Introducere în Data Science

Analiza asocierilor: concepte de bază

Lucian Sasu, Ph.D.

Universitatea Transilvania din Brașov, Facultatea de Matematică și Informatică

June 2, 2020

Outline

- Noţiuni, definirea problemei
- Quantification of the second of the secon
- Generarea regulilor
- 4 Reprezentarea compactă a mulțimilor frecvente
- Metode alternative pentru generarea de mulţimi frecvente
- 6 Evaluarea regulilor de asociere
- Efectul distribuţiei oblice

Noțiuni

- În cadrul vânzărilor din magazine se înregistrează conținutul coșurilor de cumpărături achiziționate = tranzacții
- Problemă: pentru un set de tranzacții să se determine regulile care dau predispoziția apariției unui obiect pe baza existenței altor obiecte într-un coș
- Exemplu de tranzacții:

TID	Obiecte
1	{pâine, lapte}
2	{pâine, scutece, bere, ouă}
3	{lapte, scutece, bere, suc}
4	{pâine, lapte, scutece, bere}
5	{pâine, lapte, scutece, suc}

Table 1: Tranzacții de tip coș de cumpărături

- TID = Transaction ID
- Exemplu de regulă ce se poate extrage: $\{scutece\} \longrightarrow \{bere\}$

Noțiuni

- Regula sugerează că ar exista o relație de dependență între vânzarea de scutece și cea de bere
- Remarcă: regula dată este direcțională; nu înseamnă neapărat și că $\{bere\} \longrightarrow \{scutece\}$
- Moduri de exploatare a unor astfel de reguli:
 - se scade prețul obiectelor din antecedentul regulii, se crește prețul celor din consecvent
 - se face cross-selling
 - se decide dispunerea pe raft a produselor
 - se face reclamă sau ofertă personalizată, gruparea produselor în cataloage de prezentare
- Alte medii de aplicare: bioinformatică, diagnostic medical, web mining, analiza științifică a datelor

Noțiuni

Probleme:

- descoperirea de pattern-uri în seturi mari de date este o problemă intensivă computațional
- o parte din relațiile descoperite pot fi pur și simplu rodul întâmplării
- evaluarea regulilor obținute este un pas absolut necesar
- semnul de implicație în acest context înseamnă apariție concomitentă, nu cauzalitate
- de citit: Correlation does not imply causation (Wikipedia)

• Posibil mod de reprezentare a tranzacțiilor:

TID	Pâine	Lapte	Scutece	Bere	Ouă	suc
1	1	1	0	0	0	0
2	1	0	1	1	1	0
3	0	1	1	1	0	1
4	1	1	1	1	0	0
5	1	1	1	0	0	1

Table 2: Reprezentare binară a datelor tranzacției

- Reprezentarea binară este asimetrică: prezenţa unui produs este mai importantă decât lipsa lui
- Reprezentare voit simplistă, omițând cantitatea de achiziție

- Mulțime de produse (simplu: mulțime; eng: itemset) colecție de unul sau mai multe obiecte
- k-mulţime (eng: k-itemset) o mulţime compusă din k obiecte (e.g. produse)
- Numărul de suport al unei mulțimi $\sigma(\cdot)$ (eng: support count) frecvența de apariție a acelei mulțimi
- $\sigma(X) = |\{t_i : X \subseteq t_i, t_i \in T\}|$ unde T este mulțimea tuturor tranzacțiilor, |U| este numărul de elemente ale (cardinalul) mulțimii U
- Exemplu: $\sigma(\{lapte, paine, scutece\}) = 2$

• Regulă de asociere (regulă): o expresie de forma $X \longrightarrow Y$ unde X, Y sunt mulțimi de produse, $X \cap Y = \emptyset$

Definiție (Suportul unei reguli)

Suportul regulii $X \longrightarrow Y$ pentru o mulțime de N tranzacții este fracția de tranzacții care conțin produsele din $X \cup Y$:

$$s(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{N} \tag{1}$$

Definiție (Confidența unei reguli)

Confidența regulii $X \longrightarrow Y$ este numărul de tranzacții care conțin pe X și Y raportat la cele care conțin doar pe X:

$$c(X \longrightarrow Y) = \frac{\sigma(X \cup Y)}{\sigma(X)} \tag{2}$$

Exemplu: pentru datele din tabelul de mai jos

HD	Obiecte
1	{pâine, lapte}
2	$\{p \hat{a} ine, scutece, bere, ouă\}$
3	{lapte, scutece, bere, suc}
4	{pâine, lapte, scutece, bere}
5	{pâine, lapte, scutece, suc}

