Математическая экономика

- 1. Дмитририев Антон Леонидович
- 2. dmitr7171@mail.ru
- 3. Элементы математической экономики, Экланд (как сказка на ночь)
- 4. Аллен Р.Г Математическая экономия
- 5. Тарасевич Микроэкономика
- 6. Микроэкономика практикум іі (Дмитриев)

1 Предпочтения

Нам надо научиться математически моделировать индивида.

Определение 1 (Поведенческий Постулат). Лицо принимающее решение всегда выбирает наиболее предпочтительную для себя альтернативу

Модель выбора должна содержать:

- 1. описание системы предпочтений ЛПР
- 2. множество альтернатив, доступных ЛПР
- 1. В основе выбора наилучшей альтернативы лежит сравнение возможных варианто
- 2. сравнение любых альтернатив предполагает их прямое или косвенное сопоставле

3. ЛПР сравнивают любую пару возможных вариантов по приницу лучше хуже. С точке срение математики задается бинарное отношение.

Пусть множество непустое ЛПР альтернатив. Рассмотрим множество всех упорядочен пар $(x,y),(x,y)\sim (y,x)$ безразличие

Определение 2 (Бинарное отношение).

$$A \subseteq M \times M \tag{1}$$

Определение 3 (Функция). $\forall x \in M \exists ! y \in M$ для которого справедливо xAy Определение 4 (График).

$$\Gamma = \{(x, y) \mid x, y \in M, xAy\}$$
(2)

Определение 5 (Отношение предпочтения). *Потребитель сравнивает два набора благ*

- 1. строгое предпочтение (х лучше у)
- 2. слабое предпочтение x не хуже y
- 3. безразличие, *х и у одинаково хороши* Рассмотрим символьную запись
- 1. $x \succ y \ x$ строго лучше y
- 2. $x \succeq y x$ не хуже y
- 3. $x \sim y \, x, y$ одинакого предпочтительны

1.1 Гипотезы (аксиомы) о свойствах

- 1. Полнота для любых наборов выполняется $x\succeq y$ или $y\succeq x$
- 2. **Рефлексивность** для любого x , $x \succeq x$

3. **Транзитивность**, есть три набора благ x, y, z

$$x \succeq y \land y \succeq z \implies x \succeq z \tag{3}$$

1.2 Непрерывность отношения

Определение 6. Отношение на множестве X непрерывно если для любого вектора $y \in X$ множества

$$\{x \in X \mid x \succeq y\} \tag{4}$$

$$\{x \in X \mid x \le y\} \tag{5}$$

являются замкнутыми

Определение 7 (Рациональное отнощение потребления). Определенное на множестве наборов благ R^{n+} отношения предпочтения \succeq называется рациональным, если оно является:

- 1. полным
- 2. рефлексивным
- 3. транзитивным

1.3 Свойства рационального отношения предпочтения

В случае рациональность \succeq :

- 1. \succ антирефлексвно (не выполняется $x \succ x$), транзитивно
- 2. \succeq рефлексивно, транзитивно, симметрично
- 3. $x \succ y \succeq z \implies x \succ z$

1.4 Кривые безразличия

1. Зафиксируем некоторый набор благ x'. Множество всех набор одинаково предпочтительных с x', называется кривой безразличия, содержашей x

2. Посколько кривая не сегла кривая в геометрическом смысле, то правильно говорить о множестве безразличия

$$I(x') = \{ y \in R^{n+} \mid y \sim x' \}$$
 (6)

$$WP(x) (7)$$

множество наборов не хуже $x, I(x) \subseteq WP(X)$

Кривые безразличя не пересекаются, возникнет нарушение транситивности

1.5 Наклон кривых безразличия

- 1. Товар наличие которого в большем количестве всегда предпочтительнее меньшего называется **благом**
- 2. Если в наборе присутствуют только блага, то кривая безразличия имеет отрицател наклон, по отношению к осям соответсвующих благ

Определение 8 (Антиблаго). *Товар, наличие которого в наборе в меньшем количестве* всегда предпочтительнее большего называется антиблаго

Определение 9 (Совершенные заменители). *Если потребитель в любых условиях* считает два блага эквивалетными, то он совершенные заменители.

