Classification of the MNIST dataset

Pattern Recognition ICP

Sajina Pathak

Supervisor: Dr. Georgios Anagnostopoulos

Outline

- 1. Dataset source
- 2. Data Visualization
- 3. Classification Algorithms implemented
- 4. Comparision with baseline methods
- 5. Conclusion

13/12/24

Objective

- Implement classification algorithm taught in the Pattern Recognition class.
- Image Classification on sign language.

Approach

- Image Classification using
 - LDA (Linear Discriminant Analysis)
 - LDA with PCA (Principal Component Analysis)
 - SVM (Support Vector Machine)
 - CNN (Convolutional Neural Network)

DATASETS

- MNIST(Modified National Institute of Standards and Technology) image dataset.
- The American Sign Language letter database of hand gestures represent a multiclass problem with 24 classes of letters (excluding J and Z which require motion).
- Training data (27,455 cases) and Test data (7172 cases).
- Pixel to pixel 784 which represent a single 28x28 pixel image with grayscale values between 0-255.
- https://www.kaggle.com/datasets/datamunge /sign-language-mnist

Data Visualization

Number of data per label.

Data Visualization

Linear Discriminant Analysis

	Confusion Matrix																	
0	259	0	0	0	0	0	0	0	0	0	0	0	29	21	0	0	0	0
1	- 0	281	0	54	0	2	0	0	0	0	40	0	0	0	0	0	0	46
2	- 0	0	251	0	0	0	0	0	0	0	0	1	0	0	39	0	0	0
3	- 0	11	0	154	3	0	0	0	7	0	0	0	6	0	0	0	0	0
4	- 0	22	0	0	293	0	0	0	0	0	0	0	88	23	0	0	0	6
5	- 0	0	0	21	0	112	0	0	0	0	20	3	0	0	0	0	0	5
6	- 3	0	0	20	0	0	170	13	1	0	0	0	1	6	0	0	20	0
7	- 0	0	0	0	0	11	60	231	0	0	0	20	1	0	3	6	37	6
8	- 0	0	0	1	17	0	0	0	47	0	17	19	37	16	0	21	2	66
9	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	- 0	19	0	40	0	6	0	0	2	0	109	0	0	0	0	0	0	95
Labels 12	- 0	16	0	5	0	1	0	2	0	0	0	109	0	0	0	0	0	0
<u>1</u> 2	69	0	0	0	55	0	6	0	22	0	0	0	98	83	21	0	0	0
를 13	84	21	0	0	0	0	0	0	9	0	0	0	35	66	0	0	10	0
14	- 0	0	1	3	17	20	0	21	15	0	0	1	0	0	102	20	0	0
15	- 0	0	0	0	12	38	0	15	31	0	13	18	17	0	0	64	54	15
16	- 20	0	0	0	0	3	0	18	0	0	0	0	21	0	0	0	81	0
17	- 0	0	0	18	0	0	0	0	0	0	26	5	0	0	0	0	0	21

Accuracy:	0.43377021751	25488		
	precision	recall	f1-score	support
0	0.565502	0.782477	0.656527	331.0
1	0.682039	0.650463	0.665877	432.0
2	0.940075	0.809677	0.870017	310.0
3	0.383085	0.628571	0.476043	245.0
4	0.694313	0.588353	0.636957	498.0
5	0.500000	0.453441	0.475584	247.0
6	0.627306	0.488506	0.549273	348.0
7	0.770000	0.529817	0.627717	436.0
8	0.265537	0.163194	0.202151	288.0
9	0.000000	0.000000	0.000000	0.0
10	0.339564	0.329305	0.334356	331.0
11	0.516588	0.521531	0.519048	209.0
12	0.276836	0.248731	0.262032	394.0
13	0.267206	0.226804	0.245353	291.0
14	0.618182	0.414634	0.496350	246.0
15	0.566372	0.184438	0.278261	347.0
16	0.305660	0.493902	0.377622	164.0
17	0.049881	0.145833	0.074336	144.0
18	0.243094	0.357724	0.289474	246.0
19	0.275785	0.495968	0.354467	248.0
20	0.264516	0.308271	0.284722	266.0
21	0.373541	0.277457	0.318408	346.0
22	0.200000	0.393204	0.265139	206.0
23	0.461538	0.337079	0.389610	267.0
24	0.616766	0.310241	0.412826	332.0
macro avg	0.432135	0.405585	0.402486	NaN
weighted a	vg 0.484798	0.433770	0.442672	NaN

