

CoronaMap

H4222

Félix CASTILLON
Roxane DEBORD
David HAMIDOVIC
Corentin LAHAROTTE
Cédric MILINAIRE
Grazia RIBBENI
Ousmane TOUAT

Motivations

Contexte : L'épidémie de Covid-19 en France

Motivations personnelles:

- Compréhension la diffusion de l'épidémie
- Challenge technique
- Utilité

But : fournir un outil de suivi et de simulation pour permettre de s'informer et de voir l'impact des mesures gouvernementales sur la propagation du Covid-19.

Objectifs

Afficher les données sur l'épidémie

Pouvoir afficher les données relatives au Covid-19 de façon journalière et voir les évolutions

01

Simuler l' épidémie

Simuler l'avancement de l'épidémie tout en essayant de coller le plus possible à la réalité

02

L'organisation du Groupe

Organisation

Equipe front-end

Composée de 3 personnes travaillant chacune sur ses propres composants

Equipe back-end

Composée de 4 personnes:

- 2 personnes sur le modèle pour la simulation
- 2 personnes sur la récupération des données officielles

Travail en AGILE

Itération 1 15/04-17/04	Itération 2 17/04-24/04	Itération 3 24/04-01/05	Itération 4 01/05-06/05
Récupérer les données du jour sur le covid	Implémentation de l'IHM de l'onglet simulation	Implémentation du modèle niveau Back-end	Afficher les graphiques associés à la modélisation au cours de celà
Réaliser une première version de l'IHM de l'onglet map	Récupération et maj des historiques sur le covid	Amélioration de l'IHM	Préparation de la soutenance et des rendus
Afficher les données du jour dans IHM avec clic sur régions et départements pour les détails	Visualisation des données sur un même graphique	Afficher les données de la modélisation sur la carte avec	Améliorations et optimisations
Recherches sur les modèles	Choix du modèle à implémenter	Possibilité d'arrêter et de la modifier da simulation	Préparation de la vidéo

Les outils

Gitlab

- Contrôle de version
- Hébergement du projet

Discord

Communication et organisation au sein du groupe

Angular Cli

- Architecture modulaire, bon graphisme, popularité
- Certains membres du groupe avaient déjà travaillé avec cette technologie

Spring Boot

Back-end RESTful qui est complémentaire avec Angular Cli.

La gestion des tests

Côté Front-end

Utilisation de Protractor afin de tester que les composants qui devraient être présents le sont bien. Permet aussi de tester la réaction des composants à certains événements. Nous avons réalisé des :

- Tests unitaires pour chaque composant
- Tests fonctionnels afin de tester le site dans sa globalité

Côté Back-end

Utilisation de JUnit afin de pouvoir effectuer des tests sur des fonctions et classes le permettant.

Tests unitaires

Workflow Back-End

Java

Maven

CI GiTLab

Pipeline #141833306 **passed for** 38b821a1 **on** develop Coverage 72.00% (10.00%)

Une Interface Graphique agréable

Courte présentation avant la démonstration

Le menu Carte

Données globales

Données relatives au Covid-19 pour la France :

- Cas confirmés
- Guéris
- Hospitalisés
- Cas critiques
- Décès

Données

- Tableau de données affiché en fonction des régions/ département sélectionnés
- Graphique des données globales en fonction du temps.
- Graphique des variations sur les données globales en fonction du temps.

Le menu Simulation

Réglages de la simulation

- Choix du confinement par tranche d' âge
- Choix du port du masque par tranche d'âge
- Pourcentage de respect du confinement
- Vitesse de défilement du temps (de O à 15 secondes entre le passage d'une date à l'autre)

Données

- Tableau de données affiché en fonction des régions/ département sélectionnés
- Graphique des données globales en fonction du temps.
- Graphique des variations sur les données globales en fonction du temps.

03

Simulation et méthodologie

Choix et critique(s) du modèle et des paramètres

Quel modèle prendre ? Pour quelles raisons ?

Nos motivations de départ :

- Sensibilisation du public face à l'impact de nos comportements et de la politique sanitaire sur le développement de l'épidémie en France
- Fournir une "prévision" sur l' évolution de l'épidémie

Quel modèle prendre? Pour quelles raisons?

