Numerical series

(three weeks)

(from Monday, 25 September 2017 to Friday, 13 October 2017)

Exercise 1

We consider the series $\sum \frac{1}{n}$ and we denote by $(S_n)_{n \in \mathbb{N}^*}$ the sequence $\left(\sum_{k=1}^n \frac{1}{k}\right)$.

- 1. Show that, for all $n \in \mathbb{N}^*$, $S_{2n} S_n \geqslant \frac{1}{2}$.
- 2. Deduce that the series $\sum \frac{1}{n}$ is divergent.

Exercise 2

Let (u_n) be a real, positive and decreasing sequence.

We define $(v_n) = (2^n u_{2^n})$, $(S_n) = \left(\sum_{k=0}^n u_k\right)$ and $(T_n) = \left(\sum_{k=0}^n v_k\right)$.

1. Show that, for all $k \in \mathbb{N}$,

$$\frac{1}{2}v_{k+1} \leqslant S_{2^{k+1}} - S_{2^k} \leqslant 2^k u_{2^k + 1}$$

2. Deduce that

$$\frac{1}{2}(T_{n+1} - v_0) \leqslant S_{2^{n+1}} - S_1 \leqslant T_n$$

- 3. Deduce that $\sum u_n$ and $\sum v_n$ have the same nature.
- 4. Let $\alpha \in \mathbb{R}$.
 Using the previous question, retrieve the general rule about Riemann series $\sum \frac{1}{n^{\alpha}}$.

Exercise 3

Study the nature of the series with the general term (u_n) in the following cases :

1.
$$u_n = \ln\left(\frac{n^2 + 2n + 1}{n^2 + 2n}\right)$$

$$2. \ u_n = \left(\ln(n)\right)^{-\sqrt{n}}$$

$$3. u_n = e - \left(1 + \frac{1}{n}\right)^n$$

4.
$$u_n = \sqrt{n^3 + n + 1} - \sqrt{n^3 + n - 1}$$

5.
$$u_n = \frac{2 \times 4 \times \dots \times 2n}{(n!)^2}$$

6.
$$u_n = \frac{(n!)^{\alpha}}{n^n}$$
 where $\alpha \in \mathbb{R}$

7.
$$u_n = \left(\frac{n}{n+a}\right)^{n^2}$$
 where $a \in \mathbb{R}$

8.
$$u_n = \frac{n^2}{2^{n^2}}$$

9.
$$u_n = \frac{(n!)^2}{(2n)!} a^n$$
 where $a \in \mathbb{R}_+^*$

$$10. \ u_n = \frac{n^{\ln(n)}}{\left(\ln(n)\right)^n}$$

Exercise 4

Let us consider the sequence $(u_n)_{n\in\mathbb{N}^*}$ defined for every $n\in\mathbb{N}^*$ by

$$u_n = \ln((n-1)!) - \left(n - \frac{1}{2}\right) \ln(n) + n$$

1. Prove that

$$u_{n+1} - u_n = 1 - \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right)$$

2. Prove that

$$u_{n+1} - u_n \underset{+\infty}{\sim} -\frac{1}{12n^2}$$

3. Deduce that (u_n) is convergent. We denote by l its limit.

4. Show that

$$e^{u_n} = \frac{n!e^n}{n^n \sqrt{n}}$$

then deduce the following equivalent:

$$n! \sim e^l n^n e^{-n} \sqrt{n}$$

Exercise 5

Let $a \in \mathbb{R}_+^*$ and $\sum u_n$ where $u_n = \ln \left(1 + \frac{(-1)^n}{n^a}\right)$

- 1. Discuss the nature of the series $\sum \frac{(-1)^n}{n^a}$ depending on the value of a.
- 2. We know that $u_n \underset{+\infty}{\sim} \frac{(-1)^n}{n^a}$. Can we then conclude that the series $\sum u_n$ and $\sum \frac{(-1)^n}{n^a}$ have the same nature? Justify your answer.
- 3. Find $k \in \mathbb{R}$ such that $u_n = \frac{(-1)^n}{n^a} + \frac{k}{n^{2a}} + o\left(\frac{1}{n^{2a}}\right)$.
- 4. Deduce the nature of $\sum u_n$ depending on the value of a.

Exercise 6

1. Let $N \in \mathbb{N}$, and let (u_n) and (v_n) be two strictly positive sequences such that, for all $n \ge N$,

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

Prove that $\sum v_n$ convergent $\Longrightarrow \sum u_n$ convergent.

2. Let (u_n) be a strictly positive sequence such that $\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$ where $\alpha \in \mathbb{R}$.

a. Let
$$(v_n) = \left(\frac{1}{n^{\beta}}\right)$$
 where $\beta \in \mathbb{R}$.

Show that
$$\frac{v_{n+1}}{v_n} = 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right)$$
.

b. We suppose that $\alpha > 1$. Prove that $\sum u_n$ is convergent.

N.B.: we may consider $\beta \in \mathbb{R}$ such $1 < \beta < \alpha$ and use the sequence (v_n) defined in the previous question.

c. We suppose now that $\alpha < 1$. Prove that $\sum u_n$ is divergent.

