National Water Conditions

UNITED STATES
Department of the Interior
Geological Survey

CANADA

Department of the Environment Water Resources Branch

OCTOBER 1986

A major fall flood in the central Midwest affected large parts of Oklahoma, Kansas, Missouri, Illinois, and parts of adjacent States. As much as 25 inches of rain were reported in north-central Oklahoma from September 29 to October 3. Peak discharges on many rivers and streams exceeded both the peak of record and the 100-year flood. Devastating floods also occurred in south-central Alaska with the areas around Seward, Bradley Lake (at head of Kachemak Bay, east of Homer) and the Susitna River valley the hardest hit. Damages were estimated at \$15 to \$20 million in Alaska and \$100 million in Chicago and its suburbs.

Streamflow was in the normal or above-normal range at 85 percent of the 192 index stations with below-normal streamflow persisting in large parts of the Pacific Northwest and the Southeast. Monthly mean flows were highest of record for October in parts of 10 States and lowest of record for the month in parts of New York, Florida, and Puerto Rico.

The combined flow of the 3 largest rivers in the lower 48 States—St. Lawrence, Mississippi, and Columbia—averaged a record-breaking 1,351,500 cfs during October, exceeding the 1973 high of 928,800 cfs by 45 percent, with the flows of all 3 rivers in the above-normal range, and the flows of the St. Lawrence and the Mississippi also setting records for the month.

STREAMFLOW CONDITIONS DURING OCTOBER 1986

A major fall flood in the central Midwest affected large parts of Oklahoma, Kansas, Missouri, Illinois, and parts of adjacent States-the direct result of runoff from torrential rains associated with a stationary cold front and the remnants of Hurricane Paine. As much as 25 inches of rain were reported in north-central Oklahoma September 29 to October 3. Residents of many communities in Oklahoma were forced to evacuate their homes due to the flooding. Flows in the Cimarron, Neosho, Chickaskia, Baron Fork, Bird Creek, Caney, Arkansas, Verdigris, North Fork Red, Salt Fork Red, and Washita Rivers nearly equaled or exceeded previous recorded peaks. The flooding was especially severe on the Arkansas River in Oklahoma and in the Osage River basin in southeastern Kansas and west-central Missouri. Flood peaks near the end of September and early October were highest of record at several locations, and much of the flooding in northeast Oklahoma was the result of releases from the many reservoirs in the area. In Illinois, severe flooding occurred in the Des Plaines River basin where peak flows with recurrence intervals of 75 years were reported. Rainfall during the last 7 days of September totaled over 12 inches at two locations in that basin. Four deaths were attributed to the flooding, and damage estimates of \$30 million in the Chicago area and \$70 million in the outlying suburbs were reported.

In north-central Montana, runoff from as much as 6 inches of rain during an 8- to 12-hour period on September 24 caused severe flooding in the Milk River basin. Peak discharges on Battle Creek, Peoples Creek, Beaver Creek, and Willow Creek, major tributaries to the Milk River, had recurrence intervals of about 100 years or more. On the main stem of the Milk River, peak flows were about a 40- to 50-year event. One life was lost, and considerable property and crop damage occurred as a result of the flooding.

In south-central Alaska, runoff from record 24-hour rainfalls on October 10 and 11 caused flooding that was highly variable but in some places severe and devasting. The hardest hit areas were at Seward, the Bradley Lake area (at head of Kachemak Bay, east of Homer) and in the Susitna River valley. Damage estimates of \$15-20 million were reported, about \$4-5 million of which was

suffered by the Alaska Railroad. Selected data on stages, discharges, recurrence intervals, and gaging station locations for the floods in Alaska and for those described in the preceding paragraphs are given in the accompanying table and maps on pages 4, 5.

Streamflow generally increased in Hawaii, Washington, Oregon, Nevada, New Mexico, North Dakota, South Carolina, and in a broad area from Louisiana and Oklahoma northeastward to Maine. Monthly mean flows decreased in Virginia, New Brunswick, Rhode Island, New Hampshire, and parts of Alberta and Saskatchewan, and were variable elsewhere. Streamflow was in the normal or above-normal range at 85 percent of the 192 index stations compared to 81 percent in those ranges for last month. Monthly mean flows at index sites were highest of record for October in parts of at least 10 States and lowest of record for the month in parts of Puerto Rico, Florida, and New York. For example, monthly mean discharge of Big Sioux River at Akron, Iowadraining 8,424 square miles in South Dakota, Minnesota, and Iowa, of which about 1,487 square miles is probably noncontributing-was 4,000 cubic feet per second (cfs), highest for October in 58 years of record and nearly 17 times the median flow for October. (See table of new extremes on page 3.) The map on page 7 indicates areas where streamflow has persisted in the above- or belownormal range for at least 2 consecutive months and also areas where streamflow was in the above- or belownormal range during October after being in a different range during September.

Elsewhere in the Nation, flash flooding occurred during the first 4 days of the month in central and northern Indiana with near bankful and lowland flooding along the larger streams in the State. In Iowa, despite the large volume of rainfall and the record October runoff volume on many streams throughout the State, serious flooding did not occur. In Utah, the elevation of Great Salt Lake was 4,210.95 feet above National Geodetic Vertical Datum of 1929 at the end of October, up 0.25 foot above the low reached on September 15, 1986, and only 0.90 foot below the record high elevation of 4,211.85 feet recorded June 3-8, 1986.

