

如何构建低成本高效能的视觉感知系统

潘争

驭势科技

下载极客时间App 获取有声IT新闻、技术产品专栏,每日更新

扫一扫下载极客时间App

人工智能基础课

"通俗易懂的人工智能入门课,,

AI技术内参

你的360度人工智能信息助理

关注落地技术,探寻AI应用场景

- 14万AI领域垂直用户
- 8000+社群技术交流人员,不乏行业内顶级技术专家
- 每周一节干货技术分享课
- AI一线领军人物的访谈
- AI大会的专家干货演讲整理
- 《AI前线》月刊
- AI技能图谱
- 线下沙龙

扫码关注带你涨姿势

成为软件技术专家 全球软件开发大会 的必经之路

[北京站] 2018

会议: 2018年4月20-22日 / 培训: 2018年4月18-19日

北京·国际会议中心

团购享受更多优惠

识别二维码了解更多

2018 · 深圳站

从2012年开始算起,InfoQ已经举办了9场ArchSummit全球架构师峰会,有来自Microsoft、Google、Facebook、Twitter、LinkedIn、阿里巴巴、腾讯、百度等技术专家分享过他们的实践经验,至今累计已经为中国技术人奉上了近干场精彩演讲。

限时7折报名中,名额有限,速速报名吧!

2012.08.10-12 深圳站

2018.07.06-09 深圳站

会议: 07.06-07.07 培训: 07.08-07.09

TABLE OF CONTENTES

效率精度平衡的卷积网络

卷积网络的压缩

嵌入式GPU+CPU的加速

低成本FPGA的加速

视觉感知的优势

- ●信息更丰富
- 视野更宽阔
- 基建更配合
- 硬件更便宜

视觉识别算法飞速进步 ImageNet Top-5错误率

视觉感知从demo到deploy

• Demo:精度要高,不计成本,不管标准,不算功耗

• Deploy: 低成本, 低功耗, 合车规, 实时性, 精度用户满意

硬件更便宜

3x3 convolution with mCReLU

PVANet

Hong S, Roh B, Kim K H, et al. PVANet: Lightweight Deep Neural Networks for Real-time Object Detection. arXiv, 2016.

Standard convolution

MobileNet
$$\frac{std.conv}{dw.conv + 1x1.conv} = \frac{1}{D_k^2} + \frac{1}{N}$$

Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv, 2017.

TABLE OF CONTENTES

效率精度平衡的卷积网络

卷积网络的压缩

嵌入式GPU+CPU的加速

低成本FPGA的加速

$$L(w) = \sum_{i} l(f(x_{i}, w), y_{i}) + \lambda \sum_{\gamma \in \Gamma} ||\gamma||_{1}$$
Network slimming

Liu Z, Li J, Shen Z, et al. Learning Efficient Convolutional Networks through Network Slimming. arXiv, 2017.

网络参数稀疏化效果

Model Parameter and FLOP Savings

网络压缩结果

TABLE OF CONTENTES

效率精度平衡的卷积网络

卷积网络的压缩

嵌入式GPU+CPU的加速

低成本FPGA的加速

■当前无過ラテル图像。

Pipeline

▼ 当前无法显示该图像。

TensorRT

- •FP16和INT8自动量化
- 多层合并
- 自动选择并行算法
- 显存动态优化
- 多任务并发

TABLE OF CONTENTES

效率精度平衡的卷积网络

卷积网络的压缩

嵌入式GPU+CPU的加速

低成本FPGA的加速

FPGA定点化

- 表示范围FP32: -3.4×10³⁸~3.4×10³⁸, INT8: -128~127
- 定点小数 $A = (A_0)A_1 \cdots A_k \cdots A_n (A_0$ 为符号位, A_i 为0/1)代表的小数为 $(-1)^{A_0}[A_1 * 2^{k-1} + A_2 * 2^{k-2} + \cdots + A_k * 2^0 + \cdots + A_n * 2^{k-n}]$
- 定点小数表示范围在 $\pm 2^k(1-0.5^n)$ 之间,精度(最小单位)为 2^{k-n}
- 用INT8定点表示FP32: $A = 2^k * (-1)^{X_0} * 0.A_1A_2 \cdots A_n$

FP32 Value A = FP32 scale factor s_A * INT8 Value q_A

 $M = \max |A| \le 2^k$ 表示范围大,精度差

 $M > T = 2^k$ 表示范围小,精度好

表示范围与精度的取舍

FPGA的网络选择

- MobileNet使用depth wise convolution+1x1 convolution
- 理论计算量低,同时精度很高
- GPU加速比比较差,但适合CPU和定制计算设备

FPGA+MobileNet物体检测

