Parsing with Tree-Adjoining Grammars

Anoop Sarkar
Simon Fraser University
anoop@cs.sfu.ca

ACL/HCSNet Advanced Program in Natural Language Processing Melbourne, Australia July 13-14, 2006

Overview

- TAGs from word-aligned parallel corpora
- Supertagging and robust, shallow parsing (slides taken from B. Srinivas)
- Statistical Parsing with LTAG
- Bootstrapping between CFG and LTAG

Parse trees have head and argument information

Parse trees have head and argument information

Each word gets a tree: elementary tree

Models over alignments of elementary trees

 Trained using SRI LM Toolkit using 60K aligned parse trees: 1300 elementary tree templates each for Chinese/English

- Unigram model over alignments: $\prod_i P(f_i, t_{f_i}, e_i, t_{e_i})$
- Conditional model: $\prod_i P(e_i, t_{e_i} \mid f_i, t_{f_i}) \times P(f_{i+1}, t_{f_{i+1}} \mid f_i, t_{f_i})$
- IBM Model 1 on aligned elementary trees (Kenji)

SMT Re-ranking Results

Method	BLEU[%]
Model 1 on elementary trees	31.6
Unigram model over aligned elementary trees	31.7
Conditional bigram model over aligned elementary trees	31.9

Overview

- TAGs from word-aligned parallel corpora
- Supertagging and robust, shallow parsing (slides taken from B. Srinivas)
- Statistical Parsing with LTAG
- Bootstrapping between CFG and LTAG

Supertags

- Elementary trees are called Supertags.
- Localize head-complement and filler-gap dependencies.

- Supertags
 - more complex than part-of-speech tags
 - more supertags associated with word than part-of-speech tags

the purchase price includes two ancillary companies.

Supertagging

Sent:	the	purchase	price	includes	two	ancillary	companies.
Initial Assig.	eta_1	$egin{array}{c} lpha_1 \ eta_2 \ lpha_9 \end{array}$	$egin{array}{c} lpha_2 \ lpha_6 \ lpha_{10} \end{array}$	$lpha_3 \ lpha_7 \ lpha_{11}$	eta_3	$egin{array}{c} lpha_4 \ lpha_{12} \end{array}$	$lpha_5 \ lpha_8 \ lpha_{13}$
Final Assig.	β_1	$egin{array}{c} egin{array}{c} eta_2 \end{array}$	$\frac{\alpha_{10}}{\alpha_2}$	$\frac{\alpha_{11}}{\alpha_{11}}$	eta_3	$\frac{\beta_4}{\beta_4}$	$\frac{\alpha_{13}}{\alpha_{13}}$

- Supertagging: Select most appropriate supertag for each word.
- Supertag disambiguation before parsing.
- Supertag disambiguation results in an "almost parse".

Models for Supertag Disambiguation

- N-gram models
 - Trigram model
 - Head trigram model
- Dependency based model (COLING 94)
 - More like full parsing

Trigram Model for Supertagging

• Find the most likely Supertag sequence for a given word sequence.

$$\hat{T} = \operatorname{argmax}_T \Pr(T_1, T_2, \dots, T_N | W_1, W_2, \dots, W_N)$$

• By Bayes Rule

$$\hat{T} = \operatorname{argmax}_{T} \frac{\Pr(W_{1}, W_{2}, \dots, W_{N} | T_{1}, T_{2}, \dots, T_{N}) * \Pr(T_{1}, T_{2}, \dots, T_{N})}{\Pr(W_{1}, W_{2}, \dots, W_{N})}$$

Since the word sequence is given

$$\hat{T} = \operatorname{argmax}_{T} \Pr(W_{1}, W_{2}, ..., W_{N} | T_{1}, T_{2}, ..., T_{N}) * \Pr(T_{1}, T_{2}, ..., T_{N})$$

Trigram Model for Supertagging

Contextual probability

$$\Pr(T_1,T_2,...,T_N) \approx \prod_{i=1}^N \Pr(T_i \mid T_{i-2}, T_{i-1})$$

Word Emit probability

$$\Pr(W_1, W_2, ..., W_N | T_1, T_2, ..., T_N) \approx \prod_{i=1}^N \Pr(W_i | T_i)$$

• Trigram Model

$$\hat{T} = \operatorname{argmax}_T \prod_{i=1}^N \Pr(T_i \mid T_{i-2}, T_{i-1}) * \Pr(W_i \mid T_i)$$
 where T_i is the supertag for word W_i .

