UNIVERSIDADE DE ITAÚNA

Curso de Graduação em Ciência da Computação

	Paula Luiza Corrêa da Silva Santos	
UTILIZAÇÃO DE MACHINE	LEARNING PARA PREDIÇÃO DE VA	GAS DE TRABALHO FALSAS

Paula Luiza Corrêa da Silva Santos
UTILIZAÇÃO DE MACHINE LEARNING PARA PREDIÇÃO DE VAGAS DE TRABALHO FALSAS
Itaúna/MG

SUMÁRIO

1. Introdução	4
1.1. Contextualização	4
1.2. O problema proposto	4
1.3. Objetivos	4
2. Coleta de Dados	5
3. Processamento/Tratamento de Dados	7
4. Análise e Exploração dos Dados	9
5. Criação de Modelos de Machine Learning	13
6. Interpretação dos Resultados	15
7. Apresentação dos Resultados	16
8. Links	18
REFERÊNCIAS	19
APÊNDICE	20

1. Introdução

1.1. Contextualização

De acordo com uma pesquisa feita em 2022 pelo Instituto Brasileiro de Geografia e Estatística (IBGE), cerca de 12 milhões de pessoas estão desempregadas no Brasil. Diante desse cenário, muitas estão suscetíveis a caírem no golpe de falsas vagas com a esperança de se reinserirem no mercado de trabalho. Uma das estratégias utilizadas pelos golpistas é a oferta de vagas aparentemente muito vantajosas para a pessoa trabalhadora.

Por esse motivo, é de suma importância identificar fatores que contribuem na probabilidade da vaga de trabalho ser falsa.

1.2. O problema proposto

Nem sempre é fácil perceber que algumas ofertas de emprego são, na verdade, vagas falsas que servem de isca para atrair pessoas para possíveis golpes. De setembro de 2012 a fevereiro de 2022, foram ofertadas cerca de 608 mil vagas falsas para entrevista de emprego, uma média de 4 mil "golpes" por dia. Esses golpes existem por um simples motivo: eles dão certo.

Há anos, hackers e golpistas com um bom conhecimento de programação para dispositivos móveis contam com um ambiente favorável à prática desse tipo de fraude, e o número de tentativas e de vítimas só aumenta.

1.3. Objetivos

Com o presente trabalho, o modelo desenvolvido será capaz de validar se uma vaga ofertada é falsa ou verdadeira, a fim de auxiliar os candidatos, otimizando seu tempo na busca por um emprego.

2. Coleta de Dados

O dataset utilizado foi obtido através da plataforma Kaggle (https://www.kaggle.com) e é formado por um conjunto de dados que contém cerca de 18 mil descrições de cargos, das quais cerca de 800 são falsas. Os dados consistem em informações textuais e meta-informações sobre os trabalhos, todos na língua inglesa.

A seguir encontra-se uma tabela contendo as informações a respeito das colunas contidas no *dataset*.

Nome da coluna/campo	Descrição	Tipo
job_id	Identificador dos trabalhos	int64
title	Título da entrada do anúncio de emprego.	object
location	Localização geográfica do anúncio de emprego.	object
department	Departamento corporativo.	object
salary_range	Faixa salarial indicativa.	object
company_profile	Breve descrição da empresa.	object
description	Descrição detalhada do anúncio de emprego.	object
requirements	Requisitos para a vaga de emprego.	object
benefits	Recrutou benefícios oferecidos pelo empregador.	object
telecommuting	Verdadeiro para posições de teletrabalho.	int64
has_company_logo	Verdadeiro se o logotipo da empresa estiver presente.	int64
has_questions	Verdadeiro se houver perguntas de triagem.	int64
employment_type	Se é tempo integral, meio período, contrato, etc.	object
required_experience	Executivo, nível de entrada, estagiário, etc.	object
required_education	Doutorado, Mestre, Bacharel, etc.	object
industry	Automotivo, TI, Saúde, Imobiliário, etc.	object

function	Consultoria, Engenharia,	object
	Pesquisa, Vendas etc.	
fraudulent	atributo de classificação	int64
	(target).	

