Boosting Machine Learning Innovation: Computing Systems that Learn and Adapt

Ameer Abdelhadi, Jorge Albericio, Omar Awad, Ciaran Bannon, Alberto Delmas Lascorz, Isak Edo, Ali Hadi Zadeh, Patrick Judd, Mostafa Mahmoud, Milos Nikolic, Zissis Poulos, Eugene Sha, Sayeh Sharify, Kevin Siu, Dylan Stuart, Enrique Torres, Jiahui Wang

Tayler Hetherington, Natalie Enright Jerger, Tor Aamodt, Gennady Pekhimenko

Andreas Moshovos

A bit about my background

10>LET a=10 20 PRINT a K

Computing Hardware

We build tools Used by "everyone" for "everything" Science, medicine, commerce, ...

Our Current Goal

- Enabling Further Innovation in Machine Learning
 - Reduce compute, memory footprint and communication
 - Edge, Server, IoT
- Two Guiding Principles...

Principle #1

The advantage of natural occurring properties in Deep Learning Models

Do not require any changes In the ML network/software Developing software is hard...

But, ...Reward model optimizations

Improvements come from hardware alone or low-level runtime/compiler optimizations

Principle #2

Balance hardware (area/energy) cost vs. reward (compute/memory amplification)

Behaviour-based approach to ML acceleration

7+ years of research

Family of techniques:

- Zero/near zero activation skipping
- Bit-serial designs → static + dynamic precision
- Memory compression (data width + delta) / on-chip /off-chip
- Bit-skipping designs
 - Computational Imaging
- Sparsity
- Inference + Training
- Software Tools:
 - Training Algorithm → bitwidth selection
 - Profiling

Apack

Lossless compression for fixed-point inference

Mokey

Quantization for Transformers

Schrödinger's FP

 Dynamic Adaptation of Floating-Point Containters

Example: Convolutional Neural Networks

Tons of Out += A x W
For other types of networks too

Neural Nets do...

```
Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
                                                 Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
                                                                                                   Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
                                                                                                                                                    Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
                                                 Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
                                                                                                   Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
                                                                                                                                                    Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                 Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                                                                                                                    Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                                                                   Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
Out
                                                                        Many MACs
Out
Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
                                                 Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
                                                                                                   Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
                                                                                                                                                    Out_0 += A_0 \times W_0 Out_1 += A_0 \times W_0
Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
                                                 Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
                                                                                                   Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
                                                                                                                                                    Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                 Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                                                                   Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                                                                                                                    Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
Out_0 += A_3 \times W_3 Out_1 += A_3 \times W_3
                                                 Out_0 += A_3 \times W_3 Out_1 += A_3 \times W_3
                                                                                                                                                    Out_0 += A_3 \times W_3 \quad Out_1 += A_3 \times W_3
                                                                                                   Out_0 += A_3 \times W_3 Out_1 += A_3 \times W_3
Out
                                                   Lots of data to transfer
Out
                                                                                                                                                                                              Wo
Out_0 \leftarrow A_1 \times vv_1 \quad Out_1 \leftarrow A_1 \times vv_1
                                                 Out_0 \leftarrow A_1 \times vv_1 \quad Out_1 \leftarrow A_1 \times vv_1
                                                                                                  Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
                                                                                                                                                    Out_0 += A_1 \times W_1 Out_1 += A_1 \times W_1
Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                 Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                                                                                                                    Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
                                                                                                   Out_0 += A_2 \times W_2 Out_1 += A_2 \times W_2
Out_0 += A_3 \times W_3 \quad Out_1 += A_3 \times W_3
                                                 Out_0 += A_3 \times W_3 Out_1 += A_3 \times W_3
                                                                                                   Out_0 += A_3 \times W_3 \quad Out_1 += A_3 \times W_3
                                                                                                                                                    Out_0 += A_3 \times W_3 \quad Out_1 += A_3 \times W_3
Out_0 += A_4 \times W_4 Out_1 += A_4 \times W_4
                                                 Out_0 += A_4 \times W_4 Out_1 += A_4 \times W_4
                                                                                                   Out_0 += A_4 \times W_4 Out_1 += A_4 \times W_4
                                                                                                                                                    Out_0 += A_4 \times W_4 Out_1 += A_4 \times W_4
```

When we started we assumed: Everyone in industry will target parallelism and data blocking first.

