0.756 0.761 0.787 0.727 0.712 0.697 0.695 0.721 0.822 0.957	1.605 1.570 1.523 1.502 1.496 1.491 1.488 1.482 1.444 1.276
RP 1 2 3	PERCENT SPAN 5.00 10.00	INC MEAN 3.5 2.7 3.9	IDENCE SS 0.7 -0.3 -0.3	B.6 5.9 2.4	D-FACT 0.542 0.517 0.520	0.729 0.799 0.912	LOSS C TOT 0.251 0.178 0.077	0EFF PROF 0.148 0.081 0.003	LOSS F TOT 0.050 0.038 0.017	PARAM PROF 0.030 0.017 0.001

(c) Percent of design speed, 100; reading number, 198

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.1 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 52.8 50.4 47.7 50.4 50.5 51.6 52.3 51.7 46.7 49.5	RELL IN 64.6 62.5 59.2 57.7 57.4 57.1 56.8 56.4 53.4 51.7	BETAM OUT 55.8 53.4 48.0 45.7 45.7 45.3 44.1 34.1 24.3 16.7	TOTAL IN 520.1 519.5 518.7 518.5 518.5 518.5 518.5 518.4 518.4	L TEMP 1.266 1.251 1.214 1.206 1.205 1.204 1.201 1.199 1.177 1.159 1.169	TOTAL IN 14.38 14.66 14.72 14.73 14.73 14.74 14.72 14.73 14.73	PRESS RATIO 1.928 1.913 1.856 1.791 1.765 1.747 1.727 1.733 1.724 1.655 1.734
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 645.2 692.2 716.5 720.6 719.2 718.4 716.0 713.5 696.9 570.0	VEL OUT 797.0 808.6 811.3 808.5 799.7 797.4 793.1 803.7 830.1 844.1	REL IN 1501.7 1497.7 1401.2 1349.7 1335.2 1321.8 1305.8 1290.3 1169.5 994.9 929.7	VEL OUT 855.7 863.5 815.8 739.0 728.4 703.5 683.9 682.0 688.4 623.1 605.3	MERI IN 645.2 692.2 716.5 720.6 719.2 718.4 716.0 713.5 696.9 570.0	D VEL OUT 481.5 515.0 546.3 515.7 508.9 494.9 484.6 484.6 498.2 569.8 567.9 579.8	TAN IN -0.5 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6	G VEL OUT 635.1 623.4 599.7 622.7 616.9 625.3 627.8 630.7 603.7 624.5 679.7	WHEEL IN 1355.5 1327.6 1203.6 1144.5 1108.9 1091.4 1074.4 938.6 780.1 734.1	1316.5 1205.6 1151.9 1138.1 1125.4 1110.5
RP		ACH NO		ACH NO	MERID M	ACH NO			MERID	PEAK SS
	IN	OUT	IN	OUT	1N	OUT				MACH NO
1 2 3 4 5 6 7 8 9 10	0.597 0.645 0.674 0.673 0.672 0.672 0.670 0.665 0.651 0.570 0.525	0.661 0.676 0.690 0.693 0.681 0.677 0.688 0.720 0.740 0.785	IN 1.391 1.395 1.310 1.263 1.249 1.237 1.221 1.206 1.092 0.920 0.856	0.710 0.710 0.722 0.694 0.631 0.622 0.600 0.584 0.584 0.597 0.546 0.531	1N 0.597 0.645 0.674 0.673 0.672 0.670 0.667 0.651 0.570 0.525	OUT 0.399 0.431 0.465 0.440 0.434 0.422 0.414 0.427 0.494 0.498 0.509				

(d) Percent of design speed, 100; reading number, 199

				•	•	•	•	•		
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0	BETAM OUT 55.6 53.3 50.2 52.4 53.5 54.7 55.1 54.5 48.9 49.9 53.0	RELL IN 65.9 64.0 59.3 59.0 58.7 58.4 55.0 53.6	BETAM OUT 56.0 53.2 48.6 46.7 46.2 45.6 44.7 42.9 33.3 22.8 14.4	TOTAL IN 520.3 519.8 518.6 518.2 518.1 518.6 517.8 518.3 518.3	TEMP RATIO 1.286 1.272 1.224 1.212 1.212 1.211 1.209 1.184 1.167 1.174	TOTAL IN 14.41 14.65 14.72 14.73 14.73 14.74 14.73 14.73 14.73	PRESS RATIO 1.970 1.956 1.876 1.807 1.791 1.775 1.761 1.767 1.753 1.684 1.750
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 606.8 646.6 673.1 677.0 677.2 674.9 672.9 670.0 655.7 586.5	VEL 0UT 806.6 821.1 808.3 800.5 800.7 800.2 800.9 833.9 848.5 896.0	REL IN 1484.0 1476.1 1380.6 1326.8 1314.2 1298.3 1292.8 1266.7 1143.9 975.3 913.2	VEL 0UT 814.5 820.1 782.0 711.0 687.1 660.2 645.3 642.3 592.6 556.6	MERI IN 606.8 646.6 673.1 677.0 677.2 674.9 672.9 670.0 655.7 586.5	D VEL 0UT 455.6 490.8 517.6 487.9 476.0 462.0 458.5 470.5 548.0 539.2	TAN IN -0.5 -0.6 -0.6 -0.6 -0.5 -0.5 -0.4	G VEL OUT 665.6 658.4 620.8 634.6 643.9 653.3 656.7 659.2 628.6 649.4 715.5	NHEEL IN 1353.9 1326.4 1204.8 1140.5 1125.7 1108.5 1091.6 1074.4 936.8 778.8 734.3	1315.4 1206.9 1151.8 1139.5 1125.0 1110.7
RP	ABS M	ACH NO OUT	REL M	ACH NO	MERID M	IACH NO OUT				PEAK SS
1 2 3 4 5 6 7 8 9 10	0.559 0.599 0.626 0.630 0.630 0.628 0.626 0.624 0.609 0.541	0.664 0.681 0.685 0.681 0.681 0.682 0.691 0.722 0.742 0.785	1.368 1.367 1.284 1.235 1.222 1.209 1.193 1.179 1.062 0.899 0.838	0.670 0.680 0.662 0.605 0.584 0.562 0.549 0.548 0.567 0.518	0.559 0.599 0.626 0.630 0.630 0.628 0.628 0.624 0.609 0.541	0.375 0.407 0.438 0.415 0.405 0.393 0.390 0.402 0.474 0.477			0.751 0.759 0.769 0.769 0.721 0.703 0.685 0.681 0.702 0.836 0.931	1.638 1.609 1.565 1.546 1.544 1.543 1.539 1.538 1.514 1.303
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 50.00 70.00 90.00 95.00	INC MEAN 5.0 6.4 7.0 7.2 7.4 7.8 8.5 8.8	IDENCE SS 2.8 2.0 2.2 2.3 2.3 2.4 2.4 2.0 1.5 2.1	7.5 4.9 3.4 4.3 4.6 4.9 5.0 4.1 3.5 5.4	D-FACT 0.617 0.606 0.583 0.616 0.630 0.647 0.653 0.650 0.573 0.541 0.555	0.748 0.777 0.880 0.869 0.856 0.844 0.831 0.846 0.946 0.963 0.996	LOSS C TOT 0.268 0.232 0.118 0.130 0.144 0.158 0.173 0.160 0.060 0.049	0.0EFF PROF 0.162 0.132 0.065 0.081 0.097 0.115 0.104 0.023 0.046	LOSS F TOT 0.056 0.050 0.026 0.028 0.031 0.034 0.037 0.035 0.013	PARAM PROF 0.034 0.029 0.009 0.014 0.017 0.021 0.025 0.005 0.009

(e) Percent of design speed, 100; reading number, 200

	(0)	CICCIII	or ucs	igii spc	ou, 100	, redui	ng nui	noci,	200	
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.1 -0.0 -0.1 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 58.3 55.7 51.2 53.8 54.0 55.0 55.9 56.5 51.5 51.3	REL IN 66.7 65.0 61.7 69.9 59.6 59.3 58.9 55.9 53.9	BETAM OUT 57.2 54.0 48.8 47.4 46.7 45.9 44.3 42.8 32.3 19.7	TOTA IN 520.3 519.8 518.6 518.2 518.2 518.2 518.2 518.3 518.3	L TEMP RAT10 1.290 1.279 1.226 1.216 1.213 1.213 1.215 1.214 1.187 1.182	TOTAL IN 14.41 14.64 14.72 14.73 14.73 14.73 14.73 14.73 14.73 14.75 14.75	- PRESS RATIO 1.968 1.955 1.876 1.807 1.779 1.778 1.778 1.778 1.7764 1.724
RP 1 2 3 4 4 5 6 7 8 9 10 11	ABS IN 582.5 648.4 653.1 651.3 649.4 648.6 647.6 634.7 569.0 527.2	VEL 0UT 804.7 819.6 805.9 795.7 793.9 795.2 807.3 815.7 840.4 875.6 894.1	REL 1N 1474.9 1462.4 1367.2 1315.5 1299.7 1283.3 1269.8 1255.5 12131.9 964.7 903.7	VEL 0UT 781.4 786.5 766.5 693.8 681.2 655.6 632.5 613.2 619.1 581.3 561.2	MERI IN 582.5 618.4 653.1 651.3 649.4 647.6 647.6 634.7 569.0 527.2	VEL 0UT 423.2 461.9 504.7 469.9 467.0 455.9 452.6 450.6 523.5 523.5 542.8	TAN IN -0.5 -0.6 -0.5 -0.6 -0.5 -0.6 -0.6 -0.5	G VEL OUT 684.4 677.1 628.3 642.2 642.0 651.6 668.4 680.4 657.5 693.5 710.4	IN 1354.5 1324.7 1203.1 1141.4 1124.2 1106.3	SPEED OUT 1341.4 1313.7 1205.2 1152.7 1138.0 1122.8 1110.2 1097.1 987.9 879.3 852.8
RP	ABS M IN	ACH NO OUT	REL M	ACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
1 254 5 67 8 9 10	0.536 0.571 0.602 0.606 0.605 0.603 0.602 0.601 0.588 0.524 0.483	0.661 0.678 0.681 0.675 0.675 0.676 0.686 0.695 0.727 0.763	1.357 1.351 1.268 1.221 1.207 1.191 1.178 1.165 1.049 0.888 0.829	0.642 0.650 0.648 0.589 0.579 0.557 0.538 0.522 0.535 0.506 0.490	0.536 0.571 0.602 0.606 0.605 0.603 0.602 0.601 0.588 0.524 0.483	0.547 0.582 0.427 0.399 0.597 0.385 0.385 0.453 0.477 0.474			0.726 0.747 0.778 0.719 0.717 0.702 0.698 0.695 0.825 0.962	1.656 1.626 1.580 1.565 1.563 1.559 1.558 1.557 1.537 1.313
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 90.00	INC MEAN 6.4 6.4 7.3 7.9 8.1 8.5 8.7 9.3 9.3	IDENCE SS 3.7 2.9 3.1 3.2 3.3 3.3 2.9 2.9	DEV 8.7 5.7 5.0 5.2 5.3 4.6 4.0 2.5 2.3	D-FACT 0.641 0.630 0.592 0.627 0.630 0.646 0.662 0.675 0.605 0.556	0.735 0.758 0.870 0.855 0.855 0.838 0.833 0.837 0.939 0.924 0.948	LOSS C TOT 0.286 0.257 0.131 0.148 0.153 0.168 0.176 0.174 0.070 0.110	OEFF PROF 0.178 0.157 0.054 0.081 0.089 0.107 0.117 0.031 0.031 0.084	LOSS TOT	PARAM PROF 0.036 0.033 0.012 0.017 0.019 0.025 0.025 0.025 0.027 0.016

(f) Percent of design speed, 100; reading number, 208

	(1)	I CI CC	iit oi ue	saidii at	Jecu, I	00; 166	aumy m	uillibei,	, 200	
RP 1234567891011	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1	BETAM OUT 58.2 54.1 50.3 53.1 55.1 55.8 55.3 49.7 50.7	REL IN 67.0 65.3 62.0 60.6 60.2 60.0 59.6 59.1 56.0 53.9	BETAM OUT 57.1 53.5 48.8 47.6 46.4 44.8 42.9 33.2 23.1 15.0	IN	RATIO 1.292 1.283 1.227 1.214 1.212 1.212 1.213 1.211 1.184 1.162 1.169	TOTAL IN 14.42 14.63 14.73 14.73 14.73 14.73 14.74 14.72 14.72	PRESS RATIO 1.966 1.958 1.875 1.875 1.776 1.775 1.775 1.775 1.759 1.691
RP 1 2 3 4 5 6 7 8 9 10 11	ABS 175.9 611.0 642.0 643.5 643.5 643.5 633.8 641.1 644.3 633.0 568.7 527.0	VEL OUT 805.3 819.3 803.8 791.6 787.7 790.9 801.1 811.2 831.5 843.1 892.2	REL IN 1472.1 1459.8 1365.6 1311.0 1296.0 1279.9 1266.0 1253.7 1130.8 965.8 904.0	VEL OUT 781.1 808.3 779.3 698.7 694.0 655.9 634.0 629.8 642.3 580.1 564.5	MERI IN 575.9 611.0 643.5 643.5 639.8 641.1 644.3 633.0 568.7 527.0	D VEL OUT 424.4 480.9 471.4 473.3 452.7 450.2 461.5 537.3 533.3 545.3	TAN IN -1.5 -1.7 -1.8 -1.8 -1.7 -1.7 -1.7 -1.7 -1.7	G VEL OUT 684.4 663.4 618.9 636.0 629.6 648.5 662.7 667.1 634.5 652.7 706.2	HHEEL IN 1353.2 1324.2 1203.5 1140.4 1123.3 1106.7 1090.0 1073.7 935.4 779.4 733.4	1313.1 1205.6 1151.7 1137.1 1123.2 1109.1
RP	ABS M	ACH NO	REL M	ACH NO	MERID M	ACH NO				PEAK SS MACH NO
1 2 5 4 5 6 7 8 9 10	0.529 0.564 0.595 0.597 0.597 0.593 0.594 0.598 0.523 0.483	0.661 0.676 0.679 0.672 0.669 0.672 0.681 0.692 0.720 0.738 0.783	1.353 1.347 1.266 1.216 1.202 1.186 1.173 1.163 1.048 0.889 0.829	0.641 0.667 0.659 0.593 0.590 0.557 0.539 0.537 0.556 0.508	0.529 0.564 0.505 0.597 0.597 0.594 0.598 0.586 0.523	0.348 0.397 0.434 0.400 0.402 0.385 0.383 0.393 0.465 0.467 0.479			0.737 0.787 0.799 0.733 0.736 0.708 0.702 0.716 0.849 0.938 1.035	1.661 1.632 1.587 1.573 1.569 1.569 1.564 1.559 1.538 1.316
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 90.00 95.00	INC MEAN 6.7 7.5 8.3 8.4 8.7 8.8 9.7	3.9 3.5 3.5 3.5 3.5 3.5 3.6 2.4 2.9	DEV 8.6 5.2 5.7 5.5 5.7 5.0 4.1 5.6	D-FACT 0.641 0.580 0.621 0.617 0.644 0.659 0.6582 0.551 0.540	EFF 0.730 0.749 0.868 0.854 0.849 0.840 0.834 0.843 0.954 0.998	LOSS 0 TOT 0.293 0.270 0.133 0.148 0.154 0.165 0.175 0.166 0.052 0.002	PROF 0.184 0.169 0.055 0.081 0.089 0.103 0.115 0.109 0.013 -0.001	LOSS F TOT 0.059 0.058 0.029 0.032 0.033 0.035 0.037 0.036 0.011 0.000	PROF 0.037 0.036 0.012 0.017 0.019 0.022 0.025 0.024 0.003 -0.000

(g) Percent of design speed, 90; reading number, 203

	٠٠,٠		0. 00	. J. J J	,000, ,	,	mig iiu			
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	00T 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	BETAM OUT 34.5 34.6 36.0 38.5 39.6 39.6 39.3 36.5 42.0	REL IN 63.3 61.4 58.0 55.0 55.1 55.1 54.6 49.9 50.5	BETAM OUT 55.3 53.7 49.2 45.1 45.4 45.2 45.6 43.0 23.9 17.7	TOTAL IN 519.5 519.2 518.8 517.3 517.3 518.7 518.8 518.2 518.7 518.6 518.7	L TEMP RATIO 1.148 1.140 1.128 1.129 1.128 1.127 1.124 1.111 1.110	TOTAL IN 14.39 14.64 14.73 14.73 14.73 14.74 14.74 14.75 14.72	PRESS RATIO 1.509 1.492 1.464 1.446 1.423 1.406 1.393 1.416 1.451 1.460
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 613.1 650.4 678.4 684.2 685.6 685.6 685.9 685.6 671.6 592.2 546.5	VEL OUT 687.4 701.1 711.8 726.6 712.1 706.4 703.1 720.4 819.8 848.2	REL IN 1366.5 1360.0 1280.0 1222.9 1209.3 1199.4 1200.3 1176.9 1080.2 918.9 858.7	VEL 0UT 996.1 975.1 881.3 810.9 793.7 773.9 761.6 755.9 704.3 661.7	MERI IN 613.1 650.4 684.2 683.6 685.6 685.6 671.6 671.6 571.6	0 VEL 0UT 566.6 577.6 571.9 557.0 548.7 541.7 557.3 619.3 643.9	TAN IN -1.1 -1.2 -0.6 -0.6 -0.6 -1.2 -0.9	G VEL OUT 389.1 397.7 418.8 448.1 443.6 445.0 448.3 456.4 457.9 507.3	IN 1220.1 1193.3 1084.2 1012.9 996.9 983.6	1183.4 1086.1
RP	ABS M	ACH NO	REL M	ACH NO	MERID M	ACH NO				PEAK SS
1254567891011	0.566 0.603 0.631 0.638 0.639 0.639 0.639 0.635 0.546	0.594 0.609 0.623 0.637 0.624 0.618 0.615 0.633 0.685 0.734 0.758	1.262 1.261 1.191 1.140 1.128 1.117 1.118 1.097 1.005 0.847 0.788	0.861 0.848 0.772 0.711 0.696 0.682 0.677 0.669 0.672 0.630 0.591	0.566 0.603 0.631 0.638 0.639 0.639 0.639 0.625 0.546 0.502	0.490 0.502 0.504 0.501 0.488 0.480 0.474 0.490 0.550 0.576			0.924 0.888 0.848 0.836 0.815 0.800 0.790 0.813 0.922 1.087	1.454 1.423 1.387 1.354 1.351 1.349 1.371 1.350 1.372 1.135
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00	INC MEAN 3.0 2.4 3.6 3.7 3.8 4.4 4.1 5.0	0.3 -0.6 -0.6 -1.1 -1.1 -1.2 -0.8 -1.3 -1.5	DEV 6.8 5.3 4.1 2.8 3.9 4.6 5.8 4.2 5.2 6.4	D-FACT 0.376 0.389 0.420 0.453 0.459 0.465 0.469 0.470 0.413 0.357	0.841 0.867 0.900 0.858 0.827 0.798 0.783 0.839 1.010 1.039	LOSS C TOT 0.111 0.089 0.068 0.102 0.124 0.146 0.156 0.117 -0.008 -0.039 -0.001	PROF 0.060 0.043 0.035 0.079 0.103 0.126 0.133 0.099 -0.021		PARAM PROF 0.013 0.009 0.008 0.018 0.022 0.027 0.028 0.022 -0.004 -0.007
9 10 11	0.631 0.638 0.639 0.639 0.639 0.625 0.546 0.502 PERCENT SPAN	0.623 0.637 0.624 0.618 0.615 0.633 0.685 0.734 0.758	1.191 1.140 1.128 1.117 1.118 1.097 1.005 0.847 0.788	0.772 0.711 0.696 0.682 0.677 0.669 0.672 0.630 0.591	0.631 0.638 0.639 0.639 0.639 0.625 0.546 0.502	0.504 0.501 0.488 0.480 0.474 0.550 0.576 0.563	TOT	PR0F	0.848 0.836 0.815 0.800 0.790 0.813 0.922 1.087 1.153	

