Presenters: Anish Gadekar, Parth Shah, Shruti Bendale

- Matching consumers with the most appropriate products is key to enhancing user satisfaction and loyalty.
- Therefore, more retailers have become interested in recommender systems, which analyse patterns of user interest in products to provide personalized recommendations that suit a user's taste.

Recommender System Approaches

COLLABORATIVE FILTERING

CONTENT-BASED FILTERING

- This approach is based on the past interactions between users and the target items.
- The input to a collaborative filtering system will be all historical data of user interactions with target items.
- This data is typically stored in a matrix where the rows are the users, and the columns are the items.

- Works with data that the user provides, either explicitly (rating) or implicitly (clicking on a link).
- Based on that data, a user profile is generated, which is then used to make suggestions to the user.

		Fast and Furious	Avatar
Features Male Age 26 Preferences: action, crime	Mike		
Features Female Age 22 Preferences: adventure, fantasy	Kate		

MovieLens Dataset

- ≥20 million ratings
- ▶465,000 tags applications applied to 27,000 movies by 138,000 users

ratings.csv

s.csv movies.csv

	userld	movield	rating	timestamp
0	1	31	2.5	1260759144
1	1	1029	3.0	1260759179
2	1	1061	3.0	1260759182
3	1	1129	2.0	1260759185
4	1	1172	4.0	1260759205

movield	title	genres
0 1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy
1 2	Jumanji (1995)	Adventure Children Fantasy
2 3	Grumpier Old Men (1995)	Comedy Romance
3 4	Waiting to Exhale (1995)	Comedy Drama Romance
4 5	Father of the Bride Part II (1995)	Comedy

Performance Metrics

MAE

MEAN ABSOLUTE ERROR

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

RMSE

ROOT MEAN SQUARED ERROR

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

- We used stochastic gradient descent for optimization of the algorithm by looping through all ratings in the training set.
- The system predicts the rating of user u for the user i (r_{ui}) and computes the associated prediction error:

$$e_{ui}^{def} = r_{ui} - q_i^T p_u$$

The parameters are then modified by a magnitude proportional to γ in the opposite direction of the gradient, yielding:

$$q_i \leftarrow q_i + g (e_{ui} p_u - \lambda q_i)$$

 $p_{ui} \leftarrow p_{ui} + g (e_{ui} q_i - \lambda p_{ui})$

RMSE after training for 100 epochs: **0.983**

1. Pre-processing the data:

 This includes looking at the shape of the data, removing inconsistencies and garbage values.

2. Splitting the data into train and test:

 We made 80-20 split, using the 'sklearn.train_test_split' library.

3. Defining the Model

- Creating separate embeddings for the Movies matrix and the Users Matrix.
- Merging the embedded matrices using a dot product.
- Experimenting with various deep learning layers such a Dense Layers, Batch Normalization, Dropout after the dot product of the matrices. (In a combination that gives the best results)
- 4. Deciding parameters such as hidden layers, Dropout, Learning Rate, Optimizers, Epochs.
- 5. Training the model
- 5. Using the trained model for predictions

Experiments

- We experimented with different values of number of hidden layers, dropout values, optimizers, learning rates.
- We found out that the combination of 1 hidden layer with 50 nodes, 20% dropout, Adam optimizer, 0.001 learning rate and 100 epochs gives the best value of root mean squared error (0.81).

No. of Hidden Layers	Dropout Values	Optimization	Learning Rate	Epochs	RMSE
1 (50 nodes)	0.2	sgd	0.001	100	1.099
1 (50 nodes)	0.2	RMSProp	0.001	100	1.118
1 (50 nodes)	0.2	Adam	0.001	100	0.81
1 (50 nodes)	0.2	Adadelta	0.001	100	13.313
1 (50 nodes)	0.2	Adagrad	0.001	100	9.2377
1 (100 nodes)	0.5	Adam	0.001	100	1.372
1 (100 nodes)	0.2	Adam	0.01	100	3.0139
1 (100 nodes)	0.2	Adam	0.001	100	1.984
2 (50 nodes each)	0.2, 0.2	Adam	0.001	100	0.918
2 (100 nodes each)	0.2, 0.2	Adam	0.001	100	0.926

- We used matrix factorization and keras layers to train a deep learning model for our recommendation system.
- Once the model is trained, the system can show the Top N Recommended movies for an input userID.
- In the attached screenshot, we get the top 15 recommended movies for the userID '1'.

