

Introduction to Inverse Problem in Imaging

EC 522 Computational Optical Imaging

Lei Tian

Mathematical tools & road map

- » Vector space (IIP Appx A)
 - » Key idea: think about the imaging signals as a <u>vector</u>
- » Linear operator (IIP Appx B)
 - » Key idea: think about imaging process as a linear transformation, i.e. a linear operator
 - » Later, we use perform discretization and convert the operator into a <u>matrix</u>

» Describes the possible "object / image" element

» Need to describe each element, also the distance/relationship between pairs of elements

To define a vector space, we need:

- A set of vectors V
 - These can be finite-dimensional vectors, sequences, functions, etc.
- A field of scalars
 - ullet Real numbers ${\mathbb R}$ or complex numbers ${\mathbb C}$
- Vector addition: produces a vector from two vectors
- Scalar multiplication: produces a vector from a scalar and a vector

- » A collection of objects (vectors)
- » Can be added together and multiplied by scalars.

Examples: a collections of images can form a vector space!

Images with 256 x 256 pixels with real-valued pixel values

The vector space should also contain these images

What is the dimensionality of this vector space? Any subspace you can find in this vector space?

» Describes the possible "object / image" element

» Need to describe each element, also the distance/relationship between pairs of elements

To define geometry in a vector space: Inner product

Inner product provides a measure of angles and orientation

Definition (Inner product)

- ullet An inner product for V is a function $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{C}$ satisfying
 - **1** Distributivity: $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
 - 2 Linearity in the first argument: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$
 - **l** Hermitian symmetry: $\langle x, y \rangle^* = \langle y, x \rangle$
 - Operative definiteness: $\langle x, x \rangle \geq 0$, and $\langle x, x \rangle = 0$ if and only if x = 0

Note: $\langle x, \alpha y \rangle = \alpha^* \langle x, y \rangle$

M. Vetterli, J Kovacevic, V. Goyal, Foundations of Signal processing, Chap. 2

Inner product: Examples

Examples

• On
$$\mathbb{C}^N$$
: $\langle x, y \rangle = \sum_{n=0}^{N-1} x_n y_n^* = y^* x$

• On
$$\mathbb{C}^{\mathbb{R}}$$
: $\langle x, y \rangle = \int_{-\infty}^{\infty} x(t)y^*(t) dt$

M. Vetterli, J Kovacevic, V. Goyal, Foundations of Signal processing, Chap. 2

Inner product: examples

Inner product in \mathbb{R}^2

Inner product: examples

Inner product in \mathbb{R}^2 $\langle x, y \rangle = x_0 y_0 + x_1 y_1$ $\langle x, y \rangle = \sqrt{(x_0^2 + x_1^2)(y_0^2 + y_1^2)} \cos \alpha$ $= \|x\| \|y\| \cos \alpha$

FT as inner products!

FT as inner products!

» Fourier transform:

» CTFT:
$$X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$
$$= \langle x(t), e^{j\omega t} \rangle$$

• On
$$\mathbb{C}^{\mathbb{R}}$$
: $\langle x, y \rangle = \int_{-\infty}^{\infty} x(t)y^*(t) dt$

>> DFT:
$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}$$
, $k = 0, ..., N-1$

$$= \left\langle x[n], e^{j\frac{2\pi}{N}kn} \right\rangle$$
• On \mathbb{C}^N : $\langle x, y \rangle = \sum_{n=0}^{N-1} x_n y_n^* = y^* x$

Fourier transform can be treated as inner product!

