ECON 7710

Econometrics I

Lecture notes 4.

Statistical decision problem:

- Parameter inference $(\theta \in \Theta \subset \mathbb{R}^p)$ is input to statistical decisions
- Statistical decision: function $d = \delta(x)$ (x is observation)
- Consequence of decision is a loss $L(\theta, d) \in \mathbb{R}_+$
- Focus on long-term average loss $E[L(\theta, \delta(X))]$
- Example:
 - $-X = (X_1, \dots, X_n), X_i \sim N(\xi, \sigma^2)$
 - Decision: select interval $[\underline{L}, \overline{L}]$
 - Loss function: 0 if decision is correct and depends on the distance of the true ξ from the interval otherwise
 - Loss minimization problem: minimize loss w.r.t. the lendth of the interval
- Introduce risk function

$$R(\theta, \delta) = E_{\theta}[L(\theta, \delta(X))]$$

- Choosing optimal decision is impossible since θ is unknown
- One approach to optimality is to choose decisions that provide uniformly smaller risk

Testing, basic definitions:

- Define the problem as accepting or rejecting a certain hypothesis regarding P_{θ}
- Decision problem if called a test of the hypothesis

- Parameter space generates a class of distributions $\mathcal{P} = \{P_{\theta}, \ \theta \in \Theta\}$
- Then $\mathcal{P} = H \cup K$ (where hypothesis is true for H and not true for K) with $\Theta = \Theta_H \cup \Theta_K$
- The hypothesis mathematically is a statement: $P_{\theta} \in H$
- \bullet K is the class of alternatives
- d_0 is the decision to not reject H and d_1 is the decision to reject H
- If $X \in S$ is the r.v. corresponding to the sample, then $S = S_0 \cup S_1$, s.t. H is not rejected if $x \in S_0$ and rejected if $x \in S_1$ (x is the realization of X)
- S_0 is called acceptance region and S_1 is called the rejection region (or *critical region*)
- Two types of errors:
 - 1. Type I: Rejecting H when it is true \checkmark
 - 2. Type II: Not rejecting H when it is false \checkmark
- Desirable property: both errors are small, but this is impossible
- **Definition:** Level of significance is a number $0 < \alpha < 1$ such that

$$P_{\theta}(\delta(X) = d_1) = P_{\theta}(X \in S_1) \le \alpha, \ \forall \ \theta \in \Theta_H$$

- Test is constructed by maximizing $P_{\theta}(\delta(X) = d_1) = P_{\theta}(X \in S_1)$ (the power of the test) over $\theta \in \Theta_K$ setting the significance level to fixed α
- **Definition:** Quantity

$$\sup_{\theta \in \Theta_H} P_{\theta}(X \in S_1)$$

is called the size of the test.

- **Definition:** Probability $\beta(\theta) = P_{\theta}(\delta(X) = d_1)$ considered as a function of θ is called the power function of the test
- Randomized test: $\phi(x)$ is the probability of rejection

- $\phi(x)$ is the critical function; for deterministic tests it is indicator for critical region
- Construction of test: select $\phi(\cdot)$ to maximize

$$\beta_{\phi}(\theta) = E_{\theta}[\phi(X)], \ \forall \ \theta \in \Theta_K,$$

subject to

$$E_{\theta}[\phi(X)] \le \alpha, \ \forall \ \theta \in \Theta_H.$$

- Test that maximized power against a certain alternative may depend on this alternative
- Finding tests that maintain power against all alternatives will be very important

Testing, fundamental results:

- **Defnition:** Class of distributions is called *simple* if it contains a single distribution, otherwise it is called *composite*.
- Consider simple hypothesis K, and P_0 are distributions under K and P_1 are distributions under H
 - Test design is based on solving

$$\max_{S} \sum_{x \in S} P_1(x)$$

subject to

$$\sum_{x \in S} P_0(x) \le \alpha.$$

- Solution chooses x with the highest ratio $r(x) = \frac{P_1(x)}{P_0(x)}$
- Formally S is the set r(x) > c where

$$P_0(X \in S) = \sum_{r(x) > c} P_0(x) = \alpha.$$

• Theorem (Neyman-Pearson fundamental lemma): Let P_1 and P_0 be probability distributions with densities p_1 and p_0 .

