### Lab #8: Verify Custom IP

05/03/2018

4190.309A: Hardware System Design (Spring 2018)

### **Notations**

- HOST\$ XXX
  - Type XXX at the terminal of your Ubuntu-PC.
- BOARD\$ YYY
  - Type YYY at the terminal of ZedBoard (on minicom).
- -TCL\$ ZZZ
  - Type ZZZ at the Tcl console of Vivado.

#### Overview

- Step-by-step procedure: implementing IP into the Linux system
  - Simulation verification
    - Test vector generation
    - Simulation with the BRAM model
  - Implementation
    - Instantiate the baseline block design
    - Edit custom IP
    - C-program test

- Get the source code before get into the practice
  - HOST\$ git clone https://github.com/K16DIABLO/HSD\_LAB8.git

### Simulation Verification

#### **Test Vector Generation**

- Get the sample test vector generator
  - HOST\$ cd \$(git\_clone\_dir)/sw\_1
  - HOST\$ make
    - See the sample test vectors 'input.txt' and the reference result 'output.txt'
  - HOST\$ make debug
    - Check the full intermediate results

| Method | Simulation<br>C-program | Simulation<br>Verilog | Execution FPGA |
|--------|-------------------------|-----------------------|----------------|
| Result | 40889A69<br>4.268849    | ?                     | ?              |

### Create Vivado project

- Choose part or board
  - We are going to use ZedBoard



#### Simulation with the BRAM Model

- See the given lab4 code the TA sample code
  - HOST\$ cd \$(git clone dir)/hw 1 <- given LAB4 code
  - HOST\$ cd \$(git\_clone\_dir)/hw\_2 <- modified by TA
    - Modification log)
      - Add BRAM interface
      - Add clock wizard IP
      - Add testbench
- Create Vivado project and import all hw\_2 files
  - tb\_pecon\_bram.v, pe\_controller.v, pe.v, bram.v, input.txt
  - Change input/output file directory path to your own environment.
- Generate missing IPs
  - floating\_point\_0, clk\_wiz\_0 (see next page)

```
Project Manager - project_1
                                                                                                                                                                                                                                                                                                                                                                                    ? _ U L X
O→ Design Sources (1)
                         • pe_con (pe_controller.v) (2)

↓ u_clk - clk_wiz_0 (clk_wiz_0.xci)

• w u_pe - my_pe (pe.v) (1)
• w u_pe - my_pe (pe.v)
• w u_pe - my_pe - my_pe (pe.v)
• w u_pe - my_pe - my_pe - my_pe (pe.v)
• w u_pe - my_pe 
                                                                              U_I u_float_dsp - floating_point_0 (floating_point_0.x)
  Constraints
  Simulation Sources (2)

• Representation of the property of the pr
                                                                             • u_con - pe_con (pe_controller.v) (2)
                                                                                                     -@ u_mem - my_bram (bram.v)
                                                     — input.txt
```

### Floating Point IP

Click IP Catalog -> Math Functions -> Floating point



## Floating Point IP



| Operation Selection   Precision of Inputs   Optimizations   Interface Options |                |               |           |          |                             |
|-------------------------------------------------------------------------------|----------------|---------------|-----------|----------|-----------------------------|
| Flow Control Options  3. Change from blocking to NonBlocking                  |                |               |           |          |                             |
| Flow Control NonBlocking Optimize Goal Resources                              |                |               |           |          |                             |
| RESULT channel has TREADY                                                     |                |               |           |          |                             |
|                                                                               |                |               |           |          |                             |
| Latency and Rate Configuration                                                | on             |               |           |          |                             |
| ✓ Use Maximum Latency                                                         | /              |               |           |          |                             |
| Latency 16                                                                    | ° [0 - 1       | 16]           |           |          |                             |
| Cycles/operation 1                                                            | 。[1 -:         | 27]           |           |          |                             |
| Control Signals                                                               | 4.             | Set           |           |          |                             |
| _                                                                             |                | RESETn        |           |          |                             |
| ARESETn must be asserte                                                       |                |               |           |          |                             |
|                                                                               |                |               |           |          |                             |
| Optional Output Fields                                                        |                |               |           |          |                             |
| UNDERFLOW                                                                     | OVERFLOW       | ☐ INVALID OP  |           |          |                             |
| ☐ DIVIDE BY ZERO ☐.                                                           | ACCUM OVERFLOW | ☐ ACCUM INPUT | OVERFLOW  |          |                             |
| Channel                                                                       | Has TLAST      |               | Has TUSER |          | TUSER Width (Range: 1256)   |
| A                                                                             |                | J             |           | 1        | rosert widen (trange, 1255) |
| В                                                                             |                |               |           | ្នំ1     |                             |
| С                                                                             |                |               |           | <b>1</b> |                             |
| OPERATION                                                                     |                |               |           | <b>1</b> |                             |
| TLAST Behavior                                                                |                |               |           |          |                             |
| TLAST Behavior Null 🕶                                                         |                |               |           |          |                             |

