

Prestazioni ed efficienza dei protocolli di strato 2

Franco CALLEGATI

Dipartimento di Informatica: Scienza e Ingegneria

A.A. 2021-2022

Di cosa parliamo?

- Un *sistema* deve *smaltire* del *lavoro* che gli viene *offerto* dall'esterno
- Esempio nel caso specifico delle reti di tlc
 - Livello N+1 invia PDU al livello N tramite la relativa interfaccia (e un opportuno SAP)
 - Livello N impiega un certo tempo per soddisfare la richiesta

Arrivi e partenze

- $a(t)\,$ Numero di richieste di servizio giunte al tempo t
- s(t) Numero di richieste accettate al tempo t
- $p(t)\,$ Numero di partenze dal sistema al tempo t

Frequenza media delle richieste offerte

$$\lambda = \lim_{t \to \infty} \frac{a(t)}{t}$$

Frequenza media delle richieste smaltite

$$\lambda_s = \lim_{t \to \infty} \frac{p(t)}{t}$$

 Se il sistema in oggetto non produce lavoro ma lo riceve solamente dall'esterno

$$\lambda_s \leq \lambda$$

$$\lambda_s = \lambda$$
 Implica $s(t) = a(t)$

 Tutte le richieste vengono accettate dal sistema e prima o poi soddisfatte

$$\lambda_s < \lambda$$
 implica $r(t) = a(t) - s(t)$

 Dove r(t) rappresenta le richieste che non vengono accettate e sono rifiutate o perdute dal sistema

Analogamente

Posso definire

$$\lambda_p = \lim_{t \to \infty} \frac{r(t)}{t}$$

$$\lambda = \lambda_s + \lambda_p$$

In un sistema ideale

Il sistema ha una capacità massima finita (dipende dalle condizioni in cui opera)

Se le richieste offerte sono eccessive una parte non può essere soddisfatta

Capacità massima ed efficienza

- In un protocollo di strato due, qual è la capacità massima?
 - Poiché il protocollo invia i bit sul canale la sua capacità massima teorica è la velocità del canale C
- Ma il protocollo di strato 2 utilizza parte della capacità del canale per suoi scopi
 - PCI necessarie per la segnalazione
 - Tempi morti legati alle sue dinamiche

• La capacità effettivamente disponibile all'utente

$$C_e \leq C$$

In un sistema ideale

La riduzione di capacità obbliga il livello superiore a limitare la proprie richieste pena la perdita dei dati

TER STUDIO ORUM

- Per valutare l'efficienza di solito si fa riferimento alla PDU
- Si confronta:
 - La quantità di tempo strettamente utilizzato per inviare i soli dati d'utente (SDU)
 - La quantità di tempo utilizzato complessivamente per completare correttamente l'invio della PDU
 - In funzione delle regole del protocollo
- L'efficienza è data dal rapporto fra queste due quantità

$$\eta = rac{T_u}{T_0}$$

Prestazioni dei protocolli ARQ

Prof. Franco Callegati

http://deisnet.deis.unibo.it

- Qual è l'efficienza del protocollo ARQ stop and wait
 - Stop and wait equivale ad un protocollo a finestra scorrevole con finestra unitaria
- D : dimensione campo dati in bit
- H: dimensione dell' header (PCI) in bit,
- F=D+H: lunghezza totale del frame,
- A: lunghezza dell'ACK,
- E, E': tempi di elaborazione per il controllo del frame in arrivo e per la preparazione del frame in partenza
- R : tempo di propagazione del segnale da un capo all'altro del collegamento,
- I = E+R; I' = E'+R'
- C, C': velocità dei canali di trasmissione
- In generale il canale di andata e di ritorno possono essere diversi

