

逻辑与计算机设计基础实验

与课程设计

实验七

同步时序电路典型设计

施青松

Asso. Prof. Shi Qingsong College of Computer Science and Technology, Zhejiang University zjsqs@zju.edu.cn

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙人学系统结构与系统软件实验室

实验目的

- 掌握典型同步时序电路的工作原理和设计方法;
- 掌握有限状态机描述与电路实现方法:
- 掌握时序电路的状态图、状态方程和触发器激励函数; **3.**
- 掌握用FPGA实现有限状态机设计、仿真与调试。

实验环境

□实验设备

- 1. 计算机(Intel Core i5以上, 4GB内存以上)系统
- 2. 计算机软硬件课程贯通教学实验系统(SWORD4.0)
- 3. Xilinx ISE14.7及以上开发工具

□材料

无

计算机软硬件课程贯通教学实验系统

- ▼ 标准接口 支持基本计算机系统实现
 - 12位VGA接口(RGB656)、USB-HID(键盘)
- ▼ 通讯接口 支持数据传输、调试和网络
 - UART接口、10M/100M/1000M以太网、SFP光纤接口
- ▼ **扩展接口** 支持外存、多媒体和个性化设备

MicroSD(TF) 、 PMOD、 HDMI、 Arduino

贯通教学实验平台主要参数

▼ 核心芯片

Xilinx Kintex™-7系列的XC7K325资源:

162,240个, Slice: 25350, 片内存储: 11.7Mb

▼ 存储体系 支持32位存储层次体系结构

6MB SRAM静态存储器: 支持32Data, 16位TAG

512M BDDR3动态存储: 支持32Data 32MB NOR Flash存储: 支持32位Data

▼ 基本接口 支持微机原理、SOC或微处理器简单应用 4×5+1矩阵按键、16位滑动开关、16位LED、8 位七段数码管

系统结构与系统软件实验。

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙人学系统结构与系统软件实验室

实验任务

- 用原理图设计基于状态方程描述的4位二进制同步计数器;
- 2. 用HDL 行为描述设计32位同步二进制双向计数器;
- 3. 集成到实验环境(混合 计算器,Calculation)。

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙大学系统结构与系统软件实验室

4位同步二进制计数器状态表

◎状态变化条件

E 计数触发

€ 无外部输入

◎输入激励

€ 满足次态 的输入要求

€ 输入方程

◎状态分配

€ 计数值决定

◎触发器选择

E D触发器

E 4个

浙江大学	系统结构与

	当前	状态	(现	.态)	下一状态(次态)					触发	器湯)励(输入)
	$Q_{\!\!\scriptscriptstyle A}$	$Q_{\!\scriptscriptstyle B}$	Q_{C}	$Q_{\!\scriptscriptstyle D}$	Q_A^{n+1}	Q_B^{n+1}	Q_C^{n+1}	Q_D^{n+1}		$D_{\!\!\!\!A}$	$D_{\!B}$	D_{C}	$D_{\!D}$
0	0	0	0	0	1	0	0	0		1	0	0	0
1	1	0	0	0	0	1	0	0	П	0	1	0	0
2	0	1	0	0	1	1	0	0		1	1	0	0
3	1	1	0	0	0	0	1	0		0	0	1	0
4	0	0	1	0	1	0	1	0	П	1	0	1	0
5	1	0	1	0	0	1	1	0		0	1	1	0
6	0	1	1	0	1	1	1	0		1	1	1	0
7	1	1	1	0	0	0	0	1	П	0	0	0	1
8	0	0	0	1	1	0	0	1		1	0	0	1
9	1	0	0	1	0	1	0	1		0	1	0	1
10	0	1	0	1	1	1	0	1		1	1	0	1
11	1	1	0	1	0	0	1	1		0	0	1	1
12	0	0	1	1	1	0	1	1		1	0	1	1
13	1	0	1	1	0	1	1	1		0	1	1	1
14	0	1	1	1	1	1	1	1		1	1	1	1
15	1	1	1	1	0	0	0	0		0	0	0	0