### Clocking Wizard IP

Click IP Catalog -> FPGA Features and Design -> Clocking Wizard



# Clocking Wizard IP

| Board      | Clocking Options        | Output Clocks | MMCM Settings      | Port Renaming              | Summary               |       |
|------------|-------------------------|---------------|--------------------|----------------------------|-----------------------|-------|
| Clock Moi  | nitor                   |               |                    |                            |                       |       |
| E          | nable Clock Monitorin   | 19            |                    |                            |                       |       |
| Primitive  |                         |               |                    |                            |                       |       |
| •          | MMCM OPLL               |               |                    |                            |                       |       |
| Clocking I | Features                |               | Jitte              | r Optimization             |                       |       |
| <b>✓</b> F | Frequency Synthesis     | ☐ Minimize Po | wer                | <ul><li>Balanced</li></ul> |                       |       |
| <b>✓</b> F | Phase Alignment         | Spread Spec   | trum               | O Minimize C               | Output Jitter         |       |
|            | ynamic Reconfig         | Dynamic Ph    | ase Shift          | O Maximize I               | nput Jitter filtering |       |
| <u> </u>   | Safe Clock Startup      |               |                    |                            |                       |       |
| Dunamia    | Reconfig Interface Opti | lono          |                    | 1                          | . 50MHz               |       |
| Dynamic    | necoming internace Opti |               | - D. A. C I - C 4  | - Makauppp                 |                       |       |
| •          | AXI4Lite O DRP          | Phas          | e Duty Cycle Confi | g Write DRP                | registers             |       |
| Input Cloc | k Information           |               |                    |                            |                       |       |
|            | Input Clock             | Input Freque  | ncy(MHz)           |                            | Jitter Options        | Inpu  |
|            | Primary                 | 50            | 8                  | 10,000 - 933,000           | UI +                  | 0,010 |
|            | Secondary               | 100,000       |                    | 30,000 - 72,000            |                       | 0,010 |

#### 2. 50MHz, 180°

| Output Clock                                                               | Output Freq (MH                                   |               | Phase (degree                                                                   |                               |
|----------------------------------------------------------------------------|---------------------------------------------------|---------------|---------------------------------------------------------------------------------|-------------------------------|
| ✓ clk_out1                                                                 | Requested<br>50                                   | Actual 50,000 | Requested<br>180                                                                | Actual 180,000                |
| clk_out2                                                                   | 100,000                                           | N/A           | 0,000                                                                           | N/A                           |
| clk_out3                                                                   | 100,000                                           | N/A           | 0,000                                                                           | N/A                           |
| clk_out4                                                                   | 100,000                                           | N/A           | 0,000                                                                           | N/A                           |
| clk_out5                                                                   | 100,000                                           | N/A           | 0,000                                                                           | N/A                           |
| clk_out6                                                                   | 100,000                                           | N/A           | 0,000                                                                           | N/A                           |
| clk_out7                                                                   | 100,000                                           | N/A           | 0,000                                                                           | N/A                           |
| Output Cloc                                                                | k Sequence Nu                                     | So            | g Feedback<br>urce<br>• Automatic Control                                       | Sig<br>On-Chip                |
| Output Cloc                                                                | k Sequence Nu                                     | So            | urce<br>● Automatic Control                                                     | On-Chip                       |
| Output Cloc<br>clk_out1<br>clk_out2                                        | k Sequence Nu                                     | So            | Automatic Control     Automatic Control                                         | On-Chip<br>Off-Chip           |
| Output Cloc<br>clk_out1<br>clk_out2<br>clk_out3                            | k Sequence Nu                                     | So            | urce  ● Automatic Control  ○ Automatic Control  ○ User-Controlled Or            | On-Chip<br>Off-Chip<br>n-Chip |
| Output Cloc<br>clk_out1<br>clk_out2                                        | k Sequence Nu                                     | So            | Automatic Control     Automatic Control                                         | On-Chip<br>Off-Chip<br>n-Chip |
| Output Clock  clk_out1  clk_out2  clk_out3  clk_out4                       | k Sequence Nu 1 1 1 1                             | So            | urce  ● Automatic Control  ○ Automatic Control  ○ User-Controlled Or            | On-Chip<br>Off-Chip<br>n-Chip |
| Output Cloc<br>clk_out1<br>clk_out2<br>clk_out3<br>clk_out4<br>clk_out5    | k Sequence Nu 1 1 1 1 1                           | So            | urce  ● Automatic Control  ○ Automatic Control  ○ User-Controlled Or            | On-Chip<br>Off-Chip<br>n-Chip |
| Output Cloc clk_out1 clk_out2 clk_out3 clk_out4 clk_out5 clk_out6          | k Sequence Nu  1  1  1  1  1  1                   | So            | urce  ● Automatic Control  ○ Automatic Control  ○ User-Controlled Or            | On-Chip<br>Off-Chip<br>n-Chip |
| Output Cloc clk_out1 clk_out2 clk_out3 clk_out4 clk_out5 clk_out6          | k Sequence Nu  1  1  1  1  1  1  1                | So            | urce  ● Automatic Control  ○ Automatic Control  ○ User-Controlled Or            | On-Chip<br>Off-Chip<br>n-Chip |
| Output Cloc clk_out1 clk_out2 clk_out3 clk_out4 clk_out5 clk_out6 clk_out7 | k Sequence Nu  1  1  1  1  1  1  1  uts / Outputs | So            | urce  Automatic Control Automatic Control User-Controlled Or User-Controlled Of | On-Chip<br>Off-Chip<br>n-Chip |

