Lesson 3 Quiz

and FC, what is the value for lift(CM, FC)?

5 试题

1 point

1. Suppose we are interested in analyzing the purchase of comics (CM) and fiction (FC) in the transaction history of a bookstore. We have the following 2×2 contingency table summarizing the transactions. If lift is used to measure the correlation between CM

	CM	¬CM	Σrow
FC	300	700	1000
¬FC	1200	800	2000
Σcol	1500	1500	3000

() 2e-4

() -2e-4

-0.6

0.6

1 point

2.

Suppose a school collected some data on students' preference for hot dogs (HD) vs. hamburgers (HM). We have the following 2×2 contingency table summarizing the statistics. If χ^2 is used to measure the correlation between HD and HM, what is the χ^2 score?

	HD	¬HD	Σrow
НМ	40	24	64
¬HM	210	126	336
Σcol	250	150	400

	-1	
	0	
\bigcirc	-∞	
	1	

1 point

3.

What is the value range of the χ^2 measure?

1 point

4。

Which of the following measures is NOT null invariant? "

Cosine

•	χ^2
	All confidence
	Kulcyzynski

1 point

5.

Suppose we are interested in analyzing the transaction history of several supermarkets with respect to purchase of apples (A) and bananas (B). We have the following table summarizing the transactions.

Supermarket	AB	¬AB	А¬В	¬А ¬В
S1	100,000	7,000	3,000	300
S2	100,000	7,000	3,000	90,000

Denote li as the lift measure and ki as the Kulcyzynski measure for supermarket Si (i = 1, 2). Which of the following is correct?

I_1	≠	l ₂ ,	$k_1 \\$	=	k ₂
I_1	¥	l ₂ ,	k_1	=	k

$$I_1 = I_2, k_1 = k_2$$

$$I_1 \neq I_2, k_1 \neq k_2$$

$$I_1 = I_2, k_1 \neq k_2$$

我(**伟臣 沈**)了解提交不是我自己完成的作业将永远不会通过 此课程或导致我的 Coursera 帐号被关闭。 了解荣誉准则的更多信息

提交测试