1. Techniques Used for Vectorization and Embedding

• TF-IDF Vectorization:

Converts preprocessed review text into a sparse feature matrix, where each column represents a word or n-gram weighted by term frequency and inverse document frequency. This helps highlight important words while reducing the impact of common but less informative words.

Word Embeddings (Word2Vec):

Trains distributed vector representations of words using the CBOW (Continuous Bag of Words) approach on the review corpus. Each word is mapped to a dense vector in a 100-dimensional space capturing semantic similarity. Review vectors are generated by averaging their word vectors.

2. Configuration and Tuning of TF-IDF Parameters

- **N-gram Range:** (1, 2) to include both unigrams (single words) and bigrams (two consecutive words), capturing some context.
- Max Features: Limited to 1000 to control dimensionality and reduce sparsity.
- **Min Document Frequency (min_df=5):** Ignores terms appearing in fewer than 5 documents to remove rare words.
- Max Document Frequency (max_df=0.8): Removes very common terms that appear in more than 80% of documents.

3. Comparison: TF-IDF vs. Word Embeddings

Aspect	TF-IDF	Word Embeddings (Word2Vec)
Dimensionality	Sparse, high-dimensional (e.g., 1000 features)	Dense, fixed lower-dimensional (100 dims)
Interpretability	Easy — each feature corresponds to a word/ngram	Harder — features are latent semantic dimensions
Captures Semantics	Limited — based on word frequency statistics	Better — captures semantic similarity & context
Sparsity	High sparsity (e.g., 95%)	Dense vectors (no sparsity)
Suitability	Good for interpretable, frequency-based models	Good for capturing semantic meaning, downstream ML

4. Sentiment Labeling Logic & Distribution

• If Rating Exists:

Labels assigned based on numeric rating:

- \circ rating $>= 4 \rightarrow$ Positive
- \circ rating $\leq 2 \rightarrow \text{Negative}$
- \circ Others \rightarrow Neutral

• If No Rating:

Used VADER sentiment lexicon to compute polarity scores and label reviews:

- Compound score $\ge 0.05 \rightarrow \text{Positive}$
- Compound score \leq -0.05 \rightarrow Negative
- \circ Otherwise \rightarrow Neutral

• Label Distribution:

5. Sample Visualizations

Cosine Similarity Heatmap of Word Embeddings

