

Institut National des Sciences Appliquées de Rouen

EC Algorithmique avancée et programmation C

Rapport de projet d'algorithmique

Titre du projet :

« Jeu d'Othello »

Auteurs:

Gautier Darchen
Romain Judic
Riadh Kilani
Claire Lovisa
Sandratra Rasendrasoa

Introduction

Table des matières

ın	ntroduction	2
Ι	Analyse	5
1	Analyse des TAD	6
_	1.1 Le TAD « Couleur »	
	1.2 Le TAD « Plateau »	
	1.3 Le TAD « Coup »	
	1.4 Le TAD « Pion »	
	1.5 Le TAD « Coups »	
	1.6 Le TAD « Position »	
2	2 Analyse descendante	8
II	I Conception préliminaire	9
1	Conception préliminaire des TAD	10
	1.1 Conception préliminaire du TAD « Couleur »	
	1.2 Conception préliminaire du TAD « Plateau »	
	1.3 Conception préliminaire du TAD « Coup »	. 10
	1.4 Conception préliminaire du TAD « Pion »	. 10
	1.5 Conception préliminaire du TAD « Coups »	. 11
	1.6 Conception préliminaire du TAD « Position »	. 11
2	1 1 v	
	2.1 Conception préliminaire de l'analyse descendante de « Faire une partie »	
	2.1.1 Types	
	2.1.2 Sous-programmes	
	2.2 Conception préliminaire de l'analyse descendante de « obtenirCoupIA »	. 12
II	II Conception détaillée	14
1	Conception détaillée des TAD	15
	1.1 CD du type « Couleur »	. 15
	1.2 CD du type « Pion »	
	1.3 CD du type « Position »	. 15
	1.4 CD du type « Plateau »	. 15
	1.5 CD du type « Coup »	1.5

	1.6	CD du type « Coups »	15
2	Cor	nception détaillée des algorithmes compliqués de l'analyse « faireUnePartie »	16
	2.1	La procédure « faireUnePartie »	16
	2.2	La procédure « jouer »	17
	2.3	La procédure « jouerCoup »	17
	2.4	La procédure « inverserPions »	17
	2.5	La procédure « inverserPionsDir »	18
	2.6	La procédure « pionEstPresent »	18
	2.7	La procédure « pionEstPresentRecursif »	18
3	Cor	nception détaillée des algorithmes compliqués de l'analyse « obtenirCoupIA »	20
	3.1	La fonction « obtenirCoupIA »	20
	3.2	La fonction « scoreDUnCoup »	20
	3.3	La fonction « coupValide »	21
		-	
	3.4	La fonction « minMax »	21
	3.4	La fonction « minMax »	21
I	0.1	La fonction « minMax »	21 23
IV	0.1		

Première partie Analyse

Analyse des TAD

1.1 Le TAD « Couleur »

Nom: Couleur

Opérations: blanc: \rightarrow Couleur noir: \rightarrow Couleur

changerCouleur: $Couleur \rightarrow Couleur$

Axiomes: - changerCouleur(blanc()) = noir()

- changerCouleur(noir())=blanc()

1.2 Le TAD « Plateau »

Nom: Plateau

Axiomes:

Utilise:Booleen, Position, PionOpérations: $creerPlateau: \rightarrow Plateau$

estCaseVide: Plateau \times Position \rightarrow **Booleen** viderCase: Plateau \times Position \nrightarrow Plateau

poserPion: Plateau \times Position \times Pion \rightarrow Plateau

obtenirPion: Plateau × Position → Pion inverserPion: Plateau × Position → Plateau - estCaseVide(creerPlateau(),position)=VRAI

- estCaseVide(viderCase(plateau, position), position) = VRAI

estCaseVide(poserPion(plateau, position, pion), position)=FAUX
 obtenirPion(poserPion(plateau, position, pion), position)=pion
 inverserPion(inverserPion(plateau, position), position)=plateau

