#### **Learning Target**



#### Learning



#### Unfortunately .....

RNN-based network is not always easy to learn
 Real experiments on Language modeling



### The error surface is rough.



## Why?

$$w=1$$
  $\Rightarrow$   $y^{1000}=1$  Large  $\partial L/\partial w$  Learning rate?

 $w=0.99$   $\Rightarrow$   $y^{1000}\approx 0$  small  $\partial L/\partial w$  Large Learning rate?

 $w=0.01$   $\Rightarrow$   $y^{1000}\approx 0$   $\Rightarrow$   $\partial L/\partial w$  Learning rate?



### Helpful Techniques

Long Short-term Memory (LSTM)

Can deal with gradient vanishing (not gradient explode)

Memory and input are added

➤ The influence never disappears unless forget gate is closed



No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM



#### Helpful Techniques

#### Clockwise RNN



[Jan Koutnik, JMLR'14]

# Structurally Constrained Recurrent Network (SCRN)



[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks