Distribución conjunta y Funciones de variables aleatorias

Ejercicio 1

Sea F_{XY} la distribución conjunta de las variables aleatorias X e Y. Probar que $\lim_{y\to+\infty} F_{XY}(x,y) = F_X(x)$ y que $\lim_{x\to+\infty} F_{XY}(x,y) = F_Y(y)$

Ejercicio 2

Probar que si X e Y son independientes, entonces $F_{(X,Y)}(x,y) = F_X(x)F_Y(y), \forall x,y \in \mathbb{R}$. ξ Es cierto el recíproco? ξ Es cierto el enunciado análogo para densidades?

Ejercicio 3

Se considera un grupo de 9 personas de las cuales hay 2 que son contadores y 3 que son abogados. Se eligen al azar 5 personas de ese grupo de 9. Se definen: X = Cantidad de contadores en las 5 personas elegidas e Y = Cantidad de abogados en las 5 personas elegidas

- 1. ¿Qué valores pueden tomar las variables aleatorias X e Y?
- 2. Construir la función de probabilidad (puntual) conjunta de X e Y.
- 3. A partir de la parte anterior, halle las funciones de probabilidad (puntual) marginales de X e Y.
- 4. Calcular $P\{X = Y\}$
- 5. ¿Son X e Y variables aleatorias independientes?

Ejercicio 4

Se consideran dos variables aleatorias: X, que toma los valores -1 y 1 e Y que toma los valores 2, 4 y 6 con las probabilidades conjuntas dadas por la siguiente tabla:

X/Y	2	4	6
-1	0,2	0,25	0,15
1	0,1	a	0,25

- 1. Hallar a
- 2. Calcular $P\{X < 1, Y = 4\}$
- 3. Hallar las funciones de probabilidad de X + 2Y, X + Y, y |X Y|.

Ejercicio 5

Se consideran dos variables aleatorias X e Y, que toman los valores 1, 2 y 3 cada una con las probabilidades conjuntas dadas en la siguiente tabla:

X/Y	1	2	3
1	0,02	0,08	c
2	a	0,08	0,1
3	0,06	b	0,3

- 1. Hallar a, b y c sabiendo que X e Y son independientes.
- 2. Calcular las funciones de probabilidad marginales.

Ejercicio 6

Se consideran dos variables aleatorias: X, que toma los valores -1 y 1, e Y que toma los valores 0 , 1 y 2 con las probabilidades conjuntas dadas en la siguiente tabla:

X/Y	0	1	2
-1	0,4	0,2	0,1
2	0,05	a	0,15

- 1. Hallar a.
- 2. Hallar las funciones de probabilidad marginales de X e Y.
- 3. Hallar la función de probabilidad conjunta de U = X + Y y V = X Y
- 4. Hallar las funciones de probabilidad marginales de U y V
- 5. ¿Son X e Y independientes?
- 6. ¿Son $U \in V$ independientes?

Ejercicio 7

1. Sean X e Y dos variables aleatorias cuya distribución conjunta es

$$F_{XY}(x,y) = \begin{cases} 1 & \text{si } x \ge 1, \ y \ge 1 \\ y & \text{si } y \in [0,1), \ x \ge y \\ x & \text{si } x \in [0,1), \ y \ge x \\ 0 & \text{en los otros casos} \end{cases}$$

Hallar la distribuciones marginales F_X y F_Y .

2. Sean X e Y dos variables aleatorias cuya distribución conjunta es

$$F_{XY}(x,y) = \begin{cases} 1 & \text{si } x \ge 1, \quad y \ge 1 \\ y & \text{si } x \ge 1, \quad y \in [0,1) \\ x & \text{si } x \in [0,1), \quad y \ge 1 \\ xy & \text{si } x \in [0,1), \quad y \in [0,1) \\ 0 & \text{en los otros casos} \end{cases}$$

Hallar la distribución (marginal) F_X y la distribución (marginal) F_Y .

3. Si X e Y son variables aleatorias, ¿las distribuciones marginales F_X y F_Y determinan la distribución conjunta F_{XY} ? ¿En qué caso F_X y F_Y determinan la distribución conjunta?

Ejercicio 8

Se considera la siguiente función $p_{XY}: \mathbb{R}^2 \to \mathbb{R}$

$$p_{XY}\left(x,y\right) = \left\{ \begin{array}{ll} k\left(2x+y\right) & \text{si } x \in \left\{0,1,2,3\right\}, \quad y \in R_Y = \left\{1,2,3\right\} \\ 0 & \text{en los otros casos} \end{array} \right.$$

- 1. Hallar k para que p_{XY} sea función de probabilidad puntual conjunta.
- 2. Sean X e Y variables aleatorias discretas con $R_X = \{0, 1, 2, 3\}$ y $R_Y = \{1, 2, 3\}$, cuya función de probabilidad puntual conjunta es p_{XY} . Hallar las funciones de probabilidad puntuales (marginales) p_X y p_Y .

2

- 3. ξX e Y son independientes? Justifique la respuesta.
- 4. Calcular $P(1 \le X < 3, 2 < Y \le 3)$ y P(X + Y < 3).

