Prediction-Assignment-Writeup

2022-10-23

Data

```
Data Cleaning and Preparation
trainUrl <- 'https://d396qusza40orc.cloudfront.net/predmachlearn/pml-tr</pre>
aining.csv'
testUrl <- 'https://d396qusza40orc.cloudfront.net/predmachlearn/pml-tes</pre>
ting.csv'
train in <- read.csv(trainUrl, header=T)</pre>
validation <- read.csv(testUrl, header=T)</pre>
Data Partitioning
library(ggplot2)
library(recipes)
## 载入需要的程辑包: dplyr
##
## 载入程辑包: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
##
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
##
## 载入程辑包: 'recipes'
## The following object is masked from 'package:stats':
##
##
      step
library(caret)
## 载入需要的程辑包: lattice
set.seed(111)
training sample <- createDataPartition(y=train_in$classe, p=0.7, list=F
ALSE)
```

training <- train_in[training_sample,]
testing <- train in[-training sample,]</pre>

Identification on Non-Zero Data all_zero_colnames <- sapply(names(validation), function(x) all(is.na(va lidation[,x])==TRUE)) nznames <- names(all_zero_colnames)[all_zero_colnames==FALSE]</pre> nznames <- nznames[-(1:7)]</pre> nznames <- nznames[1:(length(nznames)-1)]</pre> print(nznames) ## [1] "roll_belt" "pitch_belt" "yaw_belt" [4] "total_accel_belt" "gyros_belt_x" "gyros_belt_y" ## [7] "gyros_belt_z" "accel_belt_x" "accel_belt_y" ## [10] "accel_belt_z" "magnet_belt_x" "magnet_belt_y" ## [13] "magnet_belt_z" "roll_arm" "pitch_arm" ## [16] "yaw_arm" "total_accel_arm" "gyros_arm_x" ## [19] "gyros_arm_y" "gyros_arm_z" "accel_arm_x" ## [22] "accel_arm_y" "accel_arm_z" "magnet_arm_x" ## [25] "magnet_arm_y" "magnet_arm_z" "roll_dumbbell" ## [28] "pitch_dumbbell" "yaw_dumbbell" "total_accel_dumbbe 11" ## [31] "gyros_dumbbell_x" "gyros_dumbbell_y" "gyros_dumbbell_z" ## [34] "accel_dumbbell_x" "accel_dumbbell_y" "accel_dumbbell_z" ## [37] "magnet_dumbbell_x" "magnet_dumbbell_y" "magnet_dumbbell_z ## [40] "roll_forearm" "pitch_forearm" "yaw_forearm" ## [43] "total_accel_forearm" "gyros_forearm_x" "gyros_forearm_y" ## [46] "gyros_forearm_z" "accel_forearm_x" "accel_forearm_y" ## [49] "accel_forearm_z" "magnet_forearm_x" "magnet_forearm_y"

Model building

[52] "magnet_forearm_z"

The three model types that will be tested are:

1. Decision trees with CART (rpart)

- 2. Stochastic gradient boosting trees (gbm)
- 3. Random forest decision trees (rf)

```
library(gbm)
## Loaded gbm 2.1.8.1
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## 载入程辑包: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
      margin
Cross validation
fitControl <- trainControl(method='cv', number = 3)</pre>
model cart <- train(</pre>
 classe ~ .,
 data=training[, c('classe', nznames)],
 trControl=fitControl,
 method='rpart'
save(model_cart, file='./ModelFitCART.RData')
model_gbm <- train(</pre>
 classe ~ .,
 data=training[, c('classe', nznames)],
 trControl=fitControl,
 method='gbm'
)
## Iter
          TrainDeviance
                          ValidDeviance
                                           StepSize
                                                       Improve
##
       1
                1.6094
                                   nan
                                           0.1000
                                                      0.1333
       2
                1.5244
                                           0.1000
                                                      0.0846
##
                                   nan
##
       3
                1.4678
                                   nan
                                           0.1000
                                                      0.0641
##
       4
                1.4257
                                   nan
                                           0.1000
                                                     0.0532
       5
##
                1.3913
                                           0.1000
                                                     0.0420
                                   nan
##
       6
                1.3625
                                           0.1000
                                                     0.0424
                                   nan
       7
##
                1.3339
                                   nan
                                           0.1000
                                                      0.0400
##
       8
                1.3089
                                           0.1000
                                                      0.0383
                                   nan
       9
##
                1.2839
                                           0.1000
                                                     0.0328
                                   nan
```

