Mál- og tegurfræði

Brynjólfur Gauti Jónsson 2019-03-21

Contents

Kennsluáætlun 9				
1	Örlítil mengjafræði	11		
	1.1 Skilgreining	11		
2	Aukna rauntalnalínan	13		
	2.1 Efra- og neðra markgildi runu	13		
	2.2 Setning	14		
	2.3 Setning	14		
	2.4 Setning	14		
	2.5 Setning	14		
3	Nokkur atriði varnandi raðir	15		
	3.1 Setning	15		
	3.2 Setning			
	3.3 Umröðunarsetning Riemanns			
	3.4 Æfing			
	3.5 Setning			
	3.6 Setning	16		
\mathbf{V}	ikublað 1	17		
4	Jordan-mælanleg mengi	19		
	4.1 Setning	19		
	Setning 3.1.2	19		
	4.2 Setning	19		
	4.3 Skilgreining	20		
	4.4 Setning	20		
	4.5 Skilgreining	20		
	4.6 Setning	20		
	4.7 Setning	21		
5	Tröppuföll og heildi þeirra	23		
	5.1 Setning	23		
	5.2 Setning	23		
	5.3 Setning	23		
6	Riemann-heildi (Darboux-útgáfan)	25		
	6.1 Skilgreining	25		
	6.2 Skilgreining	25		
	6.3 Setning	26		
	6.4 Setning	26		

\mathbf{V}_{i}	Vikublað 2					
	Dæmi 1	27				
	Dæmi 2	27				
	Dæmi 3	27				
	Dæmi 4	27				
	Dæmi 5	28				
	Dæmi 6	28				
7	Lebesgue-utanmálið	29				
	7.1 Skilgreining	29				
	7.2 Setning	29				
	7.3 Setning	30				
	7.4 Setning	30				
	7.5 Setning	31				
	7.6 Setning	31				
8		33				
	8.1 Skilgreining	33				
	8.2 Setning	33				
	8.3 Setning	33				
	8.4 Setning	34				
T 7	11 8 0	۵-				
V		35				
	Dæmi 1	35				
	Dæmi 2	36				
	Dæmi 3	36				
	Dæmi 4	36				
	Dæmi 5	36				
	Dæmi 6	37				
	Dæmi 7	37				
9	Mælanleg rúm og málrúm	39				
9	9.1 Skilgreining	39				
	9.2 Skilgreining	39				
	9.3 Setning	40				
	5.5 Scannig	40				
10	Fullkomin málrúm	41				
	10.1 Skilgreining	41				
	10.2 Setning	41				
	10.3 Setning	41				
	10.4 Setning	42				
	10.5 Setning	42				
\mathbf{V}^{i}	zublað 4	43				
11		45				
	11.1 Skilgreining	45				
	11.2 Skilgreining	45				
	11.3 Skilgreining	45				
	11.4 Skilgreining	45				
10	M11	4 =				
12		47				
	J	47				
	12.2 Skilgreining	47				
	12.3 Setning	47				

12.4 Setning	
12.6 Setning	48
12.7 Setning	48
12.8 Setning	49
12.9 Setning	49
12.10Setning	
12.11Setning	
12.12Skilgreining	
12.13Setning	
12.14Skilgreining	
12.15Setning	50
Vikublað 5	51
13 Slembibreytur á líkindarúmum	53
13.1 Skilgreining	
13.2 Setning	
13.3 Skilgreining	
13.4 Skilgreining	
13.5 Skilgreining	
13.6 Æfing	
13.8 Setning	
13.9 Setning	
13.3 Setting	
14 Heildun jákvæðra falla	57
14.1 Skilgreining	57
14.2 Setning	
14.3 Setning [Um einhalla samleitni] (Lebesgue)	
14.4 Setning	58
14.5 Setning [Fatou]	
14.6 Setning	59
14.7 Setning	59
Vikublað 6	61
Dæmi 1	
Dæmi 2	
Dæmi 3	1.
Dæmi 4	
Dæmi 5	
Dæmi 6	62
Dæmi 7	62
Dæmi 8	63
Dæmi 9	63
15 Heildanleg föll	65
15.1 Skilgreining	
15.2 Setning	
15.3 Setning	
15.4 Setning	
15.5 Setningin um yfirgnæfða samleitni	
15.6 Setning	
15.7 Setning [Benno Levi]	70

Vil	kublað 7	71
	Dæmi 1	71
	Dæmi 2	71
	Skilgreining	72
	Dæmi 3	72
	Dæmi 4	72
	Dæmi 5	72
	Dæmi 6	73
	Dæmi 7	73
	Dæmi 8	74
	Dæmi 9	74
	Dæmi 10	74
10	TI I TU TO I TU	
	Lebesgue-heildi og Riemann-heildi	75
	16.1 Dæmi (Varúð!)	75
	16.2 Setning	75
	16.3 Setning	76
	16.4 Setning	76
17	Nálganir Lebesgue-heildanlegra falla á \mathbb{R}^d	77
	17.1 Setning	
	17.2 Setning	77
	11.2 beaming	
18	Heildun með stikabreytu	7 9
	18.1 Setning	79
	18.2 Setning	79
	18.3 Setning	80
	18.4 Setning	80
Vil	kublað 8	83
10		0 =
	Skrímslafræði 19.1 Valfrumsendan 19.2 Valfrumsendan	85
		85 85
	19.2 Setning	
		85 85
	19.4 Setning	00
20	L^p -rúm	87
	Upprifjun	87
	Setning	87
	Æfing	88
	Setning	88
	Uppfrifjun	88
	Æfing	88
	Setning (Ójafna Jensens)	89
	Setning (Ójöfnur Hölders og Minkowski)	89
	Upprifjun	91
	Skilgreining	91
	Setning	92
	Setning	92
	Upprifjun	92
	11 /	
	Æfingar	93
	Æfingar	93 93
		93 93 93

Setning	
Setning	
Setning	94
Vikublað 9	95
Dæmi 1	
Dæmi 2	
Dæmi 3	
Dæmi 4	
Upprifjun úr línulegri algebru	
Dæmi 5	
Dæmi 6	
Dæmi 7	99
Dæmi 8	100
Dæmi 9	101
21 Innfeldisrúm	103
Upprifjun	
Setning	
Setning	
Setning	
Setning	
Skilgreining	
Æfing	
Setning	
Setning	
Skilgreining	
Skilgreining	
Setning	
Vikublað 10	109
Dæmi 1 (Skil)	
Dæmi 2 (Skil)	
Dæmi 3	
Dæmi 4	
Dæmi 5 (Skil)	
Dæmi 6	112
22 Þverstaðlaðar fjölskyldur	113
Skilgreining	
Setning	
771 11 X 44	
Vikublað 11	115
Dæmi 1 (Skil)	
Dæmi 2 (Skil)	
Dæmi 5 (Skil)	
Dæmi 8 (Skil)	116

Kennsluáætlun

- Vika 1: Mengjafræði, aukna rauntalnalínan, raðir.
- Vika 2: Jordan-mælanleg mengi, tröppuföll, Riemann-heildi.
- Vika 3: Legesbue: Utanmálið, mælanleg mengi og málið.
- Vika 4: Málrúm
- Vika 5:
- Vika 6:
- Vika 7: Heildanleg föll
- Vika 8:
- Vika 9:

Örlítil mengjafræði

Gefum okkur að til grundvallar liggi hæfilega stórt almengi.

1.1 Skilgreining

 \mathbf{F} jölskylda af hlutmengjum í mengi M er vörpun

$$a: I \to \mathcal{P}(M)$$
.

Við notum yfirleitt tákn af greðinni A_i til þess að tákna gildi vörpunarinnar a í i og vörpunina a táknum við þá $(A_i)_{i\in I}$.

Við köllum I **stikamengi** fjölskyldunnar.

Mengið

$$\bigcap_{i\in I}A_i:=\{x\in M|x\in A_i \text{ fyrir \"oll } i\in I\}$$

kallast **sniðmengi** fjölskyldunnar.

Mengið

$$\bigcup_{i \in I} A_i := \{x \in M | x \in A_i \text{ fyrir eithvert } i \in I\}$$

kallast sammengi fjölskyldunnar.

Fyrir hlutmengi A í M setjum við

$$A^c := M \backslash A := \{ x \in M | x \notin A \}$$

og köllum **fyllimengi** A (í M).

Ef B er líka hlutmengi í M, þá setjum við

$$B \backslash A := \{ x \in B | x \notin A \} = B \cup A^c$$

og hlutmengið

$$A\Delta B := (A \backslash B) \cup (B \backslash A)$$

köllum við samhverfan mismun hlutmengjanna A og B.

Um sérhverja fjölskyldu $(A_i)_{i\in I}$ í mengi M
 gilda **reglur de Morgans**

$$\left(\bigcup_{i\in I} A_i\right)^c = \bigcap_{i\in I} A_i^c \left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} A_i^c$$

Kennifall hlutmengis A í M er táknað $\mathbf{1}_A: M \to \mathbb{R}$ og skilgreint með því að setja $\mathbf{1}_A(x) := 1$ ef $x \in A$ og $\mathbf{1}_A(x) = 0$ ef $x \notin A$.

Fyrir hlutmengi A og B í M gilda reglurnar

- $1_{A \cap B} = 1_A 1_B$
- $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B \mathbf{1}_A \mathbf{1}_B$
- $\mathbf{1}_{A^c} = 1 \mathbf{1}_A$

Aukna rauntalnalinan

Við köllum mengið $\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\} = [-\infty, \infty]$ auknu rauntalnalínuna. Við framlengjum röðuna á \mathbb{R} yfir á $\overline{\mathbb{R}}$ með skilyrðinu

$$-\infty < x < \infty$$
fyrir öll x úr $\mathbb R$

og framlengjum venjulegu reikniaðgerðirnar á \mathbb{R} yfir á $\overline{\mathbb{R}}$ með því að setja:

- $a + \infty = \infty$ fyrir öll $a \in (-\infty, \infty]$
- $a + (-\infty) = -\infty$ fyrir öll $a \in [-\infty, \infty)$
- $a \cdot \infty = \infty$ og $a \cdot (-\infty) = -\infty$ fyrir öll $a \in (0, \infty]$
- $a \cdot \infty = -\infty$ og $a \cdot (-\infty) = \infty$ fyrir öll $a \in [-\infty, 0)$

Látum A vera hlutmengi í $\overline{\mathbb{R}}$

- Minnsta yfirstak mengisins A í $\overline{\mathbb{R}}$ kallast **efra mark** mengisins A og við táknum það sup A.
- Stærsta undirstak mengisins A í $\overline{\mathbb{R}}$ kallast **neðra mark** mengisins A og við táknum það inf A.

Ef $(x_n)_{n\geq 0}$ er runa í $\overline{\mathbb{R}}$ og $n_0\in\mathbb{N}$, þá setjum við

- $\sup_{n \ge n_0} x_n := \sup\{x_n | n \ge n_0\}$
- $\inf_{n \ge n_0} x_n := \inf\{x_n | n \ge n_0\}$

Mengi A í $\overline{\mathbb{R}}$ er sagt takmarkað að ofan [neðan] ef sup $A < \infty$ [inf $A > -\infty$]. Samsvarandi fyrir runur.

2.1 Efra- og neðra markgildi runu

Látum (x_n) vera runu í $\overline{\mathbb{R}}$. Pá er runan $\left(\sup_{n\geq k}x_n\right)_k$ minnkandi og hefur því markgildi í $\overline{\mathbb{R}}$. Við setjum

$$\lim \sup x_n := \lim_{k \to \infty} \sup_{n > k} x_n$$

og köllum $\limsup x_n$ efra markgildi rununnar (x_n) .

Með svipuðum rökum er unnt að skilgreina stakið

$$\lim\inf x_n := \lim_{k \to \infty} \inf_{n \ge k} x_n.$$

Það kallast **neðra markgildi** rununnar (x_n) .

2.2 Setning

Látum (x_n) vera runu í $\overline{\mathbb{R}}$ og E vera mengi allra staka úr $\overline{\mathbb{R}}$ sem eru markgildi einhverrar hlutrunu í (x_n) . Pá gildir

$$\limsup x_n = \max E \quad \text{og} \quad \liminf x_n = \min E$$

2.3 Setning

Látum (x_n) vera runu í $\overline{\mathbb{R}}$. Þá gilda eftirfarandi jöfnur og ójöfnur:

- (i) $\limsup(-x_n) = -\liminf x_n \text{ og } \liminf(-x_n) = -\limsup x_n.$
- (ii) $\lim \inf x_n \leq \lim \sup x_n$.

Ennfremur gildir að runan (x_n) er samleitin þá og því aðeins að $\liminf x_n = \limsup x_n$.

2.4 Setning

Látum (x_n) og (y_n) vera runur í $\overline{\mathbb{R}}$ sem hafa þann eiginleika að $x_n \leq y_n$ fyrir öll n, þá fæst liminf $x_n \leq \lim \inf y_n$ og $\lim \sup x_n \leq \lim \sup y_n$.

2.5 Setning

Látum (x_n) og (y_n) vera runur í $\overline{\mathbb{R}}$, þá gilda ójöfnurnar

$$\liminf x_n + \liminf y_n \le \liminf (x_n + y_n)
\le \liminf x_n + \limsup y_n
\le \lim \sup (x_n + y_n)
\le \lim \sup x_n + \lim \sup y_n$$

Nokkur atriði varnandi raðir

3.1 Setning

Látum $(a_n)_{n\geq 0}$ vera runu í $[0,\infty]$ og látum \mathcal{S} tákna mengi allra summa af gerðinni $\sum_{n\in I} a_n$ þar sem I er endanlegt hlutmengi í \mathbb{N} . Pá gildir

$$\sum_{n=0}^{\infty} a_n = \sup(\mathcal{S})$$

3.2 Setning

Látum $\sum_{n=0}^{\infty} a_n$ vera alsamleitna tvinntalnaröð og $\sigma: \mathbb{N} \to \mathbb{N}$ vera gagntæka vörpum (m.ö.o. **umröðun**). Pá er röðin $\sum_{n=0}^{\infty} a_{\sigma(n)}$ einnig alsamleiting og

$$\sum_{n=0}^{\infty} a_{\sigma(n)} = \sum_{n=0}^{\infty} a_n.$$

Eftirfarandi setning er einkar áhugaverð í tengslum við setningu 2.1.2, en kemur ekki við sögu í þessu námskeiði.

3.3 Umröðunarsetning Riemanns

Látum $\sum_{n=0}^{\infty} a_n$ vera skilyrt samleitna rauntalnaröð og c og d vera stök úr $\overline{\mathbb{R}}$ þannig að $c \leq d$. Þá er til umröðum $\sigma : \mathbb{N} \to \mathbb{N}$, sem hefur þann eiginleika

$$\lim \inf \sum_{k=0}^{n} a_{\sigma(k)} = 0 \quad \text{og} \quad \lim \sup \sum_{k=0}^{n} a_{\sigma(k)} = d.$$

Látum I vera óendanlegt teljanlegt mengi og $(a_i)_{i\in I}$ vera fjölskyldu af tvinntölum. Við segjum að **summan** $\sum_{i\in I} a_i$ sé **alsamleitin** ef til er gagntæk vörpun $\sigma: \mathbb{N} \to I$, sem hefur þann eiginleika að $\sum_{n=0}^{\infty} a_{\sigma(n)}$ sé alsamleitin. Sé svo, þá gildir samkvæmt *setningu* 2.1.2 að talan $\sum_{n=0}^{\infty} a_{\sigma(n)}$ er óháð því hvaða vörpun σ er valin. Við setjum þá

$$\sum_{i \in I} a_i := \sum_{n=0}^{\infty} a_{\sigma(n)}$$

og köllum **summu** fjölskyldunnar $(a_i)_{i \in I}$

3.4 Æfing

Látum I vera óendanlegt teljanlegt mengi og $(a_i)_{i\in I}$ vera fjölskyldu af tvinntölum.

(a) Gerið grein fyrir að summan $\sum_{i\in I}a_i$ sé alsamleitin þá og því aðeins að til sé rauntala K, sem hefur þann eiginleika að

$$\sum_{i \in F} |a_i| \le K$$

fyrir sérhvert endanlegt hlutmengi F í I.

(b) Gerum ráð fyrir að summan $\sum_{i\in I}a_i$ sé alsamleitin og setjum $A:=\sum_{i\in I}a_i$. Sýnið að fyrir sérhvert $\varepsilon>0$ sé til endanlegt hlutmengi F í I, sem hefur þann eiginleika að

$$|\sum_{i \in J} a_i - A| < \varepsilon$$

fyrir sérhvert endanlegt hlutmengi J í I sem inniheldur F.

3.5 Setning

Tvinntalnasumma $\sum_{(m,n)\in\mathbb{N}^2} a_{m,n}$ er alsamleitin þá og því aðeins að

$$\sum_{m=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{m,n}| \right) < \infty,$$

og sé svo þá gildir

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{m=0}^{\infty} (\sum_{n=0}^{\infty} a_{m,n}) = \sum_{n=0}^{\infty} (\sum_{m=0}^{\infty} a_{m,n})$$

3.6 Setning

Fyrir sérhverja fjölskyldu $(a_{m,n})_{(m,n)\in\mathbb{N}^2}$ í $[0,\infty]$ gildir

$$\sum_{(m,n)\in\mathbb{N}^2} a_{m,n} = \sum_{m=0}^{\infty} (\sum_{n=0}^{\infty} a_{m,n}) = \sum_{n=0}^{\infty} (\sum_{m=0}^{\infty} a_{m,n})$$

Vikublað 1

Dæmi 1

Látum (x_n) vera runu í \mathbb{R} og M vera rauntölu. Sýnið að rauntalan M sé efra markgildi rununnar ef og aðeins ef hún hefur eftirfarandi eiginleika:

• Fyrir sérhvert $\varepsilon > 0$ gildir að mengið $\{n \in \mathbb{N} | x_n \ge M + \varepsilon\}$ er endanlegt og mengið $\{n \in \mathbb{N} | x_n \ge M - \varepsilon\}$ er óendanlegt.

Gerið síðan grein fyrir að neðra mark rununnar uppfylli sambærilegan eiginleika.

Dæmi 2

Látum (a_n) og (b_n) vera runur í \mathbb{R} og gerum ráð fyrir að runan (b_n) sé samleitin (í \mathbb{R}). Gerið grein fyrir hvenær eftirfarandi jöfnur eru uppfylltar í þeim tilfellum þegar báðar hliðar hafa merkingu.

- (a) $\liminf (a_n + b_n) = \liminf a_n + \lim b_n$ og $\limsup (a_n + b_n) = \limsup a_n + \lim b_n$
- (b) $\liminf (a_n b_n) = (\liminf a_n)(\lim b_n)$ og $\limsup (a_n b_n) = (\limsup a_n)(\lim b_n)$

Dæmi 3

Látun (x_n) vera runu í \mathbb{R} . Sannið eftirfarandi fullyrðingar.

- (a) Runan (x_n) er ekki takmörkuð að ofan ef og aðeins ef $\limsup x_n = \infty$.
- (b) Runan (x_n) stefnir á $-\infty$ ef og aðeins ef $\limsup x_n = -\infty$.
- (c) Runan (x_n) er ekki takmörkuð að neðan ef og aðeins ef liminf $x_n = -\infty$.
- (d) Runan (x_n) stefnir á ∞ ef og aðeins ef liminf $x_n = \infty$.

Dæmi 4

Látum (c_n) vera runu í opna bilinu $(0,\infty)$. Gerið grein fyrir að eftirfarandi ójöfnur gilda.

$$\liminf \frac{c_{n+1}}{c_n} \leq \liminf \sqrt[n]{c_n} \quad \text{og} \quad \limsup \sqrt[n]{c_n} \leq \frac{c_{n+1}}{c_n}$$

Dæmi 5

Látum $(z_n)_{n\geq 0}$ vera tvinntalnarunu. Sannið eftirfarandi fullyrðingar.

(a) Röðin $\sum_{n=0}^{\infty} z_n$ er alsamleitin ef lim sup $\sqrt[n]{z_n} < 1$

- (b) Röðin $\sum_{n=0}^{\infty} z_n$ er ósamleitin ef lim sup $\sqrt[n]{z_n} > 1$
- (c) Ef lim sup $\sqrt[n]{|z_n|}=1$, þá gæti röðin $\sum_{n=0}^{\infty}z_n$ verið hvort sem er samleitin eða ósamleitin.

Dæmi 6

Látum $\sum_{n\geq 0} c_n z^n$ vera veldaröð (í tvinntölum) og setjum

$$\alpha := \limsup \sqrt[n]{|c_n|}.$$

Sannið eftirfarandi fullyrðingar:

- (a) Ef $\alpha=0,$ þá er ∞ samleitnigeisli raðarinnar.
- (b) Ef $\alpha>0,$ þá er $\frac{1}{\alpha}$ samleitnigeisli raðarinnar.

