This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEQUENCE LISTING

<110>	Tomb, Jear	n-Francoi	is
	Bramucci,	Michael	G.
	Cheng, Qio	ong	
	Kostichka,	Kristy	Ν.

- <120> Rhodococcus Cloning and Expression Vectors
- <130> CL1709 US NA
- <150> 60/254,868 <151> 2000-12-12
- <160> 30
- <170> Microsoft Office 97
- <210> 1
- <211> 1140
- <212> DNA
- <213> Rhodococcus AN12

<400> 1						
	taagtgctga	acacctttcc	ggcaaagacc	ggcctcccgt	cctcgtgtcg	60
tccgataagc	gcggcatccg	gcacgaactg	cgacccaaac	ttcaacaaat	caccacgtca	120
gaaacattta	acgcctgtgg	ccggccgatt	tctggcgtga	acggtgtgac	cattgtcaac	180
ggtccgaaag	gttctggatt	cggaggcctt	cgttcctgcg	gaaagggctg	gatctgcccc	240
tgctgtgcgg	gaaaagtcgg	tgcacatcgt	gcagacgaaa	tttctcaagt	tgttgctcat	300
caactcggga	ctggatctgt	tgcgatggtg	acgatgacca	tgcgccatac	agctggtcag	360
cggctccacg	acctatggac	tggactttcg	gcagcctgga	aagctgcgac	caacggtcgt	420
cgttggcgta	cggaacgtga	aatgtacggc	tgcgacggat	acgtgcgcgc	tgttgaaatc	480
actcacggaa	aaaacggctg	gcacgtccac	gttcacgcgc	tactcatgtt	cagtggtgac	540
gtgagtgaga	acatcctcga	atccttctcg	gatgcgatgt	tcgatcggtg	gacttccaaa	600
ctcgtatctc	tgggatttgc	tgcgccacta	cgtaattcgg	gtggtctcga	tgtacgaaag	660
atcggcggtg	aagctgatca	agttctcgct	gcgtatctga	cgaaaattgc	atctggcgtt	720
ggtatggagg	ttggtagtgg	cgacggaaaa	agtggtcgac	atggcaaccg	tgcaccctgg	780
gaaatcgctg	ttgatgcagt	gggcggggat	ccacaagcgt	tggaactgtg	gcgagaattt	840

<210> 2

<211> 379

<212> PRT

<213> Rhodococcus AN12

<400> 2

Met Thr Ser Val Ser Ala Glu His Leu Ser Gly Lys Asp Arg Pro Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Val Leu Val Ser Ser Asp Lys Arg Gly Ile Arg His Glu Leu Arg Pro 20 25 30

Lys Leu Gln Gln Ile Thr Thr Ser Glu Thr Phe Asn Ala Cys Gly Arg 35 40 45

Pro Ile Ser Gly Val Asn Gly Val Thr Ile Val Asn Gly Pro Lys Gly 50 55 60

Ser Gly Phe Gly Gly Leu Arg Ser Cys Gly Lys Gly Trp Ile Cys Pro 70 75 80

Cys Cys Ala Gly Lys Val Gly Ala His Arg Ala Asp Glu Ile Ser Gln 85 90 95

Val Val Ala His Gln Leu Gly Thr Gly Ser Val Ala Met Val Thr Met
100 105 110

Thr Met Arg His Thr Ala Gly Gln Arg Leu His Asp Leu Trp Thr Gly 115 120 125

Leu Ser Ala Ala Trp Lys Ala Ala Thr Asn Gly Arg Arg Trp Arg Thr 130 135 140

Glu Arg Glu Met Tyr Gly Cys Asp Gly Tyr Val Arg Ala Val Glu Ile 145 150 155 160 Thr His Gly Lys Asn Gly Trp His Val His Val His Ala Leu Leu Met

Phe Ser Gly Asp Val Ser Glu Asn Ile Leu Glu Ser Phe Ser Asp Ala 180 185 190

Met Phe Asp Arg Trp Thr Ser Lys Leu Val Ser Leu Gly Phe Ala Ala 195 200 205

Pro Leu Arg Asn Ser Gly Gly Leu Asp Val Arg Lys Ile Gly Gly Glu 210 215 220

Ala Asp Gln Val Leu Ala Ala Tyr Leu Thr Lys Ile Ala Ser Gly Val 225 230 235 240

Gly Met Glu Val Gly Ser Gly Asp Gly Lys Ser Gly Arg His Gly Asn 245 250 255

Arg Ala Pro Trp Glu Ile Ala Val Asp Ala Val Gly Gly Asp Pro Gln 260 265 270

Ala Leu Glu Leu Trp Arg Glu Phe Glu Phe Gly Ser Met Gly Arg Arg 275 280 285

Ala Ile Ala Trp Ser Arg Gly Leu Arg Ala Arg Ala Gly Leu Gly Ala 290 295 300

Glu Leu Thr Asp Ala Gln Ile Val Glu Glu Glu Glu Ser Ala Pro Val 305 310 315 320

Met Val Ala Ile Ile Pro Ala Arg Ser Trp Met Met Ile Arg Thr Cys 325 330 335

Ala Pro Tyr Val Phe Gly Glu Ile Leu Gly Leu Val Glu Ala Gly Ala 340 345 350

Thr Trp Glu Asn Leu Arg Asp His Leu His Tyr Arg Leu Pro Ala Ala 355 360 365

Asp Val Arg Pro Pro Ile Ile Ser Val Arg Lys 370 375

<210> 3

<211> 891

<212> DNA

<213> Rhodococcus AN12

<400> 3						
	cagacacgat	cccgattgcg	attggatgga	acgaactagc	tcaacctgtc	60
atggtcgata	tagccaaaga	tgctgctcac	tggctcattc	aaggcaaaac	ccgttccgga	120
aaatctcaat	gcacctacaa	cctgctcgca	caggctggat	cgaatcccgc	tgtgcgtgtc	180
gtcggagtcg	atcccacttc	cgtcttacta	gccccattcg	tccaccgacg	accggctgaa	240
ccgaacatcg	agctcgggct	gaacgatttt	gacaaagtcc	tccgagtgct	ccagttcgtc	300
aaagcagaat	ctgaccgacg	aatcgagtgt	ttctgggatc	gacgcataga	caaaatttcg	360
ttgttctcgc	cagcactacc	tctcatcctg	ctcgtactgg	aagaatttcc	cggaatcatc	420
gagggcgcac	aggatttcga	tgcaaccaac	ggtctgaaac	cagcagacag	atacgcaccc	480
cgcatcacat	cgcttgttcg	acagatcgct	gctcagtctg	ccaaagcagg	catcagaatg	540
ttgctcttgg	ctcaacgtgc	ggaagcttcc	atcgtgggtg	gaaacgcccg	ctcgaacttc	600
gcggtgaaaa	tgactctccg	cgtagacgaa	cctgaatctg	tcaaaatgct	gcaccccaac	660
gcaacacctg	aagagtgcgc	actggtcgaa	ggattcgtcc	ctggtcaagg	cttcttcgac	720
caacccggac	tacggcgcca	aatgatccga	acggttcgcg	taggtgagta	ctcgacctac	780
gcgagttacg	tcgaaaacgc	agacctcgcg	tacgaagccg	cactgaacat	cgaccgagca	840
caacgaatga	caatcgcctc	ggaataccca	catctcggcg	acataggctg	а	891

<210> 4

<211> 296

<212> PRT

<213> Rhodococcus AN12

<400> 4

Met $\stackrel{\cdot}{\text{A}}\text{sp}$ Gln Thr Asp Thr Ile Pro Ile Ala Ile Gly Trp Asn Glu Leu 1 5 10 15

Ala Gln Pro Val Met Val Asp Ile Ala Lys Asp Ala Ala His Trp Leu 20 25 30

Ile Gln Gly Lys Thr Arg Ser Gly Lys Ser Gln Cys Thr Tyr Asn Leu 35 40 45

Leu Ala Gl
n Ala Gly Ser Asn Pro Ala Val Arg Val Val Gly Val Asp
 50 60

Pro Thr Ser Val Leu Leu Ala Pro Phe Val His Arg Arg Pro Ala Glu 65 70 75 80

Pro Asn Ile Glu Leu Gly Leu Asn Asp Phe Asp Lys Val Leu Arg Val 85 90 95

Leu Gln Phe Val Lys Ala Glu Ser Asp Arg Ile Glu Cys Phe Trp 100 105 110

Asp Arg Arg Ile Asp Lys Ile Ser Leu Phe Ser Pro Ala Leu Pro Leu 115 120 125

Ile Leu Leu Val Leu Glu Glu Phe Pro Gly Ile Ile Glu Gly Ala Gln 130 135 140

Asp Phe Asp Ala Thr Asn Gly Leu Lys Pro Ala Asp Arg Tyr Ala Pro 145 150 155 160

Arg Ile Thr Ser Leu Val Arg Gln Ile Ala Ala Gln Ser Ala Lys Ala 165 170 175

Gly Ile Arg Met Leu Leu Leu Ala Gl
n Arg Ala Glu Ala Ser Ile Val180 $$ 185 $$ 190

Gly Gly Asn Ala Arg Ser Asn Phe Ala Val Lys Met Thr Leu Arg Val 195 200 205

Asp Glu Pro Glu Ser Val Lys Met Leu His Pro Asn Ala Thr Pro Glu 210 215 220

Glu Cys Ala Leu Val Glu Gly Phe Val Pro Gly Gln Gly Phe Phe Asp 225 230 235 240

Gln Pro Gly Leu Arg Arg Gln Met Ile Arg Thr Val Arg Val Gly Glu 245 250 \cdot 255

