С.А.Лифиц

АЛГЕБРА-11

Материалы к урокам по теме: "Преобразование логарифмических выражений"

Поурочное планирование (14 часов)

- Урок 1. Логарифмическая функция. Понятие логарифма.
- Урок 2. Формулы логарифмирования.
- Урок 3. Формула перехода к другому основанию и ее следствия.
- **Урок 4.** Некоторые свойства логарифмов. Преобразование арифметических выражений, содержащих логарифмы.
- **Урок 5.** Преобразование алгебраических выражений, содержащих логарифмы.
- **Урок 6.** *Самостоятельная работа* по теме: "Преобразование логарифмических выражений".
- Урок 7. Выражение одних логарифмов через другие.
- **Урок 8.** Сравнение значений логарифмических выражений. Метод приведения к общему основанию.
- Урок 9. Метод разделяющего числа.
- Урок 10. Различные методы сравнения значений логарифмических выражений.
- **Урок 11.** *Самостоятельная работа* по теме: "Выражение одних логарифмов через другие. Сравнение логарифмических выражений".
- Урок 12. Обобщающий урок по теме.
- Урок 13. Контрольная работа.
- Урок 14. Анализ контрольной работы.

Урок 1. Понятие логарифма

1°. Логарифмическая функция

1) Показательная функция $f(x) = a^x$ (a > 0, $a \ne 1$) строго монотонна. Следовательно, существует обратная к ней функция $g(x) = f^{-1}(x)$.

Определение.

Функцию, обратную показательной, называют логарифмической и обозначают $\log_a x$. При этом число а называют основанием логариф-ма.

- 2) В математическом анализе встречаются, в основном, логарифмы с основанием e. Такие логарифмы называют **натуральными** и обозначают $\ln x$. В прикладных науках чаще всего используют **десятичные** логарифмы, т. е. логарифмы с основанием 10. Их обозначают $\lg x$.
- 3) Поскольку логарифмическая функция $g(x) = \log_a x$ обратна показательной функции $f(x) = a^x$, то график функции g(x) симметричен графику функции f(x) относительно биссектрисы І-ІІІ координатных углов.

- 4) Перечислим **свойства логарифмической функции**. Их можно либо доказать непосредственно, либо вывести, опираясь на общую теорию взаимно обратных функций.
 - (1) Функция $g(x) = \log_a x$ определена при всех положительных x.
 - (2) Областью значений функции $g(x) = \log_a x$ является вся числовая ось.
 - (3) Функция $g(x) = \log_a x$, очевидно, не является ни четной, ни нечетной.
 - (4) Функция $g(x) = \log_a x$ непериодична.
 - (5) Функция $g(x) = \log_a x$ непрерывна на промежутке $(0; +\infty)$.
 - (6) График функции $g(x) = \log_a x$ имеет вертикальную асимптоту x = 0 (т. к. график показательной функции $f(x) = a^x$ имеет горизонтальную асимптоту y = 0).

(7) График функции $g(x) = \log_a x$ имеет единственную точку пересечения с осями координат (1; 0), т. е.

$$\log_a 1 = 0. \tag{1.1}$$

- (8) Функция $g(x) = \log_a x$ монотонно возрастает при a > 1 и монотонно убывает при a < 1. Экстремумов логарифмическая функция не имеет.
- (9) Функция $g(x) = \log_a x$ на всей области определения выпукла вверх при a>1 и выпукла вниз при a<1.

2° . Логарифм числа

1) Пусть, по-прежнему, $f(x) = a^x$, $g(x) = \log_a x$ $(a > 0, a \neq 1)$. Т. к. f(x) и g(x) – взаимно обратные функции, то f(g(x)) = x. Следовательно,

$$a^{\log_a x} = x. \tag{1.2}$$

2) Равенство (1.2) называют **основным логарифмическим тождеством** и часто используют для определения логарифма:

Определение.

Погарифмом числа x по основанию a называют показатель степени, в которую надо возвести основание a, чтобы получить данное число x.

3амечание. При таком подходе необходимо выяснять, существует ли $\log_a x$, единственен ли он. Вводя логарифмическую функцию как обратную показательной, мы сразу ответили на все эти вопросы.

3) Из того, что f(x) и g(x) взаимно обратны, следует также, что g(f(x)) = x, т. е.

$$\log_a a^x = x. \tag{1.3}$$

4) Подставляя в (1.3) x = 1 получаем, что

$$\log_a a = 1. \tag{1.4}$$

Впрочем, равенство (1.4) сразу следует из определения логарифма.

- 5) Упражнения.
 - (1) Вычислите:
 - a) $\log_{1/3} 9$;
 - б) $\log_{100} 1000$.

