Appunti di analisi matematica

Luca Chiodini luca@chiodini.org

Indice

Introduzione						
1	Prima lezione $(06/10/2015)$					
	1.1	Insieme $\mathbb N$	7			
	1.2	Insieme $\mathbb Z$	g			
	1.3	Insieme $\mathbb Q$ e oltre	10			
	1.4	Estremo superiore e maggioranti	10			
2	Seconda lezione $(09/10/2015)$					
	2.1	Estremi e limiti di insiemi	13			
	2.2	Insieme \mathbb{R}	15			
3	Terza lezione $(13/10/2015)$					
	3.1	Allineamenti decimali e insieme $\mathbb R$	17			
	3.2	Potenze e logaritmi	19			
	3.3	Intervalli e intorni	20			
	3.4	Successioni	20			
4	Quarta lezione $(16/10/2015)$ 23					
	4.1	Limite di una successione	23			
	4.2	Successioni convergenti, divergenti, limitate	24			
5	Quinta lezione $(20/10/2015)$					
	5.1	Forme di indeterminazione	29			
	5.2	Teoremi su limiti di successioni	30			
	5.3	Coefficienti binomiali e disuguaglianza di Bernoulli	31			
	5.4	$\lim a^n$ e criterio del rapporto	33			
6	Sesta lezione $(23/10/2015)$ 35					
	6.1	Criterio del rapporto (cont.)	35			
	6.2	Successioni definite per ricorrenza	36			
	6.3	Numero di Nepero e	38			
	6.4	Limiti che si deducono da e	39			
	6.5	Asintotico	41			

7	Settima lezione $(27/10/2015)$					
	7.1	Infinitesimi e limiti notevoli	43			
	7.2	Scala degli infiniti	45			
	7.3	Serie	46			
8	Ottava lezione $(30/10/2015)$					
	8.1	Serie armonica generalizzata	51			
	8.2	Criterio del rapporto per le serie	52			
	8.3	Criterio della radice	54			
	8.4	Confronto asintotico tra serie	55			
	8.5	Serie assolutamente convergenti	56			
9	Nor	na lezione $(03/11/2015)$	57			
	9.1	Serie assolutamente convergenti	57			
	9.2	Criterio di Leibniz	59			
	9.3	Serie con termini riordinati	60			
	9.4	$\lim \sqrt[n]{n}$				
	9.5	Ancora sulle successioni	61			

Introduzione

Questi appunti sono relativi al corso di analisi matematica tenuto dal prof. Diego Conti agli studenti del corso di laurea di informatica dell'Università degli Studi di Milano - Bicocca, durante l'anno accademico 2015-2016.

Queste pagine sono state scritte nell'intento di essere utili, tuttavia potrebbero contenere errori tra i più disparati. Sarò grato a chiunque ne trovasse e volesse segnalarmeli (basta una mail a luca@chiodini.org).

In taluni casi, onde evitare di spezzare una singola unità logica (ad esempio: proposizione e relativa dimostrazione) in due parti, si è proceduto a spostare dette parti al termine della lezione precedente o all'inizio di quella successiva.

Capitolo 1

Prima lezione (06/10/2015)

1.1 Insieme \mathbb{N}

Definizione 1.1. L'insieme \mathbb{N} è l'insieme dei numeri interi positivi, detti numeri naturali, e si indica con $\mathbb{N} = \{1, 2, 3, ...\}$.

Su di esso sono definite due operazioni:

- Somma: $\mathbb{N} + \mathbb{N} \to \mathbb{N}$, quindi $(a, b) \to a + b$
- Prodotto: $\mathbb{N} \cdot \mathbb{N} \to \mathbb{N}$, quindi $(a, b) \to a \cdot b$

Queste due proprietà sono commutative e associative:

- a + b = b + a
- a + (b + c) = (a + b) + c
- $\bullet \ a \cdot b = b \cdot a$
- \bullet $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Vale inoltre la proprietà distributiva:

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

Nel prodotto esiste un elemento neutro, in altri termini esiste un $e \in \mathbb{N}$ tale per cui, comunque scelto $a, a \cdot e = e \cdot a = a$. Tale e risulta ovvio essere 1.

Nell'insieme \mathbb{N} esiste una relazione di ordinamento $(a \leq b)$ tale per cui:

I.
$$a \le b \in b \le a \implies a = b$$

II.
$$a \le b \le c \implies a \le c$$

III. $\forall a, b \ a \leq b$ oppure $b \leq a$

Definizione 1.2. Un insieme S con una relazione d'ordine che soddisfa I, II, III si dice totalmente ordinato.

Osservazione 1.3. Ogni $S \subseteq \mathbb{N}$ è totalmente ordinato.

Se $a \le b$ e $c \in \mathbb{N} \implies a + c \le b + c$

Se $a \le b$ e $c \in \mathbb{N} \implies a \cdot c \le b \cdot c$

L'equazione n + x = m ha una soluzione (unica) se e solo se m > n.

Anche $\{\,x\in\mathbb{Q}\mid x>0\,\},$ l'insieme dei numeri razionali, soddisfa le condizioni sopra indicate.

Definizione 1.4. Dato un insieme totalmente ordinato (scriviamo (S, \leq)), X è il minimo di S se $x \in S$ e per ogni $y \in S$ vale $x \leq y$.

Proposizione 1.5 (Principio del buon ordinamento). Ogni sottoinsieme di \mathbb{N} non vuoto ha un minimo.

Esempio 1.6. L'inisieme $\{x \in Q \mid x > 0\}$ non soddisfa il principio del buon ordinamento perché, ad esempio, il suo sottoinsieme $\{\frac{1}{n} \mid n > 0\}$ non ha minimo.

Osservazione 1.7. Grazie al principio del buon ordinamento vale:

$$\{x \in \mathbb{N} \mid x \le s\} = \{1, \dots, s\}$$

Proposizione 1.8 (Principio di induzione). Sia P_n un enunciato che dipende da $n \in \mathbb{N}$ (ad esempio "n è pari", "n è primo"). Supponiamo che P_1 sia vero e che valga l'implicazione $P_n \implies P_{n+1}$. Allora P_n è vero per ogni n.

Dimostrazione. Sia $S = \{ n \in \mathbb{N} \mid P_n \text{ è falso } \}$. Se $S = \emptyset$ non c'è niente da dimostrare. Altrimenti, per il principio del buon ordinamento S ha un minimo $k = \min S$. Non può essere k = 1 $(1 \in S)$ perché P_1 è vero.

Essendo k > 1, $k - 1 \in \mathbb{N}$ (ricorda l'equazione 1 + k = x) e $k - 1 \in S$.

Allora P_{k-1} non è falso, quindi P_{k-1} è vero. P_k è vero per ipotesi. Ma questo contraddice l'ipotesi che $k \in S$, quindi il caso S non vuoto non si verifica.

Nota che, ad esempio, l'enunciato " $\forall n, n > 0$ " non è un enunciato che dipende da n!

Esempio 1.9. Dimostriamo per induzione che

$$P_n: \sum_{i=1}^{n} i = \frac{1}{2} \cdot (n+1) \cdot n$$

Verifichiamo P_1 :

$$P_1: \sum_{i=1}^{1} i = \frac{1}{2} \cdot (1+1) \cdot 1$$

che equivale a 1 = 1 ed è quindi vero.

Ora dobbiamo verificare anche che $P_n \implies P_{n+1}$.

$$P_n: \sum_{i=1}^{n} i = \frac{1}{2} \cdot (n+1) \cdot n$$

$$P_{n+1}: \sum_{i=1}^{n+1} i = \frac{1}{2} \cdot (n+2) \cdot (n+1)$$

Per definizione vale anche che:

$$P_{n+1}: \sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{1}{2} \cdot (n+1) \cdot n + (n+1)$$

$$\sum_{i=1}^{n+1} i = \frac{1}{2}(n+1)(n+2)$$

1.2 Insieme \mathbb{Z}

Consideriamo queste due equazioni:

- a + x = b, che ha soluzione in N se e solo se b > a.
- $a \cdot x = b$, che ha soluzione in \mathbb{N} quando a è un divisore di b (si scrive $x = \frac{b}{a}$).

È evidente che serve quindi estendere l'insieme $\mathbb N$ arrivando all'insieme degli interi $\mathbb Z$ così definito:

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

 \mathbb{Z} è la più piccola estensione di \mathbb{N} dove l'equazione a+x=b ha soluzione per ogni a,b. In \mathbb{Z} valgono le stesse proprietà di \mathbb{N} .

Z ha un elemento neutro per la somma (zero). Ovvero scriviamo:

$$a+0=0+a=a \quad \forall a$$

Dato $a \in \mathbb{Z}$ esiste $x \in \mathbb{Z}$ tale che a + x = 0 (si scrive x = -a). Per passi:

$$b - a = b + (-a)$$
$$a + (b - a) = b$$

che è la soluzione di a + x = b cercata.

Nota inoltre che $a\cdot x=b$ non ha soluzioni per $a=0,\ b\neq 0$ perché $0\cdot x=0,$ che a sua volta discende da

$$1 \cdot x = (1+0) \cdot x$$
$$= 1 \cdot x + 0 \cdot x$$

Sottraendo $(1 \cdot x)$ a entrambi i membri risulta $0 = 0 \cdot x$.

1.3 Insieme \mathbb{Q} e oltre

Definiamo l'insieme Q, insieme dei numeri razionali, in questo modo:

$$\mathbb{Q} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, \ q \neq 0 \}$$

 \mathbb{Q} ha le stesse proprietà di \mathbb{Z} . Inoltre:

$$\forall a \neq 0 \ \exists x \in \mathbb{Q} : a \cdot x = 1$$

 $x = \frac{1}{a}$, da cui $\frac{b}{a} = b \cdot \frac{1}{a}$ che è la soluzione di $a \cdot x = b$.

$$a \cdot \frac{b}{a} = a \cdot b \cdot \frac{1}{a} = b \left(a \left(\frac{1}{a} \right) \right) = b \cdot 1 = b$$

E evidente che i numeri razionali non vanno bene per l'analisi numerica. Supponiamo di voler misurare un segmento in gessetti: potrebbero volerci quattro gessi "e un pezzetto". Potremmo dividere il gessetto a metà e scoprire che la lunghezza del segmento è 4 gessi + 1 gessetto + "un pezzettino". Non è detto che questo processo termini! Infatti non tutti gli intervalli si possono rappresentare con un numero razionale.

Dimostrazione. Sia x la diagonale di un quadrato di lato 1. Per Pitagora vale che $x^2 =$ 1+1=2. Se x fosse razionale, potremmo scrivere $x=\frac{p}{q}$ per un qualche $p,q\in\mathbb{Z}$.

Quindi varrebbe $\frac{p^2}{q^2}=2$, ovvero $p^2=2\cdot q^2$. Possiamo scrivere $p=2^k\cdot a$ per un qualche a dispari e $q=2^h\cdot b$ per un qualche b

Sostituendo nella prima equazione resta: $2^{2k} \cdot a^2 = 2 \cdot 2^{2h} \cdot b^2$.

 a^2 e b^2 sono quadrati di un numero dispari e quindi dispari anch'essi.

Se uguagliamo gli esponenti risulta 2k = 2h + 1 dove il primo è un numero pari mentre il secondo è un numero dispari, il che è assurdo.

Quindi,
$$x^2 = 2$$
 non ha soluzione in \mathbb{Q} .

Estremo superiore e maggioranti 1.4

Definizione 1.10. Un sottoinsieme $A \subseteq \mathbb{Q}$ è limitato superiormente se esiste un $k \in \mathbb{Q}$ tale che $a \leq k$ per ogni $a \in A$.

Un tale k è detto maggiorante di A.

Definizione 1.11. Dato $A \subseteq \mathbb{Q}$ non vuoto e limitato superiormente, si dice estremo superiore di A il minimo dei maggioranti, se esiste. (Si indica sup A.)

Se A è non vuoto ma non è limitato superiormente, allora sup $A = +\infty$.

Esempio 1.12. Sia $A = \{ x \in \mathbb{Q} \mid 0 < x < 1 \}$. Esso è limitato superiormente perché se prendo $k = 2, k > a \ \forall a \in A$.

y è maggiornate di $A \implies y > x \ \forall x \in A$. Sia $y \in \mathbb{Q}$:

- Se $y \ge 1$ allora y è un maggiorante.
- Se 0 < y < 1, supponiamo $x = \frac{1}{2}(y+1)$ (ovvero x punto medio tra y e 1). Vale che $0 < x < 1 \implies x \in A$. Poiché x > y, y non è un maggiornate.
- Se y < 0 supponiamo $x = \frac{1}{2} \in A$; x > y quindi y non è un maggiorante.

In definitiva i maggioranti sono $\{y \in \mathbb{Q} \mid y \ge 1\}$ e sup A = 1.

Esempio 1.13. Sia $A = \{ x \in \mathbb{Q} \mid x^2 \leq 2 \}$. A è limitato superiormente.

Proposizione 1.14. 2 è maggiorante di A.

Dimostrazione. Supponiamo che 2 non sia maggiorante. Allora non è vero che $x \leq 2 \ \forall x \in A$. Quindi esiste $x \in A$ tale che x > 2. Allora $x^2 > 2^2$, ovvero $x^2 > 4$ che è assurdo perché vale che $x^2 < 2$.

Proposizione 1.15. A non ha un estremo superiore in \mathbb{Q} .

Dimostrazione. Sia $x \in \mathbb{Q}$ un maggiorante. Allora $x^2 \neq 2$.

• Se $x^2 < 2$, consideriamo l'insieme $(x + \frac{1}{n})^2$ al variare di n (sviluppando: $x^2 + \frac{2}{n} + \frac{1}{n^2}$). Per n sufficientemente grande $y = x + \frac{1}{n}$. Essendo $y^2 < 2$, basta che $\frac{2}{n} + \frac{1}{n^2} \le 2 - x^2$. Ovvero

$$(2 - x^2) \cdot n^2 - 2n + 1 > 0$$

Nota che l'equazione sopra è una parabola con concavità verso l'alto.

Allora x non è un maggiorante perché x < y e $y \in A$.

• Se $x^2 > 2$ allora y = x - 1 è maggiorante.

$$(x - \frac{1}{n})^2 > 2$$

$$x^2 - \frac{2}{n} + \frac{1}{n^2} > 2$$

$$n^2 \cdot (x^2 - 2) - 2n + 1 > 0$$

che è vera per n sufficientemente grande.

Quanto sopra implica che deve esistere un maggiorante della forma $y=x-\frac{1}{n}$. Ciò implica che x non è il minimo dei maggioranti e a sua volta questo implica che A non ha sup.

Capitolo 2

Seconda lezione (09/10/2015)

2.1 Estremi e limiti di insiemi

Definizione 2.1. Un sottoinsieme $A \subseteq \mathbb{Q}$ è limitato superiormente se esiste $k \in \mathbb{Q}$ tale che $k \geq x$ per ogni $x \in A$. Tale k è detto maggiorante di A.

In modo analogo, A è limitato inferiormente se esiste $k \in \mathbb{Q}$ tale che $k \leq x$ per ogni $x \in A$. Tale k è detto minorante di A.

Dati $a \neq 0$, l'estremo superiore (sup A), il minimo dei maggiornati, l'estremo inferiore (inf A) e il massimo dei maggioranti (purché esistano):

- se A non è limitato superiormente \implies sup $A = +\infty$
- se A non è limitato inferiormente \implies inf $A = -\infty$

Osservazione 2.2. Se A ha un massimo x, allora $x = \sup A$.

Infatti, essendo il massimo, x è un maggiorante. Preso un altro maggiorante y, deve valere $x \leq y$ perché $x \in A$. Quindi x è il minimo dei maggioranti.

Ad esempio, dato $A = \{ x \in \mathbb{Q} \mid 0 < x < 1 \}$, è evidente che sup A = 1 ma $1 \notin A$. In questo caso l'insieme A non ha massimo.

Esempio 2.3. Dato $A = \mathbb{Q}$ osserviamo che non è limitato superiormente. Questo perché $x \in \mathbb{Q}$ è un maggiorante se $x \geq y$ per ogni $y \in \mathbb{Q}$; dovrebbe essere quindi $x \geq x + 1$ che è assurdo. Quindi sup $\mathbb{Q} = +\infty$.