Dæmi 7

Látum $(a_j)_{j\in J}$ vera fjölskyldu í $[0,\infty]$ og $\mathcal S$ tákna mengi allra talna af gerðinni $\sum_{j\in F} a_j$, þar sem F er hlutmengi í J sem hefur aðeins endanlega mörg stök. Setjum svo

$$\sum_{j \in J} a_j := \sup(\mathcal{S})$$

og segjum að fjölskyldan $(a_j)_{j\in J}$ sé **samleggjanleg** ef $\sum_{j\in J}<\infty.$

Sýnið: Ef fjölskyldan er samleggjanleg, þá er teljanlegt hlutmengi I í J, sem hefur þann eiginleika að $a_j = 0$ fyrir öll $j \in J \backslash I$.

Jordan-mælanleg mengi

- Látum a og b vera rauntölur sem uppfylla $a \le b$ og I vera bil (opið, hálfopið eða lokað) með endapunkta a og b. Þá setjum við |I| := b a og köllum **lengd** bilsins I.
- Faldmengi d bila, $B:=I_1\times\cdots\times I_d$ kallast kassi í \mathbb{R}^d eða d-kassi. Töluna

$$|B| := |I_1| \dots |I_d|$$

köllum við d-rúmmál kassans B.

• Sammengi endanlega margra d-kassa köllum við kassastæðu (í \mathbb{R}^d).

4.1 Setning

Látum E og F vera kassastæður í \mathbb{R}^d . Þá eru mengin $E \cup F$, $E \cap F$, $E \setminus F$ og $E \Delta F$ einnig kassastæður. Ennfremur er sérhvert mengi af gerðinni E + v kassastæða.

Setning 3.1.2

Sérhver kassastæða í \mathbb{R}^d er sammengi endanlega margra innbyrðis sundurlægra d-kassa.

4.2 Setning

Látum B_1, \ldots, B_k vera innbyrðis sundurlæga d-kassa og $C_1, \ldots C_l$ vera innbyrðis sundurlæka d-kassa og gerum ráð fyrir að $B_1 \cup \cdots \cup B_k = C_1 \cup \cdots \cup C_l$. Pá gildir

$$|B_1| + \cdots + |B_k| = |C_1| + \cdots + |C_l|$$

4.3 Skilgreining

Látum E vera kassastæðu í \mathbb{R}^d . Þá er unnt að skrifa $E = B_1 \cup \cdots \cup B_k$ þar sem B_1, \ldots, B_k eru innbyrðis sundurlægir d-kassar. Samkvæmt setningu 3.1.3 er talan

$$m(E) := |B_1| + \dots + |B_k|$$

óháð valinu á innbyrðis sundurlægu kössunum og við köllum hana d-r**úmmál** kassastæðunnar E.

4.3.1 Athugasemdir

- Fyrir sérhverja kassasstæðu E gildir að $m(E) \geq 0$
- Tómamengið er kassastæða og $m(\emptyset) = 0$

4.4 Setning

Látum E og F vera kassastæður í \mathbb{R}^d og $v \in \mathbb{R}^d$. Þá gildir

(i) $m(E \cup F) \leq m(E) + m(F)$ og jafnaðarmerkið gildir ef $E \cap F = \emptyset$.

(ii) m(E+v) = m(E).

4.5 Skilgreining

Látum X vera takmarkað hlutmengi í \mathbb{R}^d .

- (i) Látum $Jm_*(X)$ tákna efra mark mengis allra talnna af gerðinni m(E), þar sem E er kassastæða sem er innihaldin í X. Þessa tölu köllum við **Jordan-innanmál** mengisins X.
- (ii) Látum $Jm^*(X)$ tákna neðra mark mengis allra talna af gerðinni m(E), þar sem E er kassastæða sem inniheldur X. Þessa tölu köllum við **Jordan-utanmál** mengisins X.
- (iii) Við segjum að X sé **Jordan-mælanlegt** ef $Jm^*(X) = Jm_*(X)$. Ef svo er þá setjum við $m(X) := Jm^*(X) = Jm_*(X)$ og segjum að m(X) sé **Jordan-mál** mengisins X.

4.6 Setning

Látum E og F vera Jordan-mælanleg hlutmengi í \mathbb{R}^d . Þá gildir:

- (i) Mengin $E \cup F$, $E \cap F$, $E \setminus F$ og $E \Delta F$ eru Jordan-mælanleg.
- (ii) $m(E) \ge 0$.
- (iii) Ef $E \cap F = \emptyset$, þá $m(E \cup F) = m(E) + m(F)$
- (iv) Ef $E \subset F$, þá $m(E) \leq m(F)$

4.7. SETNING 21

- (v) $m(E \cup F) \le m(E) + m(F)$
- (vi) Fyrir sérhvert v úr \mathbb{R}^d gildir að E+ver Jordan-mælanlegt og m(E+v)=m(E)

4.7 Setning

Takmarkað hlutmengi E í \mathbb{R}^d er Jordan-mælanlegt ef og aðeins ef jaðar þess, ∂E , hefur Jordan-utanmál núll.

4.7.1 Athugasemd

Opin mengi í \mathbb{R}^d eru ekki öll Jordan-mælanleg. *(Sjá dæmi 4 á vikublaði 3).

Tröppuföll og heildi þeirra

Látum R vera kassa í \mathbb{R}^d . Safn af d-kössum B_1, \ldots, B_k , sem eru innbyrðis sundurlægir og uppfylla $R = B_1 \cup \cdots \cup B_k$, köllum **skiptingu** á R og segjum þá að B_1, \ldots, B_k séu **kassar skiptingarinnar**. Skipting C_1, \ldots, C_l á kassa R er sögn **fínni en** skipting B_1, \ldots, B_k á R ef fyrir sérhvert j er til i þannig að $C_j \subseteq B_i$.

5.1 Setning

Fyrir sérhverjar tvær skiptingar á kassa R er til skipting sem er fínni en þær báðar.

Látum R vera kassa í \mathbb{R}^d . Við segjum að fall $t: R \to \mathbb{R}$ sé **tröppufall** ef til er skipting $R = B_1 \cup \cdots \cup B_k$ sem hefur þann eiginleika að einskorðun t við B_j er fastafall fyrir sérhvert j. Þá er sagt að t sé **tröppufall** með tilliti til skiptingarinnar.

5.2 Setning

Látum t vera tröppufall með tilliti til skiptinga $R = A_1 \cup \cdots \cup A_l$ og $R = B_1 \cup \cdots \cup B_k$. Látum a_i tákna (eina) gildið sem fallið t tekur í A_i og b_j tákna (eina) gildið sem fallið t tekur í B_j . Pá gildir

$$\sum_{i=1}^{l} a_i |A_i| = \sum_{j=1}^{k} b_j |B_j|$$

5.3 Setning

Látum t vera tröppufall á kassa R með tilliti til skiptingar $R = B_1 \cup \cdots \cup B_k$ og látum b_j tákna (eina) gildið sem fallið t tekur í B_j . Þá segjum við að

$$\int_R t := \sum_{j=1}^k b_j |B_j|$$

sé heildi fallsins t yfir R

Riemann-heildi (Darboux-útgáfan)

Látum R vera d-kassa og $f: R \to \mathbb{R}$ vera fall. Látum \mathcal{S} vera mengi allra rauntalna af gerðinni $\int_R s$, þar sem s er tröppufall á R, sem uppfyllir $s(x) \leq f(x)$ fyrir öll x úr R og látum \mathcal{T} vera mengi allra rauntalna af gerðinni $\int_R t$, þar sem t er tröppufall á R, sem uppfyllir $f(x) \leq t(x)$ fyrir öll x úr R.

Setjum svo

$$\int_R f := \sup \mathcal{S} \quad \text{og} \quad \overline{\int_R f} := \inf \mathcal{T}.$$

Við köllum fyrri töluna **undirheildi** fallsins f á R og seinni töluna **yfirheildi** fallsins f á R.

6.1 Skilgreining

Látum R vera d-kassa. Við segjum að fall $f: R \to \mathbb{R}$ sé **Riemann-heildanlegt** ef það er takmarkað og

$$\int_R f = \overline{\int_R f}.$$

Við segjum þá að talan

$$\int_R f := \underline{\int_R f} = \overline{\int_R f}$$

sé **heildi** fallsins f yfir R.

6.2 Skilgreining

Látum C vera takmarkað hlutmengi í \mathbb{R}^d og R vera d-kassa sem inniheldur C. Við segjum að fall $f: C \to \mathbb{R}$ sé **Riemann-heildanlegt** ef fallið $\tilde{f}: R \to \mathbb{R}$ sem skilgreint er með $\tilde{f}(x) = f(x)$ fyrir $x \in C$ og $\tilde{f}(x) = 0$ fyrir $x \in R \setminus C$, er Riemann-heildanlegt. Við segjum þá að talan

$$\int_C f := \int_R \tilde{f}$$

sé **heildi** fallsins f yfir C.

6.3 Setning

Látum C vera takmarkað hlutmengi í \mathbb{R}^d og f og g vera Riemann-heildanleg föll á C, sem uppfylla $f(x) \leq g(x)$ fyrir öll x úr C. Þá gildir að

$$\int_C f \le \int_C g.$$

6.4 Setning

Samfellt og takmarkað fall á Jordan-mælanlegu mengi er Riemann-heildanlegt.

Vikublað 2

Dæmi 1

Látum a og b vera rauntölur sem uppfylla $a \le b$ og I vera bil (opið, hálfopið eða lokað) með endapunkta a og b. Pá setjum við |I| := b - a og köllum **lengd** bilsins I.

Fjöldatölu mengis A táknum við #A eða #(A).

Fyrir sérhverja náttúrulega tölu N>0 setjum við $\frac{1}{N}\mathbb{Z}:=\{\frac{k}{N}|k\in\mathbb{Z}\}.$

Sýnið að um sérhvert bil I gildi

$$|I| = \lim_{N \to \infty} \frac{1}{N} \# \left(I \cap \frac{1}{N} \mathbb{Z} \right).$$

Dæmi 2

Látum a og b vera rauntölur og $I_1, \dots I_k$ vera bil, sem þekja [a,b] (þ.e.a.s $[a,b] \subseteq I_1 \cup \dots \cup I_k$). Sannið eftirfarandi fullyrðingar.

(a)
$$b - a \le \sum_{j=1}^{k} |I_j|$$
.

 $(b) \ \text{Ef } [a,b] = I_1 \cup \cdots \cup I_k \ \text{og } \#(I_j \cap I_k) \leq 1 \ \text{furir } j \neq k, \text{ þá gildir jafnaðarmerkið í ójöfnunni í lið } (a).$

Dæmi 3

Látum $(I_n)_{n\geq 1}$ vera runu af bilum sem þekja hálflínu. Sýnið að

$$\sum_{n=1}^{\infty} |I_n| = \infty.$$

Dæmi 4

Faldmengi dbila, $B:=I_1\times\cdots\times I_d,$ kallast **kassi í** \mathbb{R}^d eða d-kassi. Töluna

$$|B| := |I_1| \dots |I_d|$$

köllum við **rúmmál** kassans B. Sýnið að um sérhvern kassa B í \mathbb{R}^d gildi

$$|B| = \lim_{N \to \infty} \frac{1}{N^d} \# \left(B \cap \frac{1}{N} \mathbb{Z}^d \right)$$

 $\text{par sem } \frac{1}{N}\mathbb{Z}^d := \{ \frac{1}{N}(k_1, \dots, k_d) | k_1, \dots, k_d \in \mathbb{Z} \}.$

Dæmi 5

Látum A og B vera hlutmengi í \mathbb{R}^d , sem hvort um sig er sammengi endanlega margra d-kassa. Sýnið að hið sama gildi þá einnig um hlutmengin $A \cup B$, $A \cap B$, $A \setminus B$ og $A \Delta B$.

Dæmi 6

Fyrir sérhvert $n \in \mathbb{N}$ skilgreinum við fall

$$f_n: [0,\infty) \to \mathbb{R}, \quad x \to \frac{x\sqrt{n}}{(1+x^2)n}.$$

Sannið eða hrekið eftirfarandi fullyrðingar.

- (a)Runan $(f_n(x))_{n\geq 1}$ stefnir á núll fyrir sérhvert x.
- (b) Runan $(f_n)_{n\geq 1}$ stefnir í jöfnum mæli á núllfallið.
- (c)Runan $(\int_0^\infty f_n(x) dx)_{n \geq 1}$ stefnir á núll.

Lebesgue-utanmálið

Fyrir hlutmengi A í \mathbb{R}^d látum við Z_A tákna mengi allra stærða af gerðinni $\sum_{n=1}^{\infty} |B_n|$ (í $\overline{\mathbb{R}}$) þar sem $(B_n)_{n\geq 1}$ er runa af d-kössum sem þekja A, þ.e.a.s. $A\subseteq \bigcup_{n\geq 1} B_n$.

7.1 Skilgreining

Látum A vera hlutmengi í \mathbb{R}^d . Þá kallast talan

$$m^*(A) := \inf Z_A$$

Lebesgue-utanmál mengisins A.

7.2 Setning

Lebesgue-utanmálið hefur eftirfarandi eiginleika

- 1. $m^*(\emptyset) = 0$.
- 2. Ef $E \subseteq F \subseteq \mathbb{R}^d$, þá er $m^*(E) \leq m^*(F)$.
- 3. Um sérhverja runu $(E_n)_{n\geq 1}$ af hlutmengjum í \mathbb{R}^d gildir

$$m^*(\bigcup_{n\geq 1} E_n) \leq \sum_{n=1}^{\infty} m^*(E_n).$$

4. Ytra mál hlutmengis í \mathbb{R}^d breytist ekki við hliðrun, m.ö.o. gildir um öll hlutmengi E í \mathbb{R}^d og öll v úr \mathbb{R}^d að

$$m^*(E+v) = m^*(E).$$

Sönnun.

1.

- 2. Augljóst þegar við tökum eftir því að sérhver þakning á F er þakning á E.
- 3. Gerum ráð fyrir að $m_*(E_j) < \infty$ fyrir öll j, því annars er niðurstaðan augljós. Fyrir sérhvert $\varepsilon > 0$ gefur skilgreiningin á Lebesgue-utanmálinu okkur fyrir hvert j þakningu $E_j \subset \bigcup_{k=1}^{\infty} Q_{k,j}$ með lokuðum kössum þannig að

$$\sum_{k=1}^{\infty} |Q_{k,j}| \le m_*(E_j) + \frac{\varepsilon}{2^j}.$$

Pá er $E \subset \bigcup_{j,k=1}^{\infty} Q_{k,j}$ þakning á E með lokuðum kössum og því

$$m_*(E) \le \sum_{j,k} |Q_{k,j}| = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |Q_{k,j}|$$
$$\le \sum_{j=1}^{\infty} (m_*(E_j) + \frac{\varepsilon}{2^j})$$
$$= \sum_{j=1}^{\infty} m_*(E) + \varepsilon.$$

Þar sem ofangreint stens fyrir sérhvert $\varepsilon>0$ er staðhæfingin sönnuð.

7.2.1 Setning

Látum E og F vera hlutmengi í \mathbb{R}^d , sem uppfylla d(E,F)>0. Þá gildir

$$m^*(E \cup F) = m^*(E) + m^*(F).$$

7.3 Setning

Látum E vera kassastæðu í \mathbb{R}^d . Þá er Lebesgue-utanmálið á E jafn Jordan-málinu á E, með öðrum orðum $m^*(E) = m(E)$.

Látum $(B_i)_{i\in I}$ vera fjölskyldu af d-kössum, Við segjum að kassarnir í fjölskyldunni séu **næstum innbyrðis** sundurlægir ef $\operatorname{int}(B_i) \cap \operatorname{int}(B_j) = \emptyset$ þegar $i \neq j$.

7.4 Setning

Látum $(B_n)_{n\in\mathbb{N}}$ vera runu af næstum innbyrðis sundurlægum d-kössum. Þá gildir

$$m^*(\bigcup_{n=0}^{\infty} B_n) = \sum_{n=0}^{\infty} |B_n|.$$

7.5. SETNING 31

7.5 Setning

Sérhvert opið mengi í \mathbb{R}^d er unnt að skrifa sem sammengi af teljanlega mörgum næstum innbyrðis sundurlægum kössum.

7.6 Setning

Látum E vera hlutmengi í \mathbb{R}^d og \mathcal{U} vera mengi allra stærða af gerðinni $m^*(U)$ í $\overline{\mathbb{R}}$ þar sem U er opið mengi í \mathbb{R}^d , sem inniheldur E. Þá gildir

$$m^*(E) = \inf(\mathcal{U})$$

Lebesgue-mælanleg mengi og Lebesgue-málið

8.1 Skilgreining

Látum E vera hlutmengi í \mathbb{R}^d .

(i) Við segjum að E sé **Lebesgue-mælanlegt** ef, fyrir sérhvert $\varepsilon > 0$, er til opið mengi U í \mathbb{R}^d sem uppfyllir skilyrðin

$$E \subseteq U$$
 og $m^*(U \backslash E) \le \varepsilon$

(ii) Ef E er Lebesgue-mælanlegt, þá segjum við að stærðin $m(E) := m^*(E)$ (í $\overline{\mathbb{R}}$) sé **Lebesgue-mál** mengisins E.

8.2 Setning

Sérhvert Jordan-mælanlegt mengi í \mathbb{R}^d er Lebesgue-mælanlegt og Jordan-mál þess er jafnt Lebesgue-máli þess.

8.3 Setning

- (i) Öll opin mengi í \mathbb{R}^d eru Lebesgue-mælanleg.
- (ii) Öll mengi í \mathbb{R}^d , sem hafa Lebesgue-utanmál núll, eru Lebesgue-mælanleg.
- (iii) Ef $(E_n)_{n\geq 1}$ er runa af Lebesgue-mælanlegum mengjum í \mathbb{R}^d , þá er sammengið $\bigcup_{n=1}^{\infty} E_n$ einnig Lebesgue-mælanlegt.
- (iv) Fyllimengi sérhvers Lebesgue-mælanlegs mengis í \mathbb{R}^d er Lebesgue-mælanlegt.
- (v) Ef $(E_n)_{n\geq 1}$ er runa af Lebesgue-mælanlegum mengjum í \mathbb{R}^d , þá er sniðmengið $\bigcap_{n=1}^\infty E_n$ einnig Lebesgue-mælanlegt.

8.4 Setning

Látum $(E_n)_{n\geq 1}$ vera runu af $innbyr\delta is\ sundurlægum$ Lebesgue-mælanlegum mengjum í \mathbb{R}^d . Þá gildir

$$m(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n).$$

Vikublað 3

Dæmi 1

Látum I vera óendanlegt teljanlegt mengi og $(a_i)_{i\in I}$ vera fjölskyldu af tvinntölum.

(a) Gerið grein fyrir að summan $\sum_{i\in I}a_i$ sé alsamleitin þá og því aðeins að til sé rauntala K, sem hefur þann eiginleika að

$$\sum_{i \in F} |a_i| \le K$$

fyrir sérhvert endanlegt hlutmengi F í I.

Lausn. Gerum ráð fyrir að til sé slíkt K og sýnum að summan er alsamleitin. Þar sem að I er teljanlega óendanlegt er til gagntækt fall $\sigma: \mathbb{N} \to I$. Þá fæst fyrir sérhvert $n \in \mathbb{N}$ að

$$\sum_{k=0}^{n} |a_{\sigma(k)}| \le K.$$

Samkvæmt forsendu er markgildið $n \to \infty$ til svo hlutsummurunan hefur markgildi. Þar með er runan alsamleitin.

Gerum nú ráð fyrir að summan sé alsamleitin og sýnum að til sé slíkt K. Aftur er til gagntækt fall $\sigma: \mathbb{N} \to I$. Þar sem runan er alsamleitin setjum við

$$K := \sum_{k=0}^{\infty} |a_{\sigma(k)}|.$$

Par sem σ er gagntæk er þá

$$\sum_{i \in F} |a_i| = K - \sum_{i \in I \setminus F} |a_i| \le K$$

(b) Gerum ráð fyrir að summan $\sum_{i\in I}a_i$ sé alsamleitin og setjum $A:=\sum_{i\in I}a_i$. Sýnið að fyrir sérhvert $\varepsilon>0$ sé til endanlegt hlutmengi F í I, sem hefur þann eiginleika að

$$\left| \sum_{i \in J} a_j - A \right| < \varepsilon$$

fyrir sérhvert endanlegt hlutmengi F í I.

