# Alpha optimization formula, simulation and real data analysis

2019-10-08

# Contents

| Purity calculation and alpha optimization |   |
|-------------------------------------------|---|
| Simulation                                | 1 |
| Data generation                           |   |
| Simulation Setting                        | 1 |
| LME estimation                            | 4 |
| Result                                    | 4 |
| Embarc data analysis                      | 7 |
| Covariates                                | 7 |
| Purity with one covaraite                 | - |
| Purity with two covaraites                | ٤ |
| Purity with selected three covaraites     |   |
| Purity with all covariates                |   |

# Purity calculation and alpha optimization

More informaiton please see the other pdf file.

# Simulation

Data generation

# Simulation Setting

#### Sample size

• 200 subjects in each group

Angle between  $\Gamma_1$  and  $\Gamma_3$ 0, 30, 60, 90, 120, 150, 180 degrees.

#### **Dimensions**

p = 4

#### **Parameters**

- Each subject has 7 time points:  $2 \times 200 \times 7 = 2800$
- True  $\alpha = [0.5, 0.5, 0.5, 0.5]_4$
- $\beta_{pbo} = [0, 3, 0.9]', \beta_{drg} = [0, 3.1, 1]'$
- $\Gamma_{drg} = [0, 1, 0]'$ , angle between the two  $\Gamma$  lines can be 0, 30, 60, 90, 120, 150, and 180 degrees.
- $|\Gamma_{drg}| = |\Gamma_{pbo}| = 1$

#### LME estimation

Renew:

- Use Lagrange multiplier to calculate the purity with restriction.
- Fit one LME to make the  $D_1 = D_2$

If we want to set two  $\hat{D}$  to be the same in two groups to make the model more stable (less variance), we could fit the following LME model:

$$Y_{i} = S(\beta_{i} + b_{i} + \Gamma(\alpha'_{i}x_{i})) + \epsilon = S(\beta_{i} + \Gamma(\alpha'_{i}x_{i})) + Sb_{i} + \epsilon$$

$$Y = S(\beta_{1} + \Gamma_{1}(\alpha'x))trt + S(\beta_{2} + \Gamma_{2}(\alpha'x)) + Sb + \epsilon$$

$$= S(\beta_{1}trt + \beta_{2} + \Gamma_{1}(\alpha'x)trt + \Gamma_{2}(\alpha'x)) + Sb + \epsilon$$

That is,

- $\beta_{drg} = \beta_1 + \beta_2$ ,  $\beta_{pbo} = \beta_2$
- $\Gamma_{drg} = \Gamma_1 + \Gamma_2$ ,  $\Gamma_{pbo} = \Gamma_2$
- $D = D_1 = D_2$

For example:

Fit the model with one D

```
##
                    Estimate Std. Error
                                           t value
                 18.45562018 1.02759256 17.9600563
## (Intercept)
## tt
                 -1.42921411 0.58851727 -2.4284998
## I(tt^2)
                  0.10956748 0.06803916
                                        1.6103590
## W
                  0.91008250 1.32269030
                                         0.6880541
## trt
                                        0.1516027
                  0.10117127 0.66734489
## tt:W
                  0.74812405 0.75736632 0.9877968
## I(tt^2):W
                 -0.08328161 0.08753071 -0.9514559
## tt:trt
                 -0.43901264 0.38206665 -1.1490473
## I(tt^2):trt
                  0.03136069 0.04416680 0.7100513
## W:trt
                 -0.25010190 0.80665218 -0.3100492
```

```
-0.50402961 0.46231424 -1.0902316
## I(tt^2):W:trt 0.05941113 0.05342908 1.1119623
Results:
fit_cov = as.matrix(fixef(fit))
   beta1 = fit_cov[c("(Intercept)", "tt", "I(tt^2)"),] +
      fit_cov[c("trt", "tt:trt", "I(tt^2):trt"),] * 2
   beta2 = fit cov[c("(Intercept)", "tt", "I(tt^2)"),] +
      fit_cov[c("trt", "tt:trt", "I(tt^2):trt"),]
   gamma1 = fit_cov[c("W","tt:W", "I(tt^2):W"),] +
      fit_cov[c("W:trt", "tt:W:trt", "I(tt^2):W:trt"),] * 2
    gamma2 = fit_cov[c("\overline{W}","tt:\overline{W}", "I(tt^2):\overline{W}"),] +
      fit_cov[c("W:trt", "tt:W:trt", "I(tt^2):W:trt"),]
 beta1
## (Intercept)
                               I(tt^2)
## 18.6579627 -2.3072394
                             0.1722889
as.matrix(VarCorr(fit)$subj)[1:3, 1:3]
               (Intercept)
                                   tt
                                           I(tt^2)
## (Intercept)
                 8.8805335 1.9034257 -0.22562589
## tt
                 1.9034257 2.4155154 -0.24581374
## I(tt^2)
                -0.2256259 -0.2458137 0.02911379
Fit the model with two Ds
  dat_pbo_est = dat_try[dat_try$trt == 1, ]
 dat_drg_est = dat_try[dat_try$trt == 2, ]
 fit_pbo_est = lmer(y ~ tt + I(tt^2) + W + W * tt +
                                  W * I(tt^2) + (tt+I(tt^2)|subj),
                                data = dat_pbo_est, REML = FALSE)
 fit_drg_est = lmer(y ~ tt + I(tt^2) + W + W * tt +
                                  W * I(tt^2) + (tt+I(tt^2)|subj),
                                data = dat_drg_est, REML = FALSE)
  beta1 = as.matrix(fixef(fit_drg_est))[1:3]
  D1 = as.matrix(VarCorr(fit_drg_est)$subj)[1:3, 1:3]
  D2 = as.matrix(VarCorr(fit pbo est)$subj)[1:3, 1:3]
 beta1
## [1] 18.657981 -2.306764 0.172161
 D1
               (Intercept)
                                           I(tt^2)
                                   tt
## (Intercept)
                 8.8801087 2.7590253 -0.36004432
                 2.7590253 1.0313445 -0.10484244
## tt
## I(tt^2)
                -0.3600443 -0.1048424 0.01488122
D2
               (Intercept)
                                           I(tt^2)
                                   tt
                 9.2703539 0.9234027 -0.08391710
## (Intercept)
                 0.9234027 3.8175860 -0.39147387
## tt
```

## I(tt^2) -0.0839171 -0.3914739 0.04423488

# Result

| angels | cos | true_KL | KL    | KL2   |
|--------|-----|---------|-------|-------|
| 0      | 1   | 0.17    | 0.24  | 0.20  |
| 30     | 1   | 1.27    | 1.78  | 1.59  |
| 60     | 1   | 3.76    | 4.75  | 4.50  |
| 90     | 1   | 7.69    | 9.49  | 9.38  |
| 120    | 1   | 13.93   | 17.39 | 16.94 |
| 150    | 1   | 21.99   | 27.04 | 26.68 |
| 180    | 1   | 28.96   | 35.75 | 35.25 |

#### Where

• angles: the angle between  $\Gamma_1$  and  $\Gamma_2$ 

• cos: the cosine similarity.

• true\_KL: the true purity

ullet KL: the mean estimated purity with two D matrix estimation

- KL2: the mean estimated purity with one D matrix estimation

#### ${\bf Histograms}$

- Estimated purity with two D matrix estimation



- Estimated purity with one D matrix estimation



#### Purity with different number of covariaes.

I also simulate a dataset with the same parameters settings, while

- sample size for each group is 1000
- Angle between  $\Gamma_1$  and  $\Gamma_2$  is 60
- p = 10

With different number of covariates added in the model, will the purity have difference? Will the purity increase?