Если набор состояит из совершенных заменителей, то предпочтительность определяется общим количеством.

Определение 10. Если потрибитель во всех ситуациях исползует блага 1,2 в некоторой фиксированной пропорции, такие блага называются **совершенными дополняемыми**

$$U = \min(x_1, x_2) \tag{8}$$

Определение 11. Набор благ, строго предпочитаемый всем другим, называется точкой насыщения

Определение 12. Отношение предпочтения мы будем называть локально ненасышенн дл любого набора $x \subseteq R^{n+}$ и произвольного числа t>0 найдется $y \subseteq R^{n+}$ $y-x \preceq t$ и при этом $y \succeq x$

- 1. Бесконечно делимое благо
- 2. Дискретное благо

Определение 13. Рациональное отношение предпочтения, является регулярным если оно

- 1. монотонно, большее количество блага всегда предпочитается меньшему (наборы состоят только из благ)
- 2. выпуклое

Выпуклая комбинация двух различных, но при этом одинаково предпочтительных наборов предпочтительных или по крайней мере не хуже, чем каждый из сотавляющих наборов

1.6 Наклон кривых безразличия

Вычисленный в конкретной тчоке наклон, кривой безразличия характеризует в ней предельную норму замены благ MRS (margina rate of substitution)

MRS в точке x' харакетризует исчисленный в ней наклон кривойй безразличия, которому эта точка принадлежитю Геометрически MRS есть тангенс угла наклона касательной и кривой без различия в точке x'

MRS в точке x' есть $\lim_{\Delta x_1 \to 0} \frac{\Delta x_2}{\Delta x_1}$ или иначе $\frac{dx_2}{dx_1}$ в точке x'

Если набор составлен из двух благ, то соответсвующие кривые имеют отрицателы наклон MRS < 0

Если набор включает одно благо и одно антиблаго MRS>0

2 Полезность

Определение 14. Функция полезност U(X) описывает отношение предпочтения \succeq тогда и только когда для двух наборов благ x', x'' верны следущие соотношения

1.
$$x' \succ x'' \iff U(X') > U(x'')$$

2.
$$x' \prec x'' \iff U(x') < U(x'')$$

3.
$$x' \sim x'' \iff U(x') = U(x'')$$

Непрерывное, монотонное возрастающее рциональное отношение педпочтения может быть представлено непреывной функцией полезности

Определение 15 (непрерывность). *Малые изменения набора благ, ведут малые изменения предпочтительности набора благ*

Полезность является порядковым (задающим упорядочение) понятием

Пример 1. U(x) = 6, U(y) = 2 x строго предпочтительнее y, но при этом нельзя сказать, что x в 3 раза предпочтительнее y

Пример 2. Рассмотрим наборы благ, представленные векторами (4,1),(2,3),(2,2) Допустим

$$(2,3) \succ (4,1) \sim (2,2)$$
 (9)

Поставим в соотсветвие этим наборам произвольные числа, сохранябщие упорядчение векторов по предпочтительности

$$U(2,3) = 6 > U(4,1) = U(2,2) = 4$$
 (10)

Назовем эти числа уровнями полезности

Определение 16. Совокупность всех кривых безразличия называется картой кривых безразличия

Пример 3. Пусть $U(x_1, x_2) = x_1 x_2$ описывает отношение \succeq

$$V = U^2 = x_1^2 x_2^2 (11)$$

$$V(2,3) = 35 > V(4,1) = V(2,2) = 16$$
 (12)

$$(2,3) \succ (4,1) \sim (2,2)$$
 (13)

V сохраняет тоже самое упорядочение, что и U. Функция описывает одинаковое с U отношение предпочтения

$$W = 2U + 10 \tag{14}$$

$$W(2,3) = 22 > W(4,1) = W(2,2) = 18$$
 (15)

