SISTEMA TESTE IEEE DE 14 BARRAS

Essa é rede contém duas unidades geradoras instaladas nas barras 1 e 2 (Figura 1), e três condensadores síncronos nas barras 3, 6 e 8. Esse sistema contém 15 linhas e 3 transformadores, sendo 1 deles de 3 enrolamentos. Na Figura 1 esse transformador está representado em seu modelo equivalente Y, onde a barra 7 representa o ponto do meio no modelo (KINDERMANN, 1997, p. 26). Os dados para análise de curto-circuito foram adaptados de (CHRISTIE, 1993) e são mostrados no Adendo A.

Figura 1: Diagrama unifilar da rede teste IEEE de 14 barras.

Fonte: Do autor.

Adendo A - Dados da Rede Teste IEEE de 14 barras

Os dados para estudo de curto-circuito são mostrados para o sistema teste IEEE de 14 barras. Os dados são divididos em dados das barras, das linhas, dos transformadores e dos geradores. Todos os valores por unidade (p.u.) estão referenciados nos valores base de 100 MVA e na tensão nominal em cada ponto do sistema.

A-1 Dados de Barra

Tabela 1: Dados de barra da rede teste IEEE de 14 barras.

#	Tipo	Bshunt (pu)	Vbase (kV)
1	2	0,00	132,0
2	1	0,00	132,0
3	1	0,00	132,0
4	0	0,00	132,0
5	0	0,00	132,0
6	1	0,00	33,0
7	0	0,00	1,0
8	1	0,00	11,0
9	0	0,19	33,0
10	0	0,00	33,0
11	0	0,00	33,0
12	0	0,00	33,0
13	0	0,00	33,0
14	0	0,00	33,0

Fonte: Do autor.

Descrição dos dados:

- # : número da barra;
- Tipo: tipo da barra, onde:
 - o 2: barra de oscilação ($V\theta$);

- o 1: barra de tensão controlada (PV);
- o 0: barra de carga (PQ).
- Bshunt: valor da susceptância shunt total em derivação na barra em p.u.;
- Vbase: valor da tensão base na barra em kV.

Observações:

- Os valores para Vbase são palpites, visto que não se dispunha de tais dados. Foram baseados nos níveis de tensão da rede IEEE de 30 barras;
- A barra 7 é uma barra fictícia que representa o ponto do meio do transformador de 3 enrolamentos no modelo Y (KINDERMANN, 1997, p. 26).

A-2 Dados das Linhas

Tabela 2: Dados das linhas da rede teste IEEE de 14 barras.

De	Para	R1 (pu)	X1(pu)	Bshl (pu)	R0 (pu)	X0 (pu)
1	2	0,01938	0,05917	0,05280	0,067830	0,207095
1	5	0,05403	0,22304	0,04920	0,189105	0,780640
2	3	0,04699	0,19797	0,04380	0,164465	0,692895
2	4	0,05811	0,17632	0,03400	0,203385	0,617120
2	5	0,05695	0,17388	0,03460	0,199325	0,608580
3	4	0,06701	0,17103	0,01280	0,234535	0,598605
4	5	0,01335	0,04211	0,00000	0,046725	0,147385
4	7	0,00000	0,20912	0,00000	0,000000	0,209120
4	9	0,00000	0,55618	0,00000	0,000000	0,556180
5	6	0,00000	0,25202	0,00000	0,000000	0,252020
6	11	0,09498	0,19890	0,00000	0,332430	0,696150
6	12	0,12291	0,25581	0,00000	0,430185	0,895335
6	13	0,06615	0,13027	0,00000	0,231525	0,455945
7	8	0,00000	0,17615	0,00000	0,000000	0,176150
7	9	0,00000	0,11001	0,00000	0,000000	0,110010
9	10	0,03181	0,08450	0,00000	0,111335	0,295750
9	14	0,12711	0,27038	0,00000	0,444885	0,946330
10	11	0,08205	0,19207	0,00000	0,287175	0,672245

continua

continuação									
De Para R1 (pu) X1(pu) Bshl (pu) R0 (pu) X0									
12	13	0,22092	0,19988	0,00000	0,773220	0,699580			
13	14	0,17093	0,34802	0,00000	0,598255	1,218070			
Fim da Tabela									

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde se inicia o trecho;
- Para: número da barra onde termina o trecho;
- R1: valor da resistência de sequência positiva da linha em p.u.;
- X1: valor da reatância indutiva de sequência positiva da linha em p.u.;
- Bshl: valor da susceptância shunt da linha em p.u.;
- R0: valor da resistência de sequência zero da linha em p.u.;
- X0: valor da reatância indutiva de sequência zero da linha em p.u..

