

S3-Euclidean Spaces Design of scalar products III

Linear Algebra

Ingeniería del Software-Universidad de Oviedo

Juan Luis Fernández Martínez

Class-23 October 2020

Orthogonal projections
$$\vec{A} = (B^TB)^{-1} B^T \vec{v}$$

$$\vec{A} = (B^T$$

Or thogonal projections
$$\vec{x} = (B^TB)^{-1} B^T \vec{v}$$
by $\vec{p} = \vec{P}_{roj} \vec{v}$ which is the closest.

Formul Equation $\vec{r} = \vec{v} - \vec{p} \in \vec{V}$

Residual $\vec{r} = \vec{v} - \vec{p} \in \vec{V}$

Conclusion \vec{v} is optimally approximated by $\vec{p} = \vec{v} \cdot \vec{p} = \vec{v} \cdot \vec{p$

Normal Equations BTB R = BTV

Inversion of BTB

BTB diagonal
$$\Rightarrow$$
 $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$
 $\vec{v} = (BTB)^{-1} B^{T} V = 0$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$
 $\vec{v} = (BTB)^{-1} B^{T} V = 0$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$
 $\vec{v} = (BTB)^{-1} B^{T} V = 0$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$
 $\vec{v} = (BTB)^{-1} B^{T} V = 0$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ $\forall i \neq j$

BTB diagonal \Rightarrow $\vec{b}_i \cdot \vec{b}_j = 0$ \forall $\vec{b}_i \cdot \vec{b}_j =$

Inversion of BTB (Conclusion) - We are interested in
Borthoponal \[\vec{v.b_k}{\vec{v.b_k}} \\ \vec{b_k}{\vec{v.b_k}} \\ \vec{b_k}{\vec{v.b_k}} \\ \vec{v.b_k} \\
b = b = b = b = b
$=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$ $=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$ $=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$ $=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$ $=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$ $=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$ $=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$ $=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{i.+i.} \end{cases}$
No II

Least Squares

$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) $
Least-squares Data World {(x1,1/1),(x2,1/2), (Xm, 1/m)}
East-squares Data World Control (**) = a + a1.x & P1(x). Filting this data with a polynomial function (**) = a + a1.x & P1(x). Filting the past
Model Dunknowns Predicting the fiture (ao, a1) Finding (ao, a1): my model
Bredicting Regression line (Statistics) Y*(x) fits in Xk K=1, 1m
rny dat a

Least Squares

Least squares

