Modèles Linéaires Appliqués

Arthur Charpentier

Automne 2020

OLS #15 (moindres carrés généralisés - MCG)

▶ Supposons dans ce cours disposer d'un modèle linéaire

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

où X est une matrice satisfaisant l'hypothèse \mathcal{H}_1 (X est de rang plein).

- On supposera disposer du modèle correct (bon ensemble de covariables et correctement transformées), et que le modèle n'exhibe pas de point aberrant ni de point levier; hypothèses difficilement satisfaites en pratique!
- ► En revanche, on suppose

$$\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0} \text{ et } \operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{\Omega}$$

où Ω est une matrice symétrique définie positive!

► Le modèle est dit hétéroscédastique: quelles sont les conséquences? comment y remédier?

Données Agrégées

- Supposons qu'un modèle linéaire homoscédastique standard existe entre une variable \tilde{Y} et un ensemble de variables explicatives pour $k_1 + \cdots + k_n$ individus; supposons justement qu'on n'observe pas le modèle au niveau individuel mais au niveau agrégé pour les k_j individus.

 [ex. recueil du salaire dans différentes provinces du Canada!
 - [ex. recueil du salaire dans différentes provinces du Canada Une seule valeur moy. par province]
- On observe: $Y_i = k_i^{-1} \sum_{j=1}^i \tilde{Y}_j$ et le modèle s'écrit toujours: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$.
- ▶ On note que $\operatorname{Var}(Y_i) = k_i^{-2} \sum_j \operatorname{Var}(\tilde{Y}_j) = \sigma^2/k_i$ et ainsi

$$\operatorname{Var}(\mathbf{Y}) = \operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{\Omega} = \sigma^2 \underbrace{\operatorname{diag}\left(\frac{1}{k_1}, \dots, \frac{1}{k_n}\right)}_{\mathbf{\Omega}}$$

Groupes

- **P** Partons d'un modèle linéaire homoscédastique $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, et supposons que les individus soient regroupés en deux groupes de taille n_1 et n_2 , $n = n_1 + n_2$ (par exemple discriminés par une variable sexe);
- ▶ Il n'est pas insensé de penser que $Var(\varepsilon_i) = \sigma_1^2$ pour $i = 1, ..., n_1$ et σ_2^2 pour $i = n_1 + 1, ..., n_1 + n_2$.
- les paramètres σ_1^2 et σ_2^2 sont inconnus!
- Pour cet exemple, on aurait

$$\operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \underbrace{\operatorname{diag}(\pi_1^2, \dots, \pi_1^2, \pi_2^2, \dots, \pi_2^2)}_{\Omega}$$

avec
$$\sigma_{j}^{2} = \sigma^{2}\pi_{j}^{2}$$
, $j = 1, 2$.

Corrélation Temporelle

▶ Supposons que le bruit soit homogène en variance. En revanche, on supposera que la série Y_1, \ldots, Y_n soit une série chronologique (acquise au cours du temps). Il paraît sensé alors que

$$Cov(\varepsilon_i, \varepsilon_j) \neq 0, \quad i \neq j.$$

- L'exemple le plus simple d'une telle série est un modèle AR(1): $\varepsilon_{t+1} = \rho \varepsilon_t + \eta_t$ où $|\rho| < 1$ et η_t est un bruit blanc gaussien de variance σ^2 .
- ▶ On montre que $Cov(\varepsilon_t, \varepsilon_{t+k}) = \sigma^2 \frac{\rho^k}{1-\rho^2}$ et ainsi

$$\operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{\Omega} \text{ avec } \boldsymbol{\Omega} = \frac{1}{1 - \rho^2} \begin{pmatrix} 1 & \rho & \rho^2 & \dots & \rho^{n-1} \\ \rho & 1 & \rho & \dots & \rho^{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \dots & 1 \end{pmatrix}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
, où $\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}$, $Var(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{\Omega}$.

L'estimateur des MCO, s'écrit toujours $\hat{\boldsymbol{\beta}}^{\text{MCO}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{Y}$ et

$$\mathbb{E}(\hat{\pmb{\beta}}^{\text{MCO}}) = \pmb{\beta} \quad \text{ et } \quad \operatorname{Var}\left(\hat{\pmb{\beta}}^{\text{MCO}}\right) = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{\Omega}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}.$$

Soit $\hat{\sigma}^2_{\text{MCO}} = \|\hat{\boldsymbol{\varepsilon}}\|/(n-p)$ alors $\mathbb{E}\hat{\sigma}^2_{\text{MCO}} = \operatorname{tr}(\mathcal{P}_{\mathbf{X}^\perp}\Omega)/(n-p) \neq \sigma^2$ (en général).

