Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

SUGARBEET RESEARCH

2002 REPORT

FOREWARD

SUGARBEET RESEARCH is an annual compilation of progress reports concerning research by U.S. Department of Agriculture, Agricultural Research Service investigators and other cooperators who are engaged in sugarbeet research. The report was assembled and produced at the expense of the Beet Sugar Development Foundation, and is for the sole use of its members and the cooperators. Much of the data has not been sufficiently confirmed to justify general release and interpretations may be modified with additional experimentation. This report is not intended for publication and should not be used for cited reference nor quoted in publicity or advertising. Reproduction of any portion of the material contained herein will not be permitted without the specific consent of the contributor and the Beet Sugar Development Foundation.

The report presents results of investigations strengthened by contributions received under Cooperative Agreement between the USDA Agricultural Research Service and the Beet Sugar Development Foundation, along with the California Beet Growers Association, the Western Joint Research Committee, and the Sugarbeet and Education Board of Minnesota and North Dakota.

Trade names occur in this report solely to provide specific information and do not signify endorsement by the U.S. Department of Agriculture, the Beet Sugar Development Foundation or any of the cooperating organizations.

			÷
	•		

PAGE

SECTION A - SALINAS, CALIFORNIA	
Contents	Al
Abstracts of Papers, 2002	A4
PROJECTS 211 and 215	
Development of Sugarbeet Breeding Lines and Germplasm	A33
Index of Variety Trials	A37
PROJECTS 260	
Etiology and Epidemiology Study of New Beet-Infecting Viruses in the United States	A20
PROJECTS 281	
Evaluation on the Effect of Synergism Between BNYVV and BSBMV on Resistance to These Viruses in Sugarbeet	A26
ECTION B - FORT COLLINS, COLORADO	
Contents	B1
Abstracts of Papers Presented	В3
Notice of Release of FC724 Monogerm, O-Type Sugarbeet Germplasm	B5
PROJECT 903	
Evaluation of Contributed Lines for Resistance to <i>Rhizoctonia</i> Solani, A Causal Fungus of Sugarbeet Root Rot	В7

PAGE

SECTION B - FORT COLLINS, COLORADO (continued)

D	D	0	IL	CT	904	
r	K	₹J.	. I L		7114	

Evaluation of Contributed Lines for Resistance to Cercospora
Beticola, A Causal Fungus of Cercospora Leaf Spot

В9

PROJECT 420

Screening Biological Control Agents for	Rhizoctonia solani	Control
on Sugar Beets		

B11

PROJECT 421

Variability in Fusarium oxysporum	from	Sugar	Beets	in the	Central
High Plains Growing Areas					

B13

PROJECT 440

Rhizoctonia Root Rot Resistance and Development of Genetic
Resistance in Sugarbeet

B17

PROJECT 441

Cercospora Leaf Spot Research and	Breeding for	r Cercospora	and
Curly Top Resistance			

B29

PROJECT 443

Pre-Breeding: The Introgression of New Sources of Cercospora
Leaf Spot Resistance from Beta Vulgaris spp. Maritima and Other
Exotic Sources into Sugarbeet-Type Populations

B37

SECTION C - FARGO, NORTH DAKOTA

Contents	C1
----------	----

Publications	C3
	<u> </u>

PAGE

SECTION C - FARGO, NORTH DAKOTA (continued)	
PROJECT 620	
Polymerase Chain Reaction (PCR)-Based Detection of Aphanomyces Cochlioides Using Actin Gene Sequences	C12
PROJECT 621	
Mechanisms of Resistance in Sugarbeet to Fungal and Bacterial Pathogens	C14
PROJECT 622	
Tagging of Genes for Disease Resistance in Sugarbeet Using Molecular Genetic Markers	C16
PROJECT 650	
Identification of the Sucrose Metabolizing Enzymes Responsible for Sucrose Losses During Sugarbeet Development and Storage	C18
PROJECT 660	
Characterization of Respiratory Processes in Sugarbeet Roots During Postharvest Storage	C23
SECTION D - EAST LANSING, MICHIGAN	
Contents	D1
Agronomic Evaluation of Germplasm in One and Two Row Plots	D3
Seed Increases in Michigan	D6
Selection for Low Temperature Stress Germination	D7
Real-Time Sucrose and Yield Assisted Selection and Breeding	D8

SECTION D - EAST LANSING, MICHIGAN (continuted)

Field Evaluation of Sugar x Red Beet Population Segregating for Sucrose Content and Yield	D11
Alphabet Soup for Beets: Status of ESTs, BACs, RILs and Other Genomic Sundries	D16
Development of Recombinant Inbred Lines in Beta	D28
Hydrogen Peroxide Concentration in Stress Germinated Sugar Beet Seeds	D33
PROJECT 741	
Differential Expression of Glyoxylate Enzymes in Sugar Beet Related to Seedling Vigour	D21
PROJECT 742	
Histopathology and Histochemistry of Rhizoctonia Seedling Damping-off	D24
PROJECT 743	
Sucrose Accumulation During Early Sugar Beet Development	D13
SECTION E - BELTSVILLE, MARYLAND	
Contents	E1

PROJECT 810

Gene Transfer to Improve Sucrose Yields From Sugar Beet Taproots E3

SECTION E - BELTSVILLE, MARYLAND (continued)

PROJECT 811

Engineering Sugar Beet Root Maggot Resistance with Multiple	
Proteinase Inhibitor Genes	E9

PROJECT 830

Improving Resistance to Cercospora-Induced Leafspot Disease	
in Sugar Beet Using Biotechnology	E14

PROJECT 850

Characterization of a Fungal Pathogen of the	
Sugarbeet Root Maggot	E17

			,	

SUGARBEET RESEARCH

2002 REPORT

Section A

U.S. Agricultural Research Station, Salinas, California

Dr. R.T. Lewellen, Geneticist

Dr. H.Y. Liu, Plant Pathologist

Dr. W.M. Wintermantel, Plant Pathologist

Dr. M.H. Yu, Geneticist

Dr. J.E. Duffus, Collaborator

Cooperation:

Holly Sugar Company Spreckels Sugar Division California Beet Growers Association California Industry Research Committee Western Sugar Growers Research Committee

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 210, 211, 212, 215, 220, 221, 280, and 281), the California Beet Growers Association, and the California Industry Research Committee.

I.	ABSTRACTS OF PAPERS, 2002
II.	ETIOLOGY AND EPIDEMIOLOGY STUDY OF NEW BEET-INFECTING VIRUSES IN THE UNITED STATES (260) by HY. Liu, J.L. Sears and R.T. Lewellen
III.	EVALUATION OF THE EFFECT OF SYNERGISM BETWEEN BNYVV AND BSBMV ON RESISTANCE TO THESE VIRUSES IN SUGARBEET (281) by W.M. Wintermantel and R.T. Lewellen
IV.	DEVELOPMENT OF BREEDING LINES AND GERMPLASM (211, 215) by R.T. Lewellen
	SUMMARIES Breeding Lines CP03, CP04, CP05, CP06
	VARIETY TRIALS Index of Variety Trials, Salinas, CA 2002, U.S. Agricultural Research Station
	Evaluation of Multigerm Breeding Lines, Salinas Nondiseased: 2502, 2802, 3502
	Evaluation of Monogerm Breeding Lines, Salinas Nondiseased: 4702
	Evaluation of Experimental Hybrids, Salinas Nondiseased: 2602, 2702, 2902, 3002, 3102, 3202, 3302, 3402

VARIETY TRIALS (cont.) **Evaluation of Commercial Hybrids, Salinas** CBGA Coded Rhizomania: 7402-2..... A104 Variety Trials, Brawley Rhizomania Rhizomania High Temperature Survival **Observation and Disease Evaluation Trials** Curly Top (BSDF), Kimberly, ID N/A Cercospora Leaf Spot Erwinia/Powdery Mildew **Bolting and Downy Mildew Evaluation Trials, Salinas** Combined Data for Full-sib, S₁, & HS Progeny Tests

ABSTRACTS OF PAPERS PUBLISHED OR APPROVED FOR PUBLICATION, 2002

BIANCARDI, E., R.T. LEWELLEN, M. DeBIAGGI, A.W. ERICHSEN and P. STEVANATO. 2002. The Origin of Rhizomania Resistance in Sugar Beet. Euphytica 127: 383-397.

In the last 35 years, breeding has greatly reduced the damages caused by rhizomania in sugar beet crops. After the first encouraging results using the Alba genotypes, the cultivar Rizor represented a substantial step forward and has given good yield improvement in diseased fields in many parts of the world. The original variety and subsequent improved versions continued to offer good performances for about a decade, after which it was surpassed by other hybrids derived in part from the Rizor itself. Further progress in terms of sugar production became possible in 1986, when the Holly monogerm lines were released in USA and Europe. In spite of the incomplete information about the genealogy of the first resistant materials, many evidences and the molecular analyses on the different genotypes suggest a possible common progenitor and lineage. The resistant cultivars have kept the yield at an adequate level, allowing cultivation to continue in countries where the disease has reached epidemic proportions. The case of rhizomania resistance in sugar beet can therefore be considered as one of the most important achievements in plant breeding.

DE BIAGGI, M., A.W. ERICHSEN, R.T. LEWELLEN and E. BIANCARDI. 2003. Section B, Genetics and Germplasm Enhancement Oral Presentations. J. Sugar Beet Research. In press.

Previously recongised as soil sickness or confused with other sugar beet diseases, the symptoms of rhizomania (in its current meaning) were known in several European countries well before the Second World War. Its rapid spreading was noticed in Italy after 1946, and few years later sporadic symptoms of the disease were observed over 10,000 hectares in areas of intense cultivation. Without knowing the true pathogenic factor, some prophylactic measures were adopted: (1) avoid excess water; (2) avoid spreading of contamination through machinery and tare soil; (3) early harvesting in diseased fields; (4) sowing Italian variety with high sugar content. The last advice was established after a number of field trials that included different commercial varieties. Later became evident that the best entries carried the quantitative resistance named "Alba type." Around 1965, the pathologists involved in such researches could establish that the rhizomania was caused by an atypical fungus-virus symbiosis. With this discovery, the disease was correctly explained, and the word rhizomania became used over many important sugar beet production countries. In the 1970's, both the rapid diffusion of the disease and the worsening of the damages on sugar yield pushed many research institutes and seed companies to find more efficient control measures. After years of searching, two monogenetic traits now known as "Rizor type" and "Holly type" were identified and commercially exploited in Italy (1983) and in U.S.A. (1986), respectively. For both countries, the full and particular background of the discovery of the different rhizomania resistances is given by the breeders involved.

GRUBE, R., E. RYDER, S. KOIKE, J. McCREIGHT, and W. WINTERMANTEL. 2003. Breeding for resistance to new and emerging lettuce diseases in California. Proc. Eucarpia. In press.

Preventing crop loss due to diseases has historically been the primary focus of public lettuce (*Lactuca sativa*) breeding efforts in the United States. Recent years have seen a shift in the industry, with increasing percentages of romaine and mixed lettuces being grown under intensive production systems. Possibly related to this change, several diseases have recently been reported for the first time or have increased in incidence. Two of these, lettuce dieback and crown rot, affect primarily romaine lettuce, whereas a third, Fusarium wilt, threatens all types. Lettuce dieback is caused by soilborne viruses of the family Tombusviridae. This disease may be identical to 'brown blight', which was widespread in the 1940s but vanished when resistant crisphead cultivars were developed. Crown rot of romaine, now known as Phoma basal rot, was first observed in the Salinas Valley of California in 2001. The cause of this disease was recently identified as *Phoma exigua*. Fusarium wilt of lettuce was intially observed in California in 1990, and first caused significant crop losses in both California and Arizona in 2001. Progress and results of breeding for genetic resistance to these diseases will be discussed.

KAFFKA, S.R., R.T. LEWELLEN AND W.M. WINTERMANTEL. 2003. <u>Beet curly top virus</u>, insecticides and plant resistance. Proc. ASSBT 2003. In press.

Beet curly top virus (BCTV), a geminivirus, remains a problem for farmers in the San Joaquin Valley of California. It is spread by the beet leafhopper (Circulifer tenellus Baker), which has become naturalized. Recent dependence on non-tolerant sugar beet cultivars has led to increased concern about the potential for a BCTV epidemic, particularly in overwintered crops, which are planted when conditions for infection are greatest. Three trials were carried out in successive years in the western San Joaquin Valley to test the effects of alternative insecticides for control of BCTV on susceptible and tolerant sugar beet cultivars. Two rates of imidicloprid applied as a seed treatment (45g and 90g a.i. per 100,000 seeds) were compared to the current standard treatment of phorate applied to soil at 83.8 g a.i. per 1000 m of row, and an untreated control. In the third trial, clothianidan was also used at the rate of 15 g a.i. per 100,000 seeds. Cultivars ranged in tolerance from the most tolerant line available to the most susceptible cultivar ever observed. In the third trial, different planting dates were also compared. Natural BCTV infection occurred in all three years. Sugar beet root and sugar yields declined linearly with increasing rates of infection. Yields declined because roots were significantly smaller with the non-tolerant cultivar and root populations were reduced by plant loss. Sugar percentage was unaffected by treatments, but differed by cultivar. Imidicloprid and phorate provided similar levels of protection to plants, but were not able to prevent large yield losses among susceptible cultivars when infection occurred early in crop development. Plant resistance provided more effective protection than systemic insecticides.

KAFFKA, S.R., W. M. WINTERMANTEL, and R.T. LEWELLEN. 2002. <u>Comparisons of soil and seed applied systemic insecticides to control *Beet Curly Top Virus* in the San Joaquin Valley. J. Sugar Beet Res. 39(3-4): 59-74</u>

Beet curly top virus (BCTV), a gemini virus, remains a problem for farmers in the San Joaquin Valley of California. It is spread by the beet leaf hopper (Circulifer tenellus Baker), which has become naturalized in the state. Recent dependence on non-tolerant sugarbeet cultivars has led to increased concern about the potential for a BCTV epidemic. Two trials were carried out in successive years in the western San Joaquin Valley to test the effects of alternative protective insecticides for control of BCTV on susceptible and tolerant (resistant) sugar beet cultivars. Two rates of imidicloprid applied as a seed treatment (45 g and 90 g a.i. per 100,000 seeds) were compared to the current standard treatment of phorate applied to soil at 83.8 g a. i. per 1000 m of row, and an untreated control. Natural BCTV infection occurred in both years, but the second trial took place during a major beet leaf hopper population increase and infection occurred much earlier in crop development. Sugar beet root and sugar yields declined linearly with increasing rates of infection ($r^2 = 0.856$). Yields declined because roots were significantly smaller with the non-tolerant cultivar. Sugar percentage was unaffected by insecticide treatments, but differed by cultivar. Imidicloprid and phorate provided similar levels of protection to plants, but were not able to prevent large yield losses among susceptible cultivars. Plant resistance provided more protection than systemic insecticides. Changes in land use in the San Joaquin Valley combined with recent adoption of high yielding but non-tolerant cultivars threaten the viability of sugar beet production in affected areas.

LEWELLEN, R.T. 2002. <u>Registration of High Sucrose, Rhizomania Resistant Sugarbeet Germplasm Line CZ25-9</u>. Crop Sci. 42:320-321.

Sugarbeet (*Beta vulgaris* L.) germplasm line CZ25-9 (Reg. no. GP- 219, PI 615520) was developed by the USDA-ARS in cooperation with the Beet Sugar Development Foundation, and the California Beet Growers Association. This line was released in 2001. CZ25-9 is a high sucrose concentration, narrowly based, multigerm (MM), self-fertile (S), red hypocotyl (RR), diploid line that segregates for genetic male sterility (aa). It segregates for the Rz allele for resistance to rhizomania, caused by beet necrotic yellow vein virus. In tests at Salinas and Brawley, CA, CZ25-9 had an intermediate to moderately susceptible reaction to sugarbeet *Erwinia*, powdery mildew caused by *Erysiphe polygoni*, curly top virus, and virus yellows. It is intermediate in bolting tendency and resistant to downy mildew, caused by *Peronospora farinosa*. As a line, it has an intermediate sized canopy that is lighter green than most germplasm developed at Salinas and tends to become yellowish late in the season.

CZ25-9 is approximately 50% high sugar Polish germplasm and 50% population 912. Population 912 was developed at Salinas and segregates for self-fertility, genetic male sterility, and resistance to rhizomania. Population 912 is similar to C918 (PI 578079) (USDA, 1993) released in 1993. The Polish component was from nine diploid, multigerm, $S^{c}S^{c}$, type-ZZ lines obtained from Dr. H. Szreder, Hodowla Buraka Cukrowego, Poland, in 1988. A composite of the Polish accessions was crossed to genetic male-sterile plants from population 912. Plants from the F_{1} population were selected for resistance to rhizomania and increased in bulk. Depending upon the segregation for self-sterility, the F_{2} would have been derived by either selfing or sib mating. Thus, recombination was incomplete. Plants from within the F_{2} line were selected for resistance to rhizomania and plant type and bulk increased. Again, F_{3} individuals

could have resulted from selfing or sibbing, depending upon segregation for self-sterility and genetic male sterility, and could potentially have been S₀'s, S₁'s, or S₂'s. The F₃ was designated Z325 and was one of the components of the population released as CZ25 (PI 599343) (USDA, 1997). Randomly selected pollen fertile plants from Z325 were selfed under paper bags in the greenhouse to produce selfed progeny families. Individual plants would have descended from as few as two plants or through recombination, from as many as 16 initial parental plants. Based upon per se performance for resistance to rhizomania and sucrose concentration, line Z625-9 was selected, increased to produce line Z825-9, and topcrossed to a monogerm tester. Based upon its hybrid performance for sugar yield and sucrose concentration, line Z825-9 was increased to produce line Z025-9. Line Z025-9 is being released as CZ25-9. Distributed seed was produced on the genetic male-sterile segregants within line Z825-9.

CZ25-9 should be evaluated as a potential pollinator to produce high sugar hybrids where resistance to rhizomania is needed but high resistance to other diseases is not. It could be useful also as a high sugar, rhizomania resistant source line for further improvement of sugarbeet. CZ25-9 has a substantially different genetic background than lines traditionally released from the Salinas program (Lewellen, 1992). U.S. plant variety protection will not be sought for CZ25-9. Breeder seed is maintained by the USDA-ARS, and will be provided to sugarbeet researchers in quantities adequate for reproduction, upon request to the author (rlewellen@salinas.ars.usda.gov or rtlewellen@hotmail.com).

LEWELLEN, R.T. 2002. <u>Registration of Monogerm Rhizomania Resistant Sugarbeet Parental Lines C833-5 and C833-5CMS</u>. Crop Sci. 42:321-322.

Sugarbeet (*Beta vulgaris* L.) parental lines C833-5 (Reg. no. PL-38, PI 615522) and C833-5CMS (Reg. no. PL-39, PI 615523) were developed by the USDA-ARS in cooperation with the Beet Sugar Development Foundation and the California Beet Growers Association. These lines were released in 2001. C833-5 is a narrowly based, self-fertile (*S*), red hypocotyl (*RR*), monogerm (*mm*), O-type line that segregates for genetic male sterility (*aa*). It has a high frequency of the *Rz* allele for resistance to rhizomania, caused by beet necrotic yellow vein virus. C833-5 is moderately resistant to bolting and sugarbeet *Erwinia*. It has intermediate resistance to curly top virus, powdery mildew, caused by *Erysiphe polygoni*, and downy mildew, caused by *Peronospora farinosa*. Relative to current commercial hybrids, hybrids with C833-5 perform best under virus yellows infected conditions. C833-5 confers moderately high sucrose concentration and sugar yield to its experimental hybrids. As a line, it has a small, compact, dark green canopy. The reactions of C833-5 to *Cercospora beticola*, *Rhizoctonia solani*, and *Aphanomyces cochliodies* are unknown.

C833-5 was extracted from the initial composite cross used to develop population 833. Population 833 was produced by crossing rhizomania resistant, monogerm, genetic male-sterile plants from population 867 [Population 867 is a rhizomania resistant version of population 767; population 767 was developed from population C310(C6) (PI 590873) x C546 (PI 590649) (Doney, 1995)] with a composite of monogerm, O-type, nonbolting, curly top resistant inbred lines. These lines included C562 (PI 590847), C546 (PI 590649), C718 (PI 590849), C762-17 (PI 560130), C790-15 (PI 564758), C790-68 (PI 590790), C766-62 (PI 560133), C767-46 (PI

560132), and C796-43 (PI 560131) (Doney, 1995). From the initial F₁, rhizomania resistant, monogerm plants were selected and selfed to create selfed progeny lines. Each S₁ family was rogued to genetic male-sterile plants and topcrossed. These topcross hybrids were evaluated in replicated yield and disease evaluation trials. On the basis of these trials, S₁ 5833-5 was identified. Plants from 5833-5 were selfed and simultaneously crossed to an annual, male-sterile, O-type tester. Individual S₂ lines were evaluated for resistance to rhizomania and putative homozygous *RzRz* lines identified. The S₂ families that appeared to be O-type and *RzRz* were composited and increased through the segregating genetic male-sterile plants to produce line 0833-5. Line 0833-5 has been released as C833-5. In addition, a near-cytoplasmic-male-sterile equivalent, C833-5CMS, was released. C833-5CMS resulted from the second backcross of C833-5 to the F₁ hybrid C790-15CMS x 5833-5. C833-5CMS has been evaluated as breeding lines 9833-5H0 and 0833-5H0.

C833-5 traces from one fertile (Aa), S_o plant from the composite cross to produce population 833. It is unknown what monogerm, inbred line contributed the male gamete to produce this plant. Because C833-5 is homozygous for red hypocotyl color, all potential sources can probably be eliminated except C790-15 (Lewellen, 1994) or C790-68 (Lewellen and Skoyen, 1987).

Although neither C833-5 nor C833-5CMS is yet used in commercial hybrids, their performance in experimental hybrids and combined disease resistance make them potential candidates for use as a parental line. C833-5 may be useful as a source for continued line improvement. U.S. plant variety protection will not be requested for C833-5 or C833-5CMS.

Breeder seed is maintained by the USDA-ARS and will be provided to sugarbeet researchers in quantities adequate for reproduction, upon request to the author (<u>rlewellen@salinas.ars.usda.gov</u> or <u>rtlewellen@hotmail.com</u>).

LEWELLEN, R.T. 2002. <u>Registration of Sugarbeet Germplasm CR09-1 with Dual Resistance to Cercospora</u> and Rhizomania. Crop Sci. 42: 672-673.

Sugarbeet (Beta vulgaris L.) germplasm line CR09-1 (Reg. no. GP-220, PI 615521) was developed by the USDA-ARS in cooperation with the Beet Sugar Development Foundation and California Beet Growers Association. This line was released in 2001. CR09-1 is a narrowly based, multigerm (MM), self-fertile (S), red hypocotyl (RR), diploid line that segregates for genetic male sterility. It segregates for the Rz allele for resistance to rhizomania, caused by beet necrotic yellow vein virus. In addition, the resistance to rhizomania found in line C79-6 (PI 593665) may occur (Lewellen, 1997). CR09-1 has fair resistance to cercospora leaf spot, caused by Cercospora beticola, based upon nursery tests at Salinas, CA, Fort Collins, CO, and Shakopee, MN. CR09-1 has moderate resistance to sugarbeet Erwinia and downy mildew, caused by Peronospora farinosa. It has an intermediate reaction to bolting, curly top virus, powdery mildew, caused by Erysiphe polygoni, and virus yellows complex caused by beet yellows and beet western yellows viruses. In bolted, seed production phase, CR09-1 has a tendency for plant loss due to a crown rot of unknown cause. This crown rot has not been observed in the vegetative rosette stage or in its experimental hybrids. As a line, CR09-1 has a

small canopy with erect leaves and only fair vigor and seed yield potential. Its experimental hybrids have large, upright canopies.

CR09-1 was isolated from a population similar to CR09 (PI 593692) (USDA, 1996) released in 1996. An Italian accession with resistance to cercospora leaf spot and rhizomania called R05 was obtained from E. Biancardi at Rovigo, Italy, in 1987. This line was crossed to Salinas population 747 that has moderate to high resistance to curly top, Erwinia, virus yellows, and bolting. After one cycle of recombination, stecklings from this F₂ were crossed to population 918 (PI 578079) (USDA, 1993). Population 918 is similar to 747 but has resistance to rhizomania. After one cycle of full-sib family selection for combined resistance to rhizomania and cercospora leaf spot, the synthetic R409 was produced. Individual plants from R409 were selfed to produce S₁ progeny. These S₁ progeny families were evaluated for dual resistance to rhizomania and cercospora leaf spot at Salinas. An increase of the family with the best combination of disease resistance and agronomic traits was designated R709-1. One additional cycle of mass selection for resistance to rhizomania was made within this line to produce line CR909-1. CR901-1 was increased through segregating genetic-male-sterile plants to produce line CR009-1 and released as CR09-1.

At the same time that the bulk increases of this line were being made, it was crossed to a monogerm, cytoplasmic-male-sterile tester. Productions of this testcross hybrid were evaluated in disease and yield trials at Salinas and Brawley, CA. These trials showed that CR09-1 has good combining ability for sugar yield with intermediate sucrose concentration.

CR09-1 may be useful as a germplasm source for further improvements in resistance to cercospora leaf spot combined with other diseases. It needs to be evaluated as a potential pollinator of commercial hybrids where resistance to both rhizomania and *Cercospora* are needed. Because the source of resistance to *Cercospora* is from a recent Italian accession, it may be of interest to determine if this resistance is the same as in the traditional USDA *Cercospora* resistant base or if CR09-1 may contribute new and complementary genes to *Cercospora* resistant breeding programs. U.S. plant variety protection will not be sought for CR09-1.

Breeder seed is maintained by the USDA-ARS and will be provided to sugarbeet researchers in quantities adequate for reproduction, upon request to the author (<u>rlewellen@salinas.ars.usda.gov</u> or rtlewellen@hotmail.com).

LEWELLEN, R.T., H.-Y. LIU, W.M. WINTERMANTEL, and J.L. SEARS. 2003. <u>Inheritance of Beet Necrotic Yellow Vein Virus (BNYVV) Systemic Infection in Crosses Between Sugarbeet and Beta Macrocarpa</u>. J. Sugar Beet Research. In press.

Beet necrotic yellow vein virus (BNYVV), the cause of rhizomania, rarely infects sugarbeet (Beta vulgaris L.) systemically. Conversely, from mechanical inoculation BNYVV almost always systemically infects B. vulgaris subsp. macrocarpa (B. mac) line that grows as a weedy annual in the Imperial Valley of California. This B. mac has been used for many years in the virology programs at Salinas as an indicator host for virus assays. B. mac shows other reactions to viruses that are of interest. When infected young, Beet yellows, Beet mosaic, and Beet curly top viruses kill B. mac. Other "nonbeet" viruses, e.g., Lettuce mosaic virus, readily produce

systemic infection in *B. mac* but not in sugarbeet. It was of interest to determine the genetic basis of these different host-plant reactions. *B. mac* is a very easy bolting annual and highly self-fertile and successful crosses were achieved only when sugarbeet was used as the female. Color patterns and annualism were used as markers to positively identify F₁ hybrids. The very limited number of F₁ plants tested had the virus reaction of sugarbeet or were intermediate. The F₂ suggested that BNYVV systemic infection was conditioned by a homozygous recessive factor but the lack of fit may have been caused by escapes and lethal and sublethal mutant plants and to incomplete expressivity. F₃ population and F₃ line patterns also suggested recessive inheritance, but again ratios appeared disturbed. Most F₃ plants produced from F₂ plants with systemic infection to BNYVV were susceptible to systemic infection and there was no evidence for seed transmission. Evaluation of segregating populations is continuing with the intent to produce a biennial line with the virus reactions of *B. mac* and to determine if different genes for host reaction are involved for each virus or if one recessive factor is predisposing *B. mac* to be widely susceptible to systemic infection by numerous viruses.

LIU, H. Y. 2002. <u>The epidemiology study of whitefly-transmitted criniviruses in southwestern United States</u>. In Proc. VIII International Plant Virus Epidemiology Symposium, pg. 100. Aschersleben, Germany, May 12-17, 2002.

In 1981, lettuce, cucurbits, and sugarbeet crops in the southwestern United States were ubiquitously infected with Lettuce infectious yellows virus (LIYV), resulting in losses exceeding \$20 million in one growing season. LIYV is a Crinivirus, which is classified as a new genus of Closteroviridae family. The cucurbits appear to play an important role in the epidemiology of LIYV. The cucurbits are a breeding host of the whitefly and also serve as a source of LIYV for newly emerging crops in early September. In 1990-1991 the incidence of LIYV in the desert areas were reduced from 70% to 1% in spite of the record high population of its insect vector, the sweetpotato whitefly (Bemisia tabaci). With a hypothesis of the vector population shifting to a new biotype with no or low efficiency of virus transmission, we surveyed the desert areas for whitefly and found a new biotype: "B". This biotype "B" is different from the original biotype "A" in host preference, larval development, transmission efficiency of LIYV, and the induction of silverleaf symptom on squash, but is indistinguishable morphologically from biotype "A". We developed an isozyme pattern technique to differentiate biotype "B" from biotype "A". Since 1991, a mixture of viruses including LIYV and a newly descried clostero-like virus termed Lettuce chlorosis virus (LCV) have been isolated from sugarbeet and lettuce plants in the desert regions. B-biotype whitefly can transmit LCV efficiently. However, because cucurbits are not LCV hosts, the only known virus source in the field is from the weed hosts. Therefore, so far LCV has not caused severe losses to crops.

LIU, H. Y. 2002. Whitefly-transmitted criniviruses in lettuce and tomato. In Proc. XI National Congress of the Spanish Phytopathological Society, pg. 308. October 14-18, Almeria, Spain, 2002.

Whitefly-transmitted criniviruses are an expanding group of plant viruses. *Crinivirus* is a new genus belongs to *Closteroviridae* family. The criniviruses have been characterized by a number of features

including particle morphology, cytopathology, mode of transmission, and bipartite single stranded RNA genome.

In 1981, lettuce, cucurbits, and sugar beet crops in the southwestern United States were ubiquitously infected with Lettuce infectious yellows virus (LIYV), resulting in losses exceeding \$20 million in one growing season. The cucurbits appear to play an important role in the epidemiology of LIYV. The cucurbits are a breeding host of the whitefly and also serve as a source of LIYV for newly emerging crops in early September. In 1990-1991 the incidence of LIYV in the desert areas were reduced from 70% to 1% in spite of the record high population of its insect vector, the sweetpotato whitefly (Bemisia tabaci). With a hypothesis of the vector population shifting to a new biotype with no or low efficiency of virus transmission, we surveyed the desert areas for whitefly and found a new biotype: "B". This biotype "B" is different from the original biotype "A" in host preference, larval development, transmission efficiency of LIYV, and the induction of silverleaf symptom on squash, but is indistinguishable morphologically from biotype "A". We developed an isozyme pattern technique to differentiate biotype "B" from biotype "A". Since 1991, a mixture of viruses including LIYV and a newly descried clostero-like virus termed Lettuce chlorosis virus (LCV) have been isolated from sugar beet and lettuce plants in the desert regions. B-biotype whitefly can transmit LCV efficiently. However, because cucurbits are not LCV hosts, the only known virus source in the field is from the weed hosts. Therefore, so far LCV has not caused severe losses to crops.

Since 1993, we have discovered at least two distinct tomato-infecting criniviruses, *Tomato infectious chlorosis virus* (TICV) and *Tomato chlorosis virus* (ToCV), both in field and greenhouse grown tomatoes. These viruses have wide host ranges and include ornamentals, weeds, and agronomic crops. TICV has been identified in limited locations within the U.S., as well as in Europe and Taiwan, while the distribution of ToCV appeared to be considerably broader. ToCV has been identified in North America, Europe, Taiwan, South America, and most recently the Caribbean. Although TICV is only transmitted by the greenhouse whitefly (*Trialeuordes vaporariorum*), four whitefly vectors transmit ToCV, including *T. vaporariorum*, *B. tabaci* A and B biotypes, and the banded wing whitefly (*T. abutilone*). Both TICV and ToCV are considered to be semi-persistent in their vectors. TICV persists in the whitefly for four days, whereas ToCV persists one day in the vector. Movement of these viruses in breeding material and increases in both international trade and greenhouse vegetable culture contributes to the expansion of the natural range of these viruses.

LIU, H. Y., J.L. SEARS, and R.T. LEWELLEN. 2002. <u>Partial characterization of an unnamed soil-borne sugar beet virus in the United States</u>. in Proc. 5th. Symp. International Working Group on Plant Viruses with Fungal Vectors, Zurich, Switzerland, July 22-25, 2002. In press.

In rhizomania infested fields, sugar beet leaves with oak-leaf pattern symptoms different from rhizomania were found in California. A virus with rigid rod-shaped particles was isolated. For purposes of discussion this unknown virus was designated Beet oat-leaf virus (BOLV). BOLV is serologically distinct from *Beet necrotic yellow vein virus* (BNYVV), *Beet soil-borne mosaic virus* (BSBMV), and *Beet soil-borne virus* (BSBV). The host range of BOLV is similar to BNYVV and BSBMV mostly infecting *Chenopodiaceae* plants. BOLV produces chlorotic local lesions with a necrotic ring after mechanical inoculations. Particles were about 20 nm wide and

ranged from 80 to 640 nm with three modal lengths: 180-200 nm, 260-280 nm, and 300-320 nm. *Polymyxa betae* transmission of BOLV was demonstrated through a bioassay by using BOLV-infected cystosori and sugar beet as bait. BOLV has been purified from *Spinacia oleracea*. The molecular mass of the capsid protein was estimated to be 46.0 kDa. A polyclonal antibody from rabbits has been produced and can be used in ELISA, western blot, and immunogold labeling tests. BOLV appears to be wide spread in U.S. It has been found also in Colorado, Michigan, Minnesota, Nebraska, and Wyoming. BOLV was found in sugar beet alone or co-infected with BNYVV and/or BSBMV. The economic significance of BOLV and its interaction with other furoviruses are not known.

LIU, H.Y., J.L. SEARS, and R.T. LEWELLEN. 2003. <u>A New Beny-Like Sugarbeet Virus Emerging in the United States</u>. J. Sugar Beet Research. In press.

A virus with rigid rod-shaped particles was isolated in addition to Beet necrotic yellow vein virus (BNYVV) from rhizomania infested fields in California. The infected sugarbeet leaves showed oak-leaf pattern symptoms different from rhizomania. For purposes of discussion this unnamed virus will be tentatively called Beet oat-leaf virus (BOLV). BOLV is serologically distinct from BNYVV, Beet soil-born mosaic virus (BSBMV), and Beet soil-borne virus (BSBV)/Beet virus Q (BVQ). The host range of BOLV is similar to BNYVV and BSBMV mostly infecting Chenopodiaceae plants. BOLV produces chlorotic local lesions with a necrotic ring after mechanical inoculations. Particles were 18 to 20 nm wide and ranged from 80 to 640 nm long with three modal lengths: 180-200 nm, 260-280 nm, and 300-320 nm. Polymyxa betae transmission of BOLV was demonstrated through a bioassay by using BOLV-infected cystosori and sugarbeet as bait. BOLV has been purified from Chenopodium quinoa. The molecular mass of the capsid protein was estimated to be 43.0 kDa. A polyclonal antibody from rabbits has been produced and can be used in ELISA and immunogold labeling tests. BOLV appears to be wide spread in U.S. It has been found also in Colorado, Michigan, Minnesota, Nebraska, and Wyoming. BOLV was found in sugarbeet alone or co-infected with BNYVV and/or BSBMV. The economic significance of BOLV and its interaction with other benyviruses are not known.

LIU, H. Y., J.L. SEARS, and R.H. MORRISON. 2003. <u>Isolation and characterization of a carom-like virus from *Calibrachoa* plant. Plant Disease. Plant Dis. 87:167-171.</u>

Spherical virus particles c. 29 to 31 nm in diameter were isolated from *Calibrachoa* plants showing leaf mottling and chlorotic blotch symptoms. The virus was mechanically transmitted to *Chenopodium amaranticolor*, *C. capitatum*, *C. quinoa*, *Nicotiana benthamiana*, and *N. clevelandii* plants, but was not transmitted by green peach aphid (*Myzus persicae*), sweetpotato whitefly (*Bemisia tabaci*), silverleaf whitefly (*B. argentifolii*), greenhouse whitefly (*Trialeurodes vaporarium*), or banded-wing whitefly (*T. abutilonea*). Virions contained a single species of single-stranded RNA of approximately 4.0 kb and a single capsid protein of approximately 41 kDa. The double-stranded RNA pattern consistently revealed one major band of about 4.0 kbp, and three minor dsRNA of c. 3.1, 1.6, and 1.3 kbp. The virus-infected plants reacted with a homologous polyclonal antiserum in indirect enzyme-linked immunosorbent assay. The genome contained a sequence of a highly conserved motif of the RNA-dependent RNA-polymerase associated with the

genus *Carmovirus*, and shared 94% identity with *Carnation mottle carmovirus* (CarMV). However, the *Calibrachoa* virus and CarMV serologically and host range were distinct. Based on the host ranges, particle morphology, dsRNA profile, properties of particles in sap, and features of the genome and protein, we concluded that the recently observed *Calibrachoa* disease is caused by a previously undescribed carmovirus on *Calibrachoa* plants. We propose to name this virus Calibrachoa mottle virus (CbMV).

OBERMEIER C., J.L. SEARS, H.Y. LIU, K.O. SCHULETER, E. RYDER, J.E. DUFFUS, S.T. KOIKE, and G.C. WISLER. 2002. <u>Disease of lettuce and tolmato caused by tombusviruses in the western United States</u>. In Proc. 10th Conference of ISHS Working Group on Vegetable Viruses pg. 10. August 4-9, Bonn, Germany, 2002.

A new soil-borne virus related to *Tomato bushy stunt virus* (TBSV) and associated with dieback has been found in romaine and leaf lettuce in California and Arizona. Heavy rains and flooded land in the past several years may have caused the emergence of this soil- and water-borne virus. At the same time, a tombusvirus has also been found associated with a necrosis inducing disease of greenhouse tomatoes in Colorado, New Mexico, and Texas. An antiserum was produced against a tombusvirus isolate obtained from diseased lettuce. Agar gel double diffusion and Western blot analyses revealed that the tombusviruses repeatedly isolated from diseased lettuce and tomato plants are serologically distinct from previously described tombusvirus species and strains. Sequences of cDNA clones generated from the 3'-end of viral genomic RNA from diseased lettuce and tomato plants were identical. These sequences were divergent (12-17%) from those of previously described strains of TBSV. Based on genomic and serological properties we propose to classify this virus as a new tombusvirus species termed Lettuce necrotic stunt virus (LNSV). In some cases other tombusviruses that were closely related to the previously described TBSV-Cherry strain and to Cucumber necrosis virus (CNV) were also recovered from asymptomatic and symptomatic lettuce and tomato plants. However, typical symptoms of die-back and necrosis on lettuce and tomato were induced only after soil inoculation of lettuce and tomato plants with LNSV-containing plant sap. LNSV was reisolated from symptomatic leaves indicating that the virus is the causal agent. In contrast, the TBSV-Cherry and CNV isolates recovered from asymptomatic lettuce and tomato plants did not induce typical dieback symptoms on lettuce or fruit necrosis in tomato after soil inoculation of lettuce and tomato plants with virus-containing plant sap. However, the role of TBSV-Cherry and CNV in the etiology of lettuce dieback disease and necrosis-inducing disease of tomato in the Western United States still needs further evaluation. Attempts to control dieback disease of lettuce in field trials by fumigation of infested soil using methyl bromide or a combination of methyl bromide and chloropicrin were not successful suggesting that no biological soil-borne vector was involved in natural virus transmission. Natural resistance to LNSV was found in field trials in two consecutive years in 5 out of 8 crisphead varieties and in 4 out of 12 leaf lettuce varieties, but in 0 out of 20 romaine varieties tested. Sources of natural resistance were identified in four romaine lettuce lines that are currently used to produce resistant romaine lettuce varieties. Dieback disease symptoms and resistance characteristics of crisphead varieties tested resembled those of crisphead varieties developed in the 1920s to control brown blight disease of lettuce. These results suggest a common origin of brown blight disease of the 1920s and dieback disease of lettuce of the 1980s and 1990s. The reoccurrence of this dieback disease of lettuce caused by

Lettuce necrotic stunt virus may have been facilitated by the decrease in acreage grown in resistant crisphead varieties and the increase in acreage grown in susceptible leaf and romaine lettuce varieties in California and Arizona within the last 20 years.

WEILAND, J.J. and M.H. YU. 2003. A Cleaved Amplified Polymorphic Sequence (CAPS) Marker Associated With Root-Rot Nematode Resistance in Sugarbeet (*Beta vulgaris* L.). Crop Science 43: In press.

Resistance to root-knot nematode (*Meloidogyne* spp.) previously was introgressed into sugarbeet (Beta vulgaris L.) from wild beet [B. vulgaris ssp. maritima (L.) Arcang] and was demonstrated to be dominant and simply inherited. Since resistance conferred by this gene was effective against six different species of *Meloidogyne* spp. tested, the locus was designated **R6m-1**. An inter-pollinated progeny population of resistant heterozygotes segregating for *R6m-1*, was exposed to nematodes in a greenhouse and rated for root knot disease symptoms. Resistance vs. susceptibility segregated at approximately a 4:1 ratio and 120 resistant roots and 48 susceptible roots were chosen for the generation of a molecular marker linked to the resistance trait. Bulked DNA samples prepared from shoots sprouting from the selected plants were subjected to RAPD analysis, yielding a marker of 600 bp that was highly associated with resistance. Sequence analysis of the 600 bp product led to the design of DNA primers for specific amplification of a 580 bp product, the generation by PCR of which occurred in plants both susceptible and resistance to nematode. Comparison between the sequences generated from resistant plants and susceptible plants revealed numerous nucleotide substitutions. One base substitution associated in repulsion with resistance conditioned the existence of a recognition site for cleavage by the restriction endonuclease Mse I. Amplification and cleavage of the product with Mse I yielded a cleaved amplified polymorphic sequence (CAPS) marker designated Nem06 that co-segregated with resistance to the root knot nematode. Computer-assisted translation and comparison with sequences in public databases indicates that the marker DNA sequence encodes a protein with high sequence similarity to a plant transcription factor.

WINTERMANTEL, W.M. and A.G. ANCHIETA. 2003. <u>Tombusvirus infection of lettuce is influenced by soil salinity</u>. Proc. International Working Group on Plant Viruses with Fungal Vectors, 2002. In press.

A severe soil-borne disease of lettuce has emerged to cause severe losses for lettuce production in the western United States. The disease is caused by a group of tombusviruses, including both *Tomato bushy stunt virus* and the newly described *Lettuce necrotic stunt virus*. Fields with severe infections are usually associated with areas near rivers and areas where flooding has recently occurred. Interestingly, disease severity in infested fields varies considerably from year to year. In order to identify factors contributing to variability in infection, soil analyses were conducted on adjacent fields with similar soil type, but differing for tombusvirus infection. These studies identified soil salinity as the predominant factor differing between diseased and disease-free fields. Subsequent greenhouse studies examined the effect of electrical conductivity levels in the soil on virus infection. Results indicated that elevated electrical conductivity (5.5 dS/cm³) led to elevated levels of LNSV infection when

compared with a lower electrical conductivity (3.2 dS/cm³), which exhibited very low disease incidence.

WINTERMANTEL, W.M., T. CROOK, and R. FOGG. 2003. <u>First report of rhizomania disease of sugar beet in the Great Lakes production region</u>. Plant Disease 87 (2): 201.

Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV) and vectored by the soil-borne fungus Polymyxa betae Keskin, is one of the most economically damaging diseases affecting sugar beet (Beta vulgaris L.). The virus likely originated in Europe, and was first identified in the United States in 1983 in California (1). It has since spread among American sugar beet production regions in spite of vigorous sanitation efforts, quarantine, and disease monitoring (3). In the fall of 2002, mature sugarbeet plants exhibiting typical rhizomania root symptoms (2) were found in several fields scattered throughout central and eastern Michigan. Two to five sugarbeet root samples were collected from each field and sent to the USDA-ARS in Salinas, CA for analysis. Roots were washed and tested by DAS-ELISA for the presence of BNYVV using standard procedures and antiserum specific for BNYVV (3). Sugar beet roots were tested individually, and samples were considered positive when absorbance values were at least three times those of greenhouse-grown healthy sugar beet controls. Samples were tested from 16 fields, with 10 confirmed positive for BNYVV. Fields were considered positive if one beet tested positive for BNYVV, but in most cases all beets tested from a field were either uniformly positive or uniformly negative. Fields testing positive for BNYVV were widely dispersed within a 100 square mile area including portions of Gratiot, Saginaw, Tuscola and Sanilac Counties in the central and eastern portions of the lower peninsula of Michigan. The confirmation of rhizomania in sugar beet from the Great Lakes region marks the last major American sugarbeet production region to be diagnosed with rhizomania disease, nearly 20 years after its discovery in California (1). There were approximately 185,000 acres of sugar beet grown in the Great Lakes region in 2002, located in Michigan, Ohio, and southern Ontario, Canada. The wide geographic distribution of infested fields suggests the entire region should monitor for symptoms, maintain a minimum 3 to 4 year rotation to nonhost crops, and consider planting rhizomania resistant sugar beet varieties to BNYVV-infested fields.

WINTERMANTEL, W.M., N.F. MOSQUEDA, A.A. CORTEZ, and A.G. ANCHIETA. 2003. Beet curly top virus revisited: Factors contributing to recent severe outbreaks in California. Proc. ASSBT 2003. In press.

Beet curly top virus (BCTV), transmitted by the beet leafhopper (Circulifer tenellus) has caused significant problems to irrigated agriculture in the western United States since the late 1800s. Although managed annually through an intensive leafhopper eradication program, BCTV reemerged in 2001 as a serious threat to agriculture in California's San Joaquin Valley. BCTV infects a broad range of crop hosts including sugarbeet, pepper, tomato, bean, spinach, and cucurbits, as well as numerous weeds. Although many strains of BCTV have been identified over the years, molecular characterization of BCTV in sugarbeet has demonstrated that the virus primarily exists as genetic variants of three strains, CFH, Worland, and California/Logan. Studies conducted in the early 1990s determined that most sugarbeets were infected with either

CFH or Worland strains, but little information exists on strain distribution among weed hosts. Data collected over the past 2 years in California and other states has focused on molecular characterization of BCTV isolated from weed hosts present in the over wintering grounds of the beet leafhopper, as well as sugarbeet and selected other crops. PCR using BCTV universal primers, as well as strain specific primers have been used to amplify viral DNA from infected crop and weed hosts from both fields and overwintering grounds of the beet leafhopper. Strain identification coupled with sequence analysis provides insight into variability in virus population structure over broad areas, as well as over time.

WISLER, G.C., R. T. LEWELLEN, J. L. SEARS, H.-Y. LIU, J. W. WASSON, and W. M. WINTERMANTEL. 2003. Effects of two soil-borne viruses of sugarbeet and their fungal vector, *Polymyxa betae*, on virus accumulation and plant growth in sugarbeet. Proc. ASSBT 2003. In press./ Proc. Internal. Working Group Plant Viruses Fungal Vectors. In press.

Soils naturally infested with cultures of aviruliferous *Polymyxa betae* and viruliferous *P. betae* carrying the two sugar beet benyviruses Beet necrotic vellow vein virus (BNYVV) and Beet soilborne mosaic virus (BSBMV), alone and in combination, were compared to non-infested soil with regard to their effects on virus content, fresh plant weight, and seedling emergence. Two sugar beet varieties were used: a diploid (Rzrz) that carries resistance to rhizomania caused by BNYVV, and a triploid rhizomania-susceptible variety (rzrzrz). These studies clearly demonstrated that the Rz resistance gene does not confer resistance to BSBMV. Additionally, P. betae alone had a significant negative effect on growth of sugarbeet, and soils infested with P. betae containing one or both viruses, tended to have reduced seedling emergence and reduced fresh weight, even when protective fungicides were used. BSBMV titers were significantly higher in single infections than in mixed infections with BNYVV in both rhizomania resistant and susceptible varieties. In contrast, BNYVV titers were very high in single and in mixed infections in the Rhizomania-susceptible variety, but low in the resistant variety. Therefore, in the absence of BNYVV, BSBMV concentrations are high in infected roots, regardless of the resistance genotype. In the presence of BNYVV, however, BSBMV concentrations are low in both resistant and susceptible varieties, with absorbance readings similar to those of plants grown in non-infested soils. It appears that even at low levels, BNYVV either out competes or suppresses BSBMV, and suggests that both viruses target similar cellular processes in the sugarbeet plant.

WISLER, G.C., R.T. LEWELLEN, J.L. SEARS, J.W. WASSON, H.-Y. LIU, and W.M. WINTERMANTEL. 2003. <u>Interactions Between *Beet Necrotic Yellow Vein Virus* and *Beet Soil-Borne Mosaic Virus* in Sugar Beet. Plant Disease 87. In press.</u>

Soils naturally infested with cultures of aviruliferous *Polymyxa betae* and viruliferous *P. betae* carrying two sugar beet benyviruses, *Beet necrotic yellow vein virus* (BNYVV) and *Beet soil-borne mosaic virus* (BSBMV), alone and in combination, were compared to non-infested soil for their effects on seedling emergence, plant fresh weight, and virus content as measured by ELISA. Two sugar beet varieties were used: a diploid (*Rzrz*) carrying resistance to the disease, rhizomania, caused by BNYBB, and a triploid rhizomania-susceptible variety (*rzrzrz*). The *Rz*

gene, conferring resistance to BNYVV, did not confer resistance to BSBMV. *P. betae* alone had a significant negative effect on growth of sugar beet in greenhouse pot cultures. BSBMV ELISA values were significantly higher in single infections than in mixed infections with BNYVV, in both the rhizomania-resistant and susceptible varieties. In contrast, ELISA values of BNYVV were high (8 to 14 times the healthy mean) in single and mixed infections in the rhizomania-susceptible variety, but were low (ca. three times the healthy mean) in the rhizomania-resistant variety. Therefore, in the absence of BNYVV, ELISA values for BSBMV are high, regardless of the resistance genotype. In the presence of BNYVV, however, BSBMV ELISA values are low in both resistant and susceptible varieties with absorbance (A_{405 nm}) readings similar to those of plants grown in non-infested soils. BNYVV may suppress BSBMV in mixed infections, even in rhizomania-resistant varieties in which ELISA values for BNYVV are extremely low. Soils infested with *P. betae*, and with one or both viruses, showed significantly reduced fresh weight of seedlings.

YU, M.H. 2003. <u>Developing Sugarbeet with Resistance to *Meloidogyne Spp.*</u> Proceedings Int. Congr. Genetics 19: In press.

Root –knot nematodes (*Meloidogyne* spp.) are important sugarbeet (*Beta vulgaris* L.) pathogens that are difficult to control. Host-plant resistance was discovered from rare strains of the wild beet, *B.vulgaris* ssp. *maritima*. The resistance is effective against multiple species and races of nematode belonging to the genus *Meloidogyne*, based on J2 inoculation tests. Incorporation of resistance to root-knot nematode into sugarbeet was carried out through hybridization and back-crossing to sugarbeet in the greenhouse. Selection against annual bolting, disease susceptibility, and root morphology was done from field plantings. the intensity of sprangled root structures and easy bolting habits decreased with selection pressure and as the number of breeding generations progressed. Promising sugarbeet plants with stable resistance transmission and improved taproot conformation eventually developed. Two series of root-knot nematode resistant sugarbeet genotypes, Mi-1 and M66, were generated. From these sources several *Beta* germplasm lines with resistance to *Meloidogyne* spp. have been developed and released.

YU, M.H. 2003. <u>Development of Root-Knot Nematode-Resistant Sugarbeet</u>. Proceedings IIRB Congress 66: In press.

Sugarbeet, *Beta vulgaris*, is a favored host of *Meloidogyne* spp. Host-plant resistance to multiple species of root-knot nematodes was not found in the cultivated sugarbeet but was identified from wild *maritima* beets. The resistance has been introgressed into sugarbeet genotypes. Several breeding populations were planted in heavily infested field plots. Preliminary evaluations indicated that about 77% of plans in resistant families and 44% in backcrossed populations, produced healthy roots while the rest were with gall symptoms. In comparison, none of the susceptible control plants were free from galling; one-third of them died. Positive results were demonstrated by the improved taproot conformation and root weights. A phosphoglucomutase (PGM) isozyme marker for Mi-1 *Beta* and cleaved amplified polymorphic sequence (CAPS) marker for M66 *Beta* were recently identified. The use of marker-assisted selections may

facilitate sugarbeet root-knot nematode resistance breeding. Additional improvements on the breeding materials are needed to develop an elite sugarbeet cultivar.

YU, M.H. 2003. <u>Registration of Root-knot Nematode-Resistant Sugarbeet Germplasm M6-2</u>. Crop Sci. 43: In press.

M6-2 was produced by inter-pollinating more than 30 plans selected from the fifth backcross generation progeny of hybrids between M66 (PI 586688) and cultivated sugarbeet lines, including C37 (PI 590715). From the F₁BC₅ generation, individual plants with root-knot resistance were selected and intercrossed. Plants from this F₂FC₅ generation were selected for nematode resistance and individually test crossed to a susceptible sugarbeet. Based on the information from these test cross families, individual F₂ plants that had been retained and appeared to be homozygous for resistance were intercrossed to produce M6-2 line. due to its wild beet ancestry M6-2 sugarbeet plants often expressed various levels of sprangled root traits. M6-2 is highly resistant, if not immune, to root-knot nematode. M6-2 is a multigerm, biennial, self-incompatible sugarbeet germplasm that is heterogeneous for plant type and hypocotyl color. Approximately 75% of the seedlings have nongreen hypocotyls. The M6-2 germplasm is resistant to multiple species of root-knot nematode, including *M. incognita*, etc. The level of resistance to root-knot nematode in M6-2 appeared to be similar to M6-1 (PI 613165), the first generation backcross progeny of M66. However, M6-1 is a self-compatible line with green hypocotyls, and its taproots exhibit a heavier sprangled trait in comparison to M6-2.

YU, M.H. and R.T. LEWELLEN. 2002. <u>Registration of Sugarbeet Germplasm M1-3 Resistant</u> to Root-Knot Nematode. Crop Sci. 42(5):1756-1757.

The initial seed of M1-3 was produced by inter-pollinating more than 60 plants selected from the fourth backcross generation of hybrids between wild beet (*B.vulgaris* ssp. *maritima*) line M1-2 (PI 614899) and recurrent sugarbeet parents, C37 (PI 590715), C69 (PI 599-341), and C78 (PI 593671). These selected plants all produced root-knot resistant progeny, when crossed to susceptible sugarbeet, as determined by J2 larval inoculation studies in the greenhouse. M1-3 is highly resistant, if not immune, to root-knot nematode. M1-3 is a multigerm, biennial, self-incompatible sugarbeet germplasm that is heterogenous for plant type and hypocotyl color. Approximately 80% of the seedlings have nongreen hypototyls. Taproot size and conformation is not as uniform as its recurrent parents; however, the intensity of the sprangled root growth habit of M1-2 has been greatly decreased. The M1-3 germplasm is resistant to several species of root-knot nematode, including *M. incognita*, *M. javanica*, *M. arenaria*, *M. hapla*, *M. chitwoodi*, and *M. fallax*.

The strength of resistance to root-knot nematode in M1-3 is similar to that of M6-1 (PI 613165), but the two germplasms can be differentiated by a phosphoglucomutase (PGM) isozyme stain on starch gels. F₁ progeny of M1-3 produce the PGM banding pattern associated with root=knot nematode resistance. However, a similar banding pattern has not been observed in M6-1 or its progeny. In addition, M6-1 is self-compatible, but M1-3 is self-incompatible.

YU, M.H. and P.A. ROBERTS. 2002. <u>Selection of root-knot nematode resistant sugarbeet from field plantings</u>. Nematology 4:240.

The resistance to root-knot nematode was identified seven years ago, and since then it has been introgressed into cultivated sugarbeet. Preliminary observations on several breeding populations were conducted in field plots infested with either *M. incognita* or *M. javanica* at U.C. Research and Extension Centers, Irvine and Parlier, California. In resistant progeny families, more than 50% of the plans produced healthy taproots that exhibited no root-knot symptoms. In comparison, none of the susceptible control plants were free from galling. Significant reductions of approximately 45% or more in root weights occurred when there susceptible control plants were grown in infested soil. Susceptible sugarbeet suffered a higher sensitivity reaction to prolonged temperature (>38°C) stresses and secondary pathogenic invasions than the resistant counterpart. Greenhouse inoculation screenings provided reliable classification of resistant genotypes, but no index of full growth potential of the plants. Our results indicate that a productive root-knot nematode-resistant sugarbeet line with elite root yield, taproot conformation, and sucrose content would be developed more readily when resistant parents were grown and selected from nematode infested fields.

Project 260

ETIOLOGY AND EPIDEMIOLOGY STUDY OF NEW BEET-INFECTING VIRUSES IN THE UNITED STATES

Hsing-Yeh Liu, John L. Sears, and Robert T. Lewellen USDA-ARS, Salinas, California

SUMMARY

In rhizomania infested fields, sugar beet leaves with oak-leaf pattern symptoms different from rhizomania were found in California. A virus with rigid rod-shaped particles was isolated. For purposes of discussion this unknown virus was designated Beet oat-leaf virus (BOLV). BOLV is serologically distinct from Beet necrotic yellow vein virus (BNYVV), Beet soil-borne mosaic virus (BSBMV), and Beet soil-borne virus (BSBV). The host range of BOLV is similar to BNYVV and BSBMV mostly infecting Chenopodiaceae plants. BOLV produces chlorotic local lesions with a necrotic ring after mechanical inoculations. Particles were about 20 nm wide and ranged from 80 to 640 nm with three modal lengths: 180-200 nm, 260-280 nm, and 300-320 nm. Polymyxa betae transmission of BOLV was demonstrated through a bioassay by using BOLVinfected cystosori and sugar beet as bait. BOLV has been purified from Spinacia oleracea. The molecular mass of the capsid protein was estimated to be 46.0 kDa. A polyclonal antibody from rabbits has been produced and can be used in ELISA, western blot, and immunogold labeling tests. BOLV appears to be wide spread in U.S. It has been found also in Colorado, Michigan, Minnesota, Nebraska, and Wyoming. BOLV was found in sugar beet alone or co-infected with BNYVV and/or BSBMV. The economic significance of BOLV and its interaction with other furoviruses are not known.

INTRODUCTION

During the survey for rhizomania disease, an unnamed virus showed oak-leaf pattern symptoms on sugar beet (Fig. 1) was found in California. A virus with rod-shaped particles was isolated in addition to *Beet necrotic yellow vein virus* (BNYVV), the causal agent of rhizomania. This unnamed virus of sugar beet is tentatively called Beet oak leaf virus (BOLV). BOLV and BNYVV serologically are distinct. Taproots of beets infected with BOLV often appear healthy, unlike those of beets infected with BNYVV. The objectives of this study are to determine some of the physical, biological, and serological characteristics of BOLV.

Fig. 1. Beta vulgaris infected with Beet oak-leaf virus showing oak-leaf pattern symptoms.

MATERIALS AND METHODS

Symptomatic field sugar beet leaves were ground in 0.1 M phosphate buffer, pH 7.0, and mechanically inoculated to *Chenopodium quinoa* Willd. Each single local lesion was subinoculated to *C. quinoa*. The local lesions were freeze dried for virus source. In host range tests, the selected host plant species were mechanically inoculated as above.

BOLV was purified from *Spinacia oleracea*. Infected spinach plants were homogenized with two volumes of 0.1 M phosphate buffer and clarified with 1/2 volume of carbon tetrachloride. Virions were precipitated with 6% polyethylene glycol (mol. wt 6,000) and 0.2 M sodium chloride. The virions were further purified and concentrated by two cycles of differential centrifugation, followed by centrifugation through a 10-35 % sucrose density gradient. Purified virus particles were analyzed by SDS-PAGE to determine the molecular mass of the capsid protein.

Antiserum to the purified virions was prepared in New Zealand white rabbits. Freund's complete adjuvant and 500 µg of purified virus were used for the first injection and incomplete adjuvant with 250 µg of virus was used in four subsequent injections. The double antibody sandwich (DAS)-ELISA, Western blot procedure, and immunoelectron

microscopy technique were conducted essentially as described in the literatures (Clark and Adams, 1977, Towbin, et al, and Lin, 1984).

BOLV infested soil or BOLV infected *Polymyxa betae* cystosori in sugar beet roots were air-dried for 3 weeks to provide inocula for transmission tests. The air-dried roots were ground to a fine powder and mixed with pasteurized potting soil. Sugar beet seeds were added to the pots and covered with pasteurized sand. The pots were kept in insect-proof greenhouse and temperature controlled at about 80 F for 40 to 50 days. Plants were then harvested, tested for BOLV using DAS-ELISA and microscopic examination for *P. betae*.

RESULTS

In host range tests, 15 species of 5 families were mechanically inoculated. *C. amaranticolor, C. murale,* and *C. quinoa* showed local lesions and *Beta macrocarpa, B. vulgaris, Spinacia oleracea, Nicotiana benthamiana* and *Tetragonia expansa* produced systemic infection.

In both soil testing and *P. betae* transmission tests sugar beet roots were positive for BOLV in ELISA tests and *P. betae* was found in the infected roots under light microscope. BOLV was recovered by mechanical inoculation to *C. quinoa* plants.

Purified virions were rigid rod-shaped particles with a central canal (Fig. 2). More than 350 virus particles were measured in the leaf dip preparations (Liu, et al, 2000). The virus particles were about 20 nm wide and of three predominant lengths, 180-200 nm, 260-280 nm, and 300-320 nm (Fig.3). The virus particles were capsided by single protein subunits of 46.0 kDa (Fig. 4). The antisera to BOLV produced from purified virions were specific to BOLV in DAS-ELISA (Table 1) and western blot analyses. BOLV-infected plants were successfully identified by immunogold labeling in leaf dips (Fig. 5).

Table 1. Serological relations of Beet oak-leaf virus and other *Polymyxa betae* transmitted beet viruses using DAS-ELISA

Antigen/Antiserum	BOLV	BNYVV	BSBMV	BSBV	TMV
BOLV	+	-	-	-	-
BNYVV	-	+	-	-	-
BSBMV	-	-	+	-	-
BSBV	-	-	-	+	-
TMV	-	-	-	-	+
Healthy CK	-	-	-	-	-

Fig. 2. Purified Beet oak-leaf virus particles are straight, rod-shaped with a central canal. The bar represents 100 nm.

Fig. 4. Sodium dodecyl sulfate-polyacrylamide (12% acrylamide) slab gel showing virion capsid protein. Lane 1, molecular weight standards in order of decreasing mass: phosphorylase B, bovine serum albumin, ovalbumin, carbonic anhydrase, B-lactoglobulin, and lysozyme. Lane 2, Beet oak-leaf virus.

Fig. 5. Immunoelectron microscopy. BOLV-anti-BOLV followed by gold-IgG complexes, showing a direct association of virus particles and labelled gold-IgG complexes.

CONCLUSIONS

BOLV was isolated from sugar beet leaves with oak-leaf pattern symptoms from a rhizomania field in California. Like BNYVV, it causes local lesions on *C. quinoa*, but those of BOLV always had a necrotic ring surrounding the chlorotic local lesions. In the later stages, all lesions became large irregular shaped necrotic lesions. Systemic infection of *C. quinoa* were not observed. BOLV was difficult to pruify, probably because it is unstable in vitro, tends to aggregate during purification, and/or occurs within plants in low concentration; nevertheless, an antiserum was obtained with partially purified virus preparations. BOLV antiserum was specific and can be used in ELISA tests, Western blots, and immunoelectron microscopy. BOLV coat protein molecular weight was estimated at 46.0 kDa. The reported molecular weight of BNYVV coat protein is 22 kDa and BSBMV is 24 kDa (Wisler, G. et al, 1994). BOLV was distinct from beet infecting benyviruses serologically. It was also distinct from *Beet virus Q* biologically (Koenig, R. et al, 1998), e.g. symptom expression on *C. quinoa* and systemic infection on *N. benthamiana*.

BOLV seems to be a multiparticulate virus, made up of 3 particles. The molecular weight of BOLV RNAs has not yet been determined. Whether BOLV belongs to benyvirus or other fungal-transmitted rod-shaped viruses will require additional study.

REFERENCES

Clark, M. F., and Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34, 475-483.

Koenig, R., Pleij C. W. A., Beier, C., and Commandeur U. (1998). Genome properties of beet virus Q, a new furo-like virus from sugarbeet, determined from unpurified virus. J. Gen. Virol. 79, 2027-2036.

Lin, N.-S. (1984). Gold-IgG complexes improve the detection and identification of viruses in leaf dip preparations. J. Virol. Methods 8, 181-190.

Liu, H.-Y., Wisler, G. C., and Duffus, J. E. (2000). Particle length of whitefly-transmitted criniviruses. Plant Dis. 84, 803-805.

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electorphoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350-4354.

Wisler, G. C., Liu, H.-Y., and Duffus, J. E. (1994). Beet necrotic yellow vein virus and its relationship to eight sugar beet furo-like viruses from the United States. Plant Dis. 78, 995-1001.

Project 281

Evaluation of the effect of synergism between BNYVV and BSBMV on resistance to these viruses in sugarbeet

William M. Wintermantel and Robert T. Lewellen USDA-ARS, Salinas, California

Research Sponsors:

Beet Sugar Development Foundation California Beet Growers Association and California Industry Research Committee The Western Sugar Company-Grower Joint Research Committee

INTRODUCTION:

Rhizomania is now present in all areas of the United States where sugarbeet is grown (Wintermantel et al., 2003). This disease is caused by Beet necrotic yellow vein virus (BNYVV), a benyvirus transmitted by the soil-borne fungus Polymyxa betae. All BNYVV isolates from soils in the U.S. are identical, based on: (1) studies of the responses of susceptible host plants; (2) serological relatedness of the coat protein and several nonstructural proteins; (3) the number and size of the RNAs in each isolate; (4) and the relationship of each RNA on a molecular level compared to a European isolate of BNYVV. This American BNYVV isolate was probably introduced from Europe, where multiple isolates exist, and has since spread throughout North America. Beet soil-borne mosaic virus (BSBMV) and other non-BNYVV soil-borne viruses are often present in beet plants that are also infected with BNYVV. Although BSBMV is not the only one of these viruses, it is the best characterized, and results of interactions between BSBMV and BNYVV may be representative of interactions between benyviruses in general. All BSBMV isolates are serologically identical to one another, but differ in host response and the number and size of viral RNAs. This pattern is indicative of a virus which originated and has evolved in North America. None of the BSBMV isolates cause the root proliferation characteristic of Rhizomania disease and BNYVV infection, but our studies indicate that BSBMV isolates do reduce growth of beets (Wisler et al., 2003).

Several control measures have been established for rhizomania. These have been developed over several years of research by pathologists and breeders, and include: (i) avoidance of infested fields by testing soil for the presence of *Beet necrotic yellow vein virus* (BNYVV) prior to planting, (ii) early planting into cool soils, (iii) soil fumigation where allowed, and (iv) use of resistant cultivars. These measures apply to all soil-borne, fungus-transmitted viruses of sugarbeet, including BNYVV, *Beet soil-borne mosaic virus* (BSBMV), *Beet soil borne virus* (BSBV), and others. Viruliferous *P. betae* (*P. betae* containing virus) remains in soil after harvest and can survive for many years. It is important, therefore, to decrease levels of virus inoculum in the soil by whatever means possible. The most cost-effective and successful control measure for growing beets in infested soil is the use of resistant varieties. Many sugarbeet cultivars have now been bred with varying degrees of resistance to rhizomania. Resistant varieties are not immune to BNYVV, but do reduce virus accumulation and disease severity. Current resistant varieties now yield nearly as well as non-resistant varieties in the absence of rhizomania disease pressure.

Over the past several years, both sugar and tonnage were decreased in Great Plains beet growing regions. Several causes have been attributed to this problem including Cercospora leafspot, Rhizoctonia, root aphids, root maggots, BSBMV, and rhizomania (caused by BNYVV) to name a few. Although rhizomania was initially blamed for the low yields, repeated tests from labs at the University of Nebraska in Scottsbluff were negative for BNYVV. Results from previous studies by our laboratory in Salinas suggest that BSBMV, in particular, may be important in the yield losses. One of the most significant findings from our initial studies on the yield decline was that 24 of 27 soils tested, showing the decline in sugarbeet production were infested with either BSBMV, BSBV, or both. Only 2 of the soil samples were positive for BNYVV, and one of these was a soil which had been submitted as a rhizomania positive control. Although the effects of Rhizomania were well known on sugarbeet, much less was known about the effects of BSBMV or BSBV on beets. It was suspected that these viruses, either alone or in combination, contributed to a yield loss in sugarbeet. Studies conducted in our greenhouses in Salinas examined soils infested with BNYVV, BSBMV, both viruses, and virus free P. betae, as well as virus and vector-free soil. The results of these studies, discussed in the Sugarbeet Research 2001 Report, identified two problems that significantly reduced sugarbeet growth, compared with non-inoculated control plants. Beets grown in soil infested with both BSBMV and BNYVV were sometimes stunted much more severely than those grown in soil infested with either virus alone. In addition, P. betae, with or without virus had a significant effect on beet growth. Studies on virus concentration in infected plants demonstrated that BNYVV is more competitive in sugarbeet than BSBMV, suppressing BSBMV concentrations in infected tissue during mixed infection in greenhouse tests (Wisler et al., 2003).

Compared with BNYVV, much less is known about the effects and importance of other P. betae vectored viruses in the rhizomania disease syndrome. Knowledge that has been generated on BNYVV, however, can often be applied to the study of other soil-borne sugarbeet viruses, including BSBMV. BSBMV is the best characterized non-rhizomania causing benyvirus known, and information gained on BSBMV and its interactions with BNYVV may provide insights into interactions of other related viruses with BNYVV, as well. Our greenhouse studies in Salinas have shown that BSBMV can have a significant effect on growth of sugarbeet, whether alone or in combination with BNYVV. Recently completed research by our lab demonstrated that BNYVV and BSBMV, as natural mixed infections from infested soil, can have a significantly greater detrimental effect on beet growth than either virus alone (Wintermantel et al., 2001; Wisler et al., 2003). This recent finding has led to a number of additional challenges. We need to determine what effect non-BNYVV furoviruses (now collectively called Benyviruses for Beet necrotic vellow vein virus; Torrance and Mayo, 1997) have on field production of sugarbeet. Secondly, can we identify sources of resistance to BSBMV. We need to concentrate our efforts on: (1) characterizing the nature of the interactions between BNYVV and BSBMV, and (2) take advantage of the decreased severity of BSBMV (in single infections) to determine what viral genetic differences are responsible for converting a relatively mild virus (BSBMV), into a highly damaging virus (BNYVV). This may ultimately lead to an opportunity to develop targeted strategies for preventing BNYVV symptom expression and possibly replication in sugarbeet.

The presence of multiple soil-borne viruses in the same fields will likely lead to virus interactions in sugarbeet plants and the synergism described above that can result in further yield decreases. Our research is working toward determining not only how these interactions affect sugarbeet, but more importantly, toward identifying beet varieties with better performance under

conditions of mixed infection. These results should benefit the entire sugarbeet industry, through improved performance in the presence of mixed infection.

PROJECT ACCOMPLISHMENTS (CUMULATIVE):

- 1. The TAS-ELISA test modified for BNYVV in our studies gave no background cross-reactions with other soil-borne viruses of sugarbeet, in particular, isolates of BSBMV. One isolate each of BSBMV from Texas and Minnesota gave reactions equivalent to those of healthy sugar beet roots and healthy leaf tissues of *B. macrocarpa*. In addition, serial dilution studies with the BNYVV antiserum demonstrated that variation in BNYVV content among resistant and susceptible sugarbeet varieties can be detected. The BNYVV antiserum developed in Salinas has become the standard for detection of BNYVV and has been licensed to Agdia for commercial availability.
- 2. ELISA tests were used to determine levels of BNYVV among eight sugarbeet varieties. Differences in absorbance (A405 nm) values closely corresponded to a gene dosage effect, specifically to the frequency of the Rz allele that conditions resistance to BNYVV. This demonstrated differential expression of Rz resistance alleles. Differences in BNYVV levels were observed among harvest dates, with progressively lower absorbance values measured as the season progressed. This pattern held true for all cultivars.
- 3. Absorbance values were significantly positively correlated with rhizomania disease index scores and negatively correlated with individual root weight, plot root weight and sugar yield. These results are important in plant breeding, variety development, and cultivar evaluation. They show that the breeder or agronomist can be fairly confident of measuring varietal reactions to rhizomania by either scoring or weighing field grown material. Root weights and visual scoring are usually made more easily in a breeding or testing program than absorbance measurements from ELISA tests. This information is useful in resistance breeding and evaluation programs and for the sugar industry in consideration of cultivar choice, inoculum production and rotations for future cropping.
- 4. Eight sugarbeet cultivars, that range in reaction to rhizomania from uniformly susceptible to highly resistant, were compared for levels of BSBMV. Infections were established by growth in soil infested with viruliferous *Polymyxa betae*. All cultivars were highly susceptible to BSBMV, with absorbance readings ranging from 8 to 12 times the healthy root mean. In current studies, when mixed infections of BNYVV and BSBMV were compared to single infections in both a susceptible and resistant sugarbeet line, the reactions, as measured by root symptoms and individual beet weight were significantly more severe than for each virus alone. This was true regardless of whether the seedlings were initially grown in soil infested with either BNYVV or BSBMV. Thus, resistance to BNYVV does not confer resistance to BSBMV, nor does BSBMV infection moderate the effects of BNYVV.
- 5. BSBMV levels were significantly decreased by the presence of BNYVV in both BNYVV-resistant and susceptible varieties grown in soil infested with both viruses compared with singly infested soils. In contrast, BNYVV levels were either unaffected or increased in the presence of BSBMV. This demonstrated that interactions between soil-borne viruses significantly affect virus accumulation and disease severity in sugarbeet.

OBJECTIVES FOR 2002-2003:

- 1. Differentiate variety reactions to BSBMV among both representative commercial hybrids, sugarbeet breeding lines, and germplasm resources to identify potential sources of resistance to BSBMV.
- 2. Evaluate representative sugarbeet varieties for yield effects and relative concentrations of virus following growth in soil infested with BNYVV alone, or soil infested with both BNYVV and BSBMV to determine performance under pressure from virus synergism.
- 3. Examine the effect of BSBMV alone on sugarbeet growth and virus concentration under field conditions through studies conducted in isolation plots.
- 4. Assemble small clones generated during sequencing the genome of the Texas 7 isolate of BSBMV (Lee and Rush, 2001) into full-length infectious clones that can be used in future studies to determine why BSBMV does not elicit the hairy root symptoms characteristic of BNYVV (rhizomania) on sugarbeet roots. The information gained may ultimately lead to new control strategies for BNYVV and other soil-borne viruses.

ACCOMPLISHMENTS AND RESULTS (CURRENT YEAR):

Both *objectives 1 and 3* were addressed in studies conducted in microplots. This was a change from initial plans, but one that streamlined the project, and provided screening for resistance, as well as testing under field conditions simultaneously. Microplots are small, contained research plots that were constructed at the USDA-ARS Research Station in Salinas. Plots contained P. betae and BSBMV, for the specific purpose of identifying resistance to BSBMV in sugarbeet germplasm. Separate plots were developed and provided with virus-free soil for use as controls. Each plot type was present in triplicate for replication. These plots were tested in the spring/summer of 2002 for disease incidence and found to produce consistent, uniform BSBMV infections. Resistance tests were conducted in the summer and fall with 8 varieties of segregating germplasm tested. R.T. Lewellen provided sugarbeet seed from the USDA-ARS germplasm collection in Salinas for these studies. Seed was grown under field conditions in plots infested with P. betae and BSBMV, or non-infested soil for 2 months. At the end of this period, beets were assayed individually for BSBMV accumulation using ELISA with BSBMV specific antiserum. Plants were also tested with BNYVV antiserum to be certain no cross-contamination with BNYVV was present in these initial tests. BSBMV infections developed well in test plots, while virus-free plots did not have any incidence of BSMBV. No cross-contamination with BNYVV was detected.

Analysis of 2002 tests suggests BSBMV resistance may be present in some germplasm sources, but further testing will be necessary (Table 1). Varieties of European origin appear to exhibit the least resistance (Beta4430 and Beta6600). This is not surprising, as incidental selection for BSBMV resistance would not have occurred in Europe, since the virus is not present there. Most other lines tested had lower levels of virus accumulation and lower percents infection, suggesting partial BSBMV resistance may be present in a number of these sources. Line 9933, which

performed better than all other lines (Table 1), was developed in Salinas, but incorporates germplasm selected over time in Colorado, where BSBMV is prevalent. Analysis of plant weight was not presented, as numbers were not meaningful. This information will be meaningful only after identification of varieties with decreased virus accumulation, and particularly during studies on mixed infection. A number of additional sugarbeet lines remain to be tested during the summer of 2003. Most lines being screened are segregating, such that some plants may be resistant while others are not, even from the same seed lot. As a result, it is necessary to look at averages as an indication of performance. As varieties with good performance are identified, these will be selected and used to develop stable resistance to BSBMV, which can then be combined with resistance to BNYVV.

During this first year of studies to identify and develop varieties with resistance to both BSBMV and BNYVV, we have not yet evaluated the effect of mixed infection on performance of resistant varieties (*Objective 2*). This objective has been delayed due to the need to identify sources of resistance to BSBMV. It is critical to the success of this project that BSBMV resistance be identified first, followed by subsequent testing of BSBMV resistant material under conditions of mixed infection. This is necessary, since mixed infection by both viruses results in competition between the viruses in sugarbeet, and this competition may affect performance of resistant material (see project 281 report for 2001; Wisler et al., 2003). By identifying BSBMV resistance first, competition effects are avoided, BSBMV resistance sources can be identified, and this material can be used in breeding for combined resistance against both BSBMV and BNYVV. After completion of the analysis of varieties for resistance to BSBMV alone, BSBMV microplots will be converted to mixed infection by addition of BNYVV inoculum, and these plots can then be used to test varietal performance under conditions of mixed infection. Ultimately, we intend to provide putative BSBMV resistance sources for commercial trials in areas where mixed infection occurs, to determine performance of these varieties in the field. Field trials, however, are probably at least two years away.

Table 1. BSBMV accumulation and percent infection among sugarbeet Germplasm evaluated in summer 2002.

Variety	ELISA (A405nm) ¹	Percent Infection ²
Beta 4430R	0.47	76%
Beta 6600	0.43	67%
9933	0.33	44%
Y207-8	0.34	56%
01-FC1030	0.34	61%
R221	0.36	56%
Y169	0.38	61%
Y275	0.38	78%

- 1. Mean absorbance at 405nm as measured by enzyme-linked immunosorbent assay (ELISA) using antiserum specific for BSBMV.
- 2. Percent infection is based on the number of plants infected with BSBMV / number tested. Plants are considered positive when ELISA readings with BSBMV antiserum are 3 times the value of healthy controls.

Objective 4: Partial clones of BSBMV were provided by Dr. Lawrence Lee, formerly of the Texas Agricultural Experiment Station, Bushland, TX with C.M. Rush (Lee et al., 2001). Partial clones are being assembled into full-length BSBMV RNAs using RT-PCR with a high fidelity DNA polymerase. For areas of the genome where clones were not available, viral RNA is being purified from plant material and used for RT-PCR based cloning. Complete full-length clones of BSBMV RNAs 3 and 4 have been constructed. Large, partial clones of RNAs 1 and 2 (which are much larger) have been constructed this year, and complete full-length clones of these two larger RNAs are expected within the year. Full-length clones of individual BSBMV RNAs are being placed in transcription vectors for expression of RNA that can be used to inoculate plants and determine infectivity. Infectivity of individual full-length clones will be confirmed by coinoculation of RNA produced in vitro to susceptible host plants, including sugarbeet. Once completed, these clones will be valuable for determining why BSBMV does not elicit the hairy root symptoms characteristic of BNYVV (rhizomania) on sugarbeet roots, and differences in virus accumulation and movement of these viruses in sugarbeet. They will also allow direct studies to determine how mixed infection by benyviruses may affect evolution of these viruses (which may impact stability of resistance). The information gained may ultimately lead to new control strategies for BNYVV and other soil-borne viruses.

REFERENCES:

Lee, L. Telford, E.B., Batten, J.S, Schlothof, K.-B.G., and Rush, C.M. 2001. Complete nucleotide sequence and genome organization of Beet soilborne mosaic virus, a proposed member of the genus Benyvirus. *Arch. Virol.* 146:2443-2453.

Torrance, L. and Mayo, M. S. 1997. Proposed reclassification of Furoviruses. Arch. Virol. 142:435-439.

Wintermantel, W.M., Wisler, G.C., Lewellen, R.T., Liu, H.-Y., and Sears, J. 2001. Interactions between BNYVV and BSBMV in sugarbeet affect virus titer and beet development. *Phytopathology* 91: S150.

Wintermantel, W.M., Crook, T., and Fogg, R. (2003). First report of rhizomania disease of sugar beet caused by *Beet necrotic yellow vein virus* in the Great Lakes production region. *Plant Disease* 87(2): 201.

Wisler, G.C, Lewellen, R.T., Sears, J.L., Wasson, J., Liu, H.-Y. and Wintermantel, W.M. 2003. Effects of *Beet necrotic yellow vein virus* (BNYVV), *Beet soil-borne mosaic virus* (BSBMV) and their fungal vector, *Polymyxa betae*, on virus levels and sugarbeet growth. *Plant Disease* (submitted).

DEVELOPMENT OF SUGARBEET BREEDING LINES AND GERMPLASM

R.T. LEWELLEN

CP03, CP04, CP05, & CP06 - CP03 (PI632284) and CP04 (PI632285) are multigerm, self-sterile, germplasm lines that segregate for resistance to powdery mildew (Pm) caused by Erysiphe polygoni and rhizomania (Rz) caused by Beet necrotic yellow vein virus. CP03 and CP04 have identical developmental histories except for the Beta vulgaris subsp. maritima source of resistance to powdery mildew. Resistance within CP03 is from WB97 (PI546394) and CP04 is from WB242 (PI546413). Up through the FC_3F_1 generation, CP03 was the same as CP01 (PI610490) and CP04 as CP02 (PI610491). For the fourth backcross, C78/3 (PI628752) was used. For backcrosses five and six, C37 (PI590715) was again used as the recurrent parent. CP03 and CP04 would have approximately 87% of their germplasm from C37, 12% from C78, and 1% from the wild beet source of resistance to powdery mildew. Starting from BC_4F_1 generations, in general, individual plans were selected from the backcross families for resistance to powdery mildew and rhizomania and pair crossed under paper bags in the greenhouse to the recurrent parent. For the BC₆F₁ families, individual pair crosses were evaluated in the field at Salinas in a March planting under natural powdery mildew and rhizomania infected conditions. Individual plants from within these families were selected in November for high resistance to powdery mildew, resistance to rhizomania, and for nonbolting. Within each source of resistance set of families, selected plants were combined and increased in mass to produce BC₆F₂ populations released as CP03 and CP04. CP03 is from seed lot P227 and had been developed and tested as lines P127, P027, P917, and P815. CP04 is from seed lot P228 and had been developed and tested as lines P128, P028, P918, and P816. Other than for powdery mildew and rhizomania, theoretically, diseased resistance and agronomic traits of CP03 and CP04 should be similar to C37, but, in the BC₆F₁ families, obvious, visual difference were evident. Segregation for annualism and B.v. subsp. maritima coloring patterns still occurred. In addition, in tests in Brawley, CA, CP04 showed higher resistance to rhizomania under high temperature conditions than CP03 or C78/3 and appeared to be tolerant to phytotoxemia from the feeding of *Empoasca* leafhoppers retaining its canopy longer in a full, dark greed condition. CP03 and CP04 should be useful as enhanced sources of resistance to powdery mildew found in B.v. subsp. maritima and for genetic and plant pathological research.

CP05 (PI632286) and CP06 (PI632287) are multigerm, self-sterile, germplasm lines that segregate for resistance to powdery mildew (*Pm*) caused by *Erysiphe polygoni* and rhizomania (*Rz*) caused by *Beet necrotic yellow vein virus*. CP05 and CP06 have identical developmental histories except for the *B.v.* subsp. *maritima* source of resistance to powdery mildew. Resistance within CP05 is from WB97 and CP06 is from WB242. Up through the BC₃F₂ generation, CP05 was the same as CP01 (PI610490) and CP06 was CP02 (PI610491). From the fourth backcross through backcross seven, the recurrent parent for CP05 and Cp06 was C78/3 (PI628752). Usually, the lines were advanced from seed produced on C78/3 or from reciprocal pairs that had identical appearance in field plots. Starting from the BC₃ generations, in general, individual plans were selected from the backcross families for resistance to powdery mildew and

rhizomania and pair crossed under paper bags in the greenhouse to C78/3. For the BC₇F₁ families, individual pair crosses were evaluated in the field at Salinas in a March planting under natural powdery mildew and rhizomania infected conditions. Individual plans from within these families were selected in November for high resistance to powdery mildew, resistance to rhizomania, and for nonbolting. Within each source of resistance set of families, selected plants were combined and increased in mass to produce the BC₇F₂ populations released as CP05 and CP06. CP05 is from seed lot P229 and had been developed and tested as lines P129, P029, P919, and P809. CP06 is from seed lot P230 and had been developed and tested as lines P130, P030, P920, and P810. In addition to powdery mildew resistance conditioned by *Pm*, CP05 and CP06 likely have moderately high slow-mildewing type of resistance derived from C78/3 as compared to CP03 and CP04. The other disease resistance and agronomic traits of CP05 and CP06 should be similar to C78/3 but obvious visual difference still occurred. Up through BC₇F₁ families, annualism and coloring patterns of *B.v.* subsp. *maritima* lines WB97 and WB242 still occurred. CP05 and CP06 should be useful as enhanced sources of resistance to powdery mildew originally found in *B.v.* subsp. *maritima* and for genetic and plant pathological research.

Seed of CP03, CP04, CP05 and CP06 will be maintained at the USDA, ARS, U.S. Agricultural Research Station, Salinas, California, and will be provided upon written request to sugarbeet breeders in sufficient quantities for reproduction. Genetic material of these releases has been deposited in the National Plant Germplasm System where it will be available for research purposes, including development and commercialization of new parental lines and cultivars. It is requested that appropriate recognition be made if this germplasm contributes to the development of a new breeding line or cultivar. The National Germplasm System and additional information on prior releases and PI numbers can be found at: www.ars-grin.gov.

CP07 & CP08 – CP07 (PI632288) is a multigerm sugarbeet (Beta vulgaris L.) line with high resistance to powdery mildew (Pm) and rhizomania, conditioned by Rz and factors from Beta vulgaris subsp. maritima. CP07 segregates for hypocotyl color and is likely self-sterile (S^sS^s) although segregation for self-fertility (S^t) is possible. In the bolted phase, CP07 segregates for determinate growth of stems. As far as is known, this is a previously undescribed morphological trait that causes the stem to abruptly end in a flower or cluster of flowers. On the bolted stems, most leaf axils have only flowers but not lateral branches. From one to many internodes are formed before stem stermination. As a line and in experimental hybrids CP07 shows moderate resistance to sugarbeet Erwinia and bolting tendency. It is intermediate for reaction to Curly top virus, similar to C78/3. It may show tolerance or have reduced infestation counts to sugarbeet cyst nematode (Heterodera schachtii) based upon field observations. At Salinas, in the absence of rhizomania, it has lower sugar yield and sucrose concentration than the mean of four commercial hybrid checks. Under rhizomania, it has higher sugar yield and equal sucrose concentration as these same rhizomania resistant checks. At Brawley, CA, under both rhizomania and nonrhizomania conditions, it had higher sugar yield and sucrose concentration than these rhizomania resistant commercial checks and other experimental lines and hybrids that depended solely upon the Rz factor for resistance to rhizomania. At Brawley, the late season survival and appearance score was superior to the above entries and similar to C927-4 (PI628756).

At Sainas in 1999 from three backcross families, 15 individual plants were selected. These mother roots were selected for resistance to rhizomania, high resistance to powdery mildew, and for nonbolting. Earlier in 1999, these same three backcross families were observed in the Imperial Valley of California to segregate for high resistance and survival to rhizomania under high temperature, severe rhizomania conditions. The recurrent parents leading to CP07 were C37 IPI590715), C72 (PI599342), and C78/3 (PI628752). The final two backcrosses were to C78/3. The donor parents had germplasm from B.v. subsp. maritima that contributed resistance to powdery mildew and rhizomania. It is estimated the CP07 has about 72% of its germplasm from C78/3, 24% from C37, 3% from B.v. subsp. maritima through C72 (PI599342) from C51 (PI593694), and 1% from both WB97 (PI546394) and WB242 (PI546413). Of the six parental plants in the final backcross, three plants were C78/3 and three had C51 germplasm in their background. Of the latter three plans, two also had germplasm from WB97 and one from WB242. It is believed that resistance to powdery mildew (Pm) was derived from WB97 and/or WB242 and resistance to rhizomania from C78/3 (Rz) and C51 and/or WB97 and WB242 for high resistance and survival under high temperature, severe rhizomania conditions. plants selected in 1999 were increased in mass in 2000 to produce P007/8. Line P007/8 was reselected in 2001 under natural powdery mildew, rhizomania, and cyst nematode infested conditions for resistance to powdery mildew and rhizomania and freedom from infestation with nematodes. Line P207/8 was released as CP07.

CP08 (PI632289) is a multigerm sugarbeet line with high resistance to powdery mildew, conditioned by Pm, and rhizomania, conditioned by Rz and factors from B.v. subsp. maritima. CP08 segregates for hypocotyl color and is likely self-sterile (S^sS^s) although segregation for selffertility (S^f) is possible. As a line it shows intermediate nonbolting tendency. At Brawley, CA, under rhizomania conditions, it has higher sugar yield and sucrose concentration than lines with similar germplasm and parentage. At Brawley, the late season survival score is superior to most other entries. Under moderate to severe rhizomania and unknown soil-borne problems at Brawley, the canopy of CP08 remains dark green. This appears to be due to a combination of high resistance to rhizomania and/or other soil borne factors, high resistance to powdery mildew, and resistance to phytotoxemia from the feeding of Empoasca, the western potato leaf hopper. CP08 was increased from one full-sib line that in progeny tests in 2000 at Brawley and Salinas, segregated for high resistance to powdery mildew, resistance to rhizomania, and under severe rhizomania, segregated for very good appearance and survival scores under high temperatures. This full-sib progeny resulted from backcrosses to transfer and combine Pm and Rz. A number of powdery mildew resistant plants from CP02 were backcrossed to plants of C78/3, the source of Rz. Individual plans from this series of backcrosses that appeared by paired crosses in the greenhouse under paper bags to plants from C37. Backcross P918-6 was selected from progeny tests in 2000 and increased to produce line P118-6. Seed of P118-6 was released as CP08. About 2% of CP08 was derived from WB242, 25% from C78/3, and 73% from C37. Under severe rhizomania and high temperature conditions, CP08 is strikingly different from C78/3 and C37 for resistance to rhizomania, powdery mildew, and the feeding effects of Empoasca. Under these conditions at Brawley, CP08 has a very desirable, dark green appearance that gives the canopy a "stay-green" tendency.

Lines CP07 and CP08 should be evaluated as sources from which to develop potential pollinators for high performing, disease and bolting resistant hybrids. These lines may be useful as a

combined source of high resistance to powdery mildew and rhizomania. They need to be evaluated further as a potential source of tolerance to cyst nematode and *Empoasca* leaf hoppers.

Seed of CP07 and CP08 will be maintained at the USDA, ARS, U.S. Agricultural Research Station, Salinas, California, and will be provided upon written request to sugarbeet breeders in sufficient quantities for reproduction. Genetic material of these releases has been deposited in the National Plant Germplasm System where it will be available for research purposes, including development and commercialization of new parental lines and cultivars. It is requested that appropriate recognition be made if this germplasm contributes to the development of a new breeding line or cultivar. The National Germplasm System and additional information on prior releases and PI numbers can be found at: www.ars-grin.gov.

INDEX OF VARIETY TRIALS, SALINAS, CA, 2002 U.S. AGRICULTURAL RESEARCH STATION

Tests were located in three field plot areas at Salinas and two at Brawley, CA. Disease nurseries were also used in Idaho, Colorado, and Minnesota. Tests at Brawley (Imperial Valley) were planted in September 2001, and harvested from May through June, 2002. Tests at Salinas were planted from November, 2001 through August, 2002, and harvested from September through December. Tests at Spence Field (Salinas) were under both rhizomania and nonrhizomania (following methyl bromide fumigation) conditions. Herbicides were not used in Block 6 trials that followed strawberries and methyl bromide fumigation. Nortron, Pyramin, Betamix, Progress, and Poast were used in the other trials. Bayleton at 2lbs material/acre was used for powdery mildew control. Lorsban-4E was applied for aphid and other insect control. The specific planting and harvest dates as well as plot size and design are shown on each test summary.

Tests are listed in the main Table of Contents for Salinas by types of material and evaluation. As an aid to find test summaries, they are listed below by ascending test (planting date) number and cross-referenced to the page number. Tests shown as N/A are not available or not included in this report.

Test results shown as C are combined and summarized across tests.

THE OWN

TEST NO.	NO. <u>ENTRIES</u>	TEST DESCRIPTION	PAGE <u>NO.</u>
NOVEM	IBER PLANTE	D BOLTING EVALUATION, 2001	
102	100	Experimental hybrids	A165
202	100	Lines & populations	A170
302	40	Progeny line increases	A175
402	40	Progeny hybrids	A177
502	96	Y90 full-sib progenies	C
602	48	Y75 full-sib progenies	C
702	48	CR half-sib progenies	C
802	64	Z25 S ₁ progenies	C
902	32	933 S ₁ progenies	C
1002	32	921 S ₁ progenies	C
1102	32	NR,PMR,RR,S _n progenies	N/A
1202	32	FC123 half-sib progenies	С
1302	32	FC1014 half-sib progenies	C
1402	32	C869 half-sib progenies	C
1502	96	Z25 half-sib progenies	C
1602	32	FC1030 half-sib progenies	C

TEST NO.	NO. ENTRIES	TEST DESCRIPTION	PAGE <u>NO.</u>
	ENTRIES	TEST DESCRIPTION	_ 10.
VIRUS Y	ELLOWS, YII	ELD & PROGENY TESTS, FEBRUARY, 2002	
		oculated & % Loss	
2102	24	Lines and populations	A48
2202	24	Commercial hybrids	A82
2302	24	Experimental hybrids	A85
2402	12	Progeny lines	A51
	ulated Compan		
2502	48	Lines and populations	A41
2602	24	Commercial hybrids	A66
2702	24	Experimental hybrids	A68
2802	12	Progeny lines	A44
Yield Tri		T	
2902	12	Topcross hybrids with 931	A70
3002	24	Topcross hybrids with Y90	A71
3102	48	Testcross hybrids with S_1 progeny	A73
3202	12	Retest S ₁ mmaa x C78 topcross	A76
3302	24	Testcross hybrids with C833-5CMS	A77
3402	48	Testcross hybrids with FS progeny	A79
Progeny '			
3502	48	Eval. Progeny lines	A45
3602	96	Y90 full-sib progenies	C
3702	48	Y75, R76-89 full-sib progenies	C
3802-1	48	CR11 half-sib progenies	C
3802-2	48	CR11 half-sib progenies	C
3902	96	Z25 half-sib progenies	C C
4002	64	Z25, 931, 941 S ₁ progenies	C
4102	32	933 S ₁ progenies	C
4202	32	921, 934 S ₁ progenies	C
4302	32	FC1030 half-sib progenies	C
4402	32	FC123 half-sib progenies	Č
4502	32	FC1014 half-sib progenies	Č
4602	32	C869 half-sib progenies	Č
4702	48	Eval. Monogerm lines & populations	A60
4802	16	Evaluation PMR lines	A149
		ON TRIALS, MARCH, 2002	
Powdery			
5102	32	Coded PM test	A163
5202	32	PM Evaluation & observation	N/A
	Powdery Mildev		- // • •
5302	40	ERR/PM eval. Hybrids	A161
5402	80	ERR/M eval. Lines	A150
5502	60	ERR/PM eval. progeny lines	A154

TEST NO.	NO. ENTRIES	TEST DESCRIPTION	PAGE NO.
DISEAS	ES EVALUATI	ON TRIALS, MARCH, 2002 (cont.)	
	ora Leaf Spot		
5602	48	CR performance of lines & hybrids	A142
5702	32	FC1014mm half-sib progenies	C
5802	32	FC123mm half-sib progenies	C
5902	32	FC1030 half-sib progenies	C
6002	32	CR observation of lines	A145
6102	32	933 S ₁ progenies	C
6202	96	CR11 half-sib progenies	С
RHIZON	MANIA YIELD,	EVALUATION, SELECTION TRIALS, APRIL, 2002	
6402	12	Mother root selection	N/A
6502	72	Homozygosity & Progeny test	N/A
6602	48	Y75 full-sib progenies	C
6702	64	S_n for PMR/RZM/NR eval.	A157
6802	32	Eval. PMR lines	A159
6902	48	Plant Introductions	A179
7002	48	Eval. of Monogerm lines & popns	A63
7102	48	Eval. of Multigerm progeny lines	A57
7202	12	Observation & selection	N/A
7302	48	Lines & populations	A53
7402-1	96	CBGA Coded RZM test	N/A
7402-2	96	CBGA Coded RZM test	A104
7502-1	36	WS/Holly/Monitor RZM test	A100
7502-2	36	WS/Holly/Monitor RZM test	N/A
7602	12	Topcross hybrids with popn-931	A88
7702	24	Topcross hybrids with Y90	A89
7802	48	Testcrosses with FS lines	A91
7902	48	Testcrosses with S ₁ lines	A94
8002	12	Retest S ₁ mmaa x C78 topcrosses	A97
8101	24	Testcrosses with C833-5	A98
RHIZOM	IANIA SELEC	ΓΙΟΝ (STECKLING, 2002 SEED), AUGUST, 2002	
9102	30	Multigerm lines	N/A
9202	12	Multigerm lines with PMR	N/A
9302	34	Monogerm lines & populations	N/A
9402	32	Multigerm progeny lines (2001)	N/A
9502	26	Multigerm progeny lines (2000)	N/A
9602	48	Multgierm progeny lines (2002)	N/A
9702	96	monogerm, T-O, S ₁ progeny	N/A
9802	24	SBCN resistant selections	N/A
9902-1	24	S ₁ progeny from popn-931 x CR	N/A
9902-2	48	F ₁ 's from high %S x C833-5	N/A

TEST	NO.		PAGE
NO.	ENTRIES	TEST DESCRIPTION	<u>NO.</u>
IMPERI	AL VALLEY	BRAWLEY, CA, 2001-2002	
		ELD, FIELD I, SEPTEMBER, 2001	
B102	24	Experimental hybrids	A110
B202	48	Testcross hybrids with FS lines	A112
B302	48	Testcross hybrids with S ₁ lines	A115
B402	27	A5 Coded Mid-harvest	A118
RHIZOM	IANIA YIELD	(MILD), FIELD K, SPETEMBER, 2001	
B502	48	Testcross hybrids with S ₁ lines	A122
B602	48	Testcross hybrids with FS lines	A125
B702	96	FS & S ₁ progeny tests	A130
B802	24	Lines and hybrids	A128
RHIZOM	IANIA OBSER	EVATION (SEVERE), FIELD K, SEPTEMBER, 2001	
B1002	64	Experimental hybrids	A136
B1102	146	Progeny lines	N/A
B1202	64	Multigerm lines & populations	A138
B1302	48	Monogerm lines & populations	A140
REET CI	IRLY TOP NI	RSERY, BSDF, KIMBERLY, ID, 2002	
USDA	180	Beet Curly Top	N/A
	101		2 1/1 2
		SPOT, FORT COLLINS & SHAKOPEE	
USDA	20	USDA (Salinas) entries	A147
DATA FI	ROM COMBIN	ED PROGENY TESTS FOR NB, %S, RZM, etc.	
C 1:			
Combine 502 2602		Test Description	4 1 0 0
502, 3602		Y90 FS progeny	A182
002, 3/02	, 6602, B702, B		A185
702 2002	(202	Y75 FS progeny	. 100
702, 3802	•	CR11 HS progeny	A189
1602, 430	*	FC1030 HS progeny	A193
1202, 440	•	FC123mm HS progeny	A195
1302, 450	•	FC1014m HS progeny	A197
1402, 460		C869 HS progeny	A199
1502, 390		Z25 HS progeny	A200
802, 4002		Z25 S ₁ progeny	A203
902, 4102	•	933 S ₁ progeny	A205
1002, 420	2	921 S ₁ progeny	A107

TEST 2502. PERFORMANCE OF LINES, SALINAS, CA, 2002

Planted: February 27, 2002 Harvested: October 10, 2002

48 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

Variety	Description	Acre Yi	Yield Beets	Sucrose	Beets/ 100'	RJAP	Powdery Mildew	Virus Yellows	Bolting
		I.bs	Tons	o⊬	No.	o(P	Score	Mean	æ æ
2502-1: Mul	Multigerm, O.P. lines, 16V x 8R, 0833-5HO x RZM Y090	RCB(e)	27	7	o	5			
Phoenix	rec'd 8-16-01) न	7.6	יט יו	160	• •	•		
Crystal 205	2-22-02 (Lot 0205C8602)	54	8.6	18.02	155		5.0	ი ი ი	0.0
01-US75	Inc. 00-US75, (US75)	ന	45.10	5.2	2	0	•		
01-C37	Inc. U86-37, (C37)	16471	48.96	6.8	151	83.9	7.9	•	0.0
99-C31/6	Inc. F86-31/6, (C31/6)	15665	49.33	15.89	153	82.5	4.4	1.9	0.0
R176-89	RZM R076-89	16066	.5	6.1		•	3.4	•	0.0
R176-89-18	RZM R076-89-18, (C76-89-18)	17942	54.39	16.50	156	84.2	5.1	1.6	0.0
R176-89-5		909	47.41	6.9	153	•	2.4	2.2	0.0
99-C46/2	_	564	47.64	16.39	153	83.7	•	2.1	0.0
R178		4	46.46	6.6	Ω	82.4	3.3	2.0	0.4
Y169	RZM-ER-% Y969, (C69)	806	52.55	17.19	155	83.1	3.5	2.2	0.0
X190	RZMY090	N	6.0	0.	135	84.4	5.0	1.7	0.0
X191	Inc. FS(C), C1, Syn 1 FS sel.	17482	51.19	•	153	щ	4.3	1.9	0.4
R180	RZM-ER-% R980, (C80/2)	787	2.0	7.1	148	84.6	5.4	1.9	0.0
R170	RZM-ER-% R970	16755	6.6	6.7	Ω	84.1	•	•	0.0
Mean		43.	6.	16.74	148.4	83.9	4.8	2.2	0.1
LSD (.05)		1295.5	3.22		•	2.2	0.8	0.4	•
C.V. (%)		7.9	.5	3.97	5.7	٠	5	•	538.0
F value		.7*	* 9.12**	•	٠ 5	* 3.1**	28.	18.0**	SN6.0
2502. ntries	PERFORMANCE OF LINES, SALINAS, x 8 reps., RCB(e). ANOVA acros	CA, 20 s tests	8 6	, E	Ī	(
T.S.D. (05)			•	16.60	10.7	•		•	۰. د د د
C.V. (%) F value		#	7.36		. 8 4	2.8 2.2 *	17.6 20.9**	21.1 15.0**	

TEST 2502. PERFORMANCE OF LINES, SALINAS, CA, 2002

			Acre Y	Yield		Beets/	Δι	Powderv	Virus	
	Variety	Description	Sugar	Beets	Sucrose	1001	RJAP	Mildew	Yellows	Bolting
			I.bs	Tons	o⊱	No.	o(P	Score	Mean	o∤o
	2502-2: Mu	2502-2: Multigerm lines with Bvm, 16V x	8R, RCB(e)							
	Beta 6600	rec'd 7-11-00 (%S check)	16830	43.50	19.38	155	86.6	5.3	2.9	0.4
	Beta 4776R	rec'd 8-31-01	18979	53.21	17.83	155	86.0	2.4	2.9	0.0
	R021	RZM R926, R927, (C26, C27)	15444	47.51	16.24	145	84.0	5.6	2.1	1.1
	R039	Inc. R539, (C39R)	17191	52.82	16.30	141	84.4	2.9	2.3	0.0
	01-EL0204	RZM 00-EL0204, (EL0204)	17458	55.78	15.64	156	84.6	5.4	2.5	0.0
	01-SP22-0	Inc. 00-SP22-0, (SP22-0)	13737	42.12	16.27	147	85.4	4.4	4.8	0.0
	Y167	RZM-ER-% Y967, (C67/2)	17021	50.44	16.88	149	84.0	4.3	2.1	0.0
	Y171	RZM-ER-% Y971	17014	50.59	16.80	148	85.2	6.5	1.7	1.1
	X175	RZM Y075	15418	46.76	16.38	144	84.6	5.3	2.0	0.0
4.0	R143	RZM-ER-% R943	N	45.10		148	•	•	•	0.0
	R140	RZM-ER-% R940, R954	15859	48.62	6.3	155	84.6	5.0	2.1	0.0
	P127	PMR-P027-# (C), P027B-# (C)	15483	46.86	16.51	152	82.3	7.6	1.8	2.4
	P128	PMR P028-#(C)	17761	53.11	16.73	148	83.3	4.5	1.7	0.0
	P129	PMR-RZM P029-#(C)	16855	50.80	6.5	145	83.7	3.1	2.1	0.0
	P130	PMR-RZM P030-#(C)	14977	46.36	16.13	149	82.7	3.1	2.1	0.4
	P007/8	PMR-RZM P807,P808	16022	47.62	16.83	156	84.0	•	•	1.2
	Mean		16292.1	48.82	16.68	149.5	84.3	4.5	2.4	0.4
	LSD (.05)		1479.1	3.82	0.68	7.8	2.0	0.8	0.5	2.2
	C.V. (%)		9.5	7.89	4.11	5.3	2.4	17.8	23.0	531.9
	F value		6.4*	* 7.76*	* 12.60*;	•	** 2.5	* 27.4*	* 15.3**	0.8NS

TEST 2502. PERFORMANCE OF LINES, SALINAS, CA, 2002 (cont.)

