LOAN DOCUMENT

PHOTOGRAPH THE	SHEET
TEAST	INVENTORY
LEVEL DOCUMENT IDENTIFICATION	
DOCUMENT IDENTIFICATION	
DISTRIBUT	ION STATEMENT
NTIS GRAM E DTIC TRAC UNANNOUNCED JUSTIFICATION	
DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL	
A A A A A A A A A A A A A A A A A A A	DATE ACCESSIONED
DISTRIBUTION STAMP	
Reproduced From	
Best Available Copy ——	DATE RETURNED
19981223 035	
DATE RECEIVED IN DTIC	REGISTERED OR CERTIFIED NUMBER
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-F	DAC
OTIC FORM 70A DOCUMENT PROCESSING SHEET	PREVIOUS EDITIONS MAY BE USED UNTIL

NADC Tech. Info!

AVIONICS DIVISION \mathbf{TT}^{Γ}

REED SOLOMON ENCODER / DECODER

COMPUTER PROGRAM PACKAGE

FEBRUARY, 1976

CNI SYSTEMS ENGINEERING

Prepared Under Contract: N62269-75-6-0503

Data Item A006

for

Department of the Navy, Naval Air Development Center

by

ITT Avionics Division
500 Washington Avenue
Nutley, New Jersey 07110

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dain Entered)

REPORT DOCUMENTATION		READ INSTRUCTIONS BEFORE COMPLETING FORM
I. REPORT NUMBER	2, GOVT ACCESSION	NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)		8. TYPE OF REPORT & PERIOD COVERED FINAL ENGINEERING REPO
Reed Solomon Encoder/Decoder	•	18 JUN 75 - 9 FEB 76
Final Engineering Report COMPUTER PROGRAM PACKAGE	•	6. PERFORMING ORG. REPORT NUMBER D 11804
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
STAFF OF: CNI Systems Engine	eer i ng	N62269-75-C-0503
	•. • •	
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ITT Avionics Division		Design, Fab & Test
500 Washington Avenue		- ·
Nutley, New Jersey 07110		RSED
I. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Naval Air Development Center		February 9, 1976
Warminster, Pennsylvania 189	74	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDRESS(Il different	t from Controlling Offi	(e) 15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)	··	
APPROVED FOR PUBLIC RELEASE; D	ISTRIBUTION U	NLIMITED.
7. DISTRIBUTION STATEMENT (of the abstract entered i	n Block 20, If differen	nt from Report)
	•	
8. SUPPLEMENTARY NOTES		
. KEY WORDS (Continue on reverse side if necessary and	i identify by black nun	nber)
Reed-Solomon		
		croprocessor
Encoder		lois Field
Decoder Round Trip Timing	Err	ata
D. ABSTRACT (Continue on reverse side if necessary and		
The purpose of this program is	•	_
capable of a 384 word/second		
cost effective and practical ma		The state of the s
man processor and	* .	
	•	

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE/When Data Kniered)

20. ABSTRACT

ITT Avionics has built and successfully tested a RSED laboratory breadboard that was funded under contract N62269-75-C-0503 (Naval Air Development Center). A summary of the engineering tests is listed below.

Encoding Time <150 microseconds
Round Trip Timing Detection < 20 microseconds
Decode Time Decode time is de

<150 microseconds
< 20 microseconds
Decode time is dependent
on Errata. Refer to section 5
of report number D11801 for
decode times.</pre>

COMPUTER PROGRAM PACKAGE

(MICROPROCESSOR)

This data item contains the following items:

- 1. Object Program Listing
- 2. Object Program (Note- The object program is physically contained in hardware ROMS that are part of the deliverable hardware).
- 3. Source Program Listing
- 4. Intel 3000 Computer (Microprocessor) Data Sheets

OBJECT PROGRAM LISTING

RSED OBJECT PROGRAM

03' FC'.03' FD' 31' 03 FC 03 FC 00 10 10 00 00 00 E3 FC 03 03 03 FC 03 FC 03 FC 03 FC 03 FF FC 03 FF FC 03 FF 02 C 003 -010 00° 70° 63° 03° 9F° FC° 00° 20° 18° 04° FC° 03° 03° FC° 018 FC' 020 028 10° 0 F * 73 * 7C FC 28 13 7C • 02 40: 30 43 44 * .033 DD * FC * 103 640 048 40 30 14 60. 03. C7. 03. 03 · 7F · - 050 83 * 14 60, FE 00 28 . 54 14 58 * 059 03' FE' 660 50 1 301 4C * £63 7F' 03' BF' 070 50 * 3C * 34 * 78 * 2C * 01 * 03 * 01 * 03 * FF * 080 01. 03. 01. 03. r. 34. 78. 68. 64. 00. 70. 03. FC. 03. FF. 68. 64. 44. 50. 74. 54 * 088 . 09 0 68 64 64 63 02 44 5C 44. 03. 10. 5C' 74' 03' 03' 2C' 13' 64° : 093 0A0 44 0A3 7F' 02' A3' FF' 03' CBO. 1 C-088 03 ° FF ° 07 ° 00 ° FF ° 38 ° 58 ° 70 ° 24 ° 50 ° 000 003 03° 03° FF1 . ODC FC 1 871 FC 37' 03' 03' FF'
70' 24' 74' 43' 20'
7C' 00' 00' 00' FC'
74' 48' 7C' 04' 30'
7F' 00' 03' FF' 02'
7C' 04' 6F' 03' 5C'
7C' C7' 03' 7C' 03' 0D3. 02. 0E0 60 * 0E8 3C. OFS 0F8 FF * FC * FC 108 00 * 00 * 7C * 110 FF ' 00 E3 . 01 05. 7C' 02' 03' BF' 00' 123 130 133 140 143 150 158 02* FF. 03. 160 03.01.03. 03' 4F' 03' FF' FF' FC' 03 4 03 ° FF ° 173 7F * FC * 03. FF. 180 03. C3. 00. 183 03, C3, 00, 03, FC, 00, FF, FC, 03, 03, 00, FF, 03, FF 03. 27. 83. 03. 190 198 00 1A0 01. 143 180 7F' E3' 03' - 138 100 FF' 103 00.00.03.03.08. 100 03.03. 03. 108 FC * 03 * 00 * FF * FC * FC' 1E0 03. F4 02 07 7A * 1E3 03, 00, 03, 03, 03, 03, FC' 1F0 FF. 01'00' FF' 03' IFS

HOD 1

100

```
010
018
020
80 BF 80 08 BF 80 30 BF
  30.80.30.80.80.80.80.36.30.
BF.80.BF.80.BF.30.80.87.
    058
060
                           80 * 80 * 30 * 30 * 30 * 30 * BF * 33 *
              068
             070
                           FF. BE. 80, 80, BE, 30, BE, 30.
                           80 80 80 80 80 80 80 80 80 80 80
               073
                 -080
             098
                           0A0
                 CAG
                           BF. 80, 30, 80, 80, BE, 80, BE,
                  0B0
                           ...083
                 000
               . 0D0
 0D8
                           80 % 85 * 80 * 80 * BF * 80 * BF * BF *
            . . 0E3
                           80 * 80 * 80 * 80 * 80 * 80 * BF * 80 *
                           80 - 50 - 80 - BF - 80 - 80 - 80 - 80 -
 OFC
 118
120
128
130
138
                           80 * 80 * 80 * 80 * 80 * BF * BF * 81 * 84 * 80 * BF * 30 * 30 * 84 * 80 *
                            80 80 80 80 80 80 BF BF
                            BF * BF * BF * BF * 80 * 80 * BF * 85 *
              140
                            BF. BE. 80. 30. BE. 80. 35.
               148
                            150
               . 153
                            BF. BL. BL. BL. 80. BL. BL. 80.
                160
           163
                            80 * 80 * 80 * 80 * 80 * 80 * 30 * BF*
                            170
178
  180
                            BF * BF * 80 * BF * 80 * 34 * 30 *
   183
                            50 30 80 36 80 BF 80 BF
                            80.80.34.80.Bt.80.Bt.80.Bt.80.80.
              . 190
               198
                  1A0
               BF * 86 * 80 * 86 * 87 * BF * 80 * BF *
                  188
                            BF 80 30 32 BF 80 BF 80
                 100
                            BF. 30, 30, BE. BE. 30, 80, 30,
                  103
                            80.80.82.84.80. BL. BL.
                            80 - 30 - 80 - 80 - 80 - 80 - 86 - 80 -
                   1D3
                            BF. 80, 80, BE, BE, BE, 80,
               1E0
                                                                                       37.
                            80° BF° 80° 80° 80° 80° 37°
                  1E8
                            84 80 80 84 80 80 BF 80 85 BF 80 BF 
                                                                                       30 *
                   1F0
                . 1F8
```

```
000 . 04 . 04 . 01 . C8 . 04 . CC . 08 . 34 .
                P8 * P8 * B8 * B3 * B3 * B3 * 3C * 04 * 08 * 08 * 15 * C3 * 03 * 99 * CC * 08 *
                B3 B8 B8 B3 B3 B3 B8 74 03 . .
                8C * 8C * CC * DC * 8C * 84 * 99 *
                BS . BS . BS . BS . BS . OC . OC . 10 . 60 . DS . D4 . 10 . 54 . CC . 5C .
          028
          030
                B8 . B8 . B9 . B8 . B8 . 10 . 10 .
         .038 --
          0.40 . 1.4 . 14 . 93 . 02 . 14 . 04 . 70 . 00 .
                048
          050
                058
          060
                1C ^ 1C ^ D3 ^ 04 ^ 10 ^ 14 10 14 16 16 18 ^ B3 ^ B3 ^ B3 ^ B3 ^ B3 ^ B3 ^ 1C ^ 1C ^ 20 ^ 20 ^ 3C ^ B9 ^ 20 ^ 13 ^ 14 ^ 64 ^ 83 ^ B3 ^ B3 ^ B3 ^ B3 ^ B3 ^ 20 ^ 20 ^ 20 ^ 3
          0.68
          070
          073
          080
                24"
                     29.
                          1C. 39. 54. 08. D4. 1C.
                               B3 · B3 · B8 · 50 · 24 ·
          088
                E3 . B8 . B8 :
          09.0
               098
                50.
          0A0
                     34 * B9 * 98 * 20 * 20 * 98 * 24 *
                B8 * B8 * B8 * B8 * B8 * 20 * 20 *
          0A8
                30 *
                     CC . C4 . C0 . 30 . 98 . 64 . 23 .
          0B0
              033
          BC8 :
               B8 B8 B8 B8 B8 B8 B8 B8 14 34
          DCS
                33 30 90 00 43 38 20 38
          9D0
                B8 B3 B3 B3 B3 B3 B3 03 38 44 33 D0 51 40 36 40 F8
          0D3
                B8 B3 BS B8 B8 B8 B8 54 3C
         DES
                48 * 38 * CC * 13 * C4 * C4 *
         OFO
                                              33 95
               B3 * B3 * B3 * B3 * B8 * FC * 40 * 3C * D4 * CC * CO * 3C * 34 * 30 * 3C *
         0F8
         100
                    44 DC F8 E4 50 04 44 40 DC DC DC D4 48 70 48
               48.
         108
         110 - 00
               40 *
                    E0 •
                         DC : F8 · 40 · 40 · 08 · 74 ·
         113
                    44 C4 6C 54 D8 68 4C
               4Ċ*
         128
                    55 D8 F8 20 44 34 4C
               40 .
          123
         130 50
                    44
                         49 Do 10 B9 10 50
                         F8 · F4 · 48 · 48 · 24 · 50 ·
                50 1
                    48 *
         138
                         C4' D0' 58' D3' 24' 54' FC' 5C' 4C' 54' 0C' 54'
               54.
         .140
                    54 *
                54
                    28 *
               53 * 4C * D3 * 14 * 03 * 1C * 2C * 58 * 58 * 24 * F0 * B9 * 53 * 53 * 00 * 18 *
         150
         158
               50° 50° D3° D4° C4° 60° 23° 04° 50° 54° F0° F8° 50° 50° 78° 50°
        160
        . 163
               60 * D0 *
                         173 . 60
                    53 *
               64
                    CB *
                         D8 •
                              D4 .
                                   64 50 . 30 . 73 .
                    5C FO E4 64 64 68 68
               64
         196 28 78 10 D4 68 68 18
                                                  13.
              2C * 50 * E4 * F3 * 70 * 68 * 34 * 6C * 10 * C4 * C0 * 2C * 1C * E0 *
         128
                                                  30 •
        IA9
       . 1A8
               30 4C
                         E4. F0. 5C. 6C.
                                             6C 10 .
               70 * 64 * D0 * C4 * 4C * 24 * 20 *
         180
               70 *
                    Ξ0 -
                              DC . 73 . 70 . F0 . 94 .
                        14*
108
108
108
      188
               34° D0° D4° C8° 74° 74° DC° 74° DC° 74° DC° 74° E0° 60°
                              E4 * F4 * 74 * FC *
                    60 ° C4 ° C8 ° 78 ° 24 ° 60 ° E0 °
               78 *
               D8 78 F0 - F4 44
                                        14 5C
               7C 70 D0 4C . 38 7C E0 F3
                                   D4 . 3C . 44 . D3 .
                                   33 •
                                        FC' F4'
                                                  7C *
       1F0
               84° 64° D4° C4° 38° D0° E3
7C° 6C° F8° F0° F4° DC° EC
                                        DO ' E3 ' 14'
         1F8 ·
         FIN
```

```
000 20' DE' 67' 26' 60' 66' 80' 40' MODL
003 A0' A0' A0' A0' A0' A0' 58' A0'
010 BE' 66' E0' 20' 46' 33' E0' 61'
018 A0' A0' A0' A0' A0' A0' A0' A0' A0'
020 5E' C6' A0' 40' 66' 01' 73' 00'
023 A0' A0' A0' A0' A0' A0' A0' B3'
030 66' FE' 20' 38' 1E' 20' 20' E0'
031 A0' A0' A0' A0' A0' A0' E0' 00'
040 36' E6' 38' 0A' 66' 00' E0' 40'
043 A0' A0' A0' A0' A0' A0' 53' 00'
050 9E' A6' 38' 20' 5E' 40' 01' A0'
058 A0' A0' A0' A0' A0' A0' A0' A0' A0'
063 A0' A0' A0' A0' A0' A0' A0' A0'
063 A0' A0' A0' A0' A0' A0' A0' A0'
063 A0' A0' A0' A0' A0' A0' A0' A0'
063 A0' A0' A0' A0' A0' A0' A0' A0'
070 66' 66' 00' 00' 66' A0' 30' 60'
078 A0' A0' A0' A0' A0' A0' 18' A0'
078 A0' A0' A0' A0' A0' A0' 18' A0'
         ანშა
1090
1000
66' 5E' E6' BE' 7E' 05' 01' 49' E0' 60' A0' A0' A0' 33' 60' A1' A0'
      60 * 81 * 00 * 38 * 80 * 80 * 61 * 60 * 66 * 66 * 40 * 00 * 65 * 38 * 00 * 00 *
          . 148
       150
158
                                                                        9F' 66' 20' E0' 66' A0' 31'
           198
1A0
                                                                   A6' E6' A6' 36' BF' 01' 60' 60' 61' E0' C0' A0' 40' 60' 06' 41'
                                              148
                                                                         46' 06' 06' A6' 06' 20' E1' 00' 60' 38' F9' 40' 3E' 38' 26' A0'
                                     130
                                               138
                                    100
                                                                          67. FA. 80. 00. E2. 40.
                                                103 F8 A0 00 D3 18 D3 100 E6 E6 E6 A6 A6 3F 01 100 60 00 00 33 D3 E0 F9 100 F9 
                    100
                                                                                                                                                                                                   40 * A0 *
                                                                         E6 7E
                                                                                                                 A5 . 05 . 46 . 57 .
                                                 IES
                                                                         3F, E3, 1E, 66, 67, 66, 46, 46, 36, 06, 7E, A6, 3F, FE, CO, 01,
                                                 1E3
                                               .r0
1F8
                                                                          60 . 40 . 80 . C0 . 30 . 30 . C0 .
```

```
116 : 03 * 03 * 03 * 03 * 03 * 03 * 09 * 03 * 020 * 04 * 02 * 09 * 03 * 01 * 00 * 04 * 00 *
020
023
030
      020 04*
023 03*
              03* 03* 03* 03* 03* 03* 03* 03* 05* 04* 00* 03* 04* 00* 04*
                                          03.
              03 03 03 03 03 03 03 03 03 08 08 0F 02 FF 0B 01 03 08
038
040
043
              03 03 03 03 03 03 03 04 02
             . 038
        090
             03 7 03 1 03 1 03 1 03 2 03 2 03 2 03 2
        0A8
      . OCO.
        SQD8
            0E0
    / DE3
    0F0
0F8
100
108
             07. 06. 00. 04. 02. 02. 09. 00.
03. 03. 03. 03. 03. 03. 00. 00.
            01 02 0F 04 02 0C 03
             0F 0B 09 0B 04 03 03 09 02 08 08 00 08 08 00 08 08 08 08 08
110
            0C * 03 * 01 * 0B * 03 * 01 * 03 * 0C *
        118
120 05 03 02 02 06 02 08 03 03 128 03 04 04 03 03 06 04 04 03
            03,04,03,03,00,00,05
      130
            00 · 07 · 00 · 01 · 03 · 03 · 08 · 04 ·
            .04 * 04 * 03 * 04 * 06 * 03 * 00 * 03 *
            .01 * 01 * 0C * 00 * 0F * 03 * 03 * 03 *
       150
            0B, 03, 03, 05, 0B, 03, 00, 0C,
     ...:153
            070 02 05 00 08 02 03 03
    160
            04 04 03 03 03 00 04 04 04
            05, 00, 00, 05, 01, 03, 00, 02,
     170
       168
            05 00 00 02 02 01 00 03 03 03 03 04 04 04 05 0F 01 03 03 03
      178
            02' 0B' 04' 02' 04' 00' 03' 00' 00' 02' 0A' 0C' 05' 63'
      180
                                     03 * 03 *
      183
                                         0 F *
            02.
                OB. 02. 03. 0B. 03.
                                     00 - 01 -
            00 * 0B * 00 * 0A * 0B * 02 * 00 *
      198
            00 ° 00 ° 02 ° 02 ° 04 ° 03 ° 08 ° 03 °
            08 00 00 00 03 00 03 02 02 02 08 0C 02 03 03 03 05 05
      _1A3
      180
            0B * 05 * 04 * 03 * 02 * 05 * 08 * 01 *
      -1B3
            01 . 09 . 00 . 03 . 0E . 0B .
      100
                                    04 *
            04° 05° 0C° 04° 05° 00°
      . 108
                                    01 . 03 .
       1D0 .00 .03 .08 .03 .08 .
                                    00.
                                04.
                                        044
          · 00
                03 * 03 * 00 * 03 * 04 *
                                    03.
                                        09 -
                05.00.05.08.01.
       1E0
            07.
                                    04
                                        01.
           02 04 06 03 09 03 03 03 03 03 06 0F
                                        03.
                                        0 A •
            0C : 03 · 0F · 00 · 0F · 0B · 03 · 01 ·
       1F3
```

FIM

```
0000.09 *
                        .03 03 01
003
                              00.
                                   03 ·
E3 ·
                        0 i
                        40 *
                              921
                                         00 *
                                    02°
03°
                              FC.
                        00 *
020
                        FF.
                              6F *
028
                             03°
                        03*
             FC *
                  83
030
             FF' 03' FF' FC' EF' 03' 03' 03'
       02.
.038
                                    03 ·
                              FC .
040
       FF.
            03°
                  03.
                              03
 048
                              FC'
                        30 *
050
        7F 4
             92.
       82.
                   00
 058
             00 ·
                         03.
                              03*
                   0 1
060
        B7
        FF
 068
070
        9B
                   92'90' FC'
                        98 * FC *
             90 *
 078
        D6 *
                                    03
        03.
                  03' 00' FC'
6F' 6F' 03'
02' 03' 03'
03' 03' 03'
02' 0A' FC'
03' 93' 00'
 080
 880
        FF *
             03.
 090
             92.
                                    0.0,4
 1098
        92.
                                    00 *
        03
 0A0
        6F *
             00 - 03
 0A5
             FC *
                   02.
 0B0
                         00
                              FC f
        80.
 088
        4B *
              05.
                         03*
 000
              FC'
                         03.
                   83.
        7.D *
 008
             03.
 8 D 0
        80-
 8C0
                              00.03.
 0E0
        03
                              03'
FC'
        FF.
 OFO
        FE.
 OFS
        FC .
              6F°
 100
                   FB, FB, 00, FF, 03, 03,
        D5.*
 103
        OF.
              00
 110
        26 *
                    05,05,
                              00
              FE'
 .113
              FC, 03, 05, 00,
        FC *
 120
                         03
                               67.
                   03.
              03
                                    03°
 128
         03.
              03 03 03 67
03 FC 03 FC
03 03 03 FF
00 03 03 FC
FF FF FF FF
         FC"
 130
        FC 03 FC 2A 03 03 03 03 00 00 03 D9 FF FF 7F 03 FF FF 2A FF 0B
                                     67
  138
140
 149
                          03.
                               03.
 150
         2A .
                          01.
  153
                                                02.
         00
                                     00'
              03.
                    D3 *
                          DB.
  160
              03, 03, 03,
         E7*
  163
                         00.
                                     FC *
  170
              7F * FC *
                         26.
              FE' 26'
  178
                          03.
                               03.
         73° FC° FF° 03° D7° 03° FC° 03°
              FC FF
  180
                               00.
  .138
              03 FC U3 U3 U3 U3 U3 U3 7E 02 FC 03 03 03 02 02 03 03 03 00 00 DF 03 03 03 FC
  190
         26
 :198
         03,
 JAO
         D9 DF
  143
                          00.
              00
                    03*
         FF °
                                03
  180
              26.
                          01.
         2A.
                    FC .
  1B8
                          03
              FC'
                    03.
         03 *
  1C0
         D9 *
               DF *
                    03*
                          03.
  108
                                03.
         00:03°
2A° 26°
FC° 02°
                    03
  IDO
              26 2A 02 D5 D7 03 FC 00 C
                                05,
                                     02.
   108
                          23 *
                                           03
                          D5 *
                                03.
                                     FC.
                                           00
FF
FC
   1EG
                                02:
FC:
                                     00'
FF'
FC'
                          03.
                                                 67.
         E7*
   1E3
                          03.
                                                 00.
   15.0
                          03.
                                03
                                                 67.
              26 1.70
   1F3
```

1

BF 30 30 30 30 BF BF 35

80 * BF * 80 * 85 * 30 * 80 * 9F * 36 * 87 * 80 * 80 * 30 * 80 * 30 * 81 * 85 *

BF' 80' 00' 00' 80' BF' 85' 00' FF' FF' 80' 84' 30' 80' BF' 83'

80. BL. 80. 80. BL. BL. 82.

30 00 80 30 80 BF BF 81

07'.09' BF' 30' 80' BF' 80'

80 * 80 * 80 * 34 * 80 * BF * 8A * 9E * 8F * 30 * 33 * 30 * 30 * 30 *

180

1D3

IEO 1ES

1F0

158

100

108

```
000 05 05 80 C9 05 05 25 4D

003 00 11 4F 3D 85 05 05 3D

010 09 09 D1 D9 09 09 21 01

018 6D 0D FF FF FF FF 09 FD E5

020 0D 0D 85 DD 0D 0D 0D 05

023 F9 F9 00 00 FF 0D 41 2D

030 11 11 DD E1 11 11 11 11

038 9C 09 11 E9 31 11 FD 45

040 15 15 00 CD 15 15 15 15

048 4F 0D E5 F9 35 15 41 3D

050 19 19 00 48 19 19 19 0D

053 FF 4C 00 04 11 19 2D 45

060 1D 1D 49 C9 1D 1D 1D 25

068 00 00 10 FF 39 1D 31 15

070 21 DD 19 89 21 21 1D 19

070 21 DD 19 89 21 21 1D 19

070 25 2D 49 C9 29 2D 35 29

088 FF 4B 0F 0E FD 25 1D 1D

090 25 2D 49 C9 29 2D 35 29

080 31 41 D5 D9 35 11 20 25

080 31 41 D5 D9 35 31 29 C5

080 31 41 D5 D9 35 31 29 C5

080 31 41 D5 D9 35 31 29 C5
         080 31 41 D5 D9 35 31 29 C5

083 31 31 FD F1 21 31 21 25

000 55 35 C5 D1 3D 35 5D 21

008 8C 35 79 25 39 35 25 55

000 DD 39 CF 45 39 39 39 39 39

008 7D 39 29 F1 31 39 29 2D

000 35 31 00 81 41 3D 3D 3D

0EB F9 45 ED E1 29 3D 35 35

0F0 39 41 12 30 C5 41 41 49

0F8 88 11 F9 BD 15 41 15 F1

100 45 45 DD C1 59 45 45 01 15

101 3D 49 DD 85 49 49 49 5D
             110 3D, 49, DD, B5, 49, 49, 49, 5D, 113 3D, 3D, FC, FC, 41, 49, F1, 41,
            110
                  120
                                35 4D CD B9 4D 4D 4D 4D 4D
                   128 E5 4 4D 61 59 45 4D 61 F9 130 11 51 17 17 F9 49 51 45 45 51
                             140
                    148
                  150
                   158
                   160
                                00° FD° FD° FD° 55° 55° 55° 61° 59° C5° C1° 61° 69° 09°
                    163
                   1.70
                                FB . 61 . F7 . FF . 59 . 21 . F1 .
                 178
                                25 65 D5 5D 5D 7D 7F 65
                                7F' 59' F5' F1' 69' 69' 59' 71' 69' 60' 55' 69'
                     188
                   d 190
                                36, 2D, E1, E2, ED, 6D, 61, 31,
                  198
                                90° 60° 65° 91° 55° 61° 20° 65° 65° 65° 71° 71° 75° 09° 71° 79° 31° 01°
                6 1A0
                  1A8
                     180
                                8C' 84' F1' F9' 0D' 71'
                   188
                               75, 75, D5, 5D, 75, 6D, 7D, 18, 00, F5, 65, 39, 75, 69,
               100
                   1D0
                                 79 * 79 * 21 * D9 * 79 *
                                                                                69 *
                                 3F* 24* 80 * 04 * 61 * 59 * 71 * 61 *
                                 7D. 2D. 00. 86. 32. 32. 50. 00.
                                 FF* FF* F1* F5* ED* 7D* 75* 75*
                                85 DD C5 91 69 D9 D1 AC F9 FD 75 FI
                                                                                         79 °
                                                                                                   E1 *
```

FIN

```
000 66° 56° 06° FE° 87° 9E° 60° 7F°

008 FE° E0° EF° 00° 20° 20° 60° 00°

010 C6° 7E° 9E° 06° 06° 26° 06° DE°

018 08° 61° 01° 01° 19° A0° 20° 40°

020° 64° C5° A6° E4° 66° C6° A6° 66°

020° 64° C5° A6° E4° 66° C6° A6° 66°
010 C6' 7E' 9E' 06' 06' 26' 06' DE'
018 08' 61' 01' 01' 19' A0' 20' 40'
020 64' C6' A6' E4' 66' C6' A6' 66'
023 FF' F3' FE' FF' EF' B3' 20' 93'
030 7E' 86' C6' E6' 9E' 3E' 66' E6'
                    038
040
048
050
                     BE' 66' FF' 77' 1E" E6' E6' 66'
                     FE A0 E0 00 01 40 20 01
                    060
             068
           0.70
            078
             080
 088
180
098
0A0
      CAG.
             0B0
            :0B8
                     000
008
000
                     F7. 53.80.01.60.33.80.40.7E.9E.01.01.26.BE.06.FC.01.60.60.80.00.C0.40.BS.86.67.FE.FE.46.SE.7E.E6.A0.80.80.BS.FS.80.60.C0.BE.26.10.00.1E.9E.1E.3E.
      008
      0E0
0E8
4 0F0
* 0F8
                      100
108
110
                      26, 26, EE, 46, 86, E6, 66,
                      10: 40: 20: 20: 18: 60: 18: 38:
        .120
                      66' 66' 66' 06' E6' 86' 46' A7'
                    60. 60. 60. 00. 13. A0. 58. E0. 60. 20. 20. 00. 13. A0. 58. E0. A0. A0. A0. A0. 40. 38. 18. F8. 40. 06. E7. FC. A6. 67. 66. 66. 3E. E7. A0. 78. 79. 18. B8. E1. 60. 66. 3E. E7. A0. 3E. E7. 3E. E7. 3E. E7. 79. 18. E7. 79.
 130
133
140
148
        150
                      A6 9E 3E E6 5E 3E DE 7F
                    A6. 9E. 3E. E6. 5E. 3E. DE. 7F. 00. 41. 20. 20. E0. D3. 73. 13. 86. A6. FF. DF. 5E. 06. C6. 06. DF. A0. A0. F3. 18. B3. 80. 66. 6E. 64. 86. 86. 66. 36. 7E. 98. 53. 10. 13. 60. F7. 40. 13. 9F. 66. 86. 06. 9E. 5E. 6F. 1E.
         . 158
    160
163
     170
     173
    180 9F 66 86 06 9E 5E 6F 1E 188 FF 60 40 F8 38 A0 C0 20 20 190 5E 3E 46 06 66 7E 00 26 198 10 F8 18 A0 58 00 73 D3
          198 10° F8 18 A0 58 00 78 D3
                     E6 . 3E . 66 . A6 . 06 . 86 . 67 . 66 .
     1A0
1A8
                       EF. DF. 80. 01. F9. C1. 80. E8.
     1B0
                       3E' 3C' 3E' 3E' 06' 46' 67' 47'
                       00 . 98 . 40 . E0 . A0 . 60 .
            1B8
                                                             00 A0
                       9E* E6* 86* 06* 9E* 06* CF* 4F*
                       EF . DF . 78 . 80 . 81 . B8 .
            108
                       9E * 5E * 07 * A6 * 9E * E6 * 06 * 00 * A0 * 13 * 00 * 28 * F8 * D3 * A0 * 93 *
                       A0 13 00 28 F8
               IDS
                       66 1F DF DF 26 67
                                                              67*
               1E0
                       DF . DF . 18 . A0 . 78 . 00 . D3 . F8 . 86 . 42 . 86 . 7E . 67 . 1E . 42 . 46 . 06 . 38 . 58 . A0 . B3 . 63 . 60 . 13 .
               1E8
               1F0
```

```
67 03 E7 02 03 02 01 03 02 1
     010
018
020
828
                          EF' 03' EF' EF' ED' 03' 0B' 05'.
03' 04' 02' 02' 02' 05' 01' 03'
00' 03' 01' 05' 0B' 04' 02' 03'
            030
               038
                         04' QB' EF' FD' 04' 00' 03' QB' 6D' 0B' 03' 0C' 0C' 0B' 05' 0C'
            040
048
050
                          04 05 90 90 08 04 02 02
059
060
068
                           10:12:90:90:0B:05:03:
                          02,00,05,03,05,01,03,
                        7F' EF' 6F' EF' 03' 04'
                                                                                        02
                          03 01
                                            09 . OC . OF . 04 .
         .070
                          12. 90. 92. 82. 07. 08. 00.
      078
                                                                                        0B'
           080
                         09.06.02.00.01.01.04.
                          7F' 6F' EF' EF' 03' 02' 01'
              088.
   090
098
                          09 * 02 * 08 * 07 * 02 * 05 * 03 *
                          10 . 92 . 01 . 01 . 05 . 01 . 0E . 06 .
      0A0
                         02 09 08 03 04 01 0B 01
  0A8.
                         ED 01 06 03 0C 01 03 0B
       080
                          05, 0B, 0C, 85, 01, 00, 08,
                           90 1 03 1 09 1 00 1 01 1 05 1 04 1 02 1
        0BS
0C0
                          03. 02. 02. 00. 04. 04. 08.
      000
003
                         6F . 85 ° 01 ° 0C ° 0B ° 04 ° 01 ° 08 °
                         02.06.10.10.04.00.00.00.
     0D0
0D8
0E0
                          92' 01' 00' 03' 0C' 03' 0B'
                         .00 * 0B * 6F * 6F * 00 * 02 * 03 *
      110 02.0F, 04.03, 02.0F, 08.110 02.0F, 04.03, 02.0F, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03, 08.03
                          02.0F.04.03.05.0E.0B.00.
                          03 * 03 * 01 * 0C * 03 * 05 * 01 * 02 * 03 * 07 * 01 * 04 *
            130
138
140
                          A5 08 03 00 04 35
     140
148
                           0C . 0F . 06 . 03 . 0B . 03 .
                           5B . 03 . 04 . 04 . 04 . 04 .
                           02 * 04 * 05 * 00 * 00 * 05 * 04 *
               150
     158
                         E1' 0A' 02' CB' 03' 02' 06'
            160
168
                           08' 03' 7F' 7F' 04' 0G' 0E'
                           EE' 03' 03' 03' 02' 00' 02' 00'
            170
                           0B' 01' 01' 03' 02' 0B' 02' 04'
          173
                           AC 04 AS AO 00 05 00 04
                           02' 0B' 02' 02' 02' 5F'
       180
  186
190
198
                           5E, 00, 0B, 05, 00, 03, 00,
                           04. 02. 03. 01. 08. 06.
                           A0 . 03 . 03 . 03 . 06 . 0C .
                           00, 05, 03, 03, 00, 05,
            c - 1A0
              1A3
                           5F. DE. 01. 0C. 05. 0B. 00.
            180
                           04. 07. 06. 06. 00. 0B. 0B.
           123
                           21 * AS * 0B * 05 * 03 * 08 * 09 *
                          02' OF' 02' 02' 06' 0C' 5B'
                100
                           5F 6E 01 01 01 01 02 04
                 108
                           06'.02'.00'.03'.02'.0F'.00'
                           B5 * A4 * A1 * 81 * 02 * 02 *
               103
                           0B, 05, LE, LE, 00, 01, 03,
                 1E0
                IE8 FE' FF' 03' 03' 06' 00' 04' 04' 1F0 02' 0B' 00' 05' 01' 04' 0B' 03'
                HEB
                           00 AC . 04 05 02 08
                                                                               0B *
                 IFS
               FIN
```

SOURCE PROGRAM LISTING

				READ	READ	WRITE	READ	READ	WRITE			READ	WRITE	READ	William Spenish of the Control of th	WRITE		
MICROFUNCTION	•			0 to AC,	176 to AC, 176 to MAR,	375 to AC,	0 to RO,	177 to MAR,	0 to AC,			376 to AC, 376 to MAR	0 to AC,	400 to AC, 377 to MAR		0 to R9,		
READ/ WRITE				00	00	10	00	, 8	10			00	10			10	*	*
JUMP		•	*	JCC 01	JCC 02	JCC 03	JCC 04	JCC 05	JCC 06	:		JCC 07	JCC 08	JCC 09		JCC 10	TABLE TCTPC	INTO RAM AS TABLE TPTCC
HNI	,	AM */		0	0	0	0	0	, o	RAM */	ram *	0	0	0		. 0		S TAB
LOAD		0 to 176 RAM	to,177 RAM	· H	러	ન	-	H	H	0 to 376	00 to 377 RAM */	т	, с	€ †.		l , -1 :	RAM AS	RAM A
8 I		0 to	01 to.	00	8	00	8	00	00	0 to	00 to	8	8	00	to R9 */	00	OLNI	OLNI
벙ㅣ			Ö	8	0	Ħ	8	8	8	Ϋ́,		00	00	11	<u>ک</u>	8		
KBUS		OT READY,	READY,	0000	0176	7777	0000	0177	0000	OT READY,	NOT REA	0376	0000	0377	ock, o	0000	AND WR	AND WR
MINEM	/* ZJ	Q.	Y TO	GLR	LMI	ALR	GLR	LMI	G.R.	2	QI 3	LMI	GLR.	LMI	ra bl	CLR.	M ROM	M ROM
LABEL CPE	SOURCE PROGRAM INITZ	SET READ FLAG LADXX TO NOT	SET WRITE FLAG LADZY TO READY,	INIOO F4 R1	F1 R1	FO R1	F4 R1	FL RI	F4 R1	SET READ FLAG IBDXX TO NOT	SET WRITE FLAG IBDZY TO NOT READY,	F1 R1	F4 RI	FI RI	CURRENT DATA BLOCK,	F4 R1	/* MOVE TABLE CCTPC FROM ROM AND WRITE	/* MOVE TABLE CPTCC FROM ROM AND WRITE
,	RCE P	REAL	WRIT	00 II	8	00	00	00	0	READ	WRIT	0	0	0	A AS	0	TABL	TABL
ADDRESS R C P	/* sou	/* SET	/* SET	00 15 0	01 15 0	02 15 0	03 15 0	04 15 0	05 15 00	/* SET	/* SET	06 15 00	07 15 00	08 15 00	/* SET A	09 15 00	/* MOVE	/* MOVE
RECORD				100	002	003	004	900	900			007	800	600		010		

