### Predicate Logic

CSE2315, CHAPTER 1-4

#### Predicate Logic

- Similar to propositional logic for solving arguments, build from quantifiers, predicates and logical connectives.
- A valid argument for predicate logic need not be a tautology.
- ▶ The meaning and the structure of the quantifiers and predicates determines the interpretation and the validity of the arguments
- Basic approach to prove arguments:
  - Strip off quantifiers
  - Manipulate the unquantified wffs
  - Reinsert the quantifiers



▶ Note to remember: P(x) could be  $(\forall y)$   $(\forall z)$  Q(x,y,z)

### Inference Rules

| From              | Can Derive                                                                | Name / Abbreviation               | Restrictions on Use                                                                                                                                    |
|-------------------|---------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\forall x)P(x)$ | P(t) where t is a variable or constant symbol                             | Universal Instantiation-<br>ui    | If $t$ is a variable, it must not fall within the scope of a quantifier for $t$ ex) $(\forall x)(\exists y)P(x,y)$ to $(\exists y)P(y,y)$              |
| $(\exists x)P(x)$ | P(a) where a is a constant symbol not previously used in a proof sequence | Existential Instantiation-<br>ei  | Must be the first rule used that introduces <i>a</i>                                                                                                   |
| P(x)              | $(\forall x)P(x)$                                                         | Universal<br>Generalization- ug   | P(x) has not been deduced from any hypotheses in which x is a free variable nor has P(x) been deduced by ei from any wff in which x is a free variable |
| P(x) or $P(a)$    | $(\exists x)P(x)$                                                         | Existential<br>Generalization- eg | To go from $P(a)$ to $(\exists x)P(x)$ , $x$ must not appear in $P(a)$ ex) $P(a,y)$ to $(\exists y)P(y,y)$                                             |

# Examples: Proofs using Predicate Logic (ui)

- Prove the following argument:
  - ▶ All flowers are plants. Sunflower is a flower. Therefore, sunflower is a plant.
  - $\triangleright$  P(x) is "x is a flower"
  - a is a constant symbol (Sunflower)
  - ightharpoonup Q(x) is "x is a plant"
- ▶ The argument is  $(\forall x)[P(x) \to Q(x)] \land P(a) \to Q(a)$
- ► The proof sequence is as follows:
  - 1.  $(\forall x)[P(x) \rightarrow Q(x)]$  hyp
  - 2. P(a) hyp
  - 3.  $P(a) \rightarrow Q(a)$  1, U
  - 4. Q(a) 2, 3, mp

#### UI continued...

▶ (One more ui example) Prove the argument

hyp

- $(\forall x) [P(x) \to Q(x)] \land [Q(y)]' \to [P(y)]'$
- Proof sequence:

1. 
$$(\forall x)[P(x) \rightarrow Q(x)]$$
 hyp

2. 
$$[Q(y)]'$$

3. 
$$P(y) \rightarrow Q(y)$$
 1, U

4. 
$$[P(y)]'$$
 2, 3, mt

# Examples: Proofs using Predicate Logic (ei)

The following would be legitimate steps in a proof sequence

1. 
$$(\forall x)[P(x) \to Q(x)]$$
 hyp

2. 
$$(\exists y)[P(y)]$$
 hyp

4. 
$$P(a) \rightarrow Q(a)$$
 1,  $Ui$ 

5. 
$$Q(a)$$
 3,4 mp

▶ What if we switch the order, 3 and 4?

# Examples: Proofs using Predicate Logic (eg)

- ▶ Prove the argument  $(\forall x)P(x) \rightarrow (\exists x)P(x)$
- Proof sequence:

```
1. (\forall x)P(x) hyp
```

- 2. P(x) 1, U
- 3.  $(\exists x)P(x)$  2, eg

# Examples: Proofs using Predicate Logic (ug)

- ▶ Prove the argument  $(\forall x)[P(x) \to Q(x)] \land (\forall x)P(x) \to (\forall x)Q(x)$
- Proof sequence:

```
1. (\forall x)[P(x) \rightarrow Q(x)] hyp

2. (\forall x)P(x) hyp

3. P(x) \rightarrow Q(x) 1, ui

4. P(x) 2, ui : no restriction on ui about reusing a name

5. Q(x) 3, 4, mp

6. (\forall x)Q(x) 5, ug
```

Note: step 6 is legitimate since x is not a free variable in any hypotheses nor was ei used before

### Restrictions on ug

▶ Incorrect ug 1

| P(x) | hyp |
|------|-----|
|      |     |

1, incorrect ug; x was free variable in the hypothesis

▶ Incorrect ug 2

$$(\forall x) (\exists y) Q(x,y)$$

2. 
$$(\exists y) Q(x,y)$$

3. 
$$Q(x,a)$$

4. 
$$(\forall x) Q(x,a)$$

3, incorrect 
$$ug$$
;  $Q(x,a)$  was deduced by  $ei$  from the wff in step2, in which  $x$  is free variable

## Examples: Proofs using Predicate Logic

- Prove the argument  $(\forall x)[P(x) \land Q(x)] \rightarrow (\forall x)P(x) \land (\forall x)Q(x)$
- Proof sequence:

