3. Übungsblatt

(zum 03., 04., 05. bzw. 06.11.2014)

Aufgabe 8 Schwellenwertelemente

Bestimmen Sie die Gewichte und den Schwellenwert einzelner Schwellenwertelemente (kein Netz von Schwellenwertelementen), sodass sie die folgenden Booleschen Funktionen berechnen:

- a) $x_1 \wedge x_2 \wedge \neg x_3$
- b) $\neg x_1 \lor (\neg x_2 \land x_3)$
- c) $(\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3)$
- d) $\neg (x_1 \land x_2) \land \neg x_3$

Aufgabe 9 Schwellenwertelemente

Gegeben sei eine Menge von Punkten in einem zweidimensionalen Raum (also Punkte in einer Ebene). Für eine festgelegte Teilmenge dieser Punkte soll ein Schwellenwertelement eine Ausgabe von 1 erzeugen, für die übrigen eine Ausgabe von 0.

- a) Unter welchen Bedingungen kann ein Schwellenwertelement diese Aufgabe lösen?
- b) Wenn die Aufgabe lösbar ist: Ist sie eindeutig lösbar? D.h.: Gibt es einen eindeutigen Satz von Gewichten und einen eindeutigen Schwellenwert, sodass die Aufgabe gelöst wird? Wenn nicht: Welche Variationsmöglichkeiten gibt es?
- c) Wie könnte man in natürlicher Weise eine "beste" Lösung der Aufgabe definieren?

Aufgabe 10 Netze von Schwellenwertelementen

- a) Geben Sie ein neuronales Netz aus Schwellenwertelementen an, das für Punkte (x_1, x_2) innerhalb des in der nebenstehenden Skizze gezeigten Dreiecks den Wert 1 und für Punkte außerhalb den Wert 0 liefert!
- b) Es soll innerhalb eines Gebietes der x_1 - x_2 -Ebene, das durch ein Polygon begrenzt, aber *nicht konvex* ist, die Ausgabe 1, und außerhalb die Ausgabe 0 erzeugt werden. Welches Problem kann in diesem Fall im Vergleich zu dem oben betrachteten Dreieck auftreten? Wie kann man dieses Problem lösen?

Intelligente Systeme

Prof. Dr. R. Kruse, A. Dockhorn

Aufgabe 11 Berechnungsfähigkeiten von Netzen von Schwellenwertelementen

Kann man ein Netz aus Schwellenwertelementen angeben, das für Punkte innerhalb eines Kreises mit Radius 1 um den Ursprung die Ausgabe 1 und außerhalb die Ausgabe 0 liefert? Wenn ja, skizzieren Sie dieses Netz! Wenn nein, geben Sie ein Prinzip an, wie man ein Netz bestimmen kann, das eine Näherungslösung liefert!