Hashing

- Design a data structure which allows
 - Insertion of a record.
 - ② Deletion of a record.
 - Search of a record.
- ▶ A large number of records are there, say a million
- Linear data structures: require O(n) time units for search, deletion.
- ▶ Trees: require at least $O(\log n)$ time units for every operation.

Hashing

- \blacktriangleright Every operation can be performed in O(1) time
- ▶ Hashing is the answer. It has two components.
 - A Hash function, and
 - A Hash table.
- ▶ How it operates?
 - Takes a record key, and computes a value in O(1) time.
 - Inserts, extracts or deletes the record from entry from the table indexed by the computed value.

Hashing Requirements

- ▶ **Uniformity**: The hashing function should distribute every key equally likely in the range space.
- Low cost: Cost of executing hashing function should small.
- ▶ Determinism: For a given input same hash value must be generated by a hash function.

Types of Hashing

- Hash table basically stores an array of pointers to actual records.
- ▶ A NULL pointer means no record key mapped to the table entry.
- Two types of hashing:
 - Open hashing or Separate chaining and
 - Closed hashing or Open addressing.

Common Hash Functions

- Division method.
- Multiplication method.
- Mid square method.
- Folding method.

Division Method

Division Method

- $h(k) = k \mod m$.
- ▶ If $m = 2^p$, using hash function \mod would map any k to its lower order p bits.
- ▶ In fact, any key of the form k = (am + x) would map to h(x), even if m is prime.

Division Method

Let the base of number system be b and $b \equiv 1 \pmod{m}$:

$$k \mod m = \left(\sum_{i=0}^{r} b^{i} k_{i}\right) \mod m$$

$$= \left(\sum_{i=0}^{r} (qm+1)^{i} k_{i}\right) \mod m$$

$$= \sum_{i=0}^{r} k_{i} \mod m$$

- Which means division function is bad.
- If m is prime not close to 2^p or 10^p (b = 10) then its ok in practice.

◄□▶
■>
■
■
■
■
9
©

Multiplication Method

$$h(k) = \lfloor m.(k.a \mod 1) \rfloor$$

4□ ► 4□ ► 4 = ► 4 = ► 9 < 0</p>

Multiplication Method

- ► This hash is random, because the middle bits of the result of multiplication depends on all bits of key.
- Optimal choice of a depends on keys.
- Consider the following example:
 - Let m = 100, a = 1/3.
 - For k = 10, |100 * (10 * 0.33...)| = 33.
 - For k = 11, 100 * (11 * 0.33...) = 66
 - For k = 12, $\lfloor 100 * (12 * 0.33...) \rfloor = 99$
- ▶ Knuth claims a good choice is: $a \approx (\sqrt{5} 1)/2$.

Comparison of Two Methods

$$m$$
 = 1000 m = 1000 a = 0.6180333988749895

key	$h(k) = \lfloor (m * (k * a \mod k)) \rfloor$	$h(k) = k \mod m$
123456	4	456
123459	858	459
123496	725	496
123956	21	956
129456	208	456
193456	383	456
923456	195	456

Clearly, multiplication function distributes keys more evenly.

Mid-square Method

- Squares the key value and extracts same middle r values.
 - If k = 1234, then $k^2 = 1522756$.
 - Let table size = 100, we extract middle 2 digits h(k) = 27.
 - In above example we always choose 3rd and 4th digit from right.
- ▶ Like multiplication method middle *r* digits depend on most or all digits of the original key.

Folding Method

- ▶ Divide the key into a number of parts of equal lengths $k_1, k_2, \dots k_p$.
- ▶ Only k_p may have less number of digits.
- Add up the parts, and ignore the last carry.
- Suppose we have 100 as table size and have following keys: 5678, 345 and 568901.
 - Parts of 5678: 56 and 78 \implies 56+78=134, ignore carry, h(5678)=34.
 - Parts of 345: 34 and 5 \implies 34+5 = 39, so h(345) = 39.
 - Parts of 568901: 56, 89 and 01 \implies 56+89+01 = 146, so ignore carry, h(568901) = 46.