직류 회로

과목 : 일반물리학실험(072)

학과 : 전기컴퓨터공학부

학번 : 201924451

이름 : 김태훈

공동실험자 :

담당 교수 : 정광식

담당 조교 :

실험 날짜 : 2019년 9월 16일

제출 날짜 : 2019년 9월 23일

1. 실험목적

여러 개의 저항체와 직류 전원으로 구성된 직렬 회로와 병렬 회로를 구성하고, 회로의 각지점에서의 전압과 전류를 측정하여 옴의 법칙(Ohm's law)과 키르히호프의 전기회로 법칙(키르히호프의 규칙, Kirchhoff's rules)을 확인한다.

2. 실험원리

(1)Ohm의 법칙

금속 도체는 전도 전자들을 가지고 있다. 왜냐하면 원자가 띠(Valence Band)와 전도띠(Conduction Band)가 붙어있어 원자가 전자들이 자유롭게 움직일 수 있기 때문이다. 그러나 전도 전자들의 운동은 불규칙적이여서 알짜 전류를 만들지는 않으나, 외부에서 전기장을 가하면 전기장과 반대 방향으로 움직이며 전류를 만든다.(이때 전도 전자에 가해지는 힘 F=Eq, 힘=전기장*전하량)

또 전류 I와 전하q, 시간 t의 관계는 $I=\frac{dq}{dt}$ 와 같고, 1A는 1C/s이다. $(1C=6.24*10^{18}$ 개의 전자)

그리고 어떤 두점 a,b 사이의 전압 v_{ab} 와 일 \mathbf{w} , 전하q사이의 관계는 $v_{ab}=\frac{dw}{dq}$ 와 같다. 1V는 1J/s이다.

옴의 법칙은 '일정한 온도에서 금속도체의 두 점 사이의 전위차와 전류의 비는 일정하다'이며, 일정한 비를 저항 R이라고 정의하며 단위는 $\Omega(\mathrm{Ohm})$ 이다. 참고로 저항 R은 다음과 같이 정의할 수도 있다.

$$R = \rho \frac{l}{A} = 도전율 \times \frac{길이}{단면적}$$

그래서 1Ω 의 정의는 전압이 1V가 걸려있을 때 전류가 1A가 흐르는 것이며, Ohm의 법칙은 $\Delta V = IR$ 와 같이 쓸 수 있다.

옴의 법칙은 대부분의 도체에서 만족하고, 어떤 도체에 전압 V와 전류 I를 측정한 다음 전류-전압 그래프를 그리면 직선 그래프가 나오고, 그 기울기는 저항이 된다.(다만 옴의 법칙을 따르지 않아 직선 그래프가 나오지 않는 경우도 많다.)

(2)저항의 연결

직렬 연결

각각의 전기 소자(저항 등)이 한 개의 노드(node)를 공유하며 전하가 갈 수 있는 길이 하나밖에 없기 때문에 모든 저항에서 전류는 전류 I 로 동일하다. 옴의 법칙에 따라 각 저항 R_1,R_2,R_3 에 걸리는 전압은 $V_1=R_1I,\ V_2=R_2I,\ V_3=R_3I$ 이다. 따라서 전위차의

합 $V_s=V_1+V_2+V_3=(R_1+R_2+R_3)I$ 이다. 전체 저항 $R_s=\frac{V_s}{I}$ 인데 $V_s=(R_1+R_2+R_3)I$ 이므로, $R_s=R_1+R_2+R_3$ 이다.

따라서, 직렬연결에서 전류 $I=rac{V_{\mathrm{s}}}{R_1+R_2+R_3}$ 이므로 $R_n(1\leq n\leq 3)$ 에 걸리는

전압
$$V_n = rac{V_{\mathrm{s}}}{R_1 + R_2 + R_3} R_n$$
이다.

<그림1 : 직렬 연결의 예>

<그림2 : 직렬 연결의 예2>

직렬연결은 브레드보드로는 그림1과 같이, 회로도로는 그림2와 같이 나타낼 수 있다. 그림1과

2는 각각 Fritzing 프로그램의 브레드보드 회로 설계, 스케메틱(Schematic) 회로 설계를 이용하여 작성하였다.

병렬 연결

각각의 전기 소자(저항 등)이 두 개의 노드(node)를 공유하며 양 쪽에 같은 전압 V가 걸린다.

옴의 법칙에 따라 각 저항 양단의 전위차는 $I_1=rac{V_p}{R_1}$, $I_2=rac{V_p}{R_2}$, $I_3=rac{V_p}{R_3}$ 이고, 회로에 흐르는 총

전류 I는 $I=I_1+I_2+I_3=(\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3})\,V_p$ 가 된다. 이때 $I=\frac{V_p}{R_p}$ 이므로

$$I = \frac{V_p}{R_p} = (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}) V_p, \therefore \frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \text{ ord.}$$

<그림3 : 병렬 연결의 예>

<그림4: 병렬 연결의 예2>

병렬연결은 브레드보드로는 그림3과 같이, 회로도로는 그림4와 같이 나타낼 수 있다. 그림3과 4는 각각 Fritzing 프로그램의 브레드보드 회로 설계, 스케메틱(Schematic) 회로 설계를 이용하여 작성하였다.