- Unseen events
 - Good-Turing discounting with Katz's Back-off Model.

Training and Test Data

- Training Set A:
 - 200,000 word-supertag pairs
 - collected by bootstrapping and hand correction.
 - -WSJ sections 15 through 18
- Training Set B:
 - -1,000,000 word-supertag pairs
 - collected by heuristically mapping from Penn Treebank
 - WSJ sections 0-19 and 21-24
- Test Set: section 20 of WSJ.

Performance of Trigram Supertagger

- Performance of the supertagger on the WSJ corpus
- Correct supertag implies that a word is assigned the same supertag as it would be in the correct parse of the sentence.

Size of	Size of	# of words	% correct
training corpus	test corpus	correctly supertagged	
Baseline	47,000	35,391	75.3%
200,000	47,000	42,723	90.9%
1 Million	47,000	43,334	92.2%

• Errors:

- PP attachment
- Verbs with more than two complements.

- A supertag is **dependent** on another supertag if the former substitutes or adjoins into the latter.
- Training Data
 - LTAG derivation trees of 5000 Wall Street Journal sentences parsed using the XTAG system.
 - Using (part-of-speech, supertag) pairs.
- Test Data
 - 100 Wall Street Journal Sentences

Data Representation

	Direction of			
	Dependent	Ordinal	Dependent	
(P.O.S,Supertag)	Supertag	position	Supertag	Prob
(D,α_1)	()	-	-	-
(N, α_{13})	()	-	-	-
(N, α_2)	(-)	-1	α_1	0.975
(V, α_{15})	(-, +)	-1	α_{13}	0.700
(V,α_{15})	(-, +)	1	α_{13}	0.420

- For example, the fourth entry reads
 - the supertag α_{15} , anchored by a verb (V)
 - has a left and a right dependent (-,+)
 - the first word to the left (-1) with the supertag α_{13} serves as a dependent and
 - the strength of this association is represented by the probability 0.700

Sent:	the	purchase	price	includes	two	ancillary	companies.
POS:	D	Ν	N	V	D	Α	Ν
Initial	$lpha_1$	$lpha_2$	$lpha_3$	$lpha_4$	eta_1	$lpha_5$	$lpha_6$
Assig.	$lpha_7$	eta_2	$lpha_8$	$lpha_9$	α_{10}	eta_3	$lpha_{11}$
	$lpha_{12}$	α_{13}	$lpha_{14}$	$lpha_{15}$	α_{16}	$lpha_{17}$	$lpha_{18}$
		:	:	:	:	:	:
Final							
Assig.	α_1	eta_2	$lpha_3$	$lpha_{15}$	α_{10}	eta_3	$lpha_6$

- Every anchor must find its dependents.
- Every dependent must be linked to a anchor.
- No two dependency arcs may cross one another.

• Performance results on Wall Street Journal (WSJ) sentences

	Total	Number	%
Criterion	number	correct	correct
Supertags	915	707	77.26%
Dependency	815	620	76.07%
links			

Issues:

- Needs a parsed corpus as training material
- Attempts at getting a complete linkage
- Worst-case complexity: $O(n^3)$
- Lots of parameters to train: $O(S^{2*D^A})$
- More like parsing than not

Stapler

- Stapler combines the words of a supertagged sentence to yield a dependency linkage.
- Two Approaches
 - -XTAG (Earley) parser as a stapler
 - Lightweight Dependency Analyzer as a stapler

Stapler

- Broad coverage grammar slows down the parser tremendously
- Supertagging even before parsing begins
 - Speeds up the parser significantly (by a factor of 30).
 - All words must be tagged with the correct supertag to get a parse.

- Information associated with supertags:
 - Slots: substitution and foot nodes
- Fillers of substitution nodes are argument words and fillers of foot nodes are modified words.
- Two pass algorithm:
 - Establish dependencies for auxiliary supertags
 - Mark all the words that serve as arguments as unavailable for the next pass
 - Establish dependencies for initial supertags.
- Establish dependencies local search
 - first supertag with root node same as the argument type.