Lausn. Eins og í fyrri til er til gagntækt fall $\sigma: \mathbb{N} \to I$. Þar sem röðin er alsamleitin er hún sér í lagi skilorðslaust samleitin þannig að $\sum_{i \in I} a_i = \sum_{k \in \mathbb{N}} a_{\sigma(k)}$ fyrir öll skík σ . Þá er til $n \in \mathbb{N}$ þannig að

$$\left| A - \sum_{k=0}^{N} a_{\sigma(k)} \right| < \varepsilon$$

fyrir öll $N \geq n$. En þá er einmitt $\sigma(\{1,\ldots,n\})$ slíkt hlutmengi.

Dæmi 2

Látum E og F vera Jordan-mælanleg hlutmengi hlutmengi í \mathbb{R}^d . Gerið grein fyrir að $E\Delta F$ sé líka Jordan-mælanlegt.

Dæmi 3

Látum E vera takmarkað mengi í \mathbb{R}^d og látum samkvæmt venju \overline{E} tákna lokun þess og int(E) tákna innmengi þess.

- (a) Gerið grein fyrir að mengin \overline{E} og Ehafi sama Jordan-utanmál.
- (b) Gerið grein fyrir að mengin int(E) og E hafi sama Jordan-innanmál.
- (c) Ályktið út frá (a) og (b) að E sé mælanlegt þá og því aðeins að jaðar þess, ∂E , hafi Jordan-utanmál núll.
- (d) Finnið dæmi um takmarkað hlutmengi í \mathbb{R}^d sem er ekki Jordan-mælanlegt.

Dæmi 4

Gerið fyrst grein fyrir að til séu runur $(a_n)_{n\geq 1}$ og $(b_n)_{n\geq 1}$ í lokaða bilinu [0,1], sem uppfylla skilyrðin

$$\mathbb{Q} \cap (0,1) \subseteq \bigcup_{n>1} (a_n, b_n) \quad \text{og} \quad \sum_{n>1} (b_n - a_n) < 1$$

og setjið svo $U:=\bigcup_{n>1}(a_n,b_n)$. Sannið síðan eftirfarandi fullyrðingar.

- (a) Mengið $[0,1]\setminus U$ er jaðar mengisins U (í \mathbb{R}).
- (b) Mengið U er ekki Jordan-mælanlegt.

Dæmi 5

Látum C vera takmarkað hlutmengi í \mathbb{R}^d . Gerið grein fyrir að kennifallið $\mathbf{1}_C$ sé Riemann-heildanlegt þá og því aðeins að mengið C sé Jordan-mælanlegt.

8.4. SETNING 37

Dæmi 6

Látum f vera fall á d-kassa R og $R = B_1 \cup \cdots \cup B_k$ vera skiptingu. Sýnið fram á að fallið f sé Riemannheildanlegt þá og því aðeins að einskorðun f við B_i sé Riemannheildanleg fyrir öll i úr $\{1,\ldots,k\}$. Sýnið ennfremur fram á að í því tilfelli gildi

$$\int_{R} f = \sum_{i=1}^{k} \int_{B_i} f_i$$

þar sem f_i táknar einskorðun fallsins f við B_i .

Dæmi 7

Látum C vera takmarkað hlutmengi í \mathbb{R}^d , f og g vera Riemann-heildanleg föll á C og a vera rauntölu. Sannið eftirfarandi fullyrðingar:

(a) Falliðaf+ger heildanlegt og

$$\int_C (af+g) = a \int_C f + \int_C g.$$

(b) Fallið fg er heildanlegt.

Mælanleg rúm og málrúm

9.1 Skilgreining

Látum Ω vera mengi og \mathcal{F} vera safn hlutmengja í Ω . Pá er sagt að \mathcal{F} sé σ -algebra ef eftirfarandi skilyrði eru uppfyllt:

- 1. $\Omega \in \mathcal{F}$.
- 2. Ef $E \in \mathcal{F}$ þá $E^c \in \mathcal{F}$.
- 3. Ef $(E_n)_{n\geq 1}$ er runa af mengjum í \mathcal{F} , þá er sammengið $\bigcup_{n=1}^{\infty} E_n$ einnig í \mathcal{F} .

Röðuð tvennd (Ω, \mathcal{F}) þar sem Ω er mengi og \mathcal{F} er σ -algebra af hlutmengjum í Ω kallast **mælanlegt rúm**.

9.2 Skilgreining

Látum (Ω, \mathcal{F}) vera mælanlegt rúm. Fall $\mu : \mathcal{F} \to [0, \infty]$ kallast **mál** (á \mathcal{F}) ef það hefur eftirfarandi eiginleika:

- 1. $\mu(\emptyset) = 0$.
- 2. Ef $(E_n)_{n\geq 1}$ er runa af innbyrðist sundurlægum mengjum úr $\mathcal F$ þá er

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$$

Röðuð þrennd $(\Omega, \mathcal{F}, \mu)$, þar sem (Ω, \mathcal{F}) er mælanlegt rúm og μ er mál á \mathcal{F} kallast **málrúm**.

Látum \mathcal{M} tákna safn allra Lebesgue-mælanlegra mengja í \mathbb{R}^d . Setning 6.2.3 segir okkur meðal annars að \mathcal{M} sé σ -algebra (á \mathbb{R}^d) og (\mathbb{R}^d , \mathcal{M}) er því mælanlegt rúm.

Par eð $m(\emptyset) = 0$, þá gildir samkvæmt setningu 7.1.1 að fallið

$$m: \mathcal{M} \to \overline{\mathbb{R}}, \quad E \to m(E)$$

er mál og þar með er $(\mathbb{R}^d, \mathcal{M}, m)$ málrúm. Málið m er kallað **Lebesgue-málið** á \mathbb{R}^d .

9.3 Setning

Gerum ráð fyrir að $(\Omega, \mathcal{F}, \mu)$ sé málrúm.

1. Látum A_1, \dots, A_n vera innbyrðis sundurlæg mengu úr \mathcal{F} . Þá gildir

$$\mu(A_1 \cup \dots \cup A_n) = \mu(A_1) + \dots + \mu(A_n)$$

- 2. Ef $A, B \in \mathcal{F}$ og $A \subseteq B$, þá gildir $\mu(A) \leq \mu(B)$.
- 3. Látum $B_1 \subseteq B_2 \subseteq \ldots$ vera vaxandi runu í \mathcal{F} . Þá gildir

$$\lim_{n \to \infty} \mu(B_n) = \mu\left(\bigcup_{n=1}^{\infty} B_n\right).$$

4. Látum $B_1\supseteq B_2\supseteq\dots$ vera minnkandi runu í $\mathcal F$ og gerum ennfremur ráð fyrir að $\mu(B_1)<\infty$. Þá gildir

$$\lim_{n \to \infty} \mu(B_n) = \mu\left(\bigcap_{n=1}^{\infty} B_n\right).$$

Fullkomin málrúm

10.1 Skilgreining

Málrúm $(\Omega, \mathcal{F}, \mu)$ er sagt **fullkomið** ef það fullnægir eftirfarandi skilyrði:

• Fyrir sérhvert $A \in \mathcal{F}$ þannig að $\mu(A) = 0$ gildir að öll hlutmengi B í A tilheyra \mathcal{F} (og þar með $\mu(B) = 0$).

10.2 Setning

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og látum \mathcal{G} vera safn allra hlutmengja E í Ω sem hafa þann eiginleika að til eru A og B úr \mathcal{F} sem uppfylla

$$A \subseteq E \subseteq B$$
 og $\mu(B \backslash A) = 0$.

Pá er \mathcal{G} σ-algebra á Ω .

10.2.1 Athugasemd

Við segjum að \mathcal{G} sé μ -fullkomnun σ -algebrunnar \mathcal{F} .

10.3 Setning

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og látum \mathcal{G} vera μ -fullkomnun σ -algebrunnar \mathcal{F} . Pá er til nákvæmlega eitt mál

$$\mu_c: \mathcal{G} \to [0, \infty]$$

sem framlengir málið μ . Ennfremur gildir að málrúmið $(\Omega, \mathcal{G}, \mu_c)$ er fullkomið.

10.3.1 Athugasemd	
Málið μ_c kallast fullkomn	ın málsins μ og málrúmið $(\Omega, \mathcal{G}, \mu_c)$ kallast fullkomnun málrúmsins $(\Omega, \mathcal{F}, \mu)$
Látum ${\cal B}$ tákna Borel-alg o	ebruna á \mathbb{R}^d , þ.e.a.s. σ -algebruna sem opnu mengin í \mathbb{R}^d framleiða.
10.4 Setning	
\mathcal{M} er m -fullkomnun \mathcal{B} .	

10.5 Setning

 $\mathcal M$ er stærsta $\sigma\text{-algebra}$ á $\mathbb R^d,$ sem fullnægur tveimur skilyrðum:

- $\mathcal{B} \subset \mathcal{M}$
- Einskorðun m^* við $\mathcal M$ er mál.

Vikublað 4

Líkindamál

11.1 Skilgreining

Málrúm (Ω, \mathcal{F}, P) er kallað **líkindarúm** ef $P(\Omega) = 1$. Þá er sagt að P sé **líkindamál**. Í líkindarúmi (Ω, \mathcal{F}, P) eru hlutmengin í Ω , sem tilheyra \mathcal{F} , iðulega kölluð **atburðir**.

11.2 Skilgreining

Látum (Ω, \mathcal{F}, P) vera líkindarúm, $A, B \in \mathcal{F}$ og gerum ráð fyrir að P(B) > 0. Þá kallast talan

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

skilyrt líkindi A að uppfylltu B.

11.3 Skilgreining

Látum (Ω, \mathcal{F}, P) vera líkindarúm. Við segjum að atburðir A og B úr \mathcal{F} séu **óháðir** ef

$$P(A \cap B) = P(A) \cdot P(B).$$

11.4 Skilgreining

Látum (Ω, \mathcal{F}, P) vera líkindarúm og \mathcal{F}_1 og \mathcal{F}_2 vera tvær σ -algebrur, sem báðar eru innihaldnar í \mathcal{F} . Við segjum að \mathcal{F}_1 og \mathcal{F}_2 séu **óháðar** ef um öll $A_1 \in \mathcal{F}_1$ og $A_2 \in \mathcal{F}_2$ gildir

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2)$$

Mælanleg föll

12.1 Málvenja

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm. Sagt er að tiltekin fullyrðing um punktana í Ω sé rétt **næstum alls staðar** (oft skammstafað **n.a.**) ef til er $N \in \mathcal{F}$ sem hefur þá eiginleika að $\mu(N) = 0$ og fullyrðingin er rétt varðandi alla punkta úr $\Omega \setminus N$.

12.2 Skilgreining

Látum (Ω, \mathcal{F}) vera mælanlegt rúm. Fall $f: \Omega \to \mathbb{R}$ er sagt \mathcal{F} -mælanlegt (eða bara mælanlegt ef ekki er hætta á ruglingi) ef um sérhvert bil I í \mathbb{R} gildir að $f^{-1}(I)$ sé mælanlegt.

Í því tilfelli þegar Ω er Lebesgue-mælanlegt mengi í \mathbb{R}^d og $\mathcal{F} = \mathcal{M}$, þá segjum við að slík föll séu **Lebesgue-mælanleg** og í tilfellinu þegar Ω er Borel-mengi í \mathbb{R} og $\mathcal{F} = \mathcal{B}$ segjum við að slík föll séu **Borel-mælanleg** eða **Borel-föll**.

12.3 Setning

Látum (Ω, \mathcal{F}) vera mælanlegt rúm og $f: \Omega \to \mathbb{R}$. Pá eru eftirfarandi skilyrði jafngild.

- 1. Fallið f er mælanlegt.
- 2. Mengið $f^{-1}((a,\infty))$ er mælanlegt fyrir sérhvert a úr $\mathbb{R} \cup \{-\infty\}$.
- 3. Mengið $f^{-1}([a,\infty))$ er mælanlegt fyrir sérhvert a úr $\mathbb R$
- 4. Mengið $f^{-1}((-\infty, a))$ er mælanlegt fyrir sérhvert a úr $\mathbb{R} \cup \{\infty\}$.
- 5. Mengið $f^{-1}((-\infty, a])$ er mælanlegt fyrir sérhvert a úr \mathbb{R} .

12.4 Setning

Látum f og g vera mælanleg föll á mælanlegu rúmi (Ω, \mathcal{F}) og $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ vera samfellt fall. Þá er fal	Látum f	g og g vera	mælanleg	föll á	mælanlegu	rúmi (Ω, \mathcal{F}) og	$F: \mathbb{R}$	$1 imes \mathbb{R}$ -	$\to \mathbb{R}$	vera	samfellt	fall.	Þá	er fa	alli	ð
---	-----------	---------------	----------	--------	-----------	--------	-----------------------	------	-----------------	------------------------	------------------	------	----------	-------	----	-------	------	---

$$h: \Omega \to \mathbb{R}, \quad x \to F(f(x), g(x))$$

mælanlegt.

Sönnun.

12.5 Athugasemd

Fyrir raungilt fall á mengi X skilgreinum við föll f^+ og f^- á X með því að setja

$$f^+(x) := \max\{f(x), 0\} \text{ og } f^-(x) := \max\{-f(x), 0\}.$$

12.6 Setning

Látum f og g vera mælanleg
 föll á mælanlegu rúmi (Ω, \mathcal{F}) og c vera rauntölu. Þá eru föllin

$$cf$$
, f^2 , $f+g$, fg , $|f|$, f^+ , f^-

öll mælanleg.

Sönnun.

12.7 Setning

Látum $(f_n)_{n\geq 1}$ vera runu af mælanlegum föllum á mælanlegu rúmi (Ω,\mathcal{F}) og k vera náttúrulega tölu. Þá eru föllin

$$\max_{n \le k} f_n, \quad \min_{n \le k} f_n, \quad \sup_n f_n, \quad \inf_n f_n, \quad \limsup_{n \to \infty} f_n, \quad \liminf_{n \to \infty} f_n$$

öll mælanleg.

12.8. SETNING 49

12.8 Setning

Látum $(f_n)_{n\geq 1}$ vera runu af mælanlegum föllum á mælanlegu rúmi (Ω, \mathcal{F}) og k vera náttúrulega tölu. Þá eru föllin

	$\max_{n \le k} f_n,$	$\min_{n \le k} f_n,$	$\sup_{n} f_{n},$	$\inf_{n} f_n$,	$ \limsup_{n \to \infty} f_n, $	$\liminf_{n \to \infty} f_n$
öll mælanleg.						
Sönnun.						
12.9 Setning						
Látum $(f_n)_{n\geq 1}$ vera r á fall f (í hverjum pu	unu af mæ ınkti). Þá e		föllum á n mælanleg	nælanlegi t.	ı rúmi (Ω, \mathcal{F})	og gerum ráð fyrir að runan stefni
Sönnun.						
12.10 Setnin	ng					
Látum f og g vera fö er mælanlegt, þá er h			ami $(\Omega, \mathcal{F}, \mathcal{F})$	$,\mu), \text{ sem}$	eru eins næst	tum alls staðar. Ef annað fallanna
Sönnun.						
12.11 Setnin	ng					

Látum $(f_n)_{n\geq 1}$ vera runu af mælanlegum föllum á fullkomnu málrúmi $(\Omega, \mathcal{F}, \mu)$ og f vera fall á Ω sem hefur þann eiginleika að $\lim_{n\to\infty} f_n(x) = f(x)$ næstum alls staðar. Þá er f mælanlegt fall.

Sönnun.

12.12 Skilgreining

Látum (Ω, \mathcal{F}) vera mælanlegt rúm. Fall $f: \Omega \to \overline{\mathbb{R}}$ er sagt \mathcal{F} -mælanlegt ef um allar rauntölur a gildir að mengið $f^{-1}((a, \infty])$ er í \mathcal{F} .

12.13 Setning

Látum (Ω, \mathcal{F}) vera mælanlegt rúm. Fall $f: \Omega \to \overline{\mathbb{R}}$ er mælanlegt ef og aðeins ef mengin $f^{-1}(\infty)$ og $f^{-1}(-\infty)$ eru bæði mælanleg og fallið $f_1: \Omega \to \mathbb{R}$, sem skilgreint er með því að setja

$$f_1(x) = \begin{cases} f(x), & x \in f^{-1}(-\infty, \infty) \\ 0, & x \in f^{-1}(\{-\infty, \infty\}), \end{cases}$$

er mælanlegt.

Sönnun.

12.14 Skilgreining

Látum (Ω,\mathcal{F},μ) vera málrúm og $f:\Omega\to\overline{\mathbb{R}}$ vera mælanlegt fall. Stærðin

$$\operatorname{ess\,sup} f := \inf\{t \in \overline{\mathbb{R}} | f \le t \quad \text{næstum alls staðar} \}$$

kallast raunverulegt efra mark fallsins f og talan

ess inf
$$f := \inf\{t \in \overline{\mathbb{R}} | f > t \text{ næstum alls staðar}\}$$

kallast raunverulegt neðra mark fallsins f.

12.15 Setning

Látum (Ω,\mathcal{F},μ) vera málrúm og $f,g:\Omega\to\overline{\mathbb{R}}$ vera mælanleg föll.

(i) Ef f og g taka gildi sín í $(-\infty, \infty]$, þá gildir

$$\operatorname{ess\,sup}(f+g) \le \operatorname{ess\,sup} f + \operatorname{ess\,sup} g.$$

(ii) Ef f og g taka gildi sín í $[-\infty, \infty)$, þá gildir

ess inf
$$f$$
 + ess inf $g \le ess inf (f + g)$.

Vikublað 5

Slembibreytur á líkindarúmum

Mælanlegt fall á líkindarúmi er yfirleitt kallað hending, slembibreyta eða slembistærð.

13.1 Skilgreining

Látum (Ω, \mathcal{F}, P) vera líkindarúm, $X : \Omega \to \mathbb{R}$ vera slæmbistærð og látum skv. venju \mathcal{B} tákna Borel-algebruna á \mathbb{R} . Pá er mengjasafnið

$$X^{-1}(\mathcal{B}) := \{ f^{-1}(E) | E \in \mathcal{B} \}$$

 σ -algebra á Ω og við segjum að slembistærðin X **framleiði** hana. Hún verður oftast táknuð \mathcal{F}_X .

13.2 Setning

Látum X vera slembistærð á líkindarúmi (Ω, \mathcal{F}, P) . Þá er fallið

$$P_X: \mathcal{B} \to [0, \infty], \quad B \to P(X^{-1}(B))$$

líkindamál á $(\mathbb{R}, \mathcal{B})$.

Við segjum að líkindamálið P_X sé **líkindadreifingin** sem slembistærðin X ákvarðar.

13.3 Skilgreining

Við segjum að tvær slembistærðir á líkindarúmi (Ω, \mathcal{F}, P) séu **óháðar** ef σ-algebrurnar sem þær framleiða eru óháðar, m.ö.o, ef um öll Borel-mengi B og C í \mathbb{R} gildir

$$P(X^{-1}(B) \cap Y^{-1}(C)) = P(X^{-1}(B)) \cdot P(Y^{-1}(C))$$

13.4 Skilgreining

Látum (Ω, \mathcal{F}) vera mælanlegt rúm. Fall $f: \Omega \to [0, \infty)$ er sagt **einfalt** ef það er mælanlegt og tekur aðeins endanlega mörg gildi.

Sérhvert fall t á (Ω, \mathcal{F}) er hægt að setja fram sem

$$t = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}$$

þar sem $A_i \in \mathcal{F}$ fyrir öll i. Slík framsetning er kölluð **staðlaða framsetningin** á t ef $a_i \neq a_j$ fyrir $i \neq j$ og $t^{-1}(a_i) = A_i$.

13.5 Skilgreining

Látum $t = \sum_{i=1}^{n} a_i \mathbf{1}_{A_i}$ vera staðlaða framsetningu einfalds falls t á málrúmi $(\Omega, \mathcal{F}, \mu)$ og $E \in \mathcal{F}$. Þá kallast

$$\int_{E} t d\mu := \sum_{i=1}^{n} a_{i} \mu(A_{i} \cap E)$$

heildi fallsins t yfir mengið E m.t.t. málsins μ .

13.6 Æfing

Línulegar samantektir af einföldum föllum eru einföld föll.

13.7 Setning

Látum s og t vera einföld föll á málrúmi $(\Omega, \mathcal{F}, \mu)$ og $c \in [0, \infty)$. Pá gildir um öll $E \in \mathcal{F}$:

- (i) $\int_E csd\mu = c \int_E sd\mu$.
- (ii) $\int_E (s+t)d\mu = \int_E sd\mu + \int_E td\mu$.
- (iii) Ef $s(x) \leq t(x)$ fyrir öll x úr $\Omega,$ þá er

$$\int_E s d\mu \leq \int_E t d\mu$$

13.8 Setning

Látum (Ω, \mathcal{F}) vera mælanlegt rúm og $f: \Omega \to [0, \infty]$ vera mælanlegt fall. Þá er til runa $(s_n)_{n\geq 1}$ af einföldum föllum á Ω sem fullnægir eftirfarandi skilyrðum.