TABLE V. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR ROTOR 6

(h) Percent of design speed, 90; reading number, 204

	(11)	1 61 66	iii Oi ui	saigii a	pecu, 7	0, 100	uning in	indei,	204	
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 3.164 8.067 7.967 7.872 7.872 7.094 6.315	ABS IN -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	BETAM OUT 44.3 41.8 41.4 44.1 44.5 45.6 45.9 44.6 41.3 44.1	RELL IN 63.9 62.4 58.7 57.4 57.1 56.3 55.6 53.0 51.3 52.0	BETAM OUT 53.6 52.5 47.8 45.2 44.5 43.3 42.4 41.7 35.1 23.3 16.4	TOTA IN 520.1 520.5 518.1 518.2 517.9 517.5 518.3 518.3 518.3	L TEMP RATIO 1.187 1.176 1.153 1.148 1.148 1.150 1.148 1.145 1.129 1.129	TOTAL IN 14.42 14.64 14.73 14.72 14.74 14.73 14.73 14.72 14.72	PRESS RAT10 1.653 1.647 1.559 1.562 1.542 1.536 1.535 1.524 1.497
RP 1 23 4 5 6 7 8 9 10 11	ABS IN 536.8 623.8 648.6 655.7 656.4 654.6 654.8 654.0 655.7 561.3	VEL 0UT 711.7 721.2 728.9 730.0 725.5 727.4 729.1 749.5 788.2 824.2	REL IN 1336.2 1345.2 1249.1 1217.8 1207.0 1181.2 1169.3 1158.0 1057.2 898.8 840.0	VEL OUT 258.7 882.2 901.3 743.6 730.3 697.7 686.1 695.0 688.4 616.5 585.3	MERI IN 586.8 623.8 648.6 655.7 656.4 654.6 654.8 654.8 654.7 561.3	D VEL 0UT 509.4 537.2 537.8 523.5 520.4 507.5 506.4 518.9 563.5 566.4 561.6	TAN IN -0.6 -1.1 -0.7 -1.1 -0.6 -0.6 -0.7 -1.1 -0.9	WEL 0UT 496.9 481.1 474.6 507.1 512.0 518.5 522.2 512.1 494.3 603.2	WHEEL 1199.8 1190.7 1066.8 1025.1 1011.9 968.2 955.0 843.6 701.0 660.9	1180.8 1068.6 1035.2
RP	ABS M IN	ACH NO OUT	REL M	ACH NO	MERID M	ACH NO OUT				PEAK SS
1234567891011	0.540 0.576 0.602 0.609 0.610 0.608 0.609 0.539 0.516 0.474	0.605 0.617 0.621 0.635 0.635 0.635 0.635 0.635 0.659 0.699	1.250 1.242 1.159 1.131 1.121 1.097 1.087 1.075 0.980 0.827 0.769	0.731 0.755 0.694 0.647 0.635 0.606 0.597 0.605 0.605 0.547	0.540 0.576 0.602 0.609 0.610 0.608 0.607 0.589 0.516 0.474	0.433 0.460 0.466 0.455 0.453 0.441 0.452 0.495 0.503 0.498			0.868 0.861 0.829 0.793 0.793 0.773 0.793 0.886 1.009	1.446 1.458 1.398 1.398 1.378 1.378 1.379 1.310 1.150
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 50.00 40.00 42.50 45.00 50.00 70.00 90.00	INC MEAN 3.7 5.4 4.3 5.1 5.5 5.2 5.3 6.5 7.1	SS 0.9 0.1 0.3 0.3 -0.0 -0.0 -0.2 0.5	DEV 5.1 4.1 2.7 2.9 3.0 2.7 2.9 5.3 5.8 2.7	D-FACT 0.495 0.474 0.485 0.521 0.528 0.545 0.553 0.474 0.450 0.454	0.827 0.870 0.928 0.930 0.920 0.981 0.884 0.900 0.989 1.021	LOSS C TOT 0.151 0.158 0.058 0.057 0.066 0.102 0.100 0.086 0.010 -0.024 -0.026	PROF 0.105 0.062 0.030 0.030 0.040 0.080 0.079 0.067 0.003 -0.024	LOSS F TOT 0.053 0.024 0.013 0.015 0.023 0.022 0.019 0.002 -0.005	PROF 0.023 0.014 0.007 0.007 0.009 0.018 0.015 0.001 -0.005

TABLE V. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR ROTOR 6

(i) Percent of design speed, 90; reading number, 205

	(1)	1 61 66	iit oi ut	saigii a	pecu, 7	o, reac	ing no	iiiibei,	207	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	BETAM OUT 48.1 46.0 44.5 46.6 47.9 48.1 47.7 44.5 45.9	REL IN 65.0 63.1 60.0 58.6 57.9 57.9 57.6 57.2 53.9 52.1	BETAM OUT 54.9 51.7 48.8 45.7 44.2 44.3 41.9 34.1 22.6 16.1	TOTAL IN 520.5 519.8 518.2 517.8 518.2 517.6 518.5 518.5 518.5	TEMP RATIO 1.197 1.187 1.162 1.154 1.153 1.155 1.154 1.153 1.152 1.132	TOTAL IN 14.46 14.63 14.72 14.73 14.73 14.73 14.72 14.73 14.71 14.70	PRESS RAT10 1.687 1.687 1.626 1.600 1.590 1.579 1.566 1.577 1.540 1.517
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 567.8 596.6 625.1 626.5 625.8 625.4 622.3 623.3 605.3 537.9 498.8	VEL 0UT 712.2 728.1 716.3 723.4 723.8 723.9 722.1 735.1 739.4 774.5 811.1	REL IN 1344.4 1319.3 1251.4 1202.7 1177.8 1177.4 1161.4 1151.9 1027.6 876.4 827.6	VEL OUT 826.0 817.0 775.6 717.9 693.2 678.1 666.0 664.9 637.4 552.6	MER II 1N 567.8 596.6 625.1 626.5 625.8 625.4 622.3 623.3 605.3 537.9	VEL 0UT 475.4 501.3 501.2 497.0 485.1 482.3 495.7 539.4 530.8	TAN IN -0.6 -1.1 -0.5 -1.1 -0.6 -1.7	G VEL 0UT 530.3 523.7 501.6 521.7 526.1 537.4 537.4 543.5 517.8 555.8 613.3	IN 1217.6 1175.0 1083.0 1025.5 997.1	SPEED OUT 1205.8 1165.2 1084.9 1035.7 1009.3 1011.2 996.7 987.4 875.2 780.8 766.7
RP.	ABS M	ACH NO	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS
1 2 3 4 5 6 7 8 9 10	0.521 0.550 0.579 0.580 0.580 0.579 0.576 0.576 0.577 0.494 0.456	0.605 0.621 0.627 0.628 0.627 0.626 0.638 0.648 0.685 0.718	1.235 1.215 1.158 1.113 1.091 1.090 1.076 1.066 0.949 0.804 0.757	0.699 0.696 0.669 0.622 0.601 0.587 0.577 0.577 0.5759 0.517	0.521 0.550 0.579 0.580 0.579 0.579 0.576 0.577 0.559 0.494 0.456	0.402 0.431 0.441 0.434 0.431 0.420 0.418 0.429 0.463 0.477 0.470			0.837 0.848 0.818 0.800 0.794 0.775 0.775 0.7794 0.872 1.003	1.487 1.439 1.431 1.426 1.407 1.427 1.428 1.431 1.298 1.140
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 47.50 50.00 70.00 90.00	MEAN 4.7 4.1 5.6 6.3 6.1 6.6 6.8 7.0	2.0 1.0 1.4 1.5 1.2 1.6 1.6 0.9	DEV 6.3 3.4 3.6 3.7 3.8 3.1 4.3 5.2 2.5	D-FACT 0.531 0.524 0.514 0.551 0.565 0.568 0.565 0.514 0.475	0.816 0.861 0.922 0.933 0.925 0.899 0.887 0.907 0.996 1.021	-0.025	0.0EFF PROF 0.113 0.081 0.032 0.028 0.042 0.063 0.077 0.060 -0.000 -0.025 -0.027	-0.005	PROF 0.024 0.018 0.007 0.006 0.009 0.014 0.017

(j) Percent of design speed, 90; reading number, 206

	۱)،	/ 1 6166	iii oi u	csigii s	pecu, 7	, i ea	uning in	annoci,	200	
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.1 -0.1 -0.1 -0.5 0.5 0.5 0.4	BETAM OUT 52.8 51.6 47.8 49.4 50.6 51.6 52.5 52.4 48.9 48.5 51.3	REL IN 66.9 65.3 62.6 60.3 59.8 59.6 59.3 56.3 54.5	BETAM OUT 55.8 53.4 49.4 46.8 46.2 45.3 43.8 41.7 34.6 23.4 15.5	TOTA IN 521.0 521.0 518.7 518.0 518.6 517.5 517.5 518.0 518.3	L TEMP RATIO 1.213 1.202 1.169 1.162 1.161 1.163 1.162 1.161 1.142 1.129 1.137	TOTAL IN 14.44 14.62 14.73 14.73 14.73 14.74 14.73 14.73 14.73	PRESS RAT10 1.723 1.718 1.646 1.617 1.607 1.600 1.608 1.565 1.537
RP 1 2 3 4 5 6 7 8 9 10	ABS 1N 518.3 549.3 574.4 576.5 575.9 576.3 573.4 570.7 559.1 499.3	VEL 0UT 714.1 728.2 709.5 712.3 712.7 716.8 724.7 737.5 736.1 764.1 805.0	REL IN 1322.3 1312.1 1224.5 1175.9 1163.4 1147.3 1132.0 1116.8 1007.2 857.3 806.5	VEL 0UT 767.9 759.4 733.2 677.1 653.0 612.0 602.4 588.5 552.0 522.6	MER II 1N 518.3 549.3 574.4 576.5 575.9 576.3 573.4 570.7 559.1 467.9	O VEL 0UT 431.8 452.3 476.8 463.7 452.7 445.0 441.6 450.0 484.4 506.5 503.6	TAN IN -0.9 -1.0 -1.1 -1.1 -1.1 5.2 5.2 5.1 4.8 3.9	G YEL 00T 568.7 570.7 525.3 540.6 550.4 561.9 574.7 584.3 554.3 628.0	HHEEL IN 1215-5 1190-6 1080-4 1023-9 1009-7 997-3 981-3 965-1 842-5 700-8 660-3	1180.7 1082.3 1034.0 1022.1
R₽	ABS M IN	ACH NO TUO	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS
1 2 5 4 5 6 7 8 9 10	0.474 0.503 0.529 0.531 0.531 0.531 0.528 0.526 0.514 0.427	0.600 0.616 0.609 0.614 0.615 0.626 0.638 0.642 0.673 0.710	1.208 1.202 1.127 1.085 1.072 1.056 1.043 1.029 0.926 0.784 0.736	0.645 0.642 0.630 0.584 0.564 0.529 0.521 0.514 0.486 0.461	0.474 0.503 0.529 0.531 0.531 0.528 0.526 0.514 0.457 0.427	0.363 0.382 0.409 0.400 0.391 0.384 0.381 0.389 0.423 0.446			0.853 0.823 0.830 0.804 0.786 0.772 0.770 0.788 0.866 1.015	1.528 1.501 1.475 1.476 1.479 1.474 1.483 1.344 1.174
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 95.00	INC MEAN 6.62 7.6 8.3 8.5 8.6 8.8 9.7 10.5	SS 3.9 3.4 3.6 3.6 3.6 3.6 3.6 3.7 2.9	7.3 5.1 4.3 4.4 4.6 4.7 4.1 2.9 4.8 5.9	D-FACT 0.578 0.579 0.544 0.570 0.586 0.598 0.613 0.617 0.561	EFF 0.790 0.826 0.906 0.907 0.900 0.885 0.960 1.010 1.020	LOSS (707 0.205 0.166 0.086 0.087 0.094 0.111 0.112 0.096 0.042 -0.013	PROF 0.147 0.114 0.048 0.054 0.062 0.081 0.083 0.068 0.036 -0.013	LOSS P TOT 0.043 0.036 0.019 0.029 0.024 0.024 0.021 0.009 -0.003 -0.006	PROF 0.031 0.025 0.010 0.012 0.013 0.017 0.018 0.015 0.008

(k) Percent of design speed, 90; reading number, 207

				,	,	,		•		
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.872 7.094 6.315 6.121	ABS IN 0.5 0.5 0.5 -0.1 -0.1 -0.1 -0.1 -0.1	BETAM OUT 56.7 53.3 50.4 52.6 53.8 54.7 54.8 51.5	REL IN 68.4 66.4 63.3 62.1 61.8 61.5 61.5 57.9 57.9	BETAM OUT 56.9 53.8 50.0 47.6 47.2 46.1 44.7 42.4 34.6 22.8 15.1	TOTAL IN 521.8 521.4 518.7 517.7 517.8 517.1 518.5 517.6 517.6	TEMP RATIO 1.222 1.210 1.176 1.167 1.166 1.165 1.165 1.167 1.146 1.131	TOTAL IN 14.46 14.62 14.72 14.72 14.73 14.72 14.73 14.73	PRESS RAT10 1.734 1.726 1.649 1.617 1.599 1.599 1.597 1.567 1.567
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 481.9 517.5 542.8 543.1 542.8 540.1 537.6 539.5 528.1 444.3	VEL OUT 719.6 730.0 708.4 708.9 705.8 710.7 734.0 733.8 763.5 807.7	REL IN 1307.8 1295.1 1206.0 1161.4 1149.0 1133.4 1118.4 1107.9 995.0 849.3 796.6	VEL OUT 723.8 739.4 702.4 645.0 631.9 605.7 583.3 573.6 557.7 531.7	MERI 1N 481.9 517.5 542.8 543.1 542.8 540.1 537.6 539.5 528.1 478.4 444.3	0 VEL 0UT 394.8 436.5 451.5 435.0 429.1 419.7 414.8 423.4 459.3 490.0 502.7	TAN IN 4.2 4.6 5.0 -0.9 -0.9 -0.9 -0.9	G VEL OUT 601.6 585.1 545.8 559.7 560.4 573.5 586.7 599.6 572.3 585.5 632.2	IN 1220.1 1191.8 1082.0 1025.8 1011.8	1181.9 1083.8 1035.9
₽₽	ABS M IN	ACH NO QUT	REL M	ACH NO OUT	MERID M	ACH NO				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.459 0.473 0.499 0.499 0.496 0.494 0.495 0.484 0.485	0.602 0.615 0.606 0.610 0.607 0.612 0.620 0.633 0.639 0.672 0.713	1.190 1.183 1.107 1.067 1.055 1.042 1.027 1.017 0.913 0.776 0.726	0.606 0.623 0.601 0.555 0.544 0.522 0.503 0.494 0.486 0.468	0.439 0.473 0.498 0.499 0.499 0.496 0.495 0.494 0.495	0.330 0.368 0.387 0.374 0.369 0.362 0.358 0.365 0.400 0.431			0.819 0.844 0.832 0.801 0.770 0.777 0.785 0.870 1.024 1.131	1.562 1.526 1.503 1.517 1.520 1.525 1.530 1.533 1.377 1.198 1.133
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 90.00	MEAN 8.1 7.4 8.8 9.8 10.0 10.3 10.5	5.3 4.4 4.6 5.0 5.1 5.2 5.3 5.2	DEV 8.4 5.5 4.8 5.2 5.7 5.5 4.9 3.6 4.7 5.4	D-FACT 0.615 0.591 0.566 0.597 0.603 0.622 0.645 0.593 0.528 0.514	0.766 0.802 0.874 0.889 0.870 0.867 0.866 0.871 0.938 1.012	LOSS 0 TOT 0.239 0.120 0.116 0.127 0.131 0.136 0.136 0.1069 -0.016 -0.088	PROF 0.177 0.144 0.080 0.078 0.091 0.096 0.100 0.099 0.061 -0.016		PARAM PROF 0.036 0.031 0.017 0.017 0.019 0.022 0.022 0.023 -0.013

