Projeto 4 - MS960/MT862

Fernando Ribeiro de Senna — RA 197019 Rodolfo da Silva Santos — RA 228711

08 de janeiro de 2021

A Seção 1 versa sobre a implementação computacional da parte 1 do projeto e a Seção 2 apresenta o que foi feito na parte 2 do projeto.

Foram utilizados funções e objetos das bibliotecas pandas, numpy, scipy e matplotlib.

Toda a fundamentação teórica se baseia em conteúdo oferecido em vídeo-aulas e *sli-des* pelo Professor João Batista Florindo em ocasião de oferecimento da disciplina MS960 no segundo semestre de 2020 pelo Instituto de Matemática, Estatística e Computação Científica (IMECC) da Universidade Estadual de Campinas (UNICAMP).

1 Parte I

2 Sistema de Recomendação — Parte II

Essa Seção explica a implementação realizada para construção de um sistema de recomendação de filmes. A Seção 2.1 apresenta a documentação das funções implementadas no arquivo *functions_recomendacao.py*. Já a Seção 2.2 apresenta a importação dos dados e o treinamento do algoritmo e a Seção 2.3 apresenta os resultados e as notas obtidos, implementados no arquivo *Parte2_Recomendacao.ipynb*.

O problema se baseia em partir de notas atribuídas a filmes por usuários e, com isso, treinar um algoritmo que seja capaz de "prever" as notas que os usuários dariam aos filmes que eles não viram e fazer recomendações.

Os dados iniciais do problema são representados por matrizes $Y, R \in \Re^{m \times n}$. Cada entrada (i,j) da matriz Y corresponde à nota (de 1 a 5) dada pelo usuário j ao filme i, enquanto as entradas (i,j) da matriz R valem 1 se o usuário j atribuiu alguma nota ao filme i e 0 caso contrário. Quando não houve atribuição de nota a um filme por um usuário, a entrada correspondente da matriz Y é nula.

A partir disso, desejamos construir uma matriz X, em que cada linha representa um vetor $x^{(i)}$ de atributos relativos ao filme i, e uma matriz Θ , em que cada linha representa vetor $\theta^{(j)}$ de parâmetros do usuário j. Uma vez em posse dessas matrizes, é possível obter matriz

 $X\Theta^t$, cuja entrada (i,j) representa a nota prevista para o usuário j dar ao filme i, como em uma regressão linear. A obtenção das matrizes $X \in \Theta$ é feita através de treinamento do algoritmo de recomendação com minimização através de algoritmo de gradiente conjugado.

2.1 Documentação

Essa Seção apresenta as funções utilizadas para criação do sistema de recomendação, implementadas no arquivo *functions_recomendação.py*.

2.1.1 Função cost_fun

Função que calcula o valor da função de custo do problema e seu gradiente com relação às variáveis $x \in \theta$.

Argumentos de entrada:

variables Vetor que corresponde à concatenação das matrizes X e Θ , após serem convertidas em vetores.

Y Matriz em que a entrada (i,j) representa a nota dada pelo usuário j ao filme i.

R Matriz em que a entrada (i,j) vale 1 se o usuário j deu nota ao filme i e 0, caso contrário.

n_pars Dimensão dos vetores de atributos e parâmetros $x^{(i)}$ e $\theta^{(j)}$.

A função retorna:

J Valor da função de custo

grad Vetor que representa o gradiente da função de custo com relação aos atributos e parâmetros $x^{(i)}$ e $\theta^{(j)}$.

