Homomorfismos

Sésar

1. Definición

Definition 1. Sean $(G, *_G)$ y $(H, *_H)$. Una aplicación $f: G \to H$ es un homomorfismo si para todo $g_1, g_2 \in G$,

$$f(g_1 *_G g_2) = f(g_1) *_H f(g_2).$$

Remark 1. Mediante inducción uno puede probar que para un conjunto finito $\{g_1, \ldots, g_n\}$ de elementos se tiene que $f(g_1 * \ldots * g_n) = f(g_1) * \ldots * f(g_n)$.

Proposition 1. Sea $f: G \to H$ un homomorfismo y $g \in G$. Entonces

- 1. $f(e_G) = e_H$.
- 2. $f(g)^{-1} = f(g^{-1})$.
- 3. $f(g^n) = f(g)^n$ para todo $n \in \mathbb{Z}$.

Demostración. En primer lugar, para todo $x \in G$, tenemos que $x = x * e_G$, por lo que $f(x) = f(x*e) = f(x) * f(e_G)$. Por la propiedad cancelativa, $f(e_G) = e_H$. Por otro lado, $gg^{-1}g^{-1}g = e_G$. Por lo tanto, $f(g)f(g^{-1}) = f(g^{-1})f(g) = f(e_G) = e_H$. De este modo, la inversa de f(g) es $f(g^{-1})$. Finalmente, por el comentario anterior, tenemos que $f(a^n) = f(g* \dots * g) = f(a)* \dots * f(a) = f(a)^n$ si n > 0. Para el caso n = 0, se tiene que $f(a^0) = f(e_G) = e_H = f(a)^0$ y finalmente para el caso n < 0, $f(a^n) = f((a^{-1})^{-n}) = f(a^{-1})^{-n} = (f(a)^{-1})^{-n} = f(a)^n$.

Proposition 2. Sea $f: G \to H$ homomorfismo.

- 1. Si $K \leq G$, entonces $f(K) \leq H$.
- 2. Si $L \leq H$, entonces $f^{-1}(L) \leq G$.

Demostración. Por la proposición anterior, $e_H = f(e_G) \in f(K)$ y si $h \in f(K)$, entonces existe un $k \in K$ tal que h = f(k), por lo que $h^{-1} = f(k)^{-1} = f(k^{-1}) \in f(K)$. Finalmente, como f es homomorfismo, $f(k_1) * f(k_2) = f(k_1 * k_2) \in f(K)$. Por lo que f(K) es un subgrupo.

Por otro lado, como $f(e_G) = e_H \in L$, entonces $e_G \in f^{-1}(L)$. Por otro lado, si $g_1, g_2 \in f^{-1}(L)$, entonces existen $l_1, l_2 \in L$ tales que $l_1 = f(g_1)$ y $l_2 = f(g_2)$, por lo que $f(g_1 * g_2) = f(g_1) * f(g_2) = l_1 * l_2 \in L$, y deducimos que la operación en $f^{-1}(L)$ es cerrada. Finalmente, si $g \in f^{-1}(L)$, entonces g = f(l), y por tanto $g^{-1} = f(l)^{-1} = f(l^{-1}) \in f^{-1}(L)$.

Corollary 1. Sea $f: G \to H$ homomorfismo.

- 1. Si $N \subseteq G$, entonces $f(N) \subseteq f(G)$.
- 2. Si $M \subseteq H$, entonces $f^{-1}(M) \subseteq G$.

Demostración. En primer lugar, es claro ver cómo $f(N) \leq f(G)$ —pues la inclusión se mantiene cuando aplicamos f en ambos conjuntos—. Veamos que f(N) es un subgrupo normal. Sea $x \in f(G)$ y $m \in f(N)$. Entonces en particular existen $g \in G$ y $n \in N$ tales que x = f(g) y m = f(n). Entonces $xmx^{-1} = f(g)f(n)f(g)^{-1} = f(gng^{-1})$. Como $N \leq G$, entonces $gng^{-1} \in N$ y por lo tanto, $xmx^{-1} \in f(N)$.

Por otro lado, tomemos $g \in G$ y $n \in f^{-1}(M)$. Entonces existirá un $m \in M$ tal que f(n) = m. De este modo, como $M \subseteq H$, entonces $f(gng^{-1}) = f(g)f(n)f(g)^{-1} = f(g)mf(g)^{-1} \in M$, luego $gng^{-1} \in f^{-1}(M)$. Como esto es cierto para todo $g \in G$, entonces $f^{-1}(M) \subseteq G$.

Corollary 2. Si $S \subseteq G$, entonces $f(\langle S \rangle) = \langle f(S) \rangle$.

