

The Relocation of the Chicago White Sox to Charlotte,

North Carolina

A Data Driven Approach to Structuring a Relocation for the Organization

Introduction

The Chicago White Sox are one of the MLB's oldest teams with as much history as any other club. Despite their rich history and a World Series in 2005, the organization has struggled mightily in the two decades since, both on the field and at the gate. Attendance has consistently declined, performance has dropped the team to record lows, and fan engagement continues to dwindle. These trends, when combined with constant financial and competitive instability, suggest that a relocation may be a viable strategic option for the franchise.

In this paper I explore the implications of relocating the organization to a new market – specifically Charlotte, North Carolina – with the goal of revitalizing the franchise's brand and maximizing long-term competitiveness. Utilizing data analysis strategies, the report is structured around four major components:

- 1. **Organizational Evaluation**: Analyzing the White Sox's current financial and roster situation using a constrained optimization model.
- 2. **Ticketing and Promotion Strategies**: An evaluation of current attendance drivers, promotional effectiveness, and dynamic pricing opportunities, based on league-wide data.
- 3. **Performance and Revenue Expectations**: A historical data-based projection of on-field performance and financial gains/losses, utilizing case studies from MLB and other professional sports relocations.
- 4. **Market Evaluation of Relocation Cities**: A metric-driven profile of Charlotte's, and other possible relocation sites', suitability as a relocation city, based on cost of living, population trends, and corporate presence.

Through this approach, the analysis aims to deliver clear and actionable recommendations to management, while also contributing to the broader discussion of team relocation within professional sports. This report seeks to provide a potential path forward for the White Sox organization, one that can help them reclaim the glory they once had.

Literature Review

In terms of previous research on performing a deep dive into one specific team relocating to another city, there isn't much that has been done. However, there has been research in areas that are related to this project that I drew concepts from. *Depken (2000)* attempted to estimate relative fan loyalty for U.S. professional baseball teams by comparing fan loyalty to the outcomes of seeking public funding for new stadiums. While a relocation is different than an organization trying to build a new stadium, ideally, the city of Charlotte would help publicly fund the required infrastructure and a study of their fan loyalty to the Panthers and Hornets could provide knowledge into the likelihood of public funding approval. *Noll and Zimbalist (1997)*, in their book *Sports, Jobs, and Taxes*, argued that while relocations may improve team revenue, it doesn't typically translate into broader economic development unless the team is able to leverage corporate partnerships and local interest. Ingraining the White Sox into the Charlotte landscape would benefit both the city and team and should be considered when strategizing pre-relocation

and post-relocation techniques. Lastly, *Winfree and Fort (2008)* reported relevant findings for potential relocations in showing that loyalty and regional ties strongly influence attendance and engagement. While they studied how fans substituted hockey during the 2004-2005 NHL lockout, the principal findings could be applied here.

Many academia sources that have looked into relocations evaluated the economic conditions of host cities using metrics similar to the ones this paper explores. Another common practice is examining attendance patterns and team performance before and after a relocation to better understand the effect on the organization and city.

For this study, I directly used concepts and data from the following sources. A complete citations list can be found in the References section.

Retrosheet.org

Retrosheet provides a comprehensive compilation of MLB data, with game logs dating back to early 1900s. These logs include detailed, game-level data such as date, location, opponent, time of game, and attendance. For this project, I used the 2023 and 2024 game logs to analyze league-wide attendance trends and to isolate White Sox-specific patterns for further analysis. Retrosheet also provided me the data used to assess the performance trends of historical relocations, used to estimate the White Sox future performance upon relocating.

Spotrac.com

Spotrac is a leading source for team and player contract data across all of the major sports. I used it to collect MLB payroll data and win totals for all teams from the 2021 through 2024 seasons, allowing for an in-depth evaluation of the White Sox's financial efficiency by analyzing wins per dollar spent. Additionally, this source provided player-level salary data, which was merged with WAR data from Baseball-Reference to assess individual player performance relative to salary across the roster and allow for comparing of players with similar metrics. The merged dataset allowed for comparisons between White Sox players and other MLB players with similar salary and WAR profiles to determine relative value and create benchmarks.

Baseball-Reference.com

Baseball-Reference is a widely trusted database for historical and current baseball statistics. I used this source to collect the 2024 White Sox roster along with league-wide, player-level Wins Above Replacement (WAR) values. These metrics were then paired with salary data from Spotrac to evaluate individual player value and assess how the team's roster structure could be improved while utilizing a constrained optimization approach.

Miller, T. (2015)

Thomas Miller's book, *Sports Analytics and Data Science: Winning the Game with Methods and Models*, serves as a foundational guide to applying statistical techniques in sports contexts using R. This book covers basic descriptive statistics and ranges to predictive modeling and

optimization. This book was particularly helpful in informing the constrained optimization approach I used in modeling player salary versus performance. I used this text to understand applied methods that were then adjusted and utilized in the White Sox relocation analysis.

Data

Data Acquisition

Upon obtaining the desired data from Baseball-Reference, Spotrac, and Retrosheets, each dataset was processed to ensure it could be read into and analyzed within R. For a majority of the datasets, I had the ability to copy and paste or download into Excel to format and organize the data. This involved removing unnecessary columns, standardizing headers, and verifying cell formats, before importing to R.

After formatting, the data was read into R using the 'read_csv()' or 'read_excel()' functions. This process promoted consistency for the data analysis and ensured that the data sources were structured to utilize R's tidyverse functions.

For web-sourced and manually compiled data – such as salary totals, WAR stats, and relocation city metrics – Excel files served as the intermediary step before being imported into R for modeling.

Data Preparation

Once the datasets were imported, several key steps were completed to clean and prepare the data for analysis in R. These steps fixed any formatting irregularities and created new factors critical to the project's objectives.

Standardizing Variables

Across all datasets, column names were standardized for clarity and ease of use in the R environment. For example, variables such as "D/N" and "W-L" from the Retrosheet game logs were renamed to "day_night_game" and "win_loss_record". Whenever dates appeared in a dataset they were converted from character strings (e.g., "Thursday, Mar 28") to Date class objects using the 'as.Date()' function, after appending the relevant year.

Cleaning Attendance and Promotion Data

The White-Sox game-level attendance data required manual input to identify which games featured promotions. Using official promotional schedules for the 2023 and 2024 seasons, a "promotion_type" variable was created within the dataset. From there, a binary "is_promo" variable was added to flag games that featured a promotion, which was instrumental in evaluating marketing effectiveness.

