МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3344	Сьомак Д.А.
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Освоение работы с машиной Тьюринга. Получение навыков составления таблиц и словарей для машины Тьюринга.

Задание

Вариант 1

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита $\{a, b, c\}$.

Напишите программу, которая удаляет в исходной строке два символа, следующих за первым встретившимся символом 'b'. Если первый встретившийся символ 'b' — последний в строке, то удалить его. Если первый встретившийся символ 'b' — предпоследний в строке, то удалить один символ, следующий за ним, т. е. последний в строке. Если в строке символ 'b' отсутствует, то удалить самый первый символ строки. После удаления в строке не должно оставаться пробелов и пустых мест!

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

- a
- b
- (
- "" (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
 - 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Выполнение работы

Была считана строка, преобразована в список и занесена в переменную lenta. Было задано начальное состояние state = "qs", начальный индекс строки index = 0, словарь состояний машины Тьюринга states. Словарь содержит ключи в виде состояний и значения в виде словарей с действиями для каждого символа данного состояния.

Состояния:

- qs начальное состояние, поиск первого символа
- q1 нахождение символа в проходом до конца строки
- q2 символ b не найден, возвращение к началу строки
- q3, q4, q5a, q5c состояния, которые взаимодействуя друг с другом удаляют первый символ строки, путём замены первого символа на пробел и передвижения каждого символа на один влево, при встрече конца строки переходит к конечному состоянию
 - q6 символ b найден, если дальше него нет букв, то переход в q7
 - q7 замена символа b на пробел и переход к конечному состоянию
 - q8 если после b есть только один символ, то переход в q9
 - q9 замена любого символа на пробел и переход к конечному состоянию
- q10, q11, q12a, q12b, q12c состояния, которые взаимодействуя друг с другом удаляют второй символ после b, путём замены его на пробел и передвижения каждого символа на один влево, при встрече конца строки переходит в q12sp.
 - q12sp пропускает пробел, который был сдвинут из середины строки
 - q13 возвращение к первому символу, который надо удалить
- q14, q15, q16a, q16b, q16c состояния, которые взаимодействуя друг с другом удаляют первый символ после b, путём замены его на пробел и передвижения каждого символа на один влево, при встрече конца строки переходит к конечному состоянию.
 - де конечное состояние, завершение работы программы

Был реализован цикл while, который работает до конечного состояния qe. На каждой итерации цикла в зависимости от текущего состояния происходило обновление symbol - символ ленты, step - шаг сдвига ленты, state - текущего состояния ленты. Далее происходит замена символа ленты на символ, полученный действиями текущего состояния. Обновление индекса текущим шагом step(значение от -1 до 1). После цикла отредактированный список lenta выводится на экран с помощью print("".join(lenta)).

Таблица состояний представлена в табл. 1

Таблица 1 - Таблица состояний

	'a'	'b'	'c'	٠ ،
qs	'a', 1, 'q1'	'b', 1, 'q6'	'c', 1, 'q1'	'', 1, 'qs'
q1	'a', 1, 'q1'	'b', 1, 'q6'	'c', 1, 'q1'	' ', -1, 'q2'
q2	'a', -1, 'q2'		'c', -1, 'q2'	' ', 1, 'q3'
q3	' ', 1, 'q4'		'', 1, 'q4'	'', 1, 'q4'
q4	' ', -1, 'q5a'		' ', -1,'q5c'	' ', 1, 'qe'
q5a				'a', 1, 'q3'
q5c				'c', 1, 'q3'
q6	' ', 1, 'q8'	' ', 1, 'q8'	' ', 1, 'q8'	' ', -1, 'q7'
q7		' ', 1, 'qe'		
q8	'a', 0, 'q10'	'b', 0,'q10'	'c', 0, 'q10'	' ', -1, 'q9'
q9	' ', 1, 'qe'			
q10	' ', 1, 'q11'			
q11	' ', -1, 'q12a'	' ', -1, 'q12b'	' ', -1, 'q12c'	' ', -1, 'q12sp'
q12a				'a', 1, 'q10'
q12b				'b', 1, 'q10'

