Chapter 1-Review

1. 线性方程组 Systems of Linear Equations (Linear System)

[P3]

关键词: coefficient 系数[P2]; constant term 常数(项)[讲义-P1]; linear equation 线性方程 [P2]; variable 未知数(或变元)

有 m 个方程 n 个未知数 $(x_1,x_2,...x_n)$ 的线性方程组可表示为:

- 1) $a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n = b_i (1 \le i \le m)$
- 2) $x_1a_1 + x_2a_2 + ... + x_na_n = b(a_1, a_2, ...a_n, b 为 m 维列向量)$
- 3) Ax=b (A 是 $m \times n$ 矩阵; x, b 为 m 维列向量)
- 4) Augmented matrix(增广矩阵)

 $(其中第 j(1 \le j \le n)$ 列是变元 x_i 的系数)

2. 线性方程组解的情况(Solution Status)

[P4]

- 1) No solution 无解
- 2) Has Solution 有解
 - a) Exactly one solution (unique solution)
- 唯一解
- b) Infinitely many solutions 无穷多解

3. 阶梯形 (Echelon Forms)

[P14]

关键词: leading entry 先导元素 [P14]; pivot position 主元位置[P16];

- 入庭別: leading chity ルサルボ [i 14], pivot position エルロューロー 10],
 - 3 conditions of echelon form matrix 阶梯形矩阵的三个条件(缺一不可):
 - a) A zero row is not above on any nonzero row 所有非零行都在零行上部
 - b) Each leading entry of a row is on the right of the leading entry of the previous row 每行的先导元素都在上一行先导元素的右边
 - c) In each column, an entry below the leading entry is 0 与先导元素同列且在其下部的元素全为 0
- 2) 2 additional conditions of Reduced Echelon Forms 简化阶梯形的额外两个性质:
 - a) The leading entry of each nonzero row is **I** 每一非零行的先导元素都是 1

注: 与线性方程组结合:

$$\begin{cases} x_1 &= 1 + x_2 - x_3 \\ x_4 &= -1 \end{cases}$$

4. 解的存在性与唯一性定理 (Theorem 2. Existence and Uniqueness Theorem)

[P24]

关键词: pivot column 主元列[P16]; echelon form 阶梯形[P16];

- lackbox NO $[0\ 0\ ...\ 0\ |\ b_i]$ $b_i \neq 0$ \equiv Has solution
 - No free variables ~ unique solution
 - > >1 free variable ~ infinitely many solutions

5. 齐次线性方程组非零解的条件(Condition of Homogeneous System Having [P50] Non-Trivial Solution)

关键词: homogeneous system 齐次线性方程组[P50] ; Ax = 0[P50]; non-trivial solutions 非零解/ 非平凡解[P51]; free variable 自由变量[P20] ;

Homogeneous system has non-trivial solutions 齐次线性方程组有非零解 ~ at least one

free variable 至少有一个自由变量

注:结合简化阶梯形采用反证法轻松搞定!

Additionally, 此外: if $r = \#\{pivot positions\}$, $p = \#\{free variables\}$, $n = \#\{variables\}$ then r+p = n,

#{} - number of {ζ} (ζ的个数)

注:看简化阶梯形

- 6. 非齐次线性方程组解的结构定理(Structure of Solution Set of [P53] Nonhomogeneous System)
- 关键词: nonhomogeneous system 非齐次线性方程组[P50];

Let v_0 be a solution of a nonhomogeneous system Ax = b.

Let H be the set of general solutions of the corresponding homogeneous system Ax = 0. Suppose the solution set of Ax = b is S

Then $S = H + v_0$

如果 v_0 是非齐次线性方程组 Ax = b 的一个解,H 是对应齐次线性方程组 Ax = 0 的通解。(Ax = 0 也称为 Ax = b 的导出组)

则 Ax = b 的通解是 $S = H + v_0$

注: Proof

Apparently, $\forall h \in H$, $(h+v0) \in S$;

so,
$$H\subseteq S$$
; (1)

Now, $\forall v \in S$, $v \cdot v_0 \in H$, since $A(v \cdot v_0) = Av \cdot Av_0 = b \cdot b = 0$;

Because $v - v_0 + v_0 \in H + v_0$

Consequently: $v \in H + v_0$ and thus $S \subseteq H$ (2)

Given (1) and (2), we now have S = H.