We wanted to be ready with the next technologies once these two are "perfected".

We targeted "behavior" based optimizations: what ML does at runtime that we can take advantage of. The programmer specifies a way to compute a result, as long as we produce the same result we can play tricks at the hardware level to improve efficiency. Lots of experience from CPUs: caches, branch prediction, etc.

Outo

 $Out_0 += A_3 \times W_3$ $Out_1 += A_3 \times W_3$ $Out_0 += A_3 \times W_3$ $Out_1 += A_3 \times W_3$ $Out_0 += A_3 \times W_3$ $Out_1 += A_3 \times W_3$

 $Out_{0} += A_{4} \times W_{4} \quad Out_{1} += A_{4} \times W_{4} \quad Out_{0} += A_{4} \times W_{4} \quad Out_{1} += A_{4} \times W_{4} \quad Out_{0} += A_{4} \times W_{4} \quad Out_{1} += A_{4} \times$

Technology #1: Memory Transfers: Shapeshifter

On- vs. Off-Chip

Energy: ~100x

Latency: ~50x

Compute/Watt is the primary design constraint

Conventional Approach: One Datawidth to Rule them All

OUT += A X W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A X W	OUT += A
OUT += A X W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A x W	OUT += A
OUT += A X W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A X W	OUT += A
OUT += A x W	OUT += A X W	OUT += A X W	OUT += A
OUT += A X W	OUT += A X W	OUT += A x W	OUT += A
OUT += A X W	OUT += A X W	OUT += A X W	OUT += A
OUT += A X W	OUT += A X W	OUT += A X W	OUT += A
OUT += A X W	OUT += A X W	OUT += A x W	OUT += A
OUT += A X W	OUT += A X W	OUT += A X W	OUT += A

Pick a datatype that fits the range of all values... this proves excessive for ML workloads...

Conventional Data Transfers: Fixed Size Container Per Value

e.g., transfer 16 values at a time all using 8b each

Conventional Data Transfers: Fixed Size Container Per Value

e.g., transfer 16 values at a time all using 8b each

Most ML values can fit in much narrow containers

$$Out_{0} += A_{0} \times W_{0} \quad Out_{1} += A_{0} \times W_{0} \quad Out_{0} += A_{0} \times W_{0} \quad Out_{1} += A_{0} \times W_{0} \quad Out_{0} += A_{0} \times W_{0} \quad Out_{1} += A_{0} \times$$

DPRed: Making Typical Activation and Weight Values Matter In Deep Learning Computing, Delmas et al., https://arxiv.org/abs/1804.06732

Value Distribution During Inference

Far from Uniform: Few Values -> Most Frequent

Cumulative Distribution of Values

Technology #1: Memory Transfers: Shapeshifter

Encode/Decode Value to/from Memory

Shapeshifter: Make Typical Values Matter

Container adapts to value content. Weights and activations.

Memory Transfers

Conventional

Shapeshifter

Shapeshifter Effectiveness

Shapeshifter: Life is not always fair

This may happen often depending on the network

APACK

12 0 23 45 67 127 18 22 88 103 234 22 1 0 2 3 5 8 19 9 0 9 8 20 28 220 20 20 244 223 2 1 1 0 1 0 19 9 0 9 8 20 28 220 20 20 244 223 2 1 1 0 1 0 12 0 23 45 67 127 18 22 88 103 234 22 1 0 2 3 5 8 234 22 1 0 2 3 5 8 9 8 20 28 220 20 20 244 223 2 1 1 0 1 0 12 0 23 45 19 9 0 67 127 18 22 88 103

. . . .

28 220 20 20 244 223 2 1 1 0 1 0 234 22 1 0 2 3 19 9 0 67 127 18 22 88 103 5 8 9 8 20 12 0 23 45

0.1023846489202837462829838393....333292

12 0 23 45 67 127 18 22 88 103 234 22 1 0 2 3 5 8 19 9 0 9 8 20 28 220 20 20 244 223 2 1 1 0 1 0 19 9 0 9 8 20 28 220 20 20 244 223 2 1 1 0 1 0 12 0 23 45 67 127 18 22 88 103 234 22 1 0 2 3 5 8 234 22 1 0 2 3 5 8 9 8 20 28 220 20 20 244 223 2 1 1 0 1 0 1 2 0 23 45 19 9 0 67 127 18 22 88 103

. . . .

