1. **Syntax** (**I**).

Z:整数集合 N:非负数整数集合 Q:有理数集合

The following inference rules give the syntax of a simple language.

$$\frac{1}{d\in \mathbb{N}} \left(\begin{array}{c} d\in \{0\dots 9\} \\ \hline \\ & \underline{=} \mathbb{R} \\ \end{array} \right) \quad \frac{n\in \mathbb{N}}{dn\in \mathbb{N}} \left(d\in \{0\dots 9\} \right) \quad \frac{n\in \mathbb{N}}{n\in \mathbb{Z}} \quad \frac{z\in \mathbb{Z}}{-z\in \mathbb{Z}} \quad \frac{z\in \mathbb{Z}}{z\in \mathbb{Q}} \quad \frac{z\in \mathbb{Z}}{z \in \mathbb{Z}} \quad \frac{z\in \mathbb{Z}}{z \in \mathbb$$

(a) Give BNF rules for a non-terminal symbol q (and other non-terminals as you require) such that q generates all strings in \mathbb{Q} .

inference rules 右边对应BNF的左边 $\begin{array}{c} {\rm n:}\ \ \hbox{数字} \\ {\rm z:}\ \ \hbox{正负数} \\ {\rm q:}\ \ \hbox{小数或者整数} \\ {\rm Z}\ \ z::=-z\mid n \\ {\rm N}\ \ n::=d\mid dn \\ d::=0\mid \cdots \mid 9 \end{array}$

- (b) Give derivations trees for the following assertions.
 - (i) $42 \in Z$

 $\frac{2 \in \mathbb{N}}{42 \in \mathbb{N}}$ $\frac{42 \in \mathbb{N}}{42 \in \mathbb{Z}}$

(ii) $-12 \in Q$

(iii) $3.14 \in Q$

 $\frac{\overline{3 \in \mathbb{N}}}{3 \in \mathbb{Z}} \quad \frac{\overline{4 \in \mathbb{N}}}{14 \in \mathbb{N}}$ $3.14 \in \mathbb{Q}$

2. Syntax (II).

The following is the BNF grammar for a simple expression language. Give inference rules for membership in a set E , such that E contains all the strings that could be generated by non-terminal e.

$$e := p \mid p + e$$
 基础的加法乘法 $p := a \mid a \times p$ $a := x \mid (e)$

$$\frac{s \in \mathsf{P}}{s \in \mathsf{E}} \quad \frac{s \in \mathsf{P} \quad s' \in \mathsf{E}}{s + s' \in \mathsf{E}} \quad \frac{s \in \mathsf{A}}{s \in \mathsf{P}} \quad \frac{s \in \mathsf{A} \quad s' \in \mathsf{P}}{s \times s' \in \mathsf{E}} \quad \frac{s \in \mathsf{E}}{x \in \mathsf{A}} \quad \frac{s \in \mathsf{E}}{(s) \in \mathsf{A}}$$

3. Syntax (III).

Fully parenthesize the following λ -calculus expressions.

(a) $\lambda f.\lambda x.f x x$

$$\lambda f.(\lambda x.((f x) x))$$

(b) $\lambda f.\lambda x.f(fx)$

$$\lambda f.(\lambda x.(f(fx)))$$

(c) $(\lambda x.\lambda y.x)y$

$$(\lambda x.(\lambda y.x)) y$$

(d) $\lambda x.\lambda y.xy$

$$\lambda x.(\lambda y.(x\ y))$$

4. Evaluation (I).

Consider the following simple arithmetic language:

$$z \in \mathbb{Z}$$

$$t ::= z \mid t+t \mid t \times t \mid \text{ifeven } t \text{ then } t \text{ else } t$$

The following rules give an evaluation relation for that language, assuming 4-bit unsigned numbers.

$$\frac{t_1 \Downarrow n_1 \quad t_2 \Downarrow n_2}{t_1 + t_2 \Downarrow n_3} \left(n_1 + n_2 \equiv n_3 \bmod 16 \right) \quad \frac{t_1 \Downarrow n_1 \quad t_2 \Downarrow n_2}{t_1 \times t_2 \Downarrow n_3} \left(n_1 \times n_2 \equiv n_3 \bmod 16 \right)$$

$$\frac{t_1 \Downarrow n_1 \quad t_2 \Downarrow n_2}{\mathsf{ifeven} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 \Downarrow n_2} \left(n_1 \equiv 0 \bmod 2 \right) \quad \frac{t_1 \Downarrow n_1 \quad t_3 \Downarrow n_3}{\mathsf{ifeven} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 \Downarrow n_3} \left(n_1 \equiv 1 \bmod 2 \right)$$

Give derivation trees for the evaluation of the following expressions.