E.g.: (Examples 5.1 and 5.2)

Ax = 0:

$$\left\{ \begin{array}{ccccccccc} x_1 & -x_2 & +x_4 & +2x_5 & = & 0 \\ -2x_1 & +2x_2 & -x_3 & -4x_4 & -3x_5 & = & 0 \\ x_1 & -x_2 & +x_3 & +3x_4 & +x_5 & = & 0 \\ -x_1 & +x_2 & +x_3 & +x_4 & -3x_5 & = & 0 \end{array} \right.$$

$$\mathbf{H} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} c_1 - c_2 - 2c_3 \\ c_1 \\ -2c_2 + c_3 \\ c_2 \\ c_3 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Ax = b:

$$\begin{cases} x_1 & -x_2 & +x_4 & +2x_5 & = & -2 \\ -2x_1 & +2x_2 & -x_3 & -4x_4 & -3x_5 & = & 3 \\ x_1 & -x_2 & +x_3 & +3x_4 & +x_5 & = & -1 \\ -x_1 & +x_2 & +x_3 & +x_4 & -3x_5 & = & 3 \end{cases}$$

$$\mathbf{V}_{o} = \begin{bmatrix} -2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{S} = \mathbf{v_0} + \mathbf{H} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2 + c_1 - c_2 - 2c_3 \\ c_1 \\ 1 - 2c_2 + c_3 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_1 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

7. 线性组合(Linear Combination)

[P32]

关键词: vectors 向量 v_{ν} $v_{\nu}...v_{\rho}$ [P32]; scalar 标量 c_{ν} $c_{\nu}...c_{\rho}$ [P29];

If $y = c_1 v_1 + c_2 v_2 + ... + c_p v_p$

Then vector y is called a linear combination of the vectors v_1 , v_2 ... v_p

注: 与线性方程组结合

 $b = x_1 a_1 + x_2 a_2 + ... + x_n a_n$ $(a_1, a_2, ...a_n, b)$ 为向量; $x_1, x_2, ...x_p$ 为标量) 有解 $\equiv b$ 是 $a_1, a_2, ...a_n$ 的线性组合

8. 线性无关/相关(Linear Independent / Dependent)

[P65]

关键词: trivial solutions 非零解/非平凡解[P51]; \mathbb{R}^m m 维空间 [P28];

1) Definition [P65]

Vector set $\{a_1, a_2, ... a_n\}$ is linear dependent if $x_1a_1 + x_2a_2 + ... + x_na_n = 0$ has only the trivial solution. $(x_1x_2...x_n \text{ are all } 0)$ 如果方程组 $x_1a_1 + x_2a_2 + ... + x_na_n = 0$ 只有零解 $(x_1x_2...x_n \text{ 全是 } 0)$,则 a_1 , $a_2, ... a_n$ 线性无关。

Vector set $\{a_1, a_2, ... a_n\}$ is linear independent if $x_1a_1 + x_2a_2 + ... + x_na_n = 0$ if $x_1x_2 ... x_n$ are not all 0. 若方程组 $x_1a_1 + x_2a_2 + ... + x_na_n$ 有非零解 $(x_1x_2 ... x_n \mathbf{\Lambda} \mathbf{\Phi} \mathbf{E} \mathbf{\theta})$,则向量组 $a_1, a_2, ... a_n$ 线性相关。

2) Theorem 7 Characterization of Linearly Dependent 定理 7 线性相关和线性组合的关系定理 [P68]

Vector set $\{a_1, a_2, ... a_n\}$ *is linear dependent* ~ *Exist vector* $a_i (1 \le i \le n)$, *which is a linear combination of the other vectors*

