## 1. Give a context-free grammar for each of the following languages.

```
a) L= {w | w contains even number of 0's}
           S \rightarrow 1S | 0T | \epsilon
           T \rightarrow 0S \mid 1T
b) L={w | w contains twice as many 1s as 0s}
            S \rightarrow SS | \epsilon | S011 | 0S11 | 01S1 | 011S
c) L={w | w contains even number of 0s and 1s}
           S \rightarrow 0X | 1Y | \varepsilon
           X \rightarrow 0S \mid 1Z
           Y \rightarrow 1S \mid 0Z
           Z\rightarrow 0Y | 1X
d) L={w | where each 0's is followed by at least as many 1's}
           S \rightarrow AS \mid \varepsilon
           A \rightarrow 0A1|1A|\epsilon
e) L(G) = { a^ib^jc^k \mid i, j, k \ge 0 and i=j or i=k}. \sum = \{a,b,c\}
            S \rightarrow AC \mid S'
            A \rightarrow aAb \mid \epsilon
            C \rightarrow cC \mid \epsilon
            S' \rightarrow aBc|B
            B \rightarrow bB \mid \epsilon
f) ) L(G) = { a^ib^jc^k | j > i+k}. \sum = \{a,b,c\}
           S \rightarrow ABC
           A \rightarrow aAb \mid \epsilon
            B \rightarrow bB \mid b
            C \rightarrow bCc \mid \epsilon
g) L(G) = { a^nb^m | 0 < n < m < 3n}.\sum = {a,b}
            S→ aSbb|aSbbb|Zb
            Z \rightarrow aZb \mid ab
```

h) L(G) = set of all strings w over {a, b} such that w is not palindrome.

```
Y→ aYa|bYb|aZb|bZa
             Z \rightarrow aZ|bZ|\epsilon
i) L=\{w \mid w = w^R \text{ AND } | w | \text{ is even, } w \text{ is a palindrome} \}
             S \rightarrow AOA|B1B|\epsilon
             A \rightarrow 1A \mid 0A \mid \epsilon
              B \rightarrow 1B | 0B | \epsilon
j) L(G) = { a^i b^j c^k | i, j, k ≥ 0 and i=j or j=k}. \sum = \{a,b,c\}
             S \rightarrow AC \mid S'
             A \rightarrow aAb \mid C
             C \rightarrow cC \mid \epsilon
             \mathsf{S}' \to \mathsf{A}'\mathsf{B}
             A' \rightarrow aA' \mid \epsilon
              B \rightarrow bBb \mid A'
k) L(G) = { a^nb^mc^md^{2n} | n \ge 0, m > 0}
             S \rightarrow aBdd \mid A
             A \rightarrow aSdd \mid \varepsilon
              B \rightarrow bBc \mid bc
I) L= {w | w contains at least 4 a's}
             S→ RaRaRaRaR
              R \rightarrow bR|aR|\epsilon
```

## 2. What does the following CFGs do?

a) 
$$S \rightarrow ZSZ \mid 0$$
  
 $Z \rightarrow 0 \mid 1$ 

- = L={w | the length of w is odd and its middle is 0}
- b)  $S \rightarrow 0E0 | 1E1 | \epsilon$   $E \rightarrow 1E | 0E | \epsilon$
- = L={w | w starts and ends with the same symbol}

c) 
$$S \rightarrow AB$$
  
 $A \rightarrow 0A1|\epsilon$   
 $B \rightarrow 1B|\epsilon$ 

=  $L(G) = {0^m 1^{m+n} | n, m ≥ 0}$  over the terminals {0,1}

- d)  $S \rightarrow \epsilon \mid 1S1S1S0S \mid 1S1S0S1S \mid 1S0S1S1S \mid 0S1S1S1S$
- = L={w | w contains thrice as many 1s as 0s}
- e)  $S \rightarrow aSbb |aSb| \epsilon$
- =  $L(G) = {a^nb^m \mid 2n \ge m \ge n \ge 0}$  over the terminals  ${0,1}$