(3) 전기 회로망에서 전류를 계산하는 방법(Kirchhoff의 법칙)

전기 회로는 그림2와 그림4처럼 저항체들과 기전력 장치로 구성되어 있다. 각 저항체들에 흐르는 전류를 구하기 위해서 Kirchhoff의 법칙을 이용한다. 이 법칙은 전하 보존과 에너지 보존 법칙을 회로망에 적용한 것이다. Kirchhoff의 법칙은 다음과 같다.

제1법칙(Kirchhoff's current law, KCL) : 회로망 내의 한 접점에서 모든 전류의 합은 0이다. 제2법칙(Kirchhoff's voltage law, KVL) : 회로망 내의 닫힌 경로에서 모든 전위차의 합은 0이다.(제2법칙은 다음과 같이 해석될 수 있다: 떨어진 전압은 올라간 전압과 같다. $V_{drob}=V_{rise}$)

또 제1법칙과 제2법칙은 다음과 같이 표현될 수 있다.

제1법칙 : $\sum_{n=1}^{N} i_n = 0$: $i_1(첫번째전류)부터 <math>i_N(N$ 번째전류)의 합이 0이다.

제2법칙 : $\sum_{m=1}^{M} v_m = 0$: $v_1(첫번째전압)부터 v_M(M번째전압)의합이 0이다.$

제1법칙과 제 2법칙을 적용할 때는 다음과 같은 규칙이 있다.

제1법칙 : 일반적으로 노드(node)로 들어가는 전류는 양, 노드(node)에서 나오는 전류는 음으로 간주한다.

제2법칙 : 일반적으로 전류가 +에서 -로 흐르면 전압을 양, 전류가 -에서 +로 흐르면 전압을 음으로 간주한다.

(4)저항의 색표시

색저항의 저항값은 색띠로 나타낸다. 저항값을 표시하는 방법은 표1과 같다.

구분	검정	갈색	빨강	주황	노랑	초록	파랑	보라	회색	흰색	금색	은색	무색
유효	0	1	2	3	4	5	6	7	8	9			
ABC		1			1			,					
승수	0	1	2	3	1	Е	6	7	8	9	1	-2	
D	0	1) 	4	5	0	/	0	9	-1	Z	
오차		10/	20/								E0/	100/	200/
Е		1%	2%								5%	10%	20%

<표1 : 저항의 색표시, 승수는 10^x에서 x만 표시>

저항의 색표시는 ||| |(ABD E) 로 표시되어있거나 |||| |(ABCD E)로 표시되어 있는데, 전자는 $(AB \times D\Omega) \pm E\%$ 후자는 $(ABC \times D\Omega) \pm E\%$ 으로 해석한다.

3. 실험 기구 및 재료

직류 전원 공급기, 멀티미터, 색저항3개

4. 실험 방법

먼저, 멀티미터로 R_1, R_2, R_3 를 측정한다.

(1)직렬 회로

- @그림1과 같이 직렬 회로를 구성한다.
- ⑤직류 전원 공급기의 전압 조정 손잡이를 반시계 방향으로 끝까지 돌린 후(전압을 0v로 만들고) 출력선을 회로에 연결한 다음 인가 전압이 1V가 되도록 조절한다.
- ©멀티미터로 저항 R_1, R_2, R_3 양단의 전위차 V_1, V_2, V_3 와 전류 I를 측정한다.(그림5, 그림6 참고)
- ④전체 전압 V_{c} 를 1V씩 증가시키면서 @를 반복한다.
- @각 저항 양단의 전압 대 전류 그래프를 그리고 최소 제곱법을 활용하여 각 저항을 구한다.
- ①색코드의 저항값, 실험 저항값 그리고 멀티미터로 측정한 저항값을 비교한다.

<그림5 : 직렬연결에서 전류 측정 -Fritzing으로 작성>

<그림6 : 직렬연결에서 전압측정 : Fritzing으로 작성>

(2)병렬 회로

- @그림3과 같이 병렬 회로를 구성한다.
- ⑤직류 전원 공급기의 전압 조정 손잡이를 반시계 방향으로 끝까지 돌린 후(전압을 0v로 만들고) 출력선을 회로에 연결한 다음 인가 전압이 1V가 되도록 조절한다.
- ©멀티미터로 저항 R_1, R_2, R_3 에 흐르는 전류 I_1, I_2, I_3 와 전위차 V_p 를 측정한다.(그림7, 그림8 참고)

@전체 전압 V_{p} 를 1V씩 증가시키면서 @를 반복한다.

②각 저항 양단의 전압 대 전류 그래프를 그리고 최소 제곱법을 활용하여 각 저항을 구한다. ① 색코드의 저항값, 실험 저항값 그리고 멀티미터로 측정한 저항값을 비교한다.

