Machine Learning for Core Engineering Disciplines

Prof. Ananth Govind Rajan

Department of Chemical Engineering Indian Institute of Science, Bengaluru

Website: https://agrgroup.org

Email: ananthgr@iisc.ac.in

Broad categorization of ML algorithms

Supervised Learning

Training happens based on labels assigned to a target variable

Applies to the prediction of both continuous and discrete variables

Unsupervised Learning

ML

Target variables aren't specified, and labels aren't required

Model "learns" the underlying structure of the data based on some similarity metric

Reinforcement Learning

A virtual agent receives rewards based on favourable outcomes

Maximization of the cumulative reward leads to an optimal policy for the problem

Broad categorization of ML algorithms

Supervised learning

- Seeks to map each input feature vector to an output value
- Training based on specified values (labels) of the target variable

Unsupervised learning

- Seeks to learn underlying structure and inherent patterns of the data in the feature space
- Dimensionality reduction falls into this class of ML

Reinforcement learning (RL)

Types of supervised learning

Regression

Used to predict a continuous variable

Example: Given plant data, what is the temperature of the reactor?

Classification

Used to classify data into a fixed number of categories

Can be "binary" or "multiclass"

Example: Given plant data, has the reactor overheated or not?

Given a microscopy image:

- (i) Is the material brittle?
- (ii) What is the hardness of the material?

Broad types of unsupervised learning

Clustering

- Groups datapoints to uncover the similarities and differences between them
- Examples: k-means clustering, density-based clustering

Dimensionality reduction

- Reduces the number of features in the dataset without losing important relationships
- Examples: principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection (UMAP)

Generative algorithms

- Learn the distribution underlying the data and thus generate new samples which are similar to the input data
- Examples: generative adversarial networks (GANs), variational autoencoders (VAEs), restricted Boltzmann machines (RBMs)

Examples of supervised learning

Is the molecule soluble in water?

What is the voltage provided by a battery?

Is the person suffering from chest congestion or not?

In each case, you would have to train the computer with some labeled data

Various algorithms: linear/nonlinear regression, decision trees, random forests, support vector machines, neural networks & deep learning, ...

Examples of supervised learning

Example	Type of Problem	Input Features	Target Label
Molecule soluble in water?	Binary Classification	Molecular descriptors/ fingerprints	Soluble / not soluble
Voltage provided by battery?	Regression	Battery type, temperature, chemistry, age, load conditions	Voltage (continuous value)
Person suffering from chest congestion or not?	Binary Classification	Chest X-ray and/or symptoms	Yes / no

Examples of unsupervised learning

Categorizing elements to find similarities between them based on their features

Generating molecules similar to those in the training dataset

In each case, you would like the computer to figure out the structure of the data itself based on the underlying features

Various algorithms: k-means clustering, PCA, GANs, VAEs, etc.

Supervised ML as a function approximator

$$y = f(x_1, x_2, ..., x_n; \beta_1, \beta_2, ..., \beta_p; \alpha_1, \alpha_2, ..., \alpha_h)$$

Target Features Parameters Hyperparameters variable

Target variable: variable of interest that one desires to predict using a supervised ML model; it could be a continuous or a discrete variable

Features: independent variables that characterize each datapoint in the dataset

Parameters: learnable coefficients (weights) that the model learns during model training using multivariate optimization

Hyperparameters: model configuration variables specified before training which determine the model architecture and training process

Training and test sets in ML models

Features	Data	data
$(x_{11}, x_{12}, \dots, x_{1n})$	y_1	5
$(x_{21}, x_{22}, \dots, x_{2n})$	y_2	redicte
:	i i	P
$(x_{d1}, x_{d2}, \dots, x_{dn})$	y_d	, i , c *
		Actual data

Training set: collection of data points, i.e., the set of feature and corresponding target variable values used to train the ML model

Test set: collection of unseen datapoints used to independently verify the performance of the final model after training is completed

How do we enable ML models to learn?

Loss function: metric used to quantify the performance of an ML model in terms of the errors in the predicted values of the target variable versus its actual values

Cross validation: a method to determine the generalizability of the model across various realizations of training data and unseen (validation) data; allows one to rationally choose hyperparameters