

Basic R programing 11-12 Jan 2021

Lecture 6 (13:00-14:30): Continuous data analysis (Linear modelling)

Dr. Palang Chotsiri

palang@tropmedres.ac

Height and Weight

Height and Weight

Height and Weight

Simple linear regression

- Apparently linear relation, can we quantify this relation?
- Statistical modelling describing the relationship between height and weight with a straight line equation:

$$y = \alpha + \beta x + \epsilon$$

- y is dependent on x, and therefore refer to y as the dependent variable or the response; x is the explanatory variable.
- ϵ is the error, assumed to be 0 on average.

Mathematic of linear regression

Mathematic of linear regression

Simple linear regression

Extrapolation of Data

Male Female

 Often convenient to extrapolate result to data outside range of regression, and just as often erroneous.

What's the children weight when height = 30?

Dangerous to extrapolate the results beyond the range of regression

Confidence band

Statistical inference in linear regression

• Test the significance (or 'contribution') of an independent variable (x) to the dependent variable (y) via hypothesis tests (or confidence intervals).

$$y = \alpha + \beta x + \epsilon$$

Consider null hypothesis of:

$$H_0$$
: $\beta = 0$

- Tests linear relationship using t-tests.
- Often performed by default by software in regression.

Multiple regression and linear modelling

- More than one explanatory variable, example age, gender, ethnic groups and height
- Interested to find how these variables affect weight.
- Mathematically complicated, but conceptually identical to finding the coefficients which minimises the errors (easy with a computer)

Weight =
$$\alpha + \beta_1 Height + \beta_2 Age + \beta_3 I(Male) + \beta_4 I(Smoke) + \epsilon$$

• Notice the difference for categorical variables like gender and smoke. I(...) represents an indicator variable, taking the value 1 when the condition in the bracket is satisfied, and zero otherwise.

Linear Modelling

• Statistical approach to explain a response, or some function of the response variable, as a linear combination of the other explanatory variables.

Regression	Response
Multiple linear regression	Numerical response
Logistic regression	Binary categorical response
Multinomial logistic regression	Categorical variable with multiple outcomes
Poisson (log-linear) regression	Count/Rate response
Cox proportional hazard regression	Survival response

Model selection

• In linear modelling, the main focus usually is in identifying the explanatory variables that contribute significantly in explaining the response variable.

Weight =
$$\alpha + \beta_1 Height + \beta_2 Age + \beta_3 I(Male) + \beta_4 I(Race) + \epsilon$$

- There will be variables that are not useful/informative in explaining how Weight changes.
- Pointless to include these variables in the model, and statistically wasteful as well since they use up precious information to estimate the β s.

Model selection

• There are multiple approaches for selecting the optimal or near-optimal model.

- Eg.
 - Forward selection
 - Backward selection
 - Stepwise selection
 - oEtc.

Coefficient of determination

• \mathbb{R}^2 is percentage of total response variation explained by explanatory variable

$$R^2 = 100 \times \left(\frac{SSE_{regression}}{SSE_{total}}\right)$$

- Low \mathbb{R}^2 indicates that not much of variation in data can be explained by regression model
- Commonly reported at the end of the regression analysis to indicate how well the mod
- For example:
- Height explains 80% of the variation in Weight el is doing to explain the response.

Linear regression diagnostic: linearity

- Possible violations:
 - -Straight line may be inadequate model
 - -Contamination from outliers from different populations
- Resulting estimates misleading, biased

 Degree of biased-ness depends on degree of violation of assumption

Possible transformations or polynomial variables

Example

Example

Example

Example: A better model fit

Example: A better model fit

Basic R programing 11-12 Jan 2021

Hand On Day 2 (14:45-16:00)

Dr. Palang Chotsiri

palang@tropmedres.ac

Hand On Day 2

 Load the data "covid_analytic_clinical_data.csv" (read data information at "covid_analytic_clinical_data.doc")

Check for the 10 first lines

Get a summary of each variable

Hand On Day 2

• Solution: *HandOn_day2_solution.R*

Day 2 Wrap-up

What did you learn today?