华东理工大学

概率论与数理统计

作业簿 (第八册)

学	院	专	业	班 级
学	号	姓	名	任课教师

第十五次作业

- 一. 选择题:
- 1. 设随机变量 ど的概率分布律为

ξ	⁻¹ <i>O</i>	0-1	1 0	$\sqrt{2}$ 3
P	0.2	0.1	0.3	0.4

则 $\eta = \xi^2 - 1$ 的分布函数F(y)为(C)。

A,
$$\frac{1}{3}p(\frac{y+1}{3})$$
 B, $3p(\frac{y+1}{3})$ C, $\frac{1}{3}p(3(y+1))$ D, $3p(\frac{y-1}{3})$

3. 设随机变量 ξ 密度函数为

$$p(x) = \begin{cases} 2x, & 0 \le x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

则 $\eta = \xi^2$ 的密度函数 $p_{\eta}(y)$ 为(\bigcup)。

A、
$$p_{\eta}(y) = \begin{cases} \frac{1}{2}y, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$
 B、 $p_{\eta}(y) = \begin{cases} 2y, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$

B、
$$p_{\eta}(y) = \begin{cases} 2y, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$

$$C, p_{\eta}(y) = \begin{cases} \frac{2}{\sqrt{y}}, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$

$$D, p_{\eta}(y) = \begin{cases} 1, & 0 \le y < 1, \\ 0, & 其他. \end{cases}$$

D、
$$p_{\eta}(y) = \begin{cases} 1, & 0 \le y < 1 \\ 0, & 其他. \end{cases}$$

4. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim P(\lambda)$, $\eta \sim P(\lambda)$,则下列(β)不成立。

A.
$$P\{\xi + \eta = 1\} = 2\lambda e^{-2\lambda}$$
 B. $P\{\xi + \eta = 0\} = e^{-\lambda}$

B.
$$P\{\mathcal{E} + n = 0\} = e^{-\lambda}$$

$$G. \quad E(\xi + \eta) = 2\lambda$$

D.
$$D(\xi+\eta)=2\lambda$$

$$\frac{1}{6} \cdot \frac{1}{2} = 2(1 - 1)$$

三. 计算题

1. 已知随机变量 $\xi \sim U[0,2]$, 求 $\eta = \xi^2$ 的概率密度。

$$P(\xi) = \int_{0}^{2} \int_{0}^$$

2. 设随机变量 X 的概率分布为:

X	1	2	3	•••	n	•••
P	$\frac{1}{2}$	$\left(\frac{1}{2}\right)^2$	$\left(\frac{1}{2}\right)^3$		$\left(\frac{1}{2}\right)^n$	

求 $Y = \sin(\frac{\pi}{2}X)$ 的概率分布。

$$\frac{1}{3} x = 2k \text{ Bd}, \ Y = \sin(k\pi) = 0.$$

$$\frac{1}{3} x = 4k + 1 \text{ Bd}, \ Y = \sin(2k\pi + \frac{1}{3}) = 1.$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3} x = 4k - 1 \text{ Bd}, \ Y = -1$$

$$\frac{1}{3}$$

3. 已知随机变量 $\xi \sim N(0,1)$, 求 $\eta = |\xi|$ 的概率密度。

4. 设 $\xi \sim U(0,1)$, 求 $\eta = \xi^{\ln \xi}$ 的分布 。

$$p(x) = \begin{cases} 1, 0 \le x \le 1 \\ 0, x = 1 \end{cases}$$
 $y' = e^{\ln^2 x} \frac{2\ln x}{x}$
 $y' = e^{\ln^2 x} \frac{2\ln x}{x}$
 $y' = e^{\ln^2 x} \frac{2\ln x}{x}$

