Introduction to Ciphers I

Pradyot Prakash Web and Coding Club IIT Bombay

Ciphers

Wikipedia says,

66

In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure.

"

Ciphers

- Stream
 - Continuous data representation; e.g.: incoming audio stream
 - o E.g. OTP, RC4
- Block
 - Data broken down into blocks
 - o E.g. DES, AES

Ciphers

History...

Substitution cipher

As a permutation...

- $S = \{A, B, C, ..., Z\}$
- Invertible function $\sigma: S \rightarrow S$

Invertible?

- Toy example
- $S = \{a, b, c\}$
- σ (a) = b
- σ (b) = a
- \bullet $\sigma(c) = c$

$$\sigma^{-1}(b) = a$$

$$\sigma^{-1}(a) = b$$

$$\sigma^{-1}(c) = c$$

How many σ 's possible?

Caesar cipher

- Fix $0 < \kappa < 26$
- Represent A as '0', B as '1', ..., Z as '25'
- $\sigma(x) = (x + \kappa) \mod 26$
- $\sigma^{-1}(y) = (y \kappa) \mod 26$

Caesar cipher

Demo

Caesar cipher

Want to break it?

Vigenère cipher

- Block cipher
- Select key length κ < message length
- Represent A as '0', B as '1', ..., Z as '25'
- $\sigma(x_i) = (x_i + \kappa_i) \mod 26$
- $\sigma^{-1}(y_i) = (y_i \kappa_i) \mod 26$

Example

• Let κ = WNCC

I	L	0	V	Е	С	R	Y	Р	Т	0
										С
Е	Y	Q	X	A	Р	Т	A	L	G	Q

Vigenère cipher

Demo

Vigenère cipher

How to detect if Vigenère?

Let's break it!

Other ancient ciphers...

- Rotation ciphers
 - Use interconnected discs to encrypt
 - Not relevant to today's digital world
 - https://www.youtube.com/watch?v=G2_Q9FoD-oQ
 - https://www.youtube.com/watch?v=V4V2bpZlqx8

One Time Pad (OTP)

- Cryptographically the most secure scheme
- CANNOT be broken if used correctly
- Stream cipher

XOR

$X \oplus Y = (X + Y) \mod 2$

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

Modified algorithms

- Use XOR instead of the addition operations!!
- Extremely fast implementation in hardware

OTP algorithm

- Let \mathcal{M} be the message expressed in bits
- ullet Generate $\mathcal K$ of length $|\mathcal M|$ such that
 - \circ P($\mathcal{K}_{i} = 0$) = P($\mathcal{K}_{i} = 1$) = 0.5
 - \circ \mathcal{K}_{i} is independent of \mathcal{K}_{i} for i <> j
- Ciphertext $C_i = \mathcal{M}_i \oplus \mathcal{K}_i$
- Everything garbled up perfectly

Illustration

Let M = "IT"

M	0	1	0	0	1	0	0	1	0	1	0	1	0	1	0	0
\mathcal{K}	0	0	1	0	0	1	1	0	0	1	0	0	1	1	0	0
C	0	1	1	0	1	1	1	1	0	0	0	1	1	0	0	O

Demonstration

- Never exactly possible
- Why?

Why not OTP everywhere?

- Key length a problem
- Key length at least as much as the message
- If key can be sent securely □Send the message instead!
- Need to generate new key every time; can't use it twice!

DES

- Stands for Data Encryption Standard
- 56 + 8 key bits □ Can be broken in seconds!!
- Double DES
- Triple DES
- Meet-in-the-middle attack (https://en.wikipedia.org/wiki/Meet-in-the-middle_attack)

Encoding data

- What is ASCII?
- How to represent 0000001 on screen?
- XOR creates non-visible characters; garbled output
- Previous example: o ASCII_24
- Special characters conflict
 - E.g. In URLS, '?' and '&' have special meanings

Encoding data

I go crazy when I hear a cymbal

 \oplus

ICE

c"&c&;"?0c2!&+i

e!&\$;c\$i <\$!\$%

Solution

Represent data as characters in some encoding!

Encoding data

Base64:
AGMiJmMmOyl/MGMylSYraQpllSYkO2MkaSA8JC

EkJQ==

Hex:

0063222663263b223f30633221262b690a65212 6243b632469203c24212425

Questions?