

# Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

#### высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

## ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ

по дисциплине: «Компьютерная графика»

| Студент                  | Гусаров Аркадий Ан       | Гусаров Аркадий Андреевич |  |  |
|--------------------------|--------------------------|---------------------------|--|--|
| Группа                   | РК6-63Б                  |                           |  |  |
| Тип задания              | Лабораторная работа №1-2 |                           |  |  |
| Название                 | «Знакомство с OpenGL»    |                           |  |  |
| Вариант лабораторной раб | боты 2                   |                           |  |  |
|                          |                          |                           |  |  |
|                          |                          |                           |  |  |
| Студент                  |                          | Гусаров А.А.              |  |  |
|                          | подпись, дата            | фамилия, и.о.             |  |  |
| Преподаватель            |                          | Витюков Ф.А.              |  |  |
|                          | подпись, дата            | фамилия, и.о.             |  |  |
|                          |                          |                           |  |  |
| Оценка                   |                          |                           |  |  |

### ОГЛАВЛЕНИЕ

| ЦЕЛЬ РАБОТЫ                   | . 3  |
|-------------------------------|------|
| Задание                       |      |
| Вводная часть                 |      |
| Разбор кода                   |      |
| Результаты работы программы   |      |
|                               |      |
| ВЫВОДЫ                        |      |
| СПИСО ИСПОЛЬЗУЕМЫХ иСТОЧНИКОВ | ٠. ک |

#### ЦЕЛЬ РАБОТЫ

Цель лабораторной работы - ознакомиться с синтаксисом базовых функций OpenGL.

#### Задание

Лабораторная работа состоит из двух частей:

- 1. Смоделировать фигуру (см. рис. 1) в OpenGL с помощью базовых функций и примитивов, изученных по методическим указаниям.
- 2. На одну из граней (закрашенную зеленым цветом см. рис. 1) полученной фигуры наложить текстуру, которая хранится в директории Data.



Рисунок 1. Вариант лабораторной работы – «Цилиндр»

#### Вводная часть

Для построения модели потребовалось разделить отрисовку на отдельные блоки: отрисовка боковой грани цилиндра, дна и крышки.

Для создания тела цилиндра использовался примитив  $GL\_QUAD\_STRIP$ . Работает он следующим образом: рисуются связанные четырехугольники. Первая, вторая, третья и четвертая вершина определяют первый четырехугольник. Третья, четвертая, пятая и шестая вершина - второй четырехугольник и т.д. (2n-1), 2n, (2n+1) и (2n+2) вершины задают n-ый четырехугольник.

В нашем случае, для построения боковой грани, задача состояла в том, чтобы пройти по всей окружности ( $2\pi$ ) с заданным шагом (чем он меньше, тем более гладкая будет грань) и передать в функцию *glVertex3f* координаты текущей точки на окружности и координаты на оси Z.

Для построения крышки и дна цилиндра, использовался примитив  $GL\_POLYGON$ , у которого все вершины определяют один многоугольник.

Здесь также было необходимо пройти по всей окружности  $(2\pi)$  с заданным шагом и передать в функцию glVertex3f координаты текущей точки на окружности и координаты на оси Z.



Рисунок 2. Построение примитивов GL\_QUAD\_STRIP и GL\_POLYGON

Если в процессе отрисовки примитивов не учесть, что центр фигуры должен находиться в центре глобальной системы координат, то при вращении модель будет смещена от центра рабочего окна. Чтобы этого избежать, необходимо в качестве верхней и нижней точек цилиндра указывать значения height/2 и -height/2 соответственно; height – высота цилиндра.

Также важно отметить, что в зависимости от шага, грань цилиндра может отрисоваться не до конца, из-за чего в цилиндре появятся «щели». Для предотвращения этого эффекта, имеет смысл итерироваться не до  $2\pi$ , а до  $2\pi$  +  $angle\_stepsize$ , где  $angle\_stepsize$  — шаг.



Рисунок 3. Построение окружности с помощью GL\_POLYGON

#### Разбор кода

Для выполнения лабораторной работы был изменен код в функциях DrawGLScene и LoadGLTextures. Разберём его:

1. *GLvoid LoadGLTextures()* - функция для загрузки картинки и конвертирования её в текстуру.

```
37
      // Загрузка картинки и конвертирование в текстуру
38
     □GLvoid LoadGLTextures()
39
          // Загрузка картинки
41
          AUX_RGBImageRec* texture1;
          texture1 = auxDIBImageLoad("Data/Mask1.bmp");
42
43
44
          // Создание текстуры
45
          glGenTextures(1, &texture[0]);
          glBindTexture(GL_TEXTURE_2D, texture[0]);
          glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
47
          glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
48
          glTexImage2D(GL_TEXTURE_2D, 0, 3, texture1->sizeX, texture1->sizeY, 0,
49
50
              GL_RGB, GL_UNSIGNED_BYTE, texture1->data);
```