5. 已知随机变量 $\xi \sim U(-2,4)$,求 $\eta = \xi^2$ 的分布函数。

$$P(1) = \begin{cases} \frac{1}{6} \frac{d1}{d1} \\ 0 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ 0 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ 0 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & 4 \leq 1 \leq 16 \\ \frac{1}{12\sqrt{10}}, & 4 \leq 16 \end{cases}$$

$$= \begin{cases} \frac{1}{12\sqrt{10}}, & \frac{$$

6. 已知随机变量 ξ 、 η 的概率分布分别为

$$\begin{array}{c|cccc} \eta & 0 & 1 \\ \hline \\ P\{\eta = y_j\} & \frac{1}{2} & \frac{1}{2} \end{array}$$

而且 $P\{\xi\eta=0\}=1$ 。

(1)求 ξ 、 η 的联合概率分布; (2)问 ξ 、 η 是否独立?

(3)求 $\zeta = \max(\xi, \eta)$ 的概率分布。

(2)
$$\pi \approx 1$$
.
(3) $p(5=0) = \frac{1}{4}$.
 $p(5=1) = \frac{3}{4}$.

第十六次作业

一. 选择题:

1. 设随机变量 ξ 和 η 相互独立,且 $\xi\sim N(-2,4)$ $\eta\sim N(2,8)$,则 $\xi+2\eta$ 的密度函 数 p(z) 为 (**B**)。

A.
$$\frac{1}{6\sqrt{2\pi}}e^{-\frac{(z-4)^2}{72}}$$

$$B = \frac{1}{2\sqrt{6\pi}}e^{-\frac{z^2}{24}}$$

$$C_{1} = \frac{1}{6\sqrt{2\pi}}e^{-\frac{z^{2}}{72}}$$

A,
$$\frac{1}{6\sqrt{2\pi}}e^{-\frac{(z-4)^2}{72}}$$
 B, $\frac{1}{2\sqrt{6\pi}}e^{-\frac{z^2}{24}}$ C, $\frac{1}{6\sqrt{2\pi}}e^{-\frac{z^2}{72}}$ D, $\frac{1}{2\sqrt{6\pi}}e^{-\frac{(z-4)^2}{24}}$

2. 设随机变量(ξ,η)的联合密度函数为 p(x,y) , 则 $\xi+\eta$ 的分布函数 F(z)=(**以**)。

A.
$$F(z) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y} p(z-x, y) dx$$

A,
$$F(z) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y} p(z-x, y) dx$$
 B, $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} p(z-x, y) dy$

C.
$$F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{x} p(z-x, y) dy$$
 D. $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} p(x, y) dy$

D.
$$F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} p(x, y) dy$$

3. 设随机变量 ξ 和 η 相互独立,其密度函数分别为 $p_1(x)$ 与 $p_2(y)$,则 $\frac{\eta}{\xi}$ 的密度

函数
$$p(z)$$
 为 (\bigwedge)。

A.
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(x) p_2(zx) dz$$

A,
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(x) p_2(zx) dx$$
 B, $p(z) = \int_{-\infty}^{+\infty} p_1(x) p_2(z-x) dx$

C.
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(zx) p_2(x) dx$$

C,
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(zx) p_2(x) dx$$
 D, $p(z) = \int_{-\infty}^{+\infty} p_1(z-x) p_2(x) dx$

4. 设随机变量 ξ 和 η 相互独立,其分布函数分别为 $F_{\xi}(x)$ 与 $F_{\eta}(y)$,则

$$\zeta = \max(\xi, \eta)$$
 的分布函数 $F_{\zeta}(z)$ 等于(\int)

A.
$$\max\{F_{\xi}(z), F_{\eta}(z)\}$$
 B. $F_{\xi}(z)F_{\eta}(z)$

B.
$$F_{\xi}(z)F_{\eta}(z)$$

C.
$$\frac{1}{2}[F_{\xi}(z) + F_{\eta}(z)]$$

C.
$$\frac{1}{2}[F_{\xi}(z) + F_{\eta}(z)]$$
 D. $F_{\xi}(z) + F_{\eta}(z) - F_{\xi}(z)F_{\eta}(z)$

二. 填空题:

1. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim N(-2,4)$ $\eta \sim N(-2,12)$,则 $\xi - \eta$ 的密度函数 $p(z) = \frac{2}{4\pi} e^{-\frac{2}{16}}$ ~ N(0,+) $\sim N(0,+5)$

2. 设随机变量 ξ 和 η 独立同分布,均服从(0,1)上的均匀分布,则 $\max(\xi,\eta)$ 的密

度函数
$$p(z) =$$
 0585 $|$ 0585

3. 设随机变量 ξ 和 η 相互独立,且 $\xi\sim E(1)$, $\eta\sim E(2)$,则

$$P\{\min(\xi,\eta)\leq 1\} =$$

三. 计算题

1. 设随机变量 ξ 、 η 相互独立,其密度函数分别为

$$p_{\xi}(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \not\exists \text{th} \end{cases}, \quad p_{\eta}(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

 $求\xi+\eta$ 的概率密度函数。

$$Z = \xi + \eta$$
 . $P(Z) = \int_{-\infty}^{+\infty} P_{\xi} \times P_{\eta}(Z - x) dx$
= $\int_{0}^{1} e^{x-2} dx$
= $e^{1-2} - e^{-2}$

2. 设随机变量 (ξ,η) 的联合概率密度函数为

$$p(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

求 $\xi+\eta$ 的概率密度函数。

$$\frac{z^{2}}{fz(z)} = \int_{-\infty}^{+\infty} p(z-y, y) dy = \int_{0}^{1} (2-z) dy$$

$$= 2-z. (z \in (0,1))$$

$$\frac{f(z)}{z} = \int_{0}^{2-z} \frac{z}{z} \in (0,1)$$

3. 设 ξ , η 是两个相互独立的随机变量,且均服从均匀分布U(0,1)的随机变量,

4. 电子仪器由 4 个相互独立的部件 L_i (i=1,2,3,4) 组成,连接方式如图所示。设各个部件的使用寿命 ξ_i 服从指数分布 E(1),求仪器使用寿命 ζ 的概率密度。

L12= max (4+L2), L34 = max (13+L4).

$$F_{L_{i}}(x) = 1 - e^{-x}$$
 $F_{L_{i}}(x) = F_{L_{i}}(x) = F_{L_{i}}(x) = (1 - e^{-x})^{2}$

L = min (L12, L24).

$$F_{L}(x) = [-[(-e^{x})^{2}]^{2}.$$

$$P(x) = F(x) = 4[1-(1-e^{-x})^{2}] \cdot (1-e^{-x}) \cdot e^{-x}$$

5. 将上题中的电子部件 L_i (i=1,2,3,4) 组成,按下列方式联接,求仪器使用寿命 ζ 的概率密度。

$$L_{12} = \min_{S} L_{1}, L_{2}$$

$$L_{34} = \min_{S} L_{3}, L_{4}$$

$$L_{54} = L_{62}$$

$$L = \max_{S} L_{12}, L_{34}$$

$$L = \max_{S} L_{12}, L_{34}$$

$$L = (1 - e^{-2x})^{2}$$

$$L_{54} = L_{64} = L_{64}$$

$$L_{64} = L_{64} = L$$

6. 将上题中的串联部分加上一个开关,先用上面部分,如果坏了,合上开关再用下面部分,求仪器使用寿命 ζ 的概率密度。

$$L_{12} = \min \{ L_{12}, L_{34} \}. \quad L_{34} = \min \{ L_{3}, L_{4} \}.$$

$$F_{12} = F_{34} = 1 - e^{-2X}. \quad L = L_{12} + L_{34}.$$

$$f_{12} = f_{34} = F_{12}' = 2e^{-2X}. \quad (X > 0)$$

$$f = p(2) = 4 \int_{0}^{+\infty} e^{-2X}. e^{-2(Z-X)} dx$$