# 9.2.2 并行比较 ADC (Flash ADC) Simultaneous ADC



・ 刻度是什么?

一系列的标准电压

如何实现?

用电阻分压的办法

• 被量物体?

模拟输入电压vI

- 如何比较?电压比较器
- 如何同时比较?

每个电压刻度使用一个比较器

#### 1. 有舍有入并行比较ADC

参考电压  $V_{\text{ref}}$ 8 个电阻: 7 R (值) 电路 模拟输入电压  $V_{in}$  (与  $V_{ref}$  比较)



#### 输入信号 / 在不同范围内转换成对应的数字量, 真ስ表如下:

| 输入模拟信号<br>$V_{\rm in}$                                   | 阶<br>梯     | 等价模<br>拟输入<br><u>V</u> in | 比较器输出<br>C <sub>7</sub> C <sub>6</sub> C <sub>5</sub> C <sub>4</sub> C <sub>3</sub> C <sub>2</sub> C <sub>1</sub> | 输出1<br>异或门 | 输出<br>X <sub>1</sub> X <sub>2</sub> X <sub>3</sub> | 量化误差                       |
|----------------------------------------------------------|------------|---------------------------|-------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------|----------------------------|
| $0 \le V_{in} < \frac{1}{14} V_{ref}$                    | 0s         | 0                         | 0 0 0 0 0 0 0                                                                                                     | No         | 000                                                | $+\frac{1}{14}V_{ref}$     |
| $\frac{1}{14}V_{ref} \le V_{in} < \frac{3}{14}V_{ref}$   | <b>1s</b>  | $\frac{1}{7}FSR$          | 0 0 0 0 0 0 1                                                                                                     | 1          | 001                                                | $\pm \frac{1}{14} V_{ref}$ |
| $\frac{3}{14}V_{ref} \le V_{in} < \frac{5}{14}V_{ref}$   | <b>2</b> s | $\frac{2}{7}FSR$          | 0 0 0 0 0 1 1                                                                                                     | 2          | 010                                                | $\pm \frac{1}{14} V_{ref}$ |
| $\frac{5}{14}V_{ref} \le V_{in} < \frac{7}{14}V_{ref}$   | 3s         | $\frac{3}{7}FSR$          | 000111                                                                                                            | 3          | 011                                                | $\pm \frac{1}{14} V_{ref}$ |
| $\frac{7}{14}V_{ref} \le V_{in} < \frac{9}{14}V_{ref}$   | <b>4s</b>  | $\frac{4}{7}$ FSR         | 0 0 0 1 1 1 1                                                                                                     | 4          | 100                                                | $\pm \frac{1}{14} V_{ref}$ |
| $\frac{9}{14}V_{ref} \le V_{in} < \frac{11}{14}V_{ref}$  | 5s ×       | $\frac{5}{7}FSR$          | 0 0 1 1 1 1 1                                                                                                     | 5          | 101                                                | $\pm \frac{1}{14} V_{ref}$ |
| $\frac{11}{14}V_{ref} \le V_{in} < \frac{13}{14}V_{ref}$ | 6s         | $\frac{6}{7}FSR$          | 0 1 1 1 1 1 1                                                                                                     | 6          | 110                                                | $\pm \frac{1}{14} V_{ref}$ |
| $\frac{13}{14}V_{ref} \le V_{in} < V_{rej}$              | <b>7s</b>  | $V_{ref}$                 | 1 1 1 1 1 1 1                                                                                                     | 7          | 111                                                | $\pm\frac{1}{14}V_{ref}$   |

