ASSIGNMENT 4 - CLASSIFICATION

Objective: The goal of this assessment is to test your understanding and ability to apply supervised learning techniques to a real-world dataset.

Dataset: Use the breast cancer dataset available in the sklearn library.

```
In [1]: import warnings
import sys
if not sys.warnoptions:
    warnings.simplefilter("ignore")
```

1. Loading and Preprocessing

- Load the breast cancer dataset from sklearn.
- Preprocess the data to handle any missing values and perform necessary feature scaling.
- Explain the preprocessing steps you performed and justify why they are necessary for this dataset.

import warnings import sys if not sys.warnoptions: warnings.simplefilter("ignore")import warnings import sys if not sys.warnoptions: warnings.simplefilter("ignore")

```
In [4]: # Importing necessary libraries
        from sklearn.datasets import load_breast_cancer
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        import pandas as pd
        import numpy as np
In [5]: # Load the breast cancer dataset
        data = load breast cancer()
        X = pd.DataFrame(data.data, columns=data.feature_names)
        y = pd.Series(data.target, name="target")
        # Display basic info about the dataset
        print("Dataset shape:", X.shape)
        print("Number of missing values in each column:\n", X.isnull().sum())
        # Preprocessing: Handling missing values
        # In this dataset, there are no missing values. However, in general, we can hand
        # Example: X.fillna(X.mean(), inplace=True) # Replace missing values with colum
        # Preprocessing: Feature scaling
        scaler = StandardScaler() # Standardization scales the features to have mean=0
        X_scaled = scaler.fit_transform(X) # Fit and transform the features
        # Splitting the data into train and test sets
        X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2,
```

Verify scaled data
print("\nFirst 5 rows of scaled features:\n", pd.DataFrame(X_scaled, columns=dat

```
Dataset shape: (569, 30)
Number of missing values in each column:
mean radius
                          0
mean texture
                         0
mean perimeter
                         0
mean area
                         0
                         0
mean smoothness
mean compactness
                         0
mean concavity
mean concave points
                         0
mean symmetry
mean fractal dimension
radius error
                         0
texture error
                         0
                         0
perimeter error
area error
                         0
smoothness error
                         0
                         0
compactness error
concavity error
concave points error
                         0
symmetry error
fractal dimension error
                         0
worst radius
worst texture
                         0
worst perimeter
                         a
                         0
worst area
worst smoothness
worst compactness
                         0
worst concavity
                         0
worst concave points
worst symmetry
                         a
worst fractal dimension
dtype: int64
First 5 rows of scaled features:
   mean radius mean texture mean perimeter mean area mean smoothness \
0
     1.097064 -2.073335 1.269934 0.984375
                                                            1.568466
1
     1.829821
                 -0.353632
                                  1.685955
                                            1.908708
                                                            -0.826962
2
     1.579888
                  0.456187
                                  1.566503
                                            1.558884
                                                             0.942210
3
    -0.768909
                  0.253732
                                 -0.592687 -0.764464
                                                             3.283553
                                 1.776573 1.826229
     1.750297
                 -1.151816
                                                             0.280372
   mean compactness mean concavity mean concave points mean symmetry \
0
          3.283515 2.652874
                                             2.532475
                                                            2.217515
1
         -0.487072
                        -0.023846
                                             0.548144
                                                            0.001392
2
          1.052926
                         1.363478
                                             2.037231
                                                            0.939685
3
          3.402909
                         1.915897
                                             1.451707
                                                            2.867383
4
          0.539340
                         1.371011
                                             1.428493
                                                           -0.009560
   mean fractal dimension ... worst radius worst texture worst perimeter \
                2.255747 ...
0
                                  1.886690 -1.359293
                                                                2.303601
1
               -0.868652 ...
                                  1.805927
                                               -0.369203
                                                                1.535126
2
               -0.398008
                                  1.511870
                                               -0.023974
                                                                1.347475
                         . . .
3
                4.910919
                                 -0.281464
                                                0.133984
                                                                -0.249939
                         ...
4
               -0.562450 ...
                                 1.298575
                                               -1.466770
                                                                1.338539
   worst area worst smoothness worst compactness worst concavity \
0
    2.001237
                     1.307686
                                        2.616665
                                                       2.109526
1
    1.890489
                    -0.375612
                                       -0.430444
                                                       -0.146749
2
    1,456285
                     0.527407
                                       1.082932
                                                       0.854974
```

```
3
 -0.550021
                  3.394275
                                  3.893397
                                                1.989588
4 1.220724
                  0.220556
                                  -0.313395
                                                0.613179
  worst concave points worst symmetry worst fractal dimension
0
           2.296076 2.750622
                                              1.937015
           1.087084
                        -0.243890
1
                                              0.281190
           1.955000
                                              0.201391
2
                        1.152255
3
           2.175786
                        6.046041
                                              4.935010
                       -0.868353
            0.729259
4
                                             -0.397100
[5 rows x 30 columns]
```

