Description

The MIK34063A Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

Features

- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference

Schematic Diagram

Absolute Maximum Ratings

Symbol	Parameter	Maximum	Units
V _{cc}	Power Supply Voltage	40	Vdc
V_{IR}	Comparator Input Voltage Range	-0.3 to +40	Vdc
V _{C(switch)}	Switch Collector Voltage	40	Vdc
V _{E(switch)}	Switch Emitter Voltage (V _{PIN1} = 40 V)	40	Vdc
$V_{CE(switch)}$	Switch Collector to Emitter Voltage	40	Vdc
$V_{C(driver)}$	Driver Collector Voltage	40	Vdc
I _{C(driver)}	Driver Collector Current (Note 1)	100	mA
I _{SW}	Switch Current	1.5	Α
TJ	Operating Junction Temperature	+150	°C
T _A	Operating Ambient Temperature Range	0 to +70	°C
Tstg	Storage Temperature Range	-65 to +150	°C

Electrical characteristics

(Vcc = 5.0 V, Ta = T_{low} to T_{high} , unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Units
OSCILLATOR					
Frequency ($V_{pin5} = 0V$, $C_T = 1.0 \text{ nF}$, $T_A = 25^{\circ}\text{C}$)		24	33	42	kHz
Charge Current(V _{CC} = 5.0V to 40V, T _A = 25°C)	I _{chg}	24	35	42	μA
Discharge Current (V _{CC} = 5.0V to 40V, T _A = 25°C)	I _{dischg}	140	220	260	μA
Discharge to Charge Current Ratio (Pin 7 to V _{CC} , T _A = 25°C)	I _{dischg} / I _{chg}	5.2	6.5	7.5	-
Current Limit Sense Voltage (I _{chg} = I _{dischg} , T _A = 25°C)	V _{ipk(sence)}	250	300	350	mV
OUTPUT SWITCH (NOTE 2)	•				
Saturation Voltage, Darlington Connection (I _{SW} = 1.0 A, Pins 1, 8 connected)	$V_{CE(sat)}$	_	1.0	1.3	V
Saturation Voltage, Darlington Connection (I _{SW} = 1.0 A, R _{pin 8} = 82 Ω to V _{CC} , Forced $\beta \cong 20$)	$V_{CE(sat)}$	_	0.45	0.7	V
DC Current Gain (I _{SW} = 1.0 A, V _{CE} = 5.0 V, T _A = 25°C)	h _{FE}	50	75	_	_
Collector Off-State Current (V _{CE} = 40 V)	$I_{C(off)}$	_	40	100	μΑ
COMPARATOR					•
Threshold Voltage	Vth				V
(T _A =25°C)		1.225	1.25	1.275	
$(T_A = T_{low} \text{ to } T_{high})$		1.21	_	1.29	
Threshold Voltage Line Regulation	Regline	_	1.4	5.0	mV
(Vcc=3.0 V to 40 V)					
Input Bias Current	I _{IB}	_	-20	-400	nA
(Vin=0 V)					<u> </u>
TOTAL DEVICE					
Supply Current (Vcc = 5.0 V to 40 V , C_T = 1.0 nF , Pin 7 = V_{CC} , Vpin 5 > Vth, Pin 2 = Gnd, remaining pins open)	I _{cc}	_	_	4.0	mA

Note1: Maximum package power dissipation limits must be observed.

Note2: Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Typical Performance Characteristics

Figure 1. Output Switch On-Off Time versus Oscillator Timing Capacitor.

Figure 2. Timing Capacitor Waveform.

Figure 3. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current.

Figure 4. Common Emitter Configuration Output Switch Saturation Voltage versus Collector Current.

Figure 5. Current Limit Sense Voltage versus Temperature.

Figure 6. Standby Supply Current versus Supply Voltage.

Application Information

Figure 1. Step-Up Converter.

Figure 2a. External NPN Switch.

Figure 2b. External NPN Saturated Switch.

Figure 2. External Current Boost Connections for I_c Peak Greater than 1.5 A.

Figure 3. Step-Down Converter.

Figure 4. External Current Boost Connections for $\rm I_{c}$ Peak Greater than 1.5 A.

Figure 5. Voltage Inverting Converter.

Figure 6a. External NPN Switch.

Figure 6b. External PNP Saturated Switch.

Figure 6. External Current Boost Connections for $\rm I_{\rm C}$ Peak Greater than 1.5 A.

Design Formula Table

Calculation	Step-Up	Step-Down	Voltage-Inverting
t _{on} /t _{off}	$\frac{V_{out} + V_F - V_{in(\min)}}{V_{in(\min)} - V_{sat}}$	$\frac{V_{out} + V_F}{V_{in(\min)} - V_{sat} - V_{out}}$	$\frac{\left V_{out}\right + V_F}{V_{in} + V_{sat}}$
(t _{on} +t _{off})max	$\frac{1}{f_{\min}}$	$\frac{1}{f_{min}}$	$\frac{1}{f_{min}}$
C_{T}	4.0 x 10 ⁻⁵ t _{on}	4.0x10 ⁻⁵ t _{on}	4.0 x 10 ⁻⁵ t _{on}
l _{pk(switch)}	$2I_{out(\max)} \left(\frac{t_{on}}{t_{off}} + 1 \right)$	$2I_{out(\max)}$	$2I_{out(max)} \left(\frac{t_{on}}{t_{off}} + 1 \right)$
R_{sc}	0.3/I _{pk(switch)}	$0.3/I_{pk(switch)}$	$0.3/I_{pk(switch)}$
L _(min)	$\left(\frac{V_{in(\min)} - V_{sat}}{I_{pk(switch)}}\right) \times t_{on(\max)}$	$\left(\frac{V_{in(\min)} - V_{sat} - V_{out}}{I_{pk(switch)}}\right) \times t_{on(\max)}$	$\left(\frac{V_{in(\min)} - V_{sat}}{I_{pk(switch)}}\right) \times t_{on(\max)}$
C _o	$9 \frac{I_{out}t_{on}}{V_{ripple(pp)}}$	$\frac{I_{pk(switch)}(t_{on} + t_{off})}{8V_{ripple(pp)}}$	$9rac{I_{out}t_{on}}{V_{ripple(pp)}}$

TERMS AND DEFINITIONS

Saturation voltage of the output switch.

V_F - Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

$$|V_{out}| = 1.25 \left(1 + \frac{R_2}{R_1}\right)$$

Nominal input voltage. Desired output voltage, Desired output current. V_{out} -

 f_{min} - Minimum desired output switching frequency at the selected values of V_{in} and I_{O} . $V_{ripple(p-p)}$ -Desired peack-to-peack output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

Pad Location MIK 34063A

Pad N	Pad name
1	Switch Collector
2	Switch Emitter
3	Timing Capacitor
4	Gnd
5	Comparator Inverting Input
6	V _{CC}
7	I _{pk} Sence
8	Driver Collector

Pad Location MIK 34063A (new design)

Pad N	Pad name
1	Switch Collector (Note 1)
2	Switch Emitter (Note 1)
3	Timing Capacitor
4	Gnd
5	Comparator Inverting Input
6	V _{CC}
7	I _{pk} Sence

Chip size: 1.72 x 1.82 mm

8 Driver Collector

Note 1: Two wires must be connected to 1 and 2 pin.