DIGITAL-TO-DIGITAL CONVERSION

Digital-to-digital encoding is the representation of digital information by a digital signal. When binary 1s and 0s generated by the computer are translated into a sequence of voltage pulses that can be propagated over a wire, this process is known as digital-to-digital encoding.

Digital-to-digital encoding is divided into three categories:

- Unipolar Encoding
- Polar Encoding
- Bipolar Encoding

Unipolar

- Digital transmission system sends the voltage pulses over the medium link such as wire or cable.
- In most types of encoding, one voltage level represents 0, and another voltage level represents 1.
- o The polarity of each pulse determines whether it is positive or negative.

- This type of encoding is known as Unipolar encoding as it uses only one polarity.
- o In Unipolar encoding, the polarity is assigned to the 1 binary state.
- o In this, 1s are represented as a positive value and 0s are represented as a zero value.
- In Unipolar Encoding, '1' is considered as a high voltage and '0' is considered as a zero voltage.
- o Unipolar encoding is simpler and inexpensive to implement.

Unipolar encoding has two problems that make this scheme less desirable:

- o DC Component
- Synchronization

Polar

- Polar encoding is an encoding scheme that uses two voltage levels: one is positive, and another is negative.
- By using two voltage levels, an average voltage level is reduced, and the DC component problem of unipolar encoding scheme is alleviated.

NRZ

- o NRZ stands for Non-return zero.
- o In NRZ encoding, the level of the signal can be represented either positive or negative.

The two most common methods used in NRZ are:

NRZ-L: In NRZ-L encoding, the level of the signal depends on the type of the bit that it represents. If a bit is 0 or 1, then their voltages will be positive and negative respectively. Therefore, we can say that the level of the signal is dependent on the state of the bit.

NRZ-I: NRZ-I is an inversion of the voltage level that represents 1 bit. In the NRZ-I encoding scheme, a transition occurs between the positive and negative voltage that represents 1 bit. In this scheme, 0 bit represents no change and 1 bit represents a change in voltage level.

- RZ stands for Return to zero.
- o There must be a signal change for each bit to achieve synchronization. However, to change with every bit, we need to have three values: positive, negative and zero.
- o RZ is an encoding scheme that provides three values, positive voltage represents 1, the negative voltage represents 0, and zero voltage represents none.
- o In the RZ scheme, halfway through each interval, the signal returns to zero.
- o In RZ scheme, 1 bit is represented by positive-to-zero and 0 bit is represented by negative-to-zero.

Bipolar

- o Bipolar encoding scheme represents three voltage levels: positive, negative, and zero.
- In Bipolar encoding scheme, zero level represents binary 0, and binary 1 is represented by alternating positive and negative voltages.
- o If the first 1 bit is represented by positive amplitude, then the second 1 bit is represented by negative voltage, third 1 bit is represented by the positive amplitude and so on. This alternation can also occur even when the 1 bits are not consecutive.

Bipolar can be classified as:

AMI

- o AMI stands for *alternate mark inversion* where mark work comes from telegraphy which means 1. So, it can be redefined as *alternate 1 inversion*.
- o In Bipolar AMI encoding scheme, 0 bit is represented by zero level and 1 bit is represented by alternating positive and negative voltages.

Advantage:

- o DC component is zero.
- Sequence of 1s bits are synchronized.

Disadvantage:

o This encoding scheme does not ensure the synchronization of a long string of 0s bits.

B8ZS

- B8ZS stands for Bipolar 8-Zero Substitution.
- o This technique is adopted in North America to provide synchronization of a long sequence of 0s bits.
- o In most of the cases, the functionality of B8ZS is similar to the bipolar AMI, but the only difference is that it provides the synchronization when a long sequence of 0s bits occur.
- B8ZS ensures synchronization of a long string of 0s by providing force artificial signal changes called violations, within 0 string pattern.
- When eight 0 occurs, then B8ZS implements some changes in 0s string pattern based on the polarity of the previous 1 bit.
- o If the polarity of the previous 1 bit is positive, the eight 0s will be encoded as zero, zero, zero, positive, negative, zero, negative, positive.

o If the polarity of previous 1 bit is negative, then the eight 0s will be encoded as zero, zero, zero, negative, positive, zero, positive, negative.

