Generated on 2023-07-19 10:02:43 by gEcon version 1.2.1 (2023-01-18)

Model name: RSW

1 HIGHREGIME

1.1 Optimisation problem

$$\max_{piH_{t}, yH_{t}, iH_{t}} UH_{t} = -0.5 \left(pitH - pitCB + piH_{t} \right)^{2} + \beta \left(pHE_{t} \left[UH_{t+1} \right] + (1 - pH) E_{t} \left[UL_{t+1} \right] \right) - 0.5 \kappa \theta^{-1} yH_{t}^{2}$$

$$(1.1)$$

s.t.:

$$p\!i\!H_{t-1} = \beta \left(p\!H p\!i\!H_t + p\!i\!L_t \left(1 - p\!H \right) \right) + \kappa y\!H_{t-1} \quad \left(\lambda_t^{\mathrm{HIGHREGIME}^1} \right) \tag{1.2}$$

$$yH_{t-1} = pHyH_t + yL_t(1 - pH) - \sigma(iH_{t-1} - m_{t-1} - pHpiH_t - piL_t(1 - pH)) \quad \left(\lambda_t^{\text{HIGHREGIME}^2}\right)$$
(1.3)

1.2 First order conditions

$$- \textit{pi}tH + \textit{pi}tCB - \textit{pi}H_t + \beta \textit{pH}\lambda_t^{\mathrm{HIGHREGIME}^1} - \beta \textit{pH}\mathrm{E}_t \left[\lambda_{t+1}^{\mathrm{HIGHREGIME}^1}\right] + \textit{pH}\sigma\lambda_t^{\mathrm{HIGHREGIME}^2} = 0 \quad \left(\textit{pi}H_t\right) \tag{1.4}$$

$$pH\lambda_{t}^{\text{HIGHREGIME}^{2}} + \beta pH\left(\kappa E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{1}}\right] - E_{t} \left[\lambda_{t+1}^{\text{HIGHREGIME}^{2}}\right]\right) - \kappa \theta^{-1} yH_{t} = 0 \quad (yH_{t})$$

$$(1.5)$$

$$-\beta p H \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2} \right] = 0 \quad (iH_t)$$
 (1.6)

2 LOWREGIME

2.1 Optimisation problem

$$\max_{p\!i\!L_t, y\!L_t, i\!L_t} U\!L_t = -0.5 \left(-p\!i\!t\!C\!B + p\!i\!t\!L + p\!i\!L_t \right)^2 + \beta \left(p\!L\!E_t \left[U\!L_{t+1} \right] + (1 - p\!L) E_t \left[U\!H_{t+1} \right] \right) - 0.5\kappa\theta^{-1} y\!L_t^2$$

$$\tag{2.1}$$

s.t.

$$p\!i\!L_{t-1} = \beta \left(p\!L\!p\!i\!L_t + p\!i\!H_t \left(1 - p\!L \right) \right) + \kappa y\!L_{t-1} \quad \left(\lambda_t^{\text{LOWREGIME}^1} \right) \tag{2.2}$$

$$yL_{t-1} = pLyL_t + yH_t(1 - pL) - \sigma(iL_{t-1} - m_{t-1} - pLpiL_t - piH_t(1 - pL)) \quad \left(\lambda_t^{\text{LOWREGIME}^2}\right)$$
(2.3)

2.2 First order conditions

$$\textit{pitCB} - \textit{pitL} - \textit{piL}_t + \beta \textit{pL}\lambda_t^{\text{LOWREGIME}^1} - \beta \textit{pLE}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1} \right] + \textit{pL}\sigma\lambda_t^{\text{LOWREGIME}^2} = 0 \quad (\textit{piL}_t) \tag{2.4}$$

$$pL\lambda_t^{\text{LOWREGIME}^2} + \beta pL \left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right]\right) - \kappa \theta^{-1} yL_t = 0 \quad (yL_t)$$
(2.5)

$$-\beta pL\sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \quad (iL_t)$$
 (2.6)

3 EXOG

3.1 Identities

$$m_t = e^{\epsilon_t^{\mathbf{Z}} + \phi \log m_{t-1}} \tag{3.1}$$

4 Equilibrium relationships (after reduction)

$$-m_t + e^{\epsilon_t^2 + \phi \log m_{t-1}} = 0 \tag{4.1}$$

$$-piH_{t-1} + \beta (pHpiH_t + piL_t(1-pH)) + \kappa yH_{t-1} = 0$$
(4.2)

$$-piL_{t-1} + \beta (pLpiL_t + piH_t (1 - pL)) + \kappa yL_{t-1} = 0$$
(4.3)

$$pH\lambda_t^{\text{HIGHREGIME}^2} + \beta pH\left(\kappa E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2}\right]\right) - \kappa \theta^{-1} yH_t = 0$$
(4.4)

$$pL\lambda_t^{\text{LOWREGIME}^2} + \beta pL\left(\kappa E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^1}\right] - E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2}\right]\right) - \kappa \theta^{-1} yL_t = 0$$
(4.5)

$$-yH_{t-1} + pHyH_t - \sigma(iH_{t-1} - m_{t-1} - pHpiH_t - piL_t(1 - pH)) + yL_t(1 - pH) = 0$$

$$(4.6)$$

$$-yL_{t-1} + pLyL_t - \sigma (iL_{t-1} - m_{t-1} - pLpiL_t - piH_t (1 - pL)) + yH_t (1 - pL) = 0$$

$$(4.7)$$

$$UH_{t} + 0.5 \left(pitH - pitCB + piH_{t} \right)^{2} - \beta \left(pHE_{t} \left[UH_{t+1} \right] + (1 - pH) E_{t} \left[UL_{t+1} \right] \right) + 0.5 \kappa \theta^{-1} yH_{t}^{2} = 0$$

