

Technische Universität Darmstadt Fachbereich Informatik Prof. Johannes Buchmann

Erik Tews 25. Februar 2009

Klausur zum Wintersemester 2008/2009

Name, Vorname: Matrikelnummer: Matrikelnummer:
Studiengang: Diplom Bachelor Master
Fachbereich: Fachsemester:
Prüfungssekretariat in dem Sie angemeldet sind: Keins
Taschenrechnermodell:
Wiederholer? Wievielter Versuch: Jahr des letzten Versuchs:
Zulassung: Sie sind zu dieser Klausur nur zugelassen, wenn sie sich gemäß den Regeln Ihrer Studienordnung dafür angemeldet haben.
Unterschrift:

${\bf Punktest and}$

Aufgabe	K1	K2	К3	K4	K5	K6	K7	K8	K9	K10	Ferienübung	Σ
Maximale Punktzahl	20	20	20	20	14	20	20	20	20	20	20	
Erreichte Punktzahl												

VIEL ERFOLG!

Hinweise:

Halten Sie Ihren Studienausweis und einen Lichtbildausweis zur Kontrolle bereit. Setzen Sie sich so, dass 2 Plätze rechts und links neben Ihnen, sowie die gesamte Reihe vor Ihnen frei ist.

Notation

- Für jede natürliche Zahl n bezeichnet $(\mathbb{Z}/n\mathbb{Z})$ den Restklassenring der ganzen Zahlen modulo n und $(\mathbb{Z}/n\mathbb{Z})^*$ die multiplikative Gruppe.
- Für einen Körper \mathbb{K} bezeichnet $\mathbb{K}[X]$ den Polynomring über diesem Körper mit Variable X.

Aufgabenblätter

- Füllen Sie das Deckblatt vollständig aus.
- Prüfen Sie, ob die Klausur 10 Aufgaben und 12 Seiten enthält.
- Kennzeichnen Sie alle verwendeten Aufgaben- und Zusatzblätter zuerst mit Name und Matrikelnummer.
- Verwenden Sie für jede Aufgabe falls möglich ein neues Blatt.
- Geben Sie die verwendeten Formeln, Sachverhalte und Zwischenergebnisse an.

Bewertung

- Für volle Punktzahl müssen sie bei jeder Aufgabe auch Ihre Lösung begründen bzw. Zwischenschritte mit angeben.
- Unleserlichkeit kann zu Punktabzug führen.
- Sie konnten in der Ferienübung 20 Punkte erzielen, in der Klausur gibt es maximal 194 Punkte.
- Die Gesamtnote ergibt sich aus der Summe der in der Klausur und Ferienübung erzielten Punkte.
- Das Ergebnis der Ferienübung bildet keine Zulassungsvoraussetzung zur Klausur.

Dauer der Klausur und zugelassene Hilfsmittel

- Ihnen stehen 120 Minuten zum Bearbeiten der Aufgaben zur Verfügung.
- Einzige zugelassene Hilfsmittel sind ein nicht programmierbarer Taschenrechner und ein beidseitig handschriftlich beschriebenes DIN-A4 Blatt. Tragen Sie die Modellbezeichnung Ihres Taschenrechners in das Deckblatt ein.
- Andere elektronische Geräte (Handys, PDAs, Laptops, programmierbare Taschenrechner) bitte der Klausuraufsicht zur Verwahrung geben.
- Studierende, deren Muttersprache nicht Deutsch ist, können zusätzlich ein zweisprachiges gedrucktes Wörterbuch verwenden.
- Die Klausuraufsicht überprüft vielleicht die Hilfsmittel.

$\mathbf{K}1$	(Polynome).	Name:	 Matrikelnr.:	
	(20 Punkte)			

Seien $a(X)=X^3+X+1$ und b(X)=X+1 zwei Polynome in GF(2)[X]. Berechnen Sie Polynome u,v in GF(2)[X] mit der Eigenschaft u*a+v*b=1.

