1 Lemme de Morse

Lemme de Morse

En usant (certains diront plutôt "en abusant") du théorème d'inversion locale, on montre le lemme de Morse et on l'applique à l'étude de la position d'une surface par rapport à son plan tangent.

Notation 1. Si $f: \mathbb{R}^n \to \mathbb{R}$ est une application dont toutes les dérivées secondes existent, on note $\operatorname{Hess}(f)_a$ la hessienne de f au point a.

Lemme 2. Soit $A_0 \in \mathscr{S}_n(\mathbb{R})$ inversible. Alors il existe un voisinage V de A_0 dans $\mathscr{S}_n(\mathbb{R})$ et une application $\psi: V \to \mathrm{GL}_n(\mathbb{R})$ de classe \mathscr{C}^1 telle que

 $\forall A \in V, A = {}^t \psi(A) A_0 \psi(A)$

Démonstration. On définit l'application

$$\varphi: \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \to & \mathcal{S}_n(\mathbb{R}) \\ M & \mapsto & {}^t M A_0 M \end{array}$$

qui est une application polynômiale en les coefficients de M, donc de classe \mathscr{C}^1 . Soit $H \in \mathscr{M}_n(\mathbb{R})$. On calcule :

$$\varphi(I_n + H) - \varphi(I_n) = {}^t H A_0 + A_0 H + {}^t H A_0 + H$$
$$= {}^t (A_0 H) + A_0 H + o(\|H\|^2)$$

où ($\|.\|$ désigne une quelconque norme d'algèbre sur $\mathcal{M}_n(\mathbb{R})$). Ainsi, on a d $\varphi_{I_n}(H)={}^t(A_0H)+A_0H$. D'où

$$\operatorname{Ker}(\mathrm{d}\varphi_{I_n}) = \{M \in \mathcal{M}_n(\mathbb{R}) \mid A_0 M \in \mathcal{A}_n(\mathbb{R})\} = A_0^{-1} \mathcal{A}_n(\mathbb{R})$$

On définit donc

$$F = \{M \in \mathcal{M}_n(\mathbb{R}) \mid A_0 M \in \mathcal{S}_n(\mathbb{R})\} = A_0^{-1} \mathcal{S}_n(\mathbb{R})$$

et on a $\mathcal{M}_n(\mathbb{R}) = F \oplus \operatorname{Ker}(\operatorname{d}\varphi_{I_n})$. Ainsi, la différentielle $\operatorname{d}(\varphi_{|F})_{I_n}$ est bijective (car $\operatorname{Ker}(\operatorname{d}(\varphi_{|F})_{I_n}) = \operatorname{Ker}(\operatorname{d}\varphi_{I_n}) \cap F = \{0\}$).

On peut donc appliquer le théorème d'inversion locale à $\varphi_{|F}$: il existe U un voisinage ouvert de I_n dans F tel que $(\varphi_{|U})$ soit \mathscr{C}^1 -difféomorphisme de U sur $V=\varphi(U)$. De plus, on peut supposer $U\subseteq \mathrm{GL}_n(\mathbb{R})$ (quitte à considérer $U\cap U'$ où U' est un voisinage ouvert de I_n dans $\mathrm{GL}_n(\mathbb{R})$; qui existe par continuité de det).

Ainsi, V est un voisinage ouvert de $A_0 = \varphi(I_n)$ dans $\mathscr{S}_n(\mathbb{R})$ vérifiant :

$$\forall A \in V, A = {}^{t}(\varphi_{|U})^{-1}(A)A_{0}(\varphi_{|U})^{-1}(A)$$

Il suffit alors de poser $\psi = (\varphi_{|U})^{-1}$ (qui est bien une application de classe \mathscr{C}^1) pour avoir le résultat demandé.

p. 354

p. 209

2 Lemme de Morse

Lemme 3 (Morse). Soit $f: U \to \mathbb{R}$ une fonction de classe \mathscr{C}^3 (où U désigne un ouvert de \mathbb{R}^n contenant l'origine). On suppose :

- $df_0 = 0$.
- La matrice symétrique $Hess(f)_0$ est inversible.
- La signature de $\operatorname{Hess}(f)_0$ est (p, n-p).

Alors il existe un difféomorphisme $\phi = (\phi_1, ..., \phi_n)$ de classe \mathscr{C}^1 entre deux voisinage de l'origine de \mathbb{R}^n $V \subseteq U$ et W tel que $\varphi(0) = 0$ et

$$\forall x \in U, f(x) - f(0) = \sum_{k=1}^{p} \phi_k^2(x) - \sum_{k=p+1}^{n} \phi_k^2(x)$$

Démonstration. On écrit la formule de Taylor à l'ordre 1 avec reste intégral au voisinage de 0, qui donne :

$$f(x) = f(0) + df_0(x) + \int_0^1 (1 - t) d^2 f_{tx}(x, x) dt$$

$$\iff f(x) - f(0) = {}^t x Q(x) x \tag{*}$$

où Q(x) est la matrice symétrique définie par $Q(x) = \int_0^1 (1-t) \operatorname{Hess} f_{tx} dt$ (qui est une application \mathscr{C}^1 sur U car f est \mathscr{C}^3 sur U).

