# LES ÉTAPES DE L'ALGORITHME DU SIMPLEXE

#### **Sommaire**

| 1. | Introduction                             | 1 |
|----|------------------------------------------|---|
| 2. | Variables d'écart et d'excédent          | 2 |
| 3. | Variables de base et variables hors base | 2 |
| 4. | Solutions admissibles                    | 3 |
| 5. | Résolution du programme linéaire (PL)    | 3 |
| 6  | La critàra d'arrêt                       | 0 |



## 1. Introduction

Un programme linéaire (PL) mis sous la forme particulière où toutes les contraintes sont des équations et toutes les variables sont non négatives est dit sous forme standard. Il est noté (PL=).

#### 2. Variables d'écart et d'excédent

Avant que l'algorithme du simplexe puisse être utilisé pour résoudre un programme linéaire, ce programme linéaire doit être converti en un programme équivalent où toutes les contraintes technologiques sont des équations et toutes les variables sont non négatives.

a. Contraintes de type ( $\leq$ ): Pour chaque contrainte i de ce type, on rajoute une variable d'**écart**  $e_i$ , tel que  $e_i$  est une variable positive ou nulle.

Exemple: 
$$3x_1 + 2x_2 \le 2$$
 se transforme en  $3x_1 + 2x_2 + e_1 = 2$ ,  $e_1 \ge 0$ 

b. Contraintes de type ( $\geq$ ): Pour chaque contrainte i de ce type, on retranche une variable d'**excédent**  $e_i$ , tel que  $e_i$  est une variable positive ou nulle.

Exemple: 
$$3x_1 + 2x_2 \ge 2$$
 se transforme en  $3x_1 + 2x_2 - e_2 = 2$ ,  $e_2 \ge 0$ 

Un programme linéaire qui contient des contraintes (technologiques) de type  $\leq$  est noté (PL). Un programme linéaire qui contient des contraintes (technologiques) de type  $(\leq, \geq, =)$  est noté (PG). Un programme linéaire (PL) resp (PG) converti tel que toutes les contraintes technologiques sont des équations et toutes les variables sont non négatives est noté (PL=) resp (PG=).

### 3. <u>Variables de base et variables hors base</u>

Considérons un système d'équations à n variables et m équations où  $n \ge m$ . Une solution de base pour ce système est obtenue de la manière suivante :

- a) On pose n-m variables égales à 0. Ces variables sont appelées variables hors base (V.H.B.).
- b) On résout le système pour les m variables restantes. Ces variables sont appelées les variables de base (V. B.)
- c) Le vecteur de variables obtenu est appelé solution de base (il contient les variables de base et les variables hors base)

Une solution de base est <u>admissible</u> si toutes les variables de la solution de base sont  $\geq 0$ .

Il est vraiment important d'avoir le même nombre de variables que d'équations.

#### 4. Solutions admissibles

Toute solution de base de (PL=) pour laquelle <u>toutes les variables sont non négatives</u>, est appelée solution de base admissible. Cette solution de base admissible correspond à un point extrême.

### 5. Résolution du programme linéaire (PL)

$$\begin{aligned} \operatorname{Ex} : \operatorname{Max} Z &= \ 1000 \ x_1 + \ 1200 \ x_2 \\ s. \ c. \ 10 \ x_1 + \ 5x_2 &\leq \ 200 \\ 2x_1 + \ 3x_2 &\leq \ 60 \\ x_1 &\leq \ 34 \\ x_2 &\leq \ 14 \\ x_1, x_2 &\geq \ 0 \end{aligned} \qquad \begin{aligned} \operatorname{Ex} : \operatorname{Max} Z &= \ 1000 \ x_1 + \ 1200 \ x_2 \\ s. \ c. \ 10 \ x_1 + \ 5x_2 + e_1 &= \ 200 \\ 2x_1 + \ 3x_2 + e_2 &= \ 60 \\ x_1 + e_3 &= \ 34 \\ x_2 + e_4 &= \ 14 \\ x_1, x_2 &\geq \ 0 \end{aligned}$$

$$(n-m) = 0$$

$$n = 6$$
 et  $m = 4$ 

$$(6-4) = 2 \text{ variables} = 0$$

Variables hors base

Variables de base:

$$\sin x 1 = x 2 = 0$$
 alors  $e_1 = 200$   $e_2 = 60$   $e_3 = 34$   $e_4 = 14$ 

