A Formalization of the Lévy-Prokhorov Metric in Isabelle/HOL

Michikazu Hirata

Tokyo Institute of Technology

ITP2024. September 12, 2024

↑ Tokyo Institute of Technology

Lévy-Prokhorov Metric

The Lévy-Prokhorov Metric

= A metric between finite measures on a metric space.

A measure μ on X

$$\mu: \Sigma_X \to [0,\infty]$$

$$X: \text{ set}, \quad \Sigma_X \subseteq 2^X: \ \sigma\text{-algebra on } X.$$

Intuitively,
$$\mu(A) = \text{the } \textit{size} \textit{ of } A$$
 (finite measure $\iff \mu(X) < \infty$)

Ex.

The Lebesgue measure
$$\nu$$
 on \mathbb{R}^n $\qquad \nu\left((a_i,b_i]^n\right)=(b_i-a_i)^n$ infinite measure $\left(\nu(\mathbb{R}^n)=\infty\right)$

A probability measure

P(E) = probability E happensfinite measure (P(sample space) = 1)

Motivation

Let
$$\mathcal{P}(M) = \{ \text{all finite measures on } M \}.$$
 $\neq \text{power set}$

$$X$$
 is a Polish space \Longrightarrow So is $\mathcal{P}(X)$

M is a standard Borel space \Longrightarrow So is $\mathcal{P}(M)$

Polish space topological is a space with certain good properties. standard Borel space measurable

 $(\lambda \mu. \int f d\mu)$ continuous $\forall f \in C_b(X)$. Topology on $\mathcal{P}(X)$ is the least one making σ -algebra on $\mathcal{P}(M)$ $(\lambda \mu. \, \mu(A))$ measurable $\forall A \in \Sigma_M$.

 $(C_b(X) = \{f : X \to \mathbb{R}, f \text{ is bounded countinuous}\})$

Why Polish and Standard Borel Spaces?

X: topological space, M: measurable space

X is a Polish space $\stackrel{\mathsf{def}}{\Longleftrightarrow} X$ is separable and completely metrizable M is a standard Borel space $\stackrel{\mathsf{def}}{\Longleftrightarrow} \exists S$: Polish space s.t. S generates M

Ex. \mathbb{R} , \mathbb{N} , and their countable products are Polish (thus standard Borel spaces).

Properties

A Polish space is embedded into a compact space.

A standard Borel space M is either

- countable discrete space or
- $M \cong \mathbb{R}$

- Large deviation theory
 - **3.2.17 Theorem.** (SANOV) Let μ be a probability measure on the Polish space Σ and let $\tilde{\mu}_n \in \mathbf{M}_1(\mathbf{M}_1(\Sigma))$ be the distribution under μ^n of the function \mathbf{L} . in (3.2.11) Also define $\mathbf{H}(\cdot|u)$ as in (3.2.14). Then $\mathbf{H}(\cdot|u)$ is
- Transportation theory

Jean-Dominique Deuschel and Daniel W. Stroock, Large Deviations, 1989.

Probability measures

 δ_x is the Dirac mass at point x.

All measures considered in the text are Borel measures on **Polish** spaces, which are complete, separable metric spaces, equipped with their Borel g-algebra. I shall usually not use the completed g-algebra

Disintegration theorem

Cédric Villani, Optimal Transport: Old and New., 2008.

Theorem 14.D.10. Measure disintegration theorem. Let (X, X) and (Y, Y) be two measurable spaces, and assume that (Y, Y) is Polish. Let λ be a σ -finite measure on $(X \times Y \times X \otimes Y)$ such that the projection λ_X of λ onto $(X \times Y)$ is also

Quasi-Borel spaces

Baccelli et al, Random Measures, Point Processes, and Stochastic Geometry, 2020

where $L(X,M_X)=(X,\Sigma_{M_X})$ and $R(X,\Sigma_X)=(X,M_{\Sigma_X})$. Proposition 15(2) means that the functor R is full and faithful when restricted to standard Borel spaces. Equivalently, $L(R(X,\Sigma_X))=(X,\Sigma_X)$, that is $\Sigma_X=\Sigma_{M_{\Sigma_X}}$ for standard Borel spaces (X,Σ_X) .

