ЖОРДАНОВА ФОРМА ДЛЯ СОПРОВОЖДАЮЩИХ МАТРИЦ

И. Н. Нестеров, С. В. Клочков, А. С. Чурсанова

Рассматривается линейное однородное дифференциальное уравнение

$$x^{(n)} = \alpha_1 x^{(n-1)} + \ldots + \alpha_n x,$$

где $\alpha_k \in \mathbb{C}, k=\overline{1,n}$. Данное уравнение обычным способом сводится к системе линейных дифференциальных уравнений вида

$$\dot{y} = Ay$$
,

где матрица оператора $A:\mathbb{C}^n \to \mathbb{C}^n$ имеет вид

$$\mathcal{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_n & \alpha_{n-1} & \alpha_{n-1} & \dots & \alpha_1 \end{pmatrix},$$

а $f(\lambda)=\lambda^n-\alpha_1\lambda^{n-1}-\ldots-\alpha_n, \lambda\in\mathbb{C}$ – характеристический многочлен этой матрицы.

Теорема 1. Пусть $\lambda_1, \ldots, \lambda_m$ собственные значения матрицы \mathcal{A} кратностей k_1, \ldots, k_m соответственно, где $\sum\limits_{i=1}^m k_i = n$. Тогда жорданова форма для матрицы \mathcal{A} имеет вид:

$$\mathcal{J} = \begin{pmatrix} \mathcal{J}_{1} & 0 & \dots & 0 \\ 0 & \mathcal{J}_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathcal{J}_{m} \end{pmatrix}, \, \epsilon \partial e \,\, \mathcal{J}_{i} = \begin{pmatrix} \lambda_{i} & 1 & 0 & \dots & 0 \\ 0 & \lambda_{i} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda_{i} \end{pmatrix}.$$

Mampuuа $nepexoda \ \mathcal{U}$ имеет виd

$$\mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_m),$$

где матрицы $U_i, i = 1 \dots m$ имеют вид

$$\mathcal{U}_{i} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \lambda_{i} & 1 & \dots & 0 \\ \lambda_{i}^{2} & 2\lambda_{i} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{i}^{n-1} & (n-1)\lambda_{i}^{n-2} & \dots & \prod_{k=1}^{k_{i}-1} (n-k)\lambda_{i}^{n-k_{i}} \end{pmatrix}.$$

Доказательство. Пусть λ_i - собственное значение матрицы \mathcal{A} кратности k_i . Найдем соответствующие ему собственный и присоединенные векто-

ры матрицы.

$$\mathcal{A} - \lambda_i I = \begin{pmatrix} -\lambda_i & 1 & 0 & \dots & 0 \\ 0 & -\lambda_i & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_n & \alpha_{n-1} & \alpha_{n-1} & \dots & \alpha_1 - \lambda_i \end{pmatrix}.$$

Пусть $x^i \in \mathbb{C}^n$ - собственный вектор, отвечающий собственному значению λ_i . Тогда справедливо равенство

$$(\mathcal{A} - \lambda_i I) x^i = 0, \tag{1}$$

где $x^i=(x_1,x_2,\ldots,x_n)$. Пусть $x_1=1$. Тогда равенство (1) эквивалентно системе:

$$\begin{cases}
-\lambda_{i} + x_{2} = 0, \\
-\lambda_{i}x_{2} + x_{3} = 0, \\
\dots \\
-\lambda_{i}x_{n-2} + x_{n-1} = 0, \\
\alpha_{n} + \alpha_{n-1}x_{2} + \dots + (\alpha_{1} - \lambda_{i})x_{n} = 0.
\end{cases}$$
(2)

Решив систему (2), получим $x_2 = \lambda_i, x_3 = \lambda_i^2, \dots, x_{n-1} = \lambda_i^{n-2}$, а число x_n однозначно определяется из последнего уравнения системы (2) и оно равно λ_i^{n-1} . Таким образом, получено, что собственный вектор, отвечающий собственному значению λ_i , имеет вид

$$x^i = (1, \lambda_i, \lambda_i^2, \dots, \lambda_i^{n-1}).$$

Пусть $k_i \neq 1$. Найдем присоединенные векторы.

