함수의 연속

함수 f = a 에서 연속(continuous)

(1)
$$f(a)$$

$$(2) \quad \lim_{x \to a} f(x)$$

$$(3) \quad \lim_{x \to a} f(x) = f(a)$$

정의역의 모든 점에서 연속일 때, 연속함수(continuous function) 이라고 한다.

p. 83 예제
$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

풀이:
$$a > 0$$
 일때 $\lim_{x \to a+} f(x) = \lim_{x \to a} \frac{a}{a} = 1 = f(a)$

$$a < 0$$
 일때 $\lim_{x \to a^{-}} f(x) = \lim_{x \to a} \frac{-a}{a} = -1 = f(a)$

이므로 $a \neq 0$ 인 모든 점에서 연속이다. 그러나 $\lim_{x\to 0} f(x)$ 는 존재하지 않는다.

$$f, g$$
 가 a 에서 연속이고, c 는 상수 $f \pm g$ cf fg $\frac{f}{g}$

(증명)
$$\lim_{x \to a} (f + g)(x) = \lim_{x \to a} (f(x) + g(x))$$
$$= \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$
$$= f(a) + g(a)$$
$$= (f + g)(a)$$

다항함수, 유리함수, 제곱근 함수, 삼각함수, 지수함수 로그함수,......

(참고) 다항식(polynomials)

$$\cdots, x^2, x, 5$$

단항식(monomial)

$$\cdots$$
, x^2 , $+x$, $x-5$

이항식(binomial)

$$\dots, x^2, +x-5, \qquad x^4+3x^2-5$$

$$x^n + x^{n-1} + \cdots + a$$

삼항식(trinomial) 기+] *n*항식(n-nomial)

$$x^2 + 3x - x^{-1} = x^2 + 3x - \frac{1}{x} = \frac{x^3 + 3x^2 - 1}{x}$$
 유리식

중간값 정리(Intermediate value theorem)

f가 닫힌구간 [a,b] 에서 연속이고 $f(a) \neq f(b)$ 라 하자.

$$f(a) < N < f(b) \Rightarrow$$

$$\exists c \in (a,b) \text{ s.t. } f(c) = N$$

At least one: **적어도 하나**

(예제)
$$4x^3 - 6x^2 + 3x - 2 = 0$$
 의 근이 1 과 2 사이에 존재
$$f(x) = 4x^3 - 6x^2 + 3x - 2$$

$$f(1) = 4 - 6 + 3 - 2 = -1 < 0$$
 $f(2) = 32 - 24 + 6 - 2 > 0$
$$f(1) < 0 < f(2)$$

$$c \in (1,2) \ s.t. \ f(c) = 0$$

p.85 예제 2.7 $x - \cos x = 0$ 은 적어도 하나의 실근을 갖는다.

풀이:
$$f(x) = x - \cos x$$
 라하면이함수는 연속함수이다.이때 $f(0) = -1$ $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$ $c \in (0, \pi/2)$ $s.t.$ $f(c) = 0$

혼자 해보기4

(1)
$$f, g$$
 가 연속함수이고 $g(2) = 6$, $\lim_{x \to 2} (3f(x) + f(x)g(x)) = 36$ 일 때 $f(2)$ 를 구하라.

(2)
$$f$$
 가 a 에서 연속 $\Leftrightarrow \lim_{h\to 0} f(a+h) = f(a)$ 임을 증명하라.