- (i) $0 \le s_1 \le s_2 \le \cdots \le f$.
- (ii) $\lim_{n\to\infty} s_n(x) = f(x)$ fyrir öll $x \in \Omega$.

13.9. SETNING 55

13.9 Setning

Látum $t \geq 0$ vera einfalt fall á málrúmi $(\Omega, \mathcal{F}, \mu)$ og skilgreinum fall $\lambda: \mathcal{F} \to [0, \infty]$ með því að setja

$$\lambda(E):=\int_E t d\mu.$$

Þá er λ mál á \mathcal{F} .

Heildun jákvæðra falla

14.1 Skilgreining

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm, $f: \Omega \to [0, \infty]$ vera mælanlegt fall, $E \in \mathcal{F}$ og Y(E, f) vera mengi allra talna af gerðinni $\int_E t d\mu$ þar sem t er einfalt fall á málrúminu, sem uppfyllir $0 \le t(x) \le f(x)$ fyrir öll x úr Ω . Þá kallast

$$\int_{E} f d\mu := \sup Y(E, f)$$

Lebesgue-heildi fallsins f yfir mengið E m.t.t. málsins μ .

14.2 Setning

Látum f og g vera mælanleg föll á málrúmi $(\Omega, \mathcal{F}, \mu)$, sem uppfylla $0 \le f \le g$, og $E \subseteq F$ vera mælanleg mengi. Þá gildir:

- 1. $\int_E f d\mu \leq \int_E g d\mu$
- 2. $\int_{E} f d\mu = \int_{\Omega} f \cdot \mathbf{1}_{E} d\mu$
- 3. $\int_E f d\mu \leq \int_F f d\mu$
- 4. $\int_E cfd\mu = c\int_E fd\mu$, $\forall c \in \mathbb{R}_+$
- 5. Fallið fer núll næstum alls staðar þá og því aðeins að $\int_{\Omega}fd\mu=0$

Sönnun.

14.3 Setning [Um einhalla samleitni] (Lebesgue)

Látum $(f_n)_{n\geq 1}$ vera vaxandi runu af mælanlegum föllum á málrúmi $(\Omega, \mathcal{F}, \mu)$, sem taka gildi sín í $[0, \infty]$, og gerum ráð fyrir að runan stefni á fall $f: \Omega \to [0, \infty]$. Með öðrum orðum eru eftirfarandi skilyrði uppfylt:

- 1. $0 \le f_1(x) \le f_2(x) \le \cdots \le \infty$ fyrir öll x úr Ω .
- 2. $\lim_{n\to\infty} f_n(x) = f(x)$ fyrir öll x úr Ω .

Þá er f mælanlegt fall og

$$\lim_{n \to \infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu$$

Sönnun.

14.4 Setning

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $f, g: \Omega \to [0, \infty]$ vera mælanleg föll. Þá gildir

$$\int_{\Omega} (f+g) d\mu = \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$$

Sönnun.

14.5 Setning [Fatou]

Látum $(f_n)_{n\geq 1}$ vera runu af mælanlegum föllum á málrúmi $(\Omega, \mathcal{F}, \mu)$ sem taka gildi sín í $[0, \infty]$. Þá gildir

$$\int_{\Omega} (\liminf_{n \to \infty} f_n) d\mu \le \liminf_{n \to \infty} \int_{\Omega} f_n d\mu$$

Sönnun. Gerum ráð fyrir að $0 \le g \le f$, þar sem g er takmarkað fall með stoð á mengi E með endanlegt mál. Ef við setjum $g_n(x) = \min(g(x), f_n(x))$, þá er g_n mælanlegt á E og $g_n(x) \to g(x)$ næstum alls staðar, svo að

$$\int g_n \to \int g.$$

Samkvæmt skilgreiningu höfum við líka $g_n \leq f_n$, svo að $\int g_n \leq \int f_n$, og þar af leiðir

$$\int g \le \liminf_{n \to \infty} \int f_n.$$

Með því að taka supremum yfir öll slík g er ójafnan sönnuð.

14.6. SETNING 59

14.6 Setning

Látum (Ω,\mathcal{F},μ) vera málrúm, $f:\Omega\to[0,\infty]$ vera mælanlegt fall og skilgreinum fall

$$\lambda: \mathcal{F} \to [0, \infty], \quad E \to \int_E f d\mu$$

- 1. Fallið λ er mál á \mathcal{F} .
- 2. Ef $\mu(E) = 0$, þá er $\lambda(E) = 0$.

Mál λ á $(\Omega, \mathcal{F}, \mu)$, sem fullnægir skilyrði (ii), er sagt vera **alsamfellt** með tilliti til μ .

Sönnun.

14.7 Setning

Látum $(f_n)_{n\geq 1}$ vera vaxandi runu af föllum frá málrúmi $(\Omega, \mathcal{F}, \mu)$ inn í $[0, \infty]$, sem stefnir n.a. á mælanlegt fall f. Pá gildir

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu$$

Vikublað 6

Dæmi 1

Látum $(\Omega, \mathcal{G}, \mu_c)$ vera fullkomnun málrúmsins $(\Omega, \mathcal{F}, \mu)$. Látum \mathcal{G}' vera σ -algebru á Ω og $\mu' : \mathcal{G}' \to [0, \infty]$ vera mál, sem uppfyllir eftirfarandi skilyrði:

- Málrúmið $(\Omega, \mathcal{G}', \mu')$ er fullkomið.
- $\mathcal{F} \subseteq \mathcal{G}'$ og $\mu'(E) = \mu(E)$ fyrir öll E úr \mathcal{F} .

Sýnið að σ -algebran \mathcal{G} sé innihaldin í \mathcal{G}' og $\mu'(E) = \mu_c(E)$ fyrir öll E úr \mathcal{G} .

Lausn.

Dæmi 2

Látum \mathcal{F} vera σ -algebru á \mathbb{R}^d , sem fullnægir eftirtöldum tveimur skilyrðum:

- Öll opin mengi í \mathbb{R}^d eru í \mathcal{F} .
- Einskorðun Lebesgue-utanmálsins m^* við ${\mathcal F}$ er mál.

Sýnið að öll mengin í \mathcal{F} séu Lebesgue-mælanleg.

Lausn.

Dæmi 3

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $A \in \mathcal{F}$. Setjum

$$\mathcal{F}_A := \{ A \cap E | E \in \mathcal{F} \}$$

og látum $\mu_A: \mathcal{F}_A \to [0, \infty]$ vera einskorðun málsins μ .

(a) Er \mathcal{F}_A σ -algebra á Ω ?

Ef $A \neq \Omega$ þá er $\Omega \notin \mathcal{F}_A$ og þá er \mathcal{F}_A ekki σ -algebra á Ω .

(b) Er \mathcal{F}_A σ -algebra á A?

Augljóslega.

(c) Er μ_A mál á (A, \mathcal{F}_A) ?

 $\mu_A(\emptyset) = \mu(\emptyset) = 0$. Ef $B_m)_{m \in \mathbb{N}}$ er runa af innbyrðis sundurlægum mengjum úr \mathcal{F}_A þá gildir að $\mu_A(\cup B_n) = \mu(\cup B_n) = \sum \mu = \sum \mu_A$

(d) Er fallið $v: \mathcal{F} \to [0, \infty], E \to \mu(E \cap A)$ mál á (Ω, \mathcal{F}) ?

$$v(\ddot{o}) = mu(0 \text{ sam } A) = 0$$

En rruna af innb sund meng í F, þá

 $v(UEn) = mu(A \ sni\delta \ UEn) = mu(sam \ (A \ sni\delta \ En)) = sum \ mu(A \ sni\delta \ E) = sum \ v(En)$

JÁ!

Dæmi 4

Látum A og B vera tvo óháða atburði í líkindarúmi (Ω, \mathcal{F}, P) . Sýnið að σ -algebran sem $\{A\}$ framleiðir og σ -algebran sem $\{B\}$ framleiðir séu óháðar.

Lausn.

Dæmi 5

Finnið dæmi um fall f á mælanlegu rúmi, sem er ekki mælanlegt, en hefur þann eiginleika ða föllin |f| og f^2 eru bæði mælanleg.

Lausn.

Dæmi 6

Látum h vera samfellt raungilt fall á bili I í \mathbb{R} og f vera mælanlegt fall á mælanlegu rúmi (Ω, \mathcal{F}) , sem varpar Ω inn í bilið I.

- (a) Sýnið að samskeytingin $h\circ f:\Omega\to\mathbb{R}$ sé mælanlegt fall.
- (b) Sýnið að um sérhvert mælanlegt fall f á tilteknu málrúmi gildi að föllin $\log(|f|)$ og $|f|^r$ séu mælanleg fyrir öll r > 0.

Lausn.

Dæmi 7

Látum f vera mælanlegt fall á mælanlegu rúmi (Ω, \mathcal{F}) og C > 0. Sýnið að afskorna fallið f_C , sem skilgreint er með

14.7. SETNING 63

$$f_C(x) := \begin{cases} f(x) & \text{ef} & |f(x)| \le C \\ C & \text{ef} & f(x) > C \\ -C & \text{ef} & f(x) < C, \end{cases}$$

sé mælanlegt.

Skilgreining.	Tvinngilt fall á málrúmi er sagt mælanlegt ef bæði raunhluti þess og þverhluti eru mælanleg
föll.	

Lausn.

Dæmi 8

- (a) Látum f og g vera mælanleg tvinngild föll á tilteknu mælanlegu rúmi. Sýnið að föllin f+g og fg séu mælanleg.
- (b) Látum $(f_n)_{n\geq 1}$ vera samleitna runu af mælanlegum tvinngildum föllum á tilteknu málrúmi. Sýnið að markgildi rununnar sé mælanlegt fall.

Lausn.

Dæmi 9

Sýnið að tvinngilt fall f á málrúmi sé mælanlegt þá og því aðeins að um öll opin mengi U í $\mathbb C$ gildi að mengið $f^{-1}(U)$ sé mælanlegt mengi.

Lausn.

Heildanleg föll

15.1 Skilgreining

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $E \in \mathcal{F}$. Við segjum að fall $f : \Omega \to \mathbb{R}$ sé **heildanlegt á** E ef það er mælanlegt og $\int_E f^+ d\mu < \infty$ og $\int_E f^- d\mu < \infty$. Pá kallast rauntalan

$$\int_E f d\mu := \int_E f^+ d\mu - \int_E f^- d\mu$$

heildi fallsins f yfir E m.t.t. málsins μ .

Mengi allra falla, sem eru heildanleg á E, verður táknað $\mathcal{L}(E,\mu)$ eða bara \mathcal{L}^1 ef ekki er hætta á ruglingi.

15.2 Setning

Látum f vera mælanlegt fall á málrúmi $(\Omega, \mathcal{F}, \mu)$ og $E \in \mathcal{F}$. Pá er f í $\mathcal{L}^1(E, \mu)$ þá og því aðeins að fallið |f| sé í $\mathcal{L}^1(E, \mu)$. Sé svo þá gildir einnig

$$\left| \int_E f d\mu \right| \le \int_E |f| d\mu.$$

Sönnun. Athugum að $f \in \mathcal{L}^1(E,\mu)$ ef og aðeins ef bæði föllin f^+ og f^- eru heildanleg.

$$f = f^+ + f^- |f| = f^+ + f^-$$

Sjáum að $f \in \mathcal{L}^1(E,\mu)$ ef og aðeins ef $|f| \in \mathcal{L}^1(E,\mu)$. Ef $f \in \mathcal{L}^1(E,\mu)$ þá er

$$\begin{split} |\int_E f d\mu| &= |\int_E f^+ d\mu - \int_E f^- d\mu| \\ &\leq \int_E f^+ d\mu + \int_E f^- d\mu \\ &= \int_E (f^+ + f^-) d\mu = \int_E |f| d\mu \end{split}$$

15.2.1 Athugasemd

- 1. Ef f er mælanlegt fall á (Ω, \mathcal{F}) og $E \in \mathcal{F}$ og $g \in \mathcal{L}^1(E, \mu)$ þ.a. $|f| \leq |g|$, þá er $f \in \mathcal{L}^1(E, \mu)$ og $\int_E |f| d\mu \leq \int_E |g| d\mu$.
- 2. Það getur gerst með Riemann-heildi að $\int_{-\infty}^{\infty} f(x)dx$ er samleitið en $\int_{-\infty}^{\infty} |f(x)|dx$ er ekki samleitið. Svona gerist ekki með Lebesgue-heildi því fall f er heildanlegt ef og aðeins ef |f| er heildanlegt (innbyggð alsamleitni).

15.3 Setning

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $E \in \mathcal{F}$. Ef $f, g \in \mathcal{L}^1(E, \mu)$ og $c \in \mathbb{R}$, þá gildir:

- 1. Fallið cf er í $\mathcal{L}^1(E,\mu)$ og $\int_E cf d\mu = c \int_E f d\mu$
- **2.** Fallið f + g er í $\mathcal{L}^1(E, \mu)$ og

$$\int_{E} (f+g)d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

Sönnun.

1. Tilvikið c=0 er augljóst. Gerum ráð fyrir að c>0. Þá er $(cf)^+=cf^+$ og $(cf)^-=cf^-$. *12.3.2** segir að ef $g\geq 0$ þá $\int_E (cg)d\mu=c\int_E gd\mu$. Notum þetta

$$\int_{E} (cf)d\mu = \int_{E} (cf)^{+} d\mu - \int_{E} (cf)^{-} d\mu$$

$$= \int_{E} cf^{+} d\mu - \int_{E} cf^{-} d\mu$$

$$= c \int_{E} f^{+} d\mu - c \int_{E} f^{-} d\mu$$

$$= c (\int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu)$$

$$= c \int_{E} f d\mu$$

Gerum nú ráð fyrir c < 0. Pá er $(cf)^+ = |c|f^-$ og $(cf)^- = |c|f^+$. Athugum að |c| = -c.

$$\int_{E} (cf)d\mu = \int_{E} (cf)^{+}d\mu - \int_{E} (cf)^{-}d\mu$$

$$= \int_{E} |c|f^{-}d\mu - \int_{E} |c|f^{+}d\mu$$

$$= c \int_{E} f^{-}d\mu - c \int_{E} f^{+}d\mu$$

$$= c \int_{E} f^{+}d\mu - c \int_{E} f^{-}d\mu$$

$$= c (\int_{E} f^{+}d\mu - \int_{E} f^{-}d\mu)$$

$$= c \int_{E} fd\mu$$

15.4. SETNING 67

2. Gefum okkur $f,g \in \mathcal{L}^1(e,\mu)$. Athugum að $|f|,|g| \in \mathcal{L}^1(E,\mu)$. Þar sem f+g er mælanlegt, |f|+|g| er heildanlegt og $|f+g| \leq |f|+|g|$ heildanlegt og því er f+g heildanlegt. **Ath.** Þarf ekki að gilda að $(f+g)^+ = f^+ + g^+$. Hinsvegar er $f+g=(f^++g^+)-(f^-+g^-)=0$

$$\begin{split} \int_{E} (f+g) d\mu &= \int_{E} (f^{+} + g^{+}) d\mu - \int_{E} (f^{-} + g^{-}) d\mu \\ &= \int_{E} f^{+} d\mu + \int_{E} g^{+} d\mu - \int_{E} f^{-} d\mu - \int_{E} g^{-} d\mu, \text{ (\"oll } \geq 0) \\ &= \int_{E} f d\mu + \int_{E} g d\mu \end{split}$$

15.4 Setning

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $E \in F$. Ef $f, g \in \mathcal{L}^1(E, \mu)$ og $f \leq g$, þá gildir

$$\int_E f \, \mathrm{d}\mu \le \int_E g \, \mathrm{d}\mu$$

Sönnun. Höfum séð að ef $0 \le f \le g$ og $f,g \in \mathcal{L}^1(E,\mu)$ þá er $\int_E f d\mu \le \int_E g d\mu$. Höfum núna bara forsendu $f \le g$ og $f,g \in \mathcal{L}^1(E,\mu)$. Ef $f \le g$ þá $f^+ \le g^+$ og $g^- \le f^-$, $\int f^+ d\mu \le \int g^+ d\mu$, $\int g^- d\mu \le \int f^- d\mu$.

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu - \int_{E} f^{-} d\mu \le \int_{E} g^{+} d\mu - \int_{E} g^{-} d\mu = \int_{E} g d\mu$$

15.5 Setningin um yfirgnæfða samleitni

Látum $(f_n)_{n\geq 1}$ vera runu af mælanlegum föllum á málrúmi $(\Omega, \mathcal{F}, \mu)$ og gerum ráð fyrir að hún stefni n.a. á mælanlegt fall f. Ef til er fall g úr $\mathcal{L}^1(\Omega, \mu)$, sem fullnægir skilyrðinu $|f_n| \leq g$ fyrir öll n, þá er $f \in \mathcal{L}^1(\Omega, \mu)$ og

$$\int_{\Omega} f d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu.$$

Sönnun. $\lim_{n\to\infty} f_n(x) = f(x)$ næstum alls staðar. Látum E vera mælanlegt mengi með mál 0 þ.a.

$$\lim_{n \to \infty} f_n(x) = f(x), \quad \forall x \in \Omega \backslash E$$

Með því að setja $f_n = f_n \pi_{\Omega \setminus E}$ og $f = f \pi_{\Omega \setminus E}$ getum við gert ráð fyrir að $\lim_{n \to \infty} f_n(x) = f(x)$. Heildin breytast ekki heldur. Athugum nú að $|f_n| \le g$ svo $f + g \ge 0$.

$$\begin{split} \int_{\Omega} g d\mu + \int_{\Omega} f d\mu &= \int_{\Omega} (g+f) d\mu \\ &= \int_{\Omega} (g+\liminf f_n) d\mu \\ &\leq \liminf \int_{\Omega} (g+f_n) d\mu \\ &= \liminf (\int_{\Omega} g d\mu + \int_{\Omega} f d\mu) \\ &= \int_{\Omega} g d\mu + \liminf \int_{\Omega} f_n d\mu \end{split}$$

Sjáum að

$$\int_{\Omega} f d\mu \le \liminf \int_{\Omega} f_n d\mu$$

Athugum að $g - f_n \ge 0$

$$\begin{split} \int_{\Omega} g d\mu - \int_{\Omega} f d\mu &= \int_{\Omega} (g - f) d\mu \\ &= \int_{\Omega} \liminf (g - f_n) d\mu \\ &\leq \liminf (\int_{\Omega} (g - f_n) d\mu) \\ &= \int_{\Omega} g d\mu + \liminf (-\int_{\Omega} f_n d\mu) \\ &= \int_{\Omega} g d\mu - \limsup \int_{\Omega} f_n d\mu \end{split}$$

Sjáum að

15.6. SETNING 69

$$\limsup \int_{\Omega} f_n d\mu \le \int_{\Omega} f d\mu$$

$$\int_{\Omega} f d\mu \le \liminf \int_{\Omega} f_n d\mu$$

$$\le \limsup \int_{\Omega} f_n d\mu$$

$$\le \int_{\Omega} f d\mu$$

Sv0

$$\lim_{n \to \infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu$$

15.6 Setning

Látum f vera Lebesgue-heildanlegt fall á \mathbb{R}^d . Pá gildir, fyrir sérhvert n úr \mathbb{N}^* , að föllin $g_n := f \cdot \mathbf{1}_{\overline{B}_{(0,n)}}$ og $h_n := \min\{f, n\}$ eru heildanleg og

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} |f - g_n| dm = \lim_{n \to \infty} \int_{\mathbb{R}^d} |f - h_n| dm = 0.$$

Sönnun. Setjum

$$g(x) = \sum_{k=1}^{\infty} |f_k(x)| = \lim_{n \to \infty} \sum_{k=1}^{n} |f_k(x)|$$

þá er g mælanlegt, $g(x) \in [0, \infty]$ og $0 \le g_1 \le g_2 \le \dots$ og $g_n \to g$. Setningin um einhalla samleitni segir

$$\int_{\Omega} g d\mu = \lim_{n \to \infty} \int_{\Omega} g_n d\mu$$

$$= \lim_{n \to \infty} \int_{\Omega} \sum_{k=1}^{n} |f_n| d\mu$$

$$= \lim_{k=1} \sum_{k=1}^{n} \int_{\Omega} |f_k| d\mu$$

$$= \sum_{k=1}^{\infty} \int_{\Omega} |f_k| d\mu$$

því er $g\in\mathcal{L}^1(\Omega,\mu)$ og $E=g^{-1}(\infty)$ hefur mál 0. Svo

$$\sum_{k=1}^{\infty} |f_k(x)| < \infty, \quad \forall x \in \Omega \backslash E$$

Svo

$$\sum_{k=1}^{\infty} f_n(x) \text{ samleitin, } \forall x \in \Omega \backslash Ef(x) = \begin{cases} \sum_{k=1}^{\infty} f_n(x), x \in \Omega \backslash E, \\ 0, x \in E \end{cases}$$

Svo

$$|\sum_{k=1}^{\infty} f_n(x)| \le g(x), \quad \forall x \in \Omega \lim_{n \to \infty} \sum_{k=1}^{\infty} f_n(x) = f(x), \text{ fyrir næstum \"oll } x$$

Svo $f \in \mathcal{L}^1(\Omega, \mu)$ og

$$\int_{\Omega} f d\mu = \int_{\Omega} (\lim h_n) d\mu = \lim_{n \to \infty} \int_{\Omega} h_n d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu = \lim_{n \to \infty} \int_{\Omega} f_n d\mu = \sum_{n \to \infty} \int_{\Omega} f_n d\mu$$

15.7 Setning [Beppo Levi]

Látum $(f_k)_{k\geq 1}$ vera runu af mælanlegum föllum á málrúmi (Ω,\mathcal{F},μ) og gerum ráð fyrir að

$$\sum_{k=1}^{\infty} \int_{\Omega} |f_k| d\mu < \infty.$$

Þá er röðin $\sum_{k=1}^{\infty} f_k$ samleitin næstum alls staðar að heildanlegu falli f á Ω og ennfremur gildir

$$\int_{\Omega} f d\mu = \sum_{k=1}^{\infty} \int_{\Omega} f_k d\mu$$

Vikublað 7

Dæmi 1

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $f, g: \Omega \to \overline{\mathbb{R}}$ vera mælanleg föll.

