Théorie des langages

Licence d'informatique

Université de Strasbourg

Part I Langages

Chapter 1

Introduction

Quelques définitions

Langage On appelle langage tout ensemble de mots. Il existe deux façons de définir un langage : par extension ou par intention Le mot vide est noté Σ

Alphabet On appelle alphabet tout ensemble fini (non vide) de symboles.

Grammaire Pour les langages de programmation, un programme peut être vu comme un mot faisant partie de ce langage. Le compilateur vérifie ensuite dire que ce mot est conforme au langage, à ce qu'il attend. On met donc des mécanismes d'analyse syntaxique, on parle de *grammaire*.

Exemple langage binaire

Alphabet: {0,1} Mots: 0, 1, 01, 00001.

classes de langages	reconnaissance d'un mot	génération d'un mot
langage régulier	automates finis	grammaire régulière
langage algébrique	automates à pile	grammaire algébrique
langage récursif	machine de Turing	grammaires sans contrainte

Ces classes de langage sont présentées du plus restreint au plus large, ou plus formellement :

langages réguliers \subseteq langages algébriques \subseteq langages récursifs \subseteq tous les langages

1.1 Ensemble, relation, fonction et langage

Un ensemble est une collection non-ordonnée d'objets qui sont appelés les éléments de l'ensemble.

Les ensembles ont été formellement définis suite au paradoxe de Russel .

1.1.1 Exemple

$$I = 1, 2, 3, 5, 8, 10$$

1.1.2 Opérations sur les ensembles

Soient A et B deux ensembles.

Union

$$A \cup B = \{e | e \in A \text{ ou } e \in B\}$$

Intersection

$$A \cap B = \{e | e \in A \text{ et } e \in B\}$$

Différence

$$A \backslash B = \{ e | e \in A \text{ et } e \not\in B \}$$

Différence symétrique

$$A\Delta B = (A \backslash B) \cup (B \backslash A)$$

Ensemble des parties

$$P(A) = C|C \subseteq A$$

Produit cartésien

$$A \times B = (a, b) | a \in A \text{ et } b \in B$$

1.1.3 Lois de Morgan

Soient A, B, C des ensembles. Alors

$$A \backslash (B \cup C) = (A \backslash B = \cap (A \backslash C) A \backslash (B \cap C) = (A \backslash B = \cup (A \backslash C)$$

Remarques: soient A, B deux ensembles. Alors:

$$A = B \Leftrightarrow A \subseteq B \text{ et } B \subseteq A$$

Pour des *n*-uplets, l'égalité devient a :

$$(e_1, e_2, \dots, e_n) = (f_1, f_2, \dots, f_n) \Leftrightarrow e_1 = f_1, e_2 = f_2, \dots, e_n = f_n$$

1.1.4 Définition

Soit A un ensemble et $\Pi \subseteq \mathcal{P}(A)$

 Π est dit une partition de A si et seulement si :

- $A = \bigcup_{k \in K}$ ou $\Pi = \{B_k \mid k \in K\}$
- $B_i \cap B_j = \emptyset \ \forall i, j \in K \mid i \neq j$
- $B_i \neq \emptyset$

Exemple: $A = \{1, 2, 3, 4, 5\}, \Pi = \{\{1, 3\}, 4, \{2, 5\}\} = \{B_1, B_2, B_3\}$

1.1.5 Relations

Soient E_1, E_2, \ldots, E_n , n ensembles. Une relation R n-aire (d'arité n) sur E_1, E_2, \ldots, E_n est un sous-ensemble de $E_1 \times E_2 \times \cdots \times E_n$.

Autrement dit $R \subseteq E_1 \times E_2 \times \cdots \times E_n$.

Pour n = 2, R est dite une relation binaire.

Notation Si $E = E_1 = E_2 = \cdots = E_n$, alors $E_1 \times \cdots \times E_n$ est noté E^n .

1.1.6 Relations fonctionelles

Soit R une relation n-aire sur $E_1 \times E_2 \times \dots E_{n-1} \times E_n$ avec $n \ge 2$. Si, pour tout $(e_1, e_2, \dots, e_{n-1}) \in E_1 \times E_2 \times \dots E_{n-1}$, il existe un et un seul $e_n \in E_n$ tel que $(e_1, e_2, \dots, e_{n-1}, e_n) \in R$.

