Teoria della Fattorizzazione

Lorenzo Saporito Relatore: Andrea Loi

Università degli Studi di Cagliari

29 Marzo 2023

Introduzione

- Teorema fondamentale dell'aritmetica
- Elementi irriducibili e elementi primi
- Fattorizzazioni non classiche (es. permutazioni)
- Teorema di esistenza e teorema inverso
- Esempi

Bibliografia

- An Abstract Factorization Theorem and Some Applications -S. Tringali;
- Factorization under Local Finiteness Conditions L. Cossu, S. Tringali

Sia H un insieme non vuoto e sia $\cdot: H \times H \to H$ un'operazione binaria su H tale che per ogni $x,y,z \in H$:

•
$$x(yz) = (xy)z$$
 (associatività)

• esiste $1 \in H$ tale che $x \cdot 1 = 1 \cdot x = x$ (elemento neutro)

Chiamiamo **monoide** la coppia (H, \cdot)

Definizione

Sia X un insieme non vuoto. Una relazione $R \subseteq X \times X$ è detta **preordine** se per ogni $x,y,z \in X$:

- lacktriangledown xRx (riflessiva)
- $xRy \in yRz \Rightarrow xRz$ (transitiva)

Useremo il simbolo \preceq per indicare il preordine e scriveremo $x \prec y$ se risulta $x \preceq y$ e $y \not \succeq x$. Diremo che x,y sono \preceq -equivalenti se $x \preceq y \preceq x$.

Sia H un monoide e \preceq un preordine su H. La coppia $\mathcal{H}=(H,\preceq)$ è detta **premonoide.**

Definizione

Sia $\mathcal{H}=(H,\preceq)$ un premonoide. Un elemento $u\in\mathcal{H}$ è detto \preceq -unità se u è \preceq -equivalente a 1, cioè se $u\preceq 1\preceq u$; altrimenti u si dirà \preceq -non-unità.

Indichiamo con \mathcal{H}^* l'insieme delle \leq -unità di \mathcal{H} .

Sia $\mathcal{H}=(H,\preceq)$ un premonoide. Una \preceq -non-unità $a\in\mathcal{H}$ si dice:

- \leq -irriducibile se $a \neq xy$ per ogni $x, y \in \mathcal{H} \setminus \mathcal{H}^*$ con $x, y \prec a$;
- \leq -atomo se $a \neq xy$ per ogni $x, y \in \mathcal{H} \setminus \mathcal{H}^*$;
- \leq -quark se non esiste $b \in \mathcal{H} \setminus \mathcal{H}^*$ tale che $b \prec a$.

Inoltre $\mathcal H$ si dirà \preceq -fattorizzabile se ogni \preceq -non-unità è prodotto (finito e non vuoto) di \preceq -irriducibili. Analogamente, $\mathcal H$ si dirà \preceq -atomico.

Osservazione

 \preceq -atomo $\Rightarrow \preceq$ -irriducibile

 \prec -quark $\Rightarrow \prec$ -irriducibile

Esempio 1

Consideriamo (\mathbb{N},\cdot) e definiamo $a\mid b\iff b\in a\mathbb{N}.$ $u\in\mathbb{N}$ è una $|\text{-unità}\iff u=1.$ Sia quindi $a\neq 1$:

- $a \ \dot{e} \ |$ -irriducibile se e solo se \dot{e} irriducibile nel senso classico, quindi se $a \ \dot{e}$ primo.
- lacksquare a è \vert -atomo se e solo se a è primo
- lacksquare a è \vert -quark se e solo se a è primo

Esempio 2

Sia $(A,+,\cdot)$ un dominio d'integrità e $H=A\setminus\{0\}$ con il preordine $x\mid y\iff y\in xH$ $u\in\mathcal{H}$ è una |-unità $\iff u$ è un unità.

Sia ora $x \in \mathcal{H}$ una non-unità.

- $\blacksquare x \ \text{è un } | \text{-atomo} \iff x \ \text{è un irriducibile}.$
- x è un \mid -irriducibile $\iff x$ è un irriducibile. Infatti, se x non è irriducibile, x=yz, con y e z non-unità. Quindi $y \mid x$ e $z \mid x$. Se per assurdo $x \mid y$, y=xu=(yz)u $\Rightarrow zu=1$
- x è un \mid -quark $\iff x$ è un irriducibile. Infatti, se x non è un \mid -quark, esiste y non-unità tale che $y \mid x$ e $x \nmid y$. Allora x = yz e z è una non-unità.

Esempio 3

Sia (S_n, \circ) con $n \geq 2$ e definiamo il preordine $f \leq g \iff |Fix(g)| \leq |Fix(f)|$, con $Fix(f) = \{x \mid f(x) = x\}$ f è una \leq -unità $\iff f = id$. Sia quindi $f \neq id$

- f è un \leq -quark \iff f è una trasposizione
- Le trasposizioni sono tutti e i soli \preceq -irriducibili. Infatti, se f non è una trasposizione, prendiamo $z \notin Fix(f)$ e $\tau = (z \ f(z))$. Allora, posto $\bar{f} = \tau \circ f$, abbiamo $f = \tau \circ \bar{f}$ e vale $\tau, \bar{f} \prec f$.
- Se τ è una trasposizione e $g \neq id$ non è una trasposizione, $\tau = (\tau \circ g) \circ g^{-1}$ mostra che τ non è un \preceq -atomo. Non ci sono \preceq -atomi

Un preordine \preceq su un insieme X è detto **artiniano** se per ogni successione non-crescente $(x_k)_{k\in\mathbb{N}}$ in X, ovvero se $x_{k+1} \preceq x_k$ per ogni k, esiste $k_0 \in \mathbb{N}$ tale che $x_k \preceq x_{k+1}$ per ogni $k \geq k_0$. Un premonoide $\mathcal{H} = (H, \preceq)$ è detto **artiniano**, se \preceq è artiniano.

