PDA, the Chomsky hierarchy, and the pumping lemma for context-free languages

Textbook: 2.2 and 2.3

PushDown Automata (PDA)

- We have been looking at finite state machines
- What if we need to remember an infinite amount information?
- ► Would allow us to match the set of strings containing matching parenthesis
- We can give out state machine an additional memory store in the form of an infinitely large stack
- Allow it to push or pop from that stack
- Not random access: Last in, first out

nPDA

- Unlike DFA/NFA, dPDA and nPDA are not equivalent in power
- Unlike other models, when we say PDA we mean nPDA not dPDA
- ▶ We will be ignoring deterministic PDA because they are not equivalent to context-free grammars: nondeterministic PDA are

Formal definition

Def: nPDA. A **nondeterministic pushdown automaton (nPDA)** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where Q, Σ, Γ, F are all finite sets and:

- 1. Q is the set of states
- 2. Σ is the input alphabet
- 3. Γ is the **stack alphabet**
- 4. $\delta: (Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon}) \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the nondeterministic transition function
- 5. $q_0 \in Q$ is the start state
- 6. $F \subseteq Q$ is the set of acceptance states

We let \$ be the special symbol indicating that the stack is empty.

Interpreting an nPDA transition

For some mapping

$$\delta(q, \sigma, \gamma) = (q', \gamma')$$

- ► The current state is q
- The transition is taken when the input is σ (or ϵ for nonconsumptive transitions)
- $ightharpoonup \gamma$ is the item to pop off the stack (or ϵ if we don't want to)
- ightharpoonup q' is the new state
- $ightharpoonup \gamma'$ is the item to push to the top of the stack (or ϵ if we don't want to)

Note: ϵ means "don't pop from the stack", \$ means "empty stack". We disallow the removal of \$.

Thm: A language is context free iff some nPDA recognizes it.

Lemma 1: A language being context free implies some nPDA recognizes it. (pg 115)

- By construction
- We show how to use an nPDA to determine if the CFG derives any input string

Lemma 2: Any language recognized by a nPDA is context free. (pg 119)

- ▶ By construction
- We show how to create grammar rules from an nPDA in CFG form

Lemma 1: All CFG have equivalent nPDA.

- ► Each step of a CFG A yields an **intermediate string** of terminals and variables. We design P to show whether some series of substitutions on the starting variable of A can lead to the input string w
- We will keep the current intermediate string partially on the stack, eliminating any literals off the top as if we were a NFA
- We will branch nondeterministically when multiple rules could apply

Note: Pushing any string of finite length to the stack is equivalent to pushing each character at a time.

The following steps create P.

- 1. Push \$ and A's starting variable onto the stack.
- 2. Repeat these steps forever:
 - a. If the top of the stack is some variable V, nondeterministically select each of the applicable rules $V \to \cdots$ and replace V on the stack
 - b. For as long as the top of the stack is a terminal, move through the state machine as if it were an NFA, popping from the stack each time a character matches the input. If a character doesn't match, reject this branch of the nondeterminism.
 - c. If the stack top is \$, enter the accept state. Doing so accepts the input for the entire nondeterminism if it has all been read.

P is a valid nPDA such that $\mathcal{L}(P) = \mathcal{L}(A)$. End of lemma 1.

Lemma 2: All languages recognized by nPDA are context-free.

First, we assume that our input nPDA has the following properties. If it does not, an equivalent one can be constructed (pf. exclude).

- 1. It has only one accept state, q_{accept}
- 2. It empties its stack before accepting
- 3. Each transition either pushes or pops, but not both and not neither

Let $A_{p,q}$ be a variable representing any valid nPDA path from state p to q. Let the entry variable be $A_{q_0,q_{\rm accept}}$. $A_{p,q}$ will assume the stack is empty and leave it so. If it pushes anything in its operation, it must pop before completion.

Add the following rules to our CFG G:

- 1. For every possible combination of $p,q,r\in Q$, add the rule $A_{p,q}\to A_{p,r}A_{r,q}$
- 2. For every $p \in Q$, add the rule $A_{p,p} \to \epsilon$
- 3. For every possible combination of states $p,q,r,s\in Q$, stack symbol $t\in \Gamma$, and (possibly ϵ) input characters $a,b,\in \Sigma_\epsilon$:
 - ▶ If $\delta(p, a, \epsilon)$ contains (r, t) (state p can move to state r pushing t on input a) and $\delta(s, b, t)$ contains (q, ϵ) (new state s can move to other new state q popping the same t on new input b) then add the rule $A_{p,q} \to aA_{r,s}b$
- ▶ The first condition allows us to concatenate valid rules
- ► The second condition means that it is free to get from a state to itself (base case)
- ► The third condition lets us handle stack pushing and popping, as well as input consumption
 - It also ensures that any consumptive rule maintains the stack size, ensuring the stack is kept empty at the end

Lemma 2.1: $A_{p,q}$ generates x iff x can bring P from p with empty stack to q with empty stack. If this holds, lemma 2 holds.

