Chapter 4

Exercise (2). If x is an odd integer, then x^3 is odd.

Proof. Suppose x is an odd integer. Then by definition of an odd integer, x = 2k+1 for some $k \in \mathbb{Z}$. Therefore $x^3 = (2k+1)(2k+1)(2k+1) = (4k^2+4k+1)(2k+1) = 8k^3+12k^2+6k+1 = 2(4k^3+6k^2+3k)+1=2n+1$, where $n=(4k^3+6k^2+3k)$. Note that n is an integer due to the closure properties under addition and multiplication in the integers. So $x^3 = 2n+1$, where n is an integer. Thus x^3 is odd by definition of an odd number.

Exercise (4). Suppose $x, y \in \mathbb{Z}$. If x and y are odd, then xy is odd.

Proof. Suppose x and y are odd integers. Then x = 2m + 1 for some $m \in \mathbb{Z}$ and y = 2n + 1 for some $n \in \mathbb{Z}$ by definition of odd. Therefore xy = (2m+1)(2n+1) = 4mn+2m+2n+1 = 2(2mn+m+n)+1 = 2p+1, where p = (2mn+m+n). Note that p is an integer due to the closure properties under addition and multiplication in the integers. So xy = 2p+1, where p is an integer. Thus xy is odd by definition of an odd number.

Exercise (6). Suppose $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.

Proof. Suppose $a \mid b$ and $a \mid c$ and $a, b, c \in \mathbb{Z}$. By definition of divisibility, we know that $a \mid b$ means b = ak for some $k \in \mathbb{Z}$. Likewise $a \mid c$ means c = al for some $l \in \mathbb{Z}$. Therefore (b+c) = ak + al = a(k+l) = am, where m = k+l. Note that m is an integer due to the closure properties under addition and multiplication in the integers. So (b+c) = am where m is an integer. Thus $a \mid (b+c)$ by definition of divisibility.

Exercise (11). Suppose $a, b, c, d \in \mathbb{Z}$. If $a \mid b$ and $c \mid d$, then $ac \mid bd$.

Proof. Suppose $a \mid b$ and $c \mid d$ and $a, b, c \in \mathbb{Z}$. By definition of divisibility, we know that $a \mid b$ means b = ak for some $k \in \mathbb{Z}$. Likewise we know that $c \mid d$ means d = cl for some $l \in \mathbb{Z}$. Thus bd = akcl = ac(kl) = acn, where n = kl. Note that n is an integer due to the closure properties under multiplication in the integers. So bd = acn where $n \in \mathbb{Z}$. Thus $ac \mid bd$ by definition of divisibility.

Exercise (12). If $x \in \mathbb{R}$ and 0 < x < 4, then $\frac{4}{x(4-x)} \ge 1$.

Proof. Suppose $x \in \mathbb{R}$ and 0 < x < 4, we know that any real number squared is greater than or equal to 0. Let us choose a real number (x-2) in the interval 0 < x < 4. Therefore $(x-2)^2 \ge 0$ is equivalent to $x^2 - 4x + 4 \ge 0$ which can be rewiretten as $4 \ge x(4-x)$. Dividing both sides by x(4-x) we obtain $\frac{4}{x(4-x)} \ge 1$. Thus the statement holds.