Review

- BinaryConnect (1-bit weight)
 - Update real value weights by using gradients of binary weights
- Binarized Neural Network (1-bit weight and 1-bit activation)
 - Use straight-through estimator (STE) for back propagation
 - Update real value weights by using gradients of binary weights
- XNOR-NET (1-bit weight + real value scalar and 1-bit activation + real value scalar)
 - Quantize CNN that works well on ImageNet
 - Real value scaling factor becomes L1 norm
 - Update real value weights by using gradients of real value weights (STE!)
 - Computation overhead reduction for input value scaling factors

DNN Quantization (2)

Lecture 7

Hyung-Sin Kim

Let's step forward!

Not just for heavy redundant models (AlexNet, VGG...) but for **already efficient models** (MobileNet)!

Integer-arithmetic-only inference! (edge TPU)

Integer-only [CVPR'18] – Concept

- 1-bit quantization is attractive but degrades performance a lot...
 - Instead, let's use 8-bit integers mainly and a few 32-bit integers

- No real values at all during inference
 - Outputs of conv and batchnorm are all integers!
 - It can be executed on integer-arithmetic-only hardware, such as edge TPU

Integer-only [CVPR'18] – Quantization Scheme

Integer-only [CVPR'18] – Quantization Scheme

- Each weight or activation **array** at each layer is represented as below
 - To quantize an array, we need to have one real value and one integer value
 - A different parameter set is needed for each weight array and activation array

- We first focus on inference framework
 - Assume that quantization parameters S and Z are already trained for each weight array and activation array
 - The goal is to use **zero** real value calculation

- For $r_3 = r_1 r_2$ where $r_\alpha \in \mathbf{R}^{N \times N}$ (matrix multiplication), what is $q_3^{(i,j)}$ for $r_3^{(i,j)}$?
 - Recall that we already have (S_1, Z_1) , (S_2, Z_2) , and (S_3, Z_3)

- For $r_3 = r_1 r_2$ where $r_\alpha \in \mathbf{R}^{N \times N}$ (matrix multiplication), what is $q_3^{(i,j)}$ for $r_3^{(i,j)}$?
 - Recall that we already have (S_1, Z_1) , (S_2, Z_2) , and (S_3, Z_3)

 - $q_3^{(i,k)} = Z_3 + M \sum_{j=1}^{N} (q_1^{(i,j)} Z_1)(q_2^{(j,k)} Z_2)$ where $M := \frac{S_1 S_2}{S_3}$ (computed offline)
 - **Problem**: Empirically found that M is always in the interval (0,1) not represented as an integer
 - **Solution**: Scale up -> calculation -> scale down
 - $q_3^{(i,k)} = Z_3 + 2^{-n} \left\{ (2^n M) \sum_{j=1}^N (q_1^{(i,j)} Z_1) (q_2^{(j,k)} Z_2) \right\}$ bit shift int32

Integer only multiplication!

• Full convolution:
$$a^{(i,k)} = \sum_{j=1}^{N} x^{(i,j)} w^{(j,k)} + b^{(i,k)}$$

• Full convolution:
$$a^{(i,k)} = \sum_{j=1}^{N} x^{(i,j)} w^{(j,k)} + b^{(i,k)} = S_x S_w = 0$$

• $a_q^{(i,k)} = Z_a + \frac{S_x S_w}{S_a} \sum_{j=1}^{N} (x_q^{(i,j)} - Z_x) (w_q^{(j,k)} - Z_w) + \frac{S_b}{S_a} (b_q^{(i,k)} - Z_b)$

Pre-compute and store

A single multiplication output needs only int16,
but int32 is needed for accumulation

$$= Z_a + 2^{-n} \left\{ \left(2^n \frac{S_x S_w}{S_a} \right) \left(b_q^{(i,k)} + \sum_{j=1}^N (x_q^{(i,j)} - Z_x) (w_q^{(j,k)} - Z_w) \right) \right\}$$

int32 int32 int32

int8

uint8

- Computation overhead due to zero-points
 - $a_q^{(i,k)} = M \sum_{j=1}^{N} x_q^{(i,j)} w_q^{(j,k)}$ vs. $a_q^{(i,k)} = Z_a + M \sum_{j=1}^{N} (x_q^{(i,j)} Z_x) (w_q^{(j,k)} Z_w)$ We need to calculate N×N $a_q^{(i,k)}$ for all i and k

 - 2N subtractions (j) × # of output elements (N × N, i and k) = $2N^3$ more subtractions?
- Handling zero-points by unfolding

•
$$a_q^{(i,k)} = Z_a + M \left(N Z_x Z_w - Z_x \left(\sum_{j=1}^N w_q^{(j,k)} \right) - Z_w \left(\sum_{j=1}^N x_q^{(i,j)} + \sum_{j=1}^N x_q^{(i,j)} w_q^{(j,k)} \right) \right)$$

Independent from i (can be reused for all i) N^2 additions

Independent from k (can be reused for all k) N^2 additions

Main computation burden (just same as without zero points!)

