

SUPER MARKET SALÉS PREDICTION

TEAM SVM
GUIDE: DR.TANVEER SARDAR

CONTENT: -

- Problem definition
- Objectives
- Classifiers used
- Future scope
- Advantages and
- Disadvantages
- Challenges

PROBLEM DEFINITION:

To find out what role certain properties of an item play and how they affect their sales by understanding Super Market sales. A predictive model can be built to find out for every store, the key factors that can increase their sales and what changes could be made to the product or store's characteristics.

- Data Set gathering
- Analysing the data set
- Cleaning the data set
- Exploratory Data Analysis
- Visualization
- Testing and training the dataset
- Building the model
- Developing predictive system

STEP BY STEP PROCESS:

CLASSIFIERS USED:

- 1. KNeighbors Classifier
- 2. Support Vector Systems
- 3. Naive Bayes
- 4. Decision tree classifier
- 5. Random Forest Classifier
- 6. AdaBoost Classifier
- 7. Gradient Boosting Classifier
- 8. XGBClassifier
- 9. ExtraTreesClassifier
- 10. Bagging Classifier

KNeighborsClassifier:

- K-Nearest Neighbour is one of the simplest Machine Learning algorithms based on Supervised Learning technique.
- K NN algorithm stores all the available data and classifies a new data point based on the similarity. This means when new data appears then it can be easily classified into a well suite category
- This KNN algorithm is used for regression as well as for the classification but mostly it is used for the classification problems sklearn.neighbors.KNeighborsClassifier(n_neighborsint, default=5)

Support Vector Systems:

- Support Vector Machine or SVM is one of the most popular Supervised Learning algorithms, which is used for Classification as well as Regression problems. However, primarily, it is used for Classification problems in Machine Learning.
- The goal of the SVM algorithm is to create the best line or decision boundary that can segregate n-dimensional space into classes so that we can easily put the new data point in the correct category in the future. sklearn.svm import SVC

Naive Bayes:

- Naïve Bayes algorithm is a supervised learning algorithm, which is based on Bayes theorem and used for solving classification problems.
- It is mainly used in text classification that includes a highdimensional training dataset.
- It is a probabilistic classifier, which means it predicts on the basis of the probability of an object.
- P(A|B) is Posterior probability: Probability of hypothesis A on the observed event B.
- P(B|A) is Likelihood probability: Probability of the evidence given that the probability of a hypothesis is true P(B|A)P(A)

Decision tree classifier

- Decision Tree is a Supervised learning technique that can be used for both classification and Regression problems, but mostly it is preferred for solving Classification problems. It is a treestructured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome
- fromsklearn.treeimport
 DecisionTreeClassifier
 dtree=DecisionTreeClassifier(max_depth =6,
 random_state=123,criterion='entropy')

Random Forest Classifier:

- Random Forest is a popular machine learning algorithm that belongs to the supervised learning technique. It can be used for both Classification and Regression problems in ML.
- Random Forest is a classifier that contains a number of decision trees on various subsets of the given dataset and takes the average to improve the predictive accuracy of that dataset.

from sklearn.ensemble import RandomForestClassifier rfc=RandomForestClassifier()

AdaBoostClassifier:

An AdaBoost classifier is a meta-estimator that begins by fitting a classifier on the original dataset and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly classified instances are adjusted such that subsequent classifiers focus more on difficult cases.

from sklearn.ensemble import AdaBoostClassifier adb = AdaBoostClassifier(base_estimator = None)

Gradient Boosting Classifier:

Gradient boosting classifiers are a group of machine learning algorithms that combine many weak learning models together to create a strong predictive model. Decision trees are usually used when doing gradient boosting.

from sklearn.ensemble import GradientBoostingClassifier gbc=GradientBoostingClassifier()

XGBClassifier:

XGBoost, which stands for Extreme Gradient Boosting, is a scalable, distributed gradient-boosted decision tree (GBDT) machine learning library. It provides parallel tree boosting and is the leading machine learning library for regression, classification, and ranking problems.

ExtraTreesClassifier:

It is a type of ensemble learning technique which aggregates the results of multiple de-correlated decision trees collected in a "forest" to output it's classification result.

from sklearn.ensemble import ExtraTreesClassifier etc = ExtraTreesClassifier(n_estimators=100, random_state=0)

Bagging Classifier:

A Bagging classifier is an ensemble meta-estimator that fits base classifiers each on random subsets of the original dataset and then aggregate their individual predictions (either by voting or by averaging) to form a final prediction.

KNN classifier:

Product Line	Unit Price	Quantity	Rating
Health and Beauty	74.69	7	9.1
Electronic and accessories	15.28	5	9.6
Sport and Travel	86.31	7	5.3
Food and Beverages	54.84	3	5.9
Fashion	17.94	5	?

