Istituzioni di Geometria 2023/2024

Francesco Minnocci

17 giugno 2024

Quarta Consegna

Esercizio 10.1 Considera lo spazio iperbolico nel modello del semispazio:

$$H^n = \{x \in \mathbb{R}^n \mid x_n > 0\}, \quad g(x) = \frac{1}{x_n^2} g_E(x)$$

dove g_E è il tensore euclideo. Mostra che le mappe seguenti sono isometrie per la varietà riemanniana H^n :

- f(x) = x + b, con $b = (b_1, \dots, b_{n-1}, 0)$;
- $f(x) = \lambda x \operatorname{con} \lambda > 0$.

Deduci che il gruppo di isometrie $\text{Isom}(H^n)$ di H^n agisce transitivamente sulla varietà riemanniana H^n .

Dimostrazione. Sia $x \in H^n$ e $v, w \in T_xH^n$. Allora

$$\langle v, w \rangle_x = \frac{1}{x_-^2} \langle v, w \rangle_E$$

dove $\langle \cdot, \cdot \rangle_E$ è il prodotto scalare euclideo. Consideriamo la mappa f(x) = x + b; poichè $df_x(v) = v$ per ogni $v \in T_x H^n$, abbiamo

$$\langle df_x(v), df_x(w) \rangle_{f(x)} = \langle v, w \rangle_{x+b} = \frac{1}{x_n^2} \langle v, w \rangle_E$$

per ogni $v, w \in T_xH^n$. Dunque f è un'isometria.

Presa invece la mappa $h(x)=\lambda x$ con $\lambda>0,$ si ha $dh_x=\lambda\operatorname{id}_{T_xH^n},$ dunque

$$\langle dh_x(v), dh_x(w) \rangle_{h(x)} = \langle \lambda v, \lambda w \rangle_{\lambda x} = \frac{1}{(\lambda x_n)^2} \langle \lambda v, \lambda w \rangle_E = \frac{1}{x_n^2} \langle v, w \rangle_E$$

per ogni $v,w\in T_xH^n$ per bilinearità del prodotto scalare. Quindi anche f è un'isometria.

Infine, presi $x, y \in H^n$, esiste $\lambda > 0$ tale che $y_n = \lambda x_n$ (ovvero $\lambda = \frac{y_n}{x_n}$). Allora, posto

$$b = (y_1 - \lambda x_1, \dots, y_{n-1} - \lambda x_{n-1}, 0),$$

l'isometria

$$y = \lambda x + b$$

manda x in y, per cui il gruppo $Isom(H^n)$ agisce transitivamente su H^n .

Esercizio 10.2 Considera il piano iperbolico nel modello del semipiano:

$$H^2 = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}, \quad g = \frac{1}{y^2} g_E$$

Calcola l'area del dominio

$$[-a,a] \times [b,\infty)$$

per ogni a, b > 0. L'area è ovviamente quella indotta dalla forma volume della varietà riemanniana H^2 .

Dimostrazione. La forma volume indotta dalla metrica g sul piano iperbolico è

$$\omega = \frac{1}{y^2} \, dx \wedge dy.$$

L'area di $A := [-a, a] \times [b, \infty)$ è quindi

$$\int_A \omega = \int_A \frac{1}{y^2} \, dx \wedge dy \int_b^\infty \int_{-a}^a \frac{1}{y^2} \, dx \, dy = 2a \cdot \int_b^\infty \frac{1}{y^2} \, dy = 2a \left[-\frac{1}{y} \right]_b^\infty = \frac{2a}{b}.$$

Esercizio 10.7 Sia G un gruppo di Lie. Mostra che esiste sempre una metrica riemanniana su G invariante a sinistra, cioè tale che $L_g: G \to G$ sia un'isometria per ogni $g \in G$.

Dimostrazione. Sia n la dimensione di G. Possiamo identificare $\mathfrak{g} = T_e G$ con \mathbb{R}^n fissandone una base, ed usare la metrica euclidea standard su \mathbb{R}^n per definire un prodotto scalare $\langle \cdot, \cdot \rangle_e$ su $T_e G$.

Se poi $g \in G$ e $v, w \in T_gG$, possiamo estendere il prodotto scalare definito su T_eG per traslazione, cioè ponendo

$$\langle v, w \rangle_g = \langle (dL_{g^{-1}})_g(v), (dL_{g^{-1}})_g(w) \rangle_e$$

Per costruzione, $\langle \cdot, \cdot \rangle_g$ è invariante a sinistra:

$$\langle (dL_q)_h(v), (dL_q)_h(w) \rangle_{qh} = \langle v, w \rangle_h$$

per ogni $g, h \in G$ e $v, w \in T_hG$.

Esercizio 11.2 Scrivi la metrica euclidea g su $\mathbb{R}^2 \setminus \{0\}$ usando le coordinate polari (θ, ρ) e determina i simboli di Christoffel della connessione di Levi-Civita rispetto a queste variabili θ, ρ .

