Tutorial II EABCN Training School

Christian Wolf

June 2018

Tutorial Objectives

- 1. A systematic way of thinking about transition dynamics
 - Reduce to system of $n_x \times T$ equations in $n_x \times T$ unknowns
 - Interpretation: certainty equivalence, but keep non-linearity
 - How to solve systems of equations? Newton updating
- 2. Jacobians in simple models
 - Easy to obtain using automatic differentiation/finite differences
 - Get solution in one step for linearized model
- 3. Updating heterogeneous-agent models
 - Get full Jacobian using automatic differentiation/finite differences
 - Update using Jacobian from limiting rep-agent model [Auclert and Rognlie (2018)]
 - Discuss coding implementation
- 4. The economics of Jacobians [Auclert et al. (2018), Koby and Wolf (2018)]

- Transition Dynamics: Getting Started
 Two Examples
 Relation to Perturbation
 Solution Ideas
- 2. A Representative-Agent Discrete-Time Model
- Transition Dynamics in Heterogeneous-Agent Models
 A Heterogeneous-Household Model
 Fudge Models
- The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

1. Transition Dynamics: Getting Started

Two Examples
Relation to Perturbation
Solution Ideas

- 2. A Representative-Agent Discrete-Time Mode
- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

Transition Dynamics: Getting Started
 Two Examples

Relation to Perturbation Solution Ideas

- 2. A Representative-Agent Discrete-Time Model
- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

The Krusell-Smith Model

The problem of households is

$$\max \mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} u(c_{it}) dt \right]$$

such that

$$\dot{a}_{it} = r_t a_{it} + w_t y_{it} - c_{it}
a_{it} \ge 0$$

- The firm sector is completely standard
 - Single representative firm with production function

$$Y_t = e^{z_t} K_t^{\alpha} L_t^{1-\alpha}$$

- Firms rent capital at rate $r_t + \delta$ and hire labor at wage w_t
- TFP evolves exogenously

$$dz_t = -\theta_z z_t dt + \sigma_z dW_t^z$$

The Krusell-Smith Model

Market-clearing dictates that

$$L_{t} = \int_{\mathcal{S}} y(s)d\lambda(s) \equiv 1$$

$$K_{t} = \int_{\mathcal{S}} a(s)d\lambda(s)$$

$$Y_{t} = C_{t} + \delta K_{t} + \dot{K}_{t}$$

• We study transition dynamics after a completely unexpected TFP shock

.

The Krusell-Smith Model

Market-clearing dictates that

$$L_{t} = \int_{\mathcal{S}} y(s)d\lambda(s) \equiv 1$$

$$K_{t} = \int_{\mathcal{S}} a(s)d\lambda(s)$$

$$Y_{t} = C_{t} + \delta K_{t} + \dot{K}_{t}$$

- We study transition dynamics after a completely unexpected TFP shock
- · Suffices to guess interest rate path and clear capital market
 - o Given $\{r_t\}_{t=0}^T$ get $\{w_t\}_{t=0}^T$ via

$$r_t + \delta = \alpha e^{z_t} K_t^{\alpha - 1} L_t^{1 - \alpha}, \quad w_t = (1 - \alpha) e^{z_t} K_t^{\alpha} L_t^{-\alpha}$$

- Firm side gives $\{K_t^D\}_{t=0}^T$, solve household side to get $\{A_t\}_{t=0}^T = \{K_t^S\}_{t=0}^T$
- \circ Everything has been reduced to a system of $\frac{T}{dt}$ equations in $\frac{T}{dt}$ unknowns

$$K^{D}(\{r_{t}\}_{t=0}^{T}) = K^{S}(\{r_{t}\}_{t=0}^{T})$$

The Khan-Thomas Model

• The problem of households is

$$\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t \left\{ \frac{C_t^{1-\gamma} - 1}{1-\gamma} - \chi \frac{L_t^{1+\frac{1}{\varphi}}}{1+\frac{1}{\varphi}} \right\} \right]$$

such that

$$A_{t+1} + C_t = (1 + r_t)A_t + w_tL_t + D_t$$

• The problem of firms is

$$\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \frac{1}{\prod_{s=1}^{t-1} (1+r_s)} d_{it} \right]$$

