DATA SOCIETY®

Introduction to classification - day 2

"One should look for what is and not what he thinks should be."
-Albert Einstein.

Module completion checklist

Objective	Complete
Determine when to use logistic regression for classification and transformation of target variable	
Summarize the process and the math behind logistic regression	
Implement logistic regression on a training dataset and predict on test	
Review classification performance metrics and assess results of logistic model performance	
Transform categorical variables for implementation of logistic regression	
Implement logistic regression on the data and assess results of classification model performance	
Analyze the model to determine if / when overfitting occurs	
Demonstrate tuning the model using grid search cross-validation	

Directory settings

- In order to maximize the efficiency of your workflow, you should encode your directory structure into variables
- Let the main dir be the variable corresponding to your af-werx folder

```
# Set `main_dir` to the location of your `af-werx` folder (for Linux).
main_dir = "/home/[username]/Desktop/af-werx"

# Set `main_dir` to the location of your `af-werx` folder (for Mac).
main_dir = "/Users/[username]/Desktop/af-werx'

# Set `main_dir` to the location of your `af-werx` folder (for Windows).
main_dir = "C:\\Users\\[username]\\Desktop\\af-werx"

# Make `data_dir` from the `main_dir` and
# remainder of the path to data directory.
data_dir = main_dir + "/data"
```

Loading packages

Load the packages we will be using

```
# Helper packages.
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pickle
# Scikit-learn package for logistic regression.
from sklearn import linear model
# Model set up and tuning packages from scikit-learn.
from sklearn.model selection import train test split
from sklearn.model selection import GridSearchCV
# Scikit-learn packages for evaluating model performance.
from sklearn import metrics
# Scikit-learn package for data preprocessing.
from sklearn import preprocessing
```

Working directory

Set working directory to data dir

```
# Set working directory.
os.chdir(data_dir)

# Check working directory.
print(os.getcwd())

/home/[user-name]/Desktop/af-werx/data
```

Logistic regression: what is it?

- Supervised machine learning method
- Target/dependent variable is binary (one/zero)
- Outputs the **probability** that an observation will be in the desired class (y = 1)
- Solves for coefficients to create a curved function to maximize the likelihood of correct classification
- logistic comes from the logit function (a.k.a. sigmoid function)

Logistic regression: when to use it?

- Logistic regression is a supervised learning algorithm
 - We use it to classify data into **categories**
- It outputs **probabilities** and not actual class labels
 - Easily tweak its performance by adjusting a cut-off probability
 - No need to re-run the model with new parameters
- It is a well-established algorithm
 - It has multitudes of **implementations across many programming languages**
 - We can create **robust**, **efficient**, and **well-optimized models**

Logistic regression: process

Categorical to binary target variable

Two main ways to prepare the target variable:

• First method: translate an existing binary variable (i.e. any categorical variable with 2 classes) into 1 and 0

Continuous to binary target variable

- Second method: convert a continuous numeric variable into binary one
 - We can do this by using a threshold and labeling observations that are higher than that threshold as 1 and 0 otherwise
 - If the median for the example below was 100, then any point below the median is 0, and any point above is 1

Module completion checklist

Objective	Complete
Determine when to use logistic regression for classification and transformation of target variable	/
Summarize the process and the math behind logistic regression	
Implement logistic regression on a training dataset and predict on test	
Review classification performance metrics and assess results of logistic model performance	
Transform categorical variables for implementation of logistic regression	
Implement logistic regression on the data and assess results of classification model performance	
Analyze the model to determine if / when overfitting occurs	
Demonstrate tuning the model using grid search cross-validation	

Linear vs logistic regression

Linear regression line

- For data points x_1, \ldots, x_n , we have y = 0 or y = 1
- The function that "fits" the points is a simple line $\hat{y} = ax + b$

Logistic regression curve

- For the same data points x_1, \ldots, x_n , y = 0 or y = 1
- The function that "fits" the data points is a sigmoid $p(y = 1) = \frac{exp(ax+b)}{1+exp(ax+b)}$

Logistic regression: function

- For every value of x, we find p, i.e. probability of success, or probability that y=1
- To solve for p, logistic regression uses an expression called a **sigmoid function**:

$$p = \frac{exp(ax+b)}{1 + exp(ax+b)}$$

• Although it may look a little scary (nobody likes exponents!), we can see a very **familiar** equation inside of the parentheses: ax + b

