431 Class 07

Thomas E. Love, Ph.D. 2022-09-20

Today's Agenda

- Working with dm1000
- Some More on Identifying Missing Data and working around it
- Summarizing Categorical Data

Today's Package Setup

```
1 library(Epi) ## for twoby2() function
2 library(gt) ## making tables
3 library(gtExtras) ## fancier tables
4 library(janitor)
5 library(kableExtra) ## for kbl() function
6 library(naniar)
7 library(patchwork)
8 library(tidyverse)
9
10 theme_set(theme_bw())
```

Loading Some New Data

```
1 dm1000 <- read_csv("c07/data/dm_1000.csv", show_col_types = FALSE) |>
2   clean_names() |>
3   mutate(across(where(is.character), as_factor)) |>
4   mutate(subject = as.character(subject))
```

- 1000 (simulated) patients with diabetes between the ages of 31 and 75 who live in Cuyahoga County and are in one of four race-ethnicity categories, as well as one of four insurance categories.
- Same variables we saw in dm431 last week, but 1000 new subjects, and one new variable (residence)

Listing of dm1000 tibble

dm1000# A tibble: 1,000 × 17 age insurance subject ht sbp dbp ldl n income wt a1c tobacco <chr> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> 1 M - 0.00155 Medicaid 29853 1.63 103. 145 70 6.4 221 Current 2 M - 000252 Commercial 31248 1.75 112. 151 8.5 116 Never 3 M - 000369 Medicare 1.65 74.9 8.9 52 23362 127 73 Former 4 M - 000457 Medicaid 26033 1.63 81.4 125 6.8 122 Never 74 1.69 10.3 5 M-0005 68 Medicare 85374 92.6 120 73 94 Never 6 M-0006 56 Medicaid 31273 1.71 54.6 127 75 12.3 NA Current 7 M - 000754 Commercial 25445 1.68 81.6 81 6.5 100 114 Current \bigcirc $\mathbf{x}_{\mathbf{f}}$ \bigcirc \bigcirc \bigcirc \bigcirc 4 F N/ - -1 - - - -

dm1000 Code Book (1 of 3)

Variable	Description	
subject	subject code (M-0001 through M-1000)	
age	subject's age, in years	
insurance	primary insurance, 4 levels	
n_income	neighborhood median income, in \$	
ht	height, in meters (2 decimal places)	
wt	weight, in kilograms (2 decimal places)	

dm1000 Code Book (2 of 3)

Variable	Description
sbp	most recent systolic blood pressure (mm Hg)
dbp	most recent diastolic blood pressure (mm Hg)
a1c	most recent Hemoglobin A1c (%)
ldl	most recent LDL cholesterol level (mg/dl)
tobacco	most recent tobacco status, 3 levels
statin	1 = prescribed a statin in past 12m, 0 = not

Remainder of dm1000 codebook

Variable	Description	
eye_exam	1 = diabetic eye exam in past 12m, 0 = no record of exam in past 12m	
race_ethnicity	race/ethnicity category, 3 levels	
sex	Female or Male	
county	all subjects live in Cuyahoga County	
residence	Cleveland or Suburbs	

Any Missing Data?

1 gg_miss_var(dm1000)

Counts of missingness, by variable

```
1 miss var summary(dm1000)
# A tibble: 17 \times 3
  variable n miss pct miss
              <int>
                       <dbl>
  <chr>
                 178 17.8
1 ldl
2 n income
               28 2.8
3 residence
            28 2.8
                  19 1.9
4 ht
5 tobacco
                 16
                     1.6
                  15
                      1.5
6 a1c
7 wt
                       0.6
                       0.6
8 sbp
 dbp
                         0.6
10 subject
                         0
11 age
12 insurance
```

10 ----

What does miss_var_table() do?

```
1 miss var table(dm1000)
 A tibble: 7 \times 3
 n miss in var n vars pct vars
          <int> <int>
                          <dbl>
                          47.1
                          17.6
3
                        5.88
                         5.88
             16
             19
                          5.88
             28
                        11.8
            178
                           5.88
```

