# Методы оптимизации. Семинар 10. Оптимальность. Условия ККТ.

#### Корнилов Никита Максимович

Московский физико-технический институт

5 ноября 2024г

## Прямая и двойственная задачи

#### Прямая

$$p^* = \min f_0(x)$$
  
**s.t.**  $f_i(x) \le 0, i = 1, ..., m$  (1)  
 $h_j(x) = 0, j = 1, ..., n,$ 

Н. М. Корнилов

2 / 23

## Прямая и двойственная задачи

Прямая

$$p^* = \min f_0(x)$$
  
s.t.  $f_i(x) \le 0, i = 1,..., m$  (1)  
 $h_j(x) = 0, j = 1,..., n,$ 

Двойственная функция

$$g(\lambda,\nu) = \inf_{\mathbf{x} \in \mathbf{D}} \left( f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{j=1}^n \nu_j h_i(\mathbf{x}) \right)$$
(2)

Двойственная

$$d^* = \max_{\lambda, \nu} g(\lambda, \nu)$$
  
s.t.  $\lambda \succeq 0$ . (3)

H. М. Корнилов 5 ноября 2024г 2 / 23

#### Сильная двойственность

Напомним, что достаточным условием сильной двойственности, то есть  $p^*=d^*$ , например, является *ослабленное условие Слейтера*:

- f 0 Функции  $f_0$  и  $f_i$  являются выпуклыми, а  $h_j$  являются аффинными.
- ② Существует такая допустимая точка  $x_0$ , что все *не афинные* условия неравенства выполняются строго  $f_i(x_0) < 0$ .

Н. М. Корнилов

## Условие дополняющей нежёсткости

Предположим, что выполняется сильная двойственность. Также  $x^*$  - прямая переменная, доставляющая оптимум задачи (1), а  $(\lambda^*, \nu^*)$  - двойственная переменная, доставляющая оптимум задачи (3).

4 / 23

H. М. Корнилов 5 ноября 2024г

#### Условия дополняющей нежёсткости

$$f_0(x^*) = g(\lambda^*, \nu^*)$$

$$= \inf_{x} \left( f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^n \nu_j^* h_j(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^n \nu_j^* h_j(x^*)$$

$$\leq f_0(x^*),$$

Поэтому, используя то, что  $f_i(x^*) \leq 0$ , мы получаем

$$\lambda_i^* f_i(x^*) = 0, \ i = 1, \ldots, m.$$

#### Условия дополняющей нежёсткости

$$f_0(x^*) = g(\lambda^*, \nu^*)$$

$$= \inf_{x} \left( f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^n \nu_j^* h_j(x) \right)$$

$$\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{j=1}^n \nu_j^* h_j(x^*)$$

$$\leq f_0(x^*),$$

Поэтому, используя то, что  $f_i(x^*) \leq 0$ , мы получаем

$$\lambda_i^* f_i(x^*) = 0, \ i = 1, \dots, m.$$

$$\lambda_i^* > 0 \Rightarrow f_i(x^*) = 0,$$
  
 $f_i(x^*) < 0 \Rightarrow \lambda_i^* = 0.$ 

#### Условие ККТ

Давайте теперь еще предположим, что  $f_0, f_1, \ldots f_m, h_1, \ldots h_n$  дифференцируемы в  $x^*$ . Тогда, так как  $x^*$  минимизирует  $L(x, \lambda^*, \nu^*)$ , градиент L по x в точке  $x^*$  должен быть равен нулю

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^n \nu_j^* \nabla h_j(x^*) = 0,$$

Если  $f_0, f_1, \dots f_m, h_1, \dots h_n$  только субдифференцируемы в  $x^*$ , то

$$\partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*) + \sum_{j=1}^n \nu_j^* \partial h_j(x^*) \ni 0.$$

#### Условие ККТ

#### Каруша-Куна-Такера:

$$f_i(x^*) \leq 0, \ i=1,\dots m$$
  $h_j(x^*) = 0, \ j=1,\dots n$   $\lambda_i^* \geq 0, \ i=1,\dots m$   $\lambda_i^* f_i(x^*) = 0, \ i=1,\dots m$   $\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^n \nu_j^* \nabla h_j(x^*) = 0$  или с  $\partial$ . (4)

Н. М. Корнилов

## Необходимость и достаточность

**Необходимое условие:** для оптимального набора прямых и двойственных переменных при сильной двойственности следуют условия ККТ.

**Достаточное условие:** Когда  $f_i$  выпуклые, а  $h_j$  аффинные: для  $\overline{x}, (\overline{\lambda}, \overline{\nu})$ , которые удовлетворяют (4), выполняется следующее - эти точки доставляют оптимум прямой и двойственной задачи соответственно, и выполняется сильная двойственность.

Проверить это довольно легко – достаточно выписать равенство  $g(\overline{\lambda},\overline{\nu})=L(\overline{x},\overline{\lambda},\overline{\nu})=f_0(\overline{x}).$ 

H. М. Корнилов 5 ноября 2024г

## Аналитическое решение задач

С помощью достаточного условия ККТ можно находить решение прямой и двойственной задач аналитически

## Example

$$\min \frac{1}{2}x^T P x + q^T x + r$$
s.t.  $Ax = b$ ,

где 
$$P \in \mathcal{S}^d_+$$
,  $A \in \mathbb{R}^{m \times d}$ .

Н. М. Корнилов

5 ноября 2024г

## Несколько условий неравенств

#### Example

Рассмотрим задачу минимизации

$$\min_{x,y \in \mathbb{R}} x + 3y$$
s.t.  $x - y \ge 0$ ,
$$(x - 1)^2 + (y - 1)^2 \le 9$$
.

H. М. Корнилов 5 ноября 2024г

# Проекция на $l_2$ шар

#### Example

Рассмотрим задачу минимизации

$$\min_{x} ||x - s||_{2}^{2}$$
  
s.t.  $||x||_{2}^{2} \le 1$ ,

s.t. 
$$||x||_2^2 \le 1$$
,

Н. М. Корнилов

# Проекция на $l_1$ шар

#### Example

Рассмотрим задачу минимизации

$$\min_{x} ||x - s||_2^2$$

s.t. 
$$||x||_1 \le 1$$
,

#### Аналитическое решение задач

## Example (Water-filling)

min 
$$-\sum_{i=1}^{d} \log (\alpha_i + x_i)$$
  
s.t.  $x \succeq 0$ ,  
 $\mathbf{1}^T x = 1$ ,

где  $\alpha_i > 0$ .

H. М. Корнилов 5 ноября 2024г

## Решение прямой задачи через двойственную

Рассмотрим решение двойственной задачи  $(\lambda^*, \nu^*)$ . При сильной двойственности

$$f_0(x^*) = g(\lambda^*, \nu^*) = \inf_{x} \left( f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{j=1}^n \nu_j^* h_j(x) \right).$$

Если у этой задаче единственный минимум (для выпуклой задачи это верно, когда лагранжиан строго выпуклый), то он обязательно достигается в точке  $x^*$  глобального минимума прямой задачи.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

14 / 23

## Решение прямой задачи через двойственную

Для строго выпуклого лагранжиана смотрим условие:

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{j=1}^n \nu_j^* \nabla h_j(x^*) = 0.$$

Если минимум лагранжиана не достигается, то и в прямой задаче минимум не достигается.

15 / 23

Н. М. Корнилов 5 ноября 2024г

## Примеры на решение

## Example (Максимизация энтропии)

$$\min \sum_{i=1}^{d} x_i \log x_i$$

s.t.  $Ax \leq b$ ,

$$\mathbf{1}^T x = 1,$$

Н. М. Корнилов

## Примеры на решение

#### Example (Минимизация сепарабельной функции)

min 
$$\sum_{i=1}^{d} f_i(x_i)$$
  
s.t.  $a^T x = b$ ,

где  $f_i$  - строго выпуклые и дифференцируемые функции.

По условию Слейтера сильная выпуклость достигается.

