AULA 15

Prof. Mathias

Algoritmos de busca

Análise de Algoritmos

Agenda

- Aula anterior
- Introdução
- Busca em largura
- Busca em profundidade
- Exercícios
- Próxima aula

Aula Anterior

- Busca linear estática
- Busca Sequêncial estática
- Busca binária estática

Agenda

- Aula anterior
- Introdução

Mathias Talevi Betim

Grafos:

 Um grafo G consiste de um conjunto finito de elementos chamado vértices (denotado por V(G)) e um conjunto de pares não ordenado de vértices chamado arestas (denotado por E(G)).

• Grafos:

Mathias Talevi Betim

Grafos:

Se e é uma aresta u e v são seus vértices, podemos dizer que e liga u a v, e denotamos por e = (u, v) ou e = uv. Os vértices u e v são os extremos de e.

• Grafos:

 Os extremos de uma aresta são incidentes à aresta, e vice-versa.

Grafos:

 Dois vértices incidentes a uma mesma aresta são adjacentes. O mesmo nome é dado a duas arestas incidentes a um mesmo vértice (vizinhos).

- Grafos:
 - Laços:
 - Aresta com extremos no mesmo vértice.

- Grafos:
 - Arestas paralelas:
 - Ligam os mesmos pares de vértices

- Grafos:
 - Grafo simples:
 - Não possui laço nem arestas paralelas

- Grafos:
 - Ordem de um grafo:
 - Número de vértices que ele possui v(G) e a(G):
 - Denotam, respectivamente, o número de vértices e arestas de um grafo G. Quando o grafo estiver subentendido usaremos apenas v e a.

Grafos:

- Um grafo é vazio se não possui vértices;
- Um grafo é completo se cada par de vértices distintos é ligado por uma aresta;
- Um grafo completo com n vértices é denotado por kn.

- Grafos:
 - Um grafo é conexo se possui uma única componente.

Grafos:

- Um grafo é bipartido se o seu conjunto de vértices pode ser particionado em dois subconjuntos X e Y, tais que cada aresta possui um extremo em X e outro em Y; a partição (X, Y) é chamada de bipartição do grafo.
- Um grafo é bipartido completo se ele é bipartido com bipartição (X, Y) e todo vértice de X é ligado a todo vértice de Y. Se |X| = m e |Y| = n, tal grafo é denotado por Km, n.

• Grafos:

Mathias Talevi Betim

- Grafos:
 - É um grafo bipartido?

Mathias Talevi Betim

- Algoritmos em Grafos:
 - Como representar computacionalmente um grafo?

Matriz de incidência

G	e1	e2	e3	e4	e5	e6	e7
v1	1	1	0	0	1	0	1
v2	1	1	1	0	0	0	0
v3	0	0	1	1	0	0	1
v4	0	0	0	1	1	2	0

- Algoritmos em Grafos:
 - Como representar computacionalmente um grafo?

Matriz de adjacência

G	v1	v2	v3	v4
v1	0	2	1	1
v2	2	0	1	0
v3	1	1	0	1
v4	1	0	1	1

• Algoritmos em Grafos:

- A estrutura de grafos possibilita a resolução de vários problemas, então é importante obter um processo sistemático e conscistente de como caminhar pelas arestas e vértices de uma grafo.
- Vamos descrever como seria a busca em grafos nesta aula, a busca em largura e busca em profundidade.

Agenda

- Aula anterior
- Introdução
- Busca em largura

 O algoritmo de busca em largura pode ser descrito da seguinte forma:

- O algoritmo de busca em largura pode ser descrito da seguinte forma:
 - Põe na fila um vertice u qualquer de G e registra como alcançado;
 - Enquanto fila != de vazio faça
 - u ← elemento da frente da fila (retire u da fila)
 - Para toda aresta (u, w), tal que w ainda não foi alcançado, marque w como alcançado e põe w na fila

• O algoritmo de busca em largura pode ser descrito da seguinte forma:

Mathias Talevi Betim

l1	escolha uma raiz s de G	c1	1
12	marque s	c2	1
13	insira s em F	c3	1
14	enquanto F não está vazia faça	c4	n
15	seja v o primeiro vértice de F	c5	n-1
16	para cada w ∈ listaDeAdjacência de v faça	c6	$\sum_{j=1}^{n-1} t_j$
17	se w não está marcado então	c7	$\sum_{j=1}^{n-1} t_j - 1$
18	visite aresta entre v e w	c8	$\sum_{j=1}^{n-1} t_j - 1$
19	marque w	c9	$\sum_{j=1}^{n-1} t_j - 1$
110	insira w em F	c10	$\sum_{i=1}^{n-1} t_i - 1$
l11	senao se w ∈ F entao	c11	$\sum_{j=1}^{n-1} t_j - 1$
l12	visite aresta entre v e w	c12	$\sum_{j=1}^{n-1} t_j - 1$
l13	retira v de F	c13	n-1

