Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики

Отчет

По курсу: «Суперкомпьютерное моделирование и технологии»

«MPI»

Цирунов Леонид Александрович группа 628 27 ноября 2024 г.

MPI отчет

Математическая постановка задачи

В трехмерной замкнутой области

$$\Omega = \left[0 \le x \le L_x\right] \times \left[0 \le y \le L_y\right] \times \left[0 \le z \le L_z\right]$$

Для $0 < t \le T$ требуется найти решение u(x, y, z, t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \triangle u$$

С начальными условиями

$$u|_{t=0} = \varphi(x, y, z)$$

$$\frac{\partial u}{\partial t}|_{t=0} = 0$$

При условии, что на границах области заданы однородные граничные условия первого рода

$$u(0, y, z, t) = 0,$$
 $u(L_x, y, z, t) = 0,$
 $u(x, 0, z, t) = 0,$ $u(x, L_y, z, t) = 0,$
 $u(x, y, 0, t) = 0,$ $u(x, y, L_z, t) = 0$

Либо периодические граничные условия

$$u(0, y, z, t) = u(L_x, y, z, t), u_x(0, y, z, t) = u_x(L_x, y, z, t), u(x, 0, z, t) = u(x, L_y, z, t), u_y(x, 0, z, t) = u_y(x, L_y, z, t), u(x, y, 0, t) = u(x, y, L_z, t), u_z(x, y, 0, t) = u_z(x, y, L_z, t),$$

Численный метод решения задачи

Введем на Ω сетку: $\omega_{h\tau} = \bar{\omega}_h \times \omega_{\tau}$

 $\omega_{\tau} = \{ t_n = n\tau, \ n = 0, 1, ..., K, \ \tau K = T \}$

$$\begin{split} T &= T_0 \\ L_x &= L_{x_0}, \ L_y = L_{y_0}, \ L_z = L_{z_0} \\ \bar{\omega}_h &= \{ \left(x_i = i h_x, \ y_j = j h_y, \ z_k = k h_z \right), \ i, j, k = 0, 1, \dots, N, \ h_x N = \ L_x, h_y N = \ L_y, h_z N = \ L_z \} \end{split}$$

Через ω_h обозначим множество внутренних, а через γ_h - множество гранитных узлов сетки $\bar{\omega}_h$.

Для аппроксимации исходного уравнения с начальными условиями воспользуемся следующей системой уравнений:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \triangle_h u^n, \ \left(x_i, y_j, \ z_k\right) \in \omega_h, \ n = 1, 2, ..., \ K - 1$$

Где \triangle_h - семиточечный разностный аналог оператора Лапласа:

$$\triangle_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Для начала счета должны быть заданы значения $u_{i,j,k}^0$ и $u_{i,j,k}^1$, $(x_i,y_j,z_k)\in\omega_h$.

$$u_{i,j,k}^{0} = \varphi(x_{i}, y_{j}, z_{k}), \quad (x_{i}, y_{j}, z_{k}) \in \omega_{h}.$$

$$u_{i,j,k}^{1} = u_{i,j,k}^{0} + \frac{\tau^{2}}{2} \triangle_{h} \varphi(x_{i}, y_{j}, z_{k})$$

Для вычисления значений u^0 , $u^1 \in \gamma_h$ допускается использование аналитического значения, которое задается в программе еще для вычисления погрешности решения задачи.

Из варианта №8 следуют следующие формулы:

$$u_{analytical} = \sin(\frac{2\pi}{L_x}x) * \sin\left(\frac{4\pi}{L_y}y\right) * \sin\left(\frac{6\pi}{L_z}z\right) * \cos(a_t * t),$$

$$a_t = \pi \sqrt{\left(\frac{4}{L_x^2} + \frac{16}{L_y^2} + \frac{36}{L_z^2}\right)}$$

Граничные условия:

$$\begin{aligned} \Pi &: & u \big(0, \, y, \, z, \, t \big) = u \big(L_x, \, y, \, z, \, t \big), & u_x \big(0, \, y, \, z, t \big) = u_x \big(L_x, \, y, \, z, \, t \big), \\ \Pi &: & u \big(x, \, 0, \, z, \, t \big) = u \Big(x, \, L_y, \, z, \, t \Big), & u_y \big(x, \, 0, \, z, t \big) = u_y \Big(x, \, L_y, \, z, \, t \Big), \\ \Pi &: & u \big(x, \, y, \, 0, \, t \big) = u \big(x, \, y, \, L_z, \, t \big), & u_z \big(x, \, y, \, 0, t \big) = u_z \big(x, \, y, \, L_z, \, t \big) \end{aligned}$$