Definizione

Sia $\mathcal{H}=(H,\preceq)$ un premonoide e sia $x\in\mathcal{H}$. Chiamiamo \preceq -altezza di x, e la indichiamo con ht(x), l'estremo superiore dell'insieme degli $n\in\mathbb{N}$ tali che esistono $x_1,\ldots,x_n\in\mathcal{H}\setminus\mathcal{H}^*$ con $x_1=x$ e $x_{i+1}\prec x_i$ per ogni $i=1,\ldots,n-1$. Per convenzione poniamo sup $\varnothing:=0$. Se risulta $ht(x)<\infty$ per ogni $x\in\mathcal{H}$, il premonoide \mathcal{H} è detto fortemente artiniano.

Osservazione

 \mathcal{H} fortemente artiniano $\Rightarrow \mathcal{H}$ artiniano.

Teorema (di esistenza della fattorizzazione)

Sia $\mathcal{H}=(H,\preceq)$ un premonoide artiniano. Allora \mathcal{H} è \preceq -fattorizzabile. Se inoltre \mathcal{H} è fortemente artiniano, ogni \preceq -non-unità è prodotto di $2^{ht(x)-1}$ o meno \preceq -irriducibili.

Dimostrazione

Sia X l'insieme delle \preceq -non-unità di $\mathcal H$ che non sono prodotto di \preceq -irriducibili e supponiamo per assurdo $X \neq \varnothing$.

Mostriamo che esiste $x \in X \leq$ -minimale, ovvero se $y \leq x$ si ha $x \leq y$.

Sia $x_0 \in X$ e definiamo ricorsivamente una successione in X. Se per qualche $k \in \mathbb{N}$, x_k non è \preceq -minimale, prendiamo $y \in X$ tale che $y \prec x_k$ e poniamo $x_{k+1} = y$; altrimenti $x_{k+1} = x_k$. Per ipotesi esiste $k_0 \in \mathbb{N}$ tale che $x_k \preceq x_{k+1}$ per ogni $k \ge k_0$, cioè sono \preceq -equivalenti e x_{k_0} è quindi un elemento \preceq -minimale.

Dimostrazione

Sia $x\in X$ un elemento \preceq -minimale, in particolare x non è \preceq -irriducibile. Allora esistono $y,z\in \mathcal{H}\setminus \mathcal{H}^*$ tali che x=yz, con $y,z\prec x$.

Poiché x è \leq -minimale, deve essere $y, z \notin X$. Allora y e z sono prodotto di \leq -irriducibili e quindi anche x.

Corollario

Sia $\mathcal{H}=(H,\preceq)$ un premonoide fortemente artiniano e supponiamo che, se $x\in\mathcal{H}\setminus\mathcal{H}^*$ non è un \preceq -quark, esistono $y,z\in\mathcal{H}\setminus\mathcal{H}^*$ con $y,z\preceq x$ tali che x=yz e $ht(y)+ht(z)\leq ht(x)$. Allora:

- (i) ogni <u>≺</u>-irriducibile è un <u>≺</u>-quark;
- (ii) ogni \leq -non-unità x è prodotto di al più $ht(x) \leq$ -quark.

Teorema (inverso)

Sia H un monoide e siano $A,S\subseteq H$ tali che $1\notin A\cup S$. Allora le seguenti sono equivalenti:

- (i) ogni elemento di S fattorizza nel prodotto (finito e non vuoto) di elementi di A;
- (ii) esiste un preordine \preceq fortemente artiniano su H tale che ogni elemento S è una \preceq -non-unità e un elemento $x \in H$ è un \preceq -irriducibile se e solo se è un \preceq -quark se e solo se $x \in A$;
- (iii) esiste un preordine \preceq artiniano su H tale che ogni elemento S è una \preceq -non-unità e ogni \preceq -irriducibile è un elemento di A;

Esempio (Teorema fondamentale dell'aritmetica)

Il premonoide $(\mathbb{N},|)$ è banalmente artiniano per il principio del buon ordinamento. Dal teorema di esistenza abbiamo che: Ogni numero naturale $n \neq 1$ è prodotto di |-irriducibili, cioè di numeri primi.

Osserviamo inoltre che nonostante $\mathbb N$ sia anche fortemente artiniano, questo non ci dà nuove informazioni sulla lunghezza della fattorizzazione.

Esempio (Domini noetheriani)

Sia $(A,+,\cdot)$ un dominio d'integrità e $H=A\setminus\{0\}$ con il preordine $x\mid y\iff y\in xH\iff yH\subseteq xH$

Se ora A è un dominio noetheriano il preordine | è artiniano. Dal teorema di esistenza segue quindi:

Ogni dominio noetheriano è fattorizzabile.

Esempio (Permutazioni)

Il premonoide (S_n, \preceq) è fortemente artiniano, infatti

$$ht(f) = n - 1 - |Fix(f)| \text{ per ogni } f \neq id.$$

Data $f \neq id$ non trasposizione, abbiamo visto che $f = \tau \circ \bar{f}$, con $\tau, \bar{f} \prec f$.

Inoltre
$$ht(\tau) + ht(\bar{f}) = 1 + ht(\bar{f}) \le ht(f)$$
.

Allora, per il corollario, una permutazione $f \neq id$ è prodotto di al più n-1-|Fix(f)| trasposizioni.

Grazie per l'attenzione