Esempio 2.4. Dato $A\subseteq \mathbb{Z}$ non vuoto, se A è limitato superiormente allora A ha un massimo

Infatti $S = \{ x \in \mathbb{Z} \mid x \text{ è maggiorante di } A \}$. S non può essere vuoto perché A è limitato superiormente.

Allora S ha un minimo x per il principio del buon ordinamento. Essendo il minimo, x-1 non è un maggiorante.

Quindi esiste un $y \in A$ tale che y > x - 1 e $y \le x$. L'unico caso possibile è che x e y coincidano, ovvero $y = x \in A$

Quindi x è un maggiorante e appartiene ad A. Quindi x è il massimo.

Proposizione 2.5. Dato $A \subseteq \mathbb{Q}$ non vuoto e $y \in \mathbb{Q}$, y è l'estremo superiore di A se e solo se y è maggiorante di A e per ogni y' < y esiste $x \in A$ tale che $y' < x \le y$.

Osserviamo che la condizione $x \leq y$ è una diretta conseguenza del fatto che y è un maggiorante.

Dimostriamo la proposizione in entrambi i sensi, per mostrare che vale l'implicazione "se e solo se".

Dimostrazione. Se y è estremo superiore, allora devo dimostrare che:

I. y è un maggiorante

II.
$$\forall y' < y \quad \exists x \in A \quad y' < x \le y$$

Il punto I è ovvio; dimostriamo il punto II.

Dato y' < y, y' non può essere maggiorante perché y è il minimo dei maggioranti. Quindi esiste $x \in A$ tale che y' < x. Poiché y è un maggiorante, possiamo scrivere $y' < x \le y$.

Dimostriamo ora il viceversa.

Dimostrazione. Dobbiamo dimostriare che i punti I e II implicano il fatto che y sia un estremo superiore.

Sia y' maggiorante di A. Se y' < y allora esiste $x \in A$ tale che $y' < x \le y$, quindi y' non è un maggiorante; il che è assurdo.

Allora ogni maggiorante y' deve essere $y' \geq y$. Poiché y è un maggiorante, y è il minimo dei maggioranti. Quindi $y = \sup A$.

Esempio 2.6. Proviamo a calcolare $\sup A$ di:

$$A = \left\{ \frac{n-1}{n+1} \mid n \in \mathbb{N} \right\}$$

che è l'insieme:

$$A = \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \dots\right\}$$

Ha senso innanzitutto chiedersi se A è limitato superiormente. Possiamo dire che lo è con certezza perché il numeratore è sempre inferiore al denominatore, quindi

$$\frac{n-1}{n+1} < 1$$

Quindi 1 è un maggiorante. Dimostriamo che è anche il sup (sup A = 1).

In altri termini dobbiamo dimostrare che preso y' < 1 esiste $x \in A$ tale che $y' < x \le 1$, che equivale a risolvere:

$$y' < \frac{n-1}{n+1}$$

$$y'(n+1) < n-1$$

$$y'n + y' < n-1$$

$$n(1-y') > y' + 1$$

$$n > \frac{y'+1}{1-y'}$$

Poiché \mathbb{N} non è limitato superiormente, esiste sempre una soluzione $n \in \mathbb{N}$. Ovvero:

$$\exists x = \frac{n-1}{n+1} \in A \qquad y' < x$$

Quindi sup A = 1.

2.2 Insieme \mathbb{R}

I numeri reali sono un insieme, chiamato \mathbb{R} , su cui sono definite le operazioni di somma e prodotto, è definito un ordinamento ed esistono due elementi neutri per le due operazioni precedenti.

L'insieme dei numeri reali soddisfa tutte le seguenti proprietà, che erano già soddisfatte da \mathbb{Q} ma che riportiamo:

- La somma è commutativa e associativa, ha un elemento neutro che è lo zero.
- Il prodotto è commutativo e associativo, ha un elemento neutro che è l'uno.
- Di ogni elemento esiste l'opposto e l'inverso, ovvero:

$$\forall a \in \mathbb{R} \text{ esiste } b \in \mathbb{R} \qquad a+b=0 \quad (b=-a)$$

$$\forall a \in \mathbb{R} \setminus \{0\} \text{ esiste } b \in \mathbb{R} \qquad a \cdot b = 1 \quad \left(b = \frac{1}{a}\right)$$

• È definito un ordinamento:

$$a \le b e b \le a \implies a = b$$

$$a \le b e b \le c \implies a \le c$$

$$\forall a, b \quad a \le b \circ b \ge a$$

$$a \le b \implies \forall c \quad a + c \le b + c$$

$$a \le b \implies \forall c > 0 \quad a \cdot c \le b \cdot c$$

In aggiunta alle proprietà comuni a \mathbb{Q} abbiamo che se $A \subseteq \mathbb{R}$ è non vuoto, allora A ammette un estremo superiore (eventualmente sup $A = +\infty$).

Dobbiamo mostrare ora che esistono i numeri reali e per fare ciò ricorriamo al modello degli *allineamenti decimali*.

Un allineamento decimale è una sequenza numerabile di interi del tipo p_0, p_1, p_2, \dots dove

$$0 < p_k < 9 \qquad k \in \mathbb{N}$$

Un allineamento decimale è periodico se si ripete da un certo punto in poi, cioè ha la forma:

$$p_0, p_1, \dots, \underbrace{p_n, p_{n+1}, \dots, p_{n+k}}_{\text{periodo}}, p_{n+1+k}, \dots$$

Un allineamento periodico con periodo 0 si dice anche che è limitato (ad esempio 1,5000... è limitato).

Dato un allineamento decimale x definiamo il troncamento k-esimo

$$r_k(x) = p_0 + \frac{1}{10}p_1 + \ldots + \frac{1}{10^k}p_k$$

Il troncamento $r_0(x)$ è la parte intera di x e si indica [x].

Ad ogni $x \in \mathbb{Q}$ possiamo associare un allineamento decimale $T(x) = p_0, p_1, p_2, \dots$

$$p_0 = \max \{ n \in \mathbb{Z} \mid n \le x \}$$

$$p_1 = \max \{ n \in \mathbb{Z} \mid p_0 + \frac{1}{10} n \le x \}$$

e così via, in modo che per ogni k > 0 sia

$$p_k = \max \{ n \in Z \mid \underbrace{r_{k-1}(T(x))}_{p_0 + \frac{1}{10}p_1 + \dots} + \frac{1}{10^k} n \le x \}$$

Esempio 2.7. Consideriamo T(x) per $x=\frac{3}{2}$, che è 1,5000.... Infatti:

$$p_0 = \max \{ n \in \mathbb{Z} \mid n \le \frac{3}{2} \} = 1$$

$$p_1 = \max\{n \in \mathbb{Z} \mid 1 + \frac{1}{10}n \le \frac{3}{2}\} = 5$$

$$p_2 = \max \{ n \in \mathbb{Z} \mid 1 + \frac{5}{10}n + \frac{1}{100}n \le \frac{3}{2} \} = 0$$

Prestiamo attenzione al fatto che il comportamento di T(x) per i numeri negativi, così per come è stato definito, è diverso da come ce lo potremmo aspettare. Ad esempio:

$$T\left(-\frac{3}{2}\right) = -2,500\dots$$

Proposizione 2.8. Per ogni $x \in \mathbb{Q}$, k > 0 vale:

$$0 \le x - r_k(T(x)) < \frac{1}{10^k}$$

Come consequenza si ha che l'insieme

$$\{ n \in \mathbb{Z} \mid r_{k-1}((T(x)) + \frac{1}{10^k} n \le x \}$$

contiene 0 e ha 9 come maggiorante.

Capitolo 3

Terza lezione (13/10/2015)

3.1 Allineamenti decimali e insieme \mathbb{R}

Abbiamo già visto come si scrive un allineamento decimale: P_0, P_1, P_2, \ldots con $P_k \in \mathbb{Z}$, $0 \le P_k \le 9$ per k > 0.

Dato un allineamento x consideriamo il suo k-esimo troncamento:

$$r_k(x) = P_0 + \frac{1}{10}P_1 + \ldots + \frac{1}{10^k}P_k$$

Dato $x \in \mathbb{Q}$, esiste l'allineamento decimale T(x) tale che $0 \le x - r_k(T(x)) \le \frac{1}{10^k}$. Nota che T(x) non può avere periodo 9.

Esempio 3.1. Supponiamo che esista $T(x) = 0, \overline{9}$. Allora

$$r_k(T(x)) = 0 + \frac{9}{10} + \dots + \frac{9}{10^k}$$

= $\frac{10^k - 1}{10^k}$

Ad esempio per k=2 varrebbe $r_k(T(x))=\frac{9}{10}+\frac{9}{100}=\frac{99}{100}$; e così via.

$$0 \le x - r_k(T(x)) < \frac{1}{10^k}$$

Che è equivalente a:

$$\underbrace{r_k(T(x))}_{\frac{10^k - 1}{10^k}} \le x < \underbrace{r_k(T(x)) + \frac{1}{10^k}}_{1}$$

Non esiste $x \in \mathbb{Q}$ tale che $1 - \frac{1}{10^k} \le x < 1$ per ogni k. Ciò implica che $0, \overline{9}$ non è T(x) per un $x \in \mathbb{Q}$.

Definizione 3.2. Un allineamento decimale è ammissibile se non è periodico con periodo 9.

Sia \mathcal{A} l'insieme degli allineamenti decimali ammissibili. Definiamo T come la funzione che associa un numero razionale a un allineamento ammissibile (che è un elemento dell'insieme \mathcal{A}). Sinteticamente si scrive:

$$T: \mathbb{Q} \to \mathcal{A}$$

Poniamo $\mathbb{R} = \mathcal{A}$. L'ordinamento su \mathcal{A} è definito nel seguente modo: $p_0, p_1, \ldots, p_k < q_0, q_1, \ldots, q_k$ se e solo se, detto $k = \min\{i \mid p_i \neq q_i\}$, si ha $p_k < q_k$.

Esempio 3.3. Consideriamo il banale ordinamento tra le seguenti coppie di allineamenti:

- 2, 3 < 3, 2 (vera per k = 0)
- 1, 12 < 1, 13 (vera per k = 2)

Definizione 3.4. Dati $x, y \in \mathcal{A}$ definiamo $x \leq y$ se x < y o x = y.

L'insieme \mathcal{A} è totalmente ordinato.

Proposizione 3.5. Ogni $X \subset \mathcal{A}$ non vuoto ha un estremo superiore.

Dimostrazione. Se X non è limitato superiormente, allora sup $X = +\infty$.

Se X è limitato superiormente, allora esiste sicuramente un maggiorante M.

Per ogni $k \in \mathbb{Z}$ con $k \geq 0$ definiamo la funzione $a_k : \mathcal{A} \to \mathbb{Z}$ (che estrae la k-esima cifra); ovvero: $a_k(p_0, p_1, \dots, p_k) = p_k$.

Osserviamo che $\{a_0(z) \mid z \in X\}$ è limitato superiormente perché M è un suo maggiorante. Ad esempio se $X = \{1.2, 2.3, 3.4\}$ allora $\{a_0(z) \mid z \in X\} = \{1, 2, 3\}$ e quindi M = 4.

Sia $q_0 = max \{ a_p(z) \mid z \in X \}$. Considerando ancora l'esempio sopra, in questo caso $q_0 = 3$.

Se k > 0: $\{ a_k(z) \mid z \in X \} \subseteq \{0, \dots, 9\}$.

 $q_k = \max \{ a_k(z) \mid z \in X \text{ tale che } a_0(z) = q_0, a_1(z) = q_1, \dots, a_{k-1}(z) = q_{k-1} \}.$

Sia $y = q_0, q_1, \ldots$ un maggiorante. Sia $z = p_0, \ldots, p_k$ di X; sia $j = \min \{ p_j \neq q_j \}$ con $z \neq y$.

$$q_j = max \underbrace{\{ a_j(z) \mid z \in X a_0(z) = q_0, \dots, a_{j-1}(z) = q_{j-1} \}}_{C}$$

Notiamo che C contiene z. Ciò implica che $\underbrace{a_j(z)}_{p_j} \leq q_j$, ma per la definizione precedente

 $p_j \neq q_j$.

Ciò implica $p_j < q_j$, che a sua volta implica z < y. Quindi y è effettivamente un maggiorante.

Preso $y' \leq y$ devo dimostrare che $\exists z \in X$ tale che y' < z.

$$y'=p_0,p_1,\ldots$$

$$y=q_0,q_1,\ldots$$

Supponiamo che $p_i = q_i$ e $p_k < q_k$ per ogni i < k. Per definizione di q_k esiste $z \in X$ tale che $a_i(z) = q_i$ per $i \le k$. Per costruzione questo implica y' < z. Abbiamo quindi dimostrato che $y = \sup X$.

Per ora abbiamo definito (A, \leq) . Dobbiamo però ancora definire la somma in A. Si pone: $x + y = \sup \{ T(r_k(x) + r_k(y)) \mid k \in \mathbb{N} \}$ dove x, y sono allineamenti.

Possiamo inoltre definire in modo analogo il prodotto.

Per
$$x, y \ge 0$$
, $x \cdot y = \sup \{ T(r_k(x) \cdot r_k(y)) \mid k \in \mathbb{N} \}$

Proposizione 3.6. Esiste un $e \in A$ tale che x + e = x = e + x per ogni x (detto anche "zero").

Dimostrazione. Poniamo $e = T(0) = \{0,0000...\}$. Allora $x + e = \sup \{T(r_k(x) + r_k(e)) \mid k \in \mathbb{N}\}$. Calcoliamo $r_k(e) = 0 + \frac{1}{10} \cdot 0 + \cdots + \frac{1}{10^k} \cdot 0 = 0$. Quindi $x + e = \sup \{T(r_k(x)) \mid k \in \mathbb{N}\} = x$. Quindi \mathcal{A} contiene lo zero.

In modo del tutto analogo si prova che \mathcal{A} contiene anche 1,000...

Siamo quindi pronti per definire l'insieme dei reali \mathbb{R} ; in modo sintetico scriviamo $\mathbb{R} = (\mathcal{A}, <, +, \cdot, 0, 1)$.

Osserviamo che $\mathbb{Q} \subseteq \mathbb{R}$ e che ogni $x \in \mathbb{Q}$ determina un $T(x) \in \mathcal{A} = \mathbb{R}$. Valgono le solite proprietà:

- T(x + y) = T(x) + T(y)
- $T(x \cdot y) = T(x) \cdot T(y)$
- T(0) = 0.
- T(1) = 1.

Proposizione 3.7 (Proprietà di Archimede). Dati a, b reali positivi esiste un $n \in \mathbb{N}$ tale che $n \cdot a > b$.

Dimostrazione. Per assurdo supponiamo che valga il contrario, ovvero che $n \cdot a < b \ \forall n$. Allora $n < \frac{a}{b}$. Questo è impossibile perché $\mathbb N$ dovrebbe essere limitato superiormente, quindi avere un massimo. Ma ciò è palesemente assurdo, perché vale sempre $x+1 \in N$ e x+1>x.

3.2 Potenze e logaritmi

Dato $a \in \mathbb{R}$ e $n \in \mathbb{N}$ definiamo $a^n = \underbrace{a \cdot \ldots \cdot a}_{n \text{ volte}}$. L'elevamento a potenza gode delle seguenti proprietà:

- $\bullet \ a^{n+m} = a^n \cdot a^m$
- $\bullet \ (a \cdot b)^n = a^n \cdot b^n$
- $(a^n)^m = a^{n \cdot m}$

Per definizione se $a \neq 0 \implies a^0 = 1$. Sempre per definizione $a^{-n} = (\frac{1}{a})^n$.

Teorema 3.8. Dato $x \in \mathbb{R}$ positivo e $n \in \mathbb{N}$ esiste un unico reale positivo, y, tale che $y^n = x$ (ovvero $y = \sqrt[n]{x}$).

Definizione 3.9. Dato x reale positivo e $\frac{p}{q} \in \mathbb{Q}$ (assumendo senza perdita di generalità q > 0), si pone $x^{\frac{p}{q}} = (\sqrt[q]{x})^p$.

Se $x \ge 1$ reale e $y \in \mathbb{R}$ definiamo $x^y = \sup \{ x^{\frac{p}{q}} \mid \frac{p}{q} \le y \}.$

Se x < 1 possiamo invertire: $x^y = (\frac{1}{x})^{-y}$.