What does miss_case_table() do?

```
1 miss case table(dm1000)
 A tibble: 7 \times 3
 n miss in case n cases pct cases
           <int>
                    <int>
                              <dbl>
                      772
                               77.2
                      181
                               18.1
3
                                3.2
                       32
                                 0.7
                                 0.5
                                 0.2
                                 0.1
```

miss_case_summary()?

```
miss case summary (dm1000)
\# A tibble: 1,000 \times 3
   case n miss pct miss
  <int> <int>
               <dbl>
    230
                35.3
    440
               29.4
               29.4
    970
               23.5
    107
    284
               23.5
                23.5
    288
    385
               23.5
               23.5
    891
               17.6
 9
    91
10
    241
                  17.6
# ... with 990 more rows
```

How should we summarize data with missing values?

It depends on what you'll do with the data.

- If you are providing a data summary, then you should summarize the complete cases, and specify the number of missing values.
- If you are intending to use the sample you've collected to make an inference about a process or population or to build a model, then you may want to consider whether or not a complete-case analysis will introduce bias.

What do graphs do with missing data?

```
1 ggplot(data = dm1000, aes(x = ldl)) +
2 geom_histogram(binwidth = 5, fill = "slateblue", col = "cyan")
```

Warning: Removed 178 rows containing non-finite values (stat_bin).

Exploring 1d1 in dm1000

```
p1 \leftarrow ggplot(dm1000, aes(sample = ldl)) +
 2
     geom qq(col = "slateblue") +
    geom gg line(col = "magenta") +
 4
     theme (aspect.ratio = 1) +
 5
     labs(title = "Normal Q-Q plot: dm1000 LDL")
 6
   p2 \leftarrow ggplot(dm1000, aes(x = ldl)) +
8
     geom histogram (aes (y = stat(density)),
 9
                     bins = 20, fill = "slateblue", col = "cyan") +
10
     stat function (fun = dnorm,
11
                    args = list(mean = mean(dm1000$ldl, na.rm = TRUE),
12
                                 sd = sd(dm1000\$ldl, na.rm = TRUE)),
13
                    col = "magenta", lwd = 1.5) +
14
     labs(title = "Density Function: dm1000 LDL")
15
   p3 \leftarrow ggplot(dm1000, aes(x = ldl, y = "")) +
17
     geom boxplot(fill = "slateblue", outlier.color = "slateblue") +
18
    labs(title = "Boxplot: dm1000 LDL", v = "")
```

Exploring 1d1 in dm1000

Silenced Warnings for previous plot

```
Warning: Removed 178 rows containing non-finite values (stat_qq).
Warning: Removed 178 rows containing non-finite values (stat_qq_line).
Warning: Removed 178 rows containing non-finite values (stat_bin).
Warning: Removed 178 rows containing non-finite values (stat_boxplot).
```

Numerical Summaries and Missing Data

```
1 summary (dm1000$1d1)
  Min. 1st Ou. Median Mean 3rd Ou.
                                                 NA's
                                        Max.
                        100.7 122.0
  25.0
          73.0
                  95.0
                                        243.0
                                                  178
 1 mosaic::favstats(~ ldl, data = dm1000)
Registered S3 method overwritten by 'mosaic':
 method
                                 from
 fortify.SpatialPolygonsDataFrame ggplot2
min 01 median 03 max
                         mean
                                    sd
                                         n missing
 25 73
           95 122 243 100.7202 37.05353 822
                                               178
```

There, I could/should have silenced the message with {r,
 message = FALSE} in the code chunk header.

