

Aufgabe Knappsack Problem

- **Definition Variable**
 - $X_{i,} \in \{0,1\}$

• $x_i = 1 \Leftrightarrow$ Auftrag i wird mitgenommen

- Zielfunktion
 - Maximiere $120 x_1 + 175 x_2 + 200 x_3 + 150 x_4 + 30 x_5 + 60 x_6$
- Nebenbedingung
 - Gewicht $20x_1 + 35x_2 + 50x_3 + 50x_4 + 15x_5 + 60x_6 \le 100$

Aufgabe Truck Load Building für 1 LKW

Definition Variable

- $x_{i,} \in \{0,1\}$
- $\mathbf{x}_{i} = 1 \Leftrightarrow$

Auftrag i wird mitgenommen

Zielfunktion

• Maximiere $10 x_1 + 20 x_2 + 50 x_3 + 200 x_4 + 150 x_5 + 250 x_6 + 150 x_7$

Nebenbedingung

- Gewicht $0.4 x_1 + 0.7 x_2 + 0.2 x_3 + 2 x_4 + 2 x_5 + x_6 + 3 x_7 \le 5$
- Volumen $0.6 x_1 + 0.2 x_2 + 3 x_3 + 4 x_4 + 3 x_5 + 5 x_6 + 0.9 x_7 \le 10$

Multidimensionaler Knappsack – Truck Load Building für 1 LKW

Definition Variable

$$x_{i.} \in \{0,1\}$$

•
$$x_{i} = 1 \Leftrightarrow$$
 Auftrag i wird mitgenommen

Zielfunktion

• Maximiere
$$\sum_{i} w_{i} x_{i}$$

Nebenbedingung

• Gewicht
$$\sum_{p} G_{i} x_{i} \leq G$$

■ Volumen
$$\sum_{p} V_{i} x_{i} \leq V$$

Allgemein: Multidimensionaler Knappsack – Truck Load Building für 3 LKWs

Definition Variable

- $x_{i,r} \in \{0,1\}$ $r \in \{1,2,3\}$
- $x_{i,r} = 1 \Leftrightarrow Auftrag i auf Lastwagen (Ressource) r$

Zielfunktion

• Maximiere $\sum_{i} w_{i} (x_{i,1} + x_{i,2} + x_{i,3})$

Nebenbedingung

- Gewicht
 - $\sum_{i} G_{i} X_{i,1} \leq G$
 - $\sum_{i} G_{i} X_{i2} \leq G'$
- Volumen
 - $\sum_{i} V_{i} X_{i,1} \leq V$
 - $\sum_{i} V_{i} X_{i,2} \leq V'$
 - $\sum_{i} V_{i} X_{i3} \leq V''$

Für jeden Auftrag

■ höchstens auf 1 LKW: $x_{i1} + x_{i2} + x_{i3} \le 1$

Allgemein: Truck Load Building für r LKWs

Definition Variable

- $x_{i,r} \in \{0,1\}$ $r \in \{1,...,m\}$
- x_{i,r} = 1 ⇔ Auftrag i auf Lastwagen (Ressource) r

Zielfunktion

• Maximiere $\Sigma_i w_i (\Sigma_r x_{ir})$

Nebenbedingung

Für jeden LKW r

• Gewicht: $\sum_{i} G_{i} x_{i,r} \leq G_{r}$

• Volumen: $\sum_{i} V_{i} x_{i,r} \leq V_{r}$

Für jeden Auftrag i

Definition Variable

- $x_{i,r} \in \{0,1\}$ $r \in \{1,...,m\}$ mit $m = \max\{\lceil \sum_i V_i / V \rceil, \lceil \sum_i G_i / G \rceil\}$
- x_{i,r} = 1 ⇔ Auftrag i auf Lastwagen (Ressource) r

Zielfunktion

• Maximiere $\sum_{i} V_{i} (\sum_{r} x_{ir})$ (falls $\sum_{i} V_{i} / V > \sum_{i} G_{i} / G$)

Nebenbedingung

Für jeden LKW r

• Gewicht: $\sum_{i} G_{i} x_{i,r} \leq G$

■ Volumen: $\sum_{i} V_{i} x_{i,r} \leq V$

Für jeden Auftrag i

Definition Variable

- $x_{i,r} \in \{0,1\}$ $r \in \{1,..,m\}$ mit $m = \max\{\lceil \sum_i V_i / V \rceil, \lceil \sum_i G_i / G \rceil\}$
- x_{i,r} = 1 ⇔ Auftrag i auf Lastwagen (Ressource) r

Zielfunktion

■ Maximiere $\sum_{i} G_{i} (\sum_{r} x_{ir})$ (falls $\sum_{i} V_{i} / V < \sum_{i} G_{i} / G$)

Nebenbedingung

Für jeden LKW r

• Gewicht: $\sum_{i} G_{i} x_{i,r} \leq G$

• Volumen: $\sum_{i} V_{i} x_{i,r} \leq V$

Für jeden Auftrag i

Definition Variable

- $x_{i,r} \in \{0,1\}$ $r \in \{1,...,m\}$ mit $m = \max\{\lceil \sum_i V_i / V \rceil, \lceil \sum_i G_i / G \rceil\}$
- x_{i,r} = 1 ⇔ Auftrag i auf Lastwagen (Ressource) r
- Zielfunktion
 - Minimiere Rest = \sum_{i} G_i (1- \sum_{r} x_{ir}) (falls \sum_{i} V_i/V < \sum_{i} G_i/G)

Nebenbedingung

Für jeden LKW r

• Gewicht: $\sum_{i} G_{i} x_{i,r} \leq G$

• Volumen: $\sum_{i} V_{i} x_{i,r} \leq V$

Für jeden Auftrag i

Definition Variable

• $x_i \in \{0,1,...,m\}$ mit $m = \max\{\lceil \sum_i V_i / V \rceil, \lceil \sum_i G_i / G \rceil\}$

x_i = r ⇔ Auftrag i auf Lastwagen (Ressource) r

• x_i = 0 ⇔ Auftrag i auf keinem Lastwagen

Zielfunktion

• Minimiere Rest = $\sum_{i} G_{i} [x_{i} = 0]$ (falls $\sum_{i} V_{i} / V < \sum_{i} G_{i} / G$)

Nebenbedingung

Für jeden LKW r

• Gewicht: $\sum_{i} G_{i}[x_{i}=r] \leq G$

• Volumen: $\sum_{i} V_{i}[x_{i}=r] \leq V$

Verteilung von Aufträgen auf m Schichten

Definition Variable

- $x_i \in \{0,1,...,m\}$ $r \in \{1,...,m\}$
- $x_i = r \Leftrightarrow Auftrag i in Schicht r$

Zielfunktion

- Minimiere $\Sigma_i t_i [x_i = 0]$ (nicht eingeplante Aufträge)
- Nebenbedingung
 - Für jede Schicht r

Dauer höchstens 8 h:

$$\sum_{i} t_{i} [x_{i} = r] \leq 8$$