Probar que las siguientes afirmaciones son verdaderas utilizando las definiciones.

a)
$$n^2 - 4n - 2 \in O(n^2)$$

$$O(n^2) = \{ f \mid \exists n_0, k > 0 \ tq. \ \forall n \ge n_0 : f(n) \le k \cdot n^2 \}$$

Busquemos ese par n_0 y k > 0 para demostrar que pertenece.

$$n^2 - 4n - 2 \in O(n^2) \Leftrightarrow \exists n_0, k > 0 \ tq. \ \forall n \ge n_0 : n^2 - 4n - 2 \le k \cdot n^2$$

Calculo auxiliar:

$$n^2 - 4n - 2 \le k \cdot n^2 \Leftrightarrow \frac{n^2 - 4n - 2}{n^2} \le k$$

Elijamos, por ejemplo n = 1.

$$(1-4-2)/1 \le k \Leftrightarrow -5 \le k$$
.

k debe ser mayor a 0, elijamos k = 1.

Sean
$$k = 1$$
 y $n_0 = 1$ qvq $\forall n \ge n_0 : n^2 - 4n - 2 \le 1 \cdot n^2$

Sea $n \geq n_0$:

$$n^2 - 4n - 2 \le 1 \cdot n^2 \Leftrightarrow 0 \le 4n + 2$$
, y esto es **Verdadero** $(n \ge n_0 \ge 1)$

Conclusión:
$$n^2 - 4n - 2 < 1 \cdot n^2 \ \forall n > n_0$$

Exhibimos k = 1 y $n_0 = 1$, vimos que la desigualdad se cumple.

$$n^2 - 4n - 2 \in O(n^2)$$

b) Para todo $k \in \mathbb{N}$ y toda función $f: \mathbb{N} \to \mathbb{N}$, si $f \in O(n^k)$, entonces $f \in O(n^{k+1})$

<u>Afirmo</u>: Sean $\lambda > 0, m \in \mathbb{N}$, se cumple que $\lambda \cdot m^k \leq \lambda \cdot m^{k+1} \Leftrightarrow m^k \leq m^{k+1} \Leftrightarrow 1 \leq m$. Y esto es **Verdadero**, pues $m \in \mathbb{N}$.

$$f \in O(n^k) \Leftrightarrow \exists n_0, j > 0 \ tq. \ \forall n \ge n_0 : f(n) \le j \cdot n^k \Rightarrow \exists n_0, j > 0 \ tq. \ \forall n \ge n_0 : f(n) \le j \cdot n^k \le j \cdot n^{k+1}$$

Pues ya vimos que $j \cdot n^k \leq j \cdot n^{k+1} \ (j > 0, n \geq n_0 \geq 1, n \in \mathbb{N}).$

$$f \in O(n^k) \Rightarrow f \in O(n^{k+1})$$

c) Si $f: \mathbb{N} \to \mathbb{N}$ es tal que $f \in O(\log n)$, entonces $f \in O(n)$

Acá utilizaremos que $log(n) \le n \ \forall n \in \mathbb{N}$

$$f \in O(\log n) \Leftrightarrow \exists n_0, k > 0 \ tq. \ \forall n \ge n_0 : f(n) \le k \cdot \log(n)$$

$$\Rightarrow \exists n_0, k > 0 \ tq. \ \forall n \ge n_0 : f(n) \le k \cdot log(n) \le k \cdot n$$

$$\Rightarrow f \in O(n)$$

Determinar si cada una de las siguientes afirmaciones es verdadera o falsa. Justificando adecuadamente su respuesta.

a)
$$2^n \in O(1)$$

En este ejercicio la vamos a complicar un poco (solucionarlo por límite es realmente trivial).

Mostremos que $2^n \in O(1)^c$

$$O(g)^c = \{ f \mid \forall n_0, k > 0, \exists n \ge n_0 : f(n) > k \cdot g(n) \}$$

$$O(1)^c = \{ f \mid \forall n_0, k > 0, \exists n \ge n_0 : f(n) > k \cdot 1 \}$$

$$2^n \in O(1)^c = \{f \mid \forall n_0, k > 0, \exists n \ge n_0 : 2^n > k \cdot 1\}$$

Sean $n_0, k > 0, n_0 \in \mathbb{N}$, tal que vale $2^{n_0} < k \cdot 1$

Tomo $n > max(n_0, log(k))$, se tiene entonces que $n > n_0$ y que n > log(k).

