

Dialogue Summarization 일상대화요약

Team 12: simple 12조

목차

- 1 팀소개
- 2 진행 과정
- 3 대회소개
- 4 데이터 전처리
- 5 모델학습

- 6 대회결과
- 7 인사이트및회고
- 8 Q&A

1 팀원소개

박범철

- 팀장, 발표
- Modeling

최윤설

- Pre-processing
- Modeling

김나리

- Pre-processing
- Modeling

조용중

- Pre-processing
- Modeling

2 진행과정

- 1 대회 분석
- BaseLine 분석, Pre-processing
- 3 모델 선정 (Bart -> T5 -> llama)
- 모델 학습 기간 설정
- 모델 학습

2 지난 대회 회고

구글 엑셀을 사용하여 실험 기록 공유

대회 날짜에 맞춘 시간 배분

같은 모델, 같은 튜닝 사용 자제

데이터 버전 맞추기

2 실험 기록 공유

Google 스프레드시트

데이터 & 모델 리더보드 제출

A	В	С	D	Е	F	G	Н		J	K	L	M
				train	eval 점수			리더보드 점수				
실험날짜	실험자	모델	비고	loss	loss	rouge1	rouge2	rougeL	final_result	rouge1	rouge2	rouge
2024년 08월 30일	yoonseol choi	digit82/kobart-summarization	baseline code + special tokens (best train loss)	0.3997	0.56373	0.37692	0.13836	0.36103	41.9809	0.5136	0.3175	0.428
2024년 08월 30일	김나리	digit82/kobart-summarization	baseline code + special tokens		0.5609	0.38185	0.14523	0.36763	41.6822	0.5098	0.3161	0.424
2024년 09월 01일	yoonseol choi	digit82/kobart-summarization	baseline code + special tokens + modify max len		0.58218	0.38521	0.1437	0.36977	41.6581	0.5113	0.316	0.422
2024년 09월 02일	김나리	digit82/kobart-summarization	고감자 + baseline code + special tokens		0.577357	0.303733	0.079945	0.295802	41.1863	0.5078	0.3112	0.416
2024년 09월 02일	yoonseol choi	digit82/kobart-summarization	baseline code + special tokens + 자/모음 전처리 (best eval loss)	0.4394	0.558012	0.384407	0.145014	0.369641	41.7765	0.5121	0.3161	0.42
2024년 09월 02일	yoonseol choi	digit82/kobart-summarization	baseline code + special tokens + 자/모음 전처리 (best train loss)	0.3989	0.562177	0.388444	0.147888	0.374012	42.1839	0.5163	0.321	0.42
2024년 09월 02일	박범철	digit82/kobart-summarization	baseline code + special tokens	0.4012	0.56812	0.38132	0.14123	0.36199	41.9809	0.5136	0.3175	0.42
2024년 09월 03일	김나리	digit82/kobart-summarization	baseline+special+1024/512max_len+batch 4(best train loss)	0.1931	0.60348	0.30548	0.0812	0.29747	41.4494	0.5095	0.3138	0.42
2024년 09월 03일	김나리	digit82/kobart-summarization	baseline+special+1024/512max_len+batch 4(best val loss)	0.2751	0.57653	0.31156	0.0813	0.30428	40.7299	0.5044	0.3065	0.4
2024년 09월 04일	yoonseol choi	digit82/kobart-summarization	D8 + min_length_64						29.4991	0.3745	0.2176	0.29
2024년 09월 04일	yoonseol choi	digit82/kobart-summarization	D8 + min_length_32						37.9575	0.4723	0.2837	0.38
2024년 09월 04일	yoonseol choi	digit82/kobart-summarization	D8 + length_penalty_1.0						41.4723	0.5089	0.312	0.42
2024년 09월 04일	yoonseol choi	digit82/kobart-summarization	D8 + length_penalty_0.5						41.737	0.5104	0.3151	0.42
2024년 09월 04일	yoonseol choi	digit82/kobart-summarization	D8 + length_penalty_0.25						41.928	0.5126	0.3166	0.42
2024년 09월 04일	yoonseol choi	digit82/kobart-summarization	D8 + length_penalty_0.25 + num_beams 5						41.9264	0.5132	0.3166	0.4
2024년 09월 04일	김나리	lcw99/t5-large-korean-text-summary	각 화자별 요약하는 프롬프트 사용.	1.4215	1.3879	0.2028	0.0615	0.19632	38.4511	0.4743	0.2801	0.39
2024년 09월 04일	yoonseol choi	digit82/kobart-summarization	D8 + no_repeat_ngram_size 2 -> repetition_penalty 1.2						40.9218	0.4998	0.3088	0.41
2024년 09월 04일	김나리	digit82/kobart-summarization	chunk + leng_penalty_2.0	0.281	0.55962	0.38262	0.13978	0.36547	40.6414	0.499	0.3065	0.41
2024년 09월 05일	Cho	lcw99/t5-large-korean-text-summary	output test + 1 epoch	1.6605	1.2468	0.2391	0.0821	0.2295	42.3105	0.5184	0.3174	0.43
2024년 09월 05일	박범철	lcw99/t5-large-korean-text-summary	epoch 11	1.5586	1.1239	0.2684	0.1006	0.2589	43.6066	0.5322	0.3331	0.4
2024년 09월 05일	Cho	lcw99/t5-large-korean-text-summary	7 epoch	0.9171	1.1204	0.2681	0.098	0.2577	43.9477	0.535	0.336	0.4
2024년 09월 05일	Cho	lcw99/t5-large-korean-text-summary	7 epoch + inference parameter tunning + temperature = 0.3						37.8217			
2024년 09월 05일	Cho	lcw99/t5-large-korean-text-summary	7 epoch + inference parameter tunning : "generate_max_length": 512, #256, "num_beams": 5, #4						44.1122	0.5355	0.3389	0.44

