Linear Programming *

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Algorithm Course @ Shanghai Jiao Tong University

*Special thanks is given to Mr. Xinyu Wu from EE2014@SJTU for producing this lecture.

1/59

Outline

- Introduction
 - An Introductory Example
 - Standard Form of LP
 - Other Programmings
- Duality
 - Primal and Dual Form
 - Duality Theorem
- Simplex Method
 - Brief Overview
 - Introductory Example
 - Summarization and Further Topics

le

Introduction
Duality
mplex Method

An Introductory Example Standard Form of LP Other Programmings

An Example: Profit Maximization

Suppose that a factory produces two products 1 and 2, using resources A, B, and C, under following settings:

- We have 200 units of A, 300 units of B, and 400 units of C.
- Making a unit of product 1 requires a unit of A and C.
- Making a unit of product 2 requires a unit of **B** and **C**.
- The price for product 1 and 2 are respectively 1 and 6.

The factory aims to achieve the **maximum** profit, so how many units of product 1 and 2 the factory should produce?

Introducti Duali Simplex Metho An Introductory Example Standard Form of LP Other Programmings

An Example: Profit Maximization

Suppose we produce x_1 and x_2 units for product 1 and 2.

According to the settings, we have

- 200 units **A**, one for each product **1**: $x_1 \le 200$.
- 300 units **B**, one for each product **2** : $x_2 \le 300$.
- 400 units C, one for both 1 and 2: $x_1 + x_2 \le 400$.
- Nonnegative Production : $x_1, x_2 \ge 0$.

Maximizing Profits : $\max f(x_1, x_2) = x_1 + 6x_2$.

2/59

4/59

Formulation of Linear Programming

$$\max f(x_1, x_2) = x_1 + 6x_2$$
s.t. $x_1 + x_2 \le 400$,
 $x_1 \le 200$,
 $x_2 \le 300$,
 $x_1, x_2 \ge 0$.

Linear Programming (LP):

Both objective function and constraints are linear.

Given

Standard Form of LP

- o *n* real numbers c_1, c_2, \cdots, c_n ;
- o *m* real numbers b_1, b_2, \dots, b_m ;
- o $m \times n$ real numbers $\{a_{ij}\}_{i=1,2,\cdots,m;\ j=1,2,\cdots,n}$.

We wish to find *n* real numbers x_1, x_2, \dots, x_n such that

$$\max \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, 2, \dots, m$$

$$x_j \ge 0. \quad j = 1, 2, \dots, n$$

6/59

9/59

Duality Simplex Method An Introductory Example Standard Form of LP Other Programmings

Variants of LP

An LP problem may NOT appear as its standard form initially:

- It can be a minimization problem. $\min \sum_{j=1}^{n} c_j x_j$
- It may have equality constraints. $\sum_{i=1}^{n} a_{ij}x_{j} = b_{i}$
- It may have inequality constraints with \geq . $\sum_{i=1}^{n} a_{ij}x_j \geq b_i$
- It may have no restriction on the variables $\{x_i\}_{i=1}^n$.

Example:

min
$$-2x_1 + 3x_2$$

s.t. $x_1 + x_2 = 7$,
 $x_1 - 2x_2 \le 4$,
 $x_1 \ge 0$.

However, we can equivalently transform different LP variants to the standard form.

Duality Simplex Method

Transformation to Standard Form

1. From min to max:

$$\min \quad \sum_{j=1}^{n} c_j x_j \quad \Rightarrow \quad \max \quad -\sum_{j=1}^{n} c_j x_j$$

Transformation to Standard Form

2. Equality Constraint:

$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad \Rightarrow \quad \begin{cases} \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \\ \sum_{j=1}^{n} a_{ij}x_{j} \geq b_{i} \end{cases}$$

Transformation to Standard Form

3. Inequality Constraint with \geq :

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad \Rightarrow \quad -\sum_{j=1}^{n} a_{ij} x_j \le -b_i$$

11/59

Duality Simplex Method An Introductory Example Standard Form of LP Other Programmings

Transformation to Standard Form

4. Variables without Constraints:

$$x_2$$
 is without constraints. \Rightarrow Introducing x_2^+ and $x_2^ x_2 = x_2^+ - x_2^-, x_2^+, x_2^- \ge 0$.

