Gibbs-Maß auf unendlichen Gittersystemen

Moritz Berg

Notation:

- Falls $S = \mathbb{Z}^d$ schreiben wir $\Omega = \Omega_S$
- Für $\omega, \eta \in \Omega_{\Lambda}$ schreiben wir $\omega_{\Lambda}, \eta_{\Lambda}$
- Sei $\Delta \subset \Lambda \subset \mathbb{Z}^d$ dann ist für $\omega \in \Omega_{\Lambda}$ $\omega_{\Delta} = \omega_{|\Delta}$ eingeschränkt auf Δ . Weiter schreiben wir $\omega_{\Lambda} = \eta_{\Delta} \eta'_{\Lambda \setminus \Delta}$ für $\eta, \eta' \in \Omega$, um Konfigurationen von Gebieten zu verknüpfen.

Problemstellung

Definition (Zylinder):

Sei für $\Lambda \in \mathbb{Z}^d$, $\Pi_{\Lambda} : \Omega \to \Omega_{\Lambda}$: die Projektion und $A \in \mathscr{P}(\Omega_{\Lambda})$, dann ist

$$\Pi_{\Lambda}^{-1}(A) = \{ \omega \in \Omega : \omega_{\Lambda} \in A \}$$

ein Zylinder zur Basis Λ und

$$\mathscr{C}(\Lambda) := \{ \Pi_{\Lambda}^{-1}(A) : A \in \mathscr{P}(\Omega_{\Lambda}) \}$$

die Menge aller Ereignisse die nur von Spins in Λ abhängen.

Definition (σ -Algebra):

Sei $S \subset \mathbb{Z}^d$ nicht notwendigerweise endlich und sei

$$\mathscr{C}_S := \cup_{\Lambda \subseteq S} \mathscr{C}(\Lambda),$$

dann ist

$$\mathscr{F}_S := \sigma(\mathscr{C}_S)$$

die kleinste σ -Algebra von lokalen Ereignissen in S.

Definition (Marginal):

Sei $\mu \in \mathcal{M}(\Omega)$ und $\Lambda \in \mathbb{Z}^d$ die marginale Verteilung von μ auf Λ ist definiert als:

$$\mu|_{\Lambda} := \mu \circ \Pi_{\Lambda}^{-1}.$$

Satz 6.6 (Kolmogorovs Erweiterungssatz):

Sei $\{\mu_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$, $\mu_{\Lambda} \in \mathcal{M}_1(\Omega_{\Lambda})$, konsistent, d.h.

$$\forall \Lambda \in \mathbb{Z}^d : \ \mu_{\Delta} = \mu_{\Lambda} \circ (\Pi_{\Delta}^{\Lambda})^{-1}, \ \forall \Delta \subset \Lambda.$$

Dann existiert ein eindeutiges $\mu \in \mathcal{M}(\Omega)$, so dass $\mu_{|\Lambda} = \mu_{\Lambda}$ für alle $\Lambda \in \mathbb{Z}^d$.

DLR Ansatz

Lemma 6.7: Für alle $\Delta \subset \Lambda \subseteq \mathbb{Z}^d$ und alle beschränkten messbaren Funktionen $f: \Omega \to \mathbb{R}$ gilt :

$$\langle f \rangle_{\Lambda;\beta,h}^{\eta} = \langle \langle f \rangle_{\Delta;\beta,h}^{\cdot} \rangle_{\Lambda;\beta,h}^{\eta} \quad \forall \eta \in \Omega$$

Definition (Kern):

Sei $\Lambda \in \mathbb{Z}^d$. Ein **Kern** von \mathscr{F}_{Λ^C} nach \mathscr{F} ist die Abbildung $\pi_{\Lambda} : \mathscr{F} \times \Omega \to [0,1]$ mit folgenden Eingenschaften:

- Für alle $\omega \in \Omega$ ist $\pi_{\Lambda}(\cdot | \omega)$ ein Wahrscheinlichkeitsmaß auf (Ω, \mathscr{F}) .
- Für alle $A \in \mathscr{F}$ ist $\pi_{\Lambda}(A|\cdot) \mathscr{F}_{\Lambda^C}$ -messbar.