Valgono le solite proprietà.

Teorema 3.10. Dato $x \in \mathbb{R}$ (con x > 0, y > 1) esiste un unico $z \in \mathbb{R}$ tale che $x^z = y$. Si scrive: $z = \log_x y$.

3.3 Intervalli e intorni

Dati $a, b \in \mathbb{R}$ sono definiti i seguenti intervalli (riportati solo nelle forme più esemplificative, le altre sono immediate dalle seguenti):

$$(a,b) = \{ x \in \mathbb{R} \mid a < x < b \}$$

$$[a,b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$$

$$(-\infty,a) = \{ x \in \mathbb{R} \mid x < a \}$$

$$(a,+\infty) = \{ x \in \mathbb{R} \mid x > a \}$$

$$[a,b) = \{ x \in \mathbb{R} \mid a \le x < b \}$$

$$(a,b] = \{ x \in \mathbb{R} \mid a < x \le b \}$$

Definizione 3.11. Dati $x \in \mathbb{R}$ e $r \in \mathbb{R}$ (con r > 0), si dice intorno circolare di x di raggio r l'intervallo $B_r(x) = (x - r, x + r) = \{ y \in \mathbb{R} \mid |x - y| < r \}$.

Definiamo inoltre $B'_r(x) = B_r(x) \setminus \{x\} = (x - r, x) \cup (x, x + r).$

Ricorda che
$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

Inoltre osserviamo che $|x+y| \le |x| + |y|$.

3.4 Successioni

Una successione è una funzione $x : \mathbb{N} \to \mathbb{R} \ (n \to x_n)$.

Tale funzione viene rappresentata con la notazione $\{x_1, x_2, x_3, \dots\}$ oppure $\{x_n\}_{n\in\mathbb{N}}$.

Esempio 3.12. $\{n\}_{n\in\mathbb{N}}$ rappresenta la successione $\{1,2,3,\dots\}$, ovvero la funzione $\mathbb{N}\to\mathbb{N}$ $(n\to n)$.

Esempio 3.13. $\{[\sqrt{n}]\}_{n\in\mathbb{N}}$ rappresenta la successione $\{1,1,1,2,\ldots,[\sqrt{n}],\ldots\}$, ovvero la funzione $\mathbb{N}\to\mathbb{N}$ $(n\to[\sqrt{n}])$.

Esempio 3.14. $\{(-1)^n\}_{n\in\mathbb{N}}$ rappresenta la successione $\{-1,1,-1,1,\dots\}$.

Definizione 3.15. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è crescente se $x_{n+1}>x_n$ per ogni n.

Definizione 3.16. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è decrescente se $x_{n+1} < x_n$ per ogni n.

Definizione 3.17. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è non crescente se $x_{n+1}\leq x_n$ per ogni n.

Definizione 3.18. Una successione $\{x_n\}_{n\in\mathbb{N}}$ è non decrescente se $x_{n+1} \geq x_n$ per ogni n.

Se una successione soddisfa una qualsiasi delle precedenti condizioni, allora essa si dice monotona.

Esempio 3.19. Le tre successioni mostrate in precedenza (3.12, 3.13, 3.14) sono rispettivamente crescente, non decrescente e non monotona.

Definizione 3.20. Si dice che $L \in \mathbb{R}$ è il limite di $\{x_n\}$ se per ogni intorno $B_r(L)$ di Lesiste $N \in \mathbb{N}$ tale che $x_n \in B_r(L)$ per ogni n > N.

Analogamente per ogni r > 0 esiste $N \in \mathbb{N}$ tale che $L - r < x_n < L + r$ per ogni n > N.

Si scrive

$$\lim_{n \to +\infty} x_n = L$$

Esempio 3.21. La successione $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ ha limite 0.

Dobbiamo dimostrare che per ogni r > 0 esiste N tale che se n > N allora $\frac{1}{n} \in B_r(0)$.

Ovvero $\left|\frac{1}{n}\right| < r$, cioè $1 < n \cdot r$, quindi $n > \frac{1}{r}$. Poniamo $N = \left[\frac{1}{r} + 1\right]$, allora n > N. $\Longrightarrow n > \frac{1}{r} \implies x_n \in B_r(0)$. Quindi $\lim_{n \to +\infty} \frac{1}{n} = 0$.

Capitolo 4

Quarta lezione (16/10/2015)

4.1 Limite di una successione

Definizione 4.1. Si dice che $L \in \mathbb{R}$ è il limite di $\{x_n\}_{n \in \mathbb{N}}$ se per ogni $\varepsilon > 0$ esiste un N tale che, per ogni n > N, vale:

$$L - \varepsilon < x_n < L + \varepsilon$$

Si scrive:

$$\lim_{n \to +\infty} x_n = L$$

Teorema 4.2 (Teorema di unicità del limite). Sia $\{x_n\}$ una successione. Se $\{x_n\}$ ha limite L e $\{x_n\}$ ha limite L', allora L = L'.

In altre parole stiamo dicendo che se il limite esiste allora è unico. Dimostriamo per assurdo il teorema.

Dimostrazione. Supponiamo per assurdo $L \neq L'$. Sia ε il punto medio tra L e L', ovvero:

$$\varepsilon = \frac{|L - L'|}{2} > 0$$

Per definizione di limite esiste un N tale che $|x_n-L|<\varepsilon$ per ogni n>N; quindi $x_n< L+\varepsilon$ e $x_n>L-\varepsilon$.

Esiste un N' tale che se n > N' allora $|x_n - L'| < \varepsilon$.

Scelto n>N e n>N', allora devono valere entrambe le precedenti. Riassumendo, deve valere sia $|x_n-L|<\varepsilon$ che $|x_n-L'|<\varepsilon$.

Per la disuguaglianza triangolare abbiamo che:

$$|L - L'| < |L - x_n| + |x_n - L'| < 2 \cdot \varepsilon$$

Quindi |L - L'| < |L - L'|, che è palesemente assurdo. In altri termini, stiamo dicendo che:

$$(L-\varepsilon, L+\varepsilon) \cup (L'-\varepsilon, L'+\varepsilon) = \varnothing$$

Esempio 4.3. Consideriamo la successione

$$x_n = \left(-\frac{1}{2}\right)^n$$

Il suo limite è zero.

Per dimostrarlo dobbiamo far vedere che esiste per ogni $\varepsilon > 0$ un N tale che, se n > N, allora $|x_n| < \varepsilon$.

$$\left| \left(-\frac{1}{2} \right)^n \right| < \varepsilon \iff \frac{1}{2^n} < \varepsilon \iff \frac{1}{\varepsilon} < 2^n \iff n > \log_2 \frac{1}{\varepsilon}$$

Non ci resta che scegliere $N > \log_2 \frac{1}{\varepsilon}$, ad esempio

$$N = \left\lceil \log_2 \frac{1}{\varepsilon} \right\rceil + 1$$

Quando n > N varrà

$$n > \log_2 \frac{1}{\varepsilon} \implies \frac{1}{2^n} < \varepsilon$$

Esempio 4.4. Consideriamo questa volta la successione $\{n^2\}_{n\in\mathbb{N}}$ che non ha limite. Supponiamo che abbia un limite L, allora per ogni $\varepsilon > 0$ esiste N tale che:

$$L - \varepsilon < n^2 < L + \varepsilon \qquad \forall n > N$$

Tale disuguaglianza deve valere anche per $\varepsilon = L$. Quindi:

$$0 = L - \varepsilon < n^2 < L + \varepsilon = 2L$$

Ciò implica $n<\sqrt{2L}$, che non può essere soddisfatta. Quindi L>0 non può essere il limite.

In modo ancora più semplice possiamo mostrare che il limite non può essere nemmeno negativo. Infatti se L < 0 dovrebbe valere per n > N:

$$|n^2 - L| < \frac{1}{2} \implies |n^2| < \frac{1}{2}$$

che è assurdo perché il più piccolo quadrato di un numero naturale è 1.

4.2 Successioni convergenti, divergenti, limitate

Definizione 4.5. Si dice che $\{x_n\}$ ha limite $+\infty$ (si dice anche "diverge a $+\infty$ ") se, per ogni $M \in \mathbb{R}$, esiste un $N \in \mathbb{N}$ tale che, per ogni n > N, $x_n > M$.

In altre parole stiamo dicendo che, da un certo punto in poi (n > N), il valore della successione sarà sempre maggiore di M, con M scelto grande a piacere.

In modo analogo una successione ha limite $-\infty$ se per ogni $M \in \mathbb{R}$ esiste un $N \in \mathbb{N}$ tale che, per ogni n > N, vale $x_n < -M$.

Esempio 4.6. Consideriamo il limite di questa successione:

$$\lim_{n \to +\infty} n^2 = +\infty$$

Tale limite è corretto. Scegliamo M positivo e poniamo $N = [\sqrt{M}] + 1$. In tale situazione $n > N \implies n > \sqrt{M} \implies n^2 > M$; che è esattamente la definizione precedente.

Esempio 4.7. La successione $\{(-1)^n\}_{n\in\mathbb{N}}$ non converge e non diverge (cioè non ha limite). Il suo limite non può essere infinito perché $(-1)^n\in[-1;1]$. Scelto banalmente M>1 non vale mai $x_n>M$. In modo analogo non vale mai nemmeno $x_n<-M$.

Mostriamo ora che non ha nemmeno un limite finito (cioè $L \in \mathbb{R}$). Se fosse $\lim_{n \to +\infty} (-1)^n = L$ allora, posto $\varepsilon = 1$ nella definizione di limite, avremmo che esiste N tale che:

$$|(-1)^n - L| < 1 \qquad \forall n > N$$

$$\implies |1 - L| < 1 \qquad e \qquad |-1 - L| < 1$$

$$\implies |1 - (-1)| \le |1 - L| + |(-1) - L| < 2$$

$$\implies |2| < 2$$

che è palesemente assurdo.

Definizione 4.8. Una successione $\{x_n\}$ è *limitata* se esiste $M \in \mathbb{R}$ tale che $|x_n| \leq M$ per ogni $n \in \mathbb{N}$.

Esempio 4.9. Mostriamo due successioni limitate:

$$\{(-1)^n\}_{n\in\mathbb{N}}$$
 è limitata: $M=1$ $|(-1)^n|=1$

$$\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}}$$
 è limitata: $M=1$ $\left|\frac{1}{n}\right|\leq 1$

Enunciamo e dimostriamo ora un importante teorema sulla relazione che sussiste tra le definizioni precedenti.

Teorema 4.10. Ogni successione convergente è limitata. Nessuna successione divergente è limitata.

Dimostriamo la prima affermazione del teorema.

Dimostrazione. Sia:

$$\lim_{n \to +\infty} x_n = L \qquad L \in \mathbb{R}$$

Per definizione di limite esiste un N tale che $L-1 < x_n < L+1$ per ogni n > N (ovvero $|x_n| < |L|+1$). Scegliamo M:

$$M = \max\{|L| + 1, |x_1|, |x_2|, \dots, |x_n|\}$$

Allora:

• per n = 1, ..., N vale $|x_n| \le M$ perché appartiene all'insieme

• per n > N vale $|x_n| \le M$ perché abbiamo detto che $|x_n| < |L| + 1$.

Abbiamo quindi dimostrato che la successione $\{x_n\}$ è limitata.

Dimostriamo ora la seconda affermazione del teorema.

Dimostrazione. Per assurdo, sia $\{x_n\}$ una successione divergente limitata. Allora deve valere:

$$|x_n| < M \qquad \forall n \in \mathbb{N}$$

Se il limite della successione è $+\infty$ allora esiste un N tale che per n > N vale $x_n > M$. Questo è assurdo (avevamo detto che $x_n < M$).

Non è neppure possibile che il limite sia $-\infty$: in quel caso dovrebbe essere $x_n < -M$ che è assurdo per n > N.

Consideriamo con attenzione questi due esempi:

Esempio 4.11. $\{(-1)^n\}$ è limitata ma non è convergente.

Esempio 4.12.

$$x_n = \begin{cases} 0 & n \text{ pari} \\ n & n \text{ dispari} \end{cases}$$

Quindi $\{x_n\} = \{1, 0, 3, 0, 5, \ldots\}$. Essa non è limitata ma non è divergente.

È necessario prestare quindi attenzione al fatto che il teorema precedente non indica "se e solo se".

Teorema 4.13. Sia

$$\{x_n\}_{n\in\mathbb{N}}$$
 e $\lim_{n\to+\infty} x_n = x$

$$\{y_n\}_{n\in\mathbb{N}}$$
 e $\lim_{n\to+\infty}y_n=y$

Allora valgono le sequenti:

- 1. $\{x_n + y_n\}_{n \in \mathbb{N}}$ converge a x + y
- 2. $\{x_n \cdot y_n\}_{n \in \mathbb{N}}$ converge $a \times y$
- 3. se $x_n = k$ allora x = k
- 4. se $\alpha \in \mathbb{R}$, $\{\alpha \cdot x_n\}$ converge $a \alpha \cdot x$
- 5. $\frac{x_n}{y_n}$ converge $a \frac{x}{y}$ se $y_n \neq 0 \ \forall n \ e \ y \neq 0$
- 6. se $x_n \leq y_n$ per ogni n, allora $x \leq y$
- 7. $\{|x_n|\}$ converge a |x|

Dimostriamo a scopo didattico i punti uno e sei.

Dimostrazione. Per dimostrare il punto uno, devo far vedere che $\forall \varepsilon$ esiste N tale che $\forall n > N \text{ vale:}$

$$|(x_n + y_n) - (x + y)| < \varepsilon$$

Scelgo N tale che $|x_n - x| < \frac{\varepsilon}{2}$ Scelgo N' tale che $|y_n - y| < \frac{\varepsilon}{2}$ $\forall n > N$.

Scelgo N' tale che $|x_n - x| < \frac{\varepsilon}{2}$ $\forall n > N'$. Scelgo N' tale che $|y_n - y| < \frac{\varepsilon}{2}$ $\forall n > N'$. Sia $N'' = max\{N, N'\}$. Quindi se n > N'' allora varranno anche n > N' e n > N.

$$\implies |x_n - x| < \frac{\varepsilon}{2} \quad \text{e} \quad |y_n - y| < \frac{\varepsilon}{2}$$

$$\implies |(x_n - x) + (y_n - y)| \le |x_n - x| + |y_n - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\implies |(x_n + y_n) - (x + y)| < \varepsilon \quad \forall n > N''$$

Abbiamo quindi dimostrato che $\lim(x_n + y_n) = (\lim x_n) + (\lim y_n)$.

Dimostriamo ora il punto sei:

Dimostrazione. Fissato $\varepsilon > 0$ per n > N'' vale $|x_n - x| < \varepsilon$ e $|y_n - y| < \varepsilon$. Quindi, preso $x < \varepsilon + x_n$:

$$x \le \varepsilon + y_n < \varepsilon + (y + \varepsilon) = y + 2\varepsilon$$

$$\implies x < y + 2\varepsilon \quad \forall \varepsilon > 0$$

$$\implies x - y < 2\varepsilon \quad \forall \varepsilon > 0$$

$$\implies x - y \le 0 \implies x \le y$$

Prestiamo attenzione al fatto che non vale lo strettamente minore! Formalmente, non è vero che se $x_n < y_n$ per ogni n allora $\lim x_n < \lim y_n$. Ad esempio $x_n = \frac{1}{n+1}$ e $y_n = \frac{1}{n}$ hanno entrambi limite 0, quindi possiamo scrivere $\lim x_n \leq \lim y_n$ (con il minore uguale!).

Con quanto abbiamo appreso sopra possiamo già calcolare alcuni limiti interessanti, ad esempio:

$$\lim \frac{1}{n^2} = \lim \left(\frac{1}{n}\right) \cdot \left(\frac{1}{n}\right) = \left(\lim \frac{1}{n}\right) \cdot \left(\lim \frac{1}{n}\right) = 0 \cdot 0 = 0$$

Enunciamo ora un teorema sulle successioni che richiederebbe la nozione di funzione continua, non fornita per ora in questo corso. Facciamo solo alcuni esempi di funzioni continue: $f(x) = \sin x$, $f(x) = x^a$, $f(x) = a^x$, $f(x) = \log_a x$.

