Машинное обучение (Machine Learning) Метрические методы классификации и регрессии

Уткин Л.В.

Содержание

- Наивный байесовский классификатор
- Метрические методы классификации и регрессии
 - Метод k ближайших соседей
 - Метод окна Парзена
 - Метод потенциальных функций

Презентация является компиляцией и заимствованием материалов из замечательных курсов и презентаций по машинному обучению:

К.В. Воронцова, А.Г. Дьяконова, Н.Ю. Золотых, С.И. Николенко, Andrew Moore, Lior Rokach, Rong Jin, Luis F. Teixeira, Alexander Statnikov и других.

Наивный байесовский классификатор

Теорема Байеса

Thomas Bayes 1702 - 1761

Теорема Байеса

$$P(y=c|x) = \frac{P(x|y=c)P(y=c)}{P(x)},$$

P(y=c|x) - вероятность что объект x принадлежит классу c (апостериорная вероятность класса); P(x|y=c) - вероятность встретить объект x среди всех объектов класса c:

P(y = c) - безусловная вероятность встретить объект класса c (априорная вероятность класса);

P(x) - безусловная вероятность объекта x.

Эволюция по Байесу

Теорема Байеса и классификация

Цель классификации состоит в том чтобы понять к какому классу принадлежит объект x. Следовательно необходимо найти наиболее вероятный класс объекта x, т.е., необходимо из всех классов выбрать тот, который дает максимум вероятности P(y=c|x):

$$c_{opt} = \arg \max_{c \in C} P(y = c|x) = \arg \max_{c \in C} \frac{P(x|y = c)P(y = c)}{P(x)}.$$

Для каждого класса c вычисляется P(y=c|x) и выбирается класс, имеющий максимальную вероятность. Вероятность P(x) не зависит от c и является константой:

$$c_{opt} = \arg\max_{c \in C} P(x|y=c)P(y=c).$$

Принцип максимума апостериорной вероятности

При
$$x < x'$$
 считаем $c_{opt} = 0$ иначе $c_{opt} = 1$

Принцип максимального правдоподобия

При x < x' считаем $c_{opt} = 0$ иначе $c_{opt} = 1$

Теорема Байеса и классификация (2 класса)

Выбор:

$$\left\{egin{array}{ll} \kappa$$
ласс $c_1, & ext{если } P(y=c_1|x) > P(y=c_2|x) \ \kappa$ ласс $c_2, & ext{иначе} \end{array}
ight.$

или

$$\left\{egin{array}{ll} ext{класс } c_1, & ext{если } rac{P(x|y=c_1)}{P(x|y=c_2)} > rac{P(y=c_2)}{P(y=c_1)} \ ext{класс } c_2, & ext{иначе} \end{array}
ight.$$

Байесовский классификатор минимизирует ошибку принятия решений

Наивность классификатора

Байесовский классификатор представляет объект как набор признаков (атрибутов), вероятности которых условно не зависят друг от друга:

$$P(x|y=c) = P(f_1|y=c)P(f_2|y=c)\cdots P(f_m|y=c)$$

= $\prod_{i=1}^m P(f_i|y=c)$.

Наивный байесовский классификатор:

$$c_{opt} = \arg\max_{c \in C} \left(P(y = c) \prod_{i=1}^{m} P(f_i | y = c) \right).$$

или

$$c_{opt} = \arg\max_{c \in C} (\log P(y = c) + \sum_{i=1}^{m} \log P(f_i | y = c))$$
.

Оценка априорных вероятностей классов, если признаки категориальные

Вероятность класса P(y=c) оценивается по обучающей выборке как:

$$P(y = c) = N_c/N$$

 N_c — количество объектов, принадлежащих классу , N — общее количество объектов в обучающей выборке.

