Optimisation

ACTL3143 & ACTL5111 Deep Learning for Actuaries
Patrick Laub

Lecture Outline

- Dense Layers in Matrices
- Optimisation
- Loss and derivatives

Logistic regression

Observations: $\mathbf{x}_{i,\bullet} \in \mathbb{R}^2$.

Target: $y_i \in \{0, 1\}$.

Predict: $\hat{y}_i = \mathbb{P}(Y_i = 1)$.

The model

For
$$\mathbf{x}_{i,\bullet} = (x_{i,1}, x_{i,2})$$
:

$$z_i = x_{i,1}w_1 + x_{i,2}w_2 + b$$

$$\hat{y}_i = \sigma(z_i) = rac{1}{1+\mathrm{e}^{-z_i}}.$$

Multiple observations

```
1 data = pd.DataFrame({"x_1": [1, 3, 5], "x_2": [2, 4, 6], "y": [0, 1, 1]})
2 data
```

Let $w_1 = 1$, $w_2 = 2$ and b = -10.

```
1 w_1 = 1; w_2 = 2; b = -10
2 data["x_1"] * w_1 + data["x_2"] * w_2 + b
```

```
0 -5
1 1
2 7
dtype: int64
```


Matrix notation

Have $\mathbf{X} \in \mathbb{R}^{3 \times 2}$.

```
Let \mathbf{w} = (w_1, w_2)^{\top} \in \mathbb{R}^{2 \times 1}.
```

```
1 w = np.array([[1], [2]])
2 w
```

array([[1], [2]])

$$\mathbf{z} = \mathbf{X}\mathbf{w} + b, \quad \mathbf{a} = \sigma(\mathbf{z})$$

```
1 z = X.dot(w) + b
2 z

array([[-5],
       [ 1],
       [ 7]])
```


Using a softmax output

Observations: $\mathbf{x}_{i,\bullet} \in \mathbb{R}^2$. Predict: Target: $\mathbf{y}_{i,\bullet} \in \{(1,0),(0,1)\}$. $\hat{y}_{i,j} = \mathbb{P}(Y_i = j)$.

The model: For $\mathbf{x}_{i,\bullet} = (x_{i,1}, x_{i,2})$

$$egin{aligned} z_{i,1} &= x_{i,1}w_{1,1} + x_{i,2}w_{2,1} + b_1, \ z_{i,2} &= x_{i,1}w_{1,2} + x_{i,2}w_{2,2} + b_2. \end{aligned}$$

$$\hat{y}_{i,1} = ext{Softmax}_1(\mathbf{z}_i) = rac{\mathrm{e}^{z_{i,1}}}{\mathrm{e}^{z_{i,1}} + \mathrm{e}^{z_{i,2}}}, \ \hat{y}_{i,2} = ext{Softmax}_2(\mathbf{z}_i) = rac{\mathrm{e}^{z_{i,1}} + \mathrm{e}^{z_{i,2}}}{\mathrm{e}^{z_{i,1}} + \mathrm{e}^{z_{i,2}}}.$$

Multiple observations

1 data

	X_1	X_2	y_1	y_2
О	1	2	1	O
1	3	4	O	1
2	5	6	O	1

Choose:

$$w_{1,1}=1,\,w_{2,1}=2,$$
 $w_{1,2}=3,\,w_{2,2}=4,\, ext{and}$

$$b_1 = -10, b_2 = -20.$$

```
1  w_11 = 1; w_21 = 2; b_1 = -10
2  w_12 = 3; w_22 = 4; b_2 = -20
3  data["x_1"] * w_11 + data["x_2"] * w_21 + b_1
```

```
0 -5
1 1
2 7
dtype: int64
```


Matrix notation

Have $\mathbf{X} \in \mathbb{R}^{3 \times 2}$.

```
1 X
array([[1, 2],
       [3, 4],
       [5, 6]])
```

$$\mathbf{Z} = \mathbf{XW} + \mathbf{b},$$

 $1 Z = X \odot W + b$

[7, 19]])

$$\mathbf{W} \in \mathbb{R}^{2 \times 2}, \, \mathbf{b} \in \mathbb{R}^2$$

```
1 W = np.array([[1, 3], [2, 4]])
  2 b = np.array([-10, -20])
  3 display(W); b
array([[1, 3],
      [2, 4]])
array([-10, -20])
```

$$\mathbf{Z} = \mathbf{XW} + \mathbf{b}, \quad \mathbf{A} = \operatorname{Softmax}(\mathbf{Z}).$$

```
1 np.exp(Z) / np.sum(np.exp(Z),
       axis=1, keepdims=True)
array([[9.82e-01, 1.80e-02],
       [1.80e-02, 9.82e-01],
```

[6.14e-06, 1.00e+00]])

Lecture Outline

- Dense Layers in Matrices
- Optimisation
- Loss and derivatives

Gradient-based learning

Make a guess: ——— 50

Show derivatives:

Reveal function:

Gradient descent pitfalls

Cost

Potential problems with gradient descent.