[Heunen+, LICS2017]

Lévy-Prokhorov Metric

X is Polish space \Longrightarrow So is $\mathcal{P}(X)$

M is a standard Borel space \Longrightarrow So is $\mathcal{P}(M)$

Need to give a metric on $\mathcal{P}(X)$.

"Metrics" on measures (or distributions)

- Lévy-Prokhorov metric
- Wasserstein metric
- Relative entropy
- etc.

The Lévy-Prokhorov metric

- always being a metric in the mathematical sense
- Detailed lecture notes by Gaans (2002/2003)

Contribution: Polishness of $\mathcal{P}(X)$

$$X$$
 is Polish space \Longrightarrow So is $\mathcal{P}(X)$

X is a Polish space $\stackrel{\mathsf{def}}{\Longleftrightarrow} X$ is separable and completely metrizable

- Step 1. Separability of $\mathcal{P}(X)$
- Step 2. Completeness of $(\mathcal{P}(X), d_{\mathcal{P}(X)})$ Tough!!
 - Prokhorov's theorem
 - Riesz representation theorem (2.1K lines of proofs)
 - Alaoglu's theorem

Step 3.
$$(\mathcal{P}(X), d_{\mathcal{P}(X)})$$
 metrizes $\mathcal{P}(X)$

$$M$$
 is a standard Borel space \Longrightarrow So is $\mathcal{P}(M)$

M is a standard Borel space $\stackrel{\mathsf{def}}{\Longleftrightarrow} \exists S \colon \mathsf{Polish}$ space s.t. S generates M

Show
$$(\mathcal{P}(M), d_{\mathcal{P}(M)})$$
 generates $\mathcal{P}(M)$

We construct the proof

Contribution: Prokhorov's Theorem

Prokhorov's Theorem

X: a Polish space

$$\Gamma \subseteq \mathcal{P}(X) \cap \{\mu. \ \mu(X) \leq r\}$$
 for some $r < \infty$.

 $\overline{\Gamma}$ is compact in $\mathcal{P}(X) \iff \Gamma$ is tight: i.e.,

$$\forall \varepsilon > 0. \ \exists K : \text{compact in } X, \ \text{s.t.} \\ \forall \mu \in \Gamma. \ \mu(X-K) \leq \varepsilon$$

Used for

- Completeness of the Lévy-Prokhorov metric
- Central limit theorem
- Sanov's theorem in large deviation theory
- Existence of optimal coupling in transportation theory

depending on

- Riesz representation theorem
- Alaoglu's theorem

Results

Formalization in Isabelle/HOL of

- Lévy-Prokhorov metric
 - weak convergence
 - Portmanteau theorem
 - separability and completeness
- Prokhorov's theorem
 - a special case of Alaoglu's theorem
 - Riesz representation theorem
- \bullet $\mathcal{P}(M)$ is a Polish and standard Borel space
 - equivalence of measurable spaces of finite measures

Archive of formal proofs

- The Lévy-Prokhorov Metric, June 2024 (6.6K lines)
- The Riesz representation theorem, June 2024 (4.4K lines)

Results

Formalization in Isabelle/HOL of

- Lévy-Prokhorov metric
 - weak convergence
 - Portmanteau theorem
 - separability and completeness
- Prokhorov's theorem.
 - a special case of Alaoglu's theorem
 - Riesz representation theorem
- \bullet $\mathcal{P}(M)$ is a Polish and standard Borel space
 - equivalence of measurable spaces of finite measures

Archive of formal proofs

- The Lévy-Prokhorov Metric, June 2024 (6.6K lines)
- The Riesz representation theorem, June 2024 (4.4K lines)

Lévy-Prokhorov Metric

Let X be a metric space.

The Lévy-Prokhorov metric $d_{\mathcal{P}(X)}$ on $\mathcal{P}(X)$

$$d_{\mathcal{P}(X)}(\mu,\nu) = \inf\{\varepsilon > 0 \mid \forall A \in \Sigma_X. \, \mu(A) \le \nu(A^{\varepsilon}) + \varepsilon \\ \wedge \nu(A) \le \mu(A^{\varepsilon}) + \varepsilon\}.$$

$$A^{\varepsilon} = \bigcup_{x \in A} ball_X(x, \varepsilon)$$

Lévy-Prokhorov Metric

Weak Convergence

For
$$\{\mu_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$$
 and $\mu\in\mathcal{P}(X)$,
$$\mu_n\Rightarrow_{\mathrm{wc}}\mu\iff\forall f:X\to\mathbb{R}\text{ bounded continuous,}$$

$$\int f\mathrm{d}\mu_n\longrightarrow\int f\mathrm{d}\mu$$

The Lévy-Prokhorov metric *metrizes* weak convergence.