Afirmación: $2^n > k \Leftrightarrow log(2^n) > log(k) \Leftrightarrow n > log(k)$, pero esto es **Verdadero** pues n > log(k)

Conclusión: $\forall n_0, k > 0, \exists n \geq n_0 : 2^n > k \cdot 1, 2^n \in O(1)^c \Leftarrow 2^n \notin O(1)$

b) $n \in O(n!)$

Este sale con límite. $f(n) = n \land g(n) = n!$

Queremos ver que $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$. Entonces habremos mostrado que $n\in O(n!)$

$$\lim_{n\to\infty} \frac{n}{n!} = \lim_{n\to\infty} \frac{n}{n\cdot (n-1)!} = \lim_{n\to\infty} \frac{1}{(n-1)!} = 0.$$

Por la propiedad 8 que nos dieron en la Teórica, $n \in O(n!)$

c) $n! \in O(n^n)$

Este sale con límite. $f(n) = n! \wedge g(n) = n^n$

Queremos ver que $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$. Entonces habremos mostrado que $n! \in O(n^n)$

Este es el límite más complicado y hay que usar el criterio de d'Alembert

$$\begin{split} & \lim_{n \to \infty} \frac{n!}{n^n} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n!}} = \lim_{n \to \infty} \frac{(n+1)!}{(n+1)^{(n+1)}} \cdot \frac{n^n}{n!} = \lim_{n \to \infty} \frac{(n+1) \cdot n!}{(n+1) \cdot (n+1)^n} \cdot \frac{n^n}{n!} \\ & = \lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \left(\frac{n+1-1}{n+1}\right)^n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^n \\ & \stackrel{n \neq 0}{=} \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right)^n \cdot \frac{1 - \frac{1}{n+1}}{1 - \frac{1}{n+1}} = \lim_{n \to \infty} \frac{\left(1 - \frac{1}{n+1}\right)^{n+1}}{1 - \frac{1}{n+1}} \end{split}$$

Cálculos auxiliares:

$$\lim_{n\to\infty} \left(1 - \frac{1}{(n+1)}\right) = 1$$

$$\lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^{n+1} = \lim_{n\to\infty} \left(1 + \frac{1}{-(n+1)}\right)^{(n+1)\cdot\frac{-1}{-1}} = \lim_{n\to\infty} \left(\left(1 + \frac{1}{-(n+1)}\right)^{-(n+1)}\right)^{-1} = e^{-1}$$

Por álgebra de límites:

$$\lim_{n \to \infty} \frac{(1 - \frac{1}{n+1})^{n+1}}{1 - \frac{1}{n+1}} = \frac{e^{-1}}{1} < 1$$

Cómo el límite es menor que 1, el criterio de d'Alembert nos dice que:

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0$$

Conclusión: $2^n \in O(n^n)$

$d) \ 2^n \in O(n!)$

Vamos a probar uno utilizando inducción:).

$$2^n \in O(n!) \Leftrightarrow \exists n_0, k > 0 \ tq. \ \forall n \geq n_0 : 2^n \leq k \cdot n!$$

Tomo
$$k = 1 \text{ y } n_0 = 4.$$

Objetivo: Ver que $\forall n \geq 1 : 2^n \leq n!$

Sea
$$P(n): 2^n \le n!$$

Caso base con n = 4, queremos ver si P(4) es **Verdadero**.

$$P(4): 2^4 \le 4! \Leftrightarrow 16 \le 24. P(4)$$
 es Verdadero

Sea $k \in \mathbb{N}, k > 4$, y supongamos que P(k) vale, queremos ver que P(k+1) también vale.

$$2^{k+1} = 2 \cdot 2^k \stackrel{HI}{\leq} 2 \cdot k!$$

Ahora quiero ver que: $2 \cdot k! \le (k+1)! \Leftrightarrow 2 \cdot k! \le (k+1) \cdot k! \Leftrightarrow 2 \le (k+1) \Leftrightarrow 1 \le k$. Pero k > 4. Luego $P(k) \Rightarrow P(k+1)$.

