ARITHMÉTIQUE DANS Z

1. NOTIONS DE GROUPES

1.1. Groupe abstrait

Définition 1.1.0.1. —

Un groupe est la donnée de deux éléments : un ensemble G et une loi de composition interne (généralement + ou ×) \cdot telle que :

- $\begin{aligned} &1. \ \exists ! e \in G, \forall x \in G, e \cdot x = x \cdot e = x \,; \\ &2. \ \forall x \in G, \exists ! y \in G, x \cdot y = y \cdot x = e \,; \end{aligned}$
- 3. $\forall x, y, z \in G, x \cdot (y \cdot z) = (x \cdot y) \cdot z$.

Définition 1.1.0.2. —

$$\forall x,y \in G, x \cdot y = y \cdot x$$

alors on dit que le groupe (G, \cdot) est abélien (ou commutatif).

Proposition 1.1.0.1. —

L'élément symétrique (inverse ou opposé) est unique.

DÉMONSTRATION 1.1.0.1. —

En effet, soient $y, z \in G$ tels que pour $x \in G$: $x \cdot y = z \cdot x = e$. Alors :

$$z \cdot x \cdot y = z = y.$$

1.2. Groupes cycliques et monogènes

Définition 1.2.0.3. —

Si un groupe multiplicatif G est engendré par l'un de ses éléments g alors il est dit :

- cyclique si G est fini;
- monogène sinon.

Un tel élément g est un générateur de G.

Une première proposition fondamentale :

Théorème 1.2.0.1. —

Tout groupe monogène G est isomorphe à \mathbf{Z} . Tout groupe cyclique est isomorphe à $\mathbf{Z}/n\mathbf{Z}$ pour un certain $n \in \mathbf{Z}$.

DÉMONSTRATION 1.2.0.2. —

Il suffit de donner de bons isomorphismes :

1. Si G est monogène alors l'homomorphisme :

$$\chi: g^n \mapsto n$$

est une bijection de G dans \mathbf{Z} ;

2. si G est cyclique alors l'homomorphisme χ est un isomorphisme de G dans $\mathbf{Z}/n\mathbf{Z}$.

Proposition 1.2.0.2. —

Tout groupe monogène ou cyclique est abélien.

DÉMONSTRATION 1.2.0.3. —

En effet :

$$g^n g^m = g^{n+m} = g^{m+n} = g^m g^n.$$

Proposition 1.2.0.3. —

Si $f: G \to H$ est homomorphisme surjectif de groupes et si G est un groupe engendré par g alors H est engendré par f(g).

2. NOTIONS EN ARITHMÉTIQUE

2.1. Sous-groupe de Z

Тне́опѐме 2.1.0.2. —

Tout sous-groupe de **Z** est de la forme a**Z** avec $a \in$ **Z**.

DÉMONSTRATION 2.1.0.4. —

Soit G un sous-groupe de \mathbb{Z} . Si G est réduit à $\{0\}$ alors $G = 0\mathbb{Z}$.

Sinon, soit $x = |x| \in G$ l'élément minimal de G non nul (qui existe puisque $G \subset \mathbf{Z}$). $x\mathbf{Z} \subset G$ puisque G est un groupe.

Soit $y \in G$. Par division euclidienne, il existe un unique couple $(a,b) \in \mathbf{Z} \times \{0,1,\ldots,x-1\}$ tel que y=ax+b. On a $y-ax \in G$ mais aussi $y-ax=b \in G$. Or b < x donc b=0 et donc $y \in x\mathbf{Z}$.

On notera $x\mathbf{Z} = \boldsymbol{x}$.

2.2. pgcd et ppcm

Définition 2.2.0.4. —

Soient $a,b \in \mathbf{Z}$. On dit de manière équivalente que « a divise b » ou :

$$a \mid b \iff \mathbf{b} \subset \mathbf{a} \iff \exists c \in \mathbf{Z}, a = cb.$$

Définition 2.2.0.5. —

Soient $a, b \in \mathbf{Z}$.

On a que $\boldsymbol{a}+\boldsymbol{b}$ est un sous-groupe de \mathbf{Z} de la forme \boldsymbol{d} avec $d\in\mathbf{Z}$. On note $\operatorname{pgcd}(a,b)=d$.

