

Una coppia di mesoni neutri D^0 (composto da un quark charm e un antiquark up) e \bar{D}^0 viene prodotta nelle collisioni di un fascio di elettroni contro un fascio di positroni: $e^-+e^+\to D^0+\bar{D}^0$

- Assumendo che i due fasci abbiano la stessa energia E, determinare l'energia minima affinché la reazione abbia luogo
- 2. Se l'energia del centro di massa è $\sqrt{s}=4140\,\mathrm{MeV}$, calcolare l'impulso del mesone Do nel laboratorio

Dato il decadimento $D^0 \to K^-\pi^+$, nel centro di massa di Do, il mesone K si muove nella direzione di x negativi (vedi figura).

3. Il pione e il kaone attraversano alcuni tracciatori a silicio per uno spessore complessivo di 1.5 cm. Spiegare quale delle due particelle (pione o kaone) perde più energia e perché.

$$m_{\pi}$$
 = 140 MeV, m_D = 1.86 GeV, m_{K} = 500 MeV

	densita` [g/cm ^{3]}	<l> [eV]</l>	E _c [MeV]	X ₀ [cm]	Z/A	δ
Si	2.39	173	40	21.82	0.50	0

Nel futuro collisore di muoni, fasci monoergetici di muoni verranno fatti collidere al posto di protoni o elettroni. Uno dei maggiori problemi è il decadimento dei muoni in volo: $\mu^- \to e^- \bar{\nu}_e \nu_\mu$

Il fascio collimato di muoni viaggia in un tunnel di 1 km e all'uscita dal tunnel, 0.1% dei muoni sono decaduti

1. Calcolare l'impulso dei muoni

Assumiamo che nel centro di massa l'elettrone sia prodotto lungo la direzione di volo, mentre i due neutrini (privi di massa) sono prodotti nella nel verso opposto (vedi figura)

2. calcolare l'energia dell'elettrone nel laboratorio

L'elettrone attraversa un cristallo scintillante di spessore di 3 cm lungo la sua traiettoria.

3. L'energia depositata dall'elettrone è maggiore nello ioduro di sodio (Nal) oppure nel tungstato di piombo (PWO) e perché?

$$m_\mu\text{=}$$
 106 MeV, $m_e=511$ keV, $\tau_\mu=2.2\times10^{-6}\,\text{s}$

	densita` [g/cm ^{3]}	X ₀ [cm]		
Nal (TI)	3.67	2.59		
PbWO ₄	8.30	0.89		

Un fascio di elettroni di energia E = 106 MeV collide con un fascio di positroni di energia E = 53 MeV (vedi figura).

1. Spiegare quali di queste reazioni non può avvenire e perché

$$e^{-} + e^{+} \rightarrow e^{+} + e^{-}$$
 $e^{-} + e^{+} \rightarrow \mu^{+} + \mu^{-}$
 $e^{-} + e^{+} \rightarrow \pi^{+} + \pi^{-}$
 $e^{-} + e^{+} \rightarrow e^{+} + \mu^{-}$

Per le reazioni che avvengono, assumiamo che la particella di carica negativa (nello stato finale) sia prodotta lungo la direzione di x positivi (vedi figura). Per ciascuna reazione permessa

2. Calcolare l'impulso della particella di carica negativa nel laboratorio e dire se le due particelle nello stato finale hanno direzione di volo concordi o discordi.

Le particelle negative vengono separate tramite un magnete ed attraversano uno strato di piombo di 1 cm.

3. Spiegare quale particella perde la frazione più grande della sua energia e perché

$$m_{\!\scriptscriptstyle \mu}\!\!=$$
 106 MeV, $m_e=511$ keV, $\,m_\pi=140$ MeV

	densita` [g/cm ^{3]}	<l> [eV] E_c [MeV]</l>		X ₀ [cm]	Z	Α	δ
Pb	11.35	823	7.4	0.56	82	207	0.6

Un fascio composto da elettroni, muoni, pioni, e kaoni con l'impulso di 150 MeV attraversa un tunnel di 1 km prima di raggiungere alcuni rivelatori per la loro identificazione. Assumiamo che il tunnel sia vuoto.

1. Calcolare la frazione di particelle che raggiungono i rivelatori, per ciascun tipo di particella

Le particelle sopravvissute, attraversano un sottile strato di quarzo, un sottile strato di vetro, e uno spessore di 5 cm di piombo.

2. Spiegare se è possibile distinguere le particelle sopravvissute tramite la misura della luce Čerenkov nel quarzo e nel vetro, e la perdita di energia nel piombo.

$$\begin{array}{l} m_{\mu}\text{= 106 MeV,}\ m_{e}=511\ \text{keV,}\ m_{\pi}=140\ \text{MeV,}\ m_{K}=500\ \text{MeV}\\ \tau_{\mu}=2.2\cdot 10^{-6}\ \text{s,}\ \tau_{\pi}=2.6\cdot 10^{-8}\ \text{s,}\ \tau_{K}=1.2\cdot 10^{-8}\ \text{s}\\ \text{n}_{\text{quarzo}}=1.4\\ \text{n}_{\text{vetro}}=1.33 \end{array}$$

	densita` [g/cm ^{3]}	<l> [eV]</l>	Ec [MeV]	X ₀ [cm]	Z/A	δ
Pb	11.35	823	7.4	0.56	0.40	0.6

Un fascio di pioni colpisce un bersaglio di idrogeno liquido.

