7-stage binary ripple counter Rev. 03 — 12 November 2004

Product data sheet

1. **General description**

The 74HC4024 is a high-speed Si-gate CMOS device and is pin compatible with the 4024 of the 4000B series. The 74HC4024 is specified in compliance with JEDEC standard no. 7A.

The 74HC4024 is a 7-stage binary ripple counter with a clock input (\overline{CP}) , an overriding asynchronous master reset input (MR) and seven fully buffered parallel outputs (Q0 to Q6).

The counter advances on the HIGH-to-LOW transition of $\overline{\text{CP}}$.

A HIGH on MR clears all counter stages and forces all outputs LOW, independent of the state of \overline{CP} .

Each counter stage is a static toggle flip-flop.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

2. Features

- Low-power dissipation
- Complies with JEDEC standard no. 7A
- ESD protection:
 - ◆ HBM EIA/JESD22-A114-B exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V.
- Multiple package options
- Specified from -40 °C to +80 °C and from -40 °C to +125 °C.

Applications

- Frequency dividing circuits
- Time delay circuits.

Philips Semiconductors 74HC4024

4. Quick reference data

Table 1: Quick reference data $GND = 0 \ V; T_{amb} = 25 \ ^{\circ}C; t_f = t_f = 6 \ ns.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL} , t _{PLH}	propagation delay $\overline{\text{CP}}$ to Q0	$C_L = 15 pF;$ $V_{CC} = 5 V$	-	14	-	ns
f _{max}	maximum clock frequency	$C_L = 15 pF;$ $V_{CC} = 5 V$	-	90	-	MHz
Cı	input capacitance		-	3.5	-	pF
C_{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	[1] _	25	-	pF

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

5. Ordering information

Table 2: Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74HC4024N	–40 °C to +125 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1				
74HC4024D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1				
74HC4024DB	–40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1				
74HC4024PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1				

6. Functional diagram

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
CP	1	clock input (HIGH-to-LOW, edge-triggered)
MR	2	master reset input (active HIGH)
Q6	3	parallel output 6
Q5	4	parallel output 5
Q4	5	parallel output 4
Q3	6	parallel output 3
GND	7	ground (0 V)
n.c.	8	not connected
Q2	9	parallel output 2
n.c.	10	not connected
Q1	11	parallel output 1
Q0	12	parallel output 0
n.c.	13	not connected
V _{CC}	14	positive supply voltage

8. Functional description

8.1 Function table

Table 4: Function table [1]

Input	Output	
MR	CP	Qn
Н	X	L
L	\uparrow	no change
	\downarrow	count

^[1] H = HIGH voltage level;

9. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{CC}	supply voltage			-0.5	+7	V
I _{IK}	input diode current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$		-	±20	mΑ
I _{OK}	output diode current	$V_O < -0.5 \text{ V or}$ $V_O > V_{CC} + 0.5 \text{ V}$		-	±20	mA
I _O	output source or sink current	$V_0 = -0.5 \text{ V to } V_{CC} + 0.5 \text{ V}$		-	±25	mA
I _{CC} , I _{GND}	V _{CC} or GND current			-	±50	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	power dissipation					
	DIP14 package		<u>[1]</u>	-	750	mW
	SO14, SSOP14 and TSSOP14 packages		[2]	-	500	mW

^[1] Above 70 $^{\circ}$ C: P_{tot} derates linearly with 12 mW/K.

L = LOW voltage level;

X = don't care;

^{↑ =} LOW-to-HIGH clock transition;

 $[\]downarrow$ = HIGH-to-LOW clock transition.

^[2] Above 70 °C: Ptot derates linearly with 8 mW/K.

10. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.0	5.0	6.0	V
V_{I}	input voltage		0	-	V_{CC}	V
V_{O}	output voltage		0	-	V_{CC}	V
t_r, t_f	input rise and fall times	$V_{CC} = 2.0 \text{ V}$	-	-	1000	ns
	except CP	$V_{CC} = 4.5 \text{ V}$	-	6.0	500	ns
		$V_{CC} = 6.0 \text{ V}$	-	-	400	ns
T_{amb}	ambient temperature		-40	-	+125	°C

11. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Uni
T _{amb} = 25	°C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	V
		$I_{O} = -20 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	V
		$I_{O} = -20 \mu A; V_{CC} = 6.0 V$	5.9	6.0	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu A; V_{CC} = 2.0 \text{ V}$	-	0	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	V
		$I_{O} = 20 \mu A; V_{CC} = 6.0 \text{ V}$	-	0	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	μΑ
I _{cc}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	8.0	μΑ
Cı	input capacitance		-	3.5	-	pF
T _{amb} = -40) °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	_	_	V

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu\text{A}; V_{CC} = 2.0 \text{V}$	1.9	-	-	V
		$I_{O} = -20 \mu A; V_{CC} = 4.5 V$	4.4	-	-	V
		$I_{O} = -20 \mu\text{A}; V_{CC} = 6.0 \text{V}$	5.9	-	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = 20 \mu A; V_{CC} = 2.0 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 \text{ V}$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ
I _{CC}	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	80	μΑ
) °C to +125 °C					<u> </u>
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
	•	V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A$; $V_{CC} = 2.0 \text{ V}$	1.9	-	-	V
		$I_{O} = -20 \mu\text{A}; V_{CC} = 4.5 \text{V}$	4.4	-	-	V
		$I_{O} = -20 \mu\text{A}; V_{CC} = 6.0 \text{V}$	5.9	-	-	V
		$I_O = -4$ mA; $V_{CC} = 4.5$ V	3.7	-	-	V
		$I_O = -5.2 \text{ mA}$; $V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \mu\text{A}; V_{CC} = 2.0 \text{V}$	-	-	0.1	V
		I _O = 20 μA; V _{CC} = 4.5 V	-	-	0.1	V
		$I_O = 20 \mu\text{A}; V_{CC} = 6.0 \text{V}$	-	-	0.1	V
		$I_{O} = 4 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±1.0	μΑ
					-	

12. Dynamic characteristics

Table 8: Dynamic characteristics

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}; \text{ see } \underline{\text{Figure 7}}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = 25$	°C					
t _{PHL} , t _{PLH}	propagation delay \overline{CP} to Q0	see Figure 6				
		V_{CC} = 2.0 V	-	47	175	ns
		V_{CC} = 4.5 V	-	17	35	ns
		V _{CC} = 6.0 V	-	14	30	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	14	-	ns
	propagation delay Qn to Qn+1	see Figure 6				
		V_{CC} = 2.0 V	-	25	80	ns
		V_{CC} = 4.5 V	-	9	16	ns
		$V_{CC} = 6.0 \text{ V}$	-	7	14	ns
PHL	propagation delay MR to Q0	see Figure 6				
		V_{CC} = 2.0 V	-	63	200	ns
		V_{CC} = 4.5 V	-	23	40	ns
		V _{CC} = 6.0 V	-	18	34	ns
THL, tTLH	output transition time	see Figure 6				
		V_{CC} = 2.0 V	-	19	75	ns
		V _{CC} = 4.5 V	-	7	15	ns
		V _{CC} = 6.0 V	-	6	13	ns
W	CP clock pulse width HIGH or	see Figure 6				
	LOW	V _{CC} = 2.0 V	80	17	-	ns
		V _{CC} = 4.5 V	16	6	-	ns
		V _{CC} = 6.0 V	14	5	-	ns
	MR master reset pulse width	see Figure 6				
	HIGH	V _{CC} = 2.0 V	80	22	-	ns
		V _{CC} = 4.5 V	16	8	-	ns
		V _{CC} = 6.0 V	14	6	-	ns
rem	removal time MR to \overline{CP}	see Figure 6				
		V _{CC} = 2.0 V	50	6	-	ns
		V _{CC} = 4.5 V	10	2	-	ns
		V _{CC} = 6.0 V	9	2	-	ns
max	maximum clock frequency	see Figure 6				
		V _{CC} = 2.0 V	6.0	27	-	MHz
		V _{CC} = 4.5 V	30	82	-	MHz
		$V_{CC} = 6.0 \text{ V}$	35	98	-	MHz
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$	-	90	-	MHz
C _{PD}	power dissipation capacitance	$V_I = GND$ to V_{CC}	<u>[1]</u> _	25	-	pF

