GATE-All BRANCHES Engineering Mathematics

Linear Algebra

By- Rahul sir

Topics covered in previous lecture

Topic

Properties of adjoint of a matrix

Topic

Question based on matrices

Topics to be Covered

Topic Vector space

Topic Linear combination

Topic Spanning set

Topic Linear dependence and independence

Topic Basis

> Robational Symmetry # Vector space (v) Symmetry counts Reflectional 11
Robertsonal Symmetry () 248) () I 360 I dentity Reflection + Vertical Diagonal tragonal Total symmetry e (Identity)

(v1, v2, v3 -- val) (U1, U2, U3 - -- Vn) Add (u, uz, uz -- vn) + (by, bz, b3 -- bn) = (u1+v1, u2+v2, u3+v3-- untvn) Scaling $X(u,u_2) = (\alpha u, \alpha u_2)$ $d(u_1, u_2, u_3) = (du_1, du_2, du_3)$

Pw

```
Peroperties (Add)
```

- 1) closure: for all u, v E R² (closure Peroperty)
- 2) Associative: for all u, v, w E R3

3) Additive => for vERN

Addelive Identity (0)

Axioms of vector space:

Add

$$9)$$
 $9(N+UZ) = 4VI+4UZ$

Symmeter

#Q. Let u = [1, 1, 1], v = [1, 2, n] be two vectors in \mathbb{R}^n , thus form vectors u + v, 2u.

$$N = [1,1,1]$$
 $V = [1,2,n]$
 $N = [1,1,1] + [12n]$
 $N = [1,1,1] + [12n]$

$$2u = 2[11]$$

$$= [222] Ans$$

#Q. Let u = (1, -1, 2, 0, -3), v = (0, 2, -1, 4, 0) be two vertices in R^5 , thus form the vectors u + v and -3v.

#Q. Let u = (1, 0, 1, 0, 1) and v = (1, -2, 3, -4, 5 ...) be two vectors in R^{∞} form u + v and 5u.

0

Topic: Vector space

- #Q. Prove that the following properties hold for vector addition in R⁴
 - 1) Cumulative property u + v = v + u
 - The additive property v + o = v = o + v

Drave

#Q. If $u = \{1, 3, 5, 7\}$ and $v = \{2, -1, -5, 6\}$ in \mathbb{R}^4 such that $\alpha = 3, \beta = 4$ Then find

(a)
$$\alpha(u+v) = D0 yourself$$

(a)
$$\alpha(u+v) = DO yourself$$

(b) $(\alpha+\beta) v = DO yourself$

- #Q. In R^3 calculate the linear combination
- (a) $2V_1 + 3V_2$ where $V_1 = (1, 0, 3)$ and $V_2 = (0, 2, -1)$

(b) In R^4 calculate the linear combination $2V_1 + 3V_2 + 4V_3 - V_4$ when

$$V_1 = (1, 0, 3, 1)$$

$$V_2 = (0, 2, 0, -1)$$

$$V_3 = (0, 1, -2, 0)$$

$$V_4 = (2, 10, -2, -1)$$

(c) In R^2 let $V_1 = (0, 3)$ and $V_2 = (2, 1)$, thus calculate the linear combination $4V_1 - 2V_2$

(d) In R⁴ let $V_1 = (1, 2, 1, 3)$ and $V_2 = (2, 1, 0, -1)$ thus calculate the linear combination $3V_1 + 2V_2$

(e) Let $V = M_{23}$ such that $V_1 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \end{bmatrix}$, $V_2 = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 3 & -4 \end{bmatrix}$ and $V_3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 1 \end{bmatrix}$, thus find the linear combination $3V_1 - 2V_2 + V_3$

Linear

#Q. Determine whether (3, -1) can be expressed as a linear combination of each of the following.

(c)
$$V_1 = (9, -3) V_2 = (-6, 2)$$

THANK - YOU