Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 4

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:							
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is a lin	near com	bination of the vectors	$\begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$, [-	$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}$, and	$\begin{bmatrix} 5 \\ 1 \\ -6 \end{bmatrix}$	

Standard S1. $\begin{bmatrix} 3 \\ -1 \\ 0 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -8 \\ 6 \\ 5 \end{bmatrix}$ is linearly dependent or linearly independent.

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span} \left(\left\{ x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3 \right\} \right)$. Find a basis for W.

Standard S4.

Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span}\left(\left\{x^3 - x^2 + 3x - 3, 2x^3 + x + 1, 3x^3 - x^2 + 4x - 2, x^3 + x^2 + x - 7\right\}\right)$. Compute the dimension of W.

Additional Notes/Marks