Exercises

(p.140) Determine whether the given matrix is invertible, by finding its rank.

$$7. \left(\begin{array}{cccc} 0 & -9 & -9 & 2 \\ 1 & 2 & 1 & 1 \\ 4 & 1 & -3 & 4 \\ 1 & 3 & 2 & 0 \end{array} \right)$$

$$9. \left(\begin{array}{ccc} 2 & 0 & 1 \\ 0 & 0 & 4 \\ 2 & 4 & 0 \end{array}\right)$$

(p.141-142) Answer the followings.

- 11. Mark each of the following True or False.
 - a. The number of independent row vectors in a matrix is the same as the number of independent column vectors.
 - b. If H is a row-echelon form of a matrix A, then the nonzero column vectors in H form a basis for the column space of A.
 - c. If H is a row-echelon form of a matrix A, then the nonzero row vectors in H form a basis for the row space of A.
 - d. If an $n \times n$ matrix A, is invertible then rank(A) = n.
 - e. For every matrix A, we have rank(A) > 0.
 - f. For positive integers m and n, the rank of an $m \times n$ matrix might be any number from 0 to the minimum of m and n.
 - g. For all positive integers m and n the nullity of an $m \times n$ matrix might be any number from 0 to the minimum of m and n.
 - h. For all positive integers m and n the nullity of an $m \times n$ matrix might be any number from 0 to m.
 - i. For all positive integers m and n the nullity of an $m \times n$ matrix might be any number from 0 to n.
 - j. For all positive integers m and n with $m \ge n$ the nullity of an $m \times n$ matrix might be any number from 0 to n.
- 12. Prove that, if A is a square matrix, the nullity of A is the same as the nullity of A^{T} .
- (p152) Assume that T is a linear transformation. Answer the followings.
 - 5. If T([1,0]) = [3,-1] and T([0,1]) = [-2,5], find T([4,-6]).
 - 7. If T([1,0,0]) = [3,1,2], T([0,1,0]) = [2,-1,4], and T([0,0,1]) = [6,0,1], find T([2,-5,1]).
 - 9. If T([-1,2]) = [1,0,0] and T([2,1]) = [0,1,2], find T([0,10]).
 - 11. If T([1,2,-3]) = [1,0,4,2], T([3,5,2]) = [-8,3,0,1], and T([-2,-3,-4]) = [0,2,-1,0], find T([5,-1,4]).

1

(p153) The given formula defines a linear transformation. Give its standard matrix representation.

13.
$$T([x_1, x_2]) = [x_1 + x_2, x_1 - 3x_2]$$

18.
$$T([x_1, x_2, x_3]) = x_1 + x_2 + x_3$$

(p153) Answer the followings.

- 19. If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is defined by $T([x_1, x_2]) = [2x_1 + x_2, x_1, x_1 x_2]$ and $T': \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $T'([x_1, x_2, x_3]) = [x_1 x_2 + x_3, x_1 + x_2]$, find the standard matrix representation $T' \circ T$ that carries \mathbb{R}^2 onto \mathbb{R}^2 . Find a formula for $T' \circ T([x_1, x_2])$
- 20. Referring to Exercise 19, find the standard matrix representation for the linear transformation $T \circ T'$ that carries \mathbb{R}^3 into \mathbb{R}^3 . Find a formula for $T \circ T'([x_1, x_2, x_3])$

(p.153) Determine whether the indicated linear transformation T is invertible. If it is, find a formula for T^{-1} in row notation. If is not, explain why it is not.

21.
$$T([x_1, x_2]) = [x_1 + x_2, x_1 - 3x_2]$$

22.
$$T([x_1, x_2]) = [2x_1 - x_2, x_1 + x_2, x_1 + 3x_2]$$

23.
$$T([x_1, x_2, x_3]) = [x_1 + x_2 + x_3, x_1 + x_2, x_1]$$

(p.153) Answer the followings.

- 29. Mark each of the following True or False.
 - a. Every linear Transformation is a function.
 - b. Every function mapping \mathbb{R}^n into \mathbb{R}^m is a linear Transformation.
 - c. Composition of linear Transformations corresponds to multiplication of their standard matrix representations.
 - d. Function composition is associative.
 - e. An invertible linear Transformation mapping \mathbb{R}^n into itself has a unique inverse.
 - f. The same matrix may be the standard matrix representation for several different linear Transformation.
 - g. A linear Transformation having an $m \times n$ matrix as standard matrix representation maps \mathbb{R}^n into \mathbb{R}^m .
 - h. If T and T' are different linear Transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\mathbf{e}_i) = T'(\mathbf{e}_i)$ for some standard basis vector \mathbf{e}_i of \mathbb{R}^n .
 - i. If T and T' are different linear Transformations mapping \mathbb{R}^n into \mathbb{R}^m , then we may have $T(\mathbf{e}_i) = T'(\mathbf{e}_i)$ for all standard basis vector \mathbf{e}_i of \mathbb{R}^n .
 - j. If $\{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is a basis for \mathbb{R}^n and T and T' are linear Transformations mapping \mathbb{R}^n into \mathbb{R}^m then $T(\mathbf{x}) = T'(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ if and only if $T(\mathbf{b}_i) = T'(\mathbf{b}_i)$ for $i = 1, 2, \dots, n$.
- 33. Let A be an $m \times n$ matrix with row-echelon form H, and let V be the row space of A (and thus of H). Let $W_k = sp(\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_k)$ be the subspace of \mathbb{R}^n generated by the first k rows of the $n \times n$ identity matrix. Consider $T_k : V \to W_k$ defined by $T_k([x_1, x_2, \cdots, x_n]) = [x_1, x_2, \cdots, x_k, 0, \cdots, 0]$.

- a. Show that T_k is a linear transformation of V into W_k and that $T_k(V) = \{T_k(\mathbf{v}) : \mathbf{v} \in V\}$ is a subspace of W_k .
- b. If $T_k(V)$ has dimension d_k , show that for each j < n, we have either $d_{j+1} = d_j$ or $d_{j+1} = d_j + 1$.
- c. Assume that A has four columns. Referring to part (b), suppose that $d_1 = d_2 = 1$ and $d_3 = d_4 = 2$. Find the number of pivots in H, and give the location of each.
- d. Repeat part (c) for the case where A has six columns and $d_1=1,\ d_2=d_3=d_4=2$ and $d_5=d_6=3.$
- e. Argue that, for any matrix A, the number of pivots and the location of each pivot in any row-echelon form of A is always the same.
- f. Show that the reduced row-echelon form of A is unique. [Hint: Consider the nature of the basis for the row space of A given by the nonzero rows of H.]

(p. 165) Answer the followings.

- 2. Give the standard matrix representation of the rotation of the plane counterclockwise about the origin through an angle of
 - a. 45°
 - b. 90^{o}
 - c. 135°
- 8. show that the linear Transformation $T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}1&0\\0&r\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$ affects the plane \mathbb{R}^2 as follows.
 - a. A vertical expansion if r > 1.
 - b. A vertical contraction if 0 < r < 1.
 - c. A vertical expansion followed by a reflection in the x-axis if r < -1.
 - d. A vertical contraction follows by a reflection in the x-axis if -1 < r < 0.

(p.165) (optional) Answer the followings.

1. Explain why the linear transformation $T_A: \mathbb{R}^2 \to \mathbb{R}^2$, where $A = \begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix}$, has the line y = 2x as range, but is not the projection of \mathbb{R}^2 onto that line.