

Modern Physics

G. Aruldhas • P. Rajagopal

Modern Physics

G. Aruldhas

Formerly Professor and Head of Physics and Dean, Faculty of Science University of Kerala

P. Rajagopal

Senior Lecturer, Department of Physics C.M.S. College, Kottayam Mahatma Gandhi University

Delhi-110092 2005

MODERN PHYSICS

G. Aruldhas and P. Rajagopal

© 2005 by PHI Learning Private Limited, Delhi. All rights reserved. No part of this book may be reproduced in any form, by mimeograph or any other means, without permission in writing from the publisher.

ISBN-978-81-203-2597-5

The export rights of this book are vested solely with the publisher.

Sixth Printing July, 2014

Published by Asoke K. Ghosh, PHI Learning Private Limited, Rimjhim House, 111, Patparganj Industrial Estate, Delhi-110092 and Printed by Mohan Makhijani at Rekha Printers Private Limited, New Delhi-110020.

To Our Wives Myrtle and Aruna

CONTENTS

xv

Preface

1.	The	Special Theory of Relativity		1-25
	1.1	Galilean Transformations 1		
	1.2	Electromagnetism and Galilean Transformations	3	
	1.3	Michelson-Morley Experiment 4		
	1.4	The Postulates of Special Theory of Relativity	6	
	1.5	Lorentz Transformations 7		
	1.6	Velocity Transformation 9		
	1.7	Length Contraction 11		
	1.8	Time Dilation 11		
	1.9	Simultaneity 12		
	1.10	Relativistic Mass 13		
	1.11	Mass and Energy 16		
	1.12	Space–Time Diagrams 19		
	1.13	General Relativity 21		
		1.13.1 Principle of Equivalence 21		
		1.13.2 Some Predictions of General Relativity	22	
	Revie	w Questions 23		
		lems 24		
2.	Part	icle Nature of Radiation		26-38
	2.1	Blackbody Radiation Curves 26		
	2.2	Planck's Quantum Hypothesis 27		
	2.3	Planck's Radiation Formula 28		
	2.4	Photoelectric Effect 29		
	2.5	Einstein's Photoelectric Equation 29		
	2.6	The Continuous X-ray Spectrum 31		
	2.7	The Photon 32		
	2.8	The Compton Effect 33		
	2.9	Pair Production and Pair Annihilation 36		
	2.10	Particles or Waves 36		
	Revie	w Questions 37		
	Probl	lems 37		

3.	Aton	nic Models	39-57
	3.1	Early Atomic Spectra 39	
	3.2	Thomson Model 40	
	3.3	Alpha Particle Scattering 40 3.3.1 Rutherford's Scattering Formula 41	
	3.4	Rutherford's Nuclear Model 45	
	3.5	Bohr's Model of the Hydrogen Atom 46	
	3.6	The Hydrogen Spectrum 49	
	3.7	Bohr's Model—Correction for Nuclear Motion 50	
	3.8	Hydrogen-like Atom 52	
	3.9	General Quantization Rule 53	
	3.10	Sommerfeld's Model 53	
	3.11	The Correspondence Principle 55	
	3.12	Deficiencies of the Quantum Theory 55	
	Revie	w Questions 56	
		lems 57	
4.	Wax	a Machanical Concents	58-73
4.	4.1	De Broglie's Hypothesis 58	30-73
	7.1	4.1.1 Matter Wave 58	
		4.1.2 De Broglie Wavelength 58	
	4.2	The Davisson–Germer Experiment 59	
	4.3	Standing Wave of an Electron in a Circular Orbit 61	
	4.4	The Heisenberg's Uncertainty Principle 62	
	4.5	Some Applications of Uncertainty Principle 63	
	4.6	Wave Packets 65	
	4.7	Phase Velocity and Group Velocity 66	
	4.8	Time-dependent Schrödinger Equation 67	
		4.8.1 Free Particle Wave Equation 67	
		4.8.2 General Wave Equation 68	
	4.9	Physical Interpretation of the Wave Function 69	
	4.10	Probability Current Density 69	
	4.11	Time-independent Schrödinger Equation 71	
		w Questions 72	
	Probl	lems 73	
5.	Gene	eral Principles of Quantum Mechanics	74-87
	5.1	Operators 74	
		5.1.1 Basic Definitions 75	
	5.2	Orthonormal Functions 76	
	5.3	Eigenfunctions and Eigenvalues 77	
	5.4	Hermitian Operator 78	
	5.5	Expansion of a Function in Terms of Eigenfunctions 80	
	5.6	Postulates of Quantum Mechanics 80	
	5.7	Measurability of Observables 84	

