

ARTIFICIAL INTELLIGENCE

PROJECT

By Leonardo Berdejo, Bote Sánchez, Danny Cano Y., Camila Carrera, Steve Rosero

PREPROCESAMIENTO

Requerimientos:

- Muestra del 20% de datos del archivo
- Se considerar únicamente la lista corta de causas de muerte (Ic1)
- Eliminaciones en la columna Icl:
 - Defunciones ocurridas fuera de Ecuador (prov_fall sea Null)
 - Muertes violentas (64)
 - Muertes por COVID-19 (66 y 67)
 - Causas mal definidas (99)
 - Resto de causas (88)
 - Valores vacíos (valores con Null)

PREPROCESAMIENTO

A. Se eliminarán todos los datos que no contengan información alguna en la columna lc1:

```
#Se crea nuevo dataset para almacenar los preprocesamientos
df_1 = df.dropna(subset=['lc1'])
df_1
```

B. Se eliminan los datos en al columna Ic1 que se mencionaron en los requerimientos:

```
lc1_del = ['64 Agresiones (Homicidios)', 'COVID-19, virus identificado', 'COVID-19, virus no identificado', '99 Causas mal definidas', '88 Resto de causas']
df_1 = df_1[~df_1['lc1'].isin(lc1_del)]
df_1
```

La columna prov_fall será útil para eliminar las filas de defunciones ocurridas fuera de Ecuador, se eliminarán las filas que tengan a prov_fall vacía entendiéndose como que fallecieron en territorio externo a cualquier provincia (Ecuador)

```
df_1 = df_1.dropna(subset=['prov_fall']) #Eliminación de valores nulos
df_1
```

PREPROCESAMIENTO

```
Limpiamos el dataset de valores NaN
    categorical_columns = df_1.select_dtypes(include=['category']).columns
    df_1[categorical_columns] = df_1[categorical_columns].astype('category')
    # Añadir la categoría 'Desconocido' a cada columna categórica si aún no está presente
    for col in categorical_columns:
        if 'Desconocido' not in df_1[col].cat.categories:
            df_1[col] = df_1[col].cat.add_categories('Desconocido')
    df_1_clean = df_1.fillna('Desconocido')
    df_1_clean = df_1_clean.astype(str)
  ✓ 1m 0.1s
    df 1 clean
  ✓ 5.0s
```

C. Se genera varios modelos con variables diferentes:

MODELO FINAL 1

Variables consideradas en Modelo 1:

```
columns_to_keep = ['sexo', 'area_fall', 'lc1']
df_selected = df[columns_to_keep]

# Obtener el 20% de los datos aleatorios
df_prueba3 = df_selected.sample(frac=0.2, random_state=40);
```

	sexo	area_fall	lc1
935151	Hombre	Urbana	47 Enfermedades crónicas de las vías respirato
175592	Mujer	Urbana	9 Neoplasia maligna del estómago
861969	Mujer	Urbana	25 Neoplasias benignas in situ y de comportami
811518	Mujer	Urbana	26 Diabetes Mellitus
1062163	Mujer	Urbana	57 Accidentes de transporte terrestre
1203391	Mujer	Rural	41 Insuficiencia cardíaca, complicaciones y en
164562	Hombre	Urbana	51 Cirrosis y otras enfermedades del hígado
1082784	Mujer	Rural	56 Malformaciones congénitas, deformidades y a
1051014	Hombre	Urbana	57 Accidentes de transporte terrestre
215231	Hombre	Urbana	39 Paro cardíaco
251022 rows × 3 columns			

MODELADO

ACSS con K = 2:0.068

ACSS con K = 4:0.13

ACSS con K = 3:0.42

ACSS con K = 4:0.377

RESULTADOSK: 3

MODELO FINAL 2

Variables consideradas en Modelo 2:

```
columns_to_keep = ['edad', 'lc1','lugar_ocur', 'area_fall', 'autopsia']
df_selected = df[columns_to_keep]

# Obtener el 20% de los datos aleatorios
df_prueba8 = df_selected.sample(frac=0.2, random_state=40);
```

MODELADO

Distribución por grupos de edad:

Distribución por lugar de fallecimiento:

Distribución por Causa de fallecimiento:

Distribución por área de fallecimiento:

Distribución por autopsia:

CONCLUSIONES

GRACIAS POR SU ATENCIÓN

Collaborative Online International Learning

Equipo 4