		READ	READ	READ	READ		READ	READ	READ				READ	WRITE			th	
MICROFUNCTION	,	0 to RI	177 to RI,177 to MAR	0 to R2	400 to R2, 400 to MAR	BLE */	ROM Address to AC		0 to AC, JCC NOT EXEC.				R2 to MAR,1+R2 to R2	1+R1 to R1 and AC Jump to INIO1			0 to AC, Remove Lock out	
READ/ WRITE	-	00	00	00	00	FROM TA	00	00	00			`	8	10			ī	
JUMP		JCC 11	JCC 12	JCC 13	JCC 14	INSTRUCTION FROM TABLE	JCC 15	JCC 16	JCC 17		INI02	•	JCC 15	JCR 115	-		JCC 29	
HNI		. 0	0	0	0		0	0	0	XT */			0	0			0	
LOAD		н	H	H	-	OPTION SELECTS NEXT	н	.O	н	EXECUTED NEXT	JUMP TO		H	H		INOUT AT IOCOO *	· H	
8		00	00	00	8	SLECT	00	00	00	XECU	TOR.	*	00	00	* ~	AT I	00	
벙ㅣ	*	00	. 8	8	00	IS NO	11	8	00	IS I	UMULZ	RESS	11	7	INIO3	NOUT	8	
KBUS	RESSES	0000	0177	0000	0400	D OPTI	0000	0000	0000	TABLE	TO ACCUMULATOR.	RAM ADDRESS	0000	0000	OL SI	T TO I	0000	
MINEM	AM ADD	CLR	LMI	CLR	LMI	s, roa	ILR	NOP	CLR	FROM		NEXT R	LMI	ILR	TABLE	nd EXI	GLR.	
СРЕ	AND R	F4 R1	Fl Rl	F4 R1	Fl Rl	Addres	FO RL	F6 R1	F4 R1	LECTED	FROM	RD IN	Fl Rl	FO R.	FROM	ATOR a	F4 R1	
LABEL	INITIALIZE ROM AND RAM ADDRESSES					LOAD NEXT ROM ADDRESS, LOAD		INIOI		TION SE	XXT WORD	PABLE WO	INI 02		IMP BACK	CLEAR ACCUMULATOR and EXIT TO	INIO3	
ADDRESS R C P	/* INITIAI	10 15 00	11 15 00	12 15 00	13 15 00	/* LOAD NE	14 15 00	15 15 00	16 15 00	/* INSTRUCTION SELECTED	/* LOAD NEXT WORD FROM TABLE	/* WRITE TABLE WORD IN NEXT	00 14 00	15 14 00	/* LAST JUMP BACK FROM TABLE	/* CLEAR	01 14 00	-
RECORD		011	012	013	014		015	016	017		•		018	610			020	

READ/ 'MICROFUNCTION WRITE JUMB CI CO LOAD INH MINEM KBUS CPE LABEL RECORD ADDRESS NUMBER R C P

/* TABLE CPTCC */

/* EACH INSTRUCTION IN TABLE CPTCC IS EXECUTED AFTER THE LOAD IN INIO! */

	READ	READ																
	to AC, K to MAR	K to AC, K to MAR	K to AC, K to MAR															
,	×	×	×	N K	×	×	. A	×	¥ 0	М	×	× 0	. 00	¥	× ·	×	× . 00	, 00 ·
	8	00	00	8	00		00	8	00	00	00	00	Ö	00	00	8,	Ō	•
	JZR 14	JZR 14																
	0	0	0	0	0	0	Ó	0	0	0	0	0	,ο	0	0	0	0	•
	н	н	H	-		-4	-	ਜ.	-Fel		d	H	_	Н	ď.	Ä	. · . H	٠ ط
					•	8		00	00	00		00	8	00	00	8	00	00
	00 00	00. 00	00 00	00 00	00 00	00	00 00	00	0 00	0 00	00	0 00	0 00	0 00	00	0	0 00	0
· .														: :				
	0000	0005	0004	0010	0020	0002	0012	0024	0015	0032	0021	0007	9100	0034	0035	0037	0033	0023
	LMI	LMI																
	R	몺	몺	검	R	Z	R	Rl	R1	R1	R	R	R	R	검	R	Z	Z
	FJ	Fl	H	Fl	FJ	FJ	년	F	FJ	FJ	FJ	E	FI	FJ	FJ	FJ	I.I.	F
											•			. •		•		
	00	00	00	00	00	00	00	00	00	00	00	00	00		00	00	00	00
	80	80	8	80	80	80	80	80	80	90	90	80	80		80	80	60	60
•	00	01	05	03	04	05	90	07	80	60	10	11	12	13	14	15	ò	10
	021	022	023	024	025	026	027	028	029	030	031	032	033	034	035	036	037	038
																_		

	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ
	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR
	to MAR	ţ	ţ	to	to	ţ	ţ	to	ţ	ţ	to	to	ţ	to	to	to	ţ	to	40	K to
LION	to AC, K	AC, K	AC, K	AC, K	AC, K	AC, K	AC, K	AC, K	AC, K	AC, K	AC, K	AC, I								
FUNC	to A	ţ	ţ	to	ţ	ţ	ţ	ţ	to	ţ	ţ	to	to	ţ	ţ	ţ	ţ	ţ	K to 1	K to
MICROFUNCTION	×	×	×	×	×	×	×	×	. 🔀	×	×	×	×	×	×	×	×	.		*
	0		0		•	0	•	0	0	_	0	0	0			C		0	0	. 00
READ/ WRITE	8	8	8	00	00	00	00	00	00	00	00	00	00	00	00	00	8	0 ;	8	0
e l	14	14	14	14	14	14	14	14	14	14	14	114	14	14	14	14	14	۲ 14	14	a 14
JUMP	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR	JZR
HNI	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0		0
LOAD	႕	H	ri	بط	러.	႕	н	-	-1	ન ન	√⊟ [н.	-	-	rd	Н	~4	-	႕	н
8 1	9	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	Ŏ	00	00
5	00	00	0		00	00	00	00	00	00	00	00	00	00	8	00	00	00	00	8
KBUS	23	. 90	14	30	25	17	. 36	31	27	13	56	11	22	0,1	0002	0004-	0070	0020	0005	0012
	0003	9000	0014	0030	0025	0017	0036	0031	0027	0013	0026	1100	0022	1000						
MNEM	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI
田	R.	. R	R	R.	R.	L RJ	ra R	r Rl	IS I	R 2	L RI	r.	1 RJ	r R	L RI	L R1	L RI	L RJ	l Rl	1 R1
CPE	FJ	ᅜ	Ę	FJ	F	T.	F	F	FJ	F	F	FJ	F	F	FJ	H	F	FJ	FJ	Fl
LABEL																. •				
1	8	00	00	00	00	8	00	00	00	8	00	00	00	8	8	8	8	00	00	8
ADDRESS R C P	60	60	60	60	60	60	60	60	60	60	60	60	60	60	50	10	10	10	20	10
ADI	05	03	04	05	90	07	08	60	10	11	12	13	14	15	00	10	05	03	04	05
RECORD																		,		
NG NG	039	040	041	042	043	044	045	046	047	048	049	020	051	052	053	054	055	056	057	058

The same of the sa

	READ	READ																		
•	to MAR	to MAR																		
MICROFUNCTION	K to AC, K	. K to AC, K	K to AC, K																	
READ/ WRITE	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	. 00	00	00	8,	00	00
JUMP	JZR 14	JZR 14																		
HE	0	0		0	0	0	0	0	Ó	0	0	0	0	0	0	0	0	0	0	0
LOAD	਼ਜ	ન	-	-	H		H	н	rd rd	ન્	~rd)	H	H	H	-	H	٠,	H	H	ਜ ,
8	8	00	8	00.	00	00	00	8	00	00	0	00	00	00	00	00	00	00	00	8
병	00	00	. 8	00	8	00	8	00	00	00	00	00	8	00	8	00	8	8	00	8
KBUS	0024	0015	0032	0021	0000	90016	0034	0035	0037	0033	0023	6000	9000	0014	0030	0025	0017	0036	0031	0027
MNEM	LMI	LMI																		
CPE	F1 R1	Fl Rl	Fl Rl	Fl Rl	FLRI	F1 R1	Fl Rl	F1 R1	Fl Rl	Fl Rl	F1 R1	F1 R1	FI RI	F1 R1	F1 R1					
LABEL	•													•				•		
SS	8	8	00	00	00/	00	0,	00	8	00	00	00	00	00	00	00	00	00	8	8
ADDRESS R C P	06 10	07 10	08 10	01 60	10 10	11 10	12 10	13 10	14 10	15 10	11 00	01 11	02 11	03 11	04 11	05 11	06 11	07 11	11 80	11 60
RECORD	059	090	190	062	063	064	065	990	190	890	690	070	170	072	073	074	075	920	077	078

	READ	READ	READ	READ	READ	READ	
	to MAR	to MAR	to MAR	to MAR	to MAR	to MAR	
READ/ MICROFUNCTION	K to AC, K to MAR	K to AC, K to	K to AC, K to	K to AC, K to MAR	K to AC, K to MAR	K to AC, K to MAR	
READ/ WRITE	00	00	00	00	00	00	
JUMP	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	
HNI	0	0	0	0	0	0	
LOAD	H	н	਼ ਜ	H	н	rt	
8	00	00	8	00.	00	00	
병	00	8	. 8	00	8	00	
KBUS	0013	0026	0011	0022	1000	0002	
MNEM	LMI	LMI	LMI	LMI	LMI	LMI	
CPE	Fl Rl	Fl Rl	Fl Rl	Fl Rl	F1 R1	F1 R1	
LABEL					÷	•	/* TABLE CCTPC */
SS	8	8	00	8	8	00	BLE
ADDRESS R C P	10 11	11 11	12 11	13 11	14 11	15 11	/* TA
RECORD	079	080	081	082	083	084	,

\
*
INIOL
Ä
LOAD
THE
AFTER THE LOA
EXECUTED
IS
CCIPC
IN TABLE
Ä
INSTRUCTION
EACH
*

:	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ	READ
:	Mar	MAR	MAR	Mar	MAR	MAR	MAR	MAR	MAR	MAR	MAR	MAR
	to	K to M	K to M	K to M	to	K to M	X to M	K to M	ţ	K to M	K to M	K to M
	to AC, K	to AC,	to AC,	to AC,	to AC, K	to AC,	to AC,	to AC,	to AC, K	K to AC,	K to AC,	to AC,
	×	×	×	×	×	×	×	×	×	×		2
1011	00	00	00	00	00	00	. 00	00	00	8,	00	.00
	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14	JZR 14
117 4777	. 0		0	0	.0	0	0	° 0	0	0	0	0
į	i H	ਜ.	√ E.	н	H	H	н	H	ė.	H	ਜ	႕
	00	00	00	00	00	00	00	00	00	00	00	00
Š	00	00	00	00	8	00	8	00	8	8	00	00
,	0000	0037	0001	0022	0005	0005	0023	0013	0003	0035	9000	0033
	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI	LMI
/" EACH INSTRUCTION IN THEM CLIFC IS EACHED ALLEN TIME DOIN	F1 R1	F1 R1	F1 R1	F1 R1	· F1 R1	F1 R1	F1 R1	F1 R1	F1 R1	F1 R1	F1 R1	Fl Rl
OVITONIT U	00	00	00	00	·. 8	00	00	00	00	00	00	00
) : F	00 12	01 12	02 12	03 12	04 12	05 12	06 12	07 12	08 12	09 12	10 12	11 12
	085	980	087	088	. 680	060	. 160	092	093	094	960	960

	READ																			
MICROFUNCTION	K to AC, K to MAR																			
READ/ MI	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	. 00	00	00	00,	00	. 00
JUMP	JZR 14																			
H	0	0	0	0	0	0	0	0	Ö	O	0	0	0	0	0	0	0	0	0	•
LOAD	Н	H	H	_r -t	·	ત	н	-	H	ન્	√ -d∑	H	-	-	н	 1	Fa	· 	H	н
8	00	00	00	00.	00	00	00	8	00	00	00	00	00	00	00	00	8	ŏ	00	8
8	00	00	. 00	00	00	00	00	00	00	00	00	8	00	00	00	00 -	00	8	8	8
KBUS	0024	0010	0014	0027	0004	0012	9600	0021	2000	0026	0034	0032	0025	,0031	1100	0020	0015	0016	0030	0017
MINEM	LMI																			
CPE	Fl Rl	F1 R1	Fl Rl	Fl Rl	Fl Rl	F1 R1	F1 R1	F1 R1	Fl Rl	F1 R1	Fl Rl	Fl Rl	FI RI	F1 R1	F1 R1	Fl Rl	F1 R1	F1 R1	F1 R1	Fl Rl
LABEL						·												•		
SS P	8	8	00	00	00	00	00	00	00	00	00	00	00	00	00	00	8	00	00	8
ADDRESS R C P	12 12	13 12	14 12	15 12	00 13	01 13	02 13	03 13	04 13	05 13	06 13	07 13	08 13	09 13	10 13	11 13	12 13	13 13	14 13	15 13
RECORD	760	860	660	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116

		<u>.</u>			READ	READ		s.			•							
MICROFUNCTION	.			477ø to MAR	0 to R9	O _V M to CO	M to T	200g to AC	•	200ø to R9		R9 to AC		O to RO				
READ/ WRITE				11	. 00	00	•	11		11		11		11	• ,			٠
IUMP			٠	JCC 01	JCR 15	JCR 09		JFL 03		JCR 10		JCC 04		JFL 16				
INH	•		* 8	0	0	. 0		0	- .	, O		0.		0	*		*	
LOAD			ZERO FOR BLOCK B	H	.	~		.	• •	-		 1		. H	OCK B		IA FLAC	*
8			FOR E	00	00	00		00		00		00		00	OR BL(*	AD DA	200g
KBUS CI		/* (1	*	0477 00	00 0000	7777 00		0200 00	/* 0	7777 11	/* 0	.00 0000		00 0000	S BLOCK A OR BLOCK B	$K A_{r} R9 = 0$	Y TO SET READ DATA FLAG	SLOCK R9 =
MNEM	*	(477 RAIN	BLOCK	LMM	CLR	LTM		LMM	CK M ≠	SDR	CK M =	ILR	*	NOP	BLOCK 1	IS BLOC	ESS 176	K TO B E
LABEL CPE	SOURCE PROGRAM INOUT	RESTORE R9 FROM SCBIX (477 RAM)	CHECK SCBIX = ZERO FOR BLOCK A	IQC01 F1 R2	F4 R1	F5 R2	···.	F1 R2	BLOCK B IS CURRENT BLOCK M \neq C	F2 R1	BLOCK A IS CURRENT BLOCK M = 0	IQCO3 FORI	JUMP TO RPV02 IN RPVAL	IOC03 F6 R0	CHECK IF CURRENT DATA BLOCK IS	IF CURRENT DATA BLOCK IS BLOCK	/* WRITE 177Ø IN RAM ADDRESS 176Ø	SET CURRENT DATA BLOCK TO B BLOCK R9 = 200\$
ADDRESS R C P	OURCE F	ESTORE	HECK SC	14 01	14 01	15 01		09 01	LOCK B	11 01	LOCK A	10 01	JMP TO	14 01	HECK IF	CURRE	RITE 17	ET CURI
ADD R)S */	* RI	* ;	00.3	01 1	70	\$	01 0	/* ·BI	03 1	/* B]	03 1	1 */	16 1	*	* II	∧ *	* 8
RECORD NUMBER				01	02	80	•	04		05		90		20			· ·	

•			WRITE			•				•							
MICROFUNCTION	176ø to MAR	1778 to AC	R9 + 200ø to R9					376ø to MAR	377ø to AC.	O to R9					0 to AC	671ø to MAR	671Ø to T
READ/ WRITE	. 11	•	10	•	•			. 11		10					11	. 11	
IUMP	JCC 17		JCR 15	P 00	•			JCC 17		JCR 15	ь 00				JCR 14	JCC 23	•
INH	0		0			*		0	•. •	0					0	0	
LOAD	· H		##	•		D FLAC	*	.	- -	,. .			4		-	7	
8	00		00	•	*	TA REA	R9 = 0	.00		00					00	00	•
KBUS CI	0176 11		0200 00		SK B, R9≠0	WRITE 377Ø IN RAM ADDRESS 376Ø TO SET DATA READ FLAG	SET CURRENT DATA BLOCK TO A DATA BLOCK R9 = 0	0376 11		00 0000		·	* -	/* V	00 0000	0671 00	
MNEM KBUS	LMM		LMI		IS BLO	RESS 37	K TO A	LMM		CLR		. 4	71ø ran	70ø rai	CLR	LMM	
CPE	F1 R2		F1 R1		A BLOCK	AM ADDF	TA BLOC	F1 R2		F4 R1		PVAL */	IRPS = 6	IRCS = 6	F4 R1	F1 R2	
LABEL CPE	IOC04 F1 R2				/* IF CURRENT DATA BLOCK IS BLOCK	7Ø IN R	RENT DA	IOC05 F1 R2				INITIALIZE FOR EPVAL	WRITE ZERO IN SIRPS = 671Ø RAM	/* WRITE ZERO IN SIRCS = 670% RAM		00 IØC 00 F1 R2	•
<u>م</u> ا	01	•	01		CURRE	ITE 37	CUR	01	-	01	÷.	TIALIZ	ITE ZI	ITE ZI	00	00	
ADDRESS R C	9		17 10	Ç	* IF	/* WR	/* SET	16 11	•	17 11		/* INI	/* WR	* WR	29 15	29 14	
•	16	•	-				5.	r-1			•					2	
RECORD NUMBER	80		60		••		•	10		11		,			12	13	

	WRITE				WRITE				• ·			WRITE			· •	WRITE	•	•
MICROFUNCTION	670Ø to MAR	670Ø to T			0 to R0	7737Ø to MAR	7737Ø to R0	0 to R1	701Ø to R1	700Ø to MAR	0. to AC	1 + R0 to R0	1 + R1 to R1	1 to AC	737Ø to MAR	AC + 36 to AC	$733g_{ m V}$ 0 to MAR	733Ø to T
READ/ WRITE	10				10	11		11	11		11	10	11	. 11	11	10	11.	
IUMP	JCC 24				JCC 26	JCC 27		JCR 12	JCC 30		JFL 30	JCR 08	JFL 30	JCR 14	JCR 13	JCR 15	JCC_31	
	` O			-	0	0		0	0		0	0.	0	0	. 0	0	Õ	
LOAD INH	-			*	-	·		,			~	-	Н	-	٠ 러	-	~	
9	00	•		EPVAL	11	11		11	11		11	11	11	11	11	11	11	
BUS CI	00 0290			** WRITE COMMAND IS FOR INITIALIZATION OF EPVAL	00 0000	7737 00		00 0000	0700 11		00 0000	0000	0000	0001 00	0737 00	0036 00	0733 00	٠.
MNEM KBUS CI	LMM (EN */	R INITIALIZ	CLR(R0)	LMI(R0)		CLR(R1)	LMI(RI)		CLA(AC)	INR(R0)	LMI(RI)	LDM(AC)	LMM(T)	LMI(A)	LMM(T)	•
CPE	F1 R2		INITIALIZATION FOR EPGEN */	ND IS FOR	F4 R1	FI RI		F4 R1	F1 R1		F4 R2	F3 R1	F1 R1	F1 R2	F1 R2	FI RI	F1 R2	
LABEL			ATION	OMMA		:	•						:					
ᆈ	00		ľIALIZ	TE C	00	00		00	00		00	00	00	00	00	00	00	
ADDRESS R C	14			· WRI	14	14	•	14	12	a	12	10	08	11	14	13	15	
AI R	23	*	*	*	24	26	٠ •	27	27		30	30	30	.30	30	30	30	
RECORD NUMBER	14				15	16		17	18		19	20	21	. 22	23	24	<i>5</i> 2	

		WRITE					READ	READ		•							
MICROFUNCTION		R9 to AC	0 to R0			R9 + 1770 to AC	AC to R2	$^2_{ m V}$ M to CO	2 M to AC	Y = 11 * /	0 to R1			1 + Rl to Rl to AC	AC to T	7773Ø to AC	T & AC to T
READ/ WRITE	٠	10	11			11	00	00		Y/IBDZ	11			11	~	. . .	11
IUMP		JCC 18	JCC 29	/* X2		JCC 19	JCC 20	JCC 21		E., IADZ	JFL 22			JCR 15	JCC 23	JCC 24	JCC 25
INH		0	0	Y/IBD		0	0	0		IG, 1.	O .		٠	0	0	0 .	0
LOAD INH	*	-	~	3 IADZ		-	~	-		CESSIN				H	-	H	H
S	NCE	00	00	L FLAC	R2 */	00	00	00		r pro	00			00	00	00	00
MNEM KBUS CI	ATION SEQUE	00 0000	00 0000	RITE CONTRO	TROL FLAG IN	0177 00	7777	0002 00		K IS READY FOR PROCESSING, I.E., IADZY/IBDZY = 11	00 0000		*	0000	7777 11	7773 00	7777 00
MNEN	ITIALIZ	ILR	NOP	CK. W	E CON	LMI	SDR	LTM		A BLOCI	CLR	*	ZERO	ILR	SDR	LMM	XNR
LABEL CPE	LAST INSTRUCTION IN INITIALIZATION SEQUENCE	FO R1	IOC05 F6 R1	READ CURRENT DATA BLOCK, WRITE CONTROL FLAG IADZY/IBDZY */	STORE ADDRESS OF WRITE CONTROL FLAG IN R2	IOC09 FI R1	F2 R1	F5 R2		CHECK IF CURRENT DATA BLOCK IS	F4 R1	DATA BLOCK NOT READY	DELAY COUNTER TO ZERO	IØC06 F0 R1	F2 R1	IOC07 F1 R2	F7 R1
ᆈ	INST	00	00	CUR	re adi	00	00	00		CK IF	00	A BLO	DELA	00	00	00	00
ADDRESS R C		7.2	15			15	15	15			15		SET	10	15	15	15
	*	31	17	*	*	18	19	20	٠	*	21	*	*	.22	22	23	24
RECORD NUMBER		26	27			8 2	29	30			31		. •	32	33	34	35

									READ	•					WRITE		WRITE
MICROFUNCTION	$0_{ m V}$ T to C 0		R2 to MAR			1 + R1 to R1 to AC	AC to T	•		•		R2 to MAR	R2 + 1 to R2 to AC		R9 to AC	$7_{ m V}$ R9 to MAR	20 or 220 to AC
READ/ WRITE	H .	*	11			11	11.		00			11			10		10
R IUMP V	JCC 26	SDLAY = 4	JFL 20		·	JCC 23	JCR 15	•	JCR 15			JCR 14	JCC 28		JCR 15	JCC 27	JZR 05
INH	0		0			0	0		0			0	0		0	0	0
LOAD	-	, I.E.	-			· 🛏	H	·	:				-	\ *	-		H
8	00	LIMIT	00		/* I	00	00		00			00	00		00	00	00
Ö	7777 00	CHED ITS	00 0000		ND RETES	11 0000	7777 11		00 0000	. •		00 0000	0000 11	DE FAILURE	00 0000	0007 11	7777 00
MNEM KBUS	TZA 7	er has re <i>p</i>	LMI (VTER BY 1 /	ILR (SDR 7		NOP (FLAG */	rwi (ILR (TO DECC	ILR	LMI	ALR
CPE	F5 R3	Y-COUNTE	F1 R1	CHED */	LAY COUN	FO R1	F2 R1	*	F6 R1	ADY */	REQUEST 1	FI RI	F0 R1	ITY WORD	FO R1	F1 R1	F0 R1
S LABEL	00	CHECK IF DELAY-COUNTER HAS REACHED ITS LIMIT, I.E.,	00	LIMIT NOT REACHED	INCREMENT DELAY COUNTER BY 1 AND RETEST	00 10008	00	LIMIT REACHED	00	DATA BLOCK READY	SET NO WRITE REQUEST FLAG	00 IOC10	00	DATA QUALITY WORD TO DECOD	00	00	00
ADDRESS R C	15		15			11	11	LIMI	10	DAT!	SET	11	14	SET	14	15	15
AD]	25	*	26	*	*	20	23	*	20	*	*	22	22	*	28	28	27
RECORD	36		37			38	39		40			41	42		43	4.4	45

MICROFUNCTION READ/ WRITE IUMP LOAD INH 8 MNEM KBUS CI LABEL CPE ADDRESS R C P RECORD NUMBER

/* EXIT TO APGEN AT APGOO */

/* WRITE IS IN FIRST INSTRUCTION IN APGEN

RECORD	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	Z	JUMP	READ/ WRITE	MI CROFUNCTION	•
•	/* SOURCE	SOURCE PROGRAM APGEN */	4 APGEN	/*									
	/* SET S0	SCBIX BASED ON R9	ED ON RS	/* 6		. .	•			•		•	
FT.	00 02 00	APGOO	F1 R2	LDM	0477	00	=	-	0	JCR 03	01	MAR=SCBIX	WRITE
2	00 03 00		F5 R2	TZR	7777	00	=	—	0	JCR 02	<u>=</u>		
m	00 02 00		F4 R2	CLA	0000	00	=	,	0	JFL 00	Ξ	JFL (APG 19, APG20) (AC=0)	(AC=0)
4	00 03 01	APG20	F3 R3	INA	0000	=	=		0	JCR 02	=	AC=1	
72	00 02 01	APG19	F6 R1	NOP	0000	00	=		0	JZR 00	10	SET SCBIX	WRITE
· .,	/* POINT TO NUMBER OF	TO NUMB!	ER OF EF	ERASURES B	BASED ON	R9 */							
, 9	00 00 00		F0 R1	ILR	0000	00	00	· -	Ö	JCC 01	- =	AC=R9	
7	01 00 00		FI RI	M	0000	-	=	-		JCC 02	=	MAR = # OF ERASURES	
. <u>.</u> œ	02 00 00		F2 R1	SDR	7777	=	=	-		3cc 03	00	1 11	READ
	/* FETCH NUMBER		OF ERASURES */	JRES */									
o.	03 00 00		F5 R2	LTM	.0037	00	=		0	JCC 04	00	AC = # OF ERASURES	READ
10	00 00 70		F4 R1	CLR	0000	00		 -	0	30C 05	=		
=	02 00 00		F	LM	0540		=	-	0	90 JOC		MAR = TAPOL R4 = TAPOL	voL + 1
•	/* WRITE	NUMBER (OF ERASI	/* WRITE NUMBER OF ERASURES IN TAPOL */	FAPOL */								
	/* CHECK THAT NUMBER OF	THAT NU	MBER OF	ERASURES 15	S IS BET	BETWEEN 1		AND 16 */			- m		
12	00 00' 90		F1 R3	DCA	7777	00	=		0	20 00	10		WRITE
13	00 00 20		F6 R2	L MFI	0922	00	=	-	0	80 JJC	Ξ	•	•

RECORD NUMBER	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	H	JUMP	READ/ WRITE	MI CROFUNCTION	
90	00 00		F1 R1	LMI	0000	1	=	-	0	JFL 09	=	JFL APGO4, APG05,MAR='FIRST ERASURE"	ST ERASURE"
~	COMPUT	/* COMPUTE ERASURE POLYNOMIAL	E POLYNC	ı	USE R3 AS COUNTER OF NUMBER OF	AS COL	JNTER	OF NUM	BER OF	ERASURES */	/ *		
Ŏ	09 02 00	APG04	F2 R1	SDR	7777	=	=	-	0	JCR 00	00	R3 = # OF ERASURES-1.	READ
60	00 00 6		F5 R2	LTM	0037	00	=	 ·	0	JCC 10	8	AC = FIRST ERASURE	READ
~	/* PLACE	ERASURE	IN TAPOL	IF NON	ZERO -		OTHERWISE,	REPLACE	ΒY	37, IN TAI	IN TAPOL */		
10	00 00 0		F1 R1	LMI	0000	00	=	-	0	o JFL 11	<u> </u>	JFL APG 02 APG 03	
÷	00 00	APG02	F1 R1	DSM	1111	00	=	_	0	JCR 01	=		
=	01 00	•	FI RI	LM.	0000	00	=	-		JCR 03	=	•	
~	/* INITIA	INITIALIZE INNER-LOOP	IER-LOOP	COUNTER TO ZERO IN	TO ZER		R0 */						ane valence property
	03 00	APG03	F4 R1	CLR	0000	00	=	-		JCR 00	10		WRITE
T.	/* DECREM	DECREMENT COUNT OF NUMBER OF	IT OF NU	MBER OF	ERASURES TO	-	rest f	OR END	0F 0U.	TEST FOR END OF OUTER LOOP */	/ / / *	•	•
-	00 00 1		FIR	DSM	7777	00	=	-	0	JCC 12	=		
/ *		INCREMENT INNER-LOOP COUNTER AND STORE IN	ER-LOOP (COUNTER	AND STO	RE IN	R1 */						endelson en es comer
-	12 00 00	APG11	FO RI	ILR	0000	=		4	0	JFL 13	=	JFL APG06 APG07	gar
-	3 02 00	APG06	F6 R1	MOP	0000	8	=		0	JZR 04	Ξ	JUMP (MSYNG)	- Agustan Pagaria, Sun
~	* LOAD !	/* LOAD MAR WITH ADDRESS OF NEXT	ADDRESS	OF NEXT	ERASURE AND	E AND	INCRE	INCREMENT E	ERASURE	POINTER	(R(2)) */		
5	3 03 00	APG07	F1 R1	LMI	0000	=	=	منبو	•••	JCR 00	=	· · · · · · · · · · · · · · · · · · ·	
_	3 00 00.		F2 R1	SDR	7777	00	= .	<u>. </u>	0	JCC 14	00		READ
											•		-

ADDRESS LABEL	CPE	MNEM	KBUS	5	8	LOAD	H	JUMP	READ/ WRITE	MI CROFUNCTION	
ERA	/* FETCH NEXT ERASURE AND LOAD MAR WITH ADDRESS OF	LOAD M	AR WITH	ADDRE	SS OF		NING OF	BEGINNING OF OUTPUT AREA */	REA */		
	F5 R2	LTM	0037	00	=		0	JCC 17	00		READ
	F1 R1	LMI	0000	00	=.	-	0.	JFL 16	=	JFL (APG14, APG15)	
E POS	ERASURE POSITION WAS ZERO,	S ZERO,	REPL	ACE WITH	378	/ *			. :		
APG14	F7 R3	CMA	0000	00	, =	-	0	JCR 03	=	4.	
URE P	SAVE ERASURE POSITION (POWER) IN R	(POWER)	Ŋ	/*							
APG15	F2 R1.	SDR	0037	=	=		0	JCR 16	00		READ
CURRENT ER	ERASURE TO MOST	MOST S	SI GNI FI CANT	ANT CO	EFF 10	COEFFICIENT,	FOLD AR	FOLD AROUND CARRIES,	HES, */		
IER FOR	POWER FORM IN R6	/*								••	
ODE OF	PETCH CODE OF MOST SIGNIFICANT COEF, WITHOUT CURRENT	NI FI CAN	IT COEF.	WITH	D The	JRRENT	ERASURE AND	E AND SAVE	SAVE IN R7. */	,	•
rurn Po	/* THEN RETURN POWER FORM FROM R6 TO	FROM R		ACCUMULAROR */	AROR *	/4		-			ا بي
	FO R2	AMA	0037	00	=	-,	0	JCC 15	00		READ
•	F3 R3	AIA	0037	00	=	-	0	JCC 18	<u>-</u>		
	F2 R2	CSA		=	Ξ	-	0	JCC 19	00		READ
	F1 R2	LMM	0400	00	Ξ	-	0	JCC 20	00	K = TPTCC	READ
	F2 R1	SDR	7777	=	=	· -	0	JCC 21	00		READ
	F5 R2	LTM	7777	00	=	-	0	JCC 22	00		READ
	F2 R1	SDR	7777	Ξ	<u></u>	***	0	JCC 23	=		
	FO R1	I LR	0000	00	Ξ	-	0	JCC 24	=		

RECORD NUMBER	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	H	JUMP	READ/ WRITE	MI CROFUNCT I ON	. •
•	/* DECREMENT		INNER LOOP COUNTER */	COUNTER	/*		, '		. ' '				•
	/* LOAD P	MAR WITH	LOAD MAR WITH ADDRESS OF CURRENT OUTPUT LOCATION */	OF CURR	ENT OUTF	UT LO	CATIO	* 7					
	/* TEST WHETHER INNER LOOP IS COMPLETED	ИЕТНЕЯ	INNER LO	DP IS CO	MPLETED	*	•						
38	24 00 00	APGI 0	F1 R1	DSM	7777	00	=		0	JCC 25	=		
39	25 00 00		F1 R1	Ē	0000	=	=	. K		JFL 26	=	JFL APG08, APG09	
	/* INNER LOOP - OVERWRITE CURRENT LOCATI	L00P - (OV ERWR I TI	CURREN	IT LOCATI		TH BE	FA-E TII	1ES PR	ON WITH BETA-E TIMES PREVIOUS LOCATION	CATION		
	PLUS (URRENT	PLUS CURRENT LOCATION (BETA-E X SIGMA-(I-1) + SIGMA-I) */	(BETA-E	X SIGM	\-(I-1)-\	+ (GMA-I	/*		•		•
• •	/* POINT	TO NEXT	LOCATION	I, TEST	IT FOR 2	ERO,	OTHER	/I SE MUI	TI PLY	POINT TO NEXT LOCATION, TEST IT FOR ZERO, OTHERWISE MULTIPLY IT BY BETA-E		FETCHED FROM R5*/	
04	26 03 00	APG09	F1 R1	LM.	0000	00	Ξ	}	0	JCR 00	10	•	WRITE
41	26 00 00		FO RI	1 LR	0000	00	=	-		JCC 27	00		READ
42	27 00 00		F5 R2	LTM	7777	00	=	_	0	JCC 28	00		READ
43	28 00 00		F0 R2	AMA	7777	00	=	-	0	JFL 29	00	JFL APG16,APG17	READ
	/* IF NEX	NEXT LOCATION IS	ON IS ZE	ZERO, STO	STORE ZERO	IN R7	AND (AND CONVERT		PREVIOUS LOCATION TO	01 NO	CODE */	·
† †	29 02 00	APG16	F1 R1	LM	00400	00	=	_		JCR 01	=	K=TCTPC	
45	29 01 00		F4 R1	CLR	0000	00	=		0	JCC 24	00	JUMP APG18	READ
•	/* CONVERT BETA-E X NEXT LOCATION TO CODE AND XOR TO R7	T BETA-	X NEXT	LOCATIO	N TO CO	E AND	XOR 7	FO R7 =	PREVI	PREVIOUS LOCATION */	/* NO I		
94	29 03 00	APG17	F1 R1	M	00400	00	=		0	JCR 00	_	K=TPTCC	
747	29 00 00	•	F0 R1	I LR	0000	8	=	_	0	JCC 30	00	-	READ
847	30 00 00		F7 R3	INX	7777	8	=	-		JCC 31	00		READ

