$$(2.5)$$
 $X=$ S 1 Head $Y=$ S 1 green O red

$$\begin{aligned} & \bigvee_{\text{ar}} [Y] = E \left[\bigvee_{\text{ar}} [Y|X] \right] + \bigvee_{\text{ar}} [E[Y|X]] \\ & = \left(\frac{1}{2} \cdot \frac{24}{100} + \frac{1}{2} \cdot \frac{24}{100} \right) + \left[\left(\frac{1}{10} \right)^2 \cdot \frac{1}{2} + \left(\frac{4}{10} \right)^2 \cdot \frac{1}{2} \right] - \left[\frac{1}{10} \cdot \frac{1}{2} + \frac{4}{10} \cdot \frac{1}{2} \right]^2 \\ & = 0.24 + 0.26 - 0.25 = 0.25 \end{aligned}$$

d)
$$P(X=0|Y=1) = \frac{P(X=0,Y=1)}{P(Y=1)} = \frac{0.3}{0.5} = \frac{3}{5}$$

(2.6) Given ALB |
$$C \Rightarrow P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$$

We have $(A \cap B) \cup (A \cap B^c) = A$, $(A \cap B) \cap (A \cap B^c) = \emptyset$.

Thus $P(A \cap B^c \mid C) = P(A \mid C) - P(A \cap B \mid C) = P(A \mid C) - P(A \mid C) \cdot P(B \mid C) = P(A \mid C) \cdot P(B \mid$