Distance Equation : $\sqrt{(x^2-x^2)^2+(y^2-y^2)^2}$

1st:

Health and Beauty	74.69	7

$$\sqrt{(17.94-74.69)^2+(5-7)^2}$$

$$\sqrt{(-56.75)^2 + (-2)^2}$$

$$=\sqrt{3224.56}$$

2nd:

Electronic accessories	15.28	5

$$\sqrt{(17.94-15.28)^2+(5-5)^2}$$

$$\sqrt{(2.66)^2}$$

=2.66

3rd:

Sport and Travel	86.31	7

$$\sqrt{(17.94 - 86.31)^2 + (5 - 7)^2}$$

 $\sqrt{4674.4 + 4}$

 $\sqrt{4678.4}$

= 68.39

4th:

Food and Beverages	54.84	3

$$\sqrt{(17.94-54.84)^2+(5-3)^2}$$

$$\sqrt{(-36.9)^2+4}$$

=36.9

5th:

Home and Life style	73.56	10

$$\sqrt{(17.94-73.56)^2+(5-10)^2}$$

$$\sqrt{(-55.92)^2 + (-5)^2}$$

 $\sqrt{3152.04}$

=56.14

Product Line	Unit Price	Quantity	Distance	Ratio
Health	74.69	7	56.78	9:1
Electronic	15.28	5	2.66	9:6
Sport	86.31	7	68.39	5:3
Food	54.84	3	36.9	5:9
Home	73.56	10	56.14	8

Now K=3

We should take 3 closest distance of fashion

Electronic	2.66	9:6
Food	36.9	5:9
Home	56.14	8

So, Fashion can get the rating in between 9:6, 5:9, 8

SVM classifier:

Explanation:

Here in SVM we do problems with graphs Here we take points as assumption only Sample datset:

Step 1: Segregate the dataset into 2 classes

The Line which divides the data set is called as Hyper Lane.

we have to find nearest point, after finding the nearest point, we have to draw plane for 2 nearest points we have to find the distance between the Marginal plane.

In the above equation b is value through which the intercept passes

So to compute the distance between two marginal planes we will consider two nearer points as

x1 and x2

equations are: $w^t x_i + b = -1$ $w^t x_2 + b = +1$

$$w^{t} x_{i}+b=-1$$

$$w^{t}x_{2}+b=+1$$

so difference between these equations are:

$$w^{t}x_{1}+b=-1$$
 $w^{t}x_{2}+b=+1$
 $W^{t}(x_{2}-x_{1})=2$

We have to find x2-x1 so to remove wt we have to divide the whole equation by ||w|| i.e norm of w

So
$$\frac{2}{||\mathbf{w}||}$$
 is our optimizing function

So we need to maximize it

Such that
$$y_i = \{1, wtx + b \ge 1 \\ 1 wtx + b \le -1 \}$$

So finally
$$y_i = w^t x_i + b_i \ge 1$$

When we compute this equation it should be greater than or equal to 1 otherwise it is treated as misclassification

If we get misclassification we will minimize the function.

$$\operatorname{Min} \frac{||w||}{2} + c \sum_{i=1}^{n} \alpha i$$

As it is difficult to classify all the data points which are present in dataset we used other classifier to get the better accuracy.

NAIVE BAYES CLASSIFIER:

$$p(a/b) = \frac{p(b/a) * p(a)}{p(b)}$$

p(a/b)=it is known as posterior probability

P(a)=it is known as marginal probability

Data set:
$$x=\{x_1,x_2,x_3,...,x_n\}$$

$$p(y/x_1,x_2,x_3,...) = \frac{p(x_1/y)p(x_2/y)p(x_3/y)....p(x_n/y)*p(y)}{p(x_1)p(x_2)p(x_3)....p(x_n)}$$

$$= \frac{p(y)\pi_{i=1}^n p(x_i/y)}{p(x_1)p(x_2)p(x_3)....p(x_n)}$$

$$P(y/x_1,x_2,....x_n)\alpha p(y)\pi_{i=1}^n p(x_i/y)$$

$$Y = \arg\max p(y)\pi_{i=1}^n p(x_i/y)$$

Example:Outlook:

	yes	no	P(y)	P(n)
Sunny	2	3	2/9	3/5
Overcast	4	0	4/9	0/5
Rainy	3	2	3/9	2/5
total	9	5	100%	100%

Temperature:

	yes	no	P(y)	P(n)
Hot	2	2	2/9	2/5
Mild	4	2	4/9	2/5
Cool	3	1	3/9	1/5
total	9	5	100%	100%

We are finding for the probability for the given condition

$$p\left(\frac{\text{yes}}{\text{today}}\right) = \frac{p\left(\frac{\text{sunny}}{\text{yes}}\right) * p\left(\frac{\text{hot}}{\text{yes}}\right) * p(\text{yes})}{\text{yes}}$$

$$= \frac{2}{9} * \frac{2}{9} * \frac{9}{14}$$

$$= 0.031$$

$$p\left(\frac{\text{no}}{\text{today}}\right) = \frac{p\left(\frac{\text{sunny}}{\text{no}}\right) * p\left(\frac{\text{hot}}{\text{no}}\right) * p(\text{no})}{p(\text{today})}$$

$$= \frac{3}{5} * \frac{2}{5} * \frac{5}{14}$$

$$= 0.08571$$

Play:

		P(y)&p(n)
Yes	9	9/14
No	5	5/14
total	14	100%

$$P(yes) = \frac{0.031}{0.031 + 0.08571}$$
$$= 0.27$$
$$P(n) = 1 - 0.27$$
$$= 0.73.$$

DECISION TREE CLASSIFICATION:

Formulas: Information gain,

$$\underline{\mathbf{l}(p,n)} = -\frac{p}{s} \mathbf{b} g_{2} \frac{p}{s} - \frac{n}{s} log_{2} \frac{n}{s}$$

S=total sample space S=(p+n)

$$log_2 = \frac{log_{10}x}{log_{10} 2}$$

Entropy:

$$E(a) = \sum_{i=1}^{v} \frac{p_{i+n_i}}{p+n} i(p_i, n_i)$$

Gain: i=1gain(a) = I(p, n) - E(a)

DATA SET:

Day	Outlook	Temperature	Humidity	Wind	Play
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Sunny	Hot	High	Weak	Yes
4	Overcast	Mild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes

6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sunny	Mild	High	Weak	No
9	Sunny	Cool	Normal	Weak	Yes
10	Rain	Mild	Normal	Weak	Yes
11	Sunny	Mild	Normal	Strong	Yes
12	Overcast	Mild	High	Strong	Yes
13	Overcast	Hot	Normal	Weak	Yes

Information gain=
$$-\left[\frac{9}{14}log_2\frac{9}{14} + \frac{5}{14}log_2\frac{5}{14}\right]$$

=0.409+0.530

=0.940

Calculate entropy for outlook 1.sunny(5)-yes(2)

No(3)

I gain(outook,sunny)=-
$$\left[\frac{2}{5}log_2\frac{2}{5} + \frac{3}{5}log_2\frac{3}{5}\right]$$

=0.971

I gain(outlook,overcast)=0 I gain (outlook,rain)=0.971 Entropy of outlook=

$$E(a) = \sum_{i=1}^{v} \frac{p_{i+n_i}}{p+n} i(p_i, n_i)$$

=0.694

Gain:

$$gain(a) = I(p, n) - E(a)$$

=0.940-0.694

=0.246

Here we have to repeate the same process for temperature, humidity, wind.

After finding all values we have to collect the gain values to draw the decision tree.

Gain of each attribute:

Outlook-for outlook the gain value is =0.246
Temperature-for temperature the gain value is=0.029
Humidity-for humidity the gain value is
=0.151

Wind-for wind the gain value is =0.048

According to the highest gain value the first splitting attribute can be found.

After finding the first splitting attribute we have to do the second splitting attribute.for that again we have to find the entropy values and gain values. like that we have to draw the decision tree.

DECISION TREE:

Random forest algorithm:

In random forest algorithm the given data set is divided into n types of Training data set from that decision are generated. then averaging is done with the help of decision Trees and the final output is the Prediction.

Step1: Select random k data points from the training set.

Step2: build the decision trees associated with the selected dada points

Step3:choose the number N for decision trees that you want to build.

Step:4 Repeat step1 & step2

Step5: For new data points find the Predictions of each decision tree

Product Line	Unit Price	Quantity	Rating
Health and Beauty	74.69	7	9:.1
Electronic	15.28	5	9.6
Sport and travel	86.31	7	5.3
Food and bevarege	54.84	3	5.9
Home and life style	73.56	10	8

These Sample helps to build the decision trres

We should create a bootstrapped Dataset. Bootstrapped dataset is Nothing but selecting the random Samples from the dataset. We can repeat the samples in the Bootstraped data set to get better accuracy values.

Bootstrapped Data:

Product Line	Unit Price	Quantity	Rating	
Health and Beauty	74.69	7	9:.1	
Food and Bevareges	54.84	3	5.9	
Home and life style	73.56	10	8	
Sports and Travel	86.31	7	5.3	
Food and bevareges	54.84	3	5.9	

In the above bootstrapped data Second Sample is repeated to get better accuracy. From this bootstraped data set we have to take 2 variables so randomly unit price and quantity are taken as root nodes.

ADABOOST Algorithm:

+	* *					
	Product Line	Unit Price	Quantity	Rating	S weight	
	Health and Beauty	74.69	7	9:.1	0.2	
	Electronic accesories	15.28	5	9.6	0.2	
	Sport and travel	86.31	7	5.3	0.2	
	Food and bevarege	54.84	3	5.9	0.2	
	Home and life style	73.56	10	8	0.2	

We create stumps to predict if a rating of the product. we will make these predictions based on remaining variables.

