SOUTH CHINA UNIVERSITY OF TECHNOLOGY

SCUT_gugugu

TEMPLATE

0 error(s), 0 warning(s)

CONTENTS 1

Contents

1	Gra	aph Theory
	1.1	Shortest Path
		1.1.1 Dijkstra
		1.1.2 SPFA
	1.2	Johnson
	1.3	Network Flow
		1.3.1 ISAP
		1.3.2 HLPP
		1.3.3 Dinic
		1.3.4 MCMF
	1.4	Tree Related
		1.4.1 Union Set
		1.4.2 Kruskal
		1.4.3 Prim
		1.4.4 Tree Divide and Conquer
	1.5	LCA
		1.5.1 Tree Decomposition LCA
		1.5.2 Tarjan LCA
	1.6	Tarjan
		1.6.1 SCC
		1.6.2 BCC
	1.7	Cactus
		1.7.1 Circle-Square Tree
2	D-4	Stt
2		Ea Structures 20 Basic Structures 20
	2.1	
		2.1.1 RMQ
	0.0	2.1.2 Divide Blocks
	2.2	Stack Structures 21 2.2.1 Cartesian Tree 21
	0.0	
	2.3	Sequence Structures
		2.3.1 Segment Tree
		2.3.2 LiChao Tree
	0.4	2.3.3 Splay Tree
	2.4	Persistent Data Structures
		2.4.1 Chairman Tree
		2.4.2 Persistent Trie
	2.5	Tree Structures
		2.5.1 Tree Decomposition
		2.5.2 Link-Cut Tree

CONTENTS 2

3	\mathbf{Stri}	\mathbf{ing}		32					
	3.1	Basics		32					
		3.1.1	Hash	32					
		3.1.2	KMP && exKMP	32					
		3.1.3	AC Automaton	33					
		3.1.4	Minimum String	35					
	3.2	Suffix	Related	35					
		3.2.1	Suffix Array	35					
		3.2.2	Suffix Automaton	36					
	3.3	Palind	rome Related	38					
	0.0	3.3.1	Manacher	38					
		3.3.2	Palindromic Automaton	39					
		3.3.2		30					
4	Mat	h		40					
	4.1	Algebr	ra	40					
		4.1.1	FFT	40					
		4.1.2	NTT	41					
		4.1.3	MTT	42					
		4.1.4	FWT	43					
		4.1.5	FFT Divide and Conquer	44					
		4.1.6	Linear Basis	45					
		4.1.7	Lagrange Polynomial	46					
		4.1.8	BM Alogrithm	47					
	4.2		Theory	49					
		4.2.1	Inverse	49					
		4.2.2	Lucas	49					
		4.2.3	CRT && exCRT	50					
		4.2.4	BSGS	51					
		4.2.5	Miller-Rabin && PollardRho	52					
		4.2.6	arphi(n)	$\frac{52}{53}$					
		4.2.7	Euler Sieve \dots	53					
		4.2.8	DuJiao Sieve	53					
		4.2.9							
			Min_25 Sieve	55					
		4.2.10	Möbius Inversion	56					
5	Geo	\mathbf{metry}		58					
	5.1 Commonly Definition and Functions								
		5.1.1	Const and Functions	58					
		5.1.2	Point Definition	58					
		5.1.3	Line Definition	58					
		5.1.4	Get Area	59					
		5.1.4 $5.1.5$	Get Circumference	59					
		5.1.6	Anticlockwise Sort	60					
	5.2			60					
	5.2 Convex Hull								

CONTENTS 3

		5.2.1 Get Convex Hull	i 0
		5.2.2 Point in Convex Hull	60
	5.3	Minkowski Sum	31
	5.4	Rotating Calipers	31
		5.4.1 The Diameter of Convex Hull	31
		5.4.2 The Min Distance Bewteen two Convex Hull	31
	5.5	Half Plane Intersection	32
	5.6	Min Circle Cover	52
	5.7	Circle Union Area	3
	5.8	Simpson Integrate	5
6	Con	nclusion 6	6
	6.1	Game Theory	6
		6.1.1 Nim's Game / Anti-Nim's Game	6
		6.1.2 Bash's Game	66
		6.1.3 Wythoff's Game	6
		6.1.4 Fibonacci's Game / Zeckendorf's theory	67
	6.2	Math Theory	57
		6.2.1 Euler's Theorem	67
		6.2.2 Möbius Inversion	67
		6.2.3 Sieve Tips	8
	6.3	Convolution	8
		6.3.1 FWT	8
	6.4	Geometry	39
		6.4.1 The Number of Ingeter Point on a Circle	59
7	Oth	ers 7	0
	7.1	Offline Algorithm	70
		7.1.1 CDQ Divide and Conquer	0
		7.1.2 Mo's Algorithm	71
		7.1.3 Mo's Algorithm On Tree	71
	7.2	Randomized Algorithm	73
		7.2.1 Simulated Annealing	73
	7.3	Other Method	74
			74
		7.3.2 Enumerate $\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$	74
		7.3.3 Find Primitive Root Modulo N	74
8	San	nples 7	5
	8.1	vimrc	75
	8.2	Check	75
	8.3	FastIO	75
	8.4	Java BigNum	6
	8.5	ph ds	78

1 Graph Theory

1.1 Shortest Path

1.1.1 Dijkstra

```
1 typedef long long LL;
const int MAXN = ;
3 const int MAXM = ;
4 const LL DINF = ;
5 typedef pair<LL, int> P;
6 struct Edge {
7
       int to, nxt;
8
       LL w;
9
   }e[MAXM];
int head[MAXN], ecnt;
11 LL d[MAXN];
12 priority_queue<P, vector<P>, greater<P> > q;
   inline void addEdge(int x, int y, LL w) {
13
14
       e[++ecnt] = (Edge) \{y, head[x], w\}; head[x] = ecnt;
15
   void dijkstra(int st, int n) {
16
17
        for(int i = 0; i <= n; i++) d[i] = DINF;</pre>
18
       d[st] = 0;
       q.push(make_pair(0, st));
19
20
       while(!q.empty()) {
            P x = q.top(); q.pop();
21
            int u = x.second;
22
            if(d[u] != x.first) continue;
23
            for(int i = head[u], v; i; i = e[i].nxt) {
24
25
                v = e[i].to;
26
                if(d[v] > d[u] + e[i].w) {
27
                    d[v] = d[u] + e[i].w;
28
                    q.push(make_pair(d[v], v));
29
                }
30
           }
31
       }
32
```

1.1.2 SPFA

```
1
   struct Edge {
2
       int to, nxt;
        LL w;
3
   }e[MAXE];
4
   int head[MAXN], ecnt;
   LL d[MAXN];
6
   bool exist[MAXN];
7
   queue<int> q;
8
   inline void addEdge(int x, int y, LL w) {
9
       e[++ecnt] = (Edge) \{y, head[x], w\}; head[x] = ecnt;
10
11
12
   void SPFA(int st) {
13
       memset(d,0x3f,sizeof(d));
14
        d[st] = 0;
        q.push(st);
15
16
        exist[st] = 1;
17
       while(!q.empty()) {
```

```
18
            int u = q.front(); q.pop();
            exist[u] = 0;
19
20
            for(int i = head[u], v; i; i = e[i].nxt) {
                 v = e[i].to;
21
                 if(d[v] > d[u] + e[i].w) {
22
23
                     d[v] = d[u] + e[i].w;
                     //pre[v] = u;
24
                     if(!exist[v]) {
25
26
                         q.push(v);
27
                         exist[v] = 1;
                     }
28
                 }
29
30
            }
31
        }
32
   }
```

1.2 Johnson

```
1
  void johnson() {
2
       //建图中, Edge需要from, w1, w2, 去掉w;
       spfa(1);
3
4
       for(int u = 1; u <= n; u++)</pre>
           for(int i = head[u]; i; i = e[i].nxt)
5
               e[i].w2 = e[i].w1 + d[e[i].from] - d[e[i].to];
6
7
       dijkstra(s,n);
  }
8
```

1.3 Network Flow

1.3.1 ISAP

```
1
    namespace NWF {
 2
         struct Edge{
 3
              int to, nxt;LL f;
         e[MAXM << 1];
 4
         int S, T, tot;
 5
         int ecnt, head[MAXN], cur[MAXN], pre[MAXN], num[MAXN], dis[MAXN];
 6
         queue<int> q;
 7
         void init(int _S, int _T, int _tot){
    ecnt = 1; S = _S; T = _T; tot = _tot;
    memset(num, 0, (tot + 1) * sizeof(int));
    memset(head, 0, (tot + 1) * sizeof(int));
 8
 9
10
11
12
         inline void addEdge(int u, int v, LL f) {
13
              e[++ecnt] = (Edge) \{v, head[u], f\}; head[u] = ecnt;
14
              e[++ecnt] = (Edge) \{u, head[v], 0\}; head[v] = ecnt;
15
16
         void bfs() {
17
              memset(dis, 0, (tot + 1) * sizeof(int));
18
              q.push(T);
19
20
              dis[T] = 1;
              while(!q.empty()) {
21
                   int u = q.front(), v; q.pop();
22
                   num[dis[u]]++;
23
                   for(int i = cur[u] = head[u]; i; i = e[i].nxt) {
24
                        if(!dis[v = e[i].to]) {
25
26
                             dis[v] = dis[u] + 1;
```

```
q.push(v);
27
28
                      }
29
                  }
             }
30
31
32
         LL augment() {
33
             LL flow = INF;
             for(int i = S; i != T; i = e[cur[i]].to)
34
             flow = min(flow, e[cur[i]].f);

for(int i = S; i != T; i = e[cur[i]].to) {

    e[cur[i]].f -= flow;
35
36
37
                  e[cur[i] ^ 1].f += flow;
38
39
40
             return flow;
41
         LL isap() {
42
             bfs();
43
44
             int u = S, v;
             LL flow = 0;
45
             while(dis[S] <= tot) {</pre>
46
                  if(u == T) {
47
                      flow += augment();
48
49
                       u = S;
50
                  bool fg = 0;
51
52
                  for(int i = cur[u]; i; i = e[i].nxt) {
53
                       if(e[i].f && dis[u] > dis[v = e[i].to]) {
54
                           pre[v] = u;
55
                           cur[u] = i;
56
                           u = v;
                           fg = 1;
57
                           break;
58
                      }
59
60
                  if(fg) continue;
61
                  if(!--num[dis[u]]) break;
62
                  int maxDis = tot;
63
                  for(int i = head[u]; i; i = e[i].nxt) {
64
65
                       if(e[i].f \&\& maxDis > dis[v = e[i].to]) {
66
                           maxDis = dis[v];
67
                           cur[u] = i;
68
                       }
69
                  num[dis[u] = maxDis + 1]++;
70
                  if(u != S) u = pre[u];
71
72
73
             return flow;
74
        }
75
    }
```

1.3.2 HLPP

```
namespace NWF{
struct Edge{
    int to,nxt;LL f;
}e[MAXM << 1];
int S, T, tot;
int ecnt, head[MAXN], dis[MAXN], num[MAXN];
LL sumf[MAXN];
queue<int> q;
```

```
list<int> dep[MAXN];
 9
10
         void init(int _S,int _T,int _tot){
              ecnt = 1;S = \_S;T = \_T;tot = \_tot;
11
             memset(num, 0, (tot + 1) * sizeof(int));
memset(head, 0, (tot + 1) * sizeof(int));
memset(sumf, 0, (tot + 1) * sizeof(LL));
12
13
14
15
         void addEdge(int u,int v,LL f){
16
             e[++ecnt] = (Edge) \{v, head[u], f\}; head[u] = ecnt; e[++ecnt] = (Edge) \{u, head[v], 0\}; head[v] = ecnt;
17
18
19
         void bfs(){
20
21
             memset(dis, 0, (tot + 1) * sizeof(int));
             q.push(T); dis[T] = 1;
22
23
             while(!q.empty()){
24
                  int u=q.front(), v; q.pop();
                  for(int i = head[u]; i; i = e[i].nxt)
25
26
                  if(!dis[v = e[i].to]){
27
                       dis[v] = dis[u] + 1;
28
                       q.push(v);
                  }
29
             }
30
31
         LL hlpp(){
32
33
             bfs();
34
             dis[S] = tot + 1;
35
              for(int i = 1;i <= tot; ++i)num[dis[i]]++;</pre>
              for(int i = tot + 1; ~i; --i)dep[i].clear();
int maxd = dis[S];LL f;
36
37
              dep[maxd].push_back(S);sumf[S] = INF;
38
              for(;;){
39
                  while(maxd && dep[maxd].empty())maxd--;
40
                  if(!maxd)break;
41
                  int u = dep[maxd].back(), v;dep[maxd].pop_back();
42
                  int minDis = tot + 1;
43
                  for(int i = head[u]; i;i = e[i].nxt)
44
                  if(e[i].f){
45
                       if(dis[u] > dis[v = e[i].to]){
46
                            f = min(sumf[u], e[i].f);
47
48
                            e[i].f -= f; e[i^1].f += f;
49
                            if(sumf[u] != INF) sumf[u] -= f;
                            if(sumf[v] != INF) sumf[v] += f;
50
                            if(v!=S \&\& v!=T \&\& sumf[v] == f){
51
                                 maxd = max(maxd, dis[v]);
52
                                 dep[dis[v]].push_back(v);
53
54
                            if(!sumf[u])break;
55
                       }else minDis=min(minDis, dis[v] + 1);
56
57
                  if(sumf[u]){
58
                       if(!--num[dis[u]]){
59
                            for(int i = dis[u];i <= maxd;++i){</pre>
60
                                 while(!dep[i].empty()){
61
                                      --num[i];
62
                                      dis[dep[i].back()] = tot + 1;
63
                                      dep[i].pop_back();
64
65
66
                            maxd = dis[u] - 1; dis[u] = tot + 1;
67
                       }else{
68
                            dis[u] = minDis;
69
```

```
if(minDis > tot)continue;
70
                          num[minDis]++;
71
                          maxd = max(maxd, minDis);
72
73
                          dep[minDis].push_back(u);
74
                     }
75
                 }
76
            }
77
            return sumf[T];
78
   }
79
```

1.3.3 Dinic

```
namespace NWF {
1
2
         struct Edge {
3
             int to, nxt;LL f;
        e[MAXM << 1];
4
5
        int S, T, tot;
6
         int ecnt, head[MAXN], cur[MAXN], dis[MAXN];
7
         queue<int> q;
8
        void init(int _S, int _T, int _tot){
             ecnt = 1; S = \_S; T = \_T; tot = _tot;
9
             memset(head, 0, (tot + 1) * sizeof(int));
10
11
        void addEdge(int u, int v, LL f) {
    e[++ecnt] = (Edge) {v, head[u], f}; head[u] = ecnt;
    e[++ecnt] = (Edge) {u, head[v], 0}; head[v] = ecnt;
12
13
14
15
16
        bool bfs() {
             memset(dis, 0, (tot + 1) * sizeof(int));
17
             q.push(S); dis[S] = 1;
18
19
             while (!q.empty()) {
                  int u = q.front(), v; q.pop();
20
                  for (int i = cur[u] = head[u]; i ; i = e[i].nxt) {
21
                      if (e[i].f && !dis[v = e[i].to]) {
22
23
                           q.push(v);
                           dis[v] = dis[u] + 1;
24
                      }
25
26
                  }
27
28
             return dis[T];
29
         LL dfs(int u, LL maxf) {
30
             if (u == T) return maxf;
31
             LL sumf = maxf;
32
33
             for (int &i = cur[u]; i; i = e[i].nxt) {
                  if (e[i].f && dis[e[i].to] > dis[u]) {
34
                      LL tmpf = dfs(e[i].to, min(sumf, e[i].f));
35
                      e[i].f -= tmpf; e[i \land 1].f += tmpf;
36
37
                      sumf -= tmpf;
                      if (!sumf) return maxf;
38
39
                  }
             }
40
             return maxf - sumf;
41
42
        LL dinic() {
43
             LL ret = 0;
44
45
             while (bfs()) ret += dfs(S, INF);
46
             return ret;
47
        }
```

48 }

1.3.4 MCMF

```
namespace NWF{
1
2
        struct Edge {
            int to, nxt;LL f, c;
3
4
        e[MAXM << 1];
        int S, T, tot;
int ecnt, head[MAXN], cur[MAXN];LL dis[MAXN];
5
6
7
        bool exist[MAXN];
8
        queue<int> q;
        void init(int _S, int _T, int _tot){
9
            ecnt = 1; S = \_S; T = \_T; tot = _tot;
10
            memset(head, 0, (tot + 1) * sizeof(int));
11
12
13
        void addEdge(int u, int v, LL f, LL c) {
            e[++ecnt] = (Edge) \{v, head[u], f, c\}; head[u] = ecnt;
14
            e[++ecnt] = (Edge) \{u, head[v], 0, -c\}; head[v] = ecnt;
15
16
17
        bool spfa() {
18
            for(int i = 0; i <= tot; ++i){</pre>
19
                 dis[i] = INF; exist[i] = cur[i] = 0;
20
            q.push(S);dis[S] = 0;exist[S] = 1;
21
22
            while(!q.empty()) {
23
                 int u = q.front(), v; q.pop();exist[u] = 0;
                 for(int i = head[u]; i; i = e[i].nxt) {
24
25
                     if(e[i].f && dis[v = e[i].to] > dis[u] + e[i].c) {
26
                         dis[v] = dis[u] + e[i].c;
27
                         cur[v] = i;
                         if(!exist[v]) {
28
29
                              q.push(v);
                              exist[v] = 1;
30
                         }
31
                     }
32
                }
33
34
            return dis[T] != INF;
35
36
37
        LL mcmf() {
38
            LL cost = 0;
39
            while(spfa()) {
                LL flow = INF;
40
                 for(int i = T; i != S; i = e[cur[i] ^ 1].to)
41
                     flow = min(flow, e[cur[i]].f);
42
                 for(int i = T; i != S; i = e[cur[i] ^ 1].to) {
43
                     e[cur[i]].f -= flow;
44
                     e[cur[i] ^ 1].f += flow;
45
46
47
                 cost += flow * dis[T];
48
49
            return cost;
        }
50
   }
51
```

1.4 Tree Related

1.4.1 Union Set

```
int fa[MAXN], rnk[MAXN];
   int Find(int x) { return x == fa[x] ? x : fa[x] = Find(fa[x]); }
   bool same(int x, int y) { return Find(x) == Find(y); }
4
   void unite(int x, int y)
5
   {
       x = Find(x);
6
       y = Find(y);
7
       if(x == y) return;
8
9
        if(rnk[x] < rnk[y]) {
10
            fa[x] = y;
11
       else {
12
            fa[y] = x;
13
14
            if(rnk[x] == rnk[y]) rnk[x]++;
       }
15
   }
16
```

1.4.2 Kruskal

```
namespace MST{
1
2
        struct Edge{
3
            int u,v; LL w;
            bool operator < (const Edge& x) const { return w < x.w; }</pre>
4
5
        }e[MAXM];
        int ecnt, fa[MAXN];
6
        void addEdge(int u, int v, LL w) {
7
            e[++ecnt] = (Edge)\{v, u, w\}; headp[u] = ecnt;
8
9
        int Find(int x) { return x == fa[x] ? x : fa[x] = Find(fa[x]); }
10
        LL kruskal(int n) {
11
12
            sort(e + 1, e + ecnt + 1);
            for(int i = 1; i <= n; i++) fa[i] = i;</pre>
13
            LL sum = 0;
14
            for (int i = 1; i <= ecnt; i++){</pre>
15
16
                 int fu = Find(e[i].u), fv = Find(e[i].v);
                 if(fu != fv){
17
                     fa[fu] = fv;
18
19
                     sum += e[i].w;
                 }
20
            }
21
22
            return sum;
        }
23
   }
24
```

1.4.3 Prim

```
namespace MST {
struct Edge{
   int to,nxt; LL w;
}e[MAXM];
int ecnt, head[MAXN], vis[MAXN]; // pre[MAXN];
LL dis[MAXN];
void addEdge(int u, int v, LL w){
```

```
e[++ecnt] = (Edge)\{v, head[u], w\}; head[u] = ecnt;
8
9
            e[++ecnt] = (Edge)\{u, head[v], w\}; head[v] = ecnt;
10
        LL Prim(int n){
11
            for (int i = 1; i \le n; i++){
12
                 //pre[i] = 0;
13
                 vis[i] = 0;
14
15
                 dis[i] = INF;
16
            vis[1] = 1;
17
            LL sum = 0;
18
            for (int i = head[1]; i; i = e[i].nxt)
19
20
                 dis[e[i].to] = min(dis[e[i].to],e[i].w);
            for (int j = 1; j < n; j++){
21
                 int u; LL minDis = INF;
22
                 for (int i = 1; i <= n; ++i)
23
                     if (!vis[i] && dis[i] < minDis){</pre>
24
25
                         minDis = dis[i];
26
                         u = i;
27
                 if (minDis == INF) return -1;
28
                 vis[u] = 1;
29
                 sum += minDis;
30
                 for (int i = head[u], v; i; i = e[i].nxt)
31
32
                 if (!vis[v = e[i].to] && e[i].w < dis[v]){</pre>
33
                     //pre[u] = v;
34
                     dis[v] = e[i].w;
35
                 }
36
37
            return sum;
        }
38
39
```

