Latest Updates on Applied Microeconometrics — A Reading List

February 27, 2022

The motto "Theory and Measurement," first adopted in 1952, succinctly captures the mission of the Cowles Foundation: development and application of rigorous logical, mathematical, and statistical methods of analysis in economics and related fields.

Contents

1	Introduction				
	1.1	The Concept of Causal Inference in Economics & Econometrics	3		
	1.2	Reduced Form, Structural Method & Sufficient Statistics	3		
	1.3	Numerous Definitions of Identification in Economics & Econometrics	4		
2	Rar	ndomized Control Trials	4		
	2.1	Basics	4		
	2.2	The Latest Updates	5		
	2.3	Applications	6		
3	Diff-in-Diff & Event Studies				
	3.1	Basics	8		
	3.2	The Latest Updates	9		
	3.3	Applications	10		
4	Reg	gression Discontinuity Design	12		
	4.1	Basics	12		
	4.2	The Latest Updates	12		
	4.3	Applications	13		
5	Inst	trumental Variables	14		
	5.1	Basics	14		

	5.2	The Latest Updates	15
	5.3	Applications	16
	5.4	Shift-share Instruments (Bartik Instruments)	17
6	Reg	ression & Matching	18
	6.1	Basics	18
	6.2	The Latest Updates	18
	6.3	Applications	19
7	Syn	thetic Control	19
	7.1	Methodology	19
	7.2	Applications	20
8	Тор	ics on Regression Based Causal Model	20
	8.1	P-value, Specification & Transparency	20
	8.2	Resampling Tests: Bootstrap, Permutation & Others	22
	8.3	Multiple Hypothesis Testing	23
	8.4	Clustering	24
9	Dec	omposition	2 5
	9.1	Basics	25
	9.2	The Latest Updates & Applications	26
10	Sele	ection Model	28
	10.1	Basics	28
	10.2	The Latest Updates	28
	10.3	Applications	29
11	Higl	h-dimensional Causal Model	29
	11.1	Methodology	29
	11.2	Applications	30
12	Bun	ching	30
	12.1	Basics	30
	12.2	The Latest Updates	30
	12.3	Applications	31
13	Dire	ected Acyclic Graphs	31
14	Ider	ntification for Structural Estimation	32

1 Introduction

1.1 The Concept of Causal Inference in Economics & Econometrics

- Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies.
 Journal of Educational Psychology, 66(5), 688.
- Rubin, D. B. (1980). Randomization analysis of experimental data: The Fisher randomization test comment. *Journal of the American statistical association*, 75(371), 591-593.
- Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical Association, 81(396), 945-960.
- Granger, C. W. (1988). Some recent development in a concept of causality. *Journal of econometrics*, 39(1-2), 199-211.
- Heckman, J. J. (2001). Micro data, heterogeneity, and the evaluation of public policy: Nobel lecture.
 Journal of political Economy, 109(4), 673-748.
- Heckman, J. J. (2000). Causal parameters and policy analysis in economics: A twentieth century retrospective. Quarterly Journal of Economics, 115(1), 45-97.
- Heckman, J. J., & Vytlacil, E. J. (2007). Econometric evaluation of social programs, part I: Causal models, structural models and econometric policy evaluation. *Handbook of econometrics*, 6, 4779-4874.
- Heckman, J. J., & Vytlacil, E. J. (2007). Econometric evaluation of social programs, part II: Using the
 marginal treatment effect to organize alternative econometric estimators to evaluate social programs,
 and to forecast their effects in new environments. Handbook of econometrics, 6, 4875-5143.
- Imbens, G. W. (2010). Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009). *Journal of Economic literature*, 48(2), 399-423.
- Deaton, A. (2010). Instruments, randomization, and learning about development. *Journal of economic literature*, 48(2), 424-55.
- Deaton, A. (2010). Understanding the mechanisms of economic development. Journal of Economic Perspectives, 24(3), 3-16.
- Abadie, A., & Cattaneo, M. D. (2018). Econometric methods for program evaluation. *Annual Review of Economics*, 10, 465-503.
- Mogstad, M., & Torgovitsky, A. (2018). Identification and extrapolation of causal effects with instrumental variables. Annual Review of Economics, 10, 577-613.

1.2 Reduced Form, Structural Method & Sufficient Statistics

- Meyer, B. D. (1995). Natural and quasi-experiments in economics. *Journal of business & economic statistics*, 13(2), 151-161.
- Rosenzweig, M. R., & Wolpin, K. I. (2000). Natural" natural experiments" in economics. Journal of

- Economic Literature, 38(4), 827-874.
- Angrist, J. D., & Krueger, A. B. (2001). Instrumental variables and the search for identification: From supply and demand to natural experiments. *Journal of Economic perspectives*, 15(4), 69-85.
- Heckman, J. J., & Vytlacil, E. (2005). Structural equations, treatment effects, and econometric policy evaluation 1. *Econometrica*, 73(3), 669-738.
- Imbens, G. W. (2010). Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009). *Journal of Economic literature*, 48(2), 399-423.
- Heckman, J. J., & Urzua, S. (2010). Comparing IV with structural models: What simple IV can and cannot identify. *Journal of Econometrics*, 156(1), 27-37.
- Heckman, J. J. (2010). Building bridges between structural and program evaluation approaches to evaluating policy. *Journal of Economic literature*, 48(2), 356-98.
- Keane, M. P. (2010). Structural vs. atheoretic approaches to econometrics. *Journal of Econometrics*, 156(1), 3-20.
- Chetty, R. (2009). Sufficient statistics for welfare analysis: A bridge between structural and reduced-form methods. *Annu. Rev. Econ.*, 1(1), 451-488.
- Low, H., & Meghir, C. (2017). The use of structural models in econometrics. *Journal of Economic Perspectives*, 31(2), 33-58.
- Kleven, H. J. (2018). Sufficient statistics revisited. Annual Review of Economics, 13.
- Lee, D. S., Leung, P., O'Leary, C. J., Pei, Z., & Quach, S. (2021). Are sufficient statistics necessary?
 nonparametric measurement of deadweight loss from unemployment insurance. *Journal of Labor Economics*, 39(S2), S455-S506.
- Model-Based or Design-Based? Competing Approaches in "Empirical Micro". David Card.
 - Video: https://youtu.be/S6xSEiB6E2s

1.3 Numerous Definitions of Identification in Economics & Econometrics

• Lewbel, A. (2019). The identification zoo: Meanings of identification in econometrics. *Journal of Economic Literature*, 57(4), 835-903.

2 Randomized Control Trials

2.1 Basics

- Duflo, E., Glennerster, R., & Kremer, M. (2007). Using randomization in development economics research: A toolkit. *Handbook of development economics*, 4, 3895-3962.
- Karlan, D., & Appel, J. (2016). Failing in the Field. Princeton University Press.

• Duflo, E., & Banerjee, A. (Eds.). (2017). Handbook of field experiments. Elsevier.

- Heckman, J., Hohmann, N., Smith, J., & Khoo, M. (2000). Substitution and dropout bias in social experiments: A study of an influential social experiment. Quarterly Journal of Economics, 115(2), 651-694.
- List, J. A., & Rasul, I. (2011). Field experiments in labor economics. In Handbook of labor economics (Vol. 4, pp. 103-228). Elsevier.
- List, J. A. (2011). Why economists should conduct field experiments and 14 tips for pulling one off. Journal of Economic perspectives, 25(3), 3-16.
- List, J. A., Sadoff, S., & Wagner, M. (2011). So you want to run an experiment, now what? Some simple rules of thumb for optimal experimental design. *Experimental Economics*, 14(4), 439-457.
- Al-Ubaydli, O., & List, J. A. (2015). Do natural field experiments afford researchers more or less control
 than laboratory experiments?. American Economic Review, 105(5), 462-66.
- Maniadis, Z., Tufano, F., & List, J. A. (2015). How to make experimental economics research more reproducible: Lessons from other disciplines and a new proposal. In *Replication in experimental* economics. Emerald Group Publishing Limited.
- Maniadis, Z., Tufano, F., & List, J. A. (2017). To Replicate or Not To Replicate? Exploring Reproducibility in Economics through the Lens of a Model and a Pilot Study. *Economic Journal*, 127(605), F209-F235.
- Al-Ubaydli, O., List, J. A., & Suskind, D. L. (2017). What can we learn from experiments? Understanding the threats to the scalability of experimental results. *American Economic Review*, 107(5), 282-86.
- List, J. A., Shaikh, A. M., & Xu, Y. (2019). Multiple hypothesis testing in experimental economics. Experimental Economics, 22(4), 773-793.
- Muralidharan, K., Romero, M., & Wthrich, K. (2019). Factorial designs, model selection, and (incorrect) inference in randomized experiments (No. w26562). National Bureau of Economic Research.
- Young, A. (2019). Channeling fisher: Randomization tests and the statistical insignificance of seemingly significant experimental results. *Quarterly Journal of Economics*, 134(2), 557-598.
- Burlig, F., Preonas, L., & Woerman, M. (2020). Panel data and experimental design. Journal of Development Economics, 144, 102458.
- Deeb, A., & de Chaisemartin, C. (2020). Clustering and External Validity in Randomized Controlled Trials. Available at SSRN 3630707.
- Heckman, J. J. (2020). Randomization and Social Policy Evaluation Revisited (No. 12882). IZA Discussion Papers.

