Sensor Fusion

Table of Contents

- Sensor fusion theory
- The upgraded testbed
- Sun sensor
- Magnetometer
- Rate gyros
- Data fusion
- State fusion
- Results
- Shadowed GPS
- Conclusion

What is Sensor Fusion?

- Combination of different types of sensors to reach a better performance than possible with a single sensor
- Best sensor fusion system: The human brain

Why use it?

- To achieve better performance
- Extra sensors could work as backup if others fail (redundancy)

Complementary Sensors

Fusion Levels

Applied Techniques

Fusion Level	Function	Techniques
Data Level	Spectral Datamining	Digital Signal Processing
Data Level	Data Adaptation	Coordinate Transforms
		Unit Adjustments
	Estimation of Parameters	Kalman Filtering
		Batch Estimation
Feature Level	Classification	Pattern Recognition
l catalo Lovol	Ciacomoation	Fuzzy Logic
		Neural Networks
Decision Loyal	Decide Action	Evnort Systems
Decision Level	Decide Action	Expert Systems
		Artificial Intelligence

Decentralized Fusion

Extra Sensors

- Solar Sensor
- Magnetometer
- Rate Gyros
- + GPS

The Upgraded Testbed

Vector Matching

Wahba's Problem:

$$minimize \quad J(\mathbf{A}) = \sum_{i=1}^{n} ||\mathbf{v}_i^B - \mathbf{A}\mathbf{v}_i^R||^2$$

Solution: Use the SVD method

1. Form B matrix of outer products

$$\mathbf{B} = \sum_{i=1}^{n} \mathbf{v}_{i}^{B} (\mathbf{v}_{i}^{R})^{T}$$

Vector Matching

2. Split B into three matrices using Singular Value Decomposition

$$\mathbf{B} = \mathbf{U} \mathbf{S} \mathbf{V}^T$$

3. The optimal attitude matrix best fitting the vector pairs can be found as:

$$\mathbf{A}_{opt} = \mathbf{U} \operatorname{diag}[1 \ 1 \ (\det \mathbf{U})(\det \mathbf{V})] \mathbf{V}^T$$

Model:

$$i_{sc} = i_{max}\cos\theta + v_s$$

Temperature effects

Calibration

- Sensitivity
- Mounting
- Cosine char.

Mounting errors (adjustment of cell-axis)

Cosine corrections

Sun Sensor

Performance

White Noise?

Magnetometer

Calibration

- Field bias
- Mounting uncertainties

Magnetometer

Calculating internal bias

At 'zero' attitude (A = I)

$$\boldsymbol{\xi}_{ref} = \boldsymbol{\xi}_o + \boldsymbol{\xi}_{bias}$$

Each measurement

$$\boldsymbol{\xi}_m = \mathbf{A}\,\boldsymbol{\xi}_o + \boldsymbol{\xi}_{bias}$$

Least Square

$$oldsymbol{\xi}_m = \mathbf{A} oldsymbol{\xi}_o + (oldsymbol{\xi}_{ref} - oldsymbol{\xi}_o)$$
 $oldsymbol{\xi}_m - oldsymbol{\xi}_{ref} = (\mathbf{A} - \mathbf{I}) oldsymbol{\xi}_o$

Magnetometer

Mounting uncertainties calibrated by a small rotation, found using the SVD method

Result:

Rate Gyros

Working Principle:

Measures the state (angular rate) directly

Rate Gyros

Error sources:

- Noise
- Timevar. bias
- Scalefactor
- Accel. sensitivity
- Off-axis error

Data Fusion

Measurement model:

$$\mathbf{x}(t_k) = \begin{bmatrix} \mathbf{q} \\ \boldsymbol{\omega} \\ \boldsymbol{\beta} \\ \boldsymbol{\beta}_r \end{bmatrix} \qquad \mathbf{z}(t_k) = \begin{bmatrix} \Delta \varphi_{11} \\ \Delta \varphi_{12} \\ \Delta \varphi_{13} \\ \vdots \\ \Delta \varphi_{N1} \\ \Delta \varphi_{N2} \\ \Delta \varphi_{N3} \\ \nu_2 \\ \nu_3 \\ \mathbf{e}_m^B \\ \mathbf{e}_s^B \end{bmatrix} \qquad \mathbf{h}[\mathbf{x}(t_k), t_k] = \begin{bmatrix} \mathbf{b}_1^T \mathbf{A} \mathbf{e}_1^R + \beta_1 \\ \mathbf{b}_1^T \mathbf{A} \mathbf{e}_1^R + \beta_2 \\ \mathbf{b}_1^T \mathbf{A} \mathbf{e}_N^R + \beta_1 \\ \mathbf{b}_1^T \mathbf{A} \mathbf{e}_N^R + \beta_2 \\ \mathbf{b}_1^T \mathbf{A} \mathbf{e}_N^R + \beta_3 \\ \omega_2 + \beta_{r2} \\ \omega_3 + \beta_{r3} \\ \mathbf{A} \mathbf{e}_m^R \\ \mathbf{A} \mathbf{e}_n^R \end{bmatrix}$$

