Computer Animation & Physical Simulation

Lecture 6: Rigid Body Simulation I

XIAOPEI LIU

School of Information Science and Technology ShanghaiTech University

Rigid Body

What is a rigid body?

- The body never deforms (ideal)
- The distance between any two given points of a rigid body remains constant in time regardless of any external forces

Rigid Body Motion

- Motion due to external forces
 - Translation
 - Rotation

I. Particle System

Particle System

Description of particle state

Each particle is described by position and velocity

$$\mathbf{Y}(t) = \left(\begin{array}{c} x(t) \\ v(t) \end{array}\right)$$

For a particle system with n particles

$$\mathbf{Y}(t) = \begin{pmatrix} x_1(t) \\ v_1(t) \\ \vdots \\ x_n(t) \\ v_n(t) \end{pmatrix}$$

Particle Systems

- Dynamic system of particles
 - For each particle
 - A force **F**(t) acting on it
 - · A mass m associated with it
 - Dynamic equation by ordinary differential equations

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ v(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ F(t)/m \end{pmatrix}$$

N-Body Simulation

- A simulation of a dynamical system of particles
 - under the influence of physical forces

N-Body Simulation

Formulation

$$\ddot{\mathbf{r}}_i = -G \sum_{j=1; j \neq i}^{N} \frac{m_j(\mathbf{r}_i - \mathbf{r}_j)}{|\mathbf{r}_i - \mathbf{r}_j|^3}$$

N-Body Simulation

Fixed Radius Nearest Neighbor Search

Solving Ordinary Differential Equations

- Finite difference method for time evolution
 - Ordinary set of differential equation of the form:

$$y' = f(x, y)$$

- Seldom have closed-form solution
- Usually with initial condition $y(x_0) = y_0$
- Initial value problem $\mathbf{y}' = \mathbf{f}(x, \mathbf{y})$, $\mathbf{y}(x_0) = \mathbf{y}_0$

Solving Ordinary Differential Equations

Numerical solution

- Euler's method
 - We divide this interval by the mesh-points
 - Integrating the differential equation

$$x_n = x_0 + nh, n = 0, \dots, N$$

$$y' = f(x, y)$$

$$\downarrow$$

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(x, y(x)) dx$$

$$\downarrow$$

$$\int_{x_n}^{x_{n+1}} g(x) dx \approx hg(x_n)$$

$$y(x_{n+1}) \approx y(x_n) + hf(x_n, y(x_n))$$

Solving Ordinary Differential Equations

Runge–Kutta methods

- Achieve higher accuracy
- Re-evaluate $f(\cdot, \cdot)$ at points intermediate between $(x_n, y(x_n))$ and $(x_n+1, y(x_n+1))$ $y_{n+1} = y_n + h\Phi(x_n, y_n; h)$,

$$y_{n+1} = y_n + h\Phi(x_n, y_n; h) ,$$

$$\Phi(x, y; h) = \sum_{r=1}^{R} c_r k_r ,$$

$$k_1 = f(x, y) ,$$

$$k_r = f\left(x + ha_r, y + h\sum_{s=1}^{r-1} b_{rs} k_s\right) , \quad r = 2, \dots, R ,$$

$$a_r = \sum_{s=1}^{r-1} b_{rs} , \quad r = 2, \dots, R .$$

II. Unconstrained Rigid Body Dynamics

Position and Orientation

World space and body space

- World space: a global space which does not change
- Body space: a space relative to the body; the coordinate frame can be translated and rotated

Position and Orientation

- Connection between body space and world space
 - Body space origin is usually defined at the center of mass
 - Transformation between body space and world space:

$$p(t) = R(t)p_0 + x(t)$$

We call x(t) and R(t) the position and orientation of the body

Linear & Angular Velocity

- Definition of linear velocity
 - The linear velocity v(t) $v(t) = \dot{x}(t)$
- Definition of an angular velocity
 - An axis the body rotates about
 - The speed of the rotation

