

Parcours académique

<u>Parcours</u>	<u>2011-2013</u>	CPGE PCSI-PC, Lycée Condorcet
	<u>2013-2016</u>	Magistère de Physique fondamentale d'Orsay, Université Paris-Saclay
	<u>2016-2020</u>	Doctorat en physique sous la direction de Manuel Bibes : Propriétés magnétiques et de transport des couches minces et hétérostructures de titanates de terre rare
	<u>2020-2021</u>	Préparation à l'agrégation au centre de Montrouge
<u>Expérience</u>	<u>2014-2016</u>	Cours particuliers de physique et de mathématiques
	<u>2017-2019</u>	Responsable de TP d'électromagnétisme et électrocinétique DUT mesures physiques, Orsay

Structure pérovskite

• site A : cation de valence 2+/3+

• site B : cation de valence 4+/3+ usuellement un métal de transition

• O: 2- oxygènes formant un octaèdre

Retour sur la structure cfc

- Retour sur la structure cfc
- Calcul de compacité

Avec a le paramètre de la maille cubique

- Retour sur la structure cfc
- Calcul de compacité
- Introduction de la structure pérovskite

- Retour sur la structure cfc
- Calcul de compacité
- Introduction de la structure pérovskite
- Structure cfc avec un atome supplémentaire au centre.

- Retour sur la structure cfc
- Calcul de compacité
- Introduction de la structure pérovskite
- Structure cfc avec un atome supplémentaire au centre.
- Représentez la maille en perspective cavalière. Calculez sa multiplicité.

- Retour sur la structure cfc
- Calcul de compacité
- Introduction de la structure pérovskite
- Structure cfc avec un atome supplémentaire au centre.
- Représentez la maille en perspective cavalière. Calculez sa multiplicité.
- Calcul de compacité et densité de SrTiO₃

- Retour sur la structure cfc
- Calcul de compacité
- Introduction de la structure pérovskite
- Structure cfc avec un atome supplémentaire au centre.
- Représentez la maille en perspective cavalière. Calculez sa multiplicité.
- Calcul de compacité et densité de SrTiO₃

$$\frac{a}{\sqrt{2}} = r_O + r_{Sr}$$

 $= r_O + r_{Ti}$

Ouverture : Au-delà de la structure cubique

Giant Magnetoresistance (GMR)

Giant Magnetoresistance (GMR)

Prix Nobel 2007 Albert Fert Peter Grünberg FΜ NM FΜ

Giant Magnetoresistance (GMR)

Giant Magnetoresistance (GMR)

Hamiltonien de l'électron libre

Hamiltonien ↔ Énergie mécanique

$$H = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$$

Hamiltonien de l'électron libre

Hamiltonien ↔ Énergie mécanique

$$H = \frac{\hbar^2 k^2}{2m} + H_R$$

Effet Rashba

Conditions nécessaires:

- Brisure de symétrie
- Couplage spin orbite

Conséquences:

courant de charge \implies courant de spin

Croissance en couche mince

SrTiO₃ (STO)

Croissance en couche mince

→ heterostructures

LaAlO₃ (LAO)

SrTiO₃ (STO)

Croissance en couche mince

→ heterostructures

LaAlO₃ (LAO)

SrTi⁴⁺O₃ (STO)

Croissance en couche mince

→ heterostructures

Croissance en couche mince

- → heterostructures
- → Nouvelles propriétés à l'interface!

Interface LAO/STO

Gaz bidimensionnel à l'interface de deux isolants de bandes

M. Basletic et al. Nat. Mater. **7**, 621 (2008)

Motivation de la thèse

- 1) Établir les conditions de croissance optimale des titanates de terres rares magnétiques (DyTiO₃)
 - 2) Étude de la valence des différents éléments de la structure
 - 3) Réalisation d'une interface entre deux matériaux

Système étudié

DyTiO₃

- ❖ Ti³⁺ : possède un electron *d*
 - Magnétique
- Plus grand couplage spin orbite
- ❖ Valence Ti³+ complexe à obtenir

 $\lambda_{laser} = 248 \text{ nm}$

Contrôle fin des conditions de croissance de nos couches minces

- Pyromètre laser
- Laser excimer 248 nm
- Contrôle de la pression (Ar/O2)

Caractérisation structurale par diffraction de rayons X

Permet la caractérisation de nos échantillons au niveau structural

Mesure de champ magnétique : fonctionnement d'un SQUID

Mesure de champ magnétique : fonctionnement d'un SQUID

La quantification du flux magnétique dans un supraconducteur permet de mesurer précisement le moment magnétique des échantillons.

