Discussion 10

Gate Sizing, RC Delay, Logical Effort, Power/Energy, Adders

CMOS Logic

PUN and PDN are dual logic networks
PUN and PDN functions are complementary

Inverter Sizing

- R_{on} of each FET is inversely proportional to its width
- Assume V_{th,n} = V_{th,p}
- Assume R_{on,n} = R_{on,p} for the same width unless otherwise specified
- Wp = Wn = switching threshold of Vdd/2
- If Wp >> Wn, Vm approaches VDD | If Wn >> Wp, Vm approaches 0 (exponentially)

Inverter RC Delay (High -> Low)

- High to low
 output transition
 time governed
 by strength of
 NMOS pulling
 low
- Can lower the time constant by increasing the NMOS width

Inverter RC Delay (Low -> High)

 $t_{p,LH} = (In2)\tau = 0.7 R_{eq,p}(C_p + C_L)$

- Low to high
 output transition
 time governed
 by strength of
 PMOS pulling
 high
- Can lower the time constant by increasing the PMOS width

Inverter Sizing

- Cin (gate input capacitance) and Cp (intrinsic drain capacitance) are proportional to W
 - You may see Cp referred to Cd in other sources
 - $Cp = \gamma Cin$
- How does the inverter delay change if either PMOS/NMOS width is doubled?
- If both widths are doubled, does the intrinsic (unloaded) delay improve?
- Inverters are usually sized to equalize high->low and low->high delays

Inverter Delay

$$t_{p,inv} = R_{eq} (C_{p,tot} + C_L)$$

= $R_{eq} C_{p,tot} (1 + (C_L / C_{p,tot}))$
= $R_{eq} C_{p,tot} (1 + (C_L / C_{in} \gamma))$
= $R_{eq} C_{p,tot} (1 + (f / \gamma))$
= $tau \{inv\} (1 + (f / \gamma))$

- Delay can be split into 2 parts, intrinsic and extrinsic
- Fanout f = ratio between output and input cap (CL / Cin)
- This delay formula can be generalized for any CMOS gate
 - $t_{p,gate} = tau_{inv} (p + gf/\gamma)$
 - Often assume γ = 1

Sizing an Inverter Chain

- We want to minimize the delay of this inverter chain
- Assume the 1st inverter has a size of 1

Delay =
$$tp1 + ... + tpn = (1+f1) + (1+f2) + ... + (1+fn)$$

Take partial derivatives of this expression wrt C2, ... Cn
Solution is $f1 = f2 = f3 = ... = fN$
Each inverter has a fanout = the n-th root of F (total fanout)

Out

 V_{DD}

Logical Effort

- g = logical effort
- To find g for a CMOS gate:
 - 1. Size the gate to have R_{eq} equal to that of an inverter
 - 2. Find the input capacitance of the gate (for a particular input)
 - 3. Take the ratio C_{in,gate} / C_{in,inv}
- For a NAND2 gate: g = 3/2
- For a NOR2 gate: g = 3/2
- How do these change if the PMOS is half as strong as an nMOS?
- Can the logical effort be different for different inputs?

- p = intrinsic delay
- To find p for a CMOS gate:
 - Size the gate to have R {eq} equal to that of an inverter
 - Find the output (intrinsic) capacitance of the gate
 - Take the ratio C_{out,gate} / C_{out,inv}
- For a NAND2 gate: q = 4/2
- For a NOR2 gate: g = 4/2
- How do these change if the PMOS is half as strong as an nMOS?

