In [1]: # Import necessary libraries
 import pandas as pd
 import numpy as np
 import matplotlib.pyplot as plt
 import seaborn as sns

In [10]: #Loading the dataset and Displaying the first few rows of the datafram
 df=pd.read_csv(r"C:\Users\madin\Downloads\Global-Superstore.csv")

df.head()

Out[10]:		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	
	0	32298	CA- 2012- 124891	7/31/2012	7/31/2012	Same Day	RH-19495	Rick Hansen	Consumer	Ne
	1	26341	IN- 2013- 77878	2/5/2013	2/7/2013	Second Class	JR-16210	Justin Ritter	Corporate	Wollo
	2	25330	IN- 2013- 71249	10/17/2013	10/18/2013	First Class	CR-12730	Craig Reiter	Consumer	Br
	3	13524	ES- 2013- 1579342	1/28/2013	1/30/2013	First Class	KM- 16375	Katherine Murray	Home Office	
	4	47221	SG- 2013- 4320	11/5/2013	11/6/2013	Same Day	RH-9495	Rick Hansen	Consumer	

5 rows × 24 columns

In [11]: #Displaying the basic information about the dataset
 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51290 entries, 0 to 51289
Data columns (total 24 columns):

```
Column
                   Non-Null Count Dtype
--- -----
                   -----
    Row ID
                   51290 non-null int64
0
1
    Order ID
                   51290 non-null object
 2
    Order Date
                   51290 non-null object
 3
                   51290 non-null object
    Ship Date
 4
    Ship Mode
                   51290 non-null object
 5
    Customer ID
                   51290 non-null object
                   51290 non-null object
    Customer Name
 7
    Segment
                   51290 non-null object
    City
                   51290 non-null object
 9
    State
                   51290 non-null object
10 Country
                   51290 non-null object
11 Postal Code
                   9994 non-null
                                  float64
                   51290 non-null object
12 Market
13 Region
                   51290 non-null object
 14 Product ID
                   51290 non-null object
15 Category
                   51290 non-null object
                   51290 non-null object
16 Sub-Category
17 Product Name
                   51290 non-null object
18 Sales
                   51290 non-null float64
 19 Quantity
                   51290 non-null int64
 20 Discount
                   51290 non-null float64
                   51290 non-null float64
 21 Profit
 22 Shipping Cost 51290 non-null float64
 23 Order Priority 51290 non-null object
dtypes: float64(5), int64(2), object(17)
memory usage: 9.4+ MB
```

In [26]: # Displaying the basic information about the dataset
 df.describe()

Out[26]:

	Row ID	Order Date	Postal Code	Sales	Quantity	Disc
count	51290.00000	51290	9994.000000	51290.000000	51290.000000	51290.00
mean	25645.50000	2013-05-11 21:26:49.155781120	55190.379428	246.490581	3.476545	0.14
min	1.00000	2011-01-01 00:00:00	1040.000000	0.444000	1.000000	0.00
25%	12823.25000	2012-06-19 00:00:00	23223.000000	30.758625	2.000000	0.00
50%	25645.50000	2013-07-08 00:00:00	56430.500000	85.053000	3.000000	0.00
75%	38467.75000	2014-05-22 00:00:00	90008.000000	251.053200	5.000000	0.20
max	51290.00000	2014-12-31 00:00:00	99301.000000	22638.480000	14.000000	0.85
std	14806.29199	NaN	32063.693350	487.565361	2.278766	0.21
4 6						

In [13]: # Checking for missing values
df.isnull().sum()

Out[13]: Row ID 0 Order ID 0 Order Date 0 Ship Date 0 0 Ship Mode Customer ID 0 Customer Name 0 0 Segment City 0 0 State Country 0 Postal Code 41296 Market 0 Region 0 0 Product ID 0 Category Sub-Category 0 Product Name 0 Sales 0 Quantity 0 Discount 0 Profit 0 Shipping Cost 0 Order Priority 0 dtype: int64


```
In [28]: # Converting Order Date to datetime
    df['Order Date'] = pd.to_datetime(df['Order Date'])

In [18]: # Sales by Product Category
    category_sales = df.groupby('Category')['Sales'].sum().reset_index()
    plt.figure(figsize=(10, 6))
    sns.barplot(x='Category', y='Sales', data=category_sales)
    plt.title('Sales by Product Category')
```

```
plt.ylabel('Revenue')
plt.show()
```



```
In [19]: #Top Selling Products
    product_sales = df.groupby('Product Name')['Sales'].sum().reset_index()
    top_products = product_sales.sort_values(by='Sales', ascending=False).head(10)

plt.figure(figsize=(12, 8))
    sns.barplot(x='Sales', y='Product Name', data=top_products)
    plt.title('Top 10 Selling Products')
    plt.xlabel('Revenue')
    plt.show()
```



```
In [20]: # Sales Trend Over Time
    sales_trend = df.groupby('Order Date')['Sales'].sum().reset_index()

    plt.figure(figsize=(14, 8))
    sns.lineplot(x='Order Date', y='Sales', data=sales_trend)
    plt.title('Sales Trend Over Time')
    plt.ylabel('Revenue')
    plt.show()
```



```
In [25]: ## Monthly Sales Comparison
    df['Month-Year'] = df['Order Date'].dt.to_period('M')
    monthly_sales = df.groupby('Month-Year')['Sales'].sum().reset_index()

    plt.figure(figsize=(14, 8))
    sns.barplot(x='Month-Year', y='Sales', data=monthly_sales)
    plt.title('Monthly Sales Comparison')
    plt.ylabel('Revenue')
    plt.xticks(rotation=45)
    plt.show()
```



```
In [29]: # Profit by Product Category
         category_profit = df.groupby('Category')['Profit'].sum().reset_index()
         print(category_profit)
         plt.figure(figsize=(10, 6))
         sns.barplot(x='Category', y='Profit', data=category_profit)
         plt.title('Profit by Product Category')
         plt.ylabel('Profit')
         plt.show()
```

