

MIT Cheetah: a new design paradigm for physical interaction

Sangbae Kim

Associate professor Mechanical Engineering, MIT

Air, Water, and Ground Mobility

	Air	Water	Ground
Gravity support	Change of air momentum	Buoyancy	Contact force
Propulsion	Change of air momentum	Change of water momentum	Contact force (friction)
Medium	Very low impedance (complex flow)	Low impedance (complex flow)	High impedance (complex geometry)

High Force Proprioceptive Actuation

Maintain force transparency in transmission

Geared Motor with Torque(Force) Sensor

Series Elastic Actuator

Proprioceptive Actuation

No Force(Torque) Sensor No Series Elastic

Proprioceptive actuation

Impedance control for physical-interaction

- 1. Minimum distal mass
- 2. Max. torque density– Min. mechanical impedance
- 3. Proprioceptive control (collocated sensing, no force sensors)

Phantom – Haptic display device Kenneth Salisbury

MIT Cheetah I (2010~2013)

Impact Mitigation Factor (IMF)

Equations of Motion

$$\mathbf{H}\ddot{\mathbf{q}} + \mathbf{h}(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{S}^T \boldsymbol{\tau} + \mathbf{J}^T \mathbf{f}$$

$$egin{bmatrix} \mathbf{H}_{bb} & \mathbf{H}_{bj} \ \mathbf{H}_{jb} & \mathbf{H}_{jj} \end{bmatrix} egin{bmatrix} \ddot{\mathbf{q}}_b \ \ddot{\mathbf{q}}_j \end{bmatrix} + \mathbf{h}(\mathbf{q},\dot{\mathbf{q}}) = egin{bmatrix} \mathbf{0} \ m{ au} \end{bmatrix} + egin{bmatrix} \mathbf{J}_b^T \ m{J}_j^T \end{bmatrix} \mathbf{f}$$

Impact:

$$\hat{\mathbf{f}} = -\left(\mathbf{J}\mathbf{H}^{-1}\mathbf{J}^{T}\right)^{-1}\mathbf{v}$$

$$=-\Lambda {f v}$$

 $\mathbf{v} = -\mathbf{\Lambda} \mathbf{v}$ ($\mathbf{\Lambda}$: Operation space mass matrix

• Worst Case:
$$\mathbf{\Lambda}_L = \left(\mathbf{J}_b\mathbf{H}_{bb}^{-1}\mathbf{J}_b^T\right)^{-1}$$

$$oldsymbol{\Lambda}_L\succeqoldsymbol{\Lambda}$$

• IMF =
$$det(\mathbf{I} - \mathbf{\Lambda} \mathbf{\Lambda}_L^{-1})$$
 (0~1)

[Wensing, et. al IEEE TRO]

IMF

• Impact Mitigation Factor: $\xi = \det(\mathbf{I} - \mathbf{\Lambda} \mathbf{\Lambda}_L^{-1})$

[Wensing, et. al IEEE TRO]

High torque/bandwidth actuation

Load Cell

- High Impact Mitigation Factor (IMF)
- High torque density
- Hierarchical software architecture

Custom developed motor in collaboration with Jeff Lang

Total Cost of Transport (Ptotal/WV)

MIT Cheetah 3

Weight: 40kg Length: 80cm Leg length: 70cm Width: 46cm

Max. Torque at joints: 230 – 250 Nm

Transmission: Compound planetary 10.7:1

Payload: 10kg

Power consumption: 150W at 0.5m/s Vertical jumping height (simulated): 1.5m

Motor module with Custom high torque electric motor

Probabilistic Contact Motion Model

Stance Phase Contact Modell

Probabilistic measure of when contact is broken given that it is in stance already

Swing Phase Contact Model

Probabilistic measure of when contact is made given that it is in swing

$$P_f(c|\Phi,\hat{\phi}) = \frac{1}{2} \left(\Phi \left[erf\left(\frac{\hat{\phi} - \mu_{c_0}}{\sigma_{c_0}\sqrt{2}}\right) + erf\left(\frac{(-\hat{\phi}) - (-\mu_{c_1})}{\sigma_{c_1}\sqrt{2}}\right) \right] + \bar{\Phi} \left[2 + erf\left(\frac{(-\hat{\phi}) - (-\mu_{\bar{c}_0})}{\sigma_{\bar{c}_0}\sqrt{2}}\right) + erf\left(\frac{\hat{\phi} - \mu_{\bar{c}_1}}{\sigma_{\bar{c}_1}\sqrt{2}}\right) \right] \right)$$

Ground Height Model

Probabilistic measure of ground height with roughness signified by the variance

$$P_f(c|\hat{p}_z) = \frac{1}{2} \left[1 + erf\left(\frac{(-\hat{p}_z) - (-\mu_{z_g})}{\sigma_{z_g}\sqrt{2}}\right) \right]$$

Force of Contact Model

Probabilistic measure of typical sensed force at initial contact

$$P_f(c|\hat{f}_z) = \frac{1}{2} \left[1 + erf\left(\frac{\hat{f}_z - \mu_{f_c}}{\sigma_{f_c}\sqrt{2}}\right) \right]$$

Contact uncertainties

Event-based switching

Outdoor

Mini Cheetah

Massachusetts Institute of Technology

Humanoid Dynamic Synchronization through Whole-Body Bilateral Feedback Teleoperation

Joao Ramos, and Sangbae Kim

BIOMIMETIC ROBOTICS LAB

Bi-lateral teleoperation (DEMO)

Questions?

