Lista 5 - Random Forest e Naive Bayes

Nome: Gustavo Costa

Questão 01

Considere a seguinte base de dados:

Dia	Aparência	temperatura	Umidade	Ventando	Jogar
d1	Sol	Quente	Alta	Não	Não
d2	Sol	Quente	Alta	Sim	Não
d3	Nublado	Quente	Alta	Não	Sim
d4	Chuva	Agradável	Alta	Não	Sim
d5	Chuva	Fria	Normal	Não	Sim
d6	Chuva	Fria	Normal	Sim	Não
d7	Nublado	Fria	Normal	Sim	Sim
d8	Sol	Agradável	Alta	Não	Não
d9	Sol	Fria	Normal	Não	Sim
d10	Chuva	Agradável	Normal	Não	Sim
d11	Sol	Agradável	Normal	Sim	Sim
d12	Nublado	Agradável	Alta	Sim	Sim
d13	Nublado	Quente	Normal	Não	Sim
d14	Chuva	Agradável	Alta	Sim	Não

Utilizando o algoritmo de Naive Bayes, qual a probabilidade de Jogar ou não Jogar, respectivamente, para o seguinte registro:

Aparência = Chuva

Temperatura = Fria

Umidade = Normal

Ventando = Sim

Questão 1													
	JOGAR	APARÊNCIA			TEMPERATURA		UMINADE		VENTO				
	51M 9 14	30	NUBLADO 4/9	CHUVA 3 9	QUENTE	AGRAPAVEL 49	FRIA-	ALTA 3 9	MORMAL G	51M 3/9	NÃO S) 9		
	NĀQ 5 14	<u>3</u> 5	<u>0</u> 5	a 15)	2 5	<u>2</u> 5	-15	1 5	=	a 5	<u>2</u>		
	APARÊNCIA = CHUVA TEMPERATURA= FRIA UMIDADE = NORMAL										= (0,013)	<u>B</u> =82,3 <i>1</i>	
	VENTANDO	= 51,	4			2 2 5		Ъ Т;	· · · · · · · · · · · · · · · · · · ·	<u>907</u> 2			
	50MA = 0.0158 + 0.0034 = 0.0192												

Questão 02

Implemente o método de Naive Bayes utilizando o python. Veja a resposta do algoritmo para o registro acima.


```
from sklearn.preprocessing import LabelEncoder
     df["Umidade"] = LabelEncoder().fit_transform(df["Umidade"])
     df["Ventando"] = LabelEncoder().fit_transform(df["Ventando"])
     # Aplicar manualmente em temperatura para que fique em ordem personalizada.
     ordem_temp = {"Fria": 0,"Agradavel": 1,"Quente": 2}
     df["Temperatura"] = df["Temperatura"].map(ordem_temp)
[52] df.head()
₹
        Temperatura Umidade Ventando Jogar Aparencia_Chuva Aparencia_Nublado Aparencia_Sol
                                                                                                    圙
     0
                           0
                                     0
                                          Não
                                                            0.0
                                                                               0.0
                                                                                              1.0
                                                                                                     Ш
     1
                  2
                            0
                                          Não
                                                            0.0
                                                                               0.0
                                                                                              1.0
     2
                  2
                            0
                                     0
                                          Sim
                                                            0.0
                                                                               1.0
                                                                                              0.0
     3
                            0
                                     0
                                          Sim
                                                            1.0
                                                                               0.0
                                                                                              0.0
     4
                  0
                                     0
                                          Sim
                                                            1.0
                                                                               0.0
                                                                                              0.0
                 Gerar código com df

    Ver gráficos recomendados

                                                                          New interactive sheet
 Próximas etapas:
[53] # Primeiro, vamos dividir em conjunto de treino e teste.
     from sklearn.model_selection import train_test_split
    X = df.drop("Jogar", axis=1)
    y = df["Jogar"]
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
[54] # Instanciação do modelo.
     modelo = GaussianNB()
```


Questão 03

deveria ser sim com uma probabilidade de 82,3% para a classe 'Sim'.

Implemente o método de Random Forest utilizando o python. Utilize a base acima e compare o resultado deste método com o Naive Bayes e a Árvore de decisão. Ajuste os hiperparâmetros,

O modelo classificou essa nova instância como sendo da classe 'Não'. Ele errou, porque realizando os cálculos no papel a classe correta

utilizando o RandomSearch e algum outro otimizador da sua escolha. Compare os resultados.


```
[68] y_pred_rf = rf_random.best_estimator_.predict(X_test)
     rf_accuracy = accuracy_score(y_test, y_pred_rf)
     print(f"Acurácia do modelo Random Forest: {rf_accuracy}")
🚁 Acurácia do modelo Random Forest: 0.666666666666666
    cm = ConfusionMatrix(rf_random)
     cm.fit(X_train, y_train)
     cm.score(X_test, y_test)
🚁 /usr/local/lib/python3.10/dist-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but R
      warnings.warn(
    0.66666666666666
                                                                       1
      Não
                                                                       2
      Sim
                              Não
```

