

DSI-SRI-MCW

Présenté par: Mme. BENAZZOU Salma

4 points	Exercice 1:		
	On considère la fonction numérique f définie sur $\left]-\frac{1}{2};+\infty\right[$ par :		
	$f(x) = \ln(1+2x) + e^{-x}$		
	Soit (C_f) la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .		
1	1. Donner le développement limité à l'ordre 2 au voisinage de 0 des fonctions : $t \mapsto \ln(1+t)$ et $t \mapsto e^t$		
1	2. En déduire le développement limité à l'ordre 2 au voisinage de 0 des fonctions : $x \mapsto \ln(1+2x)$ et $x \mapsto e^{-x}$		
1	3. Montrer que le développement limité à l'ordre 2 au voisinage de 0 de f est :		
	$f(x) = 1 + x - \frac{3}{2}x^2 + o(x^2)$		
1	4. Déterminer l'équation de la tangente (T) à (C_f) au point $A(0,1)$ et préciser		
No. of the last of	sa position par rapport à $\left(C_f ight)$.		

1-Donner le DL2(0) de $t \rightarrow e^t$ et de $t \rightarrow \ln (1+t)$

On sait que :
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

Alors
$$e^t = 1 + \frac{t}{1!} + \frac{t^2}{2!} + o(t^2) = 1 + t + \frac{t^2}{2} + o(t^2)$$

Et on a:
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$$

Alors
$$\ln(1+t) = t - \frac{t^2}{2} + o(t^2)$$

On sait que $o(x^n) = x^n \varepsilon(x)$

Si t=-x on a :
$$o(t^2)=o((-x)^2)=o(x^2)$$

Si t=2x on a $o(t^2)=o(4x^2)=4x^2\epsilon(x)$
 $=x^2\epsilon'(x)=o(x^2)$

2-Déduire le DL2(0) de $x \rightarrow e^{-x}$ et de $x \rightarrow \ln (1+2x)$

On a
$$e^t = 1 + t + \frac{t^2}{2} + o(t^2)$$
 pour t=-x on a $e^{-x} = 1 + (-x) + \frac{(-x)^2}{2} + o(x^2) = 1 - x + \frac{x^2}{2} + o(x^2)$
Et on a $\ln(1+t) = t - \frac{t^2}{2} + o(t^2)$, pour t=2x on a $\ln(1+2x) = 2x - \frac{(2x)^2}{2} + o(x^2) = 2x - 2x^2 + o(x^2)$

3-Montrer que le DL2(0) de f est f(x)= $1 + x - \frac{3}{2}x^2 + o(x^2)$

On a f(x)= ln (1+2x)+
$$e^{-x}$$
 = (2x-2x²)+(1 - x + $\frac{x^2}{2}$)+o(x²) = 2x-2x²+1 - x + $\frac{x^2}{2}$ +o(x²)
Donc f(x)=1 + (2 - 1)x + $\left(-2 + \frac{1}{2}\right)x^2$ +o(x²)=1 + x + $\left(\frac{-3}{2}\right)x^2$ +o(x²)=)=1 + x - $\frac{3}{2}x^2$ +o(x²)

4)Equation de la tangente

On a :
$$f(x) = 1 + x - \frac{3}{2}x^2 + o(x^2)$$

Alors l'équation de la tangente au voisinage de 0 est y=1+x

• La position de la courbe par rapport a la tangente:

On a : $f(x)-y=-\frac{3}{2}x^2+o(x^2)<0$ donc la courbe est au dessous de la tangente

4 points	Exercice 2:
200	Déterminer la nature de chacune des séries numériques suivantes :
1	Déterminer la nature de chacune des séries numériques suivantes : $a - \sum_{n \ge 0} \left(\frac{3e^n + 1}{2e^n + 3} \right)^n . \text{ (On pourra utiliser la règle de Cauchy)}$
1	b- $\sum_{n\geq 0} \frac{n^2}{(n+1)!}$. (On pourra utiliser la règle de D'Alembert)
2	$c-\sum_{n\geq 1}\frac{\left(-1\right)^n}{n\sqrt{n+1}}.$