(1) Percent of design speed, 80; reading number, 209

				5	,	,		,		
RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.650 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.2 -0.2 -0.1 -0.2 -0.2 -0.2 -0.2 -0.1	BETAM OUT 31.5 30.9 29.8 33.8 35.0 34.9 33.7 32.9 35.9	RELL IN 63.6 61.6 58.3 56.2 55.9 55.1 51.9 50.5	BETAM OUT 55.1 53.5 49.6 46.3 45.3 44.9 44.7 43.3 35.6 23.8 18.6	TOTA IN 521.3 520.5 518.5 518.4 518.2 518.4 518.0 518.0 518.1	L TEMP RATIO 1.108 1.102 1.090 1.089 1.091 1.092 1.093 1.091 1.082 1.080	TOTAL IN 14.45 14.65 14.73 14.72 14.72 14.72 14.72 14.72 14.71 14.69	PRESS RAT10 1.351 1.353 1.342 1.335 1.328 1.317 1.306 1.321 1.354 1.351 1.355
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 538.5 571.8 595.8 599.6 601.0 600.6 601.2 600.3 587.6 522.3	VEL 0UT 613.5 627.6 635.3 646.8 649.8 646.9 641.6 654.3 659.3 763.3	REL IN 1209.4 1204.2 1133.0 1090.2 1080.3 1071.0 1061.0 1049.5 952.9 813.6 761.3	VEL 0UT 915.0 905.3 851.0 787.7 768.1 747.8 740.5 748.9 659.4 624.1	MER II 1N 538.5 571.8 595.8 599.6 601.0 600.6 601.2 600.3 587.6 522.3 484.3	0 VEL 0UT 523.2 538.8 551.4 544.3 540.3 530.1 526.3 544.6 579.2 603.5	TAN IN -1.4 -1.7 -0.7 -1.6 -1.6 -1.5 -1.2	6 YEL 0UT 320.4 321.9 315.5 349.4 361.1 370.8 366.9 362.7 375.0 437.3 482.4	WHEEL IN 1081.5 1058.2 962.0 909.7 896.0 885.2 859.2 748.7 622.6 586.3	
RP	ABS M IN	ACH NO	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.493 0.525 0.550 0.554 0.555 0.555 0.555 0.542 0.479 0.442	0.536 0.551 0.562 0.573 0.576 0.573 0.567 0.617 0.617 0.686	1.107 1.106 1.045 1.007 0.997 0.989 0.969 0.879 0.746 0.696	0.799 0.794 0.753 0.698 0.681 0.662 0.655 0.664 0.637 0.594	0.493 0.525 0.550 0.554 0.555 0.555 0.555 0.554 0.542 0.479	0.457 0.473 0.488 0.483 0.479 0.469 0.465 0.483 0.518 0.543			0.972 0.942 0.926 0.908 0.899 0.883 0.875 0.907 0.986 1.155	1.334 1.301 1.292 1.300 1.217 1.217 1.212 1.206 1.141 1.003 0.949
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 50.00 90.00 95.00	INC MEAN 3.3 2.68 4.3 4.4 4.6 4.7 4.8 5.8 6.5	0.5 -0.4 -0.5 -0.5 -0.5 -0.5 -0.5 -1.1	DEV 6.61 5.15 3.82 5.55 4.55 6.39	D-FACT 0.342 0.345 0.379 0.394 0.409 0.408 0.358 0.310 0.314	0.832 0.889 0.977 0.961 0.932 0.858 0.858 0.912 1.053 1.116	LOSS C TOT 0.104 0.065 0.013 0.023 0.042 0.071 0.092 0.057 -0.037 -0.104 -0.054	PROF 0.087 0.051 0.004 0.016 0.039 0.069 0.090 0.056 -0.037	LOSS F TOT 0.022 0.014 0.003 0.005 0.009 0.015 0.020 0.012 -0.008 -0.020	PROF 0.018 0.011 0.001 0.003 0.009 0.015 0.019 0.012 -0.008

(m) Percent of design speed, 80; reading number, 210

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.872 7.872 7.094 6.315 6.121	ABS IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1	BETAM OUT 42.2 39.1 39.2 40.1 40.9 42.2 43.2 42.1 40.4 41.7 44.8	•	BETAM OUT 54.5 52.7 49.5 46.3 45.4 44.4 43.6 42.5 36.1 24.1 17.4	TOTAL IN 521.9 520.9 518.3 518.0 517.9 518.2 518.1 517.9 517.9	TEMP RATIO 1.130 1.130 1.112 1.108 1.108 1.110 1.112 1.110 1.097 1.097	TOTAL IN 14.47 14.65 14.73 14.72 14.72 14.72 14.72 14.72 14.72	PRESS RATIO 1.477 1.473 1.434 1.424 1.424 1.420 1.411 1.415 1.390 1.391 1.421
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 501.1 534.2 556.8 557.9 557.5 554.6 554.5 537.8 479.5	VEL 0UT 629.5 639.8 629.3 640.8 642.9 646.3 667.0 659.5 706.4 738.7	REL IN 1198.1 11192.1 1116.7 1074.2 1062.9 1051.4 1038.0 1027.5 926.6 789.0 740.5	VEL OUT 802.9 819.6 750.5 708.9 692.2 670.4 651.0 657.2 620.2 577.7 549.4	IN 501.1 534.2	0 VEL 0UT 466.4 496.6 487.7 490.1 485.8 478.9 471.8 501.0 527.2 524.2	TAN IN -1.4 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.6	G VEL 0UT 422.8 403.4 397.7 412.8 421.1 434.0 442.7 437.5 428.8 470.2 520.5	IN 1086.9	SPEED OUT 1076.3 1055.4 968.2 925.0 914.2 903.2 891.2 881.3 794.3 706.4 685.0
RP	ABS M In	ACH NO	REL M IN	ACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10 11	0.457 0.489 0.512 0.514 0.513 0.513 0.510 0.510 0.494 0.438 0.407	0.542 0.554 0.551 0.563 0.565 0.567 0.567 0.567 0.583 0.630	1.092 1.091 1.027 0.988 0.977 0.967 0.954 0.945 0.851 0.721	0.692 0.710 0.657 0.623 0.608 0.571 0.577 0.549 0.515 0.490	0.457 0.489 0.512 0.514 0.513 0.513 0.510 0.510 0.494 0.438 0.407	0.402 0.430 0.427 0.430 0.427 0.420 0.414 0.426 0.443 0.470			0.931 0.930 0.876 0.877 0.871 0.859 0.851 0.874 0.932 1.100	1.384 1.352 1.350 1.270 1.266 1.260 1.254 1.249 1.181 1.033
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 90.00 95.00	INC MEAN 5.0 4.4 5.7 6.3 6.5 6.7 6.9 7.1	2.2 1.3 1.5 1.6 1.6 1.7 1.7	DEV 6.0 4.4 4.3 3.9 3.7 3.8 3.7 6.6 3.7	D-FACT 0.460 0.435 0.447 0.462 0.473 0.490 0.503 0.489 0.454- 0.401 0.406	0.853 0.896 0.969 0.993 0.984 0.956 0.926		PROF 0.093 0.060 0.010 0.000 0.008 0.031 0.056 0.040	-0.017	PROF 0.020 0.013 0.002 0.000 0.002 0.007 0.012 0.009

(n) Percent of design speed, 80; reading number, 211

	RAD			BETAM		BETAM	•	L TEMP	TOTAL	PRESS
RP	IN	TUO	IN VD3	OUT	IN	OUT	IN	RATIO	IN	RATIO
1	9.717	9.623	-0.2	46.5	66.4	55.2	522.4	1.149	14.49	1.499
2	9.508	9.429	-0.2	42.8	64.5	52.9	521.6	1.140	14.66	1.504
3	8.635 8.180	8.650 8.261	-0.2 -0.2	41.3 43.2	61.4 60.1	49.6 46.8	518.2 517.8	1.120	14.71 14.72	1.462
3 4 5	8,065	8.164	-0.2	43.9	59.8	45.8	517.6	1.115	14.73	1.445
6	7.949	8.067	-0.2	45.3	59.5	45.3	517.9	1.117	14.72	1.435
7	7.832	7.969	-0.2	46.8	59.2	44.3	517.7	1.118	14.72	1.426
8	7.714	7.872	-0.2	46.3	58.8	43.1	517.9	1,117	14.72	1.428
9 10	6.726 5.592	7.094 6.315	-0.1 -0.1	45.3 45.6	56.2 54.0	35.3 23.1	517.8 517.8	1.104	14.72	1.409
11	5.266	6.121	-0.1	47.1	54.3	17.4	518.1	1.101	14.69	1.428
			•••			•	• • .			
	ARS	VEL	PE	VEL	MEDI	D VEL	TAN	G VEL	חחבנו	. SPEED
RP	in	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	475.8	626.8	1187.7	757.2	475.8	431.8	-1.3	454.4	1086.9	
2	507.5	640.3	1180.9	779.0	507.5	470.1	-1.4	434.8	1064.8	
2 3 4	527.2	627.7	1102.4	727.5	527.2	471.5	-1.5	414.4	966.7	968.4
4 5	526.2 527.1	633.1 637.5	1056.9	673.9 658.9	526.2 527.1	461.6 459.0	-1.4 -1.4	433.3 442.4	915.2 904.1	924.3 915.2
5 6 7	525.7	635.7	1035.1	635.5	525.7	448.0	-1.4	452.5	891.4	904.6
7	523.1	639.6	1022.2	610.5	523.1	437.0	-1.4	465.7	876.7	892.1
8	523.0	643.7	1010.9	608.6	523.0	444.4	-1.4	465.6	863.7	831.4
9	505.8	657.4	908.2	565.8	505.8	462.8	-1.3	467.0	753.1	794.3
11	454.6 423.2	697.0 724.3	774.1 726.0	530.2 516.8	454.6 423.2	487.6 493.3	-1.0 -1.0	498.2 530.3	625.5 588.9	706.4 684.5
• •	-20.6	.24.5	.20.0	3.0.0	723.2	433.3	-,,,	330.3	300.5	604.5
	ARS M	ACH NO	RFI M	ACH NO	MERID M	ACH NO			KERIN	DEAK CC
RP	aes m In	ACH HO TUO	REL M	ACH NO	MERID M	ACH NO OUT	,		UE D	PEAK SS MACH NO
1	IN 0.43 5	0UT 0.557	IN 1.080	0UT 0.648	IN 0.453	OUT 0.570			UE D	MACH NO
1	IN 0.435 0.465	0UT 0.557 0.552	IN 1.080 1.077	0UT 0.648 0.671	IN 0.453 0.465	0.570 0.405			UE D	1.414 1.555
1	IN 0.43 5	0UT 0.557	IN 1.080 1.077 1.011 0.969	0UT 0.648	IN 0.453	OUT 0.570			UE D	MACH NO
1	IN 0.435 0.465 0.485 0.485 0.484	OUT 0.557 0.552 0.547 0.554 0.558	IN 1.080 1.077 1.011 0.959 0.961	0UT 0.648 0.671 0.634 0.539 0.577	IN 0.453 0.465 0.485 0.485 0.484	OUT 0.370 0.405 0.411 0.404 0.402			UE D	1.414 1.505 1.592 1.297 1.294
123456	IN 0.433 0.463 0.483 0.483 0.484 0.482	OUT 0.557 0.552 0.547 0.554 0.558 0.557	IN 1.080 1.077 1.011 0.959 0.961 0.950	0.648 0.671 0.634 0.539 0.577 0.556	IN 0.453 0.465 0.485 0.485 0.484 0.482	OUT 0.370 0.405 0.411 0.404 0.402 0.392			UE D	MACH NO 1.414 1.505 1.592 1.297 1.294 1.289
1234567	IN 0.435 0.465 0.485 0.483 0.484 0.482 0.480	0UT 0.557 0.552 0.547 0.558 0.558 0.557	IN 1.080 1.077 1.011 0.959 0.961 0.950 0.957	0UT 0.648 0.671 0.634 0.539 0.577 0.556 0.534	IN 0.453 0.465 0.485 0.485 0.484 0.482 0.480	OUT 0.570 0.405 0.411 0.404 0.402 0.592 0.592			UE D	MACH NO 1.414 1.505 1.392 1.297 1.294 1.289 1.202
123456	IN 0.433 0.463 0.483 0.483 0.484 0.482	OUT 0.557 0.552 0.547 0.554 0.558 0.557	IN 1.080 1.077 1.011 0.959 0.961 0.950	0.648 0.671 0.634 0.539 0.577 0.556	IN 0.453 0.465 0.485 0.485 0.484 0.482	OUT 0.370 0.405 0.411 0.404 0.402 0.392			UE D	MACH NO 1.414 1.505 1.592 1.297 1.294 1.289
12545678910	IN 0.435 0.465 0.485 0.486 0.482 0.482 0.480 0.465 0.414	OUT 0.557 0.552 0.554 0.558 0.557 0.558 0.563 0.563 0.620	IN 1.080 1.077 1.011 0.959 0.961 0.950 0.937 0.927 0.832 0.706	OUT 0.648 0.671 0.634 0.539 0.577 0.556 0.534 0.532 0.500 0.471	IN 0.453 0.465 0.485 0.485 0.484 0.482 0.480 0.463 0.414	OUT 0.570 0.405 0.411 0.404 0.402 0.592 0.592 0.589 0.408 0.433			UE D	MACH NO 1.414 1.359 1.392 1.297 1.294 1.202 1.275 1.203 1.048
129456789	IN 0.485 0.485 0.485 0.484 0.482 0.480 0.480	OUT 0.557 0.552 0.547 0.558 0.557 0.558 0.563 0.563	IN 1.080 1.077 1.011 0.959 0.961 0.950 0.957 0.927 0.832	0UT 0.648 0.671 0.634 0.539 0.577 0.556 0.534 0.532 0.500	IN 0.453 0.465 0.485 0.485 0.484 0.482 0.480 0.480	OUT 0.570 0.405 0.411 0.404 0.402 0.592 0.392 0.589 0.408			UE D	MACH NO 1.414 1.355 1.392 1.297 1.294 1.289 1.202 1.275 1.203
12545678910	IN 0.485 0.485 0.485 0.484 0.482 0.480 0.483 0.414 0.385	0UT 0.557 0.552 0.547 0.558 0.558 0.563 0.563 0.580 0.620 0.644	IN 1.080 1.077 1.011 0.959 0.950 0.957 0.957 0.952 0.706 0.660	0UT 0.648 0.671 0.634 0.539 0.577 0.556 0.534 0.532 0.500 0.471 0.459	IN 0.453 0.465 0.485 0.485 0.484 0.480 0.480 0.463 0.414 0.385	OUT 0.570 0.405 0.411 0.402 0.392 0.392 0.389 0.408 0.433			VEL R 0.907 0.926 0.894 0.877 0.852 0.855 0.855 1.073	MACH NO 1.414 1.505 1.592 1.297 1.294 1.289 1.202 1.275 1.203 1.048 0.990
1234567891011	IN 0.435 0.465 0.485 0.484 0.482 0.480 0.463 0.414 0.385	OUT 0.597 0.552 0.554 0.558 0.558 0.558 0.563 0.580 0.620 0.644	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.937 0.932 0.706 0.660	OUT 0.648 0.671 0.634 0.539 0.577 0.556 0.534 0.532 0.500 0.471	IN 0.453 0.465 0.485 0.485 0.484 0.482 0.480 0.463 0.414	OUT 0.570 0.405 0.411 0.402 0.392 0.392 0.389 0.408 0.433	LOSS C	OEFF	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.855 0.915 1.073 1.166	MACH NO 1.414 1.389 1.392 1.297 1.294 1.289 1.202 1.275 1.203 1.048 0.990
1234567891011	IN 0.435 0.465 0.483 0.484 0.482 0.480 0.465 0.414 0.385 PERCENT SPAN	OUT 0.537 0.552 0.554 0.558 0.557 0.558 0.563 0.563 0.620 0.644 INC MEAN	IN 1.080 1.077 1.011 0.959 0.961 0.950 0.957 0.927 0.832 0.706 0.660	OUT 0.648 0.671 0.639 0.577 0.556 0.532 0.572 0.471 0.459	IN 0.483 0.465 0.485 0.484 0.482 0.482 0.480 0.463 0.414 0.385	OUT 0.570 0.405 0.401 0.404 0.402 0.592 0.389 0.433 0.439	LOSS C	OEFF PROF	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.835 0.850 1.073 1.166	NACH NO 1.414 1.565 1.592 1.292 1.294 1.289 1.202 1.275 1.203 1.048 0.990 PARAM PROF
1 N 3 4 5 6 7 8 9 10 11 RP 1	IN 0.435 0.485 0.485 0.486 0.482 0.480 0.480 0.414 0.385 PERCENT SPAN 5.00	OUT 0.537 0.552 0.554 0.558 0.558 0.563 0.620 0.644 INC MEAN 6.1	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.927 0.927 0.706 0.660 UENCE SS 3.3	OUT 0.648 0.671 0.639 0.577 0.556 0.534 0.532 0.572 0.471 0.459 DEV 6.7	IN 0.453 0.465 0.485 0.485 0.484 0.480 0.480 0.463 0.414 0.385	OUT 0.570 0.405 0.411 0.402 0.392 0.392 0.389 0.408 0.433	LOSS C	OEFF	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.855 0.915 1.073 1.166	NACH NO 1.414 1.305 1.302 1.207 1.204 1.289 1.202 1.273 1.048 0.990 PARAM PROF 0.026
1234567891011 RP 12	IN 0.435 0.465 0.483 0.484 0.482 0.480 0.463 0.414 0.385 PERCENT SPAN	OUT 0.537 0.554 0.554 0.558 0.558 0.563 0.563 0.620 0.644 INC MEAN 6.1 5.7.0	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.932 0.706 0.660 IDENCE SS 3.3 2.5 2.8	OUT 0.648 0.671 0.639 0.577 0.556 0.532 0.572 0.471 0.459	IN 0.453 0.465 0.485 0.484 0.482 0.480 0.463 0.414 0.385 D-FACT 0.504 0.474 0.465	OUT 0.570 0.401 0.404 0.402 0.392 0.399 0.408 0.433 0.439 EFF 0.822 0.883 0.957	LOSS C TOT 0.149 0.094 0.034	0EFF PROF 0.125 0.074 0.018	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.835 0.915 1.073 1.166 LOSS F TOT 0.032	NACH NO 1.414 1.365 1.397 1.294 1.209 1.203 1.203 1.048 0.990 PARAM PROF 0.026 0.016
1 N 5 4 5 6 7 8 9 10 1 1 RP 1 2 3 4	IN 0.485 0.485 0.485 0.484 0.482 0.480 0.463 0.414 0.385 PERCENT SPAN 5.00 10.00 30.00 40.00	OUT 0.537 0.552 0.554 0.558 0.558 0.558 0.563 0.580 0.620 0.644 INC MEAN 6.1 5.7.0 7.8	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.932 0.706 0.660 IDENCE SS 3.3 2.5 2.8 3.1	OUT 0.648 0.671 0.634 0.539 0.577 0.556 0.534 0.500 0.471 0.459 DEV 6.7 4.5 4.4 4.4	0.483 0.465 0.465 0.485 0.484 0.482 0.484 0.463 0.414 0.385 D-FACT 0.504 0.465 0.493	0UT 0.570 0.401 0.404 0.402 0.592 0.589 0.408 0.435 0.439 EFF 0.822 0.883 0.957 0.963	LOSS C TOT 0.149 0.094 0.034 0.029	0EFF PROF 0.125 0.074 0.018 0.024	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.835 0.915 1.073 1.166 LOSS F TOT 0.032 0.021 0.007	NACH NO 1.414 1.355 1.392 1.294 1.209 1.205 1.203 1.048 0.990 PARAM PROF 0.026 0.016 0.004
1 N 5 4 5 6 7 8 9 10 1 1 RP 1 2 3 4	1N 0.485 0.485 0.484 0.482 0.480 0.465 0.414 0.385 PERCENT SPAN 5.00 10.00 40.00 42.50	OUT 0.537 0.552 0.554 0.558 0.558 0.553 0.563 0.580 0.620 0.644 INC MEAN 6.1 5.5 7.0 8.0	1N 1.080 1.077 1.011 0.959 0.961 0.950 0.950 0.950 0.660 0.660 0.660	OUT 0.648 0.671 0.639 0.577 0.556 0.532 0.572 0.471 0.459 DEV 6.7 4.5 4.4 4.3	0.483 0.463 0.483 0.483 0.484 0.482 0.480 0.463 0.414 0.385 0.504 0.474 0.463 0.493 0.504	0UT 0.570 0.401 0.404 0.402 0.392 0.399 0.408 0.433 0.439 EFF 0.822 0.823 0.957 0.965	LOSS 0 TOT 0.149 0.094 0.034 0.029	OEFF PROF 0.125 0.074 0.018 0.024 0.024	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.855 0.915 1.073 1.166 LOSS [TOT 0.032 0.021 0.007 0.006 0.006	NACH NO 1.414 1.355 1.392 1.294 1.203 1.205 1.205 1.207 0.048 0.990 PARAM PROF 0.026 0.016 0.005 0.005
1254567891011 RP123456	IN 0.485 0.485 0.486 0.486 0.480 0.480 0.463 0.414 0.385 PERCENT SPAN 5.00 10.00 40.00 40.00 45.00	OUT 0.557 0.552 0.554 0.558 0.557 0.558 0.563 0.620 0.620 0.644 INC MEAN 6.1 5.5 7.0 7.8 8.2	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.937 0.932 0.706 0.660 IDENCE SS 3.3 2.5 2.8 3.1 3.1	OUT 0.648 0.671 0.539 0.577 0.554 0.532 0.500 0.471 0.459 DEV 6.7 4.5 4.4 4.4 4.3 4.6	IN 0.453 0.465 0.485 0.484 0.482 0.480 0.463 0.414 0.385 D-FACT 0.504 0.474 0.465 0.493 0.504	OUT 0.570 0.461 0.404 0.402 0.592 0.589 0.408 0.433 0.439 EFF 0.822 0.883 0.965 0.965 0.965	LOSS C TOT 0.149 0.034 0.029 0.029 0.059	OEFF PROF 0.125 0.074 0.018 0.024 0.024 0.055	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.835 0.850 0.915 1.073 1.166 LOSS F TOT 0.032 0.021 0.007 0.006 0.013	MACH NO 1.414 1.555 1.365 1.262 1.289 1.202 1.275 1.203 1.048 0.990 PARAM PROF 0.026 0.016 0.004 0.005 0.012
1 N 5 4 5 6 7 8 9 10 1 1 RP 1 2 3 4	1N 0.485 0.485 0.484 0.482 0.480 0.465 0.414 0.385 PERCENT SPAN 5.00 10.00 40.00 42.50	OUT 0.537 0.552 0.554 0.558 0.558 0.553 0.563 0.580 0.620 0.644 INC MEAN 6.1 5.5 7.0 8.0	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.927 0.832 0.706 0.660 IDENCE SS 3.3 2.5 2.8 3.1 3.1	OUT 0.648 0.671 0.639 0.577 0.556 0.532 0.572 0.471 0.459 DEV 6.7 4.5 4.4 4.3	0.483 0.463 0.483 0.483 0.484 0.482 0.480 0.463 0.414 0.385 0.504 0.474 0.463 0.493 0.504	0UT 0.570 0.401 0.404 0.402 0.392 0.399 0.408 0.433 0.439 EFF 0.822 0.823 0.957 0.965	LOSS 0 TOT 0.149 0.094 0.034 0.029	OEFF PROF 0.125 0.074 0.018 0.024 0.024	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.855 0.915 1.073 1.166 LOSS [TOT 0.032 0.021 0.007 0.006 0.006	NACH NO 1.414 1.355 1.392 1.294 1.203 1.205 1.205 1.207 0.048 0.990 PARAM PROF 0.026 0.016 0.005 0.005
123456789101 RP123456789	IN 0.485 0.485 0.486 0.486 0.488 0.482 0.480 0.463 0.414 0.385 PERCENT SPAN 5.00 10.00 40.00 47.50 50.00 70.00	OUT 0.537 0.5527 0.554 0.558 0.558 0.558 0.563 0.563 INC MEAN 6.1 5.57 7.0 8.2 8.4 8.6	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.932 0.706 0.660 IDENCE SS 3.3 2.5 2.8 3.1 3.2 3.2 3.2 3.2	OUT 0.648 0.671 0.6349 0.537 0.5534 0.500 0.471 0.459 DEV 6.7 4.5 4.4 4.3 4.6 4.3 5.5	0.483 0.465 0.485 0.485 0.484 0.482 0.480 0.463 0.414 0.385 D-FACT 0.504 0.465 0.493 0.504 0.521 0.521 0.537	OUT 0.570 0.401 0.404 0.402 0.392 0.399 0.408 0.433 0.439 EFF 0.822 0.883 0.965 0.965 0.909 0.904 0.918	LOSS C TOT 0.149 0.034 0.029 0.028 0.059 0.059 0.071 0.009	OEFF PROF 0.125 0.074 0.018 0.024 0.024 0.055 0.078 0.068 0.009	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.835 0.915 1.073 1.166 LOSS F TOT 0.032 0.021 0.007 0.006 0.013 0.018 0.015	MACH NO 1.414 1.355 1.392 1.294 1.289 1.203 1.048 0.990 PARAM PROF 0.026 0.016 0.005 0.012 0.017 0.015 0.002
123456789111 RP12345678	IN 0.485 0.485 0.486 0.486 0.488 0.488 0.488 0.463 0.414 0.385 PERCENT SPAN 5.00 10.00 40.00 42.50 47.50 50.00	OUT 0.537 0.5527 0.554 0.558 0.558 0.563 0.563 0.563 0.620 0.644 INC MEAN 6.1 5.7.0 7.8 8.0 8.2	IN 1.080 1.077 1.011 0.959 0.961 0.957 0.932 0.706 0.660 IDENCE SS 3.3 2.5 2.8 3.1 3.1 3.2 3.2 3.2	OUT 0.648 0.671 0.639 0.577 0.536 0.532 0.500 0.471 0.459 DEV 6.7 4.5 4.4 4.3 4.6 4.5	0.453 0.465 0.485 0.485 0.484 0.482 0.480 0.463 0.414 0.385 D-FACT 0.504 0.493 0.504 0.504 0.504 0.504	OUT 0.570 0.401 0.404 0.402 0.392 0.589 0.408 0.433 0.439 EFF 0.822 0.957 0.963 0.965 0.929 0.908	LOSS C TOT 0.149 0.094 0.029 0.028 0.059 0.082 0.071	OEFF PROF 0.125 0.074 0.018 0.024 0.055 0.078 0.068 0.069	VEL R 0.907 0.926 0.894 0.877 0.871 0.852 0.855 0.855 0.915 1.073 1.166 LOSS F TOT 0.032 0.021 0.007 0.006 0.013 0.018 0.015 0.005 -0.013	MACH NO 1.414 1.355 1.392 1.294 1.209 1.203 1.048 0.990 PARAM PROF 0.026 0.004 0.005 0.005 0.0017 0.015