1.4.4 Tree Divide and Conquer

```
struct Edge {
1
        int to, nxt, w;
2
   }e[MAXM];
   int head[MAXN], ecnt;
4
   int sz[MAXN];
   int d[MAXN], t[5], ans;
   bool vis[MAXN];
7
   inline void add_edge(int u, int v, int w) {
8
9
        e[++ecnt] = (Edge) \{v, head[u], w\}; head[u] = ecnt;
10
        e[++ecnt] = (Edge) \{u, head[v], w\}; head[v] = ecnt;
11
   int getsz(int x, int fa) {
12
        sz[x] = 1;
13
        for(int i = head[x]; i; i = e[i].nxt) {
14
            int y = e[i].to;
15
            if(vis[y] || y == fa) continue;
16
17
            sz[x] += getsz(y, x);
        }
18
        return sz[x];
19
   }
20
   int getrt(int x) {
21
22
        int tot = getsz(x, 0) >> 1;
23
       while(1) {
24
            int u = -1;
25
            for(int i = head[x]; i; i = e[i].nxt) {
```

```
26
                 int y = e[i].to;
                 if(vis[y] || sz[y] > sz[x]) continue;
27
28
                 if(u == -1 \mid | sz[y] > sz[u]) u = y;
29
            if(\sim u \&\& sz[u] > tot) x = u;
30
31
            else break;
32
33
        return x;
34
    void getdep(int x, int fa) {
35
36
        t[d[x]]++;
        for(int i = head[x]; i; i = e[i].nxt) {
37
            int y = e[i].to;
38
            if(vis[y] || y == fa) continue;
39
            d[y] = (d[x] + e[i].w) % 3;
40
            getdep(y, x);
41
        }
42
43
   }
   int cal(int x, int v) {
44
        t[0] = t[1] = t[2] = 0;
45
        d[x] = v \% 3;
46
        getdep(x, 0);
47
        return t[0] * t[0] + t[1] * t[2] * 2;
48
49
50
   void solve(int x) {
51
        vis[x] = 1;
52
        ans += cal(x, 0);
53
        for(int i = head[x]; i; i = e[i].nxt) {
54
            int y = e[i].to;
55
            if(vis[y]) continue;
            ans -= cal(y, e[i].w);
56
            solve(getrt(y));
57
        }
58
   }
59
   int main() {
60
        solve(getrt(1));
61
62
```

1.5 LCA

1.5.1 Tree Decomposition LCA

```
int sz[MAXN], dep[MAXN], top[MAXN], fa[MAXN], son[MAXN], num[MAXN], totw;
1
   struct Edge {
2
3
        int to, nxt;
   }e[MAXN << 1];</pre>
5
   int head[MAXN], ecnt;
   inline void add_edge(int x, int y) {
        e[++ecnt] = (Edge) \{y, head[x]\}; head[x] = ecnt;
7
8
9
    void dfs1(int x) {
        sz[x] = 1; son[x] = 0;
10
        for(int i = head[x]; i; i = e[i].nxt) {
11
            int v = e[i].to;
12
            if(v == fa[x]) continue;
13
            fa[v] = x;
14
            dep[v] = dep[x] + 1;
15
            dfs1(v);
16
17
            sz[x] += sz[v];
```

```
if(sz[v] > sz[son[x]]) son[x] = v;
18
19
20
   }
   void dfs2(int x) {
21
22
        B[num[x]] = A[x];
23
        if(son[x]) {
24
            top[son[x]] = top[x];
25
            num[son[x]] = ++totw;
26
            dfs2(son[x]);
27
        for(int i = head[x]; i; i = e[i].nxt) {
28
            int v = e[i].to;
29
30
            if(v == fa[x] || v == son[x]) continue;
            top[v] = v;
31
            num[v] = ++totw;
32
            dfs2(v);
33
        }
34
35
   }
36
   int lca(int u, int v) {
37
        if(u == v) return u;
        while(top[u] != top[v]) {
38
            if(dep[top[u]] > dep[top[v]]) swap(u, v);
39
40
            v = fa[top[v]];
41
        if(dep[u] > dep[v]) swap(u, v);
42
43
        return u;
44
   inline void init() {
45
        memset(head, 0, sizeof(head)); ecnt = 0;
46
        fa[1] = 0; dep[1] = 1; top[1] = 1; num[1] = 1; totw = 1;
47
48
   inline void pre() {
49
        dfs1(1); dfs2(1);
50
51
```

1.5.2 Tarjan LCA

```
vector< pair<int,int> > G[MAXN],ask[MAXN];
   int fa[MAXN], ans[MAXN], vis[MAXN] ,dis[MAXN];
   int Find(int x){
        return x == fa[x] ? x : fa[x] = Find(fa[x]);
4
   }
5
   void init(int n){
6
        memset(ans, 0,sizeof ans);
7
        memset(vis, 0,sizeof vis);
8
9
        for(int i = 0; i <= n; i++){</pre>
10
            G[i].clear();
11
            ask[i].clear();
        }
12
13
    void LCA(int u){
14
15
        int v;
        fa[u] = u;
16
        vis[u] = true;
17
        for(auto it : ask[u])
18
            if(vis[v = it.first])
19
                ans[it.second] = dis[u] + dis[v] - 2 * dis[Find(it.first)];
20
21
        for(auto it : G[u])
22
        if(!vis[v = it.first]){
            dis[v] = dis[u] + it.second;
```

```
24 LCA(v);
25 fa[v] = u;
26 }
27 }
```

1.6 Tarjan

1.6.1 SCC

```
namespace SCC{
1
        vector<int> G[MAXN];
2
        int dfs_clock, scc_cn, dfn[MAXN], low[MAXN], sccno[MAXN];
3
        stack<int> S;
4
5
        void addEdge(int u, int v) {
6
            G[u].push_back(v);
7
        void tarjan(int u) {
8
            dfn[u] = low[u] = ++dfs\_clock;
9
10
            S.push(u);
            for(auto v : G[u]) {
11
                 if(!dfn[v]) {
12
                     tarjan(v);
13
                     low[u] = min(low[u], low[v]);
14
15
                }else if(!sccno[v]) {
16
                     low[u] = min(low[u], dfn[v]);
17
18
            if(dfn[u] == low[u]) {
19
20
                 scc_cnt++;
                 for(;;) {
21
22
                     int v = S.top(); S.pop();
23
                     sccno[v] = scc_cnt;
                     if(v == u) break;
24
                }
25
26
            }
27
        }
        void findSCC(int n) {
28
29
            for(int i = 1; i <= n; i++)</pre>
30
                 if(!dfn[i]) tarjan(i);
31
32
        void init(int n){
33
            dfs_clock = scc_cnt = 0;
34
            for(int i = 0;i <= n;++i){</pre>
35
                 dfn[i] = low[i] = sccno[i] = 0;
36
                 G[i].clear();
37
            }
38
        }
39
```

1.6.2 BCC

```
namespace BCC{
struct Edge {
    int to, nxt;
}e[MAXM << 1];
int ecnt, head[MAXN];
int dfs_clock, dfn[MAXN], low[MAXN];
</pre>
```

```
int is_vertex[MAXN], vbcc_cnt, vbccno[MAXN];
8
9
         vector<int> vbcc[MAXN];
10
         stack<int> vS;
11
12
         int ebcc_cnt, ebccno[MAXN];
13
         stack<int> eS;
14
        inline void addEdge(int u, int v) {
    e[++ecnt] = (Edge) {v, head[u]}; head[u] = ecnt;
    e[++ecnt] = (Edge) {u, head[v]}; head[v] = ecnt;
15
16
17
18
         inline void init(int n) {
19
             ecnt = 1;
20
21
             dfs\_clock = 0;
22
             vbcc\_cnt = 0;
23
             ebcc\_cnt = 0;
              for(int i = 1; i <= n; ++i){
24
25
                  head[i] = dfn[i] = low[i] = 0;
26
                  is\_vertex[i] = 0;
27
                  vbccno[i] = 0;
28
                  ebccno[i] = 0;
29
30
             while(!vS.empty()) vS.pop();
         }
31
32
         //root's edge = -1;
33
         void tarjan(int u, int edge) {
             dfn[u] = low[u] = ++dfs_clock;
34
35
             int ch = 0;
36
             vS.push(u);
37
             eS.push(u);
             for(int i = head[u], v; i; i = e[i].nxt) {
38
                  if(!dfn[v = e[i].to]) {
39
                       tarjan(v, i ^ 1)
40
                       low[u] = min(low[u], low[v]);
41
                       if(low[v] >= dfn[u]) {
42
43
                            ++ch;
                            if(edge > 0 \mid | ch > 1) is_vertex[u] = 1;
44
                            vbcc[++vbcc_cnt].clear();
45
                            vbcc[vbcc_cnt].push_back(u);
46
47
                            for(int x;;){
48
                                x = vS.top(); vS.pop();
49
                                vbcc[vbcc_cnt].push_back(x);
50
                                vbccno[x] = vbcc_cnt;
                                if(x == v)break;
51
                           }
52
53
                       if(low[v] > dfn[u]) {
// i && i ^ 1 is bridge
54
55
56
57
                  else if(dfn[v] < dfn[u] && i != edge)</pre>
58
59
                       low[u] = min(low[u], dfn[v]);
60
              if(dfn[u] == low[u]) {
61
62
                  ebcc_cnt++;
                  for(int v;;) {
63
                       v = eS.top(); eS.pop();
64
                       ebccno[v] = ebcc_cnt;
65
                       if(v == u) break;
66
                  }
67
68
```

```
69
        void findBCC(int n){
70
71
             for(int i = 1; i <= n; i++)</pre>
72
                 if(!dfn[i]) tarjan(i, -1);
73
74
             //findBridge
75
             for(int u = 1; u <= n; u++) {</pre>
                 for(int i = head[u], v; i; i = e[i].nxt)
76
                 if(ebccno[u] != ebccno[v = e[i].to]) {
77
                      //is bridge
78
                 }
79
            }
80
81
        }
82
   }
```

1.7 Cactus

1.7.1 Circle-Square Tree

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef pair<int, int> P;
4 const int MAXN = 2e4 + 5;
5
    const int S = 15;
6
    namespace Tree {
7
         struct Edge {
8
             int to, nxt, w;
9
         }e[MAXN << 1];
         int ecnt, head[MAXN];
10
         int rt, isrt[MAXN], fa[MAXN][S + 3];
11
         int sz[MAXN];
12
         inline void addEdge(int u, int v, int w) {
13
             e[++ecnt] = (Edge) \{v, head[u], w\}; head[u] = ecnt;
14
15
             fa[v][0] = u;
        }
16
   }
17
   int n, m, Q;
18
19
    namespace BCC {
20
         struct Edge {
21
             int to, nxt, w;
22
         }e[MAXN << 1];
         int ecnt, head[MAXN];
23
         int dfs_clock, dfn[MAXN], low[MAXN];
24
         int is_vertex[MAXN], vbcc_cnt, vbccno[MAXN];
25
        vector<P> vbcc[MAXN];
26
27
         stack<P> vs;
28
         int tag[MAXN];
        inline void addEdge(int u, int v, int w) {
    e[++ecnt] = (Edge) {v, head[u], w}; head[u] = ecnt;
    e[++ecnt] = (Edge) {u, head[v], w}; head[v] = ecnt;
29
30
31
32
33
         inline void init(int n) {
             ecnt = 1;
34
             dfs\_clock = 0;
35
             vbcc\_cnt = 0;
36
             for(int i = 0; i \le 2 * n; i++){
37
                  head[i] = dfn[i] = low[i] = 0;
38
39
                  vbccno[i] = 0;
40
                  tag[i] = 0;
```

```
41
42
             while(!vs.empty()) vs.pop();
43
44
         //root 's edge = -1;
         void tarjan(int u, int edge) {
45
             dfn[u] = low[u] = ++dfs\_clock;
46
             vs.push(P(u, e[edge ^ 1].w));
47
             for(int i = head[u], v; i; i = e[i].nxt) {
    if(!dfn[v = e[i].to]) {
48
49
                      tarjan(v, i ^ 1);
50
                      low[u] = min(low[u], low[v]);
51
                      if(low[v] >= dfn[u]) {
52
                          if(vs.top().first == v) {
53
                               Tree::addEdge(u, v, vs.top().second);
54
55
                               vs.pop();
56
                               continue;
57
                          vbcc[++vbcc_cnt].clear();
58
                          vbcc[vbcc_cnt].push_back(P(u, 0));
59
60
                          Tree::isrt[u] = 1;
                          int &sz = Tree::sz[n + vbcc_cnt];
61
                          tag[vs.top().first] = n + vbcc_cnt;
62
63
                           //Tree::addEdge(u, rt, 0);
                           for(P x;;) {
64
                               x = vs.top(); vs.pop();
65
66
                               sz += x.second;
67
                               //Tree::addEdge(rt, x.first, sz);
68
                               vbcc[vbcc_cnt].push_back(x);
69
                               vbccno[x.first] = vbcc_cnt;
                               if(x.first == v) break;
70
                          }
71
                      }
72
73
                 else if(dfn[v] < dfn[u] && i != edge)</pre>
74
75
                      low[u] = min(low[u], dfn[v]);
76
             for(int i = head[u], v; i; i = e[i].nxt) {
77
                  if(tag[v = e[i].to]) {
78
79
                      int r = tag[v]; Tree::sz[r] += e[i].w;
80
                      tag[v] = 0;
81
                 }
82
             }
83
         void findBCC(int n) {
84
             for(int i = 1; i <= n; i++)</pre>
85
86
                  if(!dfn[i]) tarjan(i, -1);
87
         }
88
    namespace Tree {
89
         int dis[MAXN], dep[MAXN], len[MAXN];
90
         inline void init(int n) {
91
             BCC::init(n);
92
93
             rt = n;
             ecnt = 1;
94
             for(int i = 0; i <= 2 * n; i++) {
95
                  head[i] = 0;
96
                  fa[i][0] = isrt[i] = dis[i] = dep[i] = len[i] = 0;
97
98
             }
99
         void dfs(int x) {
100
             for(int i = head[x], y; i; i = e[i].nxt) {
101
```

```
102
                  if(!dep[y = e[i].to]) {
103
                      dep[y] = dep[x] + 1;
                      dis[y] = dis[x] + e[i].w;
104
105
                      dfs(y);
106
                  }
             }
107
108
         void pre() {
109
             for(int k = 1; k <= BCC::vbcc_cnt; k++) {</pre>
110
111
                  vector<P> &E = BCC::vbcc[k];
112
                  addEdge(E[0].first, rt, 0);
113
                  int cnt = 0;
114
                  for(int i = E.size() - 1; i >= 1; i--) {
115
                      cnt += E[i].second;
116
                      len[E[i].first] = cnt;
117
                      addEdge(rt, E[i].first, min(cnt, sz[rt] - cnt));
118
119
120
             for(int k = 1; k \le S; k++) {
121
                  for(int i = 1; i <= rt; i++) {
122
                      fa[i][k] = fa[fa[i][k - 1]][k - 1];
123
124
125
             dep[1] = 1;
126
127
             dfs(1);
128
129
         int up(int x, int d) {
             for(int i = S; i >= 0; i--) {
130
                  if(dep[fa[x][i]] >= d) x = fa[x][i];
131
132
             return x;
133
134
         int lca(int u, int v) {
135
             if(dep[u] > dep[v]) swap(u, v);
136
             v = up(v, dep[u]);
137
             if(u == v) return u;
138
             for(int i = S; i >= 0; i--) {
139
                  if(fa[u][i] != fa[v][i]) {
140
141
                      u = fa[u][i], v = fa[v][i];
142
143
             }
             return fa[u][0];
144
145
         int query(int u, int v) {
146
             int l = lca(u, v);
147
             if(l <= n) return dis[u] + dis[v] - 2 * dis[l];</pre>
148
             int x = up(u, dep[1] + 1), y = up(v, dep[1] + 1);
149
             int res = dis[u] - dis[x] + dis[v] - dis[y];
150
             int tmp = abs(len[x] - len[y]);
return res + min(tmp, sz[l] - tmp);
151
152
         }
153
154
155
156
    int main() {
         ios::sync_with_stdio(0); cin.tie(0); cout.precision(6); cout << fixed;</pre>
157
         using namespace Tree;
158
159
         cin >> n >> m >> Q;
         init(n);
160
         for(int i = 1, u, v, w; i <= m; i++) {
161
162
             cin >> u >> v >> w;
```

```
163
    BCC::addEdge(u, v, w);
164
         BCC::findBCC(n);
165
         pre();
int u, v;
while(Q--) {
166
167
168
169
             cin >> u >> v;
             cout << query(u, v) << endl;</pre>
170
171
172
         return 0;
173
```

2 Data Structures

2.1 Basic Structures

2.1.1 RMQ

```
struct RMQ {
1
        int d[MAXN][S + 2];
2
        inline void init(int *a, int n) {
3
            for(int i = 1; i \le n; i++) d[i][0] = a[i];
4
5
            for(int k = 1; (1 << k) <= n; k++)
6
                for(int i = 1; i + (1 << k) - 1 <= n; i++)
                    d[i][k] = min(d[i][k - 1], d[i + (1 << (k - 1))][k - 1]);
7
8
9
        inline int query(int 1, int r) {
            if(l > r) swap(l, r);
10
            int k = 0;
11
12
            while((1 << (k + 1)) <= r - l + 1) k++;
            return min(d[l][k], d[r - (1 << k) + 1][k]);
13
14
15
   }rmq;
   const int MAXM = 2e5 + 5, MAXN = 3e6 + 5, S = 22;
16
   const LL INF = 1e18;
17
   #define belong(x) (x / S + 1)
18
   #define pos(x) (x % S + 1)
19
   int Log[MAXN], sz;
20
   struct RMQ {
21
        LL a[MAXN];
22
        LL d[MAXM][S + 2];
23
        LL pre[MAXM][S + 2], aft[MAXM][S + 2];
24
        inline void init(int n) {
25
            sz = n / S + 1;
26
27
            Log[0] = -1; for(int i = 1; i <= n; i++) Log[i] = Log[i / 2] + 1;
28
            for(int i = 1; i <= sz; i++) {
                pre[i][0] = aft[i][S + 1] = INF;
29
30
            }
            for(int i = 1; i <= n; i++) {</pre>
31
                pre[belong(i)][pos(i)] = min(pre[belong(i)][pos(i) - 1], a[i]);
32
33
            for(int i = n; i >= 1; i--) {
34
                aft[belong(i)][pos(i)] = min(aft[belong(i)][pos(i) + 1], a[i]);
35
36
37
            for(int i = 1; i <= sz; i++) {
38
                d[i][0] = aft[i][1];
39
            for(int k = 1; k \le S; k++)
40
                for(int i = 1; i + (1 << k) <= sz; i++)
41
                    d[i][k] = min(d[i][k - 1], d[i + (1 << (k - 1))][k - 1]);
42
43
        inline LL ask(int 1, int r) {
44
            assert(l <= r);</pre>
45
            LL res = INF;
46
            if(belong(l) == belong(r)) {
47
                for(int i = 1; i <= r; i++) res = min(res, a[i]);</pre>
48
49
50
            res = min(aft[belong(l)][pos(l)], pre[belong(r)][pos(r)]);
51
            int k = Log[belong(r) - belong(l) - 1];
52
            if(~k) {
53
```

2.1.2 Divide Blocks

```
int belong[MAXN], l[MAXN], r[MAXN];
2
   int sz, num;
   void build(int n) {
3
        sz = sqrt(n);
4
        num = n / sz; if(n % sz) num++;
5
        for(int i = 1; i <= num; i++) {</pre>
6
7
            l[i] = (i - 1) * sz + 1;
            r[i] = i * sz;
8
9
        r[num] = n;
10
11
        for(int i = 1; i <= n; i++) {</pre>
12
            belong[i] = (i - 1) / sz + 1;
13
14
   }
```

2.2 Stack Structures

2.2.1 Cartesian Tree

