ФГАУ ВПО «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра общей физики

Эффект Холла в полупроводниках

Выполнил: Корепанов Г.М.

512 группа

Преподаватель: Данилин Валерий Алексеевич

Теоретические выкладки

Связь электрической проводимости с временем свободного пробега электрона

Воспользуемся моделью свободных электронов. Между столкновениями электрон движется равноускоренно:

 $a = \frac{eE}{m}$.

Рассмотрим один электрон, претерпевающие много столкновений. Можно не отвлекаться на беспорядочное движение электронов, потому что оно не даёт вклада в электрический ток, то есть можно считать, что после каждого соударения электрон теряет полностью упорядоченную скорость. Тогда его средняя дрейфовая скорость найдётся из определения:

$$u = \frac{l}{\tau} = \frac{\sum a\tau_i^2/2}{\sum \tau_i} = \frac{a}{2} \frac{\overline{\tau}^2}{\overline{\tau}}.$$

Используя закон Ома $\vec{j} = \lambda \vec{E}$ и определение плотности тока, получим выражение для электрической проводимости:

$$\lambda = \frac{ne^2}{2m} \frac{\overline{\tau}^2}{\overline{\tau}}, \quad \mathbf{H}$$

$$j = \frac{ne^2}{2m} \frac{\overline{\tau}^2}{\overline{\tau}} E_x \tag{1}$$

для тока, текущего в направлении оси Ox.

Эффект Холла в модели свободных электронов

Выведем формулы, описывающие эффект холла из классической модели свободных электронов (вообще говоря, неудовлетворительной), рассматривая ток отрицательных частиц (электронов). 1

Классический эффект Холла изучается только в слабых магнитных полях. Поэтому можно пользоваться методом малых поправок (метод последовательных приближений, итерационный метод). В первом приближении внешнее МП не влияет на ток электронов по оси Ox:

$$\upsilon_x = \upsilon_{0x} + \frac{e}{m} E_x t.$$

Подставим это выражение в уравнение движения электронов по оси Oy:

$$m\dot{v}_y = e\left(E_y - \frac{1}{c}v_x B\right) = e\left(E_y - \frac{v_{0x}}{c}B - \frac{eB}{mc}E_x t\right).$$

Интегрируя, получим зависимость скорости от времени:

$$v_y(t) = \frac{e}{m} \left(E_y t - \frac{v_{0x}B}{c} t - \frac{eBE_x}{2m} t^2 \right)$$

Усредним скорость электрона за время свободного пробега:

$$\overline{v}_y = \frac{1}{\tau} \int_0^{\tau} v_y dt = \frac{e}{2m} \left(E_y \tau - \frac{v_{0x} B}{c} \tau - \frac{eBE_x}{2mc} \tau^2 \right).$$

 $^{^{1}}$ Смена знака носителей никак не влияет на физическую сторону вопроса.

 $^{^2}$ Условие слабости МП запишется в виде условия $E_y \ll E_x$, это условие соблюдается во всех элементарных экспериментах уровня лаб. работ по общей физике.

Наконец, усредним по всем частицам, учитывая, что для хаотичной системы $\overline{v_{0x}\tau}=0$:

$$\overline{v}_y = \frac{e}{2m} \left(E_y \overline{\tau} - \frac{eB}{3mc} E_x \overline{\tau^2} \right).$$

Эффект Холла соответствует установившемуся состоянию, когда сила Лоренца, действующая со стороны внешнего МП на движущиеся заряды, динамически уравновешена силой, действующей со стороны поля, созданного холловскими зарядами. Это соответствует $\overline{v_y} = 0$:

$$E_y = \frac{eB}{3mc} \frac{\overline{\tau}^2}{\overline{\tau}} E_x$$

Подставляя (1), получаем результат:

$$E_y = RjB, (2)$$

где постоянная Холла

$$R = \frac{2}{3} \frac{1}{nec}.$$

1 Определение подвижности носителей заряда

Расчётные формулы

Приведём теоретическую формулу (2) к виду, удобному для измерений. Рассмотрим пластинку длиной L, поперечными размерами axl, причем ЭДС Холла снимается с граней шириной a. Тогда для электронного тока

$$\varepsilon = E_y l = RjBl = -\frac{RBIl}{al} = -\frac{RBI}{a} \tag{3}$$

В системе СИ формула имеет точно такой же вид, но постоянная Холла равна

$$R = \frac{1}{ne}$$

(числовой коэффициент 2/3 опущен ввиду оценочности вывода (2)).

