16. Oktober 2015

- **A 1.1** Es seien X, Y metrische Räume und S ein Dynamisches System (DS) auf X mit Zeit T. Man untersuche, ob \tilde{S} ein DS ist.
 - 1. Für $\lambda \in \mathbb{R}$ sei $\tilde{S}(t)x = S(\lambda t)x$ für alle $x \in X$ und alle t mit $\lambda t \in T$.
 - 2. Für $\Phi: Y \to X$ stetig und stetig invertierbar.

Sei
$$\tilde{S}(t) y := \Phi^{-1}(S(t) \Phi(y)) \forall t \in T, y \in Y.$$

- **A 1.2** Sei *I* ein abgeschlossenes Intervall (auch uneigentlich) und *S* ein DS auf X = I mit Zeit $[0, \infty)$. Man zeige, dass *S* die Ordnung erhält. Genauer: $x \le y \Rightarrow S(t) x \le S(t) y \ \forall t \ge 0$.
- A 1.3 Ist S ein DS, das durch Iteration der Abbildung F erzeugt wird, dann gilt:

 $O^+(x)$ ist ein k-periodischer Orbit, genau dann, wenn x ein Fixpunkt von $F^{(k)} = \underbrace{F \circ \dots \circ F}_{k-mal}$ ist.

A 1.4 Für die Zeltabbildung f(x) = 1 - |2 x - 1| mit $x \in [0, 1]$ bestimme man alle periodischen Orbits.

Hinweis: Man skizziere zunächst $f, f^{(2)}, f^{(3)}, \dots$

23. Oktober 2015

- **A 2.1** Es sei $f: [0, 1] \to [0, 1]$ zweimal stetig differenzierbar. Weiterhin sei a ein Fixpunkt von f (d.h. f(a) = a).
 - a) Gilt |f'(a)| < 1, so ist a asymptotisch stabil. D.h. $\exists \delta > 0$ mit $f^{(n)}(x) \underset{n \to \infty}{\longrightarrow} a \ \forall x \in [a \delta, a + \delta]$.
 - b) Gilt |f'(a)| > 1, so ist a instabil. D.h. $\exists \delta > 0$ so dass $\forall x \in [a \delta, a + \delta] \setminus \{a\} \exists n \in \mathbb{N} : |f^{(n)}(x) a| > \delta$.

Bemerkung: Man vergleiche die Aussage mit dem Satz über linearisierte Stabilität von gewöhnlichen Differentialgleichungen.

A 2.2 Man untersuche, ob der Vektorraum

$$C_0^0(\mathbb{R}) = \{ f \in C^0(\mathbb{R}) \text{ mit } f(x) \to 0 \text{ für } |x| \to \infty \}$$

mit der Supremumsnorm $||f||_{\infty} = \sup\{|f(x)|: x \in \mathbb{R}\}\$ vollständig ist.

- **A 2.3** Sei $X = \{ f \in C^0(\mathbb{R}), f \text{ beschränkt} \}$ versehen mit der Supremumsnorm $\| \cdot \|_{\infty}$. Man zeige:
 - a) Der Rechtsschift [S(t) f] = f(x t) erzeugt auf X kein DS.
 - b) Versieht man X mit der Norm $||f|| = \sup_{x \in \mathbb{R}} \frac{|f(x)|}{1+x^2}$ so ist der Rechtsschift ein DS. Hinweis: Die Vollständigkeit von X bzgl. ||.|| kann ohne Beweis angenommen werden.
 - c) Man zeige: $f \in X$ ist periodisch genau dann, wenn $O^+(f)$ ein periodischer Orbit ist.
- **A 2.4** Es ist $X = \{ f \in C^0([0, \infty)), f(x) \xrightarrow[x \to \infty]{} 0 \}$ bzgl. der Supremumsnorm ein vollständiger normierter Raum. Auf X definiere man den Linksschift $S_{\ell}(t)$, $t \ge 0$ durch

$$[S_{\ell}(t) f](x) = f(x+t)$$

und den Rechtsschift $S_r(t)$, $t \ge 0$ durch

$$[S_r(t) f](x) = \begin{cases} f(x-t) , x \ge t \\ f(0) , x < t \end{cases}.$$

- a) Man zeige, dass S_{ℓ} und S_r Halbflüsse sind.
- b) Man begründe, warum man sie nicht zu einem Fluß fortsetzen kann.
- c) Man untersuche das Langzeitverhalten für $t \to \infty$.

