6.1 For a second order reaction:
$$kT = \frac{C_{AO} - C_A}{C_A^2}$$
, so for the two reactors

$$\frac{V_2}{V_1} = 2 = \frac{(c_{A1} - c_{A2})/c_{A2}^2}{b \cdot r_1} = \frac{(c_{A0} - c_{A2})/c_{A2}^2}{(c_{A0} - c_{A1})/c_{A1}^2} = \frac{(0.5 - c_{A2})/c_{A2}^2}{(1 - 0.5)/0.5^2}$$

or

therefore

6.3 For the second order reaction

for the mixed flow reactor:
$$kT_{m} = \frac{C_{NO}-C_{NI}}{C_{AI}^{2}} = \frac{4-1}{1} = 3$$
 so for the plug flow reactor: $kT_{o} = 3kT_{m} = 9$

and
$$\frac{C_{AZ}}{C_{AI}} = \frac{1}{1 + kT_0 C_{AI}} = \frac{1}{1 + q(I)} = 0.1$$

Radioactive decay follows first order kinetics, so here

$$k = \frac{\ln 2}{t_{1/2}} = \frac{0.6931}{14 \text{ min}} = 0.0495 \text{ min}^{-1}$$

so
$$\frac{a_2}{a_0} = \frac{a_2}{a_1} \cdot \frac{a_1}{a_0} = \frac{1}{(1+k\bar{t}_1)} = \frac{1}{[1+0.0495(20160)]^2} = 1.0017 \times 10^{-6}$$

For plug Plans

$$\frac{G_2}{g_0} = 1.0017 \times 10^{-6} = e^{-kTp} = e^{-0.0495 Tp}$$
 $\frac{G_2}{g_0} = 1.0017 \times 10^{-6} = e^{-kTp} = e^{-0.0495 Tp}$
 $\frac{1}{for the MFR}$
 $\frac{1}{for the MFR}$
 $\frac{1}{for the MFR}$

$$C_{A0} = | mol/lit$$

$$V = | lolit/min$$

$$C_{A2} = 0.01$$

It is best to solve this graphically. Thus by the method of maximization of rectangles

CA	$-\frac{1}{r_A} = \frac{0.2 + C_A}{C_A}$
· danage	F. Zenter
0.4	1.5
0.2	2
0.1	3
0.08	3.5
0.01	21

:.
$$V_1 = f_1 t = 2.7(10) = 27 \text{ lit}$$

$$V_2 = f_2 t = 1.9(10) = 19 \text{ lit}$$

6.9 with recycle for a first order reaction we have

$$kT = (R+1) ln \left[\frac{C_{A0} + RC_{AF}}{(R+1)C_{AF}} \right] = (2+1) ln \left[\frac{10+2(1)}{(2+1)1} \right] = 3 ln A$$

Without recycle (plug flow)

Therefore

6.11 For this autocatalytic reaction the maximum rate occurs where CA=CR. Thus operate at CA=5, if possible. Here

So for mixed flow

$$T = \frac{10.5}{0.025} = \frac{5}{0.025} = 200s = \frac{V}{U} = \frac{V}{1.5}$$

Thus V=300lit, or 3 mfr side by side. Thus we should hook the A reactors as shown

For the fourth reactor 1 = V/v = 100/1.5 = 66.75, so

6.13 From 1/2 life data for radioactive decay (first order kinetics) we have

$$-\frac{dC}{dt} = kC \quad \text{or} \quad \ln \frac{C}{C} = kt \quad \text{or} \quad \ln 2 = k(20 \text{ hrs}) \quad \text{or} \quad k = \frac{\ln 2}{20 \text{ hr}}$$

and for 2 equal sized tanks in series Eq 6.60 gives

$$\frac{C_{out}}{C_o} = \frac{1}{(1+kt_i)^2} = \frac{1}{(1+\frac{\ln 2}{20}(400))^2} = \frac{1}{(1+20\ln 2)^2} = 0.00453$$

30 only 0.453% of the activity remains, 99.5% of the activity has disappeared

We have 2 pieces of kinetic information, what happens in the 2 reactors, thus we can fit a kinetic equation with 2 constants. So let us try an nit order equation.

For 1st reactor:
$$T_i = \frac{C_0 - C_1}{RC_1^n}$$

For
$$2^{nd}$$
 reactor: $T_2 = \frac{C_1 - C_2}{k C_1^n}$

For 1st reactor:
$$T_1 = \frac{C_0 - C_1}{RC_1^n}$$
 combining $T_2 = \frac{C_0 - C_1}{C_1 - C_2}$ for 2rd reactor: $T_2 = \frac{C_1 - C_2}{RC_2^n}$

$$i \cdot n = \frac{\log \frac{\pi}{r_2} + \log \frac{C_1 - C_2}{C_0 - C_1}}{\log \frac{C_2}{C_1}} = \frac{\log \frac{1}{2} + \log \frac{1}{2}}{\log \frac{1}{2}} = 2$$

and on replacing in the 1st equation $k = \frac{C_0 - C_1}{7.6.0} = \frac{0.5}{96(0.5)^2} = \frac{1}{48} \frac{\text{lit}}{\text{mol·s}}$

Hence the rate

$$-r_{A} = \left(\frac{1}{48} \frac{\text{lit}}{\text{mol·sec}}\right) C_{A}^{2} = \left(1.25 \frac{\text{lit}}{\text{mol·min}}\right) C_{A}^{2}$$

6.17

Simplification: Since CAO = 1/70. CBO we may assume that CBO = constant, and that the reaction is 1st order with respect to A.

For the reactor:
$$kT_p = 4(kT_m) = 4(\frac{1}{4}) = \int_{0.008}^{CA2} \frac{dC_A}{C_A} = \ln \frac{0.008}{C_{A2}} = 0.00293$$

6.19 Let us solve by using the graphical procedure, and lets use concentrations, not conversions. First prepare the Y-ra us CA curves from the data of the table, below

CA	CR	- TA = KCACR	andrew CA
0.99	0.61	0.0099	101.01
0.95	0,05	0.0475	21.05
0.90	0.1	0.09	(), ()
0.70	0.3	0.21	4.76
0,50	0.5	0.25	4.00
0.30	0.7	0.21	4.76
0.10	P,0	90,0	

6.21 Originally we had plug flow, 1st order,
$$X_A=0.9$$

$$\frac{C_A}{C_A}=e^{-kT}$$

$$C_{AO} = 10$$

or
$$leT = ln \frac{CAO}{C_A} = ln 10 = 2.3 ---(i)$$

With recycle
$$kT = (R+1) \ln \left[\frac{C_{A0} + RC_{Af}}{(R+1)C_{Af}} \right] = (2+1) \ln \left[\frac{10+2C_{Af}}{(2+1)C_{Af}} \right] - - (ii)$$

(continued) Combining (is & (iis gives

Solving for CAF gives