Licenciatura en Matemáticas Soluciones del examen final de Cálculo de septiembre de 2002

Ejercicio 1. (a) Calcular:

$$\lim_{n\to\infty} \frac{\operatorname{sen} a + 4\operatorname{sen}(a/2) + 9\operatorname{sen}(a/3) + \dots + n^2\operatorname{sen}(a/n)}{n^2}$$

- (b) Estudiar la convergencia de la serie $\sum_{n\geqslant 1} \frac{(a+1)(a+2)\cdots(a+n)}{n!}$, donde a>-1.
- (c) Estudiar la convergencia de la serie $\sum_{n\geqslant 2} \frac{\sqrt{n}+1}{\sqrt{n^3}(\log n)^2}$.

Solución. (a) Pongamos $A_n = \operatorname{sen} a + 4\operatorname{sen}(a/2) + 9\operatorname{sen}(a/3) + \dots + n^2\operatorname{sen}(a/n), B_n = n^2$. Para calcular el límite de la sucesión $\frac{A_n}{B_n}$ podemos aplicar el criterio de Stolz pues la sucesión $\{B_n\}$ es estrictamente creciente y positivamente divergente. Calcularemos, pues, el límite de la sucesión $\frac{A_{n+1} - A_n}{B_{n+1} - B_n}$. Tenemos que:

$$\frac{A_{n+1} - A_n}{B_{n+1} - B_n} = \frac{(n+1)^2 \operatorname{sen} \left(a/(n+1) \right)}{(n+1)^2 - n^2} = \frac{(n+1)^2 \operatorname{sen} \left(a/(n+1) \right)}{2n+1} = \frac{n+1}{2n+1} (n+1) \operatorname{sen} \left(a/(n+1) \right)$$

Es bien sabido que si $\{x_n\} \to 0$ entonces $\frac{\operatorname{sen} x_n}{x_n} \to 1$. Poniendo $x_n = \frac{a}{n+1}$ (y supuesto que $a \neq 0$) tenemos que $(n+1)\operatorname{sen}\left(a/(n+1)\right) = a\frac{\operatorname{sen} x_n}{x_n} \to a$. Obtenemos así que $\frac{A_{n+1} - A_n}{B_{n+1} - B_n} \to \frac{a}{2}$, y concluimos que lím $\frac{A_n}{B_n} = \frac{a}{2}$.

(b) Como a > -1 se trata de una serie de términos positivos. Es fácil comparar directamente dicha serie con la serie armónica pues se tiene que:

$$\frac{(a+1)(a+2)(a+3)(a+4)\cdots(a+n)}{n!} \geqslant \frac{(a+1)\cdot 1\cdot 2\cdot 3\cdots(n-1)}{n!} = \frac{a+1}{n}$$

y por el criterio básico de comparación obtenemos que la serie es divergente.

También puede usarse el criterio de Raabe pues el criterio del cociente no da información. Tenemos que

$$n\left(1 - \frac{a_{n+1}}{a_n}\right) = n\left(1 - \frac{a+n+1}{n+1}\right) = \frac{-an}{n+1} \to -a < 1$$

lo que nos dice que la serie es divergente.

(c) Tenemos que

$$\frac{\sqrt{n}+1}{\sqrt{n^3}(\log n)^2} = \frac{\sqrt{n}}{\sqrt{n^3}(\log n)^2} + \frac{1}{\sqrt{n^3}(\log n)^2} = \frac{1}{n(\log n)^2} + \frac{1}{n^{3/2}(\log n)^2}$$

Las series $\sum_{n\geqslant 2}\frac{1}{n(\log n)^2}$ y $\sum_{n\geqslant 2}\frac{1}{n^{3/2}(\log n)^2}$ son del tipo $\sum_{n\geqslant 1}\frac{1}{n^{\alpha}(\log n)^{\beta}}$ (llamadas series de Bertrand) que sabemos son convergentes cuando $\alpha>1$ cualquiera sea β , y para $\alpha=1$ y $\beta>1$, siendo divergentes en otro caso. Concluimos así que la serie dada es convergente por ser suma de dos series convergentes.

Ejercicio 2. El principio de Fermat afirma que la luz viaja de un punto A a otro punto B siguiendo la trayectoria en la que se invierte el menor tiempo posible. Supongamos que el eje de abscisas, y = 0, separa dos medios en los que la luz viaja a distinta velocidad (por ejemplo, aire y agua). Sea c la velocidad de la luz en el semiplano superior y > 0 y sea $\frac{3}{4}c$ la velocidad correspondiente al semiplano inferior y < 0. Calcular el punto de dicho eje por el que pasará el rayo que viaje desde el punto A = (-4,3) al B = (3,-4).

Solución.

