온라인 수강 집중도 감지 시스템

멀티캠퍼스 AI 엔지니어 취업캠프 2회차 2조 이공오공

2050

이공오공

멀티캠퍼스 AI 엔지니어 취업캠프 2회차

목차

01프로젝트 개요

02 프로젝트 설계

03 개발 내용 04
개발후기 및 느낀점

01 프로젝트 개요

프로젝트 기획 배경 및 목표 구성원 및 역할 Work-flow

개인 이러닝 이용률

대면 수업 대비 온라인 강의 집중호

출처: 브런치 블로그 설문조사 (900명)

기획 배경

집중도 하락 온라인 강의 문제점

모니터링 도입 집중력 향상 시스템 1-1 프로젝트 기획 배경 및 목표

프로젝트 목표

집중도 향상

강의 집중도 향상 기대

평가 자료

강의 평가 근거 자료 마련

피드백

강의 개선 피드백으로 활용 자가 평가

수강 과목에 대한 자가 평가 가능

구성원 및 역할

강지윤 모델링

김가현 모델링

김건우 프로젝트 관리

여은정

프론트/백엔드

WBS (Work Breakdown Structure)

02 프로젝트 설계

시스템 설계 DB 설계 개발일정 및 개발 규칙

2-1 시스템 설계

ERD (DB 관계도)

수강결과 TB			
Result	BIGINT		
User_id	BIGINT(FK)		
Lecture_id	BIGINT(FK)		
Capture_start	TIME		
Capture_end	TIME		
Start_log	TIME		
End_log	TIME		
Registration_date	DATETIME		

졸음이벤트 TB					
Event	BIGINT				
Result_id	BIGINT(FK)				
Lecture_id	BIGINT(FK)				
Start_time	DATETIME				
End_time	DATETIME				
sleep	FLOAT				
awake	FLOAT				
stateNo	INT				
continued_time	INT				
Registration_date	DATETIME				

개발 일정

	5월 2주	5월 3주	5월 4주	5월 5주	6월 1주	6월 2주
AI 모델링	데이터 수집 모델 구축	데이터 수집 모델 학습 모델 성능 비교	모델 선정 성능 개선	최종 모델 선정 django와 연결	테스트 및 수정보완	발표 자료 정리
Front/Backend	화면 설계서 작성	화면 설계서 수정	시스템 구성도 템플릿 작성	템플릿 기능 구현	수강목록 보여주기 화면 구현 그래프 화면 구현	Html 디자인 적용 그래프 화면 수정
서버	접속 테스트	개발환경 구현	모델링 테스트 django 테스트	환경설정 및 테스트	버전 충돌 이슈 해결	발표자료 정리
DB	DB 설계서 작성	ERD 작성	DB 이식	Data 조회 테스트 Data 저장 테스트	모델 보완	모델 보완

03 개발내용

적용기술 프론트/백엔드 모델링 시스템 시연

적용 기술

Python

YOLO Model

Numpy

Torch

Keras

- Django
- Matplotlib
- MariaDB

Opency

• HTML/CSS

PIL

Javascript

dlib

Server

- Python 3.9.16
- bazel 6.2.0, CUDA 11.2, cuDNN 8.1.1
- . dlib 19.24.2
- tensorflow 2.11, tensorrt 8.0 GA Update 1
- Ubuntu 18.04

3-2 프론트/백엔드

화면 구성

강의 선택

강사별 집중도 선택

데이터 흐름도

데이터 수집

Roboflow & Kaggle

- Yolov5 버전 Label

• 웹캠 얼굴 이미지

roboflow

kaggle

- 눈 감은 이미지
- 눈 뜬 이미지

• 딥러닝 데이터셋 제공 사이트 를 이용해 데이터 수집

데이터 수집

OpenCV

- 실시간 이미지 프로세싱 라이브러 리
 - 부족한 데이터 (600장)
- OpenCV로 300장의 이미지 제작

데이터 전처리

Labeling 작업

Tool : Labellmg

• 모델 생성과 학습을 위해 Label 필 요

• Yolov5 pytorch 버전 사용

데이터 전처리

용량 축소

Tool: tfrecord

- 900장의 이미지와 Label 파일
- Tensorflow에서 tfrecord 제공
 - 작은 용량의 tfr 파일 제작

이름	수정한 날짜	유형	크기
Trian.tfr	2023-05-15 오후 4:46	TFR 파일	87,831KB
☐ Val.tfr	2023-05-15 오후 4:46	TFR 파일	22,068KB

