# Übung 4: Rosennachfrage, Teil II

Durch Diskussionen mit anderen CAS-Teilnehmern haben Sie folgende Regressionsmodelle gesammelt:

- 1. Modell 1:  $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + u_t$  t = 1,...,16
- 2. Modell 2:  $\ln y_t = \beta_1 + \beta_2 \ln(PR_t/PN_t) + u_t$  t = 1,...,16
- 3. Modell 3:  $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + \beta_4 \ln EINK_t + u_t$  t = 1,...,16
- 4. Modell 4:  $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + \beta_4 \ln EINK_t + \beta_5 T + u_t$  t = 1,...,16
- 5. Modell 5:  $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + \beta_4 \ln EINK_t + \beta_5 \ln T + u_t$  t = 1,...,16

Es gelte  $u_t \sim iid \ N(0;\sigma^2)$ . iid: independent and identically distributed (unabhängig identisch verteilten Zufallsvariablen)

- 1. Definieren Sie folgende logarithmierte Variablen:
  - I\_y, I\_PR, I\_PN, I\_EINK, I\_RelP wobei I\_ der natürliche Logarithmus symbolisiert.

gretl: Hinzufügen / Logs gewählter Variablen→ wählen Sie jeweils Y,PR, PN, EINK.T. RelP



2. Welche Vorzeichen für die Regressionskoeffizienten erwarten Sie für das Modell 4?

Rosenpreis:

Nelkenpreis:

Einkommen:

Zeit:

3. Schätzen Sie diese 5 Regressionsmodelle. Speichern Sie jeweils die geschätzten Werte

→yhat1, ...yhat5. Diese neuen Variablen erscheinen im Hauptfenster.



| Abhängige Var: | iable: l_Y  |          |           |            |            |      |
|----------------|-------------|----------|-----------|------------|------------|------|
| 1              | Koeffizient | Stdfel   | nler t-Q  | uotient    | p-Wert     |      |
| const          | 9,22776     | 0,5683   | 90 1      | <br>6,23   | 5,18e-010  | ***  |
| 1_PR           | -1,76072    | 0,2982   | 06 -      | 5,904      | 5,20e-05   | ***  |
| 1_PN           | 1,33978     | 0,5273   | 24        | 2,541      | 0,0246     | **   |
| Mittel d. abh  | . Var. 8    | 3,902209 | Stdabw. d | . abh. Var | . 0,300    | 5877 |
| Summe d. quad  | . Res. (    | ,382569  | Stdfehler | d. Regres  | s. 0,171   | 1547 |
| R-Quadrat      | (           | 729174   | Korrigier | tes R-Quad | lrat 0,687 | 7509 |
| F(2, 13)       | 1           | 17,50066 | P-Wert(F) |            | 0,000      | 205  |
| Log-Likelihoo  | i :         | 7,164472 | Akaike-Kr | iterium    | -8,328     | 3944 |
| Schwarz-Krite  | rium - (    | 5,011178 | Hannan-Qu | inn-Kriter | ium -8,210 | 255  |
| rho            | -(          | 0,052667 | Durbin-Wa | tson-Stat  | 2,058      | 8814 |

Modell 1

Speichern

Graphen

geschätzte Werte

| Abnangige V | Variable: 1_Y |          |       |                |             |      |
|-------------|---------------|----------|-------|----------------|-------------|------|
|             | Koeffizient   | Stdfe    | hler  | t-Quotient     | p-Wert      |      |
| const       | 8,71319       | 0,0533   | 3773  | 163,2          | 2,31e-024   | ***  |
| 1_RelP      | -1,73605      | 0,2951   | 29    | -5,882         | 3,99e-05    | ***  |
| Mittel d. a | abh. Var.     | 8,902209 | Stdal | bw. d. abh. Va | ar. 0,30    | 6877 |
| Summe d. qu | ad. Res.      | 0,406905 | Stdf  | ehler d. Regre | ess. 0,17   | 0484 |
| R-Quadrat   |               | 0,711946 | Korr  | igiertes R-Qua | adrat 0,69  | 1370 |
| F(1, 14)    |               | 34,60194 | P-We: | rt(F)          | 0,00        | 0040 |
| Log-Likelih | lood          | 6,671089 | Akai  | ke-Kriterium   | -9,34       | 2178 |
| Schwarz-Kri | terium -      | 7,797001 | Hann  | an-Quinn-Krite | erium -9,26 | 3053 |
| rho         | _             | 0,158187 | Durb  | in-Watson-Stat | 2,27        | 6028 |