(o) Percent of design speed, 80; reading number, 212

	(0)		110 01 00	Jigit J	, oou, o	o, rouc	aning ind	illibor,	-1-	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	BETAM OUT 50.6 47.6 45.8 48.1 50.0 51.3 51.4 47.3 48.8	REL IN 68.2 66.5 63.5 62.0 61.7 61.5 55.8 56.2	BETAM OUT 56.1 53.2 50.4 47.5 47.0 46.3 45.3 45.3 23.2 17.1	TOTA IN 523.3 522.0 5!8.1 517.6 518.1 517.5 517.7 517.7	L TEMP RATIO 1.155 1.149 1.128 1.125 1.124 1.125 1.125 1.125 1.125 1.101	TOTAL IN 14.49 14.66 14.73 14.71 14.71 14.71 14.72 14.70 14.70	PRESS RATIO 1.514 1.517 1.465 1.448 1.441 1.435 1.429 1.428 1.420 1.412
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 435.2 463.3 482.9 481.1 479.3 478.8 477.2 475.7 466.2 425.0 394.9	VEL 0UT 626.5 643.5 627.0 626.1 626.1 626.7 628.8 635.3 652.4 688.9 718.5	REL. IN 1171.5 1162.0 1081.1 1035.1 1025.5 1010.8 999.4 986.0 885.9 756.8 710.5	VEL OUT 713.0 724.5 679.0 619.7 600.7 533.8 561.8 551.8 559.8 508.2 495.4	MERI IN 435.2 463.3 482.9 481.1 479.3 478.8 477.2 475.7 466.2 425.0 394.9	0 VEL 0UT 397.6 433.8 432.8 418.3 409.6 403.2 393.1 393.1 440.5 440.5	TAN IN -1.2 -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.9	0 VEL 0UT 484.1 475.3 444.4 467.0 473.5 479.8 490.8 496.8 496.2 540.2	WHEEL 1086.5 1064.4 965.9 915.2 901.9 888.9 862.3 752.1 625.2 589.8	1055.5 967.6 924.2 913.0 902.1 892.2 880.0 793.2 706.1
RP	ABS M	ACH NO	REL M	ACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
1 25 4 5 6 7 8 9 10	0.394 0.421 0.441 0.440 0.438 0.437 0.436 0.435 0.426 0.387 0.359	0.535 0.552 0.538 0.546 0.545 0.545 0.545 0.553 0.573 0.611	1.061 1.056 0.988 0.946 0.934 0.923 0.913 0.901 0.809 0.689	0.608 0.622 0.589 0.539 0.523 0.508 0.489 0.474 0.451	0.394 0.421 0.441 0.440 0.438 0.437 0.436 0.435 0.426 0.387 0.359	0.539 0.372 0.376 0.364 0.357 0.351 0.342 0.345 0.345 0.421	·		0.914 0.936 0.896 0.870 0.855 0.842 0.824 0.834 0.945 1.100	1.466 1.440 1.358 1.337 1.334 1.321 1.311 1.228 1.066 1.010
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 47.50 50.00 70.00 90.00 95.00	INC MEAN 7.9 7.5 9.0 10.0 10.2 10.4 10.7 11.6 12.2	5.1 4.5 5.2 5.3 5.4 5.5 5.5 5.2 4.3	DEV 7.69225782555555555555555555555555555555555	D-FACT 0.544 0.525 0.509 0.545 0.558 0.569 0.588 0.592 0.536 0.478	0.811 0.849 0.902 0.896 0.887 0.869 0.860 0.856 0.960	LOSS C TOT 0.167 0.131 0.083 0.092 0.101 0.119 0.129 0.136 0.041 -0.064 -0.124	PROF 0.138 0.106 0.073 0.085 0.095 0.115 0.125 0.133 0.041	LOSS TOT	PROF 0.029 0.023 0.015 0.018 0.020 0.024 0.026 0.029 0.009 -0.012

(p) Percent of design speed, 80; reading number, 213

	(Ρ/	1 01 001	10 01 00	Jigii Jp	ccu, cc	, 1000	ing na	,,,		
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.650 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1	BETAM OUT 56.3 51.5 50.0 51.4 52.0 53.7 52.9 48.3 47.6	RELL IN 70.1 68.2 65.3 64.0 63.6 63.3 63.0 59.8 57.4	BETAM OUT 58.1 54.9 50.9 47.6 47.3 46.8 46.1 44.8 35.5 23.9	TOTA IN 524.3 522.5 517.6 517.8 517.4 517.6 517.5 517.5	L TEMP RATIO 1.159 1.157 1.138 1.134 1.133 1.131 1.130 1.130 1.112 1.1098 1.102	TOTAL IN 14.51 14.66 14.73 14.71 14.71 14.71 14.71 14.71 14.71 14.69	PRESS RATIO 1.506 1.502 1.463 1.451 1.443 1.437 1.430 1.424 1.424 1.443
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 394.2 426.4 443.2 441.7 442.1 441.4 442.2 441.1 439.3 404.0 577.4	VEL 0UT 625.4 632.9 630.4 627.7 627.7 630.6 649.9 715.7	REL IN 1157.2 1147.6 1064.5 1017.2 1006.5 994.5 983.3 970.4 872.2 745.3 700.6	VEL 0UT 656.1 684.7 570.9 551.0 536.3 556.2 550.4 485.7	MERII 1N 394.2 426.4 443.2 441.7 442.1 441.4 442.2 441.1 439.3 404.0 377.4	D VEL OUT 347.1 393.9 399.6 393.2 386.8 377.3 371.7 380.4 432.0 459.3 464.9	TAN 10.5 -1.2 -1.3 -1.2 -1.2 -1.2 -1.0 -0.9	G VEL 0UT 520.3 495.3 476.6 492.7 494.5 501.6 505.8 502.9 485.5 5044.2	WHEEL IN 1087.5 1064.3 966.6 915.0 903.2 889.9 877.0 863.1 752.3 625.3 589.3	
RP	ABS M	ACH NO OUT	REL M	ACH NO	MERID M	ACH NO				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.356 0.386 0.404 0.402 0.403 0.402 0.403 0.402 0.400 0.367 0.342	0.532 0.540 0.537 0.547 0.544 0.545 0.545 0.548 0.570 0.604 0.635	1.044 1.059 0.970 0.927 0.917 0.906 0.896 0.896 0.795 0.677 0.635	0.558 0.585 0.547 0.506 0.495 0.466 0.466 0.466 0.466 0.445	0.356 0.386 0.404 0,402 0.403 0.403 0.402 0.400 0.367 0.342	0.295 0.356 0.345 0.341 0.335 0.327 0.323 0.330 0.379 0.407			0.880 0.924 0.901 0.890 0.875 0.855 0.841 0.862 0.984 1.137	1.521 1.490 1.398 1.373 1.368 1.361 1.352 1.343 1.249 1.080
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 90.00	INC MEAN 9.8 9.2 11.0 12.2 12.4 12.5 12.7 13.0 13.4		9.5 6.5 5.7 5.8 6.1 6.0 5.7 6.4 3.2	D-FACT 0.599 0.560 0.554 0.580 0.587 0.602 0.612 0.604 0.540 0.477	0.780 0.786 0.832 0.840 0.831 0.830 0.826 0.827 0.947 1.057	LOSS 0 TOT 0.202 0.196 0.154 0.153 0.163 0.165 0.171 0.173 0.056 -0.072	PROF 0.166 0.165 0.141 0.145 0.156 0.159 0.167 0.169 0.056 -0.072	LOSS P TOT 0.040 0.041 0.032 0.032 0.034 0.035 0.036 0.037 0.012 -0.014	PROF 0.033 0.035 0.029 0.031 0.033 0.035 0.035 0.036 0.012

