Background

Variational Quantum Eigen Value Solver (VQE)

- Physical System:
 - o Hamiltonian
 - Describes energy of the physical system
 - From this one can compute the behavior of the system & which state the system is
 in
 - o Eigen Vector:
 - Represent the "State" of the system
 - o Eigen value
 - Represents the "Energy" of the system in that state
 - o Lowest Eigen Value: Ground State
- Variational Principle
 - Let's say we have a Hamiltonian H with eigenstates $|\phi_1>,...,|\phi_j>$ and associated eigenvalues $\lambda_1,...,\lambda_n$ then

$$H|\phi_i>=\lambda_i|\phi_i>$$

- Energy of the Physical System at a given state $|\phi>$

$$E(|\phi>) = <\phi|H|\phi>$$

- Energy at Eigen states $|\phi_i>$

$$E_j = \langle \phi_j | H | \phi_j \rangle = \langle \phi_j | \lambda_j | \phi_j \rangle = \lambda_j \langle \phi_j | \phi_j \rangle$$

Minimum Eigen Value:

The minimum Eigen value can be found using optimization algorithm by minimizing the energy of the physical system.

$$\lambda_{Min} = Min_j E_j = Min_j < \phi_j | H | \phi_j >$$

Solution

Steps

- 1. Decomposition into Pauli Matrices
- 2. VQE
 - a. Ansatz
 - b. Hamiltonian
 - c. Measurement

Decomposition into Pauli Matrices

Every matrix H can be written as some linear combination of Pauli matrices I, Z, X, Y.

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$H = aI + bX + cY + dZ$$

The coefficients can be found by the formulas:

$$a = \frac{1}{2}trace(H * I^*), b = \frac{1}{2}trace(H * X^*), c = \frac{1}{2}trace(H * Y^*), d = \frac{1}{2}trace(H * Z^*)$$

The given Hamiltonian matrix is 4×4

$$H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This can be written as

$$H = aII + bXX + cYY + dZZ$$

Where

$$II = I \otimes I$$
, $XX = X \otimes X$, $YY = Y \otimes Y$, $ZZ = Z \otimes Z$

Each new matrix is Tensor product of 2×2 Pauli matrices.

The coefficients can be found by the formulas:

$$a = \frac{1}{4}trace(H * II^*), b = \frac{1}{4}trace(H * XX^*), c = \frac{1}{4}trace(H * YY^*), d = \frac{1}{4}trace(H * ZZ^*)$$

In particular

$$H = (0.5)II + (-0.5)XX + (-0.5)YY + (0.5)ZZ$$

VQE

Ansatz

Gates used:

$$(RX\ I)\ (CX)\ (HI)\ |00>$$

- The angle in RX is variational parameter.

Hamiltonian

$$H = (0.5)II + (-0.5)XX + (-0.5)YY + (0.5)ZZ$$

Measurement

- For *II*
 - Expectation = 1
- For *XX*
 - o Apply $H \otimes H$ then apply measurement
- For *YY*
 - \circ Apply $Y_{Gate} \otimes Y_{Gate}$ then apply measurement

$$\circ \quad Y_{Gate} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix}$$

- For *ZZ*
 - o No gates required. Directly apply measurement

Expectation:

$$\langle H \rangle = (0.5) * \langle II \rangle + (-0.5) * \langle XX \rangle + (-0.5) * \langle YY \rangle + (0.5) * \langle ZZ \rangle$$