Exercice 1

Pour quelles valeurs du complexe q la série $\sum_{n > n} q^n$ est-elle convergente?

En cas de convergence, que vaut sa somme $\sum_{n=p}^{+\infty} q^n$?

Exercice 2

Soit $\sum_{n\geq 0} u_n$ une série géométrique convergente.

Que vaut son reste d'ordre n?

Exercice 3

On pose, pour tout $n \ge 2$, $u_n = \ln\left(1 - \frac{1}{n^2}\right)$.

- 1. Montrer que, pour tout $n \geq 2$, u_n s'écrit sous la forme : $u_n = v_{n+1} v_n$. Préciser la valeur de v_n .
- 2. Montrer que la série $\sum_{n\geq 2}u_n$ est convergente et calculer $\sum_{n=2}^{+\infty}u_n$.

Exercice 4

Déterminer une condition nécessaire et suffisante sur le complexe z pour que la série de terme général u_n soit absolument convergente.

- 1. $\forall n \in \mathbb{N}, \ u_n = (1 \sqrt{5})^n z^{2n}$.
- 2. $\forall n \in \mathbb{N}, \ u_n = z^{2n} (1 2\sqrt{2}i)^n$

Exercice 5

Calculer, lorsque c'est possible, les sommes suivantes :

$$S_1 = \sum_{n=0}^{+\infty} 3^n \quad , \quad S_2 = \sum_{n=1}^{+\infty} \left(\frac{1}{2}\right)^{5n} \quad , \quad S_3 = \sum_{n=1}^{+\infty} \frac{1}{4^{3n-2}} \quad , \quad S_4 = \sum_{n=0}^{+\infty} \frac{1}{3^n e^{in}} \quad , \quad S_5 = \sum_{n=0}^{+\infty} 3^{1-3n}.$$

Exercice 6

(Test année 2015-2016)

Soit $\sum_{n\in\mathbb{N}} u_n$ une série numérique. On pose, pour tout $n\in\mathbb{N}, v_n=u_{2n}+u_{2n+1}$.

On note $(S_n)_{n\in\mathbb{N}}$ (respectivement $(T_n)_{n\in\mathbb{N}}$) la suite des sommes partielles associée à la série $\sum_{n\in\mathbb{N}}u_n$ (respectivement

 $\sum_{n\in\mathbb{N}}v_n).$

- 1. Exhiber une série divergente $\sum_{n\in\mathbb{N}}u_n$ telle que $\sum_{n\in\mathbb{N}}v_n$ soit convergente.
- 2. Soit $n \in \mathbb{N}$. Exprimer S_n puis T_n comme somme des termes de la suite $(u_n)_{n \in \mathbb{N}}$.
- 3. Montrer que si $\sum_{n\in\mathbb{N}}u_n$ est convergente alors $\sum_{n\in\mathbb{N}}v_n$ est convergente.
- 4. Montrer que si $u_n \underset{n \to +\infty}{\longrightarrow} 0$ et $\sum_{n \in \mathbb{N}} v_n$ est convergente alors $\sum_{n \in \mathbb{N}} u_n$ est convergente.

EXERCICES SUPPLÉMENTAIRES

Exercice 7

Soit a un réel.

Ecrire $\frac{1}{1+2e^{ia}}$ en utilisant une somme de série géométrique convergente.

Exercice 8

Ecrire le rationnel x donné par son développement décimal illimité 0,765765765765765... sous forme d'une fraction irréductible.