Standard Form

13/59

Duality Simplex Method An Introductory Example Standard Form of LP Other Programmings

Slack Form of LP

In order to efficiently solve an LP problem, we express it in a form in which some of the constraints are **equality constraints**.

Specifically,

- $\circ \sum_{j=1}^{n} a_{ij} x_j \le b_i \text{ should be transformed to equality };$
- The only inequality constraints are $x_i \ge 0$.

Key: Introducing slack variables: s_i

$$\sum_{i=1}^{n} a_{ij} x_j \le b_i \qquad \Rightarrow \qquad \sum_{i=1}^{n} a_{ij} x_j + s_i = b_i, s_i \ge 0$$

Slack Form of LP

Example: Profit Maximization

 x_3, x_4, x_5 are slack variables.

Slack Form of LP

We can use a tuple $(N, B, \mathbf{A}, \mathbf{b}, \mathbf{c}, v)$ to represent a slack form.

- o N: Nonbasic Variable Set. $\{x_1, x_2\}$
- o A, b, c : Constant Terms and Coefficients.
- v : Optional Constant Term in Objective Function.

$$\mathbf{b} = \begin{bmatrix} 400 & 200 & 300 \end{bmatrix}^T$$

$$\mathbf{c} = \begin{bmatrix} 1 & 6 \end{bmatrix}^T$$

15/59

Duality Simplex Method

Matrix-Vector Form of LP

Sometimes it is convenient to express an LP by matrix and vectors.

If we create

- o an $m \times n$ matrix $\mathbf{A} = (a_{ii})_{m \times n}$;
- \circ an m vector $\mathbf{b} = (b_1, b_2, \cdots, b_m)^T$;
- \circ an *n* vector $\mathbf{c} = (c_1, c_2, \cdots, c_n)^T$;
- \circ an *n* vector $\mathbf{x} = (x_1, x_2, \cdots, x_n)^T$,

then we can equivalently transform the standard form as

$$\max \sum_{j=1}^{n} c_{j}x_{j} \Rightarrow \max \mathbf{c}^{T}\mathbf{x}$$

$$s.t. \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, \quad i = 1, 2, \dots, m$$

$$x_{j} \geq 0. \quad j = 1, 2, \dots, n$$

$$\Rightarrow \max \mathbf{c}^{T}\mathbf{x}$$

$$s.t. \quad \mathbf{A}\mathbf{x} \leq \mathbf{b},$$

$$\mathbf{x} \geq \mathbf{0}.$$

Duality Simplex Method

Other Programmings

General Form of Programming

The general form of a programming is

max
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0$, $i = 1, 2, \dots, m$
 $h_i(\mathbf{x}) = 0$. $i = m + 1, m + 2, \dots, n$

Linear Programming should satisfy that $f(\mathbf{x})$, $\{g_i(\mathbf{x})\}$, $\{h_i(\mathbf{x})\}$ are all linear functions.

Classification of Programming

$$\max f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) \le 0$, $i = 1, 2, \dots, m$
 $h_i(\mathbf{x}) = 0$. $i = m + 1, m + 2, \dots, n$

We can classify programming as

- Programming with constraints; (We only study this.)
 Programming without constraints.
- Linear programming;

 Nonlinear programming. (including quadratic)
- Single-objective programming; (We only study this.)

 Multiple-objective programming.
- 0 ...

20/59

22/59

Introduction Duality Jimplex Method

An Introductory Example Standard Form of LP Other Programmings

Nonlinear Programming

Nonlinear Programming : At least one of f_i , g_i , and h_i is nonlinear.

$$\max f(\mathbf{x})$$

s.t.
$$g_i(\mathbf{x}) \leq 0$$
, $i = 1, 2, \dots, m$
 $h_i(\mathbf{x}) = 0$. $i = m + 1, m + 2, \dots, n$.

