

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

FORM PENGAJUAN JUDUL Nama : Maria Anggraini Natio **NIM** : 211402052 Judul diajukan oleh* Dosen Mahasiswa Bidang Ilmu (tulis dua bidang) 1) Computer Vision Intelligent System 2) Uji Kelayakan Judul** Diterima Ditolak Hasil Uji Kelayakan Judul: Dosen Pembimbing I: Baihaqi Siregar S.Si., M.T. Paraf Dosen Pembimbing I (Jika judul dari dosen maka dosen tersebut berhak menjadi pembimbing I)

* Centang salah satu atau keduanya

Dosen Pembimbing II: Ulfi Andayani S.Kom., M.Kom

** Pilih salah satu

Fanindia Purnamasari, S.TI., M.IT.

NIP. 198908172019032023

Medan, 23 Agustus 2024

Ka. Laboratorium Penelitian,

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

RINGKASAN JUDUL YANG DIAJUKAN

Judul / Topik	awah ini diisi oleh mahasiswa yang sudah mendapat judul ANALISIS TERHADAP SIKAP TUBUH MANUSIA MENGGUNAKAN POSE		
Skripsi	ESTIMATION DAN YOLOv8		
Latar Belakang	Latar Belakang		
dan Penelitian	1) Setiap aktivitas yang menimbulkan ketidaknyamanan, mengurangi efisiensi kerja, dan		
Terdahulu	meningkatkan penyakit akibat kerja, adalah aktivitas tidak ergonomis, misalnya ketika		
	menggunakan laptop dengan posisi tubuh membungkuk sehingga mengakibatkan kifosis,		
	nyeri punggung, sakit leher, serta efek bungkuk pada masa tua apabila tidak diperbaiki.		
	2) Penggunaan laptop memiliki hubungan erat dengan mahasiswa. Sekitar 43% mahasiswa		
	menggunakan laptop secara berlebihan dan memiliki risiko yang tinggi. Hal ini terjadi		
	karena mahasiswa memiliki kebiasaan buruk ketika menggunakan laptop, yakni dengan		
	posisi beragam mulai dari duduk di kursi, kasur, lantai, atau kebiasaan buruk lainnya.		
	Kebiasaan buruk yang semakin tinggi ini dapat mempengaruhi kesehatan tulang belakang.		
	3) Gangguan postur tubuh ini dapat terjadi karena durasi penggunaan laptop yang tinggi,		
	yang menurut penelitian durasi maksimal penggunaan laptop yang baik adalah 2 jam. Berdasarkan penelitian sebelumnya yang dilakukan oleh (Ali, 2018), dari 116 responden,		
	terdapat 99,1% mahasiswa menggunakan laptop dengan durasi yang tinggi dan 94%		
	mahasiswa menggunakan laptop dengan frekuensi yang tinggi. Selain itu, sebanyak 52,6%		
	pengguna laptop memiliki posisi tubuh yang buruk dan tidak ergonomis karena mereka		
	langsung menggunakan laptop dimanapun mereka berada.		
	4) Ketinggian postur tubuh sewaktu melihat layar monitor yang tidak sejajar dengan		
	ketinggian mata akan membuat tubuh menjadi membungkuk sehingga sebagian sendi		
	pada tulang belakang memperoleh tekanan yang lebih besar, yang mengakibatkan		
	perubahan lekukan tulang belakang dan menyebabkan nyeri pada punggung.		
	5) Tas sekolah yang dibawa oleh siswa berpotensi membahayakan tulang punggung karena		
	adanya beban berlebihan.		
	6) Berbagai keaktifan siswa di sekolah dengan mengikuti kegiatan intrakurikuler maupun		
	ekstrakurikuler dapat berdampak buruk dan menimbulkan beberapa cedera pada jaringan		
	lunak tulang maupun syaraf, jika tidak terkontrol dengan baik. Bahkan, tulang belakang		
	menjadi bagian tubuh yang sering kali diabaikan. Akibat kesalahan postur dan sikap tubuh		
	menyebabkan trauma pada tulang belakang, seperti terjadinya deformitas misalnya kifosis,		
	skoliosis, maupun lordosis.		
	7) Kebiasaan duduk yang miring dan posisi tas ransel yang terlalu rendah membuat sebagian		
	saraf yang bekerja menjadi lemah. Bila ini terus berulang menjadi kebiasaan, maka saraf		
	itu bahkan akan mati. Hal ini mengakibatkan ketidakseimbangan tarikan pada ruas tulang		
	belakang. Oleh karena itu, tulang belakang yang menderita skoliosis dapat berbentuk		
	seperti huruf S ataupun huruf C.		
	8) Di Indonesia, kecenderungan munculnya gangguan struktur tulang belakang terutama		
	pada anak usia remaja disebabkan kebiasaan buruk yang sering dilakukan tanpa memperhatikan kondisi postur tubuh sehingga mempengaruhi pertumbuhan tubuh pada		
	mempernatikan kondisi postur tubun seningga mempengaruni pertumbunan tubun pada mereka, misalnya posisi ketika membaca, menulis, berdiri, tidur, dan cara duduk yang		
	increka, inisaniya posisi ketika incinoaca, incinuis, octuiri, tidui, dan cara duduk yang		