q12c				'c', 1, 'q10'
q12sp				' ', -1, 'q13'
q13	'a', -1, 'q13'	'b', -1, 'q13'	'c', -1, 'q13'	' ', 0, 'q14'
q14	' ', 1, 'q15'	' ', 1, 'q15'	' ', 1, 'q15'	' ', 1, 'q15'
q15	' ', -1, 'q16a'	' ', -1, 'q16b'	' ', -1, 'q16c'	' ', 1, 'qe'
q16a				'a', 1, 'q14'
q16b				'b', 1, 'q14'
q16c				'c', 1, 'q14'

Исходный код см. в приложении А

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
1.	acacacb	acacac	1
2.	accacccbc	accacccb	-
3.	accacbbcacb	accacbacb	-

Выводы

Была освоена работа с машиной Тьюринга. Были получены навыки составления таблиц и словарей для машины Тьюринга. Была реализована машина Тьюринга в соответствии с условиями задания.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: Somak Demid lb3.py

```
lenta = list(input())
state = "qs"
index = 0
states = {'qs': {'a': ('a', 1, 'q1'), 'b': ('b', 1, 'q6'), 'c': ('c',
1, 'q1'), ' ': (' ', 1, 'qs')},
          'q1': {'a': ('a', 1, 'q1'), 'b': ('b', 1, 'q6'), 'c': ('c',
          ' ': (' ', -1, 'q2')},
   'q1'),
          'q2': {'a': ('a', -1, 'q2'), 'c': ('c', -1, 'q2'), ' ': (' ',
          'q3': {'a': (' ', 1, 'q4'), 'c': (' ', 1, 'q4'), ' ': (' ',
1, 'q4')},
          'q4': {'a': (' ', -1, 'q5a'), 'c': (' ', -1, 'q5c'), ' ': ('
', 1, 'qe')},
          'q5a': {' ': ('a', 1, 'q3')},
          'q5c': {' ': ('c', 1, 'q3')},
          'q6': {'a': (' ', 1, 'q8'), 'b': (' ', 1, 'q8'), 'c': (' ',
'g8': {'a': ('a', 0, 'g10'), 'b': ('b', 0, 'g10'), 'c': ('c',
0, 'q10'), ' ': (' ', -1, 'q9')},
'q9': {'a': (' ', 1, 'qe'), 'b': (' ', 1, 'qe'), 'c': (' ', 1, 'qe'), ' ': (' ', 1, 'qe')},
          'q10': {'a': (' ', 1, 'q11'), 'b': (' ', 1, 'q11'), 'c': ('
', 1, 'q11'), ' ': (' ', 1, 'q11')},
'q11': {'a': (' ', -1, 'q12a'), 'b': (' ', -1, 'q12b'), 'c': (' ', -1, 'q12c'), ' ': (' ', -1, 'q12sp')},
          'q12a': {' ': ('a', 1, 'q10')},
          'q12b': {' ': ('b', 1, 'q10')},
          'q12c': {' ': ('c', 1, 'q10')},
          'q12sp': {' ': (' ', -1, 'q13')},
          'q13': {'a': ('a', -1, 'q13'), 'b': ('b', -1, 'q13'), 'c':
('c', -1, 'q13'), ' ': (' ', 0, 'q14')},
          'q14': {'a': (' ', 1, 'q15'), 'b': (' ', 1, 'q15'), 'c': ('
', 1, 'q15'), ' ': (' ', 1, 'q15')},
          'q15': {'a': (' ', -1, 'q16a'), 'b': (' ', -1, 'q16b'), 'c':
(' ', -1, 'q16c'), ' ': (' ', 1, 'qe')},
          'q16a': {' ': ('a', 1, 'q14')},
          'q16b': {' ': ('b', 1, 'q14')},
          'q16c': {' ': ('c', 1, 'q14')}
}
while state != "qe":
    symbol, step, state = states[state][lenta[index]]
    lenta[index] = symbol
    index += step
print("".join(lenta))
```