Predictive Model Summary

Objective

To predict whether a movie will be a success (positive review) or not (negative review) based on the sentiment of its IMDB user reviews using machine learning models.

L Data Used

Source: IMDB Dataset

• Size: 50,000 labeled reviews (positive or negative)

• Features:

o review: Text review of a movie

o sentiment: Label for classification (target variable)

Preprocessing

- Cleaned HTML tags and special characters
- Lowercased all text
- Tokenized and optionally removed stopwords (depending on method)
- Used TF-IDF Vectorization to convert text into numerical format

Models Tried

Model	Accuracy	Notes
Logistic Regression	~88%	Lightweight, fast, and interpretable
Random Forest	~85%	Slightly lower performance, slower
Naive Bayes	~84%	Simple and effective for text classification
SVM (Linear)	~89%	Best performer but slower on large text

Best Model: SVM with TF-IDF features (Accuracy ~89%)

Evaluation Metrics

- Accuracy: Correct predictions out of all predictions
- Precision & Recall: Useful for imbalanced datasets
- Confusion Matrix: Checked for false positives/negatives
- ROC-AUC: Measured ability to distinguish between classes

💡 Insights

- Sentiment polarity is a strong predictor of review outcome.
- VADER compound score correlates well with actual sentiment labels.
- SVM + TF-IDF works best due to its ability to handle high-dimensional sparse data like text.

Deliverables

- Jupyter Notebook with:
 - Data preprocessing
 - Sentiment analysis (VADER)
 - o Model training & evaluation
- Visualizations:
 - Confusion matrix
 - Accuracy/ROC curves
 - Genre-wise sentiment bar chart
- README with setup and instructions