
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2011; month=10; day=5; hr=6; min=34; sec=2; ms=462;]

Validated By CRFValidator v 1.0.3

Application No: 08444790 Version No: 4.0

Input Set:

Output Set:

Started: 2011-10-04 16:07:32.102 **Finished:** 2011-10-04 16:07:33.945

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 843 ms

Total Warnings: 22
Total Errors: 0

No. of SeqIDs Defined: 26

Actual SeqID Count: 26

Error code		Error Descript	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(22)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(23)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(24)

Input Set:

Output Set:

Started: 2011-10-04 16:07:32.102 **Finished:** 2011-10-04 16:07:33.945

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 843 ms

Total Warnings: 22

Total Errors: 0

No. of SeqIDs Defined: 26

Actual SeqID Count: 26

Error code Error Description

This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>	Broo	ckhaus, et a	al.					
<120>	Human TNF Receptor							
<130>	01017/40451B							
<140>	0844	14790						
<141>								
<150>	CII. 1	2210 00						
<151>	1905	9-09-12						
<160>	26							
<170>	Pate	entIn versio	on 3.5					
<210>	1							
<211>	2111	L						
	DNA							
		sapiens						
		<u>-</u>						
<400>	1							
gaattc	3333	gggttcaaga	tcactgggac	caggccgtga	tctctatgcc	cgagtctcaa	60	
ccctcaa	actg	tcaccccaag	gcacttggga	cgtcctggac	agaccgagtc	ccgggaagcc	120	
ccagcad	ctgc	cgctgccaca	ctgccctgag	cccaaatggg	ggagtgagag	gccatagctg	180	
tctggca	atgg	gcctctccac	cgtgcctgac	ctgctgctgc	cgctggtgct	cctggagctg	240	
ttggtgg	ggaa	tatacccctc	aggggttatt	ggactggtcc	ctcacctagg	ggacagggag	300	
aagagag	gata	gtgtgtgtcc	ccaaggaaaa	tatatccacc	ctcaaaataa	ttcgatttgc	360	
tgtacca	aagt	gccacaaagg	aacctacttg	tacaatgact	gtccaggccc	ggggcaggat	420	
acggact	gca	gggagtgtga	gageggetee	ttcaccgctt	cagaaaacca	cctcagacac	480	
tgcctca	agct	gctccaaatg	ccgaaaggaa	atgggtcagg	tggagatctc	ttcttgcaca	540	
gtggaco	ggg	acaccgtgtg	tggctgcagg	aagaaccagt	accggcatta	ttggagtgaa	600	
aaccttt	tcc	agtgcttcaa	ttgcagcctc	tgcctcaatg	ggaccgtgca	cctctcctgc	660	
caggaga	aaac	agaacaccgt	gtgcacctgc	catgcaggtt	tctttctaag	agaaaacgag	720	
tgtgtct	cct	gtagtaactg	taagaaaagc	ctggagtgca	cgaagttgtg	cctaccccag	780	
attgaga	aatg	ttaagggcac	tgaggactca	ggcaccacag	tgctgttgcc	cctggtcatt	840	
ttctttç	ggtc	tttgcctttt	atccctcctc	ttcattggtt	taatgtatcg	ctaccaacgg	900	
tggaagt	cca	agctctactc	cattgtttgt	gggaaatcga	cacctgaaaa	agaggggag	960	

