Stars and Galaxies

David Alaexander

Michaelmas 2017 - Epiphany 2018

Contents

1	Stars
	Lecture 1
	Lecture 2
	Excitation Energies
	Ratios of Excitation Levels
	Ionisation Energies
	Lecture 3
	Binary Star Systems
	Visual Binary Systems
	Normal Example
	Inclination Example
	Spectroscopic Binaries
	Special Case: Eclipsing Spectroscopic Binaries
	Lecture 4
	Lecture 5
	Virial Theorem
	Energy from Gravitational Collapse
	Lecture 6
	Binding Energies of Fusion
	Coulomb Barrier
	Probability of Nuclear Reactions
	Lecture 7
	Nuclear Conservation Rules
	Proton-Proton Chains
	CNO Cycle
	Lecture 8
	Energy produced in Stars
	Slide 5 diagram
	Energy Seen on Earth
	Mean Free Paths
	Radiation
	Lecture 9
	Opacity
	Different sources of Opacity
	Lecture 10
	Schwarzchild Criterion for Convection
	Convection in the Sun
	Mixing length
	Lecture 12
	Cepheid Variables
	Stellar Pulsation
	I 19

Jeans Mass	15
Free-fall gravitational collapse	16
Lecture 14	
Stellar Evolution	16
Lifetime of Nuclear Fusion	17
Lecture 15	17
Eddington Limit	17
Photodisintegration	
Last Days of Fusion	
Endothermic Release	
Electron capture	
Rapid core collapse	
Core rebound	
Supernova	18
Lecture 16	19
Electron Degeneracy Pressure	19
White Dwarf Cooling	
Lecture 17	
Rotation Period of Pulsars	
Stellar Core Rotation	

Chapter 1

Stars

see DUO for pdf slides

Lecture 1

- Black body emission curve
 - LHS from peak lambda is Rayleigh Jeans tail
 - RHS from peak is Wien tail

$$\lambda_{max} = \frac{2.9 \times 10^{-3}}{T} m$$

$$\lambda_{max.\,Bet} = 8.3 \times 10^{-7} m \implies T \approx 3500 \, K$$

$$\lambda_{max,Sun} = 5.5 \times 10^{-7} m \implies T \approx 5300 \, K$$

$$\lambda_{max,Bel} = 3.0 \times 10^{-7} m \implies T \approx 9400 \, K$$

Lecture 2

Excitation Energies

- Bohr model
- page 8 on slides
- n denotes the orbitals/electron shells
- n=1 is the ground state

$$E = E_{high} - E_{low} = \frac{hc}{\lambda} = -13.6 \left(\frac{1}{n_{high}^2} - \frac{1}{n_{low}^2} \right)$$
$$n = 2 \to 4$$
$$E = 2.55 \, eV \implies \lambda = 486.1 \, nm \implies H\beta$$

- this was absorption
- $H\beta$ is shorthand for Balmer series β
 - Optical light

$$n = 2 \rightarrow 1$$

$$E = 10.2 \, eV \implies \lambda = 121.6 \, nm \implies Ly\alpha$$

- this was emission
- $Ly\alpha$ is shorthand for Lyman series α
 - UV light
- Photons emitted from de-excitation in random direction
 - statistics means we probably won't see this

Ratios of Excitation Levels

$$n = 2 \to 1$$

$$\frac{N_2}{N_1} = \frac{g_2}{g_1} e^{-\frac{(E_2 - E_1)}{kT}}$$

$$g_1 = 2 \; ; \; g_2 = 8 \; ; \; T = 5800 \, K$$

$$\frac{N_2}{N_1} = 5.1 \times 10^{-9}$$

• 1 billionth of H atoms in first excited state, negligible

Ionisation Energies

• χ is the ionisation energy

$$\frac{N_{i+1}}{N_i} = \frac{2Z_{i+1}}{n_e Z_i} \left(\frac{2\pi m_e kT}{h^2}\right)^{\frac{3}{2}} e^{-\frac{\chi}{kT}}$$

