Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

points

1.

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

$$x^{(i) < j >}$$

Correct

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

$$\chi^{(j) < i>}$$

$$x^{< j > (i)}$$

1/1 points

2.

Consider this RNN:

This specific type of architecture is appropriate when:

Correct

It is appropriate when every input should be matched to an output.

$$T_x < T_y$$

$$\int T_x > T_y$$

$$T_x = 1$$

3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Speech recognition (input an audio clip and output a transcript)

Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

	Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
Corr Corr	
	Image classification (input an image and output a label)
Un-s	elected is correct

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Correct

Correct!

4.

You are training this RNN language model.

At the $t^{\it th}$ time step, what is the RNN doing? Choose the best answer.

Stimating $P(y^{<1>}, y^{<2>}, \dots, y^{<t-1>})$

Estimating $P(y^{< t>})$

10/10 points (100%)

Quiz, 10 questions

Correct

Yes, in a language model we try to predict the next step based on the knowledge of all prior steps.

Estimating $P(y^{< t>} | y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

1/1 points

5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step *t*?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

1 / 1
points

/ 1

6.

You are training an RNN, and find that your weights and activations are m

all taki	ng on the value of NaN ("Not a Number"). Which of these is the kely cause of this problem?
	Vanishing gradient problem.
0	Exploding gradient problem.
Corr	ect
	ReLU activation function g(.) used to compute g(z), where z is too large.
	Sigmoid activation function g(.) used to compute g(z), where z is too large.
~	1 / 1 points
are usi	se you are training a LSTM. You have a 10000 word vocabulary, and ng an LSTM with 100-dimensional activations $a^{< t>}$. What is the sion of Γ_u at each time step?
	1
0	100
	ect rect, Γ_u is a vector of dimension equal to the number of len units in the LSTM.
	300
	10000

Recurrent Neural Networks

10/10 points (100%)

Quiz, 10 questions

Here're the update equations for the GRU.

GRU

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{< t>} = c^{< t>}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{<\it t>}$ to be highly dependant on $c^{<\it t-1>}$.

Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

1/1 points

9.

Here are the equations for the GRU and the LSTM:

Recurrent Neural Networks

LSTM

10/10 points (100%)

Quiz, 10 questions

$$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$$

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r)$$

$$\Gamma_f = \sigma(W_f[a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_f = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$\Gamma_o = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$\Gamma_o = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$\Gamma_o = \Gamma_o * c^{< t>} + \Gamma_f * c^{< t-1>}$$

$$\Gamma_o = \Gamma_o * c^{< t>} + \Gamma_f * c^{< t-1>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

1
ر

 Γ_u and $1 - \Gamma_u$

Correct

Yes, correct!

- \bigcap Γ_u and Γ_r
- $1 \Gamma_u$ and Γ_u
- \bigcap Γ_r and Γ_u

1/1 points

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\ldots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\ldots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$

Correct

Recurrent Neural Networks

10/10 points (100%)

Quiz, 10	0 questior	าร
----------	------------	----

Unidirectional RNN, because the value of $y \le x^{< t>}$, and not other days' weather.	depends only on

