Data Detection/Interference Cancellation for Any Multiple Access Schemes (3 hours)

Same matrix form for general interference cancellation: CDMA multiple access interference OFDM inter-carrier interference, 4G MIMO/MU-MIMO inter-antenna interference (SIC/PIC). 4G other cell interference (SIC), 5G NOMA interference etc.

Prof. Shu-Ming Tseng

-

Outline

- Introduction
- Single-user detection
- Multi-user detection
- Comparison

Prof. Shu-Ming Tseng

Introduction

Disadvantages of CDMA conventional receiver

- MAI (Multiple access interference) <=users are not disjoint in time or spectrum
- near-far problem<= interfering user is nearer than intended user.

Strategies

- I.C./advanced data detection
- Power control (reduce near-far)
- Decrease number of interferences (smart antennas)
- Good design of radio link (channel coding)

Prof. Shu-Ming Tseng

3

Complexity

Single-user detection

- conventional detector O(K)
- enhanced single user detector O(K)

Multiuser detection

- \rightarrow ML O(2^K)
- ➤ Decorrelator (zero-forcing) / MMSE O(K^3)
- ➤ SIC/PIC (most practical) O(K)
- P.S. matrix inverse (Gaussian elimination) requires $O(K^3)$ computational complexity

Strang, Linear Algebra, 1988, p.15

Prof. Shu-Ming Tseng

- K terminals transmit asynchronously to a single base station
- Each user has L paths, spreading code $S_k(t)$, data symbol d_k .
- The received signal can be expressed as

$$r(t) = \sum_{k=1}^{K} \sum_{l=1}^{L} \sqrt{2P_k} \cdot h_{k,l} \cdot d_k (t - \tau_{k,l}) \cdot$$
 (1)

$$S_k(t-\tau_{k,l})\cdot\cos(w_ct+\varphi_{k,l})+w(t)$$

where $h_{k,l}$ is the channel coefficient, $\tau_{k,l}$ is the channel delay, $\psi_{k,l}$ is the phase. Prof. Shu-Ming Tseng 5

Notation

• Unless otherwise mentioned, we assume users are synchronous and single path (L=1) for simplicity.

Prof. Shu-Ming Tseng

Single-user detection

• The matched filter output of the kth user's lth path for the i-th bit at the time instant giving as

$$t = iT_b + \tau_{k,l}$$

$$y_{k,l}^{(i)} = \int_{(i-1)T_b + \tau_{k,l}}^{iT_b + \tau_{k,l}} r(t) \cdot S_k(t - \tau_{k,l}) \cdot \cos(w_c t + \varphi_{k,l}) dt$$

$$= Signal + MAI + noise$$
(2)

Prof. Shu-Ming Tseng

7

Linear algebra- column space

• By matrix algebra expression

r=SHd+w, where

S:user's spreading code and delay

H:channel impulse response

d:transmitted data

Assume K=3, L=1, no ISI, N chip per symbol

$$\begin{vmatrix} \mathbf{r} = [\mathbf{s_1} \mathbf{s_2} \mathbf{s_3}] \begin{bmatrix} h_1 & 0 & 0 \\ 0 & h_2 & 0 \\ 0 & 0 & h_3 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} + \mathbf{w} = \mathbf{s_1} h_1 d_1 + \mathbf{s_2} h_2 d_2 + \mathbf{s_3} h_3 d_3 + \mathbf{w}$$
(3)

where $\mathbf{s_1s_2s_3}$ are columns of \mathbf{S} , \mathbf{r} is of $N \times 1$

• The whole bank of matched filter statistics (multiply S^T)

$$\mathbf{y} = \mathbf{S}^{T} \mathbf{r} = \mathbf{S}^{T} \mathbf{SHD} + \mathbf{S}^{T} \mathbf{w} = \mathbf{RHD} + \mathbf{z} \quad (4)$$

$$\begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = \begin{bmatrix} 1 & \rho_{1,2} & \rho_{1,3} \\ \rho_{2,1} & 1 & \rho_{2,3} \\ \rho_{3,1} & \rho_{3,2} & 1 \end{bmatrix} \begin{bmatrix} h_{1} & 0 & 0 \\ 0 & h_{2} & 0 \\ 0 & 0 & h_{3} \end{bmatrix} \begin{bmatrix} d_{1} \\ d_{2} \\ d_{3} \end{bmatrix} + \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \end{bmatrix}$$

$$= \begin{bmatrix} h_{1}d_{1} + \rho_{1,2}h_{2}d_{2} + \rho_{1,3}h_{3}d_{3} \\ + \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \end{bmatrix} \quad (5)$$

R:correlation matrix

 $\rho_{i,l}$: correlations coefficient between different users' code

Prof. Shu-Ming Tseng

O

Drawbacks

- Even if perfect power control and codes with low cross-correlation, the interference level increases as the number of interfering user increases.
- The performance is limited and so is the system capacity (the number of users supported).