Tyr Ser Thr Tyr Ala Ser Tyr Val Glu Asn Ala Asp Leu Ala Tyr Glu 260 265 270

Ala Ala Leu Asn Ile Asp Arg Ala Gln Arg Met Thr Ile Ala Ser Glu 275 280 285

Tyr Pro His Leu Gly Asp Ile Gly 290 295

<210> 5

<211> 6334

<213> Rhodococcus AN12

<400> 5						
attcagacca	acaatcagtc	caactagcaa	ggcgacaacc	ggtatcgcaa	ttcgtgaaac	60
aagctttgtc	atgcgtccgc	gctcttacga	gcaggtgcgg	agacggccgc	tgcaggcatt	120
ggaaccaaat	tctccactgt	gatggatagt	gcgagacgat	ccatgccagt	catgtagggc	180
tgcacccaga	caaggccttc	tgctcggtag	atcgtgccga	agctgaacgg	ctcgttcggc	240
gggttgatga	cgtgcacgga	tgctgtcttg	tcagtcgcaa	cagttccgtc	cttgcgtgca	300
actcggagca	atgcgccagt	cgaatacttc	acacggccgt	cgggagtgag	cttgtcctga	360
accggcttga	tggggtcgtc	cataccggct	acgaacaccg	ggaactgatc	agcggtagtt	420
gcgacgggga	gggacgttcc	gagctgaaca	ttcatgcgag	ttcctttgat	cgaggctggt	480
acagcttatg	tctccggtgt	ccatattcag	cgacacgcgt	tcatctacac	tcaaaaccgt	540
acacatagtg	tagccagctg	tccagttttc	gcacactacg	ttagcaactg	aacatatttt	600
gtggttgatc	agtcaataag	ctgtccatat	ggacgagaaa	gaggttcgcg	cgatgattca	660
gcgcaaagaa	accgaacgaa	aaatgcaggt	catcaagcag	gcgtccgtgg	atctgtcaca	720
ctcctggcag	accattcaga	acgcgcacga	ctccacgact	gtcgcaatgg	agctacgaga	780
agccgggctt	caacgcgaat	tctggctaca	agctctcgcg	gacatcacat	ctgttgtggg	840
aactgcctct	gagctgcgca	aatctatttc	ccgttttctc	gttgacgagc	ttgacgtcag	900
cagccgaacc	gttgccaccg	ttgcagatgt	ttcaccgtcg	accatcagta	cttggcgtgg	960
tgagcatgag	tcatcgtaaa	aacatcctct	gacctgctat	ggccccaatg	atcacctatt	1020
accaaggcgg	cggcttcgcc	gccgctgcca	gcaggctccc	ccacctacgc	gctccgcttc	1080
gctcgcgctt	cggtgctccg	cccgcaggcc	caggagcgag	tttgcgcctc	gtttagtcca	1140
tctaaggggt	tcctagctgg	cttgaggtcg	caacgcatcc	tgaagtcgat	cgaggagcag	1200
gaacgcatca	tctcgatcca	gcgtggtttc	ttgaccataa	atcgagaggt	acacgcccat	1260
gacaacgcca	tcgacgtcta	ccgaagctgg	attcgctgcg	atgccaagag	gacgttcgtt	1320
gatgctcatg	tgatgggttt	acctgcaaaa	atagtcagca	gccaaatcgg	aggcggcggc	1380
ttcgccgccg	ctgccagcag	gctcccccac	ctacgcgctc	cgcttcgctc	gcgcttcggt	1440
gctccgcccg	caggcccagg	agcgagtttg	cgcctcgttt	agtccatcta	aggggttcct	1500
agctggcttg	aggtcgcaac	gcatcctgaa	gtcgatcgag	gagcaggaac	gcatcatctc	1560
gatccagcgt	ggtttcttga	ccataaatcg	agaggtacac	gcccatgaca	acgccatcga	1620
cgtctaccga	agctggattc	gctgcgatgc	caagaggacg	ttcgttgatg	ctcatgtgat	1680
gggtttacct	gcaaaaatag	tcagcagcca	aatcggccgg	cctttttcta	tctgcccggt	1740

cagececeg agaceaacea tgaaacagge egtetetetg teaaggecaa geegetaege 1800 ggtgctatcg cagccctgac agagagacac ccagcttcag agcggcaagt atcgggggga 1860 1920 tgccctcaag tgtggttcat gcgggtgaaa gttgttgctc agcaacgctt ttcacttgcg aaccgatatt atcgggggcc gcacatccgc tgcgggcaat cgataatgca agtgatcacg 1980 aagattttcc caagtcgcgc cagcttcgac gagtccgagg atctcgccga agacgtaagg 2040 cgcacaagtc cgaatcatca tccacgatcg cgccggaatg atcgcaacca tgaccggggc 2100 agattettee tgeteaacga tetgageate tgttagttet geeceaagae eageteggge 2160 acgcaatcca cgggaccacg cgattgcccg acgtcccatc gaaccaaact caaattctcg 2220 ccacagttcc aacgcttgtg gatccccgcc cactgcatca acagcgattt cccagggtgc 2280 2340 acggttgcca tgtcgaccac tttttccgtc gccactacca acctccatac caacgccaga tgcaattttc gtcagatacg cagcgagaac ttgatcagct tcaccgccga tctttcgtac 2400 atcgagacca cccgaattac gtagtggcgc agcaaatccc agagatacga gtttggaagt 2460 ccaccgatcg aacatcgcat ccgagaagga ttcgaggatg ttctcactca cgtcaccact 2520 gaacatgagt agcgcgtgaa cgtggacgtg ccagccgttt tttccgtgag tgatttcaac 2580 agegegeacg tateegtege ageegtacat tteaegttee gtaegeeaac gaegaeegtt 2640 ggtcgcagct ttccaggctg ccgaaagtcc agtccatagg tcgtggagcc gctgaccagc 2700 tgtatggcgc atggtcatcg tcaccatcgc aacagatcca gtcccgagtt gatgagcaac 2760 aacttgagaa atttcgtctg cacgatgtgc accgactttt cccgcacagc aggggcagat 2820 ccagcccttt ccgcaggaac gaaggcctcc gaatccagaa cctttcggac cgttgacaat 2880 ggtcacaccg ttcacgccag aaatcggccg gccacaggcg ttaaatgttt ctgacgtggt 2940 gatttgttga agtttgggtc gcagttcgtg ccggatgccg cgcttatcgg acgacacgag 3000 gacgggaggc cggtctttgc cggaaaggtg ttcagcactt acgctggtca taacgagcgg 3060 ggtcctagtc aagtaggagc ctcgaaggcg gcggcagggt ggtccaacac ccttcgtcgc 3120 cgctcgtatt ttcggagtaa atccagctag ttcagctcgg atactccact tcgaggttca 3180 3240 togattattt ggtttttatc cacttaacca gcagaaacag cgtttatcgc tgatctgctg 3300 gtcagtgcgg cgtgtcgggg gagtcgctag tccgcggcga gtccccatgc ttcgagaaca ecgaecttet ettetggggt tetgettgte tteaccagtg categaacag aceteggtat 3360 tcacccaagt gttcaatatc gaatccggct tccctggcgt aatcaggggt gtagtagcag 3420 cacategeag ceagaatete ggacgatteg gegegtteae eageatgaat eeaaceataa 3480 acgtcatgcc caccccatag atcaggccct cgatgatcgt aaatgccaac ggctagtcgg 3540 aggatgaata ccgtagcttc gtgcttcacg catcaaccct ctgatctgct gcactcagaa 3600 ttgcatgacc tcccgaatga ctgcataact cgtcgtagac ctgagcaacg aacgaaggcc 3660

gatcagcatt gtccatgaag agttggacga acttcggccg gacgaggcca atccacggcg 3720 cagtcaaagt ttcaaaatca tgtgcctcga ggtgctcatg cattgcaacc gcccatgcgg 3780 cccctcgagc ggcgcaccag tctcgttcaa ctccctcgct gtccgaaatg tcgtatttaa 3840 ggcccagtga tcgtccaact tcggcagctg cgtcactggc acgtttccaa tcgtcaccgc 3900 3960 gtaagtcgtt gagctttccg agttcatcgc ctagaagcag ctcagacatt gcaaaaacgg tcatcgaact gacccatcgt ggaccgacta gtgcaccaag gtcgtcgtcg gtgatctgca 4020 tgccgcgaag ttcgtcgacg acagcttggc cttccaaacc tactctggcc ctgagtattt 4080 cagttattac gagatgatcg ttcggccagc ctgatttgat ccggagtgca gtcgttacga 4140 ctcgttccgt gggcaggttt cggcgtgagg cgagtttttc tcctgcctca tgtgcaacct 4200 tctcaaattg ctgtcgaatg taggtgttta ccgggattgc gtctgtcggg tagccgatca 4260 aggtgtgtcc tcctgtgtgt tcggttgtca gcctatgtcg ccgagatgtg ggtattccga 4320 ggcgattgtc attcgttgtg ctcggtcgat gttcagtgcg gcttcgtacg cgaggtctgc 4380 gttttcgacg taactcgcgt aggtcgagta ctcacctacg cgaaccgttc ggatcatttg 4440 gcgccgtagt ccgggttggt cgaagaagcc ttgaccaggg acgaatcctt cgaccagtgc 4500 gcactettea ggtgttgegt tggggtgeag cattttgaca gatteaggtt egtetaegeg 4560 gagagtcatt ttcaccgcga agttcgagcg ggcgtttcca cccacgatgg aagcttccgc 4620 acgttgagcc aagagcaaca ttctgatgcc tgctttggca gactgagcag cgatctgtcg 4680 aacaagcgat gtgatgcggg gtgcgtatct gtctgctggt ttcagaccgt tggttgcatc 4740 gaaatcctgt gcgccctcga tgattccggg aaattcttcc agtacgagca ggatgagagg 4800 tagtgctggc gagaacaacg aaattttgtc tatgcgtcga tcccagaaac actcgattcg 4860 teggteagat tetgetttga egaactggag caeteggagg aetttgteaa aategtteag 4920 cccgagctcg atgttcggtt cagccggtcg tcggtggacg aatggggcta gtaagacgga 4980 agtgggatcg actccgacga cacgcacagc gggattcgat ccagcctgtg cgagcaggtt 5040 gtaggtgcat tgagattttc cggaacgggt tttgccttga atgagccagt gagcaqcatc 5100 tttggctata tcgaccatga caggttgagc tagttcgttc catccaatcg caatcgggat 5160 cgtgtctgtt tgatccatca ggcgtccgtg cttttgtcga acggaagatc cttttcttgc 5220 5280 teceaceagg geogattgte eeegagtatg eegeeggeet etteetteaa tgtgeeggee gatgagtcct cgacgtcact gagccatgct gcatctcgtg cttgagaaat ggtgtctgca 5340 tegateagaa gtagetegae eegaegegge tetaetttgg tgaaaetgge aegtagagea 5400 ccgaaagcat cggctatttt gaccgtcttc gatgtcatat cttcaccggt gatccctgtc 5460 ggaaggtcga aagcgactga tcgagtcaat ccgtcgtccg aaaatttgta gctacgaatg 5520 atgggagget geecagagga gttgateaga ceaagattgg eegeageace tgeaacttee 5580