$$E > -13.6 \left(\frac{1}{\infty^2} - \frac{1}{n_{low}^2}\right) eV$$

$$n = 1 \to \infty \implies E > 13.6 eV$$

$$n = 2 \to \infty \implies E > 3.4 eV$$

Lecture 3

Binary Star Systems

- slide 8, binary system
- look at the semi-major axes of the orbits of the two stars around the centre of mass of the system
 - $-a_1$ and a_2 for m_1 and m_2

$$P^{2} = \frac{4\pi^{2}a^{3}}{G(m_{1} + m_{2})}$$
$$a = a_{1} + a_{2}$$

- Smaller semi-major axis means larger mass
- similar to see-saw

$$m_1 a_1 = m_2 a_2 \implies \frac{m_1}{m_2} = \frac{a_2}{a_1}$$

- ratio of the semi-major axes gives ratio of masses
- actually measure α , angle of separation:
 - for d, distance from us

$$\alpha_n = \frac{a_n}{d} \implies \frac{m_1}{m_2} = \frac{\alpha_2}{\alpha_1}$$

Visual Binary Systems

Normal Example

- d = 10 pc; P = 200 days
- $\alpha_1 = 0.02$ "; $\alpha_2 = 0.08$ "

$$\begin{aligned} a_1 &= \alpha_1 d = 0.2 \, Au \; ; \; a_2 = a_2 = \alpha_2 d = 0.8 \, Au \\ a &= a_1 + a_2 = 1 \, Au \\ m_1 + m_2 &= \frac{4\pi^2 a^3}{GP^2} = 3.4 M_{\odot} = M_{tot} \\ \frac{m_1}{m_2} &= \frac{\alpha_2}{\alpha_1} = \frac{a_2}{a_1} = 4.0 = M_{rot} \\ m_1 &= \left[\frac{M_{rot}}{1 + M_{rot}}\right] M_{tot} = 2.72 M_{\odot} \\ m_2 &= \left[\frac{1}{1 + M_{rot}}\right] M_{tot} = 0.68 M_{\odot} \end{aligned}$$

Inclination Example

• For angled systems that aren't flat against our observations:

$$\hat{\alpha}_n = \alpha_n \cos i$$

$$m_1 + m_2 = \frac{4\pi^2}{G} \left(\frac{d}{\cos i}\right) \frac{\hat{\alpha}^3}{P^2}$$

$$\hat{\alpha} = \hat{\alpha}_1 + \hat{\alpha}_2$$

- $\bullet\,$ Has no effect on mass ratios observed cos cancels
- Above equation means the actual masses will be affected by the inclination

Spectroscopic Binaries

• Correcting for inclination:

$$v_{nr}^{max} = v_n \sin i$$

• Assume e << 1

$$v_n = \frac{2\pi a_n}{P}$$
$$\frac{m_1}{m_2} = \frac{v_2}{v_1}$$

• Same sort of stuff as visual binaries, but sin instead of cos basically

Special Case: Eclipsing Spectroscopic Binaries

- $i \approx 90^{\circ}$
- don't need any corrections etc

Lecture 4

$$P = \underbrace{\frac{\rho kT}{\mu m_H}}_{\text{ideal gas law}} + \frac{1}{3}aT^4$$

- Hydrostatic Equilibrium:
 - Pressure force = Gravitational force

$$P on dA = [P(r + dr) - P(r)]dA$$

$$= dP dA$$

$$Gravitational = g \underbrace{dA dr}_{volume} \rho, g = \frac{GM_r}{r^2}$$

$$dP dA = -g\rho dA dr$$

$$\frac{dP}{dr} = -\frac{GM_r\rho}{r^2}$$

$$\frac{dM_r}{dr} = 4\pi r^2 \rho$$

$$M_r = \frac{4}{3}\pi r^2 \rho$$

$$\frac{dP}{dr} = -G\frac{4}{3}\pi r \rho^2$$

$$\int_{P_s}^{P_c} dP = -\frac{4}{3}\pi G \rho^2 \int_R^0 r dr$$

$$P_c = \frac{2}{3}\pi G \rho^2 r^2, P_s = 0 \text{ at } r = R$$

$$= \frac{2}{3}\pi G r^2 \left[\frac{3}{4}\frac{M}{\pi r^3}\right]^2$$

$$= \frac{3}{8\pi} \frac{GM^2}{R^4}$$

• Example for our sun:

$$\begin{split} M = 2 \times 10^{30} kg \; ; \; R \approx 7 \times 10^8 m \\ P_c \approx 10^{14} N \, m^{-2} \\ P_{c,\, true} \approx 2 \times 10^{16} N \, m^{-2} \end{split}$$

