1. Исходные данные

Исходные данные приведены в таблице 1.

Таблица 1 - Исходные данные

Наименование параметра	Значение
Подача Q , M^3/Ψ	650
Напор Н, м	92
Давление на входе в насос Р, МПа	0,03
Температура натрия на входе в насос T , 0 С	450
Плотность натрия при данной температуре 450 °С ρ , кг/м ³	844
Давление насыщенных паров натрия P_{HR} , Па	164,4

2. Определим располагаемый кавитационный запас:

Располагаемый кавитационный запас определяется по формуле

$$\Delta hpac = \frac{P_c}{\rho \cdot q} + \frac{v^2}{2 \cdot q} - \frac{P_{HR}}{\rho \cdot q}$$

где: $P_c = P + P_a$ – абсолютное статическое давление на входе в насос, Па

Р нп – давление насыщенных паров, Па

V – скорость среды на входе в насос, м/с

$$\frac{P_c}{\rho \cdot g} + \frac{v^2}{2 \cdot g}$$
 - полная удельная энергия потока ($E_{\text{вх}}$) на входе в насос.

Т.к. на начальном этапе значение скоростей неизвестно, то опустим это слагаемое, в конечном итоге это допущение только лишь увеличит располагаемый кавитационный запас. Таким образом:

$$\Delta h_{pac} = \frac{P_c - P \, Hn}{\rho \cdot g} = \frac{0.13 \cdot 10^6 - 164.4}{844 \cdot 9.81} = 15,681 \, M$$

Тогда Δh_{pac} =15,7 м. Расчет уточненного значения располагаемого кавитационного запаса будет проведен после расчета геометрии рабочего колеса насоса.

3. Выбор частоты вращения ротора

Расчет выполняется следующим образом.

3.1 Задаемся частотой вращения ротора.

$$n = n_{\sin} \cdot \left(1 - \frac{3}{100}\right) = 3000 \cdot \left(1 - \frac{3}{100}\right) = 2910 \frac{o6}{\text{мин}}$$
, где $s = 3 \% - \text{скольжение}$.

3.2 Определяем коэффициент быстроходности.

$$n_s = \frac{3,65 \cdot n \cdot \sqrt{Q}}{H^{0.75}} = \frac{3,65 \cdot 2910 \cdot \sqrt{0,181/2}}{92^{0.75}} = 107$$

Тип рабочего колеса - центробежное тихоходное.

3.3 Определяем кавитационный коэффициент быстроходности.

Кавитационный коэффициент быстроходности определяем по рис. 3.1 [1, стр.35].

$$C_{\kappa p} = 772$$

3.4 Определяем критический кавитационный запас.

$$\Delta h_{\kappa p} = 10 \cdot \left[\frac{n \cdot \sqrt{Q}}{C \kappa p} \right]^{\frac{4}{3}} = 10 \cdot \left[\frac{3000 \cdot \sqrt{0,181/2}}{772} \right]^{\frac{4}{3}} = 11,8 \text{ M}$$

3.5 Определяем критический кавитационный запас.

$$\Delta h_{\partial on} = 1,2 \cdot h\kappa p = 14,2$$
 M

Результаты расчетов приведены в таблице 2.

Таблица 2 - Результаты расчетов

Наименование параметра		Значение	
Частота вращения ротора синхронная n_{\sin} , об/мин	3000	1500	1000
Частота вращения ротора n, об/мин	2910	1455	970
Коэффициент быстроходности n_s	107	54	36
Кавитационный коэффициент быстроходности Скр	772	686	657
Располагаемый кавитационный запас Δ hpac, м	15,7	15,7	15,7
Критический кавитационный запас $\Delta h \kappa p$, м	11,8	5,5	3,4
Допускаемый кавитационный запас $\Delta h \partial o n = 1,2 \Delta h_{\kappa p}$, м	14,2	6,6	4,1

Кавитация отсутствует при условии Δ hpac > Δ hдоп. Это условие выполняется при частоте вращения ротора 3000, 1500, 1000 об/мин. Для дальнейших расчетов принимаем частоту вращения $n_{\rm sin}$ =1500 об/мин.

