

Hands on Machine Learning for Fluid Dynamics

7 – 11 February 2022

Lecture 8 **Tutorial Exercise 2**

Dominique Joachim

Joachim.dominique@vki.ac.be

Table of Contents

- 1. Introduction to wall pressure spectra modeling
- 2. Coding exercise

Table of Contents

- 1. Introduction to wall pressure spectra modeling
- 2. Coding exercise

Wall pressure spectral model $\begin{array}{c} \text{Applications:} \\ & \text{Fatigue loading} \\ & \text{Vibro-acoustics} \\ & \text{Aero-acoustics} \\ \end{array}$ $\text{DNS simulation of CD airfoil by Hao Wu} \\ \hline \\ \Phi(\omega) = \frac{1}{2\pi} \int_0^\infty \overline{p'(\mathbf{x},t)p'(\mathbf{x},t+\tau)} e^{-i\omega t} d\tau \\ \text{Single point wall pressure spectra} \end{array}$

function

parameters

Amiet's strip-theory approach

Data obtained from RANS simulations

 $\Phi_{pp}(\omega) \begin{tabular}{ll} Trailing edge wall-pressure spectrum (Goody, Kamruzzaman, Lee \end{tabular}$

$$_{\mathrm{J}}(\omega)=rac{bU_{c}}{\omega}$$
 Spanwise correlation length (Corco's)

Problem definition

General form of a semi-empirical model (Goody, Kamruzaman, Lee, ...)

$$\Phi(\omega) SS = \frac{a (\omega FS)^b}{\left[i (\omega FS)^c + d\right]^e + \left[(fR_T^g) (\omega FS)\right]^h}$$

Parameters a, b, c, d, e, f, g, h

a=const.

 $a = f(\Pi, \beta_c, \Delta, ...)$

Local approach!!!

$$\frac{\Phi(\omega)U_e}{\tau_w^2\delta^*} = f(\Pi, \beta_c, ...)$$

Scaling
Spectrum Scaling, Frequency Scaling

 $\frac{\Phi\left(\omega\right)U_{e}}{\tau_{w}^{2}\delta^{*}}$

 $\Phi\left(\omega\right)\dots$ wall pressure spectra ₩ ... frequency

Turbulent boundary layers

Let's consider a 2D turbulent boundary layer

$$\delta^*(x) = \int_0^{\delta} \left(1 - \frac{u(x,y)}{u_e} \right) dy,$$

$$\theta(x) = \int_0^{\delta} \frac{u(x,y)}{u_e} \left(1 - \frac{u(x,y)}{u_e} \right) dy.$$

Equilibrium velocity and boundary layer thickness

Total pressure

$$p_T = \frac{1}{2}\rho u^2$$

Pseudo-velocity

$$u^*(x,y) = -\int_0^y \Omega_z(x,\xi)d\xi$$

Wall shear stress

$$\underline{\text{Definition:}} \quad \tau_w = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0} \qquad u_\tau = \sqrt{\tau_w/\rho}$$

Methods:

Finite difference $\tau_w = \mu \frac{u_1 - u_0}{y_1 - y_0}$

Linear method $u_{\tau} = \sqrt{\frac{u_0 \nu}{y_0}}$

Clauser's method $u^+ = \frac{1}{\kappa} \ln y^+ + B$

Can you see a problem with that?

Wall shear stress

$$\underline{\text{Definition:}} \quad \tau_w = \mu \left(\frac{\partial u}{\partial y} \right)_{y=0} \qquad u_\tau = \sqrt{\tau_w/\rho}$$

Methods:

Finite difference $\tau_w = \mu \frac{u_1 - u_0}{y_1 - y_0}$

Linear method $u_{\tau} = \sqrt{\frac{u_0 \nu}{y_0}}$

Clauser's method $u^+ = \frac{1}{\kappa} \ln y^+ + B$

Can you see a problem with that?

Processing of turbulent boundary layers

Chauhan Wake correction $u^{+}(y^{+}) = \begin{cases} u_{inner}^{+}(y^{+}) + \frac{2\Pi}{\kappa}W\left(\frac{y}{\delta}\right), & \text{if } y \leq \delta \\ u_{e}/u_{\tau} & \text{otherwise} \end{cases}$ External velocity

High pressure gradient !!!

Modification of the law of the wall from Nickels (2004) and Nagib (2008)

Data

Salze et al. (2014)

EXPERIMENTAL

Wind tunnel, channel flow
with changing ceiling angle,
separate ZPG, APG, FPG data.

Hao Wu (2020)

NUMERICAL
DNS
CD airfoil,
1 angle of attack and 1 Re num.

Balantrapu (2021)

EXPERIMENTAL
Wind tunnel,
axisymmetric tail.

