Solution 6

Dans ces exercices, on va classifier a isomorphisme pres les petits groupes finis.

Exercice 1. Montrer qu'a isomorphisme pres il n'existe qu'un seul groupe d'ordre 1,2, 3, 5, 7.

Solution 1. Remarquons que 1,2, 3, 5 et 7 sont des nombres premiers. En généralisant un peu l'énoncé, considérons un groupe G d'ordre p où p est premier. Pour p=1, $G=\{e_G\}$. Pour $p\neq 1$, par le théorème de Lagrange, l'ordre de tout élément de G divise p. Comme p est premier, l'ordre d'un élément de G est égal à 1 ou p. Soit $g\in G$ un element différent de l'élément neutre alors g est d'ordre p et génère G qui est donc cyclique. Par l'exercice 4 de la série 5, G est isomorphe à $\mathbb{Z}/p\mathbb{Z}$.

Donc tout groupe d'ordre p premier est isomorphe à $\mathbb{Z}/p\mathbb{Z}$.

Exercice 2. On discute le cas des groupes d'ordre 4.

- 1. Montrer que le groupe $\mathbb{Z}/4\mathbb{Z}$ et le groupe produit $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ ne sont pas isomorphes (regarder les ordres des elements.) On va montrer que ce sont les seuls
- 2. Soit (G, .) un groupe d'ordre 4. Que dire de G si il possede un element d'ordre A
- 3. Si ce n'est pas le cas, quels sont les ordres des elements de G? Montrer que $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Exercice 3. Soit G un groupe d'ordre 6. On va montrer qu'il n'existe a isomorphisme pres que deux groupes possibles.

- 1. Quels sont les ordres possibles des elements de G?
- 2. Que dire si G possede un element d'ordre 6? Dans la suite on suppose que G n'a pas d'element d'ordre 6.
- 3. On suppose que tous les elements non triviaux de G sont d'ordre 2; Montrer qu'alors

$$\forall g \in G, \ g^{-1} = g \text{ et que } \forall g, g' \in G, \ g.g' = g'.g.$$

Montrer que G contiendrait alors un groupe d'ordre 4 et que c'est impossible.

4. Ainsi G possede au moins un element d'ordre 3. On notera cet element r et $r^{\mathbb{Z}} = \{e_G, r, r^2\}$ le groupe qu'il engendre. Quel est l'ordre de r^2 ?

5. Soit $s \in G - r^{\mathbb{Z}}$. Montrer que

$$G - r^{\mathbb{Z}} = \{s, s.r, s.r^2\}.$$

- 6. Montrer que $s^2 \in r^{\mathbb{Z}}$ et que necessairement s est d'ordre 2 (montrer que sinon s serait d'ordre 6).
- 7. Montrer que s.r et $s.r^2$ sont egalement d'ordre 2 et que

$$s.r.s = s.r.s^{-1} = r^{-1} = r^2$$
.

- 8. Ecrire la table de multiplication de ce groupe. Ce groupe est le groupe dihedral d'ordre 6.
- 9. Ce groupe existe bien et est isomorphe au groupe des isometries d'un triangle equilateral centre a l'origine : trouver les isometries qui correspondent aux elements r et s.

Solution 3. 1. L'ordre d'un élément de G doit diviser |G| = 6. Les ordres possibles pour les éléments de G sont donc 1 (l'élément neutre), 2, 3 et 6.

- 2. Supposons qu'il existe $g \in G$ d'ordre 6. Alors le sous-groupe $g^{\mathbb{Z}}$ de G engendré par g a pour cardinal 6, i.e. $|g^{\mathbb{Z}}| = 6 = |G|$. Donc $g^{\mathbb{Z}} = G$ et G est cyclique. D'après l'exercice 4 de la série 5, G est isomorphe à $\mathbb{Z}/6\mathbb{Z}$.
- 3. Supposons que tout élément de G est d'ordre 2, c'est-à-dire

$$\forall g \in G, g^2 = e_G.$$

En multipliant cette égalité (à gauche ou à droite) par q^{-1} , on obtient

$$\forall g \in G, g = g^{-1}.$$

De même, G étant un groupe, pour tout couple $(q, q') \in G^2$, $qq' \in G$. Ainsi

$$\forall (g,g') \in G^2, gg' = (gg')^{-1} = g'^{-1}g^{-1} = gg'$$

où la première égalité vient du calcul précédent disant que tout élément de G est égal à son inverse, la seconde de la définition de l'inverse d'un produit et la dernière de l'application du calcul précédent une nouvelle fois.