• out as assumed uniform density

Virial Theorem

$$\frac{dP}{dr} = -\frac{GM\rho}{r^2} \times V = \frac{4}{3}\pi r^3$$

$$V\frac{dP}{dr} = -\frac{GM\rho}{r^2} \frac{4}{3}\pi r^3$$

$$- \text{plug in } \frac{dm}{dr} = 4\pi r^2 \rho$$

$$V\frac{dP}{dr} = \frac{1}{3}\frac{GM}{r}\frac{dm}{dr}$$

$$\int_0^{P(R)} V \, dP = -\frac{1}{3}\int_0^M \frac{GM}{r} \, dm$$

$$\int_0^{P(R)} V \, dP = \underbrace{[PV]_0^{R_0}}_{=0} - \int_0^{V(R)} P \, dV = -\frac{1}{3}U$$

$$-3\int_0^{V(R)} P \, dV = U, \, dV = \frac{dm}{\rho} \implies$$

$$-3\int_0^M \frac{P}{\rho} \, dm = U \quad \text{- generalised form of Virial Theorem}$$

$$\text{Ideal Gas: } P = nkT = \frac{\rho kT}{\mu m_H}$$

$$\text{Average KE: } = \frac{3}{2}kT$$

$$\text{KE per kilo: } = \frac{3}{2}\frac{kT}{\mu m_H}$$

$$E_{KE} = \frac{3}{2}\frac{kT}{\mu m_H} = \frac{3}{2}\frac{P}{\rho}$$

$$-3\int_0^M \frac{P}{\rho} \, dm = U, \, \frac{P}{\rho} = \frac{2}{3}E_{KE}$$

$$\int_0^M E_{KE} \, dm = -\frac{1}{2}U$$

$$\text{KE, assume ideal gas}$$

$$\implies K = -\frac{1}{2}U$$

Energy from Gravitational Collapse

$$dU_{g,i} = -\frac{GM_r dm_i}{r} - \text{GPE of point mass}$$
 Consider shells of material
$$dm = 4\pi r^2 \rho dr$$

$$dU_g = -\frac{GM_r 4\pi r^2 \rho}{r} dr - \text{GPE of a shell}$$

$$U_g = -4\pi G \int_0^R M_r \rho_r dr$$

$$M_r = \frac{4}{3}\pi r^3 \bar{\rho} - \text{avg density isn't too bad here}$$

$$U_g = -\frac{16}{3}\pi^2 G \bar{\rho}^2 \int_0^R r^4 dr$$

$$= -\frac{16}{15}\pi^2 G \bar{\rho}^2 R^5$$

Convert back to mass

$$U = -\frac{9}{15} \frac{GM^2}{R} - \text{GPE of the star}$$

$$K = -\frac{1}{2}U$$

$$\implies E = \frac{3}{10} \frac{GM^2}{R}$$

$$E \approx \frac{3}{10} GM^2 \left[\frac{1}{R} - \frac{1}{R_{initial}} \right]$$

$$= \frac{3}{10} \frac{GM^2}{R} \iff R << R_{initial}$$

Lecture 6

Binding Energies of Fusion

$$E_b(Z, N) = \Delta mc^2 = [Zm_p + Nm_n - m(Z, N)]c^2$$

$$E_b(4, 0) = [4m_p - m_{He, 4}]c^2 = 26.731 \, MeV$$

$$\frac{4m_p}{m_{He, 4}} = 1.007 \implies e = 0.7\%$$

$$E_{\odot} = (0.1 \times M_{\odot}) \times 0.007 \times c^2$$

$$= 1.3 \times 10^{44} J$$

$$t \approx \frac{E_{\odot}}{L_{\odot}} = 10^{10} yr$$

Coulomb Barrier

- $\bullet\,$ looking at probability that two particles are close enough for nuclear force to be important
- see figure on page 7 of slides
- using classical physics, we get