Étape A: tableau initial

| Coeff. da | ns Z             | 1000  | 1200  | 0     | 0              | 0              | 0              |                |
|-----------|------------------|-------|-------|-------|----------------|----------------|----------------|----------------|
| Base      |                  | $X_1$ | $X_2$ | $E_1$ | E <sub>2</sub> | E <sub>3</sub> | E <sub>4</sub> | b <sub>i</sub> |
| Coef. Z   | Var.base         |       |       |       |                |                |                |                |
| 0         | E <sub>1</sub>   | 10    | 5     | 1     | 0              | 0              | 0              | 200            |
| 0         | E <sub>2</sub>   | 2     | 3     | 0     | 1              | 0              | 0              | 60             |
| 0         | E <sub>3</sub>   | 1     | 0     | 0     | 0              | 1              | 0              | 34             |
| 0         | E <sub>4</sub>   | 0     | 1     | 0     | 0              | 0              | 1              | 14             |
|           | Z <sub>j</sub>   | 0     | 0     | 0     | 0              | 0              | 0              | 0              |
| $C_j$     | – z <sub>j</sub> | 1000  | 1200  | 0     | 0              | 0              | 0              |                |

Le tableau initial se construit de la manière suivante :

L'encadré bleu correspond aux coefficients des contraintes du (PL=).

L'encadré vert correspond aux  $z_i$  : c'est-à-dire les coefficients dans  $\times$   $a_i$  .

Exemple pour la colonne de  $X_1$  nommée  $(a_1)$ :

$$0 \times 10 + 0 \times 2 + 0 \times 1 + 0 \times 0 = 0$$

Les encadrés roses correspondent aux coefficients ( $C_j$ ) des variables dans la fonction objectif (Z).

L'encadré gris correspond à la valeur des variables de base.

L'encadré orange correspond à la valeur de Z, donc la valeur de la fonction objectif qui se calcule de la façon suivante :

$$0 \times 200 + 0 \times 60 + 0 \times 34 + 0 \times 14 = 0$$

#### Étape B: choix de la variable entrante (dans la base)

Maximum des  $C_i$  –  $z_i$  pour des problèmes de max.

Minimum des  $C_i$  –  $z_i$  pour des problèmes de min.

Dans notre exemple :  $x_2$  a le plus grand  $C_i - z_i$  donc, il entre dans la base.

#### Étape C: choix de la variable sortante

Dans un problème de min <u>OU</u> de max, la variable sortante sera le minimum des

$$\left. \frac{b_i}{a_{ik}} \right| a_{ik} > 0$$

Dans notre exemple, nous devons évaluer :

Var. entrante

| Coeff   | . dans Z                      | 1000  | 1200  | 0     | 0     | 0     | 0     |       |
|---------|-------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Base    |                               | $X_1$ | $X_2$ | $E_1$ | $E_2$ | $E_3$ | $E_4$ | $b_i$ |
| Coef. Z | Var.base                      |       |       |       |       |       |       |       |
| 0       | $E_1$                         | 10    | 5     | 1     | 0     | 0     | 0     | 200   |
| 0       | $E_2$                         | 2     | 3     | 0     | 1     | 0     | 0     | 60    |
| 0       | $E_3$                         | 1     | 0     | 0     | 0     | 1     | 0     | 34    |
| 0       | $E_4$                         | 0     | 1     | 0     | 0     | 0     | 1     | 14    |
|         | $Z_j$                         | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| C       | <sub>j</sub> – z <sub>j</sub> | 1000  | 1200  | 0     | 0     | 0     | 0     |       |

<mark>200</mark>/5 = 40

 $\frac{60}{3} = 20$ 

 $\frac{14}{1}$  = 14  $\rightarrow$  c'est le minimum, donc  $e_4$  est la variable qui sort de la base.