Example:

max
$$x + y$$

s.t. $x^2 + y^2 \ge 1$,
 $x^2 + y^2 \le 2$,
 $x, y > 0$.

Integer Linear Programming (ILP)

ILP is an LP problem with an additional constraint that variables $\mathbf{x} = (x_1, x_2, \dots, x_n)$ must take on integral values.

$$\max \sum_{j=1}^{n} c_{j}x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, \quad i = 1, 2, \dots, m$$

$$x_{j} \in \mathbb{Z}. \quad j = 1, 2, \dots, n.$$

Examples: the amount of products, people, data packets,...

Note: ILP is an **NP** problem, which no efficient algorithms can solve *directly*.

Introduction
Duality

An Introductory Examp Standard Form of LP Other Programmings

Quadratic Programming

Quadratic Programming (QP) is a special case of nonlinear programming in the form of

$$\max \quad \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

$$s.t. \quad \mathbf{A} \mathbf{x} < \mathbf{b}$$

where

- \mathbf{Q} : an $n \times n$ real symmetric matrix;
- \circ **c**: an *n* vector;
- \circ **A**: an $m \times n$ real matrix;
- \circ **b**: an *m* vector.

21/59

Brief History of LP

- First formal application to problems in economics by Leonid Kantorovich in the 1930s, however the work was ignored;
- Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics;
- First algorithm (Simplex Algorithm) to solve linear programs by George Dantzig in 1947;
- Kantorovich and Koopmans receive Nobel Prize for economics in 1975; Dantzig, however, was ignored.
- LP was first shown to be solvable in polynomial time via Ellipsoid Method by Leonid Khachiyan in 1979, but a larger breakthrough came in 1984 when Narendra Karmarkar introduced a novel Interior-Point Method to solve LP.

Duality

Recall the **Profit Maximization** problem:

max
$$f(x_1, x_2) = x_1 + 6x_2$$

s.t. $x_1 + x_2 \le 400$,
 $x_1 \le 200$,
 $x_2 \le 300$,

 $x_1, x_2 > 0$.

Try to find the optimum.

(x_1, x_2)	$f(x_1,x_2)$
(100, 200)	1300
(200, 200)	1400
(100, 300)	1900

However, we do NOT know whether (100, 300) is exactly the optimal solution.

Duality enables us to prove that a solution is indeed optimal.

24/59

Duality Simplex Method Primal and Dual Form Duality Theorem

Intuitive Way to Show Optimality

Whether (100, 300) is optimal? (The objective value is 1900)

Upper bounding $x_1 + 6x_2$ by linearly combining constraints.

$\max x_1 + 6x_2$	Multiplier	Constraint
s.t. $x_1 + x_2 \le 400$, $x_1 \le 200$,	<i>y</i> ₁	$x_1 + x_2 \le 400$
$x_1 \le 200,$ $x_2 \le 300,$ $x_1, x_2 \ge 0.$	у2 У3	$x_1 \le 200$ $x_2 \le 300$

When $(y_1, y_2, y_3) = (0, 1, 6), x_1 + 6x_2 \le 2000$; When $(y_1, y_2, y_3) = (1, 0, 5), x_1 + 6x_2 \le 1900$! Optimal!

However, it is only a coincidence...

Introducti **Dual** Simplex Meth

Primal and Dual Form Duality Theorem

Rational Way to Show Optimality

 $(y_1, y_2, y_3) = (1, 0, 5)$ serves as a certificate of the optimality, but how can we find it rationally?

Multiplier	Constraint
<i>y</i> ₁	$x_1 + x_2 \le 400$
У2	$x_1 \le 200$
у 3	$x_2 \le 300$

Multiply horizontally and add vertically, we obtain

$$(y_1 + y_2)x_1 + (y_1 + y_3)x_2 \le 400y_1 + 200y_2 + 300y_3.$$

 $y_1, y_2, y_3 \ge 0$ to ensure no flipping from \le to \ge in constraints.