- Include batch normalization
 - Assume that Bnorm parameters σ and μ are already trained for each activation array
 - Again, the goal is to use **zero** real value calculation

- Include batch normalization
 - Assume that Bnorm parameters σ and μ are already trained for each activation array
 - Again, the goal is to use zero real value calculation

How can we train a DNN so that the integer-arithmetic-only inference is possible?

Need to train weights and also quantization parameters!

- Forward propagation
 - For t-th iteration, based on the current weight \mathbf{W}^t and input \mathbf{X}^t , update quantization parameters as below:
 - EWMA filter: $r_{w,min}^t = \alpha \cdot r_{w,min}^{t-1} + (1 \alpha) \cdot \min(\mathbf{W}^t)$, $r_{w,max}^t = \alpha \cdot r_{w,max}^{t-1} + (1 \alpha) \cdot \max(\mathbf{W}^t)$
 - Scaling factor: $S_w^t = \frac{r_{w,max}^t r_{w,min}^t}{2^B 1}$
 - Zero point: $Z_w^t = \left| \frac{-r_{w,min}^t}{S_w} \right|$ (must be an integer for efficiency)
 - Tune the range: $r_{w,min}^t = -S_w Z_w$, $r_{w,max}^t = S_w (2^B 1 Z_w)$

ReLU6

- Forward propagation
 - For t-th iteration, based on the current weight \mathbf{W}^t and input \mathbf{X}^t , update quantization parameters as below:

• EWMA filter: $r_{w,min}^t = \alpha \cdot r_{w,min}^{t-1} + (1 - \alpha) \cdot \min(\mathbf{W}^t)$, $r_{w,max}^t = \alpha \cdot r_{w,max}^{t-1} + (1 - \alpha) \cdot \max(\mathbf{W}^t)$

• Scaling factor: $S_w^t = \frac{r_{w,max}^t - r_{w,min}^t}{2^B - 1}$

• Zero point: $\mathbf{Z}_{w}^{t} = \left[\frac{-r_{w,min}^{t}}{S_{w}}\right]$ (must be an integer for efficiency)

• Tune the range: $r_{w,min}^t = -S_w Z_w$, $r_{w,max}^t = S_w (2^B - 1 - Z_w)$

Conv with quantized weights

- Forward propagation
 - For t-th iteration, based on the current weight \mathbf{W}^t and input \mathbf{X}^t , update quantization parameters as below:

• EWMA filter: $r_{w,min}^t = \alpha \cdot r_{w,min}^{t-1} + (1 - \alpha) \cdot \min(\mathbf{W}^t)$, $r_{w,max}^t = \alpha \cdot r_{w,max}^{t-1} + (1 - \alpha) \cdot \max(\mathbf{W}^t)$

• Scaling factor: $S_w^t = \frac{r_{w,max}^t - r_{w,min}^t}{2^B - 1}$

• Zero point: $Z_w^t = \left[\frac{-r_{w,min}^t}{s_w} \right]$ (must be an integer for efficiency)

• Tune the range: $r_{w,min}^t = -S_w Z_w$, $r_{w,max}^t = S_w (2^B - 1 - Z_w)$

- Conv with quantized weights
- Update quantization parameters for activations
- Quantize activations

ReLU6

act quant

[The tables are from B. Jacob et al., "Quantization and training of neural networks for efficient integer-arithmetic-only inference."]

→ output

- Backward propagation
 - As if none of them are quantized... (no gradients for quantized weights/activations!)
 - All of weights, activations, and gradients are real values!
 - Although forward propagation uses quantized weights and activations, their real value versions are **stored** to calculate gradients of the real value versions!

- Include batch normalization for forward propagation
 - Gain real value (temporary) output s^t (= $X \cdot W$) by using a real weight conv filter
 - This is not a real output, **only** for BNorm parameter update

- Include batch normalization for forward propagation
 - Gain real value (temporary) output s^t (= $X \cdot W$) by using a real weight conv filter
 - This is not a real output, **only** for BNorm parameter update
 - Based on s^t , update BNorm parameters

•
$$\sigma_{a,t}^2 = \alpha \cdot \sigma_{s,t-1}^2 + (1-\alpha) \cdot VAR(s^t)$$

•
$$\mu_{a,t} = \alpha \cdot \mu_{s,t-1} + (1 - \alpha) \cdot E(s^t)$$

- Include batch normalization for forward propagation
 - Gain real value (temporary) output s^t (= $X \cdot W$) by using a real weight conv filter
 - This is not a real output, **only** for BNorm parameter update
 - Based on s^t , update BNorm parameters

•
$$\sigma_{a,t}^2 = \alpha \cdot \sigma_{s,t-1}^2 + (1-\alpha) \cdot VAR(s^t)$$

•
$$\mu_{a,t} = \alpha \cdot \mu_{s,t-1} + (1 - \alpha) \cdot E(s^t)$$

Folding BNorm parameters into conv weights and bias

- Include batch normalization for forward propagation
 - Gain real value (temporary) output s^t (= $X \cdot W$) by using a real weight conv filter
 - This is not a real output, **only** for BNorm parameter update
 - Based on s^t , update BNorm parameters

