Math 412. Ideals

DEFINITION: An **ideal** of a ring R is a nonempty subset I satisfying

- (1) If $x_1, x_2 \in I$, then $x_1 + x_2 \in I$.
- (2) If $x \in I$ and $r \in R$, then $rx \in I$ and $xr \in I$;

CAUTION: When reading the text, you will see an ideal defined as a certain kind of "subring". ****Do not use this definition!**** Remember that for us, a subring always contains 1, because all rings contain 1. But most ideals do not contain 1. DEFINITION: Let I be an

ideal of a ring R. Consider arbitrary $x, y \in R$. We say that x is **congruent** to y **modulo** I if $x - y \in I$. In this case, we write $x \equiv y \pmod{I}$.

DEFINITION: The **congruence class of** y **modulo** I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I. We denote the congruence class modulo I by y+I.

Part 1: Getting acquainted.

A. A WARM-UP TO THE WARM-UP. Check the following are true:

- (1) Every ideal contains 0.
- (2) Ideals are closed under additive inverses.
- (3) If $1 \in I$, then I = R.
- B. WARM-UP. Which of the following are ideals in the given rings?
 - (1) The set I of even integers in the ring \mathbb{Z} .
 - (2) The set I of odd integers in the ring \mathbb{Z} .
 - (3) The set I of integers that can be obtained as a \mathbb{Z} -linear combination of the integers 18 and 24.
 - (4) The set of polynomials f in $\mathbb{C}[x]$ with nonzero constant term.
 - (5) The set of polynomials with even coefficients in $\mathbb{Z}[x]$.
 - (6) The set of classes $\{[0]_{12}, [3]_{12}, [6]_{12}, [9]_{12}\}$ in the ring \mathbb{Z}_{12} .

Solution. (2) and (4) are not ideals, but all the other ones are.

- C. INTRODUCTORY PROOFS. Fix a commutative ring R and an ideal I.
 - (1) Prove that the kernel of a ring homomorphism $R \stackrel{\varphi}{\to} S$ is an ideal of R.
 - (2) Verify that the set $\{y+z\mid z\in I\}$ really is precisely the set of all elements of R which are congruent to y modulo I.
 - (3) Verify that congruence modulo I is an equivalence relation on R.

- (1) The kernel is nonempty because it always contains 0. If $\phi(x) = \phi(y) = 0$, then $\phi(x+y) = \phi(x) + \phi(y) = 0$. Also, given any $r \in R$, $\phi(rx) = \phi(r)\phi(x) = 0$.
- (2) $x \in R$ is congruent to y modulo I if and only if $x y \in I$, or equivalently if x y = z for some $z \in I$, that is x = y + z for some $z \in I$.
- (3) The proof is the same as what we have done over \mathbb{Z} and $\mathbb{F}[x]$.

Part 2: Looking forward.

- D. PRINCIPAL IDEALS. Fix a commutative ring R and fix some $c \in R$. Let I be the set $(c) := \{rc \mid r \in R\}$ of all multiples of c.
 - (1) Prove that I is an ideal. We call this the **principal ideal** generated by c.
 - (2) Let R be a commutative ring, and $r, s \in R$. When is $(r) \subseteq (s)$? When is (r) = (s)?
 - (3) Show that a is congruent to b modulo I if and only if c divides a b in R.
 - (4) In the case $R = \mathbb{Z}$, fix c = 20. In common language from high school, what is the principal ideal generated by 20? What is another notation for 17 + I?
 - (5) Let $R = \mathbb{Z}[x]$, and I be the set of polynomials in R such that f(0) is an even integer. Show that I is an ideal, but that I is *not* a principal ideal for any choice of c.²

Solution.

- (1) Given $r, s \in R$, $rc + sc = (r + s)c \in I$. Given any $r, s \in I$, $s(rc) = (sr)c \in I$. Also I is nonempty because $c \in I$.
- (2) $(r) \subseteq (s)$ if and only if s|r. (r) = (s) if and only if r|s and s|r. If R also happens to be a domain, this means that r = us for some unit u.
- (3) By definition, a is congruent to b if $a b \in I$, which is equivalent to saying a b = rc, which is equivalent to saying c divides a b.
- (4) The principal ideal generated by 20 is the set of multiples of 20. Another notation for 17 + I is $[17]_{20}$.
- (5) We prove this by contradiction. If I=(c) for some c, then c|2 and c|x. Since c|2, we know that c is a constant. Then, c is a constant that divides 2, so $c=\pm 1, \pm 2$. But, x is not a multiple of ± 2 in $\mathbb{Z}[x]$, so I=(1). But this is a contradiction, since $1 \notin I$!

E. IDEALS IN \mathbb{Z} AND $\mathbb{F}[x]$.

- (1) Let I be an ideal in \mathbb{Z} , and suppose that $I \neq \{0\}$. Prove that I = (c), where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
- (2) Let \mathbb{F} be a field, and $R = \mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq \{0\}$. Prove that I = (f(x)), where f(x) is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
- (3) Is every ideal in every ring a principal ideal?

- (1) Note first that I contains a positive integer, since it contains some nonzero integer, and it is closed under "negatives." We need to show that if $x \in I$, then c|x. Use the division algorithm to write x = cq + r, with $0 \le r < c$. Since $c \in I$, $cq \in I$. Since $cq \in I$, $cq \in I$. Since $cq \in I$, $cq \in I$. Since $cq \in I$, $cq \in I$. By definition of c, we must have $cq \in I$ and $cq \in I$ are $cq \in I$. By definition of $cq \in I$ and $cq \in I$ and $cq \in I$ are $cq \in I$. By definition of $cq \in I$ and $cq \in I$ are $cq \in I$ and $cq \in I$ are $cq \in I$.
- (2) The proof is analogous to the previous part, just using the division algorithm for polynomials instead!
- (3) No!