Demostración. Si $S = \emptyset$, entonces $\langle S \rangle = \{e_G\}$ y por lo tanto, $f(\langle S \rangle) = f(\{e_H\}) = \{f(e_H)\} = \{e_H\} = \langle \emptyset \rangle = \langle f(S) \rangle$. Por otro lado, si $S \neq \emptyset$, entonces $\langle S \rangle = \{s_1^{n_1} \dots s_k^{n_k} \mid s_i \in S, n_k \in \mathbb{Z}\}$. Por lo tanto, $f(\langle S \rangle) = \{f(s_1^{n_1} \dots s_k^{n_k}) \mid s_i \in S, n_k \in \mathbb{Z}\} = \{f(s_1)^{n_1} \dots f(s_k)^{n_k} \mid s_i \in S, n_k \in \mathbb{Z}\} = \langle f(S) \rangle$.

Proposition 3. Si $G \xrightarrow{f} H \xrightarrow{g} K$ son homomorfismos, entonces $g \circ f$ es homomorfismo.

Demostración. Sean $x, y \in G$. Entonces como f es un homomorfismo, tenemos que f(xy) = f(x)f(y). Por otro lado, $f(x)f(y) \in H$ y como g es también un homomorfismo, entonces $g(f(x)f(y)) = g(f(x))g(f(y)) = (g \circ f)(x)(g \circ f)(y)$. Pero por otro lado, $g(f(x)f(y)) = g(f(xy)) = (g \circ f)(x)$. Luego $(g \circ f)(x) = (g \circ f)(x)(g \circ f)(y)$.

Definition 2. Sea $f: G \to H$ homomorfismo.

- 1. El **núcleo** es el conjunto $ker(f) := \{g \in G \mid f(g) = e_H\}.$
- 2. La **imagen** es el conjunto $im(f) := \{h \in H \mid h = f(g), g \in G\}.$

Proposition 4. Sea $f: G \to H$ homomorfismo. Entonces $\ker(f) \subseteq G$ e $\operatorname{im}(f) \subseteq H$.

Demostración. Basta con observar que $\ker(f) = f^{-1}(\{e_H\})$ e $\operatorname{im}(f) = f(G)$.

Proposition 5. Sea $f: G \to H$ homomorfismo.

1. f es inyectiva si y solo si $ker(f) = \{e_G\}$.

2. f es sobreyectiva si y solo si im(f) = H.

Demostración. Supongamos en primer lugar que f es un homomorfismo inyectivo. Si $x \in \ker(f)$, entonces $f(x) = e_H = f(e_G)$ y como es inyectivo, $x = e_G$, por lo que $\ker(f) \leq \{e_G\}$ y como la otra inclusión se da, tenemos la igualdad. Por otro lado, supongamos que el núcleo de f es trivial. Demostremos pues que f es inyectiva. Supongamos que f(x) = f(y). Entonces como f es homomorfismo, $f(xy^{-1}) = e_H$, por lo que $xy^{-1} \in \ker(f) = \{e_G\}$, luego $xy^{-1} = e_G$ y por lo tanto, x = y. Finalmente, la demostración sobre la sobreyectividad de f es directa.

Decimos además que f es un **monomorfismo** si es un homomorfismo inyectivo y decimos que f es un **epimorfismo** si es un homomorfismo sobreyectivo.

Proposition 6. Sea $f: G \to H$ un homomorfismo.

- 1. Si $K \leq G$, entonces $f^{-1}(f(K)) = K * \ker(f) \leq G$.
- 2. Si $L \leq G$, entonces $f(f^{-1}(L)) = L \cap \operatorname{im}(f) \leq \operatorname{im}(f)$.
- Si K y L son además subgrupos normales, $f^{-1}(f(K))$ y $f(f^{-1}(L))$ también lo son.

Demostración. En primer lugar, upongamos que $x \in f^{-1}(f(K))$. Esto es equivalente a decir que existe un $k \in K$ tal que f(x) = f(k). En otras palabras, $xk^{-1} \in \ker(f)$ o, equivalentemente, $x \in K * \ker(f)$.

La igualdad $f(f^{-1}(L)) = L \cap \operatorname{im}(f)$ se cumple para cualquier aplicación.

Finalmente, por las proposiciones anteriores, la aplicación conserva la normalidad de los subgrupos. $\hfill\Box$

Theorem 1 (Teorema de correspondencia). Sea $f: G \to H$. Existe una correspondencia biunívoca entre los subgrupos de G que contienen a $\ker(f)$ y los subgrupos de $\operatorname{im}(f)$.

Demostración. Consecuencia directa de la proposición anterior.

Definition 3. Un **isomorfismo** es un homomorfismo bivectivo.

Proposition 7. Si $f: G \to H$ es un isomorfismo, entonces $f^{-1}: H \to H$ es también un isomorfismo.

Demostración. Si f es isomorfismo, entonces en particular es una biyección y se sabe que la aplicación inversa f^{-1} es también una biyección. Basta demostrar que f^{-1} es un homomorfismo. Sea $h_1, h_2 \in H$. Por un lado, como f es biyetiva, es en particular sobreyectiva y por tanto existen $g_1, g_2 \in G$ tales que $h_1 = f(g_1)$ y $h_2 = f(g_2)$. De este modo, obtenemos que $f^{-1}(h_1h_2) = f^{-1}(f(g_1)f(g_2)) = f^{-1}(f(g_1g_2)) = g_1g_2 = f^{-1}(f(g_1))f^{-1}(f(g_2)) = f^{-1}(h_1)f^{-1}(h_2)$.