(a) Ef f og g taka gildi sín í $(-\infty, \infty]$, þá gildir

$$\operatorname{ess\,sup}(f+g) \le \operatorname{ess\,sup} f + \operatorname{ess\,sup} g.$$

(b) Ef f og g taka gildi sín í $[-\infty,\infty)$, þá gildir

ess inf
$$f + ess inf g \le ess inf (f + g)$$

Ritháttur. Látum Ω vera mengi og \mathcal{F} vera safn hlutmengja í Ω . Pá la 'tum við \mathcal{F}^{σ} tákna σ -algebruna sem \mathcal{F} framleiðir.

Ef Ω' er annað mengi, $f:\Omega\to\Omega'$ er vörpun og $\mathcal G$ er safn hlutmengja í Ω' , þá setjum við

$$f^{-1}(\mathcal{G}) := \{ f^{-1}(E) | E \in \mathcal{G} \}.$$

Dæmi 2

Látum $f:\Omega_1\to\Omega_2$ vera vörpun milli tveggja mengja. Sannið eftirfarandi fullyrðingar:

- (a) Ef $\mathcal G$ er σ -algebra á Ω_2 , þá er $f^{-1}(\mathcal G)$ σ -algebra á Ω_1 .
 - Par sem að $f^{-1}(\emptyset) = \emptyset$ er $\emptyset \in f^{-1}(\mathcal{G})$.
 - Ef $E \in f^{-1}(\mathcal{G})$ þá er til $U \in \mathcal{G}$ þ.a. $f^{-1}(U) = E$. Þar sem \mathcal{G} er σ -algebra er þá $U^c \in \mathcal{G}$, svo við fáum $f^{-1}(U^c) = E^c$ svo $E^c \in f^{-1}(\mathcal{G})$.
 - Tökum þá loks runu $(E_n)_{n\geq 1}$ af mengjum í $f^{-1}(\mathcal{G})$. Þá er til samsvarandi runa $(U_n)_{n\geq 1}$ í \mathcal{G} þ.a. $f^{-1}(U_n)=E_n$ fyrir öll n. Tökum eftir því að \mathcal{G} er σ -algebra og því er $\bigcup_{n=1}^{\infty}U_n\in\mathcal{G}$. Þar sem frummynd falls dreifist yfir sammengi fáum við að $f^{-1}(\bigcup_{n=1}^{\infty}U_n)=\bigcup_{n=1}^{\infty}E_n$ svo $\bigcup_{n=1}^{\infty}E_n\in f^{-1}(\mathcal{G})$.

Ofantalin atriði sýna að $f^{-1}(\mathcal{G})$ sé σ -algebra.

- (b) Ef \mathcal{F} er σ -algebra á Ω_1 þá er $\mathcal{G} := \{E \subseteq \Omega_2 | f^{-1}(E) \in \mathcal{F}\}\ \sigma$ -algebra á Ω_2
 - Par sem frummynd \emptyset er ávallt \emptyset og $\emptyset \in \mathcal{F}$ fæst að $\emptyset \in \mathcal{G}$.
 - Ef $E \in \mathcal{G}$ þá er tilsamsvarandi $U \in \mathcal{F}$ þ.a. $f^{-1}(U) = E$. Par sem \mathcal{F} er σ -algebra er $U^c \in \mathcal{F}$ og því $f^{-1}(U^c) = E^c \in \mathcal{G}$.
 - Tökum runu $(E_n)_{n\geq 1}$ af mengjum í \mathcal{G} . Til er samsvarandi runa $(U_n)_{n\geq 1}$ af mengjum í \mathcal{F} þ.a. $f^{-1}(U_n) = E_n$ fyrir öll n. Þar sem \mathcal{F} sé σ -algebra gildir $\bigcup_{n=1}^{\infty} U_n \in \mathcal{F}$ og þar sem frummynd dreifist yfir sammengi sjáum við að $f^{-1}(\bigcup_{n=1}^{\infty} U_n) = \bigcup_{n=1}^{\infty} E_n$ svo $\bigcup_{n=1}^{\infty} \in \mathcal{G}$.

Ofantalin atriði séna að \mathcal{G} sé σ -algebra.

(c) Ef $\mathcal G$ er safn af hlutmengjum í Ω_2 , þá er $(f^{-1}(\mathcal G))^\sigma=f^{-1}(\mathcal G^\sigma)$

Samkvæmt (a) er $f^{-1}(\mathcal{G}^{\sigma})$ σ -algebra sem inniheldur nauðsynlega $f^{-1}(\mathcal{G})$. því fæst að $(f^{-1}(\mathcal{G}))^{\sigma} \subseteq f^{-1}(\mathcal{G}^{\sigma})$, svo okkur dugir að leiða út hlutmengjamerkið í öfuga átt. Nú gefur (b) að

$$\mathcal{H} := \left\{ E \subseteq \Omega_2 | f^{-1}(E) \in (f^{-1}(\mathcal{G}))^{\sigma} \right\}$$

sé σ -algebra í Ω_2 . Ef við tökum $U \in \mathcal{G}$ þá er $f^{-1}(U) \in f^{-1}(\mathcal{G})$ og þá sér í lagi í $(f^{-1}(\mathcal{G}))^{\sigma}$. Því fæst að $\mathcal{G} \subseteq \mathcal{H}$, en þar sem \mathcal{H} er σ -algebra er $\mathcal{G}^{\sigma} \subseteq \mathcal{H}$. Þar sem hlutmengjavensl varðveitast yfir frummyndir er þá $f^{-1}(\mathcal{G}^{\sigma}) \subseteq f^{-1}(\mathcal{H}) \subseteq (f^{-1}(\mathcal{G}))^{\sigma}$.

Skilgreining

Látum (Ω_1, \mathcal{F}) og (Ω_2, \mathcal{G}) vera tvö mælanleg rúm. Við segjum að vörpun $\varphi : \Omega_1 \to \Omega_2$ sé **mælanleg** ef $\varphi^{-1}(E) \in \mathcal{F}$ fyrir öll $E \in \mathcal{G}$

Dæmi 3

Látum (Ω, \mathcal{F}) vera mælanlegt rúm og f vera tvinngilt fall á Ω . Sýnið að fallið f sé mælanlegt þá og því aðeins að f sé mælanleg vörpun frá (Ω, \mathcal{F}) til $(\mathbb{C}, \mathcal{B})$, þar sem \mathcal{B} táknar samkvæmt venju Borel-algebruna á \mathbb{C}

Dæmi 4

Sýnið að samskeyting endanlega margra mælanlegra varpana sé mælanleg vörpun.

Dæmi 5

Látum (Ω_1, \mathcal{F}) og (Ω_2, \mathcal{G}) vera mælanleg rúm og $\varphi : \Omega_1 \to \Omega_2$ vera mælanlega vörpun. Sýnið að fyrir sérhvert mál $\mu : \mathcal{F} \to [0, \infty]$ gildi að fallið

$$\varphi_*\mu: \mathcal{G} \to [0, \infty], \quad E \to \mu(\varphi^{-1}(E))$$

sé mál. Við segjum að það sé mynd vörpunarinnar φ af málinu μ .

- $\varphi_*\mu(\emptyset) = \mu(\varphi^{-1}(\emptyset)) = \mu(\emptyset) = 0.$
- Tökum runu $(E_n)_{n\geq 1}$ af innbyrðis sundurlægum mengjum í \mathcal{G} . Par sem frummynd dreifist yfir sammengi fæst

$$\mu\left(\varphi^{-1}\left(\bigcup_{n=1}^{\infty}E_{n}\right)\right) = \mu\left(\bigcup_{n=1}^{\infty}\varphi^{-1}\left(E_{n}\right)\right) = \sum_{n=1}^{\infty}\mu(\varphi^{-1}(E_{n})) = \sum_{n=1}^{\infty}\varphi_{*}\mu(E_{n}).$$

Ofangreind atriði sýna að $\varphi_*\mu$ er mál.

Dæmi 6

Látum $(s_n)_{n\geq 1}$ og f vera eins og í setningu 12.2.4 og sönnun hennar og gerum ennfremur ráð fyrir að f sé takmarkað fall. Sýnið að runan $(s_n)_{n\geq 1}$ stefni á f í jöfnum mæli á Ω .

Lausn. Þar sem f er takmarkað er til M þ.a. ||f|| < M. Gefum okkur $\varepsilon > 0$. Við viljum sýna að til sé $N \in \mathbb{N}$ þ.a. $||f - s_n||_{\Omega} < \varepsilon$ fyrir öll $n \ge N$. Við erum búin að sanna að $s_n \le f$ fyrir öll n svo við þurfum í raun bara að sýna að $f - s_N < \varepsilon$. Fáum nú:

$$f - s_{N} = f - n \mathbf{1}_{f^{-1}([n,\infty])} - \sum_{i=1}^{n2^{n}} \frac{i-1}{2^{n}} \mathbf{1}_{f^{-1}([\frac{i-1}{2^{n}}, \frac{i}{2^{n}}])}$$

$$< (||f|| - n) \mathbf{1}_{f^{-1}([n,\infty])} + \sum_{i=1}^{n2^{n}} (\frac{i}{2^{n}} - \frac{i-1}{2^{n}}) \mathbf{1}_{f^{-1}([\frac{i-1}{2^{n}}, \frac{i}{2^{n}}])}$$

$$< (M-n) \mathbf{1}_{f^{-1}([n,\infty])} - \sum_{i=1}^{n2^{n}} \frac{1}{2^{n}} \mathbf{1}_{f^{-1}([\frac{i-1}{2^{n}}, \frac{i}{2^{n}}])}$$

$$= (M-n) \mathbf{1}_{f^{-1}([n,\infty])} - \frac{1}{2^{n}} \mathbf{1}_{f^{-1}([0,n])}$$

þar sem síðasta jafnaðarmerkið er vegna þess að summan er yfir kenniföll sundurlægra mengja. Þegar n>M fæst að $\mathbf{1}_{f^{-1}([n,\infty])}=0$ og ljóst er að $\frac{1}{2^n}\mathbf{1}_{f^{-1}([0,n])}\leq 1$ svo við fáum að fyrir nógu stór N sé $f-s_N<2^{-N}$ en þá er ljóst að $f-s_N<\varepsilon$ fyri rnógu stór N.

Dæmi 7

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $t = \sum_{k=1}^m b_k \mathbf{1}_{E_k}$ vera (ekki endilega staðlaða framsetningu) á einföldu falli á Ω , þar sem $E_k \in \mathcal{F}$ fyrir öll k. Sýnið að

$$\int_{\Omega} t d\mu = \sum_{k=1}^{m} b_k \mu(E_k)$$

Lausn.		

Dæmi 8

Látum s og t vera einföld föll á málrúmi. Sýnið að föllin $\min\{s,t\}$ og $\max\{s,t\}$ séu líka einföld föll.

Lausn.

Dæmi 9

Látum $f: \mathbb{N} \to [0, \infty]$. Sýnið að fallið f sé mælanlegt á $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ þar sem μ er talningarmálið, og um öll hlutmengi E í \mathbb{N} gildi

$$\int_{E} f d\mu = \sum_{n \in E} f(n).$$

Lausn.

Dæmi 10

Bíl er ekið frá stað A til staðar B á 50 km meðalhraða, en fjarlægðin frá A til B er 25 km. Hann leggur af stað milli kl12 og 13 (sama dag) og nemur staðar þegar hann kemur til B. Skilgreinum hendingu (slembibreytu, slembistærð) X á líkindarúminu ([0,1], P), þar sem P táknar einskorðun Lebesgue-málsins við [0,1], með því að setja

X(t) := Fjarlægð bílsins frá B kl 13 ef hann leggur af stað kl 12 + t.

Finnið líkindamálið P_X , sem hendingin X ákvarðar.

Lausn.

Sjáum að X varpar $[0, \frac{1}{2}]$ í 0. Hins vegar fyir $[\frac{1}{2}, 1]$ varpar X gildinu t í 25-50t. Pví er $X(t) = \max(0, 25-50t)$. Ljóst er því að frummynd 0 hafi mál $\frac{1}{2}$, frummynd alls utan [0, 1] sé tóm, og allt í]0, 1] þjappast um helming við að frummynd sé tekin. Því fæst

$$P_X(B) = \frac{1}{2}m(B\cap]0,1]) + \begin{cases} \frac{1}{2} \text{ ef } 0 \in B\\ 0 \text{ annars} \end{cases}$$

Chapter 16

Lebesgue-heildi og Riemann-heildi

16.1 Dæmi (Varúð!)

$$f: [0,1] \to \mathbb{R}, \begin{cases} f(x) = 1, x \in \mathbb{R} \setminus \mathbb{Q}, \\ 0, x \in \mathbb{Q} \end{cases}$$

 $\mathbb{Q} \cap [0,1]$ er núllmengi og einskorðun f við $[0,1] \setminus [0,1] \cap \mathbb{Q}$ er fastafallið 1. Hins vegar er fallið ekki Riemannheildanlegt enda er það ósamfellt í öllum pkt. úr [0,1].

16.2 Setning

Látum B vera lokaðan (takmarkaðan) kassa í \mathbb{R}^d . Takmarkað fall $f: B \to \mathbb{R}$ er Riemann-heildanlegt þá og því aðeins að það sé samfelst næstum alls staðar (þ.e.a.s. mengi þeirra punkta þar sem f er ósamfellt hefur mál núll). Sé svo þá er f Lebesgue-mælanlegt og Riemann-heildi þess er jafnt Lebesgue-heildinu.

Sönnun. Látum $f: B \to \mathbb{R}$ vera takmarkað fall og E vera mengi allra ósamfellupunkta þess. Fyrir sérhvert m látum við $B = C_1^m \cup \cdots \cup C_{l_m}^m$ vera skiptingu á B þ.a. skipting nr. m+1 sé fínni en skipting nr. m og þ.a. $\operatorname{diam}(C_j^m) \le \frac{1}{m}$. Setjum $M_j^m := \sup_{x \in C_j^m} f(x)$ og $m_j^m := \inf_{x \in C_j^m}$. Setjum svo $t_n := \sum_{j=1}^{l_m} M_j^m \mathbf{1}_{C_j^m}$ og $s_m := \sum_{j=1}^{l_m} m_j^m \mathbf{1}_{C_j^m}$. Þá fæst $s_1 \le s_2 \le \cdots \le f \le \cdots \le t_2 \le t_1$. Ljóst er að sérhvert tröppufallá B er Lebesgue-heildanlegt og Riemann-heildi þess er jafnt Lebesgue-heildinu.

Nú er f takmarkað svo að föllin $s:=\lim_{m\to\infty}s_m$ og $t:=\lim_{m\to\infty}t_m$ eru í $\mathcal{L}^1(B,m)$ og $\int_B sdm=\lim_{m\to\infty}\int_B s_m dm$, $\int_B tdm=\lim_{m\to\infty}\int_B t_m dm$ skv setn um yfirgnæfða samleitni.

Ennfremur gildir að $s \le f \le t$ og t(x) = s(x) ef o(f, x) = 0.

- G.r.f. að m(E) = 0. Pá er s(x) = f(x) = t(x) f.öll $x \in B \setminus E$ svo að f er Lebesgue-mælanlegt skv. setn 11.1.2 vegna þess að $(\mathbb{R}^d, \mathcal{M}, m)$ er fullkomið málrúm. Þar eð f er takmarrkað þá e rþað Lebesgue-heildanlegt og $\int_B sdm = \int_B fdm = \int_B tdm$, en það hefur í för með sér að f er Riemann-heildanlegt og jafnframt að $\int_B fdm$ er Riemann-heildi f yfir B.
- Öfugt. G.r.f. að f sé Riemann-heildanlegt og sýnum að m(E)=0. Við getum valið skiptingarnar þannig að $\int_B sdm = \int_B tdm$ (gildir reyndar sjálfkrafa). Skv. vikublaði 8 gildir að $E=\{x\in B|o(f,x)>0\}$ og f. sérhv. $\varepsilon>0$ og $E_\varepsilon=\{x\in B|o(f,x)\geq\varepsilon\}$ er lokað f.öll $\varepsilon>0$. Þar eð $E=E_1\cup E_{\frac{1}{2}}\cup\ldots$ þá nægir að sýna að $m(E_{\frac{1}{2}})=0$ f.öll $m\in\mathbb{N}^*$. Látum n vera gefið og tökum $\varepsilon>0$. Þá er til k svo

stórt að $\int_B t_k dm - \int_B s_k dm < \frac{\varepsilon}{m}$. Tökum eftir að $B \setminus \bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)$ er núllmengi svo að $m(E_{\frac{1}{m}}) = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k))$. En fyrir x úr $\operatorname{int}(C_j^m)$ gildir að $t_k(x) - s_k(x) \geq o(f,x)$ svo við fáum:

$$\frac{1}{m}m(E_{\frac{1}{m}}) = \int_{E_{\frac{1}{m}}} \frac{1}{m}dm = \int_{E_{\frac{1}{m}} = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)} \frac{1}{m}dm \leq \int_{E_{\frac{1}{m}} = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)} (t_k - s_k)dm \leq \int_B t_k dm - \int_B s_k dm < \frac{\varepsilon}{m} dt_k dm = \int_{E_{\frac{1}{m}} = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)} (t_k - s_k)) dm \leq \int_B t_k dm - \int_B s_k dm < \frac{\varepsilon}{m} dt_k dm = \int_{E_{\frac{1}{m}} = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)} (t_k - s_k)) dm \leq \int_B t_k dm - \int_B s_k dm < \frac{\varepsilon}{m} dt_k dm = \int_{E_{\frac{1}{m}} = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)} (t_k - s_k)) dm \leq \int_B t_k dm - \int_B s_k dm < \frac{\varepsilon}{m} dt_k dm = \int_{E_{\frac{1}{m}} = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)} (t_k - s_k)) dm \leq \int_B t_k dm - \int_B s_k dm < \frac{\varepsilon}{m} dt_k dm = \int_{E_{\frac{1}{m}} = m(E_{\frac{1}{m}} \cap (\bigcup_{j=1}^{l_k} \operatorname{int}(C_j^k)} (t_k - s_k)) dm \leq \int_B t_k dm - \int_B s_k dm = \int_B t_k dm - \int_B s_k dm - \int_B$$

Þar sem $\varepsilon>0$ má vera hversu lítið sem vera skal þá er $m(E_{\frac{1}{m}})=0.$

16.3 Setning

Óeiginlegt Riemann-heildi falls, sem tekur gildi sín í $[0,\infty)$, er samleitið ef og aðeins ef fallið er Lebesgue-heildanlegt og í því tilfelli er Lebesgue-heildið markgildi óeiginlega heildisins.