ggggttcctc gccaccatcg agctgtacga cgtttgcgac gccgagcctt cgttgcctct 5640 ctcaggtaga ccattgccac aacgcacacc agcagcacac tgaccaaaaag ccacatctga 5700 5760 gcgtcgaaga tgtacagcag cagaagcaac agaaacgtag aggacagaat cgggtaatcg gcaatttttg ccttgagttt tgctcgcaaa atttgccagg tggaacgtct tttaacctgg 5820 5880 tcaccgcgtc gaacggcttc gtagttgctc atcggggcca ctccacaacg acattcggac tatctacttc gacttgctca tctacgttcc acaaccacga ttcgactgga acgagagcgc 5940 atcccgaggt tccattctga agattgcttt gcactcgatc actcatcaaa gtctctggaa 6000 ccgtctcagc ctctacgccc ttatgtaccg ggacaggggt attcacggtc aaatacactg 6060 cccgccagcc ctcaggcact ggcacgtcac cgcacgcgct ggtcttcgag tacggcgacg 6120 tgatgacett tecatetggg ttagtecaet ggateceate ggegeteaat teeggattea 6180 ctcggatgta tccaggtatc tctctgcatg cactgacaga tggaacagaa cctgtcggaa 6240 gaggggatet geaceaggte accepttegtt cageceatga gteeegaege tettgeatte 6300 cgctggaaag cttaatatct tgcgtgccaa caat 6334

<210> 6 <211> 11241 <212> DNA

<213> Plasmid pRHBR17

<400> 60 ttctcatgtt tgacagctta tcatcgataa gctttaatgc ggtagtttat cacagttaaa ttgctaacgc agtcaggcac cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg 120 caccgtcacc ctggatgctg taggcatagg cttggttatg ccggtactgc cgggcctctt 180 gegggatate gtecatteeg acageatege cagteactat ggegtgetge tagegetata 240 300 tgcgttgatg caatttctat gcgcacccgt tctcggagca ctgtccgacc gctttggccg ccgcccagtc ctgctcgctt cgctacttgg agccactatc gactacgcga tcatggcgac 360 420 cacaccegte etgtggatee tetaegeegg acgeategtg geeggeatea eeggegeeae aggtgcggtt gctggcgcct atatcgccga catcaccgat ggggaagatc gggctcgcca 480 cttcgggctc atgagcgctt gtttcggcgt gggtatggtg gcaggccccg tggccggggg 540 actgttgggc gccatctcct tgcatgcacc attecttgcg gcggcggtgc tcaacggcct 600 caacctacta ctgggctgct tcctaatgca ggagtcgcat aagggagagc gtcgaccgat 660 gcccttgaga gccttcaacc cagtcagctc cttccggtgg gcgcggggca tgactatcgt 720 cgccgcactt atgactgtct tctttatcat gcaactcgta ggacaggtgc cggcagcgct 780

ctgggtcatt	ttcggcgagg	accgctttcg	ctggagcgcg	acgatgatcg	gcctgtcgct	840
tgcggtattc	ggaatcttgc	acgccctcgc	tcaagccttc	gtcactggtc	ccgccaccaa	900
acgtttcggc	gagaagcagg	ccattatcgc	cggcatggcg	gccgacgcgc	tgggctacgt	960
cttgctggcg	ttcgcgacgc	gaggctggat	ggccttcccc	attatgattc	ttctcgcttc	1020
cggcggcatc	gggatgcccg	cgttgcaggc	catgctgtcc	aggcaggtag	atgacgacca	1080
tcagggacag	cttcaaggat	cgctcgcggc	tcttaccagc	ctaacttcga	tcactggacc	1140
gctgatcgtc	acggcgattt	atgccgcctc	ggcgagcaca	tggaacgggt	tggcatggat	1200
tgtaggcgcc	gccctatacc	ttgtctgcct	ccccgcgttg	cgtcgcggtg	catggagccg	1260
ggccacctcg	acctgaatgg	aagccggcgg	cacctcgcta	acggattcac	cactccaaga	1320
attggagcca	atcaattctt	gcggagaact	gtgaatgcgc	aaaccaaccc	ttggcagaac	1380
atatccatcg	cgtccgccat	ctccagcagc	cgcacgcggc	gcatctcggg	ccgcgttgct	1440
ggcgttttc	cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	1500
gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	1560
cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	1620
gggaagcgtg	gcgctttctc	atagctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	1680
tcgctccaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	1740
cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	1800
cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	1860
gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	1920
agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	1980
cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	2040
tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	2100
tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	2160
ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	aatgcttaat	2220
cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	cctgactccc	2280
cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	2340
accgcgagac	ccacgctcac	cggctccaga	tttatcagca	ataaaccagc	cagccggaag	2400
ggccgagcgc	agaagtggtc	ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	2460
ccgggaagct	agagtaagta	gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	2520
tgcaggcatc	gtggtgtcac	gctcgtcgtt	tggtatggct	tcattcagct	ccggttccca	2580
acgatcaagg	cgagttacat	gatcccccat	gttgtgcaaa	aaagcggtta	gctccttcgg	2640
tcctccgatc	gttgtcagaa	gtaagttggc	cgcagtgtta	tcactcatgg	ttatggcagc	2700

actgcataat tetettactg teatgceate egtaagatge tittetgtga etggtgagta 2760 ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt gcccggcgtc 2820 aacacgggat aataccgcgc cacatagcag aactttaaaa gtgctcatca ttggaaaacg 2880 ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt cgatgtaacc 2940 cactogtgca cocaactgat cttcagcato ttttactttc accagcgttt ctgggtgagc 3000 aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat 3060 actcatactc ttcctttttc aatattattg aagcatttat cagggttatt gtctcatgag 3120 cggatacata tttgaatgta tttagaaaaa taaacaaata ggggttccgc gcacatttcc 3180 ccgaaaagtg ccacctgacg tctaagaaac cattattatc atgacattaa cctataaaaa 3240 taggcgtatc acgaggccct ttcgtcttcg aataaatacc tgtgacggaa gatcacttcg 3300 cagaataaat aaatcctggt gtccctgttg ataccgggaa gccctgggcc aacttttggc 3360 gaaaatgaga cgttgatcgg cacgtaagag gttccaactt tcaccataat gaaataagat 3420 cactaccggg cgtatttttt gagttatcga gattttcagg agctaaggaa gctaaaatgg 3480 agaaaaaaat cactggatat accaccgttg atatatccca atggcatcgt aaagaacatt 3540 ttgaggcatt tcagtcagtt gctcaatgta cctataacca gaccgttcag attcagacca 3600 acaatcagtc caactagcaa ggcgacaacc ggtatcgcaa ttcgtgaaac aagctttgtc 3660 atgcgtccgc gctcttacga gcaggtgcgg agacggccgc tgcaggcatt ggaaccaaat 3720 tctccactgt gatggatagt gcgagacgat ccatgccagt catgtagggc tgcacccaga 3780 3840 caaggeette tgeteggtag ategtgeega agetgaaegg etegttegge gggttgatga cgtgcacgga tgctgtcttg tcagtcgcaa cagttccgtc cttgcgtgca actcggagca 3900 atgegeeagt egaataette acaeggeegt egggagtgag ettgteetga aceggettga 3960 4020 tggggtcgtc cataccggct acgaacaccg ggaactgatc agcggtagtt gcgacgggga gggacgttcc gagctgaaca ttcatgcgag ttcctttgat cgaggctggt acagcttatg 4080 teteeggtgt ceatatteag egacaegegt teatetacae teaaaaeegt acaeatagtg 4140 tagccagctg tccagttttc gcacactacg ttagcaactg aacatatttt gtggttgatc 4200 4260 agtcaataag ctgtccatat ggacgagaaa gaggttcgcg cgatgattca gcgcaaagaa accgaacgaa aaatgcaggt catcaagcag gcgtccgtgg atctgtcaca ctcctggcag 4320 accattcaga acgcgcacga ctccacgact gtcgcaatgg agctacgaga agccgggctt 4380 4440 caacgcgaat tctggctaca agctctcgcg gacatcacat ctgttgtggg aactgcctct 4500 gagetgegea aatetattte eegttttete gttgaegage ttgaegteag eageegaace gttgccaccg ttgcagatgt ttcaccgtcg accatcagta cttggcgtgg tgagcatgag 4560 tcatcgtaaa aacatcctct gacctgctat ggccccaatg atcacctatt accaaggcgg 4620

