CS4430 — Compilers I

Dr William Harrison Spring 2017

Lexing 2: Theory of Scanning

HarrisonWL@missouri.edu

Announcements

- The web page for this class is up
 - The lecture slides are there and you should be able to get them now.
 - Lecture slides in PDF
 - https://harrisonwl.github.io/doc/cs4430.html

Today's Lecture

Continue discussion of front-end

- I.e., the earliest phases of the compiler
 - the front-end answers the question "is the input program really a program?"
- The theory underlying lexing
 - allows us to understand what lexer generators do

Approach

- Start with really simple & concrete example
- Consider the underlying theory
- Learn some tools ("lex", "ScanGen", etc.)

What is Lexing again?

Turns a sequence of characters:

...into a sequence of words:

Synonyms for "word": token, lexeme

What is Lexing again?

Usually words/tokens/lexemes are represented symbolically:

```
Instead of: class, Foo, { , ...
```

```
symbols: CLASSDECL, ID ("Foo"), LBRACK, ...
```

What we'd like – as much automated support as possible

- Most parts of a front-end are generated rather than written by hand
 - front-end issues are quite well-understood
- Tools for lexers: lex, ScanGen,...
- Tools for parsers: yacc, parsec, JLex, CUP, SableCC,...

Example: Micro programs

```
begin
    x := 7 + y;
    read(y,z);
end
```

Tokens for Micro

Micro Source

```
begin
  x := 7 + y;
  read(y,z);
end
```

C tokens

```
typedef enum token_types {
    BEGIN, END, READ, WRITE,
    ID, INTLITERAL,
    LPAREN,RPAREN,SEMICOLON,
    COMMA,ASSIGNOP,
    PLUSOP,MINUSOP,SCANEOF
  } token;
```

Micro Source

Tokens for Micro

```
begin
x := 7 + y;
read(y,z);
end
```

```
-- define what a token is
-- data Token = BEGIN | END | READ | WRITE | ID String | INTLITERAL Int | LPAREN | RPAREN | SEMICOLON | COMMA | ASSIGNOP | PLUSOP | MINUSOP | SCANEOF deriving Show
```

```
data Maybe a = Just a | Nothing
-- Want to write:
scan :: String -> Maybe [Token]
scan = .....
```

Writing a scanner in Haskell

Here's its input-output behavior

input

"begin\n x:=7+y;\n read(y,z);\n end"

output

```
ghci> scan "begin\n x:=7+y;\n read(y,z);\n end"

Just [BEGIN,ID "x", ASSIGNOP, INTLITERAL 7, PLUSOP, ..., END, SCANEOF]

ghci> scan "begin\n x:=7+y & \n read(y,z);\n end" -- illegal symbol

Nothing
```

Formal definition of syntax – why is it necessary?

- Most languages allow float constants
 - e.g., 0.1, 10.01
- Should constants of the form ".1" or "10." be allowed as well?
- Consider lexing "1..10"

Formal definition of syntax – why is it necessary?

- Most languages allow float constants
 - e.g., 0.1, 10.01
- Should constants of the form ".1" or "10." be allowed as well?
- Consider scanning "1..10"
 - is it a range (i.e., 1, 2, ...,10)?
 - or, two floats next to one another?
 - i.e., "1." followed by ".10"

Lexical Rules

- How would we specify the lexical rules of a computer language?
 - Regular expressions!
- Regular expressions are a simple formalism for accepting or rejecting strings.
- We specify lexers by writing a regular expression for each possible token.
 - Execute them concurrently
 - Have disambiguation rules

Formal tools for lexical syntax (I)

- Regular expressions (RE)
 - these are patterns which may be applied to a sequence of characters
 - resulting in either a <u>success</u> or a <u>failure</u>
- A "token" (e.g., an identifier) may be defined as any string on which a particular RE succeeds

Formal tools for lexical syntax (II)