				READ	READ		READ	READ	WRIT	READ	READ		READ	READ		WRIT				
) . ·		i.	•				•	· •	•		.•.		•					•		٠
MI CROFUNCTION	•	,	K=TPTCC			K=TCTPC		JUMP APG10	K=TPTCC	•		K=TCTPC					K=TAPOL+ 1			
READ/ WRITE			=	8	00	Ę	00	00	10	00	00	=	8	00	=	10	=	-	_	
JUMP			JZR 01	JCC 01	JCC 02	JCC 03	JCC 24	JCR 00	JCR 01	JCC 04	30c 05	90 DOC	10 DOC	80 ၁၁r	JCC 10	JCC 13	JCC 12	JCR 00	JCR 01	
H		/* -	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
LOAD	/*/	+ SIGMA-I TO POWER FORM */	. —			_	-	·	, .	·	•	_	-	**	,	—	-	-	·	
8	STORE IN R7 */	мо <u>ч</u> о.	- .	=	Ξ.	=	= .	Ξ	= 1	=	=	=	=	=	=	-	=		· =	
5	STORE	MA-I	00	=======================================	00	00	=	00	00	00	00	8	00	8	00	8	8	00	=	
KBUS	FORM AND	918 + (0400	7777	1111	0070	7777	1111	00400	0000	7777	00400	0000		0000	0000	0540	7777	0000	
MNEM		- (I-1)	LMI	SDR	LTM	E E	SDR	LTM	LMI	I LR	-NX	LM1	NOP	LTM	E	· CLR	E	DSM	N N	
CPE	ATION IN	BETA-E X SIGMA	F1 R1	F2 R1	F5 R2	F1 R1	F2 R1	F5 R2	F1 R1	FO R1	F7 R3	F1 R1	F6 R1	F5 R2	F1 R1	F4 R1	F1 R1	F1 R1	F3 R3	
LABEL	NEXT LOC							APG18	APG08										ÅPG05	
ADDRESS R C P	/* FETCH NEXT LOCATION IN CODE	/* CONVERT	31 00 00	00 01 00	01 01 00	02 01 00	03 01 00	24 01 00	26 02 00	26 01 00	04 01 00	05 01 00	06 01 00	07 01 00	08 01 00	10 01 00	13 01 00	12 01 00	09 03 00	
RECORD NUMBER			64	20	. 51	52	53	54	55	, 95	57	58	59	09	61	62	63	49	65	•

NO I	APG13		
MI CROFUNCTION	JFL APG12, APG13	JMP FAILO	JMP MSYNG
READ/ WRITE	_	=	=
JUMP	JFL 10	JZR 14	JZR 04
H H	0	0	0
LOAD	_	-	
00	=	=	-
5	00	00	8
KBUS	0000	0000	0000
MNEM	NOP	NOP	NOP
CPE	F6 R1	F6 R1	F6 R1
LABEL		APG12	APG13 F6 R1
ADDRESS R C P	09 01 00	10 02 00	10 03 00
RECORD NUMBER	99		

			READ	READ	READ	READ		WRITE								READ	READ		WRITE
MICROFUNCTION				• ,					•				1st Syndrome				JMP(MSY02, MSY05)		JMP (MSY03, MSY04)
READ/ WRITE		11	00	00	00	00	11	10	11	11	11	11	11	11	11.7	00	00	11	10
IUMP		JCC 01	JCC 02	JCC 03	JCC 04	JCC 05	JCC 06	JCC 07	JCC 08	JCC 09	JCC 10	JCC 11	JCC 12	JCC 13	JCC 18	JCC 21	JFL 18	JCR 01	JCF 17
INH		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOAD	¥ .	-	Н	П	~	H		г		-	-	H	н	Н	H	~	- -1		-
8		00		11	11	11	11	11	FF FF	11	11	11	, -	H		11	10	11	11
ij		00	00	00	11	00	11	11	00	11	11	00	11	11	00	11	00	11	11
•		0540	0000	0017	7777	7777	0561	7777	7757	7777	7777	0000	0020	7777	7777	0000	7777	0000	0000
MNEM KBUS	/* DI	LMM	CLR	AMA	SDR	LTM	LMI	SDR	LDM	SDR	SDR	ILR	LMI	SDR	SDR	INR	LTM	LMI	LMI
LABEL CPE	SOURCE PROGRAM MSYNG	MSY00 F1 R2	F4 R1	F0 R2	F2 R1	F5 R2	F1 R1	F2 RI	F1 R2	F2 R1	F2 R1	FO R1	F1 R1	F2 R1	F2 R1	MSY01 F3 RI	F5 R2	MSY02 F1 R1	F1 R1
머	IRCE	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ADDRESS R C	* SOU	0 04	1 04	2 04	3 04	4 04	5 04	6 04	7 04	8 04	9 04	0 04	1 04	2 04	3 04	8 04	1 04	8 02	8 01
AI R	*	00	0.1	02	03	. 04	05	90	07	08	60	10	11	12	13	18	21	18	18
RECORD NUMBER	-	001	005	003	004	0.02	900	200	800	600	010	011	012	013	. 01.4	015	016	017	018

	READ	READ	READ						WRITE								
MICROFUNCTION						JMP(MSY06, MSY07)	JMP MSY17		JMP IOCOI		JMP(MSY13, MSY08)					Address of S1	
READ/ WRITE	00	00	00	1	11	11	11	11	10	I	11	1	11		11	11	11
IUMP	JCR 04	JCR 04	JCC 18	JCC 18	JCC 15	JZF 19	JCC 18 PL 01	JCR 03 P 01	JZR 14 P 01	JCR 04	JFL 20	JCR 04	JCC 22	JCR 01	JCC 23	JCR 04	JCC 24
INH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0
LOAD	~	H	-	Н	-	н	- 1	,#=1 **	-	~	~ 1,	-	Н			~	~
8	11	01	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11
IJ	00	11	00	11	H	00	.00	00	0.0	00	11	11	11	00		00	00
-	0000	0000	0400	0000	0000	7757	2000	0000	0000	7777	0000	7777	0000	0000	7777	0000	0000
MNEM KBUS	NOP	NOP	LMM	LMI	LMI	LMI	LMI	CLA	NOP	DSM	ILR	SDR	INR	ILR	SDR	ILR	LMI
LABEL CPE	MSY03 F6 R1	MSY04 F6 R1	F1 R2	F1 R1	F1 R1	MSY05 FI RI	MSY06 F1 R1	MSY17 F4 R2	F6 R1	MSY07 F1 R1	FO R1	MSY08 F2 RI	F3 R1	FO R1	F2 R1	FO RI	F1 R1
SS	00	00	00	00	00	00	00	01	01	00	00	00	00	00	00	00	00
ADDRESS R C	02	, 03	, 04	7 05	3 05	3 03	9 02	3 02	3 03	9. 03	9 04	03	04	04	0.	3 01	3 04
AD R	17	17	17	17	18	18	19	18	18	19	19	20	20	22	22	23	23
RECORD NUMBER	019	020	021	022	023	024	025	026	027	028	029	030	031	032	033	034	035

	READ	READ			READ	READ		READ	READ	WRITE	READ	READ	READ					
MICROFUNCTION			JMP (MSY12, MSY09)						·	JMP(MSY10, MSY12)			JMP(MSY11, MSY09)		JMP (MSY10, MSY12)	JMP MSY07		
READ/ WRITE	00	00			00	00	H	00	00	10	00	00	00	11		11	F-1	11
IUMP	JCC 25	JCC 26	JFL 27	JCR 01	JCC 25	JCC 30	JCC 28	JCR 04	JCC 29	JZF 30	JCR 04	JCR 05	JFL 31	JCR 04	JFL 30	JCC 19	JCR 01	JCC 21
INH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOAD	—	r-I	-	П	1	1	 1	~/ 	Н	, -1	H	. H	н	r-1	-	H	H	
8	11	11	11	H	11		I	01	11		11	11	11	11	=		11	11
IJ		00		00	00	00	~ 근	11	00	H	00	00	00	11	11	00	11	00
	7777	7777	7777	0400	0000	7777	0000	0000	7777	0000	0000	7777	7777	7777	0000	7777	7757	7777
MNEM KBUS	SDR	$_{ m LTM}$	SDR	LMI	NOP	LTM	LMI	INR	XNI	LMI	ILR	LTM	AMA	INR	LMI	DSM	LDM	SDR
CPE	F2 R1	F5 R2	F2 R1	9 F1 R1	F6 R0	F5 R2	F1 R1	F3 R1	F7 R3	F1 R1	0 F0 R1	F5 R2	F0 R2	1 F3 R1	F1 R1	2 F1 R1	3 F1 R2	F2 R1
LABEL				MSY09							MSY10			MSY11		MSY12	MSY13	
머	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ADDRESS R C	04	04	04	03	01	01	01	01	04	04	02	04	05	02	04	03	02	01
AD]	24	25	26	27	27	25	30	28	28	29	30	30	30	31	31	30	20	20
RECORD NUMBER	036	037	038	. 680	040	041	042	043	044	045	046	047	048	049	020	051	052	053

					READ	READ	WRITE	WRITE	READ	READ	READ	READ		WRITE					READ
MICROFUNCTION									,	JFL (MSY15, MSY16)				JMP(MSY14)	JMP(EPGEN)				
READ/ WRITE	11	11	11	11	00	00	10	10	00	00	00	00	11	10	11	11	I	11	00
IUMP	JCC 19	JCC 17	JCC 16	JCR 05	JCC 13	JCC 14	JCC 15	JCR 01	JCC 14	JFL 14	JCR 04	JCC 16	JCC 15	JCR 01	JZR 05	JCR 04	JCC 19	JCR 01	JCC 25
INH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOAD	~	-	 1	н	Н	H	7	Н	~	,—	-	H	-	,i	Н	Н	-	-	-
9	11	11	11	11	11	11	11	11	11	11		11	11	11	11	ij	11	11	11
Ö	00	11	00	11	00	00	11.	11	11	00	00	00	11	11	00	00	00	00	00
	0602	7777	0000	0561	0000	7677	0000	0000	0000	0200	0000	7777	0000	0000	0000	7777	7777	0400	0000
MNEM KBUS	LDM	SDR	CLR	LMI	NOP	LTM	LMI	LMI	INR	LMM	NOP	LTM	LMI	LMI	NOP	DSM	DSM	LMI	NOP
CPE	F1 R2	F1 R1	F4 R1	F1 R1	F6 R1	F5 R2	F1 R1	Fl Rl	F3 RI	F1 R2	F6 R1	F5 R2	F1 R1	F1 R1	F6 R1	Fl Rl	F1 R1	F1 R1	F6 R1
LABEL									MSY14		MSY15				MSY16				
ᆈ	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
ADDRESS R C	01	01	01	01	05	05	05	05	01	01	02	04	04	04	03	02	04	03	10
ADI	21	19	17	16	16	. 13	14	15	15	14	14	14	16	15	14	27	27	31	31
RECORD NUMBER	054	055	056	. 250	058	029	090	190	062	. 063	064	065	990	290	890	690	020	071	072

					READ	READ		READ		•	• .				MAR to AC			
MICROFUNCTION				K = TMSYP	0 to R6	s = 16	CO to C FLAG	ADDRESS OF TI	MOD SYND.	K = TMSYP	AC to R5	8 + 3 8	(R3 = -(16-s))		K = TEVAL = 646 to MAR to AC	JUMP ON C FLAG	s = 16 TEST	JCF (EPG03, EPG04)
READ/ WRITE	•			11	00	00		00			11	11	11		11	֝ ֡ ֡		·
IUMP				JCC 01	JCC 02	JCC 03		JCC 04			JCC 05	JCC 06	JCC 07		JCC 08	JCF 10		
INH			ē	0	0	0		0			0	0 ,	0		0	0		
LOAD				 1	-	1		-			. 	-	_		-	-		
8	•			11	11	10		Ħ			11	11	11		1.1	-		
MNEM KBUS CI	EN */	AY */	-(16-s) */	LDM(AC) 0602 00	CLR(R6) 0000 00	LTM(AC) 0020 00	•	LMM(AC)0602 11			SDR(R5) 7777 11	SDR(R3) 0037 11	LMI(R3) 7755 00	TEST R9 AND SET SCBIX ACCORDINGLY */	LDM(AC) 0646 00	CLA(AC) 0000 00		
LABEL CPE	SOURCE PROGRAM EPGEN	SET POINTER TO T' ARRAY	SET COUNTER (R3) TO -(16-s)	01 EPG00 F1 R2	F4 R1	F5 R2	÷	F1 R2			F2 R1	F2 R1	F1 R1	ND SET SCBD	F1 R2	F4 R2		
ᆈ	RCE P	POINT	COUN	01 EI	01	01		01			01	01	01	r R9 A	01	01		
ADDRESS R C	sou	SET		00	00	00		00			00	00	00		00	00	•	
ADJ R	*	*	*	00	0.1	0.5	•	03		٠	04	05	90	*	07	0.8		
RECORD NUMBER				100	002	003		004			005	900	200		800	600		

	WRITE			WRITE											READ	READ
MICROFUNCTION	TRPOL= TMSYP	602 to MAR to AC	JMP (RPVAL)	0 to R7	0 to R8		K = TEPAA	700 to R6 + K to R6	K = TEPBB	711 to R7 + K to R7	K = TEPCC	722 to R8 + K to R8		R5 to MAR		M to AC
READ/ WRITE	10			10	11		11		11		11			11	00	00
IUMP	JZR 13			JCR 01	JCR 00		JCC 11		JCC 12		JCC 21			JCC 22	JCC 23	JCC 24
LOAD INH	0			0	0		0		0		0			0	0	0
LOAI	-	.•		1	-		-		-	,	÷					-
0	11	•		11	11		7		11		11			11	11	11
C	00			00	00		00		00	y •	00			00	00	0.0
KBUS CI	0602	•		0000	0000		0200		0711		0722			0000	0000	7777
MNEM	LDM(AC)			CLR(R7)	CLR(R8)	*	LMI (R6)	÷	LMI(R7)		LMI (R8)		/ *	LMI(R5)	CLR(R4)	LTM(AC)
CPE	1 R2	,		F4 R1	F4 R1	INTERS	Fl Rl		FI R1		FI R1	•)) = T(i	FI RI	F4 R1	F5 R2
LABEL	01 EPG03 F1 R2			01 EPG04 F		SET ADDRESS POINTERS			01 E		01 E		/* FIRST D(U) = D(O) = T(1)	01 E	01 I	01 I
RESS C P	03 0			0 70	01 01	ET AD	00 01		0 00		0 00		IRST	0 00	0 00	0 00
ADDRESS R C	10 0			10 0	10 0	[S:	10 0		11 0		12 0		* F	21 (22 (23 (
RECORD NUMBER	010			011	012		013		014		015			016	017	018

		-		WRITE							READ	READ		READ	READ		READ
MICROFUNCTION	SAVE D(U)	K = TEPDR + 1	JFL (EPG17, EPG05)	ADDRESS	SIGMA-u-1				٠	ADDRESS OF P		(P)		-(P)-1	U-P	ADDRESS OF T(P)	u-p-l
READ/ WRITE	11			10		11	11	Ħ.		11	00	00	11	00	00		00
IUMP	JFL 25			JCR 00		JCC 26	JCC 27	JCC 28		JCC 29	JCC 30	JCC 31	JZR 01	JCC 01	JCC 02	JCC 03	JCC 04
INH	0			0		0	0	0	*	0	0	0	0	0	0	0	0
LOAD	-			-		, 1			.P)	-	-	-	-	-	-	-	
8	11			11		11	11		-n) + (11		11	11	11	11	11	Ħ
RESS C P LABEL CPE MNEM KBUS CI	00 01 F1 R1 LMI(R4) 0734 11			03 01 EPG05 F0 R1 ILR(R8) 0000 00		00 01 F2 R1 STR(R2) 7777 11	00 01 FOR1 ILR(R7) 0000 00	00 01 F2 R1 SDR(R1) 7777 11	COMPUTE $-(U-P)-1$ IN R4 AND $T(U+1) = T(P) + (U-P)$	00 01 FIRI LMI(R4) 0000 11	00 01 F3 R1 INR(R4) 0000 11	00 01 F5 R2 LTM(AC) 7777 00	00 01 FIRI LMI(R4) 0000 00	01 01 F7 R3 CMA(AC) 0000 00	01 01 F0 R2 AMA(AC) 7777 11	01 01 FIRI LMI(R6) 0000 00	01 01 F2 R1 SDR(R4) 7777 00
ADDRESS R C	24 0			25 0		25 0	26 0	27 0	· *	28 0	59 (30 (31 (00	01 (02 (03 (
RECORD NUMBER	019			020		021	022	023		024	025	026	027	028	029	030	031

			•	•							*						
	READ		READ	READ				READ	READ	•	READ	READ	READ	READ		-u(1)	WRITE
MICROFUNCTION		*	٠	T(U+1) =	T(P) + (U-P)	(P-U)			•	JFL(EPG28, EPG27)					ADDRESS OF T(U+1)	ADDRESS OF SIGMA-u(1)	ADDRESS OF
READ/ WRITE	00	11	00	00		11	11	00	00	=	00	00	00	00	= .	11	10
IUMP	JCC 05	JCC 06	JCC 07	JCC 08		JCC 06	JCC 09	JCC 10	JCC 12	JFL 08	JCR 07	JCC 11	JCR 01	JCR 08	JCR 01	JCC 12	JCC 13
INH	0	0	. 0	0		0	0	0	٠ 🗕	0	0	0	0	0	0	0	0
LOAD		-	7	 1		H	Н	H	H	-	-	-	-	-	-	7	~
9	11	11	H	11		11	11	11	11	11	10	11	11	00	11	11	11
ij	00	-	00	11		00	. 00	00	00	00	00	00	11	1	11	11	11
KBUS	7777	7777	0000	7777		0000	0000	0000	7777	0000	0000	7777	7777	7777	0000	0000	0000
MNEM	LIM	SDR	ILR (AMA(AC)		CMR(R4)	LMI	CMA	AMA	CMA	ILR	AMA	SDR	LTM	LMI(R2)	INR(RI)	LMI(RI)
CPE	F5 R2	F2 R1	FO R1	F0 R2	•	F7 R1	FI RI	F7 R3	FO R2	F7 R3	FO R1	F0 R2	F2 R1	F5 R2	F1 R1	F3 R1	FI R1
LABEL C	[14	<u>[14</u>	<u>μ</u>	<u>F4</u>			Щ.			14	EPG27	14	14	14	EPG28	1-4	01 EPG06 I
ᆈ	01	01	01	01		01	01	01	01	01	01	01	01	01	01	01	01
ADDRESS R C	01	01	01	01		07	07	07	07	07	03	07	07	01	02	01	010
ADI	04	05	90	07		07	90	60	10	12	08	08	11	11	08	08	12
RECORD NUMBER	032	033	034	035		036	037	038	039	040	041	042	043	044	045	046	047

SIGMA-u(1)

	READ	READ				٠.						READ	READ		READ	READ	
MICROFUNCTION		JFL (EPG07, EPG08)	JMP(EPG06)		NEXT SIGMA (U)	ADDRESS OF T(P)		ADDRESS OF	SIGMA-P(1)	K = TEPDR	ADDRESS OF D(P)	$\overline{T(P)} = -T(p)-1$	D(P)	•	-D(P)-1	D(U)-D(P)-1	D(U)D(P)-1
READ/ WRITE	00	00	11			11	E	11		=		00	00	I	00	00	11
IUMP	JCC 14	JFL 12	JCR 01		JCR 04	JCC 15	JCC 01	1CC.16		JCC 17		JCC 18	JCC 19	JCC 20	JCC 21	JCC 23	JCC 24
INH	0	0	0		0		0	0	, ,	0			0	0	0	0	0
LOAD	П	Ħ	H	•	7	H	 1	~		1		г	Н	H	П	-	
8	11		11		11	11	11	11		11		11	11		11	11	11
CI	11	00	11		00	00	11	11		11		00	00	00	. 00	0.1	00
KBUS	0000	7777	0000		7777	0000	7777	0000		0733		0000	7777 00	0000	0000	0037	0037
MNEM KBUS	INR(R4)	LTM(AC) 7	LMI(R2) (o t(n) */	DSM(RI)	ILR(R6) (SDR(R0) 7	INR(R0) (LMI(R4) (CMR(R9) (LTM(AC)	LMI(R4)	CMA(AC)	AMA(AC)	ACM(AC)
CPE	F3 R1	F5 R2	F1 R1	1-p) t	FI RI	FO R1	F2 R1	F3 R1		FI R1		F7 R1	F5 R2	Fl R1	F7 R3	F0 R2	F0 R2
LABEL	14	- [14	01 EPG07 F	COMPARE $t(p) - (1-p)$ to $t(u)$	01 EPG08 F	<u>[</u> 4	Ŧ	[14		<u>[14</u>		ĹL,	Ē4,	Ē.	<u> </u>	<u> </u>	[14]
머	01	01	01 I	APARI	01	01	01	01		01		01	01	01	01	01	01
ADDRESS R C	01	01	02	CON	03	04	04	01		0.		01	01	01	01	01	01
AD.	13	14	12	*	12	12	15	15		16		17	18	19	20	21	23
RECORD	048	049	020	• :	. 051	052	053	054		055		056	057	058	059	090	061

, 27

•													•			
			·U(I) D·	READ	READ					WRITE	,		READ	READ	READ	•
MICROFUNCTION			ADDRESS OF SIGMA-U(I)		SIGMA-U	D(U)D(P)-1	(SIGMA-P(I)	ADDRESS OF SIGMA-	(U+1)(I+U-P)	ADDRESS OF	SIGMA-P(I)	JCF(EPG10, EPG13)	D(U)D(P)-I	SIGMA-P(I)=0?	D(U)D(P)-1	SIGMA-P(I)
READ/ WRITE	1.1		11	00	00			11		10			00	00	00	•
IUMP	JCC 25		JCC 27	JCC 28	JCC 29			JCC-30		JCF 31			JCR 01	JCR 04	JFL 26	
INH	0		0	0.	0			0		0			0	0	0	•
LOAD		+1 */	 -1	- 1				-	-	-			-		-	
CO LOAD INH	11	IGMA-U	11	10	11			11		11			11	11	11	1.
Ö	근	INS	=	11	00		•	11		11			00	00		
KBUS	7777	ERMS	0000	0000	7777			0000		0000				7777	7777	:
MNEM KBUS CI	SDR(R4) 7777	MAINING 1	LMI(RI) 00	INR(R9) (XNI(AC) 77			LMI(R2)		LMI(R0)			ILR(R4) 0000	LTM(T)	AMA(AC) 7777	a .
LABEL CPE	F2 R1	/* LOOP TO COMPUTE REMAINING TERMS IN SIGMA-U+1	09 F1 R1	F3 R1	F7 R3			F1 R1		F1 R1			01 EPG10 F0 R1	F5 R2	F0 R2	
		0 00	EPG09										EPG			
SSS	01	OP T	01	0.	01			010		. 01				10 1	1 01	
ADDRESS R C	01	Ğ	01	01	01			01		01			02	01	04	
AI	24	*	25	27	28			29		30			31	31	31	
RECORD NUMBER	062		063	064	. 065			990		290			890	690	020	

JFL (EPG11, EPG12)

			READ	READ					į	•			READ	READ		READ	READ
MICROFUNCTION	JMP (EPG09)	K = IPICC = 400		D(U)D(P)-1	SIGMA-P(I) - CODE	JMP (EPG09)		*	٠	JFL (EPG14, EPG91	K = TEPDP+1	ADDRESS OF D(U)		D(U)	ADDRESS OF P	D(U) to R(0)	Ω ₁
READ/ WRITE	11	n	00	00			11			11	11		00	00	11	00	00
IUMP	JCR 01	JCR 04	JCC 25	JCR 01			JCC 27	- PREPARE FOR THE CHANGE	JZR 04	JFL 01	JCR 04		JCC 02	JCC 03	JCC 04	JÇC 05	JCC 06
INH	0	0	0	0			0	OR TH	0	0	· 0 ·		0	0	0	0	0
LOAD		~	~	, ,			-	PARE F	-	~	~		,1		7	-	-
99	F-1		11	11			11		11	11	11		11	11	11	11	11
ij	00	00	00	00			11	ME P		00	11		00	00	11	=	00
	0000	0400	0000	7777			0000	D BECOME P	0000	0000	0734		0000	7777	0000	7777	7777
MNEM KBUS	CLA(AC)	LMI(AC)	NOP(RO)	LTM(AC)			LMI(RI)	U SHOULD	INR(R3)	CLR(R4)	LMI(R4)		NOP(R0)	LTM(AC)	LMI(R4)	SDR(R0)	LTM(AC)
CPE	F4 R2	F1 R1	F6 R1	F5 R2			FI RI	THER 1	F3 R1	F4 R1	F1 R1		F6 R1	F5 R2	FI RI	F2 R1	F5 R2
LABEL	EPG11	01 EPG12 F						DETERMINE WHETHER U SHOUL	EPG13		EPG14						
ESS	2 01		4 01	4 01			1 01	TER	3 01	4 01	02 01		4 01	4 01	4 01	4 01	4 01
ADDRESS R C	5 02	26 03	5 04	5 04			6 01	/* DI	1 03	0 04			1 · 04	02 04	03 04	04 04	5 04
	26	2(26	25			26		31	00	01		01	Ō	0	0	05
RECORD	071	072	073	074			075		920	077	078		620	080	081	082	. 083

												,						
			READ	READ		READ	READ	WRITE	READ	READ		READ	READ	READ				
	MICROFUNCTION	ADDRESS OF L(P)	. P - 1	L(P)-P-1	ADDRESS OF U	L(P)-P-2	U+1	WRITE U+1 SAVE U	L(P)-P-2	L(P)+U-P-1	ADDRESS OF L(U)	-(L(P)+U-P)		L(U)	JFL (EPG15, EPG16)	/* d-		L(P)+U-P-1 to $L(U)$
	WRITE	11	00	00	11	00	00	10	00	. 00	11	00	00	00		L(P)+U	11	11
	IUMP	JCC 07	JCC 08	JCC 09	JCC 10	JCC 11	JCC 13	JCC 14	JCC 16	JCC 17	JCC 18	JCC 19	JCC 20	JFL 21		ACED W/	JCR 04	JCC 22
	INH	0	0	0	0	0	0	0	0	0	0	0	;1	0		REPL/	0	0
	LOAD		-	- -i	~	H	-	-	~	Ä	p	-	-	 1		SI (U)	-	
)	9	11	e-d e-d	11	11	11	11	11	11	11	11	11	11	11		W P; L	11	11
	CI	[. 00	00	11	00		. 00	00	00	00	00	00	00		8	11	11
	KBUS	0000	0000	7777	0000	7777	0000	7777	0000	7777	0000	0000	7777	7777		COMES	7777	0000
	MNEM	LMI(R4)	CMA(AC)	AMA(AC)	LMI(R4)	SDR(R2)	ACM(AC)	SDR(RI)	ILR(R2)	AMA(AC)	LMI(R4)	CMA(AC)	AMA(AC)	LTM(AC)		/* IF L(U) L.T. L(P)+U-P, ROW U BECOMES ROW P; L(U) IS REPLACED W/L(P)+U-P	SDR(R9)	ILR(R2)
	CPE	F1 R1	F7 R3	F0 R2	FI RI	F2 R1	F0 R2	F2 R1	FO R1	FO R2	F1 R1	F7 R3	FO R2	F5 R2	ī)+U-P,	F2 R1	FO R1
	LABEL											,				.T. L(F	01 EPG15	
	머	01	01	01	01	0.1	01	01	01	01	01	01	01	01		I (U)	01	01
	ADDRESS R C	04	04	04	04	04	04	04	04	04	04	04	04	04		IF L	02	04
)	ADI	90	07	08	60	10	11	13	14	16	17	18	19	20		*	21	21
•	RECORD NUMBER	084	085	980	280	880 .	680	060	160	092	660	094	960	960			097	860

		WRITE			WRITE				WRITE			WRITE	P)				٠.
MICROFUNCTION		ADDRESS OF D(P)			D(U) REPLACES	D(P)	ADDRESS OF P	U REPLACES P	ADDRESS OF L(P)		INTERCHANGE ADDRESS POINTERS OF SIGMA-U AND SIGMA-P THEN SIGMA-U & SIGMA-U+1 */	ADDRESS OF	SIGMA-P, L(U) to L(P)			JMP (EPG16 + 2)	
READ/ WRITE	11	10	-	11	10		11	-	10	11	MA-U	10		-	11	1	
IUMP	JCC 23	JCC 24	JCC 27	JCC 28	JCC 29		JCC 30	JZR 05	JCC 01	JCC 02	HEN SIG	JCC 03		JCC 04	JCC 05	JCC 06	*
INH	0	0	0	0	. 0		0	0	0	0	IA-P I	0		0	0	0	SIGMA-U+I
LOAD	—	-	-	H	-		H	H	, ,	-	SIGN	~		-	-	H	SIGN
00	11	H	11	11	11		. 11	11	11	. 11	-u ANI	11		П	11	11	-u ani
딩	11	00	11	00	11		11	00	11	00	GMA	00		1	00	II	GMA
KBUS	0000	7773	0000	0000	0000		0000	0000	0000	0000	OF SI	0000		7777	0000	7777	OF SI
MNEM	INA(AC)	LMI(R4)	LMI(R4)	ILR(R0)	INR(R4)		LMI(R4)	ILR(R1)	LMI(R4)	ILR(R9)	S POINTERS	ILR(R6)		SDR(R9)	ILR(R7)	SDR(R6)	INTERCHANGE ADDRESS POINTERS OF SIGMA-U AND
CPE	F3 R3	F1 R1	F1 R1	FO R1	F3 R1		FI R1	FO R1	FI RI	F0 R1	DDRES	FO R1		F2 R1	FO R1	F2 R1	DDRES
LABEL		•									ANGE A						ANGE A
러	01	01	0.1	01	01		01	01	01	01	RCH	01		01	01	01	RCH
ADDRESS R C	04	04	04	04	04		04	04	02	02	INT	02		05	05	02	INT
AD R	22	23	24	27	28		29	30	00	01	*	02	•	. 03	04	02	*
RECORD NUMBER	660	100	101	102	103		104	105	106	107		108		109	110	111	

								WRITE		READ	READ	WRITE	٠.				POWER
MICROFUNCTION	,					JMP (EPG19)		ADDRESS OF U	K = TEPDR+4		JFL(EPG18, EPG90)			ADDRESS OF	SIGMA-U (I(U))		ADDRESS OF T(U+1) POWER
READ/ WRITE	11	11	11	11	11	11		10		00	00	10		11		11	11
IUMP	JCR 05	JCC 06	JCC 07	JCC 08	JCC 09	JCC 11	_	JCR 05		JCC 10	JFL 11	JCR 05		JCC 12		JCC 13	JCC 14
INH	0	0	0	0	0	0	*	0		0	0	0		0		0	0
LOAD	П	1		П	, H	H	SO, INCREMENT U	1	÷		· 🛏	~		H		-	-
00	11	11	11	11	11	11	INCRE	11		11	11	11		11		:	11
C	00	11	00	11	00	11	so, 1	00	٠.	11	H	00		00		11	11
KBUS	0000	7777	0000	7777	0000	7777	S? IF	0737		0000	0000	0000		0000		7777	0000
MNEM	ILR(R7)	SDR(R9)	ILR(R8)	SDR(R7)	ILR(R9)	SDR(R8)	SHOULD THERE BE ANOTHER PASS	LMI(AC)		INR(R3)	ACM(AC)	NOP(R6)	*	ILR(R7)		SDR(R2)	ILR(R5)
CPE	F0 R1	F2 R1	F0 R1	F2 R1	F0 RI	F2 R8	E ANO	'l R1		F3 R3	FO R2	F6 R1	, D(U)	FO RI	. *	F2 R1	FO R1
LABEL	EPG16 F	<u>F4</u>	E-i	<u>[</u>	<u> </u>	<u> </u>	THERE B	01 EPG17 FI RI		щ	114	EPG18	COMPUTE NEXT D(U)	01 EPG19 F			14
SS	01	01	01	01	01	01	OULD			01	01	01	MPUT			01	01
ADDRESS R C	03	05	05	05	05	05		02		05	05	02	CO CO	02		02	05
AD R	21	21	90	0.2	80	60	*	25	,	25	1.0	11	*	. 11		12	13
RECORD NUMBER	112	113	114	115	116	117		118		119	120	121		122		123	124
AI							•										

		READ	READ			READ	READ		READ	READ		•		READ	READ				
MICROFUNCTION			LITTLE T(U)	-t(U)-1			ADDRESS OF	T(U+1) (CODE)		T(U+1) (CODE)		ADDRESS OF	SIGMA-U(I)		SIGMA-U(I)	(CODE)		V .	
READ/ WRITE	11	00	00	11	11	00	00		00	00	11	11		00	00				
IUMP	JCC 15	JCC 16	JCC 17	JCC 18	JCC 19	JCC 20	JCC 22		JCC 23	JCC 26	JCC 24	JCC 31	·	JCR 06	JCC 30				
INH	0	0	0	0	0	0	0		0	0	0	0		0	0				
LOAD	H		Н	·		-	- 1		.	Н	 1	-		H	- -1				
9	11	11	11	I	11	11	11		11	11	11	11		11	01	. •			
Ö	11	11	00	00	00	11.	00		00	00	00	II		11	00				
KBUS	0000	7777	7777	0000	0000	7777	0400		0000	7777	7777	0000		7777	7777		_		
MNEM KBUS	LMI(R2)	SDR(R4)	LTM(AC)	CMA(AC)	LM1(R4)	SDR(RI)	LMM(AC)		NOP	LTM(AC)	DSM(R4)	LMI(R2)		SDR(R0)	LTM(T)				
CPE	F1 R1	F2 R1	F5 R2	F7 R3	F1 R1	F2 R1	F1 R2		F6 R1	F5 R2	F1 R1	F1 R1		F2 R1	F5 R2		•		
LABEL	<u>[14</u>	I I.	[14	Щ	14	,	щ		Н	щ	01 EPG20 F	н-		P-1-4	1-1-4			•	
SS	01	01	01	01	01	01	01		01	01	01	01		01	01				
ADDRESS R C	02	05	05	05	05	05	05		02	05	05	02		02	90	,			
AL R	14	15	16	17	18	19	20		22	23	26	24	•	. 31	31				
RECORD NUMBER	125	126	127	128	129	130	131		132	133	134	135		136	137	. •			

, ...