On dit alors que R est une relation fonctionnelle relativement à $E_1 \times E_2 \times \dots E_{n-1}$. On utilisera la notation : $e_n = f_R(e_1, \dots, e_{n-1})$ qui est l'unique élément tel que $(e_1, e_2, \dots, e_{n-1}, e_n) \in R$.

De plus, f_R est appelé la fonction associée à la relation fonctionnelle R. $E_1 \times E_2 \times \ldots E_{n-1}$ est appelé le domaine (ou ensemble de départ) de f_R et E_n est appelé l'ensemble d'arrivée de f_R .

Notation soit R une relation fonctionne sur $E_1 \times \cdots \times E_{n-1} \times E_n$. On note :

$$f_R: E_1 \times \cdots \times E_{n-1} \longmapsto E_n$$

Définitions soient A, B deux ensembles et $f_R : A \mapsto B$.

• f_R est dite injective (une injection) si $\forall a, a' \in A$

$$a \neq a' \Rightarrow f_R(a) \neq f_R(a')$$

- f_R est dite surjective (une surjection) si $\forall b \in B$, il existe $a \in A$ tel que $b = f_R(a)$
- f_R est dite bijective (une bijection) si f_R est à la fois injective est bijective.
- Lorsque la fonction f_R est bijective, alors f_R^{-1} est la fonction associée à la relation $R^{-1} = \{(b, a) \mid (a, b) \in R\}$. En particulier, R^{-1} est fonctionelle relativement à B. Autrement dit :

$$f_R^{-1} = f_{R^{-1}}$$

Dans ce cas, $f_{R^{-1}}$ est bijective.

• De plus, $\forall (a,b) \in A \times B$:

$$b = f_R(a) \leftrightarrow a = f_R^{-1}(b)$$

Si f_R est bijective, alors $((f_R)^{-1})^{-1} = f_R$

• Soient $R_1 \subseteq A \times B$ et $R_2 \subseteq B \times C$ deux relations binaires.

$$R_1 \circ R_2 = \{(a, c) \in A \times C \mid \exists b \in B \text{ tel que } (a, b) \in R_1 \text{ et } (b, c) \in R_2\}$$

 $R_1 \circ R_2$ est la composition de R_1 et de R_2 .

Propriété : soit R une relation fonctionnelle sur $A \times B$ telle que f_R est bijective. Alors :

- $R \circ R^{-1} = \{(a, a) \mid a \in A\}$
- $R^{-1} \circ R = \{(b, b) \mid b \in B\}$

1.1.7 Relations fonctionnelles particulières

Soir R une relation binaire sur $A^2(R \subseteq A^2)$.

- R est dite réflexive si $\forall a \in A, (a, a) \in R$
- R est dite symétrique si $\forall a, b \in A, (a, b) \in R \Rightarrow (b, a) \in R$
- R est dite transitive si $\forall a, b, c \in A, (a, b) \in R$ et $(b, c) \in R \Rightarrow (a, c) \in R$
- R est une relation d'équivalence si R est à la fois réfléxive, symétrique et transitive.
- R est dite antisymétrique si $\forall a, b \in A, (a, b) \in R$ et $a \neq b \Rightarrow (b, a) \notin R$
- R est une relation d'ordre si R est à la fois réflexive, antisymétrique et transitive.
- R est une relation d'ordre total si R est une relation d'ordre et pour tout $a, b \in A$, si $(a, b) \notin R$, alors $(b, a) \in R$

1.1.8 Représentation de relations

Soit $A = \{1, 2, 3\}$ un ensemble, et la relation $R = \{(1, 2), (1, 3), (2, 3)\}$ une relation sur A. On peux représenter cette relation sous plusieurs formes :

Forme matricielle

Graphes

Notations Soit R une relation d'équivalence $A \times A$ (A^2) et soit $a \in A$.

- $[a]_{R} = \{b \in A \mid (a, b) \in R\}$ est la classe de A relative à la relation d'équivalence R
- $A/R = [a]_R | a \in A$ est le quotient de A par R

Propriétés

- Soit R une relation d'équivalence par $A \times A$. Alors A/R est une partition de l'ensemble A.
- Réciproquement si Π est une partition de A alors il existe une et une seule relation d'équivalence R_{Π} tel que $\Pi = A/R_{\Pi}$.

Preuve:

- $\forall a \in A, a \in [a]_R$ car R est réflexive. Donc $A = \bigcup_{a \in A} [a]_R$
- Soient $a, a \in A$. Montrons que si $[a]_R \cap [a']_R = \emptyset$, alors $[a]_R = [a']_R$

Relations binaires particulières Soit $b \in [a]_R \cap [a']_R$.