Efficienza

• Tempo intercorso fra l'invio di due frame successivi:

$$T_0 = F/C + I + A/C' + I'$$

 Il tempo strettamente necessario per la trasmissione dei dati di utente è

$$T_d = D/C$$

Efficienza:

$$\eta = T_d / T_0 = D / (C T_0) = D/(D+H+IC+I'C+AC/C')$$

• Per semplicità poniamo I = I', C = C', inoltre l'ACK è praticamente composto dalla sola PCI, e quindi $A \simeq H$

$$\eta = D/(D+H+A+2IC) = D/(D+2H+2IC) = D/(D+O)$$

Overhead

$$0 = 2 H + 2 I C$$

TER STUDIO RU

- Rappresenta la quantità di dati aggiuntivi introdotti dal protocollo
 - O è una grandezza in bit
 - L' efficienza diminuisce al crescere di O
- O tiene conto di
 - bit aggiuntivi di controllo (PCI)
 - tempo non utilizzato dalla trasmissione a causa del protocollo ARQ

- L'efficienza diminuisce
 - Al crescere di H
 - Molti bit per PCI
 - All' aumentare di C
 - Linea molto veloce
 - All' aumentare di I
 - Grandi distanze

Caso con errore

- Prima di trasmettere correttamente una trama possono avvenire k errori k > 0
- Il tempo necessario a trasmettere la trama, dati k errori, vale

$$T_k = k T_e + T_o$$

Dove

$$T_o = (D + O)/C$$

 $T_e = D/C + H/C + T_{out}$

• Se P_k è la probabilità di avere k errori, il tempo medio per trasmettere una trama vale

$$E[T_k] = \sum_{k=0...\infty} T_k P_k = \sum_{k=0...\infty} (kT_e + T_o) P_k$$

- Ipotesi
 - Errore sulle trame i.i.d. (indipendenti ed identicamente distribuite, ossia di uguale probabilità) P_F : prob. di ricevere una trama errata

$$P_k = prob\{k \text{ trame errate seguita da 1 corretta}\} = P_F^k (1 - P_F)$$

• Il numero medio di errori consecutivi risulta

$$E[k] = P_F / (1 - P_F)$$

P_k

- Ipotesi
 - Trame errate i.i.d. (indipendenti e di uguale probabilità)
 - P_F = probabilità di errore per trama
- Una trama per essere ricevuta deve essere trasmessa senza errori
 - K tramissioni errate consecutive con probabilità P_F
 - seguite da
 - 1 tramissione corretta con probabilità (1- P_F)

$$P_k = prob\{k \text{ trame errate seguita da 1 corretta}\} = P_F^k (1 - P_F)$$

Il numero medio di errori consecutivi risulta

$$E[k] = P_F / (1 - P_F)$$

- Ipotesi
 - Errore sui bit i.i.d.
 - P_e: probabilità di errore per bit
- È possibile calcolare P_k
 - Ipotesi: errori sui bit indipendenti
 - $P_F = 1$ -prob{trama corretta} = 1- $(1 P_e)^F \simeq F P_e \simeq D P_e$
 - Nelle reti telefoniche gli errori sono a burst e vale la formula approssimata
 - $P_F = \alpha F^{\beta}$, con $\beta > 1$
 - Se però $\theta \simeq 1$ si può usare la formula dei bit indipendenti

- In teoria possono essere errate le trame ma anche le conferme
- Se vale la formula $P_F = F P_e$
 - Se P_e è circa costante
 - P_F dipende solamente da F
 - La probabilità di sbagliare trame corte è trascurabile rispetto a quella di sbagliare trame lunghe

$$E[T_k] = \sum_{k=0}^{\infty} (kT_e + T_0) P_F^k (1 - P_F) = (1 - P_F) \sum_{k=0}^{\infty} (kT_e P_F^k + T_0 P_F^k)$$
$$= (1 - P_F) \left(T_e \sum_{k=0}^{\infty} k P_F^k + T_0 \sum_{k=0}^{\infty} P_F^k \right) = (1 - P_F) \left(T_e \frac{P_F}{(1 - P_F)^2} + T_0 \frac{1}{1 - P_F} \right)$$

$$E[T_k] = T_0 + T_e \frac{P_F}{1 - P_F}$$

In conclusione

- Efficienza: $\eta = (D/C)/E[T_k]$
- $T_o = (D + O)/C$
- $T_{out} = I + H/C + I = 2I + H/C$
- $T_e = D/C + T_{out} + H/C = D/C + 2I + 2H/C = D/C + O/C$
- L' efficienza massima si ha con T_{out} minimo e T_e minimo :

$$\eta_{Max} = \frac{D}{\left((D+O) + (D+O) \frac{FP_e}{(1-FP_e)} \right)}$$

Assumendo che:

