Olga Novichkova

Professor Grifith

CS2235 Data Structures and Algorithms

23 September 2019

PART 1

1.
$$2n^3-7n^2+100n-36$$
 is in $O(n^3)$

Answer: True

Proof:
$$2n^3 - 7n^2 + 100n - 36 \le (2 + 0 + 100 + 0)n^3 = 102n^3 = cn^3$$

For
$$c = 102$$
, when $n \ge n_0 = 1$

2. $10n+3\log(n)$ is in O(n)

Answer: True

$$Proof: 10n+3log(n) \le (10+3)n = 13n = cn$$

For
$$c = 13$$
, when $n >= n_0 = 1$

3. n/1000 is in O(1)

Answer : False

<u>Proof</u>: There does not exist a combination of numbers c and n_0 , where $n/1000 \le 1c$

4.
$$\log(n)^2 + \log(n)/30$$
 is in $O(\log(n)^2)$

Answer: True

 $\underline{Proof}: log(n)^2 + log(n)/30 <= (1 + 1/30)log(n)^2 = 31/30log(n)^2 = clog(n)^2$

For
$$c = 31/30$$
, when $n \ge n_0 = 1$

5. $n^2/\log(n) + 3n$ is in $O(n^2)$

Answer: False

 \underline{Proof} : n^2 is not the "tightest" big oh bound. The "tightest" big oh bound is : $n^2/\log(n)$

6. 36n

Answer: O(n)

7. $n^2/2+15n$

 $\underline{\text{Answer}}: O(n^2)$

8. $(n^2/4)(8/n)$

Answer: O(n)

9. n+10log(n)

Answer: O(n)

10.87262

 $\underline{\text{Answer}}: O(1)$

Method 1 : m1FindLargest (int [] array)

<u>Answer</u>: O(array.length)

Method 2 : m2PrintTriangle (int size)

Answer : O(size)

Method 3 : m3PrintBooks (String books[], int [] stars)

Answer: O(books.length)

PART 2

