《计算机先进控制技术》第1部分

计算机控制系统 的硬件设计技术(1)(2)

引言

- 输入输出接口与过程通道是计算机控制系统的重要组成部分
- 接口
 - 接口是计算机与外部设备交换信息的桥梁
 - 接口技术是研究计算机如何与外部设备之间交换 信息的技术
- 过程通道
 - 是计算机和生产过程之间设置的信息传送和转换的连接通道
 - 包括模拟,数字,输入,输出等

内容简介

- 总线技术
- 总线扩展技术
- 数字量输入输出接口与过程通道
- 模拟量输入接口与过程通道
- 模拟量输出接口与过程通道
- 基于串行总线的计算机控制系统硬件技术
- 硬件抗干扰技术

1 总线技术

- 总线的定义
 - 总线就是计算机各个模块之间互联和传达信息的 一组信号线
- 总线的分类
 - 内部总线
 - 片级总线: 数据总线, 地址总线, 控制总线, I2C, SPI等
 - 系统总线: ISA, PCI等
 - 外部总线
 - 例如 RS232 , RS485 , IEEE488 , USB 等
 - \bullet PC 104, Compact PCI

PC/ISA/EISA 总线简介

- 发展历史
 - ISA的前身是 IBM 的 PC 总线, 诞生于 1981 年, 伴随着 IBM PC 的问世而来
 - 1987 年正式订立 ISA 总线标准
 - ISA 总线是 16 位的
 - 总线插槽包括 2 部分
 - 8 位基本插槽和 16 位扩展插槽
- ISA 信号线定义
 - 98 根线,数据线宽度 16 位,地址线宽度 24 位
 - 引脚介绍(略)

ISA 简介

信号	引脚	引脚	信号
Ground	- B1	A1 -	-I/O CH CHK
RESET DRV	- B2	A2 -	Data Bit 7
+5 Vdc	- B3	A3 -	Data Bit 6
IRQ 9	- B4	A4 -	Data Bit 5
-5 Vdc	- B5	A5 -	Data Bit 4
DRQ 2	- B6	A6 -	Data Bit 3
-12 Vdc	- B7	A7 -	Data Bit 2
-0 WAIT	- B8	A8 -	Data Bit 1
+12 Vdc	- B9	A9 -	Data Bit 0
Ground	- B10	A10 -	-I/O CH RDY
-SMEMW	- B11	A11 -	AEN
-SMEMR	- B12	A12 -	Address 19
-IOW	- B13	A13 -	Address 18
-IOR	- B14	A14 -	Address 17
-DACK 3	- B15	A15 -	Address 16
DRQ 3	─ B16	A16 -	Address 15
-DACK 1	- B17	A17 -	Address 14
DRQ 1	- B18	A18 -	Address 13
-Refresh	⊢ B19	A19 -	Address 12
CLK(8.33MHz)	- B20	A20 -	Address 11
IRQ 7	B21	A21 -	Address 10
IRQ 6	B22	A22 -	Address 9
IRQ 5	− B23	A23 — A24 —	Address 8
IRQ 4	- B24	A24 —	Address 7
IRQ 3 -DACK 2	- B25 - B26	A26 -	Address 6
T/C	- B27	A27	Address 5 Address 4
BALE	- B28	A28 -	Address 3
+5 Vdc	- B29	A29 -	Address 2
OSC(14.3MHz)	- B30	A30 -	Address 1
Ground	- B31	A31 -	Address 0
Circuita	501		Addition 0
		-	
-MEM CS16	- D1	C1 -	-SBHE
-I/O CS16	- D2	C2 -	Latch Address 23
IRQ 10	- D3	C3 -	Latch Address 22
IRQ 11	- D4	C4 -	Latch Address 21
IRQ 12	- D5	C5 -	Latch Address 20
IRQ 15	- D6	C6	Latch Address 19
IRQ 14	□ D7	C7 -	Latch Address 18
-DACK 0	- D8	C8 -	Latch Address 17
DRQO	- D9	C9 -	-MEMR
-DACK 5	⊢ D10	C10 -	-MEMW
DRQ5	D11	C11 -	Data Bit 8
-DACK 6	D12	C12-	Data Bit 9
DRQ6	D13	C13 -	Data Bit 10
-DACK 7 DRQ 7	- D14	C14 — C15 —	Data Bit 11
+5 Vdc	D15	C16 -	Data Bit 12
-Master	- D16 - D17	C17	Data Bit 13 Data Bit 14
Ground	- D18	C18 -	Data Bit 15
Ground	D18	010	Data Dit 13

