Bank Campaign Classification - Advanced R Group Project

Group 1- Louis Dubaere, Hatem Hassan, Federico Loguercio, Alberto Lombatti, Gerald Walravens, Anwita Bhure

6/6/2019

We are given a dataset that has information about whether a bank's customer responds positively to a marketing campaign and subscribes to a term deposit. The data has multiple variables of the customer, which can broadly be divided into three segments - Demographics, Transactional and Campaign-specific.

Data Exploration

We begin by undertaking basic quality and cosistency checks on the data.

Check if there are any missing values in the training set and the submission set

any(is.na(train))
[1] FALSE
any(is.na(submission))
[1] FALSE
As both return FALSE, there are no missing values
Check for the structure of the dataset
glimpse(train)

```
Observations: 36,168
Variables: 17
           <int> 50, 47, 56, 36, 41, 32, 26, 60, 39, 55, 32, 30, 35, 53...
$ age
           <fct> entrepreneur, technician, housemaid, blue-collar, mana...
$ job
           <fct> married, married, married, married, single, s...
$ marital
$ education <fct> primary, secondary, primary, primary, primary, tertiar...
$ default
           <int> 537, -938, 605, 4608, 362, 0, 782, 193, 2140, 873, 0, ...
$ balance
$ housing
           <fct> yes, yes, no, yes, yes, no, no, yes, yes, yes, no, yes...
$ loan
           <fct> no, no, no, no, no, no, no, no, no, yes, no, no, no, n...
           <fct> unknown, unknown, cellular, cellular, cellular, cellul...
$ contact
           <int> 20, 28, 19, 14, 12, 4, 29, 12, 16, 3, 19, 27, 21, 8, 1...
$ day
$ month
           <fct> jun, may, aug, may, may, feb, jan, may, apr, jun, aug,...
$ duration <int> 11, 176, 207, 284, 217, 233, 297, 89, 539, 131, 103, 1...
$ campaign <int> 15, 2, 6, 7, 3, 3, 1, 2, 1, 1, 4, 3, 1, 2, 1, 8, 1, 2,...
           <int> -1, -1, -1, -1, -1, 276, -1, -1, -1, -1, -1, -1, -1, -...
$ pdays
$ previous <int> 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ poutcome <fct> unknown, unknown, unknown, unknown, failure, ...
$у
           <fct> no, no, no, no, no, yes, no, no, no, no, no, no, no, no, no.
```

glimpse(submission)

```
Observations: 9,043
Variables: 16
$ age
       <int> 58, 43, 51, 56, 32, 54, 58, 54, 32, 38, 57, 51, 35, 57...
$ job
       <fct> management, technician, retired, management, blue-coll...
       <fct> married, single, married, married, single, married, ma...
$ marital
$ education <fct> tertiary, secondary, primary, tertiary, primary, secon...
$ default
       $ balance
       <int> 2143, 593, 229, 779, 23, 529, -364, 1291, 0, 424, 249,...
$ housing
       <fct> no, no, no, no, yes, no, no, no, no, no, no, no, yes, ...
$ loan
$ contact
       <fct> unknown, unknown, unknown, unknown, unknown, ...
$ day
       $ month
       $ duration <int> 261, 55, 353, 164, 160, 1492, 355, 266, 179, 104, 164,...
$ pdays
$ poutcome
       <fct> unknown, unknown, unknown, unknown, unknown, unknown, ...
```

```
unique(train$y)
```

```
[1] no yes
Levels: no yes
```

The target variable is recorded as y, a factor with two levels either yes or no. It is therefore a binary classification problem.

Before moving to modeling, we check the proportion of yes and no in the data.

Check for imbalance

nrow(subset(train, y =='yes')) / nrow(train)

[1] 0.1159865

Proportion of nos in the dataset is very low, ~11%. We may need to do resampling in order to get the right models.

