Name: Aaditya Bhatt Reg.No: 21BEC1531

Internet of Things

Experiment 6 to 10

Experiment 6

Data manipulation, String manipulation, Math formula and rule engine using KNIME

Aim: The aim of this experiment is to utilize KNIME to develop a comprehensive workflow for data manipulation, string manipulation, mathematical formula application, and rule-based decision-making

Rule engine

Classified values

Math formula

String manipulation

Diagram

Output

Schematic

Inference: The experiment aims to leverage KNIME's capabilities to create a cohesive workflow encompassing data manipulation, string manipulation, mathematical formula application, and rule-based decision-making. The goal is to optimize data processing efficiency, improve data quality, and facilitate effective decision-making processes within a unified platform, thereby enhancing overall operational effectiveness.

Verification sign:

Result: Successfully completed and verified Data manipulation, String manipulation, Math formula and rule engine using Knime

Experiment 7

KNIME clustering, unsupervised machine learning

KNIME

<u>Aim</u>: The aim of this experiment is to utilize KNIME for clustering, specifically in the realm of unsupervised machine learning. This involves exploring data patterns and structures to group similar data points together, aiding in insightful data exploration and potentially uncovering hidden relationships within the dataset.

Schematic

KNIME

🛕 Labeled input - 3:3 - k-Means

File Edit Hilite Navigation View

Table "default" - Rows: 75 | Spec - Columns: 7 | Properties | Flow Variables

Row ID	Id	D SepalLe	D SepalW	D PetalLe	D PetalWi	S Species	S Cluster
Row0	1	5.1	3.5	1.4	0.2	Iris-setosa	cluster_0
Row3	4	4.6	3.1	1.5	0.2	Iris-setosa	cluster_0
Row4	5	5	3.6	1.4	0.2	Iris-setosa	cluster_0
Row6	7	4.6	3.4	1.4	0.3	Iris-setosa	cluster 0
Row9	10	4.9	3.1	1.5	0.1	Iris-setosa	cluster_0
Row15	16	5.7	4.4	1.5	0.4	Iris-setosa	cluster_0
Row16	17	5.4	3.9	1.3	0.4	Iris-setosa	duster_0
Row17	18	5.1	3.5	1.4	0.3	Iris-setosa	duster_0
Row19	20	5.1	3.8	1.5	0.3	Iris-setosa	cluster_0
Row20	21	5.4	3.4	1.7	0.2	Iris-setosa	duster_0
Row21	22	5.1	3.7	1.5	0.4	Iris-setosa	cluster_0
Row23	24	5.1	3.3	1.7	0.5	Iris-setosa	cluster_0
Row24	25	4.8	3.4	1.9	0.2	Iris-setosa	cluster_0
Row25	26	5	3	1.6	0.2	Iris-setosa Iris-setosa	duster_0
Row26	27	5	3.4	1.6	0.4		-
Row26	28	5.2	3.5	1.5	0.4	Iris-setosa	cluster_0
Row27	29	5.2	3.4	1.4	0.2	Iris-setosa	cluster_0
Row30	31	4.8	3.1		0.2	Iris-setosa	cluster_0
Row31	32	5.4	3.4	1.6	0.4	Iris-setosa	cluster_0
	34			1.4		Iris-setosa	cluster_0
Row33		5.5	4.2		0.2	Iris-setosa	cluster_0
Row37	38	4.9	3.1	1.5	0.1	Iris-setosa	cluster_0
Row38	39	4.4	3	1.3	0.2	Iris-setosa	cluster_0
Row39	40	5.1	3.4	1.5	0.2	Iris-setosa	cluster_0
Row40	41	5	3.5	1.3	0.3	Iris-setosa	cluster_0
Row41	42	4.5	2.3	1.3	0.3	Iris-setosa	cluster_0
Row46	47	5.1	3.8	1.6	0.2	Iris-setosa	cluster_1
Row48	49	5.3	3.7	1.5	0.2	Iris-setosa	cluster_1
Row49	50	5	3.3	1.4	0.2	Iris-setosa	cluster_1
Row53	54	5.5	2.3	4	1.3	Iris-versicolor	cluster_1
Row54	55	6.5	2.8	4.6	1.5	Iris-versicolor	cluster_1
Row56	57	6.3	3.3	4.7	1.6	Iris-versicolor	cluster_1
Row57	58	4.9	2.4	3.3	1	Iris-versicolor	cluster_1
Row60	61	5	2	3.5	1	Iris-versicolor	duster_1
Row62	63	6	2.2	4	1	Iris-versicolor	duster_1
Row63	64	6.1	2.9	4.7	1.4	Iris-versicolor	cluster_1
Row64	65	5.6	2.9	3.6	1.3	Iris-versicolor	cluster_1
Row65	66	6.7	3.1	4.4	1.4	Iris-versicolor	cluster_1
Row66	67	5.6	3	4.5	1.5	Iris-versicolor	cluster_1
Row67	68	5.8	2.7	4.1	1	Iris-versicolor	cluster_1
Row68	69	6.2	2.2	4.5	1.5	Iris-versicolor	cluster_1
Row70	71	5.9	3.2	4.8	1.8	Iris-versicolor	cluster_1
Row81	82	5.5	2.4	3.7	1	Iris-versicolor	cluster_1
Row82	83	5.8	2.7	3.9	1.2	Iris-versicolor	cluster_1
Row83	84	6	2.7	5.1	1.6	Iris-versicolor	cluster_1
Row85	86	6	3.4	4.5	1.6	Iris-versicolor	cluster_1
Row86	87	6.7	3.1	4.7	1.5	Iris-versicolor	cluster_1
Row87	88	6.3	2.3	4.4	1.3	Iris-versicolor	cluster_1
Row89	90	5.5	2.5	4	1.3	Iris-versicolor	