```
struct CartesianTree{
2
        int rt, fa[MAXN], ls[MAXN], rs[MAXN];
3
        int top, st[MAXN];
        int cnt[MAXN];
4
        void build(LL *a,int n) {
5
            top = rt = 0;
6
            for(int i = 1; i <= n; i++) {</pre>
7
                ls[i] = rs[i] = fa[i] = 0;
8
9
                while(top && a[st[top]] > a[i]) ls[i] = st[top--];
                fa[i] = st[top];
10
                if(ls[i]) fa[ls[i]] = i;
11
12
                if(fa[i]) rs[fa[i]] = i; else rt = i;
                st[++top] = i;
13
            }
14
15
        void dfs(int x) {
16
17
            cnt[x] = 1;
            if(ls[x]) {dfs(ls[x]); cnt[x] += cnt[ls[x]];}
18
            if(rs[x]) {dfs(rs[x]); cnt[x] += cnt[rs[x]];}
19
20
        LL getAns(LL *a, int n) {
21
22
            //dfs(rt);
23
            return res;
24
25
        }
   }T;
26
```

2.3 Sequence Structures

2.3.1 Segment Tree

```
1
   #define Ls(x) (x << 1)
3
   #define Rs(x) (x << 1 | 1)
4
    struct Tree {
5
        int l, r, lazy;
6
        LL sum, mx;
   }tree[MAXN << 2];</pre>
7
   int A[MAXN];
8
   void push_up(int x) {
9
        tree[x].sum = tree[Ls(x)].sum + tree[Rs(x)].sum;
10
11
        tree[x].mx = max(tree[Ls(x)].mx, tree[Rs(x)].mx);
12
   void push_down(int x) {
13
14
        if(tree[x].lazy) {
            tree[Ls(x)].sum += tree[x].lazy * (tree[Ls(x)].r - tree[Ls(x)].l + 1);
15
            tree[Rs(x)].sum += tree[x].lazy * (tree[Rs(x)].r - tree[Rs(x)].l + 1);
16
            tree[Ls(x)].mx += tree[x].lazy;
17
            tree[Rs(x)].mx += tree[x].lazy;
18
            tree[Ls(x)].lazy += tree[x].lazy;
19
            tree[Rs(x)].lazy += tree[x].lazy;
20
21
            tree[x].lazy = 0;
22
        }
23
   }
   void build(int x, int L, int R) {
24
25
        tree[x].lazy = 0;
26
        tree[x].l = L; tree[x].r = R;
27
        if(L == R) {
28
            tree[x].sum = A[L];
            tree[x].mx = A[L];
29
30
            return;
31
32
33
        int mid = (L + R) \gg 1;
        build(Ls(x), L, mid);
34
35
        build(Rs(x), mid + 1, R);
36
        push_up(x);
37
   void update(int x, int L, int R, LL val) {
38
        if(tree[x].l >= L && tree[x].r <= R) {
39
            tree[x].lazy += val;
40
            tree[x].sum += val * (tree[x].r - tree[x].l + 1);
41
            tree[x].mx += val;
42
            return;
43
44
        push_down(x);
45
46
        int mid = (tree[x].l + tree[x].r) >> 1;
47
        if(L <= mid) update(Ls(x), L, R, val);</pre>
        if(R > mid) update(Rs(x), L, R, val);
48
        push_up(x);
49
50
   LL query(int x, int L, int R) {
51
        if(tree[x].l >= L && tree[x].r <= R)
52
53
            return tree[x].sum;
54
        push_down(x);
        int mid = (tree[x].l + tree[x].r) >> 1;
55
        LL res = 0;
56
```

```
if(L \le mid) res += query(Ls(x), L, R);
57
58
        if(R > mid) res += query(Rs(x), L, R);
59
60
        return res;
61
   LL query2(int x, int L, int R) {
62
        if(tree[x].l >= L \&\& tree[x].r <= R)
63
64
            return tree[x].mx;
65
        push_down(x);
        int mid = (tree[x].l + tree[x].r) >> 1;
66
        LL res = -INF;
67
        if(L \le mid) res = max(res, query2(Ls(x), L, R));
68
69
        if(R > mid) res = max(res, query2(Rs(x), L, R));
70
        return res;
71
```

2.3.2 LiChao Tree

```
const double eps = 1e-12;
2
    namespace LiT{
3
        const int MLIMIT = 40000;
4
        typedef double LD;
5
        struct line{LD k,b;int l,r,id;} T[MAXN << 2];</pre>
6
        /\!/inline \ L\!D \ calc(line \ \&a,int \ pos) \ \{return \ a.k*vec[pos]+a.b;\}
7
        inline LD calc(line &a,int pos) {return a.k*pos+a.b;}
        inline double cross(line &a,line &b) {
8
9
             if(b.k == a.k) return -1e9;
             return (double)(a.b-b.b)/(b.k-a.k);
10
11
        void build(int v, int l, int r) {
   T[v].k = 0;T[v].b = -1e18;
12
13
            T[v].l = 0; T[v].r = MLIMIT;
14
            T[v].id = 0;
15
            if(l == r)return;
16
            int mid = (l+r)>>1;
17
            build(v<<1,1,mid);</pre>
18
            build(v<<1|1,mid+1,r);</pre>
19
20
        void ins(int v,int l,int r, line k) {
21
            if(k.l <= l && r <= k.r) {
22
23
                 LD fl = calc(k, l), fr = calc(k, r);
                 LD gl = calc(T[v], l), gr = calc(T[v], r);
24
                 if(fl - gl > eps \&\& fr - gr > eps) T[v] = k;
25
                 else if(fl - gl > eps || fr - gr > eps) {
26
                     int mid = (l+r)>>1;
27
28
                     if(calc(k, mid) - calc(T[v], mid) > eps) swap(k, T[v]);
29
                      //if(vec[mid] - cross(k, T[v]) > eps)
                      if(mid - cross(k, T[v]) > eps)
30
31
                          ins(v<<1, l, mid, k); else ins(v<<1|1, mid+1, r, k);
                 }
32
33
                 return;
34
            int mid=(l+r)>>1;
35
            if(k.l <= mid) ins(v<<1, l, mid, k);</pre>
36
            if(mid < k.r) ins(v<<1|1, mid+1, r, k);</pre>
37
38
        LD ans; int ansid;
39
        void que(int v, int l, int r, int x) {
40
41
             LD tmp = calc(T[v], x);
42
             if(tmp > ans | | (tmp == ans && T[v].id < ansid)) {
```

```
43
                ans = tmp;
                ansid = T[v].id;
44
45
46
            if(l == r) return;
            int mid = (l+r)>>1;
47
48
            if(x <= mid) que(v<<1,1,mid,x); else que(v<<1|1,mid+1,r,x);
49
        }
50
   };
   //左闭右闭
```

2.3.3 Splay Tree

```
namespace splay{
1
2
        int n, m, sz, rt;
        int val[MAXN], id[MAXN];
3
4
        int tr[MAXN][2], size[MAXN], fa[MAXN], rev[MAXN], s[MAXN], lazy[MAXN];
        void push_up(int x) {
5
            int l = tr[x][0], r = tr[x][1];
6
7
            s[x] = max(val[x], max(s[l], s[r]));
8
            size[x] = size[l] + size[r] + 1;
9
        void push_down(int x) {
10
11
            int l = tr[x][0], r = tr[x][1];
            if(lazy[x]) {
12
13
                 if(1) {
14
                     lazy[l] += lazy[x];
15
                     s[l] += lazy[x];
                     val[l] += lazy[x];
16
17
                 if(r) {
18
                     lazy[r] += lazy[x];
19
                     s[r] += lazy[x];
20
21
                     val[r] += lazy[x];
22
                 lazy[x] = 0;
23
24
            if(rev[x]) {
25
                 rev[x] = 0;
26
27
                 rev[l] ^= 1; rev[r] ^= 1;
28
                 swap(tr[x][0], tr[x][1]);
29
            }
30
        void rotate(int x, int &k) {
31
            int y = fa[x];
32
            int z = fa[y];
33
            int l, r
34
            if(tr[y][0] == x) l = 0;
35
36
            else l = 1;
            r = 1 \wedge 1;
37
38
            if(y == k) k = x;
            else {
39
                 if(tr[z][0] == y) tr[z][0] = x;
40
41
                else tr[z][1] = x;
42
            fa[x] = z; fa[y] = x; fa[tr[x][r]] = y;
43
            tr[y][1] = tr[x][r]; tr[x][r] = y;
44
            push_up(y); push_up(x);
45
46
47
        void splay(int x, int &k) {
48
            int y, z;
```

```
49
             while(x != k) {
50
                 y = fa[x];
                 z = fa[y];
51
52
                 if(y != k) {
                      if((tr[y][0] == x) \land (tr[z][0] == y)) rotate(x, k);
53
54
                     else rotate(y, k);
55
56
57
                 rotate(x, k);
             }
58
59
         int find(int x, int rank) {
60
             push_down(x);
61
62
63
             int l = tr[x][0], r = tr[x][1];
             if(size[l] + 1 == rank) return x;
64
             else if(size[l] >= rank) return find(l, rank);
65
             else return find(r, rank - size[l] - 1);
66
67
         void update(int 1, int r, int v) {
68
             int x = find(rt, 1), y = find(rt, r + 2);
69
70
             splay(x, rt); splay(y, tr[x][1]);
             int z = tr[y][0];
71
             lazy[z] += v;
72
             val[z] += v;
73
74
             s[z] += v;
75
76
         void reverse(int l, int r) {
             int x = find(rt, 1), y = find(rt, r + 2);
77
             splay(x, rt); splay(y, tr[x][1]);
78
             int z = tr[y][0];
79
             rev[z] ^= 1;
80
81
         void query(int 1, int r) {
82
             int x = find(rt, 1), y = find(rt, r + 2);
83
             splay(x, rt); splay(y, tr[x][1]);
84
             int z = tr[y][0];
85
             printf("%d\n", s[z]);
86
87
88
         void build(int l, int r, int f) {
89
             if(l > r) return;
90
             int now = id[l], last = id[f];
             if(l == r) {
91
                 fa[now] = last; size[now] = 1;
92
                 if(1 < f) tr[last][0] = now;
93
                 else tr[last][1] = now;
94
95
                 return;
             }
96
             int mid = (l + r) \gg 1; now = id[mid];
97
             build(l, mid - 1, mid); build(mid + \overline{1}, r, mid);
98
99
             fa[now] = last;
             push_up(now);
100
             if(mid < f) tr[last][0] = now;</pre>
101
             else tr[last][1] = now;
102
103
         void init() {
104
             s[0] = -INF;
105
             scanf("%d%d", &n, &m);
106
             for(int i = 1; i <= n + 2; i++) id[i] = ++sz;
107
             build(1, n + 2, 0); rt = (n + 3) >> 1;
108
109
```

110 }

2.4 Persistent Data Structures

2.4.1 Chairman Tree

```
struct Node {
2
       int 1, r;
3
4
       LL sum;
5
   }t[MAXN * 40];
6
7
   int cnt, n;
   int rt[MAXN];
   void update(int pre, int &x, int l, int r, int v) {
10
        x = ++cnt; t[x] = t[pre]; t[x].sum++;
        if(l == r) return;
11
       int mid = (l + r) \gg 1;
12
       if(v \leftarrow mid) update(t[pre].l, t[x].l, l, mid, v);
13
       else update(t[pre].r, t[x].r, mid + 1, r, v);
14
15
16
   int query(int x, int y, int l, int r, int v) {
17
        if(l == r) return l;
18
        int mid = (l + r) >> 1;
        int sum = t[t[y].l].sum - t[t[x].l].sum;
19
20
        if(sum >= v) return query(t[x].1, t[y].1, 1, mid, v);
        else return query(t[x].r, t[y].r, mid + 1, r, v - sum);
21
22
```

2.4.2 Persistent Trie

```
//区间异或最值查询
   const int N=5e4+10;
   int t[N];
3
   int ch[N*32][2],val[N*32];
4
   int cnt;
5
   void init(){
6
7
       mem(ch,0);
8
       mem(val,0);
9
        cnt=1;
10
   }
   int add(int root,int x){
11
        int newroot=cnt++,ret=newroot;
12
13
        for(int i=30;i>=0;i--){
            ch[newroot][0]=ch[root][0];
14
15
            ch[newroot][1]=ch[root][1];
16
            int now=(x>>i)&1;
17
            root=ch[root][now];
18
            ch[newroot][now]=cnt++;
19
            newroot=ch[newroot][now];
20
            val[newroot]=val[root]+1;
21
       }
22
23
24
       return ret;
25
   }
26
   int query(int lt,int rt,int x){
       int ans=0;
```

```
for(int i=30;i>=0;i--){
28
29
             int now=(x>>i)&1;
30
             if(val[ch[rt][now^1]]-val[ch[lt][now^1]]){
31
                 ans l = (1 << i);
                 rt=ch[rt][now^1];
32
                 lt=ch[lt][now^1];
33
                 } else{
34
                 rt=ch[rt][now];
35
36
                 lt=ch[lt][now];
            }
37
38
39
        return ans;
    }
40
```

2.5 Tree Structures

2.5.1 Tree Decomposition

```
int sz[MAXN], dep[MAXN], top[MAXN], fa[MAXN], son[MAXN], num[MAXN], totw;
1
2
   struct Edge {
       int to, nxt;
3
   }e[MAXN << 1];
4
   int head[MAXN], ecnt;
5
   int n, m, Q;
6
   #define Ls(x) (x << 1)
7
   #define Rs(x) (x << 1 | 1)
8
   struct Tree {
9
        int l, r, lazy;
10
        LL sum, mx;
11
   }tree[MAXN << 2];</pre>
12
   int A[MAXN], B[MAXN];
13
   void push_up(int x) {
14
        tree[x].sum = tree[Ls(x)].sum + tree[Rs(x)].sum;
15
16
        tree[x].mx = max(tree[Ls(x)].mx, tree[Rs(x)].mx);
   }
17
   void push_down(int x) {
18
19
        if(tree[x].lazy) {
            tree[Ls(x)].sum += tree[x].lazy * (tree[Ls(x)].r - tree[Ls(x)].l + 1);
20
            tree[Rs(x)].sum += tree[x].lazy * (tree[Rs(x)].r - tree[Rs(x)].l + 1);
21
22
            tree[Ls(x)].mx += tree[x].lazy;
23
            tree[Rs(x)].mx += tree[x].lazy;
24
            tree[Ls(x)].lazy += tree[x].lazy;
25
            tree[Rs(x)].lazy += tree[x].lazy;
26
            tree[x].lazy = 0;
27
       }
28
29
   void build(int x, int L, int R) {
30
        tree[x].lazy = 0;
        tree[x].l = L; tree[x].r = R;
31
        if(L == R) {
32
            tree[x].sum = B[L];
33
            tree[x].mx = B[L];
34
35
            return;
36
        int mid = (L + R) \gg 1;
37
       build(Ls(x), L, mid);
38
       build(Rs(x), mid + 1, R);
39
        push_up(x);
40
41
   }
```

```
42
    void update(int x, int L, int R, LL val) {
         if(tree[x].l >= L && tree[x].r <= R) {
43
44
             tree[x].lazy += val;
             tree[x].sum += val * (tree[x].r - tree[x].l + 1);
45
46
             tree[x].mx += val;
47
             return;
48
         }
49
         push_down(x);
         int mid = (tree[x].l + tree[x].r) >> 1;
50
         if(L \leftarrow mid) update(Ls(x), L, R, val);
51
         if(R > mid) update(Rs(x), L, R, val);
52
53
        push_up(x);
54
    LL query(int x, int L, int R) {
55
         if(tree[x].1 >= L && tree[x].r <= R)
56
57
             return tree[x].sum;
         push_down(x);
58
         int mid = (tree[x].l + tree[x].r) >> 1;
59
         LL res = 0;
60
61
         if(L \le mid) res += query(Ls(x), L, R);
62
         if(R > mid) res += query(Rs(x), L, R);
         return res;
63
64
    LL query2(int x, int L, int R) {
65
         if(tree[x].l >= L && tree[x].r <= R)</pre>
66
67
             return tree[x].mx;
         push_down(x);
68
         int mid = (tree[x].l + tree[x].r) >> 1;
69
70
         LL res = -INF;
         if(L \le mid) res = max(res, query2(Ls(x), L, R));
71
72
         if(R > mid) res = max(res, query2(Rs(x), L, R));
73
         return res;
74
    inline void add_edge(int x, int y) {
75
         e[++ecnt] = (Edge) \{y, head[x]\}; head[x] = ecnt;
76
77
    void dfs1(int x) {
78
         sz[x] = 1; son[x] = 0;
79
80
         for(int i = head[x]; i; i = e[i].nxt) {
81
             int v = e[i].to;
82
             if(v == fa[x]) continue;
83
             fa[v] = x;
             dep[v] = dep[x] + 1;
84
85
             dfs1(v);
86
             sz[x] += sz[v];
87
             if(sz[v] > sz[son[x]]) son[x] = v;
88
        }
89
    void dfs2(int x) {
90
91
         B[num[x]] = A[x];
92
         if(son[x]) {
             top[son[x]] = top[x];
93
             num[son[x]] = ++totw;
94
             dfs2(son[x]);
95
96
         for(int i = head[x]; i; i = e[i].nxt) {
97
             int v = e[i].to;
98
             if(v == fa[x] || v == son[x]) continue;
99
             top[v] = v;
100
             num[v] = ++totw;
101
102
             dfs2(v);
```

```
103
104
    }
    void up(int a, int b, int c) {
105
         int f1 = top[a], f2 = top[b];
while(f1 != f2) {
106
107
             if(dep[f1] < dep[f2]) { swap(a, b); swap(f1, f2); }
108
             update(1, num[f1], num[a], c);
109
110
             a = fa[f1];
             f1 = top[a];
111
112
         if(dep[a] > dep[b]) swap(a, b);
113
         update(1, num[a], num[b], c);
114
115
116
    int qsum(int a, int b) {
117
         if(a == b) return query(1, num[a], num[a]);
         int f1 = top[a], f2 = top[b];
118
         int res = 0;
119
         while(f1 != f2) {
120
             if(dep[f1] < dep[f2]) { swap(a, b); swap(f1, f2); }</pre>
121
122
             res += query(1, num[f1], num[a]);
             a = fa[f1];
123
             f1 = top[a];
124
125
         if(dep[a] > dep[b]) swap(a, b);
126
127
         res += query(1, num[a], num[b]);
         return res;
128
129
    }
130
    int qmax(int a, int b) {
131
         if(a == b) return query2(1, num[a], num[a]);
         int f1 = top[a], f2 = top[b];
132
         int res = -10000000000;
133
         while(f1 != f2) {
134
             if(dep[f1] < dep[f2]) { swap(a, b); swap(f1, f2); }</pre>
135
             res = max(res, query2(1, num[f1], num[a]));
136
             a = fa[f1];
137
             f1 = top[a];
138
139
         if(dep[a] > dep[b]) swap(a, b);
140
         res = max(res, query2(1, num[a], num[b]));
141
142
         return res;
143
    }
    inline void init() {
144
         memset(head, 0, sizeof(head)); ecnt = 0;
145
         fa[1] = 0; dep[1] = 1; top[1] = 1; num[1] = 1; totw = 1;
146
147
    inline void pre() {
148
         dfs1(1); dfs2(1); build(1, 1, totw);
149
150
```

2.5.2 Link-Cut Tree

```
1
   namespace LCT {
       int fa[MAXN], rev[MAXN], tr[MAXN][2];
2
3
       int s[MAXN], val[MAXN];
       void push_up(int x) {
4
           int l = tr[x][0], r = tr[x][1];
5
           s[x] = s[l] + s[r] + val[x];
6
7
       }
8
       void Rev(int x) {
           rev[x] = 1; swap(tr[x][0], tr[x][1]);
```

```
10
        void push_down(int x) {
11
12
            if(!rev[x]) return;
13
            int l = tr[x][0], r = tr[x][1];
            rev[x] = 0;
14
            if(l) Rev(l); if(r) Rev(r);
15
16
17
        bool isroot(int x) {
            return tr[fa[x]][0] != x && tr[fa[x]][1] != x;
18
19
        void pre(int x) {
20
            if(!isroot(x)) pre(fa[x]);
21
22
            push_down(x);
23
24
        void rotate(int x) {
            int y = fa[x]; int z = fa[y];
25
            int l = tr[y][1] == x;
26
27
            int r = 1 \wedge 1;
            if(!isroot(y)) tr[z][tr[z][1] == y] = x;
28
29
            fa[x] = z; fa[y] = x; fa[tr[x][r]] = y;
            tr[y][l] = tr[x][r]; tr[x][r] = y;
30
            push_up(y);
31
32
        void splay(int x) {
33
            pre(x);
34
35
            int y, z;
36
            while(!isroot(x)) {
37
                y = fa[x]; z = fa[y];
                 if(!isroot(y)) {
38
                     if((tr[z][0] == y) == (tr[y][0] == x))rotate(y);
39
40
                     else rotate(x);
41
                 rotate(x);
42
            }
43
            push_up(x);
44
45
        void access(int x) {
46
            int y = 0;
47
            while(x) {
48
49
                 splay(x); tr[x][1] = y;
50
                push_up(x);
51
                y = x; x = fa[x];
            }
52
53
        void makeroot(int x) {
54
            access(x); splay(x); Rev(x);
55
56
        void lnk(int x, int y) {
57
            makeroot(x); fa[x] = y;
58
59
        void cut(int x, int y) {
60
            makeroot(x); access(y); splay(y);
61
62
            tr[y][0] = fa[x] = 0; push_up(y);
63
        void update(int x, int y) {
64
            makeroot(x); val[x] = y; push_up(x);
65
66
        int query(int x, int y) {
67
            makeroot(x); access(y); splay(y);
68
            return s[y];
69
70
```