Data Fusion

Measurement gradient matrix:

$$\mathbf{H}[\mathbf{x}(t_k), t_k] = \begin{bmatrix} -2(\mathbf{A}\mathbf{e}_1^R)^T \mathbf{B}_1^{\times} & & & & \\ -2(\mathbf{A}\mathbf{e}_1^R)^T \mathbf{B}_2^{\times} & \mathbf{0}_{3\times 3} & \mathbf{1}_{3\times 3} & \mathbf{0}_{3\times 2} \\ -2(\mathbf{A}\mathbf{e}_1^R)^T \mathbf{B}_3^{\times} & & & & & \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -2(\mathbf{A}\mathbf{e}_N^R)^T \mathbf{B}_1^{\times} & & & & \\ -2(\mathbf{A}\mathbf{e}_N^R)^T \mathbf{B}_2^{\times} & \mathbf{0}_{3\times 3} & \mathbf{1}_{3\times 3} & \mathbf{0}_{3\times 2} \\ -2(\mathbf{A}\mathbf{e}_N^R)^T \mathbf{B}_3^{\times} & & & & \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 2(\mathbf{A}\mathbf{e}_m^R)^{\times} & \mathbf{0}_{3\times 3} & \mathbf{0}_{3\times 3} & \mathbf{0}_{3\times 2} \\ 2(\mathbf{A}\mathbf{e}_n^R)^{\times} & \mathbf{0}_{3\times 3} & \mathbf{0}_{3\times 3} & \mathbf{0}_{3\times 2} \end{bmatrix}$$

State Fusion

Using receiver solution as input measurement

$$\mathbf{z}_q(t_k) = \begin{bmatrix} \hat{q}_1 \\ \hat{q}_2 \\ \hat{q}_3 \\ \hat{q}_4 \end{bmatrix} \qquad \mathbf{h}[\mathbf{x}(t_k), t_k] = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \qquad \mathbf{H}_q[\mathbf{x}(t_k), t_k] = \begin{bmatrix} \mathbf{1}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\ \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} \end{bmatrix}$$

Residuals must be redefined:

$$\delta \mathbf{x}(t_k) \neq \mathbf{K}(\mathbf{z}_q(t_k) - \mathbf{h}_q[\mathbf{x}(t_k), t_k])$$

$$\downarrow \qquad \qquad \delta \mathbf{x}(t_k) = \mathbf{K}(\mathbf{z}_q(t_k) \otimes \mathbf{h}_q[\mathbf{x}(t_k), t_k]^*)$$

Results

Data fusion

5 Satellites

GPS	GPS + Sun sensor	Improvement		
0.33 deg	0.30 deg	9 %		
	GPS + Magnetometer	Improvement		
	0.32 deg	3 %		
	GPS + Rate gyros	Improvement		
	0.32 deg	3 %		
	GPS + All	Improvement		
	0.29 deg	12 %		

3 Satellites

GPS	GPS + All	Improvement
0.48 deg	0.38 deg	21 %

Results

State fusion

Situation	RSS error	MFLOPS
Raw attitude from receiver	0.49 deg	0
Raw attitude from receiver + Kalman	0.42 deg	5.9
Raw attitude from receiver + Kalman + Secondary sensors	0.37 deg	20.2
Phase data from receiver + Kalman	0.33 deg	18.6
Phase data from receiver + Kalman + Secondary sensors	0.29 deg	50.6

Shadowed GPS

	GPS + All secondary	All secondary alone
Pitch (u)	0.13	0.26
Roll (v)	0.17	0.56
Yaw (w)	0.19	0.63
RSS	0.29	0.88

21/12-2000 (MJ)

Danish GPS Center

Conclusion

- Sensor fusion techniques can be applied to GPS applications mainly on the data and feature level
- The gain in accuracy was however shown to be only moderate in this project
- Significant error sources include less than optimal sensors and mechanical alignment problems
- The accuracy achieved by secondary sensors alone was shown to be sufficient for many space missions