1 topPredictions(1,rating_data,movie_data)

genres	title	prediction	rating	movield	userId	
Adventure Fantasy	Lord of the Rings: The Fellowship of the Ring,	4.527629	5.0	4993	1	0
Action Adventure Drama Fantasy	Lord of the Rings: The Return of the King, The	4.516778	5.0	7153	1	1
Adventure Fantasy	Lord of the Rings: The Two Towers, The (2002)	4.464870	5.0	5952	1	2
Action Adventure Sci-Fi	Star Wars: Episode V - The Empire Strikes Back	4.249328	4.5	1196	1	3
Action Sci-Fi Thriller	Blade Runner (1982)	4.208074	4.0	541	1	4
Action Crime Drama Thriller	Hard-Boiled (Lat sau san taam) (1992)	4.175037	3.5	3265	1	5
Action Crime Drama Thriller	Léon: The Professional (a.k.a. The Professiona	4.140035	4.0	293	1	6
Action Adventure Sci-Fi	Star Wars: Episode I - The Phantom Menace (1999)	4.102765	4.0	2628	1	7
Action Adventure Sci-Fi	Star Wars: Episode IV - A New Hope (1977)	4.102588	4.0	260	1	8
Adventure Fantasy IMAX	Harry Potter and the Prisoner of Azkaban (2004)	4.100841	4.0	8368	1	9
Horror Sci-Fi	Alien (1979)	4.078115	4.0	1214	1	10
Action Adventure Comedy Fantasy	Pirates of the Caribbean: The Curse of the Bla	4.061373	4.0	6539	1	11
Adventure Animation Children Comedy Fantasy Ro	Shrek (2001)	4.051948	4.0	4306	1	12
Action Adventure Animation Children Comedy	Incredibles, The (2004)	4.047541	4.0	8961	1	13
Action Drama Thriller	Kill Bill: Vol. 2 (2004)	4.037704	4.0	7438	1	14
Action Adventure	Yojimbo (1961)	4.017904	3.0	3030	1	15

A high-level design for the flow of the program and the model:

1. Pre-processing the data:

This includes looking at the shape of the data, removing inconsistencies, garbage values, etc.

2. Splitting the data into train and test:

We made 80-20 split, using the 'sklearn.train_test_split' library.

3. Defining the Model:

- We use the MovieLens ratings data where each tag is typically a single word or short phrase. The meaning, value, and purpose of a particular tag is determined by each user.
- We compute the TF-IDF matrix of user ratings data using 'sklearn.feature_extraction.text' TfidfVectorizer.
- We define an AutoEncoder model which gives an Encoding size of 100 with intermediate layers of size 1000.
- 4. Deciding parameters such as hidden layers, Dropout, Learning Rate, Optimizers, Epochs.
- 5. Training the Model
- 6. Using the trained model for predictions

Methodology

- We train an Autoencoder using the TF-IDF values obtained from user rating data.
- After the Autoencoder converges, we obtain the encoded word embeddings from the Encoder half of the model and compute Cosine Similarity within the Embeddings.
- We then query this Cosine Similarity Matrix with the Movie Id as per the dataset and give back top 20 movies for a given user based on the ratings alone.

