

Unit 1 Linear Classifiers and Course > Generalizations (2 weeks)

Lecture 2. Linear Classifier and

> <u>Perceptron</u>

- 3. Linear Classifiers Mathematically
- > Revisited

3. Linear Classifiers Mathematically Revisited Linear Classifiers Mathematically Revisited

lies on the negative side.

So this has to be negative, which implies, since this is now 0, that theta 0 itself is negative.

If we move this boundary in this direction past the origin,

theta 0 would become positive.

That is the set of linear classifiers through origin

earlier and now the full set of linear classifiers.

13:38 / 13:38

▶ 1.25x

) X

œ

End of transcript. Skip to the start.

Video Download video file

Transcripts

<u>Download SubRip (.srt) file</u>

<u>Download Text (.txt) file</u>

Inner product and Orthogonal vectors

1/1 point (graded)

What is the inner product of $\begin{bmatrix} 0,1,1 \end{bmatrix}$ and $\begin{bmatrix} 1,1,1 \end{bmatrix}$?

✓ Answer: 2

Solution:

$$0\cdot 1 + 1\cdot 1 + 1\cdot 1 = 2$$

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

Linear Classifier Practice

1/1 point (graded)

We saw in the lecture above that for a linear classifier h, $h\left(x;\theta\right)=sign\left(\theta\cdot x\right)$, i.e. the sign of the dot product of θ and x. Now consider θ which is given by

$$heta=(1,-1)$$

which of the following points would be classified as positive by 6? Please choose all correct answers.	
$ otin (1,-1) \checkmark $	
lacksquare $(0,1)$	
$\qquad \qquad \boxed{ (0,0) }$	
✓	
Solution:	
X is positively classified by the classifier if and only if $x\cdot heta>0$. The dot product of $(1,-1)$ with $ heta$ is positive. Also, $(1,0)\cdot heta$ the other hand, $(0,1)\cdot heta$ and $(0,0)\cdot heta$ are nonpositive. Thus the first and second points are positively classified by $ heta$.	s positive. On
Submit You have used 1 of 3 attempts	
Answers are displayed within the problem	
Offset Added	
1/1 point (graded) Again, we have a linear classifier with $ heta$ given by	
heta=(1,-1)	(3.2)
and the offset, $ heta_0$ given by $ heta_0=-1$ Now which of the following points would be classified as positive by $ heta$? Please choose al answers.	l correct
$\qquad \qquad \boxed{ (1,0)}$	
lacksquare $(0,1)$	
\square $(0,0)$	
✓	
Solution:	
X is positively classified by the classifier if and only if $x\cdot heta+ heta_0>0$. The dot product of $(1,-1)$ with $ heta$ is 2 , and adding -1 positive. However, $x\cdot heta+ heta_0\leq 0$ for other data points.	nakes it still
Submit You have used 3 of 3 attempts	
Answers are displayed within the problem	
Discussion	w Discussion