Teorema 4.14. Sia $f:[a,b] \to \mathbb{R}$ una funzione continua e $\{x_n\}$ una successione in [a,b]il cui limite $\lim x_n = x$; allora

$$\lim_{n \to +\infty} F(x_n) = F(x)$$

Supponiamo di voler calcolare $\lim \sqrt{\frac{2n+1}{n}}$ tramite il teorema esposto. Calcoliamo il limite senza radice:

$$\lim \frac{2n+1}{n} = \lim \left(2 + \frac{1}{n}\right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2$$

Grazie al teorema possiamo affermare che lim $\sqrt{\frac{2n+1}{n}} = \sqrt{2}$.

Teorema 4.15. Sia $\{x_n\}$ una successione il cui limite vale $+\infty$ e $\{y_n\}$ una generica successione. Allora:

1. se
$$\lim y_n = y$$
 oppure $\lim y_n = +\infty$ allora $\lim x_n + y_n = +\infty$

2. se
$$\lim y_n = y > 0$$
 oppure $\lim y_n = +\infty$ allora $\lim x_n \cdot y_n = +\infty$

3. se
$$\alpha \in \mathbb{R}^+$$
 allora $\lim \alpha \cdot x_n = +\infty$

4. se
$$x_n \neq 0$$
 per ogni n allora $\lim \frac{1}{x_n} = 0$

5. se
$$x_n \le y_n$$
 per ogni n allora $\lim y_n = +\infty$

$$6. \lim |x_n| = +\infty$$

Queste proprietà possono essere scritte anche in forma sintetica:

$$+\infty + y = +\infty$$

$$+\infty + (+\infty) = +\infty$$

$$+\infty \cdot y = +\infty \qquad (y > 0)$$

$$+\infty \cdot \alpha = +\infty \qquad (\alpha > 0)$$

$$\frac{1}{+\infty} = 0$$

Capitolo 5

Quinta lezione (20/10/2015)

5.1 Forme di indeterminazione

In alcuni casi non possiamo stabilire univocamente quanto vale un limite. Chiamiamo tali casi particolari forme di indeterminazione.

 $\frac{\infty}{\infty}$ è una forma di indeterminazione, in quanto ho che

$$\lim_{n \to +\infty} x_n = +\infty \qquad \text{e} \qquad \lim_{n \to +\infty} y_n + \infty$$

Quindi non posso dire nulla su

$$\lim_{n \to +\infty} \frac{x_n}{y_n}$$

Mostriamo ora tre esempi di limiti che presentano questa forma di indeterminazione.

Esempio 5.1. Un limite con la forma di indeterminazione $\frac{\infty}{\infty}$ è lim $\frac{n+1}{n}$, perché lim $(n+1) = +\infty$ e lim $n = +\infty$.

In questo caso il calcolo del limite è banale:

$$\lim_{n \to +\infty} \frac{n+1}{n} \quad \left[\frac{\infty}{\infty}\right] = \lim 1 + \lim \frac{1}{n} = 1 + 0 = 1$$

Esempio 5.2.

$$\lim_{n \to +\infty} \frac{n+1}{n^2} \quad \left[\frac{\infty}{\infty}\right] = \lim_{n \to +\infty} \frac{1}{n} + \lim_{n \to +\infty} \frac{1}{n^2} = 0$$

Esempio 5.3.

$$\lim_{n \to +\infty} \frac{n+1}{\sqrt{n}} \quad \left[\frac{\infty}{\infty}\right] = \lim \sqrt{n} + \lim \frac{1}{\sqrt{n}} = +\infty + 0 = +\infty$$

Un'altra forma di indeterminazione è $\infty - \infty$. Anche per questa mostriamo tre esempi.

Esempio 5.4.

$$\lim(n+1) - n \quad [\infty - \infty] = \lim 1 = 1$$

Esempio 5.5.

$$\lim(n+1) - n^2 \quad [\infty - \infty] = \lim n^2 \left(-1 + \frac{1}{n} + \frac{1}{n^2}\right) = -\infty$$

Esempio 5.6.

$$\lim(n+(-1)^n)-n$$
 $[\infty-\infty]=\lim(-1)^n$ che non esiste

Anche $\infty \cdot 0$ è una forma di indeterminazione. Come per le precedenti, mostriamo tre esempi.

Esempio 5.7.

$$\lim n \cdot \frac{1}{n+1} \quad [\infty \cdot 0] = 1$$

Esempio 5.8.

$$\lim n \cdot \frac{1}{\sqrt{n}} \quad [\infty \cdot 0] = +\infty$$

Esempio 5.9.

$$\lim n \cdot \frac{1}{n^2} \quad [\infty \cdot 0] = 0$$

5.2 Teoremi su limiti di successioni

Teorema 5.10 (Permanenza del segno). Sia:

$$\lim_{n \to +\infty} x_n = x > 0 \qquad oppure \qquad \lim_{n \to +\infty} x_n = +\infty$$

Allora $x_n > 0$ definitivamente, ovvero esiste $N \in \mathbb{N}$ tale che $x_n > 0 \ \forall n > N$.

Il concetto che abbiamo espresso di definitivamente è importante e verrà usato anche in seguito. Dimostriamo ora il teorema.

Dimostrazione.

- I. se $\lim x_n = x > 0$ allora per definizione di limite $\forall \varepsilon > 0$ esiste N tale che $x_n \in B_{\varepsilon}(x)$. Scegliamo $\varepsilon = x$; segue che $x_n \in (x x, x + x)$. Quindi $x_n > 0$ per ogni n > N.
- II. se invece $\lim x_n = +\infty$ allora possiamo dire che $\forall M$ esiste N tale che $x_n > M$ per ogni n > M. Scegliamo M = 0 e troviamo che $x_n > 0 \ \forall n > N$.

Teorema 5.11. Ogni successione monotona e limitata converge. Ogni successione monotona non limitata diverge.

Dimostriamo separatamente le due parti del teorema.

Dimostrazione. Sia $\{x_n\}$ una successione limitata (ricordiamo che questo significa che $\exists M$ tale che $|x_n| \leq M \, \forall n$) non decrescente. Imporre la non decrescenza non fa perdere di generalità la dimostrazione, sarebbe sufficiente considerare l'opposto. Non decrescente significa che $x_{n+1} \geq x_n \, \forall n$.

Consideriamo ora sup $\{x_n \mid n \in \mathbb{N}\}$. Questo sup esiste e lo chiamiamo λ . L'insieme $\{x_n \mid n \in \mathbb{N}\}$ è limitato (ovvero $\forall y \in \{x_n \mid n \in \mathbb{N}\} \mid y_n \mid \leq M$). Quindi il sup non è infinito e $\lambda \in \mathbb{R}$.

Vogliamo far vedere, come è prevedibile, che $\lambda = \lim x_n$. Preso $\varepsilon > 0$ dev'essere $x_n \in (x - \varepsilon, x + \varepsilon)$ definitivamente. Per definizione di sup, $\lambda - \varepsilon < x_n$ per qualche $N \in \mathbb{N}$. Se n > N allora, visto che la successione è non decrescente, vale $x_n \geq x_N > \lambda - \varepsilon$.

Quindi
$$\forall \varepsilon > 0$$
 esiste N tale che $x_n \in (\lambda - \varepsilon, \lambda]$ per ogni $n > N$.

Dimostrazione. Se $\{x_n\}$ è non limitata e non decrescente, allora dobbiamo dimostrare che $\lim x_n = +\infty$.

Per definizione di insieme limitato $\forall M \; \exists N \; \text{tale che} \; |x_N| > M$. Possiamo supporre che $x_N > M$ (a patto che $M > x_0$). Poiché $\{x_n\}$ è non decrescente, $x_n > x_N \; \forall n > N$.

Quindi
$$x_n > M \ \forall n > N \ e \ \lim x_n = +\infty.$$

Osservazione 5.12. Le successioni che non hanno limite non sono monotone.

Ad esempio, la successione $\{(-1)^n\}_{n\in\mathbb{N}}$ non ha limite (oscilla tra -1 e 1) e non è monotona. La successione $\{1, -1, 2, 3, 4, \ldots\}$ invece ha limite $+\infty$ ma non è monotona.

Teorema 5.13 (Confronto tra successioni). Siano $\{x_n\}, \{y_n\}, \{z_n\}$ successioni tali che $x_n \leq y_n \leq z_n$ per ogni n. Supponiamo che $\lim x_n = L = \lim z_n$. Allora anche $\lim y_n = L$.

Dimostrazione. Per $\varepsilon > 0$ deve esistere $N \in \mathbb{N}$ tale che $x_n \in (L - \varepsilon, L + \varepsilon) \ \forall n > N$. Sia N' tale che $x_n > L - \varepsilon \ \forall n > N'$. Sia N'' tale che $z_n < L + \varepsilon \ \forall n > N''$. Sia inoltre $N = \max\{N', N''\}$. Allora per ogni n > N vale la seguente disuguaglianza:

$$L - \varepsilon < \underbrace{x_n \le y_n \le z_n}_{\text{per ipotesi}} < L + \varepsilon$$

Quindi
$$y_n \in (L - \varepsilon, L + \varepsilon) \ \forall n > N$$
.

Osservazione 5.14. Osserviamo che tale teorema vale anche per limiti infiniti. Se $\lim x_n = +\infty$, $\lim z_n = +\infty$, $x_n \le y_n \le z_n$, allora $\lim y_n = +\infty$.

5.3 Coefficienti binomiali e disuguaglianza di Bernoulli

Per poter affrontare la disuguaglianza di Bernoulli, dobbiamo prima conoscere alcuni cenni sul coefficiente binomiale.

Vale la seguente equazione (detta binomio di Newton):

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

che esplicitata per i primi esponenti vale:

$$(a+b)^{0} = 1$$

$$(a+b)^{1} = a+b$$

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

Considerando solo i coefficienti, essi possono essere anche rappresentati in un triangolo di questo tipo, dove ogni numero è somma dei due numeri sopra di esso (a sinistra e a destra):

Definizione 5.15.

$$\binom{n}{k} \text{ tale che } (a+b)^n = \binom{n}{0} a^n + \binom{n}{1} a^{n-1} b + \ldots + \binom{n}{k} a^{n-k} b^k + \ldots + \binom{n}{n} b^n$$

Il coefficiente binomiale deve essere tale in modo che valga la seguente proprietà:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Per far ciò poniamo:

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Valgono anche le seguenti proprietà, tutte immediatamente e facilmente verificabili a partire dalla definizione:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$$

$$\begin{pmatrix} n \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix}$$

$$\begin{pmatrix} n \\ 1 \end{pmatrix} = n$$

Siamo ora pronti a enunciare e dimostrare la disuguaglianza.

Teorema 5.16 (Disuguaglianza di Bernoulli). Sia $h \ge 0$, allora:

$$(1+h)^n > 1+nh \quad \forall n$$

Dimostrazione.

$$(1+h)^n = \binom{n}{0} 1^n + \binom{n}{1} 1^{n-1} h + \sum_{k=2}^n \binom{n}{k} h^k$$
$$= 1 + nh + \sum_{k=2}^n \binom{n}{k} h^k$$

Osseriviamo che ogni termine $\binom{n}{k}h^k$ è non negativo. Quindi $(1+h)^n \geq 1+nh$. \square

5.4 $\lim a^n$ e criterio del rapporto

Teorema 5.17. Sia $a \neq 0$, allora:

$$\lim_{n \to +\infty} a^n = \begin{cases} 1 & \text{se } a = 1 \\ +\infty & \text{se } a > 1 \\ 0 & \text{se } -1 < a < 1 \end{cases}$$

$$\stackrel{\text{$\not =}}{\not =} \quad altrimenti$$

Dimostrazione. Discutiamo ciascun caso separatamente.

- se a = 1 il limite è ovvio
- se a > 1, sia h = a 1 > 0. Quindi possiamo scrivere $\lim a^n = \lim(1 + h)^n$. Dalla disuguaglianza di Bernoulli sappiamo che $(1+h)^n \ge 1+hn \ \forall n$. Quindi la successione diverge, poiché $\lim(1+nh) = +\infty$ (considerato ovviamente h > 0). In definitiva $\lim a^n = +\infty$.
- se -1 < x < 1 vale che:

$$\frac{1}{|a|} = 1 + h$$

$$\left(\frac{1}{|a|}\right)^n = (1+h)^n \ge 1 + nh$$

Consideriamo il reciproco e abbiamo che:

$$0 < |a|^n \le 1 + nh$$

Per il teorema del confronto $\lim |a^n| = 0$, cioè $\forall \varepsilon |a|^n \in B_{\varepsilon}(0)$ definitivamente. Quindi $-\varepsilon < |a^n| < \varepsilon \implies -\varepsilon < a^n < \varepsilon$. Quindi $a^n \in B_{\varepsilon}(0)$ definitivamente.

- $\bullet\,$ se $a \leq -1$ procediamo a una dimostrazione per assurdo. Sia L il limite:
 - se L>0 per il teorema della permanenza del segno a^n è definitivamente positivo; assurdo.
 - se $L = +\infty$ vale lo stesso ragionamento del caso precedente.
 - se L<0 per il teorema della permanenza del segno a^n è definitivamente negativo; assurdo.
 - se L=0 allora $\lim |a|^n=0$. Essendo $|a|\geq 1$, assurdo.

Quindi la successione non ha limite.

Osservazione 5.18. Alcuni testi scrivono $\lim_{n\to+\infty} a_n = \infty$ (senza segno) se $\lim_{n\to+\infty} |a_n| = +\infty$. Ad esempio potrebbe esserci scritto che $\lim_{n\to+\infty} (-2)^n = \infty$ visto che $\lim_{n\to+\infty} |a_n| = +\infty$.

Teorema 5.19 (Criterio del rapporto). Sia $\{x_n\}$ una successione a termini positivi e sia

$$L = \lim_{n \to +\infty} \frac{x_{n+1}}{x_n}$$

Allora:

- se L > 1 la successione è definitivamente crescente e $\lim x_n = +\infty$.
- se $0 \le L < 1$ la successione è definitivamente decrescente e $\lim x_n = 0$.

Dimostrazione.

• se L > 1 allora possiamo imporre $L = 1 + 2\varepsilon$. Per definizione di limite $\exists N$ tale che

$$\frac{x_{n+1}}{x_n} > L - \varepsilon \qquad \forall n > N$$

$$\frac{x_{n+1}}{x_n} > 1 + \varepsilon \qquad \forall n > N$$

Quindi $x_{n+1} > x_n \cdot (1+\varepsilon) > x_n$ per n > N. Quindi la successione è definitivamente crescente.

Proseguendo otteniamo:

$$\begin{split} x_{N+2} &> x_{N+1} \cdot (1+\varepsilon) \\ x_{N+3} &> x_{N+2} \cdot (1+\varepsilon) > x_{N+1} \cdot (1+\varepsilon)^2 \quad \text{e così via.} \, . \, . \end{split}$$

Generalizzando:

$$x_n > (1+\varepsilon)^{n-(N+1)} \cdot x_{N+1}$$

Poiché $(1+\varepsilon)^{n-(N+1)}$ diverge a $+\infty$, per il teorema del confronto anche $\lim x_n = +\infty$.

• se 0 < L < 1 procediamo in modo analogo al caso precedente. Imponiamo $L = 1 + 2\varepsilon$. Per definizione di limite $\exists N$ tale che

$$\frac{x_{n+1}}{x_n} < L + \varepsilon \qquad \forall n > N$$

$$\frac{x_{n+1}}{x_n} < 1 - \varepsilon \qquad \forall n > N$$

Come prima vale:

$$0 < x_n < (1+\varepsilon)^{n-(N+1)} \cdot x_{N+1} \qquad \forall n > N$$

Per il criterio del confronto, essendo $\lim (1+\varepsilon)^{n-(N+1)} \cdot x_{N+1} = 0$, allora $\lim x_n = 0$. Inoltre, $x_{n+1} < x_n \cdot (1-\varepsilon) < x_n$; quindi la successione è definitivamente decrescente.

Capitolo 6

Sesta lezione (23/10/2015)

6.1 Criterio del rapporto (cont.)

Abbiamo già enunciato e dimostrato il criterio del rapporto; ora ne vogliamo mostrare un'applicazione calcolando un limite particolare.