 $^{{}^{1}}x|y$ in R if there exists a $z \in R$ such that xz = y.

²Hint: $2 \in I$ and $x \in I$.

Part 3: Going Deeper/Combining ideas.

F. GENERATORS.

(1) Fix any elements c_1, c_2, \ldots, c_t in a commutative ring R. Show that the set

$$\{r_1c_1 + r_2c_2 + \dots + r_tc_t \mid r_i \in R\}$$

of R-linear combinations of the c_i is an ideal of R. We denote this ideal by (c_1, c_2, \dots, c_t) , and call it the **ideal generated by** c_1, c_2, \dots, c_t .

- (2) Let $m, n \in \mathbb{Z}$. We know that the ideal generated by m and n is principal. What is a (single) generator for this ideal?
- (3) Let $f, g \in \mathbb{F}[x]$. We know that the ideal generated by f and g is principal. What is a (single) generator for this ideal?
- (4) Find generators for the ideal considered in D5.
- (5) Consider the ideal $(x, y) \subseteq \mathbb{R}[x, y]$. Is it principal?

Solution.

- (1) We need to show that this is closed under addition, and absorbs multiplication. Let $x,y\in (c_1,c_2,\ldots,c_t)$. Write $x=r_1c_1+r_2c_2+\cdots+r_tc_t$ and $y=s_1c_1+s_2c_2+\cdots+s_tc_t$. Then
- $x+y = r_1c_1 + r_2c_2 + \cdots + r_tc_t + s_1c_1 + s_2c_2 + \cdots + s_tc_t = (r_1+s_1)c_1 + (r_2+s_2)c_2 + \cdots + (r_t+s_t)c_t$ which is in (c_1, c_2, \dots, c_t) . Similarly, for $a \in R$, we have
- $ax = a(r_1c_1 + r_2c_2 + \dots + r_tc_t) = ar_1c_1 + ar_2c_2 + \dots + ar_tc_t = (ar_1)c_1 + (ar_2)c_2 + \dots + (ar_t)c_t,$ which is in (c_1, c_2, \dots, c_t) .
 - (2) The GCD of m and n! Let $d = \gcd(m, n)$. By a theorem, we know that there are elements $a, b \in \mathbb{Z}$ such that d = am + bn. Then, for any $c \in \mathbb{Z}$, $cd = (ca)m + (cb)n \in (m, n)$, so $(d) \subseteq (m, n)$. On the other hand, we can write m = du, n = dv for some integers u, v, so any number of the form am + bn can we written as $(au + bv)d \in (d)$, so $(m, n) \subseteq d$.
 - (3) The proof is analogous to the previous one!
 - (4) (2, x)
 - (5) No!

G. PRODUCTS. Let $R \times S$ be a product of two rings.

- (1) Show that the set $I = R \times \{0_S\} = \{(r, 0_S) \mid r \in R\}$ is an ideal of $R \times S$.
- (2) Prove that (r_1, s_1) is congruent modulo I to (r_2, s_2) if and only if $s_1 = s_2$.
- (3) Prove that every congruence class of $R \times S$ modulo I contains exactly one element of the form $(0_R, s)$ where $s \in S$.
- (4) Prove that the map $R \times S \to S$ sending $(r, s) \mapsto s$ is a surjective ring homomorphism with kernel I.

- (1) Given $(r_1, 0)$ and $(r_2, 0)$ in I, we have $(r_1, 0) + (r_2, 0) = (r_1 + r_2, 0) \in I$, and given $(r_1, 0) \in I$ and $(a, b) \in R \times S$, we have $(a, b)(r_1, 0) = (ar_1, 0) \in I$.
- (2) (r_1, s_1) is congruent to (r_2, s_2) modulo I if and only if $(r_1, s_1) (r_2, s_2) = (r_1 r_2, s_1 s_2) \in I$; equivalently $s_1 s_2 = 0$, or $s_1 = s_2$, by the definition of I.

- (3) We must show that any $(a,b) \in R \times S$ is congruent modulo I to exactly one element of the form (0,s) for $s \in S$; indeed, by the previous part, this is true exactly for s = b.
- (4) The map is clearly surjective, and is easily checked to be a ring homomorphism. An element (r, s) is in the kernel if and only if s = 0, i.e. if and only if $(r, s) \in I$.

H. IDEALS IN FIELDS.

- (1) Let I be an ideal in a ring R. Prove that if $1_R \in I$, then I = R.
- (2) Prove that if \mathbb{F} is a field, then its only ideals are $\{0\}$ and \mathbb{F} .
- (3) Prove that if \mathbb{F} is a field and R is a ring in which $0 \neq 1$, then every ring homomorphism $\mathbb{F} \stackrel{\phi}{\to} R$ is injective.

- (1) For any $r \in R$, we have $r = 1 \times R$, so $r \in I$ by the absorption property.
- (2) If $I \neq \{0\}$, there is some $s \neq 0$ in I. Then, for any $r \in \mathbb{F}$, we can write $r = (rs^{-1})s$, so $r \in I$ by the absorption property.
- (3) The kernel is an ideal, and is not all of \mathbb{F} , since 1 is not in the kernel (1 maps to $1 \neq 0$). Thus, the kernel is zero, so the homomorphism is injective!