CS & IT

DISCRETE MATHS

Mathematical Logic

Lecture No. 07

TOPICS

13. Consider the open statement

$$p(x, y): \quad y - x = y + x^2$$

where the universe for each of the variables x, y comprises all integers. Determine the truth value for each of the following statements.

a)
$$p(0,0)$$
 (\top)

b)
$$p(1,1) (F)$$

c)
$$p(0, 1) (7)$$

d)
$$\forall y \ p(0, y) (\top)$$

e)
$$\exists y \ p(1, y)$$

e)
$$\exists y \ p(1, y)$$
 $()$

g)
$$\exists y \ \forall x \ p(x, y) (\downarrow)$$

h)
$$\forall y \exists x \ p(x, y)$$

14. Determine whether each of the following statements is true or false. If false, provide a counterexample. The universe comprises all integers.

a)
$$\forall x \exists y \exists z (x = 7y + 5z)$$

b)
$$\forall x \; \exists y \; \exists z \; (x = 4y + 6z)$$

$$p(x, y): y-x=y+x^2$$

$$x^2+x=0$$

$$x(x+1)=0$$

$$x=0$$

$$\exists x \exists y (ny=1) - T$$
 $\forall x = 1 \quad y = 3$
 $\exists x \exists y ((2n + y = 5) \land (n - 3y = -8)) \text{ True.}$
 $\exists x \exists y ((3n - y = 7) \land (2n + 4y = 3)) \Rightarrow \text{ false.}$
 $\exists x \exists y ((3n - y = 7) \land (2n + 4y = 3)) \Rightarrow \text{ false.}$
 $\exists x \exists y ((3n - y = 7) \land (2n + 4y = 3)) \Rightarrow \text{ false.}$
 $\exists x \exists y ((3n - y = 7) \land (2n + 4y = 3)) \Rightarrow \text{ false.}$

$$\forall x \forall y [(x>y) \rightarrow (x-y>0)]$$
 $\neg \forall x \forall y [\neg (x>y) \lor (x-y>0)]$
 $\exists x \exists y [\neg \tau(x>y) \land \neg (x-y>0)]$
 $\exists x \exists y [(x>y) \land (x-y \le 0)]$

 $\forall x \forall y [(x < y) \rightarrow \exists z (x < z < y)]$ $\forall x \forall y [\gamma(x < y) \lor \exists z (x < z < y)] \gamma (x < z < y)$ $(x > z \lor z > y)$ ヨルヨッ [77(24) トフ チュ(24くとくり)] 72 (x32 or 224)]

y-n 1977

(GATE-08)

(A)
$$\Rightarrow (\exists y, \beta \Rightarrow (\forall u, \exists v, \gamma)) \times (\exists u, \forall v, \gamma)) \times (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall y, \beta \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$$

(b) $\Rightarrow (\forall y, \beta \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(c) $\forall u, \forall \alpha \Rightarrow (\forall y, \gamma \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(d) $\Rightarrow (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(e) $\Rightarrow (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(e) $\Rightarrow (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(f) $\Rightarrow (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall y, \beta \Rightarrow (\exists u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall x, \beta \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall x, \beta \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall x, \beta \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall x, \beta \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall x, \beta \Rightarrow (\forall u, \forall v, \gamma)) \times (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall x, \beta \Rightarrow (\forall u, \forall v, \gamma))$

(g) $\Rightarrow (\forall x, \beta \Rightarrow (\forall u, \forall v, \gamma))$

D: 2.

P(n, y): x is divisor of y. P(x, y): $\frac{y}{x}$.

SI: An By (Thez)

9 0

SI: An Jy P(n, y)
(False)

(msq)

52: Hy 3n P(n,4)

53: 3n 4y P(n, n)

S4: 34 An P(n,4)

x = 0 x = 0 4x = y (\frac{y}{0})

2.

3.-->

D:Z.

(msq)P(n, 1): n is divisor of Y.

SI: Hn Jy P(n, 4)
(False)

52: Hy In P(n, 4)

53: 3n 4y P(n, y)

S4: 34 An P(n,4)

サスヨリ(カ)

all n, there exist Y.

Pw

D: 2.

P(n, v): x is divisor of y.

SI: 4n 3m (n+m = 5)

 $3 \rightarrow 0$ $2 \rightarrow 0$ $2 \rightarrow 0$ $3 \rightarrow 0$ $4 \rightarrow 0$ $5 \rightarrow 0$ $5 \rightarrow 0$ $5 \rightarrow 0$ $6 \rightarrow 0$ $7 \rightarrow$

<3: Am 3n (m.n=1)

2 does not have a f

$$m = 0$$
 $m + n = 0$
 $n = 2$
 $m = -2$
 $m = -3$
 $m = -3$

True

(2m) mt nE

(n2 m) mE nt

the gre exist element which is less than square of any int.

txty 42 (n+y=2)

32 \x \y (x + y = 2)

$$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$$

Some boys are taller than all givis

taller(4,n): nistaller

- a) $\exists n (boy(n) \rightarrow \forall y (aiv|(y) \land taller(y, n)))$
- b) In (boy(n) (p) # (qiv|(y) x fallow(y,w))

In boy (n) Oty air (y) -> taller (y, m)

Inty (boy(n)) (gill(y)) talled you)