	READ	(3		READ	READ					READ	READ	READ		~		READ	READ
MICROFUNCTION	ADDRESS OF	SIGMA-U(I) (POWER)	JFL(EPG24, EPG21)		SIGMA-U(I)	(POWER)	JFL(EPG22, EPG26)	ADDRESS OF	T(U+1-I) (POWER)		T(U+1-I) (POWER)	SIGMA-U(I)	T(U+l-I)	JFL (EPG25, EPG23)		PREVIOUS SUM	JMP(EPG20)
READ/ WRITE	00			00	00			11		00	00	00			-	00	00
IUMP	JFL 27			JCR 06	JFL 28			JCR 05		JCC 27	JCC 30	JFL 29			JCR 06	JCR 05	JCC 26
INH	0			0	0	•		0		0	0	0			0	0	0
LOAD 1	H			-	1			П		H	1	, m			Н	r-1	
8	11			11	11			11		11	11	11			=	11	. []
Ö	00	·			00		•	00		00	00	00	·		00	00	00
KBUS	0200			0000	7777	j		0000		00 0000	7777	7777			0400	1200	7777
MNEM KBUS	LMM(AC) 0500			INR(R1)	LTM(AC)		<i>\$</i>	LMI(R4)		NOP	LTM(T)	AMA(AC)			LMI(AC)	ILR(RO)	XNI(AC)
CPE	F1 R2			F3 R1	F5 R2		•	F1 R1		F6 R1	F5 R2	F0 R2		ŕ	FI RI	FO R1	F7 R3
LABEL			٠	01 EPG21	,			01 EPG22						•	EPG23		
ᆈ	01			01	01			01		01	01	01			01	01	01
ADDRESS R C	90			03	90			02		02	02	05		-	03	90	02
AD R	30			27	27			28		28	2.7	30			29	29	29
RECORD NUMBER	138			139	140			141		142	143	144		-	145	146	147

						READ						READ	READ			READ	READ
MICROFUNCTION		JFL (EPG20, EPG26)				JMP(EPG05-2)		JMP (EPG92)					ب	JFL (EPG98, EPG93)	ADDRESS OF s	2t	2t+s
READ/ WRITE	=	11	Π	11	Ξ	00		Π	П	=	11	00	00	11	11	00	00
IUMP	JCC 29	JFL 24	JCR 05	JCC 23	JCC 23	JCR 00		JCR 06	JCR 06	JCC 13	JCC 11	JCC 10	JCC 12	JCC 23	JCC 02	JCC 03	JCC 04
INH	0	0	0	0	0	0		0 -	0	0	0	0	0		0	0	0
LOAD	, -	-	H	p=1		Н			Ħ	r-I	Н	-		r-1	Н	H	r-4
9	=======================================	11	I	=	11	11		11	11	11	11	11	10	11	11	:	11
Ö	<u></u>	00	000	00	00	00		00	00	Ħ	11	00	00	00	00	00	00
KBUS	0000	0000	7777	0200	0200	0000	_	0000	0000	7777	7777	0000	7777	0000	0602	7777	7777
MNEM KBUS	INR(RI)	ILR(R0)	DSM(R4)	LMI(R0)	LMI(R0)	CLR(R4)	¥ 0 . I	LMI(R7)	LMI(R8)	SDR(R7)	SDR(R7)	CLR(R6)	LTM(AC)	CLR(R4)	LMI(R4)	ALR(AC)	AMA(AC)
CPE	F3 R1	F0 R1	F1 R1	Fl Rl	Fl Rl	F4 R1	s-2t L.	Fl Rl	F1 R1	F2 R1	F2 R1	F4 R1	F5 R2	F4 R1	F1 R1	FO R1	F0 R2
LABEL	01 EPG24	01 EPG25		01 EPG26		·	CHECK FOR 16-s-2t L.T. 0	01 EPG90	01 EPG91			EPG92			EPG93		·
SSS			01		01	01	ECK			01	0.1	01	01	01	01	01	0.0
ADDRESS R C	02	02	0.5	03	03	03		03	03	90	90	90	90	90	90	90	90
A N	27	29	24	24	28	23	*	11	01	01	08	11	10	. 12	23	02	03
RECORD	148	149	150	151	152	153		154	155	156	157	158	159	. 091	161	162	163

;

			READ	READ						D-	;					READ	READ
MICROFUNCTION	2t+s L.T.E. 16?	477 = K = SCBIX		SCBIX	JFL (EPG94, EPG97)	SET R9 BASED ON	SCBIX	JFL (EPG96, EPG95)		ADDRESS OF SIGMA-U	JCF (98, 99)	JUMP TO DECODE	FAILURE	JMP IOC01	JMP RPVAL		
READ/ WRITE	11	11	00	00		11			=	11		Ħ			11	00	00
IUMP	JCC 05	JCC 06	JCC 07	JFL 07		JFL 06	•		JCR 02	JCF 02		JZR 14			JZR 13	JCR 07	JCC 01
INH	0	0	0	0		0			0	0		0			0	0	0
LOAD	-	-	, 1	-		-			r-1	H		-			, 1	-	-
00	11	11	11	11		11			11	11		11			11	10	11
C	00	00	00	00		00			00	00		00			00	00	00
KBUS	7777	0477	7760	7777					0200	0000		0000	•		0602	0000	7777
MNEM KBUS	DCA(AC)	LMI(R6)	TZA(AC)	LTM(AC)		CLR(R9)			LMI(R9)	LMI(R7)		NOP			LMI(AC)	ILR(R7)	AMA(AC)
CPE	F1 R3	F1 R1	F5 R3	F5 R2		F4 RI	•		FI RI	Fl Rl		F6 R1		, ,	FI RI	FO R1	F0 R2
P LABEL	01	01	01	01		01 EPG94			01 EPG95	01 EPG96 F1 R1		01 EPG97 F6 R1			01 EPG98	01 EPG99	01
ADDRESS R C	90	90	90	90		02			03	02		03			02	03	07
ADJ	04	05	90	0.2		07			90	90		07			02	0.5	02
RECORD NUMBER	164	165	166	167		168			169	170	:	171			172	173	174

	READ	READ		READ	READ			WRITE
MICROFUNCTION		JMP (EPG89, EPG88) READ	• .			JMP (EPG89, EPG88)		JMP (EPG89-1)
READ/ WRITE	00	00	-	00	00	11	11	10
IUMP	JCC 00	JCF 03	JCR 07	JCC 04	JCC 05	JFL 03	JCR 08	JZR 07
INH	0	0	0	0	, 	0	0	0
LOAD INH			—	~	-	-	-	Н
8	11	11	11	11		H	11	11
C	00	11	00	00	00	00	. 00	00
KBUS	7777	7777	0000	7777	7777	7777	0000	0000
MNEM	SDR(R6)	ACM(AC)	LMI(R6)	DCA(AC)	LTM	DSM(R6)	LMI(R7)	ILR(R7)
LABEL CPE	F2 R1	F0 R2	01 EPG89 F1 R1	F1 R3	F5 R2	F1 R1	01 EPG88 F1 R1	FO RI
വ	01	01	01 EF	. 10	01	01	01 EI	01
ADDRESS R C P	07 01	07	02	07	07	07	03	80
ADI R	01	00	03	03	04	05	03	03
RECORD NUMBER	175	176	177	178	179	180	181	182

RECORD NUMBER	ADD	ADDRESS R C P LABEL	IL CPE	MNEN	MNEM KBUS	Ö	8	LOAD	D INH	IUMP	READ/ WRITE	MICROFUNCTION	•
•	/* S(SOURCE PROGRAM EPVAL	ram epvai	*					•		٠	,	
•	四 *	* EPGEN LOADS AC WITH ADDRESS OF E	AC WITH	ADDRESS	OF ERR	OR P	OLYN	OMIAI	RROR POLYNOMIAL TABLE	*		•	
	*	STORE ADDRESS OF ERROR POLYNOMIAL IN	S OF ERRC	OR POLYI	NOMIAL	IN SI	SEPEP	*		•		.	
001	00	07 00 EPVOO	O F1 R2	LMM	0644	00	00	 -1	0	JCC 13	11	644 to MAR, to T	
002	13	00 40	F1 R1	LMI	0000	11	00	H	0	JCC 14	10	AC to MAR, 1+AC to AC	WRITE
003	14	00 20	F2 RI	SDR	7777	11	00	-	0	JCR 14	00	AC to R8	READ
004	, 4.	14 00	F5 R2	LTM	7777	00	00	-	0	JCC 21	00	M to AC, O $_{\mbox{\scriptsize V}}$ M to CI	READ
002	21	14 00	F1 R1	DSM	7777	00	. 00	-	0	JFL 16	11	AC-1 to AC	
	/* R	/* READ IEPOO, NUMBER OF ERROR COEF	NUMBER O	F ERROR	COEFF	CIEN	TS TA	FICIENTS TABLE TEPOL	EPOL *				
	*	/* CHECK FOR ZERO ERRORS */	RO ERROR	/* S				•					. •
	*	/* CHECK FOR ONE ERROR AND TWO ERRORS */	NE ERROR	AND TW	O ERROF	/* S3							
900	16	11 00 EPV03	3 F5 R1	TZR	7777	00	00	-	0	JCR 14	11	O V AC to CO	
200	16	14 00	F1 R1	DSM	7777	00	00		.0	JFL 17	11	AC-2 to AC	
800	17	11 00 EPVO5	5 F5 R1	TZR	7777	00	00	-	0	JCR 14	11	O V AC to CO	
600	17	14 00	F1 R1	DSM	7777	00	00	-	0	JFL 18	11	AC-1 to AC	
	× ×	/* STORE 1's COMPLEMENT OF (NO.OF E	MPLEMEN!	r of (nc		RRORS	- 3) I	3) IN R3	*	e.	•		
	*	STORE 1's COMPLEMENT OF NO. OF ERRORS	MPLEMEN.	r of no	OF ER	RORS	IN RZ	IN RZ', R1, R5 *,	R5 */				
010	18	11 00 EPVO7	7 F1 R3	CIA	0000	00	00	-	0	JCR 14	11	AC to AC	

										.	٠.			88		READ	READ	
		۵.	*			-						e.		3 to 1	•	•		
INCTION		•	3 to AC	· .	. •		٠		u.			AC	= AC to RO	$0_{ mV}$ R8 to MAR, 1+R8 to R8			to MAR,	
MICROFUNCTION	AC to R3	AC to AC	AC + 3 to	AC to AC	AC to R2	AC to R1	AC to R5					660 Ø to AC	7 = 1009	$0_{ m ~V}$ R8 to		1+R2 to R2	$500\mathrm{V}\mathrm{M}$ to MAR,	
READ/ WRITE	11	11	11	11	. 11	귿	11	•				11		.	•	00	00	
IUMP	JCC 13	JCC 02	JCC 03	JCC 03	JCC 11	JCC 12	JCC 05					JCC 06	JCC 07	JCC 08		JCC 20	JFL 19	
INH	` O	0	0	0	0	0			, /* A0	•		0	0	0				
LOAD		· .	-	7	ń.	·	H	*	E TEVC		TPC *	-	-	-	ED */		-	
8	00	00	00	00	00	00	00	TO POWER	TABL		TABLE TCTPC	00	00	00	CONVERTED	00	00	
ij	11	00	00	0.0	11	11	-		JT TO	*	S TAB	00	11	11	s COI	11	. 00	
MNEM KBUS	7777	0000	0003	0000	7777	7777	7777	/* CONVERT & COEFFICIENTS FROM CODE	SET ADDRESS RO FOR & POWER - OUTPUT TO TABLE TEVOA	/* READ NEXT G(CODE) FROM TABLE TEPOL	INDEX TO & POWER ADDRESS	0990	7777	0000	ALL 6	0000	0200	
MNEN	SDR	CIA	LMI	CIA	SDR	SDR	SDR	rs froi	OWER	M TABI	POWER	LMM	SDR	LMI	P I.E.	INR	LMM	•.
CPE	F2 R1	F1 R3	Fl Rl	F1 R3	F2 R1	F2 R1	F2 R1	FICIEN	FOR & F	DE) FRC	X TO &	F1 R2	F2 R1	Fl Rl	* CHECK FOR END OF LOOP I.E.	F3 R1	FI R2	
LABEL			-			• <u>·</u> .	•	S COE	RESS RO	(I S (C)	= INDE			·	OR END	00 EPV08		/* READS POWER */
ᇜ	00	00	00	00	00	00	00	IVERI	, ADDI	O NE		00	00	00	CK F		00	O P
ADDRESS R C	. 14	14	1,4	14	14	14	14	CON	SET	REAI	/* & CODE	14	14	14	СНЕ	14	14	REAI
AD R	18	13	02	.03	04	I	, 12	*	*	*	*	05	90	07	*	08	20	*
RECORD NUMBER		~	~		10							~	<i>~</i>					
REC	011	012	013	014	015	016	017					018	019	020	٠	021	022	•••

		READ	READ			WRITE			·	•	. '			READ	READ	
MICROFUNCTION	•	R2 to AC	M to AC	-	$0_{ m V}$ RO to MAR, 1+RO to RO	$0_{\rm V}$ R8 to MAR, 1+R8 to R8	-			R9 to AC	70ø to MAR if R9=0 270ø to MAR if R9=200ø	71\(\beta\) to AC if R9=0 271\(\beta\) to AC if R9=200\(\beta\)	-	AC to R4	M + AC to T	
READ/ WRITE	•	00	00		11	10				11	11			00	00	
IUMP		JCR 14	JCC 09		JCC 10	JCC 08				JCR 13	JCC 18			JCC 17	JCC 16	
HNI	·.	0	0		0	0			· /* ×	0	0			0	0	
LOAD	•	1	H		Ä	-		•	BLOCI	.· H	H			·		
9		00	00		00	00		•	DATA	00	00			00	00	
CI		00	00		11	H .	*		RENT	00	11		•	11	00	
MNEM KBUS		0000	7777	/* V	0000	0000	/* SOLUTION FOR MORE THAN TWO ROOTS	/* INITIALIZE ERASURE POSITION CHECK */	/* READ NUMBER OF ERASURES FROM CURRENT DATA BLOCK *,	0000	0020		\ *	7777	7777	
MNEI	/* Q	ILR	LTM	E TEVO	LMI	LMI	AN TW	TION C	RES FRO	ILR	LMI		DRESS	SDR	AMA	
CPE	/* ALL & 'S NOT CONVERTED */	FO R1	F5 R2	'* WRITE POWER IN TABLE TEVOA */	F1 R1	F1 R1	IORE TH	RE POSI	ERASU	FO RI	F1 R1		/* STORE NEXT ERASURE ADDRESS */	F2 R1	F0 R2	•
LABEL CPE	VOT CO	EPV37		OWER 1			I FOR M	ERASU	ABER OF	EPV09	•		XT ERAS			
머	S P	10 00	1,4 00	re g	00	14 00	UTION	IALIZI	NUN C	00	. 00		RE NE	13 00	00	
ADDRESS R C	/* ALL	19 10	19 ì,4	/* WRI	09 14	10 14	/* SOL	TINI */	/* REAI	19 11	19 13		/* STO	18 13	17 13,	
RECORD NUMBER		023	024	-	025	920	S	•		027	028			620	030	

RECORD NUMBER	ADDRESS R C P LAI	LABEL CPE	MNEN	MNEM KBUS	Ö	8	LOAL	LOAD INH	IUMP	READ/ WRITE	MICROFUNCTION	
	/* WRITE 37 $oldsymbol{ec{\mu}}$ in ADDRESS FOLLOWING LAST ERASURE IN TADI $oldsymbol{ec{\mu}}$ /TBDI $oldsymbol{ec{\mu}}$ */	n ADDRESS F	OLLOWI	NG LAST	ERAS	SURE 1	'N TAE	M/TBD	/* ØI	٠	•	," '
031	16 13 00	F1 R2	LMM	0037	00	00	-	0	JCC 20	11 1	K to AC, K to MAR	
032	20 13 00	F1 R1	LMI	0000	00	00	, 1	0	JCC 21	11	T to MAR	
033	21 13 00	F1 R1	LMI	0000	11	00		6	JCC 22	10	R4 to MAR, 1+R4 to R4	WRITE
₹. -	/* READ FIRST ERASURE, STORE IN R8 */	ERASURE, ST	ORE IN I	/* 8	•				٠	•		
034	22 13 00	F4 R1	CLR	0000	00	00		0	JCC 23	00	0 to R6	READ
035	23 13 00	FO R2	ACM	0000	00	00			JCC 24	00	M to AC	READ
036	24 13 00	F2 R1	SDR	7777	11	00		0	JCC 25	11	AC to R8	
	/* SET ROW INDEX TO 111 111 100 000 */	DEX TO 111	111 100	/* 000		٠.	<u>.</u>	~.			•	
037	25 13 00	F1 R1	LMI	7740	00	00	<i>;</i>	0	JCC 26	11	7740ø to R6	
	/* SET INDEX FOR ROOT OUTPUT TEVAL */	OR ROOT OU	TPUT TE	WAL */	-							
038	26 13 00	F1 R2	LMM	0647	00	00	-	0	JCC 27	11	647 Ø to AC	
039	27 13 00	F2 R1	SDR	7777	11	00	 1	0	JCC 28	11	647 Ø to R9	
•	/* BEGIN NEW ROW */	ROW */										
	/* UPDATE ROW INDEX. CHECK FOR LAST	W INDEX. C	HECK FC	R LAST	ROW */	*	•			*		
	/* STORE 5 LSD OF ROW INDEX IN COLUM	O OF ROW IN	DEX IN	COLUM	IŅI N	N INDEX R7	*					
040	28 13 00 EPV10	V10 F0 R1	ILR	0000	H	00	1		JCC 29	11	1 + R6 to R6, AC	

A		٠.			·									READ	read		
		٠	•									٠	o R4				
MICROFUNCTION	AC (5LS D) to R7	•.			AC (5LS D) to T	0 to R2	R 8 to AC	$R7 \oplus R8 = T \oplus AC$ to T	$0_{\rm V}$ T to CI	1 + R2 to R2			R4 to MAR, 1 + R4 to R4	RO to RO	M to AC	AC to R8	
READ/ WRITE					11	11	11		11	11			11	. 00	00	11	
IUMP	JFL 21		SURE */		JCR 12	JCC 22	JCC 20	JCC 19	JCC 18	JFL 24			JCR 12	JCC 25	JCC 28	JCR 13	
LOAD INH	0		VT ERA		0	0	0	0	- .	0			0	0	0		
LOAL	H		CURREI		Ä		П		-	 i				-	-	-	•
8	00		r of c		00	00	. 00	00	00	00			00	00	00	00	
ᄗ	11	•	MEN	>	11	00	00	0,0	00	11			H	00	00	11	
MNEM KBUS	0037	*	COMPLE	0 0001	0000	0000	0000	7777	0037	0000	MENT *		0000	0000	7777	7777	
MNE	CSR	ESSING	:SD) =	SUM I	CSR	CLR	ILR	XNR	TZA	INR	OMPLE		LMI	NOP	LIM	SDR	
CPE	F2 RI	/* ROWS REMAIN FOR PROCESSING */	/* CHECK IF ROW INDEX (5LSD) = COMPLEMENT OF CURRENT ERASURE */	** SET ROW CUMMULATIVE SUM TO 0001	F2 R1	F4 R1 CLR	FO RI	F7 R1	F5 R3	F3 R1	/* ROW INDEX≔ ERASURE COMPLEMENT *	/* READ NEXT ERASURE */	F1 R1 LMI	F6 R1	F5 R2	F2 R1	٠
LABEL		aain F	ROW I	симм	00 EPV11	•	·•				EX == ER	T ERAS	EPV12	:			
ᆈ	00	/S REN	CK IF	ROW	00	00	00	00	00	00	IND	D NEX	00	00	00	00	
ADDRESS R C	29 13	/* ROW	/* CHE	/* SET	21 :10	21 12	22 12	20 12	19 12	18 12	/* ROW	/* REA	24 10	24 12	25 12	28 12	
RECORD NUMBER							5		.						•		
REC	041				042	043	044	045	046	047			048	049	020	051	

			·*				·			Q							
MICROFUNCTION		$K_AR0 = 660 \beta$ to Ro		R5 to AC	AC = R5 to RI		•	•	1 + R1 to R1, AC	RO to MAR, 1+RO to RO		R7 to AC	$0_{\rm V}$ M to CO, M to T	T + AC to I, AC		-	$400_{ m V}$ AC to MAR to AC
READ/ WRITE		11		11	11 /	٠.			11	11		00	00	11	5. •	•	11
IUMP		JCR 09		JCC 23	JCC 22.				JCC 21	JFL 25		JCR 09	JCC 20	JFL 26			JCR 12
AD INH		0		0	0	SED */			. 0	0		0	0	0			0
LOAD	<i>></i>	-		-	Á,	MS U			H	-		Н	Н	-	-	*	
00	VOA *	00		00	00	S TER		• ,	00	00		00	00	00		PTCC	00
ij	IN TE	. 00		00	11	ALL	*		11	11		00	00	00		II MC	00
MNEM KBUS	ICIENT	0990	*	0000	7777	CHECK ALL & TERMS USED *,	= ZERO */		0000	0000		0000	7777	7777		READ FROM TPTCC */	0400
MNEI	COEFF	CLR	to R1	ILR	SDR	ERMS -	ECK 6		ILR	LMI		ILR	LIM	ALR		TO CODE, I	LMI
CPE	SS OF	F5 R1	INDEX RI. R5 to R1	FO RI	F2 R1	OF 6 T	M - CH	/* (x)	FO R1	F1 R1	*	FO RI	F5 R2	F0 R1			F1 R1
LABEL	/* Initialize address of s coefficient in tevoa */	EPV13				/* INCREMENT NO, OF 6 TERMS	/* READ NEXT & TERM - CHECK &	/* COMPUTE ♂. (人 ^x) */	EPV14		/* 6 TERMS REMAIN */	EPV15			/* 0	/* CONVERT S.(Lx)	EPV16
ᆈ	ITIALIZI	11 00	/* INITIALIZE	00 60	00 60	ICREMEI	AD NEX	OMPUTE	00 60	00 60	TERMS	10 00	00 60	00 60	/* S ≠ ZERO */	ONVERT	11 00
ADDRESS R C	NI *	. 24	NI */	24 09	23 (/* II	/* RI	Ŏ *	22 (21 (0 *	. 52	25	20 03	V	*	56
RECORD NUMBER		052		053	054	- 39 9 •	•	•	055	056	: ,	057	058	059			090

READ READ

RECORD NUMBER	ADJ	ADDRESS R C P	LABEL	CPE	MNEM	MNEM KBUS	Ö	8	LOAI	LOAD INH	IUMP	READ/ WRITE	MICROFUNCTION	• ,
061	26	12 00		FO R1	ILR	0000	00	00		0	JCC 23	00	R2 to AC	
062	23	12 00		F7 R3	XNI	7777	. 00	00	-	0	JCR 10	00	AC 🕀 I(M) to AC	
ï.	*	сџмми	'* CŲMMULATIVE ADD (XOR) SUM	DD (XOR		TO ROW SUM R2 *,	SUM	R2 *,		٠	•		•	.•
690	, K	10 00		F2 R1	SDR	7777	11	00	-	0	JCC 26	11	AC to R2	
	*	GALOIS 1	/* GALOIS MULTIPLY (ADD) ROW & TERM BY COLUMN & TERM */	Y (ADD)	ROW A	TERM B	Y CO.	LUMN	LER	/* W		•		
<i>h</i>	*	AD JUST	/* AD JUST POWER AND STORE IN	ND STO		COLUMN & TERM *	♣ TE	RM *						
064	, 26	10 00	EPV17	FO RI	ILR	0000	00	00	·. ———	. 0	JCR 09	11	R6 to AC	· .
065	26	00 60		F0 R1	ALR	0037	00	00	-	0	JCC 19	11	R7 +A to R7, AC	
990	19	00 60		F3 R3	AIA	0037	00	00	-	·. 0	JCC 18	11	AC + I (D) to AC	
290	18	00 60		F2 R1	SDR	0037	11	00	-		JCC 22	11	AC to R7	
is .	*	CHECK I	/* CHECK IF ROOT FOUND,SUM=	OUND		/* 0								
890	25	11 00	EPV18	F5 R1	TZR	7777	00	00	 -1		JCR 14	11	$O_{ m V}$ $R_{ m Z}$ to CO	
690	25	14 00		FO RI	ILR	0000	00	00		0	JFL 29	11	R6 to AC	
•	*	ROOT FC	/* ROOT FOUND - WRITE INVERSE	VRITE IN		ROOT POWER IN TEVAL *,	WER	IN TE	VAL *,				· ·	
020	29	10 00	EPV19	F1 R1	LMI	0000	11	. 00	-	O	JCR 12	11	R9 to MAR, 1+R9 to R9	6
071	29	12 00		F1 R3	CIA	0000	00	00	· I	0	JCC 17	11	ĀC to AC 5LSD	•
.	*	STORE II	/* STORE INVERSE ROOT IN REGISTER T */	OOT IN	REGISTI	ERT*/			:			•		
	*	CONVER	/* CONVERT INVERSE ROOT TO CODE */	E ROOT	TO COI)E */					÷	٠		• .

READ

	WRITE	READ	READ				READ	READ		•	WRITE	READ	READ		•		
E MICROFUNCTION	400 v AC to MAR to AC	K AC to R1	M to AC			670% to MAR, 671% to T	R0 to R0	AC T (M) K to AC			$0_{\rm v} T = 671 \beta$ to MAR	R1 to AC	M + AC to AC		AC + I (D) to AC	K AC to AC	$0_{\rm V} { m T} = 671 { m g} { m to} { m MAR}$
READ/ WRITE	10	00	00			11	00	00			10	00	00		11	11	H
IUMP	JCC 16	JCR 09	JCC 17			JCR 08	JCC 16	JCC 18			JCC 19	JCC 20	JCC 21		JCC 22	J CC 23	JCC 28
LOAD INH	0	0	0		."	0	0	0	-	,	0	0	0		0	0	0
LOA	-	-	~				-	- i	/ER */		-	-				·	Н
8	00	00	00)E */	•	00	00	00	POW		00	00	00	₹ SdS	00	00	00
Ö	00	11	00	I COI	*	H	00	00	DUC		00	00	00	IN SIRPS	00	11	00
MNEM KBUS	0400	0077	7777	OOT SUA		0670	0000	7777	OOT PRO		0000	0000	7777	STORE RESULT	0037	0037	0000
MNEN	LMI	CSR	LTM	ERSE RC	TORE IN	F1 R2 LMM	NOP	XNI	ERSE RO		LMI	ILR	AMA	STORE	INA	CSA	LMI
CPE	F1 R1	F2 R1	F5 R2	IIVE INV	SOOT. S	FI R2	F6 R0	F7 R3	TIVE INV	/* TO	FI RI	FO R1	F0 R2	VER > 31	F3 R3	F2 R2	F1 R1
P LABEL	.0		0	* READ CUMMULATIVE INVERSE ROOT SUM CODE */	/* XOR WITH NEW ROOT. STORE IN SIRCS	0		0	/* READ CUMMULATIVE INVERSE ROOT PRODUCT POWER *,	/* ADD TO NEW ROOT */	0		0	/* ADJUST FOR POWER > 31	0	0	0
	12 00	12 00	00 60	EAD C	OR W.	00 60	08 00	08 00	EAD C	DD TC	08 00	08 00	00 80	DJUSI	08 00	00 80	08 00
ADDRESS R C	17	16	16	* R	× *	17	17	16	/* R	/* A]	18	19	50	/* A	21	22	23
RECORD NUMBER	072	073	074		·	075	, 920	077			078	620	080	•	. 180	082	083
-				. •											-		

												•	
RECORD NUMBER	ADE	ADDRESS R C P	LABEL CPE	CPE	MNEN	MNEM KBUS	ij	9	LOAD INH	H IUMP	READ/ WRITE	MICROFUNCTION	•
•.	I */	NCREM	/* INCREMENT ROOT LIMIT R3	OT LIMIT	R3 */						-		
•	*	CHECK	CHECK FOR ALL ROOTS MINUS 2	ROOTS 1	MINUS 2	FOUND	(LIMIT	11	-3) */			•	
084	24	00 80		FO RI	ILR	0000	11	00	1	JCC 25	10	R3 + 1 to R3, AC	WRITE
085	25	08 00		FO RI	ILR	0000	11	00	1 0	JFL 27	11	1+R6 to R6, AC	
-	*	ROOTS -		2 NOT ALL FOUND *,	/* QN.								4 4 4
980	27	10 00	EPV50	F2 R1	CSR	0037	11	00	1 0	JFL 21	11	AC (5LSD) to R7	
•	*	NO ROOT	. NO - T	- on this iteration */	RATION	*							
087	29	11 00	EPV38	F0 R1	ILR	0000	11	. 00	1 0	JCR 13	11	1+R6 to R6, AC	· .
088	21	11 00	EPV39	F6 R1	NOP	0000	Ħ	00	1 0	, JZR 14	11	RO to RO JMP IOCOI	
•	2 */	/* ZERO ROOTS	OOTS */						••	Д			
: .	*	VRITE 0	/* WRITE 0 FOR NUMBER OF ROOTS IN TEVAL *	IMBER O	F ROOTS	IN TEV	/r */						•
680	16	10 00	EPV02	F4 R1	CLR	0000	00	00	1 0	JCR 07	11	0 to AC	
060	16	00 40		F1 R2	LMM	0646	00	00	1 0	JCC 15	11	646ø to MAR, to T	
160	15	00 20		F6 R1	NOP	0000	00	00	1 0	JZR 13	10		WRITE
•	*	ONE ROOT */	/* TO						,	•	• :		
	*	/* WRITE 1		FOR NUMBER OF ROOTS IN TEVAL (646)	F ROOTS	IN TEV	4L (64	/* (91					
092	17	10 00	EPV04	F0 R2	ACM	0000	11	. 00	1 0	JCR 07	11	1 to AC	•
093	17	00 40	•	F1 R2	.LMM	0646	00	00	1 0	JCC 18	11	646 to MAR, to T	

·	WRITE	٠	• ,	READ	AC READ	READ	READ	READ		•	•		WRITE	· .	•		·.
) IE MICROFUNCTION	R8 to MAR, 1+R8 to R8	•		Į.	$500_{ m v}$ M to MAR, $500+$ M to AC READ		0 v I to CO, to T	M to AC		0 to AC		647 to MAR to T	JMP RPG00				R8 to MAR, 1+R8 to R8
READ/ WRITE	10			00	00	00	00	00				11	10	5			Ξ
IUMP	JCC 19			JCC 20	JCC 21	JCC 22	JCC 01	JFL 02		JCR 03		JCR 07	JZR 06 P				JCR 06
INH	`	* 1							- .								
LOAD INH	0	FORM		0		-	0	0		0		0	0			/* V	0
	-	NER 1		H	H	-	H	H	•	H		H				- CODE FORM	्रस
8	00	D PO		00	00	00	00	00	• .	00		00	00			ODE	00
IJ	11	IM IC		00	00	00	00	, 00 ,		00		00	00				11
KBUS	0000	E FOF		0000	0200	0000	0037	7777		0000		0647	0000			TERN	0000
MNEM KBUS	LMI (IN COD	37 8 */	NOP	LMM	NOP	ORI	LTM	· ·	CLR		LMM	NOP			DEGREE	LMI
CPE	F1 R1	/* CONVERT & COEFFICIENT IN CODE FORM TO POWER FORM */	/* CHECK IF POWER = 31D = 37 \(\beta \) */	F6 R1	F1 R2	F6 R1	F6 R3	F5 R2		F4 R1		F1 R2	F6 R1	*		/* READ & COEFFICIENT 1ST DEGREE TERM	F1 R1
LABEL CPE		d COE	F POWER			<u>.</u>			/* G POWER = 0 */	EPV39	/* 6 POWER ≠0 */	EPV38			/* TWO ROOTS */	COEFFICE	EPV01
SS	00 20	IVERI	CK II	00	0:0	00	00	00	OWEF	02 00	OWEF	00	00) ROC	0	00
ADDRESS R C		CO	CHE	07	0.	07	07	01 07 00	6 P(0	03	0.2	•	TWC	REA	18 10
	18	*	*	6	20	21	22	01	*	02	* .	02	02		*	*	18
RECORD NUMBER						•		• • • • • • • • • • • • • • • • • • •			:	•		-	•		
REC	094	_		095	960	160	860	660		100		101	102				103

RECORD NUMBER	ADDRESS R C P LABEI	LABEL CPE	MNEM KBUS	KBUS CI	8	LOAD	INH	IUMP	READ/ WRITE	MICROFUNCTION	×
	/* STORE ZERO IN INVERSE ROOTS SUM CODE R2 */	INVERSE I	ROOTS SU	M CODE F	/* 2	٠.	٠		•		
104	18 06 00	F4 R1	CLR	00 0000	00		0	JCC 26	00	0 to R2	READ
105	26 06 00	F5 R2	LTM	7777 00	00		. 0	JCR 08	00	0 $_{ m V}$ M to CO, M to AC	READ
	* CHECK & COEFFICIENT FOR ZERO VALU	FFICIENT	FOR ZERC	VALUE */							-
*	/* STORE ZERO IN INVERSE ROOTS PRODUC	INVERSE	ROOTS PR	ODUCT PC	T POWER R3 */	/* 83		•	•		
106	26 08 00	F4 RI	CLR	00 0000	00	٠,	0	JFL 28	11	0 to R3	
•	/* & COEFFICIENT NOT ZERO */	T NOT ZER	/* 0								
:	/* STORE S IN R6.		ONES CC	STORE ONES COMPLEMENT OF NO.	T OF 1		ROOT	OF ROOTS, LE, 2 IN R5*,	N R5*/		
107	28 11 00	F2 R1	SDR	7777 11	00	-	•. 0	JCR 09	11	AC to R6	
108	28 09 00	F2 R1	CSR	0000 000	00	-	0	JCC 29	11	- 1 = 11 to AC	•
· ·	/* READ 🗲 COEFFICIENT OF 2ND DEGREE	FICIENT O	F 2ND DE	GREE TERM *,	/* N						٠,
	/* CONVERT CODE TO POWER. STORE IN R	E TO POW	ER, STOR	E IN R7 */				•			
,	/* SET OUTPUT ROOT INDEX FOR TEVAL IN	OOT INDE	X FOR TEV	AL IN R9 */	<u>,</u>						,
109	29 09 00	F1 R1	LMI	00 0000	00	H	0	JCC 30	11	R8 to MAR	
110	30 09 00	F2 R1	SDR	7775 11	00		. 0	JCC 31	00	7775 to R5	READ
111	31 09 00	F1 R2	LMI	0200 00	00	· r-1	0	JCC 27	00	$500_{ m v}$ M to MAR, $500+$ M to T READ	T READ

	READ	READ					EH	READ	READ			READ	READ					READ
MICROFUNCTION	647ø to R9	M to AC	AC to R7		RO to RO JMP IOC01		$0_{ m V}$ 670 eta to MAR,670 eta to T	0 to $^{\mathrm{R}_{0}}$	M to AC	671\$ to MAR, 671\$ to T		AC to $ m R_2$	M to AC				644ø to MAR to T	AC to R ₃
READ/ WRITE	00	00	11		11		11	00	00	П		00	00				11	00
IUMP	JCR 08	JCC 28	JCR 07		JZR 14	IN R ₂ */	JCR 07	JCC 26	JCC 12	JCC 11	o R3 */	JCC 10	JCC 09				JCC 08	JCC 07
INH	0	0	0		0	TORE	0	0	0	0	RPS t	0	0	•			0	0
LOAD	·H	~	H		-	IRCS S	-	-	H	H	uct sı		, 1				-	-
00	00	00	00		00	SUM S	00	00	00	00	PROD	00	00	644 */			00	00
KBUS CI	0647 11	7777 00	7777 11	÷	00 0000	OTS CODE	.00 0290	00 0000	7777 00	0671 00	ots power	7777 11	7777 00	SS SEPEP =	FORM */		0644 00	7777
MNEM	CSR	$_{ m LTM}$	SDR		NOP	TERSE ROC	LMM	NOP	LTM	LMM	ZERSE ROC	SDR	LTM	l addres	I CODE	æ	LMM	CSR
LABEL CPE	F2 R1	F5 R2	F2 R1	FAILURE */	EPV40 F6 R1	/* READ CUMMULATIVE INVERSE ROOTS CODE SUM SIRCS, STORE IN $_{ m R_2}$ *,	EPV20 F1 R2	F6 R1	F5 R2	F1 R2	/* READ CUMMULATIVE INVERSE ROOTS POWER PRODUCT SIRPS to R3	F2 RI	F5 R2	/* READ ERROR POLYNOMIAL ADDRESS	/* READ 1st & COEFFICIENT CODE FORM */	I R6 */	F1 R2	F2 R1
ADDRESS R C P I	27 09 00	27 08 00	28 08 00	/* DECODE FALLURE */	28 10 00 EPV40	/* READ CU	27 11 00	27 07 00	26 07 00	12 07 00	/* READ CU	11 07 00	10 02 00	/* READ ERF	/* READ 1st	/* STORE IN R ₆ */	00 00 00	08 02 00
RECORD NUMBER	112	113	114		115		116	117	118	119	٤ ,	120	121				122	123

į

.

