Full-stack Web Development for Auto-Assessment Platform (AASP)

Final Year Project Lee Jun Wei

Agenda

01

Introduction

Background, problems & objective

02

Related Products

Summary of findings

03

Design

Requirements & considerations

94

Implementation

Overview of technologies used

04

Conclusion

Achievements & future work

05

Live demo!

Demo of main features

01 Introduction

Background

Assessments

- Important feedback channel for educators
- Provide **learners** with measure of progress

Benefits of online platforms

- Automated grading
- Ease of distribution
- Objectivity of marking

Background

SC1007 Data Structures and Algorithms

Assessments distributed with

HackerEarth

- Commercial platform
- High cost
- In-house solution is desired
 - Full control over the platform and its data

Prior Works

Kenneth Soh

Designed and developed AASP

Yap Guan Sheng

MCQ questions Quiz feedback feature Improved user interface Lee Jun Wei

Problems

Secure coding practices not enforced

Backend services exposed

Bugs that lead to a complete crash

Complicated architecture

Poor backwards-compatibility of dependencies

Built on a depreciated projects last updated 7 years ago

Objectives

- To **redesign and develop** a new in-house Automated Assessment Platform (AASP)
- Developed with Security, Reliability,
 Maintainability in mind

O2 Review of Related Products

HackerRank, HackerEarth, Leetcode

User Interface Summary

of related products

Positive traits

- Clean and uncluttered
- Horizontally-split layout
- Text formatting support

Useful Features

of related products

```
r - 1 + 1)

▶ Run Code ^ Submit
```

- Run code against sample test case

Useful Features

of related products

Submission history and test case details

Useful Features

of related products

```
HackerRank Prepare > Interview Preparation Kit > Arrays > 2D Array - DS
                                                                                                  Change Theme Language Python 3
      Given a 6 \times 6 2D Array, arr:
                                                                                                                                                 v 👸 :
                                                                                 #!/bin/python3
         111000
         010000
                                                                                 import math
                                                                                 import os
         000000
                                                                                 import random
                                                                                 import re
         000000
                                                                                 import sys
      An hourglass in oldsymbol{A} is a subset of values with indices falling in this
                                                                                 # Complete the 'hourglassSum' function below.
      pattern in arr's graphical representation:
                                                                                # The function is expected to return an INTEGER.
                                                                            # The function accepts 2D_INTEGER_ARRAY arr as parameter.
        a b c
        efg
                                                                           16 v def hourglassSum(arr):
                                                                                     # Write your code here
      There are 16 hourglasses in lpha rr . An hourglass sum is the sum of an
      hourglass' values. Calculate the hourglass sum for every hourglass in
                                                                           20 v if __name__ == '__main__':
      arr, then print the maximum hourglass sum. The array will always be
                                                                                     fptr = open(os.environ['OUTPUT_PATH'], 'w')
      6 \times 6.
                                                                                     arr = []
      Example
                                                                                                                                                    Line: 33 Col: 1
      arr =
                                                                                                                                                   Submit Code
         -9 -9 -9 1 1 1
                                                                            ,1, Upload Code as File
                                                                                                 Test against custom input
```

Integrated code editor

O3Design and Considerations

Design Methodology

Summary of Functional Requirements

AASP

- Automated grading
- User Authentication
- Strict access control to resources

Educators

- Question banks to store questions
- **Courses** to organise students
- Distribute **Assessments** to students
- View **Reports** of assessment attempts

Students

- Take assessments

Security Considerations

Web Application Security

- Main attack vector for attackers
- Proper security measures must be implemented

Network Exposure

- Minimise attack surface
- Only the web application should be exposed
- Internal services should not be exposed

Maintainability Considerations

Primary Programming Language

- Select language with lower learning curve
- Taught as part of the curriculum

Web Framework Selection

- Easy to learn
- Well-documented
- Large community

Don't reinvent the wheel

- Integrate good existing projects if possible

Access Control

3 layered approach

04 Implementation

Technologies used

FRONTEND

Backend Server

Django Web Framework

- Most popular Python web framework
- Focused on API stability and forwards-compatibility
- Built-in security features

FRONTEND

Code Execution Engine

Judge0 API

Executes code securely in a sandboxed environment

- Open-source
- Actively maintained
- Well documented

Judge0 Worker

PostgreSQL

redis

Redis

django+gunicorn

CELERY
Celery worker

PostoreSQL

LRabbitMC

RabbitMQ

Asynchronous Task Queue

Python Celery and RabbitMQ

 Run background tasks required for automated grading

Deployment

Docker Engine

- AASP is containerised
- Consistent deployment on various platforms
- Eliminates hassle of installing dependencies

3-Step Process

- 1. Clone the repository
- 2. Update configuration file to set secret keys
- 3. Run docker-compose up -d

05 Conclusion

Conclusion

What was achieved

- Redesign and development of the AASP
- Design choices that promotes Security, Reliability
 and Maintainability
- Simplified deployment process

Future works

- More question types
- Email notifications & reminders

06 Live demo

http://172.21.148.184

Thank You! Any questions?