ASSINGMENT1

1) 0-7 aralığında anahtarı 0 yapınca geri 1 yapıncca ileriye doğuru sayan bir sayaç tarsarladım.

2) Sayaçların hızını ayarlayabileceğimiz bir clock divider tasarladım.

3) Sayacı hızlandırıp yavaşlatabileceğim bir count speed tasarladım.

```
module count_speed (
    input clk, rst, x,
    output reg [7:0]out
  wire slow_clk,slct_clk;
 clkdvd divider(.out(slow_clk),.x(2'b01),.clk(clk));
  assign slct_clk= x? clk: slow_clk;
 always @(posedge slct_clk) begin
     if (rst) begin
       out <= 8'b0;
     end else begin
      out <= out + 1;
   end
```

) endmodule

4)

a) Otomatik bir şekilde ileriye ve geriye sayabilen bir sayaç tasarladım.

b) Bir anahtar yardımı ile sayacın hızını değiştirebileceğim bir modül tasarladım.

c) Hızını bir anahtar yardımı ile ileri ve geri saymasını da bir buton yardımı ile değiştirebileceğimiz bir modül tasarladım.

```
module button (
  input clk,rst, button,switch,
  output reg [3:0] out=4'b0
  reg change=0,ns=0;
  wire slct,fast,slow,d_button_syc;
debouncer dut (.din(button),.clk(clk),.dfinal(d_button_syc));
clk_divider_main dt(.clk(clk),.slow(slow),.fast(fast));
assign slct = switch? fast:slow;
always@ (posedge clk) begin
                ns <= d_button_syc;</pre>
        if(d_button_syc==1 && ns==0)begin
            change<=!change;
always@ (posedge slct, negedge rst) begin
        if (~rst) begin
             out <= 0;
    else begin
        if (change) begin
           out <= out+1;
        end
            out <= out-1;
      end
   end
 end
endmodule
```


d) 4. Madde için yapmış olduğum modüle bir start-stop butonu daha ekledim.