(q) Percent of design speed, 70; reading number, 215

	147	1 61 661	it of ac	Jigii Jp	ccu, 10	, i cuu	ing na	moor,		
RP 1 2 3 4 5 6 7 8 9	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	9.623 9.429 8.650 8.261 8.164 8.1667 7.969 7.872 7.094 6.315 6.121	ABS IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1	BETAM OUT 28.4 26.1 27.0 28.3 28.6 30.5 31.7 30.2 30.5 34.2 36.0	REL IN 63.7 61.7 58.4 56.8 56.0 55.7 55.3 52.2 50.4	BETAM 0UT 55.1 53.6 49.7 47.0 46.4 45.2 43.7 42.7 35.8 24.1 19.9	TOTAL IN 519.9 519.4 518.6 518.5 518.5 518.4 518.4 518.4 518.4	L TEMP RATIO 1.076 1.070 1.061 1.059 1.060 1.062 1.065 1.064 1.058 1.060	TOTAL IN 14.51 14.68 14.71 14.71 14.71 14.71 14.72 14.72 14.70 14.68	PRESS RAT10 1.246 1.246 1.243 1.237 1.236 1.236 1.246 1.246 1.254 1.273
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 471.3 502.1 521.8 525.8 526.0 526.3 524.9 524.5 512.1 458.5 428.6	VEL 0UT 543.5 557.0 563.4 571.7 575.6 583.6 593.7 616.6 664.6 682.9	REL 1N 1064.2 1060.2 995.2 995.2 959.8 951.1 941.8 930.9 921.6 836.1 715.8 672.1	VEL OUT 835.1 843.8 776.4 737.1 728.3 704.0 697.6 654.6 602.6 587.7	MER III IN 471.3 502.1 521.8 526.0 526.3 524.9 524.5 512.1 458.5	VEL 0UT 477.9 500.2 502.3 502.2 496.2 496.8 512.9 531.2 549.8	TAN 1N -1.3 -1.4 -1.5 -1.5 -1.4 -1.5 -1.5 -1.4 -1.5 -1.4 -1.3	G VEL 0UT 258.8 245.1 255.4 270.0 273.3 291.8 306.2 299.1 313.1 373.2 401.0	HHEEL IN 952.9 932.4 846.0 801.5 791.0 779.4 756.4 659.6 548.7 516.7	SPEED OUT 943.7 924.6 847.5 809.4 800.7 791.1 780.8 771.9 695.7 619.6 600.6
RP	ABS M	ACH NO OUT	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.429 0.478 0.478 0.482 0.482 0.482 0.481 0.481 0.481 0.418 0.390	0.480 0.494 0.502 0.509 0.513 0.520 0.533 0.553 0.599 0.615	0.970 0.969 0.912 0.880 0.872 0.863 0.853 0.765 0.653	0.737 0.737 0.692 0.658 0.650 0.628 0.613 0.623 0.623 0.587 0.543	0.429 0.459 0.478 0.482 0.482 0.482 0.481 0.481 0.469 0.418 0.390	0.422 0.443 0.448 0.448 0.443 0.443 0.458 0.477 0.496 0.498			1.014 0.996 0.952 0.955 0.955 0.943 0.946 0.978 1.037 1.199	1.165 1.132 1.091 1.073 1.071 1.066 1.061 1.058 1.002 0.880 0.832
RP 1 2 3 4 5 6 7 8 9 10 - 11 -	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 90.00	INC MEAN 3.4 2.7 3.9 4.5 4.6 4.7 4.9 5.7 6.3	SS 0.7 -0.3 -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -1.3	DEV 6.6 5.3 4.5 4.7 4.9 4.5 3.9 6.0 6.6	D-FACT 0.305 0.288 0.306 0.322 0.325 0.349 0.363 0.341 0.317 0.275	0.856 0.934 1.046 1.057 1.042 0.990 0.965 1.009		PROF 0.076 0.032 -0.022 -0.029 -0.021 0.006 0.020 -0.005 -0.068	-0.006 -0.005 0.001 0.004 -0.001 -0.014 -0.020	PROF 0.016 0.007 -0.005 -0.006 -0.005 0.001 0.004

(r) Percent of design speed, 70; reading number, 216

	(17	1 61 661	it of uc	aigii ap	ccu, ru	i, i caa	mg mu	ilibei,	210	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.5266			BETAM OUT 34.7 33.5 35.0 35.0 36.2 37.6 37.9 37.7 39.3 41.5		BETAM OUT 55.3 52.8 50.0 47.5 46.2 45.4 44.2 9 35.6 23.4 18.2	_	L TEMP RATIO 1.093 1.086 1.076 1.072 1.073 1.074 1.075 1.068 1.066 1.070	TOTAL IN 14.53 14.67 14.71 14.71 14.72 14.72 14.71 14.71 14.71	PRESS RATIO 1.506 1.508 1.286 1.279 1.283 1.283 1.284 1.283 1.300
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 439.6 469.0 487.0 488.8 488.3 486.5 485.3 471.4 423.3 394.0	VEL OUT 538.2 560.8 550.0 553.4 561.5 562.4 566.6 573.5 590.9 640.6	RELL IN 1053.3 1045.9 978.1 941.2 930.8 910.5 900.4 812.1 693.9 650.6	VEL OUT 777.9 773.7 713.1 670.8 664.6 646.0 626.5 617.4 575.5 539.8 521.1	MER1 IN 439.6 469.0 487.0 488.8 488.3 487.1 486.5 485.3 471.4 423.3 394.0	D VEL OUT 442.3 467.4 458.8 453.4 460.1 453.8 449.0 452.4 467.8 495.4 494.9	TAN IN -1.3 -0.6 -0.7 -0.7 -0.6 -0.6 -1.4 -1.2 -1.0	G VEL OUT 306.8 310.0 503.2 317.3 321.9 332.9 345.5 352.4 361.1 405.3	WHEEL IN 955.9 934.3 847.6 803.7 791.8 769.0 757.0 660.1 548.8 516.9	SPEED 0UT 946.7: 926.6 849.1 801.7 801.6 792.0 782.4 772.5 696.2 610.8
₽₽	ABS M	ACH NO OUT	REL M	ACH NO	MERID M	ACH NO				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10 11	0.400 0.447 0.445 0.447 0.446 0.445 0.444 0.430 0.385 0.357	0.471 0.486 0.490 0.498 0.502 0.508 0.526 0.573 0.592	0.958 0.953 0.894 0.860 0.851 0.832 0.822 0.741 0.631 0.590	0.680 0.680 0.630 0.594 0.589 0.572 0.555 0.547 0.513 0.483	0.445 0.447 0.446 0.445 0.445 0.445 0.430 0.385 0.357	0.387 0.411 0.406 0.402 0.408 0.402 0.398 0.401 0.417 0.444			1.006 0.997 0.942 0.928 0.942 0.932 0.932 0.932 0.932 1.170 1.256	1.205 1.167 1.125 1.107 1.102 1.098 1.094 1.089 1.029 0.900 0.852
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 47.50 50.00 70.00 90.00	INC MEAN 5.0 4.3 5.7 6.4 6.6 6.8 7.1 8.0 8.2	1.7 1.8 1.5 0.9	DEV 6.8 4.5 4.8 5.1 4.6 4.7 4.5 4.1 5.8 5.9	D-FACT 0.369 0.368 0.374 0.394 0.410 0.428 0.432 0.410 0.353	0.851 0.927 0.977 1.007 1.013 0.981 0.959 0.977 1.061 1.109	-0.009 0.013 0.028 0.016 -0.045 -0.107	OEFF PROF 0.096 0.044 0.014 -0.009 0.013 0.028 0.016 -0.045 -0.107	-0.021	PROF 0.020 0.010 0.003 -0.001 -0.002 0.003 0.006 0.003 -0.010

(s) Percent of design speed, 70; reading number, 217

	•			21911 21	, .	• • • • • • • • • • • • • • • • • • • •				
	RAD			BETAM		BETAM		L TEMP		PRESS
RP	IN	TUO	IN	OUT	IN	OUT	[N	RATIO	IN	RATIO.
1	9.717	9.623 9.429	-0.2 -0.2	41.5 39.3	67.4 65.5	56.0 53.3	519.9 519.4	1.103	14.56 14.68	1.331 1.340
4	9.508 8.635	8.650	-0.2	39.5	62.6	50.6	518.8	1.086	14.71	1.312
2 3 4	8.180	8.261	-0.2	42.1	61.3	46.9	518.7	1.085	14.71	1.310
5	8.065	8.164	-0.2	41.9	61.0	46.3	518.7	1.085	14.70	1.308
5	7.949	8.067	-0.2	43.8	60.8	45.8	518.7	1.086	14.71	1.301
7	7.832	7.969	-0.1	44.1	60.1	44.1	518.7	1.086	14.71	1.295
8	7.714	7.872	-0.1	44.6	59.8	42.9	518.6	1.086	14.70	1.295
9	6.726	7.094	-0.1	42.0	56.9 54.6	34.3	518.2 518.1	1.076	14.71 14.70	1.295
10 11	5.592 5.266	6.315 6.121	-0.1 -0.1	43.1 44.6	54.9	22.7 17.1	518.3	1.073	14.69	1.312
• •	3.200	0.121	•••	, 44.0	54.5		3,0.3	1.074	14.05	1.5.2
	ADC	VEL	פרו	VEL	MCDI	D VEL	TAN	G VEL	WHEET	SPEED
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT
1	395.0	529.6	1027.9	709.0	395.0	396.6	-1.1	351.0	947.9	938.7
. 2	423.6	550.9	1020.8	712.5	423.6	426.3	-1.2	349.0	927.6	919.9
3	438.1	536.4	951.4	652.0	438,1	414.0	-1.3	341.0	843.2	844.7
4	436.9	550.6	911.1	598.6	436.9	408.8	-1.2	368.8	798.2	806.1
5 6 7	435.9 434.6	549.8 549.2	900.2	593.2	435.9	409.5	-1.2	366.8	786.4	796.0
7	431.6	549.5	890.5 866.8	567.9 549.2	434.6 431.6	396.1 394.7	-1.3 -0.6	380.5 382.4	775.9 751.1	787.5 764.3
8	431.3	554.8	858.0	539.2	431.3	395.1	-0.6	389.5	741.2	756.3
9	421.0	578.2	770.6	520.7	421.0	430.0	-0.5	386.6	644.9	680.2
10	382.0	614.0	659.5	486.1	382.0	448.5	-0.4	419.3	537.2	606.7
11	356.3	638.3	619.5	475.2	356.3	454.1	-0.4	448.6	506.4	588,6
RP		ACH NO		ACH NO	MERID M					PEAK SS
RP	IN	OUT	IN	OUT	IN	OUT			VEL R	MACH NO
1	IN 0.358	0UT 0.461	IN 0.951	0UT 0.617	IN 0.358				VEL R	1.239
1	IN 0.358 0.385 0.399	0.461 0.481 0.471	IN 0.931 0.927 0.866	0.617 0.622 0.573	IN 0.358 0.385 0.399	0.345 0.372 0.364			VEL R 1.004 1.006 0.945	1.239 1.204 1.163
1	IN 0.358 0.385 0.399 0.398	0.461 0.481 0.471 0.485	IN 0.931 0.927 0.866 0.829	0UT 0.617 0.622 0.573 0.527	IN 0.358 0.385 0.399 0.398	0.345 0.372 0.364 0.360			VEL R 1.004 1.006 0.945 0.936	1,239 1,204 1,163 1,143
1	IN 0.358 0.385 0.399 0.398 0.397	0.461 0.481 0.471 0.485 0.484	IN 0.931 0.927 0.866 0.829 0.819	0UT 0.617 0.622 0.573 0.527 0.522	IN 0.358 0.385 0.399 0.398 0.397	OUT 0.345 0.372 0.364 0.360 0.360			VEL R 1.004 1.006 0.945 0.936 0.940	1.239 1.204 1.163 1.143 1.138
1	IN 0.358 0.385 0.399 0.398 0.397 0.395	0.461 0.481 0.471 0.485	IN 0.931 0.927 0.866 0.829	0UT 0.617 0.622 0.573 0.527	IN 0.358 0.385 0.399 0.398	0.345 0.372 0.364 0.360			VEL R 1,004 1,006 0,945 0,936 0,940 0,911	MACH NO 1.239 1.204 1.163 1.143 1.138 1.135
	IN 0.358 0.385 0.399 0.398 0.397	0.461 0.481 0.471 0.485 0.484 0.483	IN 0.951 0.927 0.866 0.829 0.819 0.810 0.788 0.780	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393	OUT 0.345 0.372 0.364 0.360 0.360 0.348 0.347			VEL R 1.004 1.006 0.945 0.936 0.940	1.239 1.204 1.163 1.143 1.138
125456789	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392 0.383	0.461 0.481 0.471 0.485 0.484 0.483 0.483 0.488 0.513	IN 0.931 0.927 0.866 0.829 0.819 0.810 0.788 0.780 0.701	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392	OUT 0.345 0.372 0.364 0.360 0.348 0.347 0.348 0.381			VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021	1.239 1.204 1.163 1.143 1.138 1.135 1.103 1.100
1 2 5 4 5 6 7 8 9 1 0	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.393 0.3946	0.461 0.481 0.485 0.485 0.484 0.483 0.483 0.488 0.513	IN 0.931 0.927 0.866 0.829 0.819 0.810 0.788 0.780 0.701	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392 0.383	OUT 0.345 0.372 0.364 0.360 0.348 0.347 0.348 0.381 0.400			VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021 1.174	MACH NO 1,239 1,204 1,163 1,143 1,138 1,135 1,103 1,100 1,031 0,900
125456789	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392 0.383	0.461 0.481 0.471 0.485 0.484 0.483 0.483 0.488 0.513	IN 0.931 0.927 0.866 0.829 0.819 0.810 0.788 0.780 0.701	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392	OUT 0.345 0.372 0.364 0.360 0.348 0.347 0.348 0.381			VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021	1.239 1.204 1.163 1.143 1.138 1.135 1.103 1.100
1 2 5 4 5 6 7 8 9 1 0	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.393 0.392 0.383 0.346	0.461 0.461 0.471 0.475 0.484 0.483 0.483 0.488 0.513 0.547 0.569	IN 0.951 0.927 0.866 0.829 0.819 0.788 0.780 0.701 0.598 0.561	0UT 0.617 0.622 0.575 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424	IN 0.358 0.385 0.399 0.398 0.395 0.395 0.392 0.383 0.346 0.323	OUT 0.345 0.372 0.364 0.360 0.348 0.347 0.348 0.349 0.400	1,050,6	-0555	VEL R 1.004 1.006 0.945 0.945 0.940 0.911 0.914 0.916 1.021 1.174 1.274	1.239 1.204 1.163 1.143 1.138 1.135 1.103 1.100 1.031 0.900 0.852
1 25 4 5 6 7 8 9 10	IN 0.358 0.385 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323	0UT 0.461 0.481 0.471 0.485 0.484 0.483 0.483 0.513 0.517 0.569	IN 0.951 0.927 0.866 0.829 0.819 0.810 0.788 0.701 0.598 0.561	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392 0.383	OUT 0.345 0.372 0.364 0.360 0.348 0.347 0.348 0.349 0.400	LOSS (VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021 1.174 1.274	MACH NO 1.239 1.204 1.163 1.143 1.138 1.138 1.100 1.031 0.900 0.852
1 2 3 4 5 6 7 8 9 10 11	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392 0.383 0.346 0.323	OUT 0.461 0.481 0.485 0.484 0.483 0.483 0.513 0.517 0.569	IN 0.951 0.927 0.869 0.829 0.819 0.788 0.7701 0.598 0.561	OUT 0.617 0.622 0.527 0.527 0.522 0.500 0.474 0.462 0.433 0.424	IN 0.358 0.395 0.399 0.397 0.395 0.393 0.393 0.393 0.323	OUT 0.345 0.372 0.364 0.360 0.360 0.348 0.347 0.348 0.348 0.347	TOT	PR0F	VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021 1.174 1.274	1.239 1.204 1.163 1.143 1.138 1.135 1.103 1.103 1.031 0.900 0.852
1 2 3 4 5 6 7 8 9 10 11	IN 0.358 0.385 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 PERCENT SPAN 5.00	0UT 0.461 0.481 0.481 0.484 0.483 0.483 0.513 0.517 0.569 INCI	IN 0.951 0.927 0.866 0.829 0.819 0.788 0.780 0.7701 0.598 0.561	OUT 0.617 0.622 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5	IN 0.358 0.385 0.399 0.398 0.395 0.395 0.392 0.383 0.346 0.323	OUT 0.345 0.372 0.364 0.360 0.348 0.347 0.348 0.349 0.400		PR0F 0.131	VEL R 1.004 1.006 0.945 0.936 0.941 0.914 0.915 1.174 1.274 LOSS FTOT 0.027	MACH NO 1,239 1,204 1,163 1,143 1,138 1,135 1,103 1,103 1,031 0,900 0,852
1 2 3 4 5 6 7 8 9 10 11	IN 0.358 0.385 0.399 0.398 0.397 0.395 0.393 0.392 0.383 0.346 0.323	OUT 0.461 0.481 0.471 0.485 0.484 0.483 0.513 0.547 0.569 INCI MEAN 7.1 655 8.2	IN 0.931 0.927 0.866 0.829 0.819 0.701 0.780 0.701 0.598 0.561 IDENCE SS 4.3 3.4	OUT 0.617 0.622 0.527 0.527 0.522 0.500 0.474 0.462 0.433 0.424	IN 0.358 0.359 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 D-FACT	OUT 0.345 0.372 0.364 0.350 0.360 0.348 0.347 0.348 0.400 0.405	TOT 0.132 0.102 0.048	PR0F	VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021 1.174 1.274	1.239 1.204 1.163 1.143 1.138 1.135 1.103 1.103 1.031 0.900 0.852
12354567891011	IN 0.358 0.385 0.399 0.397 0.395 0.393 0.393 0.346 0.323 PERCENT SPAN 5.00 10.00 40.00	0.461 0.461 0.481 0.485 0.484 0.483 0.513 0.547 0.569 INCI NEAN 7.1 6.5 8.2 9.0	IN 0.931 0.927 0.866 0.829 0.819 0.780 0.701 0.598 0.561 DENCE SS 4.3 3.4 4.3	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5 4.9 5.4 4.6	IN 0.358 0.359 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 D-FACT 0.437 0.426 0.434 0.472	OUT 0.345 0.372 0.364 0.360 0.360 0.348 0.348 0.348 0.400 0.405 EFF 0.822 0.862 0.934 0.948	TOT 0.132 0.102 0.048 0.039	PROF 0.131 0.101 0.048 0.039	VEL R 1.004 1.004 1.004 1.005 0.936 0.940 0.911 0.914 1.021 1.174 1.274 LOSS F TOT 0.027 0.022 0.010 0.008	1.239 1.204 1.163 1.143 1.143 1.138 1.135 1.103 1.103 1.031 0.900 0.852 PARAM PROF 0.027 0.010 0.008
12354567891011	IN 0.358 0.385 0.399 0.397 0.395 0.393 0.346 0.323 PERCENT SPAN 5.00 10.00 40.00 42.50	OUT 0.461 0.481 0.481 0.485 0.484 0.483 0.513 0.547 0.569 INCI	IN 0.951 0.926 0.829 0.819 0.701 0.780 0.701 0.598 0.561 IDENCE SS 4.3 3.4 4.0 4.3	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5 4.9 5.4 4.6 4.8	IN 0.358 0.395 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 D-FACT 0.437 0.426 0.434 0.437	OUT 0.345 0.372 0.364 0.360 0.360 0.348 0.347 0.400 0.405 EFF 0.822 0.862 0.934 0.939	TOT 0.132 0.102 0.048 0.039 0.047	PROF 0.131 0.101 0.048 0.039 0.047	VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021 1.174 1.274 LOSS F TOT 0.027 0.022 0.010 0.008 0.010	MACH NO 1.239 1.204 1.163 1.143 1.138 1.135 1.103 1.031 0.900 0.852 PARAM PROF 0.027 0.022 0.010 0.008 0.010
125456789 1011 RP123456	IN 0.358 0.385 0.399 0.399 0.397 0.395 0.393 0.346 0.323 PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00	0.461 0.461 0.471 0.485 0.484 0.483 0.488 0.513 0.547 0.569 INCI MEAN 7.1 6.5 8.2 9.0 9.5	IN 0.931 0.966 0.829 0.819 0.819 0.701 0.701 0.598 0.561 IDENCE SS 4.3 3.4 4.0 4.3	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5 4.9 5.4 4.6 4.8 5.1	IN 0.358 0.359 0.399 0.397 0.393 0.392 0.383 0.346 0.323 D-FACT 0.437 0.426 0.434 0.472 0.469	OUT 0.345 0.372 0.360 0.360 0.360 0.348 0.347 0.348 0.405 EFF 0.822 0.862 0.934 0.939 0.914	TOT 0.132 0.102 0.048 0.039 0.047 0.068	PROF 0.131 0.101 0.048 0.039 0.047 0.068	VEL R 1.004 1.004 1.004 1.094 0.945 0.940 0.911 0.916 1.021 1.174 1.274 LOSS F TOT 0.027 0.022 0.010 0.008 0.014	MACH NO 1.239 1.204 1.163 1.143 1.138 1.135 1.100 1.031 0.900 0.852 PARAM PROF 0.027 0.022 0.010 0.008 0.010
125456789 1011 RP1234567	IN 0.358 0.385 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 PERCENT SPAN 5.00 10.00 40.00 42.50 47.50	OUT 0.461 0.481 0.481 0.485 0.484 0.483 0.488 0.513 0.547 0.569 INCI NEAN 7.11 6.5 8.2 9.0 9.2 9.4	IN 0.931 0.929 0.866 0.829 0.819 0.701 0.780 0.701 0.598 0.561 IDENCE SS 4.3 3.4 4.0 4.3 4.4	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5 4.9 5.4 4.6 4.8 5.1	IN 0.358 0.398 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 D-FACT 0.426 0.434 0.472 0.469 0.501	OUT 0.345 0.372 0.360 0.360 0.360 0.347 0.348 0.381 0.400 0.405 EFF 0.822 0.862 0.934 0.948 0.934 0.948	TOT 0.132 0.102 0.048 0.039 0.047 0.068 0.090	PROF 0.131 0.101 0.048 0.039 0.047 0.068 0.090	VEL R 1.004 1.004 1.005 0.945 0.940 0.911 0.916 1.021 1.174 1.274 LOSS F TOT 0.027 0.022 0.010 0.008 0.010 0.014 0.020	MACH NO 1,239 1,204 1,163 1,143 1,143 1,138 1,135 1,100 1,031 0,900 0,852 VARAM PROF 0,027 0,010 0,008 0,010 0,010 0,020
1254567891011 RP12345678	IN 0.358 0.398 0.397 0.395 0.393 0.393 0.346 0.323 PERCENT SPAN 5.00 10.00 42.50 45.00 47.50 50.00	OUT 0.461 0.481 0.481 0.485 0.484 0.483 0.513 0.547 0.569 INCI MEAN 7.11 6.5 8.2 9.0 9.2 9.5	IN 0.931 0.927 0.866 0.829 0.819 0.701 0.780 0.701 0.598 0.561 IDENCE SS 4.3 3.4 4.0 4.3 4.1	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5 4.9 5.4 4.6 4.8 5.1 4.3 4.1	IN 0.358 0.359 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 D-FACT 0.437 0.426 0.434 0.472 0.469 0.495 0.508	OUT 0.345 0.372 0.360 0.360 0.360 0.348 0.348 0.348 0.400 0.405 EFF 0.822 0.862 0.934 0.948 0.939 0.914 0.891	TOT 0.132 0.102 0.048 0.039 0.047 0.068 0.090 0.090	PROF 0.131 0.101 0.048 0.039 0.047 0.068 0.090	VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 0.916 1.021 1.174 1.274 LOSS F TOT 0.027 0.010 0.008 0.010 0.014	MACH NO 1.239 1.204 1.163 1.143 1.143 1.155 1.103 1.003 1.031 0.900 0.852 PARAM PROF 0.027 0.010 0.010 0.010 0.010 0.010
125456789 1011 RP1234567	IN 0.358 0.385 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 PERCENT SPAN 5.00 10.00 40.00 42.50 47.50	OUT 0.461 0.481 0.481 0.485 0.484 0.483 0.488 0.513 0.547 0.569 INCI NEAN 7.11 6.5 8.2 9.0 9.2 9.4	IN 0.931 0.929 0.866 0.829 0.819 0.701 0.780 0.701 0.598 0.561 IDENCE SS 4.3 3.4 4.0 4.3 4.4	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5 4.9 5.4 4.6 4.8 5.1	IN 0.358 0.398 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 D-FACT 0.426 0.434 0.472 0.469 0.501	OUT 0.345 0.372 0.360 0.360 0.360 0.348 0.348 0.348 0.400 0.405 EFF 0.822 0.862 0.934 0.948 0.939 0.914 0.891	TOT 0.132 0.102 0.048 0.039 0.047 0.068 0.090 0.090	PROF 0.131 0.101 0.048 0.039 0.047 0.068 0.090	VEL R 1.004 1.004 1.005 0.945 0.940 0.911 0.916 1.021 1.174 1.274 LOSS F TOT 0.027 0.022 0.010 0.008 0.010 0.014 0.020	MACH NO 1.239 1.204 1.163 1.143 1.138 1.138 1.103 1.103 1.031 0.900 0.852 ARAM PROF 0.027 0.022 0.010 0.008 0.010 0.014 0.020 -0.003
125456789 10 11 RP 123456789	IN 0.358 0.385 0.399 0.397 0.395 0.393 0.393 0.346 0.323 PERCENT SPAN 5.00 10.00 40.00 42.50 45.00 70.00	0UT 0.461 0.481 0.487 0.485 0.484 0.483 0.513 0.547 0.569 INC NCAN 7.1 6.52 9.0 9.5 9.5 10.3	IN 0.951 0.927 0.866 0.829 0.819 0.701 0.788 0.761 0.598 0.561 DENCE SS 4.3 3.4 4.3 4.3 4.3	OUT 0.617 0.622 0.573 0.527 0.522 0.500 0.483 0.474 0.462 0.433 0.424 DEV 7.5 4.9 5.4 4.6 4.8 5.1 4.3	IN 0.358 0.358 0.399 0.397 0.395 0.393 0.392 0.383 0.346 0.323 D-FACT 0.437 0.426 0.434 0.472 0.469 0.495 0.501 0.458	OUT 0.345 0.372 0.360 0.360 0.360 0.348 0.348 0.381 0.400 0.405 EFF 0.822 0.862 0.934 0.948 0.939 0.914 0.893 1.013	TOT 0.132 0.102 0.048 0.039 0.047 0.068 0.090 0.090 -0.012 -0.055	PROF 0.131 0.101 0.048 0.039 0.047 0.068 0.090 0.090	VEL R 1.004 1.006 0.945 0.936 0.940 0.911 0.914 1.021 1.174 1.274 LOSS F TOT 0.027 0.022 0.010 0.008 0.010 0.014 0.020 -0.003	MACH NO 1.239 1.204 1.1643 1.143 1.138 1.135 1.103 1.103 1.031 0.900 0.852 ARAM PROF 0.027 0.022 0.008 0.010 0.014 0.020 0.014 0.020 0.014 0.020 0.003 -0.011