4位同步二进制计数器状态方程 Q_A^{n+1}

	$Q_{\!\scriptscriptstyle A}$	$Q_{\!\scriptscriptstyle B}$	Q_{C}	$Q_{\!\scriptscriptstyle D}$	Q_A^{n+1}	Q_B^{n+1}	Q_C^{n+1}	Q_D^{n+1}
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	1	1	1	1	0	0	0	0

根据状态真值表可写出触发器A的输出函数(状态方程) Q_A^{n+1} 的卡诺图和化简结果

4位同步二进制计数器状态方程 Q_R^{n+1}

	$Q_{\!\!\scriptscriptstyle A}$	$Q_{\!B}$	$Q_{\!C}$	$Q_{\!\scriptscriptstyle D}$	Q_A^{n+1}	Q_B^{n+1}	Q_C^{n+1}	Q_D^{n+1}
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	1	1	1	1	0	0	0	0

4位同步二进制计数器状态方程 Q_c^{n+1}

	$Q_{\!\!\scriptscriptstyle A}$	$Q_{\!\scriptscriptstyle B}$	$Q_{\!C}$	$Q_{\!\scriptscriptstyle D}$	Q_A^{n+1}	Q_B^{n+1}	Q_C^{n+1}	Q_D^{n+1}
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	1	1	1	1	0	0	0	0

$$\frac{Q_C^{n+1}}{Q_C} = \overline{Q_A}Q_C + \overline{Q_B}Q_C + Q_AQ_B\overline{Q_C}$$

$$= \overline{(\overline{Q_A} + \overline{Q_B})} \oplus \overline{Q_C}$$

$4位二进制同步计数器设计原理: D_D$

	$Q_{\!\!\scriptscriptstyle A}$	$Q_{\!B}$	Q_{C}	$Q_{\!\scriptscriptstyle D}$	Q_A^{n+1}	Q_B^{n+1}	Q_C^{n+1}	Q_D^{n+1}
0	0	0	0	0	1	0	0	0
1	1	0	0	0	0	1	0	0
2	0	1	0	0	1	1	0	0
3	1	1	0	0	0	0	1	0
4	0	0	1	0	1	0	1	0
5	1	0	1	0	0	1	1	0
6	0	1	1	0	1	1	1	0
7	1	1	1	0	0	0	0	1
8	0	0	0	1	1	0	0	1
9	1	0	0	1	0	1	0	1
10	0	1	0	1	1	1	0	1
11	1	1	0	1	0	0	1	1
12	0	0	1	1	1	0	1	1
13	1	0	1	1	0	1	1	1
14	0	1	1	1	1	1	1	1
15	1	1	1	1	0	0	0	0

$$Q_D^{n+1} = \overline{Q_A}Q_D + \overline{Q_B}Q_D + \overline{Q_C}Q_D + Q_AQ_BQ_C\overline{Q_D}$$

$$= \overline{(\overline{Q_A} + \overline{Q_B} + \overline{Q_C}) \oplus \overline{Q_D}}$$

激励函数(触发器输入方程)

◎ 同步时序电路采用D触发器实现,可以求出激励函数为:

 $Q_{n+1} = D_n^{n-1} + D_n^{n-1}$ 根据**D**触发器特征方程: $Q_{n+1} = D_n^{n-1}$

$$\begin{split} D_{A} &= \overline{Q_{A}} \\ D_{B} &= \overline{Q_{A}}Q_{B} + Q_{A}\overline{Q_{B}} = \overline{Q_{A}} \oplus \overline{Q_{B}} \\ D_{C} &= \overline{Q_{A}}Q_{C} + \overline{Q_{B}}Q_{C} + Q_{A}Q_{B}\overline{Q_{C}} = \overline{(\overline{Q_{A}} + \overline{Q_{B}})} \oplus \overline{Q_{C}} \\ D_{D} &= \overline{Q_{A}}Q_{D} + \overline{Q_{B}}Q_{D} + \overline{Q_{C}}Q_{D} + Q_{A}Q_{B}Q_{C}\overline{Q_{D}} = \overline{(\overline{Q_{A}} + \overline{Q_{B}} + \overline{Q_{C}})} \oplus \overline{Q_{D}} \end{split}$$