<그림7 : 병렬연결에서 각 저항의 전류 측정>

<그림8 : 병렬연결에서 전체 전류 측정 : Fritzing으로 작성>

5. 측정값

(1)직렬 회로

(여기서 k는 상수나 미지수가 아니라 $k=10^3$ 을 의미함) 색코드에 나타난 저항값 : $R_1 = 1.0k\Omega \pm 5\%$ (갈색, 검은색, 빨간색, 금색) $R_2 = 1.5k\Omega \pm 5\%$ (갈색, 초록색, 빨간색, 금색) $R_3 = 1.2k\Omega \pm 5\%$ (갈색, 빨간색, 빨간색, 플간색, 금색)

멀티미터로 측정한 저항값:

 $R_1 = 0.991k\Omega \ R_2 = 1.488k\Omega \ R_3 = 1.205k\Omega$

$V_{\scriptscriptstyle \mathcal{S}}$	I(mA)	$V_1(V)$	$V_2({ m V})$	$V_3(V)$
1V	0.277	0.269	0.404	0.327
2V	0.551	0.547	0.821	0.664
3V	0.798	0.826	1.240	1.004
4V	1.065	1.087	1.632	1.321
5V	1.341	1.365	2.04	1.65

<표2 : 직렬 회로에서 공급한 전압과 측정된 전류, 각 저항의 전압> 표2는 직렬회로에서 공급한 전압 V_{s} 와 측정한 전류 I, 저항 R_{1},R_{2},R_{3} 에 걸린 전압 V_{1},V_{2},V_{3} 의 측정값을 나타낸 것이다.

(2)병렬 회로

(여기서 k는 상수나 미지수가 아니라 $k=10^3$ 을 의미함)

색코드에 나타난 저항값:

 $R_1 = 1.0k\Omega \pm 5\%$ (갈색, 검은색, 빨간색, 금색)

 $R_2 = 1.5k\Omega \pm 5\%$ (갈색, 초록색, 빨간색, 금색)

 $R_3 = 1.2k\Omega \pm 5\%$ (갈색, 빨간색, 빨간색, 금색)

멀티미터로 측정한 저항값:

 $R_1 = 0.991 k\Omega$

 $R_2 = 1.488 k\Omega$

 $R_3 = 1.205 k\Omega$

$V_{\scriptscriptstyle S}$	I(mA)	I_1 (mA)	I_2 (mA)	I_3 (mA)
1V	2.44	1.01	0.649	0.809
2V	4.81	2.02	1.278	1.584
3V	7.40	3.05	1.912	2.46
4V	9.68	4.04	2.66	3.33
5V	12.03	4.99	3.32	4.18

<표3 : 병렬 회로에서 직류전원공급기에서 걸어준 전압과 전체 전류 및 각 저항에 흐르는 전류>표3은 병렬 회로에서 직류전원공급기에서 걸어준 전압 V_s 와 전체 전류I, 저항 R_1,R_2,R_3 에 흐르는 전류 I_1,I_2,I_3 의 측정값을 나타낸 것이다.

6. 결과

(1)저항

	저항에 표시된	저항값 범위	측정된 저항값	오차(표시된
	저항값	기영값 임귀	국정선 시영없	저항값 대비)
저항 $1(R_1)$	$1.0k\Omega\pm5\%$	0.95kΩ~1.05kΩ	0.991kΩ	-0.9%
저항2(R_2)	$1.5k\Omega\pm5\%$	1.425kΩ~1.575kΩ	1.488kΩ	-0.8%
저항3(R_3)	$1.2k\Omega\pm5\%$	1.14kΩ~1.26kΩ	1.205kΩ	0.4%

<표4 : 저항에 표시된 저항값과 측정된 저항값의 오차>

표4에서 알 수 있듯, 저항1은 -0.9%, 저항2는 -0.8%, 저항3은 0.4%의 오차가 나타나 측정된 저항값이 오차 범위 $(\pm 5\%)$ 안에 들었음을 알 수 있다.

(2)직렬 회로

V_s	I (mA)	$V_1(V)$	$V_1/I(\mathrm{k}\Omega)$	$R_1(k\Omega)$	차이1
1V	0.277	0.269	0.971	0.991	-2.006%
2V	0.551	0.547	0.993	0.991	0.176%
3V	0.798	0.826	1.035	0.991	4.449%
4V	1.065	1.087	1.021	0.991	2.993%
5V	1.341	1.365	1.018	0.991	2.714%

<표5 : 직렬회로에서 R_1 에 걸린 전압과 흐르는 전류를 바탕으로, 전압/전류와 저항값의 비교>표5는 직렬회로에서 R_1 에 걸린 전압/ R_1 에 흐르는 전류와 멀티미터로 측정한 저항값을 비교한 것으로, 차이는 측정한 전류값 대비 V_1/I 가 얼마나 차이나는지 %로 표시하였다.

<그림9 : R_1 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것>

그림9는 R_1 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것으로, 선형 추세선의 기울기는 1.03337, 즉 V_1/I 는 평균적으로 $1.033k\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $0.991k\Omega$ 대비 약 4.238% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.0186x, $R^2=0.9993$ 로, 약 1.019kΩ이 나오며, 이는 멀티미터로 측정한 저항값 0.991kΩ대비 약 2.825% 차이난다.