		Acre Y	Yield		Beets/	1	Powdery	Virus	
Variety	Description	Sugar	Beets	Sucrose	1001	RJAP	Mildew	Yellows	Bolting
		I.bs	Tons	o⁄e	No.	o⊱ [Score	Mean	o ⊱
2502-3: Mul	Multigerm, S ^f , Aa populations, 16V	x 8R, RCB(e	(e)						
	Inc. 7747 (A, aa), (popn-747)	16427	51.16	16.00	143	83.6	6.4	1.5	0.0
1931		16787	52.60	15.96	136	83.3	4.6	1.7	0.0
1941	RZM 0941aa x A, (popn-941)	17430	52.65	16.54	141	83.2	4.0	1.8	•
z125	RZM Z025aa x A, (popn-Z25)	16783	48.72	17.24	140	83.5	4.6	3.3	0.7
CR111	CR011aa x A	16437	50.91	16 10	146	81	г. -	c	г Г
1942	RZM $0942aa \times A$, (popp- 942)		· ·	2	- Δ	_	•	•	•
01-FC1030	RZM 19991030 aa x A	15568	•		' <	! К	•	•	•
1933	RZM-ER-% 9933 (A, aa)	17049		. 0	147	. 4			•
					1)	•	•	•
1932		16552	50.39	16.42	147	84.0	5.0	2.3	0.0
1924	RZM-ER-% 9924 (A,aa)	16589	50.47	16.40	147	83.4	4.4	2.2	0.0
N124	NR-RZM N024 (galls) (A,aa)	14919	47.36	15.73	152	83.8	3.6	1.8	0.0
N112	NR-RZM P912 (A,aa)	16389	50.04	16.35	153	83.3	3.1	1.6	0.0
N172	NR-RZM N972 (A,aa)	13940	45.55	15.26	145	83.5	3.4	2.1	0.4
X190H41	0941aa x RZM Y090	83		4.	134	84.2	4.4	1.8	0.0
X190H25	Z025aa x RZM Y090	18394	53.74	7.0	136	84.0	5.0	2.4	0.0
Beta 4430R	rec'd 8-31-01	18052	55.69	16.21	153	85.3	3.9	3.7	0.3
Mean		16646.3	50.78	16.37	144.3	83.6	4.4	2.2	0.5
LSD (.05)		•	•	0.79	•	2	0.7	0.5	1.8
C.V. (%)		6.6	7.51	4.89	7.1	3.1	16.8	20.8	346.1
F value		4.6*	* 4.83**	3.36**	2.5	** 1.2N	NS 13.2**	14.2**	4.5**

See Test 2102 for VY (BChV) inoculated and relative VY %loss. Notes:

showing yellowing symptoms. Plots were not inoculated so this VY reflects natural infection with BChV and Virus yellows was scored 6/26, 7/18, 8/05, & 8/29 on a scale of 0 to 9, where 9 = 90-100% of mature leaves BWYV. Natural infection was late and mild.

PM should have had relatively little effect on yield. Powdery mildew was controlled until the end of season.

PERFORMANCE OF PROGENY LINES SELECTED FOR VIRUS YELLOWS RESISTANCE WITHOUT BChV, SALINAS, CA, 2002 TEST 2802.

12 entries x 1-row plots,	<pre> 8 reps., RCB , 22 ft. long </pre>						Planted: Harvested:	ъ Э	February 2 October	27, 2002 r 8, 2002
		Acre Y	Yield		Beets/		Powdery	Virus	ns	
Variety	Description	Sugar	Beets	Sucrose	1001	RJAP	Mildew	Yellows	OWS	Bolting
מאָטפּת		Ibs	Tons	o ⊱ 	No.	%	Score	8/29	Mean	œ۱
01-SP22-0	Inc. 00-SP22-0, (SP22-0)	14726	45.75	16.05	148	83.0	4.3	6.4	4.9	0.4
R176-89	RZM R076-89	17263	51.09	16.88	143	85.6	4.1	2.9	1.5	0.0
	lines increased in 2000									
0930-19	8930-19aa x A, (C930-19)	19204	55.98	17.15	148	86.7	1.4	1.3	0.8	0.0
2025-9	Z825-9aa x A, (CZ25-9)	15020	40.33	18.63	153	81.8	1.4	7.0	4.2	0.0
0929-112	8929-112aa x A	15836	46.96	16.83	149	82.6	3.8	3.8	1.9	0.4
CR009-1	RZM CR909-1aa x A, (CR09-1)	16201	45.73	17.71	144	81.9	4.9	2.1	1.2	0.0
Progeny line	lines increased in 2001									
1927-4	RZM 9927-4aa x A, (C927-4)	17730	53.21	16.66	143	84.9	5.9	2.5	1.4	0.0
1929-62	RZM 9929-62aa x A, (C929-62)	14867	46.72	15.81	144	83.7	2.0	3.1	2.0	0.4
1930-35A	RZM 9930-35A, (C930-35)	12922	35.78	18.02	137	84.3	4.0	5.5	3.9	2.5
1929-4	RZM 9929-4aa x A	17526	48.42	18.11	139	83.9	1.6	3.8	1.9	0.0
1924-2	RZM 9924-2aa x A	14398	39.87	18.02	118	85.4	6.0	2.5	1.4	0.0
R176-89-5-4	Inc. R976-89-5-4	18373	52.35	17.56	152	83.7	2.8	2.5	1.4	0.0
Mean		16172.2	46.85	17.29	143.1	84.0	3.1	3.6	2.2	0.3
LSD (.05)		•	3.12	σ.	•	•	•		0.4	1.2
C.V. (%)		9.1	69.9	m.	•	m	29.3	18.3	20.0	389.9
F value		13.1*1	*28.92**	7.12**	5.5*	* 2.3*	25.9**	58.4**	72.3**	2.8**

See Test 2402 for VY (BChV) inoculated and relative VY %loss. Notes:

Virus yellows was scored 6/26, 7/18, 8/05, & 8/29 on a scale of 0 to 9, where 9 = 90-100% of mature leaves Plots were not inoculated so this VY reflects natural infection with BChV and Natural infection was late and mild. showing yellowing symptoms. BWYV.

PM should have had relatively little effect on yield. Powdery mildew was controlled until the end of season.

TEST 3502. EVALUATION OF SELECTED MULTIGERM PROGENY LINES, SALINAS, CA, 2002

Planted: February 28, 2002 Harvested: September 26, 2002 48 entries x 4 reps., RCB 1-row plots, 11 ft. long

		Acre Yield	ield		Beets/		Powderv
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Mildew
		Ips	Tons	oko	No.	o	9/23
Checks 01-SP22-0	Inc. 00-SP22-0	14036	43.74	ъ.	150	84.3	•
0930-19	8930-19aa x A	16811	49.78	16.88	155	9	1.5
Inc. S ₁ progeny					•		
ACC-0061	9930-35A, (C930-35)	12037	4		141	9	2.5
1929-62	RZM 9929-62aa x A, (C929-62)	14061	44.95	15.60	145	81.5	•
1927-4	RZM 9927-4aa x A, (C927-4)	17811	55.24	Η.	148	85.6	4.0
1929-4	RZM 9929-4aa x A	17010	8	7.	148	83.4	•
1924-2	RZM 9924-2aa x A	12661	35.97	ت	125	87.0	0.3
1930-19	NB 8930-19 (A,aa), (C930-19)	15361	•	5.9	164	85.7	0.5
2025-9	Z825-9aa x A (CZ25-9)	14899	39 71	18 75	ر م	7 78	ر. در
0929-112	_	, ,		, ,) L	• L	•
711-6760	-112aa x	44	ή.	T/.00	Ω	85.3	3.0
2131-20	Inc. Z931-20 (A,aa)	13597	38.29	17.75	139	84.9	1.8
CR009-1	CR009-1aa x A, (CR09-1)	15213	44.95	16.95	157	84.1	4.0
CR110-14-2	Inc. CR910-14-2 (A,aa)	11326	34.47	16.40	155	84.0	3.3
CR110-5	Inc. CR910-5 (A,aa)	13050	39.30	9.9	159	86.1	2.8
CR112-5	Inc. CR812-5 (A, aa)	12884	40.31	15.95	157	84.7	5.3
Z131-14	Inc. Z931-14 (A,aa)	11845		۲.	150	83.3	•
2131-18	Inc. Z931-18 (A,aa)	15364	42.33	Η.	166	84.9	
1935-6	Inc. 9935-6 (A, aa)	11524	4.0	6.8	168	ж Э	•
1936-14	Inc. 9936-14 (A, aa)	15255	45.35	16.75	145	84.9	1.8
1931-56	Inc. 9931-56 (A,aa)	13098	ი ი	6.4	155	4.	•
1931-201	Inc. 9931-201 (A,aa)	14730	44.34	16.58	157	83.8	1.0

TEST 3502. EVALUATION OF SELECTED MULTIGERM PROGENY LINES, SALINAS, CA, 2002 (cont.)

		Acre Yield	rield		Beets/		Powderv
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Mildew
		sqT	Tons	æ	No.	æ1	9/23
se FS	progeny lines						
R178-5	Inc. R978-5	15510	44.95	17.25	155	88.0	2.8
R178-6	Inc. R978-6	47	43.74	16.88	159	86.3	
R178-11	Inc. R978-11	17252	53.61	15.98	157	•	3.0
R180-11	Inc. R980-11	17973	51.80	17.38	164	85.1	
R180-16	Inc. R980-16	17934	σ.	17.63	159	86.4	5.8
R180-21	Inc. R980-21	19031		17.65	148	85.2	•
X168-8	Inc. Y968-8	14734	44.14	16.70	157	85.5	3.5
X168-13	Inc. Y968-13	16126	46.15	17.52	157	83.7	
Y168-16	Inc. Y968-16	16703	46.07	•	157	84.7	2.3
X167-5	Inc. Y967-5	17365	49.98	•	168	85.4	2.8
Y172-1	Inc. Y972-1	16613		17.63	164	84.5	•
X172-5	Inc. Y972-5	16899	50, 19	16.85	166		
X172-7		372		٠ ر	1 1 2 2	1 (2	
Y175-13		14215	. ~	1 00	1 1 5 5	2 4	
R181-22	Inc. R981-22	18262			101	' נ	
77 1011		T070T	0 . T	:	12/	ი	•
R176-89-5	RZM R076-89-5	15780	. 7	ω.	159	•	•
R176-89-5-4	Inc. R976-89-5-4	O	47.77	17.75	155	9	1.3
-68-9	R976-89-	15337	6.	•	157	86.1	1.5
R176-89-5-13	Inc. R976-89-5-13	L)	44.14	7.8	161	9	•
ces of	progeny lines						
1931	RZM 0931aa x A	29	9.6	17.02	157	86.0	4.0
1941		17992	54.02	16.67	145	86.2	4.0
R178	RZM-ER-% R978, (C78/3)	60	0.1	7.	152	5	4.5
X190	Inc. Y090	82	5.9	17.67	134	•	5.0
P118-6	Inc. P918-6	17944	53.81	16.65	159	9	8
P125-12	Inc. P925-12	14905	3.9	9	157	86.7	

TEST 3502. EVALUATION OF SELECTED MULTIGERM PROGENY LINES, SALINAS, CA, 2002

(cont.)

		Acre Yield	eld		Beets/		Powdery
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Mildew
		Ips	Tons	%	No.	o≯	9/23
Commercial checks	ecks						
Phoenix	rec'd 8-16-01	18291	55.43	16.42	166	89.7	5.3
Beta 4430R	rec'd 8-31-01	20020	59.05	16.98	161	87.5	4.3
Mean		15717.4	46.20	17.00	155.3	85.3	3.0
LSD (.05)		3001.0	8.41	1.01	16.8	3.1	1.5
C.V. (*)		13.7		4.24	7.7	2.6	35.2
r value		4 * 7 * *	4.47**	3.97**	2.1**	1.7*	7.7**

Notes: Also see Tests 302, 402, 2402, 2802, 5502, 7102 and others. Full-sib and S₁ progeny tests were run at Salinas and Brawley. On the basis of these tests under various conditions, individual FS or S₁ families were selected, increased, and crossed to a monogerm, male-sterile tester for further evaluations. In these tests, the progeny lines were evaluated per se.

TEST 2102. PERFORMANCE OF LINES UNDER BChV INFECTION, SALINAS, CA, 2002

24 entries 1-row plo

ies x 8 reps., RCB(e)	Planted:	February 27, 2002
lots, 22 ft. long	Harvested	Harvested: October 15, 2002
	Inoc. BCh/	7: May 9, 2002

	9 Mean	9	5				m	m	1 3.1	2.	ω.	3 3.8	т М	m.		m m	т М	4 3.7	e,		ω.	8 3.2	m	4
	8/29	7.3			•		4	•	4.1	•	4.6	•	4.6	4.4		4.8	4.4	•	•		•	4.8	•	
ŗ	7/18 8/05	•	•	2.9	•		•	•	3.3	•	•	3.9	•	•		•	•	3.6	•		•	3.3	•	•
	7/18		•	2.8	•		4.1	•	3.3	•	9.6	4.3	3.9	•		•	•	4.3	•		•	3.1	•	•
•	6/26	•	•	1.0	•		•		1.8	•	•	2.9	•	•		•	•	2.5	•		•	1.6	•	•
	AP % I		8		4.		ω.	83.2		84.4	4.	83.2	ω.	4.		4.	4	83.6	•		ω.	84.5	Η.	е М
Beets/		4	9	156	Ŋ		Ŋ	9	159	Ŋ	4	161	Ŋ	cr.		4	Ŋ	148	4		3	153	4	4
	sucrose 8	4.2	3.1	16.08	5.3		0.		5.4			16.06		6.7		6.5	6.4	15.32	6.1		6.1	16.51	6.0	6.7
	Tons	0.0	7.6	47.84	6.9		9.8	6	50.14	œ œ	43.64	۲.		•		8.5	7.8	45.50	6.9		9.3	51.45	5.7	2.9
Acre Yield	w 0-1 w 0-1	5.7	6.	6.58	₹.		6.11	ω.	13.53	0.57	7.60	8.58	0	10.22		5	7	9.22	9.		.2	2.34	0.	4.2
A	Ibs	82	92	15387	450		16959	12152	15515	15974	45	14145	07	564		16073	15782	13997	15183		15907	17022	14661	14386
		00-SP22-0, (SP22-0)	(US75)	(C37)	, (C31/6)				R076-89-18, (C76-89-18)	(C76-89-5)	(C46/2)	(C78/2)	(C80/2)			(C67/2)			(C26,C27)		A, (popn-931)	A, (popn-941)	A, (popn-942)	A. (popn-Z25)
	nesdriban	Inc. 00-SP22-(Inc. 00-US75,	Inc. U86-37,	•	დ დ	RZM-ER-% Y969	RZM R076-89	RZM R076-89-18	RZM R076-89-5,	Inc. U86-46/2,	RZM-ER-% R978,	RZM-ER-% R980,	RZM Y090	lines with Bvm	RZM-ER-% Y967, (C67/2)	RZM-ER-% Y971	RZM Y075	RZM R926, R927, (C26, C27)	populations	laa x	×	RZM 0942aa x A	RZM Z025aa x A
	Vai rec'	Checks 01-SP22-0	01-US75	01-C37	99-C31/6	VYR O.P. lines	X169	R176-89	R176-89-18	8 R176-89-5	99-C46/2	R178	R180	Y190	VYR O.P. line	X167	X171	X175	R021	MM,S ^f ,Aa popu				

Description	Sugar Ibs	Acre Yield Jar Loss¹ Be Ss	Beets Tons	Heets Sucrose 100' RJAP Tons & No. 8	Beets/ 100' No.	RJAP	V 6/26	Virus Yellows Scores	8/05	Score 8/29	Mean
Commercial hybrid checks											
rec'd 8-16-01	14781	24.39	46.56	15.85	159	85.9	5.1	5.4	5.5	6.3	5.6
rec'd 8-31-01	15804	16.73	47.11	16.75	149	86.0	4.8	5.4	5.9	9.9	5.7
0833-5HO x RZM Y090	16553	-2.77	47.45	17.45	127	84.1	2.0	3.6	3.9	4.9	3.6
rec'd 2-22-02(0205C8602)	12216	30.37	38.09	16.02	153	83.4	5.4	6.1	6.3	7.5	6.3
	14663.6		45.51	16.02	151.1	151.1 83.8	2.8	4.1	4.0	4.0 4.9	9.8
	1459.1		3.53	0.89	11.7	2.4	0.7	0.7	9.0	9.0	0.4
	10.1		7.88	5.65	7.9	2.9	23.5	16.01 16.5 12.1	16.5	12.1	11.4
	15.3**	**	15.14*	15.14** 7.92**		4.8** 1.3NS37.4**22.6**25.3**27.7**54.3**	837.4*	, 22.6**	25.3*	*27.7*	*54.3**

Test 2102 was inoculated May 9, 2002 with Beet chlorosis virus % loss is the relative sugar yield loss calculated from the corresponding means in each test. $^{1}\mathrm{Test}$ 2102 and Test 2502 are companion tests. (BChV).

Notes: Virus yellows foliar symptoms were scored on a scale of 0 to 9, where 9 = 90-100% of the mature leaf Scores were made on 6/26, 7/18, 8/05, and 8/29 by JAO. area yellowed.

Test 2102 thru 2802 were grown on soil that had been fumigated with methyl bromide in 2000 prior to strawberries Foliar diseases of rust and downy mildew were minor to moderate. Aphids and worms were controlled as There appeared to be minimal soil borne problems including no observed rhizomania or sugarbeet cyst needed with Lorsban and herbicide treatment of Nortron/Betamix was applied once following thinning. nematode. in 2001.

inoculated test. These comparisons were chosen to determine the relationship or association between measures of VY (VY scores for individual dates and for the mean VY score) and performance factors and between VY scores and relative % sugar yield loss. There were fair to good associations between VY score and sugar yield but there Coefficients of Correlation: Partial sets of coefficients of correlation (r), n=24 were run within the VY were good correlations between VY score and relative % sugar yield loss. These results suggest that scoring entries for VY (Beet Chlorosis Virus) is predictive of their reaction to VY.

PERFORMANCE OF LINES UNDER BChV INFECTION, SALINAS, CA, 2002 TEST 2102.

	es	Mean	Ţ,	(2)	VY 7/18					**68.	
	Scor	8/29	ng tes	st 250	VY 8/29				92**		
	llows	8/02	pondir	t (Tes					σ.		
	Virus Yellows Scores	7/18 8/05	Correlations between corresponding test	Non-inoculated test (Test 2502)	VY mean			.92**			
		6/26	oetween	inocula	8S		.70**				
	RJAP	o/o	cions l	Non-	,	.63**					
Beets/	1001	No.	rrela		SY	9.					
	Beets Sucrose 100' RJAP	o⊱	Ö		WY Inoc.	SY	&S	VY mean	VY 8/29	VY 7/18	
pld	Beets	Tons									
Acre Yield	Loss	æΙ	2102	l	%loss	.81**	.74**	. 78**	**77.	.84**	
	Sugar	sqT				01NS	02NS				
	otion		inoculate			34NS					
	Description		ithin VY		RY	70**	61**				
			Correlations within VY inoculated test		SY	63**	54**	59**	64**	66**	.82**
	Variety		Corre			VY mean	VY 8/29	VY 8/05	VY 7/18	VY 6/26	% sugar

There were good associations between these tests for sugar yield and %S, but high correlations between VY scores on the same dates. This suggests that the milder and later natural VY (BChV/BWYV) infection in the Correlations were also run between the entry means for corresponding VY inoculated and noninoculated tests.

non-inoculated test could also be used to predict VY reaction of these entries.

PERFORMANCE OF PROGENY LINES SELECTED FOR VIRUS YELLOWS RESISTANCE UNDER BChV, SALINAS, CA, 2002 TEST 2402.

Harvested: October 16, 2002

February 27, 2002

Planted:

12 entries x 8 reps., RCB 1-row plots, 22 ft. long

71 in (1)		Acre Yield		,	Beets/	!	Powdery				
Describeron	Lbs	1% 8	Tons	Sucrose 100	No.	KUAP *I	Score	6/26	V1rus 9/5	Yellows 8/29	Mean
Inc. 00-SP22-0, (SP22-0) RZM R076-89	9821 14789	33.31 14.33	33.93 47.35	14.44 15.63	160 147	83.6 83.7	5.6	5.6	6.5	7.1	6.6 2.6
Progeny lines increased in 2000 0930-19 8930-19aa x A,(C930-19) 2025-9 Z825-9aa x A,(C225-9)	16084 9909	16.25 34.03	50.95 29.62	15.79 16.69	155 159	85.1 82.1	1. 1.	1.9	2.0	3.0	2.3 6.5
8929-112aa x A RZM CR909-1aa x A, (CR09-1)	13124 1) 14309	17.13	40.66	16.09 16.43	145 151	82.5 81.6	5.9	1.0	4.1	ນ ນ ໝ	3.6
Progeny lines increased in 2001 1927-4 RZM 9927-4aa x A,(C927-4) 1929-62 RZM 9929-62aa x A,(C929-62)) 16550 62) 12051	6.65 18.94	52.37 40.90	15.80 14.73	142 157	84.9 82.6	6.8	1.1	3.0	3.8	3.5
RZM 9930-35A, (C930-35) RZM 9929-4aa x A	9372 14493	27.47 17.31	27.95 43.73	16.75 16.56	142	83.1 83.3	3.6 1.8	4.6 4.3	5.0 8.8	5.0 9.0	5.7 0.4
RZM 9924-2aa x A Inc. R976-89-5-4	12738 17856	11.53	37.93 52.06	16.76 17.13	113	83.9 84.5	1.0	1.1	2.1	3.1	2.4
	13424. 1368. 10. 32.		41.75 3.15 7.57 55.08**	16.07 0.92 5.77 * 6.47**	147. 15. 10.	6 83.4 9 2.2 8 2.7 4**1.9NS	2.9 0.8 28.0 349.1**	2.5 0.6 21.7 79.2**	3.7 0.5 14.5 *95.2*	5 3.7 4.8 3.7 6 0.5 0.6 0.3 7 14.5 13.3 9.1 2**95.2**55.7**195.1**	3.7 0.3 9.1

Test 2402 was inoculated May 9, 2002 with Beet chlorosis virus (BChV). % loss is the relative sugar yield loss calculated from the corresponding means in each test. $^1\mathrm{Test}$ 2402 and Test 2802 are companion tests.

Notes: Virus yellows foliar symptoms were scored on a scale of 0 to 9, where 9 = 90-100% of the mature leaf area Scores were made on 6/26, 7/18, 8/05, and 8/29 by JAO. yellowed.

PERFORMANCE OF PROGENY LINES SELECTED FOR VIRUS YELLOWS RESISTANCE UNDER BChV, SALINAS, CA, 2002 TEST 2402.

	Virus Yellows	26 8/5 8/29 Mean
Powdery	Mildew	Score 6/
	RJAP	οko
Beets/	Sucrose 100'	% No.
pld	Beets &	Tons
Acre Yield	Loss	96
i	Sugar	sqT
	Description	
	Variety	

Notes (cont.): Powdery mildew was scored on a scale of 0 to 9, where 9 = 90-100% of mature leaf area covered with PM was controlled until late in the season so PM should have had relatively little effect. mildew.

Test 2102 thru 2802 were grown on soil that had been fumigated with methyl bromide in 2000 prior to strawberries in Foliar diseases of rust and downy mildew were minor to moderate. Aphids and worms were controlled as 2001. There appeared to be minimal soil borne problems including no observed rhizomania or sugarbeet cyst needed with Lorsban and herbicide treatment of Nortron/Betamix was applied once following thinning. nematode.

good correlations between VY score and relative % sugar yield loss. These results suggest that scoring entries for of W relative % sugar yield loss. There were fair to good associations between VY score and sugar yield but there were inoculated test. These comparisons were chosen to determine the relationship or association between measures (VY scores for individual dates and for the mean VY score) and performance factors and between VY scores and Coefficients of Correlation: Partial sets of coefficients of correlation (x), n=12 were run within the VY VY (Beet Chlorosis Virus) is predictive of their reaction to VY.

i											
Corre	lations	Correlations within VY inoculated test	inoculat		2402	Corr	elations	; betwee	Correlations between corresponding test	onding te	st
							-uoN	inocula	Non-inoculated test (Test 2802)	(Test 280	[2
	SY	RY	8°S	RJAP	%loss	WY Inoc.	SY	%S	VY mean	VY 8/29	VY 7/18
VY mean	* 429 -	61*	.04NS	47NS	. 92**	SY	**06				
VY 8/29	64*	63*	.17NS	56NS	**88.	&S		**68.			
VY 8/05	+.67*				**06.	VY mean			**76.		
VY 7/18	67*				. 92**	VY 8/29				**96.	
VY 6/26	58*				**98.	VY 7/18					***6.
% sugar	08NS										

There scores on the same dates. This suggests that the milder and later natural VY (BChV/BWYV) infection in the non-Correlations were also run between the entry means for corresponding VY inoculated and noninoculated tests. was a good association between these tests for sugar yield and %S, and high correlations between VY inoculated test could also be used to predict VY reaction of these entries.

Planted: April 19, 2002 Harvested: October 24, 2002 48 entries x 8 reps., RCB(e); 3 subtests, 16x8,RCB(e) 1-row plots, 22 ft. long

		Source	Acre Yi	Yield		Beets/		Root	Powdery
Variety	Description	Resist	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
			Ibs	Tons	%	No.	o∤0 I	∞	10/23
7302-1: Mu	Multigerm, O.P. Lines, 16V x 8R,	, RCB(e)							
X190H5	10 x F	Rz	12318	•	18.13	111	86.1	9.1	5.1
Phoenix	rec'd 8-16-01	Rz	10475	29.87	7.5	155	88.1	•	6.5
Beta 4776R	rec'd 2-5-02	Rz	12469	•	17.55	170		0.9	3.1
01-US75	Inc. 00-US75, (US75)	rzrz	7465	•	15.40	164	82.5	4.6	9.8
01-C37	Inc. U86-37, (C37)	rzrz	8485	25.22	ω.	165	86.3	11.6	e. 80
99-C31/6	Inc. F86-31/6, (C31/6)	rzrz	8376	•	σ.	160	4.	•	•
R176-89	RZM R076-89	Rz	9761	28.32	17.27	149	ъ.	•	4.3
R176-89-18	RZM R076-89-18, (C76-89-18)	O [‡]	10795	•	. 7	154	86.2	•	6.1
R176-89-5	RZM R076-89-5, (C76-89-5)	Rz	9452	9	17.60	157	84.9	7.3	9.3
99-C46/2	Inc. U86-46/2, (C46/2)	rzrz	9112	26.18	17.34	162	86.8		5.4
R178	RZM-ER-% R978, (C78/2)	Rz	10060	28.14	7.9	158	84.9	17.5	5.1
X169	RZM-ER-% Y969, (C69)	Rz	10262	29.12	17.65	165	84.6	6.6	4.4
X190	RZM Y090, C2, syn 1 FS sel.	Rz	10954	31.46	17.44	128	84.1	12.8	5.5
X191	Inc. FS(C), C1, syn 1 FS sel.	Rz,C51	10756	•	ω.	160	•		•
R180	RZM-ER-% R980, (C80/2)	Rz	10830	31.02	17.49	157	83.9		•
R170	RZM-ER-% R970	Rz	10265	•	6.9	153	84.5	12.5	0.9
Mean			10114.8	29.32	17.22	154.3	85.2	10.1	5.4
LSD (.05)			966.5	•	0.60	8.6	2.4	10.7	0.7
C.V. (%)			•	9.58	٠	•	•	107.4	13.3
F value			15.1**		10.45**	18.3*,	* 3.0**	0.8NS	
7302. ntries	PERFORMANCE OF LINES UNDER RHIZOMANIA, x 8 reps., RCB(e). ANOVA across tests	HIZOMANIA, oss tests	SALINAS, to compare	CA, 2002 means.					
			$\frac{12}{12}$	29.99	o. '		•	10.9	
			995.0	2.77	9 1	$\frac{11.9}{1}$	2.3	•	•
C.V. (%)			ي. ع. د د د	9.37	3.59	∞ +	2.7	0.066	14.5
3			:) V	. / 7 . 6		: -		0	, ,

TEST 7302. PERFORMANCE OF LINES UNDER RHIZOMANIA, SALINAS, CA, 2002

Variety Description Resist Sugar 7302-2: Multigerm lines with Bvm, 16V x 8R, RCB(e) 10206 Beta 6600 rec'd 2-5-02 rz.rz 10206 Angelina rec'd 3-19-02 Rz,WB42 13084 R021 RZM-ER-\$ R936 (C79-8) C51 10198 R136 RZM-ER-\$ R936 (C79-8) C51 10198 01-EL0204 RZM-ER-\$ R936 (C79-8) C51 10678 01-SP22-0 Inc. 00-SP22-0, (SP22-0) C51 10678 1175 RZM-ER-\$ Y967, (C67/2) C51 10678 1171 RZM-ER-\$ Y967, (C67/2) C51 10678 1171 RZM-ER-\$ Y967, (C67/2) C51 10678 1175 RZM-ER-\$ Y967, (C67/2) C51 10678 1176 RZM-ER-\$ R940, R954 C51 10656 1129 PMR-PO27-# (C), P027B-# (C) WB977 7487 1129 PMR-RZM P029-# (C) RZ,WB97 10658 1129 PMR-RZM P030-# (C) RZ,WB97 10778 1129	54544 S4011	5 1		())))			
2-2: Multigerm lines with Bvm, 16V x BR, RCB(e) a 6600 rec'd 2-5-02 Rz,WB42 130 a 102 a 102 a 103-19-02 Rz,WB42 130 brace'd 3-19-02 Rz,Bvm 103 brace'd 3-19-02 Rz,WB97 103 brace'd 3		Beets	Sucrose	100,	RJAP	Rot	Mildew
2-2: Multigerm lines with Bvm, 16V x 8R, RCB(e) a 6600	I.bs	Tons	o(0	No.	ol	o/0	10/23
a 6600 rec'd 2-5-02							
alina rec'd 3-19-02 RZ, WB42 130 RZM R926,R927, (C26,C27) RZ, Bvm 103 RZM-ER-% R936(C79-8) EL0204 RZM-ER-% R936(C79-8) RZM-ER-% Y967, (C67/2) RZM-ER-% Y967, (C67/2) RZM-ER-% Y971 RZM-ER-% R943 RZM-ER-% R943 RZM-ER-% R940,R954 RZM-RZM P029-#(C) RZ, WB97 RZ,		28.58	17.84	160	87.6	19.6	6.0
1 RZM R926,R927, (C26,C27) RZ,Bvm 103 ELO204 RZM-ER-% R936(C79-8) C51 101 ELO204 RZM 00-EL0204 RZ,SR 105 SP22-0 Inc. 00-SP22-0, (SP22-0) rzrz 63 RZM-ER-% Y967, (C67/2) C51 106 RZM-ER-% Y971 C51 109 RZM-ER-% R943 C51 109 RZM-ER-% R940,R954 C51 105 PMR-P027-#(C),P027B-#(C) WB97 74 PMR-P029-#(C) RZ,WB97 106 PMR-RZM P029-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 2 106 (.05) 8		34.94	18.74	171	87.6		8.3
6 RZM-ER-% R936 (C79-8) C51 101 5L0204 RZM 00-EL0204 Rz, SR 105 5P22-0 Inc. 00-SP22-0, (SP22-0) rzrz 63 7 RZM-ER-% Y971 C51 106 6 RZM-ER-% Y971 C51 107 5 RZM-ER-% R943 C51 109 8 RZM-ER-% R940, R954 C51 105 9 RZM-ER-% R940, R954 C51 106 9 PMR-P027-#(C), P027B-#(C) WB97 74 9 PMR-RZM P029-#(C) Rz, WB97 106 9 PMR-RZM P029-#(C) Rz, WB97 106 9 PMR-RZM P030-#(C) Rz, WB97 106 9 PMR-RZM P030-#(C) Rz, WB97/242 107 102 102 102	1031	31.11	16.58	159	84.1	8.0	6.0
EL0204 RZM 00-EL0204 RZ, SR 105 SP22-0 Inc. 00-SP22-0, (SP22-0) rzrz 63 RZM-ER-% Y967, (C67/2) C51 106 RZM-ER-% Y971 C51 107 S RZM-ER-% R943 C51 112 RZM-ER-% R940, R954 C51 116 PMR-P027-#(C), P027B-#(C) WB97 74 PMR-RZM P029-#(C) RZ, WB97 106 PMR-RZM P030-#(C) RZ, WB97 106 RZ, WB97/242 107 R2, WB97/242 107	101	31.56	16.19	165	83.0	8.5	7.6
SP22-0 Inc. 00-SP22-0, (SP22-0) rzrz 63 SP22-0 Inc. 00-SP22-0, (SP22-0) rzrz 63 RZM-ER-% Y967, (C67/2) C51 106 RZM-ER-% Y971 C51 107 S RZM-ER-% R943 C51 112 RZM-ER-% R940, R954 C51 112 PMR-P027-#(C), P027B-#(C) WB97 74 PMR-P029-#(C) Rz, WB97 106 PMR-RZM P039-#(C) Rz, WB97 106 PMR-RZM P030-#(C) Rz, WB97 106 PMR-RZM P030-#(C) Rz, WB97 106 PMR-RZM P030-#(C) Rz, WB97 107 R2, WB97/242 107 R2, WB97/242 107 R2, WB97/242 107	-	20 47	16 24	г С	о С	0	
SPZZ-0 Inc. 00-SPZZ-0, (SPZZ-0) rzrz 63 RZM-ER-% Y967, (C67/2) C51 106 RZM-ER-% Y971 C51 107 SRZM-ER-% R943 C51 109 RZM-ER-% R940, R954 C51 105 PMR-P027-#(C), P027B-#(C) WB97 74 PMR-P029-#(C) RZ, WB97 106 PMR-RZM P030-#(C) RZ, WB97 106 PMR-RZM P030-#(C) RZ, WB97 106 PMR-RZM P807, P808 RZ, WB97/242 107 102 105)	- 1	•) i	T C A		•	1.0
7 RZM-ER-% Y967, (C67/2) C51 106 1 RZM-ER-% Y971 C51 107 5 RZM-ER-% R943 C51 112 8 RZM-ER-% R940, R954 C51 1105 9 RZM-ER-% R940, R954 C51 1105 7 PMR-P027-#(C), P027B-#(C) WB97 74 9 PMR-P029-#(C) RZ, WB97 106 9 PMR-RZM P030-#(C) RZ, WB97 106 7/8 PMR-RZM P807, P808 RZ, WB97/242 107 102 1102		20.96	S	154	85.1	7.3	5.0
1 RZM-ER-% Y971 C51 107 S RZM Y075 RZM-ER-% R943 C51 112 RZM-ER-% R940,R954 C51 1105 PMR-P027-#(C),P027B-#(C) WB97 74 PMR-P028-#(C) WB242 106 PMR-RZM P029-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 106 102 103 104 105	П	30.79	17.35	155	83.4	8.8	4.0
EXM Y075 RZM-ER-% R943 C51 RZM-ER-% R940, R954 PMR-P027-#(C), P027B-#(C) PMR-P028-#(C) PMR-RZM P029-#(C) RZ, WB97 RZ, WB97/242 107	П	32.36	16.58	164	83.9	8.8	7.3
EXM Y075 RZM-ER-% R943 RZM-ER-% R944 C51 112 RZM-ER-% R940, R954 C51 1165 PMR-P027-#(C), P027B-#(C) WB242 WB242 106 PMR-RZM P029-#(C) RZ,WB97 106 PMR-RZM P030-#(C) RZ,WB97 106 107 108 109 100 100 100							
3 RZM-ER-% R943 C51 112 D RZM-ER-% R940,R954 C51 105 7 PMR-P027-#(C),P027B-#(C) WB97 74 3 PMR-P029-#(C) Rz,WB97 106 9 PMR-RZM P030-#(C) Rz,WB97 106 7/8 PMR-RZM P807,P808 Rz,WB97/242 107 102 102 103 104 105	C51	32.54	16.86	145	84.2	11.9	5.4
RZM-ER-% R940,R954 C51 105		33.00	17.04	162	83.8	•	4.8
7 PMR-P027-#(C), P027B-#(C) WB97 74 8 PMR P028-#(C) WB242 100 9 PMR-RZM P029-#(C) Rz,WB97 106 7/8 PMR-RZM P807, P808 Rz,WB97/242 107 1 102 1 102	П	31.24	16.89	164	83.9	8.6	5.3
3 PMR P028-#(C) WB242 100 9 PMR-RZM P029-#(C) Rz,WB97 106 7/8 PMR-RZM P807,P808 Rz,WB97/242 107 102 102 (.05)	748	23.44	15.94	157	82.6	16.2	
9 PMR-RZM P029-#(C) Rz,WB97 106 106 PMR-RZM P030-#(C) Rz,WB242 106 107 PMR-RZM P807,P808 Rz,WB97/242 107 102 PMR-RZM P807,P808 Rz,WB97/242 107	-	30.72	16.27	157	83.3	20.7	8
) PMR-RZM P030-#(C) Rz,WB242 106 7/8 PMR-RZM P807,P808 Rz,WB97/242 107 102 (.05) Rz,WB97/242 107		•	Ŋ	158	, N	13.2	3.8
7/8 PMR-RZM P807, P808 Rz, WB97/242 107 1 (.05) 8		31.83	9	151		6.6	4.3
102 (.05)		31.78	16.95	165	82.9	21.6	2.8
8 (.05)	10283.2	30.52	16.80	159.0	84.2	11.6	5.3
	886.8	2.41	0.51	10.8	2.0	9.7	0.8
C.V. (%)	8.7	7.99	3.08	6.9	2.4	83.8	14.2
F value 22.	22.4**	16.88**	19.27**	2.7**	4.6.7	2.3*	38.3**

PERFORMANCE OF LINES UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7302.

Variety	Description	Source Resist	Acre Yi	Yield	Sucrose	Beets/ 100'	RJAP	Root	Powdery Mildew
			sqī	Tons	de l	No.	æ	oke	10/23
7302-3: Mul	Multigerm, \mathbf{S}^{t} , Aa populations,	16V x 8R, R	RCB (e)						
0747	Inc. 7747 (A,aa)	rzrz	9330	30.14	15.48	151	84.5	17.8	6.1
1931	RZM 0931aa x A, (popn-931)	Rz	11043	33.32	6.5	147	•	9.5	4.6
1941	RZM 0941aa x A, (popn-941)	Rz	10825	31.49	17.17	144	85.8	20.7	4.0
z125	RZM Z025aa x A, (popn-Z25)	Rz	11240	32.03	17.55	156	84.1	6.2	4.9
CR111	CR011aa x A	Rz	9954	29.72	16.77	135	83.7	7.7	5.4
1942	RZM 0942aa x A, (popn-942)	Rz	10819	31.08	17.44	157	83.9	14.5	4.0
01-FC1030	RZM 19991030, aa x A	Rz	8930	26.25	17.05	159	86.0	0.9	5.5
1933	RZM-ER-% 9933 (A, aa)	Rz	9920	29.29	16.95	160	84.5	16.0	4.6
1932	RZM-ER-% 9932 (A, aa)	Rz	9687	28.77	16.84	167	85.0	8.	5.3
1924	RZM-ER-% 9924 (A, aa)	Rz	10913	31.34	17.39	159	83.6	22.3	4.3
N124	NR-RZM N024 (galls) (A, aa)	Rz, Bp	9157	27.20	16.85	161	85.3	12.7	3.6
N112	NR-RZM P912 (A, aa)	Rz,WB242	10381	30.39	17.09	161	84.9	7.2	3.6
N172	NR-RZM N972 (A, aa)	Rz, WBNR	9802	29.71	16.50	166	82.8	16.5	3.8
X039	Inc. R539 (C39R)	O)	9712	28.19	17.21	152	85.1	4.4	3.4
HH141	rec'd 8-16-01	Rz	9674	27.58	17.56	152	86.7	0.4	6.4
Beta 4430R	rec'd 8-31-01	Rz	12462	35.62	17.48	165	86.7	4.5	3.9
Mean			10240.5	30.13	17.00	155.8	84.8	11.0	84.8
$\overline{}$			급 (. 7	9.	11.8	2.5	o	•
C.V. (%) F value			TO.0 ***	9. L / 5. 94 **	4.03	4.1**	ب ر	3.5**	3.0 1.6NS

other Bvm; Bvm = resistance from composite of WB or Bvm from NW Europe; WB97 = resistance to powdery mildew from WB97; WB242 = resistance to powdery mildew from WB242; Bp = nematode resistance from Beta procumbuns; C51 = resistance from WB (wild beet) Bvm thru 51,R22, or similar; WB42 = wild beet 42, or possibly C48, or Footnote: Source of resistance where Rz = Holly, rzrz = susceptible; Q = quantitative or unknown; WBNR = partial nematode resistance from Bvm; SR = smooth root germplasm from EL.

PERFORMANCE OF LINES UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7302.

		Source	Acre Vield	ק		Roots/		Root	Boot Dowdery
Variety	Description	Resist	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
			I.bs	Tons	040	No.	%	%	10/23
					ı		ı	ł	
Note:	Line of a father to the court for the court of the court	7 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(cinculation bodoching at more	דעדועת אַדְּיִייַ	77 / mb: = 0.				} }

incidence. Downy mildew was moderate on susceptible entries. Natural virus yellows infection (BWYV/BChV) was evident on susceptible varieties by late summer. Root rot was primarily caused by Sclerotium rolfsii. Roots controlled until late in the season, then scored just prior to harvest on a scale of 0 to 9 where 9 = 90-100% expression was only moderate and beets grew fairly well without typical bearding and hairy roots on the tap with rot were counted and weighed at harvest but were removed from the sugar samples. Powdery mildew was root. Nitrogen became depleted by early September. Beet oak-leaf virus (BOLV) also occurred in a high HOWEVEr, SYMPTOM Test 7302 was planted into soil known to be infested with BNYVV (rhizomania). of mature leaf area covered with mildew. Notes:

California variety Beta 6600 was included as a high %S, susceptible check. Angelina from KWS was included as Non-Entries included commercial hybrids Phoenix, Beta 4776R, HH141, and Beta 4430 as resistant checks. a resistant check and is reported to have resistance from both Rz and WB42

48 entries x 4 reps., RCB 1-row plots, 11 ft. long

Planted: April 22, 2002 Harvested: November 26, 2002

		Acre	Yield		Beets/		Root	Powderv
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
		sqT	Tons	ok∘	No.	æ	o(•	Mean
Checks		7	•	0	(•	C L
בפרש הפהם	7	0/751	70.40	18.50	T 0 4	٠	T4.3	n. n
0930-19	8930-19aa x A	13472	37.07	18.17	159	87.1	11.8	3.6
Inc. S ₁ progeny	. lines							
1930-35A	RZM	10934	29.27	18.67	159	83.8	2.8	•
1929-62	RZM 9929-62aa x A, (C929-62)	13874	æ.	7.	157	86.5	19.2	2.2
1927-4	RZM 9927-4aa x A, (C927-4)	13995	40.57	17.25	150	85.7	13.2	4.8
1929-4	RZM 9929-4aa x A	13668	36.75	ω.	161	ω.		3.4
1924-2	RZM 9924-2aa x A	11669	30.71	18.88	132	88.8	17.9	3.0
1930-19	NB 8930-19 (A,aa), (C930-19)	12598	36.89	٠.	164		10.0	3.8
Z025-9	Z825-9aa x A, (CZ25-9)	12952	3.0	9.6	വ	85.4	8.8	2.3
0929-112	8929-112aa x A	11829	0.8	9.1	4	5	•	4.0
Z131-20	Inc. Z931-20 (A,aa)	11200	27.88	19.92	125	88.4	5.8	2.7
CR009-1	CR009-1aa x A, (CR09-1)	12625	4.7	8.2	4	4.	•	5.6
CR110-14-2	Inc. CR910-14-2 (A,aa)	9651	8.4	6.9	145	•	•	6.1
CR110-5	Inc. CR910-5 (A,aa)	8822	25.14	7.5	152	ω.		•
CR112-5	Inc. CR812-5 (A,aa)	11418	4.	16.52	164	9.98	22.0	6.3
Z131-14	Inc. Z931-14 (A,aa)	12502	31.85	9.5	161	87.6	6.3	5.1
2131-18	Inc. Z931-18 (A,aa)	14747	9.7	8.4	168	83.4		•
1935-6	Inc. 9935-6 (A,aa)	10139	7.3	8.5	170			•
1936-14	Inc. 9936-14 (A,aa)	12358	34.27	18.05	159	85.0	5.9	3.1
1931-56	Inc. 9931-56 (A,aa)	14013	8.5	8.2	168			•
1931-201	Inc. 9931-201 (A,aa)	12250	35.28	17.33	155	84.2	11.8	1.8

TEST 7102. EVALUATION OF SELECTED MULTIGERM PROGENY LINES UNDER RHIZOMANIA, SALINAS, 2002

Variety	Description	Acre	Yield Beets	Sucrose	Beets/ 100'	RJAP	Root	Powdery Mildew
		I.bs	Tons	oko	No.	or	o(0	Mean
se FS	progeny lines							
R178-5	Inc. R978-5	13458	37.09	18.17	173	87.7	9.5	4.3
R178-6	Inc. R978-6	315	9	6	166	6	9.6	
R178-11	Inc. R978-11	14707	0	ω	164		4.6	. n
R180-11	Inc. R980-11	14542	9.5	8.4	Ŋ			
R180-16	Inc. R980-16	13934	7	0) IC		•	•
R180-21		14212	7.6	6.7) V		i	•
Y168-8	Inc. Y968-8	13052	36.49	17.88	164	87.7) 4.) 4.
Y168-13	Inc. Y968-13	14216	8.1	8.6	7	л		
Y168-16	Inc. Y968-16	42	6.4	9.6	9	7	•	
Y167-5	Inc. Y967-5	16111			157	7		•
X172-1	Inc. Y972-1	14972	1.5	8.0	159	83.3	0.0	5.5
X172-5	Inc. Y972-5	14805	7	7 7	ע	Ľ		
X172-7			٠.	10 27	9 4 6			· ·
V17E_12) (י ס			•
ST-C/TI		m	Τ.	7.6	9	ώ.	•	•
R181-22	Inc. R981-22	15843	1.3	9.1	7	9		•
R176-89-5	RZM R076-89-5, (C76-89-5)	15283	2.1	٦.	161	•	•	•
R176-89-5-4	Inc. R976-89-5-4	0	8.6	8.7	155	7.	•	3.4
R176-89-5NB-4	Inc. R976-89-5NB-4	13465	36.69	18.35	164	87.4	5.6	4.2
R176-89-5-13	Inc. R976-89-5-13	12255	9.0	9.9	159	•	•	3.7
ces of	progeny lines							
	RZM 0931aa x A	82	.5	ω.	152	89.7	•	4.5
1941		16934	46.44		155	6	11.8	4.4
R178	RZM-ER-% R978, (C78/3)	14118	7.2	9.9	166	86.7	•	5.1
X190	Inc. Y090	14749	٦.		134	•	•	•
P118-6	Inc. P918-6	13511	.5	17.60	Ľ			α
P125-12		13631	36.76	5	143		. 2	

TEST 7102. EVALUATION OF SELECTED MULTIGERM PROGENY LINES UNDER RHIZOMANIA, SALINAS, 2002

(cont.)

Root Powdery	Rot Mildew	Mean	7.2	2.6	4.2	6.0	4.2	s 15.7**
Root	Rot	o(P	88.7 14.7	12.5	86.4 8.2	18.1	2.5 157.0	2.0** 2.7** 0.6NS
	RJAP	o%	88.7	0.68	86.4	3.0	2.5	2.7*
Beets/	100,	No.	161	168	158.4	20.2	9.1	2.0**
	Sucrose	o⊱	19.08	18.48	18.35	0.83	3.25	6.92**
ield	Beets	Tons	47.47	50.60	37.33	5.87	11.5 11.24	6.5** 6.59**
Acre Yield	Sugar	Lbs	18144	18680	13682.4 37.33	2120.0	11.5	6.5*
	Description		ks resist ck., rec'd 3-19-02	resist ck., rec'd 9-25-01				
	Variety		Commercial checks Angelina	Beta 4001R	Mean	LSD (.05)	C.V. (%)	F value

FS progenies were extracted from MM,O.P.,Rz lines and S_1 progenies were extracted from MM, S^{f} , Aa ,Rzperformance. On the basis of these progeny tests, specific S1's and FS's were selected, increased, and random-mated populations and evaluated as progenies per se for nonbolting, rhizomania resistance, and crossed to a monogerm tester. This test is an evaluation of the increases of these progeny lines. experimental hybrids were evaluated in separate companion tests at Salinas and Brawley.

EVALUATION OF MONOGERM LINES AND POPULATIONS, SALINAS, CA, 2002 TEST 4702.

February 28, 2002 Planted: Harwested: 48 entries x 4 reps., RCB 1-row plots, 11 ft. long

<pre>1-row plots, 11 ft. long</pre>	l ft. long				Harvested:		October	3, 2002
		m l	Yield		Beets/		Root	Powdery
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
		Lbs	Tons	oko	No.	₩	o/e	9/30
Checks								
0833-5 (Sp) A	RZM 9833-5 (T-0) A	14213	9.3	ω.	161			
89-164-68	Inc. U88-790-68	50	8.9		161		•	•
00-790-15	Inc. F92-790-15	97	44.95	15.52	166	89.1	0.0	5.0
00-790-15CMS	88-790-68CMS \times C790-15	49	7.3		157		•	•
er m	lines							
01-FC123	RZM 00-FC123,19991012mmaa x A	13525	42.75	15.90	130	84.6	0.0	•
01-FC1014	RZM 00-FC1014mmaa x A	15036	7	16.85	148	82.5	0.0	5.3
01-FC1014H5	0833-5HO x " "	17772	•	17.75	136	•	0.0	•
01-FC123H5	0833-5HO x RZM 00-FC123	16270	46.16	7.6	130	86.0	•	•
Monogerm lines	CMS's and F.CMS's							
	15	13137	43.54	•	വ	84.6	0.0	4.8
0562	Inc. 97-C562, (C562)	11255	8.5	14.48	വ	85.8	•	4.5
0911-4-10m(Sp)	Inc. 9911-4-10(C)mm, (C911-4-10)	21151	58.01	18.23	155	83.4	0.0	4.3
0911-4-10H5	9833-5HO x 9911-4-10m	14141	9.6	œ	m	80.4	•	1.5
0911-4-10H50	C790-15CMS x 9911-4-10m	94	٥.	17.38	157	84.9	0.0	4.5
0833-5H45		50	44.35	•	161	84.1	0.0	0.9
0833-5HO (Sp)	$9833-5(T-0)HO \times ", (C8)$	43	٠.		164	4.	0.0	5.0
0833-5A(Sp)	Inc. 0833-5(T-0)A, (C833,-5)	292	9.9	7.5	166	82.0	•	•
1833-5(Iso)	2	17	3.8	ω.	9		1.3	
1833-5HO(Iso)	833-5HO x " ", (C	16238	45.70	17.73	150	84.0	0.0	5.8
۳	p) (A, aa), (C83	16	3.0	9.	4	•	0.0	•
1833-5HO	\sim	14594	0.5	8.0	ന	•	•	
1833-5-8	Inc. 8833-5-8 (A,aa)	14140	\vdash	7.2	4		•	•
1833-5-11	8833-5-11	11844	33.48	17.70	143	82.0	0.0	4.8

TEST 4702. EVALUATION OF MONOGERM LINES AND POPULATIONS, SALINAS, CA, 2002

Variety	Description	Acre Yield Sugar Be	ield Beets	Sucrose	Beets/ 100'	RJAP	Root	Powdery Mildew
		I.bs	Tons	o⊳ I	No.	o⁄o I	o ₽	9/30
Monogerm lines, 1835-11 1835-11H5	s, CMS's, and F ₁ CMS's (cont.) Inc. 8835-11 (A,aa) 0833-5HO x " "	9950	31.53	15.75	152 155	82.3	0.0	1.5 7.7
1835-26H5 1835-26	8833-5HO x 0835-26 The 8835-26 (A aa)		3.5		148		• •	• •
υl	resistant monogerms Inc. N065-9 (A.aa)	51 26	, L	; -	1 1 1 ሊ	•	•	•
N165-9HO	M N065H	13995) ന്			
N165-9H50 N165	C790-15CMS x N065-9 NR-RZM N065mm(galls) (A,aa)	15180 10633	49.39 38.70	15.33 13.75	152 159	85.8	0.0	72 4. 8 .5
N1 67M N1 67MHO	<pre>Inc. N067-1(C),N066-1(galls)(A,aa) N065H5(galls) x N067-#(C)</pre>	13013 13782	41.93	15.52 16.27	159 161	83.4	1.3	5.0 5.5
Monogerm popu. 1848M	populations RZM-ER-% 9818,0848 (A,aa)	16324	7.6	9.0	157	4.0	•	•
3869 1869HO	- 1	15153 15343	46.16 52.21 47.37	15.35 16.08	199 145 161	85.3 86.4	0.0	ນ ໝ ໝ ໝ ໝ ໝ
0841H7	9833-5aa x 841(C)	16629	6.9	7.6	155		0.0	•
0841H5 1842	9833-5(T-0)HO x 841(C) RZM-ER-% 9840,mmaa x A	17141 14394	51.80 42.13	16.55 17.05	157	84.8	0.0	4.8 8.8
1842HO(B)		16287	7.7	7.0	155	4		
1835	0835 (C) mmaa x	16638	9.2	9	139	•	•	
1835HO 1836	RZM 0835HO x " " 0836.0837mmaa x A	16128	o 4	16.10	152 152	84.5	0.0	സ്ത
183640	;	18926	. 2	17.48	164		0.0	

TEST 4702. EVALUATION OF MONOGERM LINES AND POPULATIONS, SALINAS, CA, 2002

(cont.)

		Acre Yield	eld		Beets/		Root	Powdery
Varietv	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
		Lbs	Tons	o⊱	No.	o⊱	≫	08/6
Hybrid checks				•	!	,	(
R190H5	C833-5HO x Y090	19210	53.22	18.08	127	84.6	0.0	8.8
R190H6	C833-5H50 x Y090	17279	48.38	17.85	134	84.5	0.0	4.5
R190H50	C790-15CMS x Y090	16752	50.19	16.70	132	84.3	0.0	5.3
Beta 4776R	rec'd 8-31-01	19673	54.83	17.95	155	84.1	0.0	2.5
Mean		14983.8	44.83	16.62	151.0	84.3	0.3	4.8
LSD (.05)		2821.2	7.33	1.20	16.9	3.5	2.3	1.3
C.V. (%)		13.5	11.70	5.17	8.0	2.9	599.0	18.7
F value		8.1**	7.56**	9.57**	3.2**		1.9** 0.9NS	5.3**

Popn-836 combines Rz with VYR. H50 = C790-15CMS Notes: See Test 7002 under rhizomania. C546 & C562 are monogerm components of US H11. FC123 & FC123H5 combine Rz and Cercospora leaf spot resistance. FC1014 and FC1014H5 combine Rz and Rhizoctonia resistance. Popns-841, -842, & -835 combine Rz with high CTV resistance. Popn-836 combines Rz with VYR. H50 = C790-15 Planted: April 22, 2002 Harvested: October 31, 2002

48 entries x 4 reps., sequential 1-row plots, 11 ft. long

		Acre	Yield		Beets/		Root	Powderv
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
		I.bs	Tons	o o	No.	o⁄e	o(P	10/25
<u>Checks</u> 0833-5A (Sp)	RZM 9833-5(T-O)A, (C833-5)	9376	9		148	84.1	7.7	ນ
89-190-68	$\overline{}$	16	19.78		9	ω.	5.8	•
00-790-15	7	9059	æ.	ъ.		85.2	12.3	4.3
00-790-15CMS	88-790-68CMS x C790-15	8621	7.	9	159	•	6.3	5.3
FC monogerm lines 01-FC123	s RZM 00-FC123,19991012mmaa x A	10197	Η.	16.40	152	84.8	17.7	0.9
01-FC1014	RZM 00-FC1014mmaa x A	9156		Η.	7	ij	4.	5.8
01-FC1014H51	0833-5HO x " "	9912	ω.	17.75	157	83.4	2.8	6.8
01-FC123H5 ²	0833-5HO x RZM 00-FC123	11417	4.	6.8	വ	•	10.4	6.3
Monogerm lines,	CMS's and ${ m F_1CMS's}$							
	Inc. 97-C546, (C546)	တ	9.	5.0	168	81.1	9.1	5.0
0562	Inc. 97-C562, (C562)	ന	7.2	5.3	170	т М	•	•
0911-4-10m(Sp)	Inc. 9911-4-10(C)mm, (C911-4-10)	9822	28.05	17.63	114	83.2	24.4	2.0
0911-4-10H5	9833-5HO x 9911-4-10m	m	8.0	7.4	150	т М	23.4	•
0911-4-10H50	C790-15CMS x 9911-4-10m	4	5.9	17.52	9	5.	•	•
0833-5H45	RZM C867-1HO x 9833-5(T-O)	$^{\circ}$	。	7.6	2	4	8	•
0833-5HO(Sp)	RZM 9833-5 (T-0) HO x ", (C833-5CMS)	11589	32.00	18.23	148	83.6	4.2	5.0
0833-5A(Sp)	Inc. 0833-5(T-0)A, (C833-5)	7	9	7.4	4	2	•	•
1833-5 (Iso)	RZM 0833-5(Sp) (A,aa), (C833-5)	71	7.0	7.9	168		8.0	5.0
1833-5HO(Iso)	333-5HO x " , (C83	11522	32.88	17.63	166	83.3	21.9	4.8
1833-5	33-	07	3.3	7.2	177	ö	1.2	5.0
1833-5HO	5HO(Iso) x " x (C83	51	9.8	7.7	141	5.	•	
1833-5-8	Inc. 8833-5-8 (A,aa)	11861	α.	8.4		84.1	8.7	4.0
1833-5-11	Inc. 8833-5-11 (A,aa)		22.08	18.73	141		4.8	2.8

EVALUATION OF MONOGERM LINES & POPULATIONS UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7002.

Variety	Description	Acre	Acre Yield ar Beets	Sucrose	Beets/ 100'	RJAP	Root	Powdery Mildew
		I.bs	Tons	%	No.	% I	æ	10/25
lines,	41-	830	•	16.23	157	81.7	7.4	•
1835-11H5	0833-5HO x "	12369	6.2	7.1	150	82.6	10.8	3.8
1835-26H5		11312	32.86	17.25	152	ъ.	•	•
1835-26	Inc. 8835-26 (A,aa)	m	6.4	6.8	164	85.6	9.3	3.3
ω	resistant monogerms							
	Inc. N065-9 (A, aa)	7032	26.00	13.57	159	•	0.0	2.8
N165-9HO	NR-RZM N065H5 x N065-9	12738	1.3	5.5	2	ω.	•	4.0
N165-9H50	C790-15CMS x N065-9	68	0.1	5.7				4.5
N165	NR-RZM N065mm (galls) (A,aa)	9502	30.36	15.70	159		9	
N1 67M	Inc. N067-1(C), N066-1(galls)(A, aa)	89	8.6	5.5			•	4.0
N167MHO	$N065H5 (galls) \times N067-#(C)$	34	6.1	7.1	Ŋ	4	14.0	4.0
Monogerm populati	suo:							
1848M RZ	M-ER-%	165	5.1	6.6	4	2		•
6986		10735	34.67	15.57	159	81.7	2.8	5.3
1869	-#s (C) aa	232	8.1	6.3	7	5	•	•
1869НО	9869HO x " " (C869CMS)	173	6.1	6.3	9	9	•	•
0841H7	9833-5aa x 841(C)	13695	8.7	17.70	143	84.7	3.6	5.8
0841H5	$9833-5(T-0)HO \times 841(C)$	13111	7.8	7.3	Ω	5	•	
1842	RZM-ER-% 9840, mmaa x A	11608	34.27	9	155	84.9	1.5	6.0
1842HO(B)	0841HO,H5, x A	11901	5.2	7.1	9	5	•	5.8
1835	RZM 0835 (C) mmaa x A	198	5.0	7.0	9	4.	•	6.0
1835HO	RZM 0835HO x "	11389	33.66		159	83.6	15.5	4.5
1836	0836,0837mmaa x A	283	8.6	6.5	7	8	7	5.8
1836НО	0836НО ж А	76	5.2	6.7	7	4.	•	•

EVALUATION OF MONOGERM LINES & POPULATIONS UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7002.

(cont.)

		Acre Yield	ield		Beets/		Root	Root Powdery
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
		sqT	Tons	o ⊱ i	No.	o∤P∣	oP	10/25
Hybrid checks								
X190H5	C833-5HO x Y090	13806	40.23	17.20	105	83.3	2.5	5.3
X190H6	C833-5H50 x Y090	12510	35.63	17.58	130	84.9	1.7	5.3
X190H50	C790-15CMS x Y090	12051	36.16	16.73	134	85.0	11.8	5.0
Beta 4776R	rec'd 8-31-01	12413	34.55	18.00	164	86.1	1.4	2.3
M.			į		L L	ć	•	(
reall		10658.5	31.65	16.85	155.2	g3.g	8.4	8.4
LSD (.05)		2506.2	7.46	66.0	20.1	3.6	16.6	1.4
C.V. (%)		16.8	16.86	4.19	6.9	3.1	1 141.4	20.8
F value		5.5**	4.83**	8.05**	4.4*	* 1.3NS 1	s 1.2NS	5.8**

Footnotes:

Those new monogerm populations will be FC1014 has combined resistance to rhizomania and Rhizoctonia. $^101-FC1014H5$ is the CMS version of the F_1 hybrid C833-5aa x FC1014. advanced as FC1015 and FC1015HO.

C833-5 These new monogerm populations will be FC123 has combined resistance to rhizomania and Cercospora leaf spot. germplasm will add resistance to curly top virus, virus yellows, and bolting. $^201-FC123H5$ is the CMS version of the F_1 hybrid C833-5aa imes FC123. advanced as FC124 and FC124HO.

Also see Test 4702 under nondiseased conditions.

Popn-835 combines Rz and VYR & CTR from early generation inbred lines developed at Salinas. Popn-841 combines Rz and CTR from inbred lines such as C546, C562, C718, C762-17, etc.

PERFORMANCE OF COMMERCIAL HYBRIDS WITHOUT BChV INOCULATION, SALINAS, CA, 2002 TEST 2602.

, 2002		Bolting	o⊱l		0.0		0.0	•	c			0.0		0	•		•	0.4		0.0		0.0	0.0	0.0	•	•
February 27, October 9,	sn.		Mean		1.4		•	2.5		2.0	1.8	•		C L	2.5	•	2.5	2.6	3.6	•		1.8	•	1.7	•	•
e E	Virus	Yellows	8/29		2.8		3.5	5.3	5.5		9.0	3.1		a			•	4.1		2.5		5.6	•	3.1	•	•
Planted: Harvested:	Powdery	Mildew	Score		4.4		0.9	•	5.0			6.9		ע	, n		•	5.8	5.3	5.9		4.4	3.5	4.8	•	•
	д	RJAP	o%	_	85.5		•	86.8	85.7	85.8	4	84.4		27	. 6	വ.	4.	84.4	•	85.1		84.7	84.4	82.9	•	•
	Beets/	1001	No.	7	141		2	153	152	146	159	147		154	വ	161	156	155	162	160		149	152	144	136	92
		Sucrose	o(P	1	16.66		9	17.00	17.23	7.5	9	16.35		17 69	? =	17.58	•	17.00	7	18.46		17.15	18.54	18.17	17.27	17.49
	Yield	Beets	Tons	C	. 2		62.33	62.53			52.91	•		60 07	. o	•	51.55	ო.				54.05	52.00	50.44	52.86	50.33
	a	Sugar	rps	17770	18763		21021	21273	19996	18956	8	17582		17414	19064	19675	17566	17104	18138	19758		18566	19264	18325	18262	17631
8 reps., RCB(e) 22 ft. long		Description		08-31-5H0 * RZW R076-80	C790-15HO x RZM R076-89	commercial hybrids	rec'd 8-16-01	rec'd 8-31-01	rec'd 8-16-01	rec'd 8-31-01	rec'd 3-10-97	1999 production, 11-3-99		2-22-02 (Tot 8033)	(0112	2-22-02 383-936	2-22-02 515-047	2-22-02 (Lot 8044)	2-22-02 (0205C8602)	2-22-02 (011130FH2)	ntal hybrids	C833-5HO x RZM 9929-62	C833-5HO x RZM 9929-4	$C833-5HO \times RZM 9930-35$	C562HO x RZM Y090	C833-5HO * RZM Y090
24 entries x 1-row plots,		Variety		Checks R176-8945	R176-89H50	California co	ı	Beta 4430R	HH141	Beta 4776R	Beta 4035R	9 V US H11	00000	1 5	Beta 6045	HM 9155	HM 1639	Ranger	Crystal 205	Beta 4546	USDA Experimental hybrids	1929-62Н5	1929-4H5	1930-35H5	Т190Н3	X190H5

PERFORMANCE OF COMMERCIAL HYBRIDS WITHOUT BChV INOCULATION, SALINAS, CA, 2002 TEST 2602.

(cont.)

		Acre Y	ield		Beets/		Powdery	ιτ̈́ν	Virus	
Variety	Description	Sugar Beet	Beets	Sucrose	1001	RJAP	Mildew	Yel	Yellows	Bolting
		Irbs	Tons	%	No.	o⁄e	Score	8/29	Mean	æ∣
USDA Experim	USDA Experimental hybrids (cont.)									
X190H50	C790-15CMS x RZM Y090	18576	54.67	16.99	132	86.5	4.4	5.6	1.4	0.0
X190H2	$C831-3HO \times RZM Y090$	17292	50.69	17.02	122	84.8	4.9	3.0	1.7	0.0
X190H27	C831-4HO x RZM Y090	18583	55.63	16.66	135	84.9	5.5	2.8	1.7	0.0
Beta 6600	rec'd 7-11-00	18490	46.96	19.69	157	88.0	5.4	4.0	2.3	0.0
Mean		18620.7	53.37	17.47	146.3	85.5	5.1	3.4	2.0	0.1
LSD (.05)		1301.5	2.87	0.74	12.2	1.8	0.7	0.7	9.0	9.0
C.V. (%)		7.1	5.46	4.27	8.5	2.1	13.2	21.4	28.1	535.8
F value		5.7*	5.7**13.47**	9.32**	12.1**	12.1** 3.7**	15.8**	10.3**	7.8**	2.7**

Wotes: See Test 2202 for VY (BChV) inoculated and relative VY %loss.

showing yellowing symptoms. Plots were not inoculated so this VY reflects natural infection with BChV and BWYV. Virus yellows was scored 6/27, 7/21, 8/05, & 8/29 on a scale of 0 to 9, where 9 = 90-100% of mature leaves Natural infection was late and mild.

Powdery mildew was controlled until the end of season. PM should have had relatively little effect on yield.

producing states and in Europe. For several years in the late 1990's, BChV caused significant losses in certain fields in the Northern Great Plains. Varieties listed as Colorado commercial hybrids were chosen because they Beta 6600 was Beet chlorosis virus is one of the components of VY in California and also is known to occur in other beet were grown in the 1990s when BChV was severe or because they represent currently grown hybrids. included as a high %S, VY susceptible check.

PERFORMANCE OF EXPERIMENTAL HYBRIDS WITHOUT BChV INOCULATION, SALINAS, CA, 2002 TEST 2702.

Planted: February 27, 2002 Harvested: October 09, 2002 24 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

ery Virus	dew Yellows	re 8/29 Mean	. v	3.8	3.5	5.1 2.	8 5.3 3.1	3 2.6 1.5	6 2.9 1.5	.8 1.		2	4 2.6 1.4			2.6	8 2.6 1.4	3.1	4.	2.3 1.
Powdery	RJAP Mildew	& Score	~			4.	85.2 4.8	.7 4.	85.6 3.0	.6 5.		.0 5.	85.0 4.		5.2 3	85.9 5.6	.0	5.0 4.	.4 4.	.4 3.
Beets/	e 100'	No.	154	14	15	7	155		151			15				H	150	Η	-	-
	Sucrose	o ⊱ 	17.55	17.1	17.2	16.9	18.52		17.80			16.8	Н		Н	17.31	H		17.9	17.6
Yield	Beets	Tons	54.47	57.5	59.	æ	51.18	വ	55.48			•	5.3		6.	58.30	ω.	ω.	4.	52.10
Acre	Sugar	sqT	19110	978	20620	19978	18963	18136	19728	18867		18740	19317		19210	20180	19354	18	σ	18385
	Description		checks rec'd 8-31-01	rec'd 8-16-01	rec'd 8-16-01	rec'd 8-31-01	check 2-22-02 (Lot 0205 C8602)	cks C790-15CMS x RZM R076-89	C790-15CMS x RZM-ER-% Y969, (C69)	C790-15CMS x RZM Y090		RZM	C790-15CMS x RZM 0941, (popn-941)	1 pollinators	C790-15CMS x 8930-19, (C930-19)	C790-15CMS x RZM 9927-4, (C927-4)	C790-15CMS x RZM 9929-62, (C929-62)	x RZM 9930-35, (C93	C790-15CMS x RZM 9929-4	C790-15CMS x RZM 9924-2
	Variety		Commercial che Beta 4776R r	HH141 r	Phoenix	Beta 4430R r	Susceptible cho Crystal 205 2	nt che -H50	X169H50 C	X190H50 C	ndod e		1941H50 C	Hybrids with S ₁ pollinators	0931-19H50 C	1927-4H50 C	1929-62H50 C	0	1929-4H50 C'	1924-2H50 C'

PERFORMANCE OF EXPERIMENTAL HYBRIDS WITHOUT BChV INOCULATION, SALINAS, CA, 2002 TEST 2702.

(cont.)

			Acre Yield	eld	-	Beets/		Powdery	Virus	18
Variety	Δ	Description	Sugar	Beets	Sucrose	1001	RJAP	Mildew	Yellows	SMC
			I.bs	Tons	or I	No.	oko	Score	8/29	Mean
Hybrids with	Hybrids with FS pollinators	rs								
X168-16H50	C790-15CMS x Y968-16	x Y968-16	19877	55.68	17.85	153	86.5	3.6	3.1	1.8
R181-22H50	C790-15CMS x R981-22	c R981–22	20092	56.59	17.76	148	86.0	4.4	2.9	1.3
R178-6H50	C790-15CMS x R978-6	c R978-6	21128	90.09	17.58	155	86.9	5.6	3.0	1.5
R180-11H50	C790-15CMS x R980-11	c R980–11	19684	54.92	17.90	149	85.3	5.3	5.9	1.8
R176-89-5-4H50	20									
	C790-15CMS x	C790-15CMS x R976-89-5-4	20523	57.14	17.99	148	85.7	4.6	2.3	1.2
X167-5H50	C790-15CMS x Y967-5	c Y967-5	20269	56.43	17.96	155	86.0	4.0	2.9	1.5
X172-1H50	C790-15CMS x	x Y972-1	19782	55.88	17.66	157	83.9	6.0	5.9	1.6
Y175-13H50	C790-15CMS x Y975-13	c Y975-13	18296	52.91	17.31	148	85.7	5.0	2.8	1.4
Mean			19519.6	55.80	17.50	150.4	85.6	4.7	3.1	1.7
LSD (.05)			1315.9	2.84	0.70	10.3	5.0	0.7	9.0	0.4
C.V. (%)			6.8	5.17	4.08	7.0	2.4	13.9	20.8	23.9
F value			2.6*	5.09**	3.66**	2.5**	1.5NS	12.7**	12.1**	**8.6

See Test 2302 for VY (BChV) inoculated and relative VY %loss. Notes:

Virus yellows was scored 6/26, 7/21, 8/05, & 8/29 on a scale of 0 to 9, where 9 = 90-100% of mature leaves Plots were not inoculated so this VY reflects natural infection with BChV and BWYV. Natural infection was late and mild. showing yellowing symptoms.

PM should have had relatively little effect on yield. Powdery mildew was controlled until the end of season.

EVALUATION OF TOPCROSS HYBRIDS WITH POPN-931, SALINAS, CA, 2002 TEST 2902.

12 entries x (1-row plots, 3	8 reps., RCB 22 ft. long					Planted: Harveste	 G	February 27, October 8,	, 2002
Varietv	Description	otion	Acre Y	Yield Reets	02070118	Beets/	7. 7.	Root	Powdery
			I.bs	Tons))))	No.	o⁄e) %	Score
Check Beta 4776R	rec'd 8-31-01	01	19586	53.91	18.19	153	87.9	0.0	2.9
Topcrosses to 1931H50	ᅄ	RZM 093	20582	•	7.	4	•	0.0	5.1
1931H5	0833-5HO	RZM 093	19272	54.03	7.8	133	4.	•	•
193146	0833-5H50	X KZM 0931	19064	55.12	17.27	136	84.6	0.0	5.0
1931H2	9831-3HO	x RZM 0931	19067	53.41	17.85	135	85.2	0.4	4.6
1931H27	9831-4HO	x RZM 0931	19370	57.49	16.85	137	83.2	0.0	5.1
1931H28	0831-4-7HO	x RZM 0931	20809	58.65	17.73		S.	0.0	5.3
1931H29	0831-4-10HO	x RZM 0931	19953	57.98	17.16	135	83.3	0.0	5.1
1931H62	0836-1H5	x RZM 0931	18877	53.36	17.69	137	84.7	0.0	5.0
1931H63	0836-7H5	x RZM 0931	18989	54.37	17.45	132	84.9	0.0	4.0
1931H64	0834-2H5	x RZM 0931	18266	52.59	17.35	139	84.5	0.4	6.0
1931H67	0837-6H5	x RZM 0931	19375	53.46	18.11	ന	85.3	0.0	5.3
;			(1					
۲.			19434.2	•	17.56	138.1	85.0	0.1	4.8
<u> </u>			•	•	0.65	10.2	2.0	9.0	8.0
C.V. (%)			7.9	6.6	۲.	7.4	2.3	556.3	16.7
F value			1.8NS	3.49**	3.12**	3.0**	3.1**	0.9NS	7.7**

Notes: Evaluation of early generation monogerm lines: 0833-5HO = C833-5CMS; 0833-5H50 = C790-15CMS x C833-5; 9831-3HO = C831-3CMS; 9831-4HO = C831-4CMS; HS = C833-5CMS x T-O. 0931 = popn-931 = MM, S^{f} , Aa, Rzrandom-mating population.

EVALUATION OF TOPCROSS HYBRIDS WITH Y90, SALINAS, CA, 2002 TEST 3002.

24 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

Planted: February 27, 2002 Harvested: October 8, 2002

			Acre Yield	Yield		Beets/		Root	Powdery
Variety	Description	ion	Sugar	Beets	Sucrose	1001	RJAP	Rot	Mildew
			Ibs	Tons	o⁄e [No.	o ⊱ 	o∤0	Score
Check Beta 4430R	rec'd 8-31-01		19977	α	17 00	ر بر	7	c	
3000			0			77		•	4.0
Phoenix	rec'd 8-16-01		20698	59.71	17.31	157	88.9	0.4	5.5
Topcrosses to	C790-15CMS	0604 *	18358	52 20	Ľ	127	<i>y V</i> 8	ני	o
			3	4		, 77		•	٠
Y190H5	С833-5но	× Y090	17095	48.49	17.61	104	85.1	0.0	4.5
Y190H6	C833-5H50	× Y090	18658	51.68	0.	130	84.3	0.5	4.0
X190H45	C867-1HO	× X090	18259	4	. 7	134	85.5	•	3.6
X190H2	C831-3HO	x Y090	17494	50.53	7.3	2	84.5	0.0	4.4
Y190H27	C831-4HO	x Y090	19132	œ	17.44	128	84.2	0.0	4.4
X190H7	C833-5 (Sp) aa	× X090	18189	0.2	۲.	127	84.7		4.6
X190H29	0831-4-10HO	× X090	15	4.3	17.65	128	84.7		4.5
У190Н62	0836-1H5	× X090	18106	51.31	7.	118	84.0	0.0	4.0
Y 190H63	0836-7H5	x Y090	18973	3.0	7.9	125	84.1	•	3.9
X190H64	0834-2H5	x Y090	17380	9.	17.51	128	85.7	0.0	5.6
Y190H67	0837-6H5	× X090	18101	1.1	•	4	84.8	•	4.8
Y190H82	C833-5H2	x X090	17773	50.27	17.70	127	83.6	0.0	4.5
Y190Н83	C833-5H27	× X090	18588	2.1	17.81	\vdash	•	•	თ. ღ
Y190H84	C833-5H45	× X090	19359	g. 6	•	4	83.4		
У190н85	C833-5H46	× X090	18891	52.76	17.90	\mathcal{C}	84.8	0.0	
У 190НЗ	97-C562HO	× X090	18073	0.5	7.	139	84.7		5.1
Y190H46	0Н9-6986	× X090	18235	52.76	17.30	ϵ	85.6	0.0	

EVALUATION OF TOPCROSS HYBRIDS WITH Y90, SALINAS, CA, 2002 TEST 3002.

(cont.)

			Acre Yield	ield		Beets/		Root	Powdery
Variety	Desc	Description	Sugar	Beets	Sucrose	1001	RJAP	Rot	Mildew
			Lbs	Tons	o(>	No.	o/0	o(0	Score
Population 1	Population hybrids Y90 (cont.)	(cont.)							
X190H55	0835но	060X ×	18987	53.08	17.90	132	84.5	0.0	4.9
X190H56	0836но	060X ×	19547	54.72	17.84	139	86.3	0.0	5.9
X190H70	0Н6986	060X ×	19391	55.01	17.60	138	85.5	0.0	5.5
X190H51	0841HO	x X090	17358	49.08	17.54	139	86.0	0.0	4.6
Mean			18574.0	52.56	17.67	131.6	85.0	0.1	4.7
LSD (.05)			1788.8	4.66	0.59	10.3	1.9	0.5	0.7
C.V. (%)			8.6	9.01	3.41	8.0	2.2	810.9	15.5
F value			1.9*	2.65**	1.51NS	8.9**	3.0**	0.9NS	8.3**

Notes: Evaluation of early generation monogerm lines and their F_1CMS hybrids: Y090 = MM,OP line from recombined FS families = Cycle 1, Syn 1; 0833-5HO = C833-5CMS; $0833-5H50 = C790-15CMS \times C833-5$; H5 = C833-5CMS x T-O; H2 = C831-3CMS x T-O; H46 = 9869-6CMS x T-0.

TEST 3102. EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS, SALINAS, CA, 2002

Planted: February 27, 2002 Harvested: October 7, 2002

48 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

111111111111111111111111111111111111111		re Fe	Yield	(Beets/	, ;		Powdery
variety	Description	Sugar	Beets	Sucrose	100 T	KUAP	Bolting	Mildew
		I.bs	Tons	æ 	No.	o(>	æ	Score
Test 3102-1: 1	$16V \times 8R$, RCB(e)							
Checks								
HH 141	rec'd 8-16-01	20264	56.43	17.96	160	85.6	0.0	5.8
Phoenix	rec'd 8-16-01	19744	56.84	17.34	166	87.4	0.0	6.1
Beta 4776R	rec'd 8-31-01	19895	ω.	8.1	160	85.4	0.0	2.8
Beta 4430R	rec'd 8-31-01	19501	5.9	7.	161	85.0	•	•
Retests & new	seed productions							
CR009-1H50	C790-15CMS x CR909-1 (CR09-1)	20019	57.64	17.36	156	83.2	2.1	5.6
Z025-9H50	_	18684	0.4	18.54	158	83.4	0.0	3.0
0930-19H50	x 8930-19 (C930-19)	19655	55.48	17.71	155	85.0	0.0	3.6
1930-19H50	x NB 8930-19 (C930-19)	19361	55.63	17.40	164	84.3	0.0	3.0
1927-4450	(1-1500) 1-7000 MZM & SMU-10620	10061	57 70	17 36	151	7	c	ι.
	# 1200 table	1			' נ	,	•	•
1929-62H50	-62 (C929-	18293	4.9	•	148	84.0	0.0	თ.
1930-35H50	x RZM 9930-35 (C930-35)	19105	53.36	17.92	156	84.1	0.0	4.6
1929-4H50	x RZM 9929-4	20055	55.43	18.09	155	83.7	0.0	4.6
1924-2H50	x RZM 9924-2	18789	54.40	17.25	152	84.0	0.0	3.6
0936-10H50	x 8936-10	20163	57.79	17.45	155	84.2	0.0	4.3
0936-16H50	C790-15CMS x 8936-16	18787	50.64	18.52		84.4	0.0	3.4
9929-45H50	x 7929-45VY	18690	54.67	17.09	152	83.5	0.0	4.1
Mean		19435.4	55.13	17.64	157.0	84.4	0.1	4.3
LSD (.05)		1248.0	3.12	0.64	7.7	1.7	9.0	0.7
C.V. (%)		6.5	5.72	3.65	5.0	2.1	460.1	16.4
F value		2.0NS	3 3.77*	5.20**	k 3.0**	* 3.0**	6.0**	18.5**

EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS, SALINAS, CA, 2002 48 entries x 8 reps., RCB(e). ANOVA across tests to compare means. TEST 3102.

83.7 0.5 1.8 1.2 2.2 274.5 2.8** 14.5** 157.0 11.3 7.3 1.6* 17.72 : 0.59 3.35 4.56** 54.49 2.99 5.57 6.58** 3.9** 19297.9 1211.7 LSD (.05) C.V. (%) F value Mean

4.6 0.7 15.1 13.9**

EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS, SALINAS, CA, 2002 TEST 3102.

Mildew Powdery Score 5.3 4.9 4.8 3.9 3.3 Bolting 0.0 0.0 0.0 0.0 0.0 0.0 83.6 82.3 83.4 85.4 83.4 85.1 83.0 83.9 RJAP Beets/ 1001 156 157 No. 157 148 150 163 161 159 157 Sucrose 17.46 17.60 17.16 17.50 18.02 17.85 17.77 17.74 17.94 æ [Beets 55.93 53.41 57.39 60.01 52.81 53.01 58.70 60.00 54.91 Tons Acre Yield Sugar 18478 19515 20656 20615 18806 18940 20861 19472 21511 Lbs 9941 x RZM-ER-% 9931 x RZM-ER-% x 9941 (C) 9931-201 Description x 9931-56 9936-14 9931 (C) x Z025(C) 9932-6 Test 3102-2: 16V x 8R, RCB(e) × × × × C790-15CMS C790-15CMS C790-15CMS Selected S₁ lines 1931H50(Iso) 1941H50 (Iso) 1941H50 (Sp) 1931-201H50 1931H50 (Sp) 1931-56H50 1936-14H50 .935-6H50 Variety $\frac{\mathsf{Check}}{\mathsf{Z125H50}}$ Checks

0.0 0.0 0.0 0.0 8.3 0.0 0.4 84.5 82.4 83.4 83.7 83.2 83.1 155 159 157 157 161 154 18.55 17.88 17.86 17.21 17.69 17.08 56.69 52.05 56.74 51.53 54.52 54.87 20362 19544 18419 20260 18630 18417 x CR910-14-2 x RZM 0942 \times Z931-18 x CR910-5 \times Z931-14 x CR11(C) C790-15CMS C790-15CMS CR110-14-2H50 C790-15CMS lines Selected S₁ lines Selected S₁ Z131-14H50 Z131-18H50 CR110-5H50 Check CR111H50 1942H50

256.0 83.5 2.0 83.2 156.8 6.8 4.4 156 3.03 17.29 17.66 0.53 7.32** 55.64 2.79 57.64 5.07 6.0 1163.0 19650.2 19918 CR812-5 CR112-5H50 LSD (.05) C.V. (%) F value Mean

13.5**

1.5NS 14.7**

2.5**

4.00**

5.6**

14.6

0.7

1.5

9.0

5.0

5.3

5.1

5.8

5.1

EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS, SALINAS, CA, 2002 TEST 3102.

			Acre Yield	ield		Beets/			Powderv
Variety	De	Description	Sugar	ts	Sucrose	1001	RJAP	Bolting	Mildew
			Irbs	Tons	o ∤ 0	No.	o\0	940	Score
	× 8R,	RCB(e)			ı		l	I	
Population hybrids	0-150M3	* BZM-FB-8 0030	9 7 9 0 1	70	77	L	0	c	L.
		רכה אדו ויוויי	ח			7	·	•	•
1933H50		x RZM-ER-% 9933	19350	. 7	17.69	9	•	8.2	5.6
N124H50		x NR-RZM N024	18783	53.76	17.48	161	84.0	0.0	4.8
FC1030H50		x FC1030(C)	18430	7	17.31	9	84.5	1.3	5.3
Testcross hybrids to	to C833-5CMS	5CMS							
	0833-5но	x 0931	19261	•	17.95	145		0.0	5.0
1941H5		x 0941	18354	•	17.98	147	83.1	0.0	4.5
1942H5		x RZM 0942	18062	50.83	17.76	153	82.0	0.0	4.3
FC1030H5		x FC1030(C)	18425	51.60	17.86	161	83.3	0.3	5.9
CR111H5		x CR11(C)	18564	52.41	17.73	156	81.4	0.4	5.3
Z125H5		x Z025(C)	17489	49.33	17.71	150	82.7	0.0	4.8
	9833-2но	x 8930-19 (C930-19)	19491	53.70	18.17	165	85.3	0.0	4.1
1930-35H5 083	0833-5но	x RZM 9930-35 (C930-35)	18943	50.64	18.67	159	82.8	0.0	5.4
1927-4H5		x RZM 9927-4 (C927-4)	19971	57.09	17.51	163	83.4	0.0	6.5
1929-62H5		x RZM 9929-62 (C929-62)	935	5.3	7.5	വ	ന	•	
1929-4H5		x RZM 9929-4	18991	4.	ω.	155	8	0.0	3.5
1924-2H5		x RZM 9924-2	17612	48.52	18.15	വ	82.5	0.0	4.4
Mean			18808.2	52.70	17.86		83.2	9.0	4.9
LSD (.05)			•	0.	•		1.6	1.4	9.0
C.V. (%)			6.1	5.76	2.90	•	•	217.9	ij
F value			3.2**	5.62**	5.56**	5.7**		17.2**	12.5**

Notes: Usually line numbers prefixed with "C" have been released.

No soil-borne problems PM was controlled until very late in the Grown in an area following methyl bromide fumigation and strawberry production. were observed. Natural VY infection was light to moderate. season. Downy mildew was mild on most entries.

Also see test 7902 for performance under rhizomania and B302 & B502 for performance in Imperial Valley.

RETEST OF Simmaa x C78 TOPCROSSES FROM 2000, SALINAS, CA, 2002 TEST 3202.

Harvested: September 24, 2002 Planted: February 27, 2002 12 entries x 8 reps., RCB 1-row plots, 22 ft. long

			a	Yield		Beets/			Powdery
Variety	Desci	Description	Sugar	Beets	Sucrose	100,	Bolting	RJAP	Mildew
			I.bs	Tons	o⊱	No.	o⊱	o⊱	9/23
Checks Bets 4776B	10-18-8 b/201	-	200		77	70	c	и 0	
יייי יייי	יייי דייייי		1000	•	•	007		٠	•
R078H50	C790-15CMS	$C790-15CMS \times R978 (C78/2)$	17906	53.41	16.74	165	0.0	84.2	3.5
R078H5	9833-5(T-0)HO x R978) HO x R978	17120	49.63	17.25	162	0.0	84.0	2.9
Retests of S_{1} mm lines	mm lines								
R078H10-17	9810-17aa	x R978 (C78/2)	16620	50.03	16.64	165	0.0	83.8	3.3
R078H10-19	9810-19aa	x R978	16443	49.23	16.69	160	0.0	83.9	4.5
R078H48-1	9848-1aa	x R978	17869	52.40	17.05	143	0.0	84.0	5.4
R078H69-9	9869-9aa	x R978	18177	53.61	16.96	163	0.0	85.0	4.8
R078H35-8	9835-8aa	x R978	17697	52.45	16.85	161	0.0	83.5	5.3
R078H35-10	9835-10aa	x R978	17984	52.10	17.25	158	0.0	85.1	4.0
R078H35-3	9835-3aa	x R978	17607	52.15	16.91	161	0.3	84.5	4.9
R078H36-4	9836-4aa	x R978	14911	45.87	16.15	134	0.0		3.6
R078H36-13	9836-13aa	x R978	16855	50.99	16.50	153	0.0	82.9	3.6
Mean			17295.4	51.25	•	157.7	0.03	84.1	3.9
LSD (.05)			1589.6	3.65	0.86	14.0	0.28	1.8	0.8
C.V. (%)			9.5	7.16	5.12	8.9	979.80	2.1	21.5
F value			3.0**	2.98**	1.24NS	4.0**	1.00NS	1.7*	13.2**

Notes: In 1999, S_1 progenies from S^t , monogerm populations were produced and tested for 0-type. In 2000, the S_1 progenies were rogued to genetic male steriles and topcrossed to C78/2. On the basis of topcross hybrid tests in 2001, selected topcross hybrids were retested in 2002 at Salinas and Brawley. S_1 's from populations 810 and 840 have resistance to rhizomania from C51 (8vm). Popn 835 has good curly top resistance. Popn 836 was developed for resistance to virus yellows. Also see test 8002 under rhizomania. Planted: February 27, 2002 Harvested: September 23, 2002

24 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

		Acre Yield	ield		Beets/	Root		Powdery
Variety	Description	Sugar	Beets	Sucrose	100,	Rot	RJAP	Mildew
		Irbs	Tons	o ∕∘ 	No.	o ⊱ 	· %	9/23
Checks Phoenix	rec'd 8-16-01	19108	6.9	16.73	168	0.0	87.0	9.4
Beta 4776R	rec'd 8-31-01	18472	51.50	6	162		•	•
Beta 4430R	rec'd 8-31-01	18584	4.8	6.9	160	0.4		3.6
HH141	rec'd 8-16-01	19100	55.03	17.34	159	0.0	86.8	•
Testcrosses w	ations							
R078H5	$9833-5(T-0)HO \times R978 (C78/2)$	18013	2.2	•	\mathbf{S}	0.0	т Э	•
X190H5		ø	5.9	7.7	0	•	т М	•
X175H5	0833-5HO x RZM Y075	16514	47.97	17.16	143	0.0	82.0	3.3
R176-89H5	0833-5HO x R076-89	7	0.5		Ŋ	•	4.	
1942H5	0833-5HO x RZM 0942	4	49.67	17.60	5	0.0	82.6	2.9
01-FC1030H5	0833-5HO x FC1030(C)	17477	о О	17.65	155	0.0	83.4	4.0
1931H5	0833-5HO x RZM 0931(C)	17830	50.50	9.	4	•	83.5	3.9
1941H5	0833-5HO × RZM 0941(C)	_		17.41	വ	0.0	•	•
CR111H5	0833-5HO x RZM CR011(C)	90	52.23	7.3	153	•	81.7	3.6
Z125H5	0833-5HO x RZM Z025	17665	8.8	18.09		0.0	83.2	3.3
	with progeny lines							
Z025-9H5	9833-5HO x Z825-9 (CZ25-9)	18167	49.88	18.20	165	0.0	82.2	2.5
CR009-1H5	9833-5HO x CR909-1 (CR09-1)	17991	. 7	7.	161	0.0	82.7	3.8
0930-19H5	9833-5HO x 8930-19 (C930-19)	18731	2.7	7.7	9	•	4	•
0929-112H5	9833-5HO x 8929-112	18585	51.80	17.94		0.0	83.2	4.5
929-11	9833-5HO x 8929-114	857	1.0	7	157	•	82.9	2.9
1929-4H5	0833-5HO x RZM 9929-4	œ	49.53	18.23		0.0	82.4	2.4

TEST 3302. EVALUATION OF TESTCROSS HYBRIDS TO C833-5CMS, SALINAS, CA, 2002

(cont.)

		Acre Yield	ald		Beets/	Root		Powdery
Variety	Description	Sugar	Beets	Sucrose	100,	Rot	RJAP	Mildew
		sqT	Tons	90	No.	o₽	o(P	9/23
Testcrosses 1929-62H5	Testcrosses with progeny lines (cont.) 1929-62H5 0833-5HO x RZM 9929-62 (C929-62)						
		18089	51.85	17.44	154	0.0	83.6	3.1
1930-35H5	0833-5HO x RZM 9930-35 (C930-35)						
		17621	48.67	18.10	152	0.0	81.8	3.6
1924-2H5	0833-5HO x RZM 9924-2	17066	47.21	18.08	159	0.0	83.8	ж. Ж.
1927-4H5	0833-5HO x RZM 9927-4 (C	927-4)						
		18673	54.32	17.17	157	0.0	83.5	4.1
Mean		17974.9	51.00	17.63	155.0	0.02	83.6	3.4
LSD (.05)		1315.0	3.08	0.61	12.0	0.22	1.7	0.8
C.V. (%)		7.4	6.13	3.50	7.9 1	7.9 1367.30	2.0	23.6
F value		2.3**	5.44**	3.76**	7.3**	1.00NS	5.9**	7.3**

9833-5(T-0)HO and 0833-5HO = C833-5CMS. Also see test 8102 under mild rhizomania. Notes:

TEST 3402. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS, SALINAS, CA, 2002

17.7 18.6 Harvested: September 24, 2002 Powdery Mildew 5.3 5.0 3.0 3.3 4.5 0.7 February 27, 2002 2.4 3.6 84.8 85.5 86.1 84.0 86.9 88.5 87.6 86.6 85.8 84.1 85.3 85.1 3.0 85.5 86.3 86.0 84.9 85.8 2.0 RJAP æ| Bolting 5.9 732.80 1008.90 3.3** 1.23NS 1.61* 0.04 0.38 |. |-|. |ļ. | ļ. 1 Planted: Root 0.38 Rot ۱. ۱ 1. 1. 1. 1. | . | . | . | ۱. ۱ 1 1 1 i. ۱. ا жI 1.4NS 5.4 9.4 8.7 161.8 161.4 Seets/ 100' 165 156 156 159 165 169 160 160 165 159 162 157 164 162 161 ģ EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS, 2002 1.83** 2.11* Sucrose 17.35 16.71 17.63 17.25 17.30 17.70 16.96 17.30 17.48 17.60 17.73 17.17 17.89 17.43 0.63 3.67 x 8 reps., RCB(E). ANOVA across tests to compare means. 17.45 0.75 4.38 17.95 17.59 4.45** 3.27** 49.63 54.52 52.20 51.85 51.85 51.09 3.13 5.97 3.04 5.87 56.84 58.08 54.17 52.45 52.96 50.89 52.89 49.18 53.66 52.81 54.02 Beets Tons Acre Yield 7.2 3.3** 9.9 18297.8 1291.6 18427.2 1204.7 Sugar 19460 19287 17695 17961 18250 19202 06961 17158 9060 18118 19008 17494 17651 18104 17933 18764 Irbs C790-15CMS x RZM-ER-% R978 C790-15CMS x RZM-ER-% Y969 C790-15CMS x RZM-ER-% R980 R980-16 x Y968-13 Y968-16 R980-11 R980-21 R978-11 x Y968-8 x R978-6 R978-5 Description 16V x 8R, RCB(e) rec'd 8-31-01 rec'd 8-16-01 rec'd 8-31-01 rec'd 8-16-01 48 entries x 8 reps., RCB(e) ×× 1-row plots, 22 ft. long Hybrids with FS lines Test 3402-1: 48 entries Beta 4776R Beta 4430R X168-13H50 R180-11H50 R180-16H50 R180-21H50 TEST 3402. X168-16H50 R178-11H50 R178-5H50 R178-6H50 X168-8H50 Variety LSD (.05) LSD (.05) C.V. (%) C.V. (%) R180H50 F value Phoenix R178H50 Y169H50 F value Checks HH 141 Mean Mean

EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS, SALINAS, CA, 2002 TEST 3402.

(cont.)

Powdery RJAP Mildew			86.4 4.3		85.8 4.0	86.9 3.4	84.9 4.4	85.9 3.6	5	3.5	85.7 5.3	83.2 4.9	.3	85.0 4.4	85.3 4.5	81.4 3.8	85.5 3.8	84.2 4.8	85.1 4.1	3.3 0.7	3.9 16.9	
Bolting R				1.1	1.1	1	!	1.1		1.1	- !		1.1	!	1.	1.	1.1		_			
Root	æ l		0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.7	0.0	0.0	0.1	0.5	546.8	* 1.4NS
Beets/ 100'	No.		149	162	164	160	159	162	155	160	155	162	158	159	149	161	142	156	157.1	6.4	4.1	6.6*
Sucrose	oko		17.23	17.64	17.91	17.80	17.75	17.92	17.45	17.26	17.55	4	17.76	17.19	17.10	17.10	17.65	17.04	17.49	0.67	3.84	1.63NS
Yield Beets	Tons		50.09	54.02	54.65	50.74	50.64	54.35	51.99	0.	51.19	•	50.24	50.99	49.43	51.04	50.55	51.38	51.66	3.18	6.22	1.98*
Acre Yie	I.bs		17261	19054	19555	18053	17978	19455	18139	17982	17959	18611	17837	17527	16878	17470	17839	17533	18070.6	1267.4	7.1	2.8**
Description		16V x 8R, RCB(e)	C790-15CMS x R076-89	x RZM R076-89-5	x R976-89-5-4	x R976-89-5NB-4	x R976-89-5-13	x R981-22	x RZM-ER-% Y967	x Y967-5	C790-15CMS x RZM-ER-% Y971	x Y972-1	x Y972-5	x Y972-7	C790-15CMS x Y075	x Y975-13	× ¥090	x RZM-ER-% R970				
Variety			R176-89H50 C790-	R176-89-5H50	R176-89-5-4-H50	R176-89-5NB-4H50	R176-89-5-13H50	R181-22H50	X167H50	Y167-5H50	Y171H50 C790-	X172-1H50	X172-5H50	Y172-7H50	X175H50 C790-	Y175-13H50	X190H50	R170H50	Mean	LSD (.05)	C.V. (%)	F value

EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS, SALINAS, CA, 2002 TEST 3402.

		a	Yield		Beets/	Root			Powdery
Variety	Description	Sugar	Beets	Sucrose	100,	Rot	Bolting	RJAP	Mildew
		I.bs	Tons	o(0	No.	æ	oko]	oko	9/23
Test 3402-3:	16V x 8R, RCB(e)			l		I	l	l	
	$\frac{1}{C790-1}$ SCMS × PMR-RZM P029-#(C)	18346	52	. 92	17.34169	J	0.0	0.0	84.9 4.0
P130H50	\times PMR-RZM P030-#(C)	18500	2	17.60	164	•	0.0		•
P118-6H50	x P918-6	19025	56.13	16.94	167	0.0	0.0	84.3	5.3
P125-12H50	x P925-12	17444	æ	18.01	161	•	0.0	•	•
P007/8H50	x PMR-RZM P807, P808	18766	53.56	17.52	169	0.0	0.0	86.3	2.6
R143H50	C790-15CMS x RZM-ER-% R943	17318	0	17.13		0.0	0.0	4.	•
R140H50	x RZM-ER-% R940, R954	18125	0.	17.42	170	0.0	0.0	83.2	4.0
Retests from	2000 seed								
R078-4H50	C790-15CMS x R878-4	17769	53.51	16.63	169	0.0	0.0	85.4	3.6
R078-8H50	x R878-8	17915	51.70	17.30	162	0.0	0.0	84.6	4.6
X067-3H50	x Y867-3	18263	æ	9.	160	•	0.0	•	
R080-9H50	x R880-9	17812	54.10	4.	166	0.0	0.0	81.9	3.6
Y069-18H50	x Y869-18	18742	53.56	17.49	166	0.0	0.0	86.5	•
R080/2-9H50	C790-15CMS x R880/2-9	19494	53.73	18.14	177	0.0	0.0	84.5	5.4
R080/2-11H50	x R880/2-11	19456	54.32	17.91	170	0.0	0.3	85.7	5.0
R080-45-10H50	0 x R880-45-10	18786	53.91	17.41	169	0.0	0.0	85.2	3.4
Y072-4H50	x Y872-4	18565	52.10	17.82	167	0.3	1.1	•	4.4
Mean		95.	52.81	17.42	167.1	0.04	0.1	•	4.1
TSD (.05)		•	2.65	ω.	•	ω.	0	•	0.8
C.V. (%)		•	0.		.5	•	689.	ო.	
F value		2.0*	3.45**	2.13*	2.3**	0.92NS	3 1.7NS	1.0NS	6.6**

Notes: Evaluation of full-sib lines in testcross hybrids. FS's were extracted from lines such as C78/2, C80 & C76-89-5; C72, Y75, & C67 with resistance from C51 (Bvm); and P#'s with PMR from WB97 & WB242. Following FS progeny evaluations, selected FS's were testcrossed to C790-15CMS t evaluate hybrid performance.

Also see tests B202 & B602 at Brawley, 7802 under rhizomania, and 402 for nonbolting evaluation.

TEST 2202. PERFORMANCE OF COMMERCIAL HYBRIDS UNDER BChV INOCULATION, SALINAS, CA, 2002

Planted: February 27, 2002 Harvested: October 15, 2002 24 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

		Mean	•	2.9		9.9	6.0	•	4.3	•		•	5.6	•	•	•	5.9	•		3.7	4.4	•	3.7
2002	llows	l	4.	0.	ų	. œ.	0.	4.	6.	0.		0.	0.	ت	۲.	н.	۳.	m.		4.	4.	۲.	4.0.
6	s Yell		4	4		3 7	7	9	4 4	1 5			9 7			4	0 7			8 4	-	œ	1 2 2
Мау	Virus	8/2	m.	2.	Ľ			5.	4.	4.		5	5.	ъ.	9	Л	9	w.		m.	4	4.	4 4
BChV:		6/26	•	1.4	~		•	•	3.3	•		•	3.8	•	•	4.3	4.4	•		2.4	•	•	1.8
Inoc.	Powdery Mildew	Score	3.6	4.1	-		•	•	5.9	•		•	5.0	•	•	•	4.8	•		3.1	•	•	5.4 7.5
	RJAP	o o	84.1	4.		85.0	•	•	82.7	•		ъ.	86.9	2	4.	4.	84.9	ъ.		84.2	m.	<u>ش</u> ا	85.0 84.2
	Beets/ 100'	No.	141	151	791	9	162	156	169	156		150	164	163	155	Ŋ	153	9		142	142	158	131 98
	Sucrose	o⊱		5.8	מ	15.19	15.84	6.9	15.91	5		6.9	18.10	9.9	5.5	6.4	16.99	8.0		15.99	7.7	7.5	16.58 16.84
	Beets	Tons	47.98	٠. ت	σ		44.79	•	45.00	49.60		37.39	38.90	7.7	37.97	2.2	40.97	0.0		46.52	9	9	47.19
	Acre Yield Loss ¹ Be	o⊱	10.23	1.3	27 10	. r	8.7	4.1	19.74			7.4	26.17	9.0	2.8	8.5	23.43	. 5		19.87	4.2	1.1	14.39 12.67
	Sugar	I.bs	15953	16638	15324	13714	14254	16267	14305	15255		12635	14075	15923	11790	13937	13889	18078		14877	16530	16292	15634 15397
,	Description		0833-5HO x RZM R076-89	C790-15HO x RZM R076-89	commercial hybrids		rec'd 8-16-01	rec'd 8-31-01	rec'd 3-10-97	1999 production,11-3-99	commercial hybrids	2-22-02 (Lot 8033)	2-22-02 (011218FH2)		2-22-02 515-047	2-22-02 (Lot 8044)	2-22-02 (0205C8602)	2-22-02 (011130FH2)	Experimental hybrids	C833-5HO x RZM 9929-62	x RZM		C562HO x RZM Y090 C833-5HO x RZM Y090
	Variety		Checks R176-89H5	R176-89H50	California o	Beta 4430R	HH141	Beta	Beta 4035R	US H11	Colorado com	Monohikari	Beta 6045	HM 9155	HM 1639	Ranger	Crystal 205	Beta 4546	USDA Experim		1929-4H5	1930-35H5	Y190H3 Y190H5

			Acre Yield	ald	щ	Beets/	_	Powdery				
Variety	Description	Sugar	Loss	Beets	Beets Sucrose 100' RJAP Mildew	1001	RJAP	Mildew	,	/irus	Yellov	٧S
		I.bs	oko	Tons	oko	No.	o⊁e∣	Score	6/26	8/5	6/26 8/5 8/29 M	Mean
USDA Experime	USDA Experimental hybrids (cont.)											
X190H50	C790-15CMS x RZM Y090	16999	8.49	51.78	16.41	137	84.8	4.5	1.3	3.3	4.1	2.9
X190H2	$C831-3HO \times RZM Y090$	16652	3.71	50.06	16.64	132	85.4	3.9	1.6	3.3	4.8	3.4
X190H27	C831-4HO x RZM Y090	18088	2.67	54.87	16.48	143	84.2	5.8	1.5	3.0	3.4	2.7
Beta 6600	rec'd 7-11-00	14597	21.05	38.29	19.05	162	87.9	6.1	4.3	6.3	7.3	5.9
Mean		15296.0		45.98	16.65	150.485.0	85.0	4.9	3.1	4.7	4.7 5.6	4.6
LSD (.05)		1245.6		3.02	99.0	12.5	12.5 1.8	0.7	9.0	9.0	9.0 9.0	0.4
C.V. (%)		8.3		6.67	4.00	8.4	8.4 2.1	13.9	17.7	12.3 11.3	11.3	8.5
F value		12.3	*	18.75**	15.80**		**3.5	12.0**3.5**26.1**43.0**37.8 30.9	43.0**	37.8	30.9	74.9**

Test 2202 was inoculated May 9, 2002 with Beet chlorosis virus % loss is the relative sugar yield loss calculated from the corresponding means in each test. $^{1}\mathrm{Test}$ 2202 and Test 2602 are companion tests. (BChV).