A-La nature de $\sum_{n\geq 0} (\frac{3e^n+1}{2e^n+3})^n$

Je pose Un=
$$(\frac{3e^n+1}{2e^n+3})^n$$

$$\sqrt[n]{Un} = \frac{3e^n + 1}{2e^n + 3}$$

$$\lim_{+\infty} \sqrt[n]{Un} = \lim_{+\infty} \frac{3e^n + 1}{2e^n + 3} = \lim_{+\infty} \frac{3e^n}{2e^n} = \frac{3}{2} > 1$$

Rappel du critére de Cauchy

Soit $\sum_{n\geq 0} U_n$ une série à termes positives tel que $\lim_{n\to\infty} \sqrt[n]{Un} = a$.

- Si a<1 alors $\sum_{n\geq 0} U_n$ est convergente
- Si a>1 alors $\sum_{n\geq 0} U_n$ est divergente
- Si a=1 on ne peut rien conclure

(Ou je pose X=
$$e^n$$
 donc $\lim_{+\infty} \frac{3e^{n+1}}{2e^{n+3}} = \lim_{+\infty} \frac{3X+1}{2X+3} = \lim_{+\infty} \frac{3X}{2X} = \frac{3}{2} > 1$)

$$\left(\text{Ou} \lim_{+\infty} \frac{3e^n + 1}{2e^n + 3} = \lim_{+\infty} \frac{e^n (3 + \frac{1}{e^n})}{e^n (2 + \frac{3}{e^n})} = \lim_{+\infty} \frac{(3 + \frac{1}{e^n})}{(2 + \frac{3}{e^n})} = \frac{3}{2} \right)$$

Alors d'après le critère de Cauchy la série de terme générale Un est divergente.

Rappel du critére de d'Alembert:

Soit $\sum_{n\geq 0} U_n$ une série à termes positives tel que $\lim_{+\infty} \frac{U_{n+1}}{U_n} = a$.

- Si a<1 alors $\sum_{n\geq 0} U_n$ est convergente
- Si a>1 alors $\sum_{n\geq 0} U_n$ est divergente
- Si a=1 on ne peut rien conclure

b-La nature de
$$\sum_{n\geq 0} \frac{n^2}{(n+1)!}$$

Je pose Un=
$$\frac{n^2}{(n+1)!}$$

Je pose Un=
$$\frac{n^2}{(n+1)!}$$

$$\frac{Un+1}{Un} = \frac{\frac{(n+1)^2}{(n+2)!}}{\frac{n^2}{(n+1)!}} = \frac{(n+1)^2}{(n+2)!} \cdot \frac{(n+1)!}{n^2} = \frac{(n+1)^2}{(n+2)(n+1)!} \cdot \frac{(n+1)!}{n^2} = \frac{(n+1)^2}{(n+2)n^2}$$

$$\lim_{n \to \infty} \frac{Un+1}{Un} = \lim_{n \to \infty} \frac{(n+1)^2}{(n+2)n^2} = \lim_{n \to \infty} \frac{n^2}{n \cdot n^2} = \lim_{n \to \infty} \frac{1}{n} = 0 < 1$$

Alors d'après le critère de D'Alembert la série de terme générale Un est convergente.

c-La nature de
$$\sum_{n\geq 0} \frac{(-1)^n}{n\sqrt{n+1}}$$

Je pose Un=
$$\frac{(-1)^n}{n\sqrt{n+1}}$$
= $(-1)^n \times \frac{1}{n\sqrt{n+1}}$ et Vn= $\frac{1}{n\sqrt{n+1}}$

