Tema 2.- PROPIEDADES DE LAS SUSTANCIAS PURAS

2.1. INTRODUCCIÓN

- La aplicación del Primer y Segundo Principio se ha de hacer sobre sustancias
- En este tema:
 - variables de estado "de medida": p, v, T
 - funciones de estado para el Primer Principio: u,h
- En el tema 6: entropía (s)
- Descripción fenomenológica de los cambios de fase
- Descripción del comportamiento de una sustancia:
 - exacta: sustancia pura (tablas de 2 variables y diagramas)
 - aproximada: aproximación numérica a ciertas regiones de las tablas
 - modelos: ecuaciones basadas en un modelo microscópico

2.2. FASE Y SUSTANCIA PURA

- Sustancia pura: sistema homogéneo en estructura química. Moléculas y mezclas homogéneas
- Fase: sistema homogéneo en estructura física y química
 - sólida: estructura muy ordenada, poca movilidad. Subfases atendiendo a sistemas cristalinos
 - líquida: menor restricciones que el sólido, mayor volumen especifico (salvo el agua)
 - gaseosa: apenas hay restricciones al movimiento molecular, gran volumen específico
 - cambios de fase: superación de las fuerzas intermoleculares: se requiere energía latente para ello
- Tipos de cambios de fase:
 - sólido a líquido: fusión
 - líquido a sólido: solidificación (congelación)
 - líquido a gas: evaporación o ebullición
 - gas a líquido: condensación
 - sólido a gas: sublimación

Diagrama P-T de una sustancia genérica: (a) se contrae al solidificarse; (b) se expande al solidificarse

[http://168.176.239.58/cursos/ingenieria/2017279/html/unidad 4/u 4 cont 5.html]

2.4. TABLAS DE PROPIEDADES

Comportamiento como sustancia pura

2.4.1. Regiones monofásicas

$$H = U + pV$$
 [kJ]

Propiedades del agua como vapor sobrecalentado a 100 bar.

$p = 100 \text{bar} (T_{sat} = 311, 1 ^{\circ}\text{C})$								
T	v	u	h	S				
$[^{\circ}C]$	$[\mathrm{m}^3/\mathrm{kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg\text{-}K}]$				
$_{\mathrm{sat}}$	0,01803	2545,2	2725,5	5,6160				
320	0,01927	2590,1	2782,8	5,7134				
360	0,02332	2729,4	2962,7	6,0075				
400	0,02644	2833,1	3097,5	6,2141				
440	0,02914	2923,2	3214,6	6,3833				
480	0,03163	3006,7	3323,0	6,5311				
520	0,03397	3086,7	3426,4	6,6649				
560	0,03621	3164,8	3526,9	6,7886				
600	0,03838	3242,0	3625,8	6,9045				
640	0,0405	3318,8	3723,7	7,0142				
680	0,04257	3395,6	3821,3	7,1187				

Propiedades del agua como líquido comprimido a 100 bar.

$p = 100 \mathrm{bar} (T_{sat} = 311, 1 \mathrm{^{\circ}C})$							
T	v	u	h	s			
$[^{\circ}C]$	$[\mathrm{m}^3/\mathrm{kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg\text{-}K}]$			
110	0,001046	$458,\!15$	$468,\!61$	1,4106			
130	0,001064	542,36	553,00	1,6253			
150	0,001084	$627,\!27$	638,11	1,8314			
170	0,001107	713,11	$724,\!19$	2,0301			
190	0,001134	800,20	811,53	2,2229			
210	0,001164	888,90	$900,\!54$	2,4110			
230	0,001199	979,72	991,72	2,5959			
250	0,001241	1073,39	$1085,\!80$	2,7792			
270	0,001292	1171,00	1183,92	2,9633			
290	0,001357	1274,41	1287,99	3,1514			
$_{ m sat}$	0,001452	1393,3	1407,8	3,3603			

2.4.2. Regiones bifásicas

$$a(p,x) = a_f(p) + x \underbrace{\left[a_g(p) - a_f(p)\right]}_{a_{fg}(p)}$$

$$a(T,x) = a_f(T) + x \underbrace{\left[a_g(T) - a_f(T)\right]}_{a_{fg}(T)}$$

Tabla 2.3: Propiedades de saturación del agua como (líquido-vapor). Tabla de temperaturas.

