# Understanding Changes in Episodic Memory Impairment Using Batchelder's Multinomial Processing Tree Model

Jason R. Bock <sup>2</sup> William R. Shankle <sup>2</sup> Isaiah Cushman <sup>1</sup> Michael D. Lee <sup>1</sup> March 21, 2019

<sup>&</sup>lt;sup>1</sup>University of California Irvine

<sup>&</sup>lt;sup>2</sup>Medical Care Corporation

# Bill Batchelder (1940–2018)



1

#### Shankle Clinic Data

- Patients from a cognitive disorders clinic, given standard MCI screen assessment of memory
  - Total of 3635 patients doing a total of 14,096 assessments
  - A few patients do many assessments but most do only a few
- We focus on the free recall tasks
  - Three Immediate Free Recalls (IFR1, IFR2, IFR3) of the same list of 10 semantically-controlled words presented in the same order
  - A later expected Delayed Free Recall (DFR)

| Stage | Name                               | Patients | Assessments |
|-------|------------------------------------|----------|-------------|
| 1     | Normal aging                       | 117      | 383         |
| 2     | Possible mild cognitive impairment | 492      | 1649        |
| 3     | Mild cognitive impairment          | 908      | 3685        |
| 4     | Mild dementia                      | 1169     | 5352        |
| 5     | Moderate dementia                  | 430      | 1313        |
| 6     | Moderately severe dementia         | 519      | 1714        |

#### Visualization of 5% of Data



## Worse Recall with Increasing Impairment



## **Serial Position Curves and Learning**



## No Recency Effect after Delay



#### Individual Differences



## **Serial Position Curves**

- Free recall shows standard serial position curves
  - Learning over trials, but worsening performance with impairment



# **Multinomial Processing Tree Model**

- Alexander, Satalich, Shankle, and Batchelder (2016) propose a MPT model of the retrieval of an item over a sequence of immediate and delayed free recall tasks
  - Key innovation is the assumption of unlearned, intermediate (partially-learned), and learned states for an item over testing



## Application to MCI Screen Tasks

learned immediately but never retrieve



# 16-Tuple Representation of Data

- $\bullet$  Each item is either recalled or not recalled on each of the four recall tasks, giving  $2^4=16$  possible outcomes
  - 1111 means the item was recalled every time
  - 1110 means the item was recalled for the first three immediate free recalls, but not the delayed free recall
  - ...
  - 0000 means the item was never recalled
- We represent behavioral data as counts  $y_{ij}$  of the jth of the 16-tuple patterns for the ith person over their  $n_i$  assessments



#### Saturated Model

 For posterior predictive checks of the descriptive adequacy of substantive models, we characterize the data by a saturated model

$$y_{ij} \sim \text{Multinomial}(\theta_{ij}, n_i)$$
  
 $\theta_{ij} \sim \text{Dirichlet}(\alpha_j)$   
 $\alpha_{ik} \sim \text{Gamma}(2, 1),$ 

and the distribution of  $\theta_j^{\mathrm{pred}} \sim \mathrm{Dirichlet}\left(\alpha_j\right)$  quantifies the uncertainty of the probability of the *j*th tuple occurring for any person



# Fixed Item Model

#### Fixed Item Model

Assume individual differences from a truncated Gaussian for each parameter, but no item differences in parameters



## **JAGS Implementation**

JAGS script makes use of an user-added function Batchelder that returns the 16-tuple probabilities given a set of MPT parameters

```
modelf
 for (j in 1:nItems){
   for (i in 1:nPeople){
    # data
    y[i,j,1:nPatterns]~dmulti(theta[i,j,1:nPatterns],nAssessments[i])
    # model
    theta[i,j,1:nPatterns]=Batchelder(a[i,j],b[i,j],r[i,j],v[i,j],t[i,j],L1[i,j],L2[i,j])
    # parameters
    a[i,j]~dnorm(mua,1/sigmaa^2)T(0,1)
    b[i,j]~dnorm(mub,1/sigmab^2)T(0,1)
   priors
 mua~dunif(0,1)
 sigmaa~dunif(0,1)
 mub~dunif(0.1)
 sigmab~dunif(0,1)
 . . .
```

# Failure of Descriptive Adequacy

- A posterior predictive comparison of the distribution of observed proportions and the distribution over individual differences
  - The model cannot describe the data because different items have very different recall patterns
  - Example below is for FAST stage 3, but all stages have the same property



FAST Stage 3

Independent Item Model

## Independent Item Model

Assume individual differences from a truncated Gaussian for each parameter, and now allow independent parameters for each item position