(t) Percent of design speed, 70; reading number, 218

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.962 7.872 7.094 6.315 6.121	ABS IN -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	BETAM OUT 48.2 43.9 45.8 46.0 46.8 48.4 45.6 45.6	REL IN 69.0 67.3 64.0 62.8 62.4 62.1 61.5 58.6 56.1	BETAM OUT 57.1 54.1 50.0 45.8 46.2 45.1 44.1 43.3 33.7 22.0 17.8	0TA 10 520.0 519.3 518.8 518.7 518.9 518.8 518.1 518.1 518.5	L TEMP RATIO 1.114 1.111 1.092 1.091 1.090 1.090 1.090 1.080 1.074	TOTAL IN 14.56 14.68 14.70 14.68 14.69 14.69 14.69 14.69	PRESS RATIO 1.348 1.321 1.323 1.313 1.312 1.306 1.308 1.309
RP 1 2 3 4 5 6 7 8 9 10	ABS IN 365.1 389.8 405.1 404.2 404.3 403.1 402.9 394.4 361.9 357.1	VEL 0UT 529.0 545.9 536.3 552.7 542.4 547.1 549.4 550.8 607.3 631.5	REL IN 1017.9 1009.2 923.8 8833.1 873.2 864.2 853.1 843.7 757.0 648.2 616.4	VEL 0UT 649.5 670.7 595.9 552.2 544.4 530.9 507.9 500.1 486.8 456.9 454.9	MERII IN 365.1 389.8 405.1 404.2 404.0 404.3 403.1 402.9 394.4 361.9 337.1	D VEL OUT 352.5 393.1 383.4 385.0 376.8 374.7 364.7 364.2 404.9 423.5 433.1	TAN IN -1.0 -0.55 -0.55 -0.55 -0.55 -0.54 -0.8	G VEL 0UT 394.4 378.7 374.9 396.6 399.2 398.6 411.0 413.2 410.8 435.3 459.7	WHEEL IN 949.2 929.9 829.7 773.6 763.3 751.3 740.7 645.7 537.4 515.3	SPEED OUT 940.0 922.1 831.2 792.4 783.1 774.6 5755.9 681.0 606.8 599.0
RP	ABS M IN	ACH NO OUT	REL M IN	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS
123456789111	0.550 0.553 0.568 0.367 0.367 0.366 0.366 0.358 0.328 0.328	0.458 0.474 0.470 0.485 0.476 0.480 0.482 0.510 0.540 0.563	0.921 0.915 0.839 0.802 0.793 0.784 0.774 0.766 0.687 0.587	0.562 0.582 0.522 0.484 0.477 0.466 0.446 0.439 0.431 0.407	0.330 0.353 0.368 0.367 0.367 0.366 0.366 0.358 0.328	0.305 0.341 0.336 0.338 0.330 0.329 0.320 0.320 0.358 0.377 0.386			0.965 1.008 0.946 0.953 0.933 0.927 0.905 0.904 1.027 1.170 1.285	1.275 1.245 1.168 1.146 1.140 1.135 1.129 1.123 1.052 0.913
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.50 47.50 50.00 70.00 90.00 95.00	INC MEAN 8.7 8.3 9.6 10.5 10.6 11.0 11.2 12.1	1DENCE SS 5.9 5.2 5.7 5.7 5.8 5.8 5.8 5.6 5.4	DEV 8.6 5.8 4.8 3.4 4.7 4.4 4.4 3.9 4.6 4.1	D-FACT 0.505 0.471 0.490 0.517 0.516 0.528 0.552 0.555 0.501 0.445 0.419	EFF 0.767 0.800 0.898 0.910 0.891 0.893 0.873 0.993 1.056 1.092	LOSS 0 TOT 0.191 0.162 0.081 0.077 0.093 0.112 0.108 0.007 -0.067 -0.125	PROF 0.188 0.161 0.081 0.077 0.093 0.093 0.112 0.108 0.007 -0.067	LOSS F TOT 0.038 0.034 0.017 0.017 0.020 0.024 0.024 0.002 -0.013 -0.023	PROF 0.038 0.034 0.017 0.017 0.020 0.020 0.024 0.024 0.002 -0.013

(u) Percent of design speed, 70; reading number, 219

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1	BETAM OUT 61.0 54.5 46.4 47.7 49.0 49.6 51.0 51.3 45.8 48.3	REL IN 71.1 69.4 66.3 65.6 64.6 64.3 64.0 63.6 60.1 57.8	BETAM OUT 60.3 56.7 50.9 47.7 47.3 46.9 46.9 44.5 33.6 23.0 16.4	TOTAL IN 519.6 519.1 518.4 518.3 518.3 518.3 518.3 518.3 518.3	TEMP RATIO 1.136 1.128 1.100 1.095 1.095 1.094 1.094 1.093 1.083 1.074	TOTAL IN 14.59 14.68 14.70 14.71 14.71 14.69 14.71	PRESS RATIO 1.350 1.344 1.330 1.327 1.315 1.311 1.314 1.314 1.304 1.318
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 326.7 550.0 369.9 373.9 374.2 374.1 375.0 371.2 342.2 318.3	VEL OUT 546.1 542.5 536.6 545.0 541.9 544.3 552.1 575.0 599.5 623.2	REL IN 1006.3 994.2 921.3 883.9 873.9 863.0 852.2 843.4 745.1 637.7 597.2	VEL OUT 534.6 574.2 587.3 545.8 527.3 514.5 493.3 483.4 473.5 453.9 432.1	MERII IN 326.7 350.0 369.9 374.2 374.2 374.1 375.0 371.2 342.2 318.3	VEL OUT 265.0 314.9 370.4 367.4 357.8 351.5 342.5 342.5 344.9 594.1 417.8 414.6	TAN IN -0.9 -1.0 -1.1 -1.1 -1.1 -1.1 -0.4 -0.4	G VEL OUT 477.5 441.7 388.4 404.1 411.0 412.5 423.0 431.1 418.6 429.9 465.2	WHEEL IN 950.9 929.6 842.7 779.9 788.7 776.6 764.6 754.4 645.7 537.8 504.9	SPEED OUT 941.7 921.9 844.2 807.8 798.4 788.2 778.0 769.9 681.0 607.3 586.9
RP	ABS M In	ACH NO OUT	REL M IN	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
1 25 4 5 6 7 8 9 10	0.295 0.317 0.335 0.339 0.339 0.339 0.340 0.340 0.309 0.287	0.468 0.467 0.468 0.478 0.477 0.475 0.477 0.484 0.508 0.533 0.555	0.909 0.899 0.835 0.801 0.792 0.782 0.772 0.764 0.675 0.577	0.459 0.495 0.513 0.478 0.462 0.451 0.432 0.424 0.418 0.403 0.385	0.295 0.317 0.335 0.339 0.339 0.339 0.340 0.336 0.309	0.227 0.271 0.325 0.322 0.313 0.308 0.300 0.302 0.348 0.371 0.369			0.811 0.900 1.001 0.983 0.956 0.939 0.916 0.920 1.062 1.221 1.303	1.324 1.290 1.231 1.207 1.200 1.193 1.184 1.179 1.070 0.927 0.874
RP 1 2 3 4 5 6 7 8	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00	INCI MEAN 10.7 10.4 11.9 12.7 12.8 13.0 13.2	DENCE SS 8.0 7.3 7.7 7.9 7.9 8.0 8.0	DEV 11.8 8.4 5.7 5.3 5.7 6.2 6.3 5.7	D-FACT 0.644 0.583 0.503 0.528 0.544 0.552 0.573 0.581	EFF 0.657 0.690 0.850 0.884 0.874 0.865 0.860	LOSS C TOT 0.328 0.286 0.128 0.102 0.112 0.122 0.128	OEFF PROF 0.324 0.284 0.128 0.102 0.112 0.122	LOSS F TOT 0.060 0.057 0.027 0.022 0.024 0.026 0.027	PARAM PROF 0.059 0.057 0.027 0.022 0.024 0.026 0.027

(v) Percent of design speed, 60; reading number, 222

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS 1N -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 22.1 22.0 24.3 25.1 26.9 28.0 27.6 28.0 31.0	REL IN 63.9 61.9 58.3 56.5 56.1 55.8 55.4 52.2 49.1	BETAM OUT 55.0 54.0 50.1 47.4 46.7 45.0 44.8 35.2 24.0 19.1	TOTAL IN 519.1 519.0 518.7 518.5 518.5 518.5 518.5 518.6 518.5	L TEMP RATIO 1.050 1.048 1.043 1.043 1.044 1.046 1.048 1.048 1.048 1.048	TOTAL IN 14.53 14.67 14.71 14.72 14.71 14.71 14.71 14.71 14.70 14.69	PRESS RATIO 1.162 1.152 1.149 1.147 1.150 1.154 1.153 1.168 1.176 1.183
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 399.9 427.5 446.9 448.5 447.6 448.3 447.7 446.9 395.4 368.6	VEL OUT 475.7 479.1 488.2 492.3 494.7 503.5 505.9 514.6 589.7 603.1	REL IN 909.2 906.2 850.5 818.7 811.2 803.4 794.8 786.9 715.2 612.8 575.0	VEL 0UT 768.0 756.2 705.5 663.3 653.0 635.0 635.0 521.4 587.2 553.0 527.3	MERII IN 399.9 427.5 446.9 448.5 447.6 448.3 447.2 446.9 438.7 395.4 368.6	0 VEL 0UT 440.6 444.0 452.5 448.6 448.1 449.2 446.2 480.0 505.3 498.2	TAN IN -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	G VEL 0UT 179.3 179.9 183.3 202.7 209.5 227.5 227.5 238.7 257.2 303.8 339.9	HHEEL IN 816.2 798.7 723.3 684.5 676.2 666.3 656.7 647.4 564.5 467.9	SPEED OUT 808.3 792.0 724.6 691.3 684.5 676.2 660.6 595.4 528.5 512.7
RP	ABS M In	ACH NO OUT	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4	0.365 0.389 0.407 0.408	0.425 0.427 0.436	0.825 0.824 0.774	0.683 0.673 0.630 0.593	0.363 0.389 0.407	0.392 0.395 0.404			1.102 1.039 1.013	0.996 0.965 0.925
2 5 6 7 8 9 10	0.408 0.408 0.407 0.407 0.399 0.359 0.334	0.440 0.442 0.450 0.452 0.460 0.488 0.530 0.542	0.745 0.739 0.732 0.724 0.717 0.651 0.556	0.584 0.567 0.554 0.555 0.527 0.497 0.474	0.408 0.408 0.407 0.407 0.399 0.359	0.401 0.401 0.401 0.399 0.408 0.430 0.455 0.448			1.000 1.001 1.002 0.999 1.021 1.094 1.278 1.352	0.910 0.909 0.905 0.902 0.899 0.850 0.743