Rational Way to Show Optimality

$(y_1 + y_2)x_1 + (y_1 + y_3)x_2 \le 400y_1 + 200y_2 + 300y_3$

We want the left-hand side to look like our objective function $x_1 + 6x_2$, so that the right-hand side becomes an upper bound on the objective function.

$$x_1 + 6x_2 \le 400y_1 + 200y_2 + 300y_3 \text{ if } \begin{cases} y_1, y_2, y_3 \ge 0 \\ y_1 + y_2 \ge 1 \\ y_1 + y_3 \ge 6 \end{cases}$$

We should minimize $400y_1 + 200y_2 + 300y_3$ to get the tightest upper bound of $x_1 + 6x_2$. A new LP problem!

Dual LP

The new LP problem:

min
$$400y_1 + 200y_2 + 300y_3$$

s.t. $y_1 + y_2 \ge 1$,
 $y_1 + y_3 \ge 6$,
 $y_1, y_2, y_3 \ge 0$.

We call it the dual form of the original LP problem.

29/59

Introduction
Duality
Simplex Method

Primal and Dual Form Duality Theorem

Primal and Dual Form

Correspondingly, we call the original LP problem as primal form.

$$\begin{array}{lll} \max & x_1 + 6x_2 & \Rightarrow & \min & 400y_1 + 200y_2 + 300y_3 \\ s.t. & x_1 + x_2 \leq 400, & s.t. & y_1 + y_2 \geq 1, \\ & x_1 \leq 200, & y_1 + y_3 \geq 6, \\ & x_2 \leq 300, & y_1, y_2, y_3 \geq 0. \\ & x_1, x_2 \geq 0. & \end{array}$$

Primal Form

Dual Form

Introductior **Duality** Simplex Method Primal and Dual Form Duality Theorem

Primal and Dual Form

Generally we have the primal and dual form of LP as

$$\max \sum_{j=1}^{n} c_{j}x_{j} \Rightarrow \min \sum_{i=1}^{m} b_{i}y_{i}$$

$$s.t. \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, \quad \forall i \qquad s.t. \sum_{i=1}^{m} a_{ij}y_{i} \geq c_{j}, \quad \forall j$$

$$x_{j} \geq 0. \quad \forall j \qquad y_{i} \geq 0. \quad \forall i$$

It is obvious that the dual of dual form is the primal form.

Matrix-Vector Form

More generally, we can write primal and dual form in matrices and vectors.

$$\begin{array}{llll} \max & \mathbf{c}^T \mathbf{x} & \min & \mathbf{y}^T \mathbf{b} \\ s.t. & \mathbf{A} \mathbf{x} \leq \mathbf{b}, & \Rightarrow & s.t. & \mathbf{y}^T \mathbf{A} \geq \mathbf{c}^T, \\ & \mathbf{x} \geq \mathbf{0}. & & \mathbf{y} \geq \mathbf{0}. \end{array}$$

Observations of Duality

$$\begin{array}{llll} \max & x_1+6x_2 & \min & 400y_1+200y_2+300y_3 \\ s.t. & x_1+x_2 \leq 400, & s.t. & y_1+y_2 \geq 1, \\ & x_1 \leq 200, & y_1+y_3 \geq 6, \\ & x_2 \leq 300, & y_1,y_2,y_3 \geq 0. \\ & x_1,x_2 \geq 0. & \end{array}$$

Recall $x_1 + 6x_2 \le 400y_1 + 200y_2 + 300y_3$. We observe that any feasible value of dual LP is an upper bound of the primal LP.

If we find a pair of primal and dual feasible objective values that are equal, then they must both be optimal.

One such pair, making the objective value both 1900, is:

Primal:
$$(x_1, x_2) = (100, 300)$$
; Dual: $(y_1, y_2, y_3) = (1, 0, 5)$.

Dual Form

Duality Simplex Method

Primal Form

Primal and Dual Form Duality Theorem

Duality Theorem

Theorem (Weak Duality Theorem)

Let x be any feasible solution to the primal LP, and let y be any feasible solution to its dual LP. Then $\sum_{j=1}^{n} c_j x_j \leq \sum_{i=1}^{m} b_i y_i$.