Prof. Shu-Ming Tseng

- This category has similar levels of complexity to the conventional filter, yet offer considerable gains in capacity.
- For example, use MMSE filter (adaptive filter NWTT9) to suppress inter-cell interference, intra-cell interference, and noise (all are part of "errors") and try to minimize these errors.

Prof. Shu-Ming Tseng

11

Introduction to Multiuser detection

- *suitable for uplink* because all user data are needed to be detected anyway and BS can afford more complexity than MS.
- Can only suppress intra-cell interference because BS know only users' information of its own. (disadvantage relative to MMSE enhanced single-user detectors)

Prof. Shu-Ming Tseng

Multi-user detection

- Joint Detection
- Interference Cancellation schemes
- Combined schemes

Prof. Shu-Ming Tseng

13

Joint detection

- Maximum Likelihood Sequence Estimator (ML)
- Decorrelator Detector
- Minimum Mean Square Error Detector (MMSE)
- Iterative detection

Prof. Shu-Ming Tseng

ML sequence estimator

- Compute all 2^K likelihood functions for BPSK.
- Performance is optimum but computation complexity grow exponentially with the number of users (>100).

Prof. Shu-Ming Tseng

• $\mathbf{y} = \mathbf{RHd} + \mathbf{n}$ (6) same as (4)

R: correlation matrix

H: received amplitude

d: transmitted data

•
$$\overset{\wedge}{\mathbf{d}} = \operatorname{sgn}(\mathbf{R}^{-1}\mathbf{y}) = \operatorname{sgn}(\mathbf{H}\mathbf{d} + \mathbf{R}^{-1}\mathbf{n})$$
 (7)

- Unbiased, near far resistant
- ullet But enhances the noise, and must consider the existence of ${\bf R}^{-1}$

Prof. Shu-Ming Tseng

17

MMSE

- Based on MMSE criterion used for equalization against ISI, etc.
- By a transformation minimizes the MSE of the bit estimate

$$E[(\mathbf{d} - \overset{\wedge}{\mathbf{d}})^{T} (\mathbf{d} - \overset{\wedge}{\mathbf{d}})]$$
 (9)

• The data estimates are

$$\hat{d} = \operatorname{sgn}((\mathbf{R} + \frac{N_0}{2}\mathbf{H}^{-2})^{-1} \cdot \mathbf{y}) \qquad (10)$$

$$\hat{d} = \operatorname{sgn}((\mathbf{R} + \frac{1}{SNR}\mathbf{I})^{-1}.\mathbf{y})$$

Prof. Shu-Ming Tseng

MMSE is between decorrelator and conventional detector

- When noise->0, approach to decorrelator; as noise increase, reduce to conventional receiver.
- Imposes the same computational disadvantage as decorrelator and require knowledge regarding the receiver powers of the interfering users.

Prof. Shu-Ming Tseng

$$\mathbf{d} = [d^{(1)}, d^{(2)}, ..., d^{(K)}] \text{ assume } d^{(i)} \text{ are i.i.d.}$$

$$\mathbf{y} = [y^{(1)}, y^{(2)}, ..., y^{(K)}]$$

$$p(\mathbf{y}, d^{(k)} = +) = \sum_{\mathbf{d}, d^{(k)} = +} p(\mathbf{y} \mid \mathbf{d}) \Pr{\mathbf{d}}$$

$$= \sum_{\mathbf{d}, d^{(k)} = +} p(\mathbf{y} \mid \mathbf{d}) \prod_{i=1}^{K} \Pr{d^{(i)} = d}$$

$$\text{metric generator output}$$

$$d^{(k)} = +$$

$$p(\mathbf{y} \mid d^{(k)} = +) = \frac{p(\mathbf{y}, d^{(k)} = +)}{\Pr{d^{(k)} = +}}$$

$$= \sum_{\mathbf{d}, d^{(k)} = +} p(\mathbf{y} \mid \mathbf{d}) \prod_{\substack{i=1 \ i \neq k}}^{K} \Pr{d^{(i)} = d}$$

$$\text{Metric generator two inputs}$$

$$\text{where } p(\mathbf{y} \mid \mathbf{d}) \text{ and } \Pr{d^{(i)} = +} = \Pr{d^{(i)} = +} y^{(i)}$$

$$\text{are from the metric generator inputs}$$

$$\text{Prof. Shu-Ming Tseng}$$

- The iterative MAP detection strategy is based on that used for turbo codes. Furthermore, interleaving and encoding can also be included.
- As the number of iteration increases, the BER performance improves.