- $\hat{m{\beta}}^{\text{MCO}}$ reste un estimateur sans biais, donc la lecture des coefficients estimés reste pertinente même en présence d'un bruit coloré.
- Ceci est confirmé: on pourrait montrer (en rajoutant quelques hypothèses) que $\hat{\pmb{\beta}}^{\text{MCO}}$ est un estimateur consistant de $\pmb{\beta}$.
- \triangleright En revanche, σ^2 n'est pas correctement estimée, et par conséquence $Var(\hat{\beta}^{MCO})$ n'est pas correctement estimée!
- ► Ceci signifie que la lecture des erreurs standard n'est pas pertinente; les IC , RC , tests d'hypothèses ne tenant pas compte du bruit coloré sont donc (a priori) sans intérêt et dangereux.
- certaines variables peuvent paraître significatives alors qu'elles ne le sont pas (et inversement): il faut remédier à cette situation!

MCG

- \triangleright On supposera dans un premier temps que Ω est connue, et notons $\Omega^{-1/2}$ sa racine carré inverse (qui existe car $\Omega > 0$).
- On construit le modèle

$$\underbrace{\boldsymbol{\Omega}^{-1/2}\mathbf{Y}}_{:=\mathbf{Y}'} = \underbrace{\boldsymbol{\Omega}^{-1/2}\mathbf{X}}_{:=\mathbf{X}'}\boldsymbol{\beta} + \underbrace{\boldsymbol{\Omega}^{-1/2}\boldsymbol{\varepsilon}}_{:=\boldsymbol{\varepsilon}'}.$$

- ▶ Il est clair que le modèle $\mathbf{Y}' = \mathbf{X}'\boldsymbol{\beta} + \boldsymbol{\varepsilon}'$ est un modèle linéaire homoscédastique car
 - X' est de plein rang!
 - $Var(\varepsilon') = Var(\Omega^{-1/2}\varepsilon) = \Omega^{-1/2}Var(\varepsilon)\Omega^{-1/2} = \sigma^2 \mathbb{I}_n.$

On appelle estimateur des moindres carrés généralisés l'estimateur $\hat{m{eta}}^{ exttt{MCG}}$ égal à l'estimateur des MCO du modèle $m{Y}'=m{X}'m{eta}+m{arepsilon}'$. Ainsi

$$\hat{\boldsymbol{\beta}}^{\mathsf{MCG}} = (\mathbf{X'}^{\mathsf{T}}\mathbf{X'})^{-1}\mathbf{X'}^{\mathsf{T}}\mathbf{Y'} = \left(\mathbf{X}^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{Y}.$$

ightharpoonup Conséquence du théorème de Gauss-Markov: $\hat{\boldsymbol{\beta}}^{\text{MCG}}$ est l'estimateur linéaire sans biais de variance minimale du modèle $\mathbf{Y}' = \mathbf{X}'\boldsymbol{\beta} + \boldsymbol{\varepsilon}'$; $\hat{\boldsymbol{\beta}}^{\text{MCO}}$ étant un autre estimateur linéaire sans biais de β

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}^{\mathsf{MCG}}) \leq \operatorname{Var}(\hat{\boldsymbol{\beta}}^{\mathsf{MCO}}).$$

► Conséquence du théorème de Gauss-Markov: $\hat{\beta}^{MCG}$ est l'estimateur linéaire sans biais de variance minimale du modèle $\mathbf{Y}' = \mathbf{X}'\boldsymbol{\beta} + \boldsymbol{\varepsilon}'; \, \hat{\boldsymbol{\beta}}^{\text{MCO}}$ étant un autre estimateur linéaire sans biais de β

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}^{MCG}) \leq \operatorname{Var}(\hat{\boldsymbol{\beta}}^{MCO}).$$

Supposons $\Omega = \operatorname{diag}(\pi_i^2, i = 1, \dots, n)$, on peut montrer que la procédure des MCG est une procédure de MC pondérés, i.e.

$$\hat{oldsymbol{eta}}^{ ext{MCG}} = \operatorname{argmin} f(oldsymbol{eta}), \quad f(oldsymbol{eta}) = \|oldsymbol{\Omega}^{-1/2}(\mathbf{Y} - \mathbf{X}oldsymbol{eta})\|^2 = \sum_{i=1}^n w_i (Y_i - \mathbf{x}_i'oldsymbol{eta})^2$$

avec $w_i = 1/\pi_i^2$.

