A. CO HOC

Chương 1: ĐỘNG HỌC CHẤT ĐIỂM

1-1. Phương trình chuyển động của một chất điểm trong hệ truc toa độ Đề các:

$$x = a_1 \cos(\omega t + \varphi_1) \quad (1)$$

$$y = a_2 \cos(\omega t + \varphi_2) \quad (2)$$

Xác định dạng quỹ đạo của chất điểm trong các trường hợp sau:

b)
$$\varphi_1 - \varphi_2 = (2k + 1)\pi$$
;

c)
$$\varphi_1 - \varphi_2 = (2k + 1)\frac{\pi}{2}$$
;

d)
$$\varphi_1$$
 - φ_2 có giá trị bất kì.

Bài giải:

Lưu ý rằng, để biết được dạng quỹ đạo chuyển động của một chất điểm nào đó ta phải đi tìm *phương trình quỹ đạo* của nó – tức là phương trình biểu diễn mối quan hệ giữa các toạ độ của vật, trong đó ta đã khử mất biến thời gian. Do đó, trong bài tập này ta có thể làm như sau.

a) Thay
$$\phi_1 = \phi_2 + 2k\pi$$
 vào (1) ta có:

$$x = a_1 \cos(\omega t + \phi_1) = a_1 \cos(\omega t + \phi_2 + 2k\pi) = a_1 \cos(\omega t + \phi_2),$$

$$y = a_2 \cos(\omega t + \varphi_2)$$

Từ đó:
$$\frac{x}{a_1} = \frac{y}{a_2}$$
 hay $y = \frac{a_2}{a_1} x$

$$Vi -1 \le \cos(\omega t + \varphi_1) \le 1 \text{ nên - } a_1 \le x \le a_1$$

Vậy chất điểm trong phần a) này chuyển động trên một đoạn thẳng biểu diễn bởi:

$$y = \frac{a_2}{a_1} x$$
 $v\acute{o}i$ $-a_1 \le x \le a_1$

b) Làm tương tự như trong phần a):

$$x = a_1 \cos(\omega t + \phi_1) = a_1 \cos(\omega t + \phi_2 + 2k\pi + \pi) = -a_1 \cos(\omega t + \phi_2)$$

Từ đó rút ra: chất điểm chuyển động trên một đoạn thẳng biểu diễn bởi:

$$y = -\frac{a_2}{a_1} x \qquad v \acute{o} i \qquad -a_1 \le x \le a_1$$

c) Thay
$$\phi_1 = \phi_2 + (2k + 1)\frac{\pi}{2}$$
 ta dễ dàng rút ra biểu thức:

$$\frac{x^2}{a_1^2} + \frac{y^2}{a_2^2} = 1$$

Phương trình này biểu diễn một đường êlíp vuông, có các trục lớn và trục nhỏ nằm trên các trục toạ độ.

d) Phải khử t trong hệ phương trình (1) và (2). Muốn thế khai triển các hàm số cosin trong (1) và (2):

$$\frac{x}{a_1} = \cos \omega t \cdot \cos \varphi_1 - \sin \omega t \cdot \sin \varphi_1 \tag{3}$$

$$\frac{y}{a_2} = \cos \omega t. \cos \varphi_2 - \sin \omega t. \sin \varphi_2 \qquad (4)$$

Nhân (3) với $\cos \varphi_2$ và (4) với - $\cos \varphi_1$ rồi cộng vế với vế:

$$\frac{x}{a_1}\cos\varphi_2 - \frac{y}{a_2}\cos\varphi_1 = \sin\omega t.\sin(\varphi_2 - \varphi_1)$$
 (5)

Lai nhân (3) với $\sin \varphi_2$ và (4) với - $\sin \varphi_1$ rồi cộng vế với vế:

$$\frac{x}{a_1}\sin\varphi_2 - \frac{y}{a_2}\sin\varphi_1 = \cos\omega t\sin(\varphi_2 - \varphi_1) \quad (6)$$

Bình phương (5) và (6) rồi cộng vế với vế:

$$\frac{x^{2}}{a_{1}^{2}} + \frac{y^{2}}{a_{2}^{2}} - \frac{2xy}{a_{1}a_{2}}\cos(\varphi_{2} - \varphi_{1}) = \sin^{2}(\varphi_{2} - \varphi_{1})$$
 (7)

Phương trình (7) biểu diễn một đường êlíp.

Nhận xét: Có thể thu được các kết luận của phần a), b), c) bằng cách thay φ_1 - φ_2 bằng các giá trị tương ứng đã cho vào (7).

1-2. Một ô tô chạy từ tỉnh A đến tỉnh B với vận tốc $v_1 = 40$ km/giờ rồi lại chạy từ tỉnh B trở về tỉnh A với vận tốc $v_2 = 30$ km/giờ.

Tìm vận tốc trung bình của ôtô trên đoạn đường đi về AB, BA đó?

Bài giải:

Đặt quãng đường AB bằng s. Ta sẽ tính vận tốc trung bình theo công thức:

Ta được:

$$\overline{v} = \frac{s+s}{t_{di} + t_{v\acute{e}}} = \frac{s+s}{\frac{s}{v_1} + \frac{s}{v_2}} = \frac{2}{\frac{1}{v_1} + \frac{1}{v_2}} = \frac{2v_1v_2}{v_1 + v_2} = 9,53\text{m/s}.$$

Thay số ta được: $\overline{v} = 9.53 \text{m/s}.$

1-3. Một người đứng tại M cách một con đường thẳng một khoảng h=50m để chờ

ôtô; khi thấy ôtô còn cách mình một đoạn a=200m thì người ấy bắt đầu chạy ra đường để gặp ôtô (Hình 1-2). Biết ôtô A chạy với vận tốc 36km/giờ.

Hỏi: a) Người ấy phải chạy theo hướng nào để gặp đúng ôtô? Biết rằng người chạy với vận tốc $v_2 = 10.8$ km/giờ;

b) Người phải chạy với vận tốc nhỏ nhất bằng bao nhiêu để có thể gặp được ôtô?

Bài giải:

a) Muốn gặp đúng ô tô tại B thì thời gian người chạy từ M tới B phải bằng thời gian ô tô chay từ A tới B:

$$\frac{MB}{V_2} = \frac{AB}{V_1} \tag{1}$$

Sử dụng định lý hàm số sin trong tam giác ABM ta có:

$$\frac{MB}{\sin \beta} = \frac{AB}{\sin \alpha}, \quad \text{v\'oi } \sin \beta = \frac{h}{a}$$
 (2)

Từ (1) và (2) ta rút ra:

$$\sin \alpha = \frac{h}{a} \cdot \frac{v_1}{v_2} = 0.833$$
 $\Rightarrow \alpha = 56^{\circ}30$ ' hoặc $\alpha = 123^{\circ}30$ '.

Nhận xét: để có thể đón được ô tô thì người này có thể chạy theo hướng MB mà góc $\alpha = AMB$ thoả mãn: $56^{\circ}30' \le \alpha \le 123^{\circ}30'$. Khi $56^{\circ}30' < \alpha < 123^{\circ}30'$ thì người này chạy đến đường phải đợi xe một lúc.

Thật vậy: giả sử người chạy đến điểm D thoả mãn điều này $\Rightarrow \sin \alpha > \frac{h}{a} \cdot \frac{v_1}{v_2}$.

$$M\dot{a}$$
: $\frac{\text{MD}}{\sin\beta} = \frac{\text{AD}}{\sin\alpha} \rightarrow \text{AD} = \sin\alpha \cdot \frac{1}{\sin\beta} \cdot \text{MD} > \left(\frac{\text{h}}{\text{a}} \cdot \frac{\text{v}_1}{\text{v}_2}\right) \cdot \left(\frac{\text{a}}{\text{h}}\right) \cdot \text{AD} = \frac{\text{v}_1}{\text{v}_2} \cdot \text{MD}$.

$$\Rightarrow \frac{\text{AD}}{\text{v}_1} > \frac{\text{MD}}{\text{v}_2} \text{ (tức là thời gian xe chạy đến D lớn hơn thời gian người chạy đến D)}.$$

b) Để có thể gặp được ô tô với vận tốc nhỏ nhất thì rõ ràng rằng lúc mà người chạy đến đường cũng là lúc xe ô tô đi tới (người gặp đúng ô tô mà không phải chờ đợi lãng phí thời gian), vì vậy, theo phần a) giữa hướng chạy và vận tốc của người phải có quan hệ:

$$\sin \alpha = \frac{h}{a} \cdot \frac{v_1}{v_2}$$

Vì với mọi
$$\alpha$$
 thì $\sin(\alpha) \le 1$ nên: $\frac{h}{a} \cdot \frac{v_1}{v_2} \le 1$ $\Rightarrow v_2 \ge \frac{h}{a} \cdot v_1$

Suy ra
$$v_{2min} = \frac{hv_1}{a} = 2.5 \text{ m/s} = 9 \text{ km/h}.$$

Lúc này, người phải chạy theo hướng MI, với MI \perp AM.

- **1-4.** Một vật được thả rơi từ một khí cầu đang bay ở độ cao 300m. Hỏi sau bao lâu vật rơi tới mặt đất, nếu:
 - a) Khí cầu đang bay lên (theo hướng thẳng đứng) với vận tốc 5m/s;
 - b) Khí cầu đang hạ xuống (theo phương thẳng đứng) với vận tốc 5m/s;
 - c) Khí cầu đang đứng yên.

Bài giải:

Khi khí cầu chuyển động, vật ở trên khí cầu mang theo vận tốc của khí cầu. Nếu khí cầu chuyển động xuống dưới với vận tốc \mathbf{v}_0 thì thời gian t mà vật rơi tới đất thoả mãn phương trình bậc hai của thời gian:

$$v_0.t + \frac{1}{2}g.t^2 = h$$
.

Chọn nghiệm dương của phương trình này ta có kết quả:
$$t = \frac{\sqrt{{v_0}^2 + 2gh} - v_0}{g}$$
 .

Khi khí cầu chuyển động lên trên, xuống dưới hoặc đứng yên, ta áp dụng biểu thức này với vận tốc ban đầu $v_0 = -5m/s$, $v_0 = 5m/s$; hoặc $v_0 = 0$ và có kết quả:

- **1-5.** Một vật được thả rơi từ độ cao H+h theo phương thẳng đứng DD' (D' là chân độ cao H+h). Cùng lúc đó một vật thứ hai được ném lên từ D' theo phương thẳng đứng với vận tốc v_0 .
 - a) Hỏi vận tốc v_0 phải bằng bao nhiêu để hai vật gặp nhau ở độ cao h?

- b) Tính khoảng cách x giữa hai vật trước lúc gặp nhau theo thời gian?
- c) Nếu không có vật thứ nhất thì vật thứ hai đạt độ cao lớn nhất bằng bao nhiêu?

Bài giải:

Cần nhớ lại các công thức của chuyển động rơi tự do:

a) Thời gian vật 1 rơi từ D đến điểm gặp nhau là: $t = \sqrt{\frac{2H}{g}}$ cũng

bằng thời gian vật 2 chuyển động từ D' đến G, do đó:

$$h = v_0.t - \frac{1}{2}g.t^2 \rightarrow v_0 = \frac{h}{t} + \frac{gt}{2} = \frac{H + h}{2H}\sqrt{2gH}$$

$$x = (H + h) - (s + s').$$

$$x = (H+h) - \frac{1}{2}gt^{2} - \left(v_{0}.t - \frac{1}{2}g.t^{2}\right) = (H+h) - v_{0}.t$$
$$= \frac{H+h}{2H}(2H - \sqrt{2gH}.t)$$

c) Sử dụng công thức quan hệ v, a, s của chuyển động thẳng biến đổi đều $v^2-{v_0}^2=2.a.s$ với vận tốc ở độ cao cực đại bằng v=0, a=-g, $s=h_{max}$ suy ra, nếu không có sự cản trở của vật 1, vật 2 lên đến độ cao cực đại là:

$$h_{max} = \frac{v^2}{2g} = \frac{(H+h)^2}{4H}$$
.

- **1-6.** Thả rơi tư do một vật từ độ cao h = 19,6 mét. Tính:
- a) Quãng đường mà vật rơi được trong 0,1 giây đầu và 0,1 giây cuối của thời gian rơi.
 - b) Thời gian cần thiết để vật đi hết 1m đầu và 1m cuối của độ cao h.

Bài giải:

Sử dụng công thức về quãng đường vật rơi được sau thời gian t kể từ lúc bắt đầu được thả: $s = \frac{1}{2}gt^2$ ta sẽ có một công thức quen thuộc về thời gian t để vật rơi được một

đoạn đường có độ cao h kể từ vị trí thả là: $t = \sqrt{\frac{2h}{g}}$. áp dụng công thức này ta sẽ trả lời được các câu hỏi trong bài tập này:

a) Quãng đường mà vật rơi được trong 0,1s đầu:

$$s_1 = \frac{1}{2}g.t^2 = \frac{1}{2}9.8.0,1^2 = 0.049m.$$

Tổng thời gian rơi của vật:
$$t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2.19,6}{9,8}} = 2(s)$$
.

Quãng đường vật đi được trong $0.1~{\rm s}$ cuối cùng, được tính theo quãng đường đi được trong $2\text{-}0.1=1.9~{\rm s}$ đầu:

$$s_2 = h - \frac{1}{2}g(t - 0.1)^2 = 19.6 - \frac{1}{2}.9.8.(2 - 0.1)^2 = 1.9(m).$$

b) Tương tự như trên:

Thời gian để vật đi được 1m đầu:
$$t_3 = \sqrt{\frac{2s_3}{g}} = \sqrt{\frac{2.1}{9.8}} = 0.45s$$
.

Thời gian để vật đi hết 1m cuối:
$$t_4 = t_{t \delta ng} - t_{18,6m \ d d u} = 2 - \sqrt{\frac{2.18,6}{9,8}} = 0,05s$$

1-7. Từ ba điểm A, B, C trên một vòng tròn người ta đồng thời thả rơi ba vật. Vật thứ nhất theo phương thẳng đứng AM qua tâm vòng tròn (Hình 1-3), vật thứ hai theo dây BM, vật thứ ba theo dây CM. Hỏi vật nào tới M trước tiên, nếu bỏ qua ma sát?

Bài giải:

Hình 1-3

Quãng đường đi và gia tốc của vật thứ nhất: s_1 = 2R, a_1 = g, của vật thứ hai s_2 = 2Rcos AMB, a_2 = gcos AMB, của vật thứ ba: s_3 = 2Rcos AMB, a_3 = gcos AMC.

Nhận thấy, thời gian roi đến M của các vật đều là:

$$t_1 = \sqrt{\frac{2s_1}{a_1}} = \sqrt{\frac{4R}{g}} = \sqrt{\frac{2s_2}{a_2}} = t_2 = t_3 = \sqrt{\frac{2s_3}{a_3}}$$

Vậy, ba vật cùng tới M một lúc.

- **1-8.** Phải ném một vật theo phương thẳng đứng từ độ cao h=40m với vận tốc v_0 bằng bao nhiều để nó rơi tới mặt đất:
 - a) Trước $\tau = 1$ giây so với trường hợp vật rơi tự do?
 - b) Sau $\tau = 1$ giây so với trường hợp vật rơi tự do? Lấy g = 10m/s².

Bài giải:

Sử dụng công thức tính thời gian đến khi chạm đất của bài 5:

$$t = \frac{\sqrt{{v_0}^2 + 2gh} - v_0}{g}$$
 và công thức thời gian rơi tự do: $t = \sqrt{\frac{2h}{g}}$ ta thấy:

Để vật chạm đất sớm, muộn phải ném vật xuống dưới với vận tốc \mathbf{v}_0 thoả mãn phương trình:

$$\sqrt{\frac{2h}{g}} - \frac{\sqrt{v_0^2 + 2gh} - v_0}{g} = \tau \rightarrow \sqrt{v_0^2 + 2gh} = g\tau - (v_0 + \sqrt{2gh})$$

Bình phương hai vế của phương trình ta được:

$$(g\tau)^2 - 2g\tau(v_0 + \sqrt{2gh}) + 2v_0\sqrt{2gh} = 0 \rightarrow v_0 = \frac{g\tau(2\sqrt{2gh} - g\tau)}{2(\sqrt{2gh} - g\tau)}$$

a) Để vật chạm đất sớm, áp dụng với $\tau = 1$ s ta có:

$$v_0 = \frac{10.1(2\sqrt{2.10.40} - 10.1)}{2(\sqrt{2.10.40} - 10.1)} = 12,7 (m/s)$$

Vậy vật được ném thẳng đứng xuống dưới.

b) Để vật chạm đất muộn, áp dụng với $\tau = -1$ s ta có:

$$v_0 = \frac{-10.1(2\sqrt{2.10.40} + 10.1)}{2(\sqrt{2.10.40} + 10.1)} = -8.7 (\text{m/s})$$

Vậy vật được ném thẳng đứng lên trên.

1-9. Một vật chuyển động thẳng thay đổi đều đi hết quãng đường AB trong 6 giây. Vận tốc của vật khi qua A bằng 5m/s khi đi qua B bằng 15m/s. Tìm chiều dài của quãng đường AB.

Bài giải:

Cách 1:

Theo định nghĩa, gia tốc a của vật:
$$a = \frac{\Delta v}{\Delta t} = \frac{v_B - v_A}{t} = \frac{15 - 5}{6} = \frac{5}{3} (m/s^2)$$
.

Từ đó có thể tính quãng đường AB theo công thức: $\overline{AB} = v_A t + \frac{1}{2} a t^2$

Thay số ta được: AB = 60m.

Cách 2:

Lưu ý rằng, vận tốc trung bình trong chuyển động thẳng biến đổi đều có công thức rất đặc biệt, bằng: $v = \frac{v_A + v_B}{2}$, nên đoạn AB có độ dài:

AB =
$$\overline{v}$$
.t = $\frac{v_A + v_B}{2}$.t = $\frac{5+15}{2}$.6 = 60(m)

1-10. Một xe lửa chạy giữa hai điểm (nằm trên một đường thẳng) cách nhau 1,5km. Trong nửa đoạn đường đầu, xe lửa chuyển động nhanh dần đều, trong nửa đoạn đường sau xe lửa chuyển động chậm dần đều. Vận tốc lớn nhất của xe lửa giữa hai điểm đó bằng 50km/giờ.

Biết rằng trị số tuyệt đối của các gia tốc trên hai đoạn đường bằng nhau. Tính:

- a) Gia tốc của xe lửa.
- b) Thời gian để xe lửa đi hết quãng đường giữa hai điểm.

Bài giải:

Vận tốc trung bình của xe lửa là $\overline{v} = 50/2 = 25 \text{km/h}$.

Thời gian xe lửa đi hết 1,5km này là: t = s/v = 1,5/25 = 0,06h = 3,6 phút = 216s.

Gia tốc của xe lửa:
$$a = \frac{v_{max}}{(t/2)} = \frac{50 \text{km/h}}{1.8 \text{ phút}} = \frac{(50/3.6) \text{m/s}}{1.8.60 \text{s}} = 0.129 (\text{m/s}^2).$$

Có thể tính gia tốc của xe lửa dựa vào mối quan hệ v, a, s của chuyển động thẳng $v^2 - v_0^2$ (50km/h)²

biến đổi đều:
$$v^2 - {v_0}^2 = 2.a.s \Rightarrow a = \frac{v^2 - {v_0}^2}{2s} = \frac{(50 \text{km/h})^2}{1,5 \text{km}} = 0,129 \text{m/s}^2.$$

(ở đây s là nửa quãng đường 1,5km)

1-11. Một xe lửa bắt đầu chuyển động nhanh dần đều trên một đường thẳng ngang qua trước mặt một người quan sát đang đứng ngang với đầu toa thứ nhất. Biết rằng toa xe thứ nhất đi qua trước mặt người quan sát hết một thời gian $\tau = 6$ giây. Hỏi toa thứ n sẽ đi qua trước mặt người quan sát trong bao lâu?

Áp dụng cho trường hợp n = 7.

Bài giải:

Gọi l là chiều dài của mỗi toa, t_n là thời gian để n toa đầu đi qua trước mặt người quan sát. Áp dụng phương trình chuyển động thẳng thay đổi đều, ta có:

Chiều dài của toa thứ nhất:
$$1 = \frac{1}{2} at_1^2 = \frac{1}{2} a\tau^2$$

Chiều dài của (n-1):
$$(n-1)l = \frac{1}{2}at_{n-1}^2$$

Chiều dài của n toa đầu:
$$nl = \frac{1}{2}at_n^2$$
.

Từ đó suy ra thời gian để toa thứ n đi qua trước mặt người quan sát: $\Delta t_n = t_n - t_{n-1} = \tau(\sqrt{n} - \sqrt{n-1})$.

Với n = 7, ta có
$$\Delta t_7 = 1,18s$$
.

1-12. Một hòn đá được ném theo phương nằm ngang với vận tốc v_0 =15m/s. Tính gia tốc pháp tuyến và gia tốc tiếp tuyến của hòn đá sau lúc ném 1 giây.

Bài giải:

 $\overline{\text{Vận tốc}}$ của vật theo phương đứng sau khi ném 1s: $v_v = \text{gt} = 9.8 \text{m/s}$.

Góc α giữa vận tốc của vật và phương thẳng đứng thoả mãn: $tg\alpha = \frac{V_x}{V_y}$. Xem hình

vẽ bên.

Từ đó, gia tốc pháp tuyến và gia tốc tiếp tuyến của vật lúc này chính là những thành phần chiếu của gia tốc g:

$$a_{n} = g \sin \alpha = \frac{g.v_{x}}{\sqrt{v_{x}^{2} + v_{y}^{2}}} = \frac{9.8.15}{\sqrt{15^{2} + 9.8^{2}}} = 8.2 (m/s^{2})$$

$$a_{x} = g \cos \alpha = \sqrt{g^{2} - a_{y}^{2}} = \sqrt{9.8^{2} - 8.2^{2}} = 5.4 (m/s^{2})$$

- **1-13.** Người ta ném một quả bóng với vận tốc v_0 =10m/s theo phương hợp với mặt phẳng nằm ngang một góc $\alpha = 40^{\circ}$. Giả sử quả bóng được ném đi từ mặt đất. Hỏi:
 - a) Độ cao lớn nhất mà quả bóng có thể đạt được.
 - b) Tầm xa của quả bóng.
 - c) Thời gian từ lúc ném bóng tới lúc bóng chạm đất.

Bài giải:

Để xác định được những đại lượng như trong bài toán đặt ra, cần lưu ý rằng, có thể coi chuyển động của vật bao gồm hai chuyển động khá độc lập: chuyển động theo phương thẳng đứng và chuyển động theo phương ngang.

Chuyển động theo phương thẳng đứng là một chuyển động thẳng biến đổi đều với gia tốc bằng g, vận tốc ban đầu bằng $v_{0y} = v_0.\sin\alpha$. Chuyển động theo phương ngang là chuyển động thẳng đều với vận tốc không đổi bằng $v_x = v_0.\cos\alpha$.

a) Độ cao cực đại và thời gian rơi của vật chỉ liên quan đến vận tốc ban đầu theo phương thẳng đứng v_{0v} :

$$y_{max} = \frac{v_{0y}^2}{2g} = \frac{v_0^2 \cdot sin^2 \alpha}{2g} = 2,1(m)$$

- c) Thời gian bay của vật: $t = 2. \frac{v_{0y}}{g} = \frac{2.v_0 \sin \alpha}{g} = 1,3(s)$
- b) Công thức tầm xa của vật ném xiên:

$$L = v_x t = v_0 \cos \alpha. \frac{2v_0 \sin \alpha}{g} = \frac{v_0^2 \cdot \sin 2\alpha}{g} = 10m$$

- **1-14.** Từ một đỉnh tháp cao H = 25m người ta ném một hòn đá lên phía trên với vận tốc $v_0 = 15m/s$ theo phương hợp với mặt phẳng nằm ngang một góc $\alpha = 30^0$. Xác định:
 - a) Thời gian chuyển động của hòn đá;
 - b) Khoảng cách từ chân tháp đến chỗ rơi của hòn đá;
 - c) Vận tốc của hòn đá lúc chạm đất.

Bài giải:

Từ đỉnh tháp viên đá còn lên cao thêm được một đoạn:

$$h = \frac{{v_{0y}}^2}{2g} = \frac{(v_0 \sin \alpha)^2}{2g} = \frac{(15.\sin 30^0)^2}{2.9.8} = 2.87m$$

⇒ thời gian chuyển động của hòn đá:

$$t = \frac{v_{0y}}{g} + \sqrt{\frac{2(H+h)}{g}} = \frac{7.5}{9.8} + \sqrt{\frac{2(25+2.78)}{9.8}} = 3.15(s)$$

Tầm xa:

 $L = v_0 \cos \alpha .t = 15.\cos 30^{\circ}.3,15 = 41(m)$

Vân tốc lúc cham đất:

$$v_y = \sqrt{2g(H+h)} = \sqrt{2.9,8.(25+2,78)} = 23,3(m/s)$$

$$\Rightarrow$$
 v = $\sqrt{v_y^2 + v_x^2} = \sqrt{23.3^2 + (15.\cos 30^0)^2} = 26.7 (m/s)$

Ta có thể giải quyết bài toán theo cách khác bằng cách dùng phương pháp toạ độ.

Chọn hệ trục toạ độ Oxy với O nằm tại chân tháp như hình vẽ.

Phương trình chuyển động của vật theo các trục này:

$$x = v_x t = v_0 \cos \alpha . t$$

$$y = H + v_y t - \frac{1}{2}g.t^2 = H + v_0.sin\alpha.t - \frac{1}{2}g.t^2$$

 $D\vec{e}$ tìm thời gian rơi, giải phương trình y = 0.

Dể tìm tầm xa - tìm khoảng cách từ vị trí rơi tới chân tháp, ta thay t tìm được vào biểu thức của x để tính x.

Để tìm vận tốc lúc chạm đất, nhớ đến các công thức:

$$v_x = v_0 \cos \alpha = const$$

$$v_v = v_0 \sin \alpha - g.t$$

Đáp số: a) 3,16s; b) 41,1m; c) 26,7m/s.

- **1-15.** Từ một đỉnh tháp cao H = 30m, người ta ném một hòn đá xuống đất với vận tốc $v_0 = 10$ m/s theo phương hợp với mặt phẳng nằm ngang một góc $\alpha = 30^{\circ}$. Tìm:
 - a) Thời gian để hòn đá rơi tới mặt đất kể từ cú ném?
 - b) Khoảng cách từ chân tháp đến chỗ rơi của hòn đá?
 - c) Dạng quỹ đạo của hòn đá?

Bài giải:

Ta dùng phương pháp toạ độ giống như của bài 1-14.

Chọn hệ trục toạ độ Oxy với O nằm tại chân tháp.

a) Phương trình chuyển động của vật theo các trục này:

$$x = v_x t = v_0 \cos \alpha . t \tag{1}$$

$$y = H - v_y t - \frac{1}{2}g.t^2 = H - v_0.\sin\alpha.t - \frac{1}{2}g.t^2$$
 (2)

Để tìm thời gian rơi, giải phương trình y=0:

$$30-10.\sin 30^{\circ}.t - \frac{1}{2}.10.t^{2} = 0 \leftrightarrow 30-5t-5t^{2} = 0$$

Chon nghiêm dương ta được thời gian rơi của hòn đá: t=2s.

b) Để tìm tầm xa - vi trí rơi cách chân tháp bao nhiều, thay t tìm được để tính x.

$$x = v_0 \cos \alpha .t = 10.\cos 30^{\circ}.2 = 10\sqrt{3} m \approx 17.3 m$$

c) Để biết dạng quỹ đạo chuyển động của viên đá, ta cần tìm phương trình quỹ đạo của chuyển động này (phương trình quan hệ giữa x và y đã khử biến thời gian):

Khử thời gian trong hệ phương trình (1) và (2) bằng cách rút t từ phương trình (1) rồi thay vào (2):

$$(1) \rightarrow t = \frac{x}{v_0 \cos \alpha}$$

$$(2) \rightarrow y = H - v_0 \cdot \sin \alpha \cdot t - \frac{1}{2}g \cdot t^2 = H - v_0 \cdot \sin \alpha \cdot \frac{x}{v_0 \cos \alpha} - \frac{1}{2}g \left(\frac{x}{v_0 \cos \alpha}\right)^2$$

$$= H - x \cdot tg \alpha - \frac{g \cdot x^2}{2v_0^2 \cos^2 \alpha}$$

 $= 30 - \frac{x}{\sqrt{3}} - \frac{x^2}{15} \qquad (v \acute{o}i: 0 \le x \le 10\sqrt{3}m)$

Phương trình này chỉ ra rằng, quỹ đoạ của viên đá là một cung parabol.

