NA 568 - Winter 2023

Matrix Lie Groups for Robotics

Maani Ghaffari

February 5, 2024

Objectives

- Build a geometric understanding of matrix Lie groups to complement our algebraic knowledge;
- 2 Understanding the concept of tangent space and Lie algebra for working with velocities and change of frame;
- Use the general framework to move beyond SO(3) to work with SE(3) and $SE_K(3)$;
- Set the foundation for studying robot motion and sensing, uncertainty propagation in 2D and 3D, and optimization on manifold for robot perception.

$$SO(3) = \left\{ R \in \mathbb{R}^{3 \times 3} \mid RR^{\mathsf{T}} = R^{\mathsf{T}}R = I \det R = 1 \right\}$$

- $RR^{\mathsf{T}} = R^{\mathsf{T}}R = I$ enforces rigid motion, but $\det R = \pm 1$;
- $\det R = 1$ ensures we have rotation, not reflection (right-hand rule).

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \in \mathbb{R}^{3 \times 3}, \operatorname{vec}(R) = \begin{bmatrix} r_{11} \\ r_{21} \\ \vdots \\ r_{33} \end{bmatrix}_{9 \times 1} \in \mathbb{R}^9$$

if R(t) is a function of time then each $r_{ij}(t)$ is a function of time $r_{ij}: \mathbb{R} \to \mathbb{R} \quad , t \in \mathbb{R}$.

Previously on SO(3)

Paths in SO(3):
$$\gamma(t) = R(t) = \begin{bmatrix} r_{11}(t) & r_{12}(t) & r_{13}(t) \\ r_{21}(t) & r_{22}(t) & r_{23}(t) \\ r_{31}(t) & r_{32}(t) & r_{33}(t) \end{bmatrix}$$

If R(t) is a function of time we can take its derivatives

$$\frac{d}{dt}R(t) = \dot{R} = \begin{bmatrix} \dot{r}_{11} & \dot{r}_{12} & \dot{r}_{13} \\ \dot{r}_{21} & \dot{r}_{22} & \dot{r}_{23} \\ \dot{r}_{31} & \dot{r}_{32} & \dot{r}_{33} \end{bmatrix} = ?$$

$$RR^{\mathsf{T}} = I_3, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{d}{dt}RR^{\mathsf{T}} = \dot{R}R^{\mathsf{T}} + R\dot{R}^{\mathsf{T}} = 0_{3\times3}$$
$$\dot{R}R^{\mathsf{T}} + \left(\dot{R}R^{\mathsf{T}}\right)^{\mathsf{T}} = 0 \Rightarrow \dot{R}R^{\mathsf{T}} = 0$$

 $\dot{R}R^{\mathsf{T}} + \left(\dot{R}R^{\mathsf{T}}\right)^{\mathsf{T}} = 0 \Rightarrow \dot{R}R^{\mathsf{T}} = -\left(\dot{R}R^{\mathsf{T}}\right)^{\mathsf{T}}$

Define $A := RR^{\mathsf{T}}$, then $A = -A^{\mathsf{T}}$ and A must be skew-symmetric, $A \in \text{skew}(3)$.

$$\dot{R}R^{\mathsf{T}} = A \text{ or } \dot{R}R^{\mathsf{T}}R = AR \Rightarrow \boxed{\dot{R} = AR}$$
 (1)

Next, we differentiate $R^{\mathsf{T}}R = I$:

$$\frac{d}{dt}R^{\mathsf{T}}R = \dot{R}^{\mathsf{T}}R + R^{\mathsf{T}}\dot{R} = \left(R^{\mathsf{T}}\dot{R}\right)^{\mathsf{T}} + R^{\mathsf{T}}\dot{R} = 0$$

Define $B := R^{\mathsf{T}} \dot{R}$ then $B = -B^{\mathsf{T}}$ and $B \in \text{skew}(3)$.

$$R^{\mathsf{T}}\dot{R} = B \text{ or } \boxed{\dot{R} = RB} \quad (II)$$

Previously on SO(3)

Equations (I) and (II) are known as reconstruction equations. Given constant A or B, by solving them, we can reconstruct rotations.

$$\dot{R} = AR = RB \Rightarrow A = RBR^{\mathsf{T}}$$

This is called conjugation. For matrices, it is called matrix similarity. We will learn to derive a similar relation for general rigid transformation (rotation and translation simultaneously).