eggettegee geegetgeea geaggeteee ceaectaege geteegette getegegett 4680 cggtgctccg cccgcaggcc caggagcgag tttgcgcctc gtttagtcca tctaaggggt 4740 tectagetgg ettgaggteg caacgeatee tgaagtegat egaggageag gaaegeatea 4800 tetegateca gegtggttte ttgaccataa ategagaggt acaegeecat gacaaegeea 4860 tegaegteta eegaagetgg attegetgeg atgeeaagag gaegttegtt gatgeteatg 4920 tgatgggttt acctgcaaaa atagtcagca gccaaatcgg aggcggcggc ttcgccgccg 4980 ctgccagcag gctccccac ctacgcgctc cgcttcgctc gcgcttcggt gctccgcccg 5040 caggcccagg agcgagtttg cgcctcgttt agtccatcta aggggttcct agctggcttg 5100 5160 aggtcgcaac gcatcctgaa gtcgatcgag gagcaggaac gcatcatctc gatccagcgt ggtttcttga ccataaatcg agaggtacac gcccatgaca acgccatcga cgtctaccga 5220 agctggattc gctgcgatgc caagaggacg ttcgttgatg ctcatgtgat gggtttacct 5280 gcaaaaatag tcagcagcca aatcggccgg cctttttcta tctgcccggt cagcccccg 5340 agaccaacca tgaaacaggc cgtctctctg tcaaggccaa gccgctacgc ggtgctatcg 5400 cagecetgae agagagaeae ecagetteag ageggeaagt ategggggga tgeeeteaag 5460 tgtggttcat gcgggtgaaa gttgttgctc agcaacgctt ttcacttgcg aaccgatatt 5520 atcgggggcc gcacatccgc tgcgggcaat cgataatgca agtgatcacg aagattttcc 5580 caagtcgcgc cagcttcgac gagtccgagg atctcgccga agacgtaagg cgcacaagtc 5640 cgaatcatca tccacgatcg cgccggaatg atcgcaacca tgaccggggc agattcttcc 5700 tgctcaacga tctgagcatc tgttagttct gccccaagac cagctcgggc acgcaatcca 5760 egggaceacg egattgeecg aegteecate gaaceaaact caaatteteg ceacagttee 5820 aacgettgtg gateeeegee caetgeatea acagegattt eeeagggtge aeggttgeea 5880 5940 tgtcgaccac tttttccgtc gccactacca acctccatac caacgccaga tgcaattttc gtcagatacg cagcgagaac ttgatcagct tcaccgccga tctttcgtac atcgagacca 6000 cccgaattac gtagtggcgc agcaaatccc agagatacga gtttggaagt ccaccgatcg 6060 aacatcgcat ccgagaagga ttcgaggatg ttctcactca cgtcaccact gaacatgagt 6120 agegegtgaa egtggaegtg ceageegttt ttteegtgag tgattteaac agegegeaeg 6180 tatecgtege agecgtacat tteacgttee gtacgecaae gaegaeegtt ggtegeaget 6240 ttccaggctg ccgaaagtcc agtccatagg tcgtggagcc gctgaccagc tgtatggcgc 6300 atggtcatcg tcaccatcgc aacagatcca gtcccgagtt gatgagcaac aacttgagaa 6360 atttcgtctg cacgatgtgc accgactttt cccgcacagc aggggcagat ccagcccttt 6420 ccgcaggaac gaaggcctcc gaatccagaa cctttcggac cgttgacaat ggtcacaccg 6480 ttcacgccag aaatcggccg gccacaggcg ttaaatgttt ctgacgtggt gatttgttga 6540

agtttgggtc gcagttcgtg ccggatgccg cgcttatcgg acgacacgag gacgggaggc 6600 6660 eggtetttge eggaaaggtg tteageactt aegetggtea taaegagegg ggteetagte aagtaggage etegaaggeg geggeagggt ggteeaacae eettegtege egetegtatt 6720 ttcggagtaa atccagctag ttcagctcgg atactccact tcgaggttca tcgattattt 6780 ggtttttatc cacttaacca gcagaaacag cgtttatcgc tgatctgctg gtcagtgcgg 6840 cgtgtcgggg gagtcgctag tccgcggcga gtccccatgc ttcgagaaca ccgaccttct 6900 cttctggggt tctgcttgtc ttcaccagtg catcgaacag acctcggtat tcacccaagt 6960 gttcaatatc gaatccggct tccctggcgt aatcaggggt gtagtagcag cacatcgcag 7020 ccagaatctc ggacgattcg gcgcgttcac cagcatgaat ccaaccataa acgtcatgcc 7080 caccccatag atcaggccct cgatgatcgt aaatgccaac ggctagtcgg aggatgaata 7140 ccgtagcttc gtgcttcacg catcaaccct ctgatctgct gcactcagaa ttgcatgacc 7200 tcccgaatga ctgcataact cgtcgtagac ctgagcaacg aacgaaggcc gatcagcatt 7260 gtccatgaag agttggacga acttcggccg gacgaggcca atccacggcg cagtcaaagt 7320 ttcaaaatca tgtgcctcga ggtgctcatg cattgcaacc gcccatgcgg cccctcgagc 7380 7440 ggcgcaccag tetegtteaa eteceteget gteegaaatg tegtatttaa ggeceagtga 7500 tegtecaact teggeagetg egteaetgge aegtttecaa tegteaeege gtaagtegtt 7560 gagettteeg agtteatege etagaageag eteagaeatt geaaaaaegg teategaaet 7620 gacccatcgt ggaccgacta gtgcaccaag gtcgtcgtcg gtgatctgca tgccgcgaag ttcgtcgacg acagcttggc cttccaaacc tactctggcc ctgagtattt cagttattac 7680 gagatgatcg ttcggccagc ctgatttgat ccggagtgca gtcgttacga ctcgttccgt 7740 gggcaggttt cggcgtgagg cgagtttttc tcctgcctca tgtgcaacct tctcaaattg 7800 ctgtcgaatg taggtgttta ccgggattgc gtctgtcggg tagccgatca aggtgtgtcc 7860 teetgtgtgt teggttgtea geetatgteg eegagatgtg ggtatteega ggegattgte 7920 attegttgtg ctcggtcgat gttcagtgcg gcttcgtacg cgaggtctgc gttttcgacg 7980 taactegegt aggiegagta eteacetaeg egaacegtte ggateatttg gegeegtagt 8040 8100 ccgggttggt cgaagaagcc ttgaccaggg acgaatcctt cgaccagtgc gcactcttca ggtgttgcgt tggggtgcag cattttgaca gattcaggtt cgtctacgcg gagagtcatt 8160 ttcaccgcga agttcgagcg ggcgtttcca cccacgatgg aagcttccgc acgttgagcc 8220 aagagcaaca ttctgatgcc tgctttggca gactgagcag cgatctgtcg aacaagcgat 8280 gtgatgcggg gtgcgtatct gtctgctggt ttcagaccgt tggttgcatc gaaatcctgt 8340 gcgccctcga tgattccggg aaattcttcc agtacgagca ggatgagagg tagtgctggc 8400 gagaacaacg aaattttgtc tatgcgtcga tcccagaaac actcgattcg tcggtcagat 8460

8520 tctgctttga cgaactggag cactcggagg actttgtcaa aatcgttcag cccgagctcg atgttcggtt cagccggtcg tcggtggacg aatggggcta gtaagacgga agtgggatcg 8580 actecgacga cacgeacage gggattegat ceageetgtg egageaggtt gtaggtgeat 8640 8700 tgagattttc cggaacgggt tttgccttga atgagccagt gagcagcatc tttggctata 8760 tcgaccatga caggttgagc tagttcgttc catccaatcg caatcgggat cgtgtctgtt tgatccatca ggcgtccgtg cttttgtcga acggaagatc cttttcttgc tcccaccagg 8820 8880 geogattgte ecegagtatg eegeeggeet etteetteaa tgtgeeggee gatgagteet cgacgtcact gagccatgct gcatctcgtg cttgagaaat ggtgtctgca tcgatcagaa 8940 9000 gtagctcgac ccgacgcggc tctactttgg tgaaactggc acgtagagca ccgaaagcat cggctatttt gaccgtcttc gatgtcatat cttcaccggt gatccctgtc ggaaggtcga 9060 aagcgactga tcgagtcaat ccgtcgtccg aaaatttgta gctacgaatg atgggaggct 9120 gcccagagga gttgatcaga ccaagattgg ccgcagcacc tgcaacttcc ggggttcctc 9180 gccaccatcg agctgtacga cgtttgcgac gccgagcctt cgttgcctct ctcaggtaga 9240 9300 ccattgccac aacgcacacc agcagcacac tgaccaaaag ccacatctga gcgtcgaaga 9360 tgtacagcag cagaagcaac agaaacgtag aggacagaat cgggtaatcg gcaatttttg 9420 ccttgagttt tgctcgcaaa atttgccagg tggaacgtct tttaacctgg tcaccgcgtc gaacggcttc gtagttgctc atcggggcca ctccacaacg acattcggac tatctacttc 9480 gacttgctca tctacgttcc acaaccacga ttcgactgga acgagagcgc atcccgaggt 9540 9600 tocattotga agattgcttt gcactogatc actoatcaaa gtototggaa cogtotoago ctctacgccc ttatgtaccg ggacaggggt attcacggtc aaatacactg cccgccagcc 9660 ctcaggcact ggcacgtcac cgcacgcgct ggtcttcgag tacggcgacg tgatgacctt 9720 9780 tccatctggg ttagtccact ggatcccatc ggcgctcaat tccggattca ctcggatgta 9840 tocaggtato tototgoatg cactgacaga tggaacagaa cotgtoggaa gaggggatot 9900 gcaccaggtc accgttcgtt cagcccatga gtcccgacgc tcttgcattc cgctggaaag cttaatatct tgcgtgccaa caatctggat attacggcct ttttaaaagac cgtaaagaaa 9960 10020 aataagcaca agttttatcc ggcctttatt cacattcttg cccgcctgat gaatgctcat ccggaattcc gtatggcaat gaaagacggt gagctggtga tatgggatag tgttcaccct 10080 10140 tgttacaccg ttttccatga gcaaactgaa acgttttcat cgctctggag tgaataccac gacgatttcc ggcagtttct acacatatat tcgcaagatg tggcgtgtta cggtgaaaac 10200 ctggcctatt tccctaaagg gtttattgag aatatgtttt tcgtctcagc caatccctgg 10260 gtgagtttca ccagttttga tttaaacgtg gccaatatgg acaacttctt cgcccccgtt 10320 ttcaccatgg gcaaatatta tacgcaaggc gacaaggtgc tgatgccgct ggcgattcag 10380

gttcatcatg ccgtttgtga tggcttccat gtcggcagaa tgcttaatga attacaacag 10440 tactgcgatg agtggcaggg cggggcgtaa tttttttaag gcagttattg gtgcccttaa 10500 acgcctggtg ctacgcctga ataagtgata ataagcggat gaatggcaga aattcgaaag 10560 10620 caaattcgac ccggtcgtcg gttcagggca gggtcgttaa atagccgctt atgtctattg 10680 ctggtttacc ggtttattga ctaccggaag cagtgtgacc gtgtgcttct caaatgcctg aggccagttt gctcaggctc tccccgtgga ggtaataatt gacgatatga tcatttattc 10740 tgcctcccag agcctgataa aaacggtgaa tccgttagcg aggtgccgcc ggcttccatt 10800 caggtcgagg tggcccggct ccatgcaccg cgacgcaacg cggggaggca gacaaggtat 10860 10920 agggcggcgc ctacaatcca tgccaacccg ttccatgtgc tcgccgaggc ggcataaatc gccgtgacga tcagcggtcc agtgatcgaa gttaggctgg taagagccgc gagcgatcct 10980 tgaagetgte cetgatggte gteatetace tgeetggaca geatggeetg caacgeggge 11040 atcccgatgc cgccggaagc gagaagaatc ataatgggga aggccatcca gcctcgcgtc 11100 gcgaacgcca gcaagacgta gcccagcgcg tcggccgcca tgccggcgat aatggcctgc 11160 ttctcgccga aacgtttggt ggcgggacca gtgacgaagg cttgagcgag ggcgtgcaag 11220 11241 attccgaata ccgcaagcga c

