

Jakość usług w sieciach multimedialnych

Michał Hoeft

Jakość usług multimedialnych

Definicja jakości?

Jakość usług multimedialnych

- "Jakość jest to pewien stopień doskonałości"
 - Platon
- "Jakość to zgodność z wymaganiami"
 - Philip Crosby (przedsiębiorca, inicjator podejścia "zero defektów")
- "Jakość to stopień, w jakim zbiór inherentnych właściwości spełnia wymagania"
 - wg PN-EN 9000:2001

Jakość usługi – podejście użytkownika i dostawcy

- Oczekiwania użytkowników
- Jakość oferowana (sprzedana) przez dostawcę usługi
- Jakość dostępna (faktyczna)
- Jakość postrzegana przez użytkownika

Service Level Agreement

- Service Level Agreement (SLA)
 - Umowa między dostawcą usługi, a odbiorcą usługi określająca poziom świadczenia usługi
- Dla usługodawcy określony poziom usługi będzie poziomem docelowym
- Dla odbiorcy usługi określony poziom usługi będzie poziomem wymaganym

Czynniki postrzegania jakości

- Typ usługi;
- Konkurencja na rynku;
- Technologia realizacji;
- Relacja jakości do ceny usługi;
- Zmienność oczekiwań w czasie;
- Zmienność poziomów jakości w zależności od poziomów upustów otrzymanych od dostawcy;

QoS vs. QoE

QoS i QoE

QoS

- Totality of characteristics of a telecommunications service that bear on its ability to satisfy stated and implied needs of the user of the service
- Całokształt cech usługi telekomunikacyjnej, które rzutują na jej zdolność do zaspokajania stwierdzonych i domniemanych potrzeb użytkowników usługi

» ITU-T Recommendation E.800

QoE

- A measure of user performance based on both objective and subjective psychological measures of using an ICT service or product
- Miara efektywności użytkowników usług lub produktów ICT określana na podstawie wskaźników obiektywnych i psychologicznych wskaźników subiektywnych

» ETSI TR 102 643 V1.0.1 (2009-12)

QoS, QoE

QoS and QoE parameters – Mapping Model

JAKOŚĆ MOWY

Wybrane kodeki wykorzystywane w systemach VoIP

Kodek	Algorytm	kbit/s
G.711	PCM (Pulse Code Modulation)	64
G.722	SBADPCM (Sub-Band Adaptive Differential Pulse Code Modulation)	48 / 56 / 64
G.722.1	Transform Coder	24 / 32
G.722.2	AMR-WB (Adaptive Multi-rate Wideband)	6,6-23,85
G.723	Multi-rate Coder	5,3 / 6,4
G.726	ADPCM (Adaptive Differential Pulse Code Modulation)	16 / 24 / 32 / 40
G.727	Variable-Rate ADPCM	16-40
G.728	LD-CELP (Low-Delay Code Excited Linear Prediction)	16
G.729	CS-ACELP (Conjugate Structure Algebraic-Code Excited Linear Prediction)	8
ILBC	Internet Low Bitrate Codec	13,33 / 15,2
Speex	CELP (Code Excited Linear Prediction)	2,15-44,2
GSM	RPE-LTP (Regular Pulse Excitation Long-Term Prediction)	13

Wybrane kodeki wykorzystywane w systemach VoIP

Kodek	Bit Rate (kbps)	MOS Score	Opóźnienie kodowania (ms)
G.711 PCM	64	4.1	0.75
G.726 ADPCM	32	3.85	1
G.728 LD-CELP	16	3.61	3 to 5
G.729 CS-ACELP	8	3.92	10
G.729 x 2 Encodings	8	3.27	10
G.729 x 3 Encodings	8	2.68	10
G.729a CS-ACELP	8	3.7	10
G.723.1 MP-MLQ	6.3	3.9	30
G.723.1 ACELP	5.3	3.65	30

Opóźnienie transmisji

- Na całkowite słyszalne przez odbiorcę opóźnienie "mouth-to-ear" składają się następujące elementy
 - czas próbkowania oraz kodowania/dekodowania próbek,
 - czas pakietyzacji,
 - czas kolejkowania w wyjściowym/wejściowym systemie obsługi,
 - opóźnienie serializacji (obsługa pakietu przez fizyczne interfejsy sieciowe),
 - opóźnienie wprowadzane przez sieć (propagacja pakietów oraz obsługa przez węzły sieci szkieletowej),
 - opóźnienie wprowadzane przez algorytmy eliminacji echa,
 - czas kompensacji jittera.

