Esame di Ricerca Operativa del 09/06/14

	(C	lognome)	1	(Nome)		(Co	orso di laurea)
Esercizio	1. Com	pletare la	a seguente tabel	lla considerando il problema d	di progra	mmazione line	eare:	
				$\begin{cases} \max -3 \ x_1 - 7 \ x_2 \\ -x_2 \le 3 \\ -4 \ x_1 + x_2 \le 21 \\ 3 \ x_1 - 2 \ x_2 \le -3 \\ x_1 + x_2 \le -1 \\ -x_1 + 2 \ x_2 \le 7 \\ x_2 \le 2 \end{cases}$				
	Base	Soluzio	ne di base			Ammissibile (si/no)	Degenere (si/no)	
	$\{1, 2\}$	x =						
	$\{4, 5\}$	y =						
Esercizio	2. Effet	ttuare du	e iterazioni dell'	'algoritmo del simplesso prim	ale per il	l problema del	l'esercizio 1.	
		Base	x	y	Indice uscente		apporti	Indice
1° iterazio	one	$\{4,5\}$						
2° iterazio	one							
Si cerca variabili d				0.19 0.23 90 2	0.82 0.18			
		CON	MANDI DI MAT	ГLAВ (DEL PROBLEMA C	DEL R	ILASSATO?)		
C=								
A=				b=				
Aeq=				beq=				
lb=				ub=				

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) (5,7) (6,7)	(3,7)	x =		
(1,2) $(1,3)$ $(1,4)$				
(3,5) (5,7) (6,7)	(3,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (2,5) (3,7) (4,6) (6,7)	
Archi di U	(3,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$				·						·				

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 11 \ x_1 + 5 \ x_2 \\ 18 \ x_1 + 12 \ x_2 \le 53 \\ 11 \ x_1 + 13 \ x_2 \le 40 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

 $N_t =$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P)$ =

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	87	61	41
2		24	53	55
3			8	9
4				12

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_2^2 + 3x_1$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 - 25 \le 0, x_1 - x_2 + 4 \le 0}.$$

Soluzioni d	el sistema LF	KΤ	Mass	simo	Mini	imo	Sella
x	λ	μ	globale	locale	globale	locale	
	$\left(\frac{3}{2}, -18\right)$						
	$\left(\frac{1}{2},2\right)$						
	$\left(\frac{3}{10},0\right)$						
	(0, -3))						

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 \ x_1^2 - 2 x_1 x_2 + 4 \ x_2^2 + 4 \ x_1 - 6 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (4,-1), (-3,2), (-4,4) e (-1,5). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-2, \frac{14}{3}\right)$						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -3 x_1 - 7 x_2 \\ -x_2 \le 3 \\ -4 x_1 + x_2 \le 21 \\ 3 x_1 - 2 x_2 \le -3 \\ x_1 + x_2 \le -1 \\ -x_1 + 2 x_2 \le 7 \\ x_2 \le 2 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
		(81/110)	(81/110)
{1, 2}	x = (-6, -3)	SI	NO
{4, 5}	$y = \left(0, \ 0, \ 0, \ -\frac{13}{3}, \ -\frac{4}{3}, \ 0\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	{4, 5}	(-3, 2)	$\left(0,\ 0,\ 0,\ -\frac{13}{3},\ -\frac{4}{3},\ 0\right)$	4	15, 3	2
2° iterazione	{2, 5}	(-5, 1)	$\left(0, \frac{13}{7}, 0, 0, -\frac{31}{7}, 0\right)$	5	$7, \frac{98}{5}$	1

Esercizio 3.

