Задача А. Двоичное дерево поиска

Имя входного файла: bst.in
Имя выходного файла: bst.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Реализуйте сбалансированное двоичное дерево поиска.

Формат входных данных

Входной файл содержит описание операций с деревом, их количество не превышает 100000. В каждой строке находится одна из следующих операций:

- \bullet insert x добавить в дерево ключ x. Если ключ x в дереве уже есть, то ничего делать не надо.
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо.
- ullet exists x- если ключ x есть в дереве, выведите «true», иначе «false»
- ullet next x выведите минимальный элемент в дереве, строго больший x, или «none», если такого нет
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none», если такого нет

Все числа во входном файле целые и по модулю не превышают 10^9 .

Формат выходных данных

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

bst.out
true
false
5
3
none
3

Задача В. Двоичное дерево поиска 2

 Имя входного файла:
 bst2.in

 Имя выходного файла:
 bst2.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Реализуйте сбалансированное двоичное дерево поиска.

Формат входных данных

Входной файл содержит описание операций с деревом, их количество не превышает 100000. Формат операций смотрите в предыдущей задаче. В каждой строке находится одна из следующих операций:

- \bullet insert x добавить в дерево ключ x.
- \bullet delete x удалить из дерева ключ x. Если ключа x в дереве нет, то ничего делать не надо.
- ullet exists x- если ключ x есть в дереве, выведите «true», иначе «false»
- ullet next x выведите минимальный элемент в дереве, строго больший x, или «none», если такого нет
- ullet рrev x выведите максимальный элемент в дереве, строго меньший x, или «none», если такого нет.
- kth k выведите k—ый по величине элемент (нумерация с единицы). Если такого не существует, то выведите «none».

Все числа во входном файле целые и по модулю не превышают 10^9 .

Формат выходных данных

Выведите последовательно результат выполнения всех операций exists, next, prev, kth. Следуйте формату выходного файла из примера.

bst2.in	bst2.out
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	2
delete 5	none
next 4	
prev 4	
kth 1	
kth 3	

Задача С. И снова сумма...

Имя входного файла: sum2.in
Имя выходного файла: sum2.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 256 мегабайт

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- ullet add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- sum(l,r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l \leqslant x \leqslant r$.

Формат входных данных

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос sum(l,r).

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $add(i+y) \bmod 10^9$).

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходных данных

Для каждого запроса выведите одно число — ответ на запрос.

sum2.in	sum2.out
6	3
+ 1	7
+ 3	
+ 3	
? 2 4	
+ 1	
? 2 4	

Задача D. Вперёд!

Имя входного файла: movetofront.in Имя выходного файла: movetofront.out

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Капрал Дукар любит раздавать приказы своей роте. Самый любимый его приказ — «Вперёд!». Капрал строит солдат в ряд и отдаёт некоторое количество приказов, каждый из которых звучит так: «Рядовые с l_i по l_j — вперёд!»

Перед тем, как Дукар отдал первый приказ, солдаты были пронумерованы от 1 до n слева направо. Услышав приказ «Рядовые с l_i по l_j — вперёд!», солдаты, стоящие на местах с l_i по l_j включительно, продвигаются в начало ряда в том же порядке, в котором были.

Например, если в какой-то момент солдаты стоят в порядке 2, 3, 6, 1, 5, 4, то после приказа «Рядовые с 2 по 4 — вперёд!», порядок будет таким: 3, 6, 1, 2, 5, 4. А если потом Капрал вышлет вперёд солдат с 3 по 4, то порядок будет уже таким: 1, 2, 3, 6, 5, 4.

Вам дана последовательность приказов Капрала. Найдите порядок, в котором будут стоять солдаты после исполнения всех приказов.

Формат входных данных

В первой строке входного файла указаны числа n и m ($2 \le n \le 100\,000$, $1 \le m \le 100\,000$) — число солдат и число приказов. Следующие m строк содержат приказы в виде двух целых чисел: l_i и r_i ($1 \le l_i \le r_i \le n$).

Формат выходных данных

Выведите в выходной файл n целых чисел — порядок, в котором будут стоять солдаты после исполнения всех приказов.

movetofront.in	movetofront.out
6 3	1 4 5 2 3 6
2 4	
3 5	
2 2	

Задача Е. Переворот

Имя входного файла: reverse.in
Имя выходного файла: reverse.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан массив. Надо научиться обрабатывать два типа запросов.

