Determinants Group 12

Catterwell, A. Smith, M. Wang, R. Watson, K.

University of Edinburgh

March 30, 2019

Overview

- Using LU decomposition to compute determinants
 - What is LU decomposition?
 - Is there always an LU decomposition?
 - PLU decomposition
 - How it helps us compute determinants
 - Runtime analysis
- ② Other algorithms for computing determinants
 - Leibniz formula
 - Laplace expansion
 - Gaussian elimination
 - Bareiss algorithm
 - Bird's algorithm
- 3 Epilogue
 - Summary of determinant algorithms
 - How fast is Maple's implementation?

What is LU decomposition?

Definition

An LU decomposition of an invertible matrix A is a factorization

$$A = LU$$

where L and U are lower and upper triangular matrices, respectively.

Is there always an LU decomposition?

No.

An LU decomposition of A exists if and only if each of its leading principle minors (contiguous square submatrices in the top-left corner of A), are also invertible.

Example

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

This matrix is invertible but has no LU decomposition.

What can we do?

PLU decomposition

Partial pivoting.

We can pivot the matrix into the correct form by multiplication with an orthogonal, permutation matrix P (representing a permutation σ_P) which gives us the PLU decomposition:

$$\sigma_P(A) = PA = LU$$

This technique works on any invertible matrix.

How it helps us compute determinants

Now that we have PA = LU, it follows that

$$A = P^{-1}LU$$
$$= P^{T}LU$$

since $P^{-1} = P^T$ by definition of an orthogonal matrix.

How it helps us compute determinants (cont.)

Now that we have $A = P^T L U$, it follows that

$$det(A) = det(P^T L U)$$

$$= det(P^T) \cdot det(L) \cdot det(U)$$
 (Thm. 4.4.1)
$$= det(P) \cdot det(L) \cdot det(U)$$
 (Lem. 4.4.4)

Given that

- the determinant of a triangular matrix is the product of its diagonal elements
- the determinant of a permutation matrix (P) is the parity of the permutation it represents (σ_P)

it follows that

$$\det(A) = \operatorname{sgn}(\sigma_P) \cdot \left(\prod_{i=1}^n I_{i,i}\right) \left(\prod_{i=1}^n u_{i,i}\right)$$

Runtime analysis

How quick is it?

- The PLU decomposition can be computed in $\mathcal{O}(n^3)$ time.
- The determinants of the triangular matrices computed in $\mathcal{O}(n)$ time.
- The parity of the permutation matrix in $\mathcal{O}(n^2)$ time.

Therefore the total runtime for computing the determinant using the method is

$$\mathcal{O}(n^3) + \mathcal{O}(n^2) + \mathcal{O}(n) = \mathcal{O}(n^3)$$

What are some other methods to compute determinants?

Leibniz formula

Definition

The Leibniz formula defines the determinant of $A \in \mathbb{M}(n)$ as

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \left(\operatorname{sgn}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

where \mathfrak{S}_n is the set of permutations length n.

Computing the determinant using this method is slow with runtime $\mathcal{O}((n+1)!)$.

Laplace expansion

The Laplace (1st row) expansion for computing determinants is usually the first method taught for computing determinants of 3×3 matrices and larger.

Theorem

The formula for the (1st row) Laplace expansion of $A \in \mathbb{M}(n)$ is given as:

$$\det(A) = \sum_{j=1}^n a_{1,j} C_{1,j}$$

where $C_{i,j}$ is the (i,j) cofactor of A.

Its runtime complexity of $\mathcal{O}(n!)$ is poor.

Laplace expansion vs Leibniz formula

Runtimes are similar — both run in exponential time.

Laplace expansion vs LU decomposition

The difference between the exponential and polynomial-time function is clear.

Gaussian elimination

- The determinant of a triangular matrix can be computed by taking the product of its diagonal entries (which is a quick $\mathcal{O}(n)$ operation).
- Any invertible square matrix can be transformed into echelon form by performing Gaussian elimination, which takes $\mathcal{O}(n^3)$ time.

So how does it compare to LU decomposition?

Gaussian elimination vs LU decomposition

The difference in runtimes is small (a constant factor).

Gaussian elimination (cont.)

Conventional Gaussian elimination requires division, meaning that solutions maybe inexact, so precision is lost.

This is can be addressed by using...

Gaussian elimination algorithm

Bareiss algorithm

- Addresses the issue of precision-loss by performing integer-preserving Gaussian elimination on integer matrices.
- The runtime complexity is $\mathcal{O}(n^3)$ which is the same as conventional Gaussian Elimination, whilst preserving exactness.

Bird's algorithm

Define $\mu : \mathbb{M}(n) \to \mathbb{M}(n)$:

$$\mu(X) = \begin{pmatrix} \mu_{2,2} - x_{2,2} & x_{1,2} & \cdots & x_{1,n-1} & x_{1,n} \\ 0 & \mu_{3,3} - x_{3,3} & \cdots & x_{2,n-1} & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \mu_{n,n} - x_{n,n} & x_{n-1,n} \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

and
$$F_A: \mathbb{M}(n) \to \mathbb{M}(n)$$
, with $A \in \mathbb{M}(n)$

$$F_A(X) = \mu(X) \cdot A$$

$$F_A^2(X) = \mu(F_A(X)) \cdot A$$

$$\vdots$$

Bird's algorithm (cont.)

Bird's Theorem

$$F_A^{n-1}(A) = \begin{pmatrix} d & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ with } d = \begin{cases} \det(A) & \text{odd } n \\ -\det(A) & \text{even } n \end{cases}$$

- Enables the *division-free* computation of determinants in $\mathcal{O}(n \cdot M(n))$ where M(n) is the runtime complexity of the matrix multiplication algorithm used.
- If the conventional $\mathcal{O}(n^3)$ matrix multiplication algorithm is used, then Bird's algorithm will run in $\mathcal{O}(n^4)$ time.
- But this can be reduced to $\mathcal{O}(n^{3.8})$ by using the *Strassen* algorithm for matrix multiplication.

Bird's algorithm vs LU decomposition

Bird's runtimes increase noticeably more rapidly than LU decomposition, but it's still polynomial.

Summary of determinant algorithms

Algorithm	Runtime	Exact
Leibniz formula	$\mathcal{O}((n+1)!)$	Yes
Laplace expansion	$\mathcal{O}(n!)$	Yes
LU decomposition	$\mathcal{O}(n^3)$	No
Gaussian elimination	$\mathcal{O}(n^3)$	No
Bareiss algorithm	$\mathcal{O}(n^3)$	Yes
Bird's algorithm	$\mathcal{O}(n^{3.8})$	Yes

How fast is Maple's built-in determinant function?

Very. Maple's optimisation means a fair comparison cannot be made.

Thanks!