Numerical Features

As can be seen from the histograms, most of the numerical features are heavily skewed, and need to be normalized

Categorical Features

Correlation between pairs of numerical features

```
train_num <- dplyr::select_if(train, is.numeric)
res <- cor(train_num)
corrplot.mixed(
    res,
        upper="circle",
        lower="number",
        tl.col = "black",
        number.cex = .8,
        tl.cex=.8)</pre>
```


As shown from the result, there are no strong correlations between most of the pairs Except the one for pdays and previous = 0.54

Density Plots

```
numeric_vars <- unlist(lapply(train, is.numeric))
histograms = list()
for (i in colnames(train[numeric_vars])){
   histograms[[i]] <-
      ggplot(
      train[numeric_vars],
      aes_string(x=i,fill=train$y)) +
      geom_density(alpha = 0.25) +
      theme_minimal() +
      labs(fill = "Target")
}
plot_grid(plotlist = histograms, ncol = 2)</pre>
```


Apart from duration, none of the numerical variables clearly separates the target classes

Preprocessing

```
# encode target variable as 1 and 0 and convert it to factor
train$label <- as.factor(ifelse(train$y == 'yes', 1, 0))
train$y <- NULL

# split train data further into train and test (hold out)
test_proportion <- 0.2
set.seed(7)
train_index <-sample(nrow(train), floor(nrow(train)*(1-test_proportion)), replace = F
ALSE)

df_train <- train[train_index,]
df_test <- train[-train_index,]</pre>
```

Baseline - Binary Logistic

```
# Define custom summary function so we can get recall as output always
recallSummary <- function (data,
    lev = NULL,
    model = NULL) {
    c(Accuracy = MLmetrics::Accuracy(data$pred, data$obs),
      recall = MLmetrics::Recall(data$obs, data$pred, positive = 1))
}
ctrl base <- trainControl(</pre>
  method = "cv", # k-fold cross val
  number = 5,
  savePredictions=TRUE,
  summaryFunction = recallSummary
bsline <- train(label~.,
             data = df train,
             method = 'glm',
             family = "binomial",
             trControl = ctrl_base)
bsline
```

```
Generalized Linear Model

28934 samples
   16 predictor
   2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23148, 23146, 23148, 23147
Resampling results:

Accuracy recall
   0.9034008   0.354236
```

The model performs poorly in terms of recall, probably due to the unbalanced target variable. This can be tackled by either undersampling the prevalent class or oversampling the rare class or both.

Baseline with Resampling

The target variable is highly unbalanced. We will therefore resample it in order try to make the model better capture the underrepresented class.

Resampling is defined through the control object instead of outside, such that cross-validation performance will be evaluated on data that has not been resampled. Failing to do so would artifially inflate cv-recall, with a model that would perform far worse on an unbalanced test set.

Undersampling

```
Generalized Linear Model

28934 samples

16 predictor
2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Additional sampling using down-sampling

Resampling results:

Accuracy recall
0.8439209 0.8291449
```

This is a game changer. By simply undersampling, we are able to highly improve recall.

Let's try oversampling instead:

Oversampling

```
Generalized Linear Model

28934 samples
   16 predictor
   2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Addtional sampling using up-sampling

Resampling results:

Accuracy recall
   0.8460982 0.8228726
```

Next: "smote" for sampling

SMOTE

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Addtional sampling using SMOTE

Resampling results:

Accuracy recall
    0.8681483 0.7631346
```

Smote resampling takes accuracy up but brings down recall substantially. SMOTE stands for Synthetic Minority Oversampling Tecniques. It uses nearest neighbours algorithm to generate new and synthetic data. 1 (https://towardsdatascience.com/methods-for-dealing-with-imbalanced-data-5b761be45a18)

Summary of all resampling results

```
Call:
summary.resamples(object = resampling)
Models: baseline, undersampling, oversampling, SMOTE
Number of resamples: 5
Accuracy
                   Min.
                           1st Ou.
                                      Median
                                                  Mean
                                                         3rd Ou.
                                                                       Max.
baseline
              0.8999482 0.9030418 0.9040954 0.9034008 0.9042516 0.9056669
undersampling 0.8351477 0.8422326 0.84334422 0.8439209 0.8481078 0.8506740
oversampling
             0.8424054 0.8429238 0.8451702 0.8460982 0.8491446 0.8508469
SMOTE
              0.8622775 0.8655607 0.8667703 0.8681483 0.8719323 0.8742008
baseline
                 0
                 0
undersampling
oversampling
                 0
SMOTE
                 0
recall
                          1st Qu.
                                     Median
                                                         3rd Qu.
                   Min.
                                                  Mean
baseline
              0.3402985 0.3408072 0.3497758 0.3542360 0.3656716 0.3746269
undersampling 0.7982063 0.8313433 0.8328358 0.8291449 0.8370703 0.8462687
oversampling
             0.7907324 0.8238806 0.8298507 0.8228726 0.8325859 0.8373134
SMOTE
              0.7309417 0.7537313 0.7698057 0.7631346 0.7701493 0.7910448
              NA's
baseline
                 0
undersampling
                 0
oversampling
                 0
SMOTE
                 0
```