Esempio 6.1. Dati $\alpha, h > 1$ vogliamo calcolare

$$\lim \frac{n^{\alpha}}{h^n}$$

Conoscendo la gerarchia degli infiniti potremmo subito dire che tale limite vale 0. Mostriamo formalmente che ciò è vero, usando il criterio del rapporto.

$$\frac{x_{n+1}}{x_n} = \frac{\frac{(n+1)^{\alpha}}{h^{n+1}}}{\frac{n^{\alpha}}{h^n}} = \left(\frac{n+1}{n}\right)^{\alpha} \cdot \frac{1}{h} = \underbrace{\left(1 + \frac{1}{n}\right)^{\alpha}}_{1} \cdot \frac{1}{h} = \frac{1}{h}$$

Quindi

$$\lim \frac{x_{n+1}}{x_n} = \lim \left(1 + \frac{1}{n}\right)^{\alpha} \cdot \frac{1}{h} = \frac{1}{h}$$

Possiamo dire ciò perché

$$\lim \left(1 + \frac{1}{n}\right) = 1$$

e quindi anche

$$\lim \left(1 + \frac{1}{n}\right)^{\alpha} = 1^{\alpha} = 1$$

Quindi ora poiché il limite è $L = \frac{1}{h}$, che è sicuramente minore di 1, per il criterio del rapporto possiamo dire che lim $x_n = 0$.

Abbiamo quindi dimostrato che $n^{\alpha} \ll h^n$. In altre notazioni tale fatto viene espresso come $n^{\alpha} = o(h^n)$.

6.2 Successioni definite per ricorrenza

Definizione 6.2. Una successione è definita per ricorrenza se è data nella forma

$$\begin{cases} x_1 = a \\ x_{n+1} = F(n, x_n) & \text{con } n > 0 \end{cases}$$

La successione sarà quindi del tipo $\{a, F(1, a), F(2, F(1, a)), \ldots\}$.

Mostriamo ora tre esempi di semplici successioni definite per ricorrenza. Nelle prossime tre successioni osserviamo che è semplice calcolare il termine generale x_n .

Esempio 6.3.

$$\begin{cases} x_1 = 1 \\ x_{n+1} = (n+1) \cdot x_n & n > 0 \end{cases}$$

La successione è del tipo $\{1, 2 \cdot 1, 3 \cdot 2 \cdot 1, \ldots\}$ e si vede chiaramente che $x_n = n!$.

Esempio 6.4. Siano fissati a e c numeri reali.

$$\begin{cases} x_1 = a \\ x_{n+1} = x_n + c \quad n > 0 \end{cases}$$

La successione è del tipo $\{a, a+c, a+2c, \ldots\}$ e si vede chiaramente che $x_n = a + (n-1) \cdot c$.

Esempio 6.5.

$$\begin{cases} x_1 = a \\ x_{n+1} = b \cdot x_n & n > 0 \end{cases}$$

La successione è del tipo $\{a, a \cdot b, a \cdot b^2, \ldots\}$ e si vede chiaramente che $x_n = a \cdot b^{n-1}$.

Consideriamo ora invece un esempio dove calcolare il termine generale è difficile.

Esempio 6.6.

$$\begin{cases} x_1 = 1 \\ x_{n+1} = \frac{2n+1}{n+3} \cdot x_n & n > 0 \end{cases}$$

Anche senza trovare il termine generale vogliamo però riuscire a calcolare il limite della successione. Osserviamo che tutti gli $x_n > 0$ sono positivi, perché $x_1 > 0$ e ogni $\frac{2n+1}{n+3}$ è un termine positivo. La successione è quindi a termini positivi e possiamo quindi applicare il criterio del rapporto.

$$\lim \frac{x_{n+1}}{x_n} = \lim \frac{\frac{2n+1}{n+3} \cdot x_n}{x_n} = \lim \frac{2n+1}{n+3} = \lim \frac{2n+6-5}{n+3} = \lim 2 - \frac{5}{n+3} = 2$$

Poiché 2 è maggiore di 1, per il criterio del rapporto la successione diverge a $+\infty$ (ovvero $\lim x_n = +\infty$).

Esempio 6.7. Prendiamo la stessa successione di prima invertendo numeratore e denominatore in x_{n+1} .

$$\begin{cases} x_1 = 1 \\ x_{n+1} = \frac{n+3}{2n+1} \cdot x_n & n > 0 \end{cases}$$

Valgono tutte le osservazioni fatte nell'esempio precedente. Inoltre, con gli stessi passaggi si può trovare che

$$\lim \frac{x_{n+1}}{x_n} = \frac{1}{2}$$

Poiché $\frac{1}{2} < 1$, per il criterio del rapporto $\lim x_n = 0$.

Esempio 6.8. Consideriamo quest'altro esempio in cui vogliamo calcolare il limite della successione.

$$x_n = \sum_{k=0}^{n} \frac{1}{2^k}$$
$$= 1 + \frac{1}{2} + \dots + \frac{1}{2^n}$$

Si arriva a far vedere che

$$x_n = 2 - \frac{1}{2^n}$$

utilizzando la seguente uguaglianza:

$$\sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a}$$

е

$$(1+a+\ldots+a^n)\cdot(1-a)=1-a^{n+1}$$

Sostituendo ovviamente $a = \frac{1}{2}$ resta

$$\sum_{k=0}^{n} a^{k} = \frac{1 - \frac{1}{2}^{n+1}}{1 - \frac{1}{2}} = 2 \cdot \left(1 - \frac{1}{2}^{n+1}\right) = 2 - \left(\frac{1}{2}\right)^{n}$$

In definitiva scriviamo

$$\lim x_n = \lim 2 - \underbrace{\left(\frac{1}{2}\right)^n}_{0} = 2$$

Osservazione 6.9. Per ogni $n \ge 1$ vale $n! \ge 2^{n-1}$. Possiamo mostrare che è vero per induzione.

Per n=1 ho che $1! \ge 2^{1-1}$, ovvero $1 \ge 1$ che è vero. Devo ora far vedere che se vale per n allora vale anche per n+1. Quindi:

$$(n+1)! = (n+1) \cdot n! \ge (n+1) \cdot 2^{n-1} \ge 2 \cdot 2^{n-1} = 2^n$$

6.3 Numero di Nepero e

Teorema 6.10. Il limite della successione $\{(1+\frac{1}{n})^n\}$ esiste ed è finito. In particolare la successione converge a un numero che chiamiamo e.

Per ogni $k \in \mathbb{N}$ vale

$$\left(1+\frac{1}{k}\right)^k < e < \sum_{k=0}^k \frac{1}{k!} + \frac{1}{2^{k-1}}$$

Dimostrazione. Avevamo già visto l'espressione del binomio di Newton:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k$$

Possiamo applicarla a questo caso. Quindi:

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} \cdot \left(\frac{1}{n}\right)^k$$

$$= \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

$$= \sum_{k=0}^n \frac{n!}{k! \cdot (n-k)!} \cdot \frac{1}{n^k}$$

$$= \sum_{k=0}^n \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{n! \cdot n^k}$$

Per l'ultimo passaggio abbiamo usato l'uguaglianza $n! = (n - k)! \cdot (n - k + 1) \cdot \dots \cdot n$. Possiamo procedere ulteriormente:

$$= \sum_{k=0}^{n} \frac{1}{k!} \cdot 1 \cdot \frac{n-1}{n} \cdot \frac{n-2}{n} \cdot \dots \cdot \frac{n-k+1}{n}$$
$$= \sum_{k=0}^{n} \frac{1}{k!} \cdot 1 \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)$$

Il nostro scopo è mostrare che la successione è monotona. Sviluppiamo ora la successione per n+1 in modo analogo:

$$\left(1 + \frac{1}{n+1}\right)^{n+1} = \sum_{k=0}^{n+1} \frac{1}{k!} \cdot \left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right)$$

Confrontando con quello di prima (che era la somma fino a n, quindi con un termine in meno), ho sicuramente che questo (lo "sviluppo" per n + 1) è maggiore.

$$> \sum_{k=0}^{n} \frac{1}{k!} \cdot \left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right)$$

$$> \sum_{k=0}^{n} \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)$$

Avendo tolto un termine positivo dalla successione, sicuramente ho ottenuto qualcosa di più piccolo. Quindi la successione è crescente.

Osserviamo anche che:

$$\left(1 + \frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!} = \sum_{k=0}^{n-1} \frac{1}{k!} + \frac{1}{n!} \le \sum_{k=0}^{n-1} \frac{1}{k!} + \frac{1}{2^{n-1}}$$

L'ultima disuguaglianza è giustificata dal fatto che $n! > 2^{n-1}$ (dimostrata in precedenza).

Considerando i casi particolari n=1 e n=2 possiamo scrivere:

$$(1+1)^1 < e < \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{2}$$

ovvero 2 < e < 3.

6.4 Limiti che si deducono da e

Osservazione 6.11. Data una successione $\{a_n\}$ (con $a_n \in \mathbb{N}$) divergente (ovvero $\lim a_n = +\infty$) allora:

$$\lim \left(1 + \frac{1}{a^n}\right)^{a_n} = e$$

Infatti, fissato un intorno di e sappiamo che $(1+\frac{1}{n})^n \in B_r(e)$ definitivamente. Poiché per definizione di limite $a_n > N$ definitivamente, allora $(1+\frac{1}{a^n})^{a_n} \in B_r(e)$ definitivamente.

Esempio 6.12. Mostriamo che

$$\lim_{n \to +\infty} \frac{n!}{n^n} = 0$$

Applichiamo il criterio del rapporto. Osserviamo innanzitutto che la successione è a termini positivi $(\frac{n!}{n^n} > 0)$. Calcoliamo il rapporto:

$$\frac{x_{n+1}}{x_n} = \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = (n+1) \cdot \frac{n^n}{(n+1)^{n+1}}$$
$$= \frac{n^n}{(n+1)^n} = \frac{1}{\left(\frac{n+1}{n}\right)^n} = \frac{1}{\left(1 + \frac{1}{n}\right)^n}$$

Quindi

$$\lim \frac{x_{n+1}}{x_n} = \lim \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e}$$

Essendo e > 1, $\lim \frac{x_{n+1}}{x_n} < 1$. Quindi, per il criterio del rapporto, $\lim \frac{n!}{n^n} = 0$.

Esempio 6.13. Mostriamo che (fissato x > 0)

$$\lim_{n \to +\infty} \frac{x^n}{n!} = 0$$

Applichiamo il criterio del rapporto. Osserviamo ancora una volta che la successione è a termini positivi $(\frac{x^n}{n!} > 0 \text{ per } x > 0 \text{ fissato})$. Calcoliamo il rapporto:

$$\lim \frac{x^{(n+1)}}{(n+1)!} \cdot \frac{n!}{x^n} = \lim \frac{x}{n+1} = 0$$

Quindi, per il criterio del rapporto, $\lim \frac{x^n}{n!} = 0$.

Esempio 6.14. Mostriamo che

$$\lim_{n \to +\infty} \frac{1}{(n!)^{\frac{1}{n}}} = 0$$

Dobbiamo cioè far vedere che, per ε fissato, $\frac{1}{(n!)^{\frac{1}{n}}} < \varepsilon$ definitivamente.

$$\frac{1}{n!} < \varepsilon^n \implies \frac{(\frac{1}{\varepsilon})^n}{n!} < 1$$

Per quest'ultimo passaggio abbiamo usato il limite mostrato nell'esempio precedente. Posto $x=\frac{1}{\varepsilon}$ troviamo che, definitivamente,

$$\frac{\left(\frac{1}{\varepsilon}\right)^n}{n!} < 1$$

Esempio 6.15. Mostriamo che

$$\lim_{n \to +\infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$$

Consideriamo le due successioni

$$x_n = \left(1 - \frac{1}{n}\right)^n$$
 e $y_n = \left(1 + \frac{1}{n}\right)^n$

Sappiamo che lim $y_n=e$. Quindi ci è sufficiente, per dimostrare l'esempio, far vedere che lim $x_ny_n=1$. Procediamo:

$$x_n y_n = \left[\left(1 - \frac{1}{n} \right) \cdot \left(1 + \frac{1}{n} \right) \right]^n = \left(1 - \frac{1}{n^2} \right)^n$$

Per Bernoulli sappiamo che $(1+x)^n \ge 1 + nx$. Sia $x = -\frac{1}{n^2}$, allora:

$$\left(1 - \frac{1}{n^2}\right)^n \ge 1 - \frac{n}{n^2} = 1 - \frac{1}{n}$$

Questo implica

$$1 - \frac{1}{n} \le x_n y_n \le 1$$

Essendo $\lim 1 - \frac{1}{n} = 1$, per il teorema del confronto si ha $\lim x_n y_n = 1$. Quindi:

$$\lim x_n = \frac{1}{\lim y_n} = \frac{1}{e}$$

6.5 Asintotico

Definizione 6.16. Due successioni x_n, y_n sono asintotiche se $y_n \neq 0$ definitivamente e

$$\lim \frac{x_n}{y_n} = 1$$

Si scrive $x_n \sim y_n$.

Osservazione 6.17. $x_n \sim y_n \iff y_n \sim x_n$

Proposizione 6.18. Se $x_n \sim \overline{x_n}$ e $y_n \sim \overline{y_n}$ allora

$$\lim \frac{x_n}{y_n} = \lim \frac{\overline{x_n}}{\overline{y_n}}$$

Cioè il limite di destra esiste se e solo se esiste il limite di sinistra; in tal caso i limiti coincidono.

Inoltre si ha anche che

$$\lim x_n \cdot y_n = \lim \overline{x_n} \cdot \overline{y_n}$$

Dimostriamo didatticamente la seconda parte della proposizione (quella relativa al prodotto).

Dimostrazione.

$$\overline{x_n} \cdot \overline{y_n} = \frac{\overline{x_n}}{x_n} \cdot \frac{\overline{y_n}}{y_n} \cdot x_n \cdot y_n$$

Poiché

$$\lim \frac{\overline{x_n}}{x_n} \cdot \frac{\overline{y_n}}{y_n} = 1$$

allora segue direttamente

$$\lim \overline{x_n} \cdot \overline{y_n} = \lim x_n \cdot y_n$$

Mostriamo ora la risoluzione di un limite grazie alla stima asintotica.

Esempio 6.19.

$$\lim \frac{n+\sqrt{n}}{n+\sqrt{n-1}}$$

Sia il numeratore che il denominatore sono asintotici a n. Infatti:

$$\frac{n+\sqrt{n}}{n} = 1 + \frac{1}{\sqrt{n}} \sim 1$$

$$\frac{n + \sqrt{n-1}}{n} = 1 + \sqrt{\frac{1}{n} - \frac{1}{n^2}} \sim 1$$

Quindi:

$$\lim \frac{n+\sqrt{n}}{n+\sqrt{n-1}} = \lim \frac{n}{n} = 1$$

Osservazione 6.20. Attenzione al fatto che tale proprietà non vale con la somma. Infatti, se $x_n \sim y_n$ non posso dire che

$$\lim x_n + z_n = \lim y_n + z_n$$

Facciamolo vedere su un esempio. Consideriamo $x_n = n+1$, $z_n = -n$ e $y_n = n$. Calcoliamo il limite: $\lim x_n + z_n = \lim (n+1) - n = \lim 1 = 1$. Considerato che $x_n \sim y_n$, si potrebbe essere tentati dal dire che tale limite è uguale a $\lim y_n + z_n = \lim n - n = \lim 0 = 0$. Come è evidente $(0 \neq 1)$ staremmo commettendo un grave errore!

Capitolo 7

Settima lezione (27/10/2015)

7.1 Infinitesimi e limiti notevoli

Definizione 7.1. Una successione $\{x_n\}$ si dice *infinitesima* se $\lim x_n = 0$.

Proposizione 7.2. Sia ε_n una successione infinitesima a termini positivi. Allora:

1.
$$\sin \varepsilon_n \sim \varepsilon_n$$

2.
$$1 - \cos \varepsilon_n \sim \frac{1}{2} (\varepsilon_n)^2$$

3.
$$\lim (1 + \varepsilon_n)^{\frac{1}{\varepsilon_n}} = e$$

4.
$$\log(1+\varepsilon_n)\sim\varepsilon_n$$

5.
$$e^{\varepsilon_n} - 1 \sim \varepsilon_n$$

6.
$$(1+\varepsilon_n)^{\alpha}-1\sim\alpha\cdot\varepsilon_n$$

Dimostriamo singolarmente ciascuna implicazione.