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	T _{amb} = -40	0 °C to +85 °C					
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	t _{PHL} , t _{PLH}	propagation delay CP to Q0	see Figure 6				
$ \begin{array}{c} V_{CC} = 6.0 \ V & - & - & 37 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 37 & ns \\ \hline V_{CC} = 2.0 \ V & - & - & 100 & ns \\ \hline V_{CC} = 2.0 \ V & - & - & 20 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 20 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 17 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 250 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 250 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 50 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 50 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 43 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 95 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 19 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 19 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 16 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 16 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 16 & ns \\ \hline V_{CC} = 4.5 \ V & - & - & 16 & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} $			V _{CC} = 2.0 V	-	-	220	ns
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			V _{CC} = 4.5 V	-	-	44	ns
$ \begin{array}{c} V_{CC} = 2.0 \ V & - & 100 \ Ns \\ V_{CC} = 4.5 \ V & - & 20 \ Ns \\ V_{CC} = 6.0 \ V & - & 17 \ Ns \\ \hline V_{CC} = 6.0 \ V & - & 17 \ Ns \\ \hline V_{CC} = 2.0 \ V & - & 250 \ Ns \\ \hline V_{CC} = 2.0 \ V & - & 250 \ Ns \\ \hline V_{CC} = 4.5 \ V & - & 250 \ Ns \\ \hline V_{CC} = 6.0 \ V & - & 250 \ Ns \\ \hline V_{CC} = 6.0 \ V & - & 0 & 43 \ Ns \\ \hline V_{CC} = 6.0 \ V & - & - & 95 \ Ns \\ \hline V_{CC} = 2.0 \ V & - & - & 95 \ Ns \\ \hline V_{CC} = 2.0 \ V & - & - & 95 \ Ns \\ \hline V_{CC} = 4.5 \ V & - & - & 19 \ Ns \\ \hline V_{CC} = 4.5 \ V & - & - & 19 \ Ns \\ \hline V_{CC} = 4.5 \ V & - & - & 19 \ Ns \\ \hline V_{CC} = 4.5 \ V & - & - & 16 \ Ns \\ \hline V_{CC} = 4.5 \ V & - & - & 16 \ Ns \\ \hline V_{CC} = 4.5 \ V & - & - & 16 \ Ns \\ \hline V_{CC} = 2.0 \ V & 100 \ - & - \ Ns \\ \hline V_{CC} = 4.5 \ V & 20 \ - & - \ Ns \\ \hline V_{CC} = 6.0 \ V & 17 \ - & - \ Ns \\ \hline V$			V _{CC} = 6.0 V	-	-	37	ns
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		propagation delay Qn to Qn+1	see Figure 6				
$V_{CC} = 6.0 \text{ V} \qquad - \qquad - \qquad 17 \qquad \text{ns}$ $V_{CHL} = 6.0 \text{ V} \qquad - \qquad - \qquad 17 \qquad \text{ns}$ $V_{CC} = 2.0 \text{ V} \qquad - \qquad - \qquad 250 \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad - \qquad - \qquad 50 \qquad \text{ns}$ $V_{CC} = 6.0 \text{ V} \qquad - \qquad - \qquad 43 \qquad \text{ns}$ $V_{CC} = 6.0 \text{ V} \qquad - \qquad - \qquad 43 \qquad \text{ns}$ $V_{CC} = 6.0 \text{ V} \qquad - \qquad - \qquad 95 \qquad \text{ns}$ $V_{CC} = 2.0 \text{ V} \qquad - \qquad - \qquad 95 \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad - \qquad - \qquad 19 \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad - \qquad - \qquad 19 \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad - \qquad - \qquad 16 \qquad \text{ns}$ $V_{CC} = 6.0 \text{ V} \qquad - \qquad - \qquad 16 \qquad \text{ns}$ $V_{CC} = 6.0 \text{ V} \qquad 100 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 20 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 110 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 110 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 110 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 110 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 110 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} \qquad 110 \qquad - \qquad - \qquad \text{ns}$ $V_{CC} = 4.5 \text{ V} $			V _{CC} = 2.0 V	-	-	100	ns
