MATH 801: Complex Variables and Transform Methods

Md. Toriqul Islam
Lecturer in Mathematics
Basic Science Division
World University of Bangladesh

Lecture Outline

The Real Number System

Graphical Representation of Real Numbers

The Complex Number System

Fundamental Operations with Complex Numbers

The number system as we know it today is a result of gradual development as indicated in the following list.

(1) Natural numbers 1, 2, 3, 4, ..., also called *positive integers*, were first used in counting. If a and b are natural numbers, the sum a + b and product $a \cdot b$, (a)(b) or ab are also natural numbers.

For this reason, the set of natural numbers is said to be *closed* under the operations of addition and multiplication or to satisfy the *closure* property with respect to these operations.

(2) **Negative integers and zero,** denoted by -1, -2, -3, ... and 0, respectively, permit solutions of equations such as x + b = a where a and b are any natural numbers.

This leads to the operation of subtraction, or inverse of addition, and we write x = a - b.

The set of positive and negative integers and zero is called the set of *integers* and is closed under the operations of addition, multiplication, and subtraction.

(3) Rational numbers or fractions such as 3/4, -8/3, 1/2 ... permit solutions of equations such as bx = a for all integers a and b where $b \neq 0$. This leads to the operation of division or inverse of multiplication, and we write x = a/b or $a \div b$ (called the a and a where a is the a in a in

The set of integers is a part or subset of the *rational numbers*, since integers correspond to rational numbers a/b where b=1.

The set of rational numbers is closed under the operations of addition, subtraction, multiplication, and division, so long as division by zero is excluded.

(4) Irrational numbers such as $\sqrt{2}$ and π are numbers that cannot be expressed as a/b where a and b are integers and $b \neq 0$.

The set of rational and irrational numbers is called the set of real numbers.

It is assumed that the student is already familiar with the various operations on real numbers.

Graphical Representation of Real Numbers

Real numbers can be represented by points on a line called the *real axis*, as indicated in the following figure. The point corresponding to zero is called the *origin*.

Figure: Number Line

Graphical Representation of Real Numbers

- Conversely, to each point on the line there is one and only one real number. If a point A corresponding to a real number a lies to the right of a point B corresponding to a real number a, we say that a is greater than b or b is less than a and write a > b or b < a, respectively.
- The set of all values of x such that a < x < b is called an *open interval* on the real axis while $a \le x \le b$, which also includes the endpoints a and b, is called a *closed interval*.
- \diamond The symbol x, which can stand for any real number, is called a *real variable*.
- The absolute value of a real number a, denoted by |a|, is equal to a if a > 0, to -a if a < 0 and to 0 if a = 0.
- \diamond The distance between two points a and b on the real axis is |a-b|.

The Complex Number System

- There is no real number x that satisfies the polynomial equation $x^2 + 1 = 0$. To permit solutions of this and similar equations, the set of *complex numbers* is introduced.
- We can consider a *complex number* as having the form a + bi where a and b are real numbers and i, which is called the *imaginary unit*, has the property that $i^2 = -1$. If z = a + bi, then a is called the *real part* of z and b is called the *imaginary part* of z and are denoted by $Re\{z\}$ and $Im\{z\}$, respectively.
- ☐ The symbol *z*, which can stand for any complex number, is called a *complex* variable.

The Complex Number System

- \square Two complex numbers a + bi and c + di are equal if and only if a = c and b = d.
- $lue{}$ We can consider real numbers as a subset of the set of complex numbers with b=0.
- Accordingly the complex numbers 0 + 0i and -3 + 0i represent the real numbers 0 and -3, respectively.
- \Box If a=0, the complex number 0+bi or bi is called a pure imaginary number.
- The complex conjugate, or briefly conjugate, of a complex number a + bi is a bi. The complex conjugate of a complex number z is often indicated by \bar{z} or z^* .

Fundamental Operations with Complex Numbers

In performing operations with complex numbers, we can proceed as in the algebra of real numbers, replacing i^2 by -1 when it occurs.

(1) Addition

$$(a + bi) + (c + di) = a + bi + c + di = (a + c) + (b + d)i$$

(2) Subtraction

$$(a+bi) - (c+di) = a+bi-c-di = (a-c) + (b-d)i$$

Fundamental Operations with Complex Numbers

(3) Multiplication

$$(a + bi)(c + di) = ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc)i$$

(4) Division

If
$$c \neq 0$$
 and $d \neq 0$, then

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di}$$

$$=\frac{ac - adi + bci - bdi^2}{c^2 - d^2i^2}$$

$$= \frac{ac + bd + (bc - ad)i}{c^2 + d^2} = \frac{ac + bd}{c^2 + d^2} + \frac{bc - ad}{c^2 + d^2}i$$

Next Lecture

- Graphical Representation of Complex Numbers
- Polar Form of Complex Numbers
- De Moivre's Theorem
- Vector Interpolation of Complex Number