Como vale el caso base, y $P(k) \Rightarrow P(k+1), 2^n \le n! \ \forall \ n \ge 4, n \in \mathbb{N}.$

Retomando:

Pudimos ver que para k=1 y $n_0=4$, se cumple que $\forall n\geq n_0: 2^n\leq n!$

Conclusión: $2^n \in O(n!)$

e) Para todo $i, j \in \mathbb{N}, i \cdot n \in O(j \cdot n)$

Sean $i \in \mathbb{N}, j \in \mathbb{N}$

Se quiere ver si $i \cdot n \in O(j \cdot n) \Leftrightarrow \exists n_0, k > 0 \ tq. \ \forall n \geq n_0 : i \cdot n \leq k \cdot j \cdot n$

Tomo $k = \left\lceil \frac{i}{j} \right\rceil$ y $n_0 = 1$, se tiene $k \ge \frac{i}{j}$

Sea $n \in \mathbb{N}, n \ge n_0$. QVQ: $i \cdot n \le k \cdot j \cdot n \stackrel{n \in \mathbb{N}}{\Leftrightarrow} \frac{i}{i} \le k$, y esto es **Verdadero**.

Conclusión: Para todo $i, j \in \mathbb{N}, i \cdot n \in O(j \cdot n)$

f) Para todo $k \in \mathbb{N}, 2^k \in O(1)$

Sea $k \in \mathbb{N}$.

Se quiere ver si $2^k \in O(1) \Leftrightarrow \exists n_0, j > 0 \ tq. \ \forall n \geq n_0 : 2^k \leq j$

Tomo $j = 2^k \ y \ n_0 = 1$.

Trivialmente $2^k \leq j$ es una Tautología, y entonces vale $\forall n \geq n_0$.

Conclusión: $2^k \in O(1) \ \forall \ k \in \mathbb{N}$

 $g) log n \in O(n)$

Ésto quedo demostrado en el Ej 1.4

 $h) n! \in O(2^n)$

Sea $f(n) = 2^n \wedge g(n) = n!$. Si demostramos que $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, entonces tendremos que $g \notin O(f)$

Vamos a utilizar el criterio de d'Alembert

$$\lim_{n \to \infty} \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} = \lim_{n \to \infty} \frac{2 \cdot 2^n}{(n+1) \cdot n!} \cdot \frac{n!}{2^n} = \lim_{n \to \infty} \frac{2}{n+1} = 0 < 1$$

Luego, $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0 \Rightarrow g \notin O(f)$

 $i) n^5 + bn^3 \in \Theta(n^5) \Leftrightarrow b = 0$

Esto es **Falso**, tomemos b=1 y veamos que: $n^5+n^3\in\Theta(n^5)\Leftrightarrow n^5+n^3\in O(n^5)\wedge n^5+n^3\in\Omega(n^5)$

1: $n^5 + n^3 \in O(n^5) \Leftrightarrow \exists n_0, k > 0 \ tq \ \forall n \ge n_0 : n^5 + n^3 \le k \cdot n^5$

Cálc. auxiliar: $n^5 + n^3 \le k \cdot n^5 \Leftrightarrow 1 + \frac{n^3}{n^5} \le k \Leftrightarrow 1 + \frac{1}{n^2} \le k$.

Tomo $n_0 = 1$ y k = 2.

Se quiere ver que $\forall n \geq 1 : n^5 + n^3 \leq 2 \cdot n^5$

Sea $n \ge n_0$

 $n^5 + n^3 \le 2 \cdot n^5 \Leftrightarrow -n^5 + n^3 \le 0 \Leftrightarrow n^5(-1 + \frac{n^3}{n^5}) \le 0 \stackrel{n \in \mathbb{N}}{\Leftrightarrow} -1 + \frac{1}{n^2} \le 0. \text{ Sabemos que } \frac{1}{n^2} < 1.$

Con lo cual la desigualdad es verdadera.

Conclusión: $n^5 + n^3 \in O(n^5)$

 $2: n^5 + n^3 \in \Omega(n^5) \Leftrightarrow \exists n_0, k > 0 \ tq \ \forall n \ge n_0: k \cdot n^5 \le n^5 + n^3$

<u>Cálc. auxiliar</u>: $k \cdot n^5 \le n^5 + n^3 \Leftrightarrow k \le 1 + \frac{n^3}{n^5} \Leftrightarrow k \le 1 + \frac{1}{n^2}$.

Tomo $n_0 = 1$ y k = 1.

Se quiere ver que $\forall n \geq 1 : n^5 \leq n^5 + n^3$

Sea $n > n_0$

 $n^5 \leq n^5 + n^3 \Leftrightarrow 0 \leq n^3.$ Esto vale $\forall n \in \mathbb{N}$

Con lo cual la desigualdad es verdadera.

Conclusión: $n^5 + n^3 \in \Omega(n^5)$

Como $n^5 + n^3 \in O(n^5) \wedge n^5 + n^3 \in \Omega(n^5)$, se concluye que $n^5 + n^3 \in \Theta(n^5)$, con $b \neq 0$.