Если U(x) является функцией полезности описыващей отношение предпочтения \succeq на множестве неотриательных наборов блаш R^{n+} , f(U) есть строго возрастающая функция, одного аргумента, то зависимость V=f(U) так же представляет собой функцию полезности, описывающую исходное отношение предпочтения \succeq

Теорема 1 (о существовании непрерывной функции полезности). Пусть отношения предпочтения ЛПР \succ является полным, рефлексивным, непрерывным и строго монотонным. Тогда существует непрерывная функция полезности $U: \mathbb{R}^{n+} \to \mathbb{R}$ описывающая данное отнощение предпочтения

Рассмотрим $V=x_1+x_2$ ее кривые безразличия это прямые линии, состоящих из совершенных заменителей

Рассмотрим $W(x_1,x_2) = \min(x_1,x_2$ ее кривые безразличия блага совершенные дополнители

Рассмотрим $U(x_1,x_2)=f(x_1)+x_2$ квазилинейная функция, является линейной только по x_1

Определение 17 (Функция Кобба-Дугласа).

$$U(x_1, x_2) = x_1^a x_2^b, a > 0, b > 0 (16)$$

Определение 18 (Предельная Полезность). *Предельная полезность продукта* i

$$MU_i = \frac{\partial U}{\partial x_i} \tag{17}$$

Пример 4.

$$U(x_1, x_2) = x_1^{\frac{1}{2}} x_2^2 \tag{18}$$

$$MU_1 = \frac{1}{2}x_1^{-\frac{1}{2}}x_2^2 \tag{19}$$

$$MU_1 = 2x_1^{\frac{1}{2}}x_2 \tag{20}$$

Общее уравнение кривой безразличия функции полезности $U(x_1,x_2)$ иметт вид $U(x_1,x_2)=k, k>0, k={\rm const.}$ Полный дифференциал

$$\frac{\partial U}{\partial x_1} dx_1 + \frac{\partial U}{\partial x_2} dx_2 = 0 \tag{21}$$

$$\frac{\partial U}{\partial x_2} dx_2 = -\frac{\partial U}{\partial x_1} dx_1 \tag{22}$$

$$\frac{dx_2}{dx_1} = -\frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} \tag{23}$$

Это MRS

Пример 5 (квазилинейная функция).

$$U(x_1, x_2) = f(x_1) = x_2 (24)$$

$$\frac{\partial U}{\partial x_1} = f'(x_1) \tag{25}$$

$$\frac{\partial U}{\partial x_2} = 1 \tag{26}$$

$$MRS = -\frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} = -f'(x_1)$$
 (27)

MRS не зависит от x_2 , наклон кривой безразличия постоянен во всех точках с фиксированным x_1 (вдоль вертикальной линии, исходящей из точки $(x_1,0)$)

2.1 Монотонное преобразование функции полезности и MRS

Что происходит с предельной нормой замены при замене некоторой исходной функции ее монотонно возрастающим преобразованием.

1.
$$U(x_1, x_2) = x_1 x_2$$
, MRS $= -\frac{x_2}{x_1}$

2.
$$V = U^2$$

3.
$$V(x_1, x_2) = x_1^2 x_2^2$$

$$MRS = -\frac{x_2}{x_1}$$
(28)

В общем случае V = f(U), f строго возрастает

$$-\frac{\frac{\partial V}{\partial x_1}}{\frac{\partial V}{\partial x_2}} = -\frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} \tag{29}$$

MRS инвариантно относительного любого монотонно возрастающего преобразования функции полезности

3 Выбор потребителя

3.1 Рациональный выор пр наличии ограничений

1. Наиболее предпочтительнй набор благ из числа доступных называется индвидуал спросом при заданных ценах и доходе;

В случае $x_1^* > 0, x_2^* > 0$ то потребительский набор называется внутренним решением задачи максмизаци полезности при наличии бюджетного ограничения

Если на приобретение набора благ (x_1^*, x_2^*) требуется \$m, то в этом случае расходуется весь доход