Se trata de calcular P = (x,0) por la condición de que el tiempo total invertido por el rayo de luz para recorrer el camino \overline{APB} sea mínimo. Sea t_1 el tiempo que tarda la luz en recorrer el segmento \overline{AP} y t_2 el tiempo que tarda la luz en recorrer el segmento \overline{PB} . Tenemos que

longitud(
$$\overline{AP}$$
) = $\sqrt{(x+4)^2 + 9} = ct_1$
longitud(\overline{PB}) = $\sqrt{(x-3)^2 + 16} = \frac{3}{4}ct_2$

La función cuyo mínimo debemos calcular es

$$f(x) = t_1 + t_2 = \frac{\sqrt{(x+4)^2 + 9}}{c} + \frac{4\sqrt{(x-3)^2 + 16}}{3c}$$

Cuya derivada es

$$f'(x) = \frac{1}{3c} \frac{3(x+4)}{\sqrt{(x+4)^2 + 9}} + \frac{1}{3c} \frac{4(x-3)}{\sqrt{(x-3)^2 + 16}}$$

Es claro que x = 0 es un cero de la derivada. Veamos si corresponde a un mínimo absoluto de f(x). Calculando la derivada segunda y simplificando obtenemos que

$$f''(x) = \frac{1}{3c} \frac{27}{\sqrt{((x+4)^2+9)^3}} + \frac{1}{3c} \frac{64}{\sqrt{((x-3)^2+16)^3}}$$

Resulta así que f''(x) > 0 para todo x por lo que la derivada f' es estrictamente creciente y, al ser f'(0) = 0, se sigue que f'(x) < 0 para x < 0 y f'(x) > 0 para x > 0, luego f es decreciente en $]-\infty,0]$ y creciente en $[0,+\infty[$ y, en consecuencia, f tiene un mínimo absoluto en x = 0.

Ejercicio 3. (a) Sabiendo que g es una función continua con g(0) = 3, justificar que

$$\int_{x^2-1}^{xy} g(t) dt + x^2 y = 0$$

define a y como función implícita de x en un entorno del punto (1,0). Calcular y'(1).

(b) Sea la función $f: \mathbb{R}^2 \in \mathbb{R}$ dada por

$$f(x,y) = x^2 + (1-x)^3 y^2$$
 $\forall (x,y) \in \mathbb{R}^2$

Probar que tiene un único punto crítico que es un extremo relativo pero no absoluto.

Solución. (a) Pongamos
$$G(u) = \int_0^u g(t) dt$$
. Con ello $\int_{x^2-1}^{xy} g(t) dt = G(x^2-1) - G(xy)$. Sea

 $H(x,y)=G(xy)-G(x^2-1)+x^2y$. Observa que la función G tiene derivada continua pues G'(u)=g(u) (Teorema Fundamental del Cálculo). Por tanto, la función G tiene derivadas parciales continuas. Además H(1,0)=0 y $\frac{\partial H}{\partial y}(x,y)=xg(xy)+x^2$, por lo que $\frac{\partial H}{\partial y}(1,0)=g(0)+1=4\neq 0$. En estas condiciones el teorema de la función implícita asegura la existencia de una función derivable $x\mapsto y(x)$, definida en un intervalo abierto G que contiene al punto 1, tal que G y que satisface la igualdad G0 y para todo G1. Derivando esta identidad respecto a G2 obtenemos

$$\frac{\partial H}{\partial x}(x, y(x)) + \frac{\partial H}{\partial y}(x, y(x))y'(x) = 0$$

Haciendo x = 1 obtenemos que

$$y'(1) = -\frac{\frac{\partial H}{\partial x}(1,0)}{\frac{\partial H}{\partial y}(1,0)} = -\frac{\frac{\partial H}{\partial x}(1,0)}{4}$$

Como $\frac{\partial H}{\partial x}(x,y) = yg(xy) - 2xg(x^2 - 1) + 2xy$, resulta que $\frac{\partial H}{\partial x}(1,0) = -2g(0) = -6$. Luego y'(1) = 3/2. **(b)** Calculamos los puntos críticos de f. Como

$$\frac{\partial f}{\partial x}(x,y) = 2x - 3(1-x)^2 y^2$$

$$\frac{\partial f}{\partial y}(x,y) = 2y(1-x)^3$$

Se obtiene inmediatamente que el sistema de ecuaciones $\frac{\partial f}{\partial x}(x,y) = \frac{\partial f}{\partial y}(x,y) = 0$ tiene (0,0) como única solución. La matriz Hessiana de f en (0,0) se calcula fácilmente resultando ser

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Como dicha matriz corresponde a una forma cuadrática definida positiva, deducimos que en (0,0) la función tiene un mínimo relativo estricto. Puesto que f(0,0) = 0 y f(-2,3) = 4 - 9 = -5 < 0, concluimos que (0,0) no es un mínimo absoluto de f.

Ejercicio 4. (a) Calcular el volumen del conjunto

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \frac{x^2}{25} + \frac{y^2}{25} + \frac{z^2}{9} \leqslant 1, \ x^2 + y^2 \geqslant 4 \right\}$$

(b) Calcular
$$\iint_A \log(1+x^2+4y^2) \ d(x,y)$$
, donde $A = \{(x,y) : 4 \le x^2+4y^2 \le 16\}$.

