CHAPTER 25

SCALAR TRIPLE PRODUCT

25.1 INTRODUCTION

Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors. By inserting dot and cross between \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} in the same alphabetical order, we introduce the following products:

$$(\overrightarrow{a} \cdot \overrightarrow{b}) \cdot \overrightarrow{c}, (\overrightarrow{a} \cdot \overrightarrow{b}) \times \overrightarrow{c}, (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$
 and $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}$

In the product $(\overrightarrow{a} \cdot \overrightarrow{b}) \cdot \overrightarrow{c}$ we observe that $\overrightarrow{a} \cdot \overrightarrow{b}$ is a scalar quantity and \overrightarrow{c} is a vector and dot product is defined between two vector quantities, therefore the product $(\overrightarrow{a} \cdot \overrightarrow{b}) \cdot \overrightarrow{c}$ is not meaningful. Similarly, the product $(\overrightarrow{a} \cdot \overrightarrow{b}) \times \overrightarrow{c}$ is not meaningful. But, $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$ is meaningful, because $\overrightarrow{a} \times \overrightarrow{b}$ is a vector and its dot product with \overrightarrow{c} i.e. $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$ is a scalar quantity. This product is known as the *scalar triple product* of \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} . The product $(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}$ is also a vector. This product is known as the vector triple product of \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

25.2 SCALAR TRIPLE PRODUCT

DEFINITION Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors. Then the scalar $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$ is called the scalar triple product of \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} and is denoted by $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$.

Thus, we have $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$.

GEOMETRICAL INTERPRETATION OF SCALAR TRIPLE PRODUCT Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors. Consider a parallelopiped having coterminous edges OA, OB and OC such that $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ and $\overrightarrow{OC} = \overrightarrow{c}$. Then, $\overrightarrow{a} \times \overrightarrow{b}$ is a vector perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} as shown in Fig. 25.1. Let ϕ be the angle between \overrightarrow{c} and $\overrightarrow{a} \times \overrightarrow{b}$. If $\overrightarrow{\eta}$ is a unit vector along $\overrightarrow{a} \times \overrightarrow{b}$, then ϕ is also the angle between $\overrightarrow{\eta}$ and \overrightarrow{c} .

Fig. 25.1

Now,

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$

$$\Rightarrow$$
 $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (Area of the parallelogram OADB) $(\overrightarrow{\eta} \cdot \overrightarrow{c})$$

$$\Rightarrow$$
 $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (Area of the parallelogram $OADB$) $| \overrightarrow{\eta} | | \overrightarrow{c} | \cos \phi$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = (\text{Area of the parallelogram } OADB) (|\overrightarrow{c}| \cos \phi) \qquad [\because |\overrightarrow{\eta}| = 1]$$

$$\Rightarrow \qquad [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (\text{Area of the parallelogram } OADB) (CL) \qquad [\because OC \cos \phi = CL]$$

$$\Rightarrow$$
 $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (Area of the base of the parallelopiped) × (height)$

$$\Rightarrow$$
 $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = \text{Volume of the parallelopiped with coterminous edges } \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

Thus, the scalar triple product $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ represents the volume of the parallelopiped whose coterminous edges \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} form a right handed system of vectors.

25.3 PROPERTIES OF SCALAR TRIPLE PRODUCT

PROPERTY 1 If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are cyclically permuted the value of scalar triple product remains same.

i.e.,
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}$$

or,
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix}$$

PROOF Let \vec{a} , \vec{b} , \vec{c} represent the coterminous edges of a parallelopiped such that t'ey form a right handed system. Then, the volume V of the parallelopiped is given by

$$V = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$

Clearly, vectors \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{a} as well as \overrightarrow{c} , \overrightarrow{a} , \overrightarrow{b} form a right handed system of vectors and represent the coterminous edges of the same parallelopiped. Therefore,

$$\therefore V = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} \text{ and } V = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}$$

Hence,
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}$$

or,
$$\begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{b} \overrightarrow{c} \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{c} \overrightarrow{a} \overrightarrow{b} \end{bmatrix}$$

PROPERTY II The change of cyclic order of vectors in scalar triple product changes the sign of the scalar triple product but not the magnitude.

i.e.
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = -[\overrightarrow{b} \overrightarrow{a} \overrightarrow{c}] = -[\overrightarrow{c} \overrightarrow{b} \overrightarrow{a}] = -[\overrightarrow{a} \overrightarrow{c} \overrightarrow{b}]$$

PROOF We have.

$$[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = -(\overrightarrow{b} \times \overrightarrow{a}) \cdot \overrightarrow{c} \qquad \qquad [\because \overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{b} \times \overrightarrow{a})]$$

$$[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = -\{(\overrightarrow{b} \times \overrightarrow{a}) \cdot \overrightarrow{c}\} = -[\overrightarrow{b} \ \overrightarrow{a} \ \overrightarrow{c}] \qquad \dots (i)$$

By Property I, we have

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix}$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} \qquad [\because [\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{a}] = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a}]$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = -(\overrightarrow{c} \times \overrightarrow{b}) \cdot \overrightarrow{a} \qquad \qquad [\because \overrightarrow{b} \times \overrightarrow{c} = -(\overrightarrow{c} \times \overrightarrow{b})]$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = -\{(\overrightarrow{c} \times \overrightarrow{b}) \cdot \overrightarrow{a}\} = -[\overrightarrow{c} \ \overrightarrow{b} \ \overrightarrow{a}] \qquad ...(ii)$$

Again,
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}] = [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}]$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b} \qquad [\because [\overrightarrow{c} \ \overrightarrow{a} \ \overrightarrow{b}] = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}]$$

$$\Rightarrow \qquad [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = -(\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{b} \qquad \qquad [\because \overrightarrow{c} \times \overrightarrow{a} = -(\overrightarrow{a} \times \overrightarrow{c})]$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = -\{(\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{b}\} = -[\overrightarrow{a} \ \overrightarrow{c} \ \overrightarrow{b}] \qquad \dots (iii)$$

From (i), (ii) and (iii), we obtain

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = -[\overrightarrow{b} \overrightarrow{a} \overrightarrow{c}] = -[\overrightarrow{c} \overrightarrow{b} \overrightarrow{a}] = -[\overrightarrow{a} \overrightarrow{c} \overrightarrow{b}]$$

PROPERTY III In scalar triple product the positions of dot and cross can be interchanged provided that the cyclic order of the vectors remains same.

i.e.,
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$$

PROOF We know that

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix}$$

[By Property I]

$$\Rightarrow (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a}$$

$$\Rightarrow \qquad (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$$

[Using commutativity of dot product on RHS]

PROPERTY IV The scalar triple product of three vectors is zero if any two of them are equal.

PROOF Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors.

Case I When $\overrightarrow{a} = \overrightarrow{b}$: In this case,

$$[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = (\overrightarrow{a} \times \overrightarrow{a}) \cdot \overrightarrow{c} = \overrightarrow{0} \cdot \overrightarrow{c} = 0$$

$$[\because \overrightarrow{a} = \overrightarrow{b}]$$

Case II When $\vec{b} = \vec{c}$: In this case,

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}]$$
 [By Property I]

$$\Rightarrow \qquad [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = (\overrightarrow{b} \times \overrightarrow{b}) \cdot \overrightarrow{a} = \overrightarrow{0} \cdot \overrightarrow{a} = 0 \qquad [\because \overrightarrow{b} = \overrightarrow{c}]$$

Case III When $\overrightarrow{c} = \overrightarrow{a}$: In this case,

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\overrightarrow{c} \overrightarrow{a} \overrightarrow{b}]$$
 [By Property I]

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b} = (\overrightarrow{a} \times \overrightarrow{a}) \cdot \overrightarrow{b} = \overrightarrow{0} \cdot \overrightarrow{b} = 0$$

$$[\because \overrightarrow{c} = \overrightarrow{a}]$$

Hence, $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 0$, if $\overrightarrow{a} = \overrightarrow{b}$ or $\overrightarrow{b} = \overrightarrow{c}$ or $\overrightarrow{c} = \overrightarrow{a}$.

