

IPv6 SUBNETS

IPv6 HEADER

Version (4)	Traffic Class (8)	Flow Label (20)		
Payload Length (16)			Next Header (8)	Hop Limit (8)
Source Address (128) (16 bytes)				
Destination Address (128) (16 bytes)				

Version (4 bits): IP-Version – always set to 6 (0110)

Traffic Class (8 bits): Used to identify and distinguish

between different classes of priorities

Flow Label (20 bits): Identifies unique flows (optional)

Payload length (16 bits): Length of the payload in bytes

Next Header (8 bits): Identifies the following header or protocol

Hop Limit (8 bits): Number of hops until packet gets discarded (TTL in IPv4)

Source Address (128 bits): Source IP address

Destination Address (128 bits): Destination IP address

ADDRESS ALLOCATION

	/1:	2 /3	2 /48	/64	
	2000	DB8			INTERFACE ID
Re	gistry		•		
IS	P prefix I			:	
Sit	te prefix I		•	:	
LA	N prefix			\Longrightarrow	

- 64 bits reserved for the interface ID
- 16 bits reserved for the end site
- 16 bits reserved for each service provider
- 29 bits reserved for all service providers

ADDRESS FORMAT

GLOBAL UNICAST					
Globa	l Prefix	Sı	ubnet	Interface ID	
	48		16	64	
LINK-LOCA	LINK-LOCAL UNICAST				
FE80::/64				Interface ID	
64				64	
MULTICAST					
FF	Flags	Scope		Group ID	
8	4	4		112	

ADDRESS REPRESENTATION

An IPv6 address has 128 bits fe80:0000:e05c:0000:0000:8b85:d65c:edd7

Leading zeros in a field are optional fe80:0:e05c:0:0:8b85:d65c:edd7

Successive fields of 0 represented as ::, but only once in an address fe80:0:e05c::8b85:d65c:edd7

In a URL, it is enclosed in brackets

http://[fe80:0:e05c::8b85:d65c:edd7]:8080/index.html

ADDRESS SCOPES

Default Route	::/0
Unspecified	::/128
Loopback Address	0:0:0:0:0:0:0:0:1 or ::1/128
IPv4-mapped	::FFFF:192.0.2.1
IPv4-Compatible IPv6	0:0:0:0:0:0:A.B.C.D
Teredo	2001::/32
Documentation	2001:DB8::/32
6to4	2002::/16
Unique Local	FC00::/7
Link-Local Unicast	FE80::/10
Site-Local Unicast	FEC0::/10
Multicast	FF00::/8

EXTENSION HEADERS

(NH = Next Hea	der)	IPv6 Header NH = TCP	TCP Header + Data
	IPv6 Header NH = Routing	Routing Header NH = TCP	TCP Header + Data
IPv6 Header NH = Routing	Routing Header NH = Fragment	Fragment Header NH = TCP	TCP Header + Data

ICMPv6 ERROR MESSAGES (TYPE/CODE)

1	Destination	Unreachable
	0-no route t	o destination

1-communication with destination administratively prohibited

2-(not assigned)

3-address unreachable

4-port unreachable

3 Time exceeded

0-hop limit exceeded in transit

1-fragment reassemble time exceeded

2 packet too big

4 parameter problem

0-erroneous header field

1-unrecognized next header type

2-unrecognized IPv6 option

NEXT HEADER FIELDS

000	IPv6 Hop-by-Hop-Option	017	User Datagram (UDP)
006	Transmission Control (TCP)	043	Routing Header
044	Fragment Header	046	Reservation Protocol (RSVP)
050	Encap Security Payload (ESP)	051	Authentication Header (AH)
055	IP Mobility (MOBILE)	058	ICMP for IPv6
059	No Next Header for IPv6	060	Destination Options
089	OSPFIGP	135	Mobility Header
094	IP-within-IP Encapsulation Protocol (IPIP)		
103	Protocol Independent Multicast (PIM)		
002	Internet Group Management (IGMP)		
047	Gerenal Routing Encapsulation (GRE)		

TRANSITION MECHANISMS

DUAL STACK	Enables a node to communicate with IPv6-only or IPv4-only nodes concurrently
TUNNELING	IPv6 traffic is encapsulated into IPv4 → Enables IPv6 islands or nodes to communicate over an IPv4 network
TRANSLATION	Stateless IP/ICMP Translation (SIIT) translates IP header fields and enables IPv4-only networks & nodes to communicate with IPv6 only networks & nodes