```
bool check(int x, int y) {
    int tmp = y;
    makeroot(x); access(y); splay(x);
    while(!isroot(y)) y = fa[y];
    splay(tmp);
    return x == y;
}
```

3 String

3.1 Basics

3.1.1 Hash

```
const LL p1 = 201, p2 = 301, mod1 = 12000000319, mod2 = 2147483647;
   struct Hash {
2
3
        LL a, b;
        void append(Hash pre, int v) {
4
5
            a = (pre.a * p1 + v) \% mod1;
            b = (pre.b * p2 + v) \% mod2;
6
7
        void init(string S) {
8
9
            a = b = 0;
            for(int i = 0; i < S.size(); i++) append(*this, S[i]);</pre>
10
11
12
        bool operator == (const Hash &x) const {
13
            return a == x.a \&\& b == x.b;
14
15
        bool operator < (const Hash &x) const {</pre>
16
            return a < x.a | | (a == x.a \& b < x.b);
17
        }
18
   };
```

3.1.2 KMP && exKMP

```
namespace KMP {
1
        int fa[MAXN];
2
3
        void get_fail(char* t, int tn) {
4
            fa[0] = -1;
5
            int i = 0, j = -1;
6
            while(i < tn) {</pre>
7
                 if (j == -1 || t[i] == t[j]) {
8
                     ++i; ++j;
9
                     fa[i] = t[i] != t[j] ? j : fa[j];
                 }else{
10
                     j = fa[j];
11
12
                 }
            }
13
14
15
        void kmp(char* s, int sn, char* t, int tn) {
16
            int i = 0, j = 0;
            while(i < sn) {</pre>
17
18
                 if (j == -1 || s[i] == t[j]) {
19
                     i++;j++;
20
                     if(j == tn) {
21
22
                 }else j = fa[j];
23
            }
        }
24
25
   }
26
   namespace exKMP {
27
        int nxt[MAXN], ext[MAXN];
28
        void get_nxt(char* t, int tn) {
29
            int j = 0, mx = 0;
            nxt[0] = tn;
30
            for(int i = 1; i < tn; i++) {</pre>
31
```

```
if(i \ge mx \mid | i + nxt[i - j] \ge mx) {
32
33
                     if(i > mx) mx = i;
34
                     while(mx < tn && t[mx] == t[mx - i]) mx++;
                     nxt[i] = mx - i;
35
                     j = i;
36
                 }else nxt[i] = nxt[i - j];
37
            }
38
39
        void exkmp(char *s, int sn, char *t, int tn) {
40
            int j = 0, mx = 0;
41
             for(int i = 0; i < sn; i++) {</pre>
42
                 if(i \ge mx \mid | i + nxt[i - j] \ge mx) {
43
                     if(i > mx) mx = i;
44
                     while(mx < sn && mx - i < tn && s[mx] == t[mx - i]) mx++;
45
46
                     ext[i] = mx - i;
47
                     j = i;
                 }else ext[i] = nxt[i - j];
48
49
            }
        }
50
51
   }
```

3.1.3 AC Automaton

```
namespace AC {
1
        int ch[MAXN][sigma_size], last[MAXN];
2
3
        int val[MAXN], f[MAXN], sz;
        inline void init() { sz = 1; memset(ch[0], 0, sizeof(ch[0])); }
4
        inline int idx(char c) { return c - 'a'; }
5
6
        void insert(string s, int v) {
7
            int u = 0;
            for(int i = 0; i < s.size(); i++) {</pre>
8
                 int c = idx(s[i]);
9
10
                 if(!ch[u][c]) {
                     memset(ch[sz], 0, sizeof(ch[sz]));
11
                     val[sz] = 0;
12
                     ch[u][c] = sz++;
13
14
                u = ch[u][c];
15
16
17
            val[u] = v;
18
        void get_fail() {
19
            queue<int> q;
20
            f[0] = 0;
21
            for(int c = 0; c < sigma_size; c++) {</pre>
22
23
                 int u = ch[0][c];
24
                 if(u) { f[u] = 0; q.push(u); last[u] = 0; }
25
            while(!q.empty()) {
26
27
                 int r = q.front(); q.pop();
28
                 for(int c = 0; c < sigma_size; c++) {</pre>
29
                     int u = ch[r][c]
                     if(!u) { ch[r][c] = ch[f[r]][c]; continue; }
30
31
                     q.push(u);
                     int v = f[r];
32
                     while(v && !ch[v][c]) v = f[v];
33
                     f[u] = ch[v][c]
34
35
                     last[u] = val[f[u]] ? f[u] : last[f[u]];
36
                }
37
```

```
38
39
        inline void solve(int j) {
40
            if(j) {
                 ans += val[j];
41
42
                 solve(last[j]);
43
44
        void find(string T) {
45
46
             int j = 0;
             for(int i = 0; i < T.size(); i++) {</pre>
47
                 int c = idx(T[i]);
48
                 j = ch[j][c];
49
                 if(val[j]) solve(j);
50
                 else if(last[j]) solve(last[j]);
51
52
            }
53
        }
   }
54
55
    namespace AC {
56
        int root, tcnt;
        int ch[MAXN][sigma_size], fa[MAXN];
57
58
        inline int newnode() {
            fa[++tcnt] = 0;
59
             for(int i = 0; i < sigma_size; ++i) ch[tcnt][i] = 0;
60
            return tcnt;
61
62
        inline void init() {
63
64
            tcnt = -1;
65
            root = newnode();
66
        inline int idx(char c) { return c - 'a'; }
67
        void extend(char *s, int sn) {
68
69
            int cur = root;
            for(int i = 0, c; i < sn; i++) {</pre>
70
                 if(!ch[cur][c = idx(s[i])])
71
                     ch[cur][c] = newnode();
72
                 cur = ch[cur][c];
73
            }
74
        }
75
76
        int q[MAXN], qh, qt;
77
        void get_fail() {
78
            qh = 1; qt = 0;
79
            fa[root] = 0;
80
             for(int c = 0, now; c < sigma_size; c++)</pre>
                 if((now = ch[root][c]) != 0)
81
                     q[++qt] = now;
82
            while(qh <= qt) {</pre>
83
84
                 int cur = q[qh++];
                 for(int c = 0, now; c < sigma_size; c++)</pre>
85
                     if((now = ch[cur][c]) != 0) {
86
                          fa[now] = ch[fa[cur]][c];
87
88
                          q[++qt] = now;
                     }else
89
                          ch[cur][c] = ch[fa[cur]][c];
90
            }
91
92
        }
    //统计模板串出现次数,每个模板串只计算一次
93
94
            int \ cur = root, \ ans = 0;
             for(int i = 0; i < sn; ++i) {
95
                 cur = ch[cur][idx(s[i])];
96
97
                 for(int \ j = cur; \ j \ \&\& \ cnt[j] \ != -1; \ j = fa[j]) \ \{
98
                     ans \neq = cnt/j/;
```

3.1.4 Minimum String

```
namespace minstring{
          int getmin(char *s, int sn) {
   int i = 0, j = 1, k = 0, t;
   while(i < sn && j < sn && k < sn) {</pre>
2
3
4
                     t = s[(i + k) % sn] - s[(j + k) % sn];
5
6
                     if(!t) k++;
7
                     else {
                           if(t > 0) i += k + 1; else j += k + 1;
8
9
                          if(i == j) j++;
                           k = 0;
10
11
12
               }
13
               return i < j ? i : j;</pre>
14
15
```

3.2 Suffix Related

3.2.1 Suffix Array

```
namespace SA {
2
        char s[MAXN];
3
        int sa[MAXN], rank[MAXN], height[MAXN];
        int t[MAXN], t2[MAXN], c[MAXN], n;
4
       void clear() { n = 0; memset(sa, 0, sizeof(sa)); }
5
6
        void build(int m) {
            int *x = t, *y = t2;
7
            for(int i = 0; i < m; i++) c[i] = 0;
8
9
            for(int i = 0; i < n; i++) c[x[i] = s[i]]++;
10
            for(int i = 1; i < m; i++) c[i] += c[i - 1];
            for(int i = n - 1; i \ge 0; i--) sa[--c[x[i]]] = i;
11
            for(int k = 1; k <= n; k <<= 1) {</pre>
12
                int p = 0;
13
                for(int i = n - k; i < n; i++) y[p++] = i;
14
                for(int i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
15
16
                for(int i = 0; i < m; i++) c[i] = 0;
17
                for(int i = 0; i < n; i++) c[x[y[i]]]++;
18
                for(int i = 1; i < m; i++) c[i] += c[i - 1];
                for(int i = n - 1; i \ge 0; i--) sa[--c[x[y[i]]]] = y[i];
19
                swap(x, y);
20
                p = 1; x[sa[0]] = 0;
21
                for(int i = 1; i < n; i++)</pre>
22
                    x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k]
23
       ? p - 1 : p++;
24
                if(p >= n) break;
25
                m = p;
26
            }
27
28
        void buildHeight() {
29
            int k = 0;
```

```
for(int i = 0; i < n; i++) rank[sa[i]] = i;</pre>
30
             for(int i = 0; i < n; i++) {</pre>
31
32
                  if(k) k--;
                 int j = sa[rank[i] - 1];
33
                 while(s[i + k] == s[j + k]) k++;
34
                 height[rank[i]] = k;
35
             }
36
37
        void init() {
38
             n = strlen(s) + 1;
39
             build(z' + 1);
40
             buildHeight();
41
        }
42
43
    }
```

3.2.2 Suffix Automaton

```
namespace SAM{
1
2
        int scnt, root, last;
        int fa[MAXN<<1], len[MAXN<<1], ch[MAXN<<1][26];</pre>
3
4
        int sc[MAXN<<1], tmpl[MAXN<<1], minl[MAXN<<1];</pre>
5
6
        int newnode(int _len, int q = 0) {
            fa[++scnt] = fa[q]; len[scnt] = _len;
7
8
            sc[scnt] = 0;tmpl[scnt] = 0; minl[scnt] = INF;
9
            for(int i = 0; i < 26; i++) ch[scnt][i] = ch[q][i];
10
            return scnt;
11
12
        void init() {
13
            scnt = 0;
14
            root = last = newnode(0);
15
        void extend(int c) {
16
            int p = last, np = newnode(len[p] + 1);
17
            for(;p \&\& ch[p][c] == 0; p = fa[p]) ch[p][c] = np;
18
            if(!p) fa[np] = root;
19
20
            else{
                 int q = ch[p][c];
21
                 if(len[p] + 1 == len[q]) fa[np] = q;
22
23
24
                     int nq = newnode(len[p] + 1, q);
25
                     fa[np] = fa[q] = nq;
                     for(; p && ch[p][c] == q; p = fa[p]) ch[p][c] = nq;
26
                 }
27
28
29
            last = np;
30
        int c[MAXN], rs[MAXN << 1];</pre>
31
32
        void radix_sort(int n){
33
            for(int i = 0; i <= n; i++) c[i] = 0;
            for(int i = 1; i <= scnt; i++) c[len[i]]++;</pre>
34
            for(int i = 1; i <= n; i++) c[i] += c[i-1];</pre>
35
            for(int i = scnt; i >= 1; i--) rs[c[len[i]]--] = i;
36
37
        void go(){
38
            scanf("%s",s);
39
            int n = strlen(s);
40
41
            for(int i = 0; i < n; ++i)</pre>
42
                 extend(s[i] - 'a');
43
            radix_sort(n);
```

```
//以下sc集合意义不同
44
            {//每个节点对应的位置之后有多少个不同子串
45
46
                for(int i = scnt; i >= 1; i--) {
                    int S = 0;
47
                    for(int j = 0; j < 26; j++)
48
                        S += sc[ch[rs[i]][j]];
49
                    sc[rs[i]] = S + 1;
50
                }
51
52
            {//right集合大小
53
                int cur = root;
54
                for(int i = 0; i < n; ++i) {</pre>
55
                    cur = ch[cur][s[i] - 'a'];
56
57
                    sc[cur]++;
58
                for(int i = scnt; i >= 1; --i) {
59
                    sc[ fa[rs[i]] ] += sc[rs[i]];
60
61
62
63
            //公共子串
64
            //tmpl,当前字符串:在状态cur,与模板串的最长公共后缀
            //minl, 多个字符串:在状态cur,与模板串的最长公共后缀
65
            //注意:在状态cur匹配成功时,cur的祖先状态与字符串的最长公共后缀
66
            for(; ~scanf("%s",s);) {
67
                int cur = root, Blen = 0;
68
69
                for(int i = 0; i <= scnt; i++)</pre>
70
                    tmpl[i] = 0;
                n = strlen(s);
71
72
                for(int i = 0, x; i < n; i++) {
                    x = s[i] - a';
73
                    if(ch[cur][x]) {
74
75
                        ++Blen;
                        cur = ch[cur][x];
76
                    }else{
77
                        for(; cur \&\& ch[cur][x] == 0; cur = fa[cur]);
78
79
                        if(cur) {
                            Blen = len[cur] + 1;
80
                            cur = ch[cur][x];
81
82
                        }else{
83
                            cur = root; Blen = 0;
84
85
                    tmpl[cur] = max(tmpl[cur], Blen);
86
87
                for(int i = scnt; i ; --i) {
88
                    if( tmpl[ fa[rs[i]] ] < tmpl[ rs[i] ])</pre>
89
90
                        tmpl[ fa[rs[i]] ] = len[ fa[rs[i]] ];
                    minl[ rs[i] ] = min(minl[ rs[i] ], tmpl[ rs[i] ]);
91
92
                }
93
            }
94
95
    namespace exSAM{
96
97
        int scnt, root;
        int fa[MAXN<<1], len[MAXN<<1], ch[MAXN<<1][26];</pre>
98
        int sc[MAXN<<1], tmpl[MAXN<<1];</pre>
99
100
        int newnode(int _len, int q = 0) {
101
            fa[++scnt] = fa[q]; len[scnt] = _len;
102
            sc[scnt] = 0;tmpl[scnt] = 0; minl[scnt] = INF;
103
104
            for(int i = 0; i < 26; i++) ch[scnt][i] = ch[q][i];
```

```
105
            return scnt;
106
         void init() {
107
108
             scnt = 0;
             root = newnode(0);
109
110
         int work(int p,int c){
111
112
             int q = ch[p][c];
             int nq = newnode(len[p] + 1, q);
113
             fa[q] = nq;
114
             for(; p \& ch[p][c] == q; p = fa[p]) ch[p][c] = nq;
115
             return nq;
116
117
         int extend(int p, int c) {
118
119
             if (ch[p][c]){
120
                  int q = ch[p][c];
                  if (len[p] + 1 == len[q]) return q;
121
122
                  return work(p, c);
123
             }
             int np = newnode(len[p] + 1);
124
             for(;p \&\& ch[p][c] == 0; p = fa[p]) ch[p][c] = np;
125
             if (!p) fa[np] = root;
126
             else{
127
                  int q = ch[p][c];
128
129
                  if (len[p] + 1 == len[q]) fa[np] = q;
130
                  else fa[np] = work(p, c);
             }
131
132
             return np;
133
         void solve() {
134
             int n; scanf("%d",&n);
135
             for(int i = 1; i <= n; i++) {
    scanf("%s", s);</pre>
136
137
                  int sn = strlen(s);
138
                  int last = root;
139
                  for(int j = 0; j < sn; ++j)
140
                      last = extend(last, s[j] - 'a');
141
142
             }
143
         }
144
```

3.3 Palindrome Related

3.3.1 Manacher

```
namespace Manachar {
 1
 2
            char S[MAXN << 1];</pre>
3
            int scnt, ans;
           int p[MAXN << 1]; //p[i] - 1
void init(char *s0, int sn0) {
    S[0] = '$'; S[1] = '#';
    for(int i = 0; i < sn0; i++) {</pre>
 4
 5
 6
 7
                         S[2 * i + 2] = s0[i];
 8
                        S[2 * i + 3] = '\#';
9
10
                  scnt = sn0 * 2 + 2;
11
                  S[scnt] = \frac{1}{2};
12
13
           void manachar() {
14
```

```
int id = 0, mx = 0;
15
16
            for(int i = 1; i < scnt; i++) {</pre>
                 p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
17
18
                 while(S[i + p[i]] == S[i - p[i]]) p[i]++;
19
                 if(i + p[i] > mx) {
20
                     mx = i + p[i];
21
                     id = i;
                 }
22
            }
23
        }
24
   }
25
```

3.3.2 Palindromic Automaton

```
namespace PAM {
1
       int scnt, S[MAXN];
2
3
       int pcnt, last, len[MAXN], fail[MAXN], ch[MAXN][26];
       int cnt[MAXN]; //节点i表示的本质不同的串的个数(调用count())
4
5
       int\ num[MAXN];\ //以节点i表示的最长回文串的最右端点为回文串结尾的回文串个数
6
       int newnode(int _len) {
7
           len[pcnt] = _len;
8
           cnt[pcnt] = num[pcnt] = 0;
           for(int i = 0; i < 26; i++) ch[pcnt][i] = 0;
9
10
           return pcnt++;
11
       inline void init() {
12
           S[scnt = 0] = -1;
13
           pcnt = 0;newnode(0);newnode(-1);
14
           fail[0] = 1; last = 0;
15
16
       int getfail(int x) {
17
           while(S[scnt - len[x] - 1] != S[scnt]) x = fail[x];
18
19
           return x;
20
21
       void extend(int c) {
22
           S[++scnt] = c;
23
           int cur = getfail(last);
           if(!ch[cur][c]) {
24
               int now = newnode(len[cur] + 2);
25
               fail[now] = ch[getfail(fail[cur])][c];
26
27
               ch[cur][c] = now;
28
               num[now] = num[fail[now]] + 1;
29
           last = ch[cur][c];
30
           cnt[last]++;
31
32
33
       void count() {
           for(int i = pcnt - 1; i >= 0; i--) cnt[fail[i]] += cnt[i];
34
35
       }
36
   };
```

4 Math

4.1 Algebra

4.1.1 FFT

```
//不预处理精度
   const double pi = acos(-1.0);
   const int MAXN = 300003;
4
   struct comp {
5
        double x, y;
        comp operator + (const comp& a) const { return (comp) \{x + a.x, y + a.y\}; }
6
        comp operator - (const comp& a) const { return (comp) {x - a.x, y - a.y}; }
7
        comp operator * (const comp& a) const { return (comp) {x * a.x - y * a.y, x * a.y +
8
       y * a.x; }
9
   };
   int rev[MAXN], T;
10
   comp tmp;
11
   void fft(comp *a, int r) {
12
13
        if(r == -1) for(int i = 0; i < T; i++) a[i] = a[i] * a[i];
        for(int i = 0; i < T; i++) if(rev[i] > i) swap(a[rev[i]], a[i]);
14
        for(int i = 2, mid = 1; i <= T; mid = i, i <<= 1) {
15
16
            comp step = (comp) \{cos(pi / mid), r * sin(pi / mid)\};
            for(int j = 0; j < T; j += i) {
17
                comp cur = (comp) \{1, 0\};
18
                for(int k = j; k < j + mid; k++, cur = cur * step) {
19
                    tmp = a[k + mid] * cur;
20
                    a[k + mid] = a[k] - tmp;
21
22
                    a[k] = a[k] + tmp;
23
                }
            }
24
25
26
        if(r == -1) for(int i = 0; i < T; i++) a[i].y = (int)(a[i].y / T / 2 + 0.5);
27
28
   comp A[MAXN];
   void init(int n) {
29
        for(T = 1; T \le n; T \le 1);
30
31
        for(int i = 1; i < T; i++) {
            if(i & 1) rev[i] = (rev[i >> 1] >> 1) ^ (T >> 1);
32
33
            else rev[i] = rev[i >> 1] >> 1;
34
            //A[i] = (comp) \{0, 0\};
       }
35
36
    //预处理精度
37
   int rev[MAXN], T;
38
   comp Sin[MAXN], tmp;
void fft(comp *a, int r) {
39
40
        if(r == -1) {
41
            for(int i = 0; i < (T >> 1); i++) Sin[i].y = -Sin[i].y;
42
            for(int i = 0; i < T; i++) a[i] = a[i] * a[i];</pre>
43
44
        for(int i = 1; i < T; i++) if(rev[i] > i) swap(a[rev[i]], a[i]);
45
        for(int i = 2, mid = 1, s = (T >> 1); i <= T; mid = i, i <<= 1, s >>= 1) {
46
            for(int j = 0; j < T; j += i) {
47
                for(int k = j, cur = 0; k < j + mid; k++, cur += s) {
48
                    tmp = a[k + mid] * Sin[cur];
49
                    a[k + mid] = a[k] - tmp;
50
                    a[k] = a[k] + tmp;
51
52
```