2. Classification Algorithm Implementation

Implement the following five classification algorithms:

Logistic Regression Decision Tree Classifier Random Forest Classifier Support Vector Machine (SVM) k-Nearest Neighbors (k-NN) For each algorithm, provide a brief description of how it works and why it may be suitable for this dataset.

```
In [4]: # Importing necessary libraries
        from sklearn.linear_model import LogisticRegression
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.svm import SVC
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.metrics import classification_report, accuracy_score
        # Dictionary to store classifiers and their names
        classifiers = {
            "Logistic Regression": LogisticRegression(random_state=42),
            "Decision Tree": DecisionTreeClassifier(random_state=42),
            "Random Forest": RandomForestClassifier(random_state=42, n_estimators=100),
            "Support Vector Machine (SVM)": SVC(kernel='linear', random state=42),
            "k-Nearest Neighbors (k-NN)": KNeighborsClassifier(n_neighbors=5)
        # Loop through each classifier, train it, and evaluate it
        for name, clf in classifiers.items():
            # Train the classifier
            clf.fit(X_train, y_train)
            # Make predictions
            y_pred = clf.predict(X_test)
            # Evaluate performance
            print(f"\n=== {name} ===")
            print("Accuracy: {:.2f}%".format(accuracy_score(y_test, y_pred) * 100))
            print("Classification Report:\n", classification report(y test, y pred))
```

