姓名:

第十二届全国大学生数学竞赛决赛试卷参考答案 (数学类低年级组, 2021 年 5 月)

考试形式: <u>闭卷</u> 考试时间: <u>180</u> 分钟 满分: <u>100</u>分

题号		=	三	四	五.	六	总分
满分	20	15	15	20	15	15	100
得分							

注意:

- 1. 所有答题都须写在标准答题纸上,写在本试卷或其它纸上均无效.
- 2. 密封线左边请勿答题,密封线外不得有姓名及相关标记.
- 3. 如答题空白不够, 可写在当页背面, 并标明题号.

得分	
评阅人	

一、(本题 20 分,每小题 5 分)填空题

1. 设
$$\Omega: (x-2)^2 + (y-3)^2 + (z-4)^2 \leq 1$$
, 则积分
$$\iiint_{\Omega} (x^2 + 2y^2 + 3z^2) \, dx dy dz = \underbrace{\frac{1424\pi}{15}}_{\square}.$$

4. 设
$$A$$
 为 2021 阶对称矩阵, A 的每一行均为 $1,2,\ldots,2021$ 的一个排列. 则 A 的迹 $\operatorname{tr} A = 1011 \times 2021$.

得分	
评阅人	

二、(本题 15 分) 给定 yOz 平面上的圆 $C: y=\sqrt{3}+\cos\theta, z=1+\sin\theta \ (\theta\in[0,2\pi]).$

- 1. 求 C 绕 z 轴旋转所得到的环面 S 的隐式方程.
- 2. 设 $z_0 \ge 0$, 以 $M(0,0,z_0)$ 为顶点的两个锥面 S_1 和 S_2 的半顶角之差为 $\pi/3$, 且均与环面 S 相切 (每条母线都与环面相切), 求 z_0 和 S_1 , S_2 的隐式方程.

解答. 1. 由 yOz 平面的圆 C 的参数方程消去参数 θ 可得

$$C: \begin{cases} (y - \sqrt{3})^2 + (z - 1)^2 = 1, \\ x = 0, \end{cases}$$

由此可得绕 z 轴旋转获得的环面 S 的方程

$$(\pm\sqrt{x^2+y^2}-\sqrt{3})^2+(z-1)^2=1,$$

化简得到

S:
$$(x^2 + y^2 + (z - 1)^2 + 2)^2 = 12(x^2 + y^2).$$

......(5分)

2. 记圆 C 的圆心坐标为 $O'(0, \sqrt{3}, 1)$, M 的坐标为 (0, 0, t), M 与圆 C 的两个切点坐标分别为 A, B, 则由两个圆锥半顶角之差为 $\frac{\pi}{3}$ 可得 $\angle O'MA = \angle O'MB = \frac{\pi}{6}$, 进而通过解三角形可得 t = 0 或 t = 2.

当 t=0 时, 得 M(0,0,0), 此时切点坐标为 $A(0,\frac{\sqrt{3}}{2},\frac{3}{2}), B(0,\sqrt{3},0)$, 锥面 S_1 的母 线即为直线 MA, 其方程为 $L_1:$ $\begin{cases} x=0,\\ \sqrt{3}y-z=0, \end{cases}$ S_1 即为 L_1 绕 z 轴所得旋转

面,其方程为 $S_1: z = \sqrt{3(x^2+y^2)}$. 锥面 S_2 的母线即为直线 MB, 其方程为 $L_2: \begin{cases} x=0, \\ z=0, \end{cases}$ S_2 即为 L_2 绕 z 轴所得旋转面,其方程为 $S_2: z=0$.

