Reto - Unidad 3

Calculadora electrica Alejandro Restrepo

Inicio

El reto consistía en hacer una calculadora, donde se pudiera elegir entre 4 calculos distintos:

I. Ley de Ohm.

2. Factor de potencia.

3. Resistencia de un conductor.

4.Resistencia de un led.

y, en cada uno de esos calculos, se podía elegir una variable.

Menu

Muestra un menú con 4 opciones y lee la selección del usuario.

```
#include <stdio.h>
#include <math.h>
#include <stdlib.h>

int menu(void)
{
    int opc;
    printf("Elegir: \n");
    printf(" 1. Ley de Ohm\n 2. Factor de potencia\n 3. Resistencia de un conductor \n 4. Resistencia de un LED. \n");
    scanf("%d", &opc);
    return opc;
}
```

Declaración de funciones

```
void ley_de_ohm();
void factor_potencia();
void resistencia_conductor();
void resistencia_LED();
```

Usado para controlar el flujo principal del programa.

```
int main()
   int opc = menu();
       opc = menu();
       switch (opc)
       case 1:
           printf("Ha elegido Ley de Ohm.");
           ley_de_ohm();
           break;
       case 2:
           printf("Ha elegido Factor de potencia. Inserte");
           factor_potencia();
           break;
       case 3:
           printf("Ha elegido Resistencia de un conductor. Inserte");
           resistencia_conductor();
           break;
       case 4:
           printf("Ha elegido Resistencia de un LED. Inserte");
           resistencia_LED();
           break;
       default:
           break;
```

```
default:
    break;
}
} while (opc != 5);
return 0;
}
```


Ley de Ohm

```
void ley_de_ohm()
   int opc;
   float V, I, R;
   printf("Inserte cual de los tres valores necesita: \n 1. Resistencia\n 2. Corriente. \n 3. Voltaje\n 4. Ingrese cualquier otro numero
   scanf("%d", &opc);
                                                                                       case 3:
case 1:
                                                                                          printf("Insertar la resistencia: \n");
    printf("Insertar el voltaje: \n");
                                                                                          scanf("%f", &R);
    scanf("%f", &V);
                                                                                          printf("Insertar corriente: \n");
    printf("Insertar corriente: \n");
                                                                                          scanf("%f", &I);
    scanf("%f", &I);
                                                                                          V = I * R;
    R = V / I;
    printf("La resistencia obtenida es: %f, \n", R);
                                                                                          printf("El voltaje obtenido es: %f, \n", V);
    break;
                                                                                          break:
```

```
case 2:
    printf("Insertar el voltaje: \n");
    scanf("%f", &V);
    printf("Insertar la resistencia: \n");
    scanf("%f", &R);
    I = V / R;
    printf("La corriente obtenida es: %f, \n", I);
    break;
```

Factor de potencia

```
void factor_potencia()
{
   int opc;
   float P, S, V, I, cos_phi, Q;
   printf("Inserte cual de los tres valores necesita: \n 1. Potencia activa\n 2. Potencia aparente. \n 3. Factor de potencia scanf("%d", &opc);
   switch (opc)
```

```
case 1:
    printf("Insertar voltaje: \n");
    scanf("%f", &V);
    printf("Insertar corriente: \n");
    scanf("%f", &I);
    printf("Insertar factor de potencia: \n");
    scanf("%f", &cos_phi);
    P = V * I * cos_phi;
    printf("La potencia activa obtenida es: %f, \n", P);
    S = V * I;
    Q = sqrt((S * S) - (P * P));
    printf("La potencia reactiva obtenida es: %f, \n", Q);
    printf("El coseno del angulo es: %f, \n", cos_phi);
    break;
```

```
case 2:
    printf("Insertar voltaje: \n");
    scanf("%f", &V);
    printf("Insertar corriente: \n");
    scanf("%f", &I);
    printf("Insertar factor de potencia: \n");
    scanf("%f", &cos_phi);
    // Factor de potencia = cos(phi)
    S = V * I;
    printf("La potencia aparente obtenida es: %f, \n", S);
    P = V * I * cos_phi;
    Q = sqrt((S * S) - (P * P));
    printf("La potencia reactiva obtenida es: %f, \n", Q);
    printf("El coseno del angulo es: %f, \n", cos_phi);
    break;
```

```
case 3:
    printf("Insertar potencia activa: \n");
    scanf("%f", &P);
    printf("Insertar potencia aparente: \n");
    scanf("%f", &S);
    cos_phi = P / S;
    printf("El factor de potencia (cos_phi) obtenido es: %f, \n", cos_phi);
    Q = sqrt((S * S) - (P * P));
    printf("La potencia reactiva obtenida es: %f, \n", Q);
    break;
```

