2018~ 2019 学年第一学期高等数学[(1)机电] 期末试卷 B 参考答案及评分标准

一、填空题(本大题共15小题,每小题2分,共30分)

(1) e^{-2}	(2) -1	(3) -2	$(4) f'(e^x)e^x$	(5) $\frac{1}{2}$
(6) 3	(7) 0	(8) $y = -3$	$(9) y = \frac{1}{4}x^4 - \frac{1}{4}$	$(10) -\sin x + C$
(11) $\frac{\pi}{2}$	(12) 1	(13) 2	(14) $\frac{1}{6}$	(15) $\frac{14}{3}$

二、求解下列各题(本大题共8小题,每小题8分,共64分)

(16) 解: 在方程 $y^3 + x^3 - \sin 3x + 6y = 0$ 两边同时对 x 求导,得

$$3y'y^2 + 3x^2 - 3\cos 3x + 6y' = 0$$
, $y' = \frac{3\cos 3x - 3x^2}{3y^2 + 6}$, (4 $\%$)

当
$$x = 0$$
 时,由方程 $y^3 + x^3 - \sin 3x + 6y = 0$ 得 $y = 0$,得 $y'(0) = \frac{1}{2}$ (2 分)

得所求切线方程为
$$y = \frac{1}{2}x$$
,法线方程为 $y = -2x$ 。 (2分)

(18)
$$mathrew{H:} \lim_{x \to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x t e^{2t^2} dt} = \lim_{x \to 0} \frac{2\int_0^x e^{t^2} dt \cdot e^{x^2}}{x e^{2x^2}} = \lim_{x \to 0} \frac{2\int_0^x e^{t^2} dt}{x e^{x^2}}$$
(4 $mathrew{f}$)

$$=2\lim_{x\to 0}\frac{\int_0^x e^{t^2}dt}{r}=2\lim_{x\to 0}e^{x^2}=2.$$
 (4 $\%$)

(19)
$$\text{M}: \diamondsuit u = 1 + \ln x$$
, $\mathcal{H} = \int \frac{dx}{x\sqrt{1 + \ln x}} = \int \frac{d(1 + \ln x)}{\sqrt{1 + \ln x}} = \int \frac{du}{\sqrt{u}}$ (5 \mathcal{H})

$$=2\sqrt{u}+C=2\sqrt{1+\ln x}+C$$
 (3 $\%$)

$$=t^{2}\Big|_{-1}^{0}+\left(\frac{3}{2}t^{2}-t\right)\Big|_{0}^{1}=-1+\frac{1}{2}=-\frac{1}{2}.$$
 (3 \(\frac{1}{2}\))

(22)
$$\Re$$
: $F(x) = \int_{-1}^{x} t(t-4)dt = \frac{x^3}{3} - 2x^2 + \frac{7}{3}$, $F'(x) = x^2 - 4x$, $F''(x) = 2x - 4$,

驻点
$$x = 0, x = 4$$
; (4分)

因为F''(0) = -4 < 0, F''(4) = 4 > 0

故
$$F(x)$$
 有极小值 $F(4) = -\frac{25}{3}$, 极大值 $F(0) = \frac{7}{3}$ 。 (2 分)

又
$$F(-1) = 0, F(5) = -6$$
,得 $F(x)$ 有最小值 $-\frac{25}{3}$,最大值 $\frac{7}{3}$ 。 (2 分)

(23) 解: 曲线 $y = x^2 与 x = y^2$ 的交点坐标为(0,0),(1,1),

(1)
$$S = \int_0^1 (\sqrt{x} - x^2) dx = \frac{1}{3};$$
 (4 $\%$)

(2)
$$V = \int_0^1 \pi [(\sqrt{x})^2 - (x^2)^2] dx = \frac{3}{10} \pi$$
 (4 $\frac{4}{10}$)

三、证明题(本大题共1小题,共6分)

(24) 证 根据积分中值定理知,存在 $\xi \in [a,x]$,,使得 $\int_a^x f(t)dt = f(\xi)(x-a)$ 。于是

$$F'(x) = \frac{f(x)(x-a) - \int_{a}^{x} f(t)dt}{(x-a)^{2}} = \frac{f(x)(x-a) - f(\xi)(x-a)}{(x-a)^{2}} = \frac{f(x) - f(\xi)}{x-a} \,. \tag{4 \frac{1}{17}}$$

因 f(x) 在 [a,b] 上单减,故 $f(x) \le f(\xi)$,因此对 $\forall x \in (a,b)$,有 $F'(x) \le 0$ 。 (2分)