Chapitre 4 - Méthodologie : détermination des équations de mouvement

Application 3

Chaîne ouverte - Centrifugeuse géotechnique *

Pôle Chateaubriand – Joliot Curie

Savoirs et compétences :

- Res1.C2 : principe fondamental de la dynamique
- Res1.C1.SF1: proposer une démarche permettant la détermination de la loi de mouvement

Présentation

La géotechnique correspond aux activités liées aux applications de la mécanique des sols, de la mécanique des roches et de la géologie. À partir d'essais en laboratoire et in situ, la géotechnique fournit aux constructeurs de bâtiments et d'ouvrages les données indispensables pour le génie civil en ce qui concerne leur stabilité en fonction des sols. Aujourd'hui la modélisation physique d'ouvrage géotechnique en centrifugeuse est une approche expérimentale répandue. La centrifugation des modèles réduits permet de reproduire des états de contraintes dans les matériaux semblables à ceux régnant dans l'ouvrage grandeur nature. Le laboratoire central des Ponts et Chaussées (LCPC) de Nantes possède une centrifugeuse géotechnique dont les principales caractéristiques sont données ci-après :

- distance de l'axe à la plate-forme nacelle : 5,5 m;
- longueur du bras: 6,8 m;
- accélération maximale : 200 g;
- temps de montée à 200 g : 360 s.

On propose le modèle cinématique suivant :

Soit $\mathcal{R} = (O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ un repère galiléen lié au bâti 0 de la centrifugeuse. L'axe (O, \overrightarrow{z}) est dirigé suivant la verticale descendante. On désigne par $\overrightarrow{g} = g \overrightarrow{z}$ le vecteur accélération de la pesanteur.

Le bras 1 est en liaison pivot sans frottement d'axe (O, \overrightarrow{z}) avec le bâti 0. Soit $\mathcal{R}_1 = (O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z})$ un repère

lié au bras 1. On pose $\alpha = (\overrightarrow{x}, \overrightarrow{x_1})$, avec $\alpha = \omega t$, où ω est une constante positive.

La nacelle 2 est en liaison pivot sans frottement d'axe $(A, \overrightarrow{y_1})$ avec le bras 1 , telle que $\overrightarrow{OA} = a\overrightarrow{x_1}$ (a est une constante positive). Soit $\mathcal{R}_2 = (A; \overrightarrow{x_2}, \overrightarrow{y_1}, \overrightarrow{z_2})$ un repère lié à la nacelle 2. On pose $\beta = (\overrightarrow{z}, \overrightarrow{z_2})$.

On note:

- bras 1 : moment d'inertie I par rapport à l'axe (O, \overrightarrow{z}) ;
- nacelle 2 : centre d'inertie G , tel que $\overrightarrow{AG} = b \overrightarrow{z_2}$ (b est une constante positive), masse m, matrice

d'inertie
$$I_A(2) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\mathscr{B}_2}.$$

Un moteur, fixé sur la bâti 0, exerce sur le bras 1 une action mécanique représentée par le couple $C_m \overrightarrow{z}$. Le bras 1 tourne à la vitesse constante ω par rapport au bâti 0.

Objectif Déterminer les équations du mouvement de la centrifugeuse, ainsi que le couple moteur à fournir au cours du mouvement.

Question 1 Préciser le théorème à utiliser permettant de déterminer l'équation de mouvement de la nacelle 2 par rapport au bras 1. Déterminer cette équation.

Question 2 Préciser le théorème à utiliser permettant de déterminer le couple moteur. Déterminer son expression

On suppose que la nacelle 2 est en équilibre relatif par rapport au bras 1, et que $mba >> A \simeq C$.

Question 3 Déterminer les expressions de l'angle β et du couple moteur C_m ?