07/03/2025, 21:41 about:blank

Folha de Dicas: Regressão Linear e Logística

Comparando diferentes tipos de regressão

Nome do Modelo	Descrição	Sintaxe do Código
Regressão linear simples	Objetivo: Prever uma variável dependente com base em uma variável independente. Prós: Fácil de implementar, interpretar e eficiente para pequenos conjuntos de dados. Contras: Não é adequada para relações complexas; propensa a subajuste. Equação de modelagem: y = b ₀ + b ₁ x	<pre>from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, y)</pre>
Regressão polinomial	Objetivo: Capturar relações não lineares entre variáveis. Prós: Melhor para ajustar dados não lineares em comparação com a regressão linear. Contras: Propensa a sobreajuste com polinômios de alto grau. Equação de modelagem: $y = b_0 + b_1 x + b_2 x^2 +$	<pre>from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X) model = LinearRegression().fit(X_poly, y)</pre>
Regressão linear múltipla	Objetivo: Prever uma variável dependente com base em múltiplas variáveis independentes. Prós: Considera múltiplos fatores que influenciam o resultado. Contras: Assume uma relação linear entre preditores e alvo. Equação de modelagem: $y = b_0 + b_1 x_1 + b_2 x_2 +$	<pre>from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, y)</pre>
Regressão logística	Objetivo: Prever probabilidades de resultados categóricos. Prós: Eficiente para problemas de classificação binária. Contras: Assume uma relação linear entre variáveis independentes e log-odds. Equação de modelagem: $\log(p/(1-p)) = b_0 + b_1x_1 +$	<pre>from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X, y)</pre>

Funções associadas comumente usadas

Nome da Função/Método	Descrição Breve	Sintaxe do Código
train_test_split	Divide o conjunto de dados em subconjuntos de treinamento e teste para avaliar o desempenho do modelo.	<pre>from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)</pre>
StandardScaler	Padroniza as características removendo a média e escalando para variância unitária.	<pre>from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X)</pre>
log_loss	Calcula a perda logarítmica, uma métrica de desempenho para modelos de classificação.	<pre>from sklearn.metrics import log_loss loss = log_loss(y_true, y_pred_proba)</pre>
mean_absolute_error	Calcula o erro absoluto médio entre os valores reais e previstos.	<pre>from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_true, y_pred)</pre>
mean_squared_error	Calcula o erro quadrático médio entre os valores reais e previstos.	<pre>from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_true, y_pred)</pre>
root_mean_squared_error	Calcula a raiz do erro quadrático médio (RMSE), uma métrica comumente usada para tarefas de regressão.	<pre>from sklearn.metrics import mean_squared_error import numpy as np rmse = np.sqrt(mean_squared_error(y_true, y_pred))</pre>

about:blank 1/2

07/03/2025, 21:41 about:blank

	Descrição Breve	Sintaxe do Código
r2_score	Calcula o valor R-quadrado, indicando quão bem o modelo explica a variabilidade da variável alvo.	<pre>from sklearn.metrics import r2_score r2 = r2_score(y_true, y_pred)</pre>

Autor(es)

<u>Jeff Grossman</u> <u>Abhishek Gagneja</u>

about:blank 2/2