Subgroups of Interest

I don't like that insurance ordering.

```
dm1000 < - dm1000 >
    mutate(insurance = fct relevel(insurance,
3
                                   "Medicare", "Commercial", "Medicaid"))
4
   dm1000 |> tabyl(residence, insurance)
residence Medicare Commercial Medicaid Uninsured
  Suburbs
              163
                          75
                                  114
                                             19
Cleveland 259
                                  201
                         119
    \langle NA \rangle
          10
                                  1.5
```

LDL by Residence

```
1 ggplot(data = dm1000, aes(x = residence, y = ldl)) +
2    geom_violin(aes(fill = residence)) +
3    geom_boxplot(width = 0.3) +
4    scale_fill_viridis_d(begin = 0.5, option = "D") +
5    guides(fill = "none")
```


LDL by Residence, again

```
1 tempdat <- dm1000 |> filter(complete.cases(residence))
2
3 ggplot(data = tempdat, aes(x = residence, y = ldl)) +
4    geom_violin(aes(fill = residence)) +
5    geom_boxplot(width = 0.3) +
6    scale_fill_viridis_d(begin = 0.5, option = "D") +
7    guides(fill = "none")
```


Grouped Numerical Summaries LDL by Residence

LDL by Insurance

LDL by Insurance

```
1 ggplot(data = dm1000, aes(x = insurance, y = ldl)) +
2    geom_violin() +
3    geom_boxplot(aes(fill = insurance), width = 0.3, notch = TRUE) +
4    scale_fill_viridis_d(begin = 0.5, option = "A") +
5    guides(fill = "none")
```


Visualizing Categorical Data in dm1000

Categorical Variables from dm1000

```
dm cat <- dm1000 \mid >
     select (subject, sex, residence, insurance,
            tobacco, race ethnicity, statin, eye exam)
   dm cat
# A tibble: 1,000 \times 8
  subject sex residence insurance tobacco race ethnicity
                                                                statin
eye e...1
  <chr> <fct> <fct> <fct>
                                     <fct>
                                             <fct>
                                                                 <dbl>
<dbl>
1 M-0001 Female Suburbs Medicaid Current Non-Hispanic Black
2 M-0002 Male
               Cleveland Commercial Never
                                             Non-Hispanic Black
3 M-0003 Female Cleveland Medicare
                                     Former
                                             Hispanic or Latinx
4 M-0004 Female Cleveland Medicaid
                                             Hispanic or Latinx
                                     Never
5 M-0005 Female Suburbs
                           Medicare
                                      Never
                                             Non-Hispanic White
                 ~ 1 - - - 1 - - - 1 N/ - -1 - - - - - 1
```

Codebook for dm_cat

- sex = Female or Male (no missing data)
- insurance = Medicare, Commercial, Medicaid, Uninsured
- eye_exam = 1 for eye examination in past year, else 0
- statin = 1 statin prescription in past year, else 0
- race_ethnicity = 4 levels (Hispanic or Latinx, Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian)
- residence = 2 levels (Suburbs, Cleveland), some NA
- tobacco = 3 levels (Current, Former, Never), some NA

summary() check of levels

```
dm cat |> select(-subject) |> summary()
               residence
                               insurance
                                            tobacco
   sex
Female: 550 Suburbs : 371 Medicare : 432
                                         Current: 274
Male: 450 Cleveland: 601 Commercial: 196
                                         Never: 343
           NA's : 28 Medicaid :330 Former :367
                          Uninsured: 42
                                         NA's : 16
          race ethnicity
                       statin
                                         eye exam
Non-Hispanic Black:533
                       Min. :0.000
                                      Min. :0.000
Hispanic or Latinx: 91 1st Ou.:1.000
                                      1st Ou.:0.000
Non-Hispanic White: 356
                       Median :1.000
                                      Median :1.000
Non-Hispanic Asian: 20
                       Mean :0.758
                                     Mean :0.562
                       3rd Ou.:1.000
                                      3rd Ou.:1.000
                       Max. :1.000
                                      Max. :1.000
```

Do we need to treat statin and eye_exam differently?

Creating a statin_f factor

Using count to create a tibble of counts

```
1 dm_cat |> count(tobacco)
# A tibble: 4 × 2
  tobacco    n
  <fct> <int>
1 Current    274
2 Never    343
3 Former    367
4 <NA>    16
```

Tabulating a categorical variable

Does this order make sense?

Changing Order of tobacco levels

- Does this order make more sense?
- fct_relevel() is one of many useful tools in forcats.

Using the forcats package

In addition to fct_relevel() and fct_recode(),...