Logistic regression: a bit more math

Through some algebraic transformations that are beyond the scope of this course,

$$p = \frac{exp(ax+b)}{1 + exp(ax+b)}$$

can become

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

- Since p is the probability of success, 1 p is the probability of failure
- The ratio $\left(\frac{p}{1-p}\right)$ is called the **odds** ratio it tells us the **odds** of having a successful outcome with respect to the opposite
- Why should we care?
 - Knowing this provides useful insight into interpreting the coefficients

Logistic regression: coefficients

• In linear regression, the coefficients in the equation can easily be interpreted

$$ax + b$$

ullet An increase in x will result in an increase in y and vice versa

BUT

- In **logistic** regression, the simplest way to interpret a positive coefficient is with an increase in likelihood
- A larger value of x increases the likelihood that y=1

Module completion checklist

Objective	Complete
Determine when to use logistic regression for classification and transformation of target variable	/
Summarize the process and the math behind logistic regression	/
Implement logistic regression on a training dataset and predict on test	
Review classification performance metrics and assess results of logistic model performance	
Transform categorical variables for implementation of logistic regression	
Implement logistic regression on the data and assess results of classification model performance	
Analyze the model to determine if / when overfitting occurs	
Demonstrate tuning the model using grid search cross-validation	

Datasets for logistic regression

- We will be using two datasets total, we discussed each of the datasets and use cases already
- One dataset to learn the concepts in class
 - Costa Rica household poverty data

- One dataset for our in-class exercises
 - Chicago census data

Costa Rican poverty recap

Costa Rican poverty level prediction: proposed solution

- To improve on PMT, the IDB built a competition for Kaggle participants to use methods beyond traditional econometrics
- The given dataset contains Costa Rican household characteristics with a target of four categories:
 - extreme poverty
 - moderate poverty
 - vulnerable households
 - non vulnerable households

Load the dataset

Let's load the entire dataset

```
household_poverty = pd.read_csv("costa_rica_poverty.csv")
print(household_poverty.head())

household_id ind_id rooms ... age Target monthly_rent
0 21eb7fcc1 ID_279628684 3 ... 43 4 190000.0
1 0e5d7a658 ID_f29eb3ddd 4 ... 67 4 135000.0
2 2c7317ea8 ID_68de51c94 8 ... 92 4 NaN
3 2b58d945f ID_d671db89c 5 ... 17 4 180000.0
4 2b58d945f ID_d56d6f5f5 5 ... 37 4 180000.0

[5 rows x 84 columns]
```

• The entire dataset consists of 9557 observations and 84 variables

Subsetting data

- In this module, we will run the model on a simple subset
- We don't want to use monthly_rent as a variable right now because we had so many NAs
- For our report, your boss wants to see if maybe the **number of rooms** and **number of adults** would predict poverty level well
- Then we are going to predict the same with whole dataset

Subsetting data

- Let's subset our data so that we have the variables we need for building our model
- We will drop the variables containing ID as they do not provide any significance for the model, along with monthly_rent
- Let's name this subset household logistic

```
household_logistic = household_poverty.drop(['household_id', 'ind_id', 'monthly_rent'], axis = 1)
```

 For now, we are only going to use rooms and num_adults for a simple logistic regression model

The data at first glance

 Look at the data types and the frequency table of the target variable

```
# The data types.
print(household_logistic.dtypes.head())
```

```
rooms int64
tablet int64
males_under_12 int64
males_over_12 int64
males_tot int64
dtype: object
```

```
print(household_logistic['Target'].value_counts())
```

```
4 5996
2 1597
3 1209
1 755
Name: Target, dtype: int64
```

 The target variable is not well-balanced and has four levels

Converting the target variable

- Let's convert poverty to a binary target variable, which will help to balance it out
- The levels translate to 1, 2 and 3 as being **vulnerable** households
- Level 4 is **non vulnerable**
- For this reason, we will convert all 1, 2 and 3 to vulnerable and 4 to non vulnerable

Data prep: check for NAs

Check for NAs

```
# Check for NAs.
print(household_logistic.isnull().sum().head())
```

```
rooms 0
tablet 0
males_under_12 0
males_over_12 0
males_tot 0
dtype: int64
```

We do not have any NAs!