Winkler et al. (2021)

NUMERICAL DNS NACA 6512-63, 1 angle of attack and 1 Re num.

Choice of the terminals

$$f\left(\delta,\delta^*,\theta,U_e,\nu,\rho,\tau_w,\frac{dp}{dx},c_0,\Pi_{Coles},\Phi_{pp},\omega\right)=0 \hspace{1cm} \begin{array}{c} \text{Can you see a} \\ \text{problem with that?} \end{array}$$

Parameters – Fundamental units = N. of non-dim params. $i=n-k=11-3=8 \label{eq:non-dim}$

$$\psi(\Pi_1, \Pi_2, \Pi_3, \Pi_4, \Pi_5, \Pi_6, \Pi_7, \Pi_8, r) = 0$$
 $r = \Pi_{Coles}$

database	N	ω̃	Δ	H	M	П	C_f	R_T	eta_C
Salze (2014)							$0.002 \to 0.004$		
Deuse (2020)	13	$0.01 \to 24.2$	$0.15 \to 0.32$	$0.11 \to 0.15$	$0.21 \to 0.27$	$0.14 \to 2.26$	$0.001 \rightarrow 0.004$	$2.58 \rightarrow 3.54$	$0.36 \to 15.59$
Hao (2020)	16	$0.02 \to 34.4$	$0.13 \to 0.35$	$0.09 \to 0.16$	$0.27 \to 0.34$	$0 \rightarrow 2.2$	$0.001 \rightarrow 0.006$	$1.56 \to 2.25$	$-0.15 \to 5.93$
Christophe (2011)	78	$0.002 \to 4.65$	$0.11 \to 0.30$	$0.86 \rightarrow 0.16$	$0.05 \rightarrow 0.06$	$0.0 \rightarrow 1.43$	$0.002 \to 0.006$	$1.49 \rightarrow 3.48$	$-0.05 \rightarrow 7.94$
All	117	$0.01 \rightarrow 34.4$	$0.09 \to 0.35$	$0.07 \rightarrow 0.16$	$0.05 \to 0.34$	$0 \rightarrow 2.26$	$0.001 \to 0.006$	$1.49 \rightarrow 22.5$	$-0.47 \to 15.59$

Table of Contents

- 1. Introduction to wall pressure spectra modeling
- 2. Coding exercise

Load the code from previous Lecture 7

Modify the code for wall pressure spectra

Exercise 1: plot a single wall pressure spectra from the pandas dataframe

```
21
22  # 0 - Problem we are trying to solve (slide 9)
23
25  import pandas as pd
26
27  df = pd.read_pickle('dataframe')
28
Change this section
```

Solution

Exercise 1 : plot a single wall pressure spectra from the pandas dataframe

Modify the code for wall pressure spectra

Exercise 2 : change the fitness function so that
$$10\log_{10}\left(\frac{\Phi_{pp}u_e}{\delta^*\tau_w^2}\right) = f(\Pi_1)$$

Solution

Exercise 2 : change the fitness function so that $10\log_{10}\left(\frac{\Phi_{pp}u_e}{\delta^*\tau_w^2}\right)=f(\Pi_1)$

```
#2 - Define what is the fitness (slide 11)

# 2 - Define what is the fitness (slide 11)

# Transform the tree expression in a callable function func = toolbox.compile(expr=individual)

# Evaluate the mean squared error between the expression sqerr = np.zeros(len(points))

for ii, pt in enumerate(points):

sqerr[ii] = (func(pt) - data['PiF_log'].iloc[ii])**2

# print(sqerr[ii])

# we apply the fitness in an operation called evaluate where we compute the error for each points toolbox.register("evaluate", MSE, points=data['Pi1'])
```

Modify the code for wall pressure spectra

Exercise 3: change the display and try it out

Solution

Exercise 4: add more variables

```
# 2 - Define what is the fitness (slide 11)

# # 2 - Define what is the fitness (slide 11)

# # Transform the tree expression in a callable function

func = toolbox.compile(expr=individual)

# Evaluate the mean squared error between the expression

sqerr = np.zeros(len(points))

for ii in range(len(points):

sprint(sqerr[ii])

return np.sum(sqerr)/len(points),

# we apply the fitness in an operation called evaluate where we compute the error for each points

toolbox.register("evaluate", MSE, points=data[['Pil','Pi4']])

bestfunct = toolbox.compile(expr=hof[0])

plotpoints = data[['Pil','Pi4']]

plt.figure()

plt.semilogy.(data['Pil'],data['PiE_log'],marker='x',linestyle='-')

# in range(len(plotpoints.iloc[ii,0],bestfunct(plotpoints.iloc[ii,0],plotpoints.iloc[ii,1]),marker='.',color='k')

plt.scatter(plotpoints.iloc[ii,0],bestfunct(plotpoints.iloc[ii,0],plotpoints.iloc[ii,1]),marker='.',color='k')

plt.slabel('PiE_log')

plt.show()

print(hof[0])
```

Add more data

Exercise 5: add more data in the training

21 #0 - Problem we are trying to solve (slide 9)

Change this section

Let's code Exercise 6 (optional): Try to get the best fit

Let's code

Exercise 6 (optional): Try to get the best fit

Let's discuss

How good was your fit?