 $\boldsymbol{a} \cap \boldsymbol{b}$ est un sous-groupe de \mathbf{Z} de la forme \boldsymbol{m} avec $m \in \mathbf{N}$. On note ppcm(a,b) = m.

Proposition 2.2.0.4. —

Soient $a, b \in \mathbf{Z}$. On a les propositions suivantes :

- 1. $\operatorname{pgcd}(a, b) = d \iff (\forall x \in \mathbf{Z}, x \mid a \text{ et } x \mid b \iff x \mid d);$
- 2. $\operatorname{ppcm}(a, b) = m \iff (\forall x \in \mathbf{Z}, a \mid x \text{ et } b \mid x \iff m \mid x).$

DÉMONSTRATION 2.2.0.5. —

Soient $a, b \in \mathbf{Z}$.

- 1. Soit $x \in \mathbf{Z}$. $x \mid a \text{ et } x \mid b \iff \mathbf{a} \subset \mathbf{x} \text{ et } \mathbf{b} \subset \mathbf{x} \iff \mathbf{a} + \mathbf{b} \subset \mathbf{x} \iff x \mid \operatorname{pgcd}(a,b)$.
- 2. Soit $x \in \mathbf{Z}$. $a \mid x \text{ et } b \mid x \iff \mathbf{x} \subset \mathbf{a} \text{ et } \mathbf{x} \subset \mathbf{b} \iff \mathbf{x} \subset \mathbf{a} \cap \mathbf{b} \iff \operatorname{ppcm}(a,b) \mid x$.

Théorème 2.2.0.3 (Identité de Bezout). —

Si $a, b \in \mathbf{Z}$ alors il existe $u, v \in \mathbf{Z}$ tels que $au + bv = \operatorname{pgcd}(a, b)$.

En particulier, si a et b sont premiers entre eux alors au + bv = 1.

3. NOTIONS MODULAIRES

3.1. Passage au quotient

Définition 3.1.0.6. —

Soit $a \in \mathbb{Z}$, \mathbb{Z}/a est le sous-ensemble de \mathbb{Z} obtenu par le quotient de \mathbb{Z} par a. Si $x \in \mathbf{Z}$ alors \overline{x} est la classe d'équivalence de x dans \mathbf{Z}/a .

Si $\bar{x} = \bar{y} \in \mathbf{Z}/a$ alors pour x, y des représentants de leurs classes respectives :

$$x = y + ua$$

avec $u \in \mathbf{Z}$. Il arrive de le noter :

$$x \equiv y \mod a$$
.

Proposition 3.1.0.5. — Soit $a \in \mathbb{N}$, $\mathbb{Z}/a = \{\overline{0}, \overline{1}, \dots, \overline{a-1}\}.$

On étend naturellement les opérations sur \mathbb{Z} à \mathbb{Z}/a en identifiant les opérations de $\mathbf{Z} \ \text{à} \ \mathbf{Z}/a$. On pourra alors confondre x et son représentant \overline{x} dans \mathbf{Z}/a .

Proposition 3.1.0.6. —

Soient $x, y \in \mathbf{Z}$: 1. $\overline{x+y} = \overline{x} + \overline{y}$; 2. $\overline{xy} = \overline{x} \cdot \overline{y}$.

Démonstration 3.1.0.6. —

Soient $x, y \in \mathbf{Z}$.

1. si x = ua + b et y = va + c tels que dans les divisions euclidiennes respectives

$$\overline{x+y} = \overline{(u+v)a+b+c} = \overline{b+c} = \overline{b} + \overline{c} = \overline{x} + \overline{y};$$

$$\overline{xy} = \overline{(ua+b)(va+c)} = \overline{a(uva+uc+bv)+bc} = \overline{bc} = \overline{b} \cdot \overline{c} = \overline{x} \cdot \overline{y}.$$

3.2. Inverse modulaire

Définition 3.2.0.7. —

L'inverse par la multiplication modulo $n \in \mathbf{Z}$ d'un entier $a \in \mathbf{Z}$ est un entier $u \in \mathbf{Z}$ satisfaisant à

$$a^{-1} \equiv u \mod n$$
.

