1

Assignment-1

AI24BTECH11019-PRATHEEK

C.Multipe Choice Questions

1) Given positive integers $r > 1, n > 2$ and that coefficient of $(3r)$ th terms in the binomial expansion of $(1 + x)^{2n}$ are equal. Then $(1983 - 1Ma)^{2n}$		
a) $n = 2r$ b) $n = 2r + 1$	c) $n = 3r$ d) none of these	
2) The coefficient of x^4 in $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is		(1983 - 1Mark))
a) $\frac{405}{256}$ b) $\frac{504}{259}$	c) $\frac{450}{263}$ d) none of these	
3) The expression $\left(x + \left(x^3 - 1\right)^{\frac{1}{2}}\right)^5 + \left(x - \left(x^3 - 1\right)^{\frac{1}{2}}\right)^5$	$1)^{\frac{1}{2}}$) is a polynomial of degree	(1992 – 2 <i>Marks</i>)
a) 5b) 6	c) 7 d) 8	
4) If in the expansion of $(1+x)^m (1-x)^n$, the or m is	coefficients of x and x^2 are 3 and	-6 respectively, then (1999 – 2 <i>Marks</i>)
a) 6b) 9	c) 12 d) 24	
5) For $2 \le r \le n$, ${}^{n}C_{r} + 2{}^{n}C_{r-1} + {}^{n}C_{r-2} =$		(2000S)
a) $^{n+1}C_{r-1}$ b) $2^{n+1}C_{r+1}$	c) $2^{n+2}C_r$ d) $^{n+2}C_r$	
6) In the binomial expansion of $(a - b)^n$, $n \ge 5$, equals	t the sum of of the 5^{th} and 6^{th} ter	rms is zero. Then a/b (2001 S)
a) $(n-5)/6$ b) $(n-4)/5$	c) $5/(n-4)$ d) $6/(n-5)$	
7) The sum $\sum_{i=0}^{9} {}^{10}C_i{}^{20}C_{m-i}$, (where ${}^{p}C_q = 0$ if p	< q) is maximum when m is	(2002S)
a) 5b) 10	c) 15 d) 20	
8) Coefficient of t^{24} in $(1+t^{212})(1+t^{12})(1+t^{24})$	4) is	(2003S)

(1998 - 2Marks)

-		
	, ,	a) ${}^{12}C_6+3$ b) ${}^{12}C_6+1$
		9) If
	$^{n-1}C_r = (k^2 - 3)^n C_{r+1}$	<i>7)</i>
(2004S)	()	then $(k \in)$
	c) $\left[-\sqrt{3}, \sqrt{3}\right]$ d) $(\sqrt{3}, 2]$	a) $(-8, -2]$ b) $[2, \infty)$
(2005S)	e of ${}^{30}C_0{}^{30}C_{10}$ - ${}^{30}C_1{}^{30}C_{11}$ + ${}^{30}C_2{}^{30}C_{12}$ ${}^{30}C_{20}{}^{30}C_{30}$ is where ${}^{n}C_r = {}^{n}C_r$	10) The value of
	c) ${}^{60}C_{30}$ d) ${}^{31}C_{10}$	a) ${}^{30}C_{10}$ b) ${}^{30}C_{15}$
in the expansions of (2010)	$(1, 1, \dots, 10)$, let A_r , B_r and C_r denote, respectively the coefficients of x^r in $(1+x)^{20}$ and $(1+x)^{30}$. Then $\sum_{r=1}^{10} A_r (B_{10}B_r - C_{10}A_r)$ is equal to	11) For $r = 0, 1$ $(1+x)^{10}, (1-x)^{10}$
		a) $B_{10} - C_{10}$ b) $A_{10} \left(B_{10}^2 C_1 \right)$
(JEEAdv.2014)	ont of x^{11} in the expansion of $(1 + x^2)^4 (1 + x^3)^7 (1 + x^4)^{12}$ is	12) Coefficient of
	c) 1113 d) 1120	a) 1051b) 1106
	D.MCQs with One or More than One Correct	
$(1992 - 2Marks)^{n}$ (n + 1) C_{n}^{2} , where	ds for ${}^{n}C_{r}$, the the sum of the series $\frac{2(\frac{n}{2}!)(\frac{n}{2}!)}{n!} \left[C_{0}^{2} - 2C_{1}^{2} + 3C_{2}^{2} - \cdots + (-1)\right]$ ven positive integer is equal to	
		a) 0 b) $(-1)^{\frac{n}{2}}(n +$ c) $(-1)^{\frac{n}{2}}(n +$

c) $\frac{1}{2}na_n$ d) None of The above

2) If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, then $\sum_{r=0}^n \frac{r}{{}^nC_r}$ equals

a) $(n-1) a_n$

b) na_n