

point

features of the input than the earlier layers.

Correct

The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.

4. Vectorization allows you to compute forward propagation in an *L*-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L.

True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]}),$ $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},\ldots)$ in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},\ldots)$.

5. Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

1/1 point

```
i for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i-i], layers[i])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i]. 1) * 0.01
```

```
1 * for(i in range(1, len(layer_dims))):
2     parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3     parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

6. Consider the following neural network.

How many layers does this network have?

The number of layers $\it L$ is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers \pm 1. The input and output layers are not counted as hidden layers.

10. Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

 $igcolon W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$

Correct True

 $\qquad W^{[l]} \text{ has shape } (n^{[l+1]}, n^{[l]}) \\$