STAC58:2017 Assignment () - Solutions (b) px=(-1) + (0) = + (1) = = - to で、二日(メン)- ルマニ (ーハ) キャレのできゃんいるこー(一切) = 4 +3 - 100 = 69 (c) fxx(01-1) = #({22,4,6,8,1031236,7,93)/Fx(-1) = #(263) / = 1 fy (0 0) = \$ (22,4,6,8,103 / 21,5,103) / (0) = 10/3 = 3 FX(D11) = # ({22,4,6,8,1031 \(\) \(= 3 3 = 1 and note frix (1/2) = 1- frix (0/2). Since frix (01x) changes as a changes of all x one related. To see the relationship graph the conditionals

Afrix(0101)

Ass1#4.txt (a) Generating the initial sample of 10 and computing the skewness statistic > x=rnorm(10,5, 1.414214) > xbar=mean(x) > r=x-xbar > ss=t(r)%*%r > r=r/sqrt(ss) > sum(r)[1] -7.415943e-16 > t(r)%*%r [,1] [1,]> r3=r**3> skew=sum(r3)/10 > skew [1] 0.02933093 (b) > # create a 1000X10 matrix where each row is a ssmple of 10 from a N(0,1) > X=matrix(c(1:10000),nrow=1000,ncol=10) > for (i in c(1:1000)) {X[i,]=rnorm(10,0,1)} > # create a vector xbar of the 1000 sample means > one=c(1:10)> one=1+0*one > one [1] 1 1 1 1 1 1 1 1 1 1 > xbar=X%*%one/10 > # create U a matrix of unit residuals from X > Y=X-xbar%*%t(one) > ss=diag(Y%*%t(Y)) > ss=sqrt(ss) > ss=1/ss > D=diag(ss) > U=D%*%Y > # cube the elements of U and calculate the individual skewness statistics > U3=U**3 > skew=U3%*%one/10 > # plot a density histogram of the 1000 vales of skew > max(skew) [1] 0.06141137 > min(skew) [1] -0.06906074 > boundaries <- seq(-.07,.07,by=.005)</pre> >hist(skew,breaks=boundaries,freq=FALSE)

(from(a)) 0.02933093 is in the middle of
this distribution so no inhibition
madel is wrong.

Histogram of skew

(c)

>x=rexp(10)
>xbar=mean(x)
> r=x-xbar
> ss=t(r)%*%r
> r=r/sqrt(ss)
> sum(r)
[1] 2.081668e-17
> t(r)%*%r
 [,1]
[1,] 1
> r3=r**3
> skew=sum(r3)/10
> skew
[1] 0.005190613

0.06664907

when general school sch

(8.) With the information generator discussion in class the mountained prob. that I will be reported by the jarler is all the mountained prob. that I will have and I be reported in pig. Therefore the coul. prob. that I will live is (9.113)/(1+p) = p/(1+p).