- $-FP_e \ll 1$
- $O \ll D$

$$\eta_{Max} \cong \frac{D}{D + O + D^2 P_e}$$

Efficienza ottima

 Derivando ed uguagliando a zero l'espressione dell'efficienza massima, si ottiene il valore ottimo per D:

$$D_{ott} = \sqrt{\frac{O}{P_e}}$$

• Sostituendo il valore D_{ott} nell'espressione di η_{max} si ottiene:

$$\eta_{ott} = \frac{D_{ott}}{D_{ott} + 2O}$$

Finestra W>1: in assenza di error

- È necessario distinguere due casi
 - (W-1) F/C <H + 2IC, cioè W F < C T₀
 - Si trasmettono W trame in un tempo pari a T_0 per cui

$$\eta = (W D)/(D+2H+2IC)$$

- $WF \ge CT_0$
 - il trasmettitore non interrompe mai la trasmissione delle trame per cui risulta:

$$\eta = D/(D+H)$$
 oppure
 $\eta = D/(D+O)$, con $O = H$

 Il secondo caso è il migliore per l'efficienza : in trasmissione non ci sono tempi morti

Finestra e go back N

• In pratica se utilizzo go-back-N ARQ la trama di ritrasmettere è sempre la prima di una finestra

Finestra W>1 : caso con errore

- Supponiamo di metterci nel caso $WF > CT_0$
 - Assenza di tempi morti
- Distinguiamo due casi:
 - Caso Selective Repeat ARQ
 - L'errore sulla trama comporta la sola ritrasmissione della trama stessa
 - $CT_{medio} = F + F[P_F/(1-P_F)] \simeq F + FP_F \simeq D + H + D^2P_P$

$$\eta = \frac{D}{D + H + D^2 P_e} \qquad \qquad D_{ott} = \sqrt{\frac{H}{P_e}}$$

$$D_{ott} = \sqrt{\frac{H}{P_e}}$$

$$\eta_{ott} = \frac{D_{ott}}{D_{ott} + 2H}$$

- Caso Go-back-n
 - L'errore comporta la ritrasmissione di *M* trame
 - $CT_{medio} = F + WF[P_F/(1-P_F)] \simeq D + H + (W-1)D^2P_e = D + H + wD^2P_e$

$$\eta = \frac{D}{D + H + wD^2 P_e} \qquad D_{ott} = \sqrt{\frac{H}{wP_e}}$$

$$D_{ott} = \sqrt{\frac{H}{wP_e}}$$

$$\eta_{ott} = \frac{D_{ott}}{D_{ott} + 2H}$$

Alcuni Esercizi

Esercizio – 1 (a)

- Protocollo Stop and Wait
 - Velocità della linea: C = 4 Kbit/s
 - Ritardo di elaborazione e propagazione: I = 20 ms
 - $-H\simeq A\simeq 0$
- Determinare la dimensione della trama tale che l'efficienza $\eta > 50\%$
- Formula dell'efficienza:

$$\eta = \frac{D}{T_0 C};$$

$$T_0 = \frac{F}{C} + I + \frac{A}{C} + I;$$

Sviluppando i termini:

$$\eta = \frac{D}{F + 2IC + A} = \frac{D}{D + H + 2IC + A};$$

• Nell'ipotesi che $A \simeq H$:

$$\eta = \frac{D}{D + 2H + 2IC};$$

 Con O si indica l'overhead, cioè la quantità di dati aggiuntivi introdotti dal protocollo

Sostituendo i dati di progetto forniti dal testo:

$$\eta = \frac{D}{D + 2H + 2IC} \cong \frac{D}{D + 2IC} \ge 0.5$$

$$\Rightarrow D \ge 0.5D + IC \Rightarrow 0.5D \ge IC$$

$$\Rightarrow D \ge 2IC = 2 \cdot 4 \cdot 10^3 \cdot 20 \cdot 10^{-3} = 8 \cdot 20 = 160$$

