8-1

个性化推荐算法

中央财经大学 商学院 姚凯 2016

主要内容

- * 基于用户的协同过滤推荐算法实现
- * 基于商品的协同过滤推荐算法实现

- * 两种推荐算法对比
- * 评价推荐算法标准

协同过滤法: 集体智慧

- * 使用目标消费者和其他消费者的历史数据
- ⇒ 基于用户 VS. 基于产品
- * 计算用户之间或产品之间的相似性

基于用户的协同过滤算法

实现步骤

1.构造用户商品矩阵

2.计算用户间相似度

3.根据用户间相似度推荐商品

构造用户商品矩阵

Consider the data sample:

				SUPERMAN		
CRITIC	TITANIC	BATMAN	INCEPTION	RETURNS	SPIDERMAN	MATRIX
MICHEL	2.5	3.5	3	3.5	2.5	3
SATYA	3	3.5	1.5	5	3	3.5
PARANAV	2.5	3	N/A	3.5	N/A	4
SURESH	N/A	3.5	3	4	2.5	4.5
том	3	4	2	3	2	3
LEO	3	4	N/A	5	3.5	3
CHAN	N/A	4.5	N/A	4	1	N/A

计算用户间相似度

- * 将用户看过的商品列表用向量表示
- * 计算两个向量之间的相似度(欧式内积,皮尔森相关系数)

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^{N} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}}$$

计算用户间相似度

* 实际应用中利用矩阵运算得到所有用户间相似度

user_sim = cosine(as.matrix(t(x)))

根据用户间相似度推荐商品

1.计算权重矩阵

User_sim for CHAN		TITANIC	INCEPTION	MATRIX		TITANIC	INCEPTION	MATRIX
0.7125006		2.5	3	3		1.7812515	2.1375	2.1375
0.760215	*	3	1.5	3.5	==>	2.280645	1.1403	2.6607
0.6831639		2.5	N/A	4		1.7079098	N/A	2.7326
0.7028414		N/A	3	4.5		N/A	2.1085	3.1627
0.7341787		3	2	3		2.2025361	1.4684	2.2025
0.80555		3	N/A	3		2.41665	N/A	2.4166
1		N/A	N/A	N/A		N/A	N/A	N/A

根据用户间相似度推荐商品

* 用每列权重和除以相似度和

	TITANIC	INCEPTION	MATRIX
sum of columns	10.38899235	6.854706	15.312882
Sum of Sim Users who have rated	3.6956082	2.909736	4.3984496
Divide	2.811172556	2.355783	3.4814273

User_sim for CHAN		TITANIC	INCEPTION	MATRIX		TITANIC	INCEPTION	MATRIX
0.7125006		2.5	3	3		1.7812515	2.1375	2.1375
0.760215	*	3	1.5	3.5	==>	2.280645	1.1403	2.66075
0.6831639		2.5	N/A	4		1.7079098	N/A	2.73266
0.7028414		N/A	3	4.5		N/A	2.1085	3.16279
0.7341787		3	2	3		2.2025361	1.4684	2.20254
0.80555		3	N/A	3		2.41665	N/A	2.41665
1		N/A	N/A	N/A		N/A	N/A	N/A

	TITANIC	INCEPTION	MATRIX
sum of columns	10.38899235	6.854706	15.312882
Sum of Sim Users who have rated	3.6956082	2.909736	4.3984496
Divide	2.811172556	2.355783	3.4814273

基于商品的协同过滤算法

基于商品的协同过滤算法实现

- 1.构造用户商品矩阵
- 2.计算商品间相似度

3.根据商品间相似度推荐与消费者已买商品

相似的其他商品

实现步骤

1.构造用户商品矩阵

2.计算用户间相似度

3.根据用户间相似度推荐商品

构造用户商品矩阵

Consider the data sample:

				SUPERMAN		
CRITIC	TITANIC	BATMAN	INCEPTION	RETURNS	SPIDERMAN	MATRIX
MICHEL	2.5	3.5	3	3.5	2.5	3
SATYA	3	3.5	1.5	5	3	3.5
PARANAV	2.5	3	N/A	3.5	N/A	4
SURESH	N/A	3.5	3	4	2.5	4.5
том	3	4	2	3	2	3
LEO	3	4	N/A	5	3.5	3
CHAN	N/A	4.5	N/A	4	1	N/A

推荐算法

协同过滤算法对比

Item-based filtering

手机/iPad购物成为淘宝增长点? m.taobao.com访问量一年增6倍已超过淘宝流量的10%

m.taobao.com 流量情况变化

注: m.taobao.com包含了来自于平板电脑(iPad等)浏览器和手机浏览器的http访问,不包含基于App客户端的访问方式

改进协同过滤推荐系统的方法

- 1.根据用户场景进行过滤
- 2.优化协同过滤的用户商品矩阵
- 3. 两种方法进行切换
- 4.采用混合推荐的方法

推荐算法指标

- * 准确度
- * 覆盖率
- * 多样性
- * 新颖性

如何检验推荐算法效果

- * Offline: 根据离线算法训练推荐系统,将训练好的算法应用在样本外数据上面看效果
- * Online: 将不同的推荐算法部署在统一实际应用系统中,用户分组使用不同的推荐算法,实际测试推荐算法的好坏