Calculation of Rotation

- Given r(t) in world coordinates
 - Decomposition of r(t)

$$r(t) = a + b$$

Instant velocity

$$v(t) = \omega(t) \times b$$

$$\dot{r}(t) = \omega(t) \times b = \omega(t) \times b + \omega(t) \times a = \omega(t) \times (b+a)$$

$$\dot{r}(t) = \omega(t) \times r(t)$$

Calculation of Rotation

Rotating a body coordinate frame

$$R(t) = \begin{pmatrix} r_{xx} & r_{yx} & r_{zx} \\ r_{xy} & r_{yy} & r_{zy} \\ r_{xz} & r_{yz} & r_{zz} \end{pmatrix} \qquad R(t) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix}$$

$$R(t) = [x' \ y' \ z']$$

Calculation of Rotation

 Apply the angular velocity to the body frame after rotation

$$\dot{r}(t) = \omega(t) \times r(t)$$

$$\dot{R} = \begin{pmatrix} \omega(t) \times \begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} & \omega(t) \times \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} & \omega(t) \times \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \end{pmatrix}$$

$$a^*b = \begin{pmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{pmatrix} \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - b_y a_z \\ -a_x b_z + b_x a_z \\ a_x b_y - b_x a_y \end{pmatrix} = a \times b$$

$$\dot{R}(t) = \omega(t)^* \left(\begin{pmatrix} r_{xx} \\ r_{xy} \\ r_{xz} \end{pmatrix} \quad \begin{pmatrix} r_{yx} \\ r_{yy} \\ r_{yz} \end{pmatrix} \quad \begin{pmatrix} r_{zx} \\ r_{zy} \\ r_{zz} \end{pmatrix} \right)$$

$$\dot{R}(t) = \omega(t)^* R(t)$$

Mass of a Body

Particle assumption

- Imagine that a rigid body is made up of a large number of small particles
- The location of the i-th particle in world space at time t:

$$r_i(t) = R(t)r_{0i} + x(t)$$

The total mass of the body, M, is the sum

$$M = \sum_{i=1}^{N} m_i$$

Velocity of a Particle

The velocity of the i-th particle

$$\dot{R}(t) = R(t)r_{0i} + x(t)$$

$$\dot{R}(t) = \omega(t)^*R(t)$$

$$v(t) = \dot{x}(t)$$

$$\dot{r}_i(t) = \omega(t)^*R(t)r_{0i} + v(t)$$

$$= \omega(t)^*(R(t)r_{0i} + x(t) - x(t)) + v(t)$$

$$= \omega(t)^*(r_i(t) - x(t)) + v(t)$$

$$\dot{r}_i(t) = \omega(t) \times (r_i(t) - x(t)) + v(t)$$

Velocity of a Particle

- Illustration of particle velocity
 - The velocity can be decomposed into a linear term and an angular

Center of Mass

- The center of mass of a body
 - In world space (definition)

$$\frac{\sum m_i r_i(t)}{M}$$

In body space

$$\frac{\sum m_i r_{0i}}{M} = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Center of Mass

- x(t) as being the location of the center of mass?
 - Yes

$$\frac{\sum m_i r_i(t)}{M} = \frac{\sum m_i (R(t) r_{0i} + x(t))}{M} = \frac{R(t) \sum m_i r_{0i} + \sum m_i x(t)}{M} = x(t) \frac{\sum m_i}{M} = x(t)$$

In addition

$$\sum m_i(r_i(t) - x(t)) = \sum m_i(R(t)r_{0i} + x(t) - x(t)) = R(t) \sum m_i r_{0i} = \mathbf{0}$$

Force and Torque

At each particle

- A force $F_i(t)$ may be exerted on it
- A torque may be generated due to F_i(t)

$$\tau_i(t) = (r_i(t) - x(t)) \times F_i(t)$$

For the whole body

Total force

$$F(t) = \sum F_i(t)$$

Total torque

$$\tau(t) = \sum \tau_i(t) = \sum (r_i(t) - x(t)) \times F_i(t)$$

Linear Momentum

- The linear momentum p of a particle
 - Defined with mass m and velocity v

$$p = mv$$

- The total linear momentum P(t)
 - The sum of the products of the mass and velocity of each particle

$$\dot{r}_i(t) = \omega(t) \times (r_i(t) - x(t)) + v(t)$$

$$P(t) = \sum_i m_i \dot{r}_i(t)$$

$$= \sum_i \left(m_i v(t) + m_i \omega(t) \times (r_i(t) - x(t)) \right) \qquad \sum_i m_i (r_i(t) - x(t)) = \mathbf{0}$$