#### Modell 2

| Abhängige Var | riable: l_ | Y         |         |          |          |           |
|---------------|------------|-----------|---------|----------|----------|-----------|
|               | Koeffizie  | nt Stdfe  | hler t  | -Quotie  | nt p-We  | rt        |
| const         | 6,28769    | 4,8745    | 9       | 1,290    | 0,22     | 14        |
| 1_PR          | -1,85624   | 0,3437    | 80      | -5,399   | 0,00     | 02 ***    |
| 1 PN          | 1,45408    | 0,5724    | 11      | 2,540    | 0,02     | 59 **     |
| 1_EINK        | 0,55955    | 3 0,9210  | 79      | 0,6075   | 0,55     | 48        |
| Mittel d. abh | ı. Var.    | 8,902209  | Stdabw. | d. abh   | . Var.   | 0,306877  |
| Summe d. quad | i. Res.    | 0,371154  | Stdfehl | ler d. R | egress.  | 0,175868  |
| R-Quadrat     |            | 0,737255  | Korrigi | iertes R | -Quadrat | 0,671568  |
| F(3, 12)      |            | 11,22387  | P-Wert  | (F)      |          | 0,000849  |
| Log-Likelihoo | od         | 7,406800  | Akaike- | -Kriteri | um       | -6,813600 |
| Schwarz-Krite | erium      | -3,723245 | Hannan- | -Quinn-K | riterium | -6,655348 |
| rho           |            | -0,013701 | Durbin- | -Watson- | Stat     | 2,004954  |

## Modell 3

| Abhängige V | ariable: l_Y |          |       |            |            |         |
|-------------|--------------|----------|-------|------------|------------|---------|
|             | Koeffizient  | Stdfe    | hler  | t-Quotien  | t p-Wert   |         |
| const       | 3,57216      | 4,6951   | 6     | 0,7608     | 0,4628     |         |
| 1_PR        | -1,17073     | 0,4883   | 24    | -2,397     | 0,0354     | **      |
| 1_PN        | 0,737938     | 0,6528   | 63    | 1,130      | 0,2824     |         |
| 1_EINK      | 1,15321      | 0,9019   | 89    | 1,279      | 0,2274     |         |
| T           | -0,0301108   | 0,0164   | 188   | -1,834     | 0,0938     | *       |
| Mittel d. a | bh. Var.     | 8,902209 | Stdab | w. d. abh. | Var. 0     | ,306877 |
| Summe d. qu | ad. Res.     | 0,284245 | Stdfe | hler d. Re | gress. 0   | ,160750 |
| R-Quadrat   |              | 0,798779 | Korri | giertes R- | Quadrat 0  | ,725607 |
| F(4, 11)    |              | 10,91654 | P-Wer | t(F)       | 0          | ,000798 |
| Log-Likelih | ood          | 9,541038 | Akaik | e-Kriteriu | m -9       | ,082076 |
| Schwarz-Kri | terium -     | 5,219132 | Hanna | n-Quinn-Kr | iterium -8 | ,884262 |
| rho         | -            | 0,067449 | Durbi | n-Watson-S | tat 2      | ,049078 |

## Modell 4

| Abhängige Va | ariable: l_Y |          |       |              |          |         |
|--------------|--------------|----------|-------|--------------|----------|---------|
|              | Koeffizient  | Stdfe    | hler  | t-Quotient   | p-Wert   |         |
| const        | 0,626824     | 6,1482   | 6     | 0,1020       | 0,9206   |         |
| 1_PR         | -1,27355     | 0,5266   | 49    | -2,418       | 0,0341   | **      |
| 1 PN         | 0,937305     | 0,6591   | 91    | 1,422        | 0,1828   |         |
| 1_EINK       | 1,71298      | 1,2008   | 4     | 1,426        | 0,1815   |         |
| 1_T          | -0,181597    | 0,1278   | 93    | -1,420       | 0,1833   |         |
| Mittel d. ak | oh. Var.     | 8,902209 | Stdab | w. d. abh. V | ar. 0    | ,306877 |
| Summe d. qua | ad. Res.     | 0,313664 | Stdfe | hler d. Regr | ess. 0   | ,168864 |
| R-Quadrat    |              | 0,777953 | Korri | giertes R-Qu | adrat 0  | ,697208 |
| F(4, 11)     |              | 9,634745 | P-Wer | t(F)         | 0        | ,001343 |
| Log-Likeliho | ood          | 8,753157 | Akaik | e-Kriterium  | -7       | ,506314 |
| Schwarz-Krit | terium -     | 3,643370 | Hanna | n-Quinn-Krit | erium -7 | ,308499 |
| rho          |              | 0,091730 | Durbi | n-Watson-Sta | t 1      | ,782659 |