Пусть $y_j^i \in \mathbb{C}^n, \ 1 \le j \le k_i-1$ - присоединенные векторы, отвечающие собственному значению λ_i . Первый присоединенный вектор y_1^i есть решение уравнения

$$(\mathcal{A} - \lambda_i I) y_1^i = x^i, \tag{3}$$

где $y_1^i = \left(y_1^{(1)}, y_2^{(1)}, \dots, y_n^{(1)}\right), x^i$ - собственный вектор, отвечающий собственному значению λ_i . Пусть $y_1^{(1)} = 0$. Тогда равенство (3) эквивалентно системе:

$$\begin{cases} y_2^{(1)} = 1, \\ -\lambda_i y_2^{(1)} + y_3^{(1)} = \lambda_i, \\ \dots \\ -\lambda_i y_{n-2}^{(1)} + y_{n-1}^{(1)} = \lambda_i^{n-2}, \\ \alpha_{n-1} y_2^{(1)} + \alpha_{n-2} y_3^{(1)} \dots + (\alpha_1 - \lambda_i^{n-1}) y_n^{(1)} = \lambda_i^{n-1}. \end{cases}$$

$$(4)$$

Решив систему (4), получим

$$y_1^i = (0, 1, 2\lambda_i, 3\lambda_i^2, \dots, (n-1)\lambda_i^{n-2}).$$

Покажем, что найденный y_1^i удовлетворяет системе (4). Очевидно, что первые n-1 уравнений справеливы, покажем, что справедливо последнее:

$$\alpha_{n-1} + 2\alpha_{n-2}\lambda_i + \dots + (\alpha_1 - \lambda_i)(n-1)\lambda_i^{n-2} = \lambda_i^{n-1},$$

$$\alpha_{n-1} + 2\alpha_{n-2}\lambda_i + \dots + \alpha_1(n-1)\lambda_i^{n-2} - n\lambda_i^{n-1} + \lambda_i^{n-1} = \lambda_i^{n-1},$$

$$\alpha_{n-1} + 2\alpha_{n-2}\lambda_i + \dots + \alpha_1(n-1)\lambda_i^{n-2} - n\lambda_i^{n-1} = 0.$$

Ясно, что $P'(\lambda_i)=0$, так как λ_i - корень многочлена P кратности $k_i\neq 1$. Если $k_i\geqslant 2$, тогда в силу равенства нулю любой производной до k_i-1 порядка многочлена P в точке λ_i , можно показать, что

$$y_p^i = \left(\underbrace{0, \dots, 0}_{p}, p!, (p+1)! \lambda_i, \dots, \prod_{k=1}^p (n-k) \lambda_i^{n-p-1}\right).$$

Таким образом, доказано что матрица \mathcal{U} составлена из собственных и присоединенных векторов. Поэтому $det(\mathcal{U}) \neq 0$, и, следовательно, матрица \mathcal{U} является матрицей перехода к жордановой форме и имеет вид

$$\mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_m),$$

где матрицы $U_i, i = 1 \dots m$ имеют вид

$$\mathcal{U}_{i} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \lambda_{i} & 1 & \dots & 0 \\ \lambda_{i}^{2} & 2\lambda_{i} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{i}^{n-1} & (n-1)\lambda_{i}^{n-2} & \dots & \prod_{k=1}^{k_{i}-1} (n-k)\lambda_{i}^{n-k_{i}} \end{pmatrix}.$$

Теорема доказана.

Приведем примеры матрицы \mathcal{U} для двух частных случаев.

Пусть все собственные значения матрицы ${\mathcal A}$ различны. Тогда матрица ${\mathcal U}$ имеет вид

$$\mathcal{U} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 & \dots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 & \dots & \lambda_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \lambda_3^{n-1} & \dots & \lambda_n^{n-1} \end{pmatrix}.$$

Она является матрицей Вандермонда.

