**Цель работы.** Изучение математических моделей и исследование характеристик электромеханического объекта управления, построенного на основе электродвигателя постоянного тока независимого возбуждения.

Исходные данные. В таблице 1 представлены исходные данные для моделирІвания ДПТ.

Таблица 1 – Исходные данные.

| Ī | $U_{\mathrm{H}}$ | $n_0$  | $I_{ m H}$ | $M_{ m H}$ | R    | $U_{\mathrm{H}}$ | $J_{ m Z}$         | $T_{ m y}$ | $i_{\mathrm{p}}$ | $J_{ m M}$ |
|---|------------------|--------|------------|------------|------|------------------|--------------------|------------|------------------|------------|
|   | В                | об/мин | A          | Н∙м        | Ом   | мс               | кг·м <sup>2</sup>  | мс         |                  | кг•м2      |
|   | 36               | 4000   | 6.5        | 0.57       | 0.85 | 3                | $2.2\cdot 10^{-4}$ | 6          | 40               | 0.15       |

### Рассчет параметров моделирования

По исходным данным можно рассчитать некоторые параметры моделирования.

$$K_y = \frac{U_{\rm H}}{U_m} = \frac{36}{10} = 3.6$$
  $w_0 = n_0 \frac{\pi}{30} = 418.9$   $K_e = \frac{U_{\rm H}}{w_0} = 0.086$   $K_{\rm A} = \frac{1}{R} = 1.2$   $K_{\rm M} = \frac{M_{\rm H}}{I_{\rm H}} = 0.088$   $J_{\Sigma} = 1.2 J_{\rm A} + \frac{J_{\rm M}}{i_p^2} = 3.6 \cdot 10^{-4}$ 

Коэффициенты передачи измерительных устройств можно найти предварительно промоделировав систему и выбрав максимальное время моделирования. В итоге получим следующие значения коэффициентов:

$$K_U = \frac{\hat{U}_{ymax}}{U_H} = \frac{10}{36} = 0.28$$
  $K_I = \frac{\hat{I}_{max}}{I_{max}} = \frac{10}{31.35} = 0.32$   $K_\omega = \frac{\hat{\omega}_{max}}{\omega_0} = \frac{10}{418.9} = 0.024$   $K_\alpha = \frac{\hat{\alpha}_{max}}{\alpha_{max}} = \frac{10}{5.54} = 1.8$ 

### Модель ВСВ полной модели ЭМО.

Для начала запишем все уравнения, описывающие работу электромеханического объекта (ЭМО) - двигаетля постоянного тока (ДПТ). Их возьмем из теории.

$$\begin{cases} k_{\text{M}}I - M_{c} = J_{\Sigma}\dot{\omega} \\ T_{\text{R}}\dot{I} + I = k_{\text{R}}U_{y} - k_{\text{R}}k_{e}\omega \end{cases} \Leftrightarrow \begin{cases} \dot{\omega} = \frac{k_{\text{M}}}{J_{\Sigma}}I - \frac{1}{J_{\Sigma}}M_{c} \\ \dot{I} = -\frac{k_{\text{R}}k_{e}}{T_{\text{R}}}\omega - \frac{1}{T_{\text{R}}}I + \frac{k_{\text{R}}}{T_{\text{R}}}U_{y} \\ \dot{U}_{y} = -\frac{1}{T_{y}}U_{y} + \frac{k_{y}}{T_{y}}U \end{cases}$$
(1)

Теперь, приняв за вектор состояния  $X = \begin{bmatrix} \alpha & \omega & I & U_y \end{bmatrix}^T$  и  $\dot{\alpha} = \omega$ , получим следующую модель вход состояние выход (BCB).

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\omega} \\ \dot{I} \\ \dot{U}_y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{k_{\rm M}}{J_{\Sigma}} & 0 \\ 0 & -\frac{k_{\rm R}k_e}{T_{\rm R}} & -\frac{1}{T_{\rm R}} & \frac{k_{\rm R}}{T_{\rm R}} \\ 0 & 0 & 0 & -\frac{1}{T_{\rm R}} \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \\ I \\ U_y \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & -\frac{1}{J_{\Sigma}} \\ 0 & 0 \\ \frac{k_y}{T_y} & 0 \end{bmatrix} \begin{bmatrix} U(t) \\ M_c(t) \end{bmatrix}$$
 (2)

$$\alpha = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \\ I \\ U_y \end{bmatrix}$$

$$(3)$$

# Моделирование полной модели ЭМО

На рисунке 1 представлна полная модель ДПТ.



Рис. 1 – Полная модель ЭМО.

