Network and Information Security Lecture 3

B.Tech. Computer Engineering Sem. VI.

M. T. Mehta
Associate Professor
Computer Engineering Department
Faculty of Technology,
Dharmsinh Desai University, Nadiad

- Euclidian Algorithm for finding GCD of two positive integers
- Fact 1: gcd(a,o) = a
- Fact 2: gcd(a,b) = gcd(b,r) where r is the remainder of dividing a by b
- Find gcd(36,10)

- gcd(36,10)
- =gcd(10,6)
- $\bullet = \gcd(6,4)$
- $\bullet = \gcd(4,2)$
- =gcd(2,0)
- =2

Euclidian algorithm

```
r1 = a; // Initialization
r2 = b;
while (r2 > 0)
   q = r_1/r_2;
   r = r_1 - q \times r_2;
   r_1 = r_2;
   r2 = r;
gcd(a,b) = r1;
```

Example 4
Find the greatest common divisor of 2740 and 1760.
r1=2740, r2=1760

q	rı	ľ2	r
1	2740	1760	980

Example 4
Find the greatest common divisor of 2740 and 1760.
r1=2740, r2=1760

q	rı	ľ2	r		
1	2740	1760	980		
1	1760	980	980 780		
1	980 780	78 0	200		
3	78 0	200	180		
1	200	180	20		
9	180	20	О		
	20	О	20		

The Extended Euclidean Algorithm

- Given two integers, a and b, we often need to find other two integers, s and t such that
- s x a + t x b = gcd(a,b)
- Example 5
- Given a=161 and b=28, find gcd(161,28) and the values of s and t.

- r1=a, r2=b, s1=1, s2=0, t1=0, t2=1
- For r1, r2,
 q= r1/r2; (quotient)
 r = r1/r2; (reminder)

• $r = r_1 - q \times r_2$, $s = s_1 - q \times s_2$, $t = t_1 - q \times t_2$

q	r1	ľ2	r	S1	S2	s	t1	t2	t
5	161	28	21	1	O	1	O	1	-5
1									
3									

• $r = r_1 - q \times r_2$, $s = s_1 - q \times s_2$, $t = t_1 - q \times t_2$

q	ľ1	ľ 2	r	S1	S2	S	tı .	t2	t
5	161	_28	21	1	0	1	0	1	-5
1	28	_21	₋ 7	0	1	-1	1	-5	6
3	21	7	O	1	-1	4	-5	6	-23
	7	o		-1	4		6	-23 ∠	

r₁₌₇, s=-1, t=6
s x a + t x b = (-1) x 161 + (6) x 28
= -161 + 168
=
$$7 = \gcd(161,28)$$

```
Algorithm:
r_1=a, r_2=b, s_1=1, s_2=0, t_1=0, t_2=1
while( r2>0)
q = r_1/r_2;
\mathbf{r} = \mathbf{r}_1 - \mathbf{q} \times \mathbf{r}_2;
r_1 = r_2;
r2= r;
s = s_1 - q \times s_2;
S1 = S2;
S2= S;
t=t1-q \times t2;
t_1 = t_2;
t2 = t;
gcd(a,b) =r1; s=s1; t= t1;
```