- Athey, S., Bickel, P. J., Chen, A., Imbens, G., & Pollmann, M. (2021). Semiparametric Estimation of Treatment Effects in Randomized Experiments (No. w29242). National Bureau of Economic Research.
- Gabriel, E. E., Sjlander, A., & Sachs, M. C. (2021). Nonparametric bounds for causal effects in imperfect randomized experiments. *Journal of the American Statistical Association*, 1-9.
- Zhao, A., & Ding, P. (2021). Covariate-adjusted Fisher randomization tests for the average treatment effect. Journal of Econometrics.

- Angrist, J. D., & Krueger, A. B. (1999). Chapter 23 Empirical strategies in labor economics. In Handbook of labor economics (Vol. 3, pp. 1277-1366). Elsevier.
- Krueger, A. B. (1999). Experimental Estimates of Education Production Functions. The Quarterly Journal of Economics, 114(2), 497-532.
- Katz, L. F., Kling, J. R., & Liebman, J. B. (2001). Moving to opportunity in Boston: Early results of a randomized mobility experiment. *Quarterly Journal of Economics*, 116(2), 607-654.
- Miguel, E., & Kremer, M. (2004). Worms: identifying impacts on education and health in the presence of treatment externalities. *Econometrica*, 72(1), 159-217.
- Bertrand, M., & Mullainathan, S. (2004). Are Emily and Greg more employable than Lakisha and Jamal? A field experiment on labor market discrimination. *American Economic Review*, 94(4), 991-1013.
- Karlan, D. S. (2005). Using experimental economics to measure social capital and predict financial decisions. *American Economic Review*, 95(5), 1688-1699.
- Cullen, J. B., Jacob, B. A., & Levitt, S. (2006). The effect of school choice on participants: Evidence from randomized lotteries. *Econometrica*, 74(5), 1191-1230.
- Karlan, D., & List, J. A. (2007). Does price matter in charitable giving? Evidence from a large-scale natural field experiment. *American Economic Review*, 97(5), 1774-1793.
- Karlan, D. S., & Zinman, J. (2008). Credit elasticities in less-developed economies: Implications for microfinance. American Economic Review, 98(3), 1040-68.
- Beaman, L., Chattopadhyay, R., Duflo, E., Pande, R., & Topalova, P. (2009). Powerful women: does exposure reduce bias?. *Quarterly Journal of Economics*, 124(4), 1497-1540.
- Karlan, D., & Zinman, J. (2009). Observing unobservables: Identifying information asymmetries with a consumer credit field experiment. *Econometrica*, 77(6), 1993-2008.
- Karlan, D., & Zinman, J. (2010). Expanding credit access: Using randomized supply decisions to estimate the impacts. *Review of Financial Studies*, 23(1), 433-464.
- Bertrand, M., Karlan, D., Mullainathan, S., Shafir, E., & Zinman, J. (2010). What's advertising content
 worth? Evidence from a consumer credit marketing field experiment. Quarterly Journal of Economics,
 125(1), 263-306.

- Jensen, R. (2010). The (perceived) returns to education and the demand for schooling. Quarterly Journal of Economics, 125(2), 515-548.
- Cohen, J., & Dupas, P. (2010). Free distribution or cost-sharing? Evidence from a randomized malaria prevention experiment. *Quarterly Journal of Economics*, 1-45.
- Ashraf, N., Berry, J., & Shapiro, J. M. (2010). Can higher prices stimulate product use? Evidence from a field experiment in Zambia. American Economic Review, 100(5), 2383–2413.
- Chetty, R., Friedman, J. N., Hilger, N., Saez, E., Schanzenbach, D. W., & Yagan, D. (2011). How does
 your kindergarten classroom affect your earnings? Evidence from Project STAR. Quarterly Journal of
 Economics, 126(4), 1593-1660.
- Della Vigna, S., List, J. A., & Malmendier, N. U. (2012). Testing for Altruism and Social Pressure in Charitable Giving Online Appendix. Quarterly Journal of Economics.
- Finkelstein, A., Taubman, S., Wright, B., Bernstein, M., Gruber, J., Newhouse, J. P., ... & Oregon Health Study Group. (2012). The Oregon health insurance experiment: evidence from the first year. *Quarterly Journal of Economics*, 127(3), 1057-1106.
- Duflo, E., Hanna, R., & Ryan, S. P. (2012). Incentives work: Getting teachers to come to school.
 American Economic Review, 102(4), 1241-78.
- Banerjee, A., Duflo, E., Ghatak, M., & Lafortune, J. (2013). Marry for what? Caste and mate selection in modern India. *American Economic Journal: Microeconomics*, 5(2), 33-72.
- Beaman, L., Karlan, D., Thuysbaert, B., & Udry, C. (2013). Profitability of fertilizer: Experimental evidence from female rice farmers in Mali. *American Economic Review*, 103(3), 381-86.
- Crpon, B., Duflo, E., Gurgand, M., Rathelot, R., & Zamora, P. (2013). Do labor market policies
 have displacement effects? Evidence from a clustered randomized experiment. Quarterly Journal of
 Economics, 128(2), 531-580.
- Heckman, J., Pinto, R., & Savelyev, P. (2013). Understanding the mechanisms through which an influential early childhood program boosted adult outcomes. *American Economic Review*, 103(6),
- Banerjee, A., Duflo, E., Glennerster, R., & Kinnan, C. (2015). The miracle of microfinance? Evidence from a randomized evaluation. *American Economic Journal: Applied Economics*, 7(1), 22-53.
- Bloom, N., Liang, J., Roberts, J., & Ying, Z. J. (2015). Does working from home work? Evidence from a Chinese experiment. Quarterly Journal of Economics, 130(1), 165-218.
- Chetty, Raj, Nathaniel Hendren, and Lawrence Katz (2016): "The Effects of Exposure to Better Neighborhoods on Children: New Evidence from the Moving to Opportunity Experiment", American Economic Review 106(4): 855-902
- Bowers, J., Higgins, N., Karlan, D., Tulman, S., & Zinman, J. (2017). Challenges to replication and iteration in field experiments: Evidence from two direct mail shots. *American Economic Review*, 107(5), 462-65.
- Bruhn, M., Karlan, D., & Schoar, A. (2018). The impact of consulting services on small and medium

- enterprises: Evidence from a randomized trial in Mexico. Journal of Political Economy, 126(2), 635-687.
- Armona, L., Fuster, A., & Zafar, B. (2018). Home Price Expectations and Behaviour: Evidence from a Randomized Information Experiment. Review of Economic Studies.
- Fischer, G., Karlan, D., McConnell, M., & Raffler, P. (2019). Short-term subsidies and seller type: A health products experiment in Uganda. *Journal of Development Economics*, 137, 110-124.
- Karlan, D., & Zinman, J. (2019). Long-run price elasticities of demand for credit: evidence from a countrywide field experiment in Mexico. *Review of Economic Studies*, 86(4), 1704-1746.
- Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2019). Using gossips to spread information: Theory and evidence from two randomized controlled trials. Review of Economic Studies, 86(6), 2453-2490.
- Bryan, G., Choi, J. J., & Karlan, D. (2021). Randomizing religion: the impact of Protestant evangelism on economic outcomes. Quarterly Journal of Economics, 136(1), 293-380.
- Duflo, E. (2020). Field experiments and the practice of policy. American Economic Review, 110(7), 1952-73.
- Banerjee, A., Duflo, E., & Qian, N. (2020). On the road: Access to transportation infrastructure and economic growth in China. *Journal of Development Economics*, 145, 102442.
- Kline, P., & Walters, C. (2021). Reasonable Doubt: Experimental Detection of Job-level Employment Discrimination. *Econometrica*, 89(2), 765-792.
- Goldin, J., Lurie, I. Z., & McCubbin, J. (2021). Health insurance and mortality: Experimental evidence from taxpayer outreach. *Quarterly Journal of Economics*, 136(1), 1-49.
- Auriol, E., Lassebie, J., Panin, A., Raiber, E., & Seabright, P. (2020). God insures those who pay? Formal insurance and religious offerings in Ghana. *Quarterly Journal of Economics*, 135(4), 1799-1848.
- Brune, L., Karlan, D., Kurdi, S., & Udry, C. (2022). Social protection amidst social upheaval: Examining
 the impact of a multi-faceted program for ultra-poor households in Yemen. *Journal of Development Economics*, 155, 102780.

3 Diff-in-Diff & Event Studies

3.1 Basics

- Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates?. *Quarterly Journal of Economics*, 119(1), 249-275.
- Abadie, A. (2005). Semiparametric difference-in-differences estimators. Review of Economic Studies, 72(1), 1-19.
- De Chaisemartin, C., & d'Haultfoeuille, X. (2018). Fuzzy differences-in-differences. Review of Economic Studies, 85(2), 999-1028.

- Brewer, M., Crossley, T. F., & Joyce, R. (2018). Inference with difference-in-differences revisited.

