

Models Optimization

Machine Learning

Author: José Antonio Aviña Méndez

Regression Techniques

Simple Linear Regression (SLR)

Rect Line

$$y = mx + b$$

Regression Model

$$y = \beta_0 + \beta_1 x + \epsilon$$

Regression Rect

$$\hat{y} = \beta_0 + \beta_1 x + \epsilon$$

$$\hat{y}_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

The error Eq: Ordinary Least Squares

$$\mathcal{E} = \sum\limits_{i=1}^n (y_i - \hat{y}_i)^2$$

The Loss function (OLS)

$$\mathcal{E} = \sum\limits_{i=1}^n [y_i - (eta_0 + eta_1 x_i)]^2$$

To minimize the ${\mathcal E}$

1.
$$rac{\partial}{\partialeta_0}\sum_{i=1}^n[y_i-(eta_0+eta_1x_i)]^2=0$$

2.
$$rac{\partial}{\partialeta_1}\sum_{i=1}^n[y_i-(eta_0+eta_1x_i)]^2=0$$

To minimize ${\cal E}$ w.r.t eta_0

$$egin{aligned} f(x)^n &= nf(x)^{n-1}f'(x) \ rac{\partial}{\partialeta_0}\sum_{i=1}^n[y_i-(eta_0+eta_1x_i)]^2 = 0 \ rac{\partial\mathcal{E}}{\partialeta_0} &= 2\sum_{i=1}^n[y_i-(eta_0+eta_1x_i)] \ rac{\partial\mathcal{E}}{\partialeta_0} &= 2\sum_{i=1}^n[y_i-(eta_0+eta_1x_i)] \
ho + 2/2\sum_{i=1}^n(y_i-eta_0+eta_1x_i)](-1) \
ho + 2/2\sum_{i=1}^n(y_i-eta_0-eta_1x_i)(-1) = 0/2 \
ho + 2/2\sum_{i=1}^n(y_i+eta_0+eta_1x_i) = 0 \
ho + 2/2\sum_{i=1}^n(y_i+eta_1x_i) = 0 \
ho + 2/2\sum_{i=1}^n(y_i+eta_1x$$

To minimize ${\cal E}$ w.r.t β_1

$$rac{\partial}{\partialeta_1}\sum_{i=1}^n[y_i-(eta_0+eta_1x_i)]^2=0$$

$$rac{\partial \mathcal{E}}{\partial eta_1} = 2 \sum_{i=1}^n [y_i - (eta_0 + eta_1 x_i)]$$

$$egin{aligned} rac{\partial \mathcal{E}}{\partial eta_1} &= 2 \sum_{i=1}^n [y_i - (eta_0 + eta_1 x_i)](-x_i) \ & o 2/2 \sum_{i=1}^n (y_i - eta_0 - eta_1 x_i)(-x_i) = 0/2 \ & o \sum_{i=1}^n (-x_i y_i + eta_0 x_i + eta_1 x_i^2) = 0 \ & o \sum_{i=1}^n x_i y_i + eta_0 \sum_{i=1}^n x_i + eta_1 \sum_{i=1}^n x_i^2 = 0 \ & heta_0 \sum_{i=1}^n x_i + eta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \end{aligned}$$

Normal equations

1.
$$neta_0+eta_1\sum\limits_{i=1}^nx_i=\sum\limits_{i=1}^ny_i$$

2.
$$\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

Matrix notation

$$\left[egin{array}{ccc} n & \sum\limits_{i=1}^n x_i \ \sum\limits_{i=1}^n x_i & \sum\limits_{i=1}^n x_i^2 \end{array}
ight] \left[egin{array}{c} eta_0 \ eta_1 \end{array}
ight] = \left[egin{array}{c} \sum\limits_{i=1}^n y_i \ \sum\limits_{i=1}^n x_i y_i \end{array}
ight]$$

To solve the SoLE for β_1

•
$$D_s = ?$$

•
$$D_{\beta_1} = ?$$

•
$$\beta_1 = \frac{D_{\beta_1}}{D_s}$$

$$D_s = n \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i$$

β_1 Determinant

$$\left[egin{array}{ccc} n & \sum\limits_{i=1}^n y_i \ \sum\limits_{i=1}^n x_i & \sum\limits_{i=1}^n x_i y_i \end{array}
ight]$$

$$D_{eta_1} = n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i$$

$$eta_1 = rac{n\sum\limits_{i=1}^{n}x_iy_i - \sum\limits_{i=1}^{n}x_i\sum\limits_{i=1}^{n}y_i}{n\sum\limits_{i=1}^{n}x_i^2 - \sum\limits_{i=1}^{n}x_i\sum\limits_{i=1}^{n}x_i}$$

To solve the SoLE for eta_0

Given the following eq(1):

1.
$$neta_0+eta_1\sum\limits_{i=1}^nx_i=\sum\limits_{i=1}^ny_i$$

let's solve β_0 :

$$eta_0 = rac{\sum\limits_{i=1}^n y_i - eta_1 \sum\limits_{i=1}^n x_i}{n}$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

Simple Linear Regression for Predictive Analysis

$$eta_0 = rac{\sum\limits_{i=1}^n y_i - eta_1 \sum\limits_{i=1}^n x_i}{n}$$

$$eta_1 = rac{n\sum\limits_{i=1}^{n}x_iy_i - \sum\limits_{i=1}^{n}x_i\sum\limits_{i=1}^{n}y_i}{n\sum\limits_{i=1}^{n}x_i^2 - \sum\limits_{i=1}^{n}x_i\sum\limits_{i=1}^{n}x_i}$$