Performance (1): How Good Is "Good"?

Hung-Wei Tseng

Recap: von Neuman Architecture

By loading different programs into memory, your computer can perform different functions

Recap: Demo

3

if option is set to 1: $O(nlog_2n)$

otherwise, O(n): O(n)

What's your favorite restaurant on campus?

- Speed of service
- Taste of food
- Friendliness
- Cleanness

Outline

- Definition of "Performance"
- What affects each factor in "Performance Equation"

Best Nation

Schools in the National Univera full range of undergraduate r producing groundbreaking res

To unlock full rankings, SAT/A

SUMMARY ~

Ranked in 2022, part of Best Science S

Earning a graduate degree in compute technology companies and colleges at reflects its average rating on a scale fr institutions. Read the methodology »

UC San Diego Ranked No. 1 Public **University by Washington** Monthly

What does it really mean by "better" performance

Bard

182 words/6 secs

170 words/18 secs

Peer instruction

- Before the lecture You need to complete the required reading
- During the lecture I'll bring in activities to ENGAGE you in exploring your understanding of the material
 - Popup questions
 - Individual thinking use polls in Zoom to express your opinion
 - Group discussion
 - Breakout rooms based on your residential colleges!
 - Use polls in Zoom to express your group's opinion
 - Whole-classroom discussion we would like to hear from you

Read Think Discuss

Now, make sure you login to Poll Everywhere (through the App or the website) with UCRNetID

Now, you have at least 90 seconds to answer the question!

Bard v.s. ChatGPT

- Comparing the experiments we have done with Bard and ChatGPT, how many of the following metrics does Bard outperforms ChatGPT?
 - ① Response time
 - ② Throughput
 - ③ End-to-end latency (i.e., total execution time)
 - 4 Quality of results
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

Now, it's time to discuss with your surroundings — and make sure you vote again after the discussion!

What do you care the most when?

- Consider the following performance metrics
 - 1. Network Bandwidth (data/sec)
 - 2. End-to-end Latency (ms)
 - 3. Frame Rate (frames/sec)
 - 4. Throughput (ops/sec)

Which option contains the best match of the most important performance metric for each application?

	Fortnite (Online gaming)	YouTube/Netflix	Download ISO images	Training an ML model	
A	4	3	1	2	
В	4	1	3	2	
C	2	1	3	4	
D	2	3	1	4	
E	None of the above				

"Better" Performance

- The right metric latency? throughput? quality of results?
- The quantitative comparison A is better than B by "how much"

Let's start with "end-to-end latency" as the default metric — how long it takes to execute a program?

CPU Performance Equation (X)

- Assume that we have an application composed with a total of 500000000 instructions, in which 20% of them are "Type-A" instructions with an average CPI of 8 cycles, 20% of them are "Type-B" instructions with an average CPI of 4 cycles and the rest instructions are "Type-C" instructions with average CPI of 1 cycle. If the processor runs at 3 GHz, how long is the execution time?
 - A. 3.67 sec
 - B. 5 sec
 - C. 6.67 sec
 - D. 15 sec
 - E. 45 sec

CPU Performance Equation

$$Performance = \frac{1}{Execution \ Time}$$

Execution Time =
$$\frac{Instructions}{Program} \times \frac{Cycles}{Instruction} \times \frac{Seconds}{Cycle}$$

$$ET = IC \times CPI \times CT$$

 $1GHz = 10^9 Hz = \frac{1}{10^9} sec \ per \ cycle = 1 \ ns \ per \ cycle$

Frequency(i.e., clock rate)

Execution Time

- The simplest kind of performance
- Shorter execution time means better performance
- Usually measured in seconds

instruction memory

Performance Equation (X)

• Assume that we have an application composed with a total of 500000000 instructions, in which 20% of them are "Type-A" instructions with an average CPI of 8 cycles, 20% of them are "Type-B" instructions with an average CPI of 4 cycles and the rest instructions are "Type-C" instructions with average CPI of 1 cycle. If the processor runs at 3 GHz, how long is the execution time?

B. 5 sec

C. 6.67 sec

D. 15 sec

E. 45 sec

$$ET = (5 \times 10^9) \times (20\% \times 8 + 20\% \times 4 + 60\% \times 1) \times \frac{1}{3 \times 10^9} sec = 5$$
average CPI

$$ET = IC \times CPI \times CT$$

Speedup of Y over X

 Consider the same program on the following two machines, X and Y. By how much Y is faster than X?