$$= \sum_i m_i v(t) + \omega(t) \times \sum_i m_i (r_i(t) - x(t))$$

$$P(t) = \sum_i m_i v(t) = \left(\sum_i m_i \right) v(t) = M v(t)$$

Linear Momentum

- Linear momentum is irrespective of rotation of the body
 - Linear acceleration

$$\dot{v}(t) = \frac{\dot{P}(t)}{M}$$

Relation to total force

$$\dot{P}(t) = F(t)$$
 $\dot{v}(t) = \frac{F(t)}{M}$

Angular Momentum

- Why consider angular momentum?
 - Conserved unless there is external torque
 - Let you to write simpler equations
- Analogous to linear momentum
 - Linear momentum P(t) = Mv(t) Inertia tensor: 3x3 matrix
 - Angular momentum $L(t) = I(t)\omega(t)$
 - · Relationship between angular momentum and the total torque

$$\dot{L}(t) = \tau(t)$$
 Analogous to linear momentum relation: $\dot{P}(t) = F(t)$

- Intrinsic property of a body
 - Determine the torque needed for a desired angular acceleration
 - Depend on the body's mass distribution and the axis chosen
- Definition by discrete particles
 - Let r_i be the displacement of the i-th particle from x(t)

$$I(t) = \sum \begin{pmatrix} m_i (r'_{iy}^2 + r'_{iz}^2) & -m_i r'_{ix} r'_{iy} & -m_i r'_{ix} r'_{iz} \\ -m_i r'_{iy} r'_{ix} & m_i (r'_{ix}^2 + r'_{iz}^2) & -m_i r'_{iy} r'_{iz} \\ -m_i r'_{iz} r'_{ix} & -m_i r'_{iz} r'_{iy} & m_i (r'_{ix}^2 + r'_{iy}^2) \end{pmatrix} \qquad r'_i = r_i(t) - x(t)$$

• Continuous distribution: sum to integral, mass to density

Shall we re-compute when rotated?

Transformation of I(t)

$$I(t) = \sum \begin{pmatrix} m_{i}(r'_{iy}^{2} + r'_{iz}^{2}) & -m_{i}r'_{ix}r'_{iy} & -m_{i}r'_{ix}r'_{iz} \\ -m_{i}r'_{iy}r'_{ix} & m_{i}(r'_{ix}^{2} + r'_{iz}^{2}) & -m_{i}r'_{iy}r'_{iz} \\ -m_{i}r'_{iz}r'_{ix} & -m_{i}r'_{iz}r'_{iy} & m_{i}(r'_{ix}^{2} + r'_{iy}^{2}) \end{pmatrix} + t'_{i}^{T}r'_{i} = r'_{ix}^{2} + r'_{iy}^{2} + r'_{iz}^{2}$$

$$I(t) = \sum m_{i}r'_{i}^{T}r'_{i} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} m_{i}r'_{ix} & m_{i}r'_{ix}r'_{iy} & m_{i}r'_{ix}r'_{iz} \\ m_{i}r'_{iy}r'_{ix} & m_{i}r'_{iy}r'_{iz} \\ m_{i}r'_{iz}r'_{ix} & m_{i}r'_{iz}r'_{iy} & m_{i}r'_{iz} \end{pmatrix} + r'_{i}r'_{i}^{T} = \begin{pmatrix} r'_{ix} & r'_{ix}r'_{iy} & r'_{ix}r'_{iz} \\ r'_{iy}r'_{ix} & r'_{iz}r'_{iy} & r'_{ix}r'_{iz} \\ r'_{iz}r'_{ix} & r'_{iz}r'_{iy} & r'_{iz} \end{pmatrix}$$

$$I(t) = \sum m_{i}((r'_{i}^{T}r'_{i})\mathbf{1} - r'_{i}r'_{i}^{T})$$

Transformation of *I(t)*

$$I(t) = \sum_{i} m_{i}((r_{i}^{T} r_{i}^{'})\mathbf{1} - r_{i}^{'} r_{i}^{T}) + r_{i}(t) = R(t)r_{0i} + x(t) \quad r_{i}^{'} = R(t)r_{0i}$$

$$I(t) = \sum_{i} m_{i}((r_{i}^{T} r_{i}^{'})\mathbf{1} - r_{i}^{'} r_{i}^{T}) + R(t)R(t)^{T} = \mathbf{1}$$

$$I(t) = \sum_{i} m_{i}((r_{i}^{T} r_{i}^{'})\mathbf{1} - r_{i}^{'} r_{i}^{T})$$

$$= \sum_{i} m_{i}((R(t)r_{0i})^{T}(R(t)r_{0i})\mathbf{1} - (R(t)r_{0i})(R(t)r_{0i})^{T})$$