Group Definition

A group is a nonempty set $\mathcal G$ together with a binary group operation \cdot , e.g., $g \cdot h$ where $g,h \in \mathcal G$, that satisfies the following properties:

- **Closure:** if $g,h \in \mathcal{G}$ then also $g \cdot h \in \mathcal{G}$;
- **2** Associativity: for all $g,h,l \in \mathcal{G}$, $(g \cdot h) \cdot l = g \cdot (h \cdot l)$;
- **Identity:** there exist a unique identity element $e \in \mathcal{G}$ such that $e \cdot g = g \cdot e = g$ for all $g \in \mathcal{G}$;
- Inverse: if $g \in \mathcal{G}$ there exists an element $g^{-1} \in \mathcal{G}$ such that $g^{-1} \cdot g = g \cdot g^{-1} = e$.

Group Examples

Check if $(\mathbb{R},+)$ and $(\mathbb{R}\setminus\{0\},\cdot)$ are groups.

- 1 Closure:
- 2 Associativity:
- Identity:
- Inverse:

General Linear Groups

A matrix group is a group of invertible matrices.

In general we can work with the set of all m by n matrices with entries in \mathbb{R} denoted $\mathrm{M}_{m,n}(\mathbb{R})$.

Definition

The general linear group over \mathbb{R} is:

$$\operatorname{GL}_n(\mathbb{R}) = \{ A \in \operatorname{M}_n(\mathbb{R}) : \det(A) \neq 0 \}.$$

Affine Groups

▶ The n-dimensional affine group over $\mathbb R$ is

$$\operatorname{Aff}_n(\mathbb{R}) = \left\{ \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} : A \in \operatorname{GL}_n(\mathbb{R}), \ t \in \mathbb{R}^n \right\}.$$

If we identify $x \in \mathbb{R}^n$ with $\begin{bmatrix} x \\ 1 \end{bmatrix} \in \mathbb{R}^{n+1}$, then as a consequence of the formula

$$\begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} Ax + t \\ 1 \end{bmatrix}$$

we obtain an action of $\mathrm{Aff}_n(\mathbb{R})$ on \mathbb{R}^n .

Affine Groups

The vector space \mathbb{R}^n itself can be viewed as the *translation* subgroup of $\mathrm{Aff}_n(\mathbb{R})$,

$$\operatorname{Trans}_n(\mathbb{R}) = \left\{ \begin{bmatrix} I_n & t \\ 0 & 1 \end{bmatrix} : t \in \mathbb{R}^n \right\} \subseteq \operatorname{Aff}_n(\mathbb{R}),$$

and this is a closed subgroup.

Definition

The *orthogonal group* over $\mathbb R$ is denoted $\mathrm{O}(n)$ and defined as:

$$O(n) = \{ A \in GL_n(\mathbb{R}) : A \cdot A^{\mathsf{T}} = I_n \},$$

where "·" denotes the standard matrix multiplication as the group operation and is dropped hereafter, i.e., AA^{T} .

- Looking closer into the orthogonal group, we see that $\det(AA^{\mathsf{T}}) = \det(A)^2 = \det(I_n) = 1$;
- therefore, $\det(A) = \pm 1$. Thus we have $O(n) = O(n)^+ \cup O(n)^-$ where $O(n)^+ = \{A \in O(n) : \det(A) = 1\},$ $O(n)^- = \{A \in O(n) : \det(A) = -1\}.$

- Notice that $O(n)^+ \cap O(n)^- = \emptyset$, so O(n) is the *disjoint union* of the subsets $O(n)^+$ and $O(n)^-$.
- ► The important subgroup $SO(n) = O(n)^+ \le O(n)$ is the $n \times n$ special orthogonal group.

