

UNIVERSIDADE FEDERAL DO CEARÁ Campus de Quixadá

Prof. Thiago Werlley Bandeira da Silva QXD0146- Sistemas Digitais para Computadores T2 Especificação

1. Descrição

O trabalho consiste na implementação de instruções (mostradas abaixo) para o processador desenvolvido em sala. Cada equipe deverá implementar todas as instruções.

Instrução	Operação	Tipo	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PSH Rn	[SP] = Rn; SP	PILHA	0	0	0	0	0	-	-	-	-	-	-	Rn_2	Rn_1	Rn_0	0	1
POP Rd	SP + +; Rd = [SP]	PILHA	0	0	0	0	0	Rd_2	Rd_1	Rd_0	-	-	-	-	-	-	1	0
CMP Rm, Rn	Z = (Rm = Rn)?1:0; C = (Rm < Rn)?1:0	ULA	0	0	0	0	0	-	-	-	Rm ₂	Rm ₁	Rm_0	Rn ₂	Rn ₁	Rn_0	1	1
JMP #Im	PC = PC + #Im	DESVIO	0	0	0	0	1	Im ₈	Im_7	lm_6	Im_5	Im_4	Im_3	Im_2	Im_1	Im_0	0	0
JEQ #Im	PC = PC + #Im, se $Z = 1$ e $C = 0$	DESVIO	0	0	0	0	1	lm ₈	Im ₇	Im ₆	lm ₅	Im ₄	Im ₃	Im ₂	Im ₁	Im ₀	0	1
JLT #Im	PC = PC + #Im, se $Z = 0$ e $C = 1$	DESVIO	0	0	0	0	1	Im ₈	Im ₇	Im ₆	lm ₅	Im ₄	Im ₃	Im ₂	Im ₁	Im ₀	1	0
JGT #Im	PC = PC + #Im, se $Z = 0$ e $C = 0$	DESVIO	0	0	0	0	1	lm ₈	Im ₇	Im ₆	Im ₅	Im ₄	Im ₃	Im ₂	Im ₁	Im ₀	1	1
IN Rd	$Rd = 10_{read} (70)$	E/S	1	1	1	1	-	Rd ₂	Rd ₁	Rd_0	-	-	-	-	-	-	0	1
OUT Rm	$IO_wite = Rm$	E/S	1	1	1	1	0	-	-	-	Rm_2	Rm_1	Rm_0	-	-	-	1	0
OUT #Im	IO write = #Im	E/S	1	1	1	1	1	Im_7	Im_6	Im_5	0	0	0	Im_4	Im_3	Im_2	Im_1	Im_0
SHR Rd, Rm, #Im	$Rd = Rm \gg #Im$	ULA	1	0	1	1	-	Rd ₂	Rd ₁	Rd_0	Rm ₂	Rm ₁	Rm ₀	Im ₄	Im ₃	Im ₂	Im ₁	Im_0
SHL Rd, Rm, #lm	$Rd = Rm \ll #Im$	ULA	1	1	0	0	-	Rd ₂	Rd ₁	Rd ₀	Rm ₂	Rm ₁	Rm ₀	Im_4	Im ₃	Im ₂	Im ₁	Im_0
ROR Rd, Rm	$Rd = Rm \gg 1;$	ULA	1	1	0	1	-	Rd ₂	Rd ₁	Rd ₀	Rm ₂	Rm ₁	Rm ₀	-	-	-	-	-
DOLD LD	Rd(MSB) = Rm(LSB)	TITA						D 1	D. I.	D. I.	D		D					
ROL Rd, Rm	$Rd = Rm \ll 1;$	ULA	1	1	1	0	-	Rd ₂	Rd ₁	Rd ₀	Rm ₂	Rm ₁	Rm ₀	-	-	-	-	_

2. Avaliação

- O trabalho deve ser realizado com a mesma equipe.
- Deve ser entregue (via SIPPA, até 07/07) um breve relatório com detalhes da implementação.
- A entrega do relatório das instruções referente a tabela é obrigatória (explique através do relatório como foram feitas cada instrução).
- O trabalho deve ser apresentado até 07/07.

Rd(LSB) = Rm(MSB)