PROPERTY V For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and scalar λ , we have

$$\begin{bmatrix} \lambda \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \end{bmatrix}$$

PROOF We have,

$$[\lambda \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}] = (\lambda \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) \cdot \stackrel{\rightarrow}{c} = \lambda (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) \cdot \stackrel{\rightarrow}{c} \qquad [\because \lambda \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b} = \lambda (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})]$$

$$\Rightarrow \qquad [\lambda \overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \lambda [(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}] = \lambda [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$

PROPERTY VI For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and any three scalars l, m, n

$$[l\overrightarrow{a} \quad m\overrightarrow{b} \quad n\overrightarrow{c}] = lmn \ [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}]$$

PROOF Using definition of scalar triple product

 $[\overrightarrow{la} \quad \overrightarrow{mb} \quad \overrightarrow{nc}] = (\overrightarrow{la} \times \overrightarrow{mb}) \cdot \overrightarrow{nc} = lm(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{nc} = lmn\{(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}\} = lmn[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}]$ **PROPERTY VII** The scalar triple product of three vectors is zero if any two of them are parallel or collinear.

PROOF Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three vectors such that \overrightarrow{a} is parallel or collinear to \overrightarrow{b} . Then, $\overrightarrow{a} = \lambda \overrightarrow{b}$ for some scalar λ .

$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = [\lambda \overrightarrow{b} \overrightarrow{b} \overrightarrow{c}] = \lambda [\overrightarrow{b} \overrightarrow{b} \overrightarrow{c}] = \lambda \times 0 = 0$$

PROPERTY VIII If \vec{a} \vec{b} \vec{c} \vec{d} , are four vectors, then $[\vec{a} + \vec{b} \ \vec{c} \ \vec{d}] = [\vec{a} \ \vec{c} \ \vec{d}] + [\vec{b} \ \vec{c} \ \vec{d}]$.

$$\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix} = \left\{ (\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} \right\} \cdot \overrightarrow{d}$$

$$= (\overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{d}$$

$$= (\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{d} + (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{d}$$

$$= [\overrightarrow{a} \times \overrightarrow{c}] + [\overrightarrow{b} \times \overrightarrow{c}] \cdot \overrightarrow{d}$$

[By distributive law]

[By distributive law]

PROPERTY IX The necessary and sufficient condition for three non-zero, non-collinear vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} to be coplanar is that $[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = 0$.

i.e.,
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are coplanar $\Leftrightarrow [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$

PROOF First let \vec{a} , \vec{b} , \vec{c} be three non-zero, non-collinear coplanar vectors. Then, we have to prove that their scalar triple product is zero.

We know that $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar.

$$\therefore \quad \overrightarrow{a} \times \overrightarrow{b} \text{ is perpendicular to } \overrightarrow{c} \Rightarrow (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 0 \Rightarrow [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = 0$$

Thus, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar $\Rightarrow [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = 0$

Conversely, let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-zero, non-collinear vectors such that $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$. Then, we have to prove that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar.

Now,
$$[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$$

$$\Rightarrow \qquad (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 0$$

$$\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0} \text{ or, } \overrightarrow{c} = \overrightarrow{0} \text{ or, } (\overrightarrow{a} \times \overrightarrow{b}) \perp \overrightarrow{c}$$

$$\Rightarrow \qquad (\overrightarrow{a} \times \overrightarrow{b}) \perp \overrightarrow{c} \qquad \left[\because \overrightarrow{c} \neq \overrightarrow{0} \text{ and } \overrightarrow{a} \times \overrightarrow{b} \neq 0 \text{ as } \overrightarrow{a}, \overrightarrow{b} \text{ are non-zero non-collinear vectors} \right]$$

But, $\overrightarrow{a} \times \overrightarrow{b}$ is a vector perpendicular to the plane of \overrightarrow{a} and \overrightarrow{b} .

$$(\vec{a} \times \vec{b}) \perp \vec{c} \Rightarrow \vec{c} \text{ lies in the plane of } \vec{a} \text{ and } \vec{b} \Rightarrow \vec{a}, \vec{b}, \vec{c} \text{ are coplanar vectors}$$
Thus, $[\vec{a} \ \vec{b} \ \vec{c}] = 0 \Rightarrow \vec{a}, \vec{b}, \vec{c} \text{ are coplanar vectors.}$

Hence, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar $\Leftrightarrow [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$

PROPERTY X (Scalar triple product in terms of components) Let $\overrightarrow{a} = a_1 \cdot \overrightarrow{i} + a_2 \cdot \overrightarrow{j} + a_3 \cdot \overrightarrow{k}$, $\overrightarrow{b} = b_1 \stackrel{\hat{i}}{i} + b_2 \stackrel{\hat{j}}{j} + b_3 \stackrel{\hat{k}}{k}$ and $\overrightarrow{c} = c_1 \stackrel{\hat{i}}{i} + c_2 \stackrel{\hat{j}}{j} + c_3 \stackrel{\hat{k}}{k}$ be three vectors. Then,

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

PROOF We know that

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2 b_3 - a_3 b_2) \hat{i} - (a_1 b_3 - a_3 b_1) \hat{j} + (a_1 b_2 - a_2 b_1) \hat{k}$$

$$\therefore \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = \{(a_2 \ b_3 - a_3 \ b_2) \ \widehat{i} - (a_1 \ b_3 - a_3 \ b_1) \ \widehat{j} + (a_1 \ b_2 - a_2 \ b_1) \ \widehat{k}\} \cdot (c_1 \ \widehat{i} + c_2 \ \widehat{j} + c_3 \ \widehat{k})$$

$$\Rightarrow \qquad [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = (a_2 \ b_3 - a_3 \ b_2) \ c_1 - (a_1 \ b_3 - a_3 \ b_1) \ c_2 + (a_1 \ b_2 - a_2 \ b_1) \ c_3$$

$$\Rightarrow \qquad [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

ILLUSTRATION If $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$ and $\vec{c} = -3\hat{i} + \hat{j} + 2\hat{k}$, find $[\vec{a} \ \vec{b} \ \vec{c}]$. SOLUTION We know that

$$\vec{a} \quad \vec{b} \quad \vec{c} = \begin{vmatrix} 2 & 3 & 1 \\ 1 & -2 & 1 \\ -3 & 1 & 2 \end{vmatrix} = 2(-4-1) - 3(2+3) + 1(1-6) = -10 - 15 - 5 = -30$$

PROPERTY XI (Distributivity of vector product over vector addition) For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , we have $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$.