4. Определение размеров рабочего колеса с помощью диаграмм

Для выбранного варианта определяются размеры рабочего колеса насоса с помощью диаграмм на рис. 3.3 [1, стр.37]. По диаграмме выбираем коэффициенты в зависимости от коэффициента быстроходности. Согласно данным диаграммы все определяемые параметры являются функцией быстроходности насоса и могут быть рассчитаны по формуле:

$$X = K_X \cdot \frac{\sqrt{H}}{n}$$

где: Х – определяемый параметр;

 K_{X} – соответствующий параметру коэффициент на диаграмме;

Н – напор насоса;

n – частота вращения ротора насоса.

Тогда

$$D_0 = K_{D_0} \cdot \frac{\sqrt{H}}{n} = 28 \cdot \frac{\sqrt{92}}{1500} = 184,6 \text{ mm};$$
 $D_1 = K_{D_1} \cdot \frac{\sqrt{H}}{n} = 26,3 \cdot \frac{\sqrt{92}}{1455} = 173,2 \text{ mm};$
 $b_1 = K_{b_1} \cdot \frac{\sqrt{H}}{n} = 6,1 \cdot \frac{\sqrt{92}}{1455} = 40,2 \text{ mm};$

$$D_2 = K_{D_2} \cdot \frac{\sqrt{H}}{n} = 84,7 \cdot \frac{\sqrt{92}}{1455} = 558,1 \text{ MM};$$

 $b_2 = K_{b_1} \cdot \frac{\sqrt{H}}{n} = 2,4 \cdot \frac{\sqrt{92}}{1455} = 15,8 \text{ MM};$

Полученные результаты приведены в таблице 3

Таблица 3 - Результаты расчетов по диаграммам

Значение	$KD_0 = 28$	$KD_1 = 26,3$	$Kb_1 = 6,1$	$KD_2 = 84,7$	$Kb_2 = 2,4$
коэффициента					
Размер колеса, мм	$D_0 = 184,6$	$D_1 = 173,2$	$b_1 = 40,2$	$D_2 = 558,1$	$b_2 = 15.8$

5. Расчет мощности приточной части насоса

Мощность проточной части насоса определяется по формуле:

$$N = \frac{\rho \cdot Q \cdot H}{102 \cdot \eta} = \frac{844 \cdot 0,181/2 \cdot 92}{102 \cdot 0,669} = 205,5 \,\kappa Bm$$

где $\eta \approx 0,669$ – КПД одноступенчатого насоса при n_s =54 и подаче Q = 181 л/с, значение определено по графику на рис. 3.2 [1, стр.36].

Снимок экрана из программы Mathcad – расчет габаритов колеса

Исходные данные :		Результаты расчета	
Подача , м3/ч	Q ≡ 650	* Частота вращения, об/мин	n = 1455
Напор, м	H ≡ 92	* Коэффициент быстроходности	
Расп. кав. запас, м	ΔH_ras ≡ 15.681	* одной ступени и одного потока	ns = 54
Плотность, кг/м3	ρ≡ 844	 КПД проточной части 	η = 0.669
Принимаем:		* Мощность проточной части, кВт	N = 205.4
Количество ступеней	Zst≡ 1	* Кавитационный коэффициет Скр *	Ckr = 686
Количество потоков	Zpot≡ 2	 Критический кав. запас, м 	$\Delta H_kr = 5.48$
Скольжение, %	S≡3	* Допускаемый кав. запас, м *	$\Delta H_{dop} = 6.6$
Синхронная частота, об/мин	n_sin ≡ 1500	* Отношение	$\frac{\Delta H_{ras}}{\Delta H_{kr}} = 2.9$
Коэфф. Скр (= 0, при расчете f(ns)	Ckr≡0	*	

6. Расчет размеров рабочего колеса на входе

Приведённый диаметр

$$D_{1np} = 4,25 \cdot 1000 \cdot \left(\frac{Q}{n}\right)^{\frac{1}{3}} = 4,25 \cdot 1000 \cdot \left(\frac{0,181/2}{1445}\right)^{\frac{1}{3}} = 168,253 \text{ MM}$$