Feature Engineering

Several new variables were created to capture meaningful folds within the data:

- "day_of_week" and "month" were extracted from the game date to allow for segmented analysis of attendance.
- "opponent_group" was created to categorize teams as "AL Central", "big market", or "other", enabling insight into how the opponent type influenced the attendance.
- "WAR_percentile" and "Performance_Tier" were computed to benchmark individual White Sox players against league-wide performance by position.

Combining and Filtering Data

For the analysis of historical relocations, team performance and payroll data from Spotrac and Baseball-Reference were merged using shared identifiers, such as team name and year.

For the city-level economic analysis, various external indicators were scaled using the 'scale()' function in R and combined into a composite "total_score" index, allowing comparisons across potential relocation cities.

Final Structure

The cleaned and prepared datasets included:

- white_sox_eval for White Sox player performance, benchmarked by league-wide WAR and salary,
- mlb combined war salary for all MLB players' WAR and salary data
- white_sox_home for 2023-2024 White Sox regular-season home games, with gamelevel details and promotions,
- combined_games for all regular-season MLB games (2023-2024), used for understanding league-wide trends and patterns in attendance,
- relocation data for historical relocation team data,
- city_data for economic, demographic, and infrastructure indicators for Charlotte and other potential relocation sites,
- combined_city_data combining current MLB team cities (Milwaukee, Baltimore, Phoenix, Toronto, Los Angeles, Chicago, and New York) with possible relocation sites for benchmarking and comparisons.

These steps of preparing the data established a reliable foundation for the modeling and analysis that follows.

Player Valuation and Roster Restructuring

Background

The Chicago White Sox enter 2025 burdened by a payroll north of \$140 million, ranking 18th in the league, yet delivered a historically poor season, culminating the worst record in MLB history in 2024. Some of the most observable problems with the way the team is structured is the several high-salary players contributing well-below-average performance. This alarming mismatch between spending and performance indicates a critical need for reevaluating the roster. This section aims to examine the current financial health and roster structure of the White Sox and apply a data-driven approach to explore more cost-effective alternatives. The ultimate goal is to restructure the team under a constrained payroll, while maximizing on field performance.

Current Financial and Roster Situation

To evaluate each White Sox player's value relative to their cost, I combined salary data from Spotrac with WAR figures from Baseball-Reference. These datasets were merged and cleaned in R. From this, I constructed three key metrics:

- WAR-per-million: This is a custom metric created by dividing WAR by salary (in millions \$), which is used to assess the player's cost efficiency,
- WAR Percentile: Each player's WAR was converted to a percentile rank relative to other MLB players at their position,
- **Performance Tiers**: Based on WAR percentile, players were grouped into "Top Performer" (85th percentile+), "Middle Performer" (25th to 85th percentile), and "Low Performer" (below 25th percentile).

This evaluation provided a foundation for finding overpaid underperformers and undervalued contributors. **Table 1** illustrates the disparity in players severely underperforming and those overperforming.

Player	Position	Salary	WAR	,	WAR_percentile	Performance_Tier
garrett crochet	lhp	800000		4.1	1	Top Performer
erick fedde	rhp-s	7500000		5.6	0.98181818	Top Performer
michael kopech	rhp	3000000		1.4	0.79081633	Top Performer
jared shuster	lhp	742500		1	0.78378378	Top Performer
tim hi ll	lhp	1800000		0.9	0.75675676	Top Performer
sean burke	rhp	740000		0.9	0.69387755	Middle Performer
davis martin	rhp	742500		0.9	0.69387755	Middle Performer
dominic l eone	rhp	1500000		-0.7	0.03061224	Low Performer
deivi garcia	rhp	740550		-0.7	0.03061224	Low Performer
nick nastrini	rhp	740000		-0.8	0.02040816	Low Performer
omar narvaez	С	7000000		-0.9	0.01587302	Low Performer
martin maldonado	С	4000000		-1.3	0	Low Performer
eloy jimenez	dh- l f	13833333		-0.7	0	Low Performer
corey julks	of	742500		-1.1	0	Low Performer

Table 1: Top and Bottom 7 White Sox Players by WAR Efficiency A full WAR-Salary table, Table A1, can be found in Appendix A.

Constrained Optimization

With an understanding of the inefficiencies of this roster, I turned to a constrained optimization model to explore a more efficient way to construct the 2025 White Sox roster. The objective was to maximize a total team WAR while staying under a budget of \$120 million, about \$21 million less than the 2024 payroll, to reflect a team in a rebuilding phase.

Using the lpSolve package in R, I implemented a binary integer linear programming model where each player in the league-wide dataset was either selected (1) or not selected (0). The objective function was defined as the sum of WAR for the chosen players, subject to several constraints:

- 1. Salary Cap: The total salary of the selected roster could not exceed \$120 million,
- 2. **Roster Size**: The model was limited to 40 total players, to reflect the max active roster of an MLB team,
- 3. White Sox Core Retention: To maintain continuity, the top 17 White Sox players, ranked by WAR-per-million, were force-included in the final roster,
- 4. Positional Balance:
 - i. A minimum of 17 pitchers was required,
 - ii. A minimum of 20 positional players was required,
- 5. **Feasibility**: To prevent unrealistic selections (e.g., young superstars still on rookie contracts), all players earning less than \$1 million were excluded from the candidate pool (unless already on the White Sox).

This approach prevented the model from simply selecting the most cost-efficient players, typically young stars still on rookie contracts, who would realistically be untouchable due to trade cost or team control. This allowed the model to focus on attainable players that could provide solid value.

The optimization modeling process included the following steps:

- Constructing a binary decision variable vector for each eligible player,
- Building a constraint matrix representing salary, roster size, positional minimums, and required players from the 2024 White Sox team,
- Running the lp() solver from the lpSolve package to find the roster combination that maximized WAR within the constraints,
- Interpreting and extracting the optimized roster.

The final output - **Table A2**, which can be found in the Appendix - was a 40-man, blended roster of retained White Sox players and additions who offered strong WAR-per-dollar value. The model picked up several under-the-radar and attainable players who could outperform their contracts and fit within a realistic team-building plan. By finding the White Sox who were underpaid overperformers, it also inversely found overpaid underperformers, which the organization should target for replacements. A visual displaying the efficiency of each roster, defined for this project as WAR per million spent, shows how much more WAR the optimized roster should achieve spending the same amount of money as the 2024 roster, and can be seen to the right.

While optimizing a team's roster can improve the onfield performance, which improves ticket sales, it's not the only driver of attendance and overall organizational success. Some of the factors I've studied to better understand fan behavior and demand elasticity for certain games are discussed in the following section.

