Cálculo de Programas Trabalho Prático MiEI+LCC — Ano Lectivo de 2016/17

Departamento de Informática Universidade do Minho

Junho de 2017

Grupo nr.	30
A78322	André Filipe Ferreira de Mira Vieira
A77048	Eduardo Gil Ribeiro Da Rocha
A78764	Ricardo André Araújo Neves

Contents

1	Preâmbulo	2
2	Documentação	2
3	Como realizar o trabalho	3
A	Mónade para probabilidades e estatística	10
В	Definições auxiliares	10
C	Soluções propostas	11

1 Preâmbulo

A disciplina de Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos dois cursos que têm esta disciplina, restringe-se a aplicação deste método ao desenvolvimento de programas funcionais na linguagem Haskell.

O presente trabalho tem por objectivo concretizar na prática os objectivos da disciplina, colocando os alunos perante problemas de programação que deverão ser abordados composicionalmente e implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas e a produzir textos técnico-científicos de qualidade.

2 Documentação

Para cumprir de forma integrada os objectivos enunciados acima vamos recorrer a uma técnica de programação dita "literária" [3], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a sua documentação deverão constar do mesmo documento (ficheiro).

O ficheiro cp1617t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp1617t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp1617t.zip e executando [fontsize=] lhs2TeX cp1617t.lhs¿ cp1617t.tex pdflatex cp1617t em que lhs2tex é um pre-processador que faz "pretty printing" de código Haskell em LATEX e que deve desde já instalar a partir do endereço

```
https://hackage.haskell.org/package/lhs2tex.
```

Por outro lado, o mesmo ficheiro cp1617t.lhs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar [fontsize=] ghci cp1617t.lhs para ver que assim é:

[fontsize=] GHCi, version 8.0.2: http://www.haskell.org/ghc/:? for help [1 of 11] Compiling Show (Show.hs, interpreted) [2 of 11] Compiling ListUtils (ListUtils.hs, interpreted) [3 of 11] Compiling Probability (Probability.hs, interpreted) [4 of 11] Compiling Cp (Cp.hs, interpreted) [5 of 11] Compiling Nat (Nat.hs, interpreted) [6 of 11] Compiling List (List.hs, interpreted) [7 of 11] Compiling LTree (LTree.hs, interpreted) [8 of 11] Compiling St (St.hs, interpreted) [9 of 11] Compiling BTree (BTree.hs, interpreted) [10 of 11] Compiling Exp (Exp.hs, interpreted) [11 of 11] Compiling Main (cp1617t.lhs, interpreted) Ok, modules loaded: BTree, Cp, Exp, LTree, List, ListUtils, Main, Nat, Probability, Show,

O facto de o interpretador carregar as bibliotecas do material pedagógico da disciplina, entre outras, deve-se ao facto de, neste mesmo sítio do texto fonte, se ter inserido o seguinte código Haskell:

```
import Cp import List import Nat import Exp import BTree import LTree import St import Probability\ hiding\ (cond,\ choose) import Data.List import Test.QuickCheck\ hiding\ ((<math>\times)) import System.Random\ hiding\ \langle\cdot,\cdot\rangle import GHC.IO.Exception import System.IO.Unsafe
```

Abra o ficheiro cp1617t.lhs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

¹O suffixo 'lhs' quer dizer *literate Haskell*.

```
\begin{code}
...
\end{code}
```

vai ser seleccionado pelo GHCi para ser executado.

3 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de três alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*. Recomenda-se uma abordagem equilibrada e participativa dos membros do grupo de trabalho por forma a poderem responder às questões que serão colocadas na defesa oral do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo C com as suas respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibTeX) e o índice remissivo (com makeindex), [fontsize=] bibtex cp1617t.aux makeindex cp1617t.idx e recompilar o texto como acima se indicou. Dever-se-á ainda instalar o utilitário QuickCheck que ajuda a validar programas em Haskell.

Problema 1

O controlador de um processo físico baseia-se em dezenas de sensores que enviam as suas leituras para um sistema central, onde é feito o respectivo processamento.

Verificando-se que o sistema central está muito sobrecarregado, surgiu a ideia de equipar cada sensor com um microcontrolador que faça algum pré-processamento das leituras antes de as enviar ao sistema central. Esse tratamento envolve as operações (em vírgula flutuante) de soma, subtracção, multiplicação e divisão.

Há, contudo, uma dificuldade: o código da divisão não cabe na memória do microcontrolador, e não se pretende investir em novos microcontroladores devido à sua elevada quantidade e preço.

