

SÍLABO TALLER DE MANUFACTURA MODERNA

ÁREA CURRICULAR: DISEÑO E INNOVACIÓN TECNOLÓGICA

CICLO: VIII CURSO DE VERANO 2017

I. CÓDIGO DEL CURSO : 090682

II. CRÉDITOS : 02

III.REQUISITOS : 090140 Procesos de Manufactura

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

La asignatura es eminentemente práctica enfocada al conocimiento y manejo de equipos tecnológicos de control numérico electro mecánico CNC. Orientada a que el alumno diseñe y construya piezas mecánicas.

El curso se desarrolla mediante las unidades de aprendizaje siguientes:

I. Máquinas CNC, Calculo y Diseño II. Torno CNC. III. Fresa CNC.

VI. FUENTES DE CONSULTA:

Bibliográficas

 Groove, M. (2007). Control numérico y robótica. Manufactura Moderna.3° ed. México Mc Graw Hill.

Electrónicas

- García C.(2007). Manual de instrucciones del Torno EMCO TURN 55. Separata de Taller de Manufactura Moderna. Lima.
- Universidad de San Martin de Porres. García C.(2008). Manual de instrucciones de la Fresadora Concept MILL 55. Separata de Taller de Manufactura Moderna. Universidad de San Martin de Porres Lima.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: MAQUINAS CNC, CÁLCULO Y DISEÑO

OBJETIVOS DE APRENDIZAJE:

- Interpretar y diseñar dibujos en CAD.
- Diseñar en torno CAM el proceso de fabricación de piezas.

PRIMERA SEMANA

Prueba de entrada.

Explicación general de la filosofía de las MAQUINAS HERRAMIENTAS.

Comienzo de prácticas con el torno Emco 55.

SEGUNDA SEMANA

Filosofía del control numérico computarizado en las maquinas de cilindrado de piezas Calculo de la potencia en KW de acuerdo a la viruta arrancada y determinación de los materiales posibles para el trabajo de las distintas piezas en este torno CNC Prácticas con el torno Emco 55

TERCERA SEMANA

Diseñar piezas en dibujo CAD (fuente manual de instrucciones) y Exportación de archivos Manejo de velocidades del motor principal y variación de velocidades Practicas con el torno Emco 55

UNIDAD II TORNO CNC.

OBJETIVOS DE APRENDIZAJE:

- Diseñar piezas en torno EMCO 55
- Mecanizar piezas a partir del diseño CAM

CUARTA SEMANA

Manejo del sistema win Cam, modo CAD, menú archivo, menú editar, menú setap, menu biblioteca de herramientas menú ventana y menú ayuda Trabajos en el torno.

QUINTA SEMANA

Puntos de referencia de la Máquina, M= punto cero de la máquina, R= Punto de referencia. N= Punto de referencia del asiento de la herramienta, W= Punto cero de la pieza de trabajo. Trabajos en el torno.

SEXTA SEMANA

De calaje de origen, trabajos en el torno

SÉPTIMA SEMANA

Trabajos en el Software

OCTAVA SEMANA

Examen Parcial

NOVENA SEMANA

Resumen de modos operativos, REF, MEM, EDIT, MDI, JOG, REPOS, TEACHIN. Introducción de programa, llamar a un programa, insertar bloque, cancelar bloque, borrar programa y borrar todos los programas. Entrada y salida de datos. Ejecución de piezas Trabajos en el Software.

UNIDAD III: FRESA CNC

OBJETIVOS DE APRENDIZAJE:

- Diseñar piezas en FRESADORA EMCO MILL 55.
- Mecanizar piezas a partir del diseño CAM.

DÉCIMA SEMANA

Filosofía de las máquinas dedicadas al trabajo de fresado de piezas.

Calculo de la potencia en kilovatios de acuerdo al volumen de la viruta arrancada. y determinación de los materiales posibles para el trabajo de las distintas piezas en esta máquina CNC

Trabajos en la fresadora MILL 55.

UNDÉCIMA SEMANA

Manejo de velocidades del motor principal y variación de velocidades. Tabajos en la fresadora Mill55

DUODÉCIMA SEMANA

Manejo de la FRESADORA MILL 55 DESCIPCION, trabajos en la fresadora Mill 55

DECIMOTERCERA SEMANA

Manejo del sistema WIN CAM, punto de referencia de la maquina M=Punto cero de la maquina R=Punto de referencia N= Punto de referencia de asiento de la herramienta W=Punto cero de la pieza de trabajo

Trabajos en la fresadora Mill 55

DECIMOCUARTA SEMANA

Decalaje de origen Trabajos en la fresadora

DECIMOQUINTASEMANA

Trabajos en la fresadora en forma de trabajos diversos

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

.Método Expositivo – Interactivo. Disertación docente, exposición del estudiante.

- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar aconclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una máquina Fresadora CNC, Un Torno CNC. Una computadora personal para el profesor y una computadora personal para cada estudiante del curso, ecran, proyector de multimedia y una impresora.

Materiales: Manual del curso, vernier. Software CAM y Fanuc.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (PE+EP+EF)/3

PE= (C1+C2)/2

Donde:

EP=Examen parcial

EF=Examen Final

PE =Promedio de evaluaciones

C1 y C2 = Controles de lectura

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de: Ingeniería Industrial, se establece en la tabla siguiente:

K = clave	R = relacionado	Recuadro vacío = no aplica
------------------	------------------------	----------------------------

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	K
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	R
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	K
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	R

(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	К

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

Teoría	Práctica	Laboratorio
0	0	4

b) Sesiones por semana: unac) Duración: 4 horas académicas de 45 minutos

XIV. DOCENTE DEL CURSO

Ing. Cesar García Lorente.

XV. FECHA

La Molina, enero de 2017