Matlab Code Notes for Neural Field Model

Miao Cao

 $1~\mathrm{July}~2016$

Contents

1	Convolution of Two Gaussian basis functions	2
2	Compute Gamma	2
3	Compute Psi	3
4	Compute State Vector	3
5	Compute State Vector — Check with numerical solution	3

1 Convolution of Two Gaussian basis functions

Analytically prove convolution of two Gaussians. In general, the precision level of analytic simulation should be around 10^{-6} .

File (Matlab script): Convolution2DGaussians.m

Matlab script description

Appendix E (Freestone et al., 2011, NeuroImage), Equation (4) $(\phi_i \otimes \phi_j)(r) = (\frac{\pi \sigma_i^2 \sigma_j^2}{\sigma_i^2 + \sigma_i^2})^{\frac{n}{2}} \exp(-\frac{1}{\sigma_i^2 + \sigma_i^2} r^T r)$.

Section: Generate spatial data, create a $NPoints \times NPoints$ cortical surface and phi and psi Gaussian basis functions.

Variable name	Explanation
X	Coordinates of x-axis
Y	Coordinates of y-axis
mu_phi	Centre of gaussian
sigma_phi	covariance matrix of phi
phi	Gaussian basis function
mu_psi	Centre of gaussian
sigma_psi	covariance matrix of psi
psi	Gaussian basis function

Analytic check of convolution of two Gaussians.

Variable name	Explanation	
mu	Centre of a gaussian resulted from convolution of two gaussians, phi and psi	
var_phi	variance of gaussian phi	
var_psi	variance of gaussian psi	
exponential	exponential part of Equation Appendix E.4 (Freestone et al. 2011)	
CovMat	covariance matrix of a resultant gaussian convolved by two other gaussians	
coefficient	coefficient part of Equation Appendix E.4 (Freestone et al. 2011)	
convE2_equivalent	ivalent analytic result of convolution of two gaussians, phi and psi	

2 Compute Gamma

File (Matlab script): ComputeGamma.m

Matlab script description

This matlab script mainly implement and estimate the following two equations, (21) and Appendix (D.7) (Freestone et al. 2011 NeuroImage).

Field, v(r), is decomposed of a finite-dimensional state vector and a vector of Gaussian basis functions.

Define $\Gamma=\int_{\Omega}\phi(r)\phi^T(r)dr$. Firstly, programmatically define $\phi(r)$, as a vector of Gaussian basis functions. Each Gaussian function is defined as $\phi(r-r')=\exp{(-\frac{(r-r')^T(r-r')}{\sigma_\phi^2})}$.

3 Compute Psi

Compute Psi — connectivity kernel

4 Compute State Vector

parameter table, figures

5 Compute State Vector — Check with numerical solution