Zhiqian Zhou Student Number: # 14303902

HW2

Question 1

a)

Sample x1, x2 are included in x in the form of [x1;x2], x is a 2*d matrix.

```
% Mahalanobis distance

function [ distance ] = mahalanobis(x, sigma, u)

[row_x,~] = size(x);
distance = sum((x - repmat(u,row_x,l)) * inv(sigma).*...
    (x - repmat(u,row_x,l)),2);
end
```

b)

Using the function above, the 'discriFunction' Function calculate the value of discriminate function.

```
% discriminant function

function [ discriValue ] = discriFunction(x, sigma, u, d, prior)

mahal = mahalanobis(x, sigma, u);
discriValue = -1/2*mahal - d/2*log(2*pi) - 1/2*log(det(sigma)) + log(prior);
end
```

c)

Compute mean and covariance.

Calculate the value of discriminate function using the function above, the result is listed below.

```
(1,3,2) is classified to class 1
(4,6,1) is classified to class 1
(7,-1,0) is classified to class 1
(-2,6,5) is classified to class 2
```

Question 2

a), b)

Generates the (say, 1000) samples.

```
mul = [8,2];
mu2 = [2,8];
sigma = [4.1,0;0,2.8];
r1 = mvnrnd(mul,sigma,1000);
r2 = mvnrnd(mu2,sigma,1000);
```

Calculate the scope using the mean and variance.

```
%scope
scopl_1 = min(mul(1,1),mu2(1,1))-sqrt(sigma(1,1))*4;
scopl_r = max(mul(1,1),mu2(1,1))+sqrt(sigma(1,1))*4;
scop2_1 = min(mul(1,2),mu2(1,2))-sqrt(sigma(2,2))*4;
scop2_r = max(mul(1,2),mu2(1,2))+sqrt(sigma(2,2))*4;
scope_x = scopl_1:0.2:scopl_r;
scope_y = scop2_1:0.2:scop2_r;
```

Derive the decision boundary.

```
% solve the decision boundary

☐ function [ q_solve ] = bound(mul,mu2,sigmal,sigma2,priorl,prior2)

syms x y;

q_1 = (-0.5) * ([x-mu1(1,1),y-mu1(1,2)]) * inv(sigma1) * ([x-mu1(1,1);y-mu1(1,2)]) - 0.5 * log(det(sigma1)) + log(prior1);

q_2 = (-0.5) * ([x-mu2(1,1),y-mu2(1,2)]) * inv(sigma2) * ([x-mu2(1,1);y-mu2(1,2)]) - 0.5 * log(det(sigma2)) + log(prior2);

g = g_1 - g_2;

g_solve = solve(g,'y');

end
```

Plot the boundary on top of the generated samples.

```
%boundary
syms x;
g_solve = bound(mul,mu2,sigma,sigma,4/5,1/5);
boundary = double(subs(g_solve,x,scope_x));
figure('Name','First Random Point');
plot(rl(:,1),rl(:,2),'.r',r2(:,1),r2(:,2),'.k',scope_x,boundary,'-b');
```

Boundary for the first distribution.

```
>> g_solvel
g_solvel =
(28*x)/41 + 6182840975149691633/2769713770832855040
```


Plot the two classes in 3D.

```
%3D
[x1,y1] = meshgrid(scope_x,scope_y);
xy = [x1(:), y1(:)];
p1 = mvnpdf(xy,mul,sigma);
p2 = mvnpdf(xy,mu2,sigma);
P1 = reshape(p1,size(x1));
P2 = reshape(p2,size(x1));
figure('Name','First 3D')
mesh(x1,y1,P1);
hold on;
mesh(x1,y1,P2);
```


Plot the posterior probabilities. Using the total probability formula to calculate the evidence P(x) and the Bayes Formula to calculate the posterior probability. P(w1) = 4/5, P(w2) = 1/5.

```
% posterior probability
px = P1 * 4/5 + P2 * 1/5;
post1 = (P1*4/5) ./ px;
post2 = (P2*1/5) ./ px;
figure('Name','First Posterior1');
mesh(x1,y1,post1);
figure('Name','First Posterior2');
mesh(x1,y1,post2);
```


Code are nearly the same for the rest of them.

Therefore, only figure will be showed below.

d)

boundary for the second distribution

```
>> g_solve2
g_solve2 =
(32*x)/45 + 6157867716077030197/3039929748475084800
```


For this graph, there is two boundaries, but one of them is two far away to plot in this graph. Boundary for the third distribution

The second boundary line cannot show either.

Boundary for the fourth distribution

 $g_solve4 = \\ (1632*x)/31 - (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (108106*((2675*x^2)/54053 - (100400*x)/54053 + 8515030565437125588835/486866141316514840576)^(1/2))/465 - 30184/31 \\ (1632*x)/31 + (1632*x)/31$