- Considerăm regula $\{lapte, scutece\} \longrightarrow \{bere\}$
- Numărul de suport pentru { lapte, scutece, bere} este 2; numărul total de tranzacții este 5, deci suportul este 2/5
- Confidența: sunt 3 tranzacții care conțin {lapte, scutece}, deci confidența este 2/3

- De ce se folosește suportul?
 - o regulă cu suport mic poate însemna o legătură întâmplătoare
 - o regulă cu suport mic s-ar putea să fie neprofitabilă
 - suportul poate elimina regulile neinteresante
- De ce se folosește confidența?
 - măsoară încrederea în rezultatul aplicării unei reguli
 - pentru regula $X \longrightarrow Y$ o confidență mare arată în ce măsură apariția mulțimii X va duce la apariția mulțimii Y
 - $c(X \longrightarrow Y)$ poate fi interpretată ca probabilitatea condiționată P(Y|X)

Definiție (Descoperirea relațiilor de asociere)

Dându-se o mulțime de tranzacții T, să se găsească toate regulile cu suport \geq minsup și confidență conf \geq minconf, unde minsup și minconf sunt praguri date.

Abordare brute-force:

- se generează toate regulile de asociere posibile
- se calculează suportul și confidența fiecărei reguli
- se elimină regulile care nu respectă pragurile minconf și minsup date
- Complexitate de calcul prohibitivă: numărul de reguli pentru d produse este:

$$R = 3^d - 2^{d+1} + 1$$

(temă pentru acasă)

Pentru cele 6 produse din tranzacțiile date am avea 602 reguli; pentru minsup = 20% și minconf = 50%, mai mult de 80% din regulile generate sunt eliminate!

Pași de lucru

- Observație importantă: suportul regulii $X \longrightarrow Y$ depinde doar de numărul suport al mulțimii $X \cup Y$
- Pentru mulţimea {bere, scutece, lapte} se pot genera 6 reguli: {bere, scutece} → {lapte}, {bere} → {scutece, lapte} etc.; toate acestea au acelaşi suport, indiferent de partiţionarea în antecedent/consecvent
- Dacă o mulțime nu este frecventă, atunci toate regulile ce se pot construi pe baza ei pot fi eliminate fără a le mai calcula confidența
- Concluzie: se poate decupla calculul suportului și al confidenței
- Paşii de lucru:
 - generarea mulțimilor frecvente, i.e. al celor pentru care suportul este cel puțin minsup
 - 2 generarea regulilor pe baza mulțimilor frecvente

Outline

- Noțiuni, definirea problemei
- 2 Generarea mulțimilor frecvente
- Generarea regulilor
- 4 Reprezentarea compactă a mulțimilor frecvente
- Metode alternative pentru generarea de mulţimi frecvente
- 6 Evaluarea regulilor de asociere
- Efectul distribuţiei oblice

Problema generării mulțimilor frecvente

Generarea mulțimilor frecvente este solicitantă computațional: pentru o mulțime de k produse se pot realiza 2^k-1 potențiale mulțimi frecvente (se exclude mulțimea vidă)

Figure 1: Latice de mulţimi

Varianta brute-force:

- Fiecare mulțime candidat din latice este considerat ca un candidat de mulțime frecventă
- Se calculează numărul suport al fiecărui candidat prin scanarea bazei de date
- Dacă un candidat e inclus într-o tranzacție se incrementează numărul suport

Figure 2: Diferiți parametri ai datelor de intrare

Complexitate si remedii

- Complexitate: O(NMw) unde: N = numărul de tranzacții, $M = 2^k 1$ este numărul de mulțimi candidat, w este numărul maxim de obiecte dintr-o tranzacție
- Modalități de reducere a complexității:
 - reducerea numărului de mulțimi candidat M de exemplu prin principiul Apriori
 - reducerea numărului de comparații la confruntarea unei mulțimi cu o tranzacție prin structuri de date eficiente

Principiul Apriori

Teoremă (Principiul Apriori)

Dacă un set este frecvent, atunci oricare din subseturile sale este de asemenea frecvent.