Olhando para o código a replicar pelos microcontroladores, alguém verificou que a divisão só é usada para calcular inversos, $\frac{1}{x}$. Calibrando os sensores foi possível garantir que os valores a inverter estão entre 1 < x < 2, podendo-se então recorrer à série de Maclaurin

$$\frac{1}{x} = \sum_{i=0}^{\infty} (1-x)^i$$

para calcular $\frac{1}{x}$ sem fazer divisões. Seja então

$$inv \ x \ n = \sum_{i=0}^{n} (1-x)^{i}$$

a função que aproxima $\frac{1}{x}$ com n iterações da série de MacLaurin. Mostre que inv x é um ciclo-for, implementando-o em Haskell (e opcionalmente em C). Deverá ainda apresentar testes em QuickCheck que verifiquem o funcionamento da sua solução. (**Sugestão:** inspire-se no problema semelhante relativo à função ns da secção 3.16 dos apontamentos [4].)

Problema 2

Se digitar *man wc* na shell do Unix (Linux) obterá:

```
NAME

wc -- word, line, character, and byte count

SYNOPSIS

wc [-clmw] [file ...]

DESCRIPTION

The wc utility displays the number of lines, words, and bytes contained in
```

²Para uma breve introdução ver e.g. https://en.wikipedia.org/wiki/QuickCheck.

Se olharmos para o código da função que, em C, implementa esta funcionalidade [2] e nos focarmos apenas na parte que implementa a opção -w, verificamos que a poderíamos escrever, em Haskell, da forma seguinte:

```
wc_-w :: [Char] \rightarrow Int
vc_-w :: [char] \rightarrow Int
vc_-
```

Re-implemente esta função segundo o modelo worker/wrapper onde wrapper deverá ser um catamorfismos de listas. Apresente os cálculos que fez para chegar a essa sua versão de wc_-w e inclua testes em QuickCheck que verifiquem o funcionamento da sua solução. (Sugestão: aplique a lei de recursividade múltipla às funções wc_-w e $lookahead_sep$.)

Problema 3

Uma "B-tree" é uma generalização das árvores binárias do módulo BTree a mais do que duas sub-árvores por nó:

```
data B-tree a = Nil \mid Block \mid leftmost :: B-tree \mid a, block :: \mid (a, B-tree \mid a) \mid \} deriving (Show, Eq)
```

Por exemplo, a B-tree³

é representada no tipo acima por:

```
 \begin{split} t &= Block \; \{ \\ &leftmost = Block \; \{ \\ &leftmost = Nil, \\ &block = [(1,Nil),(2,Nil),(5,Nil),(6,Nil)] \}, \\ &block = [\\ &(7,Block \; \{ \\ &leftmost = Nil, \\ &block = [(9,Nil),(12,Nil)] \}), \\ &(16,Block \; \{ \\ &leftmost = Nil, \end{split}
```

 $^{^3}$ Créditos: figura extraída de https://en.wikipedia.org/wiki/B-tree.

```
block = [(18, Nil), (21, Nil)]\})
```

Pretende-se, neste problema:

- 1. Construir uma biblioteca para o tipo B-tree da forma habitual (in + out; ana + cata + hylo; instância na classe *Functor*).
- 2. Definir como um catamorfismo a função $inordB_tree :: B-tree \ t \to [t]$ que faça travessias "inorder" de árvores deste tipo.
- 3. Definir como um catamorfismo a função largestBlock :: B-tree $a \rightarrow Int$ que detecta o tamanho do maior bloco da árvore argumento.
- 4. Definir como um anamorfismo a função $\it{mirrorB_tree} :: B\text{-tree} \ a \to B\text{-tree} \ a$ que roda a árvore argumento de $180^{\rm o}$
- 5. Adaptar ao tipo B-tree o hilomorfismo "quick sort" do módulo BTree. O respectivo anamorfismo deverá basear-se no gene *lsplitB_tree* cujo funcionamento se sugere a seguir:

```
\begin{aligned} & lsplitB\_tree \ [] = i_1 \ () \\ & lsplitB\_tree \ [7] = i_2 \ ([], [(7, [])]) \\ & lsplitB\_tree \ [5, 7, 1, 9] = i_2 \ ([1], [(5, []), (7, [9])]) \\ & lsplitB\_tree \ [7, 5, 1, 9] = i_2 \ ([1], [(5, []), (7, [9])]) \end{aligned}
```

6. A biblioteca Exp permite representar árvores-expressão em formato DOT, que pode ser lido por aplicações como por exemplo Graphviz, produzindo as respectivas imagens. Por exemplo, para o caso de árvores BTree, se definirmos

```
dotBTree :: Show \ a \Rightarrow \mathsf{BTree} \ a \to \mathsf{IO} \ ExitCode dotBTree = dotpict \cdot bmap \ nothing \ (Just \cdot show) \cdot cBTree2Exp t1 = Node \ (6, (Node \ (3, (Node \ (2, (Empty, Empty)), Empty)), Node \ (7, (Empty, Node \ (9, (Empty, Empty))))) executando dotBTree \ t \ \mathsf{para} t = Node \ (6, (Node \ (3, (Node \ (2, (Empty, Empty)), Empty)), Node \ (7, (Empty, Node \ (9, (Empty, Empty)))))) obter-se-á a imagem
```


Escreva de forma semelhante uma função dotB-tree que permita mostrar em Graphviz⁴ árvores B-tree tal como se ilustra a seguir,

⁴Como alternativa a instalar Graphviz, podem usar WebGraphviz num browser.

para a árvora dada acima.

Problema 4

Nesta disciplina estudaram-se funções mutuamente recursivas e como lidar com elas. Os tipos indutivos de dados podem, eles próprios, ser mutuamente recursivos. Um exemplo dessa situação são os chamados L-Systems.

Um L-System é um conjunto de regras de produção que podem ser usadas para gerar padrões por re-escrita sucessiva, de acordo com essas mesmas regras. Tal como numa gramática, há um axioma ou símbolo inicial, de onde se parte para aplicar as regras. Um exemplo célebre é o do crescimento de algas formalizado por Lindenmayer⁵ no sistema:

Variáveis: A e BConstantes: nenhuma Axioma: ARegras: $A \rightarrow A$ B, $B \rightarrow A$.

Quer dizer, em cada iteração do "crescimento" da alga, cada A deriva num par A B e cada B converte-se num A. Assim, ter-se-á, onde n é o número de iterações desse processo:

- n = 0: A
- n = 1: A B
- n = 2: A B A
- n = 3: A B A A B
- etc

Este L-System pode codificar-se em Haskell considerando cada variável um tipo, a que se adiciona um caso de paragem para poder expressar as sucessivas iterações:

```
 \begin{array}{l} \textbf{type} \ Algae = A \\ \textbf{data} \ A = \text{NA} \mid A \ A \ B \ \textbf{deriving} \ Show \\ \textbf{data} \ B = \text{NB} \mid B \ A \ \textbf{deriving} \ Show \end{array}
```

Observa-se aqui já que A e B são mutuamente recursivos. Os isomorfismos in/out são definidos da forma habitual:

```
\begin{split} &inA :: 1 + A \times B \to A \\ &inA = [\underline{\text{NA}}, \widehat{A}] \\ &outA :: A \to 1 + A \times B \\ &outA \text{ NA} = i_1 \text{ ()} \\ &outA \text{ (}A \text{ }a \text{ }b) = i_2 \text{ (}a,b) \\ &inB :: 1 + A \to B \\ &inB = [\underline{\text{NB}},B] \\ &outB :: B \to 1 + A \\ &outB \text{ NB} = i_1 \text{ ()} \\ &outB \text{ (}B \text{ }a) = i_2 \text{ }a \end{split}
```

O functor é, em ambos os casos, F X = 1 + X. Contudo, os catamorfismos de A têm de ser estendidos com mais um gene, de forma a processar também os B,

e a mesma coisa para os Bs:

Pretende-se, neste problema:

 $^{^5} Ver \, \text{https://en.wikipedia.org/wiki/Aristid_Lindenmayer.}$

- 1. A definição dos anamorfimos dos tipos A e B.
- 2. A definição da função

```
generateAlgae :: Int \rightarrow Algae
```

como anamorfismo de Algae e da função

```
showAlgae :: Algae \rightarrow String
```

como catamorfismo de Algae.

3. Use QuickCheck para verificar a seguinte propriedade:

```
length \cdot showAlgae \cdot generateAlgae = fib \cdot succ
```

Problema 5

O ponto de partida deste problema é um conjunto de equipas de futebol, por exemplo:

```
equipas :: [Equipa]
equipas = [
  "Arouca", "Belenenses", "Benfica", "Braga", "Chaves", "Feirense",
  "Guimaraes", "Maritimo", "Moreirense", "Nacional", "P. Ferreira",
  "Porto", "Rio Ave", "Setubal", "Sporting", "Estoril"
  ]
```

Assume-se que há uma função f (e_1, e_2) que dá — baseando-se em informação acumulada historicamente, e.g. estatística — qual a probabilidade de e_1 ou e_2 ganharem um jogo entre si.⁶ Por exemplo, f ("Arouca", "Braga") poderá dar como resultado a distribuição

```
Arouca 28.6%
Braga 71.4%
```

indicando que há 71.4% de probabilidades de "Braga" ganhar a "Arouca".

Para lidarmos com probabilidades vamos usar o mónade Dist *a* que vem descrito no apêndice A e que está implementado na biblioteca Probability [1] — ver definição (1) mais adiante. A primeira parte do problema consiste em sortear *aleatoriamente* os jogos das equipas. O resultado deverá ser uma LTree contendo, nas folhas, os jogos da primeira eliminatória e cujos nós indicam quem joga com quem (vencendo), à medida que a eliminatória prossegue:

A segunda parte do problema consiste em processar essa árvore usando a função

$$jogo :: (Equipa, Equipa) \rightarrow \mathsf{Dist}\ Equipa$$

 $^{^6\}mathrm{Tratando}$ se de jogos eliminatórios, não há lugar a empates.

que foi referida acima. Essa função simula um qualquer jogo, como foi acima dito, dando o resultado de forma probabilística. Por exemplo, para o sorteio acima e a função jogo que é dada neste enunciado⁷, a probabilidade de cada equipa vir a ganhar a competição vem dada na distribuição seguinte:

Assumindo como dada e fixa a função jogo acima referida, juntando as duas partes obteremos um hilomorfismo de tipo $[Equipa] \rightarrow Dist\ Equipa$,

```
quem\_vence :: [Equipa] \rightarrow \mathsf{Dist}\ Equipa
quem\_vence = eliminatoria \cdot sorteio
```

com características especiais: é aleatório no anamorfismo (sorteio) e probabilístico no catamorfismo (eliminatória).

O anamorfismo $sorteio :: [Equipa] \rightarrow \mathsf{LTree}\ Equipa\ \mathsf{tem}\ \mathsf{a}\ \mathsf{seguinte}\ \mathsf{arquitectura}, ^8$

```
sorteio = anaLTree\ lsplit \cdot envia \cdot permuta
```

reutilizando o anamorfismo do algoritmo de "merge sort", da biblioteca LTree, para construir a árvore de jogos a partir de uma permutação aleatória das equipas gerada pela função genérica

```
permuta :: [a] \rightarrow \mathsf{IO}[a]
```

A presença do mónade de IO tem a ver com a geração de números aleatórios⁹.

1. Defina a função monádica *permuta* sabendo que tem já disponível

$$qetR :: [a] \rightarrow IO(a, [a])$$

 $getR \ x$ dá como resultado um par (h,t) em que h é um elemento de x tirado à sorte e t é a lista sem esse elemento – mas esse par vem encapsulado dentro de IO.

2. A segunda parte do exercício consiste em definir a função monádica

```
eliminatoria :: LTree \ Equipa \rightarrow Dist \ Equipa
```

que, assumindo já disponível a função *jogo* acima referida, dá como resultado a distribuição de equipas vencedoras do campeonato.

Sugestão: inspire-se na secção 4.10 ('Monadification' of Haskell code made easy) dos apontamentos [4].

⁷Pode, se desejar, criar a sua própria função *jogo*, mas para efeitos de avaliação terá que ser usada a que vem dada neste enunciado. Uma versão de *jogo* realista teria que ter em conta todas as estatísticas de jogos entre as equipas em jogo, etc etc.

⁸A função *envia* não é importante para o processo; apenas se destina a simplificar a arquitectura monádica da solução.

⁹Quem estiver interessado em detalhes deverá consultar System.Random.

References

- [1] M. Erwig and S. Kollmansberger. Functional pearls: Probabilistic functional programming in Haskell. *J. Funct. Program.*, 16:21–34, January 2006.
- [2] B.W. Kernighan and D.M. Richtie. *The C Programming Language*. Prentice Hall, Englewood Cliffs, N.J., 1978.
- [3] D.E. Knuth. *Literate Programming*. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
- [4] J.N. Oliveira. *Program Design by Calculation*, 2008. Draft of textbook in preparation. viii+297 pages. Informatics Department, University of Minho.

Anexos

A Mónade para probabilidades e estatística

Mónades são functores com propriedades adicionais que nos permitem obter efeitos especiais em programação. Por exemplo, a biblioteca Probability oferece um mónade para abordar problemas de probabilidades. Nesta biblioteca, o conceito de distribuição estatística é captado pelo tipo

$$newtype Dist a = D \{unD :: [(a, ProbRep)]\}$$
(1)

em que *ProbRep* é um real de 0 a 1, equivalente a uma escala de 0 a 100%.

Cada par (a, p) numa distribuição d :: Dist a indica que a probabilidade de a é p, devendo ser garantida a propriedade de que todas as probabilidades de d somam 100%. Por exemplo, a seguinte distribuição de classificações por escalões de A a E,

$$A = 2\%$$
 $B = 12\%$
 $C = 29\%$
 $D = 35\%$
 $E = 22\%$

será representada pela distribuição

```
d1:: Dist Char d1 = D[('A', 0.02), ('B', 0.12), ('C', 0.29), ('D', 0.35), ('E', 0.22)]
```

que o GHCi mostrará assim: [fontsize=] 'D' 35.0'C' 29.0'E' 22.0'B' 12.0'A' 2.0 É possível definir geradores de distribuições, por exemplo distribuições *uniformes*,

```
d2 = uniform (words "Uma frase de cinco palavras")
```

isto é [fontsize=] "Uma" 20.0"cinco" 20.0"de" 20.0"frase" 20.0"palavras" 20.0 distribuição normais, eg.

$$d3 = normal [10..20]$$

etc.10

Dist forma um **mónade** cuja unidade é $return\ a=D\ [(a,1)]$ e cuja composição de Kleisli é (simplificando a notação)

```
(f \bullet g) \ a = [(y, q * p) \mid (x, p) \leftarrow g \ a, (y, q) \leftarrow f \ x]
```

em que $g:A \to {\sf Dist}\ B$ e $f:B \to {\sf Dist}\ C$ são funções **monádicas** que representam *computações probabilísticas*. Este mónade é adequado à resolução de problemas de *probabilidades e estatística* usando programação funcional, de forma elegante e como caso particular de programação monádica.

B Definições auxiliares

São dadas: a função que simula jogos entre equipas,

```
type Equipa = String

jogo :: (Equipa, Equipa) \rightarrow Dist \ Equipa

jogo \ (e_1, e_2) = D \ [(e_1, 1 - r1 \ / \ (r1 + r2)), (e_2, 1 - r2 \ / \ (r1 + r2))] \ \mathbf{where}

r1 = rank \ e_1

r2 = rank \ e_2

rank = pap \ ranks

ranks = [

("Arouca", 5),
```

¹⁰Para mais detalhes ver o código fonte de Probability, que é uma adaptação da biblioteca PHP ("Probabilistic Functional Programming"). Para quem quiser souber mais recomenda-se a leitura do artigo [1].

```
("Belenenses",3),
("Benfica",1),
("Braga",2),
("Chaves",5),
("Feirense",5),
("Guimaraes",2),
("Maritimo",3),
("Moreirense",4),
("Nacional",3),
("P.Ferreira",3),
("Porto",1),
("Rio Ave",4),
("Setubal",4),
("Sporting",1),
("Estoril",5)]
```

a função (monádica) que parte uma lista numa cabeça e cauda aleatórias,

```
\begin{split} & getR :: [a] \rightarrow \mathsf{IO}\ (a,[a]) \\ & getR\ x = \mathbf{do}\ \{ \\ & i \leftarrow getStdRandom\ (randomR\ (0,\mathsf{length}\ x-1)); \\ & return\ (x !!\ i,retira\ i\ x) \\ & \}\ \mathbf{where}\ retira\ i\ x = take\ i\ x + drop\ (i+1)\ x \end{split}
```

e algumas funções auxiliares de menor importância: uma que ordena listas com base num atributo (função que induz uma pré-ordem),

```
presort :: (Ord\ a, Ord\ b) \Rightarrow (b \rightarrow a) \rightarrow [b] \rightarrow [b]

presort\ f = \text{map}\ \pi_2 \cdot sort \cdot (\text{map}\ (fork\ f\ id))
```

e outra que converte "look-up tables" em funções (parciais):

```
pap :: Eq \ a \Rightarrow [(a,t)] \rightarrow a \rightarrow t

pap \ m \ k = unJust \ (lookup \ k \ m) where unJust \ (Just \ a) = a
```

C Soluções propostas

Os alunos devem colocar neste anexo as suas soluções aos exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes das funções dadas, mas pode ser adicionado texto e / ou outras funções auxiliares que sejam necessárias.

Problema 1

```
 \begin{cases} (invAux\ x) \cdot \mathsf{in} = [\underline{1-x}, mul \cdot \langle invAux\ x, \underline{1-x} \rangle] \\ (inv\ x) \cdot \mathsf{in} = [\underline{1} \cdot id, add \cdot \langle invAux\ x, inv\ x \rangle] \end{cases} 
 = \qquad \{ \text{Natural-id, Natural-const, Absorção-+} \} 
 \begin{cases} (invAux\ x) \cdot \mathsf{in} = [\underline{1-x}, mul \cdot \langle id \cdot invAux\ x, \underline{1-x} \cdot inv\ x \rangle,] \\ (inv\ x) \cdot \mathsf{in} = [\underline{1}, add] \cdot (id + \langle invAux\ x, inv\ x \rangle) \end{cases} 
 = \qquad \{ \text{Natural-id, Def-x} \} 
 \begin{cases} (invAux\ x) \cdot \mathsf{in} = [\underline{1-x} \cdot id, mul \cdot (id \times \underline{1-x}) \cdot \langle intAux\ x, inv\ x \rangle] \\ (inv\ x) \cdot \mathsf{in} = [\underline{1}, add] \cdot (id + \langle invAux\ x, inv\ x \rangle) \end{cases}
```

```
{ Natural-id, Def-x }
           \left\{ \begin{array}{l} (invAux \ x) \cdot \mathsf{in} = [\underline{1-x}, mul \cdot (id \times \underline{1-x})] \cdot (id + \langle intAux \ x, inv \ x \rangle \\ (inv \ x) \cdot \mathsf{in} = [\underline{1}, add] \cdot (id + \langle invAux \ x, inv \ x \rangle \end{array} \right.
                   { Fokkinga }
           \langle invAux \ x, inv \ x \rangle = (\langle [1-x, mul \cdot (id \times 1-x)], [\underline{1}, add] \rangle)
                   { Lei da Troca }
           \langle invAux \ x, inv \ x \rangle = \langle [\langle 1-x, \underline{1} \rangle, \langle mul \cdot (id \times (1-x), add \rangle]] \rangle
soma :: (Num \ a) \Rightarrow (a, a) \rightarrow a
soma(x, y) = x + y
multiplica :: (Num \ a) \Rightarrow (a, a) \rightarrow a
multiplica\ (x,y) = x * y
tiraNumero :: Gen\ Float
tiraNumero = choose (1, 1.99)
arrDec :: Float \rightarrow Int \rightarrow Float
arrDec\ x\ n = (fromIntegral\ (floor\ (x * (10 \uparrow n))))\ /\ (10 \uparrow n)
inv \ x = \text{for} \ \langle multiplica \cdot (id \times (1-x)), soma \rangle \ (1-x,1)
retorna x = \pi_2 \cdot (inv \ x)
verificaInv = \mathbf{do} \{
   x \leftarrow tiraNumero;
   return\ (arrDec\ (1\ /\ x)\ 2 \equiv arrDec\ (retorna\ x\ 10000)\ 2)
```

Problema 2

```
 \begin{array}{l} wc\_w\_final :: [\mathit{Char}] \to \mathit{Int} \\ wc\_w\_final = \mathit{wrapper} \cdot \mathit{worker} \\ \mathit{wrapper} = \bot \\ \mathit{worker} = \bot \end{array}
```

Problema 3

$$\begin{split} inB_tree &= [\underline{Nil}, \widehat{Block}] \\ out \cdot \mathsf{in} &= id \end{split}$$

```
{ Fusão-+ }
               [out \cdot Nil, out \cdot Block]
                     { Universal-+ }
                \begin{cases} id \cdot i_1 = out \cdot Nil \\ id \cdot i_2 = out \cdot Block \end{cases}
       out \cdot Nil = i_1 => outNil = i_1()
       out \cdot Block = i_2 => outBlockxy = i_2(x, y)
       outB\_tree\ Nil = i_1\ ()
       outB\_tree\ (Block\ x\ y) = i_2\ (x,y)
       baseB\_tree \ x \ y = id + (x \times map \ (y \times x))
       recB\_tree\ x = baseB\_tree\ x\ id
       cataB\_tree \ x = x \cdot (recB\_tree \ (cataB\_tree \ x)) \cdot outB\_tree
       anaB\_tree \ x = inB\_tree \cdot (recB\_tree \ (anaB\_tree \ x)) \cdot x
       hyloB\_tree\ x\ y = cataB\_tree\ x \cdot anaB\_tree\ y
       instance Functor B-tree
          where fmap f = cataB\_tree \ (inB\_tree \cdot baseB\_tree \ id \ f)
       inordB\_tree = \bot
       largestBlock = \bot
       mirrorB\_tree = \bot
       lsplitB\_tree = \bot
       qSortB\_tree = \bot
       dotB\_tree = \bot
       cB\_tree2Exp = \bot
Problema 4
@C=2cm [A] [d]_ (g)[r]^{out}1+(A\times[A])[d]^F (g)
B1 + (A \times B)[l]_{-g}
    @C=2\operatorname{cm} B[r]^{g}[d]^{[g]}1 + (A \times B)[d]^{F(g)}
```

 $[\![\mathit{ga}\ \mathit{gb}]\!]_A = \mathit{inA} \cdot (\mathit{id} + ([\![\mathit{ga}\ \mathit{gb}]\!]_A \times [\![\mathit{ga}\ \mathit{gb}]\!]_B)) \cdot \mathit{ga}$

 $[\![ga\ gb]\!]_B = inB \cdot (id + [\![ga\ gb]\!]_A) \cdot gb$

@C=2cm $Int [r]^x [d]^{[(x,y)]} 1 + Int \times Int[d]^F ((x,y))$

 $out \cdot [\underline{Nil}, Block] = id$

 $[A]1 + (A \times [A])[l]_{-in}$

 $Algae1 + A \times B[l]_{-in_A}$

```
@C=2cm Int [r]^y [d]^{[(x,y)]} 1 + Int[d]^F ((x,y))
B1 + A[l]_{-in_B}
   @\texttt{C=2cm}\ Algae\ [\texttt{d}]\_((x,y))[r]^{out_A}1 + (Algae\times B)[d]^{F\ ((x,y))}
String1 + (String \times String)[l]_x
   @C=2cm B [d]_((x,y))[r]^{out_B}1 + Algae[d]^F((x,y))
String1 + String[l]_y
      genA :: Int \rightarrow () + (Int, Int)
      genA \ 0 = i_1 \ ()
      genA \ x = i_2 \ (x - 1, x - 1)
      genB :: Int \rightarrow () + Int
      genB \ 0 = i_1 \ ()
      genB \ x = outNat \ x
      generateAlgae = [genA \ genB]_A
      showA :: () + (String, String) \rightarrow String
      showA(i_1()) = "A"
      showA (i_2 (x, y)) = x + y
      showB :: () + (String) \rightarrow String
      showB(i_1()) = "B"
      showB (i_2 x) = x
      showAlgae = (showA \ showB)_A
      newFib :: Int \rightarrow Int
      newFib 0 = 1
      newFib \ 1 = 1
      newFib \ x = newFib \ (x - 1) + newFib \ (x - 2)
      tiraNumero2 :: Gen Int
      tiraNumero2 = choose (0, 20)
      verifica :: Gen\ Bool
      verifica = \mathbf{do} \{
         z \leftarrow tiraNumero2;
         return ((length (showAlgae (generateAlgae z))) \equiv (newFib (succ z)))
      }
```

Problema 5

```
permuta \ [] = return \ []
permuta \ x = \mathbf{do} \ \{(a,b) \leftarrow getR \ x; x \leftarrow permuta \ b; return \ (a:x)\}
probEquipa1 :: \mathsf{Dist} \ Equipa \rightarrow Float
probEquipa1 \ (D \ ((x,y):ys)) = y
flatten :: \mathsf{LTree} \ Equipa \rightarrow [Equipa]
flatten \ (Leaf \ a) = [a]
flatten \ (Fork \ (x,y)) = (flatten \ x) + (flatten \ y)
```

```
eliminatoria tree = \mathbf{do} \{
 (e_1, ((probEquipa1\ (jogo\ (e_1, e_2)))*((probEquipa1\ (jogo\ (e_1, e_3))) + (probEquipa1\ (jogo\ (e_1, e_4))))*((probEquipa1\ (jogo\ (e_1, e_4)))))*((probEquipa1\ (jogo\ (e_1, e_4)))))*((probEquipa1\ (jogo\ (e_1, e_4))))*((probEquipa1\ (jogo\ (e_1, e_4)))))*((probEquipa1\ (jogo\ (e_1, e_4))))))*((probEquipa1\ (jogo\ (e_1, e_4)))))*((probEquipa1\ (jogo\ (e_1, e_4))))))*((probEquipa1\ (jogo\ (e_1, e_4)))))*((probEquipa1\ (jogo\ (e_1, e_4))))))*((probEquipa1\ (jogo\ (e_1, e_4)))))))
 (e_2, ((probEquipa1\ (jogo\ (e_2, e_1)))*((probEquipa1\ (jogo\ (e_2, e_3))) + (probEquipa1\ (jogo\ (e_2, e_4))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4))))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4))))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4)))))*((probEquipa1\ (jogo\ (e_2, e_4))))))*((probEquipa1\ (jogo\ (e_2, e_4))))))
 (e3, ((probEquipa1 \ (jogo \ (e3, e_4))) * ((probEquipa1 \ (jogo \ (e3, e_1))) + (probEquipa1 \ (jogo \ (e3, e_2)))) * ((probEquipa1 \ (jogo \ (e3, e_2))))) * ((probEquipa1 \ (jogo \ (e3, e_2)))) * ((probEquipa1 \ (jogo \ (e3, e_2)))) * ((probEquipa1 \ (jogo \ (e3, e_2)))) * ((probEquipa1 \ (jogo \ (e3, e_2))))) * ((probEquipa1 \ (jogo \ (e3, e_2)))) * ((probEquipa1 \ (jogo \ (e3, e_2))))) * (
 (e4, ((probEquipa1 (jogo (e4, e3))) * ((probEquipa1 (jogo (e4, e_1))) + (probEquipa1 (jogo (e4, e_2)))) * ((probEquipa1 (jogo (e4, e_2)))) * ((probEquipa1
 (e5, ((probEquipa1\ (jogo\ (e5, e6)))*((probEquipa1\ (jogo\ (e5, e7))) + (probEquipa1\ (jogo\ (e5, e8))))*((probEquipa1\ (jogo\ (e5, e8))))*
 (e6, ((probEquipa1\ (jogo\ (e6, e5)))*((probEquipa1\ (jogo\ (e6, e7))) + (probEquipa1\ (jogo\ (e6, e8))))*((probEquipa1\ (jogo\ (e6, e8))))*
 (e7, ((probEquipa1\ (jogo\ (e7, e8)))*((probEquipa1\ (jogo\ (e7, e5))) + (probEquipa1\ (jogo\ (e7, e6))))*((probEquipa1\ (jogo\ (e7, e6))))*
   (e8, ((probEquipa1\ (jogo\ (e8, e7)))*((probEquipa1\ (jogo\ (e8, e5))) + (probEquipa1\ (jogo\ (e8, e6))))*((probEquipa1\ (jogo\ (e8, e6))))*
   (e9, ((probEquipa1\ (jogo\ (e9, e10)))*((probEquipa1\ (jogo\ (e9, e11))) + (probEquipa1\ (jogo\ (e9, e12))))*((probEquipa1\ (jogo\ (e9, e12))))*((probEqui
 (e10, ((probEquipa1\ (jogo\ (e10, e9)))*((probEquipa1\ (jogo\ (e10, e11))) + (probEquipa1\ (jogo\ (e10, e12))))*((probEquipa1\ (jogo\ (e10, e12)))))*((probEquipa1\ (jogo\ (e10, e12))))*((probEquipa1\ (jogo\ (e10, e12)))))*((probEquipa1\ (jogo\ (e10, e12))))))*((probEquipa1\ (jogo\ (e10, e12)))))*((probEquipa1\ (jogo\ (e10, e12)))))*((probEquipa1\ (jogo\ (e10, e12)))))*((probEquipa1\ (jogo\ (e10, e12)))))*((probEquipa1\ (jogo\ (e10, e12))))))*((probEquipa1\ (jogo\ (e10, e12))))))
 (e11, ((probEquipa1\ (jogo\ (e11, e12))) * ((probEquipa1\ (jogo\ (e11, e9))) + (probEquipa1\ (jogo\ (e11, e10)))) * ((probEquipa1\ (jogo\ (e11, e10))))) * ((probEquipa1\ (jogo\ (e11, e10)))) * ((probEquipa1\ (jogo\ (e11, e10))))) * ((probEquipa1\ (jogo\ (e11, e10)))) * ((probEquipa1\ (jogo\ (e11, e10))))) * ((probEquipa1\ (jogo\ (e11, e10)))))) * ((probEquipa1\ (jogo\ (e11, e10))))) * ((probEquipa1\ (jogo\ (e11, 
 (e12, ((probEquipa1\ (jogo\ (e12, e11)))*((probEquipa1\ (jogo\ (e12, e9))) + (probEquipa1\ (jogo\ (e12, e10))))*((probEquipa1\ (jogo\ (e12, e10))))*((probEquipa1\ (jogo\ (e12, e10))))*((probEquipa1\ (jogo\ (e12, e10))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10))))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10))))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10))))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10))))))*((probEquipa1\ (jogo\ (e12, e10)))))*((probEquipa1\ (jogo\ (e12, e10))))))*((probE
 (e13, ((probEquipa1\ (jogo\ (e13, e14)))*((probEquipa1\ (jogo\ (e13, e15))) + (probEquipa1\ (jogo\ (e13, e16))))*(
 (e14, ((probEquipa1\ (jogo\ (e14, e13)))*((probEquipa1\ (jogo\ (e14, e15))) + (probEquipa1\ (jogo\ (e14, e16))))*(
   (e15, ((probEquipa1\ (joqo\ (e15, e16))) * ((probEquipa1\ (joqo\ (e15, e13))) + (probEquipa1\ (joqo\ (e15, e14)))) * (
   (e16, ((probEquipa1\ (jogo\ (e16, e15))) * ((probEquipa1\ (jogo\ (e16, e13))) + (probEquipa1\ (jogo\ (e16, e14)))) * (
return x}
                     where
```

 $(e_1:e_2:e3:e4:e5:e6:e7:e8:e9:e10:e11:e12:e13:e14:e15:e16:ys) = flatten\ tree$

Index

```
\triangle T_{F}X, 2
     lhs2TeX, 2
B-tree, 4
Cálculo de Programas, 3
     Material Pedagógico, 2
       BTree.hs, 4, 5
       Exp.hs, 5
LTree.hs, 8, 9
Combinador "pointfree"
    cata, 7
    either, 7
Função
     \pi_2, 11
    length, 7, 11
    map, 11
    succ, 7
     uncurry, 7
Functor, 3, 5, 7–11
Graphviz, 5, 6
     WebGraphviz, 6
Haskell, 2, 3
     "Literate Haskell", 2
     Biblioteca
       PFP, 10
       Probability, 8, 10
     interpretador
       GHCi, 3, 10
     QuickCheck, 3, 4, 7
L-system, 6, 7
Programação literária, 2
Taylor series
     Maclaurin series, 3
U.Minho
     Departamento de Informática, 1
Unix shell
     wc, 4
Utilitário
    LaTeX
       bibtex, 3
       makeindex, 3
```