- Finite State Automata (FSA)
 - these are machines which may be applied to a sequence of characters
 - resulting in either a <u>success</u> or a <u>failure</u>
- Given an RE, one may <u>automatically</u> construct an FSA which recognizes precisely the same tokens
 - ...and vice versa
 - FSAs are easier to program that REs

Lexer generators

Regular expressions

A regular expression is anything of the following form

- Ø
- λ
- any string s
- if A,B are regular expressions, then so are:
 - A | B
 - A . B
 - A*

Each regular expression defines a set of strings that it matches

- ∅ matches {}
 - i.e., it fails to match any string
- λ matches {""}
 - i.e., it matches only one string the empty string
- string s matches only { s }
 - e.g., the set of matches of reg-exp beavis is just the singleton set { beavis }

Each regular expression defines a set of strings that it matches

- Ø matches {}
 - i.e., it fails to match any string
- λ matches {""}
 - i.e., it matches only one string the empty string
- string s matches on
 - e.g., the set of mate singleton set { bea

warning: Some texts uses λ as meaning either the regular expression or the empty string. This can be a bit confusing.

Let A and B be regular expressions.

- match(A | B) = match(A) ∪ match(B)
 - i.e., any string matched by A or matched by B
 - "|" is called alternation
- match(A B) = { a b : a ε match(A), b ε match(B) }
 - If beavis ε match(A), butthead ε match(B), then beavisbutthead ε match(A B)
 - called sequencing

Let A be a regular expression. Then set match(A*) is defined by:

- "" ε match(A*)
- If strings a ε match(A), a' ε match(A*),
 then aa' ε match(A*)

match(A*) may be thought of as all strings $a_1...a_n$ where each $a_i \in match(A^*)$ and $0 \le n$

Example:

```
match((beavis)*) = { "", beavis, beavisbeavis, ...}
```

A* is called the "Kleene closure" of A after Stephen Kleene (1909-1994), famous 20th century logician and mathematician.

Some shorthand, etc.

- Given two regular expressions M and N
 - Can write M | N to mean either M or N
 - Can use parentheses (M)

$$(0 | 1 | 2 | 3 | 4)(0 | 1)(0 | 2 | 4 | 8)$$

{ ...}

Shorthand:

Use square brackets for list of alternative

i.e., (X | Y) matches the same strings as [XY]

Can use x-y for consecutive ranges

Some shorthand, etc.

Common abbreviations:

- period '.' matches anything
- (^a) is a shorthand matching anything but an 'a'
- Empty regular expression sometimes written ∈

$$((X Y) \mid \boldsymbol{\subseteq}) (B \mid A) (0 \mid 1 \mid \boldsymbol{\subseteq})$$
 { ...}

Some shorthand, etc.

Question:

How might you write "optional" regular expressions *M*? matches anything M matches or the empty string

$$match((XY)?[BA][01]?) = { ... }$$

Question:

Given a regular expression *M* define *M*+ where *M*+ means one or more of *M*

```
match([0-9]+) = { ... }
```

Ambiguities

- A syntax tends to be defined by multiple regular expressions
 - can lead to ambiguity
- For input "begin", reg-exp [a-z]+ matches
 - each initial prefix: "b", "be", "beg", etc.
 - Which token(s) do we choose?
- For input "begin", both of the following reg-exps succeed:
 - begin
 - [a-z]+
 - Which reg-exp applies?

Disambiguation Rules

Longest Match

- The longest string that matches a regular expression is taken as the next token.
- Example
 - [a-z]+ keeps looking for lower case letters, it does not always stop after the first letter.
- Sometimes called the "maximal munch" rule.

Rules priority

- If two regular expressions both match, the first regular expression determines the token type.
- Example
 - "if" is tokenized as a IF, not as an ID.