Data prep: numeric variables

- We try and use numeric data as predictors
- In some cases, we can **convert categorical data to integer values**
- However, in this simple example, our predictors are numeric by default
- Let's double check:

```
print(household_logistic.dtypes.head())
```

```
rooms int64
tablet int64
males_under_12 int64
males_over_12 int64
males_tot int64
dtype: object
```

Data prep: target

- The next step of our data cleanup is to ensure the target variable is binary and has a label
- Let's look at the dtype of Target

```
print(household_logistic.Target.dtypes)

object
```

• We want to convert this to bool (Boolean type) so that it's a binary class

```
household_logistic["Target"] = np.where(household_logistic["Target"] == "non_vulnerable", True, False)
# Check class again.
print(household_logistic.Target.dtypes)
```

bool

Split into train and test set

- As we did previously, we split our data into training and test sets
- We run logistic regression initially on the training data

scikit-learn - logistic regression

 We will be using the LogisticRegression library from scikit-learn.linear_model package

- All inputs are optional arguments, but we will concentrate on two key inputs:
 - penalty: a regularization technique used to tune the model (either 11, a.k.a. Lasso, or 12, a.k.a. Ridge, default is 12)
 - C: a regularization constant used to amplify the effect of the regularization method (a value between $[0, \infty]$ default is 1)
- For all the parameters of the LogisticRegression function, visit scikit-learn's documentation

Logistic regression: build

- Let's build our logistic regression model
- We'll use all default parameters for now as our baseline model

• We can see that the default model contains C = 1 and penalty = '12', we will discuss what that means later in more detail when we tune our model

Logistic regression: fit

The two main arguments are the same as with most classifiers in scikit-learn:

- 1. X: a pandas dataframe or a numpy array of training data predictors
- 2. y: a pandas series or a numpy array of training labels

Logistic regression: fit

- We fit the logistic regression model with x_train and y_train
- We will run the model on our training data and predict on test data

Logistic regression: predict

The main argument is the same as with most classifiers in scikit-learn:

 X: a pandas dataframe or a numpy array of test data predictors

Logistic regression: predict

- We will predict on the test data using our trained model
- The result is a **vector of the predictions**

```
# Predict on test data.
predicted_values = logistic_regression_model.predict(X_test)
print(predicted_values)
```

```
[ True True True ... True False True]
```

Knowledge check 1

Exercise 1

Module completion checklist

Objective	Complete
Determine when to use logistic regression for classification and transformation of target variable	/
Summarize the process and the math behind logistic regression	/
Implement logistic regression on a training dataset and predict on test	/
Review classification performance metrics and assess results of logistic model performance	
Transform categorical variables for implementation of logistic regression	
Implement logistic regression on the data and assess results of classification model performance	
Analyze the model to determine if / when overfitting occurs	
Demonstrate tuning the model using grid search cross-validation	

Recap: Confusion matrix

	Predicted Low value	Predicted High value	Actual totals
Actual low value	True negative (TN)	False positive (FP)	Total negatives
Actual high value	False negative (FN)	True positive (TP)	Total positives
Predicted totals	Total predicted negatives	Total predicted positives	Total

- True positive rate (TPR) (a.k.a *Sensitivity, Recall*) = TP / Total positives
- True negative rate (TNR) (a.k.a *Specificity*) = TN / Total negatives
- False positive rate (FPR) (a.k.a Fall-out, Type I Error) = FP / Total negatives
- False negative rate (FNR) (a.k.a *Type II Error*) = FN / Total positives
- Accuracy = TP + TN / Total
- Misclassification rate = FP + FN / Total

From threshold to metrics

- In logistic regression, the output is a range of probabilities from 0 to 1
- But how do you interpret that as a 1 / 0 or High value / Low value label?
- You set a threshold where everything above is predicted as 1 and everything below is predicted
- A typical threshold for logistic regression is 0.5

DATA SOCIETY © 2019

From metrics to a point

Each threshold can create a confusion matrix, which can be used to calculate a point in space defined by:

- True positive rate (TPR) on the y-axis
- False positive rate (FPR) on the x-axis

From points to a curve

- When we move thresholds, we re-calculate our metrics and create confusion matrices for every threshold
- Each time, we plot a new point in the TPR vs FPR space

AUC curve:

- It is a performance metric used to compare classification models to measure predictive accuracy
- The AUC should be above .5 to say the model is better than a random guess
- The function to obtain AUC by providing the FPR and TPR is metrics.auc(fpr, tpr)

scikit-learn: metrics package

sklearn.metrics: Metrics

See the Model evaluation: quantifying the quality of predictions section and the Pairwise metrics, Affinities and Kernels section of the user guide for further details.

