See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229175402

# On the dependence of optical properties on conformational changes in oligothiophenes I. Electron absorption spectra

ARTICLE in JOURNAL OF MOLECULAR STRUCTURE THEOCHEM · SEPTEMBER 2001
Impact Factor: 1.37 · DOI: 10.1016/S0166-1280(01)00623-6

CITATIONS READS
29 9

3 AUTHORS, INCLUDING:



Martin Breza

Slovak University of Technology in Bra...

164 PUBLICATIONS 832 CITATIONS

SEE PROFILE



Journal of Molecular Structure (Theochem) 572 (2001) 151–160



www.elsevier.com/locate/theochem

# On the dependence of optical properties on conformational changes in oligothiophenes I. Electron absorption spectra

M. Breza\*, V. Lukeš, I. Vrábel

Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia Received 13 March 2001; revised 21 May 2001; accepted 12 June 2001

#### **Abstract**

The geometries of 2,2'-bithiophene, 2,2':5',2''-terthiophene and 2,2:5',2'':5'',2'''-quaterthiophene molecules were optimized by using semiempirical AM1 method for fixed equidistant dihedral angles between neighboring thiophene rings. Corresponding electron spectra are calculated by semiempirical AM1 and ZINDO/S methods. The vibronic interaction between the low lying monoexcited electronic states is symmetry forbidden for any torsion coordinate in all planar oligothiophenes and similar compounds because these electron states are constructed from  $\pi$  molecular orbitals. Mutual orientation of torsion angles is not important for electronic structure of oligothiophenes. The dependence of maximal wavelength  $\lambda_{max}$  on the torsion angle is of similar shape as its squared sine function. Using this dependence the torsional angles for some alkylated oligothiophenes in solution are estimated. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Oligothiophenes; Electron spectra; Torsional dependence; Conformations in solution

### 1. Introduction

Oligo- and polythiophenes are promising materials for a variety of applications in electronics and optoe-lectronics. They are unique for their high stability and non-linear optical properties. Whereas the polymers are obtained as highly amorphous materials, the oligomers can be synthesized as well defined compounds. Moreover, the oligothiophenes provide interesting models for understanding the structural and electronic peculiarities which control the charge transport and optical properties in polythiophenes [1,2].

Electrical and optical properties of thiophene chains are related with intramolecular delocalization of  $\pi$  electrons. This depends on the overlap extent

E-mail address: breza@cvt.stuba.sk (M. Breza).

between out-of-plane p orbitals (usually denoted as  $p_z$ ) of the carbon atoms forming the inter-ring bonds and is therefore governed by the internal rotation about this bond. The degree of planarity directly determines the effective conjugation lengths [3].

Theoretical calculations can predict the preferred chain conformational structure at least in the gas phase. Electron diffraction study of the 2,2'-bithiophene molecule (T2) performed at 97–98°C in the gas phase has shown the coexistence of two conformations with the inter-ring torsion angles  $\Theta \sim 148^\circ$  and  $\Theta \sim 36^\circ$  with statistical weights of 56 and 44%, respectively. The *trans*-gauche conformation is 0.18 kcal mol<sup>-1</sup> more stable [4]. Whereas ab initio calculations using small basis sets (3-21G\* and lower) indicate the planar conformations as the most stable [2,5–7], the use of sufficiently large basis sets with polarization functions enables the correct description of the qualitative nature of the torsion

<sup>\*</sup> Corresponding author. Tel.: +421-2-59325482; fax: +421-2-52493198.

potential with *syn*-gauche and *anti*-gauche minima (the latter being more stable) and with *syn*, *anti* and orthogonal transition states at all levels of approximation [8–15]. Adding diffuse functions consistently lowers most of the potential curves whereas the relative energetics of the *syn* and *anti* conformations as well as the corresponding torsion angles are much less modified. MP2 and MP4 proved to be superior to all variants of DFT studied [14–17].

No experimental structure data are available on 2,2':5',2''-terthiophene (T3) and 2,2':5',2'':5'',2'''quaterthiophene (T4) in the gas phase. Analogously to T2, ab initio calculations of T3 using STO-3G\* and 3-21G\* basis sets at SCF level indicate the all-anti planar conformation as the most stable one [18] whereas HF/6-31G\* [19] and analogous DFT [20] calculations show the higher stability of non-planar conformation with similar torsion angles as in T2. The structures of T4 and higher oligomers have been calculated using semiempirical methods only [2,3,21-24]. It was found that internal rotational potentials obtained by semiempirical AM1 method are too flat but qualitatively in agreement with those found by the most advanced ab initio calculations. Semiempirical PM3 method does not give accurate conformations (wrong relative stabilities) and INDO method prefers planar conformations due to neglecting small steric interactions [3].

The situation in liquid and especially in solid-state systems is more complicated. The conformational potential curve of the chain may be separated into two terms: an intramolecular potential where steric repulsions and delocalization energy are taken into account and an intermolecular potential that involves all intermolecular forces between the chain and the environment. These three parameters depend upon the torsional angle between the adjacent rings. It is assumed that both the delocalization energy and the attractive intermolecular interactions favor a coplanar structure whereas, depending on the substitution pattern, the repulsive steric interactions can favor any conformation between 0 and 180°. The resulting overall conformational structure of the various oligothiophenes is determined by an energetic compromise between these three parameters [25–27].

NMR spectra [28,29] of bithiophene partially oriented in a nematic phase of a liquid crystalline solvent indicate the existence of two rotamers with

the *anti* structure more stable than the *syn* one by  $0.2 \text{ kcal mol}^{-1}$  and separated by a barrier of  $5 \pm 2 \text{ kcal mol}^{-1}$ . The relative concentration of the two isomers at room temperature is 64% *anti* to 36% *syn*. However, the observed absorption maxima in UV–Vis spectra are at 3.49 eV in the solid state and at 4.05 eV in the solution [30].