Наклон касательной и наклон бюджетной линии совпадают

Набор (x_1^*, x_2^*) представляет собойй решение экстремальной задачи, описывающе потребительский выбор. Модель максимализации полезность

$$\begin{cases} u(x_1, \dots, x_n) \to \max \\ \sum_{i=1}^n p_i x_i \le m \end{cases}$$
 (30)

Если система представлена неоклассической потребность u(x) то решение с помощью метода лагранжа

u(x) описывает, рациональное, монотонное, выпуклое и непрерывное предпочтен

функция полезность дважды непреывна дифференцируема

$$u_{ij}(x) = \frac{\partial^2 u(x)}{\partial x_i x_j} i, j = 1 \dots n$$
(31)

$$MU_i(x) = \frac{\partial u(x)}{\partial x_i} \ge 0$$
 (32)

$$MU(x) = \left(\frac{\partial u(x)}{\partial x_i}\right)_{i=1\dots n} = 0 \tag{33}$$

Функция полезности является матрица Гессе

$$H^{u}(x) = \left(\frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}\right) \tag{34}$$

Отрицательно определена, в частности $\frac{\partial^2 u(x)}{\partial x_i^2} < 0$

В точке оптимального выбора потребител $x^* = (x_1^*, \dots x_n^*)$

$$MU_i(x^*) = \frac{\partial u(x^*)}{\partial x_i} = \lambda p_i \tag{35}$$

$$\frac{\partial u(x^*)}{\partial x_i} : \frac{\partial u(x^*)}{\partial x_j} = \frac{p_i}{p_j} \tag{36}$$

Предельная норма замены товара j товаром i

$$MRS_{ij}(x^*) = \frac{dx_i}{dx_j}(x^*) = -\frac{\partial u(x^*)}{\partial x_j} : \frac{\partial u(x^*)}{\partial x_i} = -\frac{p_j}{p_i}i, j = 1...n$$
 (37)

$$\frac{\partial u(x^*)}{\partial x_j} : p_j = \frac{\partial u(x^*)}{\partial x_i} : p_i \tag{38}$$

Для решения задачи ММП нужны необходимые условия Куна-Таккера

Если набор благ $x^*(p,M)$ являетя оптимальным, то существует множитель лагранжа $\lambda>0$, такой что

$$\frac{\partial u(x^*(p,M))}{\partial x_i} \le \lambda p_j \tag{39}$$

3.2 Кобб-Дуглас

$$U(x_1, x_2) = x_1^a x_2^b (40)$$

$$MU_1 = \frac{\partial U}{\partial x_1} = ax_1^{a-1}x_2^b \tag{41}$$

$$MU_2 = \frac{\partial U}{\partial x_2} = bx_1^a x_2^{b-1} \tag{42}$$

$$MRS = -\frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} = -1\frac{ax_2}{bx_2}$$
(43)

В точке x^* MRS $= -\frac{p_1}{p_2}$

$$-\frac{ax_2^*}{bx_1^*} = -\frac{p_1}{p_2} \tag{44}$$

$$x_2^* = \frac{bp_1}{ap_2} x_2^* \tag{45}$$

$$p_1 x_1^* + p_2 x_2^* = m (46)$$

$$p_1 x_1^* + p_2 \frac{bp_1}{ap_2} x^1 = m (47)$$

$$x_1^* = \frac{am}{(a+b)p_1} \tag{48}$$

$$x_2^* = \frac{bm}{(a+b)p_2} \tag{49}$$

$$(x_1^*, x_2^*) = \left(\frac{am}{(a+b)p_1}, \frac{bm}{(a+b)p_2}\right)$$
 (50)

4 Рациональный выбор при наличии ограничений

Если одно из благ нулевое, то эта ситуация называется угловым решением задачи максимализации полезности при наличии бюджетного ограничени

