Introducción al problema termoelástico aplicado al BEM

Victoriano León Ramírez

23 de febrero de 2016

1. Planteamiento del problema

El problema se centra en la termoelasticidad desacoplada, es decir, la incidencia del efecto térmico en el problema elástico y no viceversa.

$$\varepsilon = \varepsilon^T + \varepsilon^E \tag{1}$$

1.1. El problema térmico

La ecuación de conducción del calor en un medio tridimensional, isótropo, en estado transitorio y con fuentes de calor interno se define por:

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \nabla^2 T + \frac{q_v}{\rho c} \tag{2}$$

donde T representa el incremento de temperatura respecto a un estado T_0 , ρ es la densidad del material, c es el calor específico, λ es la conductividad térmica y q_v el flujo de calor interno. Para el caso de no tener fuentes de calor internas eliminaremos el segundo término, y para el problema estacionario $\frac{\partial T}{\partial t} = 0$ por lo que nos quedará que la ecuación de transmisión de calor para el estado estacionario, sin fuentes de calor internas en un medio isótropo tridimensional homogéneo es:

$$\nabla^2 T = 0 = \frac{\partial^2 T}{\partial x_1^2} + \frac{\partial^2 T}{\partial x_2^2} + \frac{\partial^2 T}{\partial x_3^2}$$
 (3)

A su vez también podemos escribir la ecuación de expansión del material debido a la dilatación térmica como:

$$\varepsilon_{ij}^{T} = \alpha T \delta_{ij} = \begin{pmatrix} \alpha T & 0 & 0 \\ 0 & \alpha T & 0 \\ 0 & 0 & \alpha T \end{pmatrix}$$
 (4)

Donde α representa el coeficiente de dilatación térmica.

1.2. El problema elástico

En cuanto al problema elástico sus ecuaciones de equilibrio $\nabla \sigma + b = 0$ y su ecuación constitutiva $\sigma_{ij} = \lambda \delta_{ij} \varepsilon_v + 2\mu \varepsilon_{ij}$.

1.3. El problema termoelástico

Para admitir la formulación del problema termoelástico desacoplado es necesario partir de unas hipótesis:

- Deformaciones pequeñas
- Incrementos de temperatura pequeños
- Ecuaciones constitutivas lineales

De esta manera podremos asumir la Ley de Hooke Generalizada con efectos térmicos mencionada en (1).

2. Aplicación al BEM

A continuación se presentan las ecuaciones integrales de contorno y sus soluciones fundamentales de termoelásticidad obtenidas de [1] donde se puede ver su obtención. Se puede apreciar su similitud con las de la elasticidad.

$$c_{ij}(y)u_{j}(y) + \int_{\Gamma}^{CPV} T_{ij}(y,x)u_{j}(x)d\Gamma - \int_{\Gamma} \bar{P}_{i}(y,x)\theta(x)d\Gamma = \int_{\Gamma} U_{ij}(y,x)t_{j}(x)d\Gamma - \int_{\Gamma} \bar{Q}_{i}(y,x)q(x)d\Gamma$$

$$(5)$$

donde tenemos como soluciones fundamentales del problema elástico T_{ij} y U_{ij} además de las del problema termoelástico \bar{Q}_i y \bar{P}_i .

$$\bar{P}_i(y,x) = \frac{\alpha(1+\nu)}{8\pi(1-\nu)r} [n_i - \frac{\partial r}{\partial n} r_{,i}]$$
 (6)

$$\bar{Q}_i(y,x) = \frac{-\alpha(1+\nu)}{8\pi\lambda(1-\nu)}[r_{,i}] \tag{7}$$

$$T_{ij}(y,x) = \frac{-1}{8\pi(1-\nu)r^2} \left\{ \frac{\partial r}{\partial n} [(1-2\nu)\delta_{ij} + 3r_{,i}r_{,j}] - (1-2\nu)(n_j r_{,i} - n_i r_{,j}) \right\}$$
(8)

$$U_{ij}(y,x) = \frac{-1}{16\pi(1-\nu)\mu r} \{ (3-4\nu)\delta_{ij} + r_{,i}r_{,j} \}$$
(9)

Referencias

[1] RAFAEL BALDERRAMA, MANUEL MARTÍNEZ, ADRIÁN P. CASILINO, Aplicación De La Integral J De Dominio Al Análisis Tridimensional De Grietas En Sólidos Termoelásticos, Tesis Doctoral, Caracas, Venezuela, 2004.