Observations

- We evaluate the top 20 movies returned for the movies Toy Story and Golden Eye.
- We notice that a considerable number of movies adhere to Toy Story's Adventure, Comedy and Fantasy genres.

similarity_score	genres	title	movield	
1.000000	Adventure Children Fantasy	Jumanji (1995)	2	1
0.855235	Comedy Romance	Forces of Nature (1999)	2558	2473
0.821601	Horror Thriller	Amityville Horror, The (2005)	33085	10035
0.818860	Documentary	Bohemian Eyes (Boheemi elää - Matti Pellonpää)	85624	16927
0.805679	Comedy	Tyler Perry's Madea's Witness Protection (2012)	95670	19244
0.801656	Comedy	Aprile (1998)	40015	10556
0.800484	Crime Mystery Thriller	Chaos (Kaosu) (1999)	8255	7721
0.796281	Comedy	Man with Two Brains, The (1983)	2111	2027
0.790033	Comedy Horror	Slaughterhouse (1987)	3026	2940
0.788707	Action Comedy	Stop! Or My Mom Will Shoot (1992)	3268	3181
0.787611	Horror	Human Centipede, The (First Sequence) (2009)	77427	15183
0.780500	Comedy	Casual Sex? (1988)	4485	4390
0.780202	Comedy Romance	Sexual Life of the Belgians, The (Vie sexuelle	1075	1053
0.778170	Drama Thriller	And Justice for All (1979)	3420	3331
0.775483	Comedy	Diary of a Wimpy Kid: Rodrick Rules (2011)	86014	16976

Observations

- However, the model does not provide movies such as other Disney/Pixar/Animated movies or movies which are sequels or prequels to Toy Story which can be safely deemed similar to movies.
- We also notice some outliers such as Horror movies and R rated movies which are not pertinent to our query.

	movield	title	genres	similarity_score
1	2	Jumanji (1995)	Adventure Children Fantasy	1.000000
2473	2558	Forces of Nature (1999)	Comedy Romance	0.855235
10035	33085	Amityville Horror, The (2005)	Horror Thriller	0.821601
16927	85624	Bohemian Eyes (Boheemi elää - Matti Pellonpää)	Documentary	0.818860
19244	95670	Tyler Perry's Madea's Witness Protection (2012)	Comedy	0.805679
10556	40015	Aprile (1998)	Comedy	0.801656
7721	8255	Chaos (Kaosu) (1999)	Crime Mystery Thriller	0.800484
2027	2111	Man with Two Brains, The (1983)	Comedy	0.796281
2940	3026	Slaughterhouse (1987)	Comedy Horror	0.790033
3181	3268	Stop! Or My Mom Will Shoot (1992)	Action Comedy	0.788707
15183	77427	Human Centipede, The (First Sequence) (2009)	Horror	0.787611
4390	4485	Casual Sex? (1988)	Comedy	0.780500
1053	1075	Sexual Life of the Belgians, The (Vie sexuelle	Comedy Romance	0.780202
3331	3420	And Justice for All (1979)	Drama Thriller	0.778170
16976	86014	Diary of a Wimpy Kid: Rodrick Rules (2011)	Comedy	0.775483

Comparing the models

- Comparing our results to the benchmark test results for the MovieLens dataset published by the developers of the Surprise library (A python scikit for recommender systems) in the adjoining table.
- We can see that the deep learning algorithm performs better than the other algorithms, but it takes a long time to train.
- The deep learning algorithm is also scalable to a larger dataset without affecting the RMSE value.

MovieLens	RMSE	MAE
k-NN	1.004	0.744
Centered k-NN	0.968	0.749
k-NN Baseline	0.947	0.743
Co-clustering	0.993	0.753
SVD	0.956	0.737
SVD ++	0.941	0.722
Collaborative(SGD)	0.983	0.739
Collaborative(Deep Learning)	0.817	0.715
Content-based	0.993	0.752

- https://www.kdnuggets.com/2019/09/machine-learning-recommender-systems.html
- https://towardsdatascience.com/creating-a-hybrid-content-collaborative-movie-recommender-using-deep-learning-cc8b431618af
- https://nipunbatra.github.io/blog/2017/recommend-keras.html
- https://towardsdatascience.com/deep-autoencoders-for-collaborative-filtering-6cf8d25bbf1d
- https://medium.com/@connectwithghosh/recommender-system-on-the-movielens-using-an-autoencoder-using-tensorflow-in-python-f13d3e8d600d
- https://medium.com/@connectwithghosh/recommender-system-on-the-movielens-using-an-autoencoder-using-tensorflow-in-python-f13d3e8d600d