## 3. Convert the following Regular expressions to a CFG.

- a)  $a(b|c^*)$
- = S $\rightarrow$  aX
  - $X \rightarrow b \mid C$
  - $C \rightarrow Cc \mid \epsilon$
- b) 0\*1(0+1)\*
- = S $\rightarrow$  A1B
  - $A \rightarrow 0A \mid \epsilon$
  - $B\rightarrow 0B |1B| \epsilon$
- c) (a + b)\*(a\* + (ba)\*)
- =  $V \rightarrow WX$ 
  - $W \rightarrow aW$
  - $\mathsf{W} \to \mathsf{bW}$
  - $W \to \epsilon$
  - $X \rightarrow Y$
  - $X \rightarrow Z$
  - $Y \rightarrow aY$
  - $Y \to \epsilon$
  - $Z \to baZ$
  - $Z \to \epsilon$
- d) (a+b)\* aa (a+b)\*
- = S→ AaaA

$$A \rightarrow aA |bA| \epsilon$$

e) 
$$a^* + a(a|b)^*$$

$$= S \longrightarrow X | Y$$

$$X \rightarrow aX \mid \epsilon$$

$$Y \rightarrow aZ$$

$$Z\rightarrow aZ|bZ|\epsilon$$

4. Consider the following context-free grammar  $\sum = \{0,1\}$ . Give leftmost and rightmost derivations for the following strings and check parse-tree ambiguity.

a) 
$$S \rightarrow 0A \mid 1B$$

$$A \rightarrow 0AA \mid 1S \mid 1$$

$$B \rightarrow 0S \mid 1BB \mid 0$$

Strings: 001101

| leftmost derivation: | rightmost derivation: |  |
|----------------------|-----------------------|--|
| $S \rightarrow 0A$   | $S \rightarrow 0A$    |  |
| →00AA                | →00AA                 |  |
| →001A                | →00A1                 |  |
| →0011S               | →001S1                |  |
| →00110A              | →0011B1               |  |
| →001101              | →001101               |  |
|                      |                       |  |

we can find two parse trees for this grammar, so the grammar is ambiguous.



b) 
$$S \rightarrow A \ 1 \ B$$
 
$$A \rightarrow 0A \ | \ \epsilon$$
 
$$B \rightarrow 0B \ |1B| \ \epsilon$$

Strings: 10100, 0010101

= for string 10100:

| leftmost                    | rightmost        | Parse Tree:                 |
|-----------------------------|------------------|-----------------------------|
| derivation:                 | derivation:      |                             |
| $S \rightarrow A1B$         | S→ A1B           | \{\cdot\}                   |
| $\rightarrow$ $\epsilon$ 1B | → <b>A10B</b>    |                             |
| → <b>10</b> B               | → <b>A101B</b>   |                             |
| → <b>101</b> B              | → <b>A1010</b> B | l σ k                       |
| → <b>1010</b> B             | → <b>A10100</b>  |                             |
| <b>→ 10100</b> €            | → <b>€10100</b>  | i B                         |
| <b>→ 10100</b>              | <b>→ 10100</b>   |                             |
|                             |                  | O B                         |
|                             |                  | J <sub>O</sub> <sub>B</sub> |
|                             |                  | 0 B                         |
|                             |                  | ε                           |
|                             |                  |                             |
|                             |                  |                             |

## for string 0010101:



The grammar is unambiguous since only one parse tree is possible for every string.

c) 
$$D \rightarrow TL$$
  $T \rightarrow c \mid Tc$   $L \rightarrow L.V \mid V$   $V \rightarrow a \mid b \mid 0 \mid 1 \mid Va \mid Vb \mid V0 \mid V1$  Strings: cabb0011.ab1 (Rightmost derivation)

=



The grammar is unambiguous since only one parse tree is possible for every string.