Алгоритм численного решения:

- 1. Вычисление граничных значений u^0 и u^1 .
- 2. Вычисление u^0 внутри области: $u^0_{i,j,k} = \varphi \left(x_i, y_j, \ z_k \right)$
- 3. Вычисление u^1 внутри области: $u^1_{i,j,k} = u^0_{i,j,k} + \frac{\tau^2}{2} \triangle_h \varphi(x_i, y_j, z_k)$
- 4. Вычисление K 1 раз u^{n+1} :

$$u_{ijk}^{n+1} = 2u_{ijk}^{n} - u_{ijk}^{n-1} + \tau^{2} \triangle_{h} u^{n}$$

Программный метод решения задачи

Программная реализация состоит из 4 файлов: *main.cpp*, *equation_solution.cpp*, *equation.h* и *Makefile*.

Файл *main.cpp* содержит основную функцию, получающую входные значения, производящую инициализацию MPI с созданием декартовой топологии процессов, и запускающую решение задачи, а также две функции для сохранения результатов:

- *dump_block_to_CSV* сохранение погрешности или сетки (для каждого блока), полученной численным или аналитическим способом, в файл в формате CSV (для дальнейшей визуализации);
- *save_statistics* вывод в файл информации о времени работы решения и максимальной погрешности вычисления.

На вход программа получает 3 или 6 значений в зависимости от переданного L_type . Описание параметров в порядке передачи:

- N размер сетки по одной координате (конечный размер N^3);
- *L_type* тип значений L по разным координатам, принимает значения: 1, pi, custom.

В случае l и pi, значения L по всем координатам равны числу соответвенно. Если L_type передано значение custom, в этом случае необходимо передать значения L по каждой координате: L_x , L_y , L_z .

Файл *equation.h* содержит объявления типов: класса сетки с функцией получения индекса элемента в линейном массиве описывающем сетку, класса блока с функцией получения индекса элемента в линейном массиве описывающем блок, а также функцию $u_{analytical}$ для вычисления аналитических значений точек сетки.

Файл *equation_solution.cpp* содержит основной алгоритм решения задачи. Содержит функции:

• *laplace_operator* - вычисление значения разностного аналога оператора Лапласа;

- *fill_send_buffers* функция, используемая для заполнения буферов для отправки данных соседним процессам.
- *exchange_ghost_layers* функция реализующую пересылку данных между процессами, а также последующее заполнение дополнительного слоя, содержащего данные других процессов(гало).
- *init* вычисление внутренних u^0 , u^1 и граничных начальных точек, необходимых для запуска алгоритма;
- run_algo итерация по K − 1 оставшимся временным шагам алгоритма с вычислением значений граничных и внутренних точек на новом шаге алгоритма. На каждом шаге производится подсчет максимальной погрешности численного решения от аналитического с выводом информации в консоль. Также в этом цикле производится заполнение буферов для отправки данных соседним процессам.
- *solve_equation* инициализируются переменные, выполняется запуск алгоритма и ведется подсчет времени алгоритма.

Распараллеливание производится с использованием технологии MPI.

Файл *Makefile* содержит цели для компиляции и запуска задач. Для запуска на Polus используются команды «*make compile_polus*» и «*make run_all_polus*».