Go over all the training data

Called batch gradient descent.

```
for i in range(num_epochs):
    gradient = evaluate_gradient(loss_function, data, weights)
    weights = weights - learning_rate * gradient
```


Pick a random training example

Called stochastic gradient descent.

```
for i in range(num_epochs):
    rnd.shuffle(data)

for example in data:
    gradient = evaluate_gradient(loss_function, example, weights)
    weights = weights - learning_rate * gradient
```


Take a group of training examples

Called mini-batch gradient descent.

```
for i in range(num_epochs):
    rnd.shuffle(data)

for b in range(num_batches):
    batch = data[b * batch_size : (b + 1) * batch_size]
    gradient = evaluate_gradient(loss_function, batch, weights)
    weights = weights - learning_rate * gradient
```


Mini-batch gradient descent

Why?

- 1. Because we have to (data is too big)
- 2. Because it is faster (lots of quick noisy steps > a few slow super accurate steps)
- 3. The noise helps us jump out of local minima

Example of jumping from local minima.

Learning rates

The learning rate is too small

The learning rate is too large

Learning rates #2

Changing the learning rates for a robot arm.

Learning rate schedule

Start with a high learning rate then reduce it: perfect!

Learning curves for various learning rates η

In training the learning rate may be tweaked manually.

We need non-zero derivatives

This is why can't use accuracy as the loss function for classification.

Also why we can have the *dead ReLU* problem.

Neu	al Networks Part 5: ArgMax and SoftMax

Lecture Outline

- Dense Layers in Matrices
- Optimisation
- Loss and derivatives

Example: linear regression

$$\hat{y}(x) = wx + b$$

For some observation $\{x_i, y_i\}$, the (MSE) loss is

$$\mathrm{Loss}_i = (\hat{y}(x_i) - y_i)^2$$

For a batch of the first *n* observations the loss is

$$ext{Loss}_{1:n} = rac{1}{n} \sum_{i=1}^n (\hat{y}(x_i) - y_i)^2$$

Derivatives

Since $\hat{y}(x) = wx + b$,

$$rac{\partial \hat{y}(x)}{\partial w} = x ext{ and } rac{\partial \hat{y}(x)}{\partial b} = 1.$$

As $\operatorname{Loss}_i = (\hat{y}(x_i) - y_i)^2$, we know

$$rac{\partial \mathrm{Loss}_i}{\partial \hat{y}(x_i)} = 2(\hat{y}(x_i) - y_i).$$

Chain rule

$$rac{\partial \mathrm{Loss}_i}{\partial \hat{y}(x_i)} = 2(\hat{y}(x_i) - y_i), \ rac{\partial \hat{y}(x)}{\partial w} = x, \ ext{and} \ rac{\partial \hat{y}(x)}{\partial b} = 1.$$

Putting this together, we have

$$rac{\partial \mathrm{Loss}_i}{\partial w} = rac{\partial \mathrm{Loss}_i}{\partial \hat{y}(x_i)} imes rac{\partial \hat{y}(x_i)}{\partial w} = 2(\hat{y}(x_i) - y_i)\,x_i$$

and

$$rac{\partial \mathrm{Loss}_i}{\partial b} = rac{\partial \mathrm{Loss}_i}{\partial \hat{y}(x_i)} imes rac{\partial \hat{y}(x_i)}{\partial b} = 2(\hat{y}(x_i) - y_i).$$

Stochastic gradient descent (SGD)

Start with $\theta_0 = (w, b)^{\top} = (0, 0)^{\top}$.

Randomly pick i = 5, say $x_i = 5$ and $y_i = 5$.

SGD, first iteration

Start with $\theta_0 = (w, b)^{\top} = (0, 0)^{\top}$.