cttgaaggaa	ctactactaa	gcccctggcc	ccaaacccaa	gcttcagtcc	cactccaggc	1020
ttcaccccca	ccctgggctt	cagtcccgtg	cccagttcca	ccttcacctc	cagctccacc	1080
tatacccccg	gtgactgtcc	caactttgcg	gctccccgca	gagaggtggc	accaccctat	1140
cagggggctg	accccatcct	tgcgacagcc	ctcgcctccg	accccatccc	caaccccctt	1200
cagaagtggg	aggacagcgc	ccacaagcca	cagageetag	acactgatga	ccccgcgacg	1260
ctgtacgccg	tggtggagaa	cgtgcccccg	ttgcgctgga	aggaattcgt	geggegeeta	1320
gggctgagcg	accacgagat	cgatcggctg	gagetgeaga	acgggcgctg	cctgcgcgag	1380
gcgcaataca	gcatgctggc	gacctggagg	cggcgcacgc	cgcggcgcga	ggccacgctg	1440
gagetgetgg	gacgcgtgct	ccgcgacatg	gacctgctgg	gctgcctgga	ggacatcgag	1500
gaggcgcttt	gcggccccgc	cgccctcccg	cccgcgccca	gtcttctcag	atgaggctgc	1560
gcccctgcgg	gcagctctaa	ggaccgtcct	gcgagatcgc	cttccaaccc	cactttttc	1620
tggaaaggag	gggtcctgca	ggggcaagca	ggagctagca	gccgcctact	tggtgctaac	1680
ccctcgatgt	acatagcttt	tctcagctgc	ctgcgcgccg	ccgacagtca	gcgctgtgcg	1740
cgcggagaga	ggtgcgccgt	gggctcaaga	gcctgagtgg	gtggtttgcg	aggatgaggg	1800
acgctatgcc	tcatgcccgt	tttgggtgtc	ctcaccagca	aggetgeteg	ggggcccctg	1860
gttcgtccct	gagccttttt	cacagtgcat	aagcagtttt	ttttgtttt	gttttgtttt	1920
gttttgtttt	taaatcaatc	atgttacact	aatagaaact	tggcactcct	gtgccctctg	1980
cctggacaag	cacatagcaa	gctgaactgt	cctaaggcag	gggcgagcac	ggaacaatgg	2040
ggccttcagc	tggagctgtg	gacttttgta	catacactaa	aattctgaag	ttaaaaaaaa	2100
aacccgaatt	С					2111

<210> 2

<211> 455

<212> PRT

<213> Homo sapiens

<400> 2

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys

35 40 45

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe

130 135 140

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr 180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys 225 230 230 235 235

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu 245 250 255

Gly Glu Leu Glu Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser 260 265 270 Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val 280