Пусть кратность единственного собственного значения λ_0 равна n. Тогда матрица $\mathcal U$ имеет вид

$$\mathcal{U} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ \lambda_0 & 1 & 0 & \dots & 0 \\ \lambda_0^2 & 2\lambda_0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \lambda_0^{n-1} & (n-1)\lambda_0^{n-2} & (n-1)(n-2)\lambda_0^{n-3} & \dots & (n-1)! \end{pmatrix}.$$

В качестве примера рассмотрим частный случай n=3. Тогда матрица ${\mathcal A}$ имеет вид:

$$\mathcal{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \alpha_3 & \alpha_2 & \alpha_1 \end{pmatrix}$$

Возможны три варианта:

1) все собственные значения различны;

- 2) собственные значения λ_1, λ_2 имеют кратности $k_1 = 2, \ k_2 = 1$ (либо наоборот);
- 3) матрица A имеет одно собственное значение λ_0 ;

Рассмотрим первый случай. Пусть матрица \mathcal{A} имеет собственные значения $\lambda_1, \lambda_2, \lambda_3$ кратностей $k_1 = k_2 = k_3 = 1$ соответственно. Оператор A имеет простую структуру. Тогда жорданова форма матрицы \mathcal{A} имеет вид:

$$\mathcal{J} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$

Далее запишем матрицу перехода $\mathcal U$ и обратную к ней $\mathcal U^{-1}$:

$$\mathcal{U} = \begin{pmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{pmatrix},$$

$$\mathcal{U}^{-1} = \frac{1}{\Delta} \begin{pmatrix} \lambda_2 \lambda_3 (\lambda_3 - \lambda_2) & \lambda_2^2 - \lambda_3^2 & \lambda_3 - \lambda_2 \\ \lambda_1 \lambda_3 (\lambda_1 - \lambda_3) & \lambda_3^2 - \lambda_1^2 & \lambda_1 - \lambda_3 \\ \lambda_1 \lambda_2 (\lambda_2 - \lambda_1) & \lambda_1^2 - \lambda_2^2 & \lambda_2 - \lambda_1 \end{pmatrix},$$

где $\Delta = \det \mathcal{U} = (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)(\lambda_2 - \lambda_1).$

Рассмотрим проекторы \mathcal{P}_i' жордановой матрицы \mathcal{J} оператора A, которые имеют вид:

$$\mathcal{P}_i' = \left(p_{jk}'\right),$$
 $p_{jk}' = \begin{cases} 1, & \text{если } j = k = i; \\ 0, & \text{в противном случае.} \end{cases}$

где $i, j, k \in \{1, 2, 3\}.$

Теперь запишем проекторы оператора A:

$$\mathcal{P}_i = \mathcal{U} \mathcal{P}_i' \mathcal{U}^{-1}$$

где $i \in \{1, 2, 3\}$.

Найдем проектор \mathcal{P}_1

$$\mathcal{P}_{1} = \frac{1}{\Delta} \begin{pmatrix} 1 & 1 & 1 \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{2}^{2} - \lambda_{3}^{2} & \lambda_{3} - \lambda_{2} \\ \lambda_{1}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{3}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{3} \\ \lambda_{1}\lambda_{2}(\lambda_{2} - \lambda_{1}) & \lambda_{1}^{2} - \lambda_{2}^{2} & \lambda_{2} - \lambda_{1} \end{pmatrix},$$

$$\mathcal{P}_{1} = \frac{1}{\Delta} \begin{pmatrix} 1 & 0 & 0 \\ \lambda_{1} & 0 & 0 \\ \lambda_{1}^{2} & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{2}^{2} - \lambda_{3}^{2} & \lambda_{3} - \lambda_{2} \\ \lambda_{1}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{3}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{3} \\ \lambda_{1}\lambda_{2}(\lambda_{2} - \lambda_{1}) & \lambda_{1}^{2} - \lambda_{2}^{2} & \lambda_{2} - \lambda_{1} \end{pmatrix},$$

$$\mathcal{P}_{1} = \frac{1}{\Delta} \begin{pmatrix} \lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{2}^{2} - \lambda_{3}^{2} & \lambda_{3} - \lambda_{2} \\ \lambda_{1}\lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{1}(\lambda_{2}^{2} - \lambda_{3}^{2}) & \lambda_{1}(\lambda_{3} - \lambda_{2}) \\ \lambda_{1}^{2}\lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{1}^{2}(\lambda_{2}^{2} - \lambda_{3}^{2}) & \lambda_{1}(\lambda_{3} - \lambda_{2}) \end{pmatrix},$$