Notes: Virus yellows foliar symptoms were scored on a scale of 0 to 9, where 9 = 90-100% of the mature leaf Scores were made on 6/26, 7/18, 8/05, and 8/29 by JAO. area yellowed.

Powdery mildew was scored on a scale of 0 to 9, where 9 = 90-100% of mature leaf area covered with mildew. was controlled until late in the season so PM should have had relatively little effect. Test 2102 thru 2802 were grown on soil that had been fumigated with methyl bromide in 2000 prior to strawberries Foliar diseases of rust and downy mildew were minor to moderate. Aphids and worms were controlled as There appeared to be minimal soil borne problems including no observed rhizomania or sugarbeet cyst needed with Lorsban and herbicide treatment of Nortron/Betamix was applied once following thinning. nematode.

producing states and in Europe. For several years in the late 1990's, BChV caused significant losses in certain fields in the Northern Great Plains. Varieties listed as Colorado commercial hybrids were chosen because they Beta 6600 was Beet chlorosis virus is one of the components of VY in California and also is known to occur in other beet were grown in the 1990s when BChV was severe or because they represent currently grown hybrids. included as a high %S, VY susceptible check.

PERFORMANCE OF COMMERCIAL HYBRIDS UNDER BChV INOCULATION, SALINAS, CA, 2002 TEST 2202.

	٧S	Mean
	Yellows	8/29
	Virus	8/2
		6/26
Powdery	Mildew	Score
	RJAP	oko
Beets/	1001	No.
	Sucrose	æ
eld	Beets	Tons
Acre Yield	$Loss^1$	%
	Sugar	I.bs
	Description	
	Variety	

inoculated test. These comparisons were chosen to determine the relationship or association between measures of VY (VY scores for individual dates and for the mean VY score) and performance factors and between VY scores and relative % sugar yield loss. There were fair to good associations between VY score and sugar yield but there were good correlations between VY score and relative % sugar yield loss. These results suggest that scoring Coefficients of Correlation: Partial sets of coefficients of correlation (r), n=24 were run within the VY entries for VY (Beet Chlorosis Virus) is predictive of their reaction to VY.

ĭt	<u> 2</u>	VY 7/18					.76**	
onding tes	(Test 260	VY 8/29				**48.		
n correspo	Non-inoculated test (Test 2602)	VY mean			.81**			
s betwee	n-inocul	8S	i	. 92**				
relation	No	SY	.16NS					
Cor		W Inoc.	SY	%S	VY mean	VY 8/29	VY 7/18	
2202		%loss	**98.	.82**	.85**	**98.	.85**	
ed test		RJAP	.43*	.47*				
inoculat		% S	OZNS.	SN60.				
ithin WY		RY	76**	76**				
Correlations within VY inoculated test		$\mathbf{S}\mathbf{X}$	76**	72**	75**	78**	71**	. 25NS
Correl			VY mean	VY 8/29	VY 8/05	VY 7/18	VY 6/26	% sugar

There was a very poor association between these tests for sugar yield, but a high association for %S, and high (BChV/BWYV) infection in the non-inoculated test could also be used to predict VY reaction of these entries. Correlations were also run between the entry means for corresponding VY inoculated and noninoculated tests. correlations between VY scores on the same dates. This suggests that the milder and later natural VY

Planted: February 27, 2002 Harvested: October 16, 2002 24 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

	Mean	w o s r	ਜ :	9.	•	4.			o			۲.
Yellows		86 15 655 655	9	8 4	o (0	r.		-		8 4	0 57
		6 7 6	7.		2 .	m.	ď					•
Virus			6.3	6.1	1.9	•	0		0			2.5
	6/26	4.04.0 4.0.0.0	4.6	3.1		0	ر بر		м -			•
Powdery Mildew	Score	ო ო ო 4 ი ო ა თ. ი ო თ თ	5.8	4.5	4.1	5.0	-		o			4.4
RJAP	o(0	85.4 86.7 86.7 85.6	84.9	84.9	84.3	84.6	0		α α	. n	5	85.4
Beets/ 100'	No.	152 162 157 158	164	160	151	159	<u>.</u>	144	رم د	147	155	165
Sucrose	æl	17.01 16.08 15.88	16.50	16.06	16.56	6.7	ر د د	6.3	, y	 	. 9	17.46
Beets	Tons	50.02 46.26 48.32 46.05	42.28	54.02	55.40	51.62	بر د		с 2	. 6	4	•
Acre Yield Loss ¹ Be	o o	10.89 24.52 25.51 29.93	26.48	4.22	6.91	8.19	7	7	ע ע	13.66	-62) 7.57	1-35) 7.84
Sugar	Lbs	17028 14936 15359 13999	2) 13941	17370	γ γ	1/322	0931, (popn-931)	0941, (popn-941) 17883	8930-19, (C930-19)	9927-4, (C927-4) 17423		9930-35, (C930-; 17403
Description		checks rec'd 8-31-01 rec'd 8-16-01 rec'd 8-16-01 rec'd 8-31-01	check 2-22-02 (Lot 0205 C8602)	90-15CMS x		C/90-15CMS x RZM X090	populations C790-15CMS x RZM 0931	C790-15CMS x RZM 0941	S ₁ pollinators C790-15CMS x	C790-15CMS x RZM 9927-	C790-15CMS x RZM 9929.	C790-15CMS x RZM 9930.
Variety		Commercial ch Beta 4776R HH141 Phoenix Beta 4430R	Susceptible c Crystal 205	Resistant checks R176-89-H50 C7	Y169H50	X I 90H50	MM, S ^f , Aa popu 1931H50	1941H50	Hybrids with 0931-19H50	1927-4H50	1929-62H50	1930-35H50

PERFORMANCE OF EXPERIMENTAL HYBRIDS UNDER BChV INOCULATION, SALINAS, CA, 2002 TEST 2302.

																		.4*4
	Ø	Mean		4.9	3.8		5.3	4.6	5.9	5.8	4.		5.3	4.8	9.8	0.4	9.7	.0**65
	Virus Yellows	8/29		3.6	2.3		3.6	3.1	4.4	4.4	2.6			3.4	5.3	9.0	10.	5**30
	Virus	8/5		2.8	1.4		3.4	1.5	3.4	3.3	1.6	2.3	•	1.8	9. 8.	9.0	16.9	9**27.
		6/26		3.7	5.6		4.0	3.1	4.5	4.3	2.9	3.4	3.7	3.3	2.7	9.0	20.6	7NS 36.
Powdery	Mildew	Score		3.8	3.3		3.6	3.9	5.4	5.5	9.	4.9	5.6	4.8	4.5	6.0	19.3	5NS 1.7
	RJAP	oko		84.9	85.7		86.5	85.7	85.5	85.4	87.0	85.5	85.1	83.3	85.4	1.8	2.1	H
Beets/	1001	No.		146	156		154	144	157	157	150	157	150	155	154.6	13.3	8.7	**76
H	Sucrose 100'	%		18.00	16.99		17.51	17.01	16.67	16.91	16.86	9	17.10	15.93	16.62	0.76	4.65	.52** 4.9
1d	Beets	Tons		51.80	52.72		54.07	59.81	54.27	50.03	57.31	53.86	53.21	51.30	52.20	2.88	5.60	13.5
Acre Yield	Loss1	o(∙		4.77	2.91		4.65	-1.34	14.25	13.96	5.54	13.87	7.93	10.43				**9.(
	Sugar	Irbs		18627	17849		18953	20360	18118	16936	19385	17458	18213	16388	17374.9	1322.8	7.7	10
	Description		Hybrids with S ₁ pollinators (cont.)	C790-15CMS x RZM 9929-4	C790-15CMS x RZM 9924-2	FS pollinators	C790-15CMS x Y968-16	$C790-15CMS \times R981-22$	$C790-15CMS \times R978-6$	C790-15CMS x R980-11	0 C790-15CMS x R976-89-5-4 19385	C790-15CMS \times Y967-5	$C790-15CMS \times Y972-1$	C790-15CMS x Y975-13				
	Variety		Hybrids with	1929-4H50	1924-2H50	Hybrids with	X168-16H50	R181-22H50	R178-6H50	R180-11H50	R176-89-5-4H50 C790-15CMS	X167-5H50	X172-1H50	X175-13H50	Mean	LSD (.05)	C.V. (%)	F value

¹Test 2302 and Test 2702 are companion tests. Test 2302 was inoculated May 9, 2002 with Beet chlorosis % loss is the relative sugar yield loss calculated from the corresponding means in each (BChV) virus test.

Notes: Virus yellows foliar symptoms were scored on a scale of 0 to 9, where 9 = 90-100% of the mature leaf area yellowed. Scores were made on 6/26, 7/18, 8/05, and 8/29 by JAO.

Powdery mildew was scored on a scale of 0 to 9, where 9 = 90-100% of mature leaf area covered with mildew. PM was controlled until late in the season so PM should have had relatively little effect.

	rirus Yellows	8/5 8/29 Mean
	7	6/26
Powdery	Mildew	Score
	RJAP	o 0
Beets/	1001	No.
	Sucrose	%
[ield	Beets	Tons
Acre Yi	$Loss^1$	o-P
	Sugar	Irbs
	Description	
	Variety	

Test 2102 thru 2802 were grown on soil that had been fumigated with methyl bromide in 2000 prior to strawberries Foliar diseases of rust and downy mildew were minor to moderate. Aphids and worms were controlled as There appeared to be minimal soil borne problems including no observed rhizomania or sugarbeet cyst needed with Lorsban and herbicide treatment of Nortron/Pyramin was applied once following thinning. nematode.

inoculated test. These comparisons were chosen to determine the relationship or association between measures of VY (VY scores for individual dates and for the mean VY score) and performance factors and between VY scores and relative % sugar yield loss. There were fair to good associations between VY score and sugar yield but there These results suggest that scoring Coefficients of Correlation: Partial sets of coefficients of correlation (r), n=24 were run within the VY entries for VY (Beet Chlorosis Virus) is predictive of their reaction to VY. were good correlations between VY score and relative % sugar yield loss.

st	02)	VY 7/18					.81**	
onding te	(Test 27	VY 8/29				**06.		
Correlations between corresponding test	Non-inoculated test (Test 2702)	VY mean			**68.			
s betweer	n-inocula	8°S		SN68.				
relation	No	SX	. 13NS					
Co		VY Inoc.	SY	% S	VY mean	VY 8/29	VY 7/18	
2302		%loss	**98.	**68.	**98.	.83**	.81**	
			i					
ted test			. 28NS	.27NS				
inoculated test		RJAP	'					
rithin VY inoculated test		%S RJAP	. 28NS	38NS				
Correlations within VY inoculated test		RY &S RJAP	82**32NS .28NS	81**38NS	**67.1	78**	72**	. 63NS

scores on the same dates. This suggests that the milder and later natural VY (BChV/BWIV) infection in the non-There was a very poor association between these tests for sugar yield and %S, but high correlations between VY Correlations were also run between the entry means for corresponding VY inoculated and noninoculated tests. inoculated test could also be used to predict VY reaction of these entries.

TEST 7602. EVALUATION OF TOPCROSS HYBRIDS WITH POPN-931 UNDER RHIZOMANIA, SALINAS, CA, 2002

Planted: April 19, 2002 Harvested: October 18, 2002 12 entries x 8 reps., RCB 1-row plots, 22 ft. long

Variety	Description	Acre Yield Sugar Bee	eld Beets	Sucrose	Beets/ 100'	RJAP	Root	Powdery Mildew
		I.bs	Tons	orl	No.	ok∙	de	Mean
Checks								
Beta 4776R	rec'd 8-31-01	12476	36.86	16.90	177	89.2	6.8	1.9
Angelina	rec'd 3-19-02	13552	39.82	17.01	178	87.1	8.1	6.4
Topcrosses to	popn-931							
1931H50	MS x RZM	11794	37.59	15.70	153	86.4	0.6	3.4
1931H5	0833-5HO x RZM 0931	11962	36.38	16.45	119	87.0	1.8	3.9
1931H6	0833-5H50 x RZM 0931	12403	38.35	16.19	152	87.2	7.8	3.1
1931H2	9831-3HO x RZM 0931	11916	37.24	16.02	136	86.7	4.7	ტ. წ
1931H27	9831-4HO x RZM 0931	11689	36.71	15.94	144	86.2	6.0	4.1
1931H29	0831-4-10HOx RZM 0931	12060	38.39	15.69	134	86.2	6.3	4.9
1931H62	0836-1H5 x RZM 0931	11831	37.24	15.93	141	85.4	4.7	თ. წ
1931H63	0836-7H5 x RZM 0931	12133	37.88	16.01	136	86.7	12.4	2.1
1931H64	0834-2H5 x RZM 0931	11743	35.63	16.49	151	85.5	7.3	4.6
1931H67	0837-6H5 x RZM 0931	12205	36.75	16.60	138	85.9	9.5	3.4
Mean		12146.9	37.40	16.24	146.6	86.6	7.0	3.8
LSD (.05)		1062.9	2.81	0.62	18.1	1.5	6.1	0.8
C.V. (%)		8.8	7.55	3.84	12.4	1.8	87.3	21.2
F value		1.8NS	1.22NS	4.03**	7.1**	3,3**	1.6NS	18.0**

Notes: See Test 2902 without rhizomania.

24 entries x 8 reps., RCB(e) 1-row plots, 18 ft. long

Planted: April 19, 2002 Harvested: October 18, 2002

				,					
	i		Acre	Acre Yield		Beets/		Root	Powdery
Variety	Descri	Description	Sugar	Beets	Sucrose	100′	RJAP	Rot	Mildew
			Ibs	Tons	% [No.	æΙ	% [Mean
Checks Beta 4430R	rec'd 8-31-01	01	12197	5.6	7.0	162	87.8	8.0	წ
Phoenix	rec'd 8-16-01	01	10885	32.39		162	•	3.5	5.0
Topcrosses to Y90	0								
X190H50	C790-15CMS	x X090	11608	34.49	•	136	6.	7.2	4.0
X190H5	C833-5HO	x Y090	10796	1.4	7.1	66	85.1	1.9	3.8
У190н 6	C833-5H50	x X090	12082	35.04	17.27	119	87.1	2.3	4.5
Y190H45	C867-1HO	x X090	11180	33.54	16.66	114	86.2	1.4	3.8
У190Н2	C831-3HO	× X090	11641	34.19	16.99	111	86.8	3.9	4.8
Y190H27	C831-4HO	× Y090	11798	35.64	16.59	\vdash	83.9	•	4.5
Y190H27	C833-5aa	× ¥090	11349	1.9	17.77	117	85.9	1.0	o.e
X190H29	0831-4-10HO	x Y090	12724	38.69	16.40	138	84.9	•	4.4
X190H62	0836-1H5	x Y090	11853	4.1	17.36	106		3.6	•
х190н63	0836-7H5	x X090	12336	36.61	16.88	7	86.1	•	2.6
X190H64	0834-2H5	x Y090	11176	34.56	16.24	115	86.1	2.5	4.8
Т190Н67	0837-6H5	x X090	11305	32.81			85.8	•	4.9
Y190H82	C833-5H2	x Y090	11656	34.43		111	85.5	1.6	4.3
У190 Н83	C833-5H27	× Y090	73	4.6	16.95	127	9.98	•	4.0
X190H84	C833-5H45	x X090	11114	2.7	6.9	2	84.6	•	4.4
Y190H85	C833-5H46	x Y090	12274	35.65	17.21	143	86.7	2.2	5.0
Х190НЗ	97-C562HO	x Y090	10582	۲.	16.99	135	85.4	4.1	•
Y190H46	0Н9-6986	× Y090	11727		9.9	130		4.8	5.3

EVALUATION OF TOPCROSS HYBRIDS WITH Y90 UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7702.

(cont.)

			Acre Yield	rield.		Beets/		Root	Powdery
Variety	Des	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
			sqT	Tons	o ₽	No.	æ	œ۱	Mean
X190H55	0835но	060X ×	11520	34.95	16.48	144	85.5	3.1	4.0
X190H56	0836но	× X090	11523	34.58	16.65	139	85.1	7.6	4.9
Y190H70	0н6986	× X090	12047	34.54	17.42	152	86.3	7.5	4.9
Y190H51	0841HO	× ¥090	11680	34.28	17.08	152	86.7	4.4	4.3
Mean			11616.1	34.31	16.94	128.7	86.0	3.5	4.3
LSD (.05)			1047.7	3.05	0.55	16.2	2.0	6.2	0.8
C.V. (%)			9.5	9.02	3.30	12.8	2.3	182.7	17.9
F value			1.9*	2.35**	3.19**	**9.6	•	1.7NS 1.2NS	5.3**

Notes: See Test 3002 without rhizomania.

Descriptions:

HO = CMS; H5 = C833-5CMS \times T-O; H27 = C831-4CMS \times T-O; H45 = C867-1CMS \times T-O; H46 = 9869-6HO \times T-O. Y090 = Cycle 1, Syn 1 from FS selection of MM,O.P. lines.

TEST 7802. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS UNDER RHIZOMANIA, SALINAS, CA, 2002

Harvested: November 4, 2002 Planted: April 22, 2002 48 entries x 8 reps., RCB(e) 1-row plots, 22 ft. long

		Acre	Yield		Beets/		Root	Powdery
Variety	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
		Tps	Tons	æ	No.	o(P)	o∤≎	Mean
Checks								
Beta 4776R	rec'd 8-31-01	12390	ω.	18.85	161	88.5	0.7	2.9
Beta 4430R	rec'd 8-31-01	13475	36.56	18.43	173	6	•	4.6
Phoenix	rec'd 8-16-01	11209	ω.	8.1	157	89.1	2.1	6.5
HH 141	rec'd 8-16-01	11384	30.46	8.6	155	•	•	•
Hybrids with E	FS lines							
R178H50	C790-15CMS x RZM-ER-% R978	11031	30.79	17.90	158	87.0	1.4	5.5
R178-5H50	x R978-5	10581	9.	٦.	168	•	1.4	•
R178-6H50	x R978-6	12097	3.2	18.19	161	87.6	1.4	5.1
R178-11H50	x R978-11	12030	.5	8.5	170	88.2	2.4	•
X169H50	C790-15CMS x RZM-ER-% Y969	11484	31.54		160	87.7	1.1	5.1
X168-8H50	8-896X ×	12067	2.5	8.5	Ω	7	•	•
X168-13H50	x Y968-13	10196	27.52	8.5	150	98.6	2.3	•
Y168-16H50	x Y968-16	11663	1.6	8.4	155	87.2	•	4.3
R180H50	C790-15CMS x RZM-ER-% R980	11829	2.3	18.26	151		2.3	5.3
R180-11H50	x R980-11	12138	33.00	18.39	157	86.4	3.7	5.6
R180-16H50	x R980-16	11740	1.8		161	87.7	1.5	5.9
R180-21H50	x R980-21	12195	2.8	8.6	166	9	•	
Mean			31.86	18.39	160.0	87.7	1.8	•
ISD (.05)		•	2.37	0.46	10.6	1.6	3.4	•
C.V. (%)		7.6	•	2.54	•	1.9	193.8	10.7
F value		.*0.9	* 5.46**	2.09*	3.2*	•	0.5NS	3 22.3**

87.4 1.8 5.2 1.7 3.6 0.6 2.0 209.6 11.3 * 2.0** 0.8NS 19.2** EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS UNDER RHIZOMANIA, SALINAS, CA, 2002 160.9 12.0 7.6 4.9** 18.34 0.50 2.79 4.67** 2.47 32.62 48 entries x 8 reps., RCB(e). ANOVA across tests to compare means. 992.5 11969.0 TEST 7802. Mean

4.88**

5.0** 8.4

LSD (.05) C.V. (%) F value

TEST 7802. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS UNDER RHIZOMANIA, SALINAS, CA, 2002

(cont.)

			Acre Yield	rield		Beets/		Root	Powdery
Variety	Des	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
			Ips	Tons	ઝ ∘	No.	o ⊱ 	æ	Mean
Test $02-2$: 16V x 8R,	8R, RCB								
R176-89H50	C790-15CMS	x R076-89	11208	31.43	7.	140	88.0	0.8	5.4
R176-89-5H50		x RZM R076-89-5	11539	31.43	18.38	161	98.6	0.4	5.1
R176-89-5-4-H50		x R976-89-5-4	183	ω.	18.86	163	86.8	2.2	5.1
R176-89-5NB-4H50		x R976-89-5NB-4	11984	32.00	•	159	•	2.5	•
R176-89-5-13H50		x R976-89-5-13	10688	28.81	18.52	162	86.9	2.2	0.9
R181-22H50		x R981-22	12357	33.21	18.61	165	8	•	
X167H50		x RZM-ER-% Y967	22	ω.	18.45	156		1.1	5.3
X167-5H50		x R978-5	\vdash	33.54	æ.		•	5.6	4.1
X171H50	C790-15CMS	x RZM-ER-% Y971	11641	32.44	17.94	157	87.0	4.0	6.5
X172-1H50		x Y972-1	13097	4	18.76	172	86.3	6.0	5.8
X172-5H50		x Y972-5	11988	33.06	18.14	168	87.7	2.5	5.1
X172-7H50		x Y972-7	12262	33.86	•	172	87.0	1.3	•
X175H50	C790-15CMS	x Y075	11556	32.81	17.58	159	87.0	3.5	5.0
X175-13H50		x Y975-13	12517	6.	4.	9	87.9	0.8	•
X190H50		x X090	10977	30.19	8.1	136	88.0	0.5	5.3
R170H50		x RZM-ER-% R970	11484	31.49	18.23	160	87.0	0.7	5.1
Mean			11845.6	32.35	18.31	160.3	87.5	•	5.2
LSD (.05)			945.1	2.33	0.53	11.7	1.6	3.3	•
C.V. (%)			8.1	7.28	2.94	7.4	1.9	213.8	o. 6
F value			* * M . M	3.42**	3.43**	5.8	* 1.4NS	0.7NS	3 10.4**

EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7802.

(cont.)

		Acre Yield	eld		Beets/		Root	Powderv
Variety	Description	Sugar	ts	Sucrose		RJAP	Rot	Mildew
		I.bs	Tons	% ∣	No.	o%	o(0	Mean
Test 03: 16V x 8 P129H50	8R, RCB C790-15CMS x PMR-RZM P029-#(C)	12478	3.4	9	162	87.7	1.4	r. L
P130H50	x PMR-RZM P030-#(C)	227		00	164	. 6		
P118-6H50	x P918-6	229	3.9	8.1	166		3.5	5.5
R021H50	x RZM R926,R927, (C26,C27)	10951	o.	. 7	141	•		•
P007/8H50	x PMR-RZM P807, P808	12734		8.3	166	87.6	•	4.3
R143H50		350	æ	•	159		6.0	4.9
R140H50	94	12312	ω.	8.2	168	7.		5.0
R136H50	x RZM-ER-% R936	12351	4.9	7.	167			•
Retests from 2000	seed	Č	7	0	1	c		
	4	12049	4.) 	1/1		0.	•
x06/-3H50	x Y867-3	11003	31.23	17.63	131		1.4	•
Y069-18H50	x Y869-18	10817	٠.	8.1	154	87.6	2.6	4.3
R080/2-9H50	C790-15CMS x R880/2-9	12298	2.1	19.15	161	86.0	•	•
R080/2-11H50	x R880/2-11	12106	3.4	8.1	170	9.98	0.3	5.1
X072-4H50	x Y872-4	12696	34.39	18.48	166	86.5	9.0	•
Checks								
Angelina	rec'd 3/19/02	13838	35.07	9.7		89.4	•	8.8
Beta 4001R	rec'd 9/25/01	13762	37.08	18.49	176	86.7	2.5	3.1
Mean			33.64	18.33	162.3	87.1	1.9	5.2
LSD (.05)		1077.6	2.59	0.48	10.8	•	4.2	0.5
C.V. (%)		8.8	7.77	2.67	6.7	2.2	217.3	10.1
F value		•	4.58**	9.91**	9.3**	2	1.0NS	39.9**

EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7902.

April 22, 2002 Mildew Powdery 1.6NS 20.5** Mean 12.9 Planted: April 22, 2002 9.0 4.6 4.5 3.6 4.3 3.9 3.8 4.8 4.4 EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS UNDER RHIZOMANIA, SALINAS, CA, 2002 Bolting 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.4 638.5 o/0 | 1.4NS 0.8NS Harvested: Root 1.5 1.0 1.0 1.0 0.8 1.6 0.4 2.4 415.4 Rot 86.9 88.2 85.8 87.0 86.9 87.9 85.3 86.7 86.0 86.4 87.2 88.2 2.1 88.4 87.1 87.1 87.4 RJAP op | 6.5** 13.6 9.1 150.7 Beets/ 100' 153 149 162159173 156 160 161 149 130 131 138 140 137 152 161 S S 2.948.37** Sucrose 19.66 18.80 17.60 18.86 18.31 18.64 19.11 18.39 0.54 18.61 17.84 17.85 17.74 18.36 18.06 18.11 18.61 18.13 10.79** 36.35 38.80 37.35 38.15 35.10 32.40 36.88 2.33 32.09 37.03 34.91 36.49 41.37 40.46 40.19 34.97 35.15 39.21 Beets Tons Acre Yield 928.5 6.9 7.9** 13548.7 Sugar 13309 14432 13712 13486 13213 13243 13013 12738 12373 13910 14961 3209 14774 3424 15212 11771 Ibs x RZM-ER-% 9924 x RZM 9930-35 x RZM 9929-62 x NB 8930-19 x RZM 9927-4 x RZM 9929-4 x RZM 9924-2 x 8930-19 x 8936-10 x 8936-16 x CR909-1 x Z825-9 Description Retests & new seed productions rec'd 8-16-01 8-16-01 rec'd 8-31-01 rec'd 8-31-01 48 entries x 8 reps., RCB(e) C790-15CMS C790-15CMS RCB 1-row plots, 22 ft. long rec'd 8R, 16V x Test 02-1: Beta 4776R Beta 4430R Variety CR009-1H50 0930-19H50 1930-19H50 1929-62H50 1930-35H50 TEST 7902. 0936-10H50 0936-16H50 1927-4H50 Z025-9H50 1929-4H50 1924-2H50 LSD (.05) C.V. (%) Phoenix F value 1924H50 Checks HH 141 Mean

8.8** 22.3**

1.0NS

9.7**

0.6

3.8

2.4 273.6

10.3

3.10 7.89**

7.30

7.3**

9.7

146.8 14.9

0.56

2.65

18.32

36.82

13480.6

48 entries x 8 reps., RCB(e). ANOVA across tests to compare means.

LSD (.05)

Mean

C.V. (%)

F value

0.2 0.9 382.8

87.1

(cont.)

Variety	Description	ption	Acre Y.	Yield Beets	Sucrose	Beets/ 100'	RJAP	Root Rot 1	Bolting	Powdery Mildew
Test 02-2: 16V	x 8R, RCB		Lbs	Tons	%	No.	æ		æ1	Mean
Checks										
Angelina	rec'd 3-19-02	02	14929	38.96	19.16	176	•	6.0	0.0	8.5
Beta 4001R	rec'd 9-25-01	01	15518	41.02	8.9	180	8	•	•	
1931H50 (Sp)	C790-15CMS	x 9931(C)	14679	41.02	17.89	148	88.8	1.5	0.0	4.8
1941H50 (Sp)		x 9941(C)	13001	36.80	7.6	136	86.3	4.6	0.0	4.6
Selected S ₁ lines	ស									
1931-56H50	C790-15CMS	x 9931-56	14333	9.73	18.01	159	87.4	3.2		2.9
1931-201H50		x 9931-201	13940	9.48	17.65	169		•	0.0	•
1935-6H50		x 9935-6	12151	32.85	18.48	159	87.6	3.2	0.0	4.5
1936-14H50		x 9936-14	13650	7.89	18.02	158	•	•	0.0	•
Check										
Z125H50	C790-15CMS	x Z025(C)	11225	31.71	17.71	129	86.8	2.2	0.0	4.5
Selected S ₁ lines	8									
Z131-14H50	C790-15CMS	x Z931-14	13937	6.	18.90	156	•	1.9	0.0	5.0
Z131-18H50		x Z931-18	13531	36.58	18.48	156	87.2	1.7	0.0	4.4
1942H50		x RZM 0942	12677	9	17.61	132		•	0.0	4.4
, to										
CR111H50	C790-15CMS	x CR11(C)	13131	37.49	17.52	137	87.3	1.3	0.0	5.1
Selected S, lines	S)									
-2H	C790-15CMS	x CR910-14-2	12655	35.34	17.92	163	87.6	9.0	3.9	6.8
CR110-5H50		x CR910-5	13030		18.34	168	86.7	1.6	0.0	4.6
CR112-5H50		x CR812-5	14387	9.7	18.15	156	88.3	•	•	•
Mean			48	37.31	18.15		87.5	5.0	•	
LSD (.05)			1098.7	2.95	0.54	12.9	ω.		6.0	9.0
C.V. (%)			8.2	σ.	٥.			199.9	390.3	
F value			**0.8	6.47**	7.12**	10.7**	- i	1.0NS	8.4**	45.5**

TEST 7902. EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS UNDER RHIZOMANIA, SALINAS, CA, 2002

(cont.)

			Acre Vield	ָרָם.		Boots /		4000		000000
Variety	Description	ption	Sugar	Beets	Sucrose	100,	RJAP	Rot	Bolting	Fowder y Mildew
			Ibs	Tons	o 0	No.	æΙ	o o	oP I	Mean
Test 02-3: 16	16V x 8R, RCB hybrids									
1932H50	C790-15CMS	93	12259	34.71	17.66	111	•	2.5	0.0	4.9
1933H50		6	0	(1)	7.9	160	87.6	2.5	•	•
N124H50			14096	39.26	17.99	164	•	1.3	0.0	5.0
01-FC1030H50		x FC1030(C)	11365	3.2	7.0	144	•	•	0.0	•
Testcross hybr	hybrids to C833-5CMS	CMS								
	0833-5но	x 0931	13663	7.3	8.2	123	87.8	0.8	0.0	4.9
1941H5		x 0941	12704	34.71	18.33	120	9.98	0.5	9.0	4.8
1942H5		x RZM 0942	13075	35.12	8.6	136	86.0	•	0.0	4.5
01-FC1030H5		x FC1030(C)	12548	33.69	18.64	137	87.2	0.0	0.4	5.5
CR111H5		x CR11(C)	13326	36.64	18.19	118	87.4	0.0	0.0	4.9
Z125H5		x Z025(C)	13068	34.77	18.83	118	86.3	0.0	0.0	4.8
0930-19H5	9833-5HO	x 8930-19	14062	37.29	18.86	158	•	0.0	0.0	4.3
1930-35H5	0833-2но	x RZM 9930-35	12650	32.93	19.25	132	85.7	4.5	0.0	5.0
1927-4H5		x RZM 9927-4	14868	41.20	18.04	136	85.5	0.7	0.0	5.6
1929-62H5		x RZM 9929-62	14589	39.31	18.56	132	•	0.4	0.0	4.4
1929-4H5		x RZM 9929-4	14082	36.06	19.61	135	86.0	1.6	0.0	4.0
1924-2H5		x RZM 9924-2	14106	37.55	18.80	131	86.4	2.3	0.0	5.1
Mean			13344.9	36.3	18.42	134.7	86.9	1.2	0.4	4.9
LSD (.05)			7.606	2.5	0.59	14.5	2.5	3.0	1.1	9.0
C.V. (%)			•	8.9	ς.	10.9	9.	256.9	286.9	11.7
F value			8.2**	7.1**	8.43**	*	* 1.1NS	S 1.4N	s 11.0**	4.6**

TEST 8002. RETEST UNDER RHIZOMANIA OF S₁mmaa x C78 TOPCROSSES FROM 2000, SALINAS, CA, 2002

12 entries x 8 reps., RCB 1-row plots, 22 ft. long

Planted: April 22, 2002 Harvested: October 29, 2002

			Acre Yield	ield		Beets/		Root	Powdery
Variety	Description	tion	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
			Lbs	Tons	%	No.	ઝ∘∣	%	Mean
Checks									
Beta 4776R	rec'd 8-31-01		14935	40.92	18.29	168	85.5	0.0	1.3
R078H50	C790-15CMS	x R978	15691	44.60	17.60	162	85.5	1.4	3.4
R078H5	9833-5 (Т-О) НО	x R978	15319	41.63	18.40	151	84.3	0.0	2.5
Retest of S ₁ mm lines	168								
R078H10-17	9810-17aa	x R978	14204	40.91	17.36	144	83.7	0.8	3.1
R078H10-19	9810-19aa	x R978	14040	39.90	17.60	128	84.7	0.4	3.8
R078H48-1	9848-1aa	x R978	14718	42.19	17.45	148	82.5	0.0	4.9
R078H69-9	9869-9aa	x R978	14001	40.10	17.45	160	84.1	2.0	3.6
R078H35-8	9835-8aa	x R978	14715	40.78	18.05	135	84.5	1.2	4.5
R078H35-10	9835-10aa	x R978	14308	39.55	18.09	117	84.7	9.0	3.1
R078H35-24	9835-24aa	x R978	14652	42.11	17.41	126	83.4	0.5	3.4
R078H36-4	9836-4aa	x R978	12183	36.07	16.95	39	85.0	0.0	2.0
R078H36-13	9836-13aa	x R978	15149	43.13	17.58	114	83.0	1.4	2.4
Mean			14493.0	40.99	17.69	132.8	84.2	0.7	
LSD (.05)			1201.5	3.57	0.61	18.2	1.4	1.8	
C.V. (%)			8.3	8.74	3.48	13.7	. 7	262.3	28.8
F value			4 * 7 * *	2.78**	3.89**	28.5**	3.4**	1.1NS	10.1**

TEST 8102. EVALUATION UNDER RHIZOMANIA OF TESTCROSS HYBRIDS TO C833-5CMS, SALINAS, CA, 2002

24 entries x 1-row plots, 3	8 reps., RCB(e) 22 ft. long					Planted: Harveste	Ap d:	April 22, October	2002 31, 2002
Variety	Des	Description	Acre	Yield	Sucrose	Beets/ 100'	RJAP	Root	Powdery Mildew
	9 9 9 9		Lbs	Tons	ok-	No.	o o	ole l	Mean
Checks Phoenix	rec'd 8-16-01	1	13682	37.13	18.48	166	86.8	T.	9.6
Beta 4776R	rec'd 8-31-01	1	14827	38.00	ഹ	170	9		
Beta 4430R	rec'd 8-31-01	1	14732	39.71	18.61	172		0.0	1.6
HH141	rec'd 8-16-01	ц	12887	35.30		172	84.8	0.0	5.6
Testcrosses w.	with lines & pop	& populations							
R078H5	9833-5 (T-O) HO	10 x R978	41	4.	ω.	164	83.2	1.5	
X190H5	0833-5HO	x RZM Y090	13567	35.15	19.29	111	84.2		2.9
X175H5	3-	x RZM Y075	13496	ഹ	5	153	82.9	1.3	•
R176-89H5	=	x R076-89	36	9.	۲.	155	•		•
1942H5	=	x RZM 0942	13902	ت		170	m.	0.0	
01-FC1030H5		x FC 1030 (C)	12555	33.95	18.51	160	82.6		2.3
1931H5		x RZM 0931(C)	14294	m.	•	157	8	6.0	
1941H5	=	x RZM 0841(C)	13178	٥.	•	159	m.	•	•
CR111H5	=	x RZM CR011(C)	454	9.1	8.6	5	M	•	
Z125H5	E	x RZM Z025	13933	35.69	19.56	153	84.5	0.0	2.6
Testcrosses wi	with progeny lines								
Z025-9H5	9833-5HO	x Z825-9	13652	33.67	7	165	4.	•	1.1
CR009-1H5	=	x CR909-1	13971	36.88	18.94	167	83.5	0.3	•
0930-19H5	9833-5HO	x 8930-19	14422	٥.	ω	176	83.1	0.7	2.5
0929-112H5	=	x 8929-112	419	σ.	σ	170	8	•	•
0929-114H5	=	x 8929-114	13576	35.55	19.20	174	83.0	0.0	1.8
1929-4H5	0833-5HO	x RZM 9929-4	351	9.	თ	161	m.	•	2.0

TEST 8102. EVALUATION UNDER RHIZOMANIA OF TESTCROSS HYBRIDS TO C833-5CMS, SALINAS, CA, 2002

(cont.)

			Acre	Acre Yield		Beets/		Root	Powdery
Variety	Д	Description	Sugar	Beets	Sucrose	100,	RJAP	Rot	Mildew
			sqT	Tons	e ₽	No.	o(>	%	Mean
Testcrosses with progeny lines (cont.)	progeny 1	ines (cont.)							
1929-62H5	0833-5но	x RZM 9929-62	2 13823	36.33	19.04	162	83.6	9.0	1.9
1930-35H5	:	x RZM 9930-35	5 13431	34.37	19.61	164	82.7	0.0	2.1
1924-2H5	=	x RZM 9924-2	13441	34.99	19.23	163	83.7	0.0	1.5
1927-4H5	=	x RZM 9927-4	13724	37.13	18.52	160	82.1	0.0	2.5
Mean			13798.8	36.38	19.00	161.6	83.7	0.4	2.2
LSD (.05)			1070.8	2.92	0.59	12.5	2.0	1.6	1.0
C.V. (%)			7.9	8.14	3.18	7.9	2.5	452.2	45.4
F value			2.0NS	s 2.33NS	4.99**	*0.8	8.0** 2.6**	0.8NS	4.1**

HOLLY SUGAR (TORRINGTON), MONITOR SUGAR, USDA HYBRID EVALUATION UNDER RHIZOMANIA, SALINAS, CA, 2002 WESTERN SUGAR, TEST 7502-1.

2002 2002

October April 19,

Harvested:

Planted:

36 entries x 4 reps, RCB 1-row plots, 22 ft. long

85.7 95.8 90.4 97.9 76.6 96.6 70.8 8R(0-4) 77.9 100.0 75.2 97.1 Resistance Rhizomania 3.0 3.0 3 3.5 5 5 5 2.9 2.3 3.4 3.4 DI 85.6 87.2 86.0 85.2 86.5 84.1 85.2 85.3 86.9 86.8 86.3 86.7 RJAP æ | Root Powdery Mildew Score 5.5 7.0 5.8 6.0 4. 7. 5. 5. 5. 6. 8 5.3 5.8 1.5 12.5 1.9 13.7 0.0 8.5 10.3 2.2 3.8 13.9 2.1 9.7 13.3 10.9 Rot op | Beets/ 100, No. 152 159 176 169 176 177 174 172 172 172 164 132 162 168 Harv. Count δ 8 38 35 29 27 34 32 38 38 36 34 38 35 33 Stand Count S S 36 38 34 35 39 37 38 29 36 37 Sucrose 17.08 15.09 18.35 17.67 19.13 17.50 18.42 17.93 16.52 17.31 18.46 17.21 16.81 24.55 33.45 31.03 30.94 29.28 30.12 28.96 34.74 30.22 Beets 28.01 26.40 Tons Acre Yield Western Sugar Entries Not In Common With Holly Sugar 11268 10598 8666 10654 9048 7633 9065 9823 11396 11067 12018 9741 12644 10497 Irps 8-31-01 resist ck., 8-16-01 resist ck., 8-16-01 resist ck., 3-29-01 resist ck., 2-5-02 susc. ck., 2-5-02 susc. ck., 4-5-02 Description resist ck., 4-5-02 4-5-02 4-5-02 4-5-02 4-5-02 4-5-02 susc. ck. (10) Crystal R243 9) Beta 0J5423 2) Beta 4595R Variety 5) SX Kojak (11) SX 0224 Beta 4776R Beta 4430R (12) SX0225 Monohikari Beta 6600 Phoenix Checks HH 141 US H11 Rizor

5.0 85.7 3.0	3.8 5.5 83.9 2.8 95.9	5.8 84.5 2.9	5.5 85.2 2.9	5.3 85.1 3.1
	172			
32	37	37	39	37
37	38	37	38	38
18.21	18.30	18.52	17.94	17.61
30.30	30.01	30.45	31.35	30.19
(1) Crystal 9941 4-4-02 11036	10990	11279	11233	10650
4-4-02	4-4-02	4-4-02	4-4-02	4-4-02
(1) Crystal 9941	(2) 01HX051	(3) Beta BA1071	(4) 00HX011R	(5) 01HX016

16.21

26.72

8672

susc.ck

4-5-02,

(15) Monohikari

Entries 16-28 include from WS & HS: (1)Beta 4940R, (3)Crystal 9906, (9941, (6)HM1639Rz, (7)HM1646Rz, (8)Beta BA1071, (13) HM1651Rz, (14) HM1only from Holly: Beta BA1151, 01HX016, 01HX051, 00HX011R, 02HX212R.

TEST 7502-1. WESTERN SUGAR, HOLLY SUGAR (TORRINGTON), MONITOR SUGAR, USDA HYBRID EVALUATION UNDER RHIZOMANIA, SALINAS, CA, 2002

		V orto	7 (0:>		7 6 1		00040	t.	7		, ,	
Variety	Description		Beets	Sucrose	Count	Count	100'	Rot	Fowdery Mildew	RJAP	Resi	Knizomania Resistance
		Lbs	Tons	o(0	No.	No.	No.	o%	Score	o%	DI %	&R(0-4)
Coded Holly Entries	itries & those in common	with WS	res.	(cont.)								
_			30	18.46	39	36	178	7.1	0.9	4	•	2
_			Η.	17.70	39	34	7	ij.	•	5	•	6
	4-4-02	10433	IJ	17.66	40	34	œ			5	•	ნ
	4-4-02		29.14	18.88	38	35	173		4.8	85.8	2.9	99.2
(10) HM1639	4-4-02	9285	m.	16.99	37	36	9	•	•	4.	•	4.
Crystal	9906 4-4-02	10958	0.3	8.0	38	39	173	•	•	9	•	80
(12) 02HX212R	4-4-02	9130	24.93	18.32	36	33	161	3.1	0.9	82.0	3.2	90.3
(13) HM1646	4-4-02	10139	6.8	8.8	39	35	177	•	•	4.	•	9
Monitor Sugar												
HM-E17	susc. ck., 3-21-02	8298	24.04	17.26	38	33	172	8.3	5.3	84.9	3.6	71.7
(1) HM 2761Rz	Monitor Sugar, 4-1-02		28.47	C	37	90	166			٧		٧
Ħ	Sugar,		6.6	8.3	41	32	184					
	Monitor Sugar, 4-1-02	6906	4	18.23	38	34	174	· 0	5.3	85.0	3.0	98.3
(4) HM-E17			•	7.5	41	35	185	•	•	9	•	0
IISDA ontries												
	C833-5HO x C927-4	12826	0.	•	32	27	4	ω.	5.5	4.	•	თ
1930-35H5	C833-5HO x C930-35	10332	8.4	8.1	32	28	143	12.8	4.5	ω.	2.7	0.66
1929-62H5	C833-5HO x C929-62	11943	35.68	9	33	31	4	•	3.5	85.1	•	80
Mean		10348.7	7	Ψ.	•	•			•	•	•	•
$\overline{}$		1277.3	3.39	0.55	4.8	5.9	21.8	Ϊ.	1.0	1.7	0.3	10.1
C.V. (%)			8.2	Ġ	9.5	•		106.7	•	•	•	•
F value		6.6**	7.72*	Ġ	.	* 2.4**	2.3	**1.3NS	ω.	•	*8.1*	6.1**

WESTERN SUGAR, HOLLY SUGAR (TORRINGTON), MONITOR SUGAR, USDA HYBRID EVALUATION UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7502-1.

Rhizomania	Resistance	DI &R(0-4)
	RJAP	o∤o
1/ Root Powdery	Mildew	Score
Root	Rot	æ
Beets/	100,	No.
d Harv.	Count	No.
Stand	Count	No.
	Sucrose	op
ield	Beets	Tons
Acre Y	Sugar	Ips
	Description	
	Variety	

Because of severity of trials the past two years, this test was planted 2 weeks earlier into cooler damping-off and root diseases. Combined with the continuous cool conditions in 2002, rhizomania developed below, diseases and pests did not appear to be a problem. The plots were hand harvested, individual roots After planting, the test was judiciously sprinkler irrigated to get emergence, but not to promote nitrogen had been depleted, but the crop retained a full canopy through to harvest. Other than as noted lightly and sugarbeets grew well. Based upon border effects, it appeared that by early September most scored for rhizomania, and placed in two sample bags for clean-tared weight and % sugar analyses. NOTES:

Beta 4776R, Beta 4430R, C833-5HO = RzmmCMS; C930-35 & C929-62 = RzMM;USH11, Beta 6600, Monohikari, and HM-E17 were grown as susceptible checks. Phoenix, HH141, and Rizor were grown as resistant checks. C927-4 = MM with rhizomania resistance from C51 (Bvm) Entries:

An average of 136 roots were scored Harvest Count: Number of roots counted and scored at harvest per plot. for each entry.

Beets/100': Number of plants per 100 ft. of row, counted post thinning

Southern rot. Rotted roots were scored for rhizomania when possible, included in gathered beets for weighing, Root Rot %: Frequency of roots with noticeable root rot, most caused by Scelerotium rolfsii, the cause of but were discarded prior to running samples through the sugar lab.

Powdery Mildew Score: Mildew was controlled until late in the season. Just prior to harvest, powdery mildew was scored on a scale of 0 to 9, where 9 = 90-100% of leaf area covered. Even though scores were moderately high, powdery mildew would have had little overall influence on sugar yield.

RJAP = raw juice apparent purity.

susceptible. Most resistant roots were scored as 3's and most susceptible ones as 5's. Following scoring all beets were topped and placed into two sample bags. After washing, the samples were run through the sugar lab. Roots scored 0 to 4 were considered resistant and 5 to 9 were After being lifted, the roots were hand shaken to remove soil and laid out. Each individual root was scored Reps 1-4 on 10/21/02 & reps 5-8 on 10/30/02. Rhizomania Scores: All 8 reps were hand harvested and scored. on a scale of 0 to 9, where 9 is most severe.

WESTERN SUGAR, HOLLY SUGAR (TORRINGTON), MONITOR SUGAR, USDA HYBRID EVALUATION UNDER RHIZOMANIA, SALINAS, CA, 2002 TEST 7502-1.

(cont.)

		Acre Y	ield		Stand	Harv.	Beets/	Root	Powdery		Rhizomania
Variety	Description	Sugar	Beets	Sucrose	Count	Count	100,	Rot	Mildew	RJAP	Resistance
		Ips	Tons	o ∤	No.	No.	No.	1%	Score	oko	Lbs Tons & No. No. % Score & DI %R(0-4)
The reaction to	The reaction to rhizomania was mild in this test. Rhizomania tests with good results were run in this same	mild in t	his test	Rhizoma	ania tes	sts with	good r	esults	were rn	ni n	this same
field plot area	field plot area 4 years earlier and were adjacent to the 2001 test area. Because of the severity in 2001,	and were	adjacent	to the	2001 tes	st area.	Becau	se of	the seve	rity	in 2001,
precautions wer	precautions were used to decrease the effects of disease. The rhizomania tests were planted 2 weeks earlier	se the ef	fects of	disease.	The r	irzomani	a tests	Were	planted	2 weel	s earlier
into cooler soi	into cooler soil and then irrigated carefully to help prevent development of soilborne problems. In addition,	ated care	fully to	help prev	vent dev	relopmen	t of so	ilborn	e proble	IIS.	In addition,
the 2002 season	the 2002 season was consistently cool.	y cool.	Based upo	on foliage	e color	(yellow	ring), r	nizoma	nia was	a fac	Based upon foliage color (yellowing), rhizomania was a factor but most
infection occur	infection occurred on the lateral roots where scoring is difficult and the tap roots of all plants grew more	al roots	where sc	ring is	difficu]	t and t	tap :	roots	of all p	Jants	Grew more

Coefficients of correlations(r) were individually calculated:

or less normally.

	ο¥ρ				
	Resist	HC	$\mathbf{S}\mathbf{X}$	RY	% S
Disease Index	-0.88**	-0.31**	+*99.0-	-0.63**	-0.13NS
% Resistant		0.30**	0.57**	0.49**	0.27**
Harvest Count			0.38**	0.29**	0.27**
Sugar Yield				0.95**	0.24**
Root Yield					SN60.0-

Significant correlations occurred between sugar yield and % resistant (r = .57) and disease index and sugar

ţ known performance without rhizomania, the relative performance in this test under rhizomania may be useful to (r = -.66). However, these low relationships in this test mostly show trends. Within sets of varieties with Unfortunately, the susceptible checks did not show high enough levels of disease be properly scored and determining the true frequency of susceptible plants in the test varieties was not characterize resistance. possible.

TEST 7402-2. RHIZOMANIA CODED VARIETY TESTS, SALINAS, CA, 2002

96 entries x 4 reps, RCB 1-row plots, 22 ft. long

Planted: April 19, 200 Harvested: November 20, 2002

Seg	Code	•	1.3	•	•	1.3	•	1.0		•	1.3	•	•	•	1.0	•	•	•	•			•	1.0	•	•
Rhizomania Resistance		7	90.5	6	0	98.1	2		Ŋ	2	91.3	ω.	9	8	97.1	7.	7 .	6	6		ω	о О	99.3	5	7 .
Rhiz Resi	DI	•	3.3	•	2.8	3.2	•	3.1	•		3.3	3.0		2.9	3.0	•	•	•	•	3.2	•	•	2.7	•	•
Powdery Mildew	Score		6.5	•	•	4.5	•	6.0	5.8	•	6.0	•	•	2.0	4.3	5.0	•	•	•	6.5	•	•	3.5	•	•
RJAP	o o	7.	86.4	88.9	88.4	88.9	ω.	89.5	•	6	87.1	ω.	6	•	88.7	•	0	7.	7	89.5	7.	6	89.0	ω	7 .
Root	æ∣	•	0.0	•	0.0	0.0	1.4	•	1.3		0.0	•	•	0.0	0.0	0.0	•	•	•	0.0	•	•	0.0	•	•
Beets/ 100'	No.	9	114	9	174	167	9	170	9	164	160	183	180	∞	159	4	9	œ	2	174	9	7	173	7	9
Harv. Count	No.	36	23	35	38			35		35	36	40	39	42	35	34	36	38	34	37	37	37	37	36	35
Stand	No.	35	23	36	38	36	36	37	36	36	35	40	36	41	35	33	37	40	35	38	37	38	38	38	37
Sucrose	op	19.95	18.51	17.34	18.00	17.81	18.95	18.08	18.41	17.75	7	18.99	0.	18.75	σ.	19.75	18.16	19.36	17.77	18.40	18.44	17.96	18.88	•	ω.
Yield Beets	Tons	31.02	36.27	40.30	36.12	39.07	32.71	38.25	37.40	40.68	32.58	•	42.62	37.82	42.97	30.53	•	31.19	37.02	37.45	35.20	37.08	41.55	•	•
Acre	Lbs	12372	13444	13961	12988	13878	12395	13838	13745	14368	12527	15108	15409	14173	15433	12058	13228	12084	13134	13768	12970	13306	15679	12254	12499
Variety		02HX247	02HX221	01HX004	Beta 4175R	99HX981	02HX204	02HX220	02HX207	02HX201	0GK7210	0GK1642	9GK1705	Beta 4776R	9GK1701	02HX218	Beta 4440R	9J0158	02HX203	Eagle	Beta 4035R	0GK1629	1GL0062	02HX242	02HX241
Code No.		П	2	ო	4	Ŋ	9	7	80		0 11		12	13	14	15	16	17	18	19	20	21	22	23	24

TEST 7402-2. RHIZOMANIA CODED VARIETY TESTS, SALINAS, CA, 2002

Seg	Pat	Code	•	•	1.8	•	•	1.0	•	•	•	•	1.0	•	•	•	1.8	•	•	1.0	•	•	•	1.0	•	•	•	1.0
Rhizomania	Resistance	&R(0-4)	œ ·	ω.	89.8	6	6	00	0	5	7.	9	96.4	9	9	Η.	92.5	0	9	96.3	H.	o.	ω.	97.5	9.	4.	7.	7.76
Rhis	Resi	IQ	•	•	3.4	•	•	2.8	•	•	•	•	2.9	•	•	•	3.1	•	•	3.1	•	•	•	3.1	•	•	•	3.1
Powdery	Mildew	Score	•	•	6.5	•	•	2.8	•	4.8	4.0	•	3.8	•	•	•	6.0	•	•	6.8		•	•	6.0	•	•		5.3
	RJAP	≫ 1	о О	9	84.4	9	ω.	88.7	9	7.	9	•	88.2	7.	7.	4.	86.2	œ ·	4.	87.9	5	7.	œ ·	88.7	6	9		
Root	Rot	æI	•	•	0.0	•		0.0	•	•	•	•	0.0	•	•	•	0.7	•	•	0.0	•	•	•	0.0	•	•	•	0.0
Beets/	1001	No.	7	4	139	æ	160	160	173	167	164	80	193	172	9	2	139	9	9	167		7	7	166	7	9	9	164
Harv.	Count	No.	37	31	31	39		36			36	15	40	40			30			35				38				36
Stand	Count	No.	39	31	31	40	35	35	38	37	36	15	40	38	36	25	30	36	34	36	36	38	36	36	37	35		36
	Sucrose	æl		•	19.63	•	19.95		19.27	•	19.13	18.25	ω.	19.51	19.11	19.77	18.90	17.45	19.69	17.82	18.54	17.94	•	ω.	•	ω.	9.7	18.11
Yield	Beets	Tons	37.40	31.59	28.75	27.74	35.25	Ŋ	28.27	36.81	36.65	32.94	0.	27.40	σ.	4.	32.53	. 5	•	36.14	•	37.71	9	33.27	S	\vdash	ά.	34.38
a l	Sugar	Ips	14066	11878	11287	10877	14063	16778	10872	13152	13994	12027	16306	10696	13722	13599	12303	12067	10201	12887	12107	13525	13684	12528	13425	12645	12844	12463
	Variety		Beta 4430R	02HX226R	02HX212R	02HX229R	7KJ0191	9GK7014	Acclaim	02HX246	HH-142	02HX217	Crystal R062	01HX016	Falcon	02HX213	HH-145	02HX245	02HX212	02HX202	00HX051	9GK7138	0GK1638	02HX210	02HX205	02HX219	Crystal R061	02HX248
Code	No.		25	26	27	28	29	30	31	32	33		SE 110		37	38	39	40	41	42	43	44	45	46	47	48	49	20

TEST 7402-2. RHIZOMANIA CODED VARIETY TESTS, SALINAS, CA, 2002

Seg	Code	•	1.5	•	•	1.3	•	•	•	1.0	•	•	•	1.0	•	•	•	1.0	•		•	1.3	•	1.3	•	1.0	•
Rhizomania	&R(0-4)	ω.	91.7	•	7	99.3	4.	100.0	9	6.96	0	67.9	ნ	95.1	0		9	100.0	9	87.0	σ.	97.0	Ċ	95.4	ė.	100.0	
Rhi	DI	•	3.1		•	2.9	•		•	3.2	•		•	3.2	•	•	3.4	3.0	•		•	3.1	•	•	•	5.6	•
Powdery	Score		0.9		•	3.8	•	•	•	5.3	•	•	•	5.0	•	•	4.8	4.8	•	6.0	4.0	6.5	2.5		•	2.5	•
۵ د د	श	89.4	86.4	თ	ω.	88.7	9	7.	ъ ю	88.9	ъ	9	6	90.1	5.	7.	7.	88.5	7.	•	ω	88.4	œ.	6	•	89.0	•
Root	196	•	0.0			0.0		•	٠	0.8	•	•	•	0.0	•	•	•	0.0	•	•	•	1.5	•	•	•	2.3	•
Beets/	No.	189	119	176	9	167	124	156	164	154	179	165	160	156	78	174	170	86	173	142	167	139	157		7	151	9
Harv.	No.	42	25	38	35	37	24	34	36	33	38	36	36	35	11			19		30	38	30	33	35	38	33	36
Stand	No.	42	25	38	35	37	27	34	36	34	39	36	35	34	11	38	37	19	38	31	37	30	34	35	38	33	36
00000)	19.00	18.59	17.88	18.34	20.00	18.75	18.17	18.26	17.79	18.98	\circ	m	17.92	ന	16.85	18.61	17.86	18.55	7	ω.	19.40	9.	٦.	ω.	18.46	9.
Acre Yield	Tons	41.78	33.07	39.14	39.36	38.56	35.37	43.71	39.48	40.66	41.98	27.05	•	42.81	•	30.66	32.54	40.02	35.59	31.10	40.95	35.37	40.51	40.86	27.33	43.07	43.32
Acre	I.bs	15875	12309	13934	14409	15398	13212	15855	14410	14451	15927	10303	15937	15326	14846	10307	12111	14259	13201	11975	16234	13698	15068	15180	10832	15907	16165
Variety		0GK1643	02HX239	0GK1630	00HX052	9J5382	02HX215	9GK7003	Phoenix	Raptor	1GK0057	01HX002	Beta 4001R	00HX010	02HX208	02HX240	SS-NB7R	02HX237	HH-141	02HX211	Beta 4200R	Beta 4300R	9GK1596	02HX206	00HX056	9GK7015	9GK7021
Code		51	52	53	54	52	56	57	28	59		.106 .106	62	63	64	65	99	67	89	69	70	71	72	73	74	75	16

TEST 7402-2. RHIZOMANIA CODED VARIETY TESTS, SALINAS, CA, 2002

Seg Da+	Code	•	•		1.3	1.3		1.0		•	1.0		1.3	•		•	1.3	3.0	1.0	1.5	1.0	•	1.3	0.5	27.3	
Rhizomania Resistance	&R(0-4)		99	Ŋ.	92.6	-		100.0		•	N		9	9	95.2	4.	œ ·	52.1	97.4	9	96.7	94.6	93.8	8.4	6.4	
Rhiz Resi	DI		•		3.1	•		2.8		4.3	ж. Ж.			•	3.0		•	4.3	3.1	•	3.1	•	3.1	0.3	9.9	•
Powdery Mildew	Score	•	•	•	8.0	•	•	2.8		7.0	5.5	•	5.0	•	5.3	•	•	5.8	5.0	4.5	5.0	•	5.1	1.4	19.5	ω.
R.TAP	₩	90.1	8	85.4		•	. 60	88.8		7.	86.7	7 .	9	л	85.6	9	S.	88.2	86.8	87.2	86.2	9	87.8	1.7	1.4	5.3**
Root	% I	0.0	2.4	•	0.0	7.3		1.7		0.0	•	0.0		•	0.7	•	•	6.4	1.9	4.6	0.0	2.5	6.0	4.1	320.4	* 1.2NS
Beets/	No.	159	175	180	Ω	174	7	7		135	162	172			137		4	158	136	122	128	4	•	23.0	4.	7.2*
Harv. Count	No.		37		33		36	37			36				28			32			26		33.8	5.4	11.4	œ
Stand	No.	34	39	38	34	38		39			35				29			33			26		34.2	5.4	11.3	
Sucrose	o/e	17.89	18.96	15.89	18.88	18.81				15.63	٦.	6	18.59		18.34	•	9.8	19.66	18.55	18.85	18.26	19.45	18.67	0.75	2.88	8.91**
Yield Beets	Tons		42.33				32.25	•		22.46	32.72	•	35.91	4.	39.35	4.		27.11	38.57	0.	39.22	ت	35.95	4.42	8.83	9.0
Acre Y Sugar	Ibs	13949	16027	7632	13051	12762	Н	15213		6991	\rightarrow	14111	13331	14153	14402	14937	13189	10646	14307	13596	14350	13795	13405.5	1629.6	8.7	9.1**
Variety		Alpine	9GK7016	US H11	Rodeo	02HX244	02HX243	0GK1633	entries	US HII	Rizor	Angelina	X190H5	X175H5	1927-4H5	1929-62H5	1930-35H5	Beta 6600	1931H5	1941H5	CR111H5	Z125H5		.05)	(8)	ne
Code No.		77	78	79	80	81	82	83	USDA 6	84	S 8		87	88	68	06	91	92	66	94	95	96	Mean	LSD (.	G. 4.	F value

RHIZOMANIA CODED VARIETY TESTS, SALINAS, CA, 2002 TEST 7402-2.

Seg	Pat	Code
Rhizomania	Resistance	DI %R(0-4)
Powdery	Mildew	Score
	RJAP	oP
Root	Rot	₩
Beets/	1001	No.
Harv.	Count	No.
Stand	Count	No.
	Sucrose	o(0
Acre Yield	Beets	Tons
Acre	Sugar	I.bs
	Variety	
Code	No.	

Based upon border effects, it appeared that by early September most nitrogen had been depleted, but the crop retained a full canopy through to harvest. Other than as noted below, diseases and pests did not appear to be the test was judiciously sprinkler irrigated to get emergence, but not to promote damping-off and Combined with the continuous cool conditions in 2002, rhizomania developed lightly and sugarbeets NOTES: Because of severity of trials the past two years, this test was planted 2 weeks earlier into cooler soil The plots were hand harvested, individual roots scored for rhizomania, and placed in two sample bags for clean-tared weight and % sugar analyses.

Angelina (KWS) is reported to have resistance from both Holly (Rz) and WB42 (C48). C833-5HO = C833-5CMS = RzmmCMS Entries: Entered by USDA, USH11 & Beta 6600 were susceptible checks. Rizor & Angelina were resistant checks. from USDA. Y090, C929-62, C930-35, 0931, 0941, CR11 & 2025 are MM,Rz lines & populations from USDA, Salinas. & C927-4 have resistance from both Rz & Bvm (C51).

W ... Wumber of roots counted and scored at harvest per plot. Number of roots = 135 per entry.

Beets/100': Number of plants per 100 ft. of row, counted post thinning.

Root Rot %: Frequency of roots with noticeable root rot, most caused by Scelerotium rolfsii, the cause of Southern Rotted roots were scored for rhizomania when possible, included in gathered beets for weighing, but were discarded prior to running samples through the sugar lab. rot.

Powdery Mildew Score: Mildew was controlled until late in the season. Just prior to harvest, powdery mildew was Even though scores were moderately high, powdery mildew would have had little overall influence on sugar yield. scored on a scale of 0 to 9, where 9 = 90-100% of leaf area covered.

RJAP = raw juice apparent purity = 100(%sugar/%soluble solids).

Rhizomania Scores: All 8 reps were hand harvested and scored. Reps 1-4 on 10/23-25/02 & reps 5-8 on 11/18-21/02. After being lifted, the roots were hand shaken to remove soil and laid out. Each individual root was scored on susceptible. Most resistant roots were scored as 3's and most susceptible ones as 5's. Following scoring all beets were topped and placed into two sample bags. After washing, the samples were run through the sugar lab. scale of 0 to 9, where 9 is most severe. Roots scored 0 to 4 were considered resistant and 5 to 9 were

RHIZOMANIA CODED VARIETY TESTS, SALINAS, CA, 2002 TEST 7402-2.

Seg	Pat	Code
Shizomania	Resistance	E &R(0-4)
Ϋ́	W WE	IO
Powder	Milder Milder	Score
	RJAP	o(P
Root	Rot	æ∣
Beets/	1001	No.
Harv.	Count	No.
Stand	Count	No.
	Sucrose	% [
cre Yield	Beets	Tons
Acre	Sugar	Ibs
	Variety	
Code	No.	

Rhizomania Scores (cont.): After reps 1-4 were harvested, and root symptoms observed to be milder than expected, rhizomania). The frequency of green vs. yellow plants (segregation) was not taken into account, but in general, Reps 5-8 were visually rated for canopy or foliar scores, where 1 = uniformly resistant; 2 = segregating for greener (resistant) and more yellow plants (susceptible); and 3 = uniformly more yellow (susceptible to values close to 1 would be uniformly green (resistant) and values close to 3 would be uniformly yellow (susceptible) The reaction to rhizomania was mild in this test. Rhizomania tests with good results were run in this same field and then irrigated carefully to help prevent development of soilborne problems. In addition, the 2002 season was The rhizomania tests were planted 2 weeks earlier into cooler soil plot area 4 years earlier and were adjacent to the 2001 test area. Because of the severity in 2001, precautions consistently cool. Based upon foliage color (yellowing), rhizomania was a factor but most infection occurred on Description of the lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the tap roots of all plants grew more or less normally.

1. The lateral roots where scoring is difficult and the lateral roots of all plants grew more or less normally.

1. The lateral roots where the lateral roots of all plants grew more or less normally.

1. The lateral roots where the lateral roots of all plants grew more or less normally where the lateral roots of all plants grew more or lateral roots or lateral roots where the lateral roots of all plants grew more or lateral roots or lat were used to decrease the effects of disease.

Coefficients of correlations were individually calculated:

	οko					
	Resist	HC	$\mathbf{S}\mathbf{X}$	RY	% S	SP
Disease Index	-0.87**	-0.00NS	-0.64**	**65.0-	-0.19**	0.61**
% Resistant		0.03NS	0.58**	0.51**	0.26**	-0.73**
Harvest Count			-0.02NS	-0.05NS	SN60.0	-0.01NS
Sugar Yield				0.95**	0.12*	-0.55**
Root Yield					-0.18**	-0.51**
% Sucrose						-0.18**

TEST B102. EVALUATION OF EXPERIMENTAL HYBRIDS, IMPERIAL VALLEY, 2001-2002

Planted: September 14, 2001 Harvested: May 13, 2002 24 entries x 8 reps., RCB(E) 1-row plots, 18 ft. long

			Acre	Acre Yield		Beets/		Clean	
Variety	Description	ion	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
			sqT	Tons	o(•	No.	o≯e	o o	Mean
Checks		·	•	1					1
Dera 4450R		-	12964	41.22	7.	129	o.	0.88	425
Phoenix	rec'd 8-16-01	<u>.</u>	10165	38.37	13.25	129	9.0	91.8	419
Topcrosses to	0 X 90								
X190H50	C790-15CMS	× Y090	8272	32.61	12.71	112	2.5		379
Y190H5	0833-5HO	x Y090	9101	28.37	15.78	108	1.9	86.8	313
х190н6	0833-5H50	× X090	8013	31.38	12.80	117	3.5	87.1	347
X190H45	9867-1HO	× X090	7938	Τ.	12.33	117	4.3	80	385
Y190H2	9831-3HO	× X090	8418	33.73	12.48	111	0.5	88.6	344
Y190H27	9831-4HO	x Y090	7958	34.54	11.52	95	0.0	0	395
Y190H28	0831-4-7HO	× X090	7102	34.04	7	0	0.0	•	434
Y190H29	0831-4-10HO	× X090	ဖ	40.58	10.68	117	0.0	90.5	415
У190н62	0836-1H5	× X090	7488	31.71	1.7		0.7	•	406
У190н63	0836-7H5	x Y090	ര	•	2.6		•	6	318
Y190H64	0834-2H5	x Y090	8504	ъ.	1.9	114	9.0	•	440
х190н67	0837-6H5	060X ×	1939	30.47	0	\vdash	•	7.	334
Y190н82	0833-5H2	060X ×	2	3.9	13.05	106	0.8		
х 190н83	0833-5H27	× Y090	8524	34.67	m	0	0.0	87.0	383
У190н84	0833-5H45	x Y090	8580	4.	12.50	113	3.3	•	ω
Y190H85	0833-5H46	× X090	7914	30.20		119	0.0	87.2	305

(cont.)

			Acre Yield	field		Beets/		Clean	
Variety	Description	tion	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
			sqrI	Tons	oڥ	No.	o,e	%	Mean
Topcrosses to popn-931 1931H50 C790-150	popn-931 C790-15CMS	x 0931	9527	38.04	12.50	123	1.2	87.5	385
1931H5	0833-5HO	x 0931	7637	30.53	12.50	115	1.3	85.7	342
1931H2	9831-3HO	x 0931	8595	35.24	12.15	128	0.0	88.0	393
1931H27	9831-4HO	x 0931	8238	39.39	10.89	117	0.0	89.7	480
1931H28	0831-4-7HO	x 0931	8196	35.93	11.37	111	0.0	6.68	486
1931H29	0831-4-10HO	x 0931	8120	36.35	11.03	117	0.0	88.5	509
Mean			8539.6	34.62	12.35	113.3	6.0	88.6	387.8
LSD (.05)			1562.8	4.92	1.55	17.2	2.1	2.7	54.9
C.V. (%)			18.6	14.43	12.75	15.4 2	237.5	3.1	14.4
F value			4.2**	5.34**	4.18**	2.3**	2.8**	2.5**	8.7**

TEST B202. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS, IMPERIAL VALLEY, 2001-2002

Planted: September 13, 2001 Harvested: May 14, 2002 48 entries x 8 reps., RCB(E) 1-row plots, 18 ft. long

			ام	Yield		Beets/		Clean	
Variety	Description	ption	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
			sqT	Tons	o∤e∣	S	æI	o⁄o	Mean
مارولان									
Beta 4776R	rec'd 8-31-01	-01	10467	35.83	14.63	144	0.5	88.7	7
Beta 4430R	rec'd 8-31-01	-01	12288	2.2	4.5	149	0.5	7	316
Phoenix	rec'd 8-16-01	-01	073	ω.	3.9	4	•	N	9
НН 141	rec'd 8-16-01	.01	9480	34.80	•	142	2.0	6	2
Hybrids with FS	lines								
	C790-15CMS	x RZM-ER-% R978	9329	3.8	ω.	4	4.6	87.5	5
R178-5H50		x R978-5	9601	36.20	13.28	151	1.0		295
R178-6H50		x R978-6	10830	6	3.6	4	1.4	7.	7
R178-11H50		x R978-11	6007	33.98	14.12	വ	0.4	88.3	4
X169H50	C790-15CMS	X RZM-ER-% Y969	8855	۸,		r.	α	α	C
X168-8H50		X968-8	10051	4.7	7 · 7) 4		ο α	שׁ כ
X168-13H50			958	' N	4.5	י מי	•	ο α) ע
Y168-16H50			10171	9	13.93	152	4.2	88.2	249
R180H50	C790-15CMS	x RZM-ER-% R980	95	6.1	3.8	147	16.4	90.4	9
R180-11H50		x R980-11	9895	34.97	14.16	138	0		255
R180-16H50		x R980-16	94	6.2	3.7	139	5.1	90.2	ന
R180-21H50		x R980-21	66	4.3	4.5	149	•	თ	4
R176-89H50	C790-15CMS		40	•	2.6	ന	•	0	m
R176-89-5H50		x RZM R076-89-5	6686	37.68	13.17	149	4.3	89.3	323
R176-89-5-4-H50		x R976-89-5-4	75	•	4.2	4	•	8	Ŋ
R176-89-5NB-4H50		x R976-89-5NB-4	56	•	3.7	$^{\circ}$	g.8	;	9

TEST B202. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS, IMPERIAL VALLEY, 2001-2002

Variety	Description	ption	Acre	Yield Beets	Sucrose	Beets/ 100'	Bolters	Clean Beets	NO3-N
			I.bs	Tons	o 0	No.	o 0	o 0	Mean
Hybrids with FS 1 R176-89-5-13H50	lines (cont.)	x R976-89-5-13	8731		9	143	ы 4.	6,68	303
R181-22H50		x R981-22	10145	35.95	4	150	•	89.1	291
Y167H50		x RZM-ER-% Y967	9450	4.	3.6	140	•	0.06	370
Y167-5H50		x Y967-5	10490	37.95	3.8	156	6.9	•	275
X171H50	C790-15CMS	x RZM-ER-% Y971	8853	2.9	3.4	149	7.3	•	288
X172-1H50		x Y972-1	9986	36.86	13.38	150	8.1	84.8	292
Y172-5H50		x Y972-5	9816	5.8	13.78	149	•	7.	285
X172-7H50		x Y972-7	9871	7.9	m	144	0.4	0.06	308
Y175H50	C790-15CMS	x Y075	9419	6.3	ω.	144	7.7	•	273
Y175-13H50		x Y975-13	9625	35.38	13.58	145	•		262
Y190H50			8859	3.8	е Э	124	8.9	91.1	283
R170H50		x RZM-ER-% R970	10195	7.5	т М	147	•	6	294
P129H50	C790-15CMS	x PMR-RZM P029-#(C)	10305	5.2	4.6	145	•	6	221
P130H50		\times PMR-RZM P030-#(C)	10550	38.72	13.65	133	Ω	8.06	276
P118-6H50		x P918-6	8066	6.0	3.6	138	•	ω.	262
P125-12H50		x P925-12	7726	8.5	3.6	145	7 .	ъ.	254
R143H50	C790-15CMS	x RZM-ER-% R943	8496	5.1	3.8	136	Η.	9	233
R140H50		%	9841	36.22	13.60	142	16.1	88.2	260
R136H50		x RZM-ER-% R936	8613	4.1	2.6	146	÷.	ص	309
Retests from 2000) seed								
R078-4H50	C790-15CMS	x R878-4	10557	38.61	13.68	149	0.0	89.3	317
R078-8H50		x R878-8	9172	34.47	ω.	145		ω.	296
X067-3H50		x Y867-3	11145	40.01	13.94	128	13.0	91.1	261
R080-9H50		x R880-9	10224	36.48	4.	136		ω.	282
R069-18H50		x Y869-18	9978	34.48	4.	143		7 .	267

TEST B202. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS, IMPERIAL VALLEY, 2001-2002

			Acre Yield	Yield		Beets/		Clean	
Variety	Description	ption	Sugar	Beets	Sucrose	1001	100' Bolters	Beets NO3-N	NO3-N
			sqT	Tons	o/0	No.	o⊱	o(P	Mean
Retests from S_1 aa x C78 (2000 seed)	aa x C78 (2000	(pees							
R078H10-17	9810-17aa	x R978	10671	37.82	14.11	141	9. ₆	89.1	265
R078H10-19	9810-19aa	x R978	9982	35.88	13.94	131	1.6	88.8	224
R078H35-8	9835-8aa	x R978	9241	31.88	14.50	142	0.5	88.9	231
R078H48-1	9848-1aa	x R978	8495	30.84	13.78	138	2.9	85.0	217
Mean			9810.1	9810.1 35.62	13.79	143.2		88.8	279.5
LSD (.05)			1120.9	3.90	0.72	14.	5.3	2.5	67.8
C.V. (%)			11.6	11.6 11.10	5.27	10.3	3 79.8	2.9	24.6
F value			7.7	7.7** 3.04**	3.78**	1.	1.6*15.0**	3.2**	2.1**

Planted: September 13, 2001 Harvested: May 17, 2002

48 entries x 8 reps., RCB(e) 1-row plots, 18 ft. long

			Acre Yield	ield		Beets/		Clean	
Variety	Desc	Description	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
			Ips	Tons	o o	No.	%	%	Mean
Checks HH 141	rec'd 8-16-01	1	024	.1	5.0	m		о О	0
Phoenix	rec'd 8-16-01	ı	12832	41.29	15.53	134	0.5	93.4	174
Beta 4776R	rec'd 8-31-01	н	203	. 4	5.6	B	•	80	9
Beta 4430R	rec'd 8-31-0;	П	364	2.5	6.0	ന	•	6	2
Retests & new CR009-1H50	seed productions C790-15CMS x CR	lons c CR909-1, (CR09-1)	30	3	ω	(r)		ý	7
Z025-9H50	×	Z825-9, (CZ25	10842	32.72	16.57	140	0	87.3	126
0930-19H50	×		59	0.4	5.6	4	•	თ	ϵ
1930-19H50	×		960	6.3	5.1	7	•	0	Ŋ
1927-4H50	C790-15CMS x	9927-4,	9	1.0	5.2	ന		6.	4
1929-62H50	*	9929-6	195	9.8	4.9	4	•	6	9
1930-35H50	*	9930-35,	11684	37.54	15.54	128	0.0	90.2	176
1929-4H50	^	x RZM 9929-4	112	6.7	5.1	ന	•	ij.	0
1924-2H50	*	x RZM 9924-2	11267	37.99	14.85	142	1.6	89.3	168
0936-10H50	^	x 8936-10	203	9.0	5.3	2	•	ω.	9
Checks 1942H50	C790-15CMS *	× RZM 0942	140	7.8		N	4.	&	വ
1924H50	^	x RZM-ER-% 9924	10697	35.09	α	145			168
Checks					i	(,		
1931H50 (Iso)	C790-15CMS x		059	3.00 0.00	5.6	m	•	4. (0 1
1931H50 (Sp)	Α :	9931 (C)	018	2. s	у Б	2	•	20 0	- 4
1941H50 (ISO)	× ×	X KZM-EK-% 9941 * 9941(C)	10317	34 68	15.05	128	~ m	87.6	172
14010000000	•		1	•		1	•	•	-

TEST B302. EVALUATION OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS, IMPERIAL VALLEY, CA, 2001-2002

Varietv	Descr	Description	Acre	Acre Yield	Sucre	Beets/	1 1 1 1	Clean	NOSON
			I.bs) 00	No.) 	% I	Mean
Selected S ₁ lines 1931-56H50	c790-15CMS	x 9931-56	11122	r.	5.6	131	4.8	ი	-
1931-201H50		x 9931-201	12072	40.45	14.92	126	1.6	89.0	134
1935-6H50			9209	9.	5.7	140	•	8	m
1936-14H50		x 9936-14	11868	.5	5.8	129	•	7 .	0
Checks Z125H50	C790-15CMS	× Z025(C)	9493	30.69	15.42	128	9.6	87.2	127
Selected S ₁ lines Z131-14H50	es C790-15CMS	x Z931-14	10927	ო.	6.3	133	1.8	•	105
Z131-18H50		x Z931-18	12176	38.89	15.86	131	0.4	86.2	111
Z131-20H50		x Z931-20	11128	5.8	5.6	126	•	о О	163
Check CR111H50	C790-15CMS	x CR11(C)	11082	39.61	14.11	116	5.1	88.8	213
Selected S ₁ lines CR110-14-2H50 (es C790-15CMS	x CR910-14-2	10534	S	5.0	131	2.5	•	139
CR110-5H50		x CR910-5		31.60	13.85	126	20.4	•	275
CR112-5H50		x CR812-5	11860	7	5.7	134	•	88.8	135
Population hybrids 1932H50 C7	ids C790-15CMS	x RZM-ER-% 9932	10535	5.1	15.04	116	0.5		124
1933H50		x RZM-ER-% 9933	10933	34.48	σ	127	6.9	7	127
N124H50			11009	7.4	14.74	133	3.7		176
FC1030H50		x FC1030(C)	9244	9.0	5.2	127		•	147
oss	hybrids to C833-5CMS	CMS							
1931H5	0833-5HO	x 0931	10912	5.7	ნ. კ	121	•	9	2
1941H5		0941	10150	32.72	15.62	112	3.2	87.4	110
1942H5		x RZM 0942	11485	6.4	5.7	135	•	7	0
FC1030H5		x FC1030(C)	10719	4.7	5.5	113	•	œ ·	2

(cont.)

			Acre Yield	ield		Beets/		Clean	
Variety	Desc	Description	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
			Irbs	Tons	o ≯	No.	%	o⊱	Mean
Testcross hybrids to C833-5CMS (cont.)	rids to C833-	-5CMS (cont.)							
CR111H5	0833-5HO	x CR11(C)	10527	34.84	15.35	115	6.2	86.5	138
Z125H5		x Z025(C)	10255	32.32	15.90	127	9.8	86.9	122
0930-19H5	9833-5HO	x 8930-19	11802	36.63	16.20	133	0.0	87.0	105
1930-35H5	0833-5HO	x RZM 9930-35	9438	29.40	16.11	120	0.0	89.5	120
1927-4H5		x RZM 9927-4	11787	37.53	15.69	138	6.5	86.2	120
1929-62H5		x RZM 9929-62	13095	42.15	15.54	122	2.7	7.06	116
1929-4H5		x RZM 9929-4	11585	36.27	16.03	115	0.0	88.3	139
1924-2H5		x RZM 9924-2	10333	31.68	16.32	129	0.0	87.4	66
Mean			11011.4	35.80	15.44	129.2	5.8	88.0	146.3
LSD (.05)			1566.5	4.92	0.87	19.9	20.8	2.9	53.9
C.V. (%)			14.4	13.94	5.73	15.7	15.7 367.0	3.4	37.5
F value			3.6**	3.45**	3.42**	1.4	1.4NS 0.8**	3.0**	4.1**

IMPERIAL VALLEY CODED MID-HARVEST YIELD TEST, IMPERIAL VALLEY, CA, 2001-2002 TEST B402.

2002 2001 N-80N Mean 202 125 230 240 146 206 186 253 242 203 193 192 217 215 223 268 194 208 159 197 202 171 201 June 3 & 4, September 13, Clean Beets 92.0 93.0 94.8 93.5 91.0 93.2 92.2 95.9 91.8 89.9 92.0 93.8 93.1 92.5 91.1 92.9 93.7 92.7 93.3 93.5 93.3 90 Bolters Harvested: 1.6 16.3 4.7 18.4 15.6 0.8 4.2 13.0 7.1 19.8 0.5 14.8 7.6 0.9 3.9 0.0 Planted: op | Beets/ 1001 139 145 135 139 145 137 135 124 116 137 93 125 136 137 139 101 134 113 134 97 120 8 8 131 80 141 Sucrose 15.16 15.88 15.60 14.82 15.55 14.78 15.30 14.79 14.89 14.73 15.79 15.57 15.70 15.77 15.45 16.12 16.04 15.77 15.47 15.17 14.10 14.34 13.77 14.46 ₩. 39.80 38.62 46.75 35.95 35.66 38.58 43.49 37.23 47.99 32.34 37.97 41.68 48.81 34.58 38.23 32.49 36.07 33.02 39.28 Beets 44.18 46.52 30.77 Tons Acre Yield 11782 Sugar 13114 11438 14556 10959 13068 13988 11818 10505 12255 13060 13127 8474 10502 10920 11565 11969 12967 14593 10169 11819 11169 11227 10901 Irps Standard check Spreckels Spreckels Spreckels Spreckels Spreckels Spreckels Spreckels Sprecekls Spreckels Spreckels Spreckels Spreckels Spreckels Betaseed Source Betaseed Betaseed Betaseed Betaseed Betaseed Betaseed Betaseed Betaseed Betaseed 27 entries x 8 reps, RCB 2-row plots, 18 ft. long Beta 4001R **3eta** 4430R Beta 4035R Variety OGK1643 9GK1596 02HX208 **JGK1638** 0GK1642 9GK7014 02HX209 02HX218 99HX975 7KJ0191 9GK7003 02HX215 02HX217 02HX212 02HX216 02HX210 02HX213 02HX219 02HX211 US H11 HH141 CBGA entries Code 2 6 4 9 2 യത 10 11 13 14 15 16 17 24 25 26 19 21 22 23

(cont.)

			Acre Yield	ield		Beets/		Clean	
Code	Variety	Source	Sugar	Beets	Sucrose		Bolters	Beets	NO3-N
CBGA entri	CBGA entries (cont.)		rps	Tons	oko	No.	ok∙	o⊱	Mean
27	Beta 4776R	Betaseed	11385	37.31	15.25	139	1.8	91.6	248
28	0GK1633	Betaseed	13148	43.75	15.02	145	2.0	92.5	223
USDA filler 1929-62H5 (USDA filler 1929-62H5 C833-5CMS x C929-12 USDA	C929-12 USDA	12789	42.02	15.27	129	o.3	93.7	176
Mean			11972.9	39.42	15.21	127.5	5.6	92.6	208.1
LSD (.05)			1327.2	3.81	0.73	15.3	3.6	1.4	81.4
C.V. (%)			11.2	9.79	4.87	12.2	66.1	1.5	40.0
F value			8.7**	* 13.14**	5.16**	**8.6	23.0**	7.0**	1.6*

IMPERIAL VALLEY CODED MID-HARVEST YIELD TEST, IMPERIAL VALLEY, CA, 2001-2002 TEST B402.

m NH2-N Impur.	mdd		493 15361		577 16978	1513	569		517 15684	1415	50	461 16017	1591	522 16451	454 15143	581	1696	418 15131	1436	580 16800		3 1444			518 15595	1618
Potassium	wdd		3276	2965	3609	3077	3114	3288	3164	3085	3070	3516	3252	3378	3368	3319	3551	3347	3027	3414	3418	3066	3409	3211	3239	3435
Sodium	wdd		712	069	707	798	066	1029	817	752	1063	814	976	871	689	720	772	199	869	788	773	206	733	674	737	751
Known SugarLoss	1bs/a		1653	1566	1950	1782	1996	2085	1826	1973	2154	1794	2284	2309	1494	1802	2127	2233	1503	1941	1614	1390	1864	1655	1538	1902
Recover. Sugar	o ≯ ○		85.5	86.0	83.4	84.2	4.	m.	83.7	86.0	Э.	83.5	4	82.3	85.4	4	83.5	83.7	9	83.6	80.8	86.3	83.2	84.7	85.1	•
Recover. Sugar	lbs/t		275	272	258	250	259	248	249	268	248	247	256	233	270	264	263	241	272	259	223	279	241	257	271	263
Recover. Sugar	<u>1bs/a</u>		9912	9661	10019	10000	11119	10975	9612	12583	10813	9165	12309	10818	8675	10016	10941	11756	6686	9877	6860	9112	9306	9265	8968	10354
Variety		entries	7KJ0191	9GK1596	02HX208	0GK1638	OGK1643	Beta 4001R	HH141	Beta 4430R	0GK1642	Beta 4035R	9GK7014	02HX209	02HX211	02HX218	99HX975	9GK7003	02HX215	02HX217	US H11	02HX212	02HX216	02HX210	02HX213	02HX219
Code		CBGA en	-	7	ო	7	9	7	80	თ	10	11	13	14	15	16	17	18	19	20	21	22	23	24	25	26

(cont.)

	•				ت	۳.	.1	. 5NS
Impur.	Value	13445	14908	15185	15590.5	2175.	14	1
NH2-N Impur.	wdd	451	434	495	496.3	115.0	23.5	1.9*
Potassium	wdd.	2686	3186	3221	3247.9	393.9	12.3	2.0**
Sodium	wdd	869	908	695	787.5	213.2	27.4	2.0**
Known SugarLoss	<u>lbs/a</u>	1495	1947	1936	1844.9	318.8	17.5	5.2**
Recover. Sugar	. ₩	86.6	84.7	84.8	84.3	2.7	3.2	1.9**
Recover. Sugar	lbs/t	265	256	260	257.3	18.8	7.4	×*6.8
Recover. Sugar	<u>lbs/a</u>	0686	11201	10853	10128.0	1270.1	12.7	**6.9
Variety		CBGA entries (cont.) 27 Beta 4776R	0GK1633	11er 1929-62H5		2)		
Code		CBGA ent	28	USDA filler 19	Mean	LSD (.05)	C.V. (%)	F value

Stand establishment and uniformity were more variable than normal. Powdery mildew was not controlled and became moderate in late NOTES: This is the original variety list. The seed obtained for replanting was not used. season. No other disease and pest problems appeared significant.

EVALUATION UNDER RHIZOMANIA OF HYBRIDS WITH \mathbf{s}_1 PROGENY LINE POLLINATORS, IMPERIAL VALLEY, CA, 2001-2001 TEST B502.

Planted: September 14, 2001 Harvested: May 14, 2002 48 entries x 8 reps., RCB(E) 1-row plots, 18 ft. long

Variety	Description	Acre	Yield	Sucrose	Beets/	Roltera	Clean	Z I
		Irbs	Tons	001	No.) 	3 ∞1	Mean
Commercial Ch	Checks							
HH141	rec'd 8-16-01	7134	22.82	15.73	176	0.0	92.8	184
Phoenix	rec'd 8-16-01	9138		5	177	0.0		195
Beta 4776R	rec'd 8-31-01	8910	26.80	16.78	180	0.0	91.3	154
Beta 4430R	rec'd 8-31-01	10670	31.23	17.10	174	0.0	•	125
Retests & new	seed productions							
15		7739	24.13	16.16	172	2.1	88.5	117
Z025-9H50	x Z825-9, (CZ25-9)	8491	4	17.16	183	0.0	89.4	
0930-19H50	x 8930-19, (C930-19)	8822	26.53	6.5	179	0.4	91.3	91
1930-19H50	x NB 8930-19, (C930-19)	7859	24.44	16.23	179	0.0	89.1	124
1927-4H50	C790-15CMS x RZM 9927-4, (C927-4)	9001	28.83	15.65	175	0.0	91.1	137
1929-62H50	x RZM 9929-62, (C929-62)	8992	29.04	15.38	170	0.0	91.3	140
1930-35H50	x RZM 9930-35, (C930-35)	7695	23.71	16.42	174	0.3	89.7	135
1929-4H50	x RZM 9929-4	8847	26.42	16.74	186	1.1	90.1	133
1924-2H50	x RZM 9924-2	7935	25.18	16.00	177	0.0	90.0	146
0936-10H50	x 8936-10	9201	29.04	16.08	177	0.0	90.5	155
Checks								
1942H50	RZM 0942	8477	28.23	15.15	163	1.2	91.2	165
1924H50	x RZM-ER-% 9924	8004	25.63	15.74	177	1.5	91.0	144

TEST B502. EVALUATION UNDER RHIZOMANIA OF HYBRIDS WITH S1 PROGENY LINE POLLINATORS, IMPERIAL VALLEY, CA, 2001-2001

(cont.)

			Acre Yield	Yield		Beets/		Clean	
Variety	Desc	Description	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
			rps	Tons	o ∤	No.	oko	o,0 [Mean
<u>Checks</u> 1931H50(Iso)	C790-15CMS	x RZM-ER-% 9931	65	24.98		9	1.4	•	130
1931H50 (Sp)		x 9931(C)	8255	0.	15.36	167	2.0	0	160
1941H50 (Iso)		x RZM-ER-% 9941	84	22.35		9		•	144
1941H50 (Sp)		x 9941(C)	49	3.3	6.2	9	•	æ	7
Selected S ₁ lines	S								
1931-56H50	C790-15CMS	x 9931-56	8804	6.9	6.3	7	•	Η.	0
1931-201H50		x 9931-201	9260	9.4	5.7	7	•	0	N
1935-6H50		x 9935-6	6254	19.41	16.18	165	1.3	87.4	108
1936-14H50		x 9936-14	8098	5.8	9.9	7	•	6	0
Check									
Z125H50	C790-15CMS	x Z025(C)	6981	23.05	15.30	166	0.4	89.3	170
Selected S ₁ lines	Se								
Z131-14H50	C790-15CMS	x Z931-14	6761	0.0	6.9	177	•	9	0
Z131-18H50		x Z931-18	8023	24.76	16.28	172	0.0	87.0	110
0929-112H50	C790-15CMS	x 8929-112	9420	7.7	7.0	166	•	ά.	0
Check									
CR111H50	C790-15CMS	x CR11(C)	8104	26.20	15.48	171	2.6	90.5	125
Selected S ₁ lines	<u>ଷ</u>								
CR110-14-2H50 CR110-5H50	C790-15CMS	x CR910-14-2 x CR910-5	6801	7 2	15.94	162		89.0 1.88	123
CR112-5H50			\sim \sim		5.4	172			0

TEST B502. EVALUATION UNDER RHIZOMANIA OF HYBRIDS WITH \mathbf{s}_1 PROGENY LINE POLLINATORS, IMPERIAL VALLEY, CA, 2001-2001

(cont.)

Variety	Description	Acre Yield Sugar Bee Ibs Ton	Yield Beets Tons	Sucrose	Beets/ 100'	Bolters *	Clean Beets	N- EON
Domilation bybride				۱۱		۰۱	۰I	
C790-15CMS	5CMS x RZM-ER-% 9932	6902	22.29	15.64	165	0.4	87.2	136
	x RZM-ER-% 9933	7513	24.43	5.5	170	2.1	•	
	x NR-RZM N024	8632	27.35	15.93	173	0.4	88.0	131
	x FC1030(C)	6553		15.27	170	5.7	89.4	114
hybrids to C8	C833-5CMS							
0833-5HO	HO x 0931	7870	24.19	16.35	146	0.0	83.8	06
	x 0941	8828	26.86	16.42	158	0.4	90.7	104
	x RZM 0942	7316	22.04	16.64	168	0.0	8.06	95
	x FC1030(C)	7744	24.54	15.98	169	9.9	0.06	121
	x CR11(C)	8031	24.73		157	0.4	90.2	66
	x Z025(C)	8080	4.	9	4	6.0	91.0	115
9833-5HO	HO x 8930-19	8445	25.28		178	6.0	6.68	83
0833-5но	HO x RZM 9930-35	7742	2	17.49	9	•	•	91
0833-2но	HO x RZM 9927-4	\vdash	8.7	6.2	7		91.0	119
	x 9929-62	8993	27.91	16.19	167	6.0	•	124
	x RZM 9929-4	2	3.8	7.3	\mathbf{S}	•	90.5	113
	x RZM 9924-2	8513	5.0	7.0	9	0.0	91.1	86
		8126.5	3	16.19	169.8	•	90.1	127.9
		4.	3.6	۲.	14.3	2	2.2	•
		•	14.70	ი.	•	20	•	3.7
		4.4	** 4.04**	4.45**	2.5NS	S 7.8**	4.1**	3.0NS

EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS UNDER RHIZOMANIA, IMPERIAL VALLEY, CA, 2001-2002 TEST B602.

48 entries x 8 reps., RCB(E) 1-row plots, 18 ft. long

Planted: September 14, 2001 Harvested: June 3, 2002

Clean Rolters Reets NO3-N))))	0.3 91.4 62	.0 93.	.0 93.2 1	.4 93.8 1		2.7 89.7 35	0.4 89.9 75	0.4 91.3 89	0.0 91.0 43	7.06	.68	1.1 90.7 46	0.8 90.5 73	.06	.7 88.5	1.3 91.8 88	.0 92.3	93.1	0.2	0.0 89.7 53	٥.
Beets,	No.	186		181	168		181	170	180	177	181	7	177	179	178	177	167	171	169	161	168	172
S. C.	o(0	17.89	7.9	17.22	16.80		17.75	17.21	16.89	17.61	17.66	17.89	17.50	17.84	17.90	17.49	17.72	17.93	17.79	17.93	18.30	17.98
Acre Yield ar Reets	Tons	28.45	4.7	28.78	25.85		24.16	4.	9.6	6.	4.3	6.	22.25	ω.	ω.	4.2	25.07	7.1	.5	5.7	24.37	5.5
Acre	squ	10178	N	9857	8603		8580	8348	9957	9464	8520	9235	7718	8997	8215	8450	8877	9750	9091	9222	8943	9155
Description		rec'd 8-31-01	rec'd 8-31-01	rec'd 8-16-01	rec'd 8-16-01	S lines	C790-15CMS x RZM-ER-% R978	x R978-5	x R978-6	x R978-11	C790-15CMS x RZM-ER-% Y969	x Y968-8	x Y968-13	x Y968-16	C790-15CMS x RZM-ER-% R980	x R980-11	x R980-16	x R980-21	C790-15CMS x R076-89	x RZM R076-89-5	0 x R976-89-5-4	50 x R976-89-5NB-4
Variety		Checks Beta 4776R	Beta 4430R	Phoenix	HH 141	Hybrids with FS	R178H50	R178-5H50	R178-6H50	R178-11H50	Y169H50	Y168-8H50	Y168-13H50	Y168-16H50	R180H50	R180-11H50	R180-16H50	R180-21H50	R176-89H50	R176-89-5H50	R176-89-5-4-H50	R176-89-5NB-4H50

TEST B602. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS UNDER RHIZOMANIA, IMPERIAL VALLEY, CA, 2001-2002

(cont.)

		Acre	Yield		Beets/		Clean	
Variety	Description	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
		Ibs	Tons	o ⊱	No.	o(0	o%	Mean
Hybrids with FS	lines (cont.)							
R176-89-5-13H50	C790-15CMS x	8675	4.1	8.0	7	•	ი	
R181-22H50	x R981-22	8502	4.1	7.6	7	•	Η.	
X167H50	x RZM-ER-% Y967	10100	28.22	17.90	172	4.4	9.06	33
X167-5H50	x Y967-5	0	0.7	7.6	7	3.0	o.	
Y171H50	C790-15CMS x RZM-ER-% Y971	34	4.1	7.2	174	•	0	34
X172-1H50	x Y972-1	19	8.9	7.6	179	•	œ	44
X172-5H50	x Y972-5	9125	26.27	17.39	174	1.7	9.68	46
Y172-7H50	x Y972-7	14	0.3	6.8	181	•	Ή.	43
X175H50	C790-15CMS x Y075	18	6.7	7.1	7	4.2	0	42
X175-13H50	x Y975-13	24	9.3	7.5	7	•	H.	34
X190H50	x X090	8665	25.22	17.20	141	3.6	91.2	59
R170H50	x RZM-ER-% R970	66	5.7	7.6	9	•	0	33
P129H50		53	5.9	8.4	183	2.2	6	30
P130H50	Σ	92	8.0	7.7	170	13.5	2	56
P118-6H50	x P918-6	9850	27.82	17.76	170	4.3	89.4	35
P125-12H50	x P925-12	55	1.1	7.8	170	14.7	8	33
R143H50	C790-15CMS x RZM-ER-% R943	66	7.5	8.1	7	ω.		
R140H50	x RZM-ER-% R940,R954	9112	25.35	17.97	170	12.2	89.8	35
R136H50	x RZM-ER-% R936	89	5.9	7.1	7	•	0	
Retests from 2	2000 seed							
R078-4H50	C790-15CMS x R878-4	9837	8.2	7.3	7	0.0	0	47
R078-8H50	x R878-8	82	2.9	6.9	7	•	。	38
X067-3H50	x Y867-3	10993	0.9	7.7	9	•	8	42
R080-9H50	x R880-9	7357	20.82	17.73	177	0.0	87.8	22
R069-18H50	x Y869-18	9026	5.5	7.6	7	•	Η.	45

TEST B602. EVALUATION OF HYBRIDS WITH SELF-STERILE POLLINATORS UNDER RHIZOMANIA, IMPERIAL VALLEY, CA, 2001-2002

(cont.)

		Acre Yield	Yield		Beets/		Clean	
Variety	Description	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N
		Ibs	Tons	oko	No.	oko	oko [Mean
Retests from	Retests from Slaa x C78 (2000 seed)							
R078H10-17	9810-17aa x R978	10111	27.91	18.12	185	1.3	6.06	55
R078H10-19	9810-19aa x R978	10721	30.38	17.63	155	1.3	92.0	48
R078H35-8	9835-8aa x R978	8644	24.15	17.89	170	1.7	91.8	49
R078H48-1	9848-1aa x R978	9468	27.05	17.52	161	1.5	90.5	44
Mean		9280.6	26.36	17.64	172.8		8.06	50.6
LSD (.05)		1424.8	4.00	0.69	13.6		1.9	41.4
C.V. (%)		15.6	15.39	3.99	8.0	114.7	2.5	83.0
F value		3.6**	* 3.56**	2.21**	2.6N	2.6NS 11.9**	3.8**	2.0**

PERFORMANCE OF LINES WITH HIGH RESISTANCE UNDER RHIZOMANIA, IMPERIAL VALLEY, CA., 2001-2002 TEST B802.

24 entries x 4 1-row plots, 1	4 reps, sequential 18 ft. long					Pla: Har	Planted: Se Harvested:	September June 6,	14, 2001 2002
		Acre	Yield		Beets/		Clean		Appear
Variety	Description		Beets	Sucrose	100,	Bolters	Beets	NO3-N	Score
		Irbs	Tons	o(0	No.	o(0	%	Score	Mean
Checks Phoenix	rec'd 8-16-01	5618	18.03	15.61	153	0.0	92.8	179	æ
Beta 4430R	rec'd 8-31-01	7008	0.7	9	167	•	8	105	
US H11	1999 production	2274	•	4.	165		6	103	
R021	RZM R926, R927, (C26, C27)	3358	11.12	14.74	168	•	89.3	122	•
Hybrid-line co	combinations		,	(
1130	KAM 1090	3804	; ⋅	16.37	145	0.0	92.8	82	•
XI 90HS0		4857	7	17.02	149	•	90.5	69	3.5
Y190H5	C833-5HO x RZM Y090	4738	3.6	7.	140	0.0	•	77	•
X175	RZM Y075	8433	8.4	4.8	168	4.1	ش	68	2.2
X175H50	C790-15CMS x RZM Y075	6400	21.15	15.13	172	1.7	•	91	2.4
X175H5	C833-5HO x RZM Y075	8823	5.8	7.0	181	0.0	95.4	89	2.1
1927-4	RZM 9927-4aa x A, (C927-4)	7641	4.1	æ	160	0.0	92.5	84	2.4
1927-4H50	C790-15CMS x RZM 9927-4	9952	29.72	16.75	168	0.7		45	•
1927-4H5	0833-5HO x RZM 9927-4	9206	7.1	6.9	168	•	.	09	2.1
Lines and Populations	lations								
	PMR-RZM P807-2,-8;P808-7	7410	22.16	6.7	174	0.0	•	55	
P118-6 (CP08)	Inc. P918-6	7232	0.4	17.77	165	1.0	91.8	32	2.0
P125-12	Inc. P925-12	2283	7.20	6.0	158	11.3	9	41	•
N112	NR-RZM P912 (A,aa)	8321	25.16	9	175	•	Η.	48	1.8
N172	NR-RZM N972 (A, aa)	6711	•		164	25.9	8.06	92	2.4
Y167	RZM-ER-% Y967, (C67)	6117	18.10		161	•	æ.	52	2.7

2.7

52 47

93.7

 $5.3 \\ 1.1$

161 165

16.99 16.60

18.10 20.46

6117 6744

Inc. Y967-5

X167-5

1.8 2.8 1.9

69 43 65 94

90.3 89.8 92.8 93.5

0.8 0.0 0.0

164 164 174 164

15.32 16.74 16.08 15.25

20.66 12.18 21.60 24.58

6331 4068 6985 7433

X975-13

X175-13

Inc. Y972-5 Y972-7

X172-5 X172-7

X172-1

Inc. Inc.

Inc. Y972-1

		Acre Yield	rield		Beets/		Clean		Appear
Variety	Description	Sugar	Beets	Sucrose	100' E	Bolters	Beets	NO3-N	Score
		sqT	Tons	o∤0	No.	o ⊘	olo I	Score	Mean
Mean		6322.8	19.53	16.15	163.9	3.2	91.8	75.3	2.7
LSD (.05)		1720.8	5.22	1.25	30.7	5.5	2.0	58.5	0.7
C.V. (%)		19.3	18.96	5.48	13.3	124.5	1.6	55.1	18.5
F value		11.8**	11.56**	5.34**	0.8NS	8.e**	6.7**	2.4**	9.4**

and/or WB242 & WB97. The combination of components of sugar yield and appearance scores were used to confirm This is the 2nd cycle of rhizomania tests following soil inoculation. Most of the entries in B802 and B1202 The purpose of test B802 was to evaluate breeding lines under severe rhizomania in the Imperial Valley. Test B702 was grown under moderate rhizomania in field K. and increases of progeny lines that had previously been identified/selected for resistance and appearance have resistance to rhizomania conditioned by Rz and/or from wild beets, particularly, from C51 (R22, Bvm) the presence of high resistance to rhizomania and/or other soil-borne problems. See tests B1202 and B702, and B1002-B1302.

R021 = sugarbeet x B.v.maritima but from C26 & C27, not C51 or WB242

Y190 = MM, O.P. line with Rz.

Y175 = composite of selections for high resistance to rhizomania with C51 and Rz germplasm.

1927-4 = C927-4, reselection of S_1 line with resistance from C51 and Rz. P007/8 = line to be released as CP07 in 2002 with WB242, WB97, & C51 germplasm and resistance to powdery

P118-6 = line to be released as CP08 in 2002 with Rz and resistance to powdery mildew (Pm) from WB242 Appears also to be resistant to phytotoxemia from the feeding of Empoasca leaf hoppers.

N112 = line with Rz and Pm and germplasm from WB242 and selected for resistance to sugarbeet cyst nematode

N172 = line with germplasm from WB accessed from KWS and reported to have resistance to cyst nematode. Y167-5 = increase of FS progeny that appeared to have resistance to rhizomania from C51

Y172-# = increases of FS progenies with C51 germplasm in C37 background.

Y175-13 = increase of FS progeny from line Y75.

5 = plants stunted, dead, Appearance score: (= beauty score) rating of canopy prior to harvest. Mean scores were from ratings made 5/17/02, 6/3/02 and 6/6/02, where 1 is best and 5 is worst. 1 = estimated to be how canopy (size, color, Score 3 approximates how lines with only Rz factor would rate. vigor, chlorosis, necrosis, survival, ...) would look in the absence of rhizomania. dying and in very poor general health.

FULL-SIB AND S1 PROGENY PERFORMANCE UNDER RHIZOMANIA, IMPERIAL VALLEY, 2001-2002 TEST B702.