看出: V<sub>in</sub> 在第几号阶段内, 输出数字就是几

#### 2. 只舍不入并行比较ADC

#### 电路



#### 电路其他部分与有舍有入电 路相同

8 个电陷: 阻值 8R

分压,比较电平: $\frac{1}{8}V_{ref} \sim \frac{7}{8}V_{ref}$ 

阶梯: 0s~7s

输入模拟电压 V<sub>in</sub>, 与比较 电平相比较, 转换成数字量

# 3位 只舍不入并行比较 ADC真值表

| <b>V</b> <sub>in</sub>                                | 阶梯         | $\overline{V_{\scriptscriptstyle in}}$ | X <sub>1</sub> X <sub>2</sub> X <sub>3</sub> | 误差                   |
|-------------------------------------------------------|------------|----------------------------------------|----------------------------------------------|----------------------|
| $0 \le V_{in} < \frac{1}{8}V_{ref}$                   | 0s         | 0                                      | 0 6 0                                        | $\frac{1}{8}V_{ref}$ |
| $\frac{1}{8}V_{ref} \le V_{in} < \frac{2}{8}V_{ref}$  | <b>1s</b>  | $\frac{1}{8}V_{ref}$                   | 001                                          | $rac{1}{8}V_{ref}$  |
| $\frac{2}{8}V_{ref} \le V_{in} < \frac{3}{8}V_{ref}$  | <b>2</b> s | $\frac{2}{8}V_{rej}$                   | 0 10                                         | $rac{1}{8}V_{ref}$  |
| $\frac{3}{8}V_{ref} \le V_{in} < \frac{4}{8}V_{ref}$  | 3s (       | $\frac{3}{8}V_{rej}$                   | 0 11                                         | $rac{1}{8}V_{ref}$  |
| $\frac{4}{8}V_{ref} \le V_{in} < \frac{5}{8}V_{ref}$  | 4s         | $\frac{4}{8}V_{ref}$                   | 1 0 0                                        | $rac{1}{8}V_{ref}$  |
| $\frac{6}{8}V_{ref} \le V_{in} < \frac{7}{8}V_{ref}$  | <b>5</b> s | $\frac{5}{8}V_{ref}$                   | 1 0 1                                        | $\frac{1}{8}V_{ref}$ |
| $\frac{6}{8}V_{ref} \le V_{ref} < \frac{7}{8}V_{ref}$ | <b>6s</b>  | $\frac{6}{8}V_{ref}$                   | 1 10                                         | $\frac{1}{8}V_{ref}$ |
| $\frac{7}{8} V_{re,f} \le V_{in} < V_{ref}$           | <b>7</b> s | $\frac{7}{8}V_{ref}$                   | 1 1 1                                        | $\frac{1}{8}V_{ref}$ |

#### 并行比较 ADC (flash ADC)

优点: 目前速度最快的ADC (并行)

缺点: 硬件庞大

$$2^8 = 256$$
 个电阻

**255 D-FFs** 

8 个或门

#### 半闪烁A/D转换器-----价廉物美的ADC



第一步: 粗化量化

第二步: 细化量化

#### 9.2.3 逐次逼近型ADC (逐位比较型 ADC)

**Successive Approximation ADC** 

用天平称物体重量,从疑重的砝码开始试放,与被称物体进行比较



同样思路, 逐次比较型A/D转换器将输入模拟信号与不同的参考电压做多次比较, 使转换所得的数字量在数值上逐次逼近输入模拟量对应值

#### 逐次逼近型ADC框图





首先,寄存器清0. 数字输出:0...0.

寄存器高位(MSB)置1

寄存器输出:10...0

$$\left\{egin{array}{c} V_{\mathbf{o}} \ V_{\mathbf{i}} \end{array}
ight\}$$
 比较

若 $V_0$ ≥ $V_i$  去掉""; 若 $V_0$ < $V_i$  保留"1"

同样方法处理后面每一位数字,直到最低位比较完为 止。这时寄存器里所存的数码就是所求的输出数字量。

只舍不入 ADC

#### 3位逐次逼近 ADC 电路



逻辑门 G1~G0

首先, F<sub>A</sub>, F<sub>B</sub>, F<sub>C</sub> 置 0

 $FF_1 \sim FF_5$  置  $Q_1Q_2Q_3Q_4Q_5$ = 10000

 $X_1 X_2 X_3 = 000$ 

 $F_A$ ,  $F_B$ ,  $F_C$ :
同步 RS-FF ↑ S=R=0, Q: 保持  $S\neq R$ ,  $Q^{n+1}=S$ 

转换控制信号 V<sub>L</sub> 变成高电平以后, 转换开始



寄存諮右移一位, $Q_1Q_2Q_3Q_4Q_5 = 01000$ 



同时移位寄存器右移一位,变为00100。



同的,寄存器右移一位,变成00010。



 $Q_1Q_2Q_3Q_4Q_5 = 00010$ 

**注射** 
$$F_A \begin{cases} S = 0 \\ R = 0 \end{cases}$$
 
$$F_C \begin{cases} S = 0 \\ R = V \end{cases}$$

4th CLK F<sub>A</sub>、F<sub>B</sub>: 保持

如果原来  $V=1, Q_C=0;$ 如果原来  $V=0, Q_C=1.$ 

这时 $F_A$ 、 $F_B$ 、 $F_C$ 的状态就是所要的转换结果。

同时移位寄存器右移一位,变为00001状态。



 $Q_1Q_2Q_3Q_4Q_5 = 00001$ 

由于 $Q_5 = 1$ ,于是 $F_A$ 、 $F_B$ 、 $F_C$  的状态通过门  $G_6$ 、 $G_7$ 、 $G_8$  送到了输出端。

5th CLK

寄存器右移一位, 变成  $Q_1Q_2Q_3Q_4Q_5=10000$ 。

寄存器回到初始状.

