École universitaire Paris-Saclay Année universitaire 2023/2024 Licence de mathématiques (L3) MEU 302 Algèbre

Feuille d'exercices n°4

Exercice I

On considère plusieurs applications $\varphi : \mathbf{R}^2 \times \mathbf{R}^2 \to \mathbf{R} :$

- a. $\varphi((x_1, x_2), (y_1, y_2)) = x_1y_2 + x_2y_1$;
- b. $\varphi((x_1, x_2), (y_1, y_2)) = x_1y_2 x_2y_1$;
- c. $\varphi((x_1, x_2), (y_1, y_2)) = x_1x_2 + x_1y_2$;
- d. $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_1$;
- e. $\varphi((x_1, x_2), (y_1, y_2)) = x_1 y_2$.
- (1) Lesquelles définissent une forme bilinéaire?
- (2) Parmi les formes bilinéaires, lesquelles sont symétriques? antisymétriques?
- (3) Pour les formes bilinéaires, écrire la matrice de φ dans la base canonique, ainsi que la forme quadratique correspondante.

Exercice II

Soit $A=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$. On note φ la forme bilinéaire symétrique sur ${\bf R}^2$ dont

la matrice dans la base canonique est A.

- (1) Déterminer l'expression de φ .
- (2) Soit $\mathscr{B}'=(e'_1,e'_2)$ la base de \mathbf{R}^2 définie par $e'_1=(\frac{1}{2},\frac{1}{2})$ et $e'_2=(\frac{1}{2},-\frac{1}{2})$. Déterminer l'expression de φ en fonction des coordonnées dans la base \mathscr{B}' ainsi que la matrice A' de φ dans la base \mathscr{B}' .

Exercice III

On considère l'application la forme bilinéaire sur \mathbf{R}^2 définie par la formule $\varphi((x_1,x_2),(y_1,y_2))=x_1y_1-\frac{1}{2}x_2y_1+\frac{3}{2}x_1y_2-x_2y_2.$

- (1) Déterminer deux formes bilinéaires φ_1 et φ_2 telles que $\varphi = \varphi_1 + \varphi_2$, avec φ_1 symétrique et φ_2 antisymétrique.
- (2) Déterminer les matrices de φ , φ_1 et φ_2 dans la base canonique.

Exercice IV

Soit $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$. On note $f : \mathbf{R}^2 \to \mathbf{R}^2$ l'application linéaire dont A est la matrice dans la base canonique. Représenter graphiquement les sous-espaces $\ker f$, $\ker f^*$, $\operatorname{im} f$, $\operatorname{im} f^*$.

Exercice V

- (1) Parmi les applications $q: \mathbf{R}^n \to \mathbf{R}$ définies ci-dessous, lesquelles sont des formes quadratiques?
 - a. $q(x_1, x_2) = 2x_1^2 + 3x_1x_2 + 6x_2^2$;
 - b. $q(x_1, x_2) = 2x_1^2 + x_1 + 3x_2 + 6x_2^2$;
 - c. $q(x_1, x_2, x_3) = 8x_1x_2 + 4x_2^2$;
 - d. $q(x_1, x_2, x_3) = x_1 x_2 x_3$;
 - e. $q(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 4x_1x_3 + 3x_2^2 + x_2x_3 + 7x_3^2$;
 - f. $q(x_1, x_2, x_3) = 4x_1x_2$;
 - g. $q(x_1, x_2, x_3) = x_1^2 + 4x_1x_2 + 4x_2^2 + 2x_1x_3 + x_3^2 + 2x_2x_3$.
- (2) Pour chacune des formes quadratiques identifiées à la question (1), déterminer sa forme bilinéaire symétrique associée, sa matrice dans base canonique, son rang.
- (3) Déterminer la signature des formes quadratiques identifiées à la question (1). (Dans un premier temps, ne pas traiter cette dernière question : y revenir quand la réduction de Gauss aura été vue en cours.)

Exercice VI

Soit $q:E\to {\bf R}$ une forme quadratique réelle. On note $\varphi:E\times E\to {\bf R}$ la forme bilinéaire symétrique associée.

- (1) Montrer que pour tout $\lambda \in \mathbf{R}$ et $u \in E$, $q(\lambda u) = \lambda^2 q(u)$.
- (2) Montrer que pour tout $(u,v) \in E^2$, $q(u+v) = q(u) + q(v) + 2\varphi(x,y)$.
- (3) Montrer que pour tout $(u,v) \in E^2$, $\varphi(u,v) = \frac{1}{4}(q(u+v)-q(u-v))$.
- (4) Montrer que pour tout $(u, v) \in E^2$, (q(u+v) + q(u-v) = 2(q(u) + q(v)).

