Remark and Solutions

Sheet 5

Problem 26

In the following we abbreviate " $\mathfrak{sl}_2(k)$ -representation" by "representation".

Lemma 1. If V and W are two representations then for every $\kappa \in k$,

$$(V \otimes W)_{\kappa} = \bigoplus_{\lambda + \mu = \kappa} V_{\lambda} \otimes W_{\mu} .$$

Proof. We have $V_{\lambda} \otimes W_{\mu} \subseteq (V \otimes W)_{\lambda+\mu}$ because

$$h.(v \otimes w) = (h.v) \otimes w + v \otimes (h.w) = \lambda v \otimes w + \mu v \otimes w = (\lambda + \mu)v \otimes w$$

for every simple tensor $v \otimes w \in V_{\lambda} \otimes W_{\mu}$. We also know from Weyl's theorem that

$$V \otimes W = \bigoplus_{\kappa} (V \otimes W)_{\kappa}$$

and

$$V \otimes W = \left(\bigoplus_{\lambda} V_{\lambda}\right) \otimes \left(\bigoplus_{\mu} W_{\mu}\right) = \bigoplus_{\lambda,\mu} V_{\lambda} \otimes W_{\mu} = \bigoplus_{\kappa} \bigoplus_{\lambda+\mu=\kappa} V_{\lambda} \otimes W_{\mu}.$$

We see that the inclusion $\bigoplus_{\lambda+\mu=\kappa} V_{\lambda} \otimes W_{\mu} \subseteq (V \otimes W)_{\kappa}$ is already an equality. \square

For every finite dimensional representation V we denote its formal character by

$$\operatorname{ch}(V) := \sum_{n \in \mathbb{Z}} \dim(V_n) t^n \in k[t, t^{-1}].$$

Lemma 2.

(1) For every $n \ge 0$,

$$ch(V(n)) = t^n + t^{n-2} + \dots + t^{2-n} + t^{-n}$$
.

(2) If $V^{(1)}, \dots, V^{(n)}$ are finite dimensional representations then

$$\operatorname{ch}(V^{(1)} \oplus \cdots \oplus V^{(n)}) = \operatorname{ch}(V^{(1)}) + \cdots + \operatorname{ch}(V^{(n)}).$$

^{*}Available online at https://github.com/cionx/representation-theory-1-tutorial-ss-19.

(3) If V and W are two finite dimensional representations then

$$\operatorname{ch}(V \otimes W) = \operatorname{ch}(V) \operatorname{ch}(W)$$
.

Proof.

- (1) We see this from the explicit description of V(n) as done in the lecture.
- (2) This follows from $(V^{(1)} \oplus \cdots \oplus V^{(n)})_{\lambda} = V_{\lambda}^{(1)} \oplus \cdots \oplus V_{\lambda}^{(n)}$.
- (3) This follows from Lemma 1.

Proposition 3. Two finite dimensional representations V and W are isomorphic if and only if they have the same formal character.

Proof. If $V \cong W$ then $\dim(V_{\lambda}) = \dim(W_{\lambda})$ for every λ , and hence $\operatorname{ch}(V) = \operatorname{ch}(W)$. Suppose now that $\operatorname{ch}(V) = \operatorname{ch}(W)$. By Weyl's theorem we can decompose both V and W into irreducibles:

$$V \cong \bigoplus_{n=0}^{N} V(n)^{\oplus p_n}$$
 and $W \cong \bigoplus_{m>0}^{M} V(m)^{\oplus q_m}$

with $p_N, q_M \neq 0$. Then $\operatorname{ch}(V)$ has the leading term $p_N t^N$ and $\operatorname{ch}(W)$ has the leading term $q_M t^M$. It follows from $\operatorname{ch}(V) = \operatorname{ch}(W)$ that N = M and $p_N = q_M$. It follows for

$$V' \coloneqq \bigoplus_{n=0}^{N-1} V(n)^{\oplus p_n}$$
 and $W' \coloneqq \bigoplus_{m \ge 0}^{M-1} V(m)^{\oplus q_m}$

that

$$\operatorname{ch}(V') = \operatorname{ch}(V) - \operatorname{ch}\big(\operatorname{V}(N)^{\oplus N}\big) = \operatorname{ch}(W) - \operatorname{ch}\big(\operatorname{V}(M)^{\oplus M}\big) = \operatorname{ch}(W')$$

We can now apply induction to find $V' \cong W'$ and hence $p_i = q_i$ for all i = 0, ..., N - 1. The induction start is given by $\operatorname{ch}(V) = \operatorname{ch}(W) = 0$, when V = 0 = W.