Dimostrazione. La matrice Jacobiana del cambio di coordinate $(x,y) \mapsto (\rho \cos \theta, \rho \sin \theta)$ è

$$\begin{pmatrix} -\rho \sin \theta & \cos \theta \\ \rho \cos \theta & \sin \theta \end{pmatrix}$$

Quindi, otteniamo la metrica euclidea in coordinate polari:

$$g_{\theta\theta} = \frac{\partial x}{\partial \theta} \cdot \frac{\partial x}{\partial \theta} + \frac{\partial y}{\partial \theta} \cdot \frac{\partial y}{\partial \theta} = \rho^2, \quad g_{\rho\rho} = \frac{\partial x}{\partial \rho} \cdot \frac{\partial x}{\partial \rho} + \frac{\partial y}{\partial \rho} \cdot \frac{\partial y}{\partial \rho} = 1,$$

e $g_{\theta\rho}=g_{\rho\theta}=\frac{\partial x}{\partial \theta}\cdot\frac{\partial x}{\partial \rho}+\frac{\partial y}{\partial \theta}\cdot\frac{\partial y}{\partial \rho}=0$. Deduciamo che $g^{\theta\theta}=\frac{1}{\rho^2},\ g^{\rho\rho}=1$ e $g^{\theta\rho}=g^{\rho\theta}=0$. Per calcolare i simboli di Christoffel usiamo la formula per la connessione di Levi-Civita

$$\Gamma_{ij}^{l} = \frac{1}{2}g^{kl}\left(\frac{\partial g_{jk}}{\partial x^{i}} + \frac{\partial g_{ki}}{\partial x^{j}} - \frac{\partial g_{ij}}{\partial x^{k}}\right),\,$$

e per simmetria di tale connessione ci basta calcolare

$$\begin{cases} \Gamma^{\theta}_{\theta\theta} = \frac{1}{2}g^{\theta\theta}\frac{\partial g_{\theta\theta}}{\partial \theta} = 0, \\ \Gamma^{\theta}_{\rho\rho} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{\rho\rho}}{\partial \theta} = 0, \\ \Gamma^{\theta}_{\rho\theta} = \frac{1}{2}g^{\theta\theta}\frac{\partial g_{\theta\theta}}{\partial \rho} = \frac{1}{\rho}, \\ \Gamma^{\theta}_{\theta\theta} = \frac{1}{2}g^{\rho\rho}\frac{\partial g_{\theta\theta}}{\partial \rho} = -\rho, \\ \Gamma^{\rho}_{\rho\rho} = \frac{1}{2}g^{\rho\rho}\frac{\partial g_{\rho\rho}}{\partial \rho} = 0, \\ \Gamma^{\theta}_{\rho\rho} = \frac{1}{2}g^{\rho\rho}\frac{\partial g_{\rho\rho}}{\partial \rho} = 0. \end{cases}$$

Esercizio 11.4 Consideriamo la connessione ∇ su \mathbb{R}^3 con simboli di Christoffel

$$\begin{split} \Gamma^3_{12} &= \Gamma^1_{23} = \Gamma^2_{31} = 1, \\ \Gamma^3_{21} &= \Gamma^1_{32} = \Gamma^2_{13} = -1, \end{split}$$

e tutti gli altri simboli di Christoffel nulli. Mostra che questa connessione è compatibile con il tensore metrico euclideo g, ma non è simmetrica. Quali sono le geodetiche?

Dimostrazione. Per la Proposizione 9.3.5 delle dispense, ∇ è compatibile con g se e solo se

$$\frac{\partial g_{ij}}{\partial x^k} = \Gamma^l_{ki} g_{lj} + \Gamma^l_{kj} g_{li}.$$

Poiché g è il tensore metrico euclideo, $g_{ij} = \delta_{ij}$, e quindi la condizione di compatibilità diventa

$$0 = \Gamma_{ki}^j g_{jj} + \Gamma_{kj}^i g_{ii} = \Gamma_{ki}^j + \Gamma_{kj}^i.$$

D'altronde, se i,j,k non sono tutti distinti allora $\Gamma^j_{ki}=\Gamma^i_{kj}=0$ per ipotesi, mentre se lo sono allora $\Gamma^j_{ki}=-\Gamma^i_{kj}$. Dunque ∇ è compatibile con g.

Inoltre ∇ non è simmetrica perché $\Gamma_{12}^3 \neq \Gamma_{21}^3$.

Infine, se x(t) è la geodetica massimale passante per x_0 in direzione v, allora x(t) risolve

$$\begin{cases} x(0) = x_0, \\ \dot{x}(t) = v, \\ \frac{\partial^2 x^k}{\partial t^2} + \frac{\partial x^i}{\partial t} \frac{\partial x^j}{\partial t} \Gamma^k_{ij} = 0 \end{cases}$$

per k=1,2,3. Visto che $\Gamma^1_{23}=-\Gamma^1_{32},\,\Gamma^2_{31}=-\Gamma^2_{13}$ e $\Gamma^3_{12}=-\Gamma^3_{21},$ questo implica

$$\frac{\partial^2 x^1}{\partial t^2} = \frac{\partial^2 x^2}{\partial t^2} = \frac{\partial^2 x^3}{\partial t^2} = 0,$$

e quindi $x(t) = x_0 + tv$. In conclusione, le geodetiche sono tutte e solo le rette.