On peut ainsi vérifier que pour tout $(g, g') \in (G \setminus \{e_G\})^2$, le groupe engendré par g et g' est égal à $\langle g, g' \rangle = \{e_G, g, g', gg'\}$ (on peut vérifier le critère de sous-groupe à la main). Ce sous-groupe est alors d'ordre 4. Ceci est impossible car 4 ne divise pas 6 contredisant le théorème de Lagrange.

Donc il existe au moins un élément de G d'ordre 3.

- 4. Soit $r \in G$ un élément d'ordre 3. On a $r^{\mathbb{Z}} = \{e_G, r, r^2\}$. $r^2 \neq e_G$ implique que r^2 est d'ordre 2, 3 ou 6 en tant qu'élément de G. Comme $r^2 \in r^{\mathbb{Z}}$ appartient à un sous-groupe d'ordre 3, son ordre doit aussi diviser 3 et donc y être égal, i.e. r^2 est d'ordre 3.
- 5. Soit $s \in G \setminus r^{\mathbb{Z}}$. Montrons d'abord que pour tout $k \in \mathbb{Z}$, $sr^k \in G \setminus r^{\mathbb{Z}}$. Pour cela, on raisonne par l'absurde. Supposons

$$\exists k \in \mathbb{Z}, \ sr^k \in r^{\mathbb{Z}}$$

c'est-à-dire

$$\exists (k,l) \in \mathbb{Z}^2, \ sr^k = r^l.$$

Alors, en multipliant cette égalité à droite par $r^{-k} = (r^{-1})^k$, on a

$$\exists (k,l) \in \mathbb{Z}^2, \ s = r^{l-k}$$

ce qui contredit $s \notin r^{\mathbb{Z}}$.

Donc pour tout $k \in \mathbb{Z}$, $sr^k \in G \setminus r^{\mathbb{Z}}$. En particulier sr et sr^2 appartiennent à $G \setminus r^{\mathbb{Z}}$. Montrons maintenant que s, sr et sr^2 sont tous distincts. Pour cela, on écrit

$$\forall (i,j) \in \{0,1,2\}^2, \ sr^i = sr^j \Leftrightarrow r^{j-i} = e_G \Leftrightarrow i = j$$

où la première équivalence est obtenue en multipliant à gauche par $(sr^i)^{-1} = r^{-i}s^{-1}$ et la seconde en tenant compte du fait que r est d'ordre 3. Ainsi, $G = \{e_G, r, r^2, s, sr, sr^2\}$.

6. Par l'absurde, supposons $s^2 \in G \setminus r^{\mathbb{Z}}$. Alors $s^2 \in \{s, sr, sr^2\}$, i.e.

$$\exists i \in \{0, 1, 2\}, \ s^2 = sr^i.$$

En multipliant à gauche cette égalité par s^{-1} , on obtient

$$\exists i \in \{0, 1, 2\}, \ s = r^i$$

ce qui est impossible puisque $s \notin r^{\mathbb{Z}}$. Donc $s^2 \in r^{\mathbb{Z}} = \{e_G, r, r^2\}$.

Si s^2 était égal à r ou r^2 , alors il serait d'ordre 3. Donc s serait d'ordre 6, ce qui est impossible par hypothèse. Donc $s^2 = e_G$ et s est d'ordre 2.

7. Nous avons défini s comme un élément quelconque de $G \setminus r^{\mathbb{Z}}$ et avons prouvé qu'il était d'ordre 2. Nous aurions pu prendre n'importe quel autre élément de $G \setminus r^{\mathbb{Z}}$ et raisonner de la même manière. Donc tout élément de $G \setminus r^{\mathbb{Z}} = \{s, sr, sr^2\}$ est d'ordre 2.

s étant d'ordre 2, on a $s^{-1}=s$. Donc $srs^{-1}=srs$. De plus, $r^3=e_G$ implique que $r^2=r^{-1}$ par multiplication (à droite ou à gauche) par r^{-1} . Finalement, sr est d'ordre 2 implique

$$sr = (sr)^{-1} = r^{-1}s^{-1}$$
.

En multipliant à droite par s, on obtient la dernière égalité $srs = r^{-1}$.