(i) Existence: For testing $H: p_0$ against the alternative $K: p_1$ there exists a test $\phi(\cdot)$ and a constant k, s.t.

$$E_0[\phi(X)] = \alpha \qquad (*)$$

and

$$\phi(x) = \begin{cases} 1, \text{ when } p_1(x) > k \, p_0(x), \\ 0, \text{ when } p_1(x) < k \, p_0(x). \end{cases}$$
 (**)

- (ii) Sufficient condition for most powerful test. If the test satisfies (*) and (**) for some k then it is most powerful for testing p_0 against p_1 at level α .
- (iii) Necessary condition for most powerful test. If ϕ is most powerful at level α for testing p_0 against p_1 , then for some k it satisfies (**) almost everywhere. It also satisfies (*) unless there exists a test of size $< \alpha$ with power 1.
- Corollary: Let β denote the power of the most powerful level α test for testing P_0 against P_1 . Then $\alpha < \beta$ unless $P_0 = P 1$
- Example: $X \sim N(\mu, 1)$. Test the null $\mu = 0$ against the alternative $\mu = \mu' > 0$.
 - Likelihood ratio

$$\frac{p_1(x)}{p_0(x)} = \frac{e^{-\frac{(x-\mu')^2}{2}}}{e^{-\frac{x^2}{2}}} = e^{x\mu' - \frac{1}{2}(\mu')^2}.$$

- $-p_1(x)/p_0(x)$ is monotone increasing in x
- $-p_1(x)/p_0(x) > k$ corresponds to x > c for some c
- Set $P_0(X > c) = \alpha$, meaning that $c = z_{1-\alpha}$ $(1 \alpha$ quantile of standard normal distribution).

p-values:

- Suppose that $p_1(x)/p_0(x)$ is continuous, then the most powerful level α test is non-randomized and rejects if $p_1(x)/p_0(x) > k(\alpha)$
- Varying α generates nested critical regions with $S_{\alpha} \subset S_{\alpha'}$ for $\alpha < \alpha'$

• **Definition:** The smallest significance level at which the hypothesis would be rejected given observation

$$\widehat{p} = \widehat{p}(x) = \inf\{\alpha : x \in S_{\alpha}\}\$$

is called p-value.

• Example (continued): The rejection region

$$S_{\alpha} = \{x : x > z_{1-\alpha}\} = \{x : 1 - \Phi(x) < \alpha\}.$$

$$-\widehat{p} = 1 - \Phi(x).$$

- Lemma: Suppose that X has distribution P_{θ} for some $\theta \in \Theta$ and H specifies $\theta \in \Theta_H$. Suppose that for rejection region $S_{\alpha} \subset S_{\alpha'}$ if $\alpha < \alpha'$.
 - (i) If for $\theta \in \Theta_H$

$$P_{\theta}(X \in S_{\alpha}) < \alpha, \quad 0 < \alpha < 1,$$

then the distribution of \widehat{p} under $\theta \in \Theta_H$ satisfies

$$P_{\theta}(\widehat{p} \le u) \le u \ \forall \ 0 \le u \le 1.$$

(ii) If for $\theta \in \Theta_H$

$$P_{\theta}(X \in S_{\alpha}) = \alpha, \quad 0 < \alpha < 1,$$

then the distribution of \widehat{p} under $\theta \in \Theta_H$ satisfies

$$P_{\theta}(\widehat{p} \le u) = u \ \forall \ 0 \le u \le 1,$$

i.e. \hat{p} is uniformly distributed over [0,1].

Uniformly most powerful tests:

• **Definition:** The real-parameter distribution family $\{p_{\theta}(x), \theta \in \Theta\}$ is said to have monotone likelihood ratio if there exists a real-valued function T(x) such that for any $\theta < \theta'$ the distributions P_{θ} and $P_{\theta'}$ are distinct and the ratio $p_{\theta'}(x)/p_{\theta}(x)$ is a non-decreasing function of T(x).