The first electronic transition of bithiophene absorption spectrum in the gas phase is centered at  $34~600~\mathrm{cm}^{-1}$  with the shoulder at  $\sim 30~900~\mathrm{cm}^{-1}$ that has been assigned to the (0,0) electronic transition. An experimental evaluation of the gas phase transition energy can be done by measuring the absorption spectrum in a series of n-alkanes. The wavenumber of the absorption peak should vary linearly with the solvent polarizability function, f = $2(n^2-1)/(2n^2+1)$  where n represents the solvent refractive index. From a good linear correlation of the above-mentioned electronic transition for bithiophene a value of 32 200 cm<sup>-1</sup> has been obtained at n = 1. This discrepancy might be explained by the conformational change between the gas phase and the solution. The dependence of ZINDO/S calculated electron spectra on the inter-ring torsion angle for AM1 optimized geometry gives a torsion angle close to 150° (30°) for the first and 140° (40°) for the latter (0,0) peak position [3,31].

Some studies [2,5,6] on the deviations from the oligothiophenes planarity (up to  $30^{\circ}$ ) concluded no significant consequences on optical properties in real systems and postulated the use of (more simple) planar model systems for their description. We do not agree with this conclusion and the aim of this study is a deeper insight into the dependence of electron absorption spectra on the conformation of the oligothiophene chain. This information might be useful for the torsion angles estimation as the optimal conformation is much more influenced by the environment than the corresponding electron absorption spectra originating in  $\pi$ - $\pi$  transitions.

## 2. Method

The standard semiempirical AM1 (Austin Model 1) method of quantum chemistry (AMPAC program package) [32–34] has been used in order to find the optimal geometries of neutral 2,2'-bithiophene (T2),



Scheme 1. The schematic structure of 2,2':5',2'':5'',2'''-quaterthiophene.

2.2':5',2''-terthiophene (T3) and 2.2':5',2'':5'',2'''-quaterthiophene (T4 — see Scheme 1) molecules for fixed dihedral angles between neighboring thiophene rings. The dihedral angles were scanned with  $15^{\circ}$  steps. For these geometries electronic spectra (maximal wavelengths) are calculated by AM1 as well as by ZINDO/S method (using standard values of 1.267 and 0.585 for  $\sigma$ - $\sigma$  and  $\pi$ - $\pi$  overlap weighting factors, respectively) [35,36] for single excitations from 10 highest occupied to 10 lowest unoccupied molecular orbitals in SCI approximation.

#### 3. Results and discussion

The atoms in T2, T3 and T4 molecules are

numbered according to Scheme 1. The inter-ring torsion angles are described by dihedral angles  $\Theta_1$ (S(1)-C(2)-C(2')-S(1')) in T2, T3 and T4),  $\Theta_2$ (S(1')-C(5')-C(2'')-S(1'') in T3 and T4) and  $\Theta_3$ (S(1'')-C(5'')-C(2''')-S(1''') in T4). We may restrict to equal values for all the dihedral angles  $\Theta_1 = \Theta_2 =$  $\Theta_3 = \Theta$ . The values of  $\Theta = 0^\circ$  and  $\Theta = 180^\circ$  correspond to all-syn and all-anti planar conformations, respectively. The remaining  $\Theta$  values correspond to non-planar structures. The deviations of the neighboring thiophene rings from planarity may be either of the same or opposite orientations. The independent linear combinations Q of individual torsions as well as the symmetries of individual conformations of the systems under study are presented in Table 1. It is evident that any torsion may be constructed as a linear combination of resulting Q coordinates.

As the  $C_2$  axis is coincident with the Cartesian z coordinate, the planar conformers of  $C_{2\nu}$  and  $C_{2h}$  symmetries are positioned in xz and xy Cartesian planes, respectively [37]. Molecular  $\pi$ -orbitals must be antisymmetric to these planes (see Table 1 for their symmetries). As the main contributions to electron spectra originate in single electron excitations from several highest occupied  $\pi$  orbitals to several lowest

