KHAN G.S. RESEARCH CENTER

Kisan Cold Storage, Sai Mandir, Musallahpur Hatt, Patna - 6 Mob.: 8877918018, 8757354880

Time: 05 to 06 pm

रसायनशास्त्र (Chemistry)

By : Khan Sir (मानचित्र विशेषज्ञ)

> कोर इलेक्ट्रॉन (Core Electron)

बाह्यतम कक्षा को छोड़कर उसके अन्दर वाली सभी कक्षाओं में उपस्थित इलेक्ट्रॉनों के कुल संख्या को Core Electron कहते हैं। इनकी ऊर्जा कम होती है।

> संयोजी इलेक्ट्रॉन (Valence Electron)

किसी तत्व के सबसे बाहरी कक्षा में उपस्थित इलेक्ट्रॉनों की संख्या को संयोजी इलेक्ट्रॉन कहते हैं। इनकी ऊर्जा अधिक होती है।

Note:- संयोजी इलेक्ट्रॉनों की संख्या 1 से 8 तक होती है।

Remark:- कोई भी तत्व अपने बाह्यतम कक्षा में 8 इलेक्ट्रॉन रखना चाहता है।

किसी भी रासायनिक अभिक्रिया में संयोजी e ही भाग लेते हैं क्योंकि इसकी ऊर्जा सर्वाधिक होती है।

संयोजी $e^- = 3$, कोर $e^- = 10$

- संयोजी इलेक्ट्रॉन के आधार पर हम किसी तत्व के वर्ग निर्धारण कर सकते हैं।
 - यदि किसी तत्व का अंतिम e^- s या p-उपकक्षा में है तो वह Group-A का तत्व होगा।

जैसे –
$$_8$$
O \rightarrow 1s², 2s², 2p⁴ (Group–A)

$$_{11}$$
Na $\rightarrow 1s^2, 2s^2, 2p^6 3s^1$ (Group–A)

यदि किसी तत्व का अंतिम e^-d या f—उपकक्षा में है तो वह Group—B का तत्व होगा।

जैसे –
$$_{26}$$
Fe \rightarrow [Ar] $4s^2$ $3d^6$ (Group-B)

- > सबसे आखिरी कक्षा को Valence shell or Altimate shell कहते हैं।
- > अंतिम से दूसरे कक्षा को Penultimate Shell कहते हैं।
- > अंतिम से तीसरी कक्षा को Anti-Penultimate shell कहते हैं।

- संयोजकता (Valency)

 – किसी तत्व के इलेक्ट्रॉनों से संयोग करने
 की क्षमता को संयोजकता कहते हैं।
- Valence Electron के आधाार पर किसी तत्व की संयोजकता निकाली जा सकती है।

Case I- यदि संयोजी इलेक्ट्रान 1, 2, 3, 4 है तो संयोजकता = संयोजी इलेक्ट्रान।

जैसे-
$$_{13}$$
Al \rightarrow 2, 8, 3 (संयोजकता = 3)

$$_{12}$$
Mg \rightarrow 2, 8, 2 (संयोजकता = 2)

$$_{11}$$
Na \rightarrow 2, 8, 1 ($_{11}$ Na \rightarrow 1)

Case II- यदि संयोजी इलेक्ट्रान 5, 6, 7, 8 है तो संयोजकता = 8 - संयोजी इलेक्ट्रान।

$$_{10}$$
Ne $\rightarrow 2$, 8 ($\dot{\text{ki}}$ al) $\dot{\text{a}}$ nani = 8 - 8 = 0)

$$_{12}$$
Cl \rightarrow 2, 8, 7 (संयोजकता = 8 – 7 = 1)

तत्व	विन्यास	कोर e	संयोजी <i>e</i>	संयोजकता
₆ C	2,4	2	4	4
₁₂ mg	2,8,2	2	2	2
₁₀ Ne	2,8	2	8	0
₈ O	2,6	2	6	2
17 Cl	2,8,7	2,	7	1

अक्टेनरूल – इस निमय के अनुसार किसी तत्व के बाहतम कक्षा में 8 इलेक्ट्रानों को रखना होता है। चाहे वे कक्षा कोई भी क्यों न हो?