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys 295 300

Pro Asn Phe Ala Ala Pro Arg Glu Val Ala Pro Pro Tyr Gln Gly 305 310 315 320

Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn 325 330 335

Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp 340 345

Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro 360 355

Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu 370 375 380

Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln 385 390 400 395

Tyr Ser Met Leu Ala Thr Trp Arg Arg Thr Pro Arg Arg Glu Ala 405 410 415

Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly 420 425

Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro 435 440 445

Pro Ala Pro Ser Leu Leu Arg 455 450

<210> 3

<211> 2339

<212> DNA

<213> Homo sapiens

<400> 3

cccgagtgct	tgagctgtgg	ctcccgctgt	agctctgacc	aggtggaaac	tcaagcctgc	120
actcgggaac	agaaccgcat	ctgcacctgc	aggcccggct	ggtactgcgc	gctgagcaag	180
caggaggggt	gccggctgtg	cgcgccgctg	ccgaagtgcc	gcccgggctt	cggcgtggcc	240
agaccaggaa	ctgaaacatc	agacgtggtg	tgcaagccct	gtgccccggg	gacgttctcc	300
aacacgactt	catccacgga	tatttgcagg	ccccaccaga	tctgtaacgt	ggtggccatc	360
cctgggaatg	caagcaggga	tgcagtctgc	acgtccacgt	ccccacccg	gagtatggcc	420
ccaggggcag	tacacttacc	ccagccagtg	tccacacgat	cccaacacac	gcagccaagt	480
ccagaaccca	gcactgctcc	aagcacctcc	ttcctgctcc	caatgggccc	cageceeeca	540
gctgaaggga	gcactggcga	cttcgctctt	ccagttggac	tgattgtggg	tgtgacagcc	600
ttgggtctac	taataatagg	agtggtgaac	tgtgtcatca	tgacccaggt	gaaaaagaag	660
cccttgtgcc	tgcagagaga	agccaaggtg	cctcacttgc	ctgccgataa	ggcccggggt	720
acacagggcc	ccgagcagca	gcacctgctg	atcacagcgc	cgagctccag	cagcagctcc	780
ctggagagct	cggccagtgc	gttggacaga	agggcgccca	ctcggaacca	gccacaggca	840
ccaggcgtgg	aggccagtgg	ggccggggag	gcccgggcca	gcaccgggag	ctcagcagat	900
tcttcccctg	gtggccatgg	gacccaggtc	aatgtcacct	gcatcgtgaa	cgtctgtagc	960
agctctgacc	acagctcaca	gtgctcctcc	caagccagct	ccacaatggg	agacacagat	1020
tccagcccct	cggagtcccc	gaaggacgag	caggtcccct	tctccaagga	ggaatgtgcc	1080
tttcggtcac	agctggagac	gccagagacc	ctgctgggga	gcaccgaaga	gaagcccctg	1140
ccccttggag	tgcctgatgc	tgggatgaag	cccagttaac	caggccggtg	tgggctgtgt	1200
cgtagccaag	gtggctgagc	cctggcagga	tgaccctgcg	aaggggccct	ggtccttcca	1260
ggcccccacc	actaggactc	tgaggctctt	tctgggccaa	gttcctctag	tgccctccac	1320
agccgcagcc	tccctctgac	ctgcaggcca	agagcagagg	cagegagttg	tggaaagcct	1380
ctgctgccat	ggcgtgtccc	tctcggaagg	ctggctgggc	atggacgttc	ggggcatgct	1440
ggggcaagtc	cctgagtctc	tgtgacctgc	cccgcccagc	tgcacctgcc	agcctggctt	1500
ctggagccct	tgggttttt	gtttgtttgt	ttgtttgttt	gtttgtttct	cccctgggc	1560
tctgcccagc	tctggcttcc	agaaaacccc	agcatccttt	tctgcagagg	ggctttctgg	1620
agaggaggga	tgctgcctga	gtcacccatg	aagacaggac	agtgcttcag	cctgaggctg	1680
agactgcggg	atggtcctgg	ggctctgtgc	agggaggagg	tggcagccct	gtagggaacg	1740

gggtccttca	agttagctca	ggaggcttgg	aaagcatcac	ctcaggccag	gtgcagtggc	1800
tcacgcctat	gatcccagca	ctttgggagg	ctgaggcggg	tggatcacct	gaggttagga	1860
gttcgagacc	agcctggcca	acatggtaaa	accccatctc	tactaaaaat	acagaaatta	1920
gccgggcgtg	gtggcgggca	cctatagtcc	cagctactca	gaageetgag	gctgggaaat	1980
cgtttgaacc	cgggaagcgg	aggttgcagg	gagccgagat	cacgccactg	cactccagcc	2040
tgggcgacag	agcgagagtc	tgtctcaaaa	gaaaaaaaaa	aagcaccgcc	tccaaatgct	2100
aacttgtcct	tttgtaccat	ggtgtgaaag	tcagatgece	agagggccca	ggcaggccac	2160
catattcagt	gctgtggcct	gggcaagata	acgcacttct	aactagaaat	ctgccaattt	2220
tttaaaaaag	taagtaccac	tcaggccaac	aagccaacga	caaagccaaa	ctctgccagc	2280
cacatccaac	ccccacctg	ccatttgcac	cctccgcctt	cactccggtg	tgcctgcag	2339