(a) $(4 \times 3) + 4$

$$\frac{\overline{4 \Downarrow 4} \qquad \overline{3 \Downarrow 3}}{\underbrace{4 \times 3 \Downarrow 12}} \qquad \underbrace{4 \Downarrow 4} \qquad 3 \% 16 = 4$$

$$\underbrace{4 \times 3 \Downarrow 12} \qquad 4 \Downarrow 4$$

$$12\% 16 = 12$$

$$0.00$$

$$16\% 16 = 0$$

(b)
$$(6 \times 6) + 4$$

$$\frac{\overline{6 \Downarrow 6} \quad \overline{6 \Downarrow 6}}{\underline{6 \times 6 \Downarrow 4}} \quad \underline{4 \Downarrow 4}$$
$$\underline{(6 \times 6) + 4 \Downarrow 8}$$

(c) if even 4+3 then 6×5 else 3×8

$$\frac{\overline{4 \Downarrow 4} \quad \overline{3 \Downarrow 3}}{4+3 \Downarrow 7} \quad \frac{\overline{3 \Downarrow 3} \quad \overline{8 \Downarrow 8}}{3 \times 8 \Downarrow 8}$$

$$\overline{\text{ifeven } 4+3 \text{ then } 6 \times 5 \text{ else } 3 \times 8 \Downarrow 8}$$

$$7\%2 == 1 \text{ odd}$$

5. Evaluation (II).

Assume the language from the previous question. We want to develop a new relation \Downarrow_p which characterizes whether the result of evaluating an expression is even (E) or odd (O) (or, possibly, may be either). The first rules for this relation are as follows:

(a) Give the evaluation rule for $t_1 \times t_2$.

$$\frac{t_1 \Downarrow_{\mathsf{p}} S_1 \quad t_2 \Downarrow_{\mathsf{p}} S_2}{t_1 \times t_2 \Downarrow_{\mathsf{p}} \bigcup \{s_1 \hat{\times} s_2 \mid s_1 \in S_1, s_2 \in S_2\}} \quad \text{where} \quad \frac{\hat{\times} \mid \mathsf{E} \mid \mathsf{O}}{\mathsf{E} \mid \mathsf{E} \mid \mathsf{E}} \quad \mathsf{E}$$

(b) Give the evaluation rule for ifeven t_1 then t_2 else t_3

$$\frac{t_1 \Downarrow_{\mathsf{p}} \{\mathsf{E}\} \quad t_2 \Downarrow_{\mathsf{p}} S_2}{\mathsf{ifeven} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 \Downarrow S_2} \quad \frac{t_1 \Downarrow_{\mathsf{p}} \{\mathsf{O}\} \quad t_3 \Downarrow_{\mathsf{p}} S_3}{\mathsf{ifeven} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 \Downarrow S_3} \quad \frac{t_1 \Downarrow_{\mathsf{p}} \{\mathsf{E},\mathsf{O}\} \quad t_2 \Downarrow_{\mathsf{p}} S_2 \quad t_3 \Downarrow_{\mathsf{p}} S_3}{\mathsf{ifeven} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 \Downarrow S_2 \cup S_3}$$

6. Evaluation (III).

Suppose we extend our simple language with variables, function abstraction and application:

$$t ::= \cdots \mid x \mid \lambda x.t \mid t t$$

In *call-by-value* evaluation, the argument to a function is evaluated before it is called. In *call-by-name* evaluation, in contrast, the argument to a function is not evaluated before evaluating the function. The difference is illustrated in the evaluation rules below; call-by-value is on the left, and call-by-name is on the right.

$$\frac{t_1 \Downarrow_{\mathsf{cbv}} \lambda x.t \quad t_2 \Downarrow_{\mathsf{cbv}} w \quad t[w/x] \Downarrow_{\mathsf{cbv}} v}{t_1 t_2 \Downarrow_{\mathsf{cbv}} v} \quad \frac{t_1 \Downarrow_{\mathsf{cbn}} \lambda x.t \quad t[t_2/x] \Downarrow v}{t_1 t_2 \Downarrow_{\mathsf{cbv}} v}$$

Given the following definition:

$$spin = (\lambda f.f f) (\lambda f.f f)$$

write the result of evaluating each of the following definitions under call-by-name and call-by-value interpretations, or write "diverge" if they diverge (i.e., run forever).

Expression	cbn	cbv
ifeven 1 then $spin$ else 0	0	0
ifeven $spin$ then 4 else 0	diverge	diverge
$(\lambda x.\lambda y.x) 4 spin$	4	diverge
$(\lambda x.\lambda y.y)4spin$	diverge	diverge

7. Fixed points.

Suppose we extend our language with a fixed point construct to capture recursive definition:

$$t ::= \cdots \mid \mathsf{fix}\, t$$

with the evaluation rule:

$$\overline{\operatorname{fix} t \Downarrow \lambda x. t \left(\operatorname{fix} t\right) x}$$

Rewrite the following recursive definitions to used the fixed point construct instead.

(a) $add = \lambda m.\lambda n.$ if m = 0 then n else incr(add(m-1)n)

$$add=\operatorname{fix}\lambda add.\lambda m.\lambda n.\operatorname{if}\ m=0$$
 then n else $incr\left(add\left(m-1\right)n\right)$

(b) $even = \lambda m$.if m = 0 then True else if m = 1 then False else $\neg (even (m-1))$

 $even = \text{fix } \lambda even. \lambda m. \text{if } m = 0 \text{ then } True \text{ else if } m = 1 \text{ then } False \text{ else } \neg (even (m-1))$