Microelectronic Circuits I (Quiz 2)

date: 2009/12/18 (Fri) time: 14:20~15:10

- 1. (50%) Consider an n-channel MOSFET with t_{ox} =20nm, μ_n =650cm²/V*s, V=0.8V, and W/L=10. Find the drain current in the following cases:
 - (a) $v_{GS}=5V$ and $v_{DS}=1V$ 4, 18 m A
 - (b) $v_{GS}=2V$ and $v_{DS}=1.2V$ 0.8 7 m A
 - (c) $v_{GS}=5V$ and $v_{DS}=0.2V$ 0.919 m A
 - (d) VGS=VDS=5V 9.887M A
- 2. (50%) Figure blow shows a discrete-circuit CS amplifier employing the classical biasing scheme studied in Section 4.5. The input signal v_{sig} is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite).
 - (a) If the transistor has $V_t=1V$, and k_n 'W/L=2mA/V², verify that the bias circuit establishes $V_{GS}=2V$, $I_D=1mA$, and $V_D=+7.5V$. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters..
 - (b) Find g_m and r_O if V_A =100V. $\Rightarrow mA/V$, tooks.
 - (c) Draw a complete small-signal equivalent circuit for the amplifier assuming all capacitors behave as short circuit at signal frequencies.
 - (d) Find R_{in} , v_{gs}/v_{sig} , v_{O}/v_{gs} , and v_{O}/v_{sig} .

 3.33 o.97 8.2 v_{gs}/v_{sig} 10 M Ω 7.5 k Ω $v_{sig} = 100 \text{ k}\Omega$ $v_{sig} = 100 \text{ k}\Omega$ $v_{sig} = 100 \text{ k}\Omega$ $v_{sig} = 100 \text{ k}\Omega$