CONTENTS

	Page
Streamflow (map)	1
Streamflow conditions	2
Flood data for Alaska, Montana, and the central Midwest	4
Total precipitation (map)	6
Percentage of normal precipitation (man)	6
September-October streamflow, persistence and change (map).	7
Crop moisture and drought severity (maps)	-
Monthly mean discharge of the "Big Three" rivers (graphs)	ś
Great Lakes elevations (graphs)	6
Flow of large rivers.	
Usable contents of selected reservoirs.	10
Usable contents of selected reservoirs (graphs).	11
Ground-water conditions.	12
Monthly mean discharge of selected streams.	1/
Dissolved solids and water temperatures at downstream sites on six large rivers.	17
Precipitation forecast for November 1986 through January 1987.	14
Explanation of data	1.0
Explanation of the contraction o	1.3

NEW EXTREMES DURING OCTOBER 1986 AT STREAMFLOW INDEX STATIONS

Station number	Stream and place of determination	Drainage area	Years	Previous extre (period of	mes	October 1986					
		(square miles)	of record	Monthly mean in cfs (year)	Daily mean in cfs (year)	Monthly mean in cfs	Percent of median	Daily mean in cfs	Day		
			LO	w FLOWS							
01309500	Massapequa Creek at Massapequa, N.Y.	38	49	2.37 (1965)	1.7 (1965)	1.90	24	1.30	1		
02358000	Apalachicola River at Chattahoochee, Fla.	17,300	58	5,319 (1954)	5,010 (1954)	5,200	48				
50038100	Rio Grande De Manati at HWY 2 near Manati, Puerto Rico.	197	16	196 (1982)	71 (1977)	170	33	109	1		
			ніс	GH FLOWS							
03234500	Scioto River at Higby, Ohio.	5,131	56	5,043 (1979)	15,300 (1975)	5,080	668	19,300			
04084500	Fox River at Rapide Croche Dam near Wrightstown, Wis.	6,150	90	8,943 (1938)	18,200 (1938)	13,230	594	14,641			
04121500		1,450	54	1,569 (1954)	2,400 (1951)	2,383	386	3,980			
04264331	St. Lawrence River at Cornwall Ont. near Massena, N.Y.	298,800	126	306,000 (1973)	311,000 (1972)	323,900	128	341,000			
05288500	Mississippi River near Anoka, Minn.	19,100	56	18,180 (1965)	29,700 (1984)	20,750	382	35,400			
05331000		36,800	88	34,760 (1903)	58,200 (1968)	37,740	578	64,700			
05407000	Wisconsin River at Muscoda, Wis.	10,300	73	19,460 (1972)	43,000 (1972)	25,410	468	45,900			
05446500	Rock River near Joslin, Ill.	9,542	47	13,470 (1972)	28,000 (1954)	17,100	520	23,300			
05464500		6,510	84	9,556 (1965)	28,500 (1965)	10,800	723	22,000			
05480500	Des Moines River at Fort Dodge, Iowa.	4,190	56	4,270 (1982)	6,690 (1965)	5,995	1,733	11,200			
06485500	Big Sioux River at Akron, Iowa.	8,424	58	2,280 (1982)	4,580 (1982)	4,000	1,674	9,170			
06800500		6,900	66	2,440 (1982)	15,200 (1965)	2,750	538	5,020			
06810000		2,806	59	3,555	15,100	5,060	1,045	22,900			
06934500	Missouri River at Hermann, Mo.	528,200	89	221,900 (1973)	353,000 (1969)	289,600	482	547,000			
07289000		1,144,500	58	562,000 (1979)	823,000 (1945)	905,000	307	1,176,000			

Precipitation was generally above normal in the eastern two-thirds of the Nation, but large areas in the Northeast remained below normal. (See maps on page 6.) Monthly mean flow of Conecuh River at Brantley, Alabama, was well above the low for the 1986 water year reached in August, but flows at that site remained in the below-normal range for the 7th consecutive month. (See graph on page 14.)

The combined flow of the three largest rivers in the conterminous United States—Mississippi, St. Lawrence, and Columbia—averaged a record-breaking 1,351,500 cfs during October, 111 percent above median, 93 percent above last month, and 45 percent greater than the previous record of 928,800 cfs set in 1973. Monthly mean flow of the St. Lawrence River near Cornwall, Ontario, was the highest for October in 126 years of record, averaging 323,900 cfs (28 percent above median), and was above

the normal range for the 24th consecutive month. Similarly, the monthly mean flow of 905,000 cfs and the daily mean flow of 1,176,000 cfs on October 21 at the Mississippi River near Vicksburg were highest for the month in 58 years of record. Hydrographs for both the separate flows and combined flow of the "Big Three" are shown on page 8 with Great Lakes Hydrographs below them

Contents of 87 percent of reporting reservoirs were near or above average for end of October. The only reservoirs with both below-average contents for the end of the month and significant declines in contents during the month were Lake Cushman (Washington) and Pend Oreille Lake (Idaho). Contents of all reservoirs in Oklahoma were above the normal maximum at end of October.

FLOOD DATA FOR SELECTED SITES IN ALASKA, ILLINOIS, MISSOURI, MONTANA, AND OKLAHOMA, SEPTEMBER TO OCTOBER 1986.