向量组 $\{a_1, a_2, ...a_n\}$ 线性相关 ~ 存在某向量 $a_i(1 \le i \le n)$ 是其它向量的线性组合

注:由线性相关定义 $x_1a_1 + x_2a_2 + ... + x_na_n = 0$, $x_1x_2 ... x_n$ 不全是 0 则线性相关。设 $x_i \neq 0$ ($1 \leq i \leq n$),把 x_ia_i 移到等式另一边 $x_ia_i = -(x_1a_1 + x_2a_2 + ... + x_na_n)$,然后两边除以 x_i (因为 $x_i \neq 0$) 即得证向量 a_i ($1 \leq i \leq n$)是其它向量的线性组合(还不懂?看线性组合定义 100 遍③)。

3) Theorem 8 Determine Linearly Dependency by Investigating Vector Dimension and Number 由向量个数与维数判断相关性定理[P68]

Vector set $\{a_1, a_2, ... a_n\}$ in \mathbb{R}^m is linear dependent if n > m r a_i $(1 \le i \le n)$, which is a linear combination of the other vectors

如果向量组中向量个数 n 大于向量的维数 m,则向量组线性相关。

注:不知如何证明?看本表第5项100遍②。

4) Theorem 9 Vector set $\{a_1, a_2, ..., a_n\}$ is linear dependent if there exists $a_i = 0$ $(1 \le i \le n)$

 $\forall \{a_1, a_2, \dots a_n\}$, $\Box a_i = 0$ ($1 \le i \le n$) $\Rightarrow \{a_1, a_2, \dots a_n\}$ 线性相关

注:还是不知如何证明?看本格上面的定义 100 遍 。

9. 等价定理 (Theorem 4)

[P43

关键词: \mathbb{R}^m m 维空间 [P28]; subset of \mathbb{R}^m spanned (or generated) by v_{ν} $v_{\nu}...v_{\rho}$ 由 v_{ν} $v_{\nu}...v_{\rho}$ 张成(或生成的)的 \mathbb{R}^m 的子空间[P35];

- 1) For each b in \mathbb{R}^m , the system Ax = b has a solution 对于 \mathbb{R}^m 中的每一个向量 b, 线性方程组 Ax = b 都有一个解
- 2) Each b in \mathbb{R}^m is a linear combination of the columns of A. \mathbb{R}^m 中的每一个向量 b 都是矩阵 A 的列向量的线性组合
- 3) The columns of A span \mathbb{R}^m 矩阵 A 的列向量生成 \mathbb{R}^m
- 4) The matrix A has a pivot position in every row. 矩阵 A 每一行都有一个主元位置
- 注: 1)-3) 根据定义显然成立; 4) 可用定理 2 采用反证法
- 10. 补充齐次方程组基础解系定理(Additional Theorem of basic solutions of a [P43] homogenous linear system)

关键词: basic solutions (基础解系) [讲义 P17 定理 5.3]

The basic solutions of any homogeneous linear system are linearly independent.

齐次线性方程组的基础解系中各个向量是线性无关的

注: 先看本表第6项齐次方程组的例子

Proof:

Suppose $v_1 v_2 ... v_p$ are the basic solutions of a homogeneous linear system Ax = 0. Then, we know that there are p free variables Ax = 0 (为什么,看本表第5 项)

Let $c_1v_1 + c_2v_2 + ... + c_nv_p = v$, where $c_1, c_2, ... c_n$ are scalars.

