Interaction Terms in Linear Regression

 $Y = \alpha + \beta_1$ primary2004 + β_2 Neighbors + β_3 (primary2004 × Neighbors) + ϵ

- ► Hierarchy principle for interaction: <u>all low level effect terms</u> must be included
 - Why? (primary2004, Neighbors)

	(0,0)	(1,0)	(0,1)	(1,1)
\hat{Y}	\hat{lpha}	$\hat{\alpha} + \hat{\beta}_1$	$\hat{\alpha} + \hat{\beta}_2$	$\hat{\alpha} + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$

Now think of a case where you drop the term β_1 primary2004

	(0,0)	(1,0)	(0,1)	(1,1)
\hat{Y}	\hat{lpha}	\hat{lpha}	$\hat{\alpha} + \hat{\beta}_2$	$\hat{\alpha} + \hat{\beta}_2 + \hat{\beta}_3$

- Expected outcomes for (0,0) and (1,0) become identical!
 - Inappropriate assumption!
 - All lower level effect terms β_1 primary2004 + β_2 Neighbors must be included

Interaction Terms in Linear Regression

Interaction model with linear age effect

$$Y = \alpha + \beta_1 \text{ age} + \beta_2 \text{ Neighbors} + \beta_3 \text{ (age} \times \text{Neighbors)} + \epsilon$$

- Modeling assumption: (Heterogeneous treatment effect by age)
 - Treatment effect of Neighbors message is a function of age
 - ► Neighbor message treatment effect for age *x* population

$$(\hat{\alpha} + \hat{\beta}_1 x + \hat{\beta}_2 + \hat{\beta}_3 x) - (\hat{\alpha} + \hat{\beta}_1 x) = \hat{\beta}_2 + \hat{\beta}_3 x$$

- e.g. age x = 20: $0.0486 + 0.0006 \times 20 = 0.0606$
- e.g. age x = 50: $0.0486 + 0.0006 \times 50 = 0.0786$
- In case when you do not have interaction term β_3 (age × Neighbors)
 - Treatment effect of Neighbors does not become a function of age

$$(\hat{\alpha} + \hat{\beta}_1 x + \hat{\beta}_2) - (\hat{\alpha} + \hat{\beta}_1 x) = \hat{\beta}_2$$

- e.g. age x = 20: 0.0486; e.g. age x = 50: 0.0486
- Heterogeneous treatment effect does not get captured!