On a
$$\lim_{+\infty} Vn = \lim_{+\infty} \frac{1}{n\sqrt{n+1}} = 0$$

• On a Vn+1= $\frac{1}{(n+1)\sqrt{n+2}}$ or n+2>n+1 donc $\sqrt{n+2}$ > $\sqrt{n+1}$ (car x $\rightarrow \sqrt{x}$ est croissante)

Et n+1>n

Alors
$$(n+1)\sqrt{n+2} > n\sqrt{n+1}$$

Donc Vn+1<Vn donc (Vn) est décroissante

Alors d'après le critère spécial des séries alternées $\sum_{n\geq 0} \frac{(-1)^n}{\sqrt{n+1}+\sqrt{n}}$ est convergente

Soit a, b, c et d des réels **positifs**Si a <b et c <d
Alors ac <bd

Rappel du critére spécial des séries alternées:
Soit $Un=(-1)^nVn$ Si:

- (Vn) est décroissante
- $\lim_{+\infty} Vn = 0$

Alors la série de terme générale Un est convergente

4 points	Exercice 3:
	On considère l'intégrale généralisée suivante : $I = \int_{2}^{+\infty} \frac{3}{x^2 + x - 2} dx$.
1	1. Montrer que I est convergente .
1	2. Vérifier que $\forall x \ge 2$, $\frac{3}{x^2 + x - 2} = \frac{1}{x - 1} - \frac{1}{x + 2}$.
	3. On pose: $I(\alpha) = \int_2^{\alpha} \frac{3}{x^2 + x - 2} dx$ pour tout $\alpha \ge 2$.
1	a. Montrer que $I(\alpha) = \ln(\alpha - 1) - \ln(\alpha + 2) + 2\ln(2)$.
1	b. En déduire la valeur de I .

1-Montrer que I est convergente

$$I = \int_2^{+\infty} \frac{3}{x^2 + x - 2} dx$$

On sait que $x^2+x-2 \sim x^2$ au voisinage de $+\infty$

Donc
$$\frac{1}{x^2 + x - 2} \sim \frac{1}{x^2}$$
,
Alors $\frac{3}{x^2 + x - 2} \sim \frac{3}{x^2}$

On a
$$\int_{2}^{+\infty} \frac{3}{x^2} dx = 3 \int_{2}^{+\infty} \frac{1}{x^2} dx$$

Or $\int_2^{+\infty} \frac{1}{x^2} dx$ est convergente car c'est une integrale de Riemann $\alpha=2>1$ donc $\int_2^{+\infty} \frac{3}{x^2} dx$ est convergente

Et d'après le critère d'équivalence $I = \int_2^{+\infty} \frac{3}{x^2 + x - 2} dx$ est convergente

2-Verifier que
$$\frac{3}{x^2+x-2} = \frac{1}{x-1} - \frac{1}{x+2}$$

On a:
$$\frac{1}{x-1} - \frac{1}{x+2} = \frac{(x+2)-(x-1)}{(x-1)(x+2)}$$

$$=\frac{x+2-x+1}{x^2+2x-x-2}$$

$$=\frac{3}{x^2+x-2}$$

3-a-Montrer que $I(\alpha) = \ln (\alpha-1) - \ln (\alpha+2) + 2\ln 2$

$$I(\alpha) = \int_{2}^{\alpha} \frac{3}{x^{2} + x - 2} dx = \int_{2}^{\alpha} (\frac{1}{x - 1} - \frac{1}{x + 2}) dx = \left[\ln|x - 1| - \ln|x + 2|\right]_{2}^{\alpha} = \left[\ln\left(\frac{x - 1}{x + 2}\right)\right]_{2}^{\alpha} =$$

=
$$\ln (\alpha - 1)$$
- $\ln (\alpha + 2)$ + $\ln 4$ = $\ln (\alpha - 1)$ - $\ln (\alpha + 2)$ + $\ln 2^2$ = $\ln (\alpha - 1)$ - $\ln (\alpha + 2)$ + $2 \ln 2$

