ESERCIZI LOGARITMI

Risolvere le seguenti equazioni esponenziali e logaritmiche:

1.
$$2^{x+3} - \sqrt{2^{4+2x}} = 4 + 2 \cdot 4^{\frac{x}{2}}$$

• $2^x := t \Rightarrow 8t - \sqrt{16t^2} = 4 + 2t \Rightarrow 2t = 4 \Rightarrow t = 2 \Rightarrow x = 1$
2. $\sqrt{\log_3 x} - 6\log_3 \sqrt{x} = 0$
 $x > 0; \quad \log_3 x := t \Rightarrow \begin{cases} t \ge 0 \Rightarrow x \ge 1 \\ \sqrt{t} - 6 \cdot \frac{1}{2}t = 0 \end{cases} \Rightarrow \begin{cases} t \ge 0 \Rightarrow x \ge 1 \\ t - 9t^2 = 0 \end{cases} \Rightarrow \begin{cases} t \ge 0 \Rightarrow x \ge 1 \\ t = 0 \lor t = \frac{1}{9} \end{cases}$

$$\Rightarrow \log_3 x = \frac{1}{9} \Rightarrow x = 3^{\frac{1}{9}} = \sqrt[9]{3} \lor \log_3 x = 0 \Rightarrow x = 1$$
3. $2^{x+1} - 2^x + 2^{x-2} = 5$
• $2^x := t \Rightarrow 2t - t + \frac{t}{4} = 5 \Rightarrow \frac{5}{4}t = 5 \Rightarrow t = 4 \Rightarrow 2^x = 4 \Rightarrow x = 2$
4. $\log_2(x+1) + \log_2(x+2) = 2 + \log_2 3$
 $C.E.\begin{cases} x+1>0 \\ x+2>0 \end{cases} \Rightarrow x > -1$
• $\log_2[(x+1)(x+2)] = \log_2 12 \Rightarrow x^2 + 3x + 2 = 12 \Rightarrow x^2 + 3x - 10 = 0$

6. Risolvere la seguente disequazione: $\log_2 x > -\log_{\frac{1}{2}} \sqrt{x}$.

 $x = \frac{-3 \pm 7}{2} \Rightarrow \begin{array}{c} x = -5 \, non & accettabile \\ x = 2 & accettabile \end{array}$

- Scriviamo il logaritmo in base un mezzo nel corrispondente logaritmo in base due: $-\log_{\frac{1}{2}} \sqrt{x} = -\frac{\log_2 \sqrt{x}}{\log_2 \frac{1}{2}} = \log_2 \sqrt{x}$. Di conseguenza la disequazione diventa $\log_2 x > \log_2 \sqrt{x} \Rightarrow \begin{cases} x > 0 \\ x > \sqrt{x} \end{cases} \Rightarrow \begin{cases} x > 0 \\ x > x > 0 \end{cases} \Rightarrow \begin{cases} x > 0 \\ x < 0 \lor x > 1 \end{cases} \Rightarrow x > 1.$
- 7. Si risolvano le seguenti disequazioni

a)
$$\log_2 \log_{\frac{1}{2}}(x-6) < 0$$
;

•
$$0 < \log_{\frac{1}{2}}(x-6) < 1 \Rightarrow \begin{cases} \log_{\frac{1}{2}}(x-6) > 0 \\ \log_{\frac{1}{2}}(x-6) < 1 \end{cases} \Rightarrow \begin{cases} 0 < x-6 < 1 \\ x-6 > \frac{1}{2} \end{cases} \Rightarrow \frac{1}{2} < x-6 < 1 \Rightarrow \frac{13}{2} < x < 7$$

b)
$$2^{x} - 1 > \sqrt{3 \cdot 2^{x} - 3}$$
. Si ricordi che $\sqrt{A(x)} < B(x) \Rightarrow \begin{cases} B(x) \ge 0 \\ A(x) \ge 0 \\ A(x) < [B(x)]^{2} \end{cases}$

$$\begin{array}{ll}
\bullet & \begin{cases}
2^{x} - 1 \ge 0 \\
3 \cdot 2^{x} - 3 \ge 0 \\
3 \cdot 2^{x} - 3 < (2^{x} - 1)^{2}
\end{cases} \Rightarrow \begin{cases}
2^{x} \ge 1 \\
2^{x} \ge 1 \\
(2^{x})^{2} - 5 \cdot 2^{x} + 4 > 0
\end{cases} \Rightarrow \begin{cases}
x \ge 0 \\
2^{x} < 1 \lor 2^{x} > 4
\end{cases} \Rightarrow \begin{cases}
x \ge 0 \\
x < 0 \lor x > 2
\end{cases} \Rightarrow x > 2$$

La popolazione di expolandia decresce con modello esponenziale da 550.000 a 450.000 dal 2008 al 2010. Quanti abitanti avrà expolandia nel 2012? Si scriva la legge esponenziale nella forma $N(t) = N_0 e^{kt}$, dove t è il numero di anni dal 2008 (cioè, t = 0 nel 2008, t = 1 nel 2009 etc..).

$$2008: N_0 = N(0) = 550.000$$

•
$$2010: N_2 = N(2) = 450.000 = 550.000e^{k \cdot 2} \Rightarrow 2k = \ln \frac{450.000}{550.000} \Rightarrow k = -0.1$$