Figure 1: Comparison of 2024 White Sox Roster to Optimized Roster, by WAR-per-million

Ticketing and Promotional Strategies

Background

The White Sox, like most teams in the MLB, have seen a worrying decline in home attendance over recent seasons. After a historically poor on-field performance in 2024, fan interest in the team has dwindled. Attendance numbers have reflected this downturn, creating difficulties generating profit for the organization.

Attendance represents more than just tickets sold; it also encompasses gate receipts, concessions, and secondary spending within the ballpark. The financial health of the White Sox will not hold up if they aren't able to get people through their gates and into seats. Nowadays, national and local TV contracts make up a large majority of a team's revenue stream; however, local TV contracts are largely fixed revenue and profits from national TV contracts are typically shared amongst the leagues. Maximizing ticket revenue has become essential for rebuilding a franchise and establishing long-term sustainability.

As the team explores a potential relocation or rebranding, understanding what drives fans to attend games – and how promotions and pricing strategies affect that decision - becomes as important now as ever before. This section analyzes historical attendance data, evaluates the

impact of promotions and opponents, and proposes dynamic pricing and marketing strategies that align with fan demand and organizational needs.

Modeling Attendance Trends and Promotional Impacts

To evaluate the drivers of home game attendance for the White Sox, I combined game-level data for the 2023 and 2024 seasons. Each home game was set to display a range of factors that are believed to influence fan turnout, creating a dataset to model and visualize trends.

The following variables were included in this study:

- Game Date and Time: Used to determine day of the week, weekend vs weekday games, and month of the season,
- **Opponent Group**: Categorized as Big Market (Cubs, Yankees, Red Sox, Astros, Dodgers), AL Central (division rivals for the White Sox), or Other,
- **Promotional Games**: A binary variable based on the manual addition of promotional events at specific games,
- **Day or Night Games**: Used to examine attendance difference between games that start before 6:00 PM and games that start after that time.

Modeling Approach

Using R, I first conducted an exploratory data analysis (EDA) to visualize attendance distributions by each factor. From there, I constructed a multiple linear regression model with attendance for a specific game as the dependent variables and the above factors as independent predictors. The model explained a meaningful portion of the variance in attendance (adjusted R² is ~49%), suggesting these independent factors are strong predictors of turnout, but potentially excluding a few additional factors.

The modeling approach allowed me to quantify the average attendance increase for games with promotional events. It also enabled me to measure the draw of different opponents, applying an average increase or decrease to the three opponent groups discussed above. Lastly, it clearly showed differences in calendar patterns, such as the difference seen in a spring, weekday, day game versus a summer, weekend, night game.

In addition to the regression model, I utilized summary statistics and visualizations to examine how different subsets of games performed, which helped uncover non-linear and context dependent effects that couldn't be captured by the model.

Key Patterns in Attendance and Strategic Implications

The analysis revealed several actionable patterns in home-game attendance spanning the past two seasons. These insights form the foundation of my recommendations for a more targeted and effective promotional and pricing strategy.

Promotional Events Drive Significant Attendance Gains

Games that my binary variable is_promo flagged, whether it was a giveaway, fireworks night, or theme night, attracted approximately 5,300 more fans, on average, than non-promotional games. This uplift was most pronounced on low-attendance weekdays, such as Mondays and Wednesdays, where promotions nearly doubled average attendance compared to non-promotional games on those days. Surprisingly, Saturday promotional games underperformed, drawing around 5,800 fewer fans than their non-promotional counterparts. This is possibly due to an already high demand or competing weekend activities.

Day of Week	Non-Promo Average	Promo Average	Difference
Monday	15530.15	31179	15648.85
Tuesday	11609	18538.45	6929.45
Wednesday	15081.2	25954.33	10873.13
Thursday	14421.08	20493.6	6072.517
Friday	18857.71	21908.21	3050.496
Saturday	30955.5	25132.84	-5822.66
Sunday	19442.65	20158.4	715.75

Table 3: The Difference Between Promo and Non-Promo Games by Day of the Week

When examining opponent type, home games against AL Central teams or non-big market teams saw around a 33% increase in attendance on promotional games. This clearly suggests that promotions are especially useful for games with weaker draws, as seen below in **Figure 2**. While promotional games increased attendance in every month, the most significant gains were seen in April and June, while May and September saw the smallest promotional impact. Lastly, day games saw a larger promotional increase than night games. Promotional day games actually outdrew promotional night games by about 2,000 fans, highlighting an opportunity to schedule more daytime promotional games.

Figure 2: Average Attendance by Type of Opponent, Filled by Promo or Non-Promo Game

Opponents' Market Size Matters

Figure 3: Average Monthly Attendance by Opponent Group

The opponents' market size had a measurable impact on the White Sox's home game attendance during the 2023 and 2024 seasons. Games played against big-market teams, averaging over 27,000 fans, consistently outperformed games against the White Sox's division rivals, averaging just 17,000, and all other 20 teams considered mid- or small-market teams, averaging around 18,500 fans. These findings highlight the strong influence that opponent brand power and market size has on average attendance. As discussed above, promotions had a much stronger impact for lowdraw opponents, suggesting an opportunity to target promotional games on less-desirable games to boost attendance when these big-market teams are not in town. The visual to the left, Figure 3, shows average attendance by month, filled by the opponent group. This shows how influential these big-market teams coming to town can be for attendance. The visual also indicates that there is

a small, but potentially negligible difference between AL Central and Other teams, suggesting that the real distinction may be between big-market and non-big market teams, regardless of the opponent's division.

Day of Week and Seasonality Trends

The average attendance at White Sox home games varied meaningfully by both the day of the week and month of the season. This data can guide future scheduling and promotional efforts to place them more strategically throughout the regular season. Unsurprisingly, weekend games outdrew weekday games by an average of around 5,000 attendees, specifically Friday and Saturday night games. On the other hand, Tuesdays and Wednesdays saw significantly lower turnouts. This could suggest to management that scheduling premium matchups with big-market teams or placing promotional events earlier in the week could help address the lagging attendance. Looking at the data by month revealed many things as well. Attendance started relatively low and gradually increased until peaking in July, until finally tapering off in September. The combination of good weather, kids being on summer vacation, and more games against big-market teams, helped drive higher average attendances for the White Sox in the summer months. The patterns in this data display strategic windows in both the weekly and seasonal calendar where targeted promotions or dynamic pricing adjustments could maximize the profit and attendance for the organization. These patterns discussed can be visualized in the below figures (Figure 4 and Figure 5).

