Université de Rennes 1 Licence de mathématiques Module Anneaux et Arithmétique

Contrôle continu n°3 Mercredi 6 mai 2020, 13h – 18h Corrigé

Exercice

1 On rappelle qu'on note \mathbf{F}_3 le corps $\mathbf{Z}/3\mathbf{Z}$. Déterminer, en expliquant soigneusement votre démarche, un élément P de $\mathbf{F}_3[X]$ de degré 3 et irréductible. On pose désormais $\mathbf{K} := \mathbf{F}_3[X]/\langle P \rangle$ et on note α l'image de X dans \mathbf{K} .

Correction: De manière générale, un polynôme de degré 3 à coefficients dans un corps \mathbf{L} est irréductible dans $\mathbf{L}[X]$ si et seulement s'il n'a pas de racine dans \mathbf{L} . Il suffit donc de trouver un quadruplet $(c_0, c_1, c_2, c_3) \in \mathbf{F}_3[X]$ tel que $c_3 \neq 0$ et tel qu'on ait les relations (correspondant aux évaluations en les trois éléments de $\mathbf{F}_3 = \{[0]_3, [1]_3, [-1]_3\}$)

$$c_0 \neq 0$$
, $c_0 + c_1 + c_2 + c_3 \neq 0$, $c_0 - c_1 + c_2 - c_3 \neq 0$

Ainsi par exemple $P = X^3 - X^2 - X - [1]_3$ est un élément irréductible de $\mathbf{F}_3[X]$.

2 Donner sans justification la caractéristique et le cardinal de K. Correction: La caractéristique de K est 3 et son cardinal est $3^3 = 27$.

3 Choisir un triplet (a_0, a_1, a_2) d'éléments de $\mathbf{F}_3 \setminus \{0\}$; soit $x = a_0 + a_1 \cdot \alpha + a_2 \cdot \alpha^2$. Calculer les décompositions dans la \mathbf{F}_3 -base $(1, \alpha, \alpha^2)$ de x^3 et de l'inverse de x. Le détail des calculs doit apparaître sur la copie.

Correction: Prenons par exemple $x = \alpha^2 - \alpha - [1]_3$ (on verra ci-dessous que ce choix n'est pas innocent). Comme la caractéristique de \mathbf{K} est 3, on a $x^3 = (\alpha^2)^3 - \alpha^3 - [1]_3^3 = (\alpha^3)^2 - \alpha^3 - [1]_3$. Comme $P(\alpha) = 0$, on a $\alpha^3 = \alpha^2 + \alpha + [1]_3$. Ainsi

$$(\alpha^3)^2 = \alpha^4 + \alpha^2 + [1]_3^2 + 2\alpha^3 + 2\alpha^2 + 2\alpha$$

soit

$$(\alpha^3)^2 = \alpha(\alpha^2 + \alpha + [1]_3) + \alpha^2 + [1]_3^2 + 2(\alpha^2 + \alpha + [1]_3) + 2\alpha^2 + 2\alpha = \alpha^3 + 2\alpha^2 + 2\alpha^2$$

soit

$$(\alpha^3)^2 = \alpha^2 + \alpha + [1]_3 + 2\alpha = \alpha^2 + [1]_3$$

et au final

$$x^3 = (\alpha^3)^2 + \alpha^3 - [1]_3 = (\alpha^2 + [1]_3) - (\alpha^2 + \alpha + [1]_3) - [1]_3 = -\alpha - [1]_3.$$

Passons au calcul de x^{-1} . De manière générale si Q est le polynôme de degré 2 de $\mathbf{F}_3[X]$ tel que $x=Q(\alpha)$, il s'agit de déterminer, via l'algorithme d'Euclide, une relation de Bezout pour P et Q, c'est à dire un couple $(U,V) \in \mathbf{F}_3[X]$ tel que $U.P+V.Q=[1]_3$ (noter que comme P est irréductible de degré 3 et Q est de degré 2, P et Q sont nécessairement premiers entre eux). En évaluant en α , on trouve $U(\alpha).P(\alpha)+V(\alpha).Q(\alpha)=[1]_3$ soit comme $P(\alpha)=0$, $V(\alpha).x=[1]_3$, donc $x^{-1}=V(\alpha)$.

Ici par une astuce malhonnête on a pris soin de choisir $x = Q(\alpha)$ de sorte que $P = XQ - [1]_3$ d'où on déduit sans autre calcul que $x^{-1} = \alpha$.

4 (*) Soit $\varphi \colon \mathbf{F}_3[X] \to \mathbf{K}$ l'unique morphisme de \mathbf{F}_3 -algèbres qui envoie X sur x. Déterminer l'image de φ .