$$E = \frac{1}{2}mv^2 = \frac{3}{2}kT = \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{r}$$
$$T = \frac{1}{6\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{rk} = \underbrace{1.1 \times 10^{10} K}_{r=10^{-15} m : Z_1 = Z_2 = 1}$$

- too high for our Sun
- use deBroglie wavelength and consider quantum effects

$$\lambda = \frac{h}{p}, \ p = mv \ [m = \mu_m]$$

$$E = \frac{1}{2}mv^2 \ ; \ v^2 = \frac{p^2}{m^2}$$

$$E = \frac{p^2}{2m}$$

$$p^2 = \left(\frac{h}{\lambda}\right)^2$$

$$E = \frac{\left(\frac{h}{\lambda}\right)^2}{2m} = \frac{h^2}{\lambda^2} \frac{1}{2m}$$

$$= \frac{1}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2}{\lambda} = \frac{h^2}{\lambda^2} \frac{1}{2m}$$

$$\frac{1}{\lambda} = \frac{2}{4\pi\epsilon_0} \frac{Z_1 Z_2 e^2 m}{h^2}$$

$$\text{replace } \frac{1}{r} \text{ with } \frac{1}{\lambda}$$

$$T = \frac{1}{12\pi^2 \epsilon_0^2} \frac{Z_1^2 Z_2^2 e^4 m}{kh^2} = 9.8 \times 10^6 K$$

• this happens due to quantum tunneling

Probability of Nuclear Reactions

- see graph on page 13 of slides
- nuclear reaction probability is the product of Maxwell-Boltzmann and Tunneling Probability

Lecture 7

Nuclear Conservation Rules

- 1. electric charge must be conserved
- 2. nucleon umber must be conserved
 - p, n = +1
- 3. lepton number must be conserved
 - $e^{\mp} = \pm 1$
 - $\nu_e^{\mp} = \pm 1$

 $_{Z}^{A}X$

- A atomic number for element X (nucleon number)
- Z number of protons (electric charge)

Proton-Proton Chains

$${}_{1}^{1}H + {}_{1}^{1}H \to {}_{1}^{2}H + e^{+} + \nu_{e}$$

$${}_{1}^{2}H + {}_{1}^{1}H \to {}_{2}^{3}He + \gamma$$

$${}_{2}^{3}He + {}_{2}^{3}He \to {}_{2}^{4}He + {}_{1}^{1}H + {}_{1}^{1}H$$

$$\Longrightarrow 4{}_{1}^{1}H \to {}_{2}^{4}He + \underbrace{2e^{+} + 2\nu_{e} + 2\gamma}_{26.7 \, MeV}$$

CNO Cycle

$$\begin{array}{c} {}^{12}C + {}^{1}_{1}H \rightarrow {}^{13}_{7}N + \gamma \\ {}^{13}N \rightarrow {}^{13}C + e^{+} + \nu_{e} \\ \hline {}^{\beta \; decay} \\ {}^{13}C + {}^{1}_{1}H \rightarrow {}^{14}N + \gamma \\ {}^{14}N + {}^{1}_{1}H \rightarrow {}^{15}O + \gamma \\ {}^{15}O \rightarrow {}^{15}_{8}N + e^{+}\nu_{e} \\ \hline {}^{\beta \; decay} \\ {}^{15}N + {}^{1}_{1}H \rightarrow {}^{12}C + {}^{4}_{2}He \\ \\ \text{Total: } 4{}^{1}_{1}H \rightarrow {}^{4}_{2}He + \underbrace{2e^{+} + 2\nu_{e} + 3\gamma}_{E=26.7\; MeV} \end{array}$$