28 220 20 20 244 223 2 1 1 0 1 0 234 22 1 0 2 3 19 9 0 67 127 18 22 88 103 5 8 9 8 20 12 0 23 45

0.1023846489202837462829838393....333292

 $0.1101010101010101010111110101...111001_{(2)}$

Frequent values → less than ONE BIT

Technology #1: Memory Transfers: Shapeshifter

Encode/Decode Value to/from Memory

APACK: Lossless Compression for fixed-point

- Based on Arithmetic Coding
 - Encode a TENSOR with unique REAL number
- Precision needed:
 - Sequence Length
 - Frequency of values
- Outline:
 - Classical Arithmetic Coding
 - Too expensive too slow
 - Apack

Key Idea: Encode Values According to Frequency

- Transparently encode/decode
- Lossless
- Weights in advance / Activations Profiling

Value Distribution During Inference

Far from Uniform: Few Values -> Most Frequent

Cumulative Distribution of Values

Values change with input → Distributin not so much

Classical Arithmetic Coding

Symbols w/ Frequencies

Classical Arithmetic Coding

- #1 Range/Probability Assignment
 - All the info needed to encode decode

Encoding ABA

Incoming Symbol: A

Encoding the first value: A

After Encoding A

How our range table looks

Encoding the second value: B

Enconding the B

Incoming Symbols: AB

Encoding the third value: A

Challenges with Arithmetic Coding

- Arbitrary Precision Arithmetic
 - Multiplications and Divisions
- Expensive Range Table
 - 256 entries for 8b fixed-point
- Low Bandwidth
 - 1 bit per invocation

V = PREFIX + OFFSET

$$0000\ 0000 = 0$$

$$0101\ 0111 = 01000\ 0000+1\ 0111$$

Table Generation: Done in Advance

IDX	v_min	v_max	OL	tlow	thigh	P
0	0x00	0x03	2	0x000	0x1EB	0.4795
1	0x04	0x07	2	0x1EB	0x229	0.0605
2	0x08	0x0F	3	0x229	0x238	0.0146
3	0x10	0x3F	6	0x238	0x23A	0.0020
4	0x40	0x4F	4	0x23A	0x23A	0.0000
5	0x50	0x5F	4	0x23A	0x23A	0.0000
6	0x60	0x6F	4	0x23A	0x23A	0.0000
7	0x70	0x7F	4	0x23A	0x23A	0.0000
8	0x80	0x8F	4	0x23A	0x23A	0.0000
9	0x90	0x9F	4	0x23A	0x23A	0.0000
10	0xA0	0xAF	4	0x23A	0x23A	0.0000
11	0xB0	0xBF	4	0x23A	0x23A	0.0000
12	0xC0	0xCF	4	0x23A	0x23A	0.0000
13	0xD0	0xF3	6	0x23A	0x23C	0.0020
14	0xF4	0xFB	3	0x23C	0x276	0.0566
15	0xFC	0xFF	2	0x276	0x3FF	0.3838

Table Generation: Done in Advance

		، ۱		- r		1
IDX	v_min	v_max	OL	tlow	thigh	Р
0	0x00	0x03	2	0x000	0x1EB	0.4795
1	0x04	0x07	2	0x1EB	0x229	0.0605
2	0x08	0x0F	3	0x229	0x238	0.0146
3	0x10	0x3F	6	0x238	0x23A	0.0020
4	0x40	0x4F	4	0x23A	0x23A	0.0000
5	0x50	0x5F	4	0x23A	0x23A	0.0000
6	0x60	0x6F	4	0x23A	0x23A	0.0000
7	0x70	0x7F	4	0x23A	0x23A	0.0000
8	0x80	0x8F	4	0x23A	0x23A	0.0000
9	0x90	0x9F	4	0x23A	0x23A	0.0000
10	0xA0	0xAF	4	0x23A	0x23A	0.0000
11	0xB0	0xBF	4	0x23A	0x23A	0.0000
12	0xC0	0xCF	4	0x23A	0x23A	0.0000
13	0xD0	0xF3	6	0x23A	0x23C	0.0020
14	0xF4	0xFB	3	0x23C	0x276	0.0566
15	0xFC	0xFF	2	0x276	0x3FF	0.3838

