

Biomass pre-treatments for TC processes

3

Non-conventional Thermo-Chemical (TC) processes, like pyrolysis and gasification, are more influenced by feedstock quality than combustion. To warrant reliable working conditions, biomass pre-treatment is mandatory.

There are basically two pretreatments always required:

- Milling → to standardize size distribution → strongly connected with the issue of the feeding system
 - 1. Commercial solutions adopted for coal are considered
 - 2. Dedicated solutions for biomass are analyzed → pros and cons
- 2. Drying → to standardize moisture content (and, thus, LHV, etc.)
 - 1. Classification of existing technologies
 - 2. Gas dryers vs. Steam dryers
 - 3. Possible energy integrations with the gasification plant

F. Viganò

POLITECNICO DI MILANO

Achieving complete carbon conversion

4

Laboratory-scale gasification tests carry out by ECN on entrained-flow gasifiers identify the requirements for achieving complete conversion of wood chips and herbaceous biomass:

- > Residence time: 1 s (typical value of commercial gasifiers)
- > Mean particle size: 1 mm
- ➤ Moisture content < 7% by mass
- ➤ Thanks to the higher reactivity of biomass with respect to coal, it does not required to be finely milled (for coal d_m < 0.1 mm)

Research centre	Type of biomass	Mean particle size (mm)	Residence time (s)	Max temp. (°C)	C conversion (%)
Future Energy	Straw	1.1	1.4	1580	97.6
ECN	Wood	1	0.3	1450	Complete
ECN	Sawdust	1	< 1	860	97
Elcogas in Puertollano	Meat/bone meal	0.5	n.a.	n.a.	Complete

F. Viganò

Dedicated feeding systems for biomass - 5

4

Feeder Type	Delivery pressure [bar]	Specific el. power [MJ/ton]	Investment cost index	Inert gas consumption [m³/ton]	Max delivery pressure [bar]
Rotary Valves	n.a.	1.40	10	5.53	25
Lock Hopper	40	7.0	100	8.30	90
Screw Feeder	40	71.0	105	0.35	50
Screw/Piston Feeder	40	7.0	105	0.35	40
Piston Feeder	40	14.1	120	1.77	40
Two Piston Feeder	n.a.	7.0 (estimate)	120 (estimate)	0.89 (estimate)	23

Identifying the best feeding system is not possible. The selection mainly depends on:

- > Type of biomass (size distribution, moisture, structure)
- > Gasification pressure
- > Electric power consumption;
- ➤ Relevance of syngas dilution with inert gases (CO₂ and/or N₂)
- > Consumption of inert gas (thus, electric power for gas compression)

F. Viganò

POLITECNICO DI MILANO

Lecture outline

12

- ➤ Biomass pre-treatments for TC processes
 - Feeding systems
 - Drying systems
- Gasification of biomass in entrained flow gasifiers: possible layouts
 - Options for co-gasifying biomass and coal
 - The influence of the drying system on the overall performances
 - > Final remarks

F. Viganò

Classification of biomass dryers

13

- Because of the high moisture content, the heat required for biomass drying is a relevant fraction of the overall energy balance of a plant.
- The selection of the drying technology must consider the energy efficiency, the cost, the integration with the rest of the plant.
- · Classification of dryers

Gas dryers Direct contact
X Steam dryers Indirect contact

Conventional thermal efficiency

 $\eta_d = \frac{Q_{eva} + Q_{h-u}}{Q_{in}}$ Q_{eva}: thermal power for moisture evaporation; Q_{h-u}: thermal power for biomass heating;

Q_{in}: thermal power consumption;

Qlost: thermal loss;

Qout: thermal power m*∆h in the gaseous output.

 $Q_{in} = Q_{eva} + Q_{h-u} + Q_{out} + Q_{lost}$

F. Viganò

"Gas dryers" versus "steam dryers"

17

Selection criteria					
Gas dryers	Steam dryers				
Simple layout	W/o gaseous emissions / gas treatment unit not required				
Investment cost (direct contact): heat exchangers, feeding system and cyclone not required	No ignition or explosion risk even at high temperatures				
High drying rate at low temperatures (150 °C)	High thermal efficiency				
	Possible of recovery the latent heat of evaporation of moisture				

Investment costs of steam dryers can be acceptable only at large scale (biomass input > 100 MWth), in presence of a steam cycle and waste water treatment unit (as in plants for the production of synthetic fuels, and brown coal-fired IGCC).