Demonstrație: Pentru o tranzacție care conține mulțimea de obiecte $X = \{c, d, e\}$ este evident că ea conține și oricare din submulțimile lui X: $\{c, d\}$, $\{c, e\}$ etc. Mai mult, pentru o submulțime a lui X poate exista o tranzacție care să o conțină, dar să nu conțină și pe X. Astfel, numărul suport pentru o submulțime a lui X este cel puțin numărul suport al lui X.

teorema afirmă că:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \geq s(Y)$$

adică o proprietate de anti-monotonie a suportului

Eliminarea mulțimilor infrecvente

 Contrapoziția teoremei este utilă pentru a face eliminarea mulțimilor care nu pot fi frecvente: Dacă un set nu este frecvent, atunci oricare superset al lui nu poate să fie frecvent.

Figure 3: Retezarea mulțimilor infrecvente

Strategie

- Se pornește cu 1-mulțimi formate din câte un obiect
- 1-mulțimile nefrecvente se elimină
- Se generează 2-mulțimi combinând 1-mulțimi frecvente
- Pentru 2-mulțimile generate se calculează suportul; cele nefrecvente se elimină
- Se continuă procedeul pentru 3-mulțimi etc.
- Pe baza principiului *Apriori*, pentru generarea k-mulțimilor frecvente candidat se iau în considerare doar (k-1)-mulțimile frecvente

Exemplu de aplicare

Figure 4: Generarea mulțimilor frecvente folosind principiul Apriori

Schița algoritmului Apriori

- k = 1
- Se generează 1-mulțimi frecvente
- Repetă până când nu se mai pot identifica mulțimi frecvente:
 - ullet se generează (k+1)-mulțimi candidat folosind k-mulțimile frecvente de la pasul anterior
 - se șterg (k+1)-mulțimile candidat care conțin k-mulțimi infrecvente (cu suportul sub prag)
 - ullet se contorizează suportul fiecărei (k+1)-mulțimi prin parcurgerea tranzacțiilor
 - ullet se șterg (k+1)-mulțimile candidat care nu sunt frecvente

Pseudocodul pentru algoritmul Apriori

```
1: k = 1.
2: F_k = \{i \mid i \in I \land \sigma(\{i\}) > N \times minsup\}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: C_k = \operatorname{apriori-gen}(F_{k-1}). {Generate candidate itemsets}
6: for each transaction t \in T do
7: C_t = \operatorname{subset}(C_k, t). {Identify all candidates that belong to t}
    for each candidate itemset c \in C_t do
8:
           \sigma(c) = \sigma(c) + 1. {Increment support count}
9:
         end for
10:
     end for
11:
12: F_k = \{ c \mid c \in C_k \land \sigma(c) > N \times minsup \}. {Extract the frequent k-itemsets}
13: until F_k = \emptyset
14: Result = \bigcup F_k.
```

Probleme ce trebuie rezolvate eficient pentru Apriori

- Generarea mulțimilor candidat și retezarea
 - \bigcirc generarea de k-mulțimi folosind (k-1)-mulțimi frecvente
 - 2 eliminarea candidaților care nu au suportul peste pragul impus
- Calculul numărului suportul al unei mulțimi

Generarea mulțimilor candidat (var 1)

- Generarea mulţimilor candidat:
 - orice algoritm trebuie să evite generarea de prea multe mulțimi candidat
 - trebuie să asigure generarea unei familii complete de mulțimi candidat
 - trebuie să evite generarea aceleiași mulțimi candidat de mai multe ori $\{a, b, c\}$ poate proveni din $\{a, b\} \cup \{c\}$ sau din $\{a\} \cup \{b, c\}$ etc.)
- Sunt mai mulți algoritmi în această direcție
- Metoda forței brute:
 - Se consideră fiecare posibilitate de a obține o k-mulțime
 - Se elimină candidații cu suport prea mic
 - Generarea e simplă, calculul suportului pentru fiecare candidat este costisitor
 - Complexitatea metodei: $O(d \cdot 2^{d-1})$

Generarea mulțimilor candidat (var 2)

- Metoda $F_{k-1} \times F_1$:
 - se pleacă de la fiecare (k-1)-mulțime frecventă și se extinde cu obiecte (1-mulțimi) frecvente
 - procedeul e complet
 - se poate ajunge la generarea multiplă a aceleiași k-mulțimi
 - evitare: fiecare mulțime este menținută sortată lexicografic: $\{a,b,c\}$ și nu $\{b,a,c\}$ sau altfel
 - extinderea unei mulțimi $F_{k-1} = \{ob_1, ob_2, \dots, ob_{k-1}\}$ se face numai cu mulțimi $F_1 = \{x\}$ unde $ob_{k-1} < x$
 - complexitate: $O(\sum_k k|F_{k-1}||F_1|)$
 - încă se pot genera prea multe k-mulțimi candidat