(w) Percent of design speed, 60; reading number, 223

RP 1 2 3 4 5 6 7 8 9 10	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 31.6 30.9 31.6 34.1 36.0 36.2 35.7 36.8 38.8 40.5	RELL IN 66.1 64.1 59.3 59.1 58.6 58.4 55.4 53.4	BETAM 0UT 55.4 53.5 50.6 47.6 46.2 45.0 44.9 43.6 35.4 23.3 18.3	TOTAL IN 519.3 519.1 518.8 518.7 518.6 518.7 518.5 518.4 518.6 518.4	TEMP RATIO 1.069 1.056 1.056 1.056 1.058 1.058 1.058 1.055 1.055	TOTAL IN 14.57 14.67 14.71 14.71 14.71 14.71 14.71 14.71 14.70 14.68	PRESS RATIO 1.210 1.209 1.195 1.195 1.196 1.196 1.187 1.193 1.192 1.192 1.212
RP 1 2 3 4 5 6 7 8 9 10	ABS IN 362.6 386.8 400.0 400.8 402.2 399.5 399.8 399.4 390.2 352.3 328.6	VEL 0UT 459.8 472.3 465.6 473.5 481.5 484.0 478.7 487.3 509.4 550.4	REL IN 893.5 886.3 828.1 794.8 788.3 777.5 768.2 761.1 686.4 587.0 551.4	VEL OUT 689.8 681.5 624.6 586.1 576.0 553.9 544.9 546.0 500.4 467.2 457.6	MERI IN 362.6 386.8 400.0 400.2 399.5 399.8 399.4 390.4 352.3 328.6	D VEL OUT 391.7 405.2 396.7 395.6 399.5 391.4 386.2 407.7 429.0 434.5	TAN 1N -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.2 -0.2	G VEL OUT 240.8 242.6 243.7 260.4 270.1 284.7 282.8 284.6 305.3 344.8 370.9	WHEEL IN 816.4 797.1 724.8 686.0 677.7 666.8 655.7 647.6 564.5 469.3	SPEED 0UT 808.5 790.5 726.1 692.8 686.0 676.7 667.2 660.9 595.4 530.0 514.5
₽₽	ABS M	ACH NO		ACH NO	MERID M					PEAK SS
		OUT	IN	OUT	IN	OUT			VEL R	MACH NO
1 2 3 4 5 6 7 8 9 10	0.328 0.351 0.363 0.364 0.365 0.363 0.363 0.363 0.354 0.319	0.405 0.417 0.413 0.413 0.420 0.427 0.429 0.424 0.433 0.492 0.510	0.809 0.803 0.751 0.716 0.706 0.697 0.691 0.623 0.531 0.498	0UT 0.607 0.602 0.554 0.520 0.511 0.491 0.483 0.485 0.445 0.418 0.409	IN 0.328 0.351 0.363 0.365 0.363 0.363 0.363 0.363 0.363	OUT 0.345 0.358 0.352 0.351 0.354 0.347 0.342 0.351 0.363 0.383			VEL R 1.080 1.048 0.992 0.987 0.991 0.986 0.991 1.045 1.218 1.322	1.038 1.005 0.971 0.954 0.951 0.947 0.947 0.948 0.938 0.772 0.731

(x) Percent of design speed, 60; reading number, 224

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 40.0 36.7 36.7 39.3 40.2 41.8 41.4 40.6 41.3	RELL IN 67.7 65.9 62.9 61.5 61.0 60.6 60.2 57.5 55.1	BETAM 0UT 56.0 54.0 51.1 47.3 46.4 45.8 45.4 44.2 35.8 23.9 17.5	TOTAL IN 519.3 519.1 518.6 518.3 518.8 518.8 518.8 518.8 518.5	TEMP RATIO 1.076 1.073 1.063 1.063 1.063 1.064 1.064 1.058 1.059	TOTAL IN 14.60 14.68 14.70 14.71 14.71 14.71 14.70 14.70 14.69	PRESS RATIO 1.224 1.228 1.210 1.212 1.211 1.203 1.204 1.205 1.208 1.221
RP 1 2 3 4 5 6 7 8 9 10	ABS IN 335.5 358.6 371.7 372.0 371.5 371.5 361.4 328.5 308.9	VEL 0UT 454.2 466.8 456.6 472.0 474.4 474.9 471.4 476.2 498.6 534.9 559.0	RELL IN 883.0 876.8 815.5 782.0 772.8 766.0 757.1 748.0 671.8 574.1	VEL 0UT 622.9 635.9 583.3 542.6 520.3 500.4 448.6 4466.8 439.7 423.1	MERII IN 335.5 358.6 371.7 372.9 371.5 371.5 361.4 328.5 308.9	D VEL OUT 347.9 374.1 366.2 366.2 366.9 362.7 351.2 357.5 378.8 403.5	TAN IN -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.2 -0.2	G VEL 0UT 292.0 279.1 272.8 295.3 300.7 306.6 314.6 314.6 353.0 386.8	HHEEL IN 816.5 799.9 725.5 687.1 669.7 659.3 648.9 566.0 470.6 442.3	SPEED OUT 808.6 793.2 726.8 693.9 685.4 670.6 662.2 597.0 531.4 514.1
RP	ABS M IN	ACH NO OUT	REL M IN	ACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4 5 6 7 8	0.303 0.325 0.337 0.338 0.337 0.336 0.337	0.398 0.410 0.403 0.417 0.420	0.798 0.793 0.739 0.709 0.700 0.694	0.546 0.559 0.515 0.480 0.470 0.460	0.303 0.325 0.337 0.338 0.337	0.305 0.329 0.325 0.326 0.325	ı		1.037 1.043 0.985 0.987 0.986	1.068 1.041 1.001 0.982 0.978
9 10 11	0.337 0.327 0.297 0.279	0.416 0.421 0.443 0.477 0.498	0.686 0.678 0.608 0.519 0.487	0.442 0.441 0.414 0.392 0.377	0.356 0.337 0.337 0.327 0.297 0.279	0.310 0.316 0.336 0.358 0.360			0.976 0.945 0.962 1.048 1.223 1.306	0.977 0.971 0.965 0.907 0.789 0.743

(y) Percent of design speed, 60; reading number, 226

	, رب	. 0. 00.	0. 4.		pood, c	,	gc			
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 47.8 42.0 40.8 42.6 43.3 44.2 46.3 46.3 44.4 46.4	REL IN 69.4 67.5 64.7 63.0 63.0 62.4 62.1 59.1 56.7	BETAM OUT 57.2 54.7 51.2 47.5 47.4 46.8 45.7 44.7 35.5 23.3	TOTAL IN 518.3 518.5 518.8 518.2 519.4 519.1 518.8 518.6 518.5	TEMP RAT10 1.086 1.079 1.068 1.067 1.068 1.067 1.068 1.062 1.062	TOTAL IN 14.60 14.68 14.71 14.70 14.70 14.71 14.71 14.70 14.69	PRESS RAT10 1.234 1.234 1.222 1.224 1.218 1.215 1.213 1.213 1.214 1.227
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 307.9 330.0 343.5 344.9 345.2 341.1 345.0 344.2 338.3 287.0	VEL OUT 454.5 459.1 454.9 464.8 464.6 468.3 471.0 494.8 526.0 549.7	REL IN 874.2 861.5 802.5 769.4 761.0 750.4 744.2 735.2 659.2 561.4 528.7	VEL 0UT 563.1 590.4 550.0 511.1 499.5 486.0 463.9 457.6 441.1 449.5 396.9	MER 8 307.9 330.0 343.5 344.9 345.2 341.1 345.0 344.2 338.3 308.4 287.0	0 VEL 0UT 505.2 341.3 344.3 345.2 338.3 333.0 323.7 325.2 359.2 379.1	TAN IN -0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.2	G YEL OUT 336.8 307.1 297.3 317.4 318.7 324.0 338.4 340.4 340.8 340.7 398.1	MHEEL 817.9 795.5 725.0 687.5 677.9 668.1 659.1 649.4 565.5 468.9 443.8	SPEED 0UT 810.0 788.9 726.2 694.3 686.2 670.7 662.7 596.4 529.6 515.8
RP.	ABS M	ACH NO OUT	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.278 0.298 0.311 0.312 0.312 0.312 0.312 0.311 0.306 0.278	0.397 0.402 0.400 0.413 0.410 0.413 0.415 0.415 0.438 0.468 0.489	0.789 0.779 0.726 0.696 0.689 0.678 0.673 0.665 0.596 0.507	0.492 0.517 0.484 0.451 0.441 0.428 0.409 0.403 0.391 0.364 0.353	0.278 0.298 0.311 0.312 0.312 0.312 0.311 0.306 0.278 0.278	0.267 0.299 0.303 0.304 0.298 0.293 0.285 0.287 0.318 0.335			0.991 1.034 1.002 1.001 0.980 0.976 0.938 0.945 1.062 1.220	1.104 1.065 1.028 1.009 1.005 1.005 1.005 0.995 0.990 0.924 0.799 0.761
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 90.00	INCI MEAN 9.1 8.5 10.2 11.1 11.2 11.7 11.6 11.8 12.6	DENCE SS 6.3 5.4 6.3 6.3 6.4 6.5 6.1	DEV 8.7 6.3 6.1 5.8 6.0 5.7 5.8	D-FACT 0.498 0.444 0.438 0.465 0.475 0.486 0.515 0.517 0.468 0.417	0.718 0.785 0.863 0.862 0.861 0.844 0.847 0.831	LOSS 0 TOT 0.225 0.163 0.103 0.194 0.112 0.130 0.128 0.147 0.067 0.035	PROF 0.225 0.163 0.103 0.094 0.112 0.130 0.128 0.147 0.067	LOSS F TOT 0.045 0.034 0.021 0.020 0.024 0.027 0.027 0.031	PROF 0.045 0.034 0.021 0.020 0.024 0.027 0.027 0.031 0.014

(z) Percent of design speed, 60; reading number, 227

	•			· • · J · · ·	, .	,		,		
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 63.7 56.9 45.7 47.0 48.1 50.1 50.5 46.5 46.1	REL IN 72.1 70.4 67.2 65.8 65.5 65.1 64.8 64.6 61.3 58.5	BETAM OUT 61.0 57.5 51.3 47.9 47.7 47.2 46.6 45.6 36.1 24.0	TOTAL IN 519.7 519.4 518.8 518.6 518.4 518.9 517.5 519.3 519.3	RATIO 1.107 1.099 1.075 1.072 1.072 1.071 1.071 1.070 1.066 1.060	TOTAL IN 14.62 14.68 14.71 14.70 14.71 14.71 14.70 14.70 14.69	PRESS RAT10 1.254 1.245 1.233 1.233 1.228 1.224 1.220 1.217 1.217 1.217
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 264.6 284.7 306.0 309.2 309.4 309.7 307.0 308.7 287.8 264.6	VEL 0UT 477.2 467.3 458.2 468.1 465.8 463.1 463.4 464.7 484.8 515.2 539.3	REL 1N 859.0 768.6 755.1 747.0 735.8 727.9 716.7 643.5 551.0	VEL 0UT 436.2 475.0 476.2 461.5 446.4 433.0 423.0 413.6 390.9 373.9	MER II 264.6 284.7 306.0 309.2 309.4 309.7 307.0 308.7 287.8 264.6	D VEL 0UT 211.6 255.1 319.9 319.4 310.9 303.4 297.4 295.9 334.0 357.1	TAN 1N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	G VEL OUT 427.7 391.5 328.1 342.2 346.8 349.9 355.3 358.4 351.4 404.1	HHEEL IN 817.1 798.8 726.6 688.6 679.6 667.4 658.6 647.4 564.4 469.7	SPEED OUT 809.2 792.2 727.8 695.5 687.9 677.3 670.1 660.6 595.3 530.4 515.2
RP	ABS M	ACH NO OUT	REL M	ACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.238 0.257 0.276 0.279 0.279 0.279 0.279 0.277 0.279 0.259 0.259	0.413 0.406 0.402 0.412 0.410 0.408 0.408 0.428 0.457 0.479	0.773 0.764 0.712 0.682 0.674 0.664 0.657 0.648 0.581 0.497	0.577 0.412 0.449 0.419 0.406 0.393 0.381 0.373 0.365 0.347 0.332	0.238 0.257 0.276 0.279 0.279 0.279 0.279 0.277 0.279 0.259 0.259	0.183 0.221 0.281 0.281 0.273 0.267 0.262 0.261 0.295 0.317 0.317			0.800 0.896 1.045 1.033 1.004 0.981 0.961 0.964 1.082 1.241	1.154 1.125 1.070 1.047 1.042 1.032 1.027 1.022 0.946 0.815 0.775
RP 1 2 3 4 5 6 7 8 9 10 11	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 90.00	INCI MEAN 11.7 11.4 12.7 13.5 13.7 13.9 14.1 14.4 14.8	DENCE SS 9.0 8.3 8.6 8.7 8.8 8.8 9.0 8.3 7.0	DEV 12.5 9.2 6.2 5.5 6.9 6.8 6.5	D-FACT 0.676 0.607 0.489 0.513 0.527 0.540 0.554 0.560 0.503	0.626 0.653 0.820 0.851 0.842 0.834 0.821 0.820 0.869 0.962	LOSS 0 TOT 0.367 0.327 0.152 0.131 0.140 0.165 0.167 0.140 0.050	OEFF PROF 0.367 0.327 0.152 0.131 0.140 0.165 0.167 0.140 0.050	LOSS I TOT 0.066 0.064 0.031 0.029 0.031 0.035 0.029 0.010	PARAM PROF 0.066 0.064 0.031 0.028 0.029 0.031 0.034 0.035 0.035

TABLE V. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR ROTOR 6

(aa) Percent of design speed, 50; reading number, 229

	(40	17 1 61 66		icsigii .	specu,	<i>5</i> 0, 100	aumig m	umber,	227	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.852 7.714 6.726 5.592 5.266	0UT 9.623 9.429 9.429 9.650 8.261 9.164 8.067 7.969 7.872 7.094 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	BETAM OUT 16.8 17.2 18.2 19.8 20.2 22.4 23.6 23.4 25.1 28.4 31.3	REL IN 62.5 61.4 57.9 56.3 55.5 54.9 54.6 54.1 51.5 49.1	BETAM OUT 55.3 54.0 50.5 47.8 46.2 44.7 43.5 41.7 24.5 20.1	TOTAL IN 519.6 518.9 518.7 517.6 519.7 518.0 518.8 518.6 518.6	TEMP RATIO 1.027 1.027 1.026 1.026 1.028 1.030 1.031 1.030 1.031	TOTAL IN 14.59 14.67 14.71 14.71 14.71 14.71 14.71 14.71 14.70 14.69	PRESS RATIO 1.084 1.089 1.089 1.090 1.090 1.090 1.097 1.106 1.112
RP 1 2 3 4 5 6 7 8 9 10 11	ABS 1N 345.4 364.0 379.2 381.6 378.2 382.0 379.7 381.8 375.5 335.2	VEL 0UT 392.7 410.4 413.2 420.8 425.3 427.9 442.2 468.7 512.9	REL N 747.5 759.2 714.2 688.3 668.0 664.1 656.0 650.9 602.7 516.9 485.7	VEL OUT 660.1 666.3 617.6 588.5 570.7 540.6 543.6 518.4 486.6	MERII 1N 345.4 379.2 381.6 379.2 382.0 379.7 381.8 375.5 338.2 317.1	O VEL 0UT 375.9 392.0 392.5 395.2 394.9 303.3 391.9 405.7 424.3 442.8 438.0	TAN IN -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.2 -0.2	G VEL OUT 113.6 121.6 129.1 142.2 145.2 161.8 171.6 175.9 199.1 239.5 266.8	WHEEL IN 662.6 666.9 572.5 550.4 542.9 534.6 526.9 471.2 390.7 367.8	SPEED OUT 656.2 660.4 605.9 578.2 557.1 551.0 543.9 537.7 497.0 441.2 427.5
RP.	ABS M	ACH NO OUT	REL M	ACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
1 25 4 5 6 7 8 9 10	0.312 0.329 0.344 0.346 0.343 0.346 0.344 0.346 0.346 0.346	0.351 0.368 0.370 0.377 0.378 0.381 0.383 0.396 0.421 0.453	0.675 0.687 0.647 0.624 0.606 0.601 0.595 0.590 0.546 0.467 0.439	0.590 0.597 0.554 0.528 0.512 0.495 0.485 0.487 0.466 0.438 0.420	0.312 0.329 0.344 0.346 0.343 0.344 0.346 0.340 0.366	0.336 0.351 0.352 0.354 0.355 0.352 0.351 0.363 0.381 0.399 0.394			1.088 1.077 1.035 1.036 1.044 1.029 1.032 1.063 1.130 1.310	0.783 0.794 0.765 0.751 0.725 0.719 0.718 0.713 0.700 0.614 0.579
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 50.00 70.00 90.00	INCI MEAN 2.2 2.3 3.5 4.0 3.7 3.6 3.8 4.9 4.9 5.2	DENCE SS -0.6 -0.7 -0.8 -1.2 -1.5 -1.4 -1.5 -1.6 -2.4	DEV 6.8 5.6 5.4 5.4 4.7 4.0 3.8 25.3 7.0 6.4	D-FACT 0.173 0.180 0.195 0.211 0.214 0.242 0.256 0.228 0.162 0.155	0.854 0.920 0.955 0.961 0.966 0.881 0.846 0.880 0.983 1.012	LOSS C TOT 0.051 0.027 0.016 0.015 0.013 0.053 0.053 0.059 0.010	PROF 0.051 0.027 0.016 0.015 0.013 0.053 0.073 0.059 0.010	LOSS (TOT 0.011 0.006 0.003 0.003 0.003 0.012 0.016 0.013 0.002 -0.002	PARAM PROF 0.011 0.006 0.003 0.003 0.003 0.012 0.016 0.015 0.002 -0.002