30. Oktober 2015

- **A 3.1** Bestimme den Erzeuger der Halbgruppe e^{tA} aus (3.7) mit seinem Definitionsbereich.
- **A 3.2** Seien H ein Hilbertraum, $(e_k)_{k \in \mathbb{N}}$ eine orthonormale Basis von H und $(\lambda_k)_{k \in \mathbb{N}}$ eine Folge nicht negativer Zahlen. Definiere auf H einen Operator e^{tA} durch

$$e^{tA}e_k := e^{-t\lambda_k}e_k$$
.

Weiterhin sei ein Operator A durch

$$Ae_k := -\lambda_k e_k$$

auf $D(A) := \{u \in H : Au \in H\}$ definiert. Bestimme explizit D(A) und zeige:

- a) A ist der Erzeuger von e^{tA} und $D(A) = \left\{ u \in H : \exists \lim_{t \downarrow 0} \frac{e^{tA}u u}{t} \right\}$.
- b) Ist $\lambda_k \le C$ für alle k und ein C > 0, so ist e^{tA} eine C_0 -Halbgruppe und A ist deren Erzeuger.
- c) Gilt $\lambda_k \nearrow +\infty$, so ist e^{tA} eine analytische Halbgruppe.

Hinweis: Vergleiche §3 Teil B.

A 3.3 Es seien S(t), $t \ge 0$ stetige lineare Operatoren auf den Banachraum $(X, \|\cdot\|)$ mit der Flusseigenschaft S(t) S(s) = S(t+s) für alle $t, s \ge 0$. Weiterhin gelte für alle $t \in X$:

$$\lim_{t \searrow 0} S(t) u = u.$$

Zeige:

a) Es existiert ein $\delta > 0$ und ein M > 0, so dass

$$||S(t)u|| \le M ||u||$$
 für alle $u \in X$ und alle $t \in [0, \delta]$.

b) Es existiert ein $\tilde{M} > 0$ und ein $w \in \mathbb{R}$, so dass

$$||S(t)u|| \le \tilde{M} e^{tw}$$
 für alle $t \ge 0$ und alle $u \in X$.

Insbesondere ist *S* eine stark stetige Halbgruppe. D.h. $t \mapsto S(t)u$ ist für jedes $u \in X$ stetig.

6. November 2015

A 4.1 Definition. Eine Menge A ist **positiv invariant** unter dem Fluss $(S(t))_{t \in \mathbb{T}}$ genau dann, wenn $S(t) A \subset A$ für alle $t \in \mathbb{T}$. Sie ist **strikt invariant** genau dann, wenn S(t) A = A für alle $t \in \mathbb{T}$.

Es sei S das von der linearen Differentialgleichung $\dot{x} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} x$ induzierte dynamische System auf $X = \mathbb{R}^2$ mit Zeit \mathbb{R} . Geben Sie Mengen $B \subset X$ mit den folgenden Eigenschaften an:

- 1. offen und strikt invariant mit $B \neq X$,
- 2. offen und positiv invariant, aber nicht strikt invariant,
- 3. abgeschlossen mit nichtleerem Inneren und strikt invariant,
- 4. abgeschlossen mit nichtleerem Inneren und positiv invariant, aber nicht strikt invariant.

Hint: $S(t) x = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix} x$.

