标题: 3D fully convolutional networks for co-segmentation of tumors on PET-CT images

作者: Zisha Zhong ; Yusung Kim ; Leixin Zhou ; Kristin Plichta ; Bryan Allen ;

John Buatti ; Xiaodong Wu

发表时间: 2018

文章链接: https://ieeexplore.ieee.org/document/8363561

发表期刊: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)

课题背景: 正电子发射断层扫描(Positron emission tomography)和计算断层扫描(computed tomography, PET-CT)双模态成像可提供关键诊断现代癌症诊断和治疗的信息。在基于PET-CT的计算机辅助肿瘤阅读和解释中,自动准确肿瘤描绘是非常重要的。

创新点:提出了一种基于图分割的共分割模型以及结合全连接网络(fully convolutional networks, FCN)和语义识别框架semantic segmentation framework(3D-UNet)的肺肿瘤分割方法。

模型大致流程:

- ①医学图像分割数据预处理: 图像配准(image registration), 空间重采样(spatial resampling), 图像强度值阈值处理(image intensity value thresholding)等
- ②分别对PET和CT单独训练学习到更加的判别特征来生成肿瘤/非肿瘤的概率图
- ③基于图切割的共分割模型(the graph based co-segmentation model)中结合PET和CT上的两个概率图来产生最终的肿瘤分割结果

实验数据: 32 PET-CT图像数据集

数据规模: 32位肺癌患者的PET-CT扫描图

实验结果:

Methods	Modalities	No-CoSeg	CoSeg
Song et al. [4]	CT	0.577 ± 0.349	0.624 ± 0.240
	PET	0.607 ± 0.151	0.642 ± 0.148
Zhong et al. [8]	CT	0.767 ± 0.108	0.781 ± 0.099
	PET	0.697 ± 0.146	0.722 ± 0.120
Proposed	I		$\boldsymbol{0.869 \pm 0.049}$
	PET	$\boldsymbol{0.757 \pm 0.088}$	0.760 ± 0.088

备注:其中No-CoSeg表示未使用共分割模型; ±表示预测结果标准差

未来工作: None

附网络框架图:

网址: None