```
53
             }
54
        if(r == -1) for(int i = 0; i < T; i++) a[i].y = (int)(a[i].y / T / 2 + 0.5);
55
56
   comp A[MAXN];
57
    void init(int n) {
58
59
        for(T = 1; T \le n; T \le 1);
        for(int i = 0; i < T; i++) {
60
             if(i & 1) rev[i] = (rev[i >> 1] >> 1) ^ (T >> 1);
61
             else rev[i] = rev[i >> 1] >> 1;
62
             //A[i] = (comp) \{0, 0\};
63
64
        for(int i = 0; i < (T >> 1); i++) {
    Sin[i] = (comp) {cos(2 * pi * i / T), sin(2 * pi * i / T)};
65
66
        }
67
68
   }
   int main() {
69
        scanf("%d%d", &n, &m);
70
        init(n + m);
71
        for(int i = 0; i <= n; i++) scanf("%lf", &A[i].x);</pre>
72
        for(int i = 0; i <= m; i++) scanf("%lf", &A[i].y);</pre>
73
        fft(A, 1);
74
        fft(A, -1);
75
        for(int i = 0; i \le n + m; i++) printf("%d%c", (int)(A[i].y), i == n + m? '\n': '
76
        ');
        return 0;
77
78
    }
```

4.1.2 NTT

4.常用NTT模数:

以下模数的共同g=3189

$p=r\times 2^k+1$	k	g
104857601	22	3
167772161	25	3
469762049	26	3
950009857	21	7
998244353	23	3
1004535809	21	3
2013265921	27	31
2281701377	27	3
3221225473	30	5

```
const int MAXN = 300005, G = 3, mod = 998244353; //or (479LL << 21) + 1
   int rev[MAXN], T;
   LL qpow(LL x, LL y)  {
3
       LL res = 1;
4
5
       while(y) {
            if(y \& 1) res = res * x % mod;
6
            x = x * x % mod;
7
8
            y >>= 1;
9
10
       return res;
11
   LL A[MAXN], B[MAXN];
12
   void ntt(LL *a, int r) {
```

```
if(r == -1) for(int i = 0; i < T; i++) A[i] = A[i] * B[i] % mod;
14
         for(int i = 0; i < T; i++) if(rev[i] > i) swap(a[rev[i]], a[i]);
15
         for(int i = 2, mid = 1; i <= T; mid = i, i <<= 1) {
    LL gn = qpow(G, (mod - 1) / i);</pre>
16
17
              if(r == -1) gn = qpow(gn, mod - 2);
18
              for(int j = 0; j < T; j += i) {
19
                  LL cur = 1, tmp;
20
                  for(int k = j; k < j + mid; k++, cur = cur * gn % mod) {
    tmp = a[k + mid] * cur % mod;</pre>
21
22
                       a[k + mid] = ((a[k] - tmp) \% mod + mod) \% mod;
23
                       a[k] = (a[k] + tmp) \% mod;
24
                  }
25
26
             }
27
28
         if(r == -1) {
              LL inv = qpow(T, mod - 2);
29
              for(int i = 0; i < T; i++) a[i] = a[i] * inv % mod;
30
31
32
    void init(int n) {
33
         for(T = 1; T <= n; T <<= 1);
34
         for(int i = 0; i < T; i++) {</pre>
35
             if(i & 1) rev[i] = (rev[i >> 1] >> 1) ^ (T >> 1);
36
             else rev[i] = rev[i >> 1] >> 1;
37
38
39
    }
```

4.1.3 MTT

```
#include <bits/stdc++.h>
   using namespace std;
   typedef long long LL;
   const double pi = acos(-1.0);
   const int MAXN = 300003;
6
   struct comp {
7
        double x, y;
        comp operator + (const comp& a) const { return (comp) \{x + a.x, y + a.y\}; }
8
       comp operator - (const comp& a) const { return (comp) {x - a.x, y - a.y}; }
9
       comp operator * (const comp& a) const { return (comp) {x * a.x - y * a.y, x * a.y +
10
       y * a.x; }
11
   #define conj(a) ((comp)\{a.x, -a.y\})
12
   int rev[MAXN], T;
13
   comp Sin[MAXN], tmp;
14
   void fft(comp *a, int r) {
15
        for(int i = 1; i < T; i++) if(rev[i] > i) swap(a[rev[i]], a[i]);
16
        for(int i = 2, mid = 1, s = (T >> 1); i <= T; mid = i, i <<= 1, s >>= 1) {
17
            for(int j = 0; j < T; j += i) {
18
                for(int k = j, cur = 0; k < j + mid; k++, cur += s) {</pre>
19
                    tmp = a[k + mid] * Sin[cur];
20
                    a[k + mid] = a[k] - tmp;
21
22
                    a[k] = a[k] + tmp;
                }
23
            }
24
       }
25
26
   void init(int n) {
27
28
        for(T = 1; T <= n; T <<= 1);
29
        for(int i = 0; i < T; i++) {</pre>
30
            if(i & 1) rev[i] = (rev[i >> 1] >> 1) ^ (T >> 1);
```

```
else rev[i] = rev[i >> 1] >> 1;
31
32
        for(int i = 0; i < (T >> 1); i++) {
    Sin[i] = (comp) {cos(2 * pi * i / T), sin(2 * pi * i / T)};
33
34
35
36
37
    int n, m, mod;
    void mtt(int *x, int *y) {
38
         for(int i = 0; i < T; i++) (x[i] += mod) %= mod, (y[i] += mod) %= mod;
39
         static comp a[MAXN], b[MAXN];
40
         static comp dfta[MAXN], dftb[MAXN], dftc[MAXN], dftd[MAXN];
41
         for(int i = 0; i < T; i++) {
42
             a[i] = \{x[i] \& 0x7fff, x[i] >> 15\};
43
             b[i] = {y[i] \& 0x7fff, y[i] >> 15};
44
45
         fft(a, 1); fft(b, 1);
46
         for(int i = 0; i < T; i++) {</pre>
47
             int j = (T - i) & (T - 1);
48
             static comp da, db, dc, dd;
49
             da = (a[i] + conj(a[j])) * (comp){0.5, 0};
50
             db = (a[i] - conj(a[j])) * (comp){0, -0.5};
51
             dc = (b[i] + conj(b[j])) * (comp){0.5, 0};
52
             dd = (b[i] - conj(b[j])) * (comp){0, -0.5};
53
             dfta[j] = da * dc;
54
             dftb[j] = da * dd;
55
56
             dftc[j] = db * dc;
57
             dftd[j] = db * dd;
58
         for(int i = 0; i < T; i++) {</pre>
59
             a[i] = dfta[i] + dftb[i] * (comp) {0, 1};
60
             b[i] = dftc[i] + dftd[i] * (comp) {0, 1};
61
62
         //for(int \ i = 0; \ i < (T >> 1); \ i++) \ Sin[i].y = -Sin[i].y;
63
         fft(a, -1); fft(b, -1);
64
         for(int i = 0; i < T; i++) {</pre>
65
             static int da, db, dc, dd;
66
             da = (LL)(a[i].x / T + 0.5) \% mod;
67
             db = (LL)(a[i].y / T + 0.5) \% mod;
68
             dc = (LL)(b[i].x / T + 0.5) \% mod;
69
             dd = (LL)(b[i].y / T + 0.5) \% mod;
70
71
             x[i] = ((da + ((LL)(db + dc) << 15) + ((LL)(dd << 30)) % mod + mod) % mod;
        }
72
73
   }
    int main() {
74
         static int a[MAXN], b[MAXN];
75
        scanf("%d%d%d", &n, &m, &mod);
for(int i = 0; i <= n; i++) scanf("%d", a + i);
for(int i = 0; i <= m; i++) scanf("%d", b + i);</pre>
76
77
78
         init(n + m);
79
80
        mtt(a, b);
         for(int i = 0; i <= n + m; i++) printf("%d%c", a[i], i == n + m ? ^{\prime}\n' : '');
81
82
         return 0;
83
```

4.1.4 FWT

```
void FWT(LL *a,int n) {
    for(int i = 2; i <= n; i <<= 1) {
    for(int j = 0; j < n; j += i) {
        for(int d = 0, w = i >> 1; d < w; d++){</pre>
```

```
LL u = a[j + d], v = a[j + d + w];
5
 6
                        //xor: a[j + d] = u + v, a[j + d + w] = u - v;
                        //and: a[j + d] = u + v;
 7
 8
                        //or : a[j + d + w] = u + v;
9
                  }
             }
10
         }
11
12
    void UFWT(LL *a, int n) {
13
         for(int i = 2; i <= n; i <<= 1) {
14
              for(int j = 0; j < n; j += i) {
   for(int d = 0, w = i >> 1; d < w; d++) {
     LL u = a[j + d], v = a[j + d + w];
}</pre>
15
16
17
                       //xor: a[j + d] = (u + v) / 2, a[j + d + w] = (u - v) / 2;
18
                        //and: a[j + d] = u - v;
19
                        //or : a[j + d + w] = v - u;
20
21
                   }
22
             }
23
         }
24
    void solve(int n) {
25
         FWT(a, n); FWT(b, n);
26
         for(int i = 0; i < n; i++) a[i] = a[i] * b[i];
27
28
         UFWT(a, n);
29
    }
```

4.1.5 FFT Divide and Conquer

$$f_i = \sum_{j=1}^{i-1} f_j \cdot g_{i-j}$$

```
#include <bits/stdc++.h>
1
2
   using namespace std;
3
   typedef long long LL;
4
5
    const int MAXN = 300005, G = 3, mod = 998244353;
    namespace NTT {
6
        LL A[MAXN], B[MAXN]
7
        int rev[MAXN], T;
8
        LL qpow(LL x, LL y) {
9
            LL res = 1;
10
11
            while(y) {
                 if(y & 1) res = res * x % mod;
12
                 x = x * x % mod;
13
14
                 y >>= 1;
            }
15
16
            return res;
17
        void ntt(LL *a, int r) {
18
             for(int i = 0; i < T; i++) if(rev[i] > i) swap(a[rev[i]], a[i]);
19
20
             for(int i = 2, mid = 1; i <= T; mid = i, i <<= 1) {
                 LL gn = qpow(G, (mod - 1) / i);
21
22
                 if(r == -1) gn = qpow(gn, mod - 2);
                 for(int j = 0; j < T; j += i) {
23
                      LL cur = 1, tmp;
24
                     for(int k = j; k < j + mid; k++, cur = cur * gn % mod) {
    tmp = a[k + mid] * cur % mod;</pre>
25
26
                          a[k + mid] = ((a[k] - tmp) \% mod + mod) \% mod;
27
```

```
28
                         a[k] = (a[k] + tmp) \% mod;
29
                     }
                }
30
31
            if(r == -1) {
32
                LL inv = qpow(T, mod - 2);
33
                for(int i = 0; i < T; i++) a[i] = a[i] * inv % mod;
34
35
36
        void init(int n) {
37
            for(T = 1; T <= n; T <<= 1);
38
            for(int i = 0; i < T; i++) {</pre>
39
                if(i & 1) rev[i] = (rev[i >> 1] >> 1) ^ (T >> 1);
40
41
                else rev[i] = rev[i >> 1] >> 1;
42
            }
43
        }
44
   LL f[MAXN], g[MAXN];
45
   using namespace NTT;
46
47
   void solve(int 1, int r) {
48
        if(l == r) return;
        int mid = (l + r) \gg 1;
49
        solve(l, mid);
50
        init(r - l);
51
        for(int i = 0; i < T; i++) A[i] = B[i] = 0;
52
53
        for(int i = 0; i <= mid - l; i++) A[i] = f[i + l];
54
        for(int i = 0;
                       i \ll r - l; i++) B[i] = g[i];
55
        ntt(A, 1); ntt(B, 1);
56
        for(int i = 0; i < T; i++) A[i] = A[i] * B[i] % mod;
        ntt(A, -1);
57
        for(int i = mid + 1; i <= r; i++) f[i] =(f[i] + A[i - l]) % mod;</pre>
58
59
        solve(mid + 1, r);
   }
60
   int main() {
61
        int n; scanf("%d", &n);
62
        for(int i = 1; i < n; i++) scanf("%lld", g + i);</pre>
63
64
        f[0] = 1;
        solve(0, n - 1);
65
66
        for(int i = 0; i < n; i++) printf("%lld%c", f[i], i == n - 1? '\n': ');
67
68
```

4.1.6 Linear Basis

```
1
   //dynamic
2
   const int D = 60;
3
   struct Basis {
4
       vector<int> ind;
5
        vector<LL> base;
6
        Basis() {
7
            ind.resize(D, -1);
8
            base.resize(D);
9
        bool update(LL x, int id) {
10
            for(int i = 0; i < D; i++) if(\simind[i] && x >> i & 1) {
11
                x ^= base[i];
12
13
            if(!x) return 1;
14
            int pos = __builtin_ctzll(x);
15
16
            ind[pos] = id;
```

```
17
            base[pos] = x;
            return 0;
18
19
        }
20
   };
   //array
int Gauss(int n, int m) {
21
22
        int num = 1;
23
        for(int x = 1; x <= n && x <= m; x++) {
24
25
            int t = 0;
            for(int j = x; j \le m; j++) if(g[j][x]) { t = j; break; }
26
27
            if(t) {
                 swap(g[x], g[t]);
28
29
                 for(int i = x + 1; i \le n; i++) {
                     if(g[i][x]) {
30
                         for(int k = 1; k \le m; k++) g[i][k] ^= g[x][k];
31
32
                 }
33
34
                 num++;
35
            }
36
        return --num;
37
38
39
    //long long
   int Gauss() {
40
41
        int num = 1;
42
        for(int k = 61; k >= 0; k--) {
43
            int t = 0;
            for(int j = num; j \le cnt; j++) if((A[j] >> k) & 1) { t = j; break; }
44
45
            if(t) {
                 swap(A[t], A[num]);
46
                 for(int j = num + 1; j <= cnt; j++) if((A[j] >> k) & 1) A[j] ^- A[num];
47
48
            }
49
        }
50
        return --num;
51
52
```

4.1.7 Lagrange Polynomial

$$L(x) = \sum_{i=0}^{n} y_i \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}$$

```
#include <bits/stdc++.h>
  using namespace std;
3 typedef long long LL;
   typedef pair<int, int> P;
   const int MAXN = 3005, mod = 998244353;
5
   int exgcd(int a, int b, int &x, int &y) {
6
7
        int d = a;
        if(b != 0) {
8
            d = exgcd(b, a \% b, y, x);
9
10
            y = (a / b) * x;
11
12
        else {
13
           x = 1; y = 0;
14
15
        return d;
   }
16
```

```
17
   int inv(int a) {
18
        int x, y;
19
        exgcd(a, mod, x, y);
20
        return (x % mod + mod) % mod;
21
22
   struct Lagrange {
23
        int n, a[MAXN][2];
24
        void init() {
            for(int i = 0; i \le n; i++) a[i][0] = a[i][1] = 0;
25
            n = 0;
26
            a[0][1] = 1;
27
28
29
        int query(int x, int q = 0) {
30
            int res = 0;
            for(int i = n; i >= 0; i--) res = ((LL)res * x + a[i][q]) % mod;
31
32
            return res;
33
        void update(int x, int y) {
34
35
            a[n][0] = 0;
            int v = (LL)(y - query(x) + mod) \% mod * inv(query(x, 1)) \% mod;
36
            for(int i = 0; i <= n; i++) a[i][0] = (a[i][0] + (LL)a[i][1] * v) % mod;
37
            a[++n][1] = 0;
38
            for(int i = n; i; i--) a[i][1] = (a[i - 1][1] + (LL)a[i][1] * (mod - x)) % mod;
39
            a[0][1] = (LL)a[0][1] * (mod - x) % mod;
40
        }
41
42
   }p;
43
    int main() {
44
        ios::sync_with_stdio(0); cin.tie(0); cout.precision(6); cout << fixed;</pre>
45
        int Q;
46
        cin >> Q;
47
        int op, x, y;
48
        p.n = 0;
        p.init();
49
        while(Q--) {
50
51
            cin >> op >> x;
            if(op == 1) {
52
                 cin >> y
53
                p.update(x, y);
54
55
56
            else cout << p.query(x) << endl;</pre>
57
58
        return 0;
59
```

4.1.8 BM Alogrithm

```
#include<bits/stdc++.h>
using namespace std;

#define rep(i,a,n) for (int i=a;i<n;i++)

#define per(i,a,n) for (int i=n-1;i>=a;i--)

#define pb push_back

#define mp make_pair

#define all(x) (x).begin(),(x).end()

#define se second

#define SZ(x) ((int)(x).size())

typedef vector<int> VI;

typedef long long ll;

typedef pair<int,int> PII;

const ll mod=1000000007;
```

```
ll powmod(ll a,ll b) {ll res=1; a\%=mod; assert(b>=0); for(;b;b>>=1) {if(b&1)res=res*a\%=mod;
15
        a=a*a%mod;}return res;}
16
    // head
    namespace linear_seq {
17
        const int N=10010;
18
        11 res[N],base[N],_c[N],_md[N];
19
20
21
        vector<int> Md;
        void mul(ll *a,ll *b,int k) {
22
             rep(i,0,k+k) _c[i]=0;
23
             rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-1;i>=k;i--) if (_c[i])
24
25
26
                 rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
27
             rep(i,0,k) a[i]=_c[i];
28
        int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
29
               printf("%d \mid n", SZ(b));
30
            11 \text{ ans=0,pnt=0;}
31
             int k=SZ(a);
32
33
             assert(SZ(a)==SZ(b));
             rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
34
            Md.clear();
35
             rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
36
             rep(i,0,k) res[i]=base[i]=0;
37
             res[0]=1;
38
39
            while ((1ll<<pnt)<=n) pnt++;</pre>
40
             for (int p=pnt;p>=0;p--) {
41
                 mul(res,res,k);
42
                 if ((n>>p)&1) {
                      for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
43
                      rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
44
                 }
45
            }
46
             rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
47
            if (ans<0) ans+=mod;</pre>
48
             return ans;
49
50
        VI BM(VI s) {
51
            VI C(1,1),B(1,1);
52
53
             int L=0, m=1, b=1;
54
             rep(n,0,SZ(s)) {
55
                 11 d=0;
                 rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
56
57
                 if (d==0) ++m;
                 else if (2*L<=n) {
58
                      VI T=C;
59
                      11 c=mod-d*powmod(b,mod-2)%mod;
60
                      while (SZ(C)<SZ(B)+m) C.pb(0);</pre>
61
                      rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
62
                      L=n+1-L; B=T; b=d; m=1;
63
                 } else {
64
                      11 c=mod-d*powmod(b,mod-2)%mod;
65
                      while (SZ(C) < SZ(B) + m) C.pb(0);
66
                      rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
67
68
                      ++m;
                 }
69
70
            }
71
             return C;
72
        int gao(VI a,ll n) {
73
74
             VI c=BM(a);
```

```
75
            c.erase(c.begin());
76
            rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
77
            return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
78
        }
79
   };
80
    int main() {
81
        while (~scanf("%d",&n)) {
82
83
            vector<int>v
            v.push_back(1);
84
            v.push_back(2);
85
            v.push_back(4);
86
            v.push_back(7);
87
            v.push_back(13);
88
89
            v.push_back(24);
90
            //VI{1,2,4,7,13,24}
            printf("%d\n",linear_seq::gao(v,n-1));
91
92
        }
93
   }
```

4.2 Math Theory

4.2.1 Inverse

```
//O(logn) 求n的 逆元
   const int mod = 1e6 + 3;
   int exgcd(int a, int b, int &x, int &y) {
3
4
        int d = a;
        if(b != 0) {
5
            d = exgcd(b, a \% b, y, x);
6
            y -= (a / b) * x;
7
8
9
        else {
            x = 1; y = 0;
10
11
12
       return d;
13
   }
14
   int inverse(int a) {
        int x, y;
15
16
        exgcd(a, mod, x, y);
        return (x % mod + mod) % mod;
17
18
19
   int inverse(int a) { return qpow(a, mod - 2); }
   //O(n)求1~n的逆元
20
21
   int inv[MAXN];
   void init() {
22
        inv[0] = inv[1] = 1;
23
        for(int i = 2; i < MAXN; i++) inv[i] = (long long)(mod - mod / i) * inv[mod % i] %</pre>
24
       mod;
   }
25
```

4.2.2 Lucas

```
1 //mod很小可以预处理递元的情况
2 void init() {
3    fac[0] = 1;
4    for(int i = 1; i < mod; i++) fac[i] = (long long)fac[i - 1] * i % mod;
5    inv[0] = inv[1] = 1;</pre>
```