Par hypothèse, $Q(0) = \frac{\operatorname{Hess}(f)_0}{2}$ est une matrice symétrique inversible, donc en vertu du Lemme 2, il existe un voisinage V_1 de Q(0) dans $\mathscr{S}_n(\mathbb{R})$ et une application $\psi: V_1 \to \operatorname{GL}_n(\mathbb{R})$ de classe \mathscr{C}^1 tels que :

$$\forall A \in V_1, A = {}^t \psi(A) Q(0) \psi(A)$$

Mais, l'application $x\mapsto Q(x)$ est continue sur U (puisque f est de classe \mathscr{C}^3 sur U), donc il existe V_2 voisinage de 0 dans U tel que $\forall x\in V_2$, $Q(x)\in V_1$. On peut donc définir l'application $M=\psi\circ Q_{|V_2}$, qui nous permet d'écrire

$$\forall x \in V_2, Q(x) = {}^t M(x)Q(0)M(x) \tag{**}$$

Or, Q(0) est de signature (p, n-p), donc d'après la loi d'inertie de Sylvester, il existe $P \in GL_n(\mathbb{R})$ telle que

$$Q(0) = {}^{t}P\underbrace{\begin{pmatrix} I_{p} \\ -I_{n-p} \end{pmatrix}}_{=D}P \tag{***}$$

Finalement en combinant (*) avec (**) et (* * *), cela donne

$$\forall x \in V_2, f(x) - f(0) = {}^t(PM(x)x)D(PM(x)x)$$

$$\iff \forall x \in V_2, f(x) - f(0) = {}^t\varphi(x)D\varphi(x)$$

ce qui est bien l'expression voulue.

Il reste à montrer que φ définit bien un difféomorphisme de classe \mathscr{C}^1 entre deux voisinages de l'origine. Notons déjà que φ est de classe \mathscr{C}^1 car M l'est. Calculons la différentielle en 0 de φ . Soit

3 Lemme de Morse

 $h \in V_2$;

$$\varphi(h) - \varphi(0) = PM(h)h$$

$$= P(M(0) + dM_0(h) + o(||h||))h$$

$$= PM(0)h + o(||h||)$$

d'où d $\varphi_0(h) = PM(0)h$. Or, PM(0) est inversible, donc en particulier, d φ_0 l'est aussi. On peut appliquer le théorème d'inversion locale à φ , qui donne l'existence de deux ouverts V et W contenant l'origine (car $\varphi(0) = 0$) tel que $\varphi = \varphi_{|V|}$ soit un \mathscr{C}^1 -difféomorphisme de V sur W.

Application 4. Soit S la surface d'équation z = f(x, y) où f est de classe \mathscr{C}^3 au voisinage de l'origine. On suppose la forme quadratique d^2f_0 non dégénérée. Alors, en notant P le plan tangent à S en 0:

- (i) Si $d^2 f_0$ est de signature (2,0), alors S est au-dessus de P au voisinage de 0.
- (ii) Si $d^2 f_0$ est de signature (0,2), alors S est en-dessous de P au voisinage de 0.
- (iii) Si $d^2 f_0$ est de signature (1, 1), alors S traverse P selon une courbe admettant un point double en (0, f(0)).

Démonstration. Une équation cartésienne de P est donnée par

$$z - 0 = f(0) + df_0(x, y)$$

La différence d'altitude entre la surface S et le plan tangent P au point $h \in \mathbb{R}^2$ est donc donnée par

$$\delta(h) = f(h) - (f(0) + df_0(h))$$

et le Lemme 3 permet d'écrire

$$\delta(h) = \alpha \phi_1(h)^2 + \beta \phi_2(h)^2$$

où (α,β) désigne la signature de d^2f_0 et $\phi=(\phi_1,\phi_2)$ est un \mathscr{C}^1 -difféomorphisme entre deux voisinages de l'origine dans \mathbb{R}^2 . En particulier, ϕ_1 et ϕ_2 ne s'annulent simultanément qu'en 0.

- (i) Si $d^2 f_a$ est de signature (2,0), on a $\delta(h) > 0$ pour h voisin de 0 et $h \neq 0$.
- (ii) Si $d^2 f_a$ est de signature (0,2), on a $\delta(h) < 0$ pour h voisin de 0 et $h \neq 0$.
- (iii) Si $d^2 f_a$ est de signature (1, 1), on a $\delta(h) = \phi_1(h)^2 \phi_2(h)^2$ et S traverse P selon une courbe admettant un point double en (0, f(0)).

p. 341

Bibliographie

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4^e éd. Cassini, 27 fév. 2015.

 $\verb|https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html.|$