$$= \sum_{i} m_{i}(r_{0i}^{T} R(t)^{T} R(t)r_{0i}\mathbf{1} - R(t)r_{0i}r_{0i}^{T} R(t)^{T})$$

$$= \sum_{i} m_{i}((r_{0i}^{T} r_{0i})\mathbf{1} - R(t)r_{0i}r_{0i}^{T} R(t)^{T})$$

$$= \sum_{i} m_{i}(R(t)(r_{0i}^{T} r_{0i})R(t)^{T}\mathbf{1} - R(t)r_{0i}r_{0i}^{T} R(t)^{T})$$

$$= R(t) \left[\sum_{i} m_{i}((r_{0i}^{T} r_{0i})\mathbf{1} - r_{0i}r_{0i}^{T}) \right] R(t)^{T} \quad \text{Constant, can be pre-computed!}$$

- General computation
 - Define body intrinsic inertia tensor

$$I(t) = R(t) \left(\sum_{i=1}^{T} m_i ((r_{0i}^T r_{0i}) \mathbf{1} - r_{0i} r_{0i}^T) \right) R(t)^T$$

$$I_{body} = \sum_{i=1}^{T} m_i ((r_{0i}^T r_{0i}) \mathbf{1} - r_{0i} r_{0i}^T)$$

$$I(t) = R(t) I_{body} R(t)^T$$

- General computation
 - Inverse inertia tensor

$$R(t)^{T} = R(t)^{-1} \qquad \left(R(t)^{T}\right)^{T} = R(t)$$

$$I^{-1}(t) = (R(t)I_{body}R(t)^{T})^{-1}$$

$$= (R(t)^{T})^{-1}I_{body}^{-1}R(t)^{-1}$$

$$= R(t)I_{body}^{-1}R(t)^{T}$$

Rigid Body Equations of Motion

State variable

- Position and orientation
- Linear and angular momentum

$$\mathbf{Y}(t) = \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix}$$

Auxiliary quantities

$$v(t) = \frac{P(t)}{M}$$
, $I(t) = R(t)I_{body}R(t)^T$ and $\omega(t) = I(t)^{-1}L(t)$

Rigid Body Equations of Motion

Time rate change of the state variable

$$\frac{d}{dt}\mathbf{Y}(t) = \frac{d}{dt} \begin{pmatrix} x(t) \\ R(t) \\ P(t) \\ L(t) \end{pmatrix} = \begin{pmatrix} v(t) \\ \omega(t)^*R(t) \\ F(t) \\ \tau(t) \end{pmatrix}$$

Computing order

$$F(t) \longrightarrow P(t)$$

$$\tau(t) \longrightarrow L(t)$$

$$P(t) \stackrel{P(t) = Mv(t)}{\longrightarrow} v(t) \longrightarrow x(t)$$

$$L(t) \stackrel{L(t) = I(t)\omega(t)}{\longrightarrow} \omega(t) \longrightarrow R(t)$$

Quaternions vs. Rotation Matrices

Using rotation matrix is problematic

- Why?
 - Numerical error will accumulate on rotation matrix
 - Artificial skewing effects
 - Can be alleviated by representing rotations with unit quaternions

Quaternion

• The quaternion $s + v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k}$

• Written as [s, v]

Quaternions vs. Rotation Matrices

Quaternion multiplication

$$[s_1, v_1][s_2, v_2] = [s_1s_2 - v_1 \cdot v_2, s_1v_2 + s_2v_1 + v_1 \times v_2]$$

From quaternion to rotation matrix

$$\begin{pmatrix} 1 - 2v_y^2 - 2v_z^2 & 2v_x v_y - 2sv_z & 2v_x v_z + 2sv_y \\ 2v_x v_y + 2sv_z & 1 - 2v_x^2 - 2v_z^2 & 2v_y v_z - 2sv_x \\ 2v_x v_z - 2sv_y & 2v_y v_z + 2sv_x & 1 - 2v_x^2 - 2v_y^2 \end{pmatrix}$$

Quaternions vs. Rotation Matrices

Rotation of a rigid body

• Suppose the body to rotate with constant $\omega(t)$ for a period of time Δt :

$$\left[\cos\frac{|\omega(t)|\Delta t}{2}, \sin\frac{|\omega(t)|\Delta t}{2}\frac{\omega(t)}{|\omega(t)|}\right]$$

