Week01

Stanford机器学习公开课

- Week01
 - 1. Introduction
 - 1) What is Machine Learning?
 - 2) Types of Problems
 - o 2. Linear Regression with One Variable
 - 1) Model Representation
 - 2) Cost Function
 - o 3. Gradient Descent
 - **■** 1) Outline
 - 2) Gradient descent algorithm
 - 3) Gradient Descent for Linear Regression

1. Introduction

1) What is Machine Learning?

Arthur Samuel described it as: "the field of study that gives computers the ability to learn without being explicitly programmed." This is an older, informal definition.

Tom Mitchell provides a more modern definition: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

2) Types of Problems

Supervised Learning -- Labeled Data

- Regression: input -> continuous output
- Classification: input -> discrete categories

Unsupervised Learning -- Unlabeled Data

- Clustering
- Others (Associative memory...)

2. Linear Regression with One Variable

1) Model Representation

Suppose we have a training set, say 47 records of house information, shown in the table

第1页 共3页 2016/4/14 14:20

below, each of which contains the house price and the area of the house. We want to predict the house price for any given area.

line number Size(x) Price in 1000's(y)

1	2104	460
2	1416	232
3	1534	315
•••	•••	•••

Some Notation:

m - number of training examples, in our case, m=47. (x,y) - a single training example

$$(x^{(i)},y^{(i)})$$
 - the i^{th} training example (in our case, $x^{(1)}=2104$ and $y^{(1)}=460$)

By the way, we start counting from 1, just like the convention in Matlab/Octave we use.

After careful consideration, we decide to use a straight line to fit the data. That is, we make a hypothesis that $h_{\theta}(x) = \theta_0 + \theta_1 x$.

We use $h_{ heta}(x)$ and its short-handed form h(x) interchangably.

In regression problems, **hypothesis** is a function takes the input and output the estimated value, or **mapping** from input to output.

This model is called **linear regression with one variable**, or **univariate linear regression**.

2) Cost Function

Idea: Choose $heta_0, heta_1$ so that $h_{ heta}(x)$ is close to y for our training examples (x,y).

So, we want to solve the following minimization problem:

$$\min_{ heta_0, heta_1} rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)})^2$$

where

$$h_{ heta}(x^{(i)})= heta_0+ heta_1x^{(i)}$$

And this is **squared error cost function**, which is the most common one in both machine learning and statistics.

Define

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)})^2$$

, so the optimization problem becomes

第2页 共3页 2016/4/14 14:20

$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

.

A quick summary:

Hypothesis:

$$h_{ heta}(x) = heta_0 + heta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m (h_ heta(x^{(i)} - y^{(i)})^2)$$

Goal:

$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

3. Gradient Descent

Gradient descent is an algorithm that minimizes the cost function.

1) Outline

- ullet start with some $heta_0, heta_1$
- ullet keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ \$ until we hopefully end up at a minimum

2) Gradient descent algorithm

repeat until convergence {
$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta_0, heta_1)$$
 }

When we say update, we mean **simultaneous update**.

3) Gradient Descent for Linear Regression

repeat until convergence {

$$egin{aligned} heta_0 &:= heta_0 - lpha rac{1}{m} \sum_{i=1}^m (heta_0 + heta_1 x^{(i)} - y^{(i)}) \ heta_1 &:= heta_1 - lpha rac{1}{m} \sum_{i=1}^m (heta_0 + heta_1 x^{(i)} - y^{(i)}) x^{(i)} \end{aligned}$$

第3页 共3页

}