अक्टेनरूल को पूरा करने के लिए धन आयन या ऋण आयन का निर्माण होता है। आयन बनने के बाद तत्व स्थायी हो जाता है क्योंकि वह ऑक्टेन संरचना प्राप्त कर लेता है।

$$_{\circ}O \rightarrow 2, 6$$

$$^{\circ}$$
O⁻² \rightarrow 2, 8

$$^{\circ}_{11}$$
Na \rightarrow 2, 8, 1

$$^{11}_{11}\text{Na}^{+} \rightarrow 2, 8$$

- आयन किसी तत्व पर उपस्थित आवेश की मात्रा को आयन कहते हैं। आयन दो प्रकार के होते हैं।
 - (i) धन आयन
 - (ii) ऋण आयन

आयन स्थायी हो जाते हैं।

$$_{17}Cl \rightarrow 2, 8, 7$$

$$_{17}\text{Cl}^- \to 2, 8, 8$$

$$^{17}_{11}$$
Na $\to 2, 8, 1$

$$^{11}_{11}\text{Na}^{+} \rightarrow 2, 8$$

धनायन	ऋणायन			
H^{+1} $($ हाइड्रोजन $)$	H^{-1} (हाइड्राइड)			
Li ⁺¹ (लीथियम)	F^{-1} (फ्लोराइड)			
Na ⁺¹ (सोडियम)	Cl ⁻¹ (क्लोराइड)			
K^{+1} (पोटैशियम)	I^{-1} (आयोडाइड)			
Ag ⁺¹ (सिल्वर)	Br ⁻¹ (ब्रोमाइड)			
$\mathrm{NH_4}^{+1}$ (अमोनियम)	OH ^{–1} (हाइड्राऑक्साइड)			
Cu ⁺¹ (क्यूप्रस)	CN−1 (सायनाइड)			
Zn^{+2} (जिंक)	$\mathrm{HCO_3}^{-1}$ (बाइकार्बोनेट)			
Be ⁺² (बेरिलियम)	NO ₂ ⁻¹ (नाइट्राइड)			
Mg^{+2} (मैग्नीशियम)	NHO ₃ -1 (नाइट्रेट)			
Ca ⁺² (कैल्सियम)	CH ₃ COO ⁻¹ (एसिटेट)			
Cu ⁺² (क्यूप्रिक)	O^{-2} (ऑक्साइड)			
Fe ⁺² (फेरस)	S^{-2} (सल्फाइट)			
Sn ⁺² (स्टैनस)	$\mathrm{SO_3}^{-2}$ (सल्फाइड)			
Hg ⁺² (मरक्यूरस)	SO_4^{-2} (सल्फेट)			
Mn^{+2} (मैग्नीज)	SiO ₃ ⁻² (सिलिकेट)			
Co ⁺² (कोबाल्ट)	CO_3^{-2} (कार्बोनेट)			
Fe ⁺³ (फेरिक)	CrO_4^{-2} (क्रोनेट)			
Cu ⁺³ (क्यूप्रिक)	N^{-3} (नाइट्राइट)			
Hg ⁺³ (मरक्यूरिक)	P^{-3} (फास्फाइड)			
Al ⁺³ (एल्युमिनियम)	PO_3^{-1} (फास्फाइट)			
Cr ⁺³ (क्रोमियम)	PO_4^{-3} (फास्फेट)			
Pb ⁺⁴ (लेड)				
Sn ⁺⁴ (स्टैनिक)				
Evampla				

Example

- 1. Na⁺ + SO₃⁻² = Na₂SO₃ (सोडियम सल्फाइड)
- 2. $Ag^{+} + NO_{3}^{-} = AgNO_{3}$ (सिल्वर नाइट्रेट)
- 3. $Zn^{+2} + SO_4^{-2} = ZnSO_4$ (जिंक सल्फेट) 4. $Fe^{+2} + SO_4^{-2} = FeSO_4$ (फेरस सल्फेट)
- 5. $\operatorname{Fe}^{+3} + \operatorname{SO_4^{--2}} = \operatorname{Fe_2(SO_4)_3} ($ फेरिक सल्फेट)
- 6. $Al^{+3} + SO_4^{-2} = Al_2(SO_4)_3$ (ऐल्युमिनियम सल्फेट)
- 7. $Ag^{+} + SO_{4}^{-2} = Ag_{2}SO_{4}$ (सिल्वर सल्फेट)
- 8. $Na^+ + CO_3^- = Na_2CO_3$ (सोडियम कार्बोनेट)
- 9. $Na^+ + O^{-2} = Na_2O($ सोडियम ऑक्साइड)
- 10. $Na^+ + HCO_3^- = NaHCO_3$ (सोडियम बाईकार्बोनेट) 11. $Cu^+ + SO_4^{-2} = Cu_2SO_4$ (कॉपर सल्फेट)
- 12. $Cu^{+2} + SO_4^{-2} = CuSO_4^{-2}$ (क्यूपरिक सल्फेट)
- 13. CuSO₄·5H₂O = नीला थोथा
- 14. $Ca^{+2} + CO_3^{-2} = CaCO_3$ (कैल्सियम कार्बोनेट)
- 15. $K^{+} + MnO_{4}^{-} = KMnO_{4}$ (पोटैशियम परमैगनेट) लाल दवा
- 16. $H^+ + O_2^{-2} = H_2O_2$ (हाइड्रोजन परॉक्साइड)
- मूलक (Redieal)- जब किसी धन आयन तथा ऋण आयन को मिलाकर कोई यौगिक बनाया जाता है तो मिलने वाले आयन को मुलक कहते हैं।
 - $Na^+ + I \rightarrow NaI$ (सिल्वर आयोडाइड)
 - $Ag^+ + I \rightarrow AgI$ (सिल्वर आयोगइड)
 - $Ag^+ + Br \rightarrow AgBr$ (सिल्वर ब्रोमाइड)
 - $Cu^{+2} + O^{-2} \rightarrow Cu_2O_2 \rightarrow Cuo$
 - $Ag^+ + No_3^- \rightarrow AgNo_3$