T	p	$v_f \cdot 10^3$	v_g	u_f	u_g	h_f	h_g
$[^{\circ}C]$	[bar]	$[\mathrm{m}^3/\mathrm{kg}]$	$[\mathrm{m^3/kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg}]$
0,01	0,00611	1,0002	206,136	0,00	2375,3	0,01	2501,4
5	0,00873	1,0001	147,031	21,02	2381,8	21,02	2510,1
10	0,01228	1,0003	106,319	42,02	2388,7	42,02	2519,2
15	0,01706	1,0009	77,885	62,98	2395,5	62,98	2528,3
20	0,02339	1,0018	57,762	83,91	2402,3	83,91	2537,4
25	0,03170	1,0030	43,340	104,83	2409,1	104,83	2546,5
330	128,6	1,5604	0,012979	1505,7	2499,2	1525,8	2666,0
340	146,0	1,6377	0,010783	1570,7	2464,5	1594,6	2622,0
350	165,3	1,7407	0,008806	1642,4	2418,3	1671,2	2563,9
360	186,7	1,8950	0,006950	1726,2	2351,9	1761,5	2481,6
370	210,4	2,2172	0,004953	1844,5	2230,1	1891,2	2334,3
374,14	220,9	3,155	0,003155	2029,6	2029,6	2099,3	2099,3

Tabla 2.4: Propiedades de saturación del agua como (líquido-vapor). Tabla de presiones.

\overline{P}	T	$v_f \cdot 10^3$	v_g	u_f	u_g	h_f	h_g
[bar]	$[^{\circ}C]$	$[\mathrm{m}^3/\mathrm{kg}]$	$[\mathrm{m}^3/\mathrm{kg}]$	$[\mathrm{kJ/kg}]$	$[\mathrm{kJ/kg}]$	[kJ/kg]	$[\mathrm{kJ/kg}]$
0,00611	0,01	1,002	206,136	0,00	2375,3	0,01	2501,4
0,04000	28,96	1,0041	34,791383	121,39	2414,5	121,39	2553,7
0,06000	36,16	1,0065	23,733353	151,47	2424,2	$151,\!48$	2566,6
0,08000	41,51	1,0085	18,098670	173,83	2431,4	$173,\!84$	2576,2
1,00000	99,61	1,0432	1,694127	417,40	2505,6	$417,\!51$	2675,0
1,50000	111,3	1,0527	1,159424	466,97	2519,2	467,13	2693,1
160,0	347,4	1,7100	0,009312	1622,6	2432,0	1649,9	2581,0
170,0	352,3	1,7700	0,008374	1660,2	2405,4	1690,3	2547,7
180,0	357	1,8402	0,007504	1699,1	2375,0	1732,2	2510,0
190,0	361,5	1,9258	0,006677	1740,3	2339,2	1776,9	2466,0
200,0	365,7	2,0378	0,005862	1785,8	2294,8	1826,6	2412,1
220,9	374,14	3,155	0,003155	2029,6	2029,6	2099,3	2099,3

Ejemplo: Realizar el Problema 2.1 del texto

2.5. APROXIMACIONES Y MODELOS

2.5.1. Aproximación a sólidos y líquidos

$$v(p,T) \approx v_f(T)$$

$$u(p,T) \approx u_f(T)$$

$$h(p,T) \approx \begin{cases} h_f(T) \\ h_f(T) + v_f(T)[p - p_{sat}(T)] \end{cases}$$

2.5.2. Modelo incompresible

$$v(p,T) = cte$$

La energía interna y la entalpía se verán en el Tema 3, con la definición de los calores específicos

2.5.3. Modelo gas ideal

$$pV = mRT$$
 $pv = RT$ $\overline{R} = 8,314 \, kJ/kmol - K$ $pV = n\,\overline{R}\,T$ $p\,\overline{v} = \overline{R}\,T$ $R = \frac{\overline{R}}{M}$ kJ/kg-K

La energía interna y la entalpía se verán en el Tema 3, con la definición de los calores específicos

Factor de compresibilidad

$$z = \frac{v}{v_{gi}}$$

Ley de los estados correspondientes

$$p_R = \frac{p}{p_C} \qquad T_R = \frac{T}{T_C}$$

$$T_R = \frac{T}{T_C}$$

$$v_R' = \frac{v}{RT_c / p_c}$$