1-16. Hỏi phải ném một vật theo phương hợp với mặt phẳng nằm ngang một góc α bằng bao nhiều để với một vận tốc ban đầu cho trước, tầm xa của vật là cực đại.

Bài giải:

Sử dụng công thức tính tầm xa của vật được ném xiên đã lập được trong bài 1-13:

$$L = \frac{v_0^2 \cdot \sin 2\alpha}{g} \le \frac{v_0^2}{g}$$

 \Rightarrow Vật sẽ đạt được tầm xa cực đại bằng $L_{max}=\frac{{v_0}^2}{g}$ khi $\sin 2\alpha=1$, hay $\alpha=45^{\circ}$.

1-17. Kỷ lục đẩy tạ ở Hà Nội là 12,67 mét. Hỏi nếu tổ chức ở Xanh Pêtecbua thì trong điều kiện tương tự (cùng vận tốc ban đầu và góc nghiêng), kỷ lục trên sẽ là bao nhiêu?

Cho biết g (Hà Nội) = 9,727m/s²; g (Xanh Pêtecbua) = 9,810m/s².

Bài giải:

Từ công thức tầm xa: $L = \frac{v_0^2.sin2\alpha}{g}$ ta nhận thấy, với lực đẩy không đổi (để v_0

không đổi) và góc ném không đổi (ném xa nhất khi góc ném bằng 45°) thì tầm xa L sẽ tỉ lệ nghịch với gia tốc trọng trường g. Do đó có thể xác định được kỉ lục đẩy tạ tại thành phố Xanh Petécbua:

$$L_{XP} = \frac{g_{HN}}{g_{XP}} L_{HN} = \frac{9,727}{9,810}.12,67 = 12,56(m)$$

- 1-18. Tìm vận tốc góc:
- a) của Trái Đất quay quanh trục của nó (Trái Đất quay một vòng xung quanh trục của nó mất 24 giờ).
 - b) của kim giờ và kim phút đồng hồ;

- c) của Mặt Trăng quay xung quanh Trái Đất (Mặt Trăng quay xung quanh Trái Đất một vòng mất 27 ngày đêm);
- d) của một vệ tinh nhân tạo của Trái Đất quay trên quỹ đạo tròn với chu kì bằng 88 phút.

<u>Bài giải</u>:

Sử dụng công thức tính vận tốc góc: $\omega = \frac{2\pi}{T}$ và lưu ý thay chu kỳ phải đổi đúng đối với là giây (s) ta sẽ được:

- a) Vận tốc góc tự quay quanh trục của trái đất: $\omega = \frac{2.\pi}{24.3600} = 7,26.10^{-5} (\text{rad/s})$
- b) Chu kỳ quay của kim phút là 1h. Kim giờ quay hết một vòng là 12 tiếng nên vận tốc góc của kim giờ và kim phút là: 14,5 . 10⁻⁵ rad/s; 1,74 . 10⁻³ rad/s
- c) Cũng áp dụng công thức trên với các chu kỳ khác nhau ta có vận tốc góc của mặt trăng quanh trái đất là: $2.7 \cdot 10^{-6}$ rad/s ;
 - d) Của vệ tinh có chu kì quay là 88phút là: 1,19 . 10⁻³ rad/s
- **1-19.** Tìm vận tốc dài của chuyển động quay của một điểm trên mặt đất tại Hà Nội. Biết rằng vĩ độ của Hà Nội là $\alpha = 21^{\circ}$.

Bài giải:

Theo bài 1-18 ta thấy vận tốc góc của trái đất trong chuyển động tự quay của nó là $\omega = 7,26.10^{-5}$ rad/s. Bán kính quỹ đạo của Hà Nội (xem hình) là r:

Hình của bài 1-19

 $r = R \cos \alpha$.

Từ đó ta có vân tốc dài của Hà Nôi là:

 $v = \omega . r = \omega . R. \cos \alpha$

Thay số vào ta được: v = 430m/s.

Dể làm các bài tiếp theo cần chú ý: Các công thức của chuyển động quay nhanh hoặc chậm dần đều cũng giống với các công thức của chuyển động thẳng biến đổi đều với sự tương ứng: góc quay φ thay cho quãng đường s, vận tốc góc ω thay cho vận tốc dài v, gia tốc góc β thay cho gia tốc thường a – chúng chỉ chênh nhau một hằng số bằng bán kính quỹ đạo tròn.

1-20. Một vô lăng sau khi bắt đầu quay được một phút thì thu được vận tốc 700 vòng/phút. Tính gia tốc góc của vô lăng và số vòng mà vô lăng đã quay được trong phút ấy nếu chuyển đông của vô lăng là nhanh dần đều.

<u>Bài giải</u>:

Vận tốc góc của vô lăng đạt ω = 700vòng/phút = 700.2 π /60 (rad/s) sau thời gian τ = 1phút = 60s.

Mà ω = β. τ
$$\Rightarrow$$
 $\beta = \frac{\omega}{\tau} = \frac{1400\pi/60}{60} = \frac{1400\pi}{3600} = 1,22 \text{ (rad/s}^2\text{)}.$

Góc quay được sau thời gian $\tau = 1$ phút là:

$$\varphi = \frac{1}{2}\beta . \tau^2 = \frac{1}{2} . 1,22.60^2 = 700\pi$$
 (rad)

Do vậy, số vòng quay được trong 1 phút là:

$$n = \frac{\varphi}{2\pi} = \frac{700\pi}{2\pi} = 350 \quad \text{vong} .$$

1-21. Một bánh xe quay chậm dần đều, sau một phút vận tốc của nó giảm từ 300 vòng/phút xuống 180 vòng/phút. Tìm gia tốc của bánh xe và số vòng mà bánh xe đã quay được trong phút ấy.

Bài giải:

Theo định nghĩa về gia tốc góc ta có luôn gia tốc góc trong chuyển động này:

$$\beta = \frac{\omega - \omega_0}{\tau} = \frac{180.2\pi / 60 - 300.2\pi / 60}{60} = -0.21 \text{ (rad/s}^2).$$

Góc quay được dựa vào mối quan hệ tương tự với quan hệ v-a-s của chuyển động thẳng biến đổi đều ta rút ra:

$$\varphi = \frac{\omega^2 - {\omega_0}^2}{2\beta} = \frac{(180.2\pi/60)^2 - (300.2\pi/60)^2}{-2.0.21} = 240 \quad (v \hat{o} ng).$$

Hoặc dựa vào công thức vận tốc góc trung bình:

$$\varphi = \frac{\omega + \omega_0}{2}.\tau = \frac{180 + 300}{2}.1 = 240 \ (vong)$$

- **1-22.** Một bánh xe có bán kính R = 10cm lúc đầu đứng yên, sau đó quay xung quanh truc của nó với gia tốc góc bằng $3,14 \text{ rad/s}^2$. Hỏi, sau giây thứ nhất:
 - a) Vận tốc góc và vận tốc dài của một điểm trên vành bánh?
- b) Gia tốc pháp tuyến, gia tốc tiếp tuyến và gia tốc toàn phần của một điểm trên vành bánh?
- c) Góc giữa gia tốc toàn phần và bán kính của bánh xe (ứng với cùng một điểm trên vành bánh?

Bài giải:

a) Sau giây thứ nhất, vận tốc góc và vận tốc dài của một điểm trên vành bánh là: $\omega = \beta$.t = 3,14.1 = 3,14 (rad/s)

$$v = \omega .R = 3,14.0,1 = 0,314 \text{ (m/s)}$$

Gia tốc tiếp tuyến có giá trị không đổi và gia tốc pháp tuyến lúc này:

$$a_t = \beta .R = 3.14.0.1 = 0.314 (m/s^2)$$

$$a_n = \omega^2 .R = 3.14^2 .0.1 = 0.986 (m/s^2)$$

Còn gia tốc toàn phần thì bằng:

$$a = \sqrt{a_t^2 + a_n^2} = 1,03 \text{ (m/s}^2).$$

c) Góc giữa gia tốc toàn phần a và bán kính là α thoả mãn:

$$\sin \alpha = \frac{a_t}{a} = \frac{0.314}{1.03}$$
 \Rightarrow $\alpha = 17^0 46$.

1-23. Chu kì quay của một bánh xe bán kính 50cm là 0,1 giây. Tìm:

- a) Vận tốc dài và vận tốc góc của một điểm vành bánh;
- b) Gia tốc pháp tuyến của điểm giữa một bán kính.

Bài giải:

Vận tốc dài và vận tốc góc của một điểm trên vành bánh:

$$v = \frac{\text{chiều dài của ǒ wòng tròn}}{\text{thời gian chuyển ǒ ông hết một vòng tròn}} = \frac{2\pi R}{T} = \frac{2\pi . 0.5}{0.1} = 31.4 \text{ (m/s)}$$

$$\omega = \frac{v}{R} = \frac{31.4}{0.5} = 62.8 \text{ (rad/s)}$$

b) Gia tốc pháp tuyến – gia tốc hướng tâm của điểm giữa một bán kính:

$$a_n = \omega^2 r = \omega^2 .R / 2 = 62.8^2 .0.5 / 2 = 986 (m/s^2).$$

1-24. Một đoàn tàu bắt đầu chạy vào một đoạn đường tròn, bán kính 1km, dài 600m, với vận tốc 54 km/giờ. Đoàn tàu chạy hết quãng đường đó trong 30 giây. Tìm vận tốc dài, gia tốc pháp tuyến, gia tốc tiếp tuyến, gia tốc toàn phần và gia tốc góc của đoàn tàu ở cuối quãng đường đó. Coi chuyển động của đoàn tàu là nhanh dần đều.

Bài giải:

Cho: R = 1 km = 1000 m, $v_0 = 54 \text{km/h} = 15 \text{m/s}$, s = 600 m, t = 30 s.

Sử dụng các công thức về chuyển động thẳng và chuyển động tròn biến đổi đều ta sẽ tính được các đại lượng cần thiết.

$$s = v_0 t + \frac{1}{2} a_t t^2 \Rightarrow a_t = \frac{2(s - v_0 t)}{t^2} = \frac{2(600 - 15.30)}{30^2} = \frac{1}{3} (m/s^2).$$

Vận tốc của tầu tại cuối đường vòng:

$$v = v_0 + a_t t = 15 + \frac{1}{3}.30 = 25 \text{ (m/s)} = 90 \text{ (km/h)}.$$

Gia tốc pháp tuyến – gia tốc hướng tâm của tầu:

$$a_n = \omega^2 R = \frac{v^2}{R} = \frac{25^2}{1000} = 0.625 \text{ (m/s}^2\text{)}$$

Còn gia tốc toàn phần là:

$$a = \sqrt{a_t^2 + a_n^2} = \sqrt{\left(\frac{1}{3}\right)^2 + \left(\frac{5}{8}\right)^2} = 0.708 \, (\text{m/s}^2)$$

Gia tốc góc của đoàn tầu:

$$\beta = \frac{a_t}{R} = \frac{1/3}{1000} \approx 3.3.10^{-4} \text{ (rad/s}^2\text{)}$$

1-25. Vận tốc của êlectron trong nguyên tử hyđrô bằng $v = 2,2.10^8$ cm/s. Tính vận tốc góc và gia tốc pháp tuyến của êlectron nếu xem quỹ đạo của nó là một vòng tròn bán kính $0,5.10^{-8}$ cm.

Bài giải:

Electron: $v = 2,2.10^8$ cm/s = $2,2.10^6$ m/s; $R = 0,5.10^{-8}$ cm = $0,5.10^{-10}$ m.

Vận tốc góc và gia tốc hướng tâm – gia tốc pháp tuyến lần lượt:

$$\omega = v/R = 4.4 \cdot 10^{16} \text{ rad/s};$$

$$a_n = \omega^2 R = 9.68 \cdot 10^{22} \text{ m/s}^2$$

1-26. Một người muốn chèo thuyền qua sông có dòng nước chảy. Nếu người ấy chèo thuyền theo hướng từ vị trí A sang vị trí B (AB \perp với dòng sông, hình 1-4) thì sau thời gian t_1 = 10 phút thuyền sẽ tới vị trí C cách B một khoảng s = 120m. Nếu người ấy chèo thuyền về phía ngược dòng thì sau thời gian t_2 = 12,5 phút thuyền sẽ tới đúng vị trí B.

Coi vận tốc của thuyền đối với dòng nước là không đổi. Tính:

- a) Bề rộng 1 của con sông;
- b) Vận tốc v của thuyền đối với dòng nước;
- c) Vận tốc u của dòng nước đối với bờ sông;
- d) Góc γ.

Bài giải:

Từ A đến C hết thời gian $t_1 = 10$ phút, A đến B hết thời gian $t_2 = 12,5$ phút, đoạn BC có độ dài: s = BC = 120m.

Đây là bài toán tổng hợp vận tốc. Thuyền tham gia đồng thời hai chuyển động: cùng với dòng nước với vận tốc \vec{u} và chuyển động so với dòng nước (do người chèo) với vận tốc \vec{v} . Chuyển động tổng hợp chính là chuyển động của thuyền đối với bờ sông với vận tốc $\vec{V}=\overset{\rightarrow}{v+}\vec{u}$.

Trường hợp thứ nhất của bài toán ứng với hình 1-4a, trường hợp thứ hai ứng với hình 1-4b.

Theo các hình vẽ, ta có các phương trình sau:

$$s = u.t_1$$
; $1 = v.t_1$; $1 = (v.\cos \gamma).t_2$; $u = v.\sin \gamma$;

$$\Rightarrow$$
 u = $\frac{s}{t_1} = \frac{120}{600} = 0.2 \text{ (m/s)}.$

$$1 = v.t_1 = v.\cos \gamma.t_2 \rightarrow \cos \gamma = \frac{t_1}{t_2} = \frac{10}{12.5} = \frac{4}{5} \rightarrow \gamma = 36^{\circ}53'$$

$$\Rightarrow \sin \gamma = \frac{3}{5} = \frac{u}{v} \rightarrow v = \frac{u}{\sin \gamma} = \frac{0.2}{3/5} = \frac{1}{3} = 0.33 \text{ (m/s)}.$$

Chiều rộng của dòng sông: $1 = v.t_1 = 0.33.(10.60) = 200 \text{ m}$.

Hình 1-4a

Hình 1-4b

- 1-27. Người ta chèo một con thuyền qua sông theo hướng vuông góc với bờ sông với vận tốc 7,2km/h. Nước chảy đã mang con thuyền về phía xuôi dòng một khoảng 150m. Tìm:
 - a) Vận tốc của dòng nước đối với bờ sông;
- b) Thời gian cần để thuyền qua được sông. Cho biết chiều rộng của sông bằng 0,5km.

Bài giải:

Bề rộng của dòng sông: 1 = 0.5 km = 500 m. s = 150 m, V = 7.2 km/h = 2 m/s.

Từ hình vẽ ta thấy:

$$\frac{u}{v} = \frac{s}{1} \rightarrow u = \frac{s}{1}.v = \frac{150}{500}.2 = 0.60 \text{ (m/s)}.$$

Thời gian của một chuyến sang sông:

$$t = \frac{AC}{V} = \frac{AB}{v} = \frac{1}{v} = \frac{500}{2} = 250 \text{ (s)}.$$

Đáp số: a) u = 0.60 m/s; b) t = 250 s.

Hình của bài 1-27

- **1-28.** Một máy bay từ vị trí A tới vị trí B. AB nằm theo hướng Tây Đông và cách nhau một khoảng 300km. Xác định thời gian bay nếu:
 - a) Không có gió;
 - b) Có gió thổi theo hướng Nam Bắc;
 - c) Có gió thổi theo hướng Tây Đông.

Cho biết vận tốc của gió bằng: $v_1 = 20 \text{m/s}$, vận tốc của máy bay đối với không khí $v_2 = 600 \text{km/h}$.

Bài giải:

 $\overline{AB} = 300$ km, gió: $v_1 = 20$ m/s = 72km/h, $v_2 = 600$ km/h.

- a) Thời gian máy bay bay trực tiếp từ A đến B: $t = \frac{1}{v_2} = \frac{300}{600} = 0.5$ (h) = 30 (phút).
- b) Tương tự bài 1-26, ta thấy máy bay muốn tới vị trí B, nó phải bay chếch về phía nam một góc α so với phương AB. Ta có:

$$V = \sqrt{{v_2}^2 - {v_1}^2} = \sqrt{600^2 - 72^2} = 596 \text{ (km/h)}.$$

Thời gian máy bay từ A đến B là:

$$t = \frac{s}{V} = \frac{300}{596} = 0,503 \text{ (h)} = 30,2 \text{ phút}.$$

c) Gió xuôi chiều từ Tây sang Đông. Thời gian máy bay cần dùng là:

Hình của bài 1-28

$$t = \frac{s}{v_2 + v_1} = \frac{300}{600 + 72} = 0,446 \text{ (h)} = 26.8 \text{ phút}.$$

- 1-29. Hình 1-5 mô tả chuyển động của ba chất điểm.
- a) Cho biết tính chất của các chuyển động đó.
- b) Ý nghĩa của các giao điểm giữa các đồ thị và các trục toạ độ.
- c) So sánh vận tốc của ba chất điểm.

Bài giải:

- a) Nhìn vào đồ thị ta thấy cả ba chuyển động này đều là chuyển động nhanh dần đều.
- b) Giao điểm của các đồ thị với trục thời gian cho ta biết các thời điểm xuất phát của các chuyển động.
- c) Ba chuyển động, nhìn chung là về cùng một hướng. Vận tốc của mỗi vật từng lúc nhanh chậm khác nhau. Đồ thị vận tốc càng dốc thì gia tốc của vật càng lớn (gia tốc a cho biết hệ số góc của đường thẳng). Từ các đồ thị, ta có thể so sánh gia tốc của các vật: $a_3 > a_1 > a_2$.
- **1-30.** Hình 1-6 cho đồ thị vận tốc của một chất điểm chuyển động. Hãy cho biết trạng thái chuyển động của chất điểm trên mỗi đoạn OA, AB, BC, CD.

Đoạn OA: vật xuất phát tại thời điểm t=0 rồi chuyển động nhanh dần đều với gia tốc khá lớn.

Đồ thị đoạn AB cho biết vật chuyển sang chuyển động đều.

Đồ thị đoạn BC biểu hiện vật chuyển động chậm dần đều.

Đồ thị đoạn CD: vật tiếp tục chuyển động chậm dần đều nhưng với gia tốc lớn hơn khi chuyển động trong giai đoạn BC. Vật dừng lại tại cuối giai đoạn này.

Chương 2 ĐỘNG LỰC HỌC CHẤT ĐIỂM

- 2-1. Một xe có khối lượng 20000kg, chuyển động chậm dần đều dưới tác dụng của một lực bằng 6000N, vận tốc ban đầu của xe bằng 15m/s. Hỏi:
 - a) Gia tốc của xe;
 - b) Sau bao lâu xe dùng lại;
 - c) Đoạn đường xe đã chạy được kể từ lúc hãm cho đến khi xe dừng hẳn.

Bài giải:

- a) Gia tốc của xe được tính theo đinh luật II Newton:
- $a = F/m = -6000/20000 = -0.3 \text{ m/s}^2$.
- b) Thời gian kể từ lúc hãm đến khi dừng lại:

$$t = \Delta t = \frac{\Delta v}{a} = \frac{0 - 15}{-0.3} = 50$$
 (s).

- c) Quãng đường kể từ lúc hãm đến khi dừng lại:
- $s = v_0.t + a.t^2/2 = ... = 375m.$
- 2-2. Một thanh gỗ nặng 49N bị kẹp giữa hai mặt phẳng thẳng đứng (hình 2-4). Lực ép thẳng góc trên mỗi mặt của thanh là 147N. Hỏi lực nhỏ nhất cần để nâng hoặc hạ thanh gỗ? Hệ số ma sát giữa thanh gỗ và mặt ép k=0,2.

Hình 2-4

Bài giải:

Lực nâng = 107.8N; lực hạ = 9.8N

Khi muốn hạ thanh gỗ xuống cần một lực nhấn $F_{H_{\bar{q}}}$ hướng xuống dưới, lực ma sát trên hai mặt của thanh gỗ hướng lên trên (Hình 2-4a), còn khi muốn nâng thanh gỗ lên trên thì các lực ma sát lại hướng xuống dưới (Hình 2-4b).

Từ các hình vẽ này ta thấy, các lực dùng để hạ (F_{Ha}) và nâng F_N thanh gỗ phải có các giá trị nhỏ nhất:

Find finds:

$$F_{Ha} = F_{ms1} + F_{ms2} - P = 2 \times k.N - P = 2.0, 2.147 - 49 = 9,8(N)$$

$$F_{N} = F_{ms1} + F_{ms2} + P = 2 \times k.N + P = 2.0, 2.147 + 49 = 107,8(N)$$

2-3. Hỏi phải tác dụng một lực bằng bao nhiều lên một toa tàu đang đứng yên để nó chuyển động nhanh dần đều và sau thời gian 30 giây nó đi được 11m. Cho biết lực ma sát của toa tàu bằng 5% trọng lượng của toa tàu.

Bài giải:

Gọi F là lực tác dụng lên toa tàu. Xét theo phương ngang, lực gây ra gia tốc của toa tàu, theo định luật Niuton 2, bằng: $F - f_{ms} = ma$

Trong đó: m là khối lượng và $a = \frac{2s}{t^2}$ là gia tốc của toa tầu.

Từ đó suy ra:
$$F = f_{ms} + ma = 5\% mg + \frac{2.s.m}{t^2}$$
.

Thay số: s = 11 m, t = 30 s, m = 15.6 tấn = 15600 kg ta được: $F \approx 8200 \text{ N}$. (Trong phần đề bài cho thiếu khối lượng của toa tầu bằng m = 15.6 tấn).

2-4. Một người di chuyển một chiếc xe với vận tốc không đổi. Lúc đầu người ấy kéo xe về phía trước, sau đó người ấy đẩy xe về phía sau. Trong cả hai trường hợp, càng xe hợp với mặt phẳng nằm ngang một góc α. Hỏi trong trường hợp nào người ấy phải đặt lên xe một lực lớn hơn? Biết rằng trọng lượng của xe là P, hệ số ma sát giữa bánh xe và mặt đường là k.

Bài giải:

Viết phương trình định luật II Newton cho các lực tác dụng vào xe. Thành phần lực tổng hợp chiếu theo phương thẳng đứng và nằm ngang đều bằng 0 - không có chuyển động theo phương thẳng đứng, chuyển động theo phương ngang thì đều-không có gia tốc theo phương ngang nên:

Trường hợp kéo xe về phía trước (hình 2-1'a): lực nén vuông góc của xe lên mặt đường là:

$$N + F. sin \alpha - P = 0 \implies N = P - F. sin \alpha$$

Và:
$$F.\cos\alpha - F_{ms} = 0 \Rightarrow F.\cos\alpha = F_{ms}$$

Mà, lực ma sát tác dụng lên xe:

$$F_{ms} = kN = k(P - F \sin \alpha)$$

Trường hợp đẩy xe về phía sau (hình 2-1'b)

Bằng cách phân tích tương tự, ta tính được lực ma sát đặt lên xe trong trường hợp này là:

$$F_{ms} = kN' = k(P + F\sin\alpha)$$

Và lưc F' cần đặt lên càng xe:

$$F' = \frac{kP}{\cos \alpha - k \sin \alpha}$$

Rõ ràng F' > F. Như vậy trong trường hợp đẩy xe về phía sau người ta phải dùng một lưc lớn hơn.

2-5. Một vật có khối lượng m = 5kg được đặt trên một mặt phẳng nghiêng hợp với mặt phẳng nằm ngang một góc $\alpha = 30^{\circ}$. Hệ số ma sát giữa vật và mặt phẳng nghiêng bằng k = 0,2. Tìm gia tốc của vật trên mặt phẳng nghiêng.

Bài giải:

Ta phân tích các lực tác dụng vào vật gồm 3 lực: P thẳng đứng, N vuông góc với mặt nghiêng và $F_{\rm ms}$ nằm trên mặt nghiêng.

Phương trình định luật II Newton cho vật:

$$\vec{P} + \vec{N} + \vec{F}_{ms} = m.\vec{a}$$

Chiếu phương trình này theo phương vuông góc với mặt phẳng nghiêng (phương Oy) và phương song song với mặt phẳng nghiêng (phương Ox) ta được:

Hình của bài 2-5

$$\begin{cases} -P\cos\alpha + N = 0 \\ P\sin\alpha - F_{ms} = ma \end{cases} \Rightarrow \begin{cases} N = P\cos\alpha \\ a = \frac{P\sin\alpha - F_{ms}}{m} \end{cases}$$

Mà
$$F_{ms} = k.N$$
 nên:

$$a = \frac{P \sin \alpha - kP \cos \alpha}{m} = \frac{mg \sin \alpha - kmg \cos \alpha}{m} = g(\sin \alpha - k \cos \alpha).$$

Thay $\alpha = 30^{\circ}$, k = 0.2, g = 9.8 ta tính được a = 3.24m/s².

Nhận xét: từ công thức trên ta thấy, gia tốc của vật trượt trên mặt phẳng nghiêng không phụ thuộc vào khối lượng của vật đó.

2-6. Một vật trượt xuống trên một mặt phẳng nghiêng hợp với mặt phẳng nằm ngang góc $\alpha = 45^{\circ}$. Khi trượt được quãng đường s = 36,4cm, vật thu được vận tốc v = 2m/s. Xác định hệ số ma sát giữa vật và mặt phẳng nghiêng.

Bài giải:

Áp dụng công thức gia tốc của vật trong bài 2-5 ta có:

$$a = g(\sin\alpha - k\cos\alpha) \qquad \Rightarrow \qquad k = \frac{g\sin\alpha - a}{g\cos\alpha} = tg\alpha - \frac{a}{g\cos\alpha}.$$

Sử dụng kiến thức của chương I về mối quan hệ v-a-s ta có gia tốc của vật trượt này

là:
$$a = \frac{v^2 - v_0^2}{2.S} = \frac{v^2 - 0^2}{2.S} = \frac{v^2}{2.S}$$
.

$$\Rightarrow k = tg\alpha - \frac{v^2}{2.gS\cos\alpha}$$

Thay các thông số đã cho: $\alpha=45^{\circ}$, v=2m/s, s=36,4cm=0,364m ta được: $k\approx0,2$.

2-7. Một sợi dây thừng được đặt trên mặt bàn sao cho một phần của nó buông thống xuống đất. Sợi dây bắt đầu trượt trên mặt bàn khi chiều dài của phần buông thống bằng 25% chiều dài của dây. Xác định hệ số ma sát k giữa sợi dây và mặt bàn.

<u>Bài giải</u>:

Hình của bài 2-7

Gọi P là trọng lượng của cả dây, P_1 là trọng lượng của phần buông thống. Theo đầu bài, chiều dài phần buông thống bằng 25% chiều dài dây $\Rightarrow P_1 = 25\%P$.

Xét theo phương chuyển động của sợi dây, dây chịu tác dụng của hai lực: P_1 và f_{ms} . Muốn dây bắt đầu trượt phải có $P_1 = f_{ms} \Rightarrow f_{ms} = 25\%P$.

Mà,
$$f_{ms} = k . N = k. (75\% P)$$
.

Từ đó:
$$25\%P = k.(75\%P) \Rightarrow k = \frac{25}{75} = \frac{1}{3} \approx 0.33$$
.

- 2-8. 1) Một ôtô khối lượng một tấn chuyển động trên một đường bằng, hệ số ma sát giữa bánh ôtô và mặt đường là 0,1. Tính lực kéo của động cơ ôtô trong trường hợp:
 - a) Ôtô chuyển động đều;
 - b) Ôtô chuyển động nhanh dần đều với gia tốc bằng 2m/s²;
 - 2) Cũng câu hỏi trên nhưng cho trường hợp ôtô chuyển động đều và:
 - a) Lên dốc có độ dốc 4%;
- b) Xuống đốc đó.

Hệ số ma sát bằng 0,1 trong suốt thời gian chuyển động.