$V_{\scriptscriptstyle \mathcal{S}}$	<i>I</i> (mA)	$V_2(V)$	$V_2/I(\mathrm{k}\Omega)$	R_2 (k Ω)	차이2
1V	0.277	0.404	1.458	1.488	-1.984%
2V	0.551	0.821	1.490	1.488	0.136%
3V	0.798	1.24	1.554	1.488	4.428%
4V	1.065	1.632	1.532	1.488	2.983%
5V	1.341	2.04	1.521	1.488	2.235%

<표6 : 직렬회로에서 R_2 에 걸린 전압과 흐르는 전류를 바탕으로, 전압/전류와 저항값의 비교>표6은 직렬회로에서 R_2 에 걸린 전압/ R_2 에 흐르는 전류와 멀티미터로 측정한 저항값을 비교한 것으로, 차이는 측정한 전류값 대비 V_2/I 가 얼마나 차이나는지 %로 표시하였다.

<그림9 : R_2 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것>

그림9는 R_2 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선

그래프를 그린 것으로, 선형 추세선의 기울기는 1.5448, 즉 V_2/I 는 평균적으로 1.545k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 3.831% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.5261x, $R^2=0.9992$ 로, 약 1.526kΩ이 나오며, 이는 멀티미터로 측정한 저항값 1.488kΩ대비 약 2.554% 차이난다.

V_s	<i>I</i> (mA)	$V_3(V)$	$V_3/I(\mathrm{k}\Omega)$	$R_3(k\Omega)$	차이3
1V	0.277	0.327	1.181	1.205	-2.033%
2V	0.551	0.664	1.205	1.205	0.007%
3V	0.798	1.004	1.258	1.205	4.410%
4V	1.065	1.321	1.240	1.205	2.936%
5V	1.341	1.65	1.230	1.205	2.110%

<표7 : 직렬회로에서 R_3 에 걸린 전압과 흐르는 전류를 바탕으로, 전압/전류와 저항값의 비교>표7은 직렬회로에서 R_3 에 걸린 전압/ R_3 에 흐르는 전류와 멀티미터로 측정한 저항값을 비교한 것으로, 차이는 측정한 전류값 대비 V_3/I 가 얼마나 차이나는지 %로 표시하였다.

<그림9 : R_3 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것>

그림9는 R_3 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것으로, 선형 추세선의 기울기는 1.2497, 즉 V_2/I 는 평균적으로 $1.25 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $1.205 \mathrm{k}\Omega$ 대비 약 3.734% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.2348x, $R^2=0.9992$ 로, 약 1.235k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.205k Ω 대비 약 2.49% 차이난다.

$V_{ m s}$	$V_1(V)$	$V_2(V)$	V_3 (V)	$\sum_{n=1}^{3} V_n(V)$	V_{s} CH $= 1$ $\sum_{n=1}^{3} V_{n}$
1V	0.269	0.404	0.327	1	0%
2V	0.547	0.821	0.664	2.032	1.6%
3V	0.826	1.24	1.004	3.07	2.333%
4V	1.087	1.632	1.321	4.04	1%
5V	1.365	2.04	1.65	5.055	1.1%

<표8 : 직렬회로에서, 공급한 전압과 $\sum_{n=1}^{3} V_n$ (= V_1 + V_2 + V_3)비교>

표8은 직렬회로에서 공급한 전압과 저항에 걸린 전압의 합을 비교한 표이다. $\sum_{n=1}^{3} V_n$ 가 V_s 보다 약간 높은 것을 알 수 있다.

<그림10 : 공급한 전압과 $V_1+V_2+V_3$ 를 그래프에 나타낸 후 추세선을 그린 것> 그림 10은 공급한 전압과 $V_1+V_2+V_3$ 를 그래프에 나타낸 후 최소평균제곱법을 이용해 추세선을 그린 것으로, 평균적으로 공급한 전압의 1.01배가 $V_1+V_2+V_3$ 임을 알 수 있다. (y절편을 0으로 설정하여 추세선을 그리면 y=1.0129x, $R^2=0.9999$ 이다.)

V_s	I (mA)	$V_1({\sf V})$	$V_2({\sf V})$	V_3 (V)	$\sum_{n=1}^{3} V_n$	V ₁ (%)	V ₂ (%)	V ₃ (%)
1V	0.277	0.269	0.404	0.327	1	26.900%	40.400%	32.700%
2V	0.551	0.547	0.821	0.664	2.032	26.919%	40.404%	32.677%
3V	0.798	0.826	1.24	1.004	3.07	26.906%	40.391%	32.704%
4V	1.065	1.087	1.632	1.321	4.04	26.906%	40.396%	32.698%
5V	1.341	1.365	2.04	1.65	5.055	27.003%	40.356%	32.641%
이론값						26.900%	40.391%	32.709%

<표9 : $\sum_{n=1}^{3} V_n$ 중에서 V_1, V_2, V_3 이 차지하는 비율을 %로 나타낸 것>

표9는 $\sum_{n=1}^{3} V_n$ 중에서 V_1, V_2, V_3 이 차지하는 비율을 %로 나타낸 것으로, 맨 밑에

'이론값'이라는 뜻은 저항값이 R_1 =0.991k Ω , R_2 =1.488k Ω , R_3 =1.205k Ω 일 때 이상적인 전압의 분배를 나타낸 것이다. 이론값과의 차이는 -0.068퍼센트포인트부터 0.103퍼센트포인트까지 나타났다.