With one covariate included:

| Covariate name | Purity with 2D | Purity with 1D |
|----------------|----------------|----------------|
| X1             | 30.61          | 0.39           |
| X2             | 30.78          | 0.47           |
| X3             | 30.62          | 0.43           |
| X4             | 30.59          | 0.38           |
| X5             | 30.59          | 0.35           |
| X6             | 30.84          | 0.55           |
| X7             | 30.59          | 0.41           |
| X8             | 30.74          | 0.38           |
| X9             | 30.68          | 0.50           |

| Covariate name | Purity with 2D | Purity with 1D |
|----------------|----------------|----------------|
| X10            | 30.71          | 0.39           |

With more covariates included:

|       | Two Cov | Four Cov | Eight Cov | Ten Cov |
|-------|---------|----------|-----------|---------|
| Two D | 30.72   | 31.34    | 34.24     | 41.46   |
| One D | 0.92    | 2.40     | 12.11     | 41.30   |

# Embarc data analysis

## Covariates

We would like to focus on the continuous variables first. Therefore, the covarites with level larger than 5 are included.

The covariates names are:

• "age\_evaluation", "hamd17\_baseline", "dur\_MDE", "age\_MDE", "axis2", "anger\_attack" , "anxious" As well as the behavior covariates:

| Covariate name | Description                                                                     |
|----------------|---------------------------------------------------------------------------------|
| w0_4165        | A not B Interference Reaction Time in negative trials                           |
| $w0_{4167}$    | A not B Interference Reaction Time in non-negative trials                       |
| $w0_{4163}$    | A not B Interference Reaction Time in all trials                                |
| $w0_{4162}$    | A not B Itotal number of correct trials                                         |
| $w0_{4169}$    | Median Reaction time for correct trials in the Choice reaction time task        |
| $w0_{1844}$    | Number of valid recalled words in the Word Fluency task                         |
| $w0_{1916}$    | Flanker Accuracy, an Accuracy effect is a measure of interference effects;      |
|                | Higher scores are indicative of increased interference effects (i.e., reduced   |
|                | cognitive control).                                                             |
| w0 1915        | Flanker Reaction Time, a measure of interference effects; Higher scores are     |
| _              | indicative of increased interference effects (i.e., reduced cognitive control). |
| w0 1920        | Accuracy effect, it measures post-conflict behavioral adjustments; Higher       |
| _              | values indicate better cognitive control                                        |

# Purity with one covaraite

| covariates      | Purity with 2D | Purity with 1D |
|-----------------|----------------|----------------|
| age evaluation  | 1.602          | 0.651          |
| hamd17 baseline | 0.377          | 0.000          |
| dur_MDE         | 1.352          | 0.166          |
| $age\_MDE$      | 1.710          | 0.450          |
| axis2           | 1.402          | 0.304          |
| anger_attack    | 1.188          | 0.152          |
| anxious         | 0.423          | 0.251          |
| $w0\_4165$      | 1.253          | 0.238          |

| covariates  | Purity with 2D | Purity with 1D |
|-------------|----------------|----------------|
| w0_4167     | 0.000          | 0.257          |
| $w0\_4163$  | 0.000          | 0.179          |
| $w0\_4162$  | 1.543          | 0.634          |
| $w0\_4169$  | 1.214          | 0.000          |
| $w0_{1844}$ | 1.232          | 0.167          |
| $w0_{1916}$ | 1.959          | 0.350          |
| $w0_{1915}$ | 2.130          | 0.375          |
| $w0\_1920$  | 1.267          | 0.193          |

## Purity with two covaraites

Then randomly select two covariates, i.e, "w0\_1916" and "w0\_1915", the purity is:

With two D,  $D_1, D_2$ 

## [1] -2.358486

With one D

## [1] -0.6529398

# Purity with selected three covaraites

Then randomly select three covariates, i.e, i.e. " $w0\_4163$ " " $w0\_1844$ " " $w0\_1915$ ", the purity is:

With two D,  $D_1, D_2$ 

## [1] -2.273696

With one D

## [1] -0.6653502

## Purity with all covariates

With two D,  $D_1, D_2$ 

## [1] -2.13217

With one D

## [1] -3.175601