Bài giải:

Tổng hợp lực tác dụng lên ôtô gồm: lực kéo \vec{F} của động cơ ôtô, trọng lực \vec{P} , phản lực pháp tuyến \vec{N} của mặt đường và lực ma sát của mặt đường \vec{f}_{ms} .

Hình của bài 2-8

Phương trình định luật II Newton cho ô tô là: $F + P + N + f_{ms} = m$ a

Chọn chiều dương là chiều chuyển động của xe. Chiếu phương trình này lên phương chuyển động ta được:

1) Khi xe chuyển động trên đường nằm ngang:

$$F - f_{ms} = ma$$
 $\Rightarrow F = ma + f_{ms} = ma + kmg$

Thay số: m = 1tấn = 1000kg; k = 0.1; $g = 9.8m/s^2$; và:

- a) Khi chuyển động đều, a = 0 \Rightarrow F = 980N.
- b) Khi chuyển động nhanh dần đều với gia tốc $a = 2m/s^2 \Rightarrow F = 2980N$.
- 2) Khi xe chuyển động trên đường dốc:
- a) Ôtô lên dốc

$$F - f_{ms} - P \sin \alpha = ma$$
 $\Rightarrow F = ma + f_{ms} + P \sin \alpha = ma + kmg \cos \alpha + mg \sin \alpha$

Trong đó, $\sin\alpha = 0.04$ là độ dốc của dốc $\Rightarrow \cos\alpha = \sqrt{1 - 0.04^2} \approx 1.0$

$$\Rightarrow$$
 F = 1000×0+0,1.1000.9,8.1+1000.9,8.0,04 = 1372(N)

b) Ôtô xuống dốc: $F = P(k\cos\alpha - \sin\alpha)$.

$$F - f_{ms} + P \sin \alpha = ma$$
 $\Rightarrow F = ma + f_{ms} - P \sin \alpha = ma + kmg \cos \alpha - mg \sin \alpha$

Thay số:

$$F = 1000 \times 0 + 0,1.1000.9,8.1 - 1000.9,8.0,04 = 588(N)$$

2-9. Một sợi dây được vắt qua một ròng rọc có khối lượng không đáng kể, hai đầu buộc hai vật có khối lượng m_1 và m_2 ($m_1 > m_2$). Xác định gia tốc của hai vật và sức căng của dây. Coi ma sát không đáng kể.

Áp dụng bằng số: $m_1 = 2m_2 = 1$ kg.

Bài giải:

Do sợi dây không co giãn, ròng rọc không khối lượng, không ma sát nên sợi dây luôn căng với lực căng dây T; hai vật sẽ chuyển động với cùng một gia tốc a. Vì $m_1 > m_2$ nên m_1 sinh ra một lực kéo lớn hơn của m_2 làm cho m_1 chuyển động xuống dưới còn m_2 bị kéo lên trên.

Hình của bài 2-9

Chọn chiều dương của các trục toạ độ cho từng vật hợp với chiều chuyển động của mỗi vật (hình vẽ). Phương trình định luật II Newton cho từng vật xét trên phương chuyển động:

$$\begin{cases} \mathbf{m}_1 : & \mathbf{P}_1 - \mathbf{T} = \mathbf{m}_1 \mathbf{a} \\ \mathbf{m}_2 : & \mathbf{T} - \mathbf{P}_2 = \mathbf{m}_2 \mathbf{a} \end{cases}$$

Cộng vế theo vế của hai phương trình trên ta thu được:

$$P_1 - P_2 = (m_1 + m_2)a \implies a = \frac{P_1 - P_2}{m_1 + m_2} = \frac{m_1 - m_2}{m_1 + m_2}g = 3.27 \text{ m/s}^2$$

Xem phương trình định luật II Newton cho vật P_1 ta có: P_1 - $T = m_1 a$.

$$\Rightarrow T = P_1 - m_1 a = m_1 g - m_1 \cdot \frac{m_1 - m_2}{m_1 + m_2} g = \frac{2m_1 m_2}{m_1 + m_2} g$$

Từ đó tính được: T = 6,55N

- 2-10. Một tàu điện, sau khi xuất phát, chuyển động với gia tốc không đổi $\gamma = 0.5 \text{m/s}^2$. 12 giây sau khi bắt đầu chuyển động, người ta tắt động cơ của tàu điện và tàu chuyển động chậm dần đều cho tới khi dừng hẳn. Trên toàn bộ quãng đường hệ số ma sát bằng k = 0.01. Tìm:
 - a) Vân tốc lớn nhất của tàu;
 - b) Thời gian toàn bộ kể từ lúc tàu xuất phát cho tới khi tàu dừng hẳn;
 - c) Gia tốc của tàu trong chuyển động châm dần đều;
 - d) Quãng đường toàn bộ mà tàu đã đi được.

Bài giải:

Tầu chuyển động theo hai giai đoạn:

Giai đoạn 1: chuyển động với gia tốc $a_1 = 0.5 \text{m/s}^2$ trong thời gian $t_1 = 12 \text{s}$.

Giai đoạn 2: chuyển động chậm dần đều với gia tốc $a_2 = k.g = 0.01.9.8 = 0.098 \text{ m/s}^2$ dưới tác dung cản của lưc ma sát trong thời gian Δt .

Có thể vẽ đồ thị vận tốc của tầu theo thời gian như trên hình.

a) Vân tốc lớn nhất của tầu:

$$v_{max} = a_1 t_1 = 0.5.12 = 6(m/s) = 21.6(km/h)$$

b) Tầu chuyển động chậm dần trong thời gian:

$$\Delta t = \frac{v_{max}}{a_2} = \frac{6}{0,098} = 61,2(s)$$

Tổng thời gian chuyển động của tầu (kể từ lúc xuất phát đến lúc dừng lại):

$$t_2 = t_1 + \Delta t = 12 + 61, 2 = 73, 2(s)$$
.

- c) Gia tốc của tầu khi chuyển động chậm dần đều là $a_2 = 0.098 \text{ m/s}^2$.
- d) Quãng đường tầu đã đi được bằng "diện tích" của hình tam giác được gạch chéo:

$$s = \frac{1}{2} v_{max}.t_2 = \frac{1}{2}.6.73,2 = 219,6(m)$$

- 2-11. Một bản gỗ A được đặt trên một mặt phẳng nằm ngang. Bản A được nối với một bản gỗ B khác bằng một sợi dây vắt qua một ròng rọc cố định (như hình vẽ 2-5). Khối lượng của ròng rọc và của dây coi như không đáng kể.
- a) Tính lực căng của dây nếu cho $m_A = 200g$; $m_B = 300g$, hệ số ma sát giữa bản A và mặt phẳng nằm ngang k = 0.25.
- b) Nếu thay đổi vị trí của A và B thì lực căng của dây sẽ bằng bao nhiều? Xem hệ số ma sát vẫn như cũ.

Bài giải:

Hình 2-5

Xét hệ hai vật có khối lượng m_1 , m_2 được nối với nhau như trên hình 2-5. Các lực tác dụng vào các vật đã được chỉ rõ trên hình vẽ.

Có thể viết phương trình định luật II Newton cho các vật này xét trên phương chuyển động của chúng (được chỉ ra bằng các mũi tên có dấu "+" bên cạnh):

$$\begin{cases} m_1: & P_1 - T = m_1 a \\ m_2: & T - f_{ms} = m_2 a \end{cases}$$
 (1)

Trong đó, $f_{ms} = k.N_2 = k.P_2$.

Cộng vế theo vế của hai phương trình (1) và (2) trên ta thu được:

$$P_{1} - f_{ms} = (m_{1} + m_{2})a \implies a = \frac{P_{1} - f_{ms}}{m_{1} + m_{2}} = \frac{m_{1}g - k.m_{2}g}{m_{1} + m_{2}} = \frac{m_{1} - k.m_{2}g}{m_{1} + m_{2}}g$$

Từ phương trình (1) suy ra:

$$\Rightarrow T = P_1 - m_1 a = m_1 g - m_1 \cdot \frac{m_1 - k m_2}{m_1 + m_2} g = \frac{(1 + k) m_1 m_2}{m_1 + m_2} g$$

Nhận xét: biểu thức kết quả về lực căng dây trên cho thấy, nếu đổi vai trò của m_1 và m_2 cho nhau thì lực căng dây không đổi. Vậy, lực căng dây không phụ thuộc vào việc đặt m_1 trên mặt bàn và m_2 được treo bên dưới hay là ngược lại. Do đó, trong cả câu a) và câu b) thì kết quả về lực căng dây đều như nhau bằng:

$$T = \frac{(1+k)m_A m_B}{m_A + m_B} g = \frac{(1+0.25)0.2.0.3}{0.2+0.3} \times 9.8 = 1.47(N)$$
(Thay số: k = 0.25; $m_A = 200g = 0.2 \text{ kg}$; $m_B = 300g = 0.3 \text{ kg}$)

2-12. Hai vật có khối lượng $m_1 = 1$ kg, $m_2 = 2$ kg được nối với nhau bằng một sợi dây và được đặt trên mặt bàn nằm ngang. Dùng một sợi dây khác vắt qua một ròng rọc, một đầu dây buộc vào m_2 và đầu kia buộc vào một vật thứ ba có khối lượng $m_3 = 3$ kg (hình 2-6). Coi ma sát không đáng kể. Tính lực căng của hai sợi dây.

Bài giải: M_1 M_2 M_2 M_3 M_4 M_4 M_4 M_5 M_4 M_5 M_4 M_5 M_4 M_5 M_5 M_4 M_5 M_4 M_5 M_5 M_4 M_5 M_5 M_5 M_5 M_5 M_6 M_7 M_8 M_8

Trọng lực P_3 là thành phần lực duy nhất theo phương chuyển động của hệ và làm các vật chuyển động với cùng một gia tốc a. Ta có:

$$a = \frac{m_3 g}{m_1 + m_2 + m_3}$$

Xét riêng vật m₁ ta có:

$$T_1 = m_1 a = \frac{m_1 m_3 g}{m_1 + m_2 + m_3} = \frac{1.3.9.8}{1 + 2 + 3} = 4.9(N)$$

Xét riêng vật m_3 ta có: $m_3g - T_2 = m_3a \Rightarrow T_2 = m_3(g - a)$

$$\Rightarrow T_2 = m_3 g - \frac{m_3 g}{m_1 + m_2 + m_3} = \frac{(m_1 + m_2)m_3}{m_1 + m_2 + m_3} g = \frac{(1+2).3}{1+2+3}.9,8 = 14,7(N).$$

2-13. Ở đỉnh của hai mặt phẳng nghiêng hợp với mặt phẳng nằm ngang các góc $\alpha = 30^{\circ}$ và $\beta = 45^{\circ}$ (hình 2-7), có gắn một ròng rọc khối lượng không đáng kể. Dùng một sợi dây vắt qua ròng rọc, hai đầu dây nối với hai vật A và B đặt trên các mặt phẳng nghiêng. Khối lượng của các vật A và B đều bằng 1kg. Bỏ qua tất cả các lực ma sát. Tìm gia tốc của hệ và lực căng của dây.

Bài giải:

Hình 2-7

Trong bài toán này, ta lại xét chuyển động của hệ vật theo phương của các mặt nghiêng. Do sợi dây nối hai vật không bị co giãn nên hai vật sẽ chuyển động với cùng một gia tốc a. Chọn chiều dương cho các chuyển động như hình vẽ (hình 2-). Các lực tác dụng vào các vật đã được chỉ ra trên hình.

Phương trình định luật II Newton được chiếu lên phương chuyển động của các vật:

$$\begin{cases} \mathbf{m}_1 : & \mathbf{P}_1 \sin \alpha - \mathbf{T} = \mathbf{m}_1 \mathbf{a} \\ \mathbf{m}_2 : & \mathbf{T} - \mathbf{P}_2 \sin \beta = \mathbf{m}_2 \mathbf{a} \end{cases}$$
 (1)

Cộng vế theo vế của hai phương trình trên ta thu được:

$$P_1 \sin \alpha - P_2 \sin \beta = (m_1 + m_2)a$$

$$\Rightarrow a = \frac{P_1 \sin \alpha - P_2 \sin \beta}{m_1 + m_2} = \frac{m_1 \sin \alpha - m_2 \sin \beta}{m_1 + m_2} g$$

Từ phương trình (1) suy ra:

$$T = P_1 \sin \alpha - m_1 a = m_1 g \sin \alpha - m_1 \cdot \frac{m_1 \sin \alpha - m_2 \sin \beta}{m_1 + m_2} g$$
$$= \frac{m_1 \cdot m_2 \cdot g(\sin \beta + \sin \alpha)}{m_1 + m_2}$$

Thay các giá trị đầu bài đã cho (m_1 thay bằng m_A , m_2 thay bằng m_B) vào các biểu thức của gia tốc và lực căng dây ta thu được: $a = -1.02 \, \text{m/s}^2$; $T = 5.9 \, \text{N}$.

Kết quả này chứng tỏ rằng, hệ chuyển động ngược với chiều dương đã chọn với gia tốc có độ lớn bằng $1{,}02~\text{m/s}^2$.

Lưu ý: trong bài toán trên, ta có thể đoán nhận ra ngay rằng vật B sẽ trượt xuống còn vật A bị kéo lên. Do đó, trong bài toán này ta có thể chọn chiều dương cho các chuyển động theo chiều ngược lại so với chiều đã chọn trong lời giải trên. Tuy nhiên, tôi muốn thiết lập một công thức tổng quát cho hệ vật như vậy, qua đó cũng để các bạn thấy cách xử lý khi gặp kết quả gia tốc không phù hợp chiều dương đã chọn.

Câu kết luận cuối cùng trong lời giải trên chỉ được áp dụng trong trường hợp hệ không có ma sát. Khi hê không có ma sát, các lực tác dụng vào mỗi vật không phụ thuộc

vào chiều chuyển động của các vật cũng như việc chọn chiều dương của trực toạ độ. Khi hệ có ma sát, rõ ràng chiều của lực ma sát phụ thuộc vào chiều chuyển động của các vật, do đó không thể giả sử tuỳ ý các chiều chuyển động của các vật được. Trong trường hợp ta đã giả thiết nhằm chiều chuyển động dẫn đến kết quả gia tốc của các vật bị âm thì buộc phải giả thiết lại chiều chuyển động và giải lại bài toán. Tất nhiên không ai dại gì mà giả thiết đúng vào trường hợp nhằm này để phải ghi lời giải hai lần. Ta có thể tránh được điều này bằng cách đoán nhận (sau khi đã làm nhiều bài toán và đúc rút được nhiều kinh nghiệm - thực ra sự đoán nhận này vẫn phải dựa trên sự nhẩm nhanh để so sánh một cách định tính các thành phần lực đóng vai trò lực kéo và lực cản) hoặc bằng cách kiểm tra trước (tính nháp và so sánh các thành phần lực đóng vai trò lực kéo, lực giữ và lực cản) hoặc giả thiết và giải bài toán trước ở ngoài nháp.

- 2-14. Một đoàn tàu gồm một đầu máy, một toa 10 tấn, và một toa 5 tấn, nối với nhau theo thứ tự trên bằng những lò xo giống nhau. Biết rằng khi chịu tác dụng một lực bằng 500N thì lò xo giãn 1cm. Bỏ qua ma sát. Tính độ giãn của lò xo trong hai trường hợp:
- a) Đoàn tàu bắt đầu chuyển bánh, lực kéo của đầu máy không đổi và sau 10 giây vận tốc của đoàn tàu đat tới 1m/s;
 - b) Đoàn tàu lên dốc có độ nghiêng 5% với vận tốc không đổi.

Bài giải:

Độ giãn x của lò xo tuân theo định luật Húc: F = kx.

Từ đó xác định được hệ số đàn hồi:

$$k = \frac{F}{x} = \frac{500N}{1cm} = 5.10^4 \text{ N/m}.$$

a) Lực căng của lò xo thứ nhất đóng vai trò lực kéo cả hai toa tầu chuyển động. Từ định luật II Newton ta

có:
$$T_1=(m_1+m_2)a,$$
 với $a=\frac{v}{t}$. Suy ra độ giãn của lò xo thứ nhất:

Hình của bài 2-14

$$x_1 = \frac{T_1}{k} = \frac{(m_1 + m_2)v}{k.t} = \frac{(10 + 5).10^3.1}{5.10^4.10} = 3.10^{-2} \text{ m} = 3\text{cm}$$

Lực căng của lò xo thứ hai: T_2 = $m_2 a \Rightarrow$ độ giãn của lò xo thứ hai:

$$x_1 = \frac{T_2}{k} = \frac{m_2 v}{k.t} = \frac{5.10^3.1}{5.10^4.10} = 1.10^{-2} m = 1 cm$$

b) Khi đoàn tầu chuyển động đều lên dốc. Các lực lò xo phải cân bằng với các thành phần của trọng lực kéo xuống. Cụ thể:

$$T_1 = (m_1 + m_2)g. \sin \alpha$$

$$T_2 = m_2 g. \sin \alpha$$

Trong đó, dốc có độ nghiêng là 5%, tức là $\sin\!\alpha = 0.05$. \Rightarrow độ giãn của các lò xo:

$$x_{1} = \frac{T_{1}}{k} = \frac{(m_{1} + m_{2})g \sin \alpha}{k} = \frac{(10 + 5).10^{3}.9,8.0,05}{5.10^{4}} = 0,147m = 14,7cm$$

$$x_{2} = \frac{T_{2}}{k} = \frac{m_{2}g \sin \alpha}{k} = \frac{5.10^{3}.9,8.0,05}{5.10^{4}} = 0,049m = 4,9cm$$

2-15. Môt vật có khối lương m = 200g, được treo ở đầu một sơi dây dài 1 = 40cm; vật quay trong mặt phẳng nằm ngang với vận tốc không đổi sao cho sợi dây vạch một mặt nón. Giả sử khi đó dây tao với phương thẳng đứng một góc $\alpha = 36^{\circ}$. Tìm vân tốc góc của vật và lực căng của dây.

Bài giải:

Vật chuyển động vạch ra một vòng tròn có bán kính $R = 1.\sin\alpha$.

Lực tác dụng lên vật gồm trọng lực P và lực căng T (hình vẽ). Tổng hợp các lực này làm thành lực hướng tâm gây ra chuyển động tròn đều của vật:

$$\overrightarrow{F}_{ht} = \overrightarrow{P} + \overrightarrow{T} \tag{1}$$

Từ hình 2- ta thấy:

$$T = \frac{P}{\cos \alpha} = \frac{mg}{\cos \alpha} = \frac{0.2.9.8}{\cos 36^{\circ}} = 2.45N$$

$$\begin{split} T &= \frac{P}{\cos\alpha} = \frac{mg}{\cos\alpha} = \frac{0,2.9,8}{\cos36^{\circ}} = 2,45N \\ F_{ht} &= P.tg\alpha = m.g.tg\alpha. & \text{Mà} \quad F_{ht} = m.R\omega^2 = m.l.\sin\alpha.\omega^2. \\ \Rightarrow F_{ht} &= mg.tg\alpha = ml\sin\alpha.\omega^2 \,. \end{split}$$

Do đó:
$$\omega = \sqrt{\frac{g}{1\cos\alpha}} = 5.6 \text{ rad/s}$$

2-16. Xác định gia tốc của vật m₁ trong hình 2-8. Bỏ qua ma sát, khối lượng của ròng rọc và dây. Áp dụng cho trường hợp $m_1 = m_2$.

Bài giải:

Hình 2-8

Chú ý rằng sức căng của dây tại mọi điểm đều bằng nhau, bằng T. Từ hình vẽ 2-8, nếu xét riêng vật m_1 , ta có:

$$P_1 - T = m_1 a_1$$
 (1)

Nếu xét tiêng vật m₂, ta có:

$$2T - P_2 = m_2 a_2.$$
 (2)

Sử dụng tính chất của ròng rọc cố định và ròng rọc động ta thấy rằng, quãng đường đi của m_1 gấp hai lần quãng đường đi của vật m_2 , từ đó kéo theo:

$$\mathbf{a}_1 = 2\mathbf{a}_2 \tag{3}$$

Nhân hai vế của (1) với 2 rồi cộng vế theo vế với (2) suy ra:

$$a_1 = 2a_2 = \frac{2(2m_1 - m_2)g}{4m_1 + m_2}$$
.

Nếu m₁ = m₂ thì a₁ = 2a₂ =
$$\frac{2g}{5}$$
 = 3,92(m/s²).

Nhận xét: thay giá trị của a_1 vào (1) ta có thể tìm được lực căng của các dây:

$$T = P_1 - m_1 a_1 = m_1 g - m_1 \frac{2(2m_1 - m_2)g}{4m_1 + m_2} = \frac{3m_1 m_2 g}{4m_1 + m_2}$$

2-17. Qua một ròng rọc A khối lượng không đáng kể, người ta luồn một sợi dây, một đầu buộc vào quả nặng M_1 , đầu kia buộc vào một ròng rọc B khối lượng không đáng kể. Qua B lại vắt một sợi dây khác. Hai đầu dây nối với hai quả nặng M_2 và M_3 . Ròng rọc A với toàn bộ các trọng vật được treo vào một lực kế lò xo (hình 2-9).

Xác định gia tốc của quả nặng M_3 và số chỉ T trên lực kế, nếu $M_2 \neq M_3$, $M_1 > M_2 + M_3$.

Bài giải:

Hình 2-9

Chọn chiều dương cho các chuyển động của các vật như hình 2-9. Từ mối quan hệ về đường đi của các ròng động và cố định ta thấy mối quan hệ gia tốc của các vật:

$$2a_1 = a_2 + a_3 \tag{*}$$

Do các ròng rọc có khối lượng và lực ma sát ở các ổ trục có thể bỏ qua nên ta có:

$$T = 2T_1;$$
 $T_1 = 2T_2$ (1)

Xét theo phương chuyển động của các vật, phương trình định luật II Newton:

$$M_1 a_1 = M_1 g - T_1$$
 (2)

$$M_2 a_2 = T_2 - M_2 g (3)$$

$$M_3 a_3 = T_2 - M_3 g (4)$$

Thực hiện các phép biến đổi:

$$(2)+2.(3) \rightarrow M_1 a_1 + 2M_2 a_2 = (M_1 - 2M_2)g \rightarrow a_2 = \frac{(M_1 - 2M_2)g - M_1 a_1}{2M_2}$$

$$(2)+2.(4) \rightarrow M_1 a_1 + 2M_3 a_3 = (M_1 - M_3)g \rightarrow a_3 = \frac{(M_1 - 2M_3)g - M_1 a_1}{2M_3}$$

Thay a_2 , a_3 vào (*):

$$\Rightarrow 2a_1 = \frac{(M_1 - 2M_2)g - M_1a_1}{2M_2} + \frac{(M_1 - 2M_3)g - M_1a_1}{2M_3}$$

Nhân cả hai vế của phương trình với 2.M₂M₃

$$4M_2M_3a_1 = M_1M_3g - 2M_2M_3g - M_1M_3a_1 + M_1M_2g - 2M_2M_3g - M_1M_2a_1$$

$$(M_1M_2 + M_1M_3 + 4M_2M_3)a_1 = (M_1M_2 + M_2M_3 - 4M_2M_3)g$$

$$\Rightarrow a_1 = \frac{(M_1 M_2 + M_1 M_3 - 4M_2 M_3)g}{M_1 M_2 + M_1 M_3 + 4M_2 M_3}$$

Sử dụng kết quả này vào biểu thức của a₃ ta được:

Solution Set duality value that cut as the dupe.
$$a_3 = \frac{\left(M_1 - 2M_3\right)g - M_1 \frac{\left(M_1M_2 + M_1M_3 - 4M_2M_3\right)g}{M_1M_2 + M_1M_3 + 4M_2M_3}}{2M_3}$$

$$= \frac{\left(M_1 - 2M_3\right)\left(M_1M_2 + M_1M_3 + 4M_2M_3\right)g - M_1\left(M_1M_2 + M_1M_3 - 4M_2M_3\right)g}{2M_3\left(M_1M_2 + M_1M_3 + 4M_2M_3\right)}$$

$$= \frac{3M_1M_2 - M_1M_3 - 4M_2M_3}{M_1M_2 + M_1M_3 + 4M_2M_3}.g$$

$$T \text{ if } (2) \Rightarrow T_1 = M_1g - M_1a_1 = \frac{8M_1M_2M_3g}{M_1M_2 + M_1M_3 + 4M_2M_3}$$

Suy ra số chỉ của lực kế:

$$T = 2T_1 = \frac{16M_1M_2M_3g}{M_1M_2 + M_1M_3 + 4M_2M_3}$$

- 2-18. Một chiếc xe khối lượng 20kg có thể chuyển động không ma sát trên một mặt phẳng nằm ngang. Trên xe có đặt một hòn đá khối lương 2kg (hình 2-10), hê số ma sát giữa hòn đá và xe là 0,25. Lần thứ nhất người ta tác dung lên hòn đá một lực bằng 2N, lần thứ 2 - bằng 20N. Lưc có phương nằm ngang và hướng dọc theo xe. Xác định:
 - a) Lưc ma sát giữa hòn đá và xe;
 - b) Gia tốc của hòn đá và xe trong hai trường hợp trên.

Bài giải:

 $\overline{\text{Lyc ma}}$ sát nghỉ cực đại giữ hòn đá và xe $(f_{\text{ms}})_{\text{max}} = \text{kmg} = 0.25.2.9.8 = 4.9 \text{N}.$

Hình 2-10

- Trường hợp thứ nhất: F = 2N. Do đó: $F < f_{ms}$ hòn đá không thể trượt trên xe. Trong trường hợp này hòn đá và xe hợp thành một vật duy nhất chuyển động với cùng gia tốc a. Ta có:

$$a = \frac{F}{M+m} = \frac{2}{20+2} = 0.09 \text{m/s}^2$$

Gọi $f_{\rm ms}$ là lực ma sát giữa xe và hòn đá (hình 2-10). Xét riêng xe ta có:

$$f_{ms} = M.a = \frac{MF}{M+m} = 1.8N$$

- Trường hợp thứ hai: F'= 20N

Trong trường hợp này $F' > (f_{ms})_{max}$. Hòn đá trượt trên $xe \Rightarrow$ lực ma sát giữa xe và hòn đá đúng bằng lực ma sát lớn nhất $f_{ms} = kmg = 4.9N$.

Gọi a₁ là gia tốc của hòn đá, a₂ là gia tốc của xe.

Nếu xét riêng hòn đá, ta có:

$$F' - f_{ms} = ma_1 \tag{3}$$

Nếu xét riêng xe ta có:

$$F_{ms} = Ma_2 \tag{4}$$

Từ (3) và (4) suy ra:

$$a_1 = \frac{F' - f_{ms}}{m} = 7.5 \,\text{m/s}^2$$

$$a_2 = \frac{f_{ms}}{M} = 0.25 \,\text{m/s}^2$$

- 2-19. Người ta kéo một khúc gỗ trọng lượng P với vận tốc không đổi bằng một sợi dây dài l. Khoảng cách từ đầu dây tới mặt đất bằng h (hình 2-11)
- a) Tìm hệ số ma sát giữa khúc gỗ và mặt đất (dây được buộc vào trọng tâm của khúc gỗ);
 - b) Nếu dây buộc vào đầu khúc gỗ thì độ lớn của lực ma sát có thay đổi không?

<u>Bài giải</u>:

a) Gọi \vec{F} là lực kéo gỗ, α góc hợp bởi dây kéo và mặt đất. Vì khúc gỗ chuyển động đều nên:

Từ (1) suy ra:
$$f_{ms} = F. \frac{\sqrt{l^2 - h^2}}{l}$$

Lực nén vuông góc lên mặt đường:

$$N = P - F \sin \alpha = P - F \frac{h}{1}$$

Do đó hệ số ma sát:
$$k = \frac{f_{ms}}{N} = \frac{F\sqrt{l^2 - h^2}}{Pl - Fh}$$

- b) Sự thay đổi điểm đặt của lực F làm thay đổi điểm đặt của áp lực N giữa tấm gỗ và mặt sàn nhưng không làm thay đổi độ lớn của lực này. Do đó lực ma sát vẫn giữ giá trị cũ.
- 2-20. Viết phương trình chuyển động của một viên đạn bay ngang trong không khí, nếu kể đến lực cản của không khí. Cho biết lực cản của không khí tỷ lệ với vận tốc của viên đạn, hệ số tỷ lệ là k, khối lượng của viên đạn bằng m.

