Install necessary modules and libraries

UnitPrice

541909 non-null float64

```
!pip install openpyxl

→ Collecting openpyxl
       Downloading openpyxl-3.1.5-py2.py3-none-any.whl.metadata (2.5 kB)
     Collecting et-xmlfile (from openpyxl)
       Downloading et_xmlfile-2.0.0-py3-none-any.whl.metadata (2.7 kB)
     Downloading openpyxl-3.1.5-py2.py3-none-any.whl (250 kB)
                                                  - 250.9/250.9 kB <mark>2.2 MB/s</mark> eta 0:00:00
     Downloading et_xmlfile-2.0.0-py3-none-any.whl (18 kB)
     Installing collected packages: et-xmlfile, openpyxl
     Successfully installed et-xmlfile-2.0.0 openpyxl-3.1.5
import pandas as pd
from matplotlib import pyplot as plt
Load Dataset
!wget https://archive.ics.uci.edu/static/public/352/online+retail.zip
--2025-04-17 01:01:23-- <a href="https://archive.ics.uci.edu/static/public/352/online+retail.zip">https://archive.ics.uci.edu/static/public/352/online+retail.zip</a>
     Resolving archive.ics.uci.edu (archive.ics.uci.edu)... 128.195.10.252
     Connecting to archive.ics.uci.edu (archive.ics.uci.edu)|128.195.10.252|:443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: unspecified
     Saving to: 'online+retail.zip'
     online+retail.zip
                                                    ] 22.62M 29.1MB/s
                                                                          in 0.8s
     2025-04-17 01:01:24 (29.1 MB/s) - 'online+retail.zip' saved [23715478]
!unzip online+retail.zip
→ Archive: online+retail.zip
      extracting: Online Retail.xlsx
import time
stime = time.time()
df1 = pd.read_excel("Online Retail.xlsx", dtype={'InvoiceNo': 'string', 'StockCode': 'string', 'Description': 'string', 'Country':
df1.head(3)
→▼
         InvoiceNo StockCode
                                                       Description Ouantity
                                                                                     InvoiceDate UnitPrice CustomerID
                                                                                                                               Country
                                       WHITE HANGING HEART T-LIGHT
                                                                                       2010-12-01
                                                                                                                                  United
      n
            536365
                       85123A
                                                                                                        2 55
                                                                                                                  17850 0
                                                           HOLDER
                                                                                         08:26:00
                                                                                                                                Kingdom
                                                                                       2010-12-01
                                                                                                                                  United
            536365
                        71053
                                              WHITE METAL LANTERN
                                                                                                        3.39
                                                                                                                 17850.0
                                                                                         08:26:00
                                                                                                                                Kinadom
df1.shane
→ (541909, 8)
df1[df1.InvoiceNo=="C536379"]
₹
           InvoiceNo StockCode Description Quantity
                                                               InvoiceDate UnitPrice CustomerID
                                                                                                         Country
      141
             C536379
                                                     -1 2010-12-01 09:41:00
                                                                                           14527.0 United Kingdom
df1.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 541909 entries, 0 to 541908
     Data columns (total 8 columns):
      # Column
                        Non-Null Count
                                         Dtype
                        541909 non-null string
          InvoiceNo
                        541909 non-null
          StockCode
                                         string
                        540455 non-null
          Description
                                         string
                        541909 non-null int64
          Ouantity 0
          InvoiceDate
                        541909 non-null
                                         datetime64[ns]
```

6 CustomerID 406829 non-null float64
7 Country 541909 non-null string
dtypes: datetime64[ns](1), float64(2), int64(1), string(4)
memory usage: 33.1 MB

Data Cleaning: Handle Missing Values

df1.isnull().sum()

df1[df1['Description'].isnull()].head()

_		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
	622	536414	22139	<na></na>	56	2010-12-01 11:52:00	0.0	NaN	United Kingdom
	1970	536545	21134	<na></na>	1	2010-12-01 14:32:00	0.0	NaN	United Kingdom
	1971	536546	22145	<na></na>	1	2010-12-01 14:33:00	0.0	NaN	United Kingdom
	1972	536547	37509	<na></na>	1	2010-12-01 14:33:00	0.0	NaN	United Kingdom
	1987	536549	85226A	<na></na>	1	2010-12-01 14:34:00	0.0	NaN	United Kingdom

df1[df1.StockCode=="22139"]