• Affinché sia soddisfatto il vincolo richiesto sull'efficienza ($\eta > 50\%$), la trama deve essere lunga almeno 160 Bit

• 2IC = 160 bit

•
$$P_e = 10-3$$

- O/Pe = 160000
- $D_{ott} = Sqrt(O/Pe) = 400$
- $\eta = 400/(400+320) = 0.56$

•
$$P_e = 10-2$$

- O/Pe = 16000
- $D_{ott} = Sqrt(O/Pe) = 126$
- $\eta = 126/(126+320) = 0.28$

Esercizio – 2 (a)

- Protocollo a Finestra
- Si supponga di dover trasferire dei dati fra 2 siti con una linea con tali requisiti:
 - d = 100 Km (distanza tra i 2 siti)
 - C = 64 Kbit/s (velocità della linea)
 - ritardo di propagazione t = 6 usec/km
 - Ritardo di Elaborazione pressoché;
 - D = 200 bit; H \simeq A = 20 bit
 - $I = 6.10^{-6} * 100 = 600 \text{ usec.}$
- Determinare la dimensione della finestra W in grado di garantire efficienza massima

Esercizio -2 (b)

Calcolo del tempo totale di trasmissione:

$$T_0 = \frac{F}{C} + I + \frac{A}{C} + I;$$

$$T_0 = \frac{D+H}{C} + \frac{A}{C} + 2I = \frac{220+20}{C} + 2I = \frac{240}{64 \cdot 10^3} + 1200 \cdot 10^{-6} = 3.75 \cdot 10^{-3} + 1.2 \cdot 10^{-3} = 4.95 \cdot 10^{-3} \text{ sec} \approx 5 \cdot 10^{-3} \text{ sec}$$

 Ricordando la condizione sulla dimensione della finestra:

$$\frac{WF}{C} > T_0$$

$$W \ge \frac{C \cdot T_0}{F} \ge \frac{64 \cdot 10^3 \cdot 5 \cdot 10^{-3}}{220} \ge \frac{320}{220} \ge 1.45 \Rightarrow W = 2;$$

• L' efficienza che si ottiene con una finestra di dimensione W=2 è dunque pari a:

$$\eta = \frac{D}{D+H} = \frac{200}{220} = 0.91 = 91\%;$$

Si ricorda che deve essere:

$$\frac{WF}{C} > T_0$$

- Protocollo a Finestra Scorrevole
- Caratteristiche:
 - D= 1000 bit
 - H= 100 bit
 - C= 128 Kbit/s
 - I= 10 ms
- Calcolo del tempo totale di trasmissione:

$$T_0 = \frac{F}{C} + I + \frac{A}{C} + I;$$

$$T_0 = \frac{D + H + A}{C} + 2I = \frac{1200}{128 \cdot 10^3} + 20 \cdot 10^{-3} = 29.375 \cdot 10^{-3} \text{ sec}$$

 Confrontare l'efficienza massima del protocollo con quella del protocollo Stop and Wait.

$$\eta_{sw} = \frac{D}{T_0 C} = \frac{1000}{29.4 \cdot 10^{-3} \cdot 128 \cdot 10^3} = \frac{1000}{3763} = 0.26 = 26\%;$$

- Calcoliamo ora l'efficienza massima per il protocollo a finestre scorrevoli:
 - Se W=2 η =2 * 0.26 = 0.52
 - Se W=3 η =3 * 0.26 = 0.78
 - Se W=4 η =4 * 0.26 = 1.04
- η = 1.04 è un risultato impossibile indica solo che 4 è la dimensione di W che produce maggiore efficienza

Esercizio – 3 (c)