Example Lexer Specification

Next Time

- Continue learning the formal concepts behind generators
 - lexers: regular expressions & finite automata
 - parsers: context-free grammars (CFGs)

Keyword Pragmatics

- How do you know what are keywords?
 - Look at the reserved words for the language
- Example: Java
 - Reserved keywords → lexical keywords
 - In Java "if, then, else, ..." are reserved keywords
 - Reserved literals → may or may not map to individual lexical entities.
 - In Java "null, true, false' are reserved literals.
 - Suggestion: map reserved literals to identifiers, and handle the reserved status later in the compiler.

Introduction to Lexing

THEORY OF SCANNING

Today's Lecture

Continue discussion of front-end

- I.e., the earliest phases of the compiler
 - the front-end answers the question "is the input program really a program?"
- The theory underlying lexing
 - allows us to understand what lexer generators do

Approach

- What is behind "scanner generators"?
- Last time: Regular expressions
- This time: Finite Automata

Next time: Lexer generators

Review: Regular Expressions describe sets of strings

Let S be an alphabet (i.e., a set of symbols)

```
1. \emptyset, \lambda, a \in S are all regular expressions (primitive r.e's)
```

```
2. If r1 and r2 are r.e's, then so are r1 | r2 (alternation) r1 · r2 (concatenation) r1* (Kleene closure) (r1) (parentheses)
```

3. Only 1-3 give regular expressions

RE's describe sets of strings (i.e., languages)

- $L(\emptyset)$ describes the empty set of strings over S: $\{\}$
- L(λ) describes the set with just the empty string: {""}
 (Note that these are **not** the same set!)
- $\bullet L(a) = \{a\}$
- L(r1 | r2) = L(r1) U L(r2)
- $L(r1 \cdot r2) = \{ s1 \ s2 : s1 \in L(r1) \& s2 \in L(r2) \}$ Ex: if "abc" $\in L(r1)$ and "de" $\in L(r2)$, then "abcde" $\in L(r1 \cdot r2)$

Kleene closure

$$L(r^*) = L(\lambda) \cup L(r) \cup L(r \cdot r) \cup L(r \cdot r \cdot r) \cup ...$$

Ex: What is $L(a^*)$?

$$L(a^*) = {\text{""}} U L(a) U L(a \cdot a) U L(a \cdot a \cdot a) U ...$$

$$= {\text{""}}, a, aa, aaa, ...}$$

$$= \text{set of strings "a...a" (possibly 0 length)}$$

Ex: What is $L(a \cdot (a^*))$?

Some shorthand

• Frequently, we drop the "L" from "L(r)"

That is, we treat a regular expression as a set

• We abbreviate r1·r2 by dropping the

Ex: So, ab is used as both a regular expression and a string

Further examples

 $S = \{a,b\}$. Write a RE with language $\{ab, aba, abb, abaa, ...\}$.

Yet more examples: C identifiers

"An identifier is a sequence of letters and digits. The first character must be a letter; the underscore _ counts as a letter. Upper and lower case letters are different. Identifiers may have any length..."

From Kernighan and Ritchie, 2nd Edition, Appendix A, pp192.

Question: how would we write that as a regular expression?

C identifiers, cont' d

```
letters = (a \mid b \mid .... \mid z \mid A \mid .... \mid Z \mid \_)
digits = (0 \mid 1 \mid .... \mid 9)
identifier = letters (letters | digits)*
```

Finite State Automata

Some essentially equivalent terms

- Finite State Automaton (FSA)
- Deterministic Finite State Automaton (DFA)
- Finite State Machine (FSM)
- Deterministic Finite State Accepter (DFA)
- "Deterministic" means that the transition relation between states is a *function*: that is, given a state and an input, there is one and only next state.
- There are "non-deterministic" automata as well (we'll consider them in a moment).