#### Modell 5

4. Interpretieren Sie die Regressionskoeffizienten des Regressionsmodells 4 und beurteilen Sie, ob die Parameterschätzungen plausibel sind.

5. Sind diese Koeffizienten statistisch signifikant auf dem 5%-Signifikanzniveau?

Sie wissen, dass  $R^2$  dem Quadrat des Korrelationskoeffizienten zwischen den tatsächlichen (y) und geschätzten Werten (y) entspricht. Sie haben jeweils die geschätzten Werte im gretel gespeichert yhat1,...,yhat5. Berechnen Sie jetzt die entsprechenden Exponentialwerte: expy1 = exp(yhat1), ..., expy5 = exp(yhat5).



6. Öffnen Sie die Korrelationsmatrix gretl Hauptfenster: Ansicht Korrelationsmatrix, wählen Sie die Variablen  $exp_i$  i = 1,...,5, und y

7. Berechnen Sie die quadrierten Korrelationskoeffizienten

|              | 4 4 4 4 4 4 4 4 4 |              |              |              |   |  |
|--------------|-------------------|--------------|--------------|--------------|---|--|
| exp(l_yhat1) | exp(l_yhat1)      | exp(l_yhat1) | exp(l_yhat1) | exp(l_yhat1) |   |  |
| 0.8558       | 0.8413            | 0.8503       | 0.8985       | 0.8764       | у |  |

8. Welches Regressionsmodell würden Sie auswählen. Begründen Sie Ihre Auswahl.

Folgende Tabelle enthält eine Zusammenstellung der zur vergleichenden Modelle mit den entsprechenden Kriterien.

|                  | Modell 1      | Modell 2 | Modell 3              | Modell 4                 | Modell 5                   |
|------------------|---------------|----------|-----------------------|--------------------------|----------------------------|
| # Regressoren    | K = 3         | K = 2    | K = 4                 | K = 5                    | K =5                       |
| Regressoren      | I_PR,<br>I_PN | I_PR/PN  | I_PR, I_PN,<br>I_EINK | I_PR, I_PN,<br>I_EINK, T | I_PR, I_PN,<br>I_EINK, InT |
| $\overline{R}^2$ | 0.6875        | 0.6913   | 0.6715                | 0.7256                   | 0.6972                     |
| Akaike           | -8.328        | -9.34    | -6.81                 | -9.08                    | -7.506                     |
| SIC              | -6            | -7.79    | -3.72                 | -5.21                    | -3.64                      |
| R <sup>2</sup>   | 0.7324        | 0.7078   | 0.7230                | 0.8073                   | 0.7680                     |

9. Folgende Modelle wurden aus der Übung 3 und 4 ausgewählt:

Teil I, Modell 2:  $y_t = \beta_1 + \beta_2 RelP + u_t$ 

Teil II, Modell 2:  $lny_t = \beta_1 + \beta_2 lnRelP + u_t$ 

Wie können jetzt diese Modelle miteinander verglichen werden? Welches Modell würden Sie vorziehen? Begründen Sie Ihre Antwort.

| Ausgewählte Modelle                      | R <sup>2</sup> |
|------------------------------------------|----------------|
| $y_t = \beta_1 + \beta_2 RelP + u_t$     | 0.7823         |
| $lny_t = \beta_1 + \beta_2 lnRelP + u_t$ | 0.7078         |

10. Testen Sie das Regressionsmodell 1 mit dem F-Test!

Modell 1:  $\ln y_t = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + u_t$ 

Frage: Hat wenigstens einer der Preise (von Rosen oder Nelken) Einfluss auf die Rosenabsatzmenge?

i. Stellen Sie die Nullhypothese und alternative Hypothese auf.

