Problem 1

Let X and Y be i.i.d. Expo(1).

- 1. (10') Find $P(\max(X, Y) \ge 1)$.
- 2. (10') Find $P(\min(X, Y) \le 1)$.

Problem 2

Let X and Y be two continuous random variables with joint PDF

$$f_{X,Y}(x,y) = \begin{cases} c, \text{if } 0 < x < 2, 0 < y < 2x \\ 0, \text{otherwise} \end{cases}$$

- 1. (5') Find c.
- 2. (5') Find the marginal PDF of X.
- 3. (5') Find the marginal PDF of Y.

Problem 3

Given a Markov chain with state-transition diagram shown as follows:

- 1. (2') Find $P(X_5=3\mid X_4=2)$ and $P(X_4=1\mid X_3=2).$
- 2. (2') Find the stationary distribution of the chain.
- 3. (2') Find the period of state 2 and the period of the chain.
- 4. (2') If $P(X_0 = 3) = \frac{1}{5}$, find $P(X_0 = 3, X_1 = 2, X_2 = 1)$.
- 5. (2') Find $E(X_5 \mid X_3 = 1)$ and $Var(X_5 \mid X_3 = 1)$.

Problem 4

Given a coin with the probability p of landing heads. p is unknown and we need to estimate its value through data. In our data collection model, we have n independent tosses, result of each toss is either Head or Tail. Let X denote the number of heads in the total n tosses. Now we conduct experiments to collect data and find X = k. Then we need to find \hat{p} , the estimation of p.

- 1. (5') Assume p is an unknown constant. Find \hat{p} through the MLE (Maximum Likelihood Estimation) rule.
- 2. (5') Assume p is a random variable with a prior distribution $p \sim \text{Beta}(1,1)$, where a and b are known constants. Find \hat{p} through the MAP (Maximum a Posterior Probability) rule.
- 3. (5') Assume p is a random variable with a prior distribution $p \sim \text{Unif}(0,1)$, where a and b are known constants. Find \hat{p} through the MMSE (Minimal Mean Squared Error) rule.

Problem 5

(10') Let U_1 and U_2 be i.i.d. Unif(0,1). Let $V=\min(U_1,U_2),\ Z=\max(U_1,U_2).$ Find the joint CDF of V and Z.

Problem 6

(5') Let $X_1,...,X_n$ be i.i.d. Unif(0,1). Let $X_{(1)} < ... < X_{(n)}$ be the ordering of $X_1,...,X_n$. Find the PDF of $X_{(n)} - X_{(1)}$.

Problem 7

(10') Find the expectation of the return value of the following program code.

```
float sum = 0.0;
while (sum <= 1.0) {
    sum += Unif(0, 1);
}
return sum;</pre>
```

Problem 8

Given a verse urn with N balls numbered 1, 2, ..., N. We pick out all N balls without replacement. Let X_i be the number of the i-th ball, $i \in \{1, 2, ..., n\}$.

- 1. (5') Find $Var(X_i)$.
- 2. (5') Find $\operatorname{Cov}(X_i, X_j)$, $i \neq j$ and $i, j \in \{1, 2, ..., n\}$.

Problem 9

(5') Let X and Y be bivariate normal and i.i.d. $\mathcal{N}(0,1)$. If $\operatorname{Corr}(X,Y)=\rho$, find P(X>0,Y>0).