CMOS Logic Circuits

Pages 90 - 96

CMOS stands for Complimentary Metal Oxide Silicon. It is a collection of two different technologies, NMOS (Negative) and PMOS (Positive).

NMOS

Figure 1: An NMOS Transistor

- Conducts for V > x, where x is a threshold.
- On resistance is $\approx 10^2 \Omega$.
- Off resistance is of the order $G\Omega$.

PMOS

Figure 2: A PMOS Transistor

- Conducts for V < x, where x is a threshold.
- On resistance is $\approx 10^2 \Omega$.
- Off resistance is of the order $G\Omega$.

Inverters using both PMOS and NMOS

Recall inverters from previous lectures.

Figure 3: An inverter.

But because we want our circuit to be use only transistors we can use another transistor in place of the resistors.

Figure 4: An inverter using only transistors.

But this acts as a potential divider, so the output voltage is half the input voltage, and therefore in the *forbidden region*.

To prevent this from happening both inverters need ratioing to ensure $V_{OL} << V_{OH}.$

This can be done by combining the two technologies:

Input	Р	N	Output
0	On	Off	1
1	Off	On	0

This circuit now dons't need ratioing as you have a complimentary technologies.

CMOS NAND

Figure 5: A CMOS NAND gate.

Which gives us a characteristic table, including the states of each transistor as follows

A	В	N_1	N_2	P_1	P_2	Output
0	0	Off	Off	On	On	1
0	1	Off	On	On	Off	1
1	0	On	Off	Off	On	1
1	1	On	On	Off	Off	0

Then to make an AND gate you can just add an inverter, which is why a NAND gate takes longer to process then a NAND gate.

Performance

- High speed (now)
- Power consumption
 - 0 when not switching
 - So therefore it is very low

These two reasons are why CMOS is dominant.

- $\bullet\,$ The fanout is very good because the gain is high
- Noise margin is related to the fanout therefore it is also good

There is an old danger of static, which doesn't really apply now because of diodes used in protection.