```
# or just print the train results
summ2 <- NULL
for (i in 1:length(resample_models)) {
  res <- resample_models[[i]]$results[1:3]
  summ2 <- rbind(summ2, res)
}
summ2$parameter <- names(resample_models)
datatable(summ2)</pre>
```

Show 10 \$ entries Search:

	parameter	Accuracy	recall	
1	baseline	0.903400781979263	0.354235994913326	
2	undersampling	0.843920880388484	0.82914485866631	
3	oversampling	0.846098180296242	0.822872632353925	
4	SMOTE	0.868148330127882	0.763134551457957	
Showin	ng 1 to 4 of 4 entries		Previous 1 Next	

Variable Transformations

Now that we have established that resampling improves model results significantly, we will keep it as the base and move to feature selection and feature engineering. We use undersampling method.

Day as a categorical variable

There is no numerical relevance to day of the month. Hence, it is converted as a factor.

```
train$day <- as.factor(train$day)</pre>
```

Age as a categorical variable

Proceed by grouping together age-ranges

```
df_train_preproc <- train_preproc[train_index,]
df_test_preproc <- train_preproc[-train_index,]</pre>
```

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Addtional sampling using down-sampling

Resampling results:

Accuracy recall
    0.8464784    0.8303442
```

```
# update pipeline
summ2 <- rbind(summ2, log_agebin$results[1:3])
summ2$parameter[nrow(summ2)] <- "age binned"
datatable(summ2)</pre>
```

Show 10 \$ entries	Search:

	parameter	Accuracy			recall
1	baseline	0.903400781979263	0.3542	235994	4913326
2	undersampling	0.843920880388484	0.829	91448	5866631
3	oversampling	0.846098180296242	0.8228	372632	2353925
4	SMOTE	0.868148330127882	0.763	13455 ⁻	1457957
5	age binned	0.846478444271584	0.8300	344242	2911006
Showi	ng 1 to 5 of 5 entries		Previous	1	Next

The results after binning age improve slightly. We now move on to the next variable, jobs.

Reducing the number of categories in job

```
levels(df_train_preproc$job)

[1] "admin." "blue-collar" "entrepreneur" "housemaid"
[5] "management" "retired" "self-employed" "services"
[9] "student" "technician" "unemployed" "unknown"
```

Job currently has 12 different levels, but the proportion of observations in each of them is not uniform. We try merging some levels together to see if it has any impact on the model performance. We realise that reducing the levels will result in loss of granularity but it is assumed that strategies are not going to be planned at such minute levels and a general idea of customer's occupation would be enough.

```
df_train_preproc <- train_preproc[train_index,]
df_test_preproc <- train_preproc[-train_index,]</pre>
```

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23147, 23147
Addtional sampling using down-sampling

Resampling results:

Accuracy recall
    0.8459601 0.8267599
```

```
# update pipeline
summ2 <- rbind(summ2, log_agejobbin$results[1:3])
summ2$parameter[nrow(summ2)] <- "age & job binned"
datatable(summ2)</pre>
```

Show 10 \$ entries	Search:	

	parameter	Accuracy	recall
1	baseline	0.903400781979263	0.354235994913326
2	undersampling	0.843920880388484	0.82914485866631
3	oversampling	0.846098180296242	0.822872632353925
4	SMOTE	0.868148330127882	0.763134551457957
5	age binned	0.846478444271584	0.830344242911006
6	age & job binned	0.845960052899956	0.826759922361288
Showin	ng 1 to 6 of 6 entries		Previous 1 Next

The model recall decreases marginally. However, we can still go ahead with these two new features.

Converting 'balance' to categorical

This variable is highly skewed with negative values and majority 0. There are 3052 negative values and 2799 0s. We group the variable into ranges in order to cope with this.

