- 1. 设 X_1, \dots, X_n 为来自总体 X 的 IID 样本,n 个正常数 α_i 满足 $\sum_{i=1}^n \alpha_i = 1$,试证: 在 EX 的所有形如 $\sum_{i=1}^n \alpha_i X_i$ 的无偏估计中,以 \overline{X} 为最优(最优的标准为方差最小)。
- 2. 设 X_1, \dots, X_n 为来自总体分布

$$f(x,\alpha) = \begin{cases} (\alpha+1)x^{\alpha}, 0 < x < 1 \\ 0, 其他 \end{cases}$$

的样本,试求 α 的矩估计和极大似然估计。

3. 设 X_1, \dots, X_n 为来自总体 $N(\mu, \sigma^2)$ 的 IID 样本,求满足

$$P\{X > a\} = \int_{a}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} dx = 0.05$$

的点 a 的极大似然估计。

4. 设 X_1, \dots, X_n 为来自密度函数为

$$f(x,\theta) = \begin{cases} e^{-(x-\theta)}, x > \theta \\ 0, 其他 \end{cases}$$

的总体的简单随机样本,

- (1) 求 θ 的矩估计 $\hat{\theta}_{ME}$;
- (2) 求 $_{\theta}$ 的极大似然估计 $\hat{\theta}_{\scriptscriptstyle MLE}$ 。
- 5. 设 X_1, \dots, X_n 为来自双指数分布

$$f(x; \mu, \lambda) = \begin{cases} \frac{1}{\lambda} e^{-(x-\mu)/\lambda}, & x \ge \mu, \lambda > 0 \\ 0, 其他 \end{cases}$$

的样本,试求 μ,λ 的极大似然估计。

6. 设 x_1, \dots, x_n 为来自 PDF 为

$$X \sim \begin{pmatrix} -1 & 0 & 2 \\ 2\theta & \theta & 1 - 3\theta \end{pmatrix}$$

的总体的样本观测值,其中 $0<\theta<1/3$,试求参数 θ 的 MLE。

- 7. 设总体 X 服从区间 $(0,\theta)$ 上的均匀分布, X_1,\dots,X_n 是其样本,
- (1) 证明 $\hat{\theta}_1 = 2\bar{X}$ 和 $\hat{\theta}_2 = \frac{n+1}{n} \max_{1 \le i \le n} \{X_i\}$ 均为参数 θ 的无偏估计;
- (2) 比较 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 哪一个更有效?
- 8. 设总体 $X \sim Exp(1/\theta)$, X_1, \dots, X_n 是样本,试证 \bar{X} 和 $nX_{(1)}$ 都是 θ 的无偏估计量,并比较其有效性。
- 9. 设总体为 $X \sim P(\lambda)$, X_1, \dots, X_n 是样本, 试求 λ^2 的无偏估计。
- 10. 设 X_1, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,对 σ^2 考虑如下三个估计

$$\hat{\sigma}_{1}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}, \quad \hat{\sigma}_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}, \quad \hat{\sigma}_{3}^{2} = \frac{1}{n+1} \sum_{i=1}^{n} \left(X_{i} - \overline{X} \right)^{2}$$

- (1) 哪一个是 σ^2 的无偏估计?
- (2) 哪一个均方误差最小?