где $\Delta = (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)(\lambda_2 - \lambda_1)$. Найдем проектор \mathcal{P}_2

$$\mathcal{P}_{2} = \frac{1}{\Delta} \begin{pmatrix} 1 & 1 & 1 \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{2}^{2} - \lambda_{3}^{2} & \lambda_{3} - \lambda_{2} \\ \lambda_{1}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{3}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{3} \\ \lambda_{1}\lambda_{2}(\lambda_{2} - \lambda_{1}) & \lambda_{1}^{2} - \lambda_{2}^{2} & \lambda_{2} - \lambda_{1} \end{pmatrix},$$

$$\mathcal{P}_{2} = \frac{1}{\Delta} \begin{pmatrix} 0 & 1 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & \lambda_{2}^{2} & 0 \end{pmatrix} \begin{pmatrix} \lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{2}^{2} - \lambda_{3}^{2} & \lambda_{3} - \lambda_{2} \\ \lambda_{1}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{3}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{3} \\ \lambda_{1}\lambda_{2}(\lambda_{2} - \lambda_{1}) & \lambda_{1}^{2} - \lambda_{2}^{2} & \lambda_{2} - \lambda_{1} \end{pmatrix},$$

$$\mathcal{P}_{2} = \frac{1}{\Delta} \begin{pmatrix} \lambda_{1}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{3}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{3} \\ \lambda_{1}\lambda_{2}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{2}(\lambda_{3}^{2} - \lambda_{1}^{2}) & \lambda_{2}(\lambda_{1} - \lambda_{3}) \\ \lambda_{1}\lambda_{2}^{2}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{2}^{2}(\lambda_{3}^{2} - \lambda_{1}^{2}) & \lambda_{2}^{2}(\lambda_{1} - \lambda_{3}) \end{pmatrix},$$

где $\Delta = (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)(\lambda_2 - \lambda_1)$. Найдем проектор \mathcal{P}_3

$$\mathcal{P}_{3} = \frac{1}{\Delta} \begin{pmatrix} 1 & 1 & 1 \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{1}^{2} & \lambda_{2}^{2} & \lambda_{3}^{2} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{2}^{2} - \lambda_{3}^{2} & \lambda_{3} - \lambda_{2} \\ \lambda_{1}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{3}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{3} \\ \lambda_{1}\lambda_{2}(\lambda_{2} - \lambda_{1}) & \lambda_{1}^{2} - \lambda_{2}^{2} & \lambda_{2} - \lambda_{1} \end{pmatrix},$$

$$\mathcal{P}_{3} = \frac{1}{\Delta} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & \lambda_{3} \\ 0 & 0 & \lambda_{3}^{2} \end{pmatrix} \begin{pmatrix} \lambda_{2}\lambda_{3}(\lambda_{3} - \lambda_{2}) & \lambda_{2}^{2} - \lambda_{3}^{2} & \lambda_{3} - \lambda_{2} \\ \lambda_{1}\lambda_{3}(\lambda_{1} - \lambda_{3}) & \lambda_{3}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{3} \\ \lambda_{1}\lambda_{2}(\lambda_{2} - \lambda_{1}) & \lambda_{1}^{2} - \lambda_{2}^{2} & \lambda_{2} - \lambda_{1} \end{pmatrix},$$

$$\mathcal{P}_{3} = \frac{1}{\Delta} \begin{pmatrix} \lambda_{1}\lambda_{2}(\lambda_{2} - \lambda_{1}) & \lambda_{1}^{2} - \lambda_{2}^{2} & \lambda_{2} - \lambda_{1} \\ \lambda_{1}\lambda_{2}\lambda_{3}(\lambda_{2} - \lambda_{1}) & \lambda_{3}(\lambda_{1}^{2} - \lambda_{2}^{2}) & \lambda_{3}(\lambda_{2} - \lambda_{1}) \\ \lambda_{1}\lambda_{2}\lambda_{3}^{2}(\lambda_{2} - \lambda_{1}) & \lambda_{3}^{2}(\lambda_{1}^{2} - \lambda_{2}^{2}) & \lambda_{3}^{2}(\lambda_{2} - \lambda_{1}) \end{pmatrix},$$

где $\Delta = (\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)(\lambda_2 - \lambda_1)$

Тогда по теореме о спектральном разложении оператора простой структуры [2]:

$$\mathcal{A} = \lambda_1 \mathcal{P}_1 + \lambda_2 \mathcal{P}_2 + \lambda_3 \mathcal{P}_3$$

