Project presentation of

Zhang, et al.: Globally Convergent Type-I Anderson Acceleration for Non-Smooth Fixed-Point Iterations

Theo Koppenhöfer

Lund April 20, 2023

Table of contents

Motivation of AA-I

Modifications to AA-I

Convergence result

Numerical experiments

Summary

The problem setting

Problem (find fixed point)

Find a fixed point $x \in \mathbb{R}^n$ of $f : \mathbb{R}^n \to \mathbb{R}^n$, i.e. x = f(x). or equivalently

Problem (find zero)

Find a zero $x \in \mathbb{R}^n$ of $g = \operatorname{Id} -f$, i.e. 0 = g(x).

We also assume

- ▶ f has a fixed point.
- ▶ f is non-expansive, i.e. $||f(x) f(y)|| \le ||x y||$.
- ▶ ∇f is unknown \rightarrow no Newton
- ▶ noisy problem →no finite difference derivatives
- ightharpoonup cost of evaluating f is high \rightarrow no line search
- n is large → matrix-free

Fixed point iteration

To keep things simple we try

Input: Initial value $x_0 \in \mathbb{R}^n$ and function $f: \mathbb{R}^n \to \mathbb{R}^n$.

for
$$k = 0, 1, ...$$
 do
 $| \text{ Set } x_{k+1} = f(x_k).$

end

Algorithm 1: Fixed point iteration (original)

This works, but ...

We want to be like...

General AA

We may as well use the information gained from previous evaluations. In the following we assume for simplicity that our memory is unlimited. If we form a weighted average we get

```
Input: x_0 \in \mathbb{R}^n and f: \mathbb{R}^n \to \mathbb{R}^n.

for k = 0, 1, \ldots do

Set f_k = f(x_k).

Choose \alpha = \alpha^k \in \mathbb{R}^{k+1} such that \sum_i \alpha_i = 1.

Set x_{k+1} = \sum_i \alpha_i f_i.

end

Algorithm 2: General AA (Anderson Acceleration)
```

AA-II

Since finding a fixed point of f is equivalent to finding a zero of $g=\operatorname{Id} -f$ the following seems like a good idea

```
Input: x_0 \in \mathbb{R}^n and f : \mathbb{R}^n \to \mathbb{R}^n.

for k = 0, 1, \ldots do
| \text{ Set } f_k = f(x_k).
Set g_k = x_k - f_k.
Choose \alpha \in \mathbb{R}^{k+1} such that \sum_i \alpha_i = 1 and such that \alpha minimises ||\sum_i \alpha_i g_i||_2.
Set x_{k+1} = \sum_i \alpha_i f_i.
```

Algorithm 3: AA-II

AA-II (reformulated)

One can show that this can be brought into the form of a quasi-Newton-like method

```
Input: x_0 \in \mathbb{R}^n and f \colon \mathbb{R}^n \to \mathbb{R}^n.

Set x_1 = f(x_0).

for k = 0, 1, \dots do
\begin{array}{c} \text{Set } g_k = g(x_k). \\ \text{Construct } S_k = \begin{bmatrix} x_1 - x_0 & \cdots & x_k - x_{k-1} \end{bmatrix} \in \mathbb{R}^{n \times k} \text{ and } \\ Y_k = \begin{bmatrix} g_1 - g_0 & \cdots & g_k - g_{k-1} \end{bmatrix} \in \mathbb{R}^{n \times k}. \\ \text{Set } H_k = \operatorname{Id} + (S_k - Y_k) \left( Y_k^\top Y_k \right)^{-1} Y_k^\top \in \mathbb{R}^{n \times n}. \\ \text{Set } x_{k+1} = x_k - H_k g_k. \\ \text{end} \end{array}
```

Algorithm 4: AA-II (reformulated)

AA-I

This is the form of a quasi-Newton-like method so one could expect H_k to be an approximate inverse of $\nabla f(x_k)$. Indeed one can show

Proposition (Approximate inverse Jacobian)

 H_k minimises $\|H_k - \operatorname{Id}\|_F$ under the multi-secant condition $H_k S_k = Y_k$.

Proof.

See [1].

The good Broyden method approximates the Jacobian rather than its inverse and tends to yield better results. This motivates

Definition (Approximate Jacobian)

Let B_k be minimiser of $\|B_k - \operatorname{Id}\|_F$ under the condition $B_k Y_k = S_k$.

