1 Principal Component Analysis

1.1 Motivation

PCA wants to identify a meaningful basis to re-express the dataset [1]. PCA assumes that a meaningful data representation is one which

- 1. the features with large variance have meaningful structure and should be preserved
- 2. the features with small variance are noise and should be discarded
- 3. correlated features indicate redundancy and should be made uncorrelated

Suppose we have observations $\{x_i\}_{i=1}^N$ where $x_i \in \mathbb{R}^p$ for some random variable \mathbf{x} . We want to find linear transformation of \mathbf{x} to obtain \mathbf{y} . In particular, let $\mathbf{X} \in \mathbb{R}^{N \times p}$ be stacked observations, we want to find a linear map $\mathbf{P} \in \mathbb{R}^{p \times q}$, where columns of \mathbf{P} are orthonormal basis for feature space, i.e. $row(\mathbf{X})$, to re-express data \mathbf{X} to $\mathbf{Y} \in \mathbb{R}^{N \times q}$.

$$Y = XP$$

 \mathbf{Y} has a meaningful representation if $cov(\mathbf{Y})$ is a diagonal matrix (decorrelated), and that successive dimension in \mathbf{Y} are rank-ordered according to variance (preserve struture, discard noise).

1.2 Empirical Covariance Matrix

Note that for a random variable x with stacked observations $\mathbf{X} \in \mathbb{R}^{N \times p}$, the empirical covariance for x_i, x_j is given by

$$\hat{\sigma}^{2}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{1}{N} \sum_{i} (x_{i} - \overline{x}_{i})(x_{j} - \overline{x}_{j}) = \frac{1}{N} \left(\mathbf{X}_{i} - \overline{\mathbf{X}}_{i} \mathbf{1}_{N} \right)^{T} \left(\mathbf{X}_{j} - \overline{\mathbf{X}}_{j} \mathbf{1}_{N} \right)$$

where $\mathbf{X}_i, \mathbf{X}_j$ are *i* and *j*-th column of \mathbf{X} and $\overline{\mathbf{X}}_i = \frac{1}{N} \sum_j \mathbf{X}_{ji}$. So then,

$$\widehat{\mathrm{Cov}}(\mathsf{x}) = \left[\widehat{\sigma}(\mathsf{x}_i, \mathsf{x}_j)\right]_{i,j=1}^p = \frac{1}{N} \left(\mathbf{X} - \overline{\mathbf{X}} \mathbf{1}_N\right)^T \left(\mathbf{X} - \overline{\mathbf{X}} \mathbf{1}_N\right)$$

where $\overline{\mathbf{X}}$ is column wise feature average of \mathbf{X} . For zero mean observation matrix, the empirical covariance matrix is simply $\frac{1}{N}\mathbf{X}^T\mathbf{X}$

1.3 Solving PCA using Eigenvector Decomposition

We first write covariance matrix for Y,

$$\widehat{\mathrm{Cov}}(\mathsf{y}) = \frac{1}{N}\mathbf{Y}^T\mathbf{Y} = \frac{1}{N}(\mathbf{X}\mathbf{P})^T(\mathbf{X}\mathbf{P}) = \mathbf{P}^T\left(\frac{1}{N}\mathbf{X}^T\mathbf{X}\right)\mathbf{P} = \mathbf{P}^T\widehat{\mathrm{Cov}}(\mathsf{x})\mathbf{P}$$

We know that $\widehat{\text{Cov}}(\mathsf{x})$ is a symmetric matrix and therefore can be written as $\widehat{\text{Cov}}(\mathsf{x}) = \mathbf{Q}\Lambda\mathbf{Q}^T$ where $\mathbf{Q} \in \mathbb{R}^{p \times p}$ are eigenvectors of $\widehat{\text{Cov}}(\mathsf{x})$ with corresponding eigenvalues along diagonal entries in Λ . Setting projection to be eigenvectors of $\widehat{\text{Cov}}(\mathsf{x})$ diagonalizes $\widehat{\text{Cov}}(\mathsf{y})$,

$$\mathbf{P} \leftarrow \mathbf{Q} \qquad \Rightarrow \qquad \widehat{\mathrm{Cov}}(\mathsf{y}) = \mathbf{P}^T \widehat{\mathrm{Cov}}(\mathsf{x}) \mathbf{P} = \mathbf{Q}^T \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T \mathbf{Q} = \mathbf{\Lambda}$$

where $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$. The *principal components* of \mathbf{X} are column vectors of \mathbf{P} , i.e. eigenvectors for $\widehat{\text{Cov}}(\mathsf{x})$. y is decorrelated and $\widehat{\sigma}^2(\mathsf{y}_i)$ is the variance of x along i-th principal component.