₠增加一个4位进位输出Rc

$$R_C = \overline{\overline{Q_A} + \overline{Q_B} + \overline{Q_C} + \overline{Q_D}}$$

4位二进制同步计数器逻辑原理图

◎画出逻辑电路图

€ 根据触发器输入方程

◎结构描述

- € 根据电路结构写描述
- € 与电路图一一对应
- € 描述方法
 - ○可用原理图直接描述
 - ⊙也可以用HDL描述

人学 系统结构与系统软件等

模块结构描述

- ◎ 结构描述:与逻辑电路结构对应的描述
 - 至 利用模块调用描述系统或部件
 - 1) 调用内置门原语(在门级结构描述);
 - 2) 调用开关级原语(在晶体管开关级结构描述);
 - 3) 调用用户定义(UDP)的原语(在门级结构描述);
 - 4) 模块实例(创建层次结构结构描述)。
 - **空** 与原理图对应的描述,加深时序电路的感性认识
- 实验中需要使用的主要门级单元模块(原语)
 - **垒** 非门:

名称: INV 接口: I, O

示例: INV NotA (.I(a), .O(na));

E 二输入或非门:

名称: NOR2 接口: I0, I1, O

示例: NOR2 G1 (.I0(a), .I1(b), .O(na_b));

本实验使用到的原语汇总表

逻辑门	名称	接口	示例
非门	INV	I,O	INV NotA (.I(a), .O(na));
二输入或非门	NOR2	I0,I1,O	NOR2 G1(. I0 (a), . I1 (b), . O (c));
三输入或非门	NOR3	I0,I1,I2,O	
四输入或非门	NOR4	10,11,12,13,0	
二输入异或非门	XNOR2	I0,I1,O	XNOR2 G1(. I0 (a), . I1 (b), . O (c));
二输入与门	AND2	I0,I1,O	
二输入或门	OR2	I0,I1,O	
二输入与非门	NAND2	I0,I1,O	
D触发器	FD	C,clock D,data in Q dataout	FD FFDA (.C(clk), .D(Da), .Q(Qa)); defparam FFDA.INIT = 1'b0; // 定义D触发器的初值为0

淅汐大学系统结构与系统软件实验室

4位同步计数器结构化描述:原语描述


```
module counter_4bit(clk, Qa, Qb, Qc, Qd, Rc);
                  //端口及变量定义
FD
                  FFDA (.C(clk),.D(Da),.Q(Qa)),
                                                    也可调用实验九设计的D触发器
                  FFDB (.C(clk),.D(Db),.Q(Qb)),
                  FFDC (.C(clk),.D(Dc),.Q(Qc)),
                  FFDD (.C(clk),.D(Dd),.Q(Qd));
defparam FFDA.INIT = 1'b0;
                                     // define initial value of the D type Flip-Flop
defparam FFDB.INIT = 1'b0;
defparam FFDC.INIT = 1'b0;
defparam FFDD.INIT = 1'b0;
                                    //4个非门, FD实例没有反向输出端
         GQa (.I(Qa), .O(nQa)),
INV
         GQb (.I(Qb), .O(nQb)),
         GQc (J(Qc), O(nQc)),
         GQd (.I(Qd), .O(nQd));
                                     //赋值描述
assign Da = nQa;
XNOR2
                                                                 //2输入异或非
         ODb (.I0(Qa), .I1(nQb), .O(Db)),
         ODc (.I0(Nor_nQa_nQb), .I1(nQc), .O(Dc)),
         ODd (.I0(Nor_nQa_nQb_nQc), .I1(nQd), .O(Dd));
                                                                 //4输入或非门
NOR4
         ORc (.I0(nQa), .I1(nQb), .I2(nQc), .I3(nQd), .O(Rc));
                                                                 //2输入或非门
NOR<sub>2</sub>
         G1 (.I0(nQa), .I1(nQb), .O(Nor_nQa_nQb));
NOR3
         G2(.I0(nQa), .I1(nQb), .I2(nQc), .O(Nor_nQa_nQb_nQc));
endmodule
```

