Tuesday, September 27, 2022 4:12 PM PM26 Equations
Ensire Force Equation:
= wheel tokace, transmission efficiency
Fraction Force Equation
= Cf. ((co ress r Directors); g) + (C1.0.8. density of eight (relactor of provious distant)2. frontaloxes)
Das fora credion
= Cd. O.S. densty oten. (veracity expressors distresstep) 2. frontal aca
VK(QC. Fy
2 (rocts atpriocf: restep)2+2. [constratep. (Ensurface - draftere)]
- Prairies whaty - cerentelecty
tine - relocty of presions trustep + Stebaty of presions trustep)2-4-(105. according) (-last step)) 2. a.s. acception
RM2S Spaced Sheet
Ensire Torque is coning from dy no
cheltogie
= Engretorge-2.75
Dres Force.
= Cd. O. S. deroity of air. (precious step relocity)2. Fronted one
relocity
= pressons stepmanty 2 + 2. lengthstep. (ensurface dresserve)
RPM Lorocited took dates
Torque
Liver during

H
Textor
= Torque · KPM
Hersepour = Torque · RPM 5252