# Projektowanie Algorytmów i Metody Sztucznej Inteligencji Projekt 3 - Grafy

Szymon Zajda 248917 Prowadzący: mgr.inż Marcin Ochman W<br/>T $15^{15}\,$ 

05.05.2020

### 1 Wprowadzenie

Celem projektu było zbadanie efektywności wybranego algorytmu - w tym wypadku Bellmana-Forda - w zależności od sposobu reprezentacji grafu (w postaci macierzy i listy) oraz gęstości grafu. Badania przeprowadzono dla następującej ilości wierzchołków: 10, 50, 100, 500, 1000 oraz dla następujących gęstości: 0.25, 0.50, 0.75, 1.

#### 2 Budowa programu

Program opiera się na 2 klasach: *MatrixGraph*, *ListGrap*. Obie kolejno przechowują metody znajdowania najkrótszej ścieżki w grafie. Dodatkowo została utworzona klasa dziedziczna *Graph*, która odpowiedzialna jest za przechowywanie liczby wierzchołków oraz wagi. Inicjalizowanie i tworzenie obiektu grafu odbywa się za pomocą inteligentnych wskaźników *unique\_ptr*, które dbają o to by po zakończniu działania programu skasowały wskazywany obiekt. Tworząc reprezentację grafu w programie głównym *main.cpp* jednocześnie zadaje się ilośc wierzchołków oraz gęstość wypełnienia.

Funkcja znajdowania najkrótszej ścieżki w grafie to *double BellmanFord*. Zwraca czas wykonywania się algorytmu. To pozwala na sumowanie wykonywania się algorytmu w pętli dla 100 instancji.

#### 3 Opis algorytmu

Algorytm służący do znalezienia najkrótszej ścieżki w grafie ważony z wierzchołkaźródłowego do wszystkich pozostałych wierzchołków. Działanie algorytmu opiera sięna metodzie relaksacji czyli sprawdzaniu, czy przy przejściu daną krawędzią grafu, nie otrzymamy krótszej ścieżki niż dotychczasowa). Algorytm Bellmana-Forda, w odróżnieniu od algorytmu Dijkstry, można stosować dlagrafów z wagami ujemnymi, nie może jednak wystąpić cykl ujemny (cykl o łącznejujemnej wadze osiągalny ze źródła). Złożoność obliczeniowa:  $O(V \cdot E)$ , gdzie V to ilość wierzchołków, a E to ilość krawędzi.

## 4 Sporządzone wykresy i wyniki testów

### 4.1 Reprezentacja macierzy

Tabela zawiera uśrednione czasy[w ms]

| MACIERZ                          |      | Liczba wierzchołków |          |         |         |         |  |
|----------------------------------|------|---------------------|----------|---------|---------|---------|--|
|                                  |      | 10                  | 50       | 100     | 500     | 1000    |  |
| Procent<br>wypełnieni<br>a grafu | 25%  | 0,01997             | 0,300102 | 2,29466 | 201,745 | 2065,62 |  |
|                                  | 50%  | 0,031961            | 0,469956 | 3,21785 | 409,791 | 3520,35 |  |
|                                  | 75%  | 0,043512            | 0,645283 | 4,75751 | 685,634 | 4878,39 |  |
|                                  | 100% | 0,057141            | 0,902676 | 7,2709  | 808,881 | 6509,84 |  |



## 4.2 Reprezentacja listy

Tabela zawiera uśrednione czasy[w ms]

| LISTA                            |       | Liczba wierzchołków |         |         |         |         |  |
|----------------------------------|-------|---------------------|---------|---------|---------|---------|--|
|                                  |       | 10                  | 50      | 100     | 500     | 1000    |  |
| Procent<br>wypełnieni<br>a grafu | 25%   | 0,170631            | 2,21027 | 13,3041 | 1363,81 | 10902,2 |  |
|                                  | 50%   | 0,113128            | 1,5657  | 11,592  | 1360,72 | 10904,1 |  |
|                                  |       | 0,107148            | 1,56136 | 13,0694 | 1365,31 | 11661,4 |  |
|                                  | 1000/ | 0,107142            | 1,47514 | 11,6773 | 1363,21 | 11211,9 |  |



## Wykresy porównawcze dla obu reprezentacji w tej samej gęstości









## 5 Wnioski

- Algorytm Bellmana<br/>Ford'a okazuje się być bardziej efektywny dla reprezentacji macierzy sąsiedz<br/>twa niż dla reprezentacji listy.
- Dla macierzy sąsiedztwa widać wyraźne zróżnicowanie wyników pomiędzy poszczególnymi gęstościami

grafów aniżeli dla listy

• Zestawiając rozbieżność wyników w reprezentacji macierzy a jednolite wyniki w reprezentacji listy można wytłumaczyć tym, że w macierzy znajowanie najkrótszej ścieżki odbywa się przez iterowanie, natomiast lista ma bezpośdredni dosęp do swoich komórek. Toteż gęstość grafu, czyli ilość elementów nie ma wpływu dla reprezentacji listy.

#### 6 Literatura

- https://eduinf.waw.pl/inf/alg/001\_search/0138a.php
- https://pl.wikipedia.org/wiki/Algorytm\_Bellmana-Forda
- https://pl.wikipedia.org/wiki/Graf\_(matematyka)
- https://www.geeksforgeeks.org/bellman-ford-algorithm-dp-23/