Falls weiter gilt:

$$\pi_{\Lambda}(B|\omega) = \mathbb{1}_{B}(\omega), \quad \forall B \in \mathscr{F}_{\Lambda^{C}}$$

für alle $\omega \in \Omega$ ist π_{Λ} **zulässig**.

Definition (Komposition von Kernen): Für π_{Λ} , π_{Δ} definieren wir die Komposition:

$$\pi_{\Lambda}\pi_{\Delta}(A|\eta) := \int \pi_{\Delta}(A|\omega)\pi_{\Lambda}(d\omega|\eta).$$

Analog wird $\mu\pi_{\Lambda}$ für ein $\mu \in \mathcal{M}(\Omega)$ definiert:

$$\mu \pi_{\Lambda}(A) := \int \pi_{\Lambda}(A|\omega) \mu(d\omega).$$

Definition (Spezifikation):

Eine Spezifikation ist eine Familie $\pi = \{\pi_{\Lambda}\}_{{\Lambda} \in \mathbb{Z}^d}$ von zulässigen Kernen die konsistent sind,

$$\pi_{\Lambda}\pi_{\Lambda} = \pi_{\Lambda} \quad \forall \Delta \subset \Lambda \in \mathbb{Z}^d$$

Definition (kompatibel):

Sei $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ eine Spezifikation. Ein Maß $\mu \in \mathcal{M}(\Omega)$ heißt **kompatibel** mit π , falls

$$\mu \pi_{\Lambda} = \mu \quad \forall \Lambda \in \mathbb{Z}^d.$$

Grundlage des Vortrags ist das Buch: Friedli, Sacha, and Yvan Velenik. Statistical Mechanics of Lattice Systems: A ConcreteMathematical Introduction. Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2017.

Gibbs-Spezifikation

Definition (Potential):

Sei $B \in \mathbb{Z}^d$ und $\Phi_B : \Omega \to \mathbb{R}$ eine \mathscr{F}_B -messbare Funktion, dann ist $\Phi = \{\Phi_B\}_{B \in \mathbb{Z}^d}$ ein Potential.

Der assoziierte Hamiltonian auf dem Gebiet Λ ist definiert als:

$$\mathscr{H}_{\Lambda;\Phi}(\omega) := \sum_{B \in \mathbb{Z}^d \colon B \cap \Lambda \neq \emptyset} \Phi_B(\omega), \quad \forall \omega \in \Omega$$

Definition (Gibbsspezifikation):

Für jede Konfiguration $\tau_{\Lambda}\omega_{\Lambda^c}$ definieren wir die Gibbs-Spezifikation $\pi^{\Phi} = \{\pi_{\Lambda}^{\Phi}\}_{\Lambda \in \mathbb{Z}^d}$ als:

$$\pi_{\Lambda}^{\Phi}(\tau_{\Lambda}|\omega) := \frac{1}{Z_{\Lambda;\Phi}^{\omega}} e^{-\mathscr{H}_{\Lambda;\Phi}(\tau_{\Lambda}\omega_{\Lambda^{c}})}$$

mit

$$Z^{\omega}_{\Lambda;\Phi} := \sum_{\tau_{\Lambda} \in \Omega_{\Lambda}} e^{-\mathscr{H}_{\Lambda;\Phi}(\tau_{\Lambda}\omega_{\Lambda^{c}})}$$

Definition (Unendliches Gibbs-Maß):

Für eine Gibbs-Spezifikation π^{Φ} zum Potential Φ heißt ein Wahrscheinlichkeitsmaß μ , das kompatibel mit π^{Φ} ist, **unendliches Gibbs-Maß** assoziiert zu Φ .