Let $\overrightarrow{r} = \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) - \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c}$, and let \overrightarrow{d} be an arbitrary non-zero vector. Then, $\overrightarrow{d} \cdot \overrightarrow{r} = \overrightarrow{d} \cdot [\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) - \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c}]$

$$\Rightarrow \overrightarrow{d} \cdot \overrightarrow{r} = \overrightarrow{d} \cdot \{\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c})\} - \overrightarrow{d} \cdot (\overrightarrow{a} \times \overrightarrow{b}) - \overrightarrow{d} \cdot (\overrightarrow{a} \times \overrightarrow{c})$$

By distributivity of dot product over vector add.

$$\Rightarrow \overrightarrow{d} \cdot \overrightarrow{r} = (\overrightarrow{d} \times \overrightarrow{a}) \cdot (\overrightarrow{b} + \overrightarrow{c}) - (\overrightarrow{d} \times \overrightarrow{a}) \cdot \overrightarrow{b} - (\overrightarrow{d} \times \overrightarrow{a}) \cdot \overrightarrow{c}$$
 \bigcirc \text{In scalar triple product dot and cross can be interchanged}

$$\Rightarrow \overrightarrow{d} \cdot \overrightarrow{r} = (\overrightarrow{d} \times \overrightarrow{a}) \cdot \overrightarrow{b} + (\overrightarrow{d} \times \overrightarrow{a}) \cdot \overrightarrow{c} - (\overrightarrow{d} \times \overrightarrow{a}) \cdot \overrightarrow{b} - (\overrightarrow{d} \times \overrightarrow{a}) \cdot \overrightarrow{c}$$
By distributivity of dot product over vector add.

$$\Rightarrow \overrightarrow{d} \cdot \overrightarrow{r} = 0$$

Thus,
$$\overrightarrow{d} \cdot \overrightarrow{r} = 0 \Rightarrow \text{ either } \overrightarrow{r} = \overrightarrow{0} \text{ or, } \overrightarrow{d} \perp \overrightarrow{r}$$

But, \vec{d} is an arbitrary non-zero vector which is not necessarily perpendicular to \vec{r} .

$$\therefore \overrightarrow{r} = \overrightarrow{0} \Rightarrow \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) - \overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{0} \Rightarrow \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$$

PROPERTY XII If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors and \vec{u} , \vec{v} , \vec{w} are three vectors such that $\overrightarrow{u} = x_1 \overrightarrow{a} + y_1 \overrightarrow{b} + z_1 \overrightarrow{c}, \overrightarrow{v} = x_2 \overrightarrow{a} + y_2 \overrightarrow{b} + z_2 \overrightarrow{c} \text{ and, } \overrightarrow{w} = x_3 \overrightarrow{a} + y_3 \overrightarrow{b} + z_3 \overrightarrow{c}$ $[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}] = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$

PROOF See Author's book on Objective Mathematics.

ILLUSTRATIVE EXAMPLES

BASED ON BASIC CONCEPTS (BASIC)

Type I ON FINDING THE SCALAR TRIPLE PRODUCT

Evaluate: $\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix}$. Also, interpret it geometrically.

We have, $\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix} = (\hat{i} \times \hat{j}) \cdot \hat{k} = \hat{k} \cdot \hat{k} = 1$

Geometrical interpretation: $\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix}$ represents the volume of a cube of edge 1 unit whose three coterminous edges are along the coordinate axes. Clearly, volume of such cube is 1 cubic unit.

$$\therefore \qquad [\hat{i} \quad \hat{j} \quad \hat{k}] = 1$$

EXAMPLE 2 Evaluate $\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{i} & \hat{k} & \hat{j} \end{bmatrix}$.

SOLUTION We find that

$$[\hat{i} \quad \hat{j} \quad \hat{k}] + [\hat{i} \quad \hat{k} \quad \hat{j}] = (\hat{i} \times \hat{j}) \cdot \hat{k} + (\hat{i} \times \hat{k}) \cdot \hat{j} = \hat{k} \cdot \hat{k} + (-\hat{j}) \cdot \hat{j} = \hat{k} \cdot \hat{k} - \hat{j} \cdot \hat{j} = 1 - 1 = 0$$

EXAMPLE 3 Find $[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}]$, when $\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} - \hat{k}$ and $\overrightarrow{c} = 3\hat{i} - \hat{j} + 2\hat{k}$.

EXAMPLE 3 Find [a b c], when
$$a = 2i - 3j + 4k$$
, $b = i + 2j - k$ and $c = 3$

SOLUTION We find that
$$\begin{bmatrix}
\vec{a} & \vec{b} & \vec{c}
\end{bmatrix} = \begin{bmatrix}
1 & 2 & -1 \\
3 & -1 & 2
\end{bmatrix} = 2(4-1) - (-3)(2+3) + 4(-1-6) = -7$$
Tune II. ON FINDING THE VOLUME OF A PARALLEL OPIPED WHOSE THREE COTERI

Type II ON FINDING THE VOLUME OF A PARALLELOPIPED WHOSE THREE COTERMINOUS EDGES

EXAMPLE 4 Find the volume of a parallelopiped whose edges are given by $-3\hat{i} + 7\hat{j} + 5\hat{k}$, $-5\hat{i} + 7\hat{i} - 3\hat{k}$ and $7\hat{i} - 5\hat{i} - 3\hat{k}$.

SOLUTION Let $\vec{a} = -3\hat{i} + 7\hat{j} + 5\hat{k}$, $\vec{b} = -5\hat{i} + 7\hat{j} - 3\hat{k}$ and $\vec{c} = 7\hat{i} - 5\hat{j} - 3\hat{k}$. We know that the volume of a parallelopiped whose three adjacent edges are \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is equal to $|\overrightarrow{a} \rightarrow \overrightarrow{b} \rightarrow \overrightarrow{c}|$. Now,

$$[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = \begin{vmatrix} -3 & 7 & 5 \\ -5 & 7 & -3 \\ 7 & -5 & -3 \end{vmatrix} = -3(-21-15)-7(15+21)+5(25-49) = -264$$

Volume of the parallelopiped = $|[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]| = |-264| = 264$ cubic units

Type III ON COPLANARITY OF THREE VECTORS

EXAMPLE 5 Show that the vectors $\overrightarrow{a} = -2 \hat{i} - 2 \hat{j} + 4 \hat{k}$, $\overrightarrow{b} = -2 \hat{i} + 4 \hat{j} - 2 \hat{k}$ and $\overrightarrow{c} = 4 \hat{i} - 2 \hat{j} - 2 \hat{k}$ are coplanar.

SOLUTION We know that three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar iff their scalar triple product is zero i.e. $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$.

Here,
$$[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = \begin{vmatrix} -2 & -2 & 4 \\ -2 & 4 & -2 \\ 4 & -2 & -2 \end{vmatrix} = -2(-8-4) + 2(4+8) + 4(4-16) = 24 + 24 - 48 = 0$$

Hence, the given vectors are coplanar.

EXAMPLE 6 Find λ so that the vectors $\overrightarrow{a} = 2 \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = \overrightarrow{i} + 2 \overrightarrow{j} - 3 \overrightarrow{k}$ and $\overrightarrow{c} = 3 \overrightarrow{i} + \lambda \overrightarrow{j} + 5 \overrightarrow{k}$ are coplanar.

SOLUTION We know that vector \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar iff $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$. It is given that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar

EXAMPLE 7 Determine α such that a vector \overrightarrow{r} is at right angles to each of the vectors

$$\overrightarrow{a} = \alpha \hat{i} + \hat{j} + 3 \hat{k}, \overrightarrow{b} = 2 \hat{i} + \hat{j} - \alpha \hat{k}, \overrightarrow{c} = -2 \hat{i} + \alpha \hat{j} + 3 \hat{k}$$

SOLUTION Since \overrightarrow{r} is at right angles to each of the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} . Therefore, \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} must be coplanar vectors.

Type IV ON COPLANARITY OF FOUR POINTS

EXAMPLE 8 Show that four points whose position vectors are $6\hat{i}-7\hat{j}$, $16\hat{i}-29\hat{j}-4\hat{k}$, $3\hat{j}-6\hat{k}$, $2\hat{i}+5\hat{j}+10\hat{k}$ are coplanar.

