STATISTICS 1&2

- Task 1 - 1:

You survey households in your area to find the average rent they are paying. Find the standard deviation from the following data: \$1550, \$1700, \$900, \$850, \$1000, \$950.

- Solution 1 -
- Let's assume the above dataset is a sample data
- Step 1 Calculation of Mean (x1+x2+x3+x4+x5+x6)/(n)(1550+1700+900+850+1000+950) / 6 = **1158.33**
- Step 2 Calculation of Variance –

Data X_i	$X_i - \overline{X}$	$\left(X_i - \overline{X}\right)^2$				
1550	392	153403				
1700 542		293403				
900	-258	66736				
850	-308	95069				
1000 -158		25069				
950	-208	43403				
$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = 1158.33$		$\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 = 677083.3$				
Variance =		$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{(n-1)} = 677083.3 / (6-1)$ $= 135416.7$				

- Step 3 – Calculation of Standard Deviation –

$$S = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{(n-1)}} = \sqrt{677083.3/(6-1)}$$
$$= \sqrt{135416.7} = 367.99$$

Hence, the Standard Deviation is 367.99

STATISTICS 1&2

- Task 1 - 2:

Find the variance for the following set of data representing trees in California (heights in feet):

3, 21, 98, 203, 17, 9

- Solution 2 -
- Step 1 Calculation of Mean (x1+x2+x3+x4+x5+x6)/n(3+21+98+203+17+9) / 6 = **58.5**
- <u>Step 2 Calculation of Variance –</u>

Data		2	
X_i	$X_i - \overline{X}$	$\left(X_i - \overline{X}\right)^2$	
1	121	(')	
3	-55.5	3080.25	
21	-37.5	1406.25	
98	39.5	1560.25	
203	144.5	20880.25	
17	-41.5	1722.25	
9	-49.5	2450.25	
$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = 58.5$		$\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 = 31099.5$	
Variance =		$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{(n-1)} = 31099.5 / (6-1)$ $= 6219.9$	

STATISTICS 1&2

- Task 1 - 3:

In a class on 100 students, 80 students passed in all subjects, 10 failed in one subject, 7 failed in two subjects and 3 failed in three subjects. Find the probability distribution of the variable for number of subjects a student from the given class has failed in.

- Solution 3 -

- The probability of failing in 0 subjects, P(X=0) = 80/100 = 0.8The probability of failing in 1 subjects, P(X=1) = 10/100 = 0.1The probability of failing in 2 subjects, P(X=2) = 7/100 = 0.07The probability of failing in 3 subjects, P(X=3) = 3/100 = 0.03The probability distribution can be shown as:

	Х	0	1	2	3
Ī	P(X)	0.8	0.1	0.07	0.03