Оценка вероятностей признаков, если они категориальные

Вероятность $P(f_i|y=c)$ оценивается по обучающей выборке как:

$$P(f_i|y=c) = \frac{M_i(c) + \alpha}{\sum_{j=1}^{m} (M_j(c) + \alpha)}$$

 $M_i(c)$ - общее количество элементов с заданным значением признака i в классе c.

lpha>0 - для избежания нулевых значений вероятности, например, lpha=1

Пример классификации спама (1)

Есть три письма для которых известны их классы (C - c - C

- [С] предоставляю услуги бухгалтера;
- [C] спешите купить iPhone;
- [Н] надо купить молоко.

Модель классификатора будет выглядеть следующим образом:

$$f C \ \ H \ \ P(y={\sf C}) \ \ P(y={\sf H})$$
 частота классов $\ 2 \ \ 1 \ \ \ 2/3 \ \ \ \ 1/3$

Пример классификации спама (2)

```
C H P(f_i|y = C) P(f_i|y = H)
           1 0 (1+1)/(6+8) (0+1)/(3+8)
предоставляю
           1 0 (1+1)/(6+8) (0+1)/(3+8)
  услуги
           1 0 (1+1)/(6+8) (0+1)/(3+8)
 бухгалтера
           1 0 (1+1)/(6+8) (0+1)/(3+8)
  спешите
           1 1 (1+1)/(6+8) (1+1)/(3+8)
  купить
           1 0 (1+1)/(6+8) (0+1)/(3+8)
  iPhone
           0 1 (0+1)/(6+8) (1+1)/(3+8)
   надо
           0 1 (0+1)/(6+8) (1+1)/(3+8)
  молоко
```

Пример классификации спама (3)

"Надо купить вино" - спам или нет?

• Для класса СПАМ:

$$P(y = \mathsf{СПАМ} \mid ... \; \mathsf{вино}) = \frac{2}{3} \cdot \frac{1}{6+8} \cdot \frac{2}{6+8} \cdot \frac{1}{6+8} = 5 \times 10^{-4}$$

• Для класса НЕ СПАМ:

$$P(y = \mathsf{HE} \; \mathsf{СПАМ} \; | \; ... \; \mathsf{вино}) = \frac{1}{3} \cdot \frac{2}{3+8} \cdot \frac{2}{3+8} \cdot \frac{1}{3+8} = 1 \times 10^{-3}$$

Итог: это не спам!

Обучающая выборка

Что это?

012100

- 64 клетки 64 бинарных признака (более белая/более черная-0/1): $f_{i,j}$
- ullet Вектор признаков для 3: (0,0,1,1,...,1,0,0,0)

$$P(f_{i,j}=1|y=3)$$
 - доля всех троек с черной клеткой i,j $P(f_{i,j}=0|y=3)$ - доля всех троек с белой клеткой i,j Сравним

$$P(y = 3|f) = P(y = 3) \cdot P(f_{1,1} = 0|y = 3)P(f_{1,2} = 0|y = 3) \times P(f_{1,3} = 1|y = 3) \cdot \cdot \cdot P(f_{8,8} = 0|y = 3)$$

с другими цифрами, например, с цифрой 8:

$$P(y = 8|f) = P(y = 8) \cdot P(f_{1,1} = 0|y = 8)P(f_{1,2} = 0|y = 8) \times P(f_{1,3} = 1|y = 8) \cdot \cdot \cdot P(f_{8,8} = 0|y = 8)$$

Случай количественных признаков

Одномерный непрерывный случай: эмпирическая оценка **плотности**

$$p_h(x) = \frac{1}{2nh} \sum_{i=1}^n [|x - x_i| < h]$$

h - неотрицательный параметр, называемый шириной окна.Локальная непараметрическая оценкаПарзена-Розенблатта:

$$p_h(x) = \frac{1}{2nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right)$$

Случай количественных признаков

Многомерный непрерывный случай (m признаков объекта): оценка плотности в точке $x=(\xi_1,...,\xi_m)$:

$$p_h(x) = \frac{1}{2n} \sum_{i=1}^n \prod_{j=1}^m \frac{1}{h_j} K\left(\frac{\xi_j - f_j(x_i)}{h_j}\right)$$