Category Profit 0 Furniture 285204.72380 1 Office Supplies 518473.83430 2 Technology 663778.73318


```
In [30]: # Top Profitable Products
    product_profit = df.groupby('Product Name')['Profit'].sum().reset_index()
    top_profitable_products = product_profit.sort_values(by='Profit', ascending=False).
    print(top_profitable_products)

plt.figure(figsize=(12, 8))
    sns.barplot(x='Profit', y='Product Name', data=top_profitable_products)
    plt.title('Top 10 Profitable Products')
    plt.xlabel('Profit')
    plt.show()
```

	Product Name	Profit
866	Canon imageCLASS 2200 Advanced Copier	25199.9280
970	Cisco Smart Phone, Full Size	17238.5206
2415	Motorola Smart Phone, Full Size	17027.1130
1926	Hoover Stove, Red	11807.9690
3098	Sauder Classic Bookcase, Traditional	10672.0730
1714	Harbour Creations Executive Leather Armchair,	10427.3260
2501	Nokia Smart Phone, Full Size	9938.1955
971	Cisco Smart Phone, with Caller ID	9786.6408
2502	Nokia Smart Phone, with Caller ID	9465.3257
589	Belkin Router, USB	8955.0180


```
In [31]: # Sales and Profit by Region
    region_sales_profit = df.groupby('Region')[['Sales', 'Profit']].sum().reset_index()
    print(region_sales_profit)

plt.figure(figsize=(14, 8))
    sns.barplot(x='Region', y='Sales', data=region_sales_profit, label='Sales', color='
    sns.barplot(x='Region', y='Profit', data=region_sales_profit, label='Profit', color
    plt.title('Sales and Profit by Region')
    plt.ylabel('Amount')
    plt.legend()
    plt.show()
```

```
Region
                          Sales
                                       Profit
0
           Africa 7.837732e+05
                                  88871.63100
1
           Canada 6.692817e+04
                                  17817.39000
2
        Caribbean 3.242809e+05
                                  34571.32104
3
          Central 2.822303e+06 311403.98164
4
     Central Asia 7.528266e+05 132480.18700
5
             EMEA 8.061613e+05
                                  43897.97100
6
             East 6.787812e+05
                                  91522.78000
7
            North 1.248166e+06 194597.95252
8
       North Asia 8.483098e+05 165578.42100
          Oceania 1.100185e+06 120089.11200
9
10
            South 1.600907e+06 140355.76618
   Southeast Asia 8.844232e+05
11
                                  17852.32900
12
             West 7.254578e+05 108418.44890
```



```
In [32]: # Sales by Customer Segment
segment_sales = df.groupby('Segment')['Sales'].sum().reset_index()
print(segment_sales)

plt.figure(figsize=(10, 6))
sns.barplot(x='Segment', y='Sales', data=segment_sales)
plt.title('Sales by Customer Segment')
plt.ylabel('Revenue')
plt.show()
```

Segment Sales
Consumer 6.507949e+06
Corporate 3.824698e+06
Home Office 2.309855e+06


```
In [33]: # Discount Impact on Sales and Profit
discount_sales_profit = df.groupby('Discount')[['Sales', 'Profit']].sum().reset_ind
print(discount_sales_profit)

plt.figure(figsize=(14, 8))
sns.lineplot(x='Discount', y='Sales', data=discount_sales_profit, label='Sales')
sns.lineplot(x='Discount', y='Profit', data=discount_sales_profit, label='Profit')
plt.title('Discount Impact on Sales and Profit')
plt.ylabel('Amount')
plt.legend()
plt.show()
```

```
Discount
                     Sales
                                  Profit
0
       0.000
              6.992411e+06
                            1.770695e+06
1
       0.002
              2.613956e+05
                            5.797658e+04
2
       0.070
              1.216169e+05
                            2.114850e+04
3
       0.100
              1.579606e+06
                            2.590642e+05
4
       0.150
              3.060298e+05
                            2.737590e+04
5
       0.170
              2.473992e+05
                            2.816307e+04
6
       0.200
              1.203832e+06
                            1.177159e+05
7
       0.202
              1.621565e+04 -5.952727e+02
       0.250
8
              8.805535e+04 8.005875e+02
9
       0.270
              8.935167e+04 -1.675079e+03
10
       0.300
              1.889320e+05 -1.968585e+04
              1.449346e+04 -2.391138e+03
11
       0.320
12
       0.350
              9.570649e+04 -1.416965e+04
13
       0.370
              3.161802e+04 -5.806202e+03
14
       0.400
             5.595252e+05 -1.437485e+05
15
       0.402
             3.373387e+04 -1.143045e+04
16
       0.450
             3.339113e+04 -1.360679e+04
17
       0.470 8.343217e+04 -3.116225e+04
18
       0.500
              3.241311e+05 -1.586299e+05
19
       0.550
              6.308658e+03 -3.150672e+03
20
       0.570
              8.144802e+03 -6.313548e+03
21
       0.600
              1.845819e+05 -1.639547e+05
22
       0.602
             4.977181e+03 -4.905419e+03
23
       0.650
              6.579815e+03 -6.221966e+03
24
       0.700
              1.397722e+05 -1.863505e+05
25
       0.800
              2.046333e+04 -3.861623e+04
26
       0.850
             7.968420e+02 -3.068658e+03
```

