Tema 1. Lógica elemental

1.0. Contenido y documentación

- 1.0. Contenido y documentación
- 1.1. Proposiciones
 - 1.1.1. Operaciones con proposiciones
- 1.2. Cuantificadores
 - 1.2.1. Negación de los cuantificadores
- 1.3. Métodos de demostración matemática

H1 LógicaFundamental.pdf

1.1. Proposiciones

Definición. Una **proposición** es una frase que puede ser verdadera o falsa, pero no ambas según las circunstancias. Se suelen definir por letras mayúsculas.

1.1.1. Operaciones con proposiciones

Definición. Por una **operación** entendemos un procedimiento por el cual, a partir de una o unas proposiciones dadas, se obtienen otras.

- **Negación**. Sea P una proposición dada, la negación de P es otra proposición que afirma lo contrario, y se denota por $\neg P$.
- Combinación. Sean P y Q dos proposiciones se pueden dar las siguientes operaciones:
 - 1. Conjunción. Es la proposición "P y Q" y significa que se tienen que cumplir ambas a la vez. Se denota $P \wedge Q$.
 - 2. **Disyunción**. Es la proposición "P o Q" y significa que se tiene que cumplir al menos una de las dos proposiciones. Se denota $P \lor Q$.
 - 3. **Implicaciones**. Es la proposición "si P entonces Q" y significa que si se cumple la premisa se tiene que cumplir la consecuencia. Se denota $P\Rightarrow Q$, equivalente a $\neg P\vee Q$. También se dice que "P es condición suficiente para Q" y que "Q es condición necesaria para P".
 - 4. **Equivalencia**. Es la proposición "P es equivalente a Q" y significa que si se cumple la premisa se tiene que cumplir la consecuencia y viceversa. Se denota $P \Leftrightarrow Q$, equivalente a $(P \Rightarrow Q) \land (Q \Rightarrow P)$.

1.2. Cuantificadores

En matemáticas, es frecuente que una propiedad haga referencia a un "objeto" (variable), x, que pertenece a un cierto conjunto U. En tal caso, la proposición se escribe como P(x).

• Cuantificador existencial. Se usa cuando queremos expresar que existe un "objeto" de un conjunto U, x, que cumple la propiedad P(x). Escribimos $\exists x \in U : P(x)$, es decir, "P(x)" es cierta para

- algún elemento x del conjunto U". Cuando con el cuantificador existencial queremos matizar que existe un único elemento de U que cumple , se usa el símbolo $\exists !$.
- Cuantificador universal. Se usa cuando queremos expresar que todos los objetos del conjunto U cumplen la propiedad P(x), escribimos $\forall x \in U : P(x)$, es decir " es cierta para todo elemento del conjunto U".

1.2.1. Negación de los cuantificadores

- Negación de la existencia. $\neg(\exists x \in U : P(x)) \Leftrightarrow \forall x \in U : \neg P(x)$
- Negación de la universalidad. $\neg(\forall x \in U: P(x)) \Leftrightarrow \exists x \in U: \neg P(x)$

1.3. Métodos de demostración matemática

A la hora de realizar una demostración se pueden emplear distintos métodos. El uso de uno u otro dependerá de lo que se quiera demostrar, así como de las herramientas de las que se disponga. Algunos de los más comunes son:

- **Método directo**. Asumimos que P es cierto y llegamos a que también lo es.
- Contrarrecíproco. La afirmación $P\Rightarrow Q$ es equivalente a $\neg Q\Rightarrow \neg P$ y aplicar el método directo a esta última, es decir, asumir como cierto $\neg Q$ y llegar a $\neg P$.
- Reducción al absurdo o contradicción. Demostrar que una afirmación, R, es verdadera es equivalente a demostrar que su negación, $\neg R$ es falso. Si $R:P\Rightarrow Q(\Leftrightarrow \neg P\vee Q)$, demostraremos que $\neg(\neg P\vee Q)=P\wedge \neg Q$ da una conclusión errónea.
- Contraejemplo. Si quieres probar que una afirmación del tipo $\forall x: P(x)$, basta con ver que su negación se cumple $\exists x: \neg P(x)$.
- **Método de inducción**. Una propiedad es cierta $\forall n \geq n_0$ si se verifican las dos siguientes conclusiones:
 - 1. $P(n_0)$ es cierta. La propiedad P(n) se cumple para el caso particular de n_0 .
 - 2. P(n) es cierta $\Rightarrow P(n+1)$ también es cierta (hipótesis de inducción). Si se cumple la propiedad P(n) para un número arbitrario k, entonces también se cumple para el siguiente n+1.
- Principio de inducción fuerte. Es similar al método de inducción, pero aplicándolo a un mayor número de casos base:
 - 1. $P(n_0)$ es cierta.
 - 2. $P(n_0), P(n_o+1), P(n_o+2), ..., P(n_o+k)$ son ciertas $\Rightarrow P(n_o+k+1)$ es cierta.