В каждой точке x_i многомерная плотность представляется в виде произведения одномерных плотностей

Программная реализация в R

- https://cran.r-project.org/web/views/MachineLearning.html
- Package e1071, функция naiveBayes
- Package klaR, функция NaiveBayes
- Package BayesTree, функция bart

Метрические методы классификации и регрессии

Гипотезы компактности или непрерывности

Задачи классификации и регрессии:

X - объекты, Y - ответы; $X^n = (x_i, y_i)_{i=1}^n$ - обучающая выборка.

Гипотеза компактности (для классификации): Близкие объекты, как правило, лежат в одном классе.

Гипотеза непрерывности (для регрессии): Близким объектам соответствуют близкие ответы.

Гипотеза компактности

Гипотеза непрерывности (нарушение)

Метод k ближайших соседей

Метод k ближайших соседей (kNN — k nearest neighbours) метрический алгоритм для классификации объектов, основанный на оценивании сходства объектов. Классифицируемый объект относится к тому классу, которому принадлежат ближайшие к нему объекты обучающей выборки.

Алгоритм:

- Вычислить расстояние до каждого из объектов обучающей выборки
- Отобрать к объектов обучающей выборки, расстояние до которых минимально
- Класс классифицируемого объекта это класс, наиболее часто встречающийся среди к ближайших соседей

Мера близости

Что такое близкие объекты? Задана функция расстояния $\rho: X \times X \to [0,\infty)$.

Виды функций расстояния:

$$ullet$$
 Евклидово: $ho(x_i, x_j) = \sqrt{\sum_{k=1}^m w_k \left(x_i^{(k)} - x_j^{(k)}
ight)^2}$

$$ullet$$
 L_p -метрика: $ho(x_i, x_j) = \left(\sum_{k=1}^m w_k \left| x_i^{(k)} - x_j^{(k)} \right|^p
ight)^{1/p}$

$$ullet$$
 L_{∞} -метрика: $ho(x_i,x_j)=\max_{k=1,...,m}\left|x_i^{(k)}-x_j^{(k)}\right|$

$$ullet$$
 L₁-метрика: $ho(x_i, x_j) = \sum_{k=1}^m \left| x_i^{(k)} - x_j^{(k)} \right|$

 $x_i = (x_i^{(1)}, ..., x_i^{(m)})$ - вектор m признаков i-го объекта; $x_j = (x_j^{(1)}, ..., x_j^{(m)})$ - вектор m признаков i-го объекта.

Мера близости

Что такое близкие объекты? Задана функция расстояния $\rho: X \times X \to [0,\infty)$.

Виды функций расстояния:

$$ullet$$
 Ланса-Уильямся: $ho(x_i,x_j)=rac{\sum_{k=1}^m\left|x_i^{(k)}-x_j^{(k)}
ight|}{\sum_{k=1}^m\left(x_i^{(k)}+x_j^{(k)}
ight)}$

$$ullet$$
 косинусная мера: $ho(x_i,x_j)=rac{\sum_{k=1}^m x_i^{(k)} x_j^{(k)}}{\sqrt{\sum_{k=1}^m \left(x_i^{(k)}
ight)^2} \sqrt{\sum_{k=1}^m \left(x_j^{(k)}
ight)^2}}$

$$x_i = (x_i^{(1)}, ..., x_i^{(m)})$$
 - вектор m признаков i -го объекта; $x_j = (x_j^{(1)}, ..., x_j^{(m)})$ - вектор m признаков i -го объекта.

Метод k ближайших соседей (классификация)

Метод k ближайших соседей (классификация)

Метод k ближайших соседей: пример "правильной" классификации

Метод k ближайших соседей: пример ошибочной классификации

Метод k ближайших соседей (регрессия)

Метод k ближайших соседей

Достоинства:

- Простота реализации.
- Классификацию, проведенную алгоритмом, легко интерпретировать путем предъявления пользователю нескольких ближайших объектов.