LDA with **PCA**

	6 -	0	0	0	20	0	0	203	18	0	0	0	0	21	14	0	19	0	0	52	0	0	0	1	0
	7 -	0	0	0	0	16	0	45	348	0	0	0	0	0	0	0	0	0	0	22	0	0	0	5	0
	8 -	3	0	0	0	0	0	0	0	190	0	0	0	21	0	0	12	0	21	0	0	0	0	0	41
	9 -	0	0	0	9	0	21	0	0	24	159	0	0	0	0	0	0	87	3	0	0	0	8	0	20
	10 -	0	0	0	0	0	0	0	0	0	0	209	0	0	0	0	0	0	0	0	0	0	0	0	0
Labels	11	24	0	0	0	47	0	0	0	0	0	0	135	45	0	0	39	0	104	0	0	0	0	0	0
True L	12 -	42	0	0	4	14	0	0	0	0	0	0	15	139	10	0	33	0	2	32	0	0	0	0	0
⊨	13 -	0	0	17	0	21	21	8	0	0	0	0	0	0	138	0	20	0	0	5	4	0	0	12	0
	14 -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	324	22	0	0	1	0	0	0	0	0
	15 -	0	0	0	0	0	3	0	0	0	0	0	21	0	0	0	140	0	0	0	0	0	0	0	0
	16 -	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0	41	62	0	20	0	0	0	0
	17	0	0	0	3	22	0	0	0	40	0	0	57	27	0	0	3	0	43	0	18	0	12	0	21
	18 -	0	0	1	0	0	0	0	0	21	0	40	0	0	0	21	0	0	0	104	20	0	0	41	0
	19 -	0	17	0	39	0	3	0	0	0	41	0	0	0	0	0	0	56	0	0	80	30	0	0	0
	20 -	0	11	0	3	0	35	0	0	0	16	0	0	0	0	19	0	32	0	0	50	131	32	0	17
	21 -	0	20	0	0	0	3	0	0	0	20	0	0	0	0	0	0	22	0	0	17	1	123	0	0
	22 -	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	8	24	20	0	0	48	166	0
	23 -	0	0	0	17	0	0	0	0	17	0	9	0	0	0	0	0	63	9	42	0	2	22	0	151
	'	Ó	'n	2	з	4	5	6	7	8	9	10	11	12 d Lab	13	14	15	16	17	18	19	20	21	22	23

3	0.59	0.57	0.58	245
4	0.78	0.87	0.82	498
5	0.67	0.83	0.74	247
6	0.71	0.58	0.64	348
7	0.95	0.74	0.83	436
8	0.66	0.63	0.64	288
10	0.47	0.50	0.48	331
11	0.73	1.00	0.84	209
12	0.66	0.31	0.42	394
13	0.51	0.45	0.48	291
14	0.81	0.57	0.67	246
15	0.89	0.94	0.91	347
16	0.47	0.85	0.60	164
17	0.11	0.28	0.16	144
18	0.19	0.29	0.23	246
19	0.37	0.46	0.41	248
20	0.43	0.31	0.36	266
21	0.82	0.33	0.47	346
22	0.44	0.52	0.48	206
23	0.59	0.63	0.61	267
24	0.65	0.45	0.53	332
accuracy			0.63	7172
macro avg	0.63	0.62	0.61	7172
weighted avg	0.67	0.63	0.63	7172

Hyper parameter tuning

19	0.37	0.46
20	0.43	0.31
21	0.82	0.33
22	0.44	0.52
23	0.59	0.63
24	0.65	0.45
accuracy		
macro avg	0.63	0.62
weighted avg	0.67	0.63

Summary of Best Model: Best Hyperparameters:

Learning Rate: 0.1

Number of Iterations: 2000

Regularization Strength: 0.01

Best Testing Accuracy: 62.98%

Training with learning_rate=0.01, num_iterations=5000, reg_strength=0.005 Testing accuracy: 56.05%

Training with learning_rate=0.01, num_iterations=5000, reg_strength=0.01 Testing accuracy: 55.69%

Training with learning_rate=0.01, num_iterations=5000, reg_strength=0.02 Testing accuracy: 55.05%

Training with learning_rate=0.02, num_iterations=2000, reg_strength=0.005 Testing accuracy: 55.28%

Training with learning_rate=0.02, num_iterations=2000, reg_strength=0.01 Testing accuracy: 55.09%

Training with learning_rate=0.02, num_iterations=2000, reg_strength=0.02 Testing accuracy: 54.56%

Training with learning_rate=0.02, num_iterations=3000, reg_strength=0.005 Testing accuracy: 56.76%

Training with learning_rate=0.02, num_iterations=3000, reg_strength=0.01 Testing accuracy: 56.09%

Training with learning_rate=0.02, num_iterations=3000, reg_strength=0.02 Testing accuracy: 55.31%

Training with learning_rate=0.02, num_iterations=5000, reg_strength=0.005 Testing accuracy: 61.60%

Training with learning_rate=0.02, num_iterations=5000, reg_strength=0.01

Logistic Regression Model

```
Iteration 0, Loss: 3.1781
Iteration 100, Loss: 2.3069
Iteration 200, Loss: 1.9253
Iteration 300, Loss: 1.7007
Iteration 400, Loss: 1.5470
Iteration 500, Loss: 1.4323
Iteration 600, Loss: 1.3419
Iteration 700, Loss: 1.2679
Iteration 800, Loss: 1.2056
Iteration 900, Loss: 1.1520
Training Accuracy: 76.39%
Testing Accuracy: 63.43%
```