- Derivation for $\dot{q}(t)$
 - Approximation at $t + t_0$:

$$q(t_0 + \Delta t) = \left[\cos \frac{|\omega(t_0)|\Delta t}{2}, \sin \frac{|\omega(t_0)|\Delta t}{2} \frac{\omega(t_0)}{|\omega(t_0)|}\right] q(t_0)$$

Quaternions vs. Rotation Matrices

Rotation of a rigid body

- Derivation for $\dot{q}(t)$
 - Substitute $t = t_0 + \Delta t$
 - We have

$$q(t) = \left[\cos\frac{|\omega(t_0)|(t-t_0)}{2}, \sin\frac{|\omega(t_0)|(t-t_0)}{2} \frac{\omega(t_0)}{|\omega(t_0)|}\right] q(t_0)$$

• Let us differentiate $\dot{q}(t)$ $\dot{q}(t) = \frac{d}{dt} \left(\left[\cos \frac{|\omega(t_0)|(t-t_0)}{2}, \sin \frac{|\omega(t_0)|(t-t_0)}{2} \frac{\omega(t_0)}{|\omega(t_0)|} \right] q(t_0) \right)$ $= \frac{d}{dt} \left(\left[\cos \frac{|\omega(t_0)|(t-t_0)}{2}, \sin \frac{|\omega(t_0)|(t-t_0)}{2} \frac{\omega(t_0)}{|\omega(t_0)|} \right] \right) q(t_0)$ $= \left[0, \frac{|\omega(t_0)|}{2} \frac{\omega(t_0)}{|\omega(t_0)|} \right] q(t_0)$ $= \left[0, \frac{1}{2} \omega(t_0) \right] q(t_0) = \frac{1}{2} \left[0, \omega(t_0) \right] q(t_0). \qquad \dot{q}(t) = \frac{1}{2} \omega(t) q(t)$

III. Constrained Rigid Body Dynamics

Problems of Non-penetration Constraints

Two types of contacts

- Colliding contact
 - Two bodies are in contact at some point p
 - They have a velocity towards each other
 - Y(t) has discontinuity
 - E.g., instantaneous change of velocity
 - How to solve?
 - Stop ODE solver at the contact
 - Compute how Y(t) changes
 - Restart ODF solver

Problems of Nonpenetration Constraints

Two types of contacts

- Resting contact
 - · Whenever bodies are resting on one another at some point p
 - We compute a force that prevents the particle from accelerating
 - Contact force
 - A force that acts at the point of contact between two objects

Two problems to solve

- Compute velocity changes for colliding contact
- Compute the contact forces that prevent inter-penetration

Bisection

- When inter-penetration is detected
 - We inform the ODE solver that we wish to restart back at time t
 - Simulate forward to time t_0 + $\Delta t/2$, and repeat until some tolerance is met

- Description of a colliding contact
 - Illustration

• Formula

$$\dot{p}_a(t_0) = v_a(t_0) + \omega_a(t_0) \times (p_a(t_0) - x_a(t_0))$$

$$\dot{p}_b(t_0) = v_b(t_0) + \omega_b(t_0) \times (p_b(t_0) - x_b(t_0))$$

Examine the relative velocity

$$v_{rel} = \hat{n}(t_0) \cdot (\dot{p}_a(t_0) - \dot{p}_b(t_0))$$

- v_{rel} >0: two bodies leaving apart, not interested
- v_{rel} =0: resting contact
- v_{rel} <0: a colliding contact
 - How do we compute the change in velocity?

- Definition of an impulse
 - Force exerted over a time period $F\Delta t = J$
 - Apply an impulse J to a rigid body with mass M $\Delta P = J$ $\Delta v = \frac{J}{M}$
 - Impulsive torque $\tau_{impulse} = (p x(t)) \times J$
 - Change in angular momentum $\Delta L = \tau_{impulse}$
 - Change in angular velocity $\Gamma^{1}(t_0)\tau_{impulse}$

- How to compute the impulse?
 - Force F is unknown
 - For frictionless bodies, the direction of the impulse will be in the normal direction $J = j\hat{n}(t_0)$
 - How to compute *j*?
 - We compute *j* by using an empirical law for collisions
 - Some definitions

$$\dot{p}_a^-(t_0)$$
 velocity of the contact vertex of A prior to the impulse being applied