<210> 7

<211> 9652

<212> DNA

<213> Plasmid pRHBR17

<400> ttctcatgtt tgacagctta tcatcgataa gctttaatgc ggtagtttat cacagttaaa 60 120 ttgctaacgc agtcaggcac cgtgtatgaa atctaacaat gcgctcatcg tcatcctcgg 180 caccgtcacc ctggatgctg taggcatagg cttggttatg ccggtactgc cgggcctctt gcgggatatc gtccattccg acagcatcgc cagtcactat ggcgtgctgc tagcgctata 240 tgcgttgatg caatttctat gcgcacccgt tctcggagca ctgtccgacc gctttggccg 300 ccgcccagtc ctgctcgctt cgctacttgg agccactatc gactacgcga tcatggcgac 360 cacaccegte etgtggatee tetacgeegg acgeategtg geeggeatea eeggegeeae 420 aggtgeggtt getggegeet atategeega cateacegat ggggaagate gggetegeea 480 cttcgggctc atgagcgctt gtttcggcgt gggtatggtg gcaggccccg tggccggggg 540 actgttgggc gccatctcct tgcatgcacc attccttgcg gcggcggtgc tcaacggcct 600 caacctacta ctgggctgct tcctaatgca ggagtcgcat aagggagagc gtcgaccgat 660

gcccttgaga	gccttcaacc	cagtcagctc	cttccggtgg	gcgcggggca	tgactatcgt	720
cgccgcactt	atgactgtct	tctttatcat	gcaactcgta	ggacaggtgc	cggcagcgct	780
ctgggtcatt	ttcggcgagg	accgctttcg	ctggagcgcg	acgatgatcg	gcctgtcgct	840
tgcggtattc	ggaatcttgc	acgccctcgc	tcaagccttc	gtcactggtc	ccgccaccaa	900
acgtttcggc	gagaagcagg	ccattatcgc	cggcatggcg	gccgacgcgc	tgggctacgt	960
cttgctggcg	ttcgcgacgc	gaggctggat	ggccttcccc	attatgattc	ttctcgcttc	1020
cggcggcatc	gggatgcccg	cgttgcaggc	catgctgtcc	aggcaggtag	atgacgacca	1080
tcagggacag	cttcaaggat	cgctcgcggc	tcttaccagc	ctaacttcga	tcactggacc	1140
gctgatcgtc	acggcgattt	atgccgcctc	ggcgagcaca	tggaacgggt	tggcatggat	1200
tgtaggcgcc	gccctatacc	ttgtctgcct	ccccgcgttg	cgtcgcggtg	catggagccg	1260
ggccacctcg	acctgaatgg	aagccggcgg	cacctcgcta	acggattcac	cactccaaga	1320
attggagcca	atcaattctt	gcggagaact	gtgaatgcgc	aaaccaaccc	ttggcagaac	1380
atatccatcg	cgtccgccat	ctccagcagc	cgcacgcggc	gcatctcggg	ccgcgttgct	1440
ggcgttttc	cataggctcc	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	1500
gaggtggcga	aacccgacag	gactataaag	ataccaggcg	tttccccctg	gaagctccct	1560
cgtgcgctct	cctgttccga	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	1620
gggaagcgtg	gcgctttctc	atagctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	1680
tcgctccaag	ctgggctgtg	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	1740
cggtaactat	cgtcttgagt	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	1800
cactggtaac	aggattagca	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	1860
gtggcctaac	tacggctaca	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	1920
agttaccttc	ggaaaaagag	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	1980
cggtggtttt	tttgtttgca	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	2040
tcctttgatc	ttttctacgg	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	2100
tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	2160
ttttaaatca	atctaaagta	tatatgagta	aacttggtct	gacagttacc	aatgcttaat	2220
cagtgaggca	cctatctcag	cgatctgtct	atttcgttca	tccatagttg	cctgactccc	2280
cgtcgtgtag	ataactacga	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	2340
accgcgagac	ccacgctcac	cggctccaga	tttatcagca	ataaaccagc	cagccggaag	2400
ggccgagcgc	agaagtggtc	ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	2460
ccgggaagct	agagtaagta	gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	2520
ttcatctaca	ctcaaaaccg	tacacatagt	gtagccagct	gtccagtttt	cgcacactac	2580

gttagcaact gaacatattt tgtggttgat cagtcaataa gctgtccata tggacgagaa 2640 agaggttcgc gcgatgattc agcgcaaaga aaccgaacga aaaatgcagg tcatcaagca 2700 ggcgtccgtg gatctgtcac actcctggca gaccattcag aacgcgcacg actccacgac 2760 2820 tgtcgcaatg gagctacgag aagccgggct tcaacgcgaa ttctggctac aagctctcgc ggacatcaca tctgttgtgg gaactgcctc tgagctgcgc aaatctattt cccgttttct 2880 cgttgacgag cttgacgtca gcagccgaac cgttgccacc gttgcagatg tttcaccgtc 2940 3000 gaccatcagt acttggcgtg gtgagcatga gtcatcgtaa aaacatcctc tgacctgcta 3060 tggccccaat gatcacctat taccaaggcg gcggcttcgc cgccgctgcc agcaggctcc cccacctacg cgctccgctt cgctcgcgct tcggtgctcc gcccgcaggc ccaggagcga 3120 gtttgcgcct cgtttagtcc atctaagggg ttcctagctg gcttgaggtc gcaacgcatc 3180 ctgaagtcga tcgaggagca ggaacgcatc atctcgatcc agcgtggttt cttgaccata 3240 3300 aatcgagagg tacacgccca tgacaacgcc atcgacgtct accgaagctg gattcgctgc gatgccaaga ggacgttcgt tgatgctcat gtgatgggtt tacctgcaaa aatagtcagc 3360 agccaaatcg gaggcggcgg cttcgccgcc gctgccagca ggctccccca cctacgcgct 3420 3480 ccgcttcgct cgcgcttcgg tgctccgccc gcaggcccag gagcgagttt gcgcctcgtt tagtccatct aaggggttcc tagctggctt gaggtcgcaa cgcatcctga agtcgatcga 3540 3600 ggagcaggaa cgcatcatct cgatccagcg tggtttcttg accataaatc gagaggtaca 3660 cgcccatgac aacgccatcg acgtctaccg aagctggatt cgctgcgatg ccaagaggac gttcgttgat gctcatgtga tgggtttacc tgcaaaaata gtcagcagcc aaatcggccg 3720 gcctttttct atctgcccgg tcagcccccc gagaccaacc atgaaacagg ccgtctctct 3780 gtcaaggcca agccgctacg cggtgctatc gcagccctga cagagagaca cccagcttca 3840 gagcggcaag tatcgggggg atgccctcaa gtgtggttca tgcgggtgaa agttgttgct 3900 cagcaacgct tttcacttgc gaaccgatat tatcgggggc cgcacatccg ctgcgggcaa 3960 togataatgo aagtgatcac gaagatttto ccaagtogog ccagottoga cgagtoogag 4020 4080 gatetegeeg aagaegtaag gegeaeaagt eegaateate ateeaegate gegeeggaat 4140 gategeaace atgacegggg cagattette etgeteaacg atetgageat etgttagtte 4200 tgccccaaga ccagetcggg cacgcaatce acgggaccac gcgattgccc gacgtcccat cgaaccaaac tcaaattctc gccacagttc caacgcttgt ggatccccgc ccactgcatc 4260 4320 aacagcgatt tcccagggtg cacggttgcc atgtcgacca ctttttccgt cgccactacc aacctccata ccaacgccag atgcaatttt cgtcagatac gcagcgagaa cttgatcagc 4380 ttcaccgccg atctttcgta catcgagacc acccgaatta cgtagtggcg cagcaaatcc 4440 cagagatacg agtttggaag tccaccgatc gaacatcgca tccgagaagg attcgaggat 4500

