

From eq. 45: -i2T/6 $G_{-3} = g_0 \omega_6^{(-3.0)} + g_1 \omega_6^{(-3.1)} + \cdots + g_5 \omega_6^{(-3.5)}$ $G_{-2} = g_0 \omega_6^{(-2.0)} + g_1 \omega_6^{(-2.1)} + \cdots + g_5 \omega_6^{(-2.5)}$ $G_{2} = g_{0} \omega_{6}^{(2.0)} + g_{1} \omega_{6}^{(2.1)} + \cdots + g_{5} \omega_{6}^{(2.5)}$ $\omega_{\varsigma}^{(-3.0)}$ $\omega_{\varsigma}^{(-3.1)}$ 4-3 ω₆(-2.6) ω₆(-2.1) ω₆(-2,5) f. 2 me (-7.7) ω₆(-1,5) 4-1 G -1 W6(0.5) ω_(0,0) ω_(0,1) to + 4 f2 $\omega_{6}^{(-3+6)k} = \omega_{6}^{(3\cdot k)}$ $\omega_{\varsigma}^{(-2+\varsigma)\kappa} = \omega_{\varsigma}^{(4-\kappa)}$ $\omega_{n} = \omega_{n} \longrightarrow n = 0$ $\omega_{\varphi} = \omega_{\varphi}^{(5 \cdot K)}$ $Q(\omega + n) = do \omega_{(\omega + n)} + d^{2} \omega_{(\omega + n)} + \cdots + d^{2} \omega_{(\omega + n)} =$ $=g_{0}\omega_{n}^{(n,0)}+g_{1}\omega_{n}^{(n,1)}+\cdots+g_{5}\omega_{n}^{(n,5)}=G_{n}$ ω_{ς} ω_{ς} ω_{ς} \cdots 43 W6 (4.5) 44 W6(2.0) W6(2.T) w₆(5,5) SC fs W6 (0 . 5) w₆(1,5) ω_(1.0) (1.1) ω₆ (2.0) 41 ω₆(2.1) y 5 6 x 1

6x 2

