

Определение двойственной задачи

Рассмотрим задачу ЛП в общей форме

$$F = c_1 x_1 + \dots + c_n x_n \to \max$$

$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le b_1 \\ \vdots \\ a_{k1} x_1 + a_{k2} x_2 + \dots + a_{kn} x_n \le b_k \\ \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = b_m \end{cases}$$

$$(1)$$

$$x_j \ge 0, j = \overline{1, l}, l \le n$$

$$y_i \ge 0, i = 1, k, k \le m$$
 называется двойственной к задаче (1).

Определение двойственной задачи

	Прямая задача	Двойственная задача
1	n - переменных	m - переменных
2	m - ограничений	n - ограничений
3	Целевая функция – ищется max	Целевая функция – ищется min
4	с – вектор коэффициентов	b – вектор коэффициентов
	целевой функции	целевой функции
5	b – вектор свободных членов	с – вектор свободных членов
	системы ограничений	системы ограничений
6	А – матрица коэффициентов	А ^т – матрица коэффициентов
	системы ограничений	системы ограничений
7	$x_i >= 0, j=1,k$	j-ое ограничение «>=»,j=1,k
8	х _і – не ограничена в знаке,	j-ое ограничение «=»,j=k+1,n
	j=k+1,n	
9	i-ое ограничение «<=»,i=1,l	$y_i >= 0, i=1,I$
10	i-ое ограничение «=»,i=l+1,m	у _і , – не ограничена в знаке,
		i=l+1,m

Пример постановки двойственной задачи

$$F = x_1 - 4x_2 - 3x_3 \to \min$$

$$\begin{cases} 3x_1 + 4x_2 + x_3 \le 7 \\ x_1 + 2x_2 + x_3 = 6 \\ x_3 \ge 4 \end{cases}$$

$$x_j \ge 0, \ j = \overline{1,3}$$

$$F = -x_1 + 4x_2 + 3x_3 \to \max$$

$$\begin{cases} 3x_1 + 4x_2 + x_3 \le 7 \\ -x_3 \le -4 \\ x_1 + 2x_2 + x_3 = 6 \end{cases}$$

$$x_j \ge 0, \ j = \overline{1,3}$$

$$F *= 7y_1 - 4y_2 + 6y_3 \rightarrow \min$$

$$\begin{cases} 3y_1 - y_3 \le -1 \\ 4y_1 - 2y_3 \le 4 \\ y_1 - y_2 + y_3 = 3 \end{cases}$$

$$y_{1,2} \ge 0$$

Симметричная пара двойственных задач

$$F = \langle c, x \rangle \longrightarrow \max_{Ax \le b}$$

$$F^* = \langle b, y \rangle \longrightarrow \min_{A^T y \ge C}$$

$$y \ge 0$$

Основные теоремы двойственности

Теорема 1. Если одна из пары двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причем значения целевых функций задач при их оптимальных планах равны между собой: F(x*) = F*(y*). Если же целевая функция одной из пары двойственных задач не ограничена, то другая задача вообще не имеет планов (ОДР пуста).

Теорема2: $x^* = (x_1^*,...,x_n^*)$ и $y^* = (y_1^*,....,y_m^*)$ - оптимальные решения прямой и двойственной задач \Leftrightarrow

$$(\sum_{j=1}^{n} a_{ij} x_{j}^{*} - b_{i}) y_{i}^{*} = 0, i = \overline{1, m}$$

$$(\sum_{i=1}^{m} a_{ij} y_i^* - c_j) x_j^* = 0, j = \overline{1, n}$$

Основные теоремы двойственности

Теорема 3.
$$y^* = C_b A_B^{-1}$$

Доказательство.

Пусть прямая задача:

$$F = \langle c, x \rangle \longrightarrow \max_{\substack{Ax = b \\ x \ge 0}}$$

Тогда двойственная:

$$F^* = \langle y, b \rangle \to \min_{A^T y \ge C}$$

Пусть x^* - оптимальное решение прямой.

Тогда $A_B x_b^* = b$, $A_B^{-1} A_B x_b^* = A_B^{-1} b$, $x_b^* = A_B^{-1} b$.