ine Learning

Schematic

Colour manager

	te Navigatio						
Row ID	I Id	ec - Columns: 7 Pr	D SepalW	Variables D PetalLe	D PetalWi	S Species	S Cluster
low0	1	5.1	3.5	1.4	0.2	Iris-setosa	duster 0
low3	4	4.6	3.1	1.5	0.2	Iris-setosa Iris-setosa	duster_0
ow4	5	5	3.6	1.4	0.2	Iris-setosa	duster 0
ow6	7	4.6	3.4	1.4	0.3	Iris-setosa	duster 0
low9	10	4.9	3.1	1.5	0.1	Iris-setosa	duster 0
low15	16	5.7	4.4	1.5	0.4	Iris-setosa	duster 0
low 16	17	5.4	3.9	1.3	0.4	Iris-setosa	duster 0
low 17	18	5.1	3.5	1.4	0.3	Iris-setosa	duster 0
low 19	20	5.1	3.8	1.5	0.3	Tris-setosa	duster 0
low20	21	5.4	3.4	1.7	0.2	Iris-setosa	cluster 0
low21	22	5.1	3.7	1.5	0.4	Iris-setosa	duster 0
low23	24	5.1	3.3	1.7	0.5	Iris-setosa	duster 0
low24	25	4.8	3.4	1.9	0.2	Iris-setosa	duster 0
low25	26	5	3	1.6	0.2	Iris-setosa	cluster_0
low26	27	5	3.4	1.6	0.4	Iris-setosa	cluster_0
low27	28	5.2	3.5	1.5	0.2	Iris-setosa	cluster_0
low28	29	5.2	3.4	1.4	0.2	Iris-setosa	cluster_0
low30	31	4.8	3.1	1.6	0.2	Iris-setosa	cluster_0
low31	32	5.4	3.4	1.5	0.4	Iris-setosa	cluster_0
low33	34	5.5	4.2	1.4	0.2	Iris-setosa	cluster_0
low37	38	4.9	3.1	1.5	0.1	Iris-setosa	cluster_0
low38	39	4.4	3	1.3	0.2	Iris-setosa	cluster_0
low39	40	5.1	3.4	1.5	0.2	Iris-setosa	cluster_0
low40	41	5	3.5	1.3	0.3	Iris-setosa	cluster_0
low41	42	4.5	2.3	1.3	0.3	Iris-setosa	cluster_0
low46	47	5.1	3.8	1.6	0.2	Iris-setosa	duster_1
ow48	49	5.3	3.7	1.5	0.2	Iris-setosa	cluster_1
low49	50	5	3.3	1.4	0.2	Iris-setosa	cluster_1
low53	54	5.5 6.5	2.3	4	1.3	Iris-versicolor	cluster_1
ow54	55 57			4.6	1.5	Iris-versicolor	cluster_1
low56	58	6.3 4.9	3.3 2.4	3.3	1.6	Iris-versicolor	cluster_1
low60	61	5	2.4	3.5	1	Iris-versicolor	cluster_1
ow62	63	6	2.2	4	1	Iris-versicolor Iris-versicolor	duster_1
low63	64	6.1	2.9	4.7	1.4	Iris-versicolor	duster_1
low64	65	5.6	2.9	3.6	1.3	Iris-versicolor	
low65	66	6.7	3.1	4.4	1.4	Iris-versicolor	duster_1
low66	67	5.6	3.1	4.5	1.5	Iris-versicolor	duster_1 duster 1

