1. (a) Along all paths, p and q hold true in alternate states
CTL: AG((p→AXq) 1 (q→AXp) 1 AG(pvq) 1 7AG(P1Q))
LTL: (P -> X9) N (9 -> XP) N G(PVQ) N 7G(PNQ)
(b) Along all paths, eventually a state is reached such that all its next states satisfy p
CTL: EFAXP
LTL: if we want to FXp to represent it, it does not satisfy the requirement
sometimes, it connot soutisty Ax
FXp and AFAXp Example can also explain this (lecture Week-11-2)
(c) There exists no path where pholds true until q holds true.
(TL: 7E(PVQ)
LTL: つ(pび9)
(d) There exists a path where p holds in a state and it is followed by a q
CTL: EFP -> AXAF q
LTL: Fp -> XFq count satisfy the requirement.
from (b), it cannot be verified using LTL model checking.
2. (a) F(X(b)) : {50,51,52,54}
(b) (F(G(b)) Va) : {50,51,52,5, }
(c) G(F(a)) -> G(F(b)) : {50,51,52,53,54}
(4) G(F(b)) → G(F(a)) : 53
,
3. (a) False. Tr (Fp U q) and To 17 q
Let P=r (rwill reach p) rra P
In this case, Y(fp) -> Y(fp) -> Q, but p doesn't hold frue before q.
(b) AXAFP iff TX F FXP is true
In right hand this rough grown k managenting AXAFO WO MM (T)
See π + FXP. Therefore AXAFP (CTL) = FXP (LTL)
(C) FGP -> GFP is true. FGP: in some future ruffix. Pholos time in all suffix. and
GFP means for all suffix, they can reach P aertholly. So we own say FGP-3 FGP
•