- fct_reorder(): reordering a factor by another variable
- fct_infreq(): reordering a factor by its frequency of values
- fct_lump(): collapsing least frequent values into "other"
- and several others

forcats references

- 1. I use the forcats tools frequently in our Course Notes
- 2. https://forcats.tidyverse.org/ forcats web page, especially the vignette
- 3. RStudio Cheat Sheet on Factors with forcats (pdf)
- 4. R for Data Science on Factors

Using gt to make a table prettier

```
1 dm_cat |>
2  tabyl(tobacco) |>
3  adorn_pct_formatting() |>
4  adorn_totals() |>
5  gt() |>
6  tab_header(title = "Tobacco Status from dm1000")
```

Tobacco Status from dm1000						
tobacco	n	percent	valid_percent			
Current	274	27.4%	27.8%			
Former	367	36.7%	37.3%			
Never	343	34.3%	34.9%			
NA	16	1.6%	-			
Total	1000	-	-			

 https://gt.rstudio.com/ provides an amazing array of options.

gtExtras lets us build 538-style tables

```
1 dm_cat |>
2  tabyl(tobacco) |>
3  adorn_pct_formatting() |>
4  adorn_totals() |>
5  gt() |>
6  gt_theme_538() |>
7  tab_header(title = "Table styled like 538")
```

Table styled like 538

TOBACCO	N	PERCENT	VALID_PERCENT
Current	274	27.4%	27.8%
Former	367	36.7%	37.3%
Never	343	34.3%	34.9%
NA	16	1.6%	-
Total	1000	-	-

gtExtras lets us build NYT-style tables

```
1 dm_cat |> tabyl(tobacco) |> adorn_pct_formatting() |> adorn_totals() |>
2   gt() |>
3   gt_theme_nytimes() |>
4   tab_header(title = "Table styled like the New York Times")
```

Table styled like the New York Times

TOBACCO	N	PERCENT	VALID_PERCENT
Current	274	27.4%	27.8%
Former	367	36.7%	37.3%
Never	343	34.3%	34.9%
NA	16	1.6%	-
Total	1000	-	-

There's also a gt_theme_espn() and several others.

Using geom_bar to show a distribution

```
1 ggplot(dm_cat, aes(x = tobacco)) +
2 geom_bar()
```


Augmenting the geom_bar result

Augmenting the geom_bar result

Using count to create a tibble of counts

```
count(statin, tobacco)
# A tibble: 8 \times 3
  statin tobacco
                       n
   <dbl> <fct>
                <int>
       0 Current
                      67
                      80
       0 Former
       0 Never
       0 < NA >
                     207
       1 Current
       1 Former
                     287
       1 Never
                     251
                      13
       1 <NA>
```

dm cat |>

```
dm cat |>
     count(insurance, residence)
# A tibble: 12 \times 3
  insurance residence
                          n
  <fct> <fct>
                       <int>
 1 Medicare Suburbs
                         163
                         259
 2 Medicare Cleveland
 3 Medicare <NA>
                         10
 4 Commercial Suburbs
 5 Commercial Cleveland
                         119
 6 Commercial <NA>
 7 Medicaid Suburbs
                         114
 8 Medicaid Cleveland
                         201
 9 Medicaid <NA>
                          15
10 Uninsured Suburbs
                          19
11 Uninsured Cleveland
                          22
12 Uninsured <NA>
```

Cross-Tabulations

```
1 dm cat |> tabyl(insurance, residence)
 insurance Suburbs Cleveland NA
 Medicare
             163
                      259 10
Commercial 75
                      119 2
 Medicaid 114
                      201 15
Uninsured 19
  dm cat |>
    filter(complete.cases(insurance, residence)) |>
   tabyl(insurance, residence) |>
    adorn totals(where = c("row", "col")) |>
5
    qt()
```

insurance	Suburbs	Cleveland	Total	
Medicare	163	259	422	
Commercial	75	119	194	
Medicaid	114	201	315	
Uninsured	19	22	41	
Total	371	601	972	