In small scale plant, simpler flue gas dryer, like the "rotary cascade dryer", are preferred.

F. Viganò

POLITECNICO DI MILANO

Lecture outline

18

- ➤ Biomass pre-treatments for TC processes
 - > Feeding systems
 - > Drying systems
- Gasification of biomass in entrained flow gasifiers: possible layouts
 - Options for co-gasifying biomass and coal
 - The influence of the drying system on the overall performances
 - > Final remarks

F. Viganò

Comparison of the four gasification options

22

Performance indexes

- 1. Cold Gas Efficiency
- 2. Electric consumption for milling (kW/MWth of dry biomass, LHV basis)
- 3. Inert gas introduced into the gasifier (just a fraction of the total)
- 4. Electric consumption for inert gas pressurization
- 5. Electric consumption for the possible syngas compression (from 20 to 40 bar)

$CGE = \frac{\dot{m}_{syn}LHV_{syn}}{\dot{m}_{bio}LHV_{bio}}$		Fine milling + coal feeding system	Milling to 1 mm + screw feeding		Biomass torrefaction + coal feeding system		Fluidized bed + entrained flow	
		Lock hoppers + screw	Piston feeder + screw	Lock- hoppers + screw	Piston f. + pneum. transp.	Lock-hopper + pneum. transp.	Piston feeder + screw	Lock- hoppers + screw
Cold Gas Efficiency	%	76.0	81.0	79.0	73.0	73.0	78.0	77.0
EL Cons. Milling ref. dried wood	kJ/kg	1384.0	173.0	173.0	173.0	173.0	0.0	0.0
EL Cons. Milling	kW/MWth	80.0	10.0	10.0	10.0	10.0	0.0	0.0
Inert gas consumption (CO2)	m3/ton	10.4	0.2	8.3	6.4	11.0	0.1	4.2
Inert gas into the gasifeir (CO2)	m3/ton	6.0	0.1	2.0	6.3	6.3	0.1	1.0
EL Cons. inert pressurization	kW/MWth	27.0	9.0	21.0	23.0	25.0	4.5	10.5
EL Cons. syngas pressurization	kW/MWth	0.0	0.0	0.0	0.0	0.0	9.3	9.3
Total el consumption	kW/MWth	107.0	19.0	31.0	33.0	35.0	13.8	19.8

F. Viganò

2	Comparison of the four gasification options 23							
	Fine milling + coal feeding system	Milling to 1 mm + screw feeding	Biomass torrefaction + coal feeding system	Fluidized bed + entrained flow				
ADVANTAGES	commercially available one only reactor simplicity and availability	1) high CGE 2) moderate el cons. for milling 3) one only reactor 4) simplicity and availability	low el cons. for milling commercially available co-milling and cofeeding with coal	good CGE negligible el cons. for grinding dedicated biomass gasification process negligible syngas dilution by inert				
DISADVANTAGES	very high milling power consumption syngas dilution high el cons. for inert pressurization	1) solution not well proven	very low CGE high inert consumption high syngas dilution two reactors	availability not proved high cost choice limited gasification pressure				
		F. Viganò		POLITECNICO DI MILANO				

Lecture outline

29

- ➤ Biomass pre-treatments for TC processes
 - > Feeding systems
 - Drying systems
- Gasification of biomass in entrained flow gasifiers: possible layouts
 - Options for co-gasifying biomass and coal
 - The influence of the drying system on the overall performances
 - > Final remarks

F. Viganò

POLITECNICO DI MILANO

The influence of the drying system on the overall performances

30

<u>Purposes</u>: estimate the performance sensitivity of a gasification plant to:

- Change in moisture content of received biomass (Yin)
- Degree of biomass drying (Yout)
- > Type of dryer (steam dryer or gas dryer and thermal efficiency)

Performance indexes:

$$CGE = \frac{\dot{m}_{syn}LHV_{syn}}{\dot{m}_{bio}LHV_{bio}} = CGE(Yout)$$

$$CGE^* = \frac{\dot{m}_{syn}LHV_{syn} - \dot{Q}_{dryer}\left(1 - \frac{T_0}{T}\right)}{\dot{m}_{bio}LHV_{bio}} = CGE(Yout) - \Delta(Yin, Yout, T)$$

F. Viganò

