Lab 5 - R

Table of contents

Data	a Analysis 2	
1.1	Table Presentation)
1.2	Graphs - Final output	Ė
Line	ar Regression Analysis 6	j
2.1	LM 1	;
2.2	LM 2	;
2.3	Double Lasso	;
2.4	Results	,
Non	Linear Methods 8	}
3.1	Lasso)
3.2	Regression Trees)
3.3	Boosting Trees)
3.4	Regression Forest)
3.5	Results	_
	3.5.1 Plot	-
	1.1 1.2 Line 2.1 2.2 2.3 2.4 Non 3.1 3.2 3.3 3.4 3.5	1.1 Table Presentation 2 1.2 Graphs - Final output 4 Linear Regression Analysis 6 2.1 LM 1 6 2.2 LM 2 6 2.3 Double Lasso 6 2.4 Results 7 Non Linear Methods 8 3.1 Lasso 9 3.2 Regression Trees 9 3.3 Boosting Trees 10 3.4 Regresssion Forest 10 3.5 Results 11

The 'cran_repo' argument in shelf() was not set, so it will use cran_repo = 'https://cran.r-project.org' by default.

To avoid this message, set the 'cran_repo' argument to a CRAN mirror URL (see https://cran.r-project.org/mirrors.html) or set 'quiet = TRUE'.

1 Data Analysis

1.1 Table Presentation

```
data = read_csv("https://raw.githubusercontent.com/alexanderquispe/CausalAI-Course/main/data
Rows: 1739 Columns: 15
-- Column specification -----
Delimiter: ","
dbl (15): y, w, gender_female, gender_male, gender_transgender, ethnicgrp_as...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
data |> head(3)
# A tibble: 3 x 15
            w gender female gender male gender transgender ethnicgrp asian
  <dbl> <dbl>
                      <dbl>
                                   <dbl>
                                                       <dbl>
                                                                        <dbl>
1
      1
                          0
                                                           0
                                                                            0
                                                           0
                                                                            0
                           0
# i 9 more variables: ethnicgrp_black <dbl>, ethnicgrp_mixed_multiple <dbl>,
    ethnicgrp_other <dbl>, ethnicgrp_white <dbl>, partners1 <dbl>,
    postlaunch <dbl>, msm <dbl>, age <dbl>, imd_decile <dbl>
data |> colnames()
                                 11 <sub>W</sub> 11
 [1] "y"
 [3] "gender_female"
                                 "gender_male"
 [5] "gender_transgender"
                                 "ethnicgrp_asian"
 [7] "ethnicgrp_black"
                                 "ethnicgrp_mixed_multiple"
 [9] "ethnicgrp_other"
                                 "ethnicgrp_white"
[11] "partners1"
                                 "postlaunch"
[13] "msm"
                                 "age"
[15] "imd_decile"
```

```
data1 =
    data |> dplyr::select(y, w, contains("gender"), age, imd_decile) |>
    tidyr::pivot_longer(contains("gender"), names_to = "gender") |>
   filter(value > 0) |>
   separate(gender, c("v", "gender")) |>
   mutate(gender = factor(gender, labels = c("male", "female", "transgender"))) |>
    dplyr::select(!c(v, value))
data1 |>
   group_by(w, gender) |>
    summarise(
      n = n(),
       mean_y = mean(y),
       sd_y = sd(y),
       mean_age = mean(age),
       sd_age = sd(age)
    ) |>
   mutate(
        w = ifelse(w == 0, "Control", "Treatment"),
       gender = ifelse(gender == "male", "Male", ifelse(gender == "female", "Female", "Trans
    ) |>
   rename(
       Group = 1,
        Gender = 2,
        "Mean - Y" = 4,
        "sd - Y" = 5,
        "Mean - Age" = 6,
        "sd - Age" = 7
    ) |> knitr::kable(caption = "Descriptive Statisctics by Group and Gender")
```

`summarise()` has grouped output by 'w'. You can override using the `.groups` argument.

Table 1: Descriptive Statisctics by Group and Gender

Group	Gender	n	Mean - Y	sd - Y	Mean - Age	sd - Age
Control	Male	475	0.2084211	0.4066076	22.74105	3.591231
Control	Female	342	0.2163743	0.4123757	23.49123	3.547530
Control	Transgender	1	0.0000000	NA	17.00000	NA
Treatment	Male	541	0.5341959	0.4992909	22.92052	3.500154
Treatment	Female	377	0.3899204	0.4883801	23.50663	3.575267

Group	Gender	n	Mean - Y	sd - Y	Mean - Age	sd - Age
Treatment	Transgender	3	1.0000000	0.0000000	22.33333	3.214550

1.2 Graphs - Final output

Gender Distribution


```
data1 |>
    ggplot() +
    aes(age,
    fill = factor(w, labels = c("Control", "Treatment"))
    ) +
    geom_density(alpha = .5) +
    scale_fill_manual(values = c("#0798a8", "#a8073a")) +
    labs(
        x = "Age", y = "Density",
        title = "Density",
        fill = ""
    ) +
    theme(
        legend.position = "bottom"
    )
```