Alors $(a, b) \in R$ et $(a', b) \in R$

Comme R est symétrique alors $(b, a') \in R$ et comme R est transitive alors $(a, a') \in R$.

Et donc $\forall c \in [a']_R$ on a $(a',c) \in R$ et donc par transitivité $(a,c) \in R$ et donc $c \in [a]_R$.

Soit Π une partition de A

$$\pi = E_i \mid i \in I$$

- 1. $A = \bigcup_{i \in I \setminus E_i}$
- 2. $E_1 \cap E_j = \emptyset$ pour tout $i, j \in I$ et $i \neq j$
- 3. $E_i \neq \emptyset$ pour tout $i \in I$

 $\Pi \leftrightarrow R_{\Pi} \leadsto (a, b) \in R_{\Pi} \text{ ssi } \exists i \in I \text{ tel que } a, b \in E_i$

Définition Soit R une relation binaire sur un ensemble $A(R \subseteq A^2)$ la suite $x_0, x_1, ..., x_n$ d'éléments de A est dite un chemin de R si $(x_i, x_{i+1}) \in \forall 0 \leq i < n$.

- x_0 est appelé le début du chemin C
- x_n est appelé la fin du chemin C
- n est appelé la longueur du chemin C

1.2 Cardinalité d'un ensemble

1.2.1 Définitions

Deux ensembles E_1 et E_2 sont dits de même cardinal s'il existe une bijection $f: E_1 \mapsto E_2$

Soient E_1 et E_2 deux ensembles. On dit que le cardinal de E_1 est strictement inférieur à celui de E_2 s'il existe une fonction injective $f: E_1 \mapsto E_2$ et il n'existe pas de bijection de E_1 à E_2

Un ensemble E est dit fini s'il existe un entier $n \in \mathbb{N}$ tel qu'il y a une bijection $f : [1, n] \mapsto E$.

Dans ce cas on dit que E est de cardinal n.

Un ensemble E est dit infini dénombrable s'il a le même cardinal que \mathbb{N} (il existe une bijection $f: N \mapsto E$).

Exemples

- \bullet \mathbb{Z} est un ensemble infini dénombrable
- Q est un ensemble infini dénombrable
- N est un ensemble infini dénombrable
- \bullet \mathbb{N}^* est un ensemble infini dénombrable
- : $\mathbb{N}^2 \to \mathbb{N}$ $f(i,j) = (\sum_{k=1}^{i+j} k) + i = (i+j)(i+j+1)/2 + i$ est une bijection de \mathbb{N}^2 dans \mathbb{N}
- $Q^+ = i/j | (i,j) \in N \times N^* \text{ et } \operatorname{pgcd}(i,j) = 1$
- $Q = Q^+ \cup (-Q^+)$
- $Q^+ = \{-q | q \in Q^+\}$

1.2.2 Propriétés

Soit E un ensemble alors il n'existe pas de bijection entre E et $\mathcal{P}(E)$. En fait, le cardinal de E est strictement inférieur au cardinal de $\mathcal{P}(E)$.

Preuve Soit $f: E \mapsto \mathcal{P}(E), f(e) \mapsto e$

Par construction, f est injective.

Montrons qu'il n'y a pas de bijection entre E et $\mathcal{P}(E)$.

Suppons qu'il existe une bijection $g: E \mapsto \mathcal{P}(E)$. Posons $A = e \in E \mid e \notin g(e) \in P(E)$.

Comme g est symétrique et $A \in \mathcal{P}(E)$ alors il exise $e_0 \in E$ tel que $g(e_0) = A$.

Deux cas sont possibles.

- 1. $e_0 \in A$ implique $e_0 \notin g(e_0)$ donc $e_0 \notin A$ ce qui est absurde.
- 2. $e_0 \notin A$ ce qui implique $e_0 \in g(e_0)$ donc $e_0 \in A$ ce qui est absurde.

Donc l'hypothèse de départ est absurde, et donc il n'y a pas de bijection entre E et $\mathcal{P}(E)$.

