

EMAT10100 Engineering Maths I Lecture 7: Intoduction to vectors

John Hogan & Alan Champneys + Nikolai Bode

EngMaths I lecture 7 Autumn Semester 2017

Directed line segments

- ★ magnitude is the length of line segment
- Q. How do we represent the direction of a line in 3D?

EngMaths I lecture 7
Autumn Semester 2017

Scalars and Vectors

- k two very different concepts in engineering:
 - ► SCALAR: something with magnitude only
 - ▶ VECTOR: something with magnitude and direction
- Scalar or vector?

length? force? temperature?

velocity? speed? voltage?

time? volume? displacement?

★ Note: magnitude = size = modulus = length

EngMaths I lecture 7
Autumn Semester 2017

Notation

Many alternative notations:

$$\mathsf{OA}, \overset{\mathrm{OA}}{\rightarrow}, \overset{\rightarrow}{\mathrm{OA}}, \overset{\rightarrow}{\mathrm{OA}}, \overline{OA}, \overline{a}, \underline{a}, \overline{a}, \overset{\rightarrow}{\mathrm{a}}, \overset{\mathrm{a}}{\rightarrow}, \overset{\mathrm{a}}{\rightarrow}$$

- \checkmark We typeset a and handwrite \underline{a}
- Magnitude of a written as |a|
 (pronounced 'mod a')
 - ▶ Note $|\mathbf{a}| \ge 0$ (since lengths always ≥ 0)

- - ▶ they have same magnitude and direction

 $\not \mathbf{k} \mathbf{a} = \mathbf{b}$, but \mathbf{c} and \mathbf{d} are different.

- c has same direction as a, b (different magnitude)
- ▶ d has same magnitude as a, b (different direction)

EngMaths I lecture 7
Autumn Semester 2017

Resultant of two displacement vectors

- $\slash\hspace{-0.6em}\not\hspace{-0.8em} \slash\hspace{-0.6em}$ Sum (resultant) of $\overset{\rightarrow}{OP}$ and $\overset{\rightarrow}{PQ}$ is $\overset{\rightarrow}{OQ}$ (obvious!)

Negative vectors

 \not -a has same magnitude as a, but has opposite direction

⊮ So

$$|-\mathbf{a}|=|\mathbf{a}|,$$

(magnitude mops up minus sign)

EngMaths I lecture 7
Autumn Semester 2017

Exercises

$$\stackrel{\longleftarrow}{\text{Ke}} \text{ Simplify } \stackrel{\rightarrow}{AB} + \stackrel{\rightarrow}{BC} - \stackrel{\rightarrow}{DC}$$

$$\begin{tabular}{l} & \textbf{K} & \textbf{Simplify} & \overrightarrow{AC} - \overrightarrow{BC} + \overrightarrow{BD} \\ \end{tabular}$$

Adding vectors

- We Vectors are added in the same way as 'journeys'; two ways of thinking about it: $\mathbf{c} = \mathbf{a} + \mathbf{b}$
- k triangle law

k parallelogram law

EngMaths I lecture 7 Autumn Semester 2017

Subtracting vectors

✓ Just add the negative!

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$$

Here c = a - b

Properties of addition

Commutativity

$$p + q = q + p$$

Associativity

$$(\mathbf{p} + \mathbf{q}) + \mathbf{r} = \mathbf{p} + (\mathbf{q} + \mathbf{r})$$

EngMaths I lecture 7
Autumn Semester 2017

Scalar multiplication

- K Scalar multiplication: multiply vector by scalar
 - direction stays same
 - magnitude stretched by given scalar
 - ► (negative scalar reverses direction)

lacksquare Parallel vectors: $\mathbf{a} = \lambda \mathbf{b}$ where λ is a scalar

Unit vectors and the zero vector

W Unit vectors

- If $|\mathbf{a}| = 1$, \mathbf{a} is a 'unit vector'
- ▶ Given any old vector b, a unit vector may be made from it:

$$\hat{\mathbf{b}} = \frac{\mathbf{b}}{|\mathbf{b}|}, \quad \text{ so that } |\hat{\mathbf{b}}| = 1$$

 $\hat{\mathbf{b}}$ is pronounced 'b hat'

- ▶ sometimes we use the symbol : **n** : to mean unit vector
- Zero vector

If $|\mathbf{b}| = 0$, then \mathbf{b} is the zero vector

EngMaths I lecture 7 Autumn Semester 2017

Components of a vector

big idea: express all 3D vectors as a combination of i, j and k:

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

- Ke This is the position vector (or displacement) of the point (x, y, z) relative to the origin (0, 0, 0)
- Sometimes write

$$\mathbf{r} = (x, y, z)$$
 or $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Row and column vector notation.