8b 3b 10b

0.11010101010101010...1011110101 (2)

 $0.11010101010101010...10111101011111001_{(2)}$

APACK Encoder

Hardware

- Fixed-Point
- 10b x 16b Multiplications and 16b comparisons
- A few leading 1
- One value per "cycle"
- Use multiple to sustain BW needed
- Externally: Sequential Streams

APACK Activations

Mokey

Enabling Narrow Fixed-Point Inference

for Out-of-the-Box Floating-Point Transformer Models

Challenges

Weights

Activations

Memory: Performance & Energy Bottleneck

Challenges

Mokey: BERT's Better Self

Mokey

Mokey HW Accelerator

Vs. Tensor Cores: 15x Faster + 100x Energy Efficient

Mokey Memory Compression

For Tensor Cores:

Off-chip Only: 4x Faster + 8x Energy Efficient

Off- and on-chip*: 10x Faster + 50x Energy Efficient

Scale and Shift is All You Need

Original

$$A \times W += 0.2 \times 0.7 = 0.14$$

Dictionary Quant.

Mokey Quant.

$$A = I$$
 $W = II$

How?

$$A \times W += I \times II = 0.14$$

Index	Value		
I	0.05		
II	0.35		
VI	1.97		
VII	2.6		

Golden Dict. (GD)

Index	Value		
I	0.05		
II	0.35		
VI	1.97		
VII	2.6		

Golden Dict. (GD)

$$GD = a^i + b$$

Evaluation

- > FP16 Tensor Cores baseline
- Wide range of on-chip buffers
- ➤ 110M 750M parameter models
- Custom cycle accurate simulator.
 - o DRAMsim3: Dual Channel DDR4-3200
- On-chip Memory: CACTI
- Synthesis: Synopsis Design Compiler
 - o 65nm TSMC 1Ghz
- Layout: Cadence Innovus
- Signal Activity: Modelsim
- Power Estimation: Cadence Innovus

_Base_MNLI _Large_MNLI _Large_SQuAD RTa_Large_MNLI RTa_Large_SQuAD RTa_XL_MNLI

MEAN

Memory Compression and more in paper ©

Schrödinger's FP Dynamic Adaptation of Floating-Point Containers During Training

Gradient Descent – Overview

Loss function

$$w_i^l = w_i^l - LR \times \frac{\partial L}{\partial w_i^l}$$

The Precision Problem

FP32 Data Type

Automatic Data Type

Datatype – Does it work?

Datatype – Does it work?

BitChop

BitChop - Moving Average Policy

Exponential decay factor and dynamic threshold:

$$Mavg_{i+1} = Mavg_i + \alpha \times (L_i - Mavg_i)$$

- Full precision on learning rate change
- 4 bits mantissa on average
 - Slight volatility in accuracy
- 75% mantissa footprint reduction on average

$$ErrAvg_i = \frac{\sum_{n=i-N}^{i-1} \frac{|Mavg_n - L_n|}{L_n}}{N}$$

$$\epsilon_i = Mavg_i \times ErrAvg_i$$

$$bitlength_{i+1} = \begin{cases} bitlength_i - 1, & \text{when } Mavg_i > L_i + \epsilon \\ bitlength_i, & \text{when } L_i - \epsilon_i \leq Mavg_i \leq L_i + \epsilon_i \\ bitlength_i + 1, & \text{when } Mavg_i < L_i - \epsilon \end{cases}$$

BitChop - Moving Average Policy

Datatype – Does it work?

Table 2: Performance and Energy Efficiency gains in comparison w/ FP32

	Performance			Energy Efficiency		
Network	Bfloat 16	$SFP_{\mathbf{Q}M}$	SFP_{BC}	Bfloat 16	SFP_{QM}	SFP_{BC}
ResNet18	$1.53 \times$	$2.30 \times$	$2.09 \times$	2.00×	$6.12 \times$	$4.22 \times$
MobileNet V3 Small	$1.72 \times$	$2.37 \times$	$2.14 \times$	$2.00 \times$	$3.95 \times$	$3.60 \times$

Summary

- HW and SW that improves performance and energy efficiency
- w/o requiring any changes to the models
- Rewards further optimizations
- Apack
- Mokey
- Schrödinger's FP