HPC CUDA C TUTORIAL 12 REPORT CS22B2015 – HARSHITH B

1. Introduction

This report analyzes the performance of serial and parallel implementations for calculating the matrix multiplication of two matrices of size 10000x10000. A serial code written in C and a parallel code written in CUDA (.cu) were developed to perform this computation, and their execution times are compared to evaluate efficiency and potential speedup.

2. Serial Code Snippet

3. Parallel Code Snippet

```
void multiply matrices(double *d matrix1, double *d matrix2, double *d result) {
     int i = blockIdx.x * blockDim.x + threadIdx.x;
     int j = blockIdx.y * blockDim.y + threadIdx.y;
     if (i < N && j < N) {
         int idx = i * N + j;
         d_result[idx] = d_matrix1[idx] * d_matrix2[idx];
         printf("d result[%d] = %f\n", idx, d result[idx]);
double *d_matrix1, *d_matrix2, *d_result;
cudaMalloc((void **)&d_matrix1, N * N * sizeof(double));
cudaMalloc((void **)&d matrix2, N * N * sizeof(double));
cudaMalloc((void **)&d_result, N * N * sizeof(double));
cudaMemcpy(d matrix1, matrix1, N * N * sizeof(double), cudaMemcpyHostToDevice);
cudaMemcpy(d matrix2, matrix2, N * N * sizeof(double), cudaMemcpyHostToDevice);
dim3 threadsPerBlock(16, 16);
dim3 blocksPerGrid((N + threadsPerBlock.x - 1) / threadsPerBlock.x,
                   (N + threadsPerBlock.y - 1) / threadsPerBlock.y);
cudaEvent t start, end;
cudaEventCreate(&start);
cudaEventCreate(&end);
cudaEventRecord(start);
multiply matrices<<<br/>blocksPerGrid, threadsPerBlock>>>(d matrix1, d matrix2, d result);
cudaEventRecord(end);
cudaEventSynchronize(end);
float milliseconds = 0;
cudaEventElapsedTime(&milliseconds, start, end);
printf("Time: %f seconds\n", milliseconds);
cudaMemcpy(result, d result, N * N * sizeof(double), cudaMemcpyDeviceToHost);
cudaFree(d matrix1);
```

4. Terminal Output Screenshot

cudaFree(d_matrix2);
cudaFree(d_result);

```
• (venv) harshith@harshithb:~/Projects /SEM 6/HPC/tutorial-12$ nvcc -o parallel parallel.cu
• (venv) harshith@harshithb:~/Projects /SEM 6/HPC/tutorial-12$ ./parallel
Time: 15.571456 seconds

result[9999][9000]: 2517257282330518.000000
```

Serial Time: 14939.116942 seconds

5. Serial and Parallel Code Execution Time and Speedup Calculation

• Serial Code Execution Time: 14939.116942 seconds

• Parallel Code Execution Time: 15.571456 seconds

Speedup Calculation:

Speedup = Serial Execution Time / Parallel Execution Time

Speedup Estimation = 959.39