The **sklearn.metrics** module includes score functions, performance metrics and pairwise metrics and distance computations.

- We will use the following methods from this library:
 - confusion matrix
 - accuracy score
 - classification_report
 - roc curve
 - auc
- For all the methods and parameters of the metrics package, visit scikit-learn's documentation

Confusion matrix and accuracy

Both confusion_matrix and accuracy_score take 2 arguments:

- 1. Original data labels
- 2. Predicted labels

```
# Take a look at test data confusion matrix.
conf_matrix_test = metrics.confusion_matrix(y_test, predicted_values)
print(conf_matrix_test)
```

```
[[ 178 884]
[ 161 1645]]
```

```
# Compute test model accuracy score.
test_accuracy_score = metrics.accuracy_score(y_test, predicted_values)
print("Accuracy on test data: ", test_accuracy_score)
```

```
Accuracy on test data: 0.6356345885634589
```

Classification report

• To make interpretation of the classification_report easier, in addition to the 2 arguments that confusion_matrix takes, we can add the actual class names for our target variable

```
# Create a list of target names to interpret class assignments.
target_names = ['vulnerable', 'non_vulnerable']

# Print an entire classification report.
```

		precision	recall	f1-score	support
vulne	erable erable	0.53 0.65	0.17 0.91	0.25 0.76	1062 1806
	curacy co avg	0.59	0.54 0.64	0.64 0.51 0.57	2868 2868 2868

Classification report (cont'd)

```
print(class_report)
```

	precision	recall	f1-score	support
vulnerable non_vulnerable		0.17	0.25 0.76	1062 1806
accuracy macro avg weighted avg	0.59	0.54 0.64	0.64 0.51 0.57	2868 2868 2868

- precision is Positive Predictive Value = TP / (TP + FP)
- recall is TPR = TP / Total positives
- f1-score is a weighted harmonic mean of precision and recall, where it reaches its best value at 1 and worst score at 0
- support is actual number of occurrences of each class in y_test

Add accuracy score to the final scores

- So we have it, let's add this score to the dataframe model_final that we created in the previous class
- Let's load the pickled dataset and append the score to it

```
metrics values model
0 accuracy 0.6046 knn_5
1 accuracy 0.6188 knn_GridSearchCV
2 accuracy 0.6287 knn_29
3 accuracy 0.6356 logistic
```

Getting probabilities instead of class labels

```
# Get probabilities instead of predicted values.
test_probabilities = logistic_regression_model.predict_proba(X_test)
print(test_probabilities[0:5, :])

[[0.28499409 0.71500591]
[0.37610379 0.62389621]
[0.1624945 0.8375055]
[0.52817721 0.47182279]
[0.35197966 0.64802034]]

# Get probabilities of test predictions only.
test_predictions = test_probabilities[:, 1]
print(test_predictions[0:5])

[0.71500591 0.62389621 0.8375055 0.47182279 0.64802034]
```

Computing FPR, TPR, and threshold

```
# Get FPR, TPR, and threshold values.
fpr, tpr, threshold = metrics.roc curve(y test, #<- test data labels</pre>
                                     test predictions) #<- predicted probabilities
print("False positive: ", fpr[:5])
False positive: [0. 0. 0. 0. 0. 0.0047081]
print("True positive: ", tpr[:5])
True positive: [0. 0.00387597 0.00609081 0.01052049 0.01162791]
print("Threshold: ", threshold[:5])
Threshold: [1.92921126 0.92921126 0.91446334 0.90567607 0.89668599]
```

Computing AUC

```
# Get AUC by providing the FPR and TPR.
auc = metrics.auc(fpr, tpr)
print("Area under the ROC curve: ", auc)
```

Area under the ROC curve: 0.6440758780628705

Putting it all together: ROC plot

```
# Make an ROC curve plot.
plt.title('Receiver Operator Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.show()
```

- Our model achieved the accuracy of about
 0.635, which is decent for a base model.
- Our estimated AUC is about 0.644
- Given that we have not done any model tuning or data transformations, this is a fair baseline that we'll use to assess future models that we'll create

