SHRI VISHWAKARMA SKILL UNIVERSITY, DUDHOLA, PALWAL

B. Tech. Computer Science & Engg. (AI/ML)- forth Semester First SESSIONAL TEST (SESSION: 2023-2024)

Subject Code: ETCS202

Sem: 4th

Subject Name: Operating system

Maximum Marks: 20

SECTION A

Q1. Very Short answers type

 $5 \times 1 = 5$

- CI	D i D itim	Unit	RBT Level	Co
Sl.	Question Description	- Citie	100120	Mapped
	a it is to be a fire and	3	understanding	CO1,
Q1	Consider a virtual memory system with a FIFO page	3	understanding	CO2
	replacement policy. For an arbitrary page access pattern,			CO2
	increasing the number of page frames in the main memory			
	will			
	(A) Always decrease the number of page faults	200		
	(B) Always increase the number of page faults			
	(C) Sometimes increase the number of page faults			1
	(D) Never affect the number of page faults			
Q2	Which of the following process state transitions is/are not	2	understanding	
	possible?			W
	A) Running to Ready			COI
	B) Waiting to Running C) Ready to Waiting	137		
	D) Running to training			
Q3	Consider the following statements about process transitions	2	understanding	CO1,
	from a system using pre-emptive scheduling:		understanding	CO2
	Running process to ready state			CO2
	II) Ready process can move to running state			
	III) A Blocked process move to running state			
	IV) A Blocked process move to ready state			
	17) To blocked process move to ready state			
	Which of the following is true?			
	A) I, II and III			
	B) II and III			
	C) I, II and IV			
	D) I, III, II and IV			
Q4	Suppose the system contains n Processes and system uses	-		
	the Round Robin Algorithm for CPU Scheduling the which	2	understanding	CO1 and
	data structure is best suited ready ready queue of the			CO2
	process			
	A) Stack			
	В) Queне			
	C) Circular queue			
	D) tree			
Q5	What is translation look aside buffer- (TLB)?	2	P 1 1	
_	The familian foot uside outlet- (TLB)?	3	Remembering	COI

SECTION B

Q2. Long answers type (understanding, applying, analysing, evaluating)

 $2 \times 2 = 4$

SI.	Question Description	Unit	RBT Level	CO Mapped
Q 2.1	Suppose the time to service a page fault is on average 10 milliseconds, while a memory access takes 1 microsecond. Then a 99.99% hit ratio results in an average memory access time of?	3	Applying	CO1 and CO2
Q 2.2	Consider a demand paging system with four-page frames (initially empty) and an LRU page replacement policy. For the following page reference string 7, 2,7,3, 2,5,3,	3	Applying	CO1 and CO2

4,6,7,7,1,5,6,1 the page fault rate, defined as the ratio of		
number of page faults to the number of memory accesses		
(rounded off to one decimal place) is	4	

Q3. Long answers type (understanding, applying, analysing, evaluating)

6 marks

S1.	Question Description	Unit	RBT Level	CO Mapped
Q3	Explain the FCFS and SJF Scheduling. Also define the prediction of length of next CPU burst	2	Understandi ng	CO1 and CO2

****END****