Lecture 10 Maxwell's Relations and Their Applications

Susmita Roy IISER Kolkata

Spontaneity and Equilibrium In Isolated and non-Isolated Systems

	Thermodynamic state of system	Thermodynamic potential	Direction of spontaneous change in state	Condition of equilibrium
Isolated system	S , V , N U,V,N	U S	Decrease in U Increase in S	Minimization of <i>U</i> Maximization of S
System + Thermostat	T, V, N	F = U - TS	Decrease of F	Minimization of <i>F</i>
System + Thermostat + Barostat	T, p, N	G = U - TS + pV	Decrease of <i>G</i>	Minimization of <i>G</i>

Maximization of Entropy

$$S = S(U, V)$$

At equilibrium

$$\left(\frac{\partial S}{\partial V}\right)_U = \mathbf{0} \text{ and } \left(\frac{\partial^2 S}{\partial V^2}\right)_U < \mathbf{0}$$

What happens to internal energy when entropy is a maximum?

$$U = U(S, V)$$

At equilibrium

$$\left(\frac{\partial U}{\partial V}\right)_{S} = 0$$

$$\left(\frac{\partial U}{\partial V}\right)_{S} = 0 \qquad \left(\frac{\partial^{2} U}{\partial V^{2}}\right)_{S} > 0$$

Combining the 1st and 2nd law of thermodynamics

1st law:
$$dU = \eth q + \eth w$$

$$2^{nd}$$
 law: $TdS \geq \eth q$

$$TdS \ge dU - \delta w$$

At Equilibrium
$$\rightarrow TdS = dU + p dV$$

For
$$\eth w = -pdV$$

$$dU = TdS - p \ dV$$

Internal Energy

Thermodynamic Potential of an Isolated System

Internal Energy,

$$dU = TdS - pdV$$
 $U = U(S, V, N)$

$$U = U(S, V, N)$$

Enthalpy, H = U + pV

$$dH = TdS + Vdp$$

H=H(S,p,N)

Helmholtz free energy, F = U - TS

$$dF = -SdT - pdV$$

F=F(T,V,N)

Gibbs free energy, G = U - TS + pV

$$dG = -SdT + Vdp$$

G=G(T,p,N)

$$T = \left(\frac{\partial U}{\partial S}\right)_{V,N} \qquad -p = \left(\frac{\partial U}{\partial V}\right)_{S,N}$$

We shall fill in the blanks for other energy function just in a bit.

System	Equilibrium state	Thermodynamic potential	Thermodynamic equation of state	
Isolated	S, V, N	$\mathbf{U} = \mathbf{U}(\mathbf{S}, \mathbf{V}, \mathbf{N})$	dU = TdS - pdV	
		T 11 TO		
System + Thermostat	T, V, N	F = U - TS $F = F(T, V, N)$	dF = -SdT - pdV	
		F = F(T, V, N)		
System+ Barostat	S, p, N	H = U + p V	$d\mathbf{H} = TdS + Vd\mathbf{p}$	
		H = H(S, p, N)	1.05 1.05	
System + Thermostat	T, p, N	G = U - TS + pV	dC = SdT + V dn	
+ Barostat		G = G(T, p, N)	dG = -SdT + V dp	

Thermodynamic potentials as exact state functions in closed systems

For a state function, A(x, y), dA is an exact differential

$$dA = \left(\frac{\partial A}{\partial x}\right)_{y} dx + \left(\frac{\partial A}{\partial y}\right)_{x} dy$$

$$dA = M(x, y)dx + N(x, y)dy$$

$dA = \left(\frac{\partial A}{\partial x}\right)_{y} dx + \left(\frac{\partial A}{\partial y}\right)_{x} dy$	$\boldsymbol{M} = \left(\frac{\partial A}{\partial x}\right)_{\mathbf{y}}$	$N = \left(\frac{\partial A}{\partial y}\right)_x$
dU = TdS - pdV	$T = \left(\frac{\partial U}{\partial S}\right)_{V}$	$-p = \left(\frac{\partial U}{\partial V}\right)_{S}$
dH = TdS + Vdp	$T = \left(\frac{\partial H}{\partial S}\right)_p$	$V = \left(\frac{\partial H}{\partial p}\right)_{S}$
dF = -SdT - pdV	$-S = \left(\frac{\partial F}{\partial T}\right)_V$	$-p = \left(\frac{\partial F}{\partial V}\right)_T$
dG = -SdT + Vdp	$-S = \left(\frac{\partial G}{\partial T}\right)_p$	$V = \left(\frac{\partial G}{\partial p}\right)_T$