Finite State Machine

- States
- Transitions between states
- The *language* of the FSM

Finite State Automata

- A Finite State Automaton (FSA) consists of five elements:
 - (1) a finite set of inputs (an alphabet A)
 - (2) a finite set S of states
 - (3) a subset Y of S (Yes states aka "final states")
 - (4) an initial state s0 of S
 - (5) a next-state function F: $S \times A \longrightarrow S$
- A FSA, M, is a pentuple:

$$M = (A, S, Y, s0, F)$$

An Example

- (1) $A = \{a, b\}$
- (2) $S = \{s0, s1, s2\}$
- (3) $Y = \{s0, s1\}$
- (4) s0, the initial state
- (5) $F: S \times A \rightarrow S$ is

$$F(s0,a) = s0$$
, $F(s1,a) = s0$, $F(s2,a) = s2$

$$F(s0,b) = s1$$
, $F(s1,b) = s2$, $F(s2,b) = s2$

An Example - II

State table:

 A transition to a next state is determined by the current state and the input

A State Diagram

- A state diagram shows the initial state, the final (yes, or accepting) states and the transitions among states
- The symbol strings that cause the automaton to start in the initial state and end in a final state are the language accepted by the automaton A. Written "L(A)".

Example: Find a DFA recognizing all strings on A={a,b} starting with "ab"

That is, all strings like: ab, aba, abb, abaa, abab,...

Recall that a DFA is a pentuple: $(\{a,b\}, S, Y, s0, F)$ This problem boils down to determining:

- the set of states S
- the set of "yes" states Y
- the initial state s0
- the transition function F

Starting with "ab" means that our DFA will resemble the following:

Furthermore, we know

- The initial state is s0,
- $Y = \{s2,...?...\}$ (blue),
- F(s0,a) = s1, F(s1,b) = s2

Now, if we're in s2, and we see an "a" or a "b" then we should proceed to another "yes" state

- The initial state is s0,
- $Y = \{s2, s3, ...?...\},$
- F(s0,a) = s1, F(s1,b) = s2, F(s2,a) = s3, F(s2,b) = s3

Now, if we're in s3, and we see an "a" or a "b" then we should remain there.

- The initial state is s0,
- $Y = \{s2, s3, ...?...\},$
- F(s0,a) = s1, F(s1,b) = s2, F(s2,a) = s3, F(s2,b) = s3, F(s3,a)=s3, F(s3,b)=s3

Notice that this accepts the language: {ab, aba, abb, ...}

- The initial state is s0,
- $Y = \{s2, s3\},\$
- F(s0,a) = s1, F(s1,b) = s2, F(s2,a) = s3, F(s2,b) = s3, F(s3,a)=s3, F(s3,b)=s3

So, are we done?

Notice that this accepts the language: {ab, aba, abb, ...}

- The initial state is s0,
- $Y = \{s2, s3\},\$
- F(s0,a) = s1, F(s1,b) = s2, F(s2,a) = s3, F(s2,b) = s3, F(s3,a)=s3, F(s3,b)=s3

So, are we done?

What are F(s0,b) and F(s1,b)? Recall that F is a *function*.

This kind of "error" state (like s4) is usually left out

- The initial state is s0,
- $Y = \{s2, s3, s4\},$
- F(s0,a) = s1, F(s1,b) = s2, F(s2,a) = s3, F(s2,b) = s3, F(s3,a) = s3, F(s3,b) = s3, F(s0,b) = s4, F(s4,) = s4

Find a DFA that recognizes all strings over {0,1} except those containing "001"

First, "set the trap"

Find a DFA that recognizes all strings over {0,1} except those containing "001"

Next, fill in all of the transitions

Find a DFA that recognizes all strings over {0,1} except those containing "001"

Find a DFA that recognizes all strings over {0,1} except those containing "001"

Find a DFA that recognizes all strings over {0,1} except those containing "001"

Now, any string that doesn't end up in "001" is accepted

Question

Question: What if we wanted to find a DFA that recognized every string containing "001"? How would that differ from our previous DFA?