A special geometry: Orthogonality

» A pair of vectors x, y are **orthogonal**, $x \perp y$, if $\langle x, y \rangle = 0$

- » Let S be a set of vectors
 - » S is orthogonal when all $x, y \in S, x \neq y$, we have $x \perp y$
 - » S is orthonormal when it is orthogonal and for all $x \in S$, $\langle x, x \rangle = 1$
 - » A vector x is orthogonal to S when $x \perp S$ for all $S \in S$, written $x \perp S$
 - » S_0 and S_1 are orthogonal when every s_0 ∈ S_0 is orthogonal to S_1 , written $S_0 \perp S_1$

Orthogonality in FT

Orthogonality & Orthogonal complement

» The pairs of elements f, h are **orthogonal**

» If
$$\langle f, h \rangle = 0$$

» Written as $f \perp h$

» Orthogonal complement

- » S is a subset of elements of \mathcal{X}
- » The $orthogonal\ complement\ of\ S$, denoted by S^\perp
- » The set of all functions/vectors of $\mathcal X$ which are orthogonal to <u>all</u> functions of S

Example

Example

Norm: a measure of length / size

- » This length of f is called the *norm* of f
 - » Denoted by ||f||
 - » A common definition $||f|| = \langle f, f \rangle^{1/2}$
 - » Not all norms are defined by an inner product
- » Properties
 - » Positive definite: $||f|| \ge 0$, ||f|| = 0 if and only if f=0
 - » Positive scalability: $\|\alpha f\| = |\alpha| \|f\|$
 - » Triangle inequality: $||f + g|| \le ||f|| + ||g||$ with equality if and only if $f = \alpha g$ (in parallel)

Norm: example

Examples L2-norm

• On
$$\mathbb{C}^N$$
: $||x|| = \sqrt{\langle x, x \rangle} = \left(\sum_{n=0}^{N-1} |x_n|^2\right)^{1/2}$

• On
$$\mathbb{C}^{\mathbb{R}}$$
: $||x|| = \sqrt{\langle x, x \rangle} = \left(\int_{-\infty}^{\infty} |x(t)|^2 dt \right)^{1/2}$

M. Vetterli, J Kovacevic, V. Goyal, Foundations of Signal processing, Chap. 2

Orthogonality and norm

Pythagorean theorem

$$||x \perp y|| \Rightarrow ||x + y||^2 = ||x||^2 + ||y||^2$$

Orthogonality and norm

Properties

Cauchy–Schwarz inequality

$$|\langle x, y \rangle| \le ||x|| ||y||$$

» Why?

Orthogonality and norm

Properties

Cauchy–Schwarz inequality

$$|\langle x, y \rangle| \le ||x|| ||y||$$

» Why?

$$\langle x, y \rangle = ||x|| ||y|| \cos \alpha$$

Other examples of norms commonly used in computational imaging algorithms

On
$$\mathbb{C}^{\mathbb{Z}}$$
: $||x||_p = \left(\sum_{n \in \mathbb{Z}} |x_n|^p\right)^{1/p}$, $p \in [1, \infty)$

p-norm or L_p-norm

$$||x||_{\infty} = \sup_{n \in \mathbb{Z}} |x_n|$$

infinity-norm

Geometry of Lp-norm

» "Unit ball" visualization

M. Vetterli, J Kovacevic, V. Goyal, Foundations of Signal processing, Chap. 2

Distance

» The *distance* of the element *f* from the element *h*

$$d(f,h) = ||f - h||$$

- » Properties:
 - $d(f,h) \ge 0$; d(f,h) = 0, if and only if f = h;
 - $\bullet \quad d(f,h) = d(h,f);$
 - $d(f, h) \le d(f, g) + d(g, h)$ for any g (triangle inequality)

» Useful when describing the convergence of inversion algorithms

Norm and distance

Norm and distance in \mathbb{R}^2

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{x_0^2 + x_1^2} ||y|| = \sqrt{\langle y, y \rangle} = \sqrt{y_0^2 + y_1^2} ||x - y|| = \sqrt{(x_0 - y_0)^2 + (x_1 - y_1)^2}$$