We know that in each vector v_i ($1 \le i \le p$), there is a 1 corresponding to the position of the i-th free variable. In addition, each element in that position in the other vectors is 0.

$$\begin{bmatrix} * \\ * \\ \vdots \\ 1 \leftarrow Position of the i-th free variable \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Consequently, the element in this position of the vector v is c_i . Therefore, for vector v to be a 0 vector, c_1 , c_2 , ... c_n must all be 0.

matrix algebra	[P105]	矩阵代数
matrix operations	[P107]	矩阵的运算
main diagonal of matrix	[P107]	矩阵的主对角线
diagonal matrix	[P107]	对角矩阵
identity matrix I _n	[P45+	n × n 单位矩阵
	P107]	
matrix addition	[P107]	矩阵加法
scalar multiplication	[P109]	数乘 (矩阵)
matrix multiplication	[P109]	矩阵乘法
If A is an m \times n matrix, and B is an n \times p matrix	[P110]	A: m × n 矩阵
with columns b $\{b_1b_p\}$, then the product of AB is		B: n × p 矩阵, 矩阵的各列向量;
the m × p matrix whose columns are Ab ₁ Ab _p		$\{b_1b_p\},$
		$AB = [Ab_1 Ab_2Ab_p]$
The vector in column j of AB is a linear	[P110]	矩阵 AB 的第 j 列 V _j 都是 A 的所有
combination of all the column vectors $\{a_1 a_n\}$ of		向量(a ₁ a _n)的线性组合。(其中各个
A (weights are the entries of the corresponding		权是 B 中对应列 b _j 的元素)
<i>b_j</i> column of B)		
Theorem . Rules for Matrix Operation	[P108+	矩阵运算规则
A: m × n matrix	P113]	A: m × n矩阵
B, C: matrices whose sizes in each row of the		B, C: 在每行中,尺寸都符合那行
following allow the addition and multiplication in		法和乘法定义的矩阵
that row		
k, t: scalar		k, t: 标量

1) Addition and scalar multiplication A + B = B + A(A + B) + C = A + (B + C)A + 0 = A

1) 矩阵加法和数乘

2) 矩阵乘法

$$k(A + B) = kA + kB$$

 $(k+t) A = kA + tA$

k(tA) = (kt) A

2) Multiplication

A(BC) = (AB)C

A(B+C) = AB + AC

(B+C)A = BA + CA

k(AB) = (kA) B = A (kB)

 $I_m A = A = A I_m$

commute [P113] 可交换 (矩阵乘法)

[P114]

Warnings:

In general AB ≠ BA

 $AB = AC \not\equiv B = C$

 $AB = 0 \neq A = 0 \text{ or } B = 0$

矩阵的转置 transpose of a matrix [P115]

Theorem 3 Transposition

A: m × n matrix

A^T: transpose of matrix A

B: matrix whose size in each row of the following allow the addition and multiplication in that row

k: scalar

$$(A^{T})^{T} = A$$

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(kA)^{T} = k A^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

invertible	[P119]	(矩阵)可逆的
matrix inverse	[P119]	矩阵的逆
singular matrix	[P119]	奇异矩阵
nonsingular matrix	[P119]	非奇异矩阵

Theorem 4 necessary and sufficient condition for [P119] a 2 x 2 matrix is invertible

Let A = $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, If ad-bc \neq 0, then A is invertible

and
$$A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

可逆的充要条件 ad-bc \neq 0

或记作 $|A| \neq 0$

二阶方阵 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Theorem 4, A is invertible Iff det A \neq 0

(where det A = ad-bc)

Theorem 5

If A is an invertible n \times n matrix, then for each b in \mathbb{R}^n , the equation Ax = b has the unique solution x = $A^{-1}b$

[P120] 定理 5 系数为 n 阶可逆方阵 A 的线性方程组 Ax=b 的解的情况定理

若 A 是一个 n 阶可逆矩阵,那么对于 n 维空间 \mathbb{R}^n 中的每一个列向量 b 方程组 Ax = b都有唯一解 $x = A^{-1}b$

Theorem 6 Rules of

A, B: n × n invertible matrices

[P121] 定理 6 矩阵的逆运算规则

$$(A^{-1})^{-1} = A$$

 $(AB)^{-1} = B^{-1}A^{-1}$
 $(A^{T})^{-1} = (A^{-1})^{T}$

elementary matrix

If an elementary row operation is performed on matrix A, the resulting matrix can be written as EA, where the m x m matrix E is created by performing the same row operation on I_m

[P122] 初等矩阵

[P123] 左乘初等矩阵等价于 进行一次与初等矩阵一样的行初等 变换

Proof idea:

Prove that each of the 3 kinds of row operations, if

performed on a matrix A ama ama is the same as left multiply the three corresponding elementary matrix.