Le modèle SIR (1927):

Donne les équations différentielles suivantes

$$\begin{aligned} & \frac{\mathrm{d}S}{\mathrm{d}t} = -\beta \cdot S \cdot I \\ & \frac{\mathrm{d}I}{\mathrm{d}t} = \beta \cdot S \cdot I - \gamma \cdot I \\ & \frac{\mathrm{d}R}{\mathrm{d}t} = \gamma \cdot I \end{aligned}$$

William Kermack (1898 – 1970) et Anderson Mac Kendrick (1876 – 1943).

Quel modèle prendre? Pour quelles raisons?

Le modèle SIR (Exemple):

$$\frac{dS}{dt} = -\beta \cdot S \cdot I$$

$$\frac{dI}{dt} = \beta \cdot S \cdot I - \gamma \cdot I$$

$$\frac{dR}{dt} = \gamma \cdot I$$

Fait sur Matlab (population de base 500)

Quel modèle prendre? Pour quelles raisons?

Recherche d'un modèle plus complexe :

Nous avons trouvé un modèle intéressant (<u>COVIDSIM-FR</u>) par le Groupe de modélisation de l'équipe <u>ETE</u> (Laboratoire <u>MIVEGEC</u>, CNRS, IRD, Université de Montpellier) et qui est porté par *Mircea T. Sofonea*

Cette œuvre cité a été mise à disposition selon les termes de la <u>Licence Creative</u> <u>Commons Attribution - Pas d'Utilisation</u> <u>Commerciale 4.0 International</u>.

Modèle utilisé pour le simulateur d' épidémie COVIDSIM-FR

Quel modèle prendre ? Pour quelles raisons ?

Recherche d'un modèle plus complexe:

Explication des compartiments du modèle :

- Si : Individus susceptibles d'être infectés
- Ji,1...i,g: Cas sans hospitalisation
- Yi,1...i,h: Cas graves qui devront être hospitalisé d'ici h jours max
- Hi,1...i,u: Cas graves hospitalisés pour une durée de u jours max
- Ri : Cas étant guéries
- Di : Cas décédés

Modèle utilisé pour le simulateur d' épidémie COVIDSIM-FR

Critique(s) de ce modèle COVIDSIM FR

On peut apporter les critiques suivantes :

- L'incertitude des paramètres
- Le modèle choisi se base sur des hypothèses assez simplificatrices sur la propagations de la maladie
- Le modèle choisi à une visée académique
- On ne peut pas prendre en compte les déplacements inter-régions et inter-départements
- Peu adapté pour l'implémentation que l'on veut effectuer (beaucoup de paramètres à renseigner)

Quel modèle prendre?

Pour quelles raisons?

Donne les équations différentiels suivantes pour k groupes de tranches d'âge :

$$\frac{dS_k}{dt} = -\beta_k S_k \sum_k I_k$$

$$\frac{dI_k}{dt} = \beta_k S_k \sum_k I_k - \gamma_k I_k - \mu_k I_k$$

$$\frac{dR_k}{dt} = \gamma_k I_k \quad , \frac{dD_k}{dt} = \mu_k I_k$$

Paramètres choisis pour le modèle

 β_k : taux de transmission $\frac{c_k*R_0}{(\gamma_k+\mu_k)*N_k}$

γ_k : taux de guerison 1/15≃0.067

	0-14	15-44	45-64	65-74	75+
μ_k : taux de mortalité	0.00001/15	0.0005/15	0.002/15	0.005/15	0.003/15
c_k	0.8	0.9	0.7	0.6	0.5

Critique(s) de ce modèle SIRD

On peut apporter les critiques suivantes :

- L'incertitude des paramètres
- Le modèle choisi se base sur des hypothèses assez simplificatrices sur la propagation de la maladie
- On ne peut pas prendre en compte les déplacements inter-régions et inter-départements
- Modèle déterministe

Simulation du modèle

Rappels basiques sur les équations différentielles

Une équation différentielle est une équation qui met en relation une fonction et ses dérivées.

$$f: \mathbb{R}^2 \to \mathbb{R}$$
$$y \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$$
$$y'(t) = f(t, y(t))$$

Si on ajoute une condition initiale, on a un problème de Cauchy.

$$y(t_0) = y_0$$

Le théorème de Cauchy - Lipschitz dit qu'on a alors une unique solution.

