Neural Machine Translation

Ramaseshan Ramachandran

Neural Machine Translation
 Encoder-Decoder Model
 Recurrent Neural Network

Encoder
Decoder
Estimating Model Parameters
New Hidden Activation Cell

NEURAL MACHINE TRANSLATION

Neural Machine Translation (NMT) is the mechanism of modeling the Machine translation process using artificial neural network

We could consider translations as a sequence with the source and the destination sentences $((E_{t1},F_{t2}))$ appearing in a time series. The words within E,F appear in different time $(t_{11},t_{12},t_{13},...,t_{1n})$ and $(t_{21},t_{22},t_{23},...,t_{2m})$, respectively

Unlike the phrase-based SMT models, NMT attempts to build and train a single, large neural network that reads a sentence and outputs a correct translation ¹

¹Bahdanau, D., Cho, K. & Bengio, Y., Neural machine translation by jointly learning to align and translate.

- All sentences (of varying length) are encoded into fixed sized vector
- ▶ Uses fraction of the memory needed by traditional SMT models²
- ▶ Performance of this model decreases as the length of a source sentence increase

²Cho et al, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, 2014

- Uses RNN for both encoding and decoding
- ► Encoder maps the variable length sentence into a fixed-length vector
- Decoder translates the vector representation back to a variable-length target sequence
- Two networks are trained jointly to maximize the conditional probability of the target sentence, given the source sentence P(f|e)
- ► This model learns a continuous space representation of a phrase that preserves both the semantic and syntactic structure of the phrase³

 $^{^3}$ cho-et al-2014, Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation

RECURRENT NEURAL NETWORK

- ▶ Input units variable length source sequence $x = (x_1, x_2, ..., x_T)$
- Output units variable length target sequence $y = (y_1, y_2, \dots, y_T')$
- Hidden units for each input state,

$$h_t = f(h_{(t-1)}, x)$$
 (1)

where f is a simple non-linear activation function (sigmoid or tanh) or a complex LSTM/GRU cell

- RNN is trained to predict the next word in the sequence or RNN learns a probability distribution over a sequence
- ▶ The output at each time step $t = p(x_t|x_{t-1},...x_1)$
- ightharpoonup The output distribution (Softmax layer) size is equal to the size of the vocabulary V at every unit
- ► Then, $p(\mathbf{x}) = \prod_{t=1}^{T} p(x_t | x_{t-1}, ...x_1)$

ENCODER - RNN FOR MT

- ▶ RNN learns to map an input sentence of variable length into a fixed-dimensional vector representation.
- ► It learns to decode a fixed length vector representation back into a variable length sequence
- This model learns to predict a sequence given a sequence $p(y_1, y_2, ..., y_T' | x_1, x_2, ..., x_T)$. T and T' may differ
- ► Encoder reads every symbol in **x**, sequentially
- ► Hidden state changes according to 1
- ► C is the summary of the hidden states at time T and has encoded all the symbols in the sequence

DECODER

- This is another RNN
- This is trained to predict the next symbol y_t and generate the output sequence, given the previous state h_t
- \mathbf{y}_t and \mathbf{h}_t are conditioned on the summary from the encoder, C and its previous hidden state
- Decoder's hidden state is given by
- Conditional distribution for the next symbol is

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, y_{t-1}, \mathbf{C}) \tag{2}$$

$$P(y_t|y_{t-1}, y_{t-2}, \dots, y_1, \mathbf{C}) = g(h_{t-1}, y_{t-1}, \mathbf{C})$$
(3)

ESTIMATING MODEL PARAMETERS

Both encoder and decoder are jointly trained to maximize the conditional likelihood

$$J(\theta) = \max_{\theta} \frac{1}{N} \log p_{\theta}(\mathbf{y}_{n}|\mathbf{x}_{n})$$
 (4)

where θ is the set of model parameters that will be learned during the BPTT and $(\mathbf{x}_n, \mathbf{y}_n)$ is the source sentence sequence and target sequence pair

Here δ_{out}^t is the loss for each of the units in the output layer

 $\mathbf{X}_{\mathbf{t}}$

$$\frac{\partial E_t}{\partial W} = \underbrace{\frac{\partial E_t}{\partial \hat{y}_t} \frac{\partial \hat{y}}{\partial z_t}}_{} \underbrace{\frac{\partial z_t}{\partial s_t} \frac{\partial s_t}{\partial h_t}}_{} \underbrace{\frac{\partial h_t}{\partial W}}_{}$$
(7)