SOLUTION Let *A*, *B*, *C*, *D* be the given points. The given points will be coplanar iff any one of the following triads of vectors are coplanar:

In order to show that \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are coplanar, we will have to show that their scalar triple product i.e. $[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = 0$. Using $\overrightarrow{PQ} = \text{Position vector } Q - \text{Position vector of } P$, we obtain

$$\overrightarrow{AB} = (16\hat{i} - 29\hat{j} - 4\hat{k}) - (6\hat{i} - 7\hat{j}) = 10\hat{i} - 22\hat{j} - 4\hat{k}$$

$$\overrightarrow{AC} = (3\hat{j} - 6\hat{k}) - (6\hat{i} - 7\hat{j}) = -6\hat{i} + 10\hat{j} - 6\hat{k}$$
and,
$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

$$\overrightarrow{AD} = (2\hat{i} + 5\hat{j} + 10\hat{k}) - (6\hat{i} - 7\hat{j}) = -4\hat{i} + 12\hat{j} + 10\hat{k}$$

Hence, the given points are coplanar.

EXAMPLE 9 Find the value of λ for which the four points with position vector $3\hat{i} - 2\hat{j} - \hat{k}$ $2\hat{i} + 3\hat{j} - 4\hat{k}, -\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$ are coplanar.

SOLUTION Let *A*, *B*, *C*, *D* be the given points. Then,

$$\vec{AB} = (2\hat{i} + 3\hat{j} - 4\hat{k}) - (3\hat{i} - 2\hat{j} - \hat{k}) = -\hat{i} + 5\hat{j} - 3\hat{k}$$

$$\vec{AC} = (-\hat{i} + \hat{j} + 2\hat{k}) - (3\hat{i} - 2\hat{j} - \hat{k}) = -4\hat{i} + 3\hat{j} + 3\hat{k}$$

and,
$$\vec{AD} = (4\hat{i} + 5\hat{j} + \lambda\hat{k}) - (3\hat{i} - 2\hat{j} - \hat{k}) = \hat{i} + 7\hat{j} + (\lambda + 1)\hat{k}$$

The given points are coplanar iff vectors \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are coplanar.

Now, \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are coplanar

$$\Leftrightarrow \qquad [\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AD}] = 0$$

$$\Leftrightarrow \qquad \begin{vmatrix} -1 & 5 & -3 \\ -4 & 3 & 3 \\ 1 & 7 & \lambda + 1 \end{vmatrix} = 0$$

$$\Leftrightarrow$$
 -1 (3 λ + 3 - 21) -5 (-4 λ - 4 - 3) - 3 (-28 - 3) = 0

$$\Leftrightarrow$$
 $-3 \lambda + 18 + 20 \lambda + 35 + 93 = 0 \Leftrightarrow 17 \lambda + 146 = 0 \Rightarrow \lambda = \frac{-146}{17}$

BASED ON LOWER ORDER THINKING SKILLS (LOTS)

Type V ON PROVING RESULTS ON SCALAR TRIPLE PRODUCT

EXAMPLE 10 For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , prove that $[\overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{c} + \overrightarrow{a}] = 2[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}]$. SOLUTION We have,

$$[\vec{a} + \vec{b} \ \vec{b} + \vec{c} \ \vec{c} + \vec{a}]$$

$$= \{(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})\} \cdot (\vec{c} + \vec{a})$$

$$= (\vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c}) \cdot (\vec{c} + \vec{a})$$

$$[By definition]$$

$$= (\vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c}) \cdot (\vec{c} + \vec{a})$$

$$[(\vec{b} \times \vec{b}) \cdot \vec{c} + (\vec{a} \times \vec{b}) \cdot \vec{c} + (\vec{a} \times \vec{c}) \cdot (\vec{c} + \vec{a})]$$

$$= (\vec{a} \times \vec{b}) \cdot \vec{c} + (\vec{a} \times \vec{b}) \cdot \vec{a} + (\vec{a} \times \vec{c}) \cdot \vec{c} + (\vec{a} \times \vec{c}) \cdot \vec{a} + (\vec{b} \times \vec{c}) \cdot \vec{c} + (\vec{b} \times \vec{c}) \cdot \vec{a}$$

$$[By distributive law]$$

$$= [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{a} \ \vec{b} \ \vec{a}] + [\vec{a} \ \vec{c} \ \vec{c}] + [\vec{a} \ \vec{c} \ \vec{a}] + [\vec{b} \ \vec{c} \ \vec{a}]$$

$$= [\vec{a} \ \vec{b} \ \vec{c}] + [\vec{b} \ \vec{c} \ \vec{a}]$$
[Scalar triple product when any two vectors are equal is zero]

Hence,
$$[\overrightarrow{a} + \overrightarrow{b} \overrightarrow{b} + \overrightarrow{c} \overrightarrow{c} + \overrightarrow{a}] = 2[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$

ALITER We have

 $= 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

$$\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{b} + \overrightarrow{c} & \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} + 0 \overrightarrow{c} & 0 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} & \overrightarrow{a} + 0 \overrightarrow{b} + \overrightarrow{c} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

[By property XII]

 $[: [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}] = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]]$

$$= \left\{1\left(1-0\right)-1\left(0-1\right)+0\left(0-1\right)\right\} \left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right] = 2\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right]$$

EXAMPLE 11 Simplify: $[\overrightarrow{a} - \overrightarrow{b} \ \overrightarrow{b} - \overrightarrow{c} \ \overrightarrow{c} - \overrightarrow{a}]$

SOLUTION We have,

$$[\overrightarrow{a} - \overrightarrow{b} \quad \overrightarrow{b} - \overrightarrow{c} \quad \overrightarrow{c} - \overrightarrow{a}]$$

$$= \{(\overrightarrow{a} - \overrightarrow{b}) \times (\overrightarrow{b} - \overrightarrow{c})\} \cdot (\overrightarrow{c} - \overrightarrow{a})$$

[By definition]

$$=(\overrightarrow{a}\times\overrightarrow{b}-\overrightarrow{a}\times\overrightarrow{c}-\overrightarrow{b}\times\overrightarrow{b}+\overrightarrow{b}\times\overrightarrow{c})\cdot(\overrightarrow{c}-\overrightarrow{a})$$

[By distributive law]

$$= (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{c} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{c}) \cdot (\overrightarrow{c} - \overrightarrow{a})$$

[:
$$\overrightarrow{b} \times \overrightarrow{b} = \overrightarrow{0}$$
]

$$= (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} - (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a} + (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{c} - (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{a} + (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{c} - (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a}$$

[By distributive law]

$$= \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} - \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} \end{bmatrix} + \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{c} \end{bmatrix} - \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{a} \end{bmatrix} + \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{c} \end{bmatrix} - \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix}$$

$$= [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] - [\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{a}] \ [\because$$
 Scalar triple product when any two vectors are equal is zero]

$$= \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} - \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 0$$

$$[\because [\overrightarrow{b} \overrightarrow{c} \overrightarrow{a}] = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]]$$

EXAMPLE 12 Show that vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar iff $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} + \overrightarrow{a}$ are coplanar.