8. La table de multiplication de G est donnée par

•	e_G	r	r^2	s	sr	sr^2
e_G	e_G	r	r^2	s	sr	sr^2
r	r	r^2	e_G	sr^2	s	sr
r^2	r^2	e_G	r	sr	sr^2	s
s	s	sr	sr^2	e_G	r	r^2
sr	sr	sr^2	s	r^2	e_G	r
sr^2	sr^2	s	sr	r	r^2	e_G

Les seuls éléments demandant du calcul sont $rs = s^{-1}r^2 = sr^2$ où la première égalité vient de $srs = r^2$ prouvé dans la question précédente et la seconde vient de $s = s^{-1}$ puisque s est d'ordre 2. On obtient de même $r^2s = r(rs) = r(sr^2) = (rs)r^2 = sr^4 = sr$. Les autres produit non-triviaux sont obtenus par multiplication à droite par r et r^2 .

- 9. Soit (ABC), un triangle équilatéral centré en l'origine O. On peut alors générer les isométrie de ce triangle par deux transformations.
 - D'une part, une rotation r centrée en O échangeant les sommets A, B et C. C'est-à-dire une rotation d'angle $2\pi/3$ ou $-2\pi/3$. Le choix du signe correspond à choisir r ou r^2 comme élément d'ordre 3
 - D'autre part, une symétrie orthogonale s par rapport à l'une des droites OA, OB ou OC. Le choix de l'une des droites correspond à choisir un élément d'ordre 2 dans $G \setminus r^{\mathbb{Z}}$. Si s correspond à OA, alors sr et sr^2 correspondent aux symétries par rapport à OB et OC.

Définition 1. Soit X un ensemble. Une distance est une application

$$d(\cdot, \cdot): \begin{matrix} X \times X & \mapsto & \mathbb{R}_{\geqslant 0} \\ (P, Q) & \mapsto & d(P, Q) \end{matrix}$$

qui verifie les proprietes suivantes

— Separation des points : pour tout $P, Q \in X$,

$$d(P,Q) = 0 \iff P = Q.$$

- Symetrie: pour tout $P, Q \in X$,

$$d(P,Q) = d(Q,P).$$

- Inegalite du triangle : pour tout $P, Q, R \in X$,

$$d(P,R) \leqslant d(P,Q) + d(Q,R).$$

Exercice 4. Montrer que les applications suivantes definissent des distances sur \mathbb{R}^2 . Pour chacune de ces distances, dessiner la boule unite centree a l'origine (on note $\mathbf{0} = (0,0)$)

$$B_d(\mathbf{0},1) := \{(x,y) \in \mathbb{R}^2, \ d(\mathbf{0},(x,y)) \leq 1\}.$$

$$d_0((x,y),(x',y')) = \delta_{x\neq x'} + \delta_{y\neq y'}, \text{ avec } \delta_{x\neq x'} = \begin{cases} 0 & \text{si } x = x' \\ 1 & \text{si } x \neq x' \end{cases}.$$

$$d_1((x,y),(x',y')) = |x - x'| + |y - y'|.$$

$$d_4((x,y),(x',y')) = (|x - x'|^4 + |y - y'|^4)^{1/4}.$$

$$d_{\infty}((x,y),(x',y')) = \max(|x - x'|,|y - y'|).$$

Pour la distance d_4 on pourra introduire la "norme"

$$\|\vec{u}\|_4 := (x^4 + y^4)^{1/4}$$

et montrer

$$\forall \vec{u}, \vec{v} \in \mathbb{R}^2, \ \|\vec{u} + \vec{v}\|_4 \leqslant \|\vec{u}\|_4 + \|\vec{v}\|_4.$$

Pour cela on pourra utiliser la propriete d'homogeneite (ie.

$$\forall \vec{u} \in \mathbb{R}^2, \ \lambda \in \mathbb{R}, \ \|\lambda \vec{u}\|_4 = |\lambda| \|\vec{u}\|_4 \)$$

Solution 4. Montrer que ces applications définissent bien des distances est obtenu en vérifiant les axiomes de la définition pour chaque cas.

La boule unité $B_{d_0}(\mathbf{0},1)$ est la croix obtenue comme l'union de l'axe des abscisse et des ordonnées : $B_{d_0}(\mathbf{0},1)=\{x=0\}\bigcup\{y=0\}$.

$$B_{d_1}(\mathbf{0},1) = \{(x,y) \in \mathbb{R}^2, |x| + |y| \leqslant 1\}$$
 donnée :

$B_{d_4}(\mathbf{0},1)$ est donnée par

 $B_{d_{\infty}}(\mathbf{0},1)$ est donnée par

