Ban-Logic for Security-Packet-Transmission

BAN logical notation

BAN logical notation used in the paper as followed:

- 1. $P|^{\equiv}X$: P believes X;
- 2. $P| \Rightarrow X$: P controls X;
- 3. #(X): *X* is fresh;
- 4. $\{X\}_K$: the ciphertext of X encrypted by the key K;
- 5. $P \triangleleft X$: $P \operatorname{sees} X$;
- 6. $P \mid \sim X$: P said X.

BAN logical postulates

We only need two rules for SPT:

1. Nonce-verification rule:

R4:

 $\frac{P|^{\equiv}(\#X),P|^{\equiv}Q|\backsim X}{P|^{\equiv}Q|^{\equiv}X}$. States that if P believes that X could have been uttered only recently and that Q once said X, then P believes that Q believes X.

2. Jurisdiction rule:

R5:

 $\frac{P|^{\equiv}Q|^{\Rightarrow}X,P|^{\equiv}Q|^{\equiv}X}{P|^{\equiv}X}$. States that if P believes that Q has jurisdiction over X and P trusts Q on the truth of X,then P believes X.

Verifying Authentication process for SPT with BAN logic:

Idealized protocol

We let E denote to a normal node; S denote to a LoRaWan server; X denote to the value to making xor operation; Njr denotes to *New Join Request*. According to the protocol proposed in the paper, The authentication can be idealized as follows:

1. $S \triangleleft \{Njr_1, Njr_2\}_X$.

Establishment of security goals

1. S|=X.

Initiative premises

- 1. Premise P1: $S|^{\equiv}E|^{\Rightarrow}X$;
- 2. Premise P2: $S|^{\equiv}E \backsim X$;

Protocol Analysis:

1. Using R4: $\frac{P|^\equiv\#X,P|^\equiv Q|^\backsim X}{P|^\equiv Q|^\equiv X}$ and P2, we can obtain the following: $S|^\equiv E|^\equiv X$; 2.Using R5: $\frac{P|^\equiv Q|^\Rightarrow X,P|^\equiv Q|^\equiv X}{P|^\equiv X}$ plus the last result and P1, we can get the security goal: $S|^\equiv X$.

Conclusions of BAN Analysis

By analyzing the security of the authentication process for SPT, the results demonstrate that the protocol proposed can effectively achieve the security goal.