Step1:give each sample a weight which is nothing but sample weight At Start all the samples get the weight

Sample weight=
$$\frac{1}{\text{total number of samples}}$$

$$=1/5$$

Now we have to create Stumps

let us treat unit price as x1 and Quantity as x2

This is model m1 We have to find error rate (α)

$$\alpha = \frac{1}{2}ln(1\text{-error})/\text{error}$$
we will take electronics and sports for this prediction so error model m1 is
$$\text{error}=0.4$$

$$\alpha = \frac{1}{2}ln(1-0.4)/0.4$$

$$= = \frac{1}{2}ln(0.6/0.4)$$

 α =**0.20**

Now we have to find misweight for misclassified and correctly classified new_wt=corr_wt x eα1

new_wt=corr_wt x e-α1

wt=0.2 X e 0.2 =0.24

wt=0.2 X e-0.2 = 0.16

Updated sample weight are 0.24 and 0.16 Average of updated sample weight = 0.96

X1	X2	Prediction	Updated
74.69	7	9.1	0.16
15.28	5	9.6	0.24
86.31	7	5.3	0.24
54.84	3	5.9	0.16
73.56	10	8	0.16

Take 5 random numbers between 5 to 10

The rating is between the range.

Gradient Boosting:

Unit Price	Quantity	Rating	Yn r1
74.69	7	9.1	7.5 1.6
15.28	5	9.6	7.5 2.1
86.31	7	5.3	7.5 2.2
54.84	3	5.9	7.5 1.6
73.56	10	8	7.5 0.5

Step1:

Creating a Base Model Output of the predicted Base Model is average of rating

Y=7.5

Step2

Compute residual or errors R1=(actual-predicted)

Step3:

Create a Decision tree (xi, R1)

Here xi is unit price and quantity R1 is residual

This decision tree is with independent variable and output will be residual If we repeatthissystem we will get another residual R2

Final output = O/P of base model + residuals =7.58+(1.6) =9.18

Therefore 9.16 is nearer to 9.1 but to avoid outfitting we will use another algorithms.

XGB CLASSIFIER:

Cl	ustomer	Product line	Quantitiy A	res
N	1ember	Health&beauty	7	-0.2
N	ormal	Electric access	5	1.8
N	ormal	Home&lifestyle	7	-0.2
N	1ember	Health&beauty	8	-1.2
N	ormal	Sports&travel	7	-0.2

PROBABILITY=?
7+5+7+8+7/5
34/5
6.8

Binary tree is constructed based on customer {-0.2,1.8,-0.2,-1.2,-0.2}

1/ constructing tree with root:

2/calculating the similarity weight:

$$x = \frac{\sum (res^2)}{\sum (pr(1-pr) + \lambda)}$$

Where,
res=res value
pr=probability
=values to repeat no.of times according to tree constructed

similarity weight for member customer: $=(-0.2+(-1.2))^2/6.8(1-6.8)+6.8(1-6.8)$ =-1.96/-78.88 =1.96/78.88 =0.02484 similarity weight for normal customer: =((1.8)+(-0.2)+(-0.2))^2/6.8(1-6.8)+6.8(1-6.8)+6.8(1-6.8) =(1.4)^2/-118.32 =1.96/-118.32 =-0.0165 Calculating similarity weight for whole-{-0.2,1.8,-0.2,-1.2,-0.2} $= [-0.2+1.8+-0.2+-1.2+-0.2]^2/6.8(1-6.8)+6$ 6.8(1-6.8)+ 6.8(1-6.8) =0/-197.2 =0 -> (similarity weight for total res)

3/ calculating the gain-

= 0.02484 + (-0.0165) - 0

=0.00834

Finding the accuracy value for the base model:

Log(odd)=log(p/1-p) Where, P=probability =log(6.8/1-6.8) Log(-1.1724) =0.069075

EXTRA TREE CLASSIFIER:

_					
	customer	Product	quantity	gender	City
		line			
	Member	Health &	7	Female	Yangon
		beauty			
	Normal	Electronic	5	Female	Naypyitaw
		accessories			
	Normal	Home &	7	Male	Yangon
		lifeline			_
	Normal	Sports &	7	Male	Yangon
		travel	_		
	Member	Health &	8	Male	Yangon
		beauty	, -		
	Normal	Electronic	7	Male	Naypyitaw
	Nonna	accessories	,	TYTOTIC	14dypyrtoss
	Member	Electronic	6	Female	Yangon
	MEILINE	accessories	U	Telliale	rangon
	Normal	Home &	10	Female	Maranitary
	Normai		10	remaie	Naypyitaw
	* *	lifeline		Famala	17
	Member	Health &	2	Female	Yangon
		beauty			
	Member	Food &	3	Female	Mandalay
		beverages			
	Member	Fashion	4	Female	Mandalay
		accessories			
	Member	Electronic	4	Male	Mandalay
		accessories			-
	Normal	Electronic	5	Female	Yangon
		accessories			- I
	Normal	Food &	10	Male	Yangon
	III - 200 Theory 100 for yellow members	beverages		B STATE OF	13.16.2.1
		22.2.2			

$$Entropy(S) = \sum_{i=1}^{C} -pi \ log_2(pi)$$
 Where,

C=No.of unique class labels
Pi=proportional of rows with output label is i.

