1) Parâmetros de Denavit-Hatenberg segundo John Craig

Este texto descreve uma versão da técnica de obtenção dos parâmetros de Denavit-Hatenberg descrita pelo livro Introduction to Robotics Mechanics, de John Craig. Para seguir a convenção deste, chamaremos os referenciais cartesianos dos elos de frames.

O objetivo deste texto é explicar o procedimento utilizado na obtenção dos parâmetros de Denavit-Hatenberg do braço robô.

2) Elos intermediários (traduzido do livro)

A convenção que usaremos para localizar os frames nos elos é a seguinte: o eixo \hat{Z} do frame $\{i\}$, chamado \hat{Z}_i , é coincidente com o eixo da junta i. A origem do frame $\{i\}$ é localizada onde a perpendicular a_i intersecta o eixo da junta i. \hat{X}_i aponta ao longo de a_i na direção que vai da junta i para a junta i+1.

No caso de $a_i=0$, \hat{X}_i é normal ao plano de \hat{Z}_i e \hat{Z}_{i+1} . Nós definimos α_i como sendo medido no sentido da mão direita em torno de \hat{X}_i e, portanto, vemos que a liberdade de escolher o sinal de α_i , neste caso, corresponde a duas escolhas para o sentido de \hat{X}_i . \hat{Y}_i é formado pela regra da mão direita para completar o i-ésimo frame. A figura 1 mostra a localização dos frames $\{i-1\}$ e $\{i\}$ para um manipulador genérico.

Figura 1: Frames de elo estão fixados de forma que o frame $\{i\}$ está firmemente fixo ao elo i.

3) Primeiro e último elos (traduzido do livro)

Nós fixamos o frame para a base do robô, ou elo 0, chamado frame $\{0\}$. Este frame não se move; para o problema de cinemática de braço, ele pode ser considerado como o frame de referência. Podemos descrever a posição de todos os frames de elo em termos deste frame.

Frame $\{0\}$ é arbitrário, portanto sempre simplifica a questão escolher \hat{Z}_0 ao longo do eixo 1 e localizar o frame $\{0\}$ de forma que coincida com o frame $\{1\}$ quando a variável de junta 1 for zero. Usando esta convenção, sempre teremos $a_0=0.0$ e $\alpha_0=0.0$. Adicionalmente, isto assegura que $d_1=0.0$, se a junta 1 for de revolução, ou $\theta_1=0.0$ se a junta 1 for prismática.

Para junta n revoluta, a direção de \hat{X}_N é escolhida de forma que se este alinhe com \hat{X}_{N-1} quando $\theta_n=0$,0, e a origem do frame $\{N\}$ é escolhida de forma que $d_n=0$,0. Para junta n prismática, a direção de \hat{X}_N é escolhida de forma que $\theta_n=0$,0, e a origem do frame $\{N\}$ é escolhida na interseção entre \hat{X}_{N-1} e o eixo da junta n quando $d_n=0$,0.

4) Sumário dos parâmetros de elo em termos dos frames de elo (traduzido do livro)

Se os frames de elo foram fixados aos elos de acordo com a nossa convenção, as seguintes definições dos parâmetros de elo são válidas:

```
\begin{array}{l} a_i = a \ dist \\ \hat{a}ncia \ de \ \hat{Z}_i \ para \ \hat{Z}_{i+1} \ medida \ ao \ longo \ de \ \hat{X}_i; \\ \alpha_i = ao \ \\ \hat{a}ngulo \ de \ \hat{Z}_i \ a \ \hat{Z}_{i+1} \ medido \ em \ torno \ de \ \hat{X}_i; \\ d_i = a \ dist \\ \hat{a}ncia \ de \ \hat{X}_{i-1} \ a \ \hat{X}_i \ medida \ ao \ longo \ de \ \hat{Z}_i; \\ e \\ \theta_i = ao \ \\ \hat{a}ngulo \ de \ \hat{X}_{i-1} \ a \ \hat{X}_i \ medido \ em \ torno \ de \ \hat{Z}_i. \end{array}
```

Usualmente, usamos $a_i \geq 0$, porque este corresponde a uma distância; no entanto, α_i , d_i e θ_i são quantidades com sinal.

Uma nota final sobre unicidade é garantida. A convenção descrita acima não resulta em uma fixação única dos frames aos elos. Primeiro de tudo, quando primeiro alinhamos o eixo \hat{Z}_i ao eixo da junta i, há duas escolhas de sentido para o eixo \hat{Z}_i apontar. Além disso, em caso de interseção dos eixos de junta (ou seja, $a_i=0,0$), existem duas escolhas para o sentido de \hat{X}_i , correspondendo à escolha de sinais para a normal ao plano contendo \hat{Z}_i e \hat{Z}_{i+1} . Quando os eixos i e i+1 são paralelos, a escolha do local da origem para $\{i\}$ é arbitrária (embora geralmente escolhida de forma a fazer d_i ir para zero). Além disso, quando juntas prismáticas estão presentes, existe bastante liberdade na atribuição de frames.

5) Sumário do procedimento de um frame a um elo (traduzido do livro)

A seguir, é apresentado um resumo do procedimento a ser seguido quando confrontado com um novo mecanismo, para anexar os frames de elo:

- 1. Identifique os eixos de juntas e imagine (ou desenhe) linhas infinitas ao longo deles. Para os passos 2 a 5 abaixo, considere duas dessas linhas vizinhas (nos eixos i e i+1).
- 2. Identifique a perpendicular comum entre os eixos, ou ponto de interseção. No ponto de interseção, ou no ponto onde a perpendicular comum encontra o i-ésimo eixo, atribua a origem do frame do elo.
- 3. Atribua o eixo \hat{Z}_i apontando ao longo do i-ésimo eixo de junta.
- 4. Atribua o eixo \hat{X}_i apontando ao longo da perpendicular comum, ou, se os eixos intersectam, atribua \hat{X}_i para ser a normal ao plano contendo os dois eixos.
- 5. Atribua \hat{Y}_i para completar um sistema de coordenadas formado pela regra da mão direita.
- 6. Atribua $\{0\}$ para corresponder a $\{1\}$ quando a primeira variável de junta for zero. Para $\{N\}$, escolha livremente um local para a origem e o sentido de \hat{X}_N , mas geralmente de forma a causar tantos parâmetros de elos quanto possíveis a ir para zero.

6) Pontos considerados nos parâmetros DH para o braço robô

Nos parâmetros exatos obtidos para o braço robô, temos as seguintes particularidades:

- 1. O frame $\{0\}$ foi escolhido de forma a considerar uma distância d_1 não nula, quebrando a regra do 2° parágrafo da seção 3 deste material referente a d_1 e, consequentemente, à origem do frame $\{0\}$.
- 2. O frame $\{5\}$ foi escolhido de forma a considerar uma distância d_5 não nula, quebrando a regra do 3º parágrafo da seção 3 deste material referente à d_n .

Fora isso, todo o restante do procedimento de obtenção dos parâmetros DH foi tal como descrito neste material na seção 5. O resultado disso foi que, ao considerar os ângulos de todas as juntas como zero, os segmentos L1 e L2 ficaram na horizontal, mas o segmento L3 ficou na vertical, com a garra apontando para baixo. Isso se deve ao fato do eixo \hat{X}_5 ser sempre perpendicular ao eixo \hat{Z}_5 , de forma que, se o segmento L3 ficasse na horizontal, o ângulo entre os eixos \hat{X}_4 e \hat{X}_5 (que neste caso particular não seria o ângulo θ_5) seria de 90° . Via de regra, todos os eixos X ficam paralelos entre si quando os ângulos de junta são zero.