(2) При каких значениях x справедливы следующие неравенства:

a)
$$\lg (5x - 1) < \lg (4x + 1);$$

6)
$$\log_{0,5} x > \log_{0,5} \frac{x}{2}$$
;

$$B) \log_x 4 > \log_x 3.$$

(3) Постройте графики функций:

a)
$$y = \log_{1/2} (4x - 8);$$

б)
$$y = \ln (6 - 2x)$$
.

Домашнее задание

1) Вычислите:

(1)
$$\log_{1/2} 64$$
;

(2)
$$\log_7 \sqrt[5]{343}$$
;
(4) $\frac{4^{\log_4 48}}{3^{\log_3 16}}$.

(3)
$$\log_{1000} \sqrt[5]{10}$$
;

$$(4) \ \frac{4^{\log_4 48}}{3^{\log_3 16}}$$

2) При каких значениях x справедливы неравенства:

$$(1) \log_7 x < \log_7 2x;$$

(2)
$$\log_{1/4} (x^2 - 1) \geqslant \log_{1/4} (2x + 14);$$

(3)
$$\log_x \sqrt{2} < \log_x 1, 2;$$

$$(4) \log_x \sin \frac{\pi}{4} < \log_x \sin \frac{\pi}{3};$$

3) Что больше: $\log_a N$ или $\log_a \frac{1}{N}$, если:

(1)
$$a > 1, N > 1$$
;

(2)
$$a < 1, N > 1$$
;

(3)
$$a > 1$$
, $0 < N < 1$;

$$(4) \ a < 1, \ 0 < N < 1?$$

4) Найдите область определения следующих функций:

(1)
$$\ln(-4x-6)$$
;

(2)
$$\log_2(x-4) + \log_{1/9}(4-x)$$
.

5) Постройте графики функций:

(1)
$$y = \log_{1/3} |x|$$
;

(2)
$$y = |\log_3(x+2)|$$
.

6) Постройте ГМТ, задаваемые равенствами:

(1)
$$|y| = \ln(x-1)$$
;

(2)
$$|y| = |\log_4(2x - 1)|$$
.

Формулы логарифмирования Урок 2.

 1° . Повторение

1) Вычислите:

(1)
$$\lg (10 \sqrt[3]{100});$$

(2) $\ln \log_7 7$;

- $(3) 5^{1-\log_5 2}$;
- $(4) 9^{\log_3 6 1,5};$
- (5) $\log_{1/3} \log_2 512$;
- (6) $\log_{0.5} \sqrt[3]{10 + \lg 0.01}$.
- 2) Найдите область определения следующих функций:
 - (1) $\ln(3-2x) + \lg(4-x^2)$;
 - (2) $\log_{x/(6-x)} (x^2 3x + 2)$.
- 3) Постройте график функции $y = \sqrt{\lg \sin x}$.

2° . Формулы логарифмирования

- 1) Сейчас мы познакомимся с несколькими очень важными свойствами логарифмов. Пусть a положительное действительное число, не равное 1. Тогда:
 - ullet Для любого x>0 и произвольного действительного lpha

$$\log_a x^\alpha = \alpha \log_a x; \tag{2.1}$$

Доказательство: Из определения логарифма сразу следует, что

$$a^{\log_a x^{\alpha}} = x^{\alpha}, \qquad a^{\alpha \log_a x} = \left(a^{\log_a x}\right)^{\alpha} = x^{\alpha}.$$

Но показательная функция строго монотонна, т. е. принимает каждое свое значение только один раз. Следовательно, $\log_a x^\alpha = \alpha \log_a x$.

ullet Для любых x>0 и y>0

$$\log_a(xy) = \log_a x + \log_a y; \tag{2.2}$$

Доказательство: Из определения логарифма сразу следует, что

$$a^{\log_a(xy)} = xy$$
, $a^{\log_a x + \log_a y} = a^{\log_a x} \cdot a^{\log_a y} = xy$.

Но показательная функция строго монотонна, т. е. принимает каждое свое значение только один раз. Следовательно, $\log_a{(xy)} = \log_a{x} + \log_a{y}$.

ullet Для любых x>0 и y>0

$$\log_a \frac{x}{y} = \log_a x - \log_a y. \tag{2.3}$$

Доказательство: Равенство (2.3) можно доказать точно так же, как и равенство (2.2). А можно воспользоваться уже доказанными формулами (2.1) и (2.2):

$$\log_a \frac{x}{y} = \log_a (xy^{-1}) = \log_a x + \log_a (y^{-1}) = \log_a x - \log_a y.$$

2) Формулы (2.1) – (2.3) называются формулами логарифмирования. Они позволяют свести нахождение логарифмов от сложных рациональных выражений к нахождению логарифмов сомножителей.

Упражнения.