(bb) Percent of design speed, 50; reading number, 230

	(00)	, , , , ,	iit oi u	Jaigii 3	pecu, 2	o, real	ing ne	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	230	
RP 1 2 3 4 5 6 7 8 9	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 21.7 20.9 21.6 23.4 24.2 25.5 27.5 26.3 28.5 31.8	REL IN 64.4 62.3 58.3 57.3 56.7 56.7 56.9 520.4 50.6	BETAM OUT 55.1 53.8 50.2 47.6 46.4 45.8 44.1 43.3 35.3 24.0 19.8	TOTA IN 517.9 518.3 518.7 518.6 517.4 520.0 518.7 518.7	TEMP RATIO 1.032 1.030 1.029 1.030 1.031 1.032 1.032 1.034 1.031 1.033	TOTAL IN 14.58 14.69 14.70 14.70 14.70 14.71 14.70 14.71 14.70 14.69	PRESS RATIO 1.105 1.103 1.096 1.101 1.096 1.103 1.103 1.107 1.113 1.120 1.124
RP 1 23 4 5 6 7 8 9 10 11	ABS IN 525.4 549.7 364.2 367.6 367.6 367.4 566.0 557.2 357.2 303.3	VEL 0UT 395.9 403.2 397.6 417.9 407.6 417.2 421.5 429.0 452.4 452.4 502.0	RELL 1N 753.8 749.7 692.8 680.6 662.6 668.5 658.5 591.6 508.8 477.9	VEL OUT 642.7 637.3 577.3 560.8 539.5 540.0 528.6 487.3 459.7	MER1 18.4 348.7 364.2 367.7 367.6 367.4 366.9 357.2 324.2 303.3	D VEL OUT 367.9 376.6 369.5 378.0 371.8 376.6 375.6 384.5 384.5 397.8 420.0	TAN 1N -0.2 -0.2 -0.3 -0.2 -0.3 -0.2 -0.3 -0.2	G VEL OUT 146.2 143.9 146.6 163.8 166.9 179.5 194.4 190.4 215.6 255.8 278.9	WHEEL IN 679.8 663.5 589.1 572.5 551.0 558.2 547.2 541.7 471.3 392.0 369.1	SPEED 0UT 673.2 658.0 590.1 578.1 557.8 566.5 556.8 552.8 497.1 442.7 429.0
RP	abs m In	IACH NO OUT	REL M	IACH NO OUT	MERID M	ACH NO OUT				PEAK SS MACH NO
2545678910	0.294 0.316 0.550 0.553 0.553 0.552 0.552 0.525 0.525 0.293	0.554 0.561 0.355 0.366 0.364 0.377 0.383 0.406 0.442 0.451	0.682 0.678 0.627 0.617 0.600 0.605 0.597 0.592 0.535 0.460	0.574 0.570 0.516 0.502 0.483 0.423 0.423 0.437 0.437 0.413 0.398	0.294 0.316 0.530 0.333 0.333 0.333 0.332 0.332 0.323 0.274	0.529 0.357 0.350 0.558 0.537 0.335 0.343 0.357 0.377			1.131 1.080 1.015 1.028 1.012 1.025 1.025 1.025 1.048 1.114 1.295 1.376	0.836 0.806 0.749 0.764 0.734 0.761 0.754 0.753 0.712 0.624 0.590
RP 234567891011	PERCENT SPAN 5.00 10.00 40.00 42.50 45.00 47.50 50.00 70.00 95.00	INCI MEAN 4.13 5.9 5.5 5.5 6.3 6.6	DENCE SS 1.4 0.2 -0.3 0.2 -0.4 0.5 0.2 0.3 -0.2 -1.1	DEV 6.4.0391355551	D-FACT 0.219 0.220 0.237 0.252 0.265 0.275 0.299 0.280 0.273 0.209	0.899 0.941 0.915 0.938 0.856 0.875 0.897 0.865 0.997 0.985 0.968	LOSS C TOT 0.041 0.023 0.036 0.028 0.070 0.063 0.063 0.073 0.002 0.013	OEFF PROF 0.041 0.023 0.035 0.028 0.070 0.063 0.051 0.073 0.002	LOSS P TOT 0.009 0.005 0.008 0.006 0.015 0.011 0.016 0.000 0.002	PROF 0.009 0.005 0.006 0.015 0.013 0.011 0.016 0.000 0.002

TABLE V. - Continued. BLADE-ELEMENT PERFORMANCE AT BLADE EDGES FOR ROTOR 6

(cc) Percent of design speed, 50; reading number, 231

	,00,			j >P	,	,		,		
RP 1 2 3 4 5 6 7 8 9 10 11	RADI IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	QUT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 33.6 31.7 32.6 34.8 35.6 36.6 38.3 37.7 37.9 39.5 41.7	REL IN 66.4 64.8 61.9 60.6 60.2 60.0 59.6 56.7 54.7	BETAM OUT 54.7 53.5 49.7 47.9 46.4 45.8 45.3 44.0 36.0 23.6 18.5	TOTAL IN 517.8 518.6 519.3 518.7 521.3 518.1 520.0 518.2 518.5 518.5	TEMP RATIO 1.050 1.044 1.039 1.037 1.041 1.040 1.042 1.041 1.037 1.038	TOTAL IN 14.62 14.69 14.70 14.71 14.71 14.70 14.71 14.69	PRESS RATIO 1.143 1.139 1.134 1.133 1.136 1.133 1.131 1.133 1.131 1.133 1.131
RP 1 2 3 4 5 6 7 8 9 10 11	ABS 1N 289.8 305.6 316.2 318.1 318.1 317.3 317.6 308.6 279.5 261.2	VEL OUT 380.5 384.5 386.6 389.8 398.1 396.3 395.8 402.2 417.6 454.0 468.4	REL IN 724.7 717.8 671.2 653.0 648.6 640.4 635.1 628.3 481.1 452.3	VEL OUT 547.9 549.9 503.9 477.3 469.6 441.5 442.3 407.4 382.4 368.6	MERII 1N 289.8 305.6 316.2 316.1 318.3 318.1 317.3 317.3 279.5 261.2	0 VEL 0UT 516.9 327.2 325.6 319.9 323.7 318.2 318.4 318.3 329.7 350.3 349.5	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	G VEL 0UT 210.6 201.9 208.3 222.7 231.7 236.4 245.5 245.5 245.9 256.2 288.8 311.9	IN 664.0 649.2 591.8 571.2 564.9 555.6 549.9 541.9 469.8	SPEED 0UT 657.6 643.8 592.9 576.8 571.9 563.8 559.5 553.0 495.5 442.0 429.0
RP	ABS M	ACH NO OUT	REL M	ACH NO	MERID M	ACH NO			MERID VEL R	PEAK SS MACH NO
1 25 4 5 6 7 8 9 10	0.262 0.276 0.285 0.285 0.287 0.287 0.286 0.287 0.279 0.252	0.557 0.341 0.345 0.347 0.353 0.353 0.351 0.358 0.372 0.406 0.419	0.654 0.648 0.606 0.590 0.584 0.579 0.573 0.568 0.508 0.434	0.485 0.488 0.448 0.425 0.416 0.392 0.393 0.363 0.342 0.330	0.262 0.276 0.285 0.285 0.287 0.286 0.287 0.279 0.252 0.235	0.280 0.290 0.289 0.285 0.287 0.283 0.275 0.283 0.294 0.313			1.093 1.071 1.030 1.012 1.017 1.000 0.978 1.002 1.068 1.253 1.338	0.848 0.826 0.799 0.807 0.803 0.800 0.799 0.797 0.744 0.651
RP 1 2 3 4 5 6 7 8	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50	INCI MEAN 6.1 5.8 7.5 8.7 8.8 9.2	DENCE SS 3.4 2.8 3.3 4.0 3.9 3.9	DEV 6.1 5.1 4.6 5.5 4.9 5.2 5.6	D-FACT 0.351 0.336 0.352 0.377 0.388 0.401 0.423		LOSS (TOT 0.150 0.084 0.037 0.015 0.063 0.063		LOSS 1 TOT 0.032 0.018 0.008 0.003 0.013 0.014	PROF 0.032 0.018 0.008 0.003 0.013 0.014

(dd) Percent of design speed, 50; reading number, 232

RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.623 9.623 9.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT	REL IN 69.1 67.5 64.6 62.9 63.0 62.2 61.9 61.4 58.7 56.3	BETAM OUT 57.0 54.3 51.4 45.8 46.7 45.2 45.0 43.0 33.9 21.3 17.5	TOTA IN 519.3 519.1 518.8 518.4 518.8 518.1 518.2 519.3 518.4 518.5	L TEMP RAT10 1.057 1.053 1.046 1.046 1.046 1.044 1.045 1.044	TOTAL IN 14.63 14.69 14.70 14.70 14.70 14.71 14.70 14.70 14.70 14.70	PRESS RATIO 1.154 1.157 1.146 1.148 1.143 1.139 1.139 1.143 1.143 1.143
RP 1 23 4 5 6 7 8 9 10 11	ABS IN 259.8 276.0 287.4 286.7 288.8 287.1 285.8 287.6 280.5 255.6 237.3	VEL 0UT 375.2 386.9 378.1 395.1 395.2 389.5 385.2 394.0 415.2 445.4	RELL IN 729.7 721.7 670.0 629.2 635.8 615.4 607.3 600.9 540.3 460.4 438.9	VEL 0UT 491.9 503.6 470.9 428.7 405.5 389.6 367.8 368.5 358.5	MERI IN 259.8 276.0 287.4 286.8 287.1 285.8 287.6 280.5 255.6 237.3	D VEL OUT 268.0 293.6 293.7 299.2 294.0 285.8 275.4 283.5 305.7 324.1	TAN IN -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	G VEL 0UT 262.6 251.9 238.1 258.1 264.6 269.4 273.6 281.0 305.6 328.2	HHEEL IN 681.7 666.6 605.0 559.9 564.2 535.6 527.4 461.6 382.7 369.0	SPEED OUT 675.1 661.1 606.1 555.4 573.1 552.2 545.0 538.2 486.8 432.2 9
RP	ABS M IN	ACH NO OUT	REL M In	ACH NO	MERID M	ACH NO				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.254 0.249 0.259 0.259 0.260 0.259 0.258 0.258 0.253 0.231	0.330 0.342 0.335 0.350 0.348 0.345 0.349 0.369 0.369 0.409	0.657 0.650 0.604 0.568 0.573 0.555 0.548 0.542 0.487 0.415	0.433 0.445 0.417 0.380 0.380 0.360 0.346 0.344 0.328 0.311	0.234 0.249 0.259 0.259 0.260 0.259 0.258 0.259 0.253 0.214	0.256 0.259 0.260 0.265 0.260 0.253 0.244 0.251 0.272 0.289			1.032 1.064 1.022 1.043 1.018 0.995 0.963 0.986 1.090 1.268 1.348	0.913 0.890 0.854 0.814 0.835 0.806 0.801 0.793 0.748 0.648 0.633
RP 1 2 3 4 5 6 7 8 9 10	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 45.00 47.50 50.00 70.00 90.00	INCI MEAN 8.8 8.5 10.2 10.6 11.2 10.1 11.1 12.2 12.1 13.2	DENCE SS 6.1 5.5 6.0 5.8 6.3 5.9 5.9 5.8 5.7 4.8	DEV 8.5 6.0 6.2 3.4 5.2 4.5 5.3 4.2 4.1 3.9	D-FACT 0.459 0.428 0.415 0.448 0.454 0.474 0.494 0.492 0.456 0.393 0.393	0.729 0.808 0.873 0.870 0.864 0.847 0.855 0.843 0.896 0.974	LOSS C TOT 0.200 0.134 0.088 0.102 0.105 0.124 0.117 0.130 0.102 0.032 -0.013	PROF 0.200 0.134 0.088 0.102 0.105 0.124 0.117 0.130 0.102	LOSS P TOT 0.040 0.028 0.018 0.022 0.027 0.025 0.028 0.028 0.022	PROF 0.040 0.028 0.018 0.022 0.027 0.025 0.028 0.022 0.006

(ee) Percent of design speed, 50; reading number, 233

	(66	1 61 661	it or ut	zsiyii s	pecu, ,	u; i cai	Jing ne	muuei,	233	
RP 1 2 3 4 5 6 7 8 9 10 11	RAD IN 9.717 9.508 8.635 8.180 8.065 7.949 7.832 7.714 6.726 5.592 5.266	0UT 9.623 9.429 8.650 8.261 8.164 8.067 7.969 7.872 7.094 6.315 6.121	ABS IN -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.	BETAM OUT 63.7 58.3 45.7 46.9 47.5 48.8 50.1 50.5 46.9 45.9	REL IN 72.8 70.9 68.1 66.3 66.0 65.6 65.3 62.1 59.4	BETAM OUT 61.0 57.7 51.5 46.5 47.8 47.2 46.9 246.9 34.7 24.4 18.1	TOTAL IN 519.6 519.1 518.8 519.0 518.5 517.4 518.7 518.7 518.8	TEMP RATIO 1.075 1.075 1.053 1.050 1.049 1.051 1.050 1.047 1.046 1.041	TOTAL IN 14.64 14.69 14.70 14.70 14.70 14.70 14.70 14.70 14.70	PRESS RATIO 1.175 1.169 1.158 1.155 1.154 1.149 1.147 1.154 1.149 1.155
RP 1 2 3 4 5 6 7 8 9 10 11	ABS IN 212.1 231.1 244.9 248.0 249.2 249.5 249.0 247.8 249.1 215.9	VEL 0UT 399.3 393.6 382.2 390.6 386.7 387.7 384.2 383.3 413.2 429.0	REL IN 715.4 706.5 655.2 613.1 618.9 612.8 602.7 593.1 9456.3 427.5	VEL 0UT 364.2 386.8 428.6 387.5 388.7 376.2 361.1 351.9 343.6 327.9 312.7	MER II 18.1 212.1 231.1 244.9 248.0 249.2 249.0 247.8 249.7 232.1 215.9	VEL 0UT 176.8 206.7 267.1 266.9 261.1 255.4 246.6 243.7 282.3 297.3	TAN 1N -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	G VEL OUT 358.0 335.0 273.3 285.2 285.3 291.7 294.6 295.8 301.7 308.0 331.7	WHEEL IN 683.1 667.4 560.6 566.3 559.6 548.7 538.6 471.7 392.8	SPEED 0UT 676.5 661.9 608.6 566.1 573.3 567.9 558.3 549.6 497.5 443.6 428.7
RP	ABS M	ACH NO OUT	REL M	ACH NO	MERID M	ACH NO OUT				PEAK SS MACH NO
1 2 3 4 5 6 7 8 9 10	0.191 0.208 0.220 0.223 0.224 0.225 0.224 0.225 0.225 0.209 0.194	0.349 0.345 0.345 0.345 0.345 0.343 0.340 0.367 0.382 0.397	0.643 0.635 0.590 0.552 0.557 0.552 0.543 0.535 0.481 0.411	0.318 0.339 0.378 0.345 0.344 0.319 0.312 0.305 0.292 0.279	0.191 0.208 0.220 0.223 0.224 0.225 0.224 0.223 0.225 0.209	0.155 0.181 0.236 0.236 0.231 0.226 0.218 0.216 0.251 0.266 0.265			0.854 0.894 1.090 1.076 1.048 1.024 0.991 0.983 1.130 1.286 1.377	0.974 0.945 0.905 0.853 0.876 0.873 0.856 0.795 0.687
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 30.00 40.00 42.50 47.50 50.00 70.00	INCI MEAN 12.4 11.9 13.6 13.8 14.7 14.8 15.0 15.6	DENCE SS 9.7 8.8 9.1 9.6 9.6 9.6 9.7	DEV 12.4 9.4 6.3 4.1 6.6 7.2 7.3 4.9	D-FACT 0.675 0.624 0.484 0.515 0.516 0.533 0.550 0.557	0.634 0.648 0.819 0.862 0.855 0.824 0.809 0.848	LOSS C TOT 0.353 0.329 0.149 0.122 0.125 0.158 0.175 0.135	OEFF PROF 0.353 0.329 0.149 0.122 0.158 0.175 0.135	LOSS 6 TOT 0.063 0.064 0.031 0.026 0.033 0.036 0.038 0.019	PARAM PROF 0.063 0.064 0.031 0.026 0.026 0.033 0.036 0.028

Axial location,	Hub contour,	Casing contour,
z, in.	r, in.	r, in.
-6. 00 -5. 00 -4. 00 -3. 00 -2. 00 -1. 00 75 0 . 72 1. 20 1. 51 2. 28 2. 60 3. 03 4. 00 4. 40 5. 10 6. 10	3. 450 3. 575 3. 700 3. 850 4. 075 4. 460 4. 590 5. 000 5. 466 5. 750 5. 995 6. 330 6. 460 6. 560 6. 775 6. 840 6. 915 6. 915	9. 900 9. 820 9. 770 9. 720 9. 695

Figure 1. - Compressor flow path.

Figure 2. - Test facility.

Figure 3. - Multiple-circular-arc rotor 6.

(a) Combination total pressure, total temperature, and flow angle probe.

(b) Static-pressure probe; 80 C-shaped wedge.

Figure 4. - Survey probes.

Figure 5. - Circumferential location of measurements.

FIGURE 6. - OVERALL PERFORMANCE FOR ROTOR NO. 6

FIGURE 7 .- RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 6. 100 PERCENT DESIGN SPEED.

FIGURE 7 .-CONTINUED. RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 6. 100 PERCENT DESIGN SPEED.

FIGURE 7 .-CONCLUDED. RADIAL DISTRIBUTION OF PERFORMANCE FOR ROTOR 6. 100 PERCENT DESIGN SPEED.

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6

FIGURE 8. - BLADE ELEMENT PERFORMANCE FOR ROTOR NO. 6-

OFFICIAL BUSINESS

ALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS BOOK

SPACE ADMINISTRATION 421

POSPILASTER: My Underretable (Section 158 Postal Musical) Do Northeturn

The aerenoutied and space activities of the United States shall be conducted to as to contribute ... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration ball provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof." -NATIONAL APPROVAUTICS AND SPACE ACT OF 1958

ASA SCIENTIFIC AND TECHNICAL PUBLICATION

TECHNICAL REPORTS: Scientific and technical information considered important; complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited

distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compdations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular. interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

AERONAUTICS SPACE ADMINISTRATION

Washington, D.C. 20546