Music psychology A cognitive approach

Overview

- Objective
 - By the end of this session, you should be able to describe principles of cognitive psychology and studies which have approached music in this way
- To do that, we will
 - Explore principles of cognitive psychology
 - Acknowledge the strengths and limitations of this approach
 - Demonstrate their relevance to music psychology by looking at music cognitive psychology experiments
 - Have a go at designing a cognitive psychology experiment

Before we start

• What happens when we hear music?

- "Cognitive revolution" in the 1960s
 - Early: introspection (reliable?)
 - Then, behaviourism ("stick to observed facts")

 "Cognitive psychology refers to all processes by which the sensory input is transformed, reduced, elaborated, stored, recovered and used" (Neisser, 1967)

- Criticisms
 - Experimental situations are not "real"
 - True, but more conclusive because more control?
 - Experiments distort reality
 - True, but better than not testing theories?
 - Experiments can't test everything
 - True, but why not test what we can test?
- The mainstream approach in psychology since the 60s

- Why? A more scientific approach to psychology
 - Objective based on observation and experimentation
 - Systematic theory driven
 - Falsifiable test hypotheses
 - Replicable specified methods
 - Public dissemination
- How?
 - Chomsky (language)
 - IT advances
 - Human factors in WWII

- Who?
 - Experimental psychologists
 - Apply scientific method to study of cognition
 - Cognitive scientists
 - Use computer models to simulate human cognition
 - Cognitive neurologists
 - Derive theories about normal cognition based on observation of cognitive impairments
 - Cognitive neuroscientists
 - Study brain functioning through various techniques to understand human cognition (MMB_A)

- What?
 - Perception
 - Attention
 - Memory
 - Reasoning
 - Reading
 - Music?

- Frequencies turn into perceived pitches
- Sets of frequencies turn into timbre
- Durations turn into perceived rhythmic patterns
- Pitches and rhythms combine to form melodies
- Several layers combine to form intervals, harmonies
- Harmonies create a feeling of "home" key (sometimes)
- Different keys are related and feel "closer" or more "distant"

• ...

• How do we do this?

 http://www.youtube.com/watch?v=dmoDLyiQYKw&featu re=related

http://www.youtube.com/watch?v=yHJOz y9rZE

"Gestalt psychology"

"Virgin Mary" toast fetches \$28,000

- The principle: top-down processing influences bottom-up processing
- Prior knowledge of the world influences our perception of patterns

- We match what we perceive to
 - what we know
 - Face perception very strong
 - Recognise tunes we know
 - what is most likely
 - Group sounds by how they are usually grouped in music we've heard before – know what a "strong" beat sounds like
 - what is most simple (bottom-up)
 - Group sounds by proximity, "path of least resistence"
 - Inferences about object continuation

- Perception of relatedness of pitches ratings
- Classic study: Krumhansl and Shepard (1979)
 - Context (scale of C) followed by probe (tone)
 - How well does the tone complete the sequence? (1-7)
 - C > tonic triad > diatonic > chromatic hierarchy
 - Some people have internalised the hierarchy more
 - Perception related to internal representations
- Today: ERP paradigm?

- Ambiguity in perception
- A role in music and emotions (my next music psychology lecture)
- Pattern in the stimulus or created in the black box? Or both?

http://www.youtube.com/watch?v=khrx-zrG460

- Selective processing
 - What was my last sentence?
 - What was did the previous bullet-point say?
 - How tight are your shoe-laces?
 - Are you breathing in or out?
- Attention takes possession of an item
 - Listening to a single conversation in a busy room
- Item captures attention
 - The cocktail party effect

- Why so selective?
 - Limited resources

- What do we know?
 - Focussed attention task (1950s)
 - When focus on one stream, know very little about the other
 - Divided attention task (1960s)
 - Semantics can interfere (dog six fleas // eight scratch two)
 - We process things we're not paying attention to (1970s)
 - Electric shocks paired with words in unattended stream generate galvanic skin response

- Using reaction times in cognitive research
- Spot the red T

- Using reaction times in cognitive research
- Now spot the red T

X

T

Less distracters makes the search faster

- "really?!"

