Introduction to Machine Learning, Spring 2022

Homework 2

(Due Friday, Apr. 8 at 11:59pm (CST))

He Haoyu

April 5, 2022

1 Problem1

Given a set of data $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, where $y_i \in \{0, 1\}$. We want to conduct a binary classification, and the decision boundary is $\beta_0 + x^T \beta = 0$. When $\beta_0 + x^T \beta > 0$, the sample will be classified as 1, and 0 otherwise.

- (a) Define a function which enables to map the range of an arbitrary linear function to the range of a probability [2 points]
- (b) Derive the posterior probability of $P(y_i = 1|x_i)$ and $P(y_i = 0|x_i)$ [3 points]
- (c) Write the log-likelihood for N observations, which means:

$$l(\theta) = log P(Y|X) = \sum_{i=1}^{N} log(P(y_i|x_i))$$

(Using the expression of $P(y_i|x_i)$ in (b) and eliminate redundant items) [5 points] Solution:

- (a) We can define a map $f(x) = \frac{e^x}{e^x+1}$ from the range of an arbitrary linear function to the range of a probability
- **(b)** Let

$$\log \frac{P(y_i = 1|x_i)}{1 - P(y_i = 1|x_i)} = \log \frac{P(y_i = 1|x_i)}{P(y_i = 0|x_i)} = \beta_0 + x^T \beta$$

By the properties of possibility, we know

$$P(y_i = 1|x_i) + P(y_i = 0|x_i) = 1$$

Thus,

$$P(y_i = 1 | x_i) = \frac{\exp(\beta_0 + x^T \beta)}{1 + \exp(\beta_0 + x^T \beta)}$$

$$P(y_i = 0|x_i) = \frac{1}{1 + \exp(\beta_0 + x^T \beta)}$$

(c) Let $\theta = \{\beta_0, \beta\}$

$$\begin{split} l(\theta) &= \log P(Y|X;\theta) \\ &= \sum_{i=1}^{N} \log(P(y_i|x_i;\theta)) \\ &= \sum_{i=1}^{N} (y_i \log(P(y_i = 1|x_i;\theta)) + (1 - y_i) \log(P(y_i = 0|x_i;\theta))) \\ &= \sum_{i=1}^{N} (y_i (\beta_0 + x^T \beta) - \log(1 + \exp(\beta_0 + x^T \beta))) \end{split}$$

Table 1:	probability	distribution	for	X
----------	-------------	--------------	-----	---

iable i. probability distribution for 2						
	X	0	1	2	3	
	P	θ^2	$2\theta(1-\theta)$	θ^2	$1-2\theta$	

2 Problem2

- (a) Given a random variable X and its probability distribution is shown in Table 1. Now, we sample 8 times and get the results $\{3, 1, 3, 0, 3, 1, 2, 3\}$. Please derive the MLE estimate for $\theta(0 < \theta < \frac{1}{2})$. [4 points]
- (b) Now we discuss Bayesian inference in coin flipping. Let's denote the number of heads and the total number of trials by N_1 and N, respectively. Please derive the MAP estimate based on the following prior:

$$p(\theta) = \begin{cases} 0.5 & \text{if } \theta = 0.5\\ 0.5 & \text{if } \theta = 0.3\\ 0 & \text{otherwise,} \end{cases}$$

which believes the coin is fair, or is slightly biased towards tails. [4 points]

(c) Suppose the true parameter is $\theta = 0.31$. Please compare the prior in (b) with the Beta prior distribution (You can review this part in Lecture 07). Which prior leads to a better estimate when N is small? Which prior leads to a better estimate when N is large? [2 points]

Solution:

(a)
$$D = \{3, 1, 3, 0, 3, 1, 2, 3\}, \hat{\theta} = \underset{a}{\operatorname{argmax}} P(D|\theta)$$

$$\begin{split} P(D|\theta) &= P^4(X=3|\theta)P^2(X=1|\theta)P(X=0|\theta)P(X=2|\theta) \\ &= (1-2\theta)^4(2\theta(1-\theta))^2\theta^4 \\ &\qquad \frac{dP(D|\theta)}{\mathrm{d}\theta} = 0 \\ &\Rightarrow 12\theta^2 - 14\theta + 3 = 0 \\ &\Rightarrow \theta = \frac{7 \pm \sqrt{13}}{12} \end{split}$$

Because of the range of θ , we know $\hat{\theta} = \frac{7 - \sqrt{13}}{12}$

(b) Let X be the number of heads, by MAP, $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta|X=N_1)$

$$\begin{split} P(\theta|X=N_1) &= \frac{P(X=N_1|\theta)P(\theta)}{P(X=N_1)} \\ &\propto P(X=N_1|\theta)P(\theta) \\ &\propto \theta^{N_1}(1-\theta)^{N-N_1}p(\theta) \\ &= \begin{cases} 0.5\times0.5^{N_1}\times0.5^{N-N_1} & \text{if } \theta=0.5 \\ 0.5\times0.3^{N_1}\times0.7^{N-N_1} & \text{if } \theta=0.3 \\ 0 & otherwise \end{cases} \\ &\propto \begin{cases} 0.5^N & \text{if } \theta=0.5 \\ 0.3^{N_1}\times0.7^{N-N_1} & \text{if } \theta=0.3 \\ 0 & otherwise \end{cases} \end{split}$$

