分类算法在 3D-Moon 数据集上的性能比较实验报告

一、摘要

本次作业报告应用 Decision Trees、AdaBoost + DecisionTrees 和 SVM 对 3D 数据集进行分类,对比不同算法的性能差异。通过标准化数据集、可视化分类边界和量化评估指标,验证了 RBF 核 SVM 在非线性可分数据中的最优表现。

二、方法原理

- 1. **决策树 (Decision Trees)** : 是一种树形结构的监督学习算法,通过递归划分特征空间实现分类或回归。其核心组成包括:
 - 1) 根节点:代表初始数据集
 - 2) 内部节点:对应特征测试,产生分支决策
 - 3) 叶节点:存储最终预测结果(类别或数值)

基于信息增益递归划分特征空间,作业中设置 max_depth=5 防止过拟合。优势在于直观解释性强,无需数据标准化处理,但是对噪声敏感容易过拟合。

2. AdaBoost (Adaptive Boosting): 是一种集成学习算法,通过组合多个弱分类器 (如决策树桩)构建强分类器。其核心思想是**迭代调整样本权重**与分类器权重,逐步聚焦于难以正确分类的样本,最终通过加权投票提升整体性能。

、核心原理

1. 样本权重初始化

初始时所有样本权重相等: $w_i^{(1)}=rac{1}{N}$

2. 迭代训练弱分类器

计算加权错误率:

$$e_m = \sum_{i=1}^N w_i^{(m)} \cdot I(y_i
eq G_m(x_i))$$

3. 计算分类器权重

$$lpha_m = rac{1}{2} \mathrm{ln} \left(rac{1-e_m}{e_m}
ight)$$

4. 更新样本权重

$$w_i^{(m+1)} = rac{w_i^{(m)}}{Z_m} \cdot \exp\left(-lpha_m y_i G_m(x_i)
ight)$$

5. 加权投票输出

$$G(x) = ext{sign}\left(\sum_{m=1}^{M} lpha_m G_m(x)
ight)$$

本次作业集成 50 个弱分类器 (决策树 max_depth=5) , 通过动态调整样本权重提升性能。迭代过程中, 错误分类样本权重增加, 增强模型鲁棒性。

- 3. **支持向量机 (SVM)**: 是一种监督学习算法,主要用于分类和回归任务,核心思想是寻找一个最优超平面,将不同类别的数据分开,同时最大化两类数据到超平面的最小距离(称为间隔)。其关键特点包括:
 - 1) 间隔最大化:通过几何间隔定义分类边界,提升泛化能力。
 - 2) 核技巧 (Kernel Trick):将数据映射到高维空间,解决非线性可分问题。

3) 支持向量: 超平面的位置仅由距离最近的样本点(即支持向量)决定。

核心原理

1. 线性可分情况

- \circ 目标函数: 找到超平面 $\mathbf{w}^T\mathbf{x} + b = 0$, 使得间隔最大。
- 数学表达:

$$egin{aligned} \min_{\mathbf{w},b} rac{1}{2} \|\mathbf{w}\|^2 \ \mathrm{s.t.} \ y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1 \quad (i = 1, 2, ..., n) \end{aligned}$$

解的形式:通过拉格朗日对偶问题求解,最终超平面仅依赖支持向量。

2. 非线性可分与核函数

- 核函数作用:将原始特征映射到高维空间,使数据线性可分。
- 常用核函数:
 - 线性核: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - 多项式核: $K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + r)^d$
 - RBF (高斯) 核: $K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i \mathbf{x}_j||^2)$
 - Sigmoid核: $K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\gamma \mathbf{x}_i^T \mathbf{x}_j + r)$

3. 软间隔与松弛变量

- **问题**:数据存在噪声或轻微重叠时,严格线性不可分。
- \circ **解决方案**: 引入松弛变量 ξ_i 和惩罚参数 C:

$$egin{aligned} \min_{\mathbf{w},b} & rac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \ & ext{s.t.} \ y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i, \quad \xi_i \geq 0 \end{aligned}$$

