Deriving the Schrödinger Equation from Compression Principles

1) Postulates (what we assume)

- 1. State of knowledge about a particle (mass m) at time t is a probability density (x,t) on configuration space and a phase field S(x,t) that generates a current v = S/m.
- 2. **Dynamics = optimal compression** of the state's spatial structure subject to ordinary physical constraints. "Compression" is made concrete as minimizing the **Fisher information content** (a measure of spatial roughness/description length) of .
- 3. We must still respect **probability flow** (continuity) and ordinary **energetics** (potential V(x,t)).
- 4. A single constant with units of action, call it h, sets the scale of the information–action tradeoff (it will drop out as the Lagrange multiplier and calibrates to experiment).

2) The compression functional

Use a Lagrangian density that balances: - a "coding cost" (Fisher information) that penalizes unnecessary structure in , and - standard kinetic/potential terms expressed in the hydrodynamic (Madelung) variables (,S).

Define the action

$$\mathcal{A}[\rho,S] = \int dt \int d^3x \, \Bigg\{ \rho \, (\partial_t S + \tfrac{(\nabla S)^2}{2m} + V) + \frac{\hbar^2}{8m} \, \frac{|\nabla \rho|^2}{\rho} \Bigg\}.$$

Interpretation: - The first term enforces energy accounting and probability flow.
- The second term is the Fisher information density, i.e., the **compression penalty**; minimizing it prefers smoother, more compressible probability fields unless the constraints demand structure.

3) Variation \rightarrow Euler–Lagrange equations

• Variation w.r.t. S gives the **continuity equation**:

$$\partial_t \rho + \nabla \cdot \left(\rho \, \frac{\nabla S}{m} \right) = 0.$$

• Variation w.r.t. gives the quantum Hamilton–Jacobi (QHJ) equation:

$$\partial_t S + \frac{(\nabla S)^2}{2m} + V - \frac{\hbar^2}{2m} \, \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} = 0. \label{eq:delta_total_state}$$

The extra term

$$Q = -\frac{\hbar^2}{2m} \, \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}}$$

is the quantum potential, arising directly from the Fisher information penalty.

4) Package (,S) into a wavefunction

Define the complex field

$$\psi(x,t) = \sqrt{\rho(x,t)} e^{iS(x,t)/\hbar}.$$

This transforms the continuity + QHJ equations into

$$i\hbar\,\partial_t\psi = \Big(-\frac{\hbar^2}{2m}\nabla^2 + V\Big)\,\psi,$$

i.e., the time-dependent Schrödinger equation.

5) Interpretation

- Quantum dynamics emerges as the unique fixed point where:
 - Probability flow and energy bookkeeping are respected, and
 - The state description is optimally compressible (minimizing Fisher information).
- The quantum term is the shadow of the compression drive.
- h is the tradeoff scale, fixed empirically.

6) Sanity checks

- Classical limit: $\hbar \to 0$ eliminates the compression penalty, recovering classical Hamilton–Jacobi mechanics.
- Interference: arises naturally from multi-path compression encoded in the phase.
- Uniqueness: Fisher information is essentially the only local, Galilean-invariant compression functional.

7) Bottom line

Schrödinger's equation is not arbitrary—it is the equation of motion that best compresses probabilistic descriptions of reality under physical constraints.