Observação:

• As linhas foram consideradas todas do tipo aérea, portanto $Z0 = Z1 \times 3,5$ (STEVENSON, 1986, p. 315).

A-3 Dados dos Geradores

Tabela 3: Dados dos geradores da rede teste IEEE de 14 barras.

#	Conexão	R1 (pu)	X1 (pu)	R2 (pu)	X2 (pu)	R0 (pu)	X0 (pu)	Xn (pu)
1	2	0,0010	0,0070	0,0010	0,0070	0,0010	0,0070	0,0000
2	2	0,0020	0,0110	0,0020	0,0110	0,0020	0,0100	0,0000
3	2	0,0070	0,1300	0,0060	0,2200	0,0060	0,1000	0,0000
6	2	0,0020	0,1620	0,0020	0,2200	0,0020	0,1000	0,0000
8	2	0,0010	0,0950	0,0010	0,2000	0,0010	0,1000	0,0000

Fonte: Do autor.

Descrição dos dados:

- #: número da barra onde o gerador está conectado;
- Conexão: tipo do fechamento da conexão das 3 fases, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- R1: valor da resistência equivalente de sequência positiva do gerador em p.u.;
- X1: valor da reatância equivalente de sequência positiva em p.u. (reatância subtransitória);
- R2: valor da resistência equivalente de sequência negativa do gerador em p.u.;
- X2: valor da reatância equivalente de sequência negativa do gerador em p.u.;
- R0: valor da resistência equivalente de sequência zero do gerador em p.u.;
- X0: valor da reatância equivalente de sequência zero do gerador em p.u.;
- Xn: valor da reatância entre o neutro do gerador e a terra em p.u..

Observação:

• Os dados dos geradores foram baseados em (MAHAPATRA e SINGH, 2016).

A-4 Dados dos Transformadores

Tabela 4: Dados dos transformadores da rede teste IEEE de 14 barras.

De	Para	Conexão De	Conexão Para	Rt (pu)	Xt (pu)	Rm (pu)	Xm (pu)	Rn (pu)	Xn (pu)
4	7	2	2	0,0000	0,2091	0,0000	0,0000	0,0000	0,0000
4	9	2	3	0,0000	0,5562	0,0000	0,0000	999999,0000	999999,0000
5	6	2	3	0,0000	0,2520	0,0000	0,0000	999999,0000	999999,0000
7	8	2	2	0,0000	0,1762	0,0000	0,0000	0,0000	0,0000
7	9	2	3	0,0000	0,1100	0,0000	0,0000	999999,0000	999999,0000

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde está conectado um lado do transformador;
- Para: número da barra onde está conectado a outra terminação do transformador;
- Conexão De: tipo do fechamento entre as 3 fases no lado De, onde:
 - o 1: conexão do tipo estrela;
 - 2: conexão do tipo estrela-aterrada;
 - 3: conexão do tipo triângulo.
- Conexão Para: tipo do fechamento entre as 3 fases no lado Para, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- Rt: valor da resistência equivalente do transformador em p.u.;
- Xt: valor da reatância equivalente do transformador em p.u.;
- Rm: valor da resistência entre o neutro do transformador e a terra no lado De em p.u.;
- Xm: valor da reatância entre o neutro do transformador e a terra no lado De em p.u.;
- Rn: valor da resistência entre o neutro do transformador e a terra no lado Para em p.u.;
- Xn: valor da reatância entre o neutro do transformador e a terra no lado Para em p.u..

Observação:

• O valor 999999 representa um valor muito alto, um circuito aberto.

REFERÊNCIAS¹

CHRISTIE, R. **Power Systems Test Case Archive**. Aug. 1993. Disponível em: http://www.ee.washington.edu/research/pstca/>. Acesso em: 20 janeiro 2017.

KINDERMANN, G. Curto-Circuito. 2. ed. Porto Alegre, RS: Sagra Luzzatto, 1997. 214 p.

MAHAPATRA, S.; SINGH, M. Analysis of Symmetrical Fault in IEEE 14 Bus System for Enhancing Over Current Protection Scheme. **International Journal of Future Generation Communication and Networking**, v. 9, n. 4, p. 51–62, 2016.

STEVENSON, W. D. **Elementos de análise de sistemas de potência.** 2. ed. São Paulo, SP: MCGraw-Hill, 1986. 458 p.

¹ Baseadas na norma NBR 6023, de 2002, da Associação Brasileira de Normas Técnicas (ABNT).