4560 gttctcactc acgtcaccac tgaacatgag tagcgcgtga acgtggacgt gccagccgtt ttttccgtga gtgatttcaa cagcgcgcac gtatccgtcg cagccgtaca tttcacgttc 4620 cgtacgccaa cgacgaccgt tggtcgcagc tttccaggct gccgaaagtc cagtccatag 4680 gtcgtggagc cgctgaccag ctgtatggcg catggtcatc gtcaccatcg caacagatcc 4740 4800 agtcccgagt tgatgagcaa caacttgaga aatttcgtct gcacgatgtg caccgacttt tecegeacag caggggeaga tecageeett teegeaggaa egaaggeete egaateeaga 4860 4920 acctttcgga ccgttgacaa tggtcacacc gttcacgcca gaaatcggcc ggccacaggc gttaaatgtt tetgaegtgg tgatttgttg aagtttgggt egeagttegt geeggatgee 4980 5040 gcgcttatcg gacgacacga ggacgggagg ccggtctttg ccggaaaggt gttcagcact tacgctggtc ataacgagcg gggtcctagt caagtaggag cctcgaaggc ggcggcaggg 5100 tggtccaaca cccttcgtcg ccgctcgtat tttcggagta aatccagcta gttcagctcg 5160 gatactccac ttcgaggttc atcgattatt tggtttttat ccacttaacc agcagaaaca 5220 gegtttateg etgatetget ggteagtgeg gegtgteggg ggagtegeta gteegeggeg 5280 agtececatg ettegagaac accgaeette tettetgggg ttetgettgt etteaceagt 5340 5400 gcatcgaaca gacctcggta ttcacccaag tgttcaatat cgaatccggc ttccctggcg 5460 taatcagggg tgtagtagca gcacatcgca gccagaatct cggacgattc ggcgcgttca 5520 ccagcatgaa tccaaccata aacgtcatgc ccaccccata gatcaggccc tcgatgatcg taaatgccaa cggctagtcg gaggatgaat accgtagctt cgtgcttcac gcatcaaccc 5580 5640 tctgatctgc tgcactcaga attgcatgac ctcccgaatg actgcataac tcgtcgtaga 5700 cctgagcaac gaacgaaggc cgatcagcat tgtccatgaa gagttggacg aacttcggcc ggacgaggcc aatccacggc gcagtcaaag tttcaaaatc atgtgcctcg aggtgctcat 5760 gcattgcaac cgcccatgcg gcccctcgag cggcgcacca gtctcgttca actccctcgc 5820 5880 tgtccgaaat gtcgtattta aggcccagtg atcgtccaac ttcggcagct gcgtcactgg 5940 cacgtttcca atcgtcaccg cgtaagtcgt tgagctttcc gagttcatcg cctagaagca gctcagacat tgcaaaaacg gtcatcgaac tgacccatcg tggaccgact agtgcaccaa 6000 6060 ggtcgtcgtc ggtgatctgc atgccgcgaa gttcgtcgac gacagcttgg ccttccaaac 6120 ctactctggc cctgagtatt tcagttatta cgagatgatc gttcggccag cctgatttga tccggagtgc agtcgttacg actcgttccg tgggcaggtt tcggcgtgag gcgagttttt 6180 ctcctgcctc atgtgcaacc ttctcaaatt gctgtcgaat gtaggtgttt accgggattg 6240 cgtctgtcgg gtagccgatc aaggtgtgtc ctcctgtgtg ttcggttgtc agcctatgtc 6300 gccgagatgt gggtattccg aggcgattgt cattcgttgt gctcggtcga tgttcagtgc 6360 ggcttcgtac gcgaggtctg cgttttcgac gtaactcgcg taggtcgagt actcacctac 6420

6480 gcgaaccgtt cggatcattt ggcgccgtag tccgggttgg tcgaagaagc cttgaccagg gacgaatcct tcgaccagtg cgcactcttc aggtgttgcg ttggggtgca gcattttgac 6540 agattcaggt tcgtctacgc ggagagtcat tttcaccgcg aagttcgagc gggcgtttcc 6600 6660 acceacgatg gaagetteeg caegttgage caagageaac attetgatge etgetttgge 6720 agactgagca gcgatctgtc gaacaagcga tgtgatgcgg ggtgcgtatc tgtctgctgg 6780 tttcagaccg ttggttgcat cgaaatcctg tgcgccctcg atgattccgg gaaattcttc cagtacgage aggatgagag gtagtgetgg egagaacaae gaaattttgt etatgegteg 6840 atcccagaaa cactcgattc gtcggtcaga ttctgctttg acgaactgga gcactcggag 6900 gactttgtca aaatcgttca gcccgagctc gatgttcggt tcagccggtc gtcggtggac 6960 gaatggggct agtaagacgg aagtgggatc gactccgacg acacgcacag cgggattcga 7020 tccagcctgt gcgagcaggt tgtaggtgca ttgagatttt ccggaacggg ttttgccttg 7080 aatgagccag tgagcagcat ctttggctat atcgaccatg acaggttgag ctagttcgtt 7140 ccatccaatc gcaatcggga tcgtgtctgt ttgatccatc aggcgtccgt gcttttgtcg 7200 aacggaagat cettttettg cteccaccag ggeegattgt ceeegagtat geegeeggee 7260 7320 tetteettea atgtgeegge egatgagtee tegaegteae tgageeatge tgeatetegt 7380 gettgagaaa tggtgtetge ategateaga agtagetega eeegaegegg etetaetttg 7440 gtgaaactgg cacgtagagc accgaaagca tcggctattt tgaccgtctt cgatgtcata 7500 tetteacegg tgateeetgt eggaaggteg aaagegaetg ategagteaa teegtegtee gaaaatttgt agctacgaat gatgggaggc tgcccagagg agttgatcag accaagattg 7560 gccgcagcac ctgcaacttc cggggttcct cgccaccatc gagctgtacg acgtttgcga 7620 7680 cgccgagcct tcgttgcctc tctcaggtag accattgcca caacgcacac cagcagcaca ctgaccaaaa gccacatctg agcgtcgaag atgtacagca gcagaagcaa cagaaacgta 7740 7800 gaggacagaa tcgggtaatc ggcaattttt gccttgagtt ttgctcgcaa aatttgccag 7860 gtggaacgtc ttttaacctg gtcaccgcgt cgaacggctt cgtagttgct catcggggcc actocacaac gacattegga ctatetactt egacttgete atetaegtte cacaaccaeg 7920 7980 attcgactgg aacgagagcg catcccgagg ttccattctg aagattgctt tgcactcgat 8040 cactcatcaa agtctctgga accgtctcag cctctacgcc cttatgtacc gggacagggg 8100 tattcacggt caaatacact gcccgccagc cctcaggcac tggcacgtca ccgcacgcgc tggtcttcga gtacggcgac gtgatgacct ttccatctgg gttagtccac tggatcccat 8160 cggcgctcaa ttccggattc actcggatgt atccaggtat ctctctgcat gcactgacag 8220 atggaacaga acctgtcgga agaggggatc tgcaccaggt caccgttcgt tcagcccatg 8280 agtecegaeg etettgeatt eegetggaaa gettaatate ttgegtgeea acaatetgga 8340

tattacggcc	tttttaaaga	ccgtaaagaa	aaataagcac	aagttttatc	cggcctttat	8400
tcacattctt	gcccgcctga	tgaatgctca	tccggaattc	cgtatggcaa	tgaaagacgg	8460
tgagctggtg	atatgggata	gtgttcaccc	ttgttacacc	gttttccatg	agcaaactga	8520
aacgttttca	tcgctctgga	gtgaatacca	cgacgatttc	cggcagtttc	tacacatata	8580
ttcgcaagat	gtggcgtgtt	acggtgaaaa	cctggcctat	ttccctaaag	ggtttattga	8640
gaatatgttt	ttcgtctcag	ccaatccctg	ggtgagtttc	accagttttg	atttaaacgt	8700
ggccaatatg	gacaacttct	tegececegt	tttcaccatg	ggcaaatatt	atacgcaagg	8760
cgacaaggtg	ctgatgccgc	tggcgattca	ggttcatcat	gccgtttgtg	atggcttcca	8820
tgtcggcaga	atgcttaatg	aattacaaca	gtactgcgat	gagtggcagg	gcggggcgta	8880
attttttaa	ggcagttatt	ggtgccctta	aacgcctggt	gctacgcctg	aataagtgat	8940
aataagcgga	tgaatggcag	aaattcgaaa	gcaaattcga	cccggtcgtc	ggttcagggc	9000
agggtcgtta	aatagccgct	tatgtctatt	gctggtttac	cggtttattg	actaccggaa	9060
gcagtgtgac	cgtgtgcttc	tcaaatgcct	gaggccagtt	tgctcaggct	ctccccgtgg	9120
aggtaataat	tgacgatatg	atcatttatt	ctgcctccca	gagcctgata.	aaaacggtga	9180
atccgttagc	gaggtgccgc	cggcttccat	tcaggtcgag	gtggcccggc	tccatgcacc	9240
gcgacgcaac	gcggggaggc	agacaaggta	tagggcggcg	cctacaatcc	atgccaaccc	9300
gttccatgtg	ctcgccgagg	cggcataaat	cgccgtgacg	atcagcggtc	cagtgatcga	9360
agttaggctg	gtaagagccg	cgagcgatcc	ttgaagctgt	ccctgatggt	cgtcatctac	9420
ctgcctggac	agcatggcct	gcaacgcggg	catcccgatg	ccgccggaag	cgagaagaat	9480
cataatgggg	aaggccatcc	agcctcgcgt	cgcgaacgcc	agcaagacgt	agcccagcgc	9540
gtcggccgcc	atgccggcga	taatggcctg	cttctcgccg	aaacgtttgg	tggcgggacc	9600
agtgacgaag	gcttgagcga	gggcgtgcaa	gattccgaat	accgcaagcg	ac	9652

