Cross Validation

Presentation by Berk Sudan

Remember: a typical split

Why we use cross validation?

Fail to Generalize (Overfitting)

Due to sample variability between training and test set:

- Better prediction on training data but fail to generalize on test data.
- So, low training error rate but a high test error rate.

Overestimation of Test Set

- We use only a subset of data, i.e fewer observations
- So, overestimates the test error rate!

Cross Validation Methods

Leave One out Cross Validation — LOOCV

Ref: https://towardsdatascience.com/a-brief-overview-of-outlier-detection-techniques-1e0b2c19e561

Leave One out Cross Validation — LOOCV

- +. Far less bias as we have used the entire dataset
- +. No randomness in the training/test data

- . MSE will vary, if test point is **outlier**!
- . Execution is expensive -> O(n) complexity

K-Fold Cross Validation (e.g 5-fold)

K-Fold Cross Validation

- +. Computation time is reduced
- +. Reduced bias

- . In unbalanced datasets, test-set may not represent the dataset

Stratified K-Fold Cross Validation

Ref: https://towardsdatascience.com/a-brief-overview-of-outlier-detection-techniques-1e0b2c19e561

Stratified K-Fold Cross Validation

+. Helps with reducing both bias and variance

- . **More** computation

End of Presentation

Presented by Berk Sudan