Lecture 8

Energy produced in Stars

$$dL = \epsilon \, dm \quad [W]$$

$$\epsilon_{i,X} = \epsilon_0 X_i X_X \rho^{\alpha} T^{\beta} \quad [W \, kg^{-1}]$$

$$dm = 4\pi r^2 \rho \, dr$$

$$\Longrightarrow \frac{dL}{dr} = 4\pi r^2 \rho \epsilon$$

Slide 5 diagram

- Solid line just to do with fusion then no fusion
- \bullet Dashed line has that shape as volume increase so dL/dr does but then temperature starts falling so fusion decreases

Energy Seen on Earth

• Electrons lose energy travelling through sun

$$\frac{\lambda_{surface}}{\lambda_{core}} \approx 3 \times 10^6$$

Mean Free Paths

- ullet vt distance travelled
- \bullet n particles per unit volume
- \bullet nvt particle per unit area
- $n\sigma vt$ number of interactions

$$l = \frac{vt}{n\sigma vt}$$
$$= \frac{1}{n\sigma}$$

• This is the mean distance before a collision

$$d = \sum_{i} l_{i}$$

$$d^{2} = d \cdot d$$

$$= \sum_{i} \sum_{i} l_{i} \cdot l_{j}$$

• When $i \neq j$, $l_i \cdot l_j = 0$

$$d^2 = Nl^2$$

$$\implies N = \left(\frac{d}{l}\right)^2$$

• Use ideal gas law to help in questions of this

$$t_{total} = t_{travel} + Nt_{scatter}$$

$$= \frac{Nl}{c} + N \times 10^{8}$$

$$= 5700 \ yrs + \dots = 10^{6} \ yrs$$

Radiation

$$P = \frac{1}{3}aT^4$$

$$\frac{dP}{P}dr = \frac{dP}{dT}\frac{dT}{dr}$$

$$\frac{dP}{dr} = \frac{4}{3}aT^3\frac{dT}{dr}$$

$$\frac{dP}{dr} = -\frac{\kappa\rho}{c}F_{rad}$$

$$\kappa rho = n\sigma$$

$$\frac{dT}{dr} = -\frac{3}{4ac}\frac{\kappa\rho F_{rad}}{T^3}$$

$$L = 4\pi r^2 F_{rad}$$

$$\frac{dT}{dr} = -\frac{3}{16\pi ac}\frac{\kappa\rho L_r}{T^3r^2}$$

Opacity

$$dI_{\lambda} = -\kappa_{\lambda}\rho I_{\lambda}ds$$

$$\int_{I_{\lambda,0}}^{I_{\lambda,f}} \frac{dI_{\lambda}}{I_{\lambda}} = -\int \kappa_{\lambda}\rho ds$$

$$\Longrightarrow I_{\lambda,f} = I_{\lambda,0}e^{-\int_{0}^{s} \kappa_{\lambda}\rho ds}$$

$$I_{\lambda,f} = I_{\lambda,0}\underbrace{e^{-\kappa_{\lambda}\rho s}}_{\text{optical depth, }\tau}$$

$$= I_{\lambda,0}e^{-\tau}, \ \tau = \kappa_{\lambda}\rho s$$

- $\tau < 1$ optically thin
- $\tau > 1$ optically thick

Different sources of Opacity

- Two classes of opacity:
 - 1. Absorption photon energy lost of KE of gas or degraded
 - 2. Scattering photon reemitted at different direction, sometimes degraded
- 1. Bound-Bound transitions
 - typical temperature roughly $\leq 10^5 \mathrm{K}$
 - ullet most effective for neutral gas
 - scattering and absorption
- 2. Bound-free transitions
 - typical temperature of $10^4 \rightarrow 10^6 \mathrm{K}$
 - partially ionised gas
 - absorption
- 3. Free-free emission
 - typical temperature of $10^4 \rightarrow 10^6 \mathrm{K}$
 - partially ionised gas
 - absorption
- 4. Electron scattering
 - dominant at roughly $\geq 10^6 \text{K}$
 - fully ionised gas
 - scattering

