

Association Rules

Identifying Co-occurring Patterns

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— bread and butters?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Market Basket Analysis

 $computer \Rightarrow antivirus software [support = 2\%, confidence = 60\%]$

Basic Concepts: Frequent Patterns

Tid	Items bought
10	bread, Nuts, butter
20	bread, Coffee, butter
30	bread, butter, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, butter, Eggs, Milk

- itemset: A set of one or more items
- k-itemset X = {x1, ..., xk}
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is frequent if X's support is no less than a minsup threshold

Basic Concepts: Association Rules

Tid	Items bought
10	bread, Nuts, butter
20	bread, Coffee, butter
30	bread, butter, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, butter, Eggs, Milk

- Find all the rules X → Y with minimum support and confidence
 - support, s, probability that a transaction contains X U Y
 - confidence, c, conditional probability that a transaction having X also contains Y. P(Y|X)

Let minsup = 50%, minconf = 50%

Freq. Pat.: bread: 3, Nuts: 3, butter: 4, Eggs: 3, {bread, butter}: 3

Association rules:

- bread \rightarrow butter (60%, 100%)
- butter \rightarrow bread (60%, 75%)

Difficulty

- Extremely computationally expensive
- Naïve solution
 - exponential time and memory w.r.t.
 - linear time w.r.t.
- Typically, || is in thousands, |D| is in billions...

The Apriori Algorithm—An Example

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

$$Sup_{min} = 2$$

1st scan

2	Itemset	sup
	{A}	2
C_1	{B}	3
- 1	{C}	3
	{D}	1
	{E}	3

 L_1

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

 L_2

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

 C_2

•

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

 C_2

C_3	Itemset
	{B, C, E}

3 rd s	scan L ₃

Itemset	sup
{B, C, E}	2

Apriori: A Candidate Generation & Test Approach

 Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

Method:

- Initially, scan DB once to get frequent 1-itemset
- Generate length candidate (k+1)-itemsets from length k frequent itemsets
- Test the candidates against DB
- Terminate when no frequent candidates can be generated, else iterate

Types of Association Rules

- Boolean association rules
- Hierarchical rules
 - dhoti, saree → t-shirt

Quantitative & Categorical rules

```
– (Age: 30...39), (Married: Yes) →(NumCars: 2)
```


More Types

- Cyclic / Periodic rules
 - Sunday → vegetables
 - − Christmas → gift items
 - Summer, rich, jobless → ticket to Hawaii
- Constrained rules
 - Show itemsets whose average price > Rs.10,000
 - Show itemsets that have television on RHS
- Sequential rules
 - Star wars, Empire Strikes Back → Return of the Jedi

Summary

Thanks!!

Questions?