Table 1 Symmetry properties of the systems under study

| Model system | Torsion<br>coordinate Q<br>definition           | Conformation | Conformation point group | Torsion<br>coordinate Q<br>representation | π-MO representations            | Monoexcited<br>π-electron<br>states<br>representations |
|--------------|-------------------------------------------------|--------------|--------------------------|-------------------------------------------|---------------------------------|--------------------------------------------------------|
| T2           | $\boldsymbol{\varTheta}_1$                      | Syn          | $C_{2v}$                 | $\mathbf{a}_2$                            | a <sub>2</sub> , b <sub>2</sub> | $A_1, B_1$                                             |
|              |                                                 | Non-planar   | $C_2$                    | a                                         | a, b                            | A, B                                                   |
|              |                                                 | Anti         | $C_{2h}$                 | $a_{u}$                                   | $a_u, b_g$                      | $A_g, B_u$                                             |
| T3A          | $\Theta_1 + \Theta_2$                           | All-syn      | $C_{2v}$                 | $a_2$                                     | $a_2, b_2$                      | $A_1, B_1$                                             |
|              |                                                 | Non-planar   | $C_2$                    | a                                         | a, b                            | A, B                                                   |
|              |                                                 | All-anti     | $C_{2v}$                 | $\mathbf{a}_2$                            | $a_2, b_2$                      | $A_1, B_1$                                             |
| T3B          | $\boldsymbol{\Theta}_1 - \boldsymbol{\Theta}_2$ | All-syn      | $C_{2v}$                 | $\mathbf{a}_2$                            | $a_2, b_2$                      | $A_1, B_1$                                             |
|              |                                                 | Non-planar   | $C_s$                    | a'                                        | a', a''                         | A', A''                                                |
|              |                                                 | All-anti     | $C_{2v}$                 | $\mathbf{a}_2$                            | $a_2, b_2$                      | $A_1, B_1$                                             |
| T4A          | $\Theta_1 + \Theta_2 + \Theta_3$                | All-syn      | $C_{2v}$                 | $\mathbf{a}_2$                            | $a_2, b_2$                      | $A_1, B_1$                                             |
|              |                                                 | Non-planar   | $C_2$                    | a                                         | a, b                            | A, B                                                   |
|              |                                                 | All-anti     | $C_{2h}$                 | $a_u$                                     | $a_u, b_g$                      | $A_g, B_u$                                             |
| T4B          | $\Theta_1 - \Theta_2 + \Theta_3$                | All-syn      | $C_{2v}$                 | $\mathbf{a}_2$                            | $a_2, b_2$                      | $A_1, B_1$                                             |
|              |                                                 | Non-planar   | $C_2$                    | a                                         | a, b                            | A, B                                                   |
|              |                                                 | All-anti     | $C_{2h}$                 | $a_{u}$                                   | $a_u, b_g$                      | $A_g, B_u$                                             |
| T4C          | $\Theta_1 + \Theta_2 - \Theta_3$                | All-syn      | $C_{2\nu}$               | $a_2 + b_2$                               | $a_2, b_2$                      | $A_1, B_1$                                             |
|              |                                                 | Non-planar   | $C_1$                    | a                                         | a                               | A                                                      |
|              |                                                 | All-anti     | $C_{2h}$                 | $a_u + b_g$                               | $a_u, b_g$                      | $A_g, B_u$                                             |



Fig. 1. The dependence of the relative heat of formation,  $\Delta H_{\rm f} = H_{\rm f}(\Theta) - H_{\rm f}(0)$ , on the torsion angle  $\Theta$  of T2 (circles), T3A (squares), T3B (diamonds), T4A (crosses), T4B (up triangles) and T4C (down triangles) systems.

unoccupied ones, the symmetries of corresponding excited electronic states (i.e. the direct product of their (irreducible) representations [37]) are presented in the last column of Table 1. Analogous two (and more) electron excitations, which may be constructed as direct products of the representations of these single electron excitations, span the same symmetries. The integrals describing the interaction of two electron states mediated by any operator of the vibration coordinate symmetry are necessarily zero unless the direct product of electron states representations spans the coordinate symmetry representation [37]. It is evident that the electron state symmetries as well as their products are different from the torsion coordinate Q symmetry for planar structures only. This means that the direct (1st order) vibronic interaction between the low lying monoexcited electronic states is symmetry forbidden for any torsion coordinate in all planar oligothiophenes and similar compounds because these electronic states are constructed from  $\pi$  molecular orbitals. This restriction is removed in non-planar structures. It may be supposed that the vibronic interaction increases with the deviation from planarity. These conclusions are important for relaxation processes in excited electronic states.

Fig. 1 illustrates the shape of AM1 inter-ring torsional potential in the systems under study. Our results confirmed that it is qualitatively the same for all the systems under study (independent on the symmetry of torsion coordinate Q). The maximal

energy differences between individual torsional systems corresponding to the same molecule (T3A and T3B as well as T4A, T4B and T4C) are negligibly small in comparison with the differences between individual oligothiophenes (T2, T3, T4).

Electron spectra of oligothiophenes are usually calculated by semiempirical ZINDO/S method [1-3,31]. Due to its parametrization (for planar conjugated compounds) as well as other approximations, it might work less well for non-planar structures. On the other hand, ab initio treatment may produce reliable spectral data using large basis sets and huge multiconfigurational treatment only. Consequently, only few data of this type are known for oligothiophenes. Using multiconfigurational second-order perturbation theory (CASPT2) and a basis set of ANO type, with split valence quality and including polarization functions, the first singlet-singlet excitation of trans 2,2'bithiophene is 3.88 eV for the planar and 4.36 eV for the twisted (with inter-ring angle of 38°) geometry, respectively [38]. Analogous calculations for planar 2,2':5',2''-terthiophenes [39] estimate this transition to 2.86 eV.

As a consequence of great computational requirements of above-mentioned ab initio calculations and shortages of ZINDO/S treatments, the AM1 method represents a reasonable compromise for the study of the torsional dependence of electron spectra (despite missing spectral parameterization). The dependence of the maximal wavelengths calculated by ZINDO/S



Fig. 2. The dependence of the  $\lambda_{max}$  wavelength obtained by ZINDO/S method on the torsion angle  $\Theta$  of T2 (circles), T3A (squares), T3B (diamonds), T4A (crosses), T4B (up triangles) and T4C (down triangles) systems.

and AM1 methods on  $\Theta$  torsion is shown in Figs. 2 and 3 for all the systems under study. It is evident that there are only small differences between  $\Theta$  and  $180^{\circ} - \Theta$  torsions in all the systems under study. Vanishing differences between various torsional systems corresponding to the same molecule (T3A and T3B as well as T4A, T4B and T4C) indicate that mutual torsion orientation (but not its magnitude) of individual thiophene rings cannot be deduced from real electron absorption spectra. The calculated curves have similar shape as the sine function (or its n-th power). The results of the simplest binomial regres-

sion (with minimal number of parameters)

$$\lambda_{\max} = A - B(\sin \Theta)^n \tag{1}$$

where A corresponds to the (averaged)  $\lambda_{\rm max}$  value for planar conformations and B to its (negative) correction for the perpendicular ones, are shown in Table 2 (ZINDO/S data) and Table 3 (AM1 data). According to the statistical characteristics presented, the optimal power value in Eq. (1) is between n=3 (ZINDO/S data) and n=2 (AM1 data). As there are no significant differences in standard deviations and AM1 method is more accomplished, we can use the squared



Fig. 3. The dependence of the  $\lambda_{max}$  wavelength obtained by AM1 method on the torsion angle  $\Theta$  of T2 (circles), T3A (squares), T3B (diamonds), T4A (crosses), T4B (up triangles) and T4C (down triangles) systems.