Planted: September 14, 2001 Harvested: June 5 & 6, 2002 96 entries x 2 reps., sequential 1-row plots, 18 ft. long

4							יים	מייים	7007
Variety	Description	Acre	Yield Beets	Sucrose	Beets/ 100'	Bolters	Clean Beets	NON	Appearance Score
		Irbs	Tons	≫	No.	o⊬	ore	Mean	6/3/02
Checks Reta 4430R	70°, d 8-31-01	8690	α	7	164			7	
Phoenix	10' C C C C C C C C C C C C C C C C C C C	9596	ο α	# · ·	104		> c	/ T T	•
US H11	1999 production	3680	. 0	. A	1 1 2	•	v a	200	•
X175		9545	30.26	15.90	161	0.0	93.9	136	. T
								•	•
99-C31/6	Inc. F86-31/6 (C31/6)	5278	5.8	6.3	142	•	4.	57	•
X191	Inc. FS(C)	8831	6.0	7.1	145	•	ω.	100	•
1927-4H5	0833-5HO x RZM 9927-4	9180	29.00	15.87	150	3.3	91.5	124	2.0
X167	RZM-ER-% Y967, (C67)	10169	8.4	7.9	183	•	æ.	29	•
FS's from Y75									
	RZM Y075 (PX)	6128	7	വ	145	3.4	•	67	
- 2		11728	6.	6.0	133	•	4	107	
е 1		7111	20.10	7	128	0.0	4	44	2.5
4 -		10100	œ.	വ	139	•	•	91	
ا ت		8352	4.3	7.3	125	0.0	92.3	28	•
9 -		8078	4.2	6.7	128		•	70	•
- 7		12880	38.45	16.86	125	0.0	94.6	105	2.5
80 I		12561	5.6	7.6	156	•	•	39	•
<u>ი</u>		11254	34.11		Œ	0.0	94.4	68	•
-10		œ	8	7.3	ϵ	•	•	51	•
-11		7145	22.13	16.14	122	0.0	88.9	90	2.0
-12		വ	Ġ.	8.7	4	0.0	•	42	•
-13		10651		7.5	r	0.0		33	•
-14		6475	18.47	17.52	120		91.6	27	4.0
-15		7931	23.54	6.8	ϵ	8	Э.	74	•
-16		10179	œ.	7.7	7	•	Ή.	29	•

(cont.)

Variety	Description	Acre	Yield Beets	Sucrose	Beets/ 100'	Bolters	Clean Beets	NO3-N	Appearance Score
		sqT	Tons	oko	No.	oko	o(0	Mean	6/3/02
FS's from Y75	(cont.)								
	RZM Y075 (PX)	വ	2.3	6.9	3	•	4	52	•
-18		വ	2.6	6.9	2	•	o.	65	•
-19		7912	22.50	17.64	128	2.2	93.9	62	3.0
-20		\vdash	9.5	7.2	\leftarrow	•	5.	51	•
-21		•	7.1	8.2	2	•	4.		•
-22			4.7	6.4	3	•	ω.		•
-23		8277	23.03	17.97	125	0.0	91.6	39	3.0
-24		10	1.3	5.2	4	•	2		
S ₁ 's from 0934									
ı	RZM 0934⊗	7	5.3	5.7	4	•	Ή.	81	•
-102		0	2.0	5.9	120	•	0	91	•
-103		Ŋ	6.8	5.9	3	•	ж •	103	•
-104		5450	16.51	16.50	106	0.0	94.5	51	3.5
-105		3	3.0	6.9	92	•	ю	40	•
-106		9 8	2.5	5.3	ന	•		82	
-107		9999	21.04	15.83	117	0.0	92.6	32	4.5
-108		90	9.6	7.0	4	•	5.	67	
-109		42	1.3	5.3	Н	•	8	47	•
-110		94	5.1	5.4	7	•	ж Э	122	•
S_1' s from 0921									
1	RZM 0921⊗	6	2.9	5.9	4	•	\vdash		•
- 2		0	1.3	8.2	\vdash	•	1		•
e I		6178	19.18	16.08	153	3.6	91.0	49	3.0
7 - 4		0	6.1	9.9	2	•	4.		•
ı 2		0	0.0	5.0	ന	•	4.		•
9 1		വ	7	6.6	N	•	6	38	•
L -		2517	8.18	15.20	122	0.0	91.0	34	5.0

TEST B702. FULL-SIB AND S1 PROGENY PERFORMANCE UNDER RHIZOMANIA, IMPERIAL VALLEY, 2001-2002

(cont.)

	,	1	Acre	Yield	Č	Beets/	í	Clean		Appearance
	Vartery	Describtion	The	Tons	Sucrose	001	Bolters *	Beets	NO3-N Mean	Score 6/3/02
					٥١	<u>[</u>]	٥١	₽	Liean	0/ 3/ 02
	$S_1's$ from 0921	[(cont.)								
	1921 - 8	RZM 0921⊗	7243	22.07	16.41	106	35.6	91.6	99	3.5
	6 1		6254	18.44	16.92	131	0.0	94.1	20	3.0
	-10		3572	9.97	17.85	136	5.6	91.9	32	3.5
	S_1 's from NO24									
	N124 - 1	RZM N024 (galls) \otimes	7471	21.61	17.29	108	15.5	88.0	56	3.0
	- 2		7088	23.85	14.65	111	0.0	92.0	66	3.5
	S ₁ 's from N065m	EIG.								
	N165 - 1	N065 (galls) mm⊗	5499	18.48	14.85	95	0.0	91.6	104	4.0
A 13	S ₁ 's from N972									
2	N172 - 1	NR-RZM N972⊗	6999	Ή.	5.	136	0.0	90.4	36	3.0
	- 2		7734	25.66	15.05	92	0.0	92.0	156	3.0
	S ₁ 's from P912									
	N112 - 1	NR-RZM P912⊗	6310	21.73	14.53	128	0.0	90.4	36	3.5
	- 2		4198	12.53	9	139	0.0	86.1	38	4.0
	ю 1		6460	19.96	15.81	156	0.0	88.9	81	
	7 -		5665	19.15	15.11	28	0.0	•	62	3.5
	ا 5		9249	26.10	17.67	139	4.0	91.2	57	2.0
	9 1		6658	21.43	15.55	136	24.5	89.5	44	2.0
	7 -		8334	24.88	16.74	108	0.0	93.0	27	•
	80 1		7453	ю	15.78	106	34.2	90.5	43	3.0

		a	Yield		Beets/		Clean		Appearance
Variety	Description	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N	Score
		Lbs	Tons	o⊱	No.	o⁄o	o(0	Mean	6/3/02
FS's from P9.	P921-6 (maybe S ^f :S ^s S ^s)	v	ν	ι. -	ď		Ľ		
-9-		8613		17.36	1 1 1	. o .	0.00	· [
		4			0		,	7	•
-9-		0996	7.	7.3	9	8	8	20	•
		7780	ω.	17.07	128	19.6	92.5	25	3.0
		4		7.4	ϵ	•	ö	29	•
9 -9-		^	5.6	6.9	7	•	2	22	•
		æ	8.0	6.5	4	•	2	42	•
8 -9-		0	4.4	6.1	2	ω.	0	22	•
6 -9-		7375	22.39	16.52	133	35.2	93.4	44	3.0
-6-10		\leftarrow	8.6	6.5	2	m.	2	24	•
from	P918-8								
P118 -8- 1	P918-8 (PX)	ത	9.4	6.9	\dashv	•	2	39	•
		O)	2.5	6.3	Э	4.	2	91	•
-8-3		6125	20.43	14.99	103	54.4	92.0	89	3.5
-8- 4		_	0.4	6.1	⊣	e.	œ œ	30	•
-8-5		4	7.7	0.	4	М	Η.	23	•
9 -8-		S	2.9	5.4		ъ.	ω.	42	•
-8- 7		6416	20.33	15.66	97	16.7	93.2	49	3.0
8 -8-		0	9.6	5.6		m.	Б.	64	•
from	9926-11								
1926 -11-1	9926-11⊗	5271	6.7	5.5	81		4.	46	
-11-2		5987	21.87	13.76	92	20.0	93.4	58	3.0
-11-3		8762	7.6	5.9	117		6.	38	
-11-4		5271	8.1	4.6	98	•	5.	73	•

FULL-SIB AND S1 PROGENY PERFORMANCE UNDER RHIZOMANIA, IMPERIAL VALLEY, 2001-2002 TEST B702.

(cont.)

		Acre Yield	field		Beets/		Clean	Ä	Appearance
Variety	Description	Sugar	Beets	Sucrose	1001	Bolters	Beets	NO3-N	Score
		Irbs	Tons	≫	No.	æ।	æ	Mean	6/3/02
S_2 's from 9926-15	-15								
1926 -15-1	9926-15⊗	5067	16.01	15.84	142	0.0	93.5	18	4.0
-15-2		7667	23.58	16.26	111	0.0	90.1	21	3.5
-15-3		3984	12.17	16.22	117	0.0	94.6	15	
-15-4		3066	9.58	16.03	131	1.9	90.1	14	4.5
S ₂ 's from 9934-8	8-								
	9934-8⊗	5998	18.61	16.00	136	4.1	7.06	75	3.5
-8- 2		5197	16.20	16.04	128	0.0	89.3	38	3.0
-8-3		2470	7.53	16.32	117	17.5	91.6	32	20.0
-8- 4		4520	14.65	15.48	139	0.0	90.3	52	3.0
Mean		7458.8	22.71	16.23	127.8	10.2	91.4	59.4	3.0
LSD (.05)		3378.2	10.16	1.69	30.4	14.0	3.2	48.5	1.1
C.V. (%)		22.8	22.54	5.23	12.0	0.69	1.8	41.2	18.8
F value		40.4	4.0** 3.74**	10.39**	5.6*	5.6**14.0**	70.1**	4.1**	4.8**

See test B1102 for additional progeny lines under severe rhizomania. NOTES: See tests B802, B1002-B1302.

inoculation of soil. The primary purpose of tests B702 and B1102 was to identify progeny lines (FS's and S1's) This is the 2nd cycle of rhizomania tests following confirm these genotypes. Also, residual annualism occurs in this material, and nonbolting, biennials will be rhizomania conditioned by Rz (Holly gene) and from wild beets, particularly from C51 (R22, Bvm) and/or WB242 that perform best under rhizomania in the Imperial Valley. Most of these progeny lines have resistance to The combination of sugar yield components and appearance scores will be used to identify and WB97. From C51, some advanced progeny lines have high resistance to rhizomania under high temperature Test B702 was grown under moderate rhizomania in field K. conditions. selected

Appearance	Score	6/3/02
	NO3-N	Mean
Clean	Beets	op
	Bolters	op
Beets/	1001	No.
	Sucrose	00 l
cre Yield	Beets	Tons
Acre	Sugar	I.bs
	Description	
	Variety	

NOTES: (cont.)

chlorosis, necrosis, ...) would look in the absence of rhizomania. 5 = plants stunted, dead or dying and in very Appearance score (= canopy beauty score) of canopy prior to harvest. Ratings were made 6/3/02 where 1 is best poor general health. Score 3 to 5 are types that were thought would not survive under rhizomania in high and 5 is worst. 1 = relative score of material in test and estimate of how canopy (size, color, vigor, temperatures of mid-summer.

Y175 & Y175-#s = line and FS progenies from Y75 line that has about 10% C51 (Bvm) germplasm and selected for 1927 - 4H5 =high resistance in Imperial Valley and Salinas. $1934-\#s=s_1$'s from self-fertile, multigerm line with C51 germplasm. 1921-#s = S_1 's from self-fertile, multigerm line with germplasm from C51,C26 & C27. N112-#s = $\mathrm{S_1}{}^{'}\mathrm{s}$ from line P912 that has WB242 germplasm for resistance to cyst nematode and powdery mildew. C833-5CMS x C927-4.

TEST B1002. EVALUATION OF EXPERIMENTAL HYBRIDS FOR RESISTANCE TO RHIZOMANIA UNDER SEVERE CONDITIONS, IMPERIAL VALLEY, CA, 2001-2002

64 entries x 2 reps., sequential 1-row plots, 14 ft. long

Planted: September 14, 2000 Not harvested for yield

			Stand			
Variety	:	Description	Count		rance S	
			<u>No.</u>	05/16	06/04	Mean
Checks						
B4776R	rec'd 8-31	-01	15	2.5	3.0	2.8
US H11	1999 produc	ction	15	3.0	2.5	2.8
R522 (Sp)	RZM-%S R322	2R4, (C51)	16	1.0	2.5	1.8
HH 141	rec'd 8-16-	-01	17	2.5	3.5	3.0
B4430R	rec'd 8-31-	-01	21	2.5	3.0	2.8
Phoenix	rec'd 8-16-	-01	16	3.0	3.5	3.3
Rizor	нн108, 9-3-		14	3.0		3.0
R021H50	•	x R926,R927, (C26,C27)	15	2.5	3.5	3.0
	0.50 10010	11 11320/11321/(020/021/	-5	2.5	3.0	3.0
Hybrids from	resistant l	ines				
Y171H50		x RZM-ER-% Y971, (C72)	22	2.0	3.0	2.5
Y167H50	0.50 15015	x RZM-ER-% Y967, (C67)	13	2.0	2.5	2.3
Y067-3H50		x Y867-3	12	2.0		2.3
Y167-5H50		x Y967-5	22			
116/-SH5U		x 1967-5	22	2.5	3.0	2.8
V170 1HE0		3070 1	0.6		٥	0 0
Y172-1H50		x Y972-1	26	1.5	2.5	2.0
Y172-5H50		x Y972-5	15	1.5	2.5	2.0
Y172-7H50		x Y972-7	15	2.5		2.8
Y175-13H50		x Y975-13	15	1.5	2.0	1.8
					_	
Y175H50		x RZM Y075(C)	19	2.0	2.0	2.0
R170H50		x RZM-ER-% R970	16	3.0	3.0	3.0
R143H50		x RZM-ER-% R943	14	2.0	2.5	2.3
R140H50		x RZM-ER-% R940,R954	16	2.5	2.5	2.5
R136H50		x RZM-ER-% R936	16	2.5	2.5	2.5
Y190H50		x RZM Y090	5	3.5	3.0	3.3
Y190H3	97-C562HO	x RZM Y090	4	3.0	3.5	3.3
Y190H80	0808-9H5	x RZM Y090	7	3.0	3.0	3.0
Y190H81	0808-15HG	x RZM Y090	9	3.0	3.0	3.0
Y190H11	CR011aa	x RZM Y090	10	2.5	3.0	2.8
Y190H41	09 4 1aa	x RZM Y090	10	2.0	3.0	2.5
Y190H25	Z025aa	x RZM Y090	4	2.5	3.5	3.0
		11 11211 1030	-	2.5	3.5	3.0
Y190H31	0931aa	x RZM Y090	19	2 =	2 0	2 0
Y190H5	C833-5HO	x RZM Y090		2.5	3.0	2.8
Y175H5	C833-5HO	x RZM Y075 (C)	1	3.0	4.0	3.5
Y072-4H50		x Y872-4	5	2.5	2.5	2.5
R078H50			10	2.0	2.5	2.3
MO / ORDU	C790-15CMS	x R978, (C78/3)	25	3.0	3.5	3.3

TEST B1002. EVALUATION OF EXPERIMENTAL HYBRIDS FOR RESISTANCE TO RHIZOMANIA UNDER SEVERE CONDITIONS, IMPERIAL VALLEY, CA, 2001-2002

TTo said a hora			Stand			
Variety	D	escription	Count		rance S	
			No.	05/16	06/04	Mean
Hybrids from	resistant li	nes (cont)				
R078H48-1	9848-1aa	x R978	8	2.0	3.0	2.5
R078H10-17	9810-17aa	x R978	10	1.5		2.3
R078H10-19	9810-19aa		14	2.5	3.0	2.8
		11 110 / 0			3.0	2.0
R021H5	C833-5 (T-O)	HO x R926, R927, (C26, C27)	22	2.5	3.0	2.8
R522 (Sp)	RZM-% R322F		11	1.0	1.5	1.3
US H11	1999 produc	etion	8	3.5	3.0	3.3
P007/8 H50	C790-15CMS	x PMR-RZM P807-2,-8	13	1.5	2.0	1.8
P129H50	C790-15CMS	x PMR-RZM P029-#(C)	21	2.5	3.5	3.0
P130H50		x PMR-RZM P030-#(C)	14	3.5		3.5
P118-6H50		x P918-6, (CP08)	10	1.0		1.5
P125-12H50		x P925-12	16	2.5	3.0	2.8
N124H50	C790-15CMS	x NR-RZM N024	8	2.5	3.0	2.8
1931H50(Sp)		x RZM 0931(C)	4	3.0		3.3
1941H50(Sp)		x RZM 0941(C)	3	3.0		3.5
CR111H50		x RZM CR011(C)	5	2.5	3.0	2.8
Z125H50	C700-150MS	x RZM Z025(C)	13	3.5	4.0	3.8
01-FC1030H50	C/90-15CMS	x RZM FC1030(C)	8	3.5		3.5
0934H50		x RZM FC1030(C) x RZM 9934	4	1.0		1.5
1942H50		x RZM 9934 x RZM 0942	4	3.0	3.5	3.3
1942050		X K2F1 0942	•	5.0	5.5	3.3
R176-89H50	C790-15CMS	x RZM R076-89	10	3.5	3.0	3.3
1927-4H50		x RZM 9927-4, (C927-4)	6	1.0		1.5
1929-62Н50		x RZM 9929-62, (C929-62)	2	4.0	4.0	4.0
1930-35H50		x RZM 9930-35, (C930-35)		3.0	3.5	3.3
		, ,				
1929-4H50	C790-15CMS	x RZM 9929-4	10	2.5	3.0	2.8
1924-2H50		x RZM 9924-2	6	4.0	4.0	4.0
1927-4H5	C833-5HO	x RZM 9927-4, (C927-4)	6	3.0	3.0	3.0
1929-62Н5		x RZM 9929-62, (C927-62)	5	4.0	4.0	4.0
1000 0545		PEN 0020 2E (C020 2E)	4	3.0	3.0	2.0
1930-35H5		x RZM 9930-35, (C930-35)		4.5		3.0 4.3
1929-4H5		x RZM 9929-4	1 2			3.8
1924-2H5		x RZM 9924-2	7	4.0		
Y175H5		x RZM Y075(C)	/	2.0	2.5	2.3
Mean			11.0	2.6	3.0	2.8
LSD (.05)			14.1		1.1	1.3
C.V. (%)			63.9		17.9	22.4
F value			1.6*	1.8*	2.4**	2.3**

NOTES: See tests B1102, B1202, B1302, and B702 & B802.

TEST B1202. EVALUATION OF MULTIGERM LINES FOR RESISTANCE TO RHIZOMANIA UNDER SEVERE CONDITIONS, IMPERIAL VALLEY, 2001-2002

64 entries x 4 reps., sequential 1-row plots, 14 ft. long

Planted: September 14, 2001 Not harvested for yield

	Source		Stand			
Variety	Resist	Description	Count			Score
Ch a she			No.	5/17	6/04	Mean
Checks	SES	UU109 0-2-07	12.5	2 2	2 5	3.4
Rizor		HH108, 9-3-97		3.3	3.5 3.8	3.4
HH141	Rz	rec'd 8-16-01	15.0	3.5		
Phoenix	Rz	rec'd 8-16-01	17.3	3.5	4.0	3.8
US H11		1999 production	15.8	3.5	4.0	3.8
R522 (Sp)	Bvm	RZM-%S R322R4,(C51)	17.8	1.8	2.0	1.9
B4776R	Rz	rec'd 8-31-01	13.0	3.0	3.8	3.4
B4430R	Rz	rec'd 8-31-01	15.8	3.0	3.5	3.3
1927-4H50	Bvm-Rz	C790-15CMS x RZM C927-4	16.3	1.3	1.5	1.4
Multigerm,S°	S° lines					
R039	Q	Inc. R539, (C39R)	16.0	3.3	3.8	3.5
99-C31/6	<u> </u>	Inc. F86-31/6, (C31/6)	11.8	3.5	4.0	3.8
R176-89	Rz	RZM R076-89	8.3	3.8	4.0	3.9
Y190	Rz	RZM Y090	10.8	3.0	3.3	3.1
1190	R2	RZM 1090	10.8	3.0	3.3	3.1
Y191	Rz	Inc. FS(C)	14.0	2.3	2.5	2.4
Y167	Bvm	RZM-ER-% Y967, (C67)	17.0	2.0	2.5	2.3
Y175	Bvm-Rz	RZM Y075 (C)	16.3	1.5	2.3	1.9
Y171	Bvm	RZM-ER-% Y971, (C72)	16.5	2.5	2.5	2.5
		, . ,				_,_
Y067-3	Bvm	Inc. Y867-3	9.5	2.8	3.0	2.9
Y072-4	Bvm	Inc. Y872-4	14.5	2.5	3.3	2.9
Y167-5	Bvm	Inc. Y967-5	16.0	2.8	3.0	2.9
Y172-1	Bvm	Inc. Y972-1	10.8	2.0	2.5	2.3
				_,,		
Y172-5	Bvm	Inc. Y972-5	15.8	2.3	3.0	2.6
Y172-7	Bvm	Inc. Y972-7	13.5	2.3	2.8	2.5
Y175-13	Bvm- Rz	Inc. Y975-13	15.5	1.3	1.8	1.5
P007/8(CP07)	Bvm-Rz	PMR-RZM P807-2;-8;P808-7	16.3	1.5	2.0	1.8
01 027		T 1106 OF 150F)				
01-C37		Inc. U86-37, (C37)	15.8	4.8	5.0	4.9
P127 (CP03)	Bvm-Rz	PMR P027-#(C)	19.3	4.3	4.8	
	Bvm-Rz	PMR P028-#(C)	16.8		1.0	
P129 (CP05)	Bvm-Rz	PMR-RZM P029-#(C)	17.5	4.0	4.3	4.1
P130 (CP06)	Bvm-Rz	PMR-RZM P030-#(C)	16.3	3.8	4.3	4.0
R178	Rz	RZM-ER-% R978, (C78/3)	16.5		3.8	
99-C46/2		Inc. U86-46/2, (C46/2)	17.3		4.5	
01-EL0204	Rz	RZM 00-EL0204	16.3			
J			10.3	3.8	4.3	4.0
P118-6 (CP08)	Bvm-Rz	Inc. P918-6	13.5	1.0	1.0	1.0
P125-12	Bvm- Rz	Inc. P925-12	19.8	4.8	4.0	4.4
US H11		1999 production	18.3	3.8	4.3	4.0
1927-4H5	Bvm-Rz	0833-5HO x 9927-4(C927-4)	19.0	1.5	1.8	1.6
			_	-		

TEST B1202. EVALUATION OF MULTIGERM LINES FOR RESISTANCE TO RHIZOMANIA UNDER SEVERE CONDITIONS, IMPERIAL VALLEY, 2001-2002

Variety Resist Description Count Appea		
	ırance	Score
No. 5/17	6/04	Mean
Multigerm, S'S' lines (cont.)		
R021 Bvm-Rz RZM R926,R927, (C26,C27) 14.5 3.0	3.8	3.4
01-C37 Inc. U86-37, (C37) 14.5 4.5	4.8	4.6
R136 Bvm RZM-ER-% R936, (C79-8) 17.3 2.5	3.3	2.9
R143 Bvm RZM-ER-% R943 17.3 1.3	3.0	2.1
Multigerm, Sf, A: aa populations & lines		
N112 Bvm-Rz NR-RZM P912 (A,aa) 16.3 1.0	1.8	1.4
N172 Bvm-Rz NR-RZM N972 (A,aa) 20.3 1.3	1.8	1.5
N124 Bp-Rz NR-RZM N024(g)(A,aa) 14.0 3.0	3.0	3.0
0747 Inc. 7747 (A,aa) 18.5 3.8	4.3	4.0
1931 (Iso) Rz RZM-ER-% 9931 (A,aa) 14.5 4.0	4.3	4.1
0926 Bvm-Rz RZM-ER-% 8926(Sp) 13.3 2.3	2.8	2.5
0921 Bvm-Rz 9926aa x RZM R926,R927 16.8 2.3	2.3	2.3
01-FC1030 Rz FC1030(C)aa x A 15.5 4.0	4.3	4.1
0934 Bvm-Rz RZM 9934 (A,aa) 14.0 2.5	2.5	2.5
CR111 Rz RZM CR011 (C) aa x A 17.5 3.8	3.8	3.8
Z125 RZM Z025 (C) aa x A 15.8 4.0	4.3	4.1
1932 Rz RZM-ER-% 9932 (A,aa) 17.0 3.8	4.5	4.1
1924 Rz RZM-ER-% 9924 (A,aa) 17.5 3.8	4.0	3.9
1933 RZ RZM-ER-% 9933 (A,aa) 14.0 3.8	4.3	4.0
1942 Rz RZM 0942aa x A 19.8 3.5	4.0	3.8
1941 (Iso) Rz RZM-ER-% 9941 (A,aa) 15.3 3.0	3.8	3.4
9927-4 Bvm-Rz Inc. 7924-4VY, (C927-4) 11.5 1.3	2.3	1.8
0934-5 Bvm-Rz Inc. 8934-5 (A,aa) 11.5 2.3	2.8	2.5
1929-4 Rz RZM 9929-4 12.3 4.5	4.5	4.5
1924-2 RZ RZM 9924-2 15.3 4.8	4.3	4.5
1927-4 Bvm-Rz RZM 9927-4, (C927-4) 13.3 1.0	1.0	1.0
1930-19 Rz NB 8930-19, (C930-19) 9.8 4.5	5.0	4.8
1930-35	4.5	4.3
1929-62 Rz RZM 9929-62, (C929-62) 12.0 4.8	4.8	4.8
Mean 15.2 3.0	3.3	3.2
LSD (.05) 6.2 0.9	0.8	0.8
C.V. (%) 29.0 21.8	17.4	17.1
, <i>,</i>		16.1**

NOTES: See test B802 and tests B702, B1002, B1102, and B1302. Tests B1002-B1302 were in a field plot area with severe rhizomania and soil-borne problems that had been in sugarbeet trials every other year since about 1990. Scored 1 to 5, where 1 is best, on 5/17 by JAO and 6/4 by RTL. Source of resistance: Rz = Holly gene; $Bvm = Beta \ vulgaris \ subsp. \ maritima, including C51, (C50,R22), WB97, and/or WB242; <math>Q = \text{quantitative resistance}$; Bp = B.procumbens for nematode resistance.

TEST B1302. EVALUATION OF MONOGERM LINES & POPULATIONS FOR RESISTANCE TO RHIZOMANIA UNDER SEVERE CONDITIONS, IMPERIAL VALLEY, 2001-2002

48 entries x 2 reps., sequential 1-row plots, 14 ft. long

Planted: September 14, 2001 Not harvested for yield

	Source				
Variety	Resist	Description	Appea	rance	Score
			6/03	6/04	Mean
Checks					
	Descri	T V070 1	2 0	2 0	2.0
Y172-1	Bmv	Inc. Y972-1	2.0	2.0	2.0
Y175-13	Bmv-Rz	Inc. Y975-13	1.0	1.5	1.3
Y190	Rz	RZM Y090	2.5	2.5	2.5
Y190H50	Rz	C790-15CMS x RZM Y090	3.0	3.0	3.0
Y190H80	Rz	0808-9H5 x RZM Y090	3.5	3.5	3.5
Y190H81	Rz	0808-15H5 x RZM Y090	3.0	2.5	2.8
					_,,
1927-4	Bmv-Rz	RZM $9927-4aa \times A, (C927-4)$	2.5	2.0	2.3
1927-4H50	Bmv-Rz	$C790-15CMS \times RZM 9927-4, (C927-4)$	1.5	2.0	1.8
1927-4H5	Bmv-Rz	0833-5HO x RZM 9927-4, (C927-4)	3.0	2.5	2.8
Monogerm lines &	populations				
1869	Rz	RZM, T-O 0869-#(C) mmaa x A, (C869)	4.0	4.0	4.0
1869НО	Rz	9869HO x A, (C869CMS)	3.5	3.5	3.5
1835	Rz	8835 (C) mmaa x A	3.5	3.5	3.5
1835но	D=	002510 0025707	2 -	2 0	2 2
	Rz	0835HO x 8835 (C) A	3.5	3.0	3.3
1842	Rz	RZM 0840 (C) mmaa x A	3.5	3.0	3.3
1842HO	Rz	0841HO x A	4.5	4.0	4.3
1836	Rz	0836,0837mmaa x A	4.0	3.5	3.8
1836НО	Rz	0836HO x A	3.5	3.5	3.5
1848M	Bmv-Rz	RZM 0848 (A,aa)	3.5	3.0	3.3
4040 (***50)					
1848m (H50)	Bmv-Rz	mm & CMS x A	3.0	2.0	2.5
01-FC1014	Rz	00-FC1014mmaa x A	4.5	3.5	4.0
01-FC1014H5	Rz	0833-5HO x A	4.5	3.0	3.8
01-FC1014H7	Rz	0833-5(Sp)aa x A	4.5	4.0	4.3
01-FC123	Rz	RZM 00-FC123mmaa x A	4.5	4.0	4.3
01-FC123H5	Rz	0833-5HO x A	4.0	3.0	3.5
01 101100		0033 3110 X A	4.0	3.0	3.5
01-FC123H7	Rz	0833-5(Sp)aa x A	3.5	4.0	3.8
1835-11	Rz	Inc. 8833-11 (A,aa)	5.0	4.5	4.8
1835-11Н5	Rz	0833-5н0 ж А	4.0	4.5	4.3
1835-26	Rz	Inc. 8835-26 (A,aa)	F 0	4 -	4 0
1835-26H5	Rz	0833-5HO x A	5.0	4.5	4.8
Y175	Bmv-Rz		4.5	4.0	4.3
11/3	DIIIV -KZ	RZM Y075,	1.5	2.0	1.8

TEST B1302. EVALUATION OF MONOGERM LINES & POPULATIONS FOR RESISTANCE TO RHIZOMANIA UNDER SEVERE CONDITIONS, IMPERIAL VALLEY, 2001-2002

	Source				
Variety	Resist	Description	Appea	rance S	core
			6/03	6/04	Mean
					
Monogerm lines &	populations				
Y175H50	Bmv-Rz	C790-15CMS x RZM Y075,	2.5	2.0	2.3
Y175H5	Bmv-Rz	C833-5HO x RZM Y075,	2.5	2.5	2.5
Y190H5	Rz	C833-5HO x RZM Y090	3.5	3.0	3.3
1833-5 (Iso)	Rz	RZM 0833-5(Sp) (A,aa),(C833-5)	5.0	4.0	4.5
1833-5	Rz	Inc. 0833-5(Sp) (A,aa), (C833-5)	5.0	4.5	4.8
1833-5-8	Rz	Inc. 8833-5-8 (A,aa)	5.0	4.0	4.5
1833-5-11	R_{Z}	Inc. 8833-5-11 (A,aa)	5.0	4.5	4.8
1848M	Bmv-Rz	RZM 0848 (A,aa)	3.0	3.0	
1927-4	Bmv-Rz Bmv-Rz	RZM 9927-4aa x A, (C927-4)			3.0
1927-4	BIIIV-R2	RZM 9927-4da X A, (C927-4)	1.5	1.5	1.5
Monogerm nematod	e resistant	lines			
N165-9M	Bp-Rz	Inc. N065-9 (A,aa)	3.5	3.5	3.5
N165-9HO	Bp-Rz	NR-RZM N065H5 x N065-9	2.0	3.0	2.5
N165-9H50	Bp-Rz	C790-15CMS x N065-9	2.0	2.5	2.3
N165	Bp-Rz	NR-RZM N065mm(g) (A,aa)	4.0	3.0	3.5
N165HO	Bp-Rz	NR-RZM N065H5 x " "	4.0	3.5	3.8
N165H50	Bp-Rz	C790-15CMS x " "	3.5	3.0	3.3
N167M	Pm - D =	To NO 67 # (C) (a) (3 co)	3.5	3.5	3.5
N167M N167HOM	Bp-Rz	Inc. N067-#(C)(g) (A,aa)	3.5	3.0	
N167HOM N124	Bp-Rz	N065H5(g) x " "			3.3
N124	Bp-Rz	NR-RZM N024(g) (A,aa)	3.0	3.0	3.0
Mean			3.5	3.2	3.3
LSD (.05)			1.4	1.1	0.6
C.V. (%)			19.6	17.3	8.6
F value			4.8**	4.5**	20.0**

NOTES: See tests B702-B1202. Test B1302 was in a field plot area with severe rhizomania and soil-borne problems. This area has been in sugarbeet trials every other year since about 1990. Score 1 to 5, where 1 is best and 5 is poorest. Scored on successive days due to changes in time of day and experience of scorer. Source of resistance: Rz = Holly gene; $Bvm = Beta \ vulgaris \ \text{subsp. } maritima$, usually C51, (C50,R22); $Bp = Beta \ procumbens$ source of nematode resistance; Q = quantitative resistance.

CR PERFORMANCE OF LINES & HYBRIDS, SALINAS, CA, 2002 TEST 5602.

48 entries x 6 reps, RCB(e) 1-row plots, 11 ft. long

entries x cow plots,	48 entries x 6 reps, RCB(e) 1-row plots, 11 ft. long					Planted: Harvested	1: March 25, sed: November	25, 2002 nber 14,	2002
	Description	Acre Y	Yield Beets	Sucrose	Beets/	RJAP	Bolting	Root	, N
		sqT	Tons	or	No.	o 0		અા	Score
RZM Y	RZM Y090, C2, Svn 1	622	50.35	c v	α	000	c	c	
Inc.	Inc. FS(C), C1, Syn 1	g	41.87	16.65	139	. n			2.2
RZM Y075	:075	386	9	4.9	130		0.0	0.0	
RZM F	RZM R926, R927, (C26, C27)	593	•	5.1	141	2	•		•
Inc.	00-SP22-0	205	•	ო.	139	•	•	•	•
RZM 0	RZM 00-EL0204 (Rz, smooth root)	42	•	14.38	147	•	0.0	•	•
RZM F	RZM FC1030aa x A (Rz, Rhizoc.)	12986	42.73	15.08	C)	5.	0	-	
RZM-E	RZM-ER-% 9933 (Rz, root aphid)	36	•	2	m	0	•	•	•
RZM	0931aa x A (popn-931)	33	44.75	4	129		0.0	0.0	2.7
RZM (CR011aa x A (popn-CR11)	346	45.67	4	r	H.	•	•	
RZM	RZM CR910,911,912aa x A	14793	47.51	15.58	2	m.	•	•	•
RZM	R710,R709-9,R710-10,R710-14	13193	45.23	4.	ന	ij.	•	•	•
RZM	RZM CR711, (CR09/10)	16274	52.64	15.45	152	81.5	0.0	0.0	2.5
RZM	RZM R006, (Ital. Acc, 1987)	8735	28.53	15.42	112	82.7	0.0	3.1	
CR (II	CR(ms) x 0931	14804	Η.	4.	4	•	0.0	•	3.8
CR81	CR811aa x CR811(C), (HS progeny)	14835	6.7	15.87	133	82.9	0.0	0.0	•
RZM (RZM CR909-1aa x A, (CR09-1)		36.22	0.		82.0	0.0	0.0	3.3
Inc.	Inc. CR910-5, (Inc. S ₁ line)	9734	0.8	15.72	2	82.1	0.0	0.0	•
Inc.	Inc. CR910-14-2, (Inc. S ₂ line)	10563	34.10	15.43	135	2.	•	•	•
Inc.	CR912-5, (Inc.S ₁ line)	031	0.7	2.6	147	6.97	0.0	1.1	3.0

TEST 5602. CR PERFORMANCE OF LINES & HYBRIDS, SALINAS, CA, 2002

		V (200	7 (); >		7000			† ()	
Variety	Description		Beets	Sucrose	100'	RJAP	Bolting	Rot	CLS
		I.bs	Tons	જ∘ા	No.	o 0	ae	o%	Score
Monogerm lines 1689 RZ	RZM 0869-#mmaa x A, (C869)	വ	<u>ი</u> .	5.1	4	ω	•		•
01-FC123	RZM FC123aa x A (Rz,CLSR)	14808	48.81	15.25	126	82.7	0.0	0.0	3.3
01-FC1014	RZM FC1014aa x A (Rz,Rhizoc)	4	4.1	6.8	က	m	•	•	
01-FC1014H5	0833-5HO x RZM FC1014	വ	4.9	7.1	$^{\circ}$	4	•	•	
01-FC123H5	0833-5HO x RZM FC123	14233	44.81	15.87	126	81.4	1.4	1.4	2.8
Hybrid Checks	so,								
Monohikari	lot 8033, rec'd 2/22/02	14408	4.2	6.2	141	4	•	•	•
ACH555	check,lot	12902	39.22	16.45	150	82.0	1.0	0.0	2.7
HM-E17		4	4.9	9.9	2	9	•	•	•
Dorotea	rec'd 3/21/02	9	0.3	5.9	ω	7.	•	•	•
Monodoro	rec'd 3/21/02	ന	5.3	4.3	4	8	•	•	•
Beta 4776R	rec'd 2/5/02	45	48.77	4.8	4	8.	•	•	3.0
Phoenix	rec'd 8/16/01	31	9.	3.7	ω	т М	•	•	•
HH141	rec'd 8/16/01	13361	43.77	15.25	133	83.9	0.0	1.1	3.5
Beta 4430R	rec'd 8/31/01	14	. 1	3.5	4	8	•	•	•
Experimental Y190H50	Hybrids C790-15CMS x RZM Y090	579	1.9	5.1		8.	•	•	
1931H50	C790-15CMS x RZM 0931		53.88	15.62	136	84.7	0.0	0.0	3.0
1933H50	C790-15CMS x RZM-ER-% 9933	15995	о О	9	133	84.0	9.6	•	•
CR111H50 CR110-14-2H50	C790-15CMS x RZM CR011 50	21	. 5	. 5	ω	m.		0.0	3.3
	3790-15CMS x	341	1.8	6.0	ϵ	4.	•	•	•
CR110-5H50	×	_	47.87	15.47	136	80.3	0.0	0.0	1.8
CR112-5H50	×	882	7.4	6.3	4	ო	•	•	•
CR009-1H50	C790-15CMS x CR909-1	17420	4.2	6.0	4		•	•	•

CR PERFORMANCE OF LINES & HYBRIDS, SALINAS, CA, 2002 TEST 5602.

(cont.)

			Acre Yield	əld		Beets/			Root	
Variety		Description	Sugar	Beets	Sucrose	100,	RJAP	Bolting	Rot	CLS
			इवा	Tons	o∤≎ [No.	196	o ∤ ○ 	o o	Score
Experimental Hybrids (cont.)	Hybrids (cont.)								
Y190H5	0833-5но	0833-5HO x RZM Y090	18752	54.54	17.20	120	83.3	0.0	0.0	2.5
1930-35H5	$0833-540 \times 9930-35$	к 9930-35	14217	40.18	17.68	138	87.8	0.0	0.0	2.3
CR009-1H5	9833-5HO x CR909-1	k CR909-1	13773	42.60	16.13	145	82.4	0.0	0.0	2.8
CR111H5	0833-5HO 3	0833-5HO x RZM CR0111	14762	45.80	16.07	133	83.4	0.0	0.0	2.2
1931H5	0833-5HO 3	0833-5HO x RZM 0931	14930	48.08	15.55	136	79.9	0.0	0.0	2.2
01-FC1030H5	0833-5но	0833-5HO x RZM FC1030	14370	43.51	16.48	132	83.9	0.0	0.0	2.5
Mean			14190.1	45.68	15.51	135.9	82.7	0.5	0.3	2.9
LSD (.05)			2550.3	7.17	1.15	13.8	3.5	2.2	1.7	0.7
C.V. (%)			15.8	13.80	6.54	6.8	3.7	432.3	463.2	21.2
F value			4.9**	5.05**	5.62**	3.2**	1.8**	**0.9	1.4NS	7.1**

Plots were scored 11/12/02 on Notes: Test 5602 was grown in non-rhizomania soil and on August 8, 2002 inoculated with Cercospora beticola. Development of CLS was slow, but by harvest, disease development was moderate. a scale of 0 to 9.

For example, line CR112-5 was highly infected with downy mildew causing constant defoliation, probably resulting in very low sugar content in contrast to its Downy mildew occurred and in several lines became severe. more resistant hybrid CR112-5H50.

irrigations used to promote leaf spot may have caused a higher than usual incidence of rust and downy mildew on susceptible entries. For example, Beta 4430R appeared to be more rust susceptible than entries developed Powdery mildew was controlled to prevent interference with leaf spot development. But frequent sprinkler

TEST 6002. OBSERVATION & EVALUATION OF LINES FOR REACTION TO CERCOSPORA, SALINAS, 2002

Harvested: November 11, 2002 Planted: March 25, 2002 36 entries x 3 reps., sequential 1-row plots, 11 ft. long

		Acre Y	Yield		Repts/		Д СОД	
Variety	Description		Beets	Sucrose	100,	RJAP	Rot	CLS
		I.bs	Tons	o ∤ ○	No.	oko	∞	Score
Beta 4430R	rec'd 8/31/01	999	51.28	6.2	ന	9	0.0	4.3
Dorotea	rec'd 3/21/01	15308	8.6	15.73	139	84.4	0.0	3.3
Monodoro	rec'd 3/21/02	284	39.01	6.5	4	5	0.0	2.0
Ippolita	rec'd 3/25/99	703	0.1	6.9	4	ъ.	0.0	•
1931	RZM 0931aa x A	549	47.68	7	145	84.9	0.0	
CR111	RZM CR011aa x A	18228	53.51	7	ന	4.	•	1.7
CR910	RZM R710,R709-9,R710-10,R710-14	1481	45.82	ď	145	ж Э	•	•
CR811	RZM CR711, (CR09/10)	14931	46.49	6.0	വ	83.7	0.0	1.7
R409	CR-RZM R209-#(C)	393	45.55	15.30	⊣	•	0.0	•
R410	CR-RZM R210-#(C)	_	41.98	13.73		•	0.0	
R609	CR-RZM R409, (CR09)		42.84	15.60	130	83.2	0.0	2.3
R609R2	CR-RZM R409R2	7	51.87	16.87	D.	84.2	0.0	•
R610	CR-RZM R410	9977	4.1	14.50	142	•	0.0	•
R610R2	CR-RZM R410R2	16778	0.3	6.7	2	m	•	•
443	MM, CR Accession from Italy	7508	26.08	14.33		84.5	0.0	2.0
445	MM, CS Accession from Italy	11204	7.7	5.0	91	84.5	•	•
1241-1	0931aa x M(PF)	12700	40.82	15.57	121	•	0.0	•
1241-2	$0931aa \times M(PF)$	71	3	5.7	124	83.2	0.0	3.7
1242-1	$0931aa \times D(PF)$	13945	50.79	13.70	115	•	0.0	•
1242-2	0931aa x D(PF)	13582	44.08	5.	124	82.2	•	1.7
1243-1	0931aa x I(PF)	106	7.7	8.1	112	5.	•	•
1243-2	0931aa x I(PF)	942	9.9	6.3	0	4.	•	•
1244-1	M(ms) x 0931	14522	47.68	15.23	115	82.7	5.6	3.3
1244-2	$M(ms) \times 0931$	713	1.7	9.9	7	5	•	•

TEST 6002. OBSERVATION & EVALUATION OF LINES FOR REACTION TO CERCOSPORA, SALINAS, 2002

(cont.)

		Acre Yield	eld		Beets/		Root	
Variety	Description	Sugar	Beets	Sucrose	100'	RJAP	Rot	CLS
		Ibs	Tons	% 1	No.	o⊱	ov	Score
1244-3	M(ms) x 0931	17825	50.77	17.43	118	86.2	0.0	1.7
1245-1	D(ms) x 0931	13219	42.65	15.53	103	84.2	6.1	2.7
1246-1	I(ms) x 0931	16367	50.90	16.07	136	86.1	0.0	1.7
1246-2	I(ms) x 0931	17143	55.09	15.60	130	85.4	0.0	2.7
1931	RZM 0931aa x A	15698	49.99	15.67	130	80.9	0.0	2.7
Dorotea	rec'd 3/21/02	16958	49.99	16.97	139	87.0	0.0	2.3
CR009-1H5	9833-5HO x CR009-1	18706	51.60	18.13	139	85.8	0.0	1.7
Z025-9H5	9833-5HO x Z825-9	17954	49.45	18.13	139	82.8	0.0	2.3
Mean		15321.2	47.49	16.04	129.0	83.8	0.4	2.4
LSD (.05)		4554.5	13.19	1.63	25.4	5.0	3.5	1.0
C.V. (%)		18.2	17.02	6.23	12.1	3.7	499.0	25.1
F value		3.2**	2.17*	3.86**	2.9**	1.2NS	1.4NS	4.7**

2002 SALINAS ENTRIES IN FORT COLLINS & BETASEED SHK DISEASE NURSERIES

			Shakope	e Test	s	Fort Col	
Variety	Description		CLS	Aph	RA	CLS	
		3Sept	Mean	17Jul		14Sep	5Sep
a1- 1	D-1- 4420D	0.10	C 53	2.06	2 64	2 7	4.7
Comm. ck-1	Beta 4430R	8.18	6.57	3.86	3.64		
Comm. ck-2	Monohikari	7.14	5.22	3.08	1.36		3.0
01-SP22-O	Inc. 00-SP22-O	6.16	4.08			3.3	4.0
1933	RZM-ER-% 9933 (A,aa)	6.41	4.74	3.67	2.83	3.5	3.3
1931	RZM 0931aa x A	7.41	5.15	4.95			
Y191	Cycle 1, Syn 1 FC(C)	7.44	5.08	3.85		3.3	4.0
Y175	RZM Y075	7.28	5.29	4.74	2.27	2.3	3.8
01-FC1030	RZM FC(C)aa x A	6.63	4.62	3.30	1.50		3.0
04 701014	DEN	7.24	4.70	4.28	1.71	2.0	3.0
01-FC1014	RZM FC1014mmaa x A		4.08	4.28	2.43		3.3
01-FC123	RZM FC123mmaa x A			4.93	2.43		
CR011	RZM CR910,911,912aa x A	6.45	4.32	4 00	0 60	2.7	3.7
CR111	RZM CR0111aa x A	6.88	4.72	4.23	2.60	3.3	4.0
CR011H5	CMS x RZM CR910,11,12	7.05	5.01				
CR111H5	CMS x CR011	6.87	5.27				
CR009-1H5	CMS x CR909-1	7.16	4.60			3.0	3.0
CR009-1	RZM CR009-1aa x A	7.32	4.17			2.0	3.3
CR110-5	Inc. CR910-5	6.18	3.98			2.3	3.7
CR110-14-2	Inc. CR910-14-2	4.86	3.46			2.7	3.7
CR110-14-2 CR112-5	Inc. CR812-5	7.16	4.89			2.8	4.0
CR112-5	CMS x CR910-5	7.05	4.88			2.0	1.0
CR110-5H50	CMS X CR910-3	7.03	4.00				
Resist.hyb ck	Betaseed	5.48	3.61	2.10	1.08		
Susc.inbred ck	Betaseed	7.19	4.76	4.03	3.13		
						2.6	4 2
LSS	(SP351069-0)	_				3.0	4.3
LSR	(FC504 x 502/2) x SP6322	-0				3.7	4.0
LSD (.05)		0.75	0.60	0.92		1.04	0.87

Shakopee, MN

CLS test: 2-row plots, 3 reps, Rosemont, MN

Aphanomyces test: 2-row plots, 4 reps, Shakopee, MN

Root aphids, greenhouse test, Shakopee, MN

Fort Collins, CO

CLS test: 2-row plots, 3 reps, 12 ft. long, Fort Collins, CO

Acknowledgements:

Fort Collins test: Dr. L. Hanson and Dr. L. Panella

Shakopee tests: J. Miller and M. Rekoske

TEST 4802. EVALUATION OF POWDERY MILDEW RESISTANT LINES AND PROGENIES, SALINAS, CA, 2002

Planted: February 28, 2002 Harvested: October 4, 2002 16 entries x 3 reps., sequential
1-row plots, 11 ft. long

Variety	Description	Acre Yield Sugar Be	Beets	Sucrose	Beets/	RIAP	Bolting	Powdery Mildew
		I.bs	Tons	0P	No.	æ •	00 00	9/30
Checks P007/8	PMR-RZM P807-2, P808-7, (CP07)	16497	.5	ω.	155	w.	•	•
01-C37	Inc. U86-37, (C37)	35	41.31	16.37	ന	85.8	0.0	8.3
PMR lines	Tra D018-6 (CD08)	16400	0 7	ر د د	г С	0	c	C
P125-12	Inc. P925-12	14356	. m	6.4	145	. m		
P129	PMR-RZM P029-#(C), (CP05)	672	49.72	16.83	Ŋ	83.1	0.0	
P130	PMR-RZM P030-#(C), (CP06)	17006	49.99	17.03	155	84.9	0.0	3.7
N112	NR-RZM P912(A,aa), (WB242)	15453	46.77	16.47	136	85.7	•	4.3
N172	NR-RZM N972 (A, aa), (WBNR)	490	48.92	5.2	Ω	84.0	3.9	3.3
PMR progenies								
P121-6-1	(C78 x	53	49.10	5.6	124		•	4.3
P121-6-2	P921-6(PX), (C78 x P811)	381	43.81		145	79.8	13.5	1.0
P121-6-3	::	48	46.50	5.9	133			3.7
P121-6-4	:	539	47.30	16.30	127	81.9	m.	•
P118-8-1	P118-8(PX), (C37 x P816)	12368	39.78	15.57	145	83.0	0.0	2.0
P118-8-2	: :	16274	51.07	15.90	α	•	•	•
P118-8-3	: :	12966	40.85	15.87	121	84.9	•	2.0
P118-8-4	:	15681	46.77	16.73	118	87.4	0.0	3.0
Mean		95.	46.59	16.18	6	84.1	3.7	3.4
LSD (.05)			7.40	1.30	28.0	•	8.3	•
C.V. (%)		11.0	٠ ت	œ	2.1	4.	136.6	.5
F value		2.1*	2.08*	1.23NS	1.8NS	1.0NS	6.8**	4.6**

PMR in P-lines was segregating at difference frequencies. See Test 6802. Notes:

EVALUATION OF BREEDING LINES AND POPULATIONS FOR ERWINIA/POWDERY MILDEW, SALINAS, CA, 2002 TEST 5402.

Planted: March 25, 2002 Not harvested for yield 80 entries x 3 reps., sequential 1-row plots, 17.5 ft. long

Variety	Description	Harv. Count	Stand	Powd	Powdery Mildew Score	dew Sco	re	Root	Erwinia	Erwinia Root Rot
		No.	No.	10/07	10/25	11/01	Mean	o ₽	ID	&Healthy
Multigerm,	open-pollinated lines									
US H11		9	7.	•	•	•	6.7	7.3	•	51.4
E740		<u>ي</u>	5	•	5.7	•	•	18.2	9	۷.
01-US75	Inc. 00-US75, (US75)	27.0	27.0	0.9	7.3	6.7	6.7	•	18.2	
01-CTR-PX	Inc. P93191, P93174	ე.	4.		5.3	•	•	4.4	H.	ω.
01-C37	Inc. U86-C37, (C37)	7 .	7.	5.3	•	•	6.2	6.2	10.9	60.3
01-SP22-0	Inc. 00-SP6822-0, (SP22-0)		25.0	ო. ო.	5.3	5.0	4.6	8.1	12.1	64.4
01-EL0204	RZM 00-EL0204	4.	4.	•	•	•	•	•		· π
	Inc. U86-C46/2, (C46/2)	25.3	24.7	2.0	3.7	4.0	3.2	1.5	~	66.1
R178	RZM-ER-% R978, (C78/2)	5	ъ.	•	•	•	•	•	•	т М
R180	RZM-ER-% R980, (C80/2)	5.	m.	•	•	4.0	•	•	•	0
R170	RZM-ER-% R970	5.	5	1.7	3.0	•	•	5.4	11.2	9
99-C31/6	Inc. F86-C31/6, (C31/6)	9	25.7	•	•		•		•	0
R176-89		т	4.	•	•	2.0	1.3	2.9	7.6	9
R176-89-18	~	24.0	25.3	2.0	3.7	4.7	3.4	•	8.1	
R176-89-5	RZM R076-89-5, (C76-89-5)	ო	4.	•	•	1.0	•	4.3	•	81.8
Y169	RZM-ER-% Y969, (C69)	6.	6.	•	•	•	•	2.7	•	4.
X190	RZM Y090	18.3	18.0	1.3	2.7	3.0	2.3	0.0	6.4	76.8
X191	-	4.	т Э	•	•	•	•	•	•	2
R021	RZM R926, R927, (C26, C27)	4.	•	•	•	•	•	1.5	•	0
Y167	RZM-ER-% Y967, (C67/2)	6.	7.	•	•	•	•	•	•	<u>.</u>
Y171	RZM-ER-% Y971	4.	4.	•	•	•		•	•	•
X175	RZM Y075	ij	ς.	•	٠	•	•		8	H.
E740	Inc. E870, (susc. check)	т Э	<u>ي</u>	•	•	•	•	20.3		•
US H11	1/3/99, (resistant check)	26.7	27.0	5.0	6.7	0.9	5.9	4.9	7.1	\vdash
R136	RZM-ER-% R936, (C79-8)	ى	4.	•	•	•	•	•	3.2	•

TEST 5402. EVALUATION OF BREEDING LINES AND POPULATIONS FOR ERWINIA/POWDERY MILDEW, SALINAS, CA, 2002

27		Harv.	Stand					Root		
variety	Description	No.	No.	10/07 10	10/25 11/	11/01 P	Mean	RO 1 % I	Erwinia	*Root Rot *Healthy
Multigerm,	open-pollinated lines (cont.)									
R143	RZM-ER-% R943	ъ.	ъ.	•	•	•	•	•	•	w.
R140	RZM-ER-% R940, R954		9	•	•	•	•	•	•	0
P007/8	PMR-RZM P807, P808	4.	m	•	•	•	•	•		6
P127	PMR $P027-\#(C)$, $P027B-\#(C)$	4	4	•	•	•	•	•	8	S)
P128	PMR P028-#(C)		25.3	1.7	2.7	3.3	2.6	6.5	8.4	72.3
P129	PMR-RZM P029-#(C)	v	٧							_
P130	PMR-RZM P030-#(C)	27.0	26.3	1.3	2.0	2.3	1.9	6.4	5.7	87.8
germ	äl	-	,							
	P912		9	•	•	•	•	•	7 .	i
	NR-RZM N972 (A, aa)	26.0	25.3	1.3	3.0	э. Э.	5.6	5.3	12.4	8.99
N124	NR-RZM N024 (galls) (A,aa)	9	ص	•	•	•	•		2	گ
1931 (Sp)	RZM 0931aa x A, (popn-931)	4.	m	•	•	•	•			7.
1931 (Iso)	RZM-ER-% 9931 (A,aa)	9	9	•	•	•	•	•		ω.
1941 (Sp)	RZM 0941aa x A, (popn-941)	ω.	8	•	•	•	•	•	•	т М
1941 (Iso)		25.3	25.3	1.7	2.7	3.3	5.6	5.6	3.5	83.2
2125	RZM Z025aa * A, (popn-Z25)	5.	ت	•	•	•	•	•	•	H
CR111	RZM CR0111aa x A, (popn-CR11)	ω.	Η.	•	•	•	•	•		0
1942		25.3	24.0	1.0	3.0	3.0	2.3	0.0	2.9	80.8
1933	RZM-ER-% 9933 (A,aa)	9	9	•	•		•	•	•	7 .
1932	RZM-ER-% 9932 (A,aa)	4	4.	•	•	•	•	•	•	7.
US H11		7.	œ.	•	•	•	•	•	•	ი
E740	Inc. E870, (susc. check)	4.	4.	•	•		•	16.7	•	ω.
1924	RZM-ER-% 9924 (A,aa)	5.	5	•	•	•	•	•	•	о О
01-FC1030	RZM 1999-1030, aa x A	26.7	26.3	2.7	4.3	5.0	4.0	1.4	8.8	84.7
0747	Inc. 7747 (A,aa)	ت	کا	•	•	•	•	•	•	m

EVALUATION OF BREEDING LINES AND POPULATIONS FOR ERWINIA/POWDERY MILDEW, SALINAS, CA, 2002 TEST 5402.

No. 10/07 10/25 11/01 Mean ½ DI 21.7 2.3 4.3 4.3 3.7 15.2 15.4 19.7 2.3 4.7 4.3 3.8 3.5 7.5 19.7 2.3 4.7 4.3 3.8 3.5 7.5 16.7 1.7 3.3 3.7 2.9 8.0 19.1 19.0 1.0 2.0 3.3 2.1 3.4 9.9 18.3 3.7 5.0 4.6 9.0 18.9 27.3 0.3 1.3 1.3 1.0 11.0 29.0 26.7 1.0 1.7 2.0 4.6 9.0 18.9 27.3 2.3 3.0 4.0 4.0 3.3 11.0 11.0 26.7 1.0 1.7 2.0 4.0 3.3 11.0 11.0 25.3 2.0 4.0 4.3 3.4 6.1 11.9	Variety	Description	Harv. Count	Stand	Powde	ery Mil	Powdery Mildew Score	re	Root	Erwinia	Erwinia Root Rot
- 1 EZAO(ms) x 0931 - 2 EZAO(ms) x 0931 - 3 EZAO(ms) x 0931 - 4 EZAO(ms) x 0931 - 5 EZAO(ms) x 0931 - 5 EZAO(ms) x 0931 - 6 EZAO(ms) x 0931 - 7 EZAO(ms) x 0931 - 8 EZAO(ms) x 0931 - 7 EZAO(ms) x 0931 - 8 EZAO(ms) x 0931 - 9 EZAO(ms) x 0931 - 1 EZAO(ms) x 0931 - 2 EZAO(ms) x 0931 - 3 EZAO(ms) x 0931 - 4 EZAO(ms) x 0931 - 5 EZAO(ms) x 0931 - 6 EZAO(ms) x 0931 - 7 EZAO(ms) x 0931 - 7 EZAO(ms) x 0931 - 8 EZAO(ms) x 0931 - 9 EZAO(ms) x 0931 - 1 EZAO(ms) x 0931 - 2 EZAO(ms) x 0931 - 3 EZAO(ms) x 0931 - 4 EZAO(ms) x 0931 - 5 EZAO(ms) x 0931 - 6 EZAO(ms) x 0931 - 7 EZAO(ms) x 0931 - 8 EZAO(ms) x 0931 - 8 EZAO(ms) x 0931 - 8 EZAO(ms) x 0931 - 9 EZAO(ms) x 0932 - 9 EZAO(ms) x 0932 - 9 EZAO(ms) x 0932 - 9 EZAO(ms) x 0933 - 9 EZAO(ms) x 0933 - 9 EZAO(ms) x 0933 - 9 EZAO(ms) x 0932 - 9 EZAO(ms) x 0933 - 9 E			o l	No	10/01	10/25	11/01	Mean	o P	DI	&Healthy
- 1		931 x									
-1 E740(ms) x 0931 -2 E740(ms) x 0931 -3 E740(ms) x 0931 -4 E740(ms) x 0931 -5 E740(ms) x 0931 -7 E740(ms) x 0931 -8 E740(ms) x 0931 -9 E740(ms) x 0933 -9 E740(ms) x 0931 -9 E740(ms) x 0933 -9 E74	231 - 1	×	•	_	•	•	•	•	5	5.	ë.
- 2 E740(ms) x 0931		×	6	о О	•	•	•	•	•	•	α
- 3 E740(ms) x 0931	- 2	×	œ	7	•	•				0	נט
- 4 E740(ms) x 0931 - 5 E740(ms) x 0.3 - 6 E740(ms) x 0931 - 7 E74	ო 1	×	9	9	•	•				 	
- 5 E740(ms) x 0931 - 6 Expondations & lines 90-68 - 10c. U88-7C790-68 90-15 - 10c. F92-C790-15 - 10c. F91-C79 - 10c.	- 4	×	0	0	•	•		•	•	6	, N
germ populations & lines 90-68 Inc. U88-7C790-68 26.7 27.3 0.3 1.3 1.3 1.0 11.0 29.6 49 90-15 Inc. U88-7C790-68 27.0 26.7 1.0 1.7 2.0 1.6 3.6 9.0 72 90-15 Inc. P92-C790-15 27.0 26.7 1.0 1.7 2.0 1.6 3.6 9.0 72 RZM 0859-#s(C)amaa x A 24.0 23.3 2.3 3.0 4.3 5.0 4.1 1.3 5.4 73 RZM-ER-* 9840, maa x A 25.3 25.3 25.0 4.0 4.3 5.0 4.1 1.3 5.4 73 HO(B) 0841HO,H5, maa x A 25.3 25.0 2.0 4.0 4.3 5.0 4.1 1.3 5.4 75 4.1 4.1 1.3 5.4 75 HO(B) 0841HO,H5, maa x A 25.3 25.0 2.0 3.3 3.3 2.9 6.6 14.2 </td <td></td> <td>×</td> <td>ω</td> <td>œ</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>•</td> <td>œ.</td> <td>4.</td>		×	ω	œ	•	•	•	•	•	œ.	4.
90-68 Inc. U88-7C790-68 90-15 Inc. F92-C790-15 8ZM 0869-#s(C)aa x A, (C869) 27.0 26.7 1.0 1.7 2.0 1.6 3.6 9.0 72 8ZM 0869-#s(C)aa x A, (C869) 23.7 24.0 2.3 3.0 3.0 2.8 4.3 18.6 55 8ZM 0836,0837mmaa x A 8ZM-ER-% 9840,maa x A 8ZM-ER-% 9840,maa x A 8ZM-ER-% 9840,maa x A 8ZM-ER-% 9841(C) 8ZM-ER-% 9841(C) 8ZM-ER-% 9818,0848(A,aa) 8ZM 0833-5(T-O)HO x 9833-5(T-O) 8ZM 0833-5(T-O)HO x 9833-5(T-O) 8ZM 00-FC123mmaa x A 8ZM 00-FC123mmaa x A 8ZM 00-FC123mmaa x A 8ZM 00-FC1014mmaa x	onogerm popu	ulations & lines									
90-15 Inc. F92-C790-15 RZM 0869-#s(C)aa x A, (C869) Z3.7 24.0 2.0 4.0 4.0 3.3 11.2 20.7 62 RZM 0835(C)mmaa x A RZM 0835(C)mmaa x A SZM 0835,C)mmaa x A SZM 0835,C)mmaa x A SZM 0835,C)mmaa x A SZM-ER-\$ 9840, mmaa x A SZM	89-064-68	i .	9	7	•	•	•	•	Η.	6	6
RZM 0869-#s(C)aa x A, (C869) 23.7 24.0 2.0 4.0 4.0 3.3 11.2 20.7 62 RZM 0835(C)mmaa x A 24.0 23.3 2.3 3.0 3.0 2.8 4.3 18.6 55 0836,0837mmaa x A 25.3 25.3 3.0 4.3 5.0 4.1 1.3 5.4 73	0-790-15	Inc. F92-C790-15	7	9	•	•	•	•		•	
RZM-0835(C)mmaa x A 24.0 23.3 2.3 3.0 3.0 2.8 4.3 18.6 55 0836,0837mmaa x A 25.3 25.3 3.0 4.3 5.0 4.1 1.3 5.4 73 73 826.0 836,0837mmaa x A 21.3 22.3 2.0 4.0 4.3 3.4 6.1 22.1 61 22.1 61 0841HO,H5,maa x A 25.3 25.0 2.0 3.3 3.3 2.9 6.6 14.2 65 9833-5aa x 841(C) 25.0 25.7 0.3 2.0 1.7 2.3 1.7 0.0 12.6 69 M RZM-ER-% 9818,0848(A,aa) 25.0 25.7 0.3 2.0 1.7 1.3 5.2 11.9 79 79 1nc. 0833-5(T-O)A 25.0 25.7 0.3 2.3 2.0 1.7 1.1 4.5 7.6 86 95 1nc. E870, (susc. check) 25.0 24.7 0.3 2.3 2.3 1.7 2.3 1.7 2.6 8.7 77 1nc. E870, (susc. check) 23.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56 25.3 22.0 22.3 22.0 22.0 3.3 3.7 3.0 3.5 20.1 56 20.1 56 20.1 87 82 82 82 82 82 82 82 82 82 82 82 82 82	698	x A,	B	4	•	•	•	•	•	0	
RZM-ER-% 9840, mmaa x A 21.3 22.3 2.0 4.0 4.3 3.4 6.1 22.1 61 61 0841HO, H5, maa x A 25.3 25.0 2.0 3.3 3.3 2.9 6.6 14.2 65 14.2 65 H7 9833-5aa x 841(C) 25.3 25.0 2.0 3.3 3.3 2.9 6.6 14.2 65 69 H7 9833-5aa x 841(C) 25.0 25.7 0.3 2.0 1.7 1.3 5.2 11.9 79 12.6 69 H7 9833-5(T-O)A 25.0 23.3 0.0 1.7 1.7 1.1 4.5 7.6 86 14.5 11.0 11/3/99, (resistant check) 23.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56 21.3 22.0 21.3 RZM 00-FC123mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66 21.0 21.1 22.1 25.0 21.1 22.1 25.0 21.1 22.1 21.1 22.1 25.1 22.1 21.1 21.	335		4	3	•	•	•	•	•	8	•
HO(B) RZM-ER-% 9840, mmaa x A 21.3 22.3 2.0 4.0 4.3 3.4 6.1 22.1 61 0841HO, H5, maa x A 25.3 25.0 2.0 3.3 3.3 2.9 6.6 14.2 65 14.2 65 14.2 841HO, H5, maa x A 25.3 25.0 2.0 3.3 3.3 2.9 6.6 14.2 65 14.2 65 14.2 843.5 5.0 1.0 1.7 2.3 1.7 0.0 12.6 69 17.0 1.0 1.7 2.3 1.7 0.0 12.6 69 17.0 1.0 1.0 1.7 2.3 1.7 0.0 12.6 89 17.0 1.0 1.0 1.0 1.0 1.7 1.3 5.2 11.9 79 17.0 1.0 1.0 833-5(T-O) A 25.0 25.7 0.3 2.0 1.7 1.1 4.5 7.6 86 17.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	336		ъ.	Ŋ	•	•	•	•	•	•	e.
HO(B) 0841HO, H5, maa x A 25.3 25.0 2.0 3.3 3.3 2.9 6.6 14.2 65 H7 9833-5aa x 841(C) 25.3 25.3 1.0 1.7 2.3 1.7 0.0 12.6 69 H7 8ZM-ER-% 9818, 0848 (A,aa) 25.0 25.7 0.3 2.0 1.7 1.3 5.2 11.9 79 79 75 1nc. 0833-5(T-O) A 25.0 23.3 0.0 1.7 1.7 1.1 4.5 7.6 86 7.5 1nc. E870, (susc. check) 23.3 23.3 4.3 5.0 5.0 4.8 12.2 55.3 22 11/3/99, (resistant check) 28.7 28.0 6.0 7.0 6.7 6.6 4.8 8.4 69 2123 RZM 00-FC1014mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66 21014 RZM 00-FC1014mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66	142	×	.	2	•	•	•	•	•	8	급.
H7 9833-5aa x 841(C) H7 9833-5aa x 841(C) H7 2.3 1.7 0.0 12.6 69 H8 ZM-ER-% 9818,0848(A,aa) L5A(Sp) Inc. 0833-5(T-O)A L5A(Sp) RZM 9833-5(T-O)HO x 9833-5(T-O) L1/3/99, (resistant check) L2/2.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56 L1/3/99, (resistant check) L2/2.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56 L1/3/99, (resistant check) L1/3/99,	42HO(B)	0841HO, H5, aa x A	\mathbf{c}	Ω	•	•	•		•	4.	5
M RZM-ER-% 9818,0848(A,aa) 25.0 25.7 0.3 2.0 1.7 1.3 5.2 11.9 79 -5A(Sp) Inc. 0833-5(T-O)A -5HO(Sp) RZM 9833-5(T-O)HO x 9833-5(T-O) Inc. E870, (susc. check) 23.3 23.3 4.3 5.0 5.0 4.8 12.2 55.3 22 Inc. E870, (resistant check) 28.7 28.0 6.0 7.0 6.7 6.6 4.8 8.4 69 S123 RZM 00-FC123mmaa x A 22.3 22.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66	41H7	$9833-5aa \times 841(C)$	\mathbf{c}	Ω	•	•	•		•	8	ი
-5A(Sp) Inc. 0833-5(T-O)A 25.0 23.3 0.0 1.7 1.7 1.1 4.5 7.6 86 -5HO(Sp) RZM 9833-5(T-O)HO x 9833-5(T-O) 25.0 24.7 0.3 2.3 2.3 1.7 2.6 8.7 77 Inc. E870, (susc. check) 23.3 23.3 4.3 5.0 5.0 4.8 12.2 55.3 22 11 11/3/99, (resistant check) 28.7 28.0 6.0 7.0 6.7 6.6 4.8 8.4 69 5123 RZM 00-FC123mmaa x A 22.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56 51014 RZM 00-FC1014mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66	48M	RZM-ER-% 9818,0848(A,aa)	\mathbf{S}	Ω	•	•	•		•	Η.	6
-5HO(Sp) RZM 9833-5(T-O)HO x 9833-5(T-O) 25.0 24.7 0.3 2.3 2.3 1.7 2.6 8.7 77 11 II. 11/3/99, (resistant check) 28.7 28.0 6.0 7.0 6.7 6.6 4.8 8.4 69 2123 RZM 00-FC123mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66	33-5A (Sp)	Inc. 0833-5(T-0)A	Ω	m	•	•	•		•	•	9
Inc. E870, (susc. check) 23.3 23.3 4.3 5.0 5.0 4.8 12.2 55.3 22 11 11/3/99, (resistant check) 28.7 28.0 6.0 7.0 6.7 6.6 4.8 8.4 69 2123 RZM 00-FC123mmaa x A 22.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56 21014 RZM 00-FC1014mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66	33-5HO (Sp)	RZM $9833-5(T-0)HO \times 9833-5(T-0)$	Ŋ	4	•			•		•	7.
11/3/99, (resistant check) 28.7 28.0 6.0 7.0 6.7 6.6 4.8 8.4 69 RZM 00-FC123mmaa x A 22.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56 4 RZM 00-FC1014mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66	40	Inc. E870, (susc. check)	3	3			•			ъ.	N
RZM 00-FC123mmaa x A 22.3 22.0 2.0 3.3 3.7 3.0 3.5 20.1 56. 4 RZM 00-FC1014mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66.	H11	11/3/99, (resistant check)	œ	œ		•	•	•		•	9
RZM 00-FC1014mmaa x A 26.0 24.7 0.7 3.0 3.7 2.4 11.9 20.8 66.	-FC123	RZM 00-FC123mmaa x A	2	2		•	•	•	•	。	9
	-FC1014		9	4			•	•	H.	o.	6.

(cont.)

Variety	Description	Harv. Count No.	Stand Count No.	Powde 10/07	Powdery Mildew Score	ew Sco. 11/01	re Mean	Root Rot 1	Erwinia DI	Erwinia Root Rot DI %Healthy
Monogerm popu	Monogerm populations & lines (cont.)							l		
1833-5(Iso)	RZM0833-5(Sp)(A,aa),(C833-5)	26.7	25.0	0.7	2.0	2.0	1.6	1.3	2.7	91.2
1833-5HO(Iso)		24.3	24.0	0.3	2.7	2.7	1.9	2.8	8.9	81.0
1833-5	Inc. 0833-5(Sp) (A, aa), (C833-5)	25.7	24.3	0.0	2.3	2.7	1.7	4.1	8.2	79.8
1833-5-8	Inc. 8833-5-8 (A,aa)	24.3	24.3	0.3	1.3	2.0	1.2	1.4	4.1	84.0
1833-5-11	Inc. 8833-5-11 (A,aa)	24.0	23.3	0.0	1.7	2.0	1.2	1.4	6.0	97.3
1835-11	Inc. 8835-11 (A,aa)	27.3	24.3	0.0	1.0	0.7	9.0	0.0	8.4	80.5
1835-26	Inc. 8835-26 (A,aa)	23.0	22.7	0.7	2.3	3.3	2.1	14.0	36.0	40.6
N165-9M	Inc. N065-9 (A,aa)	19.7	25.3	0.3	2.0	2.3	1.6	10.4	38.6	26.6
N165	NR-RZM N065mm (galls) (A,aa)	24.7	26.3	0.3	2.0	2.7	1.7	6.5	33.9	31.3
N167M	Inc.N067-1(C),N066-1(galls)(A,aa)	24.7	25.0	0.3	2.7	2.7	1.9	4.0	12.9	53.9
Mean LSD (.05) C.V. (%)		24.6 3.9 0.0	24.4 3.1 8.0	2.1 1.6 48.1	3.5 1.5 8.5	3.7	3.1	6.9	12.6 9.1 44.6	68.3 17.5
F value		2.7**	4.1**	7.7**	**1.6	*	11.1*	2.9**		

TEST 5502. ERWINIA/POWDERY MILDEW EVALUATION OF POPULATIONS & PROGENY LINES, SALINAS, CA, 2002

60 entries x 3 reps, sequential 1-row plots, 17.5 ft. long

Planted: March 25, 2002 Not harvested for yield

Variety	Description	Harv. Count	Stand	Pow	Powdery Mildew		Score	Erwini	Erwinia Root Rot
		No.	No.	10/07	10/25	11/01	Mean	IO	%Healthy
E740	Inc. E840 (susc. check)	ω.	ω.	•	•	•	•	57.6	
US H11	9/3/99 (resistant check)	7.	7.	•	•	•	•	6.7	
1931	RZM 0931aa x A	<u>ں</u>	6.	•	•	•	•		•
1941	RZM 0941aa x A	25.0	24.3	1.3	3.0	3.7	2.7	0.9	88.1
Z125	RZM Z025aa x A	л.	4.	•	•	•	•	•	
CR111	RZM CR011		e.	•	•	5.3	•	8.5	•
R178	RZM-ER-% R978, (C78/3)	7.	6.	•	4.3	4.7	9	9.6	•
X190	Inc. Y090	Ή.	。	•	4.3	4.7	•	•	8
X191	Inc. FS(C), C1, Syn 1	26.7	27.0	1.3	4.3	4.7	3.4	7.2	86.4
0930-19	8930-19aa x A	ω.	œ	•	•	•	1.2	7.8	Ή.
1930-19	NB 8930-19(A,aa), (C930-19)	Ŋ.	ъ.	•	1.3	1.7	•	6.3	•
1930-35A	RZM 9930-35A, (C930-35)		4.	•	•	2.7	1.9	29.9	4.
1929-62	RZM 9929-62aa x A, (C929-62)	5	ъ.	•	•	2.3	1.6	10.5	71.9
1927-4	RZM $9927-4aa \times A$, (C927-4)	6	7.	•	•	•	•	•	•
1929-4	RZM 9929-4aa x A	7.	9	•	•	•	•	2.4	4.
1924-2	RZM 9924-2aa x A	23.3	24.7	0.7	3.0	2.3	2.0	7.1	81.7
1935-6	Inc. 9935-6 (A,aa)	ъ.	4.	•	•	•	•	3.0	ж Э
9929-45	Inc. 7929-45VY	。	8	•	•	•	•	•	7.
0929-112	8929-112aa x A	ъ.	ъ.	•	•	•	•	0.7	7.
R176-89-5	RZM R076-89-5, (C76-89-5)	4.	ж	•	•	•	•	3.4	급
R176-89-5-13	Inc. R976-89-5-13	7.	9	•	•	•	•	2.4	9
R176-89-18	RZM R076-89-18	ъ.	5.	•	•	•	•		ы.
E740	Inc. E840 (susc. check)	26.7	26.3	5.0	6.3	0.9	5.8	52.2	22.7
US H11	9/3/99 (resistant check)	œ	6	•	•	•	•	•	4.
Z025-9	-	œ ·	ъ.	•	•	•	•	2	œ.
Z131-20	2931-20	25.0	25.3	0.7	1.3	1.3	1.1	14.5	68.1
Z131-14	Z931-14	ъ.	<u>ي</u>	٠	•	•	•	, ,	œ.
Z131-18	Inc. Z931-18 (A,aa)	œ.	œ	•	•	•	•	•	5

Variety	Description	Harv. Count	Stand	Ром	Powdery Mildew		Score	Erwini	Erwinia Root Rot
		No.	No.	10/07	10/25	11/01	Mean	DI	%Healthy
CR009-1	CR009-laa x A, (CR09-1)	25.3		2.7	4.0	5.0	ი. წ	•	ъ.
CR110-14-2	Inc. CR910-14-2 (A,aa)	24.3	25.0	0.7	1.7	2.0	1.4	1.7	93.2
CR110-5	Inc. CR910-5 (A,aa)	20.7	21.7	0.7	•	2.3	1.8	23.9	ო
CR112-5	CR812-5	5	ω.	•	5.3	5.3	•	4.	48.9
1936-14	_	26.7	ъ.	1.7	•	•	•	•	т М
1931-56	Inc. 9931-56 (A,aa)	7.	27.3	•	•	1.7	0.7	6.2	6
1931-201	Inc. 9931-201 (A,aa)	26.3	7.	0.3	•	•	0.8	13.9	7.
0934-5	Inc. 8934-5 (A,aa)	9	7 .	•	5.0	•	4.6	10.2	ω.
8-9860 A	Inc. 8936-8 (A,aa)	ъ.	5	0.0	•	•	•	0.8	ω.
01-9860	Inc. 8936-10 (A,aa)	œ ·	7.	•	•	•	•	•	8
	Inc. 8936-16 (A,aa)	ы.	ы.	0.3	•	•	•	•	7.
R078-4	Inc. R878-4	7	ю Э	•	•	•	•	6.2	ო
\	Inc. R880/2-4	23.7	24.0	4.0	5.3	5.7	5.0	1.6	88.8
R178-5	Inc. R978-5	7 .	7.	1.3	•	•	•		2.
R178-6	Inc. R978-6	9	ъ.	•	•	4.3	•	12.7	7.
R178-11	Inc. R978-11	25.7	25.7	0.7	3.7	4.0	2.8		75.5
E740	Inc. E840 (susc. check)	4.	4.	•	•	•	•	80	ы П
US H11	9/3/99 (resistant check)	7.	7.	•		•		•	8
R180-11	Inc. R980-11	т М	т М	3.7	•	5.3	4.8	3.0	94.1
R180-16	Inc. R980-16	9	7 .	•	•		4.6	•	Ж
R180-21	Inc. R980-21	5	25.7	•	•	•	•	•	9
R168-8	Inc. Y968-8	4	4.	1.7	2.7		5.6	7.0	83.1
Y168-13	Inc. Y968-13	25.7		0.7		3.7	•	6.7	9
Y168-16	Inc. Y968-16	4.	5	•	•	•	•	0.3	0
Y167-5	Inc. Y967-5	26.3	26.3	0.3	2.3	3.0	1.9	12.3	78.7
Y172-1	Inc. Y972-1	ъ.	7 .	1.7	•	4.7	•	•	Ξ.

TEST 5502. ERWINIA/POWDERY MILDEW EVALUATION OF POPULATIONS & PROGENY LINES, SALINAS, CA, 2002

(cont.)

Y172-5 Y172-7 Y175-13 X175-13 X181-22 X176-89-5-4 X176-89-5-4 X176-89-5NB-4 Inc. R976-89-5-4	No.	כמחנו			3			
Inc. Inc. Inc. 5-4 Inc. 5NB-4 Inc.	C	No.	10/07	07 10/25 11/01 Mes	11/01	Mean	DI	DI %Healthy
Inc. Inc. 5-4 Inc. 5NB-4 Inc.	7.67	25.7	2.7	4.7	5.0	4.1	9.5	75.2
Inc. 5-4 Inc. 5NB-4 Inc.	26.0	27.3	2.7	5.0	5.7	4.4	10.1	72.2
Inc. -5-4 Inc. -5NB-4 Inc.	26.3	25.7	3.3	4.7	5.3	4.4	21.3	9.69
Inc.	24.7	25.0	1.3	3.0	3.3	5.6	7.5	90.5
Inc.	26.3	26.0	0.3	1.3	1.3	1.0	1.3	97.4
	28.7	27.3	0.0	0.7	0.0	0.2	8.9	87.7
Mean	25.6	25.7	1.7	3.4	3.5	2.9	11.5	76.8
LSD (.05)	4.0	3.0	1.5	1.5	1.2	1.1	9.7	15.5
C.V. (%)	8.6	7.3	54.3	27.4	21.1	24.3	52.4	12.5
F value	1.7**	2.5**	7.8**	10.3**		15.2**15.5**	12.9**	11.7**

TEST 6702. RHIZOMANIA EVALUATION OF RHIZOMANIA, POWDERY MILDEW, AND/OR NEMATODE RESISTANT LINES & \mathbf{S}_n PROGENIES, SALINAS, 2002

64 entries x 3 reps, sequential 1-row plots, 11 ft. long

Planted: April 22, 2002 Not harvested for yield

		Stand					
Variety	Description	Count	Bolting		Powdery		
		No.	<u>8</u>	10/25	11/04	$\frac{11/14}{}$	Mean
Checks	ND DEM NOO4 () ()					4 5	4 0
N124	NR-RZM N024(g)(A,aa)	16.7	0.0	5.0	4.7	4.7	4.8
N172	NR-RZM N972 (A,aa)	17.3	0.0	4.7	4.7	3.7	4.3
N112	NR-RZM P912 (A,aa)	18.7	0.0	4.3	4.3	3.7	4.1
P007/8	PMR-RZM P807-2,-8	18.7	0.0	3.7	3.3	3.0	3.3
01-C37	Inc. U86-37, (C37)	19.3	0.0	8.3	7.3	6.7	7.4
R178	RZM-ER-% R978	19.0	0.0	6.0	5.7	6.0	5.9
P129	PMR-RZM P029-#(C)	17.3	0.0	5.3	4.0	4.3	4.6
P130	PMR-RZM P030-#(C)	16.3	0.0	5.3	4.7	5.3	5.1
	es (see tests 1102 & 480		0 0	6 0	. .	6.0	5 0
P121-6-1	P921-6(PX), (C78 x P811)		0.0	6.3	5.3	6.0	5.9
P121-6-2		14.7	13.5	2.7	2.3	2.7	2.6
P121-6-3		13.0	30.7	5.3	5.0	5.7	5.3
P121-6-4		11.7	24.6	4.7	4.0	3.7	4.1
P121-6-5		13.3	0.0	4.3	4.7	4.0	4.3
P121-6-6		15.3	47.6	3.3	4.0	3.7	3.7
P121-6-7		15.3	0.0	5.0	5.0	4.3	4.8
P121-6-8		15.0	20.4	3.7	4.7	4.3	4.2
		1.0	06.0			- -	F 4
P121-6-9		16.0	26.8	5.7	5.3	5.3	5.4
P121-6-10		14.0	18.9	3.0	3.0	2.3	2.8
P118-8-1	P118-8(PX), (C37 x P816)		0.0	4.3	4.0	4.0	4.1
P118-8-2		15.3	0.0	3.0	3.0	2.7	2.9
P118-8-3		14.3	0.0	2.3	2.3	2.3	2.3
P118-8-4		13.7	0.0	3.0	3.0	2.3	2.8
P118-8-5		13.7	0.0	3.3	2.7	2.7	2.9
P118-8-6		15.0	0.0	5.3	5.3	4.7	5.1
		10.0	0 0	F 0	4.2	4 2	1.6
P118-8-7		12.0	0.0	5.0	4.3	4.3	4.6
P118-8-8		12.3	0.0	2.7	3.0	3.0	2.9
P118-6	Inc. P918-6	16.0	0.0	4.7		4.3	4.6
P125-12	Inc. P925-12	15.7	0.0	5.3	5.0	5.0	5.1
NR-PMR-RZM	S ₁ progenies (see test 11	.02)					
N112-1	NR-RZM P912⊗	11.0	0.0	1.3	1.0	1.7	1.3
N112-2	- · -	12.7	0.0	2.0			1.3
N112-3		14.3		6.0		5.7	5.8
N112-4		7.7	0.0	1.7		1.3	1.3
			- · ·	_ • •		· -	
N112-5		12.3	0.0	6.0			6.2
N112-6		11.7	13.2	2.3	1.7	2.3	2.1
ND Day C							
	rogenies (see test 1102)		0 0	4 0	2 2	2 7	2 7
N172-1	NR-RZM N972⊗	13.3	0.0	4.0	3.3	3.7	3.7
N172-2		10.3	0.0	6.0	5.7	6.7	6.1

TEST 6702. RHIZOMANIA EVALUATION OF RHIZOMANIA, POWDERY MILDEW, AND/OR NEMATODE RESISTANT LINES & s_n PROGENIES, SALINAS, 2002

		Stand					
Variety	Description	Count	Bolting		Powdery	Mildew	
		No.	<u>&</u>	10/25	11/04	11/14	Mean
	ance under high temps fro						
S2's from 9	$9934-8 = RZM 7934 \otimes (see t)$	est 110	<u>2)</u>				
1934-8-1	9934-8⊗	10.0	0.0	7.0	6.0	5.7	6.2
1934-8-2		11.7	0.0	6.3	5.3	5.3	5.7
1934-8-3		12.3	0.0	8.3	7.7	7.0	7.7
1934-8-4		14.3	0.0	8.7	7.7	7.0	7.8
S ₂ 's from 9	9926-11 = RZM 8926⊗ (see	test 11	02)				
1926-11-1	9926-11⊗	11.0	0.0	4.3	3.0	3.3	3.6
1926-11-2		9.3	0.0	4.7	4.3	4.7	4.6
1926-11-3		13.3	0.0	5.3	4.7	5.3	5.1
1926-11-4		13.3	0.0	5.3	5.0	5.3	5.2
So's from 9	$926-15 = RZM 8926 \otimes (see)$	test 11	02)				
	9926-15⊗	12.0	0.0	4.0	4.0	4.0	4.0
1926-15-2	3320 130	12.3	0.0	5.3	5.0	4.3	4.9
1926-15-3		9.0	0.0	4.7	4.3	4.0	4.3
1926-15-4		11.0	0.0	5.0	5.0	4.7	4.9
		11.0	0.0	3.0	3.0	4.7	4.3
Nematode re	esistant progenies						
NR S ₁ proge	nies from NO24(g)						
N124-1	RZM N024 (g)⊗	12.3	0.0	4.0	4.0	4.0	4.0
N124-2		11.3	0.0	2.7	2.0	2.0	2.2
N124-3		11.7	0.0	5.0	4.7	4.3	4.7
N124-4		11.3	0.0	4.0	3.0	2.7	3.2
ท130-5-1	RZM N030-5NN(g)⊗	10.3	0.0	4.7	4.3	4.3	4.4
11200 0 1	1.2.1 11030 3111(g) 6	10.5	0.0	4.7	4.3	4.3	4.4
NR monogern							
N165	NR-RZM N065mm(g)(A,aa)	18.3	0.0	4.7	4.3	4.0	4.3
N167	Inc. N067-#(C)(g)(A,aa)	18.0	0.0	4.3	3.7	3.3	3.8
N165-9	Inc. N065-9(A,aa)mm	15.0	0.0	3.7	3.0	2.3	3.0
NR S ₁ proge	nies from NO65						
N165-1	N065m(g)mm⊗	11.0	0.0	E 0	4 7	4 7	4.0
N165-2	no plants	11.0	0.0	5.0	4.7	4.7	4.8
N165-3	no prants	10.0	0 0				
N165-4		12.3	0.0	2.3	2.0	2.7	2.3
N165-4		14.7	0.0	1.7	1.3	1.3	1.4
ท165-5		15.3	0.0	3.0	3.3	2.3	2.9
N165-6		14.0	0.0	3.7	4.0	3.3	3.7
N165-7		10.7	0.0	3.7	2.7	2.3	2.9
N165-8	no plants			•	_ , .		,
Mean		13.7	3.2	1 E	4 4	4 0	4.0
LSD (.05)		2.8	8.4	4.5	4.1	4.0	4.2
C.V. (%)		12.7	164.2	1.5	1.3	1.3	1.1
F value		6.9**	9.2**	20.2	19.1	20.0	16.6
		0.5^^	J.∠^^	9.1**	11.2**	10.1**	13.9**

Harvested: November 26, 2002

April 22, 2002

Planted:

32 entries x 6 reps., RCB 1-row plots, 11 ft. long

Powdery Mildew Mean 4.2 7.4 4.6 4.4 Root Rot 5.2 4.9 2.4 0.0 9.3 1.6 9.9 11.8 2.3 3.9 **ا %** Bolting 0.0 0.0 0.0 0.0 0.00 0.0 0.000 RJAP 86.2 86.0 84.9 84.4 87.1 85.4 84.4 88.4 жI Beets/ 100, Š. 153 158 145 138 162 150 147 148 164 Sucrose 16.42 16.65 17.20 15.80 17.70 17.17 14.88 17.90 18.07 ж j Beets 40.18 37.76 29.12 39.45 39.36 30.21 36.69 38.03 43.04 Tons Acre Yield Sugar 9173 13207 8990 12590 13653 14746 14117 12605 13951 Irps Inc. U86-C37 (rzrz recurrent parent) RZM-ER-% 6918-12 (Quantitative PMR) RZM-ER-% R978 (Rz recurrent parent) Inc. R539 (C39R) (Quantitative PMR) PMR-RZM P919-#, B-#(C), (C78 x WB97) PMR-RZM P030-#(C), (C78 x WB242) PMR-RZM P029-#(C), (C78 \times WB97) 11/3/99 (rhizom., PM susc.check) Description PMR P401 (WB97 & WB242) 8918-12 Variety01-C37 US H11 R039 P601 R178 P129 P130 P019

PMR-RZM P917-#(C),B-#(C),(C37 \times WB97)	11430	35.21	16.28	156	86.1	11.4	5.9	5.7
$-RZM P918-\#(C), B-\#(C), (C37 \times WB242)$	13168	39.59	16.60	156	85.0	7.9	2.8	4.9
R $P027-#,B-#(C),(C37 \times WB97)$	10180	31.04	16.35	158	87.6	6.7	1.0	6.7
IR $P028-\#,B-\#(C)$, (C37 x WB242)	13994	41.39	16.92	159	84.5	0.0	7.2	4.7
nc. U86-C37 (rzrz recurrent parent)	9559	29.70	16.18	167	85.6	0.0	4.6	7.6
M-ER-% R978 (Rz recurrent parent)	13258	36.98	17.97	161	85.7	0.0	2.7	5.2
1c. P918-6, [C37x(C78 x P604)], WB242	12425	36.55	17.02	161	83.6	0.0	0.0	4.6
1c. P925-12,[C78x(C78 x P603)],WB97	11682	32.52	17.97	152	85.6	0.0	7.3	5.4
790-15CMS x PMR-RZM P029-#(C)	13765	39.91	17.23	158	86.4	2.9	4.7	5.7
$^{190-15\text{CMS}}$ x PMR-RZM P030-#(C)	15119	44.03	17.22	156	86.7	0.0	2.1	4.8
IR-RZM P912, (915aa x P402,NR)	12560	39.78	15.78	141	84.7	3.0	2.2	4.3
IR-RZM P807-2; -8; P808-7,-8	13857	40.31	17.20	153	84.8	0.0	7.7	2.8
		x WB97) x WB242)) arent) rent) ,WB242],WB97	x WB97) 11430 x WB242) 13168 10180) 13994) 13258 rent) 9559 ,WB242 12425],WB97 11682 13765 15119 () 12560	x WB97) 11430 35.21 x WB242) 13168 39.59 10180 31.04) 13994 41.39 arent) 9559 29.70 rent) 13258 36.96 ,WB242 12425 36.55],WB97 11682 32.52 13765 39.91 15119 44.03 13857 40.31	x WB97) 11430 35.21 16.28 x WB242) 13168 39.59 16.60 10180 31.04 16.35) 13994 41.39 16.92 arent) 9559 29.70 16.18 rent) 13258 36.96 17.97 ,WB242 12425 36.55 17.02],WB97 11682 32.52 17.97 13765 39.91 17.23 15119 44.03 17.22 ;) 12560 39.78 15.78	x WB97) 11430 35.21 16.28 156 x WB242) 13168 39.59 16.60 156 10180 31.04 16.35 158) 13994 41.39 16.92 159 rent) 9559 29.70 16.18 167 rent) 13258 36.96 17.97 161 j,WB242 12425 36.55 17.02 161 13765 39.91 17.23 158 15119 44.03 17.22 156 13857 40.31 17.20 153	x WB97) 11430 35.21 16.28 156 x WB242) 13168 39.59 16.60 156 10180 31.04 16.35 158) 13994 41.39 16.92 159 rent) 9559 29.70 16.18 167 rent) 13258 36.96 17.97 161 ,WB242 12425 36.55 17.02 161],WB97 11682 32.52 17.97 152 13765 39.91 17.23 158 15119 44.03 17.22 156 ;) 12560 39.78 15.78 141 13857 40.31 17.20 153	x WB97) 11430 35.21 16.28 156 86.1 x WB242) 13168 39.59 16.60 156 85.0 10180 31.04 16.35 158 87.6) 13994 41.39 16.92 159 84.5 rent) 9559 29.70 16.18 167 85.6 y WB242 12425 36.96 17.97 161 83.6], WB97 11682 32.52 17.02 161 83.6 13765 39.91 17.23 158 86.4 15119 44.03 17.22 156 86.7 ;) 12560 39.78 15.78 141 84.7 13857 40.31 17.20 153 84.8

N112 P020

P912

4.6 4.2

87.2

17.10

39.39

13488

PMR-RZM P920-#, B-#(C), (C78 x WB242) NR-RZM P912(A,aa), (915aa x P402,NR)

PMR-RZM P812, (915aa x P402)

13396 13018

85.1 85.8

152 153 153

16.80

39.83 38.70

16.77

RHIZOMANIA EVALUATION OF POWDERY MILDEW RESISTANT LINES & POPULATIONS, SALINAS, CA, 2002 TEST 6802.

(cont.)

		Acre Yield	leld		Beets/			Root	Powdery
Variety	Description	Sugar	Beets	Sucrose 100'		RJAP	Bolting	Rot	Mildew
		Irps	Tons	%	No.	ο¥ο	%	%	Mean
				I		I	I	I	
P007	PMR-RZM P907, [C78 \times (Y71 \times P603,4)]	12579	38.03	16.53	150	83.8	0.0	4.9	5.0
US H11	11/3/99 (rhizom., PM susc. check)	8941	29.46	15.12	147	86.7	0.0	1.0	7.8
P913	PMR P813, CP01, WB97 source	11183	34.03	16.43	144	84.8	4.2	0.0	4.6
P914	PMR P814, CP02, WB242 source	10471	33.06	15.90	148	85.6	7.5	3.1	5.3
R021	RZW R926 R927 (C28 C27)	11070	90	16 67	г С	7	c	c	C L
1701	1/70/070///2010701	7/011	25.20	70.0T	TOO	0.70	0.0	0.0	ۍ «
X191	Inc. FS(C), C1, Syn 1	13229	36.98	17.88	156	82.8	0.0	1.1	5.0
1930-19	NB 8930-19(A,aa), (C930-19)	12943	39.11	16.57	158	86.3	0.0	2.1	4.8
1929-62	RZM 9929-62aa x A, (C929-62)	12712	37.04	17.05	150	85.1	0.0	1.9	3.2
Mean		12433.2	36.94	16.79	153.0	α α	α	1	г. -
LSD (.05)		1982.6	5.47	0.85	14.6	2.6	2 0	1 -	1 7
C.V. (%)		14.0	12.99	4.44	8.4	9		196.5	12.9
F value		5.5**	4.11**	**69.9	1.6*	1.6*	8.1**	0.9NS	25.5**

Powdery mildew scored on 10/25/02, 11/4/02, & 11/14/02 on a scale of 0 to 9, where 9 = 90-100% of mature leaf P#'s at best segregate for high resistance to PM. area covered with PM.

Root rot was caused by Sclerotium rolfsii. At harvest all roots were weighed, but beets with rot were excluded from sugar sample.

40 entries x 3 reps., sequential 1-row plots, 17.5 ft. long

Planted: March 25, 2002 Not harvested for yield

Variety	Description	Harv. Count	Stand	Powdery Mildew	Erwini	Erwinia Root Rot
		No.	No.	Score	IQ	%Healthy
US H11	9/3/99 (resist check)	24.0	27.3	5.7	13.4	9.0
E740	Inc. E840 (susc. check)	22.0	26.0	3.3	60.4	0.1
Beta 4001R	9/25/01	ω.	28.7	2.0	18.7	9.0
Phoenix	8/16/01	26.7	27.7	4.0	8.6	0.7
Beta 4776R	2/5/02	24.3	26.3	2.7	8.0	0.8
HH141	8/16/01	23.0	9	3.3	24.0	9.0
Beta 4430R	8/31/01	25.3	26.3	0.7	8.2	0.7
Rizor	3/29/01	4.	Ŋ.	3.0	7.0	0.8
Beta 4035R	2/5/02	25.7	27.3	э. Э.	20.3	0.6
Beta 6600	2/5/02	24.7	25.3	2.7	10.3	0.8
Crystal 205	2/22/02	5	7.	4.3	4.9	0.8
Angelina	2/19/02	26.3	26.3	6.3	14.6	9.0
Dorotea	3/21/02	رى	26.3	•	6.4	0.8
HM-E17	3/21/02	26.3	27.3	4.7	16.8	0.7
E740	Inc. E840 (susc. check)	Η.	24.3	•	44.8	•
х190н5 0	C790-15CMS x Y090	0		2.3	12.1	0.7
Y190H5	×	15.7	15.7	0.7	12.5	9.0
У190 Н6	×	17.7	6	•	•	0.7
X190H45	9867-1HO x Y090	15.3	17.3	2.0	13.0	•
х190н2	×	18.0	17.0	2.0	15.1	0.5
X190H27	×		œ.	•	•	9.0
X190H29	0831-4-10HO x Y090	22.0	22.0	3.0	15.0	0.7
X190H7	×		8	•	•	•
Y190H62	×	16.3	16.3	•	8.2	0.7

EVALUATION OF BREEDING LINES AND POPULATIONS FOR ERWINIA/POWDERY MILDEW, SALINAS, CA, 2002 TEST 5302.

0.7 0.2 14.8 9.7** Erwinia Root Rot 8Healthy 0.8 0.8 0.8 0.6 0.7 38.3 13.7** 13.6 12.7 16.1 8.5 17.1 7.9 55.7 4.8 9. 20.9 7.4 9.4 15.1 9.4 딥 1.8 35.3 4.7** Powdery Score Mildew 3.0 3.0 7.7 1.7 2.7 6.7 4.0 3.3 2.7 1.0 2.3 а . . . 5.3 3.1 10.6 Stand 3.9 Count 29.0 19.3 19.7 21.3 18.0 24.0 24.0 21.3 19.0 18.3 19.3 18.3 18.7 20.7 22.7 èl S Count Harv. 19.0 18.3 17.0 20.0 20.3 21.7 23.0 24.3 21.5 12.6 17.3 17.7 25.7 8 8 (cont.) Inc. E840 (susc. check) 9/3/99 (resist check) Description x X090 X090 X090 X090 X090 X090 x_{090} × X090 x X090 x Y090 x Y090 x Y090 X090 x X090 × × × × 3831-4-7HO 0833-5H46 97-C562HO 33-5H45 34-2H5 0833-5H27 0Н9-6986 3836-7H5 3837-6H5 333-5H2 CR011aa Z025aa 0931aa 3941aa Variety LSD (.05) C.V. (%) **Х190Н63 У190н64** Y190H85 X190H46 X190H25 F value **У190Н82** X190H83 Y190H28 **Х190Н67** X190H84 X190H11 Y190H41 У190Н31 US H11 У190НЗ E740 Mean

Planted: March 25, 2002 Not harvested for yield

32 entries x 6 reps, sequential 1-row plots, 11 ft. long

Code No.	Variety	Stand					Powdery Mildew	Mildew	Score				
		No.	8/01	8/15	8/23	9/02	9/13	9/20		10/4	10/11	10/25	Mean
USDA checks P130	hecks P130	14.5	0.0		•	•	•	•	•				•
	US H11	16.2	1.3	3.0	4.3	5.3	5.5	5.8	6.3	6.3	7.0	6.3	5.1
Coded	entries												
PM- 1	Acclaim	16.5	2.5	3.8	4.5	4.3	3.8	•		•		•	
- 2	00HX016	15.5	3.0	•	5.2	4.7	4.2	4.5	4.7	5.0	5.5	5.8	4.7
n I	7KJ0191	16.5	3.8	•	•				•	•		•	•
- 4	01HX002	16.5	4.2	•	•	•	•					•	•
ا 5	HH 145	15.2	1.7	3.8	3.8	4.3	4.5	4.7	5.0	5.0	5.5	5.2	4.3
9 -	00HX051	16.8	0.7	•	•	•	•		•	•	•	•	•
- 7	9GK7014	16.0	0.2	•		•	•		•			•	
8 I	Eagle	•	1.2	3.0	3.2	3.7	3.8	4.2	4.5	5.3	5.8	5.5	4.0
6 -	US H11	17.2	1.7		•	•	•					•	•
-10	Crystal R062	17.0	0.3	•	2.5	2.8			•		•	•	•
-11	00HX052	16.8	1.0		•	•	•	•	•	4.0			•
-12	Phoenix	16.3	1.5		2.8	•	•	3.7	•	•			3.6
-13	Beta 4175R	17.0	1.7	3.7	3.7	3.8	4.2	4.7	5.5	5.8	6.5	6.3	•
-14	9GK7003	15.8	0.5		1.2	•	•	2.2	•	•		•	2.2
-15	01HX004	16.2	1.3		•	•	•			•	•	•	•
-16		•	1.7	3.3	3.8	5.7	0.9	6.5	7.3	7.2	7.3	7.3	5.6
-17			1.2			•		•	•	•	•		•
-18	HH 142	14.7	0.3	•	•	•	•			•	•	•	•

TEST 5102. CODED POWDERY MILDEW TEST, SALINAS, CA, 2002

(cont.)

	Mean			4.6		•	2.2	•	4.8	4.2	•	•	3.5	•	3.9	0.8	18.0	14.7**
	10/25		4.5	6.8	5.2	5.7	3.8	7.2	7.0	5.2	3.7	4.7	5.0	5.2		6.0		•
	10/11		3.7	5.7	4.7	5.3	3.5	7.3	6.7	5.3	3.3	4.7	4.8	5.0	5.1	1.0	17.7	12.7**
	10/4			5.3		•			0.9		•	•	4.5	•	4.9	6.0	16.7	11.6**
Score	9/27		•	4.8	•	•		•	5.5	•	•	4.5	4.2	4.0	4.7	1.0	18.4	12.9**
Powdery Mildew	9/20		•	4.3	•	•			5.0		•	•	4.0	•	4.1	1.1	N	**6.6
Powdery	9/13		•	4.2		•			3.8		•		4.0			1.1		8.8**
	9/05			4.0	•	•		•	3.5	•		•	3.5		3.6	1.3	31.9	8.8**
	8/23		•	4.0	•	•	•	•	3.5	•			2.7		•	1.2	•	7.5**
	8/15		•	3.8	•	•	•	•	4.2	•			2.2		2.4	1.3	46.2	6.2**
	8/01		1.0	2.7	1.7	1.5	0.3	2.0	3.2	1.3	0.5	2.0	0.7	0.5	1.5	1.1	66.4	**6.9
Stand	No.		16.8	16.2	15.5	15.7	16.3	16.7	17.2	16.8	16.2	16.5	16.3	16.3	16.3	1.3	7.1	2.0**
Variety		Coded entries (cont.)	9GK1596	00HX056	Crystal R061	нн 141	Beta 4001R	US H11	Beta 4440R	9J0158	Beta 4200R	99HX981	9GK1701	9BK1705		15)	<u>.</u>	
Code No.		Coded	PM-19	-20	-21	-22	-23	-24	-25	-26	-27	-28	-29	-30	Mean	LSD (.05)	C.V. (%)	F value

Notes: Scored by J.A. Orozco on a scale of 0 to 9, where 9 = highly susceptible (90-100% of visible leaf area covered with mildew).

Powdery mildew development was moderate in 2002. Test did not appear to have rhizomania or other severe diseases. Light to moderate infection occurred for downy mildew and rust.

TEST 102. EVALUATION OF EXPERIMENTAL HYBRIDS FOR NONBOLTING, SALINAS, 2001-2002

100 entries x 3 reps., sequential

1-row plots, 17.5 ft. long

Planted: November 7,

Not harvested for yield

Variety	Description	Stand	%	Bolting		Emerq	Downey Mildew	еу Іем	Root Rot	ц	Powdery Mildew	Mildew	
		No.	6/29	8/05	9/04	Score	4/05	5/23	o(P	7/25	8/08	8/23	Mean
Checks													
		30.0	0.0	•	•	8	1.7	1.7	•	•	•	7.3	6.1
Beta 4430R	a.	29.7	5.5	3	0	7	•	•	•		•	•	•
HH141	w	24.7	0.0	5.3	9.4	m	2.7	0.3	1.3	4.7	6.7	7.0	6.1
Phoenix	Holly, 8-16-01	27.0	6.6	ω.	•	m		•	•	•	•	•	•
Monohikari	Seedex, 4-18-01	27.7	8.69	90.2		7	•	-	•	•	•		6.9
***	(1											
OS HII		25.3	0.0	1.3	1.3	7	1.7	•	0.0	•	•	•	7.7
Beta 4001R	Betaseed, 9-25-01	27.0	0.0	•	12.2	7	•	1.7	0.0	•	•	•	9.9
	Spreckels, 4-96	28.3	2.4	•	•	2	4.0	•		5.3	8.0	0.6	•
E17	Michigan Sugar Co,3-27-01	26.3	6.97	81.6	88.5	ന	0.7	0.3	5.1	6.3	8.3	8.0	•
Rizor	Holly, 3-29-01	29.3	13.6	•	51.3	7	3.7	•	•	5.3	8.0	8.7	7.3
Hybrids wit	with C833-5												
X190H5	0833-5HO × Y090	16.0	6.7	13.3	•	4	0.3	0.0	5.3	4.3	6.7	7.3	6.1
X190H5 (Iso)	$0833-540 (Iso) \times Y090$	12.3	2.0	12.5	15.9	4	2.0	•	10.0	4.7	•	7.3	•
X175H5		25.0	2.5	ω.	•	က	5.0	1.7	2.5	•	6.3	6.7	5.6
R176-89H5	5H0 x	26.0	12.1	6	o.	ന	•	•	•	•	•	•	•
1931H5	0833-5HO x RZM 931(C)	15.7	0.0	6.4	•	4	•	•	•	3.0	•	6.7	•
1941H5	0833-5HO x RZM 941(C)	20.3	7 9		7	ď		0	c	'n		۳ د	כ
CR111H5		22.3		27.3	27.3	m	2.3	•		4.7	7.0	7.7	
Z125H5	×	19.7	13.1		т М	m	•	0.3	2.1	•	•	•	•
1942H5	0833-5HO x RZM 0942	23.7	7.4	Η.	2	m	•	0.0	•	3.0	•	0.9	4.6
01-FC1030H5	0833-5HO x FC1030(C)	22.0	28.6	7.	5.	ო	•	•	•	•	7.0	•	•
1927-4H5	0833-5HO x RZM 9927-4	21.3	6.7	11.6	14.6	ო		•	2.6	•	7.3	•	•
1929-62H5	3-5HO x RZM	24.7	0.0	•	•	m	3.7	•	•	•	•	•	
1930-35H5	-5HO x RZM 993	21.0	0.0	5.3	8.8	ო	0.7	0.3	1.8	4.0	6.7	6.7	5.8
1929-4H5	833-5HO x RZM 9929-		5.5	•	•	m	•	•	•	•	•		•
1924-2H5	0833-5HO x RZM 9924-2	20.0	3.5	•	÷.	m	5.3	•	4.7	•		•	

EVALUATION OF EXPERIMENTAL HYBRIDS FOR NONBOLTING, SALINAS, 2001-2002 TEST 102.

