SAE Image processing : combinaison d'images spectrales des télescopes spatiaux

Rémi Cozot & Samuel Delepoulle

6 janvier 2025

Objet de la SAÉ

Développer un logiciel qui permette de :

- télécharger des images astronomiques ;
- afficher les résultats ;
- mixer les canaux de différentes longueurs d'onde pour visualiser des objets avec des combinaisons personnalisées.

Plan de la présentation :

- 1. Contexte scientifique
- 2. Technique de la capture multi-spectrale
- 3. Comment accéder aux données/images
- 4. Organisation de la SAÉ

Partie I

Contexte Scientifique

Introduction

Les télescopes spatiaux multispectraux sont des instruments scientifiques placés en orbite autour de la Terre ou dans l'espace lointain pour observer le cosmos à travers différentes longueurs d'onde : visible, infrarouge, ultraviolet, rayons X, et plus.

Leur missions principales

- approfondir notre compréhension de l'univers
- répondre aux grandes questions scientifiques
- produire des images du cosmos

Le Télescope Spatial Hubble

Objectif: Observer l'univers dans le spectre visible, l'ultraviolet et l'infrarouge proche. **Applications**:

- Étude des galaxies lointaines.
- Observation des nébuleuses et amas d'étoiles.
- Contrainte des paramètres cosmologiques (expansion de l'univers).

Hubble Space Telescope

Observation du rayonnement cosmique

Objectif: Étudier l'origine et l'évolution de l'univers en observant le rayonnement cosmique. Exemple : le télescope **Planck**. **Applications**:

- Étude de la structure à grande échelle de l'univers.
- Mesure de la densité de matière et d'énergie.
- Enregistre les micro-ondes (30 à 857 GHz).

Observation dans l'infrarouge

Objectif: Observer les étoiles et galaxies cachées derrière des nuages de poussière cosmique. Exemple: James Webb Space Telescope (JWST). Applications:

- Étude des premières galaxies.
- Formation des systèmes planétaires.

Observation dans les rayons X

Objectif: Étudier les phénomènes énergétiques tels que les trous noirs et les supernovas. Exemple: **Chandra X-ray**

- Observatory. Applications :Étude des trous noirs supermassifs.
 - Analyse des explosions stellaires.

Observation des exoplanètes

Objectif: Identifier et caractériser les planètes autour d'autres étoiles. Exemple: Kepler Space Telescope. Applications:

- Détection des planètes habitables.
 - Analyse des atmosphères planétaires.

Conclusion

Les télescopes spatiaux multispectraux sont essentiels pour :

- Capturer des informations de l'univers à travers différentes longueurs d'onde.
- Répondre à des questions fondamentales sur l'origine et l'évolution de l'univers.
- Découvrir de nouveaux objets célestes et phénomènes.

Leur diversité technologique permet de combiner les observations pour une vision globale du cosmos.

Partie II

Techniques de capture multi-spectrale

Introduction

- La couleur est importante (surtout pour les humains !).
- Problème : par leur fonctionnement physique, les capteurs ne sont sensibles qu'à la lumière (plus ou moins indépendamment de la longueur d'ondes)
- ► Solution = filtrer
- Deux techniques courantes :
 - Ajouter une mosaïque de Bayer sur des capteurs.
 - Caméra monochromatique avec des filtres.

Mosaïque de Bayer

- Une grille de filtres couleur RGB sur un seul capteur.
- ► Généralement arrangée en 50% Vert, 25% Rouge et 25% Bleu.
- Les algorithmes de dématriçage reconstruisent l'image en couleur complète.
- Inconvénients : perte de sensibilité = pas optimal pour les télescopes.

Caméra monochromatique avec filtres

- Utilise un seul capteur pour capturer des images.
- Les filtres sont appliqués séquentiellement :
 - ex : pour les canaux Rouge, Vert et Bleu pour le visible
 - toute autre combinaison (Visible, IR, UV, rayons X...)
- La combinaison des images crée une image en couleur : "vraie" ou "fausse" couleur.

Figure: Comparaison entre une roue à filtre d'un télescope amateur et la roue du télescope spatial James Webb (JWST).

Défis pour les télescopes spatiaux

- Les caméras monochromatiques avec filtres sont préférées pour leur précision.
- Capteurs et filtres spécialisés pour différentes longueurs d'onde (ex : infrarouge, ultraviolet).
- Exemple : le télescope spatial James Webb capture plusieurs images (caractérisées par leur bande passante).

Avantages des filtres monochromatiques dans l'espace

- ► Résolution plus élevée grâce à la capture monocanal.
- Capacité à étudier des lignes spectrales spécifiques (ex : hydrogène-alpha).
- ► Flexibilité d'imagerie en combinant différents ensembles de filtres = votre travail.

En résumé

- ► La capture d'images en couleur implique des compromis entre précision et praticité.
- La mosaïque de Bayer est efficace mais moins précise.
- Les caméras monochromatiques avec filtres sont polyvalentes, notamment pour les applications scientifiques.
- Les télescopes spatiaux utilisent l'imagerie monochromatique pour le niveau de détail et de précision. .

Partie III

Comment accéder aux données/images

Contexte

Qu'est-ce que MAST ?

- MAST (Barbara A. Mikulski Archive for Space Telescopes) est l'archive des données des télescopes spatiaux.
- Gérée par le Space Telescope Science Institute (STScI).
- Contient des données de missions comme Hubble, TESS, Kepler, etc.
- Objectif : rendre les données accessibles à la communauté scientifique et au public.

