Project Name: Client: Project ID: Person Name: Company:

CanFlood Model Report

report generated on 2022-08-05 11:25

Inventory Summary

xid	f0_tag	f0_scale	f0_cap
14879	BA_S	117.99	91300
14880	BA_S	140.56	134000
14925	BA_S	112.41	138000
14926	BA_S	92.16	93000
14927	BA_S	149.3	177000
14928	BA_S	166.11	133000
14933	BA_S	124.49	153000
14934	BA_S	117.52	147000
14935	BA_S	99.96	96000
14936	BA_S	127.46	113000

Risk Curve (aep)

test_01 res1 AEP-Impacts plot for 6 events

Event Summary Table

AEP	\$CAD	
0.5	0.00e+00	
0.02	4.80e+05	
0.01	2.01e+06	
0.005	2.49e+06	
0.001	3.46e+06	
0.0	3.71e+06	
ead	1.54e+05	

Risk Curve (impacts)

test_01 res1 Impacts-ARI plot for 6 events

Event Summary Table

AEP	\$CAD	
0.5	0.00e+00	
0.02	4.80e+05	
0.01	2.01e+06	
0.005	2.49e+06	
0.001	3.46e+06	
0.0	3.71e+06	
ead	1.5 4 e+05	

Vulnerability Functions

res1 vFunc plot of 4 curves


```
[parameters]
name = test 01
cid = xid
prec = 4
ground water = True #whether to allow wsl < gel
felv = ground
event probs = ari
Itail = extrapolate #EAD extrapolation: left tail treatment code (low prob high damage)
rtail = 0.5 #EAD extrapolation: right trail treatment (high prob low damage)
drop tails = False #EAD extrapolation: whether to remove the extrapolated values before writing the per-asset results
integrate = trapz #integration method to apply: trapz, simps
as inun = False
event rels = \max
impact units = $CAD
apply miti = False #whether to apply mitigation algorthihims
[dmg fps]
curves = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test 03 build inv curves tests0\cLib test 03 2022-06-
26 1806.xls
finy = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test 02 build inv tests2 data\finy test 02 32 tut2.csv
expos = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test 04 build hsamp tutorials 0\expos test 04 4 32.csv
gels = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test 06 build dtm tutorials 20\gels test 06 1 32.csv
[risk fps]
dmgs = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test model 01 i2 ModelDialog t0\dmgs test 01 run1.csv
exlikes = #secondary exposure likelihood data filepath
evals = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test 05 build evals tests2 da0\evals 4 test 05.csv
[validation]
risk1 = False
dmg2 = True
risk2 = True
risk3 = False
[results fps]
attrimat02 = #lvl2 attribution matrix fp (post dmg model)
attrimat03 = #lvl3 attribution matrix fp (post risk model)
r passet = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test model 02 r2 ModelDialog t0\ run1 0626 r passet.csv
r ttl = C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test model 02 r2 ModelDialog t0\ run1 0626 ttl.csv
eventypes =
C:\LS\09 REPOS\03 TOOLS\CanFlood\ git\tests2\data\test model 02 r2 ModelDialog t0\eventypes run1 test 01.csv
#'r passet' file path set from output passet at 2022-06-26 19.48.35
[plotting]
color = black #line color
linestyle = dashdot
linewidth = 2
alpha = 0.75 #0=transparent 1=opaque
marker = o
markersize = 4
fillstyle = none #marker fill style
impactfmt str = .2e #python formatter to use for formatting the impact results values
```