Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To construct finite automata for any given pattern
 - Equivalence of DFA and NFA

INTRODUCTION

NFA

- As every DFA is an NFA, the class of languages accepted by NFA's includes the class of languages accepted by DFA's.
- DFA can simulate NFA.
- For every NFA, there exist an equivalent DFA.

States	Inpu	ts				
States	0	1 M'_	Q',∑,s',F	151)		
* 90	$\{q_{_0}\}$	$\{q_1\}_{\overline{Q}}$	トルファッパ 19.		20	
${m q}_1$	$\{oldsymbol{q}_1\}$	$\{q_{0}, q_{1}\}$	'- <u>-</u>		2	
NEA ->I	FA	7 = .	[0,0]			
$M \rightarrow 1$	71	S':	$= \boxed{90} \rightarrow DFA$			
M=(Q1	I, S, 8, F,)	9. —			_
$Q \rightarrow \{q$	5,9, ³) <u> </u> ; — }9.—			0,1
>> {0	, 1 }) - ·			
5-> 9						
F > {9,	•			QXI-	-> 2ª	
S -> trai	withthe					

States	Inputs	
States	0	1
* 90	$\{q_{\scriptscriptstyle 0}\}$	$\{\underline{q}_1\}$
$q_{_1}$	$\{oldsymbol{q}_1^{}\}$	$\{\boldsymbol{q}_{\scriptscriptstyle 0}, \boldsymbol{q}_{\scriptscriptstyle 1}\}$

([9,0],0)=[9,0] _{>DFA}	as & (90,0) = (96)
(([9,0],1)=[9,1] →	as S(q, 1) = 5a 2

States	Inputs	
States	0	1
* q ₀	$\{q_{\scriptscriptstyle 0}\}$	$\{{m q}_1\}$
$q_{_1}$	$\{q_{_1}\}$	$\{q_{_0},q_{_1}\}$

States	Inputs		
	0	1	
$[q_{_0}]$	$[q_{_0}]$	$[q_{_1}]$	
$[q_{_1}]$	$[q_{_1}]$	$[q_0, q_1]$	
$[q_0, q_1]$	$[q_0, q_1]$	$[q_0,q_1]$	

DEA-NEA

NFA

Theorem

 For every NFA, there exists a DFA which simulates the behavior of NFA. If L is the set accepted by NFA, then there exists a DFA which also accepts L.

PROOF

• Let M= $(Q, \Sigma, q_0, F, \delta)$ be NFA accepting L we construct DFA $M^1 = (Q^1, \Sigma, q_0^1, F^1, \delta^1)$, where

- $\underline{q}^{l} = \underline{2}^{\underline{q}}$ (power set of \underline{q}) (any state in \underline{q}^{l} is denoted by $[q_1, q_2,, q_i]$ where $q_1, q_2,, q_i \in \underline{q}$)
- $q_0^{\ \ } = [q_0]$
- F is set of final states.

PROOF CONT...

- As M (NFA) starts with initial state q_0 . q_0^{-1} is defined as $[q_0]$.
- In M^I (DFA) the final state (F^I) can be subset of Q containing all final states of F.
- Now we define

```
\delta^{\mid} ([q<sub>1</sub>, q<sub>2</sub>, ..... q<sub>i</sub>], a) = \delta(q<sub>1</sub>, a) \cup \delta(q<sub>2</sub>, a) \cup .... \delta (q<sub>i</sub>, a) equivalently, \delta^{\mid} ([q<sub>1</sub>, q<sub>2</sub>, ....q<sub>i</sub>], a) = [p<sub>1</sub>, p<sub>2</sub>,....p<sub>j</sub>] if and only if \delta(\{q_1, q_2, ....q_i\}, a) = \{p_1, p_2, ....p_j\}
```


PROOF BY INDUCTION

```
Input string x \delta^{\mid}([q_0], x) = [p_1, p_2, ..., p_j] if and only if \delta(q_0, x) = \{p_1, p_2, ..., p_j\} Nea
```

Basis

• The result is trivial if string length is 0 i.e., |x| = 0

• since
$$q_0^{\mid} = [q_0]$$
. x must be ϵ

PROOF BY INDUCTION

Induction

- Suppose the hypothesis is true for inputs of length m.
- Let xa be a string of length m +1 with a in Σ .