COMANDI DI MATLAB

c=[-37.46; -40.35;-37.33;-40.43]

A=[0.19 0.23 0 0;0 0 0.21 0.18;-0.5 0.5 -0.5 0.5;0.3 -0.7 0.3 -0.7] b=[90;85;0;0]

Aeq=[]

1b=[0;0;0;0]

ub=[]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,4) (2,5) (4,3)				
(4,6) (5,7) (6,7)	(3,7)	x = (0, 0, 7, 3, 0, 0, 11, 5, 0, -4, -4)	NO	$_{ m SI}$
(1,2) (1,3) (1,4)				
(3,5) (5,7) (6,7)	(3,7)	$\pi = (0, 3, 10, 4, 20, 17, 27)$	NO	SI

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione				
Archi di T	(1,2) (1,4) (2,5) (3,7) (4,6) (6,7)	(1,2) (1,3) (1,4) (2,5) (3,7) (4,6)				
Archi di U	(3,5)	(3,5)				
x	(0, 0, 7, 3, 0, 4, 2, 0, 5, 0, 1)	(0, 1, 6, 3, 0, 4, 3, 0, 4, 0, 0)				
π	(0, 3, 13, 4, 7, 8, 18)	(0, 3, 10, 4, 7, 8, 15)				
Arco entrante	(1,3)	(3,5)				
ϑ^+,ϑ^-	9,1	6,1				
Arco uscente	(6,7)	(1,3)				

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete

	iter	1	iter	2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		4	1	6	2	(;	Ę	ó	7	7
nodo 2	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 3	3	1	3	1	3	1	3	1	3	1	3	1	3	1
nodo 4	7	1	7	1	7	1	7	1	7	1	7	1	7	1
nodo 5	$+\infty$	-1	16	3	16	3	14	2	14	2	14	2	14	2
nodo 6	$+\infty$	-1	$+\infty$	-1	12	4	12	4	12	4	12	4	12	4
nodo 7	$+\infty$	-1	22	3	22	3	22	3	22	3	21	5	21	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	2, 4,	5, 7	2, 5,	6, 7	5, 6	5, 7	5,	7	7	7	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	14	(0, 14, 0, 0, 0, 0, 14, 0, 0, 0, 0)	14
1 - 2 - 5 - 7	10	(10, 14, 0, 0, 10, 0, 14, 0, 0, 10, 0)	24
1 - 4 - 6 - 7	6	(10, 14, 6, 0, 10, 0, 14, 0, 6, 10, 6)	30

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 11 \ x_1 + 5 \ x_2 \\ 18 \ x_1 + 12 \ x_2 \le 53 \\ 11 \ x_1 + 13 \ x_2 \le 40 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{53}{18}, 0\right)$$
 $v_S(P) = 32$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(2,0)$$
 $v_I(P) = 22$

c) Calcolare un taglio di Gomory.

$$r = 1$$
 $x_1 \le 2$ $7x_1 + 4x_2 \le 20$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	9	87	61	41
2		24	53	55
3			8	9
4				12

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5-albero:
$$(1,2)(2,3)(3,4)(3,5)(4,5)$$
 $v_I(P)=62$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1.

ciclo:
$$1 - 2 - 3 - 4 - 5$$

c) Applicare il metodo del Branch and Bound, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{35} , x_{34} , x_{45} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_2^2 + 3x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1^2 - 25 \le 0, \quad x_1 - x_2 + 4 \le 0\}.$$

Soluzioni del sis	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(5, 9)	$\left(\frac{3}{2}, -18\right)$		NO	NO	NO	NO	SI
(-5, -1)	$\left(\frac{1}{2},2\right)$		NO	NO	NO	SI	NO
$(-5, \ 0)$	$\left(\frac{3}{10},0\right)$		NO	NO	NO	NO	SI
$\left(-\frac{5}{2},\frac{3}{2}\right)$	(0, -3)		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 x_1^2 - 2x_1x_2 + 4x_2^2 + 4x_1 - 6x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (4,-1), (-3,2), (-4,4) e (-1,5). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Matrice H Direzione		Passo	Nuovo punto
				possibile		
$\left(-2, \frac{14}{3}\right)$	(-1,3)	$\begin{pmatrix} 9/10 & 3/10 \\ 3/10 & 1/10 \end{pmatrix}$	$\left(-13, -\frac{13}{3}\right)$	$\frac{2}{13}$	$\frac{2}{13}$	(-4, 4)