Źródła opóźnienia w sieci pakietowej

Zasada działania jitter-buffer

- jitter-buffer przechwytuje i przechowuje odebrane z sieci w nieregularnych odstępach czasu pakiety
- W przypadku, gdy pakiety zostaną odebrane w nieprawidłowej kolejności, w jitter-bufferze mogą one zostać uporządkowane

Straty pakietów

- Źródłem utraty pakietów w sieci może być:
 - przepełnienie bufora w systemie obsługi
 - nadmierne obciążenie łącza skutkujące wyczerpaniem dostępnej przepływności
 - pojawianie się w sieci przeciążeń, spowodowanych niewystarczającą wydajnością infrastruktury sieciowej
 - zbyt duże opóźnienia
 - zła kolejności odebranych pakietów
 - wystąpienie błędów binarnych

PARAMETRY OPISUJĄCE POŁĄCZENIE

Packet Loss Rate

- Stosunek liczby straconych pakietów do liczby wszystkich wysłanych pakietów nazywamy stopą straconych pakietów (ang. packet loss rate)
- Przy założeniu, że straty pakietów występują niezależnie od siebie i z jednakowym prawdopodobieństwem P_{pl} , można oszacować to prawdopodobieństwo korzystając z wzoru:

$$P_{pl} = \frac{liczba\ straconych\ pakietów}{liczba\ wysłanych\ pakietów} \cdot 100\%$$

Burst Rate

 Parametr BurstR określa stopień wybuchowości strumienia straconych pakietów. W sytuacji, gdy straty poszczególnych pakietów są niezależne od siebie, wynosi on 1. Wartości powyżej 1 oznaczają, że straty pakietów w sieci cechują się wybuchowością, zaś wartości mniejsze od 1 występują dla strat rozproszonych w czasie

BurstR

średnia długość bursta w obserwowanej sekwencji pakietów

średnia oczekiwana długość bursta dla niezależnego rozkładu strat pakietów

SUBIEKTYWNE METODY POMIARU JAKOŚCI

Mean Opinion Score

- Ocena w skali MOS stanowi średnią arytmetyczną subiektywnych ocen wystawionych próbce przez grupę słuchaczy.
- MOS przyjmuje wartości z przedziału 1-5, gdzie 5 jest oceną najwyższą

MOS	Jakość sygnału	
5	Doskonała	
4	Dobra	
3	Dostateczna	
2	Słaba	
1	Zła	

Mean Opinion Score

- Techniki przeprowadzania testów:
 - ACR (Absolute Category Rating)
 - DCR (Degradation Category Rating)
 - CCR (Comparison Category Rating)

ACR DCR

Subiektywne metody pomiaru

- Subiektywne metody pomiaru jakości sygnału mowy
 - wymagają uczestnictwa licznej grupy osób
 - Eksperci, osoby przypadkowe
 - nie są metodami wygodnymi, szybkimi ani tanimi
 - nie nadają się także do monitorowania na bieżąco jakości rzeczywistych połączeń realizowanych przez abonentów.

OBIEKTYWNE METODY POMIARU JAKOŚCI

Metody obiektywne

- Metody obiektywne, w przeciwieństwie do subiektywnych, nie wymagają uczestnictwa osób trzecich
 - możliwość automatyzacji pomiarów
- Polegają one na przetwarzaniu i matematycznej analizie sygnału mowy bądź dokonywaniu pomiarów odpowiednich wielkości charakteryzujących ten sygnał i na ich podstawie estymowaniu jakości połączenia.
- Metody obiektywne:
 - Inwazyjne
 - Porównanie sygnały oryginalnego i zniekształconego
 - Nieinwazyjne
 - Analiza jedynie próbki zniekształconej

Ocena jakość usług multimedialnych

Klasyfikacja metod oceny jakości usług multimedialnych

	Metody inwazyjne (z sygnałem referencyjnym)	Metody nieinwazyjne (bez sygnału referencyjnego)
Bazujące na sygnale	P.861 (PSQM) P.862 (PESQ)	P.563 (3SQM)
Bazujące na parametrach	G.107 (E-model)	P.562 (Call Clarity Index)

