

معماري كامپيوتر

درس سوم: طراحی کامپیوترپایه (براساس کتاب مانو)

مدرس:

منوچهر بابایی

کارشناس ارشد مهندسی کامپیوتر(نرم افزار)

(دستورالعمل-کد دستورالعمل)

دستورالعمل کامپیوتر یک کد دودویی است که رشته ای از ریزاعمال را برای کامپیوتر مشخص
 می کند.

مثال (۱):در یک کامپیوتر حافظه 18^*192 داریم.در این کامپیوتر اگر فقط یک روش آدرس دهی وجود داشته باشد،چند نوع دستور میتوان تعریف نمود؟

$$8192 = 8 \times 1024 = 2 \times 2 = 2^{13}$$

$$5 \cdot 2^5 - 32$$

يس 32 نوع دلس علي ماريع .

مثال (۲):در یک کامپیوتر حافظه 48×2^{20} داریم.در این کامپیوتر اگریکی از عملوندها در حافظه و دیگری در یکی از ۳۲ ثبات موجود،وجود داشته باشد. آنگاه چند نوع دستور میتوان تعریف نمود؟

ادس مافظم 20 bit تدس مافظم عنام 30 bit

■ مثال (۳):اگر دستور مورد نظر ما در خانه ۳۰۰ حافظه باشد،عملوندو آدرس موثر را در هر دو روش آدرس دهی مستقیم و غیر مستقیم بیابید.

300	I ADD 532	ستقیم بیابید. EA:532 نادی گرمتم op: ۱A2B
532	1A2B	EA: 1A2B : روش آدیس دهر غیر متعم
	•	op:234c
1A2B	234C	

(ثبات های کامپیوتر)

ثبات	تعداد بیت		وظيفه
DR	16	W	نگه داری عملوند حافظه
AR	12		نگه داری آدرس حافظه
AC	16		ثبات پردازنده-نگه داری نتایج میانی
IR	16		نگه داری کد دستور
PC	12		نگه داری آدرس دستور
TR	16		نگه داری داده های موقت
INPR	8		نگه داری کاراکتر ورودی
OUTR	8		نگه داری کاراکتر خروجی

■ مثال (۴):یک کامپیوتر دارای حافظه 16* 16384 است.اگر هردستور در دو خانه متوالی حافظه باشد. اندازه

ثبات های IR، PC،AC، DR،AR را بیابید.

نیستند؟ (تمرین کتاب موریس مانو)

- $a)IR \leftarrow M[PC]$
- b) $AC \leftarrow AC + TR$
- c) DR \leftarrow DR + AC
- d) $AC \leftarrow TR$
- $e)AC \leftarrow M[AR]$

- a) AR pc
 IR MUK)
- b) DR TR
 - AC AC+ DR

d) DR TR AC DR e) DR MEAR]

C) DR-AC, AC-DR
AC-AC+DR
DR-AC, AC-DR

مثال (۶): شکل زیر ارتباط ثباتها را در یک کامپیوتر با حافظه و واحد محاسبه ومنطق نشان می دهد.برای انجام عمل [AR] + TR + M[AR] به چند پالس ساعت نیاز داریم؟

مثال (۷): در سیستم گذرگاه زیر برای انجام عمل AC+M[AR]کدام سیگنال ها باید فعال شوند؟

- \ انتقال همزمان ACبه DR و برعكس امكانپذير است √
- ۲)برای انتقال AC درون [AR]M به ۳ پالس ساعت نیاز است 🗙
- ۲)برای متمم کردن AC به پالس ساعتی نیاز نیست X جنب بری اعت نیاز است .
 - $m{AC} \leftarrow \mathbf{AC} + \mathbf{DR}$ برای محاسبه $\mathbf{AC} \leftarrow \mathbf{AC} + \mathbf{DR}$ فقط یک پالس ساعت نیاز است.

(دستورالعمل های کامپیوتر)

15		12 11)
1 1	1	1	I/O operation	

(دستورالعمل هاى حافظه اى)

op		Hex Code		
67	Symbol	I = 0	<i>I = 1</i>	Description
900	AND	0xxx	8xxx	AND memory word to AC
001	ADD	1xxx	9xxx	Add memory word to AC
واه	LDA	2xxx	Axxx	Load AC from memory
a 11	STA	3xxx	Bxxx	Store content of AC into memory
100	BUN	4xxx	Cxxx	Branch unconditionally
101	BSA	5xxx	Dxxx	Branch and save return address
110	ISZ	6xxx	Exxx	Increment and skip if zero
'			A 100	
		H		

0111

(دستورالعمل های ثباتی)