Proposition 8. Si $G \xrightarrow{f} H \xrightarrow{g} K$ son isomorfismos, entonces $g \circ f$ es isomorfismo.

Demostraci'on. La composici\'on de funciones biyectivas es biyectiva y la composici\'on de homomorfismos es un homomorfismo. Por tanto, la composici\'on resultante es un homomorfismo biyectivo, luego un isomorfismo.

Definition 4. Dos grupos G y H son **isomorfos** $G \cong H$ si existe un isomorfismo $f: G \to H$.

Theorem 2. «Ser isomorfo» es una RBE en la clase de los grupos.

Demostración. En primer lugar, la reflexividad se da ya que $\mathrm{id}_G: G \to G$ es un isomorfismo. Por otro lado, si $G \cong H$, entonces $f: G \to H$ es un isomorfismo, por lo que $f^{-1}: H \to G$ es también isomorfismo y en consecuencia, $H \cong G$ dándose de esta manera la simetría. Finalmente, si $G \cong H$ y $H \cong K$, entonces $f: G \to H$ y $g: H \to K$ son isomorfismos y por proposición, $g \circ f: G \to K$ es un isomorfismo, por lo que $G \cong K$ probando que la transitividad se cumple. \square

2. Automorfismos

Definition 5. Un automorfismo de un grupo G es un isomorfismo $f: G \to G$.

$$Aut(G) := \{ f : G \to G \mid f \text{ isomorfismo} \}.$$

Proposition 9. Aut(G) con la composición de funciones es un grupo.

Demostración. En primer lugar, la composición de funciones isomorfas es un isomorfismo, luego la operación es cerrada en $\operatorname{Aut}(G)$. Además, la composición de funciones es claramente asociativa. Por otro lado, $\operatorname{id}_G \in \operatorname{Aut}(G)$ es el elemento neutro con respecto a la composición. Finalmente, si $f \in \operatorname{Aut}(G)$, entonces $f^{-1}: G \to G$ es también un isomorfismo, luego $f^{-1} \in \operatorname{Aut}(G)$. \square

Definition 6. Un automorfismo interno en G es una aplicación de la siguiente forma:

$$\theta_g: G \to G$$
$$x \mapsto gxg^{-1}$$

Denotamos el conjunto de automorfismos internos como $\text{Inn}(G) := \{\theta_q \mid g \in G\}.$

Lemma 1. Los $\theta_g \in \text{Inn}(G)$ son automorfismos.

Demostración. En primer lugar, veamos que son homomorfismos. Sea $g \in G$. Entonces $\theta_g(xy) = gxyg^{-1} = gxg^{-1}gxg^{-1} = \theta_g(x)\theta_g(y)$. Por otro lado, es claramente biyectiva, pues su función inversa puede calcularse como $(\theta_g)^{-1} = \theta_{g^{-1}}$. Por tanto, θ_g es un homomorfismo biyectivo de G en G, es decir, θ_g es un automorfismo.

Proposition 10. Inn(G) con la composición de funciones es un grupo.

Demostración. En primer lugar, veamos que la operación es cerrada con la composición. Sean $g,h \in G$, entonces $(\theta_g \circ \theta_h)(x) = \theta_g(\theta_h(x)) = \theta_g(hxh^{-1}) = g(hxh^{-1})g^{-1} = (gh)x(h^{-1}g^{-1}) = (gh)x(gh)^{-1} = \theta_{gh}(x)$. Por lo tanto, $\theta_g \circ \theta_h = \theta_{gh} \in \text{Inn}(G)$. Luego la operación es cerrada en este conjunto y además es claramente asociativa. Notemos por otro lado que id $G = \theta_e \in \text{Inn}(G)$, luego existe elemento neutro en este conjunto. Finalmente. Es fácil comprobar que los automorfismos internos son biyectivos y que $(\theta_g)^{-1} = \theta_{g^{-1}} \in \text{Inn}(G)$.

Proposition 11. Sea G un grupo. Entonces $Inn(G) \subseteq Aut(G) \subseteq S(G)$.

Demostración. En primer lugar, es claro ver que $\mathrm{Inn}(G)\subseteq \mathrm{Aut}(G)\subseteq S(G)$ y como todos ellos formanun grupo con la misma operación composición de funciones, entonces por definición $\mathrm{Inn}(G) \leq \mathrm{Aut}(G) \leq S(G)$. Por otro lado, veamos que los automorfismos internos forman un subgrupo normal con los automorfismos. Sea $g\in G$ y $f\in \mathrm{Aut}(G)$. entonces $(f\circ\theta_g\circ f^{-1})(x)=f(\theta_g(f^{-1}(x)))=f(gf^{-1}(x)g^{-1})=f(g)f(f^{-1}(x))f(g^{-1})=f(g)xf(g)^{-1}$. De esta manera, $f\circ\theta_g\circ f^{-1}=\theta_{f(g)}\in \mathrm{Inn}(G)$.