##	10	1.2633	nan	0.1000	0.0308
##	20	1.1074	nan	0.1000	0.0158
##	40	0.9345	nan	0.1000	0.0093
##	60	0.8251	nan	0.1000	0.0058
##	80	0.7455	nan	0.1000	0.0044
##	100	0.6805	nan	0.1000	0.0046
##	120	0.6293	nan	0.1000	0.0029
##	140	0.5830	nan	0.1000	0.0024
##	150	0.5628	nan	0.1000	0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1746
##	2	1.4928	nan	0.1000	0.1326
##	3	1.4093	nan	0.1000	0.1040
##	4	1.3426	nan	0.1000	0.0816
##	5	1.2884	nan	0.1000	0.0775
##	6	1.2375	nan	0.1000	0.0622
##	7	1.1986	nan	0.1000	0.0515
##	8	1.1649	nan	0.1000	0.0536
##	9	1.1311		0.1000	0.0463
			nan		
##	10	1.1002	nan	0.1000	0.0433
##	20	0.8947	nan	0.1000	0.0222
##	40	0.6754	nan	0.1000	0.0118
##	60	0.5473	nan	0.1000	0.0062
##	80	0.4601	nan	0.1000	0.0048
##	100	0.3934	nan	0.1000	0.0042
##	120	0.3396	nan	0.1000	0.0020
##	140	0.2984	nan	0.1000	0.0011
##	150	0.2816	nan	0.1000	0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2278
##	2	1.4623	nan	0.1000	0.1595
##	3	1.3609	nan	0.1000	0.1247
##	4	1.2811	nan	0.1000	0.1065
##	5	1.2150	nan	0.1000	0.0860
##	6	1.1596	nan	0.1000	0.0893
##	7	1.1042	nan	0.1000	0.0592
##	8	1.0648	nan	0.1000	0.0556
##	9	1.0285	nan	0.1000	0.0587
##	10	0.9923	nan	0.1000	0.0468
##	20	0.7532	nan	0.1000	0.0220
##	40	0.5210	nan	0.1000	0.0105
##	60	0.3947	nan	0.1000	0.0072
##	80	0.3150	nan	0.1000	0.0072
##	100	0.2594	nan	0.1000	0.0037
##	120	0.2165	nan	0.1000	0.0017
##	140	0.1825		0.1000	0.0020
			nan		
##	150	0.1691	nan	0.1000	0.0012
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1288
##	2	1.5240	nan	0.1000	0.0865
##	3	1.4676	nan	0.1000	0.0682
##	4	1.4229	nan	0.1000	0.0540
##	5	1.3878	nan	0.1000	0.0482
##	6	1.3564	nan	0.1000	0.0385
##	7	1.3306	nan	0.1000	0.0409
##	8	1.3046	nan	0.1000	0.0359
##	9	1.2819	nan	0.1000	0.0322
##	10	1.2590	nan	0.1000	0.0302
##	20	1.1050	nan	0.1000	0.0173
##	40	0.9322	nan	0.1000	0.0096
##	60	0.8259	nan	0.1000	0.0063
##	80	0.7463	nan	0.1000	0.0039
##	100	0.6804	nan	0.1000	0.0033
##	120	0.6287	nan	0.1000	0.0038
##	140	0.5842	nan	0.1000	0.0020
##	150	0.5662	nan	0.1000	0.0026
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1796
##	2	1.4922	nan	0.1000	0.1324
##	3	1.4063	nan	0.1000	0.0993
##	4	1.3407	nan	0.1000	0.0800
##	5	1.2883	nan	0.1000	0.0709
##	6	1.2418	nan	0.1000	0.0674
##	7	1.1989	nan	0.1000	0.0630
##	8	1.1594	nan	0.1000	0.0578
##	9	1.1240	nan	0.1000	0.0445
##	10	1.0954	nan	0.1000	0.0432
##	20	0.8905	nan	0.1000	0.0186
##	40	0.6774	nan	0.1000	0.0133
##	60	0.5478	nan	0.1000	0.0085
##	80	0.4585	nan	0.1000	0.0050
##	100	0.3902	nan	0.1000	0.0026
##	120	0.3429	nan	0.1000	0.0027
##	140	0.3011	nan	0.1000	0.0032
##	150	0.2828	nan	0.1000	0.0018
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.2271
##	2	1.4627	nan	0.1000	0.1623
##	3	1.3608	nan	0.1000	0.1215
##	4	1.2823	nan	0.1000	0.1107
##	5	1.2125	nan	0.1000	0.0815
##	6	1.1593	nan	0.1000	0.0720
##	7	1.1132	nan	0.1000	0.0751
##	8	1.0658	nan	0.1000	0.0687
##	9	1.0228	nan	0.1000	0.0575
	,	1.0220	11611	3.1000	