Since the hidden layer activation depends on the previous time state, we have another similar term δ_{t-1} that get added to (8)

 $= \delta_{out}^t V \sigma'(h_t) x_t$

(8)

A reset and update gates are added to make this a continuously differentiable 4

Reset Gate
$$,r_{j}=\sigma\left(\left[\mathbf{W}_{r}\mathbf{x}\right]_{j}+\left[\mathbf{U}_{r}\mathbf{h}_{t-1}\right]_{j}\right)$$
 (11)

- lacktriangleright σ is a logistic function and [.] is the j^{th} element vector
- W_r and U_r are the input-hidden weight matrix and hidden-hidden weight matrix, respectively. These parameters will be learned during BPTT

Update Gate
$$z_j = \sigma\left(\left[\mathbf{W}_z\mathbf{x}\right]_j + \left[\mathbf{U}_r\mathbf{h}_{t-1}\right]_j\right)$$
 (12)

$$\tilde{h}_{t_j} = \phi\left(\left[\mathbf{W}\mathbf{x}\right]_j + \left[U(r\odot h_{t-1})\right]\right) \tag{13}$$

$$h_j^t = z_j h_j^{t-1} + (1 - z_j) \tilde{h}_{t_j}$$
(14)

⁴Cho et al, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, 2014

- ▶ If $r_j \approx 0$, then the hidden state values is reset with current input
- Update gate controls how much information from the previous hidden state will carry over to the current hidden state
- Units that learn to capture short-term dependencies will tend to have reset gates that are frequently active
- ► Those units that capture longer-term dependencies will have update gates active most of the time

VARIATIONS IN RNN MODELS

Choices vary in picking the Translation Architecture

- Directionality Unidirectional or bidirectional
- number of hidden layers and units
- Plain vanilla RNN
- Long Short-term Memory units
- Gated Recurrent Unit
- Choice of Learning Algorithm

APPLICATIONS

- Translation
- Summarization
- Dialog
- Code generation!

Ramaseshan

Ramaseshan

RNN WITH ALIGNMENT

- ► The objective of attention is to capture the information from the passage tokens that is relevant to the contents of the translation
- Different parts of an input have different levels of significance
- Different parts of the output may even consider different parts of the input as "important"
- ► The purpose of the attention mechanism is to let the decoder *peek* at the relevant information encapsulating the passage and the question as it generates the answer
- ► Attention mechanisms provide the decoder network with the entire input sequence at every decoding step; the decoder can then decide what input words are important at any point in time

- ► The attention-based model learns to assign significance to different parts of the input for each step of the output.
- In the context of translation, attention can be thought of as "alignment."
- Bahdanau et al.⁵ argue that the attention scores α_{ij} , at decoding step i, signify the words in the source sentence that align with word i in the target.
- ▶ We can use attention scores to build an alignment table. It is a table mapping of words in the source to corresponding words in the target sentence based on the learned encoder and decoder from our Seq2Seq NMT system.

⁵Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv, [arXiv:1409.0473].

Input is a sequence of words $x_1,...,x_n$ Target sentence is again a sequence of words $y_1,...,y_m$

Encoder

Let $(h_1,...,h_n)$ be the hidden vectors representing the input sentence. These vectors are the output of a bi-LSTM/bi-GRU for instance, and capture contextual representation of each word in the sentence

Decoder

The hidden states s_i of the decoder are computed using a recursive formula of the form $s_i = f(s_{i-1}, y_{i-1}, c_i)$, where s_{i-1} is the previous hidden vector, y_{i-1} is the

generated word at the previous step, and c_i is a context vector that capture the context from the original sentence that is relevant to the time step i of the decoder.

NMT WITH ATTENTION

Conditional probability for each output neuron

$$P(y_i|y_1, y_2, \dots, x) = g(y_{i-1}, s_i, c_i)$$
(15)

where s_i if the RNN hidden neuron at time i and

$$s_i = f(s_{i-1}, y_{i-1}, c_i) (16)$$

The context vector c_i depends on the sequence of annotations $(h_1, h_2, \dots, h_{Tx})$. Each h_i contains information about every word with a strong focus on context words surrounding the i^{th} word of the input sequence.