Symbol	Hex Code I = 0	Description	
CLA CLE CMA CME CIR CIL INC SPA	7800 7400 7200 7100 7080 7040 7020 7010	Clear AC Clear E Complement AC Complement E Circulate right AC and E Circulate left AC and E Increment AC Skip next instr. if AC is positive	
SNA SZA SZE HLT	7008 7004 7002 7001	Skip next instr. if AC is positive Skip next instr. if AC is negative Skip next instr. if AC is zero Skip next instr. if E is zero Halt computer	

(دستورالعمل های ورودی-خروجی) $\rho \leftarrow \rho \leftarrow \rho$ (۱۱۱ $\equiv F$ $\rho \leftarrow \rho \leftarrow \gamma$

Symbol	Hex Code I = 1	Description
INP OUT SKI SKO ION IOF	F800 F400 F200 F100 F080 F040	Input character to AC Output character from AC Skip on input flag Skip on output flag Interrupt on Interrupt off

(سیکل دستورالعمل)

۱-برداشت یک دستور از حافظه(Fetch)

(Decode)دیکد کردن دستور

۳-خواندن آدرس موثر (Effective Address)

۴–اجرای دستورالعمل(Execute

(تشریح دستورالعمل های حافظه ای)

OOO -> D.

AC -> BU

AND to AC

 D_0T_4 : DR \leftarrow M[AR]

 D_0T_5 : AC \leftarrow AC \wedge DR, SC \leftarrow 0

ADD to AC

901

 D_1T_4 : DR \leftarrow M[AR]

 D_1T_5 : AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0

Read operand

AND with AC

عسن

Read operand

Add to AC and store carry in E

(تشریح دستورالعمل های حافظه ای...)

010 -> D2 LDA: Load to AC D_2T_4 : $DR \leftarrow M[AR]$ $AC \leftarrow DR, SC \leftarrow 0$ D_2T_5 : STA: Store AC $M[AR] \leftarrow AC, SC \leftarrow 0$ D_3T_4 : **BUN: Branch Unconditionally** BW $PC \leftarrow AR, SC \leftarrow 0$ D_4T_4 :

۱۵۱ BSA: اشعاب بافعيره أدس وركست

- ---- اوا

 D_5T_4 : M[AR] \leftarrow PC, AR \leftarrow AR + 1

 D_5T_5 : PC \leftarrow AR, SC \leftarrow 0

ISZ: Increment and Skip-if-Zero

 D_6T_4 : DR \leftarrow M[AR]

 D_6T_5 : DR \leftarrow DR + 1

 D_6T_4 : M[AR] \leftarrow DR, if (DR = 0) then (PC \leftarrow PC + 1), SC \leftarrow 0

(مثال: اجرای دستور BSA)

وضيت ماعظ فرلنا عراى دسود

3AF مثال (۱۰):محتویات PC در کامپیوتر پایه 3AFاست.محتویات AC هم 7EC3 است.محتویات آدرس 9AC برابر با 932E میباشد.محتویات حافظه در آدرس 32E برابر 99AC و در آدرس 932E هم 98C است؟ الف)دستورالعملی که بعدا دریافت و اجرا می شود را بیابید؟

ب)محتویات ثبات های TR،AC،DR،AR،PC را بیابید.مقادیر SC،I،E در انتهای سیکل دستور را مشخص کنید

Fetch: AR $\leftarrow pc$: AR $\leftarrow 3AF$ IR $\leftarrow M[3AF]$: IR $\leftarrow 932E$, $pc \leftarrow pc+1$

المحل المركة والدي والمعلى: مرسع

AR < M[32E] : AR < 09AC) ADD: JE

DR ~ [MTAR]

(ADD) 25

\$B9F : محلونر

· AR =9AC AC= 0A62, DR + 8B9F PC - 3AF+1 = 380 · F =1 . Scto

مثال (۱۱): فرض کنید حافظه ای داریم که ۱۰۲۴ کلمه ۱۶ بیتی دارد. در این ماشین هر دستور دو کلمه از حافظه را اشغال کرده است . یکی از دستورات این ماشین STA است که مقدار AC را در حافظه ذخیره می کند. مراحل واکشی، ترجمه و اجرای این دستور چند دسترسی به حافظه نیاز دارد؟

TR(0-15) MEAR), PC PC+1, AR AR+1

TR(16-32) MEAR)

TR(16-32) MEAR)

TR(16-32) MEAR)

Loldy: MEAR) AC

الله مثال (۱۲):یک سیستم حافظه ۳۲*۸۱۹۲ وجود دارد.و در هر کلمه از حافظه یک دستور وجود دارد.در این ماشین دستورات مراجعه به حافظه با دو عملوند در حافظه و دستورات با یک عملوند در حافظه و یک عملوند در یکی از ۳۲ ثبات وجود دارند.حداکثر دستورات قابل تعریف در این ماشین را بیابید.