Scatter plot

Schematic

Inference: The experiment focuses on leveraging KNIME's clustering capabilities, a form of unsupervised machine learning, to analyse data patterns and structures. By grouping similar data points together, it enables insightful data exploration and potentially reveals hidden relationships within the dataset. This approach facilitates better understanding of the data and can lead to valuable insights for decision-making or further analysis.

Verification Sign:

<u>Result</u>: successfully implemented and verified KNIME clustering, unsupervised machine learning

Experiment 8

Hardware: Temperature humidity sensing with Arduino and node red dashboard using dht11

<u>Aim</u>: Collecting the data of temperature and humidity using Arduino and node red and dht11

```
COM10
fax Value: 50.00°C
fin Value: 0.00°C
Resolution: 2.00°C
Humidity Sensor
Sensor Type: DHT11
Oriver Ver: 1
Jnique ID: -1
fax Value: 80.00%
1in Value: 20.00%
Resolution: 5.00%
Temperature: 30.70°C
Humidity: 64.10%
Temperature: 30.70°C
fumidity: 64.10%
Temperature: 30.40°C
Humidity: 68.20%
Temperature: 30.40°C
Humidity: 68.20%
Temperature: 30.20°C
Code:
// DHT Temperature & Humidity Sensor
// Unified Sensor Library Example
// Written by Tony DiCola for Adafruit Industries
// Released under an MIT license.
// REQUIRES the following Arduino libraries:
// - DHT Sensor Library: https://github.com/adafruit/DHT-sensor-library
// - Adafruit Unified Sensor Lib: https://github.com/adafruit/Adafruit_Sensor
```

```
#include <Adafruit_Sensor.h>
#include <DHT.h>
#include <DHT_U.h>
#define DHTPIN 7 // Digital pin connected to the DHT sensor
// Feather HUZZAH ESP8266 note: use pins 3, 4, 5, 12, 13 or 14 --
// Pin 15 can work but DHT must be disconnected during program upload.
// Uncomment the type of sensor in use:
#define DHTTYPE DHT11 // DHT 11
//#define DHTTYPE DHT22 // DHT 22 (AM2302)
// See guide for details on sensor wiring and usage:
// https://learn.adafruit.com/dht/overview
DHT_Unified dht(DHTPIN, DHTTYPE);
uint32_t delayMS;
void setup() {
 Serial.begin(9600);
// Initialize device.
 dht.begin();
 Serial.println(F("DHTxx Unified Sensor Example"));
 // Print temperature sensor details.
 sensor_t sensor;
 dht.temperature().getSensor(&sensor);
 Serial.println(F("-----"));
 Serial.println(F("Temperature Sensor"));
 Serial.print (F("Sensor Type: ")); Serial.println(sensor.name);
 Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);
```

```
Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor_id);
 Serial.print (F("Max Value: ")); Serial.print(sensor.max_value); Serial.println(F("°C"));
 Serial.print (F("Min Value: ")); Serial.print(sensor.min_value); Serial.println(F("°C"));
 Serial.print (F("Resolution: ")); Serial.print(sensor.resolution); Serial.println(F("°C"));
 Serial.println(F("-----"));
 // Print humidity sensor details.
 dht.humidity().getSensor(&sensor);
 Serial.println(F("Humidity Sensor"));
 Serial.print (F("Sensor Type: ")); Serial.println(sensor.name);
 Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);
 Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor_id);
 Serial.print (F("Max Value: ")); Serial.print(sensor.max_value); Serial.println(F("%"));
 Serial.print (F("Min Value: ")); Serial.print(sensor.min_value); Serial.println(F("%"));
 Serial.print (F("Resolution: ")); Serial.print(sensor.resolution); Serial.println(F("%"));
 Serial.println(F("-----"));
 // Set delay between sensor readings based on sensor details.
 delayMS = sensor.min_delay / 1000;
}
void loop() {
 // Delay between measurements.
 delay(delayMS);
 // Get temperature event and print its value.
 sensors_event_t event;
 dht.temperature().getEvent(&event);
 if (isnan(event.temperature)) {
  Serial.println(F("Error reading temperature!"));
 }
 else {
  Serial.print(F("Temperature: "));
  Serial.print(event.temperature);
```

```
Serial.println(F("°C"));
}

// Get humidity event and print its value.
dht.humidity().getEvent(&event);
if (isnan(event.relative_humidity)) {
   Serial.println(F("Error reading humidity!"));
}
else {
   Serial.print(F("Humidity: "));
   Serial.print(event.relative_humidity);
   Serial.println(F("%"));
}
```