Correction: $\varphi(\mathbf{F}_3[X])$ est un sous-anneau du corps fini \mathbf{K} , c'est donc en particulier un anneau intègre fini et donc un sous-corps de \mathbf{K} . Par ailleurs $\varphi(\mathbf{F}_3[X])$ contient $\varphi(\mathbf{F}_3) = \mathbf{F}_3$ et $\varphi(X) = x$ et comme $a_1 \neq 0$ (ou comme $a_2 \neq 0$), x n'est pas un élément de \mathbf{F}_3 . Anisi $\varphi(\mathbf{F}_3[X])$ est un sous-corps de \mathbf{K} contenant strictement \mathbf{F}_3 . Comme le cardinal de \mathbf{K} est 3^3 , et que l'exposant 3 est premier, le théorème 15 du chapitre sur les corps finis entraîne que $\varphi(\mathbf{F}_3[X]) = \mathbf{K}$.

Problème

Soit A le sous-ensemble de C défini par $A := \{a + i b \sqrt{2}, (a, b) \in \mathbb{Z}^2\}.$

1 Montrer que A est un sous-anneau de ${\bf C}$ contenant ${\bf Z}$. En déduire que A est un anneau intègre.

Correction: Soit z_1, z_2 des éléments de A, et $a_1, b_2, a_2, b_2 \in \mathbf{Z}$ tels que $z_1 = a_1 + i b_1 \sqrt{2}$ et $z_2 = a_2 + i b_2 \sqrt{2}$.

 $On \ a$

$$z_1 + z_2 = (a_1 + i b_1 \sqrt{2}) + (a_2 + i b_2 \sqrt{2}) = (a_1 + a_2) + i (b_1 + b_2) \sqrt{2}.$$

Comme $a_1, b_1, a_2, b_2 \in \mathbf{Z}$, on $a \ a_1 + a_2 \in \mathbf{Z}$ et $b_1 + b_2 \in \mathbf{Z}$. Donc $z_1 + z_2 \in A$.

 $On \ a$

$$-z_1 = -(a_1 + i b_1 \sqrt{2}) = (-a_1) + i (-b_1) \sqrt{2}.$$

Comme $a_1, b_1 \in \mathbf{Z}$, on $a - a_1 \in \mathbf{Z}$ et $-b_1 \in \mathbf{Z}$. Donc $-z_1 \in A$.

On a

$$z_1 z_2 = (a_1 + i b_1 \sqrt{2})(a_2 + i b_2 \sqrt{2}) = (a_1 a_2 - 2b_1 b_2) + i (b_1 a_2 + b_2 a_1) \sqrt{2}.$$

Comme $a_1, b_1, a_2, b_2 \in \mathbb{Z}$, on a $a_1a_2 - 2b_1b2 \in \mathbb{Z}$ et $b_1a_2 + b_2a_1 \in \mathbb{Z}$. Donc $z_1z_2 \in A$.

Par ailleurs $1 = 1 + i.0.\sqrt{2}$ et $0 = 0 + i.0.\sqrt{2}$ sont des éléments de A.

Tout ceci montre que A est un sous-anneau de C.

Soit $a \in \mathbf{Z}$. On $a = a + i.0.\sqrt{2} \in A$. Ainsi on a bien $\mathbf{Z} \subset A$.

Comme C est un corps, c'est un anneau intègre. Comme A est un sous-anneau de C, A est également un anneau intègre.

2 (la réponse à cette question n'est pas utilisée dans la suite) (*) Décrire le corps des fractions de A; déterminer en particulier s'il est ou non égal à C.

Correction: Comme A est un sous-anneau du corps C, on sait d'après le cours que son corps des fractions Frac(A) est le sous-corps de C décrit par

$$\operatorname{Frac}(A) = \left\{ \frac{z_1}{z_2}, \quad (z_1, z_2) \in A \times (A \setminus \{0\}) \right\}.$$

On peut montrer sur cette description que l'inclusion $\operatorname{Frac}(A) \subset \mathbf{C}$ est stricte. Par exemple, montrons que $i \notin \operatorname{Frac}(A)$. Si c'était le cas, on aurait l'existence de $a_1, b_2, a_2, b_2 \in \mathbf{Z}$, avec $(a_2, b_2) \neq (0, 0)$ tels que

$$(a_2 + i b_2 \sqrt{2})i = (a_1 + i b_1 \sqrt{2}).$$

En identifiant les parties réelles, on obtient $a_2 = b_1\sqrt{2}$ et $a_1 = -b_2\sqrt{2}$. Comme $\sqrt{2}$ est irrationnel, on doit avoir $b_2 = b_1 = 0$ et de $b_2 = 0$ on tire $a_2 = 0$, donc $(a_2, b_2) = (0, 0)$, contradiction.

On peut aussi montrer à partir de la description ci-dessus que

$$Frac(A) = \{a + i \, b \, \sqrt{2}, \quad (a, b) \in \mathbf{Q}^2 \}.$$

Il est à noter que le fait que $\operatorname{Frac}(A)$ est un sous-corps strict de ${\bf C}$ ne démontre pas a priori que les corps $\operatorname{Frac}(A)$ et ${\bf C}$ ne sont pas isomorphes (${\bf Q}(T^2)$ est un sous-corps strict du corps ${\bf Q}(T)$, et pourtant ${\bf Q}(T^2)$ et ${\bf Q}(T)$ sont isomorphes). Pour montrer que $\operatorname{Frac}(A)$ et ${\bf C}$ ne sont pas isomorphes, on peut par exemple montrer que l'équation

$$(a+i \, b \, \sqrt{2})^2 = -1, \quad (a,b) \in \mathbf{Q}^2$$

n'a pas de solution (développer et identifier parties réelles et imaginaires, et utiliser l'irrationnalité de $\sqrt{2}$).