Mean		6.2	•	•	5.3	5.4	5.6		4.8	5.4	•	5.0	5.0		•	5.4	4.6		•	•	6.4	•	•	•	6.1	•	•
Mildew 8/23 N	7		7.3	•	6.7		7.3		•	7.3		•	7.0		•	7.0	•		•	•	8.3	•	•	•	8.0	•	•
Powdery bear 8/08	<u>ح</u>		6.0	0.9	•	•	5.7		5.3	•	5.3	•	5.3		•	5.7	•		•	•	6.7	•	•	•	5.7	•	•
P 7/25	cr cr	4.3	•	•	3.7	•	3.7		•	3.0	•	•	2.7		•	3.7	•		•	•	4.3	•	•	•	4.7	ო ო	•
Root Rot	ر م	3.1	•	1.4	•	•	1.4		0.0	4.2	0.0	0.0	•		•	1.7	•		•	•	0.0	٠	•	•	0.0	•	•
ley 3/23	۳ 0	0.7	•	1.0	•	•	2.0		•	2.3		1.3	1.3		•	1.7	•		•	3.3	0.3	•	0.3	•	0.0	•	•
Downey Mildew	2.7	5.0	5.3	•	4.0	•	1.3		•	3.7	•	4.7	4.7		•	1.3	•		•	•	5.7	•	•	•	2.0	•	•
Emerg	4	m	е	က	ო	ო	ო		ო	ო	м	ო	ო	(m	ო	ო		ო	7	8	ო	m	ო	m	m	m
9/04	d		11.4	8.6	16.8	ω.	28.4		3.2	19.7	4	9.0	20.4		•	37.8	•		8	6	13.7	9	0	e.	13.8	7	•
Bolting 8/05	C	0.0	•	8.4	15.2	22.7	22.7		3.2	ر کا	•	7.2	•	(S	33.6	\vdash		7.	•	7.9	•	7	•	13.8	თ	•
% E	0	0.0	2.9	7.0	2.8	7.2	8.6		0.0	8.5	5.6	1.3	5.7	•	14.0	11.2	6.4		14.4	4.8	2.2	5.0	17.2	1.3	დ . ფ	1.3	20.6
Stand Count	6.3	22.0	23.0	23.0	23.3	23.3	23.7		22.0	23.3	18.3	20.3	23.0		19.3	22.3	21.0		23.7	28.0	3 27.3		9 25.3		1 24.3		
Description	C790-15CMS x C833-5 0833-5(SD)aa x Y090	X09	0833-5H50 x RZM Y75(C)	0833-5H50 x RZM 931 (C)	1-5H50 x RZM 941 (C)	-5H50 x CR011(C)	-5H50 x Z025(C)	C790-15CMS	×	x RZM	C790-15CMS x RZM R076-89	C790-15CMS x RZM 931(C)	$C790-15CMS \times RZM 941(C)$	C790-15CMS x RZM CR011(C)		x Z025	C790-15CMS x RZM 0942		×	$C790-15CMS \times R978$	x RZM-ER-%	x RZM-ER-% R98	90-15CMS x RZM-ER-% Y969	x RZM-ER-%	x RZM-ER-%	x RZM-ER-%	C790-15CMS x RZM-ER-% R936
	with C79	0833	0833	0833	0833-	0833-	0833-	with C79	C790			C790	C190	C790		C190	C190	н50	C190	C190	C190	C190	C790	C790	C790	C790	C190
Variety	Hybrids w	У190Н6	х175н6	1931Н6	1941H6	CR111H6	Z125Н6	Hybrids w	X190H50		99 R176-89H50	1931H50	1941H50	CR111H50		Z125H50	1942H50	01-FC1030H50		R078H50	R178H50	R180H50	X169H50	X167H50	X171H50	R170H50	R136H50

EVALUATION OF EXPERIMENTAL HYBRIDS FOR NONBOLTING, SALINAS, 2001-2002 TEST 102.

Varietv	Description	Stand	φ	Д 1. 1.) } [:	Downey	ley	Root	+	7	7	
		S	1	8/05	9/04	Score	4/05	5/23) 0 4 8	7/25	8/08 8/23	8/23	Mean
R140H50	C790-15CMS x RZM-ER-% R94	R940,R954											
		25.3	9.7	12.7	14.2	ო	4.3	•	0.0	•	5.3	7.0	•
R143H50	x RZM-ER-% R94	3 26.0	19.4	33.7	36.2	ო	5.0	1.3	1.3	3.3	5.3		5.1
P129H50	$C790-15CMS \times PMR-RZM P029-\#(C)$	-# (C)											
i i		26.0	7.5	10.1	19.1	ო	4.7	3.0	1.1	2.7	5.7	6.3	4.9
P130H50	C790-15CMS x PMR-RZM P030	P030-#(C)											
,		25.3	9.5	32.2	т	ო	•	٠	0.0	•	5.3	6.3	4.9
P118-6H50	×	27.0	1.2	7.4	11.1	ო	3.3	0.0	0.0	2.7	5.3	6.0	4.7
P125-12H50	$C790-15CMS \times P925-12$	24.7	20.6	38.4	5	ო	•	•	•	•	•	•	5.9
N124H50	C790-15CMS x NR-RZM N024	24.3	4.1	5.6	7.0	ო	4.3	3.0	0.0	4.3	6.0	6.3	5.6
1933H50	C790-15CMSxRZM-ER-% 9933	26.3	7.7	16.6	21.7	ო		•	•	4.3	•	7.3	
1932H50	C790-15CMSxRZM-ER-% 9932	21.0	4.8	щ	28.4	ო	3.7	1.0	0.0	4.3	6.0	7.3	6.6
Н	C790-15CMSxRZM-ER-% 9924	22.3	7.1	22.2	25.2	ო	•	•	•	•	•	7.0	
1941H50	C790-15CMSxRZM-ER-% 9941	23.7	8.8	œ.	ij.	ო		•	•	•	•	•	•
Topcross hy	hybrids with popn-931												
1931H50(Iso	()												
	C790-15CMSxRZM-ER-% 9931	26.0	2.5	•	11.1	ო	•	0.0	0.0	3.7	5.3	6.7	5.2
1931H50	C790-15CMSxRZM 931(C)	23.7	11.4	22.9	22.9	ന	2.7	1.3	2.9	4.3	0.9	7.0	5.8
1931H2	$9831-340 \times RZM 931(C)$	19.7	1.3	0	•	ო	•	•	•	4.3	•	6.3	•
1931H27	9831-4HO x RZM 931(C)	21.7	3.2	•	4	ო	•	1.7	•	5.3	6.3	•	•
1931H28	0831-4-7HO x RZM 931(C)	15.0	11.7	æ.	m.	4	2.0	•	•	•	•	•	5.4
1931H29	0831-4-10HO x RZM 931(C)	18.0	0.0	•	•	4	•	•	4.0	4.7	5.7	6.0	•
1931H62	$0836-1H5 \times RZM 931(C)$	20.3	13.4	21.6	26.5	ო	2.7	1.3	0.0	4.7	6.0	6.7	5.8
1931H63	x RZM	•	4.6	ŀ.	ŀ.	က	•	•	•	•	4.7	•	•
σ	x RZM		8.3	22.0	•	ო	•	•	1.4	5.0	0.9	6.7	•
1931H67	$0837 - 6H5 \times RZM 931 (C)$	20.3	9.9	9	6	м	•	•	•	•		•	•

EVALUATION OF EXPERIMENTAL HYBRIDS FOR NONBOLTING, SALINAS, 2001-2002 TEST 102.

6/29 8/05 9/04 Score 4/05 5/23 ½ 7/25 8 3 0.0 8.8 11.7 3 2.7 0.7 1.4 4.3 0 9.7 22.4 25.5 3 1.0 0.7 3.5 3.7 3 0.0 3.7 6.3 4 3.3 0.7 1.4 4.3 3 0.0 3.7 7.7 3 2.0 1.3 0.7 1.4 5.0 3 0.0 3.7 4 3.3 0.7 1.4 5.0 3 0.0 4 1.7 0.0 0.2 4.3 4 9.2 4 0.7 0.0 0.2 4.0 3 0.0 4 1.7 0.0 0.2 4.0 3 0.0 4 1.7 0.0 0.2 4.0 3 0.0 12.9 4 0.7 0.0 0.0	Variety	Description	Stand Count	ф	Bolting		Emerg	Downey Mildew		Root		5.	Mildew	
## Partials with Year Carryon			No.	6/29	8/02	9/04	Score	4/05	5/23	o(0	7/25	8/08	8/23	Mean
931-340 x Y090	Ø	with												
9831-3HO × Y090 20.0 2.0 3.5 5.4 3 1.0 0.7 3.5 3.7 5.3 6.7 5.5 6.6 2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6	20	MS x		•	•	ij.	m	•	•		•			•
C552HO x Y090 C552HO x Y090 C552HO x Y090 C552HO x Y090 C633-5HG x Y090 C633-5HG x Y090 C633-5HG x Y090 C631-6HG x Y090 C701-6HG x Y090 C701-6	7	9831-3HO x Y090			•		m	•	•	•	•			•
0833-5HO x Y090 16.3 0.0 3.7 6.3 4 3.3 0.7 8.8 4.3 5.7 6.3 5. 0833-5HO x X090 21.3 0.0 7.7 7.7 3 2.0 1.3 6.1 5.0 6.3 7.3 6.1 5.0 6.3 7.3 6.1 6.3 6.1 5.0 6.3 7.3 6.1 6.3 6.1 6.3 6.1 6.3 6.1 6.0 6.3 6.3 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	m	C562HO x Y090	•	9.7	2	5	m	•	•	•	•		•	•
0831-5H50 x Y090 17.7 2.2 4.7 9.0 4 1.7 0.0 1.2 4.3 6.1 5.0 6.3 7.3 6.3 6.3 6.3 1.4 0.0 x Y090 0831-4H0 x Y090 10.3 3.3 6.7 10.0 4 1.3 0.0 0.0 4.3 5.7 5.7 5.1 6.3 6.3 6.3 6.4 9.2 4 0.7 0.0 0.0 0.3 3.3 5.0 6.3 4.9 986-6H0 x Y090 10.3 3.3 6.7 10.0 4 1.3 0.0 0.0 0.3 3.3 5.0 6.3 4.9 986-6H0 x Y090 21.7 4.9 22.3 22.3 3 0.7 1.0 5.2 4.0 6.0 0.3 3.3 5.0 6.3 5.9 6.3 6.3 6.0 6.3 6.3 6.0 6.3 6.3 6.0 6.3 6.3 6.0 6.3 6.3 6.0 6.3 6.3 6.0 6.3 6.3 6.0 6.3 6.3 6.0 6.0 6.3 6.3 6.0 6.0 6.3 6.0 6.0 6.3 6.0 6.0 6.3 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	J.	0833-5HO x Y090	•	•	•	•	4	•	•	•	•	•		•
9831-4HO x Y090 17.7 2.2 4.7 9.0 4 1.7 0.0 1.2 4.3 6.0 6.3 5.7 5.0 831-4-7HO x Y090 10.3 3.3 6.7 10.0 4 1.3 0.0 0.0 4.3 5.7 5.7 5.7 5.0 831-4-10HO x Y090 14.3 0.0 6.4 9.2 4 0.7 0.0 0.3 3.3 5.0 6.3 4.9 5.0 883-4-10HO x Y090 20.3 0.0 12.9 14.8 4 0.7 1.0 5.2 4.0 6.0 7.0 6.3 5.0 835-4-10HO x Y090 20.3 0.0 12.9 14.8 4 2.7 1.0 3.4 5.0 6.0 7.0 6.3 5.0 835-4-10HO x Y090 20.3 1.6 9.7 11.3 3 2.0 0.0 1.6 4.7 6.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5	9	×	•	•	•	•	m	•	•	•	•	•	•	•
0831-4-7HO x Y090 10.3 3.3 6.7 10.0 4 11.3 0.0 0.0 4.3 5.7 5.7 5.7 5.0 0831-4-7HO x Y090 11.3 0.0 6.4 9.2 4 0.7 0.0 0.3 3.3 5.0 6.3 4. 0847-1HO x Y090 21.7 4.9 22.3 22.3 3 0.7 1.0 5.2 4.0 6.0 6.3 5.2 4.0 6.0 6.3 5.0 6.3 5.0 869-6HO x Y090 20.3 1.9 3.7 8.0 3 1.7 1.0 3.4 5.0 6.0 7.0 6.0 0.3 3.3 5.0 6.3 5.0 869-6HO x Y090 20.3 1.6 3 1.9 3.7 8.0 3 1.7 1.7 2.2 3.3 5.3 5.7 4. 6.0 833-6H5 x Y090 20.7 1.8 4.9 11.1 3 2.7 0.7 1.8 5.0 6.0 5.0 5.0 5.0 5.0 6.0 5.0 8833-5H2 x Y090 20.8 18.7 0.0 8.5 8.5 4 2.7 0.7 1.8 5.0 6.0 5.0 6.0 5.0 833-5H2 x Y090 20.8 18.7 0.0 8.5 8.5 4 2.7 0.7 1.8 5.3 6.0 5.0 833-5H4 x X090 20.8 13.0 2.2 7.0 12.1 4 1.7 1.3 0.0 3.7 5.3 6.0 5.0 833-5H4 x X090 20.8 15.3 2.6 13.6 18.0 4 2.0 0.3 5.3 4.3 5.3 6.0 5.0 833-5H4 x X090 20.8 24.3 3.9 14.1 15.3 3 0.7 0.3 0.0 4.0 5.3 6.0 5.0 833-5H4 x X090 20.8 24.3 3.9 14.1 15.3 3 0.7 0.3 0.0 5.0 6.3 7.0 6.0 833-5H4 x X090 20.8 25.3 4.5 13.6 18.0 4 2.0 0.3 5.0 6.3 7.0 6.0 833-5H4 x X090 20.8 25.3 4.5 13.8 13.9 14.1 15.3 3 0.7 0.0 0.0 5.0 6.3 5.0 6.3 5.0 833-5H4 x X090 20.8 25.3 4.5 13.8 13.8 13.9 0.7 0.0 0.0 5.0 6.3 5.0 6.3 5.0 833-5H4 x X090 20.8 25.3 4.5 13.8 13.8 13.9 0.7 0.0 0.0 5.0 6.3 5.0 6.3 5.0 833-5H4 x X090 20.8 25.3 4.5 13.8 13.8 13.8 0.7 0.0 0.0 5.0 6.3	27	9831-4HO x Y090	7.		•	•	4	•	•	•	•		•	•
0831-4-10HO x Y090 14.3 0.0 6.4 9.2 4 0.7 0.0 0.3 3.3 5.0 6.3 4.0 967-1HO x Y090 20.3 0.0 12.9 14.8 4 0.7 1.0 5.2 4.0 6.0 6.3 5.0 9867-1HO x Y090 20.3 0.0 12.9 14.8 4 2.7 1.0 5.2 4.0 6.0 6.3 5.0 6.3 5.0 9869-6HO x Y090 20.3 1.6 3.7 8.0 3 1.7 1.7 1.7 2.2 3.3 5.3 5.7 4.0 6.0 6.3 5.0 6.3 5.0 6.3 6.3 6.0 6.3 6.3 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	28	0831-4-7HO x Y090		•	•	o.	4	•	•	•		•	•	•
9869-6HO x Y090 21.7 4.9 22.3 22.3 3 0.7 1.0 5.2 4.0 6.0 6.3 5.7 6.0 869-6HO x Y090 20.3 0.0 12.9 14.8 4 2.7 1.0 3.4 5.0 6.0 7.0 6.0 6.3 5.0 689-6HO x Y090 16.3 1.9 3.7 8.0 3 1.7 1.7 2.2 3.3 5.3 5.3 4.0 6.0 6.0 7.0 6.0 883-5H5 x Y090 20.3 1.6 9.7 11.3 3 2.0 0.0 1.6 4.7 6.3 7.3 6.0 688-9H5 x Y090 20.7 1.8 4.9 11.1 3 2.7 0.7 1.8 5.0 6.3 7.0 6.0 5.0 688-5H5 x Y090 20.8 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.3 7.0 6.0 5.0 683-5H2 x Y090 20.8 18.7 0.0 8.5 8.5 4 3.7 0.3 0.0 4.0 5.7 6.0 5.0 6.3 7.0 6.0 683-5H2 x X090 20.8 13.0 2.2 7.0 7.0 4 2.0 0.3 5.3 4.3 5.3 6.0 5.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	129	0831-4-10HO x Y090		•	•	•	7	•	•	•	•	•	•	•
9869-6HO x V090 0836-1HS x V090 16.3 1.9 3.7 8.0 3 1.7 1.7 2.2 3.3 5.3 5.7 4. 0836-1HS x V090 18.3 0.0 7.0 9.8 3 1.7 1.7 2.2 3.3 5.3 5.7 4. 0838-2H5 x V090 20.3 1.6 9.7 11.3 3 2.0 0.0 1.6 4.0 5.0 5.0 5.3 4. 0808-15HS x V090 20.3 1.6 9.7 11.3 3 2.0 0.0 1.6 4.0 5.0 5.3 7.0 6. 0808-15HS x V090 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.3 7.0 6. 0808-15HS x V090 18.7 0.0 8.5 8.5 4 3.7 0.7 4.8 4.0 5.7 6.0 5.0 5.0 6.3 7.0 6. 0808-15HS x V090 18.7 0.0 8.5 8.5 4 3.7 0.3 0.0 4.0 5.7 6.0 5.0 6.3 7.0 6.0 5.0 0.3 5.3 4.3 5.3 6.0 5.0 6.3 7.0 6.0 5.0 0.3 5.3 6.0 5.0 6.3 7.0 6.0 5.0 6.3 7.0 6.0 5.0 6.3 7.0 6.0 5.0 6.3 7.0 6.0 5.0 6.3 7.0 6.0 6.3 5.3 6.0 5.0 6.3 7.0 6.0 6.3 5.3 6.0 5.0 6.3 7.0 6.0 6.3 5.3 6.0 5.0 6.3 7.0 6.0 6.3 5.3 6.0 5.0 6.3 7.0 6.0 6.3 5.3 6.0 5.0 6.3 7.0 6.0 6.3 5.0 6.3 7.0 6.0 6.3 6.0 5.0 6.3 7.0 6.0 6.3 6.0 5.0 6.3 7.0 6.0 6.3 6.0 5.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.3 7.0 6.0 6.3 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	145	×	•	•	2	•	m	•	•	•	•		•	•
0836-1H5 x Y090 16.3 1.9 3.7 8.0 3 1.7 1.7 2.2 3.3 5.3 5.7 4.0 0836-7H5 x Y090 20.3 1.6 9.7 11.3 3 2.0 0.0 2.0 5.0 5.0 5.3 4.0 0837-6H5 x Y090 20.3 1.6 9.7 11.1 3 2.7 0.7 1.8 5.0 6.3 7.0 6.0 0808-9H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.3 7.0 6.0 0808-15H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.0 5.0 0808-15H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 4.8 4.0 5.7 6.0 5.0 0808-15H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.0 5.0 0808-15H5 x Y090 13.7 2.2 7.0 12.1 4 1.7 0.7 2.6 5.0 6.3 7.0 6.0 0808-15H5 x Y090 15.3 2.6 13.6 18.0 4 1.7 0.7 2.6 5.0 6.3 7.0 6.0 0808-15H5 x Y090 24.3 3.9 14.1 15.3 3 0.7 0.0 0.0 5.0 6.3 7.0 6.0 0808-15H5 x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.7 0.0 5.0 6.3 6.7 7.0 6.0 0808-15H5 x Y090 22.7 8.5 14.9 17.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.0	146	ж ОН9-698	•	•	2	•	4	•	•	•	•	•	•	•
0836-7H5 x Y090 18.3 0.0 7.0 9.8 3 1.7 0.3 0.0 2.0 5.0 5.3 4.3 6.0 0837-6H5 x Y090 20.3 1.6 9.7 11.3 3 2.0 0.0 1.6 4.7 6.3 7.3 6.0 0837-6H5 x Y090 20.7 1.8 4.9 11.1 3 2.7 0.7 1.8 5.0 6.3 7.0 6.0 5.0 0808-9H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.3 7.0 6.0 5.0 0808-9H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 4.8 4.0 5.7 6.0 5.0 0833-5H2 x Y090 13.0 2.2 7.0 12.1 4 1.7 1.3 0.0 3.7 5.3 6.0 5.0 0833-5H45 x Y090 15.3 2.6 13.6 18.0 4 1.7 1.3 0.0 3.7 5.3 6.0 5.0 0833-5H46 x Y090 20.3 1.3 7.9 13.3 4 2.0 0.3 0.0 4.3 7.0 6.0 6.3 7.0 6.0 0835aa x Y090 24.3 3.9 14.1 15.3 3 1.3 0.7 1.2 4.3 6.0 6.3 7.0 6.0 0841HO x Y090 22.7 8.5 14.9 17.6 3 3.9 1.0 1.3 0.0 6.3 5.0 6.3 7.0 6.0 0835HO x Y090 22.7 8.5 14.9 17.6 3 3.3 0.0 0.0 5.0 6.3 7.0 6.3 6.7 5.0 0835HO x Y090 22.7 8.5 14.9 17.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.0 0835HO x X090	162	x Y0	9	•	•	•	m							
0834-245 x Y090 20.7 1.8 4.9 11.1 3 2.7 0.7 1.8 5.0 6.3 7.3 6. 0808-945 x Y090 20.7 1.8 4.9 11.1 3 2.7 0.7 1.8 5.0 6.3 7.0 6. 0808-945 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.3 7.0 6. 0808-945 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 4.8 4.0 5.7 6.0 5. 0808-15H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 4.8 6.0 5.0 6.3 7.0 6. 0.0 4.0 5.3 6.0 5. 0833-5427 x Y090 15.3 2.2 7.0 12.1 4 1.7 1.3 0.0 4.0 5.3 6.0 5. 0833-5445 x Y090 24.3 3.9 14.1 15.3 3 1.3 0.7 0.0 5.0 6.3 7.0 6. 083540 x Y090 24.7 2.8 13.2 16.3 3 0.3 0.0 0.0 5.0 6.3 7.0 6. 083540 x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.7 0.0 0.0 5.0 6.3 7.0 6. 083540 x Y090 22.7 8.5 14.9 17.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5. 083540 x Y090 22.7 8.5 14.9 17.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.	163	×	•	•	•	•	m	•		•	•	•		
0837-6H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 1.8 5.0 6.3 7.0 6. 0808-9H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 4.8 5.0 6.3 7.0 6. 0808-15H5 x Y090 18.7 3.2 11.6 13.0 4 2.7 0.7 4.8 4.0 5.7 6.0 5. 0833-5H2 x Y090 18.7 2.2 7.0 12.1 4 1.7 1.3 0.0 4.0 5.3 6.0 5. 0833-5H45 x Y090 24.3 3.9 14.1 15.3 3 1.3 0.7 1.2 4.3 6.0 6.3 7.0 6. 08356aa x Y090 24.7 2.8 13.2 16.3 3 0.3 0.0 0.0 5.0 6.3 7.0 6. 0835HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.7 0.0 0.0 5.0 6.3 7.0 6. 0835HO x Y090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 0.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 6.3 6.7 5.0 6.3 6.3 6.7 6.7 6.2 6.3 6.7 6.7 6.2 6.3 6.7 6.7 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	164	×	•	•	•	Η.	ო	•	•	•	•	•	•	•
0808-9H5 x Y090 16.7 3.2 11.6 13.0 4 2.7 0.7 4.8 4.0 5.7 6.0 5.0 0808-15H5 x Y090 16.7 0.0 8.5 8.5 4 3.7 0.3 0.0 4.0 5.3 6.0 5.0 0833-5H2 x Y090 13.0 2.2 7.0 12.1 4 1.7 1.3 0.0 3.7 5.3 6.0 5.0 0833-5H2 x X090 15.3 2.6 13.6 18.0 4 1.7 0.7 2.6 5.0 6.3 7.0 6.0 0833-5H45 x Y090 20.3 1.3 7.9 13.3 4 20.0 0.3 0.0 4.3 7.0 7.0 6.0 0835-5 x X090 24.3 3.9 14.1 15.3 3 1.3 0.7 1.2 4.3 6.0 6.3 7.0 6.0 0835-5 x X090 24.7 2.8 13.2 16.3 3 0.0 0.0 5.0 6.3 7.0 6.0 0835HO x X090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.7 0.0 4.7 6.3 6.7 5.0 0835HO x X090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.0	167	-6H5 x	•	•		Η.	m	•	•	•	•	•	•	•
0808-15H5 x Y090 16.7 0.0 8.5 8.5 4 3.7 0.3 0.0 4.0 5.3 6.0 5. 0833-5H2 x Y090 13.0 2.2 7.0 7.0 4 2.0 0.3 5.3 4.3 5.3 6.0 5. 0833-5H2 x Y090 15.3 2.6 13.6 18.0 4 11.7 11.3 0.0 3.7 5.3 6.0 5. 0833-5H46 x Y090 20.3 1.3 7.9 13.3 4 2.0 0.3 0.0 4.3 7.0 7.0 6. 0835aa x Y090 24.3 3.9 14.1 15.3 3 11.3 0.7 1.2 4.3 6.0 6.3 7.0 6. 0841HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.0 4.7 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.7 5.0 6.3 6.3 6.7 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 6.3 6.7 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 5.0 6.3 6.3 6.7 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.7 6.3 6.3 6.7 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.7 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3	081	808-9Н5 х УО	•	•	ᆸ.	m.	4	•	•	•	•		•	•
0833-5H2 x Y090	181	8-15H5 x	16.7		•	•	4	•	•	•	•			•
0833-5H27 x Y090	182	3-5H2 x	13.0	•	•	•	4	•	•	•	•	•	•	•
0833-5H45 x Y090 15.3 2.6 13.6 18.0 4 1.7 0.7 2.6 5.0 6.3 7.0 6.3 0833-5H46 x Y090 20.3 1.3 7.9 13.3 4 2.0 0.3 0.0 4.3 7.0 6.3 0835aa x Y090 24.3 3.9 14.1 15.3 3 0.7 0.0 0.0 5.0 6.3 7.0 6.3 0841HO x Y090 24.7 2.8 13.2 16.3 3 0.0 0.0 5.0 6.7 7.0 6. 0835HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.0 4.7 6.3 6.7 5. 0836HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.0 4.7 6.3 6.7 5.	183	3-5H27 x	13.7	•	•	8	4	•	•		•	•	•	•
0833-5H46 x Y090 24.3 3.9 14.1 15.3 3 1.3 0.7 1.2 4.3 6.0 6.3 5. 0835aa x Y090 24.7 2.8 13.2 16.3 3 0.7 0.0 0.0 5.0 6.7 7.0 6. 0835HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.7 0.0 4.7 6.3 6.7 5. 0836HO x Y090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.	184	33-5H45 x		•	ω.	ω.	4	•	•	•	•	•	•	•
0835aa x Y090 23.3 4.6 9.8 12.8 3 0.7 0.0 5.0 6.3 7.0 6. 0836aa x Y090 24.7 2.8 13.2 16.3 3 0.3 0.0 5.0 6.7 7.0 6. 0835HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.0 4.7 6.3 6.7 5. 0836HO x Y090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.	185	833-5H46 x	•	•	•	m.	4	•	•	•	•	•	•	•
0836aa x Y090 23.3 4.6 9.8 12.8 3 0.7 0.0 0.0 5.0 6.3 7.0 6. 0841HO x Y090 24.7 2.8 13.2 16.3 3 0.3 0.0 0.0 5.0 6.7 7.0 6. 0835HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.0 4.7 6.3 6.7 5. 0836HO x Y090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.	135	5aa x	•	•	4.	<u>ي</u>	ю	•	•	•	•	•	•	
0841HO x Y090 24.7 2.8 13.2 16.3 3 0.3 0.0 0.0 5.0 6.7 7.0 6. 0835HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.0 4.7 6.3 6.7 5. 0836HO x Y090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.	36	6aa x	23.3	•	•	8	m	•	•	•	•	•	•	•
0835HO x Y090 22.7 8.5 14.9 17.6 3 1.0 1.3 0.0 4.7 6.3 6.7 5. 0836HO x Y090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.	51	1HO x	24.7	•	т М	9	m	•	•	•	•		•	•
0836HO x Y090 21.3 1.9 8.2 9.6 3 3.3 0.7 0.0 4.7 6.3 6.7 5.	55	35HO x		•	4.	7.	ო	•	•	•	•	•	•	•
	991	836но ж	i.	•	•	•	m	•	•	•	•	•	•	•

(cont.)

	t Powdery Mildew	7/25 8/08 8/23 Mean		0 4.7 6.0 6.7 5.8	4 5.0 7.0 7.7 6.6	0 4.7 6.3 6.7 5.9		0 5.0 7.0 8.3 6.8	6 4.1 6.1 6.9 5.7	6 1.5 1.2 1.4 1.1	5 22.4 12.7 12.3 11.6	
	Mildew Rot	4/05 5/23 8			1.7 1.3 1.	1.3 0.0 0.	1.7 0.3 0.	1.7 1.7 0.	2.7 1.0 1.	3.3 1.9 4.	75.6 116.7 182.5	
	Emerg	/04 Score		4.6 3	22.6 3	7.7 3	9.9	13.7 3	18.8 3.1	4.3 17.8	.2 0.9	
	% Bolting	<u>8/05</u> <u>8/05</u>		12.8	19.1	.3 6.1	1.5 4.6	3.0 10.7 13	6.8 15.6 18	8.8 13.3 1	.3 52.6 47	
	Count	No. 6/29		18.7 1.5	21.0 11.0	21.7 3.3	20.3 1.	21.7 3.	22.1 6.		13.7 80.3	
	Description		Topcross hybrids with Y90 (cont.)	9869aa x Y090	9869HO x X090	0841H5 x Y090	0835H5 x Y090	0836H5 x Y090				
•	Variety		Topcross hy	х191н69	X191H70	X191H61	х191н65	х191н66	Mean	ISD (.05)	C.V. (%)	- C - C - C

EVALUATION OF BREEDING LINES AND POPULATIONS FOR NONBOLTING, SALINAS, CA, 2001-2002 TEST 202.

Not harvested for yield Planted: November 100 entries x 3 reps., sequential 1-row plots, 17.5 ft. long 2001

5.1 6.2 5.0 5.7 5.8 5.8 4.7 7.4 7.1 5.6 6.1 7.9 8/23 Mean Powdery Mildew 5.7 5.7 6.0 6.0 6.0 7.3 7.0 8.0 6.0 6.7 7.0 7.0 7.0 9.00 7.30 8.30 9.30 9.30 7.7 6.0 6.3 8.7 8.0 9.0 9.7 9.3 5.3 5.7 5.7 6.0 6.0 5.0 5.7 5.3 5.7 6.0 6.0 8.0 8/08 7/25 6.0 5.0 6.0 6.0 6.0 6.0 1.7 0.44.0 7.04.0 8.00.0 3.7 7.4 7.7 8.3 9.3 Root Rot 0.0 0.0 0.0 7.0 2.7 1.3 1.1 0.0 0.00 0.00 0.0 ж I 5/23 5.0 3.3 2.3 2.3 2.7 1.7 1.0 4.0 2.7 0.7 3.7 0.7 0.3 0.7 1.7 2.0 1.3 0.7 1.3 3.7 Mildew Downey 4/05 3.7 8.0 9.0 6.0 9.0 13.0 7.7 4.7 9.0 5.3 5.3 5.0 4.0 8.0 9.0 Score Emerg m a m a a m m m m m9 2 9 9 9 E 4 E E C 5.0 4.6 30.4 14.0 9/04 9.97 24.5 19.0 1.3 85.9 84.1 0.0 16.5 30.7 21.3 45.4 14.8 11.5 34.4 46.0 50.2 % Bolting 2.5 3.5 24.3 24.5 19.0 11.5 72.6 11.5 45.0 8/02 1.3 84.7 78.8 0.0 16.5 30.7 21.3 13.8 11.1 32.8 0.0 72.2 69.0 0.0 14.9 46.5 8.9 20.9 1.1 10.9 6/58 3.9 10.9 11.9 22.0 15.7 4.4 15.4 29.4 19.4 Stand Count 27.3 25.7 26.7 24.7 26.0 27.3 27.7 25.0 25.3 24.3 26.7 22.7 16.0 22.7 23.0 26.3 24.0 21.7 24.3 24.7 25.7 28.7 24.7 No. Inc. FS prog. selection open-pollinated lines RZM-ER-% Y769, (C69) Inc. U86-37, 99-C37 Description Inc. Y009 (US22/3) RZM-ER-% R940, R954 RZM 9929-62aa x A Inc. FS composite Betaseed, 8-31-01 RZM-ER-% R780/2,... NB 8930-19 (A, aa) Inc. R539, (C39R) Spreckels, 1996 Inc. R978 (C78) Inc. 00-SP22-0 Holly, 8-16-01 RZM-ER-% R980 RZM-ER-% R978 RZM-ER-% R936 RZM-ER-% Y969 RZM-ER-% Y967 RZM-ER-% Y971 Inc. 00-US75 RZM Y75 (C) Inc. Y090 11 - 3 - 99Beta 4776R Multigerm, Variety 01-SP22-0 97-US22/3 (osi) 696X R078 (Iso) 1930-19 01-US75 1929-62 Checks US H11 SS-NB3 01-C37 HH141 R178 R980 R180 R039 060X Y190 X191 **X169** X175 R136 R140 X167 X171 A170

TEST 202. EVALUATION OF BREEDING LINES AND POPULATIONS FOR NONBOLTING, SALINAS, CA, 2001-2002

	Mean	0	•	•	•	6.1	•	•	•	4.7	•		7	•		•	6.1	•	•		•	0.9	•		•			5.1	
Mildew	8/23	4	•	•	•	7.0	•		•	6.0	•	•	ر د	•			6.7					7.0	•					5.7	
Powdery Mildew	8/08		•	•	•	. 9 . 9	7.0		•	5.0	•	•	ď			•	6.3	•	•	•	•	0.9	•			•	•	5.7	•
щ	7/25		•	•	•	5.0				3.0	•	•	1 7	•			5.3	•	4.7			5.0	•		4.0	•	•	4.0	•
Root	oko		•	•	•	0.0	•	•	•	2.6	•		1 7	•		•	6.7	•		•	•	1.2	•					0.0	
.еу lew	5/23		•	•	•	0.3	•	•	•	3.0	•	•	6	•		•	2.7	•	•	•	•	5.0	•		•	•	•	2.0	•
Downey Mildew	4/05	ر د	r –	i o	•	15.3		•	•	9.3	•	•	7 6	•		•	10.3	m.	•	10.7	•	13.7	2			•	•	5.0	•
Emerg	Score	c	4 0	1 (1) ("	7	ო	ო	ო	ო	ന	m	ď)		ო	ო	7	ო	7	m	7	7		m	m	m	m	m
	9/04			•) [35.0	9	•	7.	37.2	•		7	•		ъ.	62.4	œ.	9	ъ.	0	74.1	2		6	•	•	20.1	•
Bolting	8/02	0		0	ו וכ	27.8	9	•	H.	32.5	•	•	8.7	•		69.3	61.1	4	•	•	•	74.1	•		Ŋ.			20.1	
	6/29	7 7 7	27.6	ο cc 1	0	11.8	•	5.3		18.0	1.4	30.2	7.8	•		48.2	50.6	64.6	45.1	•	62.2	•	54.7		19.9	11.7	4.2	4.6	20.8
Stand	No.)	26.7	23.3	21.0	27.7	26.7	25.3	24.0	23.7	24.0	22.0	22.3			24.3	25.0	24.0	24.0	25.7	21.3	25.0	28.7		25.0	23.3	26.3	20.3	18.0
Description		open-pollinated lines (cont.)		RZM R076-89	RZM-ER-% R970	RZM R076-89-18	PMR-P027-#(C), (WB97)	PMR P028-#(C), (WB242)	PMR-RZM P029-# (C)	PMR-RZM P030-#(C)	Inc. P918-6	Inc. P925-12	PMR-RZM P807-2, R808-7		71	RZM 00-EL0204	5L, E	El SM, 3/01		EL SM, 3/01	EL SM, 3/01	EL SM, 3/01	EL SM, 3/01	S, Aa populations & lines	RZM 9931aa x A	RZM 931 (C) aa x A	RZM-ER-% 9931 (A,aa)	RZM 9941aa x A	RZM 941 (C) aa x A
Variety		Multigerm, R143	R021	R176-89	R170	R176-89-18	P127	P128	P129	P130	P118-6	A17	P007/08		Smooth root	01-EL0204	SR96	SR95	SR94	SR93	SR80	SR87	94H525	Multigerm,		1931	1931 (Iso)	0941	1941

TEST 202. EVALUATION OF BREEDING LINES AND POPULATIONS FOR NONBOLTING, SALINAS, CA, 2001-2002

	Mean		•	•			6.1				6.2	•	•	•	2.5	•	3.7	4.9		2.7	3.8	•	4.7		4.4	•	5.8			•	•
1dev	8/23		•	•	•	•	6.7	•	•		7.3	•	c L	•	ນ ເ	٠	4.7	5.7		•	5.0	•	5.3		5.7	6.0	7.0		, ,	٠	•
Powdery	8/08				•	6.7	6.7	4.7	•	•	6.7	•	7	•	•	•	4.3	•		•	4.0	5.0	•		5.0	5.7	6.0) L	•	•
107	7/25		•	•	•	5.0	5.0		•	4.7	4.7	•		•	•	•	2.0	•		•	2.3	•	•		2.7	э. Э	•	7 7	· ·	4. i	•
Root	e		•	•	•	0.0	•	0.0	•	•	1.3	•		•	•	٠	1.2	•		2.8	0.0	0.0	•		ж. Э.	5. 9.	•		1 .	٠	•
	5/23		•	•	•	3.0	2.7		•	•	1.3	•		•	•	•	ж. Ж.	•		7.0	5.0	2.7	•		2.3	1.3	•			•	•
Downey Mildew	4/05		•	•	•	8.0	•	7.7	8.3	4.0	4.7	•	α	•	; ,	<i>.</i>	12.0	•		7.7	4.3	2.7	•		1.0	2.0	•			٠	•
Emerg	Score	r	n (n	ო	ო	ო	ო	ო	m	ო	ო	m) r	n c	N	m	ო		ო	4	ო	4		m	ო	м	٣) n	n (m
(9/04		h c	Ň	ر. س	54.8	9	•	H.	0	44.8	2	o		•		1.1	•		8.8	8.4	7.6	•		9.6	14.9	0.6	œ	н - С	n	•
Bolting	8/02		•	•		54.8	•	•	•	•	38.8	•	α.		•	٠	1.1	•		8.8	•	6.2	•		8.1	13.0	•	11.4	i o	y (•
8 E	67.79	c	, d	T8.5	16.5	33.4	35.2	9.9	42.5	1.1	19.1	5.7	0 4	21.1	# C	15.8	0.0	17.9			3.9				1.5	4.9	5.6	2.8		. I	1.5
Stand Count	O	(cont.)	7 F	18.3	21.3	23.3	20.3	24.7	24.7	26.0	27.7	23.0	0.10	•	0 6	74.0	-	20.3		22.7	15.7	21.0	17.7	A,aa)	20.7	21.0	21.3	23.7		20.0	24.3
Description		St, Aa populations & lines (c	4 :		Z025(C)aa x A	RZM CR910,11,12(C)aa x A	CR11(C)aa x A(C)	RZM 0941aa x A	FC1030 (C) aa x A	RZM-ER-% 9933 (A,aa)	RZM-ER-% 9932 (A,aa)	RZM-ER-% 9924 (A,aa)	NR-RZM N024 (galls) (A aa)			KAM PSIZ		RZM 9930-35A	Aa po	Inc. N065-9 (A, aa) M	NR-RZM N065H5 x N065-9	$C790-15CMS \times N065-9$	NR-RZM N065mm(g)(A,aa)	Inc. N067-#(C), N066-1(g)(A,aa)		RZM-ER-% 9818,0848,	RZM0869-#(C)aa x A, (C869) 21.3	9009n0 A RAM 0009-1-1010	8 / C comm (7) CV8	042 (C) mmaa x A	0841HOmm x 842(C)
Variety		Multigerm,	7025	2023	2125	CR011	CR111	1942	01-FC1030	1933	1932		721X A17		1111 1111	ZTTN	1930-19	1930-35A	Monogerm, S ^f ,	N165-9M	N165-9HO	N165-9H50	N165	N1 67M		1848M	1869 1960HO	00000	1840	1042	1842HO (A)

TEST 202. EVALUATION OF BREEDING LINES AND POPULATIONS FOR NONBOLTING, SALINAS, CA, 2001-2002

	Mean			•			5.9	6.3		4.0	•	4.9	7	•	•	1.0	2.0		•	•	6.1		•	3.7		•		5.0		•
Mildew	8/23				, ,		7.3	7.0			6.0	6.0		•		2.3			5.3	•	•		•	5.0		•	•	6.3	•	•
Powdery	8/08		•				6.3	7.3		•	5.0	5.0	4	•	•	2.3			4 · O		•		2.0	4.3		•	•	5.0	•	•
H	7/25		•	3.7	•		•	4.7		•	2.7	3.7	2.7			1.0	•		n ص	•	•		•	1.7		•	•	3.7	•	•
Root Rot	oke		10.5	4.5	•	6.3	•	3.1	•	•	0.0	•	5.6	3.7		10.8	•		ე ე	•	•		1.8	2.8		•	•	0.0	•	•
iey dew	5/23		•	0.3	•	•	•	0.0	•	•	2.7	•	•			0.3	•		D. T	•	•		٠	1.7		•	•	1.3	•	•
Downey Mildew	4/05		0.7		•	•	3.3	2.7	4.0	•	3.7	•	6.3			0.7	•		O.	٠	•		4.0	•		4.7	•	4.0	•	•
Emerg	Score		7	m	ო	ო	7	ო	7	m	7	2	2	8	m	ന	2	Ó	יו	m	7		7	ന		4	ო	ന	ო	m
	9/04			16.4	ന	⊣	4.6		•	•	19.0	•	6.9			0.0	•		J. V	•	'n		35.5	•		Э.	8	23.3	3	ж Э
Bolting	8/05		21.7	16.4	•	9.5	•	42.6	•	•	14.3	•	3.4	•	•	0.0	•		v.	24.1	27.3		33.9	•		o.	4.	20.0	ω.	4.
o ₄₀	6/29			0.6				24.8	21.1	0.0	0.9	1.6	0.0			0.0	•		0	5.5			ω. Β	•		6.7		8.3		
Stand Count	No.	(cont.)	25.0	22.0	21.7	21.0	27.7	24.3	22.7	24.7	9833-5 28.0	26.3	28.0	28.3	23.3	25.3	24.0	C				, ω,		0-15) 25.3		15.7	22.7	20.0	21.3	26.0
Description		Aa populations & lines,	835 (C) mmaa x A	0835HOmm x 835(C)	836(C) mmaa x A	FC123(C) mmaa x A	0833-5HO x FC123(C)	00-FC1014mmaa x A	0833-5HO x FC1014	RZM 9833-5 (T-O) mmA	RZM 9833-5 (T-O) HO x	$C790-15CMS \times 9833-5$	RZM 0833-5(Sp) (A,aa)	Inc. 0833-5(Sp) (A, aa)	Inc. 8833-5-8(A,aa)	Inc. 8833-5-11 (A, aa)	Inc. 8835-11 (A, aa)			Inc. 8835-26 (A, aa)		mm,OT,NB from Biancardi		Inc. F92-790-15, (C790-15)	n hybrids	Inc. Y090	CR011aa x Y090	×	Z025aa x Y090	×
Variety		germ,S ^f		1835HO	1836	01-FC123	01-FC123H5	01-FC1014	01-FC1014H5	0833-5A(Sp)	0833-5HO (Sp)	A 0833-5H50	73 1833-5 (Iso)	1833-5	1833-5-8	1833-5-11	1835-11	1006	1037-11H3	1835-26	വ	OT-33		00-790-15	E, population hybrids	X190	Y190H11	Y190H41	X190H25	X190H31

EVALUATION OF BREEDING LINES AND POPULATIONS FOR NONBOLTING, SALINAS, CA, 2001-2002 TEST 202.

(cont.)

	Mean	5.3 1.0 11.4 11.1**
Mildew	8/23	6.2 1.2 11.6 8.5**
Powdery Mildew	80/8	-
	7/25	2.4 4.0 5.8 1.2 48.9 19.5 2.3** 7.4**
Root	%]	2.4 5.8 48.9 2.3*
ley lew	5/23	2.8 6.2 2.1 2.4 4.0 0.8 6.2 2.6 5.8 1.2 17.0 62.6 77.2 148.9 19.5 2.8** 2.5** 2.5** 2.3** 7.4**
Downey Mildew	4/05	6.2 62.6
Emerg	Score	2.8 0.8 17.0 2.8**
	9/04	26.1 28.6 14.9 14.2 35.5 30.9 17.7** 20.9**
Bolting	8/02	
ф	6/28	3.8 15.2 4.3 13.7 11.1 56.0 3.4** 14.7**
Stand	No.	23.8 4.3 11.1 3.4**
Description		
Variaty	7	Mean LSD (.05) C.V. (%) F value

TEST 302. EVALUATION OF SELECTED PROGENY LINES FOR NONBOLTING, SALINAS, CA, 2001-2002

40 entries x 3 reps., sequential 1-row plots, 17.5 ft. long

Planted: November 7, 2001 Not harvested for yield

26.3
28.0
24.7
25.0
24.7
26.0
23.0
26.3
25.7
24.0
24.7
21.7
18.7
21.7
25.7
24.7
23.0
26.0
25.0
27.0
25.3

TEST 302. EVALUATION OF SELECTED PROGENY LINES FOR NONBOLTING, SALINAS, CA, 2001-2002

Variety		Description	Stand	%	Bolting		Emerq	Downey Mildew	∑i Me	Root	Powd	Powdery Mildew	dew
			No.	6/28	8/02	9/04	Score	4/05	5/23	o,e	8/08	8/23	Mean
FS	progeny	lines											
R178-5	Inc.	R978-5	26.3	0.0	2.7	4.2	ო	7.6	2.0	1.2	5.3	5.3	•
R178-6	Inc.	R978-6	27.0	0.0	1.1	1.1	7	4.0	2.0	0.0	5.3	5.7	•
R178-11	Inc.	R978-11	25.7	1.2	5.1	5.1	7	6.9	0.3	0.0	•	5.3	5.2
R180-11	Inc.	R980-11	20.3	0.0	0.0	0.0	ო	3.7	2.7	0.0	5.7	7.3	6.5
R180-16	Inc.	R980-16		0.0	0.0	0.0	m	4.3	•	•	7.7	7.7	7.7
R180-21	Inc.	R980-21	24.0	•	1.3	1.3	m	2.0	2.0	0.0	6.3	6.7	•
Y168-8	Inc.	Т968-8	•	0.0	•	•	٣	5.0	•	•	•	•	•
Y168-13	Inc.	Y968-13	22.7	7.4	18.3	23.9	ო		•	1.3	4.0	5.0	4.5
≯ Y168−16	Inc.	Y968-16	23.3	4.3	15.7	•	m	2.7	•	1.3	4.3	•	4.8
7X167-5	Inc.	X967-5	26.0	•	5.5	5.5	8	4.0	2.7	0.0	4.7	5.0	4.8
¥172-1	Inc.	Y972-1	28.0	1.2	•	•	7	14.7	•	2.4	5.3	•	5.5
Y172-5	Inc.	Y972-5	•	•	4.0	4.0	e		•	6.1	5.3	6.3	5.8
X172-7	Inc.	X972-7	20.7	0.0	1.4	1.4	ო	6.3	2.0	7.1	5.3	•	5.7
X175-13	Inc.	Y975-13	•	14.1	34.9	37.4	ო		•	0.0	4.7	5.7	5.2
R181-22	Inc.	7	•	0.0	0.0	0.0	e	4.3	2.0	0.0	4.7	5.3	•
R176-89-5	RZM F	R076-89-5		3.3	16.2	21.2	m	1.7		0.0	•	4.7	4.0
R176-89-5-4	Inc.	R976-89-5-4	27.3	•	2.5	3.6	m	0.3	0.3	•	3.3	4.0	•
9	Inc.	R976-89-5NB-4	7.	•	ö	5.	7	•	•	0.0	•	4.7	4.2
R176-89-5-13	Inc.	R976-89-5-13	4.	5.6	21.8	26.6	ю	1.3	•	•	5.3	6.0	•
Mean			24.7	8.3	15.8	17.6	2.8	6.1	2.4	2.1	4.9	5.4	•
LSD (.05)			4.1		•	12.6	8.0		3.0	4.9	1.4	1.4	1.1
C.V. (%)			10.1	62.6	46.2	44.1	17.4	72.0	78.5 1	144.1	17.2	15.6	13.7
F value			2.5**	24.7**	24.0**	23.2**	2.2**	2.6**	3.2**	4.0**	7.8**	**9 .9	**6.6

40 entries x 3 reps., sequential 1-row plots, 17.5 ft. long

2001	ש
	yield
November	for
Nove	sted
Planted:	harvested
Plan	Not

Variety	Description	Stand	æ	Bolting		F.	Downey Mildew	ey ev	Root	Dowood	Dowdery Mildew	Ď Š
		S		8/05	9/04	Score	4/05	5/23	e l	8/08	8/23	Mean
Checks Monohikari	Seedex, L7383, 3-1-00	28.7	•	•		8	3.0	2.0	2.5	•	•	•
0930-19H50	C790-15CMS x 8930-19	27.0	2.4	9.7	12.1	m	3.0	0.7	•	5.3	0.9	5.7
nd	line increases											
1930-35H50	x RZM 9930-	20.7	0.0	11.4	17.6	m	1.7	0.3	0.0	4.7	5.7	5.2
1929-62H50	C790-15CMS x RZM 9929-62	23.0	0.0	2.5	8.3	m	э. Э	0.3	0.0	5.3	6.0	5.7
1927-4H50	C790-15CMS x RZM 9927-4	26.0	10.4	24.8	33.9	m	2.0	0.3	2.6	6.7	7.7	7.2
1929-4H50	C790-15CMS x RZM 9929-4	20.3			8	m	•	•	•		5.7	
1924-2H50	x RZM 9924-	23.7	4.2	11.2	11.2	m	э°.	1.7	0.0	5.3	5.7	5.5
1930-19H50	x NB 8930-1	25.7	0.0	•	2.6	7	•	•	•	•	0.9	•
Z025-9H50	C790-15CMS x Z825-9	26.0	•		23.1	8	0.0	0.7	•	5.7	6.0	5.8
0929-112H50	×	27.7	7.3	9	6	01		•	•		7.3	•
0929-114H50	$C790-15CMS \times 8929-114$	27.0	0.9	20.8	•	0	2.3	0.7	2.5	5.0	5.7	5.3
CR009-1H50	C790-15CMS x CR909-1	26.0	24.5	ю	50.1	8		•	•		•	•
Hybrids with S ₁	progeny lines											
CR110-14-2H50	x CR910-	9	•	4.7	4.7	8	1.3	•	•	5.7	•	0.9
CR110-5H50	x CR910-	9		ъ.	72.0	6	6.7	1.7	1.3	7.0	7.3	7.2
112-	$90-15$ CMS \times CR81	25.0	17.8	56.5	9.09	7	•	2.3	•	٠	8.3	•
Z131-14H50	_	24.0	0.0	4.1	4.1	7	6.3	•	•	5.7	6.3	0.9
Z131-18H50	C790-15CMS x Z931-18	23.3	0.0	6.9	8.3	т	4.0	•	1.3	5.3	5.7	5.5
1935-6H50	$C790-15CMS \times 9935-6$	25.0	1.4	•	8.0	ო	10.3	1.3	0.0	5.3	0.9	5.7
1936-14H50	$C790-15CMS \times 9936-14$	5	0.0	1.3	•	ო	2.7	•	0.0	5.7	•	5.8
1931-56H5O	C790-15CMS x 9931-56	26.3	0.0	•	o. o	7	•	0.0	0.0	5.0	5.3	5.2
1931-201H50	$C790-15CMS \times 9931-201$	29.3	1.1	3.4	3.4	8	5.0	1.0	0.0	5.3	6.0	5.7

TEST 402. EVALUATION OF HYBRIDS WITH SELECTED PROGENY LINES FOR NONBOLTING, SALINAS, CA, 2001-2002

Variety	Description	Stand	ж	Bolting		Emerg	Downey Mildew	леу Зем	Root	Powde	Powdery Mildew	dew
		No.	6/28	8/02	9/04	Score	4/05	5/23	o/e	8/08	8/23	Mean
Hybrids with FS												
R178-5H50	×	26.0	0.0	•	•	7	5.3	1.0	1.2	5.7		0.9
R178-6H50	×	25.7	٠	2.8	4.1	m	2.7	•	0.0	•	7.3	•
R178-11H50	C790-15CMS x R978-11	28.3	1.1	7.0	8.1	н	2.0	0.0	0.0	5.7	5.7	5.7
R180-11H50	C790-15CMS x R980-11	27.0	0.0	•	•	8	0.3	0.3	0.0	5.3	6.0	5.7
R180-16H50	$C790-15CMS \times R980-16$		1.4	•	•	Ø	1.7	•		•		
R180-21H50	C790-15CMS x R980-21	27.0	1.1	1.1	1.1	ო	1.0	0.7	0.0	5.7	6.7	
Y168-8H50	C790-15CMS x Y968-8	24.7	•	•	•	ო	2.3	•	2.8	5.0	•	
Y168-13H50	C790-15CMS x Y968-13	25.3	5.3	18.6	22.6	ო	1.7	0.3	1.4	5.3	5.7	5.5
Y 168-16H50	$C790-15CMS \times Y968-16$		4.6	10.8	17.9	13	4.7	1.3	0.0	•	6.3	5.8
77 TA 54 P	C790-15CMS x Y967-5	24.3	4.2	5.5	5.5	ო	1.7	0.7	0.0	4.7	5.7	5.2
X172-1H50	C790-15CMS x Y972-1	26.3	0.0	•	•	7	5.3	1.7	1.2	0.9	7.0	6.5
Y172-5H50	C790-15CMS x Y972-5	26.0	9.6	10.7	14.5	2	3.0	0.3	0.0	5.7	6.3	6.0
X172-7H50	C790-15CMS x Y972-7	27.0	0.0	0.0	0.0	7	2.3	1.0	6.6	5.3	•	•
X175-13H50	C790-15CMS x Y975-13	27.3	3.7	17.2	20.9	ന	6.3	3.3	0.0	4.7	6.0	5.3
R181-22H50	C790-15CMS x R981-22	25.3		1.3	2.7	ო	2.3	0.7	0.0	5.0	5.3	5.2
R176-89-5H50	C790-15CMSxRZM R076-89-5	26.7	3.6	13.3	16.0	2	0.7	0.3	0.0	5.0	5.7	5.3
R176-89-5-4H50	C790-15CMSxR976-89-5-4	27.0	0.0	1.2	6.2	ო	0.0	0.0	0.0	5.3	6.3	•
R176-89-5NB-4H50	0.0											
	C790-15CMSxR976-89-5NB-4	26.0	0.0	5.1	0.6	ന	1.0	0.0	0.0	4.0	5.3	4.7
R176-89-5-13H50	C790-15CMSxR976-89-5-13	25.0	0.0	0.0	0.0	7	1.3	0.0	1.4	6.0	6.7	6.3
Mean		25.8	5.9	13.5	16.0	2.9	3.1	6.0	1.0	5.6	6.3	5.9
LSD (.05)		3.5	8.0	10.0	10.7	5.2	4.7	1.9	3.1	1.2	6.0	•
C.V. (%)		8.4	82.9	45.3	41.2	112.3	94.0	134.6 1	188.2	•	8.7	8.5
F value		2.2**	23.2**	28.3**	27.3**	1.1NS	1.9*	1.2NS	2.7**	2.6**	5.5**	5.6**

TEST 6902. EVALUATION OF PLANT INTRODUCTIONS (PI's), SALINAS, CA, 2002

Planted: April 22, 2002 Harvested: October 28, 2002

48 entries x 4 reps., sequential 1-row plots, 11 ft. long

		as	Yield		End	Stand	Harv.	Beets/	Root					Rhizomania	nania	
Variety	Description	Sugar	Beets	Sucrose	Use	Count	Count	100'	Rot	Bolting	ing	RJAP	PM	81		Visual
		Ips	Tons	æ∣	Code	80 	No.	No.	%	æI	Code	%	10/5	DI	&R(0-4)	Foliar
Checks																
US H11		6448	20.78	15.48	2	18	15	159	8.0	0.0	7	85.4	7.5	4.5	43.8	e
K039	Inc. R539, (C39R)	11724	33.41	17.58	വ	17	15	152	σ		7	4	4.5		æ	1
01-C37	susc. ck., Inc. U86-C37	8229	24.21	17.00	വ	17	15	150	13.2		2	7	8.3	3.5	75.7	m
R136	RZM-ER-% R936, (C79-8)	10750	31.13	17.27	വ	19	18	170	2.9		7	m	8.5		7	п
X167	RZM-ER-% Y967 (C67/2)	12201	33.36	18.38	5	17	16	152	7.1		m	84.7	4.3	0		-
X175	RZM Y075	12155	35.22	17.23	Ŋ	17	16	152	1.7		. ~	. 4	00	0		۰.
01-SP22-0	susc.ck., Inc.00-SP22-0	5809	17.82	16.30	ഹ	18	13	164	25.0	0.0	1 (2)	85.4	. 8	4.1	46.4	ı m
R021	RZM R926, R927, (C26, C27)	10386	30.98	16.83	S	17	14	155	18.6		7	m	7.5	3.0	8	п
Beta 4776R	2/5/02	12254	36.71		Ŋ	17	15	157	14.7		2	86.1	5.0	3.0	100.0	
Beta 6600	susc. ck., 2/5/02	11361	30.25	18.77	Ŋ	18	13	161	S		. 6		8	2 8	50.3	ım
Angelina		12990	34.27	18.92	Ŋ	18	16	159	6.9	0.0	1 0	86.8	0.6	6.6	100.0	۱ ۲
Monohikari	susc. ck., 4/5/02	8226	24.40	16.85	2	18	15	161	10.9		2	87.2	7.0	3.8	66.4	m
A)					1	!	!	,								
13-W-7	susc. ck., 3/21/02	8422	23.71	•	വ	17	13	152			7		5.8	ж Ж	9. 79	m
6 Dorotea	2/21/02	12096	34.46	17.55	വ	16	16	145	9.6	0.0	7	87.9	0.9	3.4	90.3	1
Monodoro	3/21/02	11298	32.79		വ	18	14	159			2		5.0	3.5	83.7	m
Beta 4001R	9/25/01	16168	44.98	17.95	വ	16	15	145	4.4		7		4.0	5.6	2.96	-1
Plant Introductions	ductions															
				,												
	Wild Le	0		0.00	9	თ	m	82	7		-	0	1.3			m
	IDBBNR	2666		17.98	വ	17	14	150	16.5	0.0	7	85.3	5.3	4.2	46.6	m
	IDBBNR	4624		15.23	വ	14	11	130	œ		2	വ	м			m
PI 518645	SD IDBBNR 9605	6584	22.31	14.77	വ	11	10	100	4.2		7	85.3	4.5		39.1	m
PI 546504	SD TURKESTANSKAJA	473	2.35	10.13	9	11	O	100	8	65.5	-		5.3	3.4	4	+
PI 611060	SD Swiss chard	5323	20.79	12.80	9	15	Ŋ	136	57.7	81.6	1	0.67	4.8	3.8	65.0	m
PI 614824	SD Jaltuskovskaja 116	4969	16.75		S	16	14	141	6.4		2			4.1		m
PT 614828		5211	14 32	18 17	Ľ	16	14	141	α α	0	0	ď	4	7		. (*
		1170	70.		า	9	P	1 F			1	·		1		า
Beta macrocarpa		1	,			,	,				,			,		
PI 540557	SD WB 820	520	2.20	11.80	9	11	o o	92	38.2	88.2		65.6	4. 5.	3.1	6.96	m
Beta vulgar PI 504269	Beta vulgaris subsp maritima PI 504269 SD Wild beet	383	2.51	7 60	Ç	7	1,	148	28.3	74.6	-	65.7	יר	0	بر د	r
PT 504277	Sh Wild beet	1910		00.81	,) (r	12	120	22.1	7 88	۰,	α α	ο α		0 0 0) (*
	SD Wild beet	298	2.28	6.68	ာဖ	14	10	123	27.9	95.9		67.3	. e. • e.	υ ω 5. 4.	82.5	n m

TEST 6902. EVALUATION OF PLANT INTRODUCTIONS (PI'S), SALINAS, CA, 2002

Variety	Description	Acre	Yield Beets	Sucrose	End Use	Stand	Harv. Count	Beets/	Root	Bol	Bolting	RJAP	PM	Rhiz Resi	Rhizomania Resistance	Visual
		Lbs	Tons	o≯	Code	N	S	No.	or	or I	Code	or∣	10/5	DI	&R (0-4)	Foliar
Beta vulgaris	subsp mar															
PI 518331	IDBBNR	1980	7.54	13.07	9	13	12	114	11.3	86.8	7	66.3	3.3	2.8	100.0	1
	IDE	4189	14.04	12.30	9	11	10	100		32.3	н	67.5	3.5	3.1	92.5	Н
	SD WB 824	529	2.38	11.13	9	13	œ	118	15.4	73.0	1	56.3	4.5	3.2	92.5	ო
PI 540609	SD WB 863	1336	5.68	12.23	9	14	13	130	12.5	65.8	н	61.9	5.8	3.0	97.9	1
PI 540613	SD WB 867	1853	7.04	12.98	9	15	14	139	1.8	75.9	-	64.9	4.3	3,0	100.0	-
PI 540615	SD WB 869	1767	6.60	13.07	9	15	13	132	13.9	п	-	72.3	9.0		98.4	
	SD WB 899	2062	90.8	12.68	9	15	15	136	(*)	63.5	-	59.3	3,0	3.2	93.0	
PI 540647	SD WB 901	1840	6.58	13.80	9	15	14	136	1.9	9.87	-	61.1	4.3	2.7	97.9	ı त
	WB	1641	5.87	14.20	9	15	12	134	8.3	81.7	н	68.5	5.5	3.0	100.0	п
PI 540652	ΜB	1581	5.80	ന	9	12	თ	105	18.4	40.0	н	58.9	4.3	2.9	100.0	н
	ΜB	1618	6.81	11.88	9	16	16	143	3.1	77.9	-		8.9		90.3	н
PI 540661	SD WB 915	4712	14.00	15.48	9	16	15	141	0.0	62.6	н	75.3	5.3	2.9	98.3	п
A18 0 PI 540665	SD WB 919	1880	7.43	12.52	ø	15	13	136	1.7	28.8	1	61.6	5.5	3.3	91.3	7
Beta vulgar.	Beta vulgaris subsp. vulgaris															
PI 535828	SD ALMAMONO	10320	36.84	14.10	Ŋ	6	O	80	6.3	0.0	7	86.4	6.3	4.2	48.0	m
PI 535830	SD POLY PAST	5351	17.31	14.95	വ	7	9	61	14.3	0.0	7		5.0	5.1	25.5	m
PI 535831	SD TYTAN POLY	4463	34.89	6.80	4	12	7	109	7.7	0.0	7	74.9	6.3	4.6	41.8	e
PI 590695	SD IDBBNR 4360	6611	20.79	15.70	7	15	14	134	0.0	0.0	7	82.4	6.0	•	65.6	М
PI 614825	SD AT3984A	5923	16.95	17.42	വ	15	12	134	8.7	0.0	7	85.1	4.0	3.9	62.1	m
Checks 01-US75	susc.ck., Inc. 00-US75	8364	26.20	0	ហ	16	15	148		c	0	α α	α	~		~
x190		12806	35.27	00	വ	13	12	118	2.1	0.0	1 70	83.8	5.5	2.9	100.0	n -1
Mean		5985.5	18.64	14.53		14.7	12.4	133.5		29.1		75.7	5.2	3.4	79.3	
LSD (.05)		2274.5	98.9	1.83		2.5	4.4	22.5	19.	12.0		7.8	1.5	0.7	24.1	
(°, (°) ' ∧. '		27.2	26.34			12.1	25	12.1	109.	29.5			20.9	14.9	21.7	
F value		29.7	29.7**25.71**			9.2*	** 4.0**	* 9.2	*	5**72.9**	*	30.1*	-	* 5.3	* 6.6*	*

TEST 6902. EVALUATION OF PLANT INTRODUCTIONS (PI's), SALINAS, CA, 2002

(cont.)

ania	ance Visual	R(0-4) Foliar
Rhizom	Resistance	DI &R
	PM	10/5
	RJAP	oP I
	Bolting	& Code
Root	Rot	₩
ts/	1001	No.
Harv. Bee	Count	No.
Stand	Count	No.
End	Use	Code
	Sucrose	or I
Yield	Beets	Tons
Acre	Sugar	Lbs
	Description	
	Variety	

% bolting based upon counts where % bolting = 100(number bolter/stand count); code = 1 (B_, 100% annual); 2 = bb, 0% biennial; 3 = mixed. Bolting:

1=chard; 2=DDR-like; 3=DDR,chard,spinach; 4=fodder; 5=sugar; 6=wild beet type; 7=mixed. End use:

scored on a scale of 0 to 9, where 9 = highly susceptible. Powdery mildew:

Rhizomania: DI (disease index) based upon scoring individual roots on scale of 0 to 9, where 0 = no visual symptoms, 5 = moderate rhizomania, 7 = severe, 9 = dead due to rhizomania. %R (0-4)(%resistant) based upon assigning ratings of 0-4 as resistant and 5-9 as susceptible. Visual foliar based upon apparent rhizomania reaction by color of foliage where yellowish = susceptible and greenish = resistant; 1 = resistant; 2 *segregating; 3 = susceptible (yellowish). Solution

Note: Rhizomania caused significant effects in this test but tap and main roots did not develop intense bearding. apparent escapes Thus, high level of Most bearding occurred on smaller lateral roots where scoring is difficult. occurred Primarily due to Sclerotium rolfsii. Rotted roots were counted and weighed at harvest but not included in sugar sample Root Rot:

Raw juice apparent purity where RJAP = 100(%S/%soluble solids) RJAP:

		Test 360)2 (VY)		T	est 502 (1	NB)
	Sugar			Powdery	8	Downey	Powdery
Variety	Yield	Sucrose	RJAP	Mildew	Bolting	Mildew	Mildew
	Lbs	8	8	Score	9/04	4/05	Mean
Checks							
R176-89-5	17519	16.80	84.1	2.7	28.8	1.7	3.7
Y190	15888	16.60	83.7	3.0	32.4	5.0	4.9
Y090	18858	17.93	84.6	4.0	17.4	4.0	5.3
Y191-# = RZM Y969	(PX)						
Y190 - 1	18539	17.67	82.9	4.3	0.0	5.0	5.1
- 2	19468	17.57	86.0	2.7	55.9	5.0	4.3
- 3	19542	17.57	84.9	5.3	9.6	4.0	6.1
- 4	20581	17.90	84.8	5.3	31.9	0.7	6.1
- 5	16250	17.00	81.6	6.0	52.4	2.3	7.3
- 6	16997	18.00	82.8	4.3	2.4	7.0	6.1
- 7	16773	17.70	82.4	4.0	25.6	3.3	5.6
- 8	18782	17.40	84.9	4.3	15.3	5.7	5.0
- 9	18681	16.60	82.6	6.3	8.8	3.0	5.4
-10	17917	17.57	85.7	4.0	6.5	1.7	4.2
-11	16719	16.40	84.0	3.3	25.1	10.7	4.9
-12	18684	16.63	85.2	3.0	0.0	4.3	4.9
-13	19632	17.73	88.5	5.7	2.0	2.7	6.8
-14	16497	17.43	84.2	5.0	10.2	0.3	5.6
-15	18626	17.00	84.9	5.3	2.8	0.7	5.7
-16	18151	16.77	85.8	4.3	43.2	2.3	5.2
-17	16333	17.57	85.2	5.7	4.8	3.0	6.4
-18	18538	17.10	83.8	4.0	0.0	4.3	3.9
-19	20977	17.23	84.0	5.3	0.0	1.7	5.3
-20	19224	17.30	84.0	5.0	25.8	3.0	6.3
-21	16107	17.53	84.6	4.3	23.3	1.0	5.6
-22	16619	17.47	84.8	3.0	10.7	3.7	4.7
-23	16654	16.80	83.9	5.0	0.0	3.7	5.9
-24	16870	17.83	85.5	5.3	4.4	2.7	6.2
-25	17239	17.67	86.7	4.0	0.0	4.7	6.9
-26	16580	17.47	83.0	1.7	3.3	4.3	4.4
-27	17239	16.10	82.6	3.0	23.3	3.7	5.9
-28	18022	17.27	84.9	6.0	0.0	2.3	7.4
-29	16767	17.80	84.7	3.7	2.8	6.7	4.3
-30	18145	17.30	83.6	4.0	3.3	6.7	6.6
-31	15946	16.03	82.7	4.7	51.4	5.7	5.9
-32	14648	16.00	83.7	3.3	8.3	6.7	3.3

EVALUATION OF PAIRCROSSES (FULL SIBS) OF Y90, SALINAS, CA, 2002

(cont.)

		Test 360	02 (VY)		T	est 502 (1	NB)
	Sugar			Powdery	8	Downey	Powdery
Variety	Yield	Sucrose	RJAP	Mildew	Bolting	Mildew	Mildew
	Lbs	8	8	Score	9/04	4/05	Mean
Y191-# = RZM Y96	9 (PX)						
Y190 -33	17035	16.33	85.7	4.3	25.8	2 0	F 0
-34	19006	18.13	88.2	3.3	18.5	2.0 6.0	5.0 5.2
-35	16728	18.07	84.8	2.7	40.2	2.0	
-36	17060	17.63	86.2	6.0	31.0	2.3	5.1
-37	18359	17.67	85.7	3.7	3.0	1.0	6.9
-38	18358	16.90	82.8	6.0	14.4	4.0	6.0 7.4
-39	19008	17.00	86.0	4.3	26.9	5.3	5.4
-40	19310	18.03	83.8	4.3	0.0	1.3	5.2
-41	15529	17.30	81.6	3.7	0.0	1.7	5.7
-42	16080	18.13	82.9	2.3	10.2	2.0	5.0
-43	17850	18.07	86.5	0.7	0.0	2.3	2.6
-44	15010	16.23	84.3	0.7	2.1	5.7	4.1
-63	17180	18.17	83.7	4.3	11.2	2.0	6.2
-64	18193	17.00	85.9	5.0	2.0	1.7	6.4
-65	19009	17.97	87.8	4.0	21.8	1.0	6.0
-66	19845	17.67	83.2	4.3	45.1	2.3	5.7
-67	17104	17.10	82.2	3.3	16.6	3.7	4.3
-68	18142	17.93	83.0	4.0	0.0	3.0	5.4
-69	16554	17.90	82.0	2.3	2.2	1.7	4.7
-70	15803	16.80	81.5	4.3	0.0	7.0	6.1
-71	15409	17.00	81.3	4.0	11.1	2.3	5.1
-72	17858	17.93	85.4	6.0	12.6	1.0	6.3
-73	18137	17.87	83.6	6.0	15.0	1.0	7.0
-74	17736	17.03	86.0	2.7	22.3	2.3	5.2
-75	18453	17.50	83.6	5.3	0.0	0.7	5.3
-76	17409	17.30	87.4	4.3	4.3	4.0	5.2
-77	16879	17.87	82.6	4.7	22.5	1.0	6.3
-78	16842	17.40	83.6	3.3	56.1	0.7	5.7
-79	16037	17.53	86.5	4.3	0.0	3.0	6.6
-80	17744	17.20	85.8	1.7	0.0	2.3	4.2
-81	18378	17.00	84.4	5.0	0.0	1.7	5.6
-82	15740	16.33	80.7	4.3	6.1	1.3	5.4
-83	18354	18.40	84.7	2.7	12.6	0.7	4.8
-84	19222	16.90	85.4	4.7	2.0	2.0	4.3
-85	19217	17.43	83.2	4.7	2.8	3.7	5.4
-86	18520	16.83	85.6	4.3	13.6	2.0	5.4

EVALUATION OF PAIRCROSSES (FULL SIBS) OF Y90, SALINAS, CA, 2002

		Test 360	2 (VY)		Te	est 502 (1	NB)
	Sugar			Powdery	8	Downey	Powdery
Variety	Yield	Sucrose	RJAP	Mildew	Bolting	Mildew	Mildew
	Lbs	8	<u>*</u>	Score	9/04	4/05	Mean
Y190 - 87	17297	16.67	86.1	5.7	12.9	5.0	5.0
- 88	17784	16.77	83.2	6.0	0.0	3.7	4.7
- 89	16543	14.83	82.2	3.3	24.5	7.7	4.4
- 90	19805	16.77	85.7	5.0	0.0	2.0	5.0
- 91	19564	16.43	84.8	4.3	4.4	4.3	5.1
- 92	15279	17.00	83.4	3.0	9.9	3.7	4.1
- 93	19178	17.27	83.8	3.0	14.3	1.7	5.1
- 94	18349	16.43	85.6	3.0	2.8	4.0	4.3
- 95	17661	17.37	84.9	0.7	2.1	7.3	3.4
- 96	19553	16.77	84.8	3.0	0.0	5.3	4.0
- 97	17620	17.17	83.4	4.7	64.8	3.3	6.8
- 98	21033	17.87	86.5	2.0	0.0	2.7	3.4
- 99	19375	16.73	84.8	0.7	56.5	2.0	2.3
-100	16658	17.60	84.6	4.0	74.8	1.0	4.6
-101	17561	17.47	85.2	3.3	33.7	2.0	5.0
-102	17326	16.53	84.1	2.7	16.2	2.3	5.1
-103	14051	16.97	85.0	4.3	37.8	2.7	5.8
-104	20290	17.90	84.8	3.7	14.1	0.3	4.8
-105	19746	17.17	84.7	3.7	6.7	1.7	5.3
-106	19130	16.63	82.8	3.7	34.4	4.0	4.3
-107	15732	17.33	81.9	3.7	3.0	2.3	4.2
-108	18494	17.83	83.5	4.7	16.9	6.3	5.2
-109	18770	17.07	84.9	2.7	33.2	4.3	4.8
-110	18082	17.07	83.0	4.7	12.3	5.0	6.2
Mean	17749.7	17.26	84.3	4.0	16.2	3.3	5.3
LSD (.05)	3269.7	1.15	3.6	1.8	14.5	3.8	1.0
C.V. (%)	11.4	4.15	2.7	27.6	55.5	71.6	11.7
F value	1.5*	2.22**	1.4*	4.3**	13.4**	2.2**	7.7**

اي	_	141	თ		œ	4	9	7	7	7	4	-	80	o	7	6	o	80	0	7	4	Н	7	80	œ
(NB)	r PM	Mean	4.		IJ.	ъ.	4.	9		5.			•	4		4	4.	•	9	9	•	9	5.	•	ω.
602/1002	Rot	o%	5.1		0.0	5.0	4.0			2.5		3.2	•	•	6.2	6.3		3.7	•	4.2	•	7.0	3.8	4.7	4.7
i i	DM	4/3	3.7		•	7.3	•	6.7		3.3	4.7		6.3	•	7.7		5.7	5.3	•	6.3	4.0	9.7	5.3	6.3	•
Tests	* Bolt	9/4	32.0		27.9	4	11.4	42.5	16.2	0	œ	35.8		6.7	0.0	0.0	34.5	6.99	•	30.0	15.3	2.4	31.1	4	2.4
(p)	PM	9/23	4.3		•	2.7		5.7	4.7	5.7	3.0		4.0	3.7	5.3	э. Э	•	2.7	•	5.3	3.0	3.3	•	2.3	•
2 (Yield)	RJAP	∂ ₽	85.1		5	84.0	÷.	•	82.5	•	4	85.1	4.	84.0		•	84.4	82.4	81.5	81.1	82.7	82.8	83.7	85.3	4.
3702/4202	Sucrose	o∤e	16.87		7.3	•	5.6	7.1	16.20	6.9	5.8	16.13	6.6	15.77	•	14.83	6.5	16.20	5.9	5	16.87	9	15.47	16.90	9
Tests	Sugar Yield	1bs/a	18292		20256	20152	19249	011	15247	683	75	17752	52	15897	18078	14699	968	16533	771	19311	16032	15655	16755	17160	804
(IV)	Appear	Score	1.5		•	1.0	•	•	1.0	•		1.5	•	3.0	2.0	•	•	4.0	4.0	•	2.5	•	•	1.5	•
B702/B1102	Sucrose	oko	15.90		7.5	16.09	7.7	7.5	17.33	6.7	16.86		16.51	17.34	9	18.76	7.5	17.52	6.8	17.70	6.9	16.98	17.64	17.27	8.2
Tests B	gar eld	1bs/a	9545		6128	11728	_	10100	8352	0	12880	12561	11254	ထ	7145	വ	10651	6475	7931	10179	7558		7912	10215	8066
	PM	Score	5.3		5.3	4.8	5.3	6.8	5.8	5.7	5.0	5.7	5.8		5.8	•	4.7	4.2	5.3	6.0	5.3	5.8	7.2	4.2	•
(RZM)	RJAP	o(•]	83.5	_1	83.7	85.0	87.1	84.4	85.8	•	86.4	85.6	ъ.	•	83.5	5	87.1	84.3	85.8	86.7	83.6	4	2	84.5	9
Test 6602 (RZM)	Sucrose	∞	16.93	602 & 3702)	17.57	17.00	17.60	•	16.27	•	17.43	17.33	17.50		16.57	•			16.80	4.	17.13	0.		17.30	•
Sugar	Yield	lbs/a	12128	(see	11574	14460	12597	12264	10772	10500	14761	13345	16192	13070	13083	10206	14190	12073	12803	12386	10865	9225	12983	13497	12003
	Variety		Check Y175	FS's from Y75	X175 - 1		ო I	1	ا 5	9	- 7	60	თ I	-10	-11	-12	-13	-14	-15	-16	-17	-18	-19	-20	-21
											4 1 0	_													

2002 EVALUATION OF PROGENIES FROM Y75, POPN-921, POPN-934

Sugar Variety Yield		m Y75 (see	-22 13178		24 10721		-26 14234	_	-28	•	0	-31		-32	from 921 (see te		2	e	7	2	9	7	8	6	
Test 6602 Sucrose	ok∘	602 & 3702)	16.13	16.93	15.70	9	16.50								tests 1002										
6602 (RZM)	o/e [_1	82.8	85.6	85.1	•	83.9								£ 4202)										
Ma	Score	_	5.7	•	5.0	6.2	0.9									_									
Tests E Sugar Yield	1		11420	8277	6507											10490	4103	6178	8794	6006	0	വ	7243	α	വ
B702/B1102 (IV)	1		16.48	7.9	5.2											5.9	8.2	6.0	16.68	5.0	6.6	5.2	16.41	6.9	7.8
02 (IV)	Score		2.0	•	•		2.0	•	•	1.5	•		•	2.0		•	•	•	4.5	•	•	•	3.5	•	•
Tests Sugar Yield	1bs/a		20117	21127	19578	908	17649	755	7	19917	7	079)	14346											
3702/4202 (Yield) Sucrose RJAP PM	o o		15.77		6.2	9	15.87	5	Ŋ.	15.67	9	σ v	•	15.23											
)2 (Yie.	1		84.5	•	•		83.6	•	•	84.4	•	84 7		81.8											
	mI		. 7	4.0	.7	0.	5.0	.		3.3			•	4.3											
Tests 602/1002 % Roo Bolt DM Rot	9/4		7.1	22.8	9	7.	26.9		•	37.9	0	4	•	30.2											
602/10 DM	4/3		5.0	ო.	ო.	.7	5.0	0.	.7	1.7	0.	7		2.3											
002 (NB) Root Rot PM	ΣΙ		4.0 5	ა.	.2		4.0 6		1.8 5	1.5 4	•	c		0.0											
<u>6</u> 2	I		ო.	ω.	9.	ω.	ო.	ω.	4.	4.	ო.	α		0.											

(NB)	Mean	2.44 R 4.0.6 C		3.6 7.4 6.1 7.0	2.8 3.4 5.0 5.0	4.9	7.6 4.4 5.3	6.7
602/1002 Root		0.000		0.000	0000	0.0	0000	0.0
I	4/3	8.00 C		1.7 2.7 2.7 4.0	6.7 2.7 3.3	4.7	5.3 3.0 1.0	3.0
Tests % Rolt	9/4	67.3 5.6 73.7		84.1 81.7 100.0 49.0	0.0 44.6 88.1 49.1	39.9	5.6 39.7 28.8 45.7	3.0
1d)	9/23	4 5 7 . 4 . 4 . 7 . 4 . 4 . 4 . 4 . 4 . 4 .		6. 4. 6. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	3.0	4.3	6.7 4.7 4.3	6.3 3.3
(Xield)	o⊳ I	87.5 82.9 83.7	4.60.0	83.9 81.2 81.3 82.3	82.6 84.9 80.9	79.9	87.5 83.5 80.3 83.6	81.2 83.3
3702/4202) %	16.27 17.17 17.07	5.5 6.1 6.1 7.4	15.97 16.67 15.60 16.40	15.23 14.97 15.83	15.37	16.80 16.57 16.27 18.00	17.43
Tests	lbs/a	18129 14788 18769	687 579 518 518	15245 15100 15585 15583	14135 13242 11859	15630	15371 16265 16684 17639	16597 14716
Appear	Score			. s . s	4. 4. 5. 0. 4. 0. 0. 4. 0. 0. 4. 0. 4. 0. 0. 4. 0. 0. 4. 0. 4. 0. 0. 4. 0. 0. 4. 0. 0. 4. 0. 0. 4. 0. 0. 4.	2.0	3.2.0 3.50 5.00	3.0
B702/B1102	% %					15.77	15.98 15.99 16.50	15.39 15.83
Tests Sugar Yield	1bs/a	14.)				4798	7061 8557 5450 4333	9999
Ma	Score	2) (cont 5.8 5.7 3.8				2 <u>)</u> 6.3		7.0
6602 (RZM)	o e	£ 4202) 85.6 84.1 86.5				84.6	87.2 85.0 81.7 85.5	85.1 81.4
Test 6602	o ₽	tests 1002 4 16.27 9 16.67				tests 1002 2 15.97	16.30 16.57 16.67 17.60	15.20 15.87
Sugar	<u>lbs/a</u>	(see te 13764 7969 8560				(see te 11762	10750 15037 13305 11971	10394 9232
Varietv		S ₁ 's from 921 1921 -101 -102 -103 -104	-105 -106 -107 -108	-109 -110 -111	-113 -114 -115 1921 -116	S ₁ 's from 934 1934 -101	-102 -103 -104 -105	-106 -107

2002 EVALUATION OF PROGENIES FROM Y75, POPN-921, POPN-934

		Y	Test 6602 (RZM)	(RZM)		Tests E	Tests B702/B1102 (IV))2 (IV)	Tests	3702/4202 (Yield)	2 (Yie	1d)	Tests 602/1002 (NB)	602/1	002	NB
	Varietv	Sugar	Sucrose	RJAP	Ма	Sugar Yield S	Sucrose	Appear	Sugar	Sucrose	RJAP	Md	% Bolt	DM	Root Rot	PM
1		lbs/a	%	%	Score		æ	Score	1bs/a	ole I	æI	9/23	9/4	4/3		Mean
\mathbf{S}_1	's from 934	(see	tests 1002	\$ 4202)	2) (cont	(;										
11	1934 -108				. ·	10065	17.01	3.0	17739	15.70	85.1	3.7	73.7	3.3	0.0	5.6
	-109					3427	15.38	2.5	14004	14.50	84.1	5.7	0.0	0.7	0.0	5.7
	-110				• •	10949	15.46	2.5	19496	16.37	85.6	3.0	10.4	2.7	0.0	3.6
	-111								15812	15.83	83.8	3.0	20.5	7.3	0.0	5.1
	-112								9260	16.07	80.6	4.7	0.0	5.3	0.0	4.8
	-113								17285	16.80	79.5	2.0	15.8	2.7	0.0	4.1
ы А	crosses	x C36 (C79-8)	6-8)													
] [2]	1235 - 1	14479	16.13	84.7	5.8			3.0								
	1236 - 1	9865	15.30	86.1	6.5			4.0								
12	1236 - 2	10065	15.00	86.5	6.7			4.5								
12	1236 - 3	11064	15.57	84.9	6.8			3.0								
12	1237 - 1	10148	15.83	87.5	7.0			4.5								
12	1237 - 2	10522	15.43	84.5	6.3			4.0								

	CLS	Mean	1.5	•	4.0	4.5		•	•	3.2	•			. œ	•	•	•	2.5	•	•	4.5	•	3.5	•	•	•	1.3	•
(CLS)	RJAP	o40 l	85.1	Η.	78.1	0		0	ω.	81.7	÷	ო		85.7	0	•	÷	81.6	ä	o.	6	ъ.	84.0	6	5	2	82.3	0
Test 6202 (CLS)	Sucrose	≫		5.4	11.33	6.1		14.50	4.6	14.87	4.4	5.8	, r	16.07	4.7	•	3.6	14.53	5.2	3.9	3.7	2.4	16.10	3.5	5.2	5.0	15.03	4.5
	Sugar Yield	lbs/a	92	13	9150	17		530	461	13563	236	522	487	16729	395))	145	15331	161	242	463	600	20390	125	542	457	12251	310
(B)	꾧	Mean		4.9				6.2	•	5.4	•	•		, 6. 	•	•	•	5.0	•	•	9.9	•	6.4	5.9	•	•	5.2	•
Test 702 (NB)	ΜΩ	4/3		5.7				0.9	•	6.3	•) m		•	5.7	•	6.3	•	4.7	6.3	6.3	•	•	•	6.0	•
Tes	% Bolt	9/4		48.3					9	59.1	9	ω.	7 4 7	64.6	2	•	•	71.3	•	•	8	9	76.3	7 .		Η.	14.8	9
	PM	Score	4.0	•	5.7	•		5.7	•	4.0	э. Э.	•	, cr	7.4	•	•	•	3.0	•	•	6.0	5.0	•	5.3	3.7	•	4.3	4.7
(Yield)	RJAP	æ	•	•	84.5	•		ω.	ω.	83.5	4.	•		83.1	•	•	•	82.9	•	•	თ	2	81.3	4.	•	84.5	82.4	85.4
Test 3802	Sucrose	o⁄e	16.50	•	15.37	•		ω.	ᅼ.	15.73	. 5	4.	C	16.37	6		6.1	15.63	6.8	6.1	5.6	8	16.20	0.	9	9	15.23	9
	Sugar Yield	1bs/a	13008	12382	15054	14608	H	986	917	18922	938	17988	47	. 0	α		17888	20754	17517	17470	16047	34	18975	74	92	933	85	72
	Variety		Checks CR110-14-2	CR110-5	CR112-5	CR009-1	Half-sibs of CR111	ı	1 2	ო 1	- 4	ı S	9		80 1	1	ი 1	-10	-11	-12	-13	-14		-16	-17	-18	-19	-20

EVALUATION OF HALF-SIB PROGENIES OF CR11, SALINAS, 2002

(cont.)

	CLS	Score	Mean		4.2	3.3	3.0	•	•	3,3	•	•			3.3	•	2.7	•	2.7	э. Э	•	•	4.3	•	2.3	4.5	4.7	3.2
6202 (CLS)	1	RJAP	o(0		0	80.4	т М	0	0	79.6	7.	2	0	8	81.4	4.	ω.	0	83.6	6	2	9	8.97		•	÷.	74.5	H.
Test 6202		Sucrose	&		2.1	13.63	5.8	5.0	9. 9.	15.40	3.0	6.2	3.8	4.4	11.33	5.6	4.5	3.5	15.03	5.0	5.3	2.2	13.00	4.7	6.3	3.6	12.53	5.2
	Sugar	Yield	1bs/a		92	11255	55	093	~ ~	13431	4	77	269	299	10925	592	278	287	13849	395	15683	\vdash	14	0	70	378	9836	03
(NB)	ì	PM	Mean		•	5.1	•	•		6.0		•	•	•	5.9	•		6.0	6.0	5.9	•	5.9	6.4	4.8	•	•	5.7	•
702	ž	MO	4/3		•	5.7	•	6.3	•	1.0	•	•	•	•	5.0	•	•	•	2.3	•	•	•	0.0	•	•	•	3.7	•
Test	% (OΙ	9/4		60.5	58.4	57.4	71.8	6.08	9	8	62.4	ω.	5	80.8	9		7.			9	ъ.	45.8	7.	5	ъ.	69.4	5
	à	PM	Score		5.3	4.0	•	3.0	4.3	4.3	4.7	•	•	•	5.3	•	3.3	•	4.0	3.7	4.3	5.3	4.3	4.0	•	6.0	4.0	5.0
(Yield)	, ,	KJAP	% 		84.3	80.8	o.	83.1	83.7	84.4	83.1	.	0	ъ.	82.3	4.	•	•	85.3	•	83.4	8	83.0	ω.	•	ж	83.4	4.
Test 3802		Sucrose	op		6.7	16.07	6.2	6.9	7.1	17.50	5.7	7.0	6.3	7.0	15.33	6.9	6.3	0.	9	6.2	6.6	5.9	16.20	6.3	6.8	5.7	16.47	6.0
	Sugar	Yield	1bs/a	1 (cont.)	_ 20235	17294	17071	19073	19763	9	m	79	80	6	16458	71	883	830	17124	917	19932	947	17252	961	84	948	19537	832
		Variety		sibs of CR11	П	-22	e	4	-25	-26	-27	-28	-29	-30	-31	-32	-33	-34	-35	-36	-37	-38	68-	-40	-41	-42	-43	77-

(cont.)

	CLS	Mean		3.0	2.5		•	•	3.2		•	ი ი ი u	•	•	•	•	4.7	•	2.8		3.7	•	2.7	•	3.2	•		. n . n
(CLS)	RJAP	d₽		79.3	•		-	0 K K	8	(· -	0.4.0 0.00	,		т	Η.	76.7	2		т М	79.1	0		5	81.7	0	٨	77.3
Test 6202	Sucrose	અ∘ા		3.0	15.03	13 07) <	15.50	3.8	c	Эц	17.93		14.63	5.1	5.5	12.03	5.3	4.4	5.2	12.03	3.9	4.2	2.0	15.80	4.1	7	
	Sugar	1bs/a		13897	14693	10517	200	14221		1 5074	17771	13816	01001	13372	14768	വ	8853	15058	4	12735	9490	11867	11971	4	13466	വ	11906	
(NB)	ЬМ	Mean		•	5.6																							
702	МQ	4/3		•	4.7																							
Test	% Bolt	9/4		52.6	0.09																							
	젎	Score		4.3	4.0	cr.	•	Б	•	ני	•	· ·	•	4.3	•	•	5.3	•		5.7	5.0	3.3	•	4.7	3.7	3.3		4.3
(Yield)	RJAP	o(0 		85.9	4.	~	4	85.0	9	7	. <	83.5) L	Ď.	2	ω.		4.	4	വ	82.0	4	2	2	82.3	2	מ	84.8
Test 3802	Sucrose	ok-		16.60	9	16.37	9	16.70	9	v		16.70	; ;	<u>.</u>	5.7	7.2	15.97	7.0	16.73	6.7	14.47	6.7	6.3	6.5	16.80	6.2	17.40	17.40
	Sugar Yield	1bs/a	1 (cont.)		17772	16872	17571	17501	18000	18630	18260	16230	0000	18838	_	ത	17095	<₽	18055	17225	14906	17478	ത	ဖ	16618	\vdash	4	17932
	Variety		Half-sibs of CR111		-46	CR111 -47	-48	-49	-50	-51	152	1 20 10 10 10 10 10 10 10 10 10 10 10 10 10) U	10.1 10.1	-55	-56	-57	-58	-59	09-	-61	-62	-63	-64	-65	99-	-67	89-

EVALUATION OF HALF-SIB PROGENIES OF CR11, SALINAS, 2002 (cont.)

Sugar
Sucrose R
w w
16.97 8
0 85.
.37 84.
17.27 83.4
.13 85.
5.73 8
6.20 82
.17 7
7.33 83
16.73 82.
9
16.13 84.
17.00 83.
16.57 82.
411 16.53 85.0
16.47 84.
17.07 87.
5.70 86
17.00 85.
17.17 8
16.63 83.
.0 16.45 83.
1.21
4.56 2.
.8** 1.63** 1.5

	CLS	Score	Mean	•	•	•	3.3				2.3		•	2.5		•	•	2.0	•	•	•	2.7	•	•	•	2.3	•
(CLS)		RJAP	%	رى	т М	Η.	81.5	ď		84.1	\vdash	~		80.2	4.	Η.	ж Э	80.8	2	•	4.	84.0	2.	•	4.	•	80.3
Test 5902		Sucrose	ov∘	6.5	6.2	6.7	14.53	6.9	4.9	17.03	9	7.0	α	15.97	6.	7.0	5.8	16.13	7.8	6.2	7.2	16.80	7.2	6.7	7.1	15.17	5.8
	ga	Yield	1bs/a	371	412	617	13412	320	231	15251	124	518	251	12648	699	410	315	12198	772	ന	700	15748	4	4	064	11355	445
(NB)		ΣM	Mean	•	•	4.8	•	6.1	5.4	6.3	5.6	6.3		. 6	6.4	•	•	5.6	•	6.0	•	0.9	•	•		5.3	
1602		DΜ	4/3	Η.	7	7	30.3	•	9	21.1	m.	ω.	ر	33.3	9	4.	ك	35.6	0	æ.	4	42.1	œ ·	т М	7	14.3	7.
Test	æ "	Bolt	9/4	Η.	9	50.2	o.		7	42.1	2	54.8	٧	30.7	2	0	ນ	9.02	7.	9	4.	92.1	6	7.	9	12.7	9
	,	Bolt	æ	•	•	2.6	•	•	•	0.0	•	•		0.0	•	٠	•	4.2	2.1	0.0	•	0.0	0.0	•	•	0.0	•
eld)	ì	Σď	Score		•	4.0	•	•	5.7	5.7	0.9	•		6.0	•	0.9	•	5.0	•	•	•	5.7	•	•	•	6.3	•
4302 (Yi	((RJAP	%	4.	8	82.0	m.	4.	8	84.6	4.	2	m	85.0	Η.	83.7	4.	4.	7.	•	ж Э	83.9	4.	m.	ω.	85.3	2
Test '		Sucrose	ok∘ [7.3	6.0	17.47	6.9	6.9	5.0	17.53	8.0	7.3	7.4	17.47	6.9	17.43	9.9	8.7	7.3	7.6	7.5	16.73	7.4	6.9	7.5	16.67	6.1
	Sugar	IeI	Ibs/a	17341	687	771	771	511	502	16870	577	736	790	17570	704	18077	401	781	878	626	942	15570	578	740	577	14025	689
	10.54	Variety		01-FC1030 - 1			- 4	I D	9 1	L -	ω 1	o 1		-11		-13						-19				-23	

EVALUATION OF HALF-SIB PROGENIES OF FC1030, SALINAS, CA, 2002

(cont.)

		Test	Test 4302 (Yie	eld)		Test	Test 1602 (NB)	(B)	F	Test 5902 (CLS)	(CLS)	
	Sugar					οķο			Sugar			CLS
Variety	Yield	Sucrose	RJAP	PM	Bolt	Bolt	DM	PM	Yield	Sucrose	RJAP	Score
	1bs/a	%	ok-	Score	oko	9/4	4/3	Mean	<u>lbs/a</u>	o⊱l	o(•	Mean
01-FC1030-25	15521	17.70	86.0	6.0	0.0	83.2	24.4	6.3	11952	16.83	82.5	2.7
-26	16608	17.37	85.6	0.9	0.0	97.0	14.8	5.9	12291	15.97	82.6	2.3
-27	17602	16.80	84.3	4.7	0.0	75.4	7.2	0.9	16729	16.70	82.6	2.0
-28	16728	17.17	85.7	5.7	0.0	76.1	18.4	6.4	15061	16.63	83.9	1.7
-29	17755	17.50	84.1	5.3	0.0	48.1	16.7	5.9	14689	16.13	82.9	2.7
-30	20376	17.63	84.6	5.7	0.0	64.4	4.2	6.3	14253	17.00	85.9	2.0
-31	15361	16.87	84.7	5.0	9.8	57.9	19.4	5.4	13710	16.20	82.9	2.0
-32	17889	17.50	80.4	5.3	0.0	53.9	23.7	5.1	15020	17.60	84.2	2.3
Mean	16874.5	17.19	84.0	5.5	1.1	58.4	29.4	5. 8	14052.1	16.56	82.9	2.3
LSD (.05)	3397.3	1.40	4.0	1.2	4.6	20.5	38.1	1.0	3083.0	1.61	4.4	0.8
C.V. (%)	12.3	5.00	2.9	12.8	247.2	21.4	79.3	10.6	13.4	5.95	3.2	21.4
F value	2.2NS	1.67*	1.1NS	2.7**	1.8*	4*6.7	1.3NS	1.9*	2.6**	** 1.84*	1.0NS	S 1.7*

EVALUATION OF HALF-SIB PROGENIES FROM POPN-FC123, SALINAS, CA, 2002

	CIS	Score	Mean	•	•	3.3	•	•	•	2.0	•	•	•	2.3	•	•	•	3.0	•	•	2.7	•	•	•	3.0	•	•
(CLS)		RJAP	æ1	4	0	82.5	8	.	2	83.6	ω.	ъ.	Η.	83.0	급.	رى	2	84.7	2	5.	84.6	5.	m	ω.	83.2	Э.	4.
Test 5802 (CLS)		Sucrose	%	7.4	6.5	16.43	6.5	6.2	5.5	17.80	6.2	7.5	7.3	16.13	5.1	7.1	5.9	16.97	5.9	5.8	16.50	6.0	6.7	6.3	16.27	6.3	9.9
	Sugar	Yield	1bs/a	381	690	15176	146	11486	106	14912	234	390	72	10987	39	67	16	10213	268	414	10513	185	413	426	12127	463	187
	Root	Rot	o⁄0 	•	•	0.0	•	•	•	0.0	•	•	•	4.2	•	•	0.0	4.2	0.0		0.0			•	5.6	•	•
)2 (NB)		М	Mean		4.1	•	3.4	•	•	3.2	•	•	•	3.3	•	•	•	2.8	•	•	э. Э	•	•	•	5.0	•	•
Test 1202		MO	4/3	4.2	•	8.3	0.0	8.6	0.0	•	6.8	•	•	0.0	5.6	0.0	6.7	21.4	2.1	•	0.0		•	•	2.1	•	•
	ф	Bolt	9/4	36.4	0	7.5	9.5	•	•	21.1	•	9	27.8	5.6	•	52.4	•	9.5	•	0	15.1	m	•	•	8.8	•	•
		PM	Score	6.0	4.7	5.0	5.0	4.7	5.7	•	5.3	5.0	•	4.7	4.7	6.0	•	4.3	5.0	•	4.7	6.0	•	•	5.7	•	•
(Yield)		RJAP	o%		87.1		84.2	82.6	4.	82.7	85.3	5		4			т М	85.0	4.	ъ.	96.6	7.	4.	84.4	84.2	4.	4.
Test 4402		Sucrose	o %	6.1	6.5	16.17	6.1	6.8	6.7	16.70	6.5	5.7	6.3	16.47	5.8	6.0	6.9	16.93	5.8	6.9	16.50	5.9	6.8	6.0	16.83	6.8	7.3
	Sugar	Yield	1bs/a	72	14795	14347	13706	616	489	4	523	\vdash	999	13361	357	17749	654	15038	640	705	15430	591	639	440	47	881	636
		Variety		01-FC123- 1	- 2	ო I	- 4	ı I	9 1	L -	& 1	ი I	-10	-11	-12	-13	-14	-15	-16		-18				-22		

EVALUATION OF HALF-SIB PROGENIES FROM POPN-FC123, SALINAS, CA, 2002

		Test 4402 (Yield)	(Yield)			Test 120	1202 (NB)		Ĕ	Test 5802 (CLS)	(CLS)	
Variety	Sugar Yield	Sucrose	RJAP	PM	% Bolt	吾	PM	Root	Sugar Yield	Sucrose	RJAP	CLS
	<u>lbs/a</u>	o o	o / 0	Score	9/4	4/3	Mean	ok∘ I	<u>1bs/a</u>	જ∘ા	o⊳	Mean
01-FC123-25					0.0	0.0	3.6	0.0	11420	16.20	83.7	2.7
-26	16551	17.40	85.0	5.3	38.4	0.0	4.3	0.0	12979	16.40	83.3	2.7
-27	16549	17.50	82.2	5.7	21.1	6.8	5.3	3.3	13480	16.60	83.6	4.0
-28	16325	17.00	83.1	4.7	11.9	2.6	4.3	0.0	11926	16.77	85.5	3.3
-29	16026	16.97	85.0	5.0	11.1	3.3	5.7	э. Э	18589	17.63	85.9	2.0
-30	15206	16.57	84.3	4.3	8.9	0.0	4.3	0.0	13467	17.70	85.4	3.7
-31	18664	17.63	84.4	5.7	51.6	2.8	7.1	0.0	13921	16.43	84.4	3.0
01-FC123-32	16692	17.70	83.5	3.7	15.0	0.0	4.6	0.0	13592	15.87	83.7	2.3
Mean	15787.2	7	84.5	5.2	15.8	14.4	4.3	4.0	12644.8	16.54	83.6	2.9
LSD (.05)	3394.4	1.18	3.2	1.1	19.6	27.3	1.2	13.2	3766.5	1.22	4.4	1.1
C.V. (%)	13.2	4.33	2.3	12.6	76.1	116.3	16.4	201.1	18.3	4.52	3.2	23.4
F value	1.6NS	NS 1.64*	1.7*	2.9**	3.8**	2.5**	6.3**	1.0NS	2.4**	* 2.19**	0.8NS	\$ 2.6**

		Test '	4502 (Yi	eld)		Test	1302	(NB)		Test 5702	(CIS)	
Verice	Sugar	30.50	t k	Ž	1 1	% - F			Sugar		1	CLS
A 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1bs/a	æ (100 mg	%	Score	8 8	9/4	4/3	Mean	lbs/a	Sucrose %	KUAF %	Mean
		1	l		ı					l	l	
01-FC1014 - 1	630	6.3	4.	4.7	4.2	•	•	•	85	6.8	4.	•
1 2	16535	•	84.3	4.7	1.8	75.6	16.7	5.8	7	17.80	85.8	2.0
ო I	384	6.3	ж Э	5.7	0.0	•	•	•	51	7.2	4.	•
4 -	567	7.2	ر کا	5.0	•	59.5	•	•	487	7.5	ω.	•
ı S	394	6.9	М		•	М	2	•	491	7.1	m	•
9 1	487	7.1		•	•	رى	ك	•	403	7.1	8	•
7 -	15561	17.30	82.8	4.3	0.0	26.9	17.9	5.7	12760	16.20	86.7	1.3
80 I	358	5.9		•	•	2.	2	•	393	6.9	2	•
6	323	5.7	ъ.	•	•	8	2	•	402	6.5	8	•
-10	448	6.9	4.	4.3	•	ر ا	18.7		470	7.8	8	•
-11	16339	16.73	83.7	5.7	0.0	28.9	6.7	5.9	13505	16.47	82.3	1.7
-12	570	6.8	5	6.3	•	4.	14.8	•	502	7.4	Η.	•
	460	7.4	8	•	•	8	•	•	വ	6	ω.	•
-14	7	17.03	82.9	5.0	0.0	62.2	17.9	6.7	16094	9	82.0	2.0
	46	7.3	4.	•	•	9.	Η.	•	2	4	2	•
	770	7.4	9	6.3	•	8	•	•	578	7.4	Η.	•
-17	15573	9.		•	•	0		•	357	9.	6	•
-18	41	9	85.4	6.3	0.0	50.0	10.2	5.9	16533	16.90	83.7	2.0
-19	12231	ω.		•	•	4.	•	•	579	æ	ر کا	•
-20	573	7.2	4.		•	9	•		571	7.6	m.	•
-21	704	7.5	ω.	•	•	Η.	•		568	7.4	4	•
-22	547	7.9	ω.	•	•	9	•	•	493	7.9	H.	•
-23	14215	16.23	8.62	4.3	7.4	72.1	13.5	5.9	12907	16.27	82.7	1.3
01-FC1014-24	538	7.1	m.	•	•	7.	•		425	7.1	ო	•

EVALUATION OF HALF-SIB PROGENIES FROM POPN-FC1014, SALINAS, CA, 2002

(cont.)