Thus,

$$\hat{\theta} = \begin{cases} 0.5 & \text{if } N_1 > N \log_{\frac{3}{7}} \frac{5}{7} \\ 0.3 & \text{if } N_1 < N \log_{\frac{3}{7}} \frac{5}{7} \end{cases}$$

(c) By Beta prior, we know $\theta \sim Beta(N_1, N - N_1)$, so,

$$P(\theta) = \frac{1}{\beta(N_1, N - N_1)} \theta^{N_1 - 1} (1 - \theta)^{N - N_1 - 1}$$

By MAP,

$$P(\theta|X = N_1) = \frac{P(X = N_1|\theta)P(\theta)}{P(X = N_1)}$$

$$\propto P(X = N_1|\theta)P(\theta)$$

$$\propto \theta^{N_1}(1 - \theta)^{N - N_1}p(\theta)$$

$$= \theta^{N_1}(1 - \theta)^{N - N_1}\frac{1}{\beta(N_1, N - N_1)}\theta^{N_1 - 1}(1 - \theta)^{N - N_1 - 1}$$

$$\propto \theta^{2N_1 - 1}(1 - \theta)^{2N - 2N_1 - 1}$$

 $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\theta | X = N_1), \text{so}$

$$\frac{d\theta^{2N_1 - 1} (1 - \theta)^{2N - 2N_1 - 1}}{d\theta} = 0$$

$$\Rightarrow \theta = \frac{2N_1 - 1}{2N - 2}$$

When N is large, the Beta prior is better. Because if N is large, $\lim_{x\to\infty}\frac{2N_1-1}{2N-2}=\frac{N_1}{N}=\theta$, has less gap. When N is small, the prior in (b) is better. Because if N is small, $\hat{\theta}=0.3$ is great enough. In fact, with small N, $\hat{\theta}=\frac{2N_1-1}{2N-2}$ by Beta prior is probably not closed to 0.31.

3 Problem3

According to the following Fig. 3, answer the following questions:

- (a) use the D-separation to discus whether the following statements are true or not:
 - (1) Given x_4 , $\{x_1, x_2\}$ and $\{x_6, x_7\}$ are conditionally independent. [1(reason)+1(conclusion) points]
 - (2) Given x_6 , x_3 and x_2 are conditionally independent. [1(reason)+1(conclusion) points]
- (b) if all the nodes are observed and boolean variables, please complete the process of learning the parameter $\theta_{x_6|i,j}$ by using MLE, where $\theta_{x_6|i,j} = p(x_6 = 1 \mid x_3 = i, x_4 = j), i, j \in \{0,1\}.$ [6 points]

Figure 1: The Bayesian network for questions 3.

Solution:

Thus,

- (a) (1) True. Let $A = \{x_1, x_2\}$, $B = \{x_6, x_7\}$, the path is like $A \to x_4 \to B$ head-to-tail. For given x_4 , x_4 is blocked, which means $\{x_1, x_2\}$ and $\{x_6, x_7\}$ are conditionally independent given x_4 .
 - (2) False. First of all, $x_3 \to x_6 \leftarrow x_4$ is head-to-head path,so for given x_6 , x_6 is not blocked. Then, $x_2 \to x_4 \to x_6$ is head-to-tail path, x_4 is not blocked for not given x_4 . Thus, Given x_6 , x_3 and x_2 are not conditionally independent.
- (b) Suppose we observed N points. Let $\theta = \{\theta_{x_1}, \theta_{x_2}, \theta_{x_3}, \theta_{x_4}, \theta_{x_5}, \theta_{x_6|i,j}, \theta_{x_7|j}\}$

$$\log P(D|\theta) = \log \prod_{k=1}^{N} P(x_{1k}, x_{2k}, x_{3k}, x_{4k}, x_{5k}, x_{6k}, x_{7k}|\theta)$$

$$= \sum_{k=1}^{N} \log(P(x_{1k}|\theta) + P(x_{2k}|\theta) + P(x_{3k}|\theta) + P(x_{4k}|\theta) + P(x_{5k}|\theta) + P(x_{6k}|x_3, x_4, \theta) + P(x_{7k}|x_4, \theta))$$

$$\frac{\partial \log P(D|\theta)}{\partial \theta_{x_6}|i, j} = \sum_{k=1}^{N} \frac{\partial \log P(x_{6k}|x_3, x_4, \theta)s}{\partial \theta_{x_6}|i, j}$$

Now define $I(\cdot)$ be the indicator variable, $I(\cdot) = 1$ if and only if is (\cdot) is right, and 0 for all other cases.

$$\hat{\theta}_{x_6}|i,j = \frac{\sum_{k=1}^{N} I(x_{6k} = 1, x_{3k} = i, x_{4k} = j)}{I(x_{3k} = i, x_{4k} = j)}$$