3. Processamento/Tratamento de Dados

O primeiro tratamento realizado foi renomear as colunas, que estavam em inglês para português, para uma melhor compreensão dos dados, da seguinte forma:

Coluna Original	Coluna Nova	Coluna Original	Coluna Nova
job_id	Id	telecommuting	Trabalho_Remoto
title	Titulo	has_company_logo	Empresa_Tem_Logo
location	Localizacao	has_questions	Tem_Perguntas
department	Departamento	employment_type	Tipo_Emprego
salary_range	Faixa_Salarial	required_experiencie	Experiencia_Necessaria
company_profile	Perfil_Empresa	required_education	Grau_Ensino
description	Descricao	industry	Industria
requirements	Requisitos	function	Funcao
benefits	Beneficios	fraudulent	Fraudulento

Considerando a base, foi encontrada a seguinte quantidade de valores nulos para cada coluna:

Pode-se observar que as colunas que possuem a maior quantidade de valores nulos são as colunas *Departamento* e *Faixa_Salarial*, onde os dados nulos representam 65% e 84%,

do valor total da coluna, respectivamente. Devido a essa grande quantidade, estas duas colunas foram removidas. Já os valores nulos contidos nas colunas *Beneficios, Requisitos, Descricao, Grau_Ensino* e *Perfil_Empresa* foram substituídos pelas palavras "**Desconhecido**" ou "**Desconhecida**", pois estas colunas serão concatenadas. Os demais registros com valores nulos foram deletados.

Nas colunas *Trabalho_Remoto, Empresa_Tem_Logo* e *Fraudulento* foram detectados outliers, conforme a imagem abaixo, que foram removidos.

Foi criada uma nova coluna, denominada *Vaga*, composta pela concatenação das colunas *Titulo*, *Localizacao*, *Perfil_Empresa*, *Descricao*, *Requisitos* e *Beneficios*. Após a concatenação, estas colunas foram deletadas. Após feito isso, foram encontrados e removidos 25 registros duplicados.

Fazendo um comparativo da base de dados, inicialmente esta possuía 17.880 linhas e 18 colunas. Logo após os tratamentos acima, a nova base passou a conter 1.115 linhas e 5 colunas. Destas 5 colunas restantes, apenas a coluna *Vaga* era do tipo object. Para que adiante fosse aplicado o modelo, foi realizado então o **LabelEncoder** desta coluna, mantendo assim todos os dados com o mesmo tipo.

4. Análise e Exploração dos Dados

Foi realizada uma parte da análise dos dados antes da criação da coluna Vaga, analisando todas colunas, e outra após a concatenação.

Primeiramente foram feitas análises univariadas, bivariadas e multivariadas. Nestas pudemos analisar algumas das seguintes características:

A maioria das vagas é ofertada para trabalhador de nível Médio/Sênior

Já o nível de escolaridade mais exigido é o bacharelado

 Na base de estudo, quase 12.000 vagas são oferecidas para trabalho em tempo integral e para as outras modalidades cada uma possui menos de 2.000 vagas disponíveis.

 As vagas de trabalho remoto s\(\tilde{a}\) concentradas em sua maioria nas ind\(\tilde{u}\)strias de Software, Internet e T.I.

- Verificou-se também que a indústria com o maior número de vagas falsas foi a de "Óleo e Energia", com 109 fraudes.
- Foi feita a correlação das colunas numéricas e verificou-se que elas não possuem quase nenhuma correlação:

• Foi calculada a proporção da target *Fraudulento* e foi visto que a quantidade de vagas falsas corresponde a apenas 4,8% da quantidade de registros totais, sendo necessário balancear esses dados.

Já após a concatenação das colunas e da geração da *Vaga*, foi feita uma análise nos textos dessa coluna e verificadas as palavras que aparecem com maior frequência. Estas palavras são apresentadas nas imagens a seguir, encontradas nas vagas reais e falsas, respectivamente:

Após feitas essas análises, foi realizado o balanceamento dos dados, para dar início a construção dos modelos. Para isso, foi utilizada a técnica denominada **Random Under Samplin**, que consiste basicamente em remover os dados para ter um conjunto de dados mais balanceado e assim evitar o overfitting dos modelos. A primeira coisa a se fazer foi determinar o quão desequilibrada era a classe. Depois de determinadas quantas instâncias foram consideradas fraudulentas, foi necessário trazer as não fraudulentas para a mesma proporção (50/50). O próximo passo então foi embaralhar os dados para ver se os modelos podem manter uma certa precisão toda vez que executar esse script.

Ao final, a base de dados que continha 1062 vagas verdadeiras e 53 vagas falsas, passou a conter 110 registros verídicos e 110 registros falsos, totalizando 220 registros.