Bài giải:

Lực cản của không khí lên viên đạn: $f_c = -kv$, k là hệ số tỉ lệ.

Theo định luật Niuton thứ hai:

$$-kv = m\frac{dv}{dt}$$
hay
$$\frac{dv}{v} = -\frac{k}{m}dt$$
 (1)

Tích phân hai vế của (1) ta được:

$$v = Ce^{-\frac{k}{m}t}$$
 (2)

C là hằng số tích phân. Lúc t=0 ; $v=v_{\sigma}$ từ (2) suy ra $C=v_{\sigma}$

Phương trình (2) trở thành:
$$v = v_0 e^{-\frac{k}{m}t}$$
 (3)

Gọi x là quãng đường mà viên đạn đi được theo phương ngang ta có:

$$v = \frac{dx}{dt} = v_o e^{-\frac{k}{m}t}$$
 (4)

Suy ra:
$$x = \frac{-mv_o}{k} e^{-\frac{k}{m}t} + B$$
 (5)

B là hằng số tích phân. Từ điều kiện t=0, x=0, suy ra: $B=\frac{mv_o}{k}$

Thay B và (5) ta được:
$$x = \frac{mv_o}{k} \left(1 - e^{-\frac{k}{m}t}\right)$$

2-21. Viết phương trình chuyển động của một vật rơi nếu kể đến lực cản của không khí, biết rằng lực cản tỷ lệ với vận tốc của vật rơi.

Bài giải:

Lực tổng hợp đặt lên vật rơi: F = mg - kv

Theo định luật Niuton thứ hai: $mg - kv = m \frac{dv}{dt}$.

$$\Rightarrow \frac{dv}{dt} = g - \frac{k}{m}v = -\frac{k}{m}\left(v - \frac{mg}{k}\right) \tag{1}$$

Đặt
$$u = v - \frac{mg}{k}$$
. Phương trình (1) trở thành:

$$\frac{du}{dt} = -\frac{k}{m}u \to \frac{du}{u} = -\frac{k}{m}dt \tag{2}$$

Lấy tích phân hai vế của (2)

$$\Rightarrow u = Ce^{-\frac{k}{m}t} = v - \frac{mg}{k} \to v = \frac{mg}{k} + Ce^{-\frac{k}{m}t} \qquad (C \text{ là hằng số tích phân}).$$

Tại thời điểm
$$t = 0$$
, $v = 0 \Rightarrow C = -\frac{mg}{k}$

$$\Rightarrow v = \frac{mg}{k} \left(1 - e^{-\frac{k}{m}t} \right)$$

Quãng đường mà vật rơi được đến thời điểm t (phương trình chuyển động):

$$x = \int_{0}^{t} v.dt = \int_{0}^{t} \frac{mg}{k} \left(1 - e^{-\frac{k}{m}t} \right).dt = \frac{mg}{k}.t + \frac{m^{2}g}{k^{2}} \left(e^{-\frac{k}{m}t} - 1 \right).$$

2-22. Tính lực đẩy trung bình của hơi thuốc súng lên đầu đạn ở trong nòng một súng bộ binh, biết rằng đầu đạn có khối lượng m=10g, thời gian chuyển động của đạn trong nòng là $\Delta t=0{,}001$ giây, vận tốc của viên đạn ở đầu nòng là v=865m/s.

Bài giải:

Gia tốc trung bình của viên đạn trong nòng súng:

$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{v - 0}{\Delta t} = \frac{v}{\Delta t}$$
.

Lực đẩy trung bình của thuốc súng lên viên đạn:

$$\overline{F} = m.\overline{a} = \frac{mv}{\Delta t} = 8650N$$

2-23. Một toa xe khối lượng 20 tấn chuyển động với vận tốc ban đầu v = 54km/h. Xác định lực trung bình tác dụng lên xe, nếu toa xe dừng lại sau thời gian: a) 1 phút 40 giây; b) 10 giây; c) 1 giây.

Bài giải:

Làm tương tự bài 2-22 nhưng ở đây là lực hãm. Ta vẫn có công thức:

$$\overline{F} = m. | \overline{a} | = \frac{m\Delta v}{\Delta t}$$

Thay số: $m = 20 tấn = 20.10^3 kg$; v = 54km/h = 15m/s; $\Delta v = 10 - v = 15m/s$ và các khoảng thời gian tương ứng (đổi theo đơn vị giây) ta sẽ có được các kết quả như trên.

2-24. Một viên đạn khối lượng 10g chuyển động với vận tốc $v_0 = 200 \text{m/s}$ đập vào một tấm gỗ và xuyên sâu vào tấm gỗ một đoạn l. Biết thời gian chuyển động của viên đạn trong tấm gỗ bằng $t = 4.10^4$ giây. Xác định lực cản trung bình của tấm gỗ lên viên đạn và độ xuyên l của viên đan.

Bài giải:

Gia tốc trung bình của viên đạn khi xuyên vào gỗ:

$$|\overline{a}| = \frac{|\Delta v|}{\Delta t} = \frac{|0 - v_0|}{t - 0} = \frac{v_0}{t}.$$

Lực cản trung bình của tấm gỗ lên viên đạn:

$$\overline{F} = \text{m.} | \overline{a} | = \frac{\text{mv}_0}{\text{t}} = \frac{10.10^{-3}.200}{4.10^{-4}} = 5000(\text{N})$$

Độ xuyên xâu của viên đạn:

$$1 = \frac{{v_0}^2}{2 |\overline{a}|} = \frac{{v_0}^2}{2 \frac{v_0}{t}} = \frac{1}{2} v_0 t = \frac{1}{2}.200.4.10^{-4} = 4.10^{-2} (m) = 4 cm.$$

2-25. Một phân tử có khối lượng $m=4,56.~10^{-23} g$ chuyển động với vận tốc v=60 m/s va chạm đàn hồi vào thành bình với góc nghiêng $\alpha=60^{0}$. Tính xung lượng của lực va chạm của phân tử lên thành bình.

Bài giải:

Sử dụng định luật II Newton dạng 2 ta được xung lực của phân tử tác dụng lên thành bình là:

$$\vec{F}.\Delta t = \Delta \vec{P} = m.\Delta \vec{v} = m(2.v.\cos\alpha) = 4,56.10^{-26}.2.60.\cos60^{\circ} = 2,74.10^{-24} (N.s)$$

2-26. Một xe khối lượng 15 tấn chuyển động chậm dần đều với gia tốc có độ lớn bằng $0,49\text{m/s}^2$. Biết vận tốc ban đầu của xe là $v_0=27\text{km/h}$. Hỏi: a) Lực hãm tác dụng lên xe; b) Sau bao lâu xe dừng lại.

Bài giải:

a. Lực hãm tác dụng lên xe

$$F = ma = 15.10^3.0,49 = 7350(N)$$

Có chiều ngược chiều chuyển động

b. Thời gian xe dùng lại là t

$$v = v_o - at = 0 \rightarrow t = \frac{v_o}{a}$$

 $t = \frac{27/3.6}{0.49} \approx 15.3(s)$

2-27. Trong mặt phẳng đứng chọn hệ trục toạ độ Oxy với Ox nằm ngang, Oy thẳng đứng.

Một chất điểm được ném từ điểm có toạ độ (2,0) (đơn vị mét) theo phương thẳng đứng lên trên với vân tốc của 10m/s. Tính độ biến thiên mômen động lượng của chất điểm đối với gốc O trong khoảng thời gian từ lúc ném lên đến lúc rơi xuống đúng vị trí ban đầu. Cho khối lượng chất điểm m = 1kg.

Bài giải:

Lúc ném

$$\vec{L} = \vec{L}_1 = \vec{r} \times \vec{p}_1$$

Lúc vật trở lại điểm ném

$$\vec{L} = \vec{L}_2 = \vec{r} \times \vec{p}_2 = -\vec{r} \times \vec{p}_1 \qquad (\vec{p}_2 = -\vec{p}_1)$$

Đô biên thiên momen đông lương

$$\Delta \vec{L} = \vec{L}_2 - \vec{L}_1 = -2\vec{r} \times m\vec{v}$$

Xét về đô lớn

$$\Delta L = 2.\text{m.v.x} = 2.1.10.2 = 40 (\text{kg.m}^2 / \text{s})$$

2--28. . Chất điểm khối lượng m được ném lên từ một điểm O trên mặt đất, với vận tốc ban đầu v_0 theo hướng nghiêng góc α với mặt phẳng ngang. Xác định mômen động lượng của chất điểm đối với O tại thời điểm vận tốc chuyển động của chất điểm nằm ngang.

Bài giải:

Momen động lượng tai điểm cao nhất

$$L = \text{m.v}_{x}.\text{y}_{\text{max}} = \text{m.v}_{o} \cos \alpha. \frac{\text{v}_{o}^{2} \sin^{2} \alpha}{2\text{g}}$$

$$L = \frac{\text{mv}_{o}^{3} \sin^{2} \alpha. \cos \alpha}{2\text{g}}$$

- 2.31. Chất điểm khối lượng m được ném lên từ một điểm O trên mặt đất với vận tốc đầu v_0 theo hướng nghiêng góc α với mặt phẳng ngang. Xác định tại thời điểm t và đối với O.
 - a) mômen ngoại lực tác dung lên chất điểm;
 - b) mômen động lượng của chất điểm.

Bỏ qua sức cản không khí.

Bài giải:

a. Ngoại lực là trọng lực, momen của trọng lực

$$M_{\tilde{p}/o} = mgx = mgv_o \cos \alpha .t$$
 (x là toa độ theo phương ngang của vật)

b. Momen động lượng $\vec{L} = \vec{r} \times \vec{p}$

$$L = m \left| v_o \cos \alpha .t. \left(v_o \sin \alpha - gt \right) - \left(v_o \sin \alpha t - \frac{1}{2} gt^2 \right) v_o \cos \alpha \right|$$

$$L = \frac{1}{2}.\text{m.g.v}_{o}.\cos\alpha.t^{2}$$

2-30. Trên một mặt phẳng nằm ngang nhẫn (hình 2-12) có 1 chất điểm khối lượng m chuyển động buộc vào 1 sợi dây không co dãn, đầu kia của dây được kéo qua 1 lỗ nhỏ O với vận tốc không đổi. Tính sức căng của dây theo khoảng cách r giữa chất điểm và O biết rằng khi $r=r_0$, vận tốc của chất điểm là ω_0 .

Hình 2-12

Bài giải:

Bảo toàn momen động lượng ta có

$$mvr = mv_o r_o \rightarrow \omega = \omega_o \frac{r_o^2}{r^2}$$

Lực căng T của sợi dây

$$T = m\omega^2 r = m\omega_o^2 \frac{r_o^4}{r^3}$$

2-31. Một người khối lượng 50kg đứng trong thang máy đang đi xuống nhanh dần đều với gia tốc bằng 4,9m/s². Hỏi người có cảm giác thế nào và trọng lượng biểu kiến của người đó trong thang máy?

Đáp số: Người có cảm giác "mất" một phần trọng lượng. Trọng lượng biểu kiến bằng 145N

Bài giải:

Định luật II Newton áp dụng cho người trong thang máy

$$\vec{N} + m_n \vec{g} = m_n \vec{a} \rightarrow \vec{N} = m_n (\vec{a} - \vec{g})$$

 m_n , \vec{N} là khối lượng của người và phản lực mà sàn tác dụng lên người (với độ lớn bằng trọng lượng của người)

Thang máy đi xuống nhanh dần đều, a hướng xuống, nên

$$N = m(g - a) < mg$$

Vậy người cảm thấy nhẹ hơn và trọng lượng biểu kiến của người trong thang máy

$$P' = N = m(g - a)$$

 $P' = 50.(9.8 - 4.9) \approx 245(N)$

- 2-32. Trong một thang máy người ta treo ba chiếc lò xo, ở đầu các lò xo có treo ba vật khối lương lần lượt bằng 1kg, 2kg và 3kg. Tính lực cặng của các lò xo:
 - a) Lúc thang máy đứng yên; b) Lúc thang máy rơi tự do.

Bài giải:

a. Lực căng của các lò xo lần lượt

$$T_1 = m_1g=9.8N$$
,
 $T_2 = m_2g=19.6N$,
 $T_3 = m_3g=29.4N$,

b. Luc căng của các lò xo trong trường hợp rơi tư do

$$\vec{T} + m\vec{g} = m\vec{g} \rightarrow \vec{T} = \vec{0}$$
 Hay $T_1 = T_2 = T_3 = 0$

2-33. Một thang máy được treo ở đầu một dây cáp đang chuyển động lên phía trên. Lúc đầu thang máy chuyển động nhanh dần đều sau đó chuyển động đều và trước khi dừng lại chuyển động chậm dần đều. Hỏi trong quá trình trên, lực căng của dây cáp thay đổi như thế nào? Cảm giác của người trên thang máy ra sao?

Bài giải:

Trường hợp thứ nhất người cảm thấy "năng" hơn;

Trường hợp thứ hai - bình thường

Trường hợp thứ ba - "nhe" hơn.

Đinh luật II Newton áp dung cho khoang chứa người trong thang máy

$$\vec{T} + m\vec{g} = m\vec{a} \rightarrow \vec{T} = m(\vec{a} - \vec{g})$$

Khi thang máy chuyển động nhanh dần đều lên phía trên, a hướng lên do đó

$$T = T_1 = m(g + a) (1)$$

Khi thang máy chuyển động đều

$$T = T_2 = mg$$

Khi thang máy chuyển động chậm dần đều lên phía trên, a hướng xuống do đó

$$T = T_3 = m(g - a)$$

Vậy nên lực căng dây cáp theo thứ tự giảm dần

Định luật II Newton áp dụng cho người trong thang máy

$$\vec{N} + m_n \vec{g} = m_n \vec{a} \rightarrow \vec{N} = m_n (\vec{a} - \vec{g})$$

 m_n , \vec{N} là khối lượng của người và phản lực mà sàn tác dụng lên người (với độ lớn bằng trọng lượng của người)

Giống như phương trình (1), trọng lượng của người theo thứ tự trên sẽ giảm dần, hay người trong thang máy theo thứ tự sẽ cảm thấy: "nặng hơn", "bình thường", và "nhẹ hơn".

- 2-34. Trên một đĩa nằm ngang đang quay, người ta đặt một vật có khối lượng m = 1kg cách truc quay r = 50cm. Hê số ma sát giữa vật và đĩa bằng k = 0,25. Hỏi:
- a) Lực ma sát phải có độ lớn bằng bao nhiều để vật được giữ trên đĩa nếu đĩa quay với vận tốc n = 12 vòng/phút;
 - b) Với vận tốc góc nào thì vật bắt đầu trượt khỏi đĩa?

Bài giải:

Các lực tác dụng vào vật bao gồm trong lực của vật, phản lực của đĩa lên nó (trực đối với trọng lực) và lực ma sát. Phương trình định luật Newton

$$F_{ms} = ma_{ht} = m\omega^2 r = 4m\pi^2 f^2 r$$

a. Để không trượt thì

$$F_{ms} \ge 4m\pi^2 f^2 r$$

$$F_{ms} \ge 4.1.3,14^2 \left(\frac{12}{60}\right)^2.0,5 = 0,789(N)$$

b. Do $F_{ms} \leq kN = kmg$, nên để vật bắt đầu trượt khỏi đĩa thì theo (1), ta có

$$m\omega^2 r \ge kmg \to \omega \ge \sqrt{\frac{kg}{r}}$$

Vât bắt đầu trượt khi

$$\omega = \sqrt{\frac{0,25.9,8}{0,5}} \approx 2,2 \text{ (rad/s)}$$

2-35. Xác định lực nén phi công vào ghế máy bay ở các điểm cao nhất và thấp nhất của vòng nhào lộn nếu khối lượng của phi công bằng 75kg, bán kính của vòng nhào lộn bằng 200m, và vận tốc của máy bay trong vòng nhào lộn luôn không đổi và bằng 360km/h.

Bài giải:

Định luật II Newton áp dụng cho phi công

$$m\vec{g} + \vec{N} = m\vec{a} \tag{1}$$

 \vec{N} là phản lực mà ghế tác dụng lên phi công (bằng và ngược chiều với lực nén của phi công lên ghế).

Tại điểm cao nhất của vòng nhào lộn, theo phương hướng tâm, (1) được viết thành:

$$mg + N_1 = m\frac{v^2}{R} \to N = m\left(\frac{v^2}{R} - g\right)$$

 $N_1 = 75\left(\frac{(100)^2}{200} - 9.8\right) = 3015(N)$

Tương tự tại điểm thấp nhất của vòng nhào lộn:

$$-mg + N_2 = m\frac{v^2}{R} \to N_2 = m\left(\frac{v^2}{R} + g\right)$$
$$N_2 = 75\left(\frac{(100)^2}{200} + 9.8\right) = 4485(N)$$

2-36. Một máy bay phản lực bay với vận tốc 900kg/h. Giả thiết phi công có thể chịu được sự tăng trọng lượng lên 5 lần. Tìm bán kính nhỏ nhất của vòng lượn mà máy bay có thể đạt được.

Bài giải:

Hợp lực tác dụng vào phi công theo phương hướng tâm là F_{ht}. Định luật II Newton

$$F_{ht} = \frac{mv^2}{R}$$

Trong máy bay (hệ quy chiếu phi quán tính) phi công chịu tác dụng của trọng lực và lực hướng tâm

$$m\vec{g} + \vec{F}_{ht} = m\vec{a}$$

Theo đề bài:

$$|\vec{g} + \frac{\vec{F}_{ht}}{m}| \le 5g \rightarrow \frac{v^2}{R} \le 4g$$

 $\rightarrow R \ge \frac{v^2}{4g} = \frac{(250)^2}{4.9,8} \approx 1600(m)$

Chương 3 ĐỘNG LỰC HỌC HỆ CHẤT ĐIỂM ĐÔNG LỰC HOC VẬT RẮN

3-1 Tại ba đỉnh của một tam giác đều cạnh a có đặt ba chất điểm, khối lượng lần lượt bằng m_1 , m_2 , m_3 . Xác định khối tâm của hệ ba chất điểm đó.

Áp dụng cho trường hợp: $m_2 = m_3 = m$; $m_1 = 2m$.

Bài giải:

Chọn hệ toạ độ như hình vẽ. Toạ độ của các chất điểm: $m_1(0; \sqrt{3}a/2); m_2(-a/2; 0); m_3(a/2; 0)$. Do đó:

$$\vec{r}_G = \frac{\sum_i m_i \vec{r}_i}{\sum_i m_i}$$

$$\Rightarrow x_G = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3} = \frac{m_3 - m_2}{m_1 + m_2 + m_3} \cdot \frac{a}{2}$$

$$y_G = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3} = \frac{\sqrt{3} m_1 \cdot a}{2(m_1 + m_2 + m_3)}$$

Với $m_2 = m_3 = m$, $m_1 = 2m$: $x_G = 0$, $y_G = \frac{\sqrt{3}a}{4}$; tức G nằm tại điểm chính giữa của đường phân giác ứng với góc đỉnh đặt chất điểm khối lượng 2m.

3-2. Trên một đĩa tròn đồng chất bán kính R có khoét một lỗ tròn nhỏ bán kính r; tâm của lỗ khoét nằm cách tâm của đĩa một đoạn bằng R/2. Xác định vị trí khối tâm của đĩa trên.

Bài giải:

Hình của bài 3-2

Có thể coi đĩa tròn ban đầu là một hệ gồm một đĩa tròn nhỏ (phần bị khoét), bán kính r, có khối tâm nằm tại O_2 , lắp với phần đĩa còn lại sau khi lớn bị khoét (phần được tô bằng các dấu chấm), có trọng tâm nằm tại O_1 . Hiển nhiên là hệ này có trọng tâm rơi vào đúng tâm O của đĩa ban đầu.

Xét hệ quy chiếu có gốc toạ độ nằm tại tâm đĩa tròn. Gọi các vectơ vị trí khối tâm của đĩa chưa khoét lỗ, đĩa đã khoét lỗ và phần đĩa bị khoét ra lần lượt là $\vec{c}, \vec{a}, \vec{b}$,. Trong đó: $\vec{c} = 0, \left| \vec{b} \right| = R/2$.

Ta có:
$$\mathbf{M}.\vec{\mathbf{c}} = \mathbf{m}_1 \vec{\mathbf{a}} + \mathbf{m}_2 \vec{\mathbf{b}}$$

$$\Rightarrow \quad \rho.\pi \mathbf{R}^2.0 = \rho \left(\pi \mathbf{R}^2 - \pi \mathbf{r}^2\right) \vec{\mathbf{a}} + \rho \pi \mathbf{r}^2.\vec{\mathbf{b}} \quad \text{(trong dó } \rho \text{ là mật độ khối lượng của dĩa).}$$

 $\Rightarrow \vec{a} = -\frac{r^2}{R^2 - r^2} \vec{b} = -\frac{r^2}{(R^2 - r^2)} \cdot b \cdot \frac{\vec{b}}{b} = -\frac{Rr^2}{2(R^2 - r^2)} \cdot \frac{\vec{b}}{b}$

Vậy, khối tâm của đĩa đã bị khoét nằm cách tâm O về phía đối diện với lỗ khoét một đoan:

$$x = |\vec{b}| = \frac{Rr^2}{2(R^2 - r^2)}$$

- 3-3. Có một bệ súng khối lượng 10 tấn có thể chuyển động không ma sát trên đường ray. Trên bệ súng có gắn một khẩu đại bác khối lượng 5 tấn. Giả sử khẩu đại bác nhả đạn theo phương đường ray. Viên đạn có khối lượng 100kg và có vận tốc đầu nòng là 500m/s. Xác định vận tốc của bệ súng ngay sau khi bắn, biết rằng:
 - a) Lúc đầu bệ súng đứng yên;
 - b) Trước khi bắn, bệ súng chuyển động với vận tốc 18km/h theo chiều bắn;
 - c) Trước khi bắn, bệ súng chuyển động với vận tốc 18km/h ngược chiều bắn.

<u>Bài giải</u>:

 $\overline{\text{Gọi khối}}$ lượng súng và viên đạn lần lượt là M và m, vận tốc của bệ súng trước và sau khi bắn, của viên đạn bắn ra khỏi nòng lần lượt là v, v' và v_0 . Xét viên đạn bắn ngược chiều chuyển đông ban đầu.

Theo đinh luật bảo toàn động lượng:

$$(M + m)v = Mv' + m(v' - v_0)$$

$$\Rightarrow (M + m)v' = (M + m)v + mv_0$$

$$m$$

$$\Rightarrow \qquad v' \! = v + \! \frac{m}{M+m} \, v_0$$

a) Bệ súng đứng yên: v = 0, $v_0 = 500$ (m/s)

$$v' = 0 + \frac{100}{15.10^3 + 100}.500 \approx 3.31 (m/s)$$

Bệ súng chuyển động ngược chiều bắn với vận tốc 3,31 (m/s).

b) Bệ súng chuyển động theo chiều bắn: v = 8(km/h) = 5 (m/s), $v_0 = -500 (m/s)$ v' = 5 - 3.31 = 1.69(m/s)

Bê súng chuyển đông cùng chiều bắn với vân tốc 1,69 (m/s).

c) Bệ súng chuyển động ngược chiều bắn: v = 5 (m/s), $v_0 = 500$ (m/s) v' = 5 + 3.31 = 8.31(m/s)

Bệ súng chuyển động ngược chiều bắn với vận tốc 8,31 (m/s).

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

3-4. Một xe chở đầy cát chuyển động không ma sát với vận tốc v_1 = 1m/s trên mặt đường nằm ngang (hình 3-3). Toàn bộ xe cát có khối lượng M=10kg. Một quả cầu khối lượng m = 2kg bay theo chiều ngược lại với vận tốc nằm ngang v_2 = 7m/s.

Sau khi gặp xe, quả cầu nằm ngập trong cát. Hỏi sau đó xe chuyển động theo chiều nào, với vận tốc bằng bao nhiêu?

Bài giải:

Theo định luật bảo toàn động lượng:

Hình 3-3

$$\Rightarrow V = \frac{Mv_1 - mv_2}{M + m} = \frac{(M + m)v}{10 + 2} \approx -0.33(m/s)$$

(Chiều dương của vận tốc là chiều chuyển động ban đầu của xe)

Vậy, xe chuyển động với vận tốc 0.33~(m/s) ngược với chiều chuyển động ban đầu của xe.

3-5. Một khẩu đại bác không có bộ phận chống giật, nhả đạn dưới một góc $\alpha = 45^{\circ}$ so với mặt phẳng nằm ngang. Viên đạn có khối lượng m = 10kg và có vận tốc ban đầu $v_0 = 200$ m/s. Đại bác có khối lượng M = 500kg. Hỏi vận tốc giật của súng nếu bỏ qua ma sát?

Bài giải:

Gọi vận tốc giật của súng là v. Do bỏ qua ma sát nên hệ bảo toàn động lượng theo phương ngang:

$$Mv + mv_0 \cos \alpha = 0$$

$$\Rightarrow v = -\frac{mv_0 \cos \alpha}{M} = -\frac{10.\cos 45^{\circ}}{500} \approx -2.82 (m/s)$$

- 3-6. Một hoả tiễn lúc đầu đứng yên, sau đó phụt khí đều đặn ra phía sau với vận tốc không đổi u = 300m/s đối với hoả tiễn. Trong mỗi giây, lượng khí phụt ra bằng μ = 90g. Khối lượng tổng cộng ban đầu của hoả tiễn bằng M_0 =270g. Hỏi:
 - a) Sau bao lâu hoả tiễn đat tới vân tốc v = 40 m/s;
- b) Khi khối lượng tổng cộng của hoả tiễn là 90g thì vận tốc của hoả tiễn là bao nhiêu?

Bỏ qua sức cản của không khí và lưc hút của Trái Đất.

Bài giải:

Xét tại thời điểm t, khối lượng còn lại của hoả tiễn là M, vận tốc là v. Sau một khoảng thời gian nhỏ dt hoả tiễn phóng thêm một khối lượng dM, đạt vận tốc là v+dv, phần khí phụt ra có vận tốc là (v-u).

Theo định luật bảo toàn động lượng:

$$M.v = (M - dM)(v + dv) + dM.(v - u)$$

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

$$\Rightarrow \qquad M.dv - dM.u = 0$$

$$\Rightarrow \qquad \frac{dv}{u} = \frac{dM}{M} \qquad \Rightarrow \qquad \int_{0}^{v} \frac{dv}{u} = \int_{M_{0}}^{M} \frac{dM}{M}$$

$$\Rightarrow \qquad \frac{v}{u} = \ln \frac{M_{0}}{M} = \ln \frac{M_{0}}{M_{0} - \mu t}$$

⇒ Vận tốc của hoả tiễn tại thời điểm t tuân theo biểu thức:

$$v = u \ln \frac{M_0}{M} = u \ln \left(\frac{M_0}{M_0 - \mu t} \right)$$
 (*)

a) Thời điểm t vận tốc hoả tiễn đạt vận tốc v = 40 m/s. Từ biểu thức (*) suy ra:

$$exp\left(\frac{\mathbf{v}}{\mathbf{u}}\right) = \frac{\mathbf{M}_0}{\mathbf{M}_0 - \mu \mathbf{t}} \implies \mathbf{t} = \left[1 - exp\left(-\frac{\mathbf{v}}{\mathbf{u}}\right)\right] \frac{\mathbf{M}_0}{\mu}$$
$$\Rightarrow \mathbf{t} = \left(1 - exp\left(-\frac{40}{300}\right)\right) \cdot \frac{270}{90} \approx 0,375(\mathbf{s})$$

b) Vận tốc của hoả tiễn khi khối lượng còn M = 90g:

$$v = v_0 ln \frac{M_0}{M} = 300.ln \frac{270}{90} \approx 330 (m/s)$$

3-7. Tìm mômen động lượng của Trái Đất đối với trục quay riêng của nó. Xem Trái Đất là một hình cầu đặc, đồng chất có bán kính $R=6400 \mathrm{km}$, có khối lượng riêng trung bình $\rho=5,5 \mathrm{g/cm}^3$.