Figure 4: Average Attendance by Month of Season

Figure 5: Average Attendance by Day of the Week

The combined insights from regression modeling, visual analysis, and promotional trends make it clear that the White Sox could significantly influence their attendance, on a per-game basis, through strategic scheduling and placement of promotional games. Promotions are the most effective strategy to improve the attendance of games with a low baseline demand, such as weekday afternoon games or small-market teams. Contrarily, promotions could be steered away from big-market teams as they inherently draw strong crowd and are less resistant to the discussed factors. The analysis also demonstrated that seasonality and day of the week matter, with summers and weekends performing best. These insights provide a roadmap for optimizing game-day strategy, from placing promotional games to adjusting the tiers of a dynamic pricing model.

While refining an organization's ticketing and promotions strategy offers short-term revenue gains, the broader question facing this organization is whether these strategies, paired with a relocation, are enough to reverse declining interest. To address this, the next section aims to examine historical franchise relocations, and which cities make sense to consider for relocation. This will provide context for what a potential move could mean financially for the organization.

Additional Analysis

Background

The topic of relocation has gained serious traction within the White Sox organization as the franchise continues to battle financial strain and record-low attendance in the years since its World Series in 2005. While upgrading Guaranteed Rate Field or pursuing a rebranding effort may offer marginal improvements, shifting to a more favorable market - one in which they aren't overshadowed by their crosstown rival - could present the best opportunity for long-term revenue growth. This section evaluates the potential implications of a relocation by analyzing historical franchise moves and assessing Charlotte, a fast-growing, sports-hungry city, as a leading relocation candidate.

Historical Franchise Relocation Case Studies

Franchise relocation has long been used as a reset for struggling organizations, offering a chance to reach a new market, fan base, and revenue stream. While typically driven by financial pressures or disinterested fanbases, relocation brings questions of how performance and investment evolve after the move. By examining past examples across major U.S. sport leagues, there can be a better understanding of the outcomes that tend to follow a major organizational shift.

Through an analysis of four franchise relocations across the MLB, NBA, and NHL, mixed outcomes of on-field performance following the move emerged. The Seattle SuperSonics, who became the Oklahoma City Thunder, experienced the most substantial increase in on-court performance, increasing their average wins per season by 14 games after their relocation. This is in part to how historically bad the SuperSonics were but is still worth noting. Conversely, and more commonly, the post-relocation franchise did not sustain their average wins per season. As seen below, the Texas Rangers (formerly the Washington Senators) and the Washington Nationals (formerly the Montreal Expos) saw declines in performance, dropping 8 and 2.7 wins per season on average, respectively. The Thrashers' relocation to Winnipeg only resulted in a decrease of 1.7 average wins per season. These results suggest that while relocation can offer upside, it is not a guaranteed path to moving forward.

Franchise	Post- relocation	Pre- relocation	win_change
Expos/Natio nals	75	77.66667	-2.666667
Senators/R angers	65	73	-8
Sonics/Thu nder	42.66667	28.66667	14
Thrashers/J ets	32.66667	34.33333	-1.666667

Table 4: Average Wins Before and After Franchise Relocation

The bar chart to the left reveals a consistent trend across multiple franchises: relocation often comes with an increase in average team payroll. One thing to note is that the Rangers and Senators have super low values, as the relocation occurred in 1972, due to the much lower organization payrolls seen at the time. However, the other three relocations experienced significant jumps in their payrolls post-relocation. This trend implies that relocation can lead to increased financial commitment from ownership. This is likely driven by access to larger markets, improved facilities, and/or enhanced revenue opportunities within the relocation city.

Figure 6: Average Payroll by Team, filled by Era

Figure 7: Indexed Comparison of Avg Wins and Avg Payroll Before and After Relocation

The indexed comparison to the left offers a standardized view of franchise changes across leagues and eras. In this chart, each franchise's prerelocation average for both wins and payroll was set to a baseline 100 to account for scale differences between sports (number of games in season) and eras (difference in payroll size), enabling more meaningful cross-team comparisons. It's clear that the Thunder, enjoyed a well-leveraged move as their

payroll and wins post-relocation significantly increased. In contrast, the Nationals and Rangers experienced increased spending with a decrease in average wins. Overall, this illustrates that relocation offers financial growth but does not inherently lead to on-field success.

This analysis of four major U.S. franchise relocations reveals that while financial investment and the amount of capital available often increases after a relocation, the return on investment is not guaranteed. It cannot be overlooked that a door is opened to financial gain, and in the Thunder's case performance gains as well, but successful outcomes hinge on post-move strategy, market engagement, and long-term planning.

This next section turns to evaluates Charlotte, a leading candidate for the White Sox Relocation, using city-level economic, demographic, and market data to project its viability as a future MLB city.

Charlotte's Market Potential for a MLB Relocation

Charlotte, North Carolina has gained a lot of traction in discussion of relocation sites for current MLB teams. Its combination of rapid population growth, economic momentum, and strong corporate presence make it a compelling future home for an MLB franchise, hopefully the White Sox. This section evaluates Charlotte's market potential using a range of city-level indicators obtained from the city_data dataset by comparing to other relocation candidates. Comparisons are also made to current cities with an MLB team using similar city-level indicators from the combined_city_data. The table below (Table 5) details city-level rankings of potential relocation cities. A table of their scaled score and total score (Table A3) as well as the tables containing 7 cities with MLB teams (Tables A4 and A5) can be found in the appendix.

City	Population	Tourism Rank	Cost Index	Fortune 1000 Companies	Pop. Growth Rate (%)	Household Income	# of Pro Teams	TV Market Rank
San Antonio, TX	1496876	45	70	6	4.339	62917	1	31
Nashville, TN	715891	23	74	2	3.821	75197	2	27
Charlotte, NC	897720	18	73	13	2.646	78438	2	21
Glendale, AZ	252381	65	68	0	1.633	70139	1	11
Oklahoma City, 0	681054	65	69	4	0.985	66702	1	45
Sacramento, CA	524943	49	78	0	0.873	83753	1	20
Orlando, FL	309154	1	74	4	0.514	69268	1	17
Columbus, OH	906528	40	71	11	0.086	65327	1	32
Memphis, TN	633104	65	67	5	0.041	51211	1	51
St. Paul, MN	311527	65	75	5	-0.329	73055	1	15
Indianapolis, IN	880621	47	70	6	-0.791	62995	2	27
Newark, NJ	311549	65	79	2	-1.383	48416	1	1
Buffalo, NY	255284	65	68	1	-8.286	48050	2	53

Table 5: City-Level Indicators for Potential MLB Relocation Cities

Demographics and Growth

Charlotte's population is approaching 900,000 and continues to grow at one of the fastest rates among U.S. metropolitan areas. With a population growth rate of 2.65%, Charlotte ranks third in emerging cities within the list of potential relocation cities. On top of that, Charlotte is attracting people and families with money to spend as its household income of \$78,438 ranks second, just behind Sacramento, which could be high based on the increased salaries seen in California due to such high taxes. These metrics equate Charlotte very similarly to Phoenix, a city with an MLB team that has increased average attendance per game every year, since the 2020 COVID year. Many US cities with an MLB team, such as Baltimore, Milwaukee, Chicago, and New York, have seen stagnant or declining population growth since 2020. On top of that, when compared to a few other cities with a MLB team, Charlotte only trails Toronto, New York, and Los Angeles in terms of median household income.

