The business outcomes

- 1. Analyze how much time is spent per ride
 - 1. Based on date and time factors such as day of week and time of day
 - 2. Based on which station is the starting and / or ending station
 - 3. Based on age of the rider at time of the ride
 - 4. Based on whether the rider is a member or a casual rider
- 2.Analyze how much money is spent
 - 1. Per month, quarter, year
 - 2. Per member, based on the age of the rider at account start
- 3.EXTRA CREDIT Analyze how much money is spent per member
 - 1. Based on how many rides the rider averages per month
 - 2. Based on how many minutes the rider spends on a bike per month

Relational ERD for the Divvy Bikeshare Dataset (with fake data tables)

Star schema based on the relational diagram and the business problems

Analyze how much time is spent per ride

- 1. Based on date and time factors such as day of week and time of day
- 2. Based on which station is the starting and / or ending station
- 3. Based on age of the rider at time of the ride
- 4. Based on whether the rider is a member or a casual rider

Rider_dimension

riderid int

birthday Date

member bit

startdate Date

AccountStartAge tynyint

Station_dimension
stationid varchar(50)
name varchar(100)

Analyze how much money is spent

Year

Month

Quarter

1. Per month, quarter, year

smallint

tinyint

tinyint

2. Per member, based on the age of the rider at account start

EXTRA CREDIT - Analyze how much money is spent per member

date

- 1. Based on how many rides the rider averages per month
- Based on how many minutes the rider spends on a bike per month

EXTRA CREDIT - Analyze how much money is spent per member

- 1. Based on how many rides the rider averages per month
- 2. Based on how many minutes the rider spends on a bike per month

