<u>Maths</u>: Applications linéaires

Contents

1	Applications linéaires 3									
	1.1	Premières définitions et propriétés				3				
		1.1.1 Définition (Application linéaire)				3				
		1.1.2 Définition $(endomorphisme)$				3				
		1.1.3 Définition (forme linéaire, dual)				3				
		$1.1.4 \text{Caractérisation des applications linéaires} \ \dots \dots \dots \dots \dots \dots$				3				
		1.1.5 Propriétés				3				
	1.2	Combinaisons linéaires et composition d'applications linéaire				4				
		1.2.1 Propriété				4				
		1.2.2 Composition d'applications linéaires				4				
		1.2.3 Propriété (anneau des endomorphismes)				4				
	1.3	Isomorphismes, automorphismes				4				
		1.3.1 Définition $(isomorphisme)$				4				
		1.3.2 Définition ($automorphisme$)				4				
		1.3.3 Définition (Espaces isomorphes)				5				
		1.3.4 Propriété (linéarité de la réciproque d'un isomorphisme)				5				
		1.3.5 Propriété		•		5				
2	Noy	Noyau et image 5								
	2.1	Définitions				5				
		2.1.1 Définition $(Noyau)$				5				
		2.1.2 Définition $(Image)$				5				
		2.1.3 Propriétés		•		6				
		2.1.4 Théorème (CNS d'injectivité et de surjectivité)				6				
	2.2	Propriétés sur les noyaux et les images				6				
		2.2.1 Propriété (composition)				6				
		2.2.2 Propriétés				6				
		2.2.3 Propriété (noyau d'une restriction)				6				
		2.2.4 Propriété (antécédents par une application linéaire)			•	7				
3	Image de familles par une application linéaire 7									
	3.1	Propriété				7				
	3.2	Corollaire				7				
	3.3	Propriétés				7				
	3.4	Corollaire				8				
	3.5	Théorème de prolongement par linéarité		•		8				

4	App	olicatio	ons linéaires en dimension finie	8	
	4.1	1 Image de familles libres, génératrices, bases			
		4.1.1	Propriétés	8	
		4.1.2	Théorème (CNS d'injectivité, de surjectivité, et de bijection)	8	
		4.1.3	Théorème de prolongement par linéarité	9	
		4.1.4	Corollaire	Ĝ	
	4.2	Théor	ème du rang	Ö	
		4.2.1	Définition $(rang)$	Ĝ	
		4.2.2	Propriétés	9	
		4.2.3	Propriété (CNS d'injectivité et de surjectivité avec le rang)	10	
		4.2.4	Propriétés (conservation du rang par les injections / surjections)	10	
		4.2.5	Théorème du rang	10	
		4.2.6	Théorème	10	

Dans tout ce qui suit, K désigne un corps, et E, F désignent des K-espaces vectoriels.

1 Applications linéaires

1.1 Premières définitions et propriétés

1.1.1 Définition (Application linéaire)

Une application linéaire de E vers F est une application $f \in F^E$ telle que :

$$\forall (x,y) \in E^2, \forall \lambda \in K, \begin{cases} f(x+y) = f(x) + f(y) \\ f(\lambda x) = \lambda f(x) \end{cases}$$

On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de F^E .

1.1.2 Définition (endomorphisme)

Un endomorphisme de E est une application linéaire de E^E .

On note $\mathcal{L}(E) = \mathcal{L}(E, E)$ l'ensemble des endomorphismes de E.

1.1.3 Définition (forme linéaire, dual)

Une forme linéaire sur E est une application linéaire de K^E .

On note $E^* = \mathcal{L}(E,K)$ l'ensemble des formes linéaires sur E, aussi appelé le dual de E.

1.1.4 Caractérisation des applications linéaires

Soit $f \in F^E$.

On a:

$$f \in \mathcal{L}(E, F) \iff \forall ((x, y), (\lambda, \mu)) \in E^2 \times K^2, \ f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

Ou plus simplement:

$$f \in \mathcal{L}(E, F) \iff \forall ((x, y), \lambda) \in E^2 \times K, \ f(\lambda x + y) = \lambda f(x) + f(y)$$

1.1.5 Propriétés

Soit $f \in \mathcal{L}(E, F)$.