Economic Strength and Corporate Presence

Charlotte ranks first among all candidate cities in the number of Fortune 1000 companies headquartered locally, with 13, reflecting a growing economic base. This has the potential to provide significant upside not only for corporate partnerships and luxury suite sales but also for

long-term stadium financing and media rights deals. While Charlotte's cost of living is relatively high (6th in potential relocation cities) it can be considered offset by the high median household income. Also, when compared to current cities with MLB teams it is about average, ranking under New York, and Los Angeles, and on par with Chicago.

Tourism and Media Reach

Charlotte ranks 18th in national tourism ranking, significantly higher than all other potential relocation cities, besides Orlando (1st). This is a promising sign that out-of-town visitors could be a good source of revenue as prospective ticket sales and could lead to a number of event-based revenue streams. Due to Charlotte's TV market rank falling short of most current MLB cities (21st), the organization's national exposure could be limited, but does allow room for growth if the relocated franchise can generate sustained regional interest. This would most likely entail taking fans in the region from the Braves, as most of the Carolinas and Tennessee are fans of the Atlanta-based team due to a lack of team(s) in the region.

Total Score Analysis

When aggregating city-level indicators into a composite total score, Charlotte ranks first in total score, and near the top of all scaled indicator scores – outpacing other solid potential relocation cities such as Nashville, Columbus, OH, and Orlando. The city's big advantages in economic strength, income levels, and corporate presence gives it a great blend of market readiness for an expansion team.

Charlotte currently hosts the Triple-A affiliate of the White Sox, the Knights, who play in the heart of the city at Truist Field. A promising sign for the potential relocation is that the Knights ranked 10th in all of the minors in attendance last season, demonstrating the city's commitment to its teams and interest in baseball. Although the Charlotte's Knights stadium was not initially built to accommodate a MLB franchise, it doesn't eliminate the city or field's possibility of expansion. If upgraded, it would provide one of the most scenic backdrops in the MLB, as it is situated squarely in the middle of downtown Charlotte.

Conclusions and Recommendations

Restructuring the Roster

Optimizing Roster Efficiency

Utilizing the created metric, WAR-per-million, and a constrained optimization model, the analysis identified a way to assemble a more competitive White Sox roster within a constrained budget. The recommendations focus on improving roster efficiency without relying on unrealistic acquisitions or a complete, 6+ year rebuild:

- Cost-Efficient Acquisitions: Prioritizing players who deliver high WAR-per-million values, or any other metrics one may be interested in (wOBS, SLG, etc.). Many of these players are attainable, mid-tier veterans who offer solid production at a reasonable salary. Players that fit this mold are Gavin Lux, Jose Iglesias, Miguel Rojas, and Zach Little, just to name a few.
- Targeted Replacements: Actively seek to replace the lowest-tier players (bottom quartile of WAR efficiency) with similarly priced players outside the organization who offer better value. White Sox players like Andrew Benintendi, Mike Cleavinger, Martin Maldonado, and Touki Toussaint who have relatively high salaries but are producing horrendous WAR numbers are great players to target for replacement.
- Maintain Core Value: It is not feasible to create a brand new 40-man roster within a year, even only maintaining 17 players is a bit extreme, but it sets the precedent of keeping players that performed above or equal to their salary expectations. This maintains roster continuity and allows for restructuring around these players to enhance team performance.
- Avoid Overcommitting to Star Power: There is always the temptation to overpay for the game's best players in an effort to jumpstart a roster. However, the teams that tend to go after these types of players contain a lot of depth and balance across their roster. The White Sox don't have much of that, and for the near-future, should focus on adding depth and positional coverage.

Long-Term Strategy

The constrained optimization approach that was implemented in this study offers a replicable tool to reassess the entire roster, as well as MLB, each season and adjust to changes in market salary, player performance, and payroll constraints. The White Sox should embed this model into their annual roster planning and financial analysis, particularly in years when there are an abundance of free agents or heavy trade activity is expected.

Ticketing and Promotions

Dynamic Ticket Pricing

The analysis of the attendance data for the past two White Sox regular seasons revealed a substantial variation in demand based on the day of the week, opponent, and promotional status. A static pricing model, or a dynamic pricing model with few adjustments, ignores these differences and leaves potential revenue for the organization on the table. A dynamic pricing model can optimize gate revenue while maximizing attendance on low-demand games when ticket prices are adjusted based on:

- Day of the Week: Higher priced tickets on Fridays, Saturdays, and Sundays, with discounts on Tuesday and Thursday games
- **Opponent Type**: Big-market teams, such as the Cubs, Yankees, Astros, Dodgers, and Red Sox, should be priced at a premium, while games against small-market teams, such as the Athletics, Royals, Brewers, and Pirates, should be discounted
- **Promotional Impact**: Promotions showed the largest difference in attendance for games that were promotion-based versus games that weren't and should be moderately increased to reflect the difference
- Seasonality: Games that take place in June, July, and August should be priced higher, while games in April and May should be discounted. If the team is out of the playoff hunt by September, it could be considered discounting those as well as the White Sox dipped in September, in which they were out of contention for both seasons the data covered

Strategic Placement of Promotional Dates

Promotions were proven to significantly boost attendance, especially on low-demand weekdays and games against non-big market teams. However, when applied to already high-demand games (Saturdays and games against big-market teams), the return on investment may be diminished, or in some cases, negative. The following are ways to strategically utilize promotions to maximize average attendance:

- Promotional events in the early week, specifically Mondays and Wednesdays, can increase the average attendance on these low-demand weekday games
- Focused promotions on games against AL Central rivals or other small-market teams could generate an uplift to the low attendance seen when non-marquee teams are in town
- Day-time promotions should be utilized at a higher clip as they saw higher relative gains than promotions used during night games
- Weekend promotions should be deprioritized unless they are bundled with premium matchups

Market Relocation and Revenue Potential

Realistic Expectations of Relocating

The historical franchise relocations studied in this paper offer mixed results, but a few firm takeaways. In the case of the Thunder, immediate on-court performance can be seen when the gathering of talent and leveraging of the new market are utilized jointly. However, in the more common cases seen in the Nationals' and Rangers' relocations, payroll will increase as the team attempts to jumpstart their new franchise with positive performance, but see negligible performance increases, even a step back in certain cases. These case studies suggest:

- Relocation does not guarantee on-field success. However, a relocation executed with a strategic vision can generate renewed fan interest and open doors to corporate partnerships that sets the team up for future success.
- Market context matters. Cities with stronger economic foundations and media markets are better positioned to capitalize on relocation and find immediate on-field success.