The context vector c_i is computed as the weighted sum of these annotations h_i

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j \tag{17}$$

 α_{ij} of each annotation h_j is computed by

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{t_x} \exp(e_{ik})},\tag{18}$$

where,

$$e_{ij} = a(s_{i-1,h_j}) (19)$$

is the alignment model. This learns how well the inputs surrounding position j and the output at position i match

- ▶ The alignment is explicitly computed and not latent
- ▶ This alignment model is also trained along with the translation model
- $ightharpoonup lpha_{ij}$ is the probability that the target word y_i is aligned to the source x_j
- $ightharpoonup c_i$ is the expected annotation over all possible annotations α_{ij}
- α_{ij} or e_{ij} reflects the importance of the annotation h_j wrt to the previous hidden state s_{i-1} of the target. This enables the next state s_i to generate y_i
- ► The decoder decides which part of the input is important to generate a respective translation rather than depending on the encoded vector of the entire sentence
- Decoder has control over the input sequence and selectively learns to align words/phrases automatically

TRANSLATION WITH GLOBAL ATTENTION

le livre est sur la table

\$ the book is on the table

TRANSLATION WITH LOCAL ATTENTION

le livre est sur la table

\$ the book is on the table

Source: Minh-Thang Luong et al, Effective Approaches to Alttention-based Neural Machine Translation

A TYPICAL SETUP

Sentence pairs	3-5M
English words	110M
French words	116M
Vocabulary	pprox50K (Source and Target)
Word Embedding size	1000
Hidden layer	1000 LSTM cells
Stacked Hidden Layer	4-8 8 6 8 11 2 11
Learning Rate	Initially as high as 1 and exponential reduction
Training	
Mini batch Gradient Descend size	128
Training Time	1 GPU - about 7-10 days
Evaluation	Bleu - scores ranging from 27-32

ADVANTAGES OF ATTENTION

- ► Ability to focus on significant part of the sentence
- Ability to peek into source sentence
- ▶ Reduces the problem of vanishing gradient
- Alignments are found automatically no need to train
- Improves NMT performance for alignment

NMT FROM GOOGLE - ZERO-SHOT TRANSLATION

- Moved away from maintaining Seq2Seq model for every pair of languages
- A single system that translates between any two languages even in the absence of the training corpus for these two languages
 - Assume that only examples of Japanese-English and Korean-English translations are available, Google found hat the multilingual NMT system trained on this data could actually generate reasonable Japanese-Korean translations.
 - Is it trained create the Interlingua?
 - ls the system learning a common representation or a translational knowledge?

<u>Ref</u>: Johnson et el. 2016, "Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation"

BEAM SEARCH

Beam search is a heuristic search algorithm that selects a few candidate hypothesis from |V|. It reduces memory requirement by using only a M < |V| candidates using a score.

- Maintain M candidates/hypothesis at each time step $C_t = (x_1^1, ... x_t^1)...(x_1^M... x_t^M)$
- ▶ Compute C_{t+1} by expanding C_t and keeping the best M candidates

$$\tilde{C} = \bigcup_{i=1}^{M} C_{t-1}^{i}$$

Typical Beam width of size 5-10 used in NMT. The BLEU scores computed using Beam search using B=5-10 are comparable

- 1. Use all possible partial translations exhaustive search
- 2. Beam size, b = 1 greedy search Words are predicted until the $\langle EOS \rangle$ is found
- 3. b > 1 several hypotheses
- 4. Each hypothesis will be produced until the $\langle EOS \rangle$ is found
- 5. Each hypothesis will have a translation
- 6. The length of all hypothesis may not be the same
- 7. We could use different **terminate** conditions
 - Fixed time steps
 - ightharpoonup Compute until < EOS > is reached for each hypothesis
- 8. Use either log probability or product of conditional probability to find the scores for each hypothesis that maximizes

$$P(y_1, y_2, ... y_m | \mathbf{X}) = \prod_{t=1}^{T} P(y_t | < SOS >, ..., y_{t-1}, \mathbf{X})$$

$$P(y_1, y_2, ... y_m | \mathbf{X}) = \sum_{t=1}^{T} \log P(y_t | < SOS >, ..., y_{t-1}, \mathbf{X})$$

COMMON GRADIENT DESCEND TYPES

- Stochastic Gradient
- Batch
- Mini-batch

Ramaseshan

Ramaseshan