4位同步计数器结构化描述:门级描述

行为化结构描述

```
module counter_4bit(clk, rst, Qa, Qb, Qc, Qd, Rc);
                      //端口定义
wire Da, Db, Dc, Dd, nQa, nQb, nQc, nQc, Rc;
reg Qa, Qb, Qc, Qd;
    assign Da = nQa;
    assign Db = \sim (nQa^nQb);
    assign Dc = \sim ((\sim (nQa \mid nQb)) \land nQc);
    assign Dd = \sim ((\sim (nQa \mid nQb \mid nQc)) \land nQd);
    assign Rc = \sim (nQa \mid nQb \mid nQc \mid nQd));
   always @ (posedge clk)
           if (rst) {Qa,Qb,Qc,Qd} <= 4'b0000; //同步清零
           else begin
               Oa \le Da;
               Qb <- Db;
               Oc \leq Dc;
               Od \le Dd:
           end
endmodule
```

四位同步二进制双向计数器激励方程

◎ 激励函数与结构化行为描述

· 行为描述简单

· 结构化有利于学习

module counter_4rev (clk, rst,s, cnt, Rc); //端口定义 wire Da, Db, Dc, Dd, nQa, nQb, nQc, nQc, Rc; reg Qd, Qc, Qb, Qa; assign Da = ?; assign Db = ?; assign Dc = ?; assign Dd = ?; assign Rc = ?; assign cnt = $\{Qd, Qc, Qb, Qa\};$ always @ (posedge clk) if (rst) cnt <= 4'b0000; //同步清零 else {Qd, Qc, Qb, Qa} <= {Dd,Dc,Db,Da}; endmodule

S=1时,正向计数,各触发器逻辑表达式同前面 S=0时,反向计数,各触发器逻辑表达式如下式

$$\begin{split} & - D_A = \overline{Q_A} & \quad \mathbf{根据理论课自行完成分析过程} \\ & D_B = \overline{S(\overline{Q_A} \oplus \overline{Q_B})} + S(\overline{\overline{Q_A}} \oplus \overline{\overline{Q_B}}) = \overline{S \oplus \overline{Q_A}} \oplus \overline{\overline{Q_B}} \\ & D_C = \overline{S[(\overline{Q_A} \overline{Q_B}) \oplus \overline{Q_C}]} + S[(\overline{\overline{Q_A}} + \overline{\overline{Q_B}}) \oplus \overline{\overline{Q_C}}] \\ & = [\overline{\overline{SQ_A}} \overline{\overline{Q_B}} + S(\overline{\overline{Q_A}} + \overline{\overline{Q_B}})] \oplus \overline{\overline{Q_C}} \\ & = [\overline{\overline{S(Q_A} + Q_B)} + S(\overline{\overline{Q_A}} + \overline{\overline{Q_B}})] \oplus \overline{\overline{Q_C}} \\ & D_D = \overline{S[(\overline{Q_A} \overline{Q_B} \overline{Q_C}) \oplus \overline{\overline{Q_D}}]} + S[(\overline{\overline{Q_A}} + \overline{\overline{Q_B}} + \overline{\overline{Q_C}}) \oplus \overline{\overline{Q_D}}] \\ & = [\overline{\overline{SQ_A}} \overline{\overline{Q_B}} \overline{\overline{Q_C}} + S(\overline{\overline{Q_A}} + \overline{\overline{Q_B}} + \overline{\overline{Q_C}})] \oplus \overline{\overline{Q_D}} \\ & = [\overline{\overline{S(Q_A} + Q_B + Q_C)} + S(\overline{\overline{Q_A}} + \overline{\overline{Q_B}} + \overline{\overline{Q_C}})] \oplus \overline{\overline{Q_D}} \\ & - R = \overline{SQ_A} \overline{Q_B} \overline{Q_C} \overline{Q_D} + SQ_A \overline{Q_B} \overline{Q_C} \overline{Q_D} \\ \end{split}$$

