Transformations of Graphs

APMA Faculty University of Virginia

August 6, 2024

Vertical Shifting

Vertical Shifts Of Graphs:

Suppose c > 0,

- 1. To graph y = f(x) + c, shift the graph of y = f(x) upward c units.
- 2. To graph y = f(x) c, shift the graph of y = f(x) downward c units.

Horizontal Shifting

Horizontal Shifts Of Graphs:

Suppose c > 0,

1. To graph y = f(x - c),, shift the graph of y = f(x) to the right c units.

The value of f(x-c) at x is the same as the value of f(x) at x-c.

2. To graph y = f(x + c),, shift the graph of y = f(x) to the left c units.

The value of f(x + c) at x is the same as the value of f(x) at x + c.

Reflecting Graphs

Reflecting Graphs:

- 1. To graph y = -f(x), reflect the graph of y = f(x) in the x- axis.
- 2. To graph y = f(-x), reflect the graph of y = f(x) in the y- axis.

Vertical Stretching and Shrinking

Vertical Stretching And Shrinking Of Graphs:

To graph y = cf(x), c > 0:

- 1. If c > 1, stretch the graph of y = f(x) vertically by a factor of c.
- 2. If 0 < c < 1. shrink the graph of y = f(x) vertically by a factor of c.

Horizontal Stretching and Shrinking

Horizontal Shrinking And Stretching Of Graphs:

To graph y = f(cx), c > 0:

- 1. If c > 1 , shrink the graph of y = f(x) horizontally by a factor of $\frac{1}{c}$.
- 2. If 0 < c < 1. stretch the graph of y = f(x) horizontally by a factor of $\frac{1}{c}$.

Strategy

Strategy:

Based on the graph of y = f(x),

- if something changes for the input, i.e. inside the parenthesis (), e.g. $f(2x), f(x+3), f(\frac{1}{2}x-1)$, then fix a certain y value to check what value for x to take, in the new function , to make the same y value, to determine its transformations horizontally.
- if something changes for the output, i.e. outside the parenthesis (), e.g. 2f(x), f(x) + 3, $\frac{1}{2}f(x) 1$, then fix a certain x value to check what value for y to take, in the new function, to determine its transformations vertically.

Even and Odd Functions

Even Functions: f(-x) = f(x) for every number x in its domain. The graph of an even function is symmetric with respect to the y-axis. eg. $f(x) = x^2$ is even since $f(-x) = (-x)^2 = x^2 = f(x)$

The graph of an even function is symmetric with respect to the *y*-axis.

The graph of an odd function is symmetric with respect to the origin.

Odd Functions: f(-x) = -f(x) for every number x in its domain. The graph of an even function is symmetric with respect to the origin. eg. $f(x) = x^3$ is even since $f(-x) = (-x)^3 = -x^3 = -f(x)$

Example

Example: Sketch the graph of the function $f(x) = 1 - (x - 3)^2$

