Investigating the Impact of Astrocyte-Melanoma Direct Junctions on Spatial GTP Distribution in Melanoma Cells Using GTP Biosensor

11/25/2024 BME milestone exam

Junqi Lu

Department of Biomedical Engineering

Mentor: Dr. Mikhail A. Nikiforov

Department of Biomedical Engineering

MBM exhibits high mortality & prevalence

- Melanoma represents 1% skin cancer cases but 80% skin cancerrelated death due to high metastatic potential
- 50% metastatic melanoma patients develop brain metastasis (MBM)
- MBM patients' median survival = 12.8 month with mortality rate = 80-85%

MBM exhibits high mortality & prevalence

- Melanoma represents 1% skin cancer cases but 80% skin cancerrelated death due to high metastatic potential
- 50% metastatic melanoma patients develop brain metastasis (MBM)

Understanding acquisition of invasive phenotype (melanoma → MBM) is critical for developing effective therapeutic strategies

Fluctuations in intracellular GTP levels regulate melanoma cell invasion & metastasis

Fluctuations in intracellular GTP levels regulate melanoma cell invasion & metastasis

GTP evaluators (GEVAL) structure predicted by AlphaFold with confidence from high to low

GTP evaluators (GEVAL) structure predicted by AlphaFold with confidence from high to low

Excitation

 $K_{eff} = 32.3 \, \mu M$

GEVAL30

GEVALNull

GEVAL30

Aim: use computational tools & Al to streamline GEVAL protocol & optimize analysis pipeline

GEVALIris accelerates image processing

GEVALIris accelerates image processing

GEVALIris accelerates image processing

https://youtu.be/aysFCivxEpw?t=1

Total 102,252 features

Flowcytometry verified GEVALNull has higher mean GFP intensities

GEVALNull population is brighter than GEVAL30

IMPDH is major GTP biosynthesis enzyme

MPA & AVN are IMPDH inhibitors

AVN treatment doesn't alter cell morphology

Low AVN = $0.025 \mu M$ High AVN = $0.05 \mu M_{18}$

GEVALytics heatmap data analysis pipeline

AVN decreases GEVAL signals in GEVAL30

Pooled histograms

1.5

Bin start value

1.0

Low AVN = $0.025 \mu M$ High AVN = $0.05 \mu M_{20}$

2.5

3.0

2.0

GEVALNull not responsive to AVN treatment while higher AVN significantly dropped GEVAL30

Pooled raincloud plot

measurements

Low AVN = $0.025 \mu M$ High AVN = $0.05 \mu M_{21}$

Large variance may indicate suboptimal GEVAL performance

Pooled raincloud plot

Low AVN = $0.025 \mu M$ High AVN = $0.05 \mu M_{22}$

Large variance may indicate suboptimal GEVAL performance

Mean values for raw data

<u>***</u>

aatmant

- What factor(s) contribute to large variance in GEVAL performance?
- How to reduce variance by screening out suboptimal GEVAL images more effectively—and even better, do it automatically?

Low AVN = $0.025 \mu M$ High AVN = $0.05 \mu M_{23}$

GEVALytics AI workflow

Feature selection to reduce dimensionality

Feature selection to reduce dimensionality

Random forest (RF) classifier training & best model

Best RF classifier has 1000 decision trees

Best RF classifier identifies laser settings as most important features contributing to large variance

Most important features to distinguish aren't highly correlated = no leftover data structure to model

GEVAL*Iris* + GEVALytics = automatic screening eyes with expertise

- RF classifier highly trustworthy & generalizes very well
 - Optimal GEVAL performance requires fine-tuning on laser settings
 - Automatically screens out suboptimal images for future GEVAL users, anytime & anywhere
- Potential future directions
 - Bigger image set to avoid curse of dimensionality
 - Correlation ≠ causation so need controlled experiments to determine

Nikiforov Lab—Where Engineering Solutions Meet Scientific Curiosity

- PI: Mikhail A. Nikiforov, Ph.D.
- Members
 - Zhannan Han
 - Zhibo Yan, Ph.D.
 - Maja Beus, Ph.D.
 - Yihui Wang, Ph.D.
 - Junqi Lu
 - Loren Weidenhammer
 - Robert Noble