_									
_		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
	106	536381	22139	RETROSPOT TEA SET CERAMIC 11 PC	23	2010-12-01 09:41:00	4.25	15311.0	United Kingdom
	622 5		22139	<na></na>	56	2010-12-01 11:52:00	0.00	NaN	United Kingdom
	6392	536942	22139	amazon	15	2010-12-03 12:08:00	0.00	NaN	United Kingdom
	6885	536982	22139	RETROSPOT TEA SET CERAMIC 11 PC	10	2010-12-03 14:27:00	11.02	NaN	United Kingdom
	7203	537011	22139	<na></na>	-5	2010-12-03 15:38:00	0.00	NaN	United Kingdom
	538411	581405	22139	RETROSPOT TEA SET CERAMIC 11 PC	1	2011-12-08 13:50:00	4.95	13521.0	United Kingdom
	539531	581439	22139	RETROSPOT TEA SET CERAMIC 11 PC	1	2011-12-08 16:30:00	10.79	NaN	United Kingdom
•									

df1[df1.StockCode=="22139"].Description.mode()

Description

0 RETROSPOT TEASET CERAMIC 11 PC

dimerating

most_freq = df1[["StockCode","Description"]].value_counts().reset_index()
most_freq

₹		StockCode	Description	count
	0	85123A	WHITE HANGING HEART T-LIGHT HOLDER	2302

 1
 22423
 REGENCY CAKESTAND 3 TIER
 2200

 2
 85099B
 JUMBO BAG RED RETROSPOT
 2159

3 47566 PARTY BUNTING 1727

4 20725 LUNCH BAG RED RETROSPOT 1638

4787 35833P check 1

4788 21410 COUNTRY COTTAGE DOORSTOP GREEN
4789 21412 VINTAGE GOLD TINSEL REEL

 4790
 21414
 SCALLOP SHELL SOAP DISH

 4791
 35972
 check

4792 rows × 3 columns

WARNING:root:Quickchart encountered unexpected dtypes in columns: "(['StockCode', 'Description'],)"

1

1

Distributions

Values

most_freq[most_freq.StockCode=="85123A"]

₹		StockCode	Description	count
	0	85123A	WHITE HANGING HEART T-LIGHT HOLDER	2302
	3300	85123A	CREAM HANGING HEART T-LIGHT HOLDER	9
	4620	85123A	wrongly marked carton 22804	1
	4658	85123A	?	1

most_freq = most_freq.groupby("StockCode").head(1)
most_freq.head(5)

₹		StockCode	Description	count
	0	85123A	WHITE HANGING HEART T-LIGHT HOLDER	2302
	1	22423	REGENCY CAKESTAND 3 TIER	2200
	2	85099B	JUMBO BAG RED RETROSPOT	2159
	3	47566	PARTY BUNTING	1727
	4	20725	LUNCH BAG RED RETROSPOT	1638

most_freq[most_freq.StockCode=="85123A"]

₹		StockCode	Description	count
	0	85123A	WHITE HANGING HEART T-LIGHT HOLDER	2302
	-			

most_freq.columns = ["StockCode", "freq_Description", "count"]
most_freq.head(3)

df2 = df1.merge(most_freq, on="StockCode", how="left")
df2.head(3)

→		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	freq_Description	count
	0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	WHITE HANGING HEART T-LIGHT HOLDER	2302.0
	4 (WHITE METAL		2010-12-01			United	WHITE METAL	

df2[df2['Description'].isnull()]

_											
₹		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	freq_Description	count
	622	536414	22139	<na></na>	56	2010-12-01 11:52:00	0.0	NaN	United Kingdom	RETROSPOT TEA SET CERAMIC 11 PC	988.0
	1970	536545	21134	<na></na>	1	2010-12-01 14:32:00	0.0	NaN	United Kingdom	<na></na>	NaN
	1971	536546	22145	<na></na>	1	2010-12-01 14:33:00	0.0	NaN	United Kingdom	CHRISTMAS CRAFT HEART STOCKING	1.0
	1972	536547	37509	<na></na>	1	2010-12-01 14:33:00	0.0	NaN	United Kingdom	NEW ENGLAND MUG W GIFT BOX	2.0
	1987	536549	85226A	<na></na>	1	2010-12-01 14:34:00	0.0	NaN	United Kingdom	<na></na>	NaN
	535322	581199	84581	<na></na>	-2	2011-12-07 18:26:00	0.0	NaN	United Kingdom	DOG TOY WITH PINK CROCHET SKIRT	91.0
	535326	581203	23406	<na></na>	15	2011-12-07 18:31:00	0.0	NaN	United Kingdom	HOME SWEET HOME KEY HOLDER	114.0
•											

 $df2['Description'] = df2['Description']. \\ mask(df2['Description']. \\ isnull(), df2['freq_Description']) \\ df2. \\ isnull(). \\ sum()$

		0
	InvoiceNo	0
	StockCode	0
	Description	112
	Quantity	0
	Invoice Date	0
	UnitPrice	0
	CustomerID	135080
	Country	0
	freq_Description	112
	count	112
	dtmarint61	

df2.dropna(subset=['Description'], inplace=True)
df2.isnull().sum()

df2.drop(columns = ["freq_Description", "count"], inplace=True)

Data Cleaning: Handle Invalid Values

df2.describe()

df2[df2.Quantity<=0].shape

→ (10527, 8)

df2[df2.UnitPrice<=0].shape

→ (2405, 8)

Remove negative or zero quantities and prices df3 = df2[(df2['Quantity'] > 0) & (df2['UnitPrice'] > 0)] df3.describe()

} ▼		Quantity	InvoiceDate	UnitPrice	CustomerID
С	count	530104.000000	530104	530104.000000	397884.000000
n	mean	10.542037	2011-07-04 20:16:05.225087744	3.907625	15294.423453
	min	1.000000	2010-12-01 08:26:00	0.001000	12346.000000
	25%	1.000000	2011-03-28 12:22:00	1.250000	13969.000000
	50%	3.000000	2011-07-20 12:58:00	2.080000	15159.000000
	75%	10.000000	2011-10-19 12:39:00	4.130000	16795.000000
ı	max	80995.000000	2011-12-09 12:50:00	13541.330000	18287.000000
4	std	155.524124	NaN	35.915681	1713.141560

 ${\tt df3.Quantity.quantile(0.9999)}$

np.float64(1439.8763999990188)

Feature Engineering: Create New Columns

df3.head(2)

→	In	voiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country		
	0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom		
•	4								•		
df4 =	df4 = df3.copy()										
<pre>df4['TotalSales'] = df4['Quantity'] * df4['UnitPrice'] df4.head(2)</pre>											

₹		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	TotalSales
	0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	15.30
	4 (•

df4['Month'] = df4['InvoiceDate'].dt.month
df4.sample(2)

→		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	TotalSales	Month	
	472449	576688	23311	VINTAGE CHRISTMAS STOCKING	6	2011-11-16 12:16:00	2.55	16717.0	United Kingdom	15.3	11	
	4											•

df4['Month'] = df4['InvoiceDate'].dt.month
df4.sample(2)

₹		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	TotalSales	Month
	368064	568938	84992	72 SWEETHEART FAIRY CAKE CASES	3	2011-09-29 14:46:00	0.55	17220.0	United Kingdom	1.65	9
	4										

Data Visualization and Insights

→ 1. Plot Monthly Total Sales Trend

monthly_sales = df4.groupby('Month')['TotalSales'].sum()
monthly_sales

nontr	ity_sate	S
_		TotalSales
	Month	
	1	691364.560
	2	523631.890
	3	717639.360
	4	537808.621
	5	770536.020

4	537808.621
5	770536.020
6	761739.900
7	719221.191
8	759138.380
9	1058590.172
10	1154979.300
11	1509496.330
12	1462538.820

```
monthly_sales.plot(kind='line', title='Monthly Total Sales Trend', marker='o')
plt.xlabel('Month')
plt.ylabel('Total Sales')
plt.grid(True)
plt.show()
```


Insights

_

Total sales started rising up in August having a peek in November. This is likely due to the holiday season at the end of the year

2. Top 5 countries based on total sales

```
df4.groupby('Country')['TotalSales'].sum().sort_values(ascending=False).head(5)
```

```
TotalSales

Country

United Kingdom 9025222.084

Netherlands 285446.340

EIRE 283453.960

Germany 228867.140

France 209715.110
```

```
# prompt: plot horizontal bar chart for country wise monthly sales for top 5 countries
import matplotlib.pyplot as plt
top_5_countries = df4.groupby('Country')['TotalSales'].sum().sort_values(ascending=False).head(5)
plt.figure(figsize=(10, 6))
plt.barh(top_5_countries.index, top_5_countries.values)
plt.xlabel('Total Sales')
plt.ylabel('Country')
plt.title('Top 5 Countries by Total Sales')
plt.grid(axis='x')
plt.show()
```


Insights

- 1. UK has the highest sales (around 9 million)
- 2. Netherlands, EIRE, Germany and France are the next 4 countries each having a sales of more than 2 million

Since these countries cover the major sales revenues, we need to pay special attention to customers in these countries and make sure our product quality and service are the best. Also to break dependancy of sales from a single country we can focus on expanding sales in other countries as well

```
# prompt: Plot same chart as above but this time use percentage contribution. Show % on the bar
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
country_wise_sales = df4.groupby('Country')['TotalSales'].sum()
total_sales = country_wise_sales.sum()
top_5_countries = country_wise_sales.sort_values(ascending=False).head(5)
percentages = (top_5_countries / total_sales) * 100
plt.figure(figsize=(10, 6))
bars = plt.barh(top_5_countries.index, percentages)
plt.xlabel('Percentage Contribution to Total Sales')
plt.ylabel('Country')
plt.title('Top 5 Countries by Percentage Contribution to Total Sales')
plt.grid(axis='x')
# Add percentage labels to the bars
for bar, percentage in zip(bars, percentages):
    plt.text(bar.get\_width() + 0.5, bar.get\_y() + bar.get\_height()/2, f'\{percentage:.1f\}\%', va='center'\}
plt.show()
```


→ 3. Top 5 products based on total sales

```
product_wise_sales = df4.groupby('StockCode')['TotalSales'].sum()

top_5_products = product_wise_sales.sort_values(ascending=False).head(5)
top_5_products.plot(kind='barh', color='skyblue')
plt.title('Product-wise Sales')
plt.xlabel('Total Sales')
plt.ylabel('Product Stock Code')
plt.gca().invert_yaxis() # To show the highest sales at the top
plt.show()
```


product_wise_sales.sort_values(ascending=False)

```
₹
                TotalSales
      StockCode
        DOT
                 206248.770
       22423
                 174484.740
       23843
                 168469.600
       85123A
                 104518.800
       47566
                  99504.330
       90084
                      0.850
       21268
                      0.840
       51014c
                      0.830
       84227
                      0.420
        PADS
                      0.003
     3922 rows × 1 columns
     dt.ma. float64
product_wise_sales.sum()
np.float64(10666684.544)
df4[df4.StockCode=="DOT"].Description.iloc[0]
TOOTCOM DOSTAGE
for stock_code in top_5_products.index:
    description = df4[df4.StockCode==stock_code].Description.iloc[0]
    print(f"{stock_code} ==> {description}")
→ DOT ==> DOTCOM POSTAGE
     22423 ==> REGENCY CAKESTAND 3 TIER
     23843 ==> PAPER CRAFT , LITTLE BIRDIE
     85123A ==> WHITE HANGING HEART T-LIGHT HOLDER
     47566 ==> PARTY BUNTING
\# prompt: Plot same chart as above for product sales but use percentage this time. Show \% on the bar
# Assuming df4 is already created from the previous code
total_sales = product_wise_sales.sum()
percentages = (top_5_products / total_sales) * 100
plt.figure(figsize=(10, 6))
bars = plt.barh(top_5_products.index, percentages)
plt.xlabel('Percentage Contribution to Total Sales')
plt.ylabel('Product Stock Code')
```

plt.title('Top 5 Products by Percentage Contribution to Total Sales')

 $plt.text(bar.get_width() + 0.5, \ bar.get_y() + bar.get_height()/2, \ f'\{percentage:.1f\}\%', \ va='center'\}$

plt.grid(axis='x')

plt.show()

