# **Security** in Emergency Situations

Jun Yi, Yiming Peng

### We Need Protection



### **Project Outline**

- Login and different authorities
- Communication encrypted based on Kerberos Algorithm
- Database encryption and certification
- \* Friendly UI for server administrator
- Security token for administrator login
- \* Three levels of security protection
- \* Security test using different attacks

# **Security Levels**

#### **Purpose**

A compromised strategy to balance between responding time (server resources) and security provided.

| Level  | Access Control                                                                                                                                       | Transmit Encryption                                                                       | Database Protection                                                                  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Low    | Tips:  • Each incident has a security level separated from others                                                                                    |                                                                                           |                                                                                      |  |  |  |  |  |  |
| Mediun | <ul> <li>The security level of an incident is decided by user when created</li> <li>Once determined, the security level cannot be changed</li> </ul> |                                                                                           |                                                                                      |  |  |  |  |  |  |
| High   | <ul><li>Username</li><li>Password</li><li>Authentication</li><li>Authority</li></ul>                                                                 | <ul> <li>Encrypted by a session key</li> <li>Authenticator and ticket required</li> </ul> | <ul><li>Encrypted</li><li>Key never stored with data</li><li>Certification</li></ul> |  |  |  |  |  |  |

# **Client Application**





## **Security Level Low**



User only has to input a username

Password input field is invalidated

Request is sent to data server in plaintext

Authority is checked in Server

I'm Yiming, I want POI List

You're authority is 2, I can give you these POIs...



**Data Server** 



### Security Level Low

#### Anonymous

- Anonymous login is an option to the server admin
- Once it's turned on, user can input ANY username to receive data and is treated as authority 0 in server
- Only authenticated users can send data

#### Summary

- The simplest login procedure for users
- Do not always need to create an account
- Forgery is easy when you get someone's username
- Eavesdropping is also easy

Best used at: Alert broadcast, EMT training, etc.



# **Security Level Medium**



### **Security Level Medium**



#### **Summary**

- Kerberos Server and Data Server are separated
- Both user and server are authenticated through Kerberos procedure
- All communication are encrypted by a session key
- User's authority is passed from AS to Data Server through ticket
- In both GET and SEND processes, server will check the ticket and authenticator
- Data is stored in plaintext in the database

Best used at: Natural disaster, casual incidents, etc.

# Security Level High



## Security Level High

#### Summary

- Database is encrypted using AES
- Encryption key is never stored in the data server
- The data server is able to decrypt the data only when an authenticated user brings a ticket
- Certificate code helps detect the unauthorized changes of data
- An attacker cannot understand or forge anything even if he has the full access to the Data Server
- Most security resources can be put on Kerberos Server rather than Data Server

Best used at: Terrorist attack, aliens attack, etc.



### **Administrator App**



Allows the administrator to manage the server

#### **User Management**

- View all the users and their authorities
- Assign them different authorities
- Delete a user (to be implemented)

#### **Incident Management**

- View all the incidents
- Lock the incident to make it read-only
- Unlock the incident to make it editable

Server Settings

### **Administrator Login**

Authenticate Code (Security Token)



- A 6 or 8 digits number code that is generated and refreshed by the client every 30 seconds
- The code is unique to every device and every user
- Server generates the same code separately and verifies the client's code before checking the password
- Administrator should use his own device in addition to having the password



### **Authenticate Code**



### **Authenticate Code**

Code Calculation



#### Summary

#### ❖ Seed

- Only generated once when the app is used at the first time
- Stored secretly in local and is not accessible for the user

#### Authenticate Code

- Is calculated separately and is never transmitted through network
- Every code can only be used once
- Is changed every 30 seconds to prevent replay attack
- MAC Address ensures one Seed is fixed to only one device
- An attacker cannot log into the server unless he/she gets both the device and password

### Let's Attack

#### Sample Incidents

- Three Incidents with the same content but different security level from low to high
- Each incident contains: 2 landmarks, 4 victims, 1 responder and 1 commander

#### Sample Users

- A user named Apple with authority Victim
- A user named Android with authority Commander

#### Sample Attacks

- Username masquerading
- Network sniffing
- Data Server intrusion
- Brute-Force

#### Target Data

| Name        | Location |
|-------------|----------|
| Landmark 1  | Area 1   |
| Landmark 2  | Area 2   |
| Victim 1    | Area 5   |
| Victim 2    | Area 5   |
| Victim 3    | Area 7   |
| Victim 4    | Area 10  |
| Responder 1 | Area 5   |
| Commander   | Area 15  |

Server Setting

Anonymous:

Allowed

## **Username Masquerading**

Security Level Low





Security Level Medium and High



Password is able to protect user's account from masquerading and offers authentication to server

