2016-2017 学年第一学期《控制工程基础》课内考试卷 (A卷)

授课班号 610108301/2/3/4	年级专业 2014 机自	学号	姓名	

题号	1	1 1	111	四	五	六	总分	审核
题分	25	10	25	24	10	6		
得分								

得分										
一、填空 1、经典控		•			基础. 研	「穷 单 输	λ 单.	题分25	}	得分
				E1 9X/13	至 四 19	1 / 6 1111	/ \ +			
	控制系统									
2、控制系	系统品质:	指标的基	基本要求	送是	`	·	 7	和		o
3、典型的	的反馈控:	制系统由	日给定元	6件、			`			`
		`		、校	正元件	六个部分	}组成。	,		
4、某系统	E的传递的	函数为($G(s) = \frac{(s)}{(s)}$	$(\frac{1+2}{1+6})$,	其零点是	<u>!</u>	,极	点是_		o
5、在二四	介系统中	引入 PD	控制的	月目的是	使系统的	的阻尼系	系数			(増加
或减/	(\) ₀									
6、闭环控	制系统的	 力稳定性	判别其	代数判据	居有		,			,
	闯据有									
7、某医生	用一时间	门常数为	1 分钟	的温度记	十测一感	冒患者	的体温	l,测量	畫 3 /	分钟时
该患症	省私自取	出温度记	十, 该温	度计指	示温度:	为 38 度	, 问该点	患者的	 (文	际体温
	度。		, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1/2011 411	4 IIII, 5 C)		, , , , , , , , , , , , , , , , , , , ,		4	, 4 1 mm
8、线性	,	完的 蚕。	4 心 更	久	闭环件	: 進 承 粉	计的极	占扮	亚杉	久
,	水儿心。	_ ,,,,		赤 IT 足	. №1 %L.14	· 还 四 数	X HJ 1/X	点 <i>构</i> 。) 11	크 liv. 1
				担守歹	<i>Ь): ЬЬ</i> ТТ Т	T	7兴 -	h o 771 172	r 14 '	(英元) 粉
9、减小和										
中	环节;	已知某	单位反	馈系统	闭环传递	色函数为	$ \Phi(s) $	$={s^2+}$	25 -4s -	+ 25,
则闭环	不系统的	阻尼比为	J	,自	然频率_		_; 当转	俞入 为	り単位	位阶跃
函数日	寸,其最	:大超调	量为_		_,调节	时间为		0	(/	公式:
<i>σ</i> % =	$e^{-\frac{\varsigma\pi}{\sqrt{1-\varsigma^2}}} \times 1$	100%;	$t_s = \frac{4}{\varsigma \omega_n}$	-)						

- 10、某单位反馈的开环传递函数为 $G(s)=\frac{100}{(0.1s+1)(s+10)}$,其闭环系统响应单位阶跃函数、单位斜坡函数和单位加速度函数时的稳态误差分别为_____、____、____。
- 二、图一是 R-C 网络的结构原理图,其中, R_1 和 R_2 为电阻,C 为电容,试求:以 $U_i(s)$ 为输入,负载 R_2 的端电压 $U_o(s)$ 10 为输出的传递函数。

三、求图二所示系统的传递函数C(s)/R(s)。

题分	得分
25	

图二

四、已知单位负反馈系统开环传递函数为

$$G(s) = \frac{K}{s(0.2s+1)(0.5s+1)}$$

题分	得分
24	

- 1、试绘制根轨迹; (8分)
- 2、确定系统临界阻尼比($\xi=1$)对应的增益K;(4分)
- 3、利用根轨迹,确定系统闭环稳定的K值范围;(6分)
- 4、求 $\xi=1$ 时闭环系统单位斜坡响应的稳态误差。(6分)

五、图三是某一控制系统的开环 Nyquist 曲线,已知其开环 传递函数在 s 右半平面中正的极点个数 P=0,试

题分	得分
10	

1)分析对应控制系统的闭环稳定性;(5分)

2) 试分析系统开环增益是图三对应系统的 $\frac{1}{3}$ 时,闭环系统的稳定性。 $(5\, \%)$

六、已知最小相位系统的对数幅频渐近特性曲线如图四所示, 试确定系统的传递函数。

题分	得分
6	