##	10	0.9865	nan	0.1000	0.0468
##	20	0.7561	nan	0.1000	0.0218
##	40	0.5252	nan	0.1000	0.0113
##	60	0.4037	nan	0.1000	0.0051
##	80	0.3239	nan	0.1000	0.0038
##	100	0.2651	nan	0.1000	0.0030
##	120	0.2217	nan	0.1000	0.0040
##	140	0.1867	nan	0.1000	0.0017
##	150	0.1725	nan	0.1000	0.0018
##		5 V = 1 = 5			
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1283
##	2	1.5246	nan	0.1000	0.0840
##	3	1.4672	nan	0.1000	0.0652
##	4	1.4234	nan	0.1000	0.0524
##	5	1.3888		0.1000	0.0429
##	6	1.3605	nan	0.1000	0.0480
			nan		
##	7	1.3304	nan	0.1000	0.0363
##	8	1.3065	nan	0.1000	0.0362
##	9	1.2809	nan	0.1000	0.0319
##	10	1.2596	nan	0.1000	0.0299
##	20	1.1053	nan	0.1000	0.0185
##	40	0.9341	nan	0.1000	0.0063
##	60	0.8258	nan	0.1000	0.0050
##	80	0.7443	nan	0.1000	0.0055
##	100	0.6826	nan	0.1000	0.0045
##	120	0.6316	nan	0.1000	0.0031
##	140	0.5879	nan	0.1000	0.0018
##	150	0.5676	nan	0.1000	0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	nan	0.1000	0.1816
##	2	1.4892	nan	0.1000	0.1316
##	3	1.4043	nan	0.1000	0.1001
##	4	1.3404	nan	0.1000	0.0882
##	5	1.2842	nan	0.1000	0.0809
##	6	1.2308	nan	0.1000	0.0582
##	7	1.1930	nan	0.1000	0.0615
##	8	1.1541	nan	0.1000	0.0484
##	9	1.1217	nan	0.1000	0.0486
##	10	1.0907	nan	0.1000	0.0392
##	20	0.8880	nan	0.1000	0.0190
##	40	0.6805	nan	0.1000	0.0176
##	60	0.5496	nan	0.1000	0.0048
##	80	0.4613		0.1000	0.0048
			nan		
##	100	0.3976	nan	0.1000	0.0030
##	120	0.3477	nan	0.1000	0.0034
##	140	0.3040	nan	0.1000	0.0027
##	150	0.2875	nan	0.1000	0.0011
##					

```
## Iter
          TrainDeviance
                            ValidDeviance
                                              StepSize
                                                          Improve
##
        1
                 1.6094
                                     nan
                                              0.1000
                                                        0.2324
        2
##
                 1.4610
                                     nan
                                              0.1000
                                                        0.1550
        3
##
                 1.3625
                                              0.1000
                                                        0.1218
                                     nan
        4
##
                 1.2834
                                     nan
                                              0.1000
                                                        0.1107
##
        5
                 1.2136
                                              0.1000
                                                        0.0956
                                     nan
##
        6
                 1.1529
                                              0.1000
                                                        0.0722
                                     nan
        7
##
                 1.1058
                                     nan
                                              0.1000
                                                        0.0660
        8
##
                 1.0635
                                     nan
                                              0.1000
                                                        0.0638
        9
##
                 1.0221
                                              0.1000
                                                        0.0582
                                     nan
##
       10
                 0.9850
                                              0.1000
                                                         0.0457
                                     nan
##
       20
                 0.7525
                                              0.1000
                                                         0.0234
                                     nan
##
       40
                 0.5266
                                              0.1000
                                                         0.0090
                                     nan
##
       60
                 0.4001
                                              0.1000
                                                         0.0067
                                     nan
##
       80
                 0.3165
                                                         0.0039
                                     nan
                                              0.1000
##
      100
                 0.2597
                                              0.1000
                                                         0.0016
                                     nan
##
      120
                 0.2168
                                     nan
                                              0.1000
                                                         0.0020
##
      140
                                                         0.0017
                 0.1834
                                     nan
                                              0.1000
##
      150
                 0.1687
                                              0.1000
                                                         0.0013
                                     nan
##
## Iter
          TrainDeviance
                            ValidDeviance
                                              StepSize
                                                          Improve
        1
##
                 1.6094
                                     nan
                                              0.1000
                                                        0.2309
##
        2
                                                        0.1613
                 1.4636
                                              0.1000
                                     nan
##
        3
                 1.3619
                                              0.1000
                                                        0.1241
                                     nan
##
        4
                 1.2833
                                     nan
                                              0.1000
                                                        0.1066
##
        5
                 1.2159
                                     nan
                                              0.1000
                                                        0.0935
##
        6
                 1.1581
                                              0.1000
                                                        0.0748
                                     nan
##
        7
                 1.1118
                                     nan
                                              0.1000
                                                        0.0795
##
        8
                                                        0.0584
                 1.0630
                                              0.1000
                                     nan
        9
##
                 1.0265
                                              0.1000
                                                        0.0512
                                     nan
##
       10
                 0.9940
                                                         0.0523
                                     nan
                                              0.1000
##
       20
                 0.7580
                                              0.1000
                                                         0.0288
                                     nan
##
       40
                 0.5384
                                              0.1000
                                                         0.0181
                                     nan
##
       60
                 0.4094
                                     nan
                                              0.1000
                                                         0.0076
##
       80
                 0.3286
                                     nan
                                              0.1000
                                                         0.0068
##
      100
                 0.2685
                                              0.1000
                                                         0.0033
                                     nan
##
      120
                 0.2252
                                              0.1000
                                                         0.0019
                                     nan
##
      140
                 0.1919
                                              0.1000
                                                         0.0015
                                     nan
##
                 0.1786
                                              0.1000
                                                         0.0020
      150
                                     nan
save(model gbm, file='./ModelFitGBM.RData')
model rf <- train(</pre>
  classe ~ .,
  data=training[, c('classe', nznames)],
  trControl=fitControl,
 method='rf',
  ntree=100
)
save(model rf, file='./ModelFitRF.RData')
```