- (1) Вычислите:
 - a) $2\log_{1000} 5 + \log_{1000} 40$;
 - $6) \log_3 \sin \frac{\pi}{6} \log_3 \cos \frac{\pi}{6}.$
- (2) Выразите $\ln \frac{a^3 \sqrt[5]{b^2}}{c \sqrt{pq^3}}$ через $\ln a$, $\ln b$, $\ln c$, $\ln p$ и $\ln q$.
- (3) Выразите $\lg x$ через $\lg 2$ и $\lg 3$, если $x = \sqrt{\frac{24\sqrt{2\sqrt{3}}}{\sqrt[3]{4\sqrt{6}}}}$.
- 3) Иногда приходится иметь дело с обратной задачей: нахождением числа по его логарифму. Такую операцию называют **потенцированием**. И здесь формулы логарифмирования часто бывают полезны.

Упражнения.

- (1) Найдите x, если $\log_a x = \log_a c + b$.
- (2) Найдите x, если $\ln x = \frac{2}{3} \ln (a+b) \frac{1}{3} \ln (a-b) + \frac{2}{3} \ln a \frac{1}{3} \ln b$.
- 4) При работе с логарифмами часто делают ошибки, связанные с неправильным применением формул логарифмирования. Надо помнить, что вообще говоря,

$$\log_a(x+y) \neq \log_a x + \log_a y$$
, $\log_a(xy) \neq \log_a x \cdot \log_a y$, $\log_a \frac{x}{y} \neq \frac{\log_a x}{\log_a y}$.

Также ни в коем случае нельзя выносить минус из под знака логарифма:

$$\log_a(-x) \neq -\log_a x$$
.

Домашнее задание

- 1) Найдите область определения следующих функций:
 - (1) $\lg \frac{2x-1}{5-x} \ln (x^2-1);$
 - (2) $\log_{x^2} (3x 2)$.
- 2) Является ли равенство $\log_2(x^2-4) = \log_2(x-2) + \log_2(x+2)$ тождеством? В какой области оно выполняется?

- 3) Постройте график функции $y = \log_x x$.
- 4) Вычислите:
 - $(1) \log_2 10 \log_2 5;$
 - (2) $36^{\log_6 5} + 10^{1-\lg 2} 3^{\log_9 36}$
- 5) Упростите выражение: $\log_a \frac{2}{1} + \log_a \frac{3}{2} + \ldots + \log_a \frac{n+1}{n}$.
- 6) Прологарифмируйте по основанию a следующие выражения:

(1)
$$x = \sqrt{b\sqrt{b\sqrt{b}}};$$
 (2) $x = \sqrt[3]{\frac{a^2b\sqrt{m}}{b^2 + c^2}};$

7) Найдите x, если:

(1)
$$\log_a x = \frac{1}{3} \left(\log_a b - \frac{2}{5} \log_a c + \log_a d + 4 \right);$$

(2)
$$\log_a x = 3\left(\frac{1}{4}\log_a y + \frac{7}{3}\left(\log_a z - \frac{1}{5}\left(\log_a t + 2\log_a w\right)\right)\right).$$

Урок 3. Формула перехода к другому основанию и ее следствия

1°. Формула перехода к другому основанию

1) Как уже упоминалось, в математическом анализе встречаются в основном натуральные логарифмы. Однако в школьном курсе алгебры приходится преобразовывать выражения, в которые входят логарифмы с различными основаниями. Поэтому достаточно часто возникает необходимость выразить логарифмы по одному основанию через логарифмы по другому основанию. Делается это с помощью формулы

$$\log_a x = \frac{\log_b x}{\log_b a},\tag{3.1}$$

которую называют формулой перехода к другому основанию.

Доказательство: Прологарифмируем основное логарифмическое тождество $a^{\log_a x} = x$ по основанию b:

$$\log_b a^{\log_a x} = \log_b x.$$

С учетом (2.1) отсюда сразу же получаем, что $\log_a x \cdot \log_b a = \log_b x$. Осталось разделить обе части последнего равенства на $\log_b a$.

2) Формулу (3.1) можно переписать в виде $\log_b a \cdot \log_a x = \log_b x$. Меняя обозначения, получаем изящное равенство

$$\log_a b \cdot \log_b c = \log_a c. \tag{3.2}$$

- 3) Упражнения. Вычислите:
 - (1) $7^{\frac{\ln \ln 2}{\ln 7}}$;
 - (2) $\frac{\log_5 0, 125}{\log_5 22 \log_5 11};$
 - (3) $\log_8 7 \cdot \log_7 6 \cdot \log_6 4$.

2° . Следствия из формулы перехода к другому основанию

1) Пусть a и b – два положительных числа, не равные 1. Подставляя в (3.1) x=b, сразу же получаем, что

$$\log_a b = \frac{1}{\log_b a}.$$
(3.3)

Эта формула часто используется при преобразовании логарифмических выражений.

