CS 350 Algorithms and Complexity

Fall 2015

Lecture 6: Exhaustive Search Algorithms

Andrew P. Black

Department of Computer Science Portland State University

Brute Force

 A straightforward approach, usually based directly on the problem's statement and definitions of the concepts involved

Examples:

Computing a^n (a > 0, n a nonnegative integer) by repeated multiplication

Computing *n*! by repeated multiplication

Multiplying two matrices following the definition

Searching for a key in a list sequentially

Closest-Pair Problem

- Find the two closest points in a set of *n* points (in the two-dimensional Cartesian plane).
- Brute-force algorithm:
 - Compute the distance between every pair of distinct points
 - and return the indices of the points for which the distance is the smallest.


```
ALGORITHM BruteForceClosestPoints(P)
```

```
//Finds two closest points in the plane by brute force
//Input: A list P of n (n \ge 2) points P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)
//Output: Indices index1 and index2 of the closest pair of points
dmin \leftarrow \infty
for i \leftarrow 1 to n - 1 do
d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt \text{ is the square root function}
if d < dmin
dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j
return index1, index2
```


ALGORITHM BruteForceClosestPoints(P) //Finds two closest points in the plane by brute force //Input: A list P of n ($n \ge 2$) points $P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)$ //Output: Indices index1 and index2 of the closest pair of points $dmin \leftarrow \infty$ for $i \leftarrow 1$ to n - 1 do for $j \leftarrow i + 1$ to n do $d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2)$ //sqrt is the square root function if d < dmin

 $dmin \leftarrow d$; $index1 \leftarrow i$; $index2 \leftarrow i$

return index1, index2

Efficiency:

ALGORITHM BruteForceClosestPoints(P)

```
//Finds two closest points in the plane by brute force
//Input: A list P of n (n \ge 2) points P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)
//Output: Indices index1 and index2 of the closest pair of points dmin \leftarrow \infty
for i \leftarrow 1 to n - 1 do
for j \leftarrow i + 1 to n do
d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt \text{ is the square root function}
if d < dmin
dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j
return index1, index2
```

• Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n³)

ALGORITHM BruteForceClosestPoints(P)

```
//Finds two closest points in the plane by brute force
//Input: A list P of n (n \ge 2) points P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)
//Output: Indices index1 and index2 of the closest pair of points dmin \leftarrow \infty
for i \leftarrow 1 to n - 1 do
for j \leftarrow i + 1 to n do
d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt \text{ is the square root function}
if d < dmin
dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j
return index1, index2
```

- Efficiency: A: O(n) B: O(n²) C: O(lg n) D: O(n³)
- How to make it faster?

ALGORITHM BruteForceClosestPoints(P)

Problem:

```
//Finds two closest points in the plane by brute force
//Input: A list P of n (n \ge 2) points P_1 = (x_1, y_1), \ldots, P_n = (x_n, y_n)
//Output: Indices index1 and index2 of the closest pair of points dmin \leftarrow \infty

for i \leftarrow 1 to n - 1 do

for j \leftarrow i + 1 to n do

d \leftarrow sqrt((x_i - x_j)^2 + (y_i - y_j)^2) //sqrt is the square root function

if d < dmin

dmin \leftarrow d; index1 \leftarrow i; index2 \leftarrow j

return index1, index2
```

If sqrt

is 10 x slower than \times and +, by how much will BruteForceClosestPoints speed up when we take out the sqrt?

- A. ~ 10 times
- B. ~ 100 times
- C. ~ 1000 times

Problem:

Can you design a more efficient algorithm than the one based on the brute-force strategy to solve the closest-pair problem for n points x_1, \ldots, x_n on the real line?

Exhaustive Search

 A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

Method:

- generate a list of all potential solutions to the problem in a systematic manner (see algorithms in Sec. 4.3)
- evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far
- when search ends, announce the solution(s) found

Example 1: Traveling Salesman Problem

- Given n cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city
- Alternatively: find shortest Hamiltonian circuit in a weighted connected graph
- Example:

TSP by Exhaustive Search

Tour

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$$

$$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$$

$$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$$

$$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$$

$$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$$

$$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$$

More tours?

Less tours?

Efficiency:

Cost

$$2+3+7+5=17$$

$$2+4+7+8=21$$

$$8+3+4+5=20$$

$$8+7+4+2=21$$

$$5+4+3+8=20$$

$$5+7+3+2=17$$

TSP by Exhaustive Search

Tour

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$$

$$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$$

$$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$$

$$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$$

$$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$$

$$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$$

More tours?