=== Logistic R	_	=		
Accuracy: 97.3 Classification				
CIASSITICACIO	precision	recall	f1-score	support
	p. cc131011		11 30010	suppor c
0	0.98	0.95	0.96	43
1	0.97	0.99	0.98	71
accuracy	0.07		0.97	114
macro avg	0.97	0.97	0.97	114
weighted avg	0.97	0.97	0.97	114
=== Decision T				
Accuracy: 94.7				
Classification	•	11	Ca	
	precision	recall	f1-score	support
0	0.93	0.93	0.93	43
1	0.96	0.96	0.96	71
accuracy			0.95	114
macro avg	0.94	0.94	0.94	114
weighted avg	0.95	0.95	0.95	114
=== Random For	rest ===			
Accuracy: 96.4				
Classification				
	precision	recall	f1-score	support
0	0.98	0.93	0.95	43
1	0.96	0.99	0.97	71
accuracy				
accuracy			0.96	114
•	0.97	0.96	0.96 0.96	114 114
macro avg weighted avg	0.97 0.97	0.96 0.96	0.96 0.96 0.96	
macro avg			0.96	114
macro avg weighted avg	0.97	0.96	0.96 0.96	114
macro avg weighted avg === Support Ve	0.97	0.96	0.96 0.96	114
macro avg weighted avg === Support Ve Accuracy: 95.6	0.97 ector Machine	0.96	0.96 0.96	114
macro avg weighted avg === Support Ve	0.97 ector Machine 51% n Report:	0.96	0.96 0.96	114 114
macro avg weighted avg === Support Ve Accuracy: 95.6	0.97 ector Machine	0.96 (SVM) ==	0.96 0.96	114
macro avg weighted avg === Support Ve Accuracy: 95.6	0.97 ector Machine 51% n Report: precision 0.93	0.96 (SVM) ==	0.96 0.96	114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification	0.97 ector Machine 51% Report: precision	0.96 (SVM) == recall	0.96 0.96 = f1-score	114 114 support
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification	0.97 ector Machine 51% n Report: precision 0.93	<pre>0.96 (SVM) == recall 0.95</pre>	0.96 0.96 = f1-score 0.94 0.96	114 114 support 43 71
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy	0.97 ector Machine 61% n Report: precision 0.93 0.97	0.96 (SVM) == recall 0.95 0.96	0.96 0.96 = f1-score 0.94 0.96	114 114 support 43 71 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg	0.97 ector Machine 61% Report: precision 0.93 0.97	0.96 (SVM) == recall 0.95 0.96	0.96 0.96 = f1-score 0.94 0.96 0.96 0.95	114 114 support 43 71 114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy	0.97 ector Machine 61% n Report: precision 0.93 0.97	0.96 (SVM) == recall 0.95 0.96	0.96 0.96 = f1-score 0.94 0.96	114 114 support 43 71 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg	0.97 ector Machine 61% Report: precision 0.93 0.97	0.96 (SVM) == recall 0.95 0.96	0.96 0.96 = f1-score 0.94 0.96 0.96 0.95	114 114 support 43 71 114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg weighted avg	0.97 ector Machine 61% n Report: precision 0.93 0.97 0.95 0.96 Neighbors (k	0.96 (SVM) == recall 0.95 0.96 0.96	0.96 0.96 = f1-score 0.94 0.96 0.96 0.95	114 114 support 43 71 114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg weighted avg === k-Nearest Accuracy: 94.7	0.97 ector Machine 61% n Report: precision 0.93 0.97 0.95 0.96 Neighbors (k	0.96 (SVM) == recall 0.95 0.96 0.96	0.96 0.96 = f1-score 0.94 0.96 0.96 0.95	114 114 support 43 71 114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg weighted avg	0.97 ector Machine 61% n Report: precision 0.93 0.97 0.95 0.96 Neighbors (k	0.96 (SVM) == recall 0.95 0.96 0.96 -NN) ===	0.96 0.96 = f1-score 0.94 0.96 0.95 0.96	114 114 support 43 71 114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg weighted avg === k-Nearest Accuracy: 94.7	0.97 ector Machine 61% n Report: precision 0.93 0.97 0.95 0.96 Neighbors (k	0.96 (SVM) == recall 0.95 0.96 0.96	0.96 0.96 = f1-score 0.94 0.96 0.95 0.96	114 114 support 43 71 114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg weighted avg === k-Nearest Accuracy: 94.7	0.97 ector Machine fil% Report: precision 0.93 0.97 0.95 0.96 Neighbors (k	0.96 (SVM) == recall 0.95 0.96 0.96 0.96 -NN) === recall	0.96 0.96 = f1-score 0.94 0.96 0.95 0.96	114 114 support 43 71 114 114
macro avg weighted avg === Support Ve Accuracy: 95.6 Classification 0 1 accuracy macro avg weighted avg === k-Nearest Accuracy: 94.7 Classification	0.97 ector Machine 61% n Report: precision 0.93 0.97 0.95 0.96 Neighbors (k	0.96 (SVM) == recall 0.95 0.96 0.96 -NN) ===	0.96 0.96 = f1-score 0.94 0.96 0.95 0.96	114 114 support 43 71 114 114 114

accuracy			0.95	114
macro avg	0.94	0.94	0.94	114
weighted avg	0.95	0.95	0.95	114

Explanation of Each Classification Algorithm:

1. Logistic Regression:

How it works: Logistic regression is used for binary classification. It calculates the probability of an instance belonging to a class using the sigmoid function and makes predictions based on a decision boundary (typically 0.5). Suitability: It works well for binary classification problems (malignant or benign) and is effective when features have a linear relationship with the target.

