CSE-281: Data Structures and Algorithms

Graphs (Chapter-8)

Ref: Schaum's Outline Series, Theory and problems of Data

Structures

By Seymour Lipschutz

And Online Resource

Eftekhar Hossain Assistant Professor Dept. of ETE, CUET

Topics to be Covered

- ☐ Graphs
- ☐ Types of Graphs
- ☐ Graph Representation
- ☐ Breadth First Search (BFS)
- ☐ Depth First Search
- ☐ Minimum Spanning Tree
- ☐ Shortest Path Algorithm

Introduction to Graphs

• A graph G is an ordered pair of a set V of vertices and a set E of edges.

$$G = (V, E)$$

Directed vs Undirected

Directed

Undirected

Applications

Social Network (facebook)

Applications

World Wide Web

Applications

Inter City Road Network

Graph Representation

☐ Adjacency Matrix

n = number of vertices

It is a matrix **A[n][n]** where **n** is no. of vertices

$$A[i][j] = 1,$$
 if i and j are adjacent 0, Otherwise

Advantage and Disadvantage (Self)

Graph Representation

☐ Adjacency List

Graph Traversal

- ☐ Graph traversal is a technique used for <u>searching a vertex</u> in a graph.
 ☐ The graph traversal is also used to decide <u>the order of vertices</u> is visited in the search process.
- ☐ A graph traversal finds the edges to be used in the search process without creating loops.
- ☐ That means using graph traversal we visit all the vertices of the graph without getting into looping path.
- ☐ There are two graph traversal techniques, and they are as follows...
 - ☐ BFS (Breadth First Search)
 - ☐ DFS (Depth First Search)

BFS

- ☐ BFS traversal of a graph produces a **spanning tree** as final result.
- ☐ **Spanning Tree** is a graph without loops.
- ☐ We use **Queue data structure** with maximum size of total number of vertices in the graph to implement BFS traversal.

We use the following steps to implement BFS traversal.

- Step 1 Define a Queue of size total number of vertices in the graph.
- Step 2 Select any vertex as starting point for traversal. Visit that vertex and insert it into the Queue.
- **Step 3** Visit all the non-visited **adjacent** vertices of the vertex which is at front of the Queue and insert them into the Queue.
- **Step 4** When there is no new vertex to be visited from the vertex which is at front of the Queue then delete that vertex.
- **Step 5** Repeat steps 3 and 4 until queue becomes empty.
- Step 6 When queue becomes empty, then produce final spanning tree by removing unused edges from the graph

Step 1

- ✓ Select the vertex **A** as a Starting Point (visit **A**)
- ✓ Insert A into the queue

Step 2

- ✓ Visit all adjacent vertices of A which are not visited (D,E,B)
- ✓ Insert newly visited vertices into the Queue and delete A from the queue.

Step 3

- ✓ Visit all adjacent vertices of **D** which are not visited (there is no vertex)
- ✓ Delete **D** from the queue

- ✓ Visit all adjacent vertices of **E** which are not visited (**C**, **F**)
- \checkmark Insert newly visited vertices into the Queue and delete E from the queue.

Step 5

- ✓ Visit all adjacent vertices of **B** which are not visited (there is no vertex)
- ✓ Delete **B** from the queue.

- ✓ Visit all adjacent vertices of C which are not visited (G)
- ✓ Insert newly visited vertices into the Queue and delete C from the queue.

- ✓ Visit all adjacent vertices of **F** which are not visited (there is no vertex)
- ✓ Delete **F** from the queue.

- ✓ Visit all adjacent vertices of **G** which are not visited (there is no vertex)
- ✓ Delete **G** from the queue.

- ✓ Queue became Empty. So, stop the BFS process.
- ✓ Final result of BFS is a Spanning Tree as shown below

☐ We use **Stack data structure** with maximum size of total number of vertices in the graph to implement DFS traversal.

We use the following steps to implement DFS traversal.

- **Step 1 -** Define a Stack of size total number of vertices in the graph.
- **Step 2** Select any vertex as **starting point** for traversal. Visit that vertex and push it on to the Stack.
- **Step 3 -** Visit any one of the non-visited **adjacent** vertices of a vertex which is at the top of stack and push it on to the stack.
- **Step 4** Repeat step 3 until there is no new vertex to be visited from the vertex which is at the top of the stack.
- **Step 5 -** When there is no new vertex to visit then use **back tracking** and pop one vertex from the stack.
- **Step 6 -** Repeat steps 3, 4 and 5 until stack becomes Empty.
- Step 7 When stack becomes Empty, then produce final spanning tree by removing unused edges from the graph

Back tracking is coming back to the vertex from which we reached the current vertex.