Préconditions: viderCase(plateau,position): non(estCaseVide(plateau,position))

poserPion(plateau,position): estCaseVide(plateau,position)

obtenirPion(plateau,position): non(estCaseVide(plateau,position)) inverserPion(plateau,position): non(estCaseVide(plateau,position))

1.3 Le TAD « Coup »

Nom: Coup

Utilise: Position, Pion

Opérations: creerCoup: Position \times Pion \rightarrow Coup

obtenirPositionCoup: $\operatorname{Coup} \to \operatorname{Position}$ obtenirPionCoup: $\operatorname{Coup} \to \operatorname{Pion}$

Axiomes: - obtenirPositionCoup(creerCoup(pos,pion))=pos

- obtenirPionCoup(creerCoup(pos,pion))=pion

1.4 Le TAD « Pion »

Nom: Pion Utilise: Couleur

Opérations: creerPion: Couleur \rightarrow Pion

obtenirCouleurPion: $Pion \rightarrow Couleur$ retournerPion: $Pion \rightarrow Pion$

Axiomes: - obtenirCouleurPion(creerPion(couleur))=couleur

 $-\ obtenir Couleur Pion(retourner Pion(pion)) = changer Couleur (obtenir Couleur Pion(pion))$

1.5 Le TAD « Coups »

Nom: Coups

Utilise: Naturel, NaturelNonNul, Coup

Opérations: creerCoups: \rightarrow Coups

ajouterCoups: $Coups \times Coup \rightarrow Coups$

nbCoups: Coups \rightarrow **Naturel**

 $\mathsf{iemeCoup:} \quad \quad \mathsf{Coups} \, \times \, \mathbf{NaturelNonNul} \, \nrightarrow \, \mathsf{Coup}$

Axiomes: -iemeCoup(ajouterCoups(cps,cp),nbCoups(cps))=cp

- nbCoups(creerCoups())=0

 $-\ nbCoups(ajouterCoups(cps,cp)) = nbCoups(cps) + 1$

Préconditions: iemeCoup(cps,i): i≤nbCoups(cps)

1.6 Le TAD « Position »

Nom: Position

Utilise: NaturelNonNul

 $\begin{tabular}{ll} \textbf{Op\'erations}: & obtenir Ligne: & Position \rightarrow Naturel Non Nul \\ \end{tabular}$

obtenirColonne: Position \rightarrow NaturelNonNul

fixerPosition: $NaturelNonNul \times NaturelNonNul \rightarrow Position$

Axiomes: - obtenirLigne(fixerPosition(ligne, colonne))=ligne

 $-\ obtenir Colonne (fixer Position (ligne, colonne)) = colonne$

Préconditions: fixerPosition(ligne,colonne): $1 \leq \text{ligne} \leq 8 \& 1 \leq \text{colonne} \leq 8$

Analyse descendante

On insérera ici les images des analyses descendantes (une fois qu'elles seront finies et qu'on n'y touchera plus).

Deuxième partie Conception préliminaire

Conception préliminaire des TAD

1.1 Conception préliminaire du TAD « Couleur »

```
— fonction blanc (): Couleur
```

- fonction noir (): Couleur
- fonction changerCouleur (couleur : Couleur) : Couleur

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Couleur » :

— fonction sontEgales (couleur1, couleur2 : Couleur) : Booleen

1.2 Conception préliminaire du TAD « Plateau »

- fonction creerPlateau (): Plateau
- **fonction** estCaseVide (plateau : Plateau, position : Position) : Couleur
- procédure viderCase (E/S plateau : Plateau, E position : Position)

| précondition(s) non(estCaseVide(plateau,position))

— procédure poserPion (E/S plateau : Plateau, E position : Position, pion : Pion)

| précondition(s) estCaseVide(plateau, position)

— fonction obtenirPion (plateau : Plateau, position : Position) : Pion

| précondition(s) non(estCaseVide(plateau,position))

— procédure inverserPion (E/S plateau : Plateau, E position : Position)

| précondition(s) non(estCaseVide(plateau, position))