R et R^2 ont le même cardinal R et P(N) ont le même cardinal

$$E < \mathcal{P}(E) < \mathcal{P}(\mathcal{P}(E)) < \dots N < \mathcal{P}(N) < \mathcal{P}(\mathcal{P}(\mathbb{N})) < \dots$$

$$f: N^2 \mapsto N \ f(i,j) = (\sum_{k=1}^{i+j}) + i$$

Montrons que f est surjective:

$$f(0,0) = 0$$

Soit $n \leq 0$. Supposons qu'il existe $(i,j) \in \mathbb{N}^2$ tel que f(i,j) = n et montrons que cela implique qu'il existe $(i',j') \in \mathbb{N}^2$ tel que f(i,j) = n+1

$$f(i,0) = n = \sum_{k=1}^{i} k + ii' = 0, j' = i + 1 \\ f(i',j') = f(0,i+1) = \sum_{k=0}^{i+1} k + 0 = \left(\sum_{k=0}^{i} k\right) + i + 1$$

faire la suite en exercice

1.2.3 Méthodes de raisonnement

1. Principe d'induction

Soit $A \subseteq \mathbb{N}$ tel que :

- (a) $0 \in A$ et
- (b) $\forall n \in \mathbb{N}$, si $[0, n] \subseteq A$ alors $n + 1 \in A$

Alors : $A = \mathbb{N}$.

Preuve: supposons que $A \neq \mathbb{N}$

Soit n_0 le plus petit élément de $\mathbb{N} \setminus A$. Donc $n_0 \neq 0$ et $[0, n_0 - 1] \subseteq A$, donc $n_0 \in A$, ce qui est absurde. Donc : $A = \mathbb{N}$.

2. Principe des tiroirs et des pigeons.

Soient T et P deux ensembles finis tels que card(P) > card(T) alors il n'existe pas de fonction injective de P dans T.

3. Principe de diagonalisation.

Soit R une relation binaire sur un ensemble E $(R \subseteq E^2)$

Notation : Pour tout $e \in E$, posons $R(e) = e' \in E | (e, e') \in R$.

$$D(R) = e \in E|(e, e') \notin R.$$

Alors $D(R) \neq R(e)$ pour tout $e \in E$.

Preuve : Supposons qu'il existe $e \in E$ tel que D(R) = R(e).

Deux cas sont possibles:

- (a) $e \in R$ ce qui implique $(e, e) \in R$ ce qui implique que $e \notin D(R)$ et donc $e \notin R(e)$ ce qui est absurde.
- (b) $e \notin R(e)$ ce qui implqiue que $(e, e) \notin R$ ce qui implique $e \in D(R)$ et donc $e \in R(e)$ ce qui est absurde.

Donc l'hypothèse de départ est absurde, et donc $D(R) \notin R(e)$ pour tout $e \in E$.

Propriété Soit R une relation binaire sur un ensemble fini $E(R \subseteq E^2)$ tel que n = card(E), et soient $e, e' \in e$. Si il existe un chemin C dans R de début e et de fin e', alors il existe nécéssairement un chemin de début e et de fin e' et de longeur $l \le n - 1$.

Preuve:(rappel)

Soit $C = e_0, e_1, \dots, e_m$ un chemin de début e, de fin e' et de longueur m. Alors, deux cas sont possibles :

- 1. $m \le n-1$ et dans ce cas, le chemin cherché est C.
- 2. $m \ge n \Rightarrow m+1 \ge n+1$. Donc, il existe $0 \le i < j < m$ tel que $e_i = e_j$. Posons $C' = e_0, e_1, \ldots, e_i, e_{j+1}, \ldots, e_m$ est un chemin de début e et de fin e' plus court que C.

Définition La clôture réflexive et transitive R^* d'une relation binaire R sur un ensemble E ($R \subseteq E^2$) est la plus petite (au sens de l'inclusion) relation binaire sur E contenant R ($R \subseteq R^*$) et qui est réflexive et transitive.

Remarque $R^* = (e, e') \in E^2 | \exists \text{chemin dans R de début e et de fin e'}$

Algorithme 1 Donnée : $R \subseteq E^2$

Résultat : R^* (la clôture réflexive et transitie de R)

Initialisation : $R^* = R$

Pour i de 1 n faire :

Pour chaque i-uplet $(e_{j1}, e_{j2}, \dots, e_{jn}) \in E^i$ faire si $(e_{j1}, e_{j2}, \dots, e_{jn})$ est un chemin relativement à R alors $R^* = R^* \cup (e_{j1}, e_{jn})$

Algorithme 2 Donnée: $R \subseteq E^2$ $(E = e_1, e_2, \dots, e_n)$

Résultat : R^* (...)