such that

$$d_{it} = e^{z_{it}} \left(k_{it}^{\alpha} \ell_{it}^{1-\alpha} \right)^{\nu} - w_t \ell_{it} + (1-\delta) k_{it} - k_{it+1} - \phi(k_{it}, k_{it+1})$$

giving aggregate output, capital and dividends

$$Y_t = \int_{\mathcal{S}} e^{z(s)} \left(k(s)^{\alpha} \ell(s)^{1-\alpha} \right)^{\nu} d\lambda(s), \quad K_t = \int_{\mathcal{S}} k(s) d\lambda(s), \quad D_t = \int_{\mathcal{S}} d(s) d\lambda(s)$$

The Khan-Thomas Model

Market-clearing dictates that

$$L_{t} = \int_{S} \ell(s) d\lambda(s)$$

$$A_{t} = 0$$

$$Y_{t} = C_{t} + \underbrace{K_{t+1} - (1 - \delta)K_{t}}_{\equiv I_{t}}$$

We study transition dynamics after a completely unexpected TFP shock

The Khan-Thomas Model

Market-clearing dictates that

$$L_{t} = \int_{S} \ell(s) d\lambda(s)$$

$$A_{t} = 0$$

$$Y_{t} = C_{t} + \underbrace{K_{t+1} - (1 - \delta)K_{t}}_{\equiv I_{t}}$$

- We study transition dynamics after a completely unexpected TFP shock
- Suffices to guess consumption path and clear output market
 - o Given $\{C_t\}_{t=0}^T$, get $\{r_t\}_{t=0}^T$ and $\{w_t\}_{t=0}^T$ via

$$C_t^{-\gamma} = \beta (1 + r_{t+1}) C_{t+1}^{-\gamma}, \quad \chi = w_t C_t^{-\gamma}$$

- Solve firm side to get $\{K_t\}_{t=1}^T$, $\{Y_t\}_{t=0}^T$
- Everything has been reduced to a system of T equations in T unknowns

$$C = Y({C_t}_{t=0}^T) - I({C_t}_{t=0}^T)$$

1. Transition Dynamics: Getting Started

Two Examples

Relation to Perturbation

Solution Ideas

- 2. A Representative-Agent Discrete-Time Mode
- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

MIT Shocks vs. Perturbation

- How do MIT transition paths to TFP shock relate to normal linearization?
 - Both feature certainty-equivalence, MIT shock keeps non-linearity
 - o Result: solutions are identical for infinitesimal shocks
 - Intuition: certainty equivalence + Taylor's theorem

Attractions of MIT shocks

- Can study size-/sign-/state-dependence of shocks
- Sometimes reveals interesting economics (later)
- Lends itself to sufficient-statistics decompositions (later)

Drawbacks of MIT shocks

- Not as convenient to study existence/uniqueness
- Usually slower than perturbation
- VMA representation vs. state-space representation for estimation (later)

1. Transition Dynamics: Getting Started

Two Examples
Relation to Perturbation
Solution Ideas

- 2. A Representative-Agent Discrete-Time Model
- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

Solving for Transition Dynamics

We have successfully reduced the problem:

$$F(\underbrace{X}_{(T \cdot n_x) \times 1}) = \underbrace{0}_{(T \cdot n_x) \times 1}$$

- How are we supposed to find the solution?
 - 1. Standard approach: "trial-and-error"
 - Look at market-clearing period-by-period
 - o Adjust prices: down if excess supply, up if excess demand
 - Example: higher (lower) rate if too little (much) savings
 - 2. A smarter approach: Newton updating
 - Why not treat it like a normal root-finding problem?
 - Use Jacobian updating:

$$X_{i+1} = X_i - F_X^{-1} \times F(X_i)$$

 Transition Dynamics: Getting Started Two Examples Relation to Perturbation Solution Ideas

