

gwsnr: A Python Package for Efficient SNR Calculation of GWs

Phurailatpam Hemantakumar¹ and Otto Akseli HANNUKSELA¹

1 Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Summary

Gravitational waves (GWs), ripples in spacetime predicted by Einstein's theory of General Relativity, have revolutionized astrophysics since their first detection in 2015 (Abbott, B.P. et al. (2016a)). These waves are emitted by cataclysmic events like the merging of binary black holes (BBHs), binary neutron stars (BNSs) and BH-NS pairs, providing a unique window into the cosmos. A critical aspect of GW analysis is the Signal-to-Noise Ratio (SNR). SNR quantifies the strength of a GW signal relative to the background noise in a detector, like LIGO (The LIGO Scientific Collaboration et al. (2015), Abbott et al. (2020), Buikema et al. (2020)), Virgo (F. Acernese et al. (2014), F. Acernese et al. (2019)) or KAGRA (Akutsu et al. (2020), Aso et al. (2013)). This ratio is pivotal in confirming the detection of GWs and extracting astrophysical information from them (Abbott, B.P. et al. (2016b)). However, specific scenarios in GW research, particularly in simulations of detectable GW events (Abbott et al. (2016)) and in hierarchical Bayesian analysis (Thrane and Talbot (2019)) where selection effects are considered, demand extensive and efficient computation of SNR. This requirement presents a significant challenge, as conventional computational approaches, such as noise-weighted inner product, are typically time-consuming and impractical for such specialized and large-scale analyses (Taylor and Gerosa (2018), Gerosa et al. (2020)).

Statement of Need

The qwsnr Python package addresses the need for efficient SNR computation in GW research. It provides a flexible and user-friendly interface, allowing users to combine various detector noise models, waveform models, detector configurations, and signal parameters. qwsnr enhances SNR calculations through several key features. Firstly, it utilizes an innovative interpolation method, employing a partial-scaling approach for accurately interpolating the SNR of GWs from spin-less binary systems. Secondly, the package features a noise-weighted inner product method, similar to that in the bilby package (Ashton, Gregory et al. (2022)), but enhanced with multiprocessing capabilities. This parallel processing is crucial for handling large datasets and computationally intensive analyses. Thirdly, a trained Artificial Neural Network (ANN) model is incorporated for rapid 'probability of detection' (Pdet) estimation for BBH systems with spin precession. Lastly, qwsnr leverages the numba's Just-In-Time (njit) compiler (Lam, Pitrou, and Seibert (2022)), which optimizes performance by compiling Python code into machine code at runtime, drastically reducing execution times. This combination of advanced techniques and user-friendly design makes gwsnr a valuable tool for GW data analysis, particularly in simulating detectable compact binary mergers, determining rates of both lensed and unlensed GW events (as demonstrated by its use in the ler package; Phurailatpam et al. (2024), Ng et al. (2024)), and will help in the analysis of selection effects within hierarchical Bayesian frameworks (Thrane and Talbot (2019)).

DOI: 10.xxxxx/draft

Software

- Review ₾
- Repository ♂
- Archive ♂

Editor: Pending Editor ♂ Reviewers:

- @Pending Reviewer
- @

Submitted: 13th Dec 2024 Published:

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Mathematical Formulation

Modified FINDCHIRP Method: Partial Scaling Approach

The gwsnr package introduces the Partial Scaling method for SNR calculations in spin-less binary systems. This method, rooted in the FINDCHIRP algorithm (Allen et al. (2012)), focuses on non-spinning inspiral-merger-ringdown (IMR) waveforms, in lalsimulation library (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration (2018)), and particularly interpolates the Partial scaled SNR $(\rho_{1/2})$ based on mass parameters (M_{tot},q) .

- **Interpolation Method**: Utilizes a 2D cubic spline technique (njit-ted) for the 'partialsnr' segment.
- Equations:
 - For a simple inspiral waveform, the optimal SNR is given by,

$$\rho = F(D_l, \mathcal{M}, \iota, \psi, \alpha, \delta) \sqrt{4 \int_0^{f_{ISCO}} \frac{f^{-7/3}}{S_n(f)} df}$$

- F is defined as a function of luminosity distance (D_l) , chirp mass (\mathcal{M}) , inclination angle (ι) , polarization angles (ψ) , right ascension (α) , and declination (δ) ; refer to Eqn(D1) of Allen et al. (2012). f is the frequency, f_{ISCO} is the last stable orbit frequency and $S_n(f)$ is the detector's noise curve or power spectral density (psd).
- Then, partial scaled SNR: $ho_{1/2}=\sqrt{4\int_0^\infty rac{f^{-7/3}}{S_n(f)}df} pprox \sqrt{4\int_0^{f_{ISCO}} rac{f^{-7/3}}{S_n(f)}df}$
- For an spinless frequency-domain IMR waveform with optimal SNR equal to ρ : $\rho_{1/2}=\rho\,/\,F(D_l,\mathcal{M},\iota,\psi,\alpha,\delta)$
- $\rho_{1/2}$ is considered a function of M_{tot} and q.