Подставим х* в целевую функцию:

$$F = \langle c, x^* \rangle = c_b x_b^* = C_b A_B^{-1} b$$
,

$$C_b A_B^{-1} b = y^* b$$
 тогда $y^* = C_b A_B^{-1}$,

где C_b – коэффициенты при базисных переменных;

 A_B^{-1} - обратная матрица к матрице, составленной из компонент векторов, вошедших в оптимальных базис (расположена в первых m строках последней (оптимальной) симплекс-таблицы, в столбцах векторов, представляющих начальный базис.

При этом $y^* = C_h A_B^{-1}$ - находится в строке Δ

Основные теоремы двойственности

Установим соответствие между переменными прямой и двойственной задач в симплекс-таблице:

$$x_1...x_n$$
 $x_{n+1}...x_{n+m}$ основные $y_{m+1}...y_{m+n}$ $y_1...y_m$ основные $y_1...y_m$

Пример

$$f = 4x1 + 5x2 \rightarrow \max \text{ (min)}$$

$$\begin{cases} 7x_1 + 5x_2 \le 35 \\ x_1 + 2x_2 \le 8 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$x_{\text{max}} = \left(\frac{10}{3}, \frac{7}{3}\right)$$

$$f_{\text{max}} = 25$$

$$f^* = 35y1 + 8y2 \rightarrow min$$

$$\begin{cases} 7y_1 + y_2 \ge 4 \\ 5x_1 + 2x_2 \ge 5 \end{cases}$$

$$y_1 \ge 0, y_2 \ge 0$$

Пример

$$f = 4x1 + 5x2 \rightarrow \max \text{ (min)}$$

$$\begin{cases} 7x_1 + 5x_2 \le 35 \\ x_1 + 2x_2 \le 8 \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$x_{\text{max}} = \left(\frac{10}{3}, \frac{7}{3}\right)$$

$$f_{\text{max}} = 25$$

$$\begin{cases} 7 \cdot \frac{10}{3} + 5 \cdot \frac{7}{3} = 35 \Rightarrow y_1^* > 0 \\ \frac{10}{3} + 2 \cdot \frac{7}{3} = 8 \Rightarrow y_2^* > 0 \end{cases}$$

$$f^* = 35y1 + 8y2 \rightarrow \min$$

$$\begin{cases} 7y_1 + y_2 \ge 4 \\ 5x_1 + 2x_2 \ge 5 \end{cases}$$

$$y_1 \ge 0, y_2 \ge 0$$

$$\begin{cases} x_1^* > 0 \Rightarrow 7y_1^* + y_2^* = 4 \\ x_2^* > 0 \Rightarrow 5y_1^* + 2y_2^* = 5 \end{cases}$$
$$y_1^* = \frac{1}{3}, y_2^* = \frac{5}{3}$$
$$f_{\min}^* = 25$$

Пример

N	Базис	С(базис)	B onop.	A1	A2	A3	A4
1	A1	4	3,33333333	1	0	0,22222222	-0,55555555
2	A2	5	2,33333333	0	1	-0,11111111	0,77777777
				d1=0	d2=0	d3=0,333333	d4=1,66666E

$$y^* = C_b A_B^{-1} = (4,5) \cdot \begin{pmatrix} 0,222 & -0,555 \\ -0,111 & 0,777 \end{pmatrix} = (0,333;1,666)$$

Задача об оптимальном плане производства продукции

- n видов продукции, ;
- m видов ресурсов (сырья), ;
- a_{ij} количество ресурса *i*-го вида, требующегося для производства единицы продукции *j*-го вида;
- b_i запасы ресурса i-го вида ;
- c_j доход (прибыль) от реализации единицы продукции j-го вида.

Задача об оптимальном плане производства продукции

- Необходимо найти такой план производства продукции, при котором достигается максимальная прибыль, для реализации которого достаточно имеющихся ресурсов.
- Оценить каждый из видов сырья, используемых для производства продукции. Оценки, приписываемые каждому из видов сырья должны быть такими, чтобы оценка всего используемого сырья была минимальна, а суммарная оценка сырья, используемого на производство единицы продукции любого вида, не меньше цены единицы продукции данного вида.
- Найти интервалы устойчивости двойственных оценок по отношению к изменениям ресурсов каждого типа.

