Binomial Error intervals & Extra leptons in ttbar events

Ivo van Vulpen (Nikhef)

Binomial Error intervals

Trigger efficiencies: Example: EM25i in tt(electron) events

Binomial distribution

$$f(N_{\text{sel}} | N_{\text{tot}}, p) = \frac{N_{\text{tot}}!}{N_{\text{sel}}!(N_{\text{tot}} - N_{\text{sel}})!} p^{N_{\text{sel}}} (1-p)^{N_{\text{tot}} - N_{\text{sel}}}$$

- Select N_{sel} events out of a sample of N_{tot} events Throw a dice $10x \rightarrow probability$ to find $4x1 = (^{10}_{4})(0.16)^{4}(0.84)^{6} = 4.8\%$
- Given N_{tot} and N_{sel} \rightarrow information on p (efficiency) and it's uncertainty

1) Estimated-interval

$$\Delta p = \sqrt{\frac{p(1-p)}{N_{tot}}}$$

Difference in uncertainty region [estimate/exact]

N_{sel} , N_{tot}	Δp(estimate)	Δp(exact)
10,10	± 0.000	+0.000 -0.100
8,10	± 0.126	+0.101 -0.136
5,10	± 0.158	+0.145 -0.144

B

Difference in coverage [estimate/exact]

Coverage: integral ∆p region

 Under/over-coverage when using estimated-interval

Computing exact interval

Step left/right from p_{max} until:

- a) integral is gaussian one sigma equiv.
- **b)** $p_{left} = p_{right}$

At each step need:

Probability:
$$f(N_{sel} | N_{tot}, p) = \frac{N_{tot}!}{N_{sel}!(N_{tot} - N_{sel})!} p^{N_{sel}} (1-p)^{N_{tot}-N_{sel}}$$

In root TMath::Binomial

Integral:
$$\int_0^x x^k (1-x)^{N-k} dx = B(p, k+1, N-k+1)$$
Incomplete Beta function
In root TMath::BetaIncomplete

Numerical problems when computing exact interval:

$$f(N_{sel} | N_{tot}, p) = \frac{N_{tot}!}{N_{sel}!(N_{tot} - N_{sel})!} p^{N_{sel}} (1-p)^{N_{tot} - N_{sel}}$$

 $N_{sel} = 200$, $N_{tot} = 1000$ at p = 0.5: 6.6 10^{+215} x 6.2 10^{-61} x 1.5 10^{-241}

Solution: just remove Binomial coefficient and use logarithms.

$$\int_0^x x^k (1-x)^{N-k} dx = B(p,k+1,N-k+1)$$

- = TMath::BetaIncomplete(p,k+1,N-k+1)
- = something / TMath::Beta(k+1,N-k+1) -
- = something / TMath::Exp(TMath::LnGamma(p)+TMath::LnGamma(q)-TMath::LnGamma(p+q))
 Problem if argument < -700 since 10-300 = 0 → Integral = inf or NaN

Beta $(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)}$

= $e^{\ln(\Gamma(x)) + \ln(\Gamma(y)) - \ln(\Gamma(x+y))}$

Solution: switch to estimate if this happens

Where do you use estimate:

In principle could do exact in larger region by using Stirling's approximation for Beta(x,y) and work with logarithms.

Existing code in Root

→ Exact Binomial interval can already be computed in Root:

TGraphAsymmErrors::BayesDivide(const TH1* pass, const TH1* total)

(code by Andy Haas and Marc Paterno)

TMath::BinomialI(n.p.k) → should be updated
 (coded by Anna Kreshuk)

Contains already the computation of the correct interval

→ Short routine presented in previous slides:

http://www.nikhef.nl/~ivov/BinomialErrorInterval/BinomialErrorInterval.C

Please check/verify:

BinomialErrorInterval(Int_t N_{sel}, Int_t N_{tot}, Double_t *ErrorRegion)

To get printout: Example(N_{tot} , N_{sel})

Weighted events

- MC@NLO weighted events +1 and -1 (\sim 13.4% has w=-1)
- What to do with bins where: $N_{tot} < 0$, $N_{sel} < 0$ or $N_{sel} > N_{tot}$?

Several private discussions, but no consensus, no clear strategy.