Esercizio 11.6 Consideriamo il modello dell'iperboloide $I^n \subset \mathbb{R}^{n,1}$ dello spazio iperbolico. Mostra che per ogni $p, q \in I^n$ vale l'uguaglianza

$$\cosh d(p,q) = -\langle p,q \rangle.$$

Dimostrazione. Sappiamo che in I^n le geodetiche massimali passanti per $p \in I^n$ in direzione $v \in T_p I^n$ con velocità c > 0 sono della forma

$$\gamma(t) = \cosh(ct) \cdot p + \sinh(ct) \cdot v.$$

Se γ è una tale geodetica che parte da p e arriva in q a tempo t=1, allora $d(p,q)=L(\gamma)=c$. Quindi, calcolando $\gamma(1)$ otteniamo

$$v = \frac{q - \cosh(c) \cdot p}{\sinh(c)},$$

e visto che $\langle x, x \rangle = -1$ per ogni $x \in I^n$, otteniamo

$$1 = \langle v, v \rangle = \frac{\langle q, q \rangle - 2 \cosh(c) \langle p, q \rangle + \cosh^2(c) \langle p, p \rangle}{\sinh^2(c)} = -1 - 2 \cosh(c) \langle p, q \rangle - \cosh^2(c),$$

da cui

$$\cosh(d(p,q)) = \cosh(c) = -\langle p, q \rangle$$

come volevamo. \Box

Esercizio 12.3 Mostra che una varietà riemanniana omogenea è sempre completa.

Dimostrazione. Sia M una varietà riemanniana omogenea e $p \in M$. Poiché M è omogenea, per ogni altro punto $q \in M$ esiste un isometria f che manda p in q.

Per Hopf-Rinow, vogliamo mostrare che M è geodeticamente completa. Sia $\gamma:I\to M$ una geodetica massimale con $\gamma(0)=p$, e senza perdità di generalità supponiamo che sup $I<+\infty$. Allora, visto che le isometrie mandano geodetiche in geodetiche $f\circ\gamma$ è una geodetica massimale definita su I con $(f\circ\gamma)(0)=q$. Per ogni r>0, prendendo $q=\gamma(r)$ abbiamo che $\gamma\cap(f\circ\gamma)\neq\emptyset$, e quindi per unicità delle geodetiche siamo riusciti ad estendere γ , contraddicendo la massimalità di γ .

Esercizio 12.5 Sia $f: M \to N$ una isometria locale tra varietà riemanniane connesse che è anche un rivestimento. Mostra che M è completa $\iff N$ è completa.

Dimostrazione. Supponiamo che M sia completa. Essendo f in particolare suriettiva, dati $p \in N$ e $v \in T_pN$ troviamo $q \in M$ e $w \in T_qM$ tali che f(q) = p e $df_q(w) = v$. Poiché M è completa, esiste una geodetica $\gamma : \mathbb{R} \to M$ con $\gamma(0) = q$ e $\dot{\gamma}(0) = w$. Allora visto che f è un'isometria locale, $f \circ \gamma$ è una geodetica di N con $f \circ \gamma(0) = p$ e $(f \circ \gamma)(0) = v$ definita su tutto \mathbb{R} , per cui N è completa.

Viceversa, data una geodetica γ in N, visto che f è sia un rivestimento che un isometria locale essa si solleva a una geodetica $\tilde{\gamma}$ in M tale che $f \circ \tilde{\gamma} = \gamma$. Poiché N è completa, γ è definita su tutto \mathbb{R} , e quindi $\tilde{\gamma}$ è definita su tutto \mathbb{R} per cui M è completa.

Esercizio 12.6 Mostra che una varietà riemanniana completa e isotropa in ogni suo punto è anche omogenea.

Dimostrazione. Vogliamo mostrare che per ogni $p, q \in M$ esiste un'isometria f tale che f(p) = q.

Per la proposizione 10.3.2, esiste una geodetica minimizzante $\gamma_v:[0,2]\to M$ per qualche $v\in T_pM$ con $\gamma_v(0)=p$ e $\gamma_v(2)=q$. Poiché M è isotropa in ogni punto, esiste un'isometria φ tale che

$$\varphi(\gamma_v(1)) = \gamma_v(1), \quad d\varphi_{\gamma_v(1)}(\dot{\gamma_v}(1)) = -\dot{\gamma_v}(1).$$

Allora,

$$\varphi(q) = \varphi(\gamma_v(2)) = \varphi(\gamma_{\gamma_v(1)}(1)) = \gamma_{d\varphi_{\gamma_v(1)}(\dot{\gamma_v}(1))}(1) = \gamma_{-\dot{\gamma_v}(1)}(1) = \gamma_v(0) = p,$$

dove abbiamo usato il fatto che la connessione di Levi-Civita commuta con le isometrie. Quindi, φ^{-1} è l'isometria cercata.