Solución. (a)

En la figura se ha representado la mitad superior del conjunto Ω que es un elipsoide de revolución en el que se ha hecho un agujero. El volumen pedido viene dado por

$$\iiint\limits_{\Omega}d(x,y,z)$$

La simetría de Ω sugiere un cambio a coordenadas cilíndricas: $x = \rho \cos \vartheta$, $y = \rho \sin \vartheta$, z = z. La descripción de Ω en dichas coordenadas es fácil:

$$\begin{split} \Omega &= \left\{ (\rho \cos \vartheta, \rho \sin \vartheta, z) : \frac{\rho^2}{25} + \frac{z^2}{9} \leqslant 1, \ \rho^2 \geqslant 4 \right\} \\ &= \left\{ (\rho \cos \vartheta, \rho \sin \vartheta, z) : -\pi \leqslant \vartheta \leqslant \pi, \ 2 \leqslant \rho \leqslant 5, \ -3\sqrt{1 - \rho^2/25} \leqslant z \leqslant 3\sqrt{1 - \rho^2/25} \right\} \end{split}$$

Pongamos $\varphi(\rho, \vartheta, z) = (\rho \cos \vartheta, \rho \sin \vartheta, z)$, y sea

$$B = \left\{ (\rho, \vartheta, z) : -\pi \leqslant \vartheta \leqslant \pi, \ 2 \leqslant \rho \leqslant 5, \ -3\sqrt{1 - \rho^2/25} \leqslant z \leqslant 3\sqrt{1 - \rho^2/25} \right\}$$

Tenemos que $\varphi(B) = \Omega$. Por el teorema del cambio de variables, teniendo en cuenta que el determinante jacobiano de φ es ρ , tenemos:

$$\iiint\limits_{\Omega} d(x, y, z) = \iiint\limits_{R} \rho d(\rho, \vartheta, z)$$

Esta última integral se calcula fácilmente usando el Teorema de Fubini:

$$\iiint_{B} \rho d(\rho, \vartheta, z) = \int_{-\pi}^{\pi} \left[\int_{2}^{5} \left[\int_{-3\sqrt{1-\rho^{2}/25}}^{3\sqrt{1-\rho^{2}/25}} \rho dz \right] d\rho \right] d\vartheta =
= 12\pi \int_{2}^{5} \rho \sqrt{1-\rho^{2}/25} d\rho = 12\pi \left[-\frac{25}{3} \left(1 - \frac{\rho^{2}}{25} \right)^{3/2} \right]_{\rho=2}^{\rho=5} = 84\pi \frac{\sqrt{21}}{5}$$

(b) La integral pedida se calcula fácilmente haciendo un cambio a polares junto con un cambio de escala: $x = \rho \cos \vartheta$, $y = \frac{1}{2}\rho \sin \vartheta$. El determinante jacobiano del cambio es $\frac{1}{2}\rho$. Tenemos que:

$$\iint_{A} \log(1+x^{2}+4y^{2}) d(x,y) = \frac{1}{2} \int_{-\pi}^{\pi} \left[\int_{2}^{4} \log(1+\rho^{2}) \rho d\rho \right] d\vartheta =$$

$$= \pi \int_{2}^{4} \log(1+\rho^{2}) \rho d\rho = \pi \left[\frac{-\rho^{2}}{2} + \frac{1}{2} \log(1+\rho^{2}) + \frac{1}{2} \rho^{2} \log(1+\rho^{2}) \right]_{\rho=2}^{\rho=4} =$$

$$= \pi (-6 - 5 \log 5/2 + 17 \log 17/2) \approx 14\pi$$

Ejercicio 5. Hallar la ecuación de la familia de curvas para las cuales la longitud del segmento de tangente comprendido entre el punto de tangencia (x, y) y el eje OY es igual a la longitud del segmento del eje OY interceptado por dicha tangente y el origen.

Solución. La ecuación de la recta tangente a la curva y = y(x) en un punto (x,y) es Y - y = y'(X - x). La intersección de dicha recta con el eje OY se obtiene haciendo X = 0 y es el punto (0, y - xy'). La distancia entre este punto y el punto de tangencia es $\sqrt{x^2 + x^2(y')^2}$ que nos dicen que debe ser igual |y - xy'|. Igualando ambas expresiones y elevando al cuadrado obtenemos la ecuación diferencial

$$2xyy' + x^2 - y^2 = 0$$

que puede escribirse $2xydy + (x^2 - y^2)dx = 0$. Se trata de una ecuación homogénea que se resuelve fácilmente con la técnica usual en estos casos obteniendo que las curvas solución vienen dadas por la ecuación $y^2 + x^2 - Cx = 0$ donde C es una constante arbitraria. Es decir, se trata de la familia de circunferencias $y^2 + (x - C/2)^2 = C^2/4$.