当 t=2 时, 得 M(0,0,2), 此时切点坐标为 $A(0,\frac{\sqrt{3}}{2},\frac{1}{2}), B(0,\sqrt{3},2)$, 两条母线的方程分别为

$$L_1': \begin{cases} x = 0, \\ \sqrt{3}y + z - 2 = 0 \end{cases}$$
 π $L_2': \begin{cases} x = 0, \\ z = 2. \end{cases}$

对应的锥面方程为

得分	
评阅人	

三、(本题 15 分) 设 n 阶复方阵 A_1, \ldots, A_{2n} 均相似于对角阵, \mathbb{C}^n 表示复 n 维列向量空间. 证明:

1. $\mathbb{C}^n = \ker A_k \oplus \operatorname{Im} A_k$. 这里 $\ker A_k = \{\alpha | A_k \alpha = 0, \alpha \in A_k \in A_k$

1. $\mathbb{C}^n = \ker A_k \oplus \operatorname{Im} A_k$. 这里 $\ker A_k = \{\alpha | A_k \alpha = 0, \alpha \in \mathbb{C}^n\}$, $\operatorname{Im} A_k = \{A_k \beta | \beta \in \mathbb{C}^n\}$ $(k = 1, \dots, 2n)$.

2. 若对所有的 k < j 皆有 $A_k A_j = 0$ (k, j = 1, 2, ..., 2n), 则 $A_1, ..., A_{2n}$ 中至少有 n 个矩阵为零矩阵.

证明. 由 A_k 可复对角化可知,存在可逆矩阵 $P_k = (p_1^{(k)}, \cdots, p_n^{(k)})$ 使得

$$A_k P_k = \operatorname{diag}(\lambda_1^{(k)}, \cdots, \lambda_n^{(k)}) P_k.$$

不妨设 $p_1^{(k)}, \dots, p_t^{(k)}$ 为关于特征值 0 的特征向量, $p_{t+1}^{(k)}, \dots, p_n^{(k)}$ 为关于特征值 $\lambda \neq 0$ 的特征向量。于是, $\ker A_k = \operatorname{span}\{p_1^{(k)}, \dots, p_t^{(k)}\}$, $\operatorname{Im} A_k = \operatorname{span}\{p_{t+1}^{(k)}, \dots, p_n^{(k)}\}$ 。这里若 A_k 不以 0 为特征值时, $\ker A_k = 0$. 事实上,若 dim $\ker A_k > t$,则特征值 0 的代数重数 > t,矛盾。从而有 $\ker A_k = \operatorname{span}\{p_1^{(k)}, \dots, p_t^{(k)}\}$.

另一方面, $\forall y \in \mathbb{C}^n$,y 可写成 $y = a_1 p_1^{(k)} + \dots + a_n p_n^{(k)}$,结果 $Ay = a_{t+1} \lambda_{t+1}^{(k)} p_{t+1}^{(k)} + \dots + a_n \lambda_n^{(k)} p_n^{(k)} \in \operatorname{span} \{ p_{t+1}^{(k)}, \dots, p_n^{(k)} \}$. 从而有 $\operatorname{Im} A_k = \operatorname{span} \{ p_{t+1}^{(k)}, \dots, p_n^{(k)} \}$. 故有 $\mathbb{C}^n = \ker A_k \oplus \operatorname{Im} A_k$.

现由条件 $A_1A_2 = 0$ 得 $\operatorname{Im} A_2 \subseteq \ker A_1$, 进而有

$$\mathbb{C}^n = (\ker A_1 \cap \ker A_2) \oplus \operatorname{Im} A_2 \oplus \operatorname{Im} A_1.$$

事实上,由 $\mathbb{C}^n = \ker A_2 \oplus \operatorname{Im} A_2$ 可知, $\forall u \in \ker A_1, u = u_1 + u_2$,其中 $u_1 \in \ker A_2, u_2 \in \operatorname{Im} A_2$. 又由 $\operatorname{Im} A_2 \subseteq \ker A_1$ 得 $u_1 = (u - u_2) \in \ker A_2 \cap \ker A_1$. 结果 $\ker A_1$ 有直和分解: $\ker A_1 = (\ker A_2 \cap \ker A_1) \oplus \operatorname{Im} A_2$,于是 $\mathbb{C}^n = (\ker A_1 \cap \ker A_2) \oplus \operatorname{Im} A_2 \oplus \operatorname{Im} A_1$.