Theorem (Strong Duality Theorem)

x and y are optimal solutions to primal and dual LPs respectively if and only if $\sum_{i=1}^{n} c_i x_i = \sum_{i=1}^{m} b_i y_i$.

Proof of Weak Duality Theorem

Theorem (Weak Duality Theorem)

Let x be any feasible solution to the primal LP, and let y be any feasible solution to its dual LP. Then $\sum_{j=1}^{n} c_j x_j \leq \sum_{i=1}^{m} b_i y_i$.

$$\max \sum_{j=1}^{n} c_{j}x_{j} \Rightarrow \min \sum_{i=1}^{m} b_{i}y_{i}$$

$$s.t. \sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, \quad \forall i \qquad s.t. \sum_{i=1}^{m} a_{ij}y_{i} \geq c_{j}, \quad \forall j$$

$$x_{j} \geq 0. \quad \forall j \qquad y_{i} \geq 0. \quad \forall i$$

Proof.

$$\sum_{i=1}^{n} c_{i} x_{j} \leq \sum_{i=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{i=1}^{n} a_{ij} x_{j} \right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}.$$

35/59

Recall: Profit Maximization-2D Case

Proof of Strong Duality Theorem

Theorem (Strong Duality Theorem)

x and y are optimal solutions to primal and dual LPs respectively if and only if $\sum_{i=1}^{n} c_i x_i = \sum_{i=1}^{m} b_i y_i$.

Proof.

"\(\infty\)": By **Weak Duality Theorem**, $\sum_{i=1}^{n} c_{j}x_{j} \leq \sum_{i=1}^{m} b_{i}y_{i}$. The primal

LP is a maximization problem and the dual LP is a minimization problem. Thus, if feasible solutions x and y have the same objective value, neither can be improved.

"⇒": It involves using Simplex Method, which contains complex mathematical derivations. We omit here.

Products : **1**, **2**;

Resources : A, B, C.

○ 200 **A**; 300 **B**; 400 **C**.

• Product $\mathbf{1} = 1\mathbf{A} + 1\mathbf{C}$.

• Product 2 = 1B + 1C.

• Price(1)=1, Price(2)=6.

Goal: Maximum profit.

Suppose : x_1 for $\mathbf{1}$; x_2 for $\mathbf{2}$.

$\max \quad f(x_1, x_2) = x_1 + 6x_2$

s.t.
$$x_1 + x_2 \le 400$$
, $x_1 \le 200$,

$$x_2 \le 300,$$

$$x_1, x_2 \ge 0.$$

Optimal Solution:

$$(x_1, x_2) = (100, 300)$$

38/59

Introduction
Duality
Simplex Method

Brief Overview
Introductory Example
Summarization and Further Topics

2D Case: Where is the Optimum?

Where is the optimum in the feasible region?

Constraints form the feasible region.

max $f(x_1, x_2) = x_1 + 6x_2$ s.t. $x_1 + x_2 \le 400$, $x_1 \le 200$, $x_2 \le 300$, $x_1, x_2 > 0$.

On the Vertex!

Introduction Duality Simplex Method Brief Overview
Introductory Example
Summarization and Further Topics

3D Case

Problem:

 $\max x_1 + 6x_2 + 13x_3$ s.t. $x_1 + x_2 + x_3 \le 400,$ $x_2 + 3x_3 \le 600,$ $x_1 \le 200,$ $x_2 \le 300,$ $x_1, x_2, x_3 \ge 0.$

Where is the optimum?

Feasible Region:

On the Vertex!

General Description of Simplex Algorithm

How to Find Optimum?

Based on 2D and 3D situation, how can we find optimum of LP?

- Move on the boundary;
- Find the vertex with largest (smallest) objective value.

Simplex Algorithm: For LP with arbitrary *n* variables.

Definitions:

- Linear constraints form the boundary as a polyhedron, consisting of hyperplanes.
- Vertex is the point at which some hyperplanes meet.
- Two vertices are neighbors if they are adjacent on the polyhedron.

Observation : The optimal solution of LP exists on the vertex of the feasible region.

