Elektronikus elemek és áramkörök labor

Jegyzőkönyv

9.mérés

Vörös Bálint TRUPR6

1.mérés:

labor5.pdf 8. feladata:

1.ábra: kapcsolási rajz

2.ábra: futtatási eredmény

piros vonal : bemenet

zöld vonal : kimenet

3.ábra: rálözelítve a kimenő jelre

4.ábra: adatok leolvasása

A kimenet változási sebessége = slew rate (a feszültség időegységben történő változása)

28.3V/10.1u = 2.8

2.mérés:

labor5.pdf 10. feladata:

5.ábra: kapcsolási rajz

6.ábra: futtatási eredmény

piros vonal: kimenet

zöld vonal: bemenet

7.ábra: kimenetet mérjük

Komparálási szint: mérjük a bemenetet amikor a kimenet elkezd változni

$$U_{komp}$$
 = +- UT * R_0 / R_v

3.mérés:

labor5.pdf 7. feladata:

8.ábra: kapcsolási rajz

9.ábra: futtatási eredmény

kimenő jel (piros):

$$U_{ki}$$
 = TD * dU_{be}/dt = TD * $(\sin \omega * t)'$

$$TD = C_0 * R_v = 100nF * 10k = 1ms$$

10.ábra: kapcsolási rajz

11.ábra: futtatási eredmény

differenciális időállandó

$$TD = 100nF * 10k = 1000 * 10^{-9} * 10^{3} = 1ms$$

5ms alatt 2V-t változott a jel

$$2V / 5ms = dU_{be} / dt$$

0.4V a kimenet az első szakaszban

4.mérés

labor5.pdf 9 feladata Ref_komp

12.ábra kapcsolási rajz

13.ábra Futtatási eredmények

14.ábra kimenet mérése

labor 5.pdf 11.feladata

Hisztref_komp

11. Hisztref_komp

15.ábra kapcsolási rajz

16.ábra futtatási eredmények

Up = Ube * Rv/R0+RV + Uki *Ro/Ro+Rv

17. ábra kimenet mérése