Calcoliamo ora l'efficienza per W=4:

$$\eta = \frac{D}{D+H} = \frac{1000}{1100} = 0.91 = 91\%;$$

 Si poteva calcolare W anche utilizzando la formula nota:

$$\frac{WF}{C} > T_0$$

$$W \ge \frac{C \cdot T_0}{F} \ge \frac{3763}{1100} \ge 3.42 \Rightarrow W = 4$$

 Un protocollo ARQ a finestra scorrevole utilizzato per il controllo di un collegamento satellitare opera nelle seguenti condizioni:

- $F \approx D = 1$ Kbyte = 1024 *8 bit = 8192 bit
- I = 125 ms
- C = 2,048 Mbit/s
- H = A trascurabili
- Valutare l'efficienza nell'ipotesi di una numerazione della finestra a 3 e a 7 bit

Esercizio 4 - (b)

- F/C = 4 ms
- T0 = D/C + $2H/C + 2I \approx D/C + 2I = 254 \text{ ms}$
- Caso finestra 7
 - W F/C = 28 ms
 - Efficienza = 28/254 = 0.11
- Caso finestra 127
 - W F/C = 0.51 s
 - Efficienza ≈ 1

Protocolli a contesa: prestazioni e funzionalità

Parametri caratterizzanti la LAN

- F: lunghezza massima della trama
 - Tutte le trame sono della dimensione massima
- C: velocità di trasmissione sul mezzo
- d: massima distanza fra due stazioni della LAN
- v : velocità di propagazione del segnale
- T = F/C: tempo di trasmissione di una trama
- d/v: tempo di propagazione di un singolo bit sulla LAN
- *Cd/v* : massimo numero di bit che possono essere presenti contemporaneamente sulla LAN

LAN ideale

- Utilizza una CAP ideale
 - Coordina le stazioni per evitare accessi contemporanei al canale di trasmissione
 - Tutte le trame in arrivo vengono trasmesse con successo, quindi $G = A_0$
- Il tempo di propagazione della trama è nullo
- È possibile trasmettere le trame una di seguito all'altra
 - Il canale di trasmissione della LAN può essere utilizzato al 100%

Se $A_0 < 1$ allora $S = G = A_0$ Se $A_0 \ge 1$ allora S = 1La LAN ideale permette di smaltire tutto il traffico offerto, fino alla saturazione del canale

Propagazione reale (topologia bus)

- La trama impiega un tempo non nullo per attraversare la LAN
 - t : A inizia la trasmissione
 - t + F/C : A termina la trasmissione
 - t + d/v: B riceve il primo bit
 - t + F/C + d/v: B riceve l'ultimo bit

NAMA TO THE STATE OF THE STATE

Efficienza con MAC ideale

- Una trama tiene impegnata la LAN per T_0
- Il canale di trasmissione non può più essere usato al 100%
- Al massimo viene utilizzato per T secondi ogni T₀
- Efficienza del MAC

$$\eta = T/T_0 = (F/C)/(F/C + d/v) = 1/(1+a)$$

• L'efficienza pone un limite superiore al massimo traffico smaltito S

$$a = Cd / vF$$

è interpretabile come la lunghezza della LAN misurata in trame MAC

Traffico smaltito dalla LAN

- G < 1/(1+a)
 - Tutte le trame in arrivo vengono trasmesse

$$- S = G = A_0$$

- $G \ge 1/(1+a)$
 - Il MAC non permette la trasmissione di tutte le trame
 - Parte delle trame viene accodata all' infinito
 - $S = \eta = 1/(1+a)$

Esempio numerico

- C=10 Mbit/s d=1 km v=200000 km/s F=100
- d/v=5 10-6
- C d/v = 10 10+6 * 5 10-6 = 50
- a = 50/100 = 0.5 eta=1/1.5 = 0.67
- C=100 Mbit/s
- C d/v = 500
- a=500/100=5 eta=1/6
- C=1 Gbit/s
- C d/v = 5000
- a=5000/100 = 50 eta=1/51

Quale efficienza per le LAN

- a determina le prestazioni della LAN
- Maggiore è la lunghezza del canale in trame, minore risulta il traffico massimo smaltibile (massimo throughput)
 - I protocolli ad accesso multiplo sono efficienti quando le distanze e le velocità di trasmissione sono abbastanza limitati