SOLUTION \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar

[CBSE 2013, 2014, 2016]

$$\Leftrightarrow \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] = 0$$

$$\Leftrightarrow$$
 $2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 0$

$$\Leftrightarrow$$
 $[\overrightarrow{a} + \overrightarrow{b} \overrightarrow{b} + \overrightarrow{c} \overrightarrow{c} + \overrightarrow{a}] = 0$

[See Example 10]

$$\Rightarrow \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}$$
 are coplanar

EXAMPLE 13 For any three vectors \vec{a} , \vec{b} , \vec{c} show that $\vec{a} - \vec{b}$, $\vec{b} - \vec{c}$, $\vec{c} - \vec{a}$ are coplanar.

SOLUTION From Example 11, we have

$$[\vec{a} - \vec{b} \quad \vec{b} - \vec{c} \quad \vec{c} - \vec{a}] = 0 \Rightarrow \vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a} \text{ are coplanar.}$$

EXAMPLE 14 If the vectors $\vec{\alpha} = a\hat{i} + a\hat{j} + c\hat{k}$, $\vec{\beta} = \hat{i} + \hat{k}$ and $\vec{\gamma} = c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar, then prove that c is the geometric mean of a and b.

SOLUTION If $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are coplanar vectors, then

$$[\overrightarrow{\alpha} \overrightarrow{\beta} \overrightarrow{\gamma}] = 0$$

$$\Rightarrow \begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0$$

$$\Rightarrow a(0-c)-a(b-c)+c(c-0)=0$$

$$\Rightarrow$$
 $-ac - ab + ac + c^2 = 0 \Rightarrow c^2 = ab \Rightarrow c$ is the geometric mean of a and b.

BASED ON HIGHER ORDER THINKING SKILLS (HOTS)

EXAMPLE 15 For any three vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , show that $[\overrightarrow{a} \overrightarrow{b} + \overrightarrow{c} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}] = 0$. SOLUTION We have,

$$[\overrightarrow{a} \overrightarrow{b} + \overrightarrow{c} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}]$$

$$= \{\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c})\} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$$

$$= (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})$$

$$= (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{a} + (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{b} + (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} + (\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{a} + (\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{b} + (\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{c}$$

$$= 0 + 0 + [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] + 0 + [\overrightarrow{a} \overrightarrow{c} \overrightarrow{b}] + 0 = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] - [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$$

<u>ALITER 1</u> Since $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ i.e. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is expressible as the linear combination of the other two vectors. Therefore, \overrightarrow{a} , \overrightarrow{a} , \overrightarrow{a} + \overrightarrow{b} , \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} are coplanar vectors.

Hence, $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \end{bmatrix} = 0$

ALITER 2 We have,

$$[\overrightarrow{a} \ \overrightarrow{b} + \overrightarrow{c} \ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}] = [\overrightarrow{a} + 0 \overrightarrow{b} + 0 \overrightarrow{c} \ 0 \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}]$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= 0 \times [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$$
[By property XII]

EXAMPLE 16 Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-zero vectors such that \overrightarrow{c} is a unit vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} . If the angle between \overrightarrow{a} and \overrightarrow{b} is $\pi/6$, prove that $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]^2 = \frac{1}{4} |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$.

SOLUTION Since \overrightarrow{c} is perpendicular to both \overrightarrow{a} and \overrightarrow{b} . Therefore, it is parallel to $\overrightarrow{a} \times \overrightarrow{b}$. Now,

$$|\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}|^2 = \left\{ (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} \right\}^2$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]^2 = \left\{ |\overrightarrow{a} \times \overrightarrow{b}| | \overrightarrow{c}| \cos 0^\circ \right\}^2$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]^2 = |\overrightarrow{a} \times \overrightarrow{b}|^2 |\overrightarrow{c}|^2$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]^2 = \left\{ |\overrightarrow{a}| |\overrightarrow{b}| \sin \frac{\pi}{6} \right\}^2$$

$$|\overrightarrow{c}| = 1 \text{ and the angle between } \overrightarrow{a} \text{ and } \overrightarrow{b} \text{ is } \pi/6$$

$$\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]^2 = \frac{1}{4} |\overrightarrow{a}|^2 |\overrightarrow{b}|^2$$

EXAMPLE 17 Prove that: $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}) = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}].$ SOLUTION We have.

$$\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c})$$

$$= \overrightarrow{a} \cdot \left\{ (\overrightarrow{b} + \overrightarrow{c}) \times (\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}) \right\}$$

$$= \overrightarrow{a} \cdot \left\{ \overrightarrow{b} \times \overrightarrow{a} + 2 (\overrightarrow{b} \times \overrightarrow{b}) + 3 (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{c} \times \overrightarrow{a} + 2 (\overrightarrow{c} \times \overrightarrow{b}) + 3 (\overrightarrow{c} \times \overrightarrow{c}) \right\}$$

$$= \overrightarrow{a} \cdot \left\{ \overrightarrow{b} \times \overrightarrow{a} + 3 (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{c} \times \overrightarrow{a} - 2 (\overrightarrow{b} \times \overrightarrow{c}) \right\} = \overrightarrow{a} \cdot \left\{ -(\overrightarrow{a} \times \overrightarrow{b}) + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} \right\}$$

$$= -\overrightarrow{a} \cdot (\overrightarrow{a} \times \overrightarrow{b}) + \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + \overrightarrow{a} \cdot (\overrightarrow{c} \times \overrightarrow{a}) = 0 + [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] + 0 = [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$

$$[\overrightarrow{a} \ \overrightarrow{b} + \overrightarrow{c} \ \overrightarrow{a} + 2 \ \overrightarrow{b} + 3 \ \overrightarrow{c}]$$

$$= [\overrightarrow{a} + 0 \ \overrightarrow{b} + 0 \ \overrightarrow{c} \ 0 \ \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \ \overrightarrow{a} + 2 \ \overrightarrow{b} + 3 \ \overrightarrow{c}]$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

$$= (3-2) [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]$$
[Using property XII]

EXAMPLE 18 Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-zero vectors. If $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = 0$ and \overrightarrow{b} and \overrightarrow{c} are not parallel, then prove that $\overrightarrow{a} = \lambda \overrightarrow{b} + \mu \overrightarrow{c}$, where λ and μ are some scalars.

SOLUTION We have,

$$\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = 0 \implies \overrightarrow{a} \perp \overrightarrow{b} \times \overrightarrow{c}$$
 [: $\overrightarrow{a} \neq \overrightarrow{0}$ and $\overrightarrow{b} \times \overrightarrow{c} \neq \overrightarrow{0}$]

But, $\overrightarrow{b} \times \overrightarrow{c}$ is a vector perpendicular to the plane of \overrightarrow{b} and \overrightarrow{c} .

$$\vec{a} \perp \vec{b} \times \vec{c}$$

 $\Rightarrow \overrightarrow{a}$ lies in the plane of \overrightarrow{b} and \overrightarrow{c}

 \Rightarrow \overrightarrow{a} can be expressed as a linear combination of \overrightarrow{b} and \overrightarrow{c}

 \Rightarrow There exist scalars λ, μ such that $\overrightarrow{a} = \lambda \overrightarrow{b} + \mu \overrightarrow{c}$.

EXAMPLE 19 If the vectors $\overrightarrow{\alpha} = a \ \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{\beta} = \hat{i} + b \ \hat{j} + \hat{k}$ and $\overrightarrow{\gamma} = \hat{i} + \hat{j} + c \ \hat{k}$ are coplanar, then prove that $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$, where $a \ne 1$, $b \ne 1$ and $c \ne 1$.

