MATH 15100 HOMEWORK

DUE MONDAY, OCTOBER 8, 2018

1. Problem 1

Determine where the function

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & \text{for } x < 0\\ \frac{x - 2}{x^2 - 2}, & \text{for } x \ge 0 \end{cases}$$

is continuous. Show your work

2. Problem 2

Compute the following limits.

$$(1) \lim_{x \to 0} \frac{\sin(7x)}{3x}$$

(1)
$$\lim_{x \to 0} \frac{\sin(7x)}{3x}$$

(2) $\lim_{x \to 0} \frac{1 - \cos(x) + \sin(x)}{x}$
(3) $\lim_{x \to 0} \frac{1 - \cos(x^2)}{x^4}$

(3)
$$\lim_{x \to 0} \frac{1 - \cos(x^2)}{x^4}$$

We break thin up into two pourts Problem 1

- 1) When $x \ge 0$, $f(x) = \frac{x-2}{x^2-2}$. Since rational functions are continuous eventually are defined, $\frac{x-2}{x^2-2}$ is continuous whenever $x^2-2 \ne 0$, eventually are defined, $\frac{x-2}{x^2-2}$ is continuous whenever $x^2-2 \ne 0$, i.e. $x \ne \pm \sqrt{2}$.
 - Since $x=\sqrt{2}$ is the only one of these points such that x>0, we have the x>0, the first throw about x>0, $x+\sqrt{2}$. (we do not yet know about x>0, $x+\sqrt{2}$. (we do not yet know about x>0, $x+\sqrt{2}$. (we do not yet know about x>0, so we ally know since this is an endpoint for the interval given by x>0, so we ally know the right-harded limit exists.)
- 2) When $\times <0$, $f(x)=\frac{x^2-1}{x-1}$. The notional function $\frac{x^2-1}{x-1}$ is continuous for all $\times <0$. except at x=1. Since I does not satisfy 1<0, f is continuous for all $\times <0$.

Therefore, f is continuous at least on $(-\infty,0)\cup(0,\sqrt{2})\cup(\sqrt{2},\infty)$. This is exemplace except 0 and $\sqrt{2}$.

It is discontinuous at $x=\sqrt{2}$ since $f(\sqrt{2})$ is not defined.

To see f it is continuous at $x=\sqrt{2}$.

It is discontinuous at $x=\sqrt{2}$ since $f(\sqrt{2})$ is not defined.

To see if it is continuous at x=0, we calculate. $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-2}{2} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$ $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x^2}{x^2} = \frac{-1}{-1} = 1$

Therefore, f is continuous on $(-\infty, \sqrt{2}) \cup (\sqrt{2}, \infty)$.

MATH 15100 HOMEWORK

DUE MONDAY, OCTOBER 8, 2018

1. Problem 1

Determine where the function

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & \text{for } x < 0\\ \frac{x - 2}{x^2 - 2}, & \text{for } x \ge 0 \end{cases}$$

is continuous. Show your work

2. Problem 2

Compute the following limits.

$$(1) \lim_{x \to 0} \frac{\sin(7x)}{3x}$$

$$(2) \lim_{x \to 0} \frac{\sin(7x)}{1 - \cos(x)}$$

(1)
$$\lim_{x \to 0} \frac{\sin(7x)}{3x}$$

(2) $\lim_{x \to 0} \frac{1 - \cos(x) + \sin(x)}{x}$
(3) $\lim_{x \to 0} \frac{1 - \cos(x^2)}{x^4}$

(3)
$$\lim_{x\to 0} \frac{1-\cos(x^2)}{x^4}$$

1)
$$\lim_{x\to 0} \frac{\sin(7x)}{3x} = \lim_{x\to 0} \frac{\sin(7x)}{7x} \cdot \frac{7}{3}$$

$$= 1 \cdot \frac{7}{3}$$

$$= \frac{7}{3}$$

$$= \frac{7}{3}$$

$$= \frac{7}{3}$$

$$= \frac{1 - \cos(x)}{x} + \lim_{x \to 0} \frac{\sin(x)}{x}$$

$$= \frac{1 - \cos(x)}{x} + \lim_{x \to 0} \frac{\sin(x)}{x}$$

$$= 0 + 1$$

3)
$$\lim_{x\to 0} \frac{1-\cos(x^2)}{x^4} = \lim_{x\to 0} \frac{1-\cos(x^4)}{(x^2)^2}$$

$$= \underbrace{\frac{1}{2}}$$