

1/25/2025
Prepared by: Fatima
Larhrafi

Student Performance Analysis & Automation

SQL & Power BI project

Objective

The objective of this project is to analyse student performance data using **SQL** and **Power BI** to:

- Identify trends in academic performance and attendance.
- Provide actionable insights to improve student outcomes.
- Demonstrate the automation of data updates and reporting.

Key Deliverables

- Data Analysis:
 - Cleansed and prepared raw data using SQL.
 - Calculated key metrics such as success rates, attendance rates, and performance trends.

Power BI Dashboard:

- Created an interactive dashboard to visualize student performance and attendance data. Included KPIs such as:
 - Success Rate by Subject.
 - Attendance Rate by Status.
 - Diversity Metrics

• Automation suggestions:

- Set up a Power Automate flow to monitor changes in the SQL database and send email notifications.
- o Manually refreshed the Power BI dataset to reflect the latest data.

Tools Used

- **SQL Server**: For data cleansing, preparation, and analysis.
- **Power BI**: For data visualization and dashboard creation.
- Power Automate: For automating data updates and notifications.

Key Insights

- Success Rates:
 - ➤ Cyber Security has the lowest success rate (75%), while Data Science has the highest (90%).
- Attendance Trends:
 - ➤ 20% of students are frequently absent, impacting their academic performance.
- Recommendations:
 - > Implement targeted tutoring programs for Cyber Security.
 - ➤ Introduce attendance incentives to reduce absenteeism.

Students Performance Metrics

Average scores by subject, gender, and career aspiration.

01/10/2023 🛗 29/12/2023 🛗

subject_name	Average of score
Data Science	88.73
Mathematics for Computing	88.67
Introduction to Databases	86.71
Artificial Intelligence	86.13
Research Methods	83.60
Programming Fundamentals	83.43
Software Engineering	79.40
Advanced Algorithms	79.27
Database Systems	78.53
Cyber Security	74.93
Total	83.05

career_aspiration	Average of score
Software Engineer	86.90
Engineer	86.47
Scientist	86.06
Doctor	84.87
Accountant	84.70
Business Owner	83.40
Teacher	82.43
Writer	81.40
Lawyer	81.13
Total	92.05
Total	83.05

Average of score by subject_name

Pass/Fail Rates

By Subject, Students Pass/Fail Status

01/10/2023 🛗 29/12/2023 🛗

William K	King	Programming Fundamentals Programming Fundamentals	2023/24	100.00	Pass
	9	Programming Fundamentals	2022/24		
Ava V	Vright		2023/24	100.00	Pass
		Artificial Intelligence	2023/24	99.00	Pass
Frank N	Moore	Artificial Intelligence	2023/24	99.00	Pass
Ava V	Vright	Mathematics for Computing	2023/24	99.00	Pass
Frank N	Moore	Mathematics for Computing	2023/24	99.00	Pass
Ethan S	Scott	Artificial Intelligence	2023/24	98.00	Pass
Ivy T	Thomas	Artificial Intelligence	2023/24	98.00	Pass
Ethan S	Scott	Mathematics for Computing	2023/24	98.00	Pass
Ivy T	Thomas	Mathematics for Computing	2023/24	98.00	Pass
Ava V	Vright	Introduction to Databases	2023/24	97.00	Pass
Frank N	Moore	Introduction to Databases	2023/24	97.00	Pass
Ava V	Vright	Programming Fundamentals	2023/24	96.00	Pass
Total	10000	Draggaring Fundamentals	2022/24	06.00	Dagg

Average of score by Year and Month

Pass Rate

88.76%

Fail Rate

11.24%

Advanced Algorithms

Artificial Intelligence

☐ Cyber Security

☐ Data Science

Subject_name

☐ Database Systems

Dissertation

Introduction to Databases

☐ Mathematics for Computing

Programming Fundament...

Research Methods

Software Engineering

Total_Students_Scori...

178

Total_Passes

158

Total Failes

20

Attendance Rates

01/10/2023 🗂 05/11/2023 🗂

Absence Rate

20%

Presence Rate

63%

Late Rate

17%

Subject_name
☐ Advanced Algorithms

Artificial Intelligence	
-------------------------	--

Cyber	Secu	ırity

D:	
Dissertation	1

subject_name	Absence _Rate	Presence_ Rate	Late_ Rate	Average of score
Cyber Security		90%	10%	74.67
Artificial Intelligence	30%	70%		81.11
Data Science	30%	70%		90.80
Introduction to Databases	30%	70%		90.78
Mathematics for Computing		70%	30%	87.32
Software Engineering		70%	30%	77.50
Programming Fundamentals	40%	60%		88.38
Research Methods		60%	40%	81.67
Database Systems	30%	40%	30%	78.67
Total	20%	63%	17%	84.20

Data Model and relationships

SQL Server

1. Student Success Rates by Subject.

	aubiant	name	number nace	number fail	overall page rate	perfermance category
	,		number_pass	number_rail	overall_pass_rate	performance_category
1	Mathe	matics for Computing	19	2	86.36 %	Moderate Performance
2	Introdu	uction to Databases	19	2	86.36 %	Moderate Performance
3	Softwa	are Engineering	18	2	90.00 %	High Performance
4	Progra	mming Fundamentals	17	4	77.27 %	Moderate Performance
5	Databa	ase Systems	16	4	80.00 %	Moderate Performance
6	Cyber	Security	14	1	93.33 %	High Performance
7	Resea	rch Methods	14	1	93.33 %	High Performance
8	Advan	ced Algorithms	13	2	86.67 %	Moderate Performance
9	Artificia	al Intelligence	13	2	86.67 %	Moderate Performance

```
57
                              /****** 1.Student Success Rates by Subject *******/
 58
      --- cte_count_pass: Counts the number of students who passed (score >= 70) for each subject
 59 With cte_count_pass as (
 60
         Select
 61
               subject_id
                COUNT(*) as number_pass
 62
 63
         From [dbo].[Student_Scores]
 64
          Where score >= 70
 65
          Group by subject id
 66
 67
       --- cte_count_fail: Counts the number of students who failed (score < 70) for each subject
      cte_count_fail as (
 68
          Select
 69
 70
               subject_id
 71
               ,COUNT(*) as number_fail
 72
          From [dbo].[Student_Scores]
 73
         Where score < 70
 74
         Group by subject_id
 75
 76
      --- cte count all: Counts the total number of students for each subject
 77
 78
      cte_count_all as (
 79
          Select
 80
              subject_id
         ,COUNT(*) as all_count
From [dbo].[Student_Scores]
 81
 82
 83
          Group by subject_id
 84
     )
      --- Final Calculation and formatting
 85
 86
      Select
 87
            s.subject_name
            ,ss.number_pass
,cf.number_fail
 88
 89
           ,Format(ROUND(100.0 * ss.number_pass / cc.all_count, 2) , '0.00') +' %' as overall_pass_rate
 90
       , CASE
 91
              WHEN ROUND(100.0 * ss.number_pass / cc.all_count, 2) >= 90 THEN 'High Performance'
 92
              WHEN ROUND(100.0 * ss.number_pass / cc.all_count, 2) BETWEEN 70 AND 89 THEN 'Moderate Performance'
 93
 94
              ELSE 'Low Performance'
 95
          END AS performance_category
 96
      From cte_count_pass ss
      Left join cte_count_all cc
97
98
      On ss.subject_id = cc.subject_id
      Left join cte_count_fail cf
     On cf.subject_id = cc.subject_id
100
101
      Left join [dbo].[Subjects] s
102
      On s.subject_id = cf.subject_id
      Where s.subject_name is not null
103
104
      Order by ss.number_pass desc
105
              ,cf.number_fail
106
```

2. Underperforming students (Score <70)

	first_name	last_name	subject_name	score
1	Ava	Wright	Advanced Algorithms	64
2	Bob	Brown	Mathematics for Computing	65
3	Bob	Brown	Database Systems	68
4	Ethan	Scott	Software Engineering	67
5	Ethan	Scott	Programming Fundamentals	69
6	Eva	Wilson	Introduction to Databases	67
7	Frank	Moore	Advanced Algorithms	64
8	Grace	Taylor	Database Systems	63
9	Henry	Anderson	Programming Fundamentals	68
10	Isabella	Hill	Programming Fundamentals	68
11	lvy	Thomas	Software Engineering	67
12	lvy	Thomas	Programming Fundamentals	69
13	James	Hall	Cyber Security	63
14	James	Hall	Mathematics for Computing	65
15	James	Hall	Research Methods	66
16	James	Hall	Database Systems	68
17	Mason	Lopez	Database Systems	63
18	Olivia	Young	Artificial Intelligence	65
19	Sophia	Walker	Artificial Intelligence	65
20	William	King	Introduction to Databases	67

```
2 =
                           /******************* 5. Gap Analysis ***********************/
4 ---- Identify underperforming students (score < 70)
5 ⊡Select
6
               s.first_name
7
              ,s.last_name
8
              ,sb.subject_name
9
              ,ss.score
10
11 From
             [dbo].[Student_Scores] ss
12 Left join [dbo].[Students] s
13 On s.student_id = ss.s
              s.student_id = ss.student_id
    Left join [dbo].[Subjects] sb
14
             ss.subject_id = sb.subject_id
15 On
16
17 Where ss.score < 70
18 Order by s.first_name
19
            ,s.last_name
20
              ,ss.score asc
21
```

3. Retention Rate

	subject_name	number_of_students	retained_students	retention rates
1	Advanced Algorithms	15	15	100.00 %
2	Artificial Intelligence	15	15	100.00 %
3	Cyber Security	15	15	100.00 %
4	Data Science	15	15	100.00 %
5	Database Systems	20	20	100.00 %
6	Introduction to Dat	22	21	95.45 %
7	Mathematics for Co	22	21	95.45 %
8	Programming Fund	22	21	95.45 %
9	Research Methods	15	15	100.00 %
10	Software Engineering	20	20	100.00 %

```
- Analyze retention rates to see how many students are retained in each subject
- Analyze retention rate is a key metric in education that measures the percentage of students who continue their studies in a particular subject or program.

- CTE to count retained students (students with non-null scores)

Select

subject id
, COUNT(*) as 'retained_students'

- CTE to count total students per subject

ce all_students_count as (

Select

Select

Select

Occup by subject_id
, COUNT(*) as 'number_of_students'

From [dbo].[Student_Scores]

Group by subject_id

- Nain query to calculate retention rates

Select

Sel
```