- $ClO_{2}^{-} = Chlorite$ ClO = Hypo chlorite

 ClO_{Δ}^{-} = Perchlorate ClO₂ = Chlorate

- $Cl^- = Chloride$
- $Na^{+} + ClO_{4}^{-} = NaClO_{4}$ (सोडियम परक्लोराइड)
- $Na^+ + ClO_3^- = NaClO_3$ (सोडियम क्लोरेट)
- $Na^+ + ClO_2^- = NaClO_2$ (सोडियम क्लोराइट)
- Na+ + ClO- = NaClO (सोडियम) हाइपोक्लोराइड)
- Na⁺ + Cl = NaCl (सोडियम) क्लोराइड)
- $BrO_4^- = परब्रोमेट$
- BrO₃ = ब्रोमेट
- $BrO_2^- = ब्रोमाइट$
- BrO- = हाइपोब्रोमाइट
- Br = ब्रोमाइट
- $Ag + BrO_4^- = AgBrO_4 = Silverper bromate$
- $Ag + BrO_3 = AgBrO_3 = Silver$ bromate
- $Ag + BrO_2 = AgBrO_2 = Silver bromite$
- $Ag^{+} + BrO^{-} = AgBrO = Silver hipo bromite$
- $Ag^+ + Br^{-1} = AgBr = Silver bromide$
- IO → परआयोडेट
- IO ्→ आयोडेट
- IO → आयोडाइट
- IO⁻ → हाइपो आयोडाटर
- $I \rightarrow आयोडाइट$
- $\mathbf{K}^+ + \mathbf{IO}_{\scriptscriptstyle A}^- = \mathbf{KIO}_{\scriptscriptstyle A} = \, \mathbf{U}$ ाटैशियम परआयोडेट
- $K^{+} + IO_{3}^{-} = KIO_{3} =$ पोटैशियम आयोडेट
- $K^+ + Io_2^- = KIO_2 =$ पोटैशियम आयोडाइट
- $K^+ + IO^- = KIO =$ पोटैशियम हाइपोआयोडाइट
- $K^{+} + I^{-} = KI =$ पोटैशियम आयोडाइड
- $CO_3^{-2} \rightarrow (Carbonate)$
- $HCO_{2}^{-1} \rightarrow (Bicarbonate)$
- $Na^{+} + CO_{3}^{-2} Na_{2}CO_{3} \rightarrow (H)$ डियम कार्बोनेट)
- $Na^+ + HCO_3^- \rightarrow NaHCO_3$ (सोडियम बाईकार्बोनेट)
- $Ca^{-2} + SO_4^{-2} \rightarrow CaSO_4$
- CaSO₄.2H₂O → जिप्सम
- $CaSO_4.\frac{1}{2}H_2O \rightarrow ($ प्लास्टर ऑफ पेरिस)
- $Cu^{+2} + SO_4 \rightarrow CuSO_4 \rightarrow$ क्युप्रस सल्फेट (कॉपर सल्फेट)
- $Zn^{+2} + SO_4^{-2} \rightarrow ZnSO_4 \rightarrow$ सफेद थोथा
- $Fe^{+2} + SO_4^{-2} \rightarrow FeSO_4 \rightarrow$ हरा कशिश
- Pdf Downloaded website-- www.techssra.iii $Cu_2(SO_4)_3$
 - $Fe^{+3} + SO_4^{-2} \rightarrow Fe_2(SO_4)_3$