Étape D: pivotage

| Coeff   | . dans Z                      | 1000  | 1200  | 0     | 0     | 0     | 0     |         |
|---------|-------------------------------|-------|-------|-------|-------|-------|-------|---------|
| Base    |                               | $X_1$ | $X_2$ | $E_1$ | $E_2$ | $E_3$ | $E_4$ | $b_{i}$ |
| Coef. Z | Var.base                      |       |       |       |       |       |       |         |
| 0       | $E_1$                         | 10    | 5     | 1     | 0     | 0     | 0     | 200     |
| 0       | $E_2$                         | 2     | 3     | 0     | 1     | 0     | 0     | 60      |
| 0       | $E_3$                         | 1     | 0     | 0     | 0     | 1     | 0     | 34      |
| 0       | $E_4$                         | 0     | 1     | 0     | 0     | 0     | 1     | 14      |
|         | Zj                            | 0     | 0     | 0     | 0     | 0     | 0     | 0       |
| C       | <sub>j</sub> — Z <sub>j</sub> | 1000  | 1200  | 0     | 0     | 0     | 0     |         |

La cellule bleue est nommée le pivot. Pour passer au tableau suivant et donc effectuer la première itération, il est essentiel d'utiliser le pivot.

Le pivotage s'effectue de la manière suivante :

On commence par diviser la ligne du pivot par le chiffre du pivot.

Dans notre exemple, on divise par 1.

| Coeff          | Coeff. dans Z    |       | 1200           | 0     | 0     | 0     | 0     |       |
|----------------|------------------|-------|----------------|-------|-------|-------|-------|-------|
| Base           |                  | $X_1$ | X <sub>2</sub> | $E_1$ | $E_2$ | $E_3$ | $E_4$ | $b_i$ |
| Coef. Z        | Var.base         |       |                |       |       |       |       |       |
| 0              | $E_1$            |       |                |       |       |       |       |       |
| 0              | $E_2$            |       |                |       |       |       |       |       |
| 0              | E <sub>3</sub>   |       |                |       |       |       |       |       |
| 1200           | $X_2$            | 0     | 1              | 0     | 0     | 0     | 1     | 14    |
|                | Zj               | 0     | 0              | 0     | 0     | 0     | 0     | 0     |
| C <sub>j</sub> | – z <sub>j</sub> | 1000  | 1200           | 0     | 0     | 0     | 0     |       |

Nous poursuivons avec la matrice identité pour les variables de base. Nous inscrivons 1 à l'intersection de chaque variable et 0 ailleurs.

| Coeff   | . dans Z         | 1000  | 1200  | 0     | 0     | 0     | 0     |       |
|---------|------------------|-------|-------|-------|-------|-------|-------|-------|
| Base    |                  | $X_1$ | $X_2$ | $E_1$ | $E_2$ | $E_3$ | $E_4$ | $b_i$ |
| Coef. Z | Var.base         |       |       |       |       |       |       |       |
| 0       | $E_1$            |       | 0     | 1     | 0     | 0     |       |       |
| 0       | $E_2$            |       | 0     | 0     | 1     | 0     |       |       |
| 0       | E <sub>3</sub>   |       | 0     | 0     | 0     | 1     |       |       |
| 1200    | $X_2$            | 0     | 1     | 0     | 0     | 0     | 1     | 14    |
|         | Zj               | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| $C_j$   | – z <sub>j</sub> | 1000  | 1200  | 0     | 0     | 0     | 0     |       |

Nous devons calculer les nouvelles valeurs pour les cases restantes à partir du tableau précédent (tableau initial pour la première itération).