Table 2 The values of parameters of  $\lambda_{\max} = A - B(\sin \Theta)^n$  expansion (see Fig. 2) obtained by ZINDO/S method

| System | n | A (nm)           | B (nm)           | R-squared | Standard deviation (nm) |
|--------|---|------------------|------------------|-----------|-------------------------|
| T2     | 1 | $353.1 \pm 6.0$  | $63.6 \pm 8.8$   | 0.82692   | 11.0                    |
|        | 2 | $343.9 \pm 2.6$  | $64.9 \pm 4.4$   | 0.95267   | 5.7                     |
|        | 3 | $339.5 \pm 1.4$  | $65.4 \pm 2.7$   | 0.98165   | 3.6                     |
|        | 4 | $336.8 \pm 1.4$  | $66.0 \pm 2.7$   | 0.98166   | 3.6                     |
| T3A    | 1 | $429.6 \pm 9.8$  | $120.0 \pm 15.0$ | 0.85907   | 18.0                    |
|        | 2 | $415.3 \pm 3.6$  | $121.4 \pm 6.2$  | 0.97214   | 8.2                     |
|        | 3 | $406.8 \pm 2.2$  | $121.6 \pm 4.2$  | 0.98724   | 5.5                     |
|        | 4 | $401.4 \pm 2.9$  | $122.0 \pm 5.7$  | 0.97634   | 7.5                     |
| T3B    | 1 | $430.1 \pm 9.8$  | $123.0 \pm 14.0$ | 0.86857   | 18.0                    |
|        | 2 | $415.4 \pm 3.3$  | $123.8 \pm 5.7$  | 0.97743   | 7.5                     |
|        | 3 | $406.8 \pm 2.0$  | $123.7 \pm 5.7$  | 0.99022   | 4.9                     |
|        | 4 | $401.2 \pm 2.9$  | $124.0 \pm 5.8$  | 0.97686   | 7.6                     |
| T4A    | 1 | $488.0 \pm 12.0$ | $169.0 \pm 17.0$ | 0.89560   | 22.0                    |
|        | 2 | $467.5 \pm 3.2$  | $168.3 \pm 5.4$  | 0.98895   | 7.1                     |
|        | 3 | $455.3 \pm 2.8$  | $167.2 \pm 5.2$  | 0.98937   | 6.9                     |
|        | 4 | $447.5 \pm 4.7$  | $166.8 \pm 9.3$  | 0.96682   | 12.0                    |
| T4B    | 1 | $488.0 \pm 12.0$ | $170.0 \pm 17.0$ | 0.89977   | 21.0                    |
|        | 2 | $454.8 \pm 2.9$  | $170.0 \pm 4.9$  | 0.99106   | 6.4                     |
|        | 3 | $454.8 \pm 2.8$  | $168.7 \pm 5.2$  | 0.98951   | 6.9                     |
|        | 4 | $446.9 \pm 4.8$  | $168.1 \pm 9.6$  | 0.96529   | 13.0                    |
| T4C    | 1 | $488.0 \pm 12.0$ | $167.0 \pm 18.0$ | 0.89138   | 22.0                    |
|        | 2 | $467.7 \pm 3.4$  | $166.8 \pm 5.9$  | 0.98661   | 7.7                     |
|        | 3 | $455.7 \pm 2.8$  | $165.9 \pm 5.2$  | 0.98893   | 7.0                     |
|        | 4 | $448.0 \pm 4.6$  | $165.6 \pm 9.1$  | 0.96804   | 12.0                    |

Table 3 The values of parameters of  $\lambda_{\max} = A - B(\sin \Theta)^n$  expansion (see Fig. 3) obtained by AM1 method

| System | n | A (nm)            | B (nm)          | R-squared | Standard deviation (nm) |
|--------|---|-------------------|-----------------|-----------|-------------------------|
| T2     | 1 | $376.6 \pm 1.4$   | $15.6 \pm 2.1$  | 0.83180   | 2.6                     |
|        | 2 | $374.5 \pm 1.0$   | $15.2 \pm 1.7$  | 0.87603   | 2.3                     |
|        | 3 | $373.4 \pm 1.0$   | $14.9 \pm 1.9$  | 0.88718   | 2.5                     |
| T3A    | 1 | $421.6 \pm 3.6$   | $70.4 \pm 5.2$  | 0.94286   | 6.5                     |
|        | 2 | $412.24 \pm 0.73$ | $68.8 \pm 1.2$  | 0.99648   | 1.6                     |
|        | 3 | $406.8 \pm 2.1$   | $67.3 \pm 3.8$  | 0.96535   | 5.1                     |
| ТЗВ    | 1 | $422.2 \pm 3.9$   | $68.9 \pm 5.7$  | 0.92881   | 7.2                     |
|        | 2 | $413.26 \pm 0.80$ | $67.7 \pm 1.4$  | 0.99527   | 1.9                     |
|        | 3 | $407.3 \pm 1.6$   | $65.5 \pm 3.1$  | 0.97636   | 4.1                     |
| T4A    | 1 | $458.4 \pm 5.7$   | $112.1 \pm 8.4$ | 0.94175   | 11.                     |
|        | 2 | $443.5 \pm 1.2$   | $109.5 \pm 2.1$ | 0.99596   | 2.8                     |
|        | 3 | $434.8 \pm 3.4$   | $107.0 \pm 6.2$ | 0.96387   | 8.3                     |
| T4B    | 1 | $457.6 \pm 5.8$   | $103.8 \pm 8.5$ | 0.93128   | 11.0                    |
|        | 2 | $444.09 \pm 0.74$ | $102.1 \pm 1.3$ | 0.99832   | 1.7                     |
|        | 3 | $436.3 \pm 2.4$   | $100.5 \pm 4.4$ | 0.97929   | 5.8                     |
| T4C    | 1 | $457.4 \pm 5.6$   | $106.6 \pm 8.2$ | 0.92177   | 8.2                     |
|        | 2 | $443.35 \pm 0.68$ | $104.4 \pm 1.1$ | 0.99868   | 6.7                     |
|        | 3 | $435.3 \pm 2.7$   | $102.4 \pm 5.0$ | 0.94175   | 6.7                     |