 $\dot{p}_a^+(t_0)$ velocity after we apply the impulse J

Definition of relative velocities

Initial relative velocity in the normal direction

$$v_{rel}^- = \hat{n}(t_0) \cdot (\dot{p}_a^-(t_0) - \dot{p}_b^-(t_0))$$

After the application of the impulse

$$v_{rel}^+ = \hat{n}(t_0) \cdot (\dot{p}_a^+(t_0) - \dot{p}_b^+(t_0))$$

Empirical law for frictionless collisions

$$v_{rel}^{+} = -\epsilon v_{rel}^{-}$$
 $0 \le \epsilon \le 1$

Physical meaning for coefficient of restitution

- Perfect bouncing
 - No kinetic energy is lost

$$\epsilon = 1$$
 $v_{rel}^+ = -v_{rel}^-$

- Perfect dissipative
 - A maximum of kinetic energy is lost $\epsilon = 0$
 - After this collision, the two bodies will be in rest contact $v_{rel}^+=0$

- Physical meaning for coefficient of restitution
 - Illustration

Before impulse

After imperfect bouncy impulse

After perfect bouncy impulse

After perfect dissipative impulse

$$\dot{p}_{a}^{+}(t_{0}) = v_{a}^{+}(t_{0}) + \omega_{a}^{+}(t_{0}) \times r_{a} \qquad v_{a}^{+}(t_{0}) = v_{a}^{-}(t_{0}) + \frac{j\hat{n}(t_{0})}{M_{a}} \qquad \omega_{a}^{+}(t_{0}) = \omega_{a}^{-}(t_{0}) + I_{a}^{-1}(t_{0}) \left(r_{a} \times j\hat{n}(t_{0})\right)$$

$$\dot{p}_{a}^{+}(t_{0}) = \left(v_{a}^{-}(t_{0}) + \frac{j\hat{n}(t_{0})}{M_{a}}\right) + \left(\omega_{a}^{-}(t_{0}) + I_{a}^{-1}(t_{0}) \left(r_{a} \times j\hat{n}(t_{0})\right)\right) \times r_{a}$$

$$= v_{a}^{-}(t_{0}) + \omega_{a}^{-}(t_{0}) \times r_{a} + \left(\frac{j\hat{n}(t_{0})}{M_{a}}\right) + \left(I_{a}^{-1}(t_{0}) \left(r_{a} \times j\hat{n}(t_{0})\right)\right) \times r_{a}$$

$$= \dot{p}_{a}^{-} + j\left(\frac{\hat{n}(t_{0})}{M_{a}} + I_{a}^{-1}(t_{0}) \left(r_{a} \times \hat{n}(t_{0})\right)\right) \times r_{a}$$

$$\dot{p}_{b}^{+}(t_{0}) = \dot{p}_{b}^{-} - j\left(\frac{\hat{n}(t_{0})}{M_{b}} + I_{b}^{-1}(t_{0}) \left(r_{b} \times \hat{n}(t_{0})\right)\right) \times r_{b}$$

This yields

$$\dot{p}_{a}^{+}(t_{0}) - \dot{p}_{b}^{+} = (\dot{p}_{a}^{-}(t_{0}) - \dot{p}_{b}^{-}) + j \left(\frac{\hat{n}(t_{0})}{M_{a}} + \frac{\hat{n}(t_{0})}{M_{b}} + (I_{a}^{-1}(t_{0}) \left(r_{a} \times \hat{n}(t_{0})\right)\right) \times r_{a} + \left(I_{b}^{-1}(t_{0}) \left(r_{b} \times \hat{n}(t_{0})\right)\right) \times r_{b}\right)$$

$$v_{rel}^{+} = \hat{n}(t_{0}) \cdot (\dot{p}_{a}^{+}(t_{0}) - \dot{p}_{b}^{+})$$

$$= \hat{n}(t_{0}) \cdot (\dot{p}_{a}^{-}(t_{0}) - \dot{p}_{b}^{-}) + j \left(\frac{1}{M_{a}} + \frac{1}{M_{b}} + \hat{n}(t_{0}) \cdot \left(I_{a}^{-1}(t_{0}) \left(r_{a} \times \hat{n}(t_{0})\right)\right) \times r_{a} + \hat{n}(t_{0}) \cdot \left(I_{b}^{-1}(t_{0}) \left(r_{b} \times \hat{n}(t_{0})\right)\right) \times r_{b}\right)$$

$$= v_{rel}^{-} + j \left(\frac{1}{M_{a}} + \frac{1}{M_{b}} + \hat{n}(t_{0}) \cdot \left(I_{a}^{-1}(t_{0}) \left(r_{a} \times \hat{n}(t_{0})\right)\right) \times r_{a} + \hat{n}(t_{0}) \cdot \left(I_{b}^{-1}(t_{0}) \left(r_{b} \times \hat{n}(t_{0})\right)\right) \times r_{b}\right)$$