The implicit interior state of the iteration over the hash table entries has dynamic extent

Pos	Word	Supertag	Slot req.	Pass 1	Pass 2	Dep Links
0	The	α_1	_	_	_	_
1	implicit	eta_2	+N*	2*		2*
2	interior	eta_2	+N* +N*	3*		3*
3	state	α_2	-D.		0.	0.
4	of	eta_1	$-NP^* + NP.$	3* 6 .		3* 6 .
5	the	α_1	_	_	_	
6	iteration	α_2	-D.		5.	5.
7	over	eta_1	$-NP^* + NP.$	6* 11.		6* 11 .
8	the	α_1	_	_	_	_
9	hash	eta_3	+N*	10*		10*
10	table	eta_3	+N*	11*		11*
11	entries	α_2	-D.		8.	8.
12	has	α_3	+NPNP.		3. 14.	3. 14.
13	dynamic	eta_2	+N*	14*		14*
14	extent	α_4	_	_	_	

- Trigram supertagger trained on one million supertagged WSJ words.
- Performance on pairwise dependency links
 - A link in output must be in gold standard

Corpus	# of	# produced	# correct	Recall	Precision
	dependency links	by LDA			
Brown	140,280	126,493	112,420	80.1%	88.8%
WSJ	47,333	41,009	38,480	82.3%	93.8%

- Test corpus was parsed using the XTAG system
- Performance on pairwise dependency links

Training Size	Test Size	Recall	Precision
(words)	(words)		
200,000	12,000	83.6%	83.5%
1,000,000	12,000	85.0%	85.0%

 Performance at the sentence level (Matching against XTAG derivation trees)

	% sentences	% sentences	% sentences	% sentences
	with 0 errors	with ≤ 1 error	with ≤2 errors	with ≤3 errors
200K	35%	60.3%	78%	89.8%
1M	40%	63.0%	80.1%	91.0%

- Evaluation is more strict than evaluation on skeletally bracketed corpus.
- LTAG derivation trees
 - contain internal structure for noun and verb groups.
 - distinguish between arguments and adjuncts.
 - distinguish between predicative and equative readings.
- Derivation tree is much more closer to semantic interpretation than a phrase structure.

SuperTagging and Parsing

- Extract SuperTags from TreeBank
- Oracle experiment: correct SuperTag provided for each word
- Parsed 2250 sentences from the Penn TreeBank
- For all-parses parsing: without SuperTagging time taken was 548K seconds, and in this oracle experiment, 31.2 seconds

SuperTagging and Parsing

n-best SuperTagging and Parsing

- Extract SuperTags from TreeBank
- n-best experiment: top 60 SuperTags provided for each word using a trigram SuperTagger
- Parsed 2250 sentences from the Penn TreeBank
- For all-parses parsing: without SuperTagging time taken was 548K seconds, and in this n-best experiment, 21K seconds

n-best SuperTagging and Parsing

Overview

- TAGs from word-aligned parallel corpora
- Supertagging and robust, shallow parsing (slides taken from B. Srinivas)
- Statistical Parsing with LTAG
- Bootstrapping between CFG and LTAG

Overview

- Task: find the most likely parse for natural language sentences
- Approach: rank alternative parses with statistical methods trained on data annotated by experts (labelled data)
- Focus of this talk:
 - 1. Machine learning by combining different methods in parsing: PCFG and Tree-adjoining grammar
 - 2. Weakly supervised learning: combine labelled data with unlabelled data to improve performance in parsing using co-training

A Key Problem in Processing Language: Ambiguity: (Church and Patil 1982; Collins 1999)

Part of Speech ambiguity

```
saw \rightarrow noun
saw \rightarrow verb
```

Structural ambiguity: Prepositional Phrases

```
I saw (the man) with the telescope
```

I saw (the man with the telescope)

Structural ambiguity: Coordination

```
a program to promote safety in ((trucks) and (minivans)) a program to promote ((safety in trucks) and (minivans)) ((a program to promote safety in trucks) and (minivans))
```

Ambiguity ← attachment choice in alternative parses

Parsing as a machine learning problem

- S = a sentence
 T = a parse tree
 A statistical parsing model defines P(T | S)
- Find best parse: $\underset{T}{\text{arg max}} P(T \mid S)$
- $P(T \mid S) = \frac{P(T,S)}{P(S)} = P(T,S)$
- Best parse: $\underset{T}{\text{arg max}} P(T, S)$
- e.g. for PCFGs: $P(T,S) = \prod_{i=1...n} P(RHS_i \mid LHS_i)$

Parsing as a machine learning problem

- Training data: the Penn WSJ Treebank (Marcus et al. 1993)
- Learn probabilistic grammar from training data
- Evaluate accuracy on test data
- A standard evaluation:
 Train on 40,000 sentences
 Test on 2,300 sentences
- The simplest technique: PCFGs perform badly Reason: not sensitive to the words