2. *int DrawGLScene(GLvoid)* – функция отрисовки сцены. Очистим экран, выполним сброс просмотра, выполним сдвиг по оси Z «от экрана», зададим вращение по осям X, Y, Z, указываем OpenGL на область памяти с текстурой.

```
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
           glLoadIdentity();
148
                                                                // Reset The Current Modelview Matrix
           glTranslatef(0.0f,0.0f,-3.5f);
149
                                                                // Сдвиг по оси Z "от экрана"
150
           glRotatef(xrot,1.0f,0.0f,0.0f);
                                                                // Вращение по оси Х
151
152
           glRotatef(yrot,0.0f,1.0f,0.0f);
                                                                // Вращение по оси Y
153
           glRotatef(zrot,0.0f,0.0f,1.0f);
                                                                // Вращение по оси Z
           glBindTexture(GL_TEXTURE_2D, texture[0]);
154
```

3. Вызовем функцию *GLvoid DrawCylinder*(*GLfloat radius*, *GLfloat height*) для отрисовки цилиндра с аргументами 0.4f, 2.0f — радиус и высота цилиндра. Далее инициализируем переменные.

```
94 GLfloat z_center = height / 2;

95 GLfloat x = 0.0f;

96 GLfloat y = 0.0f;

97 GLfloat angle_cyl = 0.0f;

98 GLfloat angle_stepsize = 0.1f;

99 GLfloat angle_end = 2 * PI + angle_stepsize;
```

4. Построим боковую грань цилиндра с помощью примитива  $GL\_QUAD\_STRIP$ .

```
// Отрисовка боковой грани цилиндра
101
102
            glBegin(GL_QUAD_STRIP);
103
           angle_cyl = 0.0;
104
105
           while (angle_cyl < angle_end) {</pre>
             x = radius * cos(angle_cyl);
106
             y = radius * sin(angle_cyl);
107
108
             glVertex3f(x, y, -z_center);
109
             glVertex3f(x, y, z_center);
110
             angle_cyl += angle_stepsize;
111
112
113
           glEnd();
```

5. Построим верхнюю грань цилиндра с помощью примитива  $GL\_POLYGON$ .

```
// Отрисовка верхушки цилиндра
116
             glBegin(GL_POLYGON);
117
             angle_cyl = 0.0;
118
119
             while (angle_cyl < angle_end) {</pre>
               x = radius * cos(angle_cyl);
y = radius * sin(angle_cyl);
120
121
               glTexCoord2f(x, y);
122
123
               glVertex3f(x, y, z_center);
124
               angle_cyl += angle_stepsize;
125
126
             glEnd();
127
```

6. Построим нижнюю грань цилиндра с помощью примитива  $GL\_POLYGON$ .

```
// Отрисовка дна цилиндра
130
           glBegin(GL_POLYGON);
131
           angle_cyl = 0.0;
132
133
           while (angle_cyl < angle_end) {
134
             x = radius * cos(angle_cyl);
             y = radius * sin(angle_cyl);
135
136
             glTexCoord2f(x, y);
             glVertex3f(x, y, -z_center);
137
             angle_cyl += angle_stepsize;
138
139
140
141
           glEnd();
```

7. Далее в функции *DrawGLScene* зададим угол вращения фигуры и задержку в итерациях 8 мс.

```
162 Sleep(8);
163 return TRUE; // Keep Going
```

Весь код хранится на GitHub.

#### Результаты работы программы

В результате выполнения программы происходит построение цилиндра, на верхнюю грань которого наложена текстура.



Рисунок 4. Итоговая модель

#### ВЫВОДЫ

В результате выполнения лабораторной работы были изучены базовые функции OpenGL, их синтаксис и принципы построения 3D-моделей. В ходе выполнения работы была получена 3D-модель цилиндра.

Также были изучены функции создания и настройки параметров окна, функции построения геометрии объекта, способ UV-маппирования и отрисовки с помощью разных примитивов.

#### СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Paбота с OpenGL [Электронный ресурс] Режим доступа: <a href="http://pmg.org.ru/nehe/index.html">http://pmg.org.ru/nehe/index.html</a>
- 2. Витюков Ф. А. Лекции по дисциплине «Компьютерная графика» Москва: МГТУ им. Н. Э. Баумана, 2022.
- 3. Github Arcady1.

  <a href="https://github.com/Arcady1/University\_labs/tree/master/Computer\_Graphics/la">https://github.com/Arcady1/University\_labs/tree/master/Computer\_Graphics/la</a>
  <a href="mailto:b\_1\_2/lab1\_2">b\_1\_2/lab1\_2</a>