모델 생성

사용 모델

Yolo

- 빠르고 보편화된 모델 Yolo (Yolov5 Ultratic) 사용
 - Yolov5s의 weight 사용해 학습시간 단축

CNN 모델 생성

resnet 모델 결과

• Learning_rate : 1e-4

• IOU: 0.699

• Learning_rate : 1e-5

• IOU: 0.541

Mobilenet 모델 결과

- 최종모델 선택
- 용량이 적고 성능이 좋음
 - IOU: 0.75

모델 학습

Loss function

• 모델의 예측 값과 실제 값과의 차이

• Optimizer : Adam

모델 학습 결과

IOU 측정

• Ground Truth box와 모델 예측 값의 IOU 계 산

• 평균 IOU 값: 0.75

모델 학습 결과

Accuracy

0.9777778

```
3/3 [======] - Os 43ms/step
                         11111101010110011100111
 011100010110110]
tf.Tensor(
[0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
 1. 1. 1. 0. 0. 1. 1. 0. 0. 0. 1. 0. 1. 0. 0. 1. 0. 1. 0. 0. 0. 0. 0. 1.
 0. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 0. 0. 1. 1. 0. 0. 0.
 <u>1. 1. 0.</u>1. 1. 1. 0. 0. 0. 1. 0. 1. 1. 0. 1. 1. 0.], shape=(90,), dtype=float32)
0.9777778
                                110110110110100111110
 11010100100100001000101101101000001111000
11111110110001101
tf.Tensor(
[1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
1. 1. 1. 0. 1. 0. 0. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 1. 0. 0. 0. 0. 0.
 0. 0. 1. 0. 0. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 0. 0. 0. 0. 1. 1. 1. 1. 0.
<u>.O. O. 1.</u> 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 0. 0. 1. 1. 0.]. shape=(90.). dtype=float32)
```

• Class 분류 Accuracy 측정

• Accuracy : 0.97

눈 감지 모델

dlib

- 얼굴 탐지 라이브러리
- Landmarks 방식 사용
- 탑지된 얼굴을 68개의 점으로 반환

눈을 정밀하게 감지하기 위해 dlib 사용

EAR 알고리즘을 이용해 눈 상태(open/close) 분류

시연 동영상

04

개발후기 및 느낀점

향후 개선 사항 및 기대효과 향후 프로젝트 보완 계획 느낀점

활용 및 확장 가능성

온라인 강의 사이트와 학원에서 수강자들의 집중도 분석 가능

- 정부에서 진행하는 필수 시청 강의에서 집중도에 따른 재수강 여부 판단 가능
 - 법 위반자에게 적용 가능

개선 사항 및 기대효과

34

프로젝트 보완 계획

회원가입 기능 추가

관리자 기능 추가 (회원, 강사, 강의 등록)

도커를 통한 배포

조원 소감

다 만들 수 있어서 다행입니다.

- 강지윤 -

프로젝트 진행중에 어려움도 있었지만 팀원들의 노력으로 완성할 수 있었습니다. 다들 수고하셨습니다.

- 김가현 -

자발적으로 최선을 다해준 팀원들에게 감사하고 부족한 팀장으로서 미안합니다.

- 김건우 -

부족함에 대한 성찰과 지난 경험에 대한 자신감을 다져보는 시간이었습니다. 편견없이 대해준 조원들께 감사 드립니다. - 여은정 -

짧은 시간 내에 배우고 고민해 이 정도의 결과를 낼 수 있었던 팀원들이 자랑스럽습니다.

- 이종현 -

감사합니다