

TLN-LAB

utilizzo di risorse lessicografiche per la concept similarity e la WSD

Daniele Radicioni

credits

the following slides have been mostly built on materials from:

M. Lesk. Automatic Sense Disambiguation using Machine Readable Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone. In *Proceedings of the 5th International Conference on Systems Documentation*, 1986.

Tanveer Siddiqui and U.S. Tiwary, Natural Language Processing and Information Retrieval, Oxford University, 2008.

conceptual similarity with WordNet

conceptual similarity with WN

- dati in input due termini, il task di conceptual similarity consiste nel fornire un punteggio numerico di similarità che ne indichi la vicinanza semantica.
 - ad esempio, la similarità fra i concetti *car* e *bus* potrebbe essere 0.8 in una scala [0,1], in cui 0 significa che i sensi sono completamente dissimili, mentre 1 significa identità.
- per risolvere il task di conceptual similarity è possibile sfruttare la struttura ad albero di WordNet.

input

- l'input per questa esercitazione è costituito da coppie di termini contenute nel file *WordSim353* (disponibile nei formati .tsv e .csv)
 - Il file contiene 353 coppie di termini utilizzati come testset in varie competizioni internazionali
 - A ciascuna coppia è attribuito un valore numerico [0,10], che rappresenta la similarità fra gli elementi della coppia.

consegna

- l'esercitazione consiste nell'implementare tre misure di similarità basate su WordNet.
- per ciascuna di tali misure di similarità, calcolare gli indici di correlazione di Spearman and gli indici di correlazione di Pearson fra i risultati ottenuti e quelli 'target' presenti nel file annotato.

Article

Talk

Pearson correlation coefficient

From Wikipedia, the free encyclopedia

Definition [edit]

Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier *product-moment* in the name.

For a population [edit]

Pearson's correlation coefficient when applied to a population is commonly represented by the Greek letter ρ (rho) and may be referred to as the *population coefficient* or the *population Pearson correlation coefficient*. Given a pair of random variables (X,Y), the formula for $\rho^{[7]}$ is:

$$ho_{X,Y} = rac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}$$
 (Eq.1)

where:

- cov is the covariance
- ullet σ_X is the standard deviation of X
- σ_Y is the standard deviation of Y

Article Talk

Spearman's rank correlation coefficient

From Wikipedia, the free encyclopedia

Definition and calculation [edit]

The Spearman correlation coefficient is defined as the Pearson correlation coefficient between the rank variables.[3]

For a sample of size n, the n raw scores X_i, Y_i are converted to ranks $\operatorname{rg} X_i, \operatorname{rg} Y_i$, and r_s is computed from:

$$r_s =
ho_{ ext{rg}_X, ext{rg}_Y} = rac{ ext{cov}(ext{rg}_X, ext{rg}_Y)}{\sigma_{ ext{rg}_X}\sigma_{ ext{rg}_Y}}$$

where

- ρ denotes the usual Pearson correlation coefficient, but applied to the rank variables.
- $cov(rg_X, rg_Y)$ is the covariance of the rank variables.
- ullet $\sigma_{\mathrm{rg}_{X}}$ and $\sigma_{\mathrm{rg}_{Y}}$ are the standard deviations of the rank variables.

Wu & Palmer

$$cs(s_1, s_2) = \frac{2 \cdot depth(LCS)}{depth(s_1) + depth(s_2)}$$

- la misura di similarity di Wu & Palmer si basa sulla struttura di WordNet
- LCS è il primo antenato comune (Lowest
 Common Subsumer) fra i sensi s₁ e s₂; e depth(x)
 è una funzione che misura la distanza fra la radice
 di WordNet e il synset x.