Knowledge check 2

Exercise 2

Module completion checklist

Objective	Complete
Determine when to use logistic regression for classification and transformation of target variable	/
Summarize the process and the math behind logistic regression	/
Implement logistic regression on a training dataset and predict on test	V
Review classification performance metrics and assess results of logistic model performance	V
Transform categorical variables for implementation of logistic regression	
Implement logistic regression on the data and assess results of classification model performance	
Analyze the model to determine if / when overfitting occurs	
Demonstrate tuning the model using grid search cross-validation	

Working with categorical variables

Let's take a look at numerical variable age from our dataset

```
print(household_logistic.age.head())

0    43
1    67
2    92
3    17
4    37
Name: age, dtype: int64
```

• Your boss would like for you to convert age to a **categorical variable with 3 levels** to analyze varying poverty level between ages

```
household_logistic['age'] = np.where(household_logistic['age'] <= 30, "30 or Below", np.where(household_logistic['age'] < 60, 'Between 30 and 60', '60 and above'))
```

Working with categorical variables

Let's see the frequency of each level in age

```
household_logistic.age.value_counts()

30 or Below 4655
Between 30 and 60 3495
60 and above 1407
Name: age, dtype: int64
```

 As regression analysis is used with numeric or continuous variables to determine an outcome, how would we handle categorical variables?

Dummy variables: one hot encoding

- It is an artificial variable used to represent a variable with two or more distinct levels or categories
- It represents categorical predictors as binary values, 0 or 1
- Often used for regression analysis

ID	Pet
1	Dog
2	Cat
3	Cat
4	Dog
5	Fish

ID	Dog	Cat	Fish
1	1	0	0
2	0	1	0
3	0	1	0
4	1	0	0
5	0	0	1

Dummy variables: reference category

- The number of dummy variables necessary to represent a single attribute variable is equal to the **number of levels (categories) in that variable minus one**
- One of the categories is omitted and used as a base or reference category
- The reference category, which is not coded, is the category to which all other categories will be compared
- The biggest group / category will often be the reference category

Dummy variables in Python

- data is a pandas Series or Dataframe
- drop_first indicates whether to get k-1
 dummies out of k categorical levels

pandas.get_dummies

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None) [source]

Convert categorical variable into dummy/indicator variables

data: array-like, Series, or DataFrame

prefix: string, list of strings, or dict of strings, default None

String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, *prefix* can be a dictionary mapping column names to prefixes.

prefix sep : string, default ' '

If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with

dummy na: bool, default False

Add a column to indicate NaNs, if False NaNs are ignored.

Parameters:

columns: list-like, default None

Column names in the DataFrame to be encoded. If *columns* is None then all the columns with *object* or *category* dtype will be converted.

sparse : bool, default False

Whether the dummy-encoded columns should be be backed by a **sparseArray** (True) or a regular NumPy array (False).

drop first : bool, default False

Whether to get k-1 dummies out of k categorical levels by removing the first level. New in version 0.18.0.

dtype: dtype, default np.uint8

Data type for new columns. Only a single dtype is allowed.

New in version 0.23.0.

Returns:

dummies: DataFrame

Transform `age` into dummies

• We need to transform age, which is categorical with 3 levels, into a dummy variable and save it into a dataframe

```
# Convert 'age' into dummy variables.
age_dummy = pd.get_dummies(household_logistic['age'], drop_first = True)
print(age_dummy.head())
```

```
60 and above Between 30 and 60
0 0 1
1 1 0
2 1 0
3 0 0
4 0 1
```

 Notice that level 30 or below, which has the highest count, has been removed and used as a reference category

Transform `age` into dummies

• Let's drop the original division column from our Costa Rica subset and concatenate the dummy variables division dummy

Module completion checklist

Objective	Complete
Determine when to use logistic regression for classification and transformation of target variable	/
Summarize the process and the math behind logistic regression	/
Implement logistic regression on a training dataset and predict on test	/
Review classification performance metrics and assess results of logistic model performance	V
Transform categorical variables for implementation of logistic regression	/
Implement logistic regression on the data and assess results of classification model performance	
Analyze the model to determine if / when overfitting occurs	
Demonstrate tuning the model using grid search cross-validation	

