1. Combinational logic detected before a synchronizer

20 January 2025 18:10

Verilog Code

`timescale 1ns / 1ps module Comb_logic_sync(input clk1, input clk2, input in1, input in2, input din, output reg out reg q1; always@(posedge clk1) begin q1 <= din; end wire a2: assign q2 = q1 && in1 && in2; reg q3; always@(posedge clk2) begin q3 <= q2; out<= q3; end endmodule

XDC File

set_property ASYNC_REG true [get_cells q3_reg] set_property ASYNC_REG true [get_cells out_reg]

 $\label{eq:create_clock-period 10.000-name clk1-waveform \{0.000 5.000\} [get_ports clk1] \\ create_clock-period 20.000-name clk2-waveform \{0.000 10.000\} [get_ports clk2] \\ \end{cases}$

set_input_delay -clock [get_clocks clk1] -min -add_delay 2.000 [get_ports din] set_input_delay -clock [get_clocks clk1] -max -add_delay 4.000 [get_ports din]

set_input_delay -clock [get_clocks clk1] -min -add_delay 2.000 [get_ports in1] set_input_delay -clock [get_clocks clk1] -max -add_delay 4.000 [get_ports in1]

set_input_delay -clock [get_clocks clk1] -min -add_delay 2.000 [get_ports in2] set_input_delay -clock [get_clocks clk1] -max -add_delay 4.000 [get_ports in2]

set_output_delay -clock [get_clocks clk1] -min -add_delay 0.600 [get_ports out] set_output_delay -clock [get_clocks clk1] -max -add_delay 2.300 [get_ports out]

set_clock_groups -asynchronous -group [get_clocks clk1] -group [get_clocks clk2]

Schematic

CDC Result

The problem in the above circuit is here is an Combinational block before the synchronizer. This is not

Allowed. To overcome it, we need to use a flipflop after the combinational logic.

Verilog Code `timescale 1ns / 1ps module Comb_logic_sync(input clk1, input clk2, input in1, input in2, input din, output reg out reg q1,q4; wire q2; always@(posedge clk1) begin q1 <= din; q4 <= q1 && in1 && in2; end reg q3; always@(posedge clk2) begin q3 <= q4; out<= q3; end endmodule XDC set_property ASYNC_REG true [get_cells q3_reg] set_property ASYNC_REG true [get_cells out_reg] create_clock -period 10.000 -name clk1 -waveform {0.000 5.000} [get_ports clk1] create_clock -period 20.000 -name clk2 -waveform {0.000 10.000} [get_ports clk2] set_input_delay -clock [get_clocks clk1] -min -add_delay 2.000 [get_ports din] set_input_delay -clock [get_clocks clk1] -max -add_delay 4.000 [get_ports din] set input delay -clock [get clocks clk1] -min -add delay 2.000 [get ports in1] set_input_delay -clock [get_clocks clk1] -max -add_delay 4.000 [get_ports in1] set_input_delay -clock [get_clocks clk1] -min -add_delay 2.000 [get_ports in2] set_input_delay -clock [get_clocks clk1] -max -add_delay 4.000 [get_ports in2] set_output_delay -clock [get_clocks clk2] -min -add_delay 0.600 [get_ports out] set_output_delay -clock [get_clocks clk2] -max -add_delay 2.300 [get_ports out] set_clock_groups -asynchronous -group [get_clocks clk1] -group [get_clocks clk2]

Schematic

CDC

STA

