Conceitos e definições

Marco A L Barbosa malbarbo.pro.br

Departamento de Informática Universidade Estadual de Maringá

Grafos

Um grafo orientado G é um par (V, E), onde

- · V é um conjunto finito, chamado de conjunto de vértices
- E é um conjunto de pares ordenados de V, chamado de conjunto de arestas

Em um grafo não orientado G = (V, E), E é um conjunto de pares de vértices não ordenados.

Representação gráfica

Os grafos podem ser representados graficamente

- · Os vértices são desenhados como círculos
- As arestas são desenhadas como curvas ligando dois círculos, no caso de grafos orientados, as curvas tem um seta em uma das extremidades

Exemplos

Na figura B-2-a, qual é o conjunto de vértices e o conjunto de arestas?

$$V = \{1, 2, 3, 4, 5, 6\},$$

$$E = \{(1, 2), (1, 5), (2, 5), (3, 6)\}$$

Exemplos

Em grafos orientados são permitidos **laços** (arestas de um vértice para ele mesmo – *autoloop* em inglês). Exemplo: aresta (2, 2) da figura B-2-a.

Um grafo orientado sem laços é chamado de **grafo simples**.

Exemplos

Em grafos não orientados os laços não são permitidos. Para grafos não orientados, utilizamos a notação (u,v) para denotar uma aresta, ao invés da notação de conjunto $\{u,v\}$. Dessa forma, (u,v) e (v,u) são consideradas a mesma aresta.

Incidência

Para uma aresta (u, v) em um grafo orientado, dizemos que (u, v) é incidente do ou sai do vértice u e é incidente no ou entra no vértice v.

Quais as arestas que saem do vértice 2 na figura B-2-a? (2,2),(2,4) e (2,5).

Quais as arestas que entram no vértice 2 na figura B-2-a? (1,2) e (2,2).

Incidência

Para uma aresta (u, v) em um grafo não orientado, dizemos que (u, v) é **incidente** nos vértices u e v.

Quais são as arestas incidentes no vértice 2 da figura B-2-b? (1,2) e (2,5).

Adjacência

Para uma aresta (u, v), dizemos que o vértice v é adjacente ao vértice u.

Para grafos não orientados, a relação de adjacência é simétrica. Se v é adjacente a u em um grafo orientado, escrevemos $u \to v$. O vértice 1 é adjacente ao vértice 2 na figura B-2-b? Sim. E na figura B-2-a? Não, pois não existe a aresta (2,1).

Em um grafo orientado

- O grau de saída de um vértice é o número de arestas que saem dele
- O grau de entrada de um vértice é o número de arestas que entram nele
- O grau de um vértice é soma do grau de saída e do grau de entrada
- Na figura B-2-a, qual é o grau de entrada, o grau de saída e o grau do vértice 2?
 2, 3 e 5.

Grau

Em um grafo não orientado

- · O grau de um vértice é o número de arestas incidentes nele
- · Na figura B-2-b, qual é o grau do vértice 2?

2

Um vértice **isolado** tem grau 0.

• Existe algum vértice isolado nos grafos da figura B-2? Sim, o vértice 4 da figura B-2-b.

Um caminho de comprimento k de um vértice u até um vértice u' em um grafo G = (V, E) é uma sequência $\langle v_0, v_1, v_2, \dots, v_k \rangle$ de vértices tal que $u = v_0, u' = v_k$ e $(v_{i-1}, v_i) \in E$ para $i = 1, 2, \dots, k$.

O comprimento do caminho (k) é a quantidade de aresta no caminho.

O caminho **contém** os vértice v_0, v_1, \ldots, v_k e as arestas $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$.

Se existe um caminho p de u até u', dizemos que u' é acessível a partir de u via p, ou $u \stackrel{p}{\leadsto} u'$ se o grafo é orientado.

Sempre existe um caminho de comprimento 0 de u para u.

Exemplos da figura B-2-a: $\langle 1, 2, 5, 4 \rangle$, $\langle 2, 5, 4, 5 \rangle$ e $\langle 3 \rangle$.