- **3** Pour tout élément z de \mathbb{C} , on note \overline{z} le conjugué de z et on pose $\mathcal{N}(z) := z \overline{z}$.
 - 1. Montrer que pour tous $z_1, z_2 \in \mathbf{C}$, on a $\mathcal{N}(z_1 z_2) = \mathcal{N}(z_1) \mathcal{N}(z_2)$.

Correction: Soit $z_1, z_2 \in \mathbb{C}$. On a

$$\mathcal{N}(z_1z_2) = z_1z_2\,\overline{z_1z_2} = z_1z_2\,\overline{z_1}\,\overline{z_2} = z_1\overline{z_1}.\,z_2\overline{z_2} = \mathcal{N}(z_1)\mathcal{N}(z_2).$$

2. Montrer qu'on a $\mathcal{N}(A) \subset \mathbf{N}$.

Correction: Soit $z \in A$ et $a, b \in \mathbb{Z}$ tel que $z = a + i b \sqrt{2}$. On $a \mathcal{N}(z) = a^2 + 2b^2$. Comme a et b sont dans \mathbb{Z} , $a^2 + 2b^2$ est un entier positif. Donc $\mathcal{N}(z) \in \mathbb{N}$. On a bien montré l'inclusion $\mathcal{N}(A) \subset \mathbb{N}$.

3. Déterminer, si c'est possible, un élément de z de A tel que $\mathcal{N}(z)=3$, puis un élément z de A tel que $\mathcal{N}(z)=5$.

Correction : Déterminer un élément de z de A tel que $\mathcal{N}(z)=3$ revient à chercher une solution de l'équation

$$a^2 + 2b^2 = 3$$
, $(a, b) \in \mathbf{Z}^2$.

Soit $(a,b) \in \mathbf{Z}^2$. Si $|b| \geqslant 2$, on a $a^2 + 2b^2 \geqslant 8 > 3$ donc (a,b) n'est pas solution de l'équation. Si b=0, comme 3 n'est pas un carré dans \mathbf{Z} , (a,b) n'est pas non plus solution. Donc si (a,b) est solution de l'équation, nécessairement |b|=1. Et $(\pm 1,\pm 1)$ sont bien des solutions. Ainsi $z=1+i\sqrt{2}$ est un élément de A qui vérifie $\mathcal{N}(z)=3$.

Déterminer un élément de z de A tel que $\mathcal{N}(z)=5$ revient à chercher une solution de l'équation

$$a^2 + 2b^2 = 5$$
, $(a, b) \in \mathbf{Z}^2$.

Soit $(a,b) \in \mathbf{Z}^2$. Si $|b| \geqslant 2$, on a $a^2 + 2b^2 \geqslant 8 > 5$ donc (a,b) n'est pas solution de l'équation. Si b=0, comme 5 n'est pas un carré dans \mathbf{Z} , (a,b) n'est pas non plus solution. Donc si (a,b) est solution de l'équation, nécessairement |b|=1, et donc $a^2+2=5$; mais c'est impossible car 3 n'est pas un carré dans \mathbf{Z} . Ainsi il n'existe pas d'élément z de A qui vérifie $\mathcal{N}(z)=5$.

- **4** Soit B un sous-anneau de ${\bf C}$ stable par conjugaison (c'est à dire que pour tout $z \in B$, on a $\overline{z} \in B$) et tel que $\mathcal{N}(B) \subset {\bf N}$.
 - 1. Donner deux exemples d'un tel sous-anneau B.

Correction: Pour $a, b \in \mathbf{Z}$, on a $a + i b \sqrt{2} = a - i b \sqrt{2}$. Ceci montre que A est stable par conjugaison. Ainsi, d'après la question précédente, A est un exemple d'un tel sous-anneau B. On peut aussi vérifier que l'anneau $\mathbf{Z}[i]$ étudié en cours est un exemple.

2. Montrer que l'ensemble B^{\times} des éléments inversibles de B est égal à $\{z \in B, \mathcal{N}(z) = 1\}$. Correction : Montrons l'inclusion

$$B^{\times} \subset \{z \in B, \quad \mathcal{N}(z) = 1\}.$$

Soit $b \in B^{\times}$ et $c \in B$ tel que bc = 1. En utilisant la multiplicativité de \mathcal{N} vue précédemment, on a

$$1^2 = \mathcal{N}(1) = \mathcal{N}(bc) = \mathcal{N}(b)\mathcal{N}(c).$$

Par hypothèse $\mathcal{N}(b)$ et $\mathcal{N}(c)$ sont des entiers naturels. Comme leur produit est 1, on a nécessairement $\mathcal{N}(b) = 1$.

