18.102 Assignment 4

Octavio Vega

March 1, 2023

Problem 1

Proof. Let $A \subset \mathbb{R}$ and let $E \in \mathcal{A}$. Then $f^{-1}(E)$ is measurable, so

$$m^* (A \cap f^{-1}(E)) + m^* (A \cap f^{-1}(E)^c) \le m^*(A).$$
 (1)

We will first show that \mathcal{A} is closed under taking complements so we must show that $E^c \in \mathcal{A}$ for every $E \in \mathcal{A}$; i.e. $f^{-1}(E^c)$ is measurable.

We will use the fact that $f^{-1}(E^c) = f^{-1}(E)^c$, which is proven in appendix A.

Since $f^{-1}(E)$ is measurable, we have

$$m^*(A) \ge m^* \left(A \cap f^{-1}(E) \right) + m^* \left(A \cap f^{-1}(E)^c \right)$$
 (2)

$$= m^* \left[A \cap \left(f^{-1}(E)^c \right)^c \right] + m^* \left(A \cap f^{-1}(E^c) \right) \tag{3}$$

$$= m^* \left(A \cap f^{-1}(E^c)^c \right) = m^* \left(A \cap f^{-1}(E^c) \right). \tag{4}$$

Hence, $f^{-1}(E^c)$ is measurable, so $E^c \in \mathcal{A}$. Thus, \mathcal{A} is closed under taking complements.

Now we show that \mathcal{A} is closed under taking countable unions. We use the fact that $f^{-1}(\cup_n E_n) = \cup_n f^{-1}(E_n)$, which is proven in appendix B.

Let $\{E_n\}_n \subset \mathcal{A}$ be a sequence of sets in \mathcal{A} , and let $A \subset \mathbb{R}$. Then

$$m^* \left[A \cap f^{-1} \left(\bigcup_n E_n \right) \right] = m^* \left[A \cap \left(\bigcup_n f^{-1}(E_n) \right) \right]$$
 (5)

$$= m^* \left[\bigcup_n \left(A \cap f^{-1}(E_n) \right) \right] \tag{6}$$

$$\leq \sum_{n} m^* \left(A \cap f^{-1}(E_n) \right) \tag{7}$$

$$\leq m^* \left(A \cap f^{-1}(E_n) \right), \tag{8}$$

by countable subadditivity and positive-definiteness of the outer measure m^* . Similarly, we have

$$m^* \left[A \cap f^{-1} \left(\bigcup_n E_n \right)^c \right] = m^* \left[A \cap \left(\bigcup_n f^{-1}(E_n) \right)^c \right] \tag{9}$$

$$= m^* \left[A \cap \left(\bigcap_n f^{-1}(E_n)^c \right) \right] \tag{10}$$

$$\leq m^* \left(A \cap f^{-1}(E_n)^c \right), \tag{11}$$

by monotonicity of m^* , because $\bigcap_n f^{-1}(E_n)^c \subseteq f^{-1}(E_n)^c$.

Finally, since $E_n \in \mathcal{A}$, then $f^{-1}(E_n)$ is Lebesgue measurable, so we have

$$m^* \left[A \cap f^{-1} \left(\bigcup_n E_n \right) \right] + \tag{12}$$

$$m^* \left[A \cap f^{-1} \left(\bigcup_n E_n \right)^c \right] \le m^* \left(A \cap f^{-1}(E_n) \right) + m^* (A \cap f^{-1}(E_n)^c)$$
 (13)

$$\leq m^*(A). \tag{14}$$

So, $f^{-1}(\bigcup_n E_n)$ is measurable, hence $\bigcup_n E_n \in \mathcal{A}$. Thus, \mathcal{A} is closed under taking countable unions.

Therefore,
$$\mathcal{A}$$
 is a σ -algebra.

Problem 2

TODO TODO TODO

Appendices

A Appendix A

Theorem: Let $f: \mathbb{R} \to \mathbb{R}$. If $E \subset \mathbb{R}$, then $f^{-1}(E^c) = f^{-1}(E)^c$.

Proof. Let $x \in f^{-1}(E^c)$. Then

$$\implies f(x) \in E^c \iff f(x) \notin E$$
 (15)

$$\implies x \notin f^{-1}(E) \iff x \in f^{-1}(E)^c. \tag{16}$$

Thus, we have

$$f^{-1}(E^c) \subseteq f^{-1}(E)^c.$$
 (17)

Now let $x \in f^{-1}(E)^c$. Then

$$\implies x \notin f^{-1}(E) \iff f(x) \notin E$$
 (18)

$$\implies f(x) \in E^c \iff x \in f^{-1}(E^c).$$
 (19)

So, we also have

$$f^{-1}(E)^c \subseteq f^{-1}(E^c).$$
 (20)

Taking equations (17) and (20) together allows us to conclude that $f^{-1}(E^c) = f^{-1}(E)^c$, as desired.

B Appendix B

Theorem: Let $f: \mathbb{R} \to \mathbb{R}$ and let $\{E_n\}_n$ be a collection of subsets $E_n \subset \mathbb{R}$. Then

$$f^{-1}\left(\bigcup_{n} E_{n}\right) = \bigcup_{n} f^{-1}(E_{n}). \tag{21}$$

Proof. Let $x \in f^{-1}(\cup_n E_n)$. Then $f(x) \in \cup_n E_n$, so f(x) is in any of E_n for $n \in \mathbb{N}$. This is equivalent to saying that $x \in f^{-1}(E_n)$ for some $n \in \mathbb{N}$, which implies that $x \in \cup_n f^{-1}(E_n)$. Hence,

$$f^{-1}\left(\bigcup_{n} E_{n}\right) \subseteq \bigcup_{n} f^{-1}(E_{n}).$$
 (22)

Now let $x \in \bigcup_n f^{-1}(E_n)$. Then $x \in f^{-1}(E_n)$ for some $n \in \mathbb{N}$, which is equivalent to saying that $f(x) \in E_n$ for some n. Then $f(x) \in \bigcup_n E_n$, so $x \in f^{-1}(\bigcup_n E_n)$. Thus,

$$\bigcup_{n} f^{-1}(E_n) \subseteq f^{-1}\left(\bigcup_{n} E_n\right). \tag{23}$$

Therefore, both sets are subsets of one another, so they are equal. \Box