После построения модели и определения параметров моделирования можно получить графики и подсчитать соответственно время переходного процесса  $t_{\rm n}$ , установившиеся угловую скорость  $\omega_y$  и ток  $I_y$ .

$$t_{\text{II}} = 0.036$$
  $\omega_y = 5$   $I_y = 0.0031$ 

Ниже предсавлены графки переходных процессов двигателя.



Рис. 2 – Переходные процессы в ДПТ.

### Исследование влияния момента сопротивленя $M_{\rm CM}$

На рисунке 3 представлены переходные процессы ДПТ при различных значениях нагрузочного момента  $M_{\rm CM}$ .



Рис. 3 – Графики прехеходных процессов при различных  $M_{\rm CM}$ .

В ходе эксперимента, изменяя нагрузочный момент, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 2 – Данные о перехоных процессах при изменении момента нагрузки.

| $M_{\rm CM}$ | $t_{\scriptscriptstyle \Pi}$ | $\omega_y$ | $I_y$                |
|--------------|------------------------------|------------|----------------------|
| 0            | $3.6 \cdot 10^{-2}$          | 5          | $3.12 \cdot 10^{-3}$ |
| 5.7          | $3.7 \cdot 10^{-2}$          | 4.61       | 0.52                 |
| 11.4         | $3.8 \cdot 10^{-2}$          | 4.23       | 1.04                 |
| 17.1         | $3.9 \cdot 10^{-2}$          | 3.85       | 1.56                 |
| 22.8         | $4 \cdot 10^{-2}$            | 3.46       | 2.08                 |

## Исследование влеяния момента инерции нагрузки $J_{ m M}$

На рисунке 4 представлены графики переходных процессов при различных значениях момента инерции нагрузки  $J_{\mathrm{M}}$ .



Рис. 4 – Графики прехеходных процессов при различных  $J_{\rm M}$ .

В ходе эксперимента, изменяя момент инерции нагрузки, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 3 – Данные о перехоных процессах при изменении момента инерции нагрузки.

| $J_{ m M}$          | $t_{\scriptscriptstyle \Pi}$ | $\omega_y$ | $I_y$                 |
|---------------------|------------------------------|------------|-----------------------|
| $7.5 \cdot 10^{-2}$ | $2.6 \cdot 10^{-2}$          | 5          | $3.19 \cdot 10^{-12}$ |
| 0.11                | $2.7 \cdot 10^{-2}$          | 5          | $2.31 \cdot 10^{-11}$ |
| 0.15                | $2.9 \cdot 10^{-2}$          | 5          | $1.3 \cdot 10^{-10}$  |
| 0.19                | $3.1 \cdot 10^{-2}$          | 5          | $5.88 \cdot 10^{-10}$ |
| 0.22                | $3.3 \cdot 10^{-2}$          | 5          | $2.24 \cdot 10^{-9}$  |

# Исследование влияния передаточного отношения $i_p$ редукотора

На рисунке 5 представлены графики преходных процессов при различных значениях передаточного отношения и нулевом моменте нагрузки  $M_{\rm CM}=0$ .



Рис. 5 — Графики прехеходных процессов при различных  $i_p$  и  $M_{\rm CM}=0.$ 

В ходе эксперимента, изменяя момент передаточное отношение редукторы, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 4 – Данные о перехоных процессах при изменении передаточного числа редуктора.

| $i_p$ | $t_{\scriptscriptstyle \Pi}$ | $\omega_y$ | $I_y$                 |
|-------|------------------------------|------------|-----------------------|
| 10    | 0.14                         | 5          | $2.95 \cdot 10^{-4}$  |
| 25    | $4.1 \cdot 10^{-2}$          | 5          | $2.53 \cdot 10^{-14}$ |
| 40    | $2.9 \cdot 10^{-2}$          | 5          | $1.73 \cdot 10^{-14}$ |
| 55    | $2.6 \cdot 10^{-2}$          | 5          | $1.6 \cdot 10^{-14}$  |
| 70    | $2.4 \cdot 10^{-2}$          | 5          | $1.47 \cdot 10^{-14}$ |

На рисунке 6 представлены графики преходных процессов при различных значениях передаточного отношения и не нулевом моменте нагрузки  $M_{\rm CM}=M_{\rm H}i_p/2$ , при  $i_p=40$ ..



Рис. 6 – Графики прехеходных процессов при различных  $i_p$  и  $M_{\rm CM}=M_{\rm H}i_p/2$ .

В ходе эксперимента, изменяя момент передаточное отношение редукторы, мы получили различные значения времени переходного процесса и установившиеся значения тока и угловой скорости, которые представлены в таблице ниже.