Model Assessment (Out of sample error)

```
predCART <- predict(model cart, newdata=testing)</pre>
cmCART <- confusionMatrix(predCART, as.factor(testing$classe))</pre>
predGBM <- predict(model_gbm, newdata=testing)</pre>
cmGBM <- confusionMatrix(predGBM, as.factor(testing$classe))</pre>
predRF <- predict(model_rf, newdata=testing)</pre>
cmRF <- confusionMatrix(predRF, as.factor(testing$classe))</pre>
AccuracyResults <- data.frame(</pre>
 Model = c('CART', 'GBM', 'RF'),
 Accuracy = rbind(cmCART$overall[1], cmGBM$overall[1], cmRF$overall[1])
print(AccuracyResults)
    Model Accuracy
## 1 CART 0.5029737
## 2
      GBM 0.9593883
## 3
       RF 0.9949023
print(cmRF)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
                Α
                     В
                          C
                               D
                                    Ε
           A 1674
                     5
                          0
                               0
                                    0
           В
                0 1131
                          6
                               0
                                    0
##
           C
##
                     3 1018
                              10
##
           D
                0
                     0
                          2 954
                                    4
##
           Ε
                0
                     0
                          0
                              0 1078
##
## Overall Statistics
##
                 Accuracy : 0.9949
##
                   95% CI: (0.9927, 0.9966)
##
##
      No Information Rate: 0.2845
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa: 0.9936
##
## Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
                      Class: A Class: B Class: C Class: D Class: E
##
                                            0.9922
## Sensitivity
                         1.0000
                                   0.9930
                                                     0.9896
                                                              0.9963
## Specificity
                         0.9988
                                   0.9987
                                            0.9973
                                                     0.9988
                                                              1.0000
## Pos Pred Value
                         0.9970
                                   0.9947
                                            0.9874
                                                     0.9937
                                                              1.0000
## Neg Pred Value
                                            0.9984
                                                     0.9980
                                                              0.9992
                         1.0000
                                   0.9983
## Prevalence
                         0.2845
                                  0.1935
                                            0.1743
                                                     0.1638
                                                              0.1839
## Detection Rate
                         0.2845
                                   0.1922 0.1730 0.1621 0.1832
```

```
## Detection Prevalence 0.2853 0.1932 0.1752 0.1631 0.1832 ## Balanced Accuracy 0.9994 0.9959 0.9948 0.9942 0.9982
```

Based on an assessment of these 3 model fits and out-of-sample results, it looks like both gradient boosting and random forests outperform the CART model, with random forests being slightly more accurate.

Prediction

The Random Forest model was applied to predict 20 different test cases.

```
predRF_Test <- predict(model_rf, newdata=validation)
predRF_Test

## [1] B A B A A E D B A A B C B A E E A B B B
## Levels: A B C D E</pre>
```

Conclusion

The Random Forest classification model in combination with a couple of simple data preprocessing procedures (such as removing irrelevant data columns and standardizing) is turned out to be a great approach to predict the manner in which people did the exercise, using the given data from accelerometers on the belt, forearm, arm, and dumbell of participants.