 Journal of Econometric Methods, 7(1).
- Callaway, B., Li, T., & Oka, T. (2018). Quantile treatment effects in difference in differences models
 under dependence restrictions and with only two time periods. *Journal of Econometrics*, 206(2),
 395-413.
- Ferman, B., & Pinto, C. (2019). Inference in differences-in-differences with few treated groups and heteroskedasticity. *Review of Economics and Statistics*, 101(3), 452-467.
- Freyaldenhoven, S., Hansen, C., & Shapiro, J. M. (2019). Pre-event trends in the panel event-study design. *American Economic Review*, 109(9), 3307-38.
- Rambachan, A., & Roth, J. (2019). An honest approach to parallel trends. Unpublished manuscript, Harvard University. [99].
- Schmidheiny, K., & Siegloch, S. (2019). On event studies and distributed-lags in two-way fixed effects models: Identification, equivalence, and generalization.
- Callaway, B., & Li, T. (2019). Quantile treatment effects in difference in differences models with panel data. *Quantitative Economics*, 10(4), 1579-1618.
- Roth, J. (2019). Pre-test with caution: Event-study estimates after testing for parallel trends. Department of Economics, Harvard University, Unpublished manuscript.
- Roth, J., & Sant'Anna, P. H. (2020). When Is Parallel Trends Sensitive to Functional Form?. arXiv preprint arXiv:2010.04814.
- Sant'Anna, P. H., & Zhao, J. (2020). Doubly robust difference-in-differences estimators. Journal of Econometrics, 219(1), 101-122.
- De Chaisemartin, C., & d'Haultfoeuille, X. (2020). Two-way fixed effects estimators with heterogeneous treatment effects. *American Economic Review*, 110(9), 2964-96.
- Olden, A., & Møen, J. (2020). The triple difference estimator. NHH Dept. of Business and Management Science Discussion Paper, (2020/1).
- de Chaisemartin, C., & D'Haultfoeuille, X. (2020). Two-way Fixed Effects Regressions with Several Treatments. WP
- Athey, S., & Imbens, G. W. (2021). Design-based analysis in difference-in-differences settings with staggered adoption. *Journal of Econometrics*.
- Arkhangelsky, D., & Imbens, G. W. (2021). Double-robust identification for causal panel data models (No. w28364). National Bureau of Economic Research.
- Marcus, M., & Sant'Anna, P. H. (2021). The role of parallel trends in event study settings: An application to environmental economics. Journal of the Association of Environmental and Resource Economists, 8(2), 235-275.
- Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous

- treatment effects. Journal of Econometrics, 225(2), 175-199.
- Baker, A., Larcker, D. F., & Wang, C. C. (2021). How Much Should We Trust Staggered Difference-In-Differences Estimates?. Available at SSRN 3794018.
- Borusyak, K., Jaravel, X., & Spiess, J. (2021). Revisiting event study designs: Robust and efficient estimation. arXiv preprint arXiv:2108.12419.
- Butts, K. (2021). Difference-in-Differences Estimation with Spatial Spillovers. arXiv preprint arXiv:2105.03737.
- Callaway, B., & Sant'Anna, P. H. (2021). Difference-in-differences with multiple time periods. *Journal of Econometrics*, 225(2), 200-230.
- Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, Guido W. Imbens, and Stefan Wager. 2021.
 "Synthetic Difference-in-Differences." American Economic Review, 111 (12): 4088-4118.
- Freyaldenhoven, S., Hansen, C., Pérez, J. P., & Shapiro, J. M. (2021). Visualization, Identification, and Estimation in the Linear Panel Event-Study Design (No. w29170). National Bureau of Economic Research.
- Gardner, J. Two-stage differences in differences.
- Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics.
- Roth, J., & Sant'Anna, P. H. (2021). Efficient estimation for staggered rollout designs. arXiv preprint arXiv:2102.01291.
- Wooldridge, J. (2021). Two-Way Fixed Effects, the Two-Way Mundlak Regression, and Difference-in-Differences Estimators. Available at SSRN 3906345.
- de Chaisemartin, C., & D'Haultfœuille, X. (2021). Two-Way Fixed Effects and Differences-in-Differences
 with Heterogeneous Treatment Effects: A Survey. Available at SSRN.
- Callaway, B., Goodman-Bacon, A., & Sant'Anna, P. H. (2021). Difference-in-differences with a continuous treatment. arXiv preprint arXiv:2107.02637.
- De Chaisemartin, C., & D'Haultfoeuille, X. (2020). Difference-in-differences estimators of intertemporal treatment effects. arXiv preprint arXiv:2007.04267.
- Roth, J., Sant'Anna, P. H., Bilinski, A., & Poe, J. (2022). What's Trending in Difference-in-Differences?
 A Synthesis of the Recent Econometrics Literature. arXiv preprint arXiv:2201.01194.

- Card, D. (1990). The impact of the Mariel boatlift on the Miami labor market. *ILR Review*, 43(2), 245-257.
- Card, D., & Krueger, A. B. (1994). Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania. *American Economic Review*, 84(4), 772-793.

- Duflo, E. (2001). Schooling and labor market consequences of school construction in Indonesia: Evidence from an unusual policy experiment. *American Economic Review*, 91(4), 795-813.
- Abadie, A., & Gardeazabal, J. (2003). The economic costs of conflict: A case study of the Basque Country. *American Economic Review*, 93(1), 113-132.
- Autor, D. H. (2003). Outsourcing at will: The contribution of unjust dismissal doctrine to the growth of employment outsourcing. *Journal of labor economics*, 21(1), 1-42.
- Waldinger, F. (2010). Quality matters: The expulsion of professors and the consequences for PhD student outcomes in Nazi Germany. *Journal of Political Economy*, 118(4), 787-831.
- Greenstone, M., Richard Hornbeck, & Enrico Moretti. (2010). Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings. *Journal of Political Economy*, 118(3), 536–598.
- Li, H., Yi, J., & Zhang, J. (2011). Estimating the effect of the one-child policy on the sex ratio imbalance in China: Identification based on the difference-in-differences. *Demography*, 48(4), 1535-1557.
- Busso, Matias, Jesse Gregory, and Patrick Kline (2013): Assessing the Incidence and Efficiency of a Prominent Place Based Policy, American Economic Review, 103, pp. 897-947.
- Autor, D. H., Palmer, C. J., & Pathak, P. A. (2014). Housing market spillovers: Evidence from the end
 of rent control in Cambridge, Massachusetts. *Journal of Political Economy*, 122(3), 661-717
- Kline, P., & Moretti, E. (2014). Local economic development, agglomeration economies, and the big push: 100 years of evidence from the Tennessee Valley Authority. Quarterly journal of economics, 129(1), 275-331.
- Atkin, D. (2016). Endogenous skill acquisition and export manufacturing in Mexico. American Economic Review, 106(8), 2046-85.
- Bai, Y., & Jia, R. (2016). Elite recruitment and political stability: the impact of the abolition of China's civil service exam. *Econometrica*, 84(2), 677-733.
- Dobkin, C., Finkelstein, A., Kluender, R., & Notowidigdo, M. J. (2018). The economic consequences of hospital admissions. American Economic Review, 108(2), 308-52.
- Che, Y., & Zhang, L. (2018). Human capital, technology adoption and firm performance: Impacts of China's higher education expansion in the late 1990s. *Economic Journal*, 128(614), 2282-2320.
- Clemens, M. A., Lewis, E. G., & Postel, H. M. (2018). Immigration restrictions as active labor market policy: Evidence from the mexican bracero exclusion. *American Economic Review*, 108(6), 1468-87.
- Almond, D., Li, H., & Zhang, S. (2019). Land Reform and Sex Selection in China. Journal of Political Economy, 127(2), 560–585
- Diamond, R., McQuade, T., & Qian, F. (2019). The effects of rent control expansion on tenants, landlords, and inequality: Evidence from San Francisco. *American Economic Review*, 109(9), 3365-94.
- Kantor, S., & Whalley, A. (2019). Research Proximity and Productivity: Long-Term Evidence from Agriculture. *Journal of Political Economy*, 127(2), 819–854

- Cengiz, D., Dube, A., Lindner, A., & Zipperer, B. (2019). The effect of minimum wages on low-wage jobs. Quarterly Journal of Economics, 134(3), 1405-1454.
- Chen, Y., Fan, Z., Gu, X., & Zhou, L. A. (2020). Arrival of young talent: The send-down movement and rural education in china. *American Economic Review*, 110(11), 3393–3430.
- Chari, A., Liu, E. M., Wang, S. Y., & Wang, Y. (2021). Property rights, land misallocation, and agricultural efficiency in China. Review of Economic Studies, 88(4), 1831-1862.

4 Regression Discontinuity Design

4.1 Basics

- Hahn, J., Todd, P., & Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. *Econometrica*, 69(1), 201-209.
- Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. *Journal of Econometrics*, 142(2), 615-635.
- Lee, D. S. (2008). Randomized experiments from non-random selection in US House elections. *Journal of Econometrics*, 142(2), 675-697.
- McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A
 density test. Journal of Econometrics, 142(2), 698-714.
- Lee, D. S., & Lemieux, T. (2010). Regression discontinuity designs in economics. *Journal of Economic Literature*, 48(2), 281-355.
- Card, D., Lee, D., Pei, Z., & Weber, A. (2012). Nonlinear policy rules and the identification and estimation of causal effects in a generalized regression kink design (No. w18564). National Bureau of Economic Research.
- Imbens, G., & Kalyanaraman, K. (2012). Optimal bandwidth choice for the regression discontinuity estimator. Review of Economic Studies, 79(3), 933-959.