A 4.2 Es sei $(\lambda_k)_{k\in\mathbb{N}}$ eine monotone Folge positiver Zahlen und S der Halbfluss auf ℓ^2 , der durch

$$S(t) \sum_{k=1}^{\infty} a_k e_k = \sum_{k=1}^{\infty} e^{-t\lambda_k} a_k e_k$$

definiert wird. Man zeige:

- 1. Gilt $\lambda_k \xrightarrow[k \to \infty]{} 0$, so ist *S* nicht beschränkt dissipativ.
- 2. Gilt $\lambda_k \ge \delta > 0 \quad \forall k \in \mathbb{N}$, so ist *S* beschränkt dissipativ.
- 3. Gilt $\lambda_k \xrightarrow[k \to \infty]{} \infty$, so ist *S* dissipativ.

Hint: Ist *B* eine beschränkt anziehende Menge aus 2., so genügt es die Kompaktheit von S(t) *B* für ein t > 0 zu zeigen.

- **A 4.3** Sei S ein Halbfluss mit Zeit \mathbb{T} . Man zeige:
 - 1. $\omega(S(t)B) = \omega(B)$ für alle $t \in \mathbb{T}$ und alle $B \subset X$.
 - 2. $M \supset B \Rightarrow \omega(M) \supset \omega(B)$.

Sei nun $B \subset X$ beschränkt absorbierend und M beschränkt. Dann gilt:

- 3. $\omega(M) \subset \omega(B)$.
- 4. $M \supset B \Rightarrow \omega(M) = \omega(B)$.

13. November 2015

- **A 5.1** Sei S ein dynamisches System, so dass für alle beschränkten Mengen M eine Zeit $t_0 > 0$ existiert mit $S(t_0)$ M kompakt. Man zeige: Ist B eine beschränkte und beschränkt absorbierende Menge, so hat S einen globalen Attraktor.
- **A 5.2** Es sei S ein dynamisches System mit globalem Attraktor A.
 - 1. Man zeige, dass es eine beschränkte und beschränkt absorbierende Menge B gibt.
 - 2. Man finde ein Beispiel, dass S im Allgemeinen nicht dissipativ ist.

Hinweis: Kugeln im unendlich dimensionalen Vektorraum sind nicht kompakt.

- **A 5.3** Sei $(S(t))_{t\geq 0}$ der Rechtsshift auf $C_0^0(\mathbb{R})$. D.h. [S(t)f](x) = f(x-t) für alle $x \in \mathbb{R}$.
 - 1. Bestimme $\omega(\{f\})$ für $f \in C_0^0(\mathbb{R})$.
 - 2. Zeige, dass S nicht dissipativ ist.
 - 3. Zeige, dass S keinen globalen Attraktor hat.
- A 5.4 (Lorenz Attraktor) Es sei folgende das System gewöhnlicher Differentialgleichungen im \mathbb{R}^3 gegeben

$$\begin{cases} x' = -\sigma x + \sigma y, \\ y' = rx - y - xz, \\ z' = xy - bz, \end{cases}$$

wobei σ , r, b > 0. Man beweise, dass das zugehörige dynamische System einen globalen Attraktor besitzt.

Hinweis: Man betrachte folgende Funktion: $x^2 + y^2 + (z - r - \sigma)^2$.

20. November 2015

- **A 6.1** Es sei S ein dynamisches System in \mathbb{R}^n mit Zeit $[0, \infty)$, so dass für alle $x_0 \in \mathbb{R}^n$ die Kurve $t \mapsto x(t) := S(t)x_0$, t > 0 differenzierbar ist mit $x'(t) = -\nabla E(x(t))$, wobei $E: \mathbb{R}^n \to [0, \infty)$ stetig differenzierbar ist.
 - 1. Es gelte $E(x) \to \infty$ für $|x| \to \infty$ und es existiere R > 0, $\delta > 0$ mit $|\nabla E(x)| > \delta$ falls |x| > R. Dann existiert ein globaler Attraktor.
 - 2. Man finde ein Beispiel mit $E(x) \to \infty$ für $|x| \to \infty$, aber ohne globalen Attraktor.
 - 3. Kann man in 1. $\delta = 0$ wählen?
- **A 6.2** Sei $(S(t))_{t \in \mathbb{R}}$ das von der Gleichung x' = f(x) erzeugte dynamische System, wobei $f \in C^1(\mathbb{R}^m, \mathbb{R}^m)$. Es sei $x_0 \in \mathbb{R}^m$ eine Ruhelage des Systems und $V \in C^1(\mathbb{R}^m, \mathbb{R})$ eine Lyapunov Funktion für das System, so dass x_0 ein Minimierer von V ist. Zeigen Sie:
 - a) V ist auf den ω -Limesmengen einzelner Punkte konstant. Das bedeutet: Ist $x \in \mathbb{R}^m$ und sind $x_1, x_2 \in \omega(\{x\})$, so ist $V(x_1) = V(x_2)$. Insbesondere gilt