Randomly pick i = 5, say $x_i = 5$ and $y_i = 5$.

The gradient is $\nabla \text{Loss}_i = (-50, -10)^{\top}$.

Use learning rate $\eta = 0.01$ to update

$$egin{aligned} oldsymbol{ heta}_1 &= oldsymbol{ heta}_0 - \eta
abla \mathrm{Loss}_i \ &= egin{pmatrix} 0 \ 0 \end{pmatrix} - 0.01 egin{pmatrix} -50 \ -10 \end{pmatrix} \ &= egin{pmatrix} 0 \ 0 \end{pmatrix} + egin{pmatrix} 0.5 \ 0.1 \end{pmatrix} = egin{pmatrix} 0.5 \ 0.1 \end{pmatrix}. \end{aligned}$$

SGD, second iteration

Start with $\theta_1 = (w, b)^{\top} = (0.5, 0.1)^{\top}$.

Randomly pick i = 9, say $x_i = 9$ and $y_i = 17$.

The gradient is $\nabla \text{Loss}_i = (-223.2, -24.8)^{\top}$.

Use learning rate $\eta = 0.01$ to update

$$egin{aligned} m{ heta}_2 &= m{ heta}_1 - \eta
abla \mathrm{Loss}_i \ &= egin{pmatrix} 0.5 \ 0.1 \end{pmatrix} - 0.01 egin{pmatrix} -223.2 \ -24.8 \end{pmatrix} \ &= egin{pmatrix} 0.5 \ 0.1 \end{pmatrix} + egin{pmatrix} 2.232 \ 0.248 \end{pmatrix} = egin{pmatrix} 2.732 \ 0.348 \end{pmatrix}. \end{aligned}$$

Batch gradient descent (BGD)

For the first *n* observations $Loss_{1:n} = \frac{1}{n} \sum_{i=1}^{n} Loss_i$ so

$$egin{aligned} rac{\partial ext{Loss}_{1:n}}{\partial w} &= rac{1}{n} \sum_{i=1}^n rac{\partial ext{Loss}_i}{\partial w} = rac{1}{n} \sum_{i=1}^n rac{\partial ext{Loss}_i}{\hat{y}(x_i)} rac{\partial \hat{y}(x_i)}{\partial w} \ &= rac{1}{n} \sum_{i=1}^n 2(\hat{y}(x_i) - y_i) \, x_i. \end{aligned}$$

$$egin{aligned} rac{\partial ext{Loss}_{1:n}}{\partial b} &= rac{1}{n} \sum_{i=1}^n rac{\partial ext{Loss}_i}{\partial b} = rac{1}{n} \sum_{i=1}^n rac{\partial ext{Loss}_i}{\hat{y}(x_i)} rac{\partial \hat{y}(x_i)}{\partial b} \ &= rac{1}{n} \sum_{i=1}^n 2(\hat{y}(x_i) - y_i). \end{aligned}$$

BGD, first iteration ($\boldsymbol{\theta}_0 = \mathbf{0}$)

	X	y	y_hat	loss	dL/dw	dL/db
0	1	0.99	0	0.98	-1.98	-1.98
1	2	3.00	0	9.02	-12.02	-6.01
2	3	5.01	O	25.15	-30.09	-10.03

So $\nabla \text{Loss}_{1:3}$ is

```
1 nabla = np.array([df["dL/dw"].mean(), df["dL/db"].mean()])  
2 nabla  
array([-14.69, -6. ])  
So with \eta=0.1 then \pmb{\theta}_1 becomes
```

```
1 theta_1 = theta_0 - 0.1 * nabla
2 theta_1
```

```
array([1.47, 0.6])
```


BGD, second iteration

	X	y	y_hat	loss	dL/dw	dL/db
0	1	0.99	2.07	1.17	2.16	2.16
1	2	3.00	3.54	0.29	2.14	1.07
2	3	5.01	5.01	0.00	-0.04	-0.01

So $\nabla \text{Loss}_{1:3}$ is

```
1 nabla = np.array([df["dL/dw"].mean(), df["dL/db"].mean()])
2 nabla
```

array([1.42, 1.07])

so with $\eta = 0.1$ then θ_2 becomes

```
1 theta_2 = theta_1 - 0.1 * nabla
2 theta_2
```

array([1.33, 0.49])

Glossary

- batches, batch size
- gradient-based learning, hill-climbing
- stochastic (mini-batch) gradient descent