```
for(int i = 2; i < mod; i++) inv[i] = (long long)(mod - mod / i) * inv[mod % i] %</pre>
7
        for(int i = 1; i < mod; i++) inv[i] = (long long)inv[i] * inv[i - 1] % mod;</pre>
8
   int C(int a, int b) {
9
10
        if(b > a) return 0;
        if(a < mod) return (long long)fac[a] * inv[b] % mod * inv[a - b] % mod;
11
        return (long long)C(a / mod, b / mod) * C(a % mod, b % mod) % mod;
12
13
    //mod过大不能预处理逆元的情况
14
   LL qpow(LL x, LL y) {
15
        LL res = 1;
16
        while(y) {
17
18
            if(y \& 1) res = res * x % mod;
            x = x * x % mod;
19
            y >>= 1;
20
21
22
        return res;
23
   LL C(LL a, LL b) {
24
        if(b > a) return 0;
25
        if(b > a - b) b = a - b;
26
27
        LL s1 = 1, s2 = 1;
        for(LL i = 0; i < b; i++) {
  s1 = s1 * (a - i) % mod;
28
29
            s2 = s2 * (i + 1) % mod;
30
31
32
        return s1 * qpow(s2, mod - 2) % mod;
33
   LL lucas(LL a, LL b) {
34
        if(a < mod) return C(a, b);</pre>
35
        return lucas(a / mod, b / mod) * C(a % mod, b % mod);
36
   }
37
```

4.2.3 CRT && exCRT

 $x \equiv a_i \pmod{m_i}$

```
namespace CRT {
1
        LL m[MAXN], a[MAXN];
2
3
        LL exgcd(LL _a, LL _b, LL &x, LL &y) {
             if(!_b) {
4
5
                 x = 1; y = 0;
                 return _a;
6
7
            LL d = exgcd(_b, _a % _b, y, x);
y -= (_a / _b) * x;
8
9
             return d;
10
11
        LL crt(int n) {
12
             LL M = 1, tmp, res = 0, x, y;
13
             for(int i = 1; i <= n; i++) M *= m[i];</pre>
14
             for(int i = 1; i <= n; i++) {
15
                 tmp = M / m[i];
16
                 exgcd(tmp, m[i], x, y);
17
                 x = (x + m[i]) % m[i];
18
                 res = (a[i] * x % M * tmp % M + res) % M;
19
20
```

```
21
            return res;
22
        }
23
   }
24
   namespace EXCRT {
        LL m[MAXN], a[MAXN];
LL exgcd(LL _a, LL _b, LL &x, LL &y) {
25
26
27
             if(!_b) {
28
                 x = 1; y = 0;
29
                 return _a;
30
             LL d = exgcd(_b, _a % _b, y, x);
31
             y = (_a / _b) * x;
32
33
             return d;
34
        LL excrt(int n) {
35
             LL M = m[1], A = a[1], x, y, d, tmp;
36
             for(int i = 2; i <= n; i++) {
37
                 d = exgcd(M, m[i], x, y);
38
39
                 if((A - a[i]) % d) return -1; //No solution
                 tmp = M / d; M *= m[i] / d;
40
                 y = (A - a[i]) / d % M * y % M;
41
                 y = (y + tmp) \% tmp;
42
                 A = (m[i] \% M * y \% M + a[i]) \% M;
43
                 A = (A + M) \% M;
44
45
             return A;
46
47
        }
48
             LL inv(LL _a, LL _b) {
             LL x, y;
49
             exgcd(_a, _b, x, y);
return (x % _b + _b) % _b;
50
51
52
        LL excrt(int n) {
53
             LL M = m[1], A = a[1], x, y, d, c, tmp;
54
             for(int i = 2; i <= n; i++) {</pre>
55
                 d = exgcd(M, m[i], x, y);
56
                 c = a[i] - A;
57
                 if(c % d) return -1;
58
59
                 c = (c \% m[i] + m[i]) \% m[i];
60
                 M /= d; m[i] /= d;
61
                 c = c / d * inv(M % m[i], m[i]) % m[i];
62
                 tmp = M;
                 M *= m[i] * d;
63
                 A = (c^* tmp \% M * d \% M + A) \% M;
64
65
66
             return A;
67
        }
68
```

4.2.4 BSGS

```
const int MOD = 76543;
int hs[MOD + 5], head[MOD + 5], nxt[MOD + 5], id[MOD + 5], ecnt;
void insert(int x, int y) {
   int k = x % MOD;
   hs[ecnt] = x, id[ecnt] = y, nxt[ecnt] = head[k], head[k] = ecnt++;
}
int find(int x) {
   int k = x % MOD;
   for(int i = head[k]; i; i = nxt[i])
```

```
10
            if(hs[i] == x)
11
                return id[i];
12
        return -1;
13
14
   int BSGS(int a, int b, int c){
        memset(head, 0, sizeof head); ecnt = 1;
15
        if(b == 1) return 0;
16
        int m = sqrt(c * 1.0), j;
17
18
        LL x = 1, p = 1;
        for(int i = 0; i < m; i++, p = p * a % c)
19
            insert(p * b % c, i);
20
        for(LL i = m; ;i += m){
21
            if((j = find(x = x * p % c)) != -1) return i - j;
22
23
            if(i > c) break;
24
25
        return -1;
26
   }
```

4.2.5 Miller-Rabin && PollardRho

```
1
   LL ksc(LL a,LL n,LL mod){
2
        LL ret=0;
3
        for(;n;n>>=1){
             if(n&1){ret+=a;if(ret>=mod)ret-=mod;}
4
5
            a <<=1; if(a >= mod)a -= mod;
6
        }
7
        return ret;
8
9
    LL ksm(LL a, LL n, LL mod){
10
        LL ret = 1;
11
        for(;n;n>>=1){
             if(n&1)ret=ksc(ret,a,mod);
12
13
            a=ksc(a,a,mod);
        }
14
15
        return ret;
16
    int millerRabin(LL n){
17
        if(n<2 || (n!=2 && !(n&1)))return 0;
18
        LL d=n-1; for(;!(d&1); d>>=1);
19
20
        for(int i=0;i<20;++i){</pre>
21
             LL a=rand()\%(n-1)+1;
22
            LL t=d, m=ksm(a,d,n);
             for(;t!=n-1 && m!=1 && m!=n-1;m=ksc(m,m,n),t<<=1);</pre>
23
            if(m!=n-1 && !(t&1)) return 0;
24
        }
25
26
        return 1;
27
   LL cnt,fact[100];
28
    LL gcd(LL a,LL b){return !b?a:gcd(b,a%b);}
29
30
   LL pollardRho(LL n, int a){
31
        LL x=rand()%n, y=x, d=1, k=0, i=1;
32
        while(d==1){
33
            ++k;
            x=ksc(x,x,n)+a;if(x>=n)x-=n;
34
            d=gcd(x>y?x-y:y-x,n);
35
36
            if(k==i){y=x;i<<=1;}
37
38
        if(d==n)return pollardRho(n,a+1);
39
        return d;
40
    }
```

```
void findfac(LL n){
41
        if(millerRabin(n)){fact[++cnt]=n; return;}
42
43
        LL p=pollardRho(n,rand()%(n-1)+1);
        findfac(p);
44
        findfac(n/p);
45
46
    4.2.6 \varphi(n)
1
   int phi(int x) {
2
        int res = x;
        for(int i = 2; i * i <= x; i++) {</pre>
3
            if(x \% i == 0) {
4
                 res = res / i * (i - 1);
5
                 while(x % i == 0) x /= i;
6
7
            }
8
        if(x > 1) res = res / x * (x - 1);
9
10
        return res;
11
   }
```

4.2.7 Euler Sieve

```
int prime[MAXN], cnt, phi[MAXN], mu[MAXN];
1
   bool isp[MAXN];
2
3
   int min_pow[MAXN];
                          //最小质因子最高次幂
4
   int min_sum[MAXN];
5
                          //1+p+p^2+...+p^k
   int div_sum[MAXN];
6
                          //约数和
7
8
   int min_index[MAXN]; //最小质因子的指数
                          //约数个数
9
   int div_num[MAXN];
   void Euler(int n) {
10
        mu[1] = phi[1] = div_num[1] = div_sum[1] = 1;
11
        for(int i = 2; i <= n; i++) {</pre>
12
            if(!isp[i]) {
13
                prime[++cnt] = min_pow[i] = i;
14
                phi[i] = i - 1;
15
                mu[i] = -1;
16
                min_index[i] = 1; div_num[i] = 2;
17
                div_sum[i] = min_sum[i] = i + 1;
18
19
20
            for(int j = 1; j <= cnt && i * prime[j] <= n; j++) {</pre>
                isp[i * prime[j]] = 1;
21
22
                if(i % prime[j] == 0) {
                     phi[i * prime[j]] = phi[i] * prime[j];
23
                     mu[i * prime[j]] = 0;
24
25
                     min_index[i * prime[j]] = min_index[i] + 1;
26
                     div_num[i * prime[j]] = div_num[i] / (min_index[i] + 1) * (min_index[i *
27
        prime[j]] + 1);
28
                     min_sum[i * prime[j]] = min_sum[i] + min_pow[i] * prime[j];
29
                     div_sum[i * prime[j]] = div_sum[i] / min_sum[i] * min_sum[i * prime[j]];
min_pow[i * prime[j]] = min_pow[i] * prime[j];
30
31
32
                     break;
33
                phi[i * prime[j]] = phi[i] * (prime[j] - 1);
34
```

```
mu[i * prime[j]] = -mu[i];
35
36
                   div_num[i * prime[j]] = div_num[i] << 1;</pre>
37
                   min_index[i * prime[j]] = 1;
38
39
40
                   div_sum[i * prime[j]] = div_sum[i] * (prime[j] + 1);
                   min_pow[i * prime[j]] = prime[j];
min_sum[i * prime[j]] = prime[j] + 1;
41
42
              }
43
         }
44
    }
45
```

4.2.8 DuJiao Sieve

$$\sum_{i=1}^{n} \varphi(i)$$

```
vector<int> prime;
1
   int phi[MAXN], P[MAXN];
2
   bool isp[MAXN];
3
   unordered_map<LL, int> mp;
4
5
   void Euler(int n) {
        phi[1] = 1;
for(int i = 2; i <= n; i++) {</pre>
6
7
8
             if(!isp[i]) {
9
                 prime.push_back(i);
                 phi[i] = i - 1;
10
11
             for(auto x : prime) {
12
                 if(i * x > n) break;
13
                 isp[i * x] = 1;
14
                 if(i \% x == 0) {
15
                     phi[i * x] = phi[i] * x;
16
17
                     break;
18
                 phi[i * x] = phi[i] * (x - 1);
19
            }
20
21
        for(int i = 1; i <= n; i++) P[i] = (P[i - 1] + phi[i]) % mod;</pre>
22
23
   LL cal(LL n) {
24
        if(n < MAXN) return P[n];</pre>
25
        if(mp.count(n)) return mp[n];
26
27
        LL res = 0;
        for(LL i = 2, last; i <= n; i = last + 1) {</pre>
28
             last = n / (n / i);
29
             res += (last - i + 1) \% mod * cal(n / i) \% mod;
30
             res %= mod;
31
32
        mp[n] = ((\_int128)n * (n + 1) / 2 % mod + mod - res) % mod;
33
34
        return mp[n];
   }
35
```

$$\sum_{i=1}^{n} \mu(i)$$

```
1 LL cal(LL n) {
2    if(n < MAXN) return M[n];</pre>
```

```
if(mp.count(n)) return mp[n];
3
        LL res = 0;
4
5
        for(LL i = 2, last; i <= n; i = last + 1) {</pre>
            last = n / (n / i);
6
            res += (last - i + 1) * cal(n / i);
7
8
9
        mp[n] = 1 - res;
10
        return 1 - res;
11
```

4.2.9 Min_25 Sieve

$$\sum_{i=1}^{n} \varphi(i)$$

$$g_{k,n} \text{ and } h_{k,n} \text{ Count}$$

$$\sum_{i=1}^{n} i^{k}$$

```
1 #include <bits/stdc++.h>
using namespace std;
3 typedef long long LL;
4 const int MAXN = 1e6 + 5, mod = 1e9 + 7;
5 const int inv2 = (mod + 1) / 2, inv6 = (mod + 1) / 6;
6 int prime[MAXN], isp[MAXN], cnt;
7 LL g[3][MAXN << 1], h[3][MAXN << 0];
   LL w[MAXN << 1];
8
   int id1[MAXN], id2[MAXN];
9
   inline int MOD(LL x) { return x >= mod ? x - mod : x; }
10
    //inline int MOD(LL x)  { return x % mod;
11
    inline int add(LL x, LL y) { return MOD(MOD(x) + MOD(y)); }
12
13
    void Euler(int n) {
        for(int i = 2; i <= n; i++) {
14
             if(!isp[i]) {
15
16
                 prime[++cnt] = i;
                 h[0][cnt] = h[0][cnt - 1] + 1;
17
                 h[1][cnt] = add(h[1][cnt - 1], i);
h[2][cnt] = add(h[2][cnt - 1], (LL)i * i % mod);
18
19
20
             for(int j = 1; j <= cnt && i * prime[j] <= n; j++) {</pre>
21
                 isp[i * prime[j]] = 1;
22
                 if(i % prime[j] == 0) {
23
24
                     break;
25
26
            }
        }
27
28
   }
29
   LL n;
   int sz, m;
30
   inline int id(LL x) {
31
        return x \ll sz ? id1[x] : id2[n / x];
32
33
34
    //f(p \hat{k})
   inline int f(int p, LL pk) {
   return pk / p * (p - 1) % mod;
35
36
37
   LL S(LL x, int y) {
```

```
if(x <= 1 || prime[y] > x) return 0;
39
40
         //G(x) - H(j-1)
        LL res = add(add(g[1][id(x)], mod - g[0][id(x)]), mod - add(h[1][y - 1], mod - h[0][
41
        y - 1]));
        for(int j = y, k = 1; j \leftarrow cnt \& (LL)prime[j] * prime[j] \leftarrow x; j++, k = 1) {
42
             for(LL pk = prime[j]; pk * prime[j] <= x; pk *= prime[j], k++) {</pre>
43
                  res = add(res, S(x / pk, j + 1) * f(prime[j], pk) %                          mod + f(prime[j], pk *
44
        prime[j]));
45
             }
        }
46
47
        return res;
48
   int main() {
49
        ios::sync_with_stdio(0); cin.tie(0); cout.precision(6); cout << fixed;</pre>
50
51
        cin >> n;
52
        sz = sqrt(n);
        Euler(sz);
53
        for(LL \ i = 1, \ last, \ t; \ i <= n; \ i = last + 1) 
54
             last = n / (n / i);
55
             w[++m] = n / i, t = n / i \% mod;
56
             w[m] \le sz ? id1[w[m]] = m : id2[last] = m;
57
             g[0][m] = MOD(t + mod - 1);
58
             g[1][m] = add(t * (t + 1) % mod * inv2 % mod, mod - 1);
59
             g[2][m] = add((2 * t + 1) % mod * t * (t + 1) % mod * inv6 % mod, mod - 1);
60
61
62
        for(int j = 1; j <= cnt; j++) {</pre>
             for(int i = 1; i <= m && (LL)prime[j] * prime[j] <= w[i]; i++) {</pre>
63
                 g[0][i] = MOD(g[0][i] + mod - (g[0][id(w[i] / prime[j])] - h[0][j - 1]));
64
                 g[1][i] = MOD(g[1][i] + mod - ((LL)prime[j] * MOD(g[1][id(w[i] / prime[j])]
65
         + \bmod - h[1][j-1]) \% \bmod ); \\ g[2][i] = MOD(g[2][i] + \bmod - ((LL)prime[j] * prime[j] % \bmod * MOD(g[2][id(w)]) ) 
66
        [i] / prime[j])] + mod - h[2][j - 1]) % mod));
67
        }
68
         //S(n, 1) + F(1);
69
70
        LL ans = MOD(S(n, 1) + 1);
        cout << ans << endl;</pre>
71
        return 0;
72
73
```

4.2.10 Möbius Inversion

$$\sum_{i}^{n} \sum_{j}^{m} lcm(i, j) \pmod{p}$$

```
int mu[MAXN], prime[MAXN], sum[MAXN], cnt;
   bool isp[MAXN];
2
3
   void getmu(int n) {
       mu[1] = 1;
4
5
        for(int i = 2; i <= n; i++) {
6
            if(!isp[i]) {
7
                mu[i] = -1;
                prime[++cnt] = i;
8
9
            for(int j = 1; j <= cnt && i * prime[j] <= n; j++) {</pre>
10
                isp[i * prime[j]] = 1;
11
                if(i % prime[j] == 0) {
12
                     mu[i * prime[j]] = 0;
13
```

```
break;
14
15
                   mu[i * prime[j]] = -mu[i];
16
17
              }
         }
18
19
20
    ll n, m, ans;
    ll query(ll x, ll y) { return (x * (x + 1) / 2 % mod) * (y * (y + 1) / 2 % mod) % mod; }
ll F(ll x, ll y) {
21
22
         ll res = 0, last;
23
         for(ll i = 1; i <= min(x, y); i = last + 1) {
    last = min(x / (x / i), y / (y / i));
    res = (res + (sum[last] - sum[i - 1]) * query(x / i, y / i) % mod) % mod;</pre>
24
25
26
         }
27
28
         return res;
    }
29
30
    int main() {
31
         cin>>n>>m;
32
         getmu(min(n, m));
         for(ll\ i = 1;\ i \le min(n,\ m);\ i++)\ sum[i] = (sum[i - 1] + (i * i * mu[i]) % mod) %
33
         mod;
         ll last;
34
         for(ll d = 1; d <= min(n, m); d = last + 1) {</pre>
35
              last = min(n / (n / d), m / (m / d));
36
37
              ans = (ans + (last - d + 1) * (d + last) / 2 % mod * F(n / d, m / d) % mod) %
         mod;
38
39
         ans = (ans + mod) \% mod;
40
         cout<<ans<<endl;</pre>
         return 0;
41
    }
42
```

5 Geometry

5.1 Commonly Definition and Functions

5.1.1 Const and Functions

```
namespace CG{
1
        #define Point Vector
2
3
        const double pi=acos(-1.0);
        const double inf=1e100;
4
5
        const double eps=1e-9;
        template <typename T> inline T Abs(T x){return x>0?x:-x;}
6
        template <typename T> inline bool operator == (T x, T y){return Abs(x-y)<eps;}
7
8
        int sqn(double x){
9
            if (Abs(x)<eps) return 0;</pre>
            if (x>0) return 1;
10
            else return -1;
11
12
        }
13
   }
```

5.1.2 Point Definition

```
1
   namespace CG{
2
       struct Point{
3
            double x,y;
4
           Point(double x=0, double y=0):x(x),y(y){}
5
6
       Vector operator + (const Vector a,const Vector b){return Vector(a.x+b.x,a.y+b.y);}
       Vector operator - (const Vector a,const Vector b){return Vector(a.x-b.x,a.y-b.y);}
7
       Vector operator * (const Vector a,const double k){return Vector(a.x*k,a.y*k);}
8
       Vector operator / (const Vector a,const double k){return Vector(a.x/k,a.y/k);}
9
10
       bool operator < (const Vector a,const Vector b) {return a.x==b.x?a.y<b.y:a.x<b.x;}</pre>
11
       bool operator == (const Vector a,const Vector b) {return a.x==b.x && a.y==b.y;}
12
       double Dot(const Vector a,const Vector b){return a.x*b.x+a.y*b.y;}
       double Cross(const Vector a,const Vector b){return a.x*b.y-a.y*b.x;}
13
       double mult_Cross(const Vector a,const Vector b,const Vector c){return (a.x-c.x)*(b.
14
       y-c.y)-(b.x-c.x)*(a.y-c.y);}
       double mult_Dot(const Vector a,const Vector b,const Vector c){return (a.x-c.x)*(b.x-
15
       c.x)+(a.y-c.y)*(b.y-c.y);}
       double Norm(const Vector a){return sqrt(Dot(a,a));}
16
       double Angle(const Vector a,const Vector b){return acos(Dot(a,b)/Norm(a)/Norm(b));}
17
18
       Vector Rotate(const Vector a, const double theta){return Vector(a.x*cos(theta)-a.y*
       sin(theta),a.x*sin(theta)+a.y*cos(theta));}
       bool ToLeftTest(const Vector a,const Vector b){return Cross(a,b)<0;}</pre>
19
       double DisPP(const Vector a,const Vector b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y
20
       )*(a.y-b.y));}
21
   }
```

5.1.3 Line Definition

```
namespace CG{
struct Line{
    point p0,v,p1;
    double t,theta;
    Line(Point _p0=0,Point _v=0,double _t=1):p0(_p0),v(_v),t(_t){p1=p0+v*t; theta=
    atan2(v.y,v.x);}
```