The White Sox should use these studies to determine their plan of attack upon relocating to Charlotte. They could take the Thunder approach and immediately pour money into their roster in an attempt to boost on-field performance quickly. On the other hand, the White Sox can reserve money for a couple years in an attempt to build funds as well as establishing themselves within their community and corporate landscape. Once they have a solid foothold, they can begin spending their money to build a championship caliber roster.

Charlotte's Strategic Advantages

Based on the comparative analysis of the 13 potential relocation markets, Charlotte emerged as a clear favorite based on key metrics like population growth rate, median household income, corporate presence, and tourism rank:

- Strong Corporate and Economic Profile: Charlotte leads all markets in number of Fortune 1000 companies headquartered in the city and ranks second in median household income. Both of these indicators are key to predicting how accessible long-term sponsorship and media deals will be to a franchise in the city. The largest Charlotte-based company, Bank of America, is already partnered with the FIFA World Cup in 2026, The Masters, Chicago and Boston Marathons, and many local sport teams. They've shown an interest in partnering with and sponsoring some of the biggest sporting events in the U.S. and may be a prime sponsorship target for an MLB team that shares a home city with its headquarters,
- Fan Acquisition Potential: Charlotte is in a region with little MLB competition. As discussed earlier, a lot of fans in this region are Braves fans, even though they are a 4–7-hour drive to the city, because there isn't a closer team to be a fan of. The White Sox

- could capitalize on this by attracting fans from neighboring states that currently lack a local MLB team (South Carolina, Tennessee, Kentucky),
- Balanced Market Profile: Charlotte ranked at or near the top of all scaled metrics within the analysis, outperforming other high-profile candidates such as Nashville and Orlando. With a balanced profile, the White Sox wouldn't need to rely specifically on one or two market factors to generate revenue but would find themselves in a favorable position of being able to utilize many different facets of their market to increase profits.

Relocation Recommendations

Through the analysis of potential markets, I think the White Sox should pursue Charlotte as the primary relocation market. Its balanced strength across city-level metrics make it an ideal candidate to refresh a storied franchise. In order to capitalize on these strengths, the White Sox must plan for long-term brand building, including regional marketing and partnerships with Charlotte-based corporations. The organization can learn from past relocations by ensuring early investments in player development and fan engagement initiatives to extend fan interest beyond the first few seasons, to combat the fact that on-field performance may remain similar.

References

AAA (2025). 50 Top Travel Destination in U.S. Retrieved from https://www.aaa.com/tripcanvas/article/50-top-travel-destinations-in-the-us-CM534

Baseball Almanac (2025). *Historical MLB Relocation Attendance and Wins Data*. Retrieved from https://www.baseball-almanac.com

Fangraphs (2023-2024). *WAR data for all MLB players*. Retrieved from https://www.fangraphs.com

Major League Baseball (2023-2024). *White Sox Promotional Schedules*. Retrieved from https://www.mlb.com/whitesox

Nielsen (2025). *DMA (Designated Market Area) Rankings*. Retrieved from https://www.nielsen.com/data-center/

Numbeo (2025). *City Cost of Living Index Rankings*. Retrieved from https://www.numbeo.com/cost-of-living/rankings_current.jsp

Retrosheet (2023-2024). *MLB game-level historical data files*. Retrieved from https://www.retrosheet.org

US500 (2025). *U.S. Fortune 1000 Companies by Headquarters*. Retrieved from https://us500.com/fortune-1000-companies

U.S. Census Bureau (2025). *Population, Population Growth, and Median Household Income Data*. Retrieved from https://www.census.gov/quickfacts/fact/table/US/PST045224

Appendix

Table A1. White Sox 2024 Roster with calculated WAR Percentile and Performance Tier *This figure shows how the entire 2024 White Sox Roster compared to benchmarked WAR number by position.*

