

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

MATEMÁTICAS PARA LAS CIENCIAS APLICADAS 1

LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN

3ra lista de problemas

Tercer Parcial

Autores:

Ramírez Mendoza Joaquín Rodrigo Salinas Trinidad Betsi Ivana Villalobos Juárez Gontrán Eliut Treviño Puebla Héctor Jerome

Noviembre 2024

3ra lista de problemas

Ramírez Mendoza Joaquín Rodrigo Salinas Trinidad Betsi Ivana Villalobos Juárez Gontrán Eliut Treviño Puebla Héctor Jerome

3 de noviembre de 2024

CONSTRUCCIÓN DE UNA MONTAÑA RUSA

1) Un satélite se encuentra en una órbita elíptica alrededor de la Tierra. Su distancia r (en millas) desde el centro de la Tierra está dada por

$$r\frac{495}{1+0.12cos\theta}$$

donde θ es el ángulo medido desde el punto de la órbita más cercano a la superficie de la Tierra (ver la figura adjunta).

- a) Halla la altitud del satélite en el perigeo (el punto más cercano a la superficie de la Tierra) y en el apogeo (el punto más alejado de la superficie de la Tierra). Usa 3960 mi como el radio de la Tierra.
- b) En el instante en que θ es 120°, el ángulo θ aumenta a una tasa de 2,7° /min. Halla la altitud del satélite y la tasa a la que cambia la altitud en ese instante. Expresa la tasa en unidades de mi/min.

ANTON-BIVENS-DAVIS 9.7 EJERCICIO 29

29) Encuentra los primeros 4 polinomios distintos de Taylor sobre $x = x_0$, y usa una utilidad gráfica para graficar la función dada y el polinomio de Taylor en la misma pantalla.

$$f(x) = cosx \text{ en } x_0 = \pi$$

Para facilitar la búsqueda de estos polinomios, primero hallemos las derivadas (que presentará una forma cíclica):

Derivando:	Evaluando en: $x_0 = \pi$	Valor:
$f^0(x) = cos(x)$	$f^0(\pi) = cos(\pi)$	$cos(\pi) = -1$
$f^1(x) = -\operatorname{sen}(x)$	$f^1(\pi) = -\operatorname{sen}(\pi)$	$-sen(\pi) = 0$
$f^2(x) = -\cos(x)$	$f^2(\pi) = -\cos(\pi)$	$-cos(\pi) = 1$
$f^3(x) = sen(x)$	$f^3(\pi) = sen(\pi)$	$sen(\pi) = 0$

Para generar los diferestes polinomios ocuparemos el desarrollo de Taylor:

$$\sum_{k=0}^{n} \frac{f^k(x_0)}{k!} (x - x_0)^k$$

Para $P_0(x)$:

$$\sum_{k=0}^{0} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0$$
$$\frac{f^0(\pi)}{0!} (x - \pi)^0 = \frac{\cos(\pi)}{1} (x - \pi)^0$$
$$\frac{\cos(\pi)}{1} (x - \pi)^0 = \cos(\pi)(1)$$
$$\cos(\pi)(1) = -1$$

Así, esta es nuestra **primera** aproximación a la función. $P_0(x) = -1$ Para $P_1(x)$:

$$\sum_{k=0}^{1} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0 + \frac{f^1(\pi)}{1!} (x - \pi)^1$$

Para el nuevo Término:

$$\frac{f^1(\pi)}{1!}(x-\pi)^1 = \frac{-sen(\pi)}{1}(x-\pi)$$
$$\frac{sen(\pi)}{1}(x-\pi) = sen(\pi)(x-\pi)$$
$$sen(\pi)(x-\pi) = 0$$

Así la sumatoria resulta:

$$\sum_{k=0}^{1} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + 0$$
$$\sum_{k=0}^{1} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1$$

En este caso podemos ver que dada la multiplación por 0 (debido a $sen(\pi)$) el polinomio resultante es igual al anterior (NO es distinto).

Podremos ver que se repetirá este comportamiento siempre que el término de la sumatoria involucre $sen(\pi)$, con esto el término se çancelará".