N.B.: we may consider $\beta \in \mathbb{R}$ such that $\alpha < \beta < 1$ and use the sequence (v_n) defined in the question a.

- 3. Study the nature of $\sum u_n$ where $u_n = \frac{2 \times 4 \times \cdots \times 2n}{3 \times 5 \times \cdots \times (2n+1)}$
- 4. Discuss, depending on the value of $a \in \mathbb{R}$, the nature of $\sum u_n$ where $u_n = \frac{n \times n!}{(a+1) \times \cdots \times (a+n)}$.

Exercise 7

The purpose of this exercice is to determine the nature of the series with the general term :

$$u_n = (-1)^n n^{\alpha} \left(\ln \left(\frac{n+1}{n-1} \right) \right)^{\beta}$$

where $(\alpha, \beta) \in \mathbb{R}^2$ and $n \in \mathbb{N} \setminus \{0, 1\}$.

1. Show that

$$\ln\left(\frac{n+1}{n-1}\right) = \frac{2}{n}\left(1 + \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right)\right)$$

2. Deduce that

$$u_n = (-1)^n \frac{2^{\beta}}{n^{\beta - \alpha}} \left(1 + \frac{\beta}{3n^2} + o\left(\frac{1}{n^2}\right) \right)$$

- 3. Show that in case $\beta \leqslant \alpha$, then the series $\sum u_n$ diverges.
- 4. We focus now on the case $\beta > \alpha$.

a. Check that

$$u_n = (-1)^n \frac{2^{\beta}}{n^{\beta-\alpha}} + v_n$$
 with $v_n = (-1)^n \frac{\beta 2^{\beta}}{3n^{2+\beta-\alpha}} + o\left(\frac{1}{n^{2+\beta-\alpha}}\right)$.

- b. Prove that the series $\sum v_n$ converges absolutely.
- c. Show that the series of general term $w_n=(-1)^n\frac{2^{\beta}}{n^{\beta-\alpha}}$ converges.
- d. Deduce that $\sum u_n$ converges.

Exercise 8

Let $(\alpha, \beta) \in \mathbb{R}^2$. We consider the series $\sum u_n$ where $u_n = \frac{\ln(1 + n^{\alpha})}{n^{\beta}}$.

1. Show that the series $\sum \frac{1}{n^{\alpha}(\ln(n))^{\beta}}$ converges iff $((\alpha > 1) \text{ or } (\alpha = 1 \text{ and } \beta > 1))$.

N.B. : we will separate the cases $\alpha < 0$ and $\alpha \ge 0$. For the later, we will use the results of the exercise 2.

- 2. Assume that $\alpha < 0$. Find an equivalent of $\ln(1 + n^{\alpha})$ near $+\infty$. Deduce an equivalent of u_n near $+\infty$. Conclude about the nature of $\sum u_n$ in this case.
- 3. Assume that $\alpha > 0$. Show that $\ln(1 + n^{\alpha}) \sim_{+\infty} \alpha \ln(n)$. Deduce an equivalent of u_n near $+\infty$. Conclude about the nature of $\sum u_n$ in this case.
- 4. Assume that $\alpha = 0$. Find an equivalent of u_n near $+\infty$. Conclude about the nature of $\sum u_n$ in this case.
- 5. Conclude about the nature of $\sum u_n$ depending α and β .

Exercise 9

In this exercise, we propose to compare d'Alembert rule with Cauchy rule.

1. Show Cesàro theorem : let (u_n) be a sequence which converges to $\ell \in \mathbb{R}$. Then

$$\frac{1}{n} \sum_{k=1}^{n} u_k \xrightarrow[n \to +\infty]{} \ell$$

- 2. Deduce that if $u_{n+1} u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$ then $\frac{u_n}{n} \xrightarrow[n \to +\infty]{} \ell$.
- 3. Deduce (for a strictly positive sequence (u_n)) that

$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}_+^* \Longrightarrow \sqrt[n]{u_n} \xrightarrow[n \to +\infty]{} \ell$$

- 4. What do you conclude about d'Alembert and Cauchy rules?
- 5. Let $(a,b) \in (\mathbb{R}_+^*)^2$ with $a \neq b$ and (u_n) defined by $\begin{cases} u_{2p} = a^p b^p \\ u_{2p+1} = a^{p+1} b^p \end{cases}$

Compare for this sequence d'Alembert rule with Cauchy rule.

Exercise 10

In this exercise, we propose to prove Abel's rule.

Let (u_n) and (v_n) be two sequences such that

- (u_n) is decreasing and converges to 0.
- The sequence $(V_n) = \left(\sum_{k=0}^n v_k\right)$ is bounded.
 - 1. Show that (u_n) converges iff $\sum (u_n u_{n+1})$ converges.
 - 2. Show that for all $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} u_k v_k = \left(\sum_{k=0}^{n} (u_k - u_{k+1}) V_k\right) + u_{n+1} V_n$$

- 3. Deduce that $\sum u_n v_n$ converges.
- 4. Let $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. Determine the nature of $\sum \frac{\cos(n\theta)}{n}$.