Montrons à présent l'inclusion

$$\{z \in B, \quad \mathcal{N}(z) = 1\} \subset B^{\times}.$$

Soit $z \in B$ tel que $\mathcal{N}(z) = 1$. On a donc $z\overline{z} = 1$. Mais par hypothèse sur B on a $\overline{z} \in B$. Donc l'écriture $z\overline{z} = 1$ montre que z est un élément inversible de B, ce qui conclut.

- 3. Rappelons une caractérisation des éléments irréductibles d'un anneau intègre : un élément a d'un anneau intègre R est irréductible s'il est non nul, non inversible et pour tout couple (b, c) d'éléments de R tel que a = bc, b ou c est inversible.
 Soit z ∈ B tel que N(z) > 1. On suppose que pour tout diviseur positif d de N(z) distinct de 1 et de N(z) on a : d ∉ N(B). Montrer qu'alors z est un élément irréductible de B.
 Correction : Comme N(z) > 1, on a N(z) ≠ 0, donc z est non nul, et N(z) ≠ 1, donc z est non inversible d'après la question 4.2. Soit z₁, z₂ ∈ B tels que z = z₁z₂. On a donc N(z) = N(z₁z₂) = N(z₂)N(z₂) Par hypothèse sur B, on a N(z₁) et N(z₂) sont des diviseurs positifs de N(z). L'hypothèse sur les diviseurs de N(z) montre alors que nécessairement {N(z₁), N(z₂)} = {1, N(z)}. Donc nécessairement N(z₁) = 1 ou N(z₂) = 1; d'après la question 4.2, z₁ ou z₂ est inversible, et on conclut que z est irréductible.
- 5 Déduire de la question 4.2 une description de l'ensemble A^{\times} des éléments inversibles de A. Déterminer un élément $d \in \mathbb{N}$ tel que le groupe A^{\times} est isomorphe au groupe $\mathbf{Z}/d\mathbf{Z}$. Correction : D'après la question 4.2, déterminer A^{\times} revient à résoudre l'équation

$$a^2 + 2b^2 = 1$$
, $(a, b) \in \mathbf{Z}$.

En raisonnant comme à la question 3, on voit que l'ensemble des solutions de cette équation est $\{(1,0),(-1,0)\}$. Ainsi $A^{\times}=\{1,-1\}$.

En particulier, A^{\times} est un groupe d'ordre 2. Comme 2 est premier, A^{\times} est cyclique, et donc isomorphe à $\mathbb{Z}/2\mathbb{Z}$. On peut bien sûr vérifier directement que l'application $A^{\times} \to \mathbb{Z}/2\mathbb{Z}$ qui à 1 associe $[0]_2$ et à -1 associe $[1]_2$ est un isomorphisme de groupes.

- **6** Soit n un entier naturel. On considère la propriété (\mathcal{P}) suivante : il existe $a, b \in \mathbf{Z}$ tel que $n = a^2 + 2b^2$.
 - 1. Traduire la propriété (\mathcal{P}) en termes de l'application \mathcal{N} et de l'anneau A. **Correction**: Si n est un entier naturel, dire que n vérifie (\mathcal{P}) sigifie exactement qu'il existe $z \in A$ tel que $n = \mathcal{N}(z)$. Autrement dit, n vérifie (\mathcal{P}) si et seulement si $n \in \mathcal{N}(A)$.
 - 2. Donner trois exemples de nombres premiers vérifiant (\mathcal{P}) , et trois exemples de nombres premiers ne vérifiant pas (\mathcal{P}) .

Correction: Pour trouver des exemples, on peut considèrer les nombres premiers p = 2, 3, 5... et chercher à résoudre, en raisonnant comme à la question 3, l'équation

$$a^2 + 2b^2 = p$$
, $(a, b) \in \mathbf{Z}^2$.

Ainsi les nombres premiers $2 = 0^2 + 2.1^2$, $3 = 1^2 + 2.1^2$, et $11 = 3^2 + 2.1^2$ vérifient la propriété (\mathcal{P}) . Les nombres premiers 5 (déjà vu à la question 3), 7 et 13 ne la vérifient pas.

3. En utilisant la question 4.3, en déduire un exemple explicite d'un élément de ${\bf Z}$ qui est un élément irréductible de A.

Correction: Tout nombre premier p qui ne vérifie pas (\mathcal{P}) est irréductible dans A. En effet on a $\mathcal{N}(p) = p^2 > 1$ et comme p est premier le seul diviseur de $\mathcal{N}(p)$ distinct de 1 et $\mathcal{N}(p)$ est p, qui n'est pas dans $\mathcal{N}(A)$ puisque p ne vérifie pas (\mathcal{P}) . D'après la question 4.3, p est irréductible dans A. Ainsi, p est un exemple explicite d'un élément de p qui est un élément irréductible de p.

4. Montrer que si le nombre premier p vérifie (\mathcal{P}) alors -2 est un carré dans \mathbf{F}_p , c'est à dire il existe $x \in \mathbf{F}_p$ tel que $x^2 = [-2]_p$.

