Balanced K-Means Clustering on an Adiabatic Quantum Computer

Applied Quantum Machine Learning Project

Politecnico di Milano

May 10, 2021

Authors:
Pierriccardo Olivieri
Francesco Piro
Matteo Sacco

Professors:
Cremonesi Paolo
Alessandro Luongo
Maurizio Ferrari Dacrema

Outline

Introduction

Balanced k-Mean Unconstrained k-Mean Clustering

Advantages over classical Outline approaches

- Better targets the global solution of the training problem
- Better theoretic scalability on large datasets

- QUBO formulation and theoretical analysis
- Empirical Analysis
- Conclusions and considerations

Lloyd's algorithm

- Complexity O(Nkdi) [13]
 - \circ N number of data points
 - \circ k number of clusters
 - \circ d dimension of the dataset
 - i number of iterations before the algorithm converges

Scikit-learn implementation

• Complexity O(Nkd) [18]

[13] J. A. Hartigan and M. A. Wong, "Algorithm" AS 136: A K-Means clustering algorithm" Ap-[18] "Scikit-learn: Machine learning in python," plied Statistics

Thanks for your Attention