		Test 4	Test 4502 (Yield)	=1d)		Test 1302	1302 (NB)	3)		Test 5702	5702 (CLS)	
	Sugar					о́ю			Sugar			CIS
Variety	Yield	Sucrose	RJAP	PM	Bolt	Bolt	DM	ΡΜ	Yield	Sucrose	RJAP	Score
	lbs/a	o/P [o/e	Score	o ∤ 0 [9/4	4/3	Mean	1bs/a	ote [o⊱	Mean
01-FC1014 -25	15004	17.30	84.2	3.7	0.0	41.0	6.8	5.8	15170	15.67	78.7	2.0
-26	15389	18.23	82.9	3.0	0.0	31.6	2.6	5.7	16022	17.97	83.1	1.7
-27	15869	17.43	81.9	5.0	0.0	28.4	5.6	5.4	13292	17.07	9.62	1.7
-28	16692	18.30	83.9	2.7	4.4	41.1	14.4	4.9	17715	17.73	81.3	1.0
-29	14757	17.27	84.7	3.7	0.0	74.4	24.4	5.6	15212	17.17	82.9	1.3
-30	15904	17.27	83.4	3.0	0.0	47.5	14.8	4.8	14867	17.87	84.2	1.3
-31	14259	16.10	82.1	4.7	0.0	18.3	10.7	4.4	12368	16.10	80.2	1.3
01-FC1014 -32	14957	17.50	85.0	4.0	0.0	11.0	16.0	5.6	14269	16.80	84.7	1.0
Mean	15183.9	17.04	83.8	4.8	1.0	45.4	12.4	5.5	14851.9	17.14	82.7	1.6
LSD (.05)	3177.2	1.25	3.6	1.5	4.4	22.0	18.8	1.2	3798.0	1.39	3.9	0.7
C.V. (%)	12.8	4.49	2.7	19.0	261.8	29.7	93.0	13.2	15.7	4.96	2.9	25.6
F value	1.3NS	S 2.42**	1.2NS	3.9**	1.3NS	7.7**	1.1NS	4.1**	1.1NS	s 1.49NS	1.5NS	S 2.2**

		Test 4602	(Yield)		,	Test 140	02 (NB)	
	Sugar				8			Root
Variety	Yield	Sucrose	RJAP	PM	Bolt	DM	PM	Rot
	lbs/a	8	8	Score	9/4	4/3	Mean	8
Checks	10601	17 40	00.0	F 2	0.6	2 0	4 0	0 0
1833-5	12681	17.43	82.2	5.3	2.6	3.0	4.0	0.0
Half-sibs from 8								
1869 - 1	16953	16.50	85.4	5.3	30.6	1.0	4.6	0.0
- 2	16285	15.77	86.2	5.7	13.0	2.7	4.1	0.0
- 3	19064	16.33	87.5	6.0	30.0	2.0	4.1	4.2
- 4	19192	17.10	85.4	7.3	30.3	2.7	6.1	3.3
- 5	15911	16.37	87.6	4.7	15.9	1.0	4.8	13.5
- 6	16286	16.20	87.4	6.0	55.9	0.3	5.6	2.1
- 7	1.0005	15 12	87.2	6.3	43.8	0.3	5.1	0.0
- 8	16885 16199	15.13 15.97	86.1	6.7	34.6	0.3	4.6	3.0
- 6 - 9	17948	16.07	86.5	6.3	24.4	0.7	5.9	0.0
-10	17675	16.47	88.1	6.0	37.6	0.7	6.1	2.6
-10	1/6/5	10.4/	00.1	0.0	37.6	0.7	0.1	2.0
-11	16756	16.40	87.9	5.3	38.8	0.7	5.4	4.9
-12	16456	15.23	85.3	7.0	12.1	1.7	6.9	7.1
-13	21138	16.63	88.2	6.7	42.9	1.7	5.3	0.0
-14	16981	16.67	87.9	6.7	33.6	2.7	6.8	2.6
-15	14766	15.73	86.4	6.7	0.0	1.0	6.6	4.4
-16	16579	16.80	85.1	6.3	20.4	0.7	6.2	0.0
-17	15283	15.93	86.3	5.7	12.9	0.3	5.8	3.0
-18	14699	16.37	87.6	6.0	34.4	0.3	6.0	0.0
-19	16616	16.80	87.1	4.3	32.3	0.3	4.6	2.8
-20	17635	16.37	86.3	5.7	0.0	1.0	5.0	12.1
-21	17982	15.27	86.0	4.7	4.2	2.0	3.8	0.0
-22	15026	16.83	86.3	4.7	21.7	0.3	4.8	0.0
	17150	16 10	04 5	5.7	3.0	3.0	5.8	3.0
-23	17150	16.10	84.5 87.2		5.6	0.7	4.2	0.0
-24	18397	17.03	86.5		30.3	1.3		2.6
-25	19908	16.60 15.83	83.9	7.0	15.2	1.7	6.3	0.0
-26	16628	15.65	63.9	7.0	13.2	1.,	0.5	0.0
-27	18220	16.93	88.3	6.0	20.3	1.7	5.2	0.0
-28	15486	15.57	83.8	6.0	16.8	2.7		17.9
-29	19345	16.00	85.7	5.3	35.3	1.3	5.8	0.0
-30	17170	17.13	87.0	4.7	8.9	0.7	6.3	4.2
Mean	17021.9	16.34	86.3	5.9	22.1	1.3	5.3	2.9
LSD (.05)	2827.4		4.0	1.4	23.6	1.9	1.2	8.9
C.V. (%)	10.2		2.8	14.4	65.5	89.1	13.9	186.1
F value		** 2.64**			3.2**	1.8*	4.9**	1.9*

		Test 390	2 (VY)		Te	st 1502 (N	1B)
	Sugar			Powdery	ક	Downey	Powdery
Variety	Yield	Sucrose	RJAP	Mildew	Bolting	Mildew	Mildew
	Lbs	8	8	Score	9/04	4/05	Mean
Checks		4- 4-					
1930-19	8558	17.10	85.5	1.3	0.0	4.3	2.3
1930-35A	14932	18.17	84.1	2.3	12.4	2.7	3.8
Z025	18109	17.73	83.7	3.7	53.6	2.0	5.0
Z025-9	12817	17.23	80.0	1.0	35.8	2.3	3.7
Z131-14	2552	15.33	84.1	2.3	7.9	4.3	2.7
Z131-18	4971	17.83	82.3	1.0	4.8	2.3	3.3
Half-sibs of Z25							
Z125 - 1	16884	17.20	84.3	3.7	43.6	5.3	5.1
- 2	15079	16.80	82.9	3.7	2.6	6.7	4.7
- 3	15316	15.50	86.0	3.0	49.8	4.0	5.4
- 4	16747	16.43	85.6	3.3	39.4	5.0	5.3
- 5	15803	15.80	87.8	4.0	53.7	5.3	5.1
- 6	13450	16.63	83.8	4.0	10.2	6.7	5.0
_					10.2	. ,	0.0
- 7	17098	17.90	87.2	4.3	32.5	4.7	4.8
- 8	15455	15.97	82.4	4.0	40.3	7.7	4.1
- 9	17592	16.10	86.6	4.3	5.8	9.0	4.1
-10	17212	16.57	85.3	4.3	76.8	3.3	4.4
-11	14625	14.90	83.1	3.3	27.3	9.3	4.3
-12	15021	16.00	85.1	3.7	51.0	4.7	4.1
-13	19467	17.33	84.3	3.7	23.8	6.0	5.4
-14	16623	16.10	83.3	5.0	34.2	6.0	5.8
-15	15586	16.73	84.7	5.0	68.3	3.7	5.2
-16	21721	17.30	84.1	4.7	59.9	3.7	5.9
-17	18842	16.63	82.5	5.3	42.0	6.7	5.8
-18	18793	17.33	85.0	5.0	73.2	4.3	5.9
-19	20088	18.03	83.7	4.7	67.5	4.3	5.3
-20	18527	17.30	84.9	4.7	76.4	4.3	5.4
-21	17689	16.47	83.9	3.7	60.3	5.7	4.3
-22	15440	17.60	85.1	4.7	40.1	7.0	5.6
-2 3	16988	16.97	85.0	3.7	67.0	5.3	4.9
-24	17166	17.23	84.6	3.0	35.4	2.3	5.0
-25	19481	18.60	88.0	3.7	46.2	4.0	5.0
-26	20776	18.40	86.4	4.7	22.6	5.0	5.6
-27	18039	16.83	84.2	5.3	74.1	4.0	6.1
-28	17983	17.43	86.3	3.0	34.6	2.7	4.8
-29	19507	18.23	84.8	5.0	45.1		
-30	18285	17.17	83.9	4.3	16.0	3.0 3.7	4.1 5.4
24	17050	15.00	0F ÷				
-31 30	17250	17.00	85.0	5.0	46.8	3.7	5.1
-32	17362	16.27	85.5	3.3	35.0	4.3	5.4
-33	20207	17.70	82.3	3.3	24.5	3.0	4.4

EVALUATION OF HALF-SIB PROGENIES OF Z25, SALINAS, CA, 2002 (cont.)

			Test 3902	2 (VY)		Tes	st 1502 (N	1B)
		Sugar	_		Powdery	8	Downey	Powdery
	Variety	Yield	Sucrose	RJAP	Mildew	Bolting	Mildew	Mildew
		Lbs	8	8	Score	9/04	4/05	Mean
Half-	sibs of Z25	(cont.)						
Z125	-34	19271	18.17	83.6	4.0	42.3	3.0	5.6
	-35	16552	18.13	84.9	2.3	35.1	1.7	4.8
	-36	18270	17.13	86.2	2.7	60.3	4.3	5.1
	-37	19782	17.97	82.8	3.7	38.3	1.7	5.0
	-38	19922	16.60	84.6	5.0	44.7	2.7	5.8
	-39	18769	16.77	85.4	4.3	28.0	3.7	5.2
	-40	19142	17.20	84.5	5.7	21.6	2.7	5.4
	-41	16245	17.43	85.6	3.0	22.6	2.3	4.4
	-42	19145	18.20	82.9	2.7	54.0	1.0	5.3
	-43	20052	17.37	86.3	5.0	62.2	2.7	6.2
	-44	17818	17.00	84.0	5.0	33.9	5.3	5.7
	-45	16488	16.73	85.9	4.7	39.2	5.0	5.4
	-46	18222	17.13	83.2	5.0	17.7	2.7	5.6
	-47	18727	16.97	86.3	5.0	67.5	2.0	5.2
	-48	17484	16.10	82.9	5.0	30.4	5.7	5.6
	-49	17530	16.37	85.1	2.3	21.0	5.3	4.9
	-50	19612	18.17	85.0	3.0	36.1	2.7	4.7
	-51	18068	16.53	84.6	1.3	24.4	5.7	3.7
	-52	18278	17.33	80.9	2.7	38.9	3.3	4.9
	-53	21042	18.70	85.9	5.0	69.0	1.0	5.1
	-54	18379	16.70	87.1	4.0	35.1	2.7	4.4
	-55	20471	18.20	85.9	2.7	40.6	0.3	5.2
	-56	18328	17.63	85.9	3.3	19.7	2.3	5.4
	-57	17002	17.63	85.3	3.7	41.3	2.7	5.7
	-58	13257	16.33	81.4	5.0	22.5	8.0	5.4
	-59	17980	15.93	81.2	3.0	47.1	2.3	5.1
	-60	16451	17.67	87.3	2.0	41.7	1.0	5.1
	-61	18637	17.20	85.9	4.3	60.8	2.7	6.6
	-62	22665	17.80	84.6	4.0	26.1	1.3	5.8
	-63	21180	17.77	83.8	3.3	73.1	2.7	5.2
	-64	19752	17.00	84.4	4.0	40.2	3.7	6.0
	-65	19825	17.87	85.3	4.0	16.4	2.0	4.6
	-66	20634	17.63	83.4	4.7	71.8	3.7	6.7
	-67	17308	17.30	82.1	4.7	32.1	2.0	5.8
	-68	17765	17.13	86.1	3.0	23.1	2.7	5.8
	-69	18709	17.87	86.2	3.0	43.8	0.3	5.9
	-70	19720	18.00	85.7	4.7	63.6	1.7	6.1
	-71	19375	18.73	86.8	5.3	52.2	2.7	6.6
Z125		18898	18.20	86.0	3.3	50.0	0.7	5.1

EVALUATION OF HALF-SIB PROGENIES OF Z25, SALINAS, CA, 2002 (cont.)

		Test 3902	(VY)		Tes	st 1502 (1	NB)
	Sugar			Powdery	8	Downey	Powdery
Variety	Yield	Sucrose	RJAP	Mildew	Bolting	Mildew	Mildew
	Lbs	8	8	Score	9/04	4/05	Mean
Half-sibs of Z25	(cont.)						
Z125 -73	16492	17.07	82.0	4.0	52.4	2.7	5.6
-74	16279	16.00	82.6	4.0	50.9	3.7	5.6
-75	19211	17.60	84.7	4.7	24.1	3.3	5.7
-76	19764	17.03	85.0	3.7	34.8	5.3	5.4
-77	19200	18.43	85.3	3.3	65.4	3.7	4.8
-78	19586	18.30	85.5	5.0	31.7	2.7	6.0
-79	16263	16.20	84.2	3.7	55. 9	1.7	5.1
-80	23132	18.53	86.6	3.0	53.2	1.3	4.9
-81	18774	17.63	85.5	4.3	77.1	3.3	6.6
-82	21256	17.47	84.2	3.7	49.7	1.0	6.0
-83	17206	17.80	84.4	1.0	36.8	1.7	5.0
-84	21283	18.00	85.7	2.3	24.2	1.3	4.1
-85	18834	18.03	85.7	2.7	56.7	1.0	4.9
-86	18565	16.67	85.8	4.3	5.6	2.7	5.1
-87	20139	17.83	84.1	4.0	75.2	4.3	5.1
-88	19199	18.13	86.4	4.3	83.3	4.3	4.9
-89	18748	18.07	84.4	5.3	41.7	2.0	5.2
Z125 -90	19314	18.03	84.6	5.0	47.2	2.0	5.1
Mean	18104.6	17.26	84.7	3.8	41.6	3.5	5.1
LSD (.05)	3335.6	1.29	3.6	1.6	26.0	3.6	1.0
C.V. (%)	11.4	4.64	2.7	26.0	38.7	62.9	12.4
F value	2.9	** 3.05**	1.4*	3.5**	4.4**	2.1**	4.3**

		Test 4002	(Yield))		Test 8	02 (NB)	
Variety	Sugar Yield	Sucrose	RJAP	PM	Bolt	DM	PM	Root Rot
	lbs/a	8	8	Score	8	4/3	Mean	8
·					_			
Checks 1931 (Iso)	18386	16.90	83.9	3.0	9.4	6.7	4.9	0.0
1931 (Iso) 1941 (Iso)	17072	16.97	85.0	3.0	8.9	3.7	4.8	0.0
Z125	18229	17.37	83.4	3.7	47.4	4.0	5.0	0.0
<u> </u>	10223	27.37	05.4	5.,	37.3	4.0	3.0	0.0
Z025-9	16144	19.13	82.7	1.0	20.0	2.3	3.4	0.0
0930-19	16544	17.10	86.2	1.7	2.4	8.0	2.8	0.0
1930-19	15649	16.60	84.5	1.3	0.0	8.0	2.4	0.0
1930-35A	13028	17.73	83.1	3.0	45.2	3.3	3.6	0.0
S ₁ 's from Z25								
Z125 -101	12122	16.70	84.4	2.3	8.3	4.0	2.4	0.0
-102	17278	15.37	81.7	3.0	40.6	3.3	4.2	0.0
-103	13977	16.43	83.4	5.3	29.5	2.3	4.8	0.0
-104	16597	16.40	85.4	2.3	43.7	3.7	3.4	0.0
-105	15715	18.03	83.1	3.3	40.0	1.7	5.7	0.0
-106	14218	16.87	83.6	0.3	81.5	0.3	1.9	0.0
-107	15024	15.93	83.0	2.0	55.0	5.0	3.7	0.0
-108	14512	16.60	83.8	1.0	69.4	4.3	3.4	0.0
-109	13119	17.33	83.9	3.3	3.7	5.7	2.1	0.0
-110	12913	15.70	82.8	2.3	0.0	6.3	2.4	0.0
-111	13190	17.17	83.4	3.7	83.1	3.3	3.8	0.0
-112	15177	16.93	85.0	5.3	22.6	4.0	4.1	0.0
-113	13698	15.07	86.1	3.3	97.2	10.0	5.4	0.0
-114	14912	17.13	85.7	2.3	29.1	3.7	3.6	0.0
-115	14405	17.63	85.5	2.0	22.8	1.7	3.8	2.6
-116	12169	15.07	80.9	2.0	28.3	4.3	3.3	0.0
		4= 00	05.4	4 0				
1941	18091	17.00	85.1	4.0	10 7	E 7	2.8	0.0
1941 -102	16309	15.63	84.5 81.0	3.0 1.3	19.7 8.3	5.7 10.0	2.8	0.0
-103	13323 13785	15.03 15.37	82.8	1.0	36.2	5.0	3.7	3.0
-104	13/65	15.57	62.0	1.0	30.2	3.0	J.,	3.0
-105	14746	16.73	86.4	1.0	60.4	1.3	3.7	0.0
-106	15423	16.03	82.9	0.0	21.2	7.3	2.6	0.0
-107	15830	17.23	85.0	5.7	0.0	1.3	6.4	0.0
-108	14515	15.07	88.2	3.3	58.5	1.7	4.4	0.0
-109	12161	17.07	81.9	1.7	47.9	2.3	3.9	0.0
-109 -110	17544	17.40	84.7	0.0	61.3	5.0	1.4	0.0
-111	16777	15.87	85.8	3.7	32.4	5.7	5.4	0.0
-112	16191	18.43	84.7	0.0	31.4	0.3	2.1	0.0
		· · -						
-113	15164	17.20	83.2	0.7	21.2	3.0	1.7	0.0
-114	16850	17.40	83.1	3.0	11.4	0.3	3.3	0.0

	I	est 4002	(Yield))		Test 8	02 (NB)	
	Sugar							Root
Variety	Yield	Sucrose	RJAP	PM	Bolt	DM	PM	Rot
	<u>lbs/a</u>	8	8	Score	8	<u>4/3</u>	Mean	8
S_1 's from Z25		16 50	70.0	0 0	10.4	. 0	2 2	0 0
1941 -115	12073	16.53 16.77	79.9	2.3	19.4	5.0	3.3	0.0
-116	13590	16.//	86.5	5.3	61.8	4.0	6.6	0.0
S_1 's from 931								
1931 -101	17620	16.87	87.9	2.3	19.8	3.0	4.3	5.1
-102	16950	16.77	87.2	4.3	0.0	4.3	5.1	3.0
-103	15494	15.93	82.0	4.0	14.4	2.0	3.0	0.0
1931 -104	13862	15.63	82.9	3.3	0.0	1.7	3.2	0.0
1931	19435	16.07	84.5	3.0				
1931 -105					100.0	0.7	5.1	0.0
1931 -106	16524	16.37	83.7	3.3	21.8	1.0	4.9	0.0
-107	17153	16.30	83.7	1.0	51.1	1.7	4.9	0.0
-108	14511	16.30	84.3	0.0	55.8	3.0	2.2	0.0
1931 -109	13644	15.03	85.0	2.0	0.0	4.7	4.9	0.0
-110	14398	15.60	84.2	3.3	18.2	3.7	3.6	0.0
-111	14384	14.77	82.7	3.7	0.0	3.3	5.0	0.0
-112	13758	15.37	84.8	3.0	70.8	2.0	5.6	0.0
			0 - 1 0	3.0	,	2.0	3.0	0.0
-113	13075	14.77	81.1	4.7	51.0	3.3	6.2	0.0
-114	15751	16.07	87.1	4.3	59.0	2.0	4.4	0.0
-115	14718	17.00	85.2	2.7	85.2	3.7	4.6	0.0
-116	13108	14.67	81.8	2.3	0.0	2.0	1.8	0.0
117	15000	1.6.67	05.7	2 0	01.4			
-117 -118	15230 16179	16.67 16.23	85.7	3.0	21.4	0.7	4.9	0.0
-119	15040	15.87	87.0 79.6	4.0 1.7	37.2 40.7	2.7	6.0	0.0
1931 -120	16972	17.10	83.4	2.7	8.8	3.3 4.3	3.4 4.7	3.7 0.0
1331 120	10372	17.10	05.4	2.7	0.0	4.3	4./	0.0
1931	19753	16.33	85.0	2.0				
Checks								
1929-62	16356	15.60	83.7	1.7	2.1	3.7	3.0	0.0
1929-4	16717	17.70	84.7	2.3	25.9	1.7	4.0	0.0
1924-4	14395	17.43	85.8	1.0	19.4	5.0	4.1	14.9
Mean	15226 1	16 40	04.1	0.5	22.2			
LSD (.05)	15326.1 3860.9	16.48	84.1	2.6	33.3	3.6	4.0	0.6
C.V. (%)	15.6	1.53 5.73	3.5 2.6	1.6		3.7	1.2	4.9
F value	1.8**			38.9	41.7	63.6	18.4	539.8
r varue	1.0""	J. UJ ^ ^	2.1^^	ɔ./**	11.4**	2.7**	9.4**	1.5*

10	4001	Test 4102	(Yield)		٥	Test 9	902 (NB)			Test 6102 (CLS)	(CLS)	
ld Suc	Sucr	ose	RJAP	PM	* Bolt	DM	PM	Root	Sugar Yield	Sucrose	RJAP	CLS Score
<u>1bs/a</u> &	%		æ l	Score	9/4	4/3	Mean	o⊱	lbs/a	or I	oke	Mean
8.6	8.6	ო	.	•					14596	8	0	
613 17.5	7.5	_	85.1	4.7	6.9	6.3	4.8	2.1	ന	16.63	84.9	2.7
					•	•	•	•				
14642 16.67	9	_	84.1	5.3	2.8	7.7	4.3	0.0	10865	13.13	75.6	•
5679 16	9		m	•	•	•	•		64	6.5	•	4.3
66 16.	9			•	•	•		•	047	5.2	Η.	
20750 16.37	9		86.1	3.7	8.2	•		•	0	5.0	0	
96 16.	9		•	•	•	•	•	•	856	9.	0	
74 17.	7 .		•	2.7	14.0	4.3	2.2	0.0	17313	16.47	83.2	3.0
5822 16.1	6.1		4.	•	•	•	•	•		6.4	ω	•
0611 15.8	5.8		5	•	•	•		•	63	1.5	9	•
16456 16.57	6.5		84.0	5.7	8.6	7.6	6.7	0.0	ന	15.40	83.4	5.0
7247 15.7	5.7		4.	•	•	•	•	•	23	4.6	H	•
7 14.	4.		2	•	•	•		•	145	5.3	Ω.	•
965 14.	4.		Ή.	•	•	7.0		•	60	2.0	9	•
17289 16.60	9		84.8	3.3	16.1	2.0	5.0	0.0	2	16.20	82.5	1.3
244 15.	ت		4.	•	•	10.0	•	•	52	2.3	7 .	•
7 15.7	5.7		84.8	•	53.2	•	4.9	0.0	384	5.9	2	•
39 15.7	5.7		ë.	•	•	•	4.7	•	226	5.7	•	•
	5.2			2.7	8.8	3.7	3.4	0.0	13335	14.10	78.3	2.7
24 16.7	6.7		84.9	•	•	•	5.4	•	088	7.2	•	•
4899 15.2	5.2		4.	•	21.8	•	•		82	3.8	2	•
5899 15.7	5.7		m.	•	o.		•	•	16	3.8	÷.	•
16336 17.07	7.0		84.2	0.7	25.6	ო ი ო ი	2.1	0.0	13188	16.50	79.8	3.0
3830 14.0	4.0		4.	•	•	•	•	•		1.4	ထ	•

EVALUATION OF S₁ PROGENIES OF 933, SALINAS, CA, 2002

(cont.)

			Test 4102 (Yield)	(Yield)			Test 902	(NB)		H	Test 6102	(CIS)	
		Sugar				ф			Root	Sugar			CLS
	Variety	Yield	Sucrose	RJAP	PM	Bolt	DM	PM	Rot	Yield	Sucrose	RJAP 8	Score
		1bs/a	oko	ok	Score	9/4	4/3	Mean	o⊁ [<u>lbs/a</u>	o/0	o -	Mean
	S ₁ 's from 933	933 (cont.)											
	1933-123	17111	15.23	85.1	4.0	19.3	1.0	4.9	0.0	13290	15.07	81.9	3.3
	-124	14142	14.70	85.2	5.0	0.0	4.0	5.2	0.0	11381	13.77	81.3	4.0
	-125	15305	16.50	84.6	4.7	2.8	0.3	4.9	0.0	15088	16.47	87.0	2.3
	-126	14857	14.57	85.1	5.3	63.7	0.3	5.0	0.0	11603	13.90	82.2	2.3
	-127	17592	16.47	83.1	5.7	6.9	3.3	6.1	0.0	11218	13.50	79.9	2.7
	-128	14867	15.93	80.3	4.0	19.4	1.0	3.7	0.0	14054	17.43	81.2	3.3
	-129	15787	14.10	83.3	3.7	24.8	5.0	2.0	0.0	13647	14.33	81.3	3.3
	-130	18235	17.70	85.1	2.0	20.5	0.7	3.6	0.0	16732	17.47	87.2	2.7
A 204													
.	Mean	16233.5	15.98	84.0	3.7	14.6	4.2	4.2	9.0	13280.9	15.04	81.5	3.3
	LSD (.05)	3117.9	1.90	4.2	1.7	19.5	4.5	1.0	3.8	3494.4	2.10	5.0	1.3
	C.V. (%)	11.8	7.29	3.1	28.3	82.1	166.5	14.0	378.5	16.1	8.55	3.7	24.3
	F value	4.1	4.1** 2.64**	0.9NS	6.7**	8.6**	3.2**	20.7**	2.0*	6.3**	1* 5.93**	2.6**	3.9**

Test 4202 (VY) Test 1002 (NB)	
Sugar Powdery & Downey Powde	ry
Variety Yield Sucrose RJAP Mildew Bolting Mildew Mild	
<u>Lbs % Score 9/04 4/05 Mea</u>	n
	_
Checks	
<u>1927-4</u> 15422 16.30 85.8 5.0 40.3 4.7 6.	1
Y167 20280 16.33 82.6 4.0 49.8 2.7 4.	6
0921 19180 16.67 83.2 4.7 61.6 8.7 4.	9
S ₁ 's from 921	
1921 -101 18129 16.27 87.5 4.3 67.3 5.3 5.	4
-102 14788 17.17 82.9 5.0 5.6 9.3 4.	9
-1 03 18769 17.07 83.7 4.7 73.7 2.7 4.	6
-104 16158 16.97 85.4 3.3 36.5 2.3 5.	2
-1 05 16872 15.50 84.4 3.7 59.6 7.0 3.	4
-1 06 15797 16.13 83.0 3.3 86.5 2.0 5.	4
-107 15188 16.17 79.2 5.7 20.6 2.7 2.	3
-108 20386 17.47 86.4 3.3 52.4 2.7 2.	4
-109 15245 15.97 83.9 3.3 84.1 1.7 3.	6
-110 15100 16.67 81.2 4.3 81.7 2.7 7.	4
-111 15585 15.60 81.3 3.3 00.0 2.7 6.	1
-112 15583 16.40 82.3 5.7 49.0 4.0 7.	0
-113 14135 15.23 82.6 3.0 0.0 6.7 2.	4
-114 13242 14.97 84.9 2.0 44.6 3.7 3.	8
-115 11859 15.83 80.9 2.0 88.1 2.7 4.	4
-116 49.1 3.3 5.	0
Y175-13 16762 16.50 81.5 4.3	
S_1 's from 934	
1934 -101 15630 15.37 79.9 4.3 39.9 4.7 4.	9
-102 15371 16.80 87.5 6.7 5.6 5.3 7.	6
-103 16265 16.57 83.5 4.7 39.7 3.0 4.	4
-104 16684 16.27 80.3 4.3 28.8 3.3 5.	3
-1 05 17639 18.00 83.6 3.0 45.7 1.0 4.	3
-106 16597 17.43 81.2 6.3 20.4 0.3 6.	7
-107 14716 16.07 83.3 3.3 3.0 3.0 4.	9
-108 17739 15.70 85.1 3.7 73.7 3.3 5.	6
-109 14004 14.50 84.1 5.7 0.0 0.7 5.	7
-110 19496 16.37 85.6 3.0 10.4 2.7 3.	6
-111 15812 15.83 83.8 3.0 20.2 7.3 5.	1
-112 9260 16.07 80.6 4.7 0.0 5.3 4.	8
-113 17285 16.80 79.5 2.0 15.8 2.7 4.	1
Mean 16093.1 16.28 83.2 4.1 42.3 3.8 4.	9
LSD (.05) 3682.5 1.10 3.1 1.5 23.2 3.3 1.	
C.V. (%) 14.0 4.13 2.3 22.9 33.7 154.1 17.	
	8**

	1.		
		190	

SUGAR BEET RESEARCH USDA-ARS SUGARBEET RESEARCH UNIT IN FORT COLLINS, COLORADO

2002 REPORT

Section B

U.S. Department of Agriculture, Agricultural Research Service Northern Plains Area, (USDA-ARS-NPA) Crops Research Laboratory, Sugar Beet Research Unit 1701 Centre Ave.; Fort Collins, CO. 80526-2083

Phone: (970) 498-4204
Fax: (970) 482-2909
Email: lpanella@lamar.colostate.edu
Web access: http://www.crl.ars.usda.gov/

Dr. Lee Panella, Geneticist & Research Leader Dr. Susan S. Martin, Plant Physiologist (retired) Dr. Linda E. Hanson, Plant Pathologist

Cooperation:

Colorado Agricultural Experiment Station

Much of this research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 420, 421, 440, 441, 443, 903, and 904)

USDA-ARS-NPA Sugar Beet Research Unit's Mission Statement

Utilize distinctive site environmental and disease-free characteristics and specifically developed team expertise to: develop new knowledge and adapt biotechnologies to modify host-pathogen relations that affect disease resistance, pathogenesis, and epidemiology in sugar beet and other plant species pertinent to sugar beet cultivation; discover new information and techniques to identify and produce genotypes exhibiting superior disease and stress tolerance and agronomic qualities; and provide new knowledge that improves production efficiency and biochemical processing characteristics of sugar beet.

CONTENTS

PUBLICATIONS B3
NOTICE OF RELEASE OF FC724 MONOGERM, O-TYPE SUGARBEET GERMPLASM B5
Evaluation of Contributed Lines for Resistance to <i>Rhizoctonia solani</i> , a Causal Fungus of Sugar Beet Root Rot (BSDF Project 903)
Evaluation of Contributed Lines for Resistance to Cercospora beticola, Causal Fungus of Cercospora Leaf Spot (BSDF Project 904)
Screening Biological Control Agents for <i>Rhizoctonia solani</i> Control on Sugar Beets (BSDF Project 420)
Variability in Fusarium oxysporum from sugar beets in the Central High Plains growing areas (BSDF Project 421)
Rhizoctonia Root Rot Resistance And Development of Genetic Resistance in Sugar Beet (BSDF Project 440)
Cercospora Leaf Spot Research And Breeding For Cercospora And Curly Top Resistance (BSDF Project 441)
Pre-breeding: the Introgression of New Sources of Cercospora Leaf Spot Resistance from Beta Vulgaris ssp. maritima and Other Exotic Sources into Sugar Beet-type Populations (BSDF Project 443)

PUBLICATIONS

- 1. Caolo-Tanski, Janet M., Linda E. Hanson, Amy L. Hill and Joseph P. Hill. The potential use of Australian "tea tree oil" (*Melaleuca alternifolia*) as a method of control for several plant pathogens. Proceedings of the 6th annual Rocky Mountain Plant Biotechnology and Molecular Biology Symposium. pg. 22. 2002. (Abstract)
- 2. Caolo-Tanski, J.M., L.E. Hanson, A.L. Hill and J.P. Hill. Use of *Melaleuca alternifolia* oil for plant disease control. Phytopathology. 92:S12. 2002.(Abstract)
- 3. Hanson, L.E. Biological control of sugar beet damping-off with *Trichoderma* species. Phytopathology. 92:S33. 2002. (Abstract)
- 4. Hanson. L.E. and C.R. Howell. Biocontrol efficacy and other characteristics of protoplast fusants between *Trichoderma koningii* and *T. virens*. Mycological Research. 106:321-328. 2002.
- 5. Hanson, Linda E., Chris Lawrence and Slavica Djonivic. Mechanisms of biological control of plant diseases with *Trichoderma*. Proceedings of the 6th annual Rocky Mountain Plant Biotechnology and Molecular Biology Symposium. pg. 2. 2002.
- 6. Hanson, L. E., S. S. Martin, and L. Panella. Disease Nurseries ... A tool to evaluate resistance. The Sugar Producer Magazine, pp. 20-21, January, 2002. (popular press).
- 7. Hanson, L.E. and L. Panella. *Beta* PIs form the USDA-ARS NPGS evaluated for resistance to *Cercospora beticola*, 2001. Biological and Cultural Tests for Control of Plant Diseases. 17:F03. DOI: 10.1094/BC17. The American Phytopathological Society, St. Paul, MN. 2002
- 8. Hanson, L.E. and L. Panella. Evaluation of *Beta* PIs from the USDA-ARS NPGS for resistance to curly top virus, 2001. Biological and Cultural Tests for Control of Plant Diseases. 17:F04. DOI: 10.1094/BC17. The American Phytopathological Society, St. Paul, MN. 2002.
- 9. Hanson, L.E. and L. Panella. Rhizoctonia root rot resistance of *Beta* PIs from the USDA-ARS NPGS, 2001. Biological and Cultural Tests for Control of Plant Diseases. 17:F05. DOI: 10.1094/BC17. The American Phytopathological Society, St. Paul, MN. 2002.
- 10. Hill, A.L., R. Gutierrez and L.E. Hanson. Isolation of a beta-tubulin gene fragment from *Cercospora beticola*. Proceedings of the 6th annual Rocky Mountain Plant Biotechnology and Molecular Biology Symposium. pg. 14. 2002.

- 11. Panella, L. and L.E. Hanson. USDA-ARS sugar beet germplasm developed in Fort Collins, CO, evaluated for Rhizoctonia resistance, 2001. Biological and Cultural Tests for Control of Plant Diseases. 17:F06. DOI: 10.1094/BC17. The American Phytopathological Society, St. Paul, MN. 2002.
- 12. Panella, L., M. Brownson, C. Richards, S.E. Mitchell, S. Kresovich. Microsatellite Marker Development for Sugar Beet. Final Abstracts Guide Plant, Animal and Microbe Genomes X Conference, San Diego, CA, January 12 16. W306, p.74. 2002.

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE WASHINGTON, DC

AND

BEET SUGAR DEVELOPMENT FOUNDATION DENVER, COLORADO

NOTICE OF RELEASE OF FC724 MONOGERM, O-TYPE SUGARBEET GERMPLASM

The USDA Agricultural Research Service (ARS), in cooperation with the Beet Sugar Development Foundation (BSDF), announces the release of FC724 sugarbeet germplasm. This germplasm was developed in the breeding program of Drs. L. Panella and L. E. Hanson, USDA-ARS, Fort Collins, Colorado. FC724 has high resistance to root-rotting strains (AG-2-2) of *Rhizoctonia solani* Kühn and good to moderate resistance to cercospora leaf spot caused by *Cercospora beticola* Sacc., but is curly top susceptible. FC724 is an attempt to develop a population from which to select Rhizoctonia resistant monogerm O-type parents to infuse some rhizoctonia resistance on the female side of hybrids. There is no CMS equivalent. FC724 is released from seed production 961014.

FC724 is an O-type germplasm with 12% green hypoctoyls (116 plants counted) and is segregating for monogerm (mm). It is a product of 9 generations of cyclic mass selection for resistance to rhizoctonia root rot and 2 cycles of recurrent selection for high general combining ability. It originated from a cross of FC702 by selfed progeny lines from FC601/2 and selfed progeny lines from several leaf spot and the beet curly top virus (BCTV) resistant lines combined in 611100-0 (SLC122-0, US22/3,US201, US22/4 [SL92], SL202 [F₂ of US35/2 x US22/4]). FC601/2 consists of selected progeny lines from SL202 x SLC122-0. The original cross was approximately 20% 611100-0, 17% FC 601/2 and 63% FC702. Because the original crosses were made to male sterile plants (genetic male sterility - aa), it is possible that FC724 is segregating for genetic male sterility, but no male sterile plants were observed in the last seed production (961014).

Hybrid tester lines were produced with Fort Collins breeding lines to test for general combining ability in 1974 and 1977. Remnant, selfed seed from superior lines was recombined after each cycle of testing. The population has gone through 9 cycles of selection in the USDA-ARS rhizoctonia nursery in Fort Collins, has been O-type indexed to remove restorer genes from the population, and has been selected for monogerm seed throughout the development process. The smallest population size was 19 plants.

FC724 exhibited excellent resistance to rhizoctonia root rot when tested under strong disease pressure. FC724's performance was equal to or superior than the rhizoctonia-resistant checks in disease index (DI) ratings from 1998 through 2001, respectively (DI of 0 = no root rot and 7 = all plants dead). FC724 performed significantly better than the susceptible check (FC901/C817). FC724 had mean disease indices (DI=s) of 2.3, 3.1, 3.1, and 1.7 (1998-2001), whereas the highly resistant check (FC705/1) had DI=s of 2.7, 3.3, 3.1, and 1.6, respectively. Percentages of resistant plants (those rated 0 or 1) were 47, 16, 5, and 52 for FC724; 33, 22, 13, and 53 for the highly resistant check and 12, 12, 3, and 44 for the resistant check (FC703), respectively (1998-2001).

FC724 also exhibited some resistance to cercospora leaf spot when tested in an artificial epiphytotic. In two years of tests, it was significantly better than the susceptible check and not significantly different from the resistant check in one year and had significantly lower resistance than the resistant check in the other. The following DI ratings (DI of 0 = no leaf spot and 10 = all plants dead) represent the most severe rating (last of three or four ratings each season). The DIs of FC724 were 4.0 and 3.2; DIs of the resistant check (FC504CMS/FC502-2//SP6322-0) were 2.8 and 2.9; DIs of the susceptible check (SP351069-0) were 6.5 and 5.8, respectively. FC724 does not show tolerance to the BCTV.

In 2002, FC724 was yield tested for agronomic quality. One-row plots, replicated six times were planted at the USDA-ARS Crops Research Lab-Fort Collins Research Farm, CO, on May 3rd. Plots were 3.04 m long with 56 cm between rows and 20 to 25 cm within-row spacing. Roots were harvested on October 8th and sent to the tare lab of Western Sugar Co. (in Scotts Bluff, NE) for analyses. The average value of three commercial varieties - Beta 6045, HM1955, Monohikari - was used as a standard for comparison. In percent sucrose, FC724 was 96.3% of the standard and in sugar loss to molasses, FC724 was 97.9% of the standard.

Breeder seed of FC724 is maintained by USDA-ARS and will be provided in quantities sufficient for reproduction upon written request to Sugarbeet Research, USDA-ARS, Crops Research Laboratory, 1701 Center Ave., Fort Collins, CO 80526-2083. Genetic material of this release will be deposited in the National Plant Germplasm System where it will be available for research purposes, including development and commercialization of new varieties/cultivars. We request that appropriate recognition be made of the source when this germplasm contributes to a new cultivar. U.S. plant variety protection will not be requested for FC724.

Evaluation of Contributed Lines for Resistance to *Rhizoctonia solani*, a Causal Fungus of Sugar Beet Root Rot (BSDF Project 903)

L.E. Hanson and L. Panella USDA-ARS, Fort Collins, CO

Annually, for over thirty years, the sugar beet breeding program in Fort Collins has included the production of an artificial epiphytotic through inoculation with *Rhizoctonia solani* to evaluate and select for resistance to root rot caused by this pathogen. We have been pleased to participate and lead this cooperative research project between the ARS, Colorado State University, and the BSDF.

In 2002 the project involved field studies conducted at the Crops Research Lab-Fort Collins Research Farm near Wellington, CO. Randomized, complete-block designs with five replicates were used to evaluate ARS breeding germplasm and Plant Introduction accessions. *Rhizoctonia*-resistant line FC703, highly resistant FC705-1, and highly susceptible FC901/C817 were included as internal controls.

One-row plots, planted May 23rd, were 14 feet long with 22 inches between rows and 8-10 inches within-row spacing. Inoculation with dry, ground, barley-grain inoculum of *Rhizoctonia solani* AG2-2 isolate R-9 was performed on July 17th; immediately after inoculation, a cultivation was performed so as to throw soil into the beet crowns. The field was sprayed three times with Betamix Progress (June 26, July 10 and July 22) and twice with Upbeet (June 26 and July 10) and Stinger (July 10 and 22) to control weeds. The field was thinned by hand and irrigated as necessary. Beets were harvested September 4 through 7. Each root was rated for rot on a scale of 0 to 7 (dead) as previously described. ANOVAs were performed on disease indices (DIs), percent healthy roots (classes 0 and 1 combined), and percentage of roots in classes 0 thru 3. Percentages were transformed to arcsin-square roots to normalize the data for analyses. LSDs are provided for comparing entries with those of our internal checks.

2002 WEATHER Wellington, Colorado 40 Temperature (Degrees Celsius) 35 30 Rainfall (centimeters) 25 20 15 10 5 0 d day 198 -5 151 241 301 181 211 271 91 121 Day of Year Daily Max— Daily Min — Rainfall

Figure 1. Summary of the weather data for 2002 Rhizoctonia root rot nursery.

The high daytime temperatures in the summer of 2002 (Figure 1), combined with a moderate inoculum load, contributed to a severe root rot epidemic. Severe disease developed by early September. Mean DIs across all tests for highly resistant FC705-1, resistant FC703, and highly susceptible FC901/C817 controls were 1.7, 2.2, and 4.4 respectively. Percentages of healthy roots were 46.5, 34.2, and 10.4% for these controls. Percentages of roots in disease classes zero thru three were 85.9, 74.1, and 29.8, respectively. The highest and lowest DIs for the evaluated lines were 6.9 and 1.3, respectively.

USDA-ARS 2002 Rhizoctonia Disease Nursery, Fort Collins, CO.

Table 1. Summary data of the entire 2002 Rhizoctonia root rot nursery. The experiment mean, the mean of the susceptible check, the mean of the resistant check, and the mean of the highly resistant check are given for each of the experiments in the nursery. LSD is at the t=0.05 level.

		Dise	ease	ndex		Perce	ent He	althy (classes	0&1)	Per	cent i	n Clas	ses 0 to	0 3
Exp.	Mean	Sus.	Res.	H. Res.	LSD	Mean	Sus.	Res.	H. Res.	LSD	Mean	Sus.	Res.	H. Res.	LSD
1R	3.8	3.1	1.9	1.4	1.3	18.7	30.5	45.5	52.7	20.3	41.1	56.5	80.0	85.6	24.3
2R	5.0	4.9	2.0	1.9	1.3	3.0	3.7	35.6	34.3	8.9	28.6	26.6	79.5	90.0	25.4
3R	3.8	4.4	2.1	1.6	1.0	15.8	11.9	44.0	50.0	15.8	42.6	28.4	67.8	88.1	19.9
4R	4.5	4.6	2.5	3.0	1.3	5.4	6.5	20.6	5.5	13.4	32.8	29.1	67.6	58.7	26.5
5R	4.7	4.7	2.0	2.2	1:1	8.1	10.0	45.8	31.2	14.5	25.2	31.1	72.3	73.3	20.7
7R	3.0	5.1	2.9	1.7	0.9	26.2	9.1	27.5	50.1	19.6	57.0	23.7	59.6	81.4	19.2
8R	3.7	4.0	2.3	1.4	1.3	11.2	12.1	20.1	44.0	16.4	42.5	35.6	79.6	90.0	27.5
11R	2.4	3.5	1.3	1.5	0.8	40.6	23.0	63.4	49.9	18.8	65.0	45.3	86.0	86.0	16.9

Percent in Classes is the transformed value (arcsin-square root)

Mean = Experiment Mean;

Sus. = Susceptible Check (FC901/C817);

Res. = Resistant Check (FC703);

H Res. = Highly Resistant Check (FC705/1)

Evaluation of Contributed Lines for Resistance to *Cercospora beticola*, Causal Fungus of Cercospora Leaf Spot (BSDF Project 904)

L.E. Hanson and L. Panella USDA-ARS, Fort Collin, Colorado

The breeding program in Fort Collins has created an annual artificial epiphytotic through inoculation with *Cercospora beticola* for over forty years. This epiphytotic has been used to evaluate and select for resistance to leaf spot caused by *C. beticola*. We have been pleased to participate in and lead this cooperative research project between the ARS, Colorado State University, and the BSDF.

In 2002 the project primarily involved field studies conducted at the Crops Research Lab-Fort Collins Research Farm near Wellington, CO. Randomized complete-block designs, with three replications, were used to evaluate commercial and experimental entries. Internal controls included a highly susceptible synthetic (SP351069-0) and a resistant check (FC504CMS/FC502-2//SP6322-0). Two-row plots were 12 feet long, with 22-inch row spacing and an 8 - to 10-inch within-row plant spacing. The trial was planted on May 3. Inoculations were performed on July 12 and July 18. Evaluations were made on September 5, 14, 19, and 25, with the peak of the epidemic occurring around the last date. The field was sprayed three times with Betamix Progress (June 13, 21, and July 9) and twice with Upbeet (June 13 and 21) and Stinger (June 21 and July 9) to control weeds. The field was thinned by hand and irrigated as necessary.

Figure 2. Summary the 2002 weather data for our Cercospora Leaf Spot Nursery.

The high daytime and low nighttime temperatures in the summer of 2002 and very low moisture (14 cm or 5.9" between April and October, Figure 2) contributed to a mild leaf spot epidemic, which did not become severe enough to rate until the beginning of September. Disease severity increased through September. By the final rating, means of the resistant and susceptible internal control were 3.8 and 4.5 (scale of 0-10), respectively across the nursery. In 2001 (September 17) these means were 4.97 and 6.42, respectively. Means of contributor lines in 2002 ranged from 2.7 to 5.7.

USDA-ARS 2002 Cercospora Disease Nursery, Fort Collins, CO.

Table 2. Summary data of the entire 2002 Cercospora leaf spot disease nursery. The experiment mean, the mean of the susceptible check, and the mean of the resistant check are given for each of the experiments in the nursery, for each evaluation date.

		Septemi Diseas				•	ber 19 ^t e Index			Septem Diseas	ber 25 ^t e Index	
Exp.	Mean	Sus.1	Res. ²	LSD	Mean	Sus.	Res.	LSD	Mean	Sus.	Res.	LSD
1A	3.6	4.3	4.0	1.06	3.9	4.3	4.0	0.90	4.2	5.0	4.3	0.85
2A ³	3.2	4.0	3.0	1.00	3.5	4.0	3.0	1.34	3.9	4.5	3.5	0.91
3A	3.2	4.0	4.0	0.94	3.6	4.3	4.0	0.84	4.0	4.7	4.0	0.86
4A	3.1	3.3	3.0	0.96	3.5	4.0	3.7	1.07	3.8	4.3	3.7	0.73
5A	2.9	3.0	3.7	1.04	3.2	3.7	4.0	ns	3.7	4.3	4.0	0.87
6A	3.1	3.7	2.7	0.80	3.8	4.0	3.3	0.68	4.1	4.3	4.0	0.64
7A	3.0	4.0	3.3	ns	3.4	4.5	3.7	ns	3.7	5.0	3.7	0.87
8A ³	2.6	3.0	3.0	ns	2.9	3.5	3.0	ns	3.5	4.0	3.0	0.76
Mean	3.09	3.66	3.34		3.48	4.04	3.59		3.86	4.51	3.78	

¹Cercospora Susceptible Check - SP351069-0

²Cercospora Resistant Check - FC 504CMS/FC 502-2//SP6322-0

³There were only two replications of Experiment 2A & 8A.

Screening Biological Control Agents for *Rhizoctonia solani* Control on Sugar Beets (BSDF Project 420)

L.E. Hanson ¹, L. Panella ¹, A.L. Hill ¹, G.M. Preston² ¹USDA-ARS, Fort Collin, Colorado; ²University of Oxford, UK

Rhizoctonia root and crown rot (caused by the fungus *Rhizoctonia solani* Kühn) is the most common and most serious fungal root disease of sugar beet in the United States. The disease is endemic in beet producing areas of the United States. *Rhizoctonia solani* also causes a damping-off in sugar beet seedlings. If the infection is light, the fungus may cause crown rot or dry rot canker on maturing roots later in the season. Thus control of this fungus in the seedling stage might offer some reduction in disease later in the season, as well as improving crop stands.

Biological control can provide an alternative to chemical pesticides which are the subject of increasing regulation and restrictions due to environmental and public health concerns. Biological control is compatible with host genetic resistance and thus can be used in an IPM program. While resistance to *R. solani* is available, it does not provide complete immunity and resistance is not well expressed in seedlings, thus the addition of other control methods is desirable.

In 2002, four *Pseudomonas fluorescens* strains (PMS382, F113, SBW25, and ΔWSP) from G. M. Preston were used. All four strains showed biological control activity against *Pythium ultimum* in Dr. Preston's work. *Trichoderma virens* strains included two strains (G-6 and G-4) from Texas cotton field soil with activity against damping-off in cotton, two UV-mutants of strain G-6, one (AB1-5) with biological control activity on cotton and one (AB1-4) without biological control activity, and five one isolates obtained from sugar beet, LH-2, SB-1, T2, T3, and T33. In addition, two *T. koningii* strains (Tk-7 and TkG-12) and one *T. atroviride* strain were used in tests. Additional strains from sugar beet are being obtained and will be included in future tests.

In *in vitro* antibiosis tests against *R. solani*, one of the *P. fluorescens* strains, PMS382, gave the greatest inhibition, but all bacterial isolates inhibited *R. solani* growth on PDA. In tests with *Trichoderma*, PMS382 inhibited the growth of all strains of *Trichoderma* tested. The three other *P. fluorescens* strains did not significantly inhibit growth of any of the *T. virens* strains, indicating that these bacterial and fungal strains may be used in combination. Growth of *T. atroviride* and *T. koningii* was inhibited by F113, but not by SBW25 or Δ WSP. None of the *Pseudomonas* strains were significantly inhibited by any of the fungal strains. When seed was soaked in a *Pseudomonas* suspension (F113 or SBW25), air dried, and treated with *T. virens* grown in wheat bran+peat moss, both *Pseudomonas* and *T. virens* could be isolated from the seed.

In antibiosis tests against *R. solani*, *T. virens* strains G-6, T2, T3, T33 and SB-1 inhibited *R. solani*, while G-4, AB1-5, LH-2 and AB1-4 showed no inhibitory activity. Strain G-6 is a "q" strain of *T. virens* that produces the antibiotic gliotoxin, which has activity against *R. solani*. Strain G-4 is a "p" stain of *T. virens* that produces the antibiotic gliovirin, which has activity against *Pythium ultimum*, but not against *R. solani*. Our results indicate that T2, T3, T33, and SB-1, which we isolated from sugar beet roots, are "q" strains. In studies in 2001, the *T. atroviride* strain and *T. koningii* strain Tk-7 had not inhibited *R. solani in vitro* while *T. koningii* strain TkG12 showed weak inhibition of *R. solani*.

In greenhouse tests for biological control activity, seed treatment with wheat bran+peat moss preparations of G-6, LH-2, and AB1-5 significantly increased seedling survival in all tests (example see table 3). Seed treatment with SB-1 and G-4 each showed significantly increased seedling survival in more than half of all tests, but survival was lower than with G-6 and results were more

variable. T2, T3, and T33 each showed activity in at least one test, but survival was lower than with G-6. No significant increase in survival was observed with AB1-4 in any tests. All of the *T. virens* strains colonized the root system well. No significant disease control was observed for the *T. atroviride* or *T. koningii* strains.

In field tests for biological control activity, seed treatment with wheat bran+peat moss preparations of SB-1 significantly increased seedling survival (Table 3). No significant increase was detected for G-6 or LH-2. Differences between activity in greenhouse and field tests are not unusual with biological control agents. For example, isolate G-6 was from acid soil and is reported to provide control in acid soils, but little or no control in alkaline soils. The soil in this field was approximately pH 7.6.

No detectable growth promotion was observed with any of the *Trichoderma* strains on sugar beet seedlings. There were no significant differences in seedling height, shoot weight, or root weight between control plants and those treated with *Trichoderma* in the absence of *R. solani*.

Table 3. Emergence and survival of sugar beet (FC403) seedlings with and without *R. solani* (AG2-2) treated with a wheat bran + peat moss preparation of *T. virens* strain G-6 or with the wheat bran + peat moss carrier alone.

Treatment	Percent survival, greenhouse ¹	Percent survival, field ²
Carrier control	44 ab ³	58 a
G-6	48 ab	68 a
LH-2	66 a	57 a
SB-1	46 ab	57 a
AB1-4	33 bc	59 a
R. solani (R9)	8 d	10 c
AB1-4 + R. solani	19 cd	9 c
LH-2 + R. solani	41 bc	13 c
SB-1 + R. solani	33 bc	22 b
G-6 + R. solani	30 с	12 c

Average percent seedling survival from three replicates 14 days after planting in the greenhouse.

² Average percent seedling survival from six replicates 21 days after planting under field conditions.

³ Percentages in the same column followed by the same letter are not significantly different by Fischer's LSD3 (α =0.05).

Variability in Fusarium oxysporum from sugar beets in the Central High Plains growing areas (BSDF Project 421)

L.E. Hanson, L. Panella, A.L. Hill USDA-ARS, Fort Collin, Colorado

Fusarium yellows causes significant reduction in root yield, sucrose percentage and juice purity in affected sugar beets (Schneider & Whitney 1986). Research in our laboratory and others on variability in *Fusarium oxysporum* associated with sugar beets demonstrated that isolates that are pathogenic on sugar beet can be highly variable. A better understanding of this variability is important in the efforts to test for Fusarium yellows resistance in beets and efforts to breed for resistance.

In 2001, 62 Fusarium isolates were obtained from sugar beets and identified to species. In 2002, these isolates were tested for pathogenicity on sugar beet. From the 42 F. oxysporum isolates identified from the 2001 collection, eight were pathogenic on sugar beets in greenhouse tests. In addition to the F. oxysporum isolates, isolates of F. acuminatum, F. avenaceum, F. equiseti, F. moniliforme and F. solani were obtained from diseased sugar beet, all of which have been reported from growing sugar beets. One isolate each of F. acuminatum, F. avenaceum, F. moniliforme and F. solani caused moderate levels of Fusarium yellows symptoms. F. acuminatum previously has been reported to cause yellows-type symptoms in sugar beet (Ruppel 1991), but F. avenaceum and F. solani have been reported to cause seedling disease (Ruppel 1991) or postharvest rot (Bosch & Miroch 1992) but not typical yellows.

In 2002, 115 isolates of Fusarium were obtained. To date, we have identified 49 F. oxysporum isolates as well as isolates of F. solani, F. avenaceum, F. acuminatum, F. equiseti, F. proliferatum, and F. subglutinans. Fusarium subglutinans has been reported from stored sugar beet (Bosch & Miroch 1992), but not from actively growing beets. These isolates are being tested for pathogenicity in the greenhouse. In addition, three F. oxysporum f. sp. spinaciae isolates were kindly provided by Dr. L. duToit. These isolates were obtained from spinach and had been demonstrated to be pathogenic on spinach. In greenhouse tests, all three spinach isolates were pathogenic on sugar beet with a moderate level of virulence.

Isolates of *F. oxysporum* so far obtained in this study include isolates from California, Colorado, Minnesota, Montana, Nebraska, North Dakota, Oregon, Washington, and Wyoming. Pathogenic isolates are primarily from Colorado, with a few pathogenic isolates from Montana, Oregon, and Washington. DNA has been extracted from all pathogenic isolates obtained in 2000 and 2001 to be used in RAPD analysis to examine genetic variability.

To look for differences in host response in different isolates, an isolate of *F. oxysporum* from Oregon that was moderately virulent on sugar beet susceptible germplasm FC716 and an isolate from Colorado that was highly virulent on FC716 were tested on 9 beet lines with reported resistance to Fusarium yellows. On FC716, the susceptible control (Fig. 3), the highly virulent isolate (FOB 216c) caused higher disease levels than did the moderately virulent isolate (FOB 13). Similar results were observed for five of the resistant lines (example Fig 4), with overall disease levels lower on these lines than for the susceptible line. On two of the resistant lines, the two *Fusarium* isolates did not cause significantly different disease levels (example Fig 5). On two resistant lines, isolate FOB13 was significantly more virulent than FOB216c (example Fig 6). This demonstrates variability in the interaction between different *F. oxysporum* isolates and sugar beet lines.

Figure 3. Disease severity ratings for two *F. oxysporum* isolates on susceptible (S) control sugar beet line. Each point is an average from 10 plants.

Figure 4. Disease severity ratings for two *F. oxysporum* isolates on a resistant sugar beet line. Response pattern typical for the majority of the lines tested, with FOB 216c giving a higher disease severity rating that FOB 13.

Figure 5. Disease severity ratings for two *F. oxysporum* isolates on a resistant sugar beet line. Response pattern seen with two lines, with no significant difference between the two fungal isolates.

Figure 6. Disease severity ratings for two *F. oxysporum* isolates on a resistant sugar beet line. Response pattern seen with two lines, with isolate FOB 13 causing significantly higher disease ratings than FOB 216c.

References.

- Bosch, U. and C.J. Miroch. 1992. Toxin production by *Fusarium* species from sugar beets and natural occurrence of zearalenon in beets and beet fibers. Applied and Environmental Microbiology. 58:3233-3239
- Ruppel, E.G. 1991. Pathogenicity of *Fusarium* spp. from diseased sugar beets and variation among sugar beet isolates of *F. oxysporum*. Plant Disease. 75:486-489
- Schneider, C.L. and E.D. Whitney. 1986. Fusarium Yellows. In Compendium of Beet Diseases and Insects, E.D. Whitney and J.E. Duffus, Ed. APS Press. St. Paul, Minn. Pg. 18.

Rhizoctonia Root Rot Resistance And Development of Genetic Resistance in Sugar Beet (BSDF Project 440)

L. Panella & L. E. Hanson USDA-ARS Fort Collins, Colorado

Rhizoctonia root rot continues to be a problem in most sugar beet-growing areas in the United States, and is a growing problem world wide. The practice of short rotations and the expansion of growing areas into infested areas compound the problem. The result is a reduction in net returns to growers as well as processing losses due to reduced sucrose and purity of rotted or partially rotted beets. Genetic resistance, coupled with judicious cultural measures, is a more economical and practical method of reducing losses caused by this fungus than is a strictly chemical control regime. There is also a strong need of combining Rhizoctonia root rot resistance with Rhizomania resistance.

This has been an ongoing and productive project, and has been the only public research project with the goal of discovering, developing, and releasing *Rhizoctonia*-resistant germplasm to industry breeders, our major external customers. Although several relatively resistant germplasms have been developed, we need to continue to combine this resistance with resistance to other diseases, and to develop a faster means of introgressing this resistance into more commercially acceptable materials.

Summary of Literature

Twenty-five years ago, Leach and Garber (1970) reviewed resistance to *Rhizoctonia* infection and concluded, "In general, while it has been possible to identify differences among cultivars or selections in susceptibility to Rhizoctonia infection, it is extremely rare that a high degree of resistance has been found or produced by selection or breeding within a susceptible host species." However, one of the most effective and environmentally safe ways to manage plant disease is with resistant germplasm (Sherf and MacNab, 1986). Soilborne pathogens like *Rhizoctonia* are often difficult to control chemically. Fumigation is expensive, providing only a temporary solution. The use of Quadris^{TM1} provides the first real chemical control for this disease. However, we are finding that timing of application is crucial. Additionally, spot spraying can be time consuming, and spraying a whole field because of a few patches of disease also can be expensive. The use of resistant germplasm, coupled with crop rotation and other cultural practices, can provide excellent management of diseases caused by *Rhizoctonia solani*.

In sugar beet (*Beta vulgaris* L.), Rhizoctonia root- or crown-rot is caused by *Rhizoctonia solani* (AG-2-2). Seedling damping-off in sugar beet primarily is caused by *R. solani* AG-4. Root-rot is endemic in sugar beet growing areas across the United States. John Gaskill began breeding for resistance in the late 1950s and released his first resistant germplasm in 1966 (Gaskill, 1968). Current *Rhizoctonia*-resistant germplasm has a level of resistance in which there is no yield loss under disease pressure in the field (Ruppel and Hecker, 1994). It was realized early that natural field epiphytotics did not produce the necessary consistent, uniform disease pressure for recurrent mass selection (Pierson and Gaskill, 1961). Artificially induced epiphytotics (Ruppel et al., 1979; Schneider et al., 1982) were developed to provide uniform, heavy disease pressure to be able to

¹Mention of a trademark or manufacturer by the USDA does not imply its approval to the exclusion of other products or manufacturers.

perform mass selection or recurrent field selection (Hecker and Ruppel, 1977).

The resistance to *R. solani* in sugar beet developed by John Gaskill is polygenic, involving at least two loci, two or three alleles, and modifying genes in some populations (Hecker and Ruppel, 1975). Broad-sense heritability has been estimated at about 0.65, and there are nonadditive components of the variance (Hecker and Ruppel, 1975). In a study by Hecker and Ruppel (1976) dominance effects were present in diploid, triploid, and tetraploid resistant hybrids. Relatively high heritability has aided in the development of increasing host plant resistance to Rhizoctonia root- and crown-rot, and we have released over 15 germplasm lines in the last 10 years. *Rhizoctonia* resistance has been released in O-type maintainer, CMS female, and multigerm-pollinator germplasm and remains a very important means of reducing crop damage by this disease (Herr, 1996). Genetic resistance to Rhizoctonia root rot has been an ongoing development from this project at Fort Collins. Several resistant germplasms have been released in the last five year to use as parents of hybrid cultivars or to provided source populations from which *Rhizoctonia*-resistant parents were selected or which were crossed to provided resistant parents (Panella and Ruppel, 1996; Panella and Ruppel, 1997; Panella, 1999; Panella, 2001).

Epidemiological and control studies have been reported regularly from this project (Ruppel et al., 1988). Pathogen survival in varied crop debris and soil and the interaction of pesticides with *Rhizoctonia* have been reported on the literature (Ruppel, 1985; Ruppel 1991; Ruppel and Hecker, 1982; Ruppel et al., 1982). In a 3-year study, positive significant or highly significant correlations between disease severity indices and percent decreases in yield and purity parameters indicated that there were no hidden losses to Rhizoctonia root rot in our resistant germplasms (Ruppel and Hecker, 1994).

Recently, researchers attempting to determine the anastomosis group (AG) of *Rhizoctonia solani* isolates have used several new biotechnological techniques (including RFLP, RAPD, and isozyme analyses), with some notable successes in distinguishing among, and even within, some of these groups. Recently there was a report of a definitive assay to distinguish those isolates in AG-2-2 or AG-4 that cause sugar beet root rot and damping-off, respectively, from nonpathogenic isolates obtained from soil (Lubeck and Poulsen, 2001).

References

Gaskill, J. O. 1968. Breeding for Rhizoctonia resistance in sugarbeet. J. Am. Soc. Sugar Beet Technol. 15:105-119.

Hecker, R. J. and E. G. Ruppel. 1975. Inheritance of resistance to Rhizoctonia root-rot in sugarbeet. Crop Sci. 15:487-490.

Hecker, R. J. and E. G. Ruppel. 1976. Polyploid and maternal effects on Rhizoctonia root rot resistance in sugarbeet. Euphytica 25:419-423.

Hecker, R. J. and E. G. Ruppel. 1977. Rhizoctonia root-rot resistance in sugarbeet: breeding and related research. J. Am. Soc. Sugar Beet Technol. 19:246-256.

Herr, L. J. 1996. Sugar beet diseases incited by *Rhizoctonia* spp. Chap. V.10. In: *Rhizoctonia* Species: Taxonomy, Molecular biology, Ecology, Pathology and Disease Control. (Eds: Sneh, Baruch; Jabaji-Hare, Suha; Neate, Stephen; Dijst, Gerda) Kluwer Academic Publishers, Dordrecht, 341-350.

- Leach, L. D., and R. H. Garber. 1970. Control of Rhizoctonia. In: *Rhizoctonia Solani*: Biology and Pathology. (Ed: Parmeter, Jr, John R. J) University of California Press, Berkeley, 189-199.
- Lubeck, M. and H. Poulsen. 2001. UP-PCR cross blot hybridization as a tool for identification of anastomosis groups in the *Rhizoctonia solani* complex. FEMS Microbiol. Lett. 201(1):83-89.
- Panella, L. and E.G. Ruppel. Registration of FC725, FC726, AND FC728 sugarbeet germplasms resistant to Rhizoctonia root rot and moderately resistant to Cercospora leaf spot. Crop Sci. 36(3):819-820. 1996.
- Panella, L. and E.G. Ruppel. Registration of sugarbeet germplasms FC721 and FC721CMS resistant to Rhizoctonia root rot and moderately resistant to the beet curly top virus. Crop Sci. 37(5):1675-1676. 1997.
- Panella, L. Registration of FC709-2 AND FC727 sugarbeet germplasms resistant to Rhizoctonia root rot and Cercospora leaf spot. Crop Sci. 39(1):298-299. 1999.
- Panella, L. Registration of FC712 (4X) tetraploid, multigerm sugarbeet germplasm. Crop Sci. in press. 2001
- Pierson, V. G. and J. O. Gaskill. 1961. Artificial exposure of sugar beets to *Rhizoctonia solani*. J. Am. Soc. Sugar Beet Technol. 11:574-590.
- Ruppel, E. G. 1985. Susceptibility of rotation crops to a root rot isolate of *Rhizoctonia solani* from sugar beet and survival of the pathogen in crop residues. Plant Dis. 69, 871-873.
- Ruppel, E. G. 1991. Survival of *Rhizoctonia solani* in fallow field soil and buried sugarbeet roots at three depths. J. Sugar Beet Res. 28(3 & 4), 141-153.
- Ruppel, E. G., R. L. Gilbertson and E. E. Schweizer. 1988. Population densities of selected soil-borne fungi and disease incidence in a crop rotation under varied weed-management systems. Agr. Ecosys. Envir. 21, 163-169.
- Ruppel, E. G. and R. J. Hecker. 1982. Increased severity of *Rhizoctonia* root rot in sugar beet treated with systemic insecticides. Crop Protection 1(1), 75-81.
- Ruppel, E. G. and R. J. Hecker. 1994. Rhizoctonia root rot on sugarbeet cultivars having varied degrees of resistance. J. Sugar Beet Res. 31:135-142.
- Ruppel, E. G., R. J. Hecker and E. E. Schweizer. 1982. *Rhizoctonia* root rot of sugarbeet unaffected by herbicides. J. Am. Soc. Sugar Beet Technol. 21(3), 203-209.
- Ruppel, E.G., C. L. Schneider, R. J. Hecker, and G. J. Hogaboam. 1979. Creating epiphytotics of *Rhizoctonia* root rot and evaluating for resistance to *Rhizoctonia solani* in sugarbeet field plots. Plant Dis. Rep. 63:518-522.
- Schneider, C. L., E. G. Ruppel, R. J. Hecker, and G. J. Hogaboam. 1982. Effect of soil deposition in crowns on development of *Rhizoctonia* root rot in sugar beet. Plant Dis. 66:408-410.
- Sherf, A. F. and A. A. MacNab. 1986. Vegetable Diseases and Their Control. Wiley, New York. 728 p.

OBJECTIVES:

- 1. Plant mother roots and selections for seed production and ultimate release to breeders for use as populations from which to develop *Rhizoctonia* and rhizomania-resistant parents in hybrid cultivars.
- 2. Combine resistance to *Rhizoctonia* with that of other important pathogens (esp. Rhizomania) in germplasm with good agronomic performance.
- 3. Develop *Rhizoctonia*-resistant populations from different genetic sources of resistance.
- 4. A longer range goal (in collaboration with Mitch McGrath, USDA-ARS East Lansing) is the development of molecular markers linked to the genes in sugar beet controlling resistance to R. solani.

Materials and Methods:

Field isolation plots and greenhouse isolation chambers in Fort Collins will be used for seed production from mother roots and selections of advanced germplasms having been field selected for resistance to Rhizoctonia root rot. The Fort Collins environment has proven extremely valuable in these efforts. The arid climate, low organic matter content of the soils, and hot, dry winds are not conducive to the development of soilborne or foliar diseases. Therefore, when artificial epiphytotics, developed by Gaskill and Ruppel, are created to test sugarbeet for resistance to Rhizoctonia root rot there is little confounding of the results by the presence of other diseases.

Selected resistant populations resulting from crosses with material containing the single Rz gene source of resistance to Rhizomania will be sent to Salinas for field selection for Rhizomania resistance. Alternating cycles of selection in Salinas and Fort Collins (and Kimberley, ID for curly top resistance) will be used to increase disease resistance. Seed increases will be made and the germplasms will be released as adequate seed becomes available.

Molecular genetic studies will concentrate on looking at the response of the sugar beet to attack by *Rhizoctonia solani*. A longer range goal (in collaboration with Mitch McGrath, USDA-ARS East Lansing) is the development of molecular markers linked to the genes controlling resistance to *R. solani*. Populations are being developed at East Lansing for this purpose and molecular markers (SSRs & AFLPs) at both Fort Collins and East Lansing.

2002 Field Research on Rhizoctonia Root Rot of Sugar Beet.

Annually, for over thirty years, the sugar beet breeding program in Fort Collins has included the production of an artificial epiphytotic through inoculation with *Rhizoctonia solani* to evaluate and select for resistance to root rot caused by this pathogen. We have been pleased to participate and lead this cooperative research project between the ARS, Colorado State University, and the BSDF.

In 2002 the project involved field studies conducted at the Crops Research Lab-Fort Collins Research Farm near Wellington, CO. Randomized, complete-block designs with five replicates were used to evaluate ARS breeding germplasm and Plant Introduction accessions. *Rhizoctonia*-resistant line FC703, highly resistant FC705-1, and highly susceptible FC901/C817 were included as internal controls.

One-row plots, planted May 23rd, were 14 feet long with 22 inches between rows and 8-10

inches within-row spacing. Inoculation with dry, ground, barley-grain inoculum of *Rhizoctonia* solani AG2-2 isolate R-9 was performed on July 17th; immediately after inoculation, a cultivation was performed so as to throw soil into the beet crowns. The field was sprayed three times with Betamix Progress (June 26, July 10 and July 22) and twice with Upbeet (June 26 and July 10) and Stinger (July 10 and 22) to control weeds. The field was thinned by hand and irrigated as necessary. Beets were harvested September 4 through 7. Each root was rated for rot on a scale of 0 to 7 (dead) as previously described. ANOVAs were performed on disease indices (DIs), percent healthy roots (classes 0 and 1 combined), and percentage of roots in classes 0 thru 3. Percentages were transformed to arcsin-square roots to normalize the data for analyses. LSDs are provided for comparing entries with those of our internal checks.

The high daytime temperatures in the summer of 2002 (Figure 1), combined with a moderate inoculum load, contributed to a severe root rot epidemic. Severe disease developed by early September. Mean DIs across all tests for highly resistant FC705-1, resistant FC703, and highly susceptible FC901/C817 controls were 1.7, 2.2, and 4.4 respectively. Percentages of healthy roots were 46.5, 34.2, and 10.4% for these controls. Percentages of roots in disease classes zero thru three were 85.9, 74.1, and 29.8, respectively. The highest and lowest DIs for the evaluated lines were 6.9 and 1.3, respectively.

Table 4. Allotment of Fort Collins "FC" numbers (3-digit numbers)

"FC" numbers are "convenience" numbers for "seed releases" or purposes where a permanent line designation is needed — i.e. a number that does not change from generation to generation where little or no selection pressure is applied. Initially, an "FC" no. was written thus "FC 501" [now FC727], "FC 502 CMS" [now FC715CMS], etc. Sublines (from selfing) were designated thus, "FC 502/2" [now FC709-2], "FC502/3" [now FC502-3], etc. The same applies when the line is substantially changed by selection without selfing.

Below 500	Originally LeRoy Powers - now parental lines and special genetic stocks.
500's	Leaf Spot Resistant (LSR), Type-O lines & male steriles [CMS]
600's	LSR-Curly Top Resistant (CTR), type-O lines & male steriles [CMS]
700's	Rhizoctonia Resistant
800's	LSR-CTR-Rhizoctonia resistant
900's	Pollinators, LSR-CTR type

This year, I also completed a third year of evaluation of most of the *Rhizoctonia*-resistant lines released from the USDA-ARS breeding project at Fort Collins (Table 7). This is a test from 2001 under the same conditions as the other contributor lines in this year's test.

Rhizoctonia-Resistant Populations Under Development

Rhizoctonia root rot continues to be a problem in most sugar beet-growing areas in the United States, and is a growing problem world wide. The practice of short rotations and the expansion of growing areas into infested areas compound the problem. The result is a reduction in net returns to growers as well as processing losses due to reduced sucrose and purity of rotted or partially rotted beets. Genetic resistance, coupled with judicious cultural measures, is a more economical and practical method of reducing losses caused by this fungus than is a strictly chemical control regime. There is also a strong need of combining Rhizoctonia root rot resistance with Rhizomania resistance.

This has been an ongoing and productive project, and has been the only research project with the goal of discovering, developing, and releasing Rhizoctonia-resistant germplasm to industry breeders, our major external customers. Although several relatively resistant germplasms have been developed, we need to continue to combine this resistance with resistance to other diseases, uncover new sources of resistance, and work to more quickly introgress this resistance into germplasm with higher sucrose yield potential.

Current Research 2002 - Germplasm under development:

With the release of FC720, FC722, FC722CMS, FC723, FC723CMS, FC724 and FC710(4X) in 2003, most of the germplasm remaining from the program of Dr. Richard Hecker will have been evaluated, improved and released or shelved. Current Rhizoctonia-resistant germplasm under development consists of populations being jointly developed with Dr. Robert Lewellen in Salinas (numbers one and two below). These populations are being improved to combine *Rhizoctonia* and Rhizomania resistant in a genetic background with good sucrose yield potential. Additionally, a population under development with Larry Campbell has the potential of providing root maggot resistance along with *Rhizoctonia* resistance.

- 1. *Rhizoctonia*-resistant monogerm polycross base population developed by a cross between FC708 and two Salinas germplasms, 2890 and 2859.
 - A. 2890 (sp) 0790 mm aa x 1890 (Salinas); is seed from aa plants open pollinated by A-plants. $0790 = \text{population-}790 \text{ cycle } 5 \text{ synthetic by S}_1 \text{ progeny, M.S. mm, O-type, good combining ability, adapted to California, S}_1^f$, 1890 = BC population to population 790 to get Rz equivalent, remains variable for M-:mm, Rz-:rzrz, etc.
 - A. 2859 m (sp) = 1859, 1859R aa x A- (Salinas); Released in 1992 as C859. Sf, similar to 2890, but should have higher curly top resistance (CTR). Segregates and variable for M-:mm, Rz-:rzrz, A-:aa, predominant background is lines like C563, which is widely used in western USA as source of CTR, mm, O-type.
- 2. Rhizoctonia root rot resistance multigerm base population developed by a cross between FC709-2 and a Salinas germplasms, 2915.
 - A. 2915 (sp) RZM 1915-#m 1913-# aa x A (Salinas); Seed harvested from aa (ms) plants open-pollinated by A- (fertile) plants. This population will segregate for A-:aa, Rz-:rzrz, s^ss^s:s^f-, (>½ s^f), R-:rr, It will be multigerm, have moderate to good tolerance to virus yellows, curly top, bolting, *Erwinia*; variable for reaction to powdery mildew, production traits. Individual plants will be either As or aa.

Background of population is mostly from OP, MM lines such as C46, C37.

Progress in 2002

- 1. Final testing and seed increase of monogerm O-type lines with and without and CMS equivalents, selected in the 1996 Rhizoctonia nursery were completed and those lines (listed above) will be released. (Table 5, 6 & 7 Experiments 7R, 2001; 7A, 2001; & 7R 2002).
- 2. This population (FC708/2890&2859) has been divided into three breeding lines. One has been selected for resistance to curly top (selfed progeny tested in Kimberley, ID) and *Rhizoctonia* (individual plants selected in the Fort Collins nursery), and is currently being increased for testing and re-selection. Another population has been selected for resistance only to *Rhizoctonia* (individual plants selected in the Fort Collins nursery), and is currently being increased for testing and re-selection. The third line was selected for Rhizomania resistance and agronomic performance (individual plants selected in the Salinas nursery) and is currently being re-selected and recombined for further testing (Table 8 Experiment 4R, 2001).
- 3. This population (FC709-2/2915) has been divided into four breeding lines selected in Fort Collins, CO, and Kimberley, ID. Two have been selected for resistance to *Rhizoctonia* (individual plant selections and half-sib families selections), one was selected for resistance to *Rhizoctonia* and curly top virus (half-sib families selections), and one was selected for resistance to curly top (half-sib families selections). Three of the populations were planted in Dr. R. Lewellen's Rhizomania/steckling nursery for selection for resistance to rhizomania (*Rz* gene source) and for agronomic performance. Selected roots will be increased for further sucrose and rhizomania testing, selection, and release.
- Seed, increase from *Rhizoctonia*-resistant selected roots of FC907 ((FC701 x FC607)BC₄), was tested in the Rhizoctonia and Cercospora nurseries. Selections made in a (FC709-2 x FC907)F₂ population in the *Rhizoctonia* nursery were increased in the greenhouse and tested in the Rhizoctonia and curly top nurseries. This population will be re-selected in the Rhizoctonia nursery and then tested in the Rhizoctonia, Cercospora, and curly top nurseries and evaluated for release (Table 7 Experiment 7R, 2002; Table 8 4R 2001; Table 10 Experiment 7A, 2002; Table 11).
- 5. A number of accessions from the NPGS *Beta* collection that have shown *Rhizoctonia*-resistance in the screening program have been identified. They will be re-screened in 2003. Special attention will be paid to those accessions screened in 1987 and 1992 because the tests in those years appears to have been unreliable. Crosses will be made between any that appear to have resistance using a female parent with high sucrose yield potential. The goal is to develop *Rhizoctonia*-resistant populations from potentially different sources of resistance. These will be available from which to choose resistant hybrid parents or germplasm to cross into programs developing *Rhizoctonia*-resistant hybrid parents (See table 9).

Table 5. Experimen	t 7R, 2001. Rhiz	zoctonia Evaluat	ion of US	DA-ARS Fo	rt Collins	Released Ger	rmplasm.
-	Seed Source	Release	DI^1	% Hlthy2	$\% 0 - 3^3$	Z% ⁴ Hlthy	$Z\% 0 - 3^4$
		(<3.84) LSD ⁵	0.76			16.79	17.96
Susceptible Check ⁶		941025	4.6	3	23	6.1	24.9
Experiment Mean			2.3	33	83	32.1	72.0
	751080H	FC7038	2.6	21	76	21.6	63.6
	831083	FC705/1 ⁷	1.6	55	98	47.8	86.0
	961015	FC720-1	1.7	47	99	43.3	87.4
	961010HO	FC722-1	2.4	17	85	19.0	72.1
	961010HO1	FC722CMS	2.4	13	95	16.3	84.0
	951016HO	FC723	2.1	38	91	37.1	79.3
	951016HO1	FC723CMS	2.1	27	93	29.9	74.7
	961014	FC724	1.7	41	99	38.8	87.2
	971017	FC710(4X)	2.5	15	87	15.0	79.0

Disease Index is based on a scale of 0 (=healthy) to 7 (= plant dead).

Table 6. Experiment 7A, 2001. Leaf Spot Evaluation of USDA-ARS Fort Collins experimental breeding lines.

			Disease	e Index ¹	
Entry	Identification	Sept. 3 rd			Sept. 24th
	LSD _{0.05}	1.05	1.24	1.15	1.21
	CV	23.6	22.3	15.0	19.4
LSS ² (931002)		4.3	5.3	6.0	5.7
LSR ³ (821051H2)		2.7	2.3	4.8	4.0
Trial Mean		2.7	3.4	4.7	3.8
(FC907 X FC709-2)-sel single family	20001008	1.7	2.3	2.7	2.3
FC715	911026HO	2.3	2.2	3.3	2.7
FC709-2	20001016HO	1.8	2.2	3.3	2.5
FC723 - EL44/FC708 mm	951016HO	2.7	2.7	3.7	2.7
FC723 CMS - EL44/FC708 CMS	951016HO1	3.0	2.7	4.0	3.2
(FC907 X FC709-2)-sel multiple families	20001009	2.3	3.0	4.2	4.0
FC907-1 - FC607/FC701 BC4	971020	2.2	3.0	4.5	3.3
FC712/MonoHy A4 - CMS equivalent	20011003HO	2.8	4.2	4.8	4.2
	. 1				
FC722 CMS - C718/FC708 CMS	961010HO1	2.3	3.5	5.0	4.0
FC607	97A050	2.3	3.2	5.3	4.3
Rhx=zcRmm (991001) (2859&2890) xFC708	20011016	3.2	4.0	5.5	4.7
(2859 & 2890 X FC607 & FC604) CTR	981011H	3.3	4.0	5.5	5.0
FC722-1 - C718/FC708	961010HO	2.8	5.0	6.0	5.0
FC712/MonoHy A4	20011003HO		3.5	6.0	4.0

¹Disease Index is based on a scale of 0 (=healthy) to 10 (=dead).

²Percent of healthy roots (disease classes 0 and 1 combined).

³Percent of diseased roots likely to be taken for processing (disease classes 0 through 3 combined).

⁴Percentages were transformed to arcsin-square roots to normalize the data for analyzes.

⁵P=0.05

⁶FC901/C817

⁷FC705/1 Highly resistant check

⁸FC703 Resistant check

²The Leafspot Susceptible Check is SP351069-0.

³The Leafspot Resistant Check is ((FC504CMS x FC502/2) x SP6322-0).

Entry	Seed Source	Table 7. Experiment 7R, 2002. Rhizoctonia Evaluation of USDA-ARS Fort Collins Released Germplasm Entry Seed Source Release/Description	Fort Collins	Releas DI	sed Germpl % Hithy ²	asm. % 0 - 3³	Z% Hithy	Z% 0 - 3 ⁴
		(<4.19 significantly better than susceptible check)	eck) LSD ⁵	06.0			19.75	19.27
		Susceptil	Susceptible Check ⁶	5.1	9	21	9.1	23.7
		Experin	Experiment Mean	3.0	5 6	67	26.2	92.0
941	931024	FC701	5	4 2	7	34	114	376
942	761068H	FC701-4		2.6	30	74	32.1	59.4
943	721056	FC701-5		2.6	35	74	29.9	62.4
944	801059H	FC701-6		2.1	43	98	38.0	71.1
945	681009-0	FC702		4.6	0	43	0.0	36.1
946	991016	FC702/2		3.7	4	46	7.1	42.6
947	20011009	FC702-4(4X)		2.8	33	<i>L</i> 9	31.8	55.3
948	811055H	FC702-6		2.1	45	98	39.1	72.8
949	751080H	FC7038		2.9	23	69	27.5	9.69
950	19991017	FC703		2.9	21	65	26.9	54.4
951	931021	FC704		6.2	0	0	0.0	0.0
953	781066H	FC705		2.3	34	83	34.4	0.69
954	20001019	FC705		2.0	39	92	38.2	75.3
955	831083.0	FC705/17		1.7	28	94	50.1	81.4
926	20001020.0	FC706		2.9	25	64	26.7	56.0
957	20001021.0	FC707		2.3	40	78	39.2	62.2
928	831085HO	FC708		2.5	27	77	27.7	64.5
096	20001016HO	FC709-2		1.7	51	66	45.7	86.9
196	891033	FC710		2.2	39	84	38.1	8.89
962	971017	FC710(4X)		2.0	35	6	32.9	85.1
696	20001022	FC710(4X)		2.4	31	80	29.9	6.99
964	821087	FC711		3.0	2	99	8.1	57.4
965	881032H	FC712		2.1	50	81	45.2	65.0
996	971018	FC712(4X)		1.7	57	93	49.1	80.5
296	911026HO	FC715		2.9	33	89	29.5	62.3
896	971019	FC716		2.5	28	9/	28.7	63.7
696	981025	FC717		3.5	6	20	11.4	45.5
970	911032	FC718		2.5	27	75	28.2	8.09
971	911037	FC719		2.7	27	71	27.7	58.2

Table 7.	Experiment 7R	Experiment 7R, 2002. Rhizoctonia Evaluation of USDA-ARS Fort Collins Released Germplasm	Relea	sed Germpl	asm.		
Entry	Seed Source	Release/Description	٦	% Hithy ²	% 0 - 3 ₃	Z% Hithy	Z% 0 - 34
		(<4.19 significantly better than susceptible check) LSD ³	06.0			19.75	19.27
		Susceptible Check ⁶	5.1	9	24	9.1	23.7
		Experiment Mean	3.0	5 6	29	26.2	22.0
		CV	24.7				
972	961015	FC720-C718/(C718/FC708)	2.4	30	81	30.1	67.1
973	931005HO	FC721	2.9	31	63	30.4	55.4
974	931005HO1	FC721CMS	3.4	11	51	16.8	45.9
975	961010HO	FC722 - C718/FC708	3.6	10	99	0.6	51.0
9/6	961010HO1	FC722CMS - C718/FC708CMS	3.8	6	37	10.9	33.8
677	951016HO	FC723 – EL44/FC708 mm	2.6	27	75	29.9	63.9
826	951016HO1	FC723CMS – EL44/FC708 CMS	3.1	21	62	21.8	52.0
626	961014	FC724 - FC702/LSR-CTR	2.5	30	80	29.4	65.4
086	921008	FC725	2.1	42	87	39.9	71.0
981	931010	FC726	2.6	28	74	28.0	60.2
982	951017	FC727	5.6	23	80	28.3	64.2
983	921025	FC728	2.3	25	98	27.3	70.5
984	921019	FC729 – FC712/A4, 3 cycles Rhizoc, MM	2.1	20	85	41.9	71.9
985	991015	FC801	3.0	18	61	24.5	51.9
986	971020	FC907-1 - FC607/FC701 BC4 - 1 cycle of RhzcR sel	4.9	0	18	0.0	22.4
284	20011007	F3 LSR MM x RhzcR/LSR sel RhzcR - hs 10A-1775	2.6	24	73	25.8	61.9
886	20011013H	F4 LSR MM x RhzcR/LSR selRhzcR - sel hs 10A	4.1	10	39	13.8	38.1
686	20021002	RhzcR/mR - (FC907 x FC709-2) x 9931	5.4	5	17	8.3	24.2
066	20011003HO	FC712/Mono-Hy A4	2.7	30	<i>L</i> 9	27.2	56.1
991	20011003HO1	FC712/MonoHy A4 CMS	2.6	29	85	29.3	72.3
¹ Disease	Index is based on	¹ Disease Index is based on a scale of 0 (=healthy) to 7 (= plant dead).					
² Percent	of healthy roots (² Percent of healthy roots (disease classes 0 and 1 combined).					
³ Percent	of diseased roots	³ Percent of diseased roots likely to be taken for processing (disease classes 0 through 3 combined).	ombine	1).			
⁴ Percent	ages were transfor	⁴ Percentages were transformed to arcsin-square roots to normalize the data for analyzes.					
⁵ P=0.05	; There were 6 mis	⁵ P=0.05; There were 6 missing plots, however LSD was estimated as if all plots were present	sent.				
FC901/	FC901/C817 - susceptible check	e check					
7FC705,	⁷ FC705/1 - highly resistant check	t check					
8T.C.702	Totale total						

B26

8FC703 - resistant check

-				•		70
Entry	Description	,IO	% Hithy	% 0 - 32	Z% Hithy	Z% 0 - 3.
	LSD ⁵	99.0			14.58	12.60
821	Susceptible Check ⁶	4.2	13	32	18.6	33.8
822	Highly Resistant Check7	1.6	53	100	47.1	90.0
823	Resistant Check ⁸	1.8	44	76	41.2	85.6
	Experiment Mean	3.5	22	57	22.9	51.7
908	921024 FC709-2	1.6	57	66	49.6	87.2
807	961015 FC720-1	1.7	48	100	43.7	90.0
808	951016HO FC723	2.1	38	95	37.8	82.1
808	951016HO1 FC723CMS	1.7	55	100	48.1	90.0
810	961010HO FC722-1	2.0	32	26	34.2	85.1
811	961010HO1 FC722CMS	2.3	23	26	22.7	85.6
812	961014 FC724	1.7	52	100	45.8	90.0
813	991011 FC709-2	1.8	09	06	51.3	75.9
814	20001002 (FC907 x FC709-2)F2 - RhzcR sel - RM - RM	3.7	10	9	11.5	51.8
815	20001008 (FC907 x FC709-2)F2-RhzcR sel-hs -blk 10A-1775	2.7	13	88	16.6	74.1
816	20001009 (FC907 x FC709-2)F2-RhzcR sel-hs (10A)blk	3.8	13	57	16.4	49.4
817	20011003HO FC712/MonoHyA4	2.4	31	84	30.8	67.3
818	20011003HO1 FC712/MonoHyA4 CMS	2.3	36	83	36.4	66.3
819	20011013H (FC907 x FC709-2)F2-RhzcR sel-hs (10A)blk - blk	3.7	11	55	17.0	47.7
820	20011016 ((2890aa x FC708) + (2859aa x FC708))	3.4	18	53	23.8	46.8
¹ Disea	¹ Disease Index is based on a scale of 0 (=healthy) to 7 (= plant dead). ² Percent of healthy roots (disease classes 0 and 1 combined)					
3Perce	9 0	s 0 throug	th 3 combined).			
⁵ P=0.05	Fercentages were transformed to a compound to the contract of 6000	ם פופו	,503,			
FC9	⁶ FC901/C817					
FC705/1	05/1					
*FC703	33					

Table 9. Results of a Query of the GRIN database	for sugarbeet accessions with a Rhizoctonia
score less than or equal to 3.	

	·			
NPGS ID	Accession Name	Other names	Year(s) Evaluated	
PI 285590	Epipski HOSER		1987	3
PI 285593	Crassa Udycki Zolty Walcowaty		1987	3
PI 285594	Crassa Walcowaty Zolty Granum		1987	3 3 3
PI 285595	Crassa Walcowaty Zolty Pzhr		1987	3
PI 293419	Podzimniaja 0474		1987	
PI 293420	Bordo 237		1987	3
PI 357357	Okrugla		1987	3 3 3
PI 357360	Ohridska Zolta		1987	3
PI 357361	Gostivarska Zelena		1987	3
PI 546390	WB 69	IDBBNR 5591	1990	3
PI 546510	WB 771	IDBBNR 9677	1992	3 3 3
PI 546524	WB 790	IDBBNR 9691	1992	3
PI 546527	WB 793	IDBBNR 9694	1992	3
PI 546530	WB 796	IDBBNR 9697	1992	3
PI 546531	WB 797	IDBBNR 9698	1992	3 3 3
PI 546532	WB 798	IDBBNR 9699	1992	3
PI 546533	WB 799	IDBBNR 9700	1992	3 3
PI 546537	WB 787	IDBBNR 9704	1992	3
PI 546538	WB 788	IDBBNR 9705	1992	3
PI 546539	WB 789	IDBBNR 9706	1992	3
PI 552532	F1012	IDBBNR 9707	1992	3
PI 558505	FC 506	IDBBNR 9711	1992	3
PI 558513	FC 401	IDBBNR 9714	1992	3 3
PI 558515	FC 403	IDBBNR 9716	1992	3 3
PI 531260	Bordo		1996	3
PI 535826	Gigant Poly		1996	3
PI 535845	Annomono		1996	3
PI 285592	Crassa Strzelecki I Har		1987 & 1998	3 & 8
Lines release	d for Rhizoctonia Resistance contai	ned within the da	tabase.	
PI 607379	FC712(4X)	NSL 362030	1999	3
PI 590766	FC712	IDBBNR 4591	1999	3
PI 518643	FC709	IDBBNR 9603	1999	3
PI 590754	FC705/1	IDBBNR 4571	1995 & 1999	1 & 3
PI 591336	FC 728	921025	1999	3
PI 574630	FC 719	IDBBNR 9769	1999	3
PI 599668	FC 709-2	NSL 362030	1999	2

Cercospora Leaf Spot Research And Breeding For Cercospora And Curly Top Resistance (BSDF Project 441)

L. Panella & L. E. Hanson USDA-ARS Fort Collins, Colorado

This element of the breeding program at Fort Collins is devoted to the development of germplasm with resistance to more than one sugar beet disease and improved agronomic characteristics. It is built on germplasm developed at Fort Collins over the last fifty years for combined resistance to Cercospora leaf spot and the curly top virus. This is an integrated breeding program with greenhouse and laboratory studies, and a field program based on testing in an artificial epiphytotic created in the unique Fort Collins environment. It involves close collaboration with the other USDA-ARS sugar beet programs in the U.S. and sugar beet seed industry customers. The major goals of this program are: 1) the development of sugar beet germplasm with resistance to more than one disease and excellent agronomic characteristics; 2) the improvement of breeding techniques, traditional and molecular, to develop this germplasm; and 3) an increased understanding of the sugar beet/pathogen interactions to improve management practices of these diseases in sugar beet production areas. Genetic information developed during this research will be used to execute additional cycles of pathogen inoculation, plant selection, and recombination among germplasms that we have in our leaf spot improvement program. Results of these tests will be the basis of decisions about specific germplasm, i.e., retain, discard, recombine, release, etc. Germplasms likely to be useful for variety improvement will be identified and released for use by other sugar beet breeders.

Increased resistance to *Cercospora* continues to be an extremely important goal. If the level of resistance available in most *Cercospora*-resistant experimental lines were present in commercial hybrids (along with good sugar and seed yield), the need for fungicides would be greatly reduced. That continued improvement in genetic resistance to this serious pathogen is still needed is evident by the occurrence of *Cercospora* strains that are resistant or increasingly tolerant to our most potent fungicides. Additionally, some of these fungicides may be removed from the market because of their perceived or real threat to the environment. In many areas where Cercospora leaf spot is a problem, the curly top virus also causes significant losses. In addition, there are some growing areas in which combined resistance to Cercospora leaf spot, Rhizomania, curly top, Rhizoctonia root rot, and other diseases is desirable. Germplasm is needed with combined resistance to these diseases, along with good combining ability for yield components.

2002 Field Research on Cercospora Leaf Spot of Sugar Beet

The breeding program in Fort Collins has created an annual artificial epiphytotic through inoculation with *Cercospora beticola* for over forty years. This epiphytotic has been used to evaluate and select for resistance to leaf spot caused by *C. beticola*. We have been pleased to participate in and lead this cooperative research project between the ARS, Colorado State University, and the BSDF.

In 2002 the project primarily involved field studies conducted at the Crops Research Lab-Fort Collins Research Farm near Wellington, CO. Randomized complete-block designs, with three replications, were used to evaluate commercial and experimental entries. Internal controls included a highly susceptible synthetic (SP351069-0) and a resistant check (FC504CMS/FC502-2//SP6322-0). Two-row plots were 12 feet long, with 22-inch row spacing and an 8 - to 10-inch within-row plant

spacing. The trial was planted on May 3. Inoculations were performed on July 12 and July 18. Evaluations were made on September 5, 14, 19, and 25, with the peak of the epidemic occurring around the last date. The field was sprayed three times with Betamix Progress (June 13, 21, and July 9) and twice with Upbeet (June 13 and 21) and Stinger (June 21 and July 9) to control weeds. The field was thinned by hand and irrigated as necessary.

The high daytime and low nighttime temperatures in the summer of 2002 and very low moisture (14 cm or 5.9" between April and October, Figure 2) contributed to a mild leaf spot epidemic, which did not become severe enough to rate until the beginning of September. Disease severity increased through September. By the final rating, means of the resistant and susceptible internal control were 3.8 and 4.5 (scale of 0-10), respectively across the nursery. In 2001 (September 17) these means were 4.97 and 6.42, respectively. Means of contributor lines in 2002 ranged from 2.7 to 5.7.

Cercospora/Curly Top-Resistant Populations with Resistance to Multiple Sugar Beet Diseases and Superior Agronomic Characteristics

Germplasm under Development:

Cercospora Leaf Spot/Curly Top Resistant (LSR/CTR) Breeding Populations Currently under Development.

- 1. Cercospora leaf spot and curly top resistant monogerm base population from a polycross of FC607 and FC604 with two Salinas germplasms 2859 and 2890.
 - 1. 2890 (sp) = 0790 mm aa x 1890 (Salinas); is seed from aa plants open pollinated by A- plants. 0790 = population-790 cycle 5 synthetic by S₁ progeny, aa, mm, O-type, good combining ability, adapted to California, S^f. 1890 = BC population to population 790 to get Rz equivalent, remains variable for M-:mm, Rz-:rzrz, etc.
 - B. 2859 m (sp) = 1859, 1859R aa x A- (Salinas); Released in 1992 as C859. Sf, similar to 2890, but should have higher curly top resistance. Segregates and variable for M-:mm, Rz-:rzrz, A-:aa, predominant background is lines like C563.
- 2. Cercospora leaf spot and curly top resistant multigerm base population from a polycross of FC902 with two Salinas germplasms 278 and 4918.
 - A. 278 (Iso 83) = RZM R078; R278 is Rz (segregates Rz--:rzrz) version of C46. It should be S^sS^s, MM.
 - B. 4918 (sp) = RZM 3918aa X A-, 142 aa plants; This is an increase of released material C918. It should be Multigerm, over 75% Sf and segregating for A-, R-, Rz-, VY, CT, Erw, & PM.
- 3. Cercospora leaf spot and curly top resistant multigerm, self-incompatible base population from a polycross of FC607 x [SR87, MonoHy A4, MonoHy T6, & MonoHy T7]
- 4. Seed from FC709-2 x FC907 was sent to Larry Campbell at Fargo to cross to Sugar beet root maggot resistant germplasm to develop a population that will produce pollinators with resistance to *Rhizoctonia*, *Cercospora*, and Root maggot.

5. Two tetraploid pollinators (FC6064X and FC6074X) were crossed to a high sucrose tetraploid population in order to produce a tetraploid *Cercospora*-resistant pollinator population with better combining ability.

Progress in 2002

Advanced breeding lines of *Cercospora* resistant germplasms were evaluated in the ARS leaf spot nursery at Ft. Collins. These lines are part of the resistant germplasm development effort in which a new germplasm should be released from the "pipeline" every two to four years. The above populations, currently, are in different stages of development.

- 1. Selections were made among half-sib progeny rows (FC607&FC604/2859&2890) of the monogerm population in 2001. Families selected based on combined leaf spot and curly top resistance were increased and tested in 2002. Material sent to Salinas, CA is in the field and show good rhizomania resistance and progeny families are being tested for sucrose. They have been selected for resistance to rhizomania (Holly gene source Rz) and agronomic performance, and are in the second cycle of recombination and evaluation. Selections are also being O-type screened for release (Tables 10 & 11).
- 2. Plants (F₂) from the CTR/LSR multigerm cross (2 above FC902/278/4918.) were tested for resistance to *Rhizoctonia* and *Cercospora* and recombined. This seed has been bulk increased and crossed with a number of other leaf spot, rhizomania resistant and high sources populations. The resulting population will be a source of curly top resistant multigerm pollinators with leaf spot and Rhizomania resistance. This cross was planted in the Salinas nursery for selection for rhizomania resistance and also has been selected for agronomic performance and recombined. It will be tested and evaluated for release.
- 3. Plants (F₂) from the Fort Collins and Fargo joint project (3 above FC607 x [SR87, MonoHy A4, MonoHy T6, & MonoHy T7]) were grown in the breeding nursery and these roots were planted in Masonville and selfed, taking advantage of the 'pseudo self-fertility' that occurs in this environment. This selfed seed was progeny tested in 1999 and the most resistant families were recombined and are being tested and evaluated for release. This population will be a source of highly leaf spot resistant multigerm pollinators with curly top resistance and good combining ability for agronomic traits (See tables 10 & 11 below).
- 4. Seed from (FC709-2 x FC907)F₂ has been sent to Larry Campbell at Fargo to cross to Sugar beet root maggot resistant germplasm and be selected for *Cercospora* resistance. This population will be reselected for *Rhizoctonia* resistance. The population will provide pollinators with resistance to *Rhizoctonia*, *Cercospora*, and Root maggot. This material will be screened in Fargo in 2003.
- 5. Half-sib families from this population (FC6064X & FC6074X/high sucrose 4X) will be planted in the leaf spot nursery and selected for *Cercospora*-resistance and also tested for sucrose & yield in 2003.