1.3 Conception préliminaire du TAD « Coup »

- fonction creerCoup (position : Position, pion : Pion) : Coup
- **fonction** obtenirPositionCoup (coup : Coup) : Position
- **fonction** obtenirPionCoup (coup : Coup) : Pion

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Coup » :

— fonction sontEgaux (coup1, coup2 : Coup) : Booleen

1.4 Conception préliminaire du TAD « Pion »

— fonction creerPion (couleur : Couleur) : Pion

- fonction obtenirCouleurPion (pion : Pion) : Couleur
- procédure retournerPion (E/S pion : Pion)

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Pion » :

— fonction sontEgaux (pion1, pion2 : Pion) : Booleen

1.5 Conception préliminaire du TAD « Coups »

- fonction creerCoups (): Coups
- procédure ajouterCoups (E/S coups : Coups, E coup : Coup)
- fonction nbCoups (coups : Coups) : Naturel
- fonction iemeCoup (coups : Coups, i : NaturelNonNul) : Coup |précondition(s) i ≤ nbCoups(coups)

1.6 Conception préliminaire du TAD « Position »

- fonction obtenirLigne (position : Position) : NaturelNonNul
- fonction obtenirColonne (position : Position) : NaturelNonNul
- procédure fixerPosition (E ligne, colonne : NaturelNonNul, S position : Position)

 $|\mathbf{pr\acute{e}condition(s)}| 1 \le \text{ligne} \le 8 \& 1 \le \text{colonne} \le 8$

Pour la conception détaillée, nous avons ajouté la fonction de comparaison de deux « Position » :

— fonction sontEgales (position1, position2 : Position) : Booleen

Conception préliminaire des fonctions et procédures issues des analyses descendantes

2.1 Conception préliminaire de l'analyse descendante de « Faire une partie »

2.1.1 Types

- **Type** getCoup = **fonction**(plateau : Plateau, pionJoueur : Pion) : Coup
- Type afficherPlateau = procédure(E plateau : Plateau)

2.1.2 Sous-programmes

- **procédure** faireUnePartie (E coupJoueur1, coupJoueur2 : getCoup, afficher : afficherPlateau, S joueur : Couleur, estMatchNul : Booleen)
- fonction initialiserPlateau (): Plateau
- **procédure** jouer (**E/S** plateau : Plateau, couleurJoueur : Couleur, **E** coupJoueur : getCoup, **S** aPuJouer : **Booleen**)
- **procédure** finPartie (**E** aPuJouerJoueur1,aPuJouerJoueur2 : **Booleen**, plateau : Plateau, **S** est-Finie : **Booleen**, nbPionsBlancs, nbPionsNoirs :**Naturel**)
- fonction plateauRempli (plateau : Plateau) : Booleen
- procédure nbPions (E plateau : Plateau, S nbPionsBlancs, nbPionsNoirs : Naturel)
- procédure jouerCoup (E coup : Coup, E/S plateau : Plateau)
- procédure inverserPions (E pos : Position, pionJoueur : Pion, E/S plateau : Plateau)
- **procédure** inverserPionsDir (**E/S** plateau : Plateau, **E** posInitiale, posCourante : Position, x, y : Entier)
- **procédure** pionEstPresent (**E** pionJoueur : Pion, x, y : Entier, **E/S** pos : Position, plateau : Plateau, **S** pionPresent : **Booleen**)
- **procédure** pionEstPresentRecursif (**E** pionJoueur : Pion, x, y : Entier, **E/S** pos : Position, plateau : Plateau, **S** pionPresent : **Booleen**)

2.2 Conception préliminaire de l'analyse descendante de « obtenirCoupIA »

- fonction obtenirCoupIA (plateau : Plateau, couleur : Couleur) : Coup
- fonction profondeur ():