Nullhypothese H<sub>0</sub>:

ii. Bestimmen Sie den kritischen F-Wert (Fc) auf dem 5%-Signifikanzniveau.

Kritischer Wert  $F_c(0.95,2,13) =$ 

| Zähler-Freiheitsgrade | K-1 = 3 - 1 = 2     |
|-----------------------|---------------------|
| Nenner-Freiheitsgrade | N - k = 16 - 3 = 13 |

Normal t chi-Quadrat F binomial

Zähler-FG 2

Nenner-FG 13

rechtsseitige Wahrscheinlichkeit 0.05

gretl Hauptfenster: Werkzeuge/Statistische Tabellen/F/ rechtsseitige Wahrsch. = 0.05

- iii. Berechnen Sie den F-test mittels Bestimmtheitsmass  $F = \frac{R^2}{1-R^2} \frac{N-k}{L}$
- iv. Was ist Ihre Schlussfolgerung?
- 11. Führen Sie einen Test auf "Weglassen der Variablen" durch. Nehmen Sie die Variablen I\_PR und I\_PN vom Modell 1 weg. Was ist Ihre Schlussfolgerung anhand des gretl Tests?

gretl Output-Fenster: Test / variablen weglassen / I\_PR und I\_PN weglassen



- 12. Interpretieren Sie beim Modell 1 konkret folgende Restriktion:  $\beta_2 = -\beta_3$
- 13. Stellen Sie das restringierte Modell auf und schätzen Sie es.

Regressionsmodell:  $\ln y = \beta_1 + \beta_2 \ln PR_t + \beta_3 \ln PN_t + U$ 

Restringiertes Modell:

Definieren Sie die neue Variable: I diff = InPR - InPN

| Abhängige Va | ariable: 1_Y |          |       |                |           |            |
|--------------|--------------|----------|-------|----------------|-----------|------------|
|              | Koeffizient  | t Stdfe  | hler  | t-Quotient     | p-Wert    |            |
| const        | 8,71319      | 0,0533   | 3773  | 163,2          | 2,31e-02  | -<br>4 *** |
| l_diff       | -1,73605     | 0,2951   | 29    | -5,882         | 3,99e-05  | ***        |
| Mittel d. ak | oh. Var.     | 8,902209 | Stdal | bw. d. abh. Va | ar. 0,3   | 06877      |
| Summe d. qua | ad. Res.     | 0,406905 | Stdf  | ehler d. Regre | ess. 0,1  | 70484      |
| R-Quadrat    |              | 0,711946 | Korr  | igiertes R-Qua | adrat 0,6 | 91370      |
| F(1, 14)     |              | 34,60194 | P-We  | rt(F)          | 0,0       | 00040      |

- 14. Testen Sie die Signifikanz von b2 mittels t-Tests.
- 15. Testen Sie anhand des F-Tests auf dem 5%-Signifikanzniveau, ob die Restriktion falsch ist.

Berechnen Sie den F-Wert mittels 
$$F = \frac{(RSS_r - RSS)}{RSS} \frac{(N - K)}{L}$$

Normal t chi-Quadrat F binomial

Zähler-FG 1

Nenner-FG 13

rechtsseitige Wahrscheinlichkeit 0.05

16. Testen Sie diese Restriktion mittels gretl Restriktionen Funktion.

gretl output-Fenster: Test / lineare Restriktionen / b[2] + b[3] = 0





17. Testen Sie im Regressionsmodel 4, ob die Variablen I\_PN, I\_EINK und T gemeinsam statistisch signifikant sind.

gretl: Tests / Variablen weglassen → I\_PN, I\_EINK und T auswählen



<u>Tests Speichern Graphen Analyse</u>

Variablen <u>weglassen</u>

Variablen <u>h</u>inzufügen

- 18. Testen Sie im Modell 4, ob die Preiselastizität -1 entspricht.
  Die Preiselastizität ist das Verhältnis der prozentualen Änderung des Rosenabsatzes zur prozentualen Veränderung des Rosenpreises.
- 19. Testen Sie im Modell 4, ob die Kreuzpreiselastizität 1 entspricht. Die Kreuzpreiselastizität ist das Verhältnis der prozentualen Änderung des Rosenabsatzes zur prozentualen Veränderung des Nelkenpreises.