One of the main reasons for the study of the orthogonal groups O(n) and SO(n) is their relationships with isometries, where an isometry of \mathbb{R}^n is a distance-preserving bijection $f: \mathbb{R}^n \to \mathbb{R}^n$, i.e.,

$$||f(x) - f(y)|| = ||x - y||$$
 $x, y \in \mathbb{R}^n$

If such an isometry fixes the origin, 0, then it is a *linear transformation*, often referred to as *linear isometry*, and so with respect with the standard basis it corresponds to a matrix $A \in \operatorname{GL}_n(\mathbb{R})$

Special Orthogonal Groups

Remark

The special orthogonal group SO(n) is the simultaneous rotation of n perpendicular planes!

Figure: For example, SO(3) is the rotation group of \mathbb{R}^3 and defines the simultaneous rotation of three perpendicular planes which construct the three-dimensional (3D) Euclidean space.

Isometry Groups

► The *special Euclidean group* is the isometry group that requires *A* to be a valid right-handed rotation matrix:

$$SE(n) = \left\{ \begin{bmatrix} A & t \\ 0 & 1 \end{bmatrix} : A \in SO(n), \ t \in \mathbb{R}^n \right\}.$$

▶ This is the group of valid rigid body transformations of \mathbb{R}^n .

Manifolds

Manifolds are higher-dimensional analogs of smooth curves and surfaces.

We can "chop" up manifold M into pieces that each look like \mathbb{R}^n .

Figure: https://en.wikipedia.org/wiki/Manifold

Manifolds

Many common objects are manifolds.

- 1 Every Euclidean space, \mathbb{R}^n .
- The 2-sphere, S^2

The Torus T^2

https://www.jpl.nasa.gov/edu/teach/activity/ocean-world-earth-globe-toss-game/ https://en.wikipedia.org/wiki/Torus

Tangent Spaces

To study the geometry of a manifold, we need the notion of a tangent space. Let γ be some curve in some manifold M, then its derivative $\dot{\gamma}$ is a *tangent vector*.

Tangent Spaces

- If $x \in M$ is a point in the manifold, then the space of all possible tangent vectors is called the tangent space and is denoted by T_xM .
- It is important to point out that T_xM is a vector space and $\dim T_xM=\dim M.$

Tangent Space

➤ A matrix group is an algebraic object. However, it can also be seen as a geometric object since it is a subset of a Euclidean space:

$$\mathcal{G} \subset \mathrm{GL}_n(\mathbb{R}) \subset \mathrm{M}_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$$
.

In addition, looking at a matrix group as a subset of a Euclidean space means we can discuss its tangent space.

Tangent Space

Definition (Tangent space)

Let $\mathcal{G} \subset \mathbb{R}^m$ be a subset, and let $g \in \mathcal{G}$. The *tangent space* to \mathcal{G} at g is:

$$T_g\mathcal{G}=\left\{\gamma'(0):\gamma:(-\epsilon,\epsilon)\to\mathcal{G}\text{ is differentiable with }\gamma(0)=g\right\}.$$

 $T_g\mathcal{G}$ means the set of initial velocity vectors of differentiable paths through g in \mathcal{G} . The term differentiable means that, when we consider γ as a path in \mathbb{R}^m , the m components of γ are differentiable functions from $(-\epsilon, \epsilon)$ to \mathbb{R} .

Lie Algebras

Definition (Lie algebra)

The *Lie algebra* of a matrix group $\mathcal{G} \subset \mathrm{GL}_n(\mathbb{R})$ is the tangent space to \mathcal{G} at the identity e. It is denoted $\mathfrak{g} = \mathfrak{g}(\mathcal{G}) = T_e \mathcal{G}$.

Note that the choice of identity is due to the fact that all groups contain at least the identity element.

