2.4 The Execution of Commands

Wataru Yachi

JAIST

June 15, 2023

Definition (execution relation)

A relation

$$\langle c, \sigma \rangle \to \sigma'$$

means that execution of command c in state σ terminates in final state σ' .

Definition (execution relation)

A relation

$$\langle c, \sigma \rangle \to \sigma'$$

means that execution of command c in state σ terminates in final state σ' .

$$\quad \blacksquare \ \langle X := 5, \sigma \rangle \to \sigma'$$

Definition (execution relation)

A relation

$$\langle c, \sigma \rangle \to \sigma'$$

means that execution of command c in state σ terminates in final state σ' .

- $X := 5, \sigma \rangle \to \sigma'$
- $\blacksquare \langle \mathbf{skip}, \sigma \rangle \to \sigma$

Definition (execution relation)

A relation

$$\langle c, \sigma \rangle \to \sigma'$$

means that execution of command c in state σ terminates in final state σ' .

- $\blacksquare \langle \mathbf{skip}, \sigma \rangle \to \sigma$
- (while false do $X := 5, \sigma$) $\rightarrow \sigma$

Notation

Let σ be a state. Let $m \in \mathbb{N}$. Let $X \in \mathbf{Loc}$. A new state which obteined from σ by replacing its contents in X by m is denoted as follows;

$$\sigma[m/X]$$
.

And we have

$$\sigma[m/X](Y) = \begin{cases} m & \text{if } Y = X \\ \sigma(Y) & \text{if } Y \neq X \end{cases}$$

Notation

Let σ be a state. Let $m \in \mathbb{N}$. Let $X \in \mathbf{Loc}$. A new state which obteined from σ by replacing its contents in X by m is denoted as follows;

$$\sigma[m/X]$$
.

And we have

$$\sigma[m/X](Y) = \begin{cases} m & \text{if } Y = X \\ \sigma(Y) & \text{if } Y \neq X \end{cases}$$

$$\bullet$$
 $(\sigma[5/X])[3/Y](X) = ?$

Notation

Let σ be a state. Let $m \in \mathbb{N}$. Let $X \in \mathbf{Loc}$. A new state which obteined from σ by replacing its contents in X by m is denoted as follows;

$$\sigma[m/X]$$
.

And we have

$$\sigma[m/X](Y) = \begin{cases} m & \text{if } Y = X \\ \sigma(Y) & \text{if } Y \neq X \end{cases}$$

$$\bullet$$
 $(\sigma[5/X])[3/Y](X) = 5$

Notation

Let σ be a state. Let $m \in \mathbb{N}$. Let $X \in \mathbf{Loc}$. A new state which obtained from σ by replacing its contents in X by m is denoted as follows;

$$\sigma[m/X]$$
.

And we have

$$\sigma[m/X](Y) = \begin{cases} m & \text{if } Y = X \\ \sigma(Y) & \text{if } Y \neq X \end{cases}$$

- \bullet $(\sigma[5/X])[3/Y](X) = 5$
- $\bullet \ \sigma[2/Y](X) = ?$

Notation

Let σ be a state. Let $m \in \mathbb{N}$. Let $X \in \mathbf{Loc}$. A new state which obtained from σ by replacing its contents in X by m is denoted as follows;

$$\sigma[m/X]$$
.

And we have

$$\sigma[m/X](Y) = \begin{cases} m & \text{if } Y = X \\ \sigma(Y) & \text{if } Y \neq X \end{cases}$$

- \bullet $(\sigma[5/X])[3/Y](X) = 5$

Rules for Commands 1

Definition (commands execution)

Atomic commands

$$\frac{\langle \mathbf{a}, \sigma \rangle \to m}{\langle \mathbf{skip}, \sigma \rangle \to \sigma} \quad \frac{\langle a, \sigma \rangle \to m}{\langle X := a, \sigma \rangle \to \sigma[m/X]}$$

Sequencing

$$\frac{\langle c_0, \sigma \rangle \to \sigma'' \quad \langle c_1, \sigma'' \rangle \to \sigma'}{\langle c_0; c_1, \sigma \rangle \to \sigma'}$$

Conditionals

$$\frac{\langle b, \sigma \rangle \to \mathbf{true} \quad \langle c_0, \sigma \rangle \to \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \to \sigma'} \qquad \frac{\langle b, \sigma \rangle \to \mathbf{false} \quad \langle c_1, \sigma \rangle \to \sigma'}{\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \sigma \rangle \to \sigma'}$$

Rules for Commands 2

Definition (commands execution)

While-loops

Example

A deriving tree of $\langle X := 2; \mathbf{if} \ X \leq 3 \mathbf{then} \ X := 0 \mathbf{else} \ X := 1, \sigma \rangle \to \sigma[0/X]$ is

$$\frac{\langle 2,\sigma\rangle\to 2}{\langle X:=2,\sigma\rangle\to\sigma[2/X]} \frac{\overline{\langle X,\sigma[2/X]\rangle\to 2} \quad \overline{\langle 3,\sigma[2/X]\rangle\to 3}}{\langle X\le 3,\sigma[2/X]\rangle\to \mathbf{true}} \quad \frac{\langle 0,\sigma[2/X]\rangle\to 0}{\langle X:=0,\sigma[2/X]\rangle\to\sigma[0/X]} \\ \frac{\langle X:=2,\sigma\rangle\to\sigma[2/X]}{\langle X:=2; \mathbf{if}\ X\le 3\ \mathbf{then}\ X:=0\ \mathbf{else}\ X:=1,\sigma[2/X]\rangle\to\sigma[0/X]} \\ \times X:=2; \mathbf{if}\ X\le 3\ \mathbf{then}\ X:=0\ \mathbf{else}\ X:=1,\sigma\rangle\to\sigma[0/X]}$$

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

Example (Quiz)

• does $X := 5 \sim X := 2 + 3$ hold?

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

Example (Quiz)

■ does $X := 5 \sim X := 2 + 3$ hold? yes

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

- \blacksquare does $X := 5 \sim X := 2 + 3$ hold? yes
- does if true then X := 5 else $X := 0 \sim$ if false then X := 0 else X := 5 hold?

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

- \blacksquare does $X := 5 \sim X := 2 + 3$ hold? yes
- does if true then X := 5 else $X := 0 \sim$ if false then X := 0 else X := 5 hold? yse

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

- \blacksquare does $X := 5 \sim X := 2 + 3$ hold? yes
- does if true then X := 5 else $X := 0 \sim$ if false then X := 0 else X := 5 hold? yse
- \blacksquare does X := 5; skip $\sim X := 5$; while false do X := 0 hold?

Definition (equivalence relation \sim on commands)

Let c_0 and c_1 be a command, a equivalence relation \sim on commands is defined as follows;

$$c_0 \sim c_1 := \forall \sigma, \sigma' \in \Sigma. \langle c_0, \sigma \rangle \to \sigma' \iff \langle c_1, \sigma \rangle \to \sigma'.$$

- \blacksquare does $X := 5 \sim X := 2 + 3$ hold? yes
- does if true then X := 5 else $X := 0 \sim$ if false then X := 0 else X := 5 hold? yse
- \blacksquare does X := 5; skip $\sim X := 5$; while false do X := 0 hold? yes