Training independent subnetworks for robust prediction

Havasi, M., Jenatton, R., Fort, S., Liu, J. Z., Snoek, J., Lakshminarayanan, B., Dai, A. M., Tran, D. (2021)

citations: 102

Outline

- Recap: Explicit Ensembles
- Multi-Input Multi-Output (MIMO)
- Baselines
- Evaluation Scores
- Benchmarks
- Ablation
- Hyperparameters
- Summary

Benefits

Benefits

- provide uncertainty metrics (variance of predictions)
- better calibration and generalization (diverse assumptions)

Benefits

- provide uncertainty metrics (variance of predictions)
- better calibration and generalization (diverse assumptions)

- *M* members are stored
- *M* forward passes (also in inference)

Benefits

ion

 provide uncertainty metrics (variance of predictions)

• better calibration

implicit ensembles
within one network
evade the drawbacks

- *M* members are stored
- M fory 3s (also nce)

Multi-Input Multi-Output (MIMO)

Neural Network

is overparameterized

MIMO

- *M* times more channels in input layer
- *M* times more output heads
- + 0.01% parameters (ResNet28-10)
- + 0.03% evaluation FLOPs (ResNet28-10)

MIMO for inference

- repeat input *M* times
- predictions are averaged

Figure 3: MIMO during inference, figure made by [1]

MIMO training

- draw *M* inputs independently
- head m has to predict label of input m
- $loss: \Sigma_m(neg. log-likelihood)_{head_m} + R(\theta)$
- implicitly trains *M* subnetworks

Figure 4: MIMO during training, figure made by [1]

- (deterministic) neural network
- naive multihead
- TreeNet [3]
- deep ensemble [2]
- BatchEnsemble [4]
- Monte Carlo Dropout [5]

• (deterministic) neural network

- (deterministic) neural network
- naive multihead

Figure 6: naive multihead

• small individual output heads

- (deterministic) neural network
- naive multihead
- TreeNet [3]

Figure 7: TreeNet, figure made by [3]

members share few generic first layers

- (deterministic) neural network
- naive multihead
- TreeNet [3]
- deep ensemble [2]

- (deterministic) neural network
- naive multihead
- TreeNet [3]
- deep ensemble [2]
- BatchEnsemble [4]

Figure 9: BatchEnsemble weights, figure made by [4]

members have individual "fast weights"

- (deterministic) neural network
- naive multihead
- TreeNet [3]
- deep ensemble [2]
- BatchEnsemble [4]
- Monte Carlo Dropout [5]

Figure 10: Dropout

• *M* dropout forward passes in inference

Evaluation Scores

- accuracy
- neg. log-likelihood
- expected calibration error (ECE)

1. predict confidence on whole test set

red is wrong prediction

- 1. predict confidence on whole test set
- 2. bin data points by confidence

- 1. predict confidence on whole test set
- 2. bin data points by confidence

Figure 11: ECE toy example

- 1. predict confidence on whole test set
- 2. bin data points by confidence
- 3. ECE is weighted mean of difference between acc and confidence along bins

•
$$ECE = \sum_{b} \frac{|b|}{n} |acc(b) - conf_{avg}(b)|$$

- 1. predict confidence on whole test set
- 2. bin data points by confidence

Name	Accuracy (†)	NLL (\dagger)	ECE (\dagger)	cAcc (†)	cNLL (\dagger)	cECE (\dagger)	Prediction time (\dot)	# Forward passes (\psi)
Deterministic	79.8	0.875	0.086	51.4	2.700	0.239	0.632	1
Monte Carlo Dropout	79.6	0.830	0.050	42.6	2.900	0.202	0.656	1
Naive mutlihead $(M=3)$	79.5	0.834	0.048	52.1	2.339	0.156	0.636	1
MIMO ($M=3$) (This work)	82.0	0.690	0.022	53.7	2.284	0.129	0.639	1
TreeNet $(M=3)$	80.8	0.777	0.047	53.5	2.295	0.176	0.961	1.5
BatchEnsemble ($M=4$)	81.5	0.740	0.056	54.1	2.490	0.191	2.552	4
Thin Ensemble $(M=4)$	81.5	0.694	0.017	53.7	2.190	0.111	0.823	4
Ensemble ($M=4$)	82.7	0.666	0.021	54.1	2.270	0.138	2.536	4

Table 1: Results on CIFAR10 with ResNet28-10, table made by [1]

- perturbated test data: cAcc, cNLL, cECE
- prediction time in ms per data point
- similar on CIFAR100 with ResNet28-10 and on ImageNet with ResNet50

