# 1. Draw the architecture (DETR)

Input Image  $\rightarrow$  Backbone (ResNet-50)  $\rightarrow$  Image Features  $\rightarrow$  Transformer Encoder  $\rightarrow$  Transformer Decoder  $\rightarrow$  Detection Heads (Bounding Boxes & Labels)



Refer: https://github.com/anasch07/DETR-Object-Detection?tab=readme-ov-file



▲ Transformer (DETR)

## 2. Implement details

e.g.: augmentation, loss function, parameter settings

- Data Augmentation(預處理階段):
  - Resize: 將圖像調整為 1024x1024 的固定大小,確保模型接受一致的輸入 尺寸。
  - Horizontal Flip: 以 100% 的概率隨機進行水平翻轉,增加模型的 robust。
  - Random Brightness and Contrast: 隨機調整圖像的亮度和對比度,以增 強模型對不同光線條件的適應能力。

#### Loss Function

- Classification Loss: 使用交叉熵損失來計算物體類別的預測誤差。
- Bounding Box Loss: 使用 L1 損失來衡量預測邊界框與真實邊界框的差異。
- Parameter Settings (for training)
  - o Learning Rate: 設置為 1e-5。
  - o Batch Size: 設置為 8, 在 GPU 訓練中保持穩定的性能。
  - Number of Epochs: 總訓練輪數為 100, 確保模型有足夠的訓練時間以學習特徵。
  - o Weight Decay: 設置為 1e-3, 用於防止 overfit。
  - Gradient Accumulation: 設置為 2,允許在無法增加 batch 大小的情況下累積梯度。
  - o metric\_for\_best\_model, greater\_is\_better:根據 loss 越小做為較好的模型

#### Callbacks

- Early Stopping: 設 patience 為 5, 當驗證集的 loss 不再改善時提前終止訓練。
- o Model Checkpointing: 保存最佳兩模型的權重,以便後續評估。
- Specific Architecture Details
  - o Backbone: 使用 ResNet-50 作為特徵提取器, 提取圖像的底層特徵。
  - o Transformer: 包含多層 Encoder 和 Decoder,使用 multi-head self-attention 捕捉全局上下文資訊。
- Parameter Settings (for inference)
  - Threshold(後處理): 0.9, 模型卻認為框的分數要達到 0.9 才會被列入可用的框,減少錯誤框的機會。
  - iou\_threshold: 0.7, 要求預測框與實際框之間的重疊度達到 70% 及以上, 才算有效檢測。
- Experimental Setup
  - o NVIDIA RTX 4070 GPU 進行訓練

## 3. Table of your performance for validation set (mAP, AP50, AP75)

| mAP  | 0.4653 |
|------|--------|
| AP50 | 0.6898 |
| AP75 | 0.4935 |

### 4. Visualization and discussion

Demonstrate the detection results, discussion for the long tail effect, etc.



部分類別表現優異:有幾個類別的平均精準度接近或超過 80%,如 class 0(person)顯示模型對這些類別的識別能力很強。

部分類別表現較差: 有幾個類別的平均精準度較低, 甚至接近或等於 0%, 如 class2(Earmuffs) class4(Face-guard) class5 (Face-mask-medical) class6(Foot)等表示模型對這些類別的識別能力較弱。

此模型存在明顯的長尾現象:少數類別的樣本數量較多,模型對這些類別的學習效果較好;而大多數類別的樣本數量較少,模型對這些類別的學習效果較差。

### 可以改善的方法:

 數據增強: 對尾部類別的數據進行過採樣或數據增強, 增加模型對這些類別的 訓練樣本數量。

- 類別平衡: 在訓練過程中, 對不同類別的樣本賦予不同的權重, 以平衡不同類別對模型訓練的影響。
- One-Shot Learning 或 Few-Shot Learning: 對於極端不平衡的數據集,可以考慮使用 One-Shot Learning 或 Few-Shot Learning 技術,從少量樣本中學習。



可以得知從模型推測出來的框數量較少,這是因為在後處理時的 threshold 設較高的關係,從避免掉分數不高的框(判斷錯誤類別的框)以增加 mAP

| Threshold in                  | Threshold in IoU | mAP    |
|-------------------------------|------------------|--------|
| post_process_object_detection |                  |        |
| 0.4                           | 0.5              | 0.4012 |
| 0.5                           | 0.5              | 0.4154 |
| 0.6                           | 0.6              | 0.4348 |
| 0.6                           | 0.7              | 0.4434 |
| 0.7                           | 0.6              | 0.4474 |
| 0.7                           | 0.7              | 0.4519 |
| 0.9                           | 0.7              | 0.4653 |