ΕΞΙΣΩΣΕΙΣ

20 Αυγούστου 2015

$\textbf{EEIS} \boldsymbol{\Omega} \boldsymbol{\Sigma} \textbf{EIS} \overset{ov}{} \textbf{BA} \boldsymbol{\Theta} \textbf{MO} \boldsymbol{\Upsilon}$

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΤΡΙΩΝΥΜΟ 200 ΒΑΘΜΟΥ

Τριώνυμο 2°υ βαθμού ονομάζεται κάθε πολυώνυμο 2°υ βαθμού με τρεις όρους και είναι της μορφής

$$ax^2 + \beta x + \gamma \mu \epsilon \ a \neq 0$$

- Οι πραγματικοί αριθμοί $a, \beta, \gamma \in \mathbb{R}$ ονομάζονται συντελεστές του τριωνύμου.
- Ο συντελεστής $\gamma \in \mathbb{R}$ ονομάζεται σταθερός όρος.

ΟΡΙΣΜΟΣ 2: ΕΞΙΣΩΣΗ 2ου ΒΑΘΜΟΥ

Εξίσωση 2^{ov} βαθμού με έναν άγνωστο ονομάζεται κάθε πολυωνυμική εξίσωση της οποίας η αλγεβρική παράσταση είναι τριώνυμο 2^{ov} βαθμού. Είναι της μορφής :

$$ax^2 + \beta x + \gamma = 0$$
 , $a \neq 0$

ΟΡΙΣΜΟΣ 3: ΔΙΑΚΡΙΝΟΥΣΑ

Διακρίνουσα ενός τριωνύμου 2^{ου} βαθμού ονομάζεται ο πραγματικός αριθμός

$$\Delta = \beta^2 - 4a\gamma$$

Το πρόσημό της μας επιτρέπει να διακρίνουμε το πλήθος των ριζών του τριωνύμου.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΛΥΣΕΙΣ ΕΞΙΣΩΣΗΣ 200 ΒΑΘΜΟΥ

Αν $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μια εξίσωση 2^{ov} βαθμού τότε με βάση το πρόσημο της διακρίνουσας έχουμε τις παρακάτω περιπτώσεις για το πλήθος των λύσεων της :

1. Αν $\Delta > 0$ τότε η εξίσωση έχει δύο άνισες λύσεις οι οποίες δίνονται από τον τύπο :

$x_{1,2} =$	$-\beta \pm \sqrt{\Delta}$
	$\overline{}$

2. An $\Delta=0$ tóte h exispan écei mia diplá lúsh tha

$$x = -\frac{\beta}{a}$$

Διακρίνουσα	Πλήθος λύσεων	Λύσεις
$\Delta > 0$	2 λύσεις	$x_{1,2} = \frac{-\beta \pm \sqrt{\Delta}}{2a}$
$\Delta = 0$	1 διπλή λύση	$x = -\frac{\beta}{a}$
$\Delta < 0$	Καμία λύση	

3. Αν $\Delta < 0$ τότε η εξίσωση είναι αδύνατη στο σύνολο \mathbb{R} . Οι περιπτώσεις αυτές φαίνονται επίσης στον παραπάνω πίνακα :

1

ΘΕΩΡΗΜΑ 2: ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ ΤΡΙΩΝΥΜΟΥ

Ένα τριώνυμο της μορφής $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μπορεί να γραφτεί ως γινόμενο παραγόντων σύμφωνα με τον παρακάτω κανόνα :

1. Αν η διακρίνουσα του τριωνύμου είναι θετική ($\Delta > 0$) τότε το τριώνυμο παραγοντοποιείται ως εξής

$$ax^{2} + \beta x + \gamma = a(x - x_{1})(x - x_{2})$$

όπου x_1, x_2 είναι οι ρίζες του τριωνύμου.

2. Αν η διακρίνουσα είναι μηδενική ($\Delta = 0$) τότε το τριώνυμο παραγοντοποιείται ως εξής :

$$ax^{2} + \beta x + \gamma = a(x - x_{0})^{2}$$

όπου x₀ είναι η διπλή ρίζα του τριωνύμου.

3. Αν η διακρίνουσα είναι αρνητική ($\Delta < 0$) τότε το τριώνυμο δεν γράφεται ως γινόμενο πρώτων παραγόντων.

ΘΕΩΡΗΜΑ 3: ΤΥΠΟΙ VΙΕΤΑ

Έστω $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μια εξίσωση 2^{ov} βαθμού. Αν x_1, x_2 είναι οι λύσεις της εξίσωσης τότε το άθροισμα S των δύο λύσεων ισούται με $-\frac{\beta}{a}$ ενώ το γινόμενό τους P είναι ίσο με $\frac{\gamma}{a}$.

$$S = x_1 + x_2 = -\frac{\beta}{a}$$
, $P = x_1 \cdot x_2 = \frac{\gamma}{a}$

Οι παραπάνω σχέσεις ονομάζονται τύποι του Vieta.

ΘΕΩΡΗΜΑ 4: ΕΞΙΣΩΣΗ 200 ΒΑΘΜΟΎ ΜΕ ΔΟΣΜΕΝΕΣ ΛΥΣΕΙΣ

Εαν $x_1, x_2 \in \mathbb{R}$ είναι δύο πραγματικοί αριθμοί τότε η εξίσωση 2^{ov} βαθμού η οποία έχει λύσεις τους αριθμούς αυτούς δίνεται από τον τύπο :

$$x^2 - Sx + P = 0$$

ΘΕΩΡΗΜΑ 5: ΕΙΔΟΣ ΛΥΣΕΩΝ ΕΞΙΣΩΣΗΣ 200 ΒΑΘΜΟΥ

Εαν $ax^2 + \beta x + \gamma = 0$ με $a \neq 0$ μια εξίσωση 2^{ov} βαθμού, $x_1, x_2 \in \mathbb{R}$ είναι οι λύσεις της, S το άθροισμα και P το γινομενό τους τότε ισχύουν οι παρακάτω συνθήκες για το είδος των λύσεων της :

Δ	P	S	Είδος λύσεων	Συμβολισμός
		S > 0	Δύο θετικές πραγματικές	$x_1 > x_2 > 0$
	P > 0	S < 0	Δύο αρνητικές λύσεις	$x_1 < x_2 < 0$
	S = 0	Αδύνατη περίπτωση		
		S > 0	Ετερόσημες (όχι αντίθετες)	$x_1 < 0 < x_2$, $ x_2 < x_1 $
$\Delta > 0$	P < 0	S < 0		$x_1 < 0 < x_2$, $ x_1 < x_2 $
$\Delta > 0$		S = 0	Αντίθετες	$x_1 = -x_2$

	P=0	S > 0	Μηδενική και θετική	$x_1 = 0 , x_2 > 0$
		S < 0	Μηδενική και αρνητική	$x_1 = 0$, $x_2 < 0$
		S = 0	Αδύνατη περίπτωση	
	$P=1$ Αντίστροφες $x_1=rac{1}{x_2}$		$x_1 = \frac{1}{x_2}$	
	P > 0 $S < 0$	S > 0	Θετικές και ίσες	$x_1 = x_2 > 0$
		S < 0	Αρνητικές και ίσες	$x_1 = x_2 < 0$
	P = 0	S = 0	Μηδενικές	$x_1 = x_2 = 0$
$\Delta < 0$	Αδύνατη στο $\mathbb R$			

ΜΕΘΟΔΟΛΟΓΙΑ

MEΘΟ Δ ΟΣ 1:

1ο Βήμα :