Principales missions couvertes par MAST:

- Hubble Space Telescope (HST)
- Transiting Exoplanet Survey Satellite (TESS)
- Kepler et autres missions.

Comment sont classées les observations ?

- **Par mission**: Chaque télescope a une collection distincte.
- Par type d'observation : Images, spectres, courbes de lumière.
- Par programme d'observation : Programmes scientifiques spécifiques.
- Par objet céleste : Indexation des observations par objets (ex : étoiles, exoplanètes).

MAST permet une recherche avancée avec des requêtes pour affiner l'accès aux données.

Formats utilisés : FITS

FITS (Flexible Image Transport System) :

- Format standard pour les données astronomiques.
- Utilisé pour stocker des données numériques et des métadonnées.
- Organisé en headers (en-têtes) et data arrays (tableaux de données).

Exemple d'en-tête FITS :

```
\begin{array}{lll} \text{SIMPLE} &=& T\\ \text{BITPIX} &=& -32\\ \text{NAXIS} &=& 2\\ \text{NAXIS1} &=& 1024\\ \text{NAXIS2} &=& 1024\\ \text{FND} \end{array}
```

Cela décrit une image 2D de 1024x1024 pixels avec des données en 32 bits.

Cycle des données

Une observation du JWST :

- ▶ Une proposition scientifique
- Les données capturées par NIRCam sont traitées par le pipeline STScI.
- Le chercheur principal analyse les données et publie les résultats.
- ► Après la période d'exclusivité (1 an en général), les données sont rendues publiques pour d'autres analyses.

Structure des noms de fichiers JWST

Format général :

jwpppppppppppoee_ccc_nnnn.fits

Description des composants :

- jw : Indique le télescope James Webb Space Telescope.
- ppppppp : ID du programme (proposition ou projet d'observation).
- o : Numéro d'observation (1 chiffre).
- ee : ID d'exposition (2 chiffres, unique pour chaque capture).
- ccc : Identifiant lié au dithering ou au détecteur (3 chiffres).
- nnnn : Numéro de version ou étape de traitement (4 chiffres).
- .fits : Format de fichier scientifique standard.

Structure des noms de fichiers JWST

Exemple:

jw02731001001_02101_00001_nrca1.fits

- 02731 : Programme ID (proposition 2731).
- nrca1 : Instrument et détecteur (NIRCam, module A, détecteur 1).

Comment utiliser les données avec Python?

Outils nécessaires :

- astropy : Bibliothèque Python pour la gestion des fichiers FITS.
- astroquery : Utilitaire pour télécharger les données depuis MAST.
- matplotlib : Pour visualiser les données astronomiques.

Ressources (sur Moodle):

- imageWidgetPtQt6.zip : Pour afficher proprement une image en Qt
- Jeux de données : pour tester les algorithmes sans télécharger

Exemple: chargement et affichage?

Code minimal en Python pour charger et afficher une image FITS :

```
from astropy.io import fits
import matplotlib.pyplot as plt

# Charger le fichier FITS
data = fits.getdata('image.fits')

# Afficher l'image
plt.imshow(data, cmap='gray')
plt.colorbar()
plt.show()
```

Ce code charge une image FITS et l'affiche à l'aide de matplotlib.

Astroquery

- Astroquery = une bibliothèque Python pour interroger des bases de données astronomiques et récupérer des données pour la recherche. Elle offre une interface simple pour accéder à une large gamme de services.
- Archives de missions : Données de télescopes comme Hubble, Chandra, ou JWST. Catalogues astronomiques : Gaia, VizieR, SIMBAD, etc.
- ► Téléchargement automatisé : Accès rapide aux données spectrales, images et métadonnées.
- ▶ Documentation astroquery.readthedocs.io

Conclusion

- MAST est une ressource pour les données astronomiques.
- Les formats comme FITS sont largement utilisés pour stocker ces données.
- Python, avec des bibliothèques comme astropy, permet de facilement analyser et visualiser ces données.

Pour en savoir plus, visitez https://mast.stsci.edu.

Partie IV

Organisation de la SAÉ

Travail à réaliser

Logiciel en python qui permette de :

- télécharger des données des télescopes spatiaux à l'aide de bibliothèques comme Astroquery;
- afficher les résultats sous forme d'images au format FITS ou de graphiques, et permettre la sélection d'objets spécifiques;
- mixer les canaux de différentes longueurs d'onde (visible, infrarouge, rayons X, etc.) pour visualiser des objets avec des combinaisons personnalisées.

Vous êtes libres d'organiser votre développement comme vous le souhaitez.

Principe de la SAÉ

- Travail en binôme
- ▶ Mode recherche
- Les enseignants ne savent pas tout !
- Mise à disposition de documentation et de boites à outils.
- Un forum sur Moodle
- ▶ Restitution sous forme d'un colloque (dernier jour).
 - Partage des découvertes et des difficultés rencontrées
 - ► Slides (5 au max) rendues avant
 - ▶ 5 min de présentation orale + 1 minute de questions

Plan de la SAÉ

Titre	Lundi 6/1	Mercredi 8/1	Jeudi 9/1	Vendredi 10/1	Mercredi 15/1	Jeudi 16/1	Vendredi 17/01
Matin	Présent. du sujet	TP	TP	TP	TP	TP	TP
Après- midi		TP	TP	TP		TP	Colloque
Livrables			Partie algo			Slides	Fiche d'auto- éval. + Projet terminé

Table: Planification sur deux semaines