SOLUTION It is given that $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are coplanar vectors.

$$\therefore \qquad [\overrightarrow{\alpha} \quad \overrightarrow{\beta} \quad \overrightarrow{\gamma}] = 0$$

$$\Rightarrow \qquad \begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \Rightarrow abc - a - c + 1 + 1 - b = 0 \Rightarrow abc = a + b + c - 2 \qquad ...(i)$$

Now,
$$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = \frac{(1-b)(1-c) + (1-c)(1-a) + (1-a)(1-b)}{(1-a)(1-b)(1-c)}$$

$$= \frac{3-2(a+b+c) + (ab+bc+ca)}{1-(a+b+c) + (ab+bc+ca) - abc}$$

$$= \frac{3-2(a+b+c) + (ab+bc+ca) - (a+b+c-2)}{1-(a+b+c) + (ab+bc+ca) - (a+b+c-2)}$$

$$= \frac{3-2(a+b+c) + ab+bc+ca}{3-2(a+b+c) + ab+bc+ca} = 1$$
[Using (i)]

EXAMPLE 20 If a is a non-zero real number, then prove that the vectors

 $\overrightarrow{\alpha} = a \stackrel{\widehat{i}}{i} + 2a \stackrel{\widehat{j}}{j} - 3a \stackrel{\widehat{k}}{k}, \overrightarrow{\beta} = (2a+1) \stackrel{\widehat{i}}{i} + (2a+3) \stackrel{\widehat{j}}{j} + (a+1) \stackrel{\widehat{k}}{k}$ and, $\overrightarrow{\gamma} = (3a+5) \stackrel{\widehat{i}}{i} + (a+5) \stackrel{\widehat{j}}{j} + (a+2) \stackrel{\widehat{k}}{k}$ are never coplanar.

SOLUTION We have,

$$\begin{bmatrix} \overrightarrow{\alpha} & \overrightarrow{\beta} & \overrightarrow{\gamma} \end{bmatrix} = \begin{vmatrix} a & 2a & -3a \\ 2a+1 & 2a+3 & a+1 \\ 3a+5 & a+5 & a+2 \end{vmatrix}$$

$$|\vec{a} | \vec{\beta} | \vec{\gamma} | = a \left\{ (2a+3)(a+2) - (a+1)(a+5) \right\} - 2a \left\{ (2a+1)(a+2) - (a+1)(3a+5) \right\}$$

$$- 3a \left\{ (2a+1)(a+5) - (2a+3)(3a+5) \right\}$$

$$|\vec{\alpha} | \vec{\beta} | \vec{\gamma} | = a (2a^2 + 7a + 6 - a^2 - 6a - 5) - 2a (2a^2 + 5a + 2 - 3a^2 - 8a - 5)$$

$$- 3a (2a^2 + 11a + 5 - 6a^2 - 19a - 15)$$

$$|\vec{\alpha} | \vec{\beta} | \vec{\gamma} | = a (a^2 + a + 1) - 2a (-a^2 - 3a - 3) - 3a (-4a^2 - 8a - 10)$$

$$|\vec{\alpha} | \vec{\beta} | \vec{\gamma} | = a (a^2 + a + 1) + a (2a^2 + 6a + 6) + a (12a^2 + 24a + 30)$$

$$|\vec{\alpha} | \vec{\beta} | \vec{\gamma} | = a (15a^2 + 31a + 37) = 15a \left\{ \left(a + \frac{31}{30} \right)^2 + \frac{1259}{900} \right\} \neq 0 \text{ for all non-zero } a.$$

Hence, the given vectors are non-coplanar.

EXAMPLE 21 Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be non-zero non-coplanar vectors. Prove that:

(i)
$$\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$$
, $-2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$ and $\overrightarrow{a} - 3\overrightarrow{b} + 5\overrightarrow{c}$ are coplanar vectors

(ii)
$$2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$$
, $\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{a} + \overrightarrow{b} - 3\overrightarrow{c}$ are non-coplanar vectors.

SOLUTION Since \vec{a} , \vec{b} , \vec{c} are non-zero non-coplanar vectors. Therefore, $[\vec{a} \ \vec{b} \ \vec{c}] \neq 0$.

Hence, \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} are coplanar vectors.

(ii) Let
$$\overrightarrow{u} = 2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$$
, $\overrightarrow{v} = \overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{w} = \overrightarrow{a} + \overrightarrow{b} - 3\overrightarrow{c}$. Then,

$$\overrightarrow{v} \times \overrightarrow{w} = (\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}) \times (\overrightarrow{a} + \overrightarrow{b} - 3\overrightarrow{c})$$

$$= \overrightarrow{a} \times \overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} - 3(\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{b} - 3(\overrightarrow{b} \times \overrightarrow{c}) - 2(\overrightarrow{c} \times \overrightarrow{a}) - 2(\overrightarrow{c} \times \overrightarrow{b}) + 6(\overrightarrow{c} \times \overrightarrow{c})$$

$$= \overrightarrow{a} \times \overrightarrow{b} + 3(\overrightarrow{c} \times \overrightarrow{a}) - \overrightarrow{a} \times \overrightarrow{b} - 3(\overrightarrow{b} \times \overrightarrow{c}) - 2(\overrightarrow{c} \times \overrightarrow{a}) + 2(\overrightarrow{b} \times \overrightarrow{c})$$

$$= -\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$$

$$\therefore \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = (2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}) \cdot (-\overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a})$$

$$\Rightarrow \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = -2 \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + 2 \overrightarrow{a} \cdot (\overrightarrow{c} \times \overrightarrow{a}) + \overrightarrow{b} \cdot (\overrightarrow{b} \times \overrightarrow{c}) - \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a})$$

$$-3 \overrightarrow{c} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + 3 \overrightarrow{c} \cdot (\overrightarrow{c} \times \overrightarrow{a})$$

$$\Rightarrow \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = -2 \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] - \left[\overrightarrow{b} \quad \overrightarrow{c} \quad \overrightarrow{a} \right]$$

$$\Rightarrow \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = -3 \left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c} \right] \neq 0$$

$$\Rightarrow [\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}] \neq 0$$

Hence, \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} are non-coplanar vectors.

ALITER (i) Let $\overrightarrow{u} = \overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$, $\overrightarrow{v} = -2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$ and $\overrightarrow{w} = \overrightarrow{a} - 3\overrightarrow{b} + 5\overrightarrow{c}$. Then, $\begin{bmatrix} \overrightarrow{u} & \overrightarrow{v} & \overrightarrow{w} \end{bmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

$$\Rightarrow \qquad [\overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{w}] = [1(15-12) + 2(-10+4) + 3(6-3)] [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0 \times [\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 0$$

Hence, \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} are coplanar vectors.

(ii) Let
$$\overrightarrow{u} = 2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$$
, $\overrightarrow{v} = \overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}$ and $\overrightarrow{w} = \overrightarrow{a} + \overrightarrow{b} - 3\overrightarrow{c}$. Then,

$$\begin{bmatrix} \overrightarrow{u} & \overrightarrow{v} & \overrightarrow{w} \end{bmatrix} = \begin{bmatrix} 2 & -1 & 3 \\ 1 & 1 & -2 \\ 1 & 1 & -3 \end{bmatrix} \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

$$\Rightarrow \qquad \overrightarrow{u} \overrightarrow{v} \overrightarrow{w} = [2(-3+2)+1(-3+2)+3(1-1)] \overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$

$$\Rightarrow \qquad [\overrightarrow{u} \ \overrightarrow{v} \ \overrightarrow{w}] = -3[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] \neq 0$$

$$[: [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] \neq 0]$$

 \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} are non-coplanar vectors.

