Examenul de bacalaureat național 2020 Proba E. c) Matematică *M_mate-info* BAREM DE EVALUARE ȘI DE NOTARE

Test 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

		
1.	$0 < \sqrt{2} - 1 < 1 \Rightarrow 0 < \left(\sqrt{2} - 1\right)^2 < 1$	3 p
	Partea întreagă a numărului real x este 0	2 p
2.	$f(x) = y \Leftrightarrow x^2 - 2x = 2x - 3 \Leftrightarrow x^2 - 4x + 3 = 0$	3 p
	x=1 sau $x=3$	2 p
3.	$4^{x-2} = 4^{2x-7} \Leftrightarrow x - 2 = 2x - 7$	3 p
	x = 5	2p
4.	Numărul submulțimilor cu trei elemente ale mulțimii A este egal cu $C_{10}^3 =$	3 p
	$=\frac{10!}{3!(10-3)!}=120$	2 p
5.	$\overrightarrow{AC} = 2\overrightarrow{AB} \Leftrightarrow B$ este mijlocul segmentului AC , deci $2 = \frac{1 + x_C}{2}$ și $5 = \frac{3 + y_C}{2}$	3 p
	$x_C = 3 \text{ si } y_C = 7$	2p
6.	$\cos(\angle BAC) = -\sin BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos(\angle BAC), \det BC = \sqrt{7}$	3p
	$P_{\Delta ABC} = AB + BC + AC = 5 + \sqrt{7}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(2) = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 1 & -2 & 0 \end{pmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 1 & -2 & 0 \end{vmatrix} =$	2p
b)	=0+0+0-3-(-4)-0=1	3p
b)	$\det(A(a)) = a^2 - 3$, pentru orice număr real a	2 p
	Pentru orice număr rațional q , $\det(A(q)) \neq 0$, deci matricea $A(q)$ este inversabilă	3 p
c)	Pentru orice număr rațional p , $B(p) = 2 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & p \\ -1 & -p & 0 \end{pmatrix}$, $B(p)B(p) = -4 \begin{pmatrix} 1 & p & 0 \\ p & p^2 & 0 \\ 0 & 0 & 1+p^2 \end{pmatrix}$ și $B(p)B(p)B(p) = -4(p^2+1)B(p)$	3 p
	$(1-4p^2)B(p) = O_3 \Leftrightarrow p = -\frac{1}{2}$ sau $p = \frac{1}{2}$, care convin	2p
2.a)	$\frac{1}{3} * \frac{1}{3} = \frac{\frac{1}{3} \cdot \frac{1}{3}}{2 \cdot \frac{1}{3} \cdot \frac{1}{3} - \frac{1}{3} - \frac{1}{3} + 1} = $ $1 9 1$	3 p
	$=\frac{1}{9}\cdot\frac{9}{5}=\frac{1}{5}$	2p

b)	$x * \frac{1}{2} = \frac{x \cdot \frac{1}{2}}{2 \cdot x \cdot \frac{1}{2} - x - \frac{1}{2} + 1} = \frac{x \cdot \frac{1}{2}}{\frac{1}{2}} = x, \text{ pentru orice } x \in G$	2p
	$\frac{1}{2} * x = \frac{\frac{1}{2} \cdot x}{2 \cdot \frac{1}{2} \cdot x - \frac{1}{2} - x + 1} = \frac{x \cdot \frac{1}{2}}{\frac{1}{2}} = x = x * \frac{1}{2}, \text{ pentru orice } x \in G \text{ și, cum } \frac{1}{2} \in G, \text{ obținem că}$ $e = \frac{1}{2} \text{ este elementul neutru al legii de compoziție ,,*"}$	3 p
c)	$f(x*y) = \frac{2xy - x - y + 1}{xy} - 1 = \frac{xy - x - y + 1}{xy} = \frac{(x - 1)(y - 1)}{xy} = \frac{x - 1}{x} \cdot \frac{y - 1}{y} = f(x)f(y),$ pentru orice $x, y \in G$, deci f este un morfism de la grupul $(G,*)$ la grupul (M, \cdot)	3p
	f este continuă, f este strict descrescătoare pe $(0,1)$, $\lim_{x\to 0} f(x) = +\infty$ și $\lim_{x\to 1} f(x) = 0$, deci f este bijectivă $\Rightarrow f$ este un izomorfism de la grupul $(G,*)$ la grupul (M,\cdot)	2p

SUBI	SUBIECTUL al III-lea (30 de pu	
1.a)	$f'(x) = x' \cdot \ln x + x \cdot (\ln x)' =$	2p
	$= \ln x + x \cdot \frac{1}{x} = 1 + \ln x, \ x \in (0, +\infty)$	3 p
b)	Tangenta la graficul funcției f în $M(m, f(m))$ este paralelă cu dreapta de ecuație	2p
	$y = 2x \Leftrightarrow f'(m) = 2$	2p
	$1 + \ln m = 2 \Rightarrow m = e$, care convine	3 p
c)	$f'(x) = 0 \Leftrightarrow x = \frac{1}{e}, f'(x) < 0$, pentru orice $x \in \left(0, \frac{1}{e}\right) \Rightarrow f$ strict descrescătoare pe $\left(0, \frac{1}{e}\right)$ și	
	$f'(x) > 0$, pentru orice $x \in \left(\frac{1}{e}, +\infty\right) \Rightarrow f$ strict crescătoare pe $\left(\frac{1}{e}, +\infty\right)$, deci $f(x) \ge f\left(\frac{1}{e}\right)$,	3 p
	pentru orice $x \in (0, +\infty)$	
	$x \ln x \ge -\frac{1}{e}$, deci $x \ln x + \frac{1}{e} \ge 0$, pentru orice $x \in (0, +\infty)$	2 p
2.a)	$\int_{0}^{\frac{\pi}{2}} \sin x f(x) dx = \int_{0}^{\frac{\pi}{2}} \sin x \cos x dx = \frac{1}{2} \sin^{2} x \left \frac{\pi}{2} \right = 0$	3 p
	$=\frac{1}{2}(1-0)=\frac{1}{2}$	2 p
b)	$= \frac{1}{2}(1-0) = \frac{1}{2}$ $\int_{0}^{x} f(t)dt = \int_{0}^{x} \cos t dt = \sin t \Big _{0}^{x} = \sin x, \text{ pentru orice număr real } x$	2 p
	$\lim_{x \to +\infty} \frac{1}{x} \int_{0}^{x} f(t) dt = \lim_{x \to +\infty} \frac{1}{x} \cdot \sin x = 0$	3 p
c)	$\frac{\pi}{2}$	
	$\left x \in \left[0, \frac{\pi}{2} \right], \ 0 \le \cos x \le 1 \Rightarrow 0 \le \cos^n x \le 1 \Rightarrow I_{n+1} - I_n = \int_0^2 \cos^n x (\cos x - 1) dx \le 0 \Rightarrow I_{n+1} \le I_n , \right $	2 p
	pentru orice număr natural nenul n , deci șirul $(I_n)_{n\geq 1}$ e descrescător	
	$x \in \left[0, \frac{\pi}{2}\right] \Rightarrow \cos^n x \ge 0 \Rightarrow I_n \ge 0$, pentru orice număr natural nenul n , deci șirul $\left(I_n\right)_{n \ge 1}$ este	3 p
	mărginit inferior, de unde obținem că șirul $(I_n)_{n\geq 1}$ este convergent	