Dimostrazione. Dimostrare il primo punto equivale a far vedere che

$$\lim \frac{\sin \varepsilon_n}{\varepsilon_n} = 1$$

Dalla circonferenza goniometrica, con qualche passaggio, possiamo ricavare che

$$\sin \varepsilon_n < \varepsilon_n < \tan \varepsilon_n$$

$$\frac{1}{\sin \varepsilon_n} > \frac{1}{\varepsilon_n} > \frac{1}{\tan \varepsilon_n}$$

Moltiplichiamo per $\sin \varepsilon_n$:

$$1 > \frac{\sin \varepsilon_n}{\varepsilon_n} > \underbrace{\frac{\sin \varepsilon_n}{\tan \varepsilon_n}}_{\cos \varepsilon_n}$$

Sappiamo che $\lim \cos \varepsilon_n = \cos 0 = 1.$ Quindi:

$$1 > \frac{\sin \varepsilon_n}{\varepsilon_n} > 1$$

Per il teorema del confronto $\lim \frac{\sin \varepsilon_n}{\varepsilon_n} = 1$.

Dimostrazione. Riscrivamo la seconda proprietà enunciata sfruttando l'uguaglianza $\cos 2x = 1 - 2\sin^2 x$ e ponendo $\varepsilon_n = 2x$:

$$\frac{1 - \cos \varepsilon_n}{\frac{1}{2}(\varepsilon_n)^2} = \frac{1 - (1 - 2\sin^2\frac{\varepsilon_n}{2})}{\frac{1}{2}(\varepsilon_n)^2} = \frac{2\sin^2\frac{\varepsilon_n}{2}}{\frac{1}{2}(\varepsilon_n)^2} \sim \frac{2(\frac{\varepsilon_n}{2})^2}{\frac{1}{2}(\varepsilon_n)^2} = 1$$

Dimostrazione. Il terzo punto ci chiede di mostrare che

$$\lim (1 + \varepsilon_n)^{\frac{1}{\varepsilon_n}} = e$$

Osserviamo che qualora $\varepsilon_n = \frac{1}{n}$, allora tale limite può essere riscritto come $(1 + \frac{1}{n})^n$ e vale e per definizione di e stesso.

Dimostriamo ora il caso generale. Poniamo x_n uguale alla parte intera di $\frac{1}{\varepsilon_n}$ (si scrive $x_n = [\frac{1}{\varepsilon_n}]$). Quindi $x_n \in \mathbb{Z}$ e $x_n \leq \frac{1}{\varepsilon_n} < x_n + 1$. Quindi

$$\left(1 + \frac{1}{x_n + 1}\right)^{x_n} \le (1 + \varepsilon_n)^{x_n} \le \left(1 + \varepsilon_n\right)^{\frac{1}{\varepsilon_n}} \le \left(1 + \frac{1}{x_n}\right)^{\frac{1}{\varepsilon_n}} \le \left(1 + \frac{1}{x_n}\right)^{x_n + 1}$$

Proviamo ad applicare il criterio del confronto. Consideriamo

$$\lim \left(1 + \frac{1}{x_n + 1}\right)^{x_n + 1} = e$$

poiché $\lim x_n + 1 = +\infty$. Quindi:

$$\lim \left(1 + \frac{1}{x_n + 1}\right)^{x_n} = \frac{\lim \left(1 + \frac{1}{x_n + 1}\right)^{x_n + 1}}{\lim 1 + \frac{1}{x_n + 1}} = \frac{e}{1} = e$$

$$\lim \left(1 + \frac{1}{x_n}\right)^{x_n + 1} = \lim \left(1 + \frac{1}{x_n}\right)^{x_n} \cdot \lim \left(1 + \frac{1}{x_n}\right) = e \cdot 1 = e$$

Quindi per il criterio del confronto anche $\lim_{n \to \infty} (1 + \varepsilon_n)^{\frac{1}{\varepsilon_n}} = e$.

Dimostrazione. Dire che $\log(1+\varepsilon_n) \sim \varepsilon_n$ significa dire che

$$\lim \frac{\log(1+\varepsilon_n)}{\varepsilon_n} = 1$$

Procediamo con semplici passaggi:

$$\lim \frac{\log(1+\varepsilon_n)}{\varepsilon_n} = \lim \log(1+\varepsilon_n)^{\frac{1}{\varepsilon_n}} = \log(\lim(1+\varepsilon_n)^{\frac{1}{\varepsilon_n}}) = \log e = 1$$

Dimostrazione. Il quinto punto ci chiede di far vedere che $e^{\varepsilon_n}-1\sim \varepsilon_n$. Chiamiamo $\delta_n=e^{\varepsilon_n}-1$; tale δ_n è una successione infinitesima a termini positivi. Quindi possiamo scrivere:

$$\lim \frac{e^{\varepsilon_n} - 1}{\varepsilon_n} = \lim \frac{\delta_n}{\log(1 + \delta_n)} = \frac{1}{\lim \frac{\log(1 + \delta_n)}{\delta_n}} = \frac{1}{1} = 1$$

Dimostrazione. In ultimo dobbiamo dimostrare che $(1 + \varepsilon_n)^{\alpha} - 1 \sim \alpha \cdot \varepsilon_n$. Procediamo:

$$e^{\alpha \log(1+\varepsilon_n)} - 1 = \frac{e^{\alpha \log(1+\varepsilon_n)} - 1}{\alpha \log(1+\varepsilon_n)} \cdot \alpha \log(1+\varepsilon_n)$$

La frazione è del tipo $\frac{e^{\delta_n}-1}{\delta_n}$ ed è quindi asintotica a 1. Quindi il tutto è asintotico a $\alpha \log(1+\varepsilon_n)$ che è a sua volta asintotico a $\alpha \cdot \varepsilon_n$.

Mostriamo ora un limite che si può calcolare con quanto abbiamo visto finora.

Esempio 7.3.

$$\lim \frac{\left(\cos\frac{1}{n} - 1\right) \cdot \sin\frac{1}{n}}{\log\left(1 + \frac{1}{n}\right)}$$

Studiamo separatamente i tre termini. Il primo è $1 - \cos \frac{1}{n} \sim \frac{1}{2} \frac{1}{n^2}$, il secondo $\sin \frac{1}{n} \sim \frac{1}{n}$, il terzo $\log(1 + \frac{1}{n}) \sim \frac{1}{n}$. Riscriviamo il limite iniziale:

$$\lim \frac{-\frac{1}{2}\frac{1}{n^2} \cdot \frac{1}{n}}{\frac{1}{n}} = \lim -\frac{1}{2} \cdot \frac{1}{n^2} = 0$$

Dai limiti studiati se ne possono dedurre facilmente altri:

• Sulla tangente:

$$\lim \frac{\tan \varepsilon_n}{\varepsilon_n} = \lim \frac{\sin \varepsilon_n}{\cos \varepsilon_n} \cdot \frac{1}{\varepsilon_n} = \lim \frac{\sin \varepsilon_n}{\varepsilon_n} \cdot \frac{1}{\cos \varepsilon_n} = 1 \cdot 1 = 1$$

Quindi $\tan \varepsilon_n \sim \varepsilon_n$.

• Sull'arcsin: $\arcsin \varepsilon_n \sim \varepsilon_n$. Infatti, sia $\delta_n = \arcsin \varepsilon_n$; δ_n è infinitesima perché arcsin è continua. Quindi

$$\lim \frac{\delta_n}{\sin \delta_n} = 1 = \lim \frac{\arcsin \varepsilon_n}{\varepsilon_n}$$

Osservazione 7.4.

$$\lim (1 + h\varepsilon_n)^{\frac{1}{\varepsilon_n}} = e^h$$

Sappiamo infatti che, considerando $h\varepsilon_n$ come δ_n ,

$$\lim (1 + h\varepsilon_n)^{\frac{1}{h\cdot\varepsilon_n}} = e$$

Elevando alla h entrambi i membri si verifica l'uguaglianza iniziale.

7.2 Scala degli infiniti

Scriviamo $a \ll b$ se $\lim \frac{a_n}{b_n} = 0$; vale la seguente scala di infiniti:

$$(\log n)^{\beta} \ll n^{\alpha} \ll A^n \ll n! \ll n^n$$

Si può scrivere anche $a_n = o(b_n)$. È necessario comunque prestare attenzione al fatto che se $a_n = o(b_n)$ e $c_n = o(b_n)$, non è comunque detto che $a_n = c_n$.

Ad esempio consideriamo le due successioni $\frac{1}{n^2}$ e $\frac{1}{n^3}$ che sono entrambe = $o(\frac{1}{n})$. Infatti il limite del rapporto di entrambe per $\frac{1}{n}$ vale 0, ma questo non implica in alcun modo che $\frac{1}{n^2} = \frac{1}{n^3}$.

Proposizione 7.5. Sia $\{a_n\}$ una successione a termini positivi divergente (quindi $a + \infty$), allora:

- 1. se $a_n \in \mathbb{N} \ \forall n \ e \ A > 1, \ A^{a_n} \ll a_n!$
- 2. se A > 1, $a_n^{\alpha} \ll A^{\alpha_n}$ con α reale
- 3. se $\alpha > 0$, $(\log a_n)^{\beta} \ll a_n^{\alpha}$

Dimostriamo la prima implicazione.

Dimostrazione. Sappiamo che

$$\lim_{j \to +\infty} \frac{A^j}{j!} = 0$$

Per definizione di limite $\forall \varepsilon \; \exists N \; \text{tale che} \; \frac{A^j}{j!} < \varepsilon \; \text{per} \; j > N.$ Essendo $\lim a_n = +\infty$, esiste M tale che $a_n > N$ per ogni n > M.

Quindi
$$n > M \implies a_n > N \implies \frac{A^{a_n}}{a_n!} < \varepsilon$$
. Quindi il limite $\lim \frac{A^{a_n}}{a_n!} = 0$.

Esempio 7.6. Esistono dei limiti che non possiamo calcolare con la sostituzione asintotica. Ad esempio

$$\lim_{n \to +\infty} n^2 \cdot \left(\sin \frac{1}{n} - \frac{1}{n} \right)$$

pur essendo sin $\frac{1}{n} \sim \frac{1}{n}$, il limite non è calcolabile con i metodi visti finora.

7.3 Serie

Proviamo a formalizzare l'idea di "somma infinita". Abbiamo già visto la notazione

$$\sum_{j=1}^{k} x_j = x_1 + \ldots + x_k$$

con cui intendiamo la somma dei primi k termini.

Definizione 7.7. Data una successione x_j si definisce serie l'espressione simbolica

$$\sum_{j=1}^{\infty} x_j$$

Data una serie $\sum_{j=1}^{\infty} x_j$, si definisce la successione delle somme parziali $\{s_n\}_{n\in\mathbb{N}}$:

$$\{s_n\} = \sum_{j=1}^n x_j$$

Si dice che la serie converge se $\{s_n\}$ converge. In tal caso $\lim s_n$ è detto somma della serie. In modo analogo si dice che la serie diverge se $\{s_n\}$ diverge.

Il carattere di una serie è la sua proprietà di essere convergente, divergente o indeterminata.

Osservazione 7.8. Se due serie differiscono per un numero finito di termini; allora hanno lo stesso carattere.

Date

$$\sum_{j=1}^{\infty} a_j \quad \text{e} \quad \sum_{j=1}^{\infty} b_j$$

supponiamo $a_n = b_n$ per ogni n > N. Chiamiamo:

$$s_n = \sum_{j=1}^n a_j \quad \text{e} \quad t_n = \sum_{j=1}^n b_j$$

Se n > N, la differenza $s_n - t_n$ non dipende da n. Considerando l'elemento successivo vedo che $s_{n+1} - t_{n+1} = s_n + a_{n+1} - (t_n + b_{n+1}) = s_n - t_n$.

Quindi $\{s_n\}$ converge se e solo se $\{t_n\}$ converge. Allo stesso modo $\{s_n\}$ diverge se e solo se $\{t_n\}$ diverge.

Osservazione 7.9. Se $\sum_{j=1}^{\infty} x_j$ converge a L e $\sum_{j=1}^{\infty} y_j$ converge a M, allora $\sum_{j=1}^{\infty} (x_j + y_j)$ converge a L + M.

Sia $\{s_n\}$ la successione delle somme parziali di $\sum_{j=1}^{\infty} x_j$ e $\{t_n\}$ la successione delle somme parziali di $\sum_{j=1}^{\infty} y_j$. La successione delle somme parziali di $\sum_{j=1}^{\infty} (x_j + y_j)$ sia $\{z_j\}$. Per definizione

$$z_n = \sum_{j=1}^{n} (x_j + y_j) = \sum_{j=1}^{n} x_j + \sum_{j=1}^{n} y_j = s_n + t_n$$

Poiché $\lim s_n = L$ e $\lim t_n = M$, allora $\lim (s_n + t_n) = L + M$.

Osservazione 7.10. Se $\sum_{j=1}^{\infty} x_j$ converge a L, allora $\sum_{j=1}^{\infty} \alpha x_j$ converge a αL . Questo perché $\lim(\alpha s_n) = \alpha \lim s_n$.

Esempio 7.11 (Serie di Mengoli). Consideriamo la serie di Mengoli:

$$\sum_{j=1}^{\infty} \frac{1}{j(j+1)}$$

Con qualche passaggio si mostra che $\frac{1}{j(j+1)}$ è uguale a $\frac{1}{j} - \frac{1}{j+1}$. Esplicitiamo s_n e traiamo vantagggio da quanto abbiamo appena scritto:

$$s_n = \frac{1}{2} + \frac{1}{6} + \ldots + \frac{1}{n(n+1)}$$

$$s_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

Semplificando i termini opposti restano solo il primo e l'ultimo. Quindi $s_n = 1 - \frac{1}{n+1}$. Quindi $\lim s_n = \lim(1 - \frac{1}{n+1}) = 1$. Possiamo quindi dire che la serie converge e ha somma 1.

Esempio 7.12 (Serie geometrica). Fissato un x reale, consideriamo la serie geometrica di ragione x, che per convenzione facciamo partire da 0:

$$\sum_{j=0}^{\infty} x^j$$

In questo caso

$$s_n = \sum_{j=0}^n x^j = \frac{1 - x^{n+1}}{1 + x}$$

L'ultima uguaglianza è giustificata dalla formula, già vista, $(1 + x + ... + x^n)(1 - x) = 1 + x + ... + x^n - x - ... - x^n - x^{n+1}$ in cui si semplificano a due a due tutti i termini tranne 1 e x^{n+1} .

Possiamo quindi scrivere

$$\lim s_n = \lim \frac{1 - x^{n+1}}{1 - x}$$

Osserviamo che (ricordando $\lim x^n$ già studiato in precedenza):

$$\lim_{n \to +\infty} x^{n+1} = \lim_{n \to +\infty} x^n = \begin{cases} 0 & \text{se } |x| < 1 \\ 1 & \text{se } x = 1 \\ +\infty & \text{se } x > 1 \\ \nexists & \text{se } x < 1 \end{cases}$$

In definitiva:

- se |x| < 1 allora $\lim s_n = \frac{1}{1-x}$ e quindi la serie converge.
- $\bullet \ \text{se} \ x>1$ allora $\lim s_n=\frac{x^{n-1}-1}{x-1}=+\infty$ e quindi la serie diverge
- se x=1 allora $\sum_{j=0}^{n} 1^{j} = \sum_{j=0}^{n} 1 = 1+1+\ldots = +\infty$. In altre parole $s_{n}=n+1$ e quindi $\lim s_{n}=+\infty$ e la serie diverge.

Proposizione 7.13. Una serie a termini non negativi

$$\sum_{j=1}^{\infty} x_j \qquad x_j \ge 0$$

o converge o diverge $a + \infty$.

Dimostrazione. La dimostrazione è semplice. Consideriamo $s_n = x_1 + \ldots + x_n$ e $s_{n+1} = x_1 + \ldots + x_{n+1} = s_n + x_{n+1}$. Possiamo dire con certezza che $s_{n+1} \ge s_n$ (perché $x_{n+1} \ge 0$). Quindi $\{s_n\}$ è non decrescente. Quindi o converge o diverge a $+\infty$.