Protocollo a contesa: ALOHA

- È nato nel 1970 per collegare tra loro le università delle isole Hawaii.
- Prevede stazioni a terra ed un satellite geostazionario
 - Le stazioni trasmettono tutte sul medesimo canale radio (uplink)
 - Il satellite ritrasmette a terra amplificati i dati su un canale diverso (downlink)

CAP

- Quando un trasmettitore ha una trama da trasmettere la trasmette senza alcun verifica preventiva
- La trama viene ritrasmessa dal satellite verso tutte le stazioni
- La stazione trasmittente riceve la propria trama ed ha quindi conferma della corretta trasmissione

CRA

- Quando due stazioni trasmettono contemporaneamente i segnali collidono e si interferiscono sull'uplink
- Il satellite scarta le trame non correttamente ricevute
- La stazione non riceve la propria trama sul downlink e quindi identifica una collisione
- Non ritrasmette subito ma fa partire l'algoritmo di back-off
 - $^{\bullet}$ Sceglie l'istante per la ritrasmissione in modo aleatorio all'interno di un intervallo di lunghezza prefissata T_b (tempo di back-off)

- Assumiamo che i pacchetti generati dalle sorgenti di traffico (applicazioni) determinino gli arrivi di trame alle stazioni secondo un processo di Poisson con frequenza media di arrivo λ
 - Tenendo conto delle ritrasmissioni, il numero medio di pacchetti trasmessi in effetti al satellite nell'unità di tempo è $\lambda_r > \lambda$
 - Le collisioni con successive ritrasmissioni generano delle correlazioni fra gli arrivi, ma se l'intervallo di back off è abbastanza lungo rispetto a T (T_b>>T), anche il traffico verso il satellite è approssimativamente di Poisson

Traffico offerto e smaltito

- Ipotesi:
 - Trame tutte uguali di lunghezza pari a T
- Traffico offerto dalle applicazioni

$$A_0 = \lambda T$$

Traffico offerto al MAC

$$G = \lambda_r T$$

- A causa delle collisioni $\lambda_r \ge \lambda$
- Il traffico smaltito è pari al traffico offerto che viene trasmesso senza collidere
 - Una trama viene trasmessa senza collidere con probabilità P₀

$$S = G P_0$$

- Si definisce intervallo di vulnerabilità T_{ν} l'intervallo all'interno del quale una trasmissione può dar luogo a collisione
- Nel caso di ALOHA vale T_v = 2 T
 - La trama considerata inizia in t₀ e finisce in t₀ + T
 - Si ha collisione se
 - il primo bit della trama considerata si sovrapponga all'ultimo bit di una trama precedente
 - · Il primo bit di una nuova trama si sovrapponga all'ultimo bit della trama considerata
 - Nessuna trama deve essere trasmessa per un tempo T prima di t_0 e per un tempo T successivo a t_0

 La probabilità di non avere una trasmissione in 2T (probabilità di non collisione) è

$$P_0 = e^{-2\lambda_r T} = e^{-2G}$$

 Quindi il numero medio di trasmissioni aventi successo (traffico smaltito S) è pari a

$$S = G e^{-2G}$$

Valore massimo di S

$$S_{max} = 1/(2e) \approx 0.18 \text{ per } G_{max} = 0.5$$

Aloha: throughput

- S ≈ G per piccoli valori di G
- S → 0 per grandi valori di G

- Un possibile miglioramento: SLOTTED ALOHA.
 - Il sistema lavora in modo sincrono: l'asse dei tempi viene diviso in intervalli (slot) di lunghezza T
 - Le trame vengono trasmesse in corrispondenza di istanti predefiniti

Prima di iniziare le trasmissioni la stazione deve acquisire il sincronismo, inviando trame di tentativo e rivelando come si posizionano rispetto agli slot

Due trame o si sovrappongono completamente o non si sovrappongono per nulla

Slotted Aloha

- L'intervallo di vulnerabilità si riduce a T
 - $P_0 = e^{-G}$
 - $-S = Ge^{-G}$
 - il massimo di S vale $S_{max} = 1/e \cong 0.36$ per $G_{max} = 1$