```
df_train_preproc <- train_preproc[train_index,]
df_test_preproc <- train_preproc[-train_index,]</pre>
```

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Addtional sampling using down-sampling

Resampling results:

Accuracy recall
    0.8467204    0.8279535
```

```
# update pipeline
summ2 <- rbind(summ2, log_bal$results[1:3])
summ2$parameter[nrow(summ2)] <- "balance binned"
datatable(summ2)</pre>
```

Show 10 \$ entries

Search:

	parameter	Accuracy	recall
1	baseline	0.903400781979263	0.354235994913326
2	undersampling	0.843920880388484	0.82914485866631
3	oversampling	0.846098180296242	0.822872632353925
4	SMOTE	0.868148330127882	0.763134551457957

	parameter	Accuracy			recall
5	age binned	0.846478444271584	0.830	34424	2911006
6	age & job binned	0.845960052899956	0.826	75992	2361288
7	balance binned	0.846720407631418	0.8279	95350	6012538
Showi	ng 1 to 7 of 7 entries		Previous	1	Next

Binning balance improves accuracy and recall.

Modify Day Variable

The day variable is categorical not, but that means that it has 31 different levels. It can be imagined that certain days of the month have a slight effect on the target but most do not hold any explanatory power.

It is reasonable to argue that the first and the last day of the month are somewhat special. We group them together and put the rest into one category.

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23146, 23148, 23147, 23148
Addtional sampling using down-sampling

Resampling results:

Accuracy recall
    0.8464442    0.8249729
```

```
summ2 <- rbind(summ2, log_day_binned$results[1:3])
summ2$parameter[nrow(summ2)] <- "Day binned"
datatable(summ2)</pre>
```

Show	10 \$ entries	Search:	
	parameter	Accuracy	recall
1	baseline	0.903400781979263	0.354235994913326
2	undersampling	0.843920880388484	0.82914485866631
3	oversampling	0.846098180296242	0.822872632353925
4	SMOTE	0.868148330127882	0.763134551457957
5	age binned	0.846478444271584	0.830344242911006
6	age & job binned	0.845960052899956	0.826759922361288
7	balance binned	0.846720407631418	0.827953506012538
8	Day binned	0.846444168850983	0.824972893380631
Showir	ng 1 to 8 of 8 entries		Previous 1 Next

Model performance goes down but we are significantly reducing the number of variables which will shorten runtimes.

pday binned

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23146, 23148
Addtional sampling using down-sampling

Resampling results:

Accuracy recall
    0.8474805 0.8243728
```

summ2 <- rbind(summ2, log_pday_binned\$results[1:3])
summ2\$parameter[nrow(summ2)] <- "PDays binned"
datatable(summ2)</pre>

Show	10 \$ entries	Search:		
	parameter	Accuracy	recall	
1	baseline	0.903400781979263	0.354235994913326	
2	undersampling	0.843920880388484	0.82914485866631	
3	oversampling	0.846098180296242	0.822872632353925	
4	SMOTE	0.868148330127882	0.763134551457957	
5	age binned	0.846478444271584	0.830344242911006	
6	age & job binned	0.845960052899956	0.826759922361288	
7	balance binned	0.846720407631418	0.827953506012538	
8	Day binned	0.846444168850983	0.824972893380631	
9	PDays binned	0.847480515652526	0.824372755058787	
Showin	g 1 to 9 of 9 entries		Previous 1 Next	

Redesigning how numeric variables are modelled

We now fit the model again, however, adding in Yeo-Johnson through preprocessing to fix skewness in all numeric variables. No other preprocessing is done.

The Yeo-Johnson transformation is a variant of the BoxCox Transformation suited for variables with non-positive values. Variables are transformed to a more normal-like distribution with more stable variance.

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

Pre-processing: Yeo-Johnson transformation (42)
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23148, 23146, 23147, 23148, 23147
Addtional sampling using down-sampling prior to pre-processing

Resampling results:

Accuracy recall
    0.8450953    0.8228856
```

The results remain mostly unchanged.