This yields

Empirical law for frictionless collision

$$v_{rel}^{+} = -\epsilon v_{rel}^{-} \qquad 0 \le \epsilon \le 1$$

$$v_{rel}^{-} + j \left(\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0) \right) \right) \times r_a + \right.$$

$$\hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0) \right) \right) \times r_b \right) = -\epsilon v_{rel}^{-}$$

$$j = \frac{-(1 + \epsilon) v_{rel}^{-}}{\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0) \right) \right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0) \right) \right) \times r_b}$$

Handling fixed bodies

- Some bodies cannot be moved
 - Floors, walls, etc.
- Look at the formulation again

$$j = \frac{-(1+\epsilon)v_{rel}^{-}}{\frac{1}{M_a} + \frac{1}{M_b} + \hat{n}(t_0) \cdot \left(I_a^{-1}(t_0) \left(r_a \times \hat{n}(t_0)\right)\right) \times r_a + \hat{n}(t_0) \cdot \left(I_b^{-1}(t_0) \left(r_b \times \hat{n}(t_0)\right)\right) \times r_b}$$

- What we need
 - · Inverse of mass and inertia tensor
- Tricks
 - Set inverse mass to be zero
 - Set inverse inertia tensor to be zero matrix

Condition of resting contact

- Relative velocity v_{rel} is zero (within numerical threshold)
- Contact force
 - At each contact point, there is a contact force $f_i \hat{n}_i(t_0)$ where f_i is an unknown scalar
 - Our goal
 - Determine each f_i at the same time
 - To maintain contact between bodies

- Condition of resting contact
 - Computing contact forces

- Contact force subject to three conditions
 - 1. Must prevent inter-penetration
 - 2. Must be repulsive
 - Never act like a "glue" and hold bodies together
 - 3. Be zero if the bodies begin to separate

- Preventing inter-penetration
 - Construction of separation distance

- Preventing inter-penetration
 - Consider $d_i(t_0) = 0$
 - We have to keep the two bodies from accelerating towards each other
 - Taking the second derivative of $d_i(t_0)$

$$\ddot{d}(t_0) = \hat{n}_i(t_0) \cdot (\ddot{p}_a(t_0) - \ddot{p}_b(t_0)) + 2\dot{\hat{n}}_i(t_0) \cdot (\dot{p}_a(t_0) - \dot{p}_b(t_0))$$

- $\ddot{d}_i(t_0) > 0$: contact will break immediately
- $\ddot{d}_i(t_0) = 0$: contact remains
- $\ddot{d_i}(t_0) < 0$: must be avoided

- Expression for three conditions
 - Non-interpenetration

$$\ddot{d}_i(t_0) \ge 0$$

Repulsiveness

$$f_i \ge 0$$

Contact breaking

$$f_i \ddot{\mathcal{d}}_i(t_0) = 0$$

Computing contact force

- Force contribution
 - Consider the expression

$$\ddot{d}(t_0) = \hat{n}_i(t_0) \cdot (\ddot{p}_a(t_0) - \ddot{p}_b(t_0)) + 2\dot{\hat{n}}_i(t_0) \cdot (\dot{p}_a(t_0) - \dot{p}_b(t_0))$$
$$\ddot{p}_a(t) = \dot{v}_a(t) + \dot{\omega}_a(t) \times r_a(t) + \omega_a(t) \times (\omega_a(t) \times r_a(t))$$

- Forces contribute to
 - Linear acceleration $\dot{v}_a(t)$ $\frac{f_j \hat{n}_j(t_0)}{m_a} = f_j \frac{\hat{n}_j(t_0)}{m_a}$
 - Angular acceleration $\dot{\omega}_a(t) = I_a^{-1}(t)\tau_a(t) + I_a^{-1}(t)(L_a(t) \times \omega_a(t))$ $(p_j x_a(t_0)) \times f_j \hat{n}_j(t_0)$

Computing contact force

Express separating distance acceleration in terms of all associated forces

$$\ddot{d}_i(t_0) = a_{i1}f_1 + a_{i2}f_2 + \dots + a_{in}f_n + b_i$$

Write for all contact points

$$\begin{pmatrix} \ddot{d}_1(t_0) \\ \vdots \\ \ddot{d}_n(t_0) \end{pmatrix} = \mathbf{A} \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} + \begin{pmatrix} b_i \\ \vdots \\ b_n \end{pmatrix}$$