	READ				READ	READ				• '			READ	READ	READ			,
	K M to AC	1 + AC to AC	700 _v AC to MAR,	700 + AC to AC	R ₅ to AC	M to T			AC to AC (R5)		AC+657Ø to AC	O _V AC to MAR	T to AC (G CODE)	AC to R ₆	M to AC & POWER MAX	AC to R ₇		
READ/ WRITE	00	11	11		00	00	٠	÷	11		11	11	00	00	00	11	. •	
IUMP	JCC 25	JCC 06	JCC 05		JCC 04	JCC 03		·	JCC 23		JCC 24	JCC 30	JCR 06	JCC 17	JCC 28	JCR 07		
INH	0	0	0		. 0	0			0		0	0	0	0	0	0		
LOAD	~	 -1			H	-	*				-				-	~		•
9	00	00	00		00	00	FORM		00		00	00	00	00	00	00	•	
디	00 2	. 11	00 (00 (7777 00	POWER		00 0000	>	00 2	00 (00 (7 11	00 2	7 11	AND */	*
KBUS	0037	0000	7000	•	0000	7777	E R ₅)		000	657Ø 1	0657	0000	0000	7777	7777	7777	-MAX	T (R3)
MNEM KBUS	LIM	ILR	LMI		ILR	LTM	/* READ ${<\!\!\!\!<}$ MAX. COEFFICIENT (USE R $_{ m S}$) POWER FORM */		CIA	/* ADD INDEX TO TEVOA ADDRESS 657Ø */	LMI	LMI	ILR	SDR	LTM	SDR	/* ADD ONE'S COMPLEMENT OF T MAX AND *,	/* INVERSE ROOTS POWER PRODUCT ($_{ m 3}$) */
CPE	F5 R2	FO R1	F1 R1		FO R1	F5 R2	OEFFICI		F1 R3	IEVOA AI	F1 R1	F1 R1	FO R1	F2 R1	F5 R2	F2 R1	MPLEME	POWER
LABEL				•			MAX. C	/* STORE IN R ₇ */		EX TO			·				E'S COI	ROOTS
ᆈ	00	00	00		00	00	DO	RE 11	00	INI	00	00	00	00	00	00	NO C	ERSE
ADDRESS R C	07	07	07		07	07	REA	STC	07	ADI	07	07	07	90	90	90	ADI	INV
ADI	07	25	90		0.5	04	*	*	03	*	23	24	30	. 30	17	28	*	*
RECORD NUMBER	124	125	126	·.	127	128		•	129		130	131	132	133	134	135		

		•			•														
INCITED COLOR			AU TO AU = 6 INIAA	AC to R4	R_3 to AC	R4 + AC to R4, AC	AC to AC		AC to $R_4 = P$		$R_7 + 37 \beta$ to R_7	R ₃ to AC	$1 + \overline{AC}$ to AC	$R_7 + AC$ to $AC = P$	AC to $R_4 = P$			477ø to MAR to AC	0 to R ₈
READ/	WALLE		T T	11	11	11	11		11		11	11	11	11	11			11	00
ONIL	JWI OT	ς ζ	JCC 28	JCR 08	JCR 06	JCC 27	JFL 24		JCR 06		JCR 05	JCC 20	JCR 06	JCC 09	JCC 24			JCC 15	JCC 14
1911		c	· >	0	0	0	0		0		0	0	0	0,	0		•	0	0
	OF COL		-1	-	-	H	H		~		~	H	-	П	1			,	 1
	ROOTS POWER SUM */		00	00	00	00	00	*	00	* (o ≠	00	00	00	00	00	CBIX */	*	. 00	00
5			9	11	00	00	00	oucr	11	JCT (00	00	11	00	11	OR SC	N·R8	00	00
01107	S POV		0000	7777	0000	7777	0000	R PROI	7777	PRODU	0037	0000	0000	7777	7777	DICAT	RESS I	0477	0000
7671674			CIA	SDR	ILR	ALR	CIA		SDR	/* $\boldsymbol{\sigma}$ MAX < INVERSE ROOTS POWER PRODUCT (\neq 0) *,	LMI	ILR	CIA	ALR	SDR	/* READ CURRENT BLOCK INDEX INDICATOR SCBIX *,	ESTABLISH CURRENT BLOCK ADDRESS IN Rg */	LMM	CLR
Ę	* CHECK IF MAX < INVERSE		F1 R3	F2 R1	F0 R1	FO R1	F1 R3	SE ROOI	F2 R1	E ROOTS	F1 R1	F0 R1	F1 R3	F0 R1	F2 R1	BLOCK I	RENT BLO	F1 R2	F4 R1
	LABEL FAMAX		EPV26					≯ INVER	EPV21	INVERS	EPV22					JRRENT	SH CURI	·	
Ę	ָרָ ד		00	00	00	00	00	MAX	00	IAX <	00	00	00	00	00	D CI	ABLI	00	00
RES		;	02	07	08	90	90	6	02	≥ b	03	05	05	90	90	REA	EST	90	90
ADDRESS	× *	,	5 8	29	29	29	27	*	24	*	24	24	20	20	60	*	*	24	15
RECORD	NOMBER		136	137	138	139	140		141		142	143	144	145	146			147	148

,)))	
RECORD NUMBER	ADDRESS R C I	P LABEL CPE	CPE	MNEM KBUS		CI CO		LOAD INH	IUMP	READ/ WRITE	MICROFUNCTION	
149	14 06 0	00	E5 R2	LTM	7777 0	00 . 00	.	0	JCC 16	00	O_VM to CO, M to AC	READ
150	16 06 0	00	F1 R1	LMI	0004 00	00 0	H	0	JFL 28	11	4 to MAR, 4 to Rg	
	/* CURR	CURRENT BLOCK IS A,		0 to R ₈ */								
÷	/* CURR	/* CURRENT BLOCK IS	B,	$204 \mbox{\it M}$ to $ m R_{ m B}$	/* 8							
151	28 03 0	00 EPV41	F1 R1	LMI	0200	00 00	 1	0	JCR 02	11	$204 ilde{ extit{g}}$ to MAR, $204 ilde{ extit{g}}$ to $ extit{R}_{ extit{g}}$	m
	/* READ	/* READ CODE SELECT FOR CURRENT	ECT FOR	CURRE	VT BLOCK */	/* >						
	/* CHEC	/* CHECK FOR LONG OR SHORT COD	NG OR SE	HORT CC)DE */							
152	28 02 0	00 EPV42	FO R1	ILR	0 0000	00 00	-	0	JCR 05	00	$R_4 = P \text{ to AC}$	READ
153	28 05 0	00	F5 R2	TZM	0.1000	00 00	_	0	JCC 29	00	$_{ m VVM}^{ m K}$ to CO, T	READ
154	29 05 0	00	F2 R1	SDR	7777	00 00	-	0	JFL 25	11	$P-1$ to R_0	•
	/* LONG	/* TONG CODE */										
155	25 02 0	00 EPV23	F4 R1	CLR	00 0000	00 00	H	0	JCC 04	11	0 to R ₁	
156	04 02 0	00	Fl Rl	LMI	0000	11 00	-	0	JZR 06	11	l to $R_{ m l}$, 0 to MAR	
	/* SHOR	SHORT CODE, CHECK IF P < 9 */	CHECK II	⊬ P < 9 +	<i>></i>			,				
157	25 03 0	00 EPV24	F1 R3	CIA	0000	00 00	-	Ō	JCR 05	11	$\overline{AC} = \overline{P}$ to AC	
158	25 05 0	00	F1 R1	L MI	0011	00 00	-	0	JCC 26	11	$\overline{P} + 11\beta$ to AC	
159	26 05 0	00	F4 R1	CLR	0000	00 00		Ô	JFL 23	11	0 to $^{R}_{0}$	
	/* STOR	STORE UPPER AND LOWER LIMITS	ND LOW!	ER LIMIT	S FOR P < 9	/* 6 >						

•)					
RECORD NUMBER	ADDRESS R C P	LABEL CPE	MNEN	MNEM KBUS	[C	8	LOAD	LOAD INH	IUMP	READ/ WRITE	MICROFUNCTION
160	23 03 00	FI RI	LMI	0023	00	00	П	0 JC	JCR 05	11	$0 + 23 \beta$ to R_0 , 23 β to MAR
161	23 05 00	F0 R1	ILR	0000	00	00	-	0 JG	JCC 10	11	R_4 to AC = P
162	10 02 00	F1 R1	LMI	0014	00	00.	, -	о О	JCC 11	11	AC + 14ø to AC
163	11 05 00	F2 R1	SDR	7777	 	00	H	0	JZR 06	11	AC to R ₁
	/* FOR P	>9 CHECK IF p	- 4 < 20 */	*							
164	. 23 02 00	EPV25 F0 R1	ILR	0000	00	00	П	0 J	JCR 06	11	R_4 to $AC = P$
165	23 06 00	F1 R1	LMI	7774	00	00	-	0 J	JCC 13	11	AC + 7774 to AC
166	13 06 00	F1 R3	CIA	0000	00	00		0	JCC 11	11	AC to AC
167	11 06 00	F1 R1	LMI	0024	00	00		0 J	JCC 25	.11	$(P - 4) AC + 24 \beta to AC$
168	25 06 00	FO R1	ILR	0000	00	00	-	0	JFL 22	11	R_4 to $AC = P$
8	/* STORE 1	STORE UPPER AND LOWER LIMITS FOR P	ER LIMIT	S FOR P	1 4	< 20	Ф У	*			
169	22 03 00	EPV26 F1 R1	LMI	7774	00	00	H	0	JCR 05	11	P - 4 to AC
170	22 05 00	F2 R1	SDR	7777	11	00	H	0	JCC 27	11	AC to R_0
171	27 05 00	F4 R1	CLR	0000	00	00	-	0	JCC 09	11	$0 ext{ to } R_{ m I}$
172	09 02 00	FI RI	LMI	0004	00	00		0	JZR 06	11	4 to $R_{ m l}$
	/* STORE 1	STORE UPPER AND LOWER LIMITS FOR P	ER LIMIT	'S FOR P		> 9 AND P	4	× 02 €			
173	22 02 00	EPV27 F1 R1	LMI	7755	00	00	-	0 . J	JCR 06	11	P - 19 to AC

•

												•		
RECORD NUMBER	ADI	ADDRESS R C	머	LABEL	CPE	MNEM KBUS		Ö	9	LOAD	HNI	LOAD INH IUMP	READ/ WRITE	MICROFUNCTION
174	22	90	00		F2 R1	SDR	7777	11	. 00	~	0	JCC 10	11	AC to $R_{ m I}$
175	10	90	00		F1 R1	LMI	0023	. 00	00		0	JZR 06	11	$23 ilde{eta}$ to R_0
	*	FINI) A PA	IR OF 1	/* FIND A PAIR OF VALUES V	WITH SUM = P */	* d = M							•
	*	AND	WITE	I XOR I	/* and with xor to $oldsymbol{\sigma}_1$ C	CODE */								
	*	STOI	RE LO.	NG/SH	STORE LONG/SHORT CODE INDICATOR IN R3 */	E INDIC	'ATOR I	N R3	*					
	*	CHE	CK IF	UPPER	/* CHECK IF UPPER LIMIT OF P >LOWER LIMIT OF P *,	F P >LO	WER LI	MIT (OF P *					
174	00	90	00 E	EPV28	FO RI	ILR	0000	00	00		0	JCC 02	11	T to AC
175	02	90	00		F2 R1	SDR	7777	11	00	·	0	JCC 0.1	11	AC to R ₃
176	01	90	00		F4 R1	CLR	0000	00	00	 i	0	JCR 03	11	$0 \text{ to } R_7$
177	01	03	00		FO RI	ILR	0000	00	00	-	0	JCR 02	11	$R_{ m I}$ to AC
178	01	02	00		F1 R3	CIA	0000	00	00	 1	0	JCC 06	11	AC to AC
179	90	02	00	•	F2 R2	SDA	7777	11	00	~	0	JCR 06	11	AC to T
180	90	90	00		FO R1	ILR	0000	00	00	 1	0	JCC 07	11	R_0 to AC

/* UPPER LIMIT > LOWER LIMIT */

 $0_{\mathbf{v}}$ $R_{\mathbf{o}}$ to MAR

11

JFL 12

00

00

0400

LMI

F1 R1

05 06 00

182

T + AC to AC

11

JCC 05

0

00

00

7777

ALR

FO RI

00 90 20

181

^{/*} CONVERT UPPER AND LOWER LIMITS FROM POWER TO CODE */

 $[\]prime*$ XOR THE RESULTS WITH THE CUMMULATIVE CODE SUM IN R $_2*$

	READ	READ		READ	READ	•				•					4R		
MICROFUNCTION	R ₂ to AC	M to T	$0_{ m V}$ R ₁ to MAR	$\overline{\text{AC}}$ $(\overline{\text{R}_2})$ to AC	T (I V K) to T	T T AC to T	T to T		R ₆ to AC	T 🖨 AC to T	0 _V I to CO	R ₀ to R ₀			R_0 - 1 TO R_0 \longleftarrow to MAR	$egin{array}{c} ext{K} & ext{R} $	$R_1 + 1$ to R_1 to AC
READ/ WRITE	. 00	00	11	00	00	11	11		11	11	. 11	11			11	11	11
IUMP	JCR 06	JCC 19	JCC 04	JCC 31	JCR 10	JCR 14	JCR 11		JCR 12	JCR 13	JCR 07	JFL 21			JCC 05	JCR 02	JCC 01
INH	0	0	0	0	0	0	0			0	0	0		*	0	0	0
LOAD		-	-	-		-			r-i	,	-	H		LIMI	-	H	
9	00	00	00	00	00	00	00		00	00	00	00		OWER	00	00	00
	00	00	. 00	00	00	00	00	*	00	00	00	00		TO L	00	00	11
MNEM KBUS CI	0000	7777	0400	0000	7777	7777	0000	1 IN Re	0000	7777	7777	0037	IN R ₆ */	ADD 1	7777	0037	0000
MNEM	ILR	II M	LMI	CIA	XNI	XNR	CIA	DE OF 6	ILR	XNR	TZR	LDR	E VALUE	R LIMIT	DSM	LDR	ILR
CPE	F0 R1	F5 R2	FI RI	F1 R3	F7 R3	F7 R1	Fl R3	/* DOES RESULT EQUAL CODE OF $oldsymbol{\epsilon_1}$ IN $_{ m K_6}$	F0 R1	F7 R1	F5 R1	F5 RI	/* XOR RESULT $ eq 6_{\mathbf{L}}$ CODE VALUE IN	SUBTRACT 1 FROM UPPER LIMIT, ADD 1 TO LOWER LIMIT */	F1 R1	F5 R1	FO RI
LABEL	EPV29							SULT EC	٠				$\text{ult} \neq$	T 1 FRO	EPV30		
	00	00	00	00	00	00	00	ES RE	00	00	00	00	RES.	STRAC	00	00	00
ADDRESS R C	03	90	90	90	90	10	14	DO	11	12	13	07	XOF	SUE	03	03	02
ADI	12	12	19	04	31	31	31	*	31	31	31	31	*	*	21	05	05
RECORD NUMBER	183	184	185	186	187	188	189		190	191	192	193			194	195	196

RECORD NUMBER	ADDRESS R C	SSS	LABEL	CPE	MNEM KBUS	KBUS	딩	8	LOAD INH	INH	IUMP	READ/ WRITE	MICROFUNCTION
	/* UP	PER I	MIT &	LOWER	/* upper limit < lower limit */			•					
	/* CE	IECK	FOR LOI	NG OR S	/* CHECK FOR LONG OR SHORT CODE */	DE */	•						;
197	12 02	00 7	EPV31	F5 R1	TZR	0003	. 00	00	H	0	JCR 05	11	$^{ m K}_{ m 0V}$ $^{ m R}_{ m 3}$ to CO
198	12 05	2 00		F5 R1	TZR	7777	00	00	,1	0	JFL 08	11	0 _V R ₇ to CO
	/* IC	NG C	/* LONG CODE */								,		
	/* CE	IECK	IF 2ND	SET OF	/* CHECK IF 2ND SET OF LIMITS HAVE BEEN TRIED */	AVE BEE	N TRI	ED */					
199	08 02	00 2	EPV32	F4 R1	CLR	0000	00	00	-	0	JFL 07	11	$0 ext{ to } \mathbb{R}_0$
	/* TRY	Y SEC	OND SE	SECOND SET OF LIMITS	/* SIIW								
	/* SET	T 2NI	SET OI	: LIMITS	2ND SET OF LIMITS INDICATOR */	ror */							
200	07 02	00 2	EPV33	Fl Rl	LMI	0036	00	00	-	0	JCC 15	11	$R_0 + 36 \mbox{\it g}$ to R_0 , $36 \mbox{\it g}$ to MA.
201	15 02	00 2		FO RI	ILR	0000	11	00		0	JCR 03	—	$R_4 + 1$ to R_4 , AC
202	15 03	3 00		F2 R1	SDR	7777	11	00	, 	0	JCC 06	11	AC to R_1
203	06 03	3 00		FO RI	ILR	0000	11	00	Н	0	JCC 01	11	$R_7 + 1$ to R_7 , AC
204	08 03	3 00		F6 R1	NOP	0000	00	00	7		JZR 14	11	R_0 to R_0 JMP IOC01
205	07 03	3 00		F6 R1	NOP	0000	00	00	-	0	JZR 14	11	R_0 to R_0 JMP IOC01
	/* RC	OTS 1	/* ROOTS FOUND *,	*			·	. ,		÷.	٠.		

/* CHECK IF UPPER LIMIT = 378 */

NOIT			E							3 ₉ +1 to R ₉	,	Rg+1 to Rg				
MICROFUNCTION	7740ø to T	R_0 to AC	T T AC to T	0 _V T to CI	R_0 to AC		R ₁ to AC	0 to R ₁		R ₉ to MAR, R ₉ +1 to R ₉	R ₁ to AC	$\rm R_{9}$ to MAR, $\rm R_{9}$ +1 to $\rm R_{9}$		R ₅ to AC	AC to AC	
READ/ WRITE				11	11		11	11		11	10	11		10	11	•
IUMP	JCR 06	JCC 08	JCR 05	JCC 02	JFL 03		JCR 06	JCR 03	*	JCR 05	JCC 21	JCC 07		JCC 06	JCC 05	
LOAD INH	0	0	0	0	0		o ,	0	ORESS	0	0	0		. 0	0	
LOAD	-	· 		덛	-		-	~	IL ADI	-	-	 1		-		
8	00	00	00	00	00		00	00	r Teva	00	00	00	/* (M	00	00	
Ö	00	00	00	00	00		00	00	NEX	- H	00	11	6ø ra	00	00	
	7740	0000	7777	7777	0000		0000	0000	IMIT IN	0000	0000	0000	TEVAL (646Ø RAM) */	0000	0000	
MNEM KBUS	LMM	ILR	XNR	TZR	ILR		ILR	CLR	/* ROOTS FOUND. WRITE LOWER LIMIT IN NEXT TEVAL ADDRESS	LMI	ILR	LMI		ILR	CIA	
CPE	F1 R2	FO R1	F7 R1	F5 R1	F0 R1	37ø */	FO RI	F5 R1	WRITE I	Fl Rl	FO RI	F1 R1	OF ROOTS IN	F0 R1	F1 R3	
LABEL	EPV34					II	EPV35		OUND.	EPV36			/* write number of			
م	00	00	00	00	00	ER LI	00	00	OTS F	00	00	00	ITE N	00	00	
ADDRESS R C	1 02	1 06	90 80	08 05	02 05	/* UPPER LIMIT	03 02	03 06	* ROC	03 03	03 05	21 05	'* WR	07 05	06 05	
A A I	21	21	0	0	0		0	0	\	0	0	2	`	•	0	
RECORD NUMBER	206	207	208	508	210		211	212		213	214	215	-	216	217	

WRITE

WRITE

READ/	C P LABEL CPE MNEM KBUS CI CO LOAD INH JUMP WRITE MICROFUNCTION	4 05 00 F0 R1 ILR 0000 00 00 1 0 JCC 01 10 R8 to AC	/* RESTORE CURRENT BLOCK INDICATOR TO R $_{ m 9}$ */	11 05 00 F2 R1 CSR 0770 11 00 1 0 JZR 06 11 AC to R $_{ m P}$ 01	7 + Mil Ord Om mixit +/
ADDRESS	ᆈ	04 05 00	/* RESTORE	01 02 00	
RECORD	NUMBER	219		220	•

		1		Ü	READ	READ			READ	READ			READ		READ		
MICROFUNCTION			1st SIGMA-e	644 to MAR 645 to AC		M + 700 to MAR	M + 700 + 1 to AC	AC to R0	0 to R2	t INTO AC	POINT TO O/P AREA	561 to MAR	t INTO R8	AC = t to R8	s+t INTO AC	s + t INTO R6	s +t INTO R6
READ/ WRITE	:	1	11	:	00	00		11	00	00	11		00		00	11	11
IUMP		0 ICC 09	JCC 13		JCC 14	JCC 15		JCC 16	JCC 17	JCC 18	JCC 19		JCC 20		JCC 21	JCC 22	JCR 07
INH	:	0	0		0	0			0	0	0		0		0	0	0
LOAD		~	-	:	Н	H	·	-	Ħ	1	H	•	H		·	-	-
8	:	00	11	:	11			11	=	11	11		-		11	11	11
CI CI	:	00	00		00	11	•	11	00	00	00		11		00	11	00
KBUS		0000	0644	:	0000	0020	٠	7777	0000	7777	0561		7777		7777	7777	0000
MNEM	* \ \	CIA(AC)	LMI(AC)	٠	NOP (RO)	LMM(AC)0700		SDR(RO)	CLR(R2)	LTM (AC)	LMI(R2)		SDR(R8)		AMA(AC)	SDR(R6)	CMR(R6)
CPE	SOURCE PROGRAM RPGEN	06 01 RPG00 F4 R2	FI R1		F6 Rl	F1 R2		F2 R1	F4 R1	F5 R2	F1 R1		F2 R1	s	F0 R2	F2 R1	F7 R1
LABEL	ROGRA	RPG00															
ᆈ	CE P	01.1	01		01	01		01	01	01	01		01		01	01	01
ADDRESS R C	SOUR	90	90	:	90	90		90	90	90	90		90		90	90	90
ADI	*	00	60		13	14		15	16	17	18		19		20	21	22
RECORD NUMBER		100	002		003	004		900	900	200	800		. 600		010	011	012

	WRITE		,	8 to R8	Д				N R3		lA-e		٠	READ	READ		READ	IAR
MICROFUNCTION	s+t INTO O/P AREA	t to R8	UT THE LOOP WITH A NEW (S-SIGMA(E) (T) COEFFICIENT */	INC T COUNTER 1 + R8 to R8	INC s+t COUNTER AND	STORE IN R7	0 to R2	s + t + 1 to R7	START OF O/P AREA IN R3		POINT TO NEXT SIGMA-e	R0 to MAR	1 + R0 to R0	0 to Rl	FETCH SIGMA-e	(CODE) M to AC	CONVERT SIGMA-e	TO POWER. 50M to MAR
READ/ WRITE	10) (I) C	=				11	11	11	11			00	00	·	00	
IUMP	JFL 16		-SIGMA(E	JCR 07	JFL 17		JZR 13	JCR:07	JCC 23	JCC 24	JCC 25	·		JCC 26	JCC 27		JFL 16	,
INH	0		-S) W	0	0	*,	0	0,	0	0	0			0	0		0	
LOAD	-	•	H A NE	-	-		-		-	~	H			Н	·		red	
8	11		DP WIT	11	11		-	11	11	H	11			11				
ij	00		E LOC	11	11		. 00	11	11	11				00	00		00	
KBUS	0000		JT TH	0000	0000		0000	7777	0000	7777	0000		e	0000	7777	. •	0200	
MNEM	CMR(R8)		ROUGHOU	INR(R8)	ILR(R6)		CLR(R2)	SDR (R7)	ILR(R2)	SDR(R3)	LMI (RO)			CLR(RI)	LTM (AC)	æ	LMM(T)	
CPE	F7 R1		PASS TH	F3 R1	F0 R1		F4 R1	F2 R1	FO RI	F2 R1	FI RI			F4 R1	F5 R2		F1 R2	. •
P LABEL	01		PREPARE FOR A PASS THROUGHO	01 RPG01	01		01 RPG02	01 RPG03	01	01	01			01	01	÷	01	
	0 20		REPAI	0 70	0 40		03 . (02 (07 (07 (07 (07 (07 (07 (
ADDRESS R C	22		* P	16	16		17	17	17	23	24			25	56		27	
RECORD NUMBER	013			014	015		016	017	018	019	020			021	022		023	

SIGMA-exT' TO M

	WRITE		READ		06, RPG01)	READ		READ		•						
MICROFUNCTION	RI to MAR	1 + RI to MAR	RESTORE SIGMA-e	(POWER)	R5 to AC JMP (RPG06, RPG01)	h = T' to T	TMSYP TERM to T	SIGMA-e x T'	(POWER)	ZERO TEST	CHECK FOR END	OF INNER LOOP	M + AC to AC	1 + R7 to R7	POINT TO NEXT T'	RI to MAR
READ/ WRITE	10		00			00		00			11				11	
IUMP	JCC 18		JCF 19			JCR 00		JFL 20			JCR 07				JCC 21	
INH	0		0			0		0			0				0	
CO LOAD INH	—		m			H		H			H				H	1 .
8	11		11			11		11			10				11	•
MNEM KBUS CI	LMI (RI) 0000 11		ILR(R5) 0000 00			LTM(T) 7777 00		AMA(AC) 7777 00			INR(R7) 0000 11				LMI(RI) 0000 11	
CPE	Fl Rl		F0 R1	-		F5 R2		F0 R2			F3 R1	. •		£	FI RI	
P LABEL	01		01			01 RPG06		01			01 RPG07 F3 R1				01	
ADDRESS R C	02		0.7			02		00			02				20	
ADD R	15	٠	18		•	19		19			20	•			20	
RECORD	032		033			034		035			036				037	

1 + RI to MAR

	READ		Ţ.		READ	READ	LT		
MICROFUNCTION	INC O/P POINTER	1 + R3 to R3	POINT TO SIGMA-e x T'	(CODE)	CONVERT TO CODE	M to AC =	CODE FORM OF RESULT	1 + R8 to R8	$s + t + 1 to_R $
READ/ WRITE	00		11		00	00	. *	11	11
IUMP	JCF 19		JCR 00		JCC 18	JCC 13		JCR 07	JFL 17
INH	0		0		0	.: 0	•	0	,0
MNEM KBUS CI CO LOAD INH	н		H		-	-		н	red *
9	11		~		11	11		, CT	11
CI	11		00		00	00		11	
KBUS	0000		0400	•	0000	7777		0000	0000
MNEM	INR(R3)		LMI(AC) 0400 00		NOP(R0) 0000 00	LIM(AC) 7777 00		INR (R8)	ILR(R6)
LABEL CPE	F3 R1		03 01 RPG08 F1 R1		F6 R1	F5 R2		F3 R1	FO R1
LABEL			RPG08						
SS	01		01		01	01		01	01
ADDRESS R C	07		03		00	18 00		03	07
AD.	21		20		20	18		19	19
RECORD NUMBER	038		039		040	041		042	043

))					
RECORD NUMBER		ADDRESS R C P		LABEL	CPE	MNEM	KBUS	<u> </u>	8	LOAD	EN	JUMP	READ/ WRITE	MI CROFUNCTION	
		0S */	OURCE I	PROGRAM	SOURCE PROGRAM RPVAL */	·			•		•				
·	٠	/* RE	EAD NU	READ NUMBER OF	ERASURES FOR CURRENT	S FOR C		BLOCK */	/ *			,			
		/* ST	TORE OF	NE'S CO!	STORE ONE'S COMPLEMENT OF NUMBER OF	OF NUM		ERASURES IN RO*/	ES IN	R0*/					
e Camper de	÷	00 13	01	RPV00	F0 R1	I LR	0000	00	00	-	Ö	100 001	Ξ;	R9 to AC	
	7	01 13	3 01		FI RI	LMI	0000	00	00	-	0	JCC 02	=	70 Ø TO AC OR 70 Ø + 200 TO AC	AC
	٣	02 13	3 01		FI RI	E	0000	1	00	-	.0	SO 226	Ξ	AC to MAR, 1 + AC to AC	<u>;</u> '
	4	03_13	3 01		F2 RI.	SDR	7777	=	00.	-		JCC 04	00	AC to R6 REA	READ
	. 7.	04 13	3 01		F5 R2	LTM	7777	00	00	·	0	30c 05	00	M to T RE/	READ
	9	05 13	13 01		F2 R3	LDI	7777	=	00	 .	0	90 JOF	00	1 = M to AC . RE/	READ
		06 13	13 01		F2 RI	SDR	7777	=	00	· -	0	JCC 07	=	AC to R0	
		/* RI	EAD NU	MBER OF	/* READ NUMBER OF ERRORS	/*									•
•		LS */	STORE ONE'S	NE'S CO	COMPLLMENT OF NUMBER OF	OF NUM		ERRORS IN		R, */					
-); *∕	OMPUTE	COMPUTE NUMBER OF	OF ERRA	ERRATA (ERRORS +	_	ERASURES)	S) ST	ORE ON	E'S COM	STORE ONE'S COMPLEMENT !	IN R4 */		
	œ	07 .13	3 01		F4 R1	CLR	0000	00	00	-	0	JCC 08	=	0 to R7	
•	ον.	0.8 13	3 01		FIR	E	9490	=	00	-	Ō	60 JOF	=	646 Ø to MAR 647 Ø to R7	
•	.10	09 13	3 01	a.	FO RI	I LR	0000	00	00		Õ	JCC 10	00	T to AC RE/	READ
•	=	10 1	13 01		F0 R2	AMA	7777	00	00	, 	0	JCC 11	00	M + AC to T	REÁD
	12	11 13	3 01		F2 R3	- FO	7777	=	8	- .	0	JCC 12	00	I = M to AC RE	READ
														· .	

T to T T to AC
T to AC
AC to R4
0 JCC 17
0 0
00
11 */*
7777
SDR ERO */
F2 RI SDR R 3 to ZERO */ IDEXES FOR TRVO
AND F
R2
15 13 01 F2 R1 SDR 7777 /* CLEAR R2 AND R 3 to ZERO */ /* INITIALIZE INDEXES FOR TRVOB, TRVOA */

0 JCR 13 0 JCC 26 0 JCR 12 0 JCR 11 0 JFL 28 0 JCC 25 0 JCC 25 0 JCC 25	ADDRESS LABEL CPE MNEM	`.	MNE		KBUS	5	8	LOAD	¥.	JUMP	READ/	MI CROFUNCTION	
0 JCR 13 00 M to T 0 JCC 26 11 AC + 20 Ø to AC 0 JCC 25 11 T to CO 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JCR 11 10 T to AC 0 JCR 25 11 T to AC 0 JCC 27 00 R0								1			WRITE	•	
0 JCR 13 00 M to T 0 JCC 26 11 AC + 20 Ø to AC 0 JCC 25 11 T to AC 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JCR 11 T to AC 0 JCR 11 10 1 + R2 to R2 0 JCR 13 11 T to AC 0 JCC 25 11 T to AC 0 JCC 25 11 T to AC 0 JCC 27 00 R0	/* ERASURES NOT PROCESSED */	ROCESSED */	/* Q			· ·	•	×					
0 JCR 13 00 M to T 0 JCC 26 11 AC + 20 Ø to AC 0 JCC 25 11 T to AC 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JCR 12 11 T to AC 0 JCR 12 11 R0 OV T TO AC 0 JCR 11 10 T to AC 0 JCR 11 10 T to AC 0 JCC 25 11 T to AC 0 JCC 25 11 T to AC 0 JCC 27 00 R0	/* CHECK IF ERASURE POSITION NUMBER IS > 16 */	9	9	9	9								
0 JCR 13 00 M to T 0 JCC 26 11 AC + 20 Ø to AC 0 JFL 26 11 O _V T to CO 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JFL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCC 27 00 R0	/* CHECK IF ERASURE POSITION = ZERO */			ERO */									
0 JCC 26 11 AC + 20 Ø to AC 0 JFL 26 11 0 VT to CO 0 JCR 25 11 T to AC 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JFL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCC 25 11 T to AC 0 JCC 25 11 T to AC 0 JCC 27 00 R0	24 10 01 RPV01 F5 R2 LTM 7777 00 00 1	LTM 7777 00	7777 00	00		00			Ö	JCR 13	00	M to T	READ
0 JFL 26 11 0VT to CO 0 JCC 25 11 T to AC 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JFL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCR 13 11 400 V AC to MAR.	13 01 FI RI LMI 0020 00 00 1	RI L'MI 0020 00	0000 000	00	`.	00			0	JCC 26	=	+ 20 Ø	
0 JCC 25 11 T to AC 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JFL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	01 F5 R3 TZA 7777 00 00 1	R3 TZA 7777 00	7777 00	00		00	-		0	JFL 26	Ξ	to	
0 JCC 25 11 T to AC 0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JCL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCC 27 00 R0	ERASURES , 16 */	/* 91											<u>:</u> .
0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JCR 11 10 1 + R2 to R2 0 JFL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	/* WRITE ERASURE IN TRVOB INCREMENT NO OF E $$, 16 $$ */	0F E	0F E	0F E	0F E	91 ,	9	>	•				
0 JCR 12 11 R8 to MAR.1 + R8 to R8 0 JCR 11 10 1 + R2 to R2 0 JFL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	26 10 01 RPV43 FO RI ILR 0000 00 00 1	1LR 0000 00	00 0000	00		00		-	0	JCC 25	· =	T to AC	
0 JCR 11 10 1 + R2 to R2 0 JFL 28 11 T to AC 0 JCC 25 11 T to AC 0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	10 01 FI RI LMI 0000 11 00 1	RI LMI 0000 11	0000	:	11 00 11	00 1	-		0	JCR 12	-	+ R8 to	
0 JFL 28 11 0 JCC 25 11 T to AC 0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	01 F3 RI INR 0000 11 00 1	INR 0000 11	0000		11 00 1	00 1	-		0		01	to	WRITE
0 JFL 28 11 0 JCC 25 11 T to AC 0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	ERASURE POSITION > 16 */	/* 91 ★ NO	/* 9										
0 JFL 28 11 0 JCC 25 11 T to AC 0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	/* CHECK ERASURE POSITION FOR ZERO VALUE */	POSITION FOR ZERO VALUE */	ON FOR ZERO VALUE *∕	:ERO VALUE */	UE */	-			.·			•	
0 JCR 13 11 400 AC to MAR 0 JCC 27 00 R0	26 11 01 RPV03 F6 RI NOP 0000 00 00 1	00 0000 don	00 0000	00		00			0	JFL 28			
0 JCC 25 11 T to AC 0 JCR 13 11 400 V AC to MAR 0 JCC 27 00 R0	/* ERASURE ≠ 0 */												٠
JCC 25 11 T to AC JCR 13 11 400 AC to MAR JCC 27 00 R0	/* READ CODE VALUE OF CURRENT ERASURE WRITE IN TRVOA */	프	프	프	프	N TRVOA	VO	*					
JCR 13 11 400 V AC to MAR . JCC 27 00 R0	28 11 01 RPVO4 FO RI ILR 0000 00 00 1	RI ILR 0000 00	0000	00		00	·-·		0.	. JCC 25	=	T to AC	•
JCC 27 00 RO	25 11 01 FI RI LMI 0400 00 00 1	LMI 0400 00	00 0040	00		00	-		0	JCR 13	, 	400 V AC to MAR	
	25 13 01 F6 RI NOP 0000 00 00 1	NOP 0000 00	00 0000	00		00	•		0	JCC 27	00	RO	READ

RECORD NUMBER	ADDRESS R C P	LABEL	CPE	MNEM	KBUS	5	8	LOAD	丟	JUMP	READ/ WRITE	MI CROFUNCTION	
35	27 13 01		F5 R2	LTM	7777	00	00			JCC 28	00	M to AC	READ
36	28 13 01	RPV05	F	LM	0000	=	00	-	ō	JCC 29	<u>-</u>	R5 to MAR 1 + R5 to R5	
37	29 13 01		FI RI	E	0000	Ξ	00	<u></u>	õ	JCC 22	01	R6 to MAR 1 + R6 to R6	WRITE
-	/* ERASU	ERASURE POSITION IS	10N 1S ZE	RO - IN	ZERO - INSERT COD	E 0 0		ACCUM	1 IN ACCUMULATOR	. /*	. . 1		
38	28 10 01	RPV06	F0 R2	ACM	0000	=	00		0	JCR 13) =	1 to AC	
	/* ALL E	ERASURES	PROCESSED	READ NEXT	EXT ERRO	R */							
· •	/* INCRE	MENT ONE	/* INCREMENT ONE'S COMPLEMENT	MENT OF	OF NUMBER	OF ER	ERROR */	_	•		٠.		<u>.</u>
	/* CHECK	IF ALL	/* CHECK IF ALL ERROS ARE PROCESSED */	PROCES	SED */								
39	24 11 01	RPV08	FI RI	LM	0000	= 1	00	***	0	JCR 12	1.	R7 TO MAR 1 + 7 TO R7	
740	24 12 01	RPV14	FO RI	1 LR	0000	Ξ	00		0	JCC 26	00	1 + R1 "TO R1 .	READ
41	26 12 01		F2 R3	LDI	7777	Ξ	00	-	0.0	JFL 27	00	I = M to AC	READ
	/* ERROR	ERRORS NOT ALL	L PROCESSED */	ED */						•		-	
	/* CHECK IF	IF ERROR	R POSITIC	POSITION NUMBER IS	R IS	, 16	/*						
745	27 10 01 RPV09	RPV09	F5 R2	LTM		00	00		0	JCR 12	00	M to T	READ
43	27 12 01		FIR	E	0000	00	00		0	10C 03	=	AC + 2Ø to AC	•
44	3 12 01		F5 R3	TZA	7777	00	8		Ŏ	JFL 12	=	0VT to C0	
	/* ERROR	\\	/* 91										
•	/* WRITE	ERROR I	/* WRITE ERROR IN TRVOB, INCREMENT NO OF	INCREME	INT No OF	ERROS		/×91 ≪					

.