Split into train and test set

- Let's use the whole dataset this time
- We run logistic regression initially on the training data

Logistic regression: build

 Let's build our logistic regression model and use all default parameters for now as our baseline model

• We can see that the default model contains C = 1 and penalty = '12'

Logistic regression: fit

- We fit the logistic regression model with x_train and y_train
- We will run the model on our training data and predict on test data

Logistic regression: predict

- We will predict on the test data using our trained model
- The result is a **vector of the predictions**

```
# Predict on test data.
predicted_values = logistic_regression_model.predict(X_test)
print(predicted_values)
```

```
[ True False True ... True False False]
```

Confusion matrix and accuracy

Both confusion_matrix and accuracy_score take 2 arguments:

- 1. Original data labels
- 2. Predicted labels

```
# Take a look at test data confusion matrix.
conf_matrix_test = metrics.confusion_matrix(y_test, predicted_values)
print(conf_matrix_test)
```

```
[[ 687 375]
[ 243 1563]]
```

```
# Compute test model accuracy score.
test_accuracy_score = metrics.accuracy_score(y_test, predicted_values)
print("Accuracy on test data: ", test_accuracy_score)
```

```
Accuracy on test data: 0.7845188284518828
```

Add accuracy score to the final scores

- So we have it, let's add this score to the dataframe model final that we created earlier
- Let's load the pickled dataset and append the score to it

```
metrics values model
0 accuracy 0.6046 knn_5
1 accuracy 0.6188 knn_GridSearchCV
2 accuracy 0.6287 knn_29
3 accuracy 0.6356 logistic
4 accuracy 0.7845 logistic_whole_dataset
```

Accuracy on train vs. accuracy on test

Take a look at the accuracy score for the training data

```
# Compute trained model accuracy score.
trained_accuracy_score = logistic_regression_model.score(X_train, y_train)
print("Accuracy on train data: ", trained_accuracy_score)
```

```
Accuracy on train data: 0.7806847062341157
```

- Did our model underperform?
- Is there a big difference in train and test accuracy?
- Most of the time, the problem lies in overfitting

Knowledge check 3

Exercise 3

Module completion checklist

Objective	Complete
Determine when to use logistic regression for classification and transformation of target variable	/
Summarize the process and the math behind logistic regression	/
Implement logistic regression on a training dataset and predict on test	/
Review classification performance metrics and assess results of logistic model performance	V
Transform categorical variables for implementation of logistic regression	/
Implement logistic regression on the data and assess results of classification model performance	V
Analyze the model to determine if / when overfitting occurs	
Demonstrate tuning the model using grid search cross-validation	

When overfitting occurs

- An overfitted model usually shows a drastically higher accuracy in the training data because it doesn't generalize well to new data
- Creating a model that fits training data **too well** will lead to poor generalization and, hence, poor performance on new data. It can happen for a number of reasons:
 - the model treats the noise as actual artifacts of the data, so when it encounters new data with new noise, the model will underperform
 - by using too many predictors that only contribute tiny portions to variation in our data,
 there is a higher likelihood of overfitting
 - if the training set is **not an accurate representation of the data**, we end up fitting the model to just a part of it, which doesn't translate well to new data

How to overcome overfitting

- Use so-called soft-margin classifiers to:
 - Utilize penalization constants and methods to make the model less prone to noise
 - Tune them to use the optimal parameters for best model performance
- Use **feature selection**, and/or **feature extraction** methods to:
 - Capture only few main features responsible for most variation in the data
 - Discard those that don't
- Get more data

Tuning logistic regression model

- Recall the two parameters that we mentioned before:
 - penalty: a regularization technique used to tune the model (either 11, a.k.a. Lasso, or 12, a.k.a. Ridge; default is 12)
 - C: a regularization constant used to amplify the effect of the regularization method (a value between $[0, \infty]$; default is 1)
- These two parameters control a so-called regularization term that adds a penalty as the model complexity increases with added variables
- These two parameters play a key role in mitigating overfitting and feature pruning

Regularization techniques in logistic regression

- As you may know, any ML algorithm optimizes some cost function f(x)
- In logistic regression, 11 (*Lasso*) adds a term to that function like so:

$$f(x) + C \sum_{j=1}^{n} |b_j|$$

While 12 (Ridge) adds a term like so:

$$f(x) + C \sum_{j=1}^{n} b_j^2$$

You can see that Lasso uses the absolute value

$$b_j$$

, while Ridge uses a squared

$$b_j$$

That term, when added to the original cost function, dampens the margins of our classifier,