1.4 Singular Value Decomposition

The singular value decomposition of an arbitrary matrix $\mathbf{X} \in \mathbb{R}^{N \times p}$ is

$$\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where left singular vectors $\mathbf{U} \in \mathbb{R}^{N \times N}$ is orthogonal, singular values $\mathbf{\Sigma} \in \mathbb{R}^{N \times p}$ is diagonal, right singular vectors $\mathbf{V} \in \mathbb{R}^{p \times p}$ is orthogonal. If $\mathbf{X}^T \mathbf{X}$ is has rank r, then column vectors of \mathbf{V} are eigenvectors with eigenvalues $\{\lambda_i\}_{i=1}^r$ (assuming descending ordering) for symmetric matrix $\mathbf{X}^T \mathbf{X}$, i.e. $(\mathbf{X}^T \mathbf{X}) \mathbf{v}_i = \lambda_i \mathbf{v}_i$. Entries along the diagonals of $\mathbf{\Sigma}$ are singular values $\sigma_i = \sqrt{\lambda_i}$. The column vectors of \mathbf{U} are given by $\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{X} \mathbf{v}_i$. We can show that column vectors of \mathbf{U} are unit orthonormal vectors. Grouping linear relationships $\mathbf{X} \mathbf{v}_i = \sigma_i \mathbf{u}_i$ yield $\mathbf{X} \mathbf{V} = \mathbf{\Sigma} \mathbf{U}$. Note, \mathbf{V} acts similarly to the projection matrix \mathbf{P} .

1.5 Solving PCA using SVD

From previous, the principal components of **X** are the eigenvectors of $\widehat{\text{Cov}}(x)$. Let **W** = $\frac{1}{\sqrt{N}}$ **X**, then right singular vectors of **W** are the principal components desired,

$$\mathbf{W}^T\mathbf{W} = \left(\frac{1}{\sqrt{N}}\mathbf{X}\right)^T \left(\frac{1}{\sqrt{N}}\mathbf{X}\right) = \frac{1}{N}\mathbf{X}^T\mathbf{X} = \widehat{\mathrm{Cov}(\mathsf{x})}$$

and that $\hat{\sigma}^2(y_i) = \Sigma_{ii}^2$

1.6 Limitations

PCA works well with Gaussian observations, in particular the transformed data is guaranteed to be independent. If x is jointly Gaussian, then any linear function of x is also jointly Gaussian. Suppose $b \sim \mathcal{N}(\mu_b, \Sigma_b)$

$$\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}) \qquad \Rightarrow \qquad A\mathbf{x} + \mathbf{b} \sim \mathcal{N}(A\boldsymbol{\mu}_{\mathbf{x}} + \boldsymbol{\mu}_{\mathbf{b}}, A\boldsymbol{\Sigma}_{\mathbf{x}}A^T + \boldsymbol{\Sigma}_{\mathbf{b}})$$

Therefore, the transformed data y are jointly Gaussian. Any two variables y_i, y_j are uncorrelated (by diagonal $\widehat{Cov}(y)$) and therefore independent (by y jointly Gaussian). For non jointly Gaussian data, we can not assume independence in the transformed data. In other words, PCA is not able to reveal non-linear relationships between features.

2 Eigenfaces for Recognition

Eigenfaces project a set of faces to the *face space*, spanned by a set of orthonormal *eigenfaces*, which best encode variation amongst faces [2, 3, 4]. In practice this means doing SVD on the set of zero mean faces \mathbf{X} , pick first M right singular vectors $\mathbf{V} \in \mathbb{R}^{p \times M}$ associated with largest singular values. columns of \mathbf{V} are called *eigenfaces* and $col(\mathbf{V})$ is the *face space*. We can project a new image $\mathbf{x} \in \mathbb{R}^{1 \times p}$ to the face space, $\mathbf{y} = (\mathbf{x} - \overline{\mathbf{X}})\mathbf{V}$ and classify faces to class $k = \arg\min_{k \in 1:N} \|\mathbf{y} - (\mathbf{X}\mathbf{V})_k\|$.

References

- [1] Jonathon Shlens. "A Tutorial on Principal Component Analysis". In: arXiv:1404.1100 [cs, stat] (Apr. 3, 2014). arXiv: 1404.1100. URL: http://arxiv.org/abs/1404.1100 (visited on 01/31/2020).
- [2] Alex P Pentland. "Face Recognition Using Eigenfaces". In: (1991), p. 6.
- [3] Matthew Turk and Alex Pentland. "Eigenfaces for Recognition". In: Journal of Cognitive Neuroscience 3.1 (Jan. 1991), pp. 71–86. ISSN: 0898-929X, 1530-8898. DOI: 10. 1162/jocn.1991.3.1.71. URL: http://www.mitpressjournals.org/doi/10.1162/jocn.1991.3.1.71 (visited on 02/04/2020).
- [4] Jun Zhang, Yong Yan, and M. Lades. "Face recognition: eigenface, elastic matching, and neural nets". In: *Proceedings of the IEEE* 85.9 (Sept. 1997), pp. 1423–1435. ISSN: 1558-2256. DOI: 10.1109/5.628712.