(3)병렬회로

$V_s(V)$	전원공급기에 서 공급하는 전류(mA)	I_1 (mA)	$V_{ m s}/I_{ m l}$	$R_1({ m k}\Omega)$	R_1 대비 $V_{ m s}/I_{ m l}$ 차이
1	2.44	1.01	0.99	0.991	-0.091%
2	4.81	2.02	0.99	0.991	-0.091%
3	7.4	3.05	0.98	0.991	-0.746%
4	9.68	4.04	0.99	0.991	-0.091%
5	12.03	4.99	1.00	0.991	1.110%

< 표10 : 병렬회로에서 R_1 에 걸린 전압과 흐르는 전류를 바탕으로, 전압/전류와 저항값의 비교> 표10은 병렬회로에서 R_1 에 걸린 전압/ R_1 에 흐르는 전류와 멀티미터로 측정한 저항값을 비교한 것으로, 차이는 측정한 전류값 대비 V_s/I_1 가 얼마나 차이나는지 %로 표시하였다.

<그림 11 : 병렬회로에서 R_1 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것>

그림11은 R_1 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것으로, 선형 추세선의 기울기는 1.0018, 즉 V_s/I_1 는 평균적으로 $1.00 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $0.991 \mathrm{k}\Omega$ 대비 약 0.908% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y = 0.9943x, $R^2 = 0.9997$ 로, 약 0.99kΩ이 나오며, 이는 멀티미터로 측정한 저항값 0.991kΩ대비 약 0.1% 차이 난다.

$V_{\scriptscriptstyle \mathcal{S}}(V)$	전원공급기에 서 공급하는 전류(mA)	I_2 (mA)	$V_{ m s}/I_{ m 2}$	$R_2({ m k}\Omega)$	R_2 대비 V_s/I_2 차이
1	2.44	0.649	1.54	1.488	3.551%
2	4.81	1.278	1.56	1.488	5.171%
3	7.4	1.912	1.57	1.488	5.446%
4	9.68	2.66	1.50	1.488	1.059%
5	12.03	3.32	1.51	1.488	1.211%

<표11 : 병렬회로에서 R_2 에 걸린 전압과 흐르는 전류를 바탕으로, 전압/전류와 저항값의 비교>표11은 병렬회로에서 R_2 에 걸린 전압/ R_2 에 흐르는 전류와 멀티미터로 측정한 저항값을 비교한 것으로, 차이는 측정한 전류값 대비 V_s/I_2 가 얼마나 차이나는지 %로 표시하였다.

<그림 12 : 병렬회로에서 R_2 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것>

그림12는 R_2 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것으로, 선형 추세선의 기울기는 1.4857, 즉 V_s/I_2 는 평균적으로 1.49k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 0.134% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.5197x, $R^2=0.9984$ 로, 약 1.52k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 2.15% 차이난다.

$V_s(V)$	전원공급기에 서 공급하는 전류(mA)	I_3 (mA)	$V_{ m s}/I_{ m 3}$	R_3 (k Ω)	R_3 대비 $V_{\scriptscriptstyle S}/I_3$ 차이
1	2.44	0.809	1.24	1.205	2.580%
2	4.81	1.584	1.26	1.205	4.782%
3	7.4	2.46	1.22	1.205	1.204%
4	9.68	3.33	1.20	1.205	-0.315%
5	12.03	4.18	1.20	1.205	-0.733%

<표12 : 병렬회로에서 R_3 에 걸린 전압과 흐르는 전류를 바탕으로, 전압/전류와 저항값의 비교> 표12는 병렬회로에서 R_3 에 걸린 전압/ R_3 에 흐르는 전류와 멀티미터로 측정한 저항값을 비교한 것으로, 차이는 측정한 전류값 대비 V_s/I_3 가 얼마나 차이나는지 %로 표시하였다.

<그림 13 : 병렬회로에서 R_3 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것>

그림13은 R_3 의 전류와 전압을 그래프에 나타내고, 최소평균제곱법을 이용하여 선형 추세선 그래프를 그린 것으로, 선형 추세선의 기울기는 1.1776, 즉 V_s/I_2 는 평균적으로 1.18k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.205k Ω 대비 약 2.075% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.2065x, $R^2=0.9988$ 로, 약 1.21kΩ이 나오며, 이는 멀티미터로 측정한 저항값 1.205kΩ대비 약 0.415% 차이난다.

V_s (V)	전원공급기 에서 공급하는 전류(mA)	I_1 (mA)	$I_2(mA)$	I_3 (mA)	$\begin{array}{c c} I_1+I_2+I_3\\ \text{(mA)} \end{array}$	공급기 전류 대비 $I_1 + I_2 + I_3$
1	2.44	1.01	0.649	0.809	2.468	1.148%
2	4.81	2.02	1.278	1.584	4.882	1.497%
3	7.4	3.05	1.912	2.46	7.422	0.297%
4	9.68	4.04	2.66	3.33	10.03	3.616%
5	12.03	4.99	3.32	4.18	12.49	3.824%

<표13 병렬회로에서, 전체 흐르는 전류와 $\sum_{n=1}^{3} I_n (= I_1 + I_2 + I_3)$ 비교>

표13은 병렬회로에서, 전체 흐르는 전류와 $\sum_{n=1}^3 I_n (=I_1+I_2+I_3)$ 를 비교한 것으로, 공급한 전류대비 $I_1+I_2+I_3$ 는 0.297%~3.824%정도 차이가 났다.