利用 $A_1A_3=0$, $A_2A_3=0$ 及 $\mathbb{C}^n=\ker A_3\oplus\operatorname{Im} A_3$, 重复前述对 $\ker A_1$ 进行分解的过程又可得

$$\ker A_2 \cap \ker A_1 = (\ker A_3 \cap \ker A_2 \cap \ker A_1) \oplus \operatorname{Im} A_3,$$

从而有		
	$\mathbb{C}^n = (\ker A_1 \cap \ker A_2 \cap \ker A_3) \oplus \operatorname{Im} A_3 \oplus \operatorname{Im} A_2 \oplus \operatorname{Im} A_1$	
最后有		
蚁 /山 日	$\mathbb{C}^n = (\ker A_1 \cap \cdots \cap \ker A_{2n}) \oplus \operatorname{Im} A_1 \oplus \cdots \oplus \operatorname{Im} A_{2n}.$	
 两边取维	数得	(12分)
	$n = \dim(\ker A_1 \cap \cdots \cap \ker A_{2n}) + \operatorname{rank} A_1 + \cdots + \operatorname{rank} A_{2n}.$	
	$A_1, \ldots, \operatorname{rank} A_{2n}$ 中至少有 n 个为 0 ,即 A_1, \ldots, A_{2n} 中至少知知。证毕.	»有 n 个 □
		(15分)

得分	
评阅人	

四、(本题 20 分) 称实函数 f 满足条件 (P): 若 f 在 [0,1] 上非负连续, f(1) > f(0) = 0, $\int_0^1 \frac{1}{f(x)} dx = +\infty$, 且对任何 $x_1, x_2 \in [0,1]$ 成立 $f(\frac{x_1 + x_2}{2}) \geqslant \frac{f(x_1) + f(x_2)}{2}$.

- 1. 令 c > 0, 对于 $f_1(x) = cx$ 和 $f_2(x) = \sqrt{x}$, 分别验证 f_1 , f_2 是否满足条件 (P), 并计算 $\lim_{x \to 0^+} \left(f_1(x) x f_1'(x) \right)^m e^{f_1'(x)} \, \text{和} \lim_{x \to 0^+} \left(f_2(x) x f_2'(x) \right)^m e^{f_2'(x)}.$
- 2. 证明: $\forall m \ge 1$, 存在满足条件 (P) 的函数 f 以及趋于零的正数列 $\{x_n\}$, 使得 f 在每一点 x_n 可导, 且 $\lim_{n \to +\infty} (f(x_n) x_n f'(x_n))^m e^{f'(x_n)} = +\infty$.

解答. 我们指出, 注意到 $f(x) - xf'(x) = -x^2 \left(\frac{f(x)}{x}\right)'$ 对计算与思考是有益的.

1. 易见 f_1, f_2 都在 [0,1] 上非负连续, $f_1(1) > f_1(0) = 0$, $f_2(1) > f_2(0) = 0$. 对于 x > 0, $f'_1(x) = c$, $f''_1(x) = 0$, $f'_2(x) = \frac{1}{2}x^{-1/2}$, $f''_2(x) = -\frac{1}{4}x^{-3/2}$. 因此, f_1, f_2 均是 [0,1] 上的凹函数. 由于 $\int_0^1 \frac{1}{f_1(x)} dx = +\infty$, $\int_0^1 \frac{1}{f_2(x)} dx < +\infty$, 所以 f_1 满足条件 (P) 而 f_2 不满足条件 (P).

