Closure and interior of a Society of a topological square X:

Interior mathe interior of A is defined as the union of all open sets contained in A.

Closure is defined as the intersection of all sets containing A.

Theorem 17.4. Let Y be a subspace of X, let A be a subset of Y, let \bar{A} denote the closure of A in X. Then the closure of A in Y equals $\bar{A} \cap Y$.

Notice that the def. of closure does not nicke it casing to find do sures on a Set, so here is how to find them using a basis:

theorem let A be a subset of (X, T):

- 1) then $x \in \overline{A}$ (closure of $+ \ln x$) iif every open set U with $x \in U$ also has $U \cap A \neq \emptyset$.
- ② sposing T_{χ} is generated by a basis then $\chi \in \overline{A}$ iif every $G \in \overline{B}$ s.t. $\chi \in \overline{B}$ also has $G \cap A \neq \emptyset$.

Proof: to make the groof more easy on (1) let's (onsider the contra positive of (1):

P(=) Q = TP(=) TQ

Which is:

X É Ā iif exists an open set XEU with Unt = \$.