RECORD NUMBER	ADI R	ADDRESS R C	러	LABEL CPE	MNEM	KBUS	[C	8	LOAD	INH	IUMP	READ/ WRITE	/ MICROFUNCTION	•
	*	ERRO	/* ERROR ≥ 16	*						•			٠	•
	*	WRIT	./* WRITE ERROR IN TRVOB, INCREMENT NO. OF ERRORS	N TRVOB,	INCREM	ENT NO	OF.	ERROR	N	/* 91				
	12	10	01 RPV10	F0 R1	ILR	00 0000	00	00	-	0	0 JCC 30	11	T to AC	
	30	10	01	F1 R1	LMI	0000	·H	00	г	0	JCR 12	11	R8 to MAR	
	•						•		· •				1 + R8 to R8	
	30		12 01	F3 R1	INR	0000		00	- -	0	JCR 11	10	1 + R3 to R3	WRITE
•	•	ERRO	/* ERROR≯16 CHECK ERROR POSITION FOR ZERO VALUE	HECK ER	ROR POS	ITION FO	OR ZE	RO VAI	JUE *	· .				•
•	12	—	01 RPVII	F6 R1	NOP	0000	00	00	H	0	JFL 9	11		
	ERR	OR	ERROR ≠ 0						· ·	·.			.	
	*	REAI	/* READ CODE VALUE OF CURRENT	ALUE OF	GURRENT	ERROR.		WRITE IN TRVOA	TRVOA	*				
	60	. 11	RPV12	FO RI	. ILR	0000	. 00	00	~	0	JCC 30	11	T to A	•
	30	1	01	F1 R1	LMI	0400 (. 00	00	H	0.	JCR 13	11	$400_{ m V}$ AC to MAR	
	30	13	01	F6 R1	NOP	0000 000	00	00	7	0	JCC 31	00	RO	READ
•	31	13	0.1	F5 R2	LIM	7777 (. 00	00	-	0	JCR 12	00	M to AC	READ
	*	WRIT	/* WRITE CODE VALUE IN TRVOA	ALUE IN	TRVOA */				•					
	31	12	01	F1 R1	LMI	0000	11	00	H	0	JCC 29	11	R5 to MAR	•
ę.				•			•			. •			1 + R5 to R5	

	WRITE	· ·				-	. • . • .	•									
MICROFUNCTION	R7 to MAR	1 + R7 to R7		1 to AC	R5 to MAR	1 + R5 to R5		••		*		0 to R7	0 to R8	R2 to AC	R3 + AC to AC	330% to MAR	331ø to R7
READ/ WRITE	10			11	11					-		11	11	11	11	11	
IUMP	JCC 24			JCR 12	JCC 29		•			≥16, WRITE IN TABLE TRVOC		JCR 14	JCC 23	JCR 12	JCC 22	JCC 21	
INH	0			0	0				- .	IE IN	, R1*	0	0	0	0	0	. •
LOAD				-	 1	•			•	s, wri	>16 in R ₀ , R ₁ */	-	~	~ -1		~	•
9	00		,	00	00			/* DO				00	00	00	00	00	· / / .
ij	11	•		11	11			TABLE TRVOC	/OB *,	OSITIC	O. OF ERRATA	00	00	00	00	11	
KBUS	0000			0000	0000				LE TR	ITH P(0.0	0000	0000	0000	7777	0330	
MNEM	LMI	·	*	ACM	LMI			INITIALIZE INDEXES FOR OUTPUT	* INITIALIZE INDEX FOR INPUT TABLE TRVOB	/* COMPUTE NUMBER OF ERRATA WITH POSITIONS	STORE ONE'S COMPLEMENT OF N	CLR	CLR	ILR	ALR	LMI	4
CPE	F1 R1		* ERROR POSITION = ZERO	FO R2	1 R1	•		S FOR	FOR IN	R OF EI	IPLEMI	4 RI	F4 R1	FO RI	FO R1	F1 R1	
II II			= NOI		F1			NDEXE	ND EX	UMBE	CON	16 F4	<u> </u>	14	ĽΨ	<u> </u>	
LABEL	01 RPV13		OSIT	01 RPV15	\ H		•	IZE II	IZE II	TE N	ONE'S	01 RPV16	01	01	01	0.1	•
RESS C P	12 0		ROR I	10 0	12 01			ITIAL	IITIAL	OMPU	ORE	11 0	14 0	14 0	12 0	12 0	•
ADDRESS R C	29 1			60.	09			NI *	% IIV	ŏ *	rs */	27	27	23	23	22	
O XI		•			*		. .					· .					
RECORD NUMBER	54			55	26					•	-	. 22	28	59	09	61	

	WRITE	۰.	· .	÷		• ·			READ	READ					READ	READ	•
MICROFUNCTION	AC to AC	AC to R0	AC to R1	131ø to MAR	132Ø to R8			•	1 + R0 to R0	$ m K_VM$ to MAR	400g + M to AC				AC to R2	M to AC	AC to R6
READ/ WRITE	10		11	11					00	00					00	00	11
IUMP	JCC 20	JCC 19	JCC 18	JCC 17			*	•	JCC 16	JFL 31	. 1				JCR 14	JCC 30	JCC 29
INH		0	0	,0					.0	0				*	0	0 .	6
LOAD	- 4	-	H	-	,	. /* 8			` -				*	n re	1	H	Ħ,
00	00	00	00	00		N > FROM TRVOB *,		*	00	00			ORM	STORE IN R6	00	. 00	. 00
Ö	00	11	11	11		ROM	*	SSED	11	00			- POWER FORM		11	00	ı,
KBUS	0000	7777	7777	0131		N > I	≥ 16	PROCESSED	0000	0400		*		ERRATA.	0037	7777	7777
MNEM	CIA	SDR	SDR	LMI		READ NEXT ERRATA WITH POSITIO	INCREMENT THE NO. OF ERRATA	CHECK IF ALL ERRATA > 16 ARE	INR	LMM		ERRATA NOT YET ALL PROCESSED	STORE CURRENT ERRATA IN 77 R2	READ CODE VALUE OF CURRENT	CSR	LTM	SDR
CPE	F1 R3	F2 R1	F2 R1	FI RI		ĄTA WITI	IE NO. C	ERRATA	F3 R1	F1 R2		T ALL PR	T ERRATA	LUE OF (F2 R1	F5 R2	F2 R1
LABEL						ct err	INT TE	ALL	01 RPV21		-	OT YE	JRREN	DE VA	01 RPV17		•
വ	01	01	01	0.1	. •	NE	REME	CK II	01 1	01		TA N	RE CI	000	01 1	01	010
ADDRESS R C	12	12	12	12		REAL	INCI	CHE	12	12		ERRA	STOI	REAL	10	14	14
ADD R	21	20	19	18		*	*	*	17	16		*	*	*	31	31	30
RECORD NUMBER	62	63	64	65		• • ; •	5	•	99	29				•	89	69	20

RECORD NUMBER	ADI R	ADDRESS R C P LABE	LABEL CPE	MNEM	KBUS CI CO LOAD INH	티	8	LOAD I		IUMP	READ/ WRITE	MICROFUNCTION	
	*	/* INITIALIZE INDEX FOR TABLE OF	DEX FOR	TABLE OF	ALL ERRATA TRVOA	ATA T		*	*		•		
	*	STORE NUMBER OF ALL ERRATA IN R3	ER OF ALI	L ERRATA	IN R3 */								
71	53	14 01	F2 R1	CSR	0 0000	00	00	. p1	0	JCC 28	11	All I's to AC	•
72	2.8	14 01	F2 R1	CSR	0152 1	11	00	 1	0	JCC 26	11	152Ø to R5	
73	26	14 01	FO R1	ILR	0 0000	. 00	00	ri 	0	JCC 25	. -	R4 to AC	
74	25	14 01	F2 R1	SDR	7777	11	00		0	JCC 24	11	AC to R3	
•	*	READ NEXT ERRATA FROM TRVOA	RRATA FRO	M TRVOA	(CODE)	*		•	-	•	,		
	*	INCREMENT ONE'S COMPLEMENT OF NO. OF	ONE'S CC	MPLEME	NT OF NO	o. OF	' ERRAJ	ERRATA IN TRVOA	RVOA	*			
	*	CHECK IF ALL ERRATA PROCESSED	L ERRATA	PROCESSI	/* Q:				٠.				
75	24	14 01 RPV20	0 F0 R1	ILR	0000	00	00	ч		JCC 22	11	R6 to AC	
92	22	14 01	F1 R1	LMI	0000	11	00	г	0	JCC 21	11	R5 to MAR	
										•		1 + R5 to R5	
77	21	14 01	F3 R1	INR	0000	11	00	н	0	JCC 20	00	1 + R3 to R3	READ
78	20	14 01	F7 R3	XNI	7777 (.00	00	.	0	JFL 19	00	$I = \overline{M} \oplus AC$ to AC	READ
	*	ERRATA NOT ALL PROCESSED	ALL PROC		*	·	•				•		•
	*	XOR CURRENT ERRATA WITH CODE IN R6	I ERRATA	мтн со	DE IN R(*.	•						
	*	CONVERT THE RESULT TO POWER	E RESULT	TO POW	'R */	•			,		,		

•	•		READ	READ								WRITE	•		•
ᆔ		. ,	RE	RE			•		•			A			٠
(MICROFUNCTION	•	AC to MAR	R2 to AC	M + AC to AC	AC + I to AC	K AC to R2		•	R2 to AC	R7.to MAR	1 + R7 to R7	R8 to MAR	1 + R8 to R8		
READ/ WRITE		11	00	00	11	11			11	11		10		ut.	
IUMP	*	JCR 15	JCC 20	JCC 18	JCR 14	JCC 24			JCR 14	JCC 17		JCR 12			
INH	NDEX	0	0	0	0	. 0			·. 0	0		0			
CO LOAD INH	FOR POWER INDEX	r-1	H			Ħ			, H	-		.			
9	FOR PC	00	00	00	00	00	*	. ,	00	00		00			
Ö	R2 ADJUST	00	00	00	00	11		*	00	11		11			
KBUS	_	0200	0000	7777	7777	0037	CESSED	RVOC	0000	0000		0000		ED */	
MNEM KBUS CI	CUMULATIVELY ADD INTO 77 IN	LMI	ILR	AMA	AIA	CSR	ERRATA IN TABLE TRVOA ALL PROC	WRITE CURRENT PRODUCT IN TRVOC *,	ILR	LMI		LMI		ALL ERRATA IN TRVOB PROCESSEL	AT. */
CPE	NI COV	F1 R1	FO R1	F0 R2	F3 R3.	F2. R1	TRVO2	PRODI	FO R1	F1 R1		FI R1		RVOB 1	IMONZ
LABEL C	IVELY 1		F-4				TABLE	RRENT			•			ta in t	EVALITATE Z. POLYNOMIAL.
ᆈ	ſULAT	01 RPV18	01	01	01	01	TA IN	re cu	01 RPV19	01		01		ERRA.	TIATE
ADDRESS R C	CUN	10	15	15	15	14	ERRA	WRI	11	14		14		ALL	EVAT
ADI	*	19	19	20	18	18	*	*	19	19		17		*	*
JRD BER	÷	•						£			· .				
RECORD NUMBER		79	08	81	82	83			84	82		98	• .		
				<u> </u>											

^{/*} EVALUATE Z POLYNOMIAL */

^{/*} INITIALIZE INDEXES FOR TABLES TRVOB, TRVOC, TMSYN */

^{/*} INITIALIZE INDEX FOR CHARACTER POSITIONS IN TADIØ/TBDIØ

RECORD NUMBER	ADI	ADDRESS R C	S LABEL	CPE	MNEM KBUS	KBUS CI	8	LOAD	INH	IUMP	READ/ WRITE	MICROFUNCTION	
87	31	11	01 RPV22	F2 R1	CSR	00 0000	00	H	0	JCR 15	11	All I's to AC	
88	31	15	01	F2 R1	CSR	0131 11	00	-	0	JCC 30	-	131 Ø to R8	
83	30	15	01	F2 R1	CSR	0331 11	00	-	0	JCC 29	11	331 Ø to R7	••
06	29	15	01	F2 R1	CSR	0562 11	00	-	0	JCC 24	11	562 Ø to R4	
91	24	15	.01	F1 R1	LMI	000 4000	00	.	0	JCC 28	11	R9 + 7 to R9	•
•	*	REA	D NUMBER	OF COEF	FICIENT	/* READ NUMBER, OF COEFFICIENTS IN ERRATA POLYNOMIAL	A POLY	NOMIAL	*		. ,		,
-	*		RE THE TW	VO'S COM	IPLEMEN	STORE THE TWO'S COMPLEMENT OF NUMBER OF COEFFICIENTS	3ER OF	COEFFIC	CIEN	S IN R6	*		•
	*		SET WRITE EARLY FLAG R2 TO ZERO	RLY FLAG	R2 TO ZE	SRO */	. •				•"		
85	28	15	01	F1 R2	LMM	0261 00	00	,1	.0	JCC 27	Ħ	561 Ø to MAR	. •
				•				••	,			561 Ø to AC	
93	27	15	01	F4 R1	CLR	00 0000	00	~	0	JCC 26	00	0 to AC	REAI
94	. 26	15	01	F3 R3	AĬA	7777	00	H	0	JCC 25	00	$1 + I(\overline{M})$ to AC	REA
95	25	15	01	F2 R1	SDR	7777 11	00	ન	0	JCC 12	11.	AC to R6	
. 96	12	15	01	F4 R1	CLR	00 0000	00	7	, , 0	JCC 21	Ħ	0 to R2	
26	*		READ NEXT ERRATA FROM TRVOB	RATA FRO	M TRVOB	*							
· · · · · · · · · · · · · · · · · · ·	*		REMENT C	NE'S COI	MPLEME	INCREMENT ONE'S COMPLEMENT OF NO.	OF ERRATA	UATA ≥16	• • • • • • • • • • • • • • • • • • •	<u>,</u>			
	*	CH	CHECK IF ALL ERRATA HAVE	ERRATA E		BEEN PROCESSED	*` Q	_					•

A

9

>			READ	READ	-		•		•						· •	:	
) MICROFUNCTION	R8 to MAR	1 + R8 to R8	1 + RI to RI	M to A			RI + 2 to RI	O _V R2			AC to R3			-	R9 to AC	AC to AC	
READ/ WRITE	7 11		00 9	00			ი				~		*	· · · · · ·	ග	ගු	9
IUMP	JCC 17		JCC 16	JFL 21			JCR	JFL 20			JFL 18		T BLOCK		JCR	JCC 19	77
LOAD INH	1 0		1 0	1 0		- -	1 CPE	1 0			1 0	,	N CURREN	•	1 0	1 0	
8	00		00	00			00	00			00	*	FOR NO		00	00	
MNEM KBUS CI	0000		0000	7777 00	*	MAIN */	0002 00	7777 00	*	*	7777 11	SET R2 $\neq 0$	COMPUTE ADDRESS OF WRITE EARLY FLAG FOR NON CURRENT BLOCK		00 0000	00 0000	0000
MNEM	LMI	-	INR	LTM	ESSED	RRATA RE	LMI	TZR	REMAIN	LAG R2	SDR		F WRITE		ILR	CIA	ť
CPE	F1 R1		F3 R1	F5 R2	OT PROC	R LESS E	F1 R1	F5 R1	ERRATA I	EARLY F	1 F2 R1	FLAG NO	DRESS OI	'* MA	5 F0 R1	F1 R3	ţ
P LABEL	01 RPV39		01	01	ALL ERRATA NOT PROCESSED	CHECK IF 2 OR LESS ERRATA REMAIN	01	01	TWO OR LESS ERRATA REMAIN	CHECK WRITE EARLY FLAG	01 RPV24 F2 R1	WRITE EARLY FLAG NOT SET.	PUTE AD	WRITE INTO RAM	01 RPV25	01	
ADDRESS R C	21 15		17 15	16 15	/* ALL	/* CHE	21 10	21 09	/* TWO	/* CHE	20 11	/* WRIT	/* COM	/* WRIT	18 10	18 09	
RECORD I	86	*	66	100			101	102			103				104	105	301

Ţ.

•	o MAR		WRITE		,		, 		•			· .					READ
MICROFUNCTION	AC + 177 Ø to AC to MAR	$\overline{AC} + 1 \text{ to AC (001)}$	AC to R2	R3 to AC	400 VAC to MAR			$400_{ m V}$ AC to MAR	•	AC to R3				MIAL */		400 V AC to MAR	R4 to AC
READ/ WRITE	11	11	10	11	11		H	11		11				OLYNC		11	00
IUMP	JCC 25	JCC 23	JCC 24	JCC 22	JCR 15		JCC 22	JCR 15		JCC 22			•	COEFFICIENTS IN ERRATA POLYNOMIAL	•	JCR 15	JCC 10
INH		0	0	0	0		0	0	- .				*	IS IN		0	Ó
LOAD	-	-	-		.	-	H		•	 1				FICIEN		-	.
9	00	. 00	00	00	00		00	00		00			TORE]			00	00
CI	00	. 11	11	0.0	00	. •	00	00		11			ND S), OF		00	00
KBUS	0177	0000	7777	0000	0400	,	0000	0400	*	7777	,	*	CODEA	r of no.		0400	0000
MNEM	LMI	CIA	SDR	ILR	LMI	*	NOP	LMI	A LEFT	SDR	SSED *	A IN R3	ATA TO	PLEMEN	/* X:	LMI	ILR
CPE	F1 R1	F1 R3	F2 R1	FO R1	F1 R1	AG SET	F6 R1	F1 R1	O ERRAT	F2 R1	r Proce	r errat <i>i</i>	ENT ERR	's com	YN INDI	F1 R1	F0 R1
LABEL CPE					,	WRITE EARLY FLAG SET	01 RPV26		MORE THAN TWO ERRATA LEFT	01 RPV27	ALL ERRATA NOT PROCESSED	STORE CURRENT ERRATA IN R3	CONVERT CURRENT ERRATA TO CODE AND STORE IN T	INITIALIZE ONE'S COMPLEMENT	INITIALIZE TMSYN INDEX	01 RPV28	01 RPV29
SS	01	01	01	01	.01	ITE 1		. 01)RE I		L ERI	ORE (NVE	ITIAL	ITIAL		
ADDRESS R C	60	60	ξÒ,	60	60		11	11		10						10	15
AD R	20	25	23	24	22	*	18	22	*	20	* .	*	*	*	*	22	22
RECORD NUMBER								•			·: _,	• .	. .	•	•		. •
REC	107	108	109	110	111		112	113		114						115	116

`

•	READ						• •		, · .	READ	READ			READ			•
MICROFUNCTION	M to T	AC to R0	R6 to AC	AC to R5				1 + R0 to R0	RO to MAR.	1 + R5 to R5	0 to R0		٠.	I ⊕ T to T	O $_{ m V}^{ m T}$ to CO	$500_{ m V}$ T to MAR	500 + T to T
READ/ WRITE	00	11	-	11		*		11		00	00			00	11	H	
IUMP	JCC 23	JCC 14	JCC 13	JCC 11	•	CIENTS		JCC 09		JCC 04	JFL 15		RO */	JCR 14	JCC 05	JFL 11	•
INH	0	0	0	0		EFFIC	*	0	 •	0	0		R ZE	0	0	0	. •
LOAD	H	-		-	*	R OF CO	ESSED	1		. 🗖	H		SULT FÖ	H	-	-	•
8	00	00	00	00		UMBE	PROC	. 00		00	00		CK RE	00	00.	00	•
Ö	00	11	00	11	TMS	OF N	ARE	11		11	00	*	CHE	00	00	00	
KBUS	7777	7777	0000	7777	FROM	MENT	SS ONE	0000		0000	0000		T AND	7777	7777	0200	٠.
MNEM KBUS	LTM	SDR	ILR	SDR	READ NEXT ERRATA COEFFICIENT FROM TMSYN	INCREMENT THE ONE'S COMPLEMENT OF NUMBER OF COEFFICIENTS	CHECK IF ALL COEFFICIENTS LESS ONE ARE PROCESSED	LMI		INR	NOP	ALL COEFFICIENTS NOT PROCESSED	XOR COEFFICIENT WITH SUM IN T AND CHECK RESULT FOR ZERO	XNI	TZA	LMI	
CPE	F5 R2	F2 R1	F0 R1	F2 R1	ATA COE	Ę ONE'S	COEFFIC	F1 R1	-	F3 R1	F6 R1	NTS NOT	NT WITE	F7 R3	F5 R3	Fl R1	
LABEL					EXT ERR	ENT TH	IF ALL (01 RPV30				SFFICIE	EFFICIE	01 RPV31			· .
SS	01	01	01	01	N Q	CREM	ECK			01	01	COI	3 00		01	01	
ADDRESS R C	15	15	1,5	15				15		15	15			10	14	14	
AD N	10	, 23	14	13	*	*	*	11		00	04	*	*	15	15	05	٠.
RECORD NUMBER		• .		· ·	•	-		•		•	, .			•		•	
REC	117	118	119	120	• .	-	•	121		122	123	•	,	124	125	126	

RECORD NUMBER	AL R	ADDRESS R C	ᆈ	LABEL	CPE	MNEW	MNEM KBUS	Ö	8	LOAD INH		IUMP	READ/ WRITE	MICROFUNCTION	
	*		RESULT NOT ZERO	r zerc	*								٠.	-	
	*		VERT RI	ESULT	TO PO	CONVERT RESULT TO POWER AND ADD $\mathrm{B_{1}}$ TERM IN R3	O ADD	$\mathrm{B_{i}}$ TER	M IN R	*			. *		
	*		VERT RI	ESULT	TO CC	CONVERT RESULT TO CODE AND		IN C	STORE IN CUMULATIVE SUM T	TIVE SI	UM T	*			
27	11	11	01 RP	RPV32 F	FÓ R1	ILR	0000	00	00	p	0	JCR 12	00	R3 to AC	READ
28	11	12	01	Ē4	F0 R2	AMA	7777	00	00	-) ()	JCC 08	00	M + AC to AC	READ
29	08	12	01	<u> </u>	FI RI	LMI	0400	00	00	-	0 J	JCR 15	11	$400_{ m V}$ AC to MAR	
								•						400 + AC to AC	
30	80	15	01.	F±4	F6 R1	NOP	0000	00	00	-	<u>г</u>	JCC 07	00	0 to R0	READ
31	07	15	01	<u> </u>	F5 R2	LTM	7777	00	00	~	<u>Г</u> 0	JCC 02	00	M to AC	READ
.32	02	15	01	[4	F2 R1	SDR	7777	11	00	-	0 J	JCC 11	11	A to T	
	*		RESULT IS ZERO.	SERO.	SET	SET SUM T =	= ZERO	*			-			•	. •
133	11	10	01 RPV33		F4 R1	CLR	00 0000	00	00	H	0	JCR 15	11	0 to T	
	*		COEFFI	CIEN	S LESS	ALL COEFFICIENTS LESS ONE PROCESSED	OCESS	G	*			÷.			
	*) LAST (COEFI	ICIEN	READ LAST COEFFICIENT AND XOR INTO SUM IN T	OR INTO	MUS C	INI	*					
	*		CK IF R	ESUL	IS ZEI	CHECK IF RESULT IS ZERO (NUMERATOR)	ERATO	R) */							
	*		VERT T	HE RE	SULT T	CONVERT THE RESULT TO POWER	*		•						
134	15	11	01 RPV34		F1 R1	DSM	7777	00	. 00	r-4	0	JCR 15	11	All I's to MAR	
				٠					•			÷		RO - 1 to RO	

NCTION	RO	K	READ	T READ	ò			o MAR	READ	AC READ					.	, R7	READ
MICROFUNCTION	1 + R0 to R0	R0 to MAR	0 to R0	I T to I	O_V T to CO	0 to R0		$500 \mathrm{~V}$ T to MAR	0 to R0	M to A					R7 to MAR	1 + R7 to R7	O to R0
READ/ WRITE	11		00	00	11	11		11	00	0 0					11		00
IUMP	JCC 15		JCR 12	JCC 05	JCC 04	JFL 13		JCR 12	JCC 12	JGC 14					JCC 10	ari	JCC 07
INH	0		0	0	0	0		0	0	0			*		0		0
LOAD	-		-	-	1	, H		-	H	-		: ·	(B ₁ + B ₁	* *	r-1	٠٠,	-
8	00		00	00	00	00		00	00	00		*	/B _i TT	-ve POWER	00		00
IJ	00	•	00	00	00	00	•	00	00	00		00	2 (B ₁),		11		00
KBUS	0000		0000	7777	7777	0000		0200	00 0000	7777		M TRV	FERM ?	M FOF	0000		0000
MNEM	LMI		NOP	XNI	TZA	NOP		LMI	NOP	LTM	*	ERM FRO	ECTION :	ION TER	LMI		NOP
CPE	F1 R1		F6 R1	F7 R3	F5 R3	F6 R1	*	F1 R1	F6 R1	F5 R2	ERO	UCT T	CORR	ORRECT	FI R1		F6 R1
LABEL	<u> </u>		† <u>F</u> L4	14	Į-Lą	14	RESULT \neq ZERO	01 RPV35 F	14	щ	SUM IN T NOT ZERO	READ NEXT PRODUCT TERM FROM TRVOC	COMPUTE ERROR CORRECTION TERM Z $(B_1)/B_1$ TT (B_1+B_1)	CHECK ERROR CORRECTION TERM FOR	щ		
ᆈ	01		01	01	01	01	ULT.	01	01	01	Z NI	D NE	MPUI	ECK I	01		01
ADDRESS R C	15		15	12	12	12		11	12	12					12		12
AD R	00		15	15	0.2	. 04	*	13	13	12	*	*	*	*	14		10
RECORD	135		136	137	138	139		140	141	142		٠			143		144

RECORD NUMBER	ADI	ADDRESS R C	S P LABEL	CPE	MNEM	MNEM KBUS	Ö	8	LOAD I	INH	IUMP	READ/ WRITE	MICROFUNCTION	
145	0 0	12	01	F3 R3	AIA	7777 0	00	00	1	0	JCC 06	00	$AC + I$ (\overline{M}) to AC	READ
146	90	12	01	F1 R2	LMM	0037 0	. 00	00	-	0	JFL 14	11	37 Ø to T	. •
													37 Ø to MAR	
	*	NEG	/* NEGATIVE RESULT OR ZERO RESULT	JLT OR ZE	RO RESI	JLT */						÷		
	*	COI	CONVERT TO POSITIVE POWER BY ADDING 31D (37 Ø)	OSITIVE 1	OWER B	Y ADDIN	1G 31	D (37)	/* (0					
147	14	10	01 RPV36	FO R1	ALR	7777 0	00	00	,1	0	JCR 11	11	T + AC to T, AC	
·	*	POS	POSITIVE RESULT	/* IT				-						
•	*		CONVERT RESULT TO CODE.	LT TO CO		STORE TI	HE TA	NO'S C	THE TWO'S COMPLEMENT IN T	MEN	T IN T	*		
148	14	11	01 RPV37	F1 R1	LMI	0000	11	00		0	JCR 08	11	1 + AC to AC	
149	14	08	01	F1 R1	LMI	0400	00	00	.—1	0	JCR 14	11	400 V AC to MAR	
150	14	14	01	FO R1	ILR	0000	00	00	1	0	JCC 13	00	R3 to AC	READ
151	13	14	01	F5 R2	LTM	7777	00	00	H	0	JCC 10	00	M to T	READ
	*		SUM IN T IS ZERO.	ERO. */	_									
	*		COMPUTE ADDRESS OF CHARACTER	RESS OF	CHARAC		RRESP	ONDI	VG TO	ERRAI	CORRESPONDING TO ERRATA POSITION IN R3	NI NO	R3 */	
	*	REA	/* READ CHARACTER FROM TADIØ/TBDIØ	ER FROM	TADIØ	/TBDIØ	*				·			
152	. 01	14	01 RPV40	F1 R3	CIA	0000	00	00	7	0	JCC 11	11	AC to AC	
153	H	14	01	F2 R1	CSR	0037	11	00	-	.0	JCC 08	11	AC to R3	

. .

•						•)				٠		
RECORD NUMBER	ADI	ADDRESS R C	P LABEL	CPE	MNEM	KBUS CI	8	LOAD	INH	IUMP V	READ/ WRITE	MICROFUNCTION	
154	08	14	01	F0 R1	ILR	00 0000	00		0	JCC 07	11	R9 to AC	
155	07	14	01	FO R1	ALR	7777 00	00		0	JCC 06	11	AC + R3 to R3, AC	
	*	XOR	XOR CHARACTER WITH ERROR CORRECTION	R WITH	ERROR CO	ORRECTION	I TERM IN T	I NI	*				
156	90	14	01	F1 R1	LMI	00 0000	00	-	0	JCC 12	_	$O_{ m V}$ R3 to MAR	
157	12	14	01	F0 R1	ILR	00 0000	00	Н	0	JCC 09	00	T to AC	READ
158	60	14	01	F7 R3	XNI	7777 00	00	Н	0	JCC 03	00	$I(\overline{M}) \oplus AC$ to AC	READ
	*		WRITE CORRECTED CHARACTER IN TADIØ / TBDIØ	TED CH	ARACTER	IN TADIØ /	TBDIØ	*					
159	03	14	0.1	FI RI	LMI	00 0000	00	-	0	JCR 15	11	$0_{ m ~V}$ R3 to MAR	
160	03	15	01	Fl Rl	LMI	11 0000	00	.	0	JCC 17	10	R8 to MAR	WRITE
						•						1 + R8 to R8	•
	*		SUM IN T IS ZERO		*								
161	13	10	01 RPV38	FO R1	ILR	00 0000	00	 1	0	JCC 10	11	R3 to AC	
162	10	10	01	F3 R1	INR	0000	00		0	JCR 14	11	1 + R7 to R7	
	*		ALL ERRATA >	>16 PROC	PROCESSED	*							
	*		RESTORE R9 (C	(0 OR 200 Ø)	/* (0			٠					
163	21	11	01 RPV41	F5 R1	LRI	00 0020	00	-	0	JCC 10	11	K A R9 to R9	
	*		READ ADDRESS OF ERROR POLYNOMIAL	OF ERRC	OR POLYN			,					

RECORD NUMBER	ADI	ADDRESS R C	<u>α</u> ,	LABEL	CPE	MNEM	KBUS	5	,	CO LOAD INH	INH	IUMP	READ/ WRITE	MICROFUNCTION	
	*	REAI	DN C	MBER (READ NUMBER OF ERRORS AND WRITE IN DATA QUALITY WORD	S AND V	VRITE 1	IN DA	TA QU	ALITY W	ORD	*			
164	10	11	01		F1 R2	LMM	0644	00	00	H	0	JCR 09	11	644 Ø to MAR	
	·				•									644 Ø to AC	
165	10	60	01		F0 R1	ILR	0000	00	00	H	0	JCC 11	00	R9 to AC	READ
166	11	60	01		F1 R2	LMM	0200	00	00	-	0	JCC 12	00	$0_{ m V}$ M to MAR	READ
	.*.				•									M to T	
167	12	60	01		F2 R1	SDR	7777	11	00	~	0	JCC 13	00	AC to T	READ
168	13	60	01		F0 R2	ACM	0000	00	00	-	0	JCC 14	00	M to AC	READ
169	14	60	01		Fl Rl	LMI	2000	00	00	~	0	JCC 17	11	7 + T to T	
														$^{7}_{ m V}$ T to MAR	٠
170	17	60	01		F5 R1	TZR	7777	00 ,	00	П	0	JCC 15	10	$0_{ m ~V}$ R2 to CO	WRITE
	*	CHE	3CK I	F WRIT	CHECK IF WRITE EARLY FLAG IS S	FLAG IS	ET	*					,		
171	15	60	01		F0 R1	ILR	0000	00	00	Ä	0	JFL 04	11	R9 to AC	
	*	WRI	TE E	ARLY FI	WRITE EARLY FLAG IS SET	/* TS									
172	04	11	01	01 RPV42	F6 R1	NOP	0000	00	00	-	0	JCR 14	11		
173	04	14	01		F5 R1	TZR	7777	00	00	Н		JCC 16	11	0 _V R9 to CO	
	*		I TO	INOUI	EXIT TO INOUT AT IOC03	/* 81									
	*		ITE E	ARLY F	WRITE EARLY FLAG IS NOT SET	OT SET	*								

					MAR		WRITE
MICROFUNCTION			AC to AC	K AC to AC	AC + 177\(\beta\) to AC to MAR	$\overline{AC} + 1 \text{ to AC (001)}$	$0_{\rm V}$ R9 to CO
READ/ WRITE	*	•	11	11	11	11	10
IUMP	BLOCK		JCR 09	JCC 03	JCC 02	JCR 14	JCC 16
HNI	RENT		0	0	0	0	0
LOAD	I-CUF		Т	-	-	e	.
KBUS CI CO LOAD INH	OR NO	•	00	00	00	00	00
ij	LAG F	•	00	00	00	11	00
	EARLY F	*	00 0000	0200 00	0177 00	0000.11	7777 00
MNEM	WRITE	RAM	CIA	LMI	LMI	CIA	TZR
CPE	ESS OF	EST IN	Fl R3	F5 R1	FI RI	F1 R3	P5 R1
ORESS C P LABEL CPE	/* COMPUTE ADDRESS OF WRITE EARLY FLAG FOR NON-CURRENT BLOCK	/* SET WRITE REQUEST IN RAM	04 10 01 RPV02 F1 R3	01,	01	01	01
RESS	OMP	ET W	0 01	0 60	0 60	0 60	14 0
ADDRESS R C	× \	× ×	04	04 (03 (02 (02
RECORD NUMBER			174	175	176	177	178

/* EXIT TO INOUT AT IOC03

INTEL 3000

COMPUTER (MICROPROCESSOR) DATA SHEETS

SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET

3001 NICHOPROGRAM CONTROL UNIT

The INTEL® Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate read-only memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions, similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

The INTEL® 3001 Microprogram Control Unit (MCU) controls the sequence in which microinstructions are fetched from the microprogram memory. Its functions include the following:

Maintenance of the microprogram address register.