<210> 4

<211> 392

<212> PRT

<213> Homo sapiens

<400> 4

Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu 1 5 10 15

Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser 20 25 30

Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys 35 40 45

Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys 50 55 60

Arg Leu Cys Ala Pro Leu Pro Lys Cys Arg Pro Gly Phe Gly Val Ala 65 70 75 80

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala Pro 85 90 95

Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg Pro His 100 105 110

Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser Arg Asp Ala

115 120 125

Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala Pro Gly Ala Val 130 135 140 His Leu Pro Gln Pro Val Ser Thr Arg Ser Gln His Thr Gln Pro Ser 150 155 Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser Phe Leu Leu Pro Met Gly 165 170 175 Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly Asp Phe Ala Leu Pro Val 180 185 190 Gly Leu Ile Val Gly Val Thr Ala Leu Gly Leu Leu Ile Ile Gly Val 195 200 205 Val Asn Cys Val Ile Met Thr Gln Val Lys Lys Pro Leu Cys Leu 210 215 220 Gln Arg Glu Ala Lys Val Pro His Leu Pro Ala Asp Lys Ala Arg Gly 225 230 235 240 Thr Gln Gly Pro Glu Gln Gln His Leu Leu Ile Thr Ala Pro Ser Ser 245 250 Ser Ser Ser Leu Glu Ser Ser Ala Ser Ala Leu Asp Arg Arg Ala 265 270 260 Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala 275 280 285 Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser Ala Asp Ser Ser Pro Gly 290 295 300 Gly His Gly Thr Gln Val Asn Val Thr Cys Ile Val Asn Val Cys Ser 305 310 315 320 Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln Ala Ser Ser Thr Met 330 325

Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro Lys Asp Glu Gln Val 345

350

340

```
Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser Gln Leu Glu Thr Pro
                       360
Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val
              375
                             380
Pro Asp Ala Gly Met Lys Pro Ser
385
               390
<210> 5
<211> 28
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (25)..(25)
<223> Xaa = unknown amino acid
<400> 5
Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro
             5
                               10
Gln Gly Lys Tyr Ile His Pro Gln Xaa Asn Ser Ile
        20
<210> 6
<211> 15
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 6
Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Lys
                          10
<210> 7
<211> 18
<212> PRT
```

<213> Artificial sequence

```
<220>
<223> Synthetic peptide
<400> 7
Ser Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys
                                 10
Pro Leu
<210> 8
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 8
Val Phe Cys Thr
<210> 9
<211> 16
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 9
Asn Gln Pro Gln Ala Pro Gly Val Glu Ala Ser Gly Ala Gly Glu Ala
              5
                                  10
<210> 10
<211> 18
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (8)..(8)
<223> Xaa = unknown amino acid
```

<400> 10

```
Leu Pro Ala Gln Val Ala Phe Xaa Pro Tyr Ala Pro Glu Pro Gly Ser
1 5 10 15
```

Thr Cys

```
<210> 11
<211> 13
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (2)..(2)
<223> Xaa = unknown amino acid
<400> 11
Ile Xaa Pro Gly Phe Gly Val Ala Tyr Pro Ala Leu Glu
    5
                                10
<210> 12
<211> 4
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 12
Leu Cys Ala Pro
<210> 13
<211> 7
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 13
Val Pro His Leu Pro Ala Asp
```

```
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<220>
<221> misc_feature
<222> (9)..(10)
<223> Xaa = unknown amino acid
<220>
<221> misc_feature
<222> (13)..(13)
<223> Xaa = unknown amino acid
<400> 14
Gly Ser Gln Gly Pro Glu Gln Gln Xaa Xaa Leu Ile Xaa Ala Pro
                                   10
<210> 15
<211> 9
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic peptide
<400> 15
Leu Val Pro His Leu Gly Asp Arg Glu
<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic primer
<400> 16
                                                                       27
agggagaaga gagatagtgt gtgtccc
<210> 17
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
```

<211> 15

```
41
aagcttggcc aggatccagc tgactgactg atcgcgagat c
<210> 18
<211> 41
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 18
gatctcgcga tcagtcagtc agctggatcc tggccaagct t
                                                                       41
<210> 19
<211> 38
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 19
                                                                       38
cacagggatc catagctgtc tggcatgggc ctctccac
<210> 20
<211> 44
<212> DNA
<213> Artificial sequence
<220>
<223> Antisense primer
<400> 20
                                                                       44
cccggtacca gatctctatt atgtggtgcc tgagtcctca gtgc
<210> 21
<211> 19
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic primer
<400> 21
gatccagaat tcataatag
                                                                       19
<210> 22
```

<400> 17

<211> 1