3 대회소개

Dialogue Summarization

여러 인물들이 나눈 대화 요약

평가 기준

- ROUGE-1-F1, ROUGE-2-F1, ROUGE-L-F1 세 가지 metric을 사용해 최종 점수 산출
- Multi-Reference Dataset의 특성에 맞춘 평가 방법: 여러 정답 요약 문장 중 3개를 비교하여 평균 점수를 계산함
- 랜덤하게 선택된 요약 문장의 평균 점수가 약 70점임

이번 대회 전략

- · 각종 모델의 large모델을 활용
- Large 모델의 inference 파라미터 수정

4 데이터 전처리

• 오탈자 수정 (철자 오류 등 수정)

데이터 클렌징

- 마스킹 처리 (Special token 적용)
- 자/모음으로만 구성된 문자열 제거 (정규식 활용)

Dialogue 오탈자

```
replacements = {
          'ㅋㅋ': '웃기다', 'ㅇ로': '으로',
          '제ㅏ': '제가', 'ㅍ알': ' 알',
          'ㄷ거': '거',
          '##': '#', '회사 #에서': '회사에서',
          '#작은': '#Person2#: 작은', '#여기서': '#Person1#: 여기서',
          '#L ': '#Person2#: L ',
          '#페리에와': '#Person1#: 페리에와',
          '#샐러드용': '#Person1#: 샐러드용',
          '#어디': '#Person1#: 어디',
          '#잠깐만요': '#Person1#: 잠깐만요',
          '#하지만': '#Person1#: 하지만',
          '#사람1만기': '#Person1#: 만기',
          '#PhoneNumber이고': '#PhoneNumber#이고', '#Person1:': '#Person1#:',
          '#Person2:': '#Person2#:', '#Person#': '#Person2#:', '사람1#:': '#Person1#:',
          '#고객님:': '#Person2#: 고객님',
          '선생님: ': '', '로저스 씨: ': '',
          '남자: 아악.': '', '남자: 고마워.': ''
df['dialogue'] = df['dialogue'].replace(replacements, regex=True)
```

Summary 오탈자

```
if 'summary' in df.columns:
    summary_replacements = {
       '사람1#': '#Person1#', '사람2#': '#Person2#', '#사람1#': '#Person1#'
    }
df['summary'] = df['summary'].replace(summary_replacements, regex=True)
```