Table 4 Maximal wavelength values of alkylated oligothiophenes measured in CHCl<sub>3</sub> solution [1],  $\lambda_{exp}$ , as well as calculated by ZINDO/S and AM1 methods,  $\lambda_{calc}$ , in the estimated conformations (see text for the discussion of  $\Theta_1 = S(1)-C(2)-C(2')-S(1')$ ,  $\Theta_2 = S(1')-C(5')-C(2'')-S(1'')$  and  $\Theta_3 = S(1'')-C(5'')-C(2''')-S(1''')$  torsion angles)

| Bithiophenes 2,2'-Bithiophene 3-Methyl-2,2'-bithiophene 4-Methyl-2,2'-bithiophene 3,3'-Dimethyl-2,2'-bithiophene | 302<br>299<br>309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Estimated $\Theta_1 = 148 - 155^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ZINDO                                                | AM1                                                  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 2,2'-Bithiophene 3-Methyl-2,2'-bithiophene 4-Methyl-2,2'-bithiophene 3,3'-Dimethyl-2,2'-bithiophene              | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_{\rm r} = 148 - 155^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                                      |
| 3-Methyl-2,2'-bithiophene<br>4-Methyl-2,2'-bithiophene<br>3,3'-Dimethyl-2,2'-bithiophene                         | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_{\rm r} = 148 - 155^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                                      |
| 4-Methyl-2,2'-bithiophene<br>3,3'-Dimethyl-2,2'-bithiophene                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $O_1 = 140 - 133$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 328-333                                              | 368-371                                              |
| 3,3'-Dimethyl-2,2'-bithiophene                                                                                   | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_1 = 147 - 151^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 335-337                                              | 375-376                                              |
| •                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Theta_1 = 180 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 339-342                                              | 373-375                                              |
|                                                                                                                  | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 269-297                                              | 324-320                                              |
|                                                                                                                  | 268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 4,4'-Dimethyl-2,2'-bithiophene                                                                                   | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = 180 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 340-343                                              | 373-374                                              |
|                                                                                                                  | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 3,4'-Dimethyl-2,2'-bithiophene                                                                                   | 302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_1 = 144 - 155^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 333-340                                              | 373-376                                              |
|                                                                                                                  | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 3-Ethyl-2,2'-bithiophene                                                                                         | 295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_1 = 141 - 145^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 332-335                                              | 371-373                                              |
| 3,3'-Diethyl-2,2'-bithiophene                                                                                    | 279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_1 = 113 - 135^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 309-335                                              | 365-376                                              |
| 3,3'-Dihexyl-2,2'-bithiophene                                                                                    | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 267-293                                              | 313-318                                              |
| 3,4'-Dihexyl-2,2'-bithiophene                                                                                    | 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_1 = 142 - 149^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 322-327                                              | 357-359                                              |
| 4,4'-Dihexyl-2,2'-bithiophene                                                                                    | 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = 180 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 337-340                                              | 363-365                                              |
| Terthiophenes                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 2,2':5',2"-Terthiophene                                                                                          | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = \Theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Theta_1 = 151 - 160^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390-400                                              | 396-403                                              |
|                                                                                                                  | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = \Theta_2 = 150^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 402                                                  | 414                                                  |
|                                                                                                                  | 324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_2 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Theta_1 = 157 - 166^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 356-367                                              | 376-381                                              |
|                                                                                                                  | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = \Theta_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Theta_1 = 151 - 160^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 394-403                                              | 404-411                                              |