Selection of the next microinstruction based on the contents of the microprogram address register.

Decoding and testing of data supplied via several input busses to determine the microinstruction execution sequence.

Saving and testing of carry output data from the central processor (CP) array.

Control of carry/shift input data to the CP array.

Control of microprogram interrupts.

High Performance — 85 ns Cycle Time

TTL and DTL Compatible
Fully Buffered Three-State and Open
Collector Outputs

Direct Addressing of Standard Bipolar PROM or ROM

512 Microinstruction Addressability

Advanced Organization

9-Bit Microprogram Address Register and Bus

4-Bit Program Latch Two Flag Registers

Eleven Address Control Functions

Three Jump and Test Latch Functions

16-way Jump and Test Instruction Bus Function

Eight Flag Control Functions
Four Flag Input Functions
Four Flag Output Functions
40 Pin DIP

CONTROL TO MEMORY 1/O

MEMORY

Other members of the INTEL Bipolar Microcomputer Set:

3002 Central Processing Element 3003 Look-Ahead Carry Generator 3212 Multi-Mode Latch Buffer 3214 Priority Interrupt Control Unit 3226 Inverting Bi-Directional Bus Driver 3301 Schottky Bipolar ROM (256 x 4) 3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4) 3604 Schottky Bipolar PROM (512 x 8)

CONTENTS

Introduction	1
Package Configuration	2
Pin Description	3,
Logical Description	4
Functional Description	5 5
Flag Control Functions Load and Interrupt Strobe Functions	6
	6
D. C. and Operating Characteristics	7
A. C. Characteristics and Waveforms	8,
Typical A. C. and D. C. Characteristics	10
APPENDICES	
A. Address Control Function Summary	11
B. Flag Control Function Summary	11
0 L 0 L D	12
D. Typical Configurations	13

PACKAGE CONFIGURATION

PACKAGE OUTLINE

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE (1)
1-4	PX ₄ -PX ₇	Primary Instruction Bus Inputs	active LOW
V.		Data on the primary instruction bus is tested by the JPX function to determine the next microprogram address.	
5, 6, 8, 10	SX ₀ -SX ₃	Secondary Instruction Bus Inputs	active LOW
	•	Data on the secondary instruction bus is synchronously loaded into the PR-latch while the data on the PX-bus is being tested (JPX). During a subsequent cycle, the contents of the PR-latch may be tested by the JPR, JLL, or JRL functions to determine the next microprogram address.	
7, 9, 11	PR ₀ -PR ₂	PR-Latch Outputs	open collector
		The PR-latch outputs are asynchronously enabled by the JCE function. They can be used to modify microinstructions at the outputs of the microprogram memory or to provide additional control lines.	
12, 13, 15,	FC ₀ -FC ₃	Flag Logic Control Inputs	
16		The flag logic control inputs are used to cross-switch the flags (C and Z) with the flag logic input (FI) and the flag logic output (FO).	
14	FO	Flag Logic Output	active LOW
		The outputs of the flags (C and Z) are multiplexed internally to form the common flag logic output. The output may also be forced to a logical 0 or logical 1.	three-state
17	FI	Flag Logic Input	active LOW
		The flag logic input is demultiplexed internally and applied to the inputs of the flags (C and Z). Note: the flag input data is saved in the F-latch when the clock input (CLK) is low.	
18	ISE	Interrupt Strobe Enable Output	
		The interrupt strobe enable output goes to logical 1 when one of the JZR functions are selected (see Functional Description, page 6). It can be used to provide the strobe signal required by the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits.	
19	CLK	Clock Input	
20	GND	Ground	
21-24 37-39	AC ₀ -AC ₆	Next Address Control Function Inputs All jump functions are selected by these control lines.	
25	EN	Enable Input When in the HIGH state, the enable input enables the microprogram address, PR-latch and flag outputs.	
26-29	MA_0-MA_3	Microprogram Column Address Outputs	three-state
30-34	MA ₄ -MA ₈	Microprogram Row Address Outputs	three-state
35	ERA	Enable Row Address Input	
		When in the LOW state, the enable row address input independently disables the microprogram row address outputs. It can be used with the INTEL 3214 Priority Interrupt Control Unit or other interrupt circuits to facilitate the implementation of priority interrupt systems.	
36	LD	Microprogram Address Load Input When in the active HIGH state, the microprogram address load input inhibits all jump functions and synchronously loads the data on the instruction busses into the microprogram register. However, it does not inhibit the operation of the PR-latch or the generation of the interrupt	
		strobe enable.	

NOTE:
(1) Active HIGH unless otherwise specified.

The MCU performs two major control functions. First, it controls the sequence in which microinstructions are fetched from the microprogram memory. For this purpose, the MCU contains a microprogram address register and the associated logic for selecting the next microinstruction address. The second function of the MCU is the control of the two flag flip-flops that are included for interaction with the carry input and carry output logic of the CP array. The logical organization of the MCU is shown in Figure 2.

NEXT ADDRESS LOGIC

The next address logic of the MCU provides a set of conditional and unconditional address control functions. These address control functions are used to implement a jump or jump/test operation as part of every microinstruction. That is to say, each microinstruction typically contains a jump operation field that specifies the address control function, and hence, the next microprogram address.

In order to minimize the pin count of the MCU, and reduce the complexity of the next address logic, the microprogram address space is organized as a two dimensional array or matrix. Each microprogram address corresponds to a unit of the matrix at a particular row and column location. Thus, the 9bit microprogram address is treated as specifying not one, but two addresses the row address in the upper five bits and the column address in the lower four bits. The address matrix can therefore contain, at most, 32 row addresses and 16 column addresses for a total of 512 microinstructions.

The next address logic of the MCU makes extensive use of this two component addressing scheme. For example, from a particular row or column address, it is possible to jump unconditionally in one operation anywhere in that row or column. It is not possible, however, to jump anywhere in the address matrix. In fact, for a given location in the matrix, there is a fixed subset of microprogram addresses that may be selected as the next address. These

possible jump target addresses are referred to as a jump set. Each type of MCU address control (jump) function has a jump set associated with it. Appendix C illustrates the jump set for each function.

FLAG LOGIC

The flag logic of the MCU provides a set of functions for saving the current value of the carry output of the CP array and for controlling the value of the carry input to the CP array. These two distinct flag control functions are called flag input functions and flag output functions.

The flag logic is comprised of two flip-flops, designated the C-flag and the Z-flag, along with a simple latch, called the F-latch, that indicates the current state of the carry output line of the CP array. The flag logic is used in conjunction with the carry and shift logic of the CP array to implement a variety of shift/rotate and arithmetic functions.

Figure 2. 3001 Block Diagram

ADDRESS CONTROL FUNCTIONS

The address control functions of the MCU are selected by the seven input lines designated AC₀-AC₆. On the rising edge of the clock, the 9-bit microprogram address generated by the next address logic is loaded into the microprogram address register. The next microprogram address is delivered to the microprogram memory via the nine output lines designated MA₀-MA₈. The microprogram address outputs are organized into row and column addresses

MA8 MA7 MA6 MA5 MA4

row address

MA3 MA2 MA1 MA0

column address

Each address control function is specified by a unique encoding of the data on the function input lines. From three to five bits of the data specify the particular function while the remaining bits are used to select part of either the row or column address desired. Function code formats are given in Appendix A, "Address Control Function Summary."

The following is a detailed description of each of the eleven address control functions. The symbols shown below are used throughout the description to specify row and column addresses.

Symbol Meaning

5-bit next row address rown

where n is the decimal row

address

4-bit next column address coln

where n is the decimal

column address.

UNCONDITIONAL ADDRESS CON-TROL (JUMP) FUNCTIONS

The jump functions use the current microprogram address (i.e., the contents of the microprogram address register prior to the rising edge of the clock) and several bits from the address control inputs to generate the next microprogram address.

Mnemonic

Function Description

JCC Jump in current column. AC0-AC4 are used to select 1 of 32 row addresses in the current column, specified by

MA₀-MA₃, as the next

JZR

Jump to zero row. AC₀-AC₃ are used to select 1 of 16 column addresses in rowo, as the

next address.

JCR Jump in current row.

AC₀-AC₃ are used to select 1 of 16 addresses in the current row, specified by MA₄-MA₈, as

the next address.

JCE Jump in current column/ row group and enable

> PR-latch outputs. ACo-AC2 are used to select 1 of 8 row addresses in the current row group, specified by MA7-MA8, as the next row address. The current column is speci-

fied by MAn-MA3. The PR-latch outputs are asynchronously enabled.

FLAG CONDITIONAL ADDRESS CONTROL (JUMP/TEST) **FUNCTIONS**

The jump/test flag functions use the current microprogram address, the contents of the selected flag or latch, and several bits from the address control function to generate the next microprogram address.

Mnemonic

Function Description

JFL

Jump/test F-Latch. AC0-AC3 are used to select 1 of 16 row addresses in the current row group, specified by MA₈, as the next row address. If the current column group, specified by MA3, is colo-col7, the F-latch is used to select col2 or col3 as the next column address. If MA₃ specifies column group col8-col15, the F-latch is used to select col₁₀ or col₁₁ as the next column address.

JCF

Jump/test C-flag. AC₀-AC₂ are used to select 1 of 8 row addresses in the current

row group, specified by MA7 and MA8, as the next row address. If the current column group specified by MA3 is colo-col7, the C-flag is used to select colo or col3 as the next column address. If MA₃ specifies column group colg-col₁₅, the C-flag is used to select col₁₀ or col₁₁ as the next column address.

JZF

Jump/test Z-flag. Identical to the JCF function described above, except that the Z-flag, rather than the C-flag, is used to select the next column address.

PX-BUS AND PR-LATCH CONDI-**TIONAL ADDRESS CONTROL** (JUMP/TEST) FUNCTIONS

The PX-bus jump/test function uses the data on the primary instruction bus (PX₄-PX₇), the current mircoprogram address, and several selection bits from the address control function to generate the next microprogram address. The PR-latch jump/test functions use the data held in the PR-latch, the current microprogram address, and several selection bits from the address control function to generate the next microprogram address.

Mnemonic

Function Description

JPR

Jump/test PR-latch. AC₀-AC₂ are used to select 1 of 8 row addresses in the current row group, specified by MA7 and MA8, as the next row address. The four PR-latch bits are used to select 1 of 16 possible column addresses as the next column address.

Mnemonic

Function Description

JLL

Jump/test leftmost PRlatch bits. AC₀-AC₂ are used to select 1 of 8 row addresses in the current row group, specified by MA7 and MA8, as the next row address. PR2 and PR3 are used to

select 1 of 4 possible column addresses in col₄ through col₇ as the next column address.

Jump/test rightmost PR-latch bits. AC₀ and AC₁ are used to select 1 of 4 high-order row addresses in the current row group, specified by MA₇ and MA₈, as the next row address. PR₀ and PR₁ are used to select 1 of 4 possible column addresses in col₁₂ through col₁₅ as the next column address.

Jump/test PX-bus and load PR-latch. AC₀ and AC₁ are used to select 1 of 4 row addresses in the current row group, specified by MA₆-MA₈, as the next row address. PX₄-PX₇ are used to select 1 of 16 possible column addresses as the next column address. SX₀-SX₃ data is locked in the PR-latch at the rising edge of the clock.

FLAG CONTROL FUNCTIONS

The flag control functions of the MCU are selected by the four input lines designated FC₀-FC₃. Function code formats are given in Appendix B, "Flag Control Function Summary."

The following is a detailed description of each of the eight flag control functions.

FLAG INPUT CONTROL FUNCTIONS

The flag input control functions select which flag or flags will be set to the current value of the flag input (FI) line. Data on FI is stored in the F-latch when the clock is low. The content of the F-latch is loaded into the C and/or Z flag on the rising edge of the clock.

Eumation Description

Mnemonic	Function Description
SCZ	Set C-flag and Z-flag to FI. The C-flag and the Z-flag are both set to the value of FI.
STZ	Set Z-flag to FI. The Z-flag is set to the value of FI. The C-flag is unaffected.
STC	Set C-flag to FI. The C-flag is set to the value of FI. The Z flag is unaffected.
HCZ	Hold C-flag and Z-flag. The values in the C-flag and Z-flag are unaffected.

FLAG OUTPUT CONTROL FUNCTIONS

The flag output control functions select the value to which the flag output (FO) line will be forced.

Mnemonic	Function Description
FF0	Force FO to 0. FO is forced to the value of logical 0.
FFC	Force FO to C. FO is forced to the value of the C-flag.
FFZ	Force FO to Z. FO is forced to the value of the Z-flag.
FF1	Force FO to 1. FO is forced to the value of

logical 1.

LOAD AND INTERRUPT STROBE FUNCTIONS

The load function of the MCU is controlled by the input line designated LD. If the LD line is active HIGH at the rising edge of the clock, the data on the primary and secondary instruction busses, PX₄-PX₇ and SX₀-SX₃, is loaded into the microprogram address register. PX4-PX7 are loaded into MA₀-MA₃ and SX₀-SX₃ are loaded into MA₄-MA₇. The high-order bit of the microprogram address register MAg is set to a logical 0. The bits from the primary instruction bus select 1 of 16 possible column addresses. Likewise, the bits from the secondary instruction bus select 1 of the first 16 row addresses.

The interrupt strobe enable of the MCU is available on the output line designated ISE. The line is placed in the active high state whenever a JZR to col₁₅ is selected as the address control function. Customarily, the start of a macroinstruction fetch sequence is situated at rowo and col₁₅ so that the INTEL 3214 Priority Interrupt Control Unit may be enabled at the beginning of the fetch/execute cycle. The priority interrupt control unit may respond to the interrupt by pulling the enable row address (ERA) input line down to override the selected next row address from the MCU. Then by gating an alternative next row address on to the row address lines of the microprogram memory, the microprogram may be forced to enter an interrupt handling routine. The alternative row address placed on the microprogram memory address lines does not alter the contents of the microprogram address register. Therefore, subsequent jump functions will utilize the row address in the register, and not the alternative row address, to determine the next microprogram address.

Note, the load function always overrides the address control function on AC_0 – AC_6 . It does not, however, override the latch enable or load sub-functions of the JCE or JPX instruction, respectively. In addition, it does not inhibit the interrupt strobe enable or any of the flag control functions.

JPX

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to 70°C
Storage Temperature	65°C to +160°C
All Output and Supply Voltages	−0.5V to +7V
All Input Voltages	1.0V to +5.5V
Output Currents	100 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $T_A = 0^{\circ}C$ to $70^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
V _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	$V_{CC} = 4.75V$, $I_{C} = -5 \text{ mA}$
l _F	Input Load Current: CLK Input EN Input All Other Inputs		-0.075 -0.05 -0.025	-0.75 -0.50 -0.25	mA mA mA	$V_{CC} = 5.25V, V_F = 0.45V$
l _R	Input Leakage Current: CLK EN Input All Other Inputs			120 80 40	μΑ μΑ μΑ	V_{CC} = 5.25V, V_{R} = 5.25V
VIL	Input Low Voltage			0.8	V - ¹	V _{CC} = 5.0V
V _{IH}	Input High Voltage	2.0			V	
Icc	Power Supply Current		170	240	mA	$V_{CC} = 5.25V^{(2)}$
V _{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V	V_{CC} = 4.75V, I_{OL} = 10 mA
V _{OH}	Output High Voltage (MA ₀ -MA ₈ , ISE, FO)	2.4	3.0		V	$V_{CC} = 4.75V$, $I_{OH} = -1$ mA
I _{OS}	Output Short Circuit Current (MA ₀ -MA ₈ , ISE, FO)	−15	-28	-60	mA .	V _{CC} = 5.0V
I _{O (off)}	Off-State Output Current: MA ₀ —MA ₈ , FO MA ₀ —MA ₈ , FO, PR ₀ —PR ₂			-100 100	μΑ μΑ	V _{CC} = 5.25V, V _O = 0.45V V _{CC} = 5.25V, V _O = 5.25V

Typical values are for T_A = 25°C and nominal supply voltage.
 EN input grounded, all other inputs and outputs open.

A.C. CHARACTERISTICS AND WAVEFORMS $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5.0V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{CY}	Cycle Time	85	60		ns
twp	Clock Pulse Width	30	20		ns
	Control and Data Input Set-Up Times:				
t _{SF}	LD, AC ₀ -AC ₆	10	0		ns
ťsĸ	FC ₀ , FC ₁	0			ns
t _{SX}	SX_0-SX_3 , PX_4-PX_7	35	25		ns
t _{SI}	. FI .	15	5		ns
	Control and Data Input Hold Times:				
t _{HF}	LD, AC_0 - AC_6	5	0		ns
t _{HK}	FC ₀ , FC ₁	0			ns
tHX	SX ₀ -SX ₃ , PX ₄ -PX ₇	20	5		ns
tHI	FI	20	8 .		ns
tco	Propagation Delay from Clock Input (CLK) to Outputs (MA ₀ -MA ₈ , FO)		30	44	ns
t _{KO}	Propagation Delay from Control Inputs FC_2 and FC_3 to Flag Out (FO)		16	30	ns
t _{FO}	Propagation Delay from Control Inputs AC_0-AC_6 to Latch Outputs (PR $_0-PR_2$)		26	40	ns
t _{EO}	Propagation Delay from Enable Inputs EN and ERA to Outputs $(MA_0-MA_8, FO, PR_0-PR_2)$		21	32	ns
t _{Fi}	Propagation Delay from Control Inputs AC_0 - AC_6 to Interrupt Strobe Enable Output (ISE)		24	40	ns

NOTE:

TEST CONDITIONS:

Input pulse amplitude of 2.5 volts.
Input rise and fall times of 5 ns between 1 volt and 2 volts.
Output load of 10 mA and 50 pF.
Speed measurements are taken at the 1.5 volt level.

TEST LOAD CIRCUIT:

CAPACITANCE⁽²⁾ $T_A = 25^{\circ}C$

CVMDOL	PARAMETER	MIN	TYP	MAX	UNIT
SYMBOL	PANAMETER		<u></u>		
CIN	Input Capacitance: CLK, EN	·	11 5	16 10	pF pF
	All Other Inputs		6	10	ρF
COUT	Output Capacitance			14	ρ,

NOTE:

⁽¹⁾ Typical values are for TA = 25°C and nominal supply voltage.

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, V_{BIAS} = 2.5V, V_{CC} = 5V and T_A = 25°C.

TYPICAL AC AND DC CHARACTERISTICS

I_{CC} vs Temperature

Clock to MA Outputs vs $V_{\mbox{\footnotesize{CC}}}$ and Temperature

Output Current vs Output Low Voltage

Clock to MA Outputs vs Load Capacitance

Output Current vs Output High Voltage

APPENDIX A ADDRESS CONTROL FUNCTION SUMMARY

				FUN	стіо	N			NEXT ROW					NEXT COL			
MNEMONIC	DESCRIPTION	AC ₆	5	4	3	2	1	0	MA ₈	7	6	5	4	MA ₃	2	1	0
JCC	Jump in current column	0	0	d ₄	d ₃	d_2	. d ₁	d ₀	d ₄	d ₃	d ₂	d ₁	d ₀	m ₃	m ₂	m ₁	m ₀
JZR	Jump to zero row	0	1	0.	d_3	d ₂	d ₁	d_0	0	0	0	0	0	d ₃	d_2	d_1	d_0
JCR	Jump in current row	. 0	1	1	d3	d ₂	d_1	d ₀	m ₈	m ₇	m ₆	m ₅	m ₄	d ₃	. d ₂	d ₁	ďo
JCE	Jump in column/enable	1	1	1	0	d_2	d ₁	d ₀	mg	m ₇	d_2	d ₁	d ₀	_, m ₃	m ₂	m ₁	m ₀
JFL	Jump/test F-latch	1	0	0	d ₃	d ₂	d ₁	d ₀	m ₈	d ₃	d ₂	d ₁	d ₀	m ₃	0	1	f
JCF	Jump/test C-flag	.1	0	- 1	0	d_2	d_1	d ₀	m ₈	m ₇	d_2	d_1	d ₀	m_3	0	1	. с
JZF	Jump/test Z-flag	1	0	1	1	d_2	d ₁	d ₀	m ₈	m ₇	d_2	d ₁	d ₀	m ₃	0	1	Z
JPR	Jump/test PR-latches	1	1	0	0	d ₂	d ₁	d ₀	m ₈	m ₇	d_2	d ₁	d ₀	p ₃	p ₂	p ₁	p ₀
JLL	Jump/test left PR bits	1	1	0	1	d_2	d ₁	d_0	m ₈	m ₇	d_2	. d ₁	d_0	0	1	p ₃	p ₂
JRL	Jump/test right PR bits	1	1	1	1	1	d ₁	d_0	m ₈	m ₇	1	d ₁	d ₀	1	1	P1	P ₀
JF.	Jump/test PX-bus	1	1	1	1 ·	0	d ₁	d ₀	m ₈	m ₇	m ₆	d ₁	d ₀	×7	×6	×5	×4
SYMBOL	MEANING																

SYMBOL	MEANING	
d _n	Data on address control line n	
mn	Data in microprogram address register bit n	
P _n	Data in PR-latch bit n	
xn	Data on PX-bus line n (active LOW)	
f, c, z	Contents of F-latch, C-flag, or Z-flag, respectively	

APPENDIX B FLAG CONTROL FUNCTION SUMMARY

TYPE	MNEMONIC	DESCRIPTION	FC ₁	. 0		
	SCZ	Set C-flag and Z-flag to f	0	0		
Flag	STZ	Set Z-flag to f	0	1		
Input	STC	Set C-flag to f	1	0		
	HCZ	Hold C-flag and Z-flag	. 1	1	. '	
TYPE	MNEMONIC	DESCRIPTION	FC ₃	2	· · · · · · · · · · · · · · · · · · ·	
	FF0	Force FO to 0	0	0		

TYPE	MNEMONIC	DESCRIPTION	FC ₃	2			
	FF0	Force FO to 0	0	0			
Flag	FFC	Force FO to C-flag	0	1 '	•		
Output	FFZ	Force FO to Z-flag	1	0	•		
	FF1	Force FO to 1	· 1 .	. 1			
		•	1 . 1	1	 		

LOAD FUNCTION		NEX	T RO	W		N	IEXT	COL					
LD	MA ₈	7	6	5	4	MA ₃	2	1	0	•			
0.	see Ap	pendi	κA			see Ap	pendix	¢Α ΄					ie.
1	0	x ₃	×2	x ₁	x ₀	x7	×6	x ₅	x 4		Ţ		

SYMBOL	MEANING	· .
f	Contents of the F-latch	
×n	Data on PX- or SX-bus line n (active LOW)	

The following ten diagrams illustrate the jump set for each of the eleven jump and jump/test functions of the MCU. Location 341, indicated by the black square, represents one current row (row₂₁) and current column (col₅) address. The blue boxes indicate the microprogram locations that may be selected by the particular function as the next address.

JCC

JCF, JZF

Non-Pipelined Configuration with 512 Microinstruction Addressability

Pipelined Configuration with 2048 Microinstruction Addressability

ORDERING INFORMATION:

Part Number Description

C3001

Microprogram
Control Unit

Intel Corporation 3065 Bowers Avenue

Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026 Telex: 34-6372 WESTERN 1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642 TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240 Tel: (214) 661-8829 TWX: 910-860-5487

GREAT LAKES REGION 8312 North Main Street Dayton, Ohio 45415

Tel: (513) 890-5350

TELEX: 288-004

EASTERN
2 Militia Drive

Suite 4 Lexington, Massachusetts 02173

Tel: (617) 861-1136 TWX: 710-321-0187 MID-ATLANTIC

520 Pennsylvania Avenue

Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444 TWX: 510-661-3055

EUROPE
Belgium
Intel Office
216 Avenue Louise
Brussels B1050
Tol. 649 20.03

Tel: 649-20-03 TELEX: 24814

ORIENT Japan

Intel Japan Corporation

Kasahara Bldg. 1-6-10, Uchikanda Chiyoda-ku Tokyo 101

Tel: (03) 295-5441 TELEX: 781-28426

SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET

3002 CENTRAL PROCESSING ELEMENT

The INTEL® Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate read-only memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions. similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

The INTEL® 3002 Central Processing Element contains all of the circuits that represent a 2-bit wide slice through the data processing section of a digital computer. To construct a complete central processor for a given word width N, it is simply necessary to connect an array of N/2 CPE's together. When wired together in such an array, a set of CPE's provide the following capabilities:

2's complement arithmetic
Logical AND, OR, NOT and
exclusive-OR
Incrementing and decrementing
Shifting left or right
Bit testing and zero detection
Carry look-ahead generation
Multiple data and address busses

High Performance — 100 ns Cycle Time

TTL and DTL Compatible

N-Bit Word Expandable Multi-Bus Organization

- 3 Input Data Busses
- 2 Three-State Fully Buffered Output Data Busses
- 11 General Purpose Registers

Full Function Accumulator

Independent Memory Address Register

Cascade Outputs for Full Carry Look-Ahead

Versatile Functional Capability 8 Function Groups Over 40 Useful Functions Zero Detect and Bit Test

Single Clock

28 Pin DIP

Other members of the INTEL Bipolar Microcomputer Set:

3001 Microprogram Control Unit 3003 Look-Ahead Carry Generator 3212 Multi-Mode Latch Buffer

3214 Priority Interrupt Control Unit 3226 Inverting Bi-Directional Bus Driver 3301 Schottky Bipolar ROM (256 x 4) 3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4) 3604 Schottky Bipolar PROM (512 x 8)

CONTENTS

Introduction	İ
Package Configuration2	2
Pin Description 3	}
Logical Description	ŀ
Functional Description 5	;
D. C. and Operating Characteristics	}
A. C. Characteristics and Waveforms9), 1
Typical A. C. and D. C. Characteristics 1	1
APPENDICES	
A. Micro-Function Summary1	2
B. All-Zero and All-One K-Bus Micro-Functions	3
C. Function and Register Group Formats14	4
D. Typical Configurations 19	5

PACKAGE CONFIGURATION

PACKAGE OUTLINE

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE ⁽¹⁾
1, 2	10-11	External Bus Inputs The external bus inputs provide a separate input port for external input devices.	Active LOW
3, 4	K ₀ -K ₁	Mask Bus Inputs The mask bus inputs provide a separate input port for the microprogram memory, to allow mask or constant entry.	Active LOW
5, 6	X, Y	Standard Carry Look-Ahead Cascade Outputs The cascade outputs allow high speed arithmetic operations to be performed when they are used in conjunction with the INTEL 3003 Look-Ahead Carry Generator.	
7	CO	Ripply Carry Output The ripple carry output is only disabled during shift right operations.	Active LOW Three-state
8	RO	Shift Right Output The shift right output is only enabled during shift right operations.	Active LOW Three-state
9	LI	Shift Right Input	Active LOW
10	CI	Carry Input	Active LOW
11	EA	Memory Address Enable Input When in the LOW state, the memory address enable input enables the memory address outputs (A_0-A_1) .	Active LOW
12-13	A ₀ -A ₁	Memory Address Bus Outputs The memory address bus outputs are the buffered outputs of the memory address register (MAR).	Active LOW Three-state
14	GND	Ground	
15-17, 24-27,	F ₀ -F ₆	Micro-Function Bus Inputs The micro-function bus inputs control ALU function and register selection.	
18	CLK	Clock Input	
19-20	D ₀ -D ₁	Memory Data Bus Outputs The memory data bus outputs are the buffered outputs of the full function accumulator register (AC).	Active LOW Three-state
21-22	M ₀ -M ₁	Memory Data Bus Inputs The memory data bus inputs provide a separate input port for memory data.	Active LOW
23	ED	Memory Data Enable Input When in the LOW state, the memory data enable input enables the memory data outputs (D_0-D_1)	Active LOW
28	V _{CC}	+5 Volt Supply	

NOTE:
1. Active HIGH, unless otherwise specified.

The CPE provides the arithmetic, logic and register functions of a 2-bit wide slice through a microprogrammed central processor. Data from external sources such as main memory, is brought into the CPE on one of the three separate input busses. Data being sent out of the CPE to external devices is carried on either of the two output busses. Within the CPE, data is stored in one of eleven scratchpad registers or in the accumulator. Data from the input busses, the registers, or the accumulator is available to the arithmetic/logic section (ALS) under the control of two internal multiplexers. Additional inputs and outputs are included for carry propagation, shifting, and micro-function selection. The complete logical organization of the CPE is shown below.

MICRO-FUNCTION BUS AND DECODER

The seven micro-function bus input lines of the CPE, designated F_0 – F_6 , are decoded internally to select the ALS function, generate the scratchpad address, and control the A and B multiplexers.

M-BUS AND I-BUS INPUTS

The M-bus inputs are arranged to bring data from an external main memory into the CPE. Data on the M-bus is multiplexed internally for input to the ALS.

The I-bus inputs are arranged to bring data from an external I/O system into the CPE. Data on the I-bus is also multiplexed internally, although independently of the M-bus, for input to the ALS Separation of the two busses permits a relatively lightly loaded memory bus even though a large number of I/O devices are connected to the I-bus. Alternatively, the I-bus may be wired to perform a multiple bit shift (e.g., a byte exchange) by connecting it to one of the output busses. In this case, I/O device data is gated externally onto the M-bus.

SCRATCHPAD

The scratchpad contains eleven registers designated R_0 through R_9 and T. The output of the scratchpad is multiplexed internally for input to ALS. The ALS output is returned for input into the scratchpad.

ACCUMULATOR AND D-BUS

An independent register called the accumulator (AC) is available for storing the result of an ALS operation. The output of the accumulator is multiplexed internally for input back to the

ALS and is also available via a threestate output buffer on the D-bus outputs. Conventional usage of the D-bus is for data being sent to the external main memory or to external I/O devices.

A AND B MULTIPLEXERS

The A and B multiplexers select the two inputs to the ALS specified on the micro-function bus. Inputs to the A-multiplexer include the M-bus, the scratchpad, and the accumulator. The B-multiplexer selects either the I-bus, the accumulator, or the K-bus. The selected B-multiplexer input is always logically ANDed with the data on the K-bus (see below) to provide a flexible masking and bit testing capability.

ALS AND K-BUS

The ALS is capable of a variety of arithmetic and logic operations, including 2's complement addition, incrementing, and decrementing, plus logical AND, inclusive-OR, exclusive-NOR, and logical complement. The result of an ALS operation may be stored in the accumulator or one of the scratchpad registers. Separate left input and right output lines, designated LI and RO, are available for use in right shift operations. Carry input and carry output lines, designated CI and CO are provided for normal ripple carry propaga-

tion. CO and RO data are brought out via two alternately enabled tri-state buffers. In addition, standard look ahead carry outputs, designated X and Y, are available for full carry look ahead across any word length.

The ability of the K-bus to mask inputs to the ALS greatly increases the versatility of the CPE. During non-arithmetic operations in which carry propagation has no meaning, the carry circuits are used to perform a word-wise inclusive-OR of the bits, masked by the K-bus, from the register or bus selected by the function decoder. Thus, the CPE provides a flexible bit testing capability. The K-bus is also used during arithmetic operations to mask portions of the field being operated upon. An additional function of the K-bus is that of supplying constants to the CPE from the microprogram.

MEMORY ADDRESS REGISTER AND A-BUS

A separate ALS output is also available to the memory address register (MAR) and to the A-bus via a three-state output buffer. Conventional usage of the MAR and A-bus is for sending addresses to an external main memory. The MAR and A-bus may also be used to select an external device when executing I/O operations.

Figure 2. 3002 Block Diagram

During each micro-cycle, a micro-function is applied to F-bus inputs of the CPE. The micro-function is decoded, the operands are selected by the multiplexers, and the specified operation is performed by ALS. If a negative going clock edge is applied, the result of the ALS operation is either deposited in the accumulator or written into the selected scratchpad register. In addition, certain operations permit related address data to be deposited in the MAR. A new micro-function should only be applied following the rising edge of the clock.

By externally gating the clock input to CPE, referred to as conditional clocking, the clock pulse may be selectively omitted during a micro-cycle. Since the carry, shift, and look-ahead circuits are not clocked, their outputs may be used to perform a variety of non-destructive tests on data in the accumulator or in the scratchpad. No register contents are modified by the operation due to the absence of the clock pulse.

The micro-function to be performed is determined from the function group (F-Group) and register group (R-Group) selected by the data on the F-bus. The F-Group is specified by the upper three bits of data, F_4-F_6 . The R-Group is specified by the lower four bits of data, F_0-F_3 . R-Group I contains R_0 through R_9 , T, and AC and is denoted by the symbol R_n . R-Group II and R-Group III contain only T and AC. F-Group and R-Group formats are summarized in Appendix A.

The following is a detailed explanation of each of the CPE micro-functions. A general functional description of each operation is given followed by two additional descriptions which explain the result of the micro-function with both K-bus inputs at logical 0 or both at logical 1. In most cases, the effect of placing the K-bus in the all-one or the all-zero state is to either select or deselect the accumulator in the operation. respectively. A micro-function mnemonic is included with each description for reference purposes and to assist in the design of micro-assembly languages. The micro-functions are summarized in Appendix B. The effective micro-functions for the all-zero and the all-one K-bus states are summarized in Appendix C and D, respectively.

F-GROUP O

R-GROUP I

Logically AND the contents of AC with the data on the K-bus. Add the result to the contents of R_n and the value of the carry input (CI). Deposit the sum in AC and R_n .

ILR

K-BUS = 00

Conditionally increment R_n and load the result in AC. Used to load AC from R_n or to increment R_n and load a copy of the result in AC.

