

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Lifelong Action Learning for Socially Assistive Robots

November 25th, 2022

Hasnainali Walli

Advisors

Prof. Dr. Paul G. Plöger, Prof. Dr. Sebastian Houben, Alex Mitrevski

1. Introduction

Comparative Analysis: Action Recognition

Comparative Analysis: Class-Incremental Learning

Action Recognition

Application in CRI

Application in CRI

Figure 1: Incremental learning pipeline for action and emotion recognition. Source: Visual Robotic Perception System with Incremental Learning for Child–Robot Interaction Scenarios

Application in CRI

Figure 2: Incremental learning pipeline for action and emotion recognition Source: Visual Robotic Perception System with Incremental Learning for Child–Robot Interaction Scenarios

Their Approach RGB+D and Optical Flow data TSN Network CTR-GCN Network CTR-GCN Network BiC Algorithm BabyRobot Dataset Our Approach CTR-GCN Network BiC Algorithm NTU RGB+D Dataset

Our Approach

Methodology

- 1. Perform comparative analysis on skeleton-based action recognition networks
 - CTR-GCN, MS-G3D, EfficientGCN, ViewAdaptive NN
 - Joint, Bone and Joint Motions
 - Metrics: Cross-Subject Accuracy, Training Time
- 2. Perform comparative analysis on class-incremental learning algorithms
 - LwF, iCaRL, LUCIR, BiC
 - Metrics: Task-Aware & Task-Agnostic Accuracy
- 3. Integrate final model on QTRobot

Hochschule Bonn-Rhein-Sieg

1. Introduction

2. Comparative Analysis: Action Recognition

Comparative Analysis: Class-Incremental Learning

NTU Dataset

- •

Figure 3: Human body joint configurations found in the NTU RGB-D dataset. Source: NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis

NTU Dataset

Subset of Actions

Drink Water	Eat Meal	Brush Teeth	Drop
Pick Up	Throw	Sit Down	Stand Up
Clapping	Hand Waving	Kick Something	Hopping
Jump Up	Play with Phone/Tablet	Point to Something	Rub two Hands
Nod Head/Bow	Shake Head	Wipe Face	Cross Hands in Front

Table 1: Subset of action classes from the NTU RGB-D dataset

Action Recognition Analysis Results

Network	Cross Subject	Cross View	
CTR-GCN (Joint)	92.63%	96.37%	
CTR-GCN (Bone)	92.78%	96.02%	
CTR-GCN (Motion)	92.51%	96.40%	
MS-G3D (Joint)	91.27%	96.85%	
MS-G3D (Bone)	90.90%	95.44%	
EfficientGCN-B4	94.05%	97.47%	
(SG Layer)	94.05%		
EfficientGCN-B4	94.43%	97.56%	
(EpSep Layer)			
VA-NN (CNN)	92.97%	92.20%	

Network	Training Time
CTR-GCN	4 hrs
MS-G3D	8 hrs
EfficientGCN-B4	5 hrs
VA-NN (CNN)	0.5 hrs

Table 3: Model Training Time

Table 2: Model Accuracy

Action Recognition Analysis Results

Action	CTR-GCN	MS-G3D	Action	CTR-GCN	MS-G3D	
Drink Water	82.48%	83.94%	Kick Something	97.83%	94.93%	
Eat Meal	78.91%	73.82%	Hopping	98.91%	95.27%	
Brush Teeth	90.84%	91.21%	Jump Up	98.91%	98.55%	
Drop	90.18%	91.64%	Play with	86.91%	90.91%	
5: 1 11	00.010/	0.4.550/	Phone/Tablet	00.000/	00.000/	
Pick Up	98.91%	94.55%	Point to Something	92.39%	92.03%	
Throw	96.36%	90.91%	Rub two Hands	90.58%	89.49%	
Sit Down	98.90%	97.80%	Nod Head/Bow	96.01%	95.65%	
Stand Up	98.17%	98.90%	Shake Head	96.00%	95.64%	
Clapping	82.42%	72.89%	Wipe Face	92.39%	94.20%	
Hand	94.16%	94.89%	Cross Hands in	93.84%	94.57%	
Waving	34.10%	34.03%	Front	95.04%	34.37 /6	

Table 4: Cross-Subject accuracy results per class for CTR-GCN and MS-G3D models

1. Introduction

Comparative Analysis: Action Recognition

3. Comparative Analysis: Class-Incremental Learning

Incremental Learning

Concepts

Incremental Learning

Performance Metrics

Incremental Learning Analysis

Task Sequence

Task #	Action	Task #	Action	Task #	Action
Task 1	Wipe Face	Task 5	Pick Up	Task 8	Nod Head/Bow
	Eat Meal		Brush Teeth		Hopping
Task 2	Cross Hands in Front	Task 6	Throw	Task 9	Drop
	Clapping		Point to Something		Drink Water
Task 3	Kick Something	Task 7	Hand Waving	Task 10	Rub two Hands
	Shake Head		Stand Up		Jump Up
Task 4	Sit Down				
	Play with				
	Phone/Tablet				

Table 5: Task sequence for class-IL comparative analysis

Bibliography

T_EX, Land Beamer

- Donald E. Knuth. The TeXbook. Addison-Wesley, 1984.
- Leslie Lamport. LATEX: A Document Preparation System. Addison-Wesley, 1986.
- M. Goossens, F. Mittelbach, and A. Samarin. The LATEX Companion. Addison-Wesley, 1994.
- Till Tantau. User's Guide to the Beamer Class Version 3.01. Available at http://latex-beamer.sourceforge.net.
- A. Mertz and W. Slough. Edited by B. Beeton and K. Berry. **Beamer by example** In TUGboat, Vol. 26, No. 1., pp. 68-73.