- Shen, S., & Zhang, X. (2016). Distributional tests for regression discontinuity: Theory and empirical examples. *Review of Economics and Statistics*, 98(4), 685-700.
- Arai, Y., & Ichimura, H. (2018). Simultaneous selection of optimal bandwidths for the sharp regression discontinuity estimator. *Quantitative Economics*, 9(1), 441-482.
- Armstrong, T. B., & Kolesár, M. (2018). Optimal inference in a class of regression models. Econometrica, 86(2), 655-683.

- Canay, I. A., & Kamat, V. (2018). Approximate permutation tests and induced order statistics in the regression discontinuity design. Review of Economic Studies, 85(3), 1577-1608.
- Ganong, P., & Jäger, S. (2018). A permutation test for the regression kink design. *Journal of American Statistical Association*, 113(522), 494-504.
- Kolesár, M., & Rothe, C. (2018). Inference in regression discontinuity designs with a discrete running variable. *American Economic Review*, 108(8), 2277-2304.
- Calonico, S., Cattaneo, M. D., Farrell, M. H., & Titiunik, R. (2019). Regression discontinuity designs
 using covariates. Review of Economics and Statistics, 101(3), 442-451.
- Gelman, A., & Imbens, G. (2019). Why high-order polynomials should not be used in regression discontinuity designs. *Journal of Business & Economic Statistics*, 37(3), 447-456.
- Hsu, Y. C., & Shen, S. (2019). Testing treatment effect heterogeneity in regression discontinuity designs.
 Journal of Econometrics, 208(2), 468-486.
- Imbens, G., & Wager, S. (2019). Optimized regression discontinuity designs. Review of Economics and Statistics, 101(2), 264-278.
- Armstrong, T. B., & Kolesár, M. (2020). Simple and honest confidence intervals in nonparametric regression. Quantitative Economics, 11(1), 1-39.
- Bertanha, M., & Imbens, G. W. (2020). External validity in fuzzy regression discontinuity designs.

 Journal of Business & Economic Statistics, 38(3), 593-612.
- Bugni, F. A., & Canay, I. A. (2021). Testing Continuity of a Density via g-order statistics in the Regression Discontinuity Design. *Journal of Econometrics*, 221(1), 138-159.
- Calonico, S., Cattaneo, M. D., & Farrell, M. H. (2020). Optimal bandwidth choice for robust biascorrected inference in regression discontinuity designs. *Econometrics Journal*, 23(2), 192-210.
- Cattaneo, M. D., Jansson, M., & Ma, X. (2020). Simple local polynomial density estimators. *Journal of the American Statistical Association*, 115(531), 1449-1455.
- Cattaneo, M. D., Keele, L., Titiunik, R., & Vazquez-Bare, G. (2020). Extrapolating treatment effects in multi-cutoff regression discontinuity designs. *Journal of the American Statistical Association*, 1-12.
- Cattaneo, M. D., & Titiunik, R. (2021). Regression Discontinuity Designs. arXiv preprint arXiv:2108.09400.

- Card, D., Dobkin, C., & Maestas, N. (2008). The impact of nearly universal insurance coverage on health care utilization: evidence from Medicare. *American Economic Review*, 98(5), 2242-58.
- Urquiola, M., & Verhoogen, E. (2009). Class-size caps, sorting, and the regression-discontinuity design.

 American Economic Review, 99(1), 179-215.
- Cellini, S. R., Ferreira, F., & Rothstein, J. (2010). The value of school facility investments: Evidence

- from a dynamic regression discontinuity design. Quarterly Journal of Economics, 125(1), 215-261.
- Fredriksson, P., Ockert, B., & Oosterbeek, H. (2013). Long-Term Effects of Class Size. Quarterly Journal of Economics, 249–285.
- Chen, Y., Ebenstein, A., Greenstone, M., & Li, H. (2013). Evidence on the impact of sustained exposure
 to air pollution on life expectancy from China's Huai River policy. Proceedings of the National Academy
 of Sciences, 110(32), 12936-12941.
- Clark, D., & Martorell, P. (2014). The signaling value of a high school diploma. *Journal of Political Economy*, 122(2), 282-318.
- Wong, M. (2014). Estimating the distortionary effects of ethnic quotas in Singapore using housing transactions. *Journal of Public Economics*, 115, 131-145.
- Grembi, V., Nannicini, T., & Troiano, U. (2016). Do fiscal rules matter?. American Economic Journal: Applied Economics, 1-30.
- Dell, M., Lane, N., & Querubin, P. (2018). The historical state, local collective action, and economic development in Vietnam. *Econometrica*, 86(6), 2083-2121.
- Fu, C., & Gregory, J. (2019). Estimation of an Equilibrium Model with Externalities: Post-Disaster Neighborhood Rebuilding. *Econometrica*, 87(2), 387–421.
- Ito, K., & Zhang, S. (2020). Willingness to pay for clean air: Evidence from air purifier markets in China. *Journal of Political Economy*, 128(5), 1627–1672.
- Asher, S., & Novosad, P. (2020). Rural roads and local economic development. *American economic review*, 110(3), 797-823.
- Rose, E. K., & Shem-Tov, Y. (2021). How does incarceration affect reoffending? estimating the dose-response function. *Journal of Political Economy*, 129(12), 3302-3356.

5 Instrumental Variables

5.1 Basics

- Imbens, G. W., & Angrist, J. D. (1994). Identification and Estimation of Local Average Treatment Effects. *Econometrica*, 62(2), 467-475.
- Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation when
 the correlation between the instruments and the endogenous explanatory variable is weak. *Journal of*the American statistical association, 90(430), 443-450.
- Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American statistical Association, 91(434), 444-455.
- Stock, J. H., Wright, J. H., & Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. *Journal of Business & Economic Statistics*, 20(4), 518-529.

Hahn, J., & Hausman, J. (2003). Weak instruments: Diagnosis and cures in empirical econometrics.
 American Economic Review, 93(2), 118-125.

- Brinch, C. N., Mogstad, M., & Wiswall, M. (2017). Beyond LATE with a discrete instrument. *Journal of Political Economy*, 125(4), 985-1039.
- Andrews, I., & Armstrong, T. B. (2017). Unbiased instrumental variables estimation under known first-stage sign. Quantitative Economics, 8(2), 479-503.
- Hull, P. (2018). Isolateing: Identifying counterfactual-specific treatment effects with cross-stratum comparisons. Available at SSRN 2705108.
- Choi, J., Gu, J., & Shen, S. (2018). Weak-instrument robust inference for two-sample instrumental variables regression. *Journal of Applied Econometrics*, 33 (1), 109-125.
- Mogstad, M., & Torgovitsky, A. (2018). Identification and extrapolation of causal effects with instrumental variables. Annual Review of Economics, 10, 577-613.
- Evdokimov, K., & Kolesr, M. (2018). Inference in instrumental variable regression analysis with heterogeneous treatment effects. Working paper.
- Heckman, J. J., & Pinto, R. (2018). Unordered monotonicity. Econometrica, 86(1), 1-35.
- Mogstad, M., Torgovitsky, A., & Walters, C. R. (2019). The causal interpretation of two-stage least squares with multiple instrumental variables (No. w25691). National Bureau of Economic Research.
- Young, A. (2019). Consistency without inference: Instrumental variables in practical application.
- Andrews, I., Stock, J. H., & Sun, L. (2019). Weak instruments in instrumental variables regression:
 Theory and practice. Annual Review of Economics, 11, 727-753.
- Choi, J., & Shen, S. (2019). Two-sample instrumental-variables regression with potentially weak instruments. *The Stata Journal*, 19 (3), 581-597.
- Huntington-Klein, N. (2020). Instruments with Heterogeneous Effects: Bias, Monotonicity, and Localness. Journal of Causal Inference, 8 (1), 182-208.
- Mogstad, M., Torgovitsky, A., & Walters, C. R. (2020). Policy evaluation with multiple instrumental variables (No. w27546). National Bureau of Economic Research.
- Angrist, J., & Kolesr, M. (2021). One Instrument to Rule Them All: The Bias and Coverage of Just-ID IV (No. w29417). National Bureau of Economic Research.
- Andresen, M. E., & Huber, M. (2021). Instrument-based estimation with binarised treatments: issues and tests for the exclusion restriction. *Econometrics Journal*, 24 (3), 536-558.
- Lee, D. S., McCrary, J., Moreira, M. J., & Porter, J. R. (2021). Valid t-ratio Inference for IV (No. w29124). National Bureau of Economic Research.
- Sloczynski, T. (2021). When Should We (Not) Interpret Linear IV Estimands as LATE?.

- Giraitis, L., Kapetanios, G., & Marcellino, M. (2021). Time-varying instrumental variable estimation.
 Journal of Econometrics, 224(2), 394-415.
- Blandhol, C., Bonney, J., Mogstad, M., & Torgovitsky, A. (2022). When is TSLS Actually LATE?.
 University of Chicago, Becker Friedman Institute for Economics Working Paper, (2022-16).

