We run a post-hoc power analysis using simulation with the simr package in r. First for the unstandardized and then standardized effect sizes

Unstandardized effect size

Model

We run a three level model with a random intercept for level 2 and level 3, obtaining the following results:

```
Linear mixed model fit by REML ['lmerMod']
Formula: outcome ~ predictor + (1 | id_level_2) + (1 | id_level_3)
   Data: data
REML criterion at convergence: 47264.8
Scaled residuals:
    Min
             1Q Median
                             3Q
                                    Max
-1.3183 -1.0102 0.2102 0.9520 5.4080
Random effects:
 Groups
          Name
                        Variance Std.Dev.
 id_level_2 (Intercept) 137.13 11.710
 id_level_3 (Intercept)
                          63.38
                                 7.961
                        4490.75 67.013
 Residual
Number of obs: 4193, groups: id_level_2, 139; id_level_3, 41
Fixed effects:
            Estimate Std. Error t value
(Intercept)
              64.984
                          2.281
                                  28.49
predictor0
               6.712
                          2.983
                                   2.25
Correlation of Fixed Effects:
           (Intr)
predictor0 -0.514
```

Power for observed effect

Based the observed sample size in each cluster and estimated intra class correlations, we observe the following power for the estimated effect:

```
Power for predictor 'predictor0', (95% confidence interval):
    61.70% (58.61, 64.72)

Test: t-test with Satterthwaite degrees of freedom (package lmerTest)
    Effect size for predictor0 is 6.7

Based on 1000 simulations, (1 warning, 0 errors)
alpha = 0.05, nrow = 4193

Time elapsed: 0 h 1 m 56 s

nb: result might be an observed power calculation
```

Power curve for effect sizes

We now simulate the power for different potential (raw) effect sizes, ranging from 0 to 10.

	Effect	size	Power	95% 10	95% hi
1		1	8	6	9
2		2	11	9	13
3		3	17	14	19
4		4	28	26	31
5		5	40	37	43
6		6	52	49	55
7		7	64	61	. 67
8		8	72	70	75
9		9	84	82	2 86
10		10	91	89	93

Standardized effect size

Model

We run a three level model with a random intercept for level 2 and level 3, obtaining the following results:

```
Linear mixed model fit by REML ['lmerMod']
Formula: outcome ~ predictor + (1 | id_level_2) + (1 | id_level_3)
   Data: data2
```

```
REML criterion at convergence: 11833.5
Scaled residuals:
    Min
            1Q Median
                            3Q
                                   Max
-1.3183 -1.0102 0.2102 0.9520 5.4080
Random effects:
 Groups
           Name
                       Variance Std.Dev.
 id_level_2 (Intercept) 0.02921 0.1709
 id_level_3 (Intercept) 0.01350 0.1162
                       0.95662 0.9781
 Residual
Number of obs: 4193, groups: id_level_2, 139; id_level_3, 41
Fixed effects:
           Estimate Std. Error t value
(Intercept) -0.03931 0.03329 -1.181
predictor0
            0.09797
                       0.04353
                                2.250
Correlation of Fixed Effects:
           (Intr)
```

Power for observed effect

predictor0 -0.514

Based the observed sample size in each cluster and estimated intra class correlations, we observe the following power for the estimated effect:

```
Power for predictor 'predictor0', (95% confidence interval):
     62.50% (59.42, 65.51)

Test: t-test with Satterthwaite degrees of freedom (package lmerTest)
     Effect size for predictor0 is 0.098

Based on 1000 simulations, (2 warnings, 0 errors)
alpha = 0.05, nrow = 4193

Time elapsed: 0 h 1 m 58 s

nb: result might be an observed power calculation
```

Power curve for effect sizes

We now simulate the power for different potential standardize effect sizes, ranging from 0 to

	Effect	size	Power	95% 1	Lo	95%	hi
1		0	6		4		7
2		0.01	6		4		7
3		0.02	8		6		10
4		0.03	12	1	0		14
5		0.04	14	1	2		17
6		0.05	21	1	8		23
7		0.06	29	2	26		32
8		0.07	38	3	34		41
9		0.08	44	4	1		48
10		0.09	54	5	51		57
11		0.1	61	5	8		64
12		0.11	70	6	88		73
13		0.12	76	7	74		79
14		0.13	84	8	31		86
15		0.14	87	8	35		89
16		0.15	95	S	93		96
17		0.16	96	9	94		97
18		0.17	97	S	95		98
19		0.18	99	S	8	1	100
20		0.19	99	S	8		99
21		0.2	99	S	9	1	L00
22		0.21	100	S	9	1	L00
23		0.22	100	S	9	1	L00
24		0.23	100	S	9	1	L00
25		0.24	100	10	00	1	L00
26		0.25	100	10	00	1	L00
27		0.26	100	10	00	1	L00
28		0.27	100	10	00	1	L00
29		0.28	100	10	00	1	100
30		0.29	100	10	00	1	L00
31		0.3	100	10	00	1	L00
32		0.31	100	10	00	1	L00
33		0.32	100	10	00	1	L00
34		0.33	100	10	00	1	L00
35		0.34	100	10	00	1	L00
36		0.35	100	10	00	1	L00

37	0.36	100	100	100
38	0.37	100	100	100
39	0.38	100	100	100
40	0.39	100	100	100
41	0.4	100	100	100
42	0.41	100	100	100
43	0.42	100	100	100
44	0.43	100	100	100
45	0.44	100	100	100
46	0.45	100	100	100
47	0.46	100	100	100
48	0.47	100	100	100
49	0.48	100	100	100
50	0.49	100	100	100
51	0.5	100	100	100