- 1) Use weight = 1 in all plots
 - + 'An electron is an electron'
 - Trigger could depend on weight (event topology, phase space, ...)
- 2) Combine the two trigger curves for weight=+1 and weight=-1 Not sure how-to, analysis dependent?

Should have discussion in ATLAS (T5-group) and arrive at common approach to create turn-on curves.

What do you do with weighted events?

Extra leptons in ttbar events

Number of selected events for 100 pb⁻¹ (no trigger)

	Before selection	After selection	Selection efficiency
TTbar(5200)	46277.8	6172.0	13.3%
electron muon tau fully-leptonic	12329.2 12350.2 12415.0 9181.7	2168.6 2871.4 427.1 704.8	17.6% 23.2% 3.4% 7.7%
W+jets	79266.7	1601.0	2.0%

Mass window 141 <mt<189 +M_W-cut</mt<189
1420.9
527.3 719.9 105.2 68.7
129.8

→ Similar numbers to Udine-group/Akira

Issues: Electron definition (isolation/medium/cracks)

Leptons from top events: example: muons from tau's

QCD background in commissioning analysis

- → QCD events passing event selection:
 - Jet requirements

~ 9%

No problem

- E_T -miss > 20 GeV
- Single isolated lepton
- ?

- (rel. 11, FastSim estim.)
- (electron or muon)

→ Origin extra leptons:

Semi-leptonic B(D)-decays
Photon conversions

 π faking electron

→ Determine rate:

QCD FastSim (Release 11)

TTbar FullSim (next slide)

QCD fullsim ??

 10^{-5} (egama) \rightarrow 10^{-4} SUSY/TOP ?

QCD FastSim estimate:

- + Correct jet topologies
- How well do you model the relevant parameters?

TTbar FullSim:

- + Best modeling of detector, photon conversions etc.
- Different jets:
 - * B/Q-jets in ttbar, Q and gluon-jets in QCD
 - * higher-Pt jets in ttbar
 - * Different topologies
 - → Can we translate it to QCD events?

QCD Fullsim:

Not available, only SUSY sample with hard filter cuts Issue: should we produce it?

ELECTRON

Do we see muons?

- Then what ... \rightarrow # 'wrong' leptons per jet
 - → Find origin of these extra leptons
 - → Get # QCD jets and compute QCD efficiency

Monte-Carlo statistics (no weights, before event selection)

Expected # events (after event selection, 100 pb⁻¹, no trigger) for the electron and muon analysis separately

		tt(electron)	tt(muon)	tt(tau)	tt(leptonic)	TOTAL
<u></u>	1 electron	2163.1	2.5	177.4	299.7	2642.7
	1 muon	5.4	2868.9	249.7	405.1	3529.2

Monte-Carlo statistics (no weights, before event selection)

■ Expected # events (after event selection, 100 pb⁻¹, no trigger) for the electron and muon analysis separately

		tt(electron)	tt(muon)	tt(tau)	tt(leptonic)	TOTAL
Analysis	1 electron	2163.1	2.5	177.4	299.7	2642.7
	1 muon	5.4	2868.9	249.7	405.1	3529.2

Expected # events (after event selection, 100 pb-1, no trigger) for the electron and muon analysis separately

MEDIUM

	_	tt(electron)	tt(muon)	tt(tau)	tt(leptonic)	TOTAL
<u>~</u>	1 electron 1 muon	2646.7 4.4	12.6 2860.2	240.3 249.1		3238.2 3475.3

More electrons ... but you loose some muons, probably because of Nleptons ==1 cut

Coming 2 weeks:

Manuel

- 1) Search for origin extra electrons: B(D) decays, photon conv., **fakes**Seach for origin extra muons: B-decays?

 Alexander
 - → Study dependence on Pt (objects) and jet-type Disentangle parameters
 - → Check FUllSim Ttbar estimate (Pt, eta) versus Egamma estimate
 - → Redo our study with medium electrons
 - → Run over di-jet sample from Egamma group
- 3) Study difference TTbar Fast/Full Simulation Some things CAN be modelled correctly others CAN NOT
- 4) Decide if we need separate FullSIm QCD sample ~ 300k?

Martijn