2. A Representative-Agent Discrete-Time Model

- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

Model

- Environment: neoclassical growth model
 - Conventional representative household
 - Representative firm with DRS and adjustment costs
 - \circ Linearize everything \rightarrow identical to perturbation solution
- · Codes/model set up in a way to generalize to heterogeneous-firm model
- Code structure
 - 1. Map consumption sequence into prices
 - Get SDF immediately
 - From SDF easy to get r, w
 - 2. Map prices into firm behavior
 - Solve out labor statically
 - Get capital FOC to reduce to system $A \times k = b$
 - From k back out ℓ , y and i
 - 3. Aggregate firm behavior into net output supply

- Transition Dynamics: Getting Started Two Examples Relation to Perturbation Solution Ideas
- 2. A Representative-Agent Discrete-Time Model
- 3. Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

- Transition Dynamics: Getting Started Two Examples Relation to Perturbation Solution Ideas
- 2. A Representative-Agent Discrete-Time Model
- 3. Transition Dynamics in Heterogeneous-Agent Models
 A Heterogeneous-Household Model
 Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

A Heterogeneous-Household Model

- Model environment: simple Huggett economy
 - Exogenous labor income for all households, 0 net supply of savings
 - o Interest rate is set to clear markets at all time
 - Experiment: transition path after change in value of second income state
- We'll walk through two sets of almost identical codes
 - 1. Solve for initial and target distribution
 - 2. Guess initial path for interest rate r_0
 - 3. (a) Find matrix A with entries

$$A_{i,j} = \frac{\partial \text{ net asset demand in } i}{r_j}$$

evaluated at guess r_0 , Newton-update with fixed A until convergence

(b) Compute period-by-period excess demand/supply and adjust rates period by period depending on static departure from market-clearing

- Transition Dynamics: Getting Started Two Examples Relation to Perturbation Solution Ideas
- 2. A Representative-Agent Discrete-Time Model
- 3. Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

The Basic Idea

- Proper Jacobian updating in heterogenous-agent models is prohibitive
 - Would need to differentiate many highly complicated functions, and so many times (once for each updating step)
 - o Previous codes used mini-fudge: use first-step updating matrix throughout
 - Take it further: use Jacobian from limiting representative-agent model [Auclert and Rognlie (2018)]
- Loose intuition on why it may work
 - $\circ~$ In firm application: Jacobian has entries $\frac{d(Y-I)_i}{dC_i}$
 - Collapses two parts: how prices respond to consumption, and how production responds to prices
 - First block is identical across models, second block may be roughly similar
 - Example: interest rates crowd out investment in rep- and het-agent models
- Ultimately trial-and-error: if it converges you're done!
 - That's a drawback: not as robustly general-purpose as perturbation

- Transition Dynamics: Getting Started Two Examples Relation to Perturbation Solution Ideas
- 2. A Representative-Agent Discrete-Time Model
- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

- Transition Dynamics: Getting Started Two Examples Relation to Perturbation Solution Ideas
- 2. A Representative-Agent Discrete-Time Model
- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

The Intertemporal Keynesian Cross

- Environment: Ultra-Keynesian 1-asset model [Auclert et al. (2018)]
 - o Household problem:

$$\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t u(c_{it}) \right]$$

such that

$$a_{it+1} = \frac{1 + i_{t-1}}{1 + \pi_t} a_{it} + w_t \ell_{it} - c_{it}, \quad a_{it+1} \ge 0$$

 $\ell_{it} = \ell_i(\ell_t)$

- Firm problem: $\max y_t w_t \ell_t$
- Rigid prices and wages: $\pi_t = 0$, $w_t = 1$
- o Central bank sets $\{i_t\}$ and so $\{r_t\}$
- Need to only iterate over aggregate output path $\{y_t\}$
 - $\circ \{y_t\}$ gives $\{\ell_t\}$ and $\{\ell_{it}\}$ for all i
 - o Given $\{\ell_{it}\}$ and $\{r_t\}$ we find $\{c_{it}\}$ and so $\{c_t\}=\{y_t\}$