Example: Lie Algebras of SO(n)

The set $\mathfrak{so}(n) = \{A \in \mathcal{M}_n(\mathbb{R}) : A + A^\mathsf{T} = 0\}$ is denoted $\mathfrak{so}(n)$ and called *skew-symmetric* matrices.

To see this, consider the path $\gamma(t) \in \mathrm{SO}(n)$ that satisfies $\gamma(0) = I$ and $\gamma'(0) = A$. For every matrix in $\mathrm{SO}(n)$, we have $\gamma(t) \cdot \gamma(t)^\mathsf{T} = I$. Using the product rule to differentiate both sides of

$$\gamma(t) \cdot \gamma(t)^{\mathsf{T}} = I$$

gives $\gamma'(0) + \gamma'^{\rm T}(0) = A + A^{\rm T} = 0$, so A must be skew-symmetric.

Example: Lie Algebras of (Real) Orthogonal Group

Corollary

$$\dim(SO(n)) = \frac{n(n-1)}{2}.$$

Proof.

Skew-symmetric matrices have zeros on the diagonal, arbitrary real numbers above, and entries below determined by those above, so $\dim(\mathfrak{so}(n)) = \frac{n(n-1)}{2}$.

Reconstruction Equation

For a general matrix group \mathcal{G} , we have

$$T_q \mathcal{G} = g \cdot \mathfrak{g}.$$

This means if we can describe the tangent space $\mathfrak g$ at the identity, then $g \cdot \mathfrak g$ will describe the tangent space $T_g \mathcal G$ at any point $g \in \mathcal G$.

Reconstruction Equation

Corollary

For $\gamma(t) \in \mathcal{G}$, $\gamma(0) = I$ and $\gamma'(0) = A \in \mathfrak{g}$, via a left translation for a constant $g \in \mathcal{G}$ we have $g \cdot \gamma(t)$.

Differentiating this gives
$$g \cdot \gamma'(t) \Big|_{t=0} = g \cdot A =: \dot{g} \in T_g \mathcal{G}.$$

Hence, we arrive at the following first-order differential equation known as the reconstruction equation.

$$\dot{g} = g \cdot A$$
 or $g^{-1}\dot{g} = A \in \mathfrak{g}$.

Reconstruction Equation

Corollary

A similar argument can be made for the right translation for any point $g \in \mathcal{G}$ to get $\gamma'(t) \Big|_{t=0} \cdot g = A \cdot g =: \dot{g} \in T_g \mathcal{G}$.

$$\dot{g} = A \cdot g$$
 or $\dot{g}g^{-1} = A \in \mathfrak{g}$.

Example

Let γ be a curve in SO(n) such that $\gamma(0) = g$. Then we know that $\dot{\gamma}(0) \in T_gSO(n)$.

$$T_g SO(n) = \{gA : A^{\mathsf{T}} = -A\} = g \cdot \mathfrak{so}(n).$$

Solution of Reconstruction Equation

See Chapter 4.4.3 of Lecture Notes for Mobile Robotics.

Matrix Similarity

Let $x\in\mathbb{R}^n$ and $y\in\mathbb{R}^n$ represented in the standard basis e_1,\cdots,e_n and an alternative representation of the same points denoted x' and y' in another basis e_1',\cdots,e_n' such that $e_i=P^{-1}e_i'$ for $i=1,\cdots,n$, i.e., $x=P^{-1}x'$ and $y=P^{-1}y'$. Let A be a linear map such that y=Ax and T another linear map as y'=Tx'.