| 4'-ethyl-3,3"-Dimethyl-2,2':5',2"-<br>terthiophene                                                               | 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_2 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Theta_1 = 151 - 159^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 353–366                                              | 373–397                                              |
| 4,4′,3″-Trihexyl-2,2′:5′,2″-terthiophene                                                                         | 326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = 180 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 352-362                                              | 363-368                                              |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Theta_2 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 3,4′,3″-Trihexyl-2,2′:5′,2″-terthiophene                                                                         | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_2 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Theta_1 = 141 - 150^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 348-362                                              | 365-387                                              |
| 4,4',4"-Trihexyl-2,2':5',2"-terthiophene                                                                         | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = 180 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_2 = 137 - 142^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 392-395                                              | 388-391                                              |
| Quaterthiophenes                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 2,2':5',2":5",2' "-Quaterthiophene                                                                               | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = \Theta_2 = \Theta_3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 427-445                                              | 415-428                                              |
|                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $150 - 160^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 4',3"-Dimethyl-2,2':5',2":5",2"'-<br>quaterthiophene                                                             | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_1 = \Theta_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Theta_1 = 133 - 137^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 346-363                                              | 369-378                                              |
| 1                                                                                                                | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\Theta_2 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
| 3,3',4",3"'-Tetramethyl-2,2':5',2":5",2"'-                                                                       | 346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_2 = 159 - 180^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 366-384                                              | 378-390                                              |
| quaterthiophene                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90 ± 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                      |
|                                                                                                                  | 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Theta_1 = 133 - 137^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 344-364                                              | 375-380                                              |
| •                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                      |
| T                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Theta_2 = 90 \pm 15^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |                                                      |
|                                                                                                                  | 3-Ethyl-2,2'-bithiophene 3,3'-Diethyl-2,2'-bithiophene 3,3'-Dihexyl-2,2'-bithiophene 3,4'-Dihexyl-2,2'-bithiophene 4,4'-Dihexyl-2,2'-bithiophene 6,4'-Dihexyl-2,2'-bithiophene 6,3,"-Dimethyl-2,2':5',2"-terthiophene 8,4',3"-Trimethyl-2,2':5',2"-terthiophene 8,4',3"-Trimethyl-2,2':5',2"-terthiophene 8,4',3"-Trihexyl-2,2':5',2"-terthiophene 8,4',3"-Trihexyl-2,2':5',2"-terthiophene 8,4',3"-Trihexyl-2,2':5',2"-terthiophene 8,4',3"-Trihexyl-2,2':5',2"-terthiophene 8,4',4"-Trihexyl-2,2':5',2"-terthiophene 8,4',4"-Trihexyl-2,2':5',2"-terthiophene 8,4',3"-Dimethyl-2,2':5',2"-terthiophene 8,4',3"-Dimethyl-2,2':5',2"-terthiophene 8,4',3"-Dimethyl-2,2':5',2":5",2"- quaterthiophene 8,3',4",3"'-Tetramethyl-2,2':5',2":5",2"'- | 3,4'-Dimethyl-2,2'-bithiophene 299 3,-Ethyl-2,2'-bithiophene 295 3,3'-Diethyl-2,2'-bithiophene 270 3,4'-Dihexyl-2,2'-bithiophene 270 3,4'-Dihexyl-2,2'-bithiophene 298 4,4'-Dihexyl-2,2'-bithiophene 310 Ferthiophenes 2,2':5',2"-Terthiophene 355 3,3"-Dimethyl-2,2':5',2"-terthiophene 344 3,4',3"-Trimethyl-2,2':5',2"-terthiophene 350 4'-ethyl-3,3"-Dimethyl-2,2':5',2"-terthiophene 324 4'-4',3"-Trihexyl-2,2':5',2"-terthiophene 326 3,4',3"-Trihexyl-2,2':5',2"-terthiophene 326 3,4',3"-Trihexyl-2,2':5',2"-terthiophene 348 Quaterthiophene 348 Quaterthiophene 390 4',3"-Dimethyl-2,2':5',2"-348 quaterthiophene 390 4',3"-Dimethyl-2,2':5',2":5",2"-348 quaterthiophene 346 3,3',4",3"-Tetramethyl-2,2':5',2":5",2"-346 quaterthiophene 347 quaterthiophene 348 quaterthiophene 348 quaterthiophene 348 quaterthiophene 349 quaterthiophene 34 | 3,4'-Dimethyl-2,2'-bithiophene 302 299 3,3'-Diethyl-2,2'-bithiophene 295 3,3'-Dihexyl-2,2'-bithiophene 270 $\theta_1 = 90 \pm 15^{\circ}$ 3,4'-Dihexyl-2,2'-bithiophene 298 4,4'-Dihexyl-2,2'-bithiophene 310 $\theta_1 = 180 \pm 15^{\circ}$ 3,3'-Dimethyl-2,2'-bithiophene 355 $\theta_1 = \theta_2$ 3,3'-Dimethyl-2,2':5',2"-terthiophene 344 $\theta_1 = \theta_2 = 150^{\circ}$ 3,4',3"-Trimethyl-2,2':5',2"-terthiophene 350 $\theta_1 = \theta_2$ 3,3'-Dimethyl-2,2':5',2"-terthiophene 350 $\theta_1 = \theta_2$ 321 $\theta_2 = 90 \pm 15^{\circ}$ 34'-ethyl-3,3"-Dimethyl-2,2':5',2"-terthiophene 321 $\theta_2 = 90 \pm 15^{\circ}$ 34',3"-Trihexyl-2,2':5',2"-terthiophene 321 $\theta_2 = 90 \pm 15^{\circ}$ 34',3"-Trihexyl-2,2':5',2"-terthiophene 326 $\theta_1 = 180 \pm 15^{\circ}$ 34',3"-Trihexyl-2,2':5',2"-terthiophene 34,4',3"-Trihexyl-2,2':5',2"-terthiophene 348 $\theta_1 = 180 \pm 15^{\circ}$ 348 $\theta_1 = 180 \pm 15^{\circ}$ 348 $\theta_1 = \theta_3$ 348 $\theta_1 = \theta_3$ 349 34'-3"-Tetramethyl-2,2':5',2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5",2"-5 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

sine function in our studies. Using the above mentioned ab initio data for bithiophene [38], we obtain A = 320 nm and B = 92 nm. This is in better agreement with ZINDO/S than with AM1 data (see Tables 2 and 3).