One can show that

$$B_k = \operatorname{Id} + (Y_k - S_k) \left(S_k^{\top} S_k \right)^{-1} S_k^{\top}.$$

This yields the AA-I algorithm

```
Input: x_0 \in \mathbb{R}^n and f : \mathbb{R}^n \to \mathbb{R}^n.

Set x_1 = f(x_0)

for k = 0, 1, \dots do

Set g_k = g(x_k).

Construct S_k from x_0, \dots, x_k and Y_k from g_0, \dots, g_k.

Set B_k = \operatorname{Id} + (Y_k - S_k) \left(S_k^\top S_k\right)^{-1} S_k^\top \in \mathbb{R}^{n \times n}.

Set H_k = B_k^{-1}.

Set x_{k+1} = x_k - H_k g_k.
```

Algorithm 5: AA-I

But this algorithm has some problems

- ightharpoonup computational efficiency: the approach is not matrix-free ightharpoonuprank-1 update for B_k and later H_k
- well-definedness of H_k : B_k might not be well-defined or singular \rightarrow Powell-type regularisation, restarting iteration
- ▶ memory usage: though infinite memory is nice to have it is not very realistic →restarting iteration
- ► convergence: the algorithm does not necessarily converge →safeguarding steps

Computational efficiency: Rank-1 update for B_k

One can show

Proposition (Rank-1 update for B_k)

We have

$$B_k = B_{k-1} + \frac{(y_{k-1} - B_{k-1} s_{k-1}) \hat{s}_{k-1}^\top}{\hat{s}_{k-1}^\top s_{k-1}}$$

where $y_{k-1} = g_k - g_{k-1}$, $B_0 = \text{Id}$ and

$$\hat{s}_{k-1} = s_{k-1} - \sum_{j=0}^{k-2} \frac{\hat{s}_j^{\top} s_{k-1}}{\|\hat{s}_j\|^2} \hat{s}_j$$

is the Gram-Schmidt orthogonalisation of $s_{k-1} = x_k - x_{k-1}$.

Proof.

See [1].

```
Input: x_0 \in \mathbb{R}^n and f: \mathbb{R}^n \to \mathbb{R}^n.
Set B_0 = \text{Id} and x_1 = f(x_0).
for k = 0, 1, ... do
      Set g_k = g(x_k).
      Set s_{k-1} = x_k - x_{k-1}, y_{k-1} = g_k - g_{k-1} and
        \hat{s}_{k-1} = s_{k-1} - \sum_{i=0}^{k-2} \frac{\hat{s}_i^\top s_{k-1}}{\|\hat{s}_i\|^2} s_i.
      Set B_k = B_{k-1} + \frac{(y_{k-1} - B_{k-1} s_{k-1})\hat{s}_{k-1}^{\top}}{\hat{s}_{k-1}^{\top} . s_{k-1}}.
      Set H_k = B_k^{-1}.
      Set x_{k+1} = x_k - H_k g_k.
end
```

Algorithm 6: AA-I (rank-1 update)

Well-definedness of H_k : Powell-type regularisation

To fix the singularity of B_k we use Powell-type regularisation.

s Input:
$$x^0 \in \mathbb{R}^n$$
, $f \colon \mathbb{R}^n \to \mathbb{R}^n$ and $\bar{\theta} \in (0,1)$.
Set $B_0 = \operatorname{Id}$ and $x_1 = f(x_0)$.
for $k = 0, 1, \dots$ do
$$\begin{cases} \text{Set } g_k = g(x_k), \ s_{k-1} = x_k - x_{k-1} \ \text{and} \ y_{k-1} = g_k - g_{k-1}. \\ \text{Set } \hat{s}_{k-1} = s_{k-1} - \sum_{i=0}^{k-2} \frac{\hat{s}_i^\top s_{k-1}}{\|\hat{s}_i\|^2} s_i. \\ \text{Choose } \theta_{k-1} \ \text{in dependence of } \bar{\theta}. \\ \text{Set } \tilde{y}_{k-1} = \theta_{k-1} y_{k-1} - (1 - \theta_{k-1}) g_{k-1}. \\ \text{Set } B_k = B_{k-1} + \frac{(\tilde{y}_{k-1} - B_{k-1} s_{k-1}) \hat{s}_{k-1}^\top}{\hat{s}_{k-1}^\top s_{k-1}}. \\ \text{Set } H_k = B_k^{-1}. \\ \text{Set } x_{k+1} = x_k - H_k g_k. \end{cases}$$