Generarea mulțimilor candidat (var 3)

- Metoda $F_{k-1} \times F_{k-1}$:
 - se reunesc două (k-1)-mulțimi doar dacă primele k-2 elemente din ele sunt identice (se presupune ordinea lexicografică):
 - mai clar: dacă $A = \{a_1, a_2, \dots a_{k-1}\}$ și $B = \{b_1, b_2, \dots b_{k-1}\}$ sunt două (k-1)-mulțimi, atunci ele se reunesc doar dacă:

$$a_i = b_i, \ \forall i = 1, \dots, k-2, \ a_{k-1} \neq b_{k-1}$$

• este varianta propusă în articolul ce introduce algoritmul Apriori

Reducerea numărului de comparații

- Varianta brute force: se scanează toată baza de date pentru a determina valoarea suport a fiecărei mulțimi candidat
 - Posibil, dar neeficient
- Pentru a reduce numărul de comparații stocăm candidații într–un arbore de dispersie (hash tree)
- Rezultat: în loc de a compara fiecare tranzacție cu fiecare mulţime candidat, se compară fiecare tranzacție cu grupuri de candidați din arbore; se vor actualiza doar valorile suport pentru mulţimi candidat din grupurile găsite

Crearea arborelui de dispersie, exemplu

- Considerăm funcția de dispersie $h(p) = p \mod 3$
- Impunem restricția ca într-un nod frunză să nu avem mai mult de 3 mulțimi reprezentate; dacă este cazul, un nod va fi fragmentat în noduri copil
- Presupunem că avem mulțimile candidat: $\{1,4,5\}$, $\{1,2,4\}$, $\{4,5,7\}$, $\{1,2,5\}$, $\{4,5,8\}$, $\{1,5,9\}$, $\{1,3,6\}$, $\{2,3,4\}$, $\{5,6,7\}$, $\{3,4,5\}$, $\{3,5,6\}$, $\{3,5,7\}$, $\{6,8,9\}$, $\{3,6,7\}$, $\{3,6,8\}$
- Reprezentarea în arbore de dispersie:

Figure 6: Arbore de dispersie pentru familia de mulțimi candidat

Reprezentarea mulțimilor candidați în arbore de dispersie

Reprezentarea mulțimilor candidați în arbore de dispersie

Reprezentarea mulțimilor candidați în arbore de dispersie

Generarea 3-submulțimilor unei tranzacții

Căutarea potrivirilor între tranzacții și mulțimi candidat

Figure 7: Se ia in considerare primul obiect al unei posibile 3-multimi ce se regaseste in tranzactie

Căutarea potrivirilor între tranzacții și mulțimi candidat

Figure 8: Se ia in considerare al doilea obiect al unei posibile 3-multimi ce se regaseste in tranzactie

Căutarea potrivirilor între tranzacții și mulțimi candidat

Figure 9: Se ia in considerare al treilea obiect al unei posibile 3-multimi ce se regaseste in tranzactie

Complexitatea computațională a generării de mulțimi frecvente

Factorii care influențează complexitatea generării:

- Alegerea valorii de minsup
 - micșorarea lui minsup duce la mai multe mulțimi declarate ca frecvente
- Numărul de obiecte din setul de date
 - poate duce la mărirea cardinalului maxim de mulțime frecventă
 - dacă numărul de mulțimi frecvente crește și el atunci cresc atât efortul computațional cât și costul I/O
- Dimensiunea bazei de date
 - fiecare tranzacție se compară cu mulțimile candidat; număr mare de tranzacții ⇒ timp crescut pentru eliminarea mulțimilor candidat nefrecvente

Complexitatea computațională a generării de mulțimi frecvente

- Generarea 1-mulțimilor frecvente: O(Nw)
- Generarea mulțimilor candidat:

$$\sum_{k=2}^w (k-2)|C_k| < \text{costul unific. a 2 } k-1\text{-multimi} < \sum_{k=2}^w (k-2)|F_{k-1}|^2$$

• Eliminarea de mulțimi candidat infrecvente:

$$O\left(\sum_{k=2}^{w}k(k-2)|C_k|\right)$$

Calcularea suportului

$$O\left(N\sum_{k}C_{w}^{k}\alpha_{k}\right)$$

unde α_k este costul actualizării unei k-mulțimi din arborele de dispersie.