<그림14 : 전체 전류와 $I_1+I_2+I_3$ 를 그래프에 나타내고, 최소평균제곱법을 이용하여 추세선을 그린 것으로 선형 추세선의 기울기는 1.047 즉 전체 전류 대비 $I_1+I_2+I_3$ 가 평균적으로 1.05배 높음을 알 수 있다.

y절편을 0으로 하여 다시 추세선을 그리면 y=1.0295x, $R^2=0.999$ 로, 전체 전류 대비 $I_1+I_2+I_3$ 가 평균적으로 1.03배 높음을 알 수 있다.

V	I_1 (mA)	$I_2({ m mA})$	I_3 (mA)	$I_1(\%)$	$I_{2}(\%)$	$I_3(\%)$
1V	1.01	0.649	0.809	40.92%	26.30%	32.78%
2V	2.02	1.278	1.584	41.38%	26.18%	32.45%
3V	3.05	1.912	2.46	41.09%	25.76%	33.14%
4V	4.04	2.66	3.33	40.28%	26.52%	33.20%
5V	4.99	3.32	4.18	39.95%	26.58%	33.47%
이상적				40.19%	26.76%	33.05%

<표9 : $\sum_{n=1}^{3} I_n$ 중에서 I_1 , I_2 , I_3 이 차지하는 비율을 %로 나타낸 것>

표9는 $\sum_{n=1}^3 V_n$ 중에서 I_1 , I_2 , I_3 이 차지하는 비율을 %로 나타낸 것으로, 맨 밑에 '이론값'이라는 뜻은 저항값이 R_1 =0.991k Ω , R_2 =1.488k Ω , R_3 =1.205k Ω 일 때 이상적인 전류의 분배를 나타낸

$$\frac{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}{\frac{1}{R_n} + \frac{1}{R_2}}$$
 것이다.(= $\frac{1}{R_n} + \frac{1}{R_2} + \frac{1}{R_3}$)이론값과의 차이는 -1 퍼센트포인트부터 1.19 퍼센트포인트까지 다양하게 나타났다.

7. 결과에 대한 논의

(1)저항

표4에서 알 수 있듯, 색저항에 표시된 저항대비 저항측정값은 저항1은 -0.9%, 저항2는 -0.8%, 저항3은 0.4%의 오차가 나타났다. 이는 색저항에 표시된 오차 ± 5 % 안에 드는 것이며, 멀티미터 저항 측정 오차(± 0.8 %)가 원인일 수 있다.

(2)옴의 법칙 확인

$-R_1$, 직렬

그림7에서 선형 추세선의 기울기는 1.03337, 즉 V_1/I 는 평균적으로 $1.033\mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $0.991\mathrm{k}\Omega$ 대비 약 4.238% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.0186x, $R^2=0.9993$ 로, 약 1.019kΩ이 나오며, 이는 멀티미터로 측정한 저항값 0.991kΩ대비 약 2.825% 차이난다.

$-R_2$, 직렬

그림8에서 선형 추세선의 기울기는 1.5448, 즉 V_2/I 는 평균적으로 1.545k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 3.831% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.5261x, $R^2=0.9992$ 로, 약 1.526k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 2.554% 차이난다.

$-R_3$, 직렬

그림9에서 선형 추세선의 기울기는 1.2497, 즉 V_3/I 는 평균적으로 $1.25 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $1.205 \mathrm{k}\Omega$ 대비 약 3.734% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.2348x, $R^2=0.9992$ 로, 약 1.235k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.205k Ω 대비 약 2.49% 차이난다.

$-R_1$, 병렬

그림11에서 선형 추세선의 기울기는 1.0018, 즉 $V_{\rm s}/I_{\rm l}$ 는 평균적으로 $1.00{\rm k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $0.991{\rm k}\Omega$ 대비 약 0.908% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y = 0.9943x, $R^2 = 0.9997$ 로, 약 0.99kΩ이 나오며, 이는 멀티미터로 측정한 저항값 0.991kΩ대비 약 0.1% 차이 난다.

$-R_2$, 병렬

그림 12에서선형 추세선의 기울기는 1.4857, 즉 V_s/I_2 는 평균적으로 1.49k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 0.134% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.5197x, $R^2=0.9984$ 로, 약 1.52k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 2.15% 차이난다.

$-R_3$, 병렬

선형 추세선의 기울기는 1.1776, 즉 V_{\circ}/I_{2} 는 평균적으로 $1.18 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로

측정한 저항값 1.205kΩ 대비 약 2.075% 차이난다.

y절편을 0으로 설정하여 추세선을 그리면 y=1.2065x, $R^2=0.9988$ 로, 약 1.21kΩ이 나오며, 이는 멀티미터로 측정한 저항값 1.205kΩ대비 약 0.415% 차이난다.