	Clock Rate	Instructions	Percentage of Type-A		Percentage of Type-B		Percentage of Type-C	CPI of Type-C
Machine X	3 GHz	500000000	20%	8	20%	4	60%	1
Machine Y	5 GHz	500000000	20%	13	20%	4	60%	1

- A. 0.2
- B. 0.25
- C. 0.8
- D. 1.25
- E. No changes

Speedup

The relative performance between two machines, X and Y. Y is n times faster than X

$$n = \frac{Execution \ Time_X}{Execution \ Time_Y}$$

The speedup of Y over X

$$Speedup = \frac{Execution \ Time_X}{Execution \ Time_Y}$$

Speedup of Y over X

 Consider the same program on the following two machines, X and Y. By how much Y is faster than X?

	Clock Rate	Instructions	Percentage of Type-A	CPI of Type-A	Percentage of Type-B	CPI of Type-B	Percentage of Type-C	CPI of Type-C
Machine X	3 GHz	500000000	20%	8	20%	4	60%	1
Machine Y	5 GHz	500000000	20%	13	20%	4	60%	1
	0.2	$ET_Y = (5 \times 1)$		× 13 + 20	$0\% \times 4 + 60\%$	$(6 \times 1) \times \frac{1}{5}$	$\frac{1}{5 \times 10^9} sec = 4$	
B.	0.25	$Speedup = \frac{1}{1}$	Execution Time _X Execution Time _X					
	8.0		$\frac{5}{1} = 1.25$					
D.	1.25		$\frac{1}{4} = 1.23$					

E. No changes

What Affects Each Factor in Performance Equation

What can programmers affect?

- Performance equation consists of the following three factors
 - ① IC
 - ② CPI
 - **3** CT

How many can a **programmer** affect?

- A. 0
- B. 1
- C. 2
- D. 3


```
for(i = 0; i < ARRAY_SIZE; i++)
{
  for(j = 0; j < ARRAY_SIZE; j++)
  {
    c[i][j] = a[i][j]+b[i][j];
  }
}</pre>
```

```
for(j = 0; j < ARRAY_SIZE; j++)
{
   for(i = 0; i < ARRAY_SIZE; i++)
   {
      c[i][j] = a[i][j]+b[i][j];
   }
}</pre>
```

 $O(n^2)$

Complexity

 $O(n^2)$

Instruction Count?

Clock Rate

CPI

```
for(i = 0; i < ARRAY_SIZE; i++)
{
  for(j = 0; j < ARRAY_SIZE; j++)
  {
    c[i][j] = a[i][j]+b[i][j];
  }
}</pre>
```

```
for(j = 0; j < ARRAY_SIZE; j++)
{
   for(i = 0; i < ARRAY_SIZE; i++)
   {
      c[i][j] = a[i][j]+b[i][j];
   }
}</pre>
```

How many of the following make(s) the performance different between version A & version B?

- ① IC
- ② CPI
- **③** CT
- A. 0
- B. 1
- C. 2
- D. 3


```
for(i = 0; i < ARRAY_SIZE; i++)
{
  for(j = 0; j < ARRAY_SIZE; j++)
    {
    c[i][j] = a[i][j]+b[i][j];
  }
}</pre>
```

```
for(j = 0; j < ARRAY_SIZE; j++)
{
   for(i = 0; i < ARRAY_SIZE; i++)
   {
      c[i][j] = a[i][j]+b[i][j];
   }
}</pre>
```

 $O(n^2)$

Complexity

 $O(n^2)$

Same

Instruction Count?

Same

Same

Clock Rate

Same

???

CPI

???

```
for(i = 0; i < ARRAY_SIZE; i++)
{
  for(j = 0; j < ARRAY_SIZE; j++)
  {
    c[i][j] = a[i][j]+b[i][j];
  }
}</pre>
```

```
for(j = 0; j < ARRAY_SIZE; j++)
{
   for(i = 0; i < ARRAY_SIZE; i++)
   {
      c[i][j] = a[i][j]+b[i][j];
   }
}</pre>
```

 $O(n^2)$

Complexity

 $O(n^2)$

Same

Instruction Count?

Same

Same

Clock Rate

Same

Better

CPI

Worse

Announcement

- Reading quiz due next Tuesday before the lecture
 - We will drop two of your least performing reading quizzes
 - You have two shots, both unlimited time
- Assignment #1 released
 - We typically give you two weeks to work on an assignment
 - We never allow late submission and we will never have deadline extension
 - Due on 4/20
- Assignment #0 due on 4/13
- Check our website for slides, eLearn for quizzes/assignments, piazza for discussions
- Youtube channel for lecture recordings: https://www.youtube.com/c/ProfUsagi/playlists

Computer Science & Engineering

203