 $2012: N_4 = N(4) = 550.000e^{-0.1 \cdot 4} = 368676 \approx 370.000$

Esercizi

1.
$$\log_5(x+1) + \log_5 4 = \log_5 6x$$
 $x = 2$

2.
$$\log_2^2 x^2 + 4\log_2 \sqrt{x} - 2 = 0$$
 $x = \sqrt{2}$; $x = \frac{1}{2}$

3.
$$\sqrt{\log_2^2 x + \log_2 x - 2} = \log_{\frac{1}{2}} x - 2$$
 $x = \frac{1}{4}$

4.
$$\log \sqrt{|x-2|+2x} - \frac{1}{2}\log(3x+7) = 0$$
 $x = -\frac{5}{6}$

5.
$$\frac{\log_{\frac{1}{3}}(2x+4) + \log_{3}x + \log_{3}(x-1)}{\log_{3}\frac{x}{2}} = 0 \qquad x = 4$$

6. Risolvere il seguente sistema:
$$\begin{cases} \log_{xy} 12 = 1 & x = 4 & y = 3 \\ 2^{x-4} \cdot 3^{x-1} = \frac{6^y}{8} & x = -3 & y = -4 \end{cases}$$

7.
$$a)\frac{2^{x-1}\cdot\sqrt[3]{5}}{\sqrt{10}} = 5^{x+1}$$
 $x = \frac{\frac{7}{6}\ln 5 + \frac{3}{2}\ln 2}{\ln 2 - \ln 5}$

$$b)\frac{1}{2}\log(7+3x) = \log(1-\sqrt{x+2})$$
 $x = -2$

8.
$$a)\sqrt{2\sqrt{2}} = 4^{1-x} x = \frac{5}{8}$$

$$b)Log 5 - Log(3 + \sqrt{x}) = Log(3 - \sqrt{x}) x = \frac{5}{8}$$

9.
$$a)\frac{1}{4\sqrt{2}} = 8^{x} x = -\frac{5}{6}$$
$$b)\log_{3}(x^{2} + x) - \log_{3}(x^{2} - x) = 1 x = 2$$

10.
$$\log_{\frac{1}{y}}(\log_{y} x) > \log_{y}(\log_{y} x)$$

$$\begin{cases}
0 < x < y \lor 1 < x < \frac{1}{y}; & 0 < y < 1 \\
0 < x < \frac{1}{y} \lor 1 < x < y; & y > 1
\end{cases}$$

$$a)y = 2^{-x}$$

11. Tracciare il grafico delle seguenti funzioni: $b)y = 2^{-x} + 1$

$$c)y = 1 - 2^{-x}$$

12. Tracciare il grafico della funzione $y = \log_{\frac{1}{2}} x$, a partire da quello della funzione $y = \frac{1}{2^x}$. Che relazione sussiste tra le due funzioni?

- 13. Data la funzione $f(x) = \left(\frac{1}{3}\right)^{1-x}$ determinare la funzione inversa $f^{-1}(x)$, tracciare i grafici delle due funzioni sullo stesso diagramma cartesiano, e risolvere la disequazione $f^{-1}(x) \le 1$.
- $f^{-1}(x) = 1 + \log_3 x$ $0 < x \le 1$.

- 14. Determinare l'equazione cartesiana del luogo geometrico le cui equazioni parametriche sono: $\begin{cases} x = \log_2(1+k) \\ y = k-1 \end{cases}$ per valori di k > -1..
- $y = 2^x 2$
- 15. Data la funzione $f(x) = 1 + 3^{x-2}$ determinare l'insieme di definizione, l'immagine, la funzione inversa e tracciare i grafici della funzione e dell'inversa.
- D = R $I = \{y \in R \mid y > 1\}$ $y = 2 + \log_3(x 1)$.

- 16. Date le funzioni f(x) = |2x| e $g(x) = \log_2(x-1)$, determinare la funzione composta f(g(x)) e risolvere la disequazione g(f(x)) > 1.
- $f(g(x) = |2\log_2(x-1)|$ $x < -\frac{3}{2} \lor x > \frac{3}{2}$.
- 17. Risolvere la seguente disequazione : $25^x 13 \cdot 5^x + 30 \ge 0$.
- $x \le \log_5 3 \lor x \ge \log_5 10$.
- 18. Tracciare il grafico della seguente funzione $f(x) = 1 3^{|x|}$.

- 19. Il numero di nuclei presenti al tempo t, in una massa radioattiva, è determinato dalla legge $n(t) = n_0 e^{-\alpha t}$. Dopo quanto tempo la massa non decaduta è un decimo della massa iniziale? Si assuma per α il valore $\alpha = 10^{-3} s^{-1}$.
- $n(t) = \frac{1}{10}n(0) \Rightarrow n_0 e^{-\alpha t} = n_0 10^{-1} \Rightarrow t = 10^3 \ln 10 = 2303s = 38'22''$.
- 20. Risolvere la seguente disequazione logaritmica: $\log_{\frac{1}{r-1}}(x^2-1) \le \log_{x-1}x^2$.
- $1 < x < \sqrt{\frac{1+\sqrt{5}}{2}} \lor x > 2$.

21. Si tracci il grafico della funzione $f(x) = 1 + \log_{\frac{1}{2}} \sqrt{1 - x}$.