2) В курсе алгебры нам неоднократно будут встречаться логарифмы, основание которых представляет собой степень какого-то числа. При преобразовании таких логарифмов бывает полезной следующая формула:

$$\log_{a^k} b = \frac{1}{k} \log_a b, \quad k \neq 0.$$
(3.4)

Доказательство: Из (3.1) сразу следует, что $\log_{a^k}b=\frac{\log_a b}{\log_a a^k}=\frac{\log_a b}{k}.$

3) Упражнения. Вычислите:

- $(1) 5^{\frac{1}{\log_2 5}};$
- (2) $10, 1^{\frac{2}{\lg 10,1}};$
- $(3) 2^{-1-\log_4 3}$;
- (4) $\log_4 \frac{1}{5} + \log_2 6 + \frac{1}{2} \log_4 \frac{25}{81} \log_{16} 64;$
- (5) $\log_{125} 5 \log_{\sqrt{2}} \frac{1}{2} + \log_{2,5} 0, 4;$

(6) $\log_3 5 \cdot \log_{0.2} 9$;

(7) $\log_{64} 7 \cdot \log_{49} 6 \cdot \log_{6\sqrt{6}} 4;$

$$(8) \ \frac{\log_2 72}{\log_{18} 2} - \frac{\log_2 12}{\log_{81} 2}.$$

Домашнее задание

1) Вычислите:

(1)
$$3^{\frac{1}{\log_5 3}}$$
;

$$(2) 5^{1+2\log_{0,2}2};$$

$$(3) 27^{\log_9 2}$$
;

(4)
$$\sqrt{25^{1/\log_6 5} + 49^{1/\log_8 7}}$$
;

$$(5) \ a^{\frac{\log_b \log_b a}{\log_b a}}.$$

(6)
$$\log_{1/8} (\log_2 3 \cdot \log_3 4);$$

(7)
$$\log_{15} 20 \cdot \log_{16} 15 \cdot \log_{17} 16 \cdot \log_{18} 17 \cdot \log_{19} 18 \cdot \log_{20} 19$$
;

(8)
$$3^{\log_{1/3} 0.04} + \log_{25} (3 + 2\sqrt{2}) - \log_{1/5} (\sqrt{2} - 1)$$
.

2) Докажите, что

$$(1) \ \frac{1}{\log_a N} + \frac{1}{\log_{a^2} N} + \frac{1}{\log_{a^3} N} + \frac{1}{\log_{a^4} N} + \frac{1}{\log_{a^5} N} = 15 \ \log_N a;$$

$$(2) \frac{\log_a N}{\log_{ab} N} = 1 + \log_a b.$$

Урок 4. Некоторые свойства логарифмов. Преобразование арифметических выражений, содержащих логарифмы

1° . Повторение

Вычислите:

1)
$$7^{\log_{49} 9}$$
;

2)
$$\left(3\frac{1}{3}\right)^{\log_{0,3}7}$$
;

3)
$$\log_2 3 \cdot \log_9 8$$
;

2° . Некоторые свойства логарифмов

1) При работе с логарифмами бывает полезна следующая немного неожиданная формула:

$$a^{\log_b c} = c^{\log_b a}. \tag{4.1}$$

Доказательство: $a^{\log_b c} = a^{\frac{\log_a c}{\log_a b}} = \left(a^{\log_a c}\right)^{\log_b a} = c^{\log_b a}.$

Упражнения. Вычислите:

- $(1) 4^{\log_7 11} 11^{\log_7 4};$
- (2) $3^{\log_2 5 1} : 5^{\log_2 3};$
- 2) Из формулы (3.1) перехода к другому основанию следует, что отношение логарифмов с одинаковыми основаниями не зависит от этого основания:

$$\frac{\log_a x}{\log_a y} = \frac{\log_b x}{\log_b y}.$$
(4.2)

Действительно, и левая, и правая часть (4.2) равны $\log_y x$.

3) Воспользовавшись основным свойством пропорции, из (4.2) сразу же получаем, что

$$\log_a x \cdot \log_b y = \log_a y \cdot \log_b x. \tag{4.3}$$

Равенство (4.3) означает, что при перемножении логарифмов можно менять местами аргументы сомножителей. Отметим, что соотношение (3.2) является частным случаем (4.3).

4) В заключение выведем еще одно интересное свойство логарифмов. Пусть a, b, x, y — положительные действительные числа, не равные единице. Из (3.2) следует, что

$$\log_a y = \log_a b \cdot \log_b y = \log_a x \cdot \log_x y.$$

Отсюда сразу же получаем, что

$$\log_a b = \log_x y \iff \log_a x = \log_b y. \tag{4.4}$$

 $\mathbf{Упражнениe}$. Найдите $\log_{a/\sqrt{b}}\left(a^2\sqrt[3]{b}\right)$, если $\log_a 2 = \log_b 3$.