Et tout ceci fonctionne très bien en considérant des fonctions de plus d'une variables ...

Résolution numérique par la méthode de Runge-Kutta

Soit le problème de Cauchy

$$y'(t) = f(t, y(t))$$
$$y(t_0) = y_0$$

On veut le résoudre numériquement sur l'intervalle $[t_0,t_0+T]$

avec une subdivision
$$t_0 < t_1 < \ldots < t_N$$
 où $t_n = t_0 + n \frac{T}{N}$

$$\frac{T}{N}$$
 est le pas que l'on note h

On va donc calculer $y_0, \dots y_N$ où y_n est une approximation de $y(t_n)$ calculée à partir de y_{n-1}

Calcul de y_n+1 à partir de y_n

On se donne q réels $c_1, \ldots c_q \in [0,1]$ et des points intermédiaires $t_{n,i} = t_n + c_i h$ On a alors $y(t_{n,i}) = y(t_n) + \int_{t_n}^{t_{n,i}} f(t,y(t)) dt = y(t_n) + h \int_0^{c_i} f(t_n + uh, y(t_n + uh)) du$ Et $y(t_{n+1}) = y(t_n) + h \int_0^1 f(t_n + uh, y(t_n + uh)) du$

On calcule ces deux intégrales de manière approchée, on se donne $a_{1,1},\dots a_{q,q}\in\mathbb{R}$ et $b_1,\dots b_q\in\mathbb{R}$ et on définie alors

$$y_{n,i} = y_n + h \sum_{j=1}^{i-1} a_{i,j} f(t_{n,j}, y_{n,j})$$
 $y_{n+1} = y_n + h \sum_{j=1}^{q} b_j f(t_{n,j}, y_{n,j})$

Résumé

On se donne un tableau de nombre

c_1	0	0		0	0
c_2	a_{21}	0		0	0
:	:	į	٠.	; 0	; 0
c_q	a_{q1}	a_{q2}		a_{qq-1}	0
	b_1	b_2		b_{q-1}	b_q

Qui mène à un algorithme

$$\begin{cases}
 \begin{bmatrix}
 t_{n,i} = t_n + c_i h \\
 y_{n,i} = y_n + h & \sum_{1 \le j < i} a_{ij} p_{n,j} \\
 p_{n,i} = f(t_{n,i}, y_{n,i}) & 1 \le i \le q
\end{cases}$$

$$t_{n+1} = t_n + h$$

$$y_{n+1} = y_n + h & \sum_{1 \le j \le q} b_j p_{n,j}$$

La méthode qu'on a choisi : RK4

Nous avons choisi la méthode de Runge Kutta "classique" RK4 définie par le tableau

0	0	0	0	0	
$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	
$\frac{1}{2}$	0	$\frac{1}{2}$	0	0	
1	0	0	1	0	
	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{1}{6}$	

Images tirées de *Analyse numérique et équations* différentielles de Jean Pierre Demailly

Le back-end

Récupération des données

Source de données COVID19 France

OpenCOVID19

- Initiative visant à consolider l'information officielle sur l'épidémie de COVID-19 en France
- Les données sont mises à jour manuellement à partir des sources suivantes : Santé Publique France, Agence Régionale de Santé et les Préfectures
- La granularité est la suivante : département-région-pays

Récupération des données

Source de données COVID19 France

OpenCOVID19

 Les données sont disponibles dans les formats json et csv (ex: le format csv)