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			V _{CC} = 4.5 V	-	-	20	ns
$ \begin{array}{c} V_{CC} = 2.0 \ V & - & - & 250 & ns \\ V_{CC} = 4.5 \ V & - & - & 50 & ns \\ V_{CC} = 6.0 \ V & - & - & 43 & ns \\ V_{CC} = 6.0 \ V & - & - & 43 & ns \\ \hline V_{CC} = 2.0 \ V & - & - & 95 & ns \\ V_{CC} = 2.0 \ V & - & - & 95 & ns \\ V_{CC} = 4.5 \ V & - & - & 19 & ns \\ V_{CC} = 4.5 \ V & - & - & 16 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 16 & ns \\ \hline V_{CC} = 6.0 \ V & - & - & 16 & ns \\ \hline V_{CC} = 2.0 \ V & - & - & 16 & ns \\ \hline V_{CC} = 2.0 \ V & - & - & 16 & ns \\ \hline V_{CC} = 2.0 \ V & 100 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 2.0 \ V & 100 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 6.0 \ V & 17 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 6.0 \ V & 11 & - & - & ns \\ \hline V_{CC} = 6.0 \ V & 11 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & 10 & - & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 10 & $			V _{CC} = 6.0 V	-	-	17	ns
$ \begin{array}{c} V_{CC} = 4.5 \ V & - & - & 50 & ns \\ V_{CC} = 6.0 \ V & - & - & 43 & ns \\ V_{CC} = 6.0 \ V & - & - & 43 & ns \\ \end{array} \\ \begin{array}{c} H_{L}, t_{TLH} \\ H_{L}, t_{TLH}$	PHL	propagation delay MR to Q0	see Figure 6				
$V_{CC} = 6.0 \ V \qquad - \qquad - \qquad 43 \qquad ns$ $V_{CC} = 6.0 \ V \qquad - \qquad - \qquad 43 \qquad ns$ $V_{CC} = 4.5 \ V \qquad - \qquad - \qquad 95 \qquad ns$ $V_{CC} = 4.5 \ V \qquad - \qquad - \qquad 19 \qquad ns$ $V_{CC} = 6.0 \ V \qquad - \qquad - \qquad 16 \qquad ns$ $V_{CC} = 6.0 \ V \qquad \qquad - \qquad - \qquad 16 \qquad ns$ $V_{CC} = 6.0 \ V \qquad \qquad 100 \qquad - \qquad - \qquad ns$ $V_{CC} = 2.0 \ V \qquad \qquad 100 \qquad - \qquad - \qquad ns$ $V_{CC} = 4.5 \ V \qquad \qquad 20 \qquad - \qquad - \qquad ns$ $V_{CC} = 4.5 \ V \qquad \qquad 20 \qquad - \qquad - \qquad ns$ $V_{CC} = 6.0 \ V \qquad \qquad 17 \qquad - \qquad - \qquad ns$ $V_{CC} = 6.0 \ V \qquad \qquad 100 \qquad - \qquad - \qquad ns$ $V_{CC} = 6.0 \ V \qquad \qquad 100 \qquad - \qquad - \qquad ns$ $V_{CC} = 4.5 \ V \qquad \qquad 20 \qquad - \qquad - \qquad ns$ $V_{CC} = 4.5 \ V \qquad \qquad 20 \qquad - \qquad - \qquad ns$ $V_{CC} = 4.5 \ V \qquad \qquad 20 \qquad - \qquad - \qquad ns$ $V_{CC} = 6.0 \ V \qquad \qquad 17 \qquad - \qquad - \qquad ns$ $V_{CC} = 6.0 \ V \qquad \qquad 1$			V _{CC} = 2.0 V	-	-	250	ns
$ \begin{array}{c} \text{Hu. } t_{\text{TLH}} \\ \text$			V _{CC} = 4.5 V	-	-	50	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{CC} = 6.0 V	-	-	43	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	THL, t _{TLH}	output transition time	see Figure 6				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{CC} = 2.0 V	-	-	95	ns
$ \frac{\overline{CP} \ \text{clock pulse width HIGH or LOW}}{\overline{LOW}} = \frac{\text{see Figure 6}}{V_{CC} = 2.0 \ \text{V}} \qquad 100 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 4.5 \ \text{V}} \qquad 20 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 6.0 \ \text{V}} \qquad 17 \qquad - \qquad - \qquad \text{ns}} \\ \frac{MR \ \text{master reset pulse width}}{V_{CC} = 6.0 \ \text{V}} \qquad 17 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 2.0 \ \text{V}} \qquad 100 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 4.5 \ \text{V}} \qquad 20 \qquad - \qquad - \qquad \text{ns}} \\ \frac{V_{CC} = 4.5 \ \text{V}}{V_{CC} = 4.5 \ \text{V}} \qquad 20 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 6.0 \ \text{V}} \qquad 17 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 6.0 \ \text{V}} \qquad 17 \qquad - \qquad - \qquad \text{ns}} \\ \frac{V_{CC} = 2.0 \ \text{V}}{V_{CC} = 4.5 \ \text{V}} \qquad 13 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 4.5 \ \text{V}} \qquad 13 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 6.0 \ \text{V}} \qquad 11 \qquad - \qquad - \qquad \text{ns}} \\ \frac{V_{CC} = 4.5 \ \text{V}}{V_{CC} = 6.0 \ \text{V}} \qquad 11 \qquad - \qquad - \qquad \text{ns}}{V_{CC} = 2.0 \ \text{V}} \qquad 4.8 \qquad - \qquad - \qquad \text{MHz}}{V_{CC} = 4.5 \ \text{V}} \qquad 24 \qquad - \qquad - \qquad \text{MHz}} $			V _{CC} = 4.5 V	-	-	19	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{CC} = 6.0 V	-	-	16	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W	CP clock pulse width HIGH or	see Figure 6				
$\begin{array}{c} V_{CC} = 6.0 \ V & 17 & - & - & ns \\ \hline MR \ master \ reset \ pulse \ width \ HIGH & see \ Figure \ 6 \\ \hline V_{CC} = 2.0 \ V & 100 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 20 & - & - & ns \\ \hline V_{CC} = 6.0 \ V & 17 & - & - & ns \\ \hline V_{CC} = 6.0 \ V & 17 & - & - & ns \\ \hline V_{CC} = 2.0 \ V & 65 & - & - & ns \\ \hline V_{CC} = 2.0 \ V & 65 & - & - & ns \\ \hline V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline V_{CC} = 6.0 \ V & 11 & - & - & ns \\ \hline V_{CC} = 6.0 \ V & 11 & - & - & ns \\ \hline V_{CC} = 2.0 \ V & 4.8 & - & - & MHz \\ \hline V_{CC} = 2.0 \ V & 4.8 & - & - & MHz \\ \hline V_{CC} = 4.5 \ V & 24 & - & - & MHz \\ \hline \end{array}$		LOW	$V_{CC} = 2.0 \text{ V}$	100	-	-	ns
$\begin{array}{c} \text{MR master reset pulse width} \\ \text{HIGH} \\ \\ \text{HIGH} \\ \\ \\ \text{V}_{CC} = 2.0 \text{ V} \\ \\ \\ \text{V}_{CC} = 4.5 \text{ V} \\ \\ \\ \text{V}_{CC} = 6.0 \text{ V} \\ \\ \\ \text{17} \\ \\ \\ \text{-} \\ \\ \text{MR master reset pulse width} \\ \\ \text{V}_{CC} = 4.5 \text{ V} \\ \\ \text{20} \\ \\ \text{-} \\ \\ \text{-}$			V _{CC} = 4.5 V	20	-	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{CC} = 6.0 V	17	-	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			see Figure 6				
$ \begin{array}{c} V_{CC} = 6.0 \ V & 17 & - & - & ns \\ \hline \\ V_{CC} = 6.0 \ V & 17 & - & - & ns \\ \hline \\ V_{CC} = 2.0 \ V & 65 & - & - & ns \\ \hline \\ V_{CC} = 4.5 \ V & 13 & - & - & ns \\ \hline \\ V_{CC} = 6.0 \ V & 11 & - & - & ns \\ \hline \\ v_{CC} = 6.0 \ V & 11 & - & - & ns \\ \hline \\ v_{CC} = 2.0 \ V & 4.8 & - & - & MHz \\ \hline \\ V_{CC} = 4.5 \ V & 24 & - & - & MHz \\ \hline \end{array} $		HIGH	$V_{CC} = 2.0 \text{ V}$	100	-	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			V _{CC} = 4.5 V	20	-	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{CC} = 6.0 V	17	-	-	ns
$ \frac{V_{CC} = 4.5 \text{ V}}{V_{CC} = 6.0 \text{ V}} \qquad 13 \qquad - \qquad - \qquad \text{ns} $ $ \frac{V_{CC} = 6.0 \text{ V}}{V_{CC} = 6.0 \text{ V}} \qquad 11 \qquad - \qquad - \qquad \text{ns} $ $ \frac{\text{see Figure 6}}{V_{CC} = 2.0 \text{ V}} \qquad 4.8 \qquad - \qquad - \qquad \text{MHz} $ $ \frac{V_{CC} = 4.5 \text{ V}}{V_{CC} = 4.5 \text{ V}} \qquad 24 \qquad - \qquad - \qquad \text{MHz} $	rem	removal time MR to \overline{CP}	see <u>Figure 6</u>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			V _{CC} = 2.0 V	65	-	-	ns
maximum clock frequency $\frac{\text{see } \underline{\text{Figure 6}}}{\text{V}_{\text{CC}} = 2.0 \text{ V}} \qquad \qquad 4.8 \qquad \text{-} \qquad - \qquad \text{MHz}}{\text{V}_{\text{CC}} = 4.5 \text{ V}}$			V _{CC} = 4.5 V	13	-	-	ns
$V_{CC} = 2.0 \text{ V}$ 4.8 MHz $V_{CC} = 4.5 \text{ V}$ 24 MHz			V _{CC} = 6.0 V	11	-	-	ns
$V_{CC} = 4.5 \text{ V}$ 24 MHz	max	maximum clock frequency	see Figure 6				
			V _{CC} = 2.0 V	4.8	-	-	MHz
V _{CC} = 6.0 V 28 MHz			V _{CC} = 4.5 V	24	-	-	MHz
			V _{CC} = 6.0 V	28	-	-	MHz