Lasso vs Ridge

Lasso (11)

$$C\sum_{j=1}^{n}|b_{j}|$$

- Stands for Least Absolute Shrinkage and Selection Operator
- It adds "absolute value of magnitude" of the coefficient as a penalty term to the loss function
- Shrinks (as the name suggests) the less important features' coefficients to zero, which leads to removal of some features

Ridge (12)

$$C\sum_{j=1}^{n}b_{j}^{2}$$

- Adds "squared magnitude" of coefficient as penalty term to the loss function
- Dampens the less important features' coefficients making them less significant, which leads to weighting of the features according to their importance

What's the role of C?

There are 4 scenarios that might happen with a classifier with respect to $m{C}$:

- 1. C = 0
 - The classifier becomes an **OLS** problem (i.e. Ordinary Least Squares, or just a strict regression without any penalization)
 - Since $0 \times anything = 0$, we are just left with optimizing f(x), which is a definite overfitting problem
- 2. C = small
 - We still run into an **overfitting** problem
 - Since $oldsymbol{C}$ will not "magnify" the effect of the penalty term enough

What's the role of C?

1. C = large

- We run into an **underfitting** problem, where we've weighted and dampened the coefficients too much and we made the model too general

2. C = optimal

- We have a good, robust, and generalizable model that works well with new data
- Ignores most of the noise while preserving the main pattern in data

So how do we pick the right combination of parameters? We use **grid search cross-validation** to find the optimal parameters for our model!

Module completion checklist

Objective	Complete				
Determine when to use logistic regression for classification and transformation of target variable					
Summarize the process and the math behind logistic regression					
Implement logistic regression on a training dataset and predict on test					
Review classification performance metrics and assess results of logistic model performance					
Transform categorical variables for implementation of logistic regression					
Implement logistic regression on the data and assess results of classification model performance					
Analyze the model to determine if / when overfitting occurs					
Demonstrate tuning the model using grid search cross-validation					

What does grid search cross-validation do?

scikit-learn - model_selection.GridSearchCV

class sklearn.model_selection. GridSearchCV (estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise', return_train_score='warn') [source] Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid.

- estimator is the name of sklearn algorithm to optimize
- param_grid is a dictionary or list of parameters to optimize
- cv is an int of n for n-fold cross-validation
- verbose is an int of how much verbosity in messages you want to see as the function runs

For all the methods and parameters of the model_selection.GridSearchCV package, visit scikit-learn's documentation

Prepare parameters for optimization

```
# Create regularization penalty space.
penalty = ['11', '12']
# Create regularization constant space.
C = np.logspace(0, 10, 10)
print("Regularization constant: ", C)
Regularization constant: [1.00000000e+00 1.29154967e+01 1.66810054e+02 2.15443469e+03
2.78255940e+04 3.59381366e+05 4.64158883e+06 5.99484250e+07
 7.74263683e+08 1.00000000e+101
# Create hyperparameter options dictionary.
hyperparameters = dict(C = C, penalty = penalty)
print (hyperparameters)
{'C': array([1.00000000e+00, 1.29154967e+01, 1.66810054e+02, 2.15443469e+03,
       2.78255940e+04, 3.59381366e+05, 4.64158883e+06, 5.99484250e+07,
       7.74263683e+08, 1.00000000e+10]), 'penalty': ['11', '12']}
```

Set up cross-validation logistic function

```
# Fit CV grid search.
best_model = clf.fit(X_train, y_train)
best_model
```

```
GridSearchCV(cv=10, error score='raise-deprecating',
             estimator=LogisticRegression(C=1.0, class weight=None, dual=False,
                                           fit intercept=True,
                                           intercept scaling=1, 11 ratio=None,
                                           max iter=100, multi class='warn',
                                           n jobs=None, penalty='12',
                                           random state=None, solver='warn',
                                            tol=0.\overline{0}001, verbose=0,
                                           warm start=False),
             iid='warn', n jobs=None,
             param grid=\{\overline{C}: array([1.00000000e+00, 1.29154967e+01, 1.66810054e+02, 2.15443469e+03,
       2.78255940e+04, 3.59381366e+05, 4.64158883e+06, 5.99484250e+07,
       7.74263683e+08, 1.00000000e+10]),
                          'penalty': ['11', '12']},
             pre dispatch='2*n jobs', refit=True, return train score=False,
             scoring=None, verbose=0)
```