The Intertemporal Keynesian Cross

- So we've reduced the equilibrium to a system like this: Y = C(Y)
- Let's take a first-order approximation to this system:

$$dY = \frac{\partial C}{\partial Y}dY + \frac{\partial C}{\partial r}dr$$

- We can thus restrict attention to two very interesting objects:
 - 1. Partial equilibrium impact: $\frac{\partial C}{\partial r} dr$
 - How do households response to a change in interest rates?
 - Micro evidence suggests that these responses may not be big
 - 2. GE adjustment/Keynesian multiplier: $\frac{\partial C}{\partial Y}dY$
 - More consumption leads to more income, which leads to more consumption
 - o Dynamic relationship is summarized by the matrix $\mathcal{M} = \frac{\partial \mathcal{C}}{\partial Y}$
 - \circ This is the intertemporal Keynesian cross: dC_i/dY_j
- Empirical discipline: dC/dr and MPCs (dC/dY)

Applications

- Transparent framework to see micro irrelevance results [Werning (2016)]
 - \circ Fraction λ of HtM households, rest is conventional
 - Weaker PE effect: $\frac{\partial C}{\partial r} = (1 \lambda) \frac{\partial C^{\text{RANK}}}{\partial r}$
 - Bigger GE multiplier: $\frac{\partial C}{\partial Y} = \lambda I + (1 \lambda) \frac{\partial C^{RANK}}{\partial Y}$
 - Putting everything together:

$$dY = (I - \lambda I - (1 - \lambda)\frac{\partial C^{\text{RANK}}}{\partial Y})^{-1}(1 - \lambda)\frac{\partial C^{\text{RANK}}}{\partial r} = dY^{\text{RANK}}$$

- May help understand MP bank transmission puzzle [Koby and Wolf (2018)]
 - o Sluggish + incomplete pass-through of rate changes through banking sector
 - Result: does not impair aggregate transmission if transmission to rate-responsive agents is complete

- Transition Dynamics: Getting Started Two Examples Relation to Perturbation Solution Ideas
- 2. A Representative-Agent Discrete-Time Model
- Transition Dynamics in Heterogeneous-Agent Models A Heterogeneous-Household Model Fudge Models
- 4. The Economics of Updating Matrices MPCs and the M-Matrix Price Sensitivity and Firm Behavior

Model Set-Up

Recall the basic Khan-Thomas economy:

$$C = Y(C,\varepsilon) - I(C,\varepsilon) \equiv \tilde{Y}(C,\varepsilon)$$

Again do a first-order expansion:

$$dC = \frac{\partial Y}{\partial \varepsilon} d\varepsilon + \frac{\partial Y}{\partial C} dC$$

- PE impact features interesting asymmetries
- $\circ~$ GE adjustment: $\mathcal{G}\equiv\frac{\partial Y}{\partial C}=\frac{\partial Y}{\partial \rho}\circ\frac{\partial p}{\partial C}$
- Now compare with a conventional growth model:

$$dC = dC_{\text{ref}} + \mathcal{G} \times \underbrace{\left(\tilde{Y}_{\varepsilon} \times d\varepsilon - \mathcal{G}^{-1} \times d\tilde{Y}_{\text{ref}}\right)}_{\text{supply - demand at } p_{\text{ref}}} \equiv dC_{\text{ref}} + \mathcal{G} \times \xi_{\text{ref}}$$

- \circ Different behavior at given prices: ξ_{ref}
- \circ GE adjustment to changes in prices: $\mathcal G$

Irrelevance Results

- Price sensitivity on the firm side
 - Investment in conventional neoclassical models is very price-sensitive

$$\frac{\partial \log(i)}{\partial r} = -\frac{1}{1-\nu} \frac{1}{\delta} \frac{1}{r+\delta} \approx -300\%$$

- Popular micro frictions (lumpy AC, financial frictions) don't change this
- · Fringe of neoclassical firms dominates the equilibrium
 - o Setting: neoclassical growth model, no AC, $\nu < 1$, fraction of $\xi < 1$ does not follow optimal investment rule
 - Result: as $\nu \to 1$, the equilibrium becomes independent of ξ
- Important implications for heterogeneous-firm models
 - o Explains well-known irrelevance results as coming from price sensitivity
 - o Micro identification suggests dampened elasticity: PE matters for GE
 - Suggests that all heterogeneous-form modeling should feature substantial micro frictions to (capital) adjustment

Thanks for your attention – Questions?