- 1 L R перевернуть отрезок [L, R]
- 2 L R найти минимум на отрезке [L, R]

Формат входных данных

Первая строка файла содержит два числа n, m. $(1 \le n, m \le 10^5)$ Во второй строке находится n чисел a_i $(1 \le a_i \le 10^9)$ - исходный массив. Остальные m строк содержат запросы, в формате описанном в условии. Для чисел L,R выполняется ограничение $(1 \le L \le R \le n)$.

Формат выходных данных

На каждый запрос типа 2, во входной файл выведите ответ на него, в отдельной строке.

reverse.in	reverse.out
10 7	3
5 3 2 3 12 6 7 5 10 12	2
2 4 9	2
1 4 6	2
2 1 8	
1 1 8	
1 8 9	
2 1 7	
2 3 6	

Задача F. Своппер

Имя входного файла: swapper.in Имя выходного файла: swapper.out Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Современные компьютеры зацикливаются в десятки раз эффективнее человека

Рекламный проспект OS Vista-N

Перед возвращением в штаб-квартиру корпорации Аазу и Скиву пришлось заполнить на местной таможне декларацию о доходах за время визита. Получилась довольно внушительная последовательность чисел. Обработка этой последовательности заняла весьма долгое время.

- Своппер кривой, со знанием дела сказал таможенник.
- А что такое своппер? спросил любопытный Скив.

Ааз объяснил, что своппер — это структура данных, которая умеет делать следующее.

- \bullet Взять отрезок чётной длины от x до y и поменять местами число x с x+1, x+2 с x+3, и т.д.
- Посчитать сумму чисел на произвольном отрезке от a до b.

Учитывая, что обсчёт может затянуться надолго, корпорация «МИ Φ » попросила Вас решить проблему со своппером и промоделировать ЭТО эффективно.

Формат входных данных

Во входном файле заданы один или несколько тестов. В первой строке каждого теста записаны число N — длина последовательности и число M — число операций ($1 \le N, M \le 100\,000$). Во второй строке теста содержится N целых чисел, не превосходящих 10^6 по модулю — сама последовательность. Далее следуют M строк — запросы в формате 1 x_i y_i — запрос первого типа, и 2 a_i b_i — запрос второго типа. Сумма всех N и M по всему файлу не превосходит 200 000. Файл завершается строкой из двух нулей. Гарантируется, что $x_i < y_i$, а $a_i \le b_i$.

Формат выходных данных

Для каждого теста выведите ответы на запросы второго типа, как показано в примере. Разделяйте ответы на тесты пустой строкой.

swapper.in	swapper.out
5 5	Swapper 1:
1 2 3 4 5	10
1 2 5	9
2 2 4	2
1 1 4	
2 1 3	
2 4 4	
0 0	

Задача G. Очередная

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 256 мегабайт

Изначально вам дана перестановка чисел от 1 до N. Вам поступают запросы двух видов:

- 1 l_1 r_1 l_2 r_2 для выполнения требуется взять два подмассива нашей перестановки с границами $[l_1, r_1]$ и $[l_2, r_2]$ и поменять местами содержимое подмассивов друг с другом.
- 2 x найти место в перестановке, где находится число x и вывести 3 следующих за ним числа

Формат входных данных

В первой строке находится два числа N и Q — размер перестановки и общее количество запросов $(2\leqslant N\leqslant 10000,\ 1\leqslant Q\leqslant 200000).$ Во второй строке — перестановка чисел от одного до N. В следующих Q строках описаны запросы в виде либо 1 l_1 r_1 l_2 $r_2(1\leqslant l_1\leqslant r_1< l_2\leqslant r_2\leqslant N,$ $r_1-l_1=r_2-l_2)$ либо 2 x $(1\leqslant x\leqslant N).$

Формат выходных данных

Для каждого запроса второго типа выведите три числа — следующие числа за заданным, либо -1, если какого-то числа нет.

стандартный ввод	стандартный вывод
6 6	5 6 -1
1 2 3 4 5 6	5 3 1
2 4	2 6 -1
1 1 2 4 5	2 6 4
2 4	
2 1	
1 1 3 4 6	
2 1	

Задача Н. Эх, дороги ...