By design, rule $A_{p,q}$ brings the machine from state p to state q. Condition 3 of the construction ensured that any time anything is pushed by a rule, that rule must pop it. Thus, the input contents of the stack to a rule are the output. Therefore, $A_{p,q}$ will bring itself from p with an empty stack to q with an empty stack.

A similar proof holds for the other direction of the iff (excluded here).

Since $A_{p,q}$ generates x iff x can bring P from p with empty stack to q with empty stack, $A_{q_0,q_{\rm accept}}$ generates x iff x is recognized by the nPDA. Thus, all nPDA languages are context-free. End of lemma 2.

Since both directions hold, \mathbf{nPDA} and \mathbf{CFG} are equivalent. End of proof.

Corollary: Since NFA are nPDA that ignore their stack, all regular languages are context-free. Since there exists at least one context-free language that is not regular, regular languages are a proper subset of context-free ones.

The Chomsky hierarchy

- ► The **Chomsky hierarchy** states the power of different models of computation
- Each entry is a linguistic class and corresponds to a type of automata

In increasing power:

- 1. Finite-state automata / regular languages
- 2. Pushdown automata / context-free grammars
- 3. Linear bounded automata / context-sensitive grammars
- 4. Turing machines / unrestricted grammars

Chomsky hierarchy grammar rules

Grammar +	Languages +	Recognizing Automaton +	Production rules (constraints)[a]	Examples ^{[5][6]} •
Type-3	Regular	Finite-state automaton	$A ightarrow { m a} \ A ightarrow { m a} B$ (right regular) or $A ightarrow { m a} \ A ightarrow { m a} \ A ightarrow B { m a}$ (left regular)	$L=\{a^n n>0\}$
Type-2	Context-free	Non-deterministic pushdown automaton	A o lpha	$L=\{a^nb^n n>0\}$
Type-1	Context-sensitive	Linear-bounded non- deterministic Turing machine	$lpha Aeta ightarrow lpha \gamma eta$	$L=\{a^nb^nc^n n>0\}$
Type-0	Recursively enumerable	Turing machine	$\gamma ightarrow lpha$ $(\gamma$ non-empty)	$L = \{w w \ { m describes} \ { m a} \ { m terminating}$ Turing machine $\}$

Via Wikipedia

The pumping lemma for context-free languages

- ▶ Just like we have a pumping lemma to prove that a given language is nonregular, we have another to prove a given language is not context-free
- Very similar to the pumping lemma for regular languages

Def: Pumping lemma for context-free languages. If A is a context-free language, then there is a number p (the pumping length) where, if s is any string $\in A$ such that $|s| \ge p$, then s may be divided into five pieces s = uvxyz such that:

- 1. For each $i \ge 0$, $uv^i xy^i z \in A$
- 2. |vy| > 0
- 3. $|vxy| \leq p$

CFG Pumping lemma proof

Pf: By construction. We will derive a minimal bound for the pumping length p, then show that any string longer than this must have a derivation where some variable R derives itself. This implies that the lemma holds, ending the proof.

Lemma 1: String sizes. Let b be the maximum number of variables on the RHS of any rule in our CFG. Then at most b leaves are within 1 step from the starting variable, b^2 within 2, and b^h within b. Thus, any parse tree of height b produces a string of size at most b^h . Conversely, if a generates string is at least $b^h + 1$ long, each of its parse trees must be at least b + 1 high.

If |V| is the number of variables in our CFG, we let $p=b^{|V|+1}$. Thus, any string longer than the pumping length must have parse trees of height at least |V|+1, since $b^{|V|+1} \geq b^{|V|}+1$.

CFG Pumping lemma proof pt. 2

Since the height of the parse tree is the number of variable replacements, there must be |V|+1 replacements of |V| variables. Thus, there must be a variable which is repeated. This variable derives another instance of itself. Thus, we can replace its first occurrence with its final occurrence or infinitely pump the in-between region while remaining in the language.

Conditions 2 and 3 are proven in the book (pg 125).

CFG Pumping lemma proof pt. 3

FIGURE **2.35**Surgery on parse trees

Non-context-free languages

Practice: Let $A = \{a^n b^n c^n : n \ge 0\}$. Prove that A is not context free.

► See pg 126 of textbook

Next up: The Church-Turing thesis, and Turing machines
An assignment on part 1 of the textbook should come soon