- Theorem: Let θ be a real parameter and let random variable X have probability density $p_{\theta}(x)$ with monotone likelihood ratio in T(x).
 - (i) For testing $H: \theta \leq \theta_0$ against $K: \theta > \theta_0$, there exists a UMP (uniformly most powerful) test, which is given by

$$\phi(x) = \begin{cases} 1, & \text{when } T(x) > C, \\ \gamma, & \text{when } T(x) = C, \\ 0, & \text{when } T(x) < C, \end{cases}$$

where C and γ are determined by

$$E_{\theta_0}[\phi(X)] = \alpha.$$

(ii) The power function

$$\beta(\theta) = E_{\theta}[\phi(X)]$$

of this test is strictly increasing for all points θ for which $0 < \beta(\theta) < 1$.

- (iii) For all θ' the test determined in (i) is UMP for testing $H': \theta \leq \theta'$ against $K': \theta > \theta'$ at level $\alpha = \beta(\theta')$.
- (iv) For any $\theta < \theta_0$ the test minimizes $\beta(\theta)$ among all tests satisfying $E_{\theta_0}[\phi(X)] = \alpha$.
- Example: Hypergeometric distribution

$$P_D(x) = \frac{\binom{D}{x} \binom{N-D}{n-x}}{\binom{N}{n}}$$

- Note that $\max\{0, n+D-N\} \le x \le \min\{n, D\}$
- Likelihood ratio is

$$\frac{P_{D+1}(x)}{P_D(x)} = \frac{D+1}{N-D} \frac{N-D-n+x}{D+1-x}$$

if $n + D + 1 - N \le x \le D$ (and 0 or $+\infty$ at the end points)

-T(x)=x and there exists UMP for $H:D\leq D_0$ against $K:D>D_0$ that rejects H when x is too large.

Confidence bounds:

- An object of interest in many cases is the upper and lower bound for a given parameter (or sets of parameters)
- wlog we consider the lowe bound
- $\theta(x)$ is a function of observations
- We choose the confidence level 1α such that

$$P_{\theta}(\underline{\theta}(X) \le \theta) \ge 1 - \alpha, \ \forall \theta.$$

- **Definition:** Function $\underline{\theta}(x)$ is called a lower confidence bound for θ at confidence level $1-\alpha$
- The construction of $\underline{\theta}(\cdot)$ should minimize the probability $P_{\theta}(\underline{\theta}(X) \leq \theta')$ for any $\theta' < \theta$ (which will give the uniformly most accurate lower confidence bound for θ).
- **Definition:** A family of subsets $S(x) \subset \Theta$ is said to constitute a family of confidence sets at confidence level 1α if

$$P_{\theta}(\theta \in S(X)) \ge 1 - \alpha, \ \forall \theta \in \Theta$$

• A lower confidence bound is a special case of the confidence set $S(x) = \{\theta : \underline{\theta}(x) \le \theta < \infty\}$

• Theorem:

(i) For each $\theta_0 \in \Theta$ let $A(\theta_0)$ be the acceptance region of the α -level test for testing $H(\theta_0)$: $\theta = \theta_0$ and for each sample point x let S(x) denote the set of parameter values

$$S(x) = \{\theta : x \in A(\theta), \theta \in \Theta\}.$$

Then S(x) is a family of confidence sets for θ at confidence level $1 - \alpha$.

(ii) If for all θ_0 , $A(\theta_0)$ is UMP for testing $H(\theta_0)$ at level α against the alternative $K(\theta_0)$, then for each $\theta_0 \in \Theta$, S(x) minimize probability

$$P_{\theta_0}(\theta_0 \in S(X)) \ \forall \theta \in K(\theta_0)$$

among all level $1 - \alpha$ families of confidence sets for θ .

- Corollary: Let the family of densities $p_{\theta}(x)$ have mootone likelihood ratio in T(x) and suppose that the cumulative distribution function $F_{\theta}(t)$ of T = T(X) is a continuous function in each of the variables t and θ when the other is fixed.
 - (i) There exists a uniformly most accurate confidence bound $\underline{\theta}$ for θ at each confidence level $1-\alpha$
 - (ii) If x denotes the observed values of X and t the observed values of T(X) and if the equation

$$F_{\theta}(t) = 1 - \alpha$$

has a solution $\theta = \widehat{\theta}$ in Θ then this solution is unique and $\underline{\theta}(x) = \widehat{\theta}$.