Sample & Hold Circuits

Insoo Kim, Kyusun Choi

Mixed Signal CHIP Design Lab.

Department of Computer Science & Engineering
The Pennsylvania State University

Basic Sample and Hold Circuit Configuration

Concept

MOSFET S&H Circuit

Insoo Kim

Design Issues of CMOS S&H

- Sampling Moment Distortion
 - Finite Clock rising/falling time results in distortion

$$\Delta t_s = 2 \frac{a}{V_{clock}} t_{rise}$$

- Clock Feed-through
 - Overlap cap. of MOS Switch creates an sampling error during clock transition time

- MOS Switch Charge Injection
 - Some charge in the MOS channel flow to Source and Drain, then result in an error.

 $\Delta Q = C_{ox}(V_{GS} - V_{Th}), \qquad \Delta V_{hold} = \frac{\Delta Q}{C_H}$

Solutions for Reducing Sampling Distortion

Differential S&H Circuit

- Sample Clock Bootstrapping
 - Sampling distortion can be reduced by increasing clock amplitude

Sample Clock Bootstrap Circuits (I)

Basic clock bootstrap circuit

Simulation Result

Sample Clock Bootstrap Circuits (II)

Differential sampling clock bootstrap circuit

Simulation Result

Signal Dependent Clock Bootstrapping (I)

- The problem of clock bootstrap circuit
 - Vgs of MOS switch can vary according to the input voltage level
 - → Ron of MOS Switch also vary
 - → It can cause an error in holding voltage
- Signal Dependent clock bootstrap circuit

Insoo Kim

Signal Dependent Clock Bootstrapping (II)

Modified Circuit

Low Signal Feed-through Switch

Schematic

Simulation Result

Charge injection Compensation Switch (I)

Simulation Result

Charge injection Compensation Switch (II)

3/14/2011

Simulation Result

Actual Implementation S&H Circuits

Double Buffered S&H Configuration

Advantages:

- Obtain a low droop rate during holding mode
- Stability is determined by the stabilities of OP Amps

Disadvantages:

- OP Amps offset can constrain the accuracy of SHA

Double Buffered S&H Circuit with CMOS Switch

Schematic

Insoo Kim

Double Buffered S&H Circuit with CMOS Switch

Simulation Result

Feedback Improved S&H Circuit

Advantages:

- Offset free → More accurate than double buffered SHA

Disadvantages:

- Common Mode Rejection of the Input OP amp must be high
- Special Care must be taken to obtain stability of SHA
- Needs a special circuitry to stabilize the input amplifier during the holding mode

(cont'd) Feedback Improved S&H Circuit

Simple stabilization circuit for input amplifier

(cont'd) Feedback Improved S&H Circuit

Simulation Result

Integrating S&H Circuit

Advantages:

- Switching moment and charge feed-through can be controlled very well

Disadvantages:

- Common Mode Rejection of the Input OP amp must be high
- Special Care must be taken to obtain stability of SHA
- Needs a special circuitry to stabilize the input amplifier during the holding mode

S&H Circuit using Miller Cap.

Switched Capacitor S&H Circuit

Basic Configuration

Common implementation for pipelined ADCs

References

- Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters- 2nd Edition," Kluwer Academic Publishers, 2003.
- B. Razavi, "Principles of Data Conversion System Design," IEEE Press, 1995.