Inicialmente, a função reconstrói as matrizes X e Θ a partir do vetor *variables*. Em seguida, calcula o valor da função de custo J através da Equação 1 e as matrizes que representam o gradiente de J com relação a cada entrada de X e de Θ através das Equações 2 e 3. Por fim, essas matrizes são convertidas em vetor em concatenadas para gerar o vetor *grad*.

$$J = \frac{1}{2} \sum_{i,i;R(i,j)=1} \left[\left(\theta^{(j)} \right)^t x^i - y^{(i,j)} \right]^2 \tag{1}$$

$$\nabla_X^{(i,k)} = \sum_{j:R(i,j)=1} \left[\left(\theta^{(j)} \right)^t x^i - y^{(i,j)} \right] \theta^{(j,k)}$$
 (2)

$$\nabla_{\Theta}^{(j,k)} = \sum_{i:R(i,j)=1} \left[\left(\theta^{(j)} \right)^t x^i - y^{(i,j)} \right] x^{(i,k)} \tag{3}$$

2.1.2 Função normalização

Função que realiza normalização de matriz Y de notas fornecidas por usuários.

Argumentos de entrada:

Y Matriz em que a entrada (i,j) representa a nota dada pelo usuário j ao filme i.

R Matriz em que a entrada (i,j) vale 1 se o usuário j deu nota ao filme i e 0, caso contrário.

A função retorna:

norm Matriz Y normalizada

media Vetor com as médias das notas dadas para cada filme

Essa função calcula a média de notas dadas para cada um dos filmes (desconsiderando, no cálculo, os usuários que não deram nota para o filme), obtendo vetor de notas médias. Em seguida, realiza-se subtração da média de cada uma das notas dadas, obtendo a matriz de notas normalizadas. Note que as entradas de *norm* correspondentes às entradas nulas de Y continuam nulas.

Em normalizações, é comum fazer a subtração da média e, em seguida, dividir pelo desvio padrão. Contudo, isso não foi feito, pois em alguns casos, há poucos usuários que deram notas ao filme, tornando o desvio padrão pouco representativo.

2.1.3 Função treinamento

Função que realiza treinamento do algoritmo.

Argumentos de entrada:

Y Matriz em que a entrada (i,j) representa a nota dada pelo usuário j ao filme i.

R Matriz em que a entrada (i,j) vale 1 se o usuário j deu nota ao filme i e 0, caso contrário.

n_pars Dimensão dos vetores de atributos e parâmetros $x^{(i)}$ e $\theta^{(j)}$.

n_iter Número máximo de iterações com o algoritmo de gradiente conjugado que podem ser realizadas.

A função retorna:

X Matriz em que cada linha representa um vetor $x^{(i)}$ de atributos relativos ao filme i.

 Θ Matriz em que cada linha representa vetor $\theta^{(j)}$ de parâmetros do usuário j

res Objeto da biblioteca scipy.optimize que apresenta detalhes da otimização realizada.

A função constrói matrizes $X \in \Re^{m \times n_pars}$ e $\Theta \in \Re^{n \times n_pars}$ de entradas aleatoriamente geradas pela função rand da biblioteca numpy.random. Em seguida, ela transforma essas matrizes em vetores e os concatena, passando esses valores como valores iniciais da função minimize da biblioteca scipy.optimize que realiza minimização irrestrita da função de custo J através de algoritmo de gradiente conjugado aplicado sobre a função $cost_fun$. Por fim, a função reconstrói as matrizes $X \in \Theta$ obtidas após a otimização.

2.2 Importação dos dados e treinamento

A implementação descrita na presente Seção foi feita em linguagem *python* e arquivo tipo *notebook* e pode ser encontrada no arquivo *Parte2_Recomendacao.ipynb*.

Inicialmente, importam-se as bibliotecas *numpy e pandas*, além da função *loadmat* da biblioteca *scipy.io* e das funções do arquivo *functions_recomendacao.ipynb*, descritas na Seção 2.1.

Em seguida, os dados do problema são importados. As matrizes Y e R, conforme descritas anteriormente, são importadas do arquivo *dado3.mat* e a lista de filmes do arquivo *dado4.txt*.