另一方面, $f_1(x) - xf_1'(x) \equiv 0$, 因此, $\lim_{x \to 0^+} (f_1(x) - xf_1'(x))^m e^{f_1'(x)} = 0$.

$$\overline{\mathbb{m}} \lim_{x \to 0^{+}} \left(f_{2}(x) - x f_{2}'(x) \right)^{m} e^{f_{2}'(x)} = \lim_{x \to 0^{+}} \left(\frac{\sqrt{x}}{2} \right)^{m} e^{\frac{1}{2\sqrt{x}}} = +\infty.$$
(5 \(\frac{\psi}{2}\))

2. 从 1 的结果得到提示, 我们用类似函数 \sqrt{x} 与 cx 的函数来构造想要的例子. 注意到对于 (0,1] 中严格单调下降并趋于零的点列 $\{a_n\}$, 当函数 f 的图像为 依次连接 $(a_n, \sqrt{a_n})$ 的折线且 f(0) = 0 时, 条件 (P) 成立.

于是, 我们可以尝试寻找这样一列 $\{a_n\}$ 以及 $x_n \in (a_{n+1}, a_n)$ 以满足题目的要求.

$$\dots$$
 (10 分)

具体地, 取 $a_0 = 1, x_n \in (a_{n+1}, a_n)$ 待定. 我们给出 f 的表达式如下:

$$f(x) = \begin{cases} \sqrt{a_{n+1}} + k_n(x - a_{n+1}), & x \in (a_{n+1}, a_n]; n \geqslant 0, \\ 0, & x = 0, \end{cases}$$

其中
$$k_n = \frac{\sqrt{a_n} - \sqrt{a_{n+1}}}{a_n - a_{n+1}} = \frac{1}{\sqrt{a_n} + \sqrt{a_{n+1}}}.$$

注意到

$$\int_{a_{n+1}}^{a_n} \frac{1}{f(x)} dx = \frac{1}{2k_n} \ln \frac{a_n}{a_{n+1}} \geqslant \frac{\sqrt{a_n}}{2} \ln \frac{a_n}{a_{n+1}},$$

取
$$a_{n+1} = a_n e^{-\frac{2}{n\sqrt{a_n}}}$$
,即有 $0 < a_{n+1} < a_n$,且 $\int_{a_{n+1}}^{a_n} \frac{1}{f(x)} dx \geqslant \frac{1}{n}$.

另一方面, 在
$$(a_{n+1}a_n)$$
 内, $f'(x) = k_n \geqslant \frac{1}{2\sqrt{a_n}}$,

$$f(x) - xf'(x) = \frac{\sqrt{a_n}\sqrt{a_{n+1}}}{\sqrt{a_n} + \sqrt{a_{n+1}}} \geqslant \frac{\sqrt{a_n}e^{-\frac{1}{n\sqrt{a_n}}}}{2}.$$

因此, 任取 $x_n \in (a_{n+1}, a_n)$, 均有

$$\underline{\lim}_{n \to +\infty} \left(f(x_n) - x_n f'(x_n) \right)^m e^{f'(x_n)} \geqslant \underline{\lim}_{n \to +\infty} \left(\frac{\sqrt{a_n} e^{-\frac{1}{n\sqrt{a_n}}}}{2} \right)^m e^{\frac{1}{2\sqrt{a_n}}} = +\infty.$$

因此,
$$\lim_{n \to +\infty} (f(x_n) - x_n f'(x_n))^m e^{f'(x_n)} = +\infty.$$

得分	
评阅人	

五、(本题 15 分) 设 $\alpha, \beta, \alpha_1, \alpha_2, \beta_1, \beta_2$ 和 A 均为实

数. 回答以下问题:

- 1. $\lim_{n \to \infty} \sin(n\alpha + \beta) = A$ 成立的充要条件是什么?
- 2. $\lim_{n\to\infty} \left(\sin(n\alpha_1+\beta_1)+\sin(n\alpha_2+\beta_2)\right)=0$ 成立的充要

条件是什么?

解答. 为方便引用, 标记

$$\lim_{n \to \infty} \sin(n\alpha + \beta) = A \tag{1}$$

以及

$$\lim_{n \to \infty} \left(\sin(n\alpha_1 + \beta_1) + \sin(n\alpha_2 + \beta_2) \right) = 0.$$
 (2)

法 I. 我们给出如下答案.