III C1 ▼ 1	Ⅲ C2 ÷	III C3	Ⅲ C4 ÷	■ C5 ÷	■ C6 ÷	III C7 ÷	Ⅲ C8 ÷	III C9
date	granularite	maille_code	maille_nom	cas_confi	cas_ehpad	cas_confirmes	cas_possible	deces
2020-05-05	departement	DEP-01						
2020-05-05	departement	DEP-02						
2020-05-05	departement	DEP-03	Allier					
2020-05-05	departement	DEP-04	Alpes-de-Haute					
2020-05-05	departement	DEP-05	Hautes-Alpes					
2020-05-05	departement	DEP-06	Alpes-Maritimes					148
2020-05-05	departement	DEP-07	Ardèche					
2020-05-05	departement	DEP-08	Ardennes					
2020-05-05	departement	DEP-09	Ariège					
2020-05-05	departement		Aube					113
2020-05-05	departement	DEP-11						
2020-05-05	departement	DEP-12	Aveyron					
2020-05-05	departement		Bouches-du-Rhône					
2020-05-05	departement		Calvados					
2020-05-05	departement	DEP-15	Cantal					
2020-05-05	departement		Charente					12
2020-05-05	departement	DEP-17	Charente-Marit					
2020-05-05	departement							
2020-05-05	departement		Corrèze					
2020-05-05	departement		Côte-d'Or					
2020-05-05	departement		Côtes-d'Armor					
2020-05-05	departement		Creuse					
2020-05-05	departement	DEP-24	Dordogne					
2020 05 05	danantament	DED OF	Dauba	14177	10077	100000	- A 11 1 1 1 1	120

Récupération des données

Source de données COVID19 France

OpenCOVID19

Remarques:

- Comme la mise à jour des données est manuelle, les données publiés par cette organisation le jour j ont comme données les plus récentes ceux du jour j-1 pour les départements, et du jour j-2 pour les régions et le pays.
- On récupère le fichier de données à partir de la ressource présente sur la page git de l'organisation via une requête GET

Démo

Prise de recul

Prise de recul

Challenges	Points forts
 Travail à distance Projet "long" mais court Montée en compétences Découverte des modèles épidémiologiques UX et UI 	 Buts de départ atteints Maîtrise des technologies Integration continue en AGILE Respect du modèle MVC Facilité de prise en main de l'application
Problèmes rencontrés	Points faibles
 Travail à distance Cohésion d'équipe Temps à disposition 	 Données collectées : MAJ des sources Modèle de simulation perfectible

Positionnement par rapport à l'existant

Applications existantes intéressantes:

- Extension google chrome <u>Coronavirus Live</u> <u>status | Covid-19 simulator</u>: historique mondiale, simulation générale, simulation de type particule
- Groupe logiciel de modélisation et simulation très poussée : <u>Epidemap</u>

Simulation de levée de confinement

Simulation de levée de confinement, moyenne par commune française. La levée brutale du confinement induit un rebond, potentiellement plus important que le premier, l'épidémie ayant eu le temps de s'homogénéiser à l'échelle nationale.

Axes d'amélioration

Axes d'amélioration

- Amélioration du modèle : prise en compte de plus de paramètres, plus de précision, ...
- Ajout d'éléments à l'interface graphique : visualiser les données par tranche d'âge, superposer les courbes de la simulation aux réelles, ...
- Ajouter un tutoriel interactif

"Gardons nos distances aujourd'hui pour mieux nous embrasser demain"

-Giuseppe Conte, premier ministre italien

Merci

Avez-vous des questions?

Hexanôme H4222

Test Coverage

Performance du modèle

To modify this graph, click on it, follow the link, change the data and paste the resulting graph here, replacing this one

95,000

Neptune is the farthest planet from the Sun

80,000

Jupiter is the biggest planet in the Solar System

Fonts & colors used

This presentation has been made using the following fonts:

Barlow Semi Condensed

(https://fonts.google.com/specimen/Barlow+Semi+Condensed)

DM Sans

(https://fonts.google.com/specimen/DM+Sans)

#e0e7ff #ffe474 #00bccc #261bbd #f03a73

DESKTOP SOFTWARE

You can replace the image on the screen with your own work. Just delete this one and add yours

MOBILE APP

You can replace the image on the screen with your own work. Just delete this one and add yours

ALTERNATIVE RESOURCES

RESOURCES

Did you like the resources on this template? Get them for free at our other websites.

VECTORS

- Social media marketing design on phone
- Social media marketing concept on mobile
- Female multitasking at work
- Man multitasking at work
- Character addicted to social media
- Person addicted to social media
- Social media marketing on phone
- Social media marketing on mobile
- Concept image upload landing page
- Concept landing page image upload
- Teamwork concept for landing page

- Flat design reviews concept illustration
- Reviews concept illustration in flat design
- Branding concept for landing page

PHOTOS

- Hand using phone and smiling faces mock up
- Young employees looking at wall with marketing notes