3-b-

Par définition d'une intégrale généralisée
$$I = \lim_{\alpha \to +\infty} I(\alpha)$$
 c'est-à-dire $\int_2^{+\infty} \frac{3}{x^2 + x - 2} dx = \lim_{\alpha \to +\infty} \int_2^{\alpha} \frac{3}{x^2 + x - 2} dx$
Donc $I = \lim_{\alpha \to +\infty} \ln \frac{\alpha - 1}{\alpha + 2} - \ln \frac{1}{4} = 2 \ln 2$ (car $\lim_{\alpha \to +\infty} \frac{\alpha - 1}{\alpha + 2} = \lim_{\alpha \to +\infty} \frac{\alpha}{\alpha} = 1$ et $\ln 1 = 0$)

Ln a -ln b= ln(a/b)
Ln (1/a)= - ln a
Ln (aⁿ) = n lna

$$\int \frac{1}{x+a} = \ln |x+a|$$

Spoints Exercise 4:

1

1

1

On considère l'endomorphisme f de R2 défini par :

$$f(x,y) = (4x-2y, x+y)$$

Soit $\mathscr{B} = (e_1, e_2)$ ta base canonique de \mathbb{R}^2 .

(on rappelle que $e_1 = (1,0)$ et $e_2 = (0,1)$).

- 1. Montrer que la matrice de f dans la base \mathscr{B} est $A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$.
- 2. Montrer que le polynôme caractéristique de A est : $P_A(\lambda) = (\lambda 2)(\lambda 3)$.
- 0.5 3. En déduire les valeurs propres 1, et 1, de 1 où 1, (1, 1
 - 4. Soit $\mathscr{B}' = (u, v)$ où u = (1,1) et v = (2,1).
- a. Etablir que \mathscr{B}' est une base de \mathbb{R}^2 .
 - b. Vérifier que u et v sont des vecteurs propres de f associés respectivement

aux valeurs propres & et &.

- 5. Donner la matrice de passage P de \mathcal{B}' à \mathcal{B}' et vérifier que $P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$.
- 1 6. Déterminer la matrice diagonale D vérifiant $A = PDP^{-1}$.
 - 7. a. Montrer par récurrence que pour tout $n \in \mathbb{N}$: $A^n = P D^n P^{-1}$.
 - b. Calculer A en fonction de n pour tout $n \in \mathbb{N}$.

1-Montrer que la matrice de f dans la base B est
$$A = (f,Bc) = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$

$$l'application f: R^2 \rightarrow R^2$$

 $(x,y) \rightarrow (4x - 2y, x + y)$

$$f(e1)=f(1,0)=(4 \times 1 - 2 \times 0, 1 + 0)=(4,1)$$

$$f(e2)=f(0,1)=(4\times 0-2\times 1,0+1)=(-2,1)$$

$$A=mat(f, Bc) = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$

2-Montrer que le polynôme caractéristique de A est $P(\lambda) = (\lambda - 2)(\lambda - 3)$

On a
$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$

 $P(\lambda) = \text{Det}(A - \lambda I) = \begin{vmatrix} 4 - \lambda & -2 \\ 1 & 1 - \lambda \end{vmatrix} = (4 - \lambda)(1 - \lambda) - 1 \times (-2)$
 $= 4 - 4 \lambda - \lambda + \lambda^2 + 2 = \lambda^2 - 5 \lambda + 6$
 $\Delta = (-5)^2 - 4 \cdot (6) = 1 = 1^2$

$$\lambda 1 = \frac{5-1}{2} = 2$$
 et $\lambda 2 = \frac{5+1}{2} = 3$

Donc $P(\lambda) = (\lambda - 2)(\lambda - 3)$

3-En déduire les valeurs propres

$$P(\lambda)=0$$
 donc $(\lambda-2)(\lambda-3)=0$ alors $\lambda-2=0$ ou $\lambda-3=0$

Donc $\lambda=2$ ou $\lambda=3$ Alors les valeurs propres sont $\lambda 1=2$ et $\lambda 2=3$

Si
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Alors Det $A = ad-bc$

$$P(X)=aX^2+bX+c$$

Si α et β deux racines de P alors
 $P(X)=(X-\alpha)(X-\beta)$

4-a Etablir que B'=(u,v) est une base tel que u=(1,1) et v=(2,1):

On a Card B'=dim R²=2; donc montrer que B' est base reviens a montrer que B est libre.