3°. Упражнения на преобразование арифметических выражений, содержащих логарифмы

Вычислите:

1)
$$0.25 \cdot \lg^2 4 + \lg 2 \cdot \lg 25 + \lg^2 0.2$$
;

2)
$$4^{3\log_{2\sqrt{2}}(5-\sqrt{10})-4\log_4(\sqrt{5}-\sqrt{2})}$$
;

3)
$$\log_4 (7 - 4\sqrt{3}) + \log_8 (26 + 15\sqrt{3});$$

4)
$$\log_6 4 (\log_4 6 + \log_6 4 + 2) (\log_4 6 - \log_{24} 6) - \log_4 6$$
;

Домашнее задание

1) Вычислите:

(1)
$$5^{\log_3 11} - 11^{\log_9 25}$$
;

(2)
$$10^{3-\lg 4} - 49^{\log_7 15}$$
;

$$(3) \ 4^{1-\log_5 3} \cdot 9^{\log_5 2}$$
;

(4)
$$(0,5 \lg 25 - 2 \lg \cos 45^{\circ}) \cdot \log_2^3 \left(-\cos \frac{2\pi}{3}\right)$$
.

(5)
$$3^{2+\frac{\log_3 4}{\log_4 3}} - 9 \cdot 4^{\frac{1}{\log_4 3}} + 4^{1+\log_4 25};$$

(6)
$$\frac{3\log_3^2 45 - 2\log_3 45 \cdot \log_3 5 - \log_3^2 5}{3\log_3 45 + \log_3 5};$$

2) Сканави: 7.006, 7.008.

3) Найдите $\log_{\sqrt{a}\cdot\sqrt[5]{b}}(ab)$, если $\log_3 a = \log_5 b$.

Урок 5. Преобразование алгебраических выражений, содержащих логарифмы

1) Упростите выражения:

$$(1) \left(b^{\frac{\log_{100} a}{\lg a}} \cdot a^{\frac{\log_{100} b}{\lg b}}\right)^{2\log_{ab}(a+b)};$$

(2)
$$\frac{1 - \log_a^3 b}{(\log_a b + \log_b a + 1) \cdot \log_a \frac{a}{b}};$$

(3)
$$\left(2^{\log_{\sqrt[4]{2}}a} - 3^{\log_{27}(a^2+1)^3} - 2a\right) : \left(7^{4\log_{49}a} - 5^{0,5\log_{\sqrt{5}}a} - 1\right);$$

(4)
$$\frac{1}{5} \left(2a^{\log_2 b} + 3b^{\log_{\sqrt{2}} \sqrt{a}} \right);$$

(5)
$$\frac{\log_x y - \log_{\sqrt{x}/y^3} \sqrt{y}}{\log_{x/y^4} y - \log_{x/y^6} y} : \log_y \left(x^3 y^{-12} \right).$$

(6)
$$\left(1 + 2^{\frac{\lg a}{\lg\sqrt{2}}} - a^{1 + \frac{1}{\log_4 a^2}}\right)^{1/2} - 3\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \log_6 5 \cdot \log_7 6 \cdot \log_8 7.$$

2) Докажите, что

(1)
$$\log_{ab} c = \frac{\log_a c \cdot \log_b c}{\log_a c + \log_b c}.$$

$$(2) \log_a N \cdot \log_b N + \log_b N \cdot \log_c N + \log_c N \cdot \log_a N = \frac{\log_a N \cdot \log_b N \cdot \log_c N}{\log_{abc} N}.$$

3) Найдите
$$\log_{a\sqrt{b}}\frac{\sqrt{b}}{a^2} + \log_{b\sqrt{a}}\left(a\sqrt{b}\right) + \frac{1}{4}\log_{\sqrt[3]{a}}\sqrt[5]{a}$$
, если известно, что $\log_a b = \frac{1}{2}$.

Домашнее задание

Сканави: 7.009, 7.011, 7.012, 7.151, 7.152, 7.153, 7.155, 7.156.

Урок 6. Самостоятельная работа №1: "Преобразование логарифмических выражений"

Домашнее задание

- 1) Вычислите: $(\sqrt[3]{5})^{\frac{3}{\log_3 5}}$.
- 2) Прологарифмируйте по основанию a выражение $x = \sqrt[11]{\frac{a^4b^{-3}c^2\sqrt{m+n}}{d^{-3}y^{-1/8}}}$.
- 3) Найдите x, если $\log_a x = \frac{1}{4} \left(\log_a y + \frac{3}{7} (\log_a z 2) \right)$.
- 4) Найдите область определения функций $f(x) = \log_{(2x-1)/x} (\sqrt{x+1} x)$.
- 5) Упростите выражение: $\frac{a^{\sqrt{\log_a b}}}{b^{\sqrt{\log_b a}}}$.