Экспериментальная установка

Рис. 1: 3,4 – холловское напряжение, 3,5 – измерение удельной проводимости

Эксперимент

Градуировка электромагнита (В(І))

Сначала определим эмпирическую зависимость индукции МП в электромагните от тока, протекающего через него, для удобства будущих измерений. проверим исправность приборов, сопоставив их показания (в распоряжении находятся милливеберметр, прибор магнитостатической системы, и магнетометр, действие которого, как ни странно, основано на эффекте Холла) для некоторых полей, создаваемых электромагнитом:

№	Ток І, А	Показания милливеберметра, мТл	Показания магнетометра, мТл
1	0,50	440	479
2	0,90	790	781

Таблица 1: Сравнение показаний приборов

Как видно из таблицы, приборы работают хорошо, и, как увидим в дальнейшем, разница их показаний меньше погрешности каждого, взятого в отдельности.

I, A	В←, мТл	${ m B}_{ ightarrow},{ m MT}{ m J}$	$\overline{\mathrm{B}}$, м T л
0,10	115	114	114,5
0,20	201	188	194,5
0,30	292	281	286,5
0,40	388	382	385
0,50	482	478	480
0,60	570	564	567
0,70	663	645	654
0,80	747	727	737
0,90	812	799	805,5
1,00	883	852	867,5

Таблица 2: Градуировка электромагнита по показаниям магнетометра в разных положениях

Рис. 2: График зависимости B(I)

В дальнейшем индукцию магнитного поля можно рассчитывать по формуле B=KI с погрешностью 2%.

Параметры установки

$$a=1,5$$
мм $l=1,7$ мм $L_{35}=3,0$ мм

Зависимость ЭДС Холла от тока через через электромагнит

Основные экспериментальные данные, полученные в ходе эксперимента, отражены в следующих таблицах:

Н апряжение <i>U</i> ₃₄	0,10 A	0,20 A	0,30 A	0,40 A	0,50 A
U_{34-1} , мкВ	-1	10	20	32	43
U_{34-2} , мкВ	0	17	34	49	66
U_{34-3} , мкВ	1	22	43	67	88
U_{34-4} , мкВ	3	31	57	87	112
U_{34-5} , мкВ	5	37	71	103	133
U_{34-6} , мкВ	6	46	81	120	156
U_{34-7} , мкВ	-77	-119	-155	-192	-230
Н апряжение U_{34}	0.60 4	0.70 4	0.00 4	0.00 4	1 00 4
тапряжение 034	0,60 A	0,70 A	0,80 A	0,90 A	1,00 A
U_{34-1} , мкВ	54	65	74	85	92
	· ·	· ·	· '	· ·	,
U_{34-1} , мкВ	54	65	74	85	92
U_{34-1} , мкВ U_{34-2} , мкВ	54 83	65 97	74 112	85 125	92 138
U_{34-1} , мкВ U_{34-2} , мкВ U_{34-3} , мкВ	54 83 109	65 97 132	74 112 150	85 125 167	92 138 186
U_{34-1} , мкВ U_{34-2} , мкВ U_{34-3} , мкВ U_{34-4} , мкВ	54 83 109 138	65 97 132 164	74 112 150 188	85 125 167 210	92 138 186 228

Таблица 3: ЭДС Холла (исходные данные)

