SLiM

Workshop Series

#20: Tree-sequence Recording

Tree sequences

- A record of the ancestry at every position
 - Originally from coalescent modeling (msprime)
 - Extremely compact due to correlations
 - Very fast to traverse and calculate statistics

Tree sequences

- Tree sequence structure
 - Leaves are "samples" often extant individuals
 - Internal nodes are ancestors
 - In SLiM, roots are the first generation

- Tracks the ancestry tree at every position
 - Neutral mutations can be overlaid after the fact
 - Neutral burn-in can be done with the coalescent
 - Recapitation can construct a coalescent history

- Records every new genome as a *node*
- Records every crossover as an edge
- Records every mutation

- Records every new genome as a node
- Records every crossover as an edge
- Records every mutation
- This produces a huge memory footprint!
 - Simplification needs to be done periodically
 - Discards branches that are extinct
 - Discards intermediate nodes along branches
 - SLiM automatically simplifies periodically
 - Explicitly simplifying can improve performance

- Enable tree-sequence recording
 - initializeTreeSeq()
- Control simplification if desired
 - simplificationRatio, simplificationInterval
 - treeSeqSimplify()
- Remember particular individuals if desired
 - treeSeqRememberIndividuals()
- Output a .trees file at completion
 - treeSeqOutput()

A complete tree-seq model

```
initialize() {
    initializeTreeSeq();
    initializeMutationRate(0);
    initializeMutationType("m1", 0.5, "f", 0.0);
    initializeGenomicElementType("g1", m1, 1.0);
    initializeGenomicElement(g1, 0, 1e8-1);
    initializeRecombinationRate(1e-8);
}

1 {
    sim.addSubpop("p1", 500);
}
5000 late() {
    sim.treeSeqOutput("final.trees");
}
```

- Calls initializeTreeSeq() and treeSeqOutput()
- Uses a (neutral) mutation rate of zero

Tree-sequence analysis in Python

- SLiM:
 - runs forward genetic simulations
- tskit:
 - provides a foundation for tree sequences
- msprime:
 - performs mutation and coalescence
- pyslim:
 - reads and writes SLiM. trees files

Tree-sequence analysis in Python

- Typical workflow:
 - run a simulation in SLiM and save a .trees file
 - read the .trees file from SLiM with pyslim
 - mutate it, recapitate it, etc. with msprime
 - perform analyses upon it with Python
 - write out a modified .trees file with pyslim

Tree-sequence analysis in Python

A complete Python analysis script

```
import msprime, pyslim

ts = pyslim.load("final.trees").simplify()
mutated = msprime.mutate(ts, rate=1e-7, random_seed=1, keep=True)
mutated.dump("final overlaid.trees")
```

- Import msprime and pyslim packages
- Load the saved .trees file with pyslim
- Use msprime to overlay mutations
- Write out the new tree sequence

- What's the point again?
- Ancestry information is useful

Speed

- Without tree-seq, 211.9 seconds
- With tree-seq, 4.37 seconds
- Almost a 50× speedup
- Why? Neutral mutations are overlaid
- Memory usage is also lower

Haller et al. (2019), Molecular Ecology Resources

Recapitation

- Forward simulation needs burn-in
 - provides an equilibrium initial state
- Burn-in can take a very long time!
- msprime can do a coalescent burn-in
- But recapitation is even better:
 - allows neutral burn-in to be skipped
 - a coalescent history is added *afterwards*
 - neutral mutations can then be overlaid
 - even faster than a coalescent burn-in

Resources

Received: 10 September 2018

Revised: 6 November 2018

Accepted: 9 November 2018

DOI: 10.1111/1755-0998.12968

RESOURCE ARTICLE

Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes

Philipp W. Messer^{1,*} Peter L. Ralph^{2,*}

RESEARCH ARTICLE

Efficient pedigree recording for fast population genetics simulation

Jerome Kelleher 1, Kevin R. Thornton 2, Jaime Ashander 3, Peter L. Ralph 4*

1 Big Data Institute, University of Oxford, Oxford, United Kingdom, 2 Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America, 3 Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States of America, 4 Institute for Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America

SLiM Workshop Exercise #20