Результаты расчетов

Таблица 1: Результаты при L = 1

Число МРІ процессов	Число точек сетки N по одной оси	Время решения Polus	Время решения локально M3 arm	Ускорение Polus	Ускорение локально	Погреш-
0-Sequential	128	8,77943	0,264147	1,000	1,000	1.4004e-06
1	128	9,20052	0,327221	0,9542	0,8072	1.4004e-06
2	128	4,59858	0,182044	1,9092	1,451	1.4004e-06
4	128	2,61351	0,112038	3,3592	2,358	1.4004e-06
8	128	1,57326	0,069210	5,5804	3,817	1.4004e-06
16	128	0,850441	0,086133	10,3234	3,067	1.4004e-06
32	128	0,590741	0,057794	14,8617	4,570	1.4004e-06
0-Sequential	256	62,994	2,175710	1,000	1,000	3.49927e-07
1	256	68,1183	2,622760	0,9248	0,8295	3.49927e-07
2	256	34,5796	1,452760	1,8217	1,4976	3.49927e-07
4	256	19,7141	0,797872	3,1954	2,7269	3.49927e-07
8	256	9,58322	0,440487	6,5734	4,9393	3.49927e-07
16	256	5,64634	0,460547	11,1566	4,7242	3.49927e-07
32	256	3,54626	0,415943	17,7635	5,2308	3.49927e-07
0-Sequential	512	484,384	16,5496	1,000	1,000	8.71479e-08
1	512	508,865	20,6374	0,9519	0,8019	8.71479e-08
2	512	266,067	11,4375	1,8205	1,4470	8.71479e-08
4	512	130,923	6,0540	3,6998	2,7337	8.71479e-08
8	512	70,7735	3,2353	6,8441	5,1153	8.71479e-08
16	512	38,0006	2,2250	12,7467	7,4379	8.71479e-08
32	512	24,9555	1,9539	19,4099	8,4702	8.71479e-08

Таблица 2: Результаты при L = π

Число МРІ процессов	Число точек сетки N по одной оси	Время решения Polus	Время решения локально M3 arm	Ускорение Polus	Ускорение локально	Погреш- ность
0-Sequential	128	8,47777	0,264720	1,000	1,000	1.41974e-07
1	128	9,07345	0,321982	0,9343	0,8222	1.41974e-07
2	128	4,55414	0,182116	1,8616	1,4536	1.41974e-07
4	128	2,49134	0,114308	3,4029	2,3158	1.41974e-07
8	128	1,52365	0,072591	5,5641	3,6467	1.41974e-07
16	128	0,857452	0,100738	9,8872	2,6278	1.41974e-07
32	128	0,590185	0,053644	14,3646	4,9348	1.41974e-07
0-Sequential	256	62,5438	2,1346	1,000	1,000	3.55074e-08
1	256	67,1549	2,6469	0,9313	0,8065	3.55074e-08
2	256	35,4423	1,4467	1,7647	1,4755	3.55074e-08
4	256	17,3933	0,7946	3,5959	2,6865	3.55074e-08
8	256	9,54596	0,4305	6,5519	4,9589	3.55074e-08
16	256	6,15678	0,4677	10,1585	4,5639	3.55074e-08
32	256	3,44088	0,4015	18,1767	5,3166	3.55074e-08
0-Sequential	512	480,591	16,8837	1,000	1,000	8.8744e-09
1	512	512,18	21,0584	0,9383	0,8018	8.8744e-09
2	512	265,867	11,4206	1,8076	1,4784	8.8744e-09
4	512	137,52	6,0383	3,4947	2,7961	8.8744e-09
8	512	70,6636	3,2270	6,8011	5,2320	8.8744e-09
16	512	35,8618	2,1158	13,4012	7,9800	8.8744e-09
32	512	24,9462	1,9288	19,2651	8,7535	8.8744e-09

График 1: зависимость ускорения на Polus от количества процессов при L=1:

График 2: зависимость ускорения на Polus от количества процессов при $L=\pi$:

График 3: зависимость ускорения локально на M3 arm от количества процессов при L=1:

График 4: зависимость ускорения локально на M3 arm от количества процессов при $L=\pi$:

MРI отчет 12

Визуализация сетки, полученной аналитическим решением:

Визуализация сетки, полученной численным решением:

Визуализация сетки погрешности:

Вывод

Задача для трехмерного гиперболического уравнения в области, представляющей из себя прямоугольный параллелепипед, подходит для распараллеливания с помощью технологии МРІ, позволяя получить ускорение вплоть до 19 раз. Причем при большем размере сетки ниже погрешность, а распараллеливание дает лучшие результаты по сравнению с мелкими сетками.

Также было замечено, что последовательный код работает немного быстрее, чем код на одном MPI процессе, это связано с накладными расходами на инициализацию, а также с действиями, необходимыми для подготовки разделения данных между процессами.

В сравнении с OpenMP решением мы получили такую же точность, но больший прирост в скорости работы для большего числа процессов относительно такого же числа нитей.