UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATIONS, APRIL 2001 MAT 188 S – LINEAR ALGEBRA. FIRST YEAR: T-PROGRAM EXAMINER: FELIX J. RECIO

	PLEASE DO NOT WRITE HERE		
INSTRUCTIONS:	QUESTION NUMBER	QUESTION VALUE	GRADE
1. ATTEMPT ALL QUESTIONS.	NENIBER	VALUE	
2. SHOW AND EXPLAIN YOUR WORK IN ALL QUESTIONS.	1	30	
3. GIVE YOUR ANSWERS IN THE SPACE PROVIDED. USE BOTH SIDES OF PAPER, IF NECESSARY.	2	15	
4. DO NOT TEAR OUT ANY PAGES.	3	15	
5. USE OF NON-PROGRAMMABLE POCKET CALCULATORS, BUT NO OTHER AIDS ARE PERMITTED.	4	15	
6. THIS EXAM CONSISTS OF EIGHT QUESTIONS. THE VALUE OF EACH QUESTION IS INDICATED (IN BRACKETS) BY THE QUESTION NUMBER.	5	15	
	6	20	
7. THIS EXAM IS WORTH 50% OF YOUR FINAL GRADE.	7	20	
TIME ALLOWED: 2 ½ HOURS.			
9. PLEASE WRITE YOUR NAME, YOUR STUDENT NUMBER, AND YOUR SIGNATURE IN THE SPACE PROVIDED AT THE BOTTOM OF THIS PAGE.	8	20	
	9	20	
	TOTAL:	170	

(FAMILY NAME, PL	EASE PRINT.)	(GIVEN NAME.)	
•			
STUDENT No.:	SIGNAT	URE:	

NAME:

- 1. Consider the points A(2,0,1), B(2,1,0), and C(1,1,k).
 - a) (5 marks) Find the values of k, if any, for which the line that passes through the points A and C is parallel to the plane 2x 5y + 3z = 1.
 - b) (5 marks) Find the values of k, if any, for which the line that passes through the points A and C contains the point (4, -2, 8).
 - c) (5 marks) Find the values of k, if any, for which the plane that passes through the points A, B, and C is perpendicular to the line with parametric equations x = -1 + 3t, y = -2t, and z = 5 2t.
 - d) (5 marks) Find the values of k, if any, for which the angle between the vectors \overrightarrow{AB} and \overrightarrow{AC} is $\pi/6$.
 - e) (5 marks) Find the values of k, if any, for which the volume of the parallelepiped generated by the vectors \overrightarrow{OA} , \overrightarrow{OB} , and \overrightarrow{OC} is 7.
 - f) (5 marks) Find the values of k, if any, for which the distance from the point C to the line that passes through the points A and B is C.

Page 3

L.

_

, _

-

=

-

-

-

=

•

2. (15 marks) Solve the linear system:
$$\begin{cases} x_1 & + 2x_3 + x_4 & = 3 \\ x_2 & + x_4 + x_5 & = 1 \\ x_1 - x_2 + 2x_3 & - x_5 & = 2 \\ x_1 + x_2 + 2x_3 & - x_5 & = -2 \end{cases}$$

3) (15 marks) Consider the linear system:
$$\begin{cases} x & + az = 1 \\ y - 2z = a \\ -x & + 2z = -1 \\ 2x + ay & = 6 \end{cases}$$
Find the values of the constant a , if any, for which:

Find the values of the constant a, if any, for which:

- a) The system has no solutions.
- b) The system has exactly one solution.
- c) The system has exactly two solutions.
- d) The system has infinitely many solutions.

4. (15 marks) Consider the matrices $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 3 & -2 \\ -2 & 2 & 2 \\ -2 & 3 & 1 \end{pmatrix}$

Find all matrices M, if any, for which $A^T - 2M = B - AM$.

5. (15 marks) Let $A = \begin{pmatrix} 5 & 1 & 1 & 0 \\ 1 & 5 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 5 \end{pmatrix}$ and let M be another 4×4 matrix such that $\det(AM^3) = 1$.

Compute $\det M$.

- 6. Let S be the subspace of \mathbb{R}^4 generated by the vectors $\mathbf{v}_1 = (1, 0, -1, 2)$, $\mathbf{v}_2 = (0, -1, 0, 1)$,
 - $\mathbf{v}_3 = (1, 2, -1, 0), \ \mathbf{v}_4 = (-1, 1, 1, -3), \ \text{and} \ \mathbf{v}_5 = (1, 0, -1, 0).$
 - a) (10 marks) Determine the dimension of the subspace S and find a basis for S.
 - b) (5 marks) Is the vector \mathbf{v}_5 a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, and \mathbf{v}_4 ? Why or why not?
 - c) (5 marks) Is the vector $\mathbf{v} = (1, -3, -1, 1)$ one of the vectors in S? Why or why not?

7. (20 marks) Let $\mathbb{C}[-1,1]$ denote the inner product space consisting of all real valued functions which are continuous on the interval [-1,1], with the inner product defined as $(\mathbf{f},\mathbf{g}) = \int_{-1}^{1} \mathbf{f}(x)\mathbf{g}(x)dx$. Find an orthonormal basis for the subspace of $\mathbb{C}[-1,1]$ spanned by the set $\{1,3+x,2x+3x^2\}$.

8. (20 marks) Given the matrix $A = \begin{pmatrix} -4 & 1 & 2 \\ 2 & -3 & -2 \\ -4 & 2 & 2 \end{pmatrix}$. Find an invertible matrix P and a diagonal matrix P and a diagonal matrix

- 9. Determine, in each of the following cases, whether the given proposition is true or false. Give and briefly explain your reasons in each case.
 - a) (5 marks) If A is any 3×3 matrix such that $\det A = 3$, then $\det (A \operatorname{di} A) = 27$.
 - b) (5 marks) If M is any 5×7 matrix such that the rank of M is 3, then the dimension of the solution space of $A \mathbf{x} = \mathbf{0}$ is 2.
 - c) (5 marks) The set consisting of all polynomials $p(x) = a + bx + cx^2$ such that a = bc is a subspace of P_2 .
 - d) (5 marks) If λ is an eigenvalue of the square matrix A, then λ^2 is an eigenvalue of the matrix A^2 .