$$T(n)=C_1+C_2+C_3+C_4+C_5+C_6+C_7+C_8+C_9+C_{10}+C_{11}+C_{12}+C_{13}$$

$$T(n) = C_1 + C_2 + C_3 + C_4 n + C_5 (n-1) + C_6 (n-1) + C_7 \sum_{j=1}^{n-1} t_j + C_8 \sum_{j=1}^{n-1} t_j - 1 + C_9 \sum_{j=1}^{n-1} t_j - 1 + C_{10} \sum_{j=1}^{n-1} t_j - 1 + C_{11} \sum_{j=1}^{n-1} t_j - 1 + C_{12} \sum_{j=1}^{n-1} t_j - 1 + C_{12} \sum_{j=1}^{n-1} t_j - 1 + C_{13} (n-1) + C_{13} \sum_{j=1}^{n-1} t_j - 1 + C_{14} \sum_{j=1}^{n-1} t_j - 1 + C_{15} \sum_{j=1}^{n-1} t_j - 1 + C$$

$$T(n) = C_1 + C_2 + C_3 + C_4 n + C_5 (n-1) + C_6 (n-1) + C_7 \frac{n(n+1)}{2} - 1 + C_8 \frac{n(n-1)}{2} + C_9 \frac{n(n-1)}{2} + C_{10} \frac{n(n-1)}{2} + C_{11} \frac{n(n-1)}{2} + C_{12} \frac{n(n-1)}{2} + C_{13} (n-1) + C_{14} \frac{n(n-1)}{2} + C_{15} \frac{n(n-1)}{2} + C_{16} \frac{n(n-1)}{2} + C_{16} \frac{n(n-1)}{2} + C_{17} \frac{n(n-1)}{2} + C_{18} \frac{n(n-1)}{2} + C_{18} \frac{n(n-1)}{2} + C_{18} \frac{n(n-1)}{2} + C_{19} \frac{n(n-1)}{2}$$

$$T(n) = \left(\frac{c_7 + c_8 + c_9 + c_{10} + c_{11} + c_{12}}{2}\right)n^2 + \left(c_4 + c_5 + c_6 + c_{13} + \frac{c_7}{2} - \frac{c_8}{2} - \frac{c_9}{2} - \frac{c_{10}}{2} - \frac{c_{11}}{2} - \frac{c_{12}}{2}\right)n - \left(c_5 + c_6 + c_7 + c_{13}\right)n^2 + \left(c_4 + c_5 + c_6 + c_{13} + \frac{c_7}{2} - \frac{c_8}{2} - \frac{c_9}{2} - \frac{c_{10}}{2} - \frac{c_{11}}{2} - \frac{c_{12}}{2}\right)n - \left(c_5 + c_6 + c_7 + c_{13}\right)n^2 + \left(c_4 + c_5 + c_6 + c_{13} + \frac{c_7}{2} - \frac{c_8}{2} - \frac{c_9}{2} - \frac{c_{10}}{2} - \frac{c_{11}}{2} - \frac{c_{12}}{2}\right)n - \left(c_5 + c_6 + c_7 + c_{13}\right)n^2 + \left(c_4 + c_5 + c_6 + c_{13} + \frac{c_7}{2} - \frac{c_8}{2} - \frac{c_9}{2} - \frac{c_{10}}{2} - \frac{c_{11}}{2} - \frac{c_{12}}{2}\right)n^2 + \left(c_4 + c_5 + c_6 + c_{13} + \frac{c_7}{2} - \frac{c_8}{2} - \frac{c_9}{2} - \frac{c_{10}}{2} - \frac{c_{11}}{2} - \frac{c_{12}}{2}\right)n^2 + \left(c_5 + c_6 + c_7 + c_{13} + \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2}\right)n^2 + \left(c_5 + c_6 + c_7 + c_{13} + \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2}\right)n^2 + \left(c_5 + c_6 + c_7 + c_{13} + \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2} - \frac{c_{12}}{2}\right)n^2 + \left(c_5 + c_6 + c_7 + c_{13} + \frac{c_{12}}{2} - \frac{c_{12$$

Então , $T(n) = an^2 + bn - c$ em que a e b e c são constantes . T(n) é uma função quadrática de n

Mathias Talevi Betim

Agenda

- Aula anterior
- Introdução
- Busca em largura
- Busca em profundidade

• O algoritmo de busca em profundidade pode ser descrito da seguinte forma:

- O algoritmo de busca em profundidade pode ser descrito da seguinte forma:
 - Empilhe um vértice qualquer v de G e marque-o como alcançado
 - Enquanto pilha != NULL faça
 - v ← elemento o topo da pilha
 - se existe aresta (v,w), tal que w ainda não foi alcançado, então marque w como alcançado e empilhe w; senão desempilha v.