Рассмотрим второй случай. Пусть матрица \mathcal{A} имеет собственные значения $\lambda_1, \ \lambda_2$ которые имеют кратности $k_1 = 2, \ k_2 = 1$ соответственно. Тогда жорданова форма матрицы \mathcal{A} имеет вид:

$$\mathcal{J} = \begin{pmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$$

Запишем матрицу перехода \mathcal{U} и обратную к ней \mathcal{U}^{-1} :

$$\mathcal{U} = \begin{pmatrix} 1 & 0 & 1 \\ \lambda_1 & 1 & \lambda_2 \\ \lambda_1^2 & 2\lambda_1 & \lambda_2^2 \end{pmatrix},$$

$$\mathcal{U}^{-1} = \frac{1}{\Delta} \begin{pmatrix} \lambda_2^2 - 2\lambda_1\lambda_2 & 2\lambda_1 & -1 \\ \lambda_1^2\lambda_2 - \lambda_1\lambda_2^2 & \lambda_2^2 - \lambda_1^2 & \lambda_1 - \lambda_2 \\ \lambda_1^2 & -2\lambda_1 & 1 \end{pmatrix},$$

где $\Delta = \det \mathcal{U} = (\lambda_1 - \lambda_2)^2$.

Рассмотрим проекторы $\mathcal{P}'_i, i \in \{1,2\}$ жордановой матрицы \mathcal{J} оператора A и её нильпотентную часть \mathcal{Q}' .

$$\mathcal{P}'_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \mathcal{P}'_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$\mathcal{Q}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Теперь запишем проекторы оператора A и нильпотентную часть жордановой матрицы:

$$\mathcal{P}_i = \mathcal{U} \mathcal{P}_i' \mathcal{U}^{-1},$$
$$\mathcal{Q} = \mathcal{U} \mathcal{Q}' \mathcal{U}^{-1},$$

где $i \in \{1, 2\}$.

Найдем проектор \mathcal{P}_1

$$\mathcal{P}_{1} = \begin{pmatrix} 1 & 0 & 1 \\ \lambda_{1} & 1 & \lambda_{2} \\ \lambda_{1}^{2} & 2\lambda_{1} & \lambda_{2}^{2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_{2}^{2} - 2\lambda_{1}\lambda_{2} & 2\lambda_{1} & -1 \\ \lambda_{1}^{2}\lambda_{2} - \lambda_{1}\lambda_{2}^{2} & \lambda_{2}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{2} \\ \lambda_{1}^{2} & -2\lambda_{1} & 1 \end{pmatrix}$$

$$\mathcal{P}_{1} = \begin{pmatrix} 1 & 0 & 0 \\ \lambda_{1} & 1 & 0 \\ \lambda_{1}^{2} & 2\lambda_{1} & 0 \end{pmatrix} \begin{pmatrix} \lambda_{2}^{2} - 2\lambda_{1}\lambda_{2} & 2\lambda_{1} & -1 \\ \lambda_{1}^{2}\lambda_{2} - \lambda_{1}\lambda_{2}^{2} & \lambda_{2}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{2} \\ \lambda_{1}^{2} & -2\lambda_{1} & 1 \end{pmatrix}$$

$$\mathcal{P}_{1} = \begin{pmatrix} \lambda_{2}^{2} - 2\lambda_{1}\lambda_{2} & 2\lambda_{1} & -1 \\ -\lambda_{1}^{2}\lambda_{2} & \lambda_{1}^{2} + \lambda_{2}^{2} & -\lambda_{2} \\ -\lambda_{1}^{2}\lambda_{2}^{2} & 2\lambda_{1}\lambda_{2}^{2} & \lambda_{1}^{2} - 1\lambda_{1}\lambda_{2} \end{pmatrix}$$

