Lecture 1 Asymptotic Analysis

Chapter 3, Appendix A

Analysis of Algorithms

- An *algorithm* is a finite set of precise instructions for performing a computation or for solving a problem.
- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)
- What do we mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

Input Size

- Input size (number of elements in the input)
 - size of an array
 - polynomial degree
 - # of elements in a matrix
 - # of bits in the binary representation of the input
 - vertices and edges in a graph

Polynomial-Time

- **Brute force**. For many non-trivial problems, there is a natural brute force search algorithm that checks every possible solution.
 - Typically takes 2^N time or worse for inputs of size N.
 - Unacceptable in practice.

There exists constants c > 0 and d > 0 such that on every input of size N, its running time is bounded by $c \, N^d$ steps.

• **Desirable scaling property**. When the input size doubles, the algorithm should only slow down by some constant factor C. An algorithm is poly-time if this property holds.

Types of Analysis

Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer,
 no matter what the inputs are

Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

Lower Bound \leq Running Time \leq Upper Bound

Average case

- Provides a prediction about the running time
- Assumes that the input is random

How do we compare algorithms?

- We need to define a number of <u>objective</u> <u>measures</u>.
 - (1) Compare execution times?

Not good: times are specific to a particular computer !!

(2) Count the number of statements executed?

Not good: number of statements vary with the programming language as well as the style of the individual programmer.

Ideal Solution

• Express running time as a function of the input size n (i.e., f(n)).

 Compare different functions corresponding to running times.

 Such an analysis is independent of machine time, programming style, etc.

Example

- Associate a "cost" with each statement.
- Find the "total cost" by finding the total number of times each statement is executed.

Algorithm 1

Algorithm 2

	Cost		Cost	
arr[0] = 0;	c_1	for(i=0; i <n; i++)<="" td=""><td>C_2</td></n;>	C_2	
arr[1] = 0;	c_{1}	arr[i] = 0;	C_1	
arr[2] = 0;	c_{1}			
***	•••			
arr[N-1] = 0;	c_{1}			
$c_1 + c_1 + + c_1 = c_1 \times N$		$(N+1) \times c_2 + N \times c_1 =$		
		$(c_2 + c_1)$	$) \times N + c_2$	

Another Example

```
    Algorithm 3

                                           Cost
 sum = 0;
                                             C_1
 for(i=0; i<N; i++)
                                             C_2
    for(j=0; j<N; j++)
                                             C_2
          sum += arr[i][i];
                                             C<sub>3</sub>
```

 $c_1 + c_2 x (N+1) + c_2 x N x (N+1) + c_3 x N^2$

Asymptotic Analysis

 To compare two algorithms with running times f(n) and g(n), we need a rough measure that characterizes how fast each function grows.

Hint: use rate of growth

- Compare functions in the limit, that is, asymptotically!
 - (i.e., for large values of *n*)

Rate of Growth

Consider the example of buying elephants and goldfish:

Cost: cost_of_elephants + cost_of_goldfish

Cost ∼ cost_of_elephants (approximation)

 The low order terms in a function are relatively insignificant for large n

$$n^4 + 100n^2 + 10n + 50 \sim n^4$$

i.e., we say that $n^4 + 100n^2 + 10n + 50$ and n^4 have the same rate of growth

Asymptotic Notation

- O notation: asymptotic "less than":
 - f(n)=O(g(n)) implies: $f(n) \le g(n)$
- Ω notation: asymptotic "greater than":
 - f(n)= Ω (g(n)) implies: f(n) "≥" g(n)
- - $f(n) = \Theta(g(n))$ implies: f(n) = g(n)

Big-O Notation

• We say $f_A(n)=30n+8$ is order n, or O(n) It is, at most, roughly proportional to n.

• $f_B(n) = n^2 + 1$ is order n^2 , or $O(n^2)$. It is, at most, roughly proportional to n^2 .

 In general, any O(n²) function is faster-growing than any O(n) function.

Visualizing Orders of Growth

 On a graph, as you go to the right, a faster growing function eventually becomes larger...

More Examples ...

- $n^4 + 100n^2 + 10n + 50$ is $O(n^4)$
- $10n^3 + 2n^2$ is $O(n^3)$
- n^3 n^2 is $O(n^3)$
- constants
 - -10 is O(1)
 - -1273 is O(1)

Back to Our Example

Algorithm 1

Algorithm 2

	Cost		Cost	
arr[0] = 0;	c_1	for(i=0; i <n; i++)<="" td=""><td>C_2</td></n;>	C_2	
arr[1] = 0;	c_1	arr[i] = 0;	c_1	
arr[2] = 0;	c_1			
arr[N-1] = 0;	c_1			
-				
$c_1 + c_1 + + c_1 = c_1 \times N$		$(N+1) \times c_2 + N \times c_1 =$		
		$(c_2 + c_2)$	$(1) \times N + C_2$	