		•		Disease Index	Index	
Entry	Identification	Entry	Sept. 5 rd	Sept. 14th	Sept. 19th	Sept. 25th
	LSD _{0.05}		ns	ns	ns	0.87
			37.4	24.4	18.7	14.3
	2,4 (9310		3.0	4.0	4.5	5.0
	LSR ³ (821051H2)		1.7	3.3	3.7	3.7
	Trial Mean		1.7	3.0	3.4	3.7
20011007	F3 (907 x 709-2)sel RhzcR - hs 10A-1775	516	1.0	2.0	2.7	2.7
20011045MS	(SucroseMM x PI540599)F2	519	1.3	2.3	3.0	3.0
20011045PF	(SucroseMM x PI540599)F2	520	1.5	2.7	3.0	3.2
921021	FC703-5	503	1.0	2.7	2.7	3.3
20011002bbMS	LSR (France) x SucroseMM - aa biennial segregants	514	1.3	3.0	3.0	3.3
951016HO1	FC723 CMS – EL44/FC708 CMS	511	1.7	2.3	2.7	3.3
20001016H	FC709-2	809	1.0	2.0	3.0	3.3
20011060	[FC712 x 9931(Salinas)] F2	522	1.7	3.0	3.3	3.3
20001016H2	(FC708CMS X FC709-2)	528	1.0	2.3	3.0	3.3
20001022	FC710(4X) - LSR Tetraploid	526	1.7	3.3	3.0	3.7
20001007	LSR w/ Fargo	525	1.7	3.7	4.0	3.7
20001017	FC720-1	524	1.3	2.7	3.7	3.7
951016HO	FC723 – EL44/FC708 mm	510	2.0	2.7	3.3	3.7
951017	FC727	509	1.3	2.7	3.3	3.7
891033	FC710	527	2.0	3.5	3.7	3.7
911026HO	FC715	502	1.3	2.7	3.0	3.7
20011024	CTR/LSRmmpop; FC607, FC604, 2890, & 2859	518	1.7	3.0	3.3	3.7
911043HO1	FC403CMS	534	2.0	3.3	4.0	3.7
20011016	Rhx=zcRmm (991001) (2859 & 2890) X FC708	532	1.7	3.0	3.0	3.7
921022	FC702-7	504	1.7	3.3	3.5	3.7
20011002bbPF	LSR (France) x SucroseMM - A- biennial segregants	515	2.0	3.0	3.7	4.0
20011003HO1	FC712/MonoHy A4 - CMS equivalent	531	2.0	3.0	3.7	4.0
961010HO1	FC722 CMS – C718/FC708 CMS	513	2.0	3.3	3.7	4.0
961010HO	FC722-1 – C718/FC708	512	2.3	3.3	4.0	4.0
20011054	(SucroseMM x PIS40605)F2	521	1.7	3.3	3.0	4.0
20021002	RhzcR/mR - (FC907 x FC709-2) x 9931	523	1.7	3.3	3.7	4.0

Table 10. Experi	Table 10. Experiment 7A, 2002. Leaf Spot Evaluation of USDA-ARS Fort Collins breeding lines.	llins breed	ing lines.			
		·		Disease Index ¹	ndex ¹	
Entry	Identification	Entry	Sept. 5rd	Sept. 14th	Sept. 19th	Sept. 25th
	LSD _{0.05}		Su	us	Su	0.87
	CA		37.4	24.4	18.7	14.3
	LSS 2,4 (931002)		3.0	4.0	4.5	5.0
	LSR ³ (821051H2)		1.7	3.3	3.7	3.7
	Trial Mean		1.7	3.0	3.4	3.7
20011001	LSR Polycross with East Lansing material	529	2.3	3.3	3.3	4.0
20011003HO	FC712/MonoHy A4	530	1.7	2.8	3.3	4.0
981025	FC717	507	1.7	2.7	3.3	4.0
97A050	FC607	909	1.7	3.0	3.7	4.0
831085HO	FC708	501	1.7	3.7	4.0	4.0
20011013H	F4 (907 x 709-2) selRhzcR - sel hs 10A	517	2.0	3.0	3.7	4.0
921025	FC728	505	2.3	3.3	3.7	4.2
911043HO	FC403	533	2.7	4.0	4.3	4.3
¹ Disease Index is	¹ Disease Index is based on a scale of 0 (=healthy) to 10 (=dead).					
The Leafspot Sur	The Leafspot Susceptible Check is SP351069-0.					
³ The Leafspot Re	³ The Leafspot Resistant Check is ((FC504CMS x FC502/2) x SP6322-0).					
The Leafspot Sur	The Leafspot Susceptible Check was missing one plot but LSD was calculated as if all three plots were there.	if all three p	olots were there	വ്		

Entry Identification Entry Sept. 14" Sept. 19" Sept. 19.3 Sept. 14" Sept. 19" Sept. 19.3 Sept. 14" Sept. 19.3 Sept. 14.3 Sept. 14" Sept. 19.3 Sept. 14" Sept. 19.3 Sept. 16.3 Sept. 16.3<					Disease Index ¹	[ndex ¹	
LSD _{0.05} Trial Mean 1.7 S3.3 S.7.4 1.8.7 LSR ³ (821051H2) 1.7 Trial Mean 1.7 S1.3 S1.4 Trial Mean 1.7 Trial Mean 1.7 S1.3 S1.4 S1.4 S1.4 S1.7 S1.4 S1.4 S1.7 S1.6 S1.7 S1	Entry	Identification	Entry	Srd	1	Sept. 19th	Sept.
CV 37.4 24.4 18.7 CV 37.4 24.4 18.7 LSS ²⁴ (931002) 3.0 4.0 4.5 LSR ³ (821051H2) 1.7 3.3 3.7 Trial Mean 1.7 3.0 3.4 Trial Mean 1.7 3.3 3.7 O1 LSR Polycross with East Lansing material 529 2.3 3.3 3.7 FC712/MonoHy A4 507 x 109-2) x 9931 529 2.3 3.3 3.3 FC607 507 1.7 2.8 3.3 HO FC708 501 1.7 3.0 3.7 4.0 FC728 501 1.7 3.7 4.0 HO FC7403 505 2.3 3.3 3.7 4.0 FC403 505 2.3 3.3 3.7 4.0 Endex is based on a scale of 0 (=healthy) to 10 (=dead). afspot Resistant Check is (FC504CMS x FC502/2) x SP6322-0).		HS I		24	24	ne	0.87
LSR ^{3.4} (931002) 3.0 4.0 4.5 LSR ³ (821051H2) 1.7 3.3 3.7 Trial Mean 1.7 3.0 3.4 Trial Mean 1.7 3.0 3.4 O2 RhzcR/mR - (FC907 x FC709-2) x 9931 52.3 1.7 3.3 3.7 O3HO FC712/MonoHy A4 50.0 1.7 2.8 3.3 3.3 FC717 500 1.7 2.8 3.3 HO FC708 501 1.7 2.7 3.0 3.7 HO FC708 501 1.7 3.0 3.7 4.0 FC728 505 2.3 3.3 3.7 4.0 FC728 505 2.3 3.3 3.7 HO FC403 505 2.3 3.3 3.7 EC728 505 2.3 3.3 3.7 HO FC403 505 2.3 3.3 3.7 ET728 505 2.3 3.3 3.7 HO FC403 505 2.3 3.3 3.7 ET728 505 2.3 3.3 3.7 ET728 505 2.3 3.0 3.7 ET728 505 2.3 3.3 3.7 ET728 505 2.3 3.0 3.7 ET728 505 2.3 3.7 ET7				37.4	24.4	18.7	14.3
LSR 3 (821051H2) 1.7 3.3 3.7 Trial Mean 1.7 3.0 3.4 D2 RhzcR/mR - (FC907 x FC709-2) x 9931 523 1.7 3.3 3.7 01 LSR Polycross with East Lansing material 529 2.3 3.3 3.3 01 LSR Polycross with East Lansing material 529 2.3 3.3 3.3 01 LSR Polycross with East Lansing material 529 2.3 3.3 3.3 02 FC712/MonoHy A4 500 1.7 2.8 3.3 03HO FC717 507 1.7 2.7 3.3 04O FC708 501 1.7 3.0 3.7 4.0 13H F4 (907 x 709-2) selRhzcR - sel hs 10A 517 2.0 3.0 3.7 4.0 HO FC728 505 2.3 3.3 3.7 4.0 4.3 HO FC403 506 1.7 2.0 3.0 3.7 4.0 4.3 HO FC403 507 1.7 4.0 4.3 4.0 4				3.0	4.0	4.5	5.0
Trial Mean 1.7 3.0 3.4 Trial Mean 1.7 3.0 3.4 RhzcR/mR - (FC907 x FC709-2) x 9931 523 1.7 3.3 3.7 LSR Polycross with East Lansing material 529 2.3 3.3 3.3 03HO FC712/MonoHy A4 507 1.7 2.8 3.3 FC717 506 1.7 2.7 3.0 3.7 HO FC708 501 1.7 3.0 3.7 4.0 FC728 505 2.3 3.3 3.7 FC728 505 2.3 3.3 3.7 FC728 505 2.3 3.3 3.7 HO FC403 505 2.3 3.3 3.7 FC728 505 5.3 3.3 3.7 FC728		(82		1.7	3.3	3.7	3.7
02 RhzcR/mR - (FC907 x FC709-2) x 9931 523 1.7 3.3 3.7 01 LSR Polycross with East Lansing material 529 2.3 3.3 3.3 03HO FC712/MonoHy A4 500 1.7 2.7 3.3 10 FC717 507 1.7 2.7 3.3 10 FC607 506 1.7 3.0 3.7 13H F4 (907 x 709-2) selRhzcR - sel hs 10A 517 2.0 3.0 3.7 15H FC728 505 2.3 3.3 3.7 HO FC403 505 2.3 3.3 3.7 HO FC403 533 2.7 4.0 4.3 afspot Susceptible Check is SP351069-0. 505 2.3 3.2 4.0 4.3 afspot Resistant Check is (FC504CMS x FC502/2) x SP6322-0).				1.7	3.0	3.4	3.7
LSR Polycross with East Lansing material 529 2.3 3.3 3.3 3.3 3.3 3.3 5.3 5.3 5.3 5.3 5	20021002	RhzcR/mR - (FC907 x FC709-2) x 9931	523	1.7	3.3	3.7	4.0
93HO FC712/MonoHy A4 530 1.7 2.8 3.3 FC717 FC717 FC717 HO FC607 HO FC708 13H F4 (907 x 709-2) selRhzcR - sel hs 10A 505 2.3 3.3 FC728 HO FC403 E Index is based on a scale of 0 (=healthy) to 10 (=dead). afspot Resistant Check is (FC504CMS x FC502/2) x SP6322-0).	20011001	LSR Polycross with East Lansing material	529	2.3	3.3	3.3	4.0
FC717 FC717 FC717 FC607 HO FC607 FC607 FC607 FC607 FC708 HO FC708 13H F4 (907 x 709-2) selRhzcR - sel hs 10A 505 501 503 3.7 4.0 3.7 4.0 FC728 FC728 FC728 FC728 FC728 FC7403 FC7	20011003 20011003HO	FC712/MonoHy A4	530	1.7	2.8	3.3	4.0
FC607 HO FC708 FC708 13H F4 (907 x 709-2) selRhzcR - sel hs 10A FC728 FC728 HO FC403 EIndex is based on a scale of 0 (=healthy) to 10 (=dead). afspot Resistant Check is ((FC504CMS x FC502/2) x SP6322-0).	981025	FC717	507	1.7	2.7	3.3	4.0
FC708 FC708 FC708 FC708 FC728 FC728 FC403	97A050	FC607	909	1.7	3.0	3.7	4.0
FC728 FC728 FC403 FC403 FC403 FC403 Gex is based on a scale of 0 (=healthy) to 10 (=dead). pot Susceptible Check is SP351069-0. pot Resistant Check is (FC504CMS x FC502/2) x SP6322-0).	831085HO	FC708	501	1.7	3.7	4.0	4.0
2.3 3.3 3.7 2.7 4.0 4.3	20011013H	F4 (907 x 709-2) selRhzcR - sel hs 10A	517	2.0	3.0	3.7	4.0
2.7 4.0 4.3	921025	FC728	505	2.3	3.3	3.7	4.2
¹ Disease Index is based on a scale of 0 (=healthy) to 10 (=dead). ² The Leafspot Susceptible Check is SP351069-0. ³ The Leafspot Resistant Check is ((FC504CMS x FC502/2) x SP6322-0).	911043HO	FC403	533	2.7	4.0	4.3	4.3
The transfer of the state of th	Disease Index The Leafspot The Leafspot	is based on a scale of 0 (=healthy) to 10 (=dead). Susceptible Check is SP351069-0. Resistant Check is ((FC504CMS x FC502/2) x SP	6322-0).	3, 20	14 00 00 00 00 00 00 00 00 00 00 00 00 00	oft 0*******	(

Table 11. Breeding lines from the USDA-ARS Fort Collins breeding program tested in the BSDF Curly Top Nursery in Kimberly, ID in 2002.

			Disease	Index*
Seed Source	Description		Aug 27	Sept 10
	EXPERIMENT	MEAN	2.65	2.90
96A008	Beta G6040 - Resistant Check		2.00	2.00
931017	Susceptible Check - FC901/C817		2.83	2.83
		CV	22.2	23.8
		LSD	ns	1.113
20001022	FC710(4X) - LSR Tetraploid		2.00	2.17
86A047	FC607CMS (4x)		2.50	2.17
831028HO	FC506		2.17	2.17
941029HO	FC401		2.33	2.17
1997A051	FC607CMS		2.00	2.33
911037	FC719		2.00	2.33
20011009	FC702-4(4X)		2.50	2.33
951016HO	FC723 - EL44/FC708 mm		2.50	2.33
951016HO1	FC723 CMS - EL44/FC708 CMS		2.50	2.33
86A045	FC606CMS (4x)		2.33	2.33
741026H	High Sucrose x maritima		2.17	2.33
20011008HO	FC502-2		2.17	2.33
19931012	FC901		2.17	2.33
991015	FC801		2.33	2.50
20001016H	FC709-2		2.83	2.50
20001019	FC705		2.50	2.50
911043HO1	FC403CMS		2.17	2.50
20011054	(SucroseMM x PI540605)F ₂		2.67	2.50
2002A035	HM9155		2.33	2.50
20001016H2	(FC708CMS X FC709-2)		2.58	2.50
911026HO	FC715		2.33	2.50
86A046	FC606 (4x)		2.50	2.50
1987A026	AD1 (4x)		2.67	2.50
19951029	AD3 (4x)		2.33	2.50
951017	FC727		2.17	2.50
831085HO	FC708		3.00	2.50
20011045PF	(SucroseMM x PI540599)F ₂		2.50	2.67
971020	FC907-1 - FC607/FC701 BC4 - 1 cycle RhzcR sel		2.17	2.67
781079H	High Sucrose Polish		2.33	2.67
2001A016	SR94; WC960448		2.67	2.67
2001A014	SR96; WC980437		2.50	2.67
2001A017	SR93; WC980438		2.33	2.67
811055H	FC702-6		2.83	2.67
931005HO	FC721		3.50	2.67
20011013H	F4 LSR MM x RhzcR/LSR - sel hs 10A		2.50	2.67
781035HO	FC606		2.50	2.67
891037	AD2 (4x)		2.67	2.67
821087	FC711		2.67	2.67
20011045MS	(SucroseMM x PI540599)F ₂		2.58	2.67
821051H2	LSR		2.33	2.67
911042HO1	FC402CMS		2.33	2.67
2001A013	EL0204		2.50	2.67
991016	FC702/2		2.33	2.83
	LSR Polycross with East Lansing material		2.33	2.83
20011001	LON PULYCIOSS WILL LAST LANSING MATCHAI		2.00	2.00

Table 11. Breeding lines from the USDA-ARS Fort Collins breeding program tested in the BSDF Curly Top Nursery in Kimberly, ID in 2002.

		Disease	Index*
Seed Source	Description	Aug 27	Sept 10
	EXPERIMENT MEAN	2.65	2.90
96A008	Beta G6040 - Resistant Check	2.00	2.00
931017	Susceptible Check - FC901/C817	2.83	2.83
	CV	22.2	23.8
	LSD	ns	1.113
2002A036	Monohikarí	2.33	2.83
781035HO1	FC606CMS	2.83	2.83
891033	FC710	2.50	2.83
731028HO	FC902	2.50	2.83
20001025HO1	FC604CMS	2.67	2.83
911042HO	FC402	2.83	2.83
20001007	LSR w/ Fargo	2.83	2.83
961010HO	FC722-1 – C718/FC708	2.67	2.83
20001025HO 921022	FC604 FC702-7	2.67	2.83
		2.67	2.83
20001017	FC720-1	2.83	2.83
20011002bbMS 931010	LSR (France) x SucroseMM - aa biennial segregants FC726	2.83	2.92
771052		2.67	2.92
20001020	Low amino-N population FC706	3.33	3.00
931005HO1	FC721CMS	2.83	3.00
97A004	EL 48	3.00 2.17	3.00
19991017	FC703		3.00
20001021	FC703	2.50	3.00
971018	FC712(4X)	2.67	3.00
921008	FC712(4A)	2.33	3.00
961014	FC724-1 – FC702/LSR-CTR	2.67 2.67	3.00
971019	FC716	2.42	3.00 3.08
2001A018	SR80; WC980436	2.42	3.08 3.17
961010HO1	FC722 CMS – C718/FC708 CMS	3.00	3.17
751080H	FC703	2.83	3.17
19991018	FC709	2.83	3.17
20011007	F3 LSR MM x RhzcR/LSR (907 x 709-2)	2.03 2.17	3.17
2001A020	94HS25; WC960452; smooth root	2.50	3.17
86A048	FC607 (4x)	2.50	3.17
2001A020	94HS25; WC960452	2.83	3.17
2001A019	SR87; WC960444	2.83	3.17
921019	FC729 – FC712/A4, 3 cycles Rhizoc, MM	3.33	3.33
79A067	FC607	2.58	3.33
2002A037	Beta 6045	3.00	3.33
911043HO	FC403	3.00	3.33
20011002bbPF	LSR (France) x SucroseMM - A- biennial segregants	3.00	3.33
19911041HO1	FC401CMS	3.00	3.33
921025	FC728	2.33	3.33
981025	FC717	2.83	3.33
20011024	CTR/LSRmmpop; FC607, FC604, 2890, & 2859	2.83	3.50
801059H	FC701-6	2.83	3.50
751132	Russian Multi-germ Germplasm Pool	3.17	3.50
	• • • • • • • • • • • • • • • • • • •	V. 17	J.JU

Table 11. Breeding lines from the USDA-ARS Fort Collins breeding program tested in the BSDF Curly Top Nursery in Kimberly, ID in 2002.

				Disease Index*	
Seed Source	Description	n		Aug 27	Sept 10
		EXPERIMENT ME	AN	2.65	2.90
96A008	Beta G6040 - Resistant Check			2.00	2.00
931017	Susceptible Check - FC901/C817			2.83	2.83
			CV	22.2	23.8
			SD	ns	1.113
2001A015	SR95; WC970308			2.83	3.50
20011060	[FC712 x 9931(Salinas)] F ₂			3.00	3.58
20001018	FC704			3.67	3.67
921021	FC703-5			2.50	3.67
931024	FC701			3.17	3.83
771067HO	FC504			3.00	3.83
911032	FC718			3.33	3.83
831083	FC705/1			3.50	3.83
761068H	FC701-4			3.17	4.17
751099H	L-19			3.67	4.17
881032H	FC712			3.67	4.17

Pre-breeding: the Introgression of New Sources of Cercospora Leaf Spot Resistance from *Beta Vulgaris* ssp. *maritima* and Other Exotic Sources into Sugar Beet-type Populations (BSDF Project 443)

Lee Panella USDA-ARS Fort Collins, Colorado

A major emphasis of the research mission of the USDA-ARS plant scientists is the collection, documentation, characterization, evaluation, regeneration (maintenance), distribution, and utilization of plant germplasm, especially Plant Introduction (PI) accessions in the USDA-ARS National Plant Germplasm System (NPGS). The Sugar Beet Research Unit at Fort Collins is coordinating the national program for *Beta* germplasm evaluation. In addition to the evaluation for *Rhizoctonia* and *Cercospora* resistance, it is crucial that the ARS scientist be involved in the long range, high risk research problems involved in sugar beet 'germplasm enhancement' or 'prebreeding' from exotic germplasm or wild relatives of cultivated species. This is an important component in the overall sugar beet improvement effort of the Fort Collins Sugarbeet Research Unit.

Justification for Research:

Cercospora leaf spot (caused by the fungus Cercospora beticola Sacc.) is one of the most widespread diseases of sugar beet and is a serious problem in many sugar beet production areas throughout the U.S. The disease damages the leaves, which, consequently, reduces root yield, percent sucrose of roots, and purity of the extracted juice. Cercospora leaf spot currently is controlled by combining spraying with commercial fungicides and the use of disease tolerant germplasm. The development of Cercospora leaf spot resistant sugar beet lines and hybrids with greater levels of host-plant resistance offers a more sustainable solution to this disease problem.

If the level of resistance available in some *Cercospora*-resistant experimental breeding lines were present in commercial hybrids (along with good sugar and seed yield), the need for fungicides could be greatly reduced. That continued improvement in genetic resistance to this serious pathogen is still needed is evident by the occurrence of *Cercospora* strains that are tolerant to our most potent fungicides. Additionally, some fungicides may be removed from the market because of their perceived or real threat to the environment.

Finally, the genepool for resistance to Cercospora leaf spot is extremely narrow. Many of the resistant lines are highly inbred, therefore, closely related to one another, and stem from germplasm coming out of Italy in the early 1900s. In the germplasm developed at Fort Collins, continued inbreeding has increased the level of disease resistance, but at the cost of plant vigor. Over the long term, a secure, sustainable response to this disease requires commercial quality hybrids with good host-plant resistance.

Objectives:

- 1. The formation of long range breeding populations through the introgression of *Cercospora* resistant germplasm from "exotic" sources (*Beta vulgaris* ssp. *maritima*, fodder beet, foreign sugar beet landraces from the PI collection, etc.).
- 2. The development of germplasm populations from these long range populations that are of

sufficient agronomic quality to be of use to commercial breeders. They will be a source of leaf spot resistance with and within differing genetic backgrounds.

3. The development of techniques (both traditional and molecular) to more efficiently introgress the exotic germplasm into sugar beet breeding populations.

Research Progress 2002:

We have increased or made crosses in eighteen populations listed below (See table 13 below). All of the male parents are germplasm that have been identified as having resistance to *Cercospora beticola* (causal agent of Cercospora leaf spot). The female parents are from a population developed to have high sucrose yield potential. These sucrose populations are based on old commercial varieties – i.e., MonoHy T6, A7, A4 and breeding lines received from American Crystal Sugar Co. and Seedex, Inc. – and USDA-ARS developed germplasm such as L-19 (WC91270M) and East Lansing smooth root germplasm, SR87. Other parents include high sucrose germplasm from Poland and other Eastern European countries. Salinas parent '3859' was used to produce populations that are self-fertile (S^f) and segregating for nuclear male sterility (*A-:aa*). The families from various crosses are in different stages of development and evaluation. At the F₃ stage, when sufficient seed is available, we are beginning field screening and selection. Seed of these families has been bulk increased and is beginning to be evaluated. All show some annual plants in our environment and are being selecting for the nonbolting types.

We are re-crossing some of those from which we obtained insufficient F_1 seed. Plants from those populations producing some biennial plants are being vernalized for 90 days and the populations are being increased (i.e., random mated using the genetic male sterility where possible). The annuals will be handled in a similar fashion once the F_1 populations have been increased. All will be cycled through at least three cycles of random mating.

The most advanced populations were screened for resistance to Cercospora leaf spot and curly top (Tables 10 11, & 12). Evaluations have shown that some of the populations have good levels of resistance to leaf spot and some of the populations may also have resistance to the curly top virus. All of the populations are still segregating for biennial growth habit, easy bolting, and other traits typical of wild beets.

Table 12. Experiment 7A, 2001. Leaf Spot Evaluation lines.	Evaluation of USDA-ARS Fort Collins, Salinas, and East Lansing breeding	ıs, Salinas,	and East La	nsing bree	ding
			Disease Index ¹	ndex ¹	
Entry	Identification	Sept. 3rd	Sept. 10th	Sept. 17th	Sept. 24th
	LSD _{0.05}	1.05	1.24	1.15	1.21
	CV	23.6	22.3	15.0	19.4
LSS^{2} (931002)		4.3	5.3	0.9	5.7
		2.7	2.3	8.4	4.0
Trial Mean		2.7	3.4	4.7	3.8
Sucrose MMaa population X PI535826 (Giant Poly - LSR)	991026MS	2.3	2.3	4.0	3.8
Sucrose MMaa X LSR P1540596 - biennial maritima LSR	981032	2.7	3.7	4.3	3.7
Sucrose MMaa population X PI535826 (Giant Poly - LSR)	991026PF	3.2	3.2	4.5	3.3
Sucrose MMaa X LSR PI540599 - annual maritima LSR	981033PF	3.3	4.8	5.3	4.7
¹ Disease Index is based on a scale of 0 (=healthy) to 10 (=dead). ² The Leafspot Susceptible Check is SP351069-0. ³ The Leafspot Resistant Check is ((FC504CMS x FC502/2) x SP6322-0)	d). sP6322-0).				
Advanced and experimental germplasm from the USDA-AR Nursery in Kimberly, ID in 2001.	he USDA-ARS Fort Collins breeding program tested in the BSDF Curly Top	ogram tested	in the BSDF	Curly Top	
			Diseas	Disease Index*	
Donor's ID	Identification	Entry	17 Aug	31 Aug	
Beta G6040 - Resistant Check	96A008	224	5.0	4.7	
FC718 - Susceptible Check	911032	225	7.3	7.3	
Sucrose MMaa X LSR PI540596 - biennial maritima LSR	981032	179	5.7	6.3	ı
Sucrose MMaa population X PI535826 (Giant Poly - LSR)	991026MS	182	6.5	7.0	
Sucrose MMaa population X PI535826 (Giant Poly - LSR)	991026PF	183	6.7	7.3	
Sucrose MMaa X LSR PI540599 - annual maritima LSR	981033PF	180	6.5	8.0	
*Disease Index (DI) scale = 0 (no symptoms) to 9 (plant death)).				

 ${
m F_s}$ Pop. 20031039bb 20031038B-20031038bb 20031039B-20031023 F₄
Pop. Table 13. List of germplasm used in developing Cercospora leaf spot resistant populations and the stage of each of the 20011045bbPF 20011045bbws 20011031bb 20021030B-20021030bb 20021031B- F_3 Pop. 20011039bbMS 20011039bbPF 20011040B-20011040bb 20011042B-20011038B-20011038bb 20021036B-20021036bb 200110141bb 20011042bb 200110141B-20011039B-981022MS 20011036 20011037 981033PF F_2 Pop. 20021033H2 20021034H2 20021035H2 971030H2³ 2001046H2 1981003H2 Population $971027H2^{2}$ 971028H2 981001H3 981002H3 981004H2 971026H2¹ 971029H2 981003H3 no induction 1996 FC, CO % o' Bolting annnal annual annual annual annual annual annual 100% %001 annual annual annual annual 20% Origin (ਕੱ) PN MONO Name or WB 829 WB 853 Tunisia Tunisia Tunisia Tunisia Greece Greece Greece Greece Greece Greece Greece BGRC #36538 BGRC #45511 BGRC #45516 BGRC #45516 BGRC #48810 BGRC #48810 BGRC #48819 BGRC #48819 ssp. maritima BGRC #51430 BGRC #32375 ssp. maritima BGRC #45511 ssp. maritima Designation Donor (d) PI 540599 PI 540575 PI 535843 'Only 16 seed balls produced. ²Only 10 seed balls produced. ³Only 60 seed balls produced. 19991024H2 19991024H2 19991024H2 19991024H2 851046HO 851046HO 851046HO 9 parent 961005 961005 961005 961005 961005 961005 961005 961005 961005 961005 961005 populations. Acc. No. 981001H 981002H 981004H 981005H 94A083 94A085 94A081 94A082 94A084 96A012 96A016 94A079 94A080 94A082 94A083 94A084 96A013 94A081 ঠ

Summary of Literature Review:

Cercospora leaf spot has been an intermittent problem in sugar beet growing areas of the United States where the summers can be hot and humid (Red River Valley, Michigan, Ohio, and, less often, Great Plains growing areas and California). It has been estimated that a severe epidemic can cause up to a 42% loss of gross sugar (Smith and Martin, 1978; Smith and Ruppel, 1973), or up to a 43% relative dollar loss (Shane and Teng, 1992).

Resistance to *Cercospora* has long been a goal of the USDA-ARS sugar beet research program at Fort Collins and researchers there developed the techniques necessary to manage the screening nurseries in such a way as to promote the development of the disease (Ruppel and Gaskill, 1971). A careful crop rotation (sugar beet-barley-barley-barley-sugar beet) and the arid climate and low relative humidity have allowed this to be done in such a manner that there are rarely high enough levels of any other disease present in the leaf spot nursery to confound the results. The resistance to *Cercospora* could more accurately be described as a tolerance, rather than true resistance. Tolerance or "field resistance" means that, although some symptoms of the disease are present, the plant still is able to perform well (Fehr, 1987 p.307).

Much of the *Cercospora*-resistant germplasm in use today came out of Munerati's program in Italy, in which *B. vulgaris* ssp. *maritima* was the source of resistance genes (Lewellen, 1992). In this genetic source, there are an estimated 4 or 5 genes responsible for leaf spot resistance (Smith and Gaskill, 1970) and broad-sense heritability estimates ranged from 12 to 71% (Bilgen et al., 1969). Narrow-sense heritability estimates of about 24% compared well with realized heritability values, and 44 to 62% of the variation was due environment in this test (Smith and Ruppel, 1974). The large environmental variation has made it difficult to make progress in developing resistance through mass selection. Incorporation of high levels of leaf spot resistance into varieties with superior agronomic performance also is difficult (Smith and Campbell, 1996) and, therefore, commercial resistant varieties require some fungicide application to provide adequate levels of protection against *Cercospora* (Miller et al., 1994).

A major problem in the development of *Cercospora*-resistant sugar beet is the loss of vigor due to the continual inbreeding. Coons (1955) noted this and it has been a concern ever since (McFarlane, 1971). The use of hybrid varieties has ameliorated this problem to some extent, but seed production on the highly inbred O-type males and CMS females still is a problem. This creates an urgent need to continue to develop a broader genetic base in our CLS-resistant germplasm than we have today. Also as commercial hybrid parents become more inbred, the germplasm base from which these inbred parents are developed must have the diversity necessary to provide for maximum gain through heterosis. In addition to broadening the genetic base of the commercial sugar beet germplasm, novel genes for resistance to Cercospora leaf spot might lead to transgression of the currently available *Cercospora* tolerance. Simply defined, transgression is when a population contains individuals with a phenotype that is beyond the phenotype found in the parents of the population (de Vicente & Tanksley, 1993).

The USDA-ARS National Plant Germplasm System *Beta* collection has over 2,000 Plant Introduction (PI) accessions. The germplasm used most often in sugar beet breeding is from *Beta vulgaris* ssp. *vulgaris*, which includes all of the biennial sugar beet types, or from *Beta vulgaris* ssp. *maritima*, which contains the closely related wild sea beet and has both annual and biennial types. Germplasm with a biennial flowering habit is easier both to introgress and screen. *Beta vulgaris* ssp. *maritima* has, nonetheless, been used as a source of resistant germplasm. Much of the *Cercospora-*

resistant germplasm in use today, which came out of Munerati's program in Italy, had *B. vulgaris* ssp. *maritima* as the source of resistance genes (Lewellen, 1992). There have been very few new efforts to locate and incorporate other sources of resistance to *Cercospora* into this narrow germplasm base. Munerati's success, and the research of others, has shown that it can be done if we have the persistence to do it (Bilgen et al., 1969; Doney, 1993; Lewellen, 1995).

References

- Bilgen, T., J.O. Gaskill, R.J. Hecker, and D.R. Wood. 1969. Transferring *Cercospora* leaf spot resistance from *Beta maritima* to sugarbeet by backcrossing. J. Am. Soc. Sugar Beet Technol. 15:444-449.
- Coons, G.H., F.V. Owen, and D. Stewart. 1955. Improvement of the sugar beet in the United States. Adv. Agron. 7:89-139.
- de Vicente, M. C. and S. D. Tanksley. 1993. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134(2), 585-596.
- Doney, D.L. 1993. Broadening the genetic base of sugarbeet. J. Sugar Beet Res. 30:209-220.
- Fehr, W. R. 1987. *Principles of Cultivar Development*. 1st ed. Vol. 1. Macmillan Publishing Company, New York. 536 pages.
- Lewellen, R.T. 1992. Use of plant introductions to improve populations and hybrids of sugarbeet, p. 117-135. In: Use of Plant Introductions in Cultivar Development. Crop Science Society of America, Madison, WI.
- Lewellen, R.T. 1995. Performance of near-isolines of sugarbeet with resistance to Rhizomania from different sources. Proceedings of the 58th Congress of the International Institute for Beet Research. pp.83-92. Presses Universitaires de Bruxelles a.s.b.l., Bruxelles.
- McFarlane, J.S. 1971. Variety development, p. 402-435. In: R.T. Johnson, J.T. Alexander, G.E. Rush, and G.R. Hawkes (eds.). Advances in Sugarbeet Production: Principles and Practices, 1st ed. The Iowa State University Press, Ames,IA.
- Miller, J., M. Rekoske, and A. Quinn. 1994. Genetic resistance, fungicide protection and variety approval policies for controlling yield losses from Cercospora leaf spot infections. J. Sugar Beet Res. 31:7-12.
- Ruppel, E.G. and J.O. Gaskill. 1971. Techniques for evaluating sugarbeet for resistance to *Cercospora beticola* in the field. J. Am. Soc. Sugar Beet Technol. 16:384-389.
- Shane, W.W. and P.S. Teng. 1992. Impact of Cercospora leaf spot on root weight, sugar yield, and purity of *Beta vulgaris*. Plant Dis. 76:812-820.

- Smith, G.A. and L.G. Campbell. 1996. Association between resistance to *Cercospora* and yield in commercial sugarbeet hybrids. Plant Breeding 115:28-32.
- Smith, G.A. and J.O. Gaskill. 1970. Inheritance of resistance to Cercospora leaf spot in sugarbeet. J. Am. Soc. Sugar Beet Technol. 16:172-180.
- Smith, G.A. and S.S. Martin. 1978. Differential response of sugarbeet cultivars to Cercospora leaf spot disease. Crop Sci. 18:39-42.
- Smith, G.A. and E.G. Ruppel. 1973. Association of Cercospora leaf spot, gross sucrose, percentage sucrose, and root weight in sugarbeet. Can. J. Pl. Sci. 53:695-696.
- Smith, G.A. and E.G. Ruppel. 1974. Heritability of resistance to *Cercospora* leaf spot in sugarbeet. Crop Sci. 14:113-115.

Materials and Methods:

Artificial field inoculation with *Cercospora beticola* and leaf spot scoring will be used to identify the resistant germplasm sources and make selections in the developing populations. The exotic materials will be crossed into sugar beet populations that have been selected for agronomic quality (recoverable sucrose yield). These sucrose populations are based on old commercial varieties (i.e., MonoHy T6, A7, A4), donated breeding lines from American Crystal Sugar Co. and Seedex, Inc., and USDA-ARS developed germplasm such as L-19 (WC9127OM) and East Lansing smooth root germplasm, SR87. Other parents include high sucrose germplasm from Poland and other Eastern European countries. Salinas parent '3859' was used to produce populations that are self-fertile (S^f) and segregating for nuclear male sterility (*A-:aa*).

Hybrid populations will be handled in the following manner: 1) Following the initial cross, a population will be random mated (using *aa* females because of the self-fertility) for three to four generations to break up linkage groups and remove annual plants. 2) Sugar beet-type mother roots will be selected, selfed, and progeny tested for agronomic performance and disease resistance. 3) Selected roots will be recombined (and backcrossed if desirable) and re-selected until they ready for release. Molecular markers (RFLPs, RAPDs, SSRs, AFLPs, etc.) as they become available will be used to expedite the backcrossing program and to follow the change in allele frequencies in the selected populations. Advanced populations will be released to the sugar beet seed industry.

SUGARBEET RESEARCH

2002 Report

SECTION C

U.S. Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Sugarbeet & Potato Research Unit, 1307 N 18th St., P.O. Box 5677, Fargo, North Dakota 58105-5677

> Telephone Number: (701) 239-1350 Fax Number: (701) 239-1349

SUGARBEET AND POTATO RESEARCH UNIT

Dr. J.C. Suttle, Research Leader Plant Physiologist

Dr. L.G. Campbell, Geneticist

Mr. J.D. Eide, Plant Physiologist

Dr. T.L. Friesen, Plant Pathologist

Dr. K.L. Klotz, Plant Physiologist

Ms. R.L.Stolzenberg, Microbiologist

Dr. J. J. Weiland, Plant Pathologist

Cooperation:

North Dakota State University, Fargo, ND Sugarbeet Research and Education Board of MN and ND University of Minnesota, Crookston, MN USDA, Agriculture Research Service, Fort Collins, CO

This research was supported in part by funds provided through the Beet Sugar Development Foundation. (Projects 620, 621, 622, and 650.)

CONTENTS

PUBLICATIONS
POLYMERASE CHAIN REACTION (PCR)-BASED DETECTION OF
APHANOMYCES COCHLIOIDES USING ACTIN GENE SEQUENCES C12
J.J. WEILAND (Project 620)
MECHANISMS OF RESISTANCE IN SUGARBEET TO FUNGAL AND
BACTERIAL PATHOGENS
J.J. WEILAND (Project 621)
TAGGING OF GENES FOR DISEASE RESISTANCE IN SUGARBEET
USING MOLECULAR GENETIC MARKERS
J.J. WEILAND (Project 622)
IDENTIFICATION OF THE SUCROSE METABOLIZING ENZYMES
RESPONSIBLE FOR SUCROSE LOSSES DURING SUGARBEET
DEVELOPMENT AND STORAGE C18
K.L. KLOTZ (Project 650)
CHARACTERIZATION OF RESPIRATORY PROCESSES IN
SUGARBEET ROOTS DURING POSTHARVEST STORAGE
K.L. KLOTZ, M.D. ANDERSON (Project 660)

PUBLICATIONS

Abstract of Papers Presented or Published

Campbell, L.G., Klotz, K.L. Impact of root diseases on post-harvest storage. Abstracts of Joint Meeting of International Institute for Beet Research and the American Society Sugar Beet Technologists. 2003. p. 59 Abstr.

In recent years, sugarbeet (Beta vulgaris L.) root diseases have become more prevalent throughout Minnesota and eastern North Dakota. Any increase in root rots in the field will be accompanied by an increase in the proportion of roots with rot that are placed in storage piles. Information on the effects of root-rot severity on initial quality and storability would assist growers and agriculturalists when determining the disease severity that would justify not harvesting a field or if roots from diseased fields should be segregated and processed first. Respiration rates of roots with moderate or severe Aphanomyces (caused by Aphanomyces cochlioides Drechal.) were substantially higher than respiration rates of healthy roots. respiration rates are not only indicative of higher sugar loss but would increase storage pile temperatures and increase sugar losses of adjacent healthy roots. The formation of carbohydrate impurities during post-harvest storage was examined. Concentrations of the invert sugars, glucose and fructose, were elevated in severely rotted roots. Invert sugar concentrations, however, changed little during storage regardless of disease severity. Trisaccharide impurities declined during storage in both healthy and diseased roots and were lower in diseased roots. Raffinose was the major trisaccharide, although 1-kestose and 6-kestose also were detected in severely Neither Rhizomania (Beet Necrotic Yellow Vein Virus) nor rotted roots. Aphanomyces resistance appeared to be associated with higher respiration rates, in the absence of the disease.

Campbell, L.G., Klotz, K.L. Impact of root diseases on storage. 2002 Sugarbeet Research and Extension Reports, Cooperative Extension Service, North Dakota State University. 2003. v.33 p. 254-257.

In recent years, the sugarbeet (Beta vulgaris L.) root diseases, Aphanomyces and rhizomania (causal agents Aphanomyces cochlioides Drechal. and Beet Necrotic Yellow Vein Virus, respectively), have become more prevalent throughout Minnesota and eastern North Dakota. Accompanying any increase in root disease in the field will be an increase in the proportion of diseased roots placed in storage piles. Information on the effects of root disease on initial quality and storability would, therefore, assist growers and agriculturalists when determining the disease severity that would justify not harvesting a field or if roots from diseased fields should be segregated and processed first. Respiration rate and extractable sucrose per ton were determined for roots exhibiting varying degrees of Aphanomyces or rhizomania symptoms. Respiration rates of roots with moderate or severe Aphanomyces were substantially higher than respiration rates of healthy roots.

Initial observations of the effects of rhizomania on sugarbeet root storage properties suggest that rhizomania is not nearly as detrimental to root storability as Aphanomyces, however, this indication is based on limited data. The impact of genetic resistance on storage properties appeared to be negligible as neither rhizomania nor Aphanomyces resistance was associated with higher respiration rates in the absence of disease.

Campbell, L.G. Sugar beet breeding and improvements. In: Crop Improvement Challenges in the Twenty-First Century. Kang, Manjit S, editor. Food Products Press, An Imprint of the Haworth Press, Inc. New York, London, Oxford. 2002 p. 193-221.

The commercial production of any plant species depends upon the availability of cultivars that meet the needs of producers, processors, and consumers. Development of new cultivars is a continual process due to the demands for greater productivity, higher quality, and improved pest resistance. Cultivar development is a time consuming laborious process. Plant breeders must strive to design a strategy for cultivar improvement that optimizes utilization of available resources. This article will assist sugarbeet (Beta vulgaris) breeders, especially those entering the field or initiating a new program, in achieving that objective. The major areas covered are; Plant Characteristics and Inheritance, Hybrid Production, Selection Techniques, Agronomic Traits, and Germplasm Resources. The numerous literature citations will facilitate the exploration of specific topics in more detail.

Campbell, L.G. Sugarbeet quality improvement. Journal of Crop Production. 2002. v 5 (1/2) (#9/10) p. 395-413 and simultaneously in Quality Improvement in Field Crops. Basra, A.S. and Randhawa, L.S. editors. Food Products Press, An Imprint of the Haworth Press, Inc. New York, London, Oxford. p 395-413.

More than one third of the sucrose (sugar) consumed by humans is obtained from sugarbeet (Beta vulgaris L.). Sucrose extraction begins with the production of a dark opaque juice from strips of sugarbeet. This juice is purified with lime and carbon dioxide, thickened by evaporation, and crystallized under a vacuum. Soluble non-sucrose constituents of sugarbeet, referred to collectively as impurities, impede sucrose crystallization in normal factory processes. Sucrose concentration and the ratio of sucrose to total soluble solids (sucrose plus impurities) determine processing quality of sugarbeet. Among the more important impurity components are sodium, potassium, and amino- nitrogen. Sucrose and impurity concentrations can be alter in breeding programs. However, a negative association between root yield and sucrose concentration and interactions among impurity components and between impurity components and yield or sucrose concentration have complicated breeding efforts. Also, almost any cultural practice may affect the quality of the crop. Nitrogen fertilizer management is a challenge wherever sugarbeet is grown. Producers' returns can be increased with proper nitrogen application but even

moderate over- fertilization may result in a costly reduction in crop quality. Both producers and processors operate on small profit margins. In this economic environment, producing a high quality crop is a necessity.

Klotz, K.L., Campbell, L.G. Comparison of sucrose catabolism in roots of three Beta vulgaris L genotypes with different yield and sucrose accumulating capacities. Abstracts of Joint Meeting of International Institute for Beet Research and the American Society Sugar Beet Technologists. 2003. Abstr. p. 60.

Sucrose catabolism is a major determinant of sink strength in nearly all plants and affects sucrose partitioning to growing sinks as well as sink size and carbohydrate content. Three major enzyme families are responsible for sucrose catabolism in sugarbeet roots: acid invertase, alkaline invertase and sucrose synthase. Previous work suggested that sucrose synthase may have a role in sink strength and root size in sugarbeet. To examine this observation more thoroughly, sucrose catabolism was compared in three Beta vulgaris genotypes with varying capacities for root yield and sucrose accumulation. Soluble acid invertase, cell wall acid invertase, alkaline invertase and sucrose synthase activities were compared at five stages of root development in a fodder beet hybrid (high yield, low sucrose content), a commercial sugarbeet hybrid (typical yield and sucrose content) and the sugarbeet breeding line, L19 (low yield, high sucrose content). Sucrose, glucose and fructose concentrations and mass accumulation were also determined. Generally, sucrolytic activity was greatest in the high yielding fodder beet and lowest in the low yielding L19 breeding line at any stage of development. Nearly all sucrolytic activity for all genotypes was due to sucrose synthase activity. Sucrose synthase activity was the predominant sucrolytic activity at all the stages of development examined, and accounted for 90% or more of the total sucrolytic activity in fodder beet and sugarbeet roots by six weeks after planting and in L19 eight weeks after planting. Differences in sucrose concentration between genotypes were observed and these were inversely correlated with soluble acid invertase activity. The differences in sucrose concentration, however, were largely differences in water content. Only L19 exhibited a significant increase in sucrose concentration when differences in water content were taken into account.

Klotz, K.L., Anderson, M.D. Contribution of cytochome c and alternative oxidase pathways to respiratory sucrose loss in postharvest sugarbeet (Beta vulgaris L.) roots. Abstracts of Joint Meeting of International Institute for Beet Research and the American Society Sugar Beet Technologists. 2003. Abstr. p. 67.

It is estimated that cellular respiration is responsible for 50 to 70% of the sucrose loss that occurs during postharvest storage of sugarbeet roots. Respiration occurs to provide the metabolic energy and carbon substrates needed to maintain healthy tissue during storage, heal wounds acquired during harvest and defend against pathogens.

Two respiratory pathways, the cytochrome c oxidase pathway and the alternative oxidase pathway, contribute to total respiration. In sugarbeet, little information is available on the role of these two pathways in sucrose utilization and postharvest sucrose loss. This information, however, may prove useful to not only improve our understanding of this physiological process but may potentially provide insight into methods to reduce postharvest respiratory sucrose loss. Analyses of the changes in total respiration and the contribution of the two pathways in sugarbeet roots subjected to different storage conditions and durations, and in response to typical harvest stresses are in progress. Initial results indicate that the cytochrome c respiratory pathway predominates in healthy, nonstressed sugarbeet roots, as has been observed in most other plant species. Respiration is also greatest at the root surface. Oxygen utilization by epidermal tissue was approximately 3- to 4-fold higher than by internal cortical tissue, consistent with the idea that a higher level of energy is needed at the surface of the sugarbeet root for repair of mechanical damage and defense against pathogen attack.

Klotz, K.L. Finger F.L. Contribution of invertase and sucrose synthase isoforms to sucrose catabolism in developing sugarbeet roots. Journal of Sugarbeet Research. 2002. v. 39 p. 1-24.

Sugarbeet roots contain at least seven different sucrolytic activities throughout their development. Two soluble acid invertase isoenzymes, an insoluble acid invertase activity, two alkaline invertase isoenzymes and two sucrose synthase isoenzymes Each enzyme had a unique pattern of developmental have been identified. expression. Soluble and insoluble acid invertase activities were the predominant sucrolytic activity in roots of young seedlings and declined rapidly as the root aged. Soluble acid invertase activity was due primarily to the activity of a single isoenzyme. A second minor isoenzyme of soluble acid invertase was evident only in the earliest stages of development. High soluble and insoluble acid invertase activities were found concurrent with a rapid growth rate, high glucose levels and minimal sucrose accumulation. Sucrose synthase was the major sucrolytic activity during most of the root's development. One sucrose synthase isoenzyme was present throughout development. A second isoenzyme was evident as the roots approached maturity. Nearly all sucrose accumulation and enlargement of the taproot occurred when sucrose synthase was the predominant sucrolytic activity. Alkaline invertase was a minor sucrolytic activity, and was present at low relatively constant levels at all but the earliest stages of development. The relationship of these sucrolytic isoenzymes to growth, sink strength and sucrose storage in sugarbeet roots is discussed.

Klotz, K.L., Finger, F.L., Shelver, W.L. Characterization of two sucrose synthase isoforms in sugarbeet root. Plant Physiology and Biochemistry. 2003. v. 41(2) p. 107-115.

Two sucrose synthase isoforms (ED 2.4.1.13) have been identified in developing sugarbeet (Beta vulgaris L.) roots. To aid in understanding the physiological

significance of these multiple sucrose synthase isoforms, the two isoforms were partially purified and some of their physical and kinetic properties determined. Both isoforms were tetrameric proteins with native molecular weights of 320 kDa. The isoforms exhibited similar kinetic properties as well as similar changes in activity in response to changes in temperature. The isoforms differed, however, in their subunit composition. Sucrose synthase isoform I (SuSyI) was composed of two 84 kDa subunits and two 86 kDa subunits. Sucrose synthase isoform II (SuSyII) was composed of four subunits of 86 kDa. The two isoforms also differed in their reactivity in response to varying pH conditions. The optimum pH for sucrose cleaving activity was observed at pH 6.0 and pH 6.5 for SuSyI and SuSyII, respectively. The optimum pH for sucrose synthesizing activity occurred at pH 7.5 and 7.0 for SuSyI and SuSyII respectively. The observed differences in subunit composition and reactivity at different pH values suggest that multiple isoforms of sucrose synthase may provide a mechanism to regulate sucrose metabolism in sugarbeet root by differential regulation of the two isoforms and modulation of their activity by changes in cellular pH.

Klotz, K.L., Finger, F.L. Sugarbeet root sucrose synthase isoforms differ in developmental expression, subunit composition and response to pH. American Society of Plant Biologists Annual Meeting. 2002. Abstr 753 p. 164-165.

Two sucrose synthase isoforms have been identified by activity stained isoelectric focused polyacrylamide electrophoresis in developing sugarbeet (Beta vulgaris L.) root. Sucrose synthase isoform I (SuSyI) was present from the early stages of development to maturity. Sucrose synthase isoform II (SuSyII) was evident only in the late stages of development as roots approached and achieved maturity. The two isoforms were partially purified by combination of ammonium sulfate fractionation, affinity chromatography and anion exchange chromatography. Characterization of the two isoforms revealed that SuSyI and SuSyII share similar kinetic properties and exhibit similar changes ia activity in reposnse to changes in temperature. The two isoforms differed, however, in subunit composition. SuSyI was composed of two 84 kDa subunits and two 86 kDa subunits. SuSyII was composed of four 86 kDa subunits. The two isoforms also differed in their response to pH conditions. SuSyI exhibited maximum sucrose cleaving activity at pH 6.0; SuSyII exhibited maximum sucrose cleaving activity at pH 6.5. The optimum pH for sucrose synthesizing activity occurred at pH 7.5 and pH 7.0 for SuSyI and SuSyII, respectively. At physiological pH values, the two isoforms differed substantially in their response to changes in pH in both the sucrose cleavage and sucrose synthesis reactions. The observed differences suggest that sucrose synthase activity in sugarbeet root may be regulated by differential regulation of expression of the two isoforms and modulation of their activity by changes in cellular pH.

Friesen, T.L., Weiland, J.J. Electrophoretic karyotype of cercospora beticola. Mycological Society of America Annual Meeting. 2002. Abstr. p. 39.

Cercospora beticola, causal agent of Cercospora leaf spot is one of the most widespread fungi that affects yield and quality of sugar beet, table beet and Swiss chard. Because the perfect stage of this filamentous fungus is not known it is not possible to carry out classical genetic approaches such as linkage analysis to determine genome size and chromosome number. In an initial characterization of the genome of C. beticola, an electrophoretic karyotype has been done using contour-clamped homogeneous electric field (CHEF) electrophoresis. At least five distinct chromosome sized bands have been resolved in the range of approximately 3.0 to 5.7 megabases. Three of these bands show a higher intensity indicating that multiple chromosomes of equal size may be migrating together. This information will be used as a first step toward a better understanding of the size and structure of the genome of Cercospora beticola..

Metzger, M.S., Weiland, J.J. Testing biological control and induced systemic resistance for the control of aphanomyces root rot of sugarbeet. American Phytopathological Society. 2002 Abstr. v. 92(6) S55.

Seedling damping off and chronic root rot of sugarbeet caused by <i>Aphanomyces cochlioides</i> has caused increasing losses to U.S. producers. Lack of effective control measures for Aphanomyces root rot prompted the initiation of a program aimed at the discovery of new, safe components for disease control. A biological control bacterium and a known inducer of systemic resistance were tested for their ability to control Aphanomyces root rot at two locations in the Red River Valley of the north central U.S. during the 2001 growing season. At both field locations, sugarbeet yield was increased where seed was treated with the bacterium <i>Burkholderia cepacia</i> AMMDR1. At one location, treatment with formulated harpin protein (MessengerTM) also resulted in increased sugarbeet yield. Future testing will aid in determining new approaches to be implemented alone or in conjunction with current disease control measures to reduce losses caused by this serious pathogen of sugarbeet.

Metzger, M.S., Weiland, J.J. Field biocontrol of aphanomyces cochlioides. Abstracts of Joint Meeting of International Institute for Beet Research and the American Society Sugar Beet Technologists. 2003. Abstr. p. 53.

Seedling damping off and chronic root rot of sugarbeet caused by Aphanomyces cochlioides has caused increasing losses to U.S. producers. Lack of effective control measures for Aphanomyces root rot prompted the initiation of a program aimed at the discovery of new, safe components for disease control. A biological control bacterium and a known inducer of systemic resistance were tested for their ability to control Aphanomyces root rot at two locations in the Red River Valley of the north

central U.S. during the 2001 growing season. At both field locations, sugarbeet yield was increased where seed was treated with the bacterium Burkholderia cepacia AMMDR1. At one location, treatment with formulated harpin protein (MessengerTM) also resulted in increased sugarbeet yield. Tests in 2002 included an additional Pseudomonas biocontrol bacterium and treatments involving harpin in combination with standard fungicides for seedling disease control. Future studies will aid in determining new approaches to be implemented alone or in conjunction with current disease control measures to reduce losses caused by this serious pathogen of sugarbeet.

Weiland, J.J. Transformation of *Pythium aphanidermatum* to geneticin resistance. Current Genetics. 2003. v.42 p. 344-352.

Conditions for the production of protoplasts and gene transfer in Pythium aphanidermatum were investigated. Efficient protoplast generation was possible after culture of mycelium in potato dextrose broth followed by digestion with 0.5% (w/v) each of cellulase and b-D- glucanase. Plasmid pHAMT35N/SK encoding the nptII gene under control of the Ham34 promoter from the oomycete Bremia lactucae was used to define electroporation parameters for gene transfer. A square-wave electroporation pulse of 2500V/cm at 50 mF capacitance reproducibly produced transformants, albeit at low efficiency (0.1-0.4 transformants from ~105 regenerable protoplasts per microgram of DNA). Twenty seven independant transformants exhibited wild-type growth on potato dextrose agar amended with geneticin at 50 mg/ml, a concentration that near completely inhibited the growth of untransformed fungus. Southern blot analysis indicated that transforming DNA was integrated into the fungal genome as a tandem array of plasmid monomers. Co-electroporation of of pHAMT35N/SK with pEGFP encoding enhanced green fluorescent protein (EGFP) under the control of the immediate early promoter from the mammalian produced transient expression of blue-green fluorescence. cytomegalovirus Application of the technique to studies on the biochemical basis for pathogenesis in this agriculturally-important group of fungi are discussed.

Weiland, J.J. A survey for the prevalence and distribution of *Cercospora Beticola* tolerant to Triphenyltin hydroxide and resistant to thiophanate methyl in 2002. 2002 Sugarbeet Research and Extension Reports, Cooperative Extension Service, North Dakota State University. 2003. vol 33. p. 241-246.

Cercospora beticola populations in Minnesota and North Dakota were evaluated for resistance and tolerance to fungicides commonly used in the region. For the growing season of 2002, samples exhibiting tolerance to triphenyltin hydroxide ranges from 35-85% (0.2 ppm level) and 11-52% (1.0 ppm level). Samples exhibiting resistance to the benzimidazole fungicide thiophanate methyl tested at the 5 ppm level ranged from 40-76%. After declining in recent years, the number of samples surveyed in 2002 that exhibited resistance to thiophanate methyl increased in the southern

Minnesota growing area. Tolerance to the triazole fungicide tetraconazole increased in 2002 from 2001 level, ranging from 3-15% of the samples tested at the 2 ppm level and 0-11% of the samples tested at the 10 ppm level.

Weiland, J.J. Protease secretion in aphanomyces cochlioides. Abstracts of Joint Meeting of International Institute for Beet Research and the American Society Sugar Beet Technologists.. 2003. Abstr p. 65.

Protease activities have been implicated in the infection of fish and crayfish by Aphanomyces astaci, a pathogen of these host organisms. In an effort to characterize protease activities produced by the sugarbeet pathogen A. cochlioides, culture supernatants of this oomycete were tested for bulk enzyme activity and examined for protease isozyme complement. Bulk protease activity was readily detected using azocoll as a colorimetric substrate. At least 8 distinct isoforms of protease secreted by A. cochlioides were detected after electrophoretic fractionation in native polyacrylamide gels containing co-polymerized gelatin. A subset of the protease activities was sensitive to inhibitors of trypsin, including the proteinacious trypsin inhibitors from lima bean. Co-culture of sugarbeet seedlings in the presence of A. cochlioides and lima bean trypsin inhibitor resulted in increased seedling survival relative to control inoculations. The data suggest that protease activities secreted by A. cochlioides may be virulence determinants in the infection of sugarbeet by this pathogen.

Weiland, J.J., Friesen, T.L. Functional genomics of cercospora beticola. Abstracts of Joint Meeting of International Institute for Beet Research and the American Society Sugar Beet Technologists. 2003. Abstr. p. 56.

Cercospora leaf spot continues to be a damaging and costly disease to sugarbeet production, yet our understanding of Cercospora genetics and biology remains incomplete. Studies were carried out to better characterize the genome of C. beticola and to provide methods for genome manipulation. An electrophoretic karyotype of C. beticola isolate 98-23 revealed the presence of 7-8 chromosomes ranging from ~0.5 megabases to ~5.5 megabases in size, comparable to the size range for the related soybean pathogen, C. kikuchii. Southern blot analysis of total C. beticola genomic DNA with fungal telomere probes supported the chromosome number estimate. The genome size of C. beticola estimated from the study is ~26-28 Mb. A gene transfer technology useful for gene ablation in this haploid fungus, as well as for gene introduction and analysis, was developed using Agrobacterium tumefacies strain EHA105. To date, a library consisting of 57 independent C. beticola transformants have been generated using the technique. Mutants of C. beticola produced in this manner that are compromised for the ability to infect sugarbeet will be detected using leaf disc inoculation. Analysis of genes disrupted by the transforming DNA will lead to new information regarding the basis for the infection of sugarbeet by this pathogen.

Weiland, J.J., Lewellen, R.T., Friesen, T.L. Tagging of disease resistance genes in sugarbeet. Plant Animal & Microbe Genomes Conference. 2003. Abstr #W322. p. 69.

The characterization of genes that confer resistance to diseases important to sugarbeet production has been hampered by a lack of markers associated with these genes. In ongoing collaborative research, we have begun generating molecular genetic markers linked to various disease resistance genes for which segregating populations of sugarbeet have been produced. Using RAPD analysis applied to a population segregating for the Bm gene conditioning resistance to beet mosaic virus, candidate markers for this gene have been obtained. An update on the progress of using resistance gene candidates in the characterization of sugarbeet germplasm exhibiting resistance to various diseases will be presented. Emerging approaches for the study of sugarbeet genes involved in disease resistance also will be discussed.

Weiland J.J. Tracking DNA polymorphisms in field populations of aphanomyces cochlioides. Fungal Genetics Conference. 2003. Abstr #445. p. 143.

Root and seedling disease caused by Aphanomyces cochlioides are serious impediments to sugarbeet production in wet growing regions, yet information on the genetics and the inheritance of virulence in this organism is lacking. No race structure for A. cochlioides has been reported and several studies have revealed limited genetic diversity in this oomycete using DNA-based technologies. In the present study, application of random amplified polymorphic DNA (RAPD) analysis to single zoospore isolates obtained from sugarbeet fields in the U.S. identified 2 polymorphisms that assorted randomly within local populations; some field populations harbored only one polymorphic type. The data indicate that these polymorphisms are found in A. cochlioides isolates ranging from the northern Red River Valley of the U.S. to the historic regions of sugarbeet production in Texas. mplications of this result in the development of novel virulence and fungicide resistance in A. cochlioides are discussed.

POLYMERASE CHAIN REACTION (PCR)-BASED DETECTION OF APHANOMYCES COCHLIOIDES USING ACTIN GENE SEQUENCES. Project 620

John J. Weiland

The polymerase chain reaction (PCR) is a DNA based technique for amplifying specific sequences from the genomes of organisms. PCR technology has impacted many fields of biology, including the area of disease diagnosis in both plants and animals. Diagnostics using the PCR are sensitive and highly discriminatory, since they target genome regions whose DNA sequences have diverged throughout evolution. PCR-based diagnostics also require little time for a result to be secured (within one to two days), making them attractive to high-throughput diagnostic laboratories. More recently, exquisite quantitation of pathogens has been made a reality by the added technology of "real-time" PCR. In FY2002, an MJR Opticon II Real Time PCR system was purchased by our research unit for such studies to be undertaken.

The interests in our laboratory include the development of novel diagnostic tools for disease-causing fungi in sugarbeet with a special emphasis on the highly destructive pathogen Aphanomyces cochlioides.. For this reason, we designed our PCR assay for the discrimination of sugarbeet fungal pathogens upon DNA sequences of the actin and ribosomal RNA (rRNA) genes. The rRNA genes of all organisms harbor sequences that permit that organism to be "fingerprinted" according to that gene sequence. This fingerprinting analysis was applied to Aphanomyces populations that were collected in the U.S. ranging from the northern Red River Valley to (now abandoned) sugarbeet growing regions of Texas. The analysis revealed that Aphanomyces cochlioides populations in the central states of the U.S. are genetically uniform. Using a parallel technique of random amplified polymorphic DNA (RAPD) analysis, limited genetic diversity was detected in a field near Buffalo Lake, MN. In investigations which focused on additional isolates of A. cochlioides from this region in 2001, the genetic diversity detected was found to be wide-spread throughout the sampled field (see 2001 Sugarbeet Research Report). In 2002, a specific DNA primer set was designed for the upper band that had been cloned previously. This primer set can now be used to identify just those isolates that are characterized by the larger 1.6 kb RAPD product (Figure 1). This "sequence tagged site" (STS) marker will permit more robust screening of isolates from sugarbeet fields for the presence of this DNA polymorphism. In experiments in 2003, potential differences in virulence to sugarbeet between "high-band" and "low-band" types will be examined in controlled inoculations of both seedlings and mature roots.

Also in 2002, a defined inoculation protocol for the generation of Aphanomyces black root disease in sugarbeet seedlings was developed. This followed the installation of 4 new Conviron growth chambers that permit exquisite environmental control during expermimentation. The procedure will be used in conjunction with a protocol for generating root rot in mature, greenhouse-grown beets for the evaluation of resistance levels in breeding germaplasm and hybrids. Application of real time PCR for the quantitative assessment of *A. cochlioides* levels in infected tissue will permit the

discrimination of sugarbeet possessing high, moderate, and low tolerance to the pathogen. Use of real-time PCR in the evaluation of alfalfa varieties with resistance to *Aphanomyces euteiches* has proven to be as accurate as visual rating (Quantifying *Aphanomyces euteiches* in Alfalfa with a Fluorescent Polymerase Chain Reaction Assay. G. J. Vandemark, B. M. Barker, and M. A. Gritsenko. 2002. Phytopathology 92:265-271).

Figure 1. Conversion of the 1.6kb RAPD product to an STS marker. Numbers across the lanes indicate A. cochlioides isolate number. Amplification of the 1.6kb product with specific primers. Distribution of marker in the population occurs at ~50%.

MECHANISMS OF RESISTANCE IN SUGARBEET TO FUNGAL AND BACTERIAL PATHOGENS

Project 621

John J. Weiland

Enzymes and enzyme inhibitors that accumulate in sugarbeet that is under pathogen stress often are associated with resisting pathogen invasion. Some of these activities are produced to strengthen natural barriers in the plant to pathogen invasion. Others are produces as an arsenal of compounds toxic to the pathogen or as inhibitors of phytotoxins produced by the pathogen. Identification of sugarbeet enzymes, and their corresponding genes, produced in defense against pathogens can further our understanding of the basis for disease resistance. Such knowledge can be used in the selection of germplasm with enhanced pathogen resistance. In addition, the cloning of the genes for defense-related enzymes and inhibitors can lead toward the production of genetically modified (engineered) germplasm for use in sugarbeet breeding programs.

Protease activity secreted in to the culture media by A. cochlioides is being investigated as a virulence component in the production of disease in sugarbeet. Proteases are produced in abundance by Aphanomyces species, including those that infect fish and crayfish. Previously in our lab, it was shown that a proteinase inhibitor from lima bean effectively inhibits a subset of the proteases that are seperable using gel electrophoresis. In 2002, we gained additional evidence that these proteases are indeed expressed in the Aphanomyces pathogen during invasion of the sugarbeet seedling (Figure 1). Moreover, we were able to show that the lima bean trypsin inhibitor, when added to axenic coculture of sugarbeet seedlings and A. cochlioides, could reduce the rate of seedling root rot (Figure 2). The data to date suggest the protease secretion is important for high virulence of A. cochlioides on sugarbeet, but other enzymes secreted by the pathogen are likely to play important roles as well. In 2003, extracts from the roots of sugarbeet with known tolerance to A. cochlioides will be tested for the presence of proteinase inhibitors in an effort to reveal the mechanisms behind root rot resistance in these varieties.

In 2002, secreted esterase by *C. beticola* was further characterized. Gel filtration and native polyacrylamide gel electrophoresis indicate that esterase activity is secreted as a complex that dissassociates during purification. Preparative isoelectric focussing is being used to obtain large amounts of partially purified esterase in order to begin substrate specificity tests. Our hypothesis is that esterase works in conjunction with secreted toxins of *C. beticola*, such as cercosporin, in the damage of plant cell membranes. Leaf infiltration studies will be done with the esterase preparation in order to determine whether the activity may contribute to virulence of *C. beticola* on sugarbeet. Gene transfer to *C. beticola* will help unravel the role of esterase and other factors in the infection of sugarbeet by this pathogen. This will be done using a technique developed in our lab for the transfer of DNA to Cercospora using *Agrobacterium tumefacies* (Figure 3).

Future studies with A. cochlioides will focus on the role of observed protease secreted by the pathogen in pathogen virulence and the nature of the induced esterase in sugarbeet seedlings. Finally, further characterization of the polygalacturonase inhibitor protein (PGIP) genes cloned from various plant species (including Beta webbiana) will be done; a cDNA clone will be isolated from B. webbiana representing the genomic cloned already analyzed to date. The expression of PGIP gene homologues in sugarbeet seedlings and adult roots with known resistance to A. cochlioides will be examined in 2003.

Figure 2. Decreasing the rate of seedling decline with lima bean trypsin inhibitor. Inoculum (100 zoospores/ml) was added to the seedlings prior to the addition of inhibitor at 10 ug/ml.

TAGGING OF GENES FOR DISEASE RESISTANCE IN SUGARBEET USING MOLECULAR GENETIC MARKERS

Project 622

John J. Weiland

Markers that tag regions of chromosomes that harbor genes contributing to disease resistance in sugarbeet can be of use in many aspects of research. Such landmarks on the genomic map can be used in marker-assisted selection in sugarbeet breeding programs. In addition the markers can provide information regarding the clustering or lack thereof regarding the distribution of resistance genes throughout the genome. Finally, chromosome markers can be integral tools in the identification of DNA clones that potentially harbor resistance gene sequences. Cloned resistance genes can be analysed for clues as to their mode of action and can be transferred between plant species using gene transfer technologies.

We have focused early efforts on the tagging of resistance to powdery mildew disease and to root knot nematode. Similar work has already been done in European laboratories the analysis of resistance to Cercospora leaf spot and Rhizomania diseases. Powdery mildew (*Erysiphe polygoni*) and root knot nematode (*Meloidogyne* spp) resistance in sugarbeet has recently been characterized by ARS colleagues in Salinas, CA. Both genes show promise for the genetic control of several races of the organisms causing these diseases. In collaboration with Drs. Robert Lewellen and Ming Yu, these resistance genes are being tagged using the random amplified polymorphism (RAPD) technique.

In 2002, a report detailing the tagging of resistance to root knot nematode in sugarbeet was accepted for publication and the sequence for the marker transferred to the public. Additionally, a sugarbeet population segregating for resistance to Beet Mosaic Virus (BMV) was rated for symptoms (Figure 1) and DNA markers were obtained with weak linkage to this gene (Figure 2). Additional markers for this gene will be forthcoming, with the intent of obtaining markers with greater linkage values.

The project also seeks to develop, in 2003, methods for evaluating a sugarbeet population segregating for resistance to Aphanomyces chronic root rot. With the addition to our facilities of state-of-the-art growth chamber facilities, the inheritance of resistance to both seedling phase and adult root phase Aphanomyces root rot will be examined in segregating populations. After characterization of the inheritance of resistance using this procedure, molecular marker tagging then will be applied to this population as well. As an added benefit, the inoculation and rating procedures produced from this work should be useful for screening germplasm for Aphanomyces resistance. Finally, in 2003, a root inoculation procedure for the initiaion of Cercospora leaf spot (CLS) will be tested for the ability to detect quantitative trait loci associated with resistance to *C. beticola* in a growth chamber setting. Preliminary results in our laboratory indicate that CLS can be produced in this manner and issues forth new concepts regarding the infection cycle of this important sugarbeet pathogen.

140 plants tot.; 111 resistant, 29 susceptible, $X^2 = 1.37$, P = 0.242 F2 population 1221-2-2 from R. T. Lewellen, USDA-ARS, Salinas, CA

Without *Bm* resistance gene

With *Bm* resistance gene

Figure 1 Inheritance of resistance to beet mosaic virus (BMV) in sugarbeet. Inoculations were carried on in a greenhouse at the USDA-ARS-Fargo laboratory and rated for disease at 18 days post-inoculation.

C17

coupling and repulsion markers with respect to resistance were obtained.

IDENTIFICATION OF THE SUCROSE METABOLIZING ENZYMES RESPONSIBLE FOR SUCROSE LOSSES DURING SUGARBEET DEVELOPMENT AND STORAGE

Project 650

Karen Klotz

Introduction

Sucrose catabolism in sugarbeet root is a major factor controlling carbon partitioning to the root, root growth, sucrose accumulation during development and postharvest sucrose loss (Wyse, 1974; Giaquinta, 1979; Sung et al., 1989; Berghall et al., 1997; Klotz & Finger, 2002). Three enzyme families, the acid invertases, the alkaline invertases, and the sucrose synthases, are responsible for nearly all sucrose catabolism in sugarbeet root. The acid invertases catalyze the hydrolysis of sucrose to fructose and glucose, and occur as soluble and insoluble forms in the vacuole and cell wall, respectively. The alkaline invertases also catalyze the hydrolysis of sucrose to fructose and glucose, but are located in the cytoplasm and exhibit activity at higher pH values than the acid invertases. The sucrose synthases catalyze the conversion of sucrose to fructose and UDP-glucose, a metabolically activated form of glucose, and are localized to the cytoplasm.

The roles of the individual sucrolytic activities in carbon partitioning, root growth, and sucrose accumulation and degradation are largely unknown, although roles for sucrose synthase in carbon partitioning (Sung et al., 1989), root growth (Klotz & Finger, 2002), and postharvest sucrose loss (Sakalo & Tyltu, 1997), and roles for acid invertase in sucrose accumulation (Giaquinta, 1979; Berghall et al., 1997) and postharvest sucrose loss (Wyse, 1974; Berghall et al., 1997) have been proposed. Understanding the individual roles of these enzymes and the factors that regulate their expression and activity, however, is key to understanding yield, sucrose accumulation and postharvest sucrose loss in sugarbeet root, and may provide insight into methods to increase the yield of extractable sucrose by alteration in cultural or storage practices, or by genetic selection or modification.

Results and Discussion

Sucrose synthase activity is closely associated with nonextractable dry matter accumulation.

The activities of the major sucrolytic enzymes were determined in three *Beta vulgaris* L. genotypes with differing capacities to accumulate mass and sucrose, and the relationships between these activities and the accumulation and partitioning of sucrose and dry matter were determined. The genotypes used were a low sucrose accumulating, high yield fodder beet variety (Monovigour, Danisco, Denmark), the low yield, high sucrose accumulating sugarbeet breeding line L19 (PI 590690), and the commercial sugarbeet hybrid VDH66156 (Van der Have, Netherlands) chosen to be intermediate in yield and sucrose content. The raw data from this study was reported in last year's progress report (Sugarbeet Research 2001 Report, pp. D13-D16). In the past year, this data was thoroughly analyzed for relationships between the major sucrolytic activities and physical and chemical parameters of the root.

Total sucrose synthase activity was positively associated with sugarbeet root dry matter accumulation, regardless of genotype or stage of development (Figure 1A). To better understand this relationship, total dry matter was divided into its two principal components, sucrose and

Figure 1: Relationship between sucrose synthase activity and (A) total dry matter, (B) accumulated sucrose, and (C) nonextractable dry matter in sugarbeet root. Measurements were made on three *Beta vulgaris* L. genotypes at five stages of development. Genotypes included the fodder beet variety "Monovigour," the commercial sugarbeet hybrid VDH66156, and the sugarbeet breeding line L19. Each genotype was sampled at 4, 6, 8, 12 and 16 weeks after sowing. Each data point is the mean of 10 replicates.

nonextractable dry matter, and these components were compared to total sucrose synthase activity of the root (Figure 1B & C). Nonextractable dry matter included all components of the cell notextracted with refluxing 80% ethanol and was primarily composed of cell wall materials. Sucrose synthase activity was closely associated with the accumulation of nonextractable dry matter ($R^2 = 0.95$), but not with sucrose accumulation ($R^2 = 0.64$). The positive relationship between sucrose synthase activity and nonextractable dry matter suggests a role for sucrose synthase in limiting or controlling cell wall biosynthesis by limiting substrate availability. The product of sucrose synthase activity, UDP-glucose, is the primary substrate for cell wall biosynthesis and a role for sucrose synthase in cell wall biosynthesis has been demonstrated in cotton (Amor *et al.*, 1995). By controlling the rate of cell wall biosynthesis, sucrose synthase may be a factor regulating the size, mass and, ultimately, yield of the sugarbeet crop.

No close association was observed between any of the sucrolytic activities and sucrose concentration or accumulation. Although other research groups have reported an inverse relationship between acid invertase activity and sugarbeet root sucrose content (Wyse, 1974; Giaquinta, 1979; Berghall *et al.*, 1997), no such relationship was observed in this research. The absence of a relationship questions the importance of acid invertase as a regulator of sugarbeet sucrose accumulation, but does not completely discount this theory since studies of the type reported here ignore tissue specificity of expression and cell compartmentalization.

<u>Sucrose synthase activity increases during storage and in response to low temperatures</u>. In conjunction with research described under Project 660, the response of the activities of the major sucrolytic enzymes to temperature and wounding during short-term storage were determined (Figure 2). Greenhouse grown roots (VDH66156) were hand harvested 16 to 18 weeks after planting, gently washed, and placed into storage at 10° or 1°C with or without prior wounding. Wounded roots were

A. Acid invertase activity at 10°C

C. Alkaline invertase activity at 10°C

E. Sucrose synthase activity at 10°C

B. Acid invertase activity at 1°C

D. Alkaline invertase activity at 1°C

F. Sucrose synthase activity at 1°C

Figure 2: Changes in soluble acid invertase (A & B), alkaline invertase (C & D) and sucrose synthase (E & F) activities in response to wounding and storage temperature. Greenhouse grown roots were hand harvested 16 to 18 weeks after planting, washed and placed into storage at 10° (A, C & E) or 1°C (B, D, & F) for one to thirteen days. Half of the roots were severely bruised prior to storage by tumbling for 30 min in a pilot lab beet washer. Data are the mean of four replicates ± standard error. - ■ - unwounded control roots, - O- wounded roots.

delivered a severe bruise by tumbling for 30 minutes in a pilot lab beet washer. Tissue was sampled approximately 1 cm beneath the epidermis at the widest portion of the root.

Soluble acid invertase (Figures 2A & B) and alkaline invertase activities (Figures 2C &D) were relatively unchanged in response to wounding, storage temperature and duration in storage. Sucrose synthase activity, however, generally increased during storage and in response to low temperature (Figures 2E & F). No significant changes in soluble acid invertase and alkaline invertase activities were observed in roots stored at 1°C (Figures 2B & 2D). At 10°C, soluble acid invertase activity was unchanged in wounded roots, but exhibited two transient increases at 3 and 11 days after harvest in unwounded controls. Alkaline invertase activity in all roots stored at 10°C generally declined during the first seven days in storage, but rebounded to near initial values with additional time in storage, similar to results achieved in an earlier storage experiment (Klotz & Finger, 2001). Sucrose synthase activity generally increased during the first eleven days in storage with the increase in activity more notable at 1° than at 10°C (Figures 2E & F). A transient decline in sucrose synthase activity was noted for all roots at 1° and wounded roots at 10°C seven days after harvest, and all roots, regardless of storage temperature or extent of wounding, exhibited a decline in activity after thirteen days in storage that returned sucrose synthase activity to levels similar to that occurring in roots at time of harvest. Wounding did not increase the activity of any of the sucrolytic enzymes at either storage temperature during thirteen days in storage. This is in contrast to the results of Rosenkranz et al. (2001) who report an increase in soluble acid invertase activity in response to wounding.

<u>Isolation of sucrose synthase genes</u>. Research was begun to isolate sugarbeet root sucrose synthase genes. The isolation and characterization of sucrose synthase genes will aid in understanding the function and regulation of sucrose synthase isozymes and could be used for genetic screening of existing germplasms or genetic modification. Toward this goal, a cDNA library was constructed from greenhouse grown sugarbeet root (VDH66156) harvested ten weeks after planting. A sucrose synthase EST clone has been obtained from Dr. Mitch McGrath, USDA-ARS, East Lansing, MI. This clone will be characterized in the upcoming months and used to screen this library for sugarbeet root sucrose synthase genes.

Conclusions

- Total sucrose synthase activity of the root is positively associated with root nonextractable dry matter, which is primarily composed of cell wall materials. This relationship suggests a role for sucrose synthase in limiting cell wall biosynthesis. In such a way, sucrose synthase may have a role in controlling root size, mass and, ultimately, yield of the sugarbeet crop.
- No relationship between sucrose accumulation and any sucrolytic activity was observed. This questions the importance of soluble acid invertase as a regulator of sucrose content. It also suggests that the factors that regulate sucrose content in sugarbeet root are largely unknown.
- Sucrose synthase activity increases during short term storage and in response to low temperature. The increase in sucrose synthase activity may have implications for the sucrose loss that occurs in the first week of storage and during the cooling of sugarbeet roots to near freezing temperatures.

- Soluble acid invertase activity was present at low levels and was generally unaffected by wounding, temperature or duration of storage. The unchanging low activity of this enzyme observed in this and other postharvest studies conducted by this laboratory cause us to question literature reports that conclude that acid invertase is primarily responsible for postharvest sucrose loss.
- None of the major sucrolytic activities were induced by wounding in roots stored at 10° or 1°C. This was surprising since wound healing requires metabolic substrates and energy, and suggests that sucrolytic activities already present in the root are sufficient to meet the metabolic demands for wound healing or these metabolic demands are met through other catabolic pathways.

References

Amor, Y., Haigler, C., Johnson, S., Wainscott, M., Delmer, D. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci., USA, 92:9353-9357.

Berghall, S., Briggs, S., Elsegood, S.E., Eronen, L., Kuusisto, J., *et al.* 1997. The role of sugar beet invertase and related enzymes during growth, storage and processing. Zuckerind., 122:520-530.

Giaquinta, R.L. 1979. Sucrose translocation and storage in the sugar beet. Plant Physiol., 63:828-832.

Klotz, K., Finger, F. 2001. Sucrose metabolism in postharvest sugarbeet roots: activities and properties of the major sucrolytic enzymes. 2000 Sugarbeet Res. Ext. Rep., Coop. Ext. Ser., ND State Univ., 38:147-149.

Klotz, K.L., Finger, F.L. 2002. Contribution of invertase and sucrose synthase isoforms to sucrose catabolism in developing sugarbeet roots. J. Sugar Beet Res., 39:1-24.

Rosenkranz, H., Vogel, R., Greiner, S., Rausch, T. 2001. In wounded sugar beet (*Beta vulgaris* L.) tap-root, hexose accumulation correlates with the induction of a vacuolar invertase isoform. J. Exp Bot., 52:2381-2385.

Sakalo, V., Tyltu, A. 1997. Enzymes of carbohydrate metabolism in sugar beet roots in the course of short-term storage under unfavorable conditions. Russ. J. Plant Physiol. 44:70-76.

Sung, S., Xu, D., Black, C. 1989. Identification of actively filling sucrose sinks. Plant Physiol., 89:1117-1121.

Wyse, R. 1974. Enzymes involved in the postharvest degradation of sucrose in *Beta vulgaris* L. root tissue. Plant Physiol., 53:507-508.

CHARACTERIZATION OF RESPIRATORY PROCESSES IN SUGARBEET ROOTS DURING POSTHARVEST STORAGE Project 660

Karen L. Klotz and Marc D. Anderson

Introduction

Respiration is the oxidative process that converts glucose to carbon dioxide and water, providing substrates and energy for biochemical synthesis and maintenance of plant cells. In sugarbeet roots, sucrose is the primary source of the respiratory substrate, glucose, and it is estimated that 70% of the sucrose lost during postharvest storage under favorable conditions is used to fuel respiration (Wyse, 1973). Respiration is required to maintain healthy tissue during storage, heal wounds acquired during harvest and defend against storage pathogens. The actual respiratory requirements of sugarbeet roots, however, are unknown, although the identification of sugarbeet lines with reduced respiratory rates suggests that a reduction in postharvest respiration is possible (Theurer *et al.*, 1978; Wyse *et al.*, 1978). Respiration is influenced by many environmental and physiological conditions including storage temperature, oxygen and carbon dioxide concentrations, production conditions, injury, and other physiological stresses. The influence of these effectors on sugarbeet postharvest respiration is largely unexplored.

In sugarbeet, as in all plants, two respiratory pathways are operational, the cytochrome c oxidase (COX) pathway and the alternative oxidase (AOX) pathway. The COX pathway is the predominant respiratory pathway in nearly all plant tissues and organs and couples respiration to the production of chemical energy in the form of ATP. The AOX pathway is a minor contributor to total respiration in most plant tissues, and is generally considered to be energetically wasteful since it uncouples respiration from energy production, resulting in the generation of heat. Respiration through the AOX pathway can increase during periods of oxidative stress and is induced by wounding and chilling injury in some plant species (Moore *et al.*, 2002). The importance of the AOX pathway in sugarbeet roots and its induction by typical postharvest stresses is not known.

Research was initiated to characterize the respiratory processes responsible for postharvest sucrose loss and determine the effect of environmental and physiological conditions on postharvest sugarbeet root respiration. In these studies, sugarbeet root respiration and the contribution of COX and AOX pathways to total respiration were examined in different portions of the root and in response to wounding, storage temperature and duration in storage. The goal of this research was to gain fundamental knowledge of the factors that regulate and influence sugarbeet respiration. This information may potentially provide insight into methods to reduce postharvest respiratory sucrose loss.

Materials and Methods

Sugarbeets (VDH66156, Van der Have, Netherlands) were greenhouse grown, hand harvested 16 to 18 weeks after sowing, and gently hand washed prior to use. For storage studies, roots were wounded by tumbling in a pilot scale beet washer for 30 minutes and tissue samples for respiration

and mitochondria isolation were taken approximately 1 cm below the epidermis at the widest portion of the root. Respiration was measured as O₂ consumption at 25°C using an oxygen electrode (Moore & Whitehouse, 1997). Total respiration rate was measured as the difference in O₂ consumption of tissue before and after the addition of the respiratory pathway specific inhibitors, KCN and salicylhydroxamic acid (SHAM). Capacities of the COX and AOX pathways were determined with isolated mitochondria (Day & Wiskich, 1975; Vanlerberghe et al., 2002). Capacity of a pathway was measured as the difference in O₂ consumption before and after the addition of an inhibitor specific for the pathway being measured after complete inhibition of the competing respiratory pathway.

Results

Respiration and respiratory pathway capacities in different regions of the root. Total respiration and the capacities of the COX and AOX pathways were examined in different areas of the sugarbeet root (Table 1). Tissue was sampled at the shoulder of the crown, 1 cm beneath the epidermis (crown internal tissue), at the widest portion of the root, 1 cm from the longitudinal center of the root (internal root tissue), and at the outermost 1 to 2 mm of the root at its widest portion (surface tissues). Total respiration was 8-fold greater in surface tissues and 1.5-fold greater in the internal tissue of the crown than in the internal tissue of the root. The internal tissues of the root and crown were similar in the capacities and the relative capacities of the two respiratory pathways, with the capacity of the COX pathway five to six-fold greater than the capacity of the AOX pathway. Surprisingly, the COX and AOX capacities were significantly lower in surface tissues, relative to the internal tissues of the crown and root, despite the higher rate of total respiration observed in surface tissues, suggesting that respiratory capacity does not limit or regulate respiration in sugarbeet roots. The relative capacity of the AOX pathway was greater in root surface tissues, perhaps in response to or to protect against environmental stresses that are more likely to be encountered at the root surface.

Table 1: Total respiration and capacities of the COX and AOX pathways in different regions of the root. Relative capacities of the COX and AOX pathways as a percent of the total respiratory capacity of the tissue are given in parentheses. Data are the mean \pm standard error.

	total respiration	COX capacity	AOX capacity
tissue	nmol O ₂ min ⁻¹ g tissue ⁻¹	nmol O ₂ min ⁻¹ mg protein ⁻¹ (%)	nmol O ₂ min ⁻¹ mg protein ⁻¹ (%)
internal crown	13.3 ± 1.5	$205 \pm 19 (85.1 \pm 1.1)$	$36.6 \pm 5.4 \ (14.9 \pm 1.1)$
internal root	8.8 ± 1.3	$196 \pm 34 (84.7 \pm 2.4)$	$33.9 \pm 5.6 \ (15.3 \pm 2.4)$
surface	73.5 ± 8.1	$73.3 \pm 18.1 (57.7 \pm 6.9)$	$68.6 \pm 34.7 \ (42.3 \pm 6.9)$

Effect of wounding, storage temperature, and duration of storage on respiration and respiratory pathway capacities. The effects of wounding and storage temperature on total respiration and the absolute and the relative capacities of the COX and AOX pathways were determined by incubation of freshly harvested roots at 10° or 1°C for thirteen days with or without prior wounding. Respiration was elevated in wounded roots at 10°C (Figure 1A), but not at 1°C (Figure 1B).

A. Total respiration at 10°C

B. Total respiration at 1°C

C. COX capacity at 10°C

D. COX capacity at 1°C

E AOX capacity at 10°C

F. AOX capacity at 1°C

Figure 1: Total respiration and capacities of the COX and AOX pathways in sugarbeet roots stored for 13 days at 10° and 1° C with and without wounding. Control roots were gently hand harvested and placed into storage without further treatment. Wounded roots were severely bruised by tumbling in a pilot lab beet washer for 30 minutes immediately after harvest. Tissue was sampled approximately 1 cm below the epidermis at the widest portion of the root. Data are mean \pm SE.

Maximum respiration of wounded roots at 10°C occurred two days after harvest. No significant changes in respiration occurred in wounded or control roots stored at 1°C for the first nine days in storage, although respiration increased with storage beyond nine days. The cause for this increased respiration at 1°C with prolonged storage is unknown. All roots, regardless of degree of wounding or storage temperature exhibited a three to four-fold increase in COX capacity after 24 hours in storage (Figure 1C and 1D). With subsequent storage, COX capacity declined at 10°C, but remained elevated at 1°C. No major differences in COX capacity were observed between wounded and unwounded control roots at either storage temperature. AOX capacity also increased in wounded and control roots at 10° and 1°C (Figure 1E and 1F). An increase in AOX capacity was evident one day after harvest in roots stored at 1°C, while an increase in AOX capacity was not evident until four days after harvest in roots stored at 10°C. Few differences in AOX capacity were noted between wounded and unwounded control roots at either storage temperature. The relative capacities of the two respiratory pathways exhibited only minor alterations in response to temperature, wounding or duration in storage (Table 2). A transient increase in the relative capacity of the COX pathway occurred during the first two days in storage at 10°C, and six days after harvest in roots stored at 1°C. No elevation in the relative capacity of the AOX pathway was observed at either storage temperature.

Conclusions

- Respiration is six to eight-fold greater at the root surface than in the internal tissues of the root and crown.
- The capacity of cytochrome c oxidase pathway is greater than the capacity of the alternative oxidase pathway in all tissues examined. Cytochrome c oxidase is responsible for 85% of total respiratory capacity in the internal tissues of the root and crown and 58% of total respiratory capacity at the root surface.
- > Wound induced increases in respiration were observed at 10°, but not at 1°C.
- Respiration increased with prolonged storage at 1°C. The cause for the elevation is respiration in roots stored for more than nine days at 1°C is unknown.
- No relationship between respiration rate and total respiratory capacity, cytochrome c oxidase capacity or alternative oxidase capacity was observed in any study, suggesting that respiratory capacity does not limit or regulate respiration in sugarbeet roots. Future research will examine whether respiration is regulated by substrate availability or product inhibition.
- The relative capacities of the COX and AOX pathways were mostly unchanged during short term storage, regardless of wounding or storage temperature, with the COX pathway responsible for the majority of root respiratory capacity. The data suggest that the AOX respiratory pathway is not significantly induced in sugarbeet root in response to harvest, cold temperature, or wounding.

Table 2: Relative COX and AOX capacities of roots stored at 10° and 1°C with or without wounding. Capacity is expressed at the percentage of total respiratory capacity. n.d., not done.

	Relat	ive COX ca	pacity (% of 1	total)	Relative AOX capacity (% of total)			
days after	10°	· C	1° C		10° C		1°	C
harvest	wounded	control	wounded	control	wounded	control	wounded	control
0	88.1	88.1	88.1	88.1	11.9	11.9	11.9	11.9
1	97.4	97.6	88.1	84.0	2.6	2.4	11.9	16.0
2	96.2	95.1	n.d.	n.d.	3.8	4.9	n.d.	n.d.
3	n.d.	n.d.	92.5	87.1	n.d.	n.d.	7.5	12.9
4	90.7	91.1	n.d.	n.d.	9.3	8.9	n.d.	n.d.
6	n.d.	n.d.	94.0	94.2	n.d.	n.d.	6.0	5.8
7	89.6	89.3	n.d.	n.d.	10.4	10.7	n.d.	n.d.
11	84.7	87.9	90.8	90.5	15.3	12.2	9.2	9.5
13	n.d.	n.d	91.6	88.5	n.d.	n.d.	8.4	11.5

References

Day, D.A., Wiskich, J.T. 1975. Isolation and properties of outer membrane of plant mitochondria. Arch. Biochem. Biophys., 171:117-123.

Moore, A.L., Albury, M.S., Crichton, P.G., Affourtit, C. 2002. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci., 7:478-481.

Moore, A.L., Whitehouse, D.G. 1997. Isolation and purification of functionally intact mitochondria and chloroplasts from plant cells. p. 243-270. *In*: Graham, J.M., Rickwood, D. (eds.), Subcellular fractionation: a practical approach. IRL Press, Oxford, UK.

Theurer, J.C., Wyse, R.E., Doney, D.L. 1978. Root storage respiration rate in a diallel cross of sugarbeet. Crop Sci., 18:109-111.

Vanlerberghe, G.C., Robson, C.A., Yip, J.Y.H. 2002. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiol., 129:1829-1842.

Wyse, R.E. 1973. Postharvest losses of sucrose in sugarbeets. Proc. Beet Sugar Devel. Found. Conf. on Sugarbeet Storage. Beet Sugar Devel. Found., Denver, CO.

Wyse, R.E., Theurer, J.C., Doney, D.L. 1978. Genetic variability in post-harvest respiration rates of sugarbeet roots. Crop Sci., 18: 264-266.

		e.	

SUGAR BEET RESEARCH 2001 REPORT

Section D

Sugarbeet and Bean Research Unit Agricultural Research Service - USDA East Lansing, Michigan

Dr. J. M. McGrath, Sugarbeet Geneticist

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 741, 742 and 743)

CONTENTS

Agronomic Evaluation of Germplasm in One and Two Row Plots J. Mitchell McGrath, Tim M. Duckert, and Teresa Koppin	D3
Seed Increases in Michigan J. Mitchell McGrath, Tim M. Duckert, and Teresa Koppin	D6
Selection for Low Temperature Stress Germination Azeza Bughrara, R. Scott Shaw and J. Mitchell McGrath	D7
Real-Time Sucrose and Yield Assisted Selection and Breeding Tim M. Duckert and J. Mitchell McGrath	D8
Field Evaluation of Sugar x Red Beet Population Segregating for Sucrose Content	
and Yield Daniele Trebbi and J. Mitchell McGrath	D 11
Sucrose Accumulation During Early Sugar Beet Development * Daniele Trebbi and J. Mitchell McGrath	D13
Alphabet Soup for Beets: Status of ESTs, BACs, RILs and Other Genomic Sundried J. Mitchell McGrath	
Differential Expression of Glyoxylate Enzymes in Sugar Beet Related to Seedling Vigour * Benildo de los Reyes and J. Mitchell McGrathProject 741	
Histopathology and Histochemistry of Rhizoctonia Seedling Damping-off Subashini Nagendran and J. Mitchell McGrathProject 742	D24
Development of Recombinant Inbred Lines in Beta J. Mitchell McGrath	D28
Hydrogen Peroxide Concentration in Stress Germinated Sugar Beet Seeds Shiranee Gunasekera, Azeza Bughrara, Susan Myers, J. Mitchell McGrath	D33

^{*} Papers submitted for 2003 ASSBT Proceedings

Agronomic Evaluation of Germplasm in One and Two Row Plots

J. Mitchell McGrath, Tim M. Duckert, and Teresa Koppin USDA – Agricultural Research Service, East Lansing, MI

The agronomic tests 02BB01 (one row) and 02BB02 (two row) were planted April 16, 2002 in a 4 replication, randomized complete block design, North of Swan Creek Rd. Plot length was 27 feet in both one- and two-row plots. The previous crop was soybeans. The ground was fall chisel plowed followed by frost tillage in the early spring. All tests were treated pre-emergence with 5.6 pt/ac of Pyramin and 3 pt/ac of Nortron after planting. Nitrogen fertilizer was side-dressed at the rate of 120 lbs/ac. Mechanical thinning was performed June 7 and hand thinning was completed on June 10, at an average spacing of 6 inches between plants. Both tests were sprayed four times for Cercospora leaf spot control following recommended spray rotations. Both tests were conducted using PAT treated seed from 12 commercial lines from the Sugarbeet Advancement trials. All other seed was polished, cleaned and untreated. Data for stand counts and plot weights were taken, and no sucrose information was taken. The two-row test was harvested October 7 with the B&B research harvester and the one row test was harvested one week later, on October 15, with the USDA one row research harvester. Harvest plot length for both was 24.5 feet. Plots were shortened to remove alley border row effects.

This aim of this test, in part, was to provide information on the use of the new USDA one row research harvester for gathering agronomic data, with the eventual aim to develop a method to obtain sucrose data on the harvester as a means of selecting plant roots for further germplasm enhancement. Twenty entries were in common between one- and two-row tests for purposes of comparison. In general, plot weights were greater using the new one-row harvester compared with the two-row harvester, however the variability was also higher, and adjustments will be necessary. Some variability invariably arose from different inter-row competition effects in the one and two row plots. A greater number of accessions were tested in the one row plots for evaluation (Table 1). Some entries had poor stands. Entries 1 to 12 were from stored accessions dating prior to 1986 whose seed was increased in the same crossing plot and harvested as half-sib families. Entries 13 to 20 and 40 were the series of smooth-root germplasm releases and selections from the East Lansing program. Entries 22 to 30 were commercial entries from the Sugarbeet Advancement trials, and entries 31 to 39 were USDA-ARS Ft. Collins, CO Rhizoctonia resistance germplasm releases.

The other aim of this test was to evaluate materials for incorporation into new germplasm releases. Previous years agronomic trials at the Bean and Beet Farm have focused nearly exclusively on developing high sucrose, smooth root (HS-SR) germplasm. These activities have been successful, and disease resistance in the lines for Eastern growing conditions is generally good with the exception of Rhizoctonia resistance. USDA-ARS Ft. Collins Rhizoctonia resistant releases were evaluated for their potential role as donors of this trait to the HS-SR future releases, and selections from within the existing SR releases (RHIZOC '01 MIX) may show improved performance. Additional accessions with high vigor after 17 years in suboptimal storage (01B0xx) were increased in 2001, and yield was evaluated here, with some showing potential as donors for increased dry matter accumulation. 95HS2 and 96N7-00 were evaluated for potential release, and both showed high sucrose percentage in previous years and 96N7-00 was selected for acceptable agronomic performance under low nitrogen fertilizer application.

A unique set of 11 F3 families with potential Aphanomyces seedling resistance derived from PI540625 were tested in a seedling disease nursery north of the pond at the Bean and Beet Farm (Table 2). Agronomic performance was low as expected, however these lines were deep-rooted at harvest, suggesting a lower incidence of tip rot relative to frequently sprangled commercial hybrids and other germplasm.

Table 1: Average of four replicate plots for stand count and harvest data for agronomic tests 02BB01 and 02BB02. DAP = days after planting, nd = not determined.

				Stand Count				Yield	Yield
Entry No.	Entry Name	13DAP 1 row	26DAP	39DAP	13 DAP 2 row	24 DAP 2 row	35 DAP 2 row	Tons/acre 1 row	Tons/acre 2 row
			1 row	1 row					
1	95HS2 96N7-00	68.8 100.0	183.8	225.8	nd	nd	nd	27.13	nd
2 3	01B001	60.0	161.3	224.3	nd	nd	nd nd	24.72 26.79	nd nd
3 4	01B001 01B002	48.8	92.5 107.5	117.0 120.8	nd nd	nd nd	nd nd	26.79 26.84	nd
5	01B002 01B005	45.0	107.3	112.3	nd	nd nd	nd	31.11	nd
6	01B003	20.0	87.5	100.8	nd	nd	nd	29.89	nd
7	01B007	68.8	112.5	124.8	nd	nd	nd	33.00	nd
8	01B007	66.3	116.3	141.8	nd	nd	nd	37.57	nd
9	01B010	51.3	102.5	107.0	nd	nd	nd	31.32	nd
10	01B010	53.8	93.8	104.0	nd	nd	nd	34.62	nd
11	01B012	38.8	108.8	114.3	nd	nd	nd	31.19	nd
12	01B013	62.5	118.8	127.0	nd	nd	nd	30.45	nd
13	SR80	67.5	113.8	165.8	72.5	122.5	155.3	27.78	30.53
14	SR87	96.3	108.8	95.0	112.5	133.8	177.5	33.97	32.10
15	SR93	70.0	101.3	105.8	68.8	135.0	144.3	34.94	33.01
16	SR94	106.3	90.0	98.5	107.5	91.3	179.8	33.47	29.05
17	SR95	81.3	120.0	126.5	96.3	126.3	175.3	27.28	28.20
18	SR96	86.3	110.0	119.8	103.8	95.0	164.5	29.55	30.10
19	SR97	52.5	67.5	68.3	65.0	95.0	114.0	30.08	26.29
20	EL0204	91.3	106.3	105.0	57.5	85.0	98.8	31.17	28.20
21	USH20	32.5	28.8	31.0	nd	nd	nd	30.46	nd
22	C1353	51.3	126.3	168.5	61.3	101.3	106.5	31.68	30.10
23	E33	76.3	81.3	89.5	78.8	103.8	136.5	29.97	26.44
24	B5451	58.8	23.8	23.0	52.5	96.3	98.0	39.15	32.82
25	E38	51.3	123.8	143.3	70.0	113.8	123.0	32.81	29.77
26	B5172	18.8	113.8	130.8	17.5	56.3	61.0	31.55	30.67
27	C913	32.5	160.0	223.5	50.0	92.5	108.8	32.03	26.20
28	SPARTAN	40.0	125.0	139.5	52.5	93.8	116.3	31.70	26.10
29	B5736	46.3	173.8	187.0	56.3	78.8	94.5	35.04	31.39
30	RH5	72.5	150.0	185.0	72.5	110.0	126.0	30.43	29.10
31	E17	57.5	153.8	165.0	36.3	105.0	119.5	34.18	31.20
32	C963	23.8	126.3	135.8	30.0	63.8	76.3	30.94	32.25
33	PROMPT	61.3	113.8	109.3	76.3	105.0	107.5	35.00	29.67
34	FC722-1	8.8	88.8	88.8	nd	nd	nd	6.27	nd
35	FC724-1	62.5	101.3	112.0	nd	nd	nd	18.18	nd
36	FC720-1	31.3	115.0	127.8	nd	nd	nd	15.58	nd
37	FC722-1 cms	5.5	93.8	104.3	nd	nd	nd	2.63	nd
38	FC710 (4X)	47.5	110.0	115.5	nd	nd	nd	23.74	nd
39	FC710 (4X)	57.5	62.5	60.0	nd	nd	nd	21.49	nd
40	RHIZOC '01 MIX	32.5	107.5	115.5	nd	nd	nd	35.21	nd
Mean		55.1	109.7	124.0	66.9	100.2	124.2	29.0	29.7
Std. Devia	tion	23.5	31.9	44.1	24.4	20.1	32.6	7.4	2.2
F Value		6.8	5.8	6.8	31.9	6.0	73.0	12.4	2.5
CV%		31.5	21.9	24.0	18.8	23.7	8.9	14.3	13.5

Table 2: Stand count and harvest data for three replicate disease nursery test 02BB03. DAP = days after planting.

Fata Na	5 / N	13DAP	26DAP	39DAP	Tons/acre
Entry No.	Entry Name	1 row	1 row	1 row	1 row
1	Y03-384-139	3.7	24.3	30.7	9.98
2	Y03-384-127	17.0	26.0	35.3	13.49
3	Y03-384-126	22.7	50.3	48.0	4.51
4	Y03-384-109B	2.3	4.3	9.0	2.84
5	Y03-384-099	3.7	42.3	65.3	4.90
6	Y03-384-083	0.3	12.3	27.3	5.59
7	Y03-384-070	0.0	12.0	19.0	5.61
8	Y03-384-060	2.0	25.0	29.7	7.01
9	Y03-384-051	1.7	19.3	37.0	5.54
10	Y03-384-017	0.3	2.7	4.0	1.52
11	Y03-384-018	0.0	2.7	3.0	2.24
12	01B001	41.7	73.3	93.0	16.94
13	01B002	44.7	93.3	94.3	18.87
14	01B005	29.3	70.0	92.3	17.65
15	01B006	18.0	61.7	72.7	16.61
16	01B007	32.0	78.3	80.3	24.00
17	01B009	42.7	91.7	93.3	22.53
18	01B010	36.0	75.0	92.0	14.30
19	01B011	16.0	62.7	71.7	18.03
20	01B012	21.3	80.0	89.0	21.59
21	01B013	32.0	75.0	94.7	20.75
22	SR80	43.3	64.0	84.3	27.05
23	SR87	80.0	63.3	69.3	19.47
24	SR93	54.0	75.0	80.3	15.04
25	SR94	54.3	63.3	77.0	20.45
26	SR95	76.7	96.7	96.7	19.94
27	SR96	74.7	43.0	51.3	20.22
28	SR97	39.7	76.7	83.0	17.86
29	EL0204	66.7	75.0	85.0	20.47
30	USH20	38.7	71.7	77.7	16.36
31	C1353	29.7	86.7	94.3	18.69
32	E33	34.7	71.7	79.7	8.69
33	B5451	33.3	53.3	57.7	21.97
34	E38	43.3	74.0	84.0	20.12
35	B5172	12.7	15.0	15.7	16.97
36	C913	36.0	85.0	93.7	19.61
37	SPARTAN	28.0	82.7	101.0	19.39
38	B5736	35.3	105.0	113.7	14.07
39	RH5	38.0	76.3	93.3	17.86
40	E17	19.3	76.7	85.0	16.08
41	C963	16.0	63.0	85.7	22.81
42	PROMPT	34.0	150.0	186.7	23.43
43	98B040-73ms	3.3	108.3	120.3	14.55
44	USH20	50.0	108.3	118.7	18.39
45	ACH185	52.0	101.7	145.7	15.47
46	00J12-01	49.3	93.3	125.0	17.45
Mean		30.7	64.4	75.8	15.6
Std. Deviation	on	21.6	32.5	37.3	6.5
F Value		4.9	6.5	7.3	5.6
CV%		55.1	34.5	31.7	31.0
/ -					- · -

Seed Increases in Michigan

J. Mitchell McGrath, Tim M. Duckert, and Teresa Koppin USDA – Agricultural Research Service, East Lansing, MI

On June 14, 2001 field trial 01EL39 was planted on campus, primarily as a test for new seed planting equipment. Sixteen rows (0.3 acres) of a F₂ Smooth Root Composite (WC92408, polished and sized over 5 mm in diameter) were planted with an Almaco modified John Deere 7200 4-row belt cone research planter. The plot was planted in 28" rows and cared for with normal agronomic practices. Plants were thinned to 6" spacing at eight weeks of age. The performance of the new equipment on properly sized and cleaned polished beet seed was deemed excellent.

Typical Michigan winters can be harsh on over wintering beets in the field, and seed production in Michigan is not normally attempted due to beet mortality. Since this field was in excellent shape going into the winter, and since further intercrossing of this F₂ composite population may further recombine desirable traits such as yield, sucrose, monogermity, and cold tolerance, the field was over-wintered in 2001. Root diameters were in a range of 1" to 4".

Winter was relatively mild with a steady snow cover during the coldest periods, except during March. An estimated 60% of the roots survived to early spring. A more precise evaluation was made after the plants began to bolt in late May. Most survivors from the winter months were smaller sized beets (< 1" diameter). Nitrogen was applied to the 16 rows (60 lbs N/ac) on April 18, 2002, as well as Betamix (3 pt/ac) to control fall-germinated weeds.

Seed harvest began July 22, 2002 with eight rows manually cut and placed on the ground to dry for threshing. Three days later, plants were manually threshed with assistance of a Hege 140 plot harvester. This process worked well however there was an enormous amount of seed shatter. The remaining eight rows were left standing so that their stems would dry and direct harvesting could be attempted. Two weeks later on August 9, the Hege 140 combine was used to harvest two rows per pass. This method was more labor efficient however less seed was collected (Table 1) because the extra drying period caused more seed to shed naturally. A total of 332 lbs of seed was collected off this trial. Some plants had monogerm seed and 18 of these plants were harvested separately.

Table 1: Harvest data collected from over wintered seed increase. Yield is pounds of seed harvested from 8 rows by two different methods and timings.

Method of harvest	Yield of raw seed (pounds)
Manual cutting July 22 and dry down 3 days	188
Direct cut machine harvest August 9	142
Monogerm seed hand harvest	1.8

Seed production, specifically for breeding improved populations, can be accomplished in Michigan. Large plot seed increases are currently done in Oregon. Inter-pollinating advanced breeding materials for population improvement, such as the early generation F₂ planted here, is an important genetic resource for continued selection for improved germplasm. Typical seed increases in the greenhouse result in limited seed yield from a small number of parents.

Field multiplication allows more plants to contribute to the seed, greater opportunity to select desirable plant forms (high seed yield, strong seed stalks), and increased chances of desired recombination of characters present in some but not all parents in the founding population. Characterization of the over 10,000 seedlots stored at East Lansing, many under sub-optimal storage conditions, will require regeneration of promising germplasm for proper agronomic evaluations. Expanding seed multiplication efforts to include field increases will help reduce the time for germplasm evaluation and potential release.

Selection for Low Temperature Stress Germination

Azeza Bughrara, R. Scott Shaw and J. Mitchell McGrath Michigan State University and USDA – Agricultural Research Service, East Lansing, MI

Growers would like to plant as early as possible, while the ground is cold, in order maximize the length of the growing season. Temperature is one of the three important conditions for germination and emergence (the others being moisture and impedance, such as hard-seed and crusting). Varieties differ in emergence, but selection for emergence at colder temperatures, particularly under stress, is not routinely practiced. Analyses of stress germination at the molecular level have been facilitated by a novel liquid germination assay. This assay is flexible and allows conditions of germination to be varied to include different types of stress as well as their combinations. To date, molecular studies have relied on imposed chemical stress (e.g. salt, mannitol, oxalic acid), but only at room temperature. Water germination at low temperature on a series of germplasm lines was tested here.

Experiments were conducted to begin to examine heritability of low temperature germination. Fifty seeds from each of 10 entries (Table 1) were incubated in water at 5 C with shaking and examined daily for radicle protrusion from seed. Germinated seed was recorded and planted to peat pots for seed multiplication. Results showed differences between entries, with obsolete commercial hybrids showing highest germination (e.g. US H20 & ACH185), overall and within 10 days of immersion, with the exception of SR96. Genetic variability for low temperature germination, if it exists, will allow breeding of hybrids suited for early planting.

Table 1: Germination of 10 germplasm lines in water at 5 degrees Celsius.

	10 days	25 days	29 days	32 days	35 days	39 days	Total	% Germ
ACH185	3	0	0	13	12	0	28	56.0
USH20	3	0	10	0	14	0	27	54.0
SR96	4	10	0	0	12	0	26	52.0
SR93	1	6	0	7	0	0	14	28.0
EL0204	0	0	0	7	6	0	13	26.0
SR80	0	0	12	0	0	0	12	24.0
SR95	0	0	0	0	11	0	11	22.0
SR87	0	0	0	0	9	0	9	18.0
SR97	0	0	0	8	0	0	8	16.0
SR94	0	0	0	0	0	7	7	14.0
sum	11.0	16.0	22.0	35.0	64.0	7.0	155.0	
average	1.1	1.6	2.2	3.5	6.4	0.7	15.5	31.0
std dev	1.6	3.5	4.7	4.8	5.9	2.2	8.2	16.5

Real-time Sucrose and Yield Assisted Selection and Breeding

Tim M. Duckert and J. Mitchell McGrath USDA-ARS

Sugarbeet breeding is a labor intensive and long-term process. Yearly evaluation of many breeding populations is necessary in order to find better combinations of existing characters, such as disease resistance, harvestability, impurities, sugar concentration, and sugar yield, and fix these combinations in improved germplasm populations. Genetic segregation in breeding populations is expected, and selection for improved agronomic performance based on population statistics necessarily averages high and low agronomic performance from individuals within the populations.