Entropy(S)=-9/14log
$$(\frac{9}{14})$$
 - 5/14 log $(\frac{5}{14})$
Entropy(S)=0.940

1st Decision Tree gets data with the features customer and product line

Gain(S,A)=Entropy(S)-
$$\sum_{VE} Values(A) \frac{|S_v|}{|S|}$$
Entropy(S_v)

Gain(S,Customer)=0.940-(5/14(-2/5log₂ $\left(\frac{2}{5}\right)$ + -3/5 log₂ $\left(\frac{3}{5}\right)$) + 4/14(-4/4 log₂ $\left(\frac{4}{4}\right)$ + (-3/5 log₂ $\left(\frac{3}{5}\right)$ + -2/5 log₂ $\left(\frac{2}{5}\right)$))

Gain(S,Customer)=0.246

Similarly,

Gain(S,Productline)=0.029

2nd Decision Tree gets data with the features product line and Gender

Gain(S,Productline)=0.029 Gain(S,Gender)=0.048
3rd Decision Tree gets data with the features Customer and Quantity
Gain(S,Customer)=0.246 Gain(S,Quantity)=0.151
4th Decision Tree gets data with the features product line and Quantity
Gain(S,Productline)=0.029 Gain(S,Quantity)=0.151

```
5th Decision Tree gets data with the features Gender and Quantity
Gain(S,Gender)=0.048 Gain(S,Quantity)=0.151
Total Information Gain for each features
Total Info Gain for Customer=0.246+0.246
  =0.492
Total Info Gain for Productline=0.029+0.029+0.029
  =0.087
Total Info Gain for Quantity=0.151+0.151+0.151
  =0.453
Total Info Gain for Gender=0.048+0.048
  =0.096
```

Important variable to determine the output label according to the above constructed Extra tree Forest is the Feature "Customer".

Bagging Classifier:

customer	Product line	Quantitiy
Member	Health&beauty	7
Normal	Electric access	5
Normal	Home&lifestyle	7
Member	Health&beauty	8
Normal	Sports&travel	7

To find the accuracy for bagging we use:

CR=C/A

Where,

CA=correct rate

C=Samples (health & beauty)

A=total no.of samples

CR=2/5

=0.4

Finding the entropy value: E=Entropy

```
\begin{split} & \mathsf{E} = 1/\mathsf{N} * 2/\mathsf{L} - 1 * \sum_{j=1}^{N} \min \left\{ (\sum_{i=1}^{L} y_{i,j}), (L - \sum_{i=1}^{L} y_{i,j}) \right\} \\ & = 1/\mathsf{5} \ 2/\mathsf{1} - 1 \sum_{j=1}^{\mathsf{5}} \min \left\{ (\sum_{i=5}^{\mathsf{1}} 1), (1 - \sum_{i=1}^{\mathsf{2}} 1) \right. \\ & = 2/\mathsf{5} \{ \sum_{j=1}^{\mathsf{5}} 0 \} \\ & = 0.4 \end{split}
```

FINDING PRECISION, F1 SCORE AND RECALL FOR THE CLASSIFIERS WE HAVE USED:

PRECISION:

Formula:

$$t_{P/}(t_{P+}f_{P})$$

Where,
tP is the number of true positives
is the number of false positives
The precision is intuitively the abil

The precision is intuitively the ability of the classifier not to label a negative sample as positive.

RECALL: FORMULA:

$$t_{P/}(t_{P+}f_n)$$

Where,

t_P is the number of true positives

f_P is the number of false negatives

The recall is intuitively the ability of the classifier to find all the positive samples

F1 SCORE: FORMULA:

2*(precision*recall)/(precision+recall)

Where,
Precision is noted value above
Recall is the notes value above

```
KNN:
```

CONFUSION MATRIX:

```
[[49 51]
[55 45]]
```

Precision:

=49/(49+55)

=0.47

Recall:

=49/(49+51)

=0.49

F1 score:

=(2*(0.47*0.49))/((0.47+0.49))

=0.4612/0.96

=0.48

SVM:

CONFUSION MATRIX:

[[49 51] [60 40]]

Precision:

=49/(49+60)

=0.449

Recall:

=49/(49+51)

=0.49

F1 score:

=(2*(0.449*0.49))/((0.449+0.49))

=0.44/0.939

=0.468

NAIVE BAYES CLASSIFIER: CONFUSION MATRIX:

```
[[35 65]
[34 66]]
Precision:
=35/(35+34)
=0.507
Recall:
=35/(35+65)
=0.35
F1 score:
  =(2*(0.507*0.35))/((0.507+0.35))
 =0.354/0.857
=0.413
```

DECSION TREE CLASSIFIER: CONFUSION MATRIX:

```
[[79 21]
[73 27]]
```

Precision:

```
=79/(79+73)
```

=0.519

Recall:

```
=79/(79+21)
```

=0.79

F1 score:

```
=(2*(0.519*0.79))/((0.519+0.79))
```

=0.82/1.309

=0.626

Random forest classifier:

Precision:

Precision= 0.53

Recall:

Recall=0.50

F1 score:

$$= \frac{2*(0.53*0.53)}{0.53+0.53}$$

F1 score=0.51

Ada boost algorithm:

Precision:

=0.54

Recall:

$$=\frac{54}{54+46}$$
=0.54

F1 score:

F1 score: 0.53

Gradient boosting algorithm:

Precision:

=54/100

=0.50

Recall:

=54/54+46

=0.48

F1 score:

=0.48

XGB classifier:

customer	Product line	Quantitiy	res
Member	Health&beauty	7	-0.2
Normal	Electric access	5	1.8
Normal	Home&lifestyle	7	-0.2
Member	Health&beauty	8	-1.2
Normal	Sports&travel	7	-0.2

Health and beauty = 2(positive)
Other samples=3(negative)
Total samples=5

Precision:

2/(2+2)

=2/4

=0.5

Recall:

2/(2+3)

= 2/5

=0.4

F1 score:

2*(0.5*0.4)/0.5+0.4 =2*(0.2)/0.9

=0.444

Extra Tree Classifier:

customer	Product line	quantity	gender	City
Member	Health & beauty	7	Female	Yangon
Normal	Electronic accessories	5	Female	Naypyitaw
Normal	Home & lifeline	7	Male	Yangon
Normal	Sports & travel	7	Male	Yangon
Member	Health & beauty	8	Male	Yangon
Normal	Electronic accessories	7	Male	Naypyitaw
Member	Electronic accessories	6	Female	Yangon
Normal	Home & lifeline	10	Female	Naypyitaw
Member	Health &	2	Female	Yangon

Member	Food &	3	Female	Mandalay
	beverages			
Member	Fashion	4	Female	Mandalay
	accessories			
Member	Electronic	4	Male	Mandalay
	accessories			
Normal	Electronic	5	Female	Yangon
	accessories			
Normal	Food &	10	Male	Yangon
	beverages			

Precision:

Recall:

2*(0.5*0.5)/(0.5+0.5) =2*(0.25)/1 =0.5

Bagging Classifier:

customer	Product line	Quantitiy
Member	Health&beauty	7
Normal	Electric access	5
Normal	Home&lifestyle	7
Member	Health&beauty	8
Normal	Sports&travel	7

Precision:

Recall:

F1 Score:

OUTPUTS FOR ALL THE CLASSIFIERS USED:

KNeighborsClassifier:

```
In [42]: y pred=knn.predict(x test)
         from sklearn.metrics import accuracy score, classification report, confusion matrix
         from sklearn.metrics import r2 score
         from sklearn.metrics import mean squared error
         print("Classification Report is:\n",classification report(y test,y pred))
         print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
         print("Training Score:\n",knn.score(x train,y train)*100)
         Classification Report is:
                                     recall f1-score
                        precision
                                                        support
                            0.47
                                      0.49
                                                0.48
                                                           100
                            0.47
                                      0.45
                                                0.46
                                                           100
                                                0.47
                                                           200
             accuracy
                                      0.47
                                                0.47
            macro avg
                            0.47
                                                           200
         weighted avg
                            0.47
                                      0.47
                                                0.47
                                                           200
         Confusion Matrix:
          [[49 51]
          [55 45]]
         Training Score:
          64.75
```

Support Vector Systems:

```
In [73]: y pred=svc.predict(x test)
         from sklearn.metrics import accuracy score,classification report,confusion matrix
         from sklearn.metrics import r2 score
         from sklearn.metrics import mean squared error
         print("Classification Report is:\n",classification_report(y_test,y_pred))
         print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
         print("Training Score:\n",svc.score(x train,y train)*100)
         Classification Report is:
                                      recall f1-score
                        precision
                                                         support
                            0.45
                                      0.49
                                                 0.47
                                                            100
                            0.44
                                                            100
                                      0.40
                                                 0.42
              accuracy
                                                 0.45
                                                            200
                                                 0.44
                                                            200
            macro avg
                            0.44
                                      0.45
         weighted avg
                            0.44
                                      0.45
                                                            200
         Confusion Matrix:
          [[49 51]
          [60 40]]
         Training Score:
          55.500000000000001
```

Naive Bayes:

```
In [48]: y pred=gnb.predict(x test)
         from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         from sklearn.metrics import r2_score
         from sklearn.metrics import mean squared error
         print("Classification Report is:\n",classification_report(y_test,y_pred))
         print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
         print("Training Score:\n",gnb.score(x_train,y_train)*100)
         Classification Report is:
                                     recall f1-score
                        precision
                                                        support
                    0
                            0.51
                                      0.35
                                                0.41
                                                           100
                    1
                            0.50
                                                0.57
                                      0.66
                                                           100
                                                0.51
                                                           200
             accuracy
                            0.51
                                      0.51
                                                0.49
                                                           200
            macro avg
         weighted avg
                            0.51
                                      0.51
                                                0.49
                                                           200
         Confusion Matrix:
          [[35 65]
          [34 66]]
         Training Score:
          55.125
```

Decision tree classifier:

63.875000000000001

```
In [54]: y pred=dtree.predict(x test)
         from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         from sklearn.metrics import r2 score
         from sklearn.metrics import mean_squared_error
         print("Classification Report is:\n",classification_report(y_test,y_pred))
         print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
         print("Training Score:\n",dtree.score(x train,y train)*100)
         Classification Report is:
                        precision
                                     recall f1-score support
                            0.52
                                      0.79
                                                0.63
                                                            100
                            0.56
                                                0.36
                                      0.27
                                                            100
                                                0.53
                                                           200
             accuracy
                                                0.50
            macro avg
                            0.54
                                      0.53
                                                           200
         weighted avg
                            0.54
                                      0.53
                                                0.50
                                                            200
         Confusion Matrix:
          [[79 21]
          [73 27]]
         Training Score:
```

Random Forest Classifier:

```
In [56]: y pred=rfc.predict(x test)
         from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
         from sklearn.metrics import r2_score
         from sklearn.metrics import mean squared error
         print("Classification Report is:\n",classification_report(y_test,y_pred))
         print("Confusion Matrix:\n",confusion matrix(y test,y pred))
         print("Training Score:\n",rfc.score(x train,y train)*100)
         Classification Report is:
                        precision
                                     recall f1-score
                                                        support
                                                0.48
                                                           100
                    0
                            0.48
                                      0.49
                            0.47
                                      0.46
                                                0.47
                                                           100
             accuracy
                                                0.48
                                                           200
            macro avg
                            0.47
                                      0.47
                                                0.47
                                                           200
         weighted avg
                            0.47
                                      0.47
                                                0.47
                                                           200
         Confusion Matrix:
          [[49 51]
          [54 46]]
         Training Score:
          100.0
```

AdaBoostClassifier:

```
n [58]: y pred=adb.predict(x test)
        from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
        from sklearn.metrics import r2_score
        from sklearn.metrics import mean squared error
        print("Classification Report is:\n",classification_report(y_test,y_pred))
        print("Confusion Matrix:\n",confusion matrix(y test,y pred))
        print("Training Score:\n",adb.score(x_train,y_train)*100)
        Classification Report is:
                                    recall f1-score
                       precision
                                                       support
                                     0.54
                                               0.54
                           0.54
                                                          100
                                     0.54
                           0.54
                                               0.54
                                                          100
                                               0.54
                                                          200
            accuracy
                                     0.54
                                               0.54
           macro avg
                           0.54
                                                          200
        weighted avg
                           0.54
                                     0.54
                                               0.54
                                                          200
        Confusion Matrix:
         [[54 46]
         [46 54]]
        Training Score:
```

Gradient Boosting Classifier:

```
In [61]: y pred=gbc.predict(x test)
         from sklearn.metrics import accuracy score, classification report, confusion matrix
         from sklearn.metrics import r2 score
         from sklearn.metrics import mean squared error
         print("Classification Report is:\n",classification_report(y_test,y_pred))
         print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
         print("Training Score:\n",gbc.score(x_train,y_train)*100)
         Classification Report is:
                                     recall f1-score
                         precision
                                                         support
                                       0.50
                                                 0.49
                                                            100
                             0.49
                     1
                             0.48
                                       0.47
                                                 0.48
                                                            100
              accuracy
                                                 0.48
                                                            200
             macro avg
                             0.48
                                       0.48
                                                 0.48
                                                            200
         weighted avg
                             0.48
                                       0.48
                                                 0.48
                                                            200
         Confusion Matrix:
          [[50 50]
          [53 47]]
         Training Score:
           88.0
```

XGB Classifier:

```
n [64]: y_pred=xgb.predict(x_test)
        from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
        from sklearn.metrics import r2 score
        from sklearn.metrics import mean_squared_error
        print("Classification Report is:\n",classification_report(y_test,y_pred))
        print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
        print("Training Score:\n",xgb.score(x_train,y_train)*100)
        Classification Report is:
                       precision
                                    recall f1-score support
                           0.49
                                     0.56
                                               0.52
                                                          100
                           0.48
                                     0.41
                                               0.44
                                                          100
            accuracy
                                               0.48
                                                          200
                           0.48
                                     0.48
                                               0.48
                                                           200
           macro avg
        weighted avg
                           0.48
                                     0.48
                                               0.48
                                                          200
        Confusion Matrix:
         [[56 44]
         [59 41]]
        Training Score:
         62,625
```

ExtraTrees Classifier:

```
In [66]: y_pred=etc.predict(x_test)
         from sklearn.metrics import accuracy_score,classification_report,confusion_matrix
         from sklearn.metrics import r2_score
         from sklearn.metrics import mean_squared_error
         print("Classification Report is:\n",classification_report(y_test,y_pred))
         print("Confusion Matrix:\n",confusion matrix(y test,y pred))
         print("Training Score:\n",etc.score(x train,y train)*100)
         Classification Report is:
                        precision
                                     recall f1-score
                                                       support
                                                0.50
                            0.50
                                      0.50
                                                           100
                            0.50
                                      0.50
                                                0.50
                                                           100
                                                0.50
                                                           200
             accuracy
            macro avg
                            0.50
                                      0.50
                                                0.50
                                                           200
         weighted avg
                            0.50
                                      0.50
                                                0.50
                                                           200
         Confusion Matrix:
          [[50 50]
          [50 50]]
         Training Score:
          100.0
```

