Трехмерная визуализация результатов поверхностного ЭКГ картирования

Изория Владислав Фридонович рук. Белова Ирина Михайловна

Постановка задачи

- Создание трехмерной модели распределения потенциала на поверхности грудной клетки с динамическим изменением во времени
 - Построение трехмерной модели
 - Наложение карты потенциала на модель
 - Динамическое изменение карты во времени

Создание 3D модели

Определение положения датчиков

Метод обратно-взвешенных расстояний

(Invert Distance Weighting)

•
$$f(x,y) = \sum_{i=1}^{n} a_i w_i(x,y)$$

•
$$w_i(x,y) = \frac{h_i(x,y)^{-p}}{\sum_{j=1}^n h_j(x,y)^{-p}}$$

•
$$h_i(x,y) = \sqrt{(x-x_i)^2 + (y-y_i)^2}$$

Метод Шепарда

• Используется только n ближайших точек

•
$$w_i(x, y) = \frac{\left[\frac{R - h_i(x, y)}{R h_i(x, y)}\right]^2}{\sum_{j=1}^n \left[\frac{R - h_j(x, y)}{R h_j(x, y)}\right]^2}$$

• *R* – расстояние до самой дальней точки, из n ближайших

Наложение текстуры

- Получение значения потенциала в каждой точке
- Создание цветовой схемы
- Наложение полученной текстуры на модель

Программный комплекс

Программный комплекс

Выводы

Была создана трехмерная модель грудной клетки человека, реализовано наложение карты потенциала на модель, а так же динамическое изменение карты во времени.