Data Mining and Predictive Modelling

Data Preprocessing

- Data Preprocessing
 - Data Quality
 - Tasks in Data Preprocessing
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization

Data Quality (Measures)

Accuracy: correct or wrong, accurate or not

Completeness: not recorded, unavailable, ...

Consistency: some modified but some not, dangling, ...

Timeliness: timely update?

Believability: how trustable the data are correct?

Interpretability: how easily the data can be understood?

Tasks in Data Preprocessing

- Data Cleaning
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
- Data Integration
 - Integration of multiple databases, data cubes, or files
- Data reduction
 - Dimensionality reduction
 - · Numerosity reduction
 - Data compression
- Data transformation and data discretization
 - Normalization
 - Concept hierarchy generation

Data Cleaning

- The real-world data is highly dirty such as:
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - E.g., Profession="" (missing data)
 - Noisy: containing noise, errors, or outliers
 - E.g., salary= '-10' (an error)
 - Inconsistent: containing discrepancies in codes or names, e.g.,
 - Discrepancy between duplicate records
 - Was rating "1,2,3", given rating "A,B,C"
 - Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

Data is not always available

• E.g., many tuples have no recorded value for several attributes, such as customer income in sales data

Missing data may be due to

- Equipment malfunction
- Inconsistent with other recorded data and thus deleted
- Data not entered due to misunderstanding
- Certain data my not be considered important at the time of entry
- Not register history or changes of the data

Missing data may need to be inferred

Handling missing data

- Ignore the tuple, usually done when class label is missing (when doing classification)— not effective when the % of missing values per attribute varies considerably
- Fill in the missing value manually: tedious + infeasible?
- Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - the attribute mean
 - the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

Noise: random error or variance in a measured variable

Incorrect attribute values may be due to

- faulty data collection instruments
- data entry problems
- data transmission problems
- technology limitation
- inconsistency in naming convention

Other data problems which require data cleaning

- duplicate records
- incomplete data
- inconsistent data

Handling Noisy Data

Binning

- first sort data and partition into (equal-frequency) bins
- then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

Regression

• smooth by fitting the data into regression functions

Clustering

detect and remove outliers

Combined computer and human inspection

 detect suspicious values and check by human (e.g., deal with possible outliers)

Data Cleaning as a Process

Data discrepancy detection

- Use metadata (e.g., domain, range, dependency, distribution)
- · Check field overloading
- Check uniqueness rule, consecutive rule and null rule
- Use commercial tools
 - Data scrubbing: use simple domain knowledge (e.g., postal code, spell-check) to detect errors and make corrections
 - Data auditing: by analyzing data to discover rules and relationship to detect violators (e.g., correlation and clustering to find outliers)

Data migration and integration

- Data migration tools: allow transformations to be specified
- ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface

Integration of the two processes

Iterative and interactive

Data Integration

Data Integration

- Data integration:
 - Combines data from multiple sources into a coherent store
- Schema integration: e.g., A.cust-id ≡ B.cust-#
 - Integrate metadata from different sources
- Entity identification problem:
 - Identify real world entities from multiple data sources
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales, e.g., metric vs. British units

Handling Redundancy in Data Integration

- Redundant data occur often when integration of multiple databases
 - Object identification: The same attribute or object may have different names in different databases
 - Derivable data: One attribute may be a "derived" attribute in another table, e.g., annual revenue
- Redundant attributes may be able to be detected by correlation analysis and covariance analysis
- Careful integration of the data from multiple sources may help reduce/avoid redundancies and inconsistencies and improve mining speed and quality

Correlation Analysis (Nominal Data)

• X² (chi-square) test

$$\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$$

- The larger the X² value, the more likely the variables are related
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
- Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Correlation Analysis (Numeric Data)

Correlation coefficient (also called Pearson's product moment coefficient)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \overline{A})(b_i - \overline{B})}{(n-1)\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n \overline{AB}}{(n-1)\sigma_A \sigma_B}$$

where n is the number of tuples, and are the respective means of A and B, σ_A and σ_B are the respective standard deviation of A and B, and $\Sigma(a_ib_i)$ is the sum of the AB cross-product.

- If $r_{A,B} > 0$, A and B are positively correlated (A's values increase as B's). The higher, the stronger correlation.
- $r_{A,B} = 0$: independent; $r_{AB} < 0$: negatively correlated

Covariance (Numeric Data)

Covariance is similar to correlation

$$Cov(A,B) = E((A-\bar{A})(B-\bar{B})) = \frac{\sum_{i=1}^{n}(a_i-\bar{A})(b_i-\bar{B})}{n}$$

Correlation coefficient: $r_{A,B} = \frac{Cov(A,B)}{\sigma_A\sigma_B}$

where n is the number of tuples, and are 4 he respective mean or **expected values** of A and B, σ_A and σ_B are the respective standard deviation of A and B.

- Positive covariance: If Cov_{A,B} > 0, then A and B both tend to be larger than their expected values.
- Negative covariance: If $Cov_{A,B} < 0$ then if A is larger than its expected value, B is likely to be smaller than its expected value.
- **Independence**: Cov_{A,B} = 0 but the converse is not true:
 - Some pairs of random variables may have a covariance of 0 but are not independent. Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Data Reduction

- **Data reduction**: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction? A database/data warehouse may store terabytes of data. Complex data analysis may take a very long time to run on the complete data set.
- Data reduction strategies
 - Dimensionality reduction, e.g., remove unimportant attributes
 - Wavelet transforms
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data cube aggregation
 - Data compression

Data Reduction: Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- The possible combinations of subspaces will grow exponentially

Dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality reduction techniques

- Wavelet transforms
- Principal Component Analysis
- Supervised and nonlinear techniques (e.g., feature selection)

Data Reduction: Principal Component Analysis

Find a projection that captures the largest amount of variation in data

The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Data Reduction: Attribute Subset Selection

Another way to reduce dimensionality of data

Redundant attributes

- Duplicate much or all of the information contained in one or more other attributes
- E.g., purchase price of a product and the amount of sales tax paid

Irrelevant attributes

- Contain no information that is useful for the data mining task at hand
- E.g., students' ID is often irrelevant to the task of predicting students' GPA

Thank You