STUDENT ID NO									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2018/2019

EEL2186 – CIRCUITS AND SIGNALS

(All Sections/Groups)

19 OCTOBER 2018 3.00 P.M. – 5.00 P.M. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This Question paper consists of 6 pages including cover page with 5 Questions only.
- 2. Attempt ALL FIVE questions. The distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. The Laplace Transform Pair and Properties tables are as given in Appendices A and B respectively for your reference.

Question 1

(a) State the three criteria for a tree in a network graph.

[3 marks]

- (b) State the difference between a mesh, a loop and a fundamental loop. [2 marks]
- (c) For the given circuit below in Figure Q1(c):
 - (i) Draw the corresponding oriented network graph.

[2 marks]

(ii) Label branches with branch numbers and justify your number assignments.

[2 marks]

- (iii) Assuming anti-clockwise mesh direction, derive the mesh incidence matrix **B** (be sure to label your mesh number on the network graph). [4 marks]
- (iv) Determine the branch impedance matrix **Z**, voltage source matrix **E** as well as the current source matrix **I**. [3 marks]

Figure Q1(c)

Question 2

(a) State whether the signal $f(t) = cos\left(t + \frac{\pi}{2}\right)$ is an even or odd function or neither. Justify your answer by finding the even and odd components.

[4 marks]

- (b) Determine if the signal f(t) = 8u(t) is an energy or power signal. [5 marks]
- (c) Two signals, $f_1[n]$ and $f_2[n]$ are as given below:

$$f_1[n] = e^{-n}u[n];$$

 $f_2[n] = u[n] + u[n-1] - 2u[n-4]$

If c[n] is the discrete convolution between $f_1[n]$ and $f_2[n]$, evaluate the convolution at n=4, c[4]. [8 marks]

Continued...

Question 3

(a) It is given that:

$$F(s) = \frac{as^2 + bs + 2}{s^3 + 2s^2 + s + 1}$$

Use the initial value and time differentiation properties of Laplace Transform to determine the values of a and b such that f(0) = f'(0) = 1.

[8 marks]

(b) Determine the current, i(t) for the circuit shown in Figure Q3(b) by applying Laplace Transform. Assume zero initial conditions. [9 marks]

Figure Q3(b)

(c) The state-space representation of a system is given by:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -3 & -5 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u, \ y = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{x}.$$

Determine the transfer function between the input, u and the output, y.

[8 marks]

Continued...

Question 4

The network shown in Figure Q4 is a cascade of Network A and Network B. Find the transmission (ABCD) parameters for the cascaded network given that:

$$\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} V_2 \\ -I_2 \end{bmatrix}$$

$$\begin{bmatrix} 1\Omega & 5\Omega & 1\Omega & 5\Omega \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

Figure Q4

Question 5

(a) Which of the following impedance functions can be realised as a resistor-capacitor (RC) network? Justify your answer.

$$F_1(s) = \frac{(s+2)(s+6)}{(s+1)(s+5)}$$
; $F_2(s) = \frac{(s+3)(s+4)}{(s+5)(s+6)}$

[4 marks]

(b) Synthesise $Z(s) = \frac{s^4 + 5s^2 + 3}{s(s^2 + 2)}$ as an inductor-capacitor (LC) network using Cauer 1st form.

[9 marks]

(c) Find the order of a low pass (LP) filter by using Butterworth approximation procedure for the given specifications:

Maximum allowable pass band attenuation, $A_p = 4 dB$

Maximum stop band attenuation, $A_S = 60 dB$

Pass band limiting frequency = 8 MHz

Stop band edge frequency = 24 MHz

[4 marks]

(d) Find the transfer function of Butterworth filter when order of the filter, n = 2. [8 marks]

Continued...

Appendix A: Table of Laplace Transform Pairs

No.	t-domain function	s-domain transform
1.	$\delta(t)$	1
2.	u(t)	1/s
3.	tu(t)	1/s ²
4.	t ^{es}	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$ $\frac{n!}{s^{n+1}}$
5.	e^{-kt}	$\frac{1}{s+k}$
6.	t ⁿ e ^{-kt}	$\frac{s+k}{n!}$ $\frac{n!}{(s+k)^{n+1}}$
7.	sin ot	$\frac{\omega}{s^2+\omega^2}$
8.	coswt	$\frac{s}{s^2 + \omega^2}$
9.	e ^{-kt} sinot	$\frac{\omega}{s^2 + \omega^2}$ $\frac{s}{s^2 + \omega^2}$ $\frac{\omega}{(s+k)^2 + \omega^2}$
10.	e ^{-kt} cos ax	$\frac{s+\kappa}{\left(s+k\right)^2+\omega^2}$
11.	tsin ω t	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$
12.	sinheta t	$\frac{\beta}{s^2 - \beta^2}$
13.	cosheta t	$\frac{\beta}{s^2 - \beta^2}$ $\frac{s}{s^2 - \beta^2}$
14.	sin(ωt+φ)	$\frac{s\sin\phi + \omega\cos\phi}{s^2 + \omega^2}$
15.	$2 k e^{-\sigma t}\cos(\omega t - \varphi)$, where $k = k \angle \varphi$	$\frac{k}{s+\sigma+j\omega} + \frac{k^*}{s+\sigma-j\omega}$
16.	f(t) periodic with period T	$\frac{1}{1-e^{-Ts}}\int_{0}^{T}f(t)e^{-st}dt$

Appendix B: Table of Laplace Transform Properties

	Operations	f(t)	F(s)
1.	Multiplication by scalar	kf(t)	kF(s)
2.	Scaling	$f(kt), k \ge 0$	$\frac{1}{k}F\left(\frac{s}{k}\right)$
3.	Addition and subtraction	$f_1(t) \pm f_2(t)$	$F_1(s) \pm F_2(s)$
4.	Time shift	$f(t-t_o)u(t-t_o)$	$F(s)e^{-st_o}$
5.	Frequency shift	$f(t)e^{\alpha t}$	$F(s-\alpha)$
		df(t)	sF(s) - f(0)
6.	Time differentiation	dt	
0.		$\frac{d^2f(t)}{dt^2}$	$s^2F(s) - sf(0) - f'(0)$
7.	Time integration	$\int_0^t f(\tau)d\tau$	$\frac{1}{s}F(s)$
8.	Initial value	$\lim_{t\to 0}f(t)$	$\lim_{s\to\infty}sF(s)$
9.	Final value	$\lim_{t\to\infty}f(t)$	$\lim_{s\to 0} sF(s)$
10.	Frequency differentiation	tf(t)	$-\frac{dF(s)}{ds}$
11.	Frequency integration	$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(s) ds$
12. Convolution		$f_1(t) * f_2(t)$	$F_1(s)F_2(s)$

End of Paper.