Less tours?

Efficiency:

Cost

$$2+3+7+5=17$$

$$2+4+7+8=21$$

$$8+3+4+5=20$$

$$8+7+4+2=21$$

$$5+4+3+8=20$$

$$5+7+3+2=17$$

A: O(n)

B: O(n²)

C: O(n3)

D: O((n-1)!)

E: O(n!)

Example 2: Knapsack Problem

- Given *n* items:
 - ▶ weights: w₁ w₂ ... w_n
 - values: V₁ V₂ ... Vn
 - a knapsack of capacity W
- Find most valuable subset of the items that fit into the knapsack
- Example: Knapsack capacity W=16

item	weight	value
1.	2	\$20
2.	5	\$30
3.	10	\$50
4.	5	\$10

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	not feasible
{1,2,4}	12	\$60
{1,3,4}	17	not feasible
{2,3,4}	20	not feasible
[1,2,3,4]	22	not feasible

item	weight	value
1.	2	\$20
2.	5	\$30
3.	10	\$50
4.	5	\$10

Knapsack capacity W=16

Knapsack Problem by Exhaustive Search

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	not feasible
{1,2,4}	12	\$60
{1,3,4}	17	not feasible
{2,3,4}	20	not feasible
{1,2,3,4}	22	not feasible

item	weight	value
1.	2	\$20
2.	5	\$30
3.	10	\$50
4.	5	\$10

Knapsack capacity W=16

Efficiency?

A: $O(n^2)$

B: O(2ⁿ)

C: O(n!)

D: O((n-1)!)

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is C[i, j]. Find an assignment that minimizes the total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

• There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

• There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

		Job 1	Job 2	Job 3	Job 4
(<i>a</i> ₁ ,	Person 1	9	2	7	8
<i>a</i> ₂ ,	Person 2	6	4	3	7
<i>a</i> ₃ ,	Person 3	5	8	1	8
Q 4>	Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

• There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

		Job 1	Job 2	Job 3	Job 4
⟨2,	Person 1	9	2	7	8
4,	Person 2	6	4	3	7
3,	Person 3	5	8	1	8
1>	Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

• There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

		Job 1	Job 2	Job 3	Job 4
⟨2,	Person 1	9	2	7	8
4,	Person 2	6	4	3	7
3,	Person 3	5	8	1	8
1>	Person 4	7	6	9	4

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

There are n people who need to be assigned to n jobs, one person per job. The cost of assigning person p to job j is C[i, j]. Find an assignment that minimizes the total cost.

an assignment

(a₁, a₂, a₃, a₄)

means that person i

gets job a_i

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

• There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

an assignment

(a₁, a₂, a₃, a₄)

means that person i

gets job a_i

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

• There are *n* people who need to be assigned to *n* jobs, one person per job. The cost of assigning person *p* to job *j* is C[*i*, *j*]. Find an assignment that minimizes the total cost.

- Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.
- How many assignments are there ...

 Consider the problem in terms of the Cost Matrix C

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

 Consider the problem in terms of the Cost Matrix C

Assignment (col.#s) Total Cost

1, 2, 3, 4

1, 2, 4, 3

Total Cost

9+4+1+4=18

9+4+8+9=30

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

 Consider the problem in terms of the Cost Matrix C

Assignment (col.#s)	Total Cost
1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

 Consider the problem in terms of the Cost Matrix C

Assignment (col.#s)	Total Cost
1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1 3 4 2	9+3+8+6=26

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

 Consider the problem in terms of the Cost Matrix C

Assignment	(col.#s)

Total Cost

 Consider the problem in terms of the Cost Matrix C

		/ .	11 \
Δ ecin	inment (#61
7331 9		COL	.πoj

Total Cost

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

 Consider the problem in terms of the Cost Matrix C

Assignment (col.#s)

etc.

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

 Consider the problem in terms of the Cost Matrix C

Assignment (col.#s)	Total Cost
1, 2, 3, 4	9+4+1+4=18
1, 2, 4, 3	9+4+8+9=30
1, 3, 2, 4	9+3+8+4=24
1, 3, 4, 2	9+3+8+6=26
1, 4, 2, 3	9+7+8+9=33
1, 4, 3, 2	9+7+1+6=23
etc.	

$$C = \begin{bmatrix} 9 & 2 & 7 & 8 \\ 6 & 4 & 3 & 7 \\ 5 & 8 & 1 & 8 \\ 7 & 6 & 9 & 4 \end{bmatrix}$$

How many assignments are there?