- Angrist, J. D. (1990). Lifetime earnings and the Vietnam era draft lottery: evidence from social security administrative records. The American Economic Review, 313-336.
- Angrist, J. and Krueger, A. (1991), Does Compulsory Schooling Attendance Affect Schooling and Earnings? Quarterly Journal of Economics 106, 979-1014.
- Acemoglu, D., Johnson, S., & Robinson, J. A. (2001). The colonial origins of comparative development: An empirical investigation. American Economic Review, 91(5), 1369-1401.
- Chay, Kenneth and Michael Greenstone (2005): Does Air Quality Matter? Evidence from the Housing Market, Journal of Political Economy, v. 113 (2), pp. 376-424.
- Baum-Snow, N. (2007). Did Highways Cause Suburbanization?. Quarterly Journal of Economics, 122(2), 775-805.
- Maccini, S., & Yang, D. (2009). Under the weather: Health, schooling, and economic consequences of early-life rainfall. American Economic Review, 99(3), 1006-26.
- Carneiro, P., Heckman, J. J., & Vytlacil, E. J. (2011). Estimating marginal returns to education.
 American Economic Review, 101(6), 2754-81.
- Mian, A., and Sufi, A. (2011). House Prices, Home Equity-Based Borrowing, and the US Household Leverage Crisis. American Economic Review, 101(5), 2132-2156
- David, H., Dorn, D., & Hanson, G. H. (2013). The China syndrome: Local labor market effects of import competition in the United States. *American Economic Review*, 103(6), 2121-68.
- Kirkeboen, L. J., Leuven, E., & Mogstad, M. (2016). Field of study, earnings, and self-selection. Quarterly Journal of Economics, 131(3), 1057-1111.
- Kline, P., & Walters, C. R. (2016). Evaluating public programs with close substitutes: The case of Head Start. *Quarterly Journal of Economics*, 131(4), 1795-1848.
- Barua, R., & Lang, K. (2016). School entry, educational attainment, and quarter of birth: A cautionary tale of a local average treatment effect. *Journal of Human Capital*, 10(3), 347-376.
- Fort, M., Schneeweis, N., & Winter-Ebmer, R. (2016). Is Education Always Reducing Fertility? Evidence from Compulsory Schooling Reforms. *Economic Journal*, 126(595), 1823–1855
- Isen, Adam, Maya Rossin-Slater, and W. Reed Walker (2017): Every Breath You Take Every Dollar You'll Make: The Long Term Consequences of the Clean Air Act of 1970, Journal of Political Economy, vol. 125(3), p. 848:902

- Bettinger, E. P., Fox, L., Loeb, S., & Taylor, E. S. (2017). Virtual classrooms: How online college courses affect student success. *American Economic Review*, 107(9), 2855–2875
- Heller, S. B., Shah, A. K., Guryan, J., Ludwig, J., Mullainathan, S., & Pollack, H. A. (2017). Thinking, fast and slow? Some field experiments to reduce crime and dropout in Chicago. Quarterly Journal of Economics, 132(1), 1-54.
- Allcott, H., Keniston, D., (2018). Dutch disease or agglomeration? The local economic effects of natural resource booms in modern America. Review of Economic Studies 85, 695–731.
- Chen, T., Kung, J. K. S., & Ma, C. (2020). Long live Keju! The persistent effects of China's civil examination system. *Economic Journal*, 130(631), 2030-2064.

5.4 Shift-share Instruments (Bartik Instruments)

- Topalova, P. (2010). Factor immobility and regional impacts of trade liberalization: Evidence on poverty from India. American Economic Journal: Applied Economics, 2(4), 1–41.
- Adao, R., Kolesr, M., & Morales, E. (2019). Shift-share designs: Theory and inference. Quarterly Journal of Economics, 134(4), 1949-2010.
- Borusyak, K., P. Hull, and X. Jaravel (2020). Quasi-Experimental Shift-Share Research Designs. Review of Economic Studies
- Borusyak, K., & Hull, P. (2020). Non-random exposure to exogenous shocks: Theory and applications (No. w27845). National Bureau of Economic Research.
- Goldsmith-Pinkham, P., Sorkin, I., & Swift, H. (2020). Bartik instruments: What, when, why, and how. *American Economic Review*, 110(8), 2586-2624.
- Autor, D. H., Dorn, D., & Hanson, G. H. (2013). The China syndrome: Local labor market effects of import competition in the United States. American Economic Review, 103(6), 2121-68.
- Imbert, C., Seror, M., Zhang, Y., & Zylberberg, Y. (2018). Migrants and firms: Evidence from china. (AER conditionally accepted)
- Li, B. (2018). Export expansion, skill acquisition and industry specialization: Evidence from China. *Journal of International Economics*, 114, 346-361.
- Autor, D. H., Dorn, D., & Hanson, G. (2019). When work disappears: Manufacturing decline and the falling marriage market value of young men. *American Economic Review: Insights,* 1(2), 161-78.
- de Chaisemartin, C., & Lei, Z. (2021). Are Bartik Regressions Always Robust to Heterogeneous Treatment Effects?. Available at SSRN 3802200.

6 Regression & Matching

6.1 Basics

- Rubin, D. B. (1973). Matching to remove bias in observational studies. *Biometrics*, 159-183.
- Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1), 41-55.
- Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. *Econometrica*, 71(4), 1161-1189.
- Abadie, A., & Imbens, G. W. (2006). Large sample properties of matching estimators for average treatment effects. *econometrica*, 74(1), 235-267.
- Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and statistics, 86(1), 4-29.
- Abadie, A., & Imbens, G. W. (2016). Matching on the estimated propensity score. Econometrica, 84(2), 781-807.

- Altonji, J. G., Elder, T. E., & Taber, C. R. (2005). Selection on observed and unobserved variables:
 Assessing the effectiveness of Catholic schools. Journal of political economy, 113(1), 151-184.
- Altonji, J. G., Elder, T. E., & Taber, C. R. (2008). Using selection on observed variables to assess bias from unobservables when evaluating swan-ganz catheterization. American Economic Review, 98(2), 345-50.
- Altonji, J. G., Conley, T., Elder, T. E., & Taber, C. R. (2010). Methods for using selection on observed variables to address selection on unobserved variables.
- Huber, M., Lechner, M., & Wunsch, C. (2013). The performance of estimators based on the propensity score. *Journal of Econometrics*, 175(1), 1-21.
- Otsu, T., & Rai, Y. (2017). Bootstrap inference of matching estimators for average treatment effects.

 Journal of the American Statistical Association, 112(520), 1720-1732.
- Adusumilli, K. A. R. U. N. (2018). Bootstrap inference for propensity score matching. Working paper.
- Oster, E. (2019). Unobservable selection and coefficient stability: Theory and evidence. Journal of Business & Economic Statistics, 37(2), 187-204.
- Imai, K., Kim, I. S., & Wang, E. (2019, May). Matching methods for causal inference with time-series cross-sectional data. In *Center for the Study of American Politics*/ Yale University—ISPS CSAP Quantitative Research Methods Workshop.
- Ferman, B. (2021). Matching estimators with few treated and many control observations. Journal of

- Econometrics, 225(2), 295-307.
- Armstrong, T. B., & Kolesár, M. (2021). Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness. *Econometrica*, 89(3), 1141-1177.

- Angrist, J. (1995). Estimating the labor market impact of voluntary military service using social security data on military applicants.
- Dale, S. B., & Krueger, A. B. (2002). Estimating the payoff to attending a more selective college: An application of selection on observables and unobservables. Quarterly Journal of Economics, 117(4), 1491-1527.
- Borge, L. E., & Rattsø, J. (2008). Property taxation as incentive for cost control: Empirical evidence for utility services in Norway. *European Economic Review*, 52(6), 1035-1054.
- Greenstone, M., Hornbeck, R., & Moretti, E. (2010). Identifying agglomeration spillovers: Evidence from winners and losers of large plant openings. *Journal of Political Economy*, 118(3), 536-598.
- Imbens, G. W. (2015). Matching methods in practice: Three examples. *Journal of Human Resources*, 50(2), 373-419.
- Griffen, A. S., & Todd, P. E. (2017). Assessing the performance of nonexperimental estimators for evaluating Head Start. *Journal of Labor Economics*, 35(S1), S7-S63.
- Azoulay, P., Fons-Rosen, C., & Graff Zivin, J. S. (2019). Does science advance one funeral at a time?. American Economic Review, 109(8), 2889-2920.

7 Synthetic Control

7.1 Methodology

- Peri, G., & Yasenov, V. (2019). The labor market effects of a refugee wave synthetic control method meets the mariel boatlift. *Journal of Human Resources*, 54(2), 267-309.
- Botosaru, I., & Ferman, B. (2019). On the role of covariates in the synthetic control method. Econometrics Journal, 22(2), 117-130.
- Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature, 59(2), 391-425.
- Athey, S., Bayati, M., Doudchenko, N., Imbens, G., & Khosravi, K. (2021). Matrix completion methods for causal panel data models. *Journal of the American Statistical Association*, 1-15.
- Ferman, B., Pinto, C., & Possebom, V. (2020). Cherry picking with synthetic controls. *Journal of Policy Analysis and Management*, 39(2), 510-532.