Урок 7. Выражение одних логарифмов через другие

- 1) Известно, что $\log_3 5 = a$. Найдите $\log_9 15$.
- 2) Зная, что $\log_{12} 2 = a$, найдите $\log_6 32$.
- 3) Зная, что $\log_{30} 3 = a$, $\log_{30} 5 = b$, найдите $\log_{30} 8$.
- 4) Известно, что $\lg 196 = a$, $\lg 56 = b$. Найдите $\lg 0$, 175.
- 5) Известно, что $\log_{14} 7 = a$, $\log_{14} 5 = b$. Найдите $\log_{35} 28$.
- 6) Пусть $\log_{98} 14 = a$. Выразите $\log_2 7$ через a.
- 7) Известно, что $\log_{12} 27 = a$. Найдите $\log_6 16$.
- 8) Зная, что $\log_{18} 128 = a$, $\log_{15} 20 = b$, найдите $\log_5 2$.

Домашнее задание

- 1) Известно, что $\log_a 27 = b$. Найдите $\log_{\sqrt{3}} \sqrt[6]{a}$.
- 2) Зная, что $\log_3 5 = a$, найдите $\log_{75} 45$.
- 3) Найдите $\log_{12} 30$, если $\log_2 3 = a$, $\log_5 2 = b$.
- 4) Известно, что $\log_{15} 3 = a$, $\log_{15} 2 = b$. Найдите $\log_5 90$.
- 5) Известно, что $\lg 2 = a$, $\log_2 7 = b$. Найдите $\lg 56$.
- 6) Пусть $\log_{21} 14 = a$, $\log_{28} 24 = b$. Найдите $\log_2 3$ и $\log_2 7$.
- 7) Известно, что $\log_2 507 = a$, $\log_2 351 = b$. Найдите $\log_2 14,625$.
- 8) Известно, что $b = 8^{1/(1-\log_8 a)}, \, c = 8^{1/(1-\log_8 b)}.$ Найдите зависимость a от c.

Урок 8. Сравнение значений логарифмических выражений. Метод приведения к общему основанию

1°. Простейшие задачи на сравнение значений логарифмических выражений

1) Для того, чтобы сравнить два логарифма с одинаковыми основаниями, надо пользоваться тем, что функция $f(x) = \log_a x$ монотонно возрастает при a > 1 и монотонно убывает при 0 < a < 1:

2) Для того, чтобы сравнить два логарифма с одинаковыми аргументами, но разными основаниями, надо помнить, что функция $g(x) = \log_x a$ при a > 1 монотонно убывает на каждом из промежутков (0;1) и $(1;+\infty)$, а при 0 < a < 1 монотонно возрастает на каждом из этих промежутков. Графики функции g(x) выглядят так:

6) 0 < a < 1

Впрочем, можно пользоваться и тем, что $\log_x a = \frac{1}{\log_a x}$, сводя задачу к сравнению выражений, содержащих логарифмы с одинаковыми основаниями. В этом случае надо очень внимательно следить за знаками логарифмов.

3) Упражнения.

- (1) Между какими соседними целыми числами находится число $A = \log_{1/7} 81$?
- (2) Сравните $\log_{1/2} 3$ и $\log_{1/2} 4$.
- (3) Найдите ближайшее к $\log_3 58$ целое число.
- (4) Сравните $1 \log_2 3$ и $\log_2 5 \log_2 7$.
- (5) Сравните $\log_3 5$ и $\log_4 5$.
- (6) Сравните $\log_{\sqrt{2}-1} 0, 3$ и $\log_{\sqrt{3}-\sqrt{2}} 0, 3$.
- (7) Сравните $\log_8 23$ и 1, 5.

(8) Сравните $\log_{2/3} 7$ и -4, 5.

2° . Метод приведения к общему основанию

1) Если сравниваемые логарифмы имеют разные основания и разные аргументы, то прежде всего надо попытаться привести их к одному основанию или одному аргументу.

Пример. Докажите, что $\log_2 7 < \log_4 81$.

Решение: Очевидно, $\log_4 81 = \frac{1}{2} \log_2 81 = \log_2 9 > \log_2 7$.

2) Упражнения.

- (1) Сравните $2\log_{1/3}\frac{1}{4}$ и $3\log_{27}15$.
- (2) Сравните $\log_6 72$ и $\log_3 18$.
- (3) Докажите, что $\log_{14} 448 > \log_5 40$.
- (4) Сравните $\log_8^2 5 2\log_8 5$ и $\log_4^2 3 2\log_4 3$.