What problem did you face?

What could be improved?

Choice of the operators New terminal Local optimizer Exponent problem type $\tilde{\omega}^b$ The pow terminal Initial population $\tilde{\omega}^{cst}$ Fitness evaluation R_T^{cst} b = 2GAs have difficulties to find Least square optimization accurate numerical

constant

Results

N	Equation	fitness	trends
Solution 1	$\frac{4.65\frac{1+\beta_C}{1+C_f}\tilde{\omega}^{0.72}}{1.38(\tilde{\omega}^{1.58}+0.25)+\frac{5.78\tilde{\omega}^{6.5}}{\Delta R_T^5.78}}$	4,78 %	$\frac{4.65\frac{1+\beta_C}{1+C_I}\tilde{\omega}^{0.72}}{1.38(\tilde{\omega}^{1.58}+0.25)+\frac{5.78\tilde{\omega}^{6.5}}{\Delta R_T^{87}}}$
Solution 2	$\frac{\left(\frac{1.26}{R_T^{1.26}} + \Delta(1 + (1 + \beta_C)^{2.83})\right)\tilde{\omega}^{1.22}}{C_f + H\tilde{\omega}^{1.22} + 0.1C_f\tilde{\omega}^{2.78} + \frac{\tilde{\omega}^{7.25}}{R_T^2.88}}$	4,94 %	$\frac{\left(\frac{1.26}{R_T^{1.26}} + \Delta(1 + \left[(1 + \beta_C)^{2.83}\right]\right) \tilde{\omega}^{1.22}}{C_f + H\tilde{\omega}^{1.22} + 0.1C_f \tilde{\omega}^{2.78}} + \frac{\tilde{\omega}^{7.25}}{R_T^{6.85}}$
Solution 3	$\frac{(\Pi_C + C_f)(1 + \beta_C)^{4.48} + \beta_C + 1.57}{\frac{M}{R_T} + \tilde{\omega} + \frac{0.29\tilde{\omega}}{Cf + \tilde{\omega}^{1.76}} + \frac{\tilde{\omega}^{6.15}}{R_T^8}}$	3,73 %	$\frac{(\Pi_C + C_f)(1 + \beta_C)^{4.48}}{\frac{M}{R_T} + \tilde{\omega}} + \frac{0.29\tilde{\omega}}{C_f + \tilde{\omega}^{4.76}} + \frac{\tilde{\omega}^{6.15}}{R_T^2}$
Solution 4	$\begin{array}{c} \left(\Pi_C + R_T^{0.27} + 2.76(1+\beta_C)^{2.76}\right)\tilde{\omega} \\ R_T + (1+\beta_C)\tilde{\omega} + \tilde{\omega}^2 + \frac{\tilde{\omega}^{6.6}}{(1+\beta_C)^{0.6}R_T^{1.06}} \end{array}$	5,43 %	$\frac{\left(\Pi_C + R_T^{0.27} + 2.76 \left(1 + \beta_C\right)^{2.76}\right) \overline{\omega}}{R_T + (1 + \beta_C) \widetilde{\omega} + \widetilde{\omega}^2 + \underbrace{\left(1 + \beta_C\right)^{0.6} R_T^{8406}}_{(1 + \beta_C)^{0.6} R_T^{8406}}\right)}$

References

Dominique, J., van den Berghe J., Schram, C., & Mendez, M, A. (2022). **Artificial Neural Networks Modelling of Wall Pressure Spectra Beneath Turbulent Boundary Layers**. *Physics of Fluids (to be published)*.

Dominique, J., Christophe, J., Schram, C., & Sandberg, R. D. (2021). **Inferring empirical wall pressure spectral models with Gene Expression Programming**. *Journal of Sound and Vibration*, *506*, 116162.

Weatheritt, J., & Sandberg, R. (2016). A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship. *Journal of Computational Physics*, 325, 22-37.

https://github.com/DominiqueVKI/VKI researchWPS.

Take Home Messages

Genetic programing is particularly interesting because...

- **Solution** Extremely simple coding from existing packages...
- ... but often require modification to be efficient
- It gives you an equation
- ... but you might be looking for only one good solution
- ✓ It gives works well with limited amount of data
- in but it does not scale well with large dataset