Name	Accuracy (†)	NLL (\dagger)	ECE (\dagger)	cAcc (†)	cNLL (\dagger)	cECE (\dagger)	Prediction time (\dagger)	# Forward passes (\pmu)
Deterministic	79.8	0.875	0.086	51.4	2.700	0.239	0.632	1
Monte Carlo Dropout	79.6	0.830	0.050	42.6	2.900	0.202	0.656	1
Naive mutlihead $(M=3)$	79.5	0.834	0.048	52.1	2.339	0.156	0.636	1
MIMO ($M=3$) (This work)	82.0	0.690	0.022	53.7	2.284	0.129	0.639	1
TreeNet $(M=3)$	80.8	0.777	0.047	53.5	2.295	0.176	0.961	1.5
BatchEnsemble ($M=4$)	81.5	0.740	0.056	54.1	2.490	0.191	2.552	4
Thin Ensemble $(M=4)$	81.5	0.694	0.017	53.7	2.190	0.111	0.823	4
Ensemble $(M=4)$	82.7	0.666	0.021	54.1	2.270	0.138	2.536	4

Table 1: Results on CIFAR10 with ResNet28-10, table made by [1]

- perturbated test data: cAcc, cNLL, cECE
- prediction time in ms per data point
- similar on CIFAR100 with ResNet28-10 and on ImageNet with ResNet50

Name	Accuracy (†)	NLL (\dagger)	ECE (\dagger)	cAcc (†)	cNLL (\dagger)	cECE (\dagger)	Prediction time (\$\dpsi\$)	# Forward passes (\(\psi \)
Deterministic	79.8	0.875	0.086	51.4	2.700	0.239	0.632	1
Monte Carlo Dropout	79.6	0.830	0.050	42.6	2.900	0.202	0.656	1
Naive mutlihead $(M=3)$	79.5	0.834	0.048	52.1	2.339	0.156	0.636	1
MIMO ($M=3$) (This work)	82.0	0.690	0.022	53.7	2.284	0.129	0.639	1
TreeNet $(M=3)$	80.8	0.777	0.047	53.5	2.295	0.176	0.961	1.5
BatchEnsemble ($M=4$)	81.5	0.740	0.056	54.1	2.490	0.191	2.552	4
Thin Ensemble $(M=4)$	81.5	0.694	0.017	53.7	2.190	0.111	0.823	4
Ensemble $(M=4)$	82.7	0.666	0.021	54.1	2.270	0.138	2.536	4

Table 1: Results on CIFAR10 with ResNet28-10, table made by [1]

- perturbated test data: cAcc, cNLL, cECE
- prediction time in ms per data point
- similar on CIFAR100 with ResNet28-10 and on ImageNet with ResNet50

Name	Accuracy (†)	NLL (\dagger)	ECE (\dagger)	cAcc (†)	cNLL (\dagger)	cECE (\dagger)	Prediction time (\psi)	# Forward passes (\pmu)
Deterministic	79.8	0.875	0.086	51.4	2.700	0.239	0.632	
Monte Carlo Dropout	706	0.830	0.050	42.6	2.900	0.202	0.656	1
Naive mutlihead (M		834	0.048	52.1	2.339	0.156	0.636	1
MIMO			0.022	53.7	2.284	0.129	0.639	1
TreeN	de la part	`	0.047	53.5	2.295	0.176	0.961	1.5
Batch	blem:		0.056	54.1	2.490	0.191	2.552	4
7 ` 1 forwar	d pass with		0.017	53.7	2.190	0.111	0.823	4
			0.021	54.1	2.270	0.138	2.536	4
mc-dropout provides								
point prediction only AR10 with ResNet28-10, table made by [1]								
• peL, cECE								
• prediction 2r data point								
 similar on R100 with ResNet28-10 and on ImageNet with ResNet50 								

Ablation

- weight space analysis
- prediction diversity
- cond. variance of shared activations

Ablation: weight space analysis

- MIMO members converge in nonconnected accuracy modes
- naive multihead members converge in the same accuracy mode

Figure 12: left MIMO, right naive multihead acc, figures made by [1]

- green/red/blue = training trajectories
- don't display shared weights

Ablation: prediction diversity

- $D_{disagreement} = I(\hat{y}_1 \neq \hat{y}_2)$
- $D_{KL} = KL(p_1, p_2)$
- averaged over all head pairs
- performed on the test set

	$D_{ m disagreement}$	D_{KL}
Naive multihead	0.000	0.000
TreeNet	0.010	0.010
BatchEnsemble	0.014	0.020
MIMO	0.032	0.086
Deep Ensemble	0.032	0.086

Table 2: average paired head prediction diversity, table made by [1]

Ablation: prediction diversity

	$D_{ m disagreement}$	D_{KL}
Naive multihead	0.000	0.000
TreeNet	0.010	0.010
BatchEnsemble	0.014	0.020
MIMO	0.032	0.086
Deep Ensemble	0.032	0.086