Ex. : A $r_i \leftrightarrow r_i$ = E_{ij} A, where E_{ij} = I $r_i \leftrightarrow r_i$

Theorem 7.

An nxn matrix A is invertible iff A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transform into A^{-1}

[P123] 定理 7 可逆矩阵判断定理

一个 nxn 矩阵 A 是可逆的当且仅当 A 行等价于 I_n (就是说 A 可以行化 简成 I_n)。并且,在这种情况下,任 何一系列把 A 行化简成 I_n 的操作,都可以把 I_n 转化成 A^{-1}

[P124] 用初等行变换求逆矩阵:

把增广矩阵 $[A \mid I]$ 化简,如果 A 行等价于单位阵 I,则 $[A \mid I]$ 能化简成 $[I \mid A^{-1}]$,否则 A 不可逆。

Algorithm for finding A⁻¹:

Row reduce the augmented matrix $[A \mid I]$, if A is row equivalent to I, then $[A \mid I]$ is row equivalent to $[I \mid A^{-1}]$. Otherwise, A is not ivertible.

Theorem 8. Invertible matrix theorem

The following statements are equivalent.

- a. A is an invertible matrix.
- b. A is row equivalent to the n x n identity matrix.
- c. A has n pivot positions.
- d. The equation Ax = 0 has only the trivial

[P129] 可逆矩阵性质定理

- 下列断言等价
- a. A 是可逆的
- b. A 行等价于一个 n 阶单位阵。
- c. A 有 n 个主元位置。
- d. 矩阵方程 Ax = 0 仅有平凡解(零

solution.		解)。
e. The columns of A form a linearly independent set.	e.	A 的列形成一个线性无关集。
f. The linear transformation $x \mapsto Ax$ is one-to-one.	f.	线性变换 $x \mapsto Ax$ 是一对一的。
g. The equation Ax= b has only one solution for	g.	对于 \mathbb{R}^n 中任意的一个向量 b,矩阵方
each b in \mathbb{R}^n .	J	程 Ax= b 有唯一解。
h. The columns of A span \mathbb{R}^n .	h.	A 的列张成 \mathbb{R}^n .
i. The linear transformation $x\mapsto Ax$ maps	i.	线性变换 $x \mapsto Ax$ 把 \mathbb{R}^n 映射到 \mathbb{R}^n 。
\mathbb{R}^n to \mathbb{R}^n .	j.	存在一个 n x n 矩阵 C 使 <i>CA = I</i> .
j. There is an n x n matrix C such that $CA = I$.	k.	7
k. There is an n x n matrix D such that $AD = I$.	l.	A^T 是可逆的。
I. A^T is an invertible matrix.		
partitioned matrix (block matrix)	[P134]	分块矩阵
multiplication of partitioned matrices	[P135]	分块矩阵的乘法
Partitions of A and B should be conformable for	[P136]	A 和 B 的分块矩阵要相乘的话, A
block multiplication		和B的分法应遵从矩阵乘法定义
The column partition of A matches the row		A 的列分法应与 B 的行分法一致
partition of B		(左边大小列 = 右边大小行)
Theorem 10 column-row expansion of AB	[P137]	定理 10 AB 乘法的列行展开
If A is an m x n matrix and B is an n x p matrix then		
$AB = [col_1(A) col_2(A) \dots col_n(A)] \begin{bmatrix} row_1(B) \\ row_2(B) \\ \dots \\ row_n(B) \end{bmatrix} = $ $col_1(A) row_1(B) + \dots + col_n(A) row_n(B)$		
subspace	[P168]	
column space of A	[P169]	A 的列空间
ColA = all linear combinations of the columns of A	[6103]	ColA = A 的所有列的线性组合形成的
$= k_1 a_1 + + k_n a_n (k_{i(1 \le i \le n)} \in \mathbb{R})$		向量的集合
null space of A	[P169]	A 的零空间
Nul A = all solutions to the homogeneous equation	[. 105]	Nul A = 齐次线性方程组 Ax = 0 的
Ax = 0		通解
Theorem 12. Theorem for null space of A	[P170]	A 的零空间定理
The null space of an m x n matrix A is a subspace		$m \times n$ 矩阵 A 的零空间是 \mathbb{R}^n 的子空间
of \mathbb{R}^n .		(这是因为 Ax = 0 的解向量是 n 维
		的,所以它是 n 维空间的子空间)
		也就是说,有着 m 个方程 n 个未知数
Equivalently, the set of all solutions to a system		的方程组 $Ax=0$ 的通解是 \mathbb{R}^n 的子空间.
Ax= 0 of m homogeneous linear equations in n		
unknowns is a subspace of \mathbb{R}^n .		
basis	[P170]	基