```
# update pipeline
summ2 <- rbind(summ2, log_yj$results[1:3])
summ2$parameter[nrow(summ2)] <- "Yeo-Johnson"
datatable(summ2)</pre>
```

Show 10 \$ entries	Search:

	parameter	Accuracy	recall
1	baseline	0.903400781979263	0.354235994913326
2	undersampling	0.843920880388484	0.82914485866631
3	oversampling	0.846098180296242	0.822872632353925
4	SMOTE	0.868148330127882	0.763134551457957
5	age binned	0.846478444271584	0.830344242911006
6	age & job binned	0.845960052899956	0.826759922361288
7	balance binned	0.846720407631418	0.827953506012538
8	Day binned	0.846444168850983	0.824972893380631

	parameter	Accuracy	recall		
9	PDays binned	0.847480515652526	0.824372755058787		
10	Yeo-Johnson	0.845095292962903	0.822885572139303		
Showin	ng 1 to 10 of 10 entries		Previous 1 Next		

The Yeo-Johnson transformation does not appear to help with fixing skewness and outlier issues in certain variables.

Logarithm

Let's try taking the logarithm instead

```
# Logarithmise skewed variables
to log <- function(df, l varlist){</pre>
  for(1 var in 1 varlist){
    df[,l var] \leftarrow log(df[,l var])
  }
  return(df)
}
# Select the numeric variables that are skewed
log varlist <- list('duration', 'campaign', 'previous')</pre>
train_log <- train_preproc</pre>
# Add constant in order to avoid non-positive values in log (monotonic transformatio
train log$duration <- train log$duration + 1</pre>
train_log$previous <- train_log$previous + 1</pre>
train_log <- to_log(train_log, log_varlist)</pre>
df_train_preproc <- train_log[train_index,]</pre>
df_test_preproc <- train_log[-train_index,]</pre>
```

```
Generalized Linear Model

28934 samples
    16 predictor
    2 classes: '0', '1'

No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23147, 23147, 23148
Addtional sampling using down-sampling

Resampling results:

Accuracy recall
    0.8270202 0.8491618
```

summ2 <- rbind(summ2, logarithm\$results[1:3])
summ2\$parameter[nrow(summ2)] <- "Logarithm"
datatable(summ2)</pre>

Show 10 \$ entries	Search:
	Couron.

	parameter	Accuracy				recall	
1	baseline	0.903400781979263		0.354	23599	1913326	
2	undersampling	0.843920880388484		0.82	91448	5866631	
3	oversampling	0.846098180296242		0.822	87263	2353925	
4	SMOTE	0.868148330127882		0.76313455145795			
5	age binned	0.846478444271584		0.830344242911006			
6	age & job binned	0.845960052899956		0.826	75992	2361288	
7	balance binned	0.846720407631418	0.827953506012538			6012538	
8	Day binned	0.846444168850983	0.824972893380631			3380631	
9	PDays binned	0.847480515652526	0.824372755058787				
10	Yeo-Johnson	0.845095292962903		0.822885572139303			
Showin	ng 1 to 10 of 11 entries		Previous	1	2	Next	

Parallelize

cl <- makePSOCKcluster(4) # I have 4 cores, this can be adapted
registerDoParallel(cl)
All subsequent models are run in parallel</pre>

Optimization

Different models & hyperparameter tuning

Random Forest

```
set.seed(7)
# Several grids were explored, adapting the parameters in the direction where perform
ance was improving.
# For faster runtimes, only a small grid is ran.
tuneGrid_ranger <- data.table(expand.grid(mtry=c(round(sqrt(length(df_train_preproc)))</pre>
+ 2),
                                                  round(1/2 * (length(df train prepro
c))),
                                                  round(2/3 * (length(df train prepro
c)))
                                                  ), #standard choices for mtry
                               splitrule= 'gini',
                               min.node.size=c(200, 300, 500))) # We found that very 1
arge values for min.node.size lead to the highest recall. Lower values optimize
# accuracy at the cost of recall.
ranger <- train(label~.,</pre>
                data = df train preproc,
                method = "ranger", num.trees=500, # increasing the number of trees, t
he model did not improve further
                tuneGrid = tuneGrid ranger,
                metric = "recall",
                importance = "permutation",
                trControl = ctrl)
ranger
```

```
Random Forest
28934 samples
   16 predictor
    2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Addtional sampling using down-sampling
Resampling results across tuning parameters:
  mtry min.node.size Accuracy
                                  recall
   6
        200
                       0.8096357 0.8891881
        300
   6
                       0.8052464 0.8876911
        500
                       0.8003044 0.8799215
   6
   8
        200
                       0.8076660 0.8918743
        300
                       0.8085990 0.8847038
   8
   8
        500
                       0.8024818 0.8772345
  11
        200
                       0.8104998 0.8966535
        300
                       0.8106728 0.8873931
  11
  11
        500
                       0.8020669 0.8841064
Tuning parameter 'splitrule' was held constant at a value of gini
recall was used to select the optimal model using the largest value.
```

The final values used for the model were mtry = 11, splitrule = gini and min.node.size = 200.