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Gamma_{amb} = -40$) °C to +125 °C					
t _{PHL} , t _{PLH}	propagation delay CP to Q0	see Figure 6				
		V _{CC} = 2.0 V	-	-	265	ns
		V _{CC} = 4.5 V	-	-	53	ns
		V _{CC} = 6.0 V	-	-	45	ns
	propagation delay Qn to Qn+1	see Figure 6				
		V _{CC} = 2.0 V	-	-	120	ns
		V _{CC} = 4.5 V	-	-	24	ns
		V _{CC} = 6.0 V	-	-	20	ns
PHL	propagation delay MR to Q0	see Figure 6				
		V _{CC} = 2.0 V	-	-	300	ns
		V _{CC} = 4.5 V	-	-	60	ns
		V _{CC} = 6.0 V	-	-	51	ns
t _{THL} , t _{TLH}	output transition time	see Figure 6				
		V _{CC} = 2.0 V	-	-	110	ns
		V _{CC} = 4.5 V	-	-	22	ns
		V _{CC} = 6.0 V	-	-	19	ns
w	CP clock pulse width HIGH or LOW	see Figure 6				
		V _{CC} = 2.0 V	120	-	-	ns
		V _{CC} = 4.5 V	24	-	-	ns
		V _{CC} = 6.0 V	20	-	-	ns
	MR master reset pulse width	see Figure 6				
	HIGH	V _{CC} = 2.0 V	120	-	-	ns
		V _{CC} = 4.5 V	24	-	-	ns
		V _{CC} = 6.0 V	20	-	-	ns
rem	removal time MR to \overline{CP}	see Figure 6				
		V _{CC} = 2.0 V	75	-	-	ns
		V _{CC} = 4.5 V	15	-	-	ns
		$V_{CC} = 6.0 \text{ V}$	13	-	-	ns
max	maximum clock frequency	see Figure 6				
		V _{CC} = 2.0 V	4.0	-	-	MHz
		V _{CC} = 4.5 V	20	-	-	MHz
		V _{CC} = 6.0 V	24	-	-	MHz