Answer

Reverse the "yes" states:

Finite State Machines

- A Finite State Machine (FSM) is a Finite State Automata with output
 - a FSM has an output alphabet, Z, and
 - an output function g: $S \times A \rightarrow Z$

```
(1) A = \{a, b\}-- the input alphabet
```

- (2) $S = \{s0, s1, s2\}$ -- the set of states
- (3) $Z = \{x, y, z\}$ -- the output alphabet
- (4) s0, the initial state
- (5) f: $S \times A \rightarrow S$ -- the transition function f(s0,a) = s0, f(s1,a) = s0, f(s2,a) = s2

$$f(s0,b) = s1,$$
 $f(s1,b) = s2,$ $f(s2,b) = s2$

(6) g: $S \times A \rightarrow Z$ -- the output function

$$g(s0,a) = x,$$
 $g(s1, a) = x,$ $f(s2,a) = z$
 $f(s0,b) = y,$ $f(s1,b) = z,$ $f(s2,b) = y$

A FSM State Diagram

A PARTIAL STATE MACHINE FOR AN ATM

Lexer generators

Today's Lecture

- We'll look at an example scanner generator
 - Generate a scanner for Micro
- Next time: start parsing

Scanner Generators

- Take an input file specifying the lexical syntax of your language
 - usually in the form of regular expressions
 - ...and including other helper functions, token definitions, etc.
- …and generate code for a scanner
- Many such generators
 - Lex, Flex, ScanGen
 - generate C code
 - JLex, Sable, Cup
 - generate Java
 - Lex was the first such scanner generator
- We'll create a scanner for Micro* using "Flex"
 - this is the GNU version of Lex and is freely available

Flex Specification for the Micro language

The format of a **Flex** specification file is:

```
%{
    #include's
%}
    special "short-hand" definitions
%%
    lexical specification (i.e., regular expressions)
%%
    other C procedures (possibly including main)
```

#include's

Flex specification includes "chunks" of C code, which, may use library functions:

```
%{
int yywrap(void) { } ;

/* call C library function atof() below */
#include <math.h>
%}
```

Special shorthand section

Flex allows the definition of abbreviations for frequently used regular expressions

Recall Micro

Micro Source

```
begin
  x := 7 + y;
  read(y,z);
end
```

C tokens

```
typedef enum token_types {
    BEGIN, END, READ, WRITE,
    ID, INTLITERAL,
    LPAREN,RPAREN,SEMICOLON,
    COMMA,ASSIGNOP,
    PLUSOP,MINUSOP,SCANEOF
  } token;
```

Lexical specification section

Typical scanner action consists of regular expression and action

Lexical specification section

Typical scanner action consists of regular expression and action

Other cases

```
printf( "An identifier: %s\n", yytext );
{ID}
":="
                  printf( "Assignment: %s\n", yytext );
"+"|"-"|"*"|"/"
                 printf( "An operator: %s\n", yytext );
" ("
                  printf( "Left parenthesis: %s\n", yytext );
11) 11
                  printf( "Right parenthesis: %s\n", yytext );
","
                  printf( "Comma: %s\n", yytext );
11 ; 11
                  printf( "Semicolon: %s\n", yytext );
[" "\t\n]+
               /* eat up whitespace */
                  printf( "Unrecognized: %s\n", yytext );
```

C procedures section

To make a standalone lexer, define main here, as in:

```
main( argc, argv )
int argc;
char **arqv;
    ++argv, --argc; /* skip over program name */
    if ( argc > 0 )
            yyin = fopen( argv[0], "r" );
    else
            yyin = stdin;
    yylex();
```

C procedures section

To make a standalone lexer, define main here, as in:

```
main( argc, argv )
int argc;
char **argv;
    ++argv, --argc; /* skip over program name */
    if (argc > 0)
            yyin = fopen( argv[0], "r" );
    else
            yyin = stdin;
    yylex ();
                                 Special variables
                                 yylex and yyin
```

Running flex

- Simply apply it to the file with the flex specification:
 - flex micro.flex
- This generates a C file containing your lexer
 - called "lex.yy.c"
- Compile as usual (if it's standalone)
 - gcc lex.yy.c