Advice Engine for building a Business in a Chosen Area

Mahdi Arfaoui

15, Nov 2020

Introduction

One of the most pillars in a building a physical B2C Business, is to choose a convenient place, where the project will have all the assets it needs (Client target, strategical location, provision, supplying, distributing ...).

So study location part is a must phase to do in the BPM of the Project.

Problem

It is not an easy task to choose wisely a great location for a certain business, the factors are multiple and diversified, gathering data, processing it, understanding it, and extract knowledge from it, is a big issue and the key to accomplish this purpose.

Data Processing

1- Data Acquisition:

to make things simpler, I worked on the Manhattan city data, there is a data set already prepared (!wget -q -O 'newyork_data.json' https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-DS0701EN-SkillsNetwork/labs/newyork_data.json)

2 – Data Cleaning

As you may notice from the link, it is a New York city data.

```
{'type': 'FeatureCollection',
 'totalFeatures': 306,
'features': [{'type': 'Feature',
   'id': 'nyu 2451 34572.1',
   'geometry': {'type': 'Point',
    'coordinates': [-73.84720052054902, 40.89470517661]},
   'geometry name': 'geom',
   'properties': {'name': 'Wakefield',
    'stacked': 1,
    'annoline1': 'Wakefield',
    'annoline2': None,
    'annoline3': None,
    'annoangle': 0.0,
    'borough': 'Bronx',
    'bbox': [-73.84720052054902,
    40.89470517661,
    -73.84720052054902,
    40.89470517661]}},
 {'type': 'Feature',
```

By simple look on the json data, we could see that this data is composed of numerous Borough with each one have multiple Neighborhoods. With simple instruction we could see the Data into a structured Data Frame.

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905643
4	Bronx	Riverdale	40.890834	-73.912585

We extract then the Manhattan City data and placed into a Data Frame.

	Borough	Neighborhood	Latitude	Longitude
0	Manhattan	Marble Hill	40.876551	-73.910660
1	Manhattan	Chinatown	40.715618	-73.994279
2	Manhattan	Washington Heights	40.851903	-73.936900
3	Manhattan	Inwood	40.867684	-73.921210
4	Manhattan	Hamilton Heights	40.823604	-73.949688

Here is the distribution of the Neighborhoods on the map:

Paterson
Totowa 55
38.48 ElmwoodPark
Woodland
Park
Garfield Lodi ad
Park
Garfield Lodi ad
Park
Cedar Grove
1534

Werona
Montclair
Werona
Montclair
Werona
Montclair
West Orange
Mest Orange

3 – Data Exploratory

Our main purpose is to determine the best places where a client want to build a project, there are multiple factors to choose such a place (business nature, client target, ways of supplying and distributing, concurrent project ...).

Since I don't have a data set where all these factors are presented, I'm going to only make this study based on the other concurrent business.

For example, if a client want to build a Gym, we'll see if the region he want to build his project on, has multiple gyms or a little number, and make our decision upon the result.

For that purpose, we are going to load the visited venues for the specific area from **Foursquare** api with their location coordinates and their category.

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	Marble Hill	40.876551	-73.91066	Arturo's	40.874412	-73.910271	Pizza Place
1	Marble Hill	40.876551	-73.91066	Bikram Yoga	40.876844	-73.906204	Yoga Studio
2	Marble Hill	40.876551	-73.91066	Tibbett Diner	40.880404	-73.908937	Diner
3	Marble Hill	40.876551	-73.91066	Dunkin'	40.877136	-73.906666	Donut Shop
4	Marble Hill	40.876551	-73.91066	Starbucks	40.877531	-73.905582	Coffee Shop

we are going to assemble categories, for example if a category have the word "Restaurant" then it will become that name ("Fast Food Restaurant" will become "Restaurant")

To make things easier to process, I'll work only on 6 categories : "Gym", "Restaurant", "Shop", "Hotel", "Bar" and "Café".

