MA 161 EXAM 3 Fall 2007

Name	
ten–digit Student ID number	
RECITATION Division and Section Numbers	
Recitation Instructor	

Instructions:

- 1. Fill in all the information requested above and on the scantron sheet.
- 2. This booklet contains 12 problems, each worth $8\frac{1}{3}$ points. The maximum score is 100 points.
- 3. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 4. Work only on the pages of this booklet.
- 5. Books, notes, calculators are not to be used on this test.
- 6. At the end turn in your exam and scantron sheet to your recitation instructor.

- 1. The most common linear approximation of $\frac{1}{1003}$ that uses the reciprocal function is
 - A. 0.001
 - В. 0.001003
 - C. 0.000997009
 - D. 0.00099
 - E. 0.000997

2. The ratio $\frac{1 + \tanh x}{1 - \tanh x}$ is identical to

- A. sinh
- B. cosh
- C. e^{2x}
- D. e^{-2x}
- E. 1
- 3. If f(-5) = -1 and $f'(x) \le -3$, then the mean value theorem guarantees that
 - A. $f(-2) \le -10$
 - B. $f(-2) \ge -10$
 - C. $f(-2) \le -8$
 - D. $f(-2) \ge -8$
 - E. None of the above

4. Given the graph of y = f'(x) below,

it follows that

- A. f is increasing on (0,3)
- B. f is concave down on (0,6)
- C. f has a local minimum at $x \approx 4.4$
- D. f has an inflection point at x = 3
- E. None of the above

5.
$$\lim_{x \to 0} (1 - 2x)^{1/x}$$

A.
$$= 0$$

B.
$$= e^{-2}$$

C.
$$= -2$$

D.
$$= 1$$

- 6. Find the points on the ellipse $4x^2 + y^2 = 4$ that are farthest away from the point (1,0).
 - A. $\left(-\frac{1}{3}, -\frac{4\sqrt{2}}{3}\right)$ and $\left(\frac{1}{3}, \frac{4\sqrt{2}}{3}\right)$
 - B. $\left(-\frac{4\sqrt{2}}{3}, -\frac{1}{3}, \right)$ and $\left(\frac{1}{3}, \frac{4\sqrt{2}}{3}\right)$
 - C. $\left(-\frac{1}{3}, -\frac{4\sqrt{2}}{3}\right)$ and $\left(-\frac{1}{3}, \frac{4\sqrt{2}}{3}\right)$
 - D. $\left(\frac{4\sqrt{2}}{3}, -\frac{1}{3}, \right)$ and $\left(\frac{1}{3}, \frac{4\sqrt{2}}{3}\right)$
 - E. $\left(-\frac{1}{3}, -\frac{4\sqrt{2}}{3}\right)$ and $\left(\frac{1}{3}, -\frac{4\sqrt{2}}{3}\right)$

- 7. A rain gutter is to be constructed from a metal sheet of width 20 cm by bending up one fourth of the sheet on each side through an angle θ . The cosine of the angle θ that will result in the gutter capable of carrying the maximum amount of water is $\cos \theta =$
 - A. $\frac{\sqrt{3}}{2}$
 - B. $\frac{-\sqrt{3}+1}{2}$
 - C. $\frac{1}{2}$
 - D. $\frac{\sqrt{3}-1}{2}$
 - E. $\frac{\sqrt{3}+1}{2}$

- 8. Use Newton's method with initial approximation $x_1 = 1$ to find x_2 , the second approximation to the root of the equation $x^4 x 1 = 0$. Then, $x_2 =$
 - A. $\frac{7}{12}$
 - B. $\frac{4}{3}$
 - C. $\frac{1}{\sqrt[3]{4}}$
 - D. $\sqrt[3]{4}$
 - E. $\frac{2}{3}$

- 9. Given $f''(x) = \sin \theta + \cos \theta$, f(0) = -1, f'(0) = 4, it follows that $f(\pi/4) =$
 - A. $\frac{5\pi\sqrt{2}}{4}$
 - B. $\frac{5\pi}{4} \frac{\sqrt{2}}{2}$
 - C. $\frac{5\pi\sqrt{2}}{2}$
 - D. $\frac{5\pi}{4}$
 - E. $\frac{5\pi}{4} \sqrt{2}$

- 10. The left-endpoint Riemann sum to estimate the area under the graph of $f(x) = \sin x$ from x = 0 to $x = \pi$ using four approximating rectangles is
 - A. $\frac{1+\sqrt{2}}{4}$
 - B. $\frac{3\sqrt{3}}{8}$
 - C. 2
 - D. $\frac{\pi}{2}$
 - E. $\frac{\pi(1+\sqrt{2})}{4}$
- 11. The definite integral $\int_0^2 \frac{1}{1+x} dx$ is the limit of which Riemann sums?
 - $A. \sum_{i=1}^{n} \frac{2}{n+2i}$
 - $B. \sum_{i=1}^{n} \frac{2}{n+i}$
 - $C. \sum_{i=1}^{n} \frac{1}{n+2i}$
 - $D. \sum_{i=1}^{n} \frac{1}{n+i}$
 - E. None of the above
- 12. Given $g(x) = \int_0^{2x} \frac{u^2 2}{u^2 + 2} du$ the value of g'(1) is

- A. 2
- B. 3
- C. $\frac{1}{3}$
- D. $\frac{2}{3}$
- E. $\frac{4}{5}$