#### Решение

Выпишем лагранжиан:

$$L(x,\nu) = \sum_{i=1}^{d} f_i(x_i) + \nu(a^{T}x - b) = -b\nu + \sum_{i=1}^{d} (f_i(x_i) + \nu a_i x_i),$$

который тоже является сепарабельным по компонентам вектора x. Тогда двойственная функция

$$g(\nu) = -b\nu + \inf_{x} \left( \sum_{i=1}^{d} (f_i(x_i) + \nu a_i x_i) \right)$$

$$= -b\nu + \sum_{i=1}^{d} \inf_{x_i} (f_i(x_i) + \nu a_i x_i)$$

$$= -b\nu - \sum_{i=1}^{d} f_i^* (-\nu a_i),$$

где  $f_i^*$  - сопряженные функция.



#### Решение

Тогда двойственная задача будет иметь следующий вид:

$$\max - b\nu - \sum_{i=1}^d f_i^*(-\nu a_i),$$

где  $\nu$  – скаляр.

Для поиска оптимального значения одномерной задачи можно пользоваться уже известными вам методами, например, методом дихотомии или золотого сечения. В силу показанного ранее минимум прямой задачи совпадает с минимумом  $L(x, \nu^*)$ . Тогда, для поиска  $x^*$  можно взять градиент лагранжиана в  $\nu^*$  по x и приравнять его к нулю:  $\nabla_x L(x^*, \nu^*) = 0$ , то есть решать уравнения  $f_i'(x_i^*) = -\nu^* a_i$ .

19 / 23

Н. М. Корнилов 5 ноября 2024г

## Условия регулярности

- Функции ограничений  $f_i$  и  $h_i$  являются аффинными;
- Для точки локального минимума  $x^*$  градиенты всех ограничений равенств и всех *активных* ограничений неравенств (выполняется равенство нулю) линейно независимы;
- Условие Слейтера.

## Необходимые условия ККТ локального минимума

#### Theorem

Пусть  $x^*$  является локальным минимумом прямой задачи. При этом пусть выполняется хотя бы одно из условий регулярности. Тогда, если функции  $f_0$ ,  $f_i$ ,  $h_j$  дифференцируемы в точке  $x^*$ , то существуют такие двойственные переменные  $(\lambda^*, \nu^*)$ , что выполняются условия ККТ.

## Example (Для точки минимума условия ККТ не выполнены)

$$\min_{x \in \mathbb{R}} x$$

s.t. 
$$x^2 \le 0$$
,

4□ > 4□ > 4 □ > 4 □ > 4 □ > 4 □ (\*

# Second-Order Sufficient Condition (SOSC)

Определим для набора переменных  $(x,\lambda,\nu)$  следующие множества из активных неравенств:

$$I(x) = \{i : f_i(x) = 0\},$$
  

$$I^0(x) = \{i : f_i(x) = 0, \lambda_i = 0\},$$
  

$$I^+(x) = \{i : f_i(x) = 0, \lambda_i > 0\}.$$

#### Definition

Достаточное условие второго порядка выполнено для набора переменных  $(x, \lambda, \nu)$ , если для любого вектора  $z \neq 0$ , такого что:

$$z^{T} \nabla_{x} f_{i}(x) = 0, \quad i \in I^{+}(x),$$
  

$$z^{T} \nabla_{x} f_{i}(x) \leq 0, \quad i \in I^{0}(x),$$
  

$$z^{T} \nabla_{x} h_{j}(x) = 0, \quad j = 1, \dots, m,$$

верно что

$$z^T \nabla^2_{xx} L(x,\lambda,\nu) z > 0.$$

(5

# SOSC Достаточные условия ККТ

#### Theorem

Пусть функции  $f_0$ ,  $f_i$ ,  $h_j$  являются дважды непрерывно дифференцируемыми. Тогда, если для набора переменных  $(x^*, \lambda^*, \nu^*)$  выполнены все условия ККТ и SOSC, то  $x^*$  является точкой локального минимума прямой задачи.

#### Example

Рассмотрим задачу оптимизации

$$\min_{x} - x 
s.t. x^{2} + y^{2} \le 1, 
(x - 1)^{3} - y \le 0.$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (\*)