Недостатки:

- Необходимость хранения обучающей выборки целиком.
- Поиск ближайшего соседа предполагает сравнение классифицируемого объекта со всеми объектами выборки.

Выбор k

- Малые значения k приведут к тому, что "шум" (выбросы) будет существенно влиять на результаты.
- Большие значения усложняют вычисления и искажают логику ближайших соседей, в соответствии с которой ближайшие точки могут принадлежать одному классу (гипотеза компактности).
- Эвристика: $k = \sqrt{n}$

Анализ брака древесины: по признакам средняя длина трещины и средний диаметр сучка

длина	диаметр	класс	
трещины	сучка		
7	7	брак	
7	4	брак	
3	4	не брак	
1	4	не брак	

Новый объект (длина трещины=3, диаметр сучка=7), k=3

длина	диаметр	ρ
трещины	сучка	
7	7	$(7-3)^2+(7-7)^2=16$
7	4	$(7-3)^2+(4-7)^2=25$
3	4	$(3-3)^2+(4-7)^2=9$
1	4	$(1-3)^2+(4-7)^2=13$

длина	диаметр	ρ	ранк	входит в
трещины	сучка			3 соседа?
7	7	16	3	да
7	4	25	4	нет
3	4	9	1	да
1	4	13	2	да

длина	диаметр	ρ	ранк	класс
трещины	сучка			объекта
7	7	16	3	брак
7	4	25	4	-
3	4	9	1	не брак
1	4	13	2	не брак

Объект (3,7) принадлежит классу "не брак"

Вероятностная интерпретация метода ближайших соседей

- Метод ближайших соседей пытается аппроксимировать байесовское решающее правило на множестве обучающих данных
- Для этого необходимо вычислить условную вероятность P(x|y) данных x при условии их принадлежности классу y, априорную вероятность каждого класса P(y) и маргинальную вероятность данных P(x).
- Эти вероятности вычисляются для некоторой малой области вокруг нового примера, размер области будет зависеть от распределения вероятностей на тестовых примерах

Вычисление вероятностей для kNN

- Пусть "шар" размерности m (m число признаков) вокруг нового примера zсодержит k ближайших соседей для z
- Тогда

$$P(z) = \frac{k}{n}, \ P(z|y=1) = \frac{k_1}{n_1}, \ P(y=1) = \frac{n_1}{n}$$

- P(z) вероятность того, что случайная точка находится в "шаре"
- P(z|y=1) вероятность того, что случайная точка из класса 1 находится в "шаре"
- ullet n_1 , k_1 число примеров из класса 1 и из класса 1 в k

•

Вычисление вероятностей для kNN

 $P(z) = \frac{k}{n}, \ P(z|y=1) = \frac{k_1}{n_1}, \ P(y=1) = \frac{n_1}{n_2}$

Используем правило Байеса

$$P(y = 1|z) = \frac{P(z|y = 1)P(y = 1)}{P(z)} =$$

$$= \frac{\frac{k_1}{n_1} \cdot \frac{n_1}{n}}{\frac{k}{n}} = \frac{k_1}{k}$$

Вычисление вероятностей для kNN

• Правило Байеса

$$P(y = 1|z) = \frac{k_1}{k}, P(y = -1|z) = \frac{k_{-1}}{k}$$

Используя решающее правило Байеса, мы выбираем класс c наибольшей вероятностью, т.е. сравниваем P(y=1|z) и P(y=-1|z). А это тоже самое, что сравнение k_1/k и k_{-1}/k .

Метод ближайшего соседа (общий вид)

Для произвольного $x^* \in X$ отсортируем объекты $x_1,...,x_n$:

$$\rho(x^*, x_1) \le \rho(x^*, x_2) \le ... \le \rho(x^*, x_n)$$

 x_i - i-ый сосед объекта x^* ; y_i - ответ на i-ом соседе объекта x^* .

