

Universidad Nacional del Altiplano

Escuela de Posgrado

Doctorado en Ciencias de la Computación

Computer Vision

Unit 2. Pattern recognition using deep learning:

- Semantic segmentation
- Instance segmentation
- Object detection
- Real applications

Prof. Dr. Ivar Vargas Belizario

ivargasbelizario@gmail.com

2024 - II

Content

- Introduction
- Semantic segmentation
- Instance segmentation
- Object detection
- Real applications

Introduction

Segmentation of knee bone by using (a) **classical machine learning** and (b) **deep learning**. Feature engineering of classical machine learning involves handpicked feature representations and mapping. On the other hand, deep learning uses multiple hidden layers to extract hierarchical feature representations

[14] https://doi.org/10.1007/s10462-020-09924-4

Introduction

[15] https://doi.org/10.3390/rs12101667

Introduction

[15] https://doi.org/10.3390/rs12101667

Content

- Introduction
- Semantic segmentation
- Instance segmentation
- Object detection
- Real applications

https://oi.readthedocs.io/en/latest/computer_vision/segmentation.html

Semantic Segmentation

1

https://oi.readthedocs.io/en/latest/computer_vision/segmentation/segmentation.html

Semantic Segmentation - UNet

Semantic Segmentation - UNet

Semantic Segmentation - UNet

Semantic Segmentation - UNet

Content

- Introduction
- Semantic segmentation
- Instance segmentation
- Object detection
- Real applications

12

Instance segmentation

Image classification

Semantic segmentation

Object detection

Instance segmentation

Detect all objects in the image, and identify the pixels that belong to each object (Only things!)

Approach: Perform object detection, then predict a segmentation mask for each object!

https://oi.readthedocs.io/en/latest/computer_vision/segmentation.html

1 =

Instance segmentation: Mask R-CNN

He et al. "Mask R-CNN". ICCV 2017

Instance segmentation: Mask R-CNN - Examples Training Targets

https://oi.readthedocs.io/en/latest/computer_vision/segmentation.html

Instance segmentation: Mask R-CNN - Examples Training Targets

https://oi.readthedocs.io/en/latest/computer_vision/segmentation.html

''

Panoptic Segmentation

Content

- Introduction
- Semantic segmentation
- Instance segmentation
- Object detection
- Real applications

Object detection - Yolo

https://medium.com/analytics-vidhya/yolo-explained-5b6f4564f31

21

Object detection - Yolo

How YOLO algorithm helps in object detection?

YOLO architecture is similar to **GoogleNet**. As illustrated below, it has 24 convolutional layers, four max-pooling layers, and two fully connected layers.

https://www.datacamp.com/blog/yolo-object-detection-explained

00

Object detection - Yolo

Object detection - Yolo

https://www.datacamp.com/blog/yolo-object-detection-explained

Object detection - Yolo

Object detection - Yolo

https://www.datacamp.com/blog/yolo-object-detection-explained

Content

- Introduction
- Semantic segmentation
- Instance segmentation
- Object detection
- Real applications

Deep learning for plant identification using vein morphological patterns

[20] https://doi.org/10.1016/j.compag.2016.07.003

29

Occlusion-Free Road Segmentation Leveraging Semantics for Autonomous Vehicles

Figure 1. Comparison of road segmentation and proposed occlusion-free road segmentation. (a) RGB image; (b) visualization of the results of road segmentation; (c) visualization of the semantic representation of the scene, which could be obtained by semantic segmentation algorithms in real applications or human annotation in training phase; (d) visualization of the results of the proposed occlusion-free road segmentation. Green refers to the road area in (b) and (d).