LATEX ASSIGNMENT

ANAND

2-09-2023

i

EXERCISE 12.3.5

- 1. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, show that $(aI + bA)^n = a^nI + na^{n-1}bA$, where I is the identity matrix of order 2 and $n \in N$.
- 2. If $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$, Prove that $A^n = \begin{pmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \\ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{pmatrix}, n \in \mathbb{N}.$
- 3. If $A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$, then prove that $A^n = \begin{pmatrix} 1 + 2n & -4n \\ n & 1 2n \end{pmatrix}$, Where n is any positive integer.
- 4. If A and B are symmetric matrices prove that AB BA is a skew symmetric matrix.
- 5. Show that the matrix B'AB is a symmetric or skew symmetric according as A is symmetric or skew symmetric.
- 6. Find the value of x, y, z if the matrix $A = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix}$ satisfy the equation A'A = I.
- 7. For what values of $x : \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ x \end{pmatrix} = 0$
- 8. If $A = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix}$, show that $A^2 5A + 7I = 0$.
- 9. Find x, if $\begin{pmatrix} x & -5 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ 4 \\ 1 \end{pmatrix} = O$.

market	products		
I	10,000	2,000	18,000
II	6,000	20,000	8,000

Table 1:

- 10. A manufacturer produces three products x, y, z which he sells in two markets. Annual Sales are indicated below:
 - (a) If unit sale Prices of x, y and z are ₹ 2.50, ₹ 1.50 and ₹ 1.00, respectively. Find the total revenue in each market with the help of matrix algebra.
 - (b) If the unit costs of the above three commodities are ₹ 2.00, ₹ 1.00 and 50 paise respectively. Find the gross profit.
- 11. Find the matrix X so that $X \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{pmatrix}$
- 12. If *A* and *B* are square matrices of the same order such that AB = BA, then prove by induction that $(AB)^n = B^n A^n$. Further prove that $(AB)^n = A^n B^n$ for all $n \in N$. Choose the correct answer in the following questions:
- 13. If $A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$ is such that $A^2 = I$, then
 - (a) $1 + \alpha^2 + \beta \gamma = 0$
 - (b) $1 \alpha^2 + \beta \gamma = 0$
 - (c) $1 \alpha^2 \beta \gamma = 0$
 - (d) $1 + \alpha^2 \beta \gamma = 0$
- 14. If the matrix A is both symmetric and skew symmetric, then
 - (a) A is a diagonal matrix
 - (b) A is a Zero matrix
 - (c) A is a Square matrix
 - (d) None of these
- 15. If A is square matrix such that $A^2 = A$, then $(I + A)^3 7A$ is equal to
 - (a) A
 - (b) I A
 - (c) I
 - (d) 3A