!YOUR TITLE ALL CAPS!

By Joel N. Johnson

A Dissertation

Submitted in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
in Applied Physics and Materials Science

Northern Arizona University
!Month YYYY!

Ryan O. Behunin, Ph.D., Co-Chair
John G. Gibbs, Ph.D., Co-Chair
Inès Montaño, Ph.D.
Jennifer S. Martinez, Ph.D.

Table of Contents

Li	ist of Tables	iii
Li	ist of Figures	iv
D	Dedication	v
Pı	reface	vii
1	Introduction 1.1 Section 1	1 1
2	Manuscript I: Laser cooling of traveling wave phonons in an optical fiber 2.1 Abstract	
3	Manuscript II: 3.1 Abstract	
4	Manuscript III: 4.1 Abstract	
5	Discussion & Conclusion	9
A	cronyms	11
A	Supplementary Information for Chapter 2: Manuscript I	13
R	eferences	15

List of Tables

2.1	Table caption	4
3.1	Table caption	6
<i>1</i> 1	Table caption	ç

List of Figures

1.1	Bandfield crater	2
A.1	Sideways figure/table example	14

Dedication

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Preface

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Introduction

This is an inline citation, Braden & Robinson (2013). This is a parenthetical citation (Braden & Robinson, 2013). This is a figure reference (Figure 1.1). This is a section reference §1.1. This is a chapter reference with chapter spelled out: chapter 2. This is an acronym definition American Geophysical Union (AGU). This is the second time I use the acronym in this section AGU. This is if I want to spell out the full acronym again American Geophysical Union (AGU). Define new acronyms in the acronyms.tex file.

1.1 Section 1

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius

orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Figure 1.1: Bandfield crater.

Manuscript I: Laser cooling of traveling wave phonons in an optical fiber

2.1 Abstract

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

2.2 Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Table 2.1: Table caption.

	Parameter	Value	Description
	lat	-85°-85°	Latitude (35 bins in 5° increments)
Lookup	ALBEDO	0.05 – 0.225	Bolometric albedo (6 bins in 0.035 increments)
Variables	SLOPE	$0^{\circ}-90^{\circ}$	Surface slope (19 bins in 5° increments)
variables	SLOAZI	$0^{\circ}360^{\circ}$	Surface azimuth (19 bins in 20° increments)
	DELLS	4°	L_s step size (90 bins spanning 0°-360°)
	EMISS	0.96	Emissivity
	thick	0.05	Upper layer thickness [m]
	DENSITY	1100	Upper layer density [kg/m ³]
Thermal	DENS2	1800	Lower layer density [kg/m ³]
Parameters	lbound	18	Interior heat flow $[mW/m^2]$
	PhotoFunc	0.045/albedo	Photometric function (Keihm-style)
	SphUp0/SphLo0	602.88098583	
	SphUp1/SphLo1	235.98988249	Specific heat capacity expressed as 4th-order
	SphUp2/SphLo2	-29.59742178	polynomial $(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
Temperature-dependent parameters	${\rm SphUp3/SphLo3}$	-3.78707193	
	ConUp0	0.00133644	
	ConUp1	0.00133011 0.00073150	Upper layer conductivity expressed as
	ConUp2	0.00033250	4th-order polynomial
	ConUp3	0.00005038	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
	ConLo0	0.00634807	
	ConLo1	0.00347464	Lower layer conductivity expressed as
	ConLo2	0.00347404 0.00157938	4th-order polynomial
	ConLo3	0.00137938	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
	body	Moon	Target body
	k_style	Moon	Conductivity style (Moon for airless bodies)
	LKofT	Т	Temperature-dependent conductivity
Model Setup	FLAY	0.01	First layer thickness [m]
Parameters	RLAY	1.3	Layer thickness multiplier
	N1	26	Number of layers
	N24	288	Timesteps per day (5 min steps)
	1 1 2.4		

Manuscript II:

3.1 Abstract

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

3.2 Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Table 3.1: Table caption.