Noise-Weighted Inner Product Method with Multiprocessing

This method is tailored for SNR calculations using frequency domain waveforms as defined in *lalsimulation* (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration (2018)), including spin-precessing binary systems. gwsnr also supports JAX assited inner product, where the waveform generation is facilitated through the ripple package (Edwards et al. (2024)). Key functions are optimized using jax.jit and parallelized with jax.vmap.

- **Methodology**: Combines waveform generation (multi-process), antenna pattern calculation (njit-ted), and noise-weighted inner product computation (njit-ted).
- Equations:
 - Inner product: $\langle a|b\rangle=4\int_{f_{min}}^{f_{max}}\frac{\tilde{a}(f)\tilde{b}^{*}(f)}{S_{n}(f)}df$
 - Optimal SNR: $\rho = \sqrt{F_+^2 \left\langle \tilde{h}_+ | \tilde{h}_+ \right\rangle + F_\times^2 \left\langle \tilde{h}_\times | \tilde{h}_\times \right\rangle}$, for orthogonal h_+ and h_\times .
 - $h_{+\times}$ are frequency domain waveform polarizations, and $F_{+\times}$ are antenna patterns.

These formulations highlight gwsnr's capability to efficiently process diverse GW signals, enhancing data analysis accuracy and efficiency.

Artificial Neural Network (ANN) Model for Pdet Estimation

The gwsnr package now incorporates an artificial neural network (ANN) model, developed using TensorFlow (Abadi et al. (2015)) and sklearn (Pedregosa et al. (2011)), to rapidly estimate the Pdet in binary black hole (BBH) systems using the IMRPhenomXPHM waveform

approximant. This complex IMR waveform model accounts for spin-precessing systems with subdominant harmonics. The ANN model is especially useful when precise signal-to-noise ratio (SNR) calculations are not critical, providing a quick and effective means of estimating Pdet. This value indicates detectability under Gaussian noise by determining if the SNR exceeds a certain threshold. Trained on a large dataset from the *ler* package, the ANN model uses 'partial scaled SNR' values as a primary input, reducing input dimensionality from 15 to 5 and enhancing accuracy. This approach offers a practical solution for assessing detectability under specified conditions. Other similar efforts with ANN models are detailed in Chapman-Bird et al. (2023), Gerosa et al. (2020) etc.

In addition to providing trained ANN models for specific configurations, <code>gwsnr</code> offers users the flexibility to develop and train custom models tailored to their unique requirements. This adaptability allows for optimization based on variations in detector sensitivity, gravitational wave properties, and other research-specific factors, ensuring maximum model effectiveness across different scenarios.

Acknowledgements

The author gratefully acknowledges the substantial contributions from all who supported this research. Special thanks go to my academic advisors for their invaluable guidance and unwavering support. The interactions with my research colleagues have greatly enriched this work. The Department of Physics at The Chinese University of Hong Kong is acknowledged for the Postgraduate Studentship that made this research possible. Thanks are also due to the LIGO Laboratory for the computational resources, supported by National Science Foundation Grants No. PHY-0757058 and No. PHY-0823459.

References

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, et al. 2015. "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems." https://www.tensorflow.org/.

Abbott, B. P., R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, et al. 2016. "ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914." *The Astrophysical Journal Letters* 818 (2): L22. https://doi.org/10.3847/2041-8205/818/2/122.

Abbott, B.P., R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, et al. 2016a. "Observation of Gravitational Waves from a Binary Black Hole Merger." *Physical Review Letters* 116 (6). https://doi.org/10.1103/physrevlett.116.061102.

Abbott, B.P., R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, et al. 2016b. "GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO." *Physical Review D* 93 (12). https://doi.org/10.1103/physrevd.93.122003.

Abbott, B. P., R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, C. Adams, et al. 2020. "Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA." *Living Reviews in Relativity* 23 (1). https://doi.org/10.1007/s41114-020-00026-9.

Acernese, F., M. Agathos, L. Aiello, A. Allocca, A. Amato, S. Ansoldi, S. Antier, et al. 2019. "Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light." *Phys. Rev. Lett.* 123 (December): 231108. https://doi.org/10.1103/PhysRevLett.123.231108.

Acernese, F, M Agathos, K Agatsuma, D Aisa, N Allemandou, A Allocca, J Amarni, et al. 2014. "Advanced Virgo: A Second-Generation Interferometric Gravitational Wave Detector." *Classical*

and Quantum Gravity 32 (2): 024001. https://doi.org/10.1088/0264-9381/32/2/024001.

