Introduction to Computer Engineering

Assignment #6: FSM

รูปแบบการเชื่อมต่อ

PIN MAP

Device	Transmitter					
NS_RD_PIN	7					
NS_YL_PIN	6					
NS_GN_PIN	5					
EW_RD_PIN	4					
EW_YL_PIN	3					
EW_GN_PIN	5					
HM_RD_PIN	8					
HM_GN_PIN	9					
NS_SW_PIN	10					
EW_SW_PIN	11					
HM_SW_PIN	12					

รูปถ่ายชิ้นงาน

ทางกลุ่มของเรานั้นเลือกใช้ Arduino NANO Rev.3 จำนวน 1 บอร์ด มาใช้งานและมีส่วนต่อขยายเพิ่มเติมคือ โมดูลหลอด LED Traffic Light (RYG) จำนวน 2 ชุด, โมดูลหลอด LED Traffic Light (RG) จำนวน 1 ชุด และ สวิตช์แบบ กดติด-ปล่อยดับ จำนวน 3 ตัว โดยได้ทำการเชื่อมต่อกันในลักษณะดังภาพข้างบน

Introduction to Computer Engineering

Assignment #6: FSM

State Transition graph

State Transition table

State	time	Output								INPUT							
		NS		EW			HM		[000]	[001]	[010]	[011]	[100]	[101]	[110]	[111]	
		R	Υ	G	R	Υ	G	R	G	0	1	2	3	4	5	6	7
goNS	1000			1	1			1		goNS	waitHM_NS	waitEW	waitHM_NS	goNS	waitHM_NS	waitEW	waitEW
waitNS	500	1				1		1		goNS	goNS	goNS	goNS	goNS	goNS	goNS	goNS
goEW	1000	1					1	1		goEW	waitHM_EW	goEW	waitHM_EW	waitNS	waitHM_EW	waitNS	waitHM_EW
waitEW	500		1		1			1		goEW	goEW	goEW	goEW	goEW	goEW	goEW	goEW
goHM	1000	1			1				1	goHM	goHM	goEW	goEW	goNS	goNS	goNS	goNS
waitHM_NS	500		1		1			1		goHM	goHM	goHM	goHM	goHM	goHM	goHM	goHM
waitHM_EW	500	1				1		1		goHM	goHM	goHM	goHM	goHM	goHM	goHM	goHM

Introduction to Computer Engineering

Assignment #6: FSM

การทำงานของโปรแกรม

การทำงานของตัวโปรแกรมจะเริ่มต้นจากการรับค่าของปุ่มกดทั้ง 3 ปุ่ม ค่า input จะถูกแปลงเป็นค่า 0-7 จากนั้น ก็จะทำการตรวจสอบกับ State ปัจจุบันว่าอยู่ State ใดถ้าเมื่อใด Input มีค่าเข้ามาที่ทำให้ State ต้องเปลี่ยน State ก็จะ ถูกไปไปยัง State ถัดไป เช่น เมื่อมีรถรออยู่ในฝั่งเหนือ-ใต้ ไฟเขียวฝั่งเหนือ-ใต้จะต้องติด และฝั่งออก-ตกก็จะเป็นไฟแดง และเมื่อรถเคลื่อนออกเป็นที่เรียบร้อยแล้ว หากไม่มีรถมาเลยไฟก็จะคงอยู่ในสถานะเดิมต่อไป แต่หากมีรถมาทางอื่นสถานะก็ จะถูกเปลี่ยนต่อไป

ผลลัพธ์ที่ได้เมื่อกดปุ่ม

ภาพที่ 1 แสดงการทำงานของ State ที่จะถูกเปลี่ยนไป