	A	В	С	D	Запасы
C_1	1	0	2	1	180
C_2	0	1	3	2	210
C_3	4	2	0	4	800
Цена за единицу продукции	9	6	4	7	

Построим модели

Построим модели

$$F = 9x_1 + 6x_2 + 4x_3 + 7x_4 \rightarrow \max$$

$$\begin{cases} x_1 + 2x_3 + x_4 \le 180 \\ x_2 + 2x_3 + x_4 \le 210 \\ 4x_1 + 2x_2 + 4x_4 \le 800 \end{cases}$$

$$x_j \ge 0, j = \overline{1,4}$$

Построим модели

$$F = 9x_1 + 6x_2 + 4x_3 + 7x_4 \rightarrow \max$$

$$\begin{cases} x_1 + 2x_3 + x_4 \le 180 \\ x_2 + 2x_3 + x_4 \le 210 \\ 4x_1 + 2x_2 + 4x_4 \le 800 \end{cases}$$

$$x_j \ge 0, j = \overline{1,4}$$

$$F^* = 180y_1 + 210y_2 + 800y_3 \rightarrow \min$$

$$\begin{cases} y_1 + 4y_3 \ge 9 \\ y_2 + 2y_3 \ge 6 \\ 2y_1 + 3y_2 \ge 4 \\ y_1 + 2y_2 + 4y_3 \ge 7 \end{cases}$$

$$y_i \ge 0, i = \overline{1,3}$$

Приведем к канонической форме

$$F = 9x_1 + 6x_2 + 4x_3 + 7x_4 \rightarrow \max$$

$$\begin{cases} x_1 + 2x_3 + x_4 + x_5 = 180 \\ x_2 + 3x_3 + 2x_4 + x_6 = 210 \\ 4x_1 + 2x_2 + 4x_4 + x_7 = 800 \end{cases}$$

$$x_j \ge 0, j = \overline{1,7}$$

базис	Сб.	В	9	6	4	7	0	0	0
			A 1	A2	A3	A4	A5	A6	A7
A5	0	180	[1]	0	2	1	1	0	0
A6	0	210	0	1	3	2	0	1	0
A7	0	800	4	2	0	4	0	0	1
		F = 0	-9	-6	-4	-7	0	0	0

- При данном плане ничего не производится, сырье не используется, F = o.
- Δj показывают на сколько увеличится F (цена за произведенную продукцию) при введении в план единицы j-го вида продукции.
- Отсюда следует, что целесообразно включить в план изделие А в объеме min{180/1, 800/4} = 180.
- Тогда сможем изготовить 180 единиц изделия А. На это потребуется 180 единиц С1 и 180 · 4 С3.
- Т.е. максимум количества изделия А ограничивается запасами сырья С1. При этом все сырье С1 израсходуется.

Оптимальная симплекс-таблица

5 on vo	базис Сб.	В	9	6	4	7	0	0	0
Оазис			A1	A2	A3	A4	A5	A6	A7
A1	9	95	1	0	-3/2	0	0	-1/2	1/4
A5	0	85	0	0	7/2	1	1	1/2	-1/4
A2	6	210	0	1	3	2	0	1	0
		2115	0	0	1/2	5	0	3/2	9/4

$$x^* = (95,210,0,0)$$
 $y^* = (0,\frac{3}{2},\frac{9}{4})$

При оптимальном плане производится 95 изделий **A**, 210 изделий **B**, при этом остается неиспользованными 85 единиц **C**1.

1. Подставим x^{*} в ограничения прямой задачи:

$$\begin{cases}
95 + 2 \cdot 0 + 0 < 180 \\
210 + 3 \cdot 0 + 2 \cdot 0 = 210 \\
4 \cdot 95 + 2 \cdot 210 + 4 \cdot 0 = 800
\end{cases}$$

Второе и третье ограничения выполняются как «=» => ресурсы 2-го и 3-го видов полностью используются в оптимальном плане, являются дефицитными ($y_2^* = \frac{3}{2} > 0$, $y_3^* > 0$).

