连接主义模型总结

神经网络

- 最早的神经元模型--MP模型
- 感知器模型
 - 。 无法解决线性不可分;
 - 即使少量样本也可能导致不收敛;
 - 无法利用单一感知器解决XOR问题 (可用三层感知器)
- (BP)前馈神经网络
 - 。 非线性激活单元;
 - 输入层, 隐含层, 输出层;
 - 。 全连接结构;
 - 连接是单向的,传播是双向的(信息前向传输,误差反向传输);
 - 。 链式法则;
 - 是一个任意函数的通用近似器
- Hopfield
 - 单层网络,全连接,固定参数
 - 两种工作方式, 异步 (串行) 和同步 (并行)
 - 每个神经元即是输入也是输出,每个神经元的输出结合其他神经元的输出和自身的输入
 - 引入能量函数概念,在系统运行过程中,能量不断减少,最终处于最小值
 - 。 离散型适用于联想记忆
 - 连续型适用于优化
 - 连续型较离散型的激活函数,神经元状态,工作方式(连续是同步工作)有不同
- 循环神经网络

- 。 包括输入层, 隐含层, 输出层
- 。 有折叠和展开两种表示方式
- 。 适用于序列化特征而设计的网络, 具有**短期记忆能力**
- 。 可处理任意长度的序列
- 参数共享(每次迭代过程中,循环节点使用相同的权重系数处理所有时间步)
- 通用计算能力:按精度逼近任意一个非线性动力系统
- 。 单向性局限
- 。 长序列的记忆丢失

深度学习

深度学习的生物学依据

- 局部感受野
- 方向选择性细胞
- 视觉系统的信息处理是分级的

深度学习的目标

学习层次化的特征分布和表达

深度卷积神经网络的构成

- 卷积
- 池化层
- 非线性激活单元
- 归一化层
- 全连接层

卷积层

• 局部算子

- 平移同变性
- 特征增强
- 降噪

$$O = \left[\frac{I - k + 2p}{s}\right] + 1$$

池化层一般不训练学习参数

- 局部变化的不变性
- 增大感受野
- 降维
- 防止过拟合

卷积网络的优势

- 局部连接-参数减少
- 参数共享-参数再减少

CNN例题

假设输入是一张128×128 的RGB 彩色图像,如果网络第一个卷积层的卷积核为3×3 的大小,步长为1,共有64 个卷积核后接一个步长为2 的2×2 平均池化层,随后再接两层核大小为5×5、步长为1、卷积核个数为128 的卷积层以及一层步长为2 的2×2 的平均池化层,最后接含有128 个神经元的全连接层和一个含有10 个神经元的输出层。试回答:

- (1) 通过平均池化层后特征图的大小(H×W×C) 为多少?
- (2) 计算该网络的参数量。
- (3) 网络的参数量主要由哪部分贡献? 贡献了百分之多少? (3×3 卷积的padding 为1, 5×5 卷积核的padding 为2)。
 - 考虑偏置

1. 通过平均池化层后特征图的大小(H*W*C)为多少? 解: 64*64*64

2. 计算该网络的参数量

解: conv-1 参数: 32*3*64+64=1792

conv-2 参数: 52*64*128+128=204,928

conv-3 参数: 52*128*128+128=409,728

FC-1 参数: 32²*128*128+128=16,777,344

FC-2 参数: 128*10+10=1,290

总参数: 1792+204928+409728+16777344+12190=17,395,082

3. 网络的参数量主要有由哪部分贡献? 贡献了百分之几?

解: 主要由全连接层贡献,贡献了:

$$\frac{16,777,344}{17,395,082}*100\% = 96.45\%$$

• 不考虑偏置

- 经过第一个平均池化层后,特征图大小为64×64×64;
 经过第二个平均池化层后,特征图大小为32×32×128。
- 该网络结构如下表所示。在不考虑 bias 的情况下,对于第一个卷积层,参数量为

$$3 \times 3 \times 3 \times 64 = 1,728$$
 (25)

同理, 之后层参数量为

$$5 \times 5 \times 64 \times 128 = 204,800$$
 (26)

$$5 \times 5 \times 128 \times 128 = 409,600$$
 (27)

$$32 \times 32 \times 128 \times 128 = 16,777,216$$
 (28)

$$128 \times 10 = 1,280$$
 (29)

则参数总个数为 17,394,624。

Type/stride	Filter Shape	Input Size
Conv/s1	$3 \times 3 \times 3 \times 64$	$128 \times 128 \times 3$
${\rm Avg~Pool/s2}$	Pool 2×2	$128 \times 128 \times 64$
Conv/s1	$5 \times 5 \times 64 \times 128$	$64 \times 64 \times 64$
. Conv/s1	$5 \times 5 \times 128 \times 128$	$64 \times 64 \times 128$
${\rm Avg~Pool/s2}$	Pool 2×2	$64 \times 64 \times 128$
FC/s1	$32 \times 32 \times 128 \times 128$	$32 \times 32 \times 128$
FC/s1		128
${\rm sigmoid/s1}$	Classfier	1×10

• 参数量主要由全连接层贡献, 贡献计算如下:

$$(16,777,216+1280) \div 17,394,624 = 0.9446$$
 (30)

典型CNN模型

- LeNet
 - 。 平均池化
 - sigmoid or tanh 非线性激活单元
 - 。 全连接层用于分类
- AlexNet
 - 8层模型
 - ReLu激活函数
 - 。 正则化

- 。 GPU实现
- VGGNet
 - 更深的模型 (16 or 19层)
 - 。 连续3*3的卷积
- GoogLeNet
 - Inception模块 (1×1, 3×3, 5×5的不同感受野分支用于捕获)
 - 在卷积计算前使用1×1的卷积降低特征通道维数
- ResNet
 - 152层
 - 。 跳连解决深度网络变深后难以优化的问题

基础GAN存在的问题

- 生成模型的分布无显示表达
- 比较难训练: 生成器和判别器间需要很好的同步

典型GAN模型

- Deep Convolutional GAN
 - 。 将CNN与GAN结合
 - 转置卷积进行上采样,判别器中使用步长卷积代替池化层
 - 。 生成器和判别器都采用了批归一化操作
 - 。 去掉了全连接层,使用全局池化层代替-网络成为全卷积网络
 - 生成器使用ReLu作为激活函数,输出层使用Tanh激活函数
 - 。 判别器使用LeakyReLu激活函数
- WGAN
 - 经典距离度量方式,解释了GAN训练不稳定的原因

- 。 去掉判别器最后一层的sigmoid
- 。 损失函数不取log
- 。 更新判别器的参数后, 截断在某个范围内
- 。 不使用基于动量的优化算法
- CGAN
 - 。 在判别器和生成器中同时加入条件约束引导数据生成过程
- Pix2Pix
 - 。 使用成对的数据进行训练
- CycleGAN
 - 使用不成对的数据即可进行训练
- PGGAN
 - 渐进分辨率,渐进训练