

Definições

Os circuitos RL, assim como os circuitos RC, compõe os circuitos de primeira ordem (equação diferencial de primeira ordem)

$$i_L(t) = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$$

$$v_L(t) = L \cdot \frac{di_L(t)}{dt}$$

Tipos de resposta RL

Resposta Natural (sem fonte)

Resposta natural ou carga ou resposta sem fonte, se refere ao comportamento de corrente ou tensão do circuito, sem a presença de uma fonte

Resposta Forçada (a um degrau)

Resposta forçada ou carga ou resposta ao degrau, se refere ao comportamento de corrente ou tensão do circuito, com a presença de uma fonte

Resposta forçada RL

A corrente do indutor não muda de forma abrupta

 $\mathbf{0}^- \to representa$ o instante anterior ao chaveamento $\mathbf{0}^+ \to representa$ o instante postareior ao chaveamento

$$i_L(0^+) = i_L(0^-) = I_0$$

Análise da malha do indutor

$$v_{S} = Ri_{L} + v_{L}$$

$$v_{S} = Ri_{L} + L \frac{di_{L}}{dt}$$

$$v_{S} - Ri_{L} = L \frac{di_{L}}{dt}$$

$$\frac{v_{S} - Ri_{L}}{L} = \frac{di_{L}}{dt}$$

Diferenciando em relação ao tempo

$$\frac{v_{s} - Ri_{L}}{L}dt = di_{L}$$

$$\frac{1}{L}dt = \frac{1}{v_S - Ri_L}di_L$$

$$-\frac{R}{L}dt = \frac{R}{Ri_L - v_S}di_L$$

Integrando ambos os lados

$$-\frac{R}{L}dt = \frac{R}{Ri_L - v_s}di_L$$

$$\int_{I_0}^{i_L(t)} \frac{R}{Ri_L - v_S} di_L = \int_0^t -\frac{R}{L} dt$$

$$\frac{R}{R}ln(Ri_L - v_S) \begin{vmatrix} i_L(t) \\ I_0 \end{vmatrix} = -t \cdot \frac{R}{L} \begin{vmatrix} t \\ 0 \end{vmatrix}$$

$$ln(Ri_L(t) - v_S) - ln(RI_0 - v_S) = -t \cdot \frac{R}{L}$$

$$ln\left(\frac{Ri_L(t) - v_S}{RI_0 - v_S}\right) = -t \cdot \frac{R}{L}$$

$$\frac{Ri_L(t) - v_s}{RI_0 - v_s} = e^{-t \cdot \frac{R}{L}}$$

$$Ri_L(t) - v_S = (RI_0 - v_S)e^{-t \cdot \frac{R}{L}}$$

$$i_L(t) = \frac{v_S}{R} + \left(I_0 - \frac{v_s}{R}\right)e^{-t\cdot \frac{R}{L}}$$

$$i_L(t) = \frac{v_S}{R} + \left(I_0 - \frac{v_S}{R}\right)e^{-t\cdot\frac{R}{L}}$$

OU

$$i_L(t) = I_S + (I_0 - I_s)e^{-t \cdot \frac{R}{L}}$$

Equação geral, valida para RC ou RL

$$x(t) = x(\infty) + (x(0) - x(\infty))e^{-\frac{t}{\tau}}$$

$$\tau = RC \quad e \quad x = v_C$$

$$au = rac{L}{R}$$
 e $x = i_L$

$$i_L(t) = \frac{v_S}{R} + \left(I_0 - \frac{v_S}{R}\right)e^{-\frac{t}{\tau}}$$

Caso o indutor não possua uma corrente inicial:

$$I_0 = 0$$

$$i_L(t) = \frac{v_s}{R} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

Para calcularmos a corrente no capacitor, basta derivarmos a tensão. Sabemos que:

$$v_L(t) = L \frac{di_L}{dt} \qquad \left(i_L(t) = \frac{v_S}{R} + \left(I_0 - \frac{v_S}{R}\right)e^{-\frac{t}{\tau}}\right)$$

$$v_L(t) = (v_S - I_0 R)e^{-\frac{t}{\tau}}$$

$$v_L(t) = v_s e^{-\frac{t}{\tau}} \rightarrow se I_0 = 0$$

$$i_L(t) = \frac{v_s}{R} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$v_L(t) = v_s e^{-\frac{t}{\tau}}$$