Algorithm 7: AA-I with Powell-type regularisation

Well-definedness of H_k , memory usage: Restarting iteration

If $\hat{s}_k = 0$ the update

$$B_k = B_{k-1} + \frac{(\tilde{y}_{k-1} - B_{k-1} s_{k-1}) \hat{s}_{k-1}^\top}{\hat{s}_{k-1}^\top s_{k-1}}$$

is ill-defined. This occurs in algorithm 7 e.g. for k>n as then $\hat{s}_k=0$ by linear dependence. Hence we restart the algorithm with x_k as the new starting point if

- ▶ k = m + 1 for some fixed $m \in \mathbb{N}$ or
- ▶ $\|\hat{s}_{k-1}\| < \tau \|s_{k-1}\|$ for some fixed $\tau \in (0,1)$.

It can be shown that B_k is then well-defined.

```
Input: x^0 \in \mathbb{R}^n, f: \mathbb{R}^n \to \mathbb{R}^n, m \in \mathbb{N} and \bar{\theta}, \tau \in (0,1)
Set B_0 = \text{Id}, x_1 = f(x_0) and m_0 = 0.
for k = 0, 1, ... do
      Set g_k = g(x_k), m_k = m_{k-1} + 1, s_{k-1} = x_k - x_{k-1} and
        y_{k-1} = g_k - g_{k-1}.
      Set \hat{s}_{k-1} = s_{k-1} - \sum_{i=k-m_k}^{k-2} \frac{\hat{s}_i^{+} s_{k-1}}{\|\hat{s}_i\|^2} s_i.
      if m_{\nu} = m+1 or \|\hat{s}_{k-1}\| < \tau \|s_{k-1}\| then
            Set m_k = 0, \hat{s}_{k-1} = s_{k-1} and B_{k-1} = \text{Id}.
      end
      Choose \theta_{k-1} in dependence of \theta.
      Set \tilde{y}_{k-1} = \theta_{k-1} y_{k-1} - (1 - \theta_{k-1}) g_{k-1}.
      Set B_k = B_{k-1} + \frac{(\tilde{y}_{k-1} - B_{k-1} s_{k-1})\hat{s}_{k-1}^{\top}}{\hat{s}_{k-1}^{\top} s_{k-1}}.
      Set H_k = B_k^{-1}.
      Set x_{k+1} = x_k - H_k g_k.
```

end

Algorithm 8: AA-I with Powell-type regularisation and Restarting

One can then show

Lemma (bound on $||H_k||_2$)

In algorithm 8 we have that H_k is well-defined and there exists a constant $c_1=c_1(m,n,\bar{\theta},\tau)>0$ such that

$$||H_k||_2 \leq c_1.$$

Proof.

See [1, Corollary 4].

Computational efficiency: Rank-1 update for H_k

From the Sherman-Morrison formula one can obtain Proposition (Rank-1 update for H_k)

We have

$$H_k = H_{k-1} + \frac{(s_{k-1} - H_{k-1} y_{k-1}) \hat{s}_{k-1}^\top H_{k-1}}{\hat{s}_{k-1}^\top H_{k-1} y_{k-1}}$$

Input:
$$x^0 \in \mathbb{R}^n$$
, $f : \mathbb{R}^n \to \mathbb{R}^n$, $m \in \mathbb{N}$ and $\bar{\theta}, \tau \in (0,1)$
Set $H_0 = \operatorname{Id}, x_1 = f(x_0)$ and $m_0 = 0$.
for $k = 0, 1, \dots$ do
$$\begin{cases} \text{Set } g_k = g(x_k), \ m_k = m_{k-1} + 1, \ s_{k-1} = x_k - x_{k-1} \ \text{and} \\ y_{k-1} = g_k - g_{k-1}. \end{cases}$$
Set $\hat{s}_{k-1} = s_{k-1} - \sum_{i=k-m_k}^{k-2} \frac{\hat{s}_i^\top s_{k-1}}{\|\hat{s}_i\|^2} s_i.$