- Computing contact force
 - Contribution of a_{ii}
 - Consider linear and angular acceleration

$$\frac{\hat{n}_{j}(t_{0})}{m_{a}} + \left(I_{a}^{-1}(t_{0})\left((p_{j} - x_{a}(t_{0})) \times \hat{n}_{j}(t_{0})\right)\right) \times r_{a}$$

- Contribution of b_i
 - · Collect the force independent part

$$\frac{F_a(t_0)}{m_a} + \left(I_a^{-1}(t_0)\tau_a(t_0)\right) \times r_a + \omega_a(t_0) \times (\omega_a(t_0) \times r_a) + \left(I_a^{-1}(t_0)(\mathcal{L}_a(t_0) \times \omega_a(t_0))\right) \times r_a$$

Friction forces

- Dissipative
- In contact interfaces to halt sliding at sliding contacts
- Prevent sliding at sticking and rolling contacts

Dry (static) friction

- Assume to act at contacts between body surfaces
- Allow bodies to stick together
- Require a non-zero tangential force to initiate sliding

Isotropic Coulomb friction model

- Assumption
 - · Contact occurs at a single point with a uniquely defined tangent plane
 - A friction cone

normal force is unilateral

$$\mathbf{f}_n \geq 0$$

Tangential force is determined by normal force

- Isotropic Coulomb friction model
 - The relative velocity between the touching points

The contact is sliding

$$v_n = 0$$

The contact is separating

$$v_n > 0$$

Isotropic Coulomb friction model

- Two conditions
 - The net contact force must lie in a quadratic friction cone
 - When the bodies are slipping, the friction force must be the one on the boundary of the cone
 - · Directly oppose the sliding motion
 - The cone is defined as

$$\mathcal{F}(\mathbf{f}_n, \mu) = \{ \mu^2 \mathbf{f}_n^2 - \mathbf{f}_t^2 - \mathbf{f}_o^2 \ge 0, \mathbf{f}_n \ge 0 \}$$

Sliding friction force

• Maximize friction dissipation $\mathbf{f}_t = -\mu \mathbf{f}_n \frac{\mathbf{v}_t}{\beta}, \quad \mathbf{f}_o = -\mu \mathbf{f}_n \frac{\mathbf{v}_o}{\beta}, \quad \beta = \sqrt{\mathbf{v}_t^2 + \mathbf{v}_o^2}$

IV. Collision Detection

Collision Detection

Problem formulation

 The computational problem of detecting the intersection of two or more objects

Collision Detection

- How to detect inter-penetration?
 - Convex polyhedron
 - Two polyhedra do no inter-penetrate if and only if a separating plane between them exists
 - Finding the separating plane

Collision Detection

- How to detect inter-penetration?
 - Convex polyhedra
 - Progress with defining face

Bounding volumes

Why bounding volume

- Directly collision testing of two objects is often very expensive
- Especially when objects consist of hundreds or even thousands of polygons

What is a bounding volume

 A bounding volume (BV) is a single simple volume encapsulating one or more objects of more complex nature

Bounding volumes

Example of Bounding Volume

Bounding Volumes

Desirable BV characteristics

- Not all geometric objects serve as effective bounding volumes
- Desirable properties
 - Inexpensive intersection tests
 - Tight fitting
 - Inexpensive to compute
 - Easy to rotate and transform
 - Use little memory

Bounding volumes

- Axis-aligned bounding boxes (AABBs)
 - AABBs in terms of different coordinate system

(a) AABBs in world space (b) AABBs in the local space of A (c) AABBs in the local space of B

Basic Primitive Tests

Testing primitives

- Testing triangle against triangle
 - Detecting the intersection of two triangles ABC and DEF
 - When two triangles intersect
 - Two edges of one triangle pierce the interior of the other
 - One edge from each triangle pierces the interior of the other

Uniform grids

• In-depth tests are only performed against those found sharing cells

- Bounding volume hierarchy (BVH)
 - Time complexity can be reduced to logarithmic in the number of tests performed

- Octree (quadtree for 2D)
 - An axis-aligned hierarchical partitioning of a volume of 3D world space

K-d trees

- A generalization of octrees and quadtrees
 - The k-d tree divides space along one dimension at a time

What you will get finally?

An example of a system of rigid body motion

Next Lecture: Rigid Body Simulation II