A common way [3] to judge the theoretical transition energies calculated by semiempirical ZINDO/S method is to compare the calculations with the

absorption band maximum in a non-polar solvent. This method uses the implicit (but not fully correct) assumption that the solvatochromic shift in the solvent compared to the gas phase is approximately equal to the difference in energy between the maximum and the (0,0) peak positions [3]. In bithiophene, however, these differences correspond to 1500 cm<sup>-1</sup> (*n*-hexane solution) and



Fig. 4. The relation between maximal wavelengths,  $\lambda_{calc}$ , obtained by ZINDO/S (open symbols) and AM1 methods (full symbols) for the estimated conformations of alkylated bithiophenes (circles), terthiophenes (squares) and quaterthiophenes (triangles), respectively, and the corresponding values measured in CHCl<sub>3</sub> solution [1],  $\lambda_{exp}$  (see Table 4).

about 3000 cm<sup>-1</sup>, respectively. This discrepancy should significantly affect the torsion angle evaluation ( $\sim 125^{\circ}$ ). We propose another treatment to the torsion angles estimation where the above assumption is fulfilled because all the molecules studied are in the same solvent. We assume a vanishing influence of alkyl chains on  $\pi$  electrons of thiophene rings (very well fulfilled for β-alkylated oligothiophenes [1]). We do not suppose that a solvent shift equals to the difference between the vertical and adiabatic transition energy of the chromophore. We assume a similar dependence of both these quantities on the mutual chromophores orientation only. As a consequence, the parameters of Eq. (1) obtained from quantum-chemical calculations and experimental spectra should be different not only due to the solvent effect.

A series of geometry optimizations was carried out on alkyl-substituted bithiophenes [3,10,11,40,41] and terthiophenes [19,42]. The ground-state conformations are predicted to be quite independent of the alkyl chain length. A nearly planar ground-state conformation ( $\Theta = 180 \pm 15^{\circ}$ ) is predicted for 4,4'-dialkyl-2,2'-bithiophene while in 3,3'-coupled isomers, the thiophene rings are nearly perpendicular ( $\Theta = 90 \pm 15^{\circ}$ ). When comparing the data for T2m3 (nearly perpendicular) and T2m4 (nearly planar) in Table 4, we may estimate the parameters of Eq. (1): *A* is between 310 and 313 nm and *B* between 40 and

46 nm. Almost the same  $\lambda_{\rm exp}$  values for T2m4, T2h3 and T2m2 compounds indicate not only the (quasi)-planarity of their backbone but also the transferability of *A* and *B* parameters to all  $\beta$ -alkylated bithiophenes. The same holds for (quasi)perpendicular T2m3 and T2h1 compounds (due to significantly different  $\lambda_{\rm exp}$ , no perpendicularity for T2e2 is supposed). Using this parameters, we obtain the torsion angle values for T2 and its remaining alkylated derivatives that are presented in Table 4 (only trans isomers are presented).

In agreement with our theoretical results, we may extent our estimations to higher oligothiophenes but with lower accuracy. We suppose the same parameters values for all inter-ring torsions within the molecule (compare A and B values for various conformations of the same molecule in Tables 2 and 3) and arithmetic averaged squared sines. Suppose nearly planar and perpendicular thiophene pairs in T3h1 and  $\Theta_1 = \Theta_2 = 150^{\circ}$  in T3m1, we obtain A between 360 and 365 nm and B between 63 and 83 nm for terthiophenes. Assuming equal torsion angles in the molecule, we obtain the  $\Theta_i$  values for T3 and T3b1 (see Table 4). Under (quasi)planarity or (quasi)perpendicularity assumptions we obtain the remaining torsion angle values for T3e1, T3h2 and T3h3 (see Table 4).

As  $\lambda_{exp}$  values for T4m1, T4m2 and T4m3 are practically the same, the equal values of averaged squared



Fig. 5. The relation between the averaged values of  $\sin^2 \Theta$  torsions for the estimated conformations of alkylated bithiophenes (circles), terthiophenes (squares) and quaterthiophenes (triangles), respectively, and the corresponding maximal wavelengths measured in CHCl<sub>3</sub> solution [1],  $\lambda_{exp}$  (see Table 4).

sines may be supposed for these compounds. For (quasi)perpendicular pairs of side rings in T3m2 ( $\Theta_1 = \Theta_3 = 90 \pm 15^\circ$ ) the minimal values of  $\sin^2\Theta_2$  imply the central torsion angle value between 159 and 180°. The torsion angles obtained under appropriate (quasi)perpendicularity assumptions and the same averaged squared sine value for all these compounds are presented in Table 4. Supposing equal torsion angles between 150 and 160° in T4, we obtain the A value between 399 and 419 nm whereas the B one is between 76 and 116 nm.

Maximal wavelengths calculated by ZINDO/S and AM1 methods are presented in the last two columns of Table 4. Their correlation with experimental values (Fig. 4) corresponds to a nearly linear function. Significant deviations in systems with (quasi)perpendicular thiophene rings might be explained by problematic assignment of corresponding lines in the calculated spectra (vanishing oscillator strengths at higher wavelengths). Very good correlation between the averaged squared sine of estimated torsion angles (Fig. 5) and experimental wavelengths indicate that our treatment might produce reliable data on the geometries of alkylated oligothiophenes in solutions. The discrepancy between [3] and our results on T2 geometry might be ascribed to lower reliability of ZINDO/S method for non-planar structures. Nevertheless, further refinement of our assumptions as well as

of the sine function used is desirable. Very precise high level ab initio calculations of molecules in polar environment are necessary for this purpose.

Finally, it may be concluded that the inter-ring torsion plays an important role in oligothiophene chains. Their non-planar conformations are present in the gas phase as well as in the solution. Restricting to planar structures may lead to serious errors in the relaxation processes study. Mutual orientation of torsion angles is much less important for the electronic structure of oligothiophenes. Their electron spectra depend on the nearly squared sine function of the torsion magnitude independent on its orientation. This may be used for the torsion estimation. Nevertheless, this problem demands more exhaustive theoretical studies. In the next articles of this series, the non-linear optical properties of oligothiophenes will be studied in more details.

# Acknowledgements

This work has been supported by Austrian Federal Ministry for Science and Transport (Project of the Ost-West-Kooperation-H, bm: wv GZ 45.452/2-III/2/99) and by Slovak Grant Agency (Projects No. 1/7355/20 and 1/7388/20). We thank the referee for valuable comments and suggestions.

