Procesamiento de Lenguaje Natural:

¿Cómo entienden las computadoras el lenguaje humano?

Mauricio Toledo-Acosta mauricio.toledo@unison.mx

Departamento de Matemáticas Universidad de Sonora

Introducción

¿Qué es el Procesamiento de Lenguaje Natural?

El **Procesamiento de Lenguaje Natural (PLN)** es un campo interdisciplinario que combina:

- Ciencias de la computación
- Lingüística computacional
- Aprendizaje automático e Inteligencia artificial

Objetivo: Permitir que las computadoras comprendan, interpreten y generen lenguaje humano de manera útil.

Introducción

Un **lenguaje natural** es cualquier lenguaje que surge espontáneamente en una comunidad humana a través del uso, la repetición y el cambio.

Características principales:

- Evoluciona naturalmente (no es diseñado) ...
- Se distingue de lenguajes formales (programación, lógica)
- Es inherentemente ambiguo y contextual

Niveles de Análisis en PLN

El análisis del lenguaje natural ocurre en múltiples niveles:

- Fonético/Fonológico: Sonidos del habla
- Morfológico: Estructura de las palabras
- Léxico: Vocabulario y significado de palabras
- **Sintáctico**: Estructura gramatical de oraciones (*Mi niñas duerme tranquilo*)
- Semántico: Significado de oraciones y textos (Incoloras ideas verdes duermen furiosamente)
- Pragmático: Uso del lenguaje en contexto
- Discursivo: Coherencia entre oraciones y párrafos

Principales Desafíos del PLN

¿Por qué es difícil procesar el lenguaje natural?

- Ambigüedad: Una palabra puede tener múltiples significados
 - Banco (institución financiera vs. asiento)
 - Vi al niño con los binoculares (¿quién tiene los binoculares?)
- Variabilidad: Dialectos, jerga, estilos personales
- Contexto: El significado depende de la situación
- Implicitación: Mucha información queda sobreentendida

Principales Desafíos del PLN

- Correferencia: ¿A qué se refieren los pronombres?
 - "María le dio un libro a Ana. Ella lo leyó rápidamente."
- Lenguaje figurado: Ironía, sarcasmo, metáforas
- Ruido: Errores tipográficos, gramaticales
- Multilingüismo: Textos en varios idiomas
- Evolución constante: Nuevas palabras, expresiones

Principales Tareas del PLN

Tareas de comprensión:

- Análisis de sentimientos y clasificación
- Modelado de tópicos
- Identificación de autoría
- Extracción de información
- Reconocimiento de Entidades Nombradas (NER)

Tareas de generación

- Traducción automática
- Generación de texto
- Resumen automático
- Paráfrasis

Principales Tareas del PLN

Tareas de comprensión:

- Análisis de sentimientos y clasificación
- Modelado de tópicos
- Identificación de autoría
- Extracción de información
- Reconocimiento de Entidades Nombradas (NER)

Tareas de generación:

- Traducción automática
- Generación de texto
- Resumen automático
- Paráfrasis

Enfoques y Soluciones

La complejidad de la solución depende de la tarea:

- Enfoques basados en reglas: Expresiones regulares, reglas gramaticales
- Métodos estadísticos: N-gramas, modelos probabilísticos
- Aprendizaje automático: SVM, árboles de decisión
- **Deep Learning**: Redes neuronales, transformers
- Large Language Models: Claude, GPT, LLaMA, BERT, etc.

Usar la herramienta adecuada para cada problema.

Aplicaciones del PLN en el Mundo Real

Vida cotidiana:

- Asistentes virtuales
- Traducciones automáticas
- Corrección ortográfica
- Búsquedas web

Industria:

- Análisis de redes sociales
- Atención al cliente automatizada
- Análisis de documentos legales
- Investigación biomédica

El PLN en la actualidad

Ejemplos de PLN: Llenado de formas

Name f	orm		
* Required			
Email *			
Cannot pre-fill ema			
Name			
Your answer			

			= • v
=	Contacts		Q :
•	Name		
٢	Phone	Area	▼
9	Address		
	City		
	State +	Zip	
\succeq	Email		
<u></u>	Birthday		

Ejemplos de PLN: Llenado de formas

Name form
Email * Cannot pre-fill email
Name Your answer
Get link

		■•▼
=	Contacts	Q :
•	Name	
۴,	Phone	Area ▼
0	Address	
	City	
	State ▼ Zij	р
\sim	Email	
≐	Birthday	

Retos: Mayúsculas/mínusculas, caracteres invalidos, fórmatos.

