Design Techniques 2 for fast cmos gates:

Overall delay is determined by time to discharge C_1 , C_2 and C_L .

Overall delay is determined by time to discharge only CL.

Design techniques 3 for CMOS gates:

- Find alternate logic structures to reduce overall delay.

overall delay = 10+1 = 11 ps.

Dynamic Logic Gates:

Two phase operation

Properties of Dyamic gates:

- Logic function is implemented by PDN only.
 - No. of transistors needed is N+2 (2N in case of static gates)
- Full rail-to-rail output.
- Ratioless design sizing of device does not affect the logic level.
- Faster switching speed
 - 1) reduced load capacitance du to lower input capacitance.
 - 2) reduced load copacitance due to smaller output loading.
 - 3) Isc. all the convent by PDN goes into discharging CL.

Properties continued ...

- Overall power dissipation usually higher than static CMOS.
 - Higher transition probabilities.
 - Extra load on clk.
- Needs a pre-charge / evaluate clock.