	Parameter	Value	Description
	lat	-85°-85°	Latitude (35 bins in 5° increments)
Lookup	ALBEDO	0.05 – 0.225	Bolometric albedo (6 bins in 0.035 increments)
Variables	SLOPE	0°-90°	Surface slope (19 bins in 5° increments)
variables	SLOAZI	0°-360°	Surface azimuth (19 bins in 20° increments)
	DELLS	4°	L_s step size (90 bins spanning 0°-360°)
	EMISS	0.96	Emissivity
	thick	0.05	Upper layer thickness [m]
	DENSITY	1100	Upper layer density [kg/m ³]
Thermal	DENS2	1800	Lower layer density [kg/m ³]
Parameters	lbound	18	Interior heat flow $[mW/m^2]$
	PhotoFunc	0.045/albedo	Photometric function (Keihm-style)
	SphUp0/SphLo0	602.88098583	
	SphUp1/SphLo1	235.98988249	Specific heat capacity expressed as 4th-order
Temperature-dependent parameters	SphUp2/SphLo2	-29.59742178	polynomial $(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
	${\rm SphUp3/SphLo3}$	-3.78707193	
	ConUp0	0.00133644	
	ConUp1	0.00073150	Upper layer conductivity expressed as
	ConUp2	0.00033250	4th-order polynomial
	ConUp3	0.00005038	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
	ConLo0	0.00634807	
	ConLo1	0.00347464	Lower layer conductivity expressed as 4th-order polynomial
	ConLo2	0.00347404	
	ConLo3	0.00023930	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
	body	Moon	Target body
	k_style	Moon	Conductivity style (Moon for airless bodies)
	LKofT	T	Temperature-dependent conductivity
Model Setup	FLAY	0.01	First layer thickness [m]
Parameters	RLAY	1.3	Layer thickness multiplier
	N1	26	Number of layers
	N24	288	Timesteps per day (5 min steps)
	DJUL	0	Start date

Manuscript III:

4.1 Abstract

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

4.2 Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Table 4.1: Table caption.

	Parameter	Value	Description
	lat	-85°-85°	Latitude (35 bins in 5° increments)
Looleum	ALBEDO	0.05 – 0.225	Bolometric albedo (6 bins in 0.035 increments)
Lookup Variables	SLOPE	$0^{\circ}-90^{\circ}$	Surface slope (19 bins in 5° increments)
variables	SLOAZI	$0^{\circ}360^{\circ}$	Surface azimuth (19 bins in 20° increments)
	DELLS	4°	L_s step size (90 bins spanning 0°-360°)
	EMISS	0.96	Emissivity
	thick	0.05	Upper layer thickness [m]
	DENSITY	1100	Upper layer density [kg/m ³]
Thermal	DENS2	1800	Lower layer density [kg/m ³]
Parameters	lbound	18	Interior heat flow $[mW/m^2]$
	PhotoFunc	0.045/albedo	Photometric function (Keihm-style)
	SphUp0/SphLo0	602.88098583	
	SphUp1/SphLo1	235.98988249	Specific heat capacity expressed as 4th-order
	SphUp2/SphLo2	-29.59742178	polynomial $(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
	$\mathrm{SphUp3/SphLo3}$	-3.78707193	
Temperature-dependent parameters	ConUp0 ConUp1 ConUp2 ConUp3	0.00133644 0.00073150 0.00033250 0.00005038	Upper layer conductivity expressed as 4th-order polynomial $(c0+c1\cdot T+c2\cdot T^2+c3\cdot T^3)$
	ConLo0	0.00634807	T 1
	ConLo1	0.00347464	Lower layer conductivity expressed as
	ConLo2	0.00157938	4th-order polynomial
	ConLo3	0.00023930	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$
	body	Moon	Target body
	k_style	Moon	Conductivity style (Moon for airless bodies)
	LKofT	${ m T}$	Temperature-dependent conductivity
Model Setup	FLAY	0.01	First layer thickness [m]
Parameters	RLAY	1.3	Layer thickness multiplier
	N1	26	Number of layers
	N24	288	Timesteps per day (5 min steps)
	DJUL	0	Start date

Discussion & Conclusion

Acronyms

 \mathbf{AGU} American Geophysical Union

Appendix A

Supplementary Information for Chapter 2: Manuscript I

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Figure A.1: Sideways figure/table example.

References

Braden, S. E., & Robinson, M. S. 2013, Journal of Geophysical Research: Planets, 118, 1903, doi: 10.1002/JGRE.20143@10.1002/(ISSN)2169-9100.MESSENGER1