

EL5206-1 Laboratorio de Inteligencia Computacional y Robótica

Unidad 2: Procesamiento de Imágenes

Actividad de Laboratorio 3

Profesor: Claudio Pérez F. Auxiliar: Juan Pablo Pérez.

Diseño Experiencia: Carlos Aravena C. - Juan Pablo Pérez.

Parte 1: Detección de movimiento con diferencia de cuadros y modelo de fondo

El objetivo de esta Actividad de Laboratorio es implementar y analizar algoritmos simples de detección de movimiento y tracking de objetos. Debe descargar el archivo Lab-Mov.zip que contiene las secuencias de video para trabajar sobre ellas. Para esta actividad deberá convertir las imágenes de color de entrada en imágenes en escala de grises.

- 1. Implemente un detector de movimiento por diferencia de cuadros y aplíquelo sobre la secuencia de imágenes (carpetas seq1, seq2 y seq3). Muestre ejemplos de detección de movimiento y explique la forma que adoptan los pixeles de primer plano.
- Utilizando la secuencia de imágenes de la carpeta "fondo", genere un modelo de fondo de dos matrices calculando el promedio de los cuadros (matriz 1) y la desviación estándar (matriz 2). Elija un umbral apropiado y aplíquelo para detectar movimiento sobre las secuencias de imágenes. Entregue las matrices del modelo de fondo. Muestre ejemplos de detección de movimiento y explique la forma que adoptan los pixeles de primer plano.
- 3. Usando la detección de movimiento anterior, calcule el histograma proyectado por columnas (suma de pixeles por columna) y el histograma proyectado por filas (suma de pixeles por fila) Con esta información, encierre en una caja de dimensiones adecuadas el blob de la detección de movimiento.
- 4. Utilizando la información de la posición de la caja en el cuadro actual y la de los cuadros anteriores, estime la posición del objeto para el cuadro siguiente. Dibuje la caja estimada y compárela con la obtenida usando el procedimiento descrito en 3. Comente.

5. Utilice el detector por diferencia de cuadros implementado y aplíquelo sobre las secuencias de imágenes seq4, seq5, seq6 y seq7. Muestre ejemplos de detección de movimiento y explique la forma que adoptan los pixeles de primer plano. Obtenga los bounding boxes de cada blob. Identifique los principales problemas de utilizar este método sobre estas secuencias.

Parte 2: Tracking de personas basado en Deep Learning.

Para poder realizar esta parte es necesario utilizar el entorno virtual de Google Colaboratory.

Prueba con CNN para Detectar de objetos

6. Utilice la red neuronal convolucional entrenada con la base de datos MS-COCO en las imágenes de la carpeta examples y visualice los resultados. Para esto siga los pasos del notebook Colab CNN.ipynb.

Detector + Tracking

- 7. Utilice el método de tracking de personas basado en Deep Learning, sobre las imágenes de seq4, seq5, seq6 y seq7. Para esto, genere un video en formato MP4 con una tasa de 25 fps y siga los pasos del notebook DeepLearning Tracking.ipynb
- 8. Obtenga y almacene las detecciones de cada cuadro y compárelas con las obtenidas en el punto 5.

Fecha de Entrega: Martes 11 de Octubre a las 23:59, por ucursos.