2 Linear Regression Analysis

2.1 LM 1

```
lm1 =lm(y ~ w, data = data) |>
  broom::tidy()
```

2.2 LM 2

```
base_formula = y ~ w + age + imd_decile
lm2 = lm(base_formula, data = data1) |>
    broom::tidy()
```

2.3 Double Lasso

```
cnt <- c(
    "w",
    "gender_female",
    "gender_male",
    "age",
    "imd_decile"
formula <- as.formula(</pre>
    paste(
        "y ~ ", paste(cnt, collapse = " + ")
        )
)
X <- model.matrix(formula, data = data)[,-1]</pre>
Y <- data$y
coefs_glm =
    glmnet::cv.glmnet(X, Y, alpha = .1) |>
    coef(s = "lambda.min") |>
```

2.4 Results

```
table = bind_rows(
    lm1 |> mutate(model = "Simple"),
    lm2 |> mutate(model = "Multiple"),
    lm3 |> mutate(model = "Lasso")
    ) |>
    filter(term == "w")
table |> knitr::kable()
```

term	estimate	std.error	statistic	p.value	model
w	0.2651644	0.0220586	12.02088	0	Simple
w	0.2633769	0.0219073	12.02233	0	Multiple
W	0.2624866	0.0218226	12.02821	0	Lasso

```
table |>
    ggplot() +
    aes(
        model, estimate,
        ymin = estimate - 1.96*std.error,
        ymax = estimate + 1.96*std.error
) +
```

```
geom_point() +
geom_pointrange() +
ylim(c(0.2, 0.32)) +
labs(
    x = "",
    y = "Coefficients",
    title = "Value of treatment"
)
```

Value of treatment

3 Non Linear Methods

```
splits = rsample::initial_split(data, strata = y)

data_test = rsample::testing(splits)
data_train = rsample::training(splits)

y_train = data_train |> select(y)

T_train = data_train |> select(w)

x_train = data_train |> select(!c(y, w))
```

```
y_test = data_test |> select(y)
T_test = data_test |> select(w)
x_test = data_test |> select(!c(y, w))

lm_yd = function(y, d, md){
    df = tibble(y = unlist(y) , d = unlist(d) )
    # print(head(df))
    lm(y ~ d, data = df) |>
        broom::tidy() |>
        mutate(
        cols = c("I", "d"),
        model = md
    )
}
```

3.1 Lasso

```
lasso_y <- glmnet::cv.glmnet(as.matrix(x_train), y_train |> as.matrix(), alpha = 1, nfolds =
lasso_t <- glmnet::cv.glmnet(as.matrix(x_train), T_train |> as.matrix(), alpha = 1, nfolds =

y_train_hat <- predict(lasso_y, newx = as.matrix(x_test))

T_train_hat <- predict(lasso_t, newx = as.matrix(x_test))

y_r1 <- y_train - y_train_hat

T_r1 <- T_train - T_train_hat

l1 = lm_yd(y_r1, T_r1, "Lasso")</pre>
```

3.2 Regression Trees

```
tree_y <- rpart::rpart(y ~ . - w, data = data_train, method = "anova")
tree_t <- rpart::rpart(w ~ . - y, data = data_train, method = "anova")

Y_predicted <- predict(tree_y, newdata = data_test)
T_predicted <- predict(tree_t, newdata = data_test)
y_r2 <- y_test - Y_predicted
T_r2 <- T_test - T_predicted</pre>
```

```
12 = lm_yd(y_r2, T_r2, "Reg. Trees")
```

3.3 Boosting Trees

```
boost_y <- gbm::gbm(y ~ . - w, data = data_train, distribution='bernoulli')
boost_t <- gbm::gbm(w ~ . - y, data = data_train, distribution='bernoulli')

Y_predicted <- predict(boost_y, newdata = data_test, n.trees = 100)
T_predicted <- predict(boost_t, newdata = data_test, n.trees = 100)
y_r3 <- y_test - Y_predicted
T_r3 <- T_test - T_predicted

13 = lm_yd(y_r3, T_r3, "Bost. Trees")</pre>
```

3.4 Regresssion Forest

```
model_y <- randomForest::randomForest(y ~ . - w, data = data_train)</pre>
```

Warning in randomForest.default(m, y, ...): The response has five or fewer unique values. Are you sure you want to do regression?

```
model_t <- randomForest::randomForest(w ~ . - y, data = data_train)</pre>
```

Warning in randomForest.default(m, y, ...): The response has five or fewer unique values. Are you sure you want to do regression?

```
Y_predicted <- predict(model_y, newdata = data_test)
T_predicted <- predict(model_t, newdata = data_test)
y_r4 <- y_test - Y_predicted
T_r4 <- T_test - T_predicted

14 = lm_yd(y_r4, T_r4, "Reg. Forest")</pre>
```

3.5 Results

```
results = bind_rows(
    11, 12, 13, 14
) |>
    filter(term == "d") |>
    select(!cols) |>
    arrange(estimate)

results |>
    knitr::kable(caption="Regression values")
```

Table 3: Regression values

term	estimate	std.error	statistic	p.value	model
d	0.2242041	0.0434896	5.155352	4e-07	Reg. Forest
d	0.2357984	0.0440641	5.351257	1e-07	Reg. Trees
d	0.2756558	0.0253648	10.867670	0e + 00	Lasso
d	0.3669385	0.0512926	7.153827	0e + 00	Bost. Trees

3.5.1 Plot

```
results |>
    ggplot() +
    aes(
        model, estimate,
        ymin = estimate - 1.96*std.error,
        ymax = estimate + 1.96*std.error
) +
    geom_point() +
    geom_pointrange() +
    labs(
        x = "",
        y = "Coefficients",
        title = "Value of treatment"
) +
    coord_flip()
```