Were suburban residents more likely to have a statin prescription?

```
1 dm_cat |>
2  filter(complete.cases(statin, residence)) |>
3  tabyl(residence, statin)

residence 0 1
Suburbs 77 294
Cleveland 157 444
```

Revise statin order, add percentages

```
1 dm cat |> filter(complete.cases(statin, residence)) |>
  mutate(statin = fct relevel(factor(statin), "1", "0")) |>
  tabyl (residence, statin)
residence 1 0
  Suburbs 294 77
Cleveland 444 157
   dm cat |> filter(complete.cases(statin, residence)) |>
   mutate(statin = fct relevel(factor(statin), "1", "0")) |>
   tabyl(residence, statin) |>
   adorn percentages(denom = "row") |>
   adorn pct formatting()
residence 1
  Suburbs 79.2% 20.8%
Cleveland 73.9% 26.1%
```

Create using table instead

```
1 tempdat1 <- dm_cat |>
2  filter(complete.cases(statin, residence)) |>
3  mutate(statin = fct_relevel(factor(statin), "1", "0"))
4
5 tab1 <- table(tempdat1$residence, tempdat1$statin)
6
7 tab1</pre>
```

```
1 0
Suburbs 294 77
Cleveland 444 157
```

Assess 2x2 table

```
1 twoby2(tab1) # twoby2() is part of the Epi package
2 by 2 table analysis:
Outcome : 1
Comparing: Suburbs vs. Cleveland
            0 P(1) 95% conf. interval
Suburbs 294 77 0.7925 0.7482 0.8307
Cleveland 444 157 0.7388 0.7022 0.7723
                                95% conf. interval
           Relative Risk: 1.0727 0.9996 1.1510
        Sample Odds Ratio: 1.3501 0.9903 1.8407
Conditional MLE Odds Ratio: 1.3497 0.9805 1.8679
   Probability difference: 0.0537 -0.0018 0.1065
            n---- n ---1--- n 0000
```


A three-by-four two-way table

```
dm cat |> filter(complete.cases(tobacco, insurance)) |>
   tabyl(tobacco, insurance) |>
    adorn totals(where = c("row", "col"))
tobacco Medicare Commercial Medicaid Uninsured Total
            99
                      44
                             118
                                       1.3
                                           274
Current
           183
                      70 103
                                       11 367
Former
       140
                     80 105
                                       18 343
 Never
 Total
       422
                     194 326
                                       42 984
```

- 3 rows, 4 columns: hence, this is a 3 x 4 table
- It's a two-way table, because we are studying the association of two variables (tobacco and insurance)
- Compare insurance percentages by tobacco group?

Insurance rates by tobacco group

```
1 dm_cat |> filter(complete.cases(tobacco, insurance)) |>
2   tabyl(tobacco, insurance) |>
3   adorn_percentages(denominator = "row") |>
4   adorn_totals(where = "col") |> kbl(digits = 3)
```

tobacco	Medicare	Commercial	Medicaid	Uninsured	Total
Current	0.361	0.161	0.431	0.047	1
Former	0.499	0.191	0.281	0.030	1
Never	0.408	0.233	0.306	0.052	1

- These are **proportions** and not percentages.
- Proportions fall between 0 and 1: multiply by 100 for percentages.

Insurance rates by tobacco group?

```
1 tempdat2 <- dm_cat |>
2  filter(complete.cases(tobacco, insurance))
3
4 tab2 <- table(tempdat2$tobacco, tempdat2$insurance)
5
6 tab2</pre>
```

```
Medicare Commercial Medicaid Uninsured Current 99 44 118 13 Former 183 70 103 11 Never 140 80 105 18
```

```
1 chisq.test(tab2)
```

```
Pearson's Chi-squared test
```

```
data: tab2
X-squared = 25.592, df = 6, p-value = 0.0002651
```