$$(4.8)$$

$$UL_{t} + 0.5\left(-pitCB + pitL + piL_{t}\right)^{2} - \beta\left(pLE_{t}\left[UL_{t+1}\right] + (1 - pL)E_{t}\left[UH_{t+1}\right]\right) + 0.5\kappa\theta^{-1}yL_{t}^{2} = 0$$

$$(4.9)$$

$$-pi\!H + pi\!C\!B - pi\!H_t + \beta p\!H\lambda_t^{\rm HIGHREGIME^1} - \beta p\!H\!E_t \left[\lambda_{t+1}^{\rm HIGHREGIME^1}\right] + p\!H\sigma\lambda_t^{\rm HIGHREGIME^2} = 0 \tag{4.10}$$

$$pt\!\!\!/ CB - pt\!\!\!/ L - pt\!\!\!/ L_t + \beta p\!\!\!/ L \lambda_t^{\rm LOWREGIME^1} - \beta p\!\!\!/ L E_t \left[\lambda_{t+1}^{\rm LOWREGIME^1} \right] + p\!\!\!/ L \sigma \lambda_t^{\rm LOWREGIME^2} = 0 \tag{4.11}$$

$$-\beta p H \sigma \mathcal{E}_t \left[\lambda_{t+1}^{\text{HIGHREGIME}^2} \right] = 0 \tag{4.12}$$

$$-\beta pL\sigma E_t \left[\lambda_{t+1}^{\text{LOWREGIME}^2} \right] = 0 \tag{4.13}$$

 \sim

5 Steady state relationships (after reduction)

$$-m_{\rm ss} + e^{\phi \log m_{\rm ss}} = 0 \tag{5.1}$$

$$-piH_{\rm ss} + \beta \left(pHpH_{\rm ss} + piL_{\rm ss}\left(1 - pH\right)\right) + \kappa yH_{\rm ss} = 0 \tag{5.2}$$

$$-piL_{\rm ss} + \beta \left(pLpL_{\rm ss} + piH_{\rm ss}\left(1 - pL\right)\right) + \kappa yL_{\rm ss} = 0 \tag{5.3}$$

$$pH\lambda_{\rm ss}^{\rm HIGHREGIME^2} + \beta pH\left(-\lambda_{\rm ss}^{\rm HIGHREGIME^2} + \kappa\lambda_{\rm ss}^{\rm HIGHREGIME^1}\right) - \kappa \theta^{-1}yH_{\rm ss} = 0 \tag{5.4}$$

$$pL\lambda_{\rm ss}^{\rm LOWREGIME^2} + \beta pH\left(-\lambda_{\rm ss}^{\rm LOWREGIME^2} + \kappa\lambda_{\rm ss}^{\rm LOWREGIME^1}\right) - \kappa \theta^{-1}yL_{\rm ss} = 0 \tag{5.5}$$

$$-pH_{\rm ss} + pHyH_{\rm ss} - \sigma \left(iH_{\rm ss} - m_{\rm ss} - pHpH_{\rm ss} - piL_{\rm ss}\left(1 - pH\right)\right) + yL_{\rm ss}\left(1 - pH\right) = 0 \tag{5.6}$$

$$-yH_{\rm ss} + pHyH_{\rm ss} - \sigma \left(iH_{\rm ss} - m_{\rm ss} - pHpH_{\rm ss} - piL_{\rm ss}\left(1 - pH\right)\right) + yH_{\rm ss}\left(1 - pL\right) = 0 \tag{5.7}$$

$$-yL_{\rm ss} + pLyL_{\rm ss} - \sigma \left(iL_{\rm ss} - m_{\rm ss} - pLpiL_{\rm ss} - piH_{\rm ss}\left(1 - pL\right)\right) + yH_{\rm ss}\left(1 - pL\right) = 0 \tag{5.7}$$

$$UH_{\rm ss} + 0.5 \left(piH - piCB + piH_{\rm ss}\right)^2 - \beta \left(pHUH_{\rm ss} + UL_{\rm ss}\left(1 - pH\right)\right) + 0.5\kappa\theta^{-1}yH_{\rm ss}^2 = 0 \tag{5.8}$$

$$UL_{\rm ss} + 0.5 \left(-piCB + piL + piL_{\rm ss}\right)^2 - \beta \left(pLUL_{\rm ss} + UH_{\rm ss}\left(1 - pL\right)\right) + 0.5\kappa\theta^{-1}yL_{\rm ss}^2 = 0 \tag{5.10}$$

$$-piH + piCB - piH_{\rm ss} + pH\sigma\lambda_{\rm ss}^{\rm HIGHREGIME^2} = 0 \tag{5.11}$$

$$-\beta pH\sigma\lambda_{\rm ss}^{\rm HIGHREGIME^2} = 0 \tag{5.12}$$

$$-\beta pH\sigma\lambda_{\rm ss}^{\rm LOWREGIME^2} = 0 \tag{5.13}$$

6 Parameter settings

ಬ

$$eta = 0.99$$
 (6.1)
 $\kappa = 0.2465$ (6.2)
 $\phi = 0.95$ (6.3)
 $pitH = 2$ (6.4)
 $pitCB = 0$ (6.5)
 $pitL = -2$ (6.6)
 $pH = 0.99$ (6.7)
 $pL = 0.99$ (6.8)
 $\sigma = 1$ (6.9)
 $\theta = 6$ (6.10)

7 Steady-state values

	Steady-state value
iH	-0.9551
$i\!L$	2.9552
$\lambda^{ m HIGHREGIME^1}$	-0.0411
$\lambda^{ m HIGHREGIME^2}$	0
$\lambda^{ ext{LOWREGIME}^1}$	0.0411
$\lambda^{ ext{LOWREGIME}^2}$	0
