Hough Transform

Line detection

Problem under consideration

How to fit a Line

- Least square Fit (over constraint)
- ♦ RANSAC (constraint)
- Hough Transform (under constraint)

Hough Transform

$$y_i = ax_i + b$$

Infinitely many lines passes through (x_i, y_i)

 $b = -x_i a + y_i$ (parameter space)

Hough Transform Algo for fitting Straight line

- 1. Quantize the parameter space $P[c_{min}, \ldots, c_{max}, m_{min}, \ldots, m_{max}]$.
- For each edge point (x, y) do for (m = m_{min}, m ≤ m_{max}, m + +) do c = (-x)m + y,
 P[c, m] = P[c, m] + 1.
- 3. Find the local maxima in the parameter space.

Hough Transform

$$y_i = ax_i + b$$

Infinitely many lines passes through (x_i, y_i)

$$b = -x_i a + y_i$$
 (parameter space)

Slope of the line (a) approaches infinity as the line approaches the vertical direction.

Normal (Polar) representation of Line

$$x \cos \theta + y \sin \theta = \rho$$

$$-D \le \rho \le D$$

D is maximum distance between opposite corners in an image

$$\theta = \tan^{-1} (g_y / g_x)$$

$$+90^{0} \le \theta \le -90^{0}$$

ρ and θ parameter space

Accumulator array

- A(p,q)
- A(p,q) = A(p,q) + 1

Hough Transform Algo for fitting Straight line

- 1. Quantize the parameter space $P[\theta_{min}, \ldots, \theta_{max}, p_{min}, \ldots, p_{max}]$.
- 2. For each edge point (x, y) do $p = x \cos \theta + y \sin \theta$, $P[\theta, p] = P[\theta, p] + 1$.
- 3. Find the local maxima in the parameter space.

Example

(1)
$$(0,0) \Rightarrow 1=0$$

(2) $(100,0) \Rightarrow 100 (-3) \theta = 1$

(3) $(0,100) \Rightarrow 100 (-3) \theta = 1$

(4) $(50,50) \Rightarrow 50 ((05) \theta + 5) = 1$

(5) $(50,50) \Rightarrow 50 ((05) \theta + 5) = 1$

(5) $(100,100) \Rightarrow 100 ((05) \theta + 5) = 1$

 $\int = -|\infty| + |0| + |0|$ $\int = -|\infty| + |0| + |0|$

$$f = 0 \quad \& \quad \mathcal{O} = -45^{\circ}$$

$$Egn^{\circ} \quad \mathcal{A} \quad \text{hirst line}$$

$$\mathcal{A} - \gamma = 0 \quad \square$$

$$f = 71 \quad \& \quad \mathcal{O} = +45^{\circ}$$

$$Egn^{\circ} \quad \mathcal{A} \quad \text{second line}$$

$$(0,0)$$

$$(55,50)$$

$$(100,100)$$

$$(100,100)$$

X Coso + Y Sin O = 9

Application

