

POLSAR Classification

Description:

This function is used to apply sequentially different polarimetric data processes. The different steps of this batch process are:

- H / A / Alpha Decomposition and analysis
- Unsupervised Wishart H / A / Alpha Classification
- Basic Scattering Mechanisms identification

This basic processing approach provides a first **qualitative analysis** of the fully polarimetric data set processed.

Comments:

Parameters written in Red can be modified directly by the user from the keyboard.

Input/Output Arguments:

Input Indicates the location of the considered Main Directory (MD)

Directory containing the polarimetric data sets to be processed.

Output Directory Indicates the location of the data output directory.

Output Image Number of Rows/Columns:

The output image numbers of rows and columns are initialised to the input data set dimensions.

Users wishing to process a sub-part of the initial image can modify the **Init** and **End** values of the converted images rows and columns.

Note: init and end values have to remain within the range defined by the input image dimensions.

H/A/Alpha Decomposition:

This program creates binary files corresponding to the different polarimetric descriptors obtained from the H/A/Alpha decomposition of a **[T3]** coherency matrix image.

The H/A/Alpha polarimetric decomposition is based on an eigenvector decomposition of the corresponding (3x3) coherency [T3] sub-matrix.

An option may be set to simultaneously create the corresponding bitmap image files.

Output Files

The polarimetric decomposition procedure creates the following output binary files.

- entropy.bin, anisotropy.bin, alpha.bin
- alpha1.bin, alpha2.bin, beta1.bin, beta2.bin, p1.bin, p2.bin

The last binary files are necessary for the basic scattering

mechanism identification procedure

Processing Parameters

Data to be decomposed may be processed through an additional filtering procedure consisting of a boxcar filter. Users have then to set the size of the (N*N) sliding window used to compute the local estimate of the average matrix.

The default value of N is set to 7. Users wishing to avoid additional filtering may set N to 1.

Unsupervised Wishart - H/A/Alpha Classification:

This program creates binary and bitmap image files resulting from the segmentation of polarimetric data using the Wishart H-Alpha and Wishart H-A-Alpha schemes.

Output Files Each classification procedure creates output binary files and the

corresponding optional bitmap image files.

wishart_H_alpha_class_x.bin (.bmp)wishart H A_alpha_class_x.bin (.bmp)

The variable x indicates the window size of the eventual additional filtering performed prior to data classification.

Processing
Parameters
Data to be decomposed may be processed through an additional filtering procedure consisting of a boxcar filter. Users have then to

set the size of the (N*N) sliding window used to compute the local estimate of the average matrix.

The default value of N is set to 3. Users wishing to avoid additional filtering may set N to 1.

The segmentation termination criterion consists of a logical combination of two conditions.

The iterative k-mean clustering procedure is stopped if:

- A sufficiently low percentage of pixels switch class from one iteration to the other.
- The number of iterations reaches a maximum value Numerical values are automatically set to default values and may be modified.

Basic Scattering Mechanisms Identification:

This program creates binary and bitmap image files resulting from a basic scattering mechanism identification from the segmentation of polarimetric data using the Wishart H-Alpha and Wishart H-A-Alpha schemes..

Output Files

The basic scattering mechanism procedure creates output binary files and the corresponding bitmap image files.

• sgl_class.bin, dbl_class.bin, vol_class.bin, id_class.bin (bmp) where **sgl** stands for single bounce scattering mechanism, **dbl** for double bounce scattering mechanism and **vol** for volume scattering mechanism.

ColorMaps:

The colour coding of the bitmap output files is realized by the way of a 8, 9 or 16 element colormap initialised with arbitrary values. Users have the possibility to modify the elements of the colormap in an interactive way.

There exists also the possibility to create an automatic **Coded Colormap** obtained from an RGB colour coding of each Class Feature Vectors.