•
$$\sigma_{a,t}^2 = \alpha \cdot \sigma_{s,t-1}^2 + (1-\alpha) \cdot VAR(s^t)$$

•
$$\mu_{a,t} = \alpha \cdot \mu_{s,t-1} + (1 - \alpha) \cdot E(s^t)$$

- Folding BNorm parameters into conv weights and bias
- Quantize the weights of the **folded** conv filter

- Include batch normalization for forward propagation
 - Gain real value (temporary) output s^t (= $X \cdot W$) by using a real weight conv filter
 - This is not a real output, **only** for BNorm parameter update
 - Based on s^t , update BNorm parameters

•
$$\sigma_{a,t}^2 = \alpha \cdot \sigma_{s,t-1}^2 + (1-\alpha) \cdot VAR(s^t)$$

•
$$\mu_{a,t} = \alpha \cdot \mu_{s,t-1} + (1 - \alpha) \cdot E(s^t)$$

- Folding BNorm parameters into conv weights and bias
- Quantize the weights of the **folded** conv filter
- Gain a BNormed output by using a **quantized conv fold** filter and a folded bias

- Include batch normalization for forward propagation
 - Gain real value (temporary) output s^t (= $X \cdot W$) by using a real weight conv filter
 - This is not a real output, **only** for BNorm parameter update
 - Based on s^t , update BNorm parameters

•
$$\sigma_{a,t}^2 = \alpha \cdot \sigma_{s,t-1}^2 + (1-\alpha) \cdot VAR(s^t)$$

•
$$\mu_{a,t} = \alpha \cdot \mu_{s,t-1} + (1 - \alpha) \cdot E(s^t)$$

- Folding BNorm parameters into conv weights and bias
- Quantize the weights of the **folded** conv filter
- Gain a BNormed output by using a **quantized conv fold** filter and a folded bias
- After ReLU6, quantize the final output for the next layer

ResNet on ImageNet

ResNet depth	50	100	150
Floating-point accuracy	76.4%	78.0%	78.8%
Integer-quantized accuracy	74.9%	76.6%	76.7%

Table 4.1: ResNet on ImageNet: Floating-point vs quantized network accuracy for various network depths.

Scheme	BWN	TWN	INQ	FGQ	Ours
Weight bits	1	2	5	2	8
Activation bits	float32	float32	float32	8	8
Accuracy	68.7%	72.5%	74.8%	70.8%	74.9%

Table 4.2: ResNet on ImageNet: Accuracy under various quantization schemes, including binary weight networks (BWN [21, 15]), ternary weight networks (TWN [21, 22]), incremental network quantization (INQ [33]) and fine-grained quantization (FGQ [26])

Inception on ImageNet

Act.	type	accuracy		recall 5	
		mean	std. dev.	mean	std.dev.
ReLU6	floats	78.4%	0.1%	94.1%	0.1%
	8 bits	75.4%	0.1%	92.5%	0.1%
	7 bits	75.0%	0.3%	92.4%	0.2%
ReLU	floats	78.3%	0.1%	94.2%	0.1%
	8 bits	74.2%	0.2%	92.2%	0.1%
	7 bits	73.7%	0.3%	92.0%	0.1%

Table 4.3: Inception v3 on ImageNet: Accuracy and recall 5 comparison of floating point and quantized models.

- MobileNet on ImageNet
 - For three CPU cores on Pixel 1 and 2
 - Different resolutions and depth multipliers

(c) ImageNet latency-vs-accuracy tradeoff

point and integer-only MobileNets.

Figure 4.1: ImageNet classifier on Qualcomm Snapdragon Figure 4.2: ImageNet classifier on Qualcomm Snapdragon 835 big cores: Latency-vs-accuracy tradeoff of floating- 821: Latency-vs-accuracy tradeoff of floating-point and integer-only MobileNets.

SSD + MobileNet

DM	Type	mAP	LITTLE (ms)	big (ms)
100%	floats	22.1	778	370
	8 bits	21.7	687	272
50%	floats	16.7	270	121
	8 bits	16.6	146	61

Table 4.4: Object detection speed and accuracy on COCO dataset of floating point and integer-only quantized models. Latency (ms) is measured on Qualcomm Snapdragon 835.

DM	Type	Precision	Recall	LITTLE (ms)	big (ms)
100%	floats	68%	76%	711	337
	8 bits	66%	75%	372	154
50%	floats	65%	70%	233	106
	8 bits	62%	70%	134	56
25%	floats	56%	64%	100	44
	8 bits	54%	63%	67	28

Table 4.5: Face detection accuracy of floating point and integeronly quantized models. The reported precision / recall is averaged over different precision / recall values where an IOU of xbetween the groundtruth and predicted windows is considered a correct detection, for x in $\{0.5, 0.55, \ldots, 0.95\}$. Latency (ms) of floating point and quantized models are reported on Qualcomm Snapdragon 835 using a single LITTLE and big core, respectively.

This is the reason why 8-bit integer-only edge TPU can perform DNN-based inference

Thanks!