	Stream and place of determination			Maximum flood previously known					Maxi				
WRD station number		Drainage area (square miles)	Period of known floods		Date		Stage	Discharge	Date	Stage	Disch	narge Cfs per	Recur- rence
number		mics)	noods				(feet)	(cfs)	Daic	(feet)	Cfs	square mile	interval (years)
				ALA	SKA								
	SOUTH-CENTRAL ALASKA	ar.	1050		10	1070	boar	6.000	0 10	10.02	an one	162	100
	Bradley River near Homer	a54	1958-			1979	b9.46		Oct. 10	10.83	a8,800	163	100
	Talkeetna River near Talkeetna Susitna River at Sunshine	2,006	1964- 1971,	Aug.			16.35 62.10	67,400 c200,000	11	17.38 a16.5	^a 73,000 ^a 180,000	36.4 16.2	50-100
3292780	Sustina River at Sunsmine	11,100	1981-	Aug.	10,	19/1	02.10	200,000	11	10.5	100,000	10.2	(d)
5293000	Caswell Creek near Caswell	19.6	1963-	Augu	st	1965	12.89	207	11	(d)	350	17.9	*1.
	Little Willow Creek near Kashwitna	155	1980-			1985	13.30	2,100	11	15.25	7,400	47.7	(d)
	Moose Creek near Talkeetna	52.3	1972-			1981	26.73	2,500	11	31.8	3,400	65.0	*1.
	Skwentna River near Skwentna	2,250	1960-			1977	15.09	51,600	11 or 12	17.3	a69,000	30.7	*1.
	Yentna River near Susitna Station	a6,180	1980-			1981	18.61	116,000	12	19.2	130,000	21.0	(d)
	Susitna River at Susitna Station		1974-			1981	20.27	230,000		a23.3	320,000	16.5	*1.
	Chuitna River near Tyonek	131	1976-			1982	10.07	4,800		a16.4	c13,000	99.2	*2.
				ILLI	NOI	s							
	ILLINOIS RIVER BASIN												
	Des Plaines River near Gurnee	232	1945-	Apr.		1960	10.64	3,070	Sept. 27	11.95	3,550	15.3	75
	Des Plaines River near Des Plaines	360	1940-	Apr.		1960	8.56	4,670	Oct. 1	10.9	4,950	13.8	75
	Nippersink Creek near Spring Grove	192	1966-			1971	13.03	2,430	Sept. 26	14.26	3,200	16.7	<75
5550000	Fox River at Algonquin	1,403	1915-	Apr.	6,	1960	e4.01	6,610	Oct. 1	3.99	6,200	4.4	30
				MISS	SOUI	RI							
	LAMINE RIVER BASIN							# 1 000				10.4	
06908000	Blackwater River at Blue Lick	1,120	1922-33, 1938-	Nov.	18,	1928	41.25	54,000	Oct. 3	42.79	45,500	40.6	70
	OSAGE RIVER BASIN												
6918440	Sac River near Dadeville	257	1966-	Feb.	23,	1985	20.63	10,200	1	20.8	13,500	52.5	*1
	Turnback Creek above Greenfield	252	1965-			1972	24.45	41,000	1		36,000	143	100
06918740	Little Sac River near Morrisville	237	1968-	Nov.	1,	1972	21.95	22,300	1	21.75	21,700	91.6	(d)
	Sac River at Hwy J below Stockton	1,292	1973-	Feb.	23,	1985	24.91	11,100	1	24.62	14,800	11.5	(d)
06919500	Cedar Creek near Pleasant View	420	1923-26, 1948-	July	17,	1958	27.35	33,900	1	27.3	35,800	85.2	*1
06921200	Lindley Creek near Polk	112	1957-	May	5,	1961	23.60	28,000	1	23.32	31,900	285	*1
				MON	ITA	NA							
24120500	MUSSELSHELL RIVER BASIN						f						
	Musselshell River at Mosby MILK RIVER BASIN		1929-				¹ 14.43		Sept. 25			1.7	10
06145500	Lodge Creek below McRae Creek, at International Boundary	825	1951-	June	14.	1962	14.40	7,760	26	16.36	^c 9,000	10.9	>100
06149500	Battle Creek at International Boundary	997	1917-				10.56	5,820	25	11.5	c7,000	7.0	>100
06151500	Battle Creek near Chinook	1,539	1905-21, 1984-	Mar	. 31,	1918	b16.50	a12,000	25	24.2	19,300	12.5	>100
06154100	Milk River near Harlem	9,822	1960-	Apr	19	. 1965	5.44	6,600	30	26.4	c11,000	1.1	a40
	Peoples Creek near Dodson		1952-73,				g11.94	3,940	25				95
06155030	Milk River near Dodson	11,192	1981- 1982-	Inde	12	1002	16 84	2 250	24	30.10	13,000	1.2	50
	Willow Creek near Glasgow		1953-	July July	14		16.56 h21.70						95
				OKL									
	ARKANSAS RIVER BASIN				_								
07152000	Chickaskia River near Blackwell	1,859	1935-	June	22	, 1942	33.3	85,000	Oct. 3	34.28	56,800	30.6	1
	Skeleton Creek near Lovell		1949-	May	16	, 1957	34.58			36.78	51,100	125	3
	Cimarron River at Perkins		1939-	May		, 1957		149,000			160,000		7
	Arkansas River at Tulsa		1925-	Oct.	. 5	1959	22.00	246,000		25.21	300,000	4.0	5
	Arkansas River near Haskell		1972-	Nov		, 1974				22.77			(d)
	Verdigris River near Lenapah		1938-	May		, 1943				38.29			10
07175500	Caney River near Ramona	. 1,955	1935-	Oct	. 3	, 1945	30.12	38,500		31.12	120,000	61.4	(d)
	Neosho River near Commerce	. 5,876	1939-	July		, 195	34.03	267,000		6 26.33	101,000	17.2	1

^aabout ^bat different datum

cestimated
dunknown or not determined

fmaximum gage height, 15.1 ft. Mar. 12, 1979, backwater from ice jam.

gmaximum gage height, 17.05 ft. Mar. 29, 1952, backwater from ice.

hmaximum gage height, 23.0 ft. June 21, 1974.

*approximate ratio of discharge to that of 100-year flood.