Sönnun. Látum $A \subseteq \mathbb{R}^d$ og $f: A \to [0, \infty[$. Óeiginlegt Riemann-heildi f er samleitið ef til er vaxandi runa af Jordan-mælanlegum hlutmengjum (yfirleitt af sérstakri gerð) í A sem uppfylla að $\bigcup A_m = A$ og $f|_{A_m}$ er Riemann-heildanlegt og lim $\int_{A_m} f < \infty$. Við fáum því

$$\lim_{n \to \infty} \int_{A_m} f = \lim_{n \to \infty} \int_{A_m} f dm$$

$$= \lim_{n \to \infty} \int_{\mathbb{R}^d} f \cdot \mathbf{1}_{A_m} dm$$

$$= \int_{\mathbb{R}^d} f \cdot \mathbf{1}_A dm$$

$$= \int_A f dm$$

Sér í lagi fáum við að samleitni Riemann-heildisins er óháð valinu á rununni $(A_m)_{m\geq 1}$

16.4 Setning

Látum $f:[a,b]\to\mathbb{R}$ vera samfellt fall. Þá er f Lebesgue-heildanlegt á [a,b] og fallið

$$F: [a,b] \to \mathbb{R}, \quad x \to \int_{[a,x]} f dm$$

er diffranlegt og $F' = f$.		

Sönnun. ______

Chapter 17

Nálganir Lebesgue-heildanlegra falla á \mathbb{R}^d

17.1 Setning

Látum f vera Lebesgue-heildanlegt fall á \mathbb{R}^d og $\varepsilon > 0$.

(i) Til er kassi A í \mathbb{R}^d og tröppufall $t:A\to\mathbb{R},$ sem uppfyllir

$$\int_{\mathbb{R}^d} |f - t| dm < \varepsilon$$

(Hér hefur fallið t verið framlengt með núlli yfir á allt \mathbb{R}^d).

(ii) Til er samfellt fall $g: \mathbb{R}^d \to \mathbb{R}$ og d-kassi C, sem hafa eftirfarandi eiginleika

$$\int_{\mathbb{R}^d} |f - g| dm < \varepsilon \quad \text{og} \quad g(x) = 0, \forall x \in \mathbb{R}^d \backslash C.$$

Sönnun.

17.2 Setning

Látum f vera í $\mathcal{L}^1(\mathbb{R}, m)$ og setjum, fyrir sérhvert $k \in \mathbb{N}$,

$$s_k := \int_{-\infty}^{\infty} f(x) sin(kx) dx$$
 og $c_k := \int_{-\infty}^{\infty} f(x) cos(kx) dx$.

Þá gildir $\lim_{k\to\infty} s_k = \lim_{k\to\infty} c_k = 0.$

Sönnun.

Chapter 18

Heildun með stikabreytu

Í þessari grein táknar $(\Omega, \mathcal{F}, \mu)$ málrúm og fall $f: \Omega \times [a, b] \to \mathbb{R}$, sem hefur þann eiginleika að

$$f(-,t): \Omega \to \mathbb{R}, \quad x \to f(x,t)$$

er mælanlegt fyrir sérhvert t.

18.1 Setning

Gerum ráð fyrir að f fullnægi eftirfarandi skilyrðum

• Til er $t_0 \in [a, b]$, sem hefur þann eiginleika að

$$f(x,t_0) = \lim_{t \to t_0} f(x,t)$$
 fyrir öll $x \in \Omega$.

• Til er $g \in \mathcal{L}^1(\Omega, \mu)$ sem uppfyllir

$$|f(x,t)| \le g(x)$$
 fyrir öll $(x,t) \in \Omega \times [a,b]$.

Pá gildir $\lim_{t\to t_0}\int_{\Omega}f(x,t)d\mu(x)=\int_{\Omega}f(x,t_0)d\mu(x)$

Sönnun.

18.2 Setning

Gerum ráð fyrir að f fullnægi eftirfarandi skilyrðum:

- Fyrir sérhvert x úr Ω er fallið $t \to f(x,t)$ samfellt á [a,b].
- Til er $g \in \mathcal{L}^1(\Omega, \mu)$ sem uppfyllir

$$|f(x,t)| \le g(x)$$
 fyrir öll $(x,t) \in \Omega \times [a,b]$

Þá gildir að fallið

$$F: [a,b] \to \mathbb{R}, \quad t \to \int_{\Omega} f(x,t) d\mu(x)$$

er samfellt.

Sönnun.

18.3 Setning

Gerum ráð fyrir að f fullnægi eftirfarandi skilyrðum:

- Til er $t_0 \in [a,b]$, sem hefur þann eiginleika að $f(-,t_0) \in \mathcal{L}^1(\Omega,\mu)$.
- Hlutafleiðan $\frac{\partial f}{\partial t}$ er til í sérhverjum punkti úr $\Omega \times [a,b].$
- Til er $g \in \mathcal{L}^1(\Omega, \mu)$ sem uppfyllir

$$\left|\frac{\partial f}{\partial t}(x,t)\right| \leq g(x) \quad \text{fyrir \"oll } (x,t) \in \Omega \times [a,b].$$

Pá gildir að fallið F, sem skilgreint er í setningu 16.2.2, er diffranlegt og

$$\frac{dF}{dt}(t) = \int_{\Omega} \frac{\partial f}{\partial t}(x, t) d\mu(x).$$

Sönnun.

18.4 Setning

Gerum ráð fyrir að f fullnægi eftirfarandi skilyrðum:

- Fyrir sérhvert x úr Ω er fallið $t \to f(x,t)$ samfellt á [a,b].
- Til er $g \in \mathcal{L}^2(\Omega, \mu)$ sem uppfyllir

$$|f(x,t)| \le g(x)$$
 fyrir öll $(x,t) \in \Omega \times [a,b]$.

Þá gildir

$$\int_a^b \left[\int_\Omega f(x,t) d\mu(x) \right] dt = \int_\Omega \left[\int_a^b f(x,t) dt \right] d\mu(x).$$

18.4. SETNING	81
Sönnun.	

Vikublað 8

Chapter 19

Skrímslafræði

19.1 Valfrumsendan

Látum $(A_i)_{i\in I}$ vera fjölskyldu af hlutmengjum í mengi X, þ.e.a.s. vörpun $\alpha:I\to\mathbb{P}(X)$, og gerum ráð fyrir að mengin séu ekki tóm og innbyrðis sundurlæg. Þá er til vörpun $f:I\to X$, sem hefur þann eiginleika að $f(i)\in A_i$ fyrir sérhvert i úr I.

19.2 Setning			
19.2 Setting			
Ekki eru öll hlutmengi í $\mathbb R$ Lebesgue-mælanleg.			
Sönnun.			
19.3 Setning			
Ekki eru öll Lebesgue-mælanleg hlutmengi í $\mathbb R$ Borel-mælanleg.			
Sönnun.			
19.4 Setning			
Til er Riemann-heildanlegt fall á lokuðu bili í $\mathbb R$ sem er ekki Borel-mælanlegt.			
Sönnun.			

Chapter 20

L^p -rúm

Í þessari grein verður gert ráð fyrir að mælanlegu föllin sem um ræðir séu tvinngild nema annað sé tekið

Upprifjun

Látum V vera vigurrúm (yfir \mathbb{R} eða \mathbb{C}). Við segjum að raungilt fann N á V sé **norm** eða **staðall** á V, ef það uppfyllir eftirfarandi skilyrði:

- 1. $N(v) \ge 0$ fyrir öll v úr V
- 2. N(v) = 0 bá og því aðeins að v = 0
- 3. N(cv) = |c|N(v) fyrir öll v úr V og allar tölur c
- 4. $N(u+v) \leq N(u) + N(v)$ fyrir öll u og v úr V

Sé skilyrði 2. sleppt kallsat N hálfnorm eða hálfstaðall.

Setning

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm. Pá gerir venjuleg samlagning falla og margföldun þeirra með tölu mengið $\mathcal{L}^1(\Omega,\mu)$ að \mathbb{C} -vigurrúmi og fallið

$$N_{\mu}: \mathcal{L}^1(\Omega, \mu) \to \mathbb{R}, \quad f \to \int_{\Omega} |f| d\mu$$

er hálfnorm.

Sönnun.

- $\begin{array}{l} 1. \ |f| \geq 0 \ \text{svo} \ \int_{\Omega} |f| d\mu \geq 0 \\ 2. \ \int_{\Omega} |cf| d\mu = |c| \int_{\Omega} |f| d\mu \\ 3. \ |f+g| \leq |f| + |g| \ \text{svo} \ \int_{\Omega} |f+g| d\mu \leq \int_{\Omega} |f| d\mu + \int_{\Omega} |g| d\mu \end{array}$

Skilgreinum vensl á $\mathcal{L}^1(\Omega,\mu)$ með því að segja að f sé μ -jafngilt g, táknað $f \sim_{\mu} g$, ef f og g eru eins næstum alls staðar m.t.t. μ .

Æfing

Sýnið að \sim_{μ} séu jafngildisvensl á $\mathcal{L}^{1}(\Omega,\mu)$.

Lausn.

- 1. $f \sim_{\mu} f$ þar sem f = f alls staðar.
- 2. Ef $f\sim_{\mu}g$ þá er f=gnæstum alls staðar og sömuleiðis g=f svo $g\sim_{\mu}f$
- 3. Ef f=g á mengi $F_1\in\Omega$ þ.a. $\mu(\Omega\backslash F_1)=0$ og g=h á mengi $F_2\in\Omega$ þ.a. $\mu(\Omega\backslash F_2)=0$ er f=h á menginu $F_1\cap F_2$ og $\mu(\Omega\backslash (F_1\cap F_2))=0$.

Setjum $L^1(\Omega, \mu) := \mathcal{L}^1(\Omega, \mu) \setminus \sim_{\mu}$ og táknum jafngildisflokk falls f úr $\mathcal{L}^1(\Omega, \mu)$ með [f].

Setning

Aðgerðirnar c[f] := [cf] og [f] + [g] := [f + g] eru vel skilgreindar á $L^1(\Omega, \mu)$ og gera $L^1(\Omega, \mu)$ að vigurrúmi. Jafnframt er fallið

$$||\cdot||_1: L^1(\Omega,\mu) \to \mathbb{R}, \quad [f] \to ||[f]||_1:= \int_{\Omega} |f| d\mu$$

vel skilgreint norm.

Við munum iðulega leyfa okkur að skrifa $||f||_1$ í stað $||[f]||_1$.

Uppfrifjun

Látum a og b vera úr $[-\infty, \infty]$. Raungilt fall φ á opna bilinu (a, b) er sagt **kúpt** ef um öll $x, y \in (a, b)$ og öll $\lambda \in [0, 1]$ gildir

$$\varphi[(1-\lambda)x + \lambda y] \le (1-\lambda)\varphi(x) + \lambda\varphi(y).$$

Æfing

Látum $a, b \in [-\infty, \infty]$. Sannið eftirfarandi fullyrðingar.

1. Fall $\varphi:(a,b) \to \mathbb{R}$ er kúpt þá og því aðeins að um allar rauntölur s,t og u, sem uppfylla a < s < t < u < b, gildi

$$\frac{\varphi(t) - \varphi(s)}{t - s} \le \frac{\varphi(u) - \varphi(t)}{u - t}.$$

- 2. Diffranlegt fall á (a,b) er kúpt þá og því aðeins að afleiða þess sé vaxandi á (a,b).
- 3. Öll kúpt föll á (a, b) eru samfelld á (a, b).

Lausn.

Setning (Ójafna Jensens)

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm sem uppfyllir $\mu(\Omega) = 1$, þ.e. líkindarúm. Látum $a, b \in [-\infty, \infty]$ og $f : \Omega \to (a, b)$ vera heildanleft fall. Þá gildir um sérhvert kúpt fall φ á (a, b) að

$$\varphi\left(\int_{\Omega}fd\mu\right)\leq\int_{\Omega}(\varphi\circ f)d\mu.$$

Sönnun.

Setning (Ójöfnur Hölders og Minkowski)

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og p og q vera tölur úr $(1, \infty)$ sem uppfylla $\frac{1}{p} + \frac{1}{q} = 1$. Um öll mælanleg föll $f, g: \Omega \to [0, \infty]$ gilda þá jöfnurnar:

1.

$$\int_{\Omega} fg d\mu \le \left(\int_{\Omega} f^p d\mu\right)^{\frac{1}{p}} \left(\int_{\Omega} g^q d\mu\right)^{\frac{1}{q}}$$

og

2.

$$\left(\int_{\Omega} (f+g)^p d\mu\right)^{\frac{1}{p}} \leq \left(\int_{\Omega} f^p d\mu\right)^{\frac{1}{p}} + \left(\int_{\Omega} g^p d\mu\right)^{\frac{1}{p}}$$

Fyrri ójafnan er kennd við Hölder og sú síðari við Minkowski.

Sönnun. Sönnum fyrst hjálparsetningu: Ef x og y eru jákvæðar rauntölurog $\alpha, \beta \in (0, 1)$ þ.a. $\alpha + \beta = 1$ gildir

$$x^{\alpha}y^{\beta} \le \alpha x + \beta y$$

 $\mathbf{x}=0$ er augljóts. Látum $\mathbf{x}>0$ og skoðum $f(t)=(1-\beta)+\beta t-t^{\beta}$ fyrir $t\geq 0$. Við höfum $f'(t)=\beta-\beta t^{\beta-1}=\beta(1-t^{\beta-1})$ og þar sem $0<\beta<1$ er f'(t)<0á (0,1)og $f'(t)>0(1,\infty)$. Höfum því að f er minnkandi á [0,1] en vaxandi á $[1,\infty)$. f(1)=0 er því eina lágildi fá $[0,\infty)$, svo $f(t)\geq 0$ fyrir $t\geq 0$. Setjum nú $t=\frac{y}{x}$. Þá gildir $(1-\beta)+\beta\frac{y}{x}-(\frac{y}{x})^{\beta}\geq 0$, það er $(\frac{y}{x})^{\beta}\leq \alpha+\beta\frac{y}{x}$. Með því að skrifa $x=x^{\alpha+\beta}$ fáum við að $x^{\alpha+\beta}(\frac{y}{x})^{\beta}\leq \alpha x+\beta x\frac{y}{x}$, svo að $x^{\alpha}y^{\beta}\leq \alpha x+\beta y$.

1. Ójafna Hölders:

Skref 1. Gerum ráð fyrir að $||f||_p = ||g||_q = 1$. Þurfum að sýna að $||fg||_1 \le 1$. Notum hjálparsetninguna að ofan með $\alpha = \frac{1}{p}, \ \beta = \frac{1}{q}, \ x = |f|^p, \ y = |g|^q,$ og fáum

$$|fg| = x^{\frac{1}{p}}y^{\frac{1}{q}} \le \frac{1}{p}|f|^p + \frac{1}{q}|g|^q.$$

Með því að heilda fáum við

$$\int_{\Omega} |fg| d\mu \le \frac{1}{p} \int_{\Omega} |f|^p d\mu + \frac{1}{q} \int_{\Omega} |g|^q d\mu = \frac{1}{p} + \frac{1}{q} = 1.$$

Skref 2. Fyrir almenn $f \in L^p$ og $g \in L^q$ ritum við $||f||_p = a$ og $||g||_q = b$. Skilgreinum svo föllin $\tilde{f} = \frac{1}{a}f$ og $\tilde{g} = \frac{1}{b}g$. Þau uppfylla forsendur skrefs 1 að ofan svo $||\tilde{f}\tilde{g}||_1 \le ||\tilde{f}||_p ||\tilde{g}||_q$, sem leiðir að

$$\frac{1}{ab} \|fg|_1 \le \frac{1}{a} \|f\|_p \frac{1}{b} \|g\|_q$$

Margföldun með ab klárar svo sönnun.

2. Ójafna Minkowski

Gerum ráð fyrir að 1 . Höfum

$$|f+g|^p = |(f+g)(f+g)^{p-1}| \le |f||f+g|^{p-1} + |g||f+g|^{p-1}.$$

Með því að velja q þannig að $\frac{1}{p} + \frac{1}{q} = 1$, það er p + q = pq, fáum við

$$|f+g|^{(p-1)q} = |f+g|^p < \infty.$$

Því er $(f+g)^{p-1} \in L^q$ og

$$||(f+g)^{p-1}||_q = \left(\int_{\Omega} |f+g|^p d\mu\right)^{\frac{1}{q}}.$$

Beitum ójöfnu Hölders:

$$\begin{split} \int_{\Omega} |f+g|^p d\mu & \leq \int_{\Omega} |f| |f+g|^{p-1} d\mu + \int_{\Omega} |g| |f+g|^{p-1} d\mu \\ & \leq \left(\int_{\Omega} |f|^p d\mu \right)^{\frac{1}{p}} \left(\int_{\Omega} |f+g|^p d\mu \right)^{\frac{1}{q}} + \left(\int_{\Omega} |g|^p d\mu \right)^{\frac{1}{p}} \left(\int_{\Omega} |f+g|^p d\mu \right)^{\frac{1}{q}} \\ & = A \left(\left(\int_{\Omega} |f|^p d\mu \right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^p d\mu \right)^{\frac{1}{p}} \right), \end{split}$$

þar sem $A = \left(\int_{\Omega} |f+g|^p d\mu\right)^{\frac{1}{q}}$. Ef A=0 þá er $||f+g||_p=0$ og ekkert sem þarf að sanna. Gerum því ráð fyrir að A>0 og deilum með A:

$$||f+g||_p = \left(\int_{\Omega} |f+g|^p d\mu\right)^{1-\frac{1}{q}}$$

$$= \frac{1}{A} \left(\int_{\Omega} |f+g|^p d\mu\right)$$

$$\leq \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int_{\Omega} |g|^p d\mu\right)^{\frac{1}{p}}$$

$$= ||f||_p + ||g||_p.$$

Við skilgreinum jafngildisvenslin \sim_{μ} eins og áður: $f \sim_{\mu} g$ þá og því aðeins að f - g sé núll næstum alls staðar.

Fyrir sérhvert $p \in [1, \infty)$ látum við $\mathcal{L}^p(\Omega, \mu)$ tákna mengi allra (tvinngildra) mælanlegra falla á Ω , sem hafa þann eiginleika að f^p er í $\mathcal{L}^1(\Omega, \mu)$ og setjum

$$L^p(\Omega,\mu) := \mathcal{L}^p(\Omega,\mu)/\sim_{\mu}$$
.

Jafngildisflokkur falls f úr $L^p(\Omega, \mu)$ verður táknaður [f]

Upprifjun

Fyrir fall $h: \Omega \to [-\infty, \infty]$ segjum við að

ess sup $h := \inf\{c | h \le c \text{ næstum alls staðar}\}$

sé raunverulegt efra mark h.

Skilgreining

Við segjum að (tvinngilt) fall f á Ω sé **raunverulega takmarkað** ef ess sup $|f| < \infty$.

Látum $\mathcal{L}^{\infty}(\Omega,\mu)$ tákna mengi allra (tvinngildra) mælanlegra falla á Ω , sem eru raunverulega takmörkuð og setjum

$$L^{\infty}(\Omega,\mu) := \mathcal{L}^{\infty}(\Omega,\mu)/\sim_{\mu}$$
.

Jafngildisflokkur falls f úr $L^{\infty}(\Omega, \mu)$ verður táknaður [f].

Setning

Fyrir sérhvert $1 \leq p \leq \infty$ eru aðgerðirnar c[f] := [cf] og [f] + [g] := [f+g] vel skilgreindar á $L^p(\Omega, \mu)$ og gera $L^p(\Omega, \mu)$ að vigurrúmi. Ennfremur gildir að fallið

$$||\cdot||_p:L^p(\Omega,\mu)\to\mathbb{R},\quad [f]\to||[f]||_p:=\left(\int_\Omega|f|^pd\mu\right)^{\frac{1}{p}}$$

er vel skilgreint norm þegar $1 \le p < \infty$ og fallið

$$||\cdot||_{\infty}: L^{\infty}(\Omega,\mu) \to \mathbb{R}, \quad [f] \to ||[f]||_{\infty} := \operatorname{ess\,sup} |f|$$

er vel skilgreint norm.

Sönnun.

Setning

Gerum ráð fyrir að p og q séu úr $[1,\infty]$ og uppfylli $\frac{1}{p} + \frac{1}{q} = 0$. Pá gildir um öll f úr $L^p(\Omega,\mu)$ og öll g úr $L^q(\Omega,\mu)$ að $fg \in L^1(\Omega,\mu)$ og

$$||f||_1 \le ||f||_p ||g||_q$$
.

Sönnun.

Upprifjun

Ef $(V, ||\cdot||)$ er staðlað vigurrúm, þá er fallið

$$d: V \times V \to [0, \infty), \quad (x, y) \to ||x - y||$$

firð á V og við lítum ávallt á V sem firðrúm með tilliti til þessarar firðar.

Runa $(x_n)_{n\geq 1}$ í firðrúmi (X,d) er kölluð **Cauchy-runa** ef fyrir sérhvert $\varepsilon>0$ er til $N\in\mathbb{N}$ sem uppfyllir skilyrðið

$$d(x_n, x_m) < \varepsilon$$
 fyrir öll $m, n \ge N$.

