Biologically Plausible Deep Learning: A Critical Review

Robert Tjarko Lange¹ rtl17@ic.ac.uk www.rob-lange.com

Einstein Center for Neurosciences Berlin

January 21, 2019

 $^{^{1}} https://github.com/RobertTLange/Bio-Plausible-DeepLearning$

Motivation - Backpropagation

 \rightarrow MLP: Composition of layers $\{h_I\}_{I=1}^L$, $h_0 = x$, $\theta_I = \{W_I, b_I\}$ and "Learn" synaptic weights, $\Theta = \{\theta_I\}_{I=1}^L$ iteratively.

$$h_{l} := f(h_{l-1}; \theta_{l}) = \sigma_{l}(W_{l}h_{l-1} + b_{l})$$

$$\min_{\theta} \mathcal{L}(h_{L}|\Theta) = -\sum_{y} q(y|x) \log p(y|h_{L}; \Theta)$$

Motivation - Backpropagation

 \rightarrow MLP: Composition of layers $\{h_I\}_{I=1}^L$, $h_0 = x$, $\theta_I = \{W_I, b_I\}$ and "Learn" synaptic weights, $\Theta = \{\theta_I\}_{I=1}^L$ iteratively.

$$h_{l} := f(h_{l-1}; \theta_{l}) = \sigma_{l}(W_{l}h_{l-1} + b_{l})$$

$$\min_{\theta} \mathcal{L}(h_{L}|\Theta) = -\sum_{v} q(y|x) \log p(y|h_{L}; \Theta)$$

 \rightarrow Backpropagation:

$$\frac{\partial \mathcal{L}}{\partial \theta_{I}} = \left(\frac{dh_{I}}{d\theta_{I}}\right)^{T} \frac{\partial \mathcal{L}}{\partial h_{I}} = \left(\frac{dh_{I}}{d\theta_{I}}\right)^{T} \left(\frac{dh_{I+1}}{dh_{I}}\right)^{T} \frac{\partial \mathcal{L}}{\partial h_{I+1}}$$

$$= \left(\frac{dh_{I}}{d\theta_{I}}\right)^{T} \underbrace{\left(W_{I+1} diag\left(\sigma'_{I+1}(W_{I+1}h_{I} + b_{I+1})\right)\right)^{T}}_{:=\delta_{I+1}} \frac{\partial \mathcal{L}}{\partial h_{I+1}}$$

$$= \left(\frac{dh_{I}}{d\theta_{I}}\right)^{T} \delta_{I+1} \delta_{I+2} \frac{\partial \mathcal{L}}{\partial h_{I+2}} = \dots$$

$$= \left(\frac{dh_{I}}{d\theta_{I}}\right)^{T} \left(\prod_{I=1}^{L} \delta_{I}\right) \frac{\partial \mathcal{L}}{\partial h_{L}}$$

$$\frac{\partial \mathcal{L}}{\partial \theta_I} = \left(\frac{dh_I}{d\theta_I}\right)^T \left(\prod_{i=I+1}^L \delta_i\right) \frac{\partial \mathcal{L}}{\partial h_L}$$

■ Weight Transport Problem

$$\frac{\partial \mathcal{L}}{\partial \theta_I} = \left(\frac{dh_I}{d\theta_I}\right)^T \left(\prod_{i=I+1}^L \delta_i\right) \frac{\partial \mathcal{L}}{\partial h_L}$$

- ☑ Weight Transport Problem
- Global signed error signal

$$\frac{\partial \mathcal{L}}{\partial \theta_I} = \left(\frac{dh_I}{d\theta_I}\right)^T \left(\prod_{i=I+1}^L \delta_i\right) \frac{\partial \mathcal{L}}{\partial h_L}$$

- ☑ Weight Transport Problem
- ☑ Global signed error signal

$$\frac{\partial \mathcal{L}}{\partial \theta_I} = \left(\frac{dh_I}{d\theta_I}\right)^T \left(\prod_{i=I+1}^L \delta_i\right) \frac{\partial \mathcal{L}}{\partial h_L}$$