Path Delay

- Path logical effort G = g1 * g2 * ... gN
- Path fanout F = CL / C_{in,1}
 - This is called H in lecture
- Branching factor bi = ratio of total cap seen / on-path cap
- Path total effort H = GFB
 - This is called F in lecture
- We want to minimize the delay of a path through a series of gates
 - Each stage i in the chain has an effective fanout gi * fi
 - The solution is to make the effective fanout of each stage the same
 - $EF_{opt} = H^{1/N}$
 - EF = gi * fi = gi * (C_{load} / C_{in})
 - C_{in} (i.e. the gate size) = gi * C_{load} / EF
- The optimal path delay D = N * H^{1/N} + p1 + ... + pN

Sizing a Logic Path for Minimum Delay

Electrical fanout, F = 5 IT LE = 25/9 PE = 125/9 EF/stage = 1.93 a = 1.93 b = 2.23 c = 2.59

From the back

$$5/c = 1.93$$

 $(5/3)c/b = 1.93$
 $(5/3)b/a = 1.93$

- This example
 assumes the NMOS
 is twice as strong as
 the PMOS
- EF/stage is calculated as the 4th-root of G*F
- gi * fi = EF of stage i
- Easier to calculate gate sizes from the load cap backwards

Sizing a Logic Path for Minimum Delay (Branching)

Select gate sizes y and z to minimize delay from A to B

Logical Effort:
$$LE = (4/3)^3$$

Electrical Fanout:
$$F = C_{out}/C_{in} = 9$$

Branching Effort:
$$B = 2 \cdot 3 = 6$$

Path Effort:
$$PE = \prod LE \cdot F \cdot B = 128$$

Best Effective Fanout: *EF* =*PE*^{1/3} ≈ 5

Delay:
$$D = 3.5 + 3.2 = 21$$

Work backward for sizes: $z = \frac{9C \cdot (4/3)}{5} = 2.4C$ $y = \frac{3z \cdot (4/3)}{5} = 1.9C$

- This example also assumes the NMOS is twice as strong as the PMOS
- Note that when calculating the size y, you must consider the total load cap (3z) instead of just z
- Recall: D_{opt} = N *
 H^{1/N} + p1 + ... +
 pN

Elmore Delay Approximation

$$\begin{split} \tau_{D4} &= \sum_{k=0}^4 C_k R_{4k} = C_0 R_{pd} + \\ &\quad C_1 (R_{pd} + R_1) + \\ &\quad C_2 (Rpd + R_1) + \\ &\quad C_3 (Rpd + R_1 + R_3) + \\ &\quad C_4 (Rpd + R_1 + R_3 + R_4) = \\ R_{pd} (C_0 + C_1 + C_2 + C_3 + C_4) + R_1 (C_1 + C_2 + C_3 + C_4) \end{split}$$

 $+R_{3}(C_{3}+C_{4})+R_{4}C_{4}$

- Approximates the dominant time constant of a RC network for a given input and output node
- 2 methods (same result):
 - 1. Take every capacitor and multiply it by the sum of resistors on the path charging it
 - 2. Take every resistor on the path and multiply it by the sum of capacitances it charges

Energy and Power

- CV² joules drawn from supply when charging cap to VDD
- ½ CV^2 stored on capacitor
- No additional charge drawn from supply when the cap discharges
- The other ½ CV^2 is burned on the charging resistance and dissipates as heat
- Dynamic switching power = f C V^2 alpha_{0 -> 1}

- Assume A = VDD, B = 0V
- Vthn = 0.2V
- |Vthp| = 0.3V
- Rp = Rn
- Draw a VTC when Vc is swept from 0 to VDD

- What is the energy pulled from the supply when B = 1, C = 0, and A goes from 1 to 0? Assume CL is initially at 0V.
 - The output cap is charged from 0V to VDD
 - C * VDD^2
- Using the final voltage from the last part as the new initial condition, how much energy is dissipated when C goes from 0 to 1?
 - ½ C * VDD^2

- What is the energy pulled from the supply when A = 1, C = 1, and B goes from 1 to 0? Assume CL is initially 0V.
 - Recall E_VDD = CL * VDD * V_{delta}, where V_{delta} is the change in voltage across the capacitor
 - CL * VDD * (VDD Vthn)
- Using the final voltage from the last part, how much energy is dissipated when C goes from 1 to 0?
 - ½ CL ((VDD Vthn)^2 (Vthp)^2)
 - Cap starts at VDD Vthn and ends at Vthp. The energy difference is dissipated.

Adders

Let's look at last semester's discussion slides:
 http://inst.eecs.berkeley.edu/~eecs151/sp19/files/discussion11.pdf