- 1. 满足的条件为: $\sin \alpha = 0$, $\sin \beta = A$, $\sin(\alpha + \beta) = A$.
- 2. 满足的条件为:

$$\sin \alpha_2 = \pm \sin \alpha_1 \neq 0, \cos(\alpha_1 \pm \alpha_2) = 1, 1 \pm \cos(\beta_1 \mp \beta_2) = 0.$$

解答过程.

1. 条件 (1) 等价于

$$\sin((n+2)\alpha + \beta) \to A, \quad n \to \infty.$$
 (3)

(3)-(1) 并整理得到

$$\sin \alpha \cos(n\alpha + \beta) \to 0, \quad n \to \infty.$$
 (4)

同理可得

$$\sin^2 \alpha \sin(n\alpha + \beta) \to 0, \quad n \to \infty.$$

上式和 (4) 表明, 必有 $\sin \alpha = 0$, 否则

$$\sin(n\alpha_1 + \beta_1) \to 0$$
, $\cos(n\alpha_1 + \beta_1) \to 0$, $n \to \infty$.

答题时不要超过此线

而矛盾.

再由 (1) 等价于

$$\sin(2n\alpha_1 + \beta_1) \to A$$
, $\sin(2n\alpha_1 + \alpha + \beta_1) \to A$,

得到

$$\sin \alpha_1 = 0, \sin \beta_1 = \sin(\alpha_1 + \beta_1) = A.$$

再来证明结论 2. 条件 (2) 等价于

$$\sin((n+2)\alpha_1 + \beta_1) + \sin((n+2)\alpha_2 + \beta_2) \to 0.$$
 (5)

(5) - (2) 并整理,得到

$$\sin \alpha_1 \cos(n\alpha_1 + \beta_1) + \sin \alpha_2 \cos(n\alpha_2 + \beta_2) \to 0.$$
 (6)

同理,可得

$$\sin^2 \alpha_1 \sin(n\alpha_1 + \beta_1) + \sin^2 \alpha_2 \sin(n\alpha_2 + \beta_2) \to 0. \tag{7}$$

(2) 乘以 $\sin^2 \alpha_2$, 减去(7),得到

$$(\sin^2 \alpha_2 - \sin^2 \alpha_1) \sin(n\alpha_1 + \beta_1) \rightarrow 0.$$

故必有 $\sin^2 \alpha_2 = \sin^2 \alpha_1$, 于是有

或者
$$\sin^2 \alpha_2 = \sin^2 \alpha_1 = 0$$
, 或者 $\sin^2 \alpha_2 = \sin^2 \alpha_1 \neq 0$.

若 $\sin^2 \alpha_2 = \sin^2 \alpha_1 = 0$, 即 $\sin \alpha_2 = \sin \alpha_1 = 0$, 代入 (2) 即得

$$\sin \alpha_1 = \sin \alpha_2 = 0, \sin \beta_1 + \sin \beta_2 = \sin(\alpha_1 + \beta_1) + \sin(\alpha_2 + \beta_2) = 0.$$

若 $\sin^2\alpha_2=\sin^2\alpha_1\neq 0$, 则, $\sin\alpha_2=\pm\sin\alpha_1\neq 0$, 由(6)和(7)得到

$$\sin(n\alpha_1 + \beta_1) + \sin(n\alpha_2 + \beta_2) \to 0,$$

$$\cos(n\alpha_1 + \beta_1) \pm \cos(n\alpha_2 + \beta_2) \to 0.$$

上两式等价于右边平方和趋于0,即

从而(2)成立的条件是

法 II. 问题 1 和 2 都可以视为如下问题的特例:

设 $m\geqslant 2, \lambda_1,\lambda_2,\ldots,\lambda_m$ 均为实数, C_1,C_2,\ldots,C_m 均为非零复数. 则 $\lim_{n\to\infty}\sum_{j=1}^mC_je^{ni\lambda_j}=0$ 成立的充要条件是什么.