Special token 적용

```
1 from transformers import AutoTokenizer
   3 # 토크나이저 로드
   4 tokenizer = AutoTokenizer.from pretrained("gogamza/kobart-base-v2")
   6 # 특별 토큰 추가
   7 special tokens = list(set.union(*masked info))
   8 special tokens dict = {'additional special tokens': special tokens}
   9 tokenizer.add special tokens(special tokens dict)
  11 print("추가된 특별 토큰:", tokenizer.additional special tokens)
  12 print("추가된 특별 토큰 ID:", tokenizer.additional_special_tokens_ids)
config.json: 0%
                           | 0.00/1.36k [00:00<?, ?B/s]
You passed along `num labels=3` with an incompatible id to label map: {'0': 'NEGATIVE', '1': 'POS
tokenizer.json: 0%
                              | 0.00/682k [00:00<?, ?B/s]
added tokens.json: 0%
                                 | 0.00/4.00 [00:00<?, ?B/s]
special_tokens_map.json: 0%|
                                      | 0.00/112 [00:00<?, ?B/s]
You passed along `num labels=3` with an incompatible id to label map: {'0': 'NEGATIVE', '1': 'POS
추가된 특별 토큰: ['#Email#', '#Person5#', '#DateOfBirth#', '#SSN#', '#CarNumber#', '#Person#', '#
추가된 특별 토큰 ID: [30000, 30001, 30002, 30003, 30004, 30005, 30006, 30007, 30008, 30009, 30010,
```

5 모델 학습 - koBart

시도한 방법들

1. 번역후요약시도

과정:대화를 영어로 번역 후, 영어 BART 모델로 요약하고 다시 한국어로 번역하는 방식

문제점: 번역에서 발생하는 오류와 요약 과정에서 발생하는 오류가 중첩되어 성능 저하

2. 강화학습 알고리즘을 적용한 모델 업데이트

방법:ROUGE점수를보상신호로활용하여모델을강화학습알고리즘으로학습

목표:모델이더높은ROUGE점수를내는방향으로학습되도록설계

3. K-Fold

방법:데이터를여러 Fold로나눠교차검증시행

4. K-Fold + 강화학습

방법: K-Fold + 강화학습을 결합하여 더 견고한 모델로 학습 시도

1~4과정을시행한결과

Baseline을 넘지 못했다.

오히려 Baseline에서

max_length를

1024/512로 수정한 방법이

더 점수가 좋았다.

5 모델 학습 - T5_large

T5 (Text-to-Text Transfer Transformer)

- 모든 NLP 작업을 텍스트 입력 -> 텍스트 출력 형태로 통일
- · Seq2Seq 아키텍처 : 인코더가 입력 텍스트를 벡터로 변환 후, 디코더가 이 벡터를 바탕으로 출력 텍스트 생성
- 성능:다양한 NLP 벤치마크에서 최고 수준의 성과를 보여줌 적은 데이터로도 높은 성능 발휘 (Few-shot/Zero-shot 학습)

5 모델 학습 - T5_large

lcw99/T5 모델로 시도한 방법

1. **CUDA 메모리 오류 발생**

문제:모델이 크기에 서버에서 감당 못하여 메모리 부족 오류 발생

해결: 오류발생시 check포인트를만들어 오류난 곳부터 다시 학습 진행

2. 모델 성능 최적화

파라미터 수정 및 inference : inference 단계에서

파라미터를 수정하여 최종적으로 최고 점수 기록

```
t5 large mod...ng II © 0.5334 0.3403 0.4513 44.1650 0.5172 0.3081 0.4214 41.5561
```

메모리 오류 Exception 처리

1.25

5 모델 학습 - Ilama3

Beomi/Llama-3-Open-Ko-8B

- 사전학습데이터: 중복제거된 60GB 이상의 공개 텍스트데이터로학습됨
- 토크나이저:새로운 Llama3 토크나이저를 사용해 177억 개 이상의 토큰으로 사전 학습 진행. 이전 Llama2-Ko 토크나이저보다 더 많은 토큰 사용
- 특징:대용량데이터를기반으로다양한언어작업에서 뛰어난성능을 발휘

Figure 28 Illustration of the compositional approach to adding multimodal capabilities to Llama 3 that we study in this paper. This approach leads to a multimodal model that is trained in five stages: (1) language model pre-training, (2) multi-modal encoder pre-training, (3) vision adapter training, (4) model finetuning, and (5) speech adapter training.