```
o1 <- data.frame(ranger$results[7,3:5])</pre>
names(o1) <- c("parameter", "Accuracy", "recall")</pre>
summ2 <- rbind(summ2, o1)</pre>
summ2$parameter[nrow(summ2)] <- "Random Forest"</pre>
datatable(summ2)
```

Show 10 \$ entries Search:

	parameter	Accuracy	recall
1	baseline	0.903400781979263	0.354235994913326
2	undersampling	0.843920880388484	0.82914485866631
3	oversampling	0.846098180296242	0.822872632353925
4	SMOTE	0.868148330127882	0.763134551457957
5	age binned	0.846478444271584	0.830344242911006
6	age & job binned	0.845960052899956	0.826759922361288
7	balance binned	0.846720407631418	0.827953506012538
8	Day binned	0.846444168850983	0.824972893380631

	parameter	Accuracy				recall
9	PDays binned	0.847480515652526		0.82437	72755	5058787
10	Yeo-Johnson	0.845095292962903		0.82288	35572	2139303
Showir	ng 1 to 10 of 12 entries		Previous	1	2	Next
Calcula	ate test set performance					
	_ranger <- predict(ranger, racy(pred_ranger, df_test_	newdata = df_test_preproc) _preproc\$label)				
[1]	0.8164224					
Reca	ll(df_test_preproc\$label,	<pre>pred_ranger, positive = 1)</pre>				
[1]	0.8902007					

Boosting trees

Deepboost is a crazy variant of boosting. It is optimized to be able to grow ensembles of very deep (very large) trees without overfitting like AdaBoost will when growing very deep trees. We grow very shallow trees with it and only select it because it allows to choose between logistic and exponential for the loss function. Logistic loss never assigns zero penalty to any points, making it more sensitive to outliers. Exponential loss penalizes incorrect corrections more strongly.

```
DeepBoost
28934 samples
   16 predictor
    2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23146, 23147, 23147, 23148, 23148
Addtional sampling using down-sampling
Resampling results across tuning parameters:
  loss_type Accuracy
                        recall
             0.8260515 0.8667889
             0.8050730 0.8330330
Tuning parameter 'num iter' was held constant at a value of 100
Tuning parameter 'beta' was held constant at a value of 0.1
Tuning parameter 'lambda' was held constant at a value of 0.1
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were num_iter = 100, tree_depth =
 3, beta = 0.1, lambda = 0.1 and loss type = e.
```

```
o2 <- data.frame(boosting$results[1,5:7])
names(o2) <- c("parameter", "Accuracy", "recall")
summ2 <- rbind(summ2, o2)
summ2$parameter[nrow(summ2)] <- "Boosting"
datatable(summ2)</pre>
```

Show 10 \$ entries	Search:

	parameter	Accuracy	recall
1	baseline	0.903400781979263	0.354235994913326
2	undersampling	0.843920880388484	0.82914485866631
3	oversampling	0.846098180296242	0.822872632353925
4	SMOTE	0.868148330127882	0.763134551457957
5	age binned	0.846478444271584	0.830344242911006
6	age & job binned	0.845960052899956	0.826759922361288
7	balance binned	0.846720407631418	0.827953506012538
8	Day binned	0.846444168850983	0.824972893380631
9	PDays binned	0.847480515652526	0.824372755058787
10	Yeo-Johnson	0.845095292962903	0.822885572139303

Showing 1 to 10 of 13 entries

Previous

2

Next

Deepboost is not able to reach the levels of recall obtained with the random forest.

XGBoost