LOCATION OF SITES FOR WHICH FLOOD DATA ARE GIVEN IN ALASKA, MONTANA, AND THE CENTRAL MIDWEST

PERSISTENCE IN, OR MOVEMENT INTO, THE BELOW-NORMAL OR ABOVE-NORMAL FLOW

CROP MOISTURE AND DROUGHT SEVERITY

[CROP MOISTURE depicts short-term (up to about four weeks) abnormal dryness or wetness affecting agriculture. Responds rapidly, can change considerably from week to week, and indicates normal conditions at the begining and end of the growing season. DROUGHT SEVERITY INDEX (PALMER) depicts prolonged (months, years) abnormal dryness or wetness. Responds slowly, changes little from week to week, and reflects long-term moisture, runoff, recharge and deep perrolation, as well as evapotranspiration.]

(From Weekly Weather and Crop Bulletin prepared and published by the NOAA/USDA Joint Agricultural Weather Facility)

MONTHLY MEAN DISCHARGE OF THE "BIG THREE" RIVERS

GREAT LAKES ELEVATIONS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

FLOW OF LARGE RIVERS DURING OCTOBER 1986

				October 1986							
Station number Stream and place of determina	Stream and place of determination	Drainage area (square miles)	Average discharge through September 1980 (cubic	Monthly mean dis- charge (cubic	Percent of median monthly	Change in dis- charge from	Discharge near end of month				
	014000 St. John Diver below Eigh Diver	,	feet per second)	feet per second)	discharge, 1951—80	previous month (percent)	Cubic feet per second	Million gallons per day	Dat		
01014000	St. John River below Fish River at Fort Kent, Maine	5,690	9,647	4,512	94	-61	2,540	1,641	31		
01318500	Hudson River at Hadley, N.Y	1,664	2,909	2,680	191	+42	2,250	1,454	31		
01357500	Mohawk River at Cohoes, N.Y	3,456	5,734	5,020	194	+78	3,500	2,260	31		
01463500	Delaware River at Trenton, N.J	6,780	11,750	4,070	83	+12	3,720	2,404	31		
01570500	Susquehanna River at	24,100	34,530	14,910	140	+136	9,220	5,959	28		
01646500	Harrisburg, Pa. Potomac River near	11,560	111,490	11,740	61	+3	2,400	1,550	31		
02105500	Washington, D.C. Cape Fear River at William O. Huske	4,810	5,005	982	49	-11	1,090	704	31		
02121000	Lock near Tarheel, N.C.	0 020	0.051	2 220	40		0.040		1		
02131000	Pee Dee River at Peedee, S.C	8,830 13,600	9,851 13,880	2,220 1,965	48 38	+1	2,340	1,512	30		
02220000	Suwannee River at Branford, Fl				64	-36 -25	1,810	1,169	28		
	Apalachicola River at	7,880 17,200	6,987 22,570	2,910 5,200	48	-23	2,770 4,930	1,790 3,186			
02467000	Chattahoochee, Fl. Tombigbee River at Demopolis lock	15,400	23,300	5,002	128	+80	3,450	2,229	3		
00 100 500	and dam near Coatopa, Ala.										
02489500	Pearl River near Bogalusa, La	6,630	9,768	2,074	98	+17	1,870	1,208			
03049300	Allegheny River at Natrona, Pa	11,410	119,480	120,400	290	+259	8,030	5,189			
	Monongahela River at Braddock, Pa	7,337	112,510	19,180	237	+115	4,550	2,940			
	Kanawha River at Kanawha Falls, W.Va.	8,367	12,590	4,725	78	+1	3,500	2,260			
03234500	Scioto River at Higby, Ohio	5,131	4,547	5,080	668	+206	2,340	1,512			
03294500	Ohio River at Louisville, Ky.2	91,170	116,00	86,780	244	+113	27,000	17,500			
03377500	Wabash River at Mount Carmel, Ill French Broad River below Douglas	28,635 4,543	27,220 6,798	20,030	290 46	+212	14,000	9,000	3		
04084500	Dam, TN. Fox River at Rapide Croche Dam,	6,150	4,163	13,233	594	+42	10,730	6,934	3		
04264331	near Wrightstown, Wis. ² St. Lawrence River at Cornwall,	299,000	242,700	323,900	128	-1	340,000	220,000	3		
02NG001	Ontario-near Massena, N.Y. ³ St. Maurice River at Grand	16,300	25,150	31,800	167	+33	19,700	12,730	3		
05082500	Mere, P.Q. Red River of the North at Grand	30,100	2,551	3,356	249	+6	2,300	1,490	2		
05133500	Forks, N.Dak. Rainy River at Manitou Rapids, Minn	19,400	11,830	8,330	77	+17	8,040	6 106	1 2		
05133300	Minnesota River near Jordan, Minn	16,200	3,402	13,490	1.285			5,196			
	Mississippi River at St. Paul, Minn		110,610	37,740	578	+31	8,770 24,400	5,668 15,770	3		
	Chippewa River at Chippewa Falls, Wis.	5,600	5,100	9,943	359	-11	5,200	3,360			
05407000	Wisconsin River at Muscoda, Wis	10,300	8,617	25,410	468	+65	9,620	6,217	3		
05446500	Rock River near Joslin, Ill	9,551	5,873	17,100	520	+121	13,300	8,600			
05474500	Mississippi River at Keokuk, Iowa	119,000	62,620	215,400	611	+121	158,600	102,510			
06214500	Yellowstone River at Billings, Mont	11,796	7,038	5,060	120	-6	4,690	3,031			
06934500	Missouri River at Hermann, Mo	524,200	79,490	289,600	482	+171	230,000	149,000			
07289000	Mississippi River at Vicksburg, Miss.4	1,140,500	576,600	905,000	307	+204	929,000	600,400			
07331000	Washita River near Dickson, Okla	7,202	1,368	6,606	1,273	+474	6,500	4,200			
08276500	Rio Grande below Taos Junction Bridge, near Taos, N.Mex.	9,730	725	884	319	+73	1,010	652			
	Green River at Green River, Utah		6,298	5,927	207	+57	5,900	3,810			
11425500	Sacramento River at Verona, Calif	21,257	18,820	12,725	120	-24	9,700	6,270			
13269000	Snake River at Weiser, Idaho	69,200	18,050	23,300	160	+35	24,700	15,960			
13317000	Salmon River at White Bird, Idaho	13,550	11,250	5,610	113	-4	5,770	3,729	3		
	Clearwater River at Spalding, Idaho		15,480	4,280	114	-62	4,390	2,837			
	Columbia River at The Dalles, Oreg.5		1193,100	122,600	134	+59	142,900	92,360			
14191000	Willamette River at Salem, Oreg	7,280	123,510	16,890	102	+25	15,500	10,020			
15515500	Tanana River at Nenana, Alaska		23,460	19,130	123	-43	13,000	8,400			
DAMPIES	Fraser River at Hope, B.C	83,800	96,290	52,610	72	-23	46,610	30,120	3		

