CSC 384 Winter 2023 Test 4 Version A

March 27 and 28, 2023

Last Name:	
First Name:	
Email:	

There are 3 questions with a total of 26 marks.

- Q1 (8 marks)
- Q2 (12 marks)
- Q3 (6 marks)

Q1 D-Separation (8 marks)

Consider Figure 1 below. For each question below, circle the best answer and provide an explanation. Use the following format for your explanation (where X, A, B, C, and D are variables).

(Observing/Not observing) X (blocks/doesn't block) the path A-B-C-D by rule 1/2/3.

Q1.1 (2 marks) C and E are unconditionally independent.

True or False

Explain:

Q1.2 (2 marks) F and E are conditionally independent given B.

True or False

Explain:

Q1.3 (2 marks) A and I are unconditionally independent.

True or False

Explain:

Q1.4 (2 marks) C and E are conditionally independent given I.

True or False

Explain:

Figure 1 Above

Q2 Variable Elimination Algorithm (12 marks)

Consider the Bayesian network above. A, B, C, and D are binary variables. We use the lower-case letters to denote the values of the variables, e.g. a denotes A = true and $\neg a$ denotes A=false.

Calculate $P(A \mid \neg c)$ by using the Variable Elimination Algorithm.

Eliminate the hidden variables in alphabetical order.

For each step, indicate the following.

- Indicate the **operation** (e.g. Restrict, Multiply, Sum out, or Normalize).
- Indicate the **factors** on which you are applying the operations.
- Each operation should produce a new factor. Give this factor a unique name and draw a table containing its contents. The table should indicate the variables in the factor and the value for each combination of the variables' values.

Show all your work on pages 6 and 7.

We have created the initial factors for you below.

Factor f1

1	actor 1	1
	a	0.1
	$\neg a$	0.9

Factor f2

b	0.2
$\neg b$	0.8

Factor f3

d	b	0.3
$\neg d$	b	0.7
d	$\neg b$	0.4
$\neg d$	$\neg b$	0.6

Factor f4

С	а	b	0.5
$\neg c$	а	b	0.5
С	а	$\neg b$	0.6
$\neg c$	а	$\neg b$	0.4
С	$\neg a$	b	0.7
$\neg c$	$\neg a$	b	0.3
С	$\neg a$	$\neg b$	0.8
$\neg c$	$\neg a$	$\neg b$	0.2

Your Q2 final answers:

$P(a \mid \neg c) =$	$P(\neg a \mid \neg c) =$

Your Q2 work starts here.

Your Q2 work continues.

This page is intentionally left blank.	You can use this page for rough work.

Q3 Filtering (6 marks)

Consider the hidden Markov model on the next page.

- S_t denotes the hidden state at time t. $S_t = true$ means it rained on day t ($S_t = false$ otherwise).
- E_t denotes the observation at time t. $E_t = true$ means the director brought an umbrella on day t and $E_t = false$ otherwise.
- α is the normalization constant.

Assume that the first three observations are $\neg e_0$, e_1 , and $\neg e_2$. That is, the director brought an umbrella on day 1 and didn't bring an umbrella on days 0 and 2.

Calculate the filtering probabilities for **day 2**. We have provided the filtering formulas on the next page. **For full marks**, **show ALL your work** and present your solutions to **3 decimal places**.

The Filtering Formulas:

- Base case: $P(S_0|E_0) = \alpha P(S_0) P(E_0|S_0)$
- Recursive case:

$$P(S_k | E_0 \land ... \land E_{k-1}) = \sum_{S_{k-1}} P(S_{k-1} | E_0 \land ... \land E_{k-1}) * P(S_k | S_{k-1})$$

$$\circ P(S_k|E_0 \wedge ... \wedge E_k) = \alpha P(E_k|S_k) P(S_k|E_0 \wedge ... \wedge E_{k-1})$$

Assume that

$$P(s_1 | \neg e_0 \land e_1) = 0.849$$

$$P(s_1 | \neg e_0 \land e_1) = 0.849$$
 and $P(\neg s_1 | \neg e_0 \land e_1) = 0.151$

Your final answers::

$$P(s_2|\neg e_0 \land e_1 \land \neg e_2) = P(\neg s_2|\neg e_0 \land e_1 \land \neg e_2) =$$

Your calculations:

This page is intentionally left blank	You can use this page for rough work.
This page is intentionally left blank.	Tou can use this page for rough work.