Outline

- Noţiuni, definirea problemei
- Quality of the second of th
- Generarea regulilor
- 4 Reprezentarea compactă a mulțimilor frecvente
- Metode alternative pentru generarea de mulţimi frecvente
- 6 Evaluarea regulilor de asociere
- Efectul distribuţiei oblice

Generarea regulilor

- Enunţ: dându—se o mulţime frecventă L, să se găsească toate submulţimile nevide $f \subset L$ astfel încât regula $f \longrightarrow L f$ să aibă confidenţa minimă cerută
- Pentru mulțimea frecventă $\{A, B, C, D\}$ regulile candidat ce se pot obține sunt: $ABC \longrightarrow D$, $ABD \longrightarrow C$, $ACD \longrightarrow B$, $BCD \longrightarrow A$, $A \longrightarrow BCD$, $B \longrightarrow ACD$, $C \longrightarrow ABD$, $D \longrightarrow ABC$, $AB \longrightarrow CD$, $AC \longrightarrow BD$, $AD \longrightarrow BC$, $BC \longrightarrow AD$, $BD \longrightarrow AC$, $CD \longrightarrow AB$
- Pentru k = |L| sunt $2^k 2$ reguli care se pot genera (ignorăm regulile cu antecedent sau consecvent nul)

Generarea regulilor

- Nu avem nicio proprietate de tip (anti)monotonie pentru confidența regulilor
 - Pentru o regulă $X \longrightarrow Y$ și $\tilde{X} \subset X$, $\tilde{Y} \subset Y$ nu avem nicio relație permanent valabilă între $c(X \longrightarrow Y)$ și $c(\tilde{X} \longrightarrow \tilde{Y})$
- Dar avem o teoremă ¨

Teoremă

Dacă o regulă $X \longrightarrow Y - X$ nu satisface condiția de confidență minimă $c(X \longrightarrow Y - X) \ge minconf$ atunci nicio regulă $X' \longrightarrow Y - X'$ cu $X' \subset X$ nu va avea nici ea confidența minimă.

Demonstrație: pentru regulile $X' \longrightarrow Y - X'$ și $X \longrightarrow Y - X$ confidențele sunt $s_1 = \sigma(Y)/\sigma(X')$ respectiv $s_2 = \sigma(Y)/\sigma(X)$. Pentru $X' \subset X$ avem că $\sigma(X') \geq \sigma(X)$. Ca atare, $s_1 \leq s_2$ și deci prima regulă nu poate avea o confidență mai mare decât a doua.

Generarea regulilor: strategie de retezare

Figure 10: Retezarea regulilor aplicand teorema 2

Retezarea regulilor în algoritmul Apriori

- Se generează toate regulile care au doar un element în antecedent
- Se combină reguli care au ceva comun în sufix: de exemplu, din $\{a,c,d\}\longrightarrow \{b\}$ și $\{a,b,d\}\longrightarrow \{c\}$ se generează $\{a,d\}\longrightarrow \{b,c\}$
- Se fac eliminările de reguli conform teoremei 2

Generarea regulilor în algoritmul Apriori

Algorithm 6.2 Rule generation of the Apriori algorithm. 1: for each frequent k-itemset f_k , $k \geq 2$ do 2: $H_1 = \{i \mid i \in f_k\}$ {1-item consequents of the rule.} 3: call ap-genrules(f_k , H_1 .) 4: end for

```
Algorithm 6.3 Procedure ap-genrules (f_k, H_m).

 k = |f<sub>k</sub>| {size of frequent itemset.}

 2: m = |H_m| {size of rule consequent.}
 3: if k > m + 1 then
      H_{m+1} = \text{apriori-gen}(H_m).
      for each h_{m+1} \in H_{m+1} do
        con f = \sigma(f_k)/\sigma(f_k - h_{m+1}).
       if conf \ge minconf then
           output the rule (f_k - h_{m+1}) \longrightarrow h_{m+1}.
 9:
         else
10:
           delete h_{m+1} from H_{m+1}.
         end if
      end for
      call ap-genrules (f_k, H_{m+1})
14: end if
```

Outline

- Noţiuni, definirea problemei
- Quantification of the second of the secon
- Generarea regulilor
- 4 Reprezentarea compactă a mulțimilor frecvente
- Metode alternative pentru generarea de mulţimi frecvente
- 6 Evaluarea regulilor de asociere
- Efectul distribuţiei oblice

Reprezentarea compactă a mulțimilor frecvente

- Numărul de mulțimi frecvente poate să fie prohibitiv
- Se poate identifica o familie reprezentativă de mulțimi frecvente din care se pot obține toate celelalte mulțimi frecvente
- Variante: mulțimi frecvente maximale și mulțimi frecvente închise

Mulțimi frecvente maximale

Definiție

O mulțime frecventă maximală este o mulțime frecventă pentru care toate superseturile imediate sunt infrecvente.

