M1C03 Final Exam MC Practice

December, 2021

Some notes:

- These questions are select MULTIPLE choices. On the exam all the MC questions will be select ONE.
- Focus on understanding and using the definitions and carefully applying logic to those definitions when needed.
- Take your time and do scratchwork if necessary. Some of these questions are more complex than others.
- Try the problems by yourself first. If you are stuck on a problem, ask about it on Piazza.
- If you want extra practice writing proofs, try carefully writing a proof for some of the multiple choice items that are true.

1. Geometry

Let ABC be a triangle.

- $\bullet \ \ \text{If} \ \angle ABC = \pi/2 \text{, then} \ (AB)^2 + (AC)^2 = (BC)^2.$

2. Geometry

Let AB and CD and EF be lines such that AB intersects CD at M and CD intersects EF at N.

- If $\angle AMN = \angle DNM$, then AB is parallel to EF.
- ② If $\angle AMN + \angle DNM = \pi$, then AB is parallel to EF.
- If AB intersects EF, then $\angle AMN + \angle DNM \neq \pi/2$.
- If $\angle BMD = \angle FND$, then AB is parallel to EF.
- **1** If $\angle AMD > \angle FNC$, then AB is parallel to EF.

3. Logic

Let P and Q be statements.

- $\bullet \ P \wedge \neg Q \text{ is logically equivalent to } \neg (\neg P \vee Q).$

- $\bullet \ \ \, \text{If} \,\, P \implies \neg Q \,\, \text{and} \,\, Q \,\, \text{is true, then} \,\, P \,\, \text{is false}.$
- $\bullet \ \ \, \text{If } P \text{ is false, then } P \implies Q \text{ is true.}$

4. Logic

- $(\exists x \in \mathbb{R}) (\forall y \in \mathbb{Z}) (x \le y).$
- $(\exists y \in \mathbb{Z}) (\forall x \in \mathbb{R}) (x \le y).$
- $(\forall y \in \mathbb{Z})(\exists x \in \mathbb{R})(x \le y).$
- $(\forall x \in \mathbb{R})(\exists p, q \in \mathbb{Z}, q \neq 0)(x = \frac{p}{q})$

- $\textbf{ 0} \ \, \text{If } p \text{ prime and } p=ab, \ ab\in\mathbb{Z} \text{, then } a=1 \text{ or } b=1.$

5. Integers and number theory

Let m, n, p, q be integers.

- ② If m^2 is even, then m is even.
- If p|mn , then p|m or p|n.

- Every integer is even or odd.
- No integer is both even and odd.
- **③** If n is not divisible by 3, then n = 3k + 1 for some $k \in \mathbb{Z}$.

6. Real numbers

Let $A \subset \mathbb{R}$.

Select ALL statements that are TRUE.

- If A is bounded above, then A has a supremum.
- $oldsymbol{0}$ If A has a supremum, then it is unique.
- lacktriangledown If A has a maximum element, then A has a supremum.
- lacktriangledown If A has a supremum, then A has a maximum element.
- lacktriangledown If A has a supremum, then A is bounded.
- **1** If $1000 \notin A$, then A is bounded above.
- If $\forall a \in A$, $5 \le a$, then A is bounded below.
- **1** If A is not bounded, then $\mathbb{R} A$ is bounded.
- $oldsymbol{9}$ If A is closed, then A is bounded.
- lacksquare If A is bounded, then A is closed.
- $\ \, \textbf{0} \,$ If A is bounded and the supremum and infimum of A are both contained in A, then A is closed.

7. Real numbers

Select ALL statements that are TRUE.

- $\mathbf{0}$ $\sqrt{2}$ is irrational.
- $\mathbf{0}$ $\sqrt{4}$ is irrational.
- $\mathbf{0}$ $\sqrt{5}$ is irrational.
- **9** If a is irrational and b is irrational, then a+b is irrational.
- $oldsymbol{0}$ If a is irrational and b is irrational, then $a\cdot b$ is irrational.
- lacktriangle If a is irrational and b is rational, then a+b is irrational.
- **3** If a is irrational and b is rational, then $a \cdot b$ is irrational.

8. Functions

Consider the function $f \colon \mathbb{N} \to \mathbb{N}$, f(n) = n + 1. Select ALL statements that are TRUE

- f is injective.
- $oldsymbol{0}$ f is surjective.
- f is bijective.
- f is invertible.
- **1** There exists a function $g \colon \mathbb{N} \to \mathbb{N}$ such that $f \circ g = I_{\mathbb{N}}$.
- $\bullet \ \ \, \text{There exists a function } g \colon \mathbb{N} \to \mathbb{N} \text{ such that } g \circ f = I_{\mathbb{N}}.$

9. Sets

Let $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2\}$, $C = \{3, 4\}$, $D = \{1, 4\}$. Select ALL statements that are TRUE.

- $(B \cup C) D = \{2, 3\}$
- $B \cup C \subset A$
- $A \cap D \subset B$
- $(1,3) \in A \times B$

10. Sets

Suppose we are given open sets $A_i\subseteq\mathbb{R}$ for all $i\in\mathbb{N}.$ Select ALL statements that are NOT NECESSARILY TRUE.

- $\bigcup_{i=1}^{\infty} A_i$ is open.
- \bigcirc $\bigcup_{i=1}^{\infty} \overline{A}_i$ is closed.
- lacksquare $\bigcap_{i=1}^{\infty} A_i$ is open.
- $\bullet \cap_{i=1}^{\infty} \overline{A}_i$ is closed.

11. Cardinality

Select ALL statements that are TRUE.

- $|\mathbb{Z}| = |\mathbb{Q}|$
- $|\mathbb{Q}| = |(0,1)|$
- $|\{1,2,3,4\}| = |(0,4)|$
- $|\mathbb{Q}| = |\mathbb{R} \mathbb{Q}|.$
- $|\mathbb{N}^2| = |\mathbb{N}|.$
- $0 |\{0,1\} \times \{0,1,2\}| = 5$

12. Cardinality

Select ALL sets that are countable.

- \bullet $\mathcal{P}(\mathcal{P}(\emptyset))$
- **2** R
- **3** Q
- Ø
- (0,1)
- **1** The set B_{∞} of infinite binary sequences (e.g., 101000111010...)
- The set of infinite binary sequences such that only finitely many digits in each sequence are 1's (the rest are 0's).
- $\mathbf{0} \mathbb{R} \mathbb{Q}$.