Séries de fonction

On a $\sum f_n(x)$ une série de fonction avec $n \in \mathbb{N}$ et $x \in \mathbb{R}$

Convergence simple (CVS):

- On fixe $x \in \mathbb{R}$
- Onétudie la série $\sum f_n(x)$
 - $Si \sum f_n(x) converge \ alors \sum f_n converge \ simplement \ sur \ \mathbb{R}$
 - $Si \sum f_n(x)$ diverge alors $\sum f_n$ ne converge pas simplement sur \mathbb{R}

Convergence absolu (CVA):

- On fixe $x \in \mathbb{R}$
- On étudie la série $\sum |f_n(x)|$
 - $Si \sum |f_n(x)|$ converge alors $\sum f_n$ converge absolument sur \mathbb{R}
 - Si $\sum |f_n(x)|$ diverge alors $\sum f_n$ ne converge pas absolument sur \mathbb{R}

Convergence normale (CVN):

- On fixe n∈**N**
- On cherche $a_n = supp_{(x \in \mathbb{R})} |f_n(x)|$
- Onétudie $\sum a_n$
 - Si $\sum a_n$ converge alors $\sum f_n$ converge normalement sur \mathbb{R}
 - Si $\sum a_n$ diverge alors $\sum f_n$ ne converge pas normalement sur \mathbb{R}

Convergence uniforme (CVU):

- On fixe $n \in \mathbb{N}$
- On pose $R_n = \sum_{k=n+1}^{+\infty} f_k$
- On cherche $S_n = supp_{x \in \mathbb{R}} R_n(x)$
 - $Si \lim_{n \to +\infty} supp S_n = 0 alors \sum_{n} f_n converge uniform \neq ment sur \mathbb{R}$
 - $Si \lim_{n \to +\infty} alors \sum_{n} f_n ne converge pas uniformément sur \mathbb{R}$