 \circ **参数** C: 控制误分类惩罚强度。C 越大,模型越严格(可能过拟合);C 越小,允许更多误分类(可能欠拟合)。

三、实验结果

运行程序得到如下结果:

Model: De	cisi	on Tree						
Accuracy: 0.9520								
		precision	recall	f1-score	support			
	0.0	0.95	0.95	0.95	250			
	1.0	0.95	0.95	0.95	250			
accur	acy			0.95	500			
macro	avg	0.95	0.95	0.95	500			
weighted	avg	0.95	0.95	0.95	500			
=======	.====	=========	======	=====				
		======== st + Decision 720		=====				
====== Model: Ad Accuracy:			n Tree		support			
Accuracy:		720 precision	n Tree	f1-score	support 250			
Accuracy:	0.9	720 precision 0.97	n Tree recall	f1-score 0.97	24			
Accuracy:	0.9 0.0 1.0	720 precision 0.97	recall 0.98	f1-score 0.97	250			
Accuracy:	0.9 0.0 1.0	720 precision 0.97 0.98	recall 0.98	f1-score 0.97 0.97 0.97	250 250			

Model: SVM Li							
acontent was Plan School	precision	recall	f1-score	support			
0.0	0.67	0.69	0.68	250			
1.0	0.68	0.66	0.67	250			
accuracy			0.67	500			
macro avg	0.67	0.67	0.67	500			
weighted avg	0.67	0.67	0.67	500			
Model: SVM Poly Accuracy: 0.7520							
	precision	recall	f1-score	support			
0.0	0.76	0.74	0.75	250			
1.0	0.75	0.76	0.75	250			
accuracy			0.75	500			
macro avg	0.75	0.75	0.75	500			
weighted avg	0.75	0.75	0.75	500			

Accuracy: 0.9880							
	precision	recall	f1-score	support			
0.0	0.98	0.99	0.99	250			
1.0	0.99	0.98	0.99	250			
accuracy			0.99	500			
macro avg	0.99	0.99	0.99	500			
weighted avg	0.99	0.99	0.99	500			

Classification by Decision Tree (Test Set Results)

Classification by AdaBoost + Decision Tree (Test Set Results)

Classification by SVM Linear (Test Set Results)

Classification by SVM Poly (Test Set Results)

Classification by SVM RBF (Test Set Results)

四、性能差异分析

1. 决策树:

表现:准确率较高 (95.2%)。由于数据中存在噪声,决策树容易过拟合训练数据中的局部模式,导致泛化能力下降。

原因: 尽管数据在 z 轴上有明显的分界 (正类 z 值多为正,负类多为负),但噪声导致决策树需要复杂的分支,增加了错误分割的风险。

2. AdaBoost + 决策树:

表现:准确率显著提升至 97.2%。通过集成多个弱分类器(决策树桩), AdaBoost 减少了方差,提升了鲁棒性。

原因:弱分类器的组合能够有效捕捉数据的全局结构,避免单棵决策树对噪声的敏感。

3. SVM:

线性核:准确率 67.4%。由于数据在 3D 空间中接近线性可分(z 轴提供关键区分),线性核能部分分离类别,但噪声和非线性残余结构限制了性能。

多项式核: 准确率 75.2%。3 次多项式核捕捉了部分非线性关系, 但参数未调优 (如 degree 可能不匹配真实数据分布), 表现中等。

RBF 核: 准确率最高 (98.8%)。RBF 核通过非线性映射处理复杂边界,完美适应数据的螺旋结构,噪声容忍度高。

五、结论

- 1. RBF 核 SVM 表现最优,因其能建模复杂的非线性决策边界。
- 2. AdaBoost 通过集成提升了决策树的泛化能力,表现比决策树更优。
- 线性 SVM 和多项式核 SVM 受限于模型假设,未能充分捕捉数据结构, 表现较差。