3 同次座標系による透視投影

3.1	透視投影の-	-般的表示	(直交座標系)
J. 1	レュール 」又 ポンマン	リスロンなくない	(巴人庄/示水)

視点を $S(s_1,s_2,s_3)$, 投影面をyz-平面とする透視投影を考える. P(x,y,z) の投影像を求めてみよう.

• $2 ext{ 点 } S(s_1, s_2, s_3)$ と P(x, y, z) を結ぶ直線 ℓ のパラメーター表示は、...

ℓと yz-平面の交点は, ...

3.2 透視投影の一般的表示(同次座標系)

上で求めた透視投影による像を同次座標に変換すると....

事実

投影面が yz-平面の透視投影を考える. 視点の同次座標を $(\sigma_1:\sigma_2:\sigma_3:\sigma_0)$ とするとき, 点 $P(\mu_1:\mu_2:\mu_3:\mu_0)$ の透視投影による像は

である.

線形代数学 II 「透視投影の数学的記述」

(平成 29 年度 担当:佐藤 弘康)

例題 3.1. $\mathrm{S}(1,2,3)$ を視点とし、投影面を yz-平面とする透視投影を Φ とする. 点 $\mathrm{P}(-1,\frac{1}{2},1)$ に対し、以下の間に答えなさい.

- (1) 点 S, P を同次座標で表しなさい.
- (2) 同次座標系において透視投影 Φ を表す 4 次正方行列を求めなさい.
- (3) 透視投影 Φ による点 P の像 $\Phi(P)$ を求め、同次座標で表しなさい.
- (4) (3) で求めた $\Phi(P)$ の同次座標を直交座標に直しなさい.
- **解.** (1) 例えば S(1:2:3:1), P(-2:1:2:2) など*1
 - (2) (1) で定めた S の同次座標に対して、 $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 3 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix}.$

$$(3) \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 3 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -5 \\ -8 \\ -4 \end{pmatrix} \qquad \therefore (0:-5:-8:-4)$$

(4) 同次座標から直交座標に直すには、同次座標の第 4 成分を取り除き、他の成分は第 4 成分で割った値に すればよい. したがって、 $(0,\frac{5}{4},2)$ *2.

問題 3.2. 視点が $S(10,3,\frac{1}{2})$, 投影面が yz-平面の透視投影を Φ とする. 6 個の点 A(1,1,3), B(-1,1,3), C(-1,-1,3), D(1,-1,3), $E(0,0,\frac{3}{2})$, $F(0,0,\frac{9}{2})$ を頂点とする 8 面体を Φ で移した像のワイヤーフレームを yz-平面に書きなさい.

 $^{^{*1}}$ 同次座標系による表し方は一意的ではない. S と同様に, P の第 4 の座標を 1 としてよいが, ここではすべての座標の値が整数となるようにした(整数の方が計算が簡単になるのため).

^{*2 (1)} から (3) までの解は同次座標の決め方に依るが、投影像の直交座標表示は一意的に決まる.