Диаметр вала

$$D_{e} = 10 \cdot \left(\frac{M}{0,2 \cdot 150}\right)^{1/3} = 10 \cdot \left(\frac{1,65 \cdot 10^{4}}{0,2 \cdot 150}\right)^{1/3} = 82$$
 мм

Диаметр втулки под рабочим колесом

$$D_{em} = 1,25 \cdot D_{e} = 1,25 \cdot 82 = 102,5 \text{ MM}$$

Критический кавитационный запас

$$h\kappa p = 10 \cdot \left(\frac{n \cdot \sqrt{Q}}{C\kappa p}\right)^{4/3} = 10 \cdot \left(\frac{1445 \cdot \sqrt{0,181/2}}{686}\right)^{4/3} = 5,48 \text{ M}$$

Допускаемый кавитационный запас

$$h\partial on = 1,2 \cdot h\kappa p = 1,2 \cdot 5,48 = 6,6 \text{ M}$$

Принимаем $K v_0 = 0.06$ – коэффициент входной скорости

Скорость на входе

$$v_0 = K v_0 \cdot (Q_m \cdot n^2)^{1/3} = 0.06 \cdot (0.095 \cdot 1445^2)^{1/3} = 3.51 \,\text{m/c}$$

Диаметр входа в рабочее колесо

$$D_0 = 1000 \cdot \sqrt{\left(4 \cdot \frac{Q_m}{\pi \cdot v_0}\right) + \left(\frac{D_{sm}}{1000}\right)^2} = 1000 \cdot \sqrt{\left(4 \cdot \frac{0,095}{3,14 \cdot 3,51}\right) + \left(\frac{102,5}{1000}\right)^2} = 211,7 \text{ M}$$

Принимаем $D_{1 och} = 0,95$

Диаметр расположения входных кромок лопаток

$$D_1 = D_{10CH} \cdot D_0 = 0.95 \cdot 211,7 = 201,1 \text{ MM}$$

Принимаем Kvm 1 = 0,85

Меридианная скорость на входе

$$Vm1p = Kvm1 \cdot v_0 = 0.85 \cdot 4.7 = 2.98 \text{ m/c}$$

Ширина лопасти на входе

$$b1 = \frac{1000 \cdot Q_{\scriptscriptstyle m}}{\pi D1 \, \text{Vm} \, 1 \, p \cdot 0.001} = \frac{1000 \cdot 0,095}{3,14 \cdot 201,7 \cdot 2,98 \cdot 0.001} = 50,2 \, \text{MM}$$

Окружная скорость лопасти на входе

$$u = 0,001 D 1 \pi \frac{n}{60} = 0,001 \cdot 201,1 \cdot 3,14 \frac{1455}{60} = 15,32 \left(\frac{M}{c}\right)$$

Принимаем $\beta 1=24^{\circ}$ Z=7

$$S = \left(\frac{1,25-1}{1,25}\right) \cdot \pi \cdot D_1 \cdot \frac{\sin\left(\pi \cdot \frac{\beta \, 1}{180}\right)}{Z} = \left(\frac{1,25-1}{1,25}\right) \cdot 3,14 \cdot 201,09 \cdot \frac{\sin\left(\pi \cdot \frac{24}{180}\right)}{7} = 7,34 \text{ MM}$$

Коэффициент затеснения

$$K1 = \frac{1}{1 - \frac{Z \cdot S}{\pi D \cdot 1 \sin \frac{\pi \beta \cdot 1}{180}}} = \frac{1}{1 - \frac{7 \cdot 7,34}{3,14 \cdot 201,1 \sin \frac{3,14 \cdot 24}{180}}} = 1,25$$

Угол потока на входе

$$\beta 10 = \frac{180}{\pi} \arctan \frac{Vm 1 p \cdot K1}{u 1} = \frac{180}{3.14} \arctan \frac{2,98 \cdot 1,25}{15,32} = 13,7^{\circ}$$