SVM

Classificatio	n Report:			
	precision	recall	f1-score	support
0	0.82	0.98	0.89	331
1	0.88	0.81	0.84	432
2	0.87	0.85	0.86	310
3	0.62	0.62	0.62	245
4	0.78	0.87	0.83	498
5	0.66	0.81	0.73	247
6	0.79	0.58	0.67	348
7	0.95	0.80	0.87	436
8	0.65	0.66	0.66	288
10	0.49	0.48	0.48	331
11	0.73	1.00	0.85	209
12	0.59	0.34	0.43	394
13	0.51	0.48	0.50	291
14	0.73	0.56	0.63	246
15	0.89	0.93	0.91	347
16	0.49	0.85	0.62	164
17	0.13	0.28	0.18	144
18	0.13	0.17	0.15	246
19	0.37	0.42	0.40	248
20	0.38	0.30	0.34	266
21	0.77	0.38	0.51	346
22	0.45	0.60	0.51	206
23	0.59	0.62	0.60	267
24	0.60	0.45	0.52	332
accuracy			0.63	7172
macro avg	0.62	0.62	0.61	7172
weighted avg	0.66	0.63	0.64	7172

0	323	0	0	0	0	0	0	0	0	0	0	0	0	3	4	0	0	0	1	0	0	0	0	0	0
1	0	349	0	0	0	0	0	0	0	0	75	0	0	0	0	0	0	0	0	0	0	0	8	0	0
2	0	0	264	0	0	16	0	0	0	0	0	5	0	0	19	0	0	0	0	0	0	0	0	6	0
3	0	0	0	153	0	0	0	0	0	0	15	0	0	14	0	0	0	0	5	0	0	6	0	52	0
4	0	0	0	0	435	0	0	0	0	0	0	0	0	0	0	0	0	0	63	0	0	0	0	0	0
5	0	0	20	0	0	201	0	0	0	0	0	1	0	0	5	0	0	0	0	0	0	0	20	0	0
6	0	0	0	20	0	0	203	18	0	0	0	0	0	21	14	0	19	0	0	52	0	0	0	1	0
7	0	0	0	0	16	0	45	348	0	0	0	0	0	0	0	0	0	0	0	22	0	0	0	5	0
8	- 3	0	0	0	0	0	0	0	190	0	0	0	0	21	0	0	12	0	21	0	0	0	0	0	41
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	9	0	21	0	0	24	0	159	0	0	0	0	0	0	87	3	0	0	0	8	0	20
rapels 12	0	0	0	0	0	0	0	0	0	0	0	209	0	0	0	0	0	0	0	0	0	0	0	0	0
를 12	24	0	0	0	47	0	0	0	0	0	0	0	135	45	0	0	39	0	104	0	0	0	0	0	0
립 13	42	0	0	4	14	0	0	0	0	0	0	0	15	139	10	0	33	0	2	32	0	0	0	0	0
14	0	0	17	0	21	21	8	0	0	0	0	0	0	0	138	0	20	0	0	5	4	0	0	12	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	324	22	0	0	1	0	0	0	0	0
16	0	0	0	0	0	3	0	0	0	0	0	0	21	0	0	0	140	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	0	41	62	0	20	0	0	0	0
18	0	0	0	3	22	0	0	0	40	0	0	0	57	27	0	0	3	0	43	0	18	0	12	0	21
19	0	0	1	0	0	0	0	0	21	0	0	40	0	0	0	21	0	0	0	104	20	0	0	41	0
20	0	17	0	39	0	3	0	0	0	0	41	0	0	0	0	0	0	56	0	0	80	30	0	0	0
21	0	11	0	3	0	35	0	0	0	0	16	0	0	0	0	19	0	32	0	0	50	131	32	0	17
22	0	20	0	0	0	3	0	0	0	0	20	0	0	0	0	0	0	22	0	0	17	1	123	0	0
23	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	24	20	0	0	48	166	0
24	0	0	0	17	0	0	0	0	17	0	0	9	0	0	0	0	0	63	9	42	0	2	22	0	151
	Ó	i	2	3	4	5	6	Ż	8	9	10	11 Predic	12 cted L	13	14	15	16	17	18	19	20	21	22	23	24

CNN

- 1200 - 1000 - 800 - 600 - 400 - 200

Testing

Predicted: 19, True: 19

Predicted: 13, True: 0

Predicted: 19, True: 10

Predicted: 7, True: 14

Prediction Accuracy

Observation

Model	Implementation		Metrics									
		Accuracy	Precision	Recall	F1 Score							
LDA	Custom	43.38%	0.48	0.43	0.40							
LDA with PCA	Custom	61.88%	0.66	0.62	0.63							
Logistic Regression	Custom	62.98%	0.67	0.63	0.63							
SVM	Library	63%	0.66	0.63	0.64							
CNN (Baseline)	Library	100%	1	1	1							

Conclusion

- Implement and test various Classifier model and classify Images in American Sign Language.
- Construct the model with accuracy above 76%.
- Hyper parameter tuning, PCA can increase the performance of a model.

13/12/24 ICP-2024-Fall 18 \\\\\

References

- https://www.youtube.com/watch?v=YYEJ_GUguHw
- https://github.com/vaibhavbichave/American-Sign-Language/blob/master/Sign%20Language%20MNIST.ipynb