Machine Learning for ambiguity resolution: prepositional phrases

- What is right analysis for:
 Calvin saw the car on the hill with the telescope
- Compare with:
 Calvin bought the car with anti-lock brakes and
 Calvin bought the car with a loan
- (bought, with, brakes) and (bought, with, loan) are useful features to solve this apparently Al-complete problem

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2
Lexicalized Model (Collins and Brooks 1995)	84.5
Lexicalized Model + Wordnet (Stetina and Nagao 1998)	88.0

Statistical Parsing

the company 's clinical trials of both its animal and human-based insulins indicated no difference in the level of hypoglycemia between users of either product

Use a probabilistic *lexicalized* grammar from the Penn WSJ Treebank for parsing . . .

Bilexical CFG (Collins-CFG): dependencies between pairs of words

- Full context-free rule:
 VP(indicated) → V-hd(indicated) NP(difference) PP(in)
- Each rule is generated in three steps (Collins 1999):
 - 1. Generate head daughter of LHS: VP(indicated) → V-hd(indicated)
 - 2. Generate non-terminals to *left* of head daughter: sтор ... V-hd(*indicated*)

- V-hd(indicated) ... NP(difference)
- V-hd(indicated) ... PP(in)
- V-hd(indicated) . . . sтор

Lexicalized Tree Adjoining Grammars (LTAG): Different Modeling of Bilexical Dependencies

Performance of supervised statistical parsers

	$\leq 40wds$	$\leq 40wds$	$\leq 100wds$	$\leq 100wds$
System	LP	LR	LP	LR
PCFG (Collins 99)	88.5	88.7	88.1	88.3
LTAG (Chiang 02)	88.63	88.59	87.72	87.66
PCFG (Charniak 97)	87.5	87.4	86.7	86.6
PCFG (Charniak 99)	90.1	90.1	89.6	89.5

• Labelled Precision = $\frac{\text{number of correct constituents in proposed parse}}{\text{number of constituents in proposed parse}}$

• Labelled Recall = $\frac{\text{number of correct constituents in proposed parse}}{\text{number of constituents in treebank parse}}$

Overview

- TAGs from word-aligned parallel corpora
- Supertagging and robust, shallow parsing (slides taken from B. Srinivas)
- Statistical Parsing with LTAG
- Bootstrapping between CFG and LTAG

Bootstrapping

- Current state-of-the-art in parsing on the Penn WSJ Treebank dataset is approx 90% accuracy
- However this accuracy is obtained with 1M words of human annotated data (40K sentences)
- Exploring methods that can exploit unlabelled data is an important goal:
 - What about different languages? The Penn Treebank took several years with many linguistic experts and millions of dollars to produce.
 Unlikely to happen for all other languages of interest.

- What about different genres? Porting a parser trained on newspaper text and using it on fiction is a challenge.
- Combining labelled and unlabelled data is an interesting challenge for machine learning.
- In this talk, we will consider *bootstrapping* using unlabelled data.
- Bootstrapping refers to a problem setting in which one is given a small set of labelled data and a large set of unlabelled data, and the task is to extract new labelled instances from the unlabelled data.
- The noise introduced by the new automatically labelled instances has to be offset by the utility of training on those instances.

Multiple Learners and the Bootstrapping problem

- With a single learner, the simplest method of bootstrapping is called *self-training*.
- The high precision output of a classifier can be treated as new labelled instances (Yarowsky, 1995).
- With multiple learners, we can exploit the fact that they might:
 - Pay attention to different features in the labelled data.
 - Be confident about different examples in the unlabelled data.
 - Combine multiple learners using the co-training algorithm.

Co-training

- Pick two "views" of a classification problem.
- Build separate models for each of these "views" and train each model on a small set of labelled data.
- Sample an unlabelled data set and to find examples that each model independently labels with high confidence.
- Pick confidently labelled examples and add to labelled data. Iterate.
- Each model labels examples for the other in each iteration.