Theorem 13. Theorem for column space of A	[P172]	A 的列空间定理
The pivot columns of a matrix A form a basis for		A 的主元列形成了 A 的列空间的一
the column space of A		个基。
coordinate vector of x (relative to B)	[P176]	X 相对于 B 的坐标向量
		(对照解析几何中,相对于 x 轴,y 轴,z
		轴的坐标)
dimension of a subspace	[P177]	子空间的维数
The dimension of a nonzero subspace H, denoted		非零子空间的维数,用 dim H 表示,
by dim H, is the number of vectors in any basis for		它是 H 的任意一个基中,向量的个
H. The dimension of the zero subspace is 0.		数。零子空间的维数定义成0
		(注意: 与向量的维数区别!)
rank	[P178]	秩
Theorem 14. The Rank Theorem		定理 14 矩阵的秩定理
If a matrix A has n columns then rank A + dim Nul		如果矩阵 A 有 n 列,则
A = n		A 的秩+ A 的零空间的维数 = n
		(回忆第一章 r+ p = n, 不知道? 罚
		你看第一章秘籍 100 遍)
		r是 主元列的个数
		p 是自由变量的个数,Ax=0 有多少自
		由变量,就有多少线性无关的基础解
		向量,也就是说 A 的零空间的维数是
		p.
Theorem the invertible matrix theorem	[P179]	可逆矩阵性质定理 续
m. The columns of A form a basis of \mathbb{R}^n .		m. A 的列向量形成了 \mathbb{R}^n 的一个基
		n. Col A = \mathbb{R}^n .
n. Col A = \mathbb{R}^n .		o. dim Col A = n.
o. dim Col A = n.		p. rank A = n.
		q. Nul $A = \{0\}$
p. rank A = n.		, ,
q. Nul A = {0}		r. dim Nul A = 0
•		r. dim Nul A = 0 注: 这是因为 A 可逆, A 可以初等变
q. Nul A = {0}		r. dim Nul A = 0 注:这是因为 A 可逆, A 可以初等变换为单位阵,单位阵地列向量都线性
q. Nul A = {0}		r. dim Nul A = 0 注: 这是因为 A 可逆, A 可以初等变换为单位阵,单位阵地列向量都线性 无关。因为初等变换不改变线性相关
q. Nul A = {0}		r. dim Nul A = 0 注:这是因为 A 可逆, A 可以初等变换为单位阵,单位阵地列向量都线性无关。因为初等变换不改变线性相关性,则说明 A 的 n 个列向量也都线性
q. Nul A = {0}		r. dim Nul A = 0 注: 这是因为 A 可逆, A 可以初等变换为单位阵,单位阵地列向量都线性无关。因为初等变换不改变线性相关性,则说明 A 的 n 个列向量也都线性无关。 Ax=0 只有零解。
q. Nul A = {0}		r. dim Nul A = 0 注:这是因为 A 可逆, A 可以初等变换为单位阵,单位阵地列向量都线性无关。因为初等变换不改变线性相关性,则说明 A 的 n 个列向量也都线性

