2/2/25, 10:30 PM Worksheet 8

12 Points Possible

Unlimited Attempts Allowed

∨ Details

Q1: What would be the advantages/disadvantages of having a larger page?

Q2: Assume a logical address space with size of 16 and a page size of 4 bytes. How many bits do we need to represent the logical address?

Q3:

m = 4 = total size of logical address

n = 2 = size of page

What the address of the orange, blue and yellow bytes?

2/2/25, 10:30 PM Worksheet 8

Logical memory

Answer 1:

Advantage:

If pages are larger, there are fewer pages in the table. So the searching becomes easier for a small-scale table.

Disadvantage:

If the page size is big, then there can be more memory wastage. Because we might need to accommodate processes in memory larger than it's needed.

Answer 2:

Number of bits needed for the logical address = log2 (address space size) = log2(16) = 4 bits

Answer 3:

- Total size of logical address (m) = 4 bits
- Size of each page (n) = 2 bits

So, the logical address space is, 2^m bytes = 2^4 = 16 bytes Each page contains, 2^n bytes = 2^2 = 4 bytes

The logical address has two parts:

• Page number = m - n = 2 bits

2/2/25, 10:30 PM Worksheet 8

• Offset = n = 2 bits

For the total logical address space of 16 bytes ($0 \sim 15$, from top to bottom) and 4 bytes ($0 \sim 3$) of each page,

the mapping is:

- (top) Page 0
- (middle) Page 1
- (middle) Page 2
- (bottom) Page 3

Bytes Offset Page

0	Page0
1	Page0
2	Page0
3	Page0
0	Page1
1	Page1
2	Page1
3	Page1
0	Page2
1	Page2
2	Page2
3	Page2
0	Page3
1	Page3
2	Page3
3	Page3
	1 2 3 0 1 2 3 0 1 2 3

The addresses for Orange, Blue, and Yellow bytes can be calculated using the above:

1. **Orange Byte:** 0001 (Page 00, Offset 01)

2. Blue Byte: 0101 (Page 01, Offset 01)

3. Yellow Byte: 1110 (Page 11, Offset 10)

New Attempt