An Example: (Blum and Mitchell 1998)

- Task: Build a classifier that categorizes web pages into two classes, +: is
 a course web page, -: is not a course web page
- Usual model: build a Naive Bayes model:

$$P[C = c_k \mid X = \mathbf{x}] = \frac{P(c_k) \times P(\mathbf{x} \mid c_k)}{P(\mathbf{x})}$$

$$P(\mathbf{x} \mid c_k) = \prod_{x_j \in \mathbf{x}} P(x_j \mid c_k)$$

Each labelled example has two views:

```
x_1 Text in hyperlink: <a href="..."> CSE 120, Fall semester </a> <a href="..."> CSE 120, Fall semester </a> <a href="..."> (a)</a> <a href="..."> Text in web page: <a href="..."> Assignment #1 ...</a> /html>
```

- Documents in the unlabelled data where $C = c_k$ is predicted with high confidence by classifier trained on view \mathbf{x}_1 can be used as new training data for view \mathbf{x}_2 and vice versa
- Each view can be used to create new labelled data for the other view.
- Combining labelled and unlabelled data in this manner outperforms using only the labelled data.

Theory behind co-training: (Abney, 2002)

• For each instance x, we have two views $X_1(x) = x_1, X_2(x) = x_2$. x_1, x_2 satisfy *view independence* if:

$$Pr[X_1 = x_1 \mid X_2 = x_2, Y = y] = Pr[X_1 = x_1 \mid Y = y]$$

 $Pr[X_2 = x_2 \mid X_1 = x_1, Y = y] = Pr[X_2 = x_2 \mid Y = y]$

• If \mathcal{H}_1 , \mathcal{H}_2 are rules that use only X_1, X_2 respectively, then *rule independence* is:

$$Pr[F = u \mid G = v, Y = y] = Pr[F = u \mid Y = y]$$

where $F \in \mathcal{H}_1$ and $G \in \mathcal{H}_2$ (note that view independence implies rule independence)

Theory behind co-training: (Abney, 2002)

Deviation from conditional independence:

$$d_{y} = \frac{1}{2} \sum_{u,v} |Pr[G = v \mid Y = y, F = u] - Pr[G = v \mid Y = y]|$$

• For all $F \in \mathcal{H}_1, G \in \mathcal{H}_2$ such that

$$d_{y} \le p_{2} \frac{q_{1} - p_{1}}{2p_{1}q_{1}}$$

and $\min_{u} Pr[F = u] > Pr[F \neq G]$ then

$$Pr[F \neq Y] \leq Pr[F \neq G]$$

$$Pr[\bar{F} \neq Y] \leq Pr[F \neq G]$$

we can choose between F and \bar{F} using seed labelled data

Theory behind co-training: $Pr[F \neq Y] \leq Pr[F \neq G]$

Positive Correlation, Y = +

Theory behind co-training

- (Blum and Mitchell, 1998) prove that, when the two views are conditionally independent given the label, and each view is sufficient for learning the task, co-training can improve an initial weak learner using unlabelled data.
- (Dasgupta et al, 2002) show that maximising the agreement over the unlabelled data between two learners leads to few generalisation errors (same independence assumption).
- (Abney, 2002) argues that the independence assumption is extremely restrictive and typically violated in the data. He proposes a weaker independence assumption and a greedy algorithm that maximises agreement on unlabelled data.

Co-training for statistical parsing In order to conduct co-training experiments between statistical parsers, it was necessary to choose two parsers that generate comparable output but use different statistical models.

- 1. The Collins lexicalized PCFG parser (Collins, 1999), model 2. Some code for (re)training this parser was added to make the co-training experiments possible. We refer to this parser as **Collins-CFG**.
- 2. The Lexicalized Tree Adjoining Grammar (LTAG) parser of (Sarkar, 2001), which we refer to as the **LTAG** parser.

Summary of the Different Views

Collins-CFG	LTAG	
Bi-lexical dependencies are between	Bi-lexical dependencies are between	
lexicalized nonterminals	elementary trees	
Can produce novel elementary	Can produce novel bi-lexical	
trees for the LTAG parser	dependencies for Collins-CFG	
Using small amounts of seed data,	Using small amounts of seed data,	
abstains less often than LTAG	abstains more often than Collins-CFG	

The pseudo-code for the co-training algorithm

A and B are two different parsers.

 M_A^i and M_B^i are models of A and B at step i.

U is a large pool of unlabelled sentences.

 U^i is a small cache holding subset of U at step i.

L is the manually labelled seed data.

 L_A^i and L_B^i are the labelled training examples for A and B at step i.