Напряжение U_{34}	0,60 A	0,70 A	0,80 A	0,90 A	1,00 A
$U_{34-1}-U_0$, мкВ	11	22	32	44	55
$U_{34-2} - U_0$, мкВ	15	32	49	64	81
$U_{34-3} - U_0$, мкВ	19	40	61	85	106
$U_{34-4} - U_0$, мкВ	24	52	78	108	133
$U_{34-5}-U_0$, мкВ	29	61	95	127	157
$U_{34-6}-U_0$, мкВ	33	73	108	147	183
$U_{34-7} - U_0$, мкВ	-34	-76	-112	-149	-187
Напряжение U_{34}	0,60 A	0,70 A	0,80 A	0,90 A	1,00 A
$U_{34-1} - U_0$, мкВ	66	77	86	97	104
$U_{34-2}-U_0$, MKB	98	112	127	140	153
$U_{34-2} - U_0$, мкВ $U_{34-3} - U_0$, мкВ	98 127	112 150	127 168	140 185	153 204
$U_{34-3} - U_0$, мкВ	127	150	168	185	204
$U_{34-3} - U_0$, мкВ $U_{34-4} - U_0$, мкВ	127 159	150 185	168 209	185 231	204 249

Таблица 4: ЭДС Холла (с компенсацией U_0)

U_0 , мк ${f B}$	$I_{ m ofp}$, м ${f A}$
-12	0,3
-15	0,44
-18	0,58
-21	0,72
-24	0,86
-27	1,00
-43	1,00

Таблица 5: Значения U_0 при разных значениях тока

Рис. 3: График зависимости $\varepsilon(I)$

Определение знака носителей

Эффект Холла примечателен тем, что направление силы Лоренца, действующей на носители в образце, не зависит от знака носителей. Это даёт возможность по знаку ЭДС Холла определять тип проводимости:

Рис. 4: Иллюстрация к определению знака носителей

Поскольку в эксперименте напряжение между контактами 3 и 4 отрицательное, то в сторону контакта 3 смещены отрицательный заряды, что говорит о преимущественной n-проводимости германия. Здесь и далее рассматриваем движение электронов.

Определение постоянной Холла R

С хорошей точностью ЭДС Холла пропорциональная индукции магнитного поля. В соответствии с формулой (3) = $\frac{RKII_{\text{обр}}}{a}$, откуда получаем, что коэффициенты наклона графиков $\varepsilon(I)$ равны

$$k_i = \frac{RKI_{\text{obp}}}{a}.$$

В соответствии с этим, угловой коэффициент графика k(I) даст нам при известных a и $k = \frac{\Delta B}{\Delta I}$ постоянную Холла.

$I_{\text{обр}}$, мА	$k, \frac{\mathbf{M} \mathbf{K} \mathbf{B}}{\mathbf{A}}$	$\Delta k, \frac{\text{mkB}}{\mathbf{A}}$
0,30	105,58	1,59
0,44	154,48	2,46
0,58	207,94	3,08
0,72	253,94	4,72
0,86	302,85	4,77
1,00	352,79	4,66

Таблица 6: Зависимость коэффициента пропорциональности между ЭДС Холла и током в электромагните от тока в образце

Построим график полученной зависимости:

Рис. 5: График зависимости k(I)

График линеен в пределах погрешностей, привычная обработка с помощью МНК даёт

$$K_1 = (352 \pm 3) \frac{\text{MB}}{\text{A}^2} = \frac{RK}{a},$$

$$R = (613 \pm 43) \frac{\text{M}^3}{\text{K}_{\text{II}}}$$

откуда

Определение удельной проводимости

По определению, удельная проводимость однородного материала

$$\sigma = \frac{I_{\text{obp}}L_{3,5}}{U_{3,5}al}$$

Измерения дают:

U, MB	$I_{\text{обр}}$, мА
1,716	1,00
1,718	1,00
1,715	1,00

Таблица 7: Измерение проводимости

$$\sigma = (685 \pm 54) \text{ Om}^{-1} \text{m}^{-1}.$$

Проводимость материала прямо зависит от подвижности электронов:

$$\sigma = enb$$
,

поэтому подвижность

$$b = \frac{\sigma}{en} = \sigma R = (42 \pm 6) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

Выводы

- Был поверхностно изучен эффект Холла на примере образца из германия.
- Остались без внимания вопросы, требующие использования средств квантовой механики, т.е. была изучена лишь качественная сторона вопроса. Тем не менее, как известно, формулы классической модели с точностью до числовых коэффициентов порядка 1 сходятся с результатами, полученными из квантовой механики. Поэтому выведенные законы были с хорошей точностью подтверждены экспериментом.
- Изучен принцип работы милливеберметра и получен навык использования его для измерений магнитных полей.