EXAMPLE 22 If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors, prove that

$$\left[\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{a} + \overrightarrow{c}\right] = -\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]$$

SOLUTION Using property XII, we have
$$\begin{bmatrix}
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} & \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{a} + \overrightarrow{c}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c}
\end{bmatrix}$$

$$= \{1 \times (1 - 0) - 1 \times (1 - 0) + 1 \times (0 - 1)\} \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

$$= (1 - 1 - 1) \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = - \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

EXAMPLE 23 Find the altitude of a parallelopiped determined by the vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , if the base is taken as the parallelogram determined by \overrightarrow{a} and \overrightarrow{b} , and if $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = 2\overrightarrow{i} + 4\overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j} + 3\overrightarrow{k}$.

SOLUTION Let *V* be the volume of the parallelopiped determined by the vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} . Then,

$$V = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} = (12+1) - (6+1) + (2-4) = 4 \text{ cubic units.} \qquad \dots(i)$$

Let *A* be the area of the base of the parallelopiped. Then, $A = |\overrightarrow{a} \times \overrightarrow{b}|$ Now,

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \widehat{i} & \widehat{j} & \widehat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix} = -5 \widehat{i} + 3 \widehat{j} + 2 \widehat{k} \Rightarrow A = |\overrightarrow{a} \times \overrightarrow{b}| = \sqrt{25 + 9 + 4} = \sqrt{38}$$

We know that: Volume of the parallelopiped = Area of the base × Altitude

i.e.
$$V = A \times \text{Altitude} \Rightarrow \text{Altitude} = \frac{V}{A} = \frac{4}{\sqrt{38}} \text{ units}$$

EXAMPLE 24 What can you conclude about four non-zero vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} , given that $|(\vec{a} \times \vec{b}) \cdot \vec{c}| + |(\vec{b} \times \vec{c}) \cdot \vec{d}| = 0$

SOLUTION We have,

$$|(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| + |(\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{d}| = 0$$

$$\Rightarrow |[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}]| + |[\overrightarrow{b} \ \overrightarrow{c} \ \overrightarrow{d}]| = 0$$

$$\Rightarrow \qquad [\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}] = 0 \text{ and } [\overrightarrow{b} \quad \overrightarrow{c} \quad \overrightarrow{d}] = 0$$

$$[\because |x| + |y| = 0 \Leftrightarrow x = 0, y = 0]$$

$$\Rightarrow$$
 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} , are coplanar triads of vectors.

$$\Rightarrow$$
 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} are coplanar vectors.

EXAMPLE 25 If
$$\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + b^3 \end{vmatrix} = 0$$
 and the vectors $\overrightarrow{A} = \hat{i} + a\hat{j} + a^2\hat{k}$, $\overrightarrow{B} = \hat{i} + b\hat{j} + b^2\hat{k}$,

 $\overrightarrow{C} = \overrightarrow{i} + c \overrightarrow{j} + c^2 \overrightarrow{k}$ are non-coplanar, then prove that abc = -1.

SOLUTION It is given that \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} are non-coplanar vectors.

$$\therefore \qquad [\overrightarrow{A} \ \overrightarrow{B} \ \overrightarrow{C}] \neq 0 \Rightarrow \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \neq 0 \qquad \dots (i)$$

Now,
$$\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + b^3 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} + \begin{vmatrix} a & a^2 & a^3 \\ b & b^2 & b^3 \\ c & c^2 & c^3 \end{vmatrix} = 0$$

$$\Rightarrow - \begin{vmatrix} a & 1 & a^2 \\ b & 1 & b^2 \\ c & 1 & c^2 \end{vmatrix} + abc \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ c & c & c^2 \end{vmatrix} = 0$$

 $-\begin{vmatrix} b & 1 & b^2 \\ c & 1 & c^2 \end{vmatrix} + abc \begin{vmatrix} 1 & b & b^2 \\ c & c & c^2 \end{vmatrix} = 0 \qquad \begin{bmatrix} \text{Applying } C_2 \leftrightarrow C_3 \text{ in 1st det. and taking } a, b, c \\ \text{common from } C_1, C_2, C_3 \text{ of 2nd det.} \end{bmatrix}$

$$\Rightarrow \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} + abc \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$$

[Applying $C_2 \leftrightarrow C_1$ in first determinant]

$$\Rightarrow \qquad (1+abc) \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$$

$$\Rightarrow \qquad (1 + abc) \ [\overrightarrow{A} \ B\overrightarrow{C}] = 0$$

[Using (i)]

$$\Rightarrow$$
 1 + abc = 0 \Rightarrow abc = -1

 $[: [\overrightarrow{A} \overrightarrow{B} \overrightarrow{C}] \neq 0]$

BASIC

1. Evaluate the following:

(i)
$$\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{j} & \hat{k} & \hat{i} \end{bmatrix} + \begin{bmatrix} \hat{k} & \hat{i} & \hat{j} \end{bmatrix}$$

(ii) $\begin{bmatrix} 2\hat{i} & \hat{j} & \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{i} & \hat{k} & \hat{j} \end{bmatrix} + \begin{bmatrix} \hat{k} & \hat{j} & 2\hat{i} \end{bmatrix}$

2. Find $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$, when

(i)
$$\overrightarrow{a} = 2 \hat{i} - 3 \hat{j}$$
, $\overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{c} = 3 \hat{i} - \hat{k}$

(ii)
$$\overrightarrow{a} = (i-2)\overrightarrow{j} + 3\overrightarrow{k}$$
, $\overrightarrow{b} = 2(i+1)\overrightarrow{j} - (k)$ and $\overrightarrow{c} = (i+1)\overrightarrow{k}$

(iii)
$$\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}, \vec{b} = \hat{i} - 2\hat{j} + \hat{k} \text{ and } \vec{c} = -3\hat{i} + \hat{j} + 2\hat{k}$$

[CBSE 2019]

3. Find the volume of the parallelopiped whose coterminous edges are represented by the

(i)
$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$$

(ii)
$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}, \ \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \ \vec{c} = 3\hat{i} - \hat{j} - 2\hat{k}$$

(iii)
$$\overrightarrow{a} = 11 \hat{i}$$
, $\overrightarrow{b} = 2 \hat{j}$, $\overrightarrow{c} = 13 \hat{k}$

(iv)
$$\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$$
, $\overrightarrow{b} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$

4. Show that each of the following triads of vectors are coplanar:

(i)
$$\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \vec{b} = 3\hat{i} + 2\hat{j} + 7\hat{k}, \vec{c} = 5\hat{i} + 6\hat{j} + 5\hat{k}$$

(ii)
$$\vec{a} = -4\hat{i} - 6\hat{j} - 2\hat{k}, \vec{b} = -\hat{i} + 4\hat{j} + 3\hat{k}, \vec{c} = -8\hat{i} - \hat{j} + 3\hat{k}$$

(iii)
$$\hat{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, $\hat{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}$, $\hat{c} = \hat{i} - 3\hat{j} + 5\hat{k}$

5. Find the value of λ so that the following vectors are coplanar:

(i)
$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}, \overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k}, \overrightarrow{c} = \lambda \hat{i} - \hat{j} + \lambda \hat{k}$$

(ii)
$$\overrightarrow{a} = 2 \hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} + 2 \hat{j} - 3 \hat{k}$, $\overrightarrow{c} = \lambda \hat{i} + \lambda \hat{j} + 5 \hat{k}$

(iii)
$$\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k}$$
, $\overrightarrow{b} = 3\overrightarrow{i} + \lambda \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + 2\overrightarrow{j} + 2\overrightarrow{k}$

(iv)
$$\overrightarrow{a} = \overrightarrow{i} + 3\overrightarrow{j}$$
, $\overrightarrow{b} = 5\overrightarrow{k}$, $\overrightarrow{c} = \lambda \overrightarrow{i} - \overrightarrow{j}$

- 6. Show that four points whose position vectors are $6\hat{i} 7\hat{j}$, $16\hat{i} 19\hat{j} 4\hat{k}$, $3\hat{i} 6\hat{k}$, $2\hat{i} - 5\hat{j} + 10\hat{k}$ are not coplanar.
- 7. Show that the points A(-1, 4, -3), B(3, 2, -5), C(-3, 8, -5) and D(-3, 2, 1) are coplanar.
- 8. Show that four points whose position vectors are $6\hat{i} 7\hat{j}$, $16\hat{i} 19\hat{j} 4\hat{k}$, $3\hat{i} 6\hat{k}$, $2\hat{i} - 5\hat{j} + 10\hat{k}$ are coplanar.
- 9. Find the value of λ for which the four points with position vectors $-\hat{j} \hat{k}$, $4\hat{i} + 5\hat{j} + \lambda\hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ are coplanar.