5. Criação de Modelos de Machine Learning

Nesta etapa, foram utilizados três tipos de classificadores, observando sua capacidade na resolução do problema proposto, a fim de descobrir qual deles seria mais eficaz na detecção de vagas fraudulentas. Os classificadores são:

- 1. Árvore de Decisão (Decision Tree): com critério gini
- 2. KNN (K Nearest Neighbours): com k = 3
- 3. Floresta Aleatória (Random Forest)

Para a separação dos dados em treinamento e teste, foi utilizada a proporção de 70% para treino e 30% para teste, resultando em 154 e 66 registros respectivamente. Abaixo temos o código em Python utilizado para esta divisão:

```
x = pd.DataFrame(df_Novo[["Trabalho_Remoto", "Empresa_Tem_Logo", "Tem_Perguntas", "Vaga"]])
y = pd.DataFrame(df_Novo["Fraudulento"])

#Divide o dataframe em treinamento e teste
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 11)

#Verifica os tamanhos
print("Dados de treinamento: ", y_train.shape, x_train.shape)
print("Dados de teste: ", y_test.shape, x_test.shape)
Dados de treinamento: (154, 1) (154, 4)
Dados de teste: (66, 1) (66, 4)
```

Em todos os três classificadores foram utilizadas as quatro métricas de avaliação (Acurácia, Precisão, Recall e F1 Score).

Para implementação dos modelos foi utilizada a biblioteca **Sklearn**, e foi utilizado um padrão no desenvolvimento destes, contendo o treinamento e o teste dos mesmos, em seguida a apresentação do relatório da classificação e a matriz de confusão dos modelos (tabela que indica os erros e acertos do modelo). Abaixo segue o modelo de Árvore de

Decisão:

6. Interpretação dos Resultados

Com base nos modelos de classificação utilizados (*Decision Tree*, KNN e *Random Forest*), observou-se que os modelos *Decision Tree* e *Random Forest* obtiveram resultados semelhantes entre si. Porém, de maneira geral, o *Random Forest* apresentou os melhores resultados, com acurácia, precisão e f1 score superiores aos demais modelos.

7. Apresentação dos Resultados

De maneira geral, como dito anteriormente, o modelo *Random Forest* apresentou o melhor desempenho na predição de vagas de trabalho falsas. Abaixo estão os comparativos entre as métricas utilizadas em cada modelo, onde foi possível verificar a eficiência de cada um e feita a verificação do melhor modelo:

De maneira individual, consegue-se perceber uma boa aplicação em cada um dos modelos. Para melhor verificação desta afirmação, abaixo serão apresentadas as matrizes de confusão de cada um deles:

1. Decision Tree

2. KNN

3. Random Forest

8. Links

Link para o apresentação no Canva:

https://www.canva.com/design/DAFFF5txRn8/k0W5qiE4xogdxhOU3y3W7g/view?ut m_content=DAFFF5txRn8&utm_campaign=designshare&utm_medium=link2&utm_source=s harebutton

Link para o projeto:

https://colab.research.google.com/drive/1pouzhiMwLZScQCL7dwMC1 GfCp1MfusQ ?usp=sharing

Link para a base de dados:

https://www.kaggle.com/datasets/shivamb/real-or-fake-fake-jobposting-prediction

REFERÊNCIAS

- RODRIGUES, Vitor. Métricas de Avaliação: acurácia, precisão, recall... quais as diferenças?. Medium. Disponível em:
 - https://vitorborbarodrigues.medium.com/métricas-de-avaliação-acurácia-precisão-recall-quais-as-diferenças-c8f05e0a513c. Acesso em 25 de junho de 2022.

APÊNDICE

Gráficos

Distribuição da target antes do balanceamento

Vagas Reais e Falsas

• Distribuição da target após o balanceamento

Tabelas

• Quantidade de valores nulos na base de dados

	Qtd_Nulos	%Valores_Nulos	(
Localizacao	346	2.0	
Departamento	11547	65.0	
Faixa_Salarial	15012	84.0	
Perfil_Empresa	3308	19.0	
Descricao	1	0.0	
Requisitos	2695	15.0	
Beneficios	7210	40.0	
Tipo_Emprego	3471	19.0	
Experiencia_Necessaria	7050	39.0	
Grau_Ensino	8105	45.0	
Industria	4903	27.0	
Funcao	6455	36.0	