ISA 简介

ISA 总线的引脚

EISA

PCI/Compact PCI 简介

- 64 位总线, 最高总线频率 33MHz, 数据传输 80M/s
- 背景: 图形化界面多媒体技术对传输速率的要求
- 主要性能:
 - 支持 10 台外设
 - 与 CPU 及时钟频率无关
 - 自动识别外设
 - 支持 64 位寻址
 - 多总线主控能力
 - 采用复用技术减少引脚数

PCI 总线

AD[0..31] ADM 311 **到黑** -12V TRST# TCK 4 5 6 7 2 8 9 6 +5V | TDI | 5 | X | IND | 7 | INTE# | F5V | 6 | IND | 7 | INTE# | F5V | 7 | INTE# | 7 | INTE# | F5V | 9 | INTE# | 7 | INTE# | F5V | 9 | INTE# | 7 | INTE# | F5V | 9 | INTE# | 7 | INTE# | F5V | 9 | INTE# | 7 | INTE# | F5V | 9 | INTE# | 7 | INTE# | F5V | 9 | INTE# | 7 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 8 | INTE# | F5V | 9 | INTE# | 9 | INTE# GND TDI 5 X INTAB TDO →INTAB X 9 X 10 X 11 GND 12 GND X 14 VAUX33 GND RSTB GND SGNTB PMEB REOR 18 REQB C X 19 AD29 GND 21 22 23 24 AD27 AD25 25 CBE3B CBE3B 26 IDSEL AD23 AD23 GND GND AD21 29 30 31 AD20 AD21 AD19 GND AD18 AD19 +3.3V AD17 32 CBE2B CBE2B GND 34 35 FRAMEB IRDYB IRDYB < TROYB TRDYB DEVSELE DEVSELB C 38 × 39 × 40 STOPE GND STOPB PERRB PERRB C 41 O PAR 42 43 SERRB SERRB SERRB 44 45 PAR AD15 45 CBE1B AD14 GND 46 47 48 AD12 AD10 49 ◯ CBE 0B 53 54 AD7 AD5 55 56 AD4 GND AD3 57 58 59 60 61 62 GND AD1 AD2 # C25 + C24 22U PCIJB PCIJA GND

PCI 引脚

Compact PCI

• 支持热插拔

其他总线

- PC/104 总线
 - 一种嵌入式总线

串行外部总线简介

- RS-232/RS-422/RS-485 总线
 - 平衡和不平衡传输方式
 - 平衡传输方式在抗干扰等方面有优势
 - RS-232
 - 串行通讯
 - 只需要 2 ~ 3 根线就可以进行通讯
 - 信号电平与普通的 TTL 和 CMOS 不同, 需转换
 - RS-485
 - 平衡差分,传输距离远
 - 可以多点互联
 - USB 总线
 - 热插拔
 - 可以采用级联方式连接外设
 - 智能识别

2 总线扩展技术

- I/O 端口及 I/O 操作
- I/O 端口编址方式
 - 统一编址: 无需 I/0 指令
 - 独立编址: 必需设置专门的 I/0 指令
- I/O 端口地址分配
 - 取决于所采用的计算机系统
 - 自己设计外设时不要占用系统定义好的地址

总线扩展技术

- I/O 端口地址译码方式
 - 线选法
 - 全译码法
 - 部分译码法
- I/O 端口地址译码方法
 - 固定地址译码法
 - 开关地址译码法