

RETI NEURALI **ARTIFICIALI** NLP, LANGUAGE MODEL E GPT-3

Y.Y.L.979685

PRINCIPI E MODELLI DELLA **PERCEZIONE**

COS'È UN NEURONE?

• unità fondamentali del cervello e del sistema nervoso, in grado di trasmettere impulsi di tipo elettrico, che permettono la trasmissione e l'elaborazione delle informazioni da una parte all'altra del corpo.

COS'È UNA RETE NEURALE?

• è il sistema di connessioni di neuroni e sinapsi che costituiscono il cervello degli esseri viventi.

HEURONE COME FUNZIONE MATEMATICA

x1,x2,x3 sono input e
w1,w2,w3 sono i loro
pesi e li ranghiamo in
un neurone e y è
l'output dato dal
neurone.

RETE NEURALE ARTIFICIALE

- un tipo di modello di intelligenza artificiale che si ispira sulla struttura e sul funzionamento delle reti neurali.
- Si basa su un insieme di algoritmi matematici e modelli computazionali che consentono di analizzare e riconoscere pattern complessi nei dati.

COME FUNZIONANO LE RETI NEURALI?

• Le reti neurali artificiali (ANN), sono composte da livelli di nodi che contengono un livello di input, uno o più livelli nascosti e un livello di output.

$$\sum_{i=1}^{m} w_i x_i + bias = w_1 x_1 + w_2 x_2 + w_3 x_3 + bias$$

output =
$$f(x) = \begin{cases} 1 \text{ if } \sum w_1 x_1 + b \ge 0 \\ 0 \text{ if } \sum w_1 x_1 + b < 0 \end{cases}$$

BIAS

FUNZIONE DI ATTIVAZIONE

1. Funzione Sigmoidea

$$f(x) = \frac{1}{1 + e^{-x}}$$

2. Funzione ReLU

$$f(x) = max\left(0, x\right)$$

LANGUAGE MODEL

Modello statistico in NLP.

[breve introduzione di cos'è il language modell]

Comprende e genera testo in linguaggio naturale.

L'IMPORTANZA DEI LANGUAGE MODEL

[qua parlo del perché è importante il language model]

L'IMPORTANZA DEI LANGUAGE MODEL PT.2

"NON PARLIAMO LA STESSA LINGUA VERO?"

- Generare e comprendere testo in modo autonomo, come un essere umano.
- Non basta generare frasi che siano grammaticalmente corrette.
- Devono avere un senso.
- [qua parlo della differenza tra il linguaggio naturale e quello delle macchine e quindi ci sono differenza nella codifica]
- A machine needs a language model, which estimates the probabilities of sentences. If a language model is good, it will assign a larger probability to a correct option.

COME FUNZIONA?

- -come fa riesce a predire la prossima parola?
- -fase di training
- -algoritmi probabilistici

TIPI DI MODEL LANGUAGE

- Modelli di linguaggio basati su:
 - Statistiche
 - Reti neurali

N-GRAM

• A machine needs a language model, which estimates the probabilities of sentences. If a language model is good, it will assign a larger probability to a correct option.

IMMAGINI CHE POTREBB

Can you please come here?

History Word being predicted

GPT-3 (Generative Pre-trained Transformer 3)

- Deep artificial neural network
- Large Language Model

Sviluppata da OpenAl (2020)

INPUT

Descrizione task in linguaggio naturale

OUTPUT

Risultato sotto forma di un qualsiasi tipo di testo

(testi altamente simili a quelli umani)

Svariati task:

- Scrittura articoli, poesie, post social media
- Traduzione testi
- Generazione riassunti
- Chatbot
- Sentiment analysis
- Traduzione testo in codice (viceversa)
- Debugging

Caratteristiche

175 miliardi di parametri (pesi)

- permette alla rete neurale di produrre output estremamente accurati
- fase di training molto onerosa

45 TB di dati per il training

Dataset	Quantità (token)	Peso nel mix di training
Common Crawl	410 miliardi	60%
WebText2	19 miliardi	22%
Books 1	12 miliardi	8%
Books2	55 miliardi	8%
Wikipedia	3 miliardi	3%

Common Crawl: archivio di dati di pagine web.

WebText2: testi di pagine web linkate in post di Reddit con almeno 3+ upvote.

Books 1, Books 2: raccolta di libri disponibili in rete

Pre-training

- Acquisizione elementi generali di un linguaggio:
 - Dizionario
 - Sintassi
 - Espressioni di senso figurato
 - Argomentazioni
- Training non specifico ad un particolare task
- Apprendimento non supervisionato

Language model in grado di esprimere scelte lessicali, pattern grammaticali e argomentazioni in modo predittivo

«Language models are Few-Shot Learners»

- Paradigma di apprendimento Few-Shot
- Maggiore capacità del language model ne aumenta l'abilità al riconoscimento di pattern in una serie di esempi.
- All'aumentare del numero di esempi forniti, il modello impara più dimostrazioni (contesti) riuscendo a migliorare l'accuratezza delle previsioni

```
Translate English to French: 

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```

Performance sul task di rimuovere simboli estranei da una parola

PRO

- Numerose applicazioni
- Generalizzazione dei task
- No fine-tuning

CONTRO

- Non continua ad imparare costantemente (pre-training)
- È un black box model
- Output può contenere bias (dipende dai dataset di training)

IMPLEMENTAZIONI

- ChatGPT
- Dall-E
- OpenAl Codex