61	Chinatown	40.715618	-73.994279	Sofar HQ	40.713523	-73.996289	Music Venue
62	Chinatown	40.715618	-73.994279	Yi Ji Shi Mo Noodle Corp	40.718254	-73.995930	Restaurant
63	Chinatown	40.715618	-73.994279	Bacaro	40.714468	-73.991589	Restaurant
64	Chinatown	40.715618	-73.994279	Hong Kong Supermarket 香港超級市場	40.717596	-73.996173	Supermarket
65	Chinatown	40.715618	-73.994279	oo35mm.com	40.716605	-73.997890	Shop
66	Chinatown	40.715618	-73.994279	Simple	40.718145	-73.991988	Restaurant
67	Chinatown	40.715618	-73.994279	Jing Fong Restaurant 金豐大酒樓	40.715881	-73.997209	Restaurant
68	Chinatown	40.715618	-73.994279	99 Favor Taste 99號餐廳	40.717560	-73.992580	Restaurant
69	Chinatown	40.715618	-73.994279	l'estudio	40.715720	-73.990332	Restaurant
70	Chinatown	40.715618	-73.994279	Nam Son Vietnamese Restaurant	40.718215	-73.994345	Restaurant
71	Chinatown	40.715618	-73.994279	Little Canal	40.714317	-73.990361	Shop
72	Chinatown	40.715618	-73.994279	Joe's Shanghai 鹿鳴春	40.715661	-73.996693	Restaurant
		10 745010	70.004070	0.11.5:	10.740154	70.004040	D:

We could see the change easily.

Now we will eliminate the venues that have not the categories we work on.

i	index	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	9	Marble Hill	40.876551	-73.910660	Land & Sea Restaurant	40.877885	-73.905873	Restaurant
1	24	Chinatown	40.715618	-73.994279	Spicy Village	40.717010	-73.993530	Restauran
2	27	Chinatown	40.715618	-73.994279	Kiki's	40.714476	-73.992036	Restauran
3	29	Chinatown	40.715618	-73.994279	Wah Fung Number 1 Fast Food 華豐快餐店	40.717278	-73.994177	Restauran
4	32	Chinatown	40.715618	-73.994279	Da Yu Hot Pot 大渝火锅	40.716735	-73.995752	Restauran
5	35	Chinatown	40.715618	-73.994279	Xi'an Famous Foods	40.715232	-73.997263	Restauran
6	39	Chinatown	40.715618	-73.994279	Forgtmenot	40.714459	-73.991546	Restauran
7	41	Chinatown	40.715618	-73.994279	Dimes	40.714830	-73.991719	Restauran
8	44	Chinatown	40.715618	-73.994279	Ling Kee Malaysian Beef Jerky	40.714713	-73.991538	Restauran
9	47	Chinatown	40.715618	-73.994279	Cervo's	40.714763	-73.991455	Restauran
10	F.4	Oh:	40.745040	70 00 4070	Hannel and Hat Dat Manhattan	40 747000	70 005107	D+

We can see clearly that we only have the categories that we want in the DF.

Now we going to calculate how often a venue is visited, by giving each categories a dummy number then calculating the mean by each Neighborhood.

Our result is:

	Neighborhood	Bar	Café	Gym	Hotel	Restaurant	Shop
0	Battery Park City	0.041667	0.000000	0.166667	0.208333	0.166667	0.416667
1	Carnegie Hill	0.111111	0.074074	0.111111	0.018519	0.388889	0.296296
2	Central Harlem	0.206897	0.034483	0.068966	0.000000	0.517241	0.172414
3	Chelsea	0.096154	0.038462	0.038462	0.038462	0.403846	0.384615
4	Chinatown	0.134328	0.000000	0.000000	0.014925	0.597015	0.253731
5	Civic Center	0.105263	0.017544	0.140351	0.105263	0.403509	0.228070
6	Clinton	0.163636	0.018182	0.163636	0.072727	0.400000	0.181818
7	East Harlem	0.100000	0.050000	0.050000	0.000000	0.750000	0.050000
8	East Village	0.250000	0.013158	0.000000	0.000000	0.500000	0.236842
9	Financial District	0.175439	0.052632	0.087719	0.052632	0.350877	0.280702
10	Flatiron	0.049180	0.032787	0.098361	0.000000	0.524590	0.295082
11	Gramercy	0.214286	0.035714	0.000000	0.035714	0.392857	0.321429
12	Greenwich Village	0.041667	0.055556	0.041667	0.013889	0.652778	0.194444
13	Hamilton Heights	0.189189	0.108108	0.000000	0.000000	0.513514	0.189189
14	Hudson Yards	0.062500	0.062500	0.187500	0.156250	0.406250	0.125000
15	Inwood	0.129032	0.096774	0.000000	0.000000	0.580645	0.193548
16	Lenox Hill	0.131148	0.049180	0.098361	0.000000	0.459016	0.262295
17	Lincoln Square	0.052632	0.105263	0.157895	0.026316	0.368421	0.289474

A simple processing with this df, we could extract top 3 visited venues for each Neighborhood

```
venue freq
Shop 0.42
Hotel 0.21
Gym 0.17

----Carnegie Hill----
venue freq
Restaurant 0.39
Shop 0.30
Bar 0.11

----Central Harlem----
venue freq
Restaurant 0.52
```

Bar 0.21 Shop 0.17

1

2

We'll make now a structured df to visualize this information on all Neighborhoods, and we'll use later to extract best location for a giving business.

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue
0	Battery Park City	Shop	Hotel	Restaurant	Gym	Bar	Café
1	Carnegie Hill	Restaurant	Shop	Gym	Bar	Café	Hotel
2	Central Harlem	Restaurant	Bar	Shop	Gym	Café	Hotel
3	Chelsea	Restaurant	Shop	Bar	Hotel	Gym	Café
4	Chinatown	Restaurant	Shop	Bar	Hotel	Gym	Café

Let's add the locations:

Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue	6th Most Common Venue
0 Manhattan	Marble Hill	40.876551	-73.910660	3	Shop	Gym	Restaurant	Hotel	Café	Bar
1 Manhattan	Chinatown	40.715618	-73.994279	2	Restaurant	Shop	Bar	Hotel	Gym	Café
2 Manhattan	Washington Heights	40.851903	-73.936900	0	Restaurant	Shop	Café	Gym	Bar	Hotel
3 Manhattan	Inwood	40.867684	-73.921210	2	Restaurant	Shop	Bar	Café	Hotel	Gym
4 Manhattan	Hamilton Heights	40.823604	-73.949688	2	Restaurant	Shop	Bar	Café	Hotel	Gym

You are must wondering why 'Cluster Label' there, well it just for more clear picture how the data is distributed, here's the plot in the next figure map :

Extracting Target Information:

We'll extract the top 3 venues with theirs locations into our final df (3 is our threshold, we could choose any other number according to the client desire – to be included in the **future directions** section)

	Neighborhood	Latitude	Longitude	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue
0	Marble Hill	40.876551	-73.910660	Shop	Gym	Restaurant
1	Chinatown	40.715618	-73.994279	Restaurant	Shop	Bar
2	Washington Heights	40.851903	-73.936900	Restaurant	Shop	Café
3	Inwood	40.867684	-73.921210	Restaurant	Shop	Bar
4	Hamilton Heights	40.823604	-73.949688	Restaurant	Shop	Bar
5	Manhattanville	40.816934	-73.957385	Restaurant	Shop	Bar
6	Central Harlem	40.815976	-73.943211	Restaurant	Bar	Shop
7	East Harlem	40.792249	-73.944182	Restaurant	Bar	Shop
8	Upper East Side	40.775639	-73.960508	Restaurant	Shop	Hotel
9	Yorkville	40.775930	-73.947118	Restaurant	Shop	Gym
10	Lenox Hill	40.768113	-73.958860	Restaurant	Shop	Bar
11	Roosevelt Island	40.762160	-73.949168	Shop	Restaurant	Gym
12	Upper West Side	40.787658	-73.977059	Restaurant	Shop	Bar

After creating a function to eliminate all the places where our client choice included in their top 3 visited venues we got this the example of "Bar"

```
#Let's polt the places where the licent want to build a Bar
input = "Bar"

target_df = adviceMe(input)
target_df.head()

Neighborhood Latitude Longitude 1st Most Common Venue 2nd Most Common Venue
3rd Most Common Venue
```

	Neighborhood	Latitude	Longitude	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue
0	Marble Hill	40.876551	-73.910660	Shop	Gym	Restaurant
2	Washington Heights	40.851903	-73.936900	Restaurant	Shop	Café
8	Upper East Side	40.775639	-73.960508	Restaurant	Shop	Hotel
9	Yorkville	40.775930	-73.947118	Restaurant	Shop	Gym
11	Roosevelt Island	40.762160	-73.949168	Shop	Restaurant	Gym
8 9	Upper East Side Yorkville	40.775639 40.775930	-73.960508 -73.947118	Restaurant Restaurant	Shop Shop	Ho G

: target_df.shape
: (19, 6)

We could easily see that we got 19 places (from total of 40 Neighborhoods) where a "Bar" is not often visited.

And here's the map:

Future Directions:

There is a great for improvements in this solution:

- 1- We could generalize the client input
- 2- We could generalize the area to be included in the input
- 3- We could make the search factors more diversified (that only need a larger and more diversified data-set(s)