if $m_k = m+1$ or $\|\hat{s}_{k-1}\| < \tau \|s_{k-1}\|$ then
$$\| \text{Set } m_k = 0, \ \hat{s}_{k-1} = s_{k-1} \ \text{and} \ H_{k-1} = \operatorname{Id}. \end{cases}$$
end
$$\begin{cases} \text{Choose } \theta_{k-1} \text{ in dependence of } \bar{\theta}. \\ \text{Set } \tilde{y}_{k-1} = \theta_{k-1} y_{k-1} - (1 - \theta_{k-1}) g_{k-1}. \\ \text{Set } H_k = H_{k-1} + \frac{(s_{k-1} - H_{k-1} \tilde{y}_{k-1}) \hat{s}_{k-1}^\top H_{k-1}}{\hat{s}_{k-1}^\top H_{k-1} \tilde{y}_{k-1}}. \end{cases}$$
Set $x_{k+1} = x_k - H_k g_k. \end{cases}$

Algorithm 9: AA-I with Powell-type regularisation and Restarting

Convergence: Safeguarding steps

To guarantee the decrease in $\|g_k\|$ one can interleave the AA-I steps with Krasnosel'skii-Mann (KM) steps which are given by

$$x_{k+1} = (1 - \alpha)x_k + \alpha f_k$$

for some fixed $\alpha \in (0,1)$.

```
Input: x^0 \in \mathbb{R}^n, f: \mathbb{R}^n \to \mathbb{R}^n, m \in \mathbb{N}, \bar{\theta}, \tau, \alpha \in (0,1) and safe-guarding constants
            D.\varepsilon > 0
Set H_0 = \text{Id}, x_1 = \tilde{x}_1 = f(x_0), m_0 = n_{AA} = 0 and \bar{U} = ||g_0||_2.
for k = 0, 1, ... do
         Set g_k = g(x_k), m_k = m_{k-1} + 1, s_{k-1} = \tilde{x}_k - x_{k-1} and y_{k-1} = g(\tilde{x}_k) - g_{k-1}.
        Set \hat{s}_{k-1} = s_{k-1} - \sum_{i=k-m}^{k-2} \frac{\hat{s}_i^\top s_{k-1}}{\|\hat{s}_i\|^2} s_i.
        if m_k = m+1 or \|\hat{s}_{k-1}\| < \tau \|s_{k-1}\| then
                Set m_k = 0, \hat{s}_{k-1} = s_{k-1} and H_{k-1} = \text{Id}.
        end
        Choose \theta_{k-1} in dependence of \bar{\theta}.
         Set \tilde{\mathbf{v}}_{k-1} = \theta_{k-1} \mathbf{v}_{k-1} - (1 - \theta_{k-1}) g_{k-1}.
        Set H_k = H_{k-1} + \frac{(s_{k-1} - H_{k-1} \tilde{y}_{k-1}) \hat{s}_{k-1}^{+} H_{k-1}}{\hat{s}_{k-1}^{+} H_{k-1} \tilde{y}_{k-1}} and \tilde{x}_{k+1} = x_k - H_k g_k.
        if ||g_k|| \leq D\bar{U}(n_{AA}+1)^{-(1+\varepsilon)} then
                 Set x_{k+1} = \tilde{x}_{k+1} and n_{AA} = n_{AA} + 1.
        else
                Set x_{k+1} = (1-\alpha)x_k + \alpha f_k.
        end
end
```

Algorithm 10: AA-I with Powell-type regularisation, restarting and safeguarding

Convergence result

Theorem (Convergence)

Let x_k be generated by algorithm 10 then x_k converges to a fixed point of f.

Proof, strategy.

Proof, part 1.

The proof follows [1, Theorem 6]. We partition $\mathbb{N} = K_{AA} \sqcup K_{KM}$ where $K_{AA} = \{k_0, k_1, \ldots\}$ denote the indices k where the algorithm chose an AA-step (a) and $K_{KM} = \{l_0, l_1, \ldots\}$ where the algorithm chose a KM-step (b).

$$\begin{aligned} &\text{if } \|g_k\| \leq D\bar{U}(n_{AA}+1)^{-(1+\varepsilon)} \text{ then} \\ &| &\text{Set } x_{k+1} = \tilde{x}_{k+1} \text{ and } n_{AA} = n_{AA}+1. \\ &| &\text{Set } x_{k+1} = (1-\alpha)x_k + \alpha f_k. \end{aligned} \tag{a}$$

Algorithm 11: The two cases for x_{k+1} .