PESQ

- PESQ jest aktywną metodą pomiaru jakości połączenia, która uwzględnia następujące czynniki:
 - straty pakietów,
 - zmienność opóźnienia,
 - błędy w kanale transmisyjnym,
 - różne poziomy sygnału wejściowego,
 - różne przepustowości kodeków,
 - transkodowanie,
 - szum środowiskowy po stronie nadawczej,
 - krótkotrwałe i długotrwałe przerwy w sygnale.
- Wynik testu PESQ jest w skali podobnej do MOS przyjmuje on wartości od -0,5 do 4,5

PESQ

PESQ – Schemat działania

PESQ -> MOS-LQO

$$y = \begin{cases} 1.0, x \le 1.7 \\ -0.157268 \ x^3 + 1.386609 \ x^2 - 2.504699 \ x \\ + 2.023345, \ x > 1.7 \end{cases}$$

Metoda obiektywna nieinwazyjna

- Algorytm P.563 umożliwia predykcję jakości sygnału mowy w wąskopasmowej telefonii bez porównywania go z sygnałem odniesienia.
- Jest to więc metoda pasywna, nieingerująca w badane środowisko.

Schemat blokowy P.563

 Algorytm opiera się na parametryzacji badanego sygnału – podczas przetwarzania sygnału mowy obliczane są jego parametry, na których podstawie, dzięki implementacji odpowiedniego

modelu ludzkiej percepcji mowy, modelowana jest jakość połączenia

Metody bazujące na sygnale

- Ocena całościowa uwzględniająca wszystkie zjawiska wpływające na jakość
- Duża dokładność
- Duża powtarzalność pomiaru
- Duże wymagania obliczeniowe
- Możliwość oceny połączenia po jego zakończeniu

MODELE PARAMETRYCZNE

E-model

- Wielkością wyjściową obliczaną w E-modelu, która charakteryzuje jakość połączenia, jest współczynnik jakości transmisji R.
- Typowym zakresem wartości tego współczynnika dla wąskopasmowej telefonii jest 50-94.
- Wartości poniżej 50 są nieakceptowalne z punktu widzenia prowadzenia konwersacji.

GDAŃSK UNIVERSITY OF TECHNOLOGY

- Zgodnie z rekomendacją ITU-T, wartość współczynnika R liczona jest w następujący sposób: $R=R_o-I_s-I_d-I_{e\text{-}eff}+A$
- gdzie:
 - R_o określa podstawowy stosunek sygnału do szumu,
 - I_s opisuje degradację jakości mowy, której przyczyną są zniekształcenia pojawiające się równocześnie z sygnałem mowy (efekty lokalne, zbyt wysoka głośność, szumy kwantyzacji),
 - $-I_d$ obejmuje zniekształcenia związane z opóźnieniem (uwzględnia także echa),
 - $-I_{e-eff}$ określa, w jaki sposób na jakość sygnału wpływa zastosowane kodowanie (jednym ze składników tego parametru jest współczynnik I_e) oraz straty pakietów w sieciach pakietowych,
 - A jest czynnikiem równoważącym niektóre zniekształcenia, dla telefonii przewodowej równym zeru.

Parametry E-modelu

Parametr	Symbol	Jednostka	Wartość domyślna	Zakres
Głośność nadajnika	SLR	dB	+8	0 +18
Głośność odbiornika	RLR	dB	+2	-5 +1 4
Tłumienie efektu lokalnego	STMR	dB	15	10 20
Efekt lokalny po stronie słuchacza	LSTR	dB	18	13 23
Czułość telefonu mówcy	D _s	-	3	-3 +3
Czułość telefonu słuchacza	D _r	-	3	-3 +3
Głośność echa mówcy	TELR	dB	65	5 65
Ważona strata echa	WEPL	dB	110	5 110
Średnie jednostronne opóźnienie	Т	ms	0	0 500
Całkowite obustronne opóźnienie	T _r	ms	0	0 1000
Bezwzględne opóźnienie od mówcy do słuchacza	Та	ms	0	0 500
Liczba jednostek zniekształceń kwantyzacji	qdu	-	1	1 14

