Zadanie numeryczne 07

Autor: Eryk Stępień

30.12.2023

Spis treści:

- 1. Problem
- 2. Program
 - 1. Użyte narzędzia
 - 2. Kompilacja i uruchomienie
 - 3. Opis działania programu
- 3. Analiza wyników działania programu
 - 1. Dla funkcji danej w poleceniu
 - 2. Dla innej funkcji

1. Problem

Znajdź i wykreśl wielomiany interpolacyjne stopnia n, $W_n(x)$, na przedziale $x \in <-1, 1>$ dla funkcji $y(x)=\frac{1}{1+50x^2}$ dla

a) Jednorodnych węzłów interpolacji, tj. $x_i = -1 + 2\frac{i}{n+1}$ $(i=0,\ldots,n)$,

b)
$$x_i = \cos\left(\frac{2i+1}{2(n+1)}\pi\right) (i = 0, ..., n).$$

Dla węzłów z pkt. (a) i (b) wybierz kilka wartości n i porównaj zachowanie się tych wielomianów dla dużego n (najlepiej w tym celu wykreślić $W_n(x)$ dla różnych n na jednym wykresie). Zaproponuj również inne funkcje i znajdź dla nich wielomiany interpolacyjne dla węzłów zdefiniowanych w pkt. (a) i (b). Czy nasuwają się jakieś wnioski?

UWAGA: Nie można korzystać z procedur bibliotecznych służących do interpolacji (chyba, że do sprawdzenia wyniku). Algorytm należy zaimplementować samodzielnie.

2. Program

2.1 Użyte narzędzia

Program został napisany w języku Python 3.10. Przy zastosowaniu środowiska PyCharm 2023.2.2. Korzysta on z następujących bibliotek:

- Numpy
- Matplotlib.pyplot

2.2 Kompilacja i uruchomienie

W celu kompilacji należy wywołać poniższą komendę w terminalu:

python NUM7.py

2.3 Opis działania programu

W celu wykreślenia wielomianów interpolacyjnych program program wykorzystuje interpolację Lagrange'a. Jest ona dana poniższym wzorem:

$$W_n(x) = \sum_{i=0}^n y_i l_i(x)$$
$$l_i(x) = \prod_{j=0}^n \frac{x - x_j}{x_i - x_k}$$

Wykreślony tą metodą wielomian będzie przechodził przez wszystkie węzły siatki określonej poprzez wzory podane w podpunkcie (a) i (b).

3. Analiza wyników działania programu

3.1 Dla funkcji danej w poleceniu

Wykresy sporządzone dla n = [3, 5, 12, 30, 70]

Po lewej stronie wykresy przedstawiają wielomian interpolacyjny dla (a) a po prawej dla (b). Dla siatki jednorodnej przy dużych *n* występuje efekt oscylacji Rungego.

3.2 Dla innej funkcji

Spróbujmy wykreślić wielomian interpolacyjny dla tych samych n, ale tym razem $y(x) = |-5x^7|$

Oscylacje Rungego pojawiają się w tym przypadku dla większych *n*, niż przy funkcji podanej w poleceniu. Aby uniknąć tego oscylacji należy zastosować Siatkę Czebyszewa.