系统结构与系

32位同步二进制可逆计数器: 行为描述

◎同步二进制可逆计数器行为描述

```
//(~|cnt): 先对cnt的每一位进行"或"运算,再对结果取非。即cnt[31:0]=0时: (~|cnt)=1 // 反向计数,cnt=全0时借位: 条件(~s & (~|cnt)) ==1,需s=0, cnt[3:0]=0。 // 正向计数,cnt=全1时进位: 条件( s & (&cnt)) ==1,需s=1, cnt[3:0]=F... assign Rc = (~s & (~|cnt)) | (s & (&cnt)); //进位或借位时 always @ (posedge clk) begin if(s) cnt <= cnt + 1; //s==1时,正向计数 else cnt <= cnt - 1; //s==0时,反向计数 end
```

endmodule

行为描述简单抽象:

不利于逻辑电路原理学习 实际设计中常采用行为描述

系统结构与系统软件实验室

Course Outline

实验目的与实验环境

实验任务

实验原理

实验操作与实现

浙沙人学系统结构与系统软件实验室

设计工程一: FSM

◎设计实现4位计数器

- € 用状态机分析实现
- € 状态存储选用D触发器
- & 通过求解D触发器激励方程设计计数器时序逻辑电路

◎设计实现32位二进制双向计数器

- € 增加计数器初始化功能
- € 初值用输入模块Ai,初值加载控制信号为Load

◎将上述二个计数模块集成到实验八的顶层模块

- € 修改实验八顶层模块为: Top_FSM
- € 其余功能不变,新增功能:
 - ⊙4位计数显示用LED(Sword/Arduino)
 - ⊙32位双向计数器显示用通道3

设计要点

◎新建工程: FSM

€ FSM=Finite state machine

◎设计4位计数器

€ 用原理图输入实现

€ 选用D触发器实例: FD

⊙注意: FD没有反向输出Qn

⊙也可用实验九的MB_DFF

参考激励方程画逻辑图

沙人学 系统结构与系统软件实验室

4位同步二进制计数器激励与仿真


```
module counter_4bit_Test;
           initial begin
                                       //初始
                                                  彷真时钟也可以这样获得
          // Initialize Inputs
           clk = 0;
              forever #50 clk <= ~clk;
           end
 endmodule
Name
                00p1 X 0010 X 00p1 X 0100 X 01p1 X 0110 X 01p1 X 1000 X 10p1 X 1010 X 10p1 X 1100 X 11p1 X 1110 X 11p1 X 1000
                                                                    进位、
```

◎ 学习 Veri代码描述

⑤ 打开View HDL Functional Model分析学习模块的代码描述

浙江人学系统结构与系统软件实验室

四位同步二进制计数器测试

- ◎ 输入时钟用1秒脉冲信号:
 - ¶ 用通用分频输出: clkdiv[26]
 - € 也可以设计1秒时钟辅助模块: clk_1s
- ◎ 仿真通过后封装逻辑符号:Counter_4bit
- ◎ 辅助模块: 1秒定时器模块
 - ₠ 输入100MHz的时钟信号
 - € 输出周期为1秒的时钟信号
 - · 用于计数器测试
- ◎ 顶层模块采用Top-FSM
 - · 采用实验八工程2的顶层模块
- ◎ I/O引脚分配
 - \subseteq LED[6:2]=Rc_4,Qd,Qc,Qb,Qa

沙人学系统结构与系统软件实验室

◎设计32位同步双向计数器

- €用行为描述实现: counter_32_rev.v
- € 双向控制信号: s
- E 增加计数器初始化功能
 - ⊙初值Pdata[31:0]=输入模块Ai,
 - ⊙初值加载控制信号为Load
- E 参考描述

```
module counter_32bit_rev(input clk,
                                                  //时钟
                                                  //计数方向
                            input s,
                                                  //计数初值加载控制
23
                            input Load,
                                                  //计数初值输入
                            input[31:0]PData,
25
                            output reg[31:0]cnt,
                                                  //计数器溢出
                            output reg Rc
28
    // assign Rc = (~s & (~|cnt)) | (s & (&cnt));
      always @(posedge clk) begin
         if(???)cnt <= ????;
31
         else begin
                                      //s==1时,正向计数
            if (s) cnt <= cnt + 1;
            else cnt <= cnt - 1;
                                      //s==0时,反向计数
       //计数溢出也可以如下描述
                                      //cnt[31: 0]=32'h00000000,则|cnt=1
            if (条件1 L
                                      //cnt[31: 0]=32'hfffffffff,则&cnt=1) Rc<=1;
               条件2) Rc<=1;
            else Rc<=0;
38
39
         end
      end
   endmodule
```

```
clk cnt(31:0) —

s
counter_32bit_rev
Load

PData(31:0)
```