Chapter 3		
determinant	[P187	7] 行列式
(i,j)-cofactor	[P165	<u>- </u>
(-1) ^{i+j} det A _{ij}	[. 200	
cofactor expansion	[P165	·] 余因子展开式
Theorem 2 det of a triangular matrix	[P189) 定理 2 三角矩阵的行列式定理
If A is a triangular matrix, then det A is the produc	t	三角矩阵的行列式是该矩阵的主对
of the entries on the main diagonal of A		角线上元素的乘积。
-		
Theorem 3 row operations on determinant	[P192	2] 定理 3 矩阵行变换与对应行列式的
•	_	<u> </u>
a. If a multiple of one row of A is added to)	a. 把 A 的某一行的倍数加到另一行
another row to produce a matrix B, then det E		得到矩阵 B,则 detB = detA
= det A		b. 若 A 的两行互换得到矩阵 B,则
b. If two rows of A are interchanged to produce	9	detB = - detA
B,then detB = - detA		c. 若 A 的某一行乘以 k 得到矩阵 B,
c. If one row of A is multiplied by k to produced	t	detB = k detA
B, then detB = k detA		
, and the second		
Theorem 4 use determinant to investigate	[P194]	定理 4 用行列式判可逆
whether matrix is invertible		
A square matrix A is invertible iff $\det A \neq 0$		一个方阵 A 可逆当且仅当 det A ≠0
Theorem 5 determinant of transpose of A	[P196]	定理 5 转置矩阵的行列式
If A is an n x n matrix, then det A^T = det A		一个方阵 A, 它的转置矩阵的行列式和
		它本身的行列式值相等。
Theorem 6 Multiplicative Property	[P196]	定理 6 矩阵乘法的行列式
If A and B are an n x n matrices, then		方阵 A 和 B 乘积的行列式等于 A 的行
det AB = (det A) (det B)		列式乘以B的行列式
		det AB = (det A) (det B)
Theorem 7 Cramer's Rule	[P201]	定理 7 克莱姆法则
Let A be an invertible n x n matrix. For any b in		设 A 是一个可逆 n 阶方阵,对于 \mathbb{R}^n 中任
\mathbb{R}^n , the unique solution x of Ax = b has entries		意向量 b, 方程组 Ax=b 的唯一解可用下
given by		面的方法计算:
$\det A_i(b)$		$det A_i(\mathbf{b})$
$x_i = \frac{\det A_i(b)}{\det A}$		$x_i = \frac{\det A_i(\mathbf{b})}{\det A}$
adjugate	[P203]	伴随矩阵
Theorem 8 An Inverse Formula		定理8 逆矩阵计算公式
Let A be an invertible n x n matrix. Then		$A^{-1} = \frac{1}{\det A} adjA$
$A^{-1} = \frac{1}{\det A} adjA$		$A = \frac{1}{\det A} uu_{jA}$
$\frac{A}{\det A}$ uuj A		