(superset imediat al lui X este mulțime $X \cup \{y\}$, $y \notin X$)

Figure 11: Familia de mulțimi frecvente maximale este reprezentată cu verde

Utilitatea mulțimilor frecvente maximale

- Toate mulțimile frecvente sunt generate de mulțimile frecvente maximale
- Ex: mulţimile frecvente din figura anterioară sunt într-una din situaţiile:
 - 1 mulțimi care încep cu litera a și conțin c, d sau e
 - 2 mulțimi care încep cu b, c, d sau e.
- Există algoritmi care pot exploata eficient mulțimile frecvente maximale, fără a genera toate submulțimile
- Problemă: mulțimile frecvente maximale nu dau o modalitate de calcul al suportului submulțimilor frecvente pe care le generează

Mulțimi frecvente închise

Definiție (Mulțimi închise)

O mulțime X este închisă dacă niciunul din superseturile imediate ale sale nu are același suport ca ea.

Definiție (Mulțimi frecvente închise)

O mulțime X este frecventă închisă dacă este închisă și frecventă.

Mulțimi frecvente maximale vs. frecvente închise

Utilitatea mulțimilor frecvente închise

Set de tranzacții:

- 3 grupuri: $\{A1, ..., A5\}$, $\{B1, ..., B5\}$, $\{C1, ..., C5\}$
- ullet Pentru $\mathit{minsup} = 20\%$ avem număr total de mulțimi frecvente = 93
- Dar există doar 3 mulțimi frecvente închise: $\{A1, \ldots, A5\}$, $\{B1, \ldots, B5\}$, $\{C1, \ldots, C5\}$

Relația între diferite tipuri de mulțimi

Outline

- Noţiuni, definirea problemei
- Quantification of the second of the secon
- Generarea regulilor
- Reprezentarea compactă a mulțimilor frecvente
- 5 Metode alternative pentru generarea de mulțimi frecvente
- 6 Evaluarea regulilor de asociere
- Efectul distribuţiei oblice

- Apriori este unul din primii algoritmi eficienți care evită explozia combinatorială a generării seturilor frecvente
- Principiul de bază: retezarea conform teoremei de la pagina 40
- Deficiență: numărul mare de operații de I/O
- Deficiență: pentru seturile de tranzacții dense performanța scade mult
- Metode alternative: "de la general la specific", "de la specific la general", căutare bidirecțională
- Ideea de bază: determinarea mulţimilor frecvente este o problemă de căutare în graful laticii mulţimilor

- "De la general la specific": în stilul algoritmului *Apriori*, de la o (k-1)-mulțime se ajunge la o k-mulțime; strategia e bună dacă lungimea maximă a unei mulțimi frecvente nu este prea mare
- "De la specific la general": se poate adapta principiul Apriori
- Căutare bidirecțională: combinație a precedentelor două, necesită mai multă memorie, dar permite determinarea rapidă a zonei de delimitare

- Clase de echivalență: se partiționează mulțimea nodurilor din latice în clase de echivalență; se trece la o altă partiție numai când s-a terminat de explorat partiția curentă
- Exemple de partiționare: arbori de tip prefix/sufix

- Căutarea "mai întâi în lățime": algoritmul Apriori funcționează astfel, trecând la k-mulțimi numai după ce s—au epuizat toate (k-1)-mulțimile
- Căutarea în adâncime este o variantă folosită pentru a determina mulțimile frecvente maximale
- Odată găsită o mulțime maximală, se poate face retezare

Figure 12: Parcugeri alternative

Outline

- Noţiuni, definirea problemei
- Quantification of the second of the secon
- Generarea regulilor
- Reprezentarea compactă a mulțimilor frecvente
- Metode alternative pentru generarea de mulţimi frecvente
- 6 Evaluarea regulilor de asociere
- Efectul distribuţiei oblice

Problema evaluării asocierilor

- Algoritmii pot duce la producerea unui număr mare de reguli
- Multe pot fi neinteresante sau redundante
- Exemplu de redundanță: dacă regulile $\{A,B,C\} \longrightarrow \{D\}$ și $\{A,B\} \longrightarrow \{D\}$ au același suport și confidență
- Se pot folosi funcții de măsurare a gradului de interes care să reducă /sorteze regulile
- În cele prezentate până acum, doar suportul și confidența erau considerate

