

Criptografía

Facultad de ingeniería

Criptografía

 Es el arte o ciencia de cifrar y descifrar información mediante técnicas especiales.

¿Para qué se usa?

 Para permitir un intercambio de mensajes de forma confidencial por un medio inseguro.

¿Cómo funciona el cifrado?

E_k: Función para Encriptar (Cifrar)

D_k: Función para Desencriptar (Descifrar)

Tipos de Cifrado

Una vez que el emisor y receptor acuerdan que algoritmo de cifrado usar, se distinguen dos tipos de cifrado:

Cifrado simétrico

Se considera Simétrico si la clave de cifrado y descifrado son las mismas

© 2013 Cisco and/or its affiliates. All rights reserved.

Cifrado asimétrico

Se hace uso de dos claves distintas:

Pública: Generalmente para cifrar.

Privada: Generalmente para descifrar.

Métodos de encriptación de la Información

- Cifrado César
- Código por sustitución de letras
- Código por transposición
- Criptografía de clave secreta.DES
- Criptografía de clave pública. RSA

Cifrado César(I)

Funcionamiento:

- Reemplaza cada letra del alfabeto por otra más adelante en el alfabeto. Siempre a la misma distancia.
- La **clave** especifica la distancia.

Clave de sustitución: 3

Para cifrar y descifrar:

$$E_n(x) = x + n \mod 27.$$
 $D_n(x) = x - n \mod 27.$

Donde n es la clave, x la letra a cifrar y 27 el número de letras del alfabeto.

Código por Sustitución de Letras(I)

Funcionamiento:

- Reemplaza cada letra del alfabeto por otra.
- La clave especifica el tipo de sustitución.

Ejemplo:

Clave de sustitución:

Cifrar:

. EJEMPLO OSOQJRW

. HOLA LWRI

Problema.

Puede romperse fácilmente para textos planos usando la frecuencia relativa de las letras.

(Ejemplo: la 'a' es la letra más usada en español).

Mejora.

Cambiar la sustitución de cada letra de acuerdo con un patrón periódico (sustitución múltiple).

Ejemplo. Sustitución múltiple.

Seleccionamos un periodo L. Por ejemplo L=2;

La clave de sustitución sería:

1.	A	Н	L	0
••	L	0	Н	Α

Posición:	0	1	0	1
T. Cifrado:	0	Н	H	0
T. Plano:	Н	О	L	Α

Ejercicio: Cifrado de César

Desarrolle un programa simple que realice el cifrado de cesar. El usuario debe ingresar la clave a utilizar.

Tome en cuenta un alfabeto de 27 letras.

Ejercicio: Cifrado de César

Encripte la siguiente cadena utilizando una clave de sustitución igual a 20

Clave de sustitución: 3

Para cifrar y descifrar:

$$E_n(x) = x + n \mod 27.$$
 $D_n(x) = x - n \mod 27.$

Donde n es la clave, x la letra a cifrar y 27 el número de letras del alfabeto.

Código por Transposición

Para aplicarlo, se considera el texto en filas de **L (11 por ejemplo)** letras cada una, y se envía el texto columna a columna:

P = ESTO&ES&UNA&FRASE&ANTES&DE&LA&TRANSPOSICION.

C = E&SNSF&STRDPOAEO&S&SEELIS&AC&A&IUNTONTRNAEA.

- El código se puede romper probando varias longitudes de fila distintas.
- Combinando sustitución con transposición se puede alcanzar una seguridad fiable con algoritmos de bajo coste computacional.

© 2013 Cisco and/or its affiliates. All rights reserved.

Criptografía de Clave Pública

A diferencia de los algoritmos simétricos, ahora vamos a disponer de 2 tipos de claves (por cada usuario) :

- Clave pública
- Clave privada

La clave pública la conoce todo el mundo y la privada es secreta y va ligado a un usuario.

Es imposible (ó muy difícil) deducir la clave secreta a partir de clave pública.

Comparativa entre Simétrica y Asimétrica

	Simétrico	Asimétrico
Más seguro		X
Más rápido	X	
Número de claves	1	2
Problema más significativo	Distribución de claves	Velocidad

¿ Qué es lo deseado?

Combinar la velocidad con la seguridad

→ Criptosistemas híbridos

Criptografía de Clave Pública

El algoritmo más conocido es el RSA

Fue desarrollado en 1977.

(Rivest, Shamir, Adleman)

Actualmente es el primer sistema criptográfico y el mas utilizado.

Podemos cifrar y firmar digitalmente.

Investigación (Grupos – 2 pts.)

Investigar el funcionamiento de los siguientes algoritmos por medio de una ejemplo:

- 1. DES
- 2. RSA
- 3. Diffie-Hellman
- 4. PGP
- 5. GnuPG
- 6. Firma digital

La explicación debe ser grabada en un video, subirlo a la nube y publicarlo en el portal

Fecha entrega: Lunes 16 de noviembre