• Both algorithms are of the same order: *O(N)*

Example (cont'd)

Algorithm 3	Cost	
sum = 0;	c_{1}	
for(i=0; i <n; i++)<="" td=""><td colspan="2">C_2</td></n;>	C_2	
for(j=0; j <n; j++)<="" td=""><td>c_2</td></n;>	c_2	
sum += arr[i][j];	C ₃	

 $c_1 + c_2 x (N+1) + c_3 x N x (N+1) + c_3 x N^2 = O(N^2)$

17

Asymptotic notations

• O-notation

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

Big-O Visualization

O(g(n)) is the set of functions with smaller or same order of growth as g(n)

Examples

- $2n^2 = O(n^3)$: $2n^2 \le cn^3 \Rightarrow 2 \le cn \Rightarrow c = 1$ and $n_0 = 2$
- $n^2 = O(n^2)$: $n^2 \le cn^2 \Rightarrow c \ge 1 \Rightarrow c = 1$ and $n_0 = 1$
- $1000n^2 + 1000n = O(n^2)$:

 $1000n^2 + 1000n \le 1000n^2 + n^2 = 1001n^2 \Rightarrow c = 1001 \text{ and } n_0 = 1000$

-
$$n = O(n^2)$$
: $n \le cn^2 \Rightarrow cn \ge 1 \Rightarrow c = 1$ and $n_0 = 1$

More Examples

• Show that 30n+8 is O(n).

- Show $\exists c_{1}n_{0}$: 30*n*+8 ≤ *cn*₁ \forall *n*>n₀.

• Let c=31, $n_0=8$. Assume $n>n_0=8$. Then cn=31n=30n+n>30n+8, so 30n+8< cn.

Big-O example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31*n* everywhere.
- But it is less than
 31n everywhere to the right of n=8.

No Uniqueness

- There is no unique set of values for n₀ and c in proving the asymptotic bounds
- Prove that $100n + 5 = O(n^2)$

```
- 100n + 5 \le 100n + n = 101n \le 101n^2

for all n \ge 5

n_0 = 5 and c = 101 is a solution

- 100n + 5 \le 100n + 5n = 105n \le 105n^2

for all n \ge 1
```

 $n_0 = 1$ and c = 105 is also a solution

Must find **SOME** constants c and n_0 that satisfy the asymptotic notation relation

Asymptotic notations (cont.)

• Ω - notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n))$ is the set of functions with larger or same order of growth as g(n)

g(n) is an *asymptotic lower bound* for f(n).

Examples

```
-5n^2 = \Omega(n)
         \exists c, n_0 such that: 0 \le cn \le 5n^2
                                     \Rightarrow c \leq 5n \Rightarrow c = 1 and n<sub>0</sub> = 1
- 100n + 5 ≠ \Omega(n<sup>2</sup>)
        \exists c, n_0 such that: 0 \le cn^2 \le 100n + 5
        100n + 5 \le 100n + 5n \ (\forall n \ge 1) = 105n
        cn^2 \le 105n \Rightarrow n(cn - 105) \le 0
        Since n is positive \Rightarrow cn - 105 \le 0 \Rightarrow n \le 105/c
        \Rightarrow contradiction: n cannot be smaller than a constant
```

- $n = \Omega(2n)$, $n^3 = \Omega(n^2)$, $n = \Omega(logn)$

Asymptotic notations (cont.)

• ⊕-notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $\Theta(g(n))$ is the set of functions with the same order of growth as g(n)

g(n) is an asymptotically tight bound for f(n).

Examples

- $n^2/2 n/2 = \Theta(n^2)$
 - $\frac{1}{2}$ $n^2 \frac{1}{2}$ $n \le \frac{1}{2}$ $n^2 \ \forall n \ge 0 \implies c_2 = \frac{1}{2}$
 - $\frac{1}{2}$ $n^2 \frac{1}{2}$ $n \ge \frac{1}{2}$ $n^2 \frac{1}{2}$ $n * \frac{1}{2}$ $n (\forall n \ge 2) = \frac{1}{4}$ n^2 $\Rightarrow c_1 = \frac{1}{4}$

- $n \neq \Theta(n^2)$: $c_1 n^2 \le n \le c_2 n^2$
 - \Rightarrow only holds for: $n \le 1/c_1$

Examples

- $6n^3$ ≠ $\Theta(n^2)$: $c_1 n^2 \le 6n^3 \le c_2 n^2$
 - \Rightarrow only holds for: n \le c₂ /6

- n ≠ $\Theta(\log n)$: $c_1 \log n \le n \le c_2 \log n$
 - \Rightarrow c₂ \ge n/logn, \forall n \ge n₀ impossible

Relations Between Different Sets

Subset relations between order-of-growth sets.