Таблица 5 – Данные о перехоных процессах при изменении передаточного числа редуктора.

| $i_p$ | $t_{\scriptscriptstyle \Pi}$ | $\omega_y$ | $I_y$ |
|-------|------------------------------|------------|-------|
| 10    | 0.14                         | 1.93       | 4.15  |
| 25    | $4.1 \cdot 10^{-2}$          | 3.77       | 1.66  |
| 40    | $2.9 \cdot 10^{-2}$          | 4.23       | 1.04  |
| 55    | $2.6\cdot 10^{-2}$           | 4.44       | 0.75  |
| 70    | $2.4 \cdot 10^{-2}$          | 4.56       | 0.59  |

# Переходной процесс при меньших значениях постоянных времени

Ниже предсавлены графки переходных процессов двигателя при  $T_y = 6 \cdot 10^{-4}$  с и  $T_{\rm H} = 3 \cdot 10^{-4}$  с.



Рис. 7 – Переходные процессы в ДПТ при меньших значениях постоянных времени.

Также по графику переходного процесса можно определить время переходного процесса и установившиеся значения тока и угловой скорости.

$$t_{\text{II}} = 0.029$$
  $\omega_y = 5$   $I_y = 0.004$ 

### Модель ВСВ упрощенной модели ЭМО

Приравнивая в выражениях (1)  $T_{\rm s}$  и  $T_y$  к 0. Получим следующие выражения:

$$\begin{cases} \dot{\alpha} = \omega \\ \dot{\omega} = -\frac{k_{\rm M}k_{\rm R}k_e}{J_{\Sigma}}\omega + \frac{k_{\rm M}k_{\rm R}k_y}{J_{\Sigma}}U - \frac{1}{J_{\Sigma}}M_c \end{cases}$$
(4)

И соответственно модель ВСВ:

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{k_{\rm M}k_{\rm R}k_e}{J_{\Sigma}} \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \frac{k_{\rm M}k_{\rm R}k_y}{J_{\Sigma}} & -\frac{1}{J_{\Sigma}} \end{bmatrix} \begin{bmatrix} U(t) \\ M_c(t) \end{bmatrix}$$
 (5)

$$\alpha = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \omega \end{bmatrix} \tag{6}$$

# Сравнение плоной и упрощенной модели ЭМО

Моделируемая система изображена на рисунке ниже.



Рис. 8 – Упрощенная модель ЭМО.

**Сравнение моделей при при**  $T_{\mathbf{g}} = 3 \cdot 10^{-3}$  и  $T_{\mathbf{y}} = 3 \cdot 10^{-3}$  .Ниже указаны характеристики переходного процесса упрощенной модели ЭМО. А также представлен график, в котором сравниваются полная и упрощенная модель.

$$t_{\scriptscriptstyle \rm II}=0.028 \qquad \qquad \omega_y=5$$



Рис. 9 — Сравенение переходных процессов угловой скорости  $\omega$  упрощенной и полной модели ЭМО.

Отклонение упрощенной моедли от полной состалвяет:

$$\Delta_{\omega 1} = 0.0077 \tag{7}$$

**Сравнение моделей при**  $T_{\mathbf{y}} = 3 \cdot 10^{-4}$  и  $T_{\mathbf{y}} = 3 \cdot 10^{-4}$  . Ниже представлен график, в котором сравниваются полная и упрощенная модель.



Рис. 10 — Сравенение переходных процессов угловой скорости  $\omega$  упрощенной и полной модели ЭМО.

Отклонение упрощенной моедли от полной состалвяет:

$$\Delta_{\omega 1} = 0.0011 \tag{8}$$

#### Выводы

В данной работе мы исследовали модель ДПТ. При увеличении момента нагрузки  $M_{\rm CM}$ : уменьшается установившаяся угловая скорость двигателся и время переходного процесса, при этом увеличивается установившийся ток. При увеличении момента инерции нагрйзки: увеличивается время переходного процесса и максимальный ток.

Как видно из рисунка 5, при увеличении передаточного числа редуктора, уменьшается влияние момента инерции нагрузки и соответственно уменьшается время переходного процесса. Также увеличивается угловая скорость на выходе редуктора (исходя из графика  $\alpha_M(t)$  рисунок 5).

При наличии же нагрузки, при увеличении передаточного числа редуктора увеличивается установившаяся угловая скорость двигателя и уменьшается на выходе редуктора. Также уменьшается установившийся ток.

При сравнении графиков полной и упрощенной модели ЭМО, как видно из рисунков 9 и 10, при уменьшении  $T_{\rm s}$  и  $T_{\rm y}$  уменьшается ошибка и график перехоная характеристика полной модели стремится к упрощенной.

Также мы получили модели ВСВ полной и упрощенной модели ЭМО.