$$\omega(x) \subseteq \{y \in \mathbb{R}^m : \dot{V}(y) = 0\} \text{ für alle } x \in \mathbb{R}^m.$$

- b) Es existiert eine beschränkte Umgebung U von x_0 , so dass für jedes $x \in U$ gilt: $\omega(x)$ ist kompakt und positiv invariant.
- c) Enthält die Menge $\{x \in \mathbb{R}^m \setminus \{x_0\}: \dot{V}(x) = 0\}$ keine positiv invariante Teilmenge, so ist $\omega(x) = \{x_0\}$ für alle $x \in U$. Die Ruhelage x_0 ist dann asymptotisch stabil.
- d) Verwenden Sie dies, um zu zeigen, dass das durch

$$\begin{cases} x' = -y + xz \\ y' = x + yz \\ z' = -z - (x^2 + y^2) + z^2 \end{cases}$$

auf \mathbb{R}^3 erzeugte dynamische System im Koordinatenursprung eine asymptotisch stabile Gleichgewichtslage hat. Verwenden Sie $V(x,y,z) = x^2 + y^2 + z^2$.

A 6.3 Es sei $(S(t))_{t\in\mathbb{T}}$ ein dynamisches System mit Energie $E:\mathbb{R}^2 \to \mathbb{R}$, das heißt:

$$x(t) = S(t)x_0$$

löst

$$x'(t) = -\nabla E(x(t)),$$

wobei

$$E(r\cos\varphi,r\sin\varphi) \coloneqq \begin{cases} -\mathrm{e}^{1/(r^2-1)} & \text{für } r < 1, \\ 0 & \text{für } r = 1, \\ -\mathrm{e}^{-1/(r^2-1)}\sin\left(\frac{1}{r-1}-\varphi\right) & \text{für } r > 1. \end{cases}$$

Man zeige:

- a) $\nabla E(x) = 0 \Leftrightarrow x \in S^1 \cup \{0\},$
- b) $E(x) = 0 \Leftrightarrow x \in S^1 \cup E_1 \cup E_2$,

wobei

$$S^{1} = \{(r\cos\varphi, r\sin\varphi): r=1\},$$

$$E_{1} = \{(r\cos\varphi, r\sin\varphi): r=1 + \frac{1}{k\pi + \varphi}, \ \varphi \in (0, 2\pi), k \text{ gerade}\},$$

$$E_{2} = \{(r\cos\varphi, r\sin\varphi): r=1 + \frac{1}{k\pi + \varphi}, \ \varphi \in (0, 2\pi), k \text{ ungerade}\}.$$

Man definiere

$$I = \{(s,0): 1 + \frac{1}{2\pi} \le s \le 1 + \frac{1}{\pi}\}$$

und U als das von I, E_1, E_2 berandete Gebiet, welches sich unendlich oft um S^1 windet. Setze

$$J := \{x \in I: \exists t^* > 0 \text{ mit } S(t)x \in U \text{ für } 0 < t < t^* \text{ und } S(t^*)x \in E_1\}$$

Man zeige:

- c) $J \neq \emptyset$,
- d) $y := \inf J \in I$, wobei das Infimum nur bezüglich der 1. Komponente genommen wird,
- e) $\omega(\{y\}) = S^1$.