CHAPITRE 2. CONCEPTION PRÉLIMINAIRE DES FONCTIONS ET PROCÉDURES ISSUES DES ANALYSES DESCENDANTES Groupe 1.5

- fonction listeCoupsPossibles (plateau : Plateau, couleur : Couleur) : Coups
- fonction coupValide (plateau : Plateau, coup : Coup) : Booleen
- procédure copierPlateau (E plateauACopier : Plateau, S plateauCopie : Plateau)
- **fonction** minMax (plateau : Plateau, couleurRef, couleurCourante : Couleur, profondeurCourante : **Naturel**) : **Entier**
- **fonction** scoreDUnCoup (plateau : Plateau, coup : Coup, couleurRef,couleurCourante : Couleur, profondeurCourante : **Naturel**) : **Entier**
- fonction score (plateau : Plateau, couleur : Couleur) : Entier
- fonction evaluerPlateau (plateau : Plateau, couleur : Couleur) : Entier

Troisième partie Conception détaillée

Conception détaillée des TAD

1.2 CD du type « Pion »

— **Type** Pion = Couleur

1.3 CD du type « Position »

```
— Type Position = Structure
ligne : Naturel
colonne : Naturel
finstructure
```

1.4 CD du type « Plateau »

```
— Type Position = Structure
pions : Tableau[1..8][1..8] de Pion
presencePions : Tableau[1..8][1..8] de Booleen
finstructure
```

1.5 CD du type « Coup »

```
— Type Coup = Structure
position : Position
pion : Pion
finstructure
```

$1.6~{ m CD~du~type}$ « Coups »

```
— Type Coups = Structure
tabCoups : Tableau[1..60] deCoup
nbCps : Naturel
finstructure
```

Conception détaillée des algorithmes compliqués de l'analyse « faireUnePartie »