Output:

Inference: This project aims to implement a temperature and humidity sensing system using an Arduino microcontroller and the DHT11 sensor, with data visualization facilitated through a Node-RED dashboard. By integrating hardware and software components, the project seeks to enable real-time monitoring and visualization of environmental conditions, providing users with valuable insights and potentially facilitating automated control systems for maintaining desired environmental parameters.

Verification sign:

Result: successfully implemented and verified Temperature humidity sensing with Arduino and node red dashboard using dht11

Experiment: 9

Things Board – Node red posting data in dashboard through http

<u>Aim</u>: The aim of this project is to establish seamless communication between Things Board and Node-RED, enabling the transmission of data from Node-RED to Things Board's dashboard via HTTP. This integration facilitates efficient data visualization and analysis within the Things Board platform, empowering users to monitor and manage IoT devices and data effectively.

Output

Schematic

Dashboard Output

Inference: By establishing a connection between Things Board and Node-RED, this project aims to enable the seamless transfer of data from Node-RED to Things Board's dashboard using HTTP. This integration facilitates efficient data visualization and analysis within the Things Board platform, empowering users to monitor and manage IoT devices and data effectively. Ultimately, it enhances the capabilities of IoT solutions by providing a streamlined interface for data visualization and decision-making.

Verification Sign:

Result: Successfully implemented and verified Things Board – Node red posting data in dashboard through http

Experiment 10

Supervised machine learning using KNIME analytics platform
Schematic

Aim: The aim of this project is to implement supervised machine learning techniques within the KNIME analytics platform. By utilizing KNIME's robust tools and functionalities, the project seeks to develop predictive models that can effectively analyse and classify data based on labelled examples, enabling informed decision-making and insights generation across various domains.

Schematic

CSV reader

Partitioning

Random forest

rediction Settings	Flow Variables	Job Manager Selection	Memory Policy	
	hange prediction	column name		
Predic	tion column name	Predic	tion (Species)	
✓ A	ppend overall pre	diction confidence		
_ A	ppend individual o	lass probabilities		
Suffix	for probability co	lumns		
□u	se soft voting			

Output

Inference: By leveraging the KNIME analytics platform, this project aims to implement supervised machine learning techniques. Through the utilization of labelled data examples, the project seeks to develop predictive models capable of analyzing and classifying data effectively. This approach enables informed decision-making and insights generation across diverse domains, leveraging the capabilities of KNIME's tools and functionalities to enhance predictive analytics workflows.

Verification Sign:

Result: Successfully implemented and verified Supervised machine learning using KNIME analytics platform