#### Simulation with the BRAM Model

- Get the behavioral simulation results and check output.txt
  - Result is written to address 0x0
  - Check the results from the different calculator
    - C program
    - Verilog simulator



| Method | Simulation<br>C-program | Simulation<br>Verilog | Execution FPGA |
|--------|-------------------------|-----------------------|----------------|
| Result | 40889A69<br>4.268849    | 40889A69              | ?              |

# Implementation

### Baseline Block Design

- You can get lab7 block design at:
  - -HOST\$ cd \$(git\_clone\_dir)/hw\_3
- Create another Vivado project and instantiate the block design
  - Add ip repository \$(git\_clone\_dir)/hw\_3/lab7\_ip\_repo
  - TCL\$ cd \$(git\_clone\_dir)/hw\_3
  - TCL\$ source block\_design.tcl

# Review: Apply Block Design (1)



## Review: Apply Block Design (2)

- Execute TCL scripts of the example block design.
  - 1. Select Tcl Console tab
  - 2. TCL\$ cd \$(git\_clone\_dir)/hw\_3
  - 3. TCL\$ source block\_design.tcl



### Editing Custom IP (1)

- See the sample IP by TA
  - Baseline custom IP: Lab7 shifter
  - The sample IP by TA: \$(git\_clone\_dir)/hw\_3/lab7\_ip\_repo
    - Modification log)
      - Import all source files
      - Instantiate pe\_controller in the myip
      - Add BRAM\_EN, BRAM\_RST, ...
      - Add start/done edge detectors

# Editing Custom IP (2)

• IP Catalog -> Edit in IP Packager -> IP project



# Editing Custom IP (3)

Package IP -> Configurations -> Re-Package IP



## Editing Custom IP (4)

Report IP Status -> Upgrade Selected





### C-program Test

- Get the sample test c-program
  - -BOARD\$ git clone <a href="https://github.com/K16DIABLO/HSD\_LAB8.git">https://github.com/K16DIABLO/HSD\_LAB8.git</a>
  - BOARD\$ cd \$(git\_clone\_dir)/sw\_2
  - BOARD\$ make
- Check the results from the different calculators
  - C program
  - Verilog simulator
  - ZED board FPGA

```
zed@debian-zynq:~/lab8/sw_2$ make
gcc main.c && sudo ./a.out
index CPU FPGA FPGA(hex)
0 4.268849 4.268849 40889A69
```

| Method | Simulation<br>C-program | Simulation<br>Verilog | Execution FPGA       |
|--------|-------------------------|-----------------------|----------------------|
| Result | 40889A69<br>4.268849    | 40889A69              | 40889A69<br>4.268849 |

### Grading policy

- Check lists
  - C Simulation output (20 points)
  - Verilog Simulation output (30 points)
  - FPGA Implementation output (50 points)
- Submit "L8.pdf" (with screenshots on it) on eTL
  - Due: 5/8 (Tue) PM 11:59