- Using reaction times in cognitive research
- Now spot the red T

Items which closely match the description are entered into STM during search

Targets that are perceptually grouped because they are similar are rejected/selected together

- In music, Bigand et al. (2000)
 - The ability to selectively attend to two simultaneous tunes and spot errors
 - More difficult than when listening to them separately
 - Non-musicians selectively attended to one or the other
 - Musicians produced false alarms when "dissonant", so integrated the two into one perceptual structure
 - Effect of previous exposure to the "combination"

- How strong is the focus?
 - Be by John Featherstone (Resonance)

- How do we study memory?
 - Self-report?
 - Priming
 - Nurse doctor // Nurse bread (Meyer and Schvaneveldt, 1971, JEP:G)
 - Recall vs. recognition
 - Context-dependent memory
 - Divers study (Godden and Baddeley, 1975, BJP)
 - Different types of memory (implicit vs. explicit)
 - Conditioning
 - Hand-shake study (Claparede, 1911, Arch Psychol)
 - Goldfish study (Brandon and Bitterman, 1979, Animal Learning and Behaviour)

- Cohort theory of lexical access
 - Marslen-Wilson & Tyler (1980)
 - Word recognition is achieved through the successive reduction in the number of possible word candidates as each new phoneme of an incrementally processed word is perceived
 - C chocolate? cerebellum? cranberry? cloud?...
 - CA caramel? call? Cappucino? car?...
 - CAT cat! (category?)
 - •

- Cohort theory
 - A very robust theory of word recognition
 - Narrow down the "cohort" of possible words until only one matches
 - Larger cohort, more possibilities initially
 - More frequent words will be at the "front" of the cohort ("higher initial activation")
 - Gating paradigm increasing larger segments of the target stimulus are presented incrementally across trials
 - Not just the word, the context helps achieve word recognition before all other possibilities have been eliminated (Van Petten et al., 1999)

- Cohort theory in music gating paradigm
 - Dalla Bella, Peretz and Aronoff (2003)
 - 1, 1-2, 1-2-3, 1-2-3-4, ...
 - Similar patterns in melody recognition as with words
 - Familiar melodies recognised faster higher initial activation
 - Schulkind, Posner and Rubin (2003)
 - Participants recognised melodies on notes which were at phrase boundaries, ends of sequences, or accented beats
 - Effect of structural role of notes in a melody → points of interest facilitated recognition → insight into how melodies are stored

Reasoning

- Based on the ability to abstract and apply rules
- In music?
- http://www.youtube.com/watch?v=ne6tB2KiZuk

Reading

- Expectations guide our reading eye-tracking
 - Harry intimidated Helen because he was very tall
 - Harry intimidated Helen because she was very shy
 - Harry intimidated Helen because there was never a smile on his bearded face
 - Featherstone and Sturt (2010)
 - Expectations facilitate reading (speed up on "he")
- Automatic corrections
 - it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoatnt tihng is taht the frist and Isat Itteer are in the rghit pcale

Reading

- Eye-tracking in music: sight-reading
 - Truitt et al. (1997)
 - Experiment
 - 8 pianists, size of effective visual field (perceptual span moving window), how "far ahead" eyes were from hands (eye-hand span), key press + eye-tracking
 - Effect of perceptual span?
 - Significantly slower if had only 2 beat, but 4 beats, 6 beats or no window made no difference
 - Effect of skill?
 - The skilled readers had shorter playing times, larger eye-hand spans (average 2 beats), and shorter fixation durations than the less-skilled readers

Your turn

• Using a method or aspect of cognition described in this lecture, design a music psychology experiment within the cognitive psychology paradigm.

The cognitive approach

- An interaction between a stimulus and a perceiving mind
- Useful (if imperfect) tools for studying it
- Music psychology within the cognitive paradigm
- The "black box" is still very opaque
- Do we perceived all that is there?
- Do we construct things that aren't there?

Any questions?

- c.r.featherstone@leeds.ac.uk
- Next time: Music and emotions

References

- Bigand, E.(2000) *International Journal of Psychology*, *35* (6), 270-278
- Dalla Bella, S., Peretz, I., & Aronoff, N. (2003). Perception & Psychophysics, 65 (7), 1019-1028
- Krumhansl, K. and Shepard, R. N. (1979) Journal of Experimental Psychology: Human Perception and Performance, 5(4), 579-594
- Neisser, U. (1967) Cognitive Psychology. New York, NY: Meredith.
- Schulkind, M. D., Posner, R. J., & Rubin, D. C. (2003). Music Perception, 21 (2), 217-249
- Truitt, F. E., Clifton, C., Pollatsek, A. And Rayner, K. (1997) Visual Cognition, 4(2), 143-161