```
6
                              // Line(Point \_p0=0, Point \_v=0, double \_t=1): p0(\_p0), p1(\_v)\{v=(p1-p0)/t; theta=0, double \_t=1): p0(\_v)\{v=(p1-p0)/t; theta=0, double \_t=1): p0(\_v)\{v=(p1-p0)/t; theta=0, d
                   atan2(v.y,v.x);
  7
                   };
 8
                   bool operator < (const Line n,const Line m) {return n.theta<m.theta;}</pre>
                   Point GetIntersection(const Line n,const Line m){return n.p0+n.v*Cross(m.v,(n.p0-m.
 9
                   p0))/Cross(n.v,m.v);}
                   bool OnLine(const Vector a, const Line 1){return Cross(1.p0-a,1.p1-a)==0;}
10
                   bool OnSegment(const Point a,const Line 1){return sgn(Cross(l.p0-a,l.p1-a))==0 &&
11
                   sgn(Dot(l.p0-a,l.p1-a))<0;}
                   double DisPL(const Point a,const Line 1){return Abs(Cross(1.p1-1.p0,a-1.p0)/Norm(1.
12
                   p1-l.p0));}
                   double DisPS(const Point a,const Line 1){
13
                              if (l.p0==l.p1) return Norm(a-l.p0);
14
                              Vector v1=l.p1-l.p0,v2=a-l.p0,v3=a-l.p1;
15
                              if (sgn(Dot(v1,v2))<0) return Norm(v2);</pre>
16
                              if (sgn(Dot(v1,v3))>0) return Norm(v3);
17
                              return DisPL(a,1);
18
19
20
                    Point GetProjection(const Point a, const Line 1){
21
                              Vector v=l.p1-l.p0;
                              return 1.p0+v*(Dot(v,a-1.p0)/Dot(v,v));
22
23
                    bool SegmentIntersection(const Line n,const Line m,bool p){
24
                              double c1=Cross(n.p1-n.p0,m.p1-m.p0);
25
                              double c2=Cross(n.p1-n.p0,m.p1-n.p0);
26
27
                              double c3=Cross(m.p1-m.p0,n.p0-m.p0);
28
                              double c4=Cross(m.p1-m.p0,n.p1-m.p0);
                              if (p){
29
                                         if (!sgn(c1) || !sgn(c2) || !sgn(c3) || !sgn(c4)){
30
                                                    return OnSegment(n.p0,m) | OnSegment(n.p1,m) | OnSegment(m.p0,n) |
31
                   OnSegment(m.p0,m);
32
                                        }
33
                              }
34
35
                              return (sgn(c1)*sgn(c2)<0 && sgn(c3)*sgn(c4)<0);</pre>
36
                   }
37
        }
```

5.1.4 Get Area

```
namespace CG{
    double GetArea(Point *p,int n){
        double area=Cross(p[n],p[1]);
        for (int i=2;i<=n;i++) area+=0.5*Cross(p[i-1],p[i]);
        return Abs(area);
    }
}</pre>
```

5.1.5 Get Circumference

5.1.6 Anticlockwise Sort

```
1
   namespace CG{
2
        void clockwise_sort(Point *p,int n){
3
             for(int i=0;i<n-2;i++){</pre>
4
                 double tmp = mult_Cross(p[i+1],p[i+2],p[i]);
5
                 if(tmp>0) return;
6
                 else if(tmp<0){</pre>
7
8
                      reverse(p,p+n);
9
                      return;
10
                 }
11
            }
12
        }
13
   }
```

5.2 Convex Hull

5.2.1 Get Convex Hull

```
namespace CG{
1
2
        Point p[MAXN],s[MAXN];
        int ConvexHull(Point *p,int n,Point *s){
3
4
            sort(p,p+n,cmp); //x从小到大,y从小到大;
5
            int m=0;
            for (int i=0;i<n;i++){</pre>
6
                 for (;m>=2 && Cross(s[m-1]-s[m-2],p[i]-s[m-1])<=0;m--);</pre>
7
8
                s[++m]=p[i];
            }
9
            int k=m;
10
            for (int i=n-2;i;i--){
11
                 for (;m>=k+1 && Cross(s[m-1]-s[m-2],p[i]-s[m-1])<=0;m--);</pre>
12
                s[++m]=p[i];
13
14
15
            return m-1;
16
        }
17
   }
```

5.2.2 Point in Convex Hull

```
namespace CG{
1
2
        bool PointInConvexHull(Point A){
            int l=1,r=tot-2,mid;
3
            while(l<=r){</pre>
4
5
                 mid=(l+r)>>1;
                 double a1=Cross(p[mid]-p[0],A-p[0]);
6
7
                 double a2=Cross(p[mid+1]-p[0],A-p[0]);
                 if(a1>=0 \&\& a2<=0){
8
                     if(Cross(p[mid+1]-p[mid],A-p[mid])>=0) return true;
9
10
                     return false;
11
                 else if(a1<0) r=mid-1;</pre>
12
13
                 else l=mid+1;
14
            return false;
15
16
        }
17
   }
```

5.3 Minkowski Sum

```
1
    namespace CG{
        void Minkowski(Point *C1,int n,Point *C2,int m){
2
            for(int i=1;i<=n;i++) s1[i]=C1[i]-C1[i-1];</pre>
3
            for(int i=1;i<=m;i++) s2[i]=C2[i]-C2[i-1];</pre>
4
5
            A[tot=1]=C1[1]+C2[1];
6
            int p1=1,p2=1;
            while (p1<=n && p2<=m) ++tot,A[tot]=A[tot-1]+(s1[p1]*s2[p2]>=0?s1[p1++]:s2[p2
7
        ++]);
8
            while (p1<=n) ++tot,A[tot]=A[tot-1]+s1[p1++];</pre>
9
            while (p2<=m) ++tot,A[tot]=A[tot-1]+s2[p2++];</pre>
10
            tot=ConvexHull(A,tot);
11
        }
12
    }
```

5.4 Rotating Calipers

5.4.1 The Diameter of Convex Hull

```
namespace CG{
1
2
        double RotatingCalipers(Point *p,int n){
3
            double dis=0;
4
            for(int i=0, j=2; i<n;++i){</pre>
                 while (abs(Cross(p[i+1]-p[i],p[j]-p[i]))<abs(Cross(p[i+1]-p[i],p[j+1]-p[i]))</pre>
5
        ) j=(j+1)%n;
                 dis=max(dis,max(DisPP(p[j],p[i]),DisPP(p[j],p[i+1])));
6
7
8
            return dis;
9
        }
10
   }
```

5.4.2 The Min Distance Bewteen two Convex Hull

```
1
   namespace CG{
2
       ///点c到线段ab的最短距离
       double GetDist(Point a,Point b,Point c){
3
           if(dis(a,b) < esp) return dis(b,c); ///a,b是同一个点
4
           if(mult_Dot(b,c,a)<-esp) return dis(a,c); ///投影
5
6
           if(mult_Dot(a,c,b)<-esp) return dis(b,c);</pre>
7
           return fabs(mult_Cross(b,c,a)/dis(a,b));
8
       }
9
       ///求一条线段ab的两端点到另外一条线段bc的距离,反过来一样,共4种情况
10
       double MinDist(Point a, Point b, Point c, Point d){
11
12
           return min(min(GetDist(a,b,c),GetDist(a,b,d)),min(GetDist(c,d,a),GetDist(c,d,b))
       );
       }
13
       double RotatingCalipers(Point *p,int n,Point *q,int m){
14
           int yminP = 0,ymaxQ=0;
15
           for(int i=1;i< n;i++){ ///找到点集p组成的凸包的左下角
16
               if(p[i].y<p[yminP].y||(p[i].y==p[yminP].y)&&(p[i].x<p[yminP].x)) yminP = i;</pre>
17
18
19
           for(int i=1;i<m;i++){ ///找到点集q组成的凸包的右上角
               if(q[i].y>q[ymaxQ].y||(q[i].y==q[ymaxQ].y)&&(q[i].x>q[ymaxQ].x))              ymaxQ = i;
20
21
           double ans = DisPP(p[yminP],q[ymaxQ]); ///距离(yminP,ymaxQ)维护为当前最小值。
22
```

```
for(int i=0;i<n;i++){</pre>
23
                 double tmp;
24
                 while(tmp=(mult_Cross(q[ymaxQ+1],p[yminP],p[yminP+1])-mult_Cross(q[ymaxQ],p[
25
       yminP],p[yminP+1]))>esp)
26
                     ymaxQ = (ymaxQ+1)%m;
                 if(tmp<-esp) ans = min(ans,GetDist(p[yminP],p[yminP+1],q[ymax0]));</pre>
27
                 else ans=min(ans,MinDist(p[yminP],p[yminP+1],q[ymaxQ],q[ymaxQ+1]));
28
29
                yminP = (yminP+1)%n;
30
31
            return ans;
        }
32
   }
33
```

5.5 Half Plane Intersection

```
1
   namespace CG{
        void HalfPlaneIntersection(Line 1[],int n){
2
3
            deque <Point> p;
4
            sort(l+1,l+1+n);
            deque <Line> q;
5
            q.push_back(l[1]);
6
            for (int i=2;i<=n;i++){</pre>
7
                for (;!p.empty() && !ToLeftTest(p.back()-l[i].p0,l[i].v);q.pop_back(),p.
8
       pop_back());
                for (;!p.empty() && !ToLeftTest(p.front()-l[i].p0,l[i].v);q.pop_front(),p.
9
       pop_front());
                if (sqn(Cross(l[i].v,q.back().v))==0)
10
                    if (ToLeftTest(l[i].p0-q.back().p0),q.back().v){
11
12
                        q.pop_back();
13
                        if (!p.empty()) p.pop_back();
14
                if (!q.empty()) p.push_back(GetIntersection(q.back(),l[i]));
15
                q.push_back(l[i]);
16
17
            for (;!p.empty() && !ToLeftTest(p.back()-q.front().p0,q.front().v);q.pop_back(),
18
       p.pop_back());
            p.push_back(GetIntersection(q.back(),q.front()));
19
            double area=0.5*Cross(p.back(),p.front()); Point last=p.front();
20
21
            for (p.pop_front();!p.empty();last=p.front(),p.pop_front()) area+=0.5*Cross(last
        ,p.front());
            printf("%.1f", Abs(area));
22
23
24
   }
```

5.6 Min Circle Cover

```
namespace CG{
1
       Point GetCircleCenter(const Point a, const Point b, const Point c){
2
3
           Point p=(a+b)/2.0, q=(a+c)/2.0;
           Vector v=Rotate(b-a,pi/2.0),w=Rotate(c-a,pi/2.0);
4
           if (sgn(Norm(Cross(v,w)))==0){
5
                if (sgn(Norm(a-b)+Norm(b-c)-Norm(a-c))==0) return (a+c)/2;
6
                if (sgn(Norm(b-a)+Norm(a-c)-Norm(b-c))==0) return (b+c)/2;
7
                if (sgn(Norm(a-c)+Norm(c-b)-Norm(a-b))==0) return (a+c)/2;
8
9
           }
10
            return GetIntersection(Line(p,v),Line(q,w));
       }
11
       void MinCircleCover(Point p[],int n){
```

```
13
             random_shuffle(p+1,p+1+n);
             Point c=p[1];
14
             double r=0;
15
             for (int i=2;i<=n;i++)</pre>
16
                  if (sgn(Norm(c-p[i])-r)>0){
17
                      c=p[i],r=0;
18
                      for (int j=1;j<i;j++)</pre>
19
20
                           if (sgn(Norm(c-p[j])-r)>0){
                               c=(p[i]+p[j])/2.0;
21
22
                               r=Norm(c-p[i]);
                               for (int k=1;k<j;k++)</pre>
23
                                    if (sgn(Norm(c-p[k])-r)>0){
24
                                        c=GetCircleCenter(p[i],p[j],p[k]);
25
                                        r=Norm(c-p[i]);
26
27
                                    }
28
                          }
29
             printf("%.10f\n%.10f %.10f",r,c.x,c.y);
30
31
        }
32
   }
```

5.7 Circle Union Area

```
1
   //k次覆盖
2
    //圆并去重后s[0]
3 typedef pair<double, int> P;
   const double pi = acos(-1.0);
   const int MAXN = 10003;
6 P arc[MAXN << 1];</pre>
7
   int acnt, cnt;
   double s[1003];
8
   bool del[1003];
10
   void add(double st, double en) {
11
        if(st < -pi) {
12
            add(st + 2 * pi, pi);
13
            add(-pi, en);
            return;
14
15
        if(en > pi) {
16
            add(st, pi);
17
            add(-pi, en - 2 * pi);
18
19
            return;
20
        arc[++acnt] = P(st, 1);
21
       arc[++acnt] = P(en, -1);
22
23
24
   double F(double x) {
        return (x - \sin(x)) / 2;
25
26
   }
27
   struct Node {
28
        int x, y, r;
       Node(int _x = 0, int _y = 0, int _r = 0):x(_x), y(_y), r(_r) {}
29
       bool operator == (const Node& t) {
30
31
            return x == t.x & y == t.y & r == t.r;
32
        inline void read() {
33
            scanf("%d%d%d", &x, &y, &r);
34
35
   }a[1003];
36
```

```
int main() {
37
38
        int n;
        scanf("%d", &n);
39
40
        for(int i = 1; i <= n; i++) a[i].read();</pre>
41
        //去重
42
43
        int nn = 0;
        for(int \ i = 1; \ i \ll n; \ i++)
44
45
            bool\ same = 0;
46
            for(int \ j = 1; \ j < i; \ j++)  {
                 if(a/i) == a/j) {
47
                     same = 1; break;
48
49
50
51
            if(!same) \ a[++nn] = a[i];
52
53
        n = nn;
        //去包含
54
        for(int \ i = 1; \ i <= n; \ i++) 
55
56
            for(int \ j = 1; \ j \le n; \ j++) \ if(i != j) 
                 if(hypot(a[i].x - a[j].x, a[i].y - a[j].y) < (double)(a[i].r - a[j].r)) del[i]
57
        j / = 1;
58
59
        nn = 0;
60
61
        for(int \ i = 1; \ i \le n; \ i++) \ if(!del[i])  {
62
            a/++nn/ = a/i/;
63
64
        n = nn;
65
        for(int i = 1; i <= n; i++) {
66
67
            acnt = 0;
            for(int j = 1; j <= n; j++) if(i != j) {
68
                 int dis = (a[i].x - a[j].x) * (a[i].x - a[j].x) + (a[i].y - a[j].y) * (a[i].
69
       y - a[j].y);
                if(a[j].r > a[i].r \& dis <= (a[j].r - a[i].r) * (a[j].r - a[i].r)) add(-pi,
70
        pi);
                else if(dis > (a[i].r - a[j].r) * (a[i].r - a[j].r) & dis < (a[i].r + a[j].
71
        r) * (a[i].r + a[j].r)){
72
                     double c = sqrt(dis);
                     double angle = a\cos((a[i].r * a[i].r + c * c - a[j].r * a[j].r) / (2 * a
73
        [i].r * c));
                     double k = atan2(a[j].y - a[i].y, a[j].x - a[i].x);
74
                     add(k - angle, k + angle);
75
76
77
            }
            arc[++acnt] = P(pi, -1);
78
            sort(arc + 1, arc + acnt + 1);
79
80
            cnt = 0;
            double last = -pi;
81
            for(int j = 1; j <= acnt; j++) {</pre>
82
                 s[cnt] += F(arc[j].first - last) * a[i].r * a[i].r; //扇形 - 三角形
83
                double xa = a[i].x + a[i].r * cos(last);
84
                double ya = a[i].y + a[i].r * sin(last);
85
                last = arc[j].first;
86
                double xb = a[i].x + a[i].r * cos(last);
87
                double yb = a[i].y + a[i].r * sin(last);
88
                s[cnt] += (xa * yb - xb * ya) / 2; //到圆心的三角形面积
89
                cnt += arc[j].second;
90
            }
91
92
```

5.8 Simpson Integrate

```
1
   double Simpson(double 1,double r){
2
        return (r-1)*(F(1)+4*F((1+r)/2)+F(r))/6;
3
   double Integrate(double l,double r,double S){
4
       double mid=(l+r)/2;
5
       double A=Simpson(l,mid);
6
7
       double B=Simpson(mid,r);
8
       if(A+B-S<eps)return S;</pre>
9
       return Integrate(l,mid,A)+Integrate(mid,r,B);
10
   }
```

6 Conclusion

6.1 Game Theory

6.1.1 Nim's Game / Anti-Nim's Game

Nim's Game (尼姆博弈)

有 n 堆石子, 游戏双方依次从中拿取, 满足:

1. 规定每次只能从一堆中取若干根,可将一堆全取走,但不可不取. 最后取完者为胜。

结论:

T 态: 所有火柴数异或和为 0

S 态: 所有火柴数异或和不为 0

必胜态:S

有 n 堆石子, 游戏双方依次从中拿取, 满足:

1. 规定每次只能从一堆中取若干根,可将一堆全取走,但不可不取. 最后取完者为败。

结论:

S0 态: 即仅有奇数个孤单堆

T0 态: 即仅有偶数个孤单堆

S1 态: 异或和大于 0, 且有 1 个充裕堆

T1 态: 不存在

S2 态: 异或和大于 0, 且有多个充裕堆

T2 态: 异或和等于 0, 且有多个充裕堆

必胜态:T0,S1,S2

必败态:S0,T2

6.1.2 Bash's Game

Bash's Game 巴什博弈

有一堆个数为 n 的石子,游戏双方依次从中拿取,满足:

1. 每次至少取 1 个,最多取 m 个.

最后取光者得胜。

结论: n = t(m+1) + r, 必败态:r = 0;

6.1.3 Wythoff's Game

Wythoff's Game (威佐夫博弈)

有两堆分别为 (an, bn) 的石子, 游戏双方依次从中拿取, 满足:

1. 从任意一堆中取任意个 > 1。2. 从两堆中取同样多个。最后取完者胜.

结论: 对于任意的局势 (a, b)(a < b), 必败点为 (b-a)*(sqrt(5)+1)/2=a.

6.1.4 Fibonacci's Game / Zeckendorf's theory

Fibonacci's Game (斐波那契博弈)

有一堆个数为 n 的石子,游戏双方轮流取石子,满足:

- 1. 先手不能在第一次把所有的石子取完;
- 2. 之后每次可以取的石子数介于 1 到对手刚取的石子数的 2 倍之间(包含 1 和对手刚取的石子数的 2 倍)。 结论: 必败点是斐波那契数

齐肯多夫定理: 任何正整数可以表示为若干个不连续的 Fibonacci 数之和

6.2 Math Theory

6.2.1 Euler's Theorem

$$a^{b} \equiv \begin{cases} a^{b\%\varphi(p)} & \gcd(a,p) = 1\\ a^{b} & \gcd(a,p) \neq 1, b < \varphi(p)\\ a^{b\%\varphi(p) + \varphi(p)} & \gcd(a,p) \neq 1, b \geq \varphi(p) \end{cases}$$
 $(mod\ p)$

6.2.2 Möbius Inversion

Dirichlet Convolution is $(f \times g)(N) = \sum_{d|N} f(d) * g(\frac{N}{d})$

Theorem:

$$\begin{cases} f = g \times 1 \\ g = f \times \mu \end{cases}$$

$$\begin{cases} id(n) = \sum_{d|n} \varphi(d) \\ e(n) = \sum_{d|n} \mu(d) \end{cases}$$
 (1)

$$\begin{cases}
\sum_{i}^{n} \sum_{j}^{m} gcd(i,j) = \sum_{d}^{\max(n,m)} \varphi(d) * \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \\
\sum_{i}^{n} \sum_{j}^{m} e(gcd(i,j)) = \sum_{d}^{\min(n,m)} \mu(d) * \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor \\
\sum_{i=1}^{n} |\mu(i)| = \sum_{i=1}^{\lfloor \sqrt{n} \rfloor} \mu(i) * \lfloor \frac{n}{i*i} \rfloor
\end{cases} \tag{2}$$

$$\begin{cases}
sum(x,y) = \sum_{i}^{x} \sum_{j}^{y} i * j = \frac{x * (x+1)}{2} * \frac{y * (y+1)}{2} \\
F(x,y) = \sum_{i=1}^{\min(x,y)} i^{2} * \mu(i) * sum(\lfloor \frac{x}{i} \rfloor, \lfloor \frac{y}{i} \rfloor) \\
\sum_{i}^{n} \sum_{j}^{m} lcm(i,j) = \sum_{i=1}^{\min(n,m)} d * F(\lfloor \frac{n}{i} \rfloor, \lfloor \frac{y}{i} \rfloor)
\end{cases}$$
(3)

6.2.3 Sieve Tips

$$\varphi(nm) = \varphi(n) \cdot \varphi(m) \cdot \frac{\gcd(n,m)}{\varphi(\gcd(n,m))} \tag{4}$$

$$\varphi(n) = \sum_{i=1}^{n} [(n,i) = 1] \cdot i = \frac{n * \varphi(n) + [n=1]}{2}$$
 (5)

$$\begin{cases}
id = \varphi \times 1 \\
\frac{n \cdot (n+1)}{2} = \sum_{i=1}^{n} i = \sum_{i=1}^{n} \sum_{d|i} \varphi(d) = \sum_{\frac{i}{d}=1}^{n} \sum_{d=1}^{\lfloor \frac{n}{d} \rfloor} \varphi(d) = \sum_{i=1}^{n} \phi(\lfloor \frac{n}{i} \rfloor)
\end{cases}$$
(6)

$$\begin{cases}
e = \mu \times 1 \\
1 = \sum_{i=1}^{n} [i = 1] = \sum_{i=1}^{n} \sum_{d \mid i} \mu(d) = \sum_{i=1}^{n} \sum_{d=1}^{\lfloor \frac{n}{i} \rfloor} \mu(d) = \sum_{i=1}^{n} M(\lfloor \frac{n}{i} \rfloor)
\end{cases}$$
(7)

$$\begin{cases}
id^{2} = (id \cdot \varphi) \times id \\
\phi'(n) = \sum_{i=1}^{n} i \cdot \varphi(i) \\
\frac{n \cdot (n+1) \cdot (2n+1)}{6} = \sum_{i=1}^{n} i^{2} = \sum_{i=1}^{n} \sum_{d|i} d \cdot \varphi(d) \cdot \frac{i}{d} = \sum_{\frac{i}{d}=1}^{n} \frac{i}{d} \sum_{d=1}^{\frac{n}{d}} d \cdot \varphi(d) = \sum_{i=1}^{n} i \cdot \phi'(\lfloor \frac{n}{i} \rfloor)
\end{cases}$$
(8)

6.3 Convolution

6.3.1 FWT

$$\begin{cases}
C_k = \sum_{i \oplus j = k} A_i * B_j \\
DWT(A)_i = \sum_{j}^n A_j * f_{i,j} \\
DWT(C)_i = DWT(A)_i * DWT(B)_i \\
f_{i,j} \cdot f_{i,k} = f_{i,j \oplus k} \\
f_{i,j} = [i \text{ and } j == i] \\
f_{i,j} = [i \text{ and } j == j] \\
f_{i,j} = (-1)^{|i \text{ and } j|} \\
(xor)$$

6.4 Geometry

6.4.1 The Number of Ingeter Point on a Circle

Set r = const is the radius of the circle.

$$r^2 = p_1^{a_1} + p_2^{a_2} + \dots + p_m^{a_m} = \sum_{i=1}^m p_i^{a_i}$$

Define

$$\chi(n) = \begin{cases} 1 & n\%4 = 1 \\ -1 & n\%4 = 3 \\ 0 & n\%2 = 0 \end{cases}$$

By the way, $\chi(n)$ is a multiplicative function.

Define

$$\Gamma(p_i, a_i) = \sum_{j=0}^{a_i} \chi(p_i^j) = \begin{cases} 1 & p_i = 2 & || & (p_i\%4 = 3 & \&\& & a_i\%2 = 0) \\ 0 & p_i\%4 = 3 & \&\& & a_i\%2 = 1 \\ a_i + 1 & p_i\%4 = 1 \end{cases}$$

Define cnt is the number of integer point on circle

$$cnt(r) = 4 \prod_{i=1}^{m} \sum_{j=0}^{a_i} \chi(p_i^j) = 4 \prod_{i=1}^{m} \Gamma(p_i, a_i) = 4 \sum_{k|r^2} \chi(k)$$

Define CNT is the number of integer point in circle

$$CNT(r) = 1 + \sum_{i=1}^{r^2} cnt(i) = 1 + \sum_{i=1}^{r^2} \lfloor \frac{r^2}{i} \rfloor \chi(i)$$

7 Others

7.1 Offline Algorithm

7.1.1 CDQ Divide and Conquer