This shows that
$$N = M$$
 and $p_i = q_i$ for all $i = 1, ..., N$, whence $V \cong W$.

Let now $n, m \geq 0$. To determine the decomposition of $V(n) \otimes V(m)$ into irreducibles we may assume that $n \geq m$ (because $V(n) \otimes V(m) \cong V(m) \otimes V(n)$). We can now proceed in two ways:

• We have

and therefore

$$V(n) \otimes V(m) \cong V(n+m) \oplus V(n+m-2) \oplus \cdots \oplus V(n-m)$$
.

• We note that

$$\operatorname{ch}(V(n)) = t^n + t^{n-2} + \dots + t^{2-n} + t^{-n} = \frac{t^{n+2} - t^{-n}}{t^2 - 1}.$$

It follows that

$$ch(V(n) \otimes V(m))$$

$$= ch(V(n)) ch(V(m))$$

$$= \frac{t^{n+2} - t^{-n}}{t^2 - 1} (t^m + t^{m-2} + \dots + t^{2-m} + t^{-m})$$

$$= \frac{(t^{n+2} - t^{-n})(t^m + t^{m-2} + \dots + t^{2-m} + t^{-m})}{t^2 - 1}$$

$$= \frac{t^{n+m+2} + t^{n+m} + \dots + t^{n-m+2} - t^{m-n} - \dots - t^{-n-m+2} - t^{-n-m}}{t^2 - 1}$$

$$= \frac{t^{n+m+2} - t^{-n-m}}{t^2 - 1} + \frac{t^{n+m} - t^{-n-m+2}}{t^2 - 1} + \dots + \frac{t^{n-m+2} - t^{m-n}}{t^2 - 1}$$

$$= ch(V(n+m)) + ch(V(n+m-2)) + \dots + ch(n-m)$$

$$= ch(V(n+m) \oplus V(n+m-2) \oplus \dots \oplus V(n-m))$$

and hence again

$$V(n) \otimes V(m) \cong V(n+m) \oplus V(n+m-2) \oplus \cdots \oplus V(n-m)$$
.

The above decomposition of $V(n) \otimes V(m)$ is known as the Clebsch–Gordan rule. Under the name of Glebsch–Gordan coefficients this plays a role in Quantum mechanics.

Problem 27

Suppose that A is not a domain. There are two possible situation for this to happen: If A = 0 then $gr_i(A) = A_{(i)}/A_{(i-1)} = 0$ for every i and thus gr(A) = 0. In this case gr(A) is again not a domain.

If $A \neq 0$ then there exist nonzero $a, b \in A$ with ab = 0. Then there exist $i, j \geq 0$ with $a \in A_{(i)}$ and $b \in A_{(j)}$ but $a \notin A_{(i-1)}$ and $b \notin A_{(j-1)}$ (where $A_{(-1)} = 0$). (This means that a is of degree i and b is of degree j.) Then the resulting elements $[a]_i \in \operatorname{gr}_i(A)$ and $[b]_j \in \operatorname{gr}_j(A)$ are nonzero with

$$[a]_i \cdot [b]_j = [ab]_{i+j} = [0]_{i+j} = 0.$$

In this case gr(A) is again not a domain.

If \mathfrak{g} is a Lie algebra then $\operatorname{gr}(\operatorname{U}(\mathfrak{g})) = \operatorname{S}(\mathfrak{g})$ is a domain because $\operatorname{S}(\mathfrak{g})$ is a polynomial algebra. (More specifically, if $(x_i)_{i\in I}$ is a basis of \mathfrak{g} then $\operatorname{S}(\mathfrak{g})\cong k[t_i\mid i\in I]$.) Thus $\operatorname{U}(\mathfrak{g})$ is a domain.

Problem 28

The main idea of our approach is taken from [MRS87, 6.7].