$$|\log^{8192} = 13 \quad 8192 = 8\times10 \cdot 24 = 2^3 \times 2^{10} \quad \text{when} \quad \text{w$$

ال (۱۳): در معماری اسلاید بعدی،مراحل واکشی،دیکود،تبدیل آدرس غیرمستقیم به مستقیم و اجرای $ISZ\{M \, [MAR] \leftarrow M \, [MAR] + 1, if \, (M \, [MAR] == 0) Then \, PC \leftarrow MAR)$ دستورالعمل های $BSA\{Push \, PC \, , PC \leftarrow MAR\}$

را نوشته و مشخص کنید در هر کلاک کدام سیگنال ها باید فعال باشندتوجه کنید که SP به عنصر بالای پشته اشاره می کند، و کف پشته دارای آدرس کمتر است. در این معماری برای دخیره آدرس برگشت از پشته استفاده می شود. هرگونه تبادل داده با حافظه از طریق ثباتMBR و آدرس حافظه توسط ثبات MAR تامین می شود.

 signal
 op

 ---- ----

 C₁₄
 INC (PC)

 C₁₇
 INC (AC)

 C₁₆
 INC (SP)

آموزش معماری کامپیوتر با رویکرد حل مساله faradars.org/fvsft112

ER & MCAR), PC PCTI AR & IR(9-11)

Ti: C5 41: MBR + M[MAR], C14 1: PC+PC+1
C0 41
T2: C4+1: IR MBR, C8+1, MAR + MBR

Decade:

T3: 93 (IR(12-4)), I = IR(15)

Eff Address:

Fetch: To: C2 1: MAR - PC

TAI: C5
C5
MBR
MEMAR]
T5I: C8
: MAR
MBR

CISE1: MBRESP BSA: C10 < 1 : SP < \$P+1 CI - MBR - PC 641, 9241: M[sp] - MBR 6 9841: PC + MAR ISZ: COCICSCI: MBR CMAR) Co-1: AC - MBR 9741: AC - AC+ CH+1: MBR +AC Co +1 , C12 +1 : MCMAR) + IMBR C7 + 1: OR(AC): C15+1 9PC - MAR

```
1 111
```

(دستورات ورودی-خروجی)

11 0

$$D_7IT_3 = p$$

IR(i) = B_i, i = 6, ..., 11

INP OUT SKI SKO ION IOF	p: pB ₁₁ : pB ₁₀ : pB ₉ : pB ₈ : pB ₇ : pB ₆ :	$SC \leftarrow 0$ $AC(0-7) \leftarrow INPR, FGI \leftarrow 0$ $OUTR \leftarrow AC(0-7), FGO \leftarrow 0$ $if(FGI = 1) then (PC \leftarrow PC + 1)$ $if(FGO = 1) then (PC \leftarrow PC + 1)$ $IEN \leftarrow 1$ $IEN \leftarrow 0$	Clear SC Input char. to AC Output char. from AC Skip on input flag Skip on output flag Interrupt enable on Interrupt enable off		
Fal-co-					

(فلوچارت سیکل وقفه و دستور)

(سرویس دهی به وقفه)

(سیکل وقفه)