Við segjum að firðrúmið (X, d) sé **fullkomið** ef sérhver Cauchy-runa í X er alsamleitin.

Staðlað vigurrúm kallast **Banach-rúm** ef það er fullkomið (sem firðrúm).

Æfingar

1. Cauchy-runa sem hef	fur samleitna hlutrunu er samleitin.
2. Hlutrúm í fullkomnu	firðrúmi er fullkomið þá og því aðeins að það sé lokað.
Lausn.	
~ . •	

Setning

Látum $1 \leq p \leq \infty$ og $(f_n)_{n \geq 1}$ vera runu í $\mathcal{L}^p(\Omega, \mu)$, sem hefur þann eiginleika að $([f_n])_{n \geq 1}$ er Cauchy-runa í $L^p(\Omega)$. Þá er til fall $f \in \mathcal{L}^p(\Omega)$ og hlutruna $(f_{n_k})_{k \geq 1}$ í $(f_n)_{n \geq 1}$, sem uppfylla skilyrðið

$$\lim_{k \to \infty} f_{n_k}(x) = f(x), \quad \text{fyrir næstum \"oll } x \in \Omega.$$

Setning

Sönnun.

Firðrúmið $L^p(\Omega,\mu)$ er fullkomið fyrir sérhvert p úr $[1,\infty].$ Sönnun.

Athugasemd

Setninguna má einnig orða svo að $(L^p(\Omega,\mu),||\cdot||_p)$ sé Banach-rúm.

Setning

Gerum ráð fyrir að $\mu(\Omega) < \infty$. Þá gildir $L^q(\Omega, \mu) \subseteq L^p(\Omega, \mu)$ þegar $1 \le p \le q \le \infty$.

Sönnun.

Við segjum að tvinngilt fall á Ω sé **einfalt** ef það er mælanlegt og tekur bara endanlega mörg gildi. Látum \mathcal{S} tákna vigurrúm allra einfaldra falla s á Ω , sem uppfylla skilyrðið

$$\mu(\{x \in \Omega | s(x) \neq 0\}) < \infty.$$

Það er hlutrúm í $L^p(\Omega,\mu)$ fyrir öll p .
Setning
Hlutrúmið $\mathcal S$ er þétt í $L^p(\Omega,\mu)$ þegar $1\leq p<\infty$
Sönnun.
Setning
Látum $1 \leq p < \infty$ og $f \in \mathcal{L}^p(\mathbb{R}^d, m)$. Fyrir sérhvert $\varepsilon > 0$ er þá til lokað og takmarkað hlutmengi K í \mathbb{R}^d og samfellt fall g , sem er núll fyrir utan K og uppfyllir $ f - g _p < \varepsilon$.
Sönnun.

Vikublað 9

Dæmi 1

Sýnið að föllin $f_n = \frac{1}{n} \mathbf{1}_{[0,n]}$ stefni í jöfnum mæli á fallið f = 0 á \mathbb{R} þegar $n \to \infty$ og

$$\int_{\mathbb{R}} f dm \neq \lim_{n \to \infty} \int_{\mathbb{R}} f_n dm.$$

Hvernig lítur þessi niðurstaða út í ljósi setningar um einhalla samleitni, setningar Fatous og setningar um yfirgnæfða samleitni?

Gerið samskonar úttekt á rununni $(g_n)_{n\geq 1}$ þar sem $g_n:=n\mathbf{1}_{\left[\frac{1}{n},\frac{2}{n}\right]}$.

Lausn

 $\mathbf{f_n}$. Þar sem $||f_n||_{\mathbb{R}} = n^{-1}$ liggur ljóst fyrir að f_n stefni í jöfnum mæli á 0 þegar $n \to \infty$. Þar sem f_n er einfallt fall fæst beint skv. skilgr. að $\int_{\mathbb{R}} f_n dm = \frac{1}{n}([0,n]) = 1$. Því er markgildi þessara heilda ljóslega 1. Hins vegar er heildi f ljóslega 0 á \mathbb{R} . Þar sem runan $(f_n)_{n\geq 1}$ er ekki vaxandi þá á reglan um einhalla samleitni ekki við. Setning Fatous gildir, enda er $0 \le 1$ eins og setningin spáir fyrir um. Til þess að beita setningunni um yfirgnæfða samleitni þyrfti að vera til h sem yfirgnæfir öll f. Það þyrfti þá að vera jafn a.m.k. n^{-1} á [n-1,n] fyrir öll n>0. En þetta h er ekki í $\mathcal{L}(\mathbb{R},m)$ því summan af n^{-1} frá n=1 upp í ∞ er ekki samleitin.

 $\mathbf{g_n}$. Þar sem sérhver punktur $x \in \mathbb{R}$ liggur alltaf að lokum (eða alltaf) utan $[n^{-1}, 2n^{-1}]$ stefnir g_n á núllfallið. Hins vegar stefnir g_n ekki á núllfallið í jöfnum mæli því $||g_n||_{\mathbb{R}} = n$. Þar sem g_n er einfalt fall fæst beint skv. skilgr. að $\int_{\mathbb{R}} g_n dm = nm([n^{-1}, 2n^{-1}]) = 1$. Því er markgildi þessara heilda ljóslega 1. Hins vegar er heildi g ljóslega 0 á \mathbb{R} . Þar sem runan $(g_n)_{n\geq 1}$ er ekki vaxandi þá á reglan um einhalla samleitni ekki við. Setning Fatous gildir, enda er $0 \leq 1$ eins og setningin spáir fyrir um. Til þess að beita setningunni um yfirgnæfða samleitni þyrfti að vera til h sem yfirgnæfir öll f. Það þyrfti þá að vera jafn a.m.k n á $[n^{-1}, 2n^{-1}]$ fyrir öll n > 0. En þetta h er ekki í $\mathcal{L}(\mathbb{R}, m)$ því summan af 1 frá n = 1 upp í ∞ er ekki samleitin.

Dæmi 2

Sýnið fram á að samfellt og takmarkað fall á Jordan-mælanlegu mengi í \mathbb{R}^d sé Riemann-heildanlegt.

 $VINSAMLEG\ \acute{A}BENDING$: Dæmið gengur út á að sanna setningu 4.3.4 í fyrirlestrunum svo þið megið ekki nota hana.

96

Lausn. C, Jordan-mælanlegt mengi

$$f: C \to \mathbb{R}, \quad \tilde{f}: \mathbb{R}^d \to \mathbb{R}, \text{ framlengt}$$

Tökum kassa R þ.a. $C \subseteq R$. \tilde{f} er heildanlegt á R þá og því aðeins að mengi þeirra punkta þar sem f er ósamfellt sé núllmengi (setning 14.2.1), en það mengi er innihaldið í ∂C , sem er núllmengi (dæmi 3.3).

Dæmi 3

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm. Við segjum að fall $f: \Omega \to \mathbb{C}$ sé **heildanlegt** ef raungildi föllin Ref og Imf eru bæði heildanleg og þá setjum við

$$\int_{\Omega} f d\mu := \int_{\Omega} \mathrm{Re} f d\mu + i \int_{\Omega} \mathrm{Im} f d\mu.$$

Sýnið að tvinngilt fall f á Ω sé heildanlegt þá og því aðeins að fallið |f| sé heildanlegt á Ω og sé svo þá gildi

$$\left| \int_{\Omega} f d\mu \right| \le \int_{\Omega} |f| d\mu.$$

Lausn.

Dæmi 4

Látum f vera stak í $\mathcal{L}^1(\mathbb{R},m)$ og skilgreinum fall $\hat{f}:\mathbb{R}\to\mathbb{C}$ með því að setja

$$\hat{f}(u) := \int_{\mathbb{R}} e^{iux} f(x) dm$$

Gerið grein fyrir að fallið \hat{f} sé samfellt í jöfnum mæli á $\mathbb{R}.$

Lausn.

Upprifjun úr línulegri algebru

Látum e_1, \ldots, e_d vera venjulega grunninn fyrir \mathbb{R}^d . Gagntæk línuleg vörpun $\mathbb{R}^d \to \mathbb{R}^d$ er samskeyting endanlega margra línulegra varpana sem hver um sig ákvarðast af einu eftirfarandi skilyrða:

- $L(e_i) = e_i$ ef $i \neq j$, og $L(e_j) = ae_j$ par sem $a \in \mathbb{R}$.
- $L(e_i) = e_i$ ef $i \neq j$, og $L(e_i) = e_i + e_k$.
- $L(e_i) = e_i$ ef $i \notin \{j, k\}$, og $L(e_j) = e_k$, $L(e_k) = e_j$.

Dæmi 5

Látum $T: \mathbb{R}^d \to \mathbb{R}^d$ vera línulega vörpun, sem er af einni af þeim þremur gerðum sem lýst er í upprifjuninni hér að ofan, og B vera tening í \mathbb{R}^d .

- 1. Geri grein fyrir að T(B) sé Lebesgue-mælanlegt mengi.
- 2. Sýnið að

$$m(T(B)) = |\det(T)||B|.$$

 $\acute{A}bendingar$: Sannið fyrst niðurstöðuna fyrir B þegar núllpunkturinn er einn af hornpunktum B. Skoðið sérstaklega tilfellið d=2 og teiknið skýringamyndir.

- 3. Gerið grein fyrir að T sé mælanleg vörpun frá $(\mathbb{R}^d, \mathcal{M})$ til $(\mathbb{R}^d, \mathcal{M})$.
- 4. Látum T_*m tákna mynd vörpunarinnar T af Lebesgue-málinu m. Sýnið að

$$T_* m = \frac{1}{|\det T|} m.$$

Lausn.

Athugið: Þríhyrningur í \mathbb{R}^2 sem hefur tvær hliðar samsíða ásunum er Jordan-mælanlegur vegna þess að

```
tibble(x = seq(0, 1, 0.01),
    y = 1 - x) %>%
    ggplot(aes(x, y)) +
    geom_line()
```


- 1. α) $m(T(B)) = |a|h^{d-1}$ þar sem h er brúnalengd teningsins. T(B) er kassi og þar með mælanlegt.
- β) Nóg að skoða j=1, k=2, d=2.
- T(B) er sammengi tveggja mælanlegra mengja og þar með
- γ). T(B) = B o.s.fr.
 - 2. α) $m(T(B)) = |T(B)| = |a|h^d = |\det T||B|$
- β) Ljóst að $2 \cup (1 e_2) = B$ og því $m(T(B)) = m(B) = |B| = |\det T||B|$
- $\gamma)$ Augljóst vegna $|\det T|=|(-1)|=1$
 - 3. Ef U er opið í \mathbb{R}^d þá er $T^{-1}(U)$ opið í \mathbb{R}^d . Auk þess eru öll opin mengi í \mathbb{R}^d af gerðinni $T^{-1}(u)$ þar sem u er opið.

Látum \mathcal{O} tákna safn allra opinna menngja í \mathbb{R}^d . Pá er $\mathcal{O}^{\sigma} = \mathcal{B}$. Skv. ofansögðu er $T^{-1}(\mathcal{O}) = \mathcal{O}$ og skv. dæmi 7.2 er $T^{-1}(\mathcal{O}^{\sigma}) = (T^{-1}(\mathcal{O}))^{\sigma} = \mathcal{B}$.

Munum: Sérhvert opið mengi er teljanlegt sammengi af næstum því innbyrðis sundurlægum teningum.

Sýnum: Ef E er núllmengi, þá er $T^{-1}(E)$ núllmengi.

Sö: G.r.f. að m(E) = 0 og gefið sé $\varepsilon > 0$. Veljum opið mengi $u \supseteq E$ þ.a. $m(u) < \varepsilon/|\det T^{-1}|$. Skrifum $u = \bigcup_{m \ge 1} B_m$ þar sem $(B_m)_{m \ge 1}$ er runa af næstum innbyrðis sundurlægum kössum. Þá fæst að $m(u) = \sum_{n \ge 1} |B_n|$ og $T^{-1}(E) \subseteq T^{-1}(u) = \bigcup_{n \ge 1} T^{-1}(B_n)$. Af því leiðir að

$$m^*(T^{-1}(E)) \le \sum_{n\ge 1} m(T^{-1}(B_n)) = \sum_{n\ge 1} \frac{1}{|\det T|} |B_n| < \varepsilon$$

Sýnum nú að $T:(\mathbb{R}^d,\mathcal{M})\to(\mathbb{R}^d,\mathcal{M})$ sé mælanlegt. Ef $E\in\mathcal{M}$, þá veljum við $A,C\in\mathcal{B}$ þ.a. $A\subseteq E\subseteq C$ og $m(C\backslash A)=0$. Pá er $E=A\cup(E\backslash A)$ og því $T^{-1}(E)=T^{-1}(A)\cup T^{-1}(E\backslash A)$ mælanlegt.

4. Ef u er opið þá skrifum við $u = \bigcup_{n \geq 1} B_n$ þar sem B_n eru næstum innbyrðis sundurlægir teningar. Þá er $u' = \bigcup \operatorname{int}(B_n) \subseteq u$ og m(u') = m(u). Af því leiðir að

$$T_*m(u) = m(T^{-1}(u)) = m(\bigcup_{n \ge 1} T^{-1}(\text{int}B_n)) = \sum_{n \ge 1} \frac{1}{|\det T|} |B_n| = \frac{1}{|\det T|} m(u)$$

Ef $E \in \mathcal{M}$ og $\varepsilon > 0$ þá er $m(E) = \inf\{m(u) | u \in \mathcal{O}, E \subseteq u\}$.

$$T_*m(E) = m(T^{-1}(E)) = \inf\{m(w)|w \in \mathcal{O}, T^{-1}(E) \subseteq w\} = \inf\{m(T^{-1}(u))||u \in \mathcal{O}, E \subseteq u\} = \frac{1}{|\det T|}\inf\{m(u)|u \in \mathcal{O}, E \subseteq u\} = \frac{1}{|u|}\inf\{m(u)|u \in \mathcal$$

Dæmi 6

Látum $T: \mathbb{R}^d \to \mathbb{R}^d$ vera gagntæka línulega vörpun. Gerið grein fyrir að T sé mælanleg vörpuframt að

$$T_* m = \frac{1}{|\det T|} m.$$

Ályktið út frá því að fyrir sérhvert Lebesgue-mælanlegt mengi E í \mathbb{R}^d og sérhvert f úr $\mathcal{L}^1(E,\mu)$ gildi

$$\int_E f dm = \int_{T^{-1}(E)} (f \circ T) |\det(T)| dm.$$

Hvað er hægt að segja um málið T_*m ef ekki er gert ráð fyrir að T sé gagntæk?

Lausn.

Dæmi 7

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $f: \Omega \to [0, \infty]$ vera mælanlegt fall sem uppfyllir

$$0 < \int_{\Omega} f d\mu < \infty.$$

Sýnið að

$$\lim_{n \to \infty} \int_{\Omega} n \log[1 + (f/n)^{\alpha}] d\mu = \begin{cases} \infty & \text{ef } 0 < \alpha < 1 \\ \int_{\Omega} f d\mu & \text{ef } \alpha = 1 \\ 0 & \text{ef } 1 < \alpha < \infty. \end{cases}$$

Lausn.

Upprifjun: Notum skilgreininguna á afleiðu til að sýna:

$$\lim_{t \to 0^+} \frac{kn(1+at)}{t} = a, a \in \mathbb{R}$$

Af því leiðir að $n^{\alpha} \ln(1 + \frac{a}{n^{\alpha}}) = \frac{\ln(1 + a\frac{1}{n^{\alpha}})}{1/n^{\alpha}} \to a$, þegar $n \to \infty$ fyrir hvaða $\alpha \in]0, \infty[$ sem er. Af þessu leiðir að

$$\lim_{n \to \infty} n \ln(1 + (\frac{a}{n})^{\alpha}) = \lim_{n \to \infty} n^{1-\alpha} n^{\alpha} \ln(1 + \frac{a^{\alpha}}{n^{\alpha}}), a \neq 0 = \begin{cases} 0, \alpha > 1 \\ a, \alpha = 1 \\ \infty, 0 < \alpha < 1. \end{cases}$$

Setjum $E=\Omega\backslash f^{-1}(\{0,\infty\})$. Þá er $\int_E f d\mu=\int_\Omega f d\mu.$

Nú fæst:

 α < 1:

$$\liminf_n \int_{\Omega} n \log(1+(\frac{f}{n})^{\alpha}) d\mu = \\ \liminf_n \int_E n \log(1+(\frac{f}{n})^{\alpha}) d\mu \geq \int_E \\ \liminf_n n \log(1+(\frac{f}{n})^{\alpha}) d\mu = \\ \int_E \infty d\mu = \infty.$$

 $\alpha = 1$:

Tökum nú eftir að $\ln(1+t) \le t, \forall t > -1$. Við fáum því að

$$n\ln(1+(\frac{f}{n})) \le f, \forall n$$

og setning um yfirgnæfða samleitni gefur þá

$$\lim_n \int_{\Omega} n \ln(1+(\frac{f}{n})) d\mu = \int_{E} \lim_n n \ln(1+(\frac{f}{n})) d\mu = \int_{E} f d\mu = \int_{\Omega} f d\mu$$

 $\alpha > 1$: Setjum

$$g(x) = \frac{\ln(1+x^{\alpha})}{x} \to 0, x \to +\infty, 0^{+}$$

Svo að til er M>0 þ.a. $g(x)\leq M, \forall x$. Af því leiðir að

$$\frac{\ln(1+(\frac{f}{n})^{\alpha})}{f/n} \leq M \to (f \neq 0)n\ln(1+(\frac{f}{n})^{\alpha}) \leq M \cdot f$$

Setningin um yfirgnæfða samleitni gefur þá:

$$\lim_{n} \int_{E} n \ln(1 + (\frac{f}{n})^{\alpha}) d\mu = \int_{E} \lim_{n} n \ln(1 + (\frac{f}{n})^{\alpha}) d\mu = \int_{E} 0 d\mu = 0.$$

Dæmi 8

Reiknið heildið

$$\int_0^1 \frac{x^2 - 1}{\log x} dx$$

með því að beita setningu 16.2.3 á fallið

$$F(t) := \int_0^1 \frac{x^t - 1}{\log x} dx$$

Lausn. Setjum

$$f(x,t) = \frac{x^1 - t}{\ln x}, (x,t) \in (0,1) \times [0,2].$$

Þá er

$$\left|\frac{\partial f}{\partial t}(x,t)\right| = x^t \le 1$$

sem er tegranlegt yfir bilið frá 0 uppí 1 svo við betum beitt diffrunarsetningu Hermanns til að fá:

$$F'(t) = \int_0^1 \frac{\partial}{\partial t} \frac{x^t - 1}{\ln x} dx = \int_0^1 x^t dx = \frac{1}{1 + t}.$$

En þá er

$$\int_0^1 \frac{x^2 - 1}{\ln x} dx = F(2) = \int_0^2 F'(2) dt + F(0) = \ln 3$$

Dæmi 9

Sérhverja tölu $x\in[0,1]$ er hægt að rita á nákvæmlega einn veg sem tvíundabrot $x=0,a_1a_2\dots$ samkvæmt viðteknum venjum. Sýnið að fyrir sérhvert $n\geq 1$ sé fallið

$$[0,1] \to \mathbb{R}, \quad x \to a_n$$

mælanlegt.

Lausn. Nóg að sýna að $a_n:[0,1]\to\mathbb{R},\quad x\to a_n(x)$ sé þ.a. $a_n^{-1}(0)$ sé mælanlegt. En þetta er bersýnilega sammengi af bilum. Bwahahaha!!

Chapter 21

Innfeldisrúm

Upprifjun

Látum V vera \mathbb{K} -vigurrúm (\mathbb{K} annað hvort \mathbb{R} eða \mathbb{C}). Innfeldi á V er fall

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{K}$$

sem uppfyllir eftirtalin skilyrði

- 1. $\langle x, x \rangle > 0$ ef $x \neq 0$
- $2. \ \langle x, y \rangle = \overline{\langle y, x \rangle}.$
- 3. $\langle x + y, z \rangle = \langle x, y \rangle + \langle y, z \rangle$
- 4. $\langle cx, y \rangle = c \langle x, y \rangle$ fyrir allar tölur c.

Vigurrúm með gefnu innfeldi er nefnt **infeldisrúm**.

Setning

Látum V vera innfeldisrúm og setjum $||x||:=\sqrt{\langle x,x\rangle}$ fyrir öll x úr V. Þá gildir um öll x og y úr V:

- $1. \ |\langle x,y\rangle| \leq ||x||||y||$
- 2. $||x+y|| \le ||x|| + ||y||$.