Antes de realizar o treinamento, uma rotina percorre todas as linhas e colunas da matriz R e informa se todos os filmes receberam ao menos uma nota e todos os usuários deram ao menos uma nota. Isso é importante, pois, caso algum filme não receba nenhuma classificação ou algum usuário não forneça nenhuma nota, é necessário alterar a matriz Y, de forma que a esse filme/usuário seja atribuído comportamento médio com relação aos demais, a fim de garantir que o algoritmo implementado tenha um bom desempenho. Como na base de dados utilizados todos os usuários deram ao menos uma nota e todos os filmes receberam ao menos uma nota, não é necessário fazer nenhuma modificação.

Uma vez feita essa verificação, realiza-se normalização da matriz Y através da função *normalização*. Define-se a variável n_pars como o tamanho dos vetores $x^{(i)}$ e $\theta^{(j)}$ (foi utilizado valor 100) e a variável n_iter que indica o número máximo de iterações permitido ($n_iter=10000$). Por fim, o algoritmo é treinado através da função *treinamento*.

O algoritmo de otimização obteve sucesso após 8943 iterações, sem ser necessário atingir o limite de 10000 iterações previamente definido. O valor da função de custo obtido ao fim da otimização é cerca de $2,55*10^{-7}$.

2.3 Previsão das notas

A implementação descrita na presente Seção foi feita em linguagem *python* e arquivo tipo *notebook* e pode ser encontrada no arquivo *Parte2_Recomendacao.ipynb*. É uma continuação do que foi feito na Seção 2.2.

Uma vez finalizado o treinamento, calculam-se as notas previstas através da multiplicação de matrizes $X\Theta^t$ e elas são comparadas com as notas fornecidas pelos usuários nos exemplos de treinamento. Com precisão $\varepsilon = 10^{-2}$, a diferença entre todas as notas previstas e as notas dadas pelos usuários é nula, assim como o valor da função objetivo.

Com base nos resultados obtidos, combinam-se as notas previamente fornecidas pelos usuários com as notas previstas pelo sistema de recomendação (para os pares de filmes/usuários em que não existe atribuição de nota) e calculam-se as notas médias para os filmes. Os 10 filmes de maior nota média são apresentados na Tabela 1.

Classificação	ID	Filme	Nota média
1	814	Great Day in Harlem, A (1994)	10.15
2	1201	Marlene Dietrich: Shadow and Light (1996)	9.52
3	1536	Aiqing wansui (1994)	9.50
4	1189	Prefontaine (1997)	9.33
5	1398	Anna (1996)	9.24
6	1653	Entertaining Angels: The Dorothy Day Story (1996)	9.17
7	1293	Star Kid (1997)	9.17
8	1467	Saint of Fort Washington, The (1993)	9.12
9	1594	Everest (1998)	9.10
10	1122	They Made Me a Criminal (1939)	9.09

Tabela 1: Filmes de maior nota prevista

É interessante observar que as notas médias obtidas para esses filmes são todas maiores do que 9, o que é uma incoerência com o sistema de notas utilizado, que varia de 1 até 5. Porém, como o objetivo era obter os 10 filmes de notas médias mais altas, esses valores são indiferentes, além de facilitarem a ordenação. Se fosse desejado de fato prever uma nota de 1 a 5 para cada par filme/usuário, o algoritmo teria que ser modificado ou os dados obtidos como resultados teriam que ser tratados.

Outro ponto importante a ser discutido é o fato de que a função de custo da ordem de 10^{-7} pode ser um indício de *overfitting*. Entretanto, como a proposta do projeto é realizar o treinamento sem regularização e obter os filmes de maior nota, considerando os usuários e filmes da base de dados, não há nenhum problema nesse possível *overfitting*, pois o algoritmo apresenta bom desempenho no escopo a que se presta.

3 Referências

Vídeo-aulas e *slides* pelo Professor João Batista Florindo em ocasião de oferecimento da disciplina MS960 no segundo semestre de 2020 pelo Instituto de Matemática, Estatística e Computação Científica (IMECC) da Universidade Estadual de Campinas (UNICAMP).