Exercice VII

Déterminer la signature de la forme quadratique $q(x_1, x_2, x_3) = (x_1 + x_2)^2 + (x_1 + x_3)^2 - (x_2 - x_3)^2$.

Exercice VIII

On munit ${\bf R}^2$ du produit scalaire canonique. On note $\mathscr C$ la courbe d'équation $5(x^2+y^2)+6xy=16$.

- (1) Réduire la forme quadratique apparaissant dans le membre de gauche de l'équation dans une base orthonormale.
- (2) Déterminer les caractéristiques géométriques de \mathscr{C} .
- (3) Déterminer les valeurs minimales et maximales prises par la restriction de la fonction $(x,y) \longmapsto 5(x^2+y^2)+6xy$ sur le cercle d'équation $x^2+y^2=1$.

Exercice IX

Soit q la forme quadratique sur \mathbf{R}^2 définie par la formule $q(x,y)=x^2-y^2$. Existe-t-il un système de coordonnées (x',y') (i.e. x' et y' sont les fonctions coordonnées dans une base \mathscr{B}' de \mathbf{R}^2 bien choisie) telle que l'expression de q devienne :

a.
$$q = 2x'^2 + \frac{1}{4}y'^2$$
;

b.
$$q = 2x'^2 - \frac{1}{4}y'^2$$
;

c.
$$q = -2x'^2 + \frac{1}{4}y'^2$$
;

d.
$$q = x'y'$$
;

e.
$$q = x'^2$$
;

Exercice X

Soit $(a,b,c) \in \mathbf{R}^3$. Montrer que la forme quadratique réelle $q(x,y)=ax^2+bxy+cy^2$ est définie positive si et seulement si a>0 et $b^2-4ac<0$.

Exercice XI

Soit E un espace euclidien. Soit $a \in E$ tel que ||a|| = 1. Soit $\lambda \in \mathbf{R}$. On définit $q: E \to \mathbf{R}$ par la formule $q(x) = \lambda ||x||^2 - \langle x, a \rangle^2$.

- (1) Vérifier que q est une forme quadratique sur E.
- (2) Justifier que tout vecteur de E s'écrit de manière unique sous la forme u+ta avec $u \in a^{\perp}$ et $t \in \mathbf{R}$. Calculer g(u+ta).
- (3) Notons $\varphi: E \times E \to \mathbf{R}$ la forme bilinéaire symétrique associée à q. Calculer $\varphi(u+ta,u'+t'a)$ où u et u' sont des éléments de a^{\perp} , et t et t' des réels.
- (4) On suppose que $\dim E \geq 2$. À quelle condition nécessaire et suffisante portant sur λ est-ce que q est définie positive?

Exercice XII

Décrire les courbes déterminées par les équations cartésiennes suivantes dans ${\bf R}^2$:

a.
$$5x^2 + 6xy + 5y^2 = 8$$
;

b.
$$3x^2 - 2xy - 3y^2 = 1$$
;

c.
$$3xy = 1$$
;

Exercice XIII

Décrire les surfaces déterminées par les équations cartésiennes suivantes dans ${f R}^3$:

a.
$$x + y + z = 3$$
;

b.
$$x^2 + y^2 + z^2 = 1$$
;

c.
$$x^2 + y^2 = 1$$
;

d.
$$x^2 + y^2 - z^2 = 0$$
;

e.
$$x^2 + y^2 - z^2 = 1$$
.

Exercice XIV

On considère la forme quadratique q(x,y,z)=2xy+2xz+2yz sur ${\bf R}^3$. Soit A la matrice de q dans la base canonique.

(1) Déterminer A.

(2) On pose
$$U = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $V = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $W = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$. Calculer AU , AV ,

AW.

- (3) Quelle est la signature de q?
- (4) Déterminer la matrice de q dans la base $(\vec{u}, \vec{v}, \vec{w})$ (correspondant aux vecteurs-colonnes U, V, W).
- (5) Déterminer $q(x'\vec{u} + y'\vec{v} + z'\vec{w})$ en fonction des réels x', y' et z'.
- (6) Appliquer la réduction de Gauss à la forme quadratique q.
- (7) Quelle est la nature géométrique du cône isotrope de q?