Algebra para la Computación : MAT1185 Guía de Trabajo N°13

ACTIVIDADES

1\	Determinar	ol volor	numárica	do la	ovnroción	dada.
1)	Determinar	ei vaioi	numenco	ue ia	i expresion	gaga:

a)
$$sen^2(\frac{\pi}{6}) + cos^2(\frac{\pi}{6})$$

b)
$$sen(\frac{7}{4}\pi) + tg(\frac{7}{6}\pi) - cos(\frac{2}{3}\pi)$$

c)
$$sen(\frac{2\pi}{3}) + cos(\frac{7\pi}{6}) + tg(\frac{5\pi}{3})$$

d)
$$2 \csc^2(45^\circ) - 3 \sec^2(30^\circ)$$

2) Dado que
$$cos(\alpha)=-\frac{3}{5}$$
 $con\ P(\alpha)\in III$ cuadrante y $cotg(\beta)=-\frac{5}{12}$ $con\ P(\beta)\in IV$ cuadrante, determinar el valor de cada expresión:

a)
$$sen(\alpha - \beta)$$

b)
$$cos(\alpha + \beta)$$

c)
$$sen(2\beta)$$

d)
$$tg(\frac{\beta}{2})$$

e)
$$tg(\alpha + \beta)$$

f)
$$cos(\alpha - \beta)$$

a)
$$tg(\beta) = -\frac{1}{3}$$
, $\operatorname{con} P(\beta) \in II$ c

b)
$$cos(\alpha) = \frac{15}{17}$$
, $con P(\alpha) \in IV c$

c)
$$sen(\delta) = -\frac{5}{13}$$
, con $P(\delta) \in III$ c

d)
$$cos(\beta) = -\frac{16}{25}$$
 , $con P(\beta) \in III c$

a)
$$cos^{4}(\theta) - sen^{4}(\theta) = cos^{2}(\theta) - sen^{2}(\theta)$$

b)
$$\frac{[sec^2(\alpha)-1]cotg(\alpha)}{tg(\alpha)\cdot sen(\alpha)+cos(\alpha)} = sen(\alpha)$$

c)
$$cosec^6(\alpha) - cotg^6(\alpha) = 1 + 3 cosec^2(\alpha) cotg^2(\alpha)$$

d)
$$sec^4(\beta) - tg^4(\beta) = 1 + 2tg^2(\beta)$$

e)
$$cos(\alpha + \beta) cos(\beta) + sen(\alpha + \beta) sen(\beta) = cos(\alpha)$$

f)
$$cosec^{2}(\theta) + cotg^{2}(\theta) + 1 = \frac{2}{sen^{2}(\theta)}$$

g)
$$cos(2\alpha)cos(\alpha) + sen(2\alpha)sen(\alpha) = cos(\alpha)$$

h)
$$[cos(\frac{\alpha}{2}) - sen(\frac{\alpha}{2})]^2 = 1 - sen(\alpha)$$

5) Demostrar que :

a)
$$cotg(2x) = \frac{1 - tg^2(x)}{2tg(x)}$$

b)
$$cos^4(x) - sen^4(x) = cos(2x)$$

c)
$$\frac{1+sen(2x)}{sen(2x)} = 1 + \frac{1}{2} sec(x) cosec(x)$$

d)
$$sen(8x) = 2 sen(4x) cos(4x)$$

6) Resolver las siguientes ecuaciones trigonométricas en el intervalo $[0,2\pi]$:

a)
$$2\cos^2(x) + 4\sin^2(x) = 3$$

$$b) \quad sen(2x) sen(x) + cos(x) = 0$$

c)
$$(2 sen(x) - 1)(cos(x) - \sqrt{2}) = 0$$

d)
$$2 sen^2(x) = 1 - cos(x)$$

e)
$$\sqrt{3} \ sen(x) - sec(x) \cos^2(x) = 0$$

f)
$$2\cos(x) + \sec(x) - 3 = 0$$

g)
$$cos^2(2x) + 3 sen(2x) = 3$$

h)
$$sec^2(x) - tg(x) = 1$$

i)
$$6\cos^2(x) - \sin(x) - 4 = 0$$

$$j) \quad sen(2x) + sen(x) = 0$$

7) Resolver las siguientes ecuaciones trigonométricas:

a)
$$cos^2(x) = cos(x) + sen^2(x)$$

b)
$$cos^2(x) - 3 sen^2(x) = 0$$

c)
$$sen^2(x) - cos^2(x) = \frac{1}{2}$$

$$d) \quad 2\cos(x) = 3tg(x)$$