d) 
$$S \rightarrow S + S$$
  $S \rightarrow Sa \mid Sb \mid \epsilon$  String:  $abb + aab + baba$ 

| Leftmost Derivation:           | Rightmost Derivation:         |
|--------------------------------|-------------------------------|
| $S \rightarrow S + S$          | $S \rightarrow S + S$         |
| $\rightarrow$ Sb + S           | $\rightarrow$ S + Sa          |
| $\rightarrow$ Sbb + S          | $\rightarrow$ S + Sba         |
| $\rightarrow$ Sabb + S         | → S + Saba                    |
| $\rightarrow$ abb + S + S      | → S + Sbaba                   |
| $\rightarrow$ abb + Sb + S     | $\rightarrow$ S + baba        |
| → abb + Sab + S                | $\rightarrow$ S + S + baba    |
| → abb + Saab + S               | $\rightarrow$ S + Sb + baba   |
| → abb + aab + Sa               | $\rightarrow$ S + Sab + baba  |
| → abb + aab + Sba              | $\rightarrow$ S + Saab + baba |
| → abb + aab + Saba             | $\rightarrow$ S + aab + baba  |
| → abb + aab + Sbaba            | → Sb + aab + baba             |
| $\rightarrow$ abb + aab + baba | → Sbb + aab + baba            |
|                                | → Sabb + aab + baba           |
|                                | → abb + aab + baba            |

we can find two parse trees for this grammar, so the grammar is ambiguous.



e) 
$$S \rightarrow SA \mid \epsilon$$
 
$$A \rightarrow aa \mid ab \mid ba \mid bb$$

String: aabbba

| Leftmost Derivation: | Rightmost Derivation: |        |
|----------------------|-----------------------|--------|
| $S \rightarrow SA$   | $S \rightarrow SA$    | 5      |
| →SAA                 | →Sba                  | / \    |
| →SAAA                | →SAba                 | 5      |
| →aaAA                | →Sbbba                |        |
| →aabbA               | →SAbbba               | 3 A L  |
| →aabbba              | →Saabbba              | J A ba |
|                      | →aabbba               | S A bb |
|                      |                       |        |
|                      |                       | * aa   |
|                      |                       | 6      |
|                      |                       |        |

The grammar is unambiguous since only one parse tree is possible for every string.

f) 
$$S \rightarrow aEbS$$
  
 $S \rightarrow aEbScS \mid \varepsilon$   
 $E \rightarrow d$ 

String: adbadbadbc

| Leftmost Derivation: | Rightmost Derivation: |
|----------------------|-----------------------|
| $S \rightarrow aEbS$ | $S \rightarrow aEbS$  |
| →adbS                | →aEbaEbScS            |
| →adbaEbS             | →aEbaEbSc€            |
| →adbadbS             | → aEbaEbSc            |
| →adbadbaEbScS        | → aEbaEbaEbSc         |
| →adbadbadbScS        | → aEbaEbaEb€c         |
| →adbadbadbc          | → aEbadbadbc          |
|                      | → adbadbadbc          |
|                      |                       |

we can find two parse trees for this grammar, so the grammar is ambiguous.





- 5. Are the following CFGs ambiguous? Are they inherently ambiguous? If not, then give its unambiguous representation.
- a)  $S \rightarrow Ab \mid AaB$ 
  - $A \rightarrow a \mid Aa$
  - $B \rightarrow b$
- = For the string aaaaab, we can find two parse trees. So the grammar is ambiguous.





The grammar is ambiguous but not inherently ambiguous. So, equivalent unambiguous CFG:

$$S \rightarrow A'b \mid ab$$

$$A' \rightarrow A'a \mid aa$$

- b)  $S \rightarrow aS \mid aSbS \mid \epsilon$
- = For the string aab, we can find two parse trees. So the grammar is ambiguous.



The grammar is ambiguous but not inherently ambiguous. So, equivalent unambiguous CFG:

 $S{\longrightarrow}\,aS\,|\,aTbS\,|\,\varepsilon$ 

 $T \rightarrow aTbT | \epsilon$