Bài giải:

Mômen động lượng của một quả cầu đặc đồng chất quanh một đường kính là:

$$L = I\omega = \left(\frac{2}{5}MR^{2}\right) \cdot \frac{2\pi}{T} = \frac{4\pi}{5T} \cdot \rho \cdot \frac{4\pi}{3}R^{3} \cdot R^{2}$$
$$= \frac{16\pi^{2}}{15} \frac{\rho R^{5}}{T} = \frac{16\pi^{2}}{15} \cdot \frac{5500 \cdot (6, 4.10^{6})^{5}}{24.3600} \approx 7, 2.10^{33} (kg.m^{2}/s)$$

3-8. Một đĩa tròn đồng chất khối lượng m=0,3kg, có bán kính R=0,4m, đang quay với vận tốc góc $\omega=1500$ vòng/phút. Tác dụng lên đĩa một mômen hãm; đĩa quay chậm dần và sau thời gian $\Delta t=20$ giây thì dừng lại. Tìm mômen hãm đó.

Bài giải:

Đối với hệ chuyển động quay quanh trục cố định với mômen lực không đổi, vận tốc góc của hệ biến đổi đều theo thời gian với gia tốc góc β :

$$\beta = \frac{M}{I} = \frac{\omega - \omega_0}{t}$$

$$\Rightarrow M = \frac{\Delta L}{t} = \frac{I(\omega - \omega_0)}{t} = -\frac{mR^2 \omega_0}{2t} = -\frac{0.3.0, 4^2 \cdot \frac{1500.2\pi}{60}}{2.20} \approx -0.19(N.m)$$

3-9. Một trụ đặc, đồng chất khối lượng m=100kg, bán kính R=0.5m đang quay xung quanh trục của nó. Tác dụng lên trụ một lực hãm F=243.4N, tiếp tuyến với mặt trụ

và vuông góc với trục quay. Sau thời gian $\Delta t = 31,4$ giây, trụ dừng lại. Tính vận tốc góc của trụ lúc bắt đầu tác dụng lực hãm.

Bài giải:

Khi tác dụng lực hãm F lên trụ đặc, ta tạo ra một mômen lực hãm lại chuyển động quay của trụ:

$$\beta = \frac{\omega - \omega_0}{t} = \frac{M}{I}$$

$$\Rightarrow \omega_0 = \omega - \frac{Mt}{I} = -\frac{FRt}{mR^2/2} = -\frac{2Ft}{mR}$$

$$= -\frac{2.(-243.4).31.4}{100.0.5} \approx 300 (rad/s)$$

- 3-10. Một trụ rỗng có khối lượng 50kg, đường kính 1m, đang quay với vận tốc 800 vòng/phút. Tác dụng vào trụ một lực hãm tiếp tuyến với mặt trụ và vuông góc với trục quay. Sau 2 phút 37 giây, trụ dừng lại. Tìm:
 - a) Mômen hãm; b) Lưc hãm tiếp tuyến.

Bài giải:

Ta có:

$$M = \frac{\Delta L}{\Delta t} = \frac{I(\omega - \omega_0)}{\Delta t} = -\frac{mR^2\omega}{t} = -\frac{50.0,5^2 \cdot \frac{800.2\pi}{60}}{157} \approx -6,67(N.m)$$
$$F = \frac{M}{R} = -\frac{mR\omega}{t} = -\frac{6,67}{0.5} = -13,34(N)$$

3-11. Một thanh đồng chất chiều dài l = 0,50m có thể quay tự do xung quanh một trục nằm ngang đi qua một đầu của thanh. Một viên đạn khối lượng m = 0,01kg bay theo phương nằm ngang với vận tốc v = 400m/s tới xuyên vào đầu kia của thanh và mắc vào thanh. Tìm vận tốc góc của thanh ngay sau khi viên đạn đập vào thanh. Biết rằng mômen quán tính của thanh đối với trục quay bằng 5kgm^2 .

Bài giải:

Áp dụng định luật bảo toàn mômen động lượng cho hệ thanh – viên đạn:

mvl = I'
$$\omega = (I + ml^2)\omega$$

$$\Rightarrow \omega = \frac{mvl}{I + ml^2} = \frac{0.01.400.0.5}{5 + 0.01.0.5^2} \approx 0.4 (rad/s)$$

3-12. Một đĩa tròn đồng chất khối lượng $m_1 = 100 \text{kg}$ quay với vận tốc góc $\omega_1 = 10$ vòng/phút. Một người khối lượng $m_2 = 60 \text{kg}$ đứng ở mép đĩa. Hỏi vận tốc góc của đĩa khi người đi vào đứng ở tâm của đĩa. Coi người như một chất điểm.

Bài giải:

áp dụng định luật bảo toàn mômen động lượng cho hệ người - đĩa:

$$I_1\omega_1 = I_2\omega_2$$

$$\Rightarrow \omega_{2} = \frac{I_{1}}{I_{2}} \omega_{1} = \frac{0.5.m_{1}R^{2} + m_{2}R^{2}}{0.5.m_{1}R^{2}} \omega_{1} = \frac{m_{1} + 2m_{2}}{m_{1}} \omega_{1}$$

$$\Rightarrow \omega_{2} = \frac{100 + 2.60}{100}.10 = 22 \text{ (vong/phút)}$$

- 3-13. Xác định mômen quán tính của một thanh đồng chất dài một khối lượng m đối với các truc sau đây:
 - a) Truc đi qua điểm giữa của thanh và tao với thanh một góc α nào đó;
 - b) Trục song song với thanh và cách thanh một đoạn d;
 - c) Trục vuông góc với thanh và cách điểm giữa thanh một đoạn d.

Bài giải:

a) Ta so sánh trường hợp này với trường hợp trục quay đi qua điểm giữa thanh và vuông góc với thanh. Ta thấy trong hai trường hợp, tại các điểm như nhau trên thanh, khoảng cách từ điểm đó đến truc quay gấp nhau một số lần không đổi là sinα lần:

$$r = r_{1} \cdot \sin \alpha$$

$$\Rightarrow \quad dm.r^{2} = dm.r_{1}^{2} \sin^{2} \alpha$$

$$\Rightarrow \quad \int r^{2}dm = \sin^{2} \alpha \cdot \int r_{1}^{2} \cdot dm$$

$$\Rightarrow \quad I = I_{1} \cdot \sin^{2} \alpha = \frac{1}{12} ml^{2} \sin^{2} \alpha$$

b) Xét trục quay trùng với thanh, tại mọi điểm trên thanh, khoảng cách từ điểm đó đến trục quay luôn bằng không, nên mômen quán tính của thanh đối với trục quay trùng với thanh là bằng 0. Sử dụng định lý Huyghen-Steiner:

$$I = 0 + md^2 = md^2$$

c) Sử dụng định lý Huyghen-Steiner:

$$I = \frac{1}{12}ml^2 + md^2$$

3-14. Một đĩa bằng đồng (khối lượng riêng $p = 8.9 \times 10^3 kg/m^3$) có bề dày $b = 4.10^5 m$, bán kính $R = 5.10^{-2} m$. Đĩa bị khoét thủng hai lỗ tròn bán kính R/2 như hình 3-4. Tìm mômen quán tính của đĩa đã bị khoét đối với trục vuông góc với đĩa và đi qua tâm O của đĩa.

Bài giải:

Gọi I_0 là mômen quán tính của đĩa chưa bị khoét với trục quay Δ đi qua tâm và vuông góc với đĩa; I_1 và I_2 là mômen quán tính của các phần bị khoét đi đối với trục quay đi qua tâm phần bị khoét và vuông góc với đĩa. Ta thấy:

$$I_0 = \frac{MR^2}{2} = \frac{\rho.b.\pi R^2.R^2}{2} = \frac{\pi \rho b R^4}{2}$$

$$I_1 = I_2 = \frac{m}{2} \left(\frac{R}{2}\right)^2 = \frac{\rho.b.\frac{\pi .R^2}{4}.R^2}{8} = \frac{\pi \rho b R^4}{32}$$

Tương tự:

Theo định lý Steiner – Huyghen, mômen quán tính của phần bị khoét đi với trục quay Δ là:

$$I'_1 = I'_2 = \frac{\pi \rho b R^4}{32} + \rho b \frac{\pi R^2}{4} \cdot \left(\frac{R}{2}\right)^2 = \frac{3\pi \rho b R^4}{32}$$

Mômen quán tính I_k của đĩa đã bị khoét đối với trục Δ là:

$$I_{k} = I_{0} - I'_{1} - I'_{2} = \frac{\pi \rho b R^{4}}{2} - 2.\frac{3\pi \rho b R^{4}}{32}$$
$$= \frac{5\pi \rho b R^{4}}{16} = \frac{5\pi .8,9.10^{3}.4.10^{-3}.0,05^{4}}{16} \approx 2,2.10^{-4} (kg.m^{2})$$

3-15. Tìm mômen quán tính của Trái Đất đối với trục quay của nó nếu lấy bán kính của Trái Đất là R = 6400km và khối lượng riêng trung bình của Trái Đất bằng $p = 5,5.10^{-3}$ kg.m³.

Bài giải:

Trái Đất có hình cầu nên mômen quán tính của Trái Đất đối với trục quay của nó là:

$$I = \frac{2}{5} \text{mR}^2 = \frac{2}{5} \rho. \frac{4\pi}{3} \text{R}^3. \text{R}^2 = \frac{8\pi \rho \text{R}^5}{15}$$
$$= \frac{8\pi}{15}.5,5.10^3. (6,4.10^6)^5 \approx 9,9.10^{37} (\text{kg.m}^2)$$

- 3-16. Tác dụng lên một bánh xe bán kính R=0.5m và có mômen quán tính $I=20kg.m^2$, một lực tiếp tuyến với vành bánh $F_1=100N$. Tìm:
 - a) Gia tốc của bánh xe;
- b) Vận tốc dài của một điểm trên vành bánh sau khi tác dụng lực 10 giây biết rằng lúc đầu bánh xe đứng yên.

Bài giải:

Gia tốc góc của bánh xe là:

$$\beta = \frac{M}{I} = \frac{F_t R}{I} = \frac{100.0,5}{20} = 2,5 (rad / s^2)$$

Vận tốc của một điểm trên vành bánh xe sau t = 10s là:

$$v = \omega R = (\beta t)R = 2.5.10.0.5 = 12.5 (m/s)$$

3-17. Một bánh xe bán kính R = 50cm đang quay dưới tác dụng của mômen lực M = 980Nm. Hỏi phải cho mỗi má phanh tác dụng lên vành bánh một lực bằng bao nhiều để bánh xe quay chậm dần với gia tốc góc $\beta = -2,5$ rad/s². Biết hệ số ma sát k = 0,25, mômen quán tính của bánh xe đối với trục quay I = 50kg.m² (hình 3.5).

Bài giải:

Gọi lực mà mỗi má phanh tác dụng lên vành bánh xe là F. Lực ma sát gây hãm xe sẽ có phương tiếp tuyến với bánh xe và có tổng độ lớn bằng 2kF (do hai má phanh tạo ra). Ta có:

$$\beta = \frac{M - M_{ms}}{I} = \frac{M - 2kFR}{I}$$

$$\Rightarrow F = \frac{M - I\beta}{2kR} = \frac{980 - 50.(-2.5)}{2.0.25.0.5} = 4420(N)$$

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

- 3-18. Một cuộn chỉ có khối lượng m được đặt trên một mặt phẳng nằm ngang (hình 3-6). Mômen quán tính của cuộn chỉ đối với trục của nó bằng I. Người ta kéo cuộn chỉ bằng một lực . Hỏi:
- a) Góc α giữa lực \vec{F} và mặt phẳng nằm ngang phải bằng bao nhiều để cuộn chỉ chuyển động có gia tốc về phía lực kéo;
- b) Lực F phải có độ lớn bằng bao nhiều để cuộn chỉ không trượt? Cho hệ số ma sát giữa cuộn chỉ và mặt phẳng bằng k.

Bài giải:

a) Muốn cho cuộn chỉ có gia tốc về phía lực kéo, cuộn chỉ phải quay theo chiều kim đồng hồ. Khi đó:

F
$$\cos \alpha (R - r\cos \alpha) - F\sin \alpha . r\sin \alpha > 0$$

$$\Rightarrow FR\cos \alpha - Fr > 0$$

$$\Rightarrow \cos \alpha > \frac{r}{R}$$
b) Ta có hệ phương trình:

 $\begin{cases} F\cos\alpha - F_{ms} = m\gamma = mR\beta \\ mg - N - F\sin\alpha = 0 \end{cases}$

$$\left(\operatorname{FR}\cos\alpha - \operatorname{Fr} = \left(\operatorname{I} + \operatorname{mR}^{2}\right)\beta\right)$$

$$\Rightarrow \begin{cases} N = mg - F \sin \alpha \\ F_{ms} = F \cos \alpha - mR \frac{F(R \cos \alpha - r)}{I + mR^2} = F \frac{I \cos \alpha + mRr}{I + mR^2} \end{cases}$$

Để cuộn chỉ không trượt ta cần có:

$$\begin{cases} N \ge 0 \\ \left| F_{ms} \right| \le kN \end{cases}$$

$$\Rightarrow \begin{cases} F \le \frac{mg}{\sin \alpha} \\ F \frac{\left| I\cos \alpha - mRr \right|}{I + mR^2} \le k \left(mg - F\sin \alpha \right) \end{cases}$$

$$\Rightarrow F \le \frac{kmg \left(I + mR^2 \right)}{I \left(\cos \alpha + k \sin \alpha \right) + mR \left(r + kR \sin \alpha \right)}$$

3.19- Trên một trụ rỗng khối lượng m = 1kg, người ta cuộn một sợi dây không giãn có khối lượng và đường kính nhỏ không đáng kể. Đầu tự do của dây được gắn trên một giá cố định (hình 3-7). Để trụ rơi dưới tác dụng của trọng lượng. Tìm gia tốc của trụ và sức căng của dây treo.

Bài giải:

Trụ vừa quay vừa rơi. Gọi T là sức căng dây. Thiết lập các phương trình lực và mômen lực, ta có:

$$mg - T = m\gamma$$

$$TR = I\beta = mR^2\beta$$

Mặt khác, từ mối liên hệ giữa vân tốc dài và vân tốc góc, ta có:

$$v = \omega R \implies \gamma = \beta R$$

Ta có hệ phương trình:

$$\begin{cases} mg - T = m\gamma \\ T = mR\beta = m\gamma \end{cases} \Rightarrow \begin{cases} 2m\gamma = mg \\ T = m\gamma \end{cases}$$

$$\Rightarrow \begin{cases} \gamma = \frac{g}{2} = \frac{9.8}{2} = 4.9(m/s^2) \\ T = \frac{mg}{2} = \frac{1.9.8}{2} = 4.9(N) \end{cases}$$

- 3-20. Hai vật có khối lượng lần lượt bằng m₁ và m₂ (m₁ > m₂), được nối với nhau bằng một sợi dây vắt qua một ròng rọc (khối lượng của ròng rọc bằng m) (hình 3-8). Tìm: a) Gia tốc của các vật;
- b) Sức căng T_1 và T_2 của các dây treo. Coi ròng rọc là một đĩa tròn; ma sát không đáng kể. Áp dụng bằng số: $m_1 = 2kg$, $m_2 = 1kg$; m = 1kg.

Bài giải:

Thiết lập các phương trình lực và mômen lực:

$$m_1g - T_1 = m_1\gamma_1$$

$$T_2 - m_2 g = m_2 \gamma_2$$

$$(T_1 - T_2)R = I\beta = \frac{mR^2}{2} \cdot \frac{\gamma_3}{R}$$

$$\begin{cases} T_1 = m_1(g - \gamma) \\ T_2 = m_2(g + \gamma) \\ T_1 - T_2 = \frac{m}{2}\gamma \end{cases} \Rightarrow \begin{cases} T_1 = m_1(g - \gamma) \\ T_2 = m_2(g + \gamma) \\ \frac{m}{2}\gamma = (m_1 - m_2)g - (m_1 + m_2)\gamma \end{cases}$$

$$\Rightarrow \begin{cases} T_1 = m_1(g - \gamma) \\ T_2 = m_2(g + \gamma) \\ (2m_1 + 2m_2 + m)\gamma = 2(m_1 - m_2)g \end{cases} \Rightarrow \begin{cases} T_1 = \frac{m_1(4m_2 + m)g}{2m_1 + 2m_2 + m} \\ T_2 = \frac{m_2(4m_1 + m)g}{2m_1 + 2m_2 + m} \\ \gamma = \frac{2(m_1 - m_2)g}{2m_1 + 2m_2 + m} \end{cases}$$

3-21. Một hệ gồm một tru đặc đồng chất khối lượng M = 2,54kg và một vật năng khối lương m = 0,5kg được nối với nhau bằng một sợi dây vắt qua ròng rọc (hình 3-9). Bỏ qua khối lượng của dây, của ròng rọc và khung gắn với trụ. Tìm gia tốc của vật nặng và sức căng của dây.

Bài giải:

Gọi T là sức căng dây, từ các phương trình lưc và mômen lực, ta có hệ sau:

$$\begin{cases} mg - T = m\gamma \\ TR = I\beta = \left(\frac{MR^2}{2} + MR^2\right)\frac{\gamma}{R} \end{cases} \Rightarrow \begin{cases} mg - T = m\gamma \\ T = \frac{3}{2}M\gamma \end{cases}$$

$$\Rightarrow \begin{cases} mg = \left(m + \frac{3}{2}M\right)\gamma \\ T = \frac{3}{2}M\gamma \end{cases} \Rightarrow \begin{cases} \gamma = \frac{mg}{m + \frac{3}{2}M} = \frac{0,5.9,8}{0,5 + 1,5.2,54} \approx 1,14\left(\frac{m}{s^2}\right) \\ T = \frac{3}{2}M\gamma \end{cases} \Rightarrow \begin{cases} T = \frac{3}{2}M\gamma = 1,5.2,54.1,14 \approx 4,33(N) \end{cases}$$

3-22. Một vật A khối lượng m trượt trên mặt phẳng nghiêng và làm quay một bánh xe có bán kính R (hình 3-10). Mômen quán tính của bánh xe đối với truc quay bằng I. Khối lượng của dây

không đáng kể. Tìm gia tốc góc của bánh xe?

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Tái Nguyên

Bài giải:

Gọi T là sức căng dây, ta có hệ phương trình:

$$\begin{cases}
TR = I\beta \\
T - mg \sin \alpha + kmg \sin \alpha = m\gamma = mR\beta
\end{cases}$$

$$\Rightarrow \frac{I}{R}\beta - mR\beta = mg \sin \alpha - kmg \cos \alpha$$

$$\Rightarrow \beta = \frac{mgR(\sin \alpha - k \cos \alpha)}{I - mR^2}$$

Với k là hệ số ma sát của mặt phẳng nghiêng:

+ Nếu $k > tg\alpha$, hệ ở trạng thái cân bằng: $\beta = 0$.

+ Nếu
$$k = 0$$
 thì $\beta = \frac{\text{mgR } \sin \alpha}{\text{I} - \text{mR}^2}$.

3-23. Một thanh có chiều dài l = 1m quay xung quanh một trục nằm ngang đi qua một đầu của thanh. Lúc đầu, thanh ở vị trí nằm ngang, sau đó được thả ra (hình 3-11). Tìm gia tốc góc của thanh lúc bắt đầu thả rơi và lúc thanh đi qua vị trí thẳng đứng.

Bài giải:

Mômen lực do trọng lực gây ra quanh trục quay khi thanh nghiêng một góc α so với phương thẳng đứng là:

Vậy:
$$\beta = \frac{M}{I} = \frac{\text{mgl } \sin \alpha}{2 \cdot \left(\frac{1}{12} \text{ml}^2 + \text{m} \frac{1^2}{4}\right)} = \frac{3g \sin \alpha}{21}$$

- + Tại vị trí ban đầu: $\alpha = 90^{\circ}$: $\beta = \frac{3g}{2l} = \frac{3.9.8}{2.1} = 14.7 (m/s^2)$
- + Tại vị trí thanh đi qua vị trí thẳng đứng: $\alpha = 0$: $\beta = 0$.
- 3-24. Một đĩa tròn đồng chất bán kính R_1 khối lượng m có thể quay xung quanh 1 trục nằm ngang vuông góc với đĩa và cách tâm đĩa một đoạn R/2. Đĩa bắt đầu quay từ vị trí tương ứng với vị trí cao nhất của tâm đĩa với vận tốc đầu bằng 0. Xác định mômen động lượng của đĩa đối với trục quay khi đĩa đi qua vị trí thấp nhất.

Bài giải:

Mômen quán tính của đĩa đối với truc quay là:

$$I = \frac{1}{2}mR^2 + m\left(\frac{R}{2}\right)^2 = \frac{3mR^2}{4}$$

áp dụng định luật bảo toàn năng lượng:

$$mgR = \frac{1}{2}I\omega^2 = \frac{(I\omega)^2}{2I} = \frac{L^2}{2I}$$

$$\Rightarrow L = \sqrt{2mgRI} = \sqrt{\frac{6m^2gR^3}{4}} = mR\sqrt{\frac{3}{2}gR}$$

3-25. Một hệ chất điểm có tổng động lượng bằng \vec{K} và mômen động lượng \vec{L} đối với một điểm O. Xác định mômen động lượng của hệ đối với điểm O' biết $\vec{OO'} = \vec{r_0}$. Trong trường hợp nào mômen động lượng của h không phụ thuộc điểm O?

Bài giải:

Mômen động lượng của hệ đối với O' là:

$$\begin{split} \vec{L}_{\mathrm{O'}} &= \sum_{\mathrm{i}} \vec{r}_{\mathrm{O'i}} \wedge m_{\mathrm{i}} \vec{v}_{\mathrm{i}} = \sum_{\mathrm{i}} \left(\vec{r}_{\mathrm{Oi}} + \vec{r}_{\mathrm{OO'}} \right) \wedge m_{\mathrm{i}} \vec{v}_{\mathrm{i}} \\ &= \sum_{\mathrm{i}} \vec{r}_{\mathrm{Oi}} \wedge m_{\mathrm{i}} \vec{v}_{\mathrm{i}} + \sum_{\mathrm{i}} \vec{r}_{\mathrm{0}} \wedge m_{\mathrm{i}} \vec{v}_{\mathrm{i}} \\ &= \sum_{\mathrm{i}} \vec{r}_{\mathrm{Oi}} \wedge m_{\mathrm{i}} \vec{v}_{\mathrm{i}} + \vec{r}_{\mathrm{0}} \wedge \left(\sum_{\mathrm{i}} m_{\mathrm{i}} \vec{v}_{\mathrm{i}} \right) \\ &= \vec{L}_{\mathrm{O}} + \vec{r}_{\mathrm{0}} \wedge \vec{K} \end{split}$$

Mômen động lượng của hệ không phụ thuộc vào điểm O hay:

$$\vec{L}_{O'} = \vec{L}_{O} \iff \vec{r}_{0} \wedge \vec{K} = 0 \iff \vec{K} = 0$$

3-26. Chứng minh rằng mômen động lượng \vec{L} của 1 hệ chất điểm đối với 1 điểm O gắn liền với 1 hệ qui chiếu K có thể cho bởi: $\vec{L} = \vec{L}_0 + \overset{\rightarrow}{r_0} \vec{P}$, trong đó \vec{L}_0 là mômen động lượng đối với khối tâm, $\overset{\rightarrow}{r_0}$ là véctơ bán kính của khối tâm đối với điểm O trong hệ K, \vec{P} là tổng động lượng của hệ.

Bài giải:

Tương tự bài 3-25, thay O bằng trọng tâm G, và O' bằng điểm O trong hệ K, ta có: $\vec{L} = \vec{L}_o + \vec{r}_o \wedge \vec{P}$

Chương 4 NĂNG LƯỢNG

4-1. Hỏi động cơ máy bay phải có công suất bằng bao nhiều, biết rằng máy bay có khối lượng m = 3000kg, khi bay lên cao 1km phải mất một phút. Bỏ qua sức cản của không khí.

Bài giải:

Muốn bay lên cao, máy bay phải tốn công để thắng công cản của trọng lực $A = mg\Delta h$. Từ đó suy ra công suất của máy bay

 $P = \frac{A}{\Delta t} = \frac{mg\Delta h}{\Delta t}$

bay lên cao . thế năng

Thay m = 3000 kg, h = 1 km = 1000 m, $\Delta t = 1$ phút = 60s và g vào biểu thức trên ta tính được P = 490 kW.

4-2 Tính công cần thiết để kéo một lò xo giãn ra 20cm, biết rằng lực kéo tỷ lệ với độ giãn của lò xo và muốn lò xo giãn 1cm phải cần một lực 30N.

Bài giải:

Hệ số đàn hồi của lò xo bằng: k = 30N/1cm = 3000N/m

Công của lực kéo:

$$A = \int_{0}^{\Delta x} F.dx = \int_{0}^{\Delta x} (k.x).dx = \frac{k(\Delta x)^{2}}{2},$$

Với k = 3000 N/m; $\Delta x = 20 \text{cm} = 0.2 \text{m}$ thì A = 60 J.

4-3. Một ôtô khối lượng một tấn, khi tắt máy chuyển động xuống dốc thì có vận tốc không đổi v = 54km/h. Độ nghiêng của dốc là 4%. Hỏi động cơ ôtô phải có công suất bao nhiêu để nó lên được dốc trên cùng với vận tốc 54km/h.

Bài giải:

Vì khi tắt máy xuống đốc, ôtô có vận tốc không đổi nên phải có điều kiện:

 $f_{ms} = mgsin\alpha$.

Để xe chuyển động đều lên dốc thì lực kéo F_k của động cơ ôtô phải bằng:

 $F_k = f_{ms} + mg.\sin\alpha = 2.mg.\sin\alpha$

Công suất của động cơ ôtô khi lên dốc với vận tốc v được tính theo công thức:

$$P = \frac{A}{t} = \frac{F_k \cdot S}{t} = F_k \cdot v = (2.\text{mg.} \sin \alpha).v$$

$$= 2.1000.9.8.0.04.15 \approx 11.8kW$$
(1)

4. Một ôtô khối lượng 2 tấn, leo lên đốc có độ nghiêng 4%. Hệ số ma sát là 0,08. Tìm:

- a) Công thực hiện bởi động cơ ôtô trên quãng đường dài 3km;
- b) Công suát của động cơ ôtô, biết rằng thời gian đi hết quãng đường trên mất 4 phút.

Bài giải:

Lực kéo của động cơ phải cân bằng với thành phần mg.sinα của trọng lực và lực ma sát:

 $F_k = \text{mg.} \sin \alpha + f_{\text{ms}} = \text{mg.} \sin \alpha + \text{k.mg} \cos \alpha \approx \text{mg.} \sin \alpha + \text{k.mg}$.

Công kéo của động cơ trên quãng đường dài 3km:

A =
$$F_k$$
.S = mg.($sin \alpha + k$).S = 2000.9,8.(0,04 + 0,08).3000 = 7,06.10⁶(J).

Công suất của động cơ:

$$P = \frac{A}{t} = \frac{7,06.10^6}{4.60} = 2,94.10^4 \text{ W} = 29,4 \text{kW}$$

4-5. Một đoàn tàu khối lượng 50 tấn chuyển động trên đường ray nằm ngang với vận tốc không đổi bằng 36km/h. Công suất của đầu máy là 220,8kW. Tìm hệ số ma sát giữa tàu và đường ray.

Bài giải:

Khi chuyển động đều trên đường ray nằm ngang, lực kéo của đầu tầu phải cân bằng với lực ma sát: $F_k = f_{ms} = k.mg$.

Công suất của đầu máy có thể xác định theo công thức:

$$P = \frac{A}{t} = \frac{F_k.S}{t} = F_k.v = k.mg.v$$

$$\Rightarrow k = \frac{P}{mgv} = \frac{220.8.10^3}{50.10^3.9.8.10} = 0.045$$

4-6. Người ta thường xác định công suất của động cơ bằng một thiết bị như hình vẽ 4-4.

Thiết bị gồm hai hàm kẹp, kẹp chặt vào trục động cơ. Một hàm hẹp được gắn với tay đòn, cuối tay đòn có treo trọng vật Q. Trọng vật được chọn sao cho nó cân bằng với lực ma sát và giữa tay đòn nằm ngang. Xác định công suất của động cơ nếu số vòng quay của trục là n = 60 vòng/phút, chiều dài cánh tay đòn kể từ tâm của trục l = 1m, trọng lượng của vật bằng Q = 490N. Trọng lượng của cánh tay đòn không đáng kể.

