EEE 163 System Design Analysis

Lecture 4
Electronics Packaging

Reasons for packaging

"Electronics packaging is often the critical limiting factor in the success of modern electronic systems"

(Harper)

- Input/output from ICs
- Interconnection between ICs
- Input/output to user and other electronic systems
- Mechanical stability
- Thermal stability
- Environmental protection

George Moore's 'Law'

If same rate of progress applied to air travel, then: London-New York would cost 1p and take 1 second!

'Level 1': Chip package

Connections to IC bond pads

- Wire bonding
- Tape automated bonding
- Solder balls

Package types

- Through hole
- Surface mount
- Flip chip

Encapsulation

- Hermetic
- Plastic

25 μm gold wire

'SOP14' plastic Small Outline Package

Tape automated bonding (TAB)

Bond pad 50 µm gold wire

Ball Grid Array

Used for high I/O devices, e.g. Pentium

Thermal issues

Assume for silicon, T_{max} = 125°C, assume air temperature = 20°C therefore ΔT = 125 – 20 = 105°C

Assume elastomer sheet interface material: $R_{elastomer} = 0.4 \text{ W/m}^{\circ}\text{C}$

$$R_{total} = R_{jc} + R_{elastomer} + R_{heatsink} = \Delta T/Q$$
 (Q = power = 2W) therefore:

$$R_{\text{heatsink}} = \Delta T/Q - R_{\text{jc}} - R_{\text{elastomer}}$$

= 105/2 - 19 - 0.4
= 33 W/°C

Substrates

Printed Circuit Board - PCB —
 (or Printed Wiring Board - PWB)

Laminate construction

Circuit patterning (photolithography and metallisation)

Vias

Single and Multi-layer PCBs

Flexible PCBs

Ceramic Substrate
 Embedded passives

Opto-electronic PCB
 Embedded waveguides

David Selviah, University College, London)

PCB laminate construction

Woven glass-fibre cloth

Epoxy resin

Preimpregnated cloth 'prepreg'

n x prepreg)

2 x copper

Press (180 °C, 20 bar)

Laminate

Photolithography

Photo – light
Litho – stone
Graphy – pattern
hence:
Patterning stone (silicon) using light

Photoresist – light-sensitive polymer Two 'flavours':

Negative acting:

- light makes resist less soluble in developer
- light causes polymerisation of ← Photoresist resist, hence *less* soluble in developer

Positive acting:

- light makes resist more soluble in developer
- light causes photo-acid generation, leading to depolymerisation of resist, hence *more* soluble in developer

Subtractive* process

(* i.e. etching of exposed copper)

Copper thickness measured in ounces/foot² Standard thickness = $1oz/ft^2 = 35 \mu m$

Additive process also possible, involving electroplating of copper onto exposed areas

Two-layer PCBs

Sequence:

- Pattern top and bottom surfaces
- Drill through hole ('via')
- Plate hole

Multilayer PCB

Mobile phone cross-section

Level 2: Component-Substrate Interconnect

- •Through hole 'wave' soldering
- Surface mount screen printing of solder paste followed by reflow soldering
- •Lead-free solders
- Underfill for stress relief
- Conductive adhesive

Surface Mount

Solder

Tin-Lead phase diagram

62%Sn 38%Pb has lowest melting point ('eutectic') $T_m = 163 \, ^{\circ}\text{C}$

Tin-Silver-Copper phase diagram

Eutectic 96.5%Sn 3%Ag 0.5% Cu 'SAC305'

$$T_{\rm m} = 217 \, {\rm ^{\circ}C}$$

'Level 3': System-level assembly and design

Assembly

Connectors Switches Backplanes

Design

System partitioning between PCBs
Placement of components on PCB
Routing between chips
Electrical constraints
Thermal management
Mechanical constraints

Overview

Cooling

Through hole

BGA

Surface mount

Multilayer PCB Connectors —

Vaio motherboard