Adjusted.

Records furnished by Corps of Engineers.

Records furnished by Buffalo District, Corps of Engineers, through International St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg, N.Y. when adjusted for storage in Lake St. Lawrence.

Records of daily discharge computed jointly by Corps of Engineers and Geological Survey.

Discharge determined from information furnished by Bureau of Reclamation, Corps of Engineers, and Geological Survey.

USABLE CONTENTS OF SELECTED RESERVOIRS NEAR END OF OCTOBER 1986

[Contents are expressed in percent of reservoir capacity. The usable storage capacity of each reservoir is shown in the column headed "Normal maximum."]

Principal uses: Reservoir		ercent	of norm	_	bie storage c	apacity of each reservoir is shown in the co		ercent	of norma		amum. 'j
F-Flood control I-Irrigation M-Municipal P-Power R-Recreation W-Industrial	End of Oct. 1986	End of Oct. 1985	Average for end of Oct.	End of Sept. 1986	Normal maximum _a (acre-feet)	F-Flood control I-Irrigation M-Municipal P-Power R-Recreation W-Industrial	End of Oct. 1986	End of Oct. 1985	Average for end of Oct.	End of Sept. 1986	Normal maximum _a (acre-feet)
NOVA SCOTIA Rossignol, Mulgrave, Falls Lake, St. Margaret's Bay, Black, and Ponhook Reservoirs(P)					bas san	NEBRASKA Lake McConaughy (IP)	78	76	68	78	1,948,000
Allard (P)	41 79 93	17 81 80	35 59	79	^b 226,300 280,600 6,954,000	OKLAHOMA Eufaula (FRP) Keystone (FPR) Tenkiller Ferry (FPR)	124 149 139	109 98 110	86 85 90	92 126 108	2,378,000 661,000 628,200
Gouin (P)	57	47	68 52	*88	4,107,000	Lake Altus (FIMR) Lake O'The Cherokees (FPR) OKLAHOMA—TEXAS Lake Texoma (FMPRW)	100	14 106	45 82	43 96	133,000 1,492,000
NEW HAMPSHIRE First Connecticut Lake (P) Lake Francis (FPR) Lake Winnipesaukee (PR)	73 82 72	64 78 54	73 76 57	80 85 80	76,450 99,310 165,700		92 104	81	93	98	2,722,000 386,400
Harriman (P)	62 78	78 73	61 68	74 80	116,200 57,390	International Amistad (FIMPW)	81 47 101 97	72 38 95 95	84 75 85 99	90 99 64 42 101 97 61 88 31	385,600 3,497,000 2,668,000 1,788,000 570,200
MASSACHUSETTS Cobble Mountain and Borden Brook (MP)	69	65	71	72	77,920	Bridgeport (IMW). Canyon (FMR). International Amistad (FIMPW). International Falcon (FIMPW). Livingston (IMW). Possum Kingdom (IMPRW). Red Bluff (PI). Toledo Bend (P). Twin Butes (FIM). Lake Kemp (IMW). Lake Meredith (FWM). Lake Travis (FIMPRW).	63 85 41 124 27 105	81 105 72 38 95 95 21 83 11 93 31 86	47 76 84 75 85 99 26 79 29 85 38	61 88 31 104 28 91	570,200 307,000 4,472,000 177,800 268,000 796,900
NEW YORK Great Sacandaga Lake (FPR) Indian Lake (FMP) New York City reservoir system (MW)	74 73 74	65 92 52	54 56 65	84 85 81	786,700 103,300 1,680,000	MONTANA Canyon Ferry (FIMPR)	89	83	88	91 85	1,144,000 2,043,000
Wanaque (M)	60	80	64	68	85,100	Fort Peck (FPR)	85 80	75 77	86 88	84 87	18,910,000 3,451,000
PENNSYLVANIA Allegheny (FPR) Pymatuning (FMR) Raystown Lake (FR) Lake Wallenpaupack (PR)	38 85 65 55	29 87 65 70	33 79 56 49	43 93 65 57	1,180,000 188,000 761,900 157,800	Ross (PR)	89 99 83 55 104	89 94 81 74 99	86 102 74 85 87	92 99 94 68 101	1,052,000 5,022,000 676,100 359,500 245,600
MARYLAND Baltimore municipal system (M)	55	72	84	57	261,900	IDAHO		49		51	
NORTH CAROLINA Bridgewater (Lake James) (P) Narrows (Badin Lake) (P) High Rock Lake (P)	92 84 58	91 90 64	81 94 58	9: 80 65	288,800 128,900 234,800	Boise River (4 reservoirs) (FIP)	54 53 48 57	66 61 45	48 54 69	86 80 62	1,235,000 238,500 1,561,000 4,401,000
SOUTH CAROLINA Lake Murray (P) Lakes Marion and Moultrie (P)	83 83	86 80	64 67	86 78	1,614,000 1,862,000	Boysen (FIP)	90 63 34	78 59 29	83 74 43	91 62 33	802,000 421,300 193,800
SOUTH CAROLINA—GEORGIA Clark Hill (FP)	31	64	55	34	1,730,000	Keyhole (F) Pathfinder, Seminoe, Alcova, Kortes, Glendo, and Guernsey Reservoirs (I)	66	57	43	66	3,056,000
GEORGIA Burton (PR) Sinclair (MPR) Lake Sidney Lanier (FMPR)	96 87 35	96 87 48	67 77 52	97 86 32	104,000 214,000 1,686,000	COLORADO John Martin (FIR)Taylor Park (IR)	62 72 82	77 66 54	13 55 55	58 77 82	364,400 106,200 730,300