```
struct Node {
2
        int x, y, z, ans;
        Node() {}
3
4
        Node(int _x, int _y, int _z):x(_x), y(_y), z(_z) {}
5
        bool operator < (const Node &b) const {</pre>
6
            if(y == b.y) {
7
                 if(z == b.z) return x < b.x;
8
                 return z < b.z;
9
10
            return y < b.y;</pre>
11
   }A[MAXN], B[MAXN], C[MAXN];
12
   int bit[MAXN];
13
   void add(int k, int v) {
14
15
        for(; k \le m; k += k \& -k) bit[k] = max(bit[k], v);
16
17
   void clear(int k) {
        for(; k \le m; k += k \& -k) bit[k] = 0;
18
19
   int sum(int k) {
20
        int res = 0;
21
        for(; k; k \rightarrow k - k) res = max(res, bit[k]);
22
23
        return res;
   }
24
25
   void solve(int l, int r) {
26
        if(l == r) {
27
            B[l] = A[l];
28
             return;
29
30
        int mid = (l + r) >> 1;
31
        solve(l, mid);
        for(int i = mid + 1; i <= r; i++) B[i] = A[i];</pre>
32
33
        //sort(B + l, B + mid + 1);
34
        sort(B + mid + 1, B + r + 1);
        int L = 1;
35
        for(int R = mid + 1; R <= r; R++) {</pre>
36
            while(L \leftarrow mid && B[L].y \leftarrow B[R].y) add(B[L].z, B[L].ans), L++;
37
38
            A[B[R].x].ans = max(A[B[R].x].ans, sum(B[R].z - 1) + 1);
            B[R].ans = A[B[R].x].ans;
39
40
        for(int i = l; i <= L; i++) clear(B[i].z);</pre>
41
        solve(mid + 1, r);
42
        L = 1;
43
        int p = 1, q = mid + 1;
44
        while(p <= mid || q <= r) {</pre>
45
            if(q > r | | (p \le mid \&\& B[p].y \le B[q].y)) C[L++] = B[p++];
46
            else C[L++] = B[q++];
47
48
        for(int i = 1; i <= r; i++) B[i] = C[i];</pre>
49
50
```

7.1.2 Mo's Algorithm

```
struct Node{
1
2
        int l, r, t, id;
        bool operator < (const Node& a) const {</pre>
3
4
            if(l /sz == a.l / sz) {
                 if(r == a.r) return t < a.t;</pre>
5
6
                 return r < a.r;</pre>
7
            return l / sz < a.l / sz;</pre>
8
9
   }q[MAXN];
10
   void solve() {
11
        while (t < q[i].t) addTime(t++, 1);
12
13
        while (t > q[i].t) addTime(--t, -1);
14
        while(L < q[i].l) add(L++, -1);
        while(L > q[i].l) add(--L, 1);
15
        while(R < q[i].r) add(++R, 1);
16
        while(R > q[i].r) add(R--, -1);
17
18
```

7.1.3 Mo's Algorithm On Tree

```
struct Edge {
1
2
        int to, nxt;
3
    }e[MAXN << 1];
    int head[MAXN], ecnt;
    int stack[MAXN], top, belong[MAXN], cnt, sz;
    struct Node {
         int l, r, id, ti;
7
        bool operator < (const Node &x) const {</pre>
8
             return belong[1] < belong[x.1] || (belong[1] == belong[x.1] && belong[r] <</pre>
9
        belong[x.r]) || (belong[l] == belong[x.l] && belong[r] == belong[x.r] && ti < x.ti);
10
    }q[MAXN];
11
    struct Node2 {
12
         int l, r, ti;
13
   }qq[MAXN];
14
   int n, m, Q, Q0, Q1;
15
   int V[MAXN], W[MAXN], C[MAXN];
   int fa[MAXN][S + 3], dep[MAXN];
17
   long long ans[MAXN], tans;
18
   int vis[MAXN], cur[MAXN];
19
   long long sum[MAXN];
20
21
   int l, r, tm;
22
    inline int read() {
        int x = 0; char ch = getchar(); bool fg = 0;
while(ch < '0' || ch > '9') { if(ch == '-') fg = 1; ch = getchar(); }
while(ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }</pre>
23
24
25
         return fg ? -x : x;
26
27
    inline void add_edge(int u, int v) {
28
         e[++ecnt] = (Edge) \{v, head[u]\}; head[u] = ecnt;
29
         e[++ecnt] = (Edge) \{u, head[v]\}; head[v] = ecnt;
30
31
    void dfs(int u, int f) {
32
         fa[u][0] = f;
33
         dep[u] = dep[f] + 1;
34
         int bot = top;
```

```
36
        for(int i = head[u]; i; i = e[i].nxt) {
37
            int v = e[i].to;
            if(v == f) continue;
38
            dfs(v, u);
39
            if(top - bot >= sz) {
40
41
                 while(top != bot) belong[stack[top--]] = cnt;
42
43
44
        stack[++top] = u;
45
46
    void G(int &u, int step) {
47
        for(int i = 0; i < S; i++) if((1 << i) & step) u = fa[u][i];
48
49
50
   int lca(int u, int v) {
        if(dep[u] > dep[v]) swap(u, v);
51
        G(v, dep[v] - dep[u]);
52
        if(u == v) return u;
53
        for(int i = S; i >= 0; i--) if(fa[u][i] != fa[v][i]) {
54
55
            u = fa[u][i]; v = fa[v][i];
56
        return fa[u][0];
57
58
   inline void modify(int u) {
59
        tans -= V[C[u]] * sum[cur[C[u]]];
60
61
        cur[C[u]] += vis[u];
        vis[u] = -vis[u];
62
63
        tans += V[C[u]] * sum[cur[C[u]]];
64
    inline void update(int u, int v) {
65
        if(u == v) return;
66
        if(dep[u] > dep[v]) swap(u, v);
67
        while(dep[v] > dep[u]) {
68
            modify(v);
69
70
            v = fa[v][0];
71
        while(u != v) {
72
            modify(u); modify(v);
73
74
            u = fa[u][0]; v = fa[v][0];
75
        }
76
   }
77
   inline void upd(int t) {
        if(vis[qq[t].l] == -1) {
78
79
            modify(qq[t].1);
80
            swap(C[qq[t].1], qq[t].r);
81
            modify(qq[t].l);
82
        else swap(C[qq[t].1], qq[t].r);
83
84
    inline void moveto(int u, int v) {
85
86
        update(l, u); update(r, v);
87
        l = u; r = v;
88
   int main() {
89
        n = read(); m = read(); Q = read();
90
        sz = (int)pow(n, 2.0 / 3.0);
91
        for(int i = 1; i <= m; i++) V[i] = read();</pre>
92
        for(int i = 1; i <= n; i++) W[i] = read();</pre>
93
        for(int i = 1, u, v; i < n; i++) {</pre>
94
            u = read(); v = read();
95
            add_edge(u, v);
96
```

```
97
         for(int i = 1; i <= n; i++) {</pre>
98
              C[i] = read();
99
100
              vis[i] = 1;
              sum[i] = sum[i - 1] + W[i];
101
102
         for(int i = 1, tp; i <= Q; i++) {
103
104
              tp = read();
              if(tp) {
105
                  ++Q1;
106
                  q[Q1].l = read(); q[Q1].r = read();
107
                  q[Q1].id = Q1;
108
                  q[Q1].ti = i;
109
110
              }
111
              else {
                  ++00;
112
                  qq[Q0].l = read(); qq[Q0].r = read();
113
                  qq[Q0].ti = i;
114
              }
115
116
         dfs(1, 0);
117
         while(top) belong[stack[top--]] = cnt;
118
         sort(q + 1, q + Q1 + 1);
119
         for(int k = 1; k <= S; k++) {
120
121
              for(int i = 1; i <= n; i++) {</pre>
122
                  fa[i][k] = fa[fa[i][k - 1]][k - 1];
123
124
         for(int i = 1; i <= Q1; i++) {
    if(belong[q[i].l] > belong[q[i].r]) swap(q[i].l, q[i].r);
125
126
127
              moveto(q[i].l, q[i].r);
              int lc = lca(l, r);
128
              modify(lc);
129
              while(qq[tm + 1].ti < q[i].ti && tm < Q0) upd(++tm);</pre>
130
              while(qq[tm].ti > q[i].ti) upd(tm--);
131
              ans[q[i].id] = tans;
132
133
              modify(lc);
         }
134
135
         for(int i = 1; i \leftarrow Q1; i++) printf("%lld\n", ans[i]);
136
         return 0;
137
```

7.2 Randomized Algorithm

7.2.1 Simulated Annealing

```
void solve() {
1
2
       while(T > eps) {
3
           double alpha = ((rand() % 30001) / 15000.0) * pi;
           double theta = ((rand() % 10001) / 10000.0) * pi;
4
           tmp.x = cur.x + T * sin(theta) * cos(alpha);
5
           tmp.y = cur.y + T * sin(theta) * sin(alpha);
6
           tmp.z = cur.z + T * cos(theta);
7
           tmp.dis = cal(tmp);
8
            if(tmp.dis < cur.dis || (tmp.dis * 0.999 < cur.dis && (rand() & 7) == 7)) cur =
9
       tmp;
10
            //if(exp((cur.d - tmp.d) / T) > ((double)rand() / RAND_MAX)) cur = tmp;
11
           T *= 0.999;
12
```

```
13 } 14 }
```

7.3 Other Method

7.3.1 Enumerate Subset

7.3.2 Enumerate $\lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$

```
int cal(int n, int m) {
1
2
        if(n > m) swap(n, m);
3
        int res = 0, last;
        for(int i = 1; i <= n; i = last + 1) {</pre>
4
             last = min(n / (n / i), m / (m / i));
res += (n / i) * (m / i) * (sum(last) - sum(i - 1));
5
6
7
        }
8
        return res;
9
```

7.3.3 Find Primitive Root Modulo N

```
for i in range(1,mod):
    if 3 ** i % mod == 1:
        if i == mod - 1:
            print("yes")
            break
        print("no")
```

8 Samples

8.1 vimrc

```
1  set cindent
2  set number
3  set mouse=a
4  set tabstop=4
5  set shiftwidth=4
6  syntax on
7  inoremap { {}<left>
8  map <F9> :w<CR> :! g++ % -o %< -Wall --std=c++14 -g && ./%< <CR>
9  "ios::sync_with_stdio(0); cin.tie(0); cout.precision(6); cout << fixed;</pre>
```

8.2 Check

```
while true; do
./data > in
./tmp < in > out
./std < in > ans
diff out ans
if [ $? -ne 0 ]; then exit; fi
echo Passed
done
```

8.3 FastIO

```
namespace IO {
2
        const int MB = 1048576;
        const int RMAX = 16 * MB;
3
        const int WMAX = 16 * MB;
4
        #define getchar() *(rp++)
5
        #define putchar(x) (*(wp++) = (x))
6
        char rb[RMAX], *rp = rb, wb[WMAX], *wp = wb;
7
        inline void init() {
8
9
            fread(rb, sizeof(char), RMAX, stdin);
10
        template <class _T> inline void read(_T &_a) {
11
            _a = 0; register bool _f = 0; register int _c = getchar();
12
            while (_c < '0' || _c > '9') _f |= _c == '-', _c = getchar();
13
            while (_c >= '0' \& _c <= '9') _a = _a * 10 + (_c ^ '0'), _c = getchar();
14
            _a = _f ? -_a : _a;
15
16
        template <class _T> inline void write(_T _a) {
17
            static char buf[20], *top = buf;
18
19
            if (_a) {
20
                while (_a) {
                    register _T tm = _a / 10;
21
                    *(++top) = char(_a - tm * 10) | '0';
22
23
                    _a = tm;
24
                while (top != buf) putchar(*(top--));
25
26
27
            else putchar('0');
28
       void output() {
```

```
30          fwrite(wb, sizeof(char), wp - wb, stdout);
31     }
32 }
```

8.4 Java BigNum

```
import java.math.*;
1
2
   import java.util.*
3
   import java.lang.*;
4
   public class Main{
5
6
       public static void main(String []args){}
   }
7
8
    //IO
9
   Scanner in = new Scanner(System.in);
10
   while(in.hasNext()){} //EOF
11
   //fast-IO
   public static void main(String argv[]) throws IOException{}
12
   StreamTokenizer cin = new StreamTokenizer(new BufferedReader(new InputStreamReader(
13
       System.in)));
14
   PrintWriter cout = new PrintWriter(new OutputStreamWriter(System.out));
15
   while(cin.nextToken() != StreamTokenizer.TT_EOF) ;//EOF
16
   cin.nextToken();int n = (int)cin.nval;String s = cin.sval;
   cout.println( Type );cout.flush();
cin.ordinaryChar('/');
17
18
19
   BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
20
21
   br.ready()//EOF
   while ((valueString=bf.readLine())!=null);
22
23 br.close();
24
   //true fast-IO
   static class InputReader {
25
26
        public BufferedReader reader;
27
        public StringTokenizer tokenizer;
28
29
        public InputReader(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(stream), 32768);
30
31
            tokenizer = null;
        }
32
33
        public String next() {
34
            while (tokenizer == null || !tokenizer.hasMoreTokens()) {
35
36
                try {
37
                     tokenizer = new StringTokenizer(reader.readLine());
38
                } catch (IOException e) {
39
                     throw new RuntimeException(e);
40
            }
41
42
            return tokenizer.nextToken();
       }
43
44
45
        public int nextInt() {
            return Integer.parseInt(next());
46
47
        }
48
49
   //类 Number
50
   //double Value()
51
   //int Value()
```

```
53
    //long Value()
54
    //shortValue()
55
   //类 BigDecimal
   //ROUND_CEILING 接近正无穷大的舍入模式。
56
57
    //ROUND_FLOOR 接近负无穷大的舍入模式。
58
    //ROUND_DOWN 接近零的舍入模式
    //ROUND_HALF_UP 四舍五入 >=0.5向上舍入
59
    //ROUND_HALF_DOWN 四舍五入 >0.5向上舍入
60
61
    //BigDecimal(BigInteger\ val)
62
    //BigDecimal(BigInteger\ unscaledVal\ ,\ int\ scale)
    //BigDecimal(char[] in, int offset, int len, MathContext mc)
63
    //BigDecimal(double val, MathContext mc)不建议
64
    //BigDecimal(int val, MathContext mc)
65
66
    //BigDecimal(long val, MathContext mc)
67
    //BigDecimal(String val, MathContext mc)
68
    //abs()
    //add(BigDecimal augend, MathContext mc)
69
70 //compareTo(BigDecimal val)
   //divide (BigDecimal divisor, MathContext mc)
71
72
   //divideToIntegralValue(BigDecimal divisor, MathContext mc)
73
   //max(BigDecimal\ val)
74
   //min(BigDecimal\ val)
    //multiply (BigDecimal\ multiplicand\ ,\ MathContext\ mc)
75
76
    //negate() 其值为 (-this), 其标度为 this.scale()
    //pow(int n)
77
    //remainder(BigDecimal divisor) 返回其值为 (this % divisor) 的 BigDecimal
78
79
    //round(Math Context mc) 返回根据 Math Context 设置进行舍入后的 Big Decimal。
80
    //caleByPowerOfTen(int n) 返回其数值等于 (this * 10^n) 的 BigDecimal。
    //subtract(BigDecimal\ subtrahend\ ,\ MathContext\ mc)
81
82
    //setScale(int\ newScale, RoundingMode\ roundingMode)
83
    //toString()
    //ulp()返回此 BigDecimal 的 ulp (最后一位的单位) 的大小
84
    //String s = b.stripTrailingZeros().toPlainString();让bigdecimal不用科学计数法显示
85
    //类 BigInteger
86
    //parseInt
87
88
    //BigInteger\ zero = BigInteger.valueOf(0);
    //BigInteger\ a = in.nextBigInteger();
89
90
   //abs()
   //and(BigInteger val) 返回其值为 (this & val)
91
92
   //or(BigInteger val) 返回其值为 (this | val)
93
   //andNot(BigInteger val) 返回其值为 (this & ~val)
94
   //compareTo(BigInteger\ val)
95
   //add(BigInteger\ val)
96
    //divide(BigInteger\ val)
    //BigInteger[] divideAndRemainder(BigInteger val) 返回包含 (this / val) 后跟 (this %
97
        val) 的两个 BigInteger 的数组。
    //equals(Object x)
98
99
    //gcd(BigInteger\ val)
    //isProbablePrime(int certainty) e.g: a.isProbablePrime(4)
100
    //max(BigInteger val) min(BigInteger val)
101
102
    //mod(BigInteger m)
    //modInverse(BigInteger m) 返回其值为 (this ~-1 mod m)
103
104
    //modPow(BigInteger exponent, BigInteger m) 返回其值为 (this exponent mod m)
    //multiply(BigInteger val)
105
106
    //not() 返回其值为 (~this)
    //shiftLeft(int n) 返回其值为 (this << n)
107
    //shiftRight(int n) 返回其值为 (this >> n)
108
    //toString()
109
110
    //valueOf(long val)
    //xor(BigInteger val) 返回其值为 (this ^ val)
111
112
    //other
```

113 / Arrays.sort(array);

 $8.5 \quad pb_ds$