Actual and : Cinetica Química

13. 6)

a)
$$2H_2(g) + O_2(g) \Rightarrow 2H_2Q_g$$

$$-1 \Delta[H_1] = -\Delta[O_2] = 1 \Delta[H_2O]$$

$$2 \Delta_T = \Delta_T = 2 \Delta_T$$

b) $4 NH_3(g) + 5O_2(g) \Rightarrow 4NO(g) + 6H_2O(g)$

$$-1 \Delta[NH_3] = -1 \Delta[O_3] = 1 \Delta[NO] = 1 \Delta[M_2O]$$

$$4 \Delta[NH_3] = -1 \Delta[O_3] = 1 \Delta[NO] = 1 \Delta[M_2O]$$

$$4 \Delta[NH_3] = -2 \Delta[H_3]$$

(13.13) $(13.$
$V = K [NH_4] [N0_2] = (3,6 \times 10^{-4})(0,26)(0,080) = 6,2 \times 10^{-6} M/s$ $K = 3,0 \times 10^{-4}/M \cdot N$
[NH;]=0,26 M [NO2]=0,080 M
13.14) $V_a = K[F_2][ClO_2]$ $K = V_X$ $U_1 \otimes x 10^{-3} M/s$ $[F_2][ClO_2]$ $(0,10M)(0,040M)$
$[F_2] = 0,010M$ $[ClO_2] = 0,020M$ $= 1,2/M_D$
* Va = K [Fz] [Cl0] = (1,2/M.s)(0,010 M)(0,020M) = 2,4 ×10 4/s
13.15) A+B => productos [A](M) [B] (M) Rapidly (M/s)
1,50 1,50 3,20 × 10 ⁻¹ 1,50 2,50 3,20 × 10 ⁻¹ 3,00 1,50 6,40 × 10 ⁻¹
$*V = K[A]$ $3,20 \times 10^{-1} \text{ M/s} = K(1,50 \text{ M}) \implies K = 0,213/5$

13.16) rapider inicial de desaparlaión de X (M/s) (M) [X] M) [Y] 0,053 0,10 0,50 0,127 0,20 1,02 0,40 0,60 0,60 0,20 0,509 0,30 a) x = 4, $V_5 = 0,509 \text{ M/s} \approx 4 = \frac{K(0,40)^{*}(0,30)^{*}}{K(0,20)^{*}(0,30)^{*}}$ $\frac{(0,40)^{x}}{(0,20)^{x}} = 2^{x}-4$ X = 2 $V_4 = 0,254 \text{ M/s} = 2 = \frac{K(0,20)^{x}(0,60)^{y}}{V_2} = 0,127 \text{ M/s} = 2 = \frac{K(0,20)^{x}(0,30)^{y}}{K(0,20)^{x}(0,30)^{y}}$ $\frac{(0,60)^{Y}}{(0,30)^{Y}} = 2^{Y} = 2$ Y=1, la reacción es de primer orden en y porlo tanto la relocidad es V= X[x][Y] El orden de la reaction es (2+1) =3

	V = 0 J ² [Y] (0,	,053 M/s 10.M)(0,50	DM) = 1	10,6/M2	>	
* V; = (10,6/M²s)	(0,30 M)2(0,40	M) = 0, 3	38 M/s	
3.17)			21 9		7 6	
	: segundo o	orden			108	
b) K	: o orden			13: 5		
c) K[H2][Br2]	1: 1,5 0	rden				
d) K [NO] 2 [O2]]: tercer o	rden				
3.18) primer	orden en A				230	VI SIX
	V= KEAJ			Ve SVO	ia ol	
1,1	6 × 10 ⁻² MID	= K (0,35	5M)			
	K= 0,0 4	6/5		ra ib is	200	
b) segundo	orden en			Date	39 53 5	
	V = K[A]2			83000		
1	6 x 10 - 2 M/s		M) ²			
	K=0,13 /					

TI				IIIII
3.19)			TO LA SE	
	C 4 M8(9) -> 2	(2 Hy(9)		
	Trempo (s)	PcyMg (mmMg)		
	To High (1)	1 4 6		F L O NO
	0	400		
	2000	316		
	4000	248		
	6 000	196	2 20 10	
	8000	155		1993
	10000	722		
	K=1,19 ×10-4/5		Para Da I	AND
	- / / X / W			
20)				
	C/CO2 C(13(9)	-> 2 < 0 cl2(g)		14 14 14 14
	Tumpo (s)	P (mm/g)	EN NUL THE	
	(03)			
	0	15,76		ANSTI
	181	18, 88		
	513	15, 76 18, 88 22, 79 27,08		
	1164	27,08		
5	10 aprimen al	do N-1.1	08 × 10-3/1	
a	s de primer or	con 9 11-17	X IO X	N
				53 7 74
			7015	

13.37) Im[A]T corresponde la grafica a 13.38) (O(g) + (l2 (g) -> co (l2 (g) T1 = 250 = 523K T2 = 150°C = 423K Ky = 1,50 × 103 $\lim_{K_2} \frac{K_1}{R} = \frac{Ea}{R} \left(\frac{T_1 - T_2}{T_1 T_2} \right)$ $lm(1,50 \times 10^3) = E_6$ (523K - 423K)7,31 = Ea (4,52 × 10-4 1) Fa = 1,35 × 105 J/mol = 135 K J/mol