0.1 Formulating lymphatic progression as HMM

We consider discrete time-steps $t \in \{0, 1, 2, ..., t_{\text{max}}\}$. We will start by defining the hidden random variable for the state of the hidden Markov model (HMM) at time t to be

$$\mathbf{X}[t] = (X_v[t]) \tag{1}$$

which represents the patient's state of lymph node level (LNL) involvement as in the Bayesian network (BN), but for each time-step we have an instance of it. For the diagnosis **Z** on the other hand, we do not need to differentiate between different times, since in practice we will only ever see one diagnosis. This is illustrated in ??. The reason for this is that, if we diagnose a patient with cancer, treatment starts timely and we no longer observe the natural progression of the disease. From a modeling standpoint however, this is a problem that we will address later.

A hidden Markov model is fully described by the starting state $\mathbf{X}[0] := \boldsymbol{\pi}$ and the two conditional probability functions that govern the progression from a state X[t] at time t to a state X[t+1] at the following time-step

$$P_{HMM}\left(\mathbf{X}[t+1] \mid \mathbf{X}[t]\right) \tag{2}$$

and the probability of a diagnostic observation given the true state of the patient

$$P_{HMM}\left(\mathbf{Z}\mid\mathbf{X}[t]\right)\tag{3}$$

Since both our state space and our observation space are discrete and finite, it is possible to enumerate all possible states and observations and collect them in a table or matrix. This so-called *transition matrix* would then be

$$\mathbf{A} = (A_{ij}) = \left(P_{HMM}\left(\mathbf{X}[t+1] = \boldsymbol{\xi}_i \mid \mathbf{X}[t] = \boldsymbol{\xi}_j\right)\right) \tag{4}$$

and the observation matrix

$$\mathbf{B} = (B_{ij}) = (P_{HMM} \left(\mathbf{Z} = \boldsymbol{\zeta}_i \mid \mathbf{X}[t] = \boldsymbol{\xi}_i \right))$$
 (5)

Here, ξ_i and ζ_j are no new variables, but just \mathbf{x} and \mathbf{z} renamed and reordered. The indices i and j for one of the possible states or observations for the entire patient, not for an individual LNL. In total, there are $S = |\{0,1\}|^V$ different states and the same number of different possible observations per diagnostic modality. We order the hidden states from

$$\boldsymbol{\xi}_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \end{pmatrix} \tag{6}$$

to

$$\boldsymbol{\xi}_{16} = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix} \tag{7}$$

in this case of V=4. The exact ordering does not matter, it is just a convenience for the notation. our ordering of the states can be seen in the axes of ??. In analogy, we order the observations ζ_j from 1 to 2^V . Note that for now we will not consider multiple diagnostic modalities and how to combine them. We will get back to that topic in ??.

In our case, the starting state corresponds to a primary tumor being present but all LNLs are still in the healthy state. The observation matrix \mathbf{B} is specified via sensitivity and specificity as described in eq. (7). The main task is to infer

the transition matrix **A**. Usually, it is inferred from a series of observations and there exist efficient algorithms for that, e.g. the sum-product algorithm, which is particularly efficient in chains. Unfortunately, these algorithms cannot be applied for our problem for two profound reasons:

- 1. We only have a single observation instead of a consecutive series of observations.
- 2. It is unclear how many time-steps it took from the starting state to the one observation we have at the time of diagnosis.

In the remainder of this section, we will detail the HMM step-by-step, starting with the parameterization of the transition matrix **A** in ??. Afterwards, in ??, I will tackle the aforementioned problems, followed up by explaining how we perform inference on this model (??), incorporate information about a patient's T-stage (??) and assess the risk of LNL involvement in a new patient (??). Lastly, we will introduce a way to incorporate incomplete observations in ??.