Classification

JinYeong Bak

jy.bak@skku.edu

Human Language Intelligence Lab, SKKU

Supervised Learning

- Given: Training data as labeled instances $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$
- Goal: Learn a rule $(f: x \to y)$ to predict outputs y for new inputs x
- Example)
 - Data: ((Blue, Square, 10), yes), . . . ((Red, Ellipse, 20.7), yes)
 - Task: For new inputs (Blue, Crescent, 10), (Yellow, Circle, 12), are they yes/no?

Color	Shape	Size	Label
Blue	Square	10	1
Red	Ellipse	2.4	1
Red	Ellipse	20.7	0
Blue	Crescent	10	?
Yellow	Circle	12	?

Supervised Learning

- Classification: Discrete-valued outputs
- Example)
 - Data: Size and label {(Height, Weight), Cat/Dog}
 - Task: Predict whether an animal is a cat or dog given new size information
 - Method: Finding a linear or nonlinear separator

LOGISTIC REGRESSION

Problem

- Data: Credit card balance, annual income, default or not {(Balance, Income), Default?}
- Task: Predict whether a person will default on his/her credit card payment

Data

- *N*: # training data
- X_1, X_2 : Balance, Income
- *Y*: Default or not
- (x, y): one training data
- $(x_1^{(i)}, x_2^{(i)}, y^{(i)})$: *i*-th training data

<i>X</i> ₁	<i>X</i> ₂	Y
729.52	44361.62	No
817.18	12106.13	No
1570.65	16239.15	Yes
529.25	35704.49	No
785.65	38463.49	No
1321.53	23735.15	Yes
1377.68	41435.26	Yes
:	:	:

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2$
- Problem: Y is not a number, just yes/no
 - The number has properties such as order and gap between elements ex) 1 < 2, 3 1 = 6 4
 - No ordering nor gap between qualitative response ex) yes < no?, yes – no??

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2$
- Problem: Y is not a number, just yes/no
- Solution: Use the probability
 - We want to know whether Y is yes or no
 - -P(Y = yes)
 - Cases
 - $P(Y = yes) \approx 1$: We can say that Y is yes
 - $P(Y = yes) \approx 0$: We can say that Y is no
 - $P(Y = yes) \approx 0.4$: Hmm... we might say that Y is no since the probability is less than half

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2$
- Problems
 - Existence of P(Y = yes) < 0
 - No existence of P(Y = yes) > 0.5

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $Y \approx \beta_0 + \beta_1 X_1 + \beta_2 X_2$
- Problems
 - Existence of P(Y = yes) < 0
 - No existence of P(Y = yes) > 0.5
- Solution: Limit the range of Y
 - Use a function to change the range

$$-\infty < Y < \infty \Rightarrow 0 \le P(Y = yes) \le 1$$

Logistic Function

$$g(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{1 + e^x}$$
$$\frac{d}{dx}g(x) = g(x)(1 - g(x)), 1 - g(x) = g(-x)$$

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $P(Y = yes) \approx g(\beta_0 + \beta_1 X_1 + \beta_2 X_2)$

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $P(Y = yes) \approx g(\beta_0 + \beta_1 X_1 + \beta_2 X_2)$
- Decision boundary
 - $-P(Y = yes) \ge 0.5$: yes
 - P(Y = yes) < 0.5: no

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $P(Y = yes) \approx g(\beta_0 + \beta_1 X_1 + \beta_2 X_2)$
- Idea: Given a data $x^{(i)}$, minimize the difference between $\hat{y}^{(i)}$ and $y^{(i)}$
 - $-\hat{y}^{(i)}$: output of the model with β_0 , β_1 and β_2
 - $-y^{(i)}$: real data output (yes: 1, no: 0)
- Difference: $(y^{(i)} \hat{y}^{(i)})^2 = (y^{(i)} g(\beta_0 + \beta_1 x_1^{(i)} + \beta_2 x_2^{(i)}))^2$
- Method: Find the best β_0 , β_1 and β_2 that minimize the all data difference

$$\underset{\beta_0,\beta_1,\beta_2}{\operatorname{arg\,min}} \sum_{i}^{N} \left(y^{(i)} - g \left(\beta_0 + \beta_1 x_1^{(i)} + \beta_2 x_2^{(i)} \right) \right)^2$$