오차의 원인은 DC전압 오차($\pm 0.5\%$) DC전류 오차($\pm 1\%$), 저항측정 오차($\pm 0.8\%$) 등 멀티미터의 오차가 크다고 생각한다. 만약 최대로 오차가 났을 경우

 $\dfrac{\Delta\,\mathrm{G}^*\,0.995}{\Delta\,\mathrm{G}^*\,1.01} pprox \dfrac{\Delta\,\mathrm{G}}{\Delta\,\mathrm{G}} imes 0.985, \ \dfrac{\Delta\,\mathrm{G}^*\,1.005}{\Delta\,\mathrm{G}^*\,8.099} pprox \dfrac{\Delta\,\mathrm{G}}{\Delta\,\mathrm{G}} imes 1.015 \ \ \, \bigcirc \ \, 1.5\%$ 의 오차가 나타나게된다. 이 원인은 병렬연결의 결과에서는 오차의 원인으로 볼 수 있다. 다만 이것만으로 직렬에서 V_n/I 가 멀티미터로 측정한 저항값대비 약 4%정도 차이나는 것을 다 설명할 수 없다. 아마도집게전선이 측정하고자 하는 저항외 다른 저항과 접지되는 등의 실수가 있었을 것 같다.

집게전선에 절연고무가 없어 손(저항 3000Ω 으로 가정)으로 잡고 측정하였는데, 이 경우 전류계(내부저항 0.1Ω)로 흐르는 전류는 측정하고자 하는 전류의 99.997%가 측정되므로 별 영향을 주지 않았을 것이다.

그리고 일반적으로 브레드보드에 쓰이는 점퍼선은 28AWG를 쓰는데, 28AWG는 일반적으로 $212.9\Omega/1000$ m 이므로, 실험에서 사용한 10cm 점퍼선의 경우 약 0.0213Ω , 직류전원공급기 등에 연결되었는 18AWG 전선 1m의 저항이 약 0.021Ω 이여서 다합쳐도 1Ω (= $0.001k\Omega$)정도여서 크게 영향을 주지는 않았을 것 같다.

오차를 고려하면, (특히 병렬에서) $V = IR(R = \frac{V}{I})$ 를 확인할 수 있었다.

(3)키르히호프 법칙확인

@Kirchhoff's current law(키르히호프 전류 법칙, KCL)확인

그림14에서 전체 전류- $I_1+I_2+I_3$ 를 그래프를 보면, 선형 추세선이 y=1.047x-0.1557로 전체 전류 대비 $I_1+I_2+I_3$ 가 평균적으로 1.05배 높음을 알 수 있다.

또 표13에서 전체 전류대비 $I_1 + I_2 + I_3$ 는 0.022mA~0.072mA정도 더 높았다.

오차의 원인 중 하나는 멀티미터의 전류 측정 오차($\pm 1\%$)로 볼 수 있다. 오차를 감안하면 키르히호프 전류 법칙을 확인할 수 있었다.

⑤Kirchhoff's voltage law(키르히호프 전압 법칙, KVL)확인

그림 10에서 공급한 전압-(V_1 + V_2 + V_3)그래프를 보면 추세선이 y=1.0118x+0.004로, 평균적으로 공급한 전압의 1.01배가 V_1 + V_2 + V_3 임을 알 수 있다.

오차의 원인은 전압강하(voltage droop)으로 보인다. 직류전원공급기에서 공급하는 전력(W)는 0.000277W~0.006705W로 매우 작다. 이 때 직류전원공급기는 표시된 전압보다 약간 높게 전압을 보낸다.(약 1%) 왜냐하면 전압강하 없이 레귤레이터(교류를 직류로 바꿔주는 장치)가 동작하면 급격한 전류 상승/강하에 의해 전압이 급강하/급상승하기 때문이다.

이는 컴퓨터 부품 중 하나인 파워서플라이에도 나타나는 것으로, Super Flower Computer

사의 SF-500R12A 파워서플라이의 5V출력부분의 경우 5.04V/1.06A, 5.03V/2.11A, 4.98V/5.26A, 4.91V/10.52A로 Voltage droop이 일어남을 알 수 있다. 따라서 오차를 감안하면, Kirchhoff's voltage law(키르히호프 전압 법칙, KVL)를 확인할 수 있었다.

8.결과

(1)직렬 회로

전압 1V, 2V, 3V, 4V, 5V에서 직렬로 연결된 저항 R_1, R_2, R_3 양단의 전위차 V_1, V_2, V_3 와 전류 I를 측정하고 얻은 데이터를 최소제곱법을 활용하여 저항을 구하였다.(그림1, 그림5, 그림6 참고)

 R_1 의 데이터로 얻은 추세선의 기울기가 1.03337, 즉 V_1/I 는 평균적으로 $1.033 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $0.991 \mathrm{k}\Omega$ 대비 약 4.238% 차이난다.

 R_2 의 데이터로 얻은 추세선의 기울기는 1.5448, 즉 V_2/I 는 평균적으로 $1.545 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $1.488 \mathrm{k}\Omega$ 대비 약 3.831% 차이난다.

 R_3 의 데이터로 얻은 추세선의 기울기는 1.2497, 즉 V_3/I 는 평균적으로 $1.25 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $1.205 \mathrm{k}\Omega$ 대비 약 3.734% 차이난다.