HDB3

- HDB3 stands for High-Density Bipolar 3.
- HDB3 technique was first adopted in Europe and Japan.
- HDB3 technique is designed to provide the synchronization of a long sequence of 0s bits.
- In the HDB3 technique, the pattern of violation is based on the polarity of the previous bit.
- o When four 0s occur, HDB3 looks at the number of 1s bits occurred since the last substitution.
- If the number of 1s bits is odd, then the violation is made on the fourth consecutive of
 If the polarity of the previous bit is positive, then the violation is positive. If the polarity of the previous bit is negative, then the violation is negative.

If the number of 1s bits since the last substitution is odd.

If the number of 1s bits is even, then the violation is made on the place of the first and fourth consecutive 0s. If the polarity of the previous bit is positive, then violations are negative, and if the polarity of the previous bit is negative, then violations are positive.

If the number of 1s bits since the last substitution is even.

Digital-to-Analog Conversion

When data from one computer is sent to another via some analog carrier, it is first converted into analog signals. Analog signals are modified to reflect digital data.

An analog signal is characterized by its amplitude, frequency, and phase. There are three kinds of digital-to-analog conversions:

Amplitude Shift Keying

In this conversion technique, the amplitude of analog carrier signal is modified to reflect binary data.

• When binary data represents digit 1, the amplitude is held; otherwise, it is set to 0. Both frequency and phase remain same as in the original carrier signal.

Frequency Shift Keying

In this conversion technique, the frequency of the analog carrier signal is modified to reflect binary data.

This technique uses two frequencies, f1 and f2. One of them, for example f1, is chosen to represent binary digit 1 and the other one is used to represent binary digit 0. Both amplitude and phase of the carrier wave are kept intact.

Phase Shift Keying

In this conversion scheme, the phase of the original carrier signal is altered to reflect the binary data.

When a new binary symbol is encountered, the phase of the signal is altered. Amplitude and frequency of the original carrier signal is kept intact.

Analog-to-Analog Conversion

Analog signals are modified to represent analog data. This conversion is also known as Analog Modulation. Analog modulation is required when bandpass is used. Analog to analog conversion can be done in three ways:

Amplitude Modulation

In this modulation, the amplitude of the carrier signal is modified to reflect the analog data.

• Amplitude modulation is implemented by means of a multiplier. The amplitude of modulating signal (analog data) is multiplied by the amplitude of carrier frequency, which then reflects analog data.

The frequency and phase of carrier signal remain unchanged.

Frequency Modulation

In this modulation technique, the frequency of the carrier signal is modified to reflect the change in the voltage levels of the modulating signal (analog data).

• The amplitude and phase of the carrier signal are not altered.

Phase Modulation

In the modulation technique, the phase of carrier signal is modulated in order to reflect the change in voltage (amplitude) of analog data signal.

Phase modulation is practically similar to Frequency Modulation, but in Phase modulation frequency of the carrier signal is not increased. Frequency of carrier is signal is changed (made dense and sparse) to reflect voltage change in the amplitude of modulating signal.

ANALOG-TO-DIGITAL CONVERSION

- o When an analog signal is digitalized, this is called an analog-to-digital conversion.
- Suppose human sends a voice in the form of an analog signal, we need to digitalize the analog signal which is less prone to noise. It requires a reduction in the number of values in an analog message so that they can be represented in the digital stream.

PCM

- PCM stands for Pulse Code Modulation.
- PCM technique is used to modify the pulses created by PAM to form a digital signal. To achieve this, PCM quantizes PAM pulses. Quantization is a process of assigning integral values in a specific range to sampled instances.
- PCM is made of four separate processes: PAM, quantization, binary encoding, and digital-to-digital encoding.