<u>Bài giải</u>:

Gọi f_{ms} là mực ma sát giữa các hàm kẹp và trục của động cơ. Ta có điều kiện cân bằng:

$$f_{ms}.r = Q.l.$$
 \Rightarrow $f_{ms} = \frac{Ql}{r}$

Công suất của động cơ $P=f_{ms}$. $v=\frac{Q.l}{r}.[(2\pi.n).r]=2\pi Qnl$, n=1 là số vòng quay trong 1 giây.

$$\Rightarrow$$
 P = 2. π .490.1.1 = 3,08.10³ W

4-7. Một động cơ truyền công suất P=15kW cho một puli nhờ dây cuaroa AB (hình 4-5). Bán kính puli r=25cm, vận tốc quay của puli n=120 vòng/phút. Lực căng của nhánh trên A của dây cuaroa lớn gấp đôi lực căng của nhánh dưới B. Tìm lực căng đó biết rằng hai nhánh dây cuaroa song song với nhau.

Bài giải:

Công suất truyền cho puli:

$$P = F.v = [(T_A - T_B).r].2\pi.n.$$

Từ điều kiện
$$T_A = 2T_B$$
 suy ra $T_A = 2.T_B = \frac{P}{\pi.r.n}$.

Thay số:
$$T_A = 2T_B = \frac{15.10^3}{\pi \ 0.25.2} = 9556(N)$$

- 4-8. Một chiếc xe khối lượng 20000kg chuyển động chậm dần đều dưới tác dụng của lực ma sát bằng 6000N. Sau một thời gian xe dừng lại. Vận tốc ban đầu của xe là 54km/h. Tính:
 - a) Công của lực ma sát;
- b) Quãng đường mà xe đã đi được kể từ lúc có lực ma sát tác dụng cho tới khi xe dừng hẳn.

Bài giải:

Dựa theo định lý động năng, công cản của lực ma sát làm giảm động năng của xe từ giá trị ban đầu về 0, do đó, công này có độ lớn chính bằng động năng ban đầu của xe:

$$A_{ms} = \Delta E_K = \frac{1}{2} \text{m.v}^2 = \frac{1}{2}.20000.15^2 = 2,25.10^6 \text{ J}.$$

Quãng đường mà xe di được kể từ lúc hãm xe đến khi xe dừng hẳn:

$$S = \frac{A_{ms}}{f_{ms}} = \frac{2,25.10^6}{6000} = 375(m)$$

- 4-9. Tính công cần thiết để cho một đoàn tàu khối lượng $m = 8.10^5 \text{kg}$:
- a) Tăng tốc từ $v_1 = 36$ km/h đến $v_2 = 54$ km/hệ thống
- b) Dùng lại nếu vận tốc ban đầu là 72km/h.

Bài giải:

Ta sẽ áp dụng định lý động năng: độ biến thiên động năng của một vật bằng công do ngoại lực tác dụng vào vật do đó:

a) Công làm xe tăng vận tốc từ $v_1 = 36$ km/h = 10m/s đến $v_2 = 54$ km/h = 15m/s:

$$A = \Delta E_K = \frac{1}{2} m. v_2^2 - \frac{1}{2} m. v_1^2 = \frac{1}{2}.8.10^5.15^2 - \frac{1}{2}.8.10^5.10^2 = 5.10^7 J$$

b) Công làm xe giảm vận tốc từ $v_0 = 72$ km/h = 20m/s đến v = 0m/s:

A =
$$\Delta E_K = \frac{1}{2} \text{ m.v}^2 - \frac{1}{2} \text{ m.v}_0^2 = 0 - \frac{1}{2}.8.10^5.20^2 = -1,6.10^8 \text{ J}$$

Công/này là công cản (công âm).

4.10. Một khẩu pháo khối lượng M=450 kg nhả đạn theo phương nằm ngang. Đạn pháo có khối lượng m=5 kg, vận tốc đầu nòng v=450 m/s. Khi bắn, bệ pháo giật về phía sau một đoạn s=45 cm. Tìm lực hãm trung bình tác dụng lên pháo.

Bài giải:

Gọi V là vận tốc giật lùi của khẩu pháo. Dựa vào định luật bảo toàn động lượng áp dụng cho phương ngang ta có:

$$\vec{W} + \vec{W} = 0$$
 \Rightarrow $\vec{V} = -\frac{\vec{W}}{\vec{W}} \cdot \vec{V}$

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

$$V \xrightarrow{M} \stackrel{V}{\longrightarrow} \stackrel{m}{\longrightarrow}$$

Lực hãm khẩu pháo sinh công làm giảm động năng của khẩu pháo:

$$\Rightarrow$$
 $F_{h\tilde{a}m}.S = \frac{1}{2}M.V^2$

Từ đó:

$$F_{h\bar{a}m} = \frac{M.V^2}{2.S} = \frac{m^2.v^2}{2.s.M}$$
$$= \frac{5^2.450^2}{2.0,45.450} = 12500(N)$$

- 4 1. Một viên đạn khối lượng m = 10kg đang bay với vận tốc v=100m/s thì gặp một bản gỗ dày và cắm sâu vào bản gỗ một đoan s = 4cm. Tìm:
 - a) Lực cản trung bình của bản gỗ lên viên đạn;
 - b) Vận tốc viên đạn sau khi ra khỏi bản gỗ chỉ dày d = 2cm.

Bài giải:

a) Ta vẫn sử dụng định lý về động năng để có được phương trình:

$$\bar{F}_{c}$$
 .s = $\frac{\text{m.0}^{2}}{2} - \frac{\text{mv}_{0}^{2}}{2} \rightarrow \bar{F}_{c} = -\frac{\text{mv}_{0}^{2}}{2\text{s}} = -\frac{10.100^{2}}{2.0,04} = -1250(\text{N})$

b) Viên đạn có khả năng xuyên sâu vào bản gỗ 4cm mới dừng lại. Nếu bản gỗ chỉ dày 2cm thì sau khi xuyên qua bản gỗ, viên đạn vẫn còn tiếp tục chuyển động với vận tốc v' < v. Theo định lý về động năng:

$$A' = \frac{m{v'}^2}{2} - \frac{m{v_0^2}}{2} = \overline{F_c} d,$$
suy ra: $v' = \sqrt{\frac{2F_c d}{m} + v_0^2} = \sqrt{\frac{2(-1250).0,02}{10} + 100^2} \approx 71 \text{m/s}.$

4-12. Một xe chuyên động từ đỉnh một dốc phẳng DC có độ cao h (hình 4-6) và dừng hẳn lại sau khi đã đi được đoạn nằm ngang CB. Cho AB = s; AC = 1; hệ số ma sát giữa xe và mặt đường trên các đoạn DC và CB bằng nhau.

Tính hệ số ma sát và gia tốc của xe trên các đoạn đường DC và BC.

Bài giải:

- Tại đỉnh mặt phẳng nghiêng xe có thế năng W_t = mgh. Chính thế năng này đã dùng để thắng công A_1 và A_2 của lực ma sát trên các đoạn đường DC và CB. Do đó W_t = A_1 + A_2 , trong đó công của lực ma sát trên các đoạn DC và CB là:

$$A_1 = k.(mg.cos\alpha)$$
. $DC = kmg.1$;
 $A_2 = kmg$ (s - 1).

Từ đó ta suy ra: mgh = kmgl + kmg(s-1) = kmgs \Rightarrow k = $\frac{h}{s}$.

- Phân tích lực và áp dụng định luật Niuton thứ hai, ta được các phương trình:

$$mgsin\alpha - (f_{ms})_{DC} = m.a_{DC},$$

$$- kmg = m.a_{CB}$$
(1)

Từ (1) suy ra:

 $mgsin\alpha - k.(mg.cos\alpha) = m.a_{DC}$

$$\Rightarrow a_{CD} = g(\sin\alpha - k\cos\alpha) = g.\left(\frac{h}{\sqrt{l^2 + h^2}} - \frac{h}{s}.\frac{l}{\sqrt{l^2 + h^2}}\right)$$
$$= \frac{gh}{\sqrt{l^2 + h^2}} \left(1 - \frac{l}{s}\right) > 0$$

Còn từ (2)
$$\Rightarrow$$
 $a_{CB} = -kg = -\frac{h}{s}.g < 0$

Đáp số:
$$k = \frac{h}{s}$$
; $a_{DC} = \frac{gh}{\sqrt{h^2 + 1^2}} \left(1 - \frac{1}{s} \right)$; $a_{CB} = -kg = -\frac{h}{s} \cdot g$.

4-13. Một vật khối lượng m trượt không ma sát từ đỉnh một mặt cầu xuống dưới (hình 4-7). Hỏi từ khoảng cách Δh nào (tính từ đỉnh mặt cầu) vật bắt đầu rơi khỏi mặt cầu. Cho bán kính mặt cầu R=90cm.

Bài giải:

Hình 4-?

Trong quá trình vật trượt trên mặt cầu, vật chịu tác dụng của hai lực: trọng lực P của vật và phản lực R_n của mặt cầu. Tổng hợp hai lực này tạo ra hai thành phần: thành phần pháp tuyến đóng vai trò lực hướng tâm trong chuyển động tròn của vật, thành phần tiếp tiếp gây ra chuyển động trượt nhanh dần cho vật.

Xét thành phần pháp tuyến:

$$P_n - R_n = m.a_{ht} = \frac{m.v^2}{R} \Rightarrow R_n = P_n - \frac{m.v^2}{R} = mg \cos \alpha - \frac{m.v^2}{R}$$

Mặt khác, theo định luật bảo toàn cơ năng: độ giảm thế năng của vật bằng độ tăng động năng của vật.

$$mg\Delta h = \frac{1}{2}mv^2.$$

$$\Rightarrow R_n = mg \cos \alpha - \frac{2mg\Delta h}{R} = mg \frac{R - \Delta h}{R} - \frac{2mg\Delta h}{R} = mg \left(1 - \frac{3\Delta h}{R}\right)$$

Vật chỉ có thể được gọi là bám trên mặt cầu nếu nó còn áp lên mặt cầu một lực (bằng phản lực R_n của mặt cầu), tức là $R_n \geq 0$. Sự rời khỏi mặt cầu bắt đầu xảy ra khi $R_n = 0$. Hay:

$$R_n = mg \left(1 - \frac{3\Delta h}{R}\right) = 0$$
 \Rightarrow $\Delta h = \frac{R}{3} = 30 \text{cm}.$

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

4/14. Một vật khối lượng m=1kg trượt trên một mặt phẳng nghiêng hợp với mặt nằm ngang một góc α sao cho $\sin\alpha=0,1$. Sau khi trượt hết mặt phẳng nghiêng, vật còn tiếp tục chuyển động trên mặt phẳng nằm ngang một đoạn l=10m mới dừng lại. Hệ số ma sát trong suốt quá trình chuyển động k=0,05. Tìm vận tốc của vật ở cuối mặt phẳng nghiêng. Lấy gia tốc trọng trường $g=10m/s^2$.

Bài giải:

Do tác dụng của lực ma sát f_{ms} = -kmg, vật trượt trên đoạn mặt phẳng ngang BC với gia tốc a = -k.g. Gọi v là vận tốc của vật ở cuối mặt phẳng nghiêng, theo định lý động năng ta có:

$$f_{ms}.l = 0 - \frac{1}{2}mv^2 \Rightarrow kmg.l = \frac{1}{2}mv^2$$

 $\rightarrow v = \sqrt{2kgl} = \sqrt{2.0,05.10.10} \approx 3,16(m/s)$

4-15. Từ một đỉnh tháp cao h = 20m, người ta ném một hòn đá khối lượng 50g theo phương nghiêng với mặt phẳng nằm ngang, với vận tốc ban đầu $v_0 = 18m/s$. Khi rơi tới mặt đất hòn đá có vận tốc v = 24m/s. Tính công của lực cản của không khí lên hòn đá.

Bài giải:

Chọn mốc tính thế năng nằm tại mặt đất. Thời điểm đầu tiên hòn đá có cơ năng:

$$W_{t} = \frac{1}{2}mv_{0}^{2} + mgh$$

Thời điểm hòn đá chạm mặt đất nó có cơ năng:

$$W_t' = \frac{1}{2} m v^2$$

Rõ ràng cơ năng lúc sau của hòn đá bằng cơ năng ban đầu của hòn đá cộng thêm công sinh ra của ngoại lực, do đó:

W'= W + A_C
$$\Rightarrow$$
 A_C = W'-W
 \Rightarrow A_C = $\frac{m}{2}$ ($v^2 - v_0^2$) - mgh
= $\frac{0.05}{2}$ (24² - 18²) - 0.05.9,8.20 = -3.5(J)

4-16. Một vật khối lượng m = 10kg trượt từ đỉnh một mặt phẳng nghiêng cao 20m xuống. Khi tới chân dốc vật có vận tốc 15m/s. Tính công của ma sát.

Bài giải

Công sinh ra bởi lực ma sát bằng độ biến thiên cơ năng của vật:

$$A_C = W_{sau} - W_{tru\acute{o}c} = \frac{1}{2} mv^2 - mgh = \frac{1}{2}.10.15^2 - 10.9,8.20 = -835(J)$$

4-17. Ở đầu một sợi dây OA, dài l = 30cm có treo một vật nặng (hình 4-8). Hỏi tại điểm thấp nhất A phải truyền cho vật một vận tốc bé nhất bằng bao nhiều để vật có thể quay tròn trong mặt phẳng thẳng đứng.

Bài giải:

Tại A vật được truyền một động năng $\frac{1}{2}$ mv $_A^2$. Sau đó vật bắt đầu chuyển động tròn lên phía trên. Thế năng của vật tăng dần, động năng (do đó vận tốc) của vật giảm dần (hình 4-8).

Muốn vật chuyển động tròn trong mặt phẳng thẳng đứng, vận tốc v_B của vật tại điểm cao nhất B phải đủ lớn để làm cho sợi dây luôn bị căng $(T \ge 0)$.

Vì tại B vật chịu tác dụng của trọng lực $\overrightarrow{P} = \overrightarrow{mg}$ và lực căng \overrightarrow{T} (đều hướng theo phương thẳng đứng) tạo ra lực hướng tâm trong chuyển đông tròn của vật, nên:

$$F_{ht} = \frac{mv_B^2}{1} = mg + T.$$

Vậy vận tốc nhỏ nhất tại B để vật có thể quay tròn:

$$v_{Bmin} = \sqrt{gl}$$
. (1)

Mặt khác, theo định luật bảo toàn cơ năng:

$$(\Delta W_d)_{AB} = - (\Delta W_t)_{AB} ,$$

suy ra:
$$v_A^2 = v_B^2 + 4gl$$
.

Vậy vận tốc nhỏ nhất cần truyền cho vật tại A để nó quay tròn trong mặt phẳng thẳng đứng:

$$(v_A)_{min}^2 = (v_B)_{min}^2 + 4gl$$
, $\Rightarrow v_{Amin} = \sqrt{5gl} = 3.8 \text{m/s}$

4-18. Một con lắc đơn trọng lượng P được kéo ra khỏi phương thẳng đứng một góc α = 90° , sau đó con lắc được thả rơi. Chứng minh rằng sức căng của dây treo bằng 3P khi con lắc đi qua vị trí cân bằng.

<u>Bài giải</u>:

Khi qua vị trí cân bằng, hợp lực giữa sức căng của dây và trọng lực của con lắc tạo ra lực hướng tâm của chuyển động này.

$$T - P = m.a_{ht} = \frac{mv^2}{1} \implies T = \frac{mv^2}{1} + mg$$

Áp dụng định luật bảo toàn cơ năng ta có:

$$\frac{1}{2}mv^2 = mgl$$

Từ đó suy ra sức căng T:

$$T = \frac{2mgl}{1} + mg = 3mg = 3P$$

- 4-19. Một quả cầu khối lượng m = 0,1kg được gắn ở đầu một thanh nhẹ dài 1 = 1,27m khối lượng không đáng kể. Hệ quay trong mặt phẳng thẳng đứng xung quanh đầu kia của thanh. Tại điểm cao nhất quả cầu có vận tốc $v_0 = 4,13$ m/s.
- a) Tìm sự phụ thuộc của thế năng và động năng của quả cầu theo góc α hợp bởi thanh và phương thẳng đứng. Chọn gốc tính thế năng tại vị trí thấp nhất của quả cầu.
- b) Xác định lực tác dụng T của quả cầu lên thanh theo góc α . Tìm T tại các vị trí thấp nhất và cao nhất của quả cầu.

Bài giải:

Chọn mốc tính thế năng tại vị trí thấp nhất A của quả cầu. Khi quả cầu ở điểm C, thanh hợp với phương thẳng đứng một góc α thì:

a) thế năng và động năng của quả cầu là:

$$\begin{aligned} W_t &= mgh_C = mgl \cdot (1 - cos\alpha); \\ W_d &= \frac{1}{2}mv^2 \end{aligned}$$

Theo định luật bảo toàn cơ năng ta có:

$$W_t + W_d = (W_t)_0 + (W_d)_0.$$

Hay:
$$\text{mgl}(1 - \cos \alpha) + \frac{1}{2} \text{mv}^2 = \text{mg.}(2.1) + \frac{1}{2} \text{mv}_0^2$$

$$\Rightarrow \qquad \text{v} = \sqrt{2\text{gl.}(1 + \cos \alpha) + \text{v}_0^2}; \qquad \text{W}_d = \frac{1}{2} \text{mv}^2 = \frac{1}{2} \text{mv}_0^2 + \text{mgl}(1 + \cos \alpha)$$

b) lực hướng tâm của vật được quyết định bởi trọng lực P và lực T của thanh:

$$F_{ht} = \frac{mv^2}{1} = T - mg\cos\alpha$$

$$\rightarrow T = \frac{mv^2}{1} + mg\cos\alpha = \frac{mv_0^2}{1} + 2mg(1 + \cos\alpha) + mg\cos\alpha$$

$$\Rightarrow T = m \left(\frac{v_0^2}{1} + 3g \cos \alpha + 2g \right)$$

Tại điểm thấp nhất,
$$\alpha = 0$$
 \Rightarrow $T = m \left(\frac{v_0^2}{1} + 5g \right) = 0.1 \cdot \left(\frac{4.13^2}{1.27} + 5.9.8 \right) = 6.24(N)$

Tại điểm cao nhất,
$$\alpha = 180^{\circ}$$
, \Rightarrow $T = m \left(\frac{v_0^2}{1} - g \right) = 0.1 \cdot \left(\frac{4.13^2}{1.27} - .9.8 \right) = 0.363(N)$.

Cả hai vị trí, vật đều kéo căng thanh.

4\20. Để đo vận tốc của viên đạn người ta dùng con lắc thử đạn. Đó là một bì cát treo ở đầu một sợi dây (hình 4-9). Khi viên đạn xuyên vào bì cát, nó bị mắc tại đó và bì cát được nâng lên một độ cao h nào đó. Tìm vận tốc của đạn lúc đó sắp xuyên vào bì cát. Biết khối lượng của viên đạn là m, khối lượng của bì cát là M.

Bài giải:

Đây là bài toán va chạm mềm. Muốn giải nó, ta áp dụng định luật bảo toàn động lượng và định luật bảo toàn cơ năng. Gọi v và V lần lượt là vận tốc của đạn trước khi xuyên vào bì cát và vận tốc của bì cát sau khi có đạn xuyên vào.

Định luật bảo toàn động lượng cho:

$$mv = (M + m) V.$$
 (1)

Định luật bảo toàn cơ năng cho:

$$(m+M)\frac{V^2}{2} = (m+M) gh.$$
 \Rightarrow $V = \sqrt{2gh}$ (2)

Từ (1) và (2) ta suy ra:
$$v = \frac{m+M}{m}$$
. $V = \frac{m+M}{m}$. $\sqrt{2gh}$.

Đo m, M, h sẽ tính được vận tốc v của viên đạn.

4-21. Một ống thuỷ tinh khối lượng M trong có đựng vài giọt ête được đậy bằng một cái nút khối lượng m. Ông thuỷ tinh được gắn ở đầu một thanh cứng dài 1 trọng lượng không đáng kể (hình 4-10). Khi hơ nóng ống thuỷ tinh, ête bốc hơi, nút bị bật ra dưới áp suất của hơi ête. Hỏi vận tốc bật bé nhất của nút phải bằng bao nhiều để ống thuỷ tinh có thể quay được cả vòng xung quanh điểm treo O.

Bài giải:

Gọi v, V lần lượt là vận tốc của cái nút và vận tốc của ống thuỷ tinh.

Áp dung định luật bảo toàn động lượng ta có:

$$M.V = m.v$$

Theo kết quả của bài 4-17 thì, để ống thuỷ tinh có thể chuyển động tròn quanh điểm treo O thì vận tốc V của nó tại điểm thấp nhất này phải thoả mãn điều kiện:

$$V \ge \sqrt{5gl}$$

- 4-22. Một hòn bi khối lượng m chuyển động không ma sát trên một đường rãnh có dạng như hình vẽ 4-11. Hòn bi được thả không có vận tốc ban đầu từ độ cao h=2R, kích thước của bi nhỏ không đáng kể. Hỏi:
 - a) Ở đô cao nào hòn bi rời khỏi đường rãnh?
 - b) Độ cao lớn nhất mà hòn bi sẽ đạt được sau khi rời khỏi đường rãnh?

Bài giải:

a) Xem bài tập 4-13, 4-18: hòn bi rời khỏi đường rãnh khi lực nén hòn bi lên rãnh bằng không. Từ điều kiện trên suy ra:

Hình 4-22

$$mg.cos\alpha = \frac{mv_0^2}{R} \qquad (1)$$

Áp dụng định luật bảo toàn cơ năng cho quá trình AB (B là điểm hòn bi rời đường rãnh) ta có: $H_1 = \frac{5}{3}R$ (hình 4-3').

b) Vận tốc của hòn bi tại B được suy ra từ (1):

$$v_0=\sqrt{\frac{2Rg}{3}}$$
 . Sau khi rời đường rãnh, bi chuyển động theo một parabol đỉnh C. Vận

tốc nằm ngang ở C: $(v_x)_c = v_0 \cos \alpha$, vận tốc thẳng đứng $(v_y)_c = v_0 \sin \alpha$ - gt. Áp dụng định luật bảo toàn cơ năng cho quá trình AC, ta suy ra:

$$\mathbf{H}_2 = \frac{50}{27} \mathbf{R} .$$

- 4-23. Một quả cầu khối lượng 2kg, chuyển động với vận tốc 3m/s, va chạm xuyên tâm với một quả cầu thứ hai khối lượng 3kg đang chuyển động cùng chiều với quả cầu thứ nhất với vận tốc 1m/s. Tìm vận tốc của các quả cầu sau va chạm nếu:
 - a) Va cham là hoàn toàn đàn hồi.
 - b) Va chạm là không đàn hồi (mềm).

Bài giải:

a) Va cham đàn hồi:

Va chạm giữa hai vật tuân theo định luật bảo toàn động lượng và bảo toàn động năng. Ta có các phương trình bảo toàn:

$$m_1 v_1' + m_2 v_2' = m_1 v_1 + m_2 v_2$$
 (1)

$$\frac{1}{2}m_{1}v_{1}'^{2} + \frac{1}{2}m_{2}v_{2}'^{2} = \frac{1}{2}m_{1}v_{1}^{2} + \frac{1}{2}m_{2}v_{2}^{2}$$
 (2)

Chuyển tất cả các số hạng liên quan đến m_1 về một vế, liên quan đến m_2 sang vế còn lai trong hai phương trình trên:

$$m_1(v_1'-v_1) = m_2(v_2-v_2')$$
(3)

$$m_1(v_1'^2 - v_1^2) = m_1(v_2^2 - v_2'^2)$$
(4)

Do sau va chạm, các vật thay đổi vận tốc nên có thể lấy (4) chia vế cho vế với (3) ta được:

$$v_1' + v_1 = v_2' + v_2$$
 (5)

Nhân hai vế của (5) với m₂ rồi cộng vế theo vế với (3) ta được:

$$m_2(v_1'+v_1)+m_1(v_1'-v_1)=2m_2v_2$$

$$\rightarrow v_1' = \frac{2m_2v_2 + (m_1 - m_2)v_1}{m_1 + m_2}$$
 (6)

Làm tương tự (hoặc tráo đổi vai trò của các chỉ số 1 và 2) ta rút ra:

$$v_{2}' = \frac{2m_{1}v_{1} + (m_{2} - m_{1})v_{2}}{m_{1} + m_{2}}$$
 (7)

Áp dụng với $m_1=2kg$, $m_2=3kg$, $v_1=3m/s$, $v_2=1m/s$ vào (6) và (7) ta tính ra được: $v_1'=0.6m/s$; $v_2'=2.6m/s$.

b) Va chạm mềm:

Sau va chạm, hai vật sẽ có cùng một vận tốc v: $v'_1 = v'_2 = v$.

Va chạm này tuân theo định luật bảo toàn động lượng:

$$m_1 v_1' + m_2 v_2' = m_1 v_1 + m_2 v_2$$
 hay $(m_1 + m_2)v = m_1 v_1 + m_2 v_2$

$$\Rightarrow \qquad \mathbf{v} = \frac{\mathbf{m}_1 \mathbf{v}_1 + \mathbf{m}_2 \mathbf{v}_2}{\mathbf{m}_1 + \mathbf{m}_2}$$

Thay các giá trị khối lượng và vận tốc đã cho ta được: $v'_1 = v'_2 = v = 1.8$ m/s.

- 4-24. Hai quả cầu được treo ở đầu hai sợi dây song song dài bằng nhau. Hai đầu kia của các sợi dây được buộc vào một cái giá sao cho các quả cầu tiếp xúc với nhau và tâm của chúng cùng nằm trên một đường nằm ngang (hình 4-12). Khối lượng của quả cầu lần lượt bằng 200g và 100g. Quả cầu thứ nhất được nâng lên độ cao h = 4,5cm và thả xuống. Hỏi sau va chạm, các quả cầu được nâng lên độ cao bao nhiêu nếu:
 - a) Va chạm là hoàn toàn đàn hồi; b) Va chạm là mềm.

Bài giải:

Trong bài này ta sẽ vận dụng cả định luật bảo toàn cơ năng cho một con lắc đơn như trong bài 4-18, 4-20 và bài toán về va chạm xuyên tâm như trong bài 4-23.

Ngay trước khi quả cầu 1 chạm vào quả cầu 2 nó có vận tốc là: $v_1 = \sqrt{2gh}$

Sau va chạm, các quả cầu có vận tốc là v_1 '; v_2 ' và chúng sẽ lên các độ cao h_1 và h_2 tương ứng bằng: $h_1 = \frac{{v_1'}^2}{2g}$; $h_2 = \frac{{v_2'}^2}{2g}$.

a) Nếu va chạm giữa hai vật là đàn hồi, áp dụng công thức của bài 4-23 với $m_1=200g=2m_2;\,v_2=0 \text{ thì:} \qquad v_1{'}=\frac{1}{3}v_1;\;\;v_2{'}=\frac{4}{3}v_1.\;\;\text{Từ đó ta được:}$

$$h_1 = \frac{{v_1}^2}{2g} = \frac{1}{9} \frac{{v_1}^2}{2g} = \frac{1}{9} h = \frac{1}{9}.4,5 = 0,5 \text{ (cm)}; \ h_2 = \frac{{v_2}^2}{2g} = \frac{16}{9}.\frac{{v_1}^2}{2g} = \frac{16}{9} h = 8 \text{ (cm)}.$$

b) Nếu va chạm giữa hai vật là mềm: $v'_1 = v'_2 = 2v_1/3$.

$$\Rightarrow$$
 h₁ = h₂ = $\frac{{v_1}'^2}{2g}$ = $\frac{4}{9} \cdot \frac{{v_1}^2}{2g}$ = $\frac{4}{9}$.h = 2(cm).

4-25. Một vật chuyển động khối lượng m_1 tới va chạm vào vật thứ hai đang đứng yên, khối lượng m_2 . Coi va chạm là xuyên tâm và hoàn toàn đàn hồi. Hỏi số phần trăm động năng ban đầu của vật thứ nhất đã truyền cho vật thứ hai sau va chạm?

Áp dụng cho các trường hợp a) $m_1 = m_2$; b) $m_1 = 9m_2$.