Parametr	Symbol	Jednostka	Wartość domyślna	Zakres
Czynnik wpływu sprzętowego	l _e	-	0	0 40
Odporność na straty pakietów	B _{pl}	-	4,3	4,3 40
Prawdopodobieństwo straty pakietu	P _{pl}	%	0	0 20
Wybuchowość strumienia straconych pakietów	BurstR	-	1	1 2
Moc szumu w obwodzie	N _c	dBm0p	-70	-8040
Szum tła po stronie słuchacza	N_{for}	dBmp	-64	-
Poziom szumu po stronie mówcy	P _s	dB(A)	35	35 85
Poziom szumu po stronie słuchacza	P _r	dB(A)	35	35 85
Czynnik równoważący	А	-	0	0 20

E-model

- Przyjmując wartości domyślne części parametrów E-modelu można doprowadzić do sytuacji, w której R będzie zależeć jedynie od czterech zmiennych:
 - Współczynnika straty pakietu P_{pl} ,
 - współczynnika "wybuchowości" strat pakietów BurstR,
 - Współczynnika I_e,
 - Współczynnika B_{pl} (packet-loss robustness factor)
 charakteryzującego odporność zastosowanego kodeka
 na straty pakietów.

E-model

 Sytuację, w której do obliczenia współczynnika jakości R wykorzystujemy jedynie znajomość powyższych wielkości, opisuje poniższy wzór

•
$$R \cong 93,2 - I_e - \frac{(95 - I_e) \cdot P_{pl}}{\frac{P_{pl}}{BurstR} + B_{pl}}$$

E-model

 Sytuację, w której do obliczenia współczynnika jakości R wykorzystujemy jedynie znajomość powyższych wielkości, opisuje poniższy wzór

$$R \cong 93,2 - I_e - \frac{(95 - I_e) \cdot P_{pl}}{\frac{P_{pl}}{BurstR} + B_{pl}}$$

Kodek	Długość pakietu	l _e	B _{pl}	
G.723.1	30 ms	15	16,1	
G.729AB	20 ms (2 ramki)	11	19	
GSM-EFR	20 ms	5	10	
G.711 bez PLC	10 ms	0	4,3	
G.711	10 ms	0	25,1	

E-model -> MOS-CQE

 Znając współczynnik R, można estymować jakość połączenia w skali MOS. W celu odróżnienia wartości estymowanych od wartości uzyskanych z bezpośrednich pomiarów, stosowane jest czasami

oznaczenie MOS_{CQE}

R

$$MOS = 1 + 0.035R + R(R - 60)(100 - R) \cdot 7 \cdot 10^{-6} dla \ 0 < R < 100$$

 $MOS = 1 dla \ R \le 0$
 $MOS = 4.5 dla \ R \ge 100$

PORÓWNANIE IMPLEMENTACJI

Kryterium	VQmon	VoIP Spear	VQM Asterisk	VQManager	TraceView	TraceSim	VoIPmonitor (open source)
system operacyjny	Windows, Linux, Solaris, BSD	dowolny (usługa online)	Linux	Windows, Linux	Windows	Windows	Linux
obsługiwana sygnalizacja	brak danych	nie dotyczy	SIP, PSTN	SIP, H.323, SCCP	SIP, H.323, MGCP	SIP	SIP
pasywne monitorowanie	zmodyfikowany E- model	E-model	brak	E-model	E-model, VS-model	E-model	zmodyfikowany E- model
monitorowanie w czasie rzecz.	tak	tak	nie	tak	tak	brak danych	nie
aktywne pomiary jakości	nie	nie	tak	nie	nie	tak	nie
skala wyników	MOS, R	MOS	MOS, PESQ, R	MOS, R	MOS, R	MOS, R	MOS
prezentacja wyników	brak danych	tabele, wykresy	tabele, wykresy, przebiegi czasowe	tabele, wykresy, diagramy połączeń	tabele, wykresy, przebiegi czasowe	tabele, wykresy, przebiegi czasowe	tabele (baza danych)
wspierane kodeki mowy	G.711, G723.1, G.726, G.728, G.729/A, GSM, FR, EFR	nie dotyczy	brak danych	brak danych	G.711, G.721, G.723.1, G.729a, GSM, iLBC	G.711, G.721, G.722, G.723.1, G.726, G.729a, GSM, iLBC	G.711
obsługa strumieni wideo	tak	nie dotyczy	nie	nie	tak	tak	nie
testy jakości offline	brak danych	nie	nie	pliki CDR	pliki pcap	nie	pliki pcap
nagrywanie połączeń	brak danych	nie	tak	brak danych	tak	tak	tak
generowanie alarmów	tak	e-mail, SMS	e-mail	e-mail, SNMP	tak	e-mail, SNMP	nie
śledzenie rejestracji terminali	brak danych	nie	nie	tak	brak danych	brak danych	tak
wsparcie IPv6	brak danych	brak danych	brak danych	brak danych	brak danych	tak	nie
graficzny interfejs użytkownika	brak danych	strona WWW	strona WWW	strona WWW	tak	tak	nie
uwagi	-	nie monitoruje rzeczywistych połączeń VoIP, a jedynie wykonuje testy odpowiedzi serwerów za pomocą pakietów ICMP	-	dodatkowo monitoruje wykorzystanie łącza	-	nie monitoruje połączeń wykonywanych przez abonentów, tylko generuje testowe połączenia	-