Player	Position	Salary	WAR	WAR_percentile	Performance_Tier
erick fedde	rhp-s	7500000	5.6		Top Performer
garrett crochet	lhp	800000 3000000	4.1 1.4		Top Performer Top Performer
michael kopech jared shuster	rhp Ihp	742500	1.4		Top Performer
tim hill	lhp	1800000	0.9		Top Performer
jonathon cannon	rhp-s	740000	1.9		Middle Performer
chris flexen	rhp-s	1750000	1.6		Middle Performer
luis robert jr	cf	12500000	1.4		Middle Performer
michael a taylor	cf	4000000	0.9	0.46875	Middle Performer
paul dejong	ss	1750000	0.9	0.44642857	Middle Performer
davis martin	rhp	742500	0.9	0.69387755	Middle Performer
sean burke	rhp	740000	0.9		Middle Performer
michael soroka	rhp-s	3000000	0.7		Middle Performer
matt thaiss	c	770000	0.6		Middle Performer
mike tauchman	cf	1950000	0.6		Middle Performer
justin anderson	rhp	755750	0.5		Middle Performer
enyel de los santos		1160000	0.4		Middle Performer
kevin pillar	cf	1000000	0.4		Middle Performer
prelander berroa	rhp	742500 10000000	0.4 0.3		Middle Performer Middle Performer
alex cobb travis jankowski	rhp–s cf	1700000	0.3		Middle Performer
yoan moncada	3b	24800000	0.3		Middle Performer
gus varland	rhp	800000	0.3		Middle Performer
matt foster	rhp	750000	0.3		Middle Performer
andrew vaughn	1b	3250000	0.2		Middle Performer
nicky lopez	2b	4300000	0.2		Middle Performer
tanner banks	Ihp	755050	0.2		Middle Performer
zach remillard	1b	742500	0.2		Middle Performer
chad kuhl	rhp	950000	0.2		Middle Performer
fraser ellard	lhp	740000	0.2		Middle Performer
john brebbia	rhp	4000000	0.1		Middle Performer
oscar colas	of	742500	0.1		Middle Performer
brad keller	rhp	1000000	0.1	0.34183673	Middle Performer
drew thorpe	rhp	740000	0.1	0.34183673	Middle Performer
jairo iriarte	rhp	740000	0.1	0.34183673	Middle Performer
jacob amaya	ss	740000	0	0.28571429	Middle Performer
tommy pham	of	3000000	0	0.35135135	Middle Performer
bryan ramos	3b	720000	-0.2	0.35	Middle Performer
danny mendick	3b	1300000	-0.3		Middle Performer
lenyn sosa	3b	747500	-0.4		Middle Performer
korey lee	c	741850	0.1		Low Performer
ky bush	lhp	740000	0.1		Low Performer
sammy peralta	lhp	742500	0.1		Low Performer
brooks baldwin	2b	740000	0		Low Performer
jake eder	lhp	740000	0		Low Performer
robbie grossman	of	1500000	-0.1		Low Performer
zach deloach	of	720000	-0.1		Low Performer
mike clevinger	rhp	4000000	-0.1		Low Performer
austin slater	of	4000000	-0.2		Low Performer
duke ellis	of	740000	-0.2		Low Performer
rafael ortega	cf	1500000	-0.2		Low Performer
bryan shaw dominic fletcher	rhp rf	1500000 742500	-0.2 -0.3		Low Performer Low Performer
touki toussaint	rhp	1300000	-0.3 -0.3		Low Performer
iordan leasure	rhp	740000	-0.3 -0.4		Low Performer
jake woodford	rhp	825000	-0.4		Low Performer
chuckie robinson	c	742500	-0.4 -0.5		Low Performer
braden shewmake	ss	740350	-0.6		Low Performer
steven wilson	rhp	751900	-0.6		Low Performer
deivi garcia	rhp	740550	-0.7		Low Performer
dominic leone	rhp	1500000	-0.7		Low Performer
eloy jimenez	dh-lf	13833333	-0.7		Low Performer
andrew benintendi		17100000	-0.8		Low Performer
nick nastrini	rhp	740000	-0.8		Low Performer
omar narvaez	c	7000000	-0.9		Low Performer
gavin sheets	1b	756950	-1	0.03448276	Low Performer
miguel vargas	3b	742500	-1	0.075	Low Performer
corey julks	of	742500	-1.1	0	Low Performer
martin maldonado	c	4000000	-1.3	0	Low Performer
nick senzel	3b	2000000	-1.4	0.05	Low Performer

Table A2. Optimized White Sox Roster *This table shows the output from the constrained optimization method of the White Sox Roster discussed in the Roster Restructuring section.*

Player_clean	Team.x	Position	Salary	WAR	WAR_per_million	Force_include
ketel marte	ARI	2B	13,600,000	6.8	0.5	FALSE
luis robert jr.	CHW	CF	12,500,000	1.4	0.112	TRUE
yordan alvarez	HOU	DH	10,833,333	5.4	0.49846155	FALSE
erick fedde	STL	SP	7,500,000	5.6	0.74666667	FALSE
miguel rojas	LAD	SS	5,750,000	3.4	0.59130435	FALSE
tanner scott	SD	RP	5,700,000	4	0.70175439	FALSE
daulton varsho	TOR	CF	5,650,000	5	0.88495575	FALSE
will smith	KC	C	5,625,000	3.5	0.62222222	FALSE
tanner scott	SD	RP	5,700,000	4	0.70175439	FALSE
andres gimenez	CLE	2B	5,621,429	4	0.71156284	FALSE
michael harris ii	ATL	CF	5,000,000	3.2	0.64	FALSE
kirby yates	TEX	RP	4,500,000	3.3	0.73333333	FALSE
nicky lopez	CHW	SS	4,300,000	0.2	0.04651163	TRUE
alec bohm	PHI	3B	4,000,000	3	0.75	FALSE
corbin carroll	ARI	RF	3,625,000	3.4	0.93793103	FALSE
andrew vaughn	CHW	1B	3,250,000	0.2	0.06153846	TRUE
michael soroka	CHW	SP	3,000,000	0.7	0.23333333	TRUE
jurickson profar	SD	LF	2,500,000	3.6	1.44	FALSE
jackson chourio	MIL	LF	2,250,000	3.8	1.68888889	FALSE
david peterson	NYM	SP	2,150,000	2.9	1.34883721	FALSE
zack littell	TB	SP	1,850,000	2.8	1.51351351	FALSE
chris flexen	CHW	SP	1,750,000	1.6	0.91428571	TRUE
ezequiel tovar	COL	SS	1,714,285	3.8	2.21666759	FALSE
edmundo sosa	PHI	3B	1,700,000	2.3	1.35294118	FALSE
jose iglesias	NYM	3B	1,500,000	3.1	2.06666667	FALSE
randal grichuk	ARI	RF	1,500,000	2.2	1.4666667	FALSE
ceddanne rafaela	BOS	CF	1,250,000	2.8	2.24	FALSE
gavin lux	LAD	2B	1,225,000	2.1	1.71428571	FALSE
enyel de los santos	CHW	RP	1,160,000	0.1	0.0862069	TRUE
matt foster	CHW	RP	750,000	0.3	0.4	TRUE
korey lee	CHW	C	745,000	0.1	0.13422819	TRUE
davis martin	CHW	SP	740,000	0.9	1.21621622	TRUE
drew thorpe	CHW	SP	740,000	0.1	0.13513514	TRUE
fraser ellard	CHW	RP	740,000	0.2	0.27027027	TRUE
jairo iriarte	CHW	RP	740,000	0.1	0.13513514	TRUE
jared shuster	CHW	RP	740,000	1	1.35135135	TRUE
jonathan cannon	CHW	SP	740,000	1.9	2.56756757	TRUE
justin anderson	CHW	RP	740,000	0.5	0.67567568	TRUE
prelander berroa	CHW	RP	740,000	0.4	0.54054054	TRUE
sean burke	CHW	SP	740,000	0.9	1.21621622	TRUE

Table A3. City-Level Comparison Scores for Potential Relocation MarketsStandardized score comparisons across eight city-level indicators for 13 potential MLB relocation cities.