	5.9	Acceptable Wave Functions 85	
	Revie	w Questions 86	
		lems 86	
			00.400
6.		ntum Mechanics of Simple Systems	88–109
	6.1	Free Particle in One Dimension 88	
	6.2	Particle in an Infinite Square Well 89	
	6.3	Particle in a Box 91	
	6.4	The Barrier Potential 93	
	6.5	Simple Harmonic Oscillator 94	
	6.6	Hydrogen Atom 96	
		6.6.1 Time-independent Schrödinger Equation 97	
		6.6.2 Quantum Numbers 99	
		6.6.3 Wave Function 99	
	6.7	Atomic Orbitals 102	
	6.8	Rigid Rotator 103	
	6.9	Angular Momentum 104	
	6.10	Electron in a Periodic Potential 106	
		6.10.1 Bloch Theorm 106	
		6.10.2 Kronig-Penney Model 106	
	Revie	w Questions 107	
		lems 108	
7.	Aton	nic Physics	110-145
	7.1	Hydrogen Atom Spectrum 110	
	7.2	Orbital Magnetic Moment of Hydrogen Atom 111	
	7.3	Larmor Precession 113	
	7.4	Stern-Gerlach Experiment 114	
	7.5	Electron Spin 115	
	7.6	The Vector Atom Model 116	
	7.7	Spin-Orbit Interaction and Fine Structure 119	
	7.8	Pauli's Exclusion Principle and Electronic Configuration 121	
	7.9	Total Angular Momentum in Many Electron Atoms 124	
		7.9.1 <i>L–S</i> Coupling or Russel Saunders Coupling 124	
		7.9.2 <i>j</i> – <i>j</i> Coupling 125	
		7.9.3 Hund Rules 125	
	7.10	Energy Levels and Transitions of Helium 127	
	7.11	Alkali Spectra 128	
		7.11.1 Shielding by Core Electrons 129	
	7.12	Spectral Terms of Equivalent Electrons 130	
	7.13	Normal Zeeman Effect 131	
		7.13.1 Early Experimental Arrangement 132	
		7.13.2 Theory 132	
	7.14	Anomalous Zeeman Effect 134	

Superposition State and Probability 85

5.8

	α
VIII	Contents

	7.15 7.16 7.17 7.18 7.19	Paschen-Bach Effect 137 Stark Effect 138 Characteristic X-ray Spectrum 138 Moseley's Law 140 Width of Spectral Lines 142	
		w Questions 143 ems 144	
8.	Stati 8.1	Stical Physics Statistical Analysis 146 8.1.1 Microscopic and Macroscopic Systems 146 8.1.2 Phase Space 146 8.1.3 Liouville's Theorem 147 8.1.4 Postulate of Equal Probability 147 Maxwell–Boltzmann Distribution Law 148	146–165
	8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13	Law of Distribution of Velocities 149 Law of Equipartition of Energy 152 Quantum Statistics—An Introduction 153 Bose–Einstein Statistics 154 Fermi–Dirac Statistics 156 Maxwell–Boltzmann Statistics 157 Distribution Functions 158 Phase Volume and Eigenstates 159 Number of Eigenstates in an Energy Range 159 Planck's Blackbody Formula 160 Liquid Helium 161 Energy of a Fermi–Dirac System 162	
		w Questions 164 ems 165	
9.	Mole 9.1 9.2 9.3 9.4 9.5	Electromagnetic Spectrum 166 Molecular Energies 167 Classification of Molecules 169 Rotational Spectra of Diatomic Molecule 170 Diatomic Vibrational Spectra 173 Rotation–Vibration Transitions 176 Vibrations of Polyatomic Molecules 178 Characteristic Group Absorptions 179 Infrared Spectrometer 179 Electronic Spectra 181 Frank–Condon Principle 182	166-202
	9.11	Raman Scattering 183 9.12.1 Quantum Theory of Raman Scattering 183 9.12.2 Classical Description of Raman Scattering 184 9.12.3 Vibrational Raman Spectra 185	

	9.12.4 Rotational Raman Spectra 186
	9.12.5 Raman Spectometer 186
9.13	Nuclear Magnetic Resonance (NMR) 189
	9.13.1 NMR Principle 189
	9.13.2 The NMR Spectrometer 190
	9.13.3 Chemical Shifts 190
	9.13.4 Indirect Spin–Spin Interaction 192
0.14	9.13.5 Applications of NMR 193
9.14	Electron Spin Resonance (ESR) 195
	9.14.1 ESR Principle 195
	9.14.2 ESR Spectrometer 196
	9.14.3 Hyperfine Interaction 197
	9.14.4 Applications of ESR Spectroscopy 197
9.15	Mössbauer Spectroscopy 199
	9.15.1 Principle 199
	9.15.2 Isomer Shift 200
Review	Questions 201
Proble	ms 202
-	al Structure and Bonding 203-228
	Crystal Lattice, Basis Vectors, Translation Vectors 203
	Crystal Structure 204
	Symmetry Operations 206
	Bravais Lattice in Three Dimensions 207
	Atoms Per Unit Cell in Cubic Lattices 208
	Crystal Structure Terms 209
10.7	Miller Indices and Crystal Planes 210
10.0	10.7.1 Important Features of Miller Indices 211
	Interplanar Spacing 212 Number of Lattice Points in a Cubic Lattice 214
	Simple Crystal Structures 214
	Derivatives of Cubic Structure 215
	Diffraction in Crystals 216
10.12	10.12.1 Bragg's X-ray Spectrometer 217
	10.12.1 Blagg's X-lay Spectrometer 217 10.12.2 Debye–Scherrer Method or Power Method 217
	10.12.2 Debye selected Method of Fower Method 217
	10.12.4 Rotating Crystal Method 219
10.13	Reciprocal Lattice 220
	Bonding in Solids 221
	Interaction Forces and Bond Formation 221
	Ionic Bond 222
	Covalent Bond 225
	Metallic Bond 226
	Hydrogen Bond 226
	Van der Walls Bond 226
	Questions 227
	ms 228

10.

Modern Physics

Publisher: PHI Learning ISBN: 9788120325975 Author: ARULDHAS, G., RAJAGOPAL P.

Type the URL: http://www.kopykitab.com/product/7431

Get this eBook