Computational Linear Algebra (2021) — Assignment 1

Problem 1

Recall the definition of a "field" covered in the lecture. In this regard, verify the following:

- 1. The multiplicative identity of a field and the multiplicative inverse of each element of the field are unique.
- 2. The set of integers \mathbb{Z} is not a field.
- 3. The set of complex numbers \mathbb{C} form a field.
- 4. The set $\mathbb{Z}_2 = \{0,1\}$, with addition \oplus and multiplication \otimes defined as $a \oplus b = \operatorname{mod}(a+b,2)$ and $a \otimes b = \operatorname{mod}(ab,2)$, is a field. (mod(c,2) is the remainder on dividing c by 2).
- 5. The set $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$ with addition and multiplication modulo p is a field if p is prime.

Problem 2

Check if the following statements are true or false:

- 1. In a vector space, the additive inverse (of an element) is unique.
- 2. Complex numbers \mathbb{C} form a vector space over the field of real numbers \mathbb{R} .
- 3. \mathbb{R} is a vector space over \mathbb{C} .
- 4. The set of real symmetric matrices of size $n \times n$ is a vector space over \mathbb{R} .
- 5. The set of sequences $(a_i)_{i\geqslant 1}, a_i\in\mathbb{C}$, such that $\sum_{i=1}^{\infty}|a_i|<\infty$ is a vector space over \mathbb{C} .
- 6. The set of continuous functions $f:[0,1] \to \mathbb{R}$ such that

$$\int_0^1 f(t)^2 dt < \infty$$

is a vector space.

Problem 3

Let a, b and c be elements of a field \mathbb{F} . Show that

1.
$$a*(-b) = -(a*b)$$
 and $(-a)*b = -(a*b)$.

2.
$$(-a) * (-b) = a * b$$
.

Problem 4

Let \mathbb{V} be a vector space over \mathbb{F} . Show that

1.
$$0 \cdot \boldsymbol{v} = \boldsymbol{0}$$
 for all $\boldsymbol{v} \in \mathbb{V}$,

2.
$$a \cdot \mathbf{0} = \mathbf{0}$$
 for all $a \in \mathbb{F}$,

3.
$$(-1) \cdot \boldsymbol{v} = -\boldsymbol{v}$$
 for all $\boldsymbol{v} \in \mathbb{V}$,

where 0 and 1 are the identity elements of \mathbb{F} and **0** is the identity element of \mathbb{V} .
