Discrete Mathematics HW2

20180617 You SeungWoo

September 16, 2023

Problem 1

Proof. Proof by strong induction. For P(j), consider j=1. Then since $\frac{1}{b} < 1 \le \sqrt{2}$ for $\forall b \in \mathbb{Z}^+$, $\sqrt{2} \ne \frac{1}{b}$ for $\forall b \in \mathbb{Z}^+$. So j=1 is true.

Suppose $j = 1, 2, \dots, n$ is true. Consider j = n + 1. We use contradiction. i.e. assume that:

$$P(j)$$
 is true for $j = 1, 2, \dots, n \Rightarrow P(n+1)$ is false. (1)

It follows

$$P(n+1) \text{ is false.}$$

$$\Rightarrow \sqrt{2} = \frac{n+1}{b} \text{ for some } b \in \mathbb{Z}^+$$

$$\Rightarrow 2b^2 = (n+1)^2 \text{ for some } b \in \mathbb{Z}^+$$

$$\Rightarrow (n+1)^2 \text{ is divisible by 2}$$

$$\Rightarrow n+1 \text{ is divisible by 2}$$

$$\Rightarrow n+1 = 2t \text{ for some } t \in \mathbb{Z}^+$$

$$\Rightarrow 2b^2 = 4t^2 \text{ for some } b, t \in \mathbb{Z}^+$$

$$\Rightarrow b^2 = 2t^2 \text{ for some } b, t \in \mathbb{Z}^+$$

$$\Rightarrow b^2 \text{ is divisible by 2}$$

$$\Rightarrow b \text{ is divisible by 2}$$

$$\Rightarrow b = 2s \text{ for some } s \in \mathbb{Z}^+$$

$$\Rightarrow \sqrt{2} = \frac{n+1}{b} = \frac{2t}{2s} = \frac{t}{s} \text{ for some } b, t, s \in \mathbb{Z}^+.$$

Since $n+1=2t,\, t=\frac{n+1}{2}\leq n$ is true for $\forall n\in\mathbb{Z}^+$. But it contradicts to the assumption (1). This implies the following:

P(j) is true for $j = 1, 2, \dots, n \Rightarrow P(n+1)$ is true.

Problem 2 to 7

solution. They are very easy or useless problem, just for insight or challenge. Therefore, I skip them as I said in class

Problem 8

- (a) solution. Let $P(n) = 2 \lg n + 4n + 3n \lg n$. Since $0 + 0 + 3n \lg n \le P(n)$ for $n \ge 1$, $P(n) = \Omega(n \lg n)$. Since $P(n) \le 2n \lg n + 4n \lg n + 3n \lg n = 9n \lg n$ for $n \ge 2$, $P(n) = O(n \lg n)$. Therefore, $P(n) = \Theta(n \lg n)$.
- (b) solution. Let $P(n) = \frac{(n^2 + \lg n)(n+1)}{n+n^2}$ Note that $P(n) = \frac{n^2 + \lg n}{n} = n + \frac{\lg n}{n}$ for $n \ge 1$. Since $n + 0 \le P(n)$ for $n \ge 1$, $P(n) = \Omega(n)$. Since $\lg n \le n^2$ for $n \ge 1$ (you don't have to prove this, but you can do by using induction! Try it.), $P(n) \le n + \frac{n^2}{n} = n + n = 2n$ for $n \ge 1$, so P(n) = O(n). Therefore, P(n) = O(n).
- (c) solution. Let $P(n) = 2 + 4 + 8 + 16 + \dots + 2^n$. Note that $P(n) = \sum_{i=1}^n 2^i = \frac{2(2^n 1)}{2 1} = 2^{n+1} 2$. Since $2 \le 2^n$ for $n \ge 1$, $P(n) \ge 2 \cdot 2^n 2^n = 2^n$ for $n \ge 1$, so $P(n) = \Omega(2^n)$. Since $P(n) \ge 2 \cdot 2^n + 0$, $P(n) = O(2^n)$. Therefore, $P(n) = \Theta(2^n)$.