Fyrri ójafnan er kennd við Cauchy, Búnjakovskí og Schwartz, en sú síðari kallast þríhyrningsójafnan.

Sönnun.

Af ofangreindri setningu leiðir að fyrir sérhvert innfeldisrúm V er fallið $V \to \mathbb{R}, x \to ||x||$ norm á V. Við köllum það **innfeldisnormið** á V.

Innfeldisrúm er kallað **Hilbert-rúm** ef það er fullkomið m.t.t. firðarinnar sem innfeldisnormið gefur af sér.

Setning

Fyrir f og g úr $L^2(\Omega, \mu)$ setjum við

$$\langle f, g \rangle := \int_{\Omega} f \bar{g} d\mu.$$

Pá er $\langle \cdot, \cdot \rangle$ innfeldi á $L^2(\Omega, \mu)$ sem gefur af sér normið $||\cdot||_2$ og gerir $L^2(\Omega, \mu)$ að Hilbert-rúmi.

Sönnun. Sýnum að $L^2(\Omega, \mu)$ sé vigurrúm.

Setjum $f, g \in L^2(\Omega, \mu)$. Par sem $|f(x) + g(x)| \le 2 \max(|f(x)|, |g(x)|)$ höfum við að

$$|f(x) + g(x)|^2 \le 4(|f(x)|^2 + |g(x)|^2),$$

og því

$$\int_{\Omega} |f+g|^2 d\mu \le 4 \int_{\Omega} |f|^2 d\mu + 4 \int_{\Omega} |g|^2 d\mu < \infty$$

svo að $f+g\in L^2(\Omega,\mu)$. Augljóst er að ef $a\in\mathbb{R}$ þá er $af\in L^2(\Omega,\mu)$. Því er $L^2(\Omega,\mu)$ vigurrúm.

Sýnum svo að innfeldið sé vel skilgreint, þ.e. að $f\bar{g} \in L^2(\Omega, \mu)$.

Rifjum upp að fyrir $A,B \geq 0$ gildir $2AB \leq A^2 + B^2$ svo að

$$\int_{\Omega} f \bar{g} d\mu \le \frac{1}{2} (\|f\|^2 + \|g\|^2).$$

Sýnum að innfeldið uppfylli skilyrðin fjögur.

- 1. $\langle f, f \rangle = \int_{\Omega} |f|^2 d\mu \ge 0$
- 2. $\langle f,g \rangle = \int_{\Omega} f \bar{g} d\mu = \overline{\int_{\Omega} f g} d\mu = \overline{\langle g,f \rangle}$ 3. $\langle f+h,g \rangle = \int_{\Omega} (f+h) \bar{g} d\mu = \int_{\Omega} f \bar{g} d\mu + \int_{\Omega} h \bar{g} d\mu = \langle f,g \rangle + \langle h,g \rangle$ 4. $\langle af,g \rangle = \int_{\Omega} a f \bar{g} d\mu = a \int_{\Omega} f \bar{h} d\mu = a \langle f,g \rangle$

Sýnum svo að $L^2(\Omega, \mu)$ sé fullkomið í innfeldisnorminu.

Látum $(f_n)_{n\geq 1}$ vera Cauchy runu í L^2 , og skoðum hlutrunu hennar, $(f_{n_k})_{k\geq 1}$, sem hefur þá eiginleika að

$$||f_{n_{k+1}} - f_{n_k}||_2 \le 2^{-k}$$
, fyrir öll $k \ge 1$.

Setjum nú

$$g_k = \sum_{i=1}^k \|f_{n_{i+1}} - f_{n_i}\|_2, \quad g = \lim_{k \to \infty} g_k = \sum_{i=1}^\infty \|f_{n_{i+1}} - f_{n_i}\|_2.$$

 Þríhyrningsójafnan gefur okkur að $\|g_k\|_2 \leq \sum_{i=1}^k 2^{-i}$ og við beitum reglu Fatou á jákvæðu mælanlegu föllum g_k^2 þannig að

$$||g||_2^2 = \int_{\Omega} \lim_{k \to \infty} g_k^2 d\mu \le \liminf_{k \to \infty} \int_{\Omega} g_k^2 d\mu \le 1.$$

Við sjáum að g er endanlegt næstum alls staðar og $f_{n_1} + \sum_{i \geq 1} (f_{n_{i+1}} - f_{n_i})$ er alsamleitin næstum alls staðar með markgildi f. Við þurfum nú að sýna að $f \in L^2$. Tökum fyrst eftir að $f = \lim_{k \to \infty} f_{n_k}$ næstum alls staðar, og fyrir gefið $\varepsilon > 0$ getum við fundið N svo að $||f_n - f_m||_2 < \varepsilon$ fyrir sérhver $m, n \geq N$. Beitum reglu Fatou á rununa $(|f_{n_i} - f_m|^2)_{i \geq 1}$ og látum $i \to \infty$. Fáum

$$\int_{\Omega} |f - f_m| d\mu \le \liminf_{i \to \infty} \int_{\Omega} |f_{n_i} - f_m|^2 d\mu \le \varepsilon^2.$$

Fáum því að $f-f_m\in L^2$ og þá $f=f_m+(f-f_m)\in L^2$ auk þess að $\|f-f_m\|_2<\varepsilon$ fyrir öll $m\geq N$. Því gildir að $f_m\to f$ í innfeldisnorminu svo að $L^2(\Omega,\mu)$ er fullkomið.

Setning

Látum V vera innfeldisrúm og $v \in V$. Þá eru föllin $x \to \langle x, v \rangle, x \to \langle v, x \rangle$ og $x \to ||x||$ samfelld á V.

Sönnun.

Setning

Látum V vera innfeldisrúm. Þá gildir um öll x og y úr V:

 $\begin{array}{ll} 1. & ||x+y||^2 + ||x-y||^2 = 2(||x|| + ||y||). \\ 2. & 4\langle x,y\rangle = ||x+y||^2 - ||x-y||^2 + i(||x+iy||^2 - ||x-iy||^2). \end{array}$

Fyrri jafnan er kölluð samsíðungsregla og sú síðari skautunarjafna.

Sönnun.

Skilgreining

Við segjum að tveir vigrar x og y úr innfeldisrúmi séu **þverstæðir** eða **hornréttir** (hvor á annan) ef $\langle x,y\rangle=0$. Petta er stundum táknað $x\perp y$.

Látum X vera hlutmengi í innfeldisrúmi V. Setjum

$$X^{\perp} := \{ v \in V | \langle v, x \rangle = 0, \forall x \in X \}$$

og köllum X^{\perp} hornrétt fyllirúm X.

Fljótséð er að X^{\perp} er lokað hlutvigurrúm í V.

Æfing

Látum x og y vera þverstæða vigra í innfeldisrúmi. Sýnið að

$$||x||^2 + ||y||^2 = ||x+y||^2.$$

Setning

Lausn.

Látum K vera lokað hlutrúm í Hilbert-rúmi H og $x \in H$. Þá er til nákvæmlega einn vigur y úr K, sem fullnægir eftirfarandi jafngildum skilyrðum.

1. $x - y \in K^{\perp}$ 2. $||x - y|| = \inf\{||x - z|||z \in K\}$.

Sönnun.

Setning

Látum K vera lokað hlutrúm í Hilbert-rúmi H. Þá er hægt að skrifa sérhvern vigur x úr K á nákvæmlega einn veg sem $x = x_1 + x_2$ þar sem $x_1 \in K$ og $x_2 \in K^{\perp}$. Auk þess gildir að varpanirnar

$$P: H \to H, x \to x_1 \quad \text{og} \quad Q: H \to H, x \to x_2$$

eru línulegar og fullnægja skilyrðinu

$$||x||^2 = ||P(x)||^2 + ||Q(x)||^2$$
, fyrir öll $x \in H$.

Skilgreining

Sönnun.

Varpanirnar P og Q kallast **hornrétt ofanvörp** á K og K^{\perp} .

Skilgreining

Línuleg vörpun af K-vigurrúmi yfir í K kallast **línulegt felli** (á vigurrúminu).

Setning

Látum L vera samfellt línulegt felli á Hilbert-rúmi H. Þá er til nákvæmlega einn vigur y úr H, sem uppfyllir skilyrðið

	$L(x) = \langle x, y \rangle,$	fyrir öll $x \in H$.
Sönnun.		

Vikublað 10

Dæmi 1 (Skil)

Reiknið heildið

$$\int_0^{\frac{\pi}{2}} \frac{x \cos x}{\sin x} dx$$

með því að beita setningu 17.1.1 á fallið

$$F(u) := \int_0^{\frac{\pi}{2}} \frac{\arctan(u \tan x)}{\tan x} dx.$$

Lausn

Veljum bil [a,b]=[0,1] og $\Omega=[0,\pi/2]$ og skilgreinum fallið

$$f(x,t) = \arctan(t\tan(x))\cot(x).$$

Tökum eftir að

$$f(x,1) = x \cot(x),$$

$$f(x,0) = 0 \text{ og}$$

$$\frac{\partial f}{\partial t}(x,t) = \frac{1}{t^2 \tan(x)^2 + 1}$$

$$= \frac{\cos(x)^2}{(t^2 - 1)\sin(x)^2 + 1}.$$

Við sjáum að nefnarinn getur orðið núll þegar t=0, en ef t er núll fæst að

$$\frac{\partial f}{\partial t}(x,0) = \frac{\cos(x)^2}{1 - \sin(x)^2} = \frac{\cos(x)^2}{\cos(x)^2} = 1$$

svo hlutafleiðan er skilgreind á öllu $\Omega \times [a,b]$. Við hámörkum hlutafleiðuna með því að lágmarka nefnarann, svo hlutafleiðan er takmörkuð að ofan á okkar mengi. Öllum skilyrðum setningarinnar er þá uppfyllt og við fáum að

$$\frac{\partial}{\partial t} \int_{\Omega} f(x,t) d\mu(x) = \int_{\Omega} \frac{\partial f}{\partial t}(x,t) d\mu(x) = \int_{0}^{\pi/2} \frac{1}{t^2 \tan(x)^2 + 1} dx.$$

Framkvæmum breytuskiptin $u = \tan(x)$ og þá $du = \cos(x)^{-2} dx$ Fáum þá

$$\int_0^{\pi/2} \frac{1}{t^2 \tan(x)^2 + 1} dx = \int_0^\infty \frac{1}{(u^2 + 1)(t^2 u^2 + 1)} du.$$

Með stofnbrotaliðun fæst nú

$$\int_0^\infty \frac{1}{(u^2+1)(t^2u^2+1)} du = \int_0^\infty \frac{t^2}{(t^2-1)(t^2u^2+1)} du - \int_0^\infty \frac{1}{(t^2-1)(u^2+1)} du.$$

Nú þar sem t-in eru óháð heildinu má taka þau út fyrir þarf þá bara að reikna heildið

Dæmi 2 (Skil)

Látum $a, b \in]-\infty, \infty[$. Sannið eftirfarandi fullyrðingar.

1. Fall $\varphi:(a,b) \to \mathbb{R}$ er kúpt þá og því aðeins að um allar rauntölur s,t,u sem uppfylla a < s < t < u, gildir

$$\frac{\varphi(t) - \varphi(s)}{t - s} \le \frac{\varphi(u) - \varphi(t)}{u - t}$$

- 2. Diffranlegt fall á (a, b) er kúpt þá og því aðeins að afleiða þess sé vaxandi á (a, b).
- 3. Öll kúpt föll á (a, b) eru samfelld á (a, b).

Lausn

1.Setjum

$$F(x,y) := \frac{\varphi(y) - \varphi(x)}{y - x}.$$

F er þá hallatala striksins sem tengir saman tvo punkta $(x, \varphi(x))$ og $(y, \varphi(y)), y > x$, á ferli fallsins φ . Með því að skrifa ójöfnuna úr dæminu með fallinu F fæst

$$F(s,t) < F(u,t), \quad a < s < t < u < b.$$

Fullyrðingin heldur því fram að fall sé kúpt á bilinu [a,b] þá og því aðeins að halli þess minnki ekki á því bili. Við sjáum á myndinni að neðan að þetta samræmist því innsæi að bein lína milli tveggja punkta á ferli kúpts falls sé aldrei fyrir neðan ferilinn. Ef við umritum ójöfnuna fáum við líka

$$\frac{\varphi(t) - \varphi(s)}{t - s} \le \frac{\varphi(u) - \varphi(t)}{u - t}$$

$$\to (\varphi(t) - \varphi(s))(u - t) \le (\varphi(u) - \varphi(t))(t - s)$$

$$\to (u - t)\varphi(t) - (u - t)\varphi(s) \le (t - s)\varphi(u) - (t - s)\varphi(t)$$

$$\to (u - s)\varphi(t) \le (t - s)\varphi(u) + (u - t)\varphi(s).$$

Petta segir að fyrir kúpt full sé flatarmál kassa með hæð $\varphi(t)$ og breidd (u-s) ekki stærri en samanlagt flatarmál tveggja kassa, annar með hæð og breidd $\varphi(u)$ og (t-s), og hinn $\varphi(s)$ og (u-t). Á myndinni að neðan má túlka þetta svo að blái kassinn er aldrei stærri en línustrikuðu kassarnir.

2. Fæst með því að að velja $x,y\in(a,b), x>y$ og skoða ójöfnuna

$$F(x, x + \varepsilon) \le F(y, y + \varepsilon), \quad x < x + \varepsilon \le y < y + \varepsilon.$$

fyrir gefið $\varepsilon > 0$.

3. Allar tölur $x \in (a,b)$ má skrifa á forminu $x = \lambda a + (1-\lambda)b$ þar sem $\lambda \in (0,1)$. Fáum þá

$$\frac{\varphi(x) - \varphi(a)}{x - a} = \frac{\varphi(\lambda a + (1 - \lambda)b) - \varphi(a)}{\lambda a + (1 - \lambda)b - a}$$

$$\leq \frac{\lambda \varphi(a) + (1 - \lambda)\varphi(b) - \varphi(a)}{\lambda a + (1 - \lambda)b - a}$$

$$= \frac{(\lambda - 1)\varphi(a) + (1 - \lambda)\varphi(b)}{(\lambda - 1)a + (1 - \lambda)b}$$

$$= \frac{(1 - \lambda)(\varphi(b) - \varphi(a))}{(1 - \lambda)(b - a)}$$

$$= \frac{\varphi(b) - \varphi(a)}{b - a}$$

Dæmi 3

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $f \in \mathcal{L}(\Omega, \mu)$. Sýnið að fyrir sérhvert $\varepsilon > 0$ sé til $\delta > 0$, sem fullnægur eftirfarandi skilyrði:

$$\int_E |f| d\mu < \varepsilon \quad \text{fyrir \"oll } E \in \mathcal{F}, \text{ sem uppfylla } \mu(E) > \delta.$$

Lausn

Dæmi 4

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm. Sýnið að sérhvert $f \in \mathcal{L}^1(\Omega, \mu)$ fullnægi skilyrðinu

$$\lim_{x \to \infty} x \mu(f^{-1}([x, \infty))) = 0.$$

Er mælanlegt fall á Ω heildanlegt ef það uppfyllir umrætt skilyrði?

Lausn

Dæmi 5 (Skil)

Sýnið með dæmi að niðurstaðan í dæmi~8.11 sé ekki rétt ef skilyrðinu

$$\int_{\Omega} f d\mu < \infty$$

er sleppt.

Lausn

Dæmi 6

Látum $(\Omega, \mathcal{F}, \mu)$ vera málrúm og $f \in \mathcal{L}^1(\Omega, \mu)$. Sannið eftirfarandi fullyrðingar.

- 1. Fyrir sérhverja rauntölu a>0 hefur mengið $\{x\in\Omega||f(x)|\geq a\}$ endanlegt mál.
- 2. Mengið $\{x \in \Omega | f(x) \neq 0\}$ er teljanlegt sammengi mengja sem hvert um sig er mælanlegt og hefur endanlegt mál. (Slík mengi eru sögð hafa σ -endanlegt mál).

Chapter 22

Þverstaðlaðar fjölskyldur

Í þessari grein táknar H ávalt Hilbert-rúm.

Skilgreining

Fjölskylda $(u_{\alpha})_{\alpha \in A}$ í H er sögð þverstöðluð ef um öll α og β úr A gildir

$$\langle u_{\alpha}, u_{\beta} \rangle = \begin{cases} 1, & \text{ef } \alpha = \beta \\ 0, & \text{ef } \alpha \neq \beta \end{cases}$$

Hugtökin **þverstöðluð upptalning**, **þverstöðluð runa** og **þverstaðlað mengi** eru skilgreind á samsvarandi hátt.

Setning

Látum u_1,\dots,u_k vera þverstaðlaða upptalningu í H og $x=\sum_{j=1}^k c_j u_j$. Þá gildir

1.
$$c_j = \langle x, u_j \rangle$$
 fyrir öll j úr $\{1, \dots, k\}$

2.
$$||x||^2 = \sum_{j=1}^k |c_j|^2$$
.

Sönnun.

Setning

Þverstaðlaðar fjölskyldur í Hilbert-rúmum eru línulega óháðar.

Sönnun.

Setning

Látum $(V, \|\cdot\|)$ vera staðlað rúm af endanlegri vídd.

- 1. Allar línulegar varpanir frá V inn í staðlað rúm eru samfelldar.
- 2. V er fullkomið firðrúm.

Sönnun.	

Setning

Látum u_1, \ldots, u_k vera þverstaðlaða upptalningu í H. Látum K vera (lokaða) hlutrúmið sem hún spannar og $P: H \to H$ tákna hornrétta ofanvarpið á K. Þá gildir um öll x úr H:

$$P(x) = \sum_{j=1}^{k} \langle x, u_j \rangle u_j.$$

Sönnun.

Setning

Látum $(u_{\alpha})_{\alpha \in A}$ vera þverstaðlaða fjölskyldu í H. Þá gildir um sérhvert endanlegt hlutmengi I í A og öll X úr H:

$$\sum_{\alpha \in I} |\langle x, u_{\alpha} \rangle|^2 \le ||x||^2$$

Ójafnan er yfirleitt kölluð **Bessel-ójafna**.

Vikublað 11

Dæmi 1 (Skil)

Látum $(\Omega, \mathcal{F}, \mu)$ vera líkindarúm og $h: \Omega \to [0, \infty)$ vera heildanlegt fall. Setjum $A := \int_{\Omega} h d\mu$.

- 1. Sýnið að $\sqrt{1+A^2} \leq \int_{\Omega} \sqrt{1+h^2} d\mu \leq 1+A$
- 2. Skoðum nú sértilfellið þegar Ω er lokaða bilið [0,1] með venjulega Lebesgue-málinu og gerum ennfremur ráð fyrir að h=f' þar sem f er samfellt diffranlegt fall á [0,1]. Túlkið ójöfnurnar í lið 1. út frá fallriti fallsins f og segið síðan til um hvenær jafnaðarmerki gildir í hvorri ójöfnu fyrir sig.

Lausn.

Dæmi 2 (Skil)

Sýnið að fallið

$$f:(0,\infty)\to\mathbb{R},\quad x\to \frac{1}{\sqrt{x}+|\log x|}$$

sé í $L^p((0,\infty))$ þá og því aðeins að p>2.

Sönnun.

Dæmi 5 (Skil)

Látum $(f_n)_{n\geq 1}$ vera runu af tvinngildum mælanlegum föllum á takmörkuðu málrúmi $(\Omega, \mathcal{F}, \mu)$ (þ.e.a.s. $\mu(\Omega) < \infty$) og gerum ráð fyrir að hún stefni (í sérhverjum punkti) á fall f.

- 1. Sýnið að fyrir sérhvert $\varepsilon > 0$ sé til E úr \mathcal{F} sem uppfyllir eftirtalin skilyrði:
- $\mu(\Omega \backslash E) < \varepsilon$
- $f_n \to f$ í jöfnum mæli á E.

Ábending: Setjið $S(n,k) := \bigcap_{j < n} \left\{ x \in \Omega : |f(x) - f_j(x)| < \frac{1}{k} \right\}$ og sýnið að fyrir sérhvert k gildi $\lim_{n \to \mu} (S(n,k)) = \mu(\Omega)$

2. Sýnið með dæmi að niðurstaðan sé almennt ekki rétt fyrir ótakmörkuð málrúm.

Dæmi 8 (Skil)

Látum λ vera málið á $(\mathbb{N}^*,\mathcal{P}(\mathbb{N}^*))$ sem ákvarðast af $\lambda(\{n\})=\frac{1}{n^2}$ og setjum

$$f: \mathbb{N}^* \to \mathbb{R}, \quad n \to \sqrt{n}.$$

Sýnið að $f\in\mathcal{L}^p(\mathbb{N}^*,\lambda)$ þá og því aðeins að $1\leq p<2.$

Lausn.			