LC15 — Liaisons chimiques

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

I. Concentration d'un ion en solution

1. Liaisons covalentes

Atome	Nombre de liaisons covalentes
Н	1
O	2
N	3
С	4

I. Concentration d'un ion en solution

1. Géométrie des molécules

Nombre de liaisons portées par l'atome	4	3	2
Position de l'atome	Centre d'un tétraèdre	Centre d'un triangle	Milieu d'un segment
Directions vers lesquelles pointent les liaisons et les doublets non liants	Sommet du tétraèdre	Sommets du triangle	Extrémités du segment
Représentation dans l'espace			

I. De l'atome à la molécule

2. Géométrie des molécules

I. De l'atome à la molécule

2. Géométrie des molécules

II. Propriétés des liaisons chimiques

1. Groupes caractéristiques

Familles chimiques	Groupes caractéristiques	
Alcool	—О—Н	Hydroxyle
Aldéhyde	-c / H	Carbonyle
Cétone	c—c//	Carbonyle
Acide carboxylique	— с // ОН	Carboxyle

Familles chimiques	Groupes caractéristiques	
Alcène	\c=c\	Alcène
Ester	-c/o-c-	Ester
Amine	N-	Amine
Amide	-c	Amide

II. Propriétés des liaisons chimiques

3. Mécanismes réactionnels

III. Les liaisons ioniques

1. Solides ioniques

III. Les liaisons ioniques

2. Dissolution des solides ioniques

Conclusion

Type de liaison		Exemple	Énergie typique
Liaison covalente	Liaison simple	C - C	300 kJ/mol
	Liaison double	C = O	600 kJ/mol
	Liaison triple	$N \equiv N$	900 kJ/mol
Liaison ionique		NaCl	700 – 1000 kJ/mol
Liaison hydrogène		glace	50 kJ/mol
Liaison de Van der Waals		gecko	20 kJ/mol

Merci pour votre attention!

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

chemical bond: When forces acting between two atoms or groups of atoms lead to the formation of a stable independent molecular entity, a chemical bond is considered to exist between these atoms or groups. The principal characteristic of a bond in a molecule is the existence of a region between the nuclei of constant potential contours that allows the potential energy to improve substantially by atomic contraction at the expense of only a small increase in kinetic energy. Not only directed covalent bonds characteristic of organic compounds, but also bonds such as those existing between sodium cations and chloride anions in a crystal of sodium chloride or the bonds binding aluminium to six molecules of water in its environment, and even weak bonds that link two molecules of O2 into O4, are to be attributed to chemical bonds.