

1. With a random sample of size n from Exponential(λ), find the bias of \overline{X}^2 as an estimator for $1/\lambda^2$.

$$E(\vec{x}^2) = Var(\vec{x}) + E(\vec{x})^2 = \frac{1}{2}Var(\vec{x}) + E(\vec{x})^2$$
$$= (\frac{1}{2}) \cdot \frac{1}{2} + (\frac{1}{2})^2$$

2. With a random sample of size n from $\mathsf{Poisson}(\lambda)$, find the bias of \overline{X}^2 as an estimator for λ^2 .

3.1.2.
$$f(n|\lambda) = e^{-\lambda} \cdot \frac{\lambda^n}{n!}$$
 200, $\lambda 10$.

1. Find the Fisher information I(p) of the distribution $\mathsf{Geometric}(p)$.

3.2.
$$f(x|p) = p \cdot (1-p)^{x-1}$$
, $x=1,2,3--$, $p \in (0,1)$.

$$= E\left(\frac{1}{P^2} + \frac{x-1}{(P-1)^2}\right) \qquad (E(x) = \frac{1-p}{P})$$

$$= \frac{1}{p^2} + \frac{1-p}{p} \cdot (\frac{1}{p-1})^2 - (\frac{1}{p-1})^2$$

$$=\frac{-p^2-p+1}{p^2(1-p)^2}.$$

2. Find the Fisher information $I(\theta)$ of the distribution $\theta(1-x)^{\theta-1}$, 0 < x < 1, $\theta > 0$, zero elsewhere.

$$2(\theta) = - E\left(\frac{3^2 \log f(x)(0)}{3\theta^2}\right)$$

3. Let X_1, \ldots, X_n be a random sample from $N(0, \sigma)^2$. Find the MLE $\widehat{\sigma}^2$ for σ^2 . Show that $\widehat{\sigma}^2$ is unbiased. Find the variance of $\widehat{\sigma}^2$. Find the R-C lower bound for σ^2 .

$$f(\infty | 6) = \frac{1}{166} \cdot e^{\infty} p(-\frac{\infty^2}{262})$$

$$\frac{\partial L}{\partial 6} = \frac{n}{6} - \frac{\sum_{i=1}^{n} x_i^2}{6^3},$$

$$\frac{\partial L}{\partial 6}\Big|_{6=\hat{6}}=0 \implies \hat{6}^2=\frac{\sum_{i=1}^{n} \chi_{i}^2}{n}.$$

$$= Var(X) + E(X)^2$$

$$=6^2$$
 , so 6^4 is unbiased of 6^2 .

(a)
$$= -E(\frac{3^2 \log f(x) | 6)}{36^2}$$

$$= E(-\frac{1}{6^2} + 3 - \frac{X^2}{6^4})$$

$$=\frac{2}{6^2}$$

R-C lower bound is
$$\frac{(26)^2}{n \cdot 116} = \frac{261}{n}$$

hence 22 achieve the R-C lower bound.]

4. Let X_1, \ldots, X_n be a random sample taken from density
$f(x \theta) = \theta(x+1)^{-(1+\theta)}, 0 < x < \infty, \theta > 0, \text{zero elsewhere.}$
Find the C-R lower bound for the variance of all the unbiased estimators of $1/\theta$.
3-2.4. $I(\theta) = -E(\frac{3bgf(x)(\theta)}{3a^2})$
$2.2.4. \qquad 2(0) = -2\left(\frac{1}{30^2}\right)$
= E(ti) = ti.
$R-(lower bound of '/\theta = \frac{(-t_0)^2}{n \cdot 1(0)}$
$n \cdot L(\theta)$
$=\frac{1}{n \cdot \theta^2} \cdot \Omega$
5. Find the Fisher information $I(\theta)$ of the distribution
$f(x \theta) = (\theta^2 + \theta)x^{\theta-1}(1-x), x \in [0,1], \theta > 0,$ zero elsewhere.
$2.5. 210) = E(-\frac{2^{1}(0)f(x)10)}{20^{2}})$
= E(== + (0+1))
= 6 + (0+1) · · · · · · · · · · · · · · · · · · ·