Имя входного файла: roads.in
Имя выходного файла: roads.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В многострадальном Тридесятом государстве опять готовится дорожная реформа. Впрочем, надо признать, дороги в этом государстве находятся в довольно плачевном состоянии. Так что реформа не повредит. Одна проблема — дорожникам не развернуться, поскольку в стране действует жесткий закон — из каждого города должно вести не более двух дорог. Все дороги в государстве двусторонние, то есть по ним разрешено движение в обоих направлениях (разумеется, разметка отсутствует). В результате реформы некоторые дороги будут строиться, а некоторые другие закрываться на бессрочный ремонт.

Петя работает диспетчером в службе грузоперевозок на дальние расстояния. В связи с предстоящими реформами, ему необходимо оперативно определять оптимальные маршруты между городами в условиях постоянно меняющейся дорожной ситуации. В силу большого количества пробок и сотрудников дорожной полиции в городах, критерием оптимальности маршрута считается количество промежуточных городов, которые необходимо проехать.

Помогите Пете по заданной последовательности сообщений об изменении структуры дорог и запросам об оптимальном способе проезда из одного города в другой, оперативно отвечать на запросы.

Формат входных данных

В первой строке входного файла заданы числа n — количество городов, m — количество дорог в начале реформы и q — количество сообщений об изменении дорожной структуры и запросов ($1 \leqslant n \leqslant 100\,000,\,0 \leqslant m \leqslant 100\,000,\,0 \leqslant q \leqslant 200\,000$). Следующие m строк содержат по два целых числа каждая — пары городов, соединенных дорогами перед реформой. Следующие q строк содержат по три элемента, разделенных пробелами. «+ i j» означает строительство дороги от города i до города j, «- i j» означает закрытие дороги от города i до города j, «? i j» означает запрос об оптимальном пути между городами i и j.

Формат выходных данных

На каждый запрос вида «? i j» выведите одно число — минимальное количество промежуточных городов на маршруте из города i в город j. Если проехать из i в j невозможно, выведите -1.

roads.in	roads.out
5 4 6	0
1 2	-1
2 3	1
1 3	2
4 5	
? 1 2	
? 1 5	
- 2 3	
? 2 3	
+ 2 4	
? 1 5	

Задача І. Лягушачий хор

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

У лесных зверей не так уж и много развлечений, поэтому каждую среду они ходят на концерт местной группы лягушек. Квакающей компашкой дирижиует цапля с идеальным музыкальным слухом.

Вы попали на репетицую этого необычного ансамбля, где на болоте певицы стоят в ряд, а цапля перед ними. Стоит отметить, что каждая лягушка своего особенно зеленого цвета от 1 до n.

Как известно, лягушки любят петь высокие ноты, поэтому когда лягушка фальшивит (а это случается раз в минуту) цапля переставляет её в начало ряда, где ей придется петь самые низкие ноты.

Вы тщательно следили за репетицей ровно m минут и все записывали. Но ваш листок упал и на нем остались только m строк с информацией о том, что лягушка на месте p_i цвета c_i была переставлена в начало ряда в момент времени i. Эта информация написана ровно в том порядке, в котором цапля и переставляла лягушек.

В конце репетеции цапля поняла, что хоть лягушки и фальшивили, но первоначальное их расположение было лучше всего, поэтому она просит вас помочь ей и по имеющейся информации предоставить хотя бы одно возможное начальное расположение лягушек.

Формат входных данных

В первой строке записаны целые числа n и m $(1 \le n, m \le 3 \cdot 10^5)$. В каждой из следующих m строк записана пара целых чисел. В i-й строке записаны целые числа c_i , p_i $(1 \le p_i, c_i \le n)$ — описание i-го перемещения лягушки. Обратите внимание, что перемещения заданы в том порядке, в котором их выполняла цапля. Вы не потеряли ни одного перемещения.

Формат выходных данных

Если описанной перестановки не существует (вы ошиблись во время записи, увлекшись замечательной песней лягушечьего ансамбля), выведите -1. Иначе выведите n различных целых чисел, каждое от 1 до n: i-е число должно обозначать номер цвета лягушки, которая изначально стоит в ряду на позиции i.

Если существует несколько правильных ответов, нужно вывести лексикографически наименьший.

стандартный ввод	стандартный вывод
2 1	2 1
2 1	
3 2	2 1 3
1 2	
1 1	
3 3	-1
1 3	
2 3	
1 3	