Если $U=x_1+x_2$, то наиболее предпочтительный набор

$$(x_1^*, x_2^*) = \left(\frac{m}{p_1}, 0\right), p_1 < p_2$$
 (51)

$$(x_1^*, x_2^*) = \left(0, \frac{m}{p_2}\right), p_1 > p_2$$
 (52)

При $p_1 = p_2$ все, расположенные на линии бюджетного ограничения наборы благ, оказыввются наиболее предпочтительными

Определение 19 (Функция Леонтьевского типа).

$$U(x_1, x_2) = \min(ax_1, x_2) \tag{53}$$

$$p_1 x_1^* + p_2 x_2^* = m (54)$$

$$x_2^* = ax_1^* (55)$$

$$x_1^* = \frac{m}{p_1 + ap_2}; x_2^* = \frac{am}{p_1 + ap_2}$$
(56)

Набор из 1 единицы блага 1 и a единиц блага 2 стоит p_1+ap_2 . Оптимальными являютя наборы $\frac{m}{p_1+ap_2}$

5 Индвидуальный спрос

Анализ сравнительной статики функций индвидуального спроса — исселдование характера измененния спроса потребителя на представленные в наборе блага $x_1^*(p_1,p_2,r_2,p_2,m)$ на вариацию в значения рыночных цен p_1,p_2 дохода потребителя m=y

5.1 кривая цена потребления для Кобба Дугласа

$$U(x_1, x_2) = x_1^{\alpha} x_2^{\beta} \tag{57}$$

$$x_1^*(p_1, p_2, m) = \frac{a}{a+b} \times \frac{m}{p_1}$$
(58)

$$x_2^*(p_1, p_2, m) = \frac{b}{a+b} \times \frac{m}{p_2}$$
 (59)

Кривая цена-потребления для блага 2 по p_1 есть прямая линия, для блага 1 она гипербола.

5.2 Взаимо дополняющие блага

Если функция такая, то

$$U = \max x_1, x_2 \tag{60}$$

$$x_1^*(p_1, p_2, m) = x_2^*(p_2, p_2, m) = \frac{m}{p_1 + p_2}$$
 (61)

При заданных p_2, m большие значения p_1 приводят к меньшим занчениям x_1^*, x_2^*

$$p_1 \to 0, x_1^* = x_2^* \to \frac{m}{p_2}$$
 (62)

$$p_1 \to \infty, x_1^* = x_2^* \to 0$$
 (63)

5.3 Изменение спроса на благо по собственной цене

Рассматривая востребованное количечество блага в качестве заданной величины и выясняя цену, по которой потребитель

$$x_1^* = \frac{am}{(a+b)p_1} \tag{64}$$

$$p_1 = \frac{am}{(a+b)x_1^*} \tag{65}$$

$$x_1^* = \frac{y}{p_1 + p_2} \implies \frac{y}{x_1^*} - p_2$$
 (66)

Определение 20 (Кривая Энгеля). График зависимости между величиной спроса потребителя на благо от величины его дохода называется кривой Энгеля

5.4 Изменение по доходу в случае предпочтений Кобба-Дугласа

$$y = \frac{(a+b)p_1}{a}x_1^* (67)$$

$$y = \frac{(a+b)p_2}{b}x_2^* (68)$$

Если функция полезность $U = \min x_1, x_2$

$$y = (p_1 + p_2)x_1^* (69)$$

$$y = (p_1 + p_2)x_2^* (70)$$

прямые тоже

$$U(x_1, x_2) = x_1 + x_2 (71)$$

$$x_1^*(p_1, p_2, y) = \begin{cases} 0, p_1 > p_2 \\ \frac{y}{p_1} p_1 < p_2 \end{cases}$$
 (72)

$$x_w^*(p_1, p_2, y) = \begin{cases} 0, p_1 < p_2 \\ \frac{y}{p_2} p_1 > p_2 \end{cases}$$
 (73)

$$x_1^* = \frac{y}{p_1}, x_2^* = 0, p_1 < p_2 \tag{74}$$

Прямая Энгеля представляется в форме линейной зависимости в случае, когда отношение предпочтение является гомотетичным