Домашнее задание

- 1) Между какими соседними целыми числами находится число $\log_2 17$?
- 2) Найдите ближайшее к $\log_{1/7} 143$ целое число.
- 3) Сравните значения следующих выражений:
 - (1) $\log_{1/3} 5$ и $\log_{1/4} 5$;
 - (2) $-\log_{2/\sqrt{3}} \frac{\sqrt{13}}{5}$ и $2\log_{\sqrt{3}/2} \sqrt{0,7}$;
 - (3) $\log_{0.1} 6$ и $\log_{0.01} 4\pi^2$;
 - $(4) \log_3 5 \log_{1/3} 2$ и $\log_9 7 + \log_3 4$;
 - (5) $\log_{0.5}^2 6 + 2\log_{0.5} 6$ и $\log_{0.5}^2 5 + 2\log_{0.5} 5$;
 - $(6) \log_3 6$ и $\log_{18} 72$.

Урок 9. Метод разделяющего числа

1° . Повторение

- 1) Сравните $8^{\log_5 7}$ и $7^{\log_5 8}$.
- 2) Сравните $\log_{0,1} \sin \frac{3\pi}{7}$ и $\log_{0,1} \cos \frac{3\pi}{7}$.
- 3) Сравните $3\log_{16}1862 + \log_{16}1866$ и \log_21863 .

2° . Метод разделяющего числа

- 1) Все задачи на сравнение значений логарифмических выражений, с которыми мы встречались ранее, решаются с помощью приведения логарифмов к общему основанию. В более сложных случаях приходится использовать специальные приемы. Сейчас мы познакомимся с одним из них, называемым методом разделяющего числа.
- 2) Суть метода состоит в том, чтобы подобрать число, которое больше одного из сравниваемых выражений, но меньше второго из них.

Пример. Сравните $\log_2 10$ и $\sqrt[3]{26}$.

Решение: Поскольку $\log_2 10 > 3$, а $\sqrt[3]{26} < 3$, то $\log_2 10 > \sqrt[3]{26}$.

- 3) Упражнения.
 - (1) Сравните $2\log_7 3$ и $\log_{0,1} 0, 2$.
 - (2) Сравните $2 (\log_2 3)^{-1}$ и $\log_{1.5} 3$.
 - (3) Докажите, что $\log_2 3 > \log_3 5$.
 - (4) Сравните $\log_3 4$ и $\sqrt[4]{2}$.

Домашнее задание

1) Сравните значения следующих выражений:

(1)
$$\log_2 \sin \frac{2\pi}{9}$$
 u $\log_4 \left(1 + \cos \frac{4\pi}{9}\right) - \frac{1}{2}$.

- (2) $\log_2 13$ и $2^{\sqrt{5}}$;
- (3) $\log_{\sqrt{5}} 2$ и $\log_{\sqrt{3}-\sqrt{2}} (\sqrt{5}-2)$;
- $(4) \log_2 3$ и $\log_5 8$;
- 2) Докажите, что $2^{\sqrt{\log_2 3}} = 3^{\sqrt{\log_3 2}}$.
- 3) Известно, что $\log_2 3 = a$. Найдите $\log_{162} 54$.

Урок 10. Различные методы сравнения значений логарифмических выражений

Мы уже умеем решать задачи на сравнение логарифмических выражений с помощью приведения логарифмов к общему основанию и с помощью метода разделяющего числа. Сейчас мы познакомимся с еще несколькими методами.

1) Метод сравнения дробных частей. Если сравниваемые выражения имеют одинаковую целую часть, то иногда удобнее сравнивать их дробные части.

Пример. Сравните $\log_5 7$ и $\log_{13} 17$.

Решение: Очевидно, оба логарифма лежат между 1 и 2. Поэтому сравним дробные части данных логарифмов, т. е. $\log_5 7 - 1~$ и $\log_{13} 17 - 1.$ Но

$$\log_5 7 - 1 = \log_5 \frac{7}{5} > \log_{13} \frac{7}{5} > \log_{13} \frac{17}{13} = \log_{13} 17 - 1.$$

Ответ: $\log_5 7 > \log_{13} 17$.

Замечание. Метод сработал благодаря тому, что $\frac{7}{5} > \frac{17}{13}$.

Упражнения.

- (1) Докажите, что $\log_n(n+1) > \log_{n+1}(n+2)$ при всех натуральных n > 1.
- (2) Сравните $\log_3 4$ и $\sqrt[4]{2}$.
- 2) Метод приведения к одному аргументу. Если сравниваемые выражения могут быть представлены как функции от одной и той же величины, то задача сводится к проверке неравенства f(x) < g(x) при заданном x.

Пример. Докажите, что $\log_{14} 98 > \log_{56} 784$.