Proof, part 1 (cont.).

Let y be a fixed point. We distinguish

case (a) $k_i \in K_{AA}$ then

$$||x_{k_{i}+1} - y|| \le ||x_{k_{i}} - y|| + ||H_{k_{i}}g_{k_{i}}||$$

$$\le ||x_{k_{i}} - y|| + c_{1}||g_{k}||$$

$$\le ||x_{k_{i}} - y|| + c_{2}(i+1)^{-(1+\varepsilon)}$$
(1)

case (b) $l_i \in K_{KM}$ then one can show (see [1, Theorem 6])

$$||x_{l_i+1} - y||^2 \le ||x_{l_i} - y||^2 - \alpha(1-\alpha)||g_{l_i}||^2$$
 (2)

where one uses the non-expansiveness of f and the fact that y is a fixed point.

Hence in any case

$$||x_k - y|| \le ||x_0 - y|| + c_2 \sum_{i} (i+1)^{-(1+\epsilon)} = c_3 < \infty.$$

Proof, part 1 (cont.).

It then follows that

$$a_{k_{i}+1} = \|x_{k_{i}+1} - y\|^{2} \stackrel{(1),(2)}{\leq} \left(\|x_{k_{i}} - y\| + c_{2}(i+1)^{-(1+\varepsilon)} \right)^{2}$$

$$\leq \underbrace{\|x_{k_{i}} - y\|^{2}}_{=a_{k_{i}}} + \underbrace{c_{2}^{2}(i+1)^{-2(1+\varepsilon)} + 2c_{2}\underbrace{\|x_{k_{i}} - y\|}_{=b_{k_{i}}}(i+1)^{-(1+\varepsilon)}}_{=b_{k_{i}}}$$

$$= a_{k_{i}} + b_{k_{i}}$$

$$(3)$$

and hence

$$\alpha(1-\alpha)\sum_{i}||g_{l_{i}}||^{2} \stackrel{(2)}{\leq} \sum_{i}a_{l_{i}}-a_{l_{i}+1} \stackrel{(3)}{\leq} a_{0}+\sum_{k}b_{k}<\infty$$

We therefore have $\lim_i \|g_{l_i}\| = 0$. It also follows from $\|g_{k_i}\| \leq D\bar{U}(i+1)^{-(1+\varepsilon)}$ that $\lim_i \|g_{k_i}\| = 0$. Thus indeed $\lim_k \|g_k\| = 0$.

Proof, part 2.

Let now n_j and $N_j \ge n_j$ be such that

$$a_{n_j} \xrightarrow{j \to \infty} \liminf_k a_k = \underline{a}$$
 $a_{N_j} \xrightarrow{j \to \infty} \limsup_k a_k = \overline{a}$

Then it follows that

$$\overline{a} - \underline{a} \stackrel{n_j \to \infty}{\longleftarrow} \overline{a} - a_{n_j} \stackrel{N_j \to \infty}{\longleftarrow} a_{N_j} - a_{n_j} = \sum_{k=n_j}^{N_j - 1} a_{k+1} - a_k \stackrel{\text{(3)}}{\leq} \sum_{k=n_j}^{\infty} b_k \xrightarrow{n_j \to \infty} 0$$

SO

$$\limsup_{k} a_k = \overline{a} \le \underline{a} = \liminf_{k} a_k$$

and thus $a_k = ||x_k - y||$ converges to some a.

Proof, part 3.

Let k_j and l_j be convergent subsequences of x_k convergent against y_1 and y_2 respectively. Since by continuity of g

$$||g(y_1)|| = \lim_{j} ||g(x_{k_j})|| \stackrel{\mathsf{part}}{=} {}^{1} 0$$

we have that y_1 is a fixed point and y_2 too. Now by part 2

$$||y_1||^2 \stackrel{j \to \infty}{\longleftarrow} ||x_{k_j}||^2 = ||x_{k_j} - y||^2 - ||y||^2 + 2y^\top x_{k_j} \stackrel{j \to \infty}{\longrightarrow} a - ||y||^2 + 2y^\top y_1$$

and analogously for y_2 . Thus

$$||y_i||^2 = a - ||y||^2 + 2y^{\top}y_i$$

which implies

$$2y^{\top}(y_1 - y_2) = ||y_1||^2 - ||y_2||^2$$
.