Richesse du magnétisme

<u>Paramagnétisme</u>

<u>Paramagnétisme</u>

Magnéton de Bohr

$$\mu_B = -\frac{e\hbar}{2m_e}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$M_{\text{total}} \cdot e = M_{\text{P}} \cdot e_{\text{P}} + M_{\text{F}} \cdot e_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$M_{\text{total}} \cdot e = M_{\text{P}} \cdot e_{\text{P}} + M_{\text{F}} \cdot e_{\text{F}}$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{\rm P}-M_{\rm F})<0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

 $M_R \rightarrow quand e \rightarrow présence d'une couche non magnétique$

$$(M_{
m P}-M_{
m F})<0$$
 , $M_{
m P}=0$, $e_P=cste$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

M_{sat} \nearrow quand $e \searrow \rightarrow$ présence d'une couche paramagnétique

$$(M_{\rm P}-M_{\rm F})>0$$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

M_{sat} \nearrow quand $e \searrow \rightarrow$ présence d'une couche paramagnétique

$$(M_{\rm P}-M_{\rm F})>0$$
 , $M_{\rm P}\neq0$, $e_P=cste$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

M_{sat} \nearrow quand $e \searrow \rightarrow$ présence d'une couche paramagnétique

$$(M_{
m P}-M_{
m F})>0$$
 , $M_{
m P}
eq 0$, $e_P=cste$

$$M_{\text{total}} = \frac{(M_{\text{P}} - M_{\text{F}})e_{\text{P}}}{e} + M_{\text{F}}$$

DyTiO₃

Ferromagnétisme

Nous avons établi le lien entre le changement de valence du titane et le comportement paramagnétique observé.

Conclusion

Optimisation des paramètres de croissance

Conclusion

Optimisation des paramètres de croissance

Mise en place d'une méthode de contrôle de qualité des couches minces par mesure du paramagnétisme

Conclusion

- Optimisation des paramètres de croissance
- ❖ Mise en place d'une méthode de contrôle de qualité des couches minces par mesure du paramagnétisme
 - **❖** Il faut réaliser notre système bidimensionnel à l'interface inférieure de DyTiO₃

Fin

Fin

Annexe

Annexe 1

Question: spin

Physique

5.3. Équation de Schrödinger dans un potentiel V(x) uniforme par morceaux	
Quantification de l'énergie dans un puits de potentiel rectangulaire de profondeur infinie.	Établir les expressions des énergies des états stationnaires. Faire l'analogie avec la recherche des pulsations propres d'une corde vibrante fixée en ses deux extrémités. Retrouver qualitativement l'énergie minimale à partir de l'inégalité de Heisenberg spatiale.
Énergie de confinement quantique.	Associer le confinement d'une particule

Physique

5.3. Équation de Schrödinger dans un potentiel V(x) uniforme par morceaux	
Quantification de l'énergie dans un puits de potentiel rectangulaire de profondeur infinie.	Établir les expressions des énergies des états stationnaires. Faire l'analogie avec la recherche des pulsations propres d'une corde vibrante fixée en ses deux extrémités. Retrouver qualitativement l'énergie minimale à partir de l'inégalité de Heisenberg spatiale.
Énergie de confinement quantique.	Associer le confinement d'une particule

Chimie

Notions et contenus	Capacités exigibles
3.1 Orbitales atomiques	·
Fonctions d'onde de l'atome d'hydrogène.	Interpréter $ \psi ^2$ comme la densité de probabilité de présence d'un électron en un point et le relier à la densité de charge.
Énergie et rayon associés à une orbitale atomique. Représentation graphique conventionnelle d'une orbitale atomique.	Prévoir qualitativement, pour l'atome d'hydrogène et les ions hydrogénoïdes, l'évolution du rayon et de l'énergie associés à une orbitale atomique en fonction du nombre quantique principal.
Orbitales des atomes polyélectroniques ; énergie associée à une orbitale,	Identifier la phase de la fonction d'onde.
dégénérescence des niveaux d'énergie.	Dessiner l'allure des orbitales atomiques s, p et d.
Notion qualitative de charge effective.	Établir la configuration électronique d'un atome ou d'un ion dans son état fondamental
	Relier l'évolution du rayon associé à une orbitale atomique à la charge effective.
	Relier l'évolution de l'énergie associée à une orbitale atomique à l'électronégativité.
	Relier le rayon associé aux orbitales de valence d'un atome à sa polarisabilité.