2. Decision Tree Classifier:

How it works: A decision tree splits the data into subsets based on feature values, creating a tree structure. Each node represents a feature, and branches represent decisions leading to leaf nodes (classes). Suitability: Decision trees handle non-linear relationships well and are interpretable, making them suitable for datasets with complex feature interactions like the breast cancer dataset.

3. Random Forest Classifier:

How it works: A random forest combines multiple decision trees trained on random subsets of data and aggregates their predictions through majority voting. Suitability: Random forests reduce overfitting (common in individual decision trees) and improve generalization, making them effective for datasets with noise and feature interactions.

4. Support Vector Machine (SVM):

How it works: SVM creates a hyperplane that best separates the data into classes by maximizing the margin between the closest points of each class (support vectors). Suitability: SVM is effective for datasets with a clear margin of separation between classes and performs well with high-dimensional data like the breast cancer dataset.

5. k-Nearest Neighbors (k-NN):

How it works: k-NN classifies an instance based on the majority class among its k nearest neighbors in the feature space. Suitability: k-NN is non-parametric and works well for datasets where the decision boundary is not linear. It can capture complex patterns in the breast cancer dataset.

3. Model Comparison

Comparison of Classification Algorithms

1. Logistic Regression:

Accuracy: 97.37% Precision: High for both classes (0 = 98%, 1 = 97%) Recall: High for both classes (0 = 95%, 1 = 99%) F1-Score: 96% (Class 0), 98% (Class 1) Observations: Logistic regression performed the best with the highest accuracy and strong performance across all metrics. It is well-suited for binary classification problems with linearly separable data.

2. Decision Tree:

Accuracy: 94.74% Precision: Good for both classes (0 = 93%, 1 = 96%) Recall: Good for both classes (0 = 93%, 1 = 96%) F1-Score: 93% (Class 0), 96% (Class 1) Observations: Decision trees performed decently but had slightly lower accuracy. Overfitting might be an issue, which reduces their performance compared to other models.

3. Random Forest:

Accuracy: 96.49% Precision: High for both classes (0 = 98%, 1 = 96%) Recall: High for both classes (0 = 93%, 1 = 99%) F1-Score: 95% (Class 0), 97% (Class 1) Observations: Random forests performed almost as well as logistic regression. They reduced overfitting and handled feature interactions well, but had slightly lower recall for Class 0.

4. Support Vector Machine (SVM):

Accuracy: 95.61% Precision: Good for both classes (0 = 93%, 1 = 97%) Recall: Good for both classes (0 = 95%, 1 = 96%) F1-Score: 94% (Class 0), 96% (Class 1) Observations: SVM performed well with good accuracy, but it was slightly less effective than logistic regression and random forests.

5. k-Nearest Neighbors (k-NN):

Accuracy: 94.74% Precision: Good for both classes (0 = 93%, 1 = 96%) Recall: Good for both classes (0 = 93%, 1 = 96%) F1-Score: 93% (Class 0), 96% (Class 1) Observations: k-NN performed similarly to decision trees with slightly lower accuracy and F1-scores. It may be sensitive to the choice of k and feature scaling. Best and Worst-Performing Algorithms: Best-Performing Algorithm: Logistic Regression Logistic regression achieved the highest accuracy (97.37%) and strong metrics across precision, recall, and F1-scores, making it the most effective model for this dataset.

Worst-Performing Algorithm: Decision Tree (and k-NN) Both decision tree and k-NN had the lowest accuracy (94.74%). Decision trees may have suffered from overfitting, while k-NN could have struggled due to the choice of k and distance-based classification.