Bagging Classifier:

```
In [67]: from sklearn.ensemble import BaggingClassifier
         from sklearn import tree
         model = BaggingClassifier(tree.DecisionTreeClassifier(random state=1))
         model.fit(x_train, y_train)
         model.score(x test,y test)
Out[67]: 0.57
In [68]: data = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
         data
Out[68]:
               Actual Predicted
          993
          859
          298
          553
          672
          679
          722
          215
                           0
          653
```

0

0

150

Overall Data:

Classifier	Accuracy	Precision	Recall	F1 Score
KNN	64.75	0.47	0.49	0.48
SVM	55.50	0.449	0.49	0.46
NAIVE BAYES	55.125	0.50	0.35	0.41
DECISION TREE	63.875	0.51	0.79	0.62
RANDOM FOREST	100.0	0.53	0.50	0.51
ADA BOOST	67.0	0.54	0.54	0.53
GRADIENT BOOST	88.0	0.50	0.48	0.48
XGB	62.625	0.5	0.4	0.44
EXTRA TREE	100.0	0.5	0.5	0.5
BAGGING	40.0	0.5	0.4	0.44

Some other data sets and outputs:

Summary_of_Neighborhood_Sales_for_Brooklyn

Summary_of_Neighborhood_Sales_in_Manhattan

data-agriculture-and-biosciences-sales

data-oklahoma-lottary-commission-retailer-ranking-from-oct

MVA_vehicle_Sales_Counts_by_Month_for_Calender_year_2001_through

Output:

MVA_vehicle_Sales_Counts_by_Month_for_Calender_year_2001_through

Classifiers	Accuracy
KNeighborsClassifier	12.1212
Support Vector Systems	1.0101
Naive Bayes	100.0
Decision tree classifier	32.3232
Random Forest Classifier	100.0
AdaBoostClassifier	17.6767
Gradient Boosting Classifier	100.0
XGBClassifier	78.4522
ExtraTreesClassifier	100.0
Bagging Classifier	55.2525

data-oklahoma-lottary-commission-retailer-ranking-from-oct

Classifiers	Accuracy
KNeighborsClassifier	34.9750
Support Vector Systems	16.4360
Naive Bayes	70.614277
Decision tree classifier	55.6170
Random Forest Classifier	100.0
AdaBoostClassifier	28.1128
Gradient Boosting Classifier	99.446
XGBClassifier	66.1121
ExtraTreesClassifier	100.0
Bagging Classifier	66.1504

Summary_of_Neighborhood_Sales_for_Brooklyn

Classifiers	Accuracy
KNeighborsClassifier	28.2447
Support Vector Systems	12.2137
Naive Bayes	57.2519
Decision tree classifier	71.75572
Random Forest Classifier	100.0
AdaBoostClassifier	16.0305
Gradient Boosting Classifier	100.
XGBClassifier	65.2325
ExtraTreesClassifier	100.0
Bagging Classifier	12.1212

Summary_of_Neighborhood_Sales_in_Manhattan_class

Classifiers	Accuracy
KNeighborsClassifier	51.11
Support Vector Systems	46.66
Naive Bayes	48.88
Decision tree classifier	86.66
Random Forest Classifier	100.0
AdaBoostClassifier	46.66
Gradient Boosting Classifier	100.0
XGBClassifier	55.125
ExtraTreesClassifier	100.0
Bagging Classifier	66.666

Summary_of_Neighborhood_Sales_in_Manhattan_home

Classifiers	Accuracy
KNeighborsClassifier	51.11
Support Vector Systems	46.66
Naive Bayes	48.88
Decision tree classifier	86.66
Random Forest Classifier	100.0
AdaBoostClassifier	46.66
Gradient Boosting Classifier	100.0
XGBClassifier	55.125
ExtraTreesClassifier	100.0
Bagging Classifier	66.666

FUTURE SCOPE:

- In this study we used some techniques for sales prediction such are models and XG Boost algorithms which get better efficiency manipulate the trending sales analysis.
- Random Forest gives the best accuracy value.
 Data mining techniques like Linear
 Regression, Random Forest Regression and
 XGBoost had been carried out and the outcomes compared.
- XGBoost which is an expanded gradient boosting algorithm was once found to function the excellent at prediction. Sales prediction performs a necessary function in growing the effectively with which shops can function as it presents important points on the visitors a save can count on to get hold of on a given day.

ADVANTAGES:

- Sales Planning
- Allocation of Resources
- Key Factor in Business Operations
- Basis of Salesforce Planning
- Major Role in Success

DISADVANTAGES:

- Lake of Sales History
- Change in Business Environment
- Change in Consumer Behaviour
- Lake of Facts and Data
- Based on Assumptions

Challenges

CHALLENGES:

- Seller subjectivity
- A lack of predictive data
- Technology limitations