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

- tidak ergonomis menyebabkan gangguan pada tulang belakang dan persendian, serta menimbulkan rasa pegal pada beberapa bagian tubuh.
- 9) Penggunaan gadget dapat mengganggu postur tubuh anak apabila dalam jangka waktu yang lama. Anak yang kecenderungan mengalami kecanduan gadget seperti bermain *games* tanpa sadar sering menundukkan leher sehingga beban leher dan tulang belakang semakin besar yang menyebabkan punggung terasa nyeri dan apabila dibiarkan dalam jangka waktu yang lama dapat mengakibatkan postur tubuh menjadi bungkuk.
- 10) Gaya hidup duduk terus-menerus dan kurang bergerak karena tuntutan pekerjaan mengakibatkan seseorang kurang memperhatikan postur duduk yang baik. Para pekerja yang sering duduk di depan laptop umumnya tidak menyadari lamanya waktu mereka ketika duduk di depan laptop.
- 11) Banyak orang yang menghabiskan waktu berada di depan komputer atau laptop tanpa memikirkan efek pada tubuhnya yang sebenarnya dibuat *stress* dengan membuat pergelangan mereka terentang, punggung membungkuk, duduk tanpa penyangga kaki, dan berusaha keras memandangi monitor yang diletakkan dengan kurang tepat. Praktik ini akan berakhir pada kelainan trauma kumulatif atau *repetitive stress injuries* yang menghasilkan dampak buruk pada kesehatan seumur hidup. Pekerja Pengguna Komputer (PPK) lebih rentan terhadap RSI (*Repetitive Strain Injuries*) yaitu gangguan kesehatan.

Penelitian Terdahulu

No.	Penulis	Judul	Tahun
1.	Jiahong Jiang, Nan Xia, and Xinmiao Yu	A Feature Matching and Compensation Method Based on Importance Weighting for Occluded Human Pose Estimation	2024
2.	Tianyi Yue, Keyan Ren, Yu Shi, Hu Zhao, and Qingyun Bian	Confidence sharing adaptation for out-of-domain human pose and shape estimation	2024
3.	Yongfeng Qi, Hengrui Zhang, Shengcong Wen, Anye Liang, Panpan Cao, and Huili Chen	Adaptive Module And Accurate Heatmap Translator For Multi-Person Human Pose Estimation	2024
4.	Congju Du, Zengqiang Yan, Zixiang Xiong, and Li Yu	Boosting Integral-Based Human Pose Estimation Through Implicit Heatmap Learning	2024
5.	Tong Zhang, Qilin Li, Jingtao Wen, and C.L. Philip Chen	Enhancement And Optimisation Of Human Pose Estimation With Multi-Scale Spatial Attention And Adversarial Data Augmentation	2024
6.	Shuren Zhou, Xinlan Duan, and Jiarui Zhou	Human Pose Estimation Based On Frequency Domain And Attention Module	2024