Cannot use gradient-descent algorithm since it is non-convex

Maximum Likelihood Estimation

- Likelihood function
 - $-P(Y^{(i)}|X^{(i)},\beta)$
 - Probability of outcome $(Y^{(i)})$ when the model parameters are (β) and input is $(X^{(i)})$
- Maximum Likelihood Estimation
 - $-\arg\max_{\beta}P(Y^{(i)}|X^{(i)},\beta)$
 - Find the parameters that maximize the probability of outcome data from the model that has the parameters and input data

Maximum Likelihood Estimation

- Logistic regression
 - Maximize the likelihood function
 - Find the parameters that maximize the probability of outcome data from the model that has the parameters and input data
- Linear regression
 - Minimize the loss function
 - Find the parameters that minimize the difference between model output and outcome data
- Negative likelihood function ≈ loss function

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $P(Y = yes) \approx g(\beta_0 + \beta_1 X_1 + \beta_2 X_2)$
- Method: Find the best β_0 , β_1 and β_2 that maximize the likelihood function
- Algorithm: gradient-descent algorithm

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $P(Y = yes) \approx g(\beta_0 + \beta_1 X_1 + \beta_2 X_2)$
- Decision boundary
 - $-P(Y = yes) \ge 0.5$: yes
 - P(Y = yes) < 0.5: no
- Another decision boundary (log-odds)
 - $-\beta_0 + \beta_1 X_1 + \beta_2 X_2 \ge 0$: yes
 - $-\beta_0 + \beta_1 X_1 + \beta_2 X_2 < 0$: no

- Data: {(Balance, Income), Default?}
- Task: Predict default $y^{(test)}$ based on income and balance $x_1^{(test)}$, $x_2^{(test)}$
- Model: $P(Y = yes) \approx g(\beta_0 + \beta_1 X_1 + \beta_2 X_2)$
- Decision boundary: $\beta_0 + \beta_1 X_1 + \beta_2 X_2$

Supervised Learning

- Problem: Predict outputs y for new inputs x based on a rule $(f: x \to y)$
- Data: Labeled instances $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$
- Model: Supervised model (e.g. linear regression, logistic regression)
- Parameters: Unknown values of the model
- Loss function: Difference between the outputs of the model and the data
- Task: Find the parameters that minimize the loss function
- Algorithm: Various algorithms

CLASSIFICATION PERFORMANCE

Classification Performance

- Questions
 - Which model will be best?
 - How to measure the performance of classification model?
- Answer: Confusion matrix

		Predicted		
		Yes	No	
Actual	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	

Classification Performance - Measurement

Accuracy

- Did the model get it right?
- -(TP+TN)/ALL
- Precision
 - How many selected items are relevant?
 - TP/Prected "yes"
- Recall
 - How many relevant items are selected?
 - TP/Actual "yes"
- F score
 - Combination of precision and recall
 - -2*(Precision*Recall)/(Precision+Recall)

		Predicted		
		Yes	No	
Actual	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	

Classification Performance - Measurement

- Example) Predict whether a person will default, Logistic regression, 100 test data
- Accuracy
 - Did the model get it right?
 - -(TP+TN)/ALL
- Precision
 - How many selected items are relevant?
 - TP/Prected "yes"
- Recall
 - How many relevant items are selected?
 - TP/Actual "yes"
- F score
 - Combination of precision and recall
 - -2*(Precision*Recall)/(Precision+Recall)

		Predicted	
		Yes	No
Actual	Yes	70	15
	No	10	5