ALABAMA Lake Martin (P) TENNESSEE VALLEY	78	87	68	79	1,375,000	COLORADO RIVER STORAGE PROJECT Lake Powell; Flaming Gorge, Fontenelle, Navajo, and Blue Mesa Reservoirs (IFPR).					
Clinch Projects: Norris and Melton Hill Lakes (FPR)	29 19	27 18	33 24	35 22	2,293,000 1,394,000	Reservoirs (IFPR)	92	90		93	31,620,000
Hiwassee Projects: Chatuge, Nottely, Hiwassee, Apalachia, Blue Ridge, Ocoee 3, and Parksville						Bear Lake (IPR)CALIFORNIA	84	78	60	89	1,421,000
Holston Projects: South Holston, Watauga, Boone, Fort Patrick Henry, and Cherokee Lakes (EPP)	52 45	53	49	52	1,012,000	Folsom (FIP)	48	52 55 34	55 50 26 40	65 77 58	1,000,000 360,400 568,100
Watauga, Boone, Fort Patrick Henry, and Cherokee Lakes (FPR) Little Tennessee Projects: Nantahala, Thorpe, Fontana, and Chilhowee Lakes (FPR)	38	29	47	38	1,478,000	Pine Flat (FI). Clair Engle Lake (Lewiston) (P). Lake Almanor (P). Lake Berryessa (FIMW).	48 53 75 75 75 85	34 26 67 58 74	74	58 56 78 82 86	1,001,000 2,438,000 1,036,000 1,600,000
WISCONSIN Chippewa and Flambeau (PR) Wisconsin River (21 reservoirs) (PR)	91 92	92 92	78 65	86 90	365,000 399,000	Shasta Lake (FIPR)	72	36 48		32 74	503,200 4,377,000
MINNESOTA Mississippi River headwater system (FMR)	36	32	29	41		Lake Tahoe (IPR)	75	56	49 57	80	744,600
NORTH DAKOTA Lake Sakakawea (Garrison) (FIPR)	93	82	89	97	22,700,000	ARIZONA—NEVADA	92	93	71	92	27 970,000
SOUTH DAKOTA Angostura (I) Belle Fourche (I) Lake Francis Case (FIP)	90 51 65	47 12 59	72 35 58	81 44 79 89	127,600 185,200 4,834,000 22,530,000	ARIZONA San Carlos (IP) Salt and Verde River system (IMPR)	66 79	83 80	18 38	64 79	935,100 2,019,100
Lake Oahe (FIP). Lake Oahe (FIP). Lewis and Clark Lake (FIP).	65 87 99 94	76 100 94	96 95	89 99 94	22,530,000 1,725,000 477,000	Conchas (FIR)	87 94	85 86	79 30	87 94	330,100 2,442,000

al acre-foot = 0.04356 million cubic feet = 0.326 million gallons = 0.504 cubic feet per second day.

Thousands of kilowatt-hours (the potential electric power that could be generated by the volume of water in storage).

*Corrected figure.

USABLE CONTENTS OF SELECTED RESERVOIRS AND RESERVOIR SYSTEMS

GROUND-WATER CONDITIONS DURING OCTOBER 1986

Ground-water levels continued to decline in coastal States of the Northeast region but began to rise in parts of New York State and Pennsylvania. (See map.) Near end of October, below-average levels persisted in Delaware, most of Maryland and New Jersey, and on Long Island, New York. In two observation wells in Delaware and Maryland, levels were at or close to the lowest of record of the past 30 years. In contrast to these conditions, ground-water levels remanined above average in most of New York State.

In the Southeastern States, ground-water levels rose in Louisiana and Mississippi, and declined in Virginia. Trends were mixed in other Southeastern States. Water levels were above average in Kentucky, and below average in Virginia, Arkansas, and Florida. Levels were mixed with respect to average in other States. A new low ground-water level for October was recorded in the key well at Memphis, Tennessee, despite a slight net rise during the month. A new October low was recorded also in the Cockspur Island key well near Savannah, despite a net rise of a fraction of a foot during the month.

In the central and western Great Lakes States, groundwater levels rose in Wisconsin and Iowa, and mostly rose in Michigan. Levels declined in Ohio, and trends were mixed in Minnesota. Water levels were above average in Minnesota, Michigan, and Iowa, and near or above average in Wisconsin. Levels were mixed with respect to average in Indiana and Ohio. Two new October high levels were reached in Michigan, and a new October high was recorded in Iowa.

Map showing ground-water storage near end of October and change in ground-water storage from end of September to end of October.