Proposizione 7.14 (Criterio del confronto per le serie). Siano $\sum_{j=1}^{\infty} x_j$ e $\sum_{j=1}^{\infty} y_j$ serie a termini non negativi e sia $x_j \leq y_j$ per ogni j. Allora:

1. se
$$\sum_{j=1}^{\infty} y_j$$
 converge $\implies \sum_{j=1}^{\infty} x_j$ converge

2. se
$$\sum_{j=1}^{\infty} x_j$$
 diverge $\implies \sum_{j=1}^{\infty} y_j$ diverge

Dimostrazione. Sia $\{s_n\}$ la successione delle somme parziali di $\sum_{j=1}^{\infty} x_j$ e $\{t_n\}$ la successione delle somme parziali di $\sum_{j=1}^{\infty} y_j$. Allora vale $s_n \leq t_n$, inoltre $0 \leq s_n \leq t_n$.

Nel primo caso $\{t_n\}$ converge e quindi è limitata. Allora anche $\{s_n\}$ è limitata. Essendo monotona, converge.

Nel secondo caso $\{s_n\}$ diverge. Quindi anche $\{t_n\}$ diverge per il criterio del confronto.

Esempio 7.15. Consideriamo la serie

$$\sum_{j=1}^{\infty} \frac{1}{j^2}$$

Possiamo confrontare questa serie a quella di Mengoli. Quindi possiamo dire, ad esempio, che:

$$\frac{1}{j^2} \le \frac{2}{j(j+1)} \implies \frac{1}{j} \le \frac{2}{j+1} \implies j+1 \le 2j$$

Poiché sappiamo che $\sum_{j=1}^{\infty} \frac{2}{j(j+1)}$ converge, allora anche $\sum_{j=1}^{\infty} \frac{1}{j^2}$ converge.

Proposizione 7.16 (Condizione necessaria di Cauchy per la convergenza delle serie). Se la serie $\sum_{j=1}^{\infty} x_j$ converge, allora $\lim_{j \to +\infty} x_j = 0$.

Dimostrazione. Sia $\{s_n\}$ la successione delle somme parziali. Consideriamo $s_{n+1} = s_n + x_{n+1}$. A questo punto:

$$\lim_{n \to +\infty} x_n + 1 = \lim(s_{n+1} - s_n) = \lim s_{n+1} - \lim s_n = L - L = 0$$

Nel penultimo passaggio, posso fare ciò perché abbiamo supposto la convergenza.

Esempio 7.17. Possiamo chiederci se la seguente serie converge.

$$\sum_{j=1}^{\infty} \left(1 + \frac{1}{j} \right)$$

La risposta è no, perché $\lim 1 + \frac{1}{j} = 1$ che è diverso da 0. Inoltre, notando che la serie è a termini positivi, possiamo dire che diverge a $+\infty$.

Ricordiamo inoltre che la condizione necessaria di Cauchy non è sufficiente: ad esempio, la serie $\sum_{j=1}^{\infty} \frac{1}{j}$ soddisfa tale condizione ma diverge.

49

Capitolo 8

Ottava lezione (30/10/2015)

8.1 Serie armonica generalizzata

Introduciamo una notazione comoda. Se $\sum_{j=0}^{\infty} x_j$ converge a s, cioè la successione delle somme parziali $\{s_n\}$ converge a s (ovvero $s_n = \sum_{j=0}^n x_j$), allora scriviamo:

$$\sum_{j=0}^{\infty} x_j = s$$

Al termine della lezione precedente avevamo visto la condizione di Cauchy. Ribadiamo ancora una volta che non vale il viceversa, mostrando un esempio.

Esempio 8.1 (Serie armonica). La serie

$$\sum_{j=1}^{\infty} \frac{1}{j}$$

soddisfa lim $\frac{1}{j} = 0$ ma non converge. Tale serie viene chiamata "serie armonica" e possiamo considerare anche quella generalizzata (con α reale):

$$\sum_{j=1}^{\infty} \frac{1}{j^{\alpha}}$$

Teorema 8.2. La serie armonica diverge; la serie armonica generalizzata converge per $\alpha > 1$ e diverge per $\alpha < 1$.

Dimostrazione. La serie armonica è una serie a termini positivi, quindi o converge o diverge. Confrontiamo i primi termini una successione che chiamiamo $\{z_j\}$ costruita in modo che ogni termine sia maggiore di quello della serie armonica. Scriviamo nella prima riga i termini della serie armonica e nella seconda quelli di $\{z_j\}$:

$$x_1 = \frac{1}{1}$$
 $x_2 = \frac{1}{2}$ $x_3 = \frac{1}{3}$ $x_4 = \frac{1}{4}$ $x_5 = \frac{1}{5}$...

$$x_1 = \frac{1}{1}$$
 $x_2 = \frac{1}{2}$ $x_3 = \frac{1}{4}$ $x_4 = \frac{1}{4}$ $x_5 = \frac{1}{8}$...

Formalmente $z_j = \frac{1}{2^k}$ dove $2^{k-1} < j \le 2^k$. Analizziamo ora $\{s_n\}$, che definiamo come la successione delle somme parziali di $\{z_j\}$.

$$s_1 = z_1 = 1$$

$$s_2 = 1 + \frac{1}{2}$$

$$s_4 = 1 + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right)$$

$$s_8 = 1 + \frac{1}{2} + 2 \cdot \left(\frac{1}{4}\right) + 4 \cdot \left(\frac{1}{8}\right)$$

Si vede abbastanza facilmente che

$$s_{2^k} = s_{2^{k-1}} + 2^{k-1} \cdot \frac{1}{2^k}$$

$$s_{2^k} = s_{2^{k-1}} + \frac{1}{2}$$

$$s_{2^k} = 1 + \frac{k}{2}$$

A questo punto possiamo calcolare

$$\lim_{k \to +\infty} s_{2^k} = +\infty$$

Quindi $\{s_n\}$ non è limitata e quindi non può convergere. Allora $\sum z_j$ non converge, quindi diverge (essendo a termini positivi).

Osservando che $z_j \leq \frac{1}{j}$ per ogni j e che $\sum_{j=1}^{\infty} z_j$ diverge; allora $\sum_{j=1}^{\infty} \frac{1}{j}$ diverge.

Per $\alpha < 1$ il teorema ci dice che $\sum_{j=1}^{\infty} \frac{1}{j^{\alpha}}$ diverge. Infatti se $\alpha < 1$ allora $j^{\alpha} < j$ e quindi $\frac{1}{j^{\alpha}} > \frac{1}{j}$. Quindi posso confrontare questa serie con $\frac{1}{j}$. Per il criterio del confronto diverge anch'essa.

Non dimostreremo il caso $\alpha > 1$, ma ci limitiamo ad osservare che se $\alpha = 2$ allora la serie è $\sum_{j=1}^{\infty} \frac{1}{j^2}$; abbiamo già visto che converge per confronto con quella di Mengoli.

8.2 Criterio del rapporto per le serie

Teorema 8.3 (Criterio del rapporto per le serie). Sia $\sum_{j=1}^{\infty} x_j$ una serie a termini positivi. Se esiste il limite

$$L = \lim_{j \to +\infty} \frac{x_{j+1}}{x_j}$$

allora:

- 1. se L < 1 la serie è convergente
- 2. se L > 1 la serie è divergente

Mostriamo alcuni esempi di applicazione del teorema.

Esempio 8.4. La serie

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

converge per ogni x. Infatti, applicando il criterio del rapporto

$$\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} = \frac{x}{n+1}$$

e lim $\frac{x}{n+1}=0$. Poiché il limite è minore di 1, la serie è convergente.

È interessante inoltre notare che per x=1 la serie $\sum_{n=0}^{\infty} \frac{1^n}{n!}$ vale esattamente e.

Esempio 8.5. Studiamo la serie

$$\sum_{n=0}^{\infty} nx^n \qquad x \in (0,1)$$

applicando il criterio del rapporto. Quindi:

$$\frac{(n+1)x^{n+1}}{nx^n} = x \cdot \frac{n+1}{n}$$

Il limite di $x \cdot \frac{n+1}{n}$ vale x e quindi per 0 < x < 1 la serie converge.

Rimarchiamo il concetto che se $L=\lim\frac{x_{n+1}}{x_n}=1$ non possiamo concludere né che la serie converge né che diverge. Infatti:

Esempio 8.6. $\sum_{j=1}^{\infty} \frac{1}{j}$ diverge e il suo limite è 1:

$$\lim_{j \to +\infty} \frac{\frac{1}{j+1}}{\frac{1}{j}} = \frac{j}{j+1} = 1$$

Esempio 8.7. $\sum_{j=1}^{\infty} \frac{1}{j^2}$ converge e il suo limite è 1:

$$\lim_{j \to +\infty} \frac{\frac{1}{(j+1)^2}}{\frac{1}{j^2}} = \frac{j^2}{(j+1)^2} = 1$$

Dimostriamo il teorema.

Dimostrazione.

1. Se L < 1 scelgo h in modo che L < h < 1. Allora so che $\frac{x_{j+1}}{x_j}$ è definitivamente minore di h.

Quindi esiste N tale che $\frac{x_{j+1}}{x_j} < h$ per ogni j > N. Sviluppando i termini successivi:

$$x_{N+2} < hx_{N+1}$$

$$x_{N+3} < hx_{N+2} < h^2x_{N+1}$$

$$x_{N+K+1} < h^kx_{N+1}$$

Quindi $\sum_{j=N+1}^{\infty} x_j$ converge perché $\sum h^k x_{N+1}$ converge (quest'ultima converge perché è una serie geometrica di ragione h < 1). Se converge a partire da N+1 in poi, allora tutta la serie converge. Quindi $\sum_{j=0}^{\infty} x_j$ converge.

2. Se L>1 procediamo in modo analogo al caso precedente. Prendiamo 1< h< L, quindi $\frac{x_{j+1}}{x_j}>h$ definitivamente. Come prima, osservando i passaggi, arriviamo a dire che $x_{N+k+1}>h^kx_{N+1}$.

Osserviamo che $\sum_{k=0}^{\infty} h^k x_{N+1} = x_{N+1} \sum_{k=0}^{\infty} h^k$ che diverge perché è una serie geometrica di ragione maggiore di 1. Quindi per confronto anche $\sum_{j=N+1}^{\infty} x_j$ diverge e quindi diverge anche $\sum_{j=0}^{\infty} x_j$.

8.3 Criterio della radice

Teorema 8.8 (Criterio della radice). Sia $\sum_{j=1}^{\infty} x_j$ una serie a termini positivi tale che il limite

$$L = \lim_{j \to +\infty} \sqrt[j]{x}$$

esiste ed è finito. Allora:

1. se L < 1 la serie converge

2. se L > 1 la serie diverge

Al solito mostriamo alcuni esempi prima della dimostrazione.

Esempio 8.9.

$$\sum_{j=1}^{\infty} \left(\frac{1}{j!}\right)^j = \sum x_j$$

Applicando il criterio della radice:

$$\sqrt[j]{x_j} = \sqrt[j]{\left(\frac{1}{j!}\right)^j} = \frac{1}{j!}$$

Quindi:

$$\lim \sqrt[j]{x_j} = \lim \frac{1}{j!} = 0$$

Poiché 0 è minore di 1, la serie converge.

Esempio 8.10.

$$\sum_{j=2}^{\infty} \left(\frac{1}{\log j} \right)^j = \sum x_j$$

Applicando il criterio della radice:

$$\sqrt[j]{x_j} = \sqrt[j]{\left(\frac{1}{\log j}\right)^j} = \frac{1}{\log j}$$

Quindi:

$$\lim \sqrt[j]{x_j} = \lim \frac{1}{\log j} = 0$$

Poiché 0 è minore di 1, la serie converge.

Non ha a che fare con il criterio della radice, ma osserviamo che l'esempio appena fatto privo dell'elevamento a j (quindi $\sum_{j=2}^{\infty} \frac{1}{\log j}$) diverge perché $\frac{1}{\log j}$ lo posso confrontare con $\frac{1}{i}$.

Poiché $\log j = o(j)$, allora $\frac{1}{\log j} > \frac{1}{j}$ definitivamente. Poiché $\sum \frac{1}{j}$ diverge, allora anche $\frac{1}{\log j}$ diverge.

Dimostrazione. Studiamo le due affermazioni:

1. Se L < 1, sia L < h < 1. Allora so che $\sqrt[j]{x_j} < h$ definitivamente. Elevando alla j entrambi i membri si trova che $x_j < h^j$ definitivamente.

Essendo h < 1 allora $\sum_{j=0}^{\infty}$ converge. Allora per confronto converge anche $\sum_{j=0}^{\infty} x_j$.

2. Se L > 1 allora posso dire direttamente che $\sqrt[j]{x_j} > 1$ definitivamente. Elevando alla j entrambi i membri si trova che $x_j < 1$ definitivamente.

Osserviamo che $\sum x_j > \sum 1$. Poiché $\sum 1$ diverge ($\lim 1 \neq 0$ e $1 + 1 + \ldots = +\infty$), allora anche $\sum x_j$ diverge.

Alternativamente possiamo dire che $\lim x_j$ non può essere 0 perché x_j da un certo punto in poi è 1. Non è quindi soddisfatta la condizione di Cauchy e quindi la serie diverge.

8.4 Confronto asintotico tra serie

Definizione 8.11. Date due serie a termini positivi $\sum_{j=0}^{\infty} x_j$ e $\sum_{j=0}^{\infty} y_j$, diciamo che sono asintoticamente equivalenti se $x_j \sim y_j$, cioè lim $\frac{x_j}{y_j} = 1$.

Teorema 8.12 (Criterio del confronto asintotico). Due serie a termini positivi asintoticamente equivalenti posso essere o entrambe convergenti o entrambe divergenti.

Esempio 8.13. Studiamo la serie

$$\sum_{n=1}^{\infty} \frac{n^2 + 3\sqrt{n} - 4}{2n^3\sqrt{n+1}}$$

Osserviamo che il numeratore è asintotico a n^2 e il denominatore a $2n^3\sqrt{n}$. Il termine generale della serie è quindi:

$$\frac{n^2 + 3\sqrt{n} - 4}{2n^3\sqrt{n+1}} \sim \frac{n^2}{2n^3\sqrt{n}} = \frac{1}{2n\sqrt{n}} = \frac{1}{2n^{\frac{3}{2}}}$$

La serie di partenza è quindi asintoticamente equivalente a $\sum_{n=1}^{\infty} \frac{1}{2n^{\frac{3}{2}}}$. Siccome questa è una serie armonica generalizzata con $\alpha = \frac{3}{2}$, che è maggiore di 1, essa converge. Quindi per il teorema del confronto asintotico, anche la serie di partenza converge.

Esempio 8.14. Studiamo la serie

$$\sum_{n=1}^{\infty} \frac{\cos n^2 + \sqrt{n}}{n}$$

Osserviamo che $-1 \le \cos n^2 \le 1$, quindi $\cos n^2 + \sqrt{n} \sim \sqrt{n}$.

La serie di partenza è quindi asintoticamente equivalente a $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n} = \frac{1}{n^{\frac{1}{2}}}$. Poiché $\frac{1}{2}$ è minore di 1, la serie diverge.

Dimostrazione. Siano $\sum x_j$ e $\sum y_j$ due serie a termini positivi asintoticamente equivalenti. Sappiamo quindi che $\lim \frac{x_j}{y_j} = 1$.

Possiamo considerare un intorno di 1, ad esempio $(\frac{1}{2}, \frac{3}{2})$. Dev'essere $\frac{1}{2} < \frac{x_j}{y_j} < \frac{3}{2}$ definitivamente. Moltiplicando tutti i termini per y_j otteniamo:

$$\frac{1}{2} \cdot y_j < x_j < \frac{3}{2} \cdot y_j$$

Ora:

- 1. se $\sum y_j$ diverge, allora $\sum \frac{1}{2}y_j$ diverge. Quindi $\sum x_j$ diverge per confronto.
- 2. se $\sum y_j$ converge, allora $\sum \frac{3}{2}y_j$ converge. Quindi $\sum x_j$ converge per confronto.