- ☑ Weight Transport Problem
- ☑ Global signed error signal
- ☐ Alternatives:
 - Feedback Alignment (Lillicrap et al., 2016)
 - o Target Propagation (Lee et al., 2014)

$$\frac{\partial \mathcal{L}}{\partial \theta_I} = \left(\frac{dh_I}{d\theta_I}\right)^T \left(\prod_{i=I+1}^L \delta_i\right) \frac{\partial \mathcal{L}}{\partial h_L}$$

- ☑ Weight Transport Problem
- ☑ Global signed error signal
- ☐ Alternatives:
 - o Feedback Alignment (Lillicrap et al., 2016)
 - o Target Propagation (Lee et al., 2014)
- ☐ Problems with Alternatives:
 - Need form of info transmission to determine local errors
 - Not possible in single compartment neurons without feedback pathway

Motivation - Electrical Segregation of \downarrow and \uparrow Info

- → Körding & König (2001): Local error computation via electrical segregation
- → Multi-compartmental segregation avoids need for feedback pathway
- \rightarrow Apical dendrites (\Downarrow)
- ightarrow Basal dendrites (\Uparrow)

Motivation - Electrical Segregation of \downarrow and \uparrow Info

- → Körding & König (2001): Local error computation via electrical segregation
- → Multi-compartmental segregation avoids need for feedback pathway
- \rightarrow Apical dendrites (\Downarrow)
- \rightarrow Basal dendrites (\uparrow)

→ Plateau Potentials:

- ∘ Apical \Rightarrow soma via voltage-gate Ca^{2+} channels
- Prolonged upswing in MP due to events in apical shaft
- ⇒ Can guide plasticity in pyramidal neurons

Guerguiev et al. (2017) - Neuron and Network Model

ightarrow 3 Compartment Hidden Layer: $\mathbf{V}^{0a}(t), \mathbf{V}^{0b}(t), \mathbf{V}^{0}(t) \in \mathbb{R}^{m}$

$$\tau \frac{dV_{i}^{0}(t)}{dt} = -V_{i}^{0}(t) + \frac{g_{b}}{g_{l}} \left(V_{i}^{0b}(t) - V_{i}^{0}(t) \right) + \frac{g_{a}}{g_{l}} \left(V_{i}^{0a}(t) - V_{i}^{0}(t) \right)$$
$$V_{i}^{0b} = \sum_{j=1}^{l} W_{ij}^{0} s_{j}^{input}(t) + b_{i}^{0} \text{ and } V_{i}^{0a} = \sum_{j=1}^{n} Y_{ij} s_{j}^{1}(t)$$

Guerguiev et al. (2017) - Neuron and Network Model

ightarrow 3 Compartment Hidden Layer: $\mathbf{V}^{0a}(t), \mathbf{V}^{0b}(t), \mathbf{V}^{0}(t) \in \mathbb{R}^{m}$

$$\tau \frac{dV_{i}^{0}(t)}{dt} = -V_{i}^{0}(t) + \frac{g_{b}}{g_{l}} \left(V_{i}^{0b}(t) - V_{i}^{0}(t)\right) + \frac{g_{a}}{g_{l}} \left(V_{i}^{0a}(t) - V_{i}^{0}(t)\right)$$
$$V_{i}^{0b} = \sum_{j=1}^{l} W_{ij}^{0} s_{j}^{input}(t) + b_{i}^{0} \text{ and } V_{i}^{0a} = \sum_{j=1}^{n} Y_{ij} s_{j}^{1}(t)$$

ightarrow 2 Compartment Output Layer: $\mathbf{V}^{1b}(t), \mathbf{V}^{1}(t) \in \mathbb{R}^{n}$

$$au rac{dV_i^1(t)}{dt} = -V_i^1(t) + rac{g_d}{g_I} \left(V_i^{1b}(t) - V_i^1(t)
ight) + I_i(t) \ V_i^{1b} = \sum_{j=1}^I W_{ij}^1 s_j^0(t) + b_i^1 \$$

ightarrow $s_{j}^{input}(t)=\sum_{k}\kappa(t-t_{jk}^{input})$ with κ response kernel

Guerguiev et al. (2017) - Credit Assignment Signals

Guerguiev et al. (2017) - Credit Assignment Signals

 \rightarrow How is learning defined in such a model?