Bài giải:

Áp dụng các công thức va chạm đàn hồi có được trong bài 2-23 với $v_1 \neq 0$; $v_2 = 0$ ta tính được vận tốc của quả cầu thứ 2 sau va chạm:

$$v_2' = \frac{2m_1 v_1}{m_1 + m_2}$$

Từ đó suy ra tỷ số phần trăm động năng mà vật 1 đã truyền cho vật 2:

$$\eta = \frac{W'_{d_2}}{W_{d_1}} = \frac{m_2 v_2'^2}{m_1 v_1^2} = \frac{m_2}{m_1} \frac{4m_1^2}{(m_1 + m_2)^2} = \frac{4m_1 m_2}{(m_1 + m_2)^2}.$$

Khi $m_1 = m_2$ thì $\eta = 100\%$.

Khi $m_1 = 9m_2$ thì $\eta = 36\%$

4-26. Một đĩa đồng chất nặng 20N, lăn không trượt trên một mặt phẳng nằm ngang với vận tốc v = 4m/s. Tìm động năng của đĩa.

Bài giải:

Đĩa đồng chất có mô men quán tính: $I = \frac{1}{2} m.R^2$ (với R là bán kính của đĩa).

Khi đĩa lăn không trượt trên sàn nằm ngang, ta có điều kiện: $v = R\omega$.

Động năng của đĩa bao gồm động năng tịnh tiến và động năng quay:

$$W_{d} = \frac{1}{2}mv^{2} + \frac{1}{2}I.\omega^{2} = \frac{1}{2}mv^{2} + \frac{1}{2}\left(\frac{1}{2}m.R^{2}\right).\omega^{2} = \frac{1}{2}mv^{2} + \frac{1}{4}m.R^{2}\omega^{2} = \frac{3}{4}mv^{2}$$

4-27. Tính công cần thiết để làm cho một vô lăng hình vành tròn đường kính 1m, khối lượng 500kg, đang đứng yên quay tới vận tốc 120 vòng/phút.

Bài giải:

Mô men quán tính của vô lăng hình vành tròn: $I = m.R^2$.

Vận tốc quay của vô lăng là 120vòng/phút = $(120.2\pi \text{ radian})/(60\text{giây}) = 4\pi \text{ (rad/s)}$. Công để làm vô lăng quay chính bằng độ tăng động năng (quay) của vô lăng:

A =
$$\Delta W_d = \frac{1}{2} I.\omega^2 = \frac{1}{2}.\frac{1}{4} m.d^2.\omega^2 = \frac{1}{8}.500.1^2.(4\pi)^2 = 10000(J) = 10kJ$$

4-28. Một quả cầu đặc đồng chất có khối lượng m = 1kg, lăn không trượt với vận tốc v_1 = 10m/s đến đập vào thành tường rồi bật ra với vận tốc v_2 = 8m/s. Tính nhiệt lượng toả ra trong va chạm đó.

Bài giải:

Sau va chạm động năng của vật giảm. Độ giảm động nặng này toả ra dưới dạng nhiệt $Q = -\Delta W_d$. Khi tính toán cần chú ý rằng quả cầu vừa có động năng tịnh tiến vừa có động năng quay. Động năng quay của quả cầu đặc, đồng chất, lăn không trượt:

$$W_{dq} = \frac{1}{2}I.\omega^2 = \frac{1}{2}\left(\frac{2}{5}.mR^2\right).\omega^2 = \frac{1}{5}m.R^2.\omega^2 = \frac{1}{5}m.v^2$$

Do đó:
$$w_d = w_{dq} + w_{dtt} = \frac{1}{5} mv^2 + \frac{mv^2}{2} = \frac{7}{10} mv^2$$
.

Vậy, nhiệt lượng toả ra do va chạm:

$$Q = -\Delta W_d = -\frac{7}{10} m \left(v_2^2 - v_1^2 \right) = -\frac{7}{10} \cdot 1. \left(8^2 - 10^2 \right) = 25.2 (J)$$

- 4-29. Một cột đồng chất có chiều cao h = 5m, đang ở vị trí thẳng đứng thì bị đổ xuống. Xác đinh:
 - a) Vận tốc dài của đỉnh cột khi nó chạm đất;
- b) Vị trí của điểm M trên cột sao cho khi M chạm đất thì vận tốc của nó đúng bằng vận tốc chạm đất của một vật thả rơi tự do từ vị trí M.

Bài giải:

a) Ở vị trí thẳng đứng, cột có thế năng $w_t = \frac{mgh}{2}$. Khi đổ tới mặt đất thì thế năng này biến thành động năng quay của cột ở vị trí chạm đất $W_d = \frac{1}{2} I \omega^2$, trong đó I là mômen quán tính của cột đối với trục qua gốc của cột: $I = \frac{mh^2}{3}$, ω là vận tốc góc của cột lúc chạm đất.

Áp dụng định luật bảo toàn cơ năng:

$$\frac{1}{2}$$
.I. $\omega^2 = \frac{\text{mgh}}{2}$ $\Rightarrow \frac{\text{mh}^2}{3}$. $\omega^2 = \text{mgh}$ $\Rightarrow \omega = \sqrt{\frac{3g}{h}}$

Từ đó suy ra vận tốc dài của đỉnh cột lúc chạm đất $v = h\omega = \sqrt{3gh} = \sqrt{3.10.5} = 12,2$ m/s.

b) Gọi x là độ cao của điểm M khi cột ở vị trí thẳng đứng. Áp dụng công thức tính vận tốc của vật rơi tự do, ta có vận tốc của điểm M khi chạm đất: $v_{\rm M} = \sqrt{2 {\rm gx}}$.

Theo điều kiện của đầu bài:

$$x\omega = \sqrt{2gx}$$
 \Rightarrow $x.\sqrt{\frac{3g}{h}} = \sqrt{2gx}$ \Rightarrow $x = \frac{2}{3}h = 10/3 = 3,33m.$

- 4-30. Từ đỉnh một mặt phẳng nghiên cao h = 0,5m, người ta cho các vật đồng chất có hình dạng khác nhau lăn không trượt trên mặt phẳng nghiêng đó. Tìm vận tốc dài của các vật ở cuối mặt phẳng nghiêng nếu:
 - a) Vật có dạng một quả cầu đặc;
 - b) Vật là một đĩa tròn;

c) Vật là một vành tròn.

(Giả sử vân tốc ban đầu của các vật đều bằng không).

Bài giải

Giả sử rằng có một vật đặc lăn không trượt, không vận tốc đầu từ đỉnh của mặt phẳng nghiêng có chiều cao h. Mô men quán tính của vật có thể viết bằng: $I = k.m.R^2$, trong đó k là một hằng số phụ thuộc vào cấu tạo của vật. Khi vật lăn không trượt với vận tốc dài v thì vật có động năng quay:

$$W_{dq} = \frac{1}{2}I.\omega^2 = \frac{1}{2}kmR^2\omega^2 = \frac{1}{2}kmv^2$$
.

Động năng toàn phần của vật:

$$W_d = W_{dq} + W_{dtt} = \frac{1}{2}kmv^2 + \frac{1}{2}mv^2 = \frac{1}{2}(k+1)mv^2$$
.

Theo định luật bảo toàn cơ năng, động năng của vật ở chân mặt phẳng nghiêng bằng độ giảm thế năng mgh của vật:

$$\frac{1}{2}(k+1)mv^2 = mgh \qquad \Rightarrow v = \sqrt{\frac{2gh}{k+1}}.$$

Áp dụng kết quả tổng quát này với h =0,5m, cho các vật có dạng:

a) một quả cầu đặc: k = 2/5.

$$v = \sqrt{\frac{2gh}{2/5 + 1}} = \sqrt{\frac{10gh}{7}} = \sqrt{\frac{10.9, 8.0, 5}{7}} = 2,65 (m/s)$$

b) một đĩa đặc: k = 1/2.

$$v = \sqrt{\frac{2gh}{1/2+1}} = \sqrt{\frac{4gh}{3}} = \sqrt{\frac{4.9,8.0,5}{3}} = 2,56(m/s)$$

c) một quả cầu đặc: k = 1.

$$v = \sqrt{\frac{2gh}{1+1}} = \sqrt{gh} = \sqrt{9,8.0,5} = 2,21(m/s)$$

- 4-31. Có hai hình trụ: một bằng nhôm (đặc), một bằng chì (rỗng) cùng được thả từ đỉnh một mặt phẳng nghiêng. Chúng có cùng bán kính $R=6 \mathrm{cm}$ và cùng khối lượng $m=0.5 \mathrm{kg}$. Mặt các hình trụ được quét sơn giống nhau. Hỏi:
 - a) Vận tốc tịnh tiến của các hình trụ ở cuối mặt phẳng nghiêng có khác nhau không?
 - b) Mômen quán tính của mỗi hình trụ;
- c) Sau bao lâu các trụ lăn không trượt tới chân mặt phẳng nghiêng? Cho biết độ cao của đỉnh mặt phẳng nghiêng h=0.5m, góc nghiêng $\alpha=30^{0}$, khối lượng riêng của nhôm $p_{1}=2600kg/m^{3}$ và của chì $p_{2}=11300kg/cm^{3}$.

Bài giải:

- a) Dựa vào kết quả của bài 4-30 ta thấy, các vật càng đặc (hệ số mô men quán tính nhỏ) thì vận tốc dài của chúng tại chân mặt nghiêng càng lớn. Do đó, trong bài toán này, ta có thể kết luận rằng, khối trụ đặc bằng nhôm sẽ lăn nhanh hơn khối trụ bằng chì.
- b) Như ta đã biết, mô men quán tính của các khối trụ nhôm và chì được xác định bằng các công thức tương ứng: $I_1 = \frac{mR^2}{2}$, $I_2 = m\frac{R^2 + R_1^2}{2}$, trong đó R_1 là bán kính trong của tru chì.

Vì khối lượng của các trụ bằng nhau nên: $\rho_1 L \pi R^2 = \rho_2 L \pi (R^2 - R_1^2)$, trong đó L là chiều dài của các hình trụ, ρ_1 và ρ_2 là khối lượng riêng của nhôm và của chì.

$$\Rightarrow \rho_2 R_1^2 = (\rho_2 - \rho_1) R^2 \Rightarrow R_1^2 = \frac{(\rho_2 - \rho_1) R^2}{\rho_2}$$

Từ đó tính được:
$$I_2 = m \frac{R^2 + R_1^2}{2} = \frac{2\rho_2 - \rho_1}{2\rho_2}.mR^2$$
, $(k = \frac{2\rho_2 - \rho_1}{2\rho_2})$.

Vận tốc của trụ nhôm khi lăn tới chân đốc (theo bài 4-30): $v_{Al} = \sqrt{\frac{2gh}{1/2+1}} = \sqrt{\frac{4gh}{3}}$.

Vận tốc của trụ chì khi lăn tới chân dốc:

$$v_{Pb} = \sqrt{\frac{2gh}{k+1}} = \sqrt{\frac{2gh}{\frac{2\rho_2 - \rho_1}{2\rho_2} + 1}} = \sqrt{\frac{4\rho_2.gh}{4\rho_2 - \rho_1}} < \sqrt{\frac{4gh}{3}} = v_{Al} \quad (vi \ \rho_1 < \rho_2)$$

c) Dựa vào kết quả về vận tốc của vật lăn không trượt trong bài 4-30:

$$\frac{1}{2}(k+1)mv^2 = mgh$$

Ta đạo hàm theo thời gian hai vế của phương trình này được:

 $(k+1)mv.v' = mgh' \Rightarrow (k+1)mv.v' = mg(v \sin \alpha)$

$$\Rightarrow \qquad a = v' = \frac{g \sin \alpha}{k+1}$$

$$\Rightarrow \qquad t = \frac{v}{a} = \frac{\sqrt{(2gh)/(k+1)}}{g \sin \alpha/(k+1)} = \sqrt{\frac{2h.(k+1)}{g \sin^2 \alpha}}$$

Trong đó, h = 0.5m, $\alpha = 30^{\circ}$

- Áp dụng cho khối trụ nhôm, k = 1/2:

$$t = \sqrt{\frac{2.0,5.(1/2+1)}{9,8.\sin^2 30^0}} = 0,78(s)$$

- Áp dụng cho khối trụ chì,
$$k = \frac{2\rho_2 - \rho_1}{2\rho_2} = \frac{2.11300 - 2600}{2.11300} = \frac{100}{113}$$
:

$$t = \sqrt{\frac{2.0,5.(100/113+1)}{9,8.\sin^2 30^0}} = 0,88(s)$$

432. Một người ngồi trên ghế Giucôpxki và cầm trong tay hai quả tạ, mỗi quả có khối lượng 10kg. Khoảng cách từ mỗi quả tới trực quay là 0,75m. Ghế quay với vận tốc $\omega_1 = 1$ vòng/s. Hỏi công do người thực hiện và vận tốc của ghế nếu người đó co tay lại để khoảng cách từ mỗi quả tạ đến trực quay chỉ còn là 0,20m, cho biết mômen quán tính của người và ghế đối với trực quay là $I_0 = 2,5$ kg.m².

Bài giải:

Mô men quán tính của hệ người và các quả tạ lúc ban đầu và lúc sau:

$$I_1 = I_0 + 2 \cdot \text{m.d}_1^2 = 2.5 + 2.10.0,75^2 = 13,75 \text{ (kgm}^2\text{)}$$

$$I_2 = I_0 + 2 \cdot \text{m.d}_2^2 = 2.5 + 2.10.0, 2^2 = 3.30 \text{ (kgm}^2\text{)}$$

Khi hệ quay quanh trực thì có động năng và mômen động lượng là: $L_1 = I_1 \omega_1$

$$W_{d1} = \frac{1}{2}I_1\omega_1^2 = \frac{1}{2}.13,75.(2\pi)^2 = 275(J).$$

Do mômen động lượng được bảo toàn nên vận tốc góc quay của hệ sau khi người co tay lại thoả mãn biểu thức:

$$I_2\omega_2 = L_2 = L_1 = I_1\omega_1 \Rightarrow \omega_2 = \frac{I_1}{I_2}\omega_1 = \frac{13,75}{3,3}.2\pi = 8,33\pi \text{ (rad/s)}$$

Theo định lý về động năng, động tác co tay của người đã cần tốn một công bằng:

$$A = \Delta W_d = W_{d2} - W_{d1} = \frac{1}{2} I_2 \omega_2^2 - \frac{1}{2} I_1 \omega_1^2$$
$$= \frac{1}{2} .3,3.(8,33\pi)^2 - \frac{1}{2} .13,75.(2\pi)^2 = 871(J)$$

Chương 5 TRƯỜNG HẤP DẪN

1. Tìm lực hút của Mặt Trời lên một vật có khối lượng m = 1g nằm trên mặt Trái Đất, biết rằng khối lượng của Mặt Trời $M = 1,97.10^{30}$ kg và khoảng cách trung bình từ mặt đất đến tâm Mặt Trời là $r = 149.10^6$ km.

Bài giải:

Áp dụng công thức của định luật vạn vật hấp dẫn:

$$F = G \frac{mM}{r^2} = 6,67.10^{-11} \frac{10^{-3}.1,97.10^{30}}{(149.10^9)^2} \approx 5,9.10^{-6} (N)$$

5-2. Khoảng cách giữa Trái Đất và Mặt Trăng là 384000km. Khối lượng của Trái Đất là 5,96.10²⁷g và của Mặt Trăng là 7,35.10²⁵g. Xác định vị trí của điểm tại đó lực hút của Mặt Trăng và Trái Đất lên một chất điểm cân bằng nhau.

Bài giải:

Goi khoảng cách từ điểm tai đó lực hút của Mặt Trăng và Trái Đất cân bằng nhau đến tâm Trái Đất là x (rõ ràng x < 1). Ta có:

$$F_{E} = F_{M} \qquad \Rightarrow G \frac{M_{E}m}{x^{2}} = G \frac{M_{M}m}{(l-x)^{2}}$$

$$\Rightarrow \qquad M_{E}(l-x)^{2} = M_{M}x^{2}$$

$$\Rightarrow \qquad l-x = \sqrt{\frac{M_{M}}{M_{E}}}x$$

$$\Rightarrow \qquad x = \frac{l}{1+\sqrt{M_{M}/M_{E}}} = \frac{384000}{1+\sqrt{7,35.10^{25}/(5,96.10^{27})}} \approx 345600(km)$$

5. Một quả cầu khối lượng m₁ đặt cách một thanh đồng chất một đoạn thẳng a trên phương kéo dài của thanh. Thanh có chiều dài l, lương m². Tìm lưc hút của thanh lên quả cầu.

Bài giải:

Chia thanh thành những đoạn dx rất nhỏ, khi đó lực hút của nó lên khối lượng m_1 là:

$$dF = -G \frac{m_1.dm}{(l+a-x)^2} = G \frac{m_1.m_2.dx}{l(l+a-x)^2}$$

Lưc hút tổng cộng của thanh lên quả cầu là:

$$F = \int dF = -\frac{Gm_1m_2}{l} \int_0^l \frac{dx}{(l+a-x)^2} = \frac{Gm_1m_2}{l} \left[\frac{1}{l+a-x} \right]_0^l$$
$$= \frac{Gm_1m_2}{l} \cdot \left(\frac{1}{a} - \frac{1}{l+a} \right) = \frac{Gm_1m_2}{a(l+a)}$$

5-4. Hai quả cầu có cùng bán kính khối lượng riêng lần lượt bằng p_1 và p_2 được đặt trong một môi trường lỏng có khối lượng riêng là p_0 . Hỏi trong điều kiện nào:

- a) Hai quả cầu hút nhau;
- b) Hai quả cầu đẩy nhau.

Cho biết kích thước của môi trường lỏng rất lớn so với kích thước của các quả cầu và $p_1 > p_2$.

Bài giải:

Xét quả cầu thứ nhất:

+ Lưc hấp dẫn giữa hai quả cầu là:

$$F_1 = G \frac{m_1 m_2}{r^2} = \frac{G}{r^2} \cdot \rho_1 \cdot \frac{4\pi}{3} R^3 \cdot \rho_2 \frac{4\pi}{3} R^3 = k \frac{\rho_1 \rho_2}{r^2} \qquad (v \acute{o}i \ k = \frac{16\pi^2 G R^6}{9})$$

+ Do kích thước của môi trường lớn hơn của các quả cầu rất nhiều nên khi không có quả cầu thứ hai, lực hấp dẫn của môi trường lên quả thứ nhất theo các phương khác nhau tự triệt tiêu lẫn nhau. Nếu ta bớt đi một phần chất lỏng, thì phần còn lại sẽ tác dụng lực hấp dẫn cùng độ lớn nhưng ngược chiều với lực hấp dẫn do phần mất đi gây ra. ở đây, phần mất đi là phần chất lỏng bi chiếm bởi quả cầu thứ hai. Tương tư ở trên ta cũng có:

$$F_2 = k \frac{\rho_1 \rho_0}{r^2}$$

+ Nếu chọn chiều của F_1 là chiều dương, tổng hợp lực tác dụng lên quả cầu 1 bằng:

$$F = F_1 - F_2 = k \frac{\rho_1}{r^2} (\rho_2 - \rho_0)$$

Gia tốc tác dụng lên quả cầu 1 là:

$$a = \frac{F}{m_1} = \frac{k\rho_1(\rho_2 - \rho_0)}{r^2} \cdot \frac{3}{4\pi\rho_1 R^3} = K \frac{\rho_2 - \rho_0}{r^2} \qquad (v\acute{o}i \ K = \frac{4\pi G R^3}{3})$$

+ Tương tự, nếu chọn chiều hướng về phía quả cầu 1 làm chiều dương, lực tổng hợp tác dụng lên quả cầu 2 là:

$$F' = k \frac{\rho_2}{r^2} (\rho_1 - \rho_0)$$

$$\Rightarrow a' = K \frac{\rho_1 - \rho_0}{r^2}$$

Gia tốc tương đối giữa chúng

$$a_0 = a + a' = K \frac{\rho_1 + \rho_2 - 2\rho_0}{r^2}$$

a) Hai quả cầu chuyển động lại gần nhau:

$$a+a'>0 \Leftrightarrow \rho_1+\rho_2-2\rho_0>0 \Leftrightarrow \rho_0<\frac{\rho_1+\rho_2}{2}$$

b) Hai quả cầu chuyển động ra xa nhau:

$$a+a'<0 \iff \rho_1+\rho_2-2\rho_0<0 \iff \rho_0>\frac{\rho_1+\rho_2}{2}$$

5.7. Trong một quả cầu bằng chì bán kính R người ta khoét một lỗ hình cầu. Mặt của lỗ tiếp xúc với mặt của quả cầu chì và đi qua tâm của nó. Khối lượng quả cầu chì trước khi khoét lỗ bằng M. Trên phương nỗi các tâm của quả cầu và lỗ, người ta đặt một hòn bi nhỏ khối lượng m cách tâm quả cầu một đoạn d (hình 5-2). Tìm lực hấp dẫn mà quả cầu chì (đã khoét lỗ) tác dung lên hòn bi.

Bài giải:

Lực hấp dẫn của quả cầu chì đã khoét lỗ đúng bằng hiệu của lực hấp dẫn gây ra bởi quả cầu chì chưa khoét lỗ và phần chì bị khoét đi.

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

Lưc hấp dẫn của quả cầu chì chưa khoét lỗ lên hòn bi:

$$F_1 = G \frac{Mm}{d^2}$$

Lực hấp dẫn của phần chì bị khoét đi lên hòn bi:

$$F_{2} = G \frac{M'm}{r^{2}} = G \cdot \frac{m \cdot \rho \cdot \frac{4\pi}{3} \left(\frac{R}{2}\right)^{3}}{\left(d - \frac{R}{2}\right)^{2}} = G \frac{m}{8\left(d - \frac{R}{2}\right)^{2}} \cdot \rho \frac{4\pi}{3} R = G \frac{Mm}{2(2d - R)^{2}}$$

Vậy, lực hấp dẫn của quả cầu chì đã khoét lỗ lên hòn bi:

$$F = F_1 - F_2 = GMm \left[\frac{1}{d^2} - \frac{1}{2(2d - R)^2} \right] = GMm \frac{7d^2 - 8dR + 2R^2}{2(2d - R)^2}$$

5-6. Tìm vận tốc dài của Trái Đất quay quanh Mặt Trời, biết rằng khối lượng của Mặt Trời là $M=2.10^{30}\rm kg$ và khoảng cách trung bình giữa Trái Đất và Mặt Trời d=1,5.10 $^8\rm km$.

Bài giải:

Lực hướng tâm trong chuyển động của Trái Đất quanh Mặt Trời chính là lực hấp dẫn:

$$\Rightarrow \begin{cases} F_{hd} = F_{ht} \\ G \frac{M_E M_S}{d^2} = M_E \frac{v^2}{d} \\ \Rightarrow v = \sqrt{\frac{G M_S}{d}} = \sqrt{\frac{6,67.10^{-11}.2.10^{30}}{1,5.10^{11}}} \approx 3.10^4 (m/s) = 30(km/s) \end{cases}$$

5-7. Tìm vận tốc dài của một vệ tinh nhân tạo của Trái Đất biết rằng quỹ đạo của vệ tinh là tròn. Vệ tinh ở độ cao trung bình h = 1000km. Coi vệ tinh chỉ chịu ảnh hưởng lực hút của Trái Đất và ở độ cao trên, lực cản của không khí không đáng kể. Cho bán kính của Trái Đất R = 6370km.

Bài giải:

Lập luận tương tự như bài 5-6 cho chuyển động của vệ tinh nhân tạo quanh Trái Đất, ta có:

$$v = \sqrt{\frac{G.M_E}{d}} = \sqrt{\frac{GM_E}{R+h}} = \sqrt{\frac{6,67.10^{-11}.5,96.10^{24}}{10^6 + 6,37.10^6}} \approx 7,344.10^3 (m/s) = 7,34(km/.s)$$

5-8. Hai hành tinh quay xung quanh Mặt Trời với các quỹ đạo coi gần đúng là những vòng tròn bán kính lần lượt bằng $R_1 = 150.10^6 \text{km}$, (Trái Đất) và $R_2 = 108.10^6 \text{km}$ (Sao kim). Tìm tỷ số vận tốc dài của các hành tinh đó.

Rài giải

Sử dụng cách lập luận và tính toán như bài 5-6, ta có:

$$v_1 = \sqrt{\frac{GM_s}{d_1}};$$
 $v_2 = \sqrt{\frac{GM_s}{d_2}}$

$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{GM_s}{d_1}} \cdot \sqrt{\frac{d_2}{GM_s}} = \sqrt{\frac{d_2}{d_1}} = \sqrt{\frac{108.10^6}{150.10^6}} \approx 0,85$$

5-9. Khối lương Mặt Trăng nhỏ hơn khối lương Trái Đất 81 lần, đường kính Mặt Trăng bằng 3/11 đường kính Trái Đất. Hỏi một người trên mặt đất nặng 600 niutơn lên Mặt Trăng sẽ năng bao nhiều.

Bài giải:

Theo đinh luật van vật hấp dẫn:

$$P = G \frac{M_E m}{R_E^2}$$

$$P' = G \frac{M_M m}{R_M^2} = G \frac{k_1 M_E m}{(k_2 R_E)^2} = \frac{k_1}{k_2^2} G \frac{M_E m}{R_E^2} = \frac{k_1}{k_2^2} P$$

$$\Rightarrow P' = \frac{1/81}{(3/11)^2} .600 \approx 100(N)$$

5-10. Để có thể truyền hình bằng vô tuyến điện (vô tuyến truyền hình) đi khắp mọi nơi trên mặt đất người ta phóng lên các vệ tinh "cố định" (đứng trên mặt đất thấy vệ sinh không chuyển động đối với mặt đất). Muốn vậy phải cho các vệ tinh này chuyển động trong mặt phẳng xích đạo từ Tây sang Đông với vận tốc góc bằng vận tốc của Trái Đất quay xung quanh truc của nó.

Hãy tính vân tốc dài và đô cao của vê tinh đó. Biết chu kì của Trái Đất quay xung quanh trục của nó là T = 23 giờ 56 phút 4 giây. Bán kính xích đạo Trái Đất là R = 6378km.

Bài giải:

Gọi khoảng cách từ vệ tinh đến tâm Trá
ị $\underline{\underline{\mathfrak{D}}\underline{\mathrm{at}}}$ là d, vận tốc dài của vệ tinh là:

$$v = \sqrt{\frac{GM_E}{d}} \implies T = \frac{2\pi d}{v} = 2\pi \sqrt{\frac{d^3}{GM_E}}$$

$$\Rightarrow d = \sqrt[3]{\frac{T^2GM_E}{4\pi^2}} = \sqrt[3]{\frac{(86164)^2 \cdot 6,67 \cdot 10^{-11} \cdot 5,96 \cdot 10^{24}}{4\pi^2}} \approx 42,126.10^6 (m) = 42126 (km)$$

Vậy, vận tốc dài và độ cao của vệ tinh là:

$$v = \sqrt{\frac{GM_E}{d}} = \sqrt[3]{\frac{2\pi GM_E}{T}} = \sqrt[3]{\frac{2\pi .6,67.10^{-11}.5,96.10^{24}}{86164}} \approx 3,07.10^3 (m/s)$$

$$h = d - R = 42126 - 6378 = 35748 (km)$$

5-11. Tìm vân tốc vũ tru cấp II đối với Mặt Trăng (nghĩa là vận tốc của một tên lửa phóng từ bề mặt Mặt Trăng cần phải có để nó có thể thoát khỏi sức hút của Mặt Trặng).

Bài giải:

Gia tốc trọng trường trên bề mặt Mặt Trặng:

$$g_M = G \frac{M_M}{R_M^2}$$

Vân tốc vũ tru cấp hai được tính theo công thức:

$$v_M = \sqrt{2g_M R_M} = \sqrt{\frac{2GM_M}{R_M}} = \sqrt{\frac{2.6,67.10^{-11}.7,35.10^{22}}{(3/11).6,37.10^6}} \approx 2,38.10^3 (m/s)$$

5-12. Nhờ một tên lửa, vệ tinh nhân tạo đầu tiên của Trái Đất được mang lên độ cao 500km.

- a) Tìm gia tốc trọng trường ở độ cao đó;
- b) Phải phóng vệ tinh tới vận tốc bằng bao nhiều theo phương vuông góc với bán kính của Trái Đất để quỹ đạo của nó quanh Trái Đất là một đường tròn. Khi đó chu kì quay của vê tinh quanh Trái Đất bằng bao nhiều?