- Arkhangelsky, Dmitry, Susan Athey, David A. Hirshberg, Guido W. Imbens, and Stefan Wager. 2021.
 "Synthetic Difference-in-Differences." American Economic Review, 111 (12): 4088-4118.
- Ben-Michael, E., Feller, A., & Rothstein, J. (2021). Synthetic Controls with Staggered Adoption (No. w28886). National Bureau of Economic Research.
- Ben-Michael, E., Feller, A., & Rothstein, J. (2021). The augmented synthetic control method. *Journal of the American Statistical Association*, (just-accepted), 1-34.
- Ferman, B., & Pinto, C. (2021). Synthetic controls with imperfect pretreatment fit. Quantitative Economics, 12(4), 1197-1221.
- Chernozhukov, V., Wüthrich, K., & Zhu, Y. (2021). An exact and robust conformal inference method for counterfactual and synthetic controls. *Journal of the American Statistical Association*, 1-16.

- Andersson, J. J. (2019). Carbon taxes and CO 2 emissions: Sweden as a case study. *American Economic Journal: Economic Policy*, 11(4), 1-30.
- Pichler, S., & Ziebarth, N. R. (2020). Labor market effects of US sick pay mandates. Journal of Human Resources, 55(2), 611-659.
- Jessen, J., Schmitz, S., & Waights, S. (2020). Understanding day care enrolment gaps. Journal of Public Economics, 190, 104252.
- Manelici, I., & Pantea, S. (2021). Industrial policy at work: Evidence from Romania's income tax break for workers in IT. European Economic Review, 133, 103674.

8 Topics on Regression Based Causal Model

8.1 P-value, Specification & Transparency

8.1.1 Methodology

- Harvey, A. C., & Collier, P. (1977). Testing for functional misspecification in regression analysis.
 Journal of Econometrics, 6(1), 103-119.
- MacKinnon, J. G. (1992). Model specification tests and artificial regressions. *Journal of Economic Literature*, 30(1), 102-146.
- Maddala, G. S., & Lahiri, K. (1992). Diagnostic checking, model selection, and specification testing.
 Introduction to Econometrics. Macmillan, New York, 465-512.

- Ashenfelter, O., & Greenstone, M. (2004). Estimating the value of a statistical life: The importance of omitted variables and publication bias. *American Economic Review*, 94(2), 454-460.
- Asteriou, D., & Hall, S. G. (2011). Misspecification: Wrong Regressors, Measurement Errors and Wrong Functional Forms. Applied Econometrics, 172-197.
- Athey, S., & Imbens, G. (2015). A measure of robustness to misspecification. *American Economic Review*, 105(5), 476-80.
- Colegrave, N.,& Ruxton, G. D. (2017). Statistical model specification and power: recommendations on the use of test-qualified pooling in analysis of experimental data. *Proceedings of the Royal Society B: Biological Sciences*, 284(1851), 20161850.
- Athey, S., Imbens, G., Pham, T., & Wager, S. (2017). Estimating average treatment effects: Supplementary analyses and remaining challenges. American Economic Review, 107(5), 278-81.
- Christensen, G., & Miguel, E. (2018). Transparency, reproducibility, and the credibility of economics research. *Journal of Economic Literature*, 56(3), 920-80.
- Andrews, I., & Kasy, M. (2019). Identification of and correction for publication bias. American Economic Review, 109(8), 2766-94.
- Brodeur, A., Cook, N., & Heyes, A. (2020). Methods matter: P-hacking and publication bias in causal analysis in economics. American Economic Review, 110(11), 3634-60.
- Blanco-Perez, C., & Brodeur, A. (2020). Publication bias and editorial statement on negative findings. *Economic Journal*, 130(629), 1226-1247.
- Andrews, I., Gentzkow, M., & Shapiro, J. M. (2020). Transparency in structural research. Journal of Business & Economic Statistics, 38(4), 711-722.
- Tamer, E. (2020). Discussion on "Transparency in Structural Research" by I. Andrews, M. Gentkow and J. Shapiro. *Journal of Business & Economic Statistics*, 38(4), 728-730.
- Imbens, Guido W. (2021). "Statistical Significance, p-Values, and the Reporting of Uncertainty." Journal of Economic Perspectives, 35 (3): 157-74.
- Kasy, M. (2021). Of forking paths and tied hands: Selective publication of findings, and what economists should do about it. *Journal of Economic Perspectives*, 35(3), 175-92.
- Miguel, E. (2021). Evidence on Research Transparency in Economics. *Journal of Economic Perspectives*, 35(3), 193-214.

8.1.2 Applications

- Card, D., & Krueger, A. B. (1995). Time-series minimum-wage studies: a meta-analysis. *American Economic Review*, 85(2), 238-243.
- Gopalan, R., Hamilton, B. H., Kalda, A., & Sovich, D. (2021). State minimum wages, employment, and wage spillovers: Evidence from administrative payroll data. *Journal of Labor Economics*, 39(3),

8.2 Resampling Tests: Bootstrap, Permutation & Others

- Fisher, R. A. (1936). Design of experiments. British Medical Journal, 1(3923), 554.
- Pitman, E. J. (1937). Significance tests which may be applied to samples from any populations. Supplement to the Journal of the Royal Statistical Society, 4(1), 119-130.
- Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Society for industrial and applied mathematics.
- Mooney, C. Z., Mooney, C. F., Mooney, C. L., Duval, R. D., & Duvall, R. (1993). Bootstrapping: A nonparametric approach to statistical inference (No. 95). sage.
- Westfall, P. H., & Young, S. S. (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment (Vol. 279). John Wiley & Sons.
- Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.
- Cirincione, C., & Gurrieri, G. A. (1997). Research methodology: computer-intensive methods in the social sciences. *Social Science Computer Review*, 15(1), 83-97.
- Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-based improvements for inference with clustered errors. *Review of Economics and Statistics*, 90(3), 414-427.
- Chung, E., & Romano, J. P. (2016). Multivariate and multiple permutation tests. *Journal of Econometrics*, 193(1), 76-91.
- Canay, I. A., & Kamat, V. (2018). Approximate permutation tests and induced order statistics in the regression discontinuity design. *Review of Economic Studies*, 85(3), 1577-1608.
- Horowitz, J. L. (2019). Bootstrap methods in econometrics. Annual Review of Economics, 11, 193-224.
- Young, A. (2019). Channeling fisher: Randomization tests and the statistical insignificance of seemingly significant experimental results. *The Quarterly Journal of Economics*, 134(2), 557-598.
- MacKinnon, J. G., & Webb, M. D. (2020). Randomization inference for difference-in-differences with few treated clusters. *Journal of Econometrics*, 218(2), 435-450.
- Hahn, J., & Liao, Z. (2021). Bootstrap standard error estimates and inference. Econometrica, 89(4), 1963-1977.
- Menzel, K. (2021). Bootstrap With Cluster-Dependence in Two or More Dimensions. Econometrica, 89(5), 2143-2188.
- Chung, E., & Olivares, M. (2021). Permutation test for heterogeneous treatment effects with a nuisance parameter. *Journal of Econometrics*.

8.3 Multiple Hypothesis Testing

8.3.1 Methodology

- Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of statistics, 65-70.
- Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73(3), 751-754.
- Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 75(4), 800-802.
- Westfall, P. H., & Young, S. S. (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment (Vol. 279). John Wiley & Sons.
- Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal statistical society: series B (Methodological)*, 57(1), 289-300.
- Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: the Bonferroni method. Bmj, 310(6973), 170.
- Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of statistics, 1165-1188.
- Reiner, A., Yekutieli, D., & Benjamini, Y. (2003). Identifying differentially expressed genes using false discovery rate controlling procedures. *Bioinformatics*, 19(3), 368-375.
- Benjamini, Y., & Yekutieli, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected parameters. *Journal of the American Statistical Association*, 100(469), 71-81.
- Benjamini, Y., Krieger, A. M., & Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. *Biometrika*, 93(3), 491-507.
- Anderson, M. L. (2008). Multiple inference and gender differences in the effects of early intervention: A
 reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects. *Journal of the American*statistical Association, 103(484), 1481-1495.
- Gelman, A., Hill, J., & Yajima, M. (2012). Why we (usually) don't have to worry about multiple comparisons. *Journal of research on educational effectiveness*, 5(2), 189-211.
- Chen, S. Y., Feng, Z., & Yi, X. (2017). A general introduction to adjustment for multiple comparisons.

 Journal of thoracic disease, 9(6), 1725.

- Vickerstaff, V., Omar, R. Z., & Ambler, G. (2019). Methods to adjust for multiple comparisons in the
 analysis and sample size calculation of randomised controlled trials with multiple primary outcomes.

 BMC medical research methodology, 19(1), 1-13.
- List, J. A., Shaikh, A. M., & Xu, Y. (2019). Multiple hypothesis testing in experimental economics. Experimental Economics, 22(4), 773-793.