Initialisation : $R^* = (e_i, e_i) \mid i \in [1, n]$ (réflexivité)

Pour j = 1 à n faire Pour i = 1 à n faire

Pour
$$k = 1 = \grave{a} = n = \text{faire}$$

Si $(e_i, e_j) \in R^*$ et $(e_j, e_k) \in R^*$ et $(e_i, e_k) \notin R^*$ alors $R^* = R^* \cup \{(e_i, e_k)\}$

Clôtures d'un ensemble par des relations

1. Soient E un ensemble, $n \in \mathbb{N}^*$ et $R \subseteq E^{n+1}$ une relation d'arité n+1 sur E.

Un sous-ensemble $F \subseteq E$ est dit clos (fermé) relativement à R si pour tout $(e_1, e_2, \ldots, e_n) \in R$, $e_1 \in F$, $e_2 \in F$, ..., $e_n \in F$ alors $e_{n+1} \in F$.

2. Plus généralement, soit E un ensemble et R_1, \ldots, R_k des relations sur E $(R_i \subseteq E^{n_i})$.

Un sous-ensemble $F \subseteq E$ est dit clos (fermé) relativement aux relations R_1, \ldots, R_k s'il est clos relativement à chacun des relations R_i pour $1 \le i \le k$.

Problème
$$E, R_1, \ldots, R_k$$
 tels que $R_i \subseteq E^{n_i}$ pour $1 \le i \le k$ $E' \subseteq E$

Construire le plus petit ensemble F contenant E' tel que F est clos relativement à R_1, \ldots, R_k .

F est appelé la fermeture de E' relativement à R_1, R_2, \ldots, R_k

Propiété Soient $R_1, ..., R_n$ des relations sur un ensemble E

et soit $E' \subseteq E$. Alors il existe un unique sous-ensemble minimal, au sens de l'inclusion tel que F' est inclus dans F et F est fermé (clôs) relativement aux relations R_1, R_2, \ldots, R_n .

Preuve Comme R_1, R_2, \ldots, R_n sont des relations sur E, alors E est clos relativement à R_1, R_2, \ldots, R_n .

S est l'ensemble de tous les sous ensembles de E qui contiennent E' et qui sont fermés relativement à $R_1, R_2, ..., R_n$ alors $A \subseteq E \mid E' \subseteq A$ est fermé relativement à $R_1, R_2, ..., R_n$

On a $E \in S$ donc S est non-vide.

Posons $B = \bigcup_{A \in S}$

On a donc:

- 1. $E \subseteq B$
- 2. Si (a_1, a_i, a_{i+1}) pour $1 \le i \le k$ et si $a_1, ..., a_k \in B$ alors $a_{k+1} \in A$

```
Algorithme: Clotûre Donnée: E=e_1,e_2,\ldots,e_n R_1 dans E^{d_1+1}, R_2 dans E^{d_2+1},\ldots,E^{d_n+1}, E' dans E
Résultat: F est la fermeture de E' relativement aux relations R_1,R_2,\ldots,R_n F=E' tant qu'il existe un i de 1,\ldots,k et un (a_1,a_2,\ldots,a_i) On a
```

Exercice
$$R \subseteq E^2 - > R^*$$

 $R_1 = (e, e) \mid (e, e) \in E^2 \ R_2 = ((e_1, e_2), (e_2, e_3), (e_1, e_3)) \in E^2 \times E^2 \times E^2$

Chapter 2

Alphabets, mots et langages

2.1 Définitions

2.1.1 Alphabet

Un alphabet est un ensemble de Σ de symboles (figures) non vide et fini. Les élémentes de l'alphabet Σ sont appelés des lettres de l'alphabet.

Exemples

- R = A, B, C, ..., Z
- B = 0.1

2.1.2 Mot

Un mot sur un alphabet sigma est une suite finie d'éléments de sigma.

 $\mid m \mid$ est la longueur du mot m sur l'alphabet Σ c'est-à-dire le nombre d'éléments de la suite qui compose le mot m.

Exemple A, A, B, C, B, E est un mot de longueur 6 sur l'alphabet R.

La suite vide (sans aucun élément) est appelée e.

Le mot vide est noté dans la suite ϵ .

Si m est un mot sur l'alphabet Σ et si $1 < i \le \mid m \mid$, alors m(i) est le $i\text{-}\mathrm{eme}$ élément de la suite m

Autrement dit $m = m(1), m(2), \ldots, m(n)$.