Common orders of magnitude

Common orders of magnitude

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu { m s}$	$0.01~\mu \mathrm{s}$	$0.033~\mu\mathrm{s}$	$0.1~\mu \mathrm{s}$	$1 \mu \mathrm{s}$	3.63 ms
20	$0.004~\mu \mathrm{s}$	$0.02~\mu\mathrm{s}$	$0.086~\mu\mathrm{s}$	$0.4~\mu \mathrm{s}$	1 ms	77.1 years
30	$0.005~\mu { m s}$	$0.03~\mu \mathrm{s}$	$0.147~\mu\mathrm{s}$	$0.9~\mu \mathrm{s}$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu { m s}$	$0.04~\mu \mathrm{s}$	$0.213~\mu\mathrm{s}$	$1.6~\mu \mathrm{s}$	18.3 min	
50	$0.006~\mu \mathrm{s}$	$0.05~\mu\mathrm{s}$	$0.282~\mu\mathrm{s}$	$2.5~\mu \mathrm{s}$	13 days	
100	$0.007~\mu\mathrm{s}$	$0.1~\mu \mathrm{s}$	$0.644~\mu { m s}$	$10 \mu \mathrm{s}$	$4 \times 10^{13} \mathrm{yrs}$	
1,000	$0.010~\mu \mathrm{s}$	$1.00~\mu\mathrm{s}$	$9.966~\mu { m s}$	1 ms		
10,000	$0.013~\mu { m s}$	$10~\mu \mathrm{s}$	$130~\mu \mathrm{s}$	100 ms		
100,000	$0.017~\mu { m s}$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020~\mu \mathrm{s}$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu \mathrm{s}$	0.01 sec	0.23 sec	1.16 days		
100,000,000	$0.027~\mu \mathrm{s}$	0.10 sec	2.66 sec	115.7 days		
1,000,000,000	$0.030~\mu \mathrm{s}$	1 sec	29.90 sec	31.7 years		

Logarithms and Properties

In algorithm analysis we often use the notation "log n" without specifying the base

Binary logarithm
$$\lg n = \log_2 n$$
 $\log x^y = y \log x$

Natural logarithm $\ln n = \log_e n$ $\log xy = \log x + \log y$
 $\lg^k n = (\lg n)^k$ $\log \frac{x}{y} = \log x - \log y$
 $\lg \lg n = \lg(\lg n)$ $a^{\log_b x} = x^{\log_b a}$
 $\log_b x = \frac{\log_a x}{\log_a b}$

More Examples

• For each of the following pairs of functions, either f(n) is O(g(n)), f(n) is $\Omega(g(n))$, or $f(n) = \Theta(g(n))$. Determine which relationship is correct.

-
$$f(n) = \log n^2$$
; $g(n) = \log n + 5$ $f(n) = \Theta(g(n))$
- $f(n) = n$; $g(n) = \log n^2$ $f(n) = \Omega(g(n))$
- $f(n) = \log \log n$; $g(n) = \log n$ $f(n) = O(g(n))$
- $f(n) = n$; $g(n) = \log^2 n$ $f(n) = \Omega(g(n))$
- $f(n) = n \log n + n$; $g(n) = \log n$ $f(n) = \Omega(g(n))$
- $f(n) = 10$; $g(n) = \log 10$ $f(n) = \Theta(g(n))$
- $f(n) = 2^n$; $g(n) = 10n^2$ $f(n) = \Omega(g(n))$
- $f(n) = 2^n$; $g(n) = 3^n$ $f(n) = O(g(n))$

Properties

• Theorem:

$$f(n) = \Theta(g(n)) \Leftrightarrow f = O(g(n))$$
 and $f = \Omega(g(n))$

- Transitivity:
 - $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
 - Same for O and Ω
- Reflexivity:
 - $f(n) = \Theta(f(n))$
 - Same for O and Ω
- Symmetry:
 - $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$
- Transpose symmetry:
 - f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$

Asymptotic Notations in Equations

- On the right-hand side
 - $\Theta(n^2)$ stands for some anonymous function in $\Theta(n^2)$ $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means: There exists a function $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$

On the left-hand side

$$2n^2 + \Theta(n) = \Theta(n^2)$$

No matter how the anonymous function is chosen on the left-hand side, there is a way to choose the anonymous function on the right-hand side to make the equation valid.

Common Summations

• Arithmetic series:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Geometric series:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1} (x \neq 1)$$

- Special case: $|\chi| < 1$:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

• Harmonic series:

$$\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \ln n$$

• Other important formulas:

$$\sum_{k=1}^{n} \lg k \approx n \lg n$$

$$\sum_{k=1}^{n} k^{p} = 1^{p} + 2^{p} + \dots + n^{p} \approx \frac{1}{p+1} n^{p+1}$$

Mathematical Induction

 A powerful, rigorous technique for proving that a statement S(n) is true for every natural number n, no matter how large.

Proof:

- Basis step: prove that the statement is true for n = 1
- Inductive step: assume that S(n) is true and prove that S(n+1) is true for all $n \ge 1$

Find case n "within" case n+1