Circuitos Sequenciais

Luciano L. Caimi

lcaimi@uffs.edu.br

Circuitos Sequenciais

- Como discutido anteriormente os circuitos lógicos digitais são divididos em duas grandes áreas:
 - Circuitos Combinacionais: em que as saídas do circuito dependem exclusivamente do valor presente na entrada.
 Como nos multiplexadores, somadores, codificadores, etc...
 - Circuitos Sequenciais: onde as saídas do circuito dependem dos valores presentes nas entradas e do estado anterior em que o circuito se encontra. Como exemplo temos os registradores, os contadores, as máquinas de estado, dentre outros.

Circuitos Sequenciais

Circuitos Sequenciais

Elementos Básicos:

- Os circuitos sequenciais são formados a partir de duas estruturas básicas, os Latches e os Flip-Flops.
- Diferentes modelos de cada um destes elementos são utilizados para construir os diferentes circuitos sequênciais.
- Os Latches são elementos assíncronos, ou seja, operam sem restrições temporais.
- Os Flip-Flops são circuitos síncronos, isto é, operam com restrições de tempo.
- De fato, quanto ao funcionamento lógico, existem modelos de igual funcionamento tanto para os latches quanto para os flipflops, sendo as diferenças baseadas apenas na existência ou não de restrições temporais.
- Por definição tanto os latches como os flip-flops possuem duas saídas com valores opostos (Q = 1, Q' = 0 ou Q = 0 e Q' = 1)

Latch RS

Latch RS com portas NOR

R	S	Q,	Q _{t+1}	Comentário
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Latch RS

Latch RS com portas NOR

R	S	\mathbf{Q}_{t+1}	Comentário
0	0	Q,	mantém anterior
0	1	1	estado set
1	0	0	estado reset
1	1	-	estado inválido

R	S	\mathbf{Q}_{t+1}	Comentário
0	0	Q _t	mantém anterior
0	1	1	estado set
1	0	0	estado reset
1	1	-	estado inválido

Exemplo com Latch RS

Latch RS com Enable

Ε	R	S	\mathbf{Q}_{t+1}	Comentário
0	X	X	Q,	mantém anterior
1	0	0	Qt	mantém anterior
1	0	1	1	estado set
1	1	0	0	estado reset
1	1	1	-	estado inválido

Latch RS com Enable complementar

Latch RS com Enable Complementar

Ε	R	S	Q _{t+1}	Comentário
1	X	X	Q,	mantém anterior
0	0	0	Qt	mantém anterior
0	0	1	1	estado set
0	1	0	0	estado reset
0	1	1	-	estado inválido

Exemplo Latch RS com Enable Complementar

Ε	R	S	\mathbf{Q}_{t+1}	Comentário
1	X	X	Q,	mantém anterior
0	0	0	Qt	mantém anterior
0	0	1	1	estado set
0	1	0	0	estado reset
0	1	1	-	estado inválido

Flip-Flop RS

clk	R	S	\mathbf{Q}_{t+1}	Comentário
1	X	X	\mathbf{Q}_{t}	mantém anterior
0	X	X	Q _t	mantém anterior
\	X	X	Qt	mantém anterior
1	0	0	Qt	mantém anterior
↑	0	1	1	estado set
1	1	0	0	estado reset
1	1	1	-	estado inválido

Flip RS $((clk <> \uparrow)^{\vee})$ $(clk = \uparrow \land R = 1 \land S = 0)^{\vee}$ $(clk = \uparrow \land R = 0 \land S = 1)^{\vee}$ $(clk = \uparrow \land R = 0 \land S = 0))$ $(clk = \uparrow \land R = 0 \land S = 0))$

onteira Sul – Circuitos Digitais

Detecção de borda

Temporização em FF

- Os tempos de setup e hold são parâmetros que devem ser observados para que o flip-flop possa trabalhar de modo confiável.
- O tempo de setup, t_{su}, corresponde ao intervalo no qual as entradas devem permanecer estáveis antes da transição do clock.
- O tempo de hold, t_h, corresponde ao intervalo no qual as entradas devem permanecer estáveis depois da transição do clock.

Exemplo FlipFlop RS

Flip-Flop RS

clk	R	S	Q _{t+1}	Comentário
1	X	X	Qt	mantém anterior
0	X	X	Qt	mantém anterior
1	X	X	Q _t	mantém anterior
\	0	0	Q _t	mantém anterior
↓	0	1	1	estado set
\	1	0	0	estado reset
\	1	1	-	estado inválido

onteira Sul – Circuitos Digitais

Flip-Flop RS com entradas assíncronas de preset e clear

Nesta configuração duas entradas assíncronas permitem colocar o flip-flop com saída Q = 0 ou Q = 1 independente da transição de clock, permitindo, por exemplo a inicialização do FF.

Flip-Flop RS com entradas assíncronas de preset e clear complementares

Comportamento idêntico ao circuito anterior usando, desta vez, lógica complementar nas entradas preset e clear.

Existem vários outros latches e Flip-flop, são eles: JK, D e T

A seguir veremos cada um deles. É importante ter presente que a mudança acontece basicamente na tabela verdade, mas todas as possíveis implementações vistas anteriormente estão presentes, isto é, com enable, com enable complementar, gatilhado na transição de subida, na de descida, com set e clear, com set e clear complementar, ...

Latch JK

J	K	\mathbf{Q}_{t+1}	Comentário
0	0	Q,	mantém anterior
0	1	0	estado reset
1	0	1	estado set
1	1	Q _t	inverte estado

7	K	\mathbf{Q}_{t+1}	Comentário
0	0	Q _t	mantém anterior
0	1	0	estado reset
1	0	1	estado set
1	1	Q,	inverte estado

Exemplo com Latch JK

Exemplo Latch JK com Enable

Ε	J	K	\mathbf{Q}_{t+1}	Comentário
0	X	X	Q,	mantém anterior
1	0	0	Qt	mantém anterior
1	0	1	0	estado reset
1	1	0	1	estado set
1	1	1	Qt	inverte estado

Latch D

Latch T

Q_t mantém anterior

Q_t inverte estado

Mais sobre Temporização

Exercício

Habilitando o clock (o problema)

Habilitando o clock (a solução)

Detecção de seqüência de entrada

Transferência entre FF

Circuitos Sequencias

Registradores

Registrador de carga paralela

