arousal and sleep

arousal in the brain

- reticular activating system
 - stimulated by sensory input
 - o initiated, maintained endogenously
- reticular formation
 - o sends Ach and glutamate throughout brain
- basal forebrain
 - o delivers Ach throughout cortex
- locus coeruleus (dark blue place)
 - o releases NE for vigilance
 - alerts memory
- lateral hypothalamus
 - o releases orexin
 - o maintain arousal in other systems based on body conditions

how does caffeine wake you up

- Ach ←→ GABA opponent systems
 - adenosine (metabolic byproduct)
 - builds up in cells during the day
 - inhibits ACh and allow GABA to dominate \rightarrow sleep
- caffeine crosses blood brain barrier
 - o mimics adenosine and blocks adenosine receptor sites
 - doesn't inhibit ACh
 - o suppresses GABA system while ACh is still active

EEG - electroencephalogram

- gross average change in electrical potentials in area under electrode
- amplitude = voltage
- frequency (Hz) = cycles/second

EEG in sleep cycle

- awake \rightarrow beta waves (18-24 Hz)
 - o distractions from thinking and performing many things simultaneously
 - o noise from multiple activity
- alert and relaxed \rightarrow alpha waves (8-12 Hz)
 - o brain in efficient peak
 - o more coherence
- stage 1 sleep \rightarrow theta (4-7 Hz)
- stage 2 sleep \rightarrow theta w/ spindles and k-complexes
- stage 3&4 (slow wave sleep) \rightarrow delta
 - o stage 3 50%
 - o stage 4 50%
- REM sleep \rightarrow variable (12-28 Hz)
- awake to slow wave sleep: desynchronized → synchronized
 - o REM sleep goes back to desynchronization

Sleep Cycle

~ 90 Minute Cycle: Stage 1, 2, 3, 4, 3, 2, REM

sleep cycle

- 90 minute cycle: stage 1-4-2, REM
- as night progresses
 - o less slow wave sleep
 - o duration of REM increases
- sleep deprivation slow more slow wave sleep
 - o lethargy, poor concentration, irritability
 - o decreased resistance to infection

REM (rapid eye movement) sleep

- paradoxical sleep
 - o EEG desynchronized: high frequency, low voltage
 - o heart and breathing rates highly variable
 - o eyes move, genitals active but muscles paralyzed "atonia"
 - preventing motor signals from going through
 - o highly correlated with dreaming

REM deprivation

- recording EEG of cat on pedestal in tank
 - \circ when enter REM atonia causes cat to fall in \rightarrow wake up (selectively depriving REM)
 - o REM deprived cat displays irritability, poor concentration, hallucinations, death
- REM deprived→ REM rebound
 - REM periods lengthen

functions of sleep and REM

- controversial
- sleep is restorative
 - o engage in critical metabolic processes, process waste, etc
 - o different animals require different lengths of sleep
- REM may have cognitive/psychological advantages
 - REM deprivation → poorer memory for previous day's learning
 - o dreams may be involved in helping resolve psychological conflicts
- slow wave / REM cycle may involve temperature regulation
 - o brain operates within very narrow range of temperatures
 - o brain cools down during slow wave sleep
 - o REM warms brain
 - possibly why hypothalamus triggers PGO wave

regulating sleep cycle

- hypothalamus
 - VLPOA (ventro-lateral preoptic area) → basal forebrain
 - o tuberomammillary
- raphe nuclei in medial pons
- PGO wave (pons geniculate occipital)
 - o initiates REM sleep: Pons activity → lateral Geniculate of thalamus → Occipital cortex

neurotransmitters involved

circadian rhythm

- suprachiasmatic nucleus (SCN) of hypothalamus
 - o clock maintains 24 +/- 1 hr rhythm of activity, impossible to disrupt
 - genetically controlled
 - o interacts with pineal gland
- in absence of day/night cues subject maintains the 24 +/-1 hr rhythm but cycle tends to drift
 - \circ flexibility \rightarrow adapt to seasonal changes
- zeitgeber (time giver) = pineal gland
 - o "third eye", responds to visual input about daylight/darkness
 - o releases melatonin promotes sleep

retino-hypothalamic path

- specialized visual receptors
 - o ancient ganglion cells with photopigment melanopsin
 - o react to ambient light levels
 - o send axon to SCN → informs pineal gland (daylight decreases / nightfall increases melatonin secretion) → melatonin inhibit SCN, regulating active/inactive cycle
- take melatonin for jet lag promotes pineal production of melatonin, resets clock