For now: use is interchangeable. But not when we consider matrices

EngMaths I lecture 7
Autumn Semester 2017

Coordinate vectors: i,j and k

- \mathbf{k} \mathbf{i} , \mathbf{j} , \mathbf{k} are unit vectors parallel to x, y, z coordinate axes (not to be confused with i or $j=\sqrt{-1}$)
- \mathbb{K} Follows that $|\mathbf{i}| = |\mathbf{j}| = |\mathbf{k}| = 1$.
- Note: hats are not used

EngMaths I lecture 7
Autumn Semester 2017

Engineering HOT SPOT

- Can vectors have more than three components? Why should they?
- Chemistry of swimming pools
 - reaction between chlorine and 'pollutants'
 - ▶ 6-14 key reactants, depending on level of detail
 - concentrations listed in big long vector
- What's the added value? No geometry.
- Qualitative system behaviour (equilibrium, blow-up) governed by eigenvalues of matrices involved in vector formulation.

Revisited in component form. If

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$

then

$$\mathbf{a} + \mathbf{b} = (a_1 + b_1)\mathbf{i} + (a_2 + b_2)\mathbf{j} + (a_3 + b_3)\mathbf{k}$$

 $\norm{\ensuremath{\not{k}}}$ For any scalar λ

$$\lambda \mathbf{a} = (\lambda a_1)\mathbf{i} + (\lambda a_2)\mathbf{j} + (\lambda a_3)\mathbf{k}$$

★ These seem clear from geometry

EngMaths I lecture 7 Autumn Semester 2017

Angular interpretation of components

★ To represent the direction of a vector OA

▶ Define the direction cosines

$$\cos \alpha = \frac{x}{r} \quad \cos \beta = \frac{y}{r} \quad \cos \gamma = \frac{z}{r}$$

 \bigvee The vector $(\cos \alpha, \cos \beta, \cos \gamma)$ is a unit vector prove it!

EngMaths I lecture 7
Autumn Semester 2017

Magnitude etc. in component form

₭ Suppose

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

in component form. Then

$$|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$$
 (3D version of Pythagoras)

₭ It follows that

$$\hat{\mathbf{r}} = \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}},$$

$$= \frac{x}{\sqrt{x^2 + y^2 + z^2}}\mathbf{i} + \frac{y}{\sqrt{x^2 + y^2 + z^2}}\mathbf{j} + \frac{z}{\sqrt{x^2 + y^2 + z^2}}\mathbf{k}.$$

 \mathbf{k} Exercise. Calculate $|\mathbf{r}|$ and $\hat{\mathbf{r}}$ when $\mathbf{r} = -2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$

EngMaths I lecture 7
Autumn Semester 2017

EMAT10100 Engineering Maths I Lecture 8: Two types of vector products

John Hogan & Alan Champneys

+ Nikolai Bode

EngMaths I lecture 8 Autumn Semester 2017

Useful properties of scalar product

- $\mathbf{k} \cdot \mathbf{a}, \mathbf{b}$ perpendicular same as $\mathbf{a} \cdot \mathbf{b} = 0$
 - in particular $\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0$
- $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$ (sometimes written a^2)
 - \blacktriangleright in particular $\, {\bf i} \cdot {\bf i} = {\bf j} \cdot {\bf j} = {\bf k} \cdot {\bf k} = 1 \,$
- $\mathbf{k} \cdot \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- $(\lambda \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\lambda \mathbf{b}), = \lambda (\mathbf{a} \cdot \mathbf{b})$
 - for any scalar λ
- $\mathbf{k} \mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$

EngMaths I lecture 8
Autumn Semester 2017

Scalar (inner, dot) product

- vector ⋅ vector = scalar
- Mediation:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
 (pronounced 'a dot b')

We Useful result (for proof, see section 4.2.7 of James): In components, if $\mathbf{a}=(a_1,a_2,a_3),\,\mathbf{b}=(b_1,b_2,b_3),$ then

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

- $\norm{\ensuremath{\mbox{\ensuremath{\&}}}}$ Exercise: Find the angle between (1,2,2) and (1,4,8)

EngMaths I lecture 8 Autumn Semester 2017

Projection of one vector onto another

- ightharpoonup Projection of f a onto f b is defined as $|\stackrel{
 ightharpoonup}{{
 m OP}}|$
- Also called: component of a in direction of b

$$|\stackrel{
ightarrow}{\mathrm{OP}}| = |\mathbf{a}|\cos\theta$$
 and $\mathbf{a}\cdot\mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos\theta$

