

Lecture 15 – Classifying images

Prof. João Fernando Mari

<u>joaofmari.github.io</u>

joaof.mari@ufv.br

Agenda

- Digital images
- A classification problem
- Classification pipelines
- Learning models
- Cross-validation
- Classification evaluation

A CLASSIFICATION PROBLEM

- Learning to classify three types (classes) of leaves from images.
- Flavia leaf dataset:
 - http://flavia.sourceforge.net/
 - 1,907 images
 - 33 classes
- We selected 3 classes:
 - aesculus chinensis
 - acer palmatum
 - cercis chinensis

- Feature extraction:
 - Select features from the images that can be used to distinguish between the classes.
- Features can be:
 - Shapes
 - Colors
 - Textures
 - Histogram of gradients (HoG)
 - Bag of Visual Words
 - Fisher Vectors
 - **–** ...

K-nearest neighbors – K-NN

Learning to classify three types (classes) of leaves from images.

k = 3

K-nearest neighbors – K-NN

Learning to classify three types (classes) of leaves from images.

k = 3

K-nearest neighbors – K-NN

Learning to classify three types (classes) of leaves from images.

k = 3

CLASSIFICATION PIPELINES

Classification pipelines

Yann LeCun's Deep Learning Course at CDS - SPRING 2021

LEARNING MODELS

Learning models

- Supervised learning
- Unsupervized learning
- Reinforcement learning
- Semi-supervised learning

Input

MODEL

Label

Label

Unsupervized learning

Unsupervized learning

Unsupervized learning

CROSS-VALIDATION

Hold-out cross-validation

K-fold cross-validation

Dataset								
shuffle								
	Test							
Train Validation					k = 0			
Train Validation				Train	k = 1			
Train		Validation	Train		k = 2			
Train	Validation	Train			k = 3			
Validation		Train			k = 4			

CLASSIFICATION EVALUATION

Confusion matrix

- True positive(TP):
 - Objects of class C1 classified as C1.
- True negative (TN):
 - Objects of other classes (C2 and C3) classified as not being C1.
- False positive (FP) (type I error):
 - Objects classified as C1 but belonging to other classes (C2 or C3).
- False negative (FN) (type II error):
 - Objects of class C1 classified as other classes (C2 or C3).

		Classification					
		Class C1	Class C2	Class C3	Sum		
	Class C1	5	3		8		
Real class	Class C2	2	3	1	6		
	Class C3	0	2	11	13		
	Soma	7	8	12			

Class C1		Classification			
		Class C1		Others	
Real class	Class C1	5	TP	3	FN
	Others	2	FP	17	TN

Accuracy, precision, recall, and F1-score

Accuracy:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

Precision:

-
$$Precision = \frac{TP}{TP+FP}$$

Recall:

$$- Recall = \frac{TP}{TP+FN}$$

• F1-score:

$$- F1 - score = \frac{2 \times TP}{2 \times TP + FP + FN}$$

- Support:
 - Support = TP + FN

Bibliography

- GONZALEZ, R.C.; WOODS, R.E.; **Processamento Digital de Imagens.** 3ª edição. Editora Pearson, 2009.
- COSTA, L. DA F.; CESAR-JR., R. M. **Shape analysis and classification: theory and practice**. CRC Press, 2000. Chapter 8.
- Yann LeCun', Alfredo Canziani. Yann LeCun's Deep Learning Course at CDS SPRING 2021
 - https://cds.nyu.edu/deep-learning/


```
@misc{mari_im_proc_2023,
author = {João Fernando Mari},
title = {Classifying images},
year = {2023},
publisher = {GitHub},
journal = {Introduction to digital image processing - UFV},
howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
```

THE END