- 1. 2.3.7.(b) $((a \cup b)(a \cup b))^*$
- 2. As the hint suggests, by regularity's closure under intersection, it suffices to show $L\cap a^*bba^*=\{a^nbba^n:n\geq 0\}$ is non-regular. Take arbitrary N>0. Let $w=a^Nbba^N$. Take arbitrary xyz=w, with $|xy|\leq N,\,y\neq\epsilon$. Note that $x=a^h,y=a^i,z=a^jbba^N$, where $h\geq 0,i>0,j\geq 0$ and h+i+j=N. Let k=2, then $x(y^k)z=a^ha^{2i}a^jbba^N=a^{N+i}bba^N\notin L$.

Note: we actually have a stronger conclusion in this case that w can be arbitrary and k>0 is sufficient, since any repetition has to be done both before and after bb, and repetition of y can only appear before or after bb (or containing bb).

3.

$$L = (a \cup b)^*, S = a^n b^n$$