Lecture 10

Schwarzchild Criterion for Convection

• slide 4 - 9

$$\gamma = \frac{C_p}{C_V} = \frac{s+2}{s}$$

• s is degrees of freedom

$$P = k_a \rho^{\gamma}$$

$$\frac{dP}{P} = \frac{\gamma d\rho}{\rho}$$

$$\gamma = \frac{\rho}{P} \frac{dP}{d\rho}$$

Surrounding gas

$$\begin{split} P &= nkT = \frac{\rho kT}{\mu m_H} \\ \frac{dP}{P} &= \frac{d\rho}{\rho} + \frac{dT}{T} \\ \frac{d\rho}{\rho} &= \frac{dP}{P} - \frac{dT}{T} \\ \frac{dP}{d\rho}_{sur} &> \frac{dP}{d\rho}_{adiab} \bigg[\times \frac{\rho}{P} \\ \frac{\rho}{P} \frac{dP}{d\rho}_{sur} &> \frac{\rho}{P} \frac{dP}{d\rho}_{adiab} \\ \frac{\rho}{P} \frac{dP}{d\rho}_{sur} &> \gamma_{ad} \\ \frac{P}{P} \frac{dP}{d\rho} &= \frac{P}{P} \frac{dT}{T} &< \frac{1}{\gamma_{adiab}} \\ \frac{P}{dP} \frac{dP}{P} &= \frac{P}{dP} \frac{dT}{T} &< \frac{1}{\gamma_{adiab}} \\ 1 - \left(\frac{P}{dP} \frac{dT}{T} \right)_{sur} &< \frac{\gamma_{adiab}}{\gamma_{adiab}} \\ \frac{T}{P} \left(\frac{dP}{dT} \right)_{sur} &< \frac{\gamma_{adiab}}{\gamma_{adiab} - 1} \\ \left| \frac{dT}{dr} \right|_{sur} &> \left(\frac{\gamma_{adiab} - 1}{\gamma_{adiab}} \right) \frac{T}{P} \left| \frac{dP}{dr} \right|_{sur} \end{split}$$

Convection in the Sun

For the sun:

$$\begin{split} -\frac{3}{16\pi ac}\frac{k\rho L_r}{T^3r^2} &> \left(\frac{\gamma-1}{\gamma}\right)\frac{T}{P}\frac{dP}{dr} \\ \frac{dP}{dr} &= -\frac{GM_r\rho}{r^2} \\ \frac{L_r}{M_r} &> \frac{16\pi acG}{\kappa\rho}\frac{aT^4}{3}\frac{\gamma-1}{\gamma} \\ &> \frac{16\pi acG}{\kappa\rho}P_{rad}\frac{\gamma-1}{\gamma} \\ &> 1.9 \times 10^{-3}\,W\,kg^{-1} \end{split}$$

Mixing length

$$l = \alpha H p$$

$$\frac{dP}{dr} = -\frac{GM_r \rho}{r^2} \implies \frac{1}{Hp} = -\frac{1}{P} \frac{dP}{dr}$$

$$Hp = \frac{Pr^2}{GM_r \rho}$$

$$l = \frac{\alpha Pr^2}{GM_r \rho}$$

Lecture 12

Cepheid Variables

$$\log\left(\frac{L}{L_{\odot}}\right) = 1.15 \log_{10} \Pi^d + 2.47$$

$$\Pi^d = 10 \, \mathrm{days} \implies L = 4200 \, L_{\odot}$$
 observed $< f > = 10^{-15} W \, m^{-2}$
$$L = 4\pi d^2 < f >$$

$$d = \sqrt{\frac{L}{4\pi < f >}}$$

Stellar Pulsation

$$V_{s} = \sqrt{\frac{\gamma P}{\rho}}, \ \gamma = \frac{C_{p}}{C_{V}}$$

$$\Pi = 2 \int_{0}^{R} \frac{dr}{V_{s}}$$

$$\frac{dP}{dr} = -\frac{GM_{r}\rho}{r^{2}}$$

$$\operatorname{const} \ p \implies \mu = \frac{4}{3}\pi r^{3}\rho$$

$$\frac{dP}{dr} = -\frac{4}{3}G\pi r\rho^{2}$$

$$dP = -\frac{4}{3}G\pi\rho^{2} \int_{0}^{R} r \, dr$$

$$P(r) = \frac{4}{3}G\pi\rho^{2} \left[\frac{R^{2}}{2} - \frac{r^{2}}{2}\right]$$

