Capacited du cours sur le Cognithme népérier

🚀 Capacité 1 Utiliser la fonction logarithme dans un contexte

La magnitude d'un séisme d'amplitude maximale A est mesurée *l'échelle de Richter* par $M = \frac{\ln\left(\frac{A}{A_0}\right)}{\ln(10)}$ où A_0 est une amplitude de référence. Cette formule s'écrit souvent $M = \log\left(\frac{A}{A_0}\right)$ où $\log(x) = \frac{\ln(x)}{\ln(10)}$ est la fonction logarithme décimal (touche Log de la calculatrice).

- 1. Déterminer avec la calculatrice la magnitude sur l'échelle de Richter des séismes suivants :
 - a. Un séisme d'amplitude A₀.
 - b. Un séisme d'amplitude 10A₀.
 - c. Un séisme d'amplitude 20A₀.
 - **d.** Un séisme d'amplitude $10^n A_0$ avec n entier naturel. Quelle conjecture peut-on formuler?
 - e. le séisme de Barcelonnette (France 2014) d'amplitude $A = 2 \times 10^5 A_0$.
- Exprimer en fonction de A₀ l'amplitude maximale du séisme d'Amatrice (Italie 2016) dont la magnitude était de 6,2 sur l'échelle de Richter.
- 3. L'échelle de Richter est une échelle logarithmique, la valeur représentée sur l'échelle est le logarithme (népérien ou décimal) de la grandeur mesurée. D'autres exemples d'échelles logarithmiques sont présentés aux exercices 92 p. 148 (magnitude d'un astre) et 173 p. 256 (intensité sonore en décibels). Quel est l'intérêt d'une échelle logarithmique par rapport à une échelle linéaire?

		loox (1)=	0 6	sevino	J
ample	lude	. deg	CALCULATION		magnitude
10		log(10)		1	10
X10 \ 20	o A _o oo Ao	log(20)	log(2)+1 ≈	1.30103	1+ box (5) ~ 1,3)+1
		log(100)		2	2,
X107	1000 Ao	log(1000)		3	36 +1
suite	g e ométric	- L			> suite outhous tique
. ~ .	Ap				log (10 ^M A ₀) - log (10 ^m)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 0				$0^{(1)}$
					= m (og (10)

3) Nombre d'admissions en réanimation en région AVRA entre mars 2020 et mars 2021 (source Christian Mercet)

schelle linéaire en abouise et en ordonnée

3) Nombre d'admissions en réanimation en région AVRA entre mors 2020 et mars 2021 (source Christian Mercet)

échelle limoire en abouire et logerithmèque en ordonnée

Dévolution exponentielle ovent le second confirmement est mise en évidence pour une relation offine entre le nombre de jours et le logarithme du nombre d'admissions