Over the past few years at East Lansing, the largest labor requirements have occurred during harvest. Beets are lifted with a harvester fitted with a scale to determine plot weight, and a sub-sample of the plot is bagged, loaded onto a trailer, and hauled to a processing station. Plot samples are run through a large gang saw, and brei is collected, squeezed, and frozen for chemical analyses at the Michigan Sugar factory laboratory. Results are available within two to eight weeks depending on factory schedules, and results of agronomic evaluations influence breeding decisions. The assistance of Michigan Sugar in this process is essential and gratefully acknowledged. A disadvantage of this system is that most beets harvested are consumed for sucrose analyses and few of the beets are available for further breeding, selection, or genetic analyses. Further, agronomic analyses are limited to the number of breeding lines that can be accommodated by available labor and other resources.

We have been developing a harvesting platform that may overcome some of these limitations, and help to expand the number of lines that can be tested in any given year under a wider range of agronomic conditions (e.g. disease nurseries). Such a need is evident from continuing discussions with other breeding programs. In 1999, concepts for a harvester were developed, and during the winter of 2001 / 2002 a prototype harvester was built at the Michigan State University Crops Barn as a proof of concept. Design elements included accommodations for transport between research locations, modular elements adaptable to future technology and research needs, safety and ergonomic needs of the fewer number of personnel available, and modern technology for lifting, cleaning and processing the beets. The new harvester was used during the 2002 field harvest, and is currently complete with the exception of chemical analyses instrumentation. Chemical analyses will be included in 2003, assuming availability of resources. This report lists the components of the prototype harvester. Suggestions for design modifications would be welcomed.

A design was conceived and a scale model built the summer of 2001, and a prototype built in 2002 (Figure 1). Many discussions took place to determine the best possible means to reach the goals in mind. Much of the project was drawn out on paper since computer aided design (CAD) skills were not in hand. Many years of design, fabrication and equipment handling experience were drawn upon to design each individual component as well as the frame to meet current and future requirements, ease of serviceability or modification, and safety. Due to the modular design, many of the components were sketched separately and designed to fit together into one common unit. Six main modular components define the harvester. Where possible, hydraulic controls for each component were mounted on the tractor.

The first component was the lifter wheel / exit beater assembly, which was salvaged from a surplus harvester. This assembly was mounted on a separate sub-frame in order to engage (lower) or disengage (raise) the unit for transport of harvest, respectively. Typical commercial harvesters move the entire frame to achieve this operation, however, the motion of the entire frame tipping causes an uneven platform that proves to be a safety hazard for personnel working on the harvester. The sub-frame included a hydraulic cylinder to raise and lower this subunit, and since this design caused changes in the lift-wheel mounting angle throughout its range of motion, considerations for the pinch point of the lifter wheels were taken into account to accommodate various operating heights that may be used.

Figure 1: One-row sugarbeet harvesting and analysis platform.

The second modular component was the bed chain assembly. This unit was fabricated from two pieces of 1/8" sheet metal that make up the sides of the conveyor and connected with 2" square tube bracing. It contained an 18" belted chain with steel rods running in a continuous loop. Four eccentric sprockets were mounted (two each side) between the drive and roller sprockets, providing an action that causes dry, loose soil to fall from the roots. The unit was mounted at a 10-degree incline to the field level.

The third modular component was the lift conveyor assembly. This unit was constructed in much the same way as the bed chain assembly, however it was oriented at a 45-degree angle. The bed chain dumps beets onto this unit. These two units are driven by the same hydraulic motor and connected by a 60H roller chain. This third component differed in design in that it used an 18" belted chain with 3" raised steel flights on every fifth link rod. This component did not use the eccentric wheels but incorporated two ultra high molecular weight (UHMW) slides to support the belt between the top and bottom rollers. The approximately 13" wide space between the UHMW is open for small stones, soil, etc. to fall through to the ground. A transition is made between the third and fourth components that allow the beets to fall gently from the lift chain onto the grab rolls.

The fourth component was the grab roll assembly. This assembly consisted of a solid frame with 1/8" sheet metal sides to direct the beets over the grab rolls. The grab rolls have one smooth and one spiral roller. Considering the light load of beets that would actually be

on the rollers at any point of time given the slower harvest speed and one row of material, this combination of rollers gives more bounce to the beet, spinning it around so all sides have equal chances for cleaning while on the grab roll bed. The spiral roller is wrapped with a double spiral to provide additional cleaning ability. This roller is also mounted in a fixed position while the smooth roller is mounted on pivoting axes with an adjustable cushion dampening design to allow for movement should any foreign object wedge between the rollers. A hydraulically powered double belt with a spring tensioner drives the grabs rolls.

The fifth component was the hopper / lift conveyor combination. The hopper included steep vertical angles to facilitate complete cleanout, and connected to the sides of the conveyor for a smooth transition. The lift conveyor chain was the same as component three and the conveyor was set at a 45-degree angle. The steel frame structure built around this conveyor provides support to the four load cells that measure plot weight at this point. Careful planning put all the load cells on the same plane and empty weight was divided 60/40 with 40% on the two load cells on the hopper side. This allows for loading of the hopper and a shift of the weight division back to 50/50 (or somewhat close depending on actual plot weight). A later development prompted a modification to be able to fully secure the load cells from any movement (up, down, or sideways) for transport to avoid damaging the sensors. The lock developed consists of three threaded rods each with four nuts for securing the conveyor. The load cells are attached to the harvester frame to give a very rigid base.

The sixth component was the processing line. This component includes a hopper where beets are delivered from the last conveyor. The line delivers beets back toward the front of the machine. This area was built to be a laboratory bench with a stainless steel top. Incorporated into the bench are a portable scale (used for single beet weight), a saw (for tissue maceration and collection) and an observation / selection area. To be added is a real-time sucrose-sensing instrument, and current plans call for a Near Infrared unit mounted next to the saw focused on the cut surface of the beet.

All of the above components were mounted onto a frame made from 2" x 6" steel tubing. The frame and wheels straddle three 28" rows with the offset being to the left side of the harvester. The offset was designed to give a more stable platform and provide stability for an over-center dump hopper to be added in the future. Two 4900 pound axles with 8 bolt hubs and 12.4-24 R1 tires (oriented in reverse direction) carry the harvester. Some typical harvester components were available on a previously used unit. This included a lifter wheel assembly and exit beater as well as some hydraulic components. A two-point swinging hitch was salvaged from a used John Deere 5 bottom plow. This hitch was necessary to assist in the loading of the implement onto a trailer for transport. A complete list of parts is available from the authors.

The harvester was deployed for the Fall 2002 harvest. It was used on all plots. Comparison of results using the same germplasm grown in adjacent one- and two-row plots showed some differences in yield (see earlier **Table 1**: harvest data for agronomic tests 02BB01 and 02BB02). However, the advantages to our program in using a one-row harvester are many. These include being able to test more germplasm in many diverse environments such as disease nurseries due to the easy transportability of the harvester, needing less seed for planting a single row, and the ability to measure each beet for weight, sucrose, and morphology for selection.

Field Evaluation of Sugar x Red Beet Population Segregating For Sucrose Content And Yield

Daniele Trebbi and J. Mitchell McGrath Michigan State University and USDA-ARS

Root sucrose concentration is an important heritable agronomic trait for the beet sugar industry. Economic return of the crop is roughly calculated by root yield multiplied by the percentage of sucrose content in the roots. Sucrose content in beets is variable, ranging from less than 8% to more than 18% in red beet and sugar beet, respectively. Genetic and phenotypic analyses of populations derived from wide crosses, such as between red and sugar beets, will provide information about which chromosomal regions and their associated genes are largely involved in sucrose accumulation during the development of the crop. This information will be useful for improving sucrose content in populations constructed to introgress useful genes from wild and unadapted germplasm.

An F₂ segregating population was created from a cross between sugar beet C869 and red beet W357B. C869 is characterized by higher yield and 16% root sucrose content. W357B has lower yield and less than 10% sucrose content at maturity. Carbohydrate analyses were performed via HPLC on each greenhouse-grown F₂ plant and parent. Genetic analysis of this F₂ population was performed with RFLP (Restriction Fragment Length Polymorphisms) and AFLP (Amplified Fragment Length Polymorphisms) genetic markers. A genetic linkage map was constructed, and QTL (Quantitative Trait Loci) analyses for sucrose content was performed integrating data from the F₂ sucrose content analyses and the genetic map (data not shown).

The objective of the progeny test reported here was to better estimate sucrose content of each individual F₂ plant by field evaluation of F₃ families, in order to increase the accuracy of QTL detection. Three replications of 54 F₂-derived F₃ families and six sugar beet lines (US H20, E17, SR87, SR95, SR96 and SR97) were planted in single rows on May 22, 2002 and harvested on October 22, 2002 with the one-row harvester. F₃ families were analyzed for root color, leaves vigor, root water content, root sucrose content (both dry and fresh weight) and yield (Table 1).

Sucrose fresh weight ranged from nearly 16% in the F₃ families to ca. 10% sucrose fresh weight, and no F₃ line showed higher fresh weight sucrose than sugar beet lines with commercially acceptable sucrose contents. No significant difference was observed for sucrose content as a percentage of dry weight. This result was similar to those obtained for greenhouse-grown F₂ plants (data not shown). Root yield of sugar beet germplasm exceeded that of individual F₃ families, and ranged from 81.3 % of the average of six sugar beet lines to less than 30 %. A pre-harvest vigor index was estimated visually, roughly corresponding to canopy characters (e.g. score of 1 was poor canopy development, score of 5 was excellent canopy development). Canopy development of the F₃ families was inferior to sugar beet.

Results suggest that the number of genes controlling fresh weight sucrose content and root yield is not large, and that the fresh weight sucrose content but not dry weight sucrose content is heritable, at least at these levels of analyses. Canopy vigor appears to be inherited in a more complex manner since the sugar beet type of canopy was not recovered among this small set of progenies tested.

Table 1: Analysis of 54 F₃ and six sugar beet lines (USH20, E17, SR87, SR95, SR96 and SR97). Vigor Index was evaluated on a 1 (low) to 5 (high) scale; Root Yield Index was calculated relative to average of six sugar beet lines (=100).

Entry	F₃ Root color	Vigor Index (1)	Root dry weight (%)	Sucrose on dry weight (%)		on fresh ht (%)	Root Yie	ld Index (2)
SR97		5.00	26.60	76.77	20.40	a	94.8	abcde
SR96	-	5.00	24.49	75.84	18.52	abc	98.9	abc
E17	-	5.00	24.44	71.83	17.60	abc	92.0	abcdef
101	Segregating	3.00	22.71	70.11	15.98	bcd	51.2	jklmnopqrst
27	Segregating	2.33	21.50	73.48	15.84	bcde	56.6	hijklmnopqrs
42a	Segregating	2.67	22.24	71.57	15.82	bcde	44.9	mnopqrst
71	Segregating	1.33	22.95	69.00	15.81	bcde	29.5	t
38a	Segregating	4.00	22.50	70.03	15.78	bcde	72.1	efghijk
76a	Red	3.00	20.96	74.95	15.72	bcdef	62.2	ghijklπmop
92a	Segregating	2.67	20.86	75.00	15.72	bcdefg	61.4	ghijklmnopq
35	Red	3.00	21.38	72.44	15.61	bcdefg	40.4	pqrst
USH20	. Ked	5.00				bcdefg		ab
			20.83	74.18	15.46	bcdefgh	105.1	hijklmnopqr
72	Green	2.33	20.92	72.68	15.25	_	57.2	
84	Segregating	2.67	22.09	68.72	15.20	bcdefgh	52.0	jklmnopqrst
84a	Segregating	2.33	21.35	70.43	15.11	bcdefgh	55.0	hijklmnopqrs
121	Red	2.33	21.56	71.31	15.07	bcdefgh	60.2	ghijklmnopqr
73a	Segregating	2.67	20.91	71.93	15.03	cdefgh	38.5	pqrst
SR95	-	4.33	19.49	76.80	14.95	cdefghi	96.0	abcd
66	Red	3.33	20.61	72.72	14.93	cdefghi	50.5	jklmnopqrst
73	Segregating	3.00	20.76	72.52	14.93	cdefghi	60.7	ghijklmnopqr
63	Segregating	2.67	19.98	72.66	14.54	cdefghi	71.9	efghijk
33	Segregating	2.67	19.21	75.83	14.47	cdefghi	66.0	ghijklmn
94	Segregating	2.00	20.89	68.97	14.43	cdefghi	46.1	mnopqrst
99	Segregating	3.67	19.33	73.61	14.38	cdefghi	81.3	bcdefg
86	Green	1.67	18.97	75.36	14.30	cdefghi	68.6	fghijklm
107	Segregating	3.67	20.03	71.01	14.23	cdefghi	59.9	ghijklmnopgr
110a	Segregating	3.33	20.34	70.03	14.22	cdefghi	66.0	ghijklmn
105a	Segregating	2.33	19.01	74.50	14.19	cdefghi	50.1	jklmnopqrst
72a	Red	3.00	18.92	74.78	14.16	defghi		ghijklmnopq
127	Green	2.00	19.26	71.94	14.10	defghi	61.7	ghijklmm
75	Red					_	66.8	
		2.00	18.82	74.10	14.08	defghi	38.0	qrst
29a	Green	1.33	20.02	69.93	14.00	defghi	>3	
82a	Segregating	3.67	19.31	71.78	13.94	defghi	77.7	cdefghi
78a	Segregating	1.33	18.82	73.70	13.93	defghi	45.0	mnopqrst
93a	Red	3.00	19.43	71.52	13.91	defghi	37.3	st
93	Red	3.33	19.69	70.93	13.88	defghi	70.5	fghijkl
76	Red	2.00	19.52	70.70	13.86	defghi	43.9	nopqrst
71a	Green	2.00	19.44	70.30	13.68	defghij	49.7	klmmopqrst
l 19a	Red	3.00	19.03	71.70	13.62	defghij	44.4	nopqrst
89a	Red	2.67	18.58	72.42	13.45	defghij	33.2	st
59a	Segregating	2.33	19.59	68.55	13.43	defghij	71.0	efghijkl
13a	Segregating	3.33	18.02	73.91	13.36	defghij	54.5	hijklmnopgrs
l 17a	Green	3.00	18.36	72.49	13.21	defghij	65.4	ghijklmno
125	Green	2.33	18.85	69.73	13.14	defghij	73.7	defghij
?7a	Segregating	2.33	18.73	69.27	12.97	defghij	54.7	hijklmnopgrs
31	Segregating	2.00	18.48	70.00	12.96	defghij	64.8	ghijklmno
111	Segregating	2.33	18.87	68.87	12.95	defghij	47.6	lmnopqrst
55	Segregating	1.33	19.13	67.30	12.93	defghij		
04	Segregating	3.00	17.02			defghij	46.0	mnopqrst
9	Red	2.67	18.05	75.69	12.87	defghij	54.8	hijklmnopqrs
19a				69.67	12.60		41.7	opqrst
	Segregating	2.33	17.37	72.29	12.56	defghij	58.2	ghijklmnopqr
7	Segregating	1.67	17.37	71.93	12.49	efghij	55.4	hijklmnopqrs
23a	Segregating	3.33	17.03	73.39	12.48	efghij	70.3	fghijkl
R87	- :	5.00	18.02	68.20	12.29	fghij	113.2	a
6	Segregating	2.67	16.83	72.82	12.23	ghij	54.1	hijklmnopqrs
03	Segregating	3.00	16.33	72.91	11.90	hij	75.2	cdefghi
22a	Red	2.67	16.74	70.85	11.84	hij	44.8	nopqrst
9a	Segregating	2.00	16.78	70.86	11.79	hij	49.0	klmnopgrst
16a	Segregating	3.00	16.31	70.39	11.48	ij	50.5	jklmnopqrst
5a	Red	2.33	15.23	67.94	10.33	j	52.6	ijklmnopqrst
lean	-	2.81	19.68	71.92	14.16	,	60.3	genniopqist
SD (.05)		0.91	4.33	6.82				
6 CV		35.89	8.88	2.83	3.48 9.16		23.8 7.61	

Sucrose accumulation during early sugar beet development Project 743

Daniele Trebbi and J. Mitchell McGrath
Department of Crop and Soil Sciences, Plant Breeding and Genetics Graduate Program,
Michigan State University, East Lansing, MI 48824-1325 USA

This study examined sucrose accumulation in different breeding lines during the first weeks after emergence in order to identify early physiological differences correlated with root sucrose content. At each weekly harvest during the first 10 weeks of growth, roots, leaves, and hypocotyls were weighed and freeze-dried, and hypocotyls diameters were measured. From freeze-dried roots, sucrose was extracted with 80% ethanol and then analyzed with high pressure liquid chromatography (HPLC). Sucrose concentration expressed as fresh weight increased from less than 0.5% at the third week (all germplasm) to over 12% by the tenth week, with measured sucrose levels proportional to those from field-harvested beets. Incremental changes in sucrose levels were not constant during this period, but followed a step-wise trend of rapid sucrose accumulation alternating with low sucrose accumulation. Sucrose concentration expressed as dry weight reached 55% at the 10th week for all lines. During this early developmental stage a time-course differential gene expression analyses (cDNA-AFLP) was performed, and showed that more than 40% of the transcribed genes are differentially expressed in developing roots. Differential gene expression analyses combined with examination of anatomical differences of root tissues during these alternate developmental stages may provide additional insight on the kinetics and molecular mechanisms of sucrose accumulation in sugar beet.

Sucrose content in beet tap roots is inherited as a multigenic trait, in an additive fashion, and with high heritability (Savitsky 1940; Culbertson 1942; Powers 1957; Powers et al. 1963; Zhao et al. 1997). Sucrose distribution within the root is concentrated with the innermost five of the concentric cortical rings, around the point of maximum root girth, and accumulates in vacuoles of parenchyma cells adjacent to vascular tissue (Elliott & Weston 1993). Sucrose biosynthesis, transport, and storage in beets likely occurs by mechanisms similar to other plants, but specific regulatory mechanisms that allow accumulation of sucrose in the roots remain to be identified (Kovtun & Daie 1995, Avigad & Dey 1997, Martin et al. 1997, Bush 1999). Unknown is whether any or all of the enzymes involved in these biochemical processes are important for the accumulation of sucrose in sugar beet roots and which genes, if any, are regulated and would likely play significant roles during sucrose accumulation. The dynamics of sucrose accumulation during the growing season are of interest since early developmental stages are important for the future storage capacity of the root.

The purpose of this research is to develop a genetic model for heritable differences in root sucrose content in different genotypes of sugar beet, and begin to characterize major genes involved in root sucrose accumulation. The specific objective of this report was to examine early plant development stages and correlate developmental initiation of sucrose accumulation with the changes in gene expression during this developmental phase.

Five germplasm lines (USH20, SR87, SR95, SR96, and SR97, ranging in harvested sucrose contents from 15 to 18%) were planted in the greenhouse (20 to 22.5 C, 16 hr light cycle) with three replications. Plant samples were harvested weekly from the third to the tenth week post-emergence for sucrose analyses, and additionally for mRNA extraction

(additionally including the 2nd week). Carbohydrate analyses were performed via HPLC. After freezing, dehydrating, and pulverizing root tissue (<5 week old also included epidermal tissues), sucrose was extracted with 80% ethanol, decanted, vacuum evaporated, and resuspended in water for HPLC.

Differential gene expression analysis using cDNA-AFLP was performed as described (Bachem et al. 1996). Amplified fragments originating from amplification with dye-labeled *Eco*RI (5' – GACTGCGTACCAATTCNNN - 3') and *Mse*I (5' – GATGAGTCCTGAGTAANN - 3') primers were separated on 7% poly-acrylamide gels using an LI-COR 4200 Automated DNA Sequencer.

Sucrose accumulation results: Sucrose was the main component (>98%) of the extracted sugars, and only traces of glucose and fructose were detected. Sucrose content increased dramatically from less than 2% to more than 10% (fresh weight) between the 5th and 8th weeks (Figure 1). A further smaller increase was observed during the last two weeks of observation when lines reached more than 12% of sucrose in fresh weight. The difference in sucrose content between the lowest sucrose content variety USH20 and the highest sucrose content germplasm SR96 lines was statistically significant after the 6th week post emergence. No significant differences between entries was observed for sucrose content expressed on a dry weight basis, which increased from 5 to more than 55% during the period under investigation (data not shown). Hypocotyl diameters increased exponentially from less than 2.5 to more than 35 mm from the third to the tenth week, without any significant difference between lines.

Figure 1: Sucrose accumulation over eight weeks of early sugar beet growth. Differences between USH20 and SR96 are significant at p=0.10 for weeks 7 & 8, and p=0.05 for weeks 9 & 10).

Transcription profiling results: 134 primer combinations were used for cDNA-AFLP analyses. 3,739 amplified fragments, arising from expressed genes, were scored. Most fragments (58%) were invariant, and thus represent constitutively expressed genes. The remaining fragments (42%) varied in their presence or absence in at least one week's sample.

The number of fragments detected tended to decrease with as plant age increased, with the exception of the plants at the 2nd week post-emergence (Table 1). Cluster analysis of fragment presence or absence revealed two distinct developmental periods: before and after the 6th week (Figure 2). A developmental shift in growth during the 6th week is postulated to explain this result.

Table 1: Number of fragments representing expressed genes scored over the time course of experiments.

Week post- emergence	Number of fragments scored	Percent of total fragments
2	3059	81.8
3	3127	83.6
4	3109	83.2
5	2924	78.2
6	2917	78.0
7	2957	79.1
8	2929	78.3
9	2824	75.5
10	2882	77.1
Total	3,739	100.0

Characterizing genes that play major role in sucrose accumulation will facilitate rapid progress in developing high sucrose germplasm releases after introgression of other favorable traits such as disease resistance and stress tolerance genes from wild and exotic germplasm. Early selection would also be facilitated if sucrose content could be measured early in the season. Each of these enhanced breeding strategies appears feasible on the basis of these preliminary experiments since significant differences in sucrose content (fresh weight) are evident as early as 7 weeks after emergence, and the genes responsible for this increase appear to be expressed as early as 5 weeks post emergence. Interestingly, this period also coincides with the onset of field resistance for many seedling pathogens.

Figure 2: Cluster analysis results from expression patterns of 3,739 cDNA-AFLP fragment scored during each week of development from 2 to 10 weeks of age.

REFERENCES

- Avigad G, Dey PM. (1997) Carbohydrate metabolism: storage carbohydrates. In: Plant biochemistry. Dey PM, Harborne JB. (eds), Academic Press, New York pp. 143-204.
- Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG.F (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. The Plant J 9: 745-753.
- Bush DR. (1999) Sugar transporters in plant biology. Current Opinion in Plant Biol 2: 187-191.
- Culbertson JO (1942) Inheritance of factors influencing sucrose percentage in *Beta vulgaris*. J Ag Res 64: 153-172.
- Elliott MC, Weston GD. (1993) Biology and physiology of the sugar-beet plant In: The sugar beet crop: Science into practice. Cooke DA, Scott RK (eds), Chapman and Hall, London pp 37-66.
- Kovtun Y, Daie J. (1995) End-product control of carbon metabolism in culture-grown sugarbeet plants molecular and physiological evidence on accelerated leaf development and enhanced gene expression. Plant Physiol 108: 1647-1656.
- Martin T, Hellmann H, Schmidt R, Willmitzer L, Frommer WB. (1997) Identification of mutants in metabolically regulated gene expression. Plant J 11: 53-62.
- Powers L, Schmehl WR, Federer WT, Payne MG. (1963) Chemical genetic and soil studies involving thirteen characters in sugar beets. J Am Soc Sugar Beet Tech 12: 393-448.
- Powers L. (1957) Identification of genetically-superior individuals and the prediction of genetic gains in sugar beet breeding programs. J Am Soc Sugar Beet Tech 9: 408-432.
- Savitsky VF. (1940) Genetics of sugar beets. USDA-National Agricultural Library Translation 5825. Translated from Russian, original source unavailable. 135 pp.
- Zhao B, Mackay IJ, Caligari PDS, Mead R. (1997) The efficiency of between and within full-sib family selection in a recurrent selection programme in sugar beet (*Beta vulgaris* L). Euphytica 95: 355-359.

Alphabet soup for beets: status of ESTs, BACs, RILs and other genomic sundries J. Mitchell McGrath

Dogma holds that phenotype = genotype + environment; DNA makes RNA makes protein; and form follows function. What this means is that the beet's work is accomplished in large part by proteins; that proteins (via genes) are inherited from the parents; and expression of genes is influenced by environment (and also development). By understanding beet proteins deduced from gene sequences, whose function can be inferred from other well-characterized protein forms, we can begin to build a conceptual framework for the types of work that a beet must accomplish in order to be profitable to growers and industry. This report considers the progress in building the tools that will enable such a framework. For instance, as of February 2003, over 19,500 Expressed Sequence Tags are available, a 5X coverage Bacterial Artificial Chromosome library has been constructed, and 5,000 Recombinant Inbred Lines are being developed. These efforts have and will continue to

require close cooperation among ARS, industry, and academic scientists. These tools are freely available now and will likely remain so in the future. Already, problems previously considered intractable are beginning to yield insight upon application of these tools. Progress is likely to accelerate in the future, as these genomics investments can be leveraged with scientific expertise inside and outside of the sugar beet community.

Genomics is a logical extension of concepts developed over the past 200 years that combine plant and animal breeding, cell biology and biochemistry, genetics, and molecular biology and physiology. It is integrative in that these disparate disciplines are united at the description and function of the myriad cell types in various tissues at the level of the gene. Genomics attempts, therefore, to describe the structure and function of every gene in the genome, in every cell and tissue type, and begin to understand the hierarchy of gene interactions that ultimately result in phenotype.

Functional genomics, or global analyses of gene expression, fills a gap between traditional biochemical analyses and the genetic instructions for these gene products encoded in the DNA, as represented by expressed RNA molecules (e.g. genes). Analyses of these transcripts by nucleotide sequencing (or other methods) reveals information about the identity and abundance of a specific transcript, the diversity of transcripts present in specific cells and tissues, and the biochemical complexity of an organism. Potentially novel or unexpected solutions to specific developmental or environmental cues may also be evident from such analyses.

Gene expression is the realization of genetic potential. Gene expression results in phenotype, which itself is the interaction of genotype and environment. While the genotype is accessible through inheritance and selection over generations in different environments, phenotypic expression of specific traits is often limited spatially or temporally, in effect accumulating throughout the growing season. Phenotypic responses to abiotic (and biotic) stresses may be predictable, but complex, particularly in combinations that would be expected under the diversity of field environments where beets are grown. Global gene expression analyses can help understand this complexity by determining which gene products are regulated under each type of stress. Each regulated gene product would have some probability for involvement in response to stress, and would represent a target for breeding and selection. Global gene expression analyses have been unavailable to plant breeding prior to large scale sequencing projects.

A prerequisite to global gene expression profiling is knowledge of nucleotide sequences of expressed genes. The typical approach to gaining this information has been to sequence cDNA (complimentary or copy DNA, reverse transcribed from mRNA) clones, which by definition are derived from expressed genes. These sequences are compared for similarity to the ever-increasing number of nucleotide sequences held in databases, and sequences with high similarity to genes with known function are used to assign putative functions. A catalog of expressed genes is often generated by mass sequencing of cDNA libraries, each cDNA clone being sequenced a single time, resulting in a collection of Expressed Sequence Tags (ESTs). ESTs by definition are preliminary and unsubstantiated indications of actual nucleotide sequences.

Depending on the level of similarity between any two sequences, a putative protein functional class can be assigned for many ESTs (Burks, 1999). Most functional classes belong

to biochemical pathways, so a complete set of nucleotide sequences for an organism defines the biochemical reactions that can occur. Differential expression of genes, particularly among genes of a common pathway, provides a measure of the importance of any particular biochemical process in a particular environment. This information can be used directly for selection and breeding.

The first complete nucleotide sequence of a plant genome, Arabidopsis thaliana, was completed in 2000 (The Arabidopsis Genome Initiative, 2000), providing an unparalleled opportunity to access plant genes. Gross characterization of Arabidopsis gene content revealed features that have relevance for plant improvement. First, Arabidopsis has on the order of 25,000 genes. In relation to other fully sequenced multicellular eukaryotic genomes of fruit fly (Drosophila melanogaster) and nematode (Caenorhabditis elegans), Arabidopsis shared most similarity in genes with basic metabolic functions and shared least similarity in genes that sense and respond to environmental and developmental signals. Sugar beet is expected to be similar at a gross level to Arabidopsis, although differences in gene regulation, gene copy number, and presence or absence of specific gene classes might be expected.

One of the tasks for sugar beet research will be to determine which specific genes are of interest in germplasm improvement. Having a list of genes expressed in sugar beet is one of the earliest objectives that need to be accomplished. It is perhaps cost prohibitive to sequence the entire sugar beet genome presently, but EST projects are more affordable and a great deal of progress on this objective has occurred recently. Insufficient time has elapsed to have fully explored these new resources, and rapid progress can be expected. As of February 2003, over 20,000 Beta vulgaris nucleotide sequences had been deposited in the National Center for Biotechnology Information (i.e. GenBank, www.ncbi.nlm.nih.gov). The majority of these are ESTs (19,617 sequences). ESTs have been submitted by three independent groups (USDA-ARS East Lansing, Max Plank - Cologne, and the GABI project) from mRNAs expressed in seedlings germinating under stress, four week old roots, mature roots, storage roots, leaves, and inflorescences. The GABI set is unique in that clones were pre-selected prior to sequencing to remove a large proportion of redundant transcripts (Herwig et al. 2002), and thus represents a 'unigene' set of over 10,000 unique expressed gene sequences covering the important developmental stages of beet growth. Sugar beet researchers now have perhaps one third of the expected expressed genes available to evaluate.

Expressed gene sequences contain information required for the translation of the genetic code into proteins, the molecules that accomplish much of the cell's work. They do not generally contain information required for the correct expression of their respective proteins; however these instructions are often located close to the gene, generally immediately adjacent. Thus, complete characterization of a gene involved in expression of an agronomic trait requires sequencing of these promotor regions. As perhaps 60% of the 750 million base pair beet genome is comprised of non-protein encoding sequences, isolating the adjacent sequences to expressed genes can be problematic. Bacterial clones are available with very large segments of sugar beet DNA inserted with them and the task of screening such large insert libraries is proportionately less intensive. This strategy has been successful in numerous genomics programs, and a number of BAC (bacterial artificial chromosome) libraries have been constructed for beet. Additionally, BAC libraries are useful starting points for complete genome sequencing, as well as estimating the number of genes similar to any particular EST, as a measure of genetic redundancy in the beet genome.

In collaboration with USDA-ARS scientists at Fargo, ND; Ft. Collins, CO; and Salinas, CA, a BAC library with five-fold genome coverage (38,400 clones) was constructed from HinDIII-digested sugar beet hybrid USH20, with an average insert size of 100 - 125 kb. Filter arrays were prepared that contained all clones and were used to assess the abundance and distribution of particular types of nucleotide sequences via filter-hybridization approaches. Using a ribosomal RNA gene probe, 1.2% (450 clones, estimated to total 9,500 copies of a presumed 10 kb repeat unit) of the library carried sequences similar to these highly repetitive, highly conserved sequences located on Chromosome 1 of the Butterfass trisomic series (Schondelmaier & Jung 1997). A simple sequence repeat element (CA)₈ thought to be predominantly distributed throughout centromere regions of all chromosomes was present in 1.6% of clones (Schmidt & Heslop-Harrison 1996). A probe for the telomere canonical sequence (TTTAGGG)₇ only hybridized with seven BAC clones; however this region at the end of chromosomes is difficult to clone and was not expected to be well represented in this library, and may represent interstitial relics from previous inversion events. Organelle DNA (plastid and mitochondria) contamination was assessed with organelle-specific DNA probes. Chloroplast DNA contamination was greater than mitochondrial DNA (1.6 % of clones vs. 0.01%, respectively).

Twenty-eight randomly chosen ESTs were screened against nylon filter arrays of the BAC library (Table 6). These sequences represent a small sampling of structural and regulatory gene sequences. Assuming 5X coverage, the number of gene copies similar to a particular EST in the beet genome was estimated from the number of hybridization signals. For over half of the ESTs used as probes, a greater than expected number of hybridization signals were observed for a single copy sequence, suggesting that many genes are duplicated in the beet genome. It is possible that some of these duplicated sequences provide strict redundancy of gene function, while others may have sufficiently diverged and may have altered gene expression patterns or functions.

ESTs, as representatives of expressed genes, and BACs, as representatives of the position and number of these genes in the beet genome, provide virtually no information on the agronomic importance of these nucleotide sequences. These traits can be correlated with genetic position through various genetic mapping approaches yet knowledge of the gene functions that underlie agronomic traits are not easily discerned. Correlating gene identity with agronomic function is an important goal, and one approach to achieve this is via integration of gene expression profiling and physical and genetic maps. Since beets are outcrossing and wind pollinated, relatively large amounts of heterozygosity are present in populations available for genetic analyses. Heterozygosity, i.e. genetic variability, adds to environmental variability in measurements of field performance, and reduces precision of genetic analyses in beets.

Recombinant Inbred Lines (RILs) help to accomplish two goals simultaneously. First is the reduction of heterozygosity through inbreeding, and the attendant advantage of potentially allowing better environmental variance estimates. Second is genetically mapping agronomic traits more precisely by allowing large seed productions of defined, identical-by-decent genotypes for multi-location, multi-year estimates of quantitative agronomic traits. Currently, a target for development is 50 RIL populations of 100 individuals each, derived from single seed descent of individual self-fertile hybrid plants for five or six generations. A large range of germplasm is being used, including disease resistance donor germplasm, high and low

sucrose breeding lines, and various crop and wild relatives of sugar beet.

Sugar beet genomics is an extension of traditional breeding and modern genetic methods. Its fundamental utility lies in the ability to define specific elements of the genome, initially in terms of nucleotide sequence and later in terms of specific function. Many long-standing production problems related to variety will be accessible through genomic analyses, and biochemical mechanisms for breeding and selection efficiency will be evident. Sugar beet breeders need to incorporate this knowledge into breeding programs, and should be involved in interpreting genomic information

Table 6: Estimated gene number of ESTs deduced with filter hybridization of the BAC library.

Putative EST function	Genbank ID	Estimated # genes
ABC transporter	BI543560	1
adenine triphosphatase	BI543538	3
allergen	BI095948	2
beta amyrin synthase	BF011005	1
germin-like protein	AF310017	8
calmodulin	BI096069	1
carboxyphosphonoenol pyruvate mutase	AW697745	1
cystein protease	BE590278	1
enolase	BI543290	1
heat shock protein 81-2	AW697750	1
heat shock protein	BI543424	1
hydroxymethyltransferase	BI095900	7
malate dehydrogenase	BI073206	2
UDP glucose pyrophosphorylase	BI096068	3
alcohol dehydrogenase	AW697786	1
aquaporin	BI643109	4
sucrose synthase	BI543240	8
ribosomal RNA genes	pTA71	950
ribulose bisphosphate carboxylase	BI643066	3
MAP kinase	BQ060614	1
UDP-glucose glucosyltransferase	BI073142	2
ribulose phosphate 3-epimerase	BI073233	2
pyruvate dehydrogenase-1	BI073208	3
pyruvate dehydrogenase-2	BI096005	6
hexokinase	BI543276	1
glyceraldehyde 3P dehydrogenase	BI095991	4
isocitrate lyase	BI095941	1
14-3-3 like protein	BI543270	1
phosphofructokinase	BI096032	2

References

Burks, C. 1999. Molecular biology database list. Nucleic Acids Research 27:1-9.

Gindullis F, Dechyeva D, Schmidt T. 2001. Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (*Beta vulgaris*) genome analysis. Genome 44: 846-855.

Herwig R, Schulz B, Weisshaar B, Hennig S, Steinfath M, Drungowski M, Stahl D, Wruck W, Menze A, O'Brien J, Lehrach H, Radelof U. (2002) Construction of a 'unigene' cDNA clone set by oligonucleotide fingerprinting allows access to 25 000 potential sugar beet genes. Plant J. 32: 845-857.

Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F. (2003) Quantitative trait

- loci analysis of nitrogen use efficiency in Arabidopsis. Plany Physiol. 131: 345-358.
- Schmidt T, Heslop-Harrison JS (1996) The physical and genomic organization of microsatellites in the sugar beet. Proc. National Academy of Sciences USA 93: 8761-8765.
- Schondelmaier J, Jung, C (1997) Chromosomal assignment of the nine linkage groups of sugar beet (*Beta vulgaris* L.) using primary trisomics. Theoretical and Applied Genetics 95:590-596.
- The *Arabidopsis* Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant *Arabidopsis thaliana*. Nature (London) 408:796-815.

Differential expression of glyoxylate enzymes in sugar beet related to seedling vigour Project 741

Benildo de los Reyes * and J. Mitchell McGrath

* present address: Department of Crop, Soil and Environmental Sciences, 115 Plant Science
Building, University of Arkansas, Fayetteville, AR 72701 USA

One component of seedling vigour is the efficient utilization of the seed storage reserves to provide energy necessary for growth. This study examined the relationship between the genes of energy metabolism and differences in seedling vigour of sugar beet hybrids under different stress germination regimes. Analyses of 1,718 5' Expressed Sequence Tags (ESTs) from subtracted cDNA libraries, combined with gene expression profiling by northern blots and enzyme activity assays indicated that stress drastically reduces the expression of a αamylase in a poor-emerging sugarbeet cultivar. In contrast, a good emerging variety exhibited only a moderate reduction in α-amylase gene expression. This pattern of gene expression indicates that mobilization of energy from stored carbohydrates can be limited to various extents by abiotic stresses. As mechanism to cope with reduced carbohydrate catabolism, the good-emerging, but not the poor-emerging, variety appeared to catabolize lipids as supplementary source of energy for respiration and biosynthetic processes. Induction of glyoxylate cycle activity, whose pathway bridges lipid and carbohydrate metabolism in germinating seeds, was indicated by high transcript levels and increased enzyme activity for the key glyoxylate cycle enzymes isocitrate lyase and malate synthase. The differential activity of the glyoxylate cycle is a potential physiological marker to differentiate between high- and low-vigour sugarbeet cultivars.

Our objectives have been to examine germination of sugar beet under sub-optimal environments and to identify physiological and developmental opportunities for intervention by traditional and marker-assisted breeding. As one approach, we developed Expressed Sequence Tags (ESTs) from subtracted cDNA libraries of a high vigour sugar beet hybrid in order to gain some insight into gene expression during germination under stress.

Seedling vigour *a priori* involves the coordinated regulation of many genes in various biochemical pathways, including mobilization of seed storage reserves. Starches are an important energy reserve in beet seed, and lipids and proteins also are present. Ware (1898) refers to a number of chemical constituents of beet seed, and indicated a starch content of 39.6% primarily located in the perisperm (maternally –derived endosperm-like tissue), a

protein content of 27.6% primarily located in the embryo, and 20.5% lipid content distributed throughout the perisperm and embryo. Elamrani et al. (1992) showed virtually no lipid in the perisperm but a lipid content in the embryo around 15%, showing that lipids are likely to be the initial respiratory substrate during germination of sugar beet, with carbohydrates assuming greater importance after radicle protrusion from the seed ball. Similarly, Lawrence et al. (1990) showed differences in organ specific starch, protein, and sugar contents in excised seeds and seedlings, and suggested a specialization of the inner cotyledon (in closest proximity to the perisperm) in carbohydrate uptake.

Involvement of lipid metabolism in beet seedling vigour was suggested by the presence of Expressed Sequence Tags (ESTs) for germination specific, lipid catabolizing enzymes of the glyoxylate cycle in stress germinating beet seed *in vitro*. The abundance of key glyoxylate cycle enzymes isocitrate lyase (E.C. 4.1.3.1) and malate synthase (E.C. 4.1.3.2) in stress- and H₂O₂-induced EST libraries raised the question of the importance of lipids as energy source during germination and seedling emergence under sub-optimal environments. In this study, we present evidence of differential activity of carbohydrate and lipid catabolic pathways in germinating seeds based on gene expression analysis and their physiological importance to seedling emergence and vigour in sugar beet cultivars.

Materials and methods

Seed germination: High quality seedlots (average germination >92%) of hybrids USH20 (strongly emerging) (Coe and Hogaboam, 1971) and ACH185 (weakly emerging) (American Crystal, Moorhead, MN) were used. Germination was performed as described (de los Reyes and McGrath, 2003). Percentage germination (radicle length ≥2 mm) was determined daily from four replicate experiments.

Isocitrate lyase activity assay: Soluble protein extracts from control and solution-germinated seedlings were prepared at 2 to 8 days after imbibition. Isocitrate lyase activity was determined by the lactate dehydrogenase (LDH)-coupled continuous assay (Giachetti et al., 1983).

Results

1,718 ESTs (Expressed Sequence Tags) were obtained from three subsets of cDNA. One EST subset was derived from 415 cDNAs that were randomly chosen from an unsubtracted cDNA library of stress-germinated 4-day-old seedlings. Two other EST subsets represent the collections of salt-induced (871 ESTs) and H₂O₂-induced (432 ESTs) genes. This EST collection does not represent the total array of genes that were expressed, but was enriched with genes related to growth and development, stress response and transcription.

Grouping ESTs according to putative biochemical function showed that 7.2% of cDNAs from the whole collection represented known genes in carbohydrate or lipid catabolic pathways. For carbohydrate utilization, transcripts encoding starch and polysaccharide hydrolytic and debranching enzymes were numerous (1.5%). Transcripts for □-amylase were the most abundant EST under this functional category (0.3%), and this gene serves as a physiological marker for carbohydrate breakdown. Not all genes in the primary pathways for sugar catabolism, i.e. glycolysis, oxidative pentose phosphate pathway and tricarboxylic acid cycle were represented, but their activities were indicated by the occurrence of transcripts encoding more than half of the enzymes (3.8%).

The importance of lipids during germination was implied by the relatively high frequency of transcripts for lipases and fatty acid hydrolytic enzymes (0.6%). Activity of the fatty acid □-oxidation spiral was indicated by the EST for acetyl-CoA acyl transferase (0.1%). The glyoxylate cycle was also active as shown by high percentage of transcripts (1.2%) for glyoxysomal enzymes isocitrate lyase and malate synthase. Isocitrate lyase is the key glyoxylate cycle enzyme that links fatty acid oxidation and sugar metabolism via the succinate produced from glyoxysomal acetyl-CoA, and is specific to seed germination. These data suggest that glyoxylate cycle activity may be a critical factor for successful emergence under sub-optimal environments.

The effects of H_2O_2 , submergence and salt stresses on the expression of stored energy reserve catabolism genes were compared between USH20 and ACH185. In roots and leaves, isocitrate lyase and malate synthase expression was either low or undetectable, acetyl-CoA acyl transferase was expressed at very low levels, while \square -amylase was undetectable.

In US H20 seedlings, \Box -amylase expression was high in control (filter paper germination) and H_2O_2 treatments and was reduced slightly by stress. In contrast, \Box -amylase expression in ACH185 was high in non-stressed seedlings but severely reduced by solution stress (water and salt).

All solution germinations induced expression of isocitrate lyase, malate synthase, and acetyl-CoA acyl transferase in USH20. In contrast, submergence and salt stress caused severe reduction in these transcript levels in ACH185. Expression in H_2O_2 remained high and was comparable to the filter paper control. Expression of isocitrate lyase, malate synthase, and acetyl-CoA acyl transferase appeared coordinately regulated by stress and H_2O_2 .

Conclusion

Germination and early seedling growth rely on the maintenance of energy supply from seed storage reserves. The glyoxylate cycle allows plants to utilize lipids as a carbon source. Under optimal conditions, the glyoxylate cycle was highly active in germinating sugar beets. The data presented here provide evidence that oxidation of fatty acids and the glyoxylate cycle in a strongly emerging sugar beet hybrid were more active under stress than under optimal conditions. Activity of \Box -amylase was significantly reduced by stress, and reduction of the rate of carbohydrate catabolism was more severe in the weakly emerging than in strongly emerging hybrid. Based on this relationship, the carbon intermediates derived from lipids via the glyoxylate cycle is an important component of seedling vigour in sugar beet.

The glyoxylate cycle has two important physiological functions: 1) the provision of carbon intermediates from lipid metabolism for sucrose biosynthesis, and 2) replenishment and maintenance of the tricarboxylic acid cycle under conditions when most intermediates are being withdrawn for biosynthetic processes (anapleurotic function). The glyoxylate cycle utilizes acetyl-CoA derived from fatty acid oxidation for the biosynthesis of the four carbon compound succinate, which is then exported and converted to malate in the mitochondria via succinate dehydrogenase (Kornberg and Beevers, 1957). Malate can be utilized for sucrose biosynthesis via gluconeogenesis. Sucrose is then transported to different parts of the seedlings to support post-germinative growth. These data indicate that the coordinate induction of isocitrate lyase, malate synthase, and acetyl-CoA acyl transferase by stress occurred both before and after radicle elongation. Since cellular adaptation to stress conditions require massive changes in gene expression, purine and pyrimidine biosyntheses

that utilize tricarboxylic acid cycle intermediates as substrate, the carbon intermediates produced from the early induction of the glyoxylate cycle were probably not utilized for gluconeogenesis but as an anapleurotic pathway for the tricarboxylic acid cycle.

References

Coe GE, Hogaboam GJ (1971) Registration of USH20 sugar beet. Crop Science 11:942.

- De los Reyes BG, McGrath JM (2003) Cultivar-specific seedling vigor and expression of a putative oxalate oxidase germin-like protein in sugar beet (*Beta vulgaris* L.). Theoretical and Applied Genetics (in press).
- Elamrani A, Raymond P, Saglio P (1992) Nature and utilization of seed reserves during germination and heterotrophic growth of young sugar beet seedlings. Seed Science Research 2:1-8
- Giachetti E, Pinzauti G, Vanni P (1983) A continuous optical assay for isocitrate lyase. Experientia 40:227-228.
- Kornberg HL, Beevers H (1957) The glyoxylate cycle as a stage in the conversion of fat to carbohydrate in castor beans. Biochimica et Biophysica Acta 26:531-537
- Lawrence DM, Halmer P, Bowles DJ (1990) Mobilisation of storage reserves during germination and early seedling growth of sugar beet. Physiol Plant 78:421-429
- Ware, LS (1898) Sugar beet seed. Orange Judd Co. Chicago, IL. 264 pp.

Histopathology and histochemistry of Rhizoctonia seedling damping-off.

Project 742

Subashini Nagendran and J. Mitchell McGrath Michigan State University and USDA – Agricultural Research Service, East Lansing, MI

Sugar beet is afflicted by both biotic and abiotic stresses during field germination, emergence, and stand establishment. The germination phase appears to be most sensitive to abiotic stress, mainly drought. Field emergence counts performed over recent years show an association of maximal emergence with moisture availability (*i.e.* higher moisture leads to higher emergence counts). Varieties also differ markedly with respect to field emergence, and molecular mechanisms for this difference are becoming apparent.

Following maximal emergence, stand counts invariably decline, which can be attributed to biotic stress (e.g. seedling disease). Disease causing organisms isolated from dying sugar beet seedlings include *Pythium ultimum*, *Rhizoctonia solani*, *Aphanomyces cochlioides*, and *Phoma beticola* (Halloin & Johnson, personal communication). The relative impact of any one of these diseases probably differs with available moisture and the soil temperature, leading to a complex seedling decline syndrome. Our efforts will continue to be geared towards seeking genetic resistance at the early seedling stage for each of these organisms in less complex conditions (e.g. greenhouse, growth chamber, and laboratory).

The loss to disease caused by Rhizoctonia is estimated to be about 2% in the USA (Duffus 1986). *Rhizoctonia* species are ubiquitous and variable soil inhabiting fungi. Many are saprophytic while others cause economically important diseases on crop plants such as sugar beet, cereals, potato, vegetables, and fruit trees. *R. solani* causes both seedling disease

and crown and root rot in mature sugar beet plants (Herr, 1996). *R. solani* (Teleomorph: *Thanatephorus cucumeris* ((Frank) Donk) is multinucleate, heterothallic, class mycelia sterilia, and is grouped based on anastomosis group (AG), defined as somatic incompatibility between hyphae of different strains (Anderson, 1982). Further work is necessary to resolve taxonomic complexity within anastomosis groups (Oscar Salazar et al 2000, Panella et al. 1997). Different AGs penetrate the host plant differently. *R. solani* primary invasion sites in sugar beet are lower surface of petioles in contact with soil; natural cracks in the crown, lentils on the taproot, and lateral roots. Isolates of AG 2-2 and AG 1 directly penetrate petioles through stomata, AG 4 penetrates from an infection cushion, and AG 5 from appressoria. Following penetration, AG2-2 isolates progressively invade and colonize vascular tissues whereas invading hyphae of AGs 1, 4 and 5 are limited to the cortex. Rhizoctonia seedling diseases of sugar beet differ in pathogenicity and virulence from those causing root rot on older beets (Herr, 1996). The mode of penetration and the progress of subsequent tissue colonization play important roles in Rhizoctonia causing diseases. AG 2-2 and AG4 infect sugar beet seedlings and AG2-2 causes crown and root rot (Sneh et al 1996).

There is no reported resistance to seedling damping-off caused by Rhizoctonia. The overall objectives of these studies are to (1) Screen sugar beet breeding lines for resistance to Rhizoctonia seedling damping off and examine the relationship between seedling damping off and Rhizoctonia crown and root rot, (2) Analyze the histopathology and histochemistry of the sugar beet seedling - *Rhizoctonia solani* infection under compatible (disease) and incompatible (no disease) interactions, and (3) Survey protein profiles of compatible and incompatible interactions to assess the number of magnitude of changes correlated with each phenotype. A reliable screening method is needed to satisfy these objectives, and this report deals with development and results of screening to date.

Materials and Methods

Screening Rhizoctonia seedling damping off: US H20 sugar beet seeds were soaked in 0.3% hydrogen peroxide for 24 hrs and allowed to germinate on water soaked filter paper for 48 hrs. Pots (9 cm dia by 8 cm deep) on cafeteria trays were filled to 2 cm below the top with "Baccto" high porosity soil. Four germinated seeds were planted per pot and grown in a growth chamber (20 C, 20 hr light and 4 hr dark photoperiod), watered daily, fertilized weekly, and thinned to three plants for the test.

Four isolates of *Rhizoctonia solani* isolated from sugar beets were used (kindly characterized and provided by Drs. Lee Panella and Linda Hansen, USDA-ARS, Ft. Collins, CO), one each of a virulent and avirulent strain of AG2-2 and AG4. Isolates tested for growth on a number of media (data not shown), with Corn Meal Agar (CMA) in Petri dish at room temperature showing suitable growth for preparation of inoculum. De-hulled seeds of millet, sterilized on three consecutive days at 120°C for 20 minutes each day, were placed as single layer on the actively growing 3 day old CMA fungal culture and were incubated at room temperature in the light for an additional four days. The millet was completely colonized with the fungus, and this was used as the inoculum. Two-week old seedlings were inoculated with fungus colonized millet seeds. Each seedling was inoculated by surrounding each plant with 10 fungus-infected millet seeds 2 cm from each seedling. Control plants were inoculated with uninfected, sterile millet. Five pots (15 plants total) were inoculated per isolate.

Post inoculation observations were made at 24 hour intervals and the symptoms were recorded as: 0 = Healthy, 1 = Slight penetration scar visible to naked eye, 2 = Deep penetration scar very visible, 3 = Plant showing damping off symptoms, hypocotyl (stem) shows water soaked lesions, 4 = Plant damping off, leaves wilting, 5 = Plant dead. Fifteen seedlings per treatment (fungal strain) were scored by three independent observers and the average score was reported as disease index (DI).

Testing accessions for resistance to Rhizoctonia seedling damping off: Seven accessions were tested with the protocol developed. The accessions were chosen for their crown and root rot ratings based on GRIN scores of 1 (highly resistant to Rhizoctonia crown and root rot) to 9 (highly susceptible to Rhizoctonia crown and root rot). Accessions included PI 590754 (rating 1), PI 591335 (4), PI 590660 (6), PI 590669 (7), PI 490095 (8), PI 470093 (9), and US H20 as a moderately susceptible control.

Results

A reliable and reproducible assay was developed based on inoculating two-week old seedlings and scoring their disease reaction. All isolates caused disease (Figure 1). Only the virulent isolate of AG2-2 caused complete loss of plants in the experiment. Disease severity increased in all isolate-inoculated plants until five days (120 hr) after inoculation, reached a plateau for one day, and then either lessened in the case of AG4 and avirulent AG2-2, or further increased in plants infected with virulent AG2-2. These results suggest that a host – pathogen interaction occurs around five days post-infection that ultimately determines the fate of the plant later in the season. These results also suggest that field infection occurs early in the season.

Figure 1: Disease progress curve US H20 infected with *Rhizoctonia solani*. AG2-2 (W2) and AG4 (R6) are virulent isolates.

The disease index analysis showed three stages in this plant-pathogen interaction (Figure 1). The initial infection stage from 0 to 144 hours were characterized by rapid appearance of symptoms, the second phase from 192 to 312 hours was characterized by little disease progression, and the final phase 336 to 432 hpi finalized the outcome of the interaction, either death (incompatible interaction) or recovery (compatible interaction). Virulent AG2-2 (R-1) caused seedling damping-off and seedlings infected with other three isolates (AG2-2 W-2, AG4 R6 and R7) showed fewer damping-off symptoms. Similar patterns were observed when different sugar beet lines were inoculated with *R. solani* (Figures 2 and 3). These data suggest that a sugar beet bred line that is resistant to crown and root rot does not confer resistance to seedling damping off.

Figure 2: Disease index for different sugar beet bred lines inoculated with *R* .*solani* AG2-2 strain R1 (virulent).

Figure 3: Disease index for different sugar beet bred lines inoculated with R. solani AG2-2 strain W2 (hypo virulent).

References

- Anderson NA (1982) The genetics and pathology of *Rhizoctonia solani* Annu. Rev. Phytopathol. 20:329-347
- Herr LJ (1996) Sugar beet diseases incited by Rhizoctonia species. In: Rhizoctonia species: taxonomy, molecular biology, ecology, pathology and disease control. Eds Baruch Sneh, Suha Jabaji-Hare, Stephen Neate and Gerda Dijst. 341-350.
- Lindsey K, Casson S, Chilley P (2002) Peptides: new signaling molecules in plants. Trends in Plant Science. 7:2:78-83
- McGrath JM, Derrico CA (2000) Field evaluation of emergence under seedling disease pressure. 1999 Beet Sugar Development Foundation Research Report, E3-E7.
- Panella L, Mitchell S, Jester C, Dean R, Ruppel EG, Kresovich S (2002) Determination of genetic relationship among isolates of *Rhizoctonia solani* Kuhn based on DNA sequence. http://www.crl.ars.usda.gov/determine.htm.

Development of Recombinant Inbred Lines in Beta

J. Mitchell McGrath

Construction of defined populations segregating for many traits has been ongoing at East Lansing over the past four years. A strategy was taken initiated to capture genetic diversity of self-incompatible, open-pollinated USDA-ARS releases, wild species, and crop relatives [fodder and table (red) beets, and chard] in a self-fertile genetic background. Self-fertility enforces inbreeding, allowing unexploited opportunities to develop F₂ (syn. S₂) populations for genetic mapping and for progeny testing F₃ (syn. S₃) populations for disease resistance and other agronomic evaluations. Over 100 self-fertile hybrid populations have been made to date yet remain to be characterized. Bona fide hybrids were made between self-fertile sugar beet and various B. vulgaris accessions representing the agronomic and morphological diversity of the species and ARS releases. These include, among others, hybrids with a common seed parent accession (C869, Lewellen unpublished, Curly Top virus resistance) with EL50 and US201 (both with Cercospora leaf spot resistance), USH20 (seedling vigor, Coe & Hogaboam 1971), EL51 (Rhizoctonia crown and root rot resistance), EL48 and SP6822 (Aphanomyces resistance), SR94 (smooth-root morphology), F1016 (root maggot resistance, Campbell et al. 2000), EL0204 (rhizomania resistance, McGrath & Lewellen, unpublished). GW359 (root aphid resistance), SP85303 (oomycete resistance), L19 (high sucrose), KleinE (yield components), fodder beet (Mammoth Red and Wintergold), Table beet (W357B, Indian Table beet), Chard (leaf type), individuals from 100 Plant Introduction accessions that were selected for survival in a seedling disease nursery, and a dozen morphological mutants rescued from the East Lansing seed archives.

The primary goal is to develop Recombinant Inbred Lines (RILs) from representatives from each of these hybrids from F_1 plants that have shown good field vigor as well as high seed yield. We use a rapid cycling strategy to advance 1.5 generations per year (e.g. growth in small, deep pots for six weeks, then 12 weeks of vernalization, followed by placing a bag over each small plant to enforce inbreeding, yielding 5 to 50 seeds per plant) and will obtain F_6 seed by single-seed-decent within four years. At least 50 RIL families, each with at least 100 individuals, representing the diversity of beet germplasm currently among experimental hybrids described above will be targeted for synthesis. In 2002 using this system, one family

has been advanced to the F₅, two other families have been advanced to the F₄, 27 other families are being advanced to the F₃, and 22 are being advanced to the F₂. With additional F₁'s, the final result will be a set of at least 5,000 inbred lines covering the major agronomic traits to be released to the National Genetic Resources System (i.e. GRIN) for general distribution. Further, each of the 5,000 inbred lines deposited will be marked with molecular genetic tags, at a minimum with 100 mapped AFLP loci per population. These populations will be an invaluable resource for beet geneticists and others. It should be noted that few inbred sugar beets currently exist, and molecular genetic analyses are hampered by the high heterozygosity (>45% on average), which leads to uncertainty assigning heritability estimates for specific traits.

Genetic analyses in sugar beet suffer from its breeding system, which is governed by selfincompatibility that prevents routine selfing and highly transportable pollen (e.g. the slightest breeze) which increases risks of genetic contamination in controlled crosses. Few inbred lines have been constructed. Ones available have been based on a dominant self-fertility gene (or allele). Creating hybrids in Beta is problematic since flowers are slightly protandrous, each flower bears a single ovary, and mechanical disturbance of the flower often results in premature abscission. Therefore, the seed parent for most of the RI populations to be developed has been male sterile (controlled by a single recessive nuclear-encoded allele) in a population fixed for the self-fertility trait. In this manner hybrids are created with ease by bagging a pollen donor with a male-sterile plant, the hybrids are self-fertile and can be selected for expression of agronomic performance in the field or greenhouse. Copious seed production from F₁ hybrids for F₂ populations is assured if mother roots are sufficiently large. The downside is that 25 percent of the F₂ plants will be male-sterile, and lost from subsequent RI generations. This deficiency is being corrected with the recent development of a cytoplasmic male-sterile, self-fertile genotype in future work. It should be noted that development of RI populations is expected to be routine in the future, at least for the East Lansing location. The final requirements for the seed parent, in the case of East Lansing, was that it needed to be generally susceptible to the range of diseases prevalent in the Great Lakes region as well as have reasonable vigor and yield in Great Lakes growing areas in the absence of disease. With few exceptions, all RI populations have been developed using the USDA-ARS Salinas CA line C869 as the seed parent, since it was the only germplasm available satisfying all criteria above. The two exceptions to date have been using an inbred sugar beet (7S) hand crossed with an inbred red beet (W357B) for purposes of developing an unbiased genetic map devoid of segregation distortion around the nuclear male-sterility locus, and a cross using male-fertile C869 segregant as the pollen parent on a traditional East Lansing CMS parent (EL45). It should also be noted that from the perspective of the Western germplasm pool, most RI populations will be developed from a single germplasm with >4,000 potential individuals at the end of the process.

The pollinators used to date vary widely, and the rationale has been to capture the allelic diversity most relevant to expanding the relatively narrow germplasm base of sugar beet. That is, the necessity will be to introgress novel sources of disease resistance, stress tolerance, and agronomic traits from wild beet (where perhaps allelic diversity is 10-fold higher than in sugar beet) and return to acceptable agronomic performance in a reasonable period of time. For this to be accomplished, a definition of the alleles that are most important to the use of beets for efficient sucrose yield is prerequisite. It is assumed that crop types within Beta vulgaris are fixed for alleles that determine their respective phenotypes (e.g. red table beet,

fodder beet, and Swiss chard), therefore only single RI populations are being developed for these types. A number of *B. vulgaris* spp. *maritima* accessions are also being used as pollinators to develop expectations regarding the expansion of allelic diversity. One example is that restricted recombination is seen in all sugar beet genetic maps to date, and a question to be addressed is if crosses with more distant materials also show reduced recombination, and if not can this character be introgressed into sugar beet. Another example is to specifically fix a potentially new allele for Aphanomyces seedling disease resistance from PI540625, an accession that has other potential for resistance to beet viruses as well as Polymyxa betae, the vector for the rhizomania virus. A third example is four other PI's that showed high seedling survival in a seedling disease nursery in Saginaw MI, and each of these has a unique combination of morphological phenotypes (e.g. root shape) that will make preliminary analyses of root genetics possible. Additional variants may be discovered during the inbreeding process that could be useful agronomically, such as an indeterminate flowering habit, however these results are unpredictable.

The largest set of RI populations target genetic analyses of specific East Lansing germplasm resistances, the sucrose accumulation trait, and smooth-root. The basic strategy has been to include a single C869 ms plant within a seed increase plot of the desired pollinator germplasm, such that the ms has the opportunity to acquire all of the alleles in the pollinator population. Up to four RI populations for each of these are being developed. It is generally assumed that their specific traits are fixed in these populations, but preliminary testing for Rhizoctonia resistance showed otherwise. Thus, we must consider the germplasm to be enriched for the relevant allele frequencies. Further, we have to consider evaluating whether at least one of the relevant alleles has been captured in the hybrid, and in most cases this is more resource-intensive than simply selfing the population to homozygosity. Hybrids have been grown under selection (e.g. disease nurseries) to identify the most highly developed phenotypes, and these individuals have been used to self-pollinate to generate F2 populations. Due to the breeding structure of beet improvement, most if not all disease resistance traits behave in a dominant fashion. Thus at the phenotypic level we have a reasonable assurance that at least one allele has been captured for the RI populations, however adequate disease evaluation requires multi-year, multi-location testing. For genetic analyses, it is impractical to rely on the behavior of the hybrids themselves and it is also impractical to rely on single plant evaluations in the F2 for QTL analyses. Progeny testing is possible, however the transient nature of these F3 populations precludes large-scale field trials. Two or three generations of further inbreeding solves these problems to some extent, thus the decision was made to pursue RI populations. It should be noted that heterozygosity introduces an additional source of experimental uncertainty in genetic analyses beyond that influenced by environment, and for this reason beet geneticists and breeders have sought to limit the statistical uncertainty associated with genetic heterozygosity either through anther-culture derived inbreds or by clonal propagation of elite genotypes. All of these methods have drawbacks, however the RI population approach has not been attempted to date and it appears to offer an advantage of recovering a diverse array of adapted genotypes for further breeding and molecular analyses.

The decision to attempt more populations with fewer individuals reflects the lower probability of recovering the positive donor alleles from a heterozygous self-incompatible parental population in a single fertile F_1 hybrid as the primary source of one RI population, as discussed above. More populations developed from the same cross would likely reveal more segregating loci related to trait genetics than would a narrower focus on a few larger

populations, thus we have geared towards capturing the maximum amount of allelic diversity segregating in a slightly larger than practical number of segregating populations. Any set of RI populations developed is unlikely to capture all allelic diversity needed for formal genetic investigations in these early proof-of-concept investigations. The intent here is to demonstrate that inbreeding can be accomplished and that inbreeding depression, segregation distortion, recessive lethality, and other Mendelian genetic masking phenomenon can be eliminated prior to the development of larger populations. The choice of parents continues to evolve as more and better information becomes available from on-going activities. An initial set of 37 RI populations has been started, and as of 3/10/2003 the breakdown is given below. Additional populations including nematode resistant materials, curly top resistant materials, and root maggot resistant materials will fulfill the goal of 50 RI populations.

Description of specific populations as of 3/10/2003:

Crop Type:

7S x Red: This population was originally intended for a foundation genetic map where both parents were inbred and thus purged of deleterious alleles perhaps causing segregation distortion. In retrospect, the 7S parent contributed negative phenotypes of naked seed (e.g. little or no pericarp tissue) and resulting seed shatter. This population appears to segregate for vernalization / devernalization response since half the population consistently fails to bolt upon the first vernalization attempt. Current status: 140 F4 plants (F5 seed obtained), 136 F3 plants (F4 seed production in progress).

C869 x Red beet W357B: This population has been used extensive for the past two years to examine the inheritance of sucrose. The red beet parent is a public germplasm release used widely in commercial red beet hybrids, and is self-fertile with ca. 8% sucrose content at field harvest. The female parent is ca. 15% sucrose at harvest. Field and greenhouse trials on F3 and F2 populations, respectively, showed no difference in sucrose expressed as a percent of dry matter and only one locus was supported with QTL analyses with sucrose expressed as percent fresh weight. Little evidence of restricted recombination (e.g. clustering of markers) was obtained using AFLPs on the F2 population. Current status: 70 unselected and 100 field selected F3 plants.

C869 x Indian Table beet (PI163182): This population is being developed as a potential source of field resistance to seedling diseases from a selection plot at the Bean and Beet Farm in Saginaw MI in 1999 where it performed comparably in disease and non-disease nurseries, and also as a source of allelic variation not present in sugar beet germplasm. Current status: 200 F2 plants in each of 2 populations.

C869 x Fodder: This population is being developed to examine inheritance of animal fodder crop use type. Current status: 200 F2 plants in each of 2 populations.

C869 x Chard: This population is being developed to examine inheritance of leaf crop use type. Current status: 200 F2 plants in each of 2 populations.

Agronomic evaluation:

C869 x SP6822: This population was developed to examine inheritance of agronomic traits and Aphanomyces resistance. SP6822 is the pollinator for USH20, the hybrid discussed in Objective 3 with high emergence potential, that was widely grown for sucrose in Michigan from 1975 to 1985. The seed parent is similar to EL45cms listed below. Current status: 200

F3 plants (in each of 4 populations).

C869 x PI540625: This population was developed to examine two aspects of expanding the germplasm base of sugar beet. The first is to introgress a potentially novel genetic source of resistance to seedling damping-off by Aphanomyces cochlioides. The second is to examine the phenomenon of restricted recombination in sugar beets. The pollen parent is a wild *Beta vulgaris* spp. *maritima* collected from the north coast of France, with reported high levels of Aphanomyces resistance (via the GRIN system). Work over the past three years has confirmed at least one locus contributing a high level of resistance to Aphanomyces infection in seedlings two weeks of age. Field trials in 2002 also showed a high level of resistance to the chronic disease phase. Recombination as assessed with AFLPs in the F2 appears less restricted in this population than in other reported sugar beet molecular maps. Current status: 80 F3 plants plus 10 other F2 populations not yet tested.

C869 x EL50: This population is being developed to examine inheritance of leaf spot resistance caused by Cercospora beticola. EL50 is among the most resistant germplasm available and is well adapted to Great Lakes growing conditions. Resistance has been described as complex (5 - 8 QTLs) and is markedly influenced by environment, and availability of RI populations segregating of resistance will be invaluable. Current status: 200 F2 plants in each of 4 populations.

C869 x EL48: This population is being developed to examine the inheritance of elite 'traditional' East Lansing seed parent germplasm release materials. EL48 is monogerm, self-sterile, and O-type, with moderate sucrose concentrations (ca. 15%), and high resistance to Aphanomyces as compared with the USDA-ARS Salt Lake City UT germplasm from which it is derived. It has low heterozygosity and a narrow germplasm base. Current status: 200 F2 plants in each of 2 populations.

C869 x L19/2: This population is being developed to examine inheritance of high sucrose content from L19/2 (ca. 20%). This Z-type germplasm was reselected from L19 for adequate performance in Great lakes growing regions, however is extremely susceptible to the range of disease pressures in these areas. Current status: 200 F2 plants in each of 2 populations.

C869 x C869: This population is being developed as a control population for field comparisons with other RI populations. Current status: 200 F2 plants.

C869 x SR94: This population is being developed to examine inheritance of the smooth-root trait. SR94 also has near commercial levels of sucrose, reasonable yield potential, and good Aphanomyces and Cercospora resistance. 200 F2 plants in each of 2 populations.

C869 x EL51: This population is being developed to examine resistance to Rhizoctonia crown and root rot caused by Rhizoctonia solani. EL51 is among the most Rhizoctonia resistant germplasm, with parentage from USDA-ARS Ft. Collins releases as well as independent USDA-ARS East Lansing selections. This and another population was screened in the greenhouse (J. Weiland, USDA-ARS, Fargo ND cooperating) and this population was the more resistant. Current status: 200 F2 plants.

Each of the following hybrids, 10 plants of each, are being selfed to generate enough F2 seed for RI population development: C869 x PI169025, PI169030, PI357360, and PI5990770 (four separate population from seedling disease nursery selections); C869 x SP85303 (Phytophthora resistance); C869 x [SP6822 x Z430] (complex hybrid); C869 x GW359

(original Cercospora resistance source, highly heterozygous); C869 x SP657-0 (O-type, Aphanomyces resistant); C869 x KleinE (likely progenitor of US germplasm releases); C869 x [Sugar x Fodder] (selected for use of beets as potential bio-fuel); C869 x HiGerm Group (high emergence field selected populations from poorly stored seedlots); EL45cms x C869 (reciprocal cross, potential development of East Lansing adapted self-fertile O-type); and C869 x USH20 (high emerging cultivar).

Hydrogen Peroxide Concentration in Stress Germinated Sugar Beet Seeds Shiranee Gunasekera, Azeza Bughrara, Susan Myers, J. Mitchell McGrath Michigan State University and USDA-ARS, East Lansing MI

Percentage of germination and seedling emergence determine potential harvest of sugar beet crops. For commercially planted seed, laboratory germination >92% is required, but emergence is often 50-60% under optimal field environments. Field emergence of sugar beet is a major concern for growers, and economically impacts the sugar beet industry. Previous reports have indicated that the abiotic factors largely contribute for poor germination and emergence in sugar beet. McGrath et al. (2000) stated that the varieties differ in field emergence, indicating a genetic basis for this trait.

Hydrogen peroxide (H₂O₂) is generated by a number of reactions in plants (Bolwell and Wojtaszek, 1997) and several reports indicate that it has a beneficial effect on seed germination in a number of crops including sugar beet (Chein and Lin, 1974; Hsiao and Quick, 1984; McGrath et al., 2000). The objective of this study was to develop a rapid test to examine significant differences between varieties with respect to the amount of H₂O₂ evolved during germination. Variety US H20, which exhibits superior germination under both artificial stress (laboratory) and actual field conditions, and ACH 185, which has rather poor germination, were selected for this preliminary study.

Materials and Methods

Seeds of US H20 (Seed lot WC990379) and ACH185 (Seed lot WC990382), both grown in Oregon under commercial seed increase environments, were randomly selected. Fifty seeds from each variety were soaked in 100 ml of distilled water at room temperature shaking in an incubator at 150 rpm. Seeds were soaked for different time intervals so that we could obtain seeds soaked ranging from 3 hrs to 4 days. The seeds soaked for more than 24 hrs were rinsed every day and replaced with fresh distilled water.

Fruits after soaking were de-capped with a dental tool, the embryos removed, and a single true seed was placed in a micro titer plate well. 60 µl of sterile distilled water added to each well, and seeds were crushed by gently striking a 96-pin lid with a rubber mallet. Plates were centrifuged for 20 min at 4,000 rpm at 4°C. 50 µl supernatant was transferred to a new plate and 50 µl of reaction mix (Amplex Red reagent / HRP working solution) was added to each micro plate well containing standards, controls and samples, and incubated at 25°C for 30 min in the dark. Fluorescence was measured at 590 nm and H₂O₂ concentration was calculated relative to a standard curve included in each plate, in three replicates. The Amplex Red Hydrogen Peroxide / Peroxidase Assay Kit (A-22188) was supplied by Molecular Probes Inc. and measured using a plate reader in luminescence mode (Perkin Elmer Victor V). Six seeds per replicate were tested.

Results

Screening large quantities of germplasm for production of hydrogen peroxide evolution during germination is required to evaluate the contribution of this mechanism to improved emergence and stand establishment. Previous results have shown that evolution of hydrogen peroxide is correlated with expression of a Germin-like protein with putative oxalate oxidase activity, and this activity only occurs in the high emerging US H20 under laboratory stress at room temperature. A rapid test is needed to screen additional germplasm, and results from this new procedure were consistent with previous results (Figure 1). Further, this new procedure allows evaluation of the timing of hydrogen peroxide evolution. Future work will be to carry out a germplasm survey with different sugar beet lines to find if there is a correlation between H₂O₂ concentration in germination seeds and the germination and emergence percentage in the field.

2.5 m USH20 ■ ACH185 Hydrogen peroxide concentration (uM) 0 USH20 4d **USH20 3d** USH20 2d USH20 1d USH20 12hr USH20 6hr USH20 3hr ACH185 4d ACH185 3d ACH185 2d ACH185 1d ACH185 12hr ACH185 6hr ACH185 3hr Lines with different soak times

Figure 1: Evolution of hydrogen peroxide in seeds soaked in water for various times.

References

Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defense – a broad perspective. Physiol Mol Plant Pathology 51: 347-366.

Chein CT, Lin TP (1974) Mechanism of hydrogen peroxide in improving the germination of *Cinnamomum camphora* seed. Seed Science and Technology 22: 231-236.

Hsiao AI, Quick WA (1984) Actions of Sodium hypochlorite on seed dormancy and germination of wild oats (*Avena fatua*). Weed Research 24: 411-419.

McGrath JM, Derrico CA, Morales M, Copeland LO, Christenson DR (2000) Germination of sugar beet (*Beta vulgaris* L.) seed submerged in hydrogen peroxide and water as a means to discriminate cultivar and seedlot vigor. Seed Science and Technology 28: 607-620.

SUGAR BEET RESEARCH

2002 REPORT

Section E

Molecular Plant Pathology Laboratory Agricultural Research Service United States Department of Agriculture Beltsville, Maryland

Dr. Ann C. Smigocki, Research Geneticist Dr. David Kuykendall, Plant Pathologist Dr. Chris Wozniak, Visiting Scientist

This research was supported in part by funds provided through the Beet Sugar Development Foundation (Projects 810, 811, 830 and 850)

CONTENTS

Gene Transfer to Improve Sucrose Yields From Sugar Beet Taproots by Ann C. Smigocki	E3
Engineering Sugar Beet Root Maggot Resistance with Multipe Proteinase Inhibitor Genes	
by Ann C, Smigocki	E9
Improving Resistance to Cercospora-Induced Leafspot Disease in Sugar Beet	
Using Biotechnology	
by L. David Kuykendall, Tammy M. Stockett	E14
Characterization of a Fungal Pathogen of the Sugarbeet Root Maggot	
by Chris A. Wozniak and Ann C. Smigocki	E17

Gene Transfer to Improve Sucrose Yields from Sugar Beet Taproots

BSDF Project 810

Ann C. Smigocki

Introduction

We genetically engineered sugar beet to produce increased levels of the plant growth hormone cytokinin in the taproots in order to evaluate the effect of cytokinin on rate of cell division, vascular ring development, and sucrose accumulation in the taproots (Ivic et al., 2001c; Snyder et al., 1999). Initiation of cambia and rapid cell expansion and division have been reported to be correlated with changes in hormonal concentrations in the developing taproot (Elliot and Weston, 1993). In addition, cytokinins have been identified as having functional significance in the control of assimilate movement in plants, particularly by altering phloem unloading, sink initiation, and sink strength and capacity. We also correlated elevated cytokinin levels with enhanced insect resistance in plants (Smigocki et al., 1993) and demonstrated that cytokinin-induced insecticidal compounds killed sugar beet root maggot larvae, one of the most devastating insect pests of sugar beet (Smigocki et al., 2003).

To increase the endogenous cytokinin concentrations in the taproot, we fused the bacterial cytokinin biosynthesis gene, *ipt*, to a tuber-specific promoter from the patatin gene of potato. We successfully regenerated three transgenic shoots for analysis of cytokinin effects on taproot development, sucrose accumulation and insect resistance (Ivic et al., 2001b). Analysis of sucrose concentrations in transgenic plants revealed that the leaf sucrose levels were comparable to those in normal controls. The taproots of transgenic plants had low sucrose concentrations in comparison to the controls because the taproots did not develop normally and their weight was reduced by over 90%. In order to evaluate the role of cytokinins in photosynthate accumulation,

taproot development and insect resistance in sugar beet, a larger number of independently derived transgenic plants are needed. The regeneration of a relatively large number of transgenic plants is dependent on the availability of an efficient transformation method that currently is lacking for sugar beet.

Biotechnological approaches for sugar beet improvement have been hampered primarily by the lack of a reliable transformation method and low transformation frequencies. The particle bombardment method has proven superior for achieving truly genotype-independent transformation in agronomically important crops. However, our attempts to transform commercially important sugar beet lines using particle bombardment of hypocotyl callus (Snyder et al., 1999) that was developed with a highly regenerative tissue culture clone REL-1 (Saunders, 1998) were unsuccessful. In addition, this method entails several lengthy and labor-intensive steps for plant material preparation, including a seed germination step that is often plagued by high levels of microbial contamination.

Progress report

Results and Discussion

As a first step for developing a reliable transformation protocol for commercially important sugar beet lines, we optimized the production of highly embryogenic cells for use with the particle bombardment gene transfer method. Using leaves of greenhouse-grown sugar beet breeding lines (FC 607, C69, C78, C76895, 7911-4-10 and Z731), we determined which plants consistently produced highly regenerative leaf callus (Ivic et al., 2001b). All tissues were cultured on MS mineral salts containing nicotinic acid (0.5 mg/l), thiamin-HCl (1 mg/l), pyridoxin-HCl (0.5 mg/l), myo-inositol (100 mg/l), MES (500 mg/l), sucrose (3%), and plant growth regulators and other supplements as indicated in Table 1. Although both somatic

embryos and adventitious shoots were produced on all of the tested media, the greatest number of shoots regenerated on B1T1 medium. Up to 150 shoots per plate regenerated after 10 weeks of culture.

Table 1. Composition of the culture media

	Growth regulators (mg/l)				
Medium ⁻	BAP TIBA		ABA		
B1	1	-			
B1T1	1	1	-		
B1A2	1	-	2		
B1A0.2	1	-	0.2		
B1A0.02	1	_	0.02		

Breeding line FC607 produced regenerative callus equal in quantity and quality to the REL-1 clone. More than 75% of the leaf discs formed friable callus with more than half regenerating an average of 10 shoots per leaf disc. Preparation of suspension cultures from the leaf disc callus generated large quantities of embryogenic callus for use with the particle bombardment transformation method (Ivic and Smigocki, 2001a). The advantages of using leaf discs instead of hypocotyls or cotyledons for production of the callus include minimal contamination rates in tissue culture, ease of handling of the plant material, and relatively large quantities of callus that can be generated in a short period of time.

To optimize the transformation protocol, we tested a range of selection conditions and two selection agents, kanamycin and paromomycin as one of the reasons for the low

regeneration potential of transformed sugar beet tissues might be due to the toxic effect of kanamycin (Ivic and Smigocki, 2003).

Leaf discs were excised from young leaves of greenhouse-grown FC607 plants and cultured on B1 medium. Friable, embryogenic callus was collected after 5-6 weeks and grown for 2 weeks in liquid B1 medium. Cell suspensions were sieved, spread as a thin layer on filter paper, and placed on T1B1medium a day before particle bombardment. Cells were bombarded with gold particles coated with plasmid DNA. Transformation vectors carried the reporter gene *uidA* (gus) gene fused to either the osmotin (osm) or proteinase inhibitor II (pin2) gene promoter. The *npt II* gene under the control of the nos promoter was included as a selectable marker gene for kanamycin resistance. After 2 to 12 days, cells were transferred to selection medium containing 100 mg/l kanamycin or 25 mg/l paromomycin.

Transient GUS expression 2 days after bombardment ranged from 900 to 3000 blue units per bombarded plate but expression decreased significantly during the initial 14 days of culture. Stably transformed GUS (+) calli were obtained as early as 3 weeks following bombardment at a frequency of 0.25 - 9 calli per bombarded plate (Table 2). Higher number of transformed calli was obtained when cells were passed through sieves with opening size 850 μ m vs 425 μ m.

Table 2.

Number GUS (+) calli per plate

Selection	Delayed Length of selection	Osm-GUS		Pin2-GUS		
agent		selection	425 μm	850 μm	425 μm	850 μm
Kanamycin	No	3 w	0.00	_	0.00	1.75
	No	5 w	0.00	_	0.00	9.00
	No	Continuous	0.50	-	0.00	0.25
Paromomycin	No	Continuous	-	0.00	_	-
	5 days	Continuous	-	0.36	_	-
	10 days	Continuous	-	0.40	-	-

Since the GUS test is destructive, it prevented the recovery of transformed shoots from GUS (+) embryos and calli. A different marker gene such as the one coding for the green fluorescence protein (GFP) may be a better nondestructive alternative for detection of transformed sugar beet tissues and lead to the recovery of stably transformed plants.

References

- 1. Elliot, M.C. and Weston G.D. 1993. Biology and physiology of the sugar-beet plant. In: Cooke DA, Scott RK (eds) The Sugar Beet Crop: Science into practice. Chapman and Hall, London, pp 37-66.
- 2. Ivic, S. and A. Smigocki. 2003. Transformation of sugar beet cells suspensions cultures. In Vitro Cell. Develop. Biol. 39: in press.
- 3. Ivic, S. and A. Smigocki. 2001a. Evaluation of the biolistic transformation method for commercially important sugarbeet breeding lines. Proc. Am. Soc. Sugar Beet Technologists, p. 207-213.
- 4. Ivic, S., J. Saunders and A. Smigocki. 2001b. Leaf callus from sugarbeet breeding lines for biolistic transformation, Proc. Am. Soc. Sugar Beet Technologists p. 214-216.
- 5. Ivic, S.D., R.C. Sicher and A.C. Smigocki. 2001c. Growth habit and sugar accumulation in sugarbeet (*Beta vulgaris* L.) transformed with a cytokinin biosynthesis gene. Plant Cell Rep. 20:770-773.
- 6. Saunders, J.W. 1998. Registration of REL-1 and REL-2 sugarbeet germplasms for tissue culture genetic manipulations. Crop Sci. 38: 901-902.

- 7. Smigocki, A.C., J.W. Neal, I.J. McCanna and L. Douglass. 1993. Cytokinin-mediated insect resistance in *Nicotiana* plants transformed with the *ipt* gene. Plant Mol. Biol. 23:325-335.
- 8. Smigocki, A.C., L. G. Campbell and C.A. Wozniak. 2003. Leaf extracts from cytokinin-overproducing transgenic plants are lethal to sugar beet root maggot (*Tetanops myopaeformis*) larvae. J. Sugar Beet Res. (submitted 1/03)
- 9. Snyder, G.W., J. C. Ingersoll, A.C. Smigocki and L.D. Owens. 1999. Introduction of pathogen-defense genes and a cytokinin biosynthesis gene into sugarbeet (*Beta vulgaris* L.) by *Agrobacterium* or particle bombardment. Plant Cell Rep. 18:829-834.

Engineering sugar beet root maggot resistance with multiple proteinase inhibitor genes

BSDF Project 811

Ann C. Smigocki

Introduction

Disease and insect pest problems have had a significant negative impact on sugar production from sugar beet. The sugar beet root maggot (SBRM), *Tetanops myopaeformis*Roder, is now considered a major pest of sugar beet in the United States and Canada. This Dipteran inflicts yield losses that can range from 10 to 100%. Developing larvae feed on tap and feeder roots throughout the growing season causing damage either by severing the taproots of seedlings or badly scarring the surface of larger roots. Damaged taproots are predisposed to diseases caused by opportunistic pathogens such as *Erwinia carotovora* subsp. *betavsculorum*, *Aphanomyces cochlioides*, and *Rhizoctonia solani*. Granular insecticides are often used to reduce larval populations in sugar beet fields, although control is inconsistent. Crop rotation practices have been ineffective mainly due to the mobility of the adult flies. Existence of several weed species as substitute hosts has hindered population control. The lack of effective control measures that do not rely on broad-spectrum insecticides has hastened the search for environmentally friendly alternative strategies.

Protection of plants from herbivorous insect pests has traditionally relied on conventional breeding programs for incorporation of resistance traits. With the advent of molecular biology, insect resistance genes have been identified, cloned and transferred to heterologous plants to impart disease resistance. Gene transfer technology is an economical and environmentally favorable approach to reduce the usage of toxic chemicals for insect control.

Molecular approaches to enhance disease and insect resistance in sugarbeet have been hampered by a general lack of a reliable gene transfer method, a small pool of well characterized defense genes, and knowledge of sugarbeet defense responses. Our efforts are focused on several approaches geared towards the development of effective strategies for the control of SBRM. One of the approaches involves the manipulation of the production of toxic compounds in planta. These compounds are mainly products of secondary metabolic pathways, many of which have been shown to play a role in plant defense responses (Smigocki et al., 2003; Smigocki et al., 1997 and 2000). Another approach involves the characterization of a fungal pathogen, Syngliocladium tetanopsis, a recently patented biocontrol fungus (Wozniak, 1999). S. tetanopsis is the only known naturally occurring pathogen of SBRM and is capable of inciting an epizootic within SBRM populations, thereby bringing about a reduction in numbers. We have also initiated studies to characterize sugar beet defense response mechanisms. Profiling of genes in resistant sugar beet lines is an approach that will provide useful information for developing new insect control strategies. Another approach of interest is the development of genetically modified sugar beet that express proteinase inhibitor genes to specifically target midgut proteases of SBRM larvae. By blocking the major classes of digestive proteases in actively feeding maggots, the assimilation of nutrients from ingested foods would be inhibited and thus thwart the normal growth and development of the insect (Wilhite et al., 2000).

Progress Report

One of the objectives is to develop transgenic sugar beet that are resistant to the root maggot using proteinase inhibitor genes that specifically target the digestive enzymes of the maggot. In order to devise a rational control strategy based on the use of proteinase inhibitors, it is necessary to first determine the specific digestive enzymes of the targeted pest since

significant variations exist in the types and properties of digestive enzymes utilized by insects. We characterized the major midgut proteases in feeding second instars collected from infested fields in Minnesota (Wilhite et al., 2000). Midgut extracts were prepared within 48 hours from time of collection and analyzed for protease activity. Two components of the activity were evident at an acidic pH with an optimum of 2.5 or lower, and another had a pH optimum of approximately 8.5. Low-molecular weight biochemical inhibitors that target the major mechanistic classes of insect digestive endoproteinases were used to determine the nature of the proteases in the SBRM extract. We demonstrated that Pepstatin A with preferential specificity toward aspartyl proteases was by far the most effective inhibitor at an acidic pH (84%) inhibition). PMSF which targets serine proteases reduced proteolysis in SBRM extracts by 50%. E-64, which has high potency toward virtually all known cysteine proteinases, had a minor inhibitory activity of about 7%. We also tested the effect of several plant-derived PIs on the proteolytic activity (Table 3). Squash aspartyl proteinase inhibitor blocked virtually all the proteolytic activity, confirming the importance of the aspartyl class at acidic pH. Soybean trypsin-chymotrypsin inhibitor (Bowman-Birk I) blocked nearly all proteolysis at pH 8.5, suggesting the presence of trypsin and/or chymotrypsin-like serine proteases in the extract. Similarly, rice oryzacystatin I that targets cysteine proteases (Samac and Smigocki, 2003) blocked approximately 20% of the activity.

In vitro inhibition of midgut activity with a single proteinase inhibitor will not necessarily inhibit digestion as some insects seem to be physiologically capable of avoiding toxicity due to protease inhibitor ingestion by secreting "inhibitor-insensitive" enzymes and by the proteolysis of proteinase inhibitors by non-target digestive proteases. We propose to combine inhibitors effective against all the major proteolytic activities of the root maggot as a strategy for enhanced

stability and additive effect on proteolytic inhibition. We identified proteinase inhibitor genes with specificity for the aspartyl, serine, and cysteine class of proteases in SBRM midguts that will be introduced into sugar beet for evaluation of their effect on SBRM larvae.

Taproot-specific expression of genes coding for the aspartyl, serine and cysteine proteinase inhibitors would target the production of the inhibitors to the site of insect attack. We successfully developed a root maggot feeding bioassay using sugar beet seedlings to test the effect of the proteinase inhibitors *in vitro* and *in vivo* and for subsequent screening of transgenic plants (Smigocki and Boetel, unpublished). In addition, using this bioassay, we generated root maggot infested plant tissues of both resistant and susceptible lines. These tissues were used to prepare a taproot specific cDNA library for cloning of taproot-specific genes as well as genes associated with root maggot resistance. The corresponding promoters for the taproot-specific genes will be characterized and will be of great benefit for targeting of beneficial genes, including the proteinase inhibitors, to the taproot.

References

- SAMAC, D. A. & SMIGOCKI, A. C.: Expression of oryzacystatin I and oryzacystatin II
 in alfalfa increases resistance to the root-lesion nematode (*Pratylenchus penetans*).

 Phytopathology 91: in press, 2003.
- 2. SMIGOCKI, A. C., CAMPBELL, L. G. & WOZNIAK, C. A.: Leaf extracts from cytokinin-overproducing transgenic plants kill sugarbeet root maggot (*Tetanops myopaeformis*) larvae. *J. Sugar Beet Res.*, submitted, 2003.
- 3. SMIGOCKI, A. C., HEU, S. & BUTA, G.: Analysis of insecticidal activity in transgenic plants carrying the ipt plant growth hormone gene. *ACTA Physiol. Plant* 22:295-299, 2000.

- SMIGOCKI, A. C., HEU, S., MCCANNA, I., WOZNIAK, C. A. & BUTA, G.:
 Insecticidal compounds induced by regulated overproduction of cytokinins in transgenic plants. In *Advances in Insect Control, The Role of Transgenic Plants*, edited by N.
 Carozzi and M. Koziel. Bristol: Taylor and Francis, Ltd., 1997.
- 5. WILHITE, S. E., ELDEN, T. C., PUIZDAR, V., ARMSTRONG, S. & SMIGOCKI,

 A.C.: Inhibition of aspartyl and serine proteinases in the midgut of sugarbeet root maggot
 with proteinase inhibitors. *Entomol exp appl.* 2000.
- 6. WOZNIAK, C. A.: Novel fungal pathogen for biocontrol of the sugarbeet root maggot. USA Patent #5,955,071, 1999.

Improving Resistance to *Cercospora*-induced Leafspot Disease in Sugar Beet Using Biotechnology

Kuykendall, L.D. and T.M. Stockett.

Molecular Plant Pathology Laboratory, Plant Sciences Institute, Beltsville Agricultural Research Center, USDA/ARS, Beltsville, MD 20705

Introduction

Our laboratory conducts bioengineering research on sugar beets in order to safely control crop losses due to fungal disease. Biotechnology is needed for the control of leaf spot disease in sugar beets since germplasm improvement via screening and conventional breeding methods has yielded only moderate resistance that is multigenic and thus not readily incorporated into agronomically elite germplasm.

Sugar beet crops survive *Cercospora* outbreaks but both tonnage and sucrose percentages are significantly diminished. Development of *Cercospora* leafspot disease-resistant germplasm could increase crop profitability 25% or more overall. Although spraying with fungicides is used to combat predicted Cercospora foliar disease outbreaks, this environmentally unfriendly practice is also known to select for variants or spontaneous mutants possessing fungicide(s) resistance. Fungicide-tolerant strains of *Cercospora* diminish the effectiveness of subsequent applications of chemical fungicides.

In 1999, Snyder, Ingersol, Smigocki & Owens reported the development of transgenic sugar beets carrying genes encoding bacterial cytokinin and plant pathogen defense-related proteins under transcriptional control of stress or wound inducible promoters. These novel plant genotypes were examined for their ability to inhibit *Cercospora* (Kuykendall and Smigocki, 1999). Two promising transgenic sugar beet genotypes, OOT and *osm*PrS, with antimicrobials under the control of the strong osmotin promoter, were examined in the growth chamber for *Cercospora* leafspot resistance (Kuykendall, 2001). Unfortunately both transgenics were significantly more susceptible to leaf spot disease than their parental germplasm; but a useful disease assay under controlled conditions was developed.

The new concept that a pathogen's gene encoding a toxin pump can confer resistance in the host originates from a recent research finding at North Carolina State University that the *cfp* gene, which specifies a cercosporin export protein, produces transgenic tobacco plants highly resistant to *Cercospora* infection (R.G. Upchurch, personal communication). In this BSDF annual report, we describe experimental results using Polymerase Chain Reaction (PCR) to demonstrate the successful construction of a *cfp*-carrying transgenic sugar beet. The success of this particular project has been largely possible due to our prior improvement in sugar beet regeneration (Saunders et al., 2001). Adventitious shoots obtained without a callus intermediate was herein applied to genetic transformation.

Materials and Methods

Seed of the C69 breeding line, developed by Dr. Bob Lewellen at Salinas, CA, and of the Rel-1 biotechnology clone, developed by the late Dr. Joe Saunders, ARS/MSU, were used as starting materials. The *cfp* gene from *Cercospora* was supplied to us by Dr.

R. G. Upchurch, ARS/NCSU, Raleigh, North Carolina. Plasmid pX contained the full length cDNA clone of *cfp* under the transcriptional control of the S35 promoter contained in pBIN19 (Clontek). Plasmid DNA was electroporated into *Rhizobium radiobacter* EHA105, and transformants were selected on LB agar medium containing 75μg/μl kanamycin sulphate.

Sugar beet seeds were surface-sterilized using a solution containing 15% commercial bleach (5.25% sodium hypochlorite) and 0.01% SDS. Two twenty minute washes were performed, then the seeds were rinsed with sterile water 5 times and they were allowed to dry in a laminar flow hood. Rel1 and C69 seeds were individually germinated on petite 1/20 TSA-containing plates in the dark. After 14 days, approximately 70% germination and 25% contamination were typically observed. Cotyledons were excised from seedlings 2-3 days post germination and were aseptically transferred to a modified MS medium (Murashige and Skoog base with the Gamborg's vitamins; 0.5 g/l of MES buffer; 30.0 g/l of sucrose; pH 5.8, adjusted with KOH and solidified with 5.0g/l of Agargel) with 1.0 mg/l of 6-benzylaminopurine (BAP). Cotyledons were wounded either by cutting with a scalpel or piercing and then were infected with strain EHA105 carrying pX. Bacteria were grown from freezer stocks as 3 ml liquid cultures grown at 25°C for 1-2 days on a rotary shaker to high viable cell densities, greater than 10⁹ CFU/ml. Cotton swabs dipped in strain EHA105 (pX) were used to transfer the plant-conjugative bacteria onto the surface of the freshly wounded cotyledons. Inoculated cotyledons were incubated in 30°C dark conditions for about 3 days, to allow time for multiplication and interkingdom conjugation. Green, still viable cotyledons were then transferred to selective medium.

Selective plates were placed in low light and room temperature conditions earlier determined (Saunders et al., 2001) to produce adventitious shoot regeneration without an intermediate of hormone-independent callus.

Cotyledons were transferred to medium containing 0.3 mg/l of BAP, 100 mg/l cefotaxime and 75 mg/l of kanamycin sulphate and then exposed to light (3200 Lux) and room temperature, about 24°C. Those with shoots forming without evident bacterial growth were transferred to fresh medium containing the same BAP and antibiotic concentrations, and then allowed sufficient incubation time to grow large enough to be propagated in vitro. Such shoot cultures were maintained, and after at least 4 or 5 transfers, leaf tissue was excised for DNA extraction. Plant leaf tissue was also placed in LB broth and incubated at 37°C to test for growth of any surviving bacteria on the leaf surface. Plant DNeasyTM kits (Qiagen) were used to extract DNA for PCR analysis. Gel electrophoresis of PCR products obtained using *cfp*-specific primers C1 and C2 was performed. PCR products were analyzed by 1% agarose gel electrophoresis stained in ethidium bromide and visualized with uv. Fragment sizes were estimated with reference to a 1kb ladder size standard (New England Biolabs, Beverly, MA). Parental REL-1 plant DNA served as a negative control and plasmid X DNA as a positive control. The sequence of the C1 sense primer (5' to 3') was CCA TCA TCA GCA CAG CAA TCC. The sequence of the C2 antisense primer (3' to 5') was TAC AGC AAC GAC ACG ACC AG.

Results and Discussion

In order to obtain *cfp*-carrying transgenic sugar beets with resistance to *Cercospora* leafspot disease, we treated hundreds of cotyledons of different genotypes

with bacteria bioengineered to transfer desired genes into plants. About 1% regeneration was obtained, and 3 distinct, putative *cfp*—carrying transgenics were obtained, one from Rel-1 and two from C69 germplasm. Gel electrophoresis of PCR products revealed that the Rel1 transformant was verified since it's genomic DNA produced a fragment of the molecular size predicted based on published DNA sequence data, to the nearest hundred basepairs (lane 3) whereas a putative C69 transformant could not be confirmed since it's genomic DNA gave anomalous fragments (lane 6) (Figure 2). The PCR product amplified from the genomic DNA of the Rel-1 transformant is being sequenced. Experiments on infecting new cotyledons are underway. The transgenic clone, termed T7, has been vegetatively propagated to produce twelve mature plants. The successful introduction of the *cfp* gene into sugar beet via transformation could lead to the identification of germplasm with resistance to *Cercospora* leafspot infection. If successful, the resultant germplasm could be used in commercial breeding programs as a source of a single dominant leafspot disease resistance allele.

Figure-1. Gel electrophoresis of PCR amplification products. Lane 3 shows an amplification product obtained with the DNA of a Rel-1 transformant. Lane 6 shows products obtained with DNA of a putative C69 transformant, and lane 10, a1 kb ladder.

References

Kuykendall, L.D. and A.C. Smigocki. 1999. *Cercospora beticola* interactions with sugar beet cultures. *Proceedings of the 30 th Biennial Meeting of the American Society of Sugar Beet Technologist, Agriculture Volume* pp.233-235. Beet Sugar Development Foundation, Denver, CO.

Kuykendall, L.D. 2001. Induction of *Cercospora* leaf spot disease on parental and selected transgenic lines carrying antimicrobials: new source of anti-*Cercospora* genes will now be used for bioengineering disease resistance. *Proceedings of the 31st Biennial Meeting of the American Society of Sugar Beet Technologist, Agriculture Volume* pp. 129-132. Beet Sugar Development Foundation, Denver, CO.

Snyder, G.W., J.C. Ingersoll, A.C. Smigocki, and L.D. Owens. 1999. Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugar beet (*Beta vulgaris* L.) by *Agrobacterium* or particle bombardment. Plant Cell Reports **18**:829-834.

Characterization of a Fungal Pathogen of the Sugarbeet Root Maggot

Chris A. Wozniak

Visiting scientist, USDA/ARS, Molecular Plant Pathology Lab Beltsville, MD

Ann C. Smigocki

USDA/ARS, Molecular Plant Pathology Lab, Beltsville, MD

Introduction:

The goal of this project is to further the characterization of a sugarbeet root maggot (SBRM) fungal pathogen, *Syngliocladium tetanopsis*. Since this fungus represents a novel species, the basic biology of the organism is largely unknown. What is known, however, suggests that there is some potential here for the development of a biopesticide for management of the SBRM. As with all biopesticides, the economic aspects of its use and the ability to pass regulatory muster are critical to success.

Work on this organism was initiated at the Red River Valley Agricultural Research Center in Fargo after diseased SBRM were found at several locations within the valley. Cultures of this fungus have been deposited in culture collections at Peoria, IL (ARS-NRRL) and Ithaca, NY (ARSEF; CUP), with the remainder housed at Fargo and Beltsville. A patent was issued by the U.S. Patent and Trademark Office in 1999 covering the use of this fungus for SBRM management.

The same parameters that guide the success of the commercial biopesticides available for a variety of insect species apply to the development of *S. tetanopsis* for root maggot control. Namely, high infectivity (virulence), economics of production, ability to manufacture a viable (stable) formulation, regulatory/safety concerns, and a suitable market all influence the potential utility of this agent. Our previous lab bioassays and field observations indicate that suitable virulence exists within the isolates examined from natural epizootics.

Contacts made through a USDA-ARS website and press release have resulted in a new collaboration with an organic producer and distributor, smallplanetfoods.com. This firm is a marketer of Cascadian Farms and Muir Glen produce, now owned by General Mills. Pest control within the realm of organic agriculture requires a different approach than conventional agriculture in many respects. The use of fungal biopesticides is within the approved organic standards for crop production and potentially even more critical for this market as alternatives are few. The seed corn maggot, also known as the bean seed fly, is problematic in several vegetable crops and is not being effectively managed currently.

Results and Discussion:

The seed corn maggot (SCM), also a dipteran insect (Anthomyiidae), was found to be susceptible to *S. tetanopsis*. These data are based solely on laboratory assays which have not been duplicated in the field as of yet. Infected cadavers of SCM larvae were capable of serving as infective inoculum and diseased SBRM resulted when co-incubated. *S. tetanopsis* was recovered in pure culture from the infected SCM and SBRM and was found to be virulent to either of these species upon reinoculation. Observations of isolates reared on artificial media suggest that this species requires passage through a susceptible host after every three or four subcultures to maintain virulence. This phenomenon is common with both animal and plant pathogens.

While this insect, *Hylema* (*Delia*) *platura*), is generally of minor importance to sugarbeet and table beet production, it has been severe on maize, potato, carrots, soybeans, lettuce, spinach, onions, beans and several other crops, particularly in situations where synthetic pesticides are not an option for control. This species is extremely polyphagous and may have up to five generations per season depending on food availability and environmental conditions. In 1993 and 1996 I found low numbers of SCM larvae on sugarbeets near Powell, Wyoming, but it was unclear to what degree the roots were damaged from this insect or others. With the use of organophosphate and carbamate insecticides in much of the area, it is likely the SCM is largely controlled inadvertently as part of the SBRM management program.

While this insect was not the intended focus of the project at the outset, we do feel that the potential for use of *S. tetanopsis* on the organic farm may spur on development and interest in *S. tetanopsis* as a biocontrol agent. As the price premium paid for organic produce is often significant and it represents the fastest growing area of agriculture in the U.S. and many other countries, the economic incentive for a company to invest in this fungus as a potential biopesticide is enhanced greatly. The lack of viable pest control alternatives for the SCM in this restricted-use agricultural system (*e.g.*, no GMOs, no conventional chemical pesticides) increases the need for agents such as *S. tetanopsis*.

As with any pathogenic agent, host specificity of the pathogen is critical. Effective pest control with minimal or no impact on beneficial insects and other invertebrates is examined closely during the registration process. Previous test in the greenhouse demonstrated a lack of plant pathogenicity for this fungus when evaluated on at least two cultivars of the following crops: sugarbeet, sorghum, maize, wheat, barley and sunflower. Inoculations of tobacco hornworms, lady bird beetles, sunflower leaf beetles, gray stem weevils and green lacewings have all indicated a lack of pathogenicity of *S. tetanopsis* for these non-dipteran insects. Experiments also suggest that the pathogenic potential of *S. tetanopsis* toward *Drosophila melanogaster* and *Musca domestica* is minimal to non-existent, at least under the conditions examined. Secondary impacts on insects other than SBRM or SCM can complicate the registration process. It is unclear what factors dictate the host range of this or most other fungal entomopathogens, but it is clear that the range of *S. tetanopsis* is fairly narrow and may be restricted to a subgroup of dipterans.

Current efforts are focused on examination of the host range of this entomopathogen to learn more of the biology of *S. tetanopsis* and to engender interest from commercial concerns who

examine marketability of this biocontrol agent very critically. Further bioassay testing is underway with non-target insects, both of a beneficial and pest nature, to support the specificity inherent in the pathogenicity of this fungus.

Sporulation of *S. tetanopsis* has been demonstrated on maize and barley grain, however the timing and quantity produced under the conditions tested were not satisfactory for biopesticide development. Evaluation of nutritional amendments to whole grain and the oatmeal-based artificial medium currently used for spore production are continuing. Deposition of a granular or grain-based inoculum in-furrow would be preferable for field application as compared to a liquid formulation or wettable powder, hence, work in this area will continue. With the observed *in vitro* saprophytic abilities of this organism it is plausible that an amended inoculum, such as imbibed or fortified grain, may serve well as a delivery medium at planting.

BEET SUGAR DEVELOPMENT FOUNDATION BOARD OF DIRECTORS

The Amalgamated Sugar Company, LLC Victor J. Jaro American Crystal Sugar Company David A. Walden Allan Cattanach Betaseed, Incorporated E. Joe Dahmer Florimond Desprez Hossein Robani Michigan Sugar Company Herbert C. Wilson Robert D. Braem Minn-Dak Farmers Cooperative Tom Knudsen Monitor Sugar Company Chris D. Rhoten Paul D. Pfenninger Rogers Sugar Ltd Douglas J. Emek Seedex, Incorporated Pascal Kreckhove Southern Minnesota Beet Sugar Cooperative Kelvin P. Thompsen Robert W. Strickland Syngenta Seeds, Incorporated Keith Haagenson vanderHave Sugar Beet Seed, B.V.

K. van der Woude
The Western Sugar Cooperative
Gary Price
J. Kent Wimmer