Como observado nos gráficos anteriores, a constante...

$$\frac{R}{L}$$
 ou $\frac{1}{\tau}$ onde $\tau = \frac{L}{R}$

...faz referência ao tempo de "carga" (ou "descarga") do indutor (S.I. tempo=seg.). Da mesma forma que a constante $R \cdot C$ é constante de tempo nos circuitos RC, L\R é a **constante de tempo** nos circuitos RL. Quanto maior a constante de tempo, maior o tempo para carga ou descarga, seja nos circuitos RC, seja nos circuitos RL

Neste exemplo a constante de tempo (tau) é igual a:

$$\tau = \frac{L}{R} = \frac{1m}{10} = 0, 1ms$$

** A unidade de tal é o segundo

Tempo	$e^{-rac{t}{ au}}$	Corrente	Tensão	%
$t = 1\tau$	0,36788	0,63212A	3,6788V	63,212%
$t=2\tau$	0,13534	0,86466V	1,3534V	86,466%
$t = 3\tau$	0,04979	0,95021V	0,4979V	95,021%
$t = 4\tau$	0,01832	0,98168V	0,1832V	98,168%
$t = 5\tau$	0,00674	0,99326V	0,0674V	99,326%

$$i_L(t) = \frac{10}{10} \cdot (1 - e^{-\frac{t}{\tau}})$$
 $i_L(5\tau) = \frac{10}{10} \cdot (1 - e^{-\frac{5\tau}{\tau}})$
 $v_L(t) = 10e^{-\frac{t}{\tau}}$

Resposta transiente: resposta temporária do circuito que se extinguirá com o tempo

$$i_{completa} = i_{estac} + i_{trans}$$

$$i(t) = i(\infty) + (i(0) - i(\infty)) \cdot e^{-\frac{t}{\tau}}$$

Resposta em regime estacionário: comportamento um longo tempo após excitação

Resposta RL natural

A resposta natural de um circuito RL avalia a descarga do indutor.

Uma vez que o indutor possua energia armazenada ($I_0 \neq 0$) em seu campo magnético, a transferência da energia dar-se-á pela queda exponencial da corrente. Uma vez que a corrente no indutor, não pode variar bruscamente a direção do fluxo de corrente permanece a mesma.

Para "economizarmos" a dedução da resposta natural do circuito RL, vamos utilizar o mesmo circuito da dedução da resposta forçada, porém considerando que: $I_s = 0$ e $I_0 \neq 0$

Resposta RL natural

Resposta forçada:

$$i_L(t) = \frac{v_S}{R} + \left(I_0 - \frac{v_S}{R}\right)e^{-\frac{t}{\tau}} \qquad \tau = \frac{L}{R}$$

Resposta natural: $(I_0 \neq 0 \ e \ V_S = 0)$

$$i_L(t) = I_0 \cdot e^{-\frac{t}{\tau}} \qquad \tau = \frac{L}{R}$$

Resposta RL natural

Por que a tensão é negativa?

Deduzimos a relação de tensão utilizando os parâmetros do circuito anterior (resposta forçada), portanto a referência da tensão continua a mesma.

A transferência de energia do indutor para uma carga é efetuada por meio do decaimento exponencial da corrente. Para o campo magnético existir, é necessário um fluxo de cargas e a dinâmica deste fluxo não varia de forma brusca. Assim, para que o indutor se comporte como o componente que transfere energia (potência negativa – corrente na elevação de tensão), a referência da tensão é invertida instantaneamente.

Exemplo: Qual o tempo para alcançar aproximadamente 99% da carga (5τ) do indutor, qual o tempo para transferir aproximadamente 99% da energia armazenada, encontre 0^- e 0^+ da tensão e da corrente do indutor. Encontre as equações, de tensão e corrente, que representa a resposta a degrau e a resposta natural do indutor. *A energia inicial do indutor é igual a zero.