- Chetty, R., Hendren, N., & Katz, L. F. (2016). The effects of exposure to better neighborhoods on children: New evidence from the Moving to Opportunity experiment. *American Economic Review*, 106(4), 855-902.
- Heller, S. B., Shah, A. K., Guryan, J., Ludwig, J., Mullainathan, S., & Pollack, H. A. (2017). Thinking, fast and slow? Some field experiments to reduce crime and dropout in Chicago. The Quarterly Journal of Economics, 132(1), 1-54.

8.4 Clustering

8.4.1 Basics

- Moulton, B. R. (1986). Random group effects and the precision of regression estimates. *Journal of econometrics*, 32(3), 385-397.
- Arellano, M. (1987). Computing robust standard errors for within-groups estimators. Oxford bulletin of Economics and Statistics, 49(4), 431-434.
- Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How much should we trust differences-in-differences estimates?. *Quarterly journal of economics*, 119(1), 249-275.

- Donald, S. G., & Lang, K. (2007). Inference with difference-in-differences and other panel data. Review of Economics and Statistics, 89(2), 221-233.
- Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-based improvements for inference with clustered errors. *Review of Economics and Statistics*, 90(3), 414-427.
- Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing approaches.
 Review of Financial Studies, 22(1), 435-480.
- Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2011). Robust inference with multiway clustering.
 Journal of Business & Economic Statistics, 29(2), 238-249.

- Thompson, S. B. (2011). Simple formulas for standard errors that cluster by both firm and time. Journal of financial Economics, 99(1), 1-10.
- Cameron, A. C., & Miller, D. L. (2015). A practitioner's guide to cluster-robust inference. Journal of human resources, 50(2), 317-372.
- Ibragimov, R., & Müller, U. K. (2016). Inference with few heterogeneous clusters. Review of Economics and Statistics, 98(1), 83-96.
- Imbens, G. W., & Kolesar, M. (2016). Robust standard errors in small samples: Some practical advice.
 Review of Economics and Statistics, 98(4), 701-712.
- Abadie, A., Athey, S., Imbens, G. W., & Wooldridge, J. (2017). When should you adjust standard errors for clustering? (No. w24003). National Bureau of Economic Research.
- Pustejovsky, J. E., & Tipton, E. (2018). Small-sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models. *Journal of Business & Economic Statistics*, 36(4), 672-683.
- Colella, F., Lalive, R., Sakalli, S. O., & Thoenig, M. (2019). Inference with arbitrary clustering.
- MacKinnon, J. G., & Webb, M. D. (2020). Randomization inference for difference-in-differences with few treated clusters. *Journal of Econometrics*, 218(2), 435-450.
- Canay, I. A., Santos, A., & Shaikh, A. M. (2021). The wild bootstrap with a "small" number of "large" clusters. *Review of Economics and Statistics*, 103(2), 346-363.
- Menzel, K. (2021). Bootstrap With Cluster-Dependence in Two or More Dimensions. Econometrica, 89(5), 2143-2188.
- Hwang, J. (2021). Simple and trustworthy cluster-robust GMM inference. Journal of Econometrics, 222(2), 993-1023.

- Krueger, A. B. (1999). Experimental estimates of education production functions. Quarterly Journal
 of Economics, 114(2), 497-532.
- Duflo, E., Dupas, P., & Kremer, M. (2011). Peer effects, teacher incentives, and the impact of tracking: Evidence from a randomized evaluation in Kenya. *American Economic Review*, 101(5), 1739-74.

9 Decomposition

9.1 Basics

• Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. *International Economic Review*, 693-709.

- Blinder, A. S. (1973). Wage discrimination: reduced form and structural estimates. Journal of Human resources, 436-455.
- Juhn, C., Murphy, K. M., & Pierce, B. (1993). Wage inequality and the rise in returns to skill. *Journal of political Economy*, 101(3), 410-442.
- Oaxaca, R. L., & Ransom, M. R. (1994). On discrimination and the decomposition of wage differentials.
 Journal of Econometrics, 61(1), 5-21.
- DiNardo, J., Fortin, N. M., & Lemieux, T. (1996). Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach. *Econometrica*, 64(5), 1001-1044.
- Abowd, J. M., Kramarz, F., & Margolis, D. N. (1999). High wage workers and high wage firms.
 Econometrica, 67(2), 251-333.
- Oaxaca, R. L., & Ransom, M. R. (1999). Identification in detailed wage decompositions. Review of Economics and Statistics, 81(1), 154-157.
- Horrace, W. C., & Oaxaca, R. L. (2001). Inter-industry wage differentials and the gender wage gap: An identification problem. *ILR Review*, 54(3), 611-618.
- Abowd, J. M., Creecy, R. H., & Kramarz, F. (2002). Computing person and firm effects using linked longitudinal employer-employee data (No. 2002-06). Center for Economic Studies, US Census Bureau.
- Abowd, J. M., Lengermann, P., & McKinney, K. L. (2003). The measurement of human capital in the US economy. Technical Report TP-2002-09, LEHD, US Census Bureau.
- Andrews, M. J., Gill, L., Schank, T., & Upward, R. (2008). High wage workers and low wage firms: negative assortative matching or limited mobility bias?. Journal of the Royal Statistical Society: Series A (Statistics in Society), 171(3), 673-697.

9.2 The Latest Updates & Applications

- Boden, L. I., & Galizzi, M. (2003). Income losses of women and men injured at work. *Journal of Human Resources*, 38(3), 722-757.
- Machado, J. A., & Mata, J. (2005). Counterfactual decomposition of changes in wage distributions
 using quantile regression. Journal of applied Econometrics, 20(4), 445-465.
- Firpo, S., Fortin, N., & Lemieux, T. (2007). Decomposing wage distributions using recentered influence function regressions. *University of British Columbia (June)*.
- Kline, P. (2011). Oaxaca-Blinder as a reweighting estimator. American Economic Review, 101(3), 532-37.
- Bauer, T. K., & Sinning, M. (2008). An extension of the Blinder-Oaxaca decomposition to nonlinear models. AStA Advances in Statistical Analysis, 92(2), 197-206.

- Firpo, S., Fortin, N. M., & Lemieux, T. (2009). Unconditional quantile regressions. *Econometrica*, 77(3), 953-973.
- Chernozhukov, V., Fernández-Val, I., & Melly, B. (2013). Inference on counterfactual distributions. *Econometrica*, 81(6), 2205-2268.
- Gelbach, J. B. (2016). When do covariates matter? And which ones, and how much?. *Journal of Labor Economics*, 34(2), 509-543.
- Fortin, N. M. (2008). The gender wage gap among young adults in the united states the importance of money versus people. *Journal of Human Resources*, 43(4), 884-918.
- Fortin, N., Lemieux, T., & Firpo, S. (2011). Decomposition methods in economics. In *Handbook of labor economics* (Vol. 4, pp. 1-102). Elsevier.
- Card, D., Heining, J., & Kline, P. (2013). Workplace heterogeneity and the rise of West German wage inequality. Quarterly Journal of Economics, 128(3), 967-1015.
- Fortin, N. M., Oreopoulos, P., & Phipps, S. (2015). Leaving boys behind gender disparities in high academic achievement. *Journal of Human Resources*, 50(3), 549-579.
- Card, D., Cardoso, A. R., & Kline, P. (2016). Bargaining, sorting, and the gender wage gap: Quantifying the impact of firms on the relative pay of women. *Quarterly Journal of Economics*, 131(2), 633-686.
- Goldschmidt, D., & Schmieder, J. F. (2017). The rise of domestic outsourcing and the evolution of the German wage structure. *Quarterly Journal of Economics*, 132(3), 1165-1217.
- Gerard, F., Lagos, L., Severnini, E., & Card, D. (2018). Assortative matching or exclusionary hiring?

 The impact of firm policies on racial wage differences in Brazil (No. w25176). National Bureau of Economic Research.
- Lachowska, M., Mas, A., Saggio, R. D., & Woodbury, S. A. (2020). Do firm effects drift? Evidence from Washington administrative data (No. w26653). National Bureau of Economic Research.
- Chetty, R., Hendren, N., Jones, M. R., & Porter, S. R. (2020). Race and economic opportunity in the United States: An intergenerational perspective. *Quarterly Journal of Economics*, 135(2), 711-783.
- Słoczyński, T. (2020). Average gaps and Oaxaca–Blinder decompositions: A cautionary tale about regression estimates of racial differences in labor market outcomes. *ILR Review*, 73(3), 705-729.
- Kline, P., Saggio, R., & Sølvsten, M. (2020). Leave-out estimation of variance components. Econometrica, 88(5), 1859-1898.
- Guo, K., & Basse, G. (2021). The generalized oaxaca-blinder estimator. *Journal of the American Statistical Association*, (just-accepted), 1-35.

10 Selection Model

10.1 Basics

- Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. In *Annals of economic and social* measurement, volume 5, number 4 (pp. 475-492). NBER.
- Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the econometric society, 153-161.
- Heckman, J. J., & Vytlacil, E. J. (1999). Local instrumental variables and latent variable models for identifying and bounding treatment effects. Proceedings of the national Academy of Sciences, 96(8), 4730-4734.
- Vytlacil, E. (2002). Independence, monotonicity and latent index models: an equivalence result. Econometrica 70(1).
- Heckman, J., Urzua, S., and Vytlacil, E. (2006). Understanding instrumental variables in models with essential heterogeneity. *Review of Economics and Statistics* 88(3).

