Lite-transformer

Lite-transformer

Lite-Transformer原理分析: Lite-Transformer具体方法: 实验及评估结果 本文的贡献

Lite-Transformer原理分析:

Transformer模型因其训练效率高、捕获长距离依赖能力强等特点,已经在自然语言处理中得到广泛应用。在此基础上,现代最先进的模型,如BERT,能够从未标注的文本中学习强大的 language representation,甚至在一些很有挑战性的问答任务上超越人类。但它需要大量计算去实现高性能,比如一个Transformer模型翻译一个长度不超过30个单词的句子需要大约10G 的 Mult-Adds。而这不适合受限于硬件资源和电池严格限制的移动应用,比如智能手机,手环,物 联网设备等。那么如何减少Transformer的计算量呢?看了上面的HAT我们知道一种办法是通过减少Embedding size 。但是这存在的一个问题是:这样做在减少计算量的同时也削弱了 Transformer捕获长距离和短距离关系的能力。

Lite-Transformer这项研究提出了一种高效的模块 —— LSRA,其核心是长短距离注意力 (Long-Short Range Attention,LSRA) ,其中一组注意力头(通过卷积)负责局部上下文建模,而另一组则(依靠注意力)执行长距离关系建模。

这样的专门化配置使得模型在机器翻译、文本摘要和语言建模这3个语言任务上都比原版 transformer 有所提升,基于LSRA所构建的Lite Transformer达到了移动设备计算量所要求的 500M Mult-Adds。以WMT 2014 English-German任务为例,在计算量限制为500M Mult-Adds或者100M Mult-Adds时,Lite Transformer的性能比原版 Transformer 的 BLEU 值比分别比 transformer 高 1.2或1.7。结合剪枝和量化技术,研究者进一步将 Lite Transformer 模型的大小压缩到原来的 5%。

对于语言建模任务,在大约 500M MACs 上,Lite Transformer 比 transformer 的困惑度低 1.8。值得注意的是,对于移动 NLP 设置,Lite Transformer 的 BLEU 值比基于 AutoML 的 Evolved Transformer 高 0.5,而且AutoML方法所需要的搜索算力超过了250 GPU years,这相当于5辆汽车的终身碳排放量。

Lite-Transformer具体方法:

我们将用于文本处理的Self-attention称为1-D attention,用于图像识别的Self-attention称为2-D attention,用于视频处理的Self-attention称为3-D attention。首先看看Self-attention的计算复杂度,如下图所示:

而这样的计算复杂度下就会产生一个问题: 当N增大时整个模型的计算量同样也会变得巨大如何解决这个问题:

- 1. 减少Embedding dim来降低计算量——会严重影响Self-attention layer的性能,使得我们无法在保证性能的前提下大幅减少计算量。
- 2. 设计一种Flattened Transformer Block, 它使得特征在进入Self-attention layer之前不进行降维,使得attention layer占据了绝大部分计算量。

Base Transformer Block

对比一下之前的方法:

之前想通过减少Embedding dim来降低计算量,但是由于 bottleneck design 的缺点,使得Self-attention受到了严重的影响,影响了模型的性能。

现在通过减少LSRA来降低计算量,由于 Flattened Transformer Block,使得计算量可以通过 LSRA进行大幅降低而不影响性能。

让Self-attention这个模块更加专门化:

长短距离注意力 (LSRA)哪里专门化呢?在翻译任务中,注意力模块必须捕获全局和局部上下文信息。LSRA 模块遵循两分支设计,如下图所示。左侧注意力分支负责捕获全局上下文,右侧卷积分支则建模局部上下文。研究者没有将整个输入馈送到两个分支,而是将其沿通道维度分为两部分,然后由后面的 FFN 层进行混合。这种做法将整体计算量减少了 50%。

左侧分支处理全局信息:是正常的Self-attention模块,不过通道维度减少了一半。

右侧分支处理局部关系:一个自然的想法是对序列应用卷积。为了进一步减少计算量,研究者将普通卷积替换为轻量级的版本,该版本由线性层linear layers和Depth—wise convolution组成。

实验及评估结果

IWSLT 实验结果:

下图为Lite Transformer 在 IWSLT' 14 De-En 数据集上的定量结果。并与 transformer 基线方法和 LightConv 做了对比。在大约 100M Mult-Adds 时,Lite Transformer 模型的 BLEU 值比 transformer 高出 1.6

	#Parameters	#Mult-Adds	BLEU	$\Delta BLEU$	
Transformer (Vaswani et al., 2017)	2.8M	63M	27.8	-	
LightConv (Wu et al., 2019b)	2.5M	52M	28.5	+0.7	
Lite Transformer (Ours)	2.8M	54M	30.9	+3.1	
Transformer (Vaswani et al., 2017)	5.7M	139M	31.3	_	
LightConv (Wu et al., 2019b)	5.1M	115M	31.6	+0.3	
Lite Transformer (Ours)	5.4M	119M	32.9	+1.6	
Transformer (Vaswani et al., 2017)	8.5M	215M	32.7	12	
LightConv (Wu et al., 2019b)	8.4M	204M	32.9	+0.2	
Lite Transformer (Ours)	8.9M	209M	33.6	+0.9	

WMT 实验结果:

下图为Lite Transformer 在 WMT' 14 En-De and WMT' 14 En-Fr 数据集上的定量结果。并与 transformer 基线方法做了对比。 Lite Transformer在总计算量和模型参数量之间实现了更好的平衡。在大约 100M Mult-Adds 时,Lite Transformer 模型的 BLEU 值比 transformer 分别高出了 1.2和1.7;在大约 300M Mult-Adds 时,Lite Transformer 模型的 BLEU 值比 transformer 分别高出了 0.5和1.5

	#Parameters	#Mult-Adds	WMT'14 En-De		WMT'14 En-Fr	
			BLEU	Δ BLEU	BLEU	ΔBLEU
Transformer (Vaswani et al., 2017)	2.8M	87M	21.3	-	33.6	-
Lite Transformer (Ours)	2.9M	90M	22.5	+1.2	35.3	+1.7
Transformer (Vaswani et al., 2017)	11.1M	338M	25.1	-	37.6	_
Lite Transformer (Ours)	11.7M	360M	25.6	+0.5	39.1	+1.5
Transformer (Vaswani et al., 2017)	17.3M	527M	26.1	_	38.4	
Lite Transformer (Ours)	17.3M	527M	26.5	+0.4	39.6	+1.2

WMT En-Fr数据集实验结果的trade-off曲线如下图所示

与 Evolved Transformer 对比:

相比 Evolved Transformer,在大约 100M Mult-Adds 时,Lite Transformer 模型的 BLEU 值比 Evolved transformer 高出了 0.5;在大约 300M Mult-Adds 时,Lite Transformer 模型的 BLEU 值比 Evolved transformer 高出了 0.2

	#Params	#Mult-Adds	BLEU	GPU Hours	CO ₂ e (lbs)	Cloud Computation Cost
Transformer (Vaswani et al., 2017)	2.8M	87M	21.3	8×12	26	\$68 - \$227
Evolved Transformer (So et al., 2019)	3.0M	94M	22.0	8×274K	626K	\$1.6M - \$5.5M
Lite Transformer (Ours)	2.9M	90M	22.5	8×14	32	\$83 - \$278
Transformer (Vaswani et al., 2017)	11.1M	338M	25.1	8×16	36	\$93.9 - \$315
Evolved Transformer (So et al., 2019)	11.8M	364M	25.4	8×274K	626K	\$1.6M - \$5.5M
Lite Transformer (Ours)	11.7M	360M	25.6	8×19	43	\$112 - \$376

本文的贡献

- 发现bottleneck design的结构对于1-D attention (文本处理) 来说不是最优的
- 提出一种多分支的特征提取器 Long-Short Range Attention (LSRA), 其中卷积操作帮助捕捉局部上下文, 而attention用来捕捉全局上下文
- 基于LSRA所构建的Lite Transformer达到了移动设备计算量所要求的500M Mult-Adds, 在3种任务上获得了一致的性能提升,与AutoML-based方法Evolved Transformer相比也 获得了性能的提升,并大大减少训练成本