Akutsu, T., M. Ando, K. Arai, Y. Arai, S. Araki, A. Araya, N. Aritomi, et al. 2020. "Overview of KAGRA: Detector Design and Construction History." https://arxiv.org/abs/2005.05574.

Allen, Bruce, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, and Jolien D. E. Creighton. 2012. "FINDCHIRP: An Algorithm for Detection of Gravitational Waves from Inspiraling Compact Binaries." *Physical Review D* 85 (12). https://doi.org/10.1103/physrevd. 85.122006.

Ashton, Gregory, Sylvia Biscoveanu, Neil Cornish, Isaac Dal Canto, Prayush Kumar, Duncan Meacher, Hannah Middleton, Divyansh Mistry, Rory Smith, and Tom Stevenson. 2022. "bilby: a user-friendly Bayesian inference library." *GitHub Repository*. GitHub. https://github.com/GregoryAshton/Bilby.

Aso, Yoichi, Yuta Michimura, Kentaro Somiya, Masaki Ando, Osamu Miyakawa, Takanori Sekiguchi, Daisuke Tatsumi, and Hiroaki Yamamoto. 2013. "Interferometer Design of the KAGRA Gravitational Wave Detector." *Phys. Rev. D* 88 (August): 043007. https://doi.org/10.1103/PhysRevD.88.043007.

Buikema, A., C. Cahillane, G. L. Mansell, C. D. Blair, R. Abbott, C. Adams, R. X. Adhikari, et al. 2020. "Sensitivity and Performance of the Advanced LIGO Detectors in the Third Observing Run." *Phys. Rev. D* 102 (September): 062003. https://doi.org/10.1103/PhysRevD.102.062003.

Chapman-Bird, Christian E A et al. 2023. "Rapid Determination of LISA Sensitivity to Extreme Mass Ratio Inspirals with Machine Learning." *Monthly Notices of the Royal Astronomical Society* 522 (4): 6043–54. https://doi.org/10.1093/mnras/stad1397.

Edwards, Thomas D. P., Kaze W. K. Wong, Kelvin K. H. Lam, Adam Coogan, Daniel Foreman-Mackey, Maximiliano Isi, and Aaron Zimmerman. 2024. "Differentiable and hardware-accelerated waveforms for gravitational wave data analysis." *Phys. Rev. D* 110 (6): 064028. https://doi.org/10.1103/PhysRevD.110.064028.

Gerosa, Davide et al. 2020. "Gravitational-Wave Selection Effects Using Neural-Network Classifiers." *Physical Review D* 102 (10). https://doi.org/10.1103/physrevd.102.103020.

Lam, Stan, Stéphane Pitrou, and Mark Seibert. 2022. "Numba: A High Performance Python Compiler." *Numba Documentation*. Anaconda, Inc. https://numba.pydata.org/.

LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration. 2018. "LVK Algorithm Library - LALSuite." Free software (GPL). https://doi.org/10.7935/GT1W-FZ16.

Ng, Leo C. Y., Justin Janquart, Hemantakumar Phurailatpam, Harsh Narola, Jason S. C. Poon, Chris Van Den Broeck, and Otto A. Hannuksela. 2024. "Uncovering Faint Lensed Gravitational-Wave Signals and Reprioritizing Their Follow-up Analysis Using Galaxy Lensing Forecasts with Detected Counterparts." https://arxiv.org/abs/2403.16532.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, et al. 2011. "Scikit-Learn: Machine Learning in Python." *Journal of Machine Learning Research* 12: 2825–30.

Phurailatpam, Hemantakumar, Anupreeta More, Harsh Narola, Ng Chung Yin, Justin Janquart, Chris Van Den Broeck, Otto Akseli Hannuksela, Neha Singh, and David Keitel. 2024. "Ler: LVK (LIGO-Virgo-KAGRA Collaboration) Event (Compact-Binary Mergers) Rate Calculator and Simulator." https://arxiv.org/abs/2407.07526.

Taylor, Stephen R., and Davide Gerosa. 2018. "Mining Gravitational-Wave Catalogs to Understand Binary Stellar Evolution: A New Hierarchical Bayesian Framework." *Physical Review D* 98 (8). https://doi.org/10.1103/physrevd.98.083017.

The LIGO Scientific Collaboration, J Aasi, B P Abbott, R Abbott, T Abbott, M R Abernathy, K Ackley, et al. 2015. "Advanced LIGO." *Classical and Quantum Gravity* 32 (7): 074001. https://doi.org/10.1088/0264-9381/32/7/074001.

Thrane, Eric, and Colm Talbot. 2019. "An Introduction to Bayesian Inference in Gravitational-Wave Astronomy: Parameter Estimation, Model Selection, and Hierarchical Models." *Publications of the Astronomical Society of Australia* 36. https://doi.org/10.1017/pasa.2019.2.