Performance Comparison of various Feature Extractors on MNIST dataset

Eshan Gujarathi Department of Computer Science and Engineering IIT Gandhinagar

Introduction

The Dataset

- Handwritten digits
- Size normalized and centered
- Training Data: 60,000 images
- Testing Data: 10,000 images
- Image size: 28x28

Applications:

- Bank cheque processing
- Form data entry

Image Source

Models

- 1. Fully Connected Network
- 2. Convolutional Neural Network (ConvNet/CNN)
- 3. AlexNet (Winner of 2012 ImageNet Challenge)
- 4. VGG (Runners Up of 2014 ImageNet Challenge)
- 5. ResNet (Winner of 2015 ImageNet Challenge)

Training

Fully Connected Network

- Images flattened
- Epochs = 30
- Validation split = 0.2

		-1	
Layer (type)	Output =====	Shape ========	Param #
dense (Dense)	(None,	1000)	785000
dropout (Dropout)	(None,	1000)	Ø
dense_1 (Dense)	(None,	784)	784784
dropout_1 (Dropout)	(None,	784)	Ø
dense_2 (Dense)	(None,	400)	314000
dropout_2 (Dropout)	(None,	400)	Ø
dense_3 (Dense)	(None,	200)	80200
dropout_3 (Dropout)	(None,	200)	Ø
dense_4 (Dense)	(None,	10)	2010
======================================			

Convolutional Neural Network (ConvNet)

- Epochs = 30
- Validation split = 0.2

```
Layer (type)
                             Output Shape
                                                       Param #
 conv2d (Conv2D)
                             (None, 24, 24, 28)
                                                       728
 max pooling2d (MaxPooling2D (None, 12, 12, 28)
 conv2d 1 (Conv2D)
                             (None, 8, 8, 56)
                                                       39256
 max pooling2d 1 (MaxPooling (None, 4, 4, 56)
 2D)
 flatten (Flatten)
                             (None, 896)
 dense (Dense)
                             (None, 56)
                                                       50232
 dense 1 (Dense)
                             (None, 10)
Total params: 90,786
Trainable params: 90,786
Non-trainable params: 0
```

AlexNet

- Epochs = 10
- Validation split = 0.2
- Images resized to = (32*32*3)
- Output layer with 10 classes

Image source

VGG-16

- Epochs = 10
- Validation split = 0.2
- Images resized to = (48*48*3)
- Used Transfer Learning
- Output layer with 10 classes

<u>Image source</u>

ResNet-50

- Epochs = 2
- Validation split = 0.2
- Images resized to = (32*32*3)
- Output layer with 10 classes

Performance Results

Evaluation Metrics

- Accuracy
- Confusion Matrix
- Precision, Recall and F1 score for each class
- ROC curve and AUC

	precision	recall	f1-score	support
Ø	0.99	0.99	0.99	980
1	0.99	0.99	0.99	1135
2	0.99	0.98	0.98	1032
3	0.98	0.98	0.98	1010
4	0.97	0.98	0.98	982
5	0.97	0.99	0.98	892
6	0.99	0.98	0.98	958
7	0.99	0.96	0.98	1028
8	0.97	0.97	0.97	974
9	0.97	0.98	0.98	1009
accuracy			0.98	10000

Fully Connected Network

	precision	recall	f1-score	support
Ø	0.99	1.00	0.99	980
1	1.00	0.99	1.00	1135
2	0.99	0.99	0.99	1032
3	0.99	0.99	0.99	1010
4	0.99	0.99	0.99	982
5	0.99	0.99	0.99	892
6	0.99	0.99	0.99	958
7	0.99	0.99	0.99	1028
8	0.99	0.99	0.99	974
9	0.99	0.99	0.99	1009
-1000				
accuracy			0.99	10000

ConvNet

		200000	00-00	
	precision	recall	f1-score	support
-				
0	0.88	1.00	0.93	980
1	0.99	0.98	0.98	1135
2	0.70	1.00	0.82	1032
3	0.85	0.98	0.91	1010
4	1.00	0.31	0.47	982
5	1.00	0.47	0.64	892
6	1.00	0.84	0.92	958
7	0.60	0.99	0.75	1028
8	0.98	0.95	0.96	974
9	0.92	0.87	0.89	1009
accuracy			0.85	10000

AlexNet

	precision	recall	f1-score	support
	0.03	0.00	0.00	000
0	0.93	0.99	0.96	980
1	0.98	0.99	0.98	1135
2	0.93	0.90	0.91	1032
3	0.89	0.89	0.89	1010
4	0.93	0.93	0.93	982
5	0.85	0.88	0.87	892
6	0.97	0.94	0.96	958
7	0.90	0.94	0.92	1028
8	0.91	0.87	0.89	974
9	0.94	0.88	0.91	1009
accuracy			0.92	10000
accuracy			0.92	10000

1000

- 400

- 200

	precision	recall	f1-score	support
Ø	0.97	0.99	0.98	980
1	0.98	1.00	0.99	1135
2	0.99	0.98	0.98	1032
3	1.00	0.98	0.99	1010
4	0.98	0.98	0.98	982
5	0.99	0.89	0.94	892
6	0.99	0.97	0.98	958
7	0.98	0.97	0.98	1028
8	0.91	0.97	0.94	974
9	0.95	0.98	0.97	1009
1,000				100000000000000000000000000000000000000
accuracy			0.97	10000

ResNet

Conclusions

- ConvNet performed the best with an accuracy of 99.12%
- Models considered to be state-of-the-art performed poorly on MNIST
- Dataset was relatively simpler for such models.
- The size of the dataset was also small to train models with more number of layers.

Key Learnings