二、初等函数的连续性

基本初等函数在定义区间内连续 连续函数经四则运算仍连续 连续函数的复合函数连续

一切初等函数 在定义区间内 连续

例如,

 $y = \sqrt{1 - x^2}$ 的连续区间为 [-1,1] (端点为单侧连续)

 $y = \ln \sin x$ 的连续区间为 $(2n\pi, (2n+1)\pi), n \in \mathbb{Z}$

而 $y = \sqrt{\cos x - 1}$ 的定义域为 $x = 2n\pi$, $n \in \mathbb{Z}$ 因此它无连续点

第三章 导数与微分

§ 3.1 导数的概念

- ★问题的提出
- ★导数的定义
- ★由定义求导数
- ★导数的几何意义与物理意义
- ★可导与连续的关系
- ★小结

一、问题的提出

1.自由落体运动的瞬时速度问题

如图, 求t0时刻的瞬时速度,

取一邻近于 t_0 的时刻t,运动时间 Δt ,

平均速度
$$\overline{\mathbf{v}} = \frac{\Delta \mathbf{s}}{\Delta \mathbf{t}} = \frac{\mathbf{s} - \mathbf{s}_0}{t - t_0} = \frac{\mathbf{g}}{2}(t_0 + t).$$

当 $t \rightarrow t_0$ 时,取极限得

瞬时速度
$$\mathbf{v} = \lim_{t \to t_0} \frac{g(\mathbf{t}_0 + \mathbf{t})}{2} = gt_0$$
.

如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的<u>切线</u>.

极限位置即

$$|MN| \rightarrow 0, \angle NMT \rightarrow 0.$$
 $\mbox{if } M(x_0, y_0), N(x, y).$

割线
$$MN$$
的斜率为 $\tan \varphi = \frac{y - y_0}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0}$, $N \xrightarrow{\text{Hadd}C} M, x \to x_0$,

切线
$$MT$$
的斜率为 $k = \tan \alpha = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$.

总结:上面两个问题虽然出发点相异,但都可归结为同一类型的数学问题:

- ★ 求函数 f 在点 x_0 处的增量 $\Delta y = f(x) f(x_0)$ 与自变量增量 $\Delta x = x x_0$ 之比的极限.
 - ★这个增量比称为函数 f 关于自变量的平均变化率,增量比的极限 (如果存在) 称为 f 在点 x_0 处关于 x 的瞬时变化率(或简称变化率).

二、导数的定义

定义1 设函数 y = f(x) 在点 x_0 的某邻域内 有定义,当自变量 x在 x_0 处取得增量 Δx (点 $x_0 + \Delta x$ 仍在该邻域内)时,相应地函数 y取得增量 $\Delta y = f(x_0 + \Delta x) - f(x_0)$,如果极限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称函数 f 在点 x_0 可导,该极限称为 f 在 x_0 的导数,记为 $f'(x_0)$,或 $y'|_{x=x_0}$,或

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{x=x_0} \stackrel{\mathrm{II}}{=} \frac{\mathrm{d}f(x)}{\mathrm{d}x}\bigg|_{x=x_0},$$

$$||f||y'||_{x=x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

其它形式
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

关于导数的说明:

- ★ 点导数是因变量在点 x_0 处的变化率,它反映了因变量随自变量的变化而变化的快慢程度.
- ★ 如果函数y = f(x)在集合D内的每点处都可导,就称函数f(x)在D内可导或称f(x)是D内的可导函数.

★ 若f(x)是D内的可导函数,则对于任一 $x \in I$,都对应着 f(x)的一个确定的导数值.这个函数叫做原来函数 f(x)的导函数.

记作
$$y', f'(x), \frac{\mathrm{d}y}{\mathrm{d}x}$$
 或 $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$.

即
$$y' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
或 $f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$.

注意:
$$f'(x_0) = f'(x)|_{x=x_0}$$
.

★ 单侧导数

1.左导数:

$$f'_{-}(x_0) = \lim_{x \to x_0 \to 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x};$$

2.右导数:

$$f'_{+}(x_{0}) = \lim_{x \to x_{0} + 0} \frac{f(x) - f(x_{0})}{x - x_{0}} = \lim_{\Delta x \to +0} \frac{f(x_{0} + \Delta x) - f(x_{0})}{\Delta x};$$

★ 函数 f(x) 在点 x_0 处可导⇔ 左导数 $f'_-(x_0)$ 和右导数 $f'_+(x_0)$ 都存在且相等.