Thermodynamic potentials as exact state functions

For a state function, A(x, y), dA is an exact differential of the form

$$dA = M(x, y) dx + N(x, y) dy$$
 such that

Schwarz's theorem

$$\left(\frac{\partial M}{\partial y}\right)_x = \left(\frac{\partial N}{\partial x}\right)_y$$

dA = M(x,y) dx + N(x,y) dy	$\left(\frac{\partial M}{\partial y}\right)_{x} = \left(\frac{\partial N}{\partial x}\right)_{y}$
dU = TdS - pdV	$\left(\frac{\partial T}{\partial V}\right)_{S,N} = -\left(\frac{\partial p}{\partial S}\right)_{V,N}$
dH = TdS + Vdp	$\left(\frac{\partial T}{\partial p}\right)_{S,N} = \left(\frac{\partial V}{\partial S}\right)_{p,N}$
dF = -SdT - pdV	$\left(\frac{\partial S}{\partial V}\right)_{T,N} = \left(\frac{\partial p}{\partial T}\right)_{V,N}$
dG = -SdT + Vdp	$\left(\frac{\partial S}{\partial p}\right)_{T,N} = -\left(\frac{\partial V}{\partial T}\right)_{p,N}$

Maxwell's relations

Using Thermodynamic Potentials in Real Systems

Give them a **SporTiVe** chance!

Vertical

Applications of Maxwell's Relations

Calculations of Response function:

 From First Law: du = -PdV + TdS with respect to V at constant T:

$$\left(\frac{\partial U}{\partial V}\right)_T = -P + T \left(\frac{\partial S}{\partial V}\right)_T$$

Equations should be expressed in terms of P, V, T.

From Maxwell's relation we know $\left(\frac{\partial S}{\partial V}\right)_{TN} = \left(\frac{\partial p}{\partial T}\right)_{VN}$

Hence,
$$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = -\mathbf{P} + \mathbf{T} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{\mathbf{V}}$$

From Lecture 5

Expression of
$$c_{p} - c_{v}$$
:

No have by definition, $c_{p} - c_{v} : \left(\frac{\partial H}{\partial T}\right)_{p} - \left(\frac{\partial U}{\partial T}\right)_{v}$

But, $H = U + Pv$ or $\left(\frac{\partial H}{\partial T}\right)_{p} = \left(\frac{\partial U}{\partial T}\right)_{p} + P\left(\frac{\partial v}{\partial T}\right)_{p}$

Herce, $c_{p} - c_{v} = \left(\frac{\partial U}{\partial T}\right)_{p} - \left(\frac{\partial U}{\partial T}\right)_{v} + P\left(\frac{\partial v}{\partial T}\right)_{p}$

But, $U = f(T, v)$ Hence, $du = \left(\frac{\partial U}{\partial T}\right)_{v} dt + \left(\frac{\partial U}{\partial V}\right)_{T} dv$

dividing by dT at emotion $P' - \left(\frac{\partial U}{\partial T}\right)_{p} = \left(\frac{\partial U}{\partial T}\right)_{v} + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial v}{\partial T}\right)_{p}$

or, $\left(\frac{\partial U}{\partial T}\right)_{p} - \left(\frac{\partial U}{\partial T}\right)_{v} = \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{p}$

Putting the value, $c_{p} - c_{v} = \left[P + \left(\frac{\partial U}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{p}\right]$

But, the modynamic equation of state is, $P + \left(\frac{\partial U}{\partial V}\right)_{T} = T\left(\frac{\partial P}{\partial T}\right)_{v}$

thence, $c_{p} - c_{v} = T\left(\frac{\partial P}{\partial T}\right)_{v} \left(\frac{\partial V}{\partial T}\right)_{p}$

This is the general expression of Ep-Cr for any system, ited or real and is valid also for condensed system.

Application of maxwell's relation on the van der Waals Equation of State

$$\left(\frac{\partial \mathbf{u}}{\partial \mathbf{V}}\right)_{\mathbf{T}} = -\mathbf{P} + \mathbf{T} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{T}}\right)_{\mathbf{V}}$$

For a Van der Waals gas, the equation of state is:

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

Taking the partial derivative with respect to T at constant V:

$$\left(rac{\partial P}{\partial T}
ight)_V = rac{nR}{V-nb}$$

Substituting this into the earlier equation:

$$egin{aligned} \left(rac{\partial U}{\partial V}
ight)_T &= T \cdot rac{nR}{V-nb} - \left(rac{nRT}{V-nb} - rac{an^2}{V^2}
ight) \\ &= rac{TnR}{V-nb} - rac{nRT}{V-nb} + rac{an^2}{V^2} \\ &= rac{an^2}{V^2} \end{aligned}$$