- ✓ Select the vertex **A** as a Starting Point (visit **A**)
- ✓ Push A into the stack

- ✓ Visit any adjacent vertex of A which is not visited (B)
- ✓ Push **B** into the stack

- ✓ Visit any adjacent vertex of **B** which is not visited (**C**)
- ✓ Push C into the stack

Step 4

- ✓ Visit any adjacent vertex of C which is not visited (E)
- ✓ Push **E** into the stack

Step 5

- ✓ Visit any adjacent vertex of **E** which is not visited (**D**)
- ✓ Push **D** into the stack

Step 6

- ✓ There is no new vertex to be visited from **D**. so use backtrack
- ✓ Pop **D** from the stack

Step 7

- ✓ Visit any adjacent vertex of E which is not visited (F)
- ✓ Push **F** into the stack

Step 8

- ✓ Visit any adjacent vertex of F which is not visited (G)
- ✓ Push **G** into the stack

Step 9

- ✓ There is no new vertex to be visited from G. so use backtrack
- ✓ Pop **G** from the stack

Step 10

- ✓ There is no new vertex to be visited from **F**. so use backtrack
- ✓ Pop **F** from the stack

- ✓ There is no new vertex to be visited from **E**. so use backtrack
- ✓ Pop **E** from the stack

- ✓ There is no new vertex to be visited from C. so use backtrack
- ✓ Pop C from the stack

Step 13

- ✓ There is no new vertex to be visited from **B.** so use backtrack
- ✓ Pop **B** from the stack

A

- ✓ There is no new vertex to be visited from A. so use backtrack
- ✓ Pop A from the stack

- ✓ Stack became Empty. So, stop the DFS process.
- ✓ Final result of DFS is a Spanning Tree as shown below

BFS (Example-2)

Find the minimum path P from A to J for the Graph G

Adjacency List

A:	F , C , B
B:	C, G
C:	F
D:	C
E:	D, C, J
F:	D
G:	C,E
J:	D,K
K:	E,G

FRONT = 1

QUEUE:

A

REAR = 1

ORIG:

NULL

QUEUE: FRONT = 2

REAR = 4

A	F	C	В	
NULL	A	A	A	

FRONT = 3 QUEUE:

 $\mathbf{REAR} = \mathbf{5}$

A	F	C	В	D
NULL	A	A	A	F

 $FRONT = 4 \qquad QUEUE:$

REAR = 5

ORIG:

AFCBDNULLAAAF

QUEUE: FRONT = 5

REAR = 6

A	F	E	B	D	G
NULL	A	A	A	F	В

FRONT = 6 **QUEUE**:

REAR = 6

A	F	e	B	Ð	G
NULL	A	A	A	F	В

FRONT = 6

REAR = 7

QUEUE:

A	F	e	B	Ð	G	E
NULL	A	A	A	F	В	G

FRONT = 6 **QUEUE:**

REAR = 8

ORIG:

Æ	F	\mathbf{e}	B	Ð	G	Æ	J
NULL	A	A	A	F	В	G	E

The optimum path is

$$J \longleftarrow E \longleftarrow G \longleftarrow A$$

Self

**Compare BFS and DFS

Minimum Spanning Tree

The spanning Tree of the graph, G = (V, E) is

$$V' = V$$

$$E' = V-1$$

Minimum Spanning Tree

Minimum Spanning Tree

Self

Properties of Minimum Spanning Tree

```
T = a spanning tree containing a single node s;
 E = set of edges adjacent to s;
 while T does not contain all the nodes {
    remove an edge (v, w) of lowest cost from E
    if (w is already in T){
     discard edge (v, w)}
    else {
       add edge (v, w) and node v to T
       add to \boldsymbol{E} the edges adjacent to \boldsymbol{v}

    An edge of lowest cost can be found with a priority

 queue
```


Example

Kruskal's Algorithm

```
T = \{\};
while (T contains less than n-1 edges && E is not empty) {
  choose a least cost edge (v,w) from E;
  delete (v,w) from E;
  if ((v,w) does not create a cycle in T){
     add (v,w) to T
  else
     discard (v,w)
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
```

Kruskal's Algorithm

```
T = empty spanning tree;
 E = set of edges;
 N = number of nodes in graph;
 while T has fewer than N - 1 edges {
    remove an edge (v, w) of lowest cost from E
    if adding (v, w) to T would create a cycle
       then discard (v, w)
       else add (v, w) to T

    Finding an edge of lowest cost can be done just by

 sorting the edges
```

Example

Minimum Spanning Tree

Exercise

Time Complexity

- Let v be number of vertices and e the number of edges of a given graph.
- Kruskal's algorithm: $O(e \log e)$
- Prim's algorithm: $O(e \log v)$

Shortest Path Problem

- Path length is sum of weights of edges on path.
- The vertex at which the path begins is the **source vertex**.
- The vertex at which the path ends is the destination vertex.

☐ Types:

- •Single source single destination.
- •Single source all destinations.
- •All pairs (every vertex is a source and destination).

Shortest Path Problem

Terminate single source all destinations greedy algorithm as soon as shortest path to desired vertex has been generated.

Dijkstra's Algorithm - Exercise

Thank You