Physique

• Concertation avec le professeur de chimie en PC pour que les élèves aient été introduit à l'atome d'hydrogène et à la dégénérescence

Physique

- Concertation avec le professeur de chimie en PC pour que les eleves aient été introduit à l'atome d'hydrogène et à la dégénérescence
- La quantification de l'énergie des électrons passe par l'introduction de nombres quantiques n et l

Physique

- Concertation avec le professeur de chimie en PC pour que les élèves aient été introduit à l'atome d'hydrogène et à la dégénérescence
- La quantification de l'énergie des électrons passe par l'introduction de nombres quantiques n et l
- Il est nécessaire expérimentalement d'introduire un nouveau nombre quantique $s = \pm 1/2$

<u>Physique</u>

- Concertation avec le professeur de chimie en PC pour que les eleves aient été introduit à l'atome d'hydrogène et à la dégénérescence
- La quantification de l'énergie des électrons passe par l'introduction de nombres quantiques n et l
- Il est nécessaire expérimentalement d'introduire un nouveau nombre quantique $s = \pm 1/2$

Il s'agit d'un moment magnétique quantique!

https://www.youtube.com/watch?v=8wS4IOzAhFA

• L'électron se comporte **comme** si il tournait sur luimême

- L'électron se comporte comme si il tournait sur luimême
- Mais cette rotation est quantifiée et ne peut prendre qu'une valeur dans un sens où dans l'autre!

- L'électron se comporte comme si il tournait sur luimême
- Mais cette rotation est quantifiée et ne peut prendre qu'une valeur dans un sens où dans l'autre!
- Cependant ce modèle est faux car l'électron est ponctuel

Modèle de Drude

Modèle de Drude :

- Les électrons sont libres entre les collisions avec les ions
- Les collisions sont instantanées
- Durant dt un électron a une probabilité dt/τ avec τ le temps caractéristique entre les collisions
- Les collisions thermalisent les électrons

$$\frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} = \frac{q}{m} (\vec{E} + \vec{v} \wedge \vec{B})$$

$$\frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} = \frac{q}{m}(\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{v} = \frac{\tau q}{m} (\vec{E} + \vec{v} \wedge \vec{B})$$

$$\frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} = \frac{q}{m}(\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{v} = \frac{\tau q}{m} (\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{E} = \overrightarrow{E_e} + \overrightarrow{E_H}$$

$$\frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} = \frac{q}{m}(\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{v} = \frac{\tau q}{m} (\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{E} = \overrightarrow{E_e} + \overrightarrow{E_H}$$

En régime permanent

$$\overrightarrow{E_x} = \overrightarrow{v} \wedge \overrightarrow{B} + \overrightarrow{E_H} = \overrightarrow{0}$$

$$\overrightarrow{E_H} = -vB\overrightarrow{u_x}$$

$$\frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} = \frac{q}{m}(\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{v} = \frac{\tau q}{m} (\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{E} = \overrightarrow{E_e} + \overrightarrow{E_H}$$

$$\vec{E} = \vec{v} \wedge \vec{B} + \overrightarrow{E_H} = \vec{0}$$

$$\overrightarrow{E_H} = -vB\overrightarrow{u_x}$$

$$\frac{d\vec{v}}{dt} + \frac{1}{\tau}\vec{v} = \frac{q}{m}(\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{v} = \frac{\tau q}{m} (\vec{E} + \vec{v} \wedge \vec{B})$$

$$\vec{E} = \overrightarrow{E_e} + \overrightarrow{E_H}$$

$$\vec{E} = \vec{v} \wedge \vec{B} + \overrightarrow{E_H} = \vec{0}$$

$$\overrightarrow{E_H} = -vB\overrightarrow{u_x}$$

$$\overrightarrow{E_H} = -vB\overrightarrow{u_x}$$

$$\Delta V_H = vBb$$

$$\Delta V_H = \frac{-1}{en} \frac{IB}{a} = -R_H \frac{IB}{a}$$

$$R_H = \frac{-1}{en}$$
 Constante de Hall

Mobilité électronique

Modèle de Drude:

- Les électrons sont libres entre les collisions avec les ions
- Les collisions sont instantanées
- Durant dt un électron a une probabilité dt/τ avec τ le temps caractéristique entre les collisions
- Les collisions thermalisent les électrons

$$<\vec{v}> = \frac{q\vec{E}t}{m} + \frac{f(t)}{m}$$

$$\vec{v} = \mu \vec{E}$$

$$u = \frac{q\tau}{m}$$

Question : Ω/\Box

$$R=
horac{L}{A}=
horac{L}{Wt},$$

$$R=rac{
ho}{t}rac{L}{W}=R_{
m s}rac{L}{W}$$

$$ho = R_s \cdot t$$

 Supraconducteur la phase est définit macroscopiquement

- Effet Aharonov-Bohm
- Effet Josephson

 https://tp.physique.usherbrooke.ca/ notes_de_cours/Squids.pdf

Rappel: diffraction par un réseau plan

Rappels: diffraction par un réseau plan

Rappels: diffraction par un réseau plan

Différence de marche → condition d'interférence

$$\Delta \Phi = \frac{2\pi}{\lambda} |\delta_2 - \delta_1| \quad \Delta \Phi = 2\pi p \quad \delta = \lambda p$$

Rappels: diffraction par un réseau plan

Différence de marche → condition d'interférence

$$\Delta \Phi = \frac{2\pi}{\lambda} |\delta_2 - \delta_1| \quad \Delta \Phi = 2\pi p \quad \delta = \lambda p$$

 $d(\sin\alpha-\sin\beta)=p\lambda$ avec p un entier

Rappels: diffraction par un réseau plan

Différence de marche → condition d'interférence

$$\Delta \Phi = \frac{2\pi}{\lambda} |\delta_2 - \delta_1| \quad \Delta \Phi = 2\pi p \quad \delta = \lambda p$$

 $d(\sin\alpha-\sin\beta)=p\lambda$ avec p un entier

Formule des réseaux

Cas de la diffraction par un réseau 3D

$$d(\sin \theta - \sin(-\theta)) = \lambda p$$

Cas de la diffraction par un réseau 3D

$$d(\sin \theta - \sin(-\theta)) = \lambda p$$
$$2d \sin \theta = \lambda p$$

Cas de la diffraction par un réseau 3D

$$d(\sin \theta - \sin(-\theta)) = \lambda p$$

$$2d \sin\theta = \lambda p$$

Loi de Bragg

Cas de la diffraction par un réseau 3D

Cas de la diffraction par un réseau 3D

Diffraction de rayons X

Cas de la diffraction par un réseau 3D

Diffraction de rayons X

Cas de la diffraction par un réseau 3D

Diffraction de rayons X

Cas de la diffraction par un réseau 3D

Annexe

Annexe 2

- No **d** electrons
- No magnetism
- Band insulator

- No **d** electrons
- No magnetism
- Band insulator

- No **d** electrons
- No magnetism
- Band insulator

- No **d** electrons
- No magnetism
- Band insulator

- No d electrons
- No magnetism
- Band insulator

- No **d** electrons
- No magnetism
- Band insulator

Transport à l'interface DTO / STO

LSAT // STO (5 nm) / DTO (10 nm) / LAO (20 nm)

Comportement métalique jusqu'à 100 K et puis un edependance apparement log en T Une inflexion peut être observée autour de 5 - 6 K ainsi que dans la magnétorésistance

Magneto-transport à l'interface DTO / STO

Magneto-transport à l'interface DTO / STO

Conclusion

L'effet Kondo domine à basse temperature

Conclusion

L'effet Kondo domine à basse temperature

L'effet Kondo est Presque supprimé

Minimum de conductivité à B≠0 T

→ Il existe un melange de
localisation faible et d'antilocalisation faible

→ Présence d'un couplage spinorbite

Conclusion

L'effet Kondo domine à basse temperature

L'effet Kondo est Presque supprimé

Minimum de conductivité à B≠0 T

→ Il existe un melange de
localisation faible et d'antilocalisation faible

→ Présence d'un couplage spinorbite

A haute temperature seule la magnetoresistance de Lorentz persiste