C'est-à-dire de manière équivalente :

$$au \equiv 1 \mod n$$
.

Proposition 3.2.0.7. —

 $a \in \mathbf{Z}$ est inversible dans \mathbf{Z}/n si, et seulement si, n est premier avec a.

DÉMONSTRATION 3.2.0.7. —

Soient $a, u, n, m \in \mathbf{Z}$.

$$au \equiv 1 \mod n \iff au = 1 + mn \iff au - mn = 1$$

ce qui revient à dire que pgcd(a, n) = 1.

Théorème 3.2.0.4. —

 \mathbf{Z}/p est un corps si, et seulement si, p est premier.

DÉMONSTRATION 3.2.0.8. —

 \mathbf{Z}/p est un anneau. Or $x \in \mathbf{Z}/p$ est inversible si x est premier avec p et donc tout x est inversible si p est premier.

3.3. Petit théorème de Fermat

Théorème 3.3.0.5 (Petit théorème de Fermat). — Soient p un nombre premier et $a \in \mathbf{Z}$. Alors :

$$a^p \equiv a \mod p$$
.

DÉMONSTRATION 3.3.0.9. —

On procède par récurrence sur a:

- 1. Pour a=1 c'est vérifié.
- 2. Pour tout $k \in \mathbf{Z}$ on a :

$$(k+1)^p \equiv k^p + 1 \mod p.$$

En effet les coefficients binomiaux à l'exceptions des premier et dernier termes disparaissent en raison d'un facteur proportionnel à p.

3. Si la proposition est vérifiée pour a=k alors pour a=k+1 elle est également vérifiés en raison du résultat précédent :

$$(k+1)^p \equiv k^p + 1 \equiv k+1 \mod p.$$

Première généralisation. — On peut aller plus loin en généralisant ce résultat :

Théorème 3.3.0.6 (Théorème d'Euler). — Soit n > 0 et a entier premier avec n alors :

$$a^{\varphi(n)} \equiv 1 \mod n$$
.

Avec bien entendu φ l'indicatrice d'EULER.

Pour démontrer ce résultat on aura besoin du théorème de LAGRANGE :

Théorème de Lagrange). —

Pour tout groupe G et tout sous-groupe H de G, l'ordre (i.e. le cardinal) de H divise l'ordre de G:

$$\sharp H \mid \sharp G$$
.

DÉMONSTRATION 3.3.0.10 (Théorème d'EULER). —

Le groupe $(\mathbf{Z}/n)^*$ des entiers inversibles de l'anneau \mathbf{Z}/n est constitué des classes d'entiers inversibles modulo n, i.e. premiers avec n. Il y en a exactement $\varphi(n)$ donc ce groupe est d'ordre $\varphi(n)$.

Puisque a est premier avec n, \overline{a} est dans le groupe $(\mathbf{Z}/n)^*$. \overline{a} a donc un ordre dans ce groupe, disons m et cet ordre divise $\varphi(n)$ tel que $mk = \varphi(n)$. On a donc :

$$a^{\varphi(n)} \equiv a^{mk} \equiv (a^m)^k \equiv 1^k \equiv 1 \mod n.$$

DÉMONSTRATION 3.3.0.11 (Théorème de LAGRANGE). —

Le cardinal de l'ensemble G/H est appelé *indice* de H dans G et est noté [G:H]. De plus, ses classes forment une partition de G et chacune d'entre elles a le même cardinal que H. On a alors :

$$\sharp G=\sharp H\times [G:H].$$

 $Seconde\ généralisation$. — Une seconde généralisation de ce résultat est possible. Elle est donnée par :

Тне́опѐме 3.3.0.8. —

Si p est un nombre premier et m et n tels que

$$m \equiv n \mod p - 1$$
,

 $m \equiv n \mod p - 1,$ alors pour tout $a \in \mathbf{Z}$ on a : $a^m \equiv a^n \mod p.$

$$a^m \equiv a^n \mod p$$

Démonstration 3.3.0.12. —

En effet, soit a est divisible par p et les deux membres sont égaux à 0, soit a ne l'est pas et en supposant n > m:

$$a^{n-m} = (a^{p-1})^{(n-m)/(p-1)} = 1^{(n-m)/(p-1)} = 1.$$