Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

11 de maio de 2017

Plano de Aula

- Revisão
 - Máquina de Turing

Máquina de Turing

Bônus (0,5 pt)

Desafio

- Problema 3.9 (a):
 Mostre que 2-APs são mais poderosos que 1-APs.
- Candidaturas agora;
- Apresentação e resposta por escrito → segunda (15 de maio, 17h10);
- 10 minutos de apresentação.

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Sumário

- Revisão
 - Máquina de Turing

Máquina de Turing

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Construindo uma MT

Construir M_1 que reconheça a linguagem $B = \{\omega \# \omega \mid \omega \in \{0, 1\}^*\}.$

Descrição de M₁

 $M_1 =$ "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.


```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
  1 1 0 0 0 # 0 1 1 0 0 0 u ...
х 1 1 0 0 0 # x 1 1 0 0 0 u ...
<sup>*</sup> 1 1 0 0 0 # x 1 1 0 0 0 ⊔ ...
х × 1 0 0 0 # х 1 1 0 0 0 ц ...
x x x x x x # x x x x x
                          accept
```


Uma **máquina de Turing** é uma 7-upla

 $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- \bigcirc Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- lacktriangle Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- **4** $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{0}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita}
 eq q_{aceita}$

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma forma especial de representar...

uqv em que

- u e v são cadeias sobre Γ;
- uv é o conteúdo atual da fita;
- q é o estado atual; e
- a posição atual da cabeça está sobre o primeiro símbolo de v.

- Salaminh salah-mês... tranforme as figuras para português!

FIGURA 3.4

Uma máquina de Turing com configuração 1011q₇01111

Termos importantes:

- configuração inicial;
- configuração de aceitação;
- configuração de rejeição;
- configuração de parada.

Sumário

- Revisão
 - Máquina de Turing

2 Máquina de Turing

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

```
\bullet a, b, c \in \Gamma,
```


A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_i ,

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_j ,
- as configurações uaq_i bv e uq_i acv.

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_j ,
- as configurações uaq_i bv e uq_i acv.

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_i,
- as configurações uaq; bv e uq; acv.

Digamos que

 uaq_i bv origina uq_i acv

se na função de transição $\delta(q_i, b) = (q_i, c, E)$.

Mais formalmente...

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i,b)=(q_j,c,E)$. Ou

 uaq_i bv origina $uacq_j$ v

se na função de transição $\delta(q_i,b)=(q_j,c,D)$.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de M

É a coleção de cadeias que M aceita. Também chamada de linguagem reconhecida por M e denotada por L(M).

Definições

Definição

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definições

Definicão

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Definições

Definicão

Chame uma linguagem de **Turing-reconhecível**, se alguma máquina de Turing a reconhece.

Definição

Chame uma linguagem de **Turing-decidível**, se alguma máquina de Turing a decide.

Corolário

Toda linguagem Turing-decidível é Turing-reconhecível.

Uma máquina de Turing M_2 que decide $A = \{0^{2^n} \mid n \ge 0\}$:

Uma máquina de Turing M_2 que decide $A = \{0^{2^n} \mid n \ge 0\}$:

 M_2 = "Sobre a cadeia de entrada w:

- Faça uma varredura da esquerda para a direita na fita, marcando um 0 não e outro sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, *rejeite*.
- 4. Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Descrição Formal de M₂

$$M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{aceita}, q_{rejeita})$$
:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{aceita}, q_{rejeita}\};$
- $\Sigma = \{0\},\$
- $\Gamma = \{0, x, \bot\},\$
- Descrevemos δ no próximo slide; e
- q₁, q_{aceita} e q_{rejeita} são o estado inicial, de aceitação e de rejeição, respectivamente.

FIGURA 3.8 Diagrama de estados para a máquina de Turing M_2

$L(M_1)$

Uma máquina de Turing M_1 que decide $\mathit{B} = \{\omega\#\omega \mid \omega \in \{0,1\}^*\}$

$L(M_1)$

Uma máquina de Turing M_1 que decide $B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}$

Descrição Formal de M_1

 $M_3 = (Q, \Sigma, \Gamma, \delta, q_1 q_{aceita}, q_{rejeita})$:

- $Q = \{q_1, \ldots, q_{14}, q_{aceita}, q_{rejeita}\};$
- $\Sigma = \{0, 1, \#\},\$
- $\Gamma = \{0, 1, \#, x, \sqcup\},\$
- ullet Descrevemos δ no próximo slide; e
- q₁, q_{aceita} e q_{rejeita} são o estado inicial, de aceitação e de rejeição, respectivamente.

FIGURA 3.10 Diagrama de estados para a máquina de Turing M_1

Máquina de Turing

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

11 de maio de 2017

