

Hepatitis A MGB TaqMan

Ian Mackay, Mitchell Finger, Michael Lyon, Judy Northill

Abstract

This protocol was developed at this laboratory but had not been previously published. The protocol aims explicitly to amplify hepatitis A virus (HAV) strains and not other virus species. The assay targets the 5' untranslated region and is designed as a qualitative test for investigating suspected human cases of HAV infection.

Citation: Ian Mackay, Mitchell Finger, Michael Lyon, Judy Northill Hepatitis A MGB TaqMan. protocols.io

dx.doi.org/10.17504/protocols.io.rk3d4yn

Published: 12 Jul 2018

Before start

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol and with PCR in general.

Materials

SuperScript™ III Platinum™ One-Step qRT-PCR Kit 11732088 by Life Technologies

Protocol

Oligonucleotide sequences

Step 1.

Name	Sequence 5'-3'
HEP A FP MGB	GCTCTGGCCGTTGCG
HEP A RP MGB	CCCCAATTTAGACTCCTACAGCTC
HEP A MGB Probe	FAM - TCATGGAGTTGACCCCGCC - MGBNFQ

Reagents

Step 2.

SuperScript™ III Platinum™ One-Step qRT-PCR Kit 11732088 by Life Technologies

Reaction set-up

Step 3.

The assay has been used on both a Rotor-Gene 6000 and a Rotor-Gene Q real-time thermocycler

Prepare sufficient mix for the number of reactions.

Include a suitable 'dead volume' as necessary if using a robotic dispenser.

MIX PREPARATION

ume (µl) x1	Final reaction concentration
4.46	N/A
0.03	300nM
0.03	300nM
0.04	150nM
10	1X
0.4	1X
0.04	0.05μΜ
5	N/A
20	
	0.03 0.03 0.04 10 0.4 0.04

 1 Superscript $^{™}$ III Platinum $^{™}$ One-step qRT-PCR kit

- Dispense 15µL to each reaction well.
- Add 5µL of template (extracted RNA, controls or NTC [nuclease-free water]).
- Total reaction volume is 20μL

Amplification

Step 4.

CYCLING CONDITIONS

50°C	5min	1X
95°C	2min	1X
95°C	3sec	40X
60°C	30sec ¹	i
		'

¹Fluorescence acquisition step

Result Analylsis

Step 5.

The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:

- 1. A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
- 2. A **suitable level of fluorescence** intensity as measured in comparison to a positive control (y-axis)
- 3. A **defined threshold (C_T) value** which the fluorescent curve has clearly exceeded (Fig.1 arrow), which sits early in the log-linear phase and is <40 cycles
- 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a $C_T > 40$ cycles is considered a negative result.
- 5. NTCs should not produce a curve

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.