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

	7.	Biao Li, Shoufeng Tang, and Wenyi Li	Lmformer: Lightweight And Multi-Feature Perspective Via Transformer For Human Pose Estimation	2024
	8.	Yudisthira Dwi Kurnia, Dahnial Syauqy, dan Edita Rosana Widasari	Pengembangan Wearable Device untuk Deteksi Postur Duduk Manusia Berbasis Data Sensor Mpu6050 Menggunakan Metode Support Vector Machine	2024
	9.	Yessie Ardina Kusuma, Ridho Akbar, dan Muhammad Alfiar P.H.A.	Pengembangan Metode RULA Berbasis Image Processing dan Deep Learning untuk Penilaian Risiko Ergonomi Postur Kerja	2024
	10.	Yang Liu, Changzhen Qiu, and Zhiyong Zhang	Deep Learning For 3d Human Pose Estimation And Mesh Recovery: A Survey	2024
	11.	Zhanpeng Shao, Xueping Wang, Wen Zhou, Wuzhen Wang, Jianyu Yang, and Youfu Li	A Temporal Densely Connected Recurrent Network For Event-Based Human Pose Estimation	2023
	12.	Zaedul Islam and A. Ben Hamza	Iterative Graph Filtering Network For 3d Human Pose Estimation	2023
	13.	Karan Patil, Ajay Tamhankar, Ketan Chandile, and Prof. Prateeksha Chouksey	Detection and Analysis of Sitting Posture in Real Time Based on Keras Framework	2023
	14.	Ahmad Yanshari Mufied dan Dene Herwanto	Analisis Postur Tubuh Pekerja Menggunakan Metode <i>Quick Exposure</i> <i>Checklist</i> dan <i>Rapid Upper Limb</i> <i>Assessment</i> pada Bagian <i>Bag Filling</i>	2023
	15.	Dr.R.Anitha.Professor, Dr.M.S.Jeyalakshmi, Ms.B.Nivetha, Ms.V Femi, and Aishwariya	Intelligent Crutch Tool For Body Posture Management System To Avoid Injuries	2023
	16.	Guo Dong Liu, Wang Sheng Hu, Wen Ying Hou, Sheng Jie Huang, Du Ming Cao, Hai Peng Wang, Yu Xuan Zhou, Fei He, and Yun Bo Li	Indoor Positioning and Posture Recognition of Human Body Applying Integrating-Type Intelligent Metasurfaces Based Sensing System	2023

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

	17.	Liujun Liu, Jiewen Yang, Ye Lin, Peixuan Zhang, and Lihua Zhang	3D Human Pose Estimation With Single Image and Inertial Measurement Unit (IMU) Sequence	2023
	18.	Loudry Alfarizy, Dahnial Syauqy, dan Rizal Setya Perdana	Sistem <i>Monitoring</i> Postur Duduk pada Pemain <i>Game Online</i> menggunakan Sensor <i>Load Cell</i> dan Ultrasonik dengan Metode <i>K-Nearest Neighbor</i> (KNN) Berbasis Arduino	2023
	19.	Arif Supriyanto, Agustian Noor, dan Yunita Prastyaningsih	Penerapan Sistem Tertanam Untuk Deteksi Posisi Duduk	2023
	20.	Mita Anggraini dan Wildian	Rancang Bangun Sistem Peringatan Posisi Tubuh, Jarak Pandang, dan Durasi Kerja di Depan Komputer	2023
	21.	Shafa Salsabila	Rancang Bangun Alat Koreksi Postur dan Lama Waktu Duduk dengan <i>Flex Sensor</i> Berbasis Arduino Uno	2023
	22.	Ratna Aisuwarya, Debi Filanda, dan Dian Zulfi Nanda	Microcontroller Sistem Inventarisasi dan Sistem Deteksi Ketegapan Postur Tubuh	2023
	23.	Nur Azizah, Mardawia Mabe Parenreng, dan Andi Gunawan	Rancang Bangun Aplikasi Identifikasi Dini Gangguan Postur Tubuh Menggunakan Metode <i>Haar Cascade</i> <i>Classifier</i>	2022
	24.	Enrique Piñero-Fuentes, Salvador Canas-Moreno, Antonio Rios-Navarro, Manuel Domínguez-Morales, José Luis Sevillano, and Alejandro Linares-Barranco	A Deep-Learning Based Posture Detection System for Preventing Telework-Related Musculoskeletal Disorders	2021
	25.	Slavomir Matuska , Martin Paralic, and Robert Hudec	A Smart System for Sitting Posture Detection Based on ForceSensors and Mobile Application	2020
	26.	Jahnvi Gupta, Nitin Gupta, Mukesh Kumar, and Ritwik Duggal	An Introduction to IoT Based Posture Detection and Underlying Sensor Technology	2020