若 $\lim_{n\to\infty}\sum_{j=1}^m C_j e^{ni\lambda_j}=0$,则对任何 $\lambda\in\mathbb{R}$,均有 $\lim_{n\to\infty}\sum_{j=1}^m C_j e^{ni(\lambda_j-\lambda)}=0$. 进一步,由 Stolz 公式,

$$\lim_{n \to \infty} \frac{1}{n+1} \sum_{j=1}^{m} \sum_{k=0}^{n} C_j e^{ki(\lambda_j - \lambda)} = 0.$$
 (8)

我们断言, $\lambda_2, \ldots, \lambda_m$ 之中必有一个, 设为 λ_ℓ , 使得 $e^{i(\lambda_\ell - \lambda_1)} = 1$, 即 $\frac{\lambda_\ell - \lambda_1}{2\pi}$ 为整数. 否则, 在 (8) 中取 $\lambda = -\lambda_1$, 得到

$$0 = \lim_{n \to \infty} \frac{1}{n+1} \sum_{j=1}^{m} \sum_{k=0}^{n} C_j e^{ki(\lambda_j - \lambda_1)}$$
$$= C_1 + \lim_{n \to \infty} \frac{1}{n+1} \sum_{j=2}^{m} C_j \frac{e^{(n+1)i(\lambda_j - \lambda_1)} - 1}{e^{i(\lambda_j - \lambda_1)} - 1} = 0.$$

一般地,可得

$$e^{i\lambda_1}, e^{i\lambda_2}, \dots, e^{i\lambda_m}$$
 中任何一个必然等于余下 $m-1$ 个中的另一个. (9)

1. (1) 化为

$$\lim_{n \to \infty} \left(e^{i\beta} e^{in\alpha} - e^{-i\beta} e^{-in\alpha} - 2iA \right) = 0.$$

情形 1.1. A=0. 此时 m=2,

$$\lambda_1 = \alpha, \quad \lambda_2 = -\alpha, \quad C_1 = e^{i\beta}, \quad C_2 = -e^{-i\beta}.$$

由 (9), $e^{i\alpha} = e^{-i\alpha}$, 进而 $e^{i\beta} = e^{-i\beta}$. 即 $\frac{\alpha}{\pi}$, $\frac{\beta}{\pi}$ 为整数.

情形 1.2. $A \neq 0$. 此时 m = 3,

$$\lambda_1 = \alpha, \quad \lambda_2 = -\alpha, \quad \lambda_3 = 0, \quad C_1 = e^{i\beta}, \quad C_2 = -e^{-i\beta}, \quad C_3 = -2iA.$$

由 (9), 此时, 必有 $e^{i\alpha}=e^{-i\alpha}=1$, 进而 $e^{i\beta}-e^{-i\beta}-2iA=0$. 即 $\frac{\alpha}{\pi}$ 为偶数, 且 $A=\sin\beta$.

易见上述条件也是充分的. 总之, 本小题条件成立的充要条件是: 存在整数 k,j 使得

$$\begin{cases} A = 0, \\ \alpha = k\pi, \\ \beta = j\pi \end{cases} \qquad \begin{cases} A = \sin \beta, \\ \alpha = 2k\pi. \end{cases}$$

2. 条件 (2) 化为

$$\lim_{n \to \infty} \left(e^{i\beta_1} e^{in\alpha_1} - e^{-i\beta_1} e^{-in\alpha_1} + e^{i\beta_2} e^{in\alpha_2} - e^{-i\beta_2} e^{-in\alpha_2} \right) = 0.$$

此时 m=4,

$$\lambda_1 = \alpha_1, \quad \lambda_2 = -\alpha_1, \quad \lambda_3 = \alpha_2, \quad \lambda_4 = -\alpha_3,$$

$$C_1 = e^{i\beta_1}, \quad C_2 = -e^{-i\beta_1}, \quad C_3 = e^{i\beta_2}, \quad C_4 = -e^{-i\beta_2}.$$

于是由(9),它们必然可以分为两对,每一对有相同的值(不排除四个值均相同).

