Types and λ -calculus

Problem Sheet 2

Questions 1, 2 6 and 7 will be marked.

- * 1. Write these terms using the minimum number of parentheses and λ , according to our conventions.
 - (a) $(\lambda y.((y y)(zz)))$
 - (b) $(\lambda y.(((y y) y) y))$
 - (c) $((SZ)(\lambda y.(\lambda z.(z(Sy)))))$

Solution -

- (a) $\lambda y. yy(zz)$
- (b) $\lambda y. yyyy$
- (c) One answer is: $SZ\lambda yz.z(Sy)$. However, in practice it is common to write this term as $SZ(\lambda yz.z(Sy))$ because most find this easier to read. I will always write it the second way, i.e. I will always parenthesize λ -abstractions when they occur inside a term.
- * 2. Write the term $(\lambda xyz.xy(xz))(\lambda xy.x)$ with all the parentheses and λ , that we will usually omit, tediously put back in.

 $((\lambda x.(\lambda y.(\lambda z.((xy)(xz)))))(\lambda x.(\lambda y.x)))$

* 3. List the all the subterms of the following terms (don't bother listing the same subterm more than once even it occurs several times):

- (a) The 3 distinct subterms of $\lambda x. xx$
- (b) The 6 distinct subterms of $(\lambda x. xx)(\lambda y. y)$
- (c) The 8 distinct subterms of $\lambda x yz. xy(yx)$
- (d) The 13 distinct subterms of fix $(\lambda xy$ ifz y y (x (pred y)))

Solution -

- (a) $x, xx, \lambda x.xx$
- (b) $x, xx, \lambda x. xx, y, \lambda y. y, (\lambda x. xx)(\lambda y. y)$
- (c) $x, y, xy, yx, xy(yx), \lambda xyz.(xy(yx)), \lambda yz.(xy(yx)), \lambda z.(xy(yx))$
- (d) ɔ
 - *y*
 - pred
 - pred y
 - *x* (pred *y*)
 - ifz
 - ifz y
 - ifz *y y*
 - ifz *y y* (*x* (pred *y*))
 - λy . ifz $y \ y \ (x \ (pred \ y))$
 - λxy . ifz y y (x (pred y))
 - fix $(\lambda xy$. ifz $y \ y \ (x \ (pred \ y)))$
- * 4. Each of the following has two free variables, what are they in each case?
 - (a) $\lambda xy. \lambda u. uvxyz$
 - (b) $\lambda x y. z(\lambda u. uv x y)$
 - (c) $\lambda wx.z(\lambda u.uvwx)$
 - (d) $\lambda vw.z(\lambda z.uvvw)$
 - (e) $\lambda y x. z(\lambda u. uwyx)$

Solution -

- (a) v,z
- (b) z, v

(c)	7.	ν

- (d) z, u
- (e) z, w

* 5. Which of the following pairs of strings are α -equivalent (and therefore represent the same term):

- (a) $\lambda x. xy$ and $\lambda z. zy$
- (b) $\lambda x. xy$ and $\lambda z. zx$
- (c) ifz x (S x) (pred x) and ifz y (S y) (pred y)
- (d) $\lambda xy.xy$ and $\lambda xy.yx$
- (e) fix $(\lambda x.(\lambda y.xy) (S x))$ and fix $(\lambda y.(\lambda x.yx) (S y))$

Solution -

- (a) Yes
- (b) No
- (c) No
- (d) No
- (e) Yes

* 6. Perform the following substitutions:

- (a) (ifz x (S x) Z)[2/x]
- (b) 2[1/x]
- (c) $(\lambda x.(\lambda y.xz)z)[(\lambda z.z)/z]$
- (d) $(\lambda x. yx)[yz/x]$
- (e) $(\lambda x. yz)[yy/z]$
- (f) $(\lambda y.xy)[yx/x]$

Solution -

- (a) ifz $\underline{2}$ (S $\underline{2}$) Z
- (b) <u>2</u>
- (c) $\lambda x.(\lambda y.x(\lambda z.z))(\lambda z.z)$
- (d) $\lambda x. yx$

(e) $\lambda z. yxz$

** 7. Complete the following partial proof of the following statement, by filling out (a), (b) (c) and (d). This proof is a particularly good test of how carefully you are keeping track of the proof state.

