

Student T Test

Introduction

- A t-test compares the average values of two data sets and determines if they came from the same population
- Mathematically, the t-test takes a sample from each of the two sets and establishes the problem statement

 H₀ = $\overline{\chi}_1 = \overline{\chi}_2$ H₁ = $\overline{\chi}_1 \neq \overline{\chi}_2$
- It assumes a null hypothesis that the two means are equal
- Using the formulas, values are calculated and compared against the standard values
- The assumed null hypothesis is accepted or rejected accordingly
- If the null hypothesis qualifies to be rejected, it indicates that data readings are strong and are probably not due to chance

Assumptions

- The first assumption is concerned with the scale of measurement. Here assumption for a t-test is that
 the scale of measurement applied to the data collected follows a continuous or ordinal scale.
- The second assumption is regarding simple random sample. The Assumption is that the data is collected from a representative, randomly selected portion of the total population.
- The third assumption is the data, when plotted, results in a normal distribution, bell-shaped distribution curve.
- The fourth assumption is a that reasonably large sample size is used for the test. Larger sample size means the distribution of results should approach a normal bell-shaped curve.
- The final assumption is the homogeneity of variance. Homogeneous, or equal, variance exists when the standard deviations of samples are approximately equal.

T-Test Formula

- Calculating a t-test requires three fundamental data values
 - Difference between the mean values from each data set, or the mean difference
 - Standard deviation of each group
 - Number of data values of each group
- This comparison helps to determine the effect of chance on the difference, and whether the difference is outside that chance range
- The t-test questions whether the difference between the groups represents a true difference in the study or merely a random difference
- The t-test produces two values as its output:
 - T-value or T-Score → p-value
 - Degrees of freedom

T-Value or T-Score

- The t-value, or t-score, is a ratio of the difference between the mean of the two sample sets and the variation that exists within the sample sets
- The numerator value is the difference between the mean of the two sample sets
- The denominator is the variation that exists within the sample sets and is a measurement of the dispersion or variability
- This calculated t-value is then compared against a value obtained from a critical value table called the T-distribution table
- Higher values of the t-score indicate that a large difference exists between the two sample sets
- The smaller the t-value, the more similarity exists between the two sample sets

Degrees of Freedom

- Degrees of freedom refer to the values in a study that has the freedom to vary and are essential for assessing the importance and the validity of the null hypothesis
- Computation of these values usually depends upon the number of data records available in the sample set

Paired Sample T-Test

- The correlated t-test, or paired t-test, is a dependent type of test and is performed when the samples
 consist of matched pairs of similar units, or when there are cases of repeated measures
- This method also applies to cases where the samples are related or have matching characteristics, like a comparative analysis involving children, parents, or siblings

$$T = \frac{mean1 - mean2}{\frac{s(diff)}{\sqrt{n}}}$$

- Where
 - mean1 and mean2 = The average values of each of the sample sets
 - s(diff) = The standard deviation of the differences of the paired data values
 - n = The sample size (the number of paired differences)
 - Degrees of freedom = n -1

Equal Variance or Pooled T-Test

 The equal variance t-test is an independent t-test and is used when the number of samples in each group is the same, or the variance of the two data sets is similar

$$T = \frac{mean1 - mean2}{\frac{(n_1 - 1) * var1^2 + (n_2 - 1) var2^2}{n_1 + n_2} * \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- Where
 - mean1 and mean2 = Average values of each of the sample sets
 - var1 and var2 = Variance of each of the sample sets
 - n1 and n2 = Number of records in each sample set
 - Degrees of Freedom: n1 + n2 2

Unequal Variance T-Test

- The unequal variance t-test is an independent t-test and is used when the number of samples in each group is different, and the variance of the two data sets is also different
- This test is also called Welch's t-test

$$\mathsf{T} = \frac{mean1 - mean2}{\sqrt{\frac{var1}{n1} + \frac{var2}{n2}}}$$

- Where
 - mean1 and mean2 = Average values of each of the sample sets
 - var1 and var2 = Variance of each of the sample sets
 - n1 and n2 = Number of records in each sample set
- Degrees of Freedom

DoF =
$$\frac{\left(\frac{var1^{2}}{n1} + \frac{var2^{2}}{n2}\right)^{2}}{\frac{\left(\frac{var1^{2}}{n1}\right)^{2}}{n1 - 1} + \frac{\left(\frac{var2^{2}}{n2}\right)^{2}}{n2 - 1}}$$

Which T-Test to use?

- If two sample sets are same or related => Paired T-Test
- If two sample sets are of same size => Equal Variance T-Test
- If two sample sets have same variance => Equal Variance T-Test
- If two sample sets do not have same variance => Unequal Variance T-Test

Example

- S1 = 19.7, 20.4, 19.6, 17.8, 18.5, 18.9, 18.3, 18.9, 19.5, 21.95
- \$2 = 28.3, 26.7, 20.1, 23.3, 25.2, 22.1, 17.7, 27.6, 20.6, 13.7, 23.2, 17.5, 20.6, 18, 23.9, 21.6, 24.3, 20.4, 23.9, 13.3

$$51 = 19.35$$
 $52 = 21.6$

Variance = 1.27

Variance 2 = 19.71

 $11 = 10$
 $12 = 20$

$$0 \text{ Ho} = \overline{S1} = \overline{S2}$$
, $\text{Ha} = \overline{S1} \neq \overline{S2}$

- 52 = 21.6 Dif a is Not given, by default d = 0.05
- Variance] = 1.27 (3) since $v_1 \neq v_2$, we will use unequal variance T-test
 - 4 do the computation, T=-2.13, DoF=19.31

d=0.05, two toiled test

Since prualue (-2.13) is falling in Rejection Region, the Null hypothesis is rejected