 Consider the problem in terms of the Cost Matrix C

C =	9	4	1	0
	6	4	3	7
	5	8	1	8
	7	6	9	8 4 _
	_			_

Total Cost

etc.

How many assignments are there?

A: O(n) B: O(n²) C: O(n³) D: O(n!)

Convex Hulls

- What is a Convex Hull?
- A. A bad design for a boat
- B. A good design for a boat
- C. A set of points without any concavities
- D. None of the above

Convex Hulls

- What is a Convex Set?
- A. A bad design for a boat
- B. A good design for a boat
- C. A set of points without any concavities
- D. None of the above

A set of points C is *convex* iff \forall a, b \in C, all points on the line segment ab are entirely in C

• Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
 - Barricading sleeping tigers

- Given an arbitrary set of points S, the convex hull of S is the smallest convex set that contain all the points in S.
 - Barricading sleeping tigers
 - Rubber-band around nails

Applications of Convex Hull

Collision-detection in video games

Applications of Convex Hull

- Collision-detection in video games
- Robot motion planning

Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

Theorems about Convex Hulls

- The convex hull of a set S is a convex polygon all of whose vertices are at some of the points of S.
- A line segment ab is part of the boundary of the convex hull of S iff all the points of S lie on the same side of ab (or on ab)

write it down!

▶ Assume that you have a method for ascertaining if a point r is on a line pq, on the –ve side of line pq, or on the +ve side of pq

write it down!

► Assume that you have a method for ascertaining if a point r is on a line pq, on the -ve side of line pq, or on the +ve side of pq

write it down!

► Assume that you have a method for ascertaining if a point r is on a line pq, on the -ve side of line pq, or on the +ve side of pq

write it down!

► Assume that you have a method for ascertaining if a point r is on a line pq, on the -ve side of line pq, or on the +ve side of pq

 $c = p_x q_y - q_x p_y$


```
edgeSet ← {}
P: for p in S do:
  Q: for q in S, q \neq p do:
     goodSide ← 0
     R: for r in S, r\neq p \land r\neq q do:
        side ← r.whichSideOfLine(pq)
        if goodSide = - side then exit Q.
        if goodSide = 0 then goodSide ← side
     edgeSet ← edgeSet ∪ {pq}
```


Final Comments on Exhaustive Search

- Exhaustive-search algorithms run in a realistic amount of time only on very small instances
- In some cases, there are much better alternatives!
 - Euler circuits
 - shortest paths
 - minimum spanning tree
 - assignment problem
- However, in many cases, exhaustive search (or a variation) is the only known way to find an exact solution

Searching in Graphs

Exhaustively search a graph, by traversing the edges, visiting every node <u>once</u>

Two approaches:

- Depth-first search and
- Breadth-first search

ALGORITHM DFS(G)

```
//Implements a depth-first search traversal of a given graph
//Input: Graph G = \langle V, E \rangle
//Output: Graph G with its vertices marked with consecutive integers
          in the order they are first encountered by the DFS traversal
//
mark each vertex in V with 0 as a mark of being "unvisited"
count \leftarrow 0
for each vertex v in V do
    if v is marked with 0
        dfs(v)
dfs(v)
//visits recursively all the unvisited vertices connected to vertex v
//by a path and numbers them in the order they are encountered
//via global variable count
count \leftarrow count + 1; mark v with count
for each vertex w in V adjacent to v do
    if w is marked with 0
         dfs(w)
```


Example

Example

2 *dfs*(1) *dfs*(2) 4 8

Example

dfs(1) *dfs*(2) *dfs*(7) *dfs*(5) 4 8

Complexity?

- What's the basic operation?
 - finding all the Vertices in the graph?
 - making a mark?
 - checking a mark?
 - finding all the neighbors of a node?
- Cost depends on the data structure used to represent the graph

Two choices of data structure:

- Adjacency Matrix: $\Theta(|V|^2)$
- Adjacency List: $\Theta(|V| + |E|)$

Applications

- Checking for connectivity
 - ► How?
- Checking for Cycles
 - ► How?