Correction: Soit p un nombre premier vérifiant la propriété (\mathcal{P}) . Montrons que -2 est un carré dans \mathbf{F}_p . Soit $a, b \in \mathbf{Z}$ tel que $p = a^2 + 2b^2$.

Montrons tout d'abord que p ne divise pas b. Si tel était le cas, la relation $p = a^2 + 2b^2$ montre que p divise aussi a^2 , donc, comme p est premier, également a. Si $a', b' \in \mathbf{Z}$ sont tels que a = pa' et b = pb', la relation $p = a^2 + 2b^2$ entraîne $1 = p(a')^2 + p(b')^2$. Donc p divise 1, contradiction.

Ainsi on a $[b]_p \neq 0$, et comme $\mathbb{Z}/p\mathbb{Z}$ est un corps, $[b]_p$ est inversible dans $\mathbb{Z}/p\mathbb{Z}$. En réduisant la relation $p = a^2 + 2b^2$ modulo p, on obtient $0 = [a^2 + 2b^2]_p = [a]_p^2 + [2]_p[b]_p^2$ d'où $[-2]_p = \left(\frac{[a]_p}{[b]_p}\right)^2$. Ainsi -2 est bien un carré dans \mathbb{F}_p .

- 7 Soit p un nombre premier impair tel que -2 est un carré dans \mathbf{F}_p . Soit $c \in \mathbf{Z}$ tel que p divise $c^2 + 2$. Soit $\varphi \colon A \to \mathbf{Z}/p\mathbf{Z}$ l'application qui à $a + ib\sqrt{2} \in A$ associe $[a cb]_p$.
 - 1. Montrer que φ est un morphisme d'anneaux.

Correction: Soit z_1, z_2 des éléments de A, et $a_1, b_2, a_2, b_2 \in \mathbf{Z}$ tels que $z_1 = a_1 + i \, b_1 \, \sqrt{2}$ et $z_2 = a_2 + i \, b_2 \, \sqrt{2}$.

On a

$$\varphi(z_1 + z_2) = \varphi((a_1 + a_2) + i(b_1 + b_2)\sqrt{2}) = [(a_1 + a_2) - c(b_1 + b_2)]_p$$

Par ailleurs, en utilisant le fait que $a \mapsto [a]_p$ est un morphisme de groupes, on a

$$\varphi(z_1) + \varphi(z_2) = [a_1 - cb_1]_p + [a_2 - cb_2]_p = [(a_1 - cb_1) + (a_2 - cb_2)]_p = [(a_1 + a_2) - c(b_1 + b_2)]_p = \varphi(z_1 + z_2).$$

On a

$$\varphi(z_1 z_2) = \varphi((a_1 a_2 - 2b_1 b_2) + i(b_1 a_2 + b_2 a_1)\sqrt{2}) = [(a_1 a_2 - 2b_1 b_2) - c(b_1 a_2 + b_2 a_1)]_p$$

Par ailleurs, en utilisant le fait que $a \mapsto [a]_p$ est un morphisme d'anneaux, on a

$$\varphi(z_1)\varphi(z_2) = [a_1 - cb_1]_p [a_2 - cb_2]_p = [(a_1 - cb_1)(a_2 - cb_2)]_p = [a_1a_2 + c^2b_1b_2 - c(b_1a_2 + b_2a_1)]_p$$

Par hypothèse, on a $[c^2]_p = [-2]_p$. Ainsi, en utilisant à nouveau le fait que $a \mapsto [a]_p$ est un morphisme d'anneaux, on a

$$\varphi(z_1)\varphi(z_2) = [a_1a_2 - 2b_1b_2 - c(b_1a_2 + b_2a_1)]_p = \varphi(z_1z_2).$$

Par ailleurs

$$\varphi(1) = \varphi(1 + i.0.\sqrt{2}) = [1 - c.0]_p = [1]_p = 1_{\mathbf{Z}/p\mathbf{Z}}.$$

Ainsi φ est bien un morphisme d'anneaux.

2. On admet que l'idéal $\operatorname{Ker}(\varphi)$ est engendré par un élément $\alpha \in A$. (*) En utilisant le fait que $\operatorname{Ker}(\varphi)$ contient p et $c+i\sqrt{2}$, en déduire que p vérifie la propriété (\mathcal{P}) . Correction : Noter qu'on a bien

$$\varphi(p) = \varphi(p + i.0.\sqrt{2}) = [p - c.0]_p = [p]_p = [0]_p$$

et

$$\varphi(c + i\sqrt{2}) = [c - c.1]_p = [0]_p.$$

D'après la propriété admise, il existe $\beta, \gamma \in A$ tel que $p = \alpha\beta$ et $c + i\sqrt{2} = \alpha\gamma$. En particulier $p^2 = \mathcal{N}(p) = \mathcal{N}(\alpha\beta) = \mathcal{N}(\alpha)\mathcal{N}(\beta)$. Donc $N(\alpha) \in \{1, p, p^2\}$.