Prof. Shu-Ming Tseng

Multi-user detection

- Joint Detection
- Interference cancellation schemes (IC)
- Combined schemes

Prof. Shu-Ming Tseng

23

Interference Cancellation

- Successive IC (SIC)
- Parallel IC (PIC)

Prof. Shu-Ming Tseng

- The detection/cancellation process occurs successively until all users have been detected.
- But the successive approach leads to a long delay when the number of users is large.

Prof. Shu-Ming Tseng

• Canceling all users simultaneously: an alternative to the SIC.

Prof. Shu-Ming Tseng

Ex: PIC M(# of stages)=2 K=3

$$y1(1) = h1d1 + h2 \rho_{1,2}(d2 - d2(0)) + h3 \rho_{1,3}(d3 - d3(0)) + Z1$$

$$y2(1) = \rho_{2,1}h1(d1 - d1(0)) + h2d2 + h3 \rho_{2,3}(d3 - d3(0)) + Z2$$

$$y3(1) = \rho_{3,1}h1(d1 - d1(0)) + h2 \rho_{3,2}(d2 - d2(0)) + h3d3 + Z3$$
Prof. Shu-Ming Tseng

Decorrelating Decision Feedback

(actually partially decorrelator/SIC)

$$y = RHD + z$$

$$R = F^T F$$

where F is lower triangle matrix (suited for SIC)

$$(F^T)^{-1}y = FHD + (F^T)^{-1}z$$

$$= \begin{bmatrix} F_{1,1} & & & \\ F_{2,1} & F_{2,2} & & \\ & & & \\ F_{K,1} & & & F_{K,K} \end{bmatrix} \begin{bmatrix} h_1 & & & \\ & h_2 & & \\ & & & \\ & & & h_K \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_K \end{bmatrix} + (F^T)^{-1} z^2$$

國中消去法解聯立方程式

Prof. Shu-Ming Tseng

• This scheme inherits most advantages of SIC. Nevertheless, if data estimation subtracted are correct, all users experience complete MAI reduction.

Prof. Shu-Ming Tseng

Similar case for triangular matrix decomposition in Multi-user

• [Wan14] Xianan Wang, Xiaoxiang Wang, and Yanyan Qi, "Low-Complexity Transceiver Design for MIMO Broadcast Systems," IEEE Communications Letters, vol. 18, no. 9, pp.1661-1664, 2014.

 QR decomposition H=QR, Q:orthonormal basis and R is upper triangular matrix (for SIC)

Prof. Shu-Ming Tseng

33

Required Knowledge for Detectors

- A: The signature waveform of the desired user
- B: The signature waveforms of the interfering users
- C: The timing of the desired user
- D: The timings of each of interfering users
- E: The received amplitudes of interfering users

Prof. Shu-Ming Tseng

Comparison of Detection Schemes

detection scheme	complexity	requirement
Single-user detector	O(K)	AC
Optimum multiuser detector	O(2^K)	ABCDE
Decorrelating detector	O(K^3)	ABCD
MMSE detector	O(K^3)	ABCDE
Parallel interference cancellation	O(K)	ABCDE
Successive interference cancellation	O(K)	ABCDE

Prof. Shu-Ming Tseng

35

Pro and Con

Detection sche	eme	pro	con	
Single-user det	tector	simplicity	Low capacity	
Optimum detector	multiuser	High capacity	NP complete	
Decorrelating detector		Near-far resistance	Noise enhancement	
			Worse BER in low SNR	
MMSE detector		Better BER than decorrelator in low SNR	Require amplitude estimate	
Parallel cancellation	interference	High capacity if good power control	Require perfect amplitude estimate	
Successive cancellation	interference	High capacity if severe near-far problem Prof. Shu-Ming Tseng	Long delay Require amplitude estimate	