1) Resposta forçada

$$V_{th} = 10 \cdot \frac{10}{10 + 10} = 5V$$
 $R_{th} = 10 \mid |10 = 5\Omega|$

$$R_{th}=10\mid |10=5\Omega$$

$$\tau_1 = \frac{L}{R_{th}} = \frac{20m}{5} = 4ms$$

$$5\tau_1=20ms$$

$$i_L(t) = \frac{v_S}{R} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$v_L(t) = v_s e^{-\frac{t}{\tau}}$$

* Note que Vs e R são agora as relações de Thevénin

$$i_L(t) = 1 \cdot \left(1 - e^{-250t}\right) A$$

$$v_L(t) = 5e^{-250t}V$$

$$i(0^-) = i(0^+) = 0A$$

$$v(0^-)=0V$$

$$i(22m) \cong 1A$$

$$v(0^+) = 5V$$

2) Resposta Natural

$$i_L(22m^-) = i(22m^+) = I_0 = 1A$$
 $v_L(22m^-) = 0V$ $v_L(22m^+) = -10V$

$$au_2 = rac{20m}{10} = 2ms$$
 $5 au_2 = 10ms$ $i_L(t) = I_0 \cdot e^{-rac{t}{ au}}$ $v_L(t) = -RI_0 \cdot e^{-rac{t}{ au}}$ $i_L(t) = \mathbf{1} \cdot e^{-500t} \mathbf{A}$ $v_L(t) = -\mathbf{10} e^{-500t} V$

Essa seria a resposta se considerássemos que t=0 para a resposta natural, porém como $t\neq 0$.

$$i_L(t) = 1 \cdot e^{-500(t-22m)} A$$
 $v_L(t) = -10e^{-500(t-22m)} V$

3) Como expressar a resposta do circuito?

$$\begin{cases} t < 0 & \to i_L(t) = 0A \\ 0 \le t < 22m & \to i_L(t) = 1 \cdot (1 - e^{-250t})A \\ t \ge 22m & \to i_L(t) = 1 \cdot e^{-500(t - 22m)}A \end{cases}$$

$$\begin{cases} t < 0 & \to v_L(t) = 0V \\ 0 \le t < 22m & \to v_L(t) = 5e^{-250t}V \\ t \ge 22m & \to v_L(t) = -10e^{-500(t-22m)}V \end{cases}$$

Exercício: Caso a chave passasse apenas 3m segundos fechada. Como seria a equação da corrente para a resposta natural? Qual será o tempo para "descarregar" o indutor?

Exercício: Caso a chave passasse apenas 3m segundos fechada. Como seria a equação da corrente para a resposta natural?

Equação para resposta forçada

$$i_L(t) = 1 \cdot \left(1 - e^{-250t}\right) A$$

$$i_L(10m) = 1 \cdot (1 - e^{-0.75}) = 0.53A$$

Neste caso IO seria igual a 0,53A. O indutor não atingiria sua saturação

$$i_L(t) = I_0 \cdot e^{-\frac{t}{\tau}}$$

$$i_L(t) = 0,53 \cdot e^{-500(t-3m)} A$$

$$\begin{cases} t < 0 & \to i_L(t) = 0 \\ 0 \le t < 3m & \to i_L(t) = 1 \cdot (1 - e^{-250t})A \\ t \ge 3m & \to i_L(t) = 0,53 \cdot e^{-500(t - 3m)}A \end{cases}$$

Exercício: Caso a chave passasse apenas 3m segundos fechada. Como seria a equação da corrente para a resposta natural?

Exercício: A chave passou um longo período fechada. Encontre i(t).

Exercício: A chave passou um longo período fechada. Encontre i(t).

$$R_{4 \mid |12} = 4 \mid |12 = 3\Omega$$

$$i_{4 \mid \mid 12} = \frac{40}{5} = 8A$$

$$I_{4\Omega} = I_0 = 8 \cdot \frac{12}{12 + 4} = 6A$$

Como o indutor se comporta como um curto circuito, não há corrente no resistor de 16Ω , assim se encontrarmos a corrente que passa pelo resistor de 4Ω teremos 10.

$$R_{\tau} = (4 + 12) \mid \mid 16 = 8\Omega$$

$$\tau = \frac{L}{R} = \frac{2}{8} = 0.25s$$
 $\frac{1}{\tau} = 4$

$$i(t) = 6 \cdot e^{-4t}A$$

Exercício: A chave passou um longo período fechada. Encontre i(t).

