Efficient Band Occupancy and Modulation Parameter Detection

Peter Mathys University of Colorado Boulder

mathys@Colorado.edu

and

Institute for Telecommunication Sciences

pmathys@ntia.doc.gov

GRCon 2017 San Diego September 13, 2017

The Problem: Unknown Signals in Freq. Band

PSD of Noiseless Signals in a 3 MHz Band

Question: How to Find Parameters Efficiently?

- Intelligent radios: Understand and characterize signals to infer the conditions of the local RF environment (from DARPA's SC2).
- The goal of SC2 (Spectrum Collaboration Challenge) is to find ways to share the RF spectrum dynamically and collaboratively among many users.
- One of the SC2 hurdles asked to "Develop a classifier that can identify the occupied range and type of six simultaneous non-overlapping signals within a 3 MHz bandwidth channel."
- We look at BPSK, QPSK, 8-PSK, 16-QAM, and analog FM signals.

In Real Life Signals are Of Course Noisy

PSD of Signals with SNR~10 dB in 3 MHz Band

Conventional Method: Find Bands, Center Frequencies and Extract Signals Individually

Can use Welch modified periodogram method

Individual Signal Extraction for Finding F_B

• Shift desired signal with center frequency fc to baseband.

$$x_{BB}(t) = x(t) e^{-j2\pi f_c t}$$

• Apply lowpass filtering to remove all other signals

$$s(t) = LPF\{x_{BB}(t)\}$$

- Cannot use polyphase filter bank if symbol rate is unknown because that reduces frequency resolution.
- Then look at PSD of $|s(t)|^2$ to obtain symbol rate F_B .

Example: PSD of Magnitude Squared Signal X₅

Fourier Transform of $|x(t)|^2 = x(t) x^*(t)$

$$\int_{-\infty}^{\infty} x(t) x^*(t) e^{-j2\pi f t} dt =$$

$$= \int_{-\infty}^{\infty} x(t) \int_{-\infty}^{\infty} X^*(\nu) e^{-j2\pi \nu t} d\nu e^{-j2\pi f t} dt$$

$$= \int_{-\infty}^{\infty} X^*(\nu) \int_{-\infty}^{\infty} x(t) e^{-j2\pi (f+\nu)t} dt d\nu$$

$$= \int_{-\infty}^{\infty} X(f+\nu) X^*(\nu) d\nu$$

Autocorrelation in frequency domain

Component Spectra for Freq Domain Correlation

Bandlimited to W Freq Domain Correlation

Bands and Symbol Rates, Noiseless Case

F_{BT} (y-axis) is varied from 0 to 100 kHz.

z-axis is correlation

Bands and Symbol Rates, SNR~10 dB

F_{BT} (y-axis) is varied from 0 to 100 kHz.

z-axis is correlation

More Modulation Parameters

Reduce Bandwidth by Factor of 10

Use IFT to obtain Signal X₅ and its Constellation

Computational Effort Comparison

• Assumptions:

- Sampling rate F_s = 3 MHz
- Frequency resolution $\Delta f = 100 \text{ Hz}$
- FFT blocklength N = 30000
- Signal bandwidth BW = 100 kHz
- Units of measurement: MAC (multiply-accumulate) instructions
- Both conventional and frequency domain methods require initial FFT of length N to estimate f_{ci} and BW_i of i-th signal

Computational Effort Comparison

Conventional Method

- Shift each signal to baseband $x(t) e^{-j2\pi f_{ci}t}$
- Lowpass filter, FIR, cutoff BW/2, $4N^2\Delta_f$ /BW (3.6e6) MACs per signal
- Square each individual baseband signal and compute FFT, Nlog₂N (0.45e6) MACs per signal

Proposed Frequency Domain Method

Compute

$$\int_{f_x - F_{BT}/2 - W/2}^{f_x - F_{BT}/2 + W/2} X(F_{BT} + \nu) X^*(\nu) d\nu$$

$$f_x - F_{BT}/2 - W/2$$

- Use W = BW, $F_{BT} = BW_i \pm 0.1BW$, $f_x = f_{ci} \pm 0.1f_{ci}$
- Requires 1.2x0.2x(BW/ Δ_f)2 (2.4e5) MACs per signal
- Note: 4.05e6 = 16.9x2.4e5

Improvement by factor of 16.9

Limitations

- For 100 Hz frequency resolution 10 ms of data is needed. For 20 MHz frequency band, FFT of length >=200,000 needed for either method.
- Conceptual difference:
 - Conventional method produces spectral line at symbol rate F_{Ri}
 - Frequency domain method produces spectral line at $f_{ci}\pm F_{BT}/2$ only if trial symbol rate F_{RT} is close enough to actual rate F_{Ri} .
- Constant envelope modulation (CPM, CPFSK, GMSK) produces signals $x(t) = A e^{j(2\pi f_c t + \phi(t))}$
- Magnitude squaring results in $|x(t)|^2 = A^2$ which has no symbol rate information.

Example: Analog FM, QPSK, GMSK Signals

SNR approx. 20 dB

Band Occupancy and Symbol Rates

X₀, X₂ probably analog FM (carrier term)

X₄ needs more examination

Convert X_4 to Time Domain Baseband: $S_4(t)$

Look at $[Re{s_4(t)}]^2$ to find symbol rate (107 kBaud)

IQ Plot Confirms X₄ as GMSK

Sample Files and Jupyter Notebook

• See https://github.com/mathys2000/BandOccupancyAndModulation
Detection

Questions?