2.1.3 Σ^*

Soit Σ un alphabet, Σ^* est l'ensemble de tous les mots de l'alphabet Σ .

Exemple $B^* = \epsilon, 0, 1, 00, 01, 10, 11, 000, \dots$ est l'ensemble de tous les mots de l'alphabet B.

Remarque Σ^* est un ensemble infini dénombrable.

Un langage L sur un alphabet Σ est un sous ensemble de Σ^* .

 $\mathcal{P}(\Sigma^*)$ est l'ensemble de tous les langages sur l'alphabet Σ .

$$\Sigma = \beta = 0, 1$$
 $L_1 = L_2 = \Sigma$ $L_3 = 0, 1, 11$ $L_4 = 0, 00, 01, 000, 001, 010...$

2.1.4

Sur $\Sigma *$ on définit l'opération de concaténation de la façon suivante :

Soit $m' \in \Sigma^*$.

Si m = a1, a2, ..., an et m' = a'1, a'2, ..., a'n, alors m'' = m.m'

Autrement dit | m'' |=| m | + | m' | et m"(i) = m(i) pour i <= i <|m| m"(i - |m|) pour m+1 <= i <= |m| + |m'|

2.2 Propriétés

Soit σ un alphabet

1. Pour tout m de Σ^* on a :

 $m.\epsilon = \sigma.m = m \sigma$ est l'élément neutre de l'opération

2. pour tout m, m', m" de $\sigma**on~a:m$. (m' . m") = (m . m') . m" . est opération associative

2.3 Définitions

Soient m, m' de sigma *, a de sigma et i de |N

1. On dit que m' est un sous-mot de m s'il existe u, v de σ^* tels que

$$m = u.m'.v$$

- 2. On dit que m' est suffixe de m s'il existe u de σ^* tel que m = u . m' .
- 3. On dit que m' est préfixe de m s'il existe v de sigma etoile tel que m = m'.v

2.4 Propriétés

2.4.1

 $m^0 = \epsilon$

```
m=m^i.m pour i>=0
```

2.4.2 Mot miroir

```
\epsilon^R=\epsilon (a.m)^R=m^R.a m^R \text{ est appelé le mot inverse du mot m (ou /mot miroir/)} 010101^R=101010
```

2.5 Opérations sur les langages

Soient σ un alphabet et L1, L2 (L1, L2 inclus dans σ^*) deux langages.

2.5.1 Concaténation

L1.L2 = m1.m2 | m1deL1, m2deL2

Exemple L1 = 01, 10 L2 = 00, 10 L1 . L2 = 0100, 0110, 1000, 1010

2.5.2 Opération de Kleene

 $L2^* = m1 . m2 . mk \mid k de \mid N et m1, m2, ..., mk de L1$

2.5.3

$$L_1^+ = L_1^* \epsilon$$

2.6 Représentations finies des langages

2.6.1 Expression rationnelle

Soit Σ un alphabet. Posons $\Sigma_d = \Sigma \cup \emptyset, *, (,), \cup$

2.6.2 Définition

Une expression rationnelle sur Σ est un mot sur l'alphabet $\Sigma.d$ obtenu en respectant les règles suivantes.

1. \emptyset et $a \in \sigma$ sont des expressions régulières pour tout $a \in \Sigma$

- 2. Si α et β sont des expressions régulières alors $(\alpha\beta)$ est une expression régulière
- 3. Si alpha et beta sont des expressions regulieres alors

 $(\alpha \cup \beta)$ estuneexpressionrgulire

- 4. Si $\alpha estune expression regulière alors <math>\alpha *$ est une expression régulière.
- 5. Seuls les mots de Σ_d^* qui sont construits en utilisant les règles $R_1, R_2, R_3 et R_4$ sont des expressions régulières.

2.7 Langage associé à une expression rationnelle

Soit e une expression rationnelle sur un alphabet Sigma.

Le langage L(e) décrit par l'expression rationnelle e est obtenu en interprétant les caractères de Σ_d de la façon suivante :

- 1. $L(\emptyset) = \emptyset =$
- 2. $L(a) = a \text{ pour tout } a \in \Sigma$
- 3. L(alpha, beta) = L(alpha) . L(beta) pour alpha, beta expressions rationelles

L(

Exemple L(

2.7.1 L

 $\subseteq \Sigma^*$ est dit langage régulier s'il eiste une expression régulière e tel que L = L(E)