Optimisation Stochastique

Pr Pierre Collet

Laboratoire ICUBE

Campus Numérique des Systèmes Complexes

Pierre.Collet@unistra.fr

Problématique

- Problèmes inverses
 - Profil d'aile
 - Évaluation de la qualité par équations de Navier-Stokes

Problèmes difficiles

- Problèmes NP-complets très difficiles à résoudre
- Voyageur de commerce : (n-1)!/2 chemins possibles!
- Si un ordinateur est capable d'évaluer 1 milliard de chemins / s.
 - 16 villes: 653.10^9 chemins = 6520,18h.
 - 17 villes: 10461.129 chemin
 - 18 villes: 17784
 - us venez d'assister à... une explosion combinatoire

Types de problèmes (fonctions) à optimiser

- Unimodal
- Multimodal

(Dans ce cours, on cherchera à minimiser les valeurs)

Notion d'optimisation

Trouver x^* tq $F(x^*) = Inf \{ F(y) \text{ pour } y \in \Omega \}$ E, espace mesuré, $\Omega \subset E$, F: $\Omega \rightarrow \mathbb{R}$ F est la fonction objectif à minimiser

Minimum global : x^* tq $\forall x \in \Omega$, $F(x^*) \leq F(x)$

Minima locaux:

$$x^* \text{ tq } \exists \ \mathbf{\mathcal{E}} > 0, \ \forall \ x \in \mathbf{B} \ (x^*, \ \mathbf{\mathcal{E}}) \cap \Omega, \ F(x^*) \le F(x)$$

(Minima stricts si inégalités strictes pour $x \neq x^*$)

Espaces de recherche en optimisation

- Continus
 - Dérivables
 - Non dérivables
- Discontinus
- Discrets
- Combinatoires

Mixtes

Méthode locale pour problème discret

- Algorithme « Glouton »
 - \rightarrow x_{i+1} = « Meilleur voisin » de x_i
 - Contexte:
 - Tout espace (possiblement discrétisé)
 - Fonctionne avec toute fonction
 - Condition nécessaire:
 - $-x_0$ bien choisi.

Optimum global ici!

Méthode locale, coûteuse (surtout si plusieurs dimensions), qui détermine le plus proche optimum local (attention à la discrétisation!)

Fonction continue et dérivable

☐ Descente de gradient (*gradient search*)

- La fonction doit être gentille (continue et dérivable)
- \square Efficace, mais c'est une recherche locale (et il faut avoir le bon α !)
- On ne trouve l'optimum global que si x_0 est bien choisi \bigcirc

Méthodes énumératives

- Contexte:
 - > <u>Espace fini</u>
 - \succ Toute fonction F
 - Ordre de parcours
 - Fixé
 - Dépend du problème
- Conditions nécessaires
 - Taille de l'espace limitée
 - > Discrétisation bien choisie

Optimum global apparemment ici!

Méthodes globales, mais coûteuses et non fiables pour des problèmes continus

Méthodes stochastiques

- Utilisent des variables aléatoires permettant de ne pas tout explorer de manière exhaustive (problèmes difficiles)
- Sélectionner x_i dans Ω d'après une distribution de probabilités
- Monte-Carlo (Metropolis, Ulam 1949)
- Évolution Artificielle (1953, renaissance en 1990)
- Recuit simulé (Kirkpatrick, Gelatt et Vecchi, 1983)