Predicting the Madness

Tom Davich General Assembly Data Science 20

What is March Madness?

- NCAA Division I Championship Basketball Tournament
- Single Elimination
- 68 Teams (currently)
- 5 Rounds with 1 round of 4 "play-in" games
- The probability of picking a perfect bracket....

1 in 128 Billion

(Billion, with a B)

The Challenge: Kaggle March Madness Mania

- Goal: Predict the probabilities for each possible outcome
- Evaluation: Log Loss of predicted probability vs outcome
 - High penalty for confidently predicting the wrong outcome
- Kaggle competition closed for submissions to evaluate probabilities...

- Next best option: predicting Wins / Losses of tournament games
 - Train: 2012-2014
 - Test: 2015

Data Files: Complete Historical Data for 30 years

- Season
 - Year, Day, and Tournament Region information (East, West, etc)
- Regular (& Tourney) Season Compact Results:
 - Game / Teams / Score / Location
- Regular (& Tourney) Season Detailed Results:
 - Shots attempted / made
 - o Blocks, Steals, Fouls, Assists
- Tourney Seeds
 - Seeding for each team
- Tourney Slots
 - Compares paired teams as Stronger or Weaker than expected

No missing values. **Bold = used in model**

The plan: (Data) Science!

- Feature Selection
- 2. Data Transformation
- 3. Models!
 - a. Decision Trees
 - b. Random Forest
 - c. Boosting
- 4. Profit

Feature Selection: To Infinity... and Beyond!

- 1. Season Averages per team:
 - a. Points Score, Points Allowed, Shots, Blocks, Rebounds, Assists, Fouls, etc
- 2. Wins / Losses
 - a. Last 6 games of Regular Season
 - b. Against Tournament teams
 - c. Margin < 2 (close games)
 - d. Margin > 7 (blow outs)
- 3. Away game winning percentage
- 4. Tournament Seed

Total of **26 features per team**.

Data Transformation: building the Training Set

- Create 26 feature Data Frame for Team A
- 2. And then for Team B
- 3. Game results
- 4. Join together!

TEAMID	A_TWPCT	A_WST6	A_SEED		TEAMID	B_TWPCT	B_WST6	B_SEEC
511	0.8	5	3		511	0.8	5	3
515	0.6	2	12		515	0.6	2	12
519	0.63	5	14		519	0.63	5	14
527	0.643	2	11		527	0.643	2	11
539	0.63	4	12		539	0.63	4	12
581	0.815	5	9		581	0.815	5	9
			iviatchup	Win	_			
			A_515_729	1				
			A_555_559	0				
			A_576_666	1				
				0				
			A_576_666	0 0 0				

Process: serious data wrangling in Pandas

- Iterating with nested for loops
 - o for each game, for each team, for each season
- .loc, .groupby, .agg, .index, .isin
- 4 functions to create DF for each feature "type"
- Unexpected: Kentucky's perfect Regular Season!
 - 2014-2015: Can't divide by 0...

Credit: Statsquys

Models and Results

	Model	Decision Tree Classifier	Random Forest Classifier
	ООВ		0.601
Initial	CV	0.575	0.621
	Test	0.597	0.776
	ООВ	0.595	0.602
Tuned	CV		0.62
	Test	0.686	0.791
	Parameters	Depth: 2; Leaf: 3	Features: 7

Most important features:

- 1. Winning % against Tournament Opponents: 0.08
- 2. Seed: 0.08
- 3. Avg. Margin of Victory: 0.04

My thoughts:

- Surprised by the variability in OOB tuning
- 2015 (test) scored much higher than CV (2012-2014)
- Would have tried boosting with more time

RF: OOB Tuning (2012-2014)

AUC: Test - 2015 Results

Learnings & Future Plans

Learnings:

- Data wrangling is time consuming
- Predicting outcomes is much harder than probabilities
- 3. 2015 seemed more easily predictable...

Future Plans:

- 1. Submit to 2017 Competition
 - a. Score probabilities instead of outcomes
- 2. Benchmark teams vs an average opponent
- 3. Get Vegas Odds for first round games
- 4. Investigate <u>Bradley-Terry</u> model

Wisconsin ending Kentucky's perfect season (2015)

Fin!

Tom Davich tdavich@gmail.com
LinkedIn
Github