BASED ON LOTS

- 10. Prove that: $(\overrightarrow{a} \overrightarrow{b}) \cdot \{(\overrightarrow{b} \overrightarrow{c}) \times (\overrightarrow{c} \overrightarrow{a})\} = 0$
- 11. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are the position vectors of points A, B and C respectively, prove that: $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$ is a vector perpendicular to the plane of triangle ABC.
- 12. Let $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = \overrightarrow{i}$ and $\overrightarrow{c} = c_1 \overrightarrow{i} + c_2 \overrightarrow{j} + c_3 \overrightarrow{k}$. Then,
 - (i) If $c_1 = 1$ and $c_2 = 2$, find c_3 which makes \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} coplanar.
 - (ii) If $c_2 = -1$ and $c_3 = 1$, show that no value of c_1 can make \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} coplanar.

- 13. Find λ for which the points A (3, 2, 1), B (4, λ , 5), C (4, 2, 2) and D (6, 5, 1) are coplanar.
- 14. If four points A, B, C and D with position vectors $4\hat{i} + 3\hat{j} + 3\hat{k}$, $5\hat{i} + x\hat{j} + 7\hat{k}$, $5\hat{i} + 3\hat{j}$ and $7\hat{i} + 6\hat{j} + \hat{k}$ respectively are coplanar, then find the value of x.
- 15. Find the volume of the parallelopiped whose adjacent edges are represented by $2\vec{a}$, $-\vec{b}$ and $3\vec{c}$, where $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 3\hat{k}$.

ANSWERS

- 1. (i) 3 (ii) -1 2. (i) 4 (ii) 12 (iii) -30 3. (i) 37 (ii) 35 (iii) 286 (iv) 4
- 5. (i) 1 (ii) $-\frac{25}{8}$ (iii) 6 (iv) $-\frac{1}{3}$ 9. $\lambda = 1$ 12. (i) $c_3 = 2$ 13. $\lambda = 5$ 14. x = 6 15. 48

11. In order to prove the desired result, it is sufficient to prove that the vector $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$ is perpendicular to each of the vectors \overrightarrow{AB} , \overrightarrow{BC} and \overrightarrow{CA} .

i.e.
$$(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{AB} = 0$$
, $(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{BC} = 0$, and, $(\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{CA} = 0$.

15. Volume = $|\begin{bmatrix} 2 \stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{3} \stackrel{\rightarrow}{c} \end{bmatrix}| = |-6 \begin{bmatrix} \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} \end{bmatrix}| = 6 |\begin{bmatrix} \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} \end{bmatrix}|$

FILL IN THE BLANKS TYPE QUESTIONS (FBQs)

- 1. $[\hat{i} \ \hat{k} \ \hat{j}] + [\hat{k} \ \hat{j} \ \hat{i}] + [\hat{j} \ \hat{k} \ \hat{i}] = \dots$
- 2. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}] = 10$, then $[\overrightarrow{a} + \overrightarrow{b} \ \overrightarrow{b} + \overrightarrow{c} \ \overrightarrow{c} + \overrightarrow{a}] = \dots$.
- 3. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar vectors, then $\frac{\overrightarrow{(b \times c)} \cdot (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})}{\overrightarrow{(a \times b)}} = \dots$

- **6.** For any two vectors $\begin{bmatrix} a & b & a \times b \end{bmatrix} + (a \cdot b) = \dots$
- 7. If non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} form a parallelopiped of volume 6 cubic units, then the values of $[\overrightarrow{a} + \overrightarrow{b} \quad \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{c} + \overrightarrow{a}]$ are
- **8.** If three non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} form a parallelopiped of volume 8 cubic units, then the values of $[3\ \overrightarrow{a}\ 4\ \overrightarrow{b}\ 5\ \overrightarrow{c}]$ are

_ANSWERS

	2. 20	3. 1	4. 0	5. 0
6. $ \overrightarrow{a} ^2 \overrightarrow{b} ^2$	7. ± 12	8. ± 480	9. 0	10. 4 11. 0

VERY SHORT ANSWER TYPE QUESTIONS (VSAQs)

Answer each of the following questions in one word or one sentence or as per exact requirement of the question:

- 1. Write the value of $[2\hat{i} \ 3\hat{j} \ 4\hat{k}]$.
- 2. Write the value of $\begin{bmatrix} \hat{i} + \hat{j} & \hat{j} + \hat{k} & \hat{k} + \hat{i} \end{bmatrix}$
- **3.** Write the value of $[\hat{i} \hat{j} \quad \hat{j} \hat{k} \quad \hat{k} \hat{i}]$.
- **4.** Find the values of 'a' for which the vectors $\vec{\alpha} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{\beta} = a\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{\gamma} = \hat{i} + 2\hat{j} + a\hat{k}$ are coplanar.
- 5. Find the volume of the parallelopiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{j} + \pi \hat{k}$.

 \overrightarrow{a} \overrightarrow{b} are non-collinear vectors, then find value $\vec{a} \overrightarrow{b} \overrightarrow{i} \overrightarrow{i} + \vec{a} \overrightarrow{b} \overrightarrow{i} \overrightarrow{i} + \vec{a} \overrightarrow{b} \overrightarrow{k} \overrightarrow{k}$

- 7. If the vectors ($\sec^2 A$) $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + (\sec^2 B) \hat{j} + \hat{k}$, $\hat{i} + \hat{j} + (\sec^2 C) \hat{k}$ are coplanar, then find the value of $\csc^2 A + \csc^2 B + \csc^2 C$.
- 8. For any two vectors \overrightarrow{a} and \overrightarrow{b} of magnitudes 3 and 4 respectively, write the value of $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{a} \times \overrightarrow{b}] + (\overrightarrow{a} \cdot \overrightarrow{b})^2$
- 9. If $[3\vec{a}+7\vec{b} \ \vec{c} \ \vec{d}] = \lambda [\vec{a} \ \vec{c} \ \vec{d}] + \mu \ [\vec{b} \ \vec{c} \ \vec{d}]$, then find the value of $\lambda + \mu$.
- **10.** If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, then find the value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{\vec{c} \cdot (\vec{a} \times \vec{b})}$
- 11. Find $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$, if $\overrightarrow{a} = 2 \overrightarrow{i} + \overrightarrow{j} + 3 \overrightarrow{k}$, $\overrightarrow{b} = -\overrightarrow{i} + 2 \overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{c} = 3 \overrightarrow{i} + \overrightarrow{j} + 2 \overrightarrow{k}$. [CBSE 2014]

- 1. 24
- 3. 0
- 5. π cubic units

- 7. 2
- **8.** 144 **9.** 10
- 10. 0