

Understanding Bayesian methods

Brett Lantz Instructor

Estimating probability

The **probability** of A is denoted P(A)

- P(work) = 23 / 40 = 57.5%
- P(store) = 4 / 40 = 10.0%

Joint probability and independent events

The **joint probability** of events A and B is denoted P(A and B)

- P(work and evening) = 1%
- P(work and afternoon) = 20%

Conditional probability and dependent events

The **conditional probability** of events A and B is denoted P(A | B)

- P(A | B) = P(A and B) / P(B)
- P(work | evening) = 1 / 25 = 4%
- P(work | afternoon) = 20 / 25 =80%

Making predictions with Naive Bayes

```
# building a Naive Bayes model
library(naivebayes)
m <- naive_bayes(location ~ time_of_day, data = location_history)

# making predictions with Naive Bayes
future_location <- predict(m, future_conditions)</pre>
```


Let's practice!

Understanding NB's"naivety"

Brett Lantz
Instructor

The challenge of multiple predictors

A "naive" simplification

An "infrequent" problem

The Laplace correction

Let's practice!

Applying Naive Bayes to other problems

Brett Lantz
Instructor

How Naive Bayes uses data

Binning numeric data for Naive Bayes

Preparing text data for Naive Bayes

Let's practice!