• On a :

$$f(0) = 0.$$

• Soit $n \in \mathbb{N}$, $(x_k)_{k \in [\![1\ ;\ n]\!]} \subset E$, et $(\lambda_k)_{k \in [\![1\ ;\ n]\!]} \subset K$.

Alors:

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) = \sum_{k=1}^{n} \lambda_k f(x_k)$$

1.2 Combinaisons linéaires et composition d'applications linéaire

1.2.1 Propriété

L'ensemble $\mathcal{L}(E,F)$ est un sous-espace vectoriel de F^E , i.e :

$$\forall ((f,g),(\lambda,\mu)) \in (\mathcal{L}(E,F))^2 \times K^2, \ \lambda f + \mu g \in \mathcal{L}(E,F)$$

1.2.2 Composition d'applications linéaires

Soient E, F, G des K-espaces vectoriels, et $\begin{vmatrix} f \in \mathcal{L}(E, F) \\ g \in \mathcal{L}(F, G) \end{vmatrix}$ Alors $g \circ f \in \mathcal{L}(E, G)$.

1.2.3 Propriété (anneau des endomorphismes)

 $(\mathcal{L}(E), +, \circ)$ est un anneau.

Remarques:

- On note, pour $n \in \mathbb{N}^*$, $f^n = f^{n-1} \circ f$, avec $f^0 = \mathrm{id}$.
- $-(E^E, +, \circ)$ n'est pas un anneau : pour la distributivité à gauche, il faut la linéarité des fonctions.

1.3 Isomorphismes, automorphismes

1.3.1 Définition (isomorphisme)

Soit $f \in \mathcal{L}(E, F)$.

Alors f est un isomorphisme de E vers F si elle est bijective.

1.3.2 Définition (automorphisme)

Soit $f \in \mathcal{L}(E)$.

Alors f est un automorphisme de E si elle est bijective, i.e un automorphisme est un endomorphisme bijectif.

On note GL(E) l'ensemble des automorphismes de E.

1.3.3 Définition (Espaces isomorphes)

Soient E, F deux K-espaces vectoriels.

Alors E et F sont isomorphes si et seulement si

$$\exists f \in F^E \mid f \text{ isomorphe}$$

1.3.4 Propriété (linéarité de la réciproque d'un isomorphisme)

Soit $f \in \mathcal{L}(E, F)$ un isomorphisme.

Alors:

$$f^{-1} \in \mathcal{L}(F, E)$$

1.3.5 Propriété

Soit E un K-espace vectoriel.

Alors $GL(E) \subset \mathcal{L}(E)$, et $(GL(E), \circ)$ est un sous-groupe de (S_E, \circ) .

2 Noyau et image

2.1 Définitions

2.1.1 Définition (Noyau)

Soit $f \in \mathcal{L}(E, F)$.

Le noyau de f est l'ensemble

$$Ker(f) = \{x \in E \mid f(x) = 0_F\} = f^{-1}(\{0_F\})$$

2.1.2 Définition (Image)

Soit $f \in \mathcal{L}(E, F)$.

L'image de f est l'ensemble

$$\operatorname{Im}(f) = f(E) = \left\{ y \in F \mid \exists x \in E \mid y = f(x) \right\}$$

2.1.3 Propriétés

Soit $f \in \mathcal{L}(E, F)$.

• On a :

$$0_E \in \operatorname{Ker}(f)$$

 $0_F \in \operatorname{Im}(f)$

- Ker(f) est un sous-espace vectoriel de E.
- $\operatorname{Im}(f)$ est un sous-espace vectoriel de F.

2.1.4 Théorème (CNS d'injectivité et de surjectivité)

Soit
$$f \in \mathcal{L}(E,F)$$
.
Alors :
$$f \quad \text{injective} \quad \Leftrightarrow \quad \operatorname{Ker}(f) = \{0\}$$

$$f \quad \text{surjective} \quad \Leftrightarrow \quad \operatorname{Im}(f) = F$$

2.2 Propriétés sur les noyaux et les images

2.2.1 Propriété (composition)

Soient
$$E, F, G$$
 des K -espaces vectoriels, et $\begin{vmatrix} f \in \mathcal{L}(E, F) \\ g \in \mathcal{L}(F, G) \end{vmatrix}$.
Alors:
$$\operatorname{Im}(g \circ f) = g(f(E)) = g(\operatorname{Im}(f)) = \operatorname{Im}(g_{|\operatorname{Im}(f)})$$

2.2.2 Propriétés

Soit $f \in \mathcal{L}(E)$.

