# 浙江大学 2006-2007 学年 秋冬 季学期

# 研究生《计算理论》课程期末考试试卷

| 考试时间: <u>2007</u> 年 <u>1</u> 月 <u>22</u> 日,所需时间: <u>120</u> 分钟,任课教师: |     |   |     |   |   |     |   |   |   |    |
|----------------------------------------------------------------------|-----|---|-----|---|---|-----|---|---|---|----|
| 考生姓名:                                                                |     |   | 学号: |   |   | 专业: |   |   |   |    |
|                                                                      |     |   |     |   |   |     |   |   |   |    |
|                                                                      | 题序  | 1 | 2   | 3 | 4 | 5   | 6 | 7 | 8 | 总分 |
|                                                                      | 得分  |   |     |   |   |     |   |   |   |    |
|                                                                      | 评卷人 |   |     |   |   |     |   |   |   |    |

# Zhejiang University Theory of Computation, Fall-Winter 2006 Final Exam

- 1. (30%) Determine whether the following statements are true or false. If it is true write a  $\checkmark$  otherwise a  $\times$  in the bracket before the statement.
  - (a) ( ) A countable union of regular languages is necessarily regular.
  - (b) ( ) If a DFA M contains a self-loop on some state q, then M must accept an infinite language.
  - (c) ( ) Language  $\{ucv \mid u, v \in \{a, b\}^* \text{ and } |v| < |u| < 2|v|\}$  is context-free.
  - (d) ( ) For a given context-free language L and a string x, the decision problem for whether  $x \in \overline{L}$  is decidable.
  - (e) ( ) The complement of every recursive enumerable language is necessarily nonrecursive enumerable.
  - (f) ( ) If one can list the elements of a language in order, then the language must be recursive.
  - (g) ( ) Languages  $\{"M": Turing machine M accepts more than 2007 distinct inputs <math>\}$  is recursive enumerable.
  - (h) ( ) Let L be a language and there is a Turing machine M halts on x for every  $x \in L$ , then L is decidable.
  - (i) ( ) If L is polynomial time reducible to a finite language, then L is in  $\mathcal{P}$ .
  - (j) ( ) If  $A \leq_p B$ ,  $B \leq_p C$  and both A and C are  $\mathcal{NP}$ -complete, then B is  $\mathcal{NP}$ -complete.

### 2. On Regular Languages

(12%) Decide whether the following languages are regular or not and provide a formal proof for your answer.

(a) 
$$L = \{w \in \{a, b\}^* : |n_a(w) - n_b(w)| \mod 2 \neq 0\}$$

(b)  $L = \{w \in \{a, b\}^* : |n_a(w) - n_b(w)| \neq 0\}$ where  $n_a(w)$  and  $n_b(w)$  give the number of a and b in w respectively.

# 3. On Context-free Languages

(15%) Consider the pushdown automaton  $M = \{K, \Sigma, \Gamma, \Delta, s, F\}$  where  $K = \{s, f\}, \Sigma = \{a, b\}, \Gamma = \{b\}, F = \{f\}$  and  $\Delta$  is given by the following table

$$\frac{(p, a, \beta), (q, \gamma)}{((s, a, e), (f, e))}$$
$$\frac{((s, b, e), (s, b))}{((s, a, b), (s, b))}$$
$$\frac{((s, e, e), (f, e))}{((f, a, e), (f, e))}$$
$$\frac{((f, b, e), (s, b))}{((f, b, e), (s, b))}$$

- (a) Can PDA M accept string aaaaababa?
- (b) Describe the language accepted by M;
- (c) Give a Turing machine that decides the same language.

#### 4. On Primitive Recursive Functions

(11%) Show function

$$f(x,y) = \begin{cases} x+y, & \text{if } y \text{ is odd} \\ x \sim \frac{y}{2}, & \text{if } y \text{ is even} \end{cases}$$

is primitive recursive.

## 5. On Turing Machines

(10%) Show that the computable functions are closed under composition, using the definition of computation of the Turing machine. That is, if f and g are computable functions, show that the function  $\varphi$  given by  $\varphi(x) = f(g(x))$  is a computable function.

#### 6. On Undecidability

(12%) Let  $K_0 = \{\text{"}M\text{""}w\text{"} : M \text{ halts on input string } w \}$ ,  $K_1 = \{\text{"}M\text{"} : M \text{ halts on input string } \text{"}M\text{"} \}$ . On the assumption that  $\mathcal{P} \neq \mathcal{N}\mathcal{P}$ , try to sign languages  $K_0$ ,  $\overline{K_1}$  and sets of languages recursive,  $\mathcal{P}$ ,  $\mathcal{N}\mathcal{P}$  and  $\mathcal{N}\mathcal{P}$ -Complete to the corresponding zone of the following figure:

**Note:** r.e. is the set of recursive enumerable languages and CO-r.e. = $\{L: \text{complement of } L \text{ is r.e. } \}$ .



#### 7. On $\mathcal{P}$ and $\mathcal{NP}$ Problems

(10%) The SET-PACKING problem is defined as follows: given a set S with n sets and a number  $k \le n$ , does S contains k disjoint sets?

- (a) Prove that SET-PACKING problem is  $\mathcal{NP}$  Problem.
- (b) Prove that SET-PACKING problem is  $\mathcal{NP}$ -complete.

For showing hardness, you can assume that the VERTEX-COVER problem is  $\mathcal{NP}$ -complete.