FAST Stage 5





#### **Parameter Inferences**

- Although the parameters for each item position are inferred independently, they show clear theoretically-interpretable regularities
  - Serial position effects for immediate retrieval  $(t, L_1)$ , and decaying primacy effects for delayed retrieval  $(L_2)$
  - Possible serial position effects for learning (a, r, v), except for constant testing effects (b)



Independent Item

**Latent-Mixture Model** 

### **Latent Mixture Model**

Allow for two different subgroups, with each person assigned to one, and a base-rate of  $\phi \sim \mathrm{Uniform} \big(0.5,1\big)$  for the majority group



# **Evidence for Subgroups**

 There is evidence that FAST stages 1–4 have only one group, but stage 5 has subgroups, and stage 6 may have subgroups



# Subgroups in Stage 5

• The minority subgroup, with about 15% of the patients, performs much better than the others



# Subgroups in Stage 6

• The minority subgroup, with about 5% of the patients, performs much better than the others



## Parameter Inferences

- Serial position effects for immediate retrieval  $(t, L_1)$ , and decaying primacy effects for delayed retrieval  $(L_2)$
- Possible serial position effects for learning (a, r, v), except for constant testing effects (b)



**Hierarchical Item Model** 

## Theoretical Extensions to Batchelder Model

- Hierarchical model of item parameters in terms of their positions
  - Serial position curve model for encoding parameters a, t, r, and immediate retrieval parameters t,  $L_1$
  - Logistic model of delayed retrieval parameter L<sub>2</sub>
  - Constant testing effect learning parameter b





### **Hierarchical Item Model**

Assume individual differences from a truncated Gaussian for each parameter, and now allow independent parameters for each item position



FAST Stage 1

• The theoretically-extended model maintains descriptive adequacy



FAST Stage 2



FAST Stage 3









#### Inferences of Theoretically-Extended Model

- Comparing FAST stage 1 to stage 2 examines the subjective change from cognitively normal to cognitively normal but with a subjective sense of memory impairment
  - No difference in overall recall accuracy, nor in everyday function, for people in these stages



### FAST Stage 1 vs 2

Primacy partial learning

- The change in effect size at  $\delta=0$  from prior to posterior gives the Bayes factor for sameness or difference between FAST stage 1 and 2
  - Stage 2 has worse consolidation of partially-learned words at the beginning of the list

Primacy consolidate learning Recency consolidate learning

Recency partial learning



### Inferences of Theoretically-Extended Model

 Comparing FAST stage 2 to stage 3 examines the objective change from cognitively normal to cognitively impaired



### FAST Stage 2 vs 3

• Learning words presented at the beginning of the list is much worse in stage 3, as is the immediate and delayed recall of later words



### Some Preliminary Conclusions About Memory

- Subjective decline from FAST stage 1 to FAST stage 2 involves difficulties with partial learning
  - Deficits in consolidating encoding of partially-learned words
- More severe objective cognitive impairment to FAST stage 3 and beyond involves deterioriation in long-term memory and rehearsal processes
  - Failure to recall words presented at the beginning of lists in immediate free recall
  - Failure to recall words presented at the end of lists in delayed free recall

**Two Final Things** 

### Need to Incorporate Individual Differences

- The inferences are qualitatively different, and less theoretically sensible, if individual differences are removed
- These results are based on aggregating all assessments in each stage, which is equivalent to assuming there are no individual differences for different people in the same FAST stage



#### **Need to Present Items in Same Order**

- The inferences are qualitatively different, and much less theoretically sensible, for alternative clinical tests that present words in different orders
- These results are based on ADNI data involving cognitively normal, mildly cognitively impaired, and Alzheimer's disease individuals tested using the ADAS-Cog test



# Conclusion

## Generative Models and Bayesian Methods

- Case study is an example of the benefits of generative models of cognition and the use of Bayesian methods of inference (Lee, 2018)
- Generative probabilistic models of cognition
  - Force assumptions to be part of the model, saying how psychological parameters and processes generate data
  - Make models theoretically richer, and force the complete quantification of their predictions
- Bayesian methods allow rich and creative cognitive models to be explored
  - Can always, in principle, apply any generative probabilistic model to data to make inferences in the same way
  - Always represent uncertainty about models and parameters, controlling for complexity in the exploration

Thanks!

#### References i

#### References

- Alexander, G. E., Satalich, T. A., Shankle, W. R., & Batchelder, W. H. (2016). A cognitive psychometric model for the psychodiagnostic assessment of memory-related deficits. *Psychological Assessment*, 28, 279.
- Lee, M. D. (2018). Bayesian methods in cognitive modeling. In J. Wixted & E.-J. Wagenmakers (Eds.), The Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience. Volume 5: Methodology (Fourth ed., pp. 37–84). John Wiley & Sons.