Table 2: average paired head prediction diversity, table made by [1]

$$var(a|x_2,x_3) = \mathbb{E}_{x_2,x_3}[var_{x_1}(a(x_1,x_2,x_3))]$$

$$\frac{1}{4}(var(a(x_d, x_d, x_d), a(x_e, x_d, x_d)) + var(a(x_d, x_e, x_d), a(x_e, x_e, x_d)) + var(a(x_d, x_d, x_e), a(x_e, x_d, x_e)) + var(a(x_d, x_e, x_e), a(x_e, x_e, x_e))$$

$$var(a|x_2,x_3) = \mathbb{E}_{x_2,x_3}[var_{x_1}(a(x_1,x_2,x_3))]$$

$$\frac{1}{4}(var(a(x_d, x_d, x_d), a(x_e, x_d, x_d)) + var(a(x_d, x_e, x_d), a(x_e, x_e, x_d)) + var(a(x_d, x_d, x_e), a(x_e, x_d, x_e)) + var(a(x_d, x_e, x_e), a(x_e, x_e, x_e))$$

$$var(a|x_2,x_3) = \mathbb{E}_{x_2,x_3}[var_{x_1}(a(x_1,x_2,x_3))]$$

$$\frac{1}{4}(var(a(x_d, x_d, x_d), a(x_e, x_d, x_d)) + var(a(x_d, x_e, x_d), a(x_e, x_e, x_d)) + var(a(x_d, x_d, x_e), a(x_e, x_d, x_e)) + var(a(x_d, x_e, x_e), a(x_e, x_e, x_e))$$

$$var(a|x_2,x_3) = \mathbb{E}_{x_2,x_3}[var_{x_1}(a(x_1,x_2,x_3))]$$

$$\frac{1}{4}(var(a(x_d, x_d, x_d), a(x_e, x_d, x_d)) + var(a(x_d, x_e, x_d), a(x_e, x_e, x_d)) + var(a(x_d, x_d, x_e), a(x_e, x_d, x_e)) + var(a(x_d, x_e, x_e), a(x_e, x_e, x_e))$$

- (highly) non-zero if changes in x_1 impact $a \rightarrow a$ belongs to subnet 1
- (close to) zero if changes in x_1 don't impact $a \rightarrow a$ doesn't belong to subnet 1

- calculate cond. variance for all subnets
- many a_i belong to only 1 subnet

Figure 13: cond. variances of hidden activations, figure made by [1]

- red:
- $var(a|x_2,x_3)$ non-zero
- $var(a|x_1, x_2) \& var(a|x_1, x_3)$ zero
 - \rightarrow red a_i belong to subnet 1 only

Hyperparameters

- M
- input repetition
- batch repetition

Hyperparameters: M

- too small: ensemble not fully leveraged (worse generalization & calibration)
- too big: can exceed models capacity (members are too weak)
- more L1/2 penalty \rightarrow smaller $M_{optimal}$ (shows that MIMO exploits capacity)

Figure 14: varying M on CIFAR100/ResNet28-10, figure made by [1]

- log-likelihood peaks later (benefits more from larger ensemble)
- similar results on CIFAR10

Hyperparameters: input repetition

- feed same input into multiple subnets in one forward pass with certain prob. (training mode)
- allows independent subnetworks for models with low capacity
- determines the independence of the subnetworks

Figure 15: input repetition on ImageNet, figure made by [1]

Hyperparameters: batch repetition

• $batch_{br} = concat(N times batch)$

Figure 16: batch repetition (12 runs), figure made by [1]

• 12 runs varying in *M*, Ir & batch size

Hyperparameters: batch repetition

• $batch_{br} = concat(N times batch)$

probably works when repetitions are shuffled $(x_i \text{ in } m > 1 \text{ subnets})$ (not mentioned)

Figure 16: batch repetition (12 runs), figure made by [1]

• 12 runs varying in *M*, Ir & batch size

Summary

- ensemble with independent members
- few space & time complexity increase
- increase calibration & generalization
- can leverage the capacity of a network

References

- [1] Marton Havasi, Rudolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew M. Dai, Dustin Tran (2021): "Training independent subnetworks for robust prediction", International Conference on Learning Representations, digital, 03.05.2021 07.05.2021.
- [2] Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell (2017): "Simple and scalable predictive uncertainty estimation using deep ensembles", Advances in neural information processing systems, Vol. 30, p. 6402 6413, Morgan Kaufmann Publishers Inc..
- [3] Stefan Lee, Senthil Purushwalkam, Michael Cogswell, David Crandall, Dhruv Batra (2015): "Why M heads are better than one: Training a diverse ensemble of deep networks", arXiv:1511.06314.
- [4] Yeming Wen, Dustin Tran, Jimmy Ba (2020): "BatchEnsemble: an alternative approach to efficient ensemble and lifelong learning", International Conference on Learning Representations,
 Digital, 26.04.2020 01.05.2020.
- [5] Gal Yarin, Zoubin Ghahramani (2016): "Dropout as a bayesian approximation: Representing model uncertainty in deep learning", international conference on machine learning, USA, New York City, 19.06.2016 24.06.2016.