Метрический алгоритм классификации:

$$a(x^*) = \arg \max_{y \in Y} \underbrace{\sum_{i=1}^{n} [y_i = y] \cdot w(i, x^*)}_{\Gamma_{V}(x^*)}$$

 $w(i, x^*)$ - вес (степень важности) i-го соседа объекта x^* , неотрицателен, не возрастает по i.

 $\Gamma_y(x^*)$ - оценка близости объекта x^* к классу y.

Метод ближайшего соседа (частный случай)

$$w(i, x^*) = [i = 1] = \begin{cases} 1, & i = 1, \\ 0, & i > 1. \end{cases}$$

т.е. решение принимается только по одному первому ближайшему соседу.

Преимущества:

- простота реализации;
- интерпретируемость решений,
- вывод на основе прецедентов (case-based reasoning)

Недостатки:

- неустойчивость к погрешностям (шуму, выбросам);
- отсутствие настраиваемых параметров;
- низкое качество классификации;
- приходится хранить всю выборку целиком.

Метод k ближайших соседей (частный случай общего вида)

$$w(i,x^*)=[i\leq k]=\left\{\begin{array}{ll}1, & i\leq k,\\0, & i>k.\end{array}\right.$$

т.е. решение принимается только по k ближайшим соседям.

Преимущества:

- менее чувствителен к шуму;
- появился параметр k.

Как найти оптимальное значение к в различный ситуациях

Оптимизация числа соседей k: функционал скользящего контроля leave-one-out:

$$LOO(k, X) = \sum_{i=1}^{n} [a(x_i) \neq y_i] \rightarrow \min_{k}$$

Метод окна Парзена

Усложнение: определить $w(i, x^*)$ как функцию от расстояния $\rho(x^*, x_i)$, а не от **ранга** соседа i:

$$w(i, x^*) = K\left(\frac{1}{h}\rho(x^*, x_i)\right)$$

Алгоритм:

$$a(x^*, X, h) = \arg\max_{y \in Y} \sum_{i=1}^n [y_i = y] K\left(\frac{1}{h}\rho(x^*, x_i)\right).$$

Параметр h - ширина окна (та же роль, что и число соседей k). Окно - сферическая окрестность объекта x^* радиуса h, при попадании в которую обучающий объект x_i "голосует" за отнесение объекта x^* к классу y_i .

Метод окна Парзена

Параметр h можно задавать априори или определять по скользящему контролю.

- Слишком узкие окна приводят к неустойчивой классификации,
- Слишком широкие окна приводят к вырождению алгоритма в константу.

Метод потенциальных функций

В методе парзеновского окна центр радиального ядра $K\left(\frac{1}{h}\rho(x^*,x_i)\right)$ помещается в классифицируемый объект x^* . Двойственный взгляд: ядро помещается в каждый обучающий объект x_i и "притягивает" объект x^* к классу y_i , если он попадает в его окрестность радиуса h_i :

$$a(x^*, X, h) = \arg \max_{y \in Y} \sum_{i=1}^n [y_i = y] \gamma_i K\left(\frac{\rho(x^*, x_i)}{h_i}\right).$$

 γ_i - величина "заряда" в точке x_i ;

 h_i - "радиус действия" потенциала с центром в точке x_i ;

*у*_i - знак "заряда".

Метод потенциальных функций

- Идея метода потенциальных функций имеет прямую физическую аналогию с электрическим потенциалом
- При $Y = \{-1, +1\}$ обучающие объекты это положительные и отрицательные электрические заряды
- коэффициенты γ_i абсолютные величины этих зарядов
- ядро K(z) зависимость потенциала от расстояния до заряда
- сама задача классификации ответ на вопрос: какой знак имеет электростатический потенциал в заданной точке пространства x^* .

Программная реализация в R

Package kknn, функция kknn

Вопросы

?