

FI-IElectronica-Primera-Convocat...

Kaino

Física I

1º Grado en Ingeniería Electrónica Industrial

Escuela Politécnica Superior Universidad de Sevilla

Academia Cátedra Sevilla

¡Ahorra un 5% en tu primer trimestre!

Clases de 1.5h con grupos reducidos y profesores expertos ¡Inscríbete y aprueba ya!...

Apellidos	Nombre	Grupo
FÍSICA I. Grado en Ing. Electrónica Indust	rial y Doble Grado en I	ng. Eléctrica e Ing.
Electrónica Industrial . PRIMERA CONVOCATORIA		20/01/2023
Observa	gionos.	20/01/2023
1ª Escribir el nombre y los apellidos en todas las hojas	tiones.	
2ª Las preguntas tipo test se responden señalando con una "x" la respuresta 1/3 del valor de una correcta. Las respuestas en blanco no rest 3ª Para el resto de preguntas: - La calificación de cada pregunta no será la máxima si no - Cada pregunta debe responderse en una hoja distinta. 4ª No se pueden presentar las respuestas escritas a lápiz. 5ª La calificación del examen será la suma de las calificaciones de Parte I. (10 puntos)	está convenientemente explicada.	recta
l. En la expresión $W = Amd$, donde W es trabajo, m es masa	6. El rendimiento de un mo	tor térmico irreversible qu
y d es distancia, las unidades de A son:	funciona entre dos focos de te	
a) \square m·s ⁻¹	respectivamente debe ser	1
b) Newtons	F	
c)	a) \Box 25% < η < 60%	
· — ·	b) $\square \eta < 25\%$	
d) \square m·s ⁻²	c) $\Box 60\% < \eta < 90\%$	
2. Doode un endén se ve llegen e un tron e 20 km/h y econ	d) \square $\eta = 90\%$	
2. Desde un andén se ve llegar a un tren a 30 km/h, y caer	5, = 1, 50,0	
gotas de lluvia verticalmente a 21 km/h. ¿Con qué ángulo respecto a la vertical ve caer las gotas un pasajero del tren?	Cuestiones	

3. Dos placas cuadradas de igual masa M y lados L y L/2, respectivamente, están soldadas como muestra la Figura. En tales condiciones las coordenadas del centro de masas del sistema son:

a) \Box 55°

b)

☐ 35°

☐ 67,6°

☐ 59,5°

(0;3 (0;0)

4. Un sistema está formado por cinco esferas macizas idénticas, de radio R y masa m, ubicadas en los vértices y centro de un cuadrado de lado L, y unidas mediante varillas de masa despreciable. Halle la razón entre los momentos de inercia del sistema respecto a los ejes de rotación (1) y (2) señalados en la figura. [Datos: $I_{esfera} = 2mR^2/5$]

5. Una bola se suelta desde del borde de un cuenco, sin rozamiento. Indicar en orden las posiciones de mayor aceleración tangencial, aceleración normal, y velocidad.

a)	\square ACC
b)	\square ABA
c)	\square ABC
d)	\Box CAB

Cuestiones

7. Una partícula describe un movimiento circular de 7 m de radio a una velocidad de 5 m/s. En el instante inicial comienza a frenarse, perdiendo 0,2 m/s cada segundo. Calcular sus aceleraciones tangencial y normal al cabo de 20 s.

8. Determine la temperatura final alcanzada por un sistema compuesto por agua a 90°C e hielo a -5°C a partes iguales de masa, una vez se llegue al equilibrio. ($L_f = 334 \text{ J/g}$; $c_{agua} = 4,18 \text{ J/(g K)}; c_{hielo} = 2,1 \text{J/(g K)})$

9. Un juguete está confeccionado con pequeñas pelotas que cuelgan de varillas delgadas muy ligeras. Determine la masa de todas las pelotas si se conoce que $m_1 = 10$ g y que el sistema se encuentra en equilibrio (todas las varillas horizontales).

10. Una polea de dos etapas está compuesta por dos discos acoplados de radios RA y RB, como muestra la figura. Si el sistema está en equilibrio y se conoce m_1 , calcule m_2 . Desprecie la fricción en las poleas pequeñas.

Parte II.

Problema 1:(10 puntos) Un cañón lanza balones de baloncesto desde una altura h con una velocidad v_0 , formando un ángulo α con la horizontal. El aro de una canasta de baloncesto está a una altura 3h.

- a) ¿A qué distancia d hay que colocar la canasta del cañón, para que se encesten los balones que lanza?
- b) ¿Con qué ángulo β respecto a la horizontal entra el balón en la canasta?
- c) Calcular las aceleraciones tangencial y normal del balón en el momento que entra en la canasta
- d) Calcular el radio de curvatura R de la trayectoria del balón en el momento que entra en la canasta

DATOS: h = 1.2 m; $v_0 = 40 \text{ m/s}$; $\alpha = 60^{\circ}$

Problema 2: (10 *puntos*) Una esfera hueca y otra maciza, ambas de masa m y radio R ruedan sin deslizamiento por un plano inclinado un ángulo α .

- a) Determine la razón entre las alturas h_1 y h_2 para que ambos cuerpos lleguen al fondo de la rampa al mismo tiempo. ¿Cuál parte de una mayor altura?
- b) ¿En algún caso es la energía cinética de rotación mayor que la energía cinética de traslación? Justifique.
- c) Determine la razón entre las fuerzas de rozamiento que actúan sobre ambos cuerpos.

DATOS: $I_{esfera\ macisa} = 2mR^2/5$; $I_{esfera\ hueca} = 2mR^2/3$

Problema 3: (10 *puntos*) Un ciclo Rankine consiste en una expansión isóbara, seguida de una expansión adiabática, una compresión isóbara y una compresión adiabática. Suponiendo que el ciclo lo realizan 0,5 moles de un gas ideal de constante adiabática $\gamma = 7/5$. Sabiendo que las presiones de las isóbaras son 5 atm y 0,4 atm respectivamente, que el volumen del gas en el estado de temperatura más baja vale 30 ℓ y que el volumen máximo alcanzado es tres veces el del estado de temperatura más baja,

- Representar el diagrama p-V del ciclo y determinar si corresponde a un motor térmico o a una máquina frigorífica.
- b) Determinar en una tabla la presión, temperatura y volumen de cada uno de los estados a la entrada y salida de cada proceso.
- c) Determinar el calor, trabajo y variación de energía interna en cada uno de los procesos.
- d) Calcular el rendimiento o la eficiencia del ciclo, según corresponda y comparar con el rendimiento o eficiencia de una máquina de Carnot que funcionara entre las temperaturas extremas del ciclo.

Las descargas sin publicidad se realizan con las coins

DATOS: $R = 8,314 \text{ J/mol.K} = 0,082 \text{ atm.} \ell/\text{mol.K}.$

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad