Комитет Российской Федерации по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

(21) 5040473/33

(22) 29.04.92

(46) 090795 Evon № 19

(71) Научно-исспедовательская паборатория базапьтовых волокон Рінститута проблем материало-

ведения АН Украины (UA)

(72) Трефилов Виктор Ивановин(UA), Ceprees Bnaдимир Петровин(UA); Махова Мария Федоровна(UA); Джигерис Димтрий Данилович (UA); Миценко Евгений Семеновин(UA): Чуващов Юрий Никопаевин(UA); Бочарова Ирина Никопаевна(UA); Горбачев Григорий Федорович(UA)

(73) Научно-исспедовательская паборатория базальтовых волоков Института проблем материаловедения АН Украины (UA)

(56) Авторское свидетельство СССР N 525634, ил. C 03C 13/00, 1975.

Авторское свидетельство СССР N 1261923, ют. C 03C 13/06 1986.

(54) СТЕКЛО ДЛЯ СТЕКЛОВОЛОКНА

(57) Использование: для производства непрерыяных и грубых волоком. Сущность изобретения стекло для стекновопоння содержил, в мас %, оксид кремния 47,5 – 57,8 БФ SiO₂ оконд этюминия 17,1 – 19 БФ M_2O_2 оксид титана 12-2 БФ TO_2 оксид жепеза 3.8^{-3} 8.5 БФ Fe $D_{\rm c}$ оксид железа 3.4-7.0 БФ FeO, оксид марганца 0.11-0.19 БФ MnO, оксид кальция 65 - 108 БФ CaO, оксид магния 23 - 75 5Ф MgO, оксид калия 0,8 - 2,5 5Ф K₂O, оксид натрия 22 - 48 БФ Na O оксид серы 001 - 020 БФ SO, скоид фосфора 1.1 - 20 БФ Р₂О₂, эксни скандия 0.03 - 1.2 БФ Sc O , околд цинка 0.05 - 1.0 БФ ZnO Coomowerse ALO_/(Ca+MgO)<20 Ycromes-BOCTS & 2N HCI (98°C, 3"4) 98 - 989% & Ca(OH), 991 - 998% 1 3r d-no.4 1850

25

35

Изобратение относится к составам стекол, предназначенных для производства непрерывных и грубых волокон, которые могут быть использованы для получения различных тканей и нетканых материалов, фильтров. для армирования цементных и гипсовых вяжущих, а также псилимеров - и других целей.

цель изобретения - снижение кристаллизационной способности, удлинение температурного интервала выработки, обеспечение надежности процесса и повышение устойнивсети в вислых средах.

В известиых составах стекол, применяемых для стекловоликна, содержится SiO₂. TIO2. Al2O3. Fe2O3. FeO, CaO, MgO, MnO, K2O. Na2O, P2O5, La2O3. Для составления шихты в качестве исходного материала используки андезит, корректирующийся кварцевым песком, мелом, доломитом, содой и трех- 20 окисью пантана, а в ряде случаев пиролюзитом [1].

Известен состав стехла, содержащий SIO2, Al2O3, TIO2, Fe2O3, FeO, MnO, CaO.

MgO, K2O, NazO, SO3 [2].

Исходным сырьем для получения минерального волокна этого состава снужит повотилодифив и вотилодифивотор спитов как однокомпонентивя шихта. Однако такое стекло обладает высокой кристаллизационной способностью, низкой кислотоустойчивостью и из-за узкого интервала выработки не может быть использовано в производствс непрерывных и грубых волоком.

Для устранения указанных недостатков и достижения цели предложены составы. уонхретные из которых приведены в табл. 1.

Гехиологические свойства расплавов и физико-химические свойства волокон приведены в тэбл.2 и 3 соответственно. Как 40 видно из табл. 1, предлагаемое стекло отличается от известного более высоким содер-OKCHAOB RNHNMOINE мэнием трехвалентного железа. что приводит к увеличению вислотоустойчивости. Этот эф. 45 фект усиливают оксиды фосфора и скандил (как элементы III и V групп таблицы • Д (4 Менделеева)

Известно, что овсиды железа, кальция и магния значительно повышают кристаллизационную способность расплава, что отрицательно огражается на процессе волокнообразования (особенно непрерывных волокон). За счет этого интервал выработки волоком сужается, возрастает 55 обрывность и процеда облучения воложом. неустойния Уменьшения указанных пясыдов обеспечивает смижение температуры воринего предела кристаллизации (Тв о к.)

удлинение температурного интервала выработки и надежность процесса. Вводение охсида цинка приводит к образованию с АІдОз тверд го раствора, устойчивого к кислотам. Важным условием является соблюдение со-

A1203 отношения $\frac{\sqrt{2}\sqrt{3}}{\text{CaO} + \text{MgO}}$, котор TONKHO быть более 1,2, из менее 2,0.

Стекло указанного состава может быть получено как из обычных, используемых в стекловарении исходных компонентов, так и на основе различных природных материалов, например аидезитов, андезитобазальтов. базальтов, диабазов, габбро.

Процесс варки стекля предлагаемого состава осуществляли в личи при температуре 1450°С до получения гомогенного рас-BOJOKOH Формирование

происходило устойчиво.