U-Test

Mann Whitney U Test

- Also known as Wilcoxon Rank Sum Test
- This test can be used to investigate whether two *independent* samples were selected from populations having the same distribution
- Uses ranking to determine the result

Mann Whitney U Test: Steps

- Assign numeric ranks to all the observations (put the observations from both groups to one set), beginning with 1 for the smallest value
- Now, add up the ranks for the observations which came from sample 1. The sum of ranks in sample 2 is now determinate, since the sum of all the ranks equals N(N+1)/2 where N is the total number of observations
- Calculate u values

$$U_1 = R_1 - \frac{n_1(n_1+1)}{2}$$

$$U_2 = R_2 - \frac{n_2(n_2 + 1)}{2}$$

- Where
 - n1 = size of first sample
 - n2 = size of second sample
 - R1 = sum of all observations of first sample
 - R2 = sum of all observations of second sample
- Use the smaller value from u1 and u2
- Lookup the u value in the u-table

Mann Whitney U Test: Example

- \blacksquare S1 = 3, 4, 2, 6, 2, 5
- S2 = 9, 7, 5, 10, 6, 8

Chi-Square Test

Introduction

- The Chi-Square test is a statistical procedure for determining the difference between observed and expected data
- This test can also be used to determine whether it correlates to the categorical variables in our data
- It helps to find out whether a difference between two categorical variables is due to chance or a relationship between them

Test Definition

- A chi-square test is a statistical test that is used to compare observed and expected results
- The goal of this test is to identify whether a disparity between actual and predicted data is due to chance or to a link between the variables under consideration
- As a result, the chi-square test is an ideal choice for aiding in our understanding and interpretation of the connection between our two categorical variables
- A chi-square test or comparable nonparametric test is required to test a hypothesis regarding the distribution of a categorical variable
- Categorical variables, which indicate categories such as animals or countries, can be nominal or ordinal
- They cannot have a normal distribution since they can only have a few particular values

Use of Chi-Square

- Chi-square is a statistical test that examines the differences between categorical variables from a random sample in order to determine whether the expected and observed results are well-fitting
- Uses of the Chi-Squared test:
 - The Chi-squared test can be used to see if your data follows a well-known theoretical probability distribution like the Normal or Poisson distribution
 - The Chi-squared test allows you to assess your trained regression model's goodness of fit on the training, validation, and test data sets

Limitations

- The chi-square test, for starters, is extremely sensitive to sample size
- Even insignificant relationships can appear statistically significant when a large enough sample is used
- The chi-square can only determine whether two variables are related. It does not necessarily follow that one variable has a causal relationship with the other. It would require a more detailed analysis to establish causality.

Formula

$$x^2 = \frac{\sum (O - E)^2}{E}$$

- Where
 - 0 = Observed Value
 - E = Expected Value

ANOVA

ANOVA

- Analysis of variance, or ANOVA, is a statistical method that separates observed variance data into different components to use for additional tests
- A one-way ANOVA is used for three or more groups of data, to gain information about the relationship between the dependent and independent variables
- If no true variance exists between the groups, the ANOVA's F-ratio should equal close to 1

ANOVA: Rational

- Basic idea is to partition total variation of the data into two sources
 - Variation within levels (groups)
 - Variation between levels (groups)
- If HO is true the standardized variances are equal to one another

ANOVA

$$F = \frac{Variance\ Between\ Groups}{Variance\ Within\ Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

Where

- SSG = Sum of Squares Groups
- SSE = Sum of Squares Error
- df_{groups} = degrees of freedom (groups)
- df_{error} = degrees of freedom (error)

ANOVA Example

SSG

sample

$$2 - 4 = -2^2$$

$$3 - 4 = -1^2$$

$$7 - 4 = 3^2$$

$$2 - 4 = -2^2$$

22

$$6 - 4 = 2^{3}$$

sample

$$10 - 8 = 2^2$$

$$8 - 8 = 0^2$$

$$7 - 8 = -1^2$$

$$5 - 8 = -3^2$$

$$10 - 8 = 2^2$$

sample

18

$$-13 = 0^2$$

$$-13 = 2^2$$

14

observation		mean	observation - mean	(observation - mean) ²	
2	-	8.3	= -6.3	40.1 T	
3	-	8.3	= -5.3	28.4	
7	-	8.3	= -1.3	1.8	
2	-	8.3	= -6.3	40.1	
6	-	8.3	= -2.3	5.4	
10	-	8.3	= 1.7	2.7	
8	-	8.3	= -0.3	0.1	
7	-	8.3	= -1.3	1.8	
5	-	8.3	= -3.3	11.1	
10	-	8.3	= 1.7	2.8	
10	-	8.3	= 1.7	2.8	
13	-	8.3	= 4.7	21.8	
14	-	8.3	= 5.7	32.1	
13	-	8.3	= 4.7	21.8	
15	-	8.3	= 6.7	44.4	

Sum of Squares Between Groups

3 7		3	10 8	10 13
6		7	7	14
10 8 7		6	10	15
5 10 10		mean	mean	mean
13 14 13	1.	mean - mean	mean - mean	mean - mean
15 mean	2. 3.	(mean - mean) ²	(mean - mean) ² + (mean - mean) ² + (mean - mean) ²	$(mean - mean)^2$ = $(18.1 + 0.1 + 21.8) * 5$
ilican				= 40.7 * 5 = 203.3
	4.	(mean - mean) ²	+ $(mean - mean)^2$ + $(mean - mean)^2$	X 5

Property of ANOVA

F Distribution

$$=\frac{203.3}{2}$$
 = 101.667

$$F = \frac{101.667}{4.5} = 22.59$$