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

Rumusan Masalah Metodologi	Berdasarkan permasalahan postur tubuh yang disebabkan peningkatan penggunaan laptop dan gadget dimana menghasilkan cara duduk salah dapat berdampak buruk pada masa tua. Selain itu, tas sekolah pada anak dan remaja dengan beban yang berlebihan dapat berpengaruh terhadap pertumbuhan. Adapun gaya hidup duduk secara terus menerus membuat seseorang menjadi lebih rentan terhadap kelainan RSI (<i>Repetitive Strain Injuries</i>). Oleh karena itu, diperlukan solusi alternatif berupa sistem yang mampu mendeteksi dan mengidentifikasi sikap tubuh manusia sehingga dapat mencegah dan memperbaiki postur tubuh yang salah sebelum menyebabkan dampak kesehatan lebih serius.				
	Body Posture Dataset				
	Machine Learning Model				
	Open Camera Display Warming Alert Display Posture Scanning Result				
	User Device Data Data Model Model Preprocessing Augmentation Training Testing				
Referensi	 Aisuwarya, R., Filanda, D., dan Zulfi D.N. (2023). Microcontroller Sistem Inventarisasi Dan Sistem Deteksi Ketegapan Postur Tubuh. Eureka Media Aksara Alfarizy, L., Syauqy, D., dan Setya, R.P. (2023). Sistem Monitoring Postur Duduk pada Pemain Game Online menggunakan Sensor Load Cell dan Ultrasonik dengan Metode K-Nearest Neighbor (KNN) Berbasis Arduino. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 7(4), 1854-1864. Anggraini, M. dan Wildian. (2023). Rancang Bangun Sistem Peringatan Posisi Tubuh, Jarak Pandang, dan Durasi Kerja di Depan Komputer. Jurnal Fisika Unand (JFU), 12(1), 49-55. https://doi.org/10.25077/jfu.12.1.49-55.2023 Anitha, R., Jeyalakshmi, M.S., Nivetha, B., Femi, V., and Aishwariya. (2023). Intelligent Crutch Tool For Body Posture Management System To Avoid Injuries. European Chemical Bulletin, 12(1), 3074-3084. Azizah, N., Parenreng, M.M., dan Gunawan, A. (2022). Rancang Bangun Aplikasi Identifikasi Dini Gangguan Postur Tubuh Menggunakan Metode Haar Cascade Classifier. Prosiding Seminar Nasional Teknik Elektro dan Informatika (SNTEI) 2022, 8(2), 316-320. Du, C., Yan, Z., Xiong, Z., and Yu, L. (2024). Boosting Integral-Based Human Pose Estimation Through Implicit Heatmap Learning. Neural Networks, 179, 1-12. https://doi.org/10.1016/j.neunet.2024.106524 				

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

- Gupta, J., Gupta, N., Kumar, M., & Duggal, R. (2020). *An Introduction to IoT-Based Posture Detection And Underlying Sensor Technology* (pp. 1-20). Department of Computer Science and Engineering, National Institute of Technology, Hamirpur. https://www.techrxiv.org/doi/full/10.36227/techrxiv.13466597.v1
- Islam, Z. and Ben, A.H. (2023). Iterative Graph Filtering Network For 3d Human Pose Estimation. *J. Vis. Commun. Image R.*, 95, 1-12. https://doi.org/10.1016/j.jvcir.2023.103908
- Jiang, J., Xia, N., dan Yu, X. (2024). A Feature Matching and Compensation Method Based on Importance Weighting for Occluded Human Pose Estimation. *Journal of King Saud University*, 36(5), 1-13. https://doi.org/10.1016/j.jksuci.2024.102061
- Kurnia, Y.D., Syauqy, D., dan Rosana, E.W. (2024). Pengembangan Wearable Device untuk Deteksi Postur Duduk Manusia Berbasis Data Sensor Mpu6050 Menggunakan Metode Support Vector Machine. *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, 8(8), 1-10. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/14006
- Kusuma, Y.A., Akbar, R., dan Alfiar, M.P.H.A. (2024). Pengembangan Metode RULA Berbasis Image Processing dan Deep Learning untuk Penilaian Risiko Ergonomi Postur Kerja. *CYCLOTRON: Jurnal Teknik Elektro*, 7(1), 27-36.
- Li, B., Tang, S., and Li, W. (2024). Lmformer: Lightweight And Multi-Feature Perspective Via Transformer For Human Pose Estimation. *Neurocomputing*, 594, 1-11. https://doi.org/10.1016/j.neucom.2024.127884
- Liu, G.D., Hu, W.S., Hou, W.Y., Huang, S.J., Cao, D.M., Wang, H.P., Zhou, Y.X., He, F., and Li, Y.B. (2023). Indoor Positioning and Posture Recognition of Human Body Applying Integrating-Type Intelligent Metasurfaces Based Sensing System. *Advanced Materials Technologies*, 8(22), 1-12. https://doi.org/10.1002/admt.202301006
- Liu, L., Yang, J., Lin, Y., Zhang, P., dan Zhang, L. (2023). 3D Human Pose Estimation With Single Image and Inertial Measurement Unit (IMU) Sequence. *Pattern Recognition*, 149, 1-10. https://doi.org/10.1016/j.patcog.2023.110175
- Liu, Y., Qiu, C., and Zhang, Z. (2024). Deep Learning For 3d Human Pose Estimation And Mesh Recovery: A Survey. *Neurocomputing*, 596, 1-22. https://doi.org/10.1016/j.neucom.2024.128049
- Matuska, S., Paralic, M., and Hudec, R. (2020). A Smart System for Sitting Posture Detection Based on ForceSensors and Mobile Application. *Mobile Information Systems*, 2020, 1-13. https://doi.org/10.1155/2020/6625797
- Mufied, A.Y. dan Herwanto, D. (2023). Analisis Postur Tubuh Pekerja Menggunakan Metode Quick Exposure Checklist dan Rapid Upper Limb Assessment pada Bagian Bag Filling. *Jurnal Serambi Engineering*, 8(2), 5720-5728. https://ojs.serambimekkah.ac.id/jse/article/view/5952
- Patil, K., Tamhankar, A., Chandile, K., and Chouksey, P. (2023). Detection and Analysis of Sitting Posture in Real Time Based on Keras Framework. *International Journal of Scientific Research in Engineering and Management (IJSREM)*, 7(6), 1-8. https://ijsrem.com/download/detection-and-analysis-of-sitting-posture-in-real-time-base d-on-keras-framework/