Existenz

Definition (Konvergenz auf Ω): Eine Reihe $(\omega_n)_{n\in\mathbb{N}}$ konvergiert gegen $\omega^* \in \Omega$ falls,

$$\lim_{n \to \infty} \omega_j^{(n)} = \omega_j^*, \quad \forall j \in \mathbb{Z}^d$$

Wir schreiben $\omega^{(n)} \to \omega^*$.

Proposition 6.20 (Kompaktheit von Ω): Ω ist folgenkompakt, d.h. für jede Folge $(\omega^{(n)})_{n\geq 1}\subset \Omega$ gibt es ein $\omega^*\in \Omega$ und eine Teilfolge $(\omega^{(n_k)})_{k\geq 1}$ s.d. $\omega^{(n_k)} \to \omega^*$

Definition (Stetigkeit):

Eine Funktion $f: \Omega \to \mathbb{R}$ ist **stetig**, falls aus $\omega^{(n)} \to \omega$ folgt $f(\omega^{(n)}) \to f(\omega)$. Die Menge der stetigen Funktionen schreiben wir als $C(\Omega)$.

Definition (Quasilokalität):

Eine Funktion f heißt **quasilokal**, falls es eine Folge $(g_n)_{n\geq 1}$ von lokalen Funktionen gibt sd. $||g_n - f||_{\infty} \to 0.$

Lemma 6.21: f ist stetig \Leftrightarrow f quasilokal ist.

Aufgabe 6.13:

Sei $\pi = \{\pi_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}$ quasilokal. Für ein festes Λ gilt:

$$f \in C(\Omega) \Rightarrow \pi_{\Lambda} f \in C(\Omega)$$

Grundlage des Vortrags ist das Buch: Friedli, Sacha, and Yvan Velenik. Statistical Mechanics of Lattice Systems: A ConcreteMathematical Introduction. Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2017.

Lemma 6.22: Falls $\mu, \nu \in \mathcal{M}(\Omega)$, dann sind folgende Aussagen äquivalent:

- 1. $\mu = \nu$
- 2. $\mu(C) = \nu(C)$ für alle $C \in \mathscr{C}$.
- 3. $\mu(g) = \nu(g)$ für alle lokalen Funktionen g.
- 4. $\mu(f) = \nu(f)$ für alle $f \in C(\Omega)$.

- Aufgabe 6.12: 1. $\mu_n \Rightarrow \mu$ 2. $\mu_n(f) \rightarrow \mu(f)$ für alle lokalen Funktionen f.
- 3. $\mu_n(f) \to \mu(f)$ für alle $f \in C(\Omega)$.
- 4. $\rho(\mu_n, \mu) \to 0$, wenn wir für alle $\mu, \nu \in \mathcal{M}(\Omega)$ den Abstand definieren als

$$\rho(\mu,\nu) := \sup_{k \geq 1} \frac{1}{k} \max_{C \in \mathscr{C}(B(k))} |\mu(C) - \nu(C)|.$$

Satz 6.24 (Kompaktheit von $\mathcal{M}(\Omega)$): $\mathcal{M}(\Omega)$ ist folgenkompakt, d.h. für jede Folge $(\mu_n)_{n\geq 1}\in\mathcal{M}(\Omega)$ gibt es ein $\mu\in\mathcal{M}(\Omega)$ und eine Teilfolge $(\mu_{n_k})_{k\geq 1}$ s.d. $\mu_{n_k} \Rightarrow \mu$ für $k \to \infty$.

Satz 6.26 (Existenz):

Falls $\pi = {\{\dot{\pi}_{\Lambda}\}_{\Lambda \in \mathbb{Z}^d}}$ quasilokal ist, gilt $\mathscr{G}(\pi) \neq \emptyset$.

Grundlage des Vortrags ist das Buch: Friedli, Sacha, and Yvan Velenik. Statistical Mechanics of Lattice Systems: A ConcreteMathematical Introduction. Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2017.