Deep Learning and Reinforcement Learning		Semester	
Course Code	BAI701	CIE Marks	50
Teaching Hours/Week (L:T:P: S)	3:0:2:0	SEE Marks	50
Total Hours of Pedagogy	40 hours Theory + 8-10 Lab slots	Total Marks	100
Credits	04	Exam Hours	
Examination nature (SEE)	Theory/practical/Viva-Voce /Term-work/Others		

Course objectives:

- Understand the fundamentals of deep learning.
- Know the theory behind Convolutional Neural Networks, RNN.
- Illustrate the strength and weaknesses of many popular deep learning approaches.
- Introduce major deep learning algorithms, the problem settings, and their applications to solve real world problems

Teaching-Learning Process (General Instructions)

These are sample Strategies, which teachers can use to accelerate the attainment of the various course outcomes.

- 1. Black board teaching (Chalk and talk)
- 2. PPT and videos
- 3. Hands-on sessions using Python
- 4. Quiz/Puzzles
- 5. Seminars

MODULE-1

Introduction to Deep Learning

Introduction, Shallow Learning, Deep Learning, Why to use Deep Learning, How Deep Learning Works, Deep Learning Challenges,. How Learning Differs from Pure Optimization, Challenges in Neural Network Optimization.

Textbook 1: Ch 1.1 – 1.6, **Textbook 2:** 8.1,8.2

MODULE-2

Basics of Supervised Deep Learning

Introduction, Convolution Neural Network, Evolution of Convolution Neural Network, Architecture of CNN, Convolution Operation

Textbook 1: Ch 2.1 – 2.5

MODULE-3

Training Supervised Deep Learning Networks

Training Convolution Neural Networks, Gradient Descent-Based Optimization Techniques, Challenges in Training Deep Networks.

Supervised Deep Learning Architectures: LetNet-5,AlexNet

Text Book - 1 : Ch 3.2,3.4,3.5, Ch 4.2,4.3

MODULE-4

Recurrent and Recursive Neural Networks

Unfolding Computational Graphs, Recurrent Neural Network, Bidirectional RNNs, Deep Recurrent Networks, Recursive Neural Networks, The Long Short-Term Memory.Gated RNNs.

Text Book - 2: 10.1-10.3, 10.5, 10.6, 10.10

MODULE-5

Deep Reinforceme,nt Learning: Introduction, Stateless Algorithms: Multi-Armed Bandits, The Basic Framework of Reinforcement Learning, case studies.

Textbook - 3: Chapter 9: 9.1,9.2,9.3, 9.7

21102024 1