K2	(Endlicher Körper).	Name:	Matrikelnr.:
	(20 Punkte)		

Konstruieren Sie einen endlichen Körper mit 4 Elementen. Geben sie die Additions- und Multiplikationstabelle an. Das Körperpolynom können Sie frei wählen.

K3	(Elementordnung). (20 Punkte)	Name:	Matrikelnr.:
	Bestimmen Sie die Ordnung von 5 in ($\mathbb{Z}/1$	$17\mathbb{Z})^*$. Finden sie dann ein	Element der Ordnung 4 in dieser

Gruppe.

K4 (Ele	Gamal).	Name:	 Matrikelnr.:	
(20	Punkte)			

Sie haben den öffentlichen ElGamal-Schlüssel (p,g,A)=(17,3,8). Verschlüsseln Sie den Klartext m=5 mit diesem Schlüssel mit dem ElGamal Verschlüsselungsverfahren. Wählen Sie dabei die Zufallszahl b=5.

K5	(Multiple Choice).	Name:	Matrikelnr.:
	(14 Punkte)		

Für eine korrekte Antwort gibt es zwei Punkte, für eine falsche Antwort werden zwei Punkte abgezogen.

Aussage	Wahr	Falsch
Beim DSA-Signieren sind alle Exponenten ≤ 256 Bit		
Hashfunktionen mit Hashlänge 80 Bit können kollisionsresistent		
sein		
AES ist eine affin lineare Blockchiffre		
Bei RSA-Signaturen darf man einen öffentliche Schlüssel mit $e=3$		
verwendet werden		
Das Vernam OTP ist perfekt geheim		
$(\mathbb{Z}/17\mathbb{Z})^*$ enthält ein Element der Ordnung 3		
Aus Sicherheitsgründen muss die Primzahl bei Shamirs Secret-		
Sharing-Verfahren wenigstens 1024 Bit lang sein		

K6 (RSA Entschlüsselungsexponenten). (20 Punkte)	Name:	Matrikelnr.:

Es wird bei einer RSA Verschlüsselung das RSA-Modul n=35 verwendet. Welche Zahlen könnten als geheimer Entschlüsselungexponent d gewählt werden?

K 7	$({f Babystep\text{-}Giantstep}).$	Name:	 Matrikelnr.:	
	(20 Punkte)			

Sie wollen $a^x \equiv b \mod p$ lösen. Dabei sind a und b ganze Zahlen und p ist eine Primzahl. Angenommen Sie wissen, dass 0 < x < B < p-1 ist. Zeigen Sie, wie man x in $O(\sqrt{B})$ vielen Operationen finden kann. Begründen Sie ihre Antwort.

K8 (Rabin).	Name:	Matrikelnr.:
(20 Punkte)		

Ein Ihnen unbekannter Klartext wird mit dem Rabin-Modul $n_1=14$ zum Chiffretext $c_1=2$ und mit dem Rabin-Modul $n_2=15$ zum Chiffretext $c_2=1$ verschlüsselt. Berechnen Sie ein mögliches m mit der low exponent attacke.

$\mathbf{K9}$	(Affin-lineare	Chiffre)
	(20 Punkte)	

Name: Matrikelnr.:

Eine affin-lineare Chiffre mit Blocklänge 2 und Modul 2 wird benutzt. Folgende (Klartext, Chiffretext)-Paare werden beobachtet.

$$\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}1&0\\1&0\end{array}\right),\left(\begin{array}{cc}0&1\\0&0\end{array}\right)$$

Wie lautet die Entschlüsselung des Chiffretexts $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$? Wie lautet der Schlüssel?

K10 (Secret Sharing).	Name:	 Matrikelnr.:	
(20 Punkte)			

Sie haben das Geheimnis s=5 auf 3 Personen verteilt. Gerechnet wird modulo 7. Die erste Person bekommt den Share (x,f(x))=(3,1). Zwei Personen sollen das Geheimnis bestimmen können. Weniger nicht. Die Shares der anderen sind (x,f(x))=(2,-) und (x,f(x))=(4,-). Vervollständigen Sie diese Info.