Si $N(\alpha) = 1$, on a $\alpha \in A^{\times}$ d'après la question 4.2, et donc $\operatorname{Ker}(\varphi) = A$. C'est impossible car $\mathbf{Z}/p\mathbf{Z}$ n'est pas l'anneau nul.

Si $N(\alpha) = p^2$, on a $\mathcal{N}(\beta) = 1$. D'après la question 4.2, p et α sont associés, et quitte à multiplier γ par un inversible de A, on a $c+i\sqrt{2}=p\gamma$. Soit $(a,b)\in \mathbf{Z}^2$ tel que $\gamma=a+ib\sqrt{2}$ En identifiant les parties imaginaires dans l'égalité $c+i\sqrt{2}=p(a+ib\sqrt{2})$ on trouve que p divise 1, contradiction.

Finalement, on a nécessairement $N(\alpha) = p$, ce qui montre que p vérifie la propriété (\mathcal{P}) .

- 8 Soit **K** un corps et $x \in \mathbf{K}$. On dit que x est un carré dans **K** s'il existe $y \in \mathbf{K}$ tel que $x = y^2$. Soit Q l'anneau quotient $Q := \mathbf{K}[X]/\langle X^2 x \rangle$.
 - 1. Montrer que Q est un corps si et seulement si Q est intègre si et seulement si x n'est pas un carré dans K.

Correction: Comme $X^2 - x$ est un polynôme de degré 2, c'est un élément irréductible de $\mathbf{K}[X]$ si et seulement s'il n'a pas de racine dans \mathbf{K} ; cette dernière condition équivaut clairement au fait que x n'est pas un carré dans \mathbf{K} ; le résultat découle alors du cours.

- 2. (la réponse à cette question n'est pas utilisée dans la suite) (*) Si x est un carré dans K, montrer qu'on est dans l'un des deux cas suivants, suivant une condition sur x et K que l'on précisera :
 - l'anneau Q est isomorphe à l'anneau produit $\mathbf{K} \times \mathbf{K}$; c'est un anneau réduit (on rappelle qu'un anneau est réduit si pour tout élément a de cet anneau et tout entier naturel n, si $a^n = 0$ alors a = 0);
 - ullet l'anneau Q est un anneau non réduit.

Correction: Supposons tout d'abord que x est non nul et que la caractéristique de \mathbf{K} n'est pas 2. Soit $y \in \mathbf{K}$ tel que $x = y^2$, de sorte que $X^2 - x = (X - y)(X + y)$. Comme x est non nul, y est non nul et comme la caractéristique de \mathbf{K} n'est pas 2, y et -y sont distincts. Ainsi les polynômes X + y et X - y sont premiers entre eux, et le théorème chinois montre que Q est isomorphe à l'anneau produit $\mathbf{K}[X]/\langle X - y \rangle \times \mathbf{K}[X]/\langle X + y \rangle$ et chacun des facteurs est isomorphe à \mathbf{K} (déjà vu au CC2).

Plus prosaïquement, on peut montrer directement que l'application $\mathbf{K}[X] \to \mathbf{K} \times \mathbf{K}$ qui à $P \in \mathbf{K}[X]$ associe (r_1, r_2) où r_1 (respectivement r_2) est le reste de la division euclidienne de P par X-y (respectivement X+y) est un morphisme d'anneaux surjectif de noyau $\langle X^2-x\rangle$

L'anneau $\mathbf{K} \times \mathbf{K}$ est réduit. Soit $(\alpha, \beta) \in \mathbf{K} \times \mathbf{K}$ et $n \in \mathbf{N}$ tel que $(\alpha, \beta)^n = 0_{\mathbf{K} \times \mathbf{K}}$. Par définition de la structure d'anneau produit, on a $\alpha^n = 0_{\mathbf{K}}$ et $\beta^n = 0_{\mathbf{K}}$. Comme \mathbf{K} est un corps, **K** est intègre, donc $(\alpha, \beta) = (0, 0)$

Supposons à présent que x est nul ou la caractéristique de K est 2. Soit $y \in K$ tel que $x=y^2$. Les hypothèses permettent d'écrire $X^2-x=(X-y)^2$. Soit α l'image de X dans Q. On a donc $(\alpha - y)^2 = 0$ et $\alpha - y \neq 0$ (car $(1, \alpha)$ est une **K**-base du **K**-espace vectoriel Q). Ainsi Q n'est pas réduit

9 Soit $\theta \colon \mathbf{Z}[X] \to \mathbf{C}$ l'unique morphisme d'anneaux qui envoie X sur $i\sqrt{2}$. Montrer que

 $\theta(\mathbf{Z}[X]) = A$ et que le noyau de θ est l'idéal engendré par $X^2 + 2$.

Correction : Soit $P \in \mathbf{Z}[X]$ que l'on écrit $P = \sum_{i=0}^{N} a_i X^i$ où N est un entier positf et $(a_i) \in \mathbf{Z}^{N+1}$. Alors $\theta(P) = \sum_{i=0}^{N} a_i (i\sqrt{2})^i$.

