Tale Box

Projet Traitement automatique du texte en Intelligence Artificielle

Ben Fredj Yasmine

2020 - 2021

Plan

- I. Introduction
- II. Les Taches principales
 - Collecte des données
 - Prétraitement des données
 - Modélisation et prédiction du sujet
 - Génération du texte
- III. Analyse des erreurs
- IV. Amélioration Possibles
- V. Démonstration
- VI. Conclusion

I. Introduction

Jeu Textuel développer en Python et relevant des concepts NLP (Natural Language Processing). Il peut :

- ➤ Discuter avec nous (NLU / NLG)
- ➤ Nous aider à raconter une histoire (NLG)
- > Deviner le thème de l'histoire (NLU)

Importé les données

Prétraitement Entrainer les modèles

Collecte des données

Pour reconnaitre le thème d'une histoire comme pour pouvoir en rédiger, nos modelés ont besoin d'un grand nombre de données.

Ce données consiste à 300 contes, histoires et légendes que j'ai collecter personnellement.

Prétraitement des données

Supprimer les caractères spéciaux

Avec librairie « re.sub »

Tokenizer

Avec « nltk.word_tokenize »

Création des Bigrames et Trigrammes

Avec « gensim.models.Phrases »

Filtre les mot d'arrêt

Mots de « nltk.corpus » (en français)

Lemmatiser

Avec librairie « spacy »

Adverbe, Adjectif, Nom, Verbe

Modélisation

Allocation de Dirichelet latente (LDA):

- Un modèle génératif probabiliste qui permet de regroupé des données autours d'un nombre définie de thèmes par le liens de ressemblance.
- Ce modèle nous permet d'avoir K listes de N mots et chaque liste est un thème.
- Ensuite à nous d'essayer d'analyser les mots pour savoir à quelle thème elles correspondent.

Modélisation: Prédiction des thèmes

Création de sacs des mots (indice, fréquence)

Avec « CountVectorizer » de « sklearn.feature_extraction.text »

Chercher les meilleurs hyperparamètres pour le model LDA

Avec la méthode « GridSearch » de « sklearn.model_selection »

Avec « sklearn.decomposition »

Générations de texte

Répondre à des question basique

ChatterBot

Continuer la rédaction d'une histoire

Modèle de markov

III. Analyse des erreurs

- ➤ Le model de Markov peut ne pas reconnaitre un état s'il ne l'a jamais rencontrer dans la phase de l'entrainement .
- > Erreurs de génération de texte:
 - Phrases non finis
 - Phrases avec un sens ambiguë
 - Phrases sui ont tendance à s'éloigné du contexte
- > Prédiction du sujets peut ne pas être précise
- ➤ Le bot peut ne pas répondre correctement dans la discutions s'il n'a pas était entrainer sur plusieurs discutions.

V. Démonstration

IV. Améliorations possibles

- > Avoir un jeu de données plus grand et plus organiser.
- > Avoir une génération de texte plus adapter pour avoir des phrases fini et pouvoir garder le contexte de l'histoire tout au long.
- > Entrainer notre bot sur plus de discutions.
- > Améliorer l'interface graphique.
- ➤ Ajouter plus d'option au jeu:
 - Permettre au joueur de faire un choix entre plusieurs suites de texte.
 - Permettre au bot d'analyser l'état d'esprits du joueur avec l'histoire générer.

VI. Conclusion

- ➤ Objectifs plus ou moins Atteints
- > Découvert de nombreuse librairies et concept de traitement automatique de texte
- > Découverte de la difficulté de permettre à l'ordinateur d'agir comme un humain

