6 Лабораторная работа №6

«Исследование последовательностных цифровых устройств»

6.1 Цель работы

Экспериментальные исследования функционирования различных типов триггеров, параллельных регистров и двоичных счетчиков. Приобретение практических навыков исследования последовательностных устройств и регистрации временных диаграмм с помощью электро- и радиоизмерительных приборов.

6.2 Постановка задачи

- 6.2.1 Составить на рабочем поле схему для исследования универсального синхронного D-триггера (микросхема ТТЛ 7474) с асинхронной установкой S и сбросом R. Установить тактовую частоту генератора импульсов 1Гц и амплитуду импульсов 3В.
- 6.2.2 Подавая активные сигналы на входы R и S, исследовать изменение состояния триггера. Измерить амплитуду сигнал логической 1 и логического нуля.
- 6.2.3 Замкнуть цепь обратной связи (с инверсного выхода триггера на его информационный вход) и подключить генератор импульсов ко входу синхронизации. Исследовать состояние триггера.
- 6.2.4 Увеличить частоту генератора до 10 кГц и зарисовать сигналы генератора и триггера. Измерить частоту импульсов на выходе триггера.
- 6.2.5 Составить на рабочем поле схему для исследования универсального синхронного ЈК-триггера (микросхема ТТЛ 74107) с асинхронным сбросом R. Установить тактовую частоту генератора импульсов 1Гц и амплитуду импульсов 3В.
- 6.2.6 Подавая активные сигналы в различной комбинации на входы ЈК триггера и подавая путем кратковременного нажатия соответствующей кнопки импульсы синхронизации с генератора тактовых импульсов, исследовать состояние триггера. Измерить уровни сигналов 1 и 0.
- 6.2.7 Установить частоту генератора 1000 Гц. Подать на входы ЈК единичные уровни сигналов и исследовать с помощью осциллографа форму импульсов на выходах генератора и триггера, а также измерить частоты сигналов.
- 6.2.8 Создать на рабочем поле симулятора схему исследования 4-х разрядного двоичного счетчика. Для построения счетчика применить D-триггеры типа TTL 7474. В качестве источника использовать генератор прямоугольных

импульсов частотой 100 кГц и амплитудой 3 В. Для индикации выходных сигналов использовать виртуальный осциллограф.

6.2.9 Зарисовать форму сигналов на выходе генератора импульсов и каждого триггера и измерить амплитуду и частоту импульсов на выходе каждого триггера. Записать двоичный код на выходе счетчика на каждом такте генератора.

6.3 Ход работы

6.3.1 Рисунок 6.1 содержит составленную в рабочем окне симулятора схему для исследования универсального синхронного D-триггера с асинхронной установкой S и сбросом R. В результате была получена осциллограмма рисунок 6.2.

Рисунок 6.1 – Схема исследования универсального синхронного D-триггера

Рисунок 6.2 – Осциллограмма, полученная при исследовании D-триггера

6.3.2 Было исследовано изменение состояния триггера при подаче активных сигналов на входы. Представленная ниже Таблица 6.1 демонстрирует результаты исследования.

Проведено дополнительное исследование: измерение амплитуды сигналов.

Таблица 6.1 – Результаты исследования состояния триггера

Вход R	Вход S	Состояние триггера
0	0	Нормальная работа тригтера
0	1	Постоянная логическая единица на выходе
1	0	Постоянный логический нуль на выходе
1	1	Постоянная логическая единица

6.3.3 Проведено исследование состояния триггера при отключении/подключении генератора импульсов и замыкании/размыкании цепи обратной связи. Таблица 6.2 содержит результаты проведённого исследования.

Таблица 6.2 – Результаты исследования состояния триггера

Генератор	Состояние цепи	Состояние триггера	
	обратной связи		
Отключён	Разрыв	Последнее состояние триггера	
Отключён	Замыкание	Последнее состояние триггера	
Подключён	Разрыв	Постоянная логическая единица на выходе	
Подключён Замыкание		Нормальная работа триггера	

6.3.4 Была увеличена частота импульсов генератора с 1Гц до 10кГц. В результате была получена осциллограмма, отличая от предыдущей (рисунок 6.3).

Рисунок 6.3 – Осциллограмма, полученная при исследовании D-триггера (частота генератора – 10к Γ ц)

6.3.5 Рисунок 6.4 содержит составленную в рабочем окне симулятора схему для исследования универсального синхронного ЈК-триггера с асинхронным сбросом R. Получена осциллограмма, изображённая на рисунке 6.5.

Рисунок 6.4 – Схема для исследования универсального синхронного ЈК-триггера

Рисунок 6.5 – Осциллограмма, полученная при исследовании ЈК-триггера

6.3.6 На входы JK-триггера были поданы кратковременные активные сигналы. Таблица 6.3 содержит результаты проведённого исследования.

Таблица 6.3 – Результаты исследования состояния ЈК-триггера

Состояние J	Состояние К	Состояние триггера	
0	0	Последнее состояние триггера	
0	1	На выходе постоянный логический нуль	
1	0	На выходе постоянная логическая единица	
1	1	Нормальная работа триггера	

6.3.7 Была установлена частота генератора 1 кГц. Рисунок 6.6 демонстрирует полученную осциллограмму.

Рисунок 6.6 – Осциллограмма, полученная при исследовании ЈК-триггера (частота генератора – 1кГц)

Были проведены дополнительные исследования: определение формы импульсов и определение частоты импульсов на выходе триггера. Результаты: получены прямоугольные импульсы с частотой 500 Гц.

6.3.8 Рисунок 6.7 содержит составленную в рабочем окне симулятора схему для исследования 4-х разрядного счётчика на D-триггерах. Были использованы генератор прямоугольных импульсов с частотой 0,1 МГц и амплитудой 3В, осциллограф. Значение каждого триггера можно сбросить с помощью расположенной под триггером кнопки.

Рисунок 6.7 – Схема исследования 4-разрадного двоичного счётчика на Dтриггерах

6.3.9 После запуска симуляции были получены осциллограммы каждого триггера (Рисунок 6.8). По полученным данным была составлена таблица 6.4, представленная ниже.

Таблица 6.4 – Результаты измерений

Импульс	Амплитуда U, B	Частота v, кГц
1 (Исходный)	3	100
2	5	50
3	5	25
4	5	12,499
5	2,5	6,249

Рисунок 6.8 – Осциллограммы импульсов счётчиков

Вывод

При выполнении данной лабораторной работы были получены навыки составления схем с применением D- и JK-триггеров, составление 4-разрядного счётчика из D-триггеров.