Non-Homogeneous Equation

A **non-homogeneous equation** is a linear equation in which the sum of the product of variables and their coefficients is equal to a non-zero constant. In general, it can be represented as:

$$[a_1x_1 + a_2x_2 + \dots + a_nx_n = D]$$

where $(D \neq 0)$. Here, $(a_1, a_2, ..., a_n)$ are the coefficients, and (D) is a non-zero constant.

Matrix Representation of Non-Homogeneous Equation

The system of non-homogeneous linear equations can be represented in matrix form as:

$$[A\mathbf{x} = \mathbf{D}]$$

where:

- (A) is a matrix of coefficients,
- (x) is a column vector of the variables,
- (D) is a column vector of constants.

For example, consider a system of equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = D_1 \\ a_{21}x_1 + a_{22}x_2 = D_2 \end{cases}$$

The matrix form is:

$$\begin{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} D_1 \\ D_2 \end{bmatrix} \end{bmatrix}$$

Augmented Matrix

The **augmented matrix** is a way to represent a system of linear equations by combining the coefficient matrix and the constant vector into a single matrix. It is constructed by appending the vector (**D**) to the coefficient matrix (*A*).

For the example given above, the augmented matrix is:

$$[[A \mid \mathbf{D}] = \begin{bmatrix} a_{11} & a_{12} & | & D_1 \\ a_{21} & a_{22} & | & D_2 \end{bmatrix}]$$

This form is often used to solve systems of equations using methods such as Gaussian elimination.

Homogeneous Equation

A **homogeneous equation** is a linear equation in which the sum of the product of variables and their coefficients is equal to zero. In general, it can be represented as:

$$[a_1x_1 + a_2x_2 + \cdots + a_nx_n = 0]$$

Here, the constant term is zero, meaning that the system always has at least one solution, known as the **trivial solution**, where all variables are equal to zero $((x_1 = x_2 = \cdots = x_n = 0))$.

Matrix Form of Homogeneous Equation

The system of homogeneous linear equations can also be represented in matrix form as:

$$[A\mathbf{x} = \mathbf{0}]$$

where:

- (A) is a matrix of coefficients,
- (x) is a column vector of variables,
- (0) is a column vector of zeros.

For the same system of equations without the constant vector:

$$\left\{ \begin{cases} a_{11}x_1 + a_{12}x_2 = 0 \\ a_{21}x_1 + a_{22}x_2 = 0 \end{cases} \right.$$

The matrix form is:

$$\begin{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{bmatrix}$$

Submatrix

A **submatrix** is a matrix formed by deleting one or more rows and/or columns from a given matrix. In other words, a submatrix is derived by selecting certain rows and columns of a larger matrix.

Example

Consider a matrix (A):

$$[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}]$$

• Example 1: Deleting the 1st row and 1st column results in the submatrix:

$$\begin{bmatrix} 5 & 6 \\ 8 & 9 \end{bmatrix}]$$

• Example 2: Deleting the 2nd row results in the submatrix:

[

$$\begin{bmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \end{bmatrix}$$

]\$

• Example 3: Deleting the 3rd column results in the submatrix:

$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix}$$

Rank of a Matrix

The **rank** of a matrix is the maximum number of linearly independent rows or columns in the matrix. It represents the dimension of the vector space spanned by its rows or columns.

Examples

1. Rank 1: The rank of a matrix is 1 if every (2×2) submatrix is singular (i.e., the determinant of each (2×2) submatrix is zero).

```
# Check if all 2x2 submatrices are singular

def is_rank_1(matrix):
    n = matrix.shape[0]
    for i in range(n - 1):
        for j in range(n - 1):
            submatrix = matrix[i:i+2, j:j+2]
            if np.linalg.det(submatrix) != 0:
                return False
    return True

print("Rank 1:", is_rank_1(A)) # Output: True
```

Rank 1: False

Rank 2: The rank of a matrix is 2 if the matrix itself is singular, but at least one of its 2×2 submatrices is non-singular.

```
In [29]: # Example matrix of rank 2
         B = np.array([[1, 2, 3],
                       [4, 5, 6],
                       [7, 8, 9]])
         # Check if matrix is singular and at least one 2x2 submatrix is non-singular
         def is rank 2(matrix):
             if np.linalq.det(matrix) != 0:
                 return False
             n = matrix.shape[0]
             for i in range(n - 1):
                for j in range(n - 1):
                     submatrix = matrix[i:i+2, j:j+2]
                     if np.linalg.det(submatrix) != 0:
                         return True
             return False
         print("Rank 2:", is_rank_2(B)) # Output: True
```

Rank 2: False

Rank 3: The rank of a 3×3 matrix is 3 if the matrix is non-singular (i.e., its determinant is non-zero).

Rank 3: True

In []:

Processing math: 100%