

Bank Note Authentication-Approach

Nityanandan P

THE OBJECTIVE

Develop a classification model to detect if a bank note is a fake one or a legitimate one.

Challenge: The data contains only 4 attributes and all are numerical. There are no missing values also.

I have handled the data here using multiple python libraries.

APPROACH

Problem Definition:

 Predicting whether a bank note is real or fake

Data Exploration:

 There are no missing data and I have just visualized the data.

Validation:

- Accuracy
- Precision
- Recall
- F1 score
- 5 fold cross validation

Modelling:

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier

Data Preparation:

 Feature scaling done to normalize the data

Splitting the data:

 The data is split into train and test sets

• There are no missing data. The dataset is clean and balanced. The one thing that I had to do was to add column names as the data was a .txt file without any column names.

	variance	skewness	kurtosis	entropy	class
0	3.62160	8.66610	-2.8073	-0.44699	0
1	4.54590	8.16740	-2.4586	-1.46210	0
2	3.86600	-2.63830	1.9242	0.10645	0
3	3.45660	9.52280	-4.0112	-3.59440	0
4	0.32924	-4.45520	4.5718	-0.98880	0
1367	0.40614	1.34920	-1.4501	-0.55949	1
1368	-1.38870	-4.87730	6.4774	0.34179	1
1369	-3.75030	-13.45860	17.5932	-2.77710	1
1370	-3.56370	-8.38270	12.3930	-1.28230	1
1371	-2.54190	-0.65804	2.6842	1.19520	1

No missing values:

Since there are no missing data and the dataset is a balanced one, I
just went on with Exploratory data Analysis and visualization.

Balanced data:

762610

Name: class, dtype: int64

Distribution of the attributes:

• From the graphs the following inferences were made:

○ Variance: Normally distributed – No skew

○ Skewness: Normally distributed – No skew

Kurtosis: Positive skew

Entropy: Negative skew

 Following is a heatmap showing how the independent variables are related to the target variable:

 This shows that only kurtosis is positively related to class, meaning as kurtosis increases, there is a higher possibility of a bank note being genuine.

DATA PREPARATION

- The data was normalized using StandardScaler from Sci-kit Learn because the range of the attributes were different. This would help fit the data into a model easily.
- When we look at the graphs in the previous slide, we can see that the variance ranges from -10 to 7.5, skewness from -15 to 15, kurtosis from -5 to 20 and entropy from -10 to 4.
- Since the data has a lot of negative values and some attributes are skewed StandardScaler plays an important role by scaling the data such that it is centred around 0.

MODELLING AND VALIDATION

• Logistic Regression:

[[150 9] [0 116]]					
		precision	recall	f1-score	support
	0	1.00	0.94	0.97	159
	1	0.93	1.00	0.96	116
accurac	y			0.97	275
macro av	g	0.96	0.97	0.97	275
weighted av	g	0.97	0.97	0.97	275

• Cross Validation:

[0.98636364 0.99090909 0.98173516 0.99543379 0.97260274]

MODELLING AND VALIDATION

Decision Tree Classifier:

[[158 1 [3 113	_				
		precision	recall	f1-score	support
	0	0.98	0.99	0.99	159
	1	0.99	0.97	0.98	116
accur	асу			0.99	275
macro	avg	0.99	0.98	0.99	275
weighted	avg	0.99	0.99	0.99	275

• Cross Validation:

[0.99090909 0.98636364 0.99086758 0.98630137 0.98173516]

MODELLING AND VALIDATION

Random Forest Classifier:

[[158 1 [0 116	_				
		precision	recall	f1-score	support
	0	1.00	0.99	1.00	159
	1	0.99	1.00	1.00	116
accur	acy			1.00	275
macro	avg	1.00	1.00	1.00	275
weighted	avg	1.00	1.00	1.00	275

• Cross Validation:

```
[1. 0.99090909 1. 0.98173516 0.99086758]
```

SORTING MODELS AS PER THE ACCURACY

	Model	Score
2	Random Forest	99.636364
1	Decision Tree	98.545455
0	Logistic Regression	96.727273

- We can see that the accuracy of Random Forest Classifier is better than Decision Tree Classifier and Logistic Regression.
- This is because Random Forest Classifier is a collection of decision trees and they limit overfitting, so they are typically more accurate than single decision trees.
- Decision Tree Classifier is better than Logistic Regression here because, the latter just fits a best line to divide the space into two, but the decision tree can bisect into multiple smaller regions.

THANK YOU