Det (u,v)=
$$\begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix}$$
= 1 - 2

= - 1 \neq 0 alors B' est libre alors elle est base

4-b-Verifier que u et v sont les vecteurs propres de f

u=(1, 1)	v=(2,1)
Pour vérifier que u est vecteur propre associé à la valeur propre $\lambda 1=2$ il suffit de vérifier que A $u=\lambda 1$ u On a $A.u=\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \lambda 1 u$	Pour vérifier que v est vecteur propre associé à la valeur propre $\lambda = 3$ il suffit de vérifier que $\lambda = \lambda = 2$ v On a $\lambda = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \lambda 2 \text{ v}$
Donc u est vecteur propre associé à la valeur propre λ1	Donc v est vecteur propre associé à la valeur propre λ2

5-Donner la matrice de passage de B à B' et montrer que $P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$

On a la matrice A admet 2 vecteurs propres u=(1,1) et v=(2,1) Donc la matrice de passage est

$$P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

Calcul de P^{-1} : méthode de déterminant

$$P^{-1} = \frac{1}{\det p} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} \text{ et det P= 1-2 = -1}$$

$$P^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 une matrice carrée de taille 2×2. Si $det(A)$ =ad-bc≠0 alors A est inversible et

on a : A⁻¹=
$$\frac{1}{ad-bc}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

6 – Déterminer la matrice diagonal D tel que A=PD P^{-1}

On a A est diagobalisable et admet 2 valeurs propres 2 et 3 donc $D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ 7-a –Montrer par récurrence que $A^n = P D^n P^{-1}$

Pour n=0 on a $A^0 = P D^0 P^{-1}$, vrai car $D^0 = I$ et $P P^{-1} = I$ Supposons que $A^n = P D^n P^{-1}$ et montrons que $A^{n+1} = P D^{n+1} P^{-1}$

On a $A^{n+1}=A^n\times A$ et on a d'après l'hypothèse de récurrence que $A^n=P$ D^n P^{-1} Donc $A^{n+1}=P$ D^n $P^{-1}\times A$ avec A=P D P^{-1}

Alors
$$A^{n+1} = P D^n P^{-1} P D P^{-1}$$
 or $P^{-1}P = I$

Donc
$$A^{n+1} = P D^n D P^{-1} = P D^{n+1} P^{-1}$$

Donc pour tout entier naturel n on a $A^n = P D^n P^{-1}$

7-b-Calculer A^n

$$A^{n} = P D^{n} P^{-1}$$

$$D^{n} = \begin{pmatrix} 2^{n} & 0 \\ 0 & 3^{n} \end{pmatrix}$$

$$\begin{pmatrix} 2^{n} & 0 \\ 0 & 3^{n} \end{pmatrix}$$

$$P D^{n} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2^{n} & 2 \cdot 3^{n} \\ 2^{n} & 3^{n} \end{pmatrix}$$

$$\begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

$$P D^{n} P^{-1} = \begin{pmatrix} 2^{n} & 2 \cdot 3^{n} \\ 2^{n} & 3^{n} \end{pmatrix}$$

$$\begin{pmatrix} -2^{n} + 2 \cdot 3^{n} & 2^{n+1} - 2 \cdot 3^{n} \\ -2^{n} + 3^{n} & 2^{n+1} - 3^{n} \end{pmatrix}$$

