Après filtrage, le signal décodé en symboles est

$$z(t) = \sum_{k=0}^{n} a_k p(t - kT)$$

Avec p le signal après filtrage.

Donc les symboles sont obtenus tout les $mT + t_0$:

$$z(mT + t_0) = \sum_{k=0}^{n} a_k p((m - k)T + t_0)$$

$$= a_m p(t_0) + \sum_{l \neq 0} a_{n-l} p(lT + t_0)$$
interférence entre signaux IES

On voudrait juste $a_m p(t_0)$. Et l'IES existe même en l'absence de bruit (comme ici). On veut donc

Théorème Nyquist-Temporel

$$\exists t_0, p(t_0) \neq 0 \land \forall l \neq 0, p(lT + t_0) = 0$$

Dans le domaine fréquentiel:

$$\sum_{k} P_{t_0}(f - \frac{k}{T}) \text{ est constante}$$

Avec un cas particulier $|P_{t_0}(f)| = 0$ pour $|f| > \frac{1}{T}$, la condition devient:

$$P_{t_0}(f) + P_{t_0}(f - \frac{1}{T})$$
 est constante

On a un point de symmétrie $f = \frac{1}{2T}$

1 Exercice 1

1.1

En prenant $t_0 \in [T_s/2, T_s]$, le critère et satisfait.

1.2

On prend la forme d'onde $h*h_r$ et on la duplique tout les T_s (ça se chevauche). Ensuite, on obtient le signal final en sommant les courbes.

Figure 1: Diagramme de l'œil

1.3

On se donne un graphe avec un axe temporel de 0 à T_s . On prend chaque tronçon du signal de longueur T_s , en commençant à $t = T_s$ (le premier symbole y'a l'initialisation).

On obtient la figure 1

Interprétation Avant $t = \frac{T_s}{2}$, il y a plus de deux valeurs, donc on ne peut pas échantilloner avec $t_0 < \frac{T_s}{2}$.

2 Impact d'un canal de propagation

Roll-off α d'un racine carrée de cosinus surélevé: dans [0,1], tel que la durée où la courbe est non-maximale ("transition") est $(1+\alpha)\frac{R_s}{2}$.

2.1

On prend le critère en fréquence.

On multiplie les réponses fréquentielles des trois filtres.

Mais on connaît pas R_s .

Donc on a deux cas: soit les phases de roll-off sont totalement conservées par la multiplication par la porte, i.e. $(1 + \alpha)\frac{R_s}{2} < 1200$, et le cas contraire.

Si la conservation n'est que partielle, il y aura des bouts de signal présent en bas des courbes mais pas en haut, et on perd la symmétrie.

2.2

La condition sur R_s est $R_s < 2000$, donc on a maximum 2000 symboles.

2.3

Pour m bits, on a $M=2^m$ symboles, donc $m=\log_2(M)$ Donc on a $R_b=mR_s.$ Donc

$$R_s \le 2000$$

$$\frac{R_b}{m} \le 2000$$

$$m \ge \frac{R_b}{2000}$$

$$M \ge 4$$

$$\operatorname{car} R_b = 4000$$

2.4

2.4.1

Fréquentiellement, c'est une porte de largeur $\frac{1}{T_s}$. Une autre porte ne change rien vu qu'elle est de la même largeur.

On a

$$\sum_{k} P(f - \frac{k}{T_s}) \quad \text{est constante}$$

Car en sommant chaque porte avec des décalages dans $\frac{1}{T_s}\mathbb{Z},$ la courbe devient constante.