Как следует из табл. 3 в сравнении с прототипом, Тв.п.к. предлагаемого состава стехла на 50-80°C ниже, интервал выработки волокна расширен в 6-9 раз. в кислотоустойчивость выше в 2,2-5,3 разв.

Из предлагаемого состава стекла получены также и грубые волокиа. Результаты испытаний их физико-химических свойста

представлены в тебл.4.

Из табл.4 видно, что грубые волохна из стехла предлагаемого состава обладают высовей стойкостью не только к кислотам, нои к насыщенному раствору Са(ОН)г. что предопределяет их использование при изготовлении фибробетона.

Ассортимент получаемых воложон (непрерывных и грубых), высокая эимическая устойчивость в агрессивных средах дает возможность использовать их для производства тканых и нетканых, фильтроваль**армирующих** материалов. HHX наполнителей композитов, армирования 5с. тонов на основе минеральных вяжущих и др., стоихих при эксплуатации в агрессивных средах в химической и других отраслях промышленности, в качестве фильтров грубой, тонкой и сверхнонкой очистки агрессивных сред.

Долговечность тваней, изготовленных из волокия предлагаемого состава превышает долгонечность стеклянных ткамей при мерно в 1,5 раза. Из стегля предлагаемого состава наработаны и испытаны партии непрерывного и грубого воложна в количестве 800 и 1000 ж. соответственно.

Физико-химические исследования полученного волокна подтвердили его высокую химическую устойчивость в агрессивных соедах

Таблица і

Компоненты	Состав волокна, мас. %					
	1	2	3	4 ,	5 ·	
SIO ₂ Al ₂ O ₃ TIO ₂ Fe ₂ O ₃ FeO MnO CaO MrgO K ₂ O Na ₂ O SO ₃ P ₂ O ₅ Sc ₂ O ₃ ZnO Al ₂ O ₃ CaQ + NigO	56,26 17,20 1,20 4,41 3,50 0,12 6,90 4,00 2,31 2,91 0,01 1,10 0,03 0,05 1,58	52,40 17,80 1,26 5,54 3,98 0,13 7,30 5,00 1,56 2,28 0,05 1,45 0,75 0,50	49.00 18,28 1,45 5,80 4,20 0,18 8,18 5,40 0,90 2,31 0,10 2,00 1,20 1,00	57.8 19.0 1.2 3.8 3.4 0.11 7.2 2.3 0.8 2,2 0.05 1.1 0.04 1.0 2.0	47.5 17.1 2.0 7.4 5.2 0.15 6.75 7.5 1.2 3,0 0.1 1.4 0.5 0.2	

Таблица 2

Состав.	Вяэхость, Па с при С					
№ 	1450	1400	1350	1300	· · · 1250	
1 2 3 4 5	510 155 76 710 70	940 220 135 1260 124	1900 500 246 2250 220	2900 1000 565 4000 395	1800 200 1150 8600 1250	

Таблица 3

Технологические свойст- ва расплавов и волскон	Состав волокна					
аа раскизаць и волоко	1	2	3	4	5	
Температура верхнего предела консталлизации.	1220	1230	1250	1210	1250	
Та.а.к., °С Температурный интерват	1320-1380	1300-1370	1280-1370	1340-1400	1290-1370	
выр а ботки, ^о С Средний диаметр полок-	9.0	6.8	9.3			
ча, мям Предел прочилсти при	2200	2380	2240		; } -	
растежении, МПа Потери массы в 2 НС! (90°C, 3 ч), мг/5000 см²	324.1	388.5	789.4	-		

Свойства волокон		Составы стак л	
	1	. 2	3
Диаметр, мкм Предел прочности при растяжении,	160 280	150 300	155 305
МПа Устойчивость в средах (98°C, 3 ч).% 2NHC1 Са(ОН)2	98.9 99.1	98,0 99,6	97,1 99.8

1. СТЕКЛО ДЛ включающее SIO2. FeO. MnO. CaO. SO3. отличающееся нительно содержит при следующем состов. мас. %: SIO2 Al2O3	3 0 б р е г в н и я Я СТЕКЛОВОЛОКНА, Аі2О3. ТІО2. Fe2О3. МдО. К2О. Na2О и тем. что оно допол- Р2О5. ZnO и SC2О3 отношении компонен- 47.5 - 57.8 17.1 - 19.0 1.2 - 2.0	10	что отношение	0,11 - 0,19 6.5 - 10.8 2.3 - 7.5 0.8 - 2.5 2.2 - 4.6 0.01 - 0,20 1,1 - 2.0 0.03 - 1.2 0.05 - 1.0
TIO ₂ Fe ₂ O ₃	3.8-8.5		$1.2 < \frac{\text{Al}_2 \text{O}_3}{\text{CaO+NgC}} < 2.0$	
FeO	3.4 - 7.0	45	•	

Редактор И Семенова

Составитель В Трефилов Техрод М Моргентал

Корречтор М Керецман

3akan 528

Tunax

Подписное

нпо поиск Роспатента

113035, Москеа, Ж-35, Раушская наб., 4/5