Check best parameters found by CV

```
# Get best penalty and constant parameters.
penalty = best_model.best_estimator_.get_params()['penalty']
constant = best_model.best_estimator_.get_params()['C']
print('Best penalty: ', penalty)
Best penalty: 11

Best C: ', constant)

Best C: 1.0
```

- It seems like our grid search CV have found that 11 (i.e. *Lasso* regularization method) works better than the default 12 (i.e. *Ridge*)
- It also shows that the default c, which is 1 creates a big enough soft margin for our classifier

Predict using the best model parameters

```
# Predict on test data using best model.
best_predicted_values = best_model.predict(X_test)
print(best_predicted_values)

[ True False True ... True False False]

# Compute best model accuracy score.
best_accuracy_score = metrics.accuracy_score(y_test, best_predicted_values)
print("Accuracy on test data (best model): ", best_accuracy_score)

Accuracy on test data (best model): 0.7859135285913529
```

Predict using the best model parameters (cont'd)

```
# Compute confusion matrix for best model.
best_confusion_matrix = metrics.confusion_matrix(y_test, best_predicted_values)
print(best_confusion_matrix)
```

```
[[ 690 372]
[ 242 1564]]
```

```
# Create a list of target names to interpret class assignments.
target_names = ['Low value', 'High value']
```

	precision	recall	f1-score	support
Low value High value	0.74 0.81	0.65 0.87	0.69	1062 1806
accuracy macro avg weighted avg	0.77 0.78	0.76 0.79	0.79 0.76 0.78	2868 2868 2868

Add accuracy score to the final scores

Let's add this accuracy score to the dataframe model final

```
metrics values model
0 accuracy 0.6046 knn_5
1 accuracy 0.6188 knn_GridSearchCV
2 accuracy 0.6287 knn_29
3 accuracy 0.6356 logistic
4 accuracy 0.7845 logistic_whole_dataset
5 accuracy 0.7859 logistic_tuned
```

```
pickle.dump(model_final, open("model_final_logistic.sav", "wb"))
```

Get metrics for ROC curve

```
# Get probabilities instead of predicted values.
best_test_probabilities = best_model.predict_proba(X_test)
print(best_test_probabilities[0:5, ])

[[0.0446763     0.9553237 ]
     [0.82715447     0.17284553]
     [0.28190006     0.71809994]
     [0.35725272     0.64274728]
     [0.01030444     0.98969556]]

# Get probabilities of test predictions only.
best_test_predictions = best_test_probabilities[:, 1]
print(best_test_predictions[0:5])

[0.9553237     0.17284553     0.71809994     0.64274728     0.98969556]
```

Get metrics for ROC curve (cont'd)

```
# Get ROC curve metrics.
best_fpr, best_tpr, best_threshold = metrics.roc_curve(y_test, best_test_predictions)
best_auc = metrics.auc(best_fpr, best_tpr)
print(best_auc)
```

0.8556277151074155

Plot ROC curve for both models

 From the reports, we can see that the AUC and the ROC curve have improved significantly from the base model

Knowledge check 4

Exercise 4

Module completion checklist

Objective	Complete				
Determine when to use logistic regression for classification and transformation of target variable					
Summarize the process and the math behind logistic regression					
Implement logistic regression on a training dataset and predict on test					
Review classification performance metrics and assess results of logistic model performance					
Transform categorical variables for implementation of logistic regression					
Implement logistic regression on the data and assess results of classification model performance					
Analyze the model to determine if / when overfitting occurs					
Demonstrate tuning the model using grid search cross-validation					

Workshop!

- Workshops are to be completed in the afternoon either with a dataset for a capstone project or with another dataset of your choosing
- Make sure to annotate and comment your code so that it is easy for others to understand what you are doing
- This is an exploratory exercise to get you comfortable with the content we discussed today
- Today you will:
 - Use the logistic regression model to classify your data
 - Prepare and do the exploratory data analysis before the modeling
 - Check if over fitting occurs and how the model compares to kNN model
 - Implement grid search cross validation to avoid overfitting

This completes our module **Congratulations!**