 $T_0'T_1'T_2'$ (IEN)(FGI + FGO): $R \leftarrow 1$

 RT_0 : AR \leftarrow 0, TR \leftarrow PC

 RT_1 : M[AR] \leftarrow TR, PC \leftarrow 0

RT₂: $PC \leftarrow PC + 1$, $IEN \leftarrow 0$, $R \leftarrow 0$, $SC \leftarrow 0$


```
Fetch
                            R′T₀:
                                                     AR \leftarrow PC
                            R′T₁:
                                                     IR \leftarrow M[AR], PC \leftarrow PC + 1
Decode
                            R'T<sub>2</sub>:
                                                     D0, ..., D7 \leftarrow Decode IR(12 \sim 14),
                                                                   AR \leftarrow IR(0 \sim 11), I \leftarrow IR(15)
Indirect
                            D_7'IT_3:
                                                     AR \leftarrow M[AR]
Interrupt
       T_0'T_1'T_2'(IEN)(FGI + FGO):
                                                    R ← 1
                                                     AR \leftarrow 0. TR \leftarrow PC
                            RT₀:
                            RT₁:
                                                     M[AR] \leftarrow TR, PC \leftarrow 0
                                                     PC \leftarrow PC + 1, IEN \leftarrow 0, R \leftarrow 0, SC \leftarrow 0
                            RT<sub>2</sub>:
Memory-Reference
   and
                            D_0T_4:
                                                     DR \leftarrow M[AR]
                            D_0T_5:
                                                     AC \leftarrow AC \land DR, SC \leftarrow 0
                            D₁T₄:
   ADD
                                                     DR \leftarrow M[AR]
                                                     AC \leftarrow AC + DR, E \leftarrow C_{out}, SC \leftarrow 0
                            D_1T_5:
   LDA
                            D_2T_4:
                                                     DR \leftarrow M[AR]
                                                     AC \leftarrow DR, SC \leftarrow 0
                            D_2T_5:
   STA
                            D_3T_4:
                                                     M[AR] \leftarrow AC, SC \leftarrow 0
   BUN
                                                     PC \leftarrow AR, SC \leftarrow 0
                            D_4T_4:
   BSA
                            D_5T_4:
                                                     M[AR] \leftarrow PC, AR \leftarrow AR + 1
                            D<sub>5</sub>T<sub>5</sub>:
                                                     PC \leftarrow AR, SC \leftarrow 0
   ISZ
                                                     DR \leftarrow M[AR]
                            D_6T_4:
                                                     DR \leftarrow DR + 1
                            D_6T_5:
                                                     M[AR] \leftarrow DR, if (DR=0) then (PC \leftarrow PC + 1),
                            D_6T_6:
                                                     SC ← 0
```

```
Register-Reference
                        D_7 I' T_3 = r
                                            (Common to all register-reference instr)
                         IR(i) = B_i
                                            (i = 0,1,2, ..., 11)
                                            SC ← 0
                          r:
                          rB<sub>11</sub>:
                                            AC \leftarrow 0
   CLA
   CLE
                          rB<sub>10</sub>:
                                            E ← 0
   CMA
                          rB<sub>9</sub>:
                                            AC ← AC'
                                            E ← E'
   CME
                          rB<sub>8</sub>:
   CIR
                          rB<sub>7</sub>:
                                            AC \leftarrow shr AC, AC(15) \leftarrow E, E \leftarrow AC(0)
   CIL
                          rB<sub>6</sub>:
                                            AC \leftarrow shl AC, AC(0) \leftarrow E, E \leftarrow AC(15)
   INC
                          rB<sub>5</sub>:
                                            AC \leftarrow AC + 1
   SPA
                                            If (AC(15) = 0) then (PC \leftarrow PC + 1)
                          rB₄:
                                            If (AC(15) = 1) then (PC \leftarrow PC + 1)
   SNA
                          rB<sub>3</sub>:
   SZA
                                            If(AC = 0) then (PC \leftarrow PC + 1)
                          rB<sub>2</sub>:
                                            If(E=0) then (PC \leftarrow PC + 1)
   SZE
                          rB₁:
   HLT
                          rB₀:
                                            S ← 0
Input-Output
                        D_7IT_3 = p
                                            (Common to all input-output instructions)
                         IR(i) = B_i
                                            (i = 6.7.8.9.10.11)
                                            SC ← 0
                          p:
   INP
                                            AC(0-7) \leftarrow INPR, FGI \leftarrow 0
                          pB<sub>11</sub>:
   OUT
                                            OUTR \leftarrow AC(0-7), FGO \leftarrow 0
                          pB_{10}:
                                            If(FGI=1) then (PC \leftarrow PC + 1)
   SKI
                          pB<sub>9</sub>:
   SKO
                                            If (FGO=1) then (PC \leftarrow PC + 1)
                          pB<sub>8</sub>:
   ION
                          pB<sub>7</sub>:
                                            IEN ← 1
   IOF
                                            IEN \leftarrow 0
                          pB_6:
```

```
AR \leftarrow PC
                                LD(AR)
          AR \leftarrow IR(0-11)
                                LD(AR)
          AR \leftarrow M[AR]
                               LD(AR)
          AR \leftarrow 0
                                CLR(AR)
          AR \leftarrow AR + 1
                               INR(AR)
LD(AR) = R'T_0 + R'T_2 + D'_zIT_3
```

 $CLR(AR) = RT_0$ $INR(AR) = D_5T_4$

pB₇: IEN \leftarrow 1 (I/O Instruction)

 pB_6 : IEN \leftarrow 0 (I/O Instruction)

 RT_2 : IEN \leftarrow 0 (Interrupt)

 $p = D_7IT_3$ (Input/Output Instruction)

From Adder 16 and Logic To bus AC AND Clock D_0 LD INR ADD D_1 CLR DR INPR B₁₁ COM В9 SHR В7 SHL B₆ INC B₅ CLR B₁∏

این اسلاید ها بر مبنای نکات مطرح شده در فرادرس «آموزش معماری کامپیوتر با رویکرد حل مساله »

تهیه شده است.

برای کسب اطلاعات بیشتر در مورد این آموزش به لینک زیر مراجعه نمایید faradars.org/fvsft112