EXAMEN, ALGEBRĂ I, 21 IANUARIE 2022

Puteti folosi, fară demonstrație (dar enunțat!), orice rezultat din curs sau seminar. Timp de lucru 2 ore. SUCCES!

Exercitiul 1: Pe multimea \mathbb{R} a numerelor reale definim relația binară: $x \approx y$ dacă si numai dacă (x-y)(x+y+2)=0.

- (a) Aratați că \approx este o relație de echivalență pe $\mathbb R$ si calculați clasele de echivalență ale numerelor reale 0, -1 si 2022. (0.5 puncte)
- (b) Determinați un sistem de reprezentați ai relației \approx . (1 punct)
- (c) Construiți o funcție bijectivă $q: \mathbb{R}/\approx \to [2022, +\infty)$, unde \mathbb{R}/\approx este mulțimea factor. (1 punct)

- **Exercitiul 2:** Fie permutarea $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 3 & 2 & 5 & 6 & 7 & 8 & 9 & 10 & 1 & 4 & 12 & 11 \end{pmatrix} \in S_{12}$. (a) Descompuneți permutarea τ în produs de cicli disjunți, în produs de transpoziții şi determinați signatura permutării τ . (1.5 puncte)
- (b) Determinați ordinul permutării τ si calculați τ^{-2022} . (1 punct)

Exercitiul 3: (a) Fie grupul $G := (\{f : \mathbb{R} \to \mathbb{R}; f(x) = ax + b, a \in \mathbb{R}^*, b \in \mathbb{R}\}, \circ)$ cu compunerea uzuală a funcțiilor și $\mathcal{N} = \{f : \mathbb{R} \to \mathbb{R}; f(x) = x + b, b \in \mathbb{R}\}$. Aratați că \mathcal{N} e subgrup normal al lui G și există un izomorfism de grupuri $G/\mathcal{N} \simeq (\mathbb{R}^*, \cdot)$. (1 punct)

- (b) Dat un grup finit necomutativ G, să se arate că $|Z(G)| \leq \frac{|G|}{4}$, Z(G) fiind centrul lui G. Să se depisteze un exemplu de grup pentru care maximul e atins. (0.5 puncte)
- (c) Fie G un grup finit, de ordin n si $f:G\to\{1,2,\ldots,n\}$ o funcție cu proprietatea că $f(x)=1\Leftrightarrow x=1$ și $f(x^r)=\frac{f(x)}{(f(x),r)}$, oricare ar fi $x\in G$ și $r\in\mathbb{N}-\{0\}$. Să se arate că f(x) = o(x), pentru orice $x \in G$, unde o(x) este ordinul elementului x. (1 punct)

Exercitiul 4: (a) Arătați că mulțimea $R = \{ \begin{pmatrix} a & 3b \\ b & a \end{pmatrix}; a,b \in \mathbb{Z} \}$ este subinel al inelului de matrice $\mathcal{M}_2(\mathbb{Z})$. (1.5 puncte)

(b) Să se arate că R este izomorf cu inelul $\mathbb{Z}[\sqrt{3}]$, unde $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3}; a, b \in \mathbb{Z}\}$ cu adunarea si inmultirea uzuala a numerelor reale (1 punct)

Prof. dr. G. Militaru, Drd. Laura Filimon si Drd. Stefan Deaconu