Para $P_2(x)$:

$$\sum_{k=0}^{2} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} = \frac{f^{0}(\pi)}{0!} (x - \pi)^{0} + \frac{f^{1}(\pi)}{1!} (x - \pi)^{1} + \frac{f^{2}(\pi)}{2!} (x - \pi)^{2}$$

Para el nuevo Término:

$$\frac{f^2(\pi)}{2!}(x-\pi)^2 = \frac{-\cos(\pi)}{2}(x-\pi)^2$$
$$\frac{-\cos(\pi)}{2}(x-\pi)^2 = \frac{1}{2}(x-\pi)^2$$
$$\frac{1}{2}(x-\pi)^2 = \frac{(x-\pi)^2}{2}$$

Así la sumatoria resulta:

$$\sum_{k=0}^{2} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2}$$

Así, esta es nuestra **segunda** aproximación a la función. $P_2(x) = -1 + \frac{(x-\pi)^2}{2}$

Para $P_3(x)$:

$$\sum_{k=0}^{3} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0 + \frac{f^1(\pi)}{1!} (x - \pi)^1 + \frac{f^2(\pi)}{2!} (x - \pi)^2 + \frac{f^3(\pi)}{3!} (x - \pi)^3$$

Para el nuevo Término:

Como se mecionó mas arriba sabemos que el nuevo termino involucrará a $sen(\pi)$ (Dado que la derivación de cos(x) es cíclica), por esto, este término también será 0.

Así la sumatoria resulta:

$$\sum_{k=0}^{3} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} + 0$$
$$\sum_{k=0}^{3} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2}$$

Por lo tanto este no es un Polinomio Distinto.

Para $P_4(x)$:

$$\sum_{k=0}^{4} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0 + \frac{f^1(\pi)}{1!} (x - \pi)^1 + \frac{f^2(\pi)}{2!} (x - \pi)^2 + \frac{f^3(\pi)}{3!} (x - \pi)^3 + \frac{f^4(\pi)}{4!} (x - \pi)^4$$

Para el nuevo Término:

$$\frac{f^4(\pi)}{4!}(x-\pi)^4 = \frac{\cos(\pi)}{24}(x-\pi)^4$$
$$\frac{\cos(\pi)}{24}(x-\pi)^4 = \frac{-1}{24}(x-\pi)^4$$
$$\frac{-1}{24}(x-\pi)^4 = -\frac{(x-\pi)^4}{24}$$

Así la sumatoria resulta:

$$\sum_{k=0}^{4} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24}$$

Así, esta es nuestra **tercera** aproximación a la función. $P_4(x) = -1 + \frac{(x-\pi)^2}{2} - \frac{(x-\pi)^4}{24}$

Para $P_5(x)$:

$$\sum_{k=0}^{3} \frac{f^{k}(x_{0})}{k!} (x - x_{0})^{k} = \frac{f^{0}(\pi)}{0!} (x - \pi)^{0} + \frac{f^{1}(\pi)}{1!} (x - \pi)^{1} + \dots + \frac{f^{5}(\pi)}{5!} (x - \pi)^{5}$$

Para el nuevo Término:

Este termino también involucrará a $sen(\pi)$, por esto, este término también será 0.

Así la sumatoria resulta:

$$\sum_{k=0}^{5} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24} + 0$$
$$\sum_{k=0}^{5} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24}$$

Por lo tanto este no es un Polinomio Distinto.

Para $P_6(x)$:

$$\sum_{k=0}^{6} \frac{f^k(x_0)}{k!} (x - x_0)^k = \frac{f^0(\pi)}{0!} (x - \pi)^0 + \frac{f^1(\pi)}{1!} (x - \pi)^1 + \dots + \frac{f^6(\pi)}{6!} (x - \pi)^6$$

Para el nuevo Término:

$$\frac{f^6(\pi)}{6!}(x-\pi)^6 = \frac{-\cos(\pi)}{720}(x-\pi)^6$$
$$\frac{-\cos(\pi)}{720}(x-\pi)^6 = \frac{1}{720}(x-\pi)^6$$
$$\frac{1}{720}(x-\pi)^6 = \frac{(x-\pi)^6}{720}$$

Así la sumatoria resulta:

$$\sum_{k=0}^{4} \frac{f^k(x_0)}{k!} (x - x_0)^k = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24} + \frac{(x - \pi)^6}{720}$$

Así, esta es nuestra **cuarta** aproximación a la función. $P_6(x) = -1 + \frac{(x-\pi)^2}{2} - \frac{(x-\pi)^4}{24} + \frac{(x-\pi)^6}{720}$

Podemos notar comportamientos similares en las aproximaciones con lo cual incluso Podríamos generar una fórmula para generar estos Polinomio.

A continuación están las gráficas, tanto de la función original como de los Polinomios Generados:

Gráfica de la función y los Polinomios

Ampliación de la Gráfica (Para notar mejor la aproximación realizada)

$$f(x) = \cos(x)$$

$$P_0(x) = -1$$

$$P_2(x) = -1 + \frac{(x - \pi)^2}{2}$$

$$P_4(x) = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24}$$

$$P_6(x) = -1 + \frac{(x - \pi)^2}{2} - \frac{(x - \pi)^4}{24} + \frac{(x - \pi)^6}{720}$$

Simbología