8.5 Serie assolutamente convergenti

Definizione 8.15. Una serie $\sum_{j=0}^{\infty} x_j$ si dice assolutamente convergente se converge $\sum_{j=0}^{\infty} |x_j|$.

Teorema 8.16. Se una serie è assolutamente convergente allora è anche convergente.

Esempio 8.17. Consideriamo la serie

$$\sum_{j=1}^{\infty} \frac{\sin j}{j^2}$$

e notiamo che non è a termini positivi. Tuttavia possiamo studiare

$$\sum_{j=1}^{\infty} \left| \frac{\sin j}{j^2} \right| = \sum_{j=1}^{\infty} \frac{|\sin j|}{j^2}$$

che è una serie a termini positivi. Osserviamo che $|\sin j| \le 1$, quindi

$$\frac{|\sin j|}{j^2} \le \frac{1}{j^2}$$

Sappiamo che $\frac{1}{j^2}$ converge (è una serie armonica generalizzata con $\alpha=2$). Quindi per confronto anche $\sum \frac{|\sin j|}{j^2}$ converge.

Quindi $\sum \frac{\sin j}{j^2}$ è assolutamente convergente. Applicando il teorema, possiamo dire che è anche convergente.

Prestiamo attenzione: non vale il viceversa.

Capitolo 9

Nona lezione (03/11/2015)

9.1 Serie assolutamente convergenti

Definizione 9.1. Una serie $\sum_{j=0}^{\infty} x_j$ si dice assolutamente convergente se converge $\sum_{j=0}^{\infty} |x_j|$.

Teorema 9.2. Se una serie è assolutamente convergente allora è anche convergente.

Esempio 9.3. Consideriamo la serie

$$\sum_{j=1}^{\infty} \frac{\sin j}{j^2}$$

e notiamo che non è a termini positivi. Tuttavia possiamo studiare

$$\sum_{j=1}^{\infty} \left| \frac{\sin j}{j^2} \right| = \sum_{j=1}^{\infty} \frac{|\sin j|}{j^2}$$

che è una serie a termini positivi. Osserviamo che $|\sin j| \le 1$, quindi

$$\frac{|\sin j|}{j^2} \le \frac{1}{j^2}$$

Sappiamo che $\frac{1}{j^2}$ converge (è una serie armonica generalizzata con $\alpha=2$). Quindi per confronto anche $\sum \frac{|\sin j|}{j^2}$ converge.

Quindi $\sum \frac{\sin j}{j^2}$ è assolutamente convergente. Applicando il teorema, possiamo dire che è anche convergente.

Prestiamo attenzione: non vale il viceversa.

Dimostrazione. Supponiamo che $\sum_{j=1}^{\infty}x_{j}$ sia assolutamente convergente. Scriviamo $x_{j}=a_{j}-b_{j}$ dove:

- se $x \ge 0$, $a_j = x_j$ e $b_j = 0$;
- se x < 0, $a_i = 0$ e $b_i = -x_i$.

In questo modo a_j e b_j sono sempre non negativi. A questo punto $\sum x_j = \sum a_j - \sum b_j$ è una serie differenza di serie a termini non negativi.

Osserviamo anche che:

- $0 \le a_j \le |x_j|$. Siccome $\sum |x_j|$ converge per ipotesi, per il criterio del confronto converge anche $\sum a_j$.
- $0 \le b_j \le |x_j|$. Siccome $\sum |x_j|$ converge per ipotesi, per il criterio del confronto converge anche $\sum b_j$.

Quindi $\sum (a_j - b_j) = \sum x_j$ converge. Infatti se $\sum a_j$ converge ad $A \in \sum b_j$ converge a B, allora $\sum (a_j - b_j)$ converge ad A - B.

Esempio 9.4. Studiamo questa serie (che chiameremo $\sum y_j$):

$$\sum_{j=0}^{\infty} (-1)^j \cdot \frac{x^{2j+1}}{(2j+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

Vogliamo stabilire se è convergente. Verifichiamo prima se è assolutamente convergente, studiando $\sum y_j$ che è

$$\sum_{j=0}^{\infty} \frac{|x|^{2j+1}}{(2j+1)!}$$

Applichiamo il criterio del rapporto:

$$\lim \frac{|y_{j+1}|}{|y_j|} = \lim \frac{\frac{|x|^{2(j+1)+1}}{(2(j+1)+1)!}}{\frac{|x|^{2j+1}}{(2j+1)!}} = \lim \frac{|x|^2}{(2j+3)!} \cdot (2j+1)! = \lim_{j \to +\infty} \frac{|x|^2}{(2j+3)(2j+2)} = 0$$

Per il criterio del rapporto abbiamo che $\sum_{j=0}^{\infty} |y_j|$ converge, quindi $\sum_{j=0}^{\infty} y_j$ è assolutamente convergente e quindi converge.

Esempio 9.5. Dato 0 < x < 1, vogliamo studiare la serie

$$\sum_{j=1}^{\infty} y_j = \sum_{j=1}^{\infty} (-1)^{j-1} \cdot \frac{x^j}{j}$$

Essa converge assolutamente quando converge $\sum |y_j|$ che è $\sum \frac{x^j}{j}$. Applichiamo il criterio del rapporto:

$$\lim \frac{|y_{j+1}|}{|y_j|} = \lim \frac{x^{j+1}}{j+1} \cdot \frac{j}{x^j} = \lim_{j \to +\infty} x \cdot \frac{j}{j+1} = x$$

Avendo posto 0 < x < 1, per il criterio del rapporto la serie $\sum |y_j|$ converge. Quindi $\sum y_j$ è assolutamente convergente e quindi converge.

9.2 Criterio di Leibniz

Teorema 9.6 (Criterio di Leibniz). Sia $\{x_j\}$ una successione a termini positivi, infinitesima e non crescente. Allora la serie

$$\sum_{j=1}^{\infty} (-1)^{j-1} x_j$$

converge.

Esempio 9.7. La serie

$$\sum_{j=1}^{\infty} (-1)^{j-1} \frac{1}{j}$$

soddisfa le ipotesi del criterio con $x_j = \frac{1}{j}$ e quindi converge. Infatti $\frac{1}{j}$ è sempre positivo; $\frac{1}{j+1} < \frac{1}{j}$ quindi la successione è non crescente; $\lim \frac{1}{j} = 0$ quindi la successione è infinitesima.

Dimostrazione. Sia $\{s_n\}$ la successione delle somme parziali di $\sum (-1)^{j-1}x_j$. Sia $y_j = x_{2j-1} - x_{2j}$, quindi $y_1 = x_1 - x_2$, $y_2 = x_3 - x_4$ e così via.

Essendo $\{x_j\}$ non crescente per ipotesi, per tutti i termini $y_j \ge 0$. Inoltre, le somme parziali di questa serie $\sum_{j=1}^{\infty} y_j$ sono $y_1 = s_2$, $y_2 = (x_1 - x_2) + (x_3 - x_4) = s_4$ e così via.

Scriviamo s_{2n} e raggruppiamo opportunamente:

$$s_{2n} = x_1 - x_2 + x_3 - x_4 + x_5 - \dots - x_{2n}$$

= $x_1 - (x_2 - x_3) - (x_4 - x_5) - \dots - x_{2n}$

Osserviamo che tutte le parentesi sono positive $(x_2 > x_3 \text{ e così via})$. Quindi $s_{2n} \leq x_1$ per ogni n. In conclusione la successione s_{2n} è monotona e limitata, quindi converge. Quindi $\sum_{j=1}^{\infty} y_j$ converge a S.

Per definizione di limite, dato $\varepsilon > 0$ esiste N tale che, per n > N,

$$S - \varepsilon < s_{2n} < S + \varepsilon$$

Sappiamo che s_{2n} è non decrescente, quindi può tendere al limite solo arrivando da sinistra. Possiamo allora scrivere

$$S - \varepsilon < s_{2n} \le S$$

Definitivamente vale $x_i < \varepsilon$ che implica

$$s_{2n+1} = s_{2n} + x_{2n+1} \le S + x_{2n+1} < S + \varepsilon$$

definitivamente. Quindi definitivamente

$$S - \varepsilon < s_{2n} < s_{2n+1} < S + \varepsilon$$

Quindi $\lim s_j = S$. Allora $\sum (-1)^{j-1} x_j$ converge, perché converge la successione delle somme parziali.

9.3 Serie con termini riordinati

Teorema 9.8 (Teorema di Dirichlet). Se $\sum_{j=1}^{\infty} x_j$ è una serie assolutamente convergente, ogni serie ottenuta riordinando i termini di $\sum_{j=1}^{\infty} x_j$ è convergente alla stessa somma.

Diamo solo un'idea della dimostrazione. Chiariamo in termini rigorosi cosa si intende per riordinare: si definisce una funzione $\sigma: \mathbb{N} \to \mathbb{N}$ biunivoca (quindi suriettiva e iniettiva). Si considera $y_j = x_{\sigma(j)}$, allora deve essere $\sum y_j = \sum x_j$.

Nella dimostrazione si usa il fatto che

$$s_n = x_{\sigma(1)} + x_{\sigma(2)} + \ldots + x_{\sigma(n)} \le \sum_{j=1}^N x_j \le \sum_{j=1}^\infty x_j$$

dove $N = \max\{\sigma(1), \ldots, \sigma(n)\}$. Si fa quindi vedere che $\sum x_j \leq \sum y_j$. In ogni caso, lasciamo il teorema senza dimostrazione completa.

Osservazione 9.9. Data una serie convergente ma non assolutamente convergente e dato $S \in \mathbb{R}$, esiste una serie ottenuta riordinando i termini che converge a S.

Esempio 9.10. Consideriamo

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{1}{n}$$
 [= log 2]

Sappiamo che non è assolutamente convergente perché $\sum \frac{1}{n}$ diverge (è la serie armonica). Consideriamo ora questa serie:

$$b_n = \begin{cases} \frac{1}{2} a_{\frac{n}{2}} & n \text{ pari} \\ 0 & n \text{ dispari} \end{cases}$$

Esplcitiamo le due serie:

$$\sum a_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$
$$\sum b_n = 0 + \frac{1}{2} + 0 - \frac{1}{2} \cdot \frac{1}{2} + \dots$$

Si vede che $\sum b_n = \frac{1}{2} \sum a_n$. La serie somma è $\sum (a_n + b_n) = \frac{3}{2} \sum a_n = \frac{3}{2} \log 2$. Esplicitiamola:

$$a_n + b_n = \begin{cases} \frac{1}{n} & n \text{ dispari} \\ -\frac{1}{n} - (-1)^{\frac{n}{2}} \cdot \frac{1}{n} & n \text{ pari} \end{cases}$$

Quindi:

$$\sum (a_n + b_n) = \underbrace{1}_{a_1 + b_1} \underbrace{-\frac{1}{2} + \frac{1}{2}}_{a_2 + b_2} + \underbrace{\frac{1}{3}}_{a_3 + b_3} + \dots$$

$$= 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$$

Questa è una serie ottenuta riordinando $\sum a_n$ ma ha somma $\frac{3}{2} \log 2$.

9.4 $\lim \sqrt[n]{n}$

Esempio 9.11. Mostriamo in due modi diversi che

$$\lim_{n \to +\infty} \sqrt[n]{n} = 1$$

Procediamo con il primo modo. Possiamo scrivere $\sqrt[n]{n} = 1 + x_n$ con $x_n > 0$. Dallo sviluppo di Newton sappiamo che

$$(1+x_n)^n = 1 + \binom{n}{1}x_n + \binom{n}{2}x_n^2 + \dots$$

I termini sono tutti positivi, quindi sicuramente:

$$(1+x_n)^n \ge 1 + \binom{n}{1} x_n + \binom{n}{2} {x_n}^2$$
$$\ge 1 + nx_n + \frac{n(n-1)}{2} {x_n}^2$$

Elevando entrambi i membri della relazione iniziale alla n possiamo scrivere:

$$n = (1 + x_n)^n \ge 1 + nx_n + \frac{n(n-1)}{2}x_n^2 \ge \frac{n(n-1)}{2}x_n^2$$

Quindi:

$$1 \ge \frac{n(n-1)}{2} x_n^2$$
$$x_n^2 \le \frac{2}{n-1}$$

Poiché $\lim \frac{2}{n-1} = 0$, per confronto allora anche $\lim x_n = 0$. Nel secondo modo, procediamo semplicemente come segue:

$$\sqrt[n]{n} = e^{\log n^{\frac{1}{n}}} = e^{\frac{1}{n} \cdot \log n}$$

Sappiamo che $\lim \frac{\log n}{n}=0$ per la gerarchia degli infiniti. Per continuità della funzione esponenziale, $\lim e^{\frac{\log n}{n}}=e^0=1$.

9.5 Ancora sulle successioni

Osservazione 9.12. Se $a_n \sim b_n$ sono successioni che tendono a $+\infty$, allora $\log a_n \sim \log b_n$.

Attenzione che questa proprietà non vale per tutte le funzioni! Ad esempio, non vale $e^{a_n} \sim e^{b_n}$ in generale. Infatti e^{n+1} non è asintotico a e^n poiché $\lim \frac{e^{n+1}}{e^n} = e$, che è diverso da 1

Mostriamo che questo è vero per quanto riguarda la funzione logaritmo. Se $a_n \sim b_n$, allora il loro rapporto deve stare in un intorno di uno.

Quindi definitivamente vale:

$$\frac{1}{2} < \frac{a_n}{b_n} < \frac{3}{2}$$

$$\frac{1}{2}a_n < b_n < \frac{3}{2}a_n$$

$$\log \frac{1}{2}a_n < \log b_n < \log \frac{3}{2}a_n$$

$$\log \frac{1}{2} + \log a_n < \log b_n < \log \frac{3}{2} + \log a_n$$

$$\frac{\log \frac{1}{2}}{\log a_n} + 1 < \frac{\log b_n}{\log a_n} < \frac{\log \frac{3}{2}}{\log a_n} + 1$$

Poiché il primo e il terzo termine valgono entrambi 1, per il teorema del confronto anche $\lim \frac{\log b_n}{\log a_n} = 1$.

Osservazione 9.13. Se $a_n \sim b_n$ e $\lim a_n$ è finito, non è vero in generale che $\lim \frac{\log a_n}{\log b_n} = 1$.

Esempio 9.14. Consideriamo ad esempio $a_n = 1 + \frac{1}{n}$ e $b_n = 1 + \frac{1}{n^2}$, che sono due successioni tra loro asintotiche. Effettivamente il limite del loro rapporto vale 1:

$$\lim \frac{a_n}{b_n} = \lim \frac{1 + \frac{1}{n}}{1 + \frac{1}{n^2}} = 1$$

Ma ad esempio:

$$\lim \frac{\log(1+\frac{1}{n})}{\log(1+\frac{1}{n^2})} = \lim \frac{\frac{1}{n}}{\frac{1}{n^2}} = \lim n = +\infty$$

Per risolvere il limite abbiamo sfruttato il fatto che $\log(1+\varepsilon_n) \sim \varepsilon_n$.

Esempio 9.15. Consideriamo la successione definita per ricorrenza

$$\begin{cases} x_1 = \alpha \\ x_{n+1} = \frac{2 + \cos n}{\sqrt{n}} \cdot x_n \end{cases}$$

Vogliamo calcolarne il limite e determinare se è definitivamente monotona. Distinguiamo due casi:

- se $\alpha = 0$ allora $x_n = 0$ per ogni n
- se $\alpha > 0$ osserviamo innanzitutto che la successione è a termini positivi perchè $\frac{2+\cos n}{\sqrt{n}} > 0 \ \forall n$. Possiamo quindi applicare il criterio del rapporto:

$$\lim \frac{x_{n+1}}{x_n} = \lim \frac{\frac{2+\cos n}{\sqrt{n}} \cdot x_n}{x_n} = \lim \frac{2+\cos n}{\sqrt{n}}$$

Sappiamo che $1 \le 2 + \cos n \le 3$, quindi

$$\frac{1}{\sqrt{n}} < \frac{2 + \cos n}{\sqrt{n}} < \frac{3}{\sqrt{n}}$$

Poiché il primo e il terzo termine tendono a 0, per confronto anche $\lim \frac{2+\cos n}{\sqrt{n}} = 0$. Essendo il limite minore di 1, la successione è definitivamente decrescente e tende a 0.