Por lo tanto, la afirmación es (muy) falsa.

j) Para todo $k \in \mathbb{R}, \, n^k log(n) \in O(n^{k+1})$

Sea $k \in \mathbb{R}$, $n^k log(n) \in O(n^{k+1}) \Leftrightarrow \exists n_0, \lambda > 0 \ tq \ \forall n \geq n_0 : n^k log(n) \leq \lambda \cdot n^{k+1}$

 $\underline{\mathrm{Cálc.\ auxiliar:}}\ n^k log(n) \leq \lambda \cdot n^{k+1} \overset{n \in \mathbb{N}}{\Leftrightarrow} \tfrac{log(n)}{n} \leq \lambda$

Sea $n\in\mathbb{N},$ tomo $\lambda=\left\lceil\frac{\log(n)}{n}\right\rceil,$ se tiene entonces que $\lambda\geq\frac{\log(n)}{n}$

<u>Aclaración</u>: Acá vemos que λ no depende de k, podríamos tomar cualquier n, calcular λ pero la demo sale más fácil así.

 $n^k log(n) \leq \lambda \cdot n^{k+1} \Leftrightarrow \frac{log(n)}{n} \leq \lambda.$ Y esto trivialmente vale.

Conclusión: Para todo $k \in \mathbb{R},\, n^k log(n) \in O(n^{k+1})$

k) Para toda función $f: \mathbb{N} \to \mathbb{N}$, se tiene que $f \in O(f)$

$$f \in O(f) \Leftrightarrow \exists n_0, k > 0 \ tq \ \forall n \ge n_0 : f(n) \le k \cdot f(n).$$

Tomo k = 1, y trivialmente $f(n) \le 1 \cdot f(n) \ \forall n \in \mathbb{N}$

Conclusión: $f \in O(f)$

Que $O(g) \subseteq O(f)$, nos dice que g es de la misma familia (o menor) que f. Que $O(g) \subseteq O(f)$ y $O(f) \subseteq O(g)$ nos dice que O(g) = O(f) y por lo tanto f y g son de la misma familia.

Ejercicio 4

a) Sean f y g el mejor y el peor caso de un algoritmo. ¿Es cierto entonces que $g \notin O(f)$?

No es cierto. Por ejemplo, dado un algoritmo que recorre un arreglo de tamaño n, se tendrá que $T_{mejor} \in O(n)$ y que $T_{peor} \in O(n)$, y en este caso $n \in O(n)$

b) Sean g(n) y h(n) la cantidad de operaciones que realizan los algoritmos G y H en función del tamaño de la entrada. Si G ejecuta la mitad de operaciones que H, ¿vale que $q \in \Theta(h)$?

Respuesta corta: Si, vale. Difieren en una constante.

Respuesta larga: A demostrarlo...

c) Un algoritmo que toma un arreglo como input realiza $\Theta(n^2)$ operaciones cuando el arreglo tiene más de 100 elementos y $\Theta(1)$ operaciones cuando tiene 100 o menos. ¿Cuál es el mejor caso del algoritmo?

El mejor caso sigue siendo $\Theta(n^2)$.

Cuando en complejidad se habla de órden exacto, en este caso $\Theta(n^2)$ es porque $\Theta(T_{peor}) = \Theta(T_{mejor})$

Nos interesa saber como se comporta el algoritmo para tamaños que tienden a tienden a infinito, el mejor caso debe ser el mismo independientemente del tamaño del input. Ejemplo: La búsqueda lineal, tiene mejor caso O(1) ya que no depende del tamaño del arreglo.

d) Si $f(n) < g(n) \ \forall n$, ¿es cierto que $f \notin \Omega(g)$

No es cierto. Por ejemplo, tomemos $f(n) = \frac{n}{2}$ y g(n) = n, se puede ver fácilmente como $\frac{n}{2} \in \Omega(n)$

e) Si la complejidad en el peor caso de un algoritmo es $\Omega(n)$, ¿es verdad que la complejidad de mejor caso no puede ser O(1)?

No es cierto. Como vimos antes, el caso de la búsqueda lineal tiene mejor caso O(1) y peor caso O(n), y $n \in \Omega(n)$

f) Si la complejidad temporal en el peor caso de un algoritmo pertenece a O(n), entonces su complejidad temporal en el mejor caso también pertenece a $O(n^2)$.