5 모델 학습 - Ilama3

Llama3 모델로 시도한 방법

- 1. CUDA 연산 능력 확인
 - GPU의 CUDA 연산 능력이 8 이상일 경우, 고성능 GPU에서 Attention 메커니즘을 선택하고, torch 데이터 타입을 bfloat16으로 설정하여 메모리 사용량을 줄이면서 계산 정확성 유지
- 2. LoRA (Low-Rank Adaptation)
 PEET(피라미터 효율적 미세 조정) 기법인 LoRA를 사용해 모델의 일부 파라미터만 조정, 컴퓨팅 자원과 메모리 사용량 크게 줄임
- 3. QLoRA (Quantized LoRA)
 LoRA에 4비트양자화(Quantization) 기법을 추가해 더 적은 메모리와 자원을 사용하면서도 비슷한 성능을 유지
- 4. SFTTrainer 지도학습방식으로 Llama3 모델을 효율적으로 미세 조정. 대규모 언어 모델의 학습 과정을 쉽게 관리

6 대회 결과

T5-large 모델을 활용하여 inference 튜닝을 통해 최고 점수 달성 대회 최종 순위 5위로 마무리

순위	팀이름	팀멤버	rouge1	rouge2	rougeL	final_result	제출횟 수	최종 제 출
내등수 5	12조		0.5172	0.3081	0.4214	41.5561	60	18h
1	NLP 11조 👱	E Y JJ AN	0.5426	0.3442	0.4525	44.6438	77	2d
2	6조 ♡	▲ 표 전승	0.5367	0.3382	0.4504	44.1763	36	1d
3	2조 😲	(S) (S) (S) (di	0.5196	0.3111	0.4270	41.9213	83	20h
4	NLP7 🙅	6020	0.5140	0.3154	0.4223	41.7251	81	16h
5	12조 🔽		0.5172	0.3081	0.4214	41.5561	60	18h

7 인사이트 및 회고 - 아쉬운 점

박범철

김나리

최윤설

조용중

시간이 많을 때 T5 모델 inference 튜닝한 모델을 돌려 봤어야 했는데 계속 모델을 못 돌렸던 것이 아쉬웠다.

개인적으로는계속
KoBART만을 Fine-tunig
하려고 노력했는데,
결과적으로는 잘 되지
않았다. 데이터 증강을
시도하다가 하지 않았는데
그게 너무 아쉬웠다.

Baseline에서 사용한 모델 외 타
KoBART 모델도 사용해보고
num_beams를 조정해보거나
length_penalty 및
repetition_penalty 값을 추가해도
KoBART 모델로는 최고의 성능을
낼 수 없어서 좀 아쉬웠다.
 Llama3 모델 사용 시 CUDA

Llama3 모델 사용 시 CUDA Memory 오류가 자주 발생하여 답답했다.

7 인사이트 및 회고 - 시도해보고싶은 점

박범철

김나리

최윤설

조용중

T5_large 모델에 집중하느라 Llama3 모델을 같이 못하여 좀더 Llama3에 대해 알고 시도해보고싶다. 다른 조원들이 Llama나 T5등 fine_tuning 하면서 많은 것을 배우신 것 같았다. 대회는 끝나지만, 남은 온라인 수업과 함께 요즘 유행하는 모델들을 공부하고 직접 다루고 싶다. 그렇지만 KoBART만큼은 정말 많이 알고가서 뿌듯하다.

학습 데이터 셋에 주어진 'topic'을 사용하지 않았는데 BERT모델을 활용해 topic 분류 후 각 topic 마다 vocabulary를 활용하여 대화를 요약해보는 것

7 인사이트 및 회고 - 궁금한점

Llama3

문제: 1 epoch 출력에서 Special token 누락되었음.

확인한 사항

- Tokenizer의 vocab 확인
- 모델의 resize_token_embeddings 설정 점검
- Special token 관련 default parameter 설정을 모두 확인

궁금한 점

- 이 모든 부분을 점검했음에도 special token이 왜 빠져 있는지 아직 명확한 이유를 찾지 못해 의문이 남음.

Thank You