Proof, part 3 (cont.).

It then follows from

$$2y^{\top}(y_1 - y_2) = \|y_1\|^2 - \|y_2\|^2$$

with $y = y_i$ that

$$y_1^{\top}(y_1 - y_2) = y_2^{\top}(y_1 - y_2)$$

and further

$$(y_1 - y_2)^{\top}(y_1 - y_2) = 0$$

and thus $y_1 = y_2$. We have shown that two convergent subsequences have the same limit and hence x_k is convergent and the limit must be a fixed point of f.

Elastic net regression

The aim is to find a fixed point of

$$f: \mathbb{R}^{1000} \to \mathbb{R}^{1000}, \quad x \mapsto S_{\alpha\mu/2} \left(x - \alpha \left(A^{\top} (Ax - b) + \frac{\mu}{2} x \right) \right)$$

with shrinkage operator

$$S_{\kappa}(x) = (\operatorname{sgn}(x_i)(|x_i| - \kappa)_+)_{i=1}^{1000}$$

and $A \in \mathbb{R}^{500 \times 1000}$, $b \in \mathbb{R}^{500}$ and some $\alpha, \mu \in \mathbb{R}$ as in [1].

Figure: Residual norms for the elastic net regression problem.

Figure: Residual norms for the elastic net regression problem.

Markov decision process

Our aim is to find a fixed point of the Bellman operator

$$f: \mathbb{R}^{1000} \to \mathbb{R}^{1000}, \quad x \mapsto \left(\max_{a} \left(R_{sa} + \gamma \sum_{s'} P_{sas'} x_{s'}\right)\right)_{s=1}^{1000}$$

with some $R \in \mathbb{R}^{300 \times 200}$, $P \in \mathbb{R}^{300 \times 200 \times 300}$, $\gamma \in \mathbb{R}$ as in [1].

Figure: Residual norms for the Markov decision process problem.

Figure: Residual norms for the Markov decision process problem.

Summary

- ▶ The aim is to find a fixed point of a non-expansive *f* where
 - the dimension is large
 - lackbox f is expensive to evaluate, noisy and the gradient is a mystery
- The main idea is to generalise the fixed point iteration with $x_{k+1} = \sum_i \alpha_i f_i$ for some clever choice of $\alpha = \alpha^k \in \mathbb{R}^{k+1}$.
- Modifications of the AA-I algorithm:
 - Powell-type regularisation →well-definedness
 - ▶ Restarting iteration →well-definedness, limited memory
 - Safeguarding steps →convergence
 - Rank-1 update for $H_k \rightarrow$ matrix-free
- Convergence result
- Numerical experiments: AA-I with the modifications often outperforms the fixed point iteration.

Main source

[1] J. Zhang, B. O'Donoghue, and S. Boyd, "Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations," *SIAM J. Optim.*, vol. 30, no. 4, pp. 3170–3197, 2020, ISSN: 1052-6234. DOI: 10.1137/18M1232772. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.1137/18M1232772.

Other sources

- [2] H.-r. Fang and Y. Saad, "Two classes of multisecant methods for nonlinear acceleration," Numer. Linear Algebra Appl., vol. 16, no. 3, pp. 197–221, 2009, ISSN: 1070-5325. DOI: 10.1002/nla.617. [Online]. Available: https://doi-org.ludwig.lub.lu.se/10.1002/nla.617.
- [3] numerics-seminar-VT23, Github repository to the project. Online, 2023. [Online]. Available: https://github.com/TheoKoppenhoefer/numerics-seminar-VT23.

Image sources

- [4] Turtle, Online, 2023. [Online]. Available: https://www.needpix.com/photo/download/174752/turtle-brown-green-shell-animal-reptile-slow-armorcrawl.
- [5] Hare, Online, 2023. [Online]. Available: https://www.publicdomainpictures.net/pictures/200000/velka/hare-1479157709hRN.jpg.

Thank you for your attention.