# **Network Sniffing**

#### Wireshark

- A software that allows user to see all traffic visible on the network
- Can be installed in the server, the router or other workstations in the same LAN (IP Spoofing)
- In the test, we login as the user Android and try to get all POIs



# **Network Sniffing**



## **Network Sniffing**



### **Data Server Intrusion**



#### Security Level Low and Medium

|   | ld | POIType | POIName     | POILocation | Sec | rotlev | el Inciden | tld Certificate |             |             |            |             |
|---|----|---------|-------------|-------------|-----|--------|------------|-----------------|-------------|-------------|------------|-------------|
| 1 | 57 | 0       | Landmark 1  | Area 1      |     | ld     | POIType    | POIName         | POILocation | SecretLevel | IncidentId | Certificate |
| 2 | 58 | 0       | Landmark 2  | Area 2      | 1   | 66     | 0          | Landmark 1      | Area 1      | 0           | 20         | NULL        |
| 3 | 59 | 1       | Victim 1    | Area 5      | 2   | 67     | 0          | Landmark 2      | Area 2      | 0           | 20         | NULL        |
| 4 | 60 | 1       | Victim 2    | Area 5      | 3   | 68     | 1          | Victim 1        | Area 5      | 1           | 20         | NULL        |
| 5 | 61 | 1       | Victim 3    | Area 7      | 4   | 69     | 1          | Victim 2        | Area 5      | 1           | 20         | NULL        |
| 6 | 62 | 1       | Victim 4    | Area 10     | 5   | 70     | 1          | Victim 3        | Area 7      | 1           | 20         | NULL        |
| 7 | 64 | 2       | Responder 1 | Area 5      | 6   | 71     | 1          | Victim 4        | Area 10     | 1           | 20         | NULL        |
| 8 | 65 | 3       | Commander   | Area 15     | 7   | 72     | 2          | Responder 1     | Area 5      | 2           | 20         | NULL        |
|   |    |         |             |             | 8   | 73     | 3          | Commander       | Area 15     | 3           | 20         | NULL        |

Security Level High

| 1 |   | ld | POIType | POIName                  | POILocation              | SecretLevel | IncidentId | Certificate                      |
|---|---|----|---------|--------------------------|--------------------------|-------------|------------|----------------------------------|
| ı | 1 | 74 | 0       | YcOKcHPhiZ+4tC74MU/URA== | +EbEzktfLATzJHHwYwZaAg== | 0           | 21         | FCFA85A58C04EFEAE39B403DC19F3E09 |
|   | 2 | 75 | 0       | b16z5mwO/nAvoRv7rSGGxQ== | oWuohmp9Z+7oQ9tNq2+ZOA== | 0           | 21         | B5029395EAD9B1603CC597C0AA0855F1 |
|   | 3 | 76 | 1       | uC4tpouh3NrdkKRwaBNVog== | NazOnTyVoozINTT6S7OOkw== | 1           | 21         | 0D9441ED4DE022220F85ED3FD1D7B4F3 |
| 1 | 4 | 77 | 1       | 1LGp5VOnuWFqzHxFLRYrNA== | NazOnTyVoozINTT6S7OOkw== | 1           | 21         | 71336341544CABCA01AA7685CAA812F4 |
|   | 5 | 79 | 1       | I2oZIMAuRX3BLYJcj5rXLw== | gzvW87ekYDSCRrWk7ZvCHw== | 1           | 21         | D296DBF7039EAE71B4E80502273CFB8D |
|   | 6 | 80 | 2       | 8DDnrd9x7KT1koU6bJSxvQ== | NazOnTyVoozINTT6S7OOkw== | 2           | 21         | 73BF8B406759C14E1708AE333C210240 |
|   | 7 | 81 | 3       | ZT1+fPwUVAl3ax4jteL4AA== | dTEYh4qrLcWPcPj2GtkjJQ== | 3           | 21         | 2C8BD162169E95CEAD2E4CCACC255364 |
| ı | 8 | 82 | 1       | YmXynBhp6jh2c61GPPsMdQ== | +I+YoJvJwfsdrt3ZfVZaIA== | 1           | 21         | 42CBCBAE9A399E906A09A0BB79561159 |

### **Data Server Intrusion**



#### Summary

- The Data Server is encrypted using AES
- The key is stored in Kerberos Server
- The data is firstly decrypted using the database encryption key and encrypted using Kerberos session key
- Certificate helps to detect unauthorized change



### **Brute-Force**

Brute-Force?

We have AES-128!

### **Performance**



(Average time of 10 queries)

### **Protection We Provided**



### **Future Work**

\* Ways to enhance Kerberos Server

\* Extension of Authenticate Code

System efficiency

# Thank you!