Ainsi, si $(a,b) \in \mathbf{Z}^2$, on $a \theta(a+bX) = a+ib\sqrt{2}$. Ceci montre l'inclusion $A \subset \theta(\mathbf{Z}[X])$. Par ailleurs, pour tout $Q \in \mathbf{Z}[X]$ on a

$$\theta(Q(X^2+2)) = \theta(Q)\theta(X^2+2) = \theta(Q).[(i\sqrt{2})^2+2] = \theta(Q).0 = 0.$$

Ceci montre l'inclusion $\langle X^2 + 2 \rangle \subset \text{Ker}(\theta)$.

Montrons les inclusions réciproques $\theta(\mathbf{Z}[X]) \subset A$ et $\mathrm{Ker}(\theta) \subset \langle X^2 + 2 \rangle$. Soit $P \in \mathbf{Z}[X]$. Comme le polynôme $X^2 + 2$ est un élément unitaire de $\mathbf{Z}[X]$, il existe (Q, R) un couple d'éléments de $\mathbf{Z}[X]$ tel que $\deg(R) < \deg(P) = 2$ et $P = (X^2 + 2)Q + R$. En appliquant le morphisme d'anneaux θ , on trouve

$$\theta(P) = \theta(X^2 + 2)\theta(Q) + \theta(R) = 0.\theta(Q) + \theta(R) = \theta(R).$$

Comme $\deg(R) \leq 1$, il existe $(a,b) \in \mathbb{Z}^2$ tel que R = a + bX, et donc $\theta(R) = a + ib\sqrt{2} \in A$. Ceci montre que $\theta(P) \in A$. Par ailleurs, par unicité des parties réelles et imaginaires d'un nombre complexe, on a $\theta(R) = 0$ si et seulement si a = b = 0 si et seulement si R = 0. Donc $\theta(P) = 0$ si et seulement si $P = (X^2 + 2)Q$. Ceci montre bien les inclusions annoncées et conclut la démonstration demandée.

10 (*) Soit p un nombre premier. Déduire de la question précédente que l'idéal pA est un idéal premier de A si et seulement si -2 n'est pas un carré dans \mathbf{F}_{n} .

Correction: La question précédente montre que A est isomorphe à l'anneau quotient $\mathbf{Z}[X]/\langle X^2+$ 2\). Par l'un des théorèmes d'isomorphisme, A/pA est donc isomorphe à $\mathbb{Z}/p\mathbb{Z}[X]/\langle X^2+[2]_p\rangle$. Comme p est premier, $\mathbb{Z}/p\mathbb{Z}$ est un corps. D'après la question 8.1, l'anneau quotient A/pA est donc intègre si et seulement si $[-2]_p$ n'est pas un carré dans \mathbf{F}_p , d'où le résultat.

- 11 On considère un rectangle du plan euclidien dont les côtés ont pour longueur 1 et $\sqrt{2}$.
 - 1. Montrer que pour tout point du rectangle (au sens large : intérieur et côtés compris) il existe un sommet du rectangle tel que ce point est à distance < 1 de ce sommet.

Correction: Choisissons un repère orthonormé. Quitte à effectuer une rotation et une translation, on peut supposer que les sommets du rectangle sont (0,0), (1,0), $(1,\sqrt{2})$ et $(0,\sqrt{2})$. Quitte à appliquer des symétries par rapport aux axes du rectangle, on peut supposer que le point considéré est dans le « petit » rectangle de sommets $(0,0), (\frac{1}{2},0), (\frac{1}{2},\frac{\sqrt{2}}{2})$ et $(0,\frac{\sqrt{2}}{2})$. Le carré de la distance de ce point à l'origine est alors majorée par

$$\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{4} + \frac{2}{4} = \frac{3}{4} < 1$$

- 2. En déduire que pour tous $\alpha, \beta \in A$, avec $\beta \neq 0$, il existe $(q, r) \in A^2$ tel que $\alpha = \beta \cdot q + r$ et $\mathcal{N}(r) < \mathcal{N}(\beta)$.
 - Correction: Identifions \mathbf{C} au plan euclidien, de sorte que pour $z_1, z_2 \in \mathbf{C}$, $\mathcal{N}(z_1 z_2)$ représente le carré de la distance de z_1 à z_2 . Pour un choix adéquat de $(a,b) \in \mathbf{Z}^2$, le quotient $\frac{\alpha}{\beta}$ définit un point d'un rectangle dont les sommets sont $(a,b\sqrt{2})$, $(a+1,b\sqrt{2})$, $(a,(b+1)\sqrt{2})$ $((a+1),(b+1)\sqrt{2})$. D'après la question précédente, il existe donc $q \in A$ tel que $\mathcal{N}\left(\frac{\alpha}{\beta}-q\right)<1$ En multipliant cette inégalité par $\mathcal{N}(\beta)$ qui est strictement positif (car β est non nul) et en utilisant la question 3.1, on obtient $\mathcal{N}\left(\alpha-\beta.q\right)<\mathcal{N}(\beta)$. On conclut en posant $r:=\alpha-\beta.q$.
- 3. (*) En utilisant le résultat de la question précédente ainsi que ceux d'autres questions antérieures, en déduire que les conditions suivantes sont équivalentes :
 - (i) p est un élément irréductible de A;
 - (ii) -2 n'est pas un carré modulo p;
 - (iii) p ne vérifie pas la propriété (P).