Si es cierto. Esto se deduce de las definiciones de T_{mejor} y T_{peor} .

$$T_{mejor}(n) \leq T_{peor}(n) \ \forall n \in \mathbb{N}.$$

Entonces, si podemos acotar "por arriba" al pe
or caso con una función lineal, también podremos acotarlo por arriba con una función cuadrática. Y particular
mente también vamos a poder acotar por arriba (con ambas) al
 T_{mejor}

- 1. Si $O(f(n))\cap\Omega(g(n))=\emptyset,$ entonces $O(g(n))\cap\Omega(f(n))=\emptyset.$
 - Esto es falso. Para f(n) = n y $g(n) = n^2$, $O(n) \cap \Omega(n^2) = \emptyset$

Pero sin embargo, $O(n^2) \cap \Omega(n) \neq \emptyset$

- 2. Si $f \in O(g)$, entonces $f \in \Theta(g) \cup \Theta(h)$ para cualquier función h..
- 3. Si $f \in O(g)$ y $h \in O(g)$, entonces $(f + h) \in O(g)$

Esto es Verdadero. Demostrémoslo.

$$f \in O(g) \Leftrightarrow \exists n_0, \alpha > 0 \ tq \ \forall n \ge n_0 : f(n) \le \alpha \cdot g(n)$$

$$h \in O(g) \Leftrightarrow \exists m_0, \lambda > 0 \ tq \ \forall n \ge n_0 : h(n) \le \lambda \cdot g(n)$$

Ésta es nuestra hipótesis.

Sea $\gamma_0 = max(m_0, n_0)$, se tiene entonces que $\gamma_0 \ge m_0 \land \gamma_0 \ge n_0$.

Y también por hipótesis vale que:

$$\forall n \ge \gamma_0 : f(n) \le \alpha \cdot g(n)$$

$$\forall n \geq \gamma_0 : h(n) \leq \lambda \cdot g(n)$$

Se concluye que
$$f(n) + h(n) \le \alpha \cdot g(n) + \lambda \cdot g(n) \Rightarrow f(n) + h(n) \le (\alpha + \lambda) \cdot g(n) \ \forall n \ge \gamma_0$$

Por lo tanto, $(f+h) \in O(g)$

4.
$$O(n^2) \cap \Omega(n) = \Theta(n^2)$$

Esto es Falso.

$$n \in O(n^2) \land n \in \Omega(n) \Leftrightarrow n \in O(n^2) \cap \Omega(n)$$

Respuesta corta: Nunca vamos a poder encontrar $k_1, k_2 > 0$, tal que n quede "ensanguchada" por n^2 .

Respuesta larga: Probar que $n \in \Theta(n^2)^c$

5.
$$\Theta(n) \cup \Theta(n \cdot log(n)) = \Omega(n \cdot log(n)) \cap O(n)$$

Esto es Falso.

$$\Omega(n \cdot log(n)) \cap O(n) = \emptyset$$

Mostremoslo. Supongamos que existe f tal que $f \in O(n)$ y $f \in \Omega(n \cdot log(n))$. Luego:

$$\exists n_0, k > 0 \ tq \ \forall n \geq n_0 : f(n) \leq k \cdot n$$

$$\exists n_1, j > 0 \ tq \ \forall n \ge n_1 : f(n) \ge j \cdot n \cdot log(n)$$

Sea $n_2 = max(n_0, n_1)$, entonces se cumple que:

$$\forall n \ge n_2 : f(n) \le k \cdot n$$

$$\forall n \ge n_2 : f(n) \ge j \cdot n \cdot log(n)$$

Tenemos que:
$$k \cdot n \ge j \cdot n \cdot log(n) \Leftrightarrow \frac{k}{j} \ge log(n)$$

Claramente la desigualdad no se va a cumplir para todo n puesto que $\frac{k}{i}$ es constante.

Tomo $M = \frac{k}{i} > 0$. Y como $\lim_{n \to \infty} \log(n) = +\infty$. Por definición de límite se tiene:

$$\forall M > 0 \; \exists \alpha_0 \in \mathbb{N} \; tq \; \forall n > \alpha_0 : log(n) > M.$$

Con lo cual llegamos a un absurdo, y podemos concluir que $\nexists f$ tq $f \in O(n) \land f \in \Omega(n \cdot log(n))$

Solo nos resta ver que el conjunto $\Theta(n) \cup \Theta(n \cdot log(n))$ no es vacío.

Trivialmente $n \in \Theta(n)$, así que la unión tiene al menos un elemento, por lo cual no se da la igualdad.