Using count for three variables

```
dm cat |> count(sex, statin, residence)
\# A tibble: 12 \times 4
          statin residence
   sex
                                n
   <fct> <dbl> <fct>
                            <int>
                               42
 1 Female
               0 Suburbs
               0 Cleveland
 2 Female
                               87
 3 Female
               0 < NA >
                                4
 4 Female
               1 Suburbs
                              160
 5 Female
               1 Cleveland
                              245
 6 Female
               1 <NA>
                              12
               0 Suburbs
                               35
 7 Male
               0 Cleveland
 8 Male
                               70
 9 Male
               0 <NA>
                                4
10 Male
               1 Suburbs
                              134
               1 Cleveland
11 Male
                              199
12 Male
               1 <NA>
                                8
```

A three-way table via taby1

269 438

169

Total

```
dm cat |>
    filter(complete.cases(statin, residence, sex)) |>
   tabyl(statin, residence, sex) |>
    adorn totals(where = c("row", "col")) |>
     adorn title()
$Female
      residence
        Suburbs Cleveland Total
statin
            42
                87
                       129
     0
      160 245 405
 Total 202
                    332 534
$Male
      residence
statin
        Suburbs Cleveland Total
            35
                 70 105
     0
      134 199 333
```

Flattening a three-way table

 Note that ftable() excludes the missing residence values by default.

Plotting a 3-Way Table (Counts)

```
ggplot(data = filter(dm_cat, complete.cases(residence)),
aes(x = residence, y = factor(statin))) +
geom_count() +
facet_wrap(~ sex, labeller = "label_both")
```


Plotting a 3-Way Table (Jitter)

```
1 ggplot(data = filter(dm_cat, complete.cases(residence)),
2     aes(x = residence, y = sex)) +
3     geom_jitter() +
4    facet_wrap(~ statin, labeller = "label_both")
```


Multi-categorical 3-Way Table

```
1 dm_cat |>
2  filter(complete.cases(insurance, race_ethnicity, tobacco)) |>
3  tabyl(race_ethnicity, insurance, tobacco) |>
4  adorn_totals(where = c("row", "col")) |>
5  adorn_title()
```

\$Current

	ınsurance				
race_ethnicity	Medicare	Commercial	Medicaid	Uninsured	Total
Non-Hispanic Black	58	26	80	3	167
Hispanic or Latinx	6	0	7	1	14
Non-Hispanic White	35	17	31	9	92
Non-Hispanic Asian	0	1	0	0	1
Total	99	44	118	13	274

\$Former

	ınsurance				
race_ethnicity	Medicare	Commercial	Medicaid	Uninsured	Total
Non-Hispanic Black	96	34	66	5	201
Hispanic or Latinx	15	7	9	2	33
Non-Hispanic White	72	28	27	4	131
NT TT	\land	1	1	^	\sim

Multi-categorical 3-Way Counts

```
ggplot(data = filter(dm_cat, complete.cases(tobacco)),
aes(x = insurance, y = race_ethnicity)) +
geom_count() +
facet_wrap(~ tobacco, labeller = "label_both")
```


Multi-categorical 3-Way Jitter Plot

```
ggplot(data = filter(dm_cat, complete.cases(tobacco)),
aes(x = insurance, y = race_ethnicity)) +
geom_jitter() +
facet_wrap(~ tobacco, labeller = "label_both")
```


RStudio Cheat Sheets

https://www.rstudio.com/resources/cheatsheets/

 Data visualization with ggplot2 Cheatsheet shown on next two slides...

Other cheatsheets I use a lot include:

- Data transformation with dplyr
- Data import with readr, readxl, and googlesheets4
- Factors with forcats
- Dynamic documents with rmarkdown

Data visualization with ggplot2:: cheat sheet

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system. and geoms—visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

Complete the template below to build a graph.

ggplot (data = (DATA>) + <GEOM FUNCTION> (mapping = aes) <MAP stat = <STAT>, position = <POSITION>) + <COORDINATE FUNCTION> + <FACET FUNCTION> + <SCALE FUNCTION> + <THEME FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer.

last plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Aes Common aesthetic values.