2.1 La procédure « faireUnePartie »

```
procédure faireUnePartie (E afficher: afficherPlateau, obtenirCoupJoueur1, obtenirCoupJoueur2: get-
Coup, S joueur : Couleur, estMatchNul : Booleen)
   Déclaration plateau : Plateau
                  aPuJouerJoueur1, aPuJouerJoueur2, estFinie: Booleen
                  couleurJoueur1,couleurJoueur2: Couleur
                  nbPionsBlancs, nbPionsNoirs: Naturel
debut
   aPuJouerJoueur1 \leftarrow VRAI
   aPuJouerJoueur2 \leftarrow VRAI
   couleurJoueur1 \leftarrow blanc()
   couleurJoueur2 \leftarrow noir()
   estFinie \leftarrow FAUX
   nbPionsBlancs \leftarrow 2
   nbPionsNoirs \leftarrow 2
   plateau \leftarrow initialiserPlateau()
  afficher(plateau)
   tant que non(estFinie) faire
     jouer(plateau, couleurJoueur1, obtenirCoupJoueur1, aPuJouerJoueur1)
      afficher(plateau)
      finPartie(aPuJouerJoueur1, aPuJouerJoueur2, plateau, estFinie, nbPionsBlancs, nbPionsNoirs)
     jouer(plateau, couleurJoueur2, obtenirCoupJoueur1, aPuJouerJoueur2)
      afficher(plateau)
      finPartie(aPuJouerJoueur1, aPuJouerJoueur2, plateau, estFinie, nbPionsBlancs, nbPionsNoirs)
  fintantque
   si nbPionsBlancs = nbPionsNoirs alors
     joueur \leftarrow blanc()
      estMatchNul \leftarrow VRAI
   sinon
      estMatchNul \leftarrow FAUX
      si nbPionsBlancs > nbPionsNoirs alors
```

```
« FAIREUNEPARTIE »
        joueur \leftarrow blanc()
     sinon
        joueur \leftarrow noir()
     finsi
  finsi
fin
2.2
       La procédure « jouer »
procédure jouer (E/S plateau : Plateau, couleurJoueur : Couleur, E obtenirCoupJoueur : getCoup, S
aPuJouer : Booleen)
  Déclaration i : Naturel
                 coups : Coups
                 joueurCourant : Couleur
                 coupJoueur: Coup
debut
  coupJoueur \leftarrow obtenirCoupJoueur(plateau,couleurJoueur)
  coups \leftarrow listeCoupsPossibles(plateau, couleurJoueur)
  pour i \leftarrow 1 à nbCoups(coups) faire
     si iemeCoup(coups,i) = coup alors
        jouerCoup(coupJoueur,plateau)
     finsi
  finpour
  aPuJouer \leftarrow res
_{\rm fin}
2.3
       La procédure « jouerCoup »
procédure jouerCoup (E coup : Coup, E/S plateau : Plateau)
  Déclaration i : NaturelNonNul
debut
  poserPion(plateau, obtenirPositionCoup(coup), obtenirPionCoup(coup))
  pos \leftarrow obtenirPositionCoup(coup)
  pionJoueur \leftarrow obtenirPionCoup(coup)
  inverserPions(pos, pionJoueur, plateau : Plateau)
fin
2.4
       La procédure « inverserPions »
procédure inverserPions (E pos : Position, pionJoueur : Pion, E/S plateau : Plateau)
```



```
pour j \leftarrow 1 à 3 faire
        y \leftarrow i - 2
        si non (x = 0) et (y = 0) alors
           posTmp \leftarrow pos
           pionEstPresent(pionJoueur, x, y, posTmp, plateau, pionPresent)
           si pionPresent alors
              inverserPionsDir(plateau, pos, posTmp, -x, -y, pionJoueur)
           finsi
        finsi
     finpour
  finpour
_{\rm fin}
2.5
       La procédure « inverserPionsDir »
procédure inverserPionsDir (E/S plateau : Plateau, E posInitiale, posCourante : Position, x, y : Entier)
debut
  si non (posInitiale = posCourante) alors
     inverserPion(plateau,posCourante)
     posCourante \leftarrow fixerPosition(x+i, y+j)
     inverserPionsDir(plateau, posInitiale, posCourante, x, y)
  finsi
fin
2.6
       La procédure « pionEstPresent »
procédure pionEstPresent (E pionJoueur : Pion, x, y : Entier, E/S pos : Position, plateau : Plateau,
S pionPresent : Booleen)
  Déclaration i,j: NaturelNonNul
debut
  i \leftarrow obtenirLigne(pos)
  j \leftarrow obtenirColonne(pos)
  si ((x+i)<1) ou ((x+i)>8) ou ((y+j)<1) ou ((y+j)>8) alors
     pionPresent \leftarrow FAUX
     pos \leftarrow fixerPosition(x+i, y+j)
     pionEstPresentRecursif(pionJoueur, x, y, pos, plateau, pionPresent)
  finsi
fin
       La procédure « pionEstPresentRecursif »
2.7
procédure pionEstPresentRecursif (E pionJoueur : Pion, x, y : Entier, E/S pos : Position, plateau :
Plateau, S pionPresent : Booleen)
  Déclaration i,j: NaturelNonNul
                  couleurJoueur: Couleur
debut
  i \leftarrow obtenirLigne(pos)
```

```
j \leftarrow obtenirColonne(pos)
   couleur Joueur \leftarrow obtenir Couleur Pion (pion Joueur)
   si estCaseVide(plateau, pos) alors
      pionPresent \leftarrow FAUX
   sinon
      si obtenirCouleurPion(obtenirPion(plateau, pos)) = couleurJoueur alors
         pionPresent \leftarrow VRAI
      sinon
         si ((x+i)<1) ou ((x+i)>8) ou ((y+j)<1) ou ((y+j)>8) alors
             pionPresent \leftarrow FAUX
         sinon
             pos \leftarrow fixerPosition(x+i, y+j)
             pionEstPresentRecursif(pionJoueur, x, y, pos, plateau, pionPresent)
      finsi
   finsi
_{
m fin}
```


Conception détaillée des algorithmes compliqués de l'analyse « obtenirCoupIA »