情形 2.1. $e^{i\lambda_1} = e^{i\lambda_2} = e^{i\lambda_3} = e^{i\lambda_4}$.

这等价于 $\frac{\alpha_1}{\pi}$, $\frac{\alpha_2}{\pi}$ 均为整数, 且有相同的奇偶性. 进一步, $C_1+C_2+C_3+C_4=0$, 而这等价于 $\sin\beta_1+\sin\beta_2=0$, 等价于 $\frac{\beta_2-\beta_1}{\pi}$ 是奇数.

情形 2. $e^{i\lambda_1}=e^{i\lambda_2}\neq e^{i\lambda_3}=e^{i\lambda_4}$.

这等价于 $\frac{\alpha_1}{\pi}$, $\frac{\alpha_2}{\pi}$ 均为整数, 但有不同的奇偶性. 进一步, $C_1+C_2=C_3+C_4=0$, 而这等价于 $\frac{2\beta_1}{\pi}$, $\frac{2\beta_2}{\pi}$ 是奇数.

情形 3. $e^{i\lambda_1}=e^{i\lambda_3}\neq e^{i\lambda_2}=e^{i\lambda_4}$.

这等价于 $\frac{\alpha_1-\alpha_2}{\pi}$ 为偶数, 但 $\frac{\alpha_1}{\pi}$ 不是整数. 进一步, $C_1+C_3=C_2+C_4=0$, 而这等价于 $\frac{\beta_2-\beta_1}{\pi}$ 是奇数.

情形 4. $e^{i\lambda_1}=e^{i\lambda_4}\neq e^{i\lambda_2}=e^{i\lambda_3}$.

这等价于 $\frac{\alpha_1 + \alpha_2}{\pi}$ 为偶数, 但 $\frac{\alpha_1}{\pi}$ 不是整数. 进一步, $C_1 + C_4 = C_2 + C_3 = 0$, 而这 等价于 $\frac{\beta_2 + \beta_1}{\pi}$ 是奇数.

易见上述条件也是充分的. 总之, 本小题条件成立的充要条件是: 存在整数 k, j, p, q, 使得以下四者之一成立

$$\begin{cases} \alpha_1 = k\pi, \\ \alpha_2 = k\pi + 2j\pi, \\ \beta_2 = \beta_1 + (2p+1)\pi, \end{cases} \begin{cases} \alpha_1 = k\pi, \\ \alpha_2 = k\pi + 2j\pi + \pi, \\ \beta_1 = (p + \frac{1}{2})\pi, \\ \beta_2 = (q + \frac{1}{2})\pi, \end{cases} \begin{cases} \frac{\alpha_1}{\pi} \notin \mathbb{Z}, \\ \alpha_2 = \alpha_1 + 2k\pi, \\ \beta_2 = \beta_1 + (2p+1)\pi, \end{cases} \begin{cases} \frac{\alpha_1}{\pi} \notin \mathbb{Z}, \\ \alpha_2 = -\alpha_1 + 2k\pi, \\ \beta_2 = -\beta_1 + (2p+1)\pi. \end{cases}$$

......(15 分)

以上条件可以归并为: 存在整数 k, j, p, q, 以及 $\varepsilon \pm 1$ 使得以下二者之一成立

$$\begin{cases} \alpha_1 = k\pi, \\ \alpha_2 = k\pi + 2j\pi + \pi, \\ \beta_1 = (p + \frac{1}{2})\pi, \end{cases} \begin{cases} \alpha_2 = \varepsilon \alpha_1 + 2k\pi, \\ \beta_2 = \varepsilon \beta_1 + (2p + 1)\pi. \end{cases}$$
$$\beta_2 = (q + \frac{1}{2})\pi,$$

姓名:

得分 评阅人

六、(本题 15 分) 设 g 为 \mathbb{R} 上恒正的连续函数, 对于正整数 n 以及 $x_0, y_0 \in \mathbb{R}$, 考虑微分方程

$$\begin{cases} y'(x) = y^{\frac{1}{2n+1}}(x)g(x), \\ y(x_0) = y_0. \end{cases}$$
 (1)

证明: 1. 方程(1)有定义在整个 ℝ上的解(称为全局解);

- 2. 若 $y_0 = 0$,则方程 (1)有无穷多个全局解;
- 3. 若 y = y(x) 是方程 (1) 的解, 则 y 在 \mathbb{R} 上非负, 或在 \mathbb{R} 上非正.

证明. 1. 若 $y_0 = 0$, 则 $y \equiv 0$ 为全局解.

若 $y_0 \neq 0$. 注意到函数 y = y(x) 为方程 (1) 的解当且仅当 y = -y(x) 为方程 (1) 的解, 故不妨设 $y_0 > 0$. 在 $y \neq 0$ 的区间内求解 (1) 得到

$$y^{\frac{2n}{2n+1}}(x) = y_0^{\frac{2n}{2n+1}} + G(x),$$

其中

$$G(x) = \frac{2n}{2n+1} \int_{x_0}^x g(t) dt, \qquad x \in \mathbb{R}.$$

由于 g 恒正, G 严格单增, 而 $G(x_0) = 0$. 于是 $\alpha = \lim_{x \to -\infty} G(x) \in [-\infty, 0)$.

情形 I.
$$\alpha + y_0^{\frac{2n}{2n+1}} \geqslant 0$$
.

此时 $G(x) + y_0^{\frac{2n}{2n+1}}$ 恒正. 取

$$y(x) = \left(y_0^{\frac{2n}{2n+1}} + G(x)\right)^{\frac{2n+1}{2n}}, \quad \forall x \in \mathbb{R},$$

即知它为方程(1)的全局解.

情形 II. $\alpha + y_0^{\frac{2n}{2n+1}} < 0$.

此时,有唯一的 $\gamma \in (-\infty, x_0)$ 使得 $G(\gamma) + y_0^{\frac{2n}{2n+1}} = 0$. 取

$$y(x) = \begin{cases} \left(y_0^{\frac{2n}{2n+1}} + G(x)\right)^{\frac{2n+1}{2n}}, & x > \gamma \\ 0, & x \leqslant \gamma, \end{cases} \quad \forall x \in \mathbb{R},$$

直接计算可得

$$y'_{+}(\gamma) = \lim_{x \to \gamma^{+}} \frac{1}{x - \gamma} \left(y_{0}^{\frac{2n}{2n+1}} + G(x) \right)^{\frac{2n+1}{2n}} = g(\gamma) \lim_{x \to \gamma^{+}} \left(y_{0}^{\frac{2n}{2n+1}} + G(x) \right)^{\frac{1}{2n}} = 0,$$
于是 $y'(0) = 0$. 进而可知 y 为方程 (1) 的全局解.
(5 分)
2. 由 1 的结论, 任取 $\gamma \geqslant x_{0}$, 可见以下函数均是方程 (1) 的全局解
$$y(x) = \begin{cases} \left(\frac{2n}{2n+1} \int_{\gamma}^{x} g(t) \, dt \right)^{\frac{2n+1}{2n}}, \quad x > \gamma \\ 0, \qquad x \leqslant \gamma, \end{cases}$$
(10 分)
3. 设 $y(x)$ 是方程 (1) 在区间 I 上的解 (I 不必是 \mathbb{R}), 均有
$$\left(y^{2}(x) \right)' = 2y(x)y'(x) = 2y^{\frac{2n+2}{2n+1}}(x)g(x) \geqslant 0, \qquad \forall x \in I.$$
因此, $y^{2}(x)$ 在 I 上单调增加. 由连续函数的介值定理即知 $y(x)$ 或在 I 上非负, 或在 I 上非正.

......

(15分)