Изучение спектров атома водорода и молекулы йода

Илларионов Владислав группа Б04-855

ВВЕДЕНИЕ

В ходе данной работы исследуются спектральные закономерности в оптических спектрах атома водорода и молекулы йода. По результатам измерений вычисляется постоянная Ридберга для водорода и энергии диссоциации для молекулы йода в основном, а также в возбужденном состоянии.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Изучение спектра атома водорода

Длины волн спектральных линий водородоподобного атома описываются обобщенной формулой Бальмера:

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{1}$$

где R — константа, называемая постоянной Ридберга, Z — атомный номер, а m и n — целые числа.

В данной работе изучается серия Бальмера, линии которой лежат в видимой области. Для серии Бальмера n=2, а величина m для первых четырех линий принимает значения 3,4,5,6 соответственно. Эти линии обозначаются символами $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}$.

Изучение молекулярного спектра йода

Молекулы обладают более богатым спектром возбужденных состояний, чем изолированные атомы. В то время как возбуждения атомов это переходы их электронов на более высоко расположенные энергетические уровни, в молекулах могут возбуждаться дополнительные степени свободы. В первом приближении энергия молекулы может быть представлена в виде:

$$E = E_{\text{эл}} + E_{\text{колеб}} + E_{\text{вращ}} \tag{2}$$

Однако характерная энергия вращательных движений в 10^6 раз меньше энергии электронных переходов, и поэтому наблюдение вращательных переходов оптическими спектрометрами невозможно. На рис. 1 схематически изображены энергетические уровни молекулы без учета вращательной структуры. Штриховыми линиями показаны чисто электронные уровни

Рис. 1. Электронные и электро-колебательные уровни двухатомной молекулы

 E_1 и E_2 , а сплошными колебательные подуровни этих состояний.

Энергетическое положение линий поглощения описывается выражением:

$$h\nu_{0,n_2} = (E_2 - E_1) + h\nu_2 \left(n_2 + \frac{1}{2}\right) - \frac{h\nu_1}{2}$$
 (3)

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматор-спектрометр УМ-2.

Основные элементы монохроматора представлены на рис. 2.

- 1. Входная щель 1, снабженная микрометрическим винтом 9.
- 2. Коллиматорный объектив 2, снабженный микрометрическим винтом 8.
- 3. Сложная спектральная призма 3, состоящая из трех склеенных призм Π_1, Π_2, Π_3 , и установленная на поворотном столике 6.
- 4. Поворотный столик 6, вращающийся вокруг вертикальной оси при помощи микрометрического винта 7 с отсчётным барабаном. На барабан нанесена винтовая дорожка с градусными делениями. Вдоль дорожки скользит указатель барабана.

- 5. Зрительная труба, состоящая из объектива 4, окуляра 5 и указателя 10.
- 6. Массивный корпус 11, предохраняющий прибор от повреждений и загрязнений.
- 7. Оптическая скамья, на которой могут перемещаться рейтеры с источником света Π и конденсором K.

Рис. 2. Устройство монохроматора УМ-2

МЕТОДИКА ИЗМЕРЕНИЯ

Спектрометр нуждается в предварительной градуировке по известным спектральным линиям ртути и неона. Ртутная лампа применяется для градуировки в коротковолновой части спектра, а неоновая — в длинноволновой и средней.

Далее по градуировочной кривой определяются длины волн линий H_{α} , H_{β} , H_{γ} , H_{δ} , а также линий поглощения йода $n_{1,0}$ (одна из самых длинноволновых хорошо видимых линий поглощения), $n_{1,5}$ (шестая по счёту от выбранной длинноволновой линии) и $n_{\rm rp}$ (граница схождения спектра). Энергии соответствующие этим линиям обозначим как $h\nu_{1,0}$, $h\nu_{1,5}$ и $h\nu_{\rm rp}$ соответственно.

Основную ошибку в вычисления вносит погрешность аппроксимации. Она будет оценена как стандартное отклонение истинных значений длин волн спектральных линий неона и ртути и значений, полученных с помощью аппроксимирующего полинома.

ОБРАБОТКА ДАННЫХ

Спектр водорода

Аппроксимируя экспериментальные данные (табл. I-II) полиномом 5-ой степени, построим градуировочную кривую (см. рис. 3). Аппроксимирующий многочлен имеет следующий вид:

$$f(x) = 3.6 \cdot 10^{-14} x^5 - 2.4 \cdot 10^{-10} x^4 + 7 \cdot 10^{-7} x^3 - 8.9 \cdot 10^{-4} + x + 3593$$

Далее рассчитаем длины волн спектральных линий водорода и йода. Для каждой из спектральных линий водорода с помощью формулы (1) найдем значение постоянной Ридберга (см. табл. III), и вычислим среднее.

$$R_{mean} = 109814 \pm 71 \text{ cm}^{-1}$$

$$R_{\text{табл}} = 109678 \text{ cm}^{-1}$$

Рис. 3. Градуировка монохроматора

Спектр йода

Энергия колебательного кванта возбужденного состояния молекулы йода определяется как:

$$h\nu_2 = (h\nu_{1.5} - h\nu_{1.0})/5 = 0.016 \pm 0.001$$
 B

Учитывая, что энергия колебательного кванта основного состояния $h\nu_1=0.027$ эВ, энергия возбуждения атома $E_A=0.94$ эВ, с помощью формулы (3) рассчитаем энергию электронного перехода $h\nu_{\rm эл}$, энергию диссоциации в основном состоянии D_1 и в возбужденном — D_2 .

$$h\nu_{\text{эл}} = h\nu_{1,0} - \frac{3h\nu_2}{2} + \frac{h\nu_1}{2} = 1.975 \pm 0.003 \text{ sB}$$

$$D_1 = h\nu_{\text{гр}} - E_A = 1.51 \pm 0.01$$
 эВ

$$D_2 = h\nu_{\rm rp} - h\nu_{\rm эл} = 0.477 \pm 0.05$$
 эВ

вывод

В ходе данной работы методом спектрального анализа были получены значения постоянной Ридберга для водорода, а также энергии диссоциации молекулы йода.

Табличное значение постоянной Ридберга не попадает в 68% доверительный интервал значения, полученного экспериментально. Предположительно это может быть связано с тем, что в диапазон длин волн спектральных линий водорода попало мало точек градуировки и аппроксимация не правильно описывает связь длины волны и делений барабана спектрометра.

Приложение А: Таблицы

Таблица I. Градуировка на спектре ртути

Nº	$\lambda, \mathring{\mathrm{A}}$	0
K1	6907	2902
K2	6234	2672
1	5791	2468
2	5770	2454
3	5461	2280
4	4916	1860
5	4358	1194
6	4047	654

Таблица II. Градуировка на спектре неона

$N_{\overline{o}}$	$\lambda, { m \AA}$	0	№	$\lambda, { m \AA}$	0
1	7032	2942	14	6164	2640
2	6929	2910	15	6113	2630
3	6717	2840	16	6096	2610
4	6678	2830	17	6074	2602
5	6599	2808	18	6030	2584
6	6533	2782	19	5976	2556
7	6507	2776	20	5945	2544
8	6402	2738	21	5882	2516
9	6383	2734	22	5852	2504
10	6334	2710	23	5401	2242
11	6305	2696	24	5341	2206
12	6267	2678	25	5331	2196
13	6217	2658			

Таблица III. Постоянная Ридберга, рассчитанная для разных спектральных линий водорода

0	$\lambda, { m \AA}$	R, cm^{-1}
		109849 ± 129
		$109913 \pm 174 109755 \pm 195$
		109738 ± 109 109738 ± 206