МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н. Э. БАУМАНА

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №5 по курсу «Моделирование»

«Работа с системой моделирования GPSS»

Выполнил: студент ИУ9-111

Выборнов А. И.

Руководитель:

Домрачева А. Б.

1. Постановка задачи

Кластерная система, состоящая из m узлов, осуществляет выполнения задач. Задачи поступают по нормальному закону распределения с матожиданием 5 секунд и дисперсией 2. Время обработки каждой задачи 2-3 минуты. Кластер имеет буфер для хранения 10 задач, если все узлы заняты, то задача помещается в буфер, если буфер заполнен, то задача считается утерянной и в буфер не помещается. Провести моделирование обработки 100 задач, определить загрузку кластера и количество утерянных задач.

2. Реализация

2.1. Код программы на языке GPSS

Ниже представлен код программы, для количества узлов m=25:

```
}
cluster
          STORAGE
                                                   ; cluster of 25 nodes
                     (Normal(1,5,SQR(2)))
          GENERATE
                                                  ; generate tasks Mx=5, Dx=2
          QUEUE
                     buffer queue
                                                   ; task entered to buffer
                     Q\theta unprocessed ; if \theta task in buffer goto unprocessed
          TEST L
                                                  ; task sended to cluster
          ENTER
                     cluster
          DEPART
                     buffer_queue
                                                   ; task leaved buffer
          ADVANCE 120,30
                                                   ; processed task 2-3m
          LEAVE
                     cluster
                                                   ; task left cluster
          TERMINATE 1
                                                   ; task successed
unprocessed DEPART
                     buffer_queue
                                                  ; task left buffer
          TERMINATE
                                                   ; task not precessed
          START
                     100
                                                   ; loop for 100 task
```

2.2. Отчёт GPSS

Ниже представлен отчёт GPSS, полученный после выполнения программы, представленной в главе ??.

```
GPSS World Simulation Report - Untitled Model 1.1.1
               ???????, ???????? 19, 2015 22:23:05
        START TIME
                        END TIME BLOCKS FACILITIES STORAGES
            0.000
                          635.466 10
                                           0
           NAME
                                  VALUE
       BUFFER_QUEUE
                               10001.000
       CLUSTER
                                10000.000
       UNPROCESSED
                                   9.000
LABEL
               LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
```

	1	GEN.	ERATE			130			0	0	
	2	QUEUE				130			0	0	
	3	TES	TEST ENTER			130			5	0	
	4	ENT				125			1	0	
	5	DEP.	ART		124				0	0	
	6	ADVANCE LEAVE			124			2	4	0	
	7					100			0	0	
	8	TERMINATE		E	100				0	0	
UNPROCESSED	9	DEP	DEPART		0				0	0	
	10	TER.	MINATI	Ξ		0		1	0	0	
QUEUE	MAY	CONT	DAMDO	Z ENTE	DV(0)	ANTE	CONTE	AND TH	ATE AT	VTE (O)	DETDY
-										. ,	
BUFFER_QUEUE	7	6	130)	73	1	.407	6.8	79	15.689	0
STORAGE	CAP	REM.	MIN.	MAX.	ENT	RIES	AVL.	AVE.C.	UTIL.	RETRY I	DELAY
CLUSTER	25	0	0	25		125	1	21.678	0.867	0	5

3. Тестирование

Рисунок 1-3ависимость загрузки кластера от числа узлов

Рисунок 2 — Зависимость количества утерянных задач от числа узлов

4. Выводы

Как видно из представленного в главе $\ref{eq:constraint}$ отчёта при m=25 кластер был загружен на 86.7%, при этом не было утеряно ни одной задачи.

Из тестирования, описанного в главе $\ref{eq:condition}$, видно что чем больше узлов в кластере, то тем меньше его загрузка и меньше количество утерянных задач. К примеру, если количество узлов m=20, то теряется 14 задач.