- Heckman, J., & Navarro-Lozano, S. (2004). Using matching, instrumental variables, and control functions to estimate economic choice models. Review of Economics and Statistics, 86(1), 30-57.
- Heckman, J., and Vytlacil, E. (2005). Structural equations, treatment effects, and econometric policy evaluation. *Econometrica* 73(3).
- Carneiro, P., Heckman, J. J., & Vytlacil, E. (2010). Evaluating marginal policy changes and the average effect of treatment for individuals at the margin. *Econometrica*, 78(1), 377-394.
- Gautier, E., & Hoderlein, S. (2011). A triangular treatment effect model with random coefficients in the selection equation. arXiv preprint arXiv:1109.0362.
- Brinch, C. N., Mogstad, M., & Wiswall, M. (2017). Beyond LATE with a discrete instrument. *Journal of Political Economy*, 125(4), 985-1039.
- Heckman, J. J., & Pinto, R. (2018). Unordered monotonicity. Econometrica, 86(1), 1-35.
- Lee, S., & Salanié, B. (2018). Identifying effects of multivalued treatments. *Econometrica*, 86(6), 1939-1963.
- Kline, P., & Walters, C. R. (2019). On Heckits, LATE, and numerical equivalence. *Econometrica*, 87(2), 677-696.

- Heckman, J. (1974). Shadow prices, market wages, and labor supply. *Econometrica: journal of the econometric society*, 679-694.
- Heckman, J. J., & Sedlacek, G. (1985). Heterogeneity, aggregation, and market wage functions: an
 empirical model of self-selection in the labor market. *Journal of Political Economy*, 93(6), 1077-1125.
- Aakvik, A., Heckman, J. J., & Vytlacil, E. J. (2005). Estimating treatment effects for discrete outcomes
 when responses to treatment vary: an application to Norwegian vocational rehabilitation programs.

 Journal of Econometrics, 125(1-2), 15-51.
- Madden, D. (2008). Sample selection versus two-part models revisited: The case of female smoking and drinking. Journal of Health Economics, 27(2), 300-307.
- Hussinger, K. (2008). R&D and subsidies at the firm level: An application of parametric and semiparametric two-step selection models. Journal of Applied Econometrics, 23(6), 729-747.
- Carneiro, P., & Lee, S. (2009). Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality. *Journal of Econometrics*, 149(2), 191-208.

11 High-dimensional Causal Model

11.1 Methodology

- Maathuis, M. H., Kalisch, M., & Bühlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Annals of Statistics, 37(6A), 3133-3164.
- Belloni, A., Chernozhukov, V., & Hansen, C. (2014). Inference on treatment effects after selection among high-dimensional controls. *Review of Economic Studies*, 81(2), 608-650.
- Belloni, A., Chernozhukov, V., & Hansen, C. (2014). High-dimensional methods and inference on structural and treatment effects. *Journal of Economic Perspectives*, 28(2), 29-50.
- Athey, S., & Imbens, G. (2016). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113(27), 7353-7360.
- Belloni, A., Chernozhukov, V., Fernández-Val, I., & Hansen, C. (2017). Program evaluation and causal inference with high-dimensional data. *Econometrica*, 85(1), 233-298.
- Cattaneo, M. D., Jansson, M., & Newey, W. K. (2018). Inference in linear regression models with many covariates and heteroscedasticity. *Journal of the American Statistical Association*, 113(523), 1350-1361.
- Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters.
- Fernández-Val, I., & Weidner, M. (2018). Fixed effects estimation of large-T panel data models. Annual

- Review of Economics, 10, 109-138.
- Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228-1242.
- Cattaneo, M. D., Jansson, M., & Ma, X. (2019). Two-step estimation and inference with possibly many included covariates. Review of Economic Studies, 86(3), 1095-1122.
- Chernozhukov, V., Chetverikov, D., & Kato, K. (2019). Inference on causal and structural parameters
 using many moment inequalities. Review of Economic Studies, 86(5), 1867-1900.
- Kline, P., Saggio, R., & Sølvsten, M. (2020). Leave-out estimation of variance components. *Econometrica*, 88(5), 1859-1898.
- Bradic, J., Ji, W., & Zhang, Y. (2021). High-dimensional Inference for Dynamic Treatment Effects.
 arXiv preprint arXiv:2110.04924.

Gerard, F., Lagos, L., Severnini, E., & Card, D. (2021). Assortative matching or exclusionary hiring?
 the impact of employment and pay policies on racial wage differences in brazil. American Economic Review, 111(10), 3418-57.

12 Bunching

12.1 Basics

- Saez, E. (2010). Do taxpayers bunch at kink points?. American economic Journal: economic policy, 2(3), 180-212.
- Chetty, R., Friedman, J. N., Olsen, T., & Pistaferri, L. (2011). Adjustment costs, firm responses, and micro vs. macro labor supply elasticities: Evidence from Danish tax records. Quarterly Journal of Qconomics, 126(2), 749-804.
- Kleven, H. J., & Waseem, M. (2013). Using notches to uncover optimization frictions and structural elasticities: Theory and evidence from Pakistan. *Quarterly Journal of Economics*, 128(2), 669-723.
- Kleven, H. J. (2016). Bunching. Annual Review of Economics, 8, 435-464.

- Einav, L., Finkelstein, A., & Schrimpf, P. (2017). Bunching at the kink: implications for spending responses to health insurance contracts. *Journal of Public Economics*, 146, 27-40.
- Marx, B. M. (2018). Dynamic Bunching Estimation with Panel Data.

- Caetano, C., Caetano, G., & Nelson, E. (2020). Correcting for Endogeneity in Models with Bunching.
- Gelber, A. M., Jones, D., & Sacks, D. W. (2020). Estimating adjustment frictions using nonlinear budget sets: Method and evidence from the earnings test. American Economic Journal: Applied Economics, 12(1), 1-31.
- Caetano, C., Caetano, G., Fe, H., & Nielsen, E. R. (2021). A Dummy Test of Identification in Models
 with Bunching.
- Blomquist, S., Newey, W. K., Kumar, A., & Liang, C. Y. (2021). On bunching and identification of the taxable income elasticity. *Journal of Political Economy*, 129(8), 000-000.
- Bertanha, M., McCallum, A. H., & Seegert, N. (2021). Better bunching, nicer notching. arXiv preprint arXiv:2101.01170.

- Le Maire, D., & Schjerning, B. (2013). Tax bunching, income shifting and self-employment. Journal of Public Economics, 107, 1-18.
- Bastani, S., & Selin, H. (2014). Bunching and non-bunching at kink points of the Swedish tax schedule.
 Journal of Public Economics, 109, 36-49.
- Asatryan, Z., & Peichl, A. (2017). Responses of firms to tax, administrative and accounting rules:
 Evidence from Armenia.
- Seim, D. (2017). Behavioral responses to wealth taxes: Evidence from Sweden. *American Economic Journal: Economic Policy*, 9(4), 395-421.
- Bachas, P. J., & Soto, M. (2018). Not (ch) your average tax system: corporate taxation under weak enforcement. World Bank Policy Research Working Paper, (8524).
- Gelber, A. M., Jones, D., & Sacks, D. W. (2020). Estimating adjustment frictions using nonlinear budget sets: Method and evidence from the earnings test. *American Economic Journal: Applied Economics*, 12(1), 1-31.
- Chen, Z., Liu, Z., Suárez Serrato, J. C., & Xu, D. Y. (2021). Notching R&D investment with corporate income tax cuts in China. *American Economic Review*, 111(7), 2065-2100.
- He, D., Peng, L., & Wang, X. (2021). Understanding the elasticity of taxable income: A tale of two approaches. *Journal of Public Economics*, 197, 104375.

13 Directed Acyclic Graphs

- Pearl, J. (2009). Causality. Cambridge university press.
- Glymour, M., Pearl, J., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.

- Pearl, J. (2018). Does obesity shorten life? Or is it the soda? On non-manipulable causes. *Journal of Causal Inference*, 6(2).
- Pearl, J., & Mackenzie, D. (2018). The book of why: the new science of cause and effect. Basic books.
- Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27-42.
- Pearl, J. (2019). The seven tools of causal inference, with reflections on machine learning. *Communications of the ACM*, 62(3), 54-60.
- Imbens, G. W. (2020). Potential outcome and directed acyclic graph approaches to causality: Relevance for empirical practice in economics. *Journal of Economic Literature*, 58(4), 1129-79.
- A Slides of Brady Neal

14 Identification for Structural Estimation

- Andrews, I., Gentzkow, M., & Shapiro, J. M. (2017). Measuring the sensitivity of parameter estimates to estimation moments. *The Quarterly Journal of Economics*, 132(4), 1553-1592.
- Andrews, I., Gentzkow, M., & Shapiro, J. M. (2020). On the informativeness of descriptive statistics for structural estimates. *Econometrica*, 88(6), 2231-2258.
- Andrews, I., Gentzkow, M., & Shapiro, J. M. (2020). Transparency in structural research. Journal of Business & Economic Statistics, 38(4), 711-722.