Forward phase dynamics \Leftrightarrow Target phase dynamics

 \rightarrow How is learning defined in such a model?

Forward phase dynamics \Leftrightarrow Target phase dynamics

- ⇒ Somatic compartments generate Poisson process spikes:
 - \circ Rates-of-fire: $\phi_i^I(t) = \phi_{max} \sigma(V_i^I(t))$

 \rightarrow How is learning defined in such a model?

Forward phase dynamics \Leftrightarrow Target phase dynamics

- ⇒ Somatic compartments generate Poisson process spikes:
 - Rates-of-fire: $\phi_i^I(t) = \phi_{max}\sigma(V_i^I(t))$
- ⇒ Output Layer:
 - \circ Target firing rates: $\phi_i^{1\star} = \frac{1}{\Delta t_2} \int_{t_1 + \Delta t_s}^{t_2} \phi_i^1(t) dt$
 - $\text{O Loss function: } L^1 = ||\phi_i^{1\star} \frac{\bar{\phi}_i^{1f}}{\phi_i^{f}}||_2^2 = \\ ||\frac{1}{\Delta t_2} \int_{t_1 + \Delta t_s}^{t_2} \phi_i^{1}(t) dt \frac{1}{\Delta t_1} \int_{t_0 + \Delta t_s}^{t_1} \phi_i^{1}(t) dt||_2^2$

 \rightarrow How is learning defined in such a model?

Forward phase dynamics ⇔ Target phase dynamics

- ⇒ Somatic compartments generate Poisson process spikes:
 - Rates-of-fire: $\phi_i^l(t) = \phi_{max} \sigma(V_i^l(t))$
- \Rightarrow Output Layer:
 - \circ Target firing rates: $\phi_i^{1\star} = \frac{1}{\Delta t_2} \int_{t_1 + \Delta t_s}^{t_2} \phi_i^1(t) dt$
 - Loss function: $L^1 = ||\phi_i^{1\star} \bar{\phi}_i^{1f}||_2^2 =$ $\left\| \frac{1}{\Delta t_2} \int_{t_1 + \Delta t_s}^{t_2} \phi_i^1(t) dt - \frac{1}{\Delta t_1} \int_{t_0 + \Delta t_s}^{t_1} \phi_i^1(t) dt \right\|_2^2$
- ⇒ Hidden Laver:

 - Target firing rates: $\phi_i^{0\star} = \bar{\phi}_i^{0f} + \alpha_i^t \alpha_i^f$ Loss function: $L^0 = ||\phi_i^{0\star} \bar{\phi}_i^{0f}||_2^2 = ||\alpha^t \alpha^f||_2^2$

 \rightarrow How is learning defined in such a model?

Forward phase dynamics ⇔ Target phase dynamics

- ⇒ Somatic compartments generate Poisson process spikes:
 - Rates-of-fire: $\phi_i^l(t) = \phi_{max} \sigma(V_i^l(t))$
- \Rightarrow Output Layer:
 - \circ Target firing rates: $\phi_i^{1\star} = \frac{1}{\Delta t_2} \int_{t_1 + \Delta t_s}^{t_2} \phi_i^1(t) dt$
 - Loss function: $L^1 = ||\phi_i^{1\star} \bar{\phi}_i^{1f}||_2^2 =$ $\left\| \frac{1}{\Delta t_2} \int_{t_1 + \Delta t_s}^{t_2} \phi_i^1(t) dt - \frac{1}{\Delta t_1} \int_{t_2 + \Delta t_s}^{t_1} \phi_i^1(t) dt \right\|_2^2$
- ⇒ Hidden Laver:

 - Target firing rates: $\phi_i^{0\star} = \bar{\phi}_i^{0f} + \alpha_i^t \alpha_i^f$ Loss function: $L^0 = ||\phi_i^{0\star} \bar{\phi}_i^{0f}||_2^2 = ||\alpha^t \alpha^f||_2^2$
- ⇒ Local error minimization via SGD

Experiments - Learning Dynamics: Performance

Experiments - Learning Dynamics: Dynamics

Experiments - Learning Dynamics: Robustness

Guerguiev et al. (2017) - Accomplishments/Problems

- ${f extbf{v}}$ Segregated compartments generate local targets that act as credit assignment signals in a physiologically plausible manner
- ✓ Signal can be used to exploit depth in near-continuous time

ightarrow Huge hyperparameter space ightarrow most likely not robust!