Um caminho é **simples** se todos os vértices no caminho são distintos.

Existe um caminho de tamanho 5 no grafo da figura B-2-a?

Sim. Por exemplo, $\langle 1, 2, 5, 4, 1, 2 \rangle$

Existe um caminho simples de tamanho 5 no grafo da figura B-2-a? Não.

Um **subcaminho** do caminho $p = \langle v_0, v_1, \dots, v_k \rangle$ é uma subsequência contígua de seus vértices. Por exemplo, o caminho $\langle 2, 5, 4 \rangle$ é um subcaminho de $\langle 1, 2, 5, 4, 1, 2 \rangle$.

Em um grafo orientado

- Um caminho $\langle v_0, v_1, \dots, v_k \rangle$ forma um ciclo se $v_0 = v_k$ e o caminho contém pelo menos uma aresta.
- · O ciclo é **simples** se além disso v_1, v_2, \ldots, v_k são distintos. Dois caminhos $\langle v_0, v_1, \ldots, v_{k-1}, v_0 \rangle$ e $\langle v'_0, v'_1, \ldots, v'_{k-1}, v'_0 \rangle$ formam o mesmo ciclo se existe um inteiro j tal que $v'_i = v_{(i+j) \mod k}$ para $i = 0, 1, \ldots, k-1$.
 - Considerando a figura B-2-a, dê dois caminhos que formam o mesmo ciclo que o caminho (1, 2, 4, 1)
 (2, 4, 1, 2) e (4, 1, 2, 4).

Em um grafo não orientado

- Um caminho (v₀, v₁, ..., v_k) forma um ciclo se k > 0, v₀ = v_k
 e todas as arestas do caminho são distintas. (Esta definição é
 diferente em algumas versões do Cormen. Vamos considerar
 correta a definição que estamos apresentando aqui)
- O ciclo é **simples** se v_1, v_2, \ldots, v_k são distintos.

Um grafo sem ciclos é **acíclico**.

Conectividade

Um grafo não orientado é **conexo** (conectado) se cada vértice é acessível a partir de todos os outros.

Os **componentes conexos** de um grafo são as classes de equivalência de vértices sob a relação "é acessível a partir de".

Na figura B-2-b quais são os componentes conexos?

$$\{1, 2, 5\}, \{3, 6\} \in \{4\}$$

Um grafo não orientado é conexo se tem exatamente um componente conexo.

Conectividade

Um grafo orientado é **fortemente conexo** se para cada par de vértices (u, v), v é acessível a partir de u.

Os **componentes fortemente conexos** de um grafo orientado são as classes de equivalência de vértices sob a relação "são mutuamente acessíveis".

Quais os componentes fortemente conexos da figura B-2-a? $\{1,2,4,5\}$, $\{3\}$ e $\{6\}$.

- Todos os pares de vértices em {1, 2, 4, 5} são mutuamente acessíveis.
- Os vértices {3,6} não formam um componente fortemente conexo por quê? O vértice 6 não é acessível a partir do vértice 3;

Um grafo orientado é fortemente conexo se ele só tem um componente fortemente conexo.

Isomorfismo

Dois grafos G=(V,E) e G'=(V',E') são **isomorfos** se existe uma bijeção $f:V\to V'$ tal que $(u,v)\in E$ se e somente se $(f(u),f(v))\in E'$

Ideia: podemos identificar os vértices de G como vértices de G', mantendo as arestas correspondentes em G e G'.