• On a:

$$\operatorname{Im}(f^2) \subset \operatorname{Im}(f)$$

 $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^2)$

• On a:

$$f^2=0 \ \Leftrightarrow \ \mathrm{Im}(f)\subset \mathrm{Ker}(f)$$

2.2.3 Propriété (noyau d'une restriction)

Soit $f \in \mathcal{L}(E, F)$, et soit G un sous-espace vectoriel de E. On a :

$$Ker(f_{|G}) = Ker(f) \cap G$$

2.2.4 Propriété (antécédents par une application linéaire)

Soit $f \in \mathcal{L}(E, F)$, et $y_0 \in \text{Im}(f)$. Soit alors $x_0 \in E \mid y_0 = f(x_0)$.

Alors:

$${x \in E \mid y_0 = f(x)} = x_0 + \text{Ker}(f) = {x_0 + v \mid v \in \text{Ker}(f)}$$

(c'est l'ensemble des antécédents de y_0 par f).

I.e pour
$$x \in E$$
, $y_0 = f(x) \Leftrightarrow f(x) - y_0 = 0 \Leftrightarrow f(x) - f(x_0) = 0 \Leftrightarrow f(x - x_0) = 0 \Leftrightarrow x - x_0 \in \text{Ker}(f)$

3 Image de familles par une application linéaire

Dans ce paragraphe, I désigne un ensemble d'indexation.

3.1 Propriété

Soit $(e_k)_{k\in I}\subset E$ une famille de E, et $u\in\mathcal{L}(E,F)$. Alors

$$u(\text{vect}(e_k)_{k\in I}) = \text{vect}(u(e_k))_{k\in I}$$

3.2 Corollaire

Soit $(e_k)_{k\in I}\subset E\mid E=\mathrm{vect}(e_k)_{k\in I}$ (*i.e* une famille génératrice de E), et soit $u\in\mathcal{L}(E,F)$. Alors :

• La famille $(u(e_k))_{k\in I}$ est une famille génératrice de $\mathrm{Im}(u),\ i.e$:

$$\operatorname{Im}(u) = \operatorname{vect}(u(e_k))_{k \in I}$$

• u surjective $\Leftrightarrow F = \text{vect}(u(e_k))_{k \in I}$

3.3 Propriétés

Soit $\mathcal{F} = (e_k)_{k \in I} \subset E$, et $u \in \mathcal{L}(E, F)$.

- Si $\begin{cases} \mathcal{F} \text{ est libre} \\ u \text{ est injective} \end{cases}$, alors la famille $(u(e_k))_{k \in I}$ est libre.
- Si \mathcal{F} est une base de E, alors :

$$u$$
 injective $\Leftrightarrow (u(e_k))_{k \in I}$ libre

3.4 Corollaire

Soit $(e_k)_{k\in I} \subset E$ une base de E, et $u \in \mathcal{L}(E, F)$. Alors u est un isomorphisme $\Leftrightarrow (u(e_k))_{k\in I}$ est une base de F.

3.5 Théorème de prolongement par linéarité

Soit $(e_k)_{k\in I}\subset E$ une base de E.

Alors:

$$\forall (f_k)_{k \in I} \subset F, \exists! \ u \in \mathcal{L}(E, F) \mid \forall k \in I, \ u(e_k) = f_k$$

4 Applications linéaires en dimension finie

Dans ce paragraphe, on suppose que le K-espace vectoriel E est de dimension finie non nulle, et on note $n = \dim(E) \in \mathbb{N}^*$. De plus, I désigne un ensemble d'indexation.

4.1 Image de familles libres, génératrices, bases

4.1.1 Propriétés

Soit $\mathcal{F} = (e_k)_{k \in I} \subset E$, et $u \in \mathcal{L}(E, F)$.