Theorem

- 1. $\mu_n \longrightarrow \mu$ in $(\mathcal{P}(X), d_{\mathcal{P}(X)})$ implies $\mu_n \Rightarrow_{\mathrm{wc}} \mu$
- 2. If X is separable, then $\mu_n \longrightarrow \mu$ in $(\mathcal{P}(X), d_{\mathcal{P}(X)})$ iff $\mu_n \Rightarrow_{\mathrm{wc}} \mu$

Lévy-Prokhorov Metric in Isabelle/HOL

Metric spaces in Isabelle/HOL

- Type-based (class) by [Hölzl+, ITP2013]
 - work better in automation
 - carrier sets must be UNIV (all elements of the type)
 Ex. Metric on
 - \bigcirc \mathbb{R} , \mathbb{N}
 - \bigcirc [0,1], $\mathrm{C_b}(X)$ (bounded continuous functions)
- Set-based (locale, typedef) by Paulson* since Isabelle2023
 - Any carrier sets

We use the <u>set-based</u> library because

$$\mathcal{P}(X) = \{\mu.\ \mu \text{ is a finite measures on } X\} \neq UNIV.$$

 $^{^{\}ast}$ Lawrence C. Paulson, Porting the HOL Light metric space library,

Set-Based Metric Spaces in Isabelle/HOL

HOL/Analysis/Abstract_Metric_Spaces.thy

```
locale Metric-space =
  fixes M :: 'a \text{ set and } d :: 'a \Rightarrow 'a \Rightarrow real
  assumes nonneg: \bigwedge x y. 0 \le d x y
  assumes commute: \bigwedge x y. d x y = d y x
  assumes zero: \bigwedge x y. [x \in M; y \in M] \implies d \times y = 0 \longleftrightarrow x=y
  assumes triangle: \bigwedge x \ y \ z. [x \in M; \ y \in M; \ z \in M] \implies d \ x \ z \le d \ x \ y + d \ y \ z
```

- (M,d) forms a metric space.
- Non-negativity and commutativity must hold on the whole type.

Set-Based Metric Spaces in Isabelle/HOL

HOL/Analysis/Abstract_Metric_Spaces.thy

```
locale Metric-space =
  fixes M :: 'a \text{ set and } d :: 'a \Rightarrow 'a \Rightarrow real
  assumes nonneg: \bigwedge x y. 0 \le d x y
  assumes commute: \bigwedge x y. d x y = d y x
  assumes zero: \bigwedge x y. [x \in M; y \in M] \implies d \times y = 0 \longleftrightarrow x=y
  assumes triangle: \bigwedge x \ y \ z. [x \in M; y \in M; z \in M] \implies d \ x \ z < d \ x \ y + d \ y \ z
```

- (M,d) forms a metric space.
- Non-negativity and commutativity must hold on the whole type.

Lévy-Prokhorov Metric in Isabelle/HOL

locale Levy-Prokhorov = Metric-space

where $A^{\varepsilon} = \bigcup_{a \in A} ball_X(a, \varepsilon)$.

```
begin
                      {\it N} is a measure on (M,d)
definition \mathcal{P} \equiv \{N. \text{ sets } N \stackrel{\downarrow}{=} \text{ sets (borel-of mtopology)} \land \text{ finite-measure } N\}
definition LPm :: 'a measure \Rightarrow 'a measure \Rightarrow real where
LPm N L \equiv
  if N \in \mathcal{P} \wedge L \in \mathcal{P} then
       ( \bigcap \{e. \ e > 0 \land (\forall A \in sets \ (borel-of \ mtopology).
                                      measure N A < measure L (\bigcup a \in A. mball a \in A) + e \land A
                                      measure L A < measure N (\{ | a \in A. \text{ mball a } e \} + e \} \})
  else 0 for \bigwedge x \ y. 0 \le d \ x \ y (because \bigcap \emptyset = ?)
sublocale LPm: Metric-space \mathcal{P} LPm
⟨proof⟩
end
c.f.
   d_{\mathcal{P}(X)}(\mu,\nu) = \inf\{\varepsilon > 0 \mid \forall A \in \Sigma_X. \ \mu(A) \le \nu(A^{\varepsilon}) + \varepsilon \land \nu(A) \le \mu(A^{\varepsilon}) + \varepsilon\},
```

