DESMOD: A PYTHON BASED MODELING ENVIRONMENT PETE GRAYSON AND STEVEN SPROUSE

What is discrete event simulation?

- Simulate dynamic behavior of system of parallel processes
 - Progression of time is simulated
- Events are scheduled to happen at specific times
 - Simulated behavior happens in response to events
 - Simulation state is static between events
 - Simulated time moves forward in discrete steps
- Parallel processes are simulated
 - One or more parallel processes
 - Events wake processes
 - Processes may schedule events
 - Processes may start more processes

Discrete Event Simulation Modeling to simulate the dynamic behavior of... to simulate the dynamic behavior of...

Why model?

- Predict system dynamics in advance
- Explore alternative behaviors
- Less expensive than building full system
- Modeling is fun!

Applications

Networking

Queueing systems

Data flow

Plant systems

About Desmod

- Open source project originating at SanDisk (now Western Digital)
- ❖ Based on the SimPy discrete event simulation kernel
- Includes "batteries" every model needs:
 - Hierarchical organization
 - Init, elaboration, simulation, and post-simulation phases
 - Model configuration
 - Multi-factor experiments
 - Result artifacts
 - Command line interface toolkit
- Tools for observing model behavior:
 - Auto-generated model diagrams using DOT
 - VCD output for time-series view of system state
 - Capture data in SQLite
 - Standardized text logging

Checkout Desmod

- https://pypi.python.org/pypi/desmod
- http://desmod.readthedocs.io/

Example: Grocery Store Checkout

- Models grocery store with multiple checkout lanes
 - Each checkout lane has a cashier
 - ❖ Baggers are dynamically assigned based on configurable policy
- Measure customer checkout time and throughput
- Optimize policies and resources

Value Change Dump

- Visualize checkout lane state changes
- View with GTKWave
- May be viewed in realtime while simulation is running

Multi-factor Experiment

- Four configuration factors:
 - Lanes, bagging rate, bagger assignment policy, and PRNG seed
 - Chart shows results from 900 simulations
- Customer throughput is measured
 - Find inflection points by visualizing with Seaborn