1. 
$$(\forall x)[P(x) \land Q(x)]$$

2.  $P(x) \wedge Q(x)$ 

3. P(x)

4. Q(x)

5.  $(\forall x) P(x)$ 

6.  $(\forall x)Q(x)$ 

7.  $(\forall x) P(x) \land (\forall x) Q(x)$ 

hyp

1, u

2, sim

2, sim

3, ug

4, ug

5, 6, con

#### Examples: Proofs using Predicate Logic

Prove the argument

$$(\forall y)[P(x) \to Q(x,y)] \to [P(x) \to (\forall y)Q(x,y)]$$

Using the deduction method, we can derive

$$(\forall y)[P(x) \to Q(x,y)] \land P(x) \to (\forall y)Q(x,y)$$

Proof sequence:

| <sup>1</sup> 1. <b>(∀</b> ) | )[P(x)] | $\rightarrow Q$ | (x,y) |
|-----------------------------|---------|-----------------|-------|
|-----------------------------|---------|-----------------|-------|

hyp

2. 
$$P(x)$$

hyp

3. 
$$P(x) \rightarrow Q(x,y)$$

l, ui

4. 
$$Q(x,y)$$

2, 3, mp

5. 
$$(\forall y)Q(x,y)$$

4, ug

### Temporary hypotheses

- A temporary hypothesis can be inserted into a proof sequence. If T is inserted as a temporary hypothesis and eventually W is deduced from T and other hypotheses, then the wff T → W has been deduced from other hypotheses and can be reinserted into the proof sequence
- Prove the argument

$$[P(x) \to (\forall y)Q(x,y)] \to (\forall y)[P(x) \to Q(x,y)]$$

Proof sequence:

| 1. | P(x) - | $\rightarrow (\forall y)$ | Q(x,y) |  |
|----|--------|---------------------------|--------|--|
|----|--------|---------------------------|--------|--|

P(x)

3.  $(\forall y)Q(x,y)$ 

4. Q(x,y)

5.  $P(x) \rightarrow Q(x,y)$ 

6.  $(\forall y)[P(x) \rightarrow Q(x,y)]$ 

hyp

temporary hypothesis (T

1, 2, mp

3, ui (W)

temp. hyp discharged (Tightarrow W)

5, ug

#### More Examples

- Prove the sequence  $[(\exists x)A(x)]' \Leftrightarrow (\forall x)[A(x)]'$ 
  - To prove equivalence, implication in each direction should be proved
- Proof sequence for  $[(\exists x)A(x)]' \rightarrow (\forall x)[A(x)]'$

| 1. $[(\exists x) \land (x)]'$ |  |
|-------------------------------|--|
|                               |  |

hyp

A(x)

temp. hyp

 $\exists x) \land (x)$ 

2, eg

 $4. \qquad \mathsf{A}(x) \to (\exists x) \mathsf{A}(x)$ 

temp. hyp discharged

5. [A(x)]'

1, 4, mt

 $6. \qquad (\forall x) [A(x)]'$ 

5. ua

Proof sequence for  $(\forall x)[A(x)]' \rightarrow [(\exists x)A(x)]'$ 

1.  $(\forall x)[A(x)]'$ 

hyp

2.  $(\exists x) \land (x)$ 

temp. hyp

3. A(a)

2, ei

4. [A(a)]'

1, ui

5.  $[(\forall x)[A(x)]']$ 

3, 4, inc (inconsistency)

6.  $(\exists x) A(x) \rightarrow [(\forall x)[A(x)]']'$ 

temp. hyp discharged

7.  $[((\forall x)[A(x)]')']'$ 

1, dn

8.  $[(\exists x)A(x)]'$ 

6, 7, mt

### Proving Verbal Arguments

- Every crocodile is bigger than every alligator. Sam is a crocodile. But there is a snake, and Sam isn't bigger than that snake. Therefore, something is not an alligator.
  - Use C(x): x is a crocodile; A(x): x is an alligator, B(x,y): x is bigger than y, x is a constant (Sam), S(x): x is a Snake
- Hence prove argument

```
(\forall x) (\forall y) [C(x) \land A(y) \rightarrow B(x,y)] \land C(s) \land (\exists x) (S(x) \land [B(s,x)]') \rightarrow (\exists x) [A(x)]'
```

```
1. (\forall x) (\forall y) [C(x) \land A(y) \rightarrow B(x,y)]
```

2. C(s)

3.  $(\exists x)(S(x) \land [B(s,x)]')$ 

4.  $(\forall y)[C(s) \land A(y) \rightarrow B(s,y)]$ 

5.  $S(a) \Lambda [B(s,a)]'$ 

6.  $C(s) \land A(a) \rightarrow B(s,a)$ 

7. [B(s,a)]'

8.  $[C(s) \Lambda A(a)]'$ 

9. [C(s)]' V [A(a)]'

10.  $[C(s)] \rightarrow [A(a)]'$ 

11. [A(a)]'

12.  $(\exists x)[A(x)]'$ 

hyp

hyp

hyp

1, ui

3, ei

4, ui

5, sim

6, 7, mt

8, De Morgan

9, imp

2, 10, mp

11, eg

#### Class Exercise

Prove the argument

$$(\forall x)[(B(x) \lor C(x)) \rightarrow A(x)] \rightarrow (\forall x)[B(x) \rightarrow A(x)]$$

#### Class Exercise

- ▶ Every ambassador speaks only to diplomats, and some ambassadors speak to someone. Therefore, there is a diplomat.
- ▶ Use A(x): x is an ambassador; S(x,y): x speaks to y; D(x): x is a diplomat

Prove the argument

$$(\forall x) (\forall y) [(A(x) \land S(x,y)) \rightarrow D(y)] \land (\exists x) (\exists y) (A(x) \land S(x,y)) \rightarrow (\exists x) D(x)$$