$$\Pi = 2 \int_{0}^{R} \frac{dr}{V_{s}}$$

$$= 2 \int_{0}^{R} \frac{dr}{\sqrt{\frac{2}{3}\gamma G\rho(R^{2} - r^{2})}}$$

$$= 2\sqrt{\frac{3}{2\gamma\pi G\rho}} \left[\sin^{-1}\left(\frac{r}{R}\right)\right]_{0}^{R}$$

$$= \sqrt{\frac{3\pi}{2G\rho\gamma}}$$

Lecture 13

Jeans Mass

• For the gravitational collapse of a gas cloud:

$$GE = U = -\frac{3}{5} \frac{GM^{2}}{R}$$

$$KE = K = \frac{3}{2} NkT$$

$$= \frac{3}{2} \frac{M_{c}}{\mu m_{H}} kT$$

$$2K < |U|$$

$$2\left(\frac{3}{2} \frac{M_{c}kT}{\mu m_{H}}\right) < \frac{3}{5} \frac{GM_{c}^{2}}{R_{c}}$$

$$R_{c} = \left(\frac{3}{4} \frac{M_{c}}{\pi \rho_{0}}\right)^{\frac{1}{3}}$$

$$2\left(\frac{3}{2} \frac{M_{c}kT}{\mu m_{H}}\right) < \frac{3}{5} GM_{c}^{2} \left(\frac{4}{3} \frac{\pi \rho_{0}}{M_{c}}\right)^{\frac{1}{3}}$$

$$\frac{5M_{c}kT}{\mu m_{H}G} < M_{c}^{2} \left(\frac{4}{3} \frac{\pi \rho_{0}}{M_{c}}\right)^{\frac{1}{3}}$$

$$M_{c} < M_{J}$$

$$M_{J} \approx \left(\frac{5kT}{G\mu m_{H}}\right)^{\frac{3}{2}} \left(\frac{3}{4\pi \rho_{0}}\right)^{\frac{1}{2}}$$

Free-fall gravitational collapse

- 1. $M_c > M_J$
 - free fall collapse
 - optically thin
 - pressure increase
 - temperature constant
- 2. Fragmentation
 - optically thin
 - individual regions exceed local M_J
- 3. M_J minimised: Protostar
 - optically thick
 - pressure increase
 - temperature increase
 - Slow contraction (Kelvin-Helmholtz timescale)

Lecture 14

Stellar Evolution

1. Increase in μ (mean molecular mass) with time:

$$P = nkT = \frac{\rho kT}{\mu m_H}$$

As μ increases, ρ and T also increase for the pressure to remain constant.

Recall:

$$\epsilon_{i,X} = \epsilon_0 X_i X_X \rho^{\alpha} T^{\beta}, \alpha \approx 1$$

For proton-proton chain, $\beta \approx 4$ For CNO, $\beta \approx 17$

Luminosity increases with time.

Lifetime of Nuclear Fusion

$$t = \frac{E_{tot}}{L} = \frac{X\zeta Mc^2}{L}$$

$$\zeta_{pp} = \frac{4m_p - m_{He}}{m_{He}} \approx 0.007$$

$$t_{\odot} = 10^{10} \text{ yrs}$$

$$L_{ms} = L_{\odot} \left(\frac{M_{\odot}}{M}\right)^{\alpha}$$

$$t_{ms} = \frac{X\zeta Mc^2}{L_{\odot}} \left(\frac{M_{\odot}}{M}\right)^{\alpha}$$

$$= 10^{10} \frac{M}{M_{\odot}} \left(\frac{M_{\odot}}{M}\right)^{\alpha}$$

$$\therefore t_{ms} = 10^{10} \left(\frac{M_{\odot}}{M}\right)^{\alpha - 1}$$

Lecture 15

Eddington Limit

$$L_{Edd} = \frac{4\pi cGM}{\kappa}, M = 100M_{\odot}, \kappa = \kappa_{es} = 0.04 \, kg \, m^{-2}$$