Then
$$\delta^{|}([q_0], xa) = \delta^{|}(\delta^{|}([q_0], x), a)$$

By induction hypothesis

$$\delta^{\dagger}([q_0], x) = [p_1, p_2, \dots, p_i]$$

• if and only if

$$\delta(q_0, x) = \{p_1, p_2, \dots, p_j\}$$

8(96, 20) = 8 (8/9,0,n), a) Sha []

PROOF BY INDUCTION

• By definition of δ^{\parallel}

$$\delta^{||}([p_1,p_2,...,p_j],\underline{a}) = [r_1,r_2,...,r_k]$$

if and only if

$$\delta(\{p_1, p_2, \dots, p_j\}, a) = \{r_1, r_2, \dots, r_k\}$$

Thus

$$\delta^{\dagger}([q_0], xa) = [r_1, r_2, \dots, r_k]$$

• if and only if

$$\delta(q_0, xa) = \{r_1, r_2, \dots, r_k\}$$

- which establishes the inductive hypothesis.
- Thus L(M) = L(M1)

EXAMPLE

Construct a DFA for the given NFA.

$$M=(\{q0, q1\},\{0,1\}, \delta,q0,\{q1\})$$

States	Inputs	
States	0	1
$\mathcal{S} \not = \mathcal{I}_0$	$\{q_{0},q_{1}\}$	$\{oldsymbol{q}_1\}$
$\star q_1$	ф	$\{q_{_{0}},q_{_{1}}\}$

$$M' = 3(01, E, 8', 8', F')$$

$$Q' = - F' = 9$$

$$E' = 9$$

$$S' \rightarrow [30]$$

Unit I

EXAMPLE CONT...

Construct a DFA for the given NFA.

 $M=(\{q0, q1\}, \{0,1\}, \delta, q0, \{q1\})$

States	Inputs	
States	0	1
$q_{_0}$	$\{q_{0},q_{1}\}$	$\{q_1^{}\}$
$q_{_1}$	ф	$\{q_{0},q_{1}\}$

States	Inputs	
States	0	1
$\rightarrow [q_0]$	$[q_0 \ q_1]$	$[q_{_1}]$
$\star [q_1]$	φ	$[q_0 \ q_1]$
$4[q_0^{\dagger} q_1^{\dagger}]$	$[q_0, q_1]$	$[q_{\scriptscriptstyle 0}q_{\scriptscriptstyle 1}]$

EXAMPLE

Construct a DFA for the given NFA

 $M = (\{q0, q1, q2\}, \{0, 1\}, \delta, q0, \{q2\})$

States	Inputs		
	0	1	
$\dot{\boldsymbol{\beta}}q_0$	$\{q_0,q_1\}$	$\{\boldsymbol{q}_2\}$	
$q_1^{}$	$\{{m q}_0\}$	$\{oldsymbol{q}_1\}$	
$\star q_2$	ф	$\{q_{_{0}},q_{_{1}}\}$	

EXAMPLE CONT..

Construct a DFA for the given NFA

 $M = (\{q0, q1, q2\}, \{0, 1\}, \delta, q0, \{q2\})$

States	Inputs		
	0	1	
$q_{_0}$	$\{q_0,q_1\}$	$\{q_{_2}\}$	
\boldsymbol{q}_1	$\{{m q}_0\}$	$\{oldsymbol{q}_1\}$	
q_{2}	ф	$\{q_{_{0}},q_{_{1}}\}$	

EXAMPLE CONT...

Construct a DFA for the given NFA

 $M = (\{q0, q1, q2\}, \{0, 1\}, \delta, q0, \{q2\})$

States	Inputs		
	0	1	
$q_{_0}$	$\{q_0,q_1\}$	$\{q_{_2}\}$	
$q_{_1}$	$\{{m q}_0\}$	$\{oldsymbol{q}_1\}$	
$q_{_2}$	ф	$\{q_{_{0}},q_{_{1}}\}$	

States	Inputs		
States	а	b	
$[q_{\scriptscriptstyle 0}]$	$[q_0, q_1]$	$[q_2]$	
$[q_2]$	ф	$[q_0^{\dagger}q_1^{\dagger}]$	
$[q_{\scriptscriptstyle 0}.q_{\scriptscriptstyle 1}]$	$[q_0.q_1]$	$[q_{\scriptscriptstyle 1}q_{\scriptscriptstyle 2}]$	
$[q_1 q_2]$	$[q_{_0}]$	$[q_{\scriptscriptstyle 0}q_{\scriptscriptstyle 1}]$	

TEST YOUR KNOWLEDGE

• Construct the equivalent DFA following NFA given in transition table:

	inputs	
states	0	1
→ p	{p,q}	{p}
q	{r}	{r}
r	{s}	-
*s	{s}	{s}

States	Inputs	
States	0	1
$q_{_0}$	$\{q_{0},q_{1}\}$	$\{q_{_1}\}$
$oldsymbol{q}_1$	ф	$\{q_{0},q_{1}\}$

SUMMARY

- Equivalence of DFA and NFA
- How to convert NFA to a DFA

LEARNING OUTCOME

On successful completion of this topic, the student will be able to:

Equivalence of NFA and DFA (K3)

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