Ejercicio 9

Se considera la siguiente función $f_{XY}: \mathbb{R}^2 \to \mathbb{R}$

$$f_{XY}(x,y) = \begin{cases} kxy & \text{si } x \in (0,4) \quad y \in (1,5) \\ 0 & \text{en los otros casos} \end{cases}$$

- 1. Hallar k para que f_{XY} sea la función de densidad conjunta de dos variables aleatorias X, Y absolutamente continuas.
- 2. Hallar las densidades (marginales) f_X y f_Y .
- 3. Hallar la distribución conjunta F_{XY} y la distribuciones (marginales) F_X y F_Y .
- 4. $iX \in Y$ son independientes? Justifique la respuesta.
- 5. Calcular $P\{X \ge 3, Y \le 2\}$ y $P\{X + Y > 4\}$.

Ejercicio 10

Hallar la distribución F_Y y la densidad f_Y de la variable aleatoria

- 1. $Y = \log(X)$ donde X es una variable aleatoria con densidad $f_X(x) = \begin{cases} \frac{1}{x^2} & x \in (1, +\infty) \\ 0 & \text{en los otros casos} \end{cases}$
- 2. $Y = X^2$ donde X es una variable aleatoria con densidad

$$f_X(x) = \begin{cases} 2xe^{-x^2} & x \in (0, +\infty) \\ 0 & \text{en los otros casos} \end{cases}$$

3. Y = 3X + 1 donde $X \sim U[0, 1]$

Ejercicio 11

Sean X_1, X_2, \ldots, X_n iid con distribución F.

- 1. Calcular la función de distribución de $X_n^* = \max\{X_1, X_2, \dots, X_n\}$.
- 2. Calcular la función de distribución de $X_1^* = \min\{X_1, X_2, \dots, X_n\}$.

Ejercicio 12

- 1. Sean X e Y dos variables aleatorias independientes con distribución exponencial de parámetros μ y λ respectivamente. Hallar la distribución de la variable aleatoria $Z = \min\{X,Y\}$.
- 2. Para las variables de la parte anterior. Calcular $P\{X < Y\}$ en función de μ y λ .
- 3. Un sistema electrónico con dos componentes A y B puede ser afectado por tres tipos de shock eléctrico.
 - a) Uno que sólo destruye a A y que se produce (partiendo de un instante inicial) en un tiempo X_1 que tiene distribución exponencial de parámetro λ_1 .
 - b) Uno que sólo destruye a B y que se produce (partiendo de un instante inicial) en un tiempo X_2 que tiene distribución exponencial de parámetro λ_2 .
 - c) Uno que destruye a ambos componentes y que se produce (partiendo de un instante inicial) en un tiempo X_3 que tiene distribución exponencial de parámetro λ_3 .

Sean T_1 y T_2 los tiempos de vida de los componentes A y B respectivamente. Asumiendo que las variables X_1 , X_2 y X_3 son independientes; hallar en función de λ_1 , λ_2 y λ_3 la probabilidad $P\{T_1 = T_2\}$.

Ejercicio 13

Sean X_1, \ldots, X_k variables variables aleatorias geométricas independientes de parámetro p.

- 1. Hallar la función de probabilidad de $Y_2 = X_1 + X_2$. Reconocer un modelo discreto de probabilidad.
- 2. Generalizar, reconociendo el modelo de probabilidad de la variable suma $Y_k = X_1 + \ldots + X_k$.

Ejercicio 14

- 1. Sean $X_1, \ldots, X_n \sim Ber(p)$ variables aleatorias independientes. Mostrar que $Y = X_1 + \ldots + X_n$ Bin(n, p). Sugerencia: probar por inducción.
- 2. Sean $X \sim Bin(m, p)$ e $Y \sim Bin(n, p)$ dos variables aleatorias independientes. Hallar la función de probabilidad de X + Y.

Ejercicio 15

Suponga que usted posee diez monedas justas y su compañero once. Le propone la siguiente apuesta: ambos arrojan las monedas. Si él obtiene más veces cara, usted paga el almuerzo. En caso contrario, paga el almuerzo su compañero. Asumiendo que el costo de su almuerzo y su compañero es el mismo, ¿está dispuesto a apostar?

Ejercicio 16

(*) Sean $\{X_n\}_{n\geq 1} iid \sim Ber(0,4)$, y $N \sim P(8)$ variable aleatoria independiente de toda la sucesión anterior. Si $S = X_1 + \ldots + X_N$, hallar P(S = 3).

Ejercicio 17

Sean X e Y dos variables aleatorias independientes con distribución exponencial de parámetro λ .

- 1. Hallar la densidad y la función de distribución de X + Y.
- 2. Probar que $\frac{X}{X+Y}$ tiene distribución uniforme en el intervalo [0,1].

Ejercicio 18

Se considera un rectángulo cuyos lados son aleatorios con distribuciones uniformes en [0, a] y en [0, b]. Hallar la distribución del perímetro del rectángulo.

Ejercicio 19

Se desea diseñar un sistema de comunicación. El transmisor envía un símbolo "1" con probabilidad p=0,5 o "0" con probabilidad 1-p=0,5. El canal de transmisión introduce ruido aditivo $N\sim N(0,1)$ independiente de X. El receptor recibe entonces la variable Y=X+N, donde X representa el símbolo transmitido, y decide que se transmitió un símbolo "1" si Y>c, o un símbolo "0" en caso contrario. Sea E(c) la probabilidad de error en la decisión. Hallar c_{min} que minimiza E(c), y $E(c_{min})$. Sugerencia: hay dos errores distintos. Calcular la probabilidad de decidir 1 habiéndose transmitido X=0, y la de decidir 0 cuando X=1.