Lấy bán kính của Trái Đất bằng 6500km, gia tốc trọng trường trên bề mặt của Trái Đất bằng 9,8m/s². Bỏ qua sức cản của không khí.

Bài giải:

a) Gia tốc trọng trường được tính theo công thức:

$$g = G \frac{M}{r^2} = \left(\frac{R}{r}\right)^2 G \frac{M}{R^2} = g_0 \left(\frac{R}{R+h}\right)^2 = 9.8 \cdot \left(\frac{6500}{6500 + 500}\right)^2 \approx 8.45 \left(\frac{R}{r}\right)^2$$

b) Để quỹ đạo vệ tinh là đường tròn, lực hấp dẫn đúng bằng lực hướng tâm:

$$F_{hd} = F_{ht}$$

$$\Rightarrow G \frac{M_E m}{r^2} = m \frac{v^2}{r} \qquad \Rightarrow v = \sqrt{\frac{GM_E}{R+h}} = \sqrt{\frac{GM_E}{R^2} \cdot \frac{R^2}{R+h}}$$

$$\Rightarrow v = \sqrt{\frac{g_0 R^2}{R+h}} = \sqrt{\frac{9,8.6500^2 \cdot 10^6}{7000 \cdot 10^3}} \approx 7,69.10^3 (m/s) = 7,69 (km/s)$$

Chu kỳ quay của vê tinh là:

$$T = \frac{2\pi r}{v} = 2\pi \sqrt{\frac{(R+h)^3}{g_0 R^2}} = 2\pi \sqrt{\frac{7^3 \cdot 10^{18}}{9,8.6,5^2 \cdot 10^{12}}} \approx 5720(s) \approx 1h35'$$

5-13. Mọi vật trên mặt đất đều chịu sức hút của Mặt Trời. Về ban đêm (Mặt Trời ở "dưới chân") lực đó cộng thêm với lực hút của Trái Đất, ban ngày (Mặt Trời ở trên "đỉnh đầu") lực đó trừ bớt đi lực hút của Trái Đất. Vì vậy, ban đêm mọi vật đều phải nặng hơn ban ngày, điều đó có đúng không? Tại sao?

Bài giải:

Không đúng, vì Mặt Trời hút cả Trái Đất lẫn vật trên bề mặt Trái Đất.

Chương 6 CƠ HOC TƯƠNG ĐỐI TÍNH

6-1. Vật chuyển động phải có vận tốc bao nhiều để kích thước của nó theo phương chuyển động giảm đi 2 lần.

Bài giải:

Để kích thước vật theo phương chuyển động giảm đi 2 lần, ta cần có:

$$\frac{l}{l_0} = \sqrt{1 - \frac{v^2}{c^2}} = k = 0.5$$

$$\Rightarrow v^2 = c^2 (1 - k^2)$$

$$\Rightarrow v = c\sqrt{1 - k^2} = 3.10^8 \cdot \sqrt{1 - 0.5^2} \approx 2.6.10^8 \text{ (m/s)}$$

6-2. Một đĩa tròn bán kính R chuyển động thẳng đều với vận tốc v theo phương song song với mặt đĩa. Hỏi trong hệ quy chiếu gắn với Trái Đất, đĩa có hình dạng gì?

Bài giải:

Đĩa tròn khi chuyển động thẳng đều với vận tốc v theo phương song song với mặt đĩa sẽ bị méo đi thành hình elip. Kích thước theo phương chuyển động bị co lại trong khi kích thước theo phương vuông góc được giữ nguyên. Gọi phương trình đường biên của đĩa trong hệ quy chiếu gắn với nó là:

$$x^{'2} + y^{'2} = R^2$$

Mặt khác: $x = x' \sqrt{1 - \frac{v^2}{c^2}};$ $y = y'$

Vậy, phương trình đường biên trong hệ quy chiếu gắn với Trái Đất:

$$\frac{x^2}{1 - \frac{v^2}{c^2}} + y^2 = R^2$$

Đây là phương trình của đường elip.

6-3. Có hai nhóm đồng hồ giống nhau (đồng bộ) chuyển động đối với nhau như hình vẽ 6-1. Lấy gốc tính thời gian là lúc đồng hồ A' đi qua đối diện đồng hồ A. Hỏi đối với người quan sát đứng yên so với nhóm đồng hồ A các kim đồng hồ chỉ tại thời điểm đó như thế nào? Về vị trí các kim, của tất cả các đồng hồ.

Bài giải:

Vị trí các kim đồng hồ do tính tương đối của sự đồng thời như sau:

Hình 6-1

6-4. Hạt mêzôn trong các tia vũ trụ chuyển động với vận tốc bằng 0,95 lần vận tốc ánh sáng. Hỏi khoảng thời gian theo đồng hồ người quan sát đứng trên Trái Đất ứng với khoảng "thời gian sống" một giây của hạt mêzôn.

Bài giải:

Sử dụng công thức về thời gian:

$$\Delta t' = \frac{\Delta t}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{1}{\sqrt{1 - 0.95^2}} \approx 3.2(s)$$

6-5. Khối lượng của hạt α tăng thêm bao nhiều nếu tăng vận tốc của nó từ 0 đến 0.9 lần vân tốc ánh sáng.

Bài giải:

Nếu tăng vận tốc, khối lượng hạt cũng tăng lên:

$$m = \frac{m_0}{\sqrt{1 - (v/c)^2}}$$

$$\Rightarrow \Delta m = m - m_0 = m_0 \left(\frac{1}{\sqrt{1 - (v/c)^2}} - 1 \right) = 4.1,67.10^{-27} \cdot \left(\frac{1}{\sqrt{1 - 0.9^2}} - 1 \right)$$

$$\approx 8,6.10^{-27} (kg)$$

6-6. Khối lượng của êlectron chuyển động bằng hai lần khối lượng nghỉ của nó. Tìm động năng của êlectron trên.

Bài giải:

Động năng của electron bằng hiệu năng lượng toàn phần lúc chuyển động và lúc đứng yên:

$$W = \Delta m.c^{2} = (2m_{0} - m_{0})c^{2} = m_{0}c^{2}$$
$$= 9.1.10^{-31}.9.10^{16} \approx 8.2.10^{-14}(J)$$

6-7. Khi phân chia một hạt nhân uran $_{92}\mathrm{U}^{235}$ năng lượng giải phóng ra khoảng 200 MeV. Tìm độ thay đổi khối lượng khi phân chia 1kmol uran.

Bài giải:

Năng lượng giải phóng ra tỉ lệ thuận với độ hụt khối:

6-8. Tìm vận tốc của hạt mêzôn nếu năng lượng toàn phần của hạt mêzôn đó bằng 10 lần năng lượng nghỉ của nó.

Bài giải:

Năng lượng toàn phần của hat mêzôn bằng k lần năng lượng nghỉ:

$$W = \frac{m_0 c^2}{\sqrt{1 - \frac{v^2}{c^2}}} = k m_0 c^2$$

$$\Rightarrow 1 - \frac{v^2}{c^2} = \frac{1}{k^2} \Rightarrow v^2 = c^2 \left(1 - \frac{1}{k^2} \right)$$

$$\Rightarrow v = c \sqrt{1 - \frac{1}{k^2}} = 3.10^8 \sqrt{1 - \frac{1}{10^2}} \approx 2,985.10^8 (\text{m/s})$$

- 6-9. a) Mỗi phút Mặt Trời bức xạ một năng lượng bằng 6,5.10²¹kWh. Nếu coi bức xạ của Mặt Trời là không đổi thì thời gian để khối lượng của nó giảm đi một nửa là bao nhiêu?
 - b) Giải thích tai sao thực tế khối lượng Mặt Trời lai không đổi.

Bài giải:

a) Sự thay đổi khối lượng phụ thuộc vào sự thay đổi năng lượng:

$$\Delta E = \Delta mc^{2}$$

$$\Rightarrow t = \frac{\Delta E}{P} = \frac{\Delta mc^{2}}{P} = \frac{0.5.1,97.10^{30}.9.10^{16}}{6.5.10^{21}.3,6.10^{6}} \approx 3.79.10^{18} (s)$$

$$\Rightarrow t \approx 1,2.10^{11} (năm)$$

- b) Mặt Trời vừa mất năng lượng vừa nhận năng lượng từ bên ngoài. Nếu phần năng lượng nhận vào bằng phần mất đi, năng lượng Mặt Trời không đổi, nên khối lượng Mặt Trời không đổi.
- 6-10. Xác định "thời gian sống" τ của hạt mêzôn μ có năng lượng $W=10^9 eV$ (trong hệ quy chiếu phòng thí nghiệm); thời gian sống của hạt mêzôn nghỉ là $\tau_0=2,2.10^{-6} s$, khối lượng của hạt mêzôn μ là $m=206,7 m_e$ (m_e là khối lượng của êlectron).

Bài giải:

"Thời gian sống" của hạt mêzôn trong hệ quy chiếu phòng thí nghiệm được xác định theo công thức:

$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_v \tau_0}{m} = \frac{m_v c^2}{mc^2} \tau_0 = \frac{W \tau_0}{mc^2} = \frac{10^9.1, 6.10^{-19}.2, 2.10^{-6}}{206, 7.9, 1.10^{-31}.9.10^{16}} \approx 2, 1.10^{-5} (s)$$

Chương 7 CƠ HOC CHẤT LƯU

7-1. Tìm vận tốc chảy của dòng khí ${\rm CO_2}$ trong ống dẫn biết rằng cứ nửa giờ khối lượng khí chảy qua một tiết diện ngang của ống bằng 0,51kg. Khối lượng riêng của khí bằng 7,5kg/m³. Đường kính của ống bằng 2cm. Coi khí là chất lỏng lý tưởng.

Bài giải:

Gọi khối lượng khí chảy qua tiết diện ngang của ống trong một đơn vị thời gian là $\mu.$ Ta có:

$$\mu = \frac{m}{t} = \frac{\rho.V}{t} = \frac{\rho.Sl}{t} = \rho Sv$$

$$\Rightarrow v = \frac{\mu}{\rho S} = \frac{0.51}{1800} \cdot \frac{1}{7.5.\pi \left(\frac{2.10^{-2}}{2}\right)^2} \approx 0.12 (m/s)$$

7-2. Ở đáy một hình trụ có một lỗ thủng đường kính $d=1 {\rm cm}$. Đường kính của bình $D=0,5 {\rm m}$. Tìm sự phụ thuộc của vận tốc hạ mực nước ở trong bình vào độ cao h của mực nước. Áp dụng bằng số cho trường hợp $h=0,2 {\rm m}$.

Bài giải:

Gọi S_1 và S_2 là tiết diện ngang của bình và lỗ thủng; v_1 và v_2 là vận tốc chảy của nước tại sát mặt nước và chảy quả lỗ thủng. Khi đó, theo phương trình Becnuli:

$$v_1^2 + 2gh = v_2^2$$

Mặt khác, do tính liên tục của dòng chảy:

$$v_1 S_1 = v_2 S_2$$

$$\Rightarrow v_2^2 = \left(\frac{S_1}{S_2}\right)^2 v_1^2 = v_1^2 + 2gh$$

$$\Rightarrow v_1^2 \left(1 + \frac{D^4}{d^4}\right) = 2gh$$

$$\Rightarrow v_1 = \sqrt{\frac{2gh}{1 + (D/d)^4}} \approx \sqrt{\frac{2gh}{(D/d)^4}} = \frac{d^2}{D^2} \sqrt{2gh} \qquad (\operatorname{dod}\langle\langle D \rangle)$$

Khi h = 0,2m, vận tốc hạ mực nước là:

$$v_1 = \left(\frac{0.01}{0.5}\right)^2 \sqrt{2.9.8.0.2} \approx 7.92.10^{-4} (\text{m/s})$$

- 7-3. Trên bàn có đặt một bình nước, thành bình có một lỗ nhỏ nằm cách đáy bình một đoạn h_1 và cách mực nước một đoạn h_2 . Mực nước trong bình được giữ không đổi. Hỏi tia nước rơi xuống mặt bàn cách lỗ một đoạn L bằng bao nhiều (theo phương nằm ngang)? Giải bài toán trong hai trường hợp:
 - a) $h_1 = 25 \text{cm} \text{ và } h_2 = 16 \text{cm};$
 - b) $h_1 = 16$ cm và $h_2 = 25$ cm.

Bài giải:

Vận tốc của tia nước khi qua lỗ:

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

$$v_0 = \sqrt{2gh_2}$$

Sau khi ra khỏi lỗ, các phần tử nước chuyển động như một vật ném ngang với vận tốc ban đầu bằng v_0 .

Thời gian từ khi ra khỏi lỗ cho đến khi chạm đất là:

$$t = \sqrt{\frac{2h_1}{g}}$$

Tầm xa của tia nước là:

$$L = v_0 t = \sqrt{2gh_2} \cdot \sqrt{\frac{2h_1}{g}} = 2\sqrt{h_1 h_2}$$

- $h_1 = 25 \text{cm}, h_2 = 16 \text{cm}$: $L = 2\sqrt{25.16} = 40 \text{(cm)}$ $h_1 = 16 \text{cm}, h_2 = 25 \text{cm}$: $L = 2\sqrt{16.25} = 40 \text{(cm)}$ a)
- b)
- 7-4. Người ta đặt một bình nước có thành thẳng đứng trên một mặt bàn nằm ngang. Trên thành bình có dùi hai lỗ nhỏ. Các lỗ cùng nằm trên một đường thẳng đứng. Giả sử tiết diện của bình rất rộng so với tiết diện của các lỗ sao cho mức nước trong bình coi như không đối.
 - a) Chứng minh rằng vân tốc của các tia nước trên mặt bàn bằng nhau.
- b) Chứng minh rằng muốn cho hai tia nước rơi xuống cùng một điểm trên mặt bàn thì khoảng cách từ một lỗ đến mức nước trong bình phải bằng khoảng cách từ lỗ kia đến măt bàn.
 - c) Muốn cho tia nước phụt ra xa nhất thì phải đục lỗ tại vị trí nào?

Bài giải:

Xét lỗ ở vị trí cách mặt bàn một khoảng h_1 và mặt thoáng của nước là h_2 .

Vận tốc của tia nước khi ra khỏi lỗ là: $v_0 = \sqrt{2gh_2}$

a) Sử dụng định luật bảo toàn năng lượng cho phần nước sau khi ra khỏi bình:

$$\frac{1}{2}mv^{2} = \frac{1}{2}mv_{0}^{2} + mgh_{1} = mgh_{2} + mgh_{1}$$

$$\Rightarrow v = \sqrt{2g(h_{1} + h_{2})} = \sqrt{2gH}$$

Với H là độ cao của mức nước so với mặt bàn.

Rỗ ràng rằng vận tốc của tia nước tại mặt bàn không phụ thuộc vào vị trí đục lỗ.

b) Từ kết quả bài 7-3, ta có:

$$L = 2\sqrt{h_1 h_2} = 2\sqrt{h(H - h)}$$

L' = $2\sqrt{h'(H - h')}$

Để hai tia nước rơi vào cùng một điểm:

$$L = L'$$

$$\Rightarrow h(H - h) = h'(H - h')$$

$$\Rightarrow H(h - h') - (h^2 - h'^2) = 0$$

$$\Rightarrow (h - h')(H - h - h') = 0$$
Do $h \neq h' \Rightarrow H = h + h'$ hay $h = H - h'$

c) Sử dung bất đẳng thức Côsi:

$$L = 2\sqrt{h(H - h)} \le H$$

Dấu "=" xảy ra khi và chỉ khi
$$h = H - h$$
 hay $h = \frac{H}{2}$.

- 7-5. Giữa đáy một gầu nước hình trụ bị thủng một lỗ nhỏ. Mức nước ở trong gầu cách đáy gầu H = 30cm. Hỏi nước chảy qua lỗ với vận tốc bằng bao nhiều trong các trường hợp sau:
 - a) Gầu nước đứng yên;
 - b) Gầu được nâng lên đều:
 - c) Gầu chuyển động với gia tốc 1,2m/s² lên trên rồi xuống dưới.
 - d) Gầu chuyển động theo phương nằm ngang với gia tốc 1,2m/s².

Bài giải:

Vận tốc nước chảy ra khỏi gầu phụ thuộc vào áp suất ép lên đáy gầu. Khi gầu chuyển động với gia tốc hướng lên trên hoặc xuống dưới thì sẽ xuất hiện áp suất phụ ép lên đáy gầu. Ta có:

$$P_0 + \frac{1}{2}\rho v^2 = P_0 + \rho gh + \frac{ma}{S} = P_0 + \rho gh + \rho ah$$

$$\Rightarrow v = \sqrt{2(g+a)h}$$

(chiều dương của a hướng theo phương trọng lực)

* Nếu gầu đứng yên hoặc được nâng lên đều:

$$a = 0 \Rightarrow v = \sqrt{2gh} = \sqrt{2.9,8.0,3} \approx 2,42(m/s)$$

* Nếu gầu chuyển động với gia tốc $a = 1,2 \text{ m/s}^2$ hướng lên trên :

$$v = \sqrt{2(g+a)h} = \sqrt{2.(9.8+1.2)0.3} \approx 2.57(m/s)$$

và khi gia tốc hướng xuống dưới:

$$v = \sqrt{2(g-a)h} = \sqrt{2.(9.8-1.2)0.3} \approx 2.27(m/s)$$

* Nếu gầu chuyển động với gia tốc a = 1,2m/s² theo phương ngang, áp suất phụ chỉ xuất hiện trên thành gầu nên không có tác dụng làm thay đổi vận tốc nước chảy ra so với khi gầu chuyển động đều.

$$v = \sqrt{2gh} \approx 2,42(m/s)$$

- 7-6. Một bình hình trụ cao h, diện tích đáy S chứa đầy nước. \mathring{O} đáy bình có một lỗ diện tích S_1 . Hỏi:
 - a) Sau bao lâu nước ở trong bình chảy ra hết?
- b) Độ cao mực nước phụ thuộc thời gian như thế nào khi mở lỗ. Bỏ qua độ nhớt của nước.

Bài giải:

Sử dung biểu thức của vân tốc nước ha mức nước đã tính ở bài 7-2, ta có:

$$v = \sqrt{\frac{2gh}{1 + (S/S_1)^2}}$$

$$\Rightarrow \frac{dh}{dt} = -\sqrt{\frac{2gh}{1 + (S/S_1)^2}} \Rightarrow \frac{dh}{\sqrt{h}} = -\sqrt{\frac{2g}{1 + (S/S_1)^2}}dt$$

$$\Rightarrow \int_{h_0}^{h} \frac{dh'}{\sqrt{h'}} = -\int_{0}^{t} \sqrt{\frac{2g}{1 + (S/S_1)^2}}dt \Rightarrow 2(\sqrt{h} - \sqrt{h_0}) = -\sqrt{\frac{2g}{1 + (S/S_1)^2}}t$$

$$\Rightarrow h = \frac{1}{4} \left(2\sqrt{h_0} - \sqrt{\frac{2g}{1 + (S/S_1)^2}} t \right)^2$$

Thời gian để nước trong bình chảy hết là:

$$\tau = \sqrt{\frac{2h_0[1 + (S/S_1)^2]}{g}}$$

* Nếu $S \rangle \rangle S_1$ thì ta có:

$$\tau = \frac{S}{S_1} \sqrt{\frac{2h_0}{g}}$$

$$h = \left(\sqrt{h_0} - \frac{S_1}{S_1} \sqrt{\frac{g}{2}}.t\right)^2$$

7-7. Trong 1 giây người ta rót được 0,2 lít nước vào bình. Hỏi ở đáy bình phải có một lỗ đường kính bằng bao nhiều để mức nước trong bình không đổi và có độ cao bằng 1m (kể từ lỗ).

Bài giải:

Để mức nước trong bình không đổi, lượng nước đổ vào phải bằng lượng nước chảy ra:

$$dV_{1} = dV_{2}$$

$$\Rightarrow k.dt = vSdt = S\sqrt{2gh}.dt$$

$$\Rightarrow S = \frac{k}{\sqrt{2gh}} = \frac{0.2.10^{-3}}{\sqrt{2.9.8.1}} \approx 4.52.10^{-5} (m^{2})$$

$$\Rightarrow d = \sqrt{\frac{4S}{\pi}} = \sqrt{\frac{4.4.52.10^{-5}}{\pi}} \approx 7.6.10^{-3} (m)$$

7-8. Người ta dịch chuyển một ống cong dọc theo một máng chứa đầy nước với vận tốc v = 8,3m/s (hình 7-2). Hỏi độ cao mức nước dâng lên trong ống.

Bài giải:

áp dụng định luật Becnuli:

$$P + \frac{1}{2}\rho v^{2} = P_{0} + \rho g h_{0} + \frac{1}{2}\rho v^{2} = P_{0} + \rho g (h + h_{0})$$

$$\Rightarrow h = \frac{v^{2}}{2g} = \frac{8.33^{2}}{2.9.8} \approx 3.54 (m)$$

7-9. Người ta thổi không khí qua một ống AB (hình 7-3). Cứ mỗi phút có 15 lít không khí chảy qua ống. Diện tích tiết diện của phần to A bằng 2cm², của phần nhỏ B và của phần ống abc bằng 0,5cm². Tìm hiệu mức nước Δh trong ống abc. Biết khối lượng riêng của không khí bằng 1,32kg/m³.

Bài giải:

Người ta thổi không khí qua một ống AB (hình 7-3). Cứ mỗi phút có 15 lít không khí chảy qua ống. Diện tích tiết diện của phần to A bằng 2cm², của phần nhỏ B và của phần ống abc bằng 0,5cm². Tìm hiệu mức nước Δh trong ống abc. Biết khối lượng riêng của không khí bằng 1,32kg/m³.

Gọi ρ_1 , ρ_2 lần lượt là khối lượng riêng của không khí và nước; S_1 , S_2 là các diện tích thiết diện ống $(S_1 > S_2)$, V là thể tích khí được thổi qua ống trong 1 giây.

áp dụng định luật Becnuli:

$$P + \frac{1}{2}\rho_{1}v_{1}^{2} + \rho_{1}gh_{1} + \rho_{2}gh_{2} = P + \frac{1}{2}\rho_{1}v_{2}^{2} + \rho_{1}gh'_{1} + \rho_{2}gh'_{2}$$

$$\Rightarrow \frac{1}{2}\rho_{1}\left(\frac{V^{2}}{S_{1}^{2}} - \frac{V^{2}}{S_{2}^{2}}\right) - \rho_{1}g\Delta h + \rho_{2}g\Delta h = 0$$

$$\Rightarrow \Delta h = \frac{\rho_{1}V^{2}}{2(\rho_{2} - \rho_{1})g}\left(\frac{1}{S_{2}^{2}} - \frac{1}{S_{1}^{2}}\right)$$

$$= \frac{1,32.0,015^{2}}{2(1000 - 1,32).9,8}\left(\frac{1}{0,25.10^{-4}} - \frac{1}{4.10^{-4}}\right) \approx 5,7.10^{-4} \text{(m)} = 0,57 \text{(mm)}$$

7-10. Trên bề mặt một phiến đá phẳng và nằm ngang người ta đặt một bình có khoét hai lỗ nhỏ ở hai phía đối nhau (hình 7-4). Diện tích các lỗ bằng nhau và bằng $S=1000 \text{mm}^2$. Một lỗ khoét sát đáy bình, lỗ kia khoét ở độ cao h=50 cm. Bình chứa nước tới độ cao H=100 cm. Tìm gia tốc của bình ngay sau khi mở các lỗ. Bỏ qua ma sát giữa đá và bình. Khối lượng của bình nhỏ không đáng kể. Biết diện tích tiết diện ngang của bình $S_1=0.5 \text{m}^2$.

Bài giải:

Xung lưc tác dung lên bình ngay khi mở các lỗ là:

$$F = \frac{dp}{dt} = \frac{dm_{1}.v_{1} - dm_{2}.v_{2}}{dt} = \frac{\rho v_{1}^{2} S dt - \rho v_{2}^{2} S dt}{dt}$$

$$= \rho S (2gh_{1} - 2gh_{2}) = 2\rho ghS$$

$$\Rightarrow \gamma = \frac{F}{M} = \frac{2\rho ghS}{\rho HS_{1}} = \frac{2Sgh}{S_{1}H} = \frac{2.1000.10^{-6}.9,8.0,5}{0,5.1} = 1,96.10^{-2} (m/s^{2})$$

- 7-11. Một bình hình trụ thành thẳng đứng quay xung quanh trục của nó (trục z) với vân tốc góc ω. Bình chứa đầy chất lỏng.
 - a) Xác định dang của mặt chất lỏng trong bình.
- b) Giả sử áp suất tại tâm đáy bình bằng p_0 , tìm áp suất chất lỏng lên các điểm khác của đáy bình. Khối lượng riêng của chất lỏng là p_0 .
- c) Giả sử chất lỏng trong bình là nước. Tìm hiệu áp suất Δp của nước lên mặt bên của bình tại điểm sát đáy bình khi bình quay với vận tốc góc $\omega = 12,6$ rad/s và khi bình đứng yên. Bán kính của bình là R = 0,5m.

Bài giải:

- a) Khi bình quay, mỗi phân tử bề mặt chất lỏng khối lượng m cách trục một đoạn r chiu tác dung tổng hợp của hai lưc:
 - + lưc quán tính li tâm mr ω^2 .
 - + trong luc mg.

Mặt chất lỏng bị nghiêng đi và nằm cân bằng khi nó thẳng góc với tổng hợp lực. Độ nghiêng được xác định bởi góc α :

$$tg\alpha = \frac{m\omega^2 r}{mg} = \frac{\omega^2 r}{g}$$
Ta lại có:
$$tg\alpha = \frac{dz}{dr} \qquad \Rightarrow dz = \frac{\omega^2 r}{g} dr$$

$$\Rightarrow z = z_0 + \frac{\omega^2 r^2}{2g}$$

Vậy, dạng mặt chất lỏng là một parabôlôit tròn xoay quanh trục z.

b) áp suất tại một điểm trên đáy bình ứng với bán kính r là:

$$P = \rho gz = \rho g \left(z_0 + \frac{\omega^2 r^2}{2g} \right) = P_0 + \frac{\rho \omega^2 r^2}{2}$$

c) Chia chất lỏng thành các mặt trụ có độ dày dr rất nhỏ:

$$dV = 2\pi r. dr. z \qquad \Rightarrow V = \int dV = \int_{0}^{R} 2\pi r. \left(z_{0} + \frac{\omega^{2} r^{2}}{2g}\right) dr$$

$$\Rightarrow V = \left[\pi z_{0} r^{2} + \frac{\pi \omega^{2}}{4g} r^{4}\right]_{0}^{R} = \pi R^{2} \left(z_{0} + \frac{\omega^{2}}{4g} R^{2}\right)$$

Khi bình không quay, áp suất tại đáy bình là:

$$P_1 = \rho g h = \rho g \frac{V}{\pi R^2} = \rho g \left(z_0 + \frac{\omega^2 R^2}{4g} \right)$$

Vậy, hiệu áp suất của nước lên mặt bên tại sát đáy bình khi cho bình quay và khi bình đứng yên là:

$$\Delta P = P_2 - P_1 = \rho g \left(z_0 + \frac{\omega^2 R^2}{2g} \right) - \rho g \left(z_0 + \frac{\omega^2 R^2}{4g} \right) = \frac{\rho \omega^2 R^2}{4}$$
$$= \frac{1000.12,6^2.0,5^2}{4} \approx 10^4 \left(N / m^2 \right)$$

7-12. Một ống dẫn có đoạn cong 90^{0} trong có nước chảy (hình 7-5). Xác định lực tác dụng của thành ống lên nước tại chỗ uốn cong nếu tiết diện của ống là đều và có diện tích bằng $S = 4cm^{2}$, lưu lượng nước chảy qua ống là Q = 24 lít/phút.

Bài giải:

Ta có:

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{dm}{dt} (\vec{v}_2 - \vec{v}_1)$$
Do $v_1 = v_2 = \frac{Q}{S}$, $\frac{dm}{dt} = \rho Q$ và $\vec{v}_1 \perp \vec{v}_2$ nên:
$$F = \sqrt{2} \frac{\rho Q^2}{S} = \sqrt{2} \cdot \frac{1000 \cdot \left(\frac{24 \cdot 10^{-3}}{60}\right)^2}{4 \cdot 10^{-4}} \approx 0,564(N)$$

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