4. Dezember 2015

A 7.1 Es sei $F: \mathbb{R}^n \to \mathbb{R}^n$ stetig, und S das von F durch Iteration erzeugte dynamische System mit S(1) = F. Zeigen Sie: Für ein R > 0 gelte $\langle x, F(x) \rangle > |F(x)|^2$, falls |x| > R, dann besitzt S einen globalen Attraktor.

Was ist die geometrische Interpretation der Voraussetzung?

Anleitung:

- 1. $\exists K > R \text{ mit } B_K(0) \supset F(B_R(0)),$
- 2. $B = \overline{B_K(0)}$ ist positiv invariant,
- 3. *B* ist beschränkt absorbierend.
- A 7.2 Man löse mit der Variation der Konstanten die Gleichungen:

$$\begin{cases} x'(t) = -x(t), & x(0) = x_0, \\ y'(t) = -y(t) + x(t)^3, & y(0) = y_0, \\ z'(t) = z(t) + y(t)^2, & z(0) = z_0. \end{cases}$$

Das dynamische System $(S(t))_{t \in \mathbb{R}}$ mit S(t) $(x_0, y_0, z_0) := (x(t), y(t), z(t))$ hat den Fixpunkt $\mathcal{O} = (0, 0, 0)$. Man berechne $W^s(\mathcal{O})$ und $W^u(\mathcal{O})$.

A 7.3 Sei $(S(t))_{t \in \mathbb{T}}$ ein dynamisches System auf einen Banachraum X. S besitze den globalen Attraktor \mathscr{A} und V sei eine starke Ljapunov-Funktion auf \mathscr{A} . Man betrachte S als dynamisches System auf \mathscr{A} und definiere

 $\mathcal{E} := \{x \in X : x \text{ ist ein Gleichgewicht von } S\}.$

Beweisen Sie:

$$\mathcal{A} = W^s(\mathcal{E})$$

und, wenn & diskret ist,

$$\mathscr{A} = \bigcup_{z \in \mathscr{E}} W^s(z).$$

11. Dezember 2015

A 8.1 Man betrachte die Gleichung

$$\partial_t u = -\partial_x^4 u - \partial_x \left(\frac{\partial_x u}{1 + |\partial_x u|^2} \right) \tag{1}$$

für *L*-periodische Lösungen, und nehme an, dass *S* ein dynamisches System in $H := L^2([0, L])$ ist, mit den Eigenschaften:

- i. $u(t,x) := [S(t)u_0](x)$ für $u_0 \in H$ ist eine in x L-periodische Funktion.
- ii. $u \in C^{\infty}((0, \infty) \times [0, L])$.
- iii. *u* erfüllt (1).

Hintergrund: Dies ist eine Modelgleichung aus dem Wachstum kristalliner Oberflächen, und u ist der Graph der Oberfläche.

Man zeige:

a) Poincaré-Ungleichung. Sei

$$H^1([0,L]) := \{ u \in L^2 : \exists u' \in L^2 \text{ mit } u(x) = u(0) + \int_0^x u'(\xi) \, d\xi \text{ für alle } x \in [0,L] \}.$$

Es existiert C > 0, so dass

$$||u||_{L^2} \le C ||u'||_{L^2}$$
 für alle $u \in H^1([0,L])$ mit $\int_0^L u = 0$.

b) *Massenerhaltung*: Für alle Trajektorien $(u(t))_{t\geq 0}$ gilt

$$\int_0^L u(t,x) dx = \int_0^L u(0,x) dx \quad \text{für alle } t > 0.$$

Im Folgendem betrachten wir das dynamische System auf

$$X = \left\{ f \in H : \int_0^L f(x) \, \mathrm{d}x = 0 \right\}.$$

- c) In X ist ein hinreichend großer Ball eine beschränkt absorbierende Menge für S.
- d) In X existiert eine kompakte beschränkt absorbierende Menge.
- e) $\partial_t \|\partial_x u\|_{L^2}^2$ ist gleichmäßig beschränkt entlang von Trajektorien.

f)

$$E(u) = \frac{1}{2} \int_0^L |\partial_x^2 u|^2 - \ln(1 + |\partial_x u|^2) dx$$

ist eine starke Ljapunov-Funktion.