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \sum (C_L \times V_{CC}{}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.

13. Waveforms

Also showing the master reset (MR) pulse width, the master reset to output (Qn) propagation delays and the master reset to clock (\overline{CP}) removal time.

 $V_M = 0.5 \times V_I$.

Fig 6. Waveforms showing the clock ($\overline{\text{CP}}$) to output (Qn) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency

Test data is given in Table 9.

Definitions for test circuit:

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

C_L = Load capacitance including jig and probe capacitance.

Fig 7. Load circuitry for switching times

Table 9: Test data

Supply	Input		Load
V _{CC}	VI	t _r , t _f	C _L
2.0 V	V_{CC}	6 ns	50 pF
4.5 V	V_{CC}	6 ns	50 pF
6.0 V	V_{CC}	6 ns	50 pF
5.0 V	V _{CC}	6 ns	15 pF

14. Package outline

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001	SC-501-14		99-12-27 03-02-13	

Fig 8. Package outline SOT27-1 (DIP14)

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012			99-12-27 03-02-19

Fig 9. Package outline SOT108-1 (SO14)

9397 750 13813

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

	c. in																		
ι	JNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

		ENCES	EUROPEAN	ISSUE DATE	
IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
	MO-150			99-12-27 03-02-19	
_	IEC			IEC JEDEC JEHA	

Fig 10. Package outline SOT337-1 (SSOP14)

SOT402-1

	····-·································																	
UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFERENCES	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	1330E DATE	
SOT402-1		MO-153			99-12-27 03-02-18	
					03-02-18	

Fig 11. Package outline SOT402-1 (TSSOP14)

9397 750 13813

15. Revision history

Table 10: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74HC4024_3	20041112	Product data sheet	-	9397 750 13813	74HC_HCT4024_CNV_2
Modifications:	and in • Remo	rmat of this data sheet formation standard of F ved type number 74HC ed family specification.	Philips Semicond	•	th the current presentation
74HC_HCT4024_CNV_2	19970901	Product specification	-	-	74HC_HCT4024_1
74HC_HCT4024_1	19901201	Product specification	-	-	-

Philips Semiconductors 74HC4024

7-stage binary ripple counter

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

17. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

18. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

19. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

Philips Semiconductors

74HC4024

7-stage binary ripple counter

20. Contents

1	General description
2	Features
3	Applications
4	Quick reference data
5	Ordering information
6	Functional diagram 3
7	Pinning information4
7.1	Pinning
7.2	Pin description
8	Functional description 5
8.1	Function table
9	Limiting values 5
10	Recommended operating conditions 6
11	Static characteristics 6
12	Dynamic characteristics
13	Waveforms
14	Package outline
15	Revision history
16	Data sheet status
17	Definitions
18	Disclaimers
19	Contact information

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 12 November 2004 Document number: 9397 750 13813