<210> 8

<211> 29

<212> DNA

<213> Rhodococcus AN12

<400> 8 gtgcgaaaac tggacagctg gctacacta

29

<210> 9

<211> 19

<212>	DNA						
<213>	Pri	mer					
<400>	9						
gagttt	gatc	ctggctcag					19
<210>	10						
<211>	16						
<212>	DNA						
<213>	Prin	mer					
<400>	10	cgactt					16
Caccer	gila	cyacti					10
<210>	11						
<211>	17						
<212>	DNA						
<213>	Prin	ner					
<400>	11						
		ymgcggt					17
.010.							
<210>	12						
<211>	1424	1					
<212>	DNA						
<213>	Rhoo	dococcus AN1	12				
<400>	12		++-			tt	60
		gagagaagct					60
		ggtagtgggg					120
acgggag	gaaa	gcaggggacc	ttcgggcctt	gcgctatcag	atgagcctag	gtcggattag	180
ctagtt	ggtg	aggtaatggc	tcaccaaggc	gacgatccgt	aactggtctg	agaggatgat	240
cagtca	cact	ggaactgaga	cacggtccag	actcctacgg	gaggcagcag	tggggaatat	300
tggacaa	atgg	gcgaaagcct	gatccagcca	tgccgcgtgt	gtgaagaagg	tcttcggatt	360
gtaaag	cact	ttaagttggg	aggaagggca	gttacctaat	acgtgattgt	tttgacgtta	420
ccgaca	gaat	aagcaccggc	taactctgtg	ccagcagccg	cggtaataca	gagggtgcaa	480

gcgttaatcg	gaattactgg	gcgtaaagcg	cgcgtaggtg	gtttgttaag	ttggatgtga	540
aatccccggg	ctcaacctgg	gaactgcatt	caaaactgac	tgactagagt	atggtagagg	600
gtggtggaat	ttcctgtgta	gcggtgaaat	gcgtagatat	aggaaggaac	accagtggcg	660
aaggcgacca	cctggactga	tactgacact	gaggtgcgaa	agcgtgggga	gcaaacagga	720
ttagataccc	tggtagtcca	cgccgtaaac	gatgtcaact	agccgttggg	agccttgagc	780
tcttagtggc	gcagctaacg	cattaagttg	accgcctggg	gagtacggcc	gcaaggttaa	840
aactcaaatg	aattgacggg	ggcccgcaca	agcggtggag	catgtggttt	aattcgaagc	900
aacgcgaaga	accttaccag	gccttgacat	ccaatgaact	ttctagagat	agattggtgc	960
cttcgggaac	attgagacag	gtgctgcatg	gctgtcgtca	gctcgtgtcg	tgagatgttg	1020
ggttaagtcc	cgtaacgagc	gcaacccttg	tccttagtta	ccagcacgta	atggtgggca	1080
ctctaaggag	actgccggtg	acaaaccgga	ggaaggtggg	gatgacgtca	agtcatcatg	. 1140
gcccttacgg	cctgggctac	acacgtgcta	caatggtcgg	tacagagggt	tgccaagccg	1200
cgaggtggag	ctaatcccag	aaaaccgatc	gtagtccgga	tcgcagtctg	caactcgact	1260
gcgtgaagtc	ggaatcgcta	gtaatcgcga	atcagaatgt	cgcggtgaat	acgttcccgg	1320
gccttgtaca	caccgcccgt	cacaccatgg	gagtgggttg	caccagaagt	agctagtcta	1380
accctcggga	ggacggttac	cacggtgtga	ttcatgactg	gggt		1424

1

<210> 13

<211> 17

<212> DNA

<213> Primer

<400> 13 gtaaaacgac ggccagt

17

<210> 14

<211> 24

<212> DNA

<213> Primer

<400> 14 agcggataac aatttcacac agga

24

<210>	15						
<211>	722						
<212>	DNA						
<213>	Rhod	dococcus AN	12				
<400>	15						
aagcttt	cca	gcggaatgca	agagcgtcgg	gactcatggg	ctgaacgaac	ggtgacctgg	60
tgcagat	ccc	ctcttccgac	aggttctgtt	ccatctgtca	gtgcatgcag	agagatacct	120
ggataca	atcc	gagtgaatcc	ggaattgagc	gccgatggga	tccagtggac	taacccagat	180
ggaaagg	gtca	tcacgtcgcc	gtactcgaag	accagcgcgt	gcggtgacgt	gccagtgcct	240
gagggct	ggc	gggcagtgta	tttgaccgtg	aatacccctg	tcccggtaca	taagggcgta	300
gaggct	gaga	cggttccaga	gactttgatg	agtgatcgag	tgcaaagcaa	tcttcagaat	360
ggaacct	cgg	gatgcgctct	cgttccagtc	gaatcgtggt	tgtggaacgt	agatgagcaa	420
gtcgaag	gtag	atagtccgaa	tgtcgttgtg	gagtggcccc	gatgagcaac	tacgaagccg	480
ttcgacç	gcgg	tgaccaggtt	aaaagacgtt	ccacctggca	aattttgcga	gcaaaactca	540
aggcaaa	aat	tgccgattac	ccgattctgt	cctctacgtt	tctgttgctt	ctgctgctgt	600
acatctt	cga	cgctcagatg	tggcttttgg	tcagtgtgct	gctggtgtgc	gttgtggcaa	660
tggtcta	cct	gagagaggca	acgaaggete	ggcgtcgcaa	acgtcgtaca	gctcgatggt	720
gg							722
<210>	16						
<211>	523						
<212>	DNA						
<213>	Rhoc	lococcus AN1	12				
<400> aagctto	16 cgc	acgttgagcc	aagagcaaca	ttctgatgcc	tgctttggca	gactgagcag	60
cgatcto	ıtcg	aacaagcgat	gtgatgcggg	gtgcgtatct	gtctgctggt	ttcagaccgt	120
tggttgc	atc	gaaatcctgt	gcgccctcga	tgattccggg	aaattcttcc	agtacgagca	180
ggatgaç	gagg	tagtgctggc	gagaacaacg	aaattttgtc	tatgcgtcga	tcccagaaac	240
actcgat	tcg	tcggtcagat	tctgctttga	cgaactggag	cactcggagg	actttgtcaa	300
aatcgtt	cag	cccgagctcg	atgttcggtt	casccggtcg	tcggtggacg	aatggggcta	360

gtaagacgga agtgggatcg actccgacga cacgcacagc gggattcgat ccagcctgtg

<213> Primer

cgagca	ggtt	gtaggtgcat	tgagattttc	cggaacgggt	tttgccttga	atgagccagt	480
gagcag	catc	tttggctata	tcgaccatga	caggttgagc	tag		523
<210>	17						
<211>	606						
<212>	DNA						
<213>	Rho	dococcus ANI	12				
<400>	17						
aagctt	ccat	cgtgggtgga	aacgcccgct	cgaacttcgc	ggtgaaaatg	actctccgcg	60
tagacga	aacc	tgaatctgtc	aaaatgctgc	accccaacgc	aacacctgaa	gagtgcgcac	120
tggtcga	aagg	attcgtccct	ggtcaaggct	tcttcgacca	acccggacta	cggcgccaaa	180
tgatcc	gaac	ggttcgcgta	ggtgagtact	cgacctacgc	gagttacgtc	gaaaacgcag	240
acctcg	cgta	cgaagccgca	ctgaacatcg	accgagcaca	acgaatgaca	atcgcctcgg	300
aatacco	caca	tctcggcgac	ataggctgac	aaccgaacac	acaggaggac	acaccttgat	360
cggctad	cccg	acagacgcaa	tcccggtaaa	cacctacatt	cgacagcaat	ttgagaaggt	420
tgcacat	tgag	gcaggagaaa	aactcgcctc	acgccgaaac	ctgcccacgg	aacgagtcgt	480
aacgact	gca	ctccggatca	aatcaggctg	gccgaacgat	catctcgtaa	taactgaaat	540
actcago	ggcc	agagtaggtt	tggaaggcca	agctgtcgtc	gacgaacttc	gcggcatgca	600
gatcac							606
<210>	18						
							C
<211>	30						
<212>	DNA						
<213>	Prin	ner					
<400>		ant natttina	2+0+2+++4				30
accidi	Lyc	catagtttag	acceating				30
<210>	19						
<211>	20						
<212>	DNA	•					

<400> acttgc	19 gaac	cgat	atta	tc		•			•						20
<210>	20														
<211>	20														
<212>	DNA														
<213>	Prim	er													
<400> ttatga	20 ccag	cgta	agtg	ct					-						20
<210>	21														
<211>	459														
<212>	PRT														
<213>	Arca	noba	cter	ium p	pyoge	enes									
														•	
<400>	21														
Met Ası 1	n Arg	Leu	Ser 5	Glu	Arg	Thr	Ala	Leu 10	Ser	Leu	Pro	Ala	Arg 15	Gln	
Ile Gli	n Lys	Val 20	Ile	Pro	Ala	Ala	Gly 25	Gly	Arg	Ser	Leu	Lys 30	Ser	Phe	
Glu Gl	y Met 35	Thr	Ala	Thr	Trp	Ser 40	Ala	Arg	Gly	Gly	Ala 45	Ser	Ser	Asp	
Glu Aro	g Ser	Arg	Asp	Lys	Arg 55	Ser	Gln	Ile	Pro	Ser 60	Asn	Arg	Arg	Glu	
Gly Aro	g Ser	Ala	Thr	His 70	Pro	Leu	Gly	Asn	Thr 75	Val	Leu	Thr	Phe	Pro 80	
Val Se	c Asn	Glu	Ser 85	Lys	Lys	Thr	Ala	Lys 90	Ser	Arg	Arg	Ser	Glu 95	Arg	
Tyr Gl	ı Leu	Arg 100	Asp	Gly	Leu	Ala	Glu 105	Ile	Ser	Thr	Ile	Glu 110	Ser	Val	
Arg Ly	s Cys 115		Arg	Val	Pro	Val 120		Pro	Leu	Val	Ser 125	Leu	Arg	Ala	
Lys Ser		Gly	Lys	Gly	Ala 135	Gly	Tyr	Gly	Gly	Leu 140	His	Thr	Cys	Gly	

Ser Val Trp Ala Cys Pro Val Cys Ser Ala Lys Ile Ala Ala Arg Arg Lys Thr Asp Leu Gln Gln Val Val Asp His Ala Val Lys His Gly Met Thr Val Ser Met Leu Thr Leu Thr Gln Arg His His Lys Gly Gln Gly 185 Leu Lys His Leu Trp Asp Ala Leu Ser Thr Ala Trp Asn Arg Val Thr Ser Gly Arg Arg Trp Ile Glu Phe Lys Glu Gln Phe Gly Leu Val Gly 210 215 Tyr Val Arg Ala Asn Glu Ile Thr His Gly Lys His Gly Trp His Val His Ser His Val Leu Ile Ile Ser Glu Lys Asp Pro Leu Thr Ser Thr 245 Phe Val Tyr Gln Arg Lys Gln Gly Arg Arg Leu Pro Tyr Pro Pro Glu Ile Tyr Met Ser Ser Asp Phe Ile Ala Glu Arg Trp Glu Ala Gly 280 285 Leu Ala Lys His Gly Val Asp Phe Leu Arg Asp Ser Gly Gly Leu Asp 295 Trp Thr Val Ala Lys Asp Ala Arg Ala Ile Gly Asn Tyr Val Ser Lys 310 315 Met Gln Thr Ser Thr Asp Ala Ile Ser Ser Glu Val Thr Leu Gly Gly Phe Lys Lys Ala Arg Asn Gly Asn Arg Thr Pro Phe Gln Ile Leu Ala 340 345 Asp Ile Leu Ser Leu Gly Asp Val Asp Asp Leu Lys Leu Trp Lys Glu 355 Tyr Glu Lys Ala Ser Phe Gly Arg Arg Ala Leu Thr Trp Ser Lys Gly 375 370 Leu Arg Asp Trp Ala Asn Leu Gly Val Glu Gln Ser Asp Glu Glu Ile 395 385

