수기통계 I HW5

2020-15709 WEST

1.3.12.

(a) $(Wr > t) \Leftrightarrow rth$ 현상이 방생하기까지의 시간이 t 이상인 사건 \Leftrightarrow t까지의 시간 동안 (r-1)회의 이하의 현상이 발생한 사건 \Leftrightarrow $(Nt \le r-1)$ $P(Nt \le r-1) = \sum_{k=0}^{\infty} \frac{(xt)^k e^{-\lambda t}}{x!}$ $(pois(\lambda t))$ $P(W_r > t) = \int_{t}^{\infty} \frac{1}{P(r)(\frac{1}{\lambda})^r} y^{r-1} e^{-\frac{y}{\lambda}} dy$ $= \int_{t}^{\infty} \frac{1}{P(r)\lambda^{-r}} y^{r-1} e^{-\frac{y}{\lambda}} dy$ $(Gamma(r, \frac{1}{\lambda}))$

(b) $W_r = W_1 \oplus (W_2 - W_1) \oplus \cdots \oplus (W_r - W_{r-1})$ $Cov(W_1, W_r) = Var(W_1)$ where $W_1 \sim exp(\frac{1}{\lambda})$ $= \frac{1}{2^2}$

1.3.16. $mg_{x}(t) = \sum_{k=0}^{\infty} \frac{E(x^{k})}{k!} t^{k} = \sum_{k=0}^{\infty} \frac{E(x^{k})}{(2i)!} t^{k}$ $= \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{t^{k}}{2}\right)^{k} = e^{\frac{t^{k}}{2}} ole_{2}$ $pd_{x}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{k}}{2}} I_{(-\infty,\infty)}(x)$

1.3.18. $\log X = : YZ \in \mathbb{R} e^{Y} = X$ (a) $E(X^R) = E(e^{YR}) = Mgf_Y(R) = e^{\frac{R^2}{2}R^2 + MR}$

(b) Z := log X, $Z \sim N(0, l^2) = 2 = 52t$. $E(e^{tx}) = \int_{R} e^{tx} p df_{x}(x) dx = \int_{R} e^{te^{2t}} p df_{x}(e^{2t}) dx$ $= \int_{R} e^{te^{2t}} e^{-\frac{2t^2}{2}} dx = \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx = \infty$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx = \infty$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx \ge \int_{R} e^{te^{2t}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx = 0$ $= \int_{R} e^{te^{2t}} \frac{1}{\sqrt{2\pi}} e^{-\frac{2t^2}{2}} dx = 0$ 2. Wife ith sign Hite 142 Aless in Sign Wife Not 12 Aless in Wife Exp($\frac{1}{3}$) with mean $\frac{1}{3}$ old. $E(W) = \sum_{i=1}^{n} E(W_i) = \frac{n}{3}$

3. \[
\begin{align*}

(b) $E(Y) = E(Y+n) - n = n(\beta+1) - n = n\beta$ $Var(Y) = Var(Y+n) = n\beta(\beta+1)$