Ejemplos de PLN: Busquedas

Ejemplos de busqueda: Búsqueda 1, Búsqueda 2, Búsqueda 3

Retos: Mayúsculas/mínusculas, sintaxis, typos, caracteres invalidos, semántica etc.

BERT en las busquedas

Ejemplos de PLN: Large Language Models

Los LLMs son modelos de lenguaje entrenados en grandes cantidades de documentos para comprender y generar lenguaje humano de manera coherente. Estos modelos pueden realizar múltiples tareas sin entrenamiento específico adicional: mantener conversaciones, responder preguntas, traducir entre idiomas, resumir documentos y asistir en tareas de análisis textual.

Su principal fortaleza radica en su capacidad de generalización: pueden adaptarse a contextos diversos y generar respuestas apropiadas incluso ante situaciones que no encontraron explícitamente durante su entrenamiento.

4 D > 4 B > 4 B > 4 B > 9 C

Benchmarks comparativos de LLMs (2024)

- Examen SAT (Reading/Writing): GPT-4: 1410/1600 (94%) (OpenAI, 2023)
- USMLE (Medicina):
 - GPT-4: 75% correctas (Gilson et al., 2023)
 - Med-PaLM 2 (Gemini): 86.5% (Google, 2023)
- MBE (Examen de Barra Multiestatal): Claude 3 Opus: 85% (0-shot CoT) (Tabla 2, Anthropic, 2024)
- MMLU (Multitarea):
 - Gemini 1.5 Pro: 91.1% (Google, 2024)
 - Llama 3 70B: 82.0% (Meta, 2024)

Fuentes adicionales: LMArena.

Alucinaciones y otros problemas

• Alucinaciones factuales:

- Acerca de si los dinosaurios construyeron una civilización: Some species of dinosaurs even developed primitive forms of art, such as engravings on stones. Corrección
- When did Leonardo da Vinci paint the Mona Lisa? *Leonardo* da Vinci painted the Mona Lisa in 1815. Corrección
- Puede inventar referencias: En este ejemplo un LLM da referencias sobre puntajes de modelos en pruebas médicas.
 - Claude 3 Opus: 76.5% (Katz et al., 2024)
 - GPT-4: 75% (Katz et al., 2023)

Alucinaciones y otros problemas

• Puede reproducir sesgos:

- Ante la misma enfermedad, es más probable que recomiende un trasplante de riñón a un hombre blanco que a una mujer negra.
- Ante la pregunta "¿Quién es mejor en matemáticas, un niño o una niña?", puede inclinarse por el niño (Sección 7.3, Anthropic, 2024)
- Respuestas inapropiadas: Gemini, Claude.

Tendencias en la investigación

Ver los últimos trabajos destacados presentados en la North American Chapter of the Association for Computational Linguistics.

Artículos publicados

¿Qué temáticas y tendencias observas?

Section 3

Temario

Temario

- Introducción:
 - Tareas del NI P
 - Expresiones regulares
- Métodos de modelado clásico de NLP
 - N-gramas.
 - Módelos BOW (1954), TF-IDF (1970s).
- Algoritmos Clásicos del NLP
 - Naive Bayes (late 1700s)
 - Latent Dirchlet Allocation (2000)
 - Latent Semantic Analysis (1988)

Temario

- Métodos de redes neuronales de NLP
 - Embeddings de tokens y documentos.
 - Redes recurrentes y LSTM.
 - Modelos Word2Vec (Google, 2013), Glove (Standford, 2014),
 FastText (FB, 2016), Doc2Vec (Google, 2014), WordRank (2016).
- Transformadores y LLM.
 - Arquitectura Transformers (2017): Attention is all you need.
 - BERT (Google, 2018), RoBERTa (FB, 2019), T5 (2020), LLaMA (Meta AI, 2022), GPT-4 (Open AI, 2023), Qwen3 (2025).
 - Afinación de modelos pre-entrenados.
 - Prompt Engineering, Few shot learning.
 - Retrieval Augmented Generation (RAG).
 - Optimización de Modelos: LoRA (Low-Rank Adaptation), Destilación, Cuantización, Bias evaluation.

Tareas a realizar

- Limpieza de texto y preprocesamiento.
- Análisis de Sentimientos y Clasificación.
- Modelaje de tópicos.
- Information Retrieval.