Shortest Path

$$sim_{path}(s_1, s_2) = 2 \cdot depthMax - len(s_1, s_2)$$

- for a specific version of WordNet, depthMax is a fixed value.
- the similarity between two senses (s_1,s_2) is the function of the shortest path $len(s_1,s_2)$ from s_1 to s_2 .
 - if $len(s_1,s_2)$ is 0, $sim_{path}(s_1,s_2)$ gets the maximum value of 2^* depthMax.
 - if $len(s_1,s_2)$ is 2^* depthMax, $sim_{path}(s_1,s_2)$ gets the minimum value of 0.

thus, the values of $sim_{path}(s_1,s_2)$ are between 0 and 2* depthMax.

Leakcock & Chodorow

$$\sin_{LC}(s_1, s_2) = -\log \frac{len(s_1, s_2)}{2 \cdot \operatorname{depthMax}}$$

- when s_1 and s_2 have the same sense, $len(s_1,s_2)=0$. in practice, we add l to both $len(s_1,s_2)$ and 2*depthMax to avoid log(0).
 - thus the values of $sim_{LC}(s_1,s_2)$ are in the interval (0,log(2*depthMax + I)]

termini vs. sensi

- attenzione: l'input è costituito da coppie di termini, mentre la formula utilizza sensi.
- per calcolare la similarity fra 2 termini immaginiamo di prendere la massima similarity fra tutti i sensi del primo termine e tutti i sensi del secondo termine.
 - l'ipotesi è cioè che i due termini funzionino come contesto di disambiguazione l'uno per l'altro.
 - nella formula c sono i concetti che appartengono ai synset associati ai termini w_1 e w_2 .

$$\sin(w_1, w_2) = \max_{c_1 \in s(w_1), c_2 \in s(w_2)} \left[\sin(c_1, c_2) \right]$$

WSD

Word Sense Disambiguation

Word sense disambiguation (WSD) is an open problem of natural language processing, which comprises the process of identifying which sense of a word (i.e. meaning) is used in any given sentence, when the word has a number of distinct senses (polysemy).

WSD

- disambiguating word senses has the potential to improve many natural language processing tasks, such as machine translation, question-answering, information retrieval, and text classification.
- in their most basic form, WSD algorithms take as input a word in context along with a fixed inventory of potential word senses, and return as output the correct word sense for that use.

what is WSD

WordNet	Spanish	Roget		
Sense	Translation	Category	Target Word in Context	
bass ⁴	lubina	FISH/INSECT	fish as Pacific salmon and striped bass and	
bass ⁴	lubina	FISH/INSECT	produce filets of smoked bass or sturgeon	
bass ⁷	bajo	MUSIC	exciting jazz bass player since Ray Brown	
bass ⁷	bajo	MUSIC	play bass because he doesn't have to solo	

Extracting Feature Vectors

If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine, one at a time, the meaning of the words. [...] But if one lengthens the slit in the opaque mask, until one can see not only the central word in question but also say N words on either side, then if N is large enough one can unambiguously decide the meaning of the central word. [...]

The practical question is: "What minimum value of N will, at least in a tolerable fraction of cases, lead to the correct choice of meaning for the central word?"

Ide and Véronis (1998)

feature vectors

- to extract useful features from such a window, a minimal amount of processing is first performed on the sentence containing the window.
 - this processing typically includes part-of-speech (POS) tagging, lemmatization or stemming, and in some cases syntactic parsing to reveal information such as head words and dependency relations.
 - context features relevant to the target word can then be extracted from this enriched input.
- a feature vector consisting of numeric or nominal values is used to encode this linguistic information as an input to most machine learning algorithms.

collocational vs. bag-of-words

- two classes of features are generally extracted: collocational features and bag-of-words features.
- a collocation is a word or phrase in a positionspecific relationship to a target word (i.e., exactly one word to the right, or exactly 4 words to the left, and so on).

collocational features

- let us consider a case where we have to disambiguate the word *bass* in the following WSJ sentence:
 - An electric guitar and bass player stand off to one side, not really part of the scene...

collocational features

An electric guitar and **bass** player stand off to one side, not really part of the scene...