Определение 21 (Гомотичное отношение). $\forall k > 0$

$$(x_1, x_2) \to (y_1, y_2) \equiv (kx_1, kx_2) \to (ky_1, ky_2)$$
 (75)

Гомотетичность отношения предпочтения означает, что предельная норма замены благ MRS неизменная вдоль лучей, исходящих сз начала координат

5.5 Пример негомотичного отношения

$$U = f(x_1) + x_2 (76)$$

Определение 22. Функция однородна степени k если $f(\lambda x) = \lambda^k f(x)$

Определение 23 (Линейно однородная функция). $f(\lambda x) = \lambda f(x)$

Определение 24 (Однородность нулевой стеени). $f: \mathbb{R}^N \to \mathbb{R}, \forall \lambda > 0, f(\lambda x) = f(x)$

Определение 25 (Гомотетичная функция). $f: \mathbb{R}^N \to \mathbb{R}$ называется гомотетичной, если она представима в виде f(x) = g(h(x)), $g\mathbb{R} \to \mathbb{R}$ является строго возрастаяющей а $h: \mathbb{R}^N \to \mathbb{R}$ является линейно однородной

Обозначим через $x_i^*(p_i)$ функцию задающую кривую спроса, при фиксированных значениях всех цен, коме i-ой и дохода y

5.6 Эффект дохода

Если для блага (товара) i выполняется $\frac{\Delta x_i^*}{\Delta y}>0$ спрос растет при увелчении потребителя, то оно называется нормальным, кривая Энегеля имеет положительный наклон.

Если $\frac{\Delta x_i^*}{\Delta y}$ то он малоценный по доходу. Кривая энгеля имеет отрицательный наклон

Благо i называется обычным, если с увеличением его собственной цены p_i цена спрос убывает. Кривая спроса имеет отрицательный наклок

Если при увелечение цены, спрос растет, то такое благо называется Гиффиновым благом.

5.7 Кривые Торнкиста

1. Рассматривается кривая, которая описывает изменение спроса на потребительски товары в зависимости от дохода потребителя

- 2. Обозначм доход потребителя через y, величину предъявляемоего спроса через x
- 3. В соответсвии с конфигурацией кривой спроса выделяются три группы товаров на рынке.

5.7.1 Товары первой необходимости

$$x_1(y) - \frac{a_1 y}{x_1 + y} \tag{77}$$

Спрос

- 1. y доход потребителя
- 2. x_1 объем спроса на товары первой необходимости
- 3. a_1, c_1 параметры зависимости $a_1 > 0, c_1 > 0$

5.7.2 Товары длительного пользования

$$x_2(y) = \frac{a_2(y - M_2)}{c_2 + y} \tag{78}$$

- 1. y доход потребителя $y>M_2$
- 2. x_2 объем спроса на предметы длительного пользования
- 3. a_2, c_2, M_2 параметры зависимости $a_2 > a_1 > 0, c_2 > 0, M_2 > 0$

5.7.3 Предметы Роскоши

$$x_3(y) = \frac{ay(y - M_3)}{c_3 + y} \tag{79}$$

- 1. y доход потребителя $y > M_3$
- 2. x_3 объем спроса на предметы роскоши
- 3. a_3, c_3, M_3 параметры зависимости причем $a_3 > 0, c_3 > 0, M_3 > M_2 > 0$

6 Хикс

Эффект цены заключается в том, что потребитель товара b, сокращает его потребление. При этом на него воздействуют два эффект — эффект дохода реальный доход снижается. Эффект замены (один из товаров становится более дорогим по отношению к другому)

6.1 Логика Хикса

Давайте дадим потребителю денег, чтобы он сохранил потребление. Потребителю нужно скопенсировать подорожание D чтобы уровень полезности не изменился

6.2 Логика Слуцкого

По логике Слуцкого потребитель должен получить компенсации и потреблять тот же самый товарный набор H. Количественно эффекты по Слуцкому и Хиксу не совпадают

Содержательно они совпадают