```
eXtreme Gradient Boosting
28934 samples
   16 predictor
    2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Addtional sampling using down-sampling
Resampling results across tuning parameters:
  gamma nrounds Accuracy
                             recall
  0.1
          80
                  0.8282645 0.8754479
  0.1
         100
                  0.8303036 0.8787355
  0.2
          80
                  0.8288176 0.8757410
  0.2
         100
                  0.8324811 0.8793271
Tuning parameter 'max_depth' was held constant at a value of 5
Tuning parameter 'min_child_weight' was held constant at a value of
 1
Tuning parameter 'subsample' was held constant at a value of 1
recall was used to select the optimal model using the largest value.
The final values used for the model were nrounds = 100, max depth = 5,
 eta = 0.05, gamma = 0.2, colsample_bytree = 0.7, min_child_weight = 1
 and subsample = 1.
```

```
o3 <- data.frame(xgb$results[4,7:9])
names(o3) <- c("parameter", "Accuracy", "recall")
summ2 <- rbind(summ2, o3)
summ2$parameter[nrow(summ2)] <- "XGBoost"
datatable(summ2)</pre>
```

Show 10 \$ entries	Search:	

	parameter	Accuracy				recall
1	baseline	0.903400781979263		0.354	235994	4913326
2	undersampling	0.843920880388484		0.82	91448	5866631
3	oversampling	0.846098180296242		0.822	872632	2353925
4	SMOTE	0.868148330127882	0.7631345514			1457957
5	age binned	0.846478444271584		0.830	344242	2911006
6	age & job binned	0.845960052899956	0.82675992236128			2361288
7	balance binned	0.846720407631418		0.827	953506	6012538
8	Day binned	0.846444168850983	0.824972893380631			3380631
9	PDays binned	0.847480515652526	0.824372755058787			5058787
10	Yeo-Johnson	0.845095292962903	0.822885572139303			
Showin	g 1 to 10 of 14 entries		Previous	1	2	Next

XGBoost performs quite well but still worse than random forest.

```
mypred_xgb <- predict(xgb, newdata = df_test_preproc)
Accuracy(mypred_xgb, df_test_preproc$label)</pre>
```

```
[1] 0.8249931
```

```
Recall(df_test_preproc$label, mypred_xgb, positive = 1)
```

[1] 0.8713105

Logistic Regression with regularization

Since we have seen that recall seems to be highest the less granularly the model fits the data, we will try whether a regularized logistic regression performs well.

```
glmnet
28934 samples
   16 predictor
    2 classes: '0', '1'
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 23147, 23147, 23148, 23147, 23147
Addtional sampling using down-sampling
Resampling results across tuning parameters:
  alpha lambda Accuracy
                            recall
  0.0
         0.0
                 0.8257758 0.8536372
                 0.8220432 0.8318323
  0.0
         0.2
  0.0
         0.5
                0.8168592 0.8016706
  0.5
         0.0
                 0.8278149
                           0.8488557
  0.5
        0.2
                 0.7543025 0.7879263
  0.5
         0.5
                0.7164233 0.7305843
  1.0
         0.0
                0.8290936 0.8488588
         0.2
                 0.7193956 0.7261053
  1.0
  1.0
         0.5
                 0.4232205 0.6000000
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were alpha = 1 and lambda = 0.
```

```
o4 <- data.frame(log_reg$results[1,2:4])
names(o4) <- c("parameter", "Accuracy", "recall")
summ2 <- rbind(summ2, o4)
summ2$parameter[nrow(summ2)] <- "Logistic with Regularizations"
datatable(summ2)</pre>
```

Show 10 + entries

Search:

	parameter	Accuracy	recall
1	baseline	0.903400781979263	0.354235994913326
2	undersampling	0.843920880388484	0.82914485866631

	parameter	Accuracy				recall
3	oversampling	0.846098180296242		0.822	872632	2353925
4	SMOTE	0.868148330127882		0.763134551457957		
5	age binned	0.846478444271584		0.8303442429110		
6	age & job binned	0.845960052899956		0.826759922361288		
7	balance binned	0.846720407631418	0.827953506012538			6012538
8	Day binned	0.846444168850983	0.824972893380631			3380631
9	PDays binned	0.847480515652526	0.824372755058787			5058787
10	Yeo-Johnson	0.845095292962903	0.822885572139303			
Showin	ng 1 to 10 of 15 entries		Previous	1	2	Next

Regularization significantly worsens performance.

Final Prediction

Make the final prediction on the submission set