Basics

Note 1

21e64c2f0430467f8a36481045e172b3

 \mathbb{Z}^+ , \mathbb{Q}^+ and \mathbb{R}^+ denote (c1: the positive (nonzero) elements in \mathbb{Z} , \mathbb{Q} and \mathbb{R} , respectively.)

Note 2

d32571de5d04cafb2a7d6a27aee4b14

Given a function $f:A\to B$, we the set B is called the codomain of f.

Note 3

0cd492ad876a4dfbbb22c9210039fcc1

Given a function $f:A\to B$ and (case $b\in B$,)) (case the preimage of $\{b\}$ under f) is called (case the fiber of f over b.))

Note 4

b2a02c66209140a591b43dede69ffbf

If $f:A \to B$ and $g:B \to C$, then the (correspondence map)

$$g\circ f:A\to C$$

is defined by

$$(g \circ f)(a) = g(f(a)).$$

Note 5

b2bf2fe79dc4063a151a960f45698d9

A function $f:A\to B$ ([c3]) has a left inverse) if there is a function $g:\{(c2):B\to A\}$, such that $\{(c1):A\}$

$$g \circ f = id_A$$
.

Note 6

d9a63bd7866e44ab83172cf9189e9b9a

A function $f:A\to B$ (ic3: has a right inverse) if there is a function $g: ((c2:B\to A))$, such that $((c1:B\to A))$

$$f \circ g = id_B$$
.

1

A map f is $\{\{c_1, i_1\} \in f \text{ and only if } f \text{ has a } \{\{c_2, i_2\} \in f \} \}$ inverse.

Note 8

205100b0fd6447a9bcc94e4d7711a606

A map f is ((c): surjective); if and only if f has a ((c2: right)) inverse.

Note 9

e4ddf27550f4aa9a1daf0b67cd2f7e4

A {{c2=permutation}} of a set A is {{c1=a bijection from A to itself.}}

Note 10

1feef80fbcdd48618084ce93c88df83b

If $A\subseteq B$ and $f:B\to C$, (clather restriction of f to A) is denoted ((clather A))

Note 11

01a5a3b0e5f24f6782e689090b17c437

If $A\subseteq B$ and $g:A\to C$ and there is a function $f:B\to C$ such that $\{(c^2-f)_A=g,\}\}$ we shall say f is $\{(c^2-f)_A=g,\}\}$

Note 12

6ca7e478954c4c898718ce116219822f

 $\{(c2):A \text{ binary relation on a set } A\}\}$ is $\{(c1):a \text{ subset } R \text{ of } A \times A.\}\}$

Note 13

50bb82cd97cb40bf8621065845545d18

Let R be a binary relation on a set A. We write $\{(c2:A \sim B)\}$ if $\{(c1:A,b) \in R.\}$

Note 14

65287096376a47f399a0048c0d8092d0

A binary relation R on A is said to be {correflexive} if {correlation}

 $a \sim a$, for all $a \in A$.

Note 15

1b961a1f8f347dcbf7b9c7c8dee303c

A binary relation R on A is said to be {{c2} symmetric}} if {{c1} }

 $a \sim b$ implies $b \sim a$ for all $a, b \in A$.

2

A binary relation R on A is said to be {c2::transitive} if {c1:

 $a \sim b$ and $b \sim c$ implies $a \sim c$ for all $a, bc \in A$.

Note 17

54a959a8e36045c1aea2d838ce8998b8

A binary relation is {{c2}} an equivalence relation} if {{c1}} it is reflexive, symmetric and transitive.}

Note 18

c28d643ddd74509b88cfe2f75e6d743

If \sim defines an <code>[c3::equivalence]</code> relation on A, then <code>[c2::the equivalence class]</code> of $a \in A$ is defined to be <code>[c1::]</code>

$$\{x \in A \mid x \sim a\}$$
.

Note 19

323fae73cd4b47ddb8c19cb515ffd4cf

If C is an equivalence class, (c2::any element of C) is called (c1::a representative of the class C.)

Note 20

3a597e1d5c48420490d792b972a38fe6

 $\{\{a_i \mid i \in I\}\}$ of nonempty subsets of A_i such that $\{\{c_i : A \text{ is the disjoint union of all } A_i.\}$

Note 21

c2216701429649b7a262afdd5c85a72d

If \sim defines an equivalence relation on A then (c2: the set of equivalence classes of \sim)) form (c1:a partition of A.))

Properties of the Integers

Note 1

f535d29c343f494fa35bccefce9d6988

Let $a, b \in \mathbb{Z}$. We write $\{a \in \mathbb{Z} \mid b\}$ if $\{a \in \mathbb{Z} \mid a \text{ divides } b\}$

Note 2

96293ae3b76348d8ba9f0b02c8b49a94

Let $a,b\in\mathbb{Z}$ with $a\neq 0$. We write ((c2:: $a\nmid b$)) if ((c1::a does not divide b.))

Note 3

533403fe830341a39cee216314b861e8

Let $a,b\in\{\{c3:\mathbb{Z}-\{0\}\}\}$. $\{\{c2:\mathbb{T}\text{he greatest common divisor of }a\text{ and }b\}$ is denoted by $\{\{c1:(a,b).\}\}$

Note 4

20b204b896884b6b9d07ca3023b7cf4

Let $a,b\in\{\{c3:\mathbb{Z}-\{0\}\}\}$. If $\{\{c2:(a,b)=1,\}\}$ we say that a and b are $\{\{c1:\text{relatively prime.}\}\}$

Note 5

69adfe8820204997a5aa44c50b353a40

If $a, b \in \mathbb{Z} - \{0\}$, then there exists unique $q, r \in \mathbb{Z}$ such that

$$a = qb + r$$
 and $0 \leqslant r < |b|$,

where q is {{c1::the quotient}} and r {{c1::the remainder.}}

«{{c2::Division Algorithm}}»

Note 6

6267be99c4884a09b1282d041ac05e18

If $a,b\in\mathbb{Z}-\{0\}$, then there exist $x,y\in\{(\mathbb{Z}^3,\mathbb{Z})\}$ such that

$$\{\{c2::(a,b)\}\} = \{\{c1::xa+yb.\}\}$$

Note 7

e30ea564f2ce479391e71512867aea51

If p is prime and $p \mid ab$, for some $a, b \in \mathbb{Z}$, then (c1:

either
$$p \mid a$$
 or $p \mid b$.

}}

Note 9

03f37e11eb9d40d29ca92031ac27d9ed

Let φ stand for the Euler φ -function. If p is then

$$\{\{{\it c2::} \varphi(p^a)\}\} = \{\{{\it c1::} p^a - p^{a-1}.\}\}$$

Note 10

7dc766a783c04a309951678711bd8317

Let φ stand for the Euler φ -function. Then

$$\{\{c1: \varphi(ab) = \varphi(a)\varphi(b)\}\}$$
 if $\{\{c2: (a,b) = 1.\}\}$