Schema unui proces de extragere de cunoștințe

Figure 13: Pașii unui proces de extragere de cunoștințe. Postprocesarea conține evaluarea regulilor

Moduri de cuantificare al gradului de interes

- Funcții obiective:
 - folosesc statistici derivate din date pentru a determina gradul de interes
 - suport, confidență, corelație
- Funcții subiective:
 - se referă la grad de interes pentru cunoașterea umană
 - exemplu: $\{unt\} \longrightarrow \{paine\}$ este de așteptat și deci neinteresant; dar $\{scutece\} \longrightarrow \{bere\}$ este ceva surprinzător
 - modalități de încorporare a subiectivismului:
 - vizualizare
 - filtrare bazată pe șabloane
 - ierarhie de concepte

Măsura obiectivă a interesului

- Măsură obiectivă: modalitate dependentă de date
- Necesită intervenție minimă din partea utilizatorului
- Punct de plecare pentru diferite măsuri, pe perechi de variabile binare: tabel de contingență

Table 3: Tabel de contingență pentru regula $X \longrightarrow Y$. O valoare de forma $\overline{(\cdot)}$ reprezintă lipsa obiectului asociat în tranzație. f_{1+} (f_{+1}) reprezintă valoarea suport pentru X (respectiv Y).

Limitări ale cuplului suport-confidență

• Considerăm studiul legăturii între cei care beau ceai sau cafea:

	Cafea	Cafea	Total
Ceai	150	50	200
Ceai	650	150	800
Total	800	200	1000

Table 4: Preferințe de consum.

- Considerăm regula: $\{\textit{Ceai}\} \longrightarrow \{\textit{Cafea}\}$: suport 15%, confidență 75%
- Remarcăm însă că procentul celor care beau cafea este de 80%, mai mult decât confidența anterioară
- Deci regula $\{Ceai\} \longrightarrow \{Cafea\}$ dă o indicație greșită față de starea actuală a datelor; știind că o persoană bea ceai, asta va scădea șansa ei ca să bea cafea
- Cauza: măsura de confidență ignoră suportul mulțimii consecvent

Alte funcții obiective de măsurare a gradului de interes

• factor de ridicare (eng: lift)

$$lift(A \longrightarrow B) = \frac{c(A \longrightarrow B)}{s(B)}$$

interes:

$$I(A, B) = \frac{s(A, B)}{s(A) \cdot s(B)} : \begin{cases} = 1 & \text{pentru } A \text{ si } B \text{ independente} \\ > 1 & \text{pentru } A \text{ si } B \text{ pozitiv corelate} \\ < 1 & \text{pentru } A \text{ si } B \text{ negativ corelate} \end{cases}$$

• corelația Pearson pentru variabile binare:

$$\phi = \frac{f_{11}f_{00} - f_{01}f_{10}}{\sqrt{f_{1+}f_{+1}f_{0+}f_{+0}}} \in [-1, 1]$$

Alte funcții obiective de măsurare a gradului de interes

#	Measure	Formula
1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{k} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{k} P(A_{k}) - \max_{k} P(B_{k})}$
3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
5	Yule's Y	$\frac{\sqrt{P(A,B)P(AB)} - \sqrt{P(A,B)P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{A},B)} + \sqrt{P(A,B)P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
6	Kappa (κ)	$ \begin{array}{c} \sqrt{P(A,B)P(AB)+\sqrt{P(A,B)P(A,B)}} \\ \frac{P(A,B)+P(A,B)-P(A)P(B)-P(A)P(B)}{1-P(A)P(B)-P(A)P(B)} \\ \\ \sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})} \end{array} $
7	Mutual Information (M)	$\overline{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
8	J-Measure (J)	$\max\left(P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(\overline{B} A)}{P(\overline{B})}),\right)$
		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
9	Gini index (G)	$\max \left(P(A)[P(B A)^3 + P(\overline{B} A)^3] + P(\overline{A})[P(B \overline{A})^3 + P(\overline{B} \overline{A})^3] \right)$
		$-P(B)^2-P(\overline{B})^2$,
		$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
		$-P(A)^2 - P(\overline{A})^2$
10	Support (s)	P(A,B)
11	Confidence (c)	$\max(P(B A), P(A B))$
12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2}\right)$
13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
19	Collective strength (S)	$\frac{\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(B)} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}}{\frac{1-P(A,B)-P(\overline{AB})}{P(A,B)}}$
20	Jaccard (ζ)	$\frac{P(A,B) + P(A,B)}{P(A) + P(B) - P(A,B)} = P(A,B) - P(A,B)$
21	Klosgen (K)	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$

