احتمال پیشرفته			
Rosenthal, J. S. Company.	(2006). A first look at rigorous probability theory. World Scientific Publishing	مرجع	
صفحه 11	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

هفتهی چهارم - جلسهی هفتم

فرض کنید (Ω, \mathcal{F}, P) سهتایی احتمال (فضای احتمال) یـک آزمـایش تصـادفی مفـروض باشـد. اغلب تابعهـایی از برآمدهای $\omega \in \Omega$ آزمایش تصادفی مورد توجه هستند.

 $x\in\mathbb{R}$ تعریف: تابع $X:\Omega o\mathbb{R}$ را یک متغیر تصادفی گویند هرگاه برای هر

$$\{X \le x\} = X^{-1}((-\infty, x]) = \{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}.$$

قضیه: تابع $\mathbb{R} o \Omega o \mathbb{R}$ یک متغیر تصادفی است اگر و تنها اگر

 $\{X < x\} \in \mathcal{F}$ ، $x \in \mathbb{R}$ الف) برای هر

 $\{X>x\}\in\mathcal{F}$ برای هر X>x

 $\{X \geq x\} \in \mathcal{F}$ ج) برای هر $X \geq x$

 $\{X\in B\}\in \mathcal{F}$ د) برای هر زیرمجموعهی بورل بورل داری هر زیرمجموعهی بورل

مثال: برای آزمایش تصادفی انتخاب یک نقطه به تصادف از بـازهی[0,1]، سـهتایی احتمـال بـه صـورت [0,1] متغیرهای $Z(\omega)=3\omega+4$ و $Y(\omega)=2\omega$ ، $X(\omega)=\omega$ است. تابعهای $Z(\omega)=3\omega+4$ و $Y(\omega)=2\omega$ متغیرهای تصادفی روی این فضای احتمال هستند.

برای هر $\Omega\subset A$ ، تابع نشانگر A به صورت زیر تعریف میشود

$$\mathbf{1}_A(\omega) = \left\{ \begin{array}{ll} 1 & \omega \in A \\ 0 & \omega \notin A \end{array} \right.$$

قضیه: الف) اگر $A \in \mathcal{F}$ ، آنگاه $X = \mathbf{1}_A$ یک متغیر تصادفی است.

ب) اگر X و X+Y ،cX مقدار ثابتی باشد، آنگاه X+Y ،cX ،X+c مقدار ثابتی باشد، $C\in\mathbb{R}$ مقدار ثابتی باشد.

ج) فرض کنید Z_1,Z_2,\ldots دنبالهای از متغیرهای تصادفی باشد که برای هر Ω هر Ω موجود و متناهی باشد. آنگاه یک متغیر تصادفی است.

 $B\in\mathcal{B}(\mathbb{R})$ تعریف: تابع $f:\mathbb{R} o\mathbb{R}$ را بورل اندازهپذیر گویند هرگاه به ازای هر زیرمجموعهی بورل

احتمال پیشرفته			
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع	
صفحه 12	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

$$f^{-1}(B) = \{x \in \mathbb{R} : f(x) \in B\} \in \mathcal{B}(\mathbb{R}).$$

قضیه: اگر $\mathbb{R} o \mathbb{R}$ تابعی پیوسته یا پیوستهی قطعهای (تعداد نقاط ناپیوستگی متناهی یا شمارا) باشد، آنگاه یک تابع بورل اندازهپذیر است.

قضیه: اگر X یک متغیر تصادفی و $\mathbb{R} o \mathbb{R}$ تابعی بورل اندازهپذیر باشد، آنگاه $Y(\omega) = f(X(\omega))$ یک متغیر تصادفی است.

مثال: اگر X یک متغیر تصادفی دلخواه باشد، آنگاه

$$\sin(X)$$
, $\sqrt{|X|}$, $\exp(-X^2)$, $\log(1+X^2)$, $X/(1+X^2)$

نیز متغیر تصادفی هستند.

مثال: فرض کنید (Ω,\mathcal{F},P) سهتایی احتمال مربوط به آزمایش تصادفی انتخاب یک نقطه به تصادف از بازهی $X=\mathbf{1}_H$ در اینصورت $H
ot\in\mathcal{F}$ باشد و $H\subset\Omega$ باشد و $H\subset\Omega$ که $H\subset\Omega$ در اینصورت $H\in\mathcal{F}$ تابعی از H