M. Vetterli, J Kovacevic, V. Goyal, Foundations of Signal processing, Chap. 2

Decomposition and basis

- » Basis $V = \{v_k\}_{k \in \{1,2,\cdot n\}} \subset U$
 - » Linearly independent: a set of *n orthonormal* functions v_1, v_2, \dots, v_n
 - » V is complete and the linear space U = span(V)
 - » The **dimension** is *n*
 - » i.e. satisfying the conditions:

$$\langle v_i, v_j \rangle = \delta_{ij}$$

Kronecker delta

$$\langle v_i, v_j \rangle = \delta_{ij}$$
 $\delta_{ij} = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$

Linear decomposition

» Linear decomposition:

» For any
$$f \in U$$
, $f = \sum_{k=1}^{n} c_k v_k$

» The coefficient is *unique*: $c_k = \langle f, v_k \rangle$

» The norm is $||f||^2 = \sum_{k=1}^{n} |c_k|^2$

Example: decomposition and basis

Example

ullet The standard basis for \mathbb{R}^N

$$e_k = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \end{bmatrix}^T$$
, $k = 0, \ldots, N-1$ any $x \in \mathbb{R}^N$, $x = \sum_{k=0}^{N-1} x_k e_k$

Decomposition and basis in matrix form

Decomposition and basis

- » Linear decomposition:
 - » For any $f \in U$, $f = \sum_{k=1}^{n} c_k v_k$
- » The coefficient is *unique*: $c_k = \langle f, v_k \rangle$
- » Putting in a compact matrix form:

»
$$c = V^*f$$

» $c = [c_1, c_2, \cdots, c_n]^T$
» $V = [v_1, v_2, \cdots, v_n]$

» V^* : Hermitian = complex conjugate transpose of matrix V

»
$$f = \sum_{k=1}^{n} \langle f, v_k \rangle v_k = Vc = VV^*f$$

Decomposition and basis

- » The norm is $||f||^2 = \sum_{k=1}^{n} |c_k|^2$
- » In general... Parseval's equalities

»
$$||f||^2 = \sum_{k=1}^n |\langle f, v_k \rangle|^2 = ||V^*f||^2 = ||c||^2$$

Meaning of this?

»
$$\langle f, g \rangle = \langle V^*f, V^*g \rangle = \langle c, d \rangle$$

» Where $c_k = \langle f, v_k \rangle, d_k = \langle g, v_k \rangle$

Decomposition and bases: FT

Fourier Transform - Review

M. Vetterli, J Kovacevic, V. Goyal, Foundations of Signal processing, Chap. 2

Decomposition and bases: DFT

» Discrete Fourier Transform (DFT):

» Orthonormal basis: $\{e^{j\frac{2\pi k}{N}n}, k=0,...,N-1\}$, satisfying

$$\left\langle e^{j\frac{2\pi k}{N}n}, e^{j\frac{2\pi l}{N}n} \right\rangle = \delta_{k,l}$$

» Decomposition:

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi k}{N}n}$$

» Coefficient determined by:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn} = \left\langle x[n], e^{j\frac{2\pi k}{N}n} \right\rangle$$

Fourier transform can be treated as basis decomposition!

Change of basis

- » Basis is not unique
- » How are the expansion coefficients in two orthonormal bases are related?

»
$$f = \Phi \alpha = \Psi \beta$$

»
$$\beta = \Psi^* f = \Psi^* \Phi \alpha = C_{\Phi, \Psi} \alpha$$

» In the matrix form

$$C_{\Phi,\Psi} = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \cdots & \langle \varphi_{-1}, \psi_{-1} \rangle & \langle \varphi_{0}, \psi_{-1} \rangle & \langle \varphi_{1}, \psi_{-1} \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \psi_{0} \rangle & \boxed{\langle \varphi_{0}, \psi_{0} \rangle} & \langle \varphi_{1}, \psi_{0} \rangle & \cdots \\ \cdots & \langle \varphi_{-1}, \psi_{1} \rangle & \langle \varphi_{0}, \psi_{1} \rangle & \langle \varphi_{1}, \psi_{1} \rangle & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$