#### References

- [1] P. Bäuerle, in: K. Müllen, G. Wegner (Eds.), Electronic Materials: The Oligomer Approach, Wiley-VCH, Weinheim, New York, 1998, pp. 105–197 (and the references therein).
- [2] J. Cornil, D. Beljonne, J.L. Brédas, in: K. Müllen, G. Wegner (Eds.), Electronic Materials: The Oligomer Approach, Wiley– VCH, Weinheim, New York, 1998, pp. 432–447 (and the references therein).
- [3] M. Belletête, N. Di Césare, M. Leclerc, G. Durocher, J. Mol. Struct. (THEOCHEM) 31 (1997) 85.
- [4] S. Samdal, E.J. Samuelsen, H.V. Volden, Synth. Met. 59 (1993) 259.
- [5] J.L. Brédas, G.B. Street, B. Thémans, J.M. André, J. Chem. Phys. 83 (1985) 1323.
- [6] J.L. Brédas, A.J. Heeger, Macromolecules 23 (1990) 1150.
- [7] C. Quattrochi, R. Lazzaroni, J.L. Brédas, Chem. Phys. Lett. 208 (1993) 120.
- [8] M. Kofranek, T. Kovár, H. Lischka, A. Karpfen, J. Mol. Struct. (THEOCHEM) 259 (1992) 181.
- [9] G. Distefano, M. DalColle, D. Jones, M. Zambianchi, L. Favaretto, A. Modelli, J. Phys. Chem. 97 (1993) 3504.
- [10] V. Hernandez, J.T. Lopez-Navarette, J. Chem. Phys. 101 (1994) 1369.
- [11] E. Ortí, P.M. Viruela, M. Sánchez-Márin, F. Tomás, J. Phys. Chem. 99 (1995) 4955.
- [12] L. Padilla-Campos, A. Torro-Labbé, J. Mol. Struct. (THEO-CHEM) 330 (1995) 223.
- [13] C. Alemán, L. Julia, J. Phys. Chem. 100 (1996) 1524.
- [14] A. Karpfen, C.H. Choi, M. Kertesz, J. Phys. Chem. A 101 (1997) 7426.
- [15] C. Alemán, V.M. Domingo, L. Fajari, L. Julia, A. Karpfen, J. Org. Chem. 63 (1998) 1041.
- [16] P.M. Viruela, R. Viruela, E. Ortí, J.L. Brédas, J. Am. Chem. Soc. 119 (1997) 1360.
- [17] H.A. Duarte, H.F. Dos Santos, W.R. Rocha, W.B. De Almeida, J. Chem. Phys. 113 (2000) 4206.
- [18] D.C.S. Friedman, P. Friedman, J. Mol. Struct. (THEOCHEM) 333 (1995) 71.
- [19] M. Ciofalo, G. La Manna, Chem. Phys. Lett. 263 (1996) 73.
- [20] N. Di Cèsare, M. Belletête, C. Marrano, M. Leclerc, G. Durocher, J. Phys. Chem. A 102 (1998) 5142.

- [21] J. Cornil, D. Beljonne, J.L. Brédas, J. Chem. Phys. 103 (1995) 842.
- [22] T.L. Porter, D. Minore, D. Zhang, J. Phys. Chem. 99 (1995) 13213.
- [23] D.A. Dos Santos, D.S. Galvao, B. Laks, M.C. dos Santos, Chem. Phys. Lett. 184 (1991) 579.
- [24] D.A. Dos Santos, D.S. Galvao, B. Laks, M.C. dos Santos, Synth. Met. 51 (1992) 203.
- [25] C. Roux, M. Leclerc, Macromolecules 25 (1992) 2141.
- [26] C. Roux, K. Faid, M. Leclerc, Makromol. Chem., Rapid Commun. 14 (1993) 461.
- [27] C. Roux, J.-Y. Bergeron, M. Leclerc, Makromol. Chem. 194 (1993) 869.
- [28] P. Bucci, M. Longeri, C. Veracini, L. Lunazzi, J. Am. Chem. Soc. 96 (1974) 1305.
- [29] L.C. Ter Beek, D.S. Zimmerman, E.E. Burnet, Mol. Phys. 74 (1991) 1027.
- [30] J.T. Lopez Navarrete, B. Tian, G. Zerbi, Synth. Met. 38 (1990) 299.
- [31] M. Belletête, M. Leclerc, G. Durocher, J. Phys. Chem. 98 (1994) 9450.
- [32] M.J.S. Dewar, W. Thiel, AMPAC Package, Quantum Chemistry Program Exchange, 1986, p. 506.
- [33] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.
- [34] M.J.S. Dewar, Y.C. Yuan, Inorg. Chem. 29 (1992) 3881.
- [35] HYPERCHEM, rel. 3 for Windows, Hypercube, Inc. 1993.
- [36] M.C. Zerner, G.H. Loew, R.F. Kirchner, U.T. Mueller-Westerhoff, J. Am. Chem. Soc. 102 (1980) 589.
- [37] J.A. Salthouse, M.J. Ware, Point Group Character Tables and Related Data, Cambridge University Press, Cambridge, 1972.
- [38] M. Rubio, M. Merchán, E. Ortí, B.O. Roos, J. Chem. Phys. 102 (1995) 3580.
- [39] M. Rubio, M. Merchán, E. Ortí, B.O. Roos, Chem. Phys. Lett. 248 (1996) 32.
- [40] N. Di Cèsare, M. Belletête, F. Raymond, M. Leclerc, G. Durocher, J. Phys. Chem. A 101 (1997) 776.
- [41] A. Bongini, A. Bottoni, J. Phys. Chem. A 108 (1999) 6800.
- [42] N. Di Cèsare, M. Belletête, M. Leclerc, G. Durocher, J. Phys. Chem. A 103 (1999) 803.