MONTH-END GROUND-WATER LEVELS IN KEY WELLS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates average of monthly levels in previous years. Heavy line indicates level for current period.

In the Western States, ground-water levels rose in Washington, North Dakota, Kansas, and New Mexico, and declined in southern California. Trends were mixed in other Western States. Water levels were above average in North Dakota and Nebraska, below average in Arizona, and mixed with respect to average in other States. New

high ground-water levels for October were reached in key wells in North Dakota, Nebraska, Nevada, and New Mexico. A new October low level was reached in the El Paso key well in western Texas.

Provisional data; subject to revision

WATER LEVELS IN KEY OBSERVATION WELLS IN SOME REPRESENTATIVE AQUIFERS IN THE CONTERMINOUS UNITED STATES—OCTOBER 1986

Aquifer and Location	Water level in feet with ref- erence to land-	Departure from average	Net change level in fee		Year records	Remarks
	surface datum	in feet	Last month	Last year	began	
Glacial drift at Hanska, south-central Minnesota.	-4.81	+3.75	-2.16	-0.81	1942	
Glacial drift at Roscommon in north-central part of Lower Peninsula, Michigan.	-3.42	+1.55	+0.65	+0.57	1935	October high.
Glacial drift at Marion, Iowa	-2.95	+3.83	+0.48	+1.44	1941	
Glacial drift at Princeton in northwestern Illinois.	-7.90	+6.61	+2.21	+4.30	1943	
Petersburg Granite, southeastern Piedmont near Fall Zone, Colonial Heights, Virginia.	-16.51	-0.19	-0.66	-0.74	1939	
Glacial outwash sand and gravel, Louisville, Kentucky (U.S. well no. 2).	- 18.10	+7.14	-0.19	-1.17	1946	
500-foot sand aquifer near Memphis, Tennessee (U.S. well no. 2).	-106.16	-15.79	+0.07	-1.68	1941	October low.
Granite in eastern Piedmont Province, Chapel Hill, North Carolina (U.S. well no. 5).	-45.23	-2.23	-0.98	-2.01	1931	
Sparta Sand in Pine Bluff industrial area, Arkansas.	-221.40	-15.77	-1.50	-3.75	1958	
Eutaw Formation in the City of Montgomery, Alabama (U.S. well no. 4).	-27.1	-4.1	+1.0	-5.4	1952	
Limestone aquifer on Cockspur Island, Savannah area, Georgia (U.S. well no. 6).	-36.56	+9.40	+0.14	+2.43	1956	October low.
Sand and gravel in Puget Trough, Tacoma, Washington.	-103.12	+3.01	+0.56	-0.14	1952	
Pleistocene glacial outwash gravel, North Pole, northern Idaho (U.S. well no. 3).	-462.4	-2.9	-0.4	-3.5	1929	
Snake River Group: Snake River Plain Aquifer, at Eden, Idaho (U.S. well no. 4).	-118.1	-3.1	-0.1	+0.3	1957	
Alluvial valley fill in Flowell area, Millard County, Utah (U.S. well no. 9).	-6.48	+25.82	+3.92	-0.98	1929	
Alluvial sand and gravel, Platte River Valley, Ashland, Nebraska (U.S. well no. 6).	-0.83	+5.64	+2.29	+4.87	1935	October high.
Alluvial valley fill in Steptoe Valley, Nevada	-8.04	+5.13	+0.53	+0.40	1950	October high.
Pleistocene terrace deposits in Kansas River valley, at Lawrence, northeastern Kansas.	-15.57	+5.08	+3.33	-0.66	1953	
Alluvium and Paso Robles clay, sand, and gravel, Santa Maria Valley, California	-119.00	+22.91	-4.32	-4.43	1957	
Valley fill, Elfrida area, Douglas, Arizona (U.S. well no. 15).	-104.0	-23.2	+4.5	+1.0	1951	
Hueco bolson, El Paso area, Texas	-267.13	-19.29	-0.45	-2.09	1965	October low.
Evangeline aquifer, Houston area, Texas	-318.22	-12.45	+4.44	+2.36	1965	

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

Provisional data; subject to revision

DISSOLVED SOLIDS AND WATER TEMPERATURES, FOR OCTOBER 1986, AT DOWNSTREAM SITES ON SIX LARGE RIVERS

Station number		October	Stream discharge during	charge concentrationa			solved-sol lischarge ^a	Water temperature ^b			
	Station name	data of following calendar	month	Mini-	Maxi-	Mean	Mini- mum	Maxi-	Mean	12.5 8.5 8.5 16.0 15.0	Maxi-
		years	Mean (cfs)	mum (mg/L)	mum (mg/L)	(to	ns per da		in °C		mum, in °C
01463500	Delaware River at Trenton, NJ (Morrisville, PA).	1986 1944—85 (Extreme yr)	4,070 6,649 c4,918	93 58 (1945)	125 156 (1953)	1,246	972 463 (1963)	2,424 8,300 (1955)	16.0		23.0 25.5
04264331	St. Lawrence River at Cornwall, Ontario, near Massena, NY (median streamflow at Ogdensburg, NY).	1986 1975—85 (Extreme yr)	*323,900 285,300 °253,600	164 (d)	168 (d)	127,400	115,000 (d)	138,000 (1977)	13.5		19.5
07289000	Mississippi River at Vicksburg, MS.	1986 1975—85 (Extreme yr)	904,700 362,700 °295,000	187 183 (1979,	272 337 (1983)	522,500 232,500	336,900 117,000 (1976)	639,700 440,000 (1985)			26.0 26.0
03612500	Ohio River at lock and dam 53, near Grand Chain, IL (stream- flow station at Metropolis, IL).	1986 1954—85 (Extreme yr)	127,000 117,600 c96,680	189 135 (d)	229 330 (1967)			144,000 262,000 (1976)			25.0 26.0
06934500	Missouri River at Hermann, MO (60 miles west of St. Louis, MO).	1986 1975—85 (Extreme yr)	290,000 72,290 c60,140	168 211 (1985)	341 558 (1980)	204,000 79,820	160,000 51,800 (1976)	272,000 163,000 (1985)		15.0 10.0	17.0 22.5
14128910	Columbia River at Warrendale, OR (streamflow station at The Dalles, OR).	1986 1975—85 (Extreme yr)	119,000 117,700 c91,570	102 73 (1981)	114 117 (1977)	35,100 31,100	25,200 13,200 (1981)			14.0 11.0	16.5 19.5