 example of a collocational feature-vector, extracted from a window of two words to the right and left of the target word, made up of the words themselves and their respective parts-ofspeech, i.e.,

$$[w_{i-2}, POS_{i-2}, w_{i-1}, POS_{i-1}, w_{i+1}, POS_{i+1}, w_{i+2}, POS_{i+2}]$$

would yield the following vector:

[guitar, NN, and, CC, player, NN, stand, VB]

bag-of-words approaches

- a bag-of-words means an unordered set of words, ignoring their exact position.
- the simplest bag-of-words approach represents the context of a target word by a vector of features, each binary feature indicating whether a vocabulary word w does or doesn't occur in the context.

bag-of-words approaches

An electric guitar and bass player stand off to one side, not really part of the scene...

 for example a bag-of-words vector consisting of the 12 most frequent content words from a collection of bass sentences drawn from the WSJ corpus would have the following ordered word feature set:

[fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]

using these word features with a window size of 10, in the example would be represented by the following binary vector:

[0,0,0,1,0,0,0,0,0,0,1,0]

• by far the most well-studied dictionary-based algorithm for sense disambiguation is the Lesk algorithm.


```
function SimplifiedLesk(word, sentence)
     returns best sense of word
     best-sense \leftarrow most frequent sense for word
4
     max-overlap \leftarrow 0
     context \leftarrow set of words in sentence
     for all senses of word do
       signature \leftarrow set of words in the gloss and examples of sense
       overlap \leftarrow ComputeOverlap(signature,context)
8
9
       if overlap > max-overlap then
10
          max-overlap \leftarrow overlap
          best-sense \leftarrow sense
       end if
     end for
     return best-sense
```

 as an example of the Lesk algorithm at work, consider disambiguating the word bank in the following context:

the bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

the bank can guarantee <u>deposits</u> will eventually cover future tuition costs because it invests in adjustable-rate <u>mortgage</u> securities.

given the following two WordNet senses:

	bank [†]	(¬ ∩cc'	a financial institution that accepts deposits and channels the money into lending activities	
		Examples:	"he cashed a check at the bank", "that bank hold the mortgage on my home"	
	bank²	Gloss:	sloping land (especially the slope beside a body of water)	
	DUIIK ²	Examples:	"they pulled the canoe up on the bank",	

example problem

- let us consider the three senses of the noun ash in WordNet, along with their definition.
 - sense: the residue that remains when something is burned;
 - sense₂: any of various deciduous pinnate-leaved ornamental or timber trees of the genus Fraxinus;
 - sense₃: strong elastic wood of any of various ash trees; used for furniture and tool handles and sporting goods such as baseball bats.

example problem

- let us suppose we want to disambiguate the term ash occurring in the two contexts:
 - context₁: The house was burnt to ashes while the owner returned.;
 - context₂: This table is made of ash wood.

example problem

- context₁: The house was burnt to ashes while the owner returned.;
- context₂: This table is made of ash wood.
- using the number of words that the contexts have in common with the sense definitions:

	SI	S 2	\$ 3
Cı	I	0	I
C 2		0	2

tools

• Find APIs and interfaces to WordNet at the URL https://wordnet.princeton.edu/related-projects

Consegna

- Implementare l'algoritmo di Lesk (!= usare implementazione esistente, e.g., in nltk...).
- 1. Disambiguare i termini polisemici all'interno delle frasi del file 'sentences.txt'; oltre a restituire i synset ID del senso (appropriato per il contesto), il programma deve riscrivere ciascuna frase in input sostituendo il termine polisemico con l'elenco dei sinonimi eventualmente presenti nel synset.
- 2. Estrarre 50 frasi dal corpus SemCor (corpus annotato con i synset di WN) e disambiguare almeno un sostantivo per frase. Calcolare l'accuratezza del sistema implementato sulla base dei sensi annotati in SemCor.
 - SemCor è disponibile all'URL

http://web.eecs.umich.edu/~mihalcea/downloads.html