Угол атаки

$$\delta 1 = \beta 1 - \frac{180}{\pi} arctg \frac{Vm 1 p \cdot K 1}{u 1} = 24 - \frac{180}{3.14} arctg \frac{2,98 \cdot 1,25}{15.32} = 10,32^{\circ}$$

Меридианная скорость на входе с учетом затеснения

$$Vm 1 = K \cdot 1 \cdot Vm \cdot 1 p = 1,25 \cdot 2,98 = 3,73 \frac{M}{C}$$

Подача на ступень с учетом объемных протечек

$$Q1 = \frac{Q_{pot}}{n_{i} = \frac{0.181/2}{0.954} = 0.095 \frac{M^{3}}{C} i}$$

Относительная скорость на входе

$$W1 = \frac{Vm1}{\sin\frac{\pi\beta 1}{180}} = \frac{3,73}{\sin\frac{3,14\cdot24}{180}} = 9,17\frac{M}{c}$$

$$\Delta H_{kr} = mo \frac{v \, 0^2}{2 \, g} + no \frac{W \, 1^2}{2 \, g} = 5,83 \, M$$

$$C_{kr} = \frac{n\sqrt{Q_{pot}}}{\left(0,1 \cdot \Delta H_{kr}\right)^{0.75}} = \frac{1445 \cdot \sqrt{0,181/2}}{\left(0,1 \cdot 5,83\right)^{0.75}} = 656$$

Принимаем Kvm 2=1

Меридианная скорость на выходе

$$Vm2p = Kvm2 \cdot Vm1p = 1 \cdot 2,98 = 2,98 \frac{M}{c}$$

Теоретический напор

$$H m = \frac{H}{\eta_z} = \frac{92}{0.9} = 102,22 \,\text{M}$$

7. Расчет размеров рабочего колеса на выходе

Окружая скорость на выходном диаметре (начальное приближение)

$$u2 = \sqrt{2 \cdot g \cdot Hm} = \sqrt{2 \cdot 9.81 \cdot 102.22} = 44.8 \frac{M}{c}$$

Диаметр рабочего колеса на выходе (начальное приближение)

$$D2 = \frac{1000 \cdot 2 \cdot u2}{\frac{\pi n}{30}} = \frac{1000 \cdot 2 \cdot 44,8}{\frac{3,14 \cdot 1455}{30}} = 587,728 \text{ MM}$$

Принимаем β 2=25°

$$P1 = \frac{2}{Z1 \cdot Z2 \, otn} \cdot \frac{0.6 + 0.6 \cdot \sin \frac{\pi \beta \, 2}{180}}{1 - \left(\frac{D1 \, pr}{D2}\right)^2}$$

$$K2 = \frac{1}{1 - \frac{Z \cdot S}{\pi D \, 2 \sin \frac{\pi \beta \, 2}{180}}}$$

$$u2 = \frac{K2 \cdot Vm \, 2p}{2tg \, \frac{\pi \beta \, 2}{180}} + \sqrt{\frac{K2 \cdot Vm \, 2p}{2tg \, \frac{\pi \beta \, 2}{180}}^2 + g \, (1 + P1) \, Hm}}$$

$$D2 = 1000 \cdot \frac{60u \, 2}{\pi n}$$

Диаметр рабочего колеса на выходе

$$D2 = 519 \, MM$$

Окружная скорость на наружном диаметре

$$u2=39,41\frac{M}{c}$$

Коэффициент затеснения

$$K2 = 1,04$$

Поправка на конечное число лопастей

$$P1 = 0.3$$

Окружная составляющая абсолютной скорости на выходе

$$Vu2 = g \cdot \frac{Hm}{u2} = 9.81 \cdot \frac{102,22}{39,4} = 25,43 \frac{M}{c}$$

Меридианная скорость на выходе с учетом затеснения

$$Vm2 = K2 \cdot Vm2 p = 1 \cdot 2,98 = 3,11 \frac{M}{c}$$

Относительная скорость на выходе

$$W2 = \frac{Vm2p}{\sin\frac{\pi\beta 2}{180}} = \frac{3,11}{\sin\frac{3,14\cdot25}{180}} = 7,36\frac{M}{c}$$

