Brute force & Genetic Algorithms

The Traveling Salesman Problem (TSP)

Find a tour that visits **each city exactly once** and that **minimizes** the total distance.

The Traveling Salesman Problem (TSP)

TSP is the problem of finding a tour that visits each city exactly once and that minimizes the total distance.

Applications of TSP

Vehicle Routing

- Robotics
 - Navigation
 - Arm usage

Order picking from warehouses.

TSP is more complicated than it may appear!

If you just start from city and keep going to the city nearest to it, you can get a bad solution.

(n-1)! Combinations to check for all possibilities.

$$n = 17$$
, $(n-1)! = 2.092279 \times 10^{13}$

$$n = 26$$
, $(n-1)! = 4.0329146 \times 10^{26}$

Solutions for TSP

- Branch & Bound Algorithms
- Heuristics Approaches
- Genetic Algorithm

Genetic Algorithm (GA)

inspired by biological processes:
 selection, crossover and mutation

Demo

Goal: min. route visiting every city only once.

```
• Cities = 17
```

Initial population = 500

```
• Generations = 1000
```

• Correct Answer = 2085

```
• (17 - 1)! = 20922789888000 (trillion)
```

Representation

Each city mapped to 0 – 17

A route: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

- Other representations
 - 00000 00001 01111 10000
 - 0123456789AB..... F 10

Mutation

Swapping random 2 points

Selection

Kill 20% of the worst performing population

Crossover Operation

route is encoded as string

	0	1	2	3
_	0	3	2	1
Parent 1				
Parent 2	0	1	3	2
raient Z				
Offspring	0	1	2	3

	Positions		
City	Parent 1	Parent 2	
0	0	0	
1	3	1	
2	2	3 ^	
3	1	2 🗸	

Evolutionary Improvements

• Areas where evolutions improved the solution

26 Cities

• Answer: 937, Our Result: 1036

42 Cities

• Answer: 669, Our Result:914

Lessons Learned

 Importance of a **good** representation : uniqueness, optimization, validity, etc

- Being practical:
 Theoretical mathematics is 'elegant' –
 but sometimes not suitable for real world applications
- Room for creativity (algorithm design and implementation)

Thank You

- Dr. Sohan Dharmaraja
- Dr. Sanjeewa
- Dr. Jagath
- Dr. Oliver
- Dr. Yudi