32位同步二进制计数器激励与仿真

- ◎参考32位加法器仿真
- ◎仿真通过后封装逻辑符号

? 仿真结果(请设计完成)

◎ 学习 Veri代码描述

至 打开View HDL Functional Model分析学习模块的代码描述

32位可逆同步计数器测试

- ◎ 输入时钟用1秒脉冲信号:
 - ₠ 辅助模块: clk_1s
 - € 也可以用通用分频输出: clkdiv[29]
- ◎ 仿真通过后封装逻辑符号:Counter_32bit_rev
- ◎ 顶层模块采用Top-FSM
 - € 采用实验八32位加法的顶层模块
- ◎I/O引脚分配
 - ₠ S: 控制计数方向, push_out(0)
 - ₠ Load: 并行置入控制, push_out(1)
 - ❖ PData: 并行输入数据Ai
 - ❖ cnt:32位计数输出接显示通道data3

```
clk cnt(31:0)

s
counter_32bit_rev
Load

PData(31:0)
```


人学 系统结构与系统软件实验室

辅助模块: 1Hz的秒脉冲方波

◎100MHz信号通过50,000,000次分频后,得到1Hz的秒脉冲方波,用于计数器的脉冲输入。

```
module counter_1s(clk, clk_1s);
                                              clk MS,
  input wire clk;
  output reg clk 1s;
  reg [31:0] cnt;
    always @ (posedge clk) begin
        if (cnt < 50_000_000) begin</pre>
                                       //50M*(1/100M)S=0.5S
            cnt <= cnt + 1;</pre>
        end else begin
            cnt <= 0;
                                       // clk_1s==1的时间=0.5s
            clk 1s <= ~clk 1s;
                                       // clk 1s==0的时间=0.5s
            end
                                       //周期T=1S
            end
 endmodule
```

集成混合计算器: 计数功能

◎集成Calculation

- € 复制实验八的顶层模块,并改名为: Top-FSM.sch
 - ⊙集成: 4位计数器命名M9、32位计数器命名M9-1
- € 接口分配
 - ⊙ M9: 输入clk=Div[26]; 输出LED={SW(1),Rc_4,Qd,Qc,Qb,Qa,N0,Co}
 - ⊙M9-1: 输入clk=Div[26], s=BTN0, Load=BTN1, Pdata=Ai; 输出cnt→显示通道3(data3)

物理验证

□ 输入接口物理映射

■ SW[7:5] = 通道选择

=000: 输入Ai; =001: 修改加数; =010: ALU输出

= 011: 32位计数输出

输入设备功能定义

开关定义	=0	=1	备注
SW[0]	未用		
SW[1]	32位二进制高16位	32位二进制低16位	
SW[4:2]	ALU功能选择	ALU功能选择	见ALU功能控制
SW[7:5]	通道选择 =000 =001 =010 =111	通道0 通道1 通道2 <mark>通道3</mark>	Ai Bi RES(ALU_Out) Cnt
按键定义	=0	=1	备注
Button[0]		计数方向	S
Button[1]		并行置入控制	Load
Button[2]			
Button[3]			

淅汐大学系统结构与系统软件实验室

ALU及计数器功能控制

ALU功能选择	=0 (XXX)	=1(功能)	备注
SW[4:2]= ALU_Ctr(2:0)	000 001 010 011 100 101 110 111	与或加自定义义自定义 自定义 Slt	SW[4]=0 ALU res(31:0) ACI ROW ALU ROW ROW ROW ROW ACI ACI ACI ACI ACI ACI ACI AC
Button[0]=s	减1计数	加1计数	输入模块是移动
Button[1]=Load	计数	初始化	输入模块是移动

实验七的顶层结构

同学们:每次做完实验请整理好实验台,放好仪器,理清桌面。

Thank you!