ALR

K-BUS= 11

Add AC and CI to R_n and load the result in AC. Used to add AC to a register. If R_n is AC, then AC is shifted left one bit position.

F-GROUP O

R-GROUP II

Logically AND the contents of AC with the data on the K-bus. Add the result to CI and the data on the M-bus. Deposit the sum in AC or T, as specified.

ACM

K-BUS = 00

Add CI to the data on the M-bus. Load the result in AC or T, as specified. Used to load memory data in the specified register, or to load incremented memory data in the specified register.

AMA

K-BUS = 11

Add the data on the M-bus to AC and CI, and load the result in AC or T, as specified. Used to add memory data or incremented memory data to AC and store the sum in the specified register.

F-GROUP O

R-GROUP III

(General description omitted, see Appendix B.)

SRA

K-BUS = 00

Shift the contents of AC or T, as specified, right one bit position. Place the previous low order bit value on RO and fill the high order bit from the data on LI. Used to shift or rotate AC or T right one bit.

(K-bus = 11 description omitted, see Appendix B.)

F-GROUP 1

R-GROUP I

Logically OR the contents of R_n with the data on the K-bus. Deposit the result in MAR. Add the data on the K-bus to contents of R_n and CI. Deposit the result in R_n .

LMI

K-BUS = 00

Load MAR from R_n . Conditionally increment R_n . Used to maintain a macro-instruction program counter.

DSM

K-BUS = 11

Set MAR to all one's. Conditionally decrement R_n by one. Used to force MAR to its highest address and to decrement R_n .

F-GROUP 1

R-GROUP II

Logically OR the data on the M-bus with the data on the K-bus. Deposit the result in MAR. Add the data on the K-bus to the data on the M-bus and Cl. Deposit the sum in AC or T, as specified.

LMM

K-BUS = 00

Load MAR from the M-bus. Add CI to the data on the M-bus. Deposit the result in AC or T. Used to load the address register with memory data for macro-instructions using indirect addressing.

LDM

K-BUS = 11

Set MAR to all ones. Subtract one from the data on the M-bus. Add CI to the difference and deposit the result in AC or T, as specified. Used to load decremented memory data in AC or T.

F-GROUP 1

R-GROUP III

Logically OR the data on the K-bus with the complement of the contents of AC or T, as specified. Add the result to the logical AND of the contents of specified register with the data on the K-bus. Add the sum to Cl. Deposit the result in the specified register.

CIA

K-BUS = 00

Add CI to the complement of the contents of AC or T, as specified. Deposit the result in the specified register. Used to form the 1's or 2's complement of AC or T.

DCA

K-BUS = 11

Subtract one from the contents of AC or T, as specified. Add CI to the difference and deposit the sum in the specified register. Used to decrement AC or T.

F-GROUP 2

R-GROUP I

Logically AND the data on the K-bus with the contents of AC. Subtract one om the result and add the difference to CI. Deposit the sum in R_n.

CSR

K-BUS = 00

Subtract one from CI and deposit the difference in R_n . Used to conditionally clear or set R_n to all 0's or 1's, respectively.

SDR

K-BUS = 11

Subtract one from AC and add the difference to CI. Deposit the sum in R_n . Used to store AC in R_n or to store the decremented value of AC in R_n .

F-GROUP 2

R-GROUP II

Logically AND the data on the K-bus with the contents of AC. Subtract one from the result and add the difference to CI. Deposit the sum in AC or T, as specified.

C\$A

K-BUS = 00

Subtract one from CI and deposit the difference in AC or T, as specified. Used to conditionally clear or set AC or T.

SDA

K-BUS = 11

Subtract one from AC and add the difference to CI. Deposit the sum in AC or T, as specified. Used to store AC in T, or decrement AC, or store the decremented value of AC in T.

F-GROUP 2

R-GROUP III

Logically AND the data of the K-bus with the data on the I-bus. Subtract one from the result and add the difference to CI. Deposit the sum in AC or T, as specified.

(K-bus = 00 description omitted, see CSA above.)

LDI

K-BUS = 11

Subtract one from the data on the I-bus and add the difference to CI. Deposit the sum in AC or T, as specified. Used to load input bus data or decremented input bus data in the specified register.

F-GROUP 3

R-GROUP I

Logically AND the contents of AC with the data on the K-bus. Add the contents of R_n and CI to the result. Deposit the sum in R_n .

INR

K-BUS = 00

Add CI to the contents of R_n and deposit the sum in R_n . Used to increment R_n .

ADR

K-BUS = 11

Add the contents of AC to R_n . Add the result to CI and deposit the sum in R_n . Used to add the accumulator to a register or to add the incremented value of the accumulator to a register.

F-GROUP 3

R-GROUP II

(All descriptions omitted, identical to F-Group O/R-Group II described above.)

F-GROUP 3

R-GROUP III

Logically AND the data on the K-bus with the data on the I-bus. Add CI and the contents of AC or T, as specified, to the result. Deposit the sum in the specified register.

INA

K-BUS = 00

Conditionally increment the contents of AC or T, as specified. Used to increment AC or T.

AIA

K-BUS = 11

Add the data on the I-bus to the contents of AC or T, as specified. Add CI to the result and deposit the sum in the specified register. Used to add input data or incremented input data to the specified register.

F-GROUP 4

R-GROUP I

Logically AND the data on the K-bus with the contents of AC. Logically AND the result with the contents of R_n . Deposit the final result in R_n . Logically OR the value of CI with the word-wise OR of the bits of the final result. Place the value of the carry OR on the carry output (CO) line.

CLR

K-BUS = C

Clear R_n to all 0's. Force CO to CI. Used to clear a register and force CO to CI.

ANR

K-BUS = 11

Logically AND AC with R_n . Deposit the result in R_n . Force CO to one if the result is non-zero. Used to AND the accumulator with a register and test for a zero result.

F-GROUP 4

R-GROUP II

Logically AND the data on the K-bus with the contents of AC. Logically AND the result with the data on the M-bus. Deposit the final result in AC or T, as specified. Logically OR the value of CI with the word-wise OR of the bits of the final result. Place the value of the carry OR on CO.

CLA

K-BUS = 00

Clear AC or T, as specified, to all 0's. Force CO to CI. Used to clear the specified register and force CO to CI.

ANM

K-BUS = 11

Logically AND the data on the M-bus with the contents of AC. Deposit the result in AC or T, as specified. Force CO to one if the result is non-zero. Used to AND M-bus data to the accumulator and test for a zero result.

F-GROUP 4

R-GROUP III

Logically AND the data on I-bus with the data on the K-bus. Logically AND the result with the contents of AC or T, as specified. Deposit the final result in the specified register. Logically OR CI with the word-wise OR of the bits of the final result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLA above.)

ANI

K-BUS = 11

Logically AND the data on the I-bus with the contents of AC or T, as specified. Deposit the result in the specified register. Force CO to one if the result is non-zero. Used to AND the I-bus to the accumulator and test for a zero result.

F-GROUP 5

R-GROUP I

Logically AND the data on the K-bus with the contents of R_n . Deposit the result in R_n . Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLR above.)

TZR

K-BUS = 11

Force CO to one if R_n is non-zero. Used to test a register for zero. Also used to AND K-bus data with a register (see general description) for masking and, optionally, testing for a zero result.

F-GROUP 5

R-GROUP II

Logically AND the data on the K-bus with the data on the M-bus. Deposit the result in AC or T, as specified. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLA above.)

LTM

K-BUS = 11

Load AC or T, as specified, with data from the M-bus. Force CO to one if the result is non-zero. Used to load the specified register from memory and test for a zero result. Also used to AND K-bus data with M-bus data (see general description) for masking and, optionally, testing for a zero result.

F-GROUP 5

R-GROUP III

Logically AND the data on K-bus with contents of AC or T, as specified. Deposit the result in the specified register. Logically OR CI with the word-wise OR of the result. Place the value of the carry OR on CO.

(K-bus = 00 description omitted, see CLA above.)

TZA

K-BUS = 11

Force CO to one if AC or T, as specified, s non-zero. Used to test the specified register for zero. Also used to AND K-bus data to the specified register (see general description) for masking and, optionally, testing for a zero result.

F-GROUP 6 R-GROUP I

Logically OR CI with the word-wise OR of the logical AND of AC and the data on the K-bus. Place the result of the carry OR on CO. Logically OR the contents of R_n with the logical AND of AC and the data on the K-bus. Deposit the result in R_n .

NOP

K-BUS = 00

Force CO to CI. Used as a null operation or to force CO to CI.

ORR

K-BUS = 11

Force CO to one if AC is non-zero. Logically OR the contents of the accumulator to the contents of R_n . Deposit the result in R_n . Used to OR the accumulator to a register and, optionally, test the previous accumulator value for zero.

F-GROUP 6

R-GROUP II

Logically OR CI with the word-wise OR of the logical AND of AC and the data on the K-bus. Place the value of the carry OR on CO. Logically OR the data on the M-bus, with the logical AND of AC and the data on the K-bus. Deposit the final result in AC or T, as specified.

LMF

K-BUS = 00

Load AC or T, as specified, from the M-bus. Force CO to CI. Used to load the specified register with memory data and force CO to CI.

ORM

K-BUS = 11

Force CO to one if AC is non-zero. Logically OR the data on the M-bus with the contents of AC. Deposit the result in AC or T, as specified. Used to OR memory data with the accumulator and, optionally, test the previous value of the accumulator for zero.

F-GROUP 6

R-GROUP III

Logically OR CI with the word-wise OR of the logical AND of the data on the I-bus and the data on the K-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the data on the I-bus. Logically OR the result with the contents of AC or T, as specified. Deposit the final result in the specified register.

(K-bus = 00 description omitted, see NOP above.)

ORI

K-BUS = 11

Force CO to one if the data on the I-bus is non-zero. Logically OR the data on the I-bus to the contents of AC or T, as specified. Deposit the result in the specified register. Used to OR I-bus data with the specified register and, optionally, test the I-bus data for zero.

F-GROUP 7

R-GROUP I

Logically OR CI with the word-wise OR of the logical AND of the contents of R_n and AC and the data on the K-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the contents of AC. Exclusive-NOR the result with the contents of R_n . Deposit the final result in R_n .

CMR

K-BUS = 00

Complement the contents of R_n . Force CO to CI.

XNR

K-BUS = 11

Force CO to one if the logical AND of AC and R_n is non-zero. Exclusive-NOR the contents of AC with the contents of R_n . Deposit the result in R_n . Used to exclusive-NOR the accumulator with a register.

F-GROUP 7

R-GROUP II

Logically OR CI with the word-wise OR of the logical AND of the contents of AC and the data on the K-bus and M-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the contents of AC. Exclusive-NOR the result with the data on the M-bus. Deposit the final result in AC or T, as specified.

LCM

K-BUS = 00

Load the complement of the data on the M-bus into AC or T, as specified. Force CO to CI.

XNM

K-BUS = 11

Force CO to one if the logical AND of AC and the M-bus data is non-zero. Exclusive-NOR the contents of AC with the data on the M-bus. Deposit the result in AC or T, as specified. Used to exclusive—NOR memory data with the accumulator.

F-GROUP 7

R-GROUP III

Logically OR CI with the word-wise OR of the logical AND of the contents of the specified register and the data on the I-bus and K-bus. Place the value of the carry OR on CO. Logically AND the data on the K-bus with the data on the I-bus. Exclusive-NOR the result with the contents of AC or T, as specified. Deposit the final result in the specified register.

CMA

K-BUS = 00

Complement AC or T, as specified. Force CO to CI.

XNI

K-BUS = 11

Force CO to one if the logical AND of the contents of AC or T, as specified, and the I-bus data is non-zero. Exclusive-NOR the contents of the specified register with the data on the I-bus. Deposit the result in AC or T, as specified. Used to exclusive-NOR input data with the accumulator.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	0°C to 70°C
Storage Temperature	65°C to +160°C
All Output and Supply Voltages	
All Input Voltages	1.0V to +5.5V
Output Currents	100 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may effect device reliability.

 $T_A = 0^{\circ}C$ to $+70^{\circ}C$

			LIMITS			•
SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT	CONDITIONS
V _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.0	V	$V_{CC} = 4.75V$, $I_C = -5 \text{ mA}$
lF	Input Load Current: F_0 - F_6 , CLK, K_0 , K_1 , EA, ED I_0 , I_1 , M_0 , M_1 , LI CI		−0.05 −0.85 −2.3	-0.25 -1.5 -4.0	mA mA	V_{CC} = 5.25V, V_F = 0.45V
I _R	Input Leakage Current: F_0 - F_6 , CLK, K_0 , K_1 , EA, ED I_0 , I_1 , M_0 , M_1 , LI CI			40 60 180	μΑ μΑ μΑ	$V_{CC} = 5.25V, V_{R} = 5.25V$
VIL	Input Low Voltage			8.0	V	$V_{CC} = 5.0V$
V _{IH}	Input High Voltage	2.0			V ,	
Icc	Power Supply Current		145	190	mA	$V_{CC} = 5.25V^{(2)}$
V _{OL}	Output Low Voltage (All Output Pins)		0.3	0.45	V	V_{CC} = 4.75V, I_{OL} = 10 mA
V _{OH}	Output High Voltage (All Output Pins)	2.4	3.0		V	$V_{CC} = 4.75V$, $I_{OH} = -1$ mA
los	Short Circuit Output Current (All Output Pins)	- 15	-2 5	60	mA	V _{CC} = 5.0V
I _{O (off)}	Off State Output Current A_0 , A_1 , D_0 , D_1 , CO and RO			-100 100	μΑ μΑ	$V_{CC} = 5.25V, V_{O} = 0.45V$ $V_{CC} = 5.25V, V_{O} = 5.25V$

NOTES

⁽¹⁾ Typical values are for T_A = 25°C and nominal supply voltage

⁽²⁾ CLK input grounded, other inputs open.

A.C. CHARACTERISTICS AND WAVEFORMS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = 5V \pm 5\%$

SYMBOL	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
tcY	Clock Cycle Time	100	70		ns
t _{WP}	Clock Pulse Width	33	20		ns
t _{FS}	Function Input Set-Up Time (F_0 through F_6)	60	40	4	ns
t _{DS}	Data Set-Up Time: I_0 , I_1 , M_0 , M_1 , K_0 , K_1 LI, CI	50 27	30 13		ns ns
t _{FH} t _{DH} t _{SH}	Data and Function Hold Time: F_0 through F_6 I_0 , I_1 , M_0 , M_1 , K_0 , K_1 LI , CI	5 5 15	-2 -4 2		ns ns ns
t _{XF} t _{XD} t _{XT} t _{XL}	Propagation Delay to X, Y, RO from: Any Function Input Any Data Input Trailing Edge of CLK Leading Edge of CLK	17	37 29 40	52 42 60	ns ns ns
tcl tct tcf tcd tcc	Propagation Delay to CO from: Leading Edge of CLK Trailing Edge of CLK Any Function Input Any Data Input CI (Ripple Carry)	20	48 43 30 14	70 65 55 25	ns ns ns ns
t _{DL} t _{DE}	Propagation Delay to A_0 , A_1 , D_0 , D_1 from: Leading Edge of CLK Enable Input ED, EA		32 12	50 25	ns ns

NOTE:

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

TEST CONDITIONS:

Input pulse amplitude: $2.5\ V$

Input rise and fall times of 5 ns between 1 and 2 volts.

Output loading is 10 mA and 30 pF.

Speed measurements are made at 1.5 volt levels.

TEST LOAD CIRCUIT:

CAPACITANCE⁽²⁾ $T_A = 25^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance		5	10	pF
C _{OUT}	Output Capacitance		6	12	p F

NOTE:

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, $V_{BIAS} = 2.5V$, $V_{CC} = 5.0V$ and $T_A = 25^{\circ}C$.

TYPICAL AC AND DC CHARACTERISTICS

Output Current vs Output High Voltage

Carry in Set Up Time vs $\,V_{CC}\,$ and $\,$ Temperature

Propagation Delay Clock to "A" and "D" Data Outputs vs V_{CC} and Temperature

Output Current vs Output Low Voltage

Clock Pulse Width vs V_{CC} and Temperature

Propagation Delay Function Inputs to Cascade Outputs vs V_{CC} and Temperature

Propagation Delay Clock to "A" and "D" Data Output vs Load Capacitance

APPENDIX A MICRO-FUNCTION SUMMARY

F-GROUP	R-GROUP	MICRO-FUNCTION		
	ſ	$R_n + (AC \wedge K) + CI \rightarrow R_n, AC$		
0	H	$M + (AC \wedge K) + CI \rightarrow AT$		
۶,	Ш	$AT_L \wedge (\overline{I_L \wedge K_L}) \rightarrow RO$ $[AT_L \wedge (I_L \wedge K_L)] \vee [AT_H$	$LI \lor [(I_{H} \land K_{H}) \land AT_{H}] \rightarrow AT_{H}$ $\lor (I_{H} \land K_{H})] \rightarrow AT_{L}$	
	1	$K \vee R_n \rightarrow MAR$	$R_n + K + CI \rightarrow R_n$	
1	н	$K \vee M \rightarrow MAR$	M + K + CI → AT	
	111	$(\overline{AT} \lor K) + (AT \land K) + CI \rightarrow$	AT	
	ı	$(AC \land K) -1 + CI \rightarrow R_n$		
2	II ·	(AC ∧ K) -1 + Cl → AT	(see Note 1)	
4	111	$(I \wedge K) - 1 + CI \rightarrow AT$		
	1	$R_n + (AC \land K) + CI \rightarrow R_n$		•
3	H	$M + (AC \wedge K) + CI \rightarrow AT$		
	111	$AT + (I \wedge K) + CI \rightarrow AT$		
	l	$CI \lor (R_n \land AC \land K) \rightarrow CO$	$R_n \wedge (AC \wedge K) \rightarrow R_n$	
4	ļΙ	$CI \lor (M \land AC \land K) \rightarrow CO$	$M \wedge (AC \wedge K) \rightarrow AT$	
	111	$CI \lor (AT \land I \land K) \rightarrow CO$	$AT \wedge (I \wedge K) \rightarrow AT$	
	1	$CI \lor (R_n \land K) \rightarrow CO$	$K \wedge R_n \rightarrow R_n$	
5	11	$CI \lor (M \land K) \rightarrow CO$	$K \wedge M \rightarrow AT$	
,	111	$CI \lor (AT \land K) \rightarrow CO$	$K \wedge AT \rightarrow AT$	
	ſ	CI ∨ (AC ∧ K) → CO	$R_n \vee (AC \wedge K) \rightarrow R_n$	
6	11	$CI \lor (AC \land K) \rightarrow CO$	$M \vee (AC \wedge K) \rightarrow AT$	
	111	$CI \lor (I \land K) \rightarrow CO$	$AT \vee (I \wedge K) \rightarrow AT$	
	l	$CI \lor (R_n \land AC \land K) \rightarrow CO$	$R_n \oplus (AC \wedge K) \rightarrow R_n$	
7	H .	$CI \lor (M \land AC \land K) \rightarrow CO$	$M \stackrel{.}{\oplus} (AC \wedge K) \rightarrow AT$	
	III .	$CI \lor (AT \land I \land K) \rightarrow CO$	$AT \oplus (I \wedge K) \rightarrow AT$	

NOTES:

- 1. 2's complement arithmetic adds 111 . . . 11 to perform subtraction of $000 \dots 01$.
- 2. R_n includes T and AC as source and destination registers in R-group 1 micro-functions.
- 3. Standard arithmetic carry output values are generated in F-group 0, 1, 2 and 3 instructions.

SYMBOL	MEANING	
I, K, M	Data on the I, K, and M busses, respectively	
CI, LI	Data on the carry input and left input, respectively	
CO, RO	Data on the carry output and right output, respectively	
R _n	Contents of register n including T and AC (R-Group I)	
AC	Contents of the accumulator	
ΑT	Contents of AC or T, as specified	
MAR	Contents of the memory address register	
L, H	As subscripts, designate low and high order bit, respectively	
+	2's complement addition	
_	2's complement subtraction	
^	Logical AND	
V	Logical OR	
⊕	Exclusive-NOR	•
\rightarrow	Deposit into	

APPENDIX B ALL-ZERO AND ALL-ONE K-BUS MICRO-FUNCTIONS

K-BUS = 00 MICRO-FUNCTION	MNEMONIC	MNEMONIC K-BUS = 11 MICRO-FUNCTION						
$R_n + CI \rightarrow R_n$, AC	ILR	$AC + R_n + CI \rightarrow R_n$, AC		ALR				
M + CI → AT	ACM	M + AC + CI → AT		AMA				
$AT_L \rightarrow RO$ $AT_H \rightarrow AT_L$ $LI \rightarrow AT_H$	SRA	(See Appendix B)						
$R_n \rightarrow MAR R_n + CI \rightarrow R_n$	LMI	11 → MAR R	$_{n} - 1 + CI \rightarrow R_{n}$	DSM				
M → MAR M + CI → AT	LMM	11 → MAR M	- 1 + CI → AT	LDM				
ĀT + CI → AT	CIA	AT - 1 + CI → AT		DCA				
CI – 1 → R _n See Note 1	CSR	$AC - 1 + CI \rightarrow R_n$		SDR				
See Note 1	CSA	$AC - 1 + CI \rightarrow AT$	lote 1	SDA				
See CSA above)	-	$I-1+CI \rightarrow AT$		LDI				
R _n + CI → R _n	INR	$AC + R_n + CI \rightarrow R_n$		ADR				
See ACM above)		(See AMA above)		, -				
AT + CI → AT	INA	I + AT + CI → AT		AIA				
$CI \rightarrow CO$ $0 \rightarrow R_n$	CLR	$CI \lor (R_n \land AC) \rightarrow CO R$	n ∧ AC → R _n	ANR				
CI → CO 0 → AT	CLA	$CI \lor (M \land AC) \rightarrow CO$ M	\land AC \rightarrow AT	ANM				
See CLA above)		$CI \lor (AT \land I) \rightarrow CO$	$T \wedge I \rightarrow AT$	ANI				
See CLR above)	_	CI ∨ R _n → CO R	$_{n} \rightarrow R_{n}$	TZR				
See CLA above)	_	CI ∨ M → CO M	→ AT	LTM				
See CLA above)	<u></u> .	CI ∨ AT → CO A	T → AT	TZA				
$cl \rightarrow CO \qquad R_n \rightarrow \dot{R}_n$	NOP	CI ∨ AC → CO R	$_{n} \lor AC \rightarrow R_{n}$	ORR				
CI → CO M → AT	LMF	CI ∨ AC → CO M	\vee AC \rightarrow AT	ORM				
See NOP above)	-	CI ∨ I → CO	∨ AT → AT	ORI				
$CI \rightarrow CO \qquad \overline{R_n} \rightarrow R_n$	CMR	$CI \lor (R_n \land AC) \rightarrow CO \land R$	$_{n} \stackrel{\overline{\oplus}}{=} AC \rightarrow R_{n}$	XNR				
$CI \rightarrow CO \qquad \overline{M} \rightarrow AT$	LCM	CI ∨ (M AC) → CO M	$\overline{\oplus}$ AC \rightarrow AT	XNM				
CI → CO AT → AT	CMA	CI ∨ (AT I) → CO I d	∌ AT → AT	XNI				

APPENDIX C FUNCTION AND REGISTER GROUP FORMATS

FUNCTION GROUP	F ₆	5	4		
0	0	0	0		
1	0	0	1		
· 2	0	1	0 .	4	
3	0	1	1		
4	1 .	0	0		
5	1	0	1		
6	1	1 -	0		
7	1	1	1		

REGISTER GROUP	REGISTER	F ₃	2	1	0	************
ALLES ALLES	_	•				
•	R_0	0	Ü	0	U	
	R_1	Ü	Ü	0	1	
	R ₂	0	0	1	0	
	R ₃	0	0	1	1	
	Ř₄	0	1	.0	0	
ł	R ₅ .	0	1	0	1	
	R ₆	0	1	. 1	0	
•	R ₇	0	1	1	1	
	R ₈	1	0	0	. 0	
	R ₉	1	ñ	0	1	
	T	i	1	Ö	Ö	
	AC	1	1	0	1	
***************************************	Т	1	0	1	0	
11	AC	1	0	1	1	
	·T	1	1	1 .	0	
- 111	AC	1	1	1	1	

Ripple-Carry Configuration (N 3002 CPE's)

Carry Look-Ahead Configuration With Ripple Through the Left Slice (32 Bit Array)

Carry Look-Ahead Configuration
With No Carry Ripple Through the Last Slice
(32 Bit Array)

NOTE:

(1) A bit from microprogram memory can be used to replace the gate shown above and inform the 3003 of an active Shift Right operation.

ORDERING INFORMATION

Part Number

Description

C3002

Central

Processing

Unit

Intel Corporation

3065 Bowers Avenue

Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026

Telex: 34-6372

WESTERN

1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642

TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240

Tel: (214) 661-8829

TWX: 910-860-5487

GREAT LAKES REGION

8312 North Main Street

Dayton, Ohio 45415

Tel: (513) 890-5350

TELEX: 288-004

EASTERN

2 Militia Drive

Suite 4 Lexington, Massachusetts 02173

Tel: (617) 861-1136 TWX: 710-321-0187 MID-ATLANTIC

520 Pennsylvania Avenue

Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444 TWX: 510-661-3055

EUROPE

Belgium

Intel Office

216 Avenue Louise

Brussels B1050

Tel: 649-20-03

TELEX: 24814

ORIENT

Japan

Intel Japan Corporation

Kasahara Bldg. 1-6-10, Uchikanda

Chiyoda-ku

Tokyo 101

Tel: (03) 295-5441

TELEX: 781-28426

The INTEL® Bipolar Microcomputer Set is a family of Schottky bipolar LSI circuits which simplify the construction of microprogrammed central processors and device controllers. These processors and controllers are truly microprogrammed in the sense that their control logic is organized around a separate read-only memory called the microprogram memory. Control signals for the various processing elements are generated by the microinstructions contained in the microprogram memory. In the implementation of a typical central processor, as shown below, the microprogram interprets a higher level of instructions called macroinstructions, similar to those found in a small computer. For device controllers, the microprograms directly implement the required control functions.

SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET

The INTEL® 3003 Look-Ahead Carry Generator (LCG) is a high speed circuit capable of anticipating a carry across a full 16-bit 3002 Central Processing Array. When used with a larger 3002 CP Array multiple 3003 carry generators provide high speed carry look-ahead capability for any word length.

The LCG accepts eight pairs of active high cascade inputs (X,Y) and an active low carry input and generates active low carries for up to eight groups of binary adders.

3003 LOOK-AHEAD CARRY GENERATOR

High Performance — 10 ns typical propagation delay

Compatible with INTEL 3001 MCU and 3002 CPE

DTL and TTL compatible

Full look-ahead across 8 adders

Low voltage diode input clamp

Expandable

28-pin DIP

Diagram of a Typical System

Other members of the INTEL Bipolar Microcomputer Set:

3001 Microprogram Control Unit 3002 Central Processing Element 3212 Multi-Mode Latch Buffer 3214 Priority Interrupt Control Unit 3226 Inverting Bi-Directional Bus Driver 3301A Schottky Bipolar ROM (256 x 4) 3304A Schottky Bipolar ROM (512 x 8) 3601 Schottky Bipolar PROM (256 x 4) 3604 Schottky Bipolar PROM (512 x 8)

3003 LOOK-AHEAD CARRY GENERATOR

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
1,7,8,11,18 21,23,27	Y ₀ -Y ₇	Standard carry look-ahead inputs	Active HIGH
2,5,6,10,19 20,24,26	x ₀ -x ₇	Standard carry look-ahead inputs	Active HIGH
17	C _n	Carry input	Active LOW
4,9,12,13,15 16,22,25	C _{n+1} -C _{n+8}	Carry outputs	Active LOW
3	EC _{n+8}	C _{n+8} carry output enable	Active HIGH
28	v _{cc}	+5 volt supply	•
14	GND	Ground	

PACKAGE OUTLINE

3003 LOGIC EQUATIONS

The 3003 Look-Ahead Generator is implemented in a compatible form for direct connection to the 3001 MCU and 3002 CPE. Logic equations for the 3003 are:

$$\overline{C_n + 1} = Y_0 X_0 + Y_0 \overline{C_n}$$

$$\overline{C_n + 2} = Y_1 X_1 + Y_1 Y_0 X_0 + Y_1 Y_0 \overline{C_n}$$

$$\frac{\overline{C_n + 3} = Y_2 X_2 + Y_2 Y_1 X_1 + Y_2 Y_1 Y_0 X_0 + Y_2 Y_1 Y_0 \overline{C}_n}$$

$$\overline{\overline{c_n + 4}} = Y_3 X_3 + Y_3 Y_2 X_2 + Y_3 Y_2 Y_1 X_1 + Y_3 Y_2 Y_1 Y_0 X_0 + Y_3 Y_2 Y_1 Y_0 \overline{\overline{c}_n}$$

$$\overline{\overline{C_{n} + 5}} = Y_{4}X_{4} + Y_{4}Y_{3}X_{3} + Y_{4}Y_{3}Y_{2}X_{2} + Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C}_{n}$$

$$\overline{\overline{c_n + 6}} = Y_5 X_5 + Y_5 Y_4 X_4 + Y_5 Y_4 Y_3 X_3 + Y_5 Y_4 Y_3 Y_2 X_2 + Y_5 Y_4 Y_3 Y_2 Y_1 X_1 + Y_5 Y_4 Y_3 Y_2 Y_1 Y_0 X_0 + Y_5 Y_4 Y_3 Y_2 Y_1 Y_0 \overline{c_n}$$

$$\overline{C_{n} + 7} = Y_{6}X_{6} + Y_{6}Y_{5}X_{5} + Y_{6}Y_{5}Y_{4}X_{4} + Y_{6}Y_{5}Y_{4}Y_{3}X_{3} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{3}Y_{1}Y_{0}X_{0} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C_{h}}$$

 $\overline{C_n + 8}$ = High Impedance State when EC_n + 8 Low

$$C_{n} + 8 = Y_{7}X_{7} + Y_{7}Y_{6}X_{6} + Y_{7}Y_{6}Y_{5}X_{5} + Y_{7}Y_{6}Y_{5}Y_{4}X_{4} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}X_{3} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C}_{n} \text{ when EC}_{n} + 8 \text{ high}$$

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

•	Temperature Under Bias																	. 0	°C to 7	70°C
	Storage Temperature .	•															-	65°C	to +16	30°C
	All Output and Supply V	olta	ges .									•	•					-0.	5V to	+7V
	All Input Voltages			•														-1.0	√ to +5	5.5V
	Output Current																		100	mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

 $T_A = 0^{\circ}C \text{ to } +70^{\circ}C$

SYMBOL	PARAMETER	MIN.	TYP. (1)	MAX.	UNIT	CONDITIONS
v _c	Input Clamp Voltage (AII Input Pins)		-0.8	-1.0	٧	V _{CC} = 4.75V, I _C = -5 mA
I _F	Input Load Current: C _n and EC _n + 8 All Other Inputs		-0.07 -0.9	-0.25 -1.5	mA mA	V _{CC} = 5.25V, V _F = 0.45V
I _R	Input Leakage Current: C _n and EC _n + 8 All Other Inputs			40 100	μΑ μΑ	V _{CC} = 5.25V, V _R = 5.25V
V _{IL}	Input Low Voltage			0.8	٧	V _{CC} = 5.0V
V _{IH}	Input High Voltage	2.0	•		V	V _{CC} = 5.0V
Icc -	Power Supply Current		80	130	mA	V_{CC} = 5.25V, All Y + EC _n + 8 high, All X + C _n low
v _{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V	V _C = 4.75V, I _{OL} = 4 mA
v _{OH}	Output High Voltage (All Output Pins)	2.4	3		V	$V_{CC} = 4.75V$, $I_{OH} = -1$ mA
IOS	Short Circuit Output Current (All Output Pins)	-15	-40	-65	mA	V _{CC} = 5V
IO(off)	Off-State Output Current (C _n + 8)			100 100	μΑ μΑ	V _{CC} = 5.25V, V _O = 0.45V V _{CC} = 5.25V, V _O = 5.25V

NOTE:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 5\%$

SYMBOL	PARAMETER	MIN.	TYP. ⁽¹⁾	MAX.	UNIT
txc	X, Y to Outputs	3	10	20	ns
^t CC	Carry In to Outputs		13	30	ns
t _{EN}	Enable Time, C _n + 8		20	40	ns

NOTE:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

TEST CONDITIONS:

Input pulse amplitude of 2.5V.
Input rise and fall times of 5 ns between 1 and 2 volts.
Output loading is 5 mA and 30 pF.
Speed measurements are made at 1.5 volt levels.

CAPACITANCE(2) TA = 25°C

SYMBOL		PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance	All inputs		12	20	pF
C _{OUT}	Output Capacitance	C _n + 8		7	12	pF

NOTE:

3003 WAVEFORMS

⁽²⁾ This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, $V_{BIAS} = 5.0 \text{V}$, $V_{CC} = 5.0 \text{V}$ and $T_A = 25^{\circ} \text{C}$.

3003 TYPICAL CONFIGURATIONS

The 3003 LCG can be directly tied to the 3001 MCU and a 3002 CP array of any word length. The following figures represent typical configurations of 16- and 32-bit CP arrays. Figures 1 and 2 illustrate use of the 3003 in a system where the carry output (CO) to the 3001 MCU is rippled through the high order CPE slice. Figure 3 illustrates use of the 3003 in a system where tri-state output C_{n+8} is connected directly to the flag input on the 3001 MCU. C_{n+8} is disabled during shift right by decoding that instruction externally, thus multiplexing C_{n+8} with the shift right (RO) output of the low order CPE slice.

Figure 1. Carry Look-Ahead Configuration with Ripple through the Left Slice (16-Bit Array)

Figure 2. Carry Look-Ahead Configuration with Ripple through the Left Slice (32-Bit Array)

3003 TYPICAL A.C. AND D.C. CHARACTERISTICS

ICC vs Temperature

Output Current vs Output Low Voltage

Output Current vs Output High Voltage

X,Y To Outputs vs VCC & Temperature

X,Y To Output Delay vs Load Capacitance

Figure 3. Carry Look-Ahead Configuration with No Carry Ripple through the Left Slice (32-Bit Array)

ORDERING INFORMATION

Part Number C3003

Description Look-Ahead

Carry Generator

Intel Corporation

3065 Bowers Avenue

Santa Clara, California 95051

Tel: (408) 246-7501 TWX: 910-338-0026

Telex: 34-6372

WESTERN

1651 East 4th Street

Suite 228

Santa Ana, California 92701

Tel: (714) 835-9642

TWX: 910-595-1114

MID-AMERICA

6350 L.B.J. Freeway

Suite 178

Dallas, Texas 75240 Tel: (214) 661-8829

TWX: 910-860-5487

GREAT LAKES REGION 8312 North Main Street

Dayton, Ohio 45415

Tel: (513) 890-5350

TELEX: 288-004

EASTERN

2 Militia Drive

Suite 4

Lexington, Massachusetts 02173

Tel: (617) 861-1136 TWX: 710-321-0187 MID-ATLANTIC

520 Pennsylvania Avenue

Suite 102

Fort Washington, Pennsylvania 19034

Tel: (215) 542-9444

TWX: 510-661-3055

EUROPE

Belgium

Intel Office

216 Avenue Louise

Brussels B1050

Tel: 649-20-03

TELEX: 24814

ORIENT

Japan

Intel Japan Corporation

Kasahara Bidg. 1-6-10, Uchikanda

Chivoda-ku

Tokyo 101

Tel: (03) 295-5441

TELEX: 781-28426