• O algoritmo de busca em profundidade pode ser descrito da seguinte forma:

Mathias Talevi Betim

11	para u ← 1 até n faça	c1	n
12	cor[u] ← branco	c2	n-1
13	cor[r] ← cinza	c3	n-1
14	p ← Cria-Pilha (r)	c4	n-1
15	enquanto P não estiver vazia faça	c5	$\sum_{i=1}^{n-1} t_i$
16	u ← Copia-Topo-da-Pilha (P)	с6	$\sum_{n-1}^{j=1} \sum_{j=1}^{n-1} t_j - 1$
17	v ← Próximo (Adj[u])	c7	$\sum_{j=1}^{n-1} t_j - 1$
18	se v≠nil	c8	$\sum_{j=1}^{n-1} t_j - 1$ $\sum_{j=1}^{n-1} t_j - 1$
19	então se cor[v] = branco	с9	$\sum t_j - 1$
110	então cor[v] ← cinza	c10	$\sum_{j=1}^{j=1} t_j - 1$
I11	coloca-na-Pilha (v, P)	c11	$\sum_{j=1}^{n-1} t_j - 1$
l12	senão cor[u] ← preto	c12	$\sum_{j=1}^{j=1} t_{j} - 1$
l13	tira-da-Pilha (P)	c13	$\sum_{j=1}^{n-1} t_j - 1$
I 14	devolva cor[1n]	c14	n-1

$$T(n)=C_1+C_2+C_3+C_4+C_5+C_6+C_7+C_8+C_9+C_{10}+C_{11}+C_{12}+C_{13}+C_{14}$$

$$T(n) = C_{1}n + C_{2}(n-1) + C_{3}(n-1) + C_{4}(n-1) + C_{5}\sum_{j=1}^{n-1}t_{j} + C_{6}\sum_{j=1}^{n-1}t_{j} - 1 + C_{7}\sum_{j=1}^{n-1}t_{j} - 1 + C_{8}\sum_{j=1}^{n-1}t_{j} - 1 + C_{10}\sum_{j=1}^{n-1}t_{j} - 1 + C_{10}\sum_{j=1}$$

$$T(n) = C_1 n + C_2(n-1) + C_3(n-1) + C_4(n-1) + C_5 \frac{n(n+1)}{2} - 1 + C_6 \frac{n(n-1)}{2} + C_7 \frac{n(n-1)}{2} + C_8 \frac{n(n-1)}{2} + C_9 \frac{n(n-1)}{2} + C_{10} \frac{n(n-1)}{2} + C_{10} \frac{n(n-1)}{2} + C_{11} \frac{n(n-1)}{2} + C_{12} \frac{n(n-1)}{2} + C_{13} \frac{n(n-1)}{2} + C_{14}(n-1)$$

$$T(n) = (\frac{c_5 + c_6 + c_7 + c_8 + c_9 + c_{10} + c_{11} + c_{12} + c_{13}}{2})n^2 + (c_1 + c_2 + c_3 + c_4 + c_{14} + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} - \frac{c_8}{2} - \frac{c_9}{2} - \frac{c_{10}}{2} - \frac{c_{11}}{2} - \frac{c_{12}}{2} - \frac{c_{13}}{2})n - (c_2 + c_3 + c_4 + c_5 + c_{14})n^2 + (c_1 + c_2 + c_3 + c_4 + c_{14} + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} - \frac{c_8}{2} - \frac{c_9}{2} - \frac{c_{10}}{2} - \frac{c_{11}}{2} - \frac{c_{12}}{2} - \frac{c_{13}}{2})n - (c_2 + c_3 + c_4 + c_5 + c_{14})n^2 + (c_1 + c_2 + c_3 + c_4 + c_5 + c_{14})n^2 + (c_1 + c_2 + c_3 + c_4 + c_5 + c_{14})n^2 + (c_1 + c_2 + c_3 + c_4 + c_5 + c_{14})n^2 + (c_1 + c_2 + c_3 + c_4 + c_5 +$$

Então, $T(n) = an^2 + bn - c$ em que a e b e c são constantes. T(n) é uma função quadrática de n

Mathias Talevi Betim

Agenda

- Aula anterior
- Introdução
- Busca em largura
- Busca em profundidade
- Exercícios

Exercícios

- Implemente o grafo solicitado em sala (desenho no quadro) e codifique a busca em largura com fila e profundidade com pilha.
- Analise a complexidade dos algoritmos de busca

Agenda

- Aula anterior
- Introdução
- Busca em largura
- Busca em profundidade
- Exercícios
- Próxima aula

Próxima aula

Método guloso

AULA 15

Prof. Mathias