3.1 La fonction « obtenirCoupIA »

```
fonction obtenirCoupIA (plateau : Plateau, couleur : Couleur) : Coup
   Déclaration i, pronfondeurMinMax : Naturel
                  coupsPossibles: Coups
                  scoreCourant, meilleurScore: Entier
                  coupCourant, meilleurCoup: Coup
debut
  profondeurMinMax \leftarrow profondeur()
   coupsPossibles \leftarrow listeCoupsPossibles(plateau, couleur)
   si nbCoups(coupsPossibles) > 0 alors
      meilleurCoup \leftarrow iemeCoup(coupsPossibles, 1)
      meilleurScore ← scoreDUnCoup(plateau, meilleurCoup, couleur)
      pour i \leftarrow 2 à nbCoups(coupsPossibles) faire
         coupCourant \leftarrow iemeCoup(coupsPossibles, i)
         scoreCourant \leftarrow scoreDUnCoup(plateau, coupCourant, couleur)
         si scoreCourant > meilleurScore alors
            meilleurCoup \leftarrow coupCourant
            meilleurScore \leftarrow scoreCourant
         finsi
     finpour
   finsi
   retourner meilleurCoup
fin
```

3.2 La fonction « scoreDUnCoup »

```
fonction scoreDUnCoup (plateau : Plateau, coup : Coup, couleurRef, couleurCourante : Couleur, pro-
fondeurCourante : Naturel) : Entier
    Déclaration    plateauTest : Plateau
```

```
debut
  plateauTest \leftarrow copierPlateau(plateau)
  jouerCoup(coup, plateauTest)
  si plateauRempli(plateauTest) ou profondeurCourante = 0 alors
     retourner score(plateauTest, couleurRef)
  sinon
     retourner minMax(plateauTest, couleurRef, changerCouleur(couleurCourante), profondeurCou-
     rante - 1
  finsi
fin
       La fonction « coupValide »
3.3
fonction coupValide (plateau : Plateau, coup : Coup) : Booleen
  Déclaration pos,posTmp : Position
                 pionJoueur: Pion
                  pionPresent: Booleen
                 x,y : Entier
debut
  x \leftarrow -1
  pionPresent \leftarrow FAUX
  pos \leftarrow obtenirPositionCoup(coup)
  pionJoueur \leftarrow obtenirPionCoup(coup)
  tant que non(pionPresent) et (x<2) faire
     v \leftarrow -1
     tant que non(pionPresent) et (y<2) faire
        si non((x = 0) et (y = 0)) alors
           posTmp \leftarrow pos
           pionEstPresent(pionJoueur, x, y, posTmp, plateau, pionPresent)
           si pionPresent alors
              si (|obtenirLigne(posTmp) - obtenirLigne(pos)|<2) ou (|obtenirColonne(posTmp) - obte-
              nirColonne(pos)|<2) alors
                 pionPresent \leftarrow FAUX
              finsi
           finsi
        finsi
        y \leftarrow y+1
     fintantque
     x \leftarrow x+1
  fintantque
  retourner pionPresent
fin
       La fonction « minMax »
fonction minMax (plateau : Plateau, couleurRef, couleurCourante : Couleur, profondeurCourante : Na-
turel): Entier
  Déclaration coupsPossibles : Coups
                 resultat, score: Entier
```

i: Naturel

\mathbf{debut}

```
coupsPossibles \leftarrow listeCoupsPossibles(plateau, couleurCourante)
  si nbCoups(coupsPossibles) > 0 alors
      resultat \leftarrow scoreDUnCoup(plateau, iemeCoup(coupsPossibles, 1), couleurRef, couleurCourante, pro-
      fondeurCourante)
      pour i \leftarrow2 à nbCoups(coupsPossibles) faire
         score \leftarrow scoreDUnCoup(plateau, iemeCoup(coupsPossibles, i), couleurRef, couleurCourante, pro-
         fondeurCourante)
         si couleurCourante = couleurRef alors
            resultat \leftarrow max(resultat, score)
         sinon
            resultat \leftarrow min(resultat, score)
         finsi
      finpour
  sinon
      si couleurCourante = couleurRef alors
         resultat \leftarrow INFINI
      sinon
         resultat \leftarrow - INFINI
      finsi
  finsi
  retourner resultat
fin
```

Remarque : On utilise ici une constante « INFINI », qui représentera un score supérieur à tout autre score, c'est-à-dire un coup gagnant.

Quatrième partie

Développement

Conclusion