Chapter 4		
Vector space	[P215]	向量空间
Subspace	[P220]	子空间
Zero Subspace	[P220]	零子空间
Subspace spanned by {v1vp}	[P221]	由向量{v1vp}生成(张成)的子空间
Null space of an m x n matrix A (written as Nul	[P226-	mxn矩阵A的零空间(注意与零子空间
A)	227]	区别开来)。
Nul A is a subspace of R ⁿ		
	_	
Column space of an m x n matrix A (written as	[P229]	矩阵 A 的列空间 记作 Col A
Col A)		Col A 是 R^m 的子空间
Col A is a subspace of R ^m		++
Basis	[P238]	基 (K) (K) (K) (K) (K) (K) (K) (K) (K) (K)
Pivot columns of A form a basis for Col A	[P241]	矩阵 A 的主元列形成了 Col A 的基
Coordinates of x relative to the basis B	[P246]	向量 x 相对于基 B 的坐标
Coordinate vector of x	[P247]	向量 x 相对于基 B 的坐标向量
Coordinate mapping	[P247]	坐标映射
Dimension	[P256-	维数
	257]	
Rank	[P265]	秩
rank A + dim Nul A = n		
Invertible matrix theorem	[P267]	可逆矩阵的秩、维数定理
Change of basis	[P273]	基的变换
Change of Sasis	[. 275]	至明人从
B ={ b_1 ,, b_n }, C = { c_1 ,, c_n }, given [x] _B		设 B ={b ₁ ,, b _n }, C = {c ₁ ,,c _n }, [x] _B 是 x 相
(coordinates of vector x relative to the basis B),		对于 B 上的坐标,并且[b ₁] _c ,, [b _n] _c 是
and $[b_1]_c$,, $[b_n]_c$ (coordinates of vectors b_1 ,,		基B相对于C的坐标。
b _n relative to the basis C);		$[\mathbf{x}]_{C} = \mathbf{C} \stackrel{P}{\leftarrow} \mathbf{B}[\mathbf{x}]_{B}$
Then: $[x]_C = C \stackrel{P}{\leftarrow} B[x]_B$		其中C←B = [[b ₁] _C , , [b _n] _C]
$C \stackrel{P}{\leftarrow} B = [[b_1]_C, \dots, [b_n]_C]$		

Chapter 5		
Eigenvector; Eigenvalue	[P303]	特征向量; 特征值
Eigenvectors correspond to distinct eigenvalues		对应于不同特征值的特征向量线性无关
are linearly independent	[P307]	
n x n matrix A is invertible iff:	[P312]	nxn 矩阵 A 是可逆的,当且仅当:
0 is not an eigenvalue or		0 不是特征值
det A ≠ 0		det A ≠ 0
Characteristic equation:	[P313]	特征方程
$\det (\mathbf{A} - \lambda \mathbf{I}) = 0, \text{ or written as } \mathbf{A} - \lambda \mathbf{I} = 0$		
Similar matrix have the same characteristic	[P317]	相似矩阵具有相同的特征值
polynomial and eigenvalues		
Diagonalization	[P320]	对角化
A is diagonalizable iff A has n independent		A 是可对角化的当且仅当 A 有 n 个线性
eigenvectors		无关的特征向量。
An n x n matrix with n distinct eigenvalues is	[P323]	
diagonalizable.		

Chapter 6		
Inner product / dot product	[P375]	内积 点积
Length of vector	[P376]	向量长度
Unit vector	[P377]	单位向量
Normalizing	[P377]	单位化
Distance between two vectors	[P378]	向量之间的距离
Orthogonal	[P379]	正交的
u•v = 0		u•v = 0
Orthogonal complement	[P380]	正交补
Orthogonal basis	[P385]	正交基
Orthogonal projection	[P387]	正交投影
Orthogonal projection of y onto u		Y在u上的正交投影
Orthonormal	[P389]	标准正交
Orthonormal set		标准正交集合
Orthonormal basis		标准正交基
Orthogonal decomposition	[P395]	正交分解
Gram-Schmidt process	[P402]	格莱姆-施密特方法
QR factorization	[P405]	QR 分解
Least-Squares Problem	[P410]	最小二乘法
Inner product space	[P428]	内积空间
Cauchy-Schwarz Inequality	[P432]	柯西-施瓦茨不等式
Triangle Inequality	[P433]	三角不等式

Chapter 7		
Symmetric matrix	[P450]	对称矩阵
Orthogonally diagonalizable	[P450]	可正交对角化
Spectral decomposition	[P453]	谱分解
Quadratic form	[P456]	二次型
Matrix of quadratic form	[P456]	二次型的矩阵
Change of variable	[P457]	变量变换
Principal axes theorem	[P458]	主轴定理
Positive definite	[P461]	正定
Negative definite		负定
Indefinite		不定
Positive semidefinite	[P461]	半正定
Negative semidefinite		半负定
Constrained optimization	[P463]	条件优化 (注意优化方法)