同时,  $Q_5=0$ , 门 $G_6$ ,  $G_7$ ,  $G_8$  都锁住,停止输出

#### 转换时间

$$t = (n+2)T_{\text{CLK}}$$
  $n \text{ bit ADC}$ 

n 个脉冲n 次比较,第(n+1)个脉冲、状态送到输出端,第(n+2)个脉冲,电路恢复原状态。

#### 电路特点

- 1) 速度低于并行比较A/D
- 2) 输出位数较多时,逐次逼近型A/D转换器的电路规模比并行比较A/D小得多

逐次逼近型A/D转换器是目前集成A/D转换器产品中的最多的一种.

### 9.2.4 双积分ADC (Dual-Slop ADC)



#### 工作原理:

1. 采样阶段 (定时积分)



闭合  $K_2$ , C 放电.  $K_2$  断开 计数器清0, Q=0,  $K_1 \rightarrow V_0$ 

第一次积分开始,积分器在固定时间间隔 $(0\sim 4)$ 内对 $V_{in}$ 积分 C 充电.





## Vo 从 0 开始减小

$$:V_{\mathrm{O}}<0$$
,  $:V_{\mathrm{C}}=1$  与门开

CLK= CLK',开始计数

当 
$$t=t_1$$
,

计数器收到第  $(2^n-1)$ 个 CLK,  $Q_{n-1} \sim Q_0$  从 0...0 到 1...1,

$$T = 1 (Co = 1)$$





# 当第 n个 CLK 到来, 计数器清0, Q<sub>n</sub> 从 0 到 1.

$$V_{\rm i} = -V_{\rm ref}$$



#### 由积分原理,得到输出10公式

$$V_{O} = -\frac{1}{RC} \int_{0}^{t_{1}} V_{in} dt = -\frac{1}{RC} \overline{V_{in}} 2^{n} T_{C}$$

#### 采样点绝对值

 $2^{n}T_{C} = (t_{1} - 0)$   $2^{n}$ : 计数器模

V<sub>in</sub> 越大,深祥点的绝对值越大.

$$|V_{\rm O}| \propto \overline{V_{\rm in}}$$



这一段积分也称定时积分, 在固定时间( $2^nT_{\rm C}$ ) 积分, 电路确定,时间间隔确定.

在  $t = t_1$  时,采样结束, 开关 $K_1$  接相反极性的参 考电源 -  $V_{ref}$ 

$$K_1 \rightarrow -V_{ref}$$

 $V_{\rm i} = -V_{\rm ref}$ 

积分器开始第二轮积分







#### 2. 比较阶段 (定压积:

C放电

积分器 $A_1$ : 对- $V_{rei}$  积分,

将已采样的信号,与参考电压相比较

 $V_0$ : 从采样点  $\frac{\overline{V_{in}}}{RC} 2^n T_C$ ,以一个固定的斜率增大  $(R, C, V_{ref}$  具有确定值)





 $: V_{\text{C}}$  仍然  $< 0, V_{\text{C}} = 1,$  与门开门,  $\in LK = CLK'$ 

#### 计数器第二圈计数

当 C 放电结束,  $V_0 = 0$  (电容上电压为0)

$$\therefore V_{\rm C} = 0$$
, 与门锁住.

#### $t=t_2$ , 计数器停止计数

## N个CLK N: 第二圈计数器计的 CLK 个数, 十进制

$$V_O$$
:  $V_O(t_2 - t_1) = -\frac{1}{RC} \int_{t_1}^{t_2} (-V_{ref}) dt - \frac{1}{RC} \int_0^{t_1} V_{in} dt = 0$ 

$$\frac{1}{RC}V_{ref}NT_C = \frac{1}{RC}\overline{V_{in}}2^nT_C$$

$$N = \frac{\overline{V_{\text{in}}}}{V_{\text{ref}}} \times 2^n$$

n: n位计数器, 二进制

2n:计数器模值

N: 第二國计数器计的 CLK 个数。十进制



#### 结论:

1. 输入 $|V_{\rm in}|$  越大,采样点越高, 数字越大。

N (十进制)  $\propto |V_{\rm in}|$ 

- 2.  $|V_{\text{in}}| < |V_{\text{ref}}|$ ,确保 $N < 2^n$ .
  3.  $V_{\text{in}}$ 和 $V_{\text{ref}}$ 必须反向,
  - 才能使Vo回到零点

也可以 -  $V_{in}$  +  $V_{ref}$  , 或门. C=1封门.

4. N是整



#### A/D转换器的主要参数

#### 1.分辨率

A/D转换器的分辨率用输出二进制数的位数表示, 位数越多,误差越小,转换精度越高。

#### 2.转换速度

转换速度是指完成一次转换所需的时间。

#### 3.相对精度

在理想情况下,所有的转换点应当在一条直线上。相对精度是指实际的各个转换点偏离理想特性的误差。