SF1625 Envariabelanalys Föreläsning 4

Lars Filipsson

Institutionen för matematik KTH

Förra veckan

Vad innehöll Modul 1?

- Funktionsbegreppet, inklusive
 - Definitionsmängd, värdemängd, funktionsgraf
 - Udda, jämn, begränsad funktion
- Gränsvärde, Kontinuitet
 - Precisa definitioner
 - Några satser (räkneregler, max/min, SOMV...)
- Elementära och icke-elementära funktioner
 - Poly, Rat, Trig, Abs, Rot vs. Heaviside

Modul 2: Derivata!

Översikt över modul 2

- Derivata (2.1-2.7)
 - Definition av derivata
 - Derivatan av några grundläggande funktioner
 - Deriveringsregler
 - Derivata och kontinuitet
 - Linjär approximation (Linjarisering)
 - Högre ordningens derivator
- Medelvärdessatsen (2.8)
- Implicit derivering (2.9)

Mål för modul 2

Det centrala målet för veckan:

- Bli extremt bra på att derivera (även implicit)
- Bli bra på att använda derivata
 - För linjär approximation
 - För att avgöra när funktioner växer/avtar

Diskutera

Diskutera i breakout-rooms:

Låt f(t) vara en funktion som mäter något som varierar över tid, t ex körsträckan hos en bil, bakteriemängden i din hals, temperaturen utanför ditt fönster....

Definiera vad som menas med **förändringen** av *f*. Finns det flera tänkbara svar?

f(t) forandring from to till to
$$f(t) - f(t_0) = \Delta f$$

$$\frac{f(t_0) - f(t_0)}{t_0 - t_0} = \frac{\Delta f}{\Delta t} \quad \text{medelforondring}$$

$$\frac{f(t_0) - f(t_0)}{t_0 - t_0} = \frac{\Delta f}{\Delta t} \quad \text{mudel has lighted}$$

$$\lim_{t_0 \to t_0} \frac{\Delta f}{\Delta t} = \frac{\Delta f}{\Delta t} = f'(t_0)$$

Derivata

Derivatans definition:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

om detta gränsvärde existerar ändligt (annars är f inte deriverbar i a).

Alternativ skrivning:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

om detta gränsvärde existerar ändligt (annars är *f* inte deriverbar i *a*).

Derivata

Derivatan av några funktioner:

$$\frac{d}{dx}C = 0, \quad C \text{ konstant}$$

$$\frac{d}{dx}x = 1$$

$$\frac{d}{dx}\frac{1}{x} = -\frac{1}{x^2}$$

$$\frac{d}{dx}x^r = rx^{r-1}$$

$$\frac{d}{dx}\sin x = \cos x \quad \text{och} \quad \frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx} \sin x = \lim_{h \to 0} \frac{\sin (x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cosh + \sinh \cos x - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh - 1}{h} + \cosh x \frac{\sinh x}{h}$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x - \sinh x}{h}$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h}$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x \cosh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \cosh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

$$= \lim_{h \to 0} \frac{\sinh x}{h} + \sinh x$$

Deriveringsregler

Sats: Om f och g är deriverbara så gäller

$$\frac{d}{dx}kf(x) = kf'(x) \text{ och } \frac{d}{dx}(f(x) \pm g(x)) = f'(x) \pm g'(x)$$

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) \text{ (produktregeln)}$$

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} \text{ (kvotregeln, } g(x) \neq 0)$$

$$\frac{d}{dx}f((g(x)) = f'(g(x))g'(x) \text{ (kedjeregeln)}$$

Uppgifter på derivata

Exempel. Derivera med avseende på x!

Uppgifter på derivata

Exempel. Derivera med avseende på x!

3.
$$h(x) = \sin^2 x$$
 = $(\sin x)^2$. $h'(x) = 2\sin x \cos x$

4.
$$k(x) = \frac{1}{x\sqrt{x}} = \frac{1}{x^{3/2}} = x^{-3/2}$$

$$k'(x) = -\frac{3}{2} \times \frac{-5/2}{2} = -\frac{3}{2 \times 2\sqrt{x}}$$

Uppgifter på derivata

Exempel. Derivera med avseende på x!

5.
$$\ell(x) = x \cos^2(x^3)$$
 $\ell'(x) = 1 \cdot \cos^2(x^3) + x \cdot 2 \cos(x^3) \left(-\xi^{1} n(x^3)\right) \frac{3}{2} x^2$
6. $\ell(x) = \tan x$ $= \cos^2(x^3) - 6x^3 \cos(x^3) \sin(x^3)$
 $= \frac{\sin x}{\cos x}$
 $= \frac{\sin x}{\cos x}$
 $= \frac{\cos x \cos x + \sin x \sin x}{\cos^2 x} = \frac{1}{\cos^2 x} = 1 + \tan^2 x$

Derivata

Sats. Om f är deriverbar i a så måste f vara kontinuerlig i a.

Bevis i filmen.

Exempel: f(x) = |x| är kontinuerlig men inte deriverbar i origo!

Medeltillväxt och momentan tillväxt

Medeltillväxt (medelförändring) av f från a till a + h:

$$\frac{f(a+h)-f(a)}{h}.$$

Momentan tillväxt (förändringstakt) av f i punkten a:

$$\frac{df}{dx}$$
 $f'(a)$ (förutsatt att f är deriverbar i a .)

Exempel: medelhastighet och hastighet!

Tangent och linjarisering (linjär approximation)

Tangent: Om f är deriverbar i a så har grafen y = f(x) en tangentlinje i punkten (a, f(a)) med ekvation

$$y = f(a) + f'(a)(x - a).$$

Linjarisering (linjär approximation): Om *f* är deriverbar i *a* så kan derivatan användas för att approximation enligt

$$f(x) \approx f(a) + f'(a)(x - a)$$
, för x nära a.

Exempel på linjarisering

Exempel 1.

Finn en ekvation för tangenten till kurvan $y = x^3 + 1$ i den punkt på kurvan som har x-koordinat -2.

$$f(-2) = -7$$
, $f'(x) = 3x^2$, $f'(-2) = 12$

Tangentens election les m. enpembls formelles:

$$y = -7 + 12(x+2)$$

Exempel på linjarisering

Exempel 2.

Finn den linjära approximationen av $g(x) = \sqrt{x}$ när x ligger nära 100 och bestäm ett närmevärde till $\sqrt{104}$.

$$g(100) = \sqrt{100} = 10$$

$$g'(x) = \frac{1}{2\sqrt{x}}; g'(100) = \frac{1}{20}$$

$$T: y = 10 + \frac{1}{20}(x - 100)$$

$$LA g(x) \approx 10 + \frac{1}{20}(x - 100)$$

$$x = 10.2$$

Exempel på linjarisering

Exempel 3.

Finn linjariseringen av $h(x) = \tan x$ när x ligger nära 0 och

Högre ordningens derivator

Att derivera derivatan

Om f(x) är deriverbar så är f'(x) en funktion som talar om hur f(x) förändras.

Om f'(x) är deriverbar så är f''(x) en funktion som talar om hur f'(x) förändras.

Andraderivatan f''(x) skrivs ibland också $\frac{d^2f}{dx^2}$

Och så vidare! Om f är n gånger deriverbar skrivs den n:te derivatan $f^{(n)}(x)$ eller $\frac{d^n f}{dx^n}$

Läxa

Till nästa gång:

Derivera många funktioner. Ta fram tangenter. Gör linjär approximation.

Se film 4. Medelvärdessatsen