UNIVERSITAS SUMATERA UTARA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI

PROGRAM STUDI S1 TEKNOLOGI INFORMASI

Jalan Alumni No. 3 Gedung C, Kampus USU Padang Bulan, Medan 20155 Telepon/Fax: 061-8210077 | Email: tek.informasi@usu.ac.id | Laman: http://it.usu.ac.id

- Piñero E.F., Canas S.M., Rios A.N., Domínguez M.M., Luis J.S., and Linares A.B. (2021). A Deep-Learning Based Posture Detection System for Preventing Telework-Related Musculoskeletal Disorders. *Sensors* 2021, 21(5236), 1-16. https://doi.org/10.3390/s21155236
- Salsabila, S. (2023). Rancang Bangun Alat Koreksi Postur dan Lama Waktu Duduk dengan Flex Sensor Berbasis Arduino Uno. (Skripsi, UIN Syarif Hidayatullah). https://repository.uinjkt.ac.id/dspace/handle/123456789/73152
- Shao, Z., Wang, X., Zhou, W., Wang, W., Yang, J., and Li, Y. (2023). A Temporal Densely Connected Recurrent Network For Event-Based Human Pose Estimation. *Pattern Recognition*, 147, 1-12. https://doi.org/10.1016/j.patcog.2023.110048
- Supriyanto, A., Noor, A., dan Prastyaningsih, Y. (2023). Penerapan Sistem Tertanam untuk Deteksi Posisi Duduk. *KONVERGENSI*, 19(1), 21-29.
- Qi, Y., Zhang, H., Wen, S., Liang, A., Cao, P., and Chen, H. (2024). Adaptive Module And Accurate Heatmap Translator For Multi-Person Human Pose Estimation. Computers & Graphics, 120, 1-9. https://doi.org/10.1016/j.cag.2024.103926
- Yue, T., Ren, K., Shi, Y., Zhao, H., and Bian, Q. (2024). Confidence Sharing Adaptation For Out-Of-Domain Human Pose And Shape Estimation. *Computer Vision and Image Understanding*, 246, 1-11. https://doi.org/10.1016/j.cviu.2024.104051
- Zhang, T., Li, Q., Wen, J., and Philip, C.L.C. (2024). Enhancement And Optimisation Of Human Pose Estimation With Multi-Scale Spatial Attention And Adversarial Data Augmentation. *Information Fusion*, 111, 1-18. https://doi.org/10.1016/j.inffus.2024.102522
- Zhou, S., Duan, X., and Zhou, J. (2024). Human pose estimation based on frequency domain and attention module. Neurocomputing, 604, 1-13. https://doi.org/10.1016/j.neucom.2024.128318

Medan, 23 Agustus 2024 Mahasiswa yang mengajukan,

Maria Anggraini Natio

NIM. 211402052