1. Calcolare l'impulso dei pioni affinché possa avvenire la reazione $\pi^- + p o \Sigma^0 + K^{*0} + \pi^0$

Il mesone K^{*0} prodotto in questa reazione decade nello stato $K^{*0} o K + \pi$

2. Dire se il kaone K nello stato finale è un K^- o K^+ e perché

Uno strato sottile di quarzo è posto intorno al punto di interazione ad una distanza di 50 cm.

- 3. Dire se almeno 50% delle kaoni e pioni raggiunge il quarzo
- 4. Dire se è possibile distinguere il pione dal kaone nello stato finale grazie alla presenza del quarzo

$$m_{\pi^0}=135$$
 MeV, $m_{\pi^\pm}=140$ MeV, $m_{K^\pm}=500$ MeV, $m_{K^*}=892$ MeV, $m_{\Sigma}=1.19$ GeV, $m_p=938$ MeV

$$\tau_{\pi} = 2.6 \cdot 10^{-8} \, s, \, \tau_{K} = 1.2 \cdot 10^{-8} \, s$$

$$n_{quarzo} = 1.4$$

Un fascio di pioni colpisce un bersaglio di idrogeno liquido.

1. Calcolare l'impulso dei pioni affinché possa avvenire la reazione $\pi^- + p \to \Sigma^0 + K^{*0} + \pi^0$

Il mesone K^{*0} , prodotto a soglia nel laboratorio, decade nel canale $K^{*0} \to K^+ + \pi^-$. Un sottile strato di vetro è posto intorno al punto di interazione ad una distanza di 50 cm.

- 2. Dire se almeno 50% di kaoni e pioni carichi raggiungono il rivelatore Čerenkov
- 3. È possibile distinguere separare i pioni carichi dai kaoni carichi grazie alla presenza del quarzo?

Dati utili:

$$m_{\pi^0}=135$$
 MeV, $m_{\pi^\pm}=140$ MeV, $m_{K^\pm}=500$ MeV, $m_{K^*}=892$ MeV, $m_{\Sigma}=1.19$ GeV, $m_p=938$ MeV

$$\tau_{\pi} = 2.6 \cdot 10^{-8} \, \text{s}, \, \tau_{K} = 1.2 \cdot 10^{-8} \, \text{s}$$

 $n_{\text{vetro}} = 1.33$

Un fascio di pioni di impulso di 300 MeV attraversa un tunnel vuoto, lungo 10 m, prima di raggiungere uno strato di piombo. Il pione decade in volo nello stato finale $\mu^-\bar{\nu_\mu}$

- 1. Calcolare la frazione di pioni decaduti nel tunnel
- 2. Spiegare se nel laboratorio i muoni vanno in avanti o indietro rispetto alla direzione dei pioni
- 3. Calcolare lo spessore di piombo necessario per fermare tutti i pioni

$$\begin{split} m_{\pi^\pm} &= 140 \text{ MeV, } m_\mu = 106 \text{ MeV} \\ \tau_\pi &= 2.6 \cdot 10^{-8} \, \text{s, } \tau_\mu = 2.2 \cdot 10^{-6} \, \text{s} \end{split}$$

	densita` [g/cm ^{3]}	<l> eV </l>	E _c [MeV]	Lungh. Radiazione X ₀ [cm]	Lungh. Interazione X _I [cm]	Z	A	δ
Pb	11.35	823	7.4	0.56	17.59	82	207	0.6

Un fascio di pioni carichi colpisce un bersaglio di Carbonio.

1. Calcolare l'energia minima dei pioni incidenti affinché possa avvenire la reazione $\pi^+ + n \rightarrow p + K^+ + K^- + \pi^0$

Uno strato di vetro è posto intorno al punto di interazione e viene usato come un contatore Čerenkov a soglia.

- 2. Stimare l'impulso massimo dei kaoni per essere distinti dai protoni usando il contatore Čerenkov
- 3. Dire quali di queste reazioni non sono possibili e perché

a.
$$\pi^+ + n \to p + K^+ + \pi^-$$

b.
$$\pi^{+} + n \to n + K^{+} + K^{-}$$

c.
$$\pi^+ + n \to \Sigma^0 + K^+ + \pi^0$$

d.
$$\pi^+ + n \to \pi^+ + K^0 + K^-$$

Dati utili:

$$m_{\pi^0}=135$$
 MeV, $m_{\pi^\pm}=140$ MeV, $m_{K^\pm}=494$ MeV, $m_{K^0}=498$ MeV, $m_\Sigma=1.19$ GeV, $m_p=938$ MeV, $m_n=939$ MeV

 $n_{\text{vetro}} = 1.33$

Un fascio di pioni carichi colpisce un bersaglio di Carbonio.

1. Calcolare l'energia minima dei pioni incidenti affinché possa avvenire la reazione $\pi^- + p \to p + K^+ + K^- + \pi^-$

Intorno al punto di interazione c'e` uno strato sottile di quarzo usato come contatore Čerenkov a soglia, seguito da uno strato di 3 cm di piombo.

- 2. Quali particelle emettono luce Čerenkov?
- 3. Quali particelle vengono fermate nel piombo?

$$m_{\pi^0}=135$$
 MeV, $m_{\pi^\pm}=140$ MeV, $m_{K^\pm}=494$ MeV, $m_p=938$ MeV

$$n_{quarzo} = 1.4$$

	densita` [g/cm ^{3]}	<l> eV </l>	E _c [MeV]	Lungh. Radiazione X₀ [cm]	Lungh. Interazione X _I [cm]	Z	A	δ
Pb	11.35	823	7.4	0.56	17.59	82	207	0.6