Physiological Problems

- \rightarrow How is the teaching signal internally generated?
- ightarrow 2 global phases? Length sampled from inverse Gaussian
- ightarrow Stoch. gen. of plateau potentials apical calcium spikes
- ⇒ Sacramento *et al.* (2018): Neocortical micro-circuits and inhibitory interneurons might act synchronizing.

Literature Review

	Backprop (Rummelhart et al., 1986)	Feedback Alignment (Lillicrap et al., 2016)	Target Propagation (LeCun, 1986)	Difference TP (Lee et al., 2015)	Simplified DTP (Bartunov et al., 2018)	Segregated Compartments (Guergiev et al., 2017)	Microcircuits (Sacramento et al., 2018)
Exact Gradients		×	×	×	×	×	(In Limit)
No Weight Transport	×	V	(Final Layer)	(Final Layer)	V	V	V
No Separate Pathways	V	×	×	×	×	V	V
Dendritic Integration	-	×	×	×	×	V	V
Separate Weights Learned	-	×	V	~	~	×	V/X
Linear Stabilization	-	-	×	~	~	-	-
Explicit Error Representation	V	V	V	V	V	×	V

What do I want to analyze? What's next?

```
Literature Review
  Feedback Alignment (Lillicrap et al., 2016)

✓ Target Propagation (Lee et al., 2014; Bartunov et al., 2018),

  Segregated Compartments (Guerguiev et al., 2017; Sacramento
     et al., 2018)
Implement different models/learning rules

✓ Standard Backprop MLP, CNN in PyTorch

  ✓ Segregated Compartment MLP in Numpy
  \square k-fold CV pipeline for SC MLP
Analyze learning dynamics
  ||W_t||_F - Overfitting? ||\Delta W_t||_F - Convergence? ||\Delta \nabla W_t||_F - Local
     optima? Feedback alignment - Inverse Jacobian
     Different SGD variants: Momentum, Adam, RMSprop
Analyze Hyperparameter/Dataset Robustness
  Different datasets (MNIST, Fashion, CIFAR-10)
     Bayesian Optimization for Hyperparam. Search Backprop
     Bayesian Optimization for Hyperparam. Search SC
```

References I

- Bartunov, Sergey, Santoro, Adam, Richards, Blake, Marris, Luke, Hinton, Geoffrey E, & Lillicrap, Timothy. 2018.

 Assessing the scalability of biologically-motivated deep learning algorithms and architectures. Pages 9389–9399 of: Advances in Neural Information Processing Systems.
- Guerguiev, Jordan, Lillicrap, Timothy P, & Richards, Blake A. 2017. Towards deep learning with segregated dendrites. ELife, 6, e22901.
- Körding, Konrad P, & König, Peter. 2001. Supervised and unsupervised learning with two sites of synaptic integration. Journal of computational neuroscience, 11(3), 207–215.
- Lee, Dong-Hyun, Zhang, Saizheng, Biard, Antoine, & Bengio, Yoshua. 2014. Target Propagation. CoRR, abs/1412.7525.
- Lillicrap, Timothy P, Cownden, Daniel, Tweed, Douglas B, & Akerman, Colin J. 2016. Random synaptic feedback weights support error backpropagation for deep learning. Nature communications, 7, 13276.
- Sacramento, João, Costa, Rui Ponte, Bengio, Yoshua, & Senn, Walter. 2018. Dendritic cortical microcircuits approximate the backpropagation algorithm. *Pages 8735–8746 of: Advances in Neural Information Processing Systems*.