EXAMENSARBETE VID CSC, KTH

Svensk titel

Engelsk titel

Jonas Frogvall

frjo02@kth.se

Exjobb i: exjobbsämne

Handledare: Stefan Arnborg

Examinator: Stefan Arnborg

Uppdragsgivare: Sigma

Svensk titel

Sammanfattning

Svensk sammanfattning.

Sammanfattningen på det språk rapporten är skriven på placeras först.

Engelsk titel

Abstract

Engelsk sammanfattning.

Om båda sammanfattningarna får plats på en sida, placerar du dem på samma sida. Sätt annars den andra på en ny sida.

Förord

Förordet sätter du på ny sida. Du behöver inte ha förord.

Innehållsförteckning

Problembeskrivning	1
Historia	2
Mutation testing	3
MuJava	3
Lösningsförslag 2, etc	4
Dynamisk klassladdning och Java Webstart	5
Testmoduler och cirkulära beroenden	6
Någon slags diskussion	7
Implementation	8
Slutsats	9
Litteraturlista	10

Problembeskrivning

Historia

Mutation testing

MuJava

Lösningsförslag 2, etc

Dynamisk klassladdning och Java Webstart

Dynamisk laddning av klasser i java är inget problem. Vet man vad klassen heter och vart den ligger så är man bara en rad kod bort.

Vill man ladda in alla klasser i ett paket, vilket vi vill om vi skall få den dynamiska inladdningen av buggar att fungera, så går det också utan större bekymmer genom att ta reda på programmets *classpath*.

```
String path = System.getProperty("java.class.path");
```

Sedan går man igenom mappen där klasserna ligger och laddar in dem en efter en.

Detta funkar alldeles utmärkt lokalt, men när man distribuerar koden via Java Webstart och kör det så upptäcker man att klasserna inte har laddats.

Det är i sig kanske inte så konstigt, då Java Webstart kräver att man har hela programmet sparat i jar-filer. Då får man istället tänka om och börja ladda klasserna ur en jar-fil.

```
JarFile jar = new JarFile(path);
Enumeration<JarEntry> entries = jar.entries();
while (entries.hasMoreElements()) {
    JarEntry entry = entries.nextElement();
    if (entry.isDirectory()) continue;
    if (!entry.getName().startsWith("com.sigma.qsab.glitches.customglitches.")) continue;
    glitchList.add((Glitch) (loader.loadClass(entry.getName()).newInstance()));
}
```

Provar man nu att köra programmet lokalt från en jar-fil, så funkar det alldeles utmärkt, men när man kör det via JWS så fungerar det fortfarande inte.

Problemet inser man om man tittar på vad JWS använder för *classpath*.

```
C:\\Program Files (x86)\\Java\\jre6\\lib\\deploy.jar
```

Classpath är inte en sökväg till programmet, utan istället Javas deploy.jar, där JWS finns och körs från.

Hur löser vi då problemet? Hur skall man kunna hitta den jar-fil som klasserna ligger i? Svaret är tyvärr att det gör man inte.

Hur har vi då löst problemet?

```
[alt 1]
```

Vi kom fram till att man kommer bli tvungen att kompilera om hela projektet oavsett när man skapat en ny bugg-klass, för att den skall hamna i webstart-jaren, så då skrev vi ett eget mavenplugin som sökte igenom mappen med klassfiler och gjorde i ordning en property-fil som innehöll namnet på alla bugg-klasser. När vi känner till namnet på alla klasserna vid kompilering, så är det sedan en enkel sak att ladda in dem i runtime.

Skriv något om att ha klasserna i en separat jar-fil som man lägger en länk till i jnlp-filen. Ej testat ännu.

Testmoduler och cirkulära beroenden

Tanken var att skriva en separat modul med ett testbibliotek för att hantera GUI-testning. Denna modul var menad att vara den enda modul som har kontakt med FEST-biblioteket och abstrahera bort kännedom om FEST från den som skriver testkod. En annan fördel detta skulle medföra är att man kan byta testmiljö utan att testen behöver skrivas om, eller ens känna till förändringen.

Det uppstod dock ett problem med denna abstrahering. FEST kräver att den känner till den Frame den skall jobba mot; och är således beroende av implementationsmodulen. Eftersom testen i sig är beroende av testbiblioteksmodulen och är en del av implementationsmodulen, så uppstår ett cirkulärt beroende och koden går inte att kompilera.

Ett antal lösningsförslag diskuterades.

Man kan ta bort kravet om abstraktion och låta testen känna till och sköta initiering av FEST-biblioteket och därmed ta bort testbibliotekets beroende till implementationsmodulen.

En annan, bättre, lösning är att lägga till ytterligare ett abstraktionslager och låta integrationstesten ligga i en egen modul, vilket resulterar i att implementationen inte längre är beroende av testbiblioteket.

Oavsett vilken väg man väljer att gå så har man löst problemet med cirkulära beroenden.

Någon slags diskussion

Implementation

Slutsats

Litteraturlista

ANDERSSON, P. 1999. Testing algorithms. *Journal of algorithms*, Vol. 4, 1999, s. 217–223.

ANGEL E. 2011. Computer graphics, a top down approach. Prentice Hall. ISBN 123456789. Modern och välkänd lärobok i datorgrafik som används vid KTHs kurser.

MORKES J. OCH NIELSEN J. 1997. *Consise, scannable, and objective: how to write for the web.* http://www.useit.com/papers/webwriting/writing.html

Artikel av bl.a. webbgurun Jakob Nielsen om hur webbsidor bör skrivas. Beskriver två experiment med läsning av webbsidor.

PETTERSSON, A. 2000. *Att skriva vetenskapliga rapporter*. Studentlitteratur. ISBN 123456789 Detta är en fejkad bok som inte finns.