Aloha classico

- Sceglie a caso (con probabilità uniforme) il nuovo istante di trasmissione nell'intervallo 0 e $T_{\rm b}$
 - Deve essere T_b >> T per rendere piccola la probabilità di una nuova collisione

Aloha slotted

- Si ritrasmette negli istanti di sincronismo, ci sono due alternative:
 - Si prende $T_b = n_b T$ e si sceglie un numero a caso fra 0 ed n_b -1
 - Si ritrasmette nel primo slot utile con probabilità p_b e si passa allo slot successivo con probabilità $(1-p_b)$; ripetendo l'algoritmo ad ogni slot fino a che non si trasmette
- A parità di valore medio del tempo di ritrasmissione, queste due alternative danno prestazioni simili

 In condizioni di equilibrio il traffico offerto al sistema deve essere eguale al traffico smaltito

$$A_0 = S$$

 Per effetto delle fluttuazioni statistiche del traffico, su brevi intervalli di tempo risulterà

$$A_0 \neq S$$

- Se A_0 < S_{max} la dinamica naturale del sistema tende a portarsi in equilibrio
- Se A₀ > S_{max} è impossibile raggiungere una situazione di equilibrio
 - I dati si accumulano nello strato superiore al MAC, in quanto una buona parte di essi non riesce mai ad essere trasmessa

Numero di stazioni finito e stabilità

- Il traffico offerto dipende dal numero di stazioni backlogged
 k
 - Sia λ_i la frequenza media di arrivo delle trame da ciascuna stazione
 - Se la stazione non è backlogged: $\lambda_i = \lambda$
 - Se la stazione è backlogged non invia nuove trame: $\lambda_i = 0$
- Con k stazioni backlogged il traffico offerto vale

$$A_0 = \lambda T(N-k)$$

- Inoltre
 - G(k) è una funzione monotona di k
 - S(G(k)) ha una forma simile a quella già evidenziata
- I valori di k che garantisco condizioni di stabilità si trovano determinando k tale che $A_0(k) = S(k)$

Stabilità

- Se $A_0 > S$ si accumula traffico \Rightarrow si hanno collisioni \Rightarrow le stazioni backlogged aumentano \Rightarrow A_0 cala e k cresce
- Se A_0 < S si smaltisce più traffico di quello nuovo in arrivo \Rightarrow si trasmettono trame che hanno colliso in precedenza \Rightarrow le stazioni backlogged calano \Rightarrow A_0 cresce e k cala

- 3 punti di stabilità
 - 2 sono stabili
 - 1 instabile
- Un aumento eccessivo di A₀ può portare ad una situazione di troppe collisioni

Controlled Aloha

- Per ovviare al problema dell'instabilità si possono usare varie tecniche
- Una delle più semplici è fare crescere il tempo di back-off
 - Alla prima collisione si pone $T_b = T_0$
 - Se la trama ritrasmessa collide di nuovo si pone $T_b = 2T_0$ e si continua a raddoppiare T_b ad ogni nuova collisione
 - Quando la trasmissione ha successo si ritorna a T_b = T₀
 - Nel caso slotted si puo dimezzare p_b ad ogni collisione
- Questo algoritmo si dice back-off esponenziale e si può dimostrare che elimina l'instabilità
 - Può fare sorgere problemi di fairness: una stazione che ha subito molte collisioni viene tagliata fuori dalle trasmissioni

- Il protocollo Aloha può essere implementato su qualunque mezzo trasmissivo e qualunque topologia
- Ha una efficienza piuttosto bassa ma è circa quanto di meglio si può fare quando i ritardi di propagazione sono grandi come nel caso del satellite
- Se lo si vuole applicare ad una rete locale conviene sfruttare la conoscenza che ogni stazione può acquisire sull'attività delle altre
- Nasce così il protocollo CSMA Carrier Sensing Multiple Access
 - Viene proposto su una topologia a Bus bidirezionale
 - È ancora un protocollo ad accesso casuale a contesa