City	Tourism Score	Cost Index Score	Fortune 1000 Score	Pop Growth Score	Income Score	Pro Team Score	DMA Score	Total Score
San Antonio, TX	0.100299	0.519291	4.811407	1.298071	-0.25823	0.640513	-0.2583	0.372001
Nashville, TN	1.124785	-0.51929	0.728871	1.130801	0.839705	-1.44115	0.29755	-0.64611
Charlotte, NC	1.357622	-0.25965	4.82127	0.751375	1.129479	-1.44115	0.38743	2.153691
Glendale, AZ	-0.83105	1.038582	0.497369	0.424262	0.387476	0.640513	1.03315	-1.15516
Oklahoma City, OK	-0.83105	0.778936	-0.27188	0.215012	0.080179	0.640513	-1.1623	-0.13705
Sacramento, CA	-0.08597	-1.55787	-0.21036	0.178846	1.604686	0.640513	0.45201	-1.15516
Orlando, FL	2.14927	-0.51929	2.268123	0.062919	0.309602	0.640513	0.64572	-0.13705
Columbus, OH	0.333137	0.259645	3.203827	-0.07529	-0.04276	0.640513	-0.3229	1.644637
Memphis, TN	-0.83105	1.298227	-1.70782	-0.08982	-1.30485	0.640513	-1.5497	0.117474
St. Paul, MN	-0.83105	-0.77894	-0.51524	-0.2093	0.648192	0.640513	0.77487	0.117474
Indianapolis, IN	0.007164	0.519291	-0.45721	-0.35849	-0.25126	-1.44115	0.28995	0.372001
Newark, NJ	-0.83105	-1.81752	-3.95663	-0.54965	-1.55475	0.640513	1.67888	-0.64611
Buffalo, NY	-0.831051	1.0385816	-0.900634	-2.77873906	-1.5874712	-1.44115	-1.6789	-9.21173

Figure A4. City-Level Comparison Rankings for Potential Relocation Markets and Current MLB Host Cities

Ranking comparisons for potential relocation cities with current MLB host cities included.

		Tourism		Fortune	Growth	Household	# of Pro	TV Market
City	Population	Rank	Cost Index	1000	Rate (%)	Income	Teams	Rank
Buffalo, NY	255284	65	68	1	-8.286	48050	2	53
Charlotte, NC	897720	18	73	13	2.646	78438	2	21
Columbus, OH	906528	40	71	11	0.086	65327	1	32
Glendale, AZ	252381	65	68	0	1.633	70139	1	11
Indianapolis, IN	880621	47	70	6	-0.791	62995	2	27
Memphis, TN	633104	65	67	5	0.041	51211	1	51
Nashville, TN	715891	23	74	2	3.821	75197	2	27
Newark, NJ	311549	65	79	2	-1.383	48416	1	1
Oklahoma City, OK	681054	65	69	4	0.985	66702	1	45
Orlando, FL	309154	1	74	4	0.514	69268	1	17
Sacramento, CA	524943	49	78	0	0.873	83753	1	20
San Antonio, TX	1496876	45	70	6	4.339	62917	1	31
St. Paul, MN	311527	65	75	5	-0.329	73055	1	15
Milwaukee, WI	563531	65	61	8	-2.5	51888	2	37
Baltimore, MD	568271	36	67	3	-3	59623	2	28
Phoenix, AZ	1673164	7	67	7	4	77041	3	11
Toronto, ON	2794356	41	65	0	0.5	84000	6	7
Los Angeles, CA	3878704	3	77	6	-0.5	80366	5	2
Chicago, IL	2721308	12	72	25	-1	75134	6	3
New York, NY	8478072	2	100	78	-3.7	79713	6	1

Figure A5. City-Level Comparison Scores for Potential Relocation Cities and Current Host Cities

Standardized score comparisons across city-level indicators for potential relocation cities and current MLB host cities.

City	Tourism Score	Cost Index Score	Fortune 1000 Score	Pop Growth Score	Income Score	Pro Team Score	DMA Score	Total Score
Buffalo, NY	1.058625	-0.5335	-0.483884	-2.797091	-1.72866	-0.18989	1.908679	-3.38144
Charlotte, NC	-0.85137	0.094148	0.2157073	0.9394504	0.883284	-0.18989	-0.06157	0.747168
Columbus, OH	0.04267	-0.15691	0.0991088	0.0644461	-0.24365	-0.73242	0.615703	-0.58908
Glendale, AZ	1.058625	-0.5335	-0.542183	0.5932085	0.169959	-0.73242	-0.67727	-1.28082
Indianapolis, IN	0.327137	-0.28244	-0.192388	-0.235311	-0.44409	-0.18989	0.307852	-1.00059
Memphis, TN	1.058625	-0.65903	-0.250687	0.0490652	-1.45696	-0.73242	1.785539	-0.62568
Nashville, TN	-0.64818	0.219678	-0.425585	1.3410638	0.60471	-0.18989	0.307852	0.832773
Newark, NJ	1.058625	0.847329	-0.425585	-0.437656	-1.6972	-0.73242	-1.29298	-3.26643
Oklahoma City, OK	1.058625	-0.40797	-0.308986	0.371723	-0.12546	-0.73242	1.416117	0.876678
Orlando, FL	-1.54222	0.219678	-0.308986	0.2107359	0.095094	-0.73242	-0.30785	-2.95376
Sacramento, CA	0.408414	0.721799	-0.542183	0.3334416	1.340125	-0.73242	-0.12314	0.93014
San Antonio, TX	0.245861	-0.28244	-0.192388	1.5181154	-0.45079	-0.73242	0.554133	0.688152
St. Paul, MN	1.058625	0.345208	-0.250687	-0.0774	0.420599	-0.73242	-0.43099	-0.25363
Milwaukee, WI	1.058625	-1.41221	-0.075789	-0.819445	-1.39877	-0.18989	0.923555	-2.36981
Baltimore, MD	-0.11988	-0.65903	-0.367285	-0.990344	-0.73392	-0.18989	0.369422	-3.14436
Phoenix, AZ	-1.29839	-0.65903	-0.134088	1.4022457	0.763208	0.352649	-0.67727	-0.13118
Toronto, ON	0.083308	-0.91009	-0.542183	0.2059507	1.361356	1.980257	-0.92355	1.955923
Los Angeles, CA	-1.46094	0.596268	-0.192388	-0.135848	1.049002	1.437721	-1.23141	1.325564
Chicago, IL	-1.0952	-0.03138	0.9152986	-0.306747	0.599295	1.980257	-1.16984	1.554691
New York, NY	-1.50158	3.483463	4.00516	-1.229603	0.992875	1.980257	-1.29298	10.08569