범주형자료분석팀

2팀

김찬영 이혜인 김서윤 심은주 진수정

INDEX

- 1. 자료의 형태
- 2. 분할표
- 3. 독립성 검정
- 4. 연구의 종류
- 5. 확률의 비교
- 6. 부록

• 범주형 자료 분석은?

: 독립 변수 / 설명 변수 / 예측 변수 / 위험인자 /공변량 [연속형] / 요인 [범주형]

: 종속 변수 / 반응 변수 / 결과 변수 / 표적 변수

Y변수가 범주형 자료 일 때 '범주형 자료분석'

범주형 자료

: 범주형 자료의 가장 큰 특징은 <mark>분할표를</mark> 작성할 수 있다는 것!

명목형 자료

: 순서척도가 없는 범주형 변수

Ex) 성별(F/M), 성공여부(Y/N), 혈액형(A/B/O/AB)

순서형 자료

: 순서척도가 있는 범주형 변수

Ex) 증상 정도(괜찮음/보통/심각), 순위(1등/2등/3등)

분할표

: 범주형 변수의 결과의 도수들을 각 칸에 넣어 표로 정리한 것

• 2차원 분할표 (I*J)

:두 개의 변수만을 분류한 분할표

		Υ		합계			
	n_{11}	•••	n_{1j}	n_{1+}			
X		•••		•••		_	설명 변수 : X 반응 변수 : Y
	n_{i1}	•••	n_{ij}	n_{i+}			LOLIT
합계	$n_{\pm 1}$		n_{+j}	n			

• 3차원 분할표 (I*J*K)

:세 개의 변수를 분류한 분할표

<부분분할표>

제어변수 Z의 각 수준에서 X와 Y를 분류한 표

학과	성별	한 한경 여부 반응변수 Y 합격 불합격		
제 어 변	설명	11	25	
		10	27	
스 경영	毕	16	4	
Z	여자	22	10	
경제	남자	14	5	
6/1	여자	7	12	

<주변분할표>

부분분할표를 모두 결합해서 얻은 2차원분할표

성별	학회 합격 여부			
ÖZ	합격	불합격		
남자	11 + 16 + 14	25 + 4 + 5		
여자	10 +22 + 7	27 + 10 + 12		

학과(변수 Z)

합쳐짐

변수 Z를 통제하는 것이 아니라 무시함.

Z 통제할 때 Y에 대한 X의 효과를 알 수 있음.

분할표 사용 목적

◀ 예측 검정력에 대한 요약

예를 들어, 2 * 2 형태의 2차원 분할표에서 민감도와 특이도, Accuracy 등을 찾을 수 있음

🤈 🧼 독립성 검정 실시

제시된 변수끼리의 연관성 파악

"독립성 검정"

: 변수 간에 독립성 유무를 검정하는데 많이 사용되는 가설검정

귀무가설: $\mu_{ij} = n\pi_{ij}$ 변수들이 서로 독립 O!

대립가설: $\mu_{ij} \neq n\pi_{ij}$ 변수들이 서로 독립 X!

변수들이 서로 독립

분석 가치

• 2차원 분할표 독립성 검정

 대표본
 명목형
 피어슨 카이제곱 검정

 가능도비 검정

 순서형
 멘탈 스코어 검정

 소표본
 피셔의 정확 검정

• 3차원 분할표 독립성 검정

로그 선형 모형 비교

3차원 이상의 고차원 모형은 모형으로 다루는 것이 효과적!

"피어슨 카이제곱 검정"

$$X^2 = \sum \frac{(n_{ij} - \mu_{ij})^2}{\mu_{ij}} \sim X^2_{(I-1)(J-1)}$$

- 모든 n_{ij} 가 μ_{ij} 와 <mark>같을</mark> 때, 최소값 0을 가짐
- n_{ij} 와 μ_{ij} 사이의 차이가 커지면 X^2 가 커져서 귀무가설을 기각하는 증거가 강해짐
- μ_i*j*≥5 정도(대표본)이라면 카이제곱 분포를 따름

3

"가능도비 검정": 자료가 대표본 & 명목형일 때

$$G^2 = 2 \sum n_{ij} \log(\frac{n_{ij}}{\mu_{ij}}) \sim \chi^2_{(I-1)(J-1)}$$

관측도수 (n_{ij}) 와 기대도수 (μ_{ij}) 의 차이가 크다

 G^2 증가 귀무가설 기각

변수 간의 연관성이 있다

3

"멘탈스코어 검정"

* $r(\Pi)$ 교차적률 상관계수): 변수 간의 추세 연관성 파악 가능. $-1 \le r \le 1$ (r = 0일때 독립)

"오즈비 ": 여러 모형에서 기초가 되는 모수

각 행의 오즈끼리의 비 : Odds
$$ratio(\theta) = \frac{1행의 오즈}{2행의 오즈} = \frac{\pi_1/(1-\pi_1)}{\pi_2(1-\pi_2)}$$

성별	연인	Odds		
O Z	예 아니오		Ouus	
여성	0.8144	0.1856	4.3879	
남성	0.7928	0.2072	3.8262	

<오즈비>

 $\frac{4.3879}{3.8262} = 1.1468$

"여성이 연인이 있을 오즈가 남성이 연인이 있을 오즈보다 약 1.15배 높다"

• 3차원 분할표에서 오즈비

"조건부 오즈비"

- 동질연관성

$$\theta_{XY(1)} = \dots = \theta_{XY(K)}$$

동질연관성은 대칭적이다!

- → XY에 동질연관성 존재하면, YZ, XZ도 동질연관성이 존재한다!
- 조건부독립성

$$\theta_{XY(1)} = \dots = \theta_{XY(K)} = \mathbf{1}$$

동질연관성이 특별한 경우!

"주변 오즈비"

-주변독립성

$$\theta_{XY+} = 1$$

3차원 분할표에서 오즈비

"Simpson의 역설"

- 조건부오즈비와 주변오즈비의 연관성 방향이 다른 경우를 뜻함
- 도수의 크기에 따른 영향력 차이로 인해 나타남

즉, 조건부연관성과 주변연관성이 다를 수 있다는 것!