Correction: La question précédente montre que A est un anneau euclidien, donc principal. Ceci montre le résultat admis de la question 7.2, et la question 7 montre que (iii) implique (ii). Par ailleurs, p étant non nul, on sait qu'alors p est est un élément irréductible de A si et seulement si pA est un idéal premier de A D'après la question 10, (i) et (ii) sont équivalents. D'après la question 6.4, (ii) implique (iii).

12 (*) Expliciter un algorithme permettant, connaissant c, de déterminer l'élément α de la question 7.2.

Correction: Commençons par constater que $\operatorname{Ker}(\varphi)$ est engendré par p et $c+i\sqrt{2}$. Soit en effet $(a,b)\in \mathbf{Z}^2$ tel que $z:=a+ib\sqrt{2}\in \operatorname{Ker}(\varphi)$. Il existe donc $k\in \mathbf{Z}$ tel que a-cb=kp. On a alors

$$z=a+ib\sqrt{2}=(a-cb)+b(c+i\sqrt{2})=kp+b(c+i\sqrt{2})$$

ce qui montre bien que z est dans l'idéal engendré par p et $c+i\sqrt{2}$ La réciproque est immédiate puisque $c+i\sqrt{2}$ et p sont dans $\mathrm{Ker}(\varphi)$

Comme A est eucliden, l'élément α est donc un pgcd de p et $c+i\sqrt{2}$, qui peut se déterminer en utilisant l'algorithme d'Euclide basé sur la division euclidienne de stathme \mathcal{N} .

13 (*) Soit I_1 l'ensemble des nombres premiers qui ne vérifient pas la propriété \mathcal{P} ainsi que les opposés de ces nombres premiers et I_2 l'ensemble des $z \in A$ tel que $\mathcal{N}(z)$ est un nombre premier qui vérifie la propriété (\mathcal{P}) . Montrer que l'ensemble des éléments irréductibles de A est la réunion des ensembles I_1 et I_2 .

Correction : La question 4.3 montre que tous les éléments de I_1 sont irréductibles. La question 4.3 montre que tous les élément de I_2 sont irréductible.

Soit z un élément irréductible de A. On a $\mathcal{N}(z) = z\overline{z}$. Comme z est irréductible et le lemme d'Euclide vaut dans A (car A est euclidien), z divise l'un des facteurs premiers p de $\mathcal{N}(z)$. On en déduit que $\mathcal{N}(z)$ divise $\mathcal{N}(p) = p^2$, donc $\mathcal{N}(z) \in \{1, p, p^2\}$

Comme z est irréductible, z n'est pas inversible et donc $\mathcal{N}(z) \neq 1$. Si $\mathcal{N}(z) = p$, z est un élément de I_2 . Si $\mathcal{N}(z) = p^2$, écrivons p = uz avec $u \in A$. En appliquant \mathcal{N} , on trouve $\mathcal{N}(u) = 1$ donc u est inversible. D'après la question 5, on a $z = \pm p$. D'après la question 11, p ne vérifie la

propriété \mathcal{P} et donc $z \in I_1$.

14 (*) Le polynôme $P_1 := X^3 + 5i\sqrt{2}X + 5$ est-il un élément irréductible de A[X]? Même question pour les polynômes $P_2 := X^4 + (3 + 3i\sqrt{2})X^3 + 5 + 5i\sqrt{2}$ et $P_3 := (1 + i\sqrt{2})X + 3$. Correction : Notons que comme A est euclidien, A est factoriel.

Le polynôme P_1 est unitaire, et 5 est un élément irréductible de A qui divise tous les coefficients de P_1 sauf le coefficient dominant, et 5^2 ne divise pas le terme constant qui est 5. Par le critère d'Eisenstein, P_1 est irréductible dans A[X].

On peut également appliquer le critère d'Eisenstein à P_2 avec l'élément irréductible $1+i\sqrt{2}$; noter que $(1+i\sqrt{2})^2$ ne peut pas diviser le terme constant $5+5i\sqrt{2}$, sinon $\mathcal{N}((1+i\sqrt{2})^2)=3^2$ diviserait $\mathcal{N}(5+5i\sqrt{2})=3.5^2$ (on peut aussi raisonner sur les valuations)

Par contre, $3 = (1 + i\sqrt{2})(1 - i\sqrt{2})$, donc l'élément irréductible $1 + i\sqrt{2}$ divise tous les coefficients de P_3 . P_3 n'est donc pas primitif et n'est donc pas un élément irréductible de A[X]; bien sûr, P_3 étant de degré 1, il est irréductible dans Frac(A)[X].