TEMA 2: A Origem do Android

Guia Didático com Conteúdos e Exemplos - A Origem do Android

Este guia oferece uma visão detalhada dos conceitos fundamentais relacionados à origem e ao desenvolvimento do Android, incluindo sua história, arquitetura, API, e diferenças entre aplicações nativas e híbridas. O objetivo é fornecer explicações e exemplos claros para facilitar o aprendizado e a preparação para a avaliação.

1. História do Android

Origem e Evolução

O Android foi criado por uma empresa chamada Android Inc., fundada em 2003 por Andy Rubin, Rich Miner, Nick Sears e Chris White. Inicialmente, o objetivo era desenvolver um sistema operacional para câmeras digitais, mas com a evolução do mercado, a empresa mudou o foco para dispositivos móveis.

Exemplo: Pense no Android como uma plataforma que foi projetada para permitir que smartphones tivessem um sistema operacional robusto e fácil de usar. Sua base em Linux possibilitou maior flexibilidade e personalização.

Em 2005, o Google adquiriu a Android Inc., o que permitiu à plataforma se expandir rapidamente. O Android cresceu tanto que, em 2017, ele superou o Windows como o sistema operacional mais usado para acessar a internet no mundo todo. Esse marco mostrou como os dispositivos móveis (em especial os smartphones) tornaram-se a principal forma de acesso à web.

Aquisição pela Google

A aquisição da Android Inc. pela Google em 2005 foi estratégica para a gigante das buscas. O Google viu no Android a oportunidade de criar um ecossistema aberto e expansível para dispositivos móveis, o que levou ao desenvolvimento de uma grande quantidade de dispositivos rodando esse sistema.

Conceito: Ao contrário de sistemas como o iOS da Apple, que é proprietário e fechado, o Android é um sistema de código aberto, o que significa que qualquer desenvolvedor ou fabricante pode modificar o sistema para adaptá-lo às suas necessidades.

2. Sistema Operacional Android

Baseado no Linux

O Android é construído sobre o kernel do Linux, o que proporciona vantagens como maior segurança, eficiência no gerenciamento de recursos e suporte a diversas arquiteturas de hardware.

Exemplo: O Linux é como a espinha dorsal do Android. Ele gerencia o uso da memória, a execução de processos e a segurança do sistema. Isso permite que o Android execute várias tarefas ao mesmo tempo sem sobrecarregar o dispositivo, mantendo uma boa performance.

Conceito: O kernel do Linux também oferece suporte para hardware de diferentes fabricantes, facilitando o desenvolvimento de smartphones, tablets, e até smartwatches com Android.

Código Aberto

O Android é um sistema de código aberto (open source), o que significa que seu código-fonte está disponível para desenvolvedores do mundo todo. Isso permite que fabricantes de dispositivos, como Samsung e Xiaomi, modifiquem o sistema para seus dispositivos, adicionando funcionalidades e interfaces personalizadas.

Exemplo: Imagine que o Android é como um "kit de ferramentas" que os fabricantes podem usar para construir suas próprias versões. O sistema que você encontra em um Samsung Galaxy pode ser diferente do que está em um Motorola, mas ambos rodam Android com algumas modificações de interface.

3. Arquitetura do Android

A arquitetura do Android é organizada em várias camadas que permitem o funcionamento harmonioso de todo o sistema. As camadas principais são:

- 1. Aplicações: Esta é a camada onde estão localizados os aplicativos que os usuários interagem diretamente, como a agenda, o navegador e o telefone.
- 2. Framework de Aplicações: Fornece APIs (conjuntos de funções e métodos) que os desenvolvedores usam para criar aplicativos. Isso inclui serviços como o Gerenciador de Atividades e Gerenciador de Janelas.
- 3. Bibliotecas: Contém bibliotecas C/C++ usadas por diferentes componentes do sistema, como gráficos e banco de dados.
- 4. Runtime do Android: Inclui a máquina virtual (antes Dalvik, agora ART) que executa os aplicativos Android.
- 5. Kernel do Linux: O núcleo do sistema, responsável por gerenciar o hardware, incluindo drivers e segurança.

Exemplo: Pense na arquitetura do Android como um edifício. O kernel Linux é a fundação sólida, as bibliotecas e a runtime formam a estrutura interna, o framework de aplicações é como a infraestrutura elétrica e hidráulica, e as aplicações são os móveis e equipamentos que você utiliza no dia a dia.

4. API (Application Programming Interface)

Conceito de API

Uma API é um conjunto de funções que permite que programas se comuniquem entre si. No Android, as APIs permitem que os aplicativos acessem recursos do sistema operacional, como a câmera, o GPS ou notificações.

Exemplo: Quando você usa um aplicativo de mapas no Android para encontrar um endereço, o aplicativo utiliza a API de localização do Android para acessar o GPS do dispositivo e mostrar onde você está no mapa.

Importância: As APIs padronizam a forma como os aplicativos interagem com o hardware e outros serviços do dispositivo, tornando o desenvolvimento mais eficiente e compatível com diferentes dispositivos Android.

5. Aplicações Nativas

As aplicações nativas são programas desenvolvidos especificamente para rodar em um sistema operacional, como o Android, utilizando as ferramentas e APIs oferecidas por esse sistema.

Vantagens das Aplicações Nativas

Aplicativos nativos têm acesso completo aos recursos do dispositivo, o que permite uma integração mais profunda e um melhor desempenho.

Exemplo: Um jogo desenvolvido nativamente para Android pode tirar melhor proveito do processador gráfico e dos sensores de movimento, oferecendo uma experiência mais fluida e envolvente do que um aplicativo híbrido.

Ferramentas de Desenvolvimento

Desenvolver aplicativos nativos no Android geralmente envolve o uso do Android Studio, um ambiente de desenvolvimento integrado (IDE), e a linguagem de programação Java ou Kotlin.

6. Aplicações Híbridas

As aplicações híbridas são construídas usando tecnologias web como HTML, CSS e JavaScript, mas são empacotadas como aplicativos móveis, podendo ser executadas tanto em Android quanto em iOS.

Vantagens e Desvantagens

- Vantagens: Redução de custos e tempo, já que um único código pode ser utilizado em várias plataformas.
- Desvantagens: As aplicações híbridas, em geral, têm desempenho inferior e menos acesso a recursos nativos do dispositivo.

Exemplo: Aplicações híbridas são como sites adaptados para parecerem aplicativos. Elas podem não ter a mesma performance ou integração profunda com o dispositivo, mas são mais fáceis e rápidas de desenvolver para múltiplos sistemas.

Frameworks para Aplicações Híbridas

Frameworks como Ionic e React Native são muito utilizados no desenvolvimento de aplicações híbridas, permitindo que desenvolvedores criem uma única base de código para ser usada tanto no Android quanto no iOS.

7. Frameworks

Um framework é uma estrutura de software que fornece uma base para o desenvolvimento de aplicações, oferecendo bibliotecas e ferramentas que facilitam o processo de criação de software.

Exemplo de Frameworks no Android

- Android Framework: Fornece as APIs principais que os desenvolvedores usam para interagir com o sistema.
- React Native: Um framework de código aberto que permite o desenvolvimento de aplicações híbridas, utilizando JavaScript para criar interfaces que rodam tanto no Android quanto no iOS.

Conceito: Os frameworks ajudam os desenvolvedores a não "reinventar a roda" cada vez que desenvolvem um aplicativo, fornecendo componentes reutilizáveis e soluções já testadas.