

Processamento do Histograma

UFPR 100 Anos 1912 2012

Processamento do Histograma

Histograma:

Mostra as frequências de níveis de cinza;

Frequências -> Probabilidade: dividir as frequências pelo número total de "pixels" na imagem (frequência relativa).

UFPR 100 Anos 1912 · 2012

Processamento do Histograma

0	0	1	0	2	0	
1	0	7	7	7	0	freqüências f(0)= 18
0	7	0	0	7	0	f(1)= 6
1	0	0	7	2	0	f(2)= 2
0	0	7	1	0	1	f(3)=f(4)=f(5)=f(6)
1	0	7	7	7	0	f(7) = 10

$$P(0) = \frac{f(0)}{36} = \frac{1}{2}$$

$$P(2) = \frac{f(2)}{36} = \frac{1}{18}$$

$$P(7) = \frac{f(7)}{36} = \frac{5}{18}$$

$$P(1) = \frac{f(1)}{36} = \frac{1}{6}$$

$$P(3) = P(4) = P(5) = P(6) = 0$$

Níveis de Cinza entre [0, L-1]

$$P(r_k) = \frac{n_k}{n}, k = 0, 1, \dots, L-1$$

UFPR 100 Anos 1912 · 2012

Propriedades das Imagens

Valores muito baixos – Imagem escura.

Valores muito altos – Imagem clara.

Valores muito próximos – Imagem com baixo contraste.

Valores espalhadados – Imagem com alto contraste

a b

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms. (Original image courtesy of Dr. Roger Heady, Research School of Biological Sciences, Australian National University, Canberra, Australia.)

Processamento do Histograma

Equalização do Histograma

Alargamento do contraste através da redistribuição dos níveis de cinza de forma uniforme;

Totalmente automático (comparado a outras técnicas de alargamento do contraste).

Processamento do Histograma

Equalização do Histograma

Aumentar o contraste geral da Imagem espalhando a distribuição de níveis de cinza.

Exemplo:

Dada uma imagem de n x m "pixels" e g níveis de cinza; Número ideal de pixels em cada nível de cinza é:

$$I = (n \times m) / g$$

UFPR 100 Anos 1912 · 2012

Processamento do Histograma

Equalização do Histograma

Pode ser feita através da fórmula:

$$q = max \left\{ 0, ARRED. \left(\frac{\sum_{j=0}^{k} n_{j}}{I} \right) - 1 \right\} \quad 0 \le k \le g$$

onde:

g são os níveis de cinza da imagem original; q são os níveis de cinza da imagem equalizada

UFPR 100 Anos 1912 · 2012

Processamento do Histograma

Exemplo:

g	n Σ	n q	
0	1	1	0
1	9	10	2
2	8	18	5
3	6	24	7
4	1	25	7
5	1	26	8
6	1	27	8
7	1	28	8
8	2	30	9
9	0	30	9

$$q = max \left[0, ARRED.\left(\frac{\sum_{j=0}^{k} n_{j}}{I}\right) - 1 \right] \quad 0 \le k \le g$$

UFPR 100

Processamento do Histograma

- a) Imagem Original;
- b) Histograma da Imagem Original;
- c) Imagem Equalizada;
- d) Histograma da Imagem Equalizado

UFPR 100 Anos 1912 · 2012

Processamento do Histograma

- a) Imagem Original;
- b) Histograma da Imagem Original;
- c) Imagem Equalizada;
- d) Histograma da Imagem Equalizado

UFPR 100 Anos 1912 · 2012

Processamento do Histograma

Equalização do Histograma