Первое ограничение выполняется как строгое «<» => ресурс первого вида не является дефицитным ($y_1^*=0$). Его остатки $x_5^*=85$ => положительную двойственную оценку имеют лишь те виды ресурсов, которые полностью используются в оптимальном плане.

2. Подставим y^* в ограничение двойственной задачи

$$\begin{cases} 0+4 \cdot \frac{9}{4} = 9\\ \frac{3}{2} + 2 \cdot \frac{9}{4} = 6\\ 2 \cdot 0 + 3 \cdot \frac{3}{2} > 4\\ 0 + 2 \cdot \frac{3}{2} + 4 \cdot \frac{9}{4} > 7 \end{cases}$$

Первое и второе ограничения выполняются как «=» => двойственные оценки ресурсов, используемых для производства единицы продукции A и B, равны в точности доходам => производить эти изделия целесообразно => $x_1^* = 95 > 0$, $x_2^* = 210 > 0$.

Третье и четвертое ограничения выполняются как «>» => производить изделия С и D экономически не выгодно => $x_3^* = 0$, $x_4^* = 0$.

3. Величина двойственной оценки показывает, насколько возрастает значение целевой функции при увеличении дефицитного ресурса на одну единицу.

Увеличение ресурса С2 на одну единицу приведет к получению нового оптимального плана, в котором прибыль возрастает на 3/2: 2115+3/2. При

этом коэффициенты матрицы A_b^{-1} (столбца A6) оптимальной симплекстаблицы показывают, что указанное увеличение прибыли достигается за счет уменьшения выпуска изделий A на ½ единицы, увеличения выпуска изделия B на 1 единицу и увеличения остатка ресурса C1 на ½ единицы (использования ресурса расхода C1 сократится на ½ единицы).

Увеличение ресурса С3 на 1 единицу приведет к получению нового оптимального плана, в котором прибыль возрастает на 9/4: 2115 + 9/4. Это произойдет за счет увеличения выпуска изделия А на ¼ единицы, при этом расход сырья С1 возрастает (остаток уменьшится) на ¼ единицы.

- Двойственные оценки связаны с оптимальным планом прямой задачи. Всякое изменение исходных данных прямой задачи оказывает влияние на ее оптимальный план и на систему двойственных оценок.
- В свою очередь двойственные оценки служат инструментом анализа и принятия правильного решения в условиях меняющихся коммерческих ситуаций.

Будем рассматривать максимальные значения целевой функции прямой задачи, как функцию свободных членов системы ограничений:

$$F_{\max}(b_1,...,b_m)$$
.

<u>Утверждение</u>: В оптимальном плане двойственной задачи значение переменной y_i^* численно равно частной производной функции

$$F_{\max}\left(b_1,...,b_m
ight)$$
 по соответствующему аргументу: $\dfrac{\partial F_{\max}}{\partial b_i} = y_i^*$, $i=\overline{1,m}$

Двойственные оценки ресурсов показывают, на сколько единиц изменяется доход (F) от реализации продукции при изменении запаса соответствующего ресурса на одну единицу.

Большей оценке соответствует наиболее дефицитный ресурс. Для недефицитного ресурса $y_i^* = 0$.

Представляет интерес определить такие интервалы изменения b_i , в которых оптимальный план двойственной задачи не меняется.

$$x_b^* = A_B^{-1}(b + \Delta b) = A_B^{-1}b + A_B^{-1}\Delta b = x_b + A_B^{-1}\Delta b$$

Это имеет место для всех тех значений $b_i + \Delta b_i$, при которых x_b^* не содержит отрицательных (т.е. являются допустимым решением).

$$A_B^{-1} \begin{pmatrix} b_1 + \Delta b_1 \\ \cdot \\ \cdot \\ \cdot \\ b_m + \Delta b_m \end{pmatrix} \ge 0$$