CSMA: Carrier Sensing Multiple Access

- Carrier sensing
 - Ogni stazione che debba trasmettere rivela presenza di segnale sul bus e trasmette solo se è libero
 - Se il bus è occupato si aspetta la fine della trama e poi
 - Si trasmette (caso 1 persistent)
 - Si fa partire l'algoritmo di back off (caso non persistent o 0 persistent)
 - Si trasmette con probabilità p e si fa partire l'algoritmo di back off con probabilità (1-p) (caso p persistent)
- Una volta iniziata la trasmissione, i dati inviati da una stazione possono collidere con quelli di un'altra
 - Questo avviene a causa del ritardo di propagazione non nullo
 - Sul bus non c'è un meccanismo immediato di rivelazione delle collisioni: occorre affidarsi a un sistema di Acknowledgement
- L'algoritmo di back-off può essere come quello dell'Aloha con $T_b >> 2\tau$

CSMA: intervallo di vulnerabilità

- Chiamiamo A e Z le due stazioni più distanti sul Bus e τ il tempo di propagazione fra di loro + il tempo necessario per rivelare il segnale
- A esegue il carrier sensing nell'istante t_A
 - Se Z fa carrier sensing fra t_A e $t_A+\tau$ non rileva attività e può quindi anch'essa iniziare a trasmettere: si ha collisione
 - Analogamente se Z ha trasmesso fra t_A e t_A - τ A non rileva il segnale di Z e trasmette in t_A : si ha collisione
- L'intervallo di vulnerabilità vale 2τ
- Le prestazioni sono tanto migliori dell'Aloha quanto più

$$\tau/T < 1$$

- In generale le prestazioni dipendono anche dal valore di p

Utilizzazione del canale per Aloha e CSMA

Versione slotted e problemi di stabilità

- Anche per il CSMA esiste la versione slotted
- In questo caso la misura più opportuna del tempo di slot è τ
- L'intervallo di vulnerabilità vale τ invece che 2τ

- Anche per il CSMA come per tutti i protocolli a contesa ci sono problemi di stabilità
- Si può usare un algoritmo di back-off esponenziale

CSMA/CD: CSMA con Collision Detect

 Un miglioramento del CSMA è stato proposto da Metcalfe nel 1976

Collision Detection:

- Una stazione è in grado di rilevare l'avvenuta collisione rimanendo in ascolto sul mezzo mentre trasmette
- E' un processo analogico basato sulla rilevazione di potenza sul canale (facilitato anche dalla codifica di Manchester adottata)

In caso di collisione:

- si ferma subito la trasmissione
- si invia una particolare sequenza di bits (jamming) per informare tutte le altre stazioni dell'avvenuta collisione

Codifica di Manchester

- Rappresentazione dei bit
 - "0" logico: segnale basso (-0.85 Volt) per mezzo tempo di simbolo e segnale alto (+0.85 Volt) per l'altro mezzo
 - "1" logico: segnale alto per mezzo tempo di simbolo e poi segnale basso
- Vantaggi
 - Una transizione al centro di ogni bit, che può essere rivelata mediante un derivatore, facilita
 - L'acquisizione del sincronismo
 - Il carrier sensing
 - · Il collision detection
 - Sono disponibili simboli (alto alto e basso basso) per rappresentare non dati
- Svantaggi
 - Per trasmettere a 10 Mbit/s occorre un clock a 20 MHz
- Il protocollo CSMA/CD con codifica di Manchester è stato adottato nella rete Ethernet, standard di mercato per le LAN

Cosa migliora nel CSMA-CD

- Nei casi in cui avviene collisione
 - Nel CSMA le stazioni continuano la trasmissione dell'intera trama
 - Il canale rimane impegnato inutilmente per un intervallo di tempo all'incirca pari a T
 - Nel CSMA/CD
 - Al più il canale rimane impegnato inutilmente al più per la somma di
 - Un intervallo di vulnerabilità ()
 - Il tempo necessario a rilevare la collisione più il tempo della sequenza di Jamming (T_{CD})