• Si u est injective, alors

$$\dim(E) \leqslant \dim(F)$$

De plus, si \mathcal{F} est libre, alors $u(\mathcal{F}) = (u(e_k))_{k \in I}$ est libre.

 \bullet Si u est surjective, alors

$$\dim(E) \geqslant \dim(F)$$

De plus, si $E = \text{vect}(\mathcal{F})$, alors $F = \text{vect}(u(\mathcal{F}))$.

 \bullet Si u est bijective, alors

$$\dim(E) = \dim(F)$$

De plus, si \mathcal{F} est une base de E, alors $u(\mathcal{F})$ est une base de F.

4.1.2 Théorème (CNS d'injectivité, de surjectivité, et de bijection)

Soit $\mathcal{B} = (e_k)_{k \in [\![1\]\!]} \subset E$ une base de E, et $u \in \mathcal{L}(E, F)$.

- La fonction u est injective $\Leftrightarrow u(\mathcal{B})$ est libre.
- La fonction u est surjective $\Leftrightarrow F = \text{vect}(u(\mathcal{B}))$.
- La fonction u est bijective $\Leftrightarrow u(\mathcal{B})$ est une base de F.

4.1.3 Théorème de prolongement par linéarité

Soit $\mathcal{B} = (e_k)_{k \in [\![1]\!]} \subset E$ une base de E. Alors

$$\forall (v_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \subset F, \ \exists ! \ \varphi \in \mathcal{L}(E, F) \mid \forall k \in \llbracket 1 \ ; \ n \rrbracket, \ v_k = \varphi(e_k)$$

De plus, pour $x = \sum_{k=1}^n x_k e_k \in E$ (où $(x_k)_{k \in \llbracket 1 \ ; \ n \rrbracket} \subset K$), on a :

$$\varphi(x) = \varphi\left(\sum_{k=1}^{n} x_k e_k\right) = \sum_{k=1}^{n} x_k \varphi(e_k) = \sum_{k=1}^{n} x_k v_k$$

En particulier, pour $f, g \in \mathcal{L}(E, F)$, on a :

$$f = g \iff \forall k \in [1; n], f(e_k) = g(e_k)$$

4.1.4 Corollaire

Soit G un K-espace vectoriel.

Alors G est isomorphe à $E \Leftrightarrow \dim(G) = n < +\infty$

4.2 Théorème du rang

4.2.1 Définition (rang)

Soit $f \in \mathcal{L}(E, F)$.

Le rang de f, noté rang(f) ou rg(f), est :

$$rang(f) = \dim(Im(f))$$

4.2.2 Propriétés

Soit $f \in \mathcal{L}(E, F)$, et $(e_k)_{k \in [1 ; n]} \subset E$ une base de E.

• On a:

$$\operatorname{rang}(f) = \operatorname{rang}(f(e_k))_{k \in \llbracket 1 : n \rrbracket}$$

• On a:

$$\operatorname{rang}(f)\leqslant \min(\dim(E),\dim(F))$$

4.2.3 Propriété (CNS d'injectivité et de surjectivité avec le rang)

Soit $f \in \mathcal{L}(E, F)$.

On a:

- f est injective \Leftrightarrow rang $(f) = \dim(E)$
- f est surjective \Leftrightarrow rang $(f) = \dim(F)$

4.2.4 Propriétés (conservation du rang par les injections / surjections)

Soient E, F, G trois K-espaces vectoriels de dimension finie, et $\begin{vmatrix} f \in \mathcal{L}(E, F) \\ g \in \mathcal{L}(F, G) \end{vmatrix}$.

Alors:

 \bullet Si f est surjective, on a:

$$rang(g \circ f) = rang(g)$$

• Si g est injective, on a:

$$rang(g \circ f) = rang(f)$$

4.2.5 Théorème du rang

Soit $f \in \mathcal{L}(E, F)$.

On a:

$$\dim(E) = \dim(\operatorname{Ker}(f)) + \operatorname{rang}(f)$$

4.2.6 Théorème

Soient E, F deux K-espaces vectoriels de dimension finie tels que

$$\dim(E) = \dim(F),$$

et soit $f \in \mathcal{L}(E, F)$.

On a alors:

f injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ bijective