^aDissolved-solids concentrations, when not analyzed directly, are calculated on basis of measurements of specific conductance.

^bTo convert ^oC to ^oF: [(1.8 X ^oC) + 32] = ^oF.

^cMedian of monthly values for 30-year reference period, water years 1951—80, for comparison with data for current month.

^dOccurred several years.

^{*}Dissolved solids and water-temperature records are not available for October.

Precipitation Forecast for November 1986 through January 1987

NATIONAL WATER CONDITIONS

November 1986

Based on reports from the Canadian and U.S. Field offices; completed November 14, 1986

TECHNICAL STAFF Thomas G. Ross, Editor Carroll W. Saboe, Asst. Editor John C. Kammerer Allen Sinnott Krishnaveni V. Sarma Sharon A. Edmonds Carole J. Marlow

COPY PREPARATION Lois C. Fleshmon Sharon L. Peterson Aisha P.R. Law

GRAPHICS

Frances B. Davison Carolyn L. Moss

The National Water Conditions is published monthly. Subscriptions are free on application to the U.S. Geological Survey, 419 National Center, Reston, VA 22092.

EXPLANATION OF DATA (Revised August 1986)

Cover map shows generalized pattern of streamflow for the month based on provisional data from 184 index gaging stations—18 in Canada, 164 in the United States, and 2 in the Commonwealth of Puerto Rico. Alaska, Hawaii, and Puerto Rico inset maps show streamflow only at the index gaging stations that are located near the point shown by the arrows. Classifications on map are based on comparison of streamflow for the current month at each index station with the flow for the same month in the 30-year reference period, 1951–80. Shorter reference periods are used for one Canadian index station, two Kansas index stations, one New York index station, and the Puerto Rico index stations because of the limited records available.

The comparative data are obtained by ranking the 30 flows for each month of the reference period in order of decreasing magnitude—the highest flow is given a ranking of 1 and the lowest flow is given a ranking of 30. Quartiles (25-percent points) are computed by averaging the 7th and 8th highest flows (upper quartile), 15th and 16th highest flows (middle quartile and median), and the 23rd and 24th highest flows (lower quartile). The upper and lower quartiles set off the highest 25 percent

of flows and lowest 25 percent of flows, respectively, for the reference period. The median (middle quartile) is the middle value by definition. For the reference period, 50 percent of the flows are greater than the median, 50 percent are less than the median, 50 percent are less than the median, 50 percent are less than the lower quartile (above normal), and 25 percent are greater than the upper quartile (above normal). Flow for the current month is then classified as; above normal if it is greater than the upper quartile, in the normal range if it is between the upper and lower quartiles, and helow normal if it is less than the lower quartile. Change in flow from the previous month to the current month is classified as seasonal if the change is in the same direction as the change in the median. If the change is in the opposite direction of the change in the median, the change is classified as contraseasonal (opposite to the seasonal change). For example: at a particular index station, the January median is greater than the December median; if flow for the current January increased from December (the previous month), the increase is seasonal; if flow for the current January increased from December, the decrease is contraseasonal.

Flood frequency analyses define the relation of flood peak magnitude to probability of occurrence or recurrence interval. Probability of occurrence is the chance that a given flood magnitude will be exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence and is the average number of years between occurrences. For example, a flood having a probability of occurrence of 0.01 (1 percent) has a recurrence interval of 100 years. Recurrence intervals imply no regularity of occurrence; a 100-year flood might be exceeded in consecutive years or it might not be exceeded in a 100-year period. Statements about ground-water levels refer to conditions near the end

Statements about ground-water levels refer to conditions near the end of the month. The water level in each key observation well is compared with average level for the end of the month determined from the 30-year reference period, 1951-80, or from the entire past record for that well when only limited records are available. Comparative data for ground-water levels are obtained in the same manner as comparative data for streamflow. Changes in ground-water levels, unless described otherwise, are from the end of the previous month to the end of the current month.

Dissolved solids and temperature data for September are given for six stream-sampling sites that are part of the National Stream Quality Accounting Network (NASQAN). Dissolved solids are minerals dissolved in water and usually consist predominately of silica and ions of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, and nitrate. Dissloved-solids discharge represents the total daily amount of dissolved minerals carried by the stream. Dissolved-solids concentrations are generally higher during periods of low streamflow, but the highest dissolved-solids discharges occur during periods of high streamflow because the total quantities of water, and therefore total load of dissolved minerals, are so much greater than at times of low flow.

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
NATIONAL CENTER, STOP 419
RESTON, VIRGINIA 22092

OFFICIAL BUSINESS

Return this sheet to above address, if you do NOT wish to receive this material , or if change of address is needed (indicate change, including ZIP code).

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF THE INTERIOR
INT 413

FIRST CLASS

SPECIAL PROCESSING DEPT MARCIA KOZLOWSKI XEROX/UNIVERSITY MICROFILMS ANN ARBOR MI 48106

NEC