Suppose *P* and *Q* are terms, *x* and *y* are variables. If $x \neq y$ and $x \notin FV(Q)$ then for all terms *M*:

$$M\lceil P/x \rceil \lceil Q/y \rceil = M\lceil Q/y \rceil \lceil P\lceil Q/y \rceil /x \rceil$$

(which tells us how to reorder substitutions in general).

Proof. Suppose *P* and *Q* are terms. Suppose *x* and *y* are variables. The rest of the proof is by induction on $M \in \Lambda$.

• In case M is some variable z, we argue as follows. Assume $x \neq y$ and $x \neq FV(Q)$. Our goal is to show:

$$z[P/x][Q/y] = z[Q/y][P[Q/y]/x]$$

Now, either z = x, z = y or z is neither x nor y. We proceed by a case analysis on this fact:

– Suppose z = x. By our assumption, it follows that $z \neq y$. Then, by definition of substitution, $z \lceil P/x \rceil \lceil Q/y \rceil = P \lceil Q/y \rceil$ and

$$z[Q/y][P[Q/y]/x] = z[P[Q/y]/x] = P[Q/y]$$

Hence, the desired equality follows.

- Suppose z = y. (a)
- Suppose $z \neq x$ and $z \neq y$. Then z[P/x][Q/y] = z on the left side of the goal and also z[Q/y][P[Q/y]/x] = z on the right side, so the result follows.
- (b)
- In case M is some application N_1N_2 we argue as follows. Assume $x \neq y$ and $x \neq FV(Q)$. Additionally, assume the induction hypothesis:

(IH1) if
$$x \neq y$$
 and $x \neq FV(Q)$ then $N_1[P/x][Q/y] = N_1[Q/y][P[Q/y]/x]$

(IH2) if
$$x \neq y$$
 and $x \neq FV(Q)$ then $N_2[P/x][Q/y] = N_2[Q/y][P[Q/y]/x]$

Our goal is to show that:

$$(N_1N_2)[P/x][Q/y] = (N_1N_2)[Q/y][P[Q/y]/x]$$

(c)

• In case M is of shape $\lambda z.N$, we argue as follows. We can assume by the bound variable convention that z is different from any variable in scope, so $z \neq x$ and $z \neq y$ and $z \notin FV(P)$ and $z \notin FV(Q)$. (d)

Solution -

- (a) By our assumption, it follows that $z \neq x$. Then, by definition of substitution z[P/x][Q/y] = z[Q/y] = Q and also z[Q/y][P[Q/y]/x] = Q[P[Q/y]/x].
- (b) In case M is a constant c, we argue as follows. Assume $x \neq y$ and $x \neq FV(Q)$. Our goal is to show:

$$c[P/x][Q/y] = c[Q/y][P[Q/y]/x]$$

but, by definition, both left and right hand sides are just c, so the result follows immediately. We assumed $x \neq FV(Q)$, so Q[P[Q/y]/x] = Q. The result follows.

(c) It follows by the definition of substitution that:

$$(N_1N_2)[P/x][Q/y] = N_1[P/x][Q/y]N_2[P/x][Q/y]$$

It follows from (IH1) and (IH2) that:

$$N_1[P/x][Q/y]N_2[P/x][Q/y] = N_1[Q/y][P[Q/y]/x]N_2[Q/y][P[Q/y]/x]$$

and this latter term is $(N_1N_2)[Q/y][P[Q/y]/x]$ by definition of substitution

- (d) Assume $x \neq y$ and $x \neq FV(Q)$. Additionally assume the induction hypothesis:
 - (IH) If $x \neq y$ and $x \neq FV(Q)$ then N[P/x][Q/y] = N[Q/y][P[Q/y]/x]. Our goal is to show that:

$$(\lambda z.N)[P/x][Q/y] = (\lambda z.N)[Q/y][P[Q/y]/x]$$

Since $z \notin FV(xyPQ)$, it follows by definition that:

$$(\lambda z.N)[P/x][Q/y] = \lambda z.N[P/x][Q/y]$$

It follows from (IH) that $\lambda z.N[P/x][Q/y] = \lambda z.N[Q/y][P[Q/y]/x]$. Since $z \notin FV(xyPQ)$, it follows by definition that this latter term is $(\lambda z.N)[Q/y][P[Q/y]]$.