43/59

Introduction Duality polex Method

Introductory Example
Summarization and Further

General Description of Simplex Algorithm

Example:

• A polyhedron defined by 7 inequalities (thus 7 hyperplanes).

s.t.

- **Vertices** : *A*, *B*, *C*,...
- \circ Neighbors : $\{A, B\}, \{A, C\},...$

 $\max x_1 + 6x_2 + 13x_3$

 $x_1 \leq 200, \quad \bigcirc$

 $x_2 \le 300, \quad \bigcirc$

 $x_1 + x_2 + x_3 \le 400$, 3

 $x_2 + 3x_3 \le 600, \quad \textcircled{4}$

 $x_1 \ge 0,$ (3)

 $x_3 \ge 0$.

 \bigcirc

Introductio Dualit Simplex Metho Brief Overview Introductory Example Summarization and Further Topics

General Description of Simplex Algorithm

On each iteration, the Simplex Algorithm will do :

- Check whether the current vertex is optimal (if so, halt).
- Determine where to move next. → The one contributes to the increase of objective function.

Initial Idea:

- Start at a vertex.
- Compare objective value with the neighbors.
- Move to neighbor that improves objective function, and repeat step 2.
- o If no improving neighbor, stop.

45/59

Brief Overview of Algorithms for LP

Simplex Algorithm

- ▶ Efficient in practice, but exponential in worst case.
- Interior Point Algorithms
 - \triangleright Ellipsoid Algorithm $O(n^4L)^{\dagger}$
 - \triangleright Karmarkar's Algorithm $O(n^{3.5}L)$
 - ▶ Path-Following Method (Barrier Function Method)

Simplex (Boundary)

Interior Point (Inside)

 $^{\dagger}L$ is bit length.

47/59

49/59

Introduction Duality Simplex Method

Brief Overview
Introductory Example
Summarization and Further Topics

An Introductory Example

Step 1: Converting LP into slack form

 x_3, x_4, x_5 are slack variables.

An Introductory Example

How to perform simplex algorithm on a specific LP problem?

Example: Profit Maximization

max
$$f(x_1, x_2) = x_1 + 6x_2$$

s.t. $x_1 + x_2 \le 400$,
 $x_1 \le 200$,
 $x_2 \le 300$,
 $x_1, x_2 \ge 0$.

Introduction
Duality
Simplex Method

Brief Overview
Introductory Example
Summarization and Further Topics

An Introductory Example

Step 2: Obtaining Basic Solution

max
$$x_1 + 6x_2$$

s.t. $400-x_1 - x_2 = x_3$,
 $200-x_1 = x_4$,
 $300-x_2 = x_5$,
 $x_1, x_2, x_3, x_4, x_5 \ge 0$.

- o nonbasic variables : x_1 , x_2 (in the objective)
- basic variables : x_3 , x_4 , x_5 (others in the constraints)

There are infinite number of feasible solutions for x_1, \dots, x_5 . The basic solution is obtained by setting all nonbasic variables to be 0.

In this example, the basic solution is

$$\bar{x} = (\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_5) = (0, 0, 400, 200, 300)$$

An Introductory Example

Step 3: Selecting Nonbasic Variable

Our goal, in each iteration, is to reformulate the linear program so that the basic solution gives a greater value of objective function.

Currently for the basic solution $\bar{x} = (0, 0, 400, 200, 300)$, we have

$$f(\bar{x}_1, \bar{x}_2) = \bar{x}_1 + 6\bar{x}_2 = 0.$$

Introductory Example

How to enhance $f(\bar{x}_1, \bar{x}_2)$?

- Select a nonbasic x_e with positive coefficient in $f(x_1, x_2)$;
- \circ Increase the value of x_e without violating constraints.

An Introductory Example

Step 3 : Selecting Nonbasic Variable

max
$$x_1 + 6x_2$$

s.t. $400 - x_1 - x_2 = x_3$,
 $200 - x_1 = x_4$,
 $300 - x_2 = x_5$,
 $x_1, x_2, x_3, x_4, x_5 \ge 0$.

max
$$x_1 + 6x_2$$

s.t. $400 - x_1 - x_2 = x_3$,
 $200 - x_1 = x_4$,
 $300 - x_5 = x_2$,
 $x_1, x_2, x_3, x_4, x_5 > 0$.

