REFERENCES

- 1. ← Bassey EJ and Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporos Int 4: 72–75, 1994. CrossRef PubMed Web of Science
- ∠ Bassey EJ, Rothwell MC, Littlewood JJ, and Pye DW. Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13: 1805–1813, 1998.
 CrossRef PubMed Web of Science
- 3. ← Bassey EJ, Littlewood JJ, and Taylor SJ. Relations between compressive axial forces in an instrumented massive femoral implant, ground reaction forces, and integrated electromyographs from vastus lateralis during various 'osteogenic' exercises. *J Biomech* 30: 213–223, 1997. CrossRef PubMed Web of Science
- 4. ← Beverly MC, Rider TA, Evans MJ, and Smith R. Local bone mineral response to brief exercise that stresses the skeleton. *BMJ* 22: 233–235, 1989.
- Chang S, Sipila S, Taffe DR, Puolakka J, and Suominen H. Change in bone mass distribution induced by hormone replacement therapy and high-impact physical exercise in post-menopausal women. Bone 31: 126– 135, 2002. PubMed
- 6. ← Fuchs RK, Bauer JJ, and Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomised controlled trial. *J Bone Miner Res* 16: 148–156 2001. CrossRef PubMed

 Web of Science
- 7. ← Heinonen A, Kannus P, Sievanen H, Pasanen M, Rinne M, Uusi-rasi K, and Vuori I. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348: 1343–1347, 1996. CrossRef PubMed Web of Science