

Comparison of Neural Network Performance for Predicting Transcription Factor Binding

SS21 Research Internship Minie Jung

Contents.

01 Introduction

02 Methods

03 Results

04 Conclusion

01. Introduction

^{01.} Transcription Factor

- Transcription factor binds specific site of DNA and regulates gene expression
 - Transcription factor binding site have a specific motif

^{01.} Transcription Factor

- Transcription factor binds specific site of DNA and regulates gene expression
 - Transcription factor binding site have a specific motif

Neural network is one of the powerful tools for predicting transcription factor binding sites

Convolutional Neural Networks

CNN

- Handle data in the form of multiple arrays
- Image classification
- Convolutional layer, pooling layer, and fully-connected layer

RNN

Convolutional Neural Networks

CNN

RNN

Recurrent Neural Networks

CNN

RNN

- Recurrent connection of neuron
- Take its output as its input
- Sequential data such as text, time-series, etc.

Recurrent Neural Networks

CNN

RNN

- Recurrent connection of neuron
- Take its output as its input
- Sequential data such as text, time-series, etc.
- Vanishing gradient problem

CNN

RNN

- CNN captures specific pattern of data
- RNN learns feature information and dependencies between data

^{01.} Introduction

The models have different advantages and characteristics.

^{01.} Introduction

Compare the performance of the model to see which model handles the task better.

02. Methods

Grainyhead-like 1

- Transcription factor related to wound healing, tubulogenesis, and cancer
- Binds to the consensus DNA sequence 5'-AACCGGTT-3'

Grainyhead-like 1

- Transcription factor related to wound healing, tubulogenesis, and cancer
- Binds to the consensus DNA sequence 5'-AACCGGTT-3'

Systematic evolution of ligands by exponential enrichment (SELEX)

- Analyze transcription factors binding specificity
- Provide sequences with high affinity to a specific transcription factor

o2. Data

Positive set

 Grainyhead-like 1 transcription factor binding site sequences obtained by SELEX experiment

o2. Data

Positive set

 Grainyhead-like 1 transcription factor binding site sequences obtained by SELEX experiment

Negative set

- Generated by applying dinucleotide-preserving shuffle to the positive sequences
- Dinucleotide-preserving shuffle shuffles the sequence preserving number of dinucleotides
- Allow the model to learn TF-specific motifs rather than which sequence is not a binding site

Reverse Complement

- Same pattern can appear equally on a forward strand and its reverse
- Add reverse complement of given sequences to improve model performance

^{02.} Implementation

STEP 2 STEP 4 STEP 3 Model Data Hyperparameter >> Model training >> >> tuning evaluation preprocessing

STFP 1

Data preprocessing

One-hot encoding

 Transform categorical data into more appropriate format for machine learning

STEP 2

Hyperparameter tuning

GridSearchCV

• search the best combination of parameters

STEP 2

Hyperparameter tuning

GridSearchCV

• search the best combination of parameters

Loss-epoch curves

detect overfitting

STEP 3

Model training

- Train set pass through the model 50 times
- Applying earlystopping to terminate training early if there is no improvement

STEP 3

Accuracy represents how the model correctly predict the class

Model evaluation

STEP 3

Accuracy represents how the model correctly predict the class

Loss-epoch curve represents how well-trained the model is

Model evaluation

STEP 3

Model evaluation

Accuracy represents how the model correctly predict the class

Loss-epoch curve represents how well-trained the model is

ROC AUC summarizes the performance of model in general

STEP 3

Model evaluation

Accuracy represents how the model correctly predict the class

Loss-epoch curve represents how well-trained the model is

ROC AUC summarizes the performance of model in general

Precision-recall curve AUC summarizes the performance of model for positive data

STEP 3

Model evaluation

Accuracy represents how the model correctly predict the class

Loss-epoch curve represents how well-trained the model is

ROC AUC summarizes the performance of model in general

Precision-recall curve AUC summarizes the performance of model for positive data

Visualization shows what the model learns from the data

03.Results

04. Conclusion

- Be able to capture consensus motif
- Lowest accuracy and AUCs

- Be able to capture consensus motif
- Lowest accuracy and AUCs

- Could not capture consensus motif
- Highest accuracy and AUCs

CNN

- Be able to capture consensus motif
- Lowest accuracy and AUCs

RNN

- Could not capture consensus motif
- Highest accuracy and AUCs

- was expected to show the best performance but wasn't
- Evaluation results are similar but worse than RNN models

The performances of the models are similar.

The performances of the models are similar.

Why?

The performances of the models are similar.

Why? 1. The data might be not complex enough to observe the difference of models.

The performances of the models are similar.

- Why? 1. The data might be not complex enough to observe the difference of models.
 - 2. There is a potential to improve the performance of the model.

The performances of the models are similar.

- **Why?** 1. The data might be not complex enough to observe the difference of models.
 - 2. There is a potential to improve the performance of the model.

How to improve the performances of models?

1. Improvement of data

- The longer or more complex sequence data
- Better negative data

1. Improvement of data

- The longer or more complex sequence data
- Better negative data

2. Word embedding

- k-mer as a word
- Map k-mer vectors by co-occurance
- Might be able to extract more information (position of k-mer, motif detection, etc.)

Thank you