Convergence w.r.t. Filters

Limit is defined using filters in Isabelle/HOL.

$$x_n \xrightarrow{n \to \infty} x \iff (x_n \longrightarrow x) \ \mathcal{F}_{seq} \text{ in } \mathbb{R}$$

$$f(x) \xrightarrow{x \to a} L \iff (f \longrightarrow L) \ (\text{at } a) \text{ in } \mathbb{R}$$

 F_{seq} : a filter on \mathbb{N} , (at a): a filter on \mathbb{R}

A filter \mathcal{F} on $I: \mathcal{F} \subseteq 2^I$ satisfying certain conditions.

In Isabelle/HOL, limit is

- tendsto (type-based topological spaces)
- limitin (set-based topological spaces)

Weak Convergence with Filters

Weak Convergence

For
$$\{\mu_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(X)$$
, $\mu\in\mathcal{P}(X)$,
$$\mu_n\Rightarrow_{\mathrm{wc}}\mu\qquad \stackrel{\mathrm{def}}{\Longleftrightarrow} \ \forall f:X\to\mathbb{R} \ \mathrm{bounded} \ \mathrm{continuous},$$

$$\int f\mathrm{d}\mu_n\longrightarrow\int f\mathrm{d}\mu$$

The Lévy-Prokhorov metric *metrizes* weak convergence.

Theorem

- 1. $\mu_n \longrightarrow \mu$ in $(\mathcal{P}(X), d_{\mathcal{P}(X)})$ implies $\mu_n \Rightarrow_{\mathrm{wc}} \mu$
- 2. If X is separable, then

$$\mu_n \longrightarrow \mu$$
 in $(\mathcal{P}(X), d_{\mathcal{P}(X)})$ iff $\mu_n \Rightarrow_{\mathrm{wc}} \mu$

Weak Convergence with Filters

Weak Convergence

For
$$\{\mu_i\}_{i\in I}\subseteq \mathcal{P}(X)$$
, $\mu\in\mathcal{P}(X)$, and a filter \mathcal{F} on I ,
$$(\mu_i\Rightarrow_{\mathrm{wc}}\mu)\ \mathcal{F}\ \stackrel{\mathsf{def}}{\Longleftrightarrow}\ \forall f:X\to\mathbb{R}\ \text{bounded continuous},$$

$$\left(\int f\mathrm{d}\mu_i\longrightarrow\int f\mathrm{d}\mu\right)\ \mathcal{F}\ \text{in }\mathbb{R}$$

The Lévy-Prokhorov metric *metrizes* weak convergence.

Theorem

- 1. $(\mu_i \longrightarrow \mu) \mathcal{F} \text{ in } (\mathcal{P}(X), d_{\mathcal{P}(X)}) \text{ implies } (\mu_i \Rightarrow_{\mathrm{wc}} \mu) \mathcal{F}$
- 2. If X is separable, then

$$(\mu_i \longrightarrow \mu) \mathcal{F} \text{ in } (\mathcal{P}(X), d_{\mathcal{P}(X)}) \text{ iff } (\mu_i \Rightarrow_{\text{wc}} \mu) \mathcal{F}$$

Topology of Weak Convergence

Topology of Weak Convergence

The topology of weak convergence $\mathcal{O}_{\mathrm{WC}(X)}$ on $\mathcal{P}(X)$ $\mathcal{O}_{\mathrm{WC}(X)}=$ the coarsest topology making $(\lambda\mu.\int f\mathrm{d}\mu)$ continuous $\forall f\in\mathrm{C_b}(X).$

Lemma

$$(\mu_i \longrightarrow \mu) \ \mathcal{F} \ \text{in} \ (\mathcal{P}(X), \mathcal{O}_{\mathrm{WC}(X)}) \ \text{iff} \ (\mu_i \Rightarrow_{\mathrm{wc}} \mu) \ \mathcal{F}.$$

Proposition

If X is a separable metric space, then

$$(\mathcal{P}(X),\mathcal{O}_{\mathrm{WC}(X)}) = (\mathcal{P}(X),\mathcal{O}_{d_{\mathcal{P}(X)}})$$

This proposition is a well-known result, but few books contain its proof.