Найдем проектор \mathcal{P}_2

$$\mathcal{P}_{2} = \begin{pmatrix} 1 & 0 & 1 \\ \lambda_{1} & 1 & \lambda_{2} \\ \lambda_{1}^{2} & 2\lambda_{1} & \lambda_{2}^{2} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda_{2}^{2} - 2\lambda_{1}\lambda_{2} & 2\lambda_{1} & -1 \\ \lambda_{1}^{2}\lambda_{2} - \lambda_{1}\lambda_{2}^{2} & \lambda_{2}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{2} \\ \lambda_{1}^{2} & -2\lambda_{1} & 1 \end{pmatrix}$$

$$\mathcal{P}_{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & \lambda_{2} \\ 0 & 0 & \lambda_{2}^{2} \end{pmatrix} \begin{pmatrix} \lambda_{2}^{2} - 2\lambda_{1}\lambda_{2} & 2\lambda_{1} & -1 \\ \lambda_{1}^{2}\lambda_{2} - \lambda_{1}\lambda_{2}^{2} & \lambda_{2}^{2} - \lambda_{1}^{2} & \lambda_{1} - \lambda_{2} \\ \lambda_{1}^{2} & -2\lambda_{1} & 1 \end{pmatrix}$$

$$\mathcal{P}_{2} = \begin{pmatrix} \lambda_{1}^{2} & -2\lambda_{1} & 1 \\ \lambda_{1}^{2}\lambda_{2} & -2\lambda_{1}\lambda_{2} & \lambda_{2} \\ \lambda_{1}^{2}\lambda_{2}^{2} & -2\lambda_{1}\lambda_{2}^{2} & \lambda_{2}^{2} \end{pmatrix}$$

Найдем нильпотентную часть жордановой матрицы $\mathcal Q$

$$\begin{split} \mathcal{Q} &= \begin{pmatrix} 1 & 0 & 1 \\ \lambda_1 & 1 & \lambda_2 \\ \lambda_1^2 & 2\lambda_1 & \lambda_2^2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \lambda_2^2 - 2\lambda_1\lambda_2 & 2\lambda_1 & -1 \\ \lambda_1^2\lambda_2 - \lambda_1\lambda_2^2 & \lambda_2^2 - \lambda_1^2 & \lambda_1 - \lambda_2 \\ \lambda_1^2 & -2\lambda_1 & 1 \end{pmatrix} \\ \mathcal{Q} &= \begin{pmatrix} 0 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & \lambda_1^2 & 0 \end{pmatrix} \begin{pmatrix} \lambda_2^2 - 2\lambda_1\lambda_2 & 2\lambda_1 & -1 \\ \lambda_1^2\lambda_2 - \lambda_1\lambda_2^2 & \lambda_2^2 - \lambda_1^2 & \lambda_1 - \lambda_2 \\ \lambda_1^2 & -2\lambda_1 & 1 \end{pmatrix} \\ \mathcal{Q} &= \begin{pmatrix} \lambda_1^2\lambda_2 - \lambda_1\lambda_2^2 & \lambda_2^2 - \lambda_1^2 & \lambda_1 - \lambda_2 \\ \lambda_1(\lambda_1^2\lambda_2 - \lambda_1\lambda_2^2) & \lambda_1(\lambda_2^2 - \lambda_1^2) & \lambda_1(\lambda_1 - \lambda_2) \\ \lambda_1^2(\lambda_1^2\lambda_2 - \lambda_1\lambda_2^2) & \lambda_1^2(\lambda_2^2 - \lambda_1^2) & \lambda_1^2(\lambda_1 - \lambda_2) \end{pmatrix} \end{split}$$

Тогда по теореме о спектральном разложении линейного оператора [2]:

$$\mathcal{A} = \lambda_1 \mathcal{P}_1 + \lambda_2 \mathcal{P}_2 + \mathcal{Q}.$$

Рассмотрим третий случай. Пусть матрица \mathcal{A} имеет одно собственное значение λ кратности k=3. Тогда жорданова форма матрицы \mathcal{A} имеет вид:

$$\mathcal{J} = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

Запишем матрицу перехода $\mathcal U$ и обратную к ней $\mathcal U^{-1}$:

$$\mathcal{U} = \begin{pmatrix} 1 & 0 & 0 \\ \lambda & 1 & 0 \\ \lambda^2 & 2\lambda & 2 \end{pmatrix},$$
$$\mathcal{U}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ -\lambda & 1 & 0 \\ \frac{1}{2}\lambda^2 & -\lambda & \frac{1}{2} \end{pmatrix}.$$

Спектральное разложение для этого случая очевидно.

Литература

- 1. Боровских А.В., Перов А.И. Лекции по обыкновенным дифференциальным уравнениям // Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2004, 540 стр
- 2. $\it Backaros A. \Gamma. \it Лекции по алгебре // Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2013, 159 стр$