- $\begin{tabular}{l} & \end{tabular} \begin{tabular}{l} \begin{tabular$
- $\normalfont{\normalfont{\mbox{\not}\ensuremath{\mbox{$\ensuremath{\mbox{$\not$}\ensuremath{\mbox{$\ensuremath{\mbox{$\ensuremath}\mbox{$\ensuremath{\mbox{$\ensuremath}\mbox{$\ensuremath{\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\e$

Work done using scalar product

- Work done by a force is the product of the distance moved by the point of application of the force and the component of the force in this direction"
- Force F. Displacement of point of application d
- lacksquare Distance moved by point of application is $|\mathbf{d}|$
- lacktriangle Component of ${f F}$ in direction of ${f d}$ is

$$\frac{\mathbf{F}\cdot\mathbf{d}}{|\mathbf{d}|}$$

Therefore, work done is

$$W = \mathbf{F} \cdot \mathbf{d}$$

- grown up version of "work done = force × distance"

EngMaths I lecture 8 Autumn Semester 2017

Component formula for cross product

Useful result (not proved here):

$$\mathbf{k}$$
 If $\mathbf{a} = (a_1, a_2, a_3)$, $\mathbf{b} = (b_1, b_2, b_3)$, i.e. if

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

We will be with the bound of the b

(2), the determinant formula
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Don't be scared by this — crops up again later in course

Vector (cross) product

- vector × vector = vector, vector ∧ vector = vector (alternative notation)
- W Definition:

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}||\mathbf{b}|\sin\theta \;\hat{\mathbf{n}}$$

(pronounced 'a cross b')

- $|\mathbf{a} \times \mathbf{b}| = 2 \times$ area of triangle OAB
- $|\hat{\mathbf{n}}| = 1$ (a unit vector)
- $\not k$ \hat{n} perpendicular to a and b such that a, b, \hat{n} form right-handed set
- ₭ Erm, right-handed set?

Also known as the right-hand rule

EngMaths I lecture 8 Autumn Semester 2017

Uses of cross product

- Special case: coordinate vectors
 - $\bullet \ \mathbf{i} \times \mathbf{i} \ = \ \mathbf{j} \times \mathbf{j} \ = \ \mathbf{k} \times \mathbf{k} \ = \ \mathbf{0}$
 - $i \times j = k, \quad j \times k = i, \quad k \times i = j$
 - sort of 'cyclic alphabetical order'
- - sine of angle between vectors
 - ▶ a vector perpendicular to both a and b
- $\normalfont{\normalfont{\mbox{\not}\ensuremath{\mbox{$\ensuremath}\mbox{$\ensuremath{\mbox{$\ensuremath}\mbox{$\ensuremath{\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{$\ensuremath}\mbox{\ensu

Application of vector product to moments

- Moment M about origin of force F acting at point P
- ✓ Naive (A-level Physics, Mechanics)

moment = distance times normal component of force, = $|\mathbf{r}| |\mathbf{F}| \sin \theta$

moment $\mathbf{M} = \mathbf{r} \times \mathbf{F}$ (gives same magnitude)

- k direction of M gives axis that is twisted about

EngMaths I lecture 8 Autumn Semester 2017

Properties of the cross product

- - 1. $\lambda(\mathbf{a} \times \mathbf{b}) = (\lambda \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\lambda \mathbf{b})$
 - 2. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$
 - 3. $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ is equivalent to $\mathbf{a} \mid\mid \mathbf{b}$
 - 4. $\mathbf{a} \times \mathbf{a} = \mathbf{0}$ for any \mathbf{a}
 - 5. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ (careful!)
- Exercise: Prove 5. using component form
- $\ensuremath{\mathbb{K}}$ Q. Is it associative: i.e. is $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$?

EngMaths I lecture 8 Autumn Semester 2017

Motion in a circle (about origin:

velocity ${\bf v} \perp$ displacement ${\bf r}$ and ${\bf v}$ in plane of circle

i.e. simple case)Key characteristics:

Engineering HOT SPOT

- & So: $\mathbf{v} = \boldsymbol{\omega} \times \mathbf{r}$
- $\not k$ ω \perp to plane of circle
- More general motions also:ω known as angular velocity
- ₭ NB: angular velocity is a vector

EngMaths I lecture 8 Autumn Semester 2017

Homework

№ Read James section 4.2

(not last subsection on triple products)

- ► Exercises 4.2.7 Q11,13,14,26
- ► Exercises 4.2.9 Q27,28,33
- ► Exercises 4.2.11 Q41,48
- - Exercises 4.2.6 Q1.3.4.15
 - Exercises 4.2.8 Q17,19,21
 - ► Exercises 4.2.10 Q31,34
- don't forget to go to a Drop-in Session if you get stuck!