Displacement and Velocity Sensors

MEMS 1049 Mechatronics

7	April 15	April 20
	Angular Displacement	Lab 1
8	April 22	April 27
	Distance and Proximity	Lab 2
9	April 29	May 10(May 4)
	Inertial Measurement	Lab 3
10	May 6	May 11
	DC Motor Modelling	Lab 4

Outline

- Displacement sensors
 - Linear Potentiometers
 - Linear Variable Differential Transformers (LVDT)
 - Rotary Potentiometer
- Velocity sensors
 - Centrifugal Tachometers
 - DC Tachometer
 - Electromagnetic Tachometer
 - Stroboscopic Tachometer
 - Encoders

Sensor Board

- Angular Displacement
- Distance and Proximity
- Temperature
- Strain
- Pressure
- Contact
- Inertial Measurement

Linear Potentiometers

Linear Variable Differential Transformers (LVDT)

Q

Rotary Potentiometer

 $V_{AB} = V_{AW} + V_{WB}$

Centrifugal Tachometers

The centripetal acceleration of the flyball masses result in a steadystate displacement of the spring, which provides a control signal or is a direct indication of rotational speed.

DC Tachometer

Electromagnetic Tachometer

Stroboscopic Tachometer

Encoder

120 川大学 匹茲堡学院

Encoder

State	Signal A	Signal B
1	OFF	ON
2	OFF	OFF
3	ON	OFF
4	ON	ON

Encoder

 Pulse per revolution (PPR or LPR): the number of light or dark patterns on the disk

• Count per revolution (CPR): the number of quadrature decoded states per revolution

Encoder Decoding

- Non-quadrature
 - Rising edge of signal A
 - 9 CPR
- X1 Decoder
 - Rising edge of signal A
 - State of signal B
 - 9 CPR
- X2 Decoder
 - Rising and falling edges of signal A
 - State of signal B
 - 18 CPR

Encoder Decoding

- X4 Decoder
 - Rising and falling edge of signal A
 - Rising and falling edge of signal B
 - 36 CPR

Angular Displacement and Resolution

Angular Displacement

$$\theta = \frac{Counts}{N \cdot PPR} \cdot 360^{\circ}$$

Resolution

$$\Delta \theta = \frac{360^{\circ}}{N \cdot PPR}$$

匹茲堡学院