Os grafos da figura B-3-a são isomorfos entre si?

$$V = \{1, 2, 3, 4, 5, 6\} \text{ e } V' = \{u, v, w, x, y, z\}$$

$$|V| = 6 \, e \, |V'| = 6$$
; $|E| = 9 \, e \, |E'| = 9$

· Mapeamento de V para V' dado pela função bijetora

$$f(1) = u, f(2) = v, f(3) = w, f(4) = x, f(5) = y,$$

 $f(6) = z$

· Sim, são isomorfos

Isomorfismo

Os grafos da figura B-3-b, são isomorfos?

$$V = \{1, 2, 3, 4, 5\} \text{ e } V' = \{u, v, w, x, y\}$$

·
$$|V| = 5 \text{ e } |V'| = 5$$
; $|E| = 7 \text{ e } |E'| = 7$

- \cdot G tem um vértice de grau 4, mas G' não tem
- · Não são isomorfos

Subgrafos

G' = (V', E') é um subgrafo de G = (V, E) se $V' \subseteq V$ e $E' \subseteq E$. Dado um conjunto V' de modo que $V' \subseteq V$, o subgrafo de G induzido por V' é o grafo G' = (V', E'), onde $E' = \{(u, v) \in E : u, v \in V'\}$. Qual é o subgrafo induzido pelo conjunto de vértices $\{1, 2, 3, 6\}$ na figura B-2-a? $G = (\{1, 2, 3, 6\}, \{(1, 2), (2, 2), (6, 3)\}$.

Versões orientada e não orientada

Dado um grafo não orientado G = (V, E), a **versão orientada** de G é o grafo orientado G' = (V, E'), onde $(u, v) \in E'$ se e somente se $(u, v) \in E$

- Cada aresta não orientada (u, v) em G é substituída na versão orientada pelas duas arestas orientadas (u, v) e (v, u)
- Qual é a versão orientada do grafo da figura B-2-b? $V = \{1,2,3,4,5,6\}$ $E = \{(1,2),(2,1),(1,5),(5,1),(2,5),(5,2),(3,6),(6,3)\}$

Versões orientada e não orientada

Dado um grafo orientado G=(V,E), a **versão não orientada** de G é o grafo não orientado G'=(V,E'), onde $(u,v)\in E'$ se e somente se $u\neq v$ e $(u,v)\in E$

- A versão não orientada contém as arestas de G "com suas orientações removidas" e laços eliminados
- Mesmo que o grafo orientado contenha as arestas (u, v) e (v, u), o grafo não orientado conterá (u, v) somente uma vez
- Qual é a versão não orientada do grafo da figura B-2-a?
 V = {1, 2, 3, 4, 5, 6}
 E = {(1, 2), (1, 4), (2, 4), (2, 5), (3, 6), (4, 5)}

Vizinho

Em um grafo orientado, um vizinho de um vértice u é qualquer vértice que seja adjacente a u na versão não orientada

- · $v \in vizinho de u se (u, v) \in E ou (v, u) \in E$
- Na figura B-2-a, quais os vizinhos do vértice 2?
 1, 4, 5

Em um grafo não orientado, u e v são vizinhos se são adjacentes.

Grafo completo

Grafo completo é um grafo não orientado no qual todo par de vértices é adjacente.

Um grafo completo com n vértices é chamado de K_n .

Desenhe os grafos K_1, K_2, K_3, K_4, K_5 .

Grafo bipartido

Grafo bipartido é um grafo não orientado G=(V,E) em que V pode ser particionado em dois conjuntos V_1 e V_2 tais que $(u,v) \in E$ implica que $u \in V_1$ e $v \in V_2$ ou $u \in V_2$ e $v \in V_1$.

• Todas as arestas ficam entre os dois conjuntos V_1 e V_2 .

Dê um exemplo de um grafo bipartido.

Árvores e florestas

Um grafo conexo acíclico não orientado é uma **árvore**

· Dê um exemplo de uma árvore.

Um grafo acíclico não orientado é uma floresta

· Dê um exemplo de uma floresta.

Um grafo acíclico orientado é chamado de GAO

· Dê um exemplo de um GAO.

Variantes

Semelhantes a grafos não orientados

- · Multigrafo: pode ter várias arestas entre vértices e também laços
- Hipergrafo: cada hiperaresta, em lugar de conectar dois vértices, conecta um subconjunto arbitrário de vértices

Referências

· Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition. Capítulo B.4.