Let $A = \bigcup_{i \geq -1} A_{(i)}$ be a filtered algebra (where $A_{(-1)} = 0$). We denote for $x \in A_{(i)}$ the corresponding equivalence class in $\operatorname{gr}_i(A) = A_{(i)}/A_{(i-1)}$ by $[x]_i$. We denote for every $a \in A$ by $\operatorname{deg}(a)$ the degree of a, i.e.

$$\deg(a) = \min\{i \ge 0 \mid a \in A_{(i)}\}.$$

For every element $a \in A$ the equivalence class $[a]_i$ is defined for all $i \geq \deg(a)$, but $[a]_i = 0$ if $i > \deg(a)$. To every element $a \in A$ we can hence associate a canonical element $\gamma(a) \in \operatorname{gr}(A)$, namely $\gamma(a) = [a]_{\deg(a)}$.

To every left (resp. right) ideal I in A we can associate a homogeneous left (resp. right) ideal gr(I) in A, given by the homogeneous parts

$$\operatorname{gr}_i(I) := (A_{(i-1)} + I \cap A_{(i)}) / A_{(i-1)} = \{ [x]_i \mid x \in I \cap A_{(i)} \} \subseteq \operatorname{gr}_i(A)$$

The space $gr(I) = \bigoplus_{i>0} gr_i(I)$ is indeed a left ideal in gr(A) because

$$gr_{i}(A)gr_{j}(I) = \{[a]_{i}[x]_{j} \mid [a]_{i} \in gr_{i}(A), [x]_{j} \in gr_{j}(I)\}$$

$$= \{[a]_{i}[x]_{j} \mid a \in A_{(i)}, x \in I \cap A_{(j)}\}$$

$$= \{[ax]_{i+j} \mid a \in A_{(i)}, x \in I \cap A_{(j)}\}$$

$$\subseteq \{[y]_{i+j} \mid y \in I \cap A_{i+j}\}$$

$$= gr_{i+j}(I).$$

If I is a right ideal then gr(I) is again a right ideal.

Recall 4. If M is an R-module (where R is some ring) and A, B, C are submodules of M with $A \subseteq C$ then

$$A + (B \cap C) = (A + B) \cap C.$$

We can therefore just write $A + B \cap C$.

Remark 5. The ideal I inherits from A a filtration given by $I_{(i)} := I \cap A_{(i)}$. Then

$$gr_{i}(I) = (A_{(i-1)} + I \cap A_{(i)})/A_{(i-1)}$$

$$\cong (I \cap A_{(i)})/(A_{(i-1)} \cap I \cap A_{(i)})$$

$$= (I \cap A_{(i)})/(I \cap A_{(i-1)})$$

$$= I_{(i)}/I_{(i-1)}.$$

This justifies the notation $gr_i(I)$.

If I and J are two ideals in A with $I \subseteq J$ then also $\operatorname{gr}_i(I) \subseteq \operatorname{gr}_i(J)$ for all i and thus $\operatorname{gr}(I) \subseteq \operatorname{gr}(J)$. We will see that if I is strictly contained in J, then $\operatorname{gr}(I)$ is also strictly contained in $\operatorname{gr}(J)$. This will be a consequence of the following observation, that is interesting in its own right.

Proposition 6. Let I be a left (resp. right) ideal in A and let S be a subset of I. If $\{[s]_{\deg(s)} \mid s \in S\}$ is a generating set for the left (resp. right) ideal $\operatorname{gr}(I)$ then S is a generating set for I.

Proof. Let $a \in A$. The associated element $[a]_{\deg(a)} \in A$ can be written as a linear combination

$$[a]_{\deg(a)} = \sum_{s \in S} b_s[s]_{\deg(s)}$$

for some $b_s \in \operatorname{gr}(A)$. By decomposing the coefficients b_s into homogeneous components we see that we can replace each b_s by its homogeneous component of degree $\deg(a) - \deg(s)$. We may hence assume that each b_s is homogeneous of degree $\deg(a) - \deg(s)$; in particular $b_s = 0$ whenever $\deg(s) > \deg(a)$. For

$$S' \coloneqq \{s \in S \mid \deg(s) \le \deg(a)\}$$

we thus have

$$[a]_{\deg(a)} = \sum_{s \in S'} b_s[s]_{\deg(s)}.$$

We can write every b_s as $b_s = [a_s]_{\deg(a) - \deg(s)}$ for some $a_s \in A_{\deg(a) - \deg(s)}$ because b_s

is homogeneous of degree deg(a) - deg(s). Then

$$[a]_{\deg(a)} = \sum_{s \in S'} b_s[s]_{\deg(s)}$$

$$= \sum_{s \in S'} [a_s]_{\deg(a) - \deg(s)}[s]_{\deg(s)}$$

$$= \sum_{s \in S'} [a_s s]_{\deg(a)}$$

$$= \left[\sum_{s \in S'} a_s s\right]_{\deg(a)}$$

and hence $a - \sum_{s \in S'} a_s s \in A_{\deg(a)-1}$. Now we can proceed inductively to express this difference as a linear combination of S.

