

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 2: SYNTAXDIAGRAMME & EBNF

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 06.11.2020

Syntaxdiagramme

SYNTAXDIAGRAMME & RÜCKSPRUNGALGORITHMUS

- syntaktische Variable = Nichtterminalsymbol = Name eines Syntaxdiagramms
- Jedes Kästchen ist mit dem Namen eines Syntaxdiagramms beschriftet.
- Jedes Oval ist mit einem Terminalsymbol beschriftet.

Rücksprungalgorithmus

- jedes Kästchen bekommt eindeutige Marke (Rücksprungadresse)
- beim Betreten eines Syntaxdiagramms wird eine Marke auf den Keller gelegt
- Nachweis von Zugehörigkeit eines Wortes zu einer Sprache

AUFGABE 1

- ► Teil (a) z.B. ε , a, c, caa, aaaa, . . .
- ► Teil (b) z.B. aaac, abacac, abbaccac, . . .
- ► Teil (c) z.B. ε , ab, abab, ac, aabcab, . . .

AUFGABE 2 — TEIL (A)

Protokollierungszeitpunkte:

- jeder Aufenthalt in einem Syntaxdiagramm entspricht einer Zeile
- jede Zeile führt eine
 Operation auf dem
 Markenkeller aus
- ► 3 = Rücksprung zu Marke 3

Wort	Markenkeller
а	1
a	31
aa	131
aaa	2131
aaa	32131
aaaaccb	<i>3</i> 2131
aaaaccb	<i>2</i> 131
aaaaccbd	<i>1</i> /31
aaaaccbdb	<i>3</i> 1
aaaaccbdb	X
aaaaccbdbb	_

AUFGABE 2 — TEIL (B)

$$L = \left\{ a^{2i}cb^{3i}c^{k}d^{2k+1} \mid i > 0, k \ge 0 \right\}$$

$$= \left\{ a^{2i}cb^{3i} \mid i > 0 \right\} \cdot \left\{ c^{k}d^{2k+1} \mid k \ge 0 \right\}$$
S

$$A \qquad B$$

$$C \qquad B \qquad d$$

$$d$$

$$d$$

Extended Backus-Naur-Form

EBNF-DEFINITION

- ► EBNF-Definition besteht aus endlicher Menge von EBNF-Regeln.
- ► Jede EBNF-Regel besteht aus einer linken und einer rechten Seite, die rechte Seite ist ein EBNF-Term.

Definition: EBNF-Term

Seien V eine endliche Menge (syntaktische Variablen) und Σ eine endliche Menge (Terminalsymbole) mit $V \cap \Sigma = \emptyset$. Die Menge der EBNF-Terme über V und Σ (notiere: $T(\Sigma,V)$), ist die kleinste Menge $T \subseteq \left(V \cup \Sigma \cup \left\{\hat{\{},\hat{\}},\hat{[},\hat{]},\hat{(},\hat{)},\hat{]}\right\}\right)$ mit $V \subseteq T$, $\Sigma \subseteq T$ und

- ▶ Wenn $\alpha \in T$, so auch $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$, $(\alpha) \in T$.
- ▶ Wenn $\alpha_1, \alpha_2 \in T$, so auch $(\alpha_1 | \alpha_2) \in T$, $\alpha_1 \alpha_2 \in T$

AUFGABE 3 — TEIL (A)

EBNF-Definition
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$,
$$V = \{S, A, B\} \quad \text{und} \quad R = \Big\{S ::= A \ \hat{\{} \ B \ \hat{\}},$$

$$A ::= aA \ \hat{(} \ bc \ \hat{|} \ d \ \hat{)},$$

$$B ::= \hat{[} \ B \ \hat{]} \ b\Big\}$$

Übersetzung in Syntaxdiagrammsystem:

AUFGABE 3 — TEIL (B)

Gegeben sei die Sprache

$$L = \left\{ (ab)^n c^{m+1} d^k b^{n+m} : n, m \ge 0, k \ge 1 \right\}$$

Gesucht ist eine zugehörige EBNF-Definition.

$$L = \left\{ (ab)^n c^{m+1} d^k b^m b^n : n, m \ge 0, k \ge 1 \right\}$$

EBNF-Definition:
$$\mathcal{E} = (V, \Sigma, S, R)$$
 mit $\Sigma = \{a, b, c, d\}$,

$$V = \{S,A\} \quad \text{und} \quad R = \left\{S ::= \hat{(} abSb \hat{|} A \hat{)}, \right.$$
$$A ::= \hat{(} cAb \hat{|} cd \hat{(} d \hat{)} \hat{)} \left.\right\}$$