APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

STUDY MATERIALS

a complete app for ktu students

Get it on Google Play

www.ktuassist.in

```
06/08/18
```

Module II

```
Line Drawing Algorithms
      1) DDA (Digital Differential Analyzer)
       Algorithm
       #define ROUND(a) ((int)(a+0.5))
       void Line DDA (int da, int ya, int ab, int yb)
       int dx = 26-2a, dy = 46-4a, steps, k.
           float xincrement, yincrement, x=xa, y= yai
           if (abs(dx) > abs(dy))
              steps = abs (dx).
           else steps = abs(dy).
           rincrement = dx/float (Steps).
           gincument = dy/float (steps).
     setpixel (ROUND(x), ROUND(y)).
            for (k=0; k< steps; k++)
              at= sincrement.
               y+= yincrement
setpixel (ROUND(X), ROUND(Y))
   eg: - (20,10), (30,18)
         dz=30-20=10
dej= 18-10=81/
         7=20, y=10
        y (20>8) /= steps=10/1
        xinciement = 10/10=1/
```

St point => (20.5, 10.5) Point to be plotted	3. Calculate constants $\Delta z, \Delta y, 2\Delta z, 2\Delta y, 2\Delta y - 2\Delta z$ and obtain the stasting value for the decision parameter as $P_0 = 2\Delta y - \Delta z$. A. At each z_k along the line starting at $k = 0$, perform the following test: If $P_k < 0$, the next point to plot is, (z_{k+1}, y_{k}) and $P_{k+1} = P_k + 2\Delta y$. Otherwise, the next point to plot is (z_{k+1}, y_{k+1}) and $P_{k+1} = P_k + 2\Delta y - 2\Delta z$. 5. Repeat step 4 Δz times. eg: $(20, 10)$, $(30, 18)$ $\Delta z = 10$ $\Delta y = 8$ $2\Delta z = 20$ $2\Delta y = 16$ $2\Delta y - 2\Delta z = -4$ $\frac{k}{k} = \frac{P_k}{Q_k} = \frac{(z_{k+1}, y_{k+1})}{Q_k} = \frac{P_k}{Q_k} = \frac{P_k}{Q_k}$
2) Bresenham's Line Drawing Algorithm	2 -2 14-4=10//
· Used when lines have a slope less than 1. Algorithm 1 Input the 2 line endpoints and store the left endpoints in (xo,yo). 2. Load (xo,yo) into the frame buffer, ie, plot the stoppint.	3 14 $(24,18)$ $P_4 = 41$ 4 10 $(25,14)$ $P_5 = 10-4 = 61/$ 4 $(25,14)$ $P_6 = 6-4 = 21/$ 5 $(25,15)$ $P_6 = 6-4 = 21/$ 6 $(27,16)$ $P_7 = 2-4 = -2$ 6 $(27,16)$ $P_8 = -2+16 = 14//$ 7 $(29,17)$ $P_9 = 14-4 = 10//$ 8 14 $(20,18)$

	-larde
and the same of same and the same same	4. Determine symmetry points in the other + cetets.
Action on such districts and sales	5. Move each calculated pixel position (x,y) onto
18	the circular path centred on (xc, yc) and plot
	the coordinate values $\alpha = \alpha + \alpha_c$, $y = y + y_c$.
(國際語句) 가입에 가게 하는 경기에 가고 있다. 나는 다른 아이지 않는 것이 되는 것이 되는 것이 되었다. (國際語句) (國際語句) (國際語句) (國際語句) (國際語句) (國際語句) (國際語句)	G. Repeat steps 3 through 5 until x>y.
12 July 1 for the first of the	eg:- Radius or=10, centre by default = (0,0)
bon (sur)	·· (20, 40) = (0, 10)
5 28 September 2011 and some of the september 2011	Po = 1-8 = 1-10 = = 9
×400100114, 9	
h h	6 -9 (1,10) & 20 20
2	1 -6 (210) 4 20
0 5 10 15 20 25 30 E PA	2 (3,10)
08/08/18 Carla ligarition Algorithms	3 6 (A, 1)
Circle Generation Algorithms	4 -3 (5,9) 10 18
) Med point Cacle Algorithm.	5 8 (6,8) .12 16
Algorithms	6 5 (7,7)
1. Input radius of and circle centre (xc, yc) and obtain	(5)
the 1st point on the circumference of a circle centred	3) Bresenham's Incremental Circle Algorithm.
an the origin as $(\alpha_0, y_0) = (0, \tau)$	Algorithm
a. Calculate the initial value of the decision parameter	All variables are assumed integers
$\frac{10}{4} - \Re \left(\sim (1-\gamma) \right),$	Initialise the variables $\alpha_0 = 0$, $y_1 = R$, $\Delta i = 2(i-R)$
3. At each or proition of 1	limit = 0.
following test:-	while (ye > limit).
of PL < 0, the mount is	setpixel (no, yi)
(0,0) is $(2k+1, yk)$ and $(2k+1) = (2k+1) = (2k+1)$ Otherwise, the next point along the circle centred on Otherwise, the next point along the	//determine if case 1 or 3/4 or 5/3.
Otherwise, the next point along the circle is (α_{k+1}, y_{k-1}) and (α_{k+1}, y_{k-1}) and (α_{k+1}, y_{k-1}) and (α_{k+1}, y_{k-1})	a le (Ni < D) Inon
(α_{k+1}, y_{k-1}) and (α_{k+1}, y_{k+1}) and (α_{k+1}, y_{k+1}) and (α_{k+1}, y_{k+1}) and (α_{k+1}, y_{k+1})	$\delta = 2\Delta l + 2.4; -1$
	D- X LV 1 -C//A

A KTU STUDENTS PLATFORM

SYLLABUS
OUTES OUTES
OUTES OUTES
OUTES OUTES

IT FROM GOOGLE PLAY

CHAT

A FAQ
LOGIN
E
N
D
A

 $M \cup$

DOWNLOAD APP

ktuassist.in

instagram.com/ktu_assist

facebook.com/ktuassist