Endomorphismes orthogonaux – Démonstrations

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$, et B une base <u>orthonormée</u> de E. On a équivalence entre :

- (i) u est un endomorphisme orthogonal de E.
- (ii) $Mat_B(u)$ est une matrice orthogonale.

Démonstration : 🖈

On a:

$$u \in O(E) \Leftrightarrow u^* \circ u = Id_E$$

 $\Leftrightarrow \operatorname{Mat}_B(u^*) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow {}^t\operatorname{Mat}_B(u) \operatorname{Mat}_B(u) = I_n$
 $\Leftrightarrow \operatorname{Mat}_B(u) \in O_n(\mathbb{R})$

(Le 3^e point vient du fait que B est orthonormée, donc $Mat_B(u^*) = {}^tMat_B(u)$)

Proposition: Soit $u \in O(E)$, alors $Sp(u) \in \{1, -1\}$

<u>Démonstration</u>: **★**

Soit $\lambda \in Sp(u)$, alors comme E est euclidien, $\lambda \in \mathbb{R}$

Alors $\exists x \in E, x \neq 0_E$, tel que $u(x) = \lambda x$.

Alors d'une part : $||u(x)|| = ||\lambda x|| = |\lambda|||x||$

Et d'autre part, $u \in O(E)$ donc u conserve la norme, ainsi ||u(x)|| = ||x||

D'où $||x|| = |\lambda| ||x||$, ie $|\lambda| = 1$

Donc $\lambda = \pm 1$