ZADATAK

(i)
$$\Delta = \{0,1,2\}$$
 $\Delta(x) = \begin{cases} x^3 + 2x + 1, & 0 \le x < 1 \\ x^2 + 2, & 1 \le x \le 2 \end{cases}$

R. D nije splajn for
$$\lim_{x\to 1^-} S(x) = 4$$
, $\lim_{x\to 1^+} S(x) = 3$

(ii)
$$\Delta = \{0, 1, 2\}$$
 $S(x) = |x-1|^3$, $x \in [0, 2]$

$$\Delta(x) = |x-1|^{3} = \begin{cases} (A-x)^{3}, & 0 \le x < 1 \\ (x-1)^{3}, & 1 \le x \le 2 \end{cases}$$

$$\Delta(x) = |x-1|^{3} = \begin{cases} (A-x)^{3}, & 0 \le x < 1 \\ (x-1)^{3}, & 1 \le x \le 2 \end{cases}$$

$$\Delta(x) = |x-1|^{3} = \begin{cases} (A-x)^{3}, & 0 \le x < 1 \\ (x-1)^{3}, & 1 \le x \le 2 \end{cases}$$

$$S''(x) = \begin{cases} G(1-x), & 0 \le x < 1 \\ G(x-1), & 1 \le x \le 2 \end{cases}$$

• nemeliablest:
$$\lim_{x\to 1^-} S(x) = 0$$
, $\lim_{x\to 1^+} S(x) = 0 \Rightarrow 0$ remak.

· namele. 1. der.:
$$\lim_{x\to 1^-} 3(x) = 0$$
, $\lim_{x\to 1^+} 5(x) = 0 \Rightarrow 5'$ reprede. $u = 1$

· neprek. 2. der:
$$\lim_{x\to 1^-} d'(x) = 0$$
, $\lim_{x\to 1^+} d'(x) = 0 \Rightarrow 0''$ neprek. $u = 1$

$$S'(x) = \begin{cases} -G, & 0 \le x < 1 \\ G, & 1 \le x \le 2 \end{cases}$$
 nige naproleidra $u = 1$, $ra = 5 \notin S_{\Delta A}$.

(iii)
$$\Delta = \{0,1,2\}$$
 $S(x) = \begin{cases} \frac{1}{2}x^2 + x + 1, & 0 \le x < 1 \\ -4.5x^2 + 11x - 4, & 1 \le x \le 2 \end{cases}$

RJ.
$$S \mid [0,1) \in \mathcal{F}_2$$
, $S \mid [1,2] \in \mathcal{F}_2$

$$\lim_{x\to 1^-} S(x) = \frac{5}{2} = \lim_{x\to 1^+} S(x)$$
 reprehiberat $u = 1$

•
$$b(x) = \begin{cases} x+1, 0 \le x < 1 \\ -9x+11, 1 \le x \le 2 \end{cases}$$

$$\lim_{x\to 1^+} S'(x) = 2 = \lim_{x\to 1^-} S(x) \implies S \in C^1[0,2]$$

•
$$\delta'(x) = \begin{cases} 1, & 0 \le x < 1 \\ -9, & 1 \le x \le 2 \end{cases}$$

ZADATAK.

$$\Delta(x) = \begin{cases} -x^3 + 3x^2 - 3x + 1, & -1 \le x < 0 \\ P(x) & 0 \le x < 1 \\ x^3 - 3x^2 + 3x - 1, & 1 \le x \le 2 \end{cases}$$

Postigi li nolimam p to s(x) ES DI3? Also restri, adredite pa ?

RJ.
$$x_0 = -1$$
, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$

melp. da troseni polinom p posti.

$$P \in \mathcal{P}_3$$
, $P(x) = Qx^3 + C + C + d$; $Q, C, C, d \in \mathbb{R}$

o napole.
$$u = 0 \Leftrightarrow \lim_{x \to 0^{-}} S(x) = P(0) \Rightarrow d = 1$$

o neprele.
$$u \times = 1 \iff \lim_{x \to 1^-} p(x) = D(1) \implies 0 + b + c + d = 0$$

o' repreh.
$$u \times = 0 \iff \lim_{x \to 0^+} d(x) = P'(0) \implies c = -3$$

$$\beta(x) = \begin{cases} -3x^{2} + 6x - 3, & -1 \le x < 0 \\ P'(x), & 0 \le x < 1 \end{cases} \quad P'(x) = 30x^{2} + 20x + 6$$

$$3x^{2} - 6x + 3, & 1 \le x \le 2$$

$$S''(x) = \begin{cases} -6x+6, & -1 \le x < 0 \\ P''(x), & 0 \le x < 1 \end{cases} P''(x) = 60x+20$$

$$6x-6, & 1 \le x \le 2$$

S'' nephele. $V = 0 \iff \lim_{x \to 0^+} S''(x) = P''(0) \implies 2\theta = 6$

 $S''(x) = -6x + 6, -1 \le x < 0$ P''(x) = 60x + 20

d=1 $Q+b+c+1=0 \implies Q=-1$ C=-3 C=3

Dokle; 5, 3, 5'' ou reprehidre $u \times = 0$ i 5 % reprehidre $u \times = 1$ obs i some obs might: $P(x) = -x^3 + 3x^2 - 3x + 1, 0 \le x < 1 \quad (*)$

Joda je talkader: 0'(1)=0, p'(1)=0

$$5'(x) = 3x^2 - 6x + 3$$
, $1 \le x \le 2$ $5''(x) = 6x - 6$, $1 \le x \le 2$
 $P'(x) = -3x^2 + 6x - 3$, $0 \le x < 1$ $P''(x) = -6x + 6$, $0 \le x < 1$

$$D''(1) = 0$$
, $P''(1) = 0$

Dolele, polinam (*) čuni o kuličnim gelegnam.