Calculating [H₃O⁺] and [OH⁻]

Recall that strong acids and bases are considered completely ionized or dissociated in weak aqueous solutions. A review of strong acids and bases is given in **Table 2.** Because NaOH is a strong base, 1 mol of it will yield 1 mol of OH⁻ in an aqueous solution.

NaOH(s)
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺(aq) + OH⁻(aq)
1 mol 1 mol 1 mol

Therefore, a 1.0×10^{-2} M NaOH solution has an [OH⁻] of 1.0×10^{-2} M, as shown by the following.

$$\frac{1.0 \times 10^{-2} \text{ mol NaOH}}{1 \text{ L solution}} \times \frac{1 \text{ mol OH}^-}{1 \text{ mol NaOH}} = \frac{1.0 \times 10^{-2} \text{ mol OH}^-}{1 \text{ L solution}}$$
$$= 1.0 \times 10^{-2} \text{ M OH}^-$$

Notice that the [OH⁻] is greater than 1.0×10^{-7} M. This solution is basic. Because the K_w of an aqueous solution is a relatively constant 1.0×10^{-14} at ordinary room temperatures, the concentration of either ion can be determined if the concentration of the other ion is known. The [H₃O⁺] of this solution is calculated as follows.

$$K_w = [\mathrm{H_3O^+}][\mathrm{OH^-}] = 1.0 \times 10^{-14}$$

 $[\mathrm{H_3O^+}] = \frac{1.0 \times 10^{-14}}{[\mathrm{OH^-}]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}} = 1.0 \times 10^{-12} \,\mathrm{M}$

The [OH⁻], 1.0×10^{-2} M, is greater than the [H₃O⁺], 1.0×10^{-12} M, as is true for all basic solutions.

Now consider a 2.0×10^{-4} M HCl solution. Because HCl is a strong acid, the $[H_3O^+]$ is 2.0×10^{-4} M, as shown by the following.

$$\begin{split} & \text{HCl}(g) + \text{H}_2\text{O}(l) \longrightarrow \text{H}_3\text{O}^+(aq) + \text{Cl}^-(aq) \\ & 1 \text{ mol} \quad 1 \text{ mol} \quad 1 \text{ mol} \\ & \frac{2.0 \times 10^{-4} \text{ mol} \cdot \text{HCl}}{1 \text{ L solution}} \times \frac{1 \text{ mol} \cdot \text{H}_3\text{O}^+}{1 \text{ mol} \cdot \text{HCl}} = \frac{2.0 \times 10^{-4} \text{ mol} \cdot \text{H}_3\text{O}^+}{1 \text{ L solution}} \\ & = 2.0 \times 10^{-4} \text{ M H}_3\text{O}^+ \end{split}$$

Notice that the $[H_3O^+]$ is greater than 1.0×10^{-7} M. This solution is acidic. The $[OH^-]$ of this solution is calculated as follows.

$$K_{w} = [\mathrm{H_{3}O^{+}}][\mathrm{OH^{-}}] = 1.0 \times 10^{-14}$$
$$[\mathrm{OH^{-}}] = \frac{1.0 \times 10^{-14}}{[\mathrm{H_{3}O^{+}}]} = \frac{1.0 \times 10^{-14}}{2.0 \times 10^{-4}} = 5.0 \times 10^{-10} \,\mathrm{M}$$

The [H₃O⁺] is greater than the [OH⁻] for all acidic solutions.

You may have realized that in order for K_w to remain constant, an increase in either the $[H_3O^+]$ or the $[OH^-]$ in an aqueous solution causes a decrease in the concentration of the other ion. Sample Problem A also shows calculation of the $[H_3O^+]$ and $[OH^-]$ of an acidic solution.

TABLE 2 Common Strong Acids and Bases	
Strong Acids	Strong Bases
HCl	LiOH
HBr	NaOH
HI	КОН
HClO ₄	RbOH
HClO ₃	CsOH
HNO ₃	Ca(OH) ₂
H_2SO_4	Sr(OH) ₂
	Ba(OH) ₂