Labor (L)	MP	TP
0	_	0

Using Marginal Product (MP) to calculate Total Product (TP)

Worker 1 produce 5 units: $TP(L_1) = 5 MP_1 = 5$

With worker 2 output increase by 7 units: $TP(L_2) = 5$ (from worker 1) + 7 (from

worker 2) = 12

$$MP_4 = 12 \text{ units.}$$

 $TP (L_4) = 5 (MP_1) + 7 (MP_2) + 9 (MP_{3)} +$

 $12 (MP_4) = 33$

$$MP_5 = 14 \text{ units}$$

 $TP(L_5) = 5(MP_1) + 7(MP_2) + 9(MP_{3)} + 12$ $(MP_4) + 14 (MP_5) = 47$

5+7+9+12+14=47

5+7+9+12+14+16=63

We can write a formula to calculate the TP for n workers as the sum of the MP of these n workers:

$TP(L_n) = MP_1 + MP_2 + MP_3 + MP_4 + MP_5 + ... + MP_n$

$$MP_3 = 9$$
 units.
 $TP (L_3) = 5 (MP_1) + 7 (MP_2) + 9 (MP_{3)} = 21$

~ -

$MP_6 = 16$ units

Using Marginal Product (MP) to calculate Total Product (TP)

We can write a formula to calculate the TP for n workers as the sum of the MP of these n workers:

$$TP(L_n) = MP_1 + MP_2 + MP_3 + MP_4 + MP_5 + ... + MP_n$$

Labor (L)	MP	TP
0	_	0
1	5	5
2	7	5+7 =12
3	9	5+7+9 =21
4	12	5+7+9+12=33
5	14	5+7+9+12+14=47
6	16	5+7+9+12+14+16=63