Initialize:

$$L_A^0 \leftarrow L_B^0 \leftarrow L.$$

$$M_A^0 \leftarrow Train(A, L_A^0)$$

$$M_B^0 \leftarrow Train(B, L_B^0)$$

Loop:

```
U^i \leftarrow \operatorname{Add} unlabelled sentences from U. M_A^i and M_B^i parse the sentences in U^i and assign scores to them according to their scoring functions f_A and f_B. Select new parses \{P_A\} and \{P_B\} according to some selection method S, which uses the scores from f_A and f_B. L_A^{i+1} is L_A^i augmented with \{P_B\} L_B^{i+1} is L_B^i augmented with \{P_A\} M_A^{i+1} \leftarrow \operatorname{Train}(A, L_A^{i+1}) M_A^{i+1} \leftarrow \operatorname{Train}(B, L_B^{i+1})
```

Experiments

- Use co-training to boost performance, when faced with small seed data
 - → Use small subsets of WSJ labelled data as seed data
- Use co-training to port parsers to new genres
 - → Use Brown corpus as seed data, co-train and test on WSJ
- Use a large set of labelled data and use unlabelled data to improve parsing performance
 - → Use Penn Treebank (40K sents) as seed data

Experiments on Small Labelled Seed Data

- Motivating the size of the initial seed data set
- We plotted learning curves, tracking parser accuracy while varying the amount of labelled data
- Find the "elbow" in the curve where the payoff will occur
- This was done for both the Collins-CFG and the LTAG parser
- The learning curve shows that the maximum payoff from co-training is likely to occur between 500 and 1,000 sentences.

- Use co-training to boost performance, when faced with small seed data
 - → Use 500 sentences of WSJ labelled data as seed data
 - → Compare performance of co-training vs. self-training
- Use co-training to port parsers to new genres
 - → Use Brown corpus as seed data, co-train and test on WSJ
- Use a large set of labelled data and use unlabelled data to improve parsing performance
 - → Use Penn Treebank (40K sents) as seed data

- Use co-training to boost performance, when faced with small seed data
 - → Co-training beats self-training with 500 sentence seed data
 - → Compare performance when seed data is doubled to 1K sentences
- Use co-training to port parsers to new genres
 - → Use Brown corpus as seed data, co-train and test on WSJ
- Use a large set of labeled data and use unlabeled data to improve parsing performance
 - → Use Penn Treebank (40K sents) as seed data

- Use co-training to boost performance, when faced with small seed data
 - → Co-training beats self-training with 500 sentence seed data
 - → Co-training still improves performance with 1K sentence seed data
- Use co-training to port parsers to new genres
 - → Use Brown corpus as seed data, co-train and test on WSJ
- Use a large set of labeled data and use unlabeled data to improve parsing performance
 - → Use Penn Treebank (40K sents) as seed data

- Use co-training to boost performance, when faced with small seed data
 - → Co-training beats self-training with 500 sentence seed data
 - → Different parse selection methods better for different parser views
 - → Co-training still improves performance with 1K sentence seed data
- Use co-training to port parsers to new genres
 - → Co-training improves performance significantly when porting from one genre (Brown) to another (WSJ)
- Use a large set of labeled data and use unlabeled data to improve parsing performance
 - → Use Penn Treebank (40K sents) as seed data

- Experiments using 40K sentences Penn Treebank WSJ sentences as seed data for co-training did not produce a positive result
- Even after adding 260K sentences of unlabeled data using co-training did not significantly improve performance over the baseline
- However, we plan to do more experiments in the future which leverage more recent work on parse selection and the difference between the Collins-CFG and LTAG views

Summary

Experiment	Before(Sec 23)	After(Sec 23)
WSJ Self-training	74.4	74.3
WSJ (500) Co-training	74.4	76.9
WSJ (1k) Co-training	78.6	79.0
Brown co-training	73.6	76.8
Brown+ small WSJ co-training	75.4	78.2

- Use co-training to boost performance, when faced with small seed data
 - → Co-training beats self-training with 500 sentence seed data
 - → Co-training still improves performance with 1K sentence seed data
- Use co-training to port parsers to new genres
 - → Co-training improves performance significantly when porting from one genre (Brown) to another (WSJ)
- Use a large set of labeled data and use unlabeled data to improve parsing performance
 - → Using 40K sentences of Penn Treebank as seed data showed no improvement over the baseline. Future work: improving LTAG performance

Acknowledgements

The co-training experiments were done for the most part during the NSF/DARPA JHU Language Engineering Summer Workshop 2002. This is joint work with R. Hwa, M. Osborne, M. Steedman, S. Clark, J. Hockenmaier, P. Ruhlen, S. Baker, J. Crim

- For more details about this work:
 - Bootstrapping Statistical Parsers from Small Datasets: EACL 2003
 - Example Selection for Bootstrapping Statistical Parsers: NAACL 2003