color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash",

lineend - string ("round", "butt", or "square")

linejoin - string ("round", "mitre", or "bevel") size - integer (line width in mm) 0 1 2 3 4 5 6 7 8 9 10 11 12 □ ○△+×◇▽◎★◆⊕巡⊞ shape - integer/shape name or 13 14 15 16 17 18 19 20 21 22 23 24 25

a single character ("a") ⊠⊠□○△♦○●□♦△♥

Geoms Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

a + geom_blank() and a + expand_limits() Ensure limits include values across all plots.

b + geom_curve(aes(vend = lat + 1. xend = long + 1), curvature = 1) - x, xend, v, vend, alpha, angle, color, curvature, linetype, size

a + geom_path(lineend = "butt". linejoin = "round", linemitre = 1) x, y, alpha, color, group, linetype, size

color, fill, group, subgroup, linetype, size b + geom_rect(aes(xmin = long, ymin = lat, xmax = long + 1, ymax = lat + 1)) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

a + geom_polygon(aes(alpha = 50)) - x, y, alpha,

a + geom_ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

b + geom abline(aes(intercept = 0, slope = 1)) b + geom_hline(aes(yintercept = lat)) b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(vend = lat + 1, xend = long + 1)) b + geom_spoke(aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin")

x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot() x, y, alpha, color, fill

c + geom freqpoly() x, y, alpha, color, group, linetype, size

c + geom histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

d <- ggplot(mpg, aes(fl))

d + geom_bar()

x, alpha, color, fill, linetype, size, weight

TWO VARIABLES

both continuous

e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1. nudge_y = 1) - x, y, label, alpha, angle, color, family fontface, hiust, lineheight, size, viust

e + geom_point() x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile() x, y, alpha, color, group, linetype, size, weight

e + geom_rug(sides = "bl") x, y, alpha, color, linetype, size

e + geom_smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

e + geom_text(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

one discrete, one continuous f <- ggplot(mpg, aes(class, hwy))

x, y, lower, middle, upper, ymax, ymin, alpha,

color, fill, group, linetype, shape, size, weight f + geom_dotplot(binaxis = "y", stackdir = "center") x, y, alpha, color, fill, group

f + geom_violin(scale = "area") x, y, alpha, color, fill, group, linetype, size, weight

both discrete

g <- ggplot(diamonds, aes(cut, color))

g + geom count() x, y, alpha, color, fill, shape, size, stroke

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

continuous bivariate distribution h <- ggplot(diamonds, aes(carat, price))

continuous function

i <- ggplot(economics, aes(date, unemploy))

x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

visualizing error

 $df \leftarrow data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)$ i <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

j + geom_crossbar(fatten = 2) - x, y, ymax, ymin, alpha, color, fill, group, linetype, size

j + geom_errorbar() - x, ymax, ymin, alpha, color, group, linetype, size, width

Also geom errorbarh(). j + geom_linerange() x, ymin, ymax, alpha, color, group, linetype, size

j + geom_pointrange() - x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) map <- map data("state") k <- ggplot(data, aes(fill = murder))

k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat)
map_id, alpha, color, fill, linetype, size

THREE VARIABLES

seals\$z <- with(seals, sgrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))

l + geom contour(aes(z=z))x, y, z, alpha, color, group, linetype, size, weight

l + geom_raster(aes(fill = z), hjust = 0.5, vjust = 0.5, interpolate = FALSE) x, y, alpha, fill

l + geom tile(aes(fill = z)) x, y, alpha, color, fill, linetype, size, width

RStudio® is a trademark of RStudio, PBC • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at ggplot2.tidyverse.org • ggplot2 3.3.5 • Updated: 2021-08

RStudio® is a trademark of RStudio, PBC • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at ggplot2.tidyverse.org • ggplot2 3.3.5 • Updated: 2021-08

Session Information

```
1 sessionInfo()
R version 4.2.1 (2022-06-23 ucrt)
Platform: x86 64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)
Matrix products: default
locale:
[1] LC COLLATE=English United States.utf8
[2] LC CTYPE=English United States.utf8
[3] LC MONETARY=English United States.utf8
[4] LC NUMERIC=C
[5] LC TIME=English United States.utf8
attached base packages:
[1] stats graphics grDevices utils datasets methods
                                                                base
```