Our new proof uses limit w.r.t. filters.

Metrizability of Topology of Weak Convergence

Proposition

If X is a separable metric space, then

$$(\mathcal{P}(X), \mathcal{O}_{\mathrm{WC}(X)}) = (\mathcal{P}(X), \mathcal{O}_{d_{\mathcal{P}(X)}})$$

Claim

 \mathcal{O} , \mathcal{O}' : topologies on X

$$\mathcal{O} = \mathcal{O}' \iff (\forall \mathcal{F}. \text{ convergence in } \mathcal{O} \text{ w.r.t. } \mathcal{F} = \text{convergence in } \mathcal{O}' \text{ w.r.t. } \mathcal{F})$$

 (\Longrightarrow) trivial, (\Longleftrightarrow) this work

Proof of Proposition: For any filter \mathcal{F} ,

convergence in $\mathcal{O}_{\mathrm{WC}(X)}$ w.r.t. $\mathcal{F}=$ weak convergence w.r.t. $\mathcal{F}=$ convergence in $(\mathcal{P}(X),d_{\mathcal{P}(X)})$ w.r.t. $\mathcal{F}=$

Metrizability of Topology of Weak Convergence

Proposition

If X is a separable metric space, then

$$(\mathcal{P}(X), \mathcal{O}_{\mathrm{WC}(X)}) = (\mathcal{P}(X), \mathcal{O}_{d_{\mathcal{P}(X)}})$$

The textbook by Billingsley (1968)

By examining neighborhoods

The textbook by Deuschel and Stroock (1989)

- By showing convergence in $\mathcal{O}_{\mathrm{WC}(X)}$ w.r.t. $\mathcal{F}_{\mathrm{seq}} = \mathrm{convergence}$ in $(\mathcal{P}(X), d_{\mathcal{P}(X)})$ w.r.t. $\mathcal{F}_{\mathrm{seq}}$ (sequences are on \mathbb{N})
- Need to show the first-countability of $(\mathcal{P}(X), \mathcal{O}_{\mathrm{WC}(X)})$

Our proof

• By using equivalence of limit w.r.t. filters

Related Works

In Isabelle/HOL by Avigad et al. (2017)

- weak convergence for probability measures on ℝ
 finite measures any topological spaces
- a special case of Prokhorov's theorem the general form
- applied them to prove the central limit theorem

In Lean by Kytölä (ongoing, 2023–)

- weak convergence on finite measures using filters same as ours
- X is a pseudometric space \Longrightarrow The Lévy-Prokhorov metric is a pseudometric X is a metric space \Longrightarrow The Lévy-Prokhorov metric is a metric "finer" than our work metric = pseudometric + $(d(x,y)=0 \iff x=y)$
- The Lévy-Prokhorov metric on probability measures metrizes the topology of weak convergence finite measures
 - + more results (e.g. Prokhorov's theorem)

Efforts

Limit using filters

⇒ Similar to the sequential cases

$$\begin{array}{l} \mathsf{Sequential} \ \, (\forall n \geq N_1. \, x_n < \varepsilon/2) \, \wedge \, (\forall n \geq N_2. \, y_n < \varepsilon/2) \\ \Longrightarrow \forall n \geq \max\{N_1, N_2\}. \, x_n + y_n < \varepsilon \\ \end{array}$$

Filter eventually $x_i < \varepsilon/2$ w.r.t. $\mathcal{F} \wedge \text{eventually } y_i < \varepsilon/2$ w.r.t. \mathcal{F} \implies eventually $x_i + y_i < \varepsilon$ w.r.t. \mathcal{F}

Riesz representation theorem

- 9 pages in the book by Rudin "Real and Complex Analysis" (1987)
- 2.1K- lines in Isabelle/HOL

Conclusion

We formalized

- Lévy-Prokhorov metric
- Prokhorov's theorem
- \bullet $\mathcal{P}(M)$ is a Polish and standard Borel space

in Isabelle/HOL

Future Works

- Large deviation theory
- Transportation theory
- Point process