Определим интервалы устойчивости для нашей задачи:

$$A_B^{-1} = \begin{pmatrix} 0 & -1/2 & 1/4 \\ 1 & 1/2 & -1/4 \\ 0 & 1 & 0 \end{pmatrix} b = \begin{pmatrix} 180 \\ 210 \\ 800 \end{pmatrix}$$

$$A_B^{-1}(b+\Delta b) = \begin{pmatrix} 0 & -1/2 & 1/4 \\ 1 & 1/2 & -1/4 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 180 + \Delta b_1 \\ 210 + \Delta b_2 \\ 800 + \Delta b_3 \end{pmatrix} =$$

$$\begin{pmatrix} 95 - 1/2 \cdot \Delta b_2 + y_4 \cdot \Delta b_3 \\ 85 + \Delta b_1 + 1/2 \cdot \Delta b_2 - 1/4 \cdot \Delta b_3 \\ 210 + \Delta b_2 \end{pmatrix} \ge 0$$

Частные случаи

1) Если
$$\Delta b_2 = 0$$
, $\Delta b_3 = 0 \Rightarrow 85 + \Delta b_1 \ge 0 \Rightarrow \Delta b_1 \ge -85$

2) Если $\Delta b_1 = 0$, $\Delta b_3 = 0$

$$\begin{cases} 95 - 1/2 \cdot \Delta b_2 \ge 0 \\ 210 + \Delta b_2 \ge 0 \\ 85 + 1/2 \cdot \Delta b_3 \ge 0 \end{cases} \quad \Delta b_2 \le 190 \\ \Delta b_2 \ge -210 \\ \Delta b_2 \ge -170 \implies -170 \le \Delta b_2 \le 190$$

3) Если $\Delta b_1 = 0$, $\Delta b_2 = 0$

$$\begin{cases} 95 + 1/4 \cdot b_3 \ge 0 \\ 85 - 1/4 \cdot b_3 \ge 0 \end{cases} \quad \Delta b_3 \ge -380 \\ \Delta b_3 \le 340 \qquad -380 \le \Delta b_3 \le 340$$

=> интервалы изменения ресурсов:

$$210 - 170 \le b_2 \le 210 + 190 \qquad 800 - 380 \le b_3 \le 800 + 380$$

$$40 \le b_2 \le 400 \qquad 420 \le b_3 \le 1140$$

Первый вид ресурса в оптимальном плане недоиспользован, является недефицитным.

Увеличение данного ресурса приведет лишь к росту его остатка.

При этом изменений в оптимальном плане не будет, т.к. $y_1^*=0$.

Предельные значения изменения всякого из ресурсов, для которого двойственные оценки остаются неизменными, определяются следующим образом:

$$\Delta b_{i}^{-} = \max_{x_{ji} > 0} \left\{ \frac{-x_{j}^{*}}{x_{ji}} \right\} \le \Delta b_{i} \le \min_{x_{ji} < 0} \left\{ \frac{-95}{-1/2} \right\}$$

$$-85 \le \Delta b_1$$

$$-170 \le \Delta b_2 \le 190$$

$$\max_{x_{ji}>0} \left\{ \frac{-95}{1/4} \right\} \le \Delta b_3 \le \left\{ \frac{-85}{-1/4} \right\} -380 \le \Delta b_3 \le 340$$

Аналогично можно определить интервалы устойчивости с точки зрения дохода изделия.

$$\max_{x_{jk}<0} \left\{ \frac{x_j^*}{x_{jk}} \right\} \le x_k \le \min_{x_{jk}>0} \left\{ \frac{x_j^*}{x_{jk}} \right\}$$

Пример для х₃ и х₄:

$$\max\left\{\frac{95}{-3/2}\right\} \le x_3 \le \min\left\{\frac{85}{7/2}, \frac{210}{3}\right\} - 60 \le x_3 \le \left[\frac{170}{7}\right] = 24$$

$$\max\{\varnothing\} \le x_4 \le \min\left\{\frac{85}{1}, \frac{210}{2}\right\} = 85 \quad x_4 \le 85$$

=> В производство можно вводить изделие С до 24 единиц, или изделие D до 85 единиц.

Ошибки, упомянутые в лекции, представлены в качестве заметок к каждому слайду

Сушкевич Владислав Калугер Роман