Figure 14: Măsuri propuse

Sortarea pe baza diferitelor funcții

- Pe baza funcțiilor se pot face ordonări ale regulilor
- Ordinea poate să difere de la o funcție de interes la alta

Exemplu	fiii	f ₁₀	f ₀₁	f ₀₀		
E1	8123	83	424	1370		
E2	8330	2	622	1046		
E3	9481	94	127	298		
E4	3954	3080	5	2961		
E5	2886	1363	1320	4431		
E6	1500	2000	500	6000		
E7	4000	2000	1000	3000		
E8	4000	2000	2000	2000		
E9	1720	7121	5	1154		
E10	61	2483	4	7452		

Figure 15: 10 exemple de tabele de contingență

								-													
#	φ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	F	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Figure 16: Sortarea pe baza diferitelor reguli

Proprietăți ale funcțiilor obiective

De văzut din bibliografie:

- Proprietatea de inversiune
- Proprietatea de adăugare nulă
- Proprietatea de scalare

De citit: paradoxul lui Simpson și necesitatea stratificării datelor înaintea extragerii de reguli

Outline

- Noţiuni, definirea problemei
- 2 Generarea mulţimilor frecvente
- Generarea regulilor
- Reprezentarea compactă a mulțimilor frecvente
- Metode alternative pentru generarea de mulţimi frecvente
- 6 Evaluarea regulilor de asociere
- Efectul distribuţiei oblice

- Uneori datele au următoarea formă: foarte multe obiecte cu suport mic, puţine cu suport mare
- O atare distribuție este puternic neechilibrată (eng: skewed) și nu poate fi tratată uniform
- Dacă pragul minsup este ales prea mic atunci algoritmul Apriori (sau oricare altul) poate genera excesiv de multe mulţimi frecvente ⇒ consum mare de memorie, posibil relaţii întâmplătoare
- Dacă minsup este prea mare se pot rata niște reguli utile
 - exemplu: bijuterii se cumpără rar în comparație cu alte produse, dar profitul adus e considerabil
- Pentru setul de date Public Use Microarray Sample census data distribuţia datelor este:

Group	G_1	G_2	G_3		
Support	< 1%	1% - 90%	> 90%		
Number of Items	1735	358	20		

Figure 17: Distribuție oblică pentru setul de date PUMS census data

- Dacă se lasă valoare *minsup* mică, atunci o mulțime poate să combine obiecte cu suport mare și mic
- Obiectele din mulțime însă pot avea o corelație mică
- Atfel de mulțimi se numesc șabloane cu suport încrucișat (eng: cross-support patterns)
- Pentru minsup=0.05% avem 18847 perechi frecvente, din care 93% sunt cu obiecte din G1 și G3; corelația maximă este însă 0.029 prea puțin
- Chiar mărirea pragului minconf poate fi inefectivă; consecventul unei reguli poate avea suport mare deci șabloane cu suport înclucișat pot încă să apară

Definiție (Şabloane cu suport încrucișat)

Un șablon cu suport încrucișat este o mulțime $X = \{i_1, i_2, \dots, i_k\}$ pentru care raportul suporturilor

$$r(X) = \frac{\min[s(i_1), s(i_2), \dots, s(i_k)]}{\max[s(i_1), s(i_2), \dots, s(i_k)]}$$
(3)

este mai mic decât un prag specificat de utilizator h_c.

 Un alt mod de detectare a şabloanelor cu suport încrucişat: se examinează confidența minimă care se poate extrage dintr-o mulțime dată, i.e. măsura h-confidență:

$$\frac{s(i_1, i_2, \dots, i_k)}{\max[s(i_1), s(i_2), \dots, s(i_k)]}$$

 Criteriul de eliminare a unui şablon încrucişat X: şablonul se elimină dacă

$$h-confidenta(X) \leq \frac{\min[s(i_1),s(i_2),\ldots,s(i_k)]}{\max[s(i_1),s(i_2),\ldots,s(i_k)]} \leq h_c$$

 \bullet Valoarea peste h_c a h-confidenței ne asigură că obiectele din mulțime sunt puternic corelate între ele