Resistencia de un conductor

```
void resistencia_conductor()
{
   int opc;
   float R, rho, rho_0, L, A, T, a;
   printf("Inserte cual material del conductor para el calculo de la resistencia: \n 1. Cobre\n 2. Aluminio\n 3. Plata\n 4. Otros.
   scanf("%d", &opc);
   switch (opc)
```

```
case 1:
   rho = 1.68 * pow(10, -8); // Resistividad del cobre
   printf("Insertar la longitud del conductor (m): \n");
   scanf("%f", &L);
   printf("Insertar el area de la seccion transversal del conductor (m^2): \n");
   scanf("%f", &A);
   R = rho * (L / A);
   printf("La resistencia del conductor es: %f ohmios, \n", R);
   break;
case 2:
   rho = 2.65 * pow(10, -8); // Resistividad del aluminio
   printf("Insertar la longitud del conductor (m): \n");
   scanf("%f", &L);
   printf("Insertar el area de la seccion transversal del conductor (m^2): \n");
   scanf("%f", &A);
   R = rho * (L / A);
   printf("La resistencia del conductor es: %f ohmios, \n", R);
   break:
case 3:
   rho = 1.59 * pow(10, -8); // Resistividad de la plata
   printf("Insertar la longitud del conductor (m): \n");
   scanf("%f", &L);
   printf("Insertar el area de la seccion transversal del conductor (m^2): \n");
   scanf("%f", &A);
   R = rho * (L / A);
   printf("La resistencia del conductor es: %f ohmios, \n", R);
```

```
printf("Insertar la resistividad del material a una temperatura de referencia de 20 grados centigrados: \n");
scanf("%f", &rho_0);
printf("Insertar la temperatura a la que queremos calcular la resistividad: \n");
scanf("%f", &T);
printf("Insertar el coeficiente de temperatura de resistividad del material: \n");
scanf("%f", &a);
rho = rho_0 * (1 + a * (T - 20)); // Coeficiente de temperatura de resistividad del cobre
printf("Insertar la longitud del conductor (m): \n");
scanf("%f", &L);
printf("Insertar el area de la seccion transversal del conductor (m^2): \n");
scanf("%f", &A);
R = rho * (L / A);
printf("La resistencia del conductor es: %f ohmios, \n", R);
break;
```

Resistencia de un LED

```
void resistencia_LED()
{
    float Tf, num_leds, opc, Vf, If, R, P, Pt, It;
    printf("Insertar los siguientes valores: \n");
    printf("1. Tension de la fuente en voltios: \n");
    scanf("%f", &Tf);
    printf("2. Numero de LEDs conectados al circuito: \n");
    scanf("%f", &num_leds);
    printf("3. Tipo de conexion. \n 1. En serie \n 2. En paralelo \n");
    scanf("%f", &opc);
    printf("4. Tension nominal de los LEDs en voltios: \n");
    scanf("%f", &Vf);
    printf("5. Corriente nominal de los LEDs en amperios: \n");
    scanf("%f", &If);
```

```
if (opc == 1)
   R = (Tf - (num leds * Vf)) / If;
   printf("La resistencia del LED es: %f ohmios, \n", R);
   P = R * If * If;
   printf("La potencia disipada en la resistencia es: %f watts, \n", P);
   Pt = P * num leds;
   printf("La potencia total disipada en la resistencia es: %f watts, \n", Pt);
   It = If * num leds;
   printf("La corriente total en el circuito es: %f amperios, \n", It);
else if (opc == 2)
   R = (Tf - Vf) / If;
   printf("La resistencia del LED es: %f ohmios, \n", R);
   P = R * If * If;
   printf("La potencia disipada en la resistencia es: %f watts, \n", P);
   Pt = P * num leds;
   printf("La potencia total disipada en la resistencia es: %f watts, \n", Pt);
   It = If * num leds;
   printf("La corriente total en el circuito es: %f amperios, \n", It);
else
   printf("Opcion no valida.\n");
```


Gracias