Коэффициент торможения относительной скорости в колесе

$$Kw = \frac{W1}{W2} = \frac{10,41}{7,36} = 1,41$$

Ширина колеса на выходе

$$b2 = \frac{Qm}{\pi \cdot D2 \cdot Vm2p} = \frac{0,095}{3,14 \cdot 517,3 \cdot 2,98} = 19,5 \,\text{MM}.$$

Угол абсолютной скорости на выходе

$$\alpha 2 = \frac{180}{\pi} \cdot arctg \frac{Vm 2 p}{Vu 2} = 6.7^{\circ}$$

Абсолютная скорость на выходе из колеса

$$V 2 p = \sqrt{Vu 2^2 + Vm 2 p^2} = \sqrt{25,4^2 + 2,98^2} = 25,4 \frac{M}{C}$$

8. Профилирование лопасти рабочего колеса

ПРОФИЛИРОВАНИЕ ЛОПАСТИ РАБОЧЕГО КОЛЕСА $N_{c}:=100$ i:=0... N $R0:=0.5\cdot0.2117$ $R1:=0.5\cdot0.2011$ b1:=0.0502 $\beta1:=24$ $\delta1:=0.00734$ $Q:=\frac{650}{3600}$ η_{c} ob:=0.954 n:=1455 R_{c} vt:=0.5·0.1025 R_{c} vt:=0.5·0.519 P_{c} b2:=0.0194 P_{c} b2:=0.00734 P_{c} b2:=0.00734 P_{c} b3:=0.00734 P_{c} b3:=0.00734

$\theta_1_i, \theta_1_rab_i, \theta_1_tyl_i, \theta_2_{ii}, \theta_2_rab_{ii}, \theta_2_tyl_{ii}, \theta_3_i, \theta_3_rab_i, \theta_3_tyl_i, \varphi_j, \varphi_rab_j, \varphi_tyl_j$

$$\begin{split} R_sr &:= 1000 \cdot R_sr \quad R_rab := 1000 \cdot R_rab \qquad R_tyl := 1000 \cdot R_tyl \\ &= \hat{\epsilon} \hat{1} \hat{\delta} \hat{a} \hat{e} \hat{1} \hat{a} \hat{o} \hat{u} \quad \hat{a} \hat{o} \hat{1} \hat{a} \hat{1} \hat{1} \hat{e} \quad \hat{e} \hat{\delta} \hat{1} \hat{1} \hat{e} \hat{e} \quad \hat{e} \hat{1} \hat{1} \hat{a} \hat{n} \hat{o} \hat{e} \\ &= \hat{\phi}_0 = 0 \quad R_sr_0 = 100.55 \quad 0.5 \cdot 10^3 \cdot \delta_0 = 5 \\ &= \hat{\epsilon} \hat{1} \hat{\delta} \hat{a} \hat{e} \hat{1} \hat{a} \hat{o} \hat{u} \quad \hat{1} \hat{\delta} \hat{1} \hat{o} \hat{e} \hat{e} \hat{y} \quad \hat{e} \hat{1} \hat{1} \hat{a} \hat{n} \hat{o} \hat{e} \end{split}$$

Êîîðäèíàòû ïîêðûâíîãî äèñêà

$\phi_{rab_{j}} = R_{rab_{j}} =$		$\phi_{tyl_j} =$	$R_{tyl_j} =$
0	105.881	0	94.472
10	114.028	10	103.058
20	122.856	20	111.884
30	132.425	30	121.45
40	142.803	40	131.824
50	154.063	50	143.08
60	166.288	60	155.3
70	179.567	70	168.573
80	194.001	80	183
90	209.7	90	198.692
100	226.789	100	215.772
110	245.406	110	234.379
117.03	259.5	122.26	259.5

$R_{-sr_j} =$	(1000b_r_) _j
100.55	50.2
108.685	47.653
117.501	44.921
127.059	42.027
137.426	39.012
148.676	35.943
160.891	32.923
174.16	30.086
188.584	27.5
204.273	25.174
221.352	23.091
239.958	21.188
259.5	19.4