Decision Trees and Random Forests Tutorial 1

Issam Laradji CPSC 340

Outline

- Decision Stump
- Decision Trees
- ▶ Random Forest

- ▶ **Idea** to determine the feature and the split threshold that maximizes a certain score
 - Classification score

```
# Compute classification score
score = np.sum(y_pred == y)
```

▶ Information gain

```
# Compute information gain
entropyTotal = entropy(y)
p_sat = sat_set.shape[0] / float(N)
p_not = 1. - p_sat
H_sat = entropy(sat_set)
H_not = entropy(not_set)
score = (entropyTotal - p_sat * H_sat - p_not * H_not)
```

▶ Consider this dataset of 6 samples and 2 features and with target values $\in \{1,2\}$

×1	x2	у
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	1

▶ Demonstrate classification scores for several splits

▶ Split s.t. y = 1 if x1 > 8 and y = 2 otherwise

×1	x2	у
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	1

▶ Split s.t. y = 1 if x1 > 62 and y = 2 otherwise

×1	x2	у
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	_1

▶ Split s.t. y = 1 if x1 > 135 and y = 2 otherwise

×1	x2	у
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	1

▶ Split s.t. y = 1 if $x^2 > 119$ and y = 2 otherwise

×1	x2	У
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	1

▶ Split s.t. y = 1 if $x^2 > 187$ and y = 2 otherwise

×1	x2	у
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	1

Decision Stump - best split

▶ Split s.t. y = 1 if x1 > 135 and y = 2 otherwise

x1	x2	у
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	1

Decision Tree

▶ A decision stump is a decisiont tree with depth 1

Decision Tree

▶ A decision stump is a decisiont tree with depth 1

Decision Tree

▶ A decision stump is a decisiont tree with depth 1

Random Forest - Ensemble learning

- Train more than one decision tree on different subsets of the dataset
- 2. Given a test sample, gather the decision tree predictions and
- ▶ take their mean, max, median, etc.

×1	x2	у
8	44	2
62	119	1
87	159	2
135	165	2
151	187	1
205	206	1

- For example,
 - train first decision tree on samples 1 and 2
 - ▶ train second decision tree on samples 2, 3, and 4
 - ▶ train third decision tree on samples 4,5, and 6

- ► On a farmer's fair 800 people volunteered to estimate the weight of an ox
- ► Galton reported 1,197 lb which is the average of the crowd's answers
 - ▶ The true value was 1,198 lbs
- Some people would overshoot or undershoot the ox's weight estimate
- ▶ However, if measurement errors are uncorrelated
 - wrong perceptions get averaged out

Predict coordinate of a GPS device

 Predict coordinate of a GPS device using the average of 2 model predictions

 Predict coordinate of a GPS device using the average of 4 model predictions

Ensemble learning - why does it work?

- ► The more samples and guesses you get the more likely their mean is the true value
- Central limit theorem as the number of guesses goes to infinity, you approach a normal distribution

- ► For example, the probability that a trained model predicts a value that is two standard deviations away from the value is low
- ▶ But your models are as good as your data
 - ► Still, it is the most popular technique to boost prediction scores in data science competitions

- ▶ Train a decision tree on different subsets of the dataset
- Consider the following trained decision trees

Figure 2: Decision Tree 2 - samples $\{1, 2\}$

- ▶ Train a decision tree on different subsets of the dataset
- Consider the following trained decision trees

Figure 3: Decision Tree 2 - samples $\{1, 2, 3, 4\}$

- Train a decision tree on different subsets of the dataset
- Consider the following trained decision trees

Figure 4: Decision Tree 3 - samples {4,5,6}

Random Forests - 3 decision trees

What is the result of taking the maximum of the 3 decision model predictions ?

Random Forests - 3 decision trees

Result of taking the maximum of the 3 decision model predictions

Conclusion

Decision stump

- Find the best split value (or threshold) for the best split variable (or feature)
- ► The best split is one that maximizes a certain score, such as classification score

Decision Tree

- ► A decision tree is a tree of decision stumps
- Stop splitting when depth is reached or the score is maximized (classification error = 0)

- Train several decision trees on different subsets of the dataset
- ► Take and process the ensemble of predictions to predict the target value of a test sample