오차의 원인은 멀티미터의 오차와 다른 저항와 접지 등의 실수로 보이며 집게 전선을 손으로 잡고 측정한 것이나, 전선의 저항은 거의 영향을 끼치지 않은 것으로 보인다.

오차를 감안하면 옴의 법칙을 확인할 수 있었다.

그림 10에서 공급한 전압- $(V_1+V_2+V_3)$ 그래프를 보면 추세선이 y=1.0118x+0.004로, 평균적으로 공급한 전압의 1.01배가 $V_1+V_2+V_3$ 임을 알 수 있다. 오차의 원인은 전압 강하(Voltage droop)으로 보이며 오차를 감안하면 키르히호프 전압 법칙(KVL)을 확인할 수 있었다.

(2)병렬 회로

전체 전압 V_p 를 1V, 2V, 3V, 4V, 5V로 맞추고 멀티미터로 병렬연결된 저항 R_1,R_2,R_3 에 흐르는 전류 I_1,I_2,I_3 와 전위차 V_p 를 측정한다. 그리고 측정하여 얻은 데이터를 최소 제곱법을 활용하여 각 저항을 구하였다.

 R_1 에서 추세선의 기울기는 1.0018, 즉 V_s/I_1 는 평균적으로 $1.00 \mathrm{k}\Omega$ 이 나오며, 이는 멀티미터로 측정한 저항값 $0.991 \mathrm{k}\Omega$ 대비 약 0.908% 차이난다.

 R_2 에서 선형 추세선의 기울기는 1.4857, 즉 V_s/I_2 는 평균적으로 1.49k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.488k Ω 대비 약 0.134% 차이난다.

 R_3 에서 추세선의 기울기는 1.1776, 즉 V_s/I_2 는 평균적으로 1.18k Ω 이 나오며, 이는 멀티미터로 측정한 저항값 1.205k Ω 대비 약 2.075% 차이난다.

오차의 원인은 멀티미터의 오차와 다른 저항와 접지 등의 실수로 보이며 집게 전선을 손으로 잡고 측정한 것이나, 전선의 저항은 거의 영향을 끼치지 않은 것으로 보인다. 오차를 감안하면 옴의 법칙을 확인할 수 있었다. 그림14에서 전체 전류- $I_1+I_2+I_3$ 를 그래프를 보면, 선형 추세선이 y=1.047x-0.1557로 전체 전류 대비 $I_1+I_2+I_3$ 가 평균적으로 1.05배 높음을 알 수 있다.

오차의 원인 중 하나는 멀티미터의 전류 측정 오차($\pm 1\%$)로 볼 수 있다. 오차를 고려하면 키르히호프 전류 법칙을 확인할 수 있었다.

9. 참고문헌

- ①일반물리학실험, 5판, 부산대학교 물리학교재편찬위원회, 청문각,2019
- ②Fundamentals of Electric Circuits, Sixth Edition, Christopher K. Alexander/Matthew N.O. Sadiku, McGraw-Hill Education, 2016
- @Wikipedia(Band gap) https://en.wikipedia.org/wiki/Band_gap
- ④부산대학교 일반물리학실험실, https://gplab.pusan.ac.kr/gplab/index..do
- ⑤연세대학교 일반물리학실험실, http://phylab.yonsei.ac.kr/
- ©Plug Load Solution, https://www.plugloadsolutions.com/80PlusPowerSupplies.aspx
 ©80 PLUS Verification and Testing Report(SF-500R12A ,Super Flower Computer Inc), https://clearesult5.sharepoint.com/sites/PLS/Shared%20Documents/Forms/AllItems.asp
 x?id=%2Fsites%2FPLS%2FShared%20Documents%2FSUPER%20FLOWER%20COMPUTER%2
 0INC%2E%5FSF%2D500R12A%5F500W%5FEU%2D295%5FReport%2Epdf&parent=%2Fsites%
 2FPLS%2FShared%20Documents&p=true&originalPath=aHR0cHM6Ly9jbGVhcmVzdWx0NS5
 zaGFyZXBvaW50LmNvbS86Yjovcy9QTFMvRWZvOG1RMmZCemREa3VEU1N5aHktMU1CMm
 FfVTFZNFFaZ29uRzJPMIIwR0lOdz9ydGltZT1pemZ3VFZnLTEwZw
- ⑧Wikipedia(Voltage droop), https://en.wikipedia.org/wiki/Voltage_droop ⑨위키백과(멀티미터),

https://ko.wikipedia.org/wiki/%EB%A9%80%ED%8B%B0%EB%AF%B8%ED%84%B0@Usefulldata(manual of multimeter XL830L),

https://usefulldata.com/manual-guide-multimeter-xl830l-with-pdf-instructions/

@lwatt,

http://www.1watt.org/wattbbs/board.php?board=frontpage&command=skin_insert&exe=insert_iboard1_front

⑩위키백과(미국 전선 규격),

https://ko.wikipedia.org/wiki/%EB%AF%B8%EA%B5%AD_%EC%A0%84%EC%84%A0_%EA%B7%9C%EA%B2%A9