★ 如果f(x)在开区间(a,b)内可导,且 $f'_+(a)$ 及 $f'_-(b)$ 都存在,就说f(x)在闭区间[a,b]上可导.

例 设函数 $f(x) = \begin{cases} \varphi(x), & x \geq x_0 \\ \psi(x), & x < x_0 \end{cases}$ 讨论在点 x_0 的可导性.

若
$$\lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{-}} \frac{\psi(x_{0} + \Delta x) - \varphi(x_{0})}{\Delta x} = f'_{-}(x_{0}) \, \bar{\mathcal{F}} \, \bar{\mathcal{E}}$$

若
$$\lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0^{+}} \frac{\varphi(x_{0} + \Delta x) - \varphi(x_{0})}{\Delta x} = f'_{+}(x_{0}) \, \bar{\mathcal{F}} \, \bar{\mathcal{E}}$$

且
$$f'_{-}(x_0) = f'_{+}(x_0) = a$$
,

则
$$f(x)$$
在点 x_0 可导,

且
$$f'(x_0) = a$$
.

三、由定义求导数

步骤: (1) 求增量
$$\Delta y = f(x + \Delta x) - f(x)$$
;

(2) 算比值 $\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$;

(3) 求极限 $y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.

例1 求函数 f(x) = C(C为常数)的导数.

解
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{C - C}{h} = 0.$$
即 $(C)' = 0.$

例2 设函数
$$f(x) = \sin x$$
, 求 $(\sin x)'$ 及 $(\sin x)'$ $x = \frac{\pi}{4}$.

解
$$(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \cos(x + \frac{h}{2}) \cdot \frac{\sin \frac{h}{2}}{\frac{h}{2}} = \cos x.$$

 $\mathbb{E} \mathbb{I} \quad (\sin x)' = \cos x.$

$$\left| (\sin x)' \right|_{x=\frac{\pi}{4}} = \cos x \bigg|_{x=\frac{\pi}{4}} = \frac{\sqrt{2}}{2}.$$

例3 求函数 $y = x^n(n)$ 为正整数)的导数.

解
$$(x^n)' = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} [nx^{n-1} + \frac{n(n-1)}{2!} x^{n-2} h + \dots + h^{n-1}] = nx^{n-1}$$
即 $(x^n)' = nx^{n-1}$.

更一般地
$$(x^{\mu})' = \mu x^{\mu-1}$$
. $(\mu \in R)$

例如,
$$(\sqrt{x})' = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2\sqrt{x}}$$

 $(x^{-1})' = (-1)x^{-1-1} = -\frac{1}{x^2}$.

例4 求函数 $f(x) = a^x (a > 0, a \neq 1)$ 的导数.

解
$$(a^{x})' = \lim_{h \to 0} \frac{a^{x+h} - a^{x}}{h}$$

$$= a^{x} \lim_{h \to 0} \frac{a^{h} - 1}{h}$$

$$= a^{x} \ln a.$$

$$\mathbb{E} \qquad (a^x)' = a^x \ln a. \qquad (e^x)' = e^x.$$

例5 求函数 $y = \log_a x(a > 0, a \neq 1)$ 的导数.

解
$$y' = \lim_{h \to 0} \frac{\log_a (x+h) - \log_a x}{h}$$

$$= \lim_{h \to 0} \frac{\log_a (1 + \frac{h}{x})}{\frac{h}{x}} \cdot \frac{1}{x}$$

$$= \frac{1}{x} \lim_{h \to 0} \log_a (1 + \frac{h}{x})^{\frac{x}{h}} = \frac{1}{x} \log_a e.$$

即 $(\log_a x)' = \frac{1}{x} \log_a e.$ $(\ln x)' = \frac{1}{x}.$

例6 讨论函数 f(x) = |x| 在x = 0处的可导性.

$$\frac{f(0+h)-f(0)}{h}=\frac{|h|}{h},$$

$$\lim_{h\to 0^+} \frac{f(0+h)-f(0)}{h} = \lim_{h\to 0^+} \frac{h}{h} = 1,$$

$$\lim_{h\to 0^{-}}\frac{f(0+h)-f(0)}{h}=\lim_{h\to 0^{-}}\frac{-h}{h}=-1.$$

即 $f'_{+}(0) \neq f'_{-}(0)$, :.函数y = f(x)在x = 0点不可导.