| Coeff.<br>Base | . dans Z       | 1000<br>X <sub>1</sub> | 1200<br>X <sub>2</sub> | 0<br>E <sub>1</sub> | 0<br>E <sub>2</sub> | 0<br>E <sub>3</sub> | 0<br>E <sub>4</sub> | b <sub>i</sub> |
|----------------|----------------|------------------------|------------------------|---------------------|---------------------|---------------------|---------------------|----------------|
|                | Var.base       | Λ1                     | Λ <sub>2</sub>         | <b>-</b> 1          | <b>L</b> 2          | <b>L</b> 3          | <b>L</b> 4          | O <sub>I</sub> |
| 0              | $E_1$          |                        | 0                      | 1                   | 0                   | 0                   |                     |                |
| 0              | E <sub>2</sub> |                        | 0                      | 0                   | 1                   | 0                   |                     |                |
| 0              | $E_3$          |                        | 0                      | 0                   | 0                   | 1                   |                     |                |
| 1200           | $X_2$          | 0                      | 1                      | 0                   | 0                   | 0                   | 1                   | 14             |
| z <sub>j</sub> |                | 0                      | 0                      | 0                   | 0                   | 0                   | 0                   | 0              |
| $C_j$          | $C_j - z_j$    |                        | 1200                   | 0                   | 0                   | 0                   | 0                   |                |

#### Tableau initial:

| Coeff   | dans Z                        | 1000  | 1200  | 0     | 0     | 0     | 0     |         |
|---------|-------------------------------|-------|-------|-------|-------|-------|-------|---------|
| Base    |                               | $X_1$ | $X_2$ | $E_1$ | $E_2$ | $E_3$ | $E_4$ | $b_{i}$ |
| Coef. Z | Var.base                      |       |       |       |       |       |       |         |
| 0       | $E_1$                         | 10    | 5     | 1     | 0     | 0     | 0     | 200     |
| 0       | $E_2$                         | 2     | 3     | 0     | 1     | 0     | 0     | 60      |
| 0       | $E_3$                         | 1     | 0     | 0     | 0     | 1     | 0     | 34      |
| 0       | $E_4$                         | 0     | 1     | 0     | 0     | 0     | 1     | 14      |
|         | Zj                            | 0     | 0     | 0     | 0     | 0     | 0     | 0       |
| C       | <sub>j</sub> – z <sub>j</sub> | 1000  | 1200  | 0     | 0     | 0     | 0     |         |

Dans notre exemple, le 10 contenu dans l'encadré rouge provient de la formule suivante :

$$10-\frac{\acute{e} l \acute{e} ment \ de \ la \ ligne \ du \ pivot * \acute{e} l \acute{e} ment \ de \ la \ colonne \ du \ pivot}{pivot}$$

donc 
$$10 - \frac{0*5}{1} = 10$$
.

Faisons un autre exemple avec l'encadré vert. Nous obtenons -3 de la façon suivante:

$$0 - \frac{3*1}{1} = -3$$

| Coeff.<br>Base | . dans Z                | 1000<br>X <sub>1</sub> | 1200<br>X <sub>2</sub> | 0<br>E <sub>1</sub> | 0<br>E <sub>2</sub> | 0<br>E <sub>3</sub> | 0<br>E <sub>4</sub> | b <sub>i</sub> |
|----------------|-------------------------|------------------------|------------------------|---------------------|---------------------|---------------------|---------------------|----------------|
|                | Var.base                | -                      |                        | -                   | -                   | J                   | ·                   | ·              |
| 0              | $E_1$                   | 10                     | 0                      | 1                   | 0                   | 0                   | -5                  |                |
| 0              | $E_2$                   | 2                      | 0                      | 0                   | 1                   | 0                   | -3                  |                |
| 0              | $E_3$                   | 1                      | 0                      | 0                   | 0                   | 1                   | 0                   |                |
| 1200           | $X_2$                   | 0                      | 1                      | 0                   | 0                   | 0                   | 1                   | 14             |
| Z <sub>j</sub> |                         | 0                      | 0                      | 0                   | 0                   | 0                   | 0                   | 0              |
| C <sub>j</sub> | <b>–</b> z <sub>j</sub> | 1000                   | 1200                   | 0                   | 0                   | 0                   | 0                   |                |

Les cases restantes se calculent de la même façon. Lorsque le tableau est rempli (comme ci-dessus), il est possible de passer à la deuxième itération qui s'effectue de la même façon.

## 6. Le critère d'arrêt

Nous arrêtons lorsque nous obtenons le critère d'optimalité. L'algorithme du simplexe s'arrête lorsque:

- $C_j z_j \le 0$  pour un problème de max  $C_j z_j \ge 0$  pour un problème de min