- \circ Choose the nonbasic variable x_2 .
- When $x_2 \uparrow$, $x_3 \downarrow$ and $x_5 \downarrow$. However x_3 and x_5 should be nonnegative.
 - $x_3 \le 0 \text{ when } x_2 \ge 400;$ $x_5 \le 0 \text{ when } x_2 \ge 300.$
- \circ 300 $x_2 = x_5$ is the tightest constraint for x_2 .

We transform it into $300 - x_5 = x_2$.

52/59

Duality Simplex Method

Introductory Example

An Introductory Example

Step 4: Pivoting

In **pivoting**, we exchange a nonbasic and a basic variable.

Simplex Method

$$\begin{array}{llll} \max & x_1+6x_2 & \max & x_1+6(300-x_5) \\ s.t. & 400-x_1-x_2=x_3, & \Rightarrow & s.t. & 100-x_1+x_5=x_3, \\ & 200-x_1=x_4, & & 200-x_1=x_4, \\ & 300-x_2=x_5, & & 300-x_5=x_2, \\ & x_1,x_2,x_3,x_4,x_5\geq 0. & & x_1,x_2,x_3,x_4,x_5\geq 0. \\ \hline \bar{x}=\{0,0,400,200,300\} & \Rightarrow & \bar{x}=\{0,300,100,200,0\}. \end{array}$$

- The nonbasic variables become x_1 and x_5 .
- In next round we select a new nonbasic variable with positive coefficient. (x_1 in this example).

An Introductory Example

Step 5 : Repeat Step 2 to Step 4

• Repeat pivoting until all coefficients in the objective are negative.

$$\begin{array}{llll}
\max & x_1 + 6(300 - x_5) & \max & \boxed{1900 - x_3 - 5x_5} \\
s.t. & 100 - x_1 + x_5 = x_3, & \Rightarrow s.t. & 100 - x_3 + x_5 = x_1, \\
& 200 - x_1 = x_4, & 200 - x_1 = x_4, \\
& 300 - x_5 = x_2, & 300 - x_5 = x_2, \\
& x_1, x_2, x_3, x_4, x_5 \ge 0. & x_1, x_2, x_3, x_4, x_5 \ge 0. \\
\bar{x} = \{0, 300, 100, 200, 0\} & \Rightarrow & \bar{x} = \{100, 300, 0, 100, 0\}.
\end{array}$$

54/59

55/59

An Introductory Example

Step 5: Repeat Step 2 to Step 4

• We can proved that when all coefficients are negative, the basic solution \bar{x} is an optimal solution.

- The maximum of the objective function is 1900, when $x_3 = x_5 = 0$;
- $\bar{x} = \{100, 300, 0, 100, 0\}$ is the optimal solution;

The optimal solution for original problem $f(x_1, x_2)$ is :

$$(x_1^*, x_2^*) = (100, 300)$$

56/59

Simplex Method

Tools for Solving LP

Common Softwares and Toolboxes for solving LP:

MATLAB: Toolboxes

Mathematica: Toolboxes

Lingo: Large-scale LP (ILP)

Cplex : Large-scale ILP (Mixed ILP)

Gurobi: Similar to but better than

Cplex synthetically.

YALMIP Yalmip: Toolbox used by Matlab.

Summarization and Further Topics

Summarization:

- Simplex Algorithm searches the optimal vertex on the boundary of feasible region;
- Simplex Algorithm iteratively exchanges the nonbasic and basic variables until the objective function cannot be further enhanced.

Further Topics:

- How to implement Simplex Algorithm?
 - ▶ How to do the **pivoting**?
 - ▶ How to find an initial **basic solution**?
- Can Simplex Algorithm always find the optimal solution?
- What will happen when the feasible region is unbounded?

Please refer to Chapter 29.3 and 29.5 in "Introduction to Algorithms" (CLRS) for details.