= $3 \times 10^6 L_{\odot}$

Photodisintegration

$$\lambda_{max} = \frac{2.9 \times 10^{-3}}{T}, \ E = \frac{hc}{\lambda}$$
$$T_c \ge 3 \times 10^9 K \implies E \ge 1 \, MeV$$

Last Days of Fusion

- Shell fusion
- Silicon to Iron in Core
- $P_{core} = high$

Endothermic Release

- Iron breaking down into Helium and Helium breaking down in protons and neutrons
- still shell fusion ongoing
- P_{core} = rapidly decreasing

Electron capture

- very high density
- shell fusion
- $p + e^- \implies n + \nu_e$
- $P_{core} = \text{rapidly decreasing}$
- neutrino burst

Rapid core collapse

- shell fusion
- $P_{core} \approx 0$

Core rebound

- shell fusion
- $\rho > 8 \times 10^{18} \, kg \, m^{-3}$
- the strong force repels collapse and rebounds outwards

Supernova

- previous step drives supernova
- strong force drives high energy pushing
- $\bullet\,$ generates a shock wave more photodisintegration
- electron capture repeats and another neutrino burst
- nuclear synthesis of heavier elements, including beyond iron (endothermic)

Electron Degeneracy Pressure

$$\begin{split} \Delta x \Delta p_x &\approx \hbar \\ p_m in &\approx \Delta p_x \approx \frac{\hbar}{\Delta x} \\ P &\approx \frac{1}{2} n_e p v \\ n_e &= \frac{\#e}{vol} = \frac{Z}{A} \frac{\rho}{m_H} \\ p_x &= \Delta p_x = \frac{\hbar}{\Delta x} \\ \Delta x &= n_e^{-1/3} \implies p_x = \hbar n_e^{1/3} \\ p^2 &= p_x^2 + p_y^2 + p_z^2 = 3 p_x^2 \\ \implies p &= \sqrt{3} p_x = \sqrt{3} \hbar n_e^{1/3} \\ p &= m v = m_e v \\ \implies v &= \frac{p}{m_e} = \frac{\sqrt{3}}{m_e} \hbar n_e^{1/3} \\ P &= \frac{1}{3} n_e p v \\ p &= \sqrt{3} \hbar \left[\left(\frac{Z}{A} \right) \frac{\rho}{m_H} \right]^{1/3} \\ \therefore P &= \frac{\hbar^2}{m_e} \left[\left(\frac{Z}{A} \right) \frac{\rho}{m_H} \right]^{5/3} \end{split}$$

White Dwarf Cooling

$$t_{cool} = \frac{E_{WD}}{L_{WD}} = \left(\frac{3kT_{c,WD}}{2}\right) \left(\frac{M_{WD}}{Am_H}\right) \left(\frac{1}{L_{WD}}\right)$$

Rotation Period of Pulsars

Centripetal Acceleration = Gravitational Acceleration $\omega_{max}^2 R = \frac{GM}{R}$ $M = \frac{4}{3}\pi R^3 \rho$ $\omega_{max}^2 R = G\frac{4}{3}\pi R \rho$ $\omega = 2\pi f = \frac{2\pi}{P}$ $\frac{4\pi^2}{P^2} R = \frac{4}{3}G\pi R \rho$ $P_{min} = \left(\frac{3\pi}{G\rho}\right)^{1/2}$

Stellar Core Rotation

Conservation of angular momentum:

$$I_i\omega_i = I_f\omega_f, \ I = CMR^2$$

$$CMR_i^2\omega_i = CMR_f^2\omega_f, \ \omega = \frac{2\pi}{P}$$

$$\frac{2\pi}{P_f} = \frac{2\pi}{P_i} \left(\frac{R_i}{R_f}\right)^2$$

$$P_f = P_i \left(\frac{R_f}{R_i}\right)^2$$