Add percentage labels to the bars

for bar, percentage in zip(bars, percentages):


```
df4['InvoiceDate'].max()
Timestamp('2011-12-09 12:50:00')
current_date = df4['InvoiceDate'].max() + pd.Timedelta(days=1)
rfm = df4.groupby('CustomerID').agg({
    'InvoiceDate': lambda x: (current_date - x.max()).days,
    'InvoiceNo': 'count',
    'TotalSales': 'sum'
rfm.columns = ['Recency', 'Frequency', 'Monetary']
rfm.head()
₹
                 Recency Frequency Monetary
      CustomerID
       12346.0
                      326
                                     77183.60
       12347.0
                       2
                                182
                                       4310.00
       12348.0
                      75
                                       1797.24
                                 31
       12349.0
                                       1757.55
                      19
                                 73
       12350.0
                     310
                                  17
                                        334.40
```

rfm.describe()

_				
→		Recency	Frequency	Monetary
co	ount	4338.000000	4338.000000	4338.000000
m	nean	92.536422	91.720609	2054.266460
	std	100.014169	228.785094	8989.230441
r	min	1.000000	1.000000	3.750000
2	25%	18.000000	17.000000	307.415000
5	50%	51.000000	41.000000	674.485000
7	75%	142.000000	100.000000	1661.740000
n	max	374.000000	7847.000000	280206.020000
•				

```
# Segment Customers based on RFM
rfm['R_Segment'] = pd.qcut(rfm['Recency'], 4, labels=[4, 3, 2, 1])
rfm['F_Segment'] = pd.qcut(rfm['Frequency'], 4, labels=[1, 2, 3, 4])
```

rfm['M_Segment'] = pd.qcut(rfm['Monetary'], 4, labels=[1, 2, 3, 4])
rfm['RFM_Score'] = rfm[['R_Segment', 'F_Segment', 'M_Segment']].sum(axis=1)

rfm.sample(5)

→ Recency Frequency Monetary R_Segment F_Segment M_Segment RFM_Score CustomerID 14014.0 505.18 2 2 2 6 77 39 17979.0 3 3 36 146 757.71 4 10 17585.0 109 214 1133.07 2 4 3 9 14465.0 1058.62 4 3 8 3 7 17505.0 162 52 1145.84 3

Customers with highest RFM Scores
rfm.sort_values('RFM_Score', ascending=False)

}		Recency	Frequency	Monetary	R_Segment	F_Segment	M_Segment	RFM_Score
	CustomerID							
	18198.0	4	159	5425.56	4	4	4	12
	18210.0	2	134	2621.38	4	4	4	12
	18225.0	3	271	5509.12	4	4	4	12
	18283.0	4	756	2094.88	4	4	4	12
	16983.0	13	148	1931.25	4	4	4	12
							•••	
	12402.0	323	11	225.60	1	1	1	3
	18185.0	249	17	304.25	1	1	1	3
	18190.0	192	15	284.46	1	1	1	3
	18191.0	262	7	207.80	1	1	1	3
	18193.0	165	16	243.76	1	1	1	3
	4338 rows × 7	columns						

→ 5. Customer Churn Analysis

df4.head(2)

→		InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country	TotalSales	Month
	0	536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom	15.30	12
	4		_		_						

Create a basket matrix for association rule mining
customer_last_purchase = df4.groupby("CustomerID")['InvoiceDate'].max()
customer_last_purchase.head(5)

₹		InvoiceDate
	CustomerID	
	12346.0	2011-01-18 10:01:00
	12347.0	2011-12-07 15:52:00
	12348.0	2011-09-25 13:13:00
	12349.0	2011-11-21 09:51:00
	12350.0	2011-02-02 16:01:00

pandas.core.series.Series

def __init__(data=None, index=None, dtype: Dtype | None=None, name=None, copy: bool | None=None, fastpath: bool | lib.NoDefault=lib.no_default) -> None

One-dimensional ndarray with axis labels (including time series).

Labels need not be unique but must be a hashable type. The object sunnorts both integer- and label-based indexing and provides a bost of

current_date

Timestamp('2011-12-10 12:50:00')

customer_last_purchase = (current_date - customer_last_purchase).dt.days customer_last_purchase.head(5)

InvoiceDate

CustomerID					
12346.0	326				
12347.0	2				
12348.0	75				
12349.0	19				
12350.0	310				

Define churn threshold (e.g., 90 days without purchase)

churn_threshold = 90

churned_customers = customer_last_purchase[customer_last_purchase > churn_threshold] churned_customers.head(5)

InvoiceDate

CustomerID

12346.0 326