System testów jakości transmisji multimediów

E-model vs PESQ

 Jakość usługi VoIP dla różnych wartości współczynnika strat pakietów

VIDEO

Klasyfikacja metody pomiaru jakości video

MSE

Metryka MSE (ang. Mean Squared Error)
 wyznacza wartość błędu średnio kwadratowego dla poszczególnych pikseli
 obrazu. Jej wartość oblicza się na podstawie
 zależności

$$MSE = \frac{1}{M \cdot N \cdot T} \sum_{t=1}^{T} \sum_{y=1}^{N} \sum_{x=1}^{M} [I(x, y, t) - I_{S}(x, y, t)]^{2}$$

I – oryginalna sekwencja wideo;

I_s – odebrana sekwencja wideo;

T – liczba obrazów w sekwencji wideo;

M, N – rozmiar obrazu w pikselach.

Peak-Signal-to-Noise-Ratio (PSNR)

 Peak-Signal-to-Noise-Ratio została określona przez zestawienie MSE z maksymalną wartością luminancji (dla 8 bitów – 255)

$$MSE = \frac{\sum_{i=1}^{M} \sum_{j=1}^{N} [(f(i, j) - F(i, j)]^{2}}{M \cdot N}$$

$$PSNR = 20 \cdot \log_{10} \left(\frac{255}{\sqrt{MSE}}\right)$$

Pomimo, że PSNR został zaproponowany kilkadziesiąt lat temu, nadal jest to popularna metoda określania różnicy jakości dwóch obrazów.

Structural Similarity Index (SSIM)

- Metryka SSIM (ang. Structural SIMilarity) uwzględnia trzy typy zniekształceń: luminancji, kontrastu i struktury
- Zakładając, że x jest sygnałem oryginalnym, y sygnałem zniekształconym wartość SSIM można wyznaczyć na podstawie zależności

$$SSIM(x,y) = \frac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

```
\mu_{x} - wartość średnia x;
```

$$\mu_{v}$$
 - wartość średnia y;

$$\sigma_{\rm x}^2$$
 - wariancja x;

$$\sigma_y^2$$
 - wariancja y;

$$\sigma_{xy}$$
 - kowariancja x i y;

$$C_1 = (K_1 L)^2, \ C_2 = (K_2 L)^2;$$

L - dynamiczny zakres wartości pikseli;

$$K_1$$
, K_2 - wartości stałe.

ITU-T G.1070

Parametryczny model oceny jakości video

- Video quality V_a is calculated as

$$V_q = 1 + I_{coding} \exp\left(-\frac{Ppl_V}{D_{PplV}}\right)$$

where I_{coding} represents the basic video quality affected by the coding distortion under a combination of video bit rate and video frame rate, and the packet loss robustness factor D_{PpIV} expresses the degree of video quality robustness due to packet loss where P_{pIV} [%] represents the packet-loss rate

JAKOŚĆ USŁUG AUDIO-VIDEO

Jakość usług audio-video

 Ogólna zależność określająca jakość usługi audio-video na podstawie odrębnie określonej jakości audio i odrębnie określonej jakości video:

Jakość usług audio-video

 Ogólna zależność określająca jakość usługi audio-video na podstawie odrębnie określonej jakości audio i odrębnie określonej jakości video:

$$Qav = \alpha + \beta \cdot Qa + \gamma \cdot Qv + \mu \cdot Qa \cdot Qv$$

DZIĘKUJĘ ZA UWAGĘ