МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Сети и телекоммуникации»

Тема: Настройка таблиц маршрутизации

Студент гр. 0303	Калмак Д.А.
Преподаватель	Борисенко К.А

Санкт-Петербург

Цель работы.

Изучение методов статической маршрутизации в IP-сетях и овладение управлением таблицами маршрутизации на узлах сетевого уровня.

Порядок выполнения работы.

- 1. Для всех узлов сети установить IP-адреса, маски подсетей и шлюзы по умолчанию, чтобы добиться успешного выполнения Echo-запроса ближайших соседей.
- 2. Настроить таблицы маршрутизации на маршрутизаторах, чтобы добиться доставки пакетов от узла K1 к узлу K2 и обратно, от узла K2 к K3 и обратно, от узла K3 к K1 и обратно. Пакеты должны доходить до узлов кратчайшим путем.
- 3. Настроить таблицы маршрутизации на узлах K1, K2 и K3, чтобы обеспечить кратчайшую доставку пакетов между этими узлами, если это невозможно было обеспечить в п. 2.

В отчете привести конфигурацию TCP/IP для каждого из узлов, таблицы маршрутизации, результаты Echo-запросов между узлами K1, K2 и K3, а также обоснование правильности и оптимальности выбранных маршрутов.

Выполнение работы.

1. Структура сети представлена на рис. 1.

Рисунок 1 – Структура сети

2. Заданные для компьютеров IP-адреса, маски подсети и шлюзы по умолчанию представлены в табл. 1. K1 – PC1, K2 – PC2, K3 – PC3.

Таблица 1 – IP-адреса, маски подсети и шлюзы по умолчанию для компьютеров

Название	IP-адрес (eth0)	Маска подсети	Шлюз по	
			умолчанию	
PC1	10.0.0.3	255.255.255.248	10.0.0.1	
PC2	10.0.0.10	255.255.255.248	10.0.0.9	
PC3	10.0.0.18	255.255.255.240	10.0.0.19	

Компьютеры РС1 находится в сети 10.0.0.0. Компьютер РС2 находится в сети 10.0.0.8. Компьютер РС3 находится в сети 10.0.0.16. Маска для РС1, РС2 выбрана так, чтобы РС1 и РС2 находились в разных подсетях. Шлюзы у РС1 и РС2 настроены на маршрутизаторы R1 и R2. Шлюз у РС3 настроен на маршрутизатор R5.

Заданные для маршрутизаторов IP-адреса, маски подсети, шлюзы по умолчанию представлены в табл. 2.

Таблица 2 — IP-адреса, маски подсети и шлюзы по умолчанию для маршрутизаторов

Название	IP-адрес	Маска подсети	IP-адрес (eth1)	Маска	Шлюз по
	(eth0)	(eth0)		подсети	умолчанию
				(eth1)	
R1	10.0.0.1	255.255.255.248	10.0.120.1	255.255.255.0	10.0.120.3
R2	10.0.0.9	255.255.255.248	10.0.120.2	255.255.255.0	10.0.120.3
R3	192.168.0.3	255.255.255.0	10.0.120.3	255.255.255.0	192.168.0.4
R4	192.168.0.4	255.255.255.0	192.168.1.4	255.255.255.0	192.168.1.5
R5	10.0.0.19	255.255.255.240	192.168.1.5	255.255.255.0	192.168.1.4

При такой настройке успешно выполняются Echo-запросы ближайших соседей. Однако пакеты от компьютера PC1 до компьютера PC2 дойти не

смогут, так как шлюз у R1 по умолчанию настроен на R3 10.0.120.3. Дойти до PC3 тоже не смогут, так как обратно от PC3 пакеты пройти не смогут, так как образуется цикл между R4 и R5. Аналогично для PC2. От PC3 пакеты до PC1 и PC2 пройти не смогут, так как у R4 и R5 взаимные шлюзы. Чтобы разрешить это, необходимо настроить таблицу маршрутизации для R1, R2, R3, R4.

3. Настроим таблицы маршрутизации на маршрутизаторах, чтобы добиться доставки пакетов от узла K1 к узлу K2 и обратно, от узла K2 к K3 и обратно, от узла K3 к K1 и обратно.