Ala Ser Glu Glu Ile Gly Asp Glu Ala Ile Ala Leu Phe Thr His Asp 405 410 415

Ala Trp Arg Gln Val Arg Arg Phe Gly Ala Ala Glu Leu Leu Asp Val 420 425 430

Thr Glu Ser Gly Gly Arg Ala Ala Ala Tyr Arg Trp Leu Asp Phe Arg 435 440 445

Glu Ile Asp Trp Ser Leu Pro Pro Lys Ile Glu 450 455

<210> 22

<211> 456

<212> PRT

<213> Streptomyces lividans

<400> 22

Ser Val Val Leu Gly Leu Met Arg Cys Gly Arg Ile Trp Leu Cys Pro 20 25 30

Val Cys Ala Ala Thr Ile Arg His Lys Arg Ala Glu Glu Ile Thr Ala 35 40 45

Ala Val Val Glu Trp Ile Lys Arg Gly Gly Thr Ala Tyr Leu Val Thr 50 55 60

Phe Thr Ala Arg His Gly His Thr Asp Arg Leu Ala Asp Leu Met Asp 65 70 75 80

Ala Leu Gln Gly Thr Arg Lys Thr Pro Asp Ser Pro Arg Arg Pro Gly 85 90 95

Ala Tyr Gln Arg Leu Ile Thr Gly Gly Thr Trp Ala Gly Arg Arg Ala 100 105 110

Lys Asp Gly His Arg Ala Ala Asp Arg Glu Gly Ile Arg Asp Arg Ile 115 120 125

Gly Tyr Val Gly Met Ile Arg Ala Thr Glu Val Thr Val Gly Gln Ile 130 135 140

Asn Gly Trp His Pro His Ile His Ala Ile Val Leu Val Gly Gly Arg 145 150 Thr Glu Gly Glu Arg Ser Ala Lys Gln Ile Val Ala Thr Phe Glu Pro Thr Gly Ala Ala Leu Asp Glu Trp Gln Gly His Trp Arg Ser Val Trp Thr Ala Ala Leu Arg Lys Val Asn Pro Ala Phe Thr Pro Asp Asp Arg His Gly Val Asp Phe Lys Arg Leu Glu Thr Glu Arg Asp Ala Asn Asp 210 215 220 Leu Ala Glu Tyr Ile Ala Lys Thr Gln Asp Gly Lys Ala Pro Ala Leu Glu Leu Ala Arg Ala Asp Leu Lys Thr Ala Thr Gly Gly Asn Val Ala 245 Pro Phe Glu Leu Gly Arg Ile Gly Asp Leu Thr Gly Gly Met Thr Glu Asp Asp Ala Ala Gly Val Gly Ser Leu Glu Trp Asn Leu Ser Arg 275 280 Trp His Glu Tyr Glu Arg Ala Thr Arg Gly Arg Arg Ala Ile Glu Trp Thr Arg Tyr Leu Arg Gln Met Leu Gly Leu Asp Gly Gly Asp Thr Glu 310 Ala Asp Asp Leu Asp Leu Leu Ala Ala Asp Ala Asp Gly Glu Leu Arg Ala Gly Val Ala Val Thr Glu Asp Gly Trp His Ala Val Thr 340 345 Arg Arg Ala Leu Asp Leu Glu Ala Thr Arg Ala Ala Glu Gly Lys Asp 355 Gly Asn Glu Asp Pro Ala Ala Val Gly Glu Arg Val Arg Glu Val Leu 370 375

395

Ala Leu Ala Asp Ala Asp Thr Val Val Leu Thr Ala Gly Glu

390

Val Ala Glu Ala Tyr Ala Asp Met Leu Ala Ala Leu Ala Gln Arg Arg 405 410 415

Glu Glu Ala Thr Ala Arg Arg Arg Glu Gln Asp Asp Gln Asp 420 425 430

Asp Asp Ala Asp Asp Arg Gln Glu Arg Ala Ala Arg His Ile Ala Arg 435 440 445

Leu Ala Ser Gly Pro Thr Ser His 450 455

<210> 23

<211> 528

<212> PRT

<213> Streptomyces phaeochromogenes

<400> 23

Met Leu Asn Arg Val Ser Gly Ile Asp Ala Cys Gly Gly Cys Gly Arg
1 5 10 15

Arg Val Leu Asp Pro Asp Thr Gly Val Ile Tyr Ala Lys Ser Ser Arg 20 25 30

Gly Tyr Val Val Thr Ile Gly Leu Val Arg Cys Gly Arg Ile Trp Phe 35 40 45

Cys Pro Glu Cys Ser Ser Ala Ile Arg Arg Gly Arg Thr Glu Glu Ile 50 55 60

Lys Thr Gly Ala Leu Arg His Leu Ala Ala Gly Gly Thr Leu Ala Val 65 70 75 80

Val Val Leu Thr Ala Arg His Asn Gln Thr Thr Asp Leu Asp Ser Leu 85 90 95

Val Ala Ala Leu Trp Gly Gly Pro Leu Leu Asp Asp Lys Gly Ala Pro 100 105 110

Val Leu Asp Arg Ser Gly Lys Pro Arg Arg Ala Pro Gly Ala Tyr Gln
115 120 125

Arg Met Leu Thr Ala Pro Ala Phe Tyr Gly Arg Pro Glu Ala Arg Arg 130 135 140

Thr Arg Lys Asp Gly Thr Gln Tyr Val Arg Pro Ala Glu Asp Gly Ile Arg His Arg Ile Gly Tyr Ile Gly Met Val Arg Ala Ala Glu Val Thr Arg Ser Lys Lys Asn Gly Tyr His Pro His Leu Asn Leu Leu Val Phe Leu Gly Gly Glu Leu Ser Gly Thr Pro Ala Lys Gly Asp Val Val Gly His Phe Glu Pro Ser Glu Thr Asp Leu Gly Asp Trp Glu Asp Trp Leu Arg Glu Met Trp Ala Gly Ala Leu Lys Arg Ala Asp Pro Lys Phe Glu 225 Pro Ser Thr Asp Cys Asp Thr Pro Gly Cys Lys Cys Lys Gly Lys Gly His Gly Val Met Val Ser Ile Val Arg Ser Ala Asp Asp Val Ala Leu Ile Glu Tyr Leu Thr Lys Asn Gln Asp Gly Lys Arg Glu Arg Pro Asp Ser Val Asp Gln Asp Leu Glu Ala Ala Gly Ala Ala Ala Met Glu Thr 295 Ala Arg Leu Asp Ser Lys Thr Gly Arg Gly Arg Lys Ser Met Thr Pro Phe Gln Ile Leu Tyr Arg Leu Trp Asp Ile Glu Val Ala Gly Leu Asp Pro Asp Met Ala Glu Gly Tyr Gly Thr Pro Lys Gln Leu Arg Ala Trp 345 Trp Ala Gln Tyr Glu Glu Ala Leu Ala Gly Arg Arg Ala Ile Glu Trp 355 Thr Arg Gly Leu Arg Arg His Val Asp Leu Asp Gly Asp Asp Asp Glu 370 Glu Thr Asp Leu Gln Tyr Val Tyr Glu Pro Glu Ala Ala Pro Leu Asp 385

Gly Gly Val Val Leu Thr Ser Asp Ala Met Arg Leu Val Val Gly Ala 405 410 415

Asp Ala Glu Leu Asp Leu Asp Asp Val Val Arg Ala Glu Ala Tyr Tyr 420 425 430

Arg Val Ala Thr Ala Glu Glu Leu Ala Glu Val Gln Glu Val Leu Phe 450 460

Ala Arg Thr Gln Glu Arg Ala Glu Glu Ser Arg Arg Gln Arg Arg Ile 465 470 475 480

Ala Glu His Glu Ala Glu Gln Ala Ala Ala His Arg Lys Arg Gln Glu 485 490 495

Leu Ala Arg Cys Leu Gly Leu Leu Val Arg Gln Arg Gly Gly Thr Gln 500 505 510

Asp Asp Ser Ala Ala Asp Asn Phe Val Ala His Ile His Ala Asn Arg 515 520 525

<210> 24

<211> 451

<212> PRT

<213> Streptomyces nigirifaciens

<400> 24

Ser Val Val Leu Gly Leu Met Arg Cys Gly Arg Ile Trp Leu Cys Pro 20 25 30

Val Cys Ala Ala Thr Ile Arg His Lys Arg Ala Glu Glu Ile Thr Ala 35 40 45

Ala Val Val Glu Trp Ile Lys Arg Gly Gly Thr Ala Tyr Leu Val Thr 50 55 60

Phe Thr Ala Arg His Gly His Thr Asp Arg Leu Ala Asp Leu Met Asp 65 70 75 80

<400> 26 ctggcaaaaa gggacgccta ggtaaaggtt

Streptomyces phaeochromogenes

<213>

30

<210>	27	
<211>	31	
<212>	DNA	
<213>	Streptomyces nigirifaciens	
<400>	27 aaac tgtcgcgcct tgggaaagaa a	31
gaooa	aaa egeegegee egggaaagaa a	31
<210>	28	
<211>	20	
<212>	DNA	
<213>	Primer	
<400>	28 ttga acggctcgcc	20
		, 20
<210>	29	
<211>	20	
<212>	DNA	
<213>	Primer	
<400>	29 tccg acctctacca	20
oggodd		20
<210>	30	
<211>	20	
<212>	DNA	
<213>	Primer	
<400>		