Ecrit du mercredi 13 janvier 2021

Durée: 1h30 -

Sans document, avec calculatrice de type collège

L'épreuvre comporte trois exercices indépendants. Certaines réponses sont à faire directement sur le sujet. Sujet à rendre obligatoirement avec la copie.

EXERCICE 1: REGLAGE DE TENSION SUR UNE LIGNE

Une ligne de transport monophasée est caractérisée par son impédance jX_l . Elle est alimentée par une source V_r et dessert une charge d'impédance complexe $\underline{Z} = R + jX$, sous la tension V_c (Figure 1). Le courant débité par la ligne est alors \underline{I} . On note V_c et V_r les modules respectifs de V_r et V_c .

Figure 1 : Schéma de principe d'une ligne de distribution

- Q1. 1 Déterminer V_c et \underline{I} en fonction des données du problème.
- Q1. 2 Déterminer la puissance active P et la puissance réactive Q consommées par la charge, ainsi que le facteur de puissance de la charge, noté $\cos \varphi$.
- Q1. 3 Représenter *l'allure* des courbes tension V_C -puissance P pour $\cos \varphi = 1$, $\cos \varphi = 0.9$ et $\cos \varphi = 0.8$. Aucun calcul n'est demandé, il s'agit simplement de restituer vos connaissances.
- Q1. 4 On donne les valeurs numériques suivantes : $V_r = 1000 \ [V]$, $X_l = 2 \ [\Omega]$. On considère une première charge \underline{Z}_1 , telle que $Z_1 = \left|\underline{Z}_1\right| = 20 \ [\Omega]$ et $\cos \varphi_1 = 0.8$. Calculer les valeurs numériques de V_c , P et Q. Ces grandeurs seront notées V_{c1} , P_1 et Q_1 La valeur de V_{c1} est-elle acceptable ?
- Q1. 5 La Figure 2 représente un agrandissement des courbes tension V_C -puissance P pour différentes valeurs de facteur de puissance $\cos \varphi$. Placer le point de la Q1. 4.
- Q1. 6 On considère maintenant une autre charge \underline{Z}_2 , telle que $P_2=40~kW$ et $Q_2=30~kVAR$. Placer ce point sur la Figure 2 et déterminer V_{C2} . La valeur de V_{C2} est-elle acceptable ?

- Q1. 7 Toujours dans le cas de la charge \underline{Z}_2 , on veut relever la tension V_{C2} pour obtenir $V'_{C2} = V_{C2} + \Delta V$. Pour cela, on place en parallèle une charge capacitive dont la puissance réactive Q_c est déterminée par l'approximation $\Delta V \approx Q_c \cdot \frac{X_L}{V_r}$ (formule établie à partir du TD10).
 - \rightarrow Calculer la valeur de Q_c nécessaire pour obtenir $\Delta V = 20$ [V].
 - → Placer le point de fonctionnement de la charge compensée sur la Figure 2.
 - → Calculer le facteur de puissance de la charge compensée.

Figure 2 : Agrandissement des courbes tension V_C -puissance P pour différentes valeurs de $\cos \varphi$

EXERCICE 2: ONDULEUR

Un convertisseur monophasé assure le transfert de puissance entre une source de tension continue constante $U_0 > 0$ et une charge passive constituée d'une résistance R en série avec une inductance L. La Figure 3 représente les chronogramme de la tension $v_s(t)$ et du courant $i_s(t)$ en sortie du convertisseur.

Figure 3 : Chronogrammes de la tension $v_s(t)$ et du courant $i_s(t)$ en sortie du convertisseur

- Q2. 1 Faire le schéma du dispositif complet réunissant la source, la charge et le convertisseur à deux cellules de commutation. Faire apparaître clairement toutes les grandeurs électriques pertinentes du montage (tensions et courants).
- Q2. 2 Déduire de la lecture des chronogrammes, en justifiant, la nature du convertisseur, la valeur de U_0 et la fréquence des grandeurs de sortie.
- Q2. 3 On propose de réaliser chaque interrupteur en prenant un transistor et une diode en anti-parallèle. Redessiner la structure détaillée du convertisseur faisant apparaître les transistors et les diodes. Penser à bien numéroter les différents interrupteurs et composants.
- Q2. 4 On considère le système aux instants t_1 à t_6 définis sur la Figure 4. Pour chacun de ces instants : relever la valeur de la tension v_s et le signe du courant i_s , puis indiquer quels sont des composants passants. Utiliser les mêmes notations que sur le schéma de la question Q2. 3.

Figure 4 : Définition des instants t_1 à t_6

EXERCICE 3: REDRESSEUR TRIPHASE NON COMMANDE

La Figure 5 représente le schéma de principe d'un redresseur triphasé non commandé, alimenté par les tensions alternatives de pulsation ω :

$$\begin{cases} v_1(\theta) = V_{max} \sin(\theta) \\ v_2(\theta) = V_{max} \sin\left(\theta - \frac{2\pi}{3}\right) \\ v_3(\theta) = V_{max} \sin\left(\theta + \frac{2\pi}{3}\right) \end{cases} \text{ avec } \theta = \omega t$$

Ce convertisseur alimente une charge fortement inductive qui se comporte comme une source de courant I_s .

Figure 5 : Redresseur triphasé commandé

- Q3. 1 A quelle(s) condition(s) sur v_1 , v_2 et v_3 chacune des diodes D_1 , D_2 et D_3 est-elle passante?
- Q3. 2 A quelle(s) condition(s) sur v_1 , v_2 et v_3 chacune des diodes D_4 , D_5 et D_6 est-elle passante?
- Q3. 3 Tracer le chronogramme de v_A et v_B , les potentiels des points A et B par rapport au potentiel du neutre N (réponse sur la Figure 6).
- Q3. 4 On se place sur l'intervalle $\left[-\frac{\pi}{6}, +\frac{\pi}{6}\right]$.
 - \rightarrow Donner les expressions de v_A et v_B sur cet intervalle.
 - \rightarrow En déduire l'expression de v_s .
 - \rightarrow Tracer $v_s(\theta)$ (réponse sur la Figure 6).

Rappel:
$$sin(p) - sin(q) = 2 cos\left(\frac{p+q}{2}\right) sin\left(\frac{p-q}{2}\right)$$

- Q3. 5 On se place sur l'intervalle $\left[+\frac{\pi}{6}, +\frac{\pi}{2} \right]$.
 - \rightarrow Donner les expressions de v_A et v_B sur cet intervalle.
 - \rightarrow En déduire l'expression de v_s .
 - \rightarrow Tracer $v_s(\theta)$ (réponse sur la Figure 6).
- Q3. 6 On se place sur l'intervalle $\left[+\frac{\pi}{2},+2\pi\right]$. Compléter le chronogramme de v_s . Quelle est la période de $v_s(\theta)$?

- Q3. 7 Quels sont les intervalles de conduction des différentes diodes ? Pour gagner du temps, il est possible de répondre directement sur la Figure 6 ou la Figure 7.
- Q3. 8 Tracer le chronogramme de i_1 , le courant dans la phase 1 (réponse sur la Figure 7).
- Q3. 9 Calculer $\langle v_s \rangle$, la valeur moyenne de v_s , puis calculer τ_{v_s} , le taux d'ondulation défini par $\tau_{v_s} = \frac{v_{s \, max} v_{s \, min}}{\langle v_s \rangle}$, où $v_{s \, min}$ et $v_{s \, max}$ sont respectivement la valeur minimale et la valeur maximale de v_s .

Figure 6 : Chronogramme de v_s

Figure 7 : Chronogramme de i_1