

Table of Contents

S	AP-1	1
	Control Signals	1
	T-state active signals	1
	Control logic	3

SAP-1

Control Signals

Old name	New name
$C_\mathtt{P}$	inc
$E_{\mathtt{P}}$	pc_out_en
\sim L $_{ m M}$	~ld_mar
~CE	~mem_out_en
\sim L _I	~ld_ir
~E _I	~ir_out_en
\sim L $_{ m A}$	~ld_acc
E_A	acc_out_en
S_{U}	sub_add
E_U	subadd_out_en
\sim L $_{ m B}$	~ld_b_reg
\sim L $_{0}$	~ld_out_reg

T-state active signals

- T_1 state (Address state)
 - pc_out_en
 - ∘ ~ld_mar
- T_2 state (Increment state)
 - inc
- T₃ state (Memory state)
 - ∘ ~mem_out_en
 - ∘ ~ld_ir
- LDA routine
 - T₄ state
 - ~ir_out_en
 - ~ld_mar
 - T₅ state
 - ~mem_out_en
 - ~ld_acc

- \circ T₆ state
 - NOP
- ADD routine
 - T₄ state
 - ~ir_out_en
 - ~ld_mar
 - T₅ state
 - ~mem_out_en
 - ~ld_b_reg
 - T₆ state
 - subadd_out_en
 - ~ld_acc
- SUB routine
 - T₄ state
 - ~ir_out_en
 - ~ld_mar
 - T₅ state
 - ~mem_out_en
 - ~ld_b_reg
 - T₆ state
 - sub_add
 - subadd_out_en
 - ~ld_acc
- **OUT** routine
 - T₄ state
 - acc_out_en
 - ~ld_out_reg
 - T₅ state
 - ~NOP
 - T₆ state
 - NOP

Control logic

```
inc = t2;
pc_out_en = t1;
~ld_mar = ~(t1 || (t4 && (lda || add || sub)));
~mem_out_en = ~(t3 || (t4 && (lda || add || sub)));
~ld_ir = ~t3;
~ir_out_en = ~(t4 && (lda || add || sub));
~ld_acc = ~((t5 && lda) || (t6 && (add || sub)));
acc_out_en = t4 && out;
sub_add = t6 && sub;
subadd_out_en = t6 && (add || sub);
~ld_b_reg = ~(t5 && (add || sub));
~ld_out_reg = ~(t4 && out);
```