Решение: $\log_{14} 98 = 1 + \log_{14} 7$, $\log_{56} 784 = 1 + \log_{56} 14$. Следовательно, достаточно доказать, что $\log_{14} 7 > \log_{56} 14$. Но

$$\log_{14} 7 = \frac{1}{\log_7 14} = \frac{1}{1 + \log_7 2} = \frac{1}{1 + \frac{1}{\log_2 7}} = \frac{\log_2 7}{\log_2 7 + 1},$$

$$\log_{56} 14 = \frac{1}{\log_{14} 56} = \frac{1}{1 + 2\log_{14} 2} = \frac{1}{1 + \frac{2}{\log_{2} 7 + 1}} = \frac{\log_{2} 7 + 1}{\log_{2} 7 + 3}.$$

Надо доказать, что $\frac{x}{x+1}>\frac{x+1}{x+3}$ при $x=\log_2 7$. Легко проверить, что при x>1 это неравенство верно, а $\log_2 7>1$.

Упражнения.

- (1) Докажите, что $\log_3 7 > \log_7 27$.
- (2) Сравните $\log_{15} 675$ и $\log_{75} 84375$.
- 3) **Функциональный метод**. Иногда сравниваемые выражения представляют собой одну и ту же функцию f(x) при различных значениях аргумента. В этом случае можно попытаться исследовать f(x) на монотонность.

18

Пример. Сравните
$$\frac{2\log_{1/7}3-1}{\log_{1/7}3+1}$$
 и $\frac{2\log_{49}0,2-1}{\log_{49}0,2+1}$.

Решение: Сравниваемые выражения представляют собой значения функции $f(x)=\frac{2x-1}{x+1}=2-\frac{3}{x+1}$ при $x=\log_{1/7}3$ и $x=\log_{49}0,2$ соответственно. Заметим, что $\log_{1/7}3=-\log_73=\log_7\frac{1}{3}$, а $\log_{49}0,2=\frac{1}{2}\log_7\frac{1}{5}=\log_7\frac{1}{\sqrt{5}}$. Поскольку $\frac{1}{7}<\frac{1}{3}<\frac{1}{\sqrt{5}}$, то $-1<\log_{1/7}3<\log_{49}0,2$. Но при x>-1 функция f(x) монотонно возрастает. Следовательно, $f\left(\log_{1/7}3\right)< f\left(\log_{49}0,2\right)$.

Ответ:
$$\frac{2\log_{1/7}3 - 1}{\log_{1/7}3 + 1} < \frac{2\log_{49}0, 2 - 1}{\log_{49}0, 2 + 1}.$$

Домашнее задание

- 1) Сравните значения следующих выражений:
 - $(1) \log_3 7$ и $\log_5 9$;
 - (2) $\frac{\log_2 7 2}{\log_2 7 3}$ и $\frac{\log_4 47 2}{\log_4 47 3}$;
 - $(3) \log_{189} 1323$ и $\log_{63} 147$.
 - (4) Сравните $\log_2 3$ и $\sqrt[3]{7}$.
- 2) Докажите, что $\log_4 3 > \log_3 2$.
- 3) Докажите, что $\log_5 14 > \log_7 18$.
- 4) Известно, что $\log_6 15 = a$, $\log_{12} 18 = b$. Найдите $\log_{25} 24$.

Урок 12. Обобщающий урок

- 1) Найдите $\log_{n\sqrt{m}} \frac{m}{n^2}$, если $\log_m n = 3$.
- 2) Постройте график функции $y = \left| \log_{1/2} \sqrt{x^2 2x + 1} \right|$.

$$3) \text{ Упростите: } \left(\left(\frac{\log_a^2 b + 1}{2 \log_a b} - 1 \right)^{1/2} + \left(\frac{\log_a^2 b + 1}{2 \log_a b} + 1 \right)^{1/2} \right) \cdot \sqrt{2} \cdot \log_a^{1/2} b.$$

Домашнее задание

- 1) Сравните:
 - а) $\log_2 3$ и $\log_3 2$;
 - б) $\log_{1/2} 3$ и $\log_3 1, 1$;
 - в) $\left(\sqrt{5}+2\right)^{\log_{0.5}7}$ и $\left(\sqrt{5}-2\right)^{\log_26}$.

- 2) Найдите $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$, если $\log_{a/b} a = -2$.
- 3) Сканави: 7.003, 7.157, 7.160.

4) Упростите выражение:
$$\frac{\log_a \left(b^{\frac{1}{2}} \log_b a^2 \right) \cdot \lg a \cdot \log_a^{1/2} 100}{\left(\lg a \cdot 2^{\log_2 \lg a} \right)^{1/2} \cdot \lg^{-1/2} a^2}.$$

5) Упростите выражение:
$$\frac{1 - \log_{1/a} \frac{1}{\left(a - b\right)^2} + \log_a^2 \left(a - b\right)}{\left(1 - \log_{\sqrt{a}} \left(a - b\right) + \log_a^2 \left(a - b\right)\right)^{1/2}}.$$