Then A and T are similar via the following change of basis.

$$y = Ax$$

$$P^{-1}y' = AP^{-1}x'$$

$$y' = PAP^{-1}x' = Tx',$$

$$\implies T = PAP^{-1}.$$

Conjugation, Adjoint, and the Lie Bracket

Let $\mathcal G$ be a matrix group with Lie algebra $\mathfrak g$. For all $g\in\mathcal G$, the conjugation map $C_g:\mathcal G\to\mathcal G$, define as

$$C_g(a) = gag^{-1},$$

is a smooth isomorphism. The derivative $d(C_g)_I : \mathfrak{g} \to \mathfrak{g}$ is a vector space isomorphism, which we denote as Ad_g (adjoint):

$$Ad_g = d(C_g)_I$$

Adjoint and the Lie Bracket

To derive a simple formula for $\mathrm{Ad}_g(B)$, notice that any $B \in \mathfrak{g}$ can be represented as B = b'(0), where b(t) is a differentiable path in $\mathcal G$ with b(0) = I. The product rule gives:

$$\operatorname{Ad}_{g}(B) = \operatorname{d}(C_{g})_{I}(B) = \frac{\operatorname{d}}{\operatorname{d}t}\Big|_{t=0} gb(t)g^{-1} = gBg^{-1}.$$

So we learn that (notice the similarity transformation):

$$Ad_g(B) = gBg^{-1}.$$

Definition (Lie bracket)

The Lie bracket of two vectors A and B in $\mathfrak g$ is:

$$[A, B] = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} \mathrm{Ad}_{a(t)}(B),$$

where a(t) is any differentiable path in \mathcal{G} with a(0) = I and a'(0) = A.

Proposition

For all
$$A, B \in \mathfrak{g}$$
, $[A, B] = AB - BA$.

Proof.

Left as exercise.

Example: Lie Bracket on $\mathfrak{so}(3)$ and Cross Product

See so3_cross_example.m for numerical examples and details.

$$G_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, G_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, G_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$[G_1, G_2] = G_3, [G_2, G_3] = G_1, [G_3, G_1] = G_2$$
$$e_1 \times e_2 = e_3, e_2 \times e_3 = e_1, e_3 \times e_1 = e_2$$

Baker-Campbell-Hausdorff Series

For $X,Y,Z\in\mathfrak{g}$ with sufficiently small norm, the equation $\exp(X)\exp(Y)=\exp(Z)$ has a power series solution for Z in terms of repeated Lie bracket of X and Y. The beginning of the series is:

$$Z = X + Y + \frac{1}{2}[X,Y] + \frac{1}{12}[X,[X,Y]] + \frac{1}{12}[Y,[Y,X]] + \cdots$$

Useful Lie Groups in Robotics

- ► Group of 3D rotation matrices, SO(3); it can model rotations without any singularities or ambiguities.
- ▶ Group of direct spatial isometries (3D Rigid Body Transformations), SE(3).
- ▶ Group of K direct isometries, $SE_K(3)$; for example, it is used for modeling IMU sensors and robot pose plus landmarks and/or contact points.
- For Group of 3D similarity transformations, Sim(3); it is more general than SE(3) and includes a scale factor and used in monocular vision where the scale is not known.

Example: Uncertainty Propagation on SE(2)

See odometry_propagation_se2.m or .py for code.

Example: Uncertainty Propagation on SE(3)

See odometry_propagation_se3.m or .py for code.

References

- Tapp K (2016) Matrix groups for undergraduates, volume 79. American Mathematical Soc.
- 2 Baker A (2012) *Matrix groups: An introduction to Lie group theory.* Springer Science & Business Media.
- Murray, R. (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press.
- 4 G. S. Chirikjian, Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications. Springer Science & Business Media, 2011.
- T. D. Barfoot and P. T. Furgale, Associating uncertainty with three-dimensional poses for use in estimation problems, IEEE Trans. on Robotics, vol. 30, no. 3, pp. 679–693, 2014.
- 6 A. W. Long, K. C. Wolfe, M. J. Mashner, and Chirikjian, The banana distribution is Gaussian: A localization study with exponential coordinates. Robotics: Science and Systems, 2013.
- 7 E. Eade, Lie groups for 2D and 3D transformations, accessed: 2018-02-01. [Online]. Available: http://ethaneade.com/lie.pdf