Remark 7. One may think for $a \in A$ about the associated element $[a]_{\deg(a)} \in \operatorname{gr}(A)$ as the "leading term" of a, and as $\operatorname{gr}(I)$ as the "ideal of leading terms" of I. (Note that if A is a graded algebra then $\operatorname{gr}(A) = A$ and $[a]_{\deg(a)}$ is precisely the leading term of a.) Then the above statement and its proof may be compared to Hilbert's basis theorem¹, or the concept of a Gröbner basis.

Corollary 8. If I and J are left (resp. right) ideals in A with $I \subsetneq J$ then $gr(I) \subsetneq gr(J)$.

Proof. Suppose that gr(I) = gr(J). The ideal gr(I) is homogeneous and thus generated by homogeneous elements. There hence exists some subset S of I such that gr(I) is generated by the set $\{[s]_{\deg(s)} \mid s \in S\}$. It follows from Proposition 6 and gr(I) = gr(J) that S is a generating set of both I and J. Thus I = J.

Corollary 9. If gr(A) is left (resp. right) noetherian then A is left (resp. right) noetherian. The same holds for left (resp. right) artinian.

Proof. Every strictly increasing sequence of left (resp. right) ideals

$$I_0 \subsetneq I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$$

in A results by Corollary 8 in a strictly increasing sequence of left (resp. right) ideals

$$\operatorname{gr}(I_0) \subsetneq \operatorname{gr}(I_1) \subsetneq \operatorname{gr}(I_2) \subsetneq \operatorname{gr}(I_3) \subsetneq \cdots$$

in gr(A). So if A is not noetherian then neither is gr(A). Similarly for artinian. \Box

Corollary 10. If \mathfrak{g} is a finite dimensional Lie algebra then $U(\mathfrak{g})$ is both left and right noetherian.

Proof. If dim $\mathfrak{g} = n$ then $gr(U(\mathfrak{g})) = k[x_1, \dots, x_n]$ is both left and right noetherian whence the assertion follows from Corollary 9.

¹In [MRS87, Proposition 6.7] the above proposition is implicitely used, and for a missing calculations the authors refer to an earlier proof — namely that of Hilbert's basis theorem.

Remark 11. Recall that for any $n \ge 1$ the polynomial algebra $k[x_1, \ldots, x_n]$ is not artinian because

$$(x_n) \supseteq (x_n^2) \supseteq (x_n^3) \supseteq \cdots$$

is a strictly decreasing sequence of ideals of infinite length. We can see similarly that if $\mathfrak g$ is any nonzero Lie algebra then $U(\mathfrak g)$ is neither left artianian nor right artinian:

We show that that $\mathrm{U}(\mathfrak{g})$ is not left artinian: Let $(x_i)_{i\in I}$ be basis of \mathfrak{g} such that the index set (I,\leq) is linearly ordered and admits a maximal element $j\in I$. (Here we use the well ordering theorem.) Then $\mathrm{U}(\mathfrak{g})$ admits the associated PBW basis consisting of all monomials $x_{i_1}^{n_1}\cdots x_{i_r}^{n_r}$ with $r\geq 0,\ n_i\geq 1,\ i_1<\cdots< i_r$. It follows that for all $m\geq 0$ the left ideal $\mathrm{U}(\mathfrak{g})x_j^m$ has as a basis all monomials $x_{i_1}^{n_1}\cdots x_{i_r}^{n_r}x_j^{m'}$ with $r\geq 0,\ n_i\geq 1,\ i_1<\cdots< i_r< j$ and $m'\geq m$. Thus

$$U(\mathfrak{g})x_j \supseteq U(\mathfrak{g})x_j^2 \supseteq U(\mathfrak{g})x_j^3 \supseteq \cdots$$

is a strictly increasing sequence of left ideals of infinite length. That $U(\mathfrak{g})$ is not right artinian can be seen in the same way.

References

[MRS87] J. C. McConnel, J. C. Robson, and L. W. Small. Noncommutative Noetherian Rings. Graduate Studies in Mathematics 30. American Mathematical Society, 1987, pp. xx+636. ISBN: 978-0-8218-2169-5.