1 Pretest

- 1. Given the equation $x^2 4x + 3 = 0$,
 - (a) Write the solution set using set-builder notation Using the quadratic equation we quickly get $x = \frac{4\pm\sqrt{16-12}}{2} = 1,3$ thus, our solutions are -1, -3. Putting this into set-builder notation we have: $\{x|x = -1, -3\}$.
 - (b) Write the solution set in roster notation Simply applying the answer from the previous problem into roster notation: $\{-3, -1\}$.
- 2. (a) Show that $(A \cap B) \cup C$ and $A \cap (B \cup C)$ need not be the same set. Writing this out formally: $\forall a \text{ s.t. } a \in A \text{ and } a \in B \text{ we result in a new set, say, } D$; then let $(A \cap B) \cup C = E$, then $E = a \in D$ or $x \in C$. In the case that $A \cap (B \cup C) : \forall b \text{ s. t. } b \in B \text{ and } b \in C$ which we let form into a new set D; let $A \cap (B \cup C) = E$, then $E = b \in D$ or $x \in A$. An example to demonstrate this is as follows: $E_1 = (\{1, 2, 3, 4\} \cap \{2, 3, 4, 5\}) \cup \{3, 4, 5, 6\} = \{2, 3, 4, 5, 6\}$ and $E_2 = \{1, 2, 3, 4\} \cap (\{2, 3, 4, 5\}) \cup \{3, 4, 5, 6\} = \{1, 2, 3, 4, 5\}$. Notice that $E_1 \neq E_2$.
 - (b) What is the most general case in which $(A \cap B) \cup C$ and $A \cap (B \cup C)$ are the same? When they are all the empty set.
 - (c) What is wrong with the expression $A \cap B \cup C$? It is not well defined as it is unclear which operation takes precedence.
- 3. Let $A = \{1, 2, 3\}$
 - (a) How many elements belong to the set $\{f|f:A\to A\}$? $\mathscr{P}(f)=2^3=8$.
 - (b) How many of these elements are one-to-one?

 All of them, in fact, they are also onto and all bijective.
 - (c) If f(1) = 2, f(2) = 3, and f(3) = 1, describe $f^{-1}: A \to A$. The inverse function can be described by the transformations $2 \mapsto 1$ and $3 \mapsto 2$ and $1 \mapsto 3$. Alternatively: $f^{-1}(2) = 1$, $f^{-1}(3) = 2$, and $f^{-1}(1) = 3$.
- 4. Define f by

$$f(x) = \begin{cases} 2 - x, & 0 \le x \le 2 \\ 0, & \text{otherwise} \end{cases}.$$

- (a) f(-x)
- (b) -f(x)
- (c) f(x+3)
- (d) f(2x+3)

These are far too trivial, so I will not be doing them.

5. Let f and g be defined by:

$$f(x) = \frac{x^2 - 9}{x - 3}$$
$$g(x) = x + 3.$$

- (a) How do f and g differ? f has a point of removable discontinuity at $x=3;\,g$ does not.
- (b) Does $\lim_{x\to }\frac{x^2-9}{x-3}=\lim_{x\to 3}(x+3)?$ Yes, it does. As said, the point of discontinuity is removable, observe:

$$f(x) = \frac{x^2 - 9}{x - 3} = \frac{(x + 3)(x - 3)}{(x - 3)} = (x + 3).$$