Таблица маршрутизации для R1 представлена на рис. 2.

Рисунок 2 – Таблица маршрутизации для R1

Если пакет передается к PC2, то от R1 он пройдет через R2, что сокращает путь.

Таблица маршрутизации для R2 представлена на рис. 3.

```
© Route table

Codes: C - connected, S - static, R - RIP,
B - BGP, O - OSPF, * - candidate default

S* default/0.0.0.0[0] via 10.0.120.3 (eth0)
S 10.0.0.0/255.255.255.248[0] via 10.0.120.1 (eth1)
C 10.0.120.2/255.255.255.0 is directly connected, eth1
C 10.0.0.9/255.255.255.248 is directly connected, eth0
```

Рисунок 3 — Таблица маршрутизации для R2

Если пакет передается к PC1, то от R2 он пройдет через R1, что сокращает путь.

Таблица маршрутизации для R3 представлена на рис. 4.

Рисунок 4 – Таблица маршрутизации для R3

Если пакет идет к PC1, то от R3 он пойдет на R1, а если пакет идет к PC2, то он от R3 пойдет на R2. Такая настройка сразу определяет, куда идти пакету, на какую ветвь в зависимости от необходимого PC.

Таблица маршрутизации для R4 представлена на рис. 5.

```
© Route table

Codes: C - connected, S - static, R - RIP,
B - BGP, O - OSPF, * - candidate default

S* default/0.0.0.0[0] via 192.168.1.5 (eth0)
S 10.0.0/255.255.255.240[0] via 192.168.0.3 (eth0)
S 10.0.120.0/255.255.255.0[0] via 192.168.0.3 (eth0)
C 192.168.1.4/255.255.255.0 is directly connected, eth1
C 192.168.0.4/255.255.255.0 is directly connected, eth0
```

Рисунок 5 – Таблица маршрутизации для R4

Чтобы организовать связь с R3, R1, R2, PC1, PC2, необходимо в таблицу маршрутизации добавить новые маршруты через R3, так шлюз по умолчанию у R4 настроен на R5, а значит в обратную сторону пакеты пройти не могли бы. Так получена связь с другими маршрутизаторами и компьютерами.

Совершим Echo-запросы от узла K1 к узлу K2 и обратно, от узла K2 к K3 и обратно, от узла K3 к K1 и обратно.

Результаты Echo-запросов от PC1 представлены на рис. 6.

```
Console: pc1 — — X

javaNetSim console v0.42, 2005 - 2009
pcl# ping 10.0.0.10
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.10, timeout is 1 second:
!!!!!
Success rate is 100 percent (5/5)
pcl# ping 10.0.0.18
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.18, timeout is 1 second:
!!!!!
Success rate is 100 percent (5/5)
pcl#
```

Рисунок 6 – Результаты Echo-запросы от PC1

Результаты Echo-запросов от PC2 представлены на рис. 7.

```
Console: pc2

javaNetSim console v0.42, 2005 - 2009
pc2# ping 10.0.0.3
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.3, timeout is 1 second:
!!!!
Success rate is 100 percent (5/5)
pc2# ping 10.0.0.18
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.18, timeout is 1 second:
!!!!
Success rate is 100 percent (5/5)
pc2#
Success rate is 100 percent (5/5)
```

Рисунок 7 – Результаты Echo-запросы от PC2

Результаты Echo-запросов от PC3 представлены на рис. 8.

```
Console: pc3

javaNetSim console v0.42, 2005 - 2009
pc3# ping 10.0.0.3
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.3, timeout is 1 second:
!!!!!
Success rate is 100 percent (5/5)
pc3# ping 10.0.0.10
Type escape sequence to abort.
Sending 5, 4-byte ICMP Echos to 10.0.0.10, timeout is 1 second:
!!!!!
Success rate is 100 percent (5/5)
pc3#
```

Рисунок 8 – Результаты Echo-запросы от PC3

Все Echo-запросы успешны.

Выводы.

Таким образом, были изучены методы статической маршрутизации в IPсетях и получены навыки в управлении таблицами маршрутизации на узлах сетевого уровня. Была настроена сеть так, чтобы между всеми узлами была связь, причем с учетом кратчайших маршрутов.