Lab 6

TA: 何國豪、鄭余玄

10/2212:00

Lab6 Deadline no demo

Outline

- 1. Solve CartPole-v1 using DQN
- 2. Solve Pendulum-v0 using DDPG
- 3. Modify and Run Sample Code
- 4. Scoring Criteria
- 5. Reminders

1. CartPole-v1

- Observation [4]
 - Cart Position
 - Cart Velocity
 - Pole Angle
 - Pole Velocity at Tip
- Action [2]
 - Left
 - Right
- Reward
 - +1 for every time step

- Starting State
 - All observations are assigned a uniform random value between ±0.05
- Episode Termination
 - Pole Angle is more than ±12°
 - Center of the cart reaches the edge of the display
 - Episode length is greater than 500

Deep Q-Network (DQN)

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity NInitialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q(\phi_j, a_j; \theta)\right)^2$ with respect to the network parameters θ

Every C steps reset Q = Q

TODO:

- Construct the neural network
- Select action according to epsilon-greedy
- Construct Q-values and target Q-values
- Calculate loss function
- Update behavior and target network
- Understand deep Q-learning mechanisms

End For

2. Pendulum-v0

Observation [3]

- cos(theta) (Angle)
- sin(theta) (Angle)
- theta_dot (Angular Velocity)
- Action [1]
 - Joint Effort

Reward

 In essence, the goal is to remain at zero angle (vertical), with the least rotational velocity, and the least effort.

Starting State

- Random angle from -pi to pi, and random velocity between -1 and 1
- Episode Termination
 - Episode length is greater than 200

Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

TODO:

- Construct neural networks of both actor and critic
- Select action according to the actor and the exploration noise
- Update critic
- Update actor
- Update target network softly
- Understand the mechanism of actor-critic

3. Modify Sample Code

- 1. Find a #TODO comment with hints
- 2. remove the raise NotImplementedError

3. Run Sample Code

- Simply train and test: python dqn.py
- Only test and render: python dqn.py --restore --render
- Help message: python dqn.py --help
- Other usages:
 - Save as different model name: python dqn.py -m cart_model
 - Load and test different model: python dqn.py -m cart_model --restore
 - Only run on cpu: python dqn.py -d cpu
 - Only run on 3rd gpu: python dqn.py -d cuda:2
 - Set episode length to 2000: python dqn.py -e 2000

4. Scoring Criteria

Show your work, otherwise no credit will be granted.

- Report (80%)
 - (DO explain; do not only copy and paste your codes.)
- Report Bonus (10%)
 - Explain the choice of the random process rather than normal distribution. (5%)
 - Implement and Experiment on Double-DQN (5%)
- Performance (20%)
 - [CartPole-v1] Average reward of 10 testing episodes: Average ÷ 5
 - [Pendulum-v0] Average reward of 10 testing episodes: (Average + 700) ÷ 5

5. Reminders

- Your network architecture and hyper-parameters can differ from the defaults.
- Be careful of the target q-value at the end of an episode in DQN.
- Ensure the shape of tensors all the time especially when calculating the loss.
- with no_grad(): scope is the same as xxx.detach()
- Be aware of the indentation of hints.
- When testing DDPG, action selection need NOT include the noise.

References

- 1. Mnih, Volodymyr et al. "Playing Atari with Deep Reinforcement Learning." ArXiv abs/1312.5602 (2013).
- 2. Mnih, Volodymyr et al. "Human-level control through deep reinforcement learning." Nature 518 (2015): 529-533.
- 3. Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep Reinforcement Learning with Double Q-Learning." AAAI. 2016.
- 4. Lillicrap, Timothy P. et al. "Continuous control with deep reinforcement learning." CoRR abs/1509.02971 (2015).
- 5. Silver, David et al. "Deterministic Policy Gradient Algorithms." ICML (2014).
- 6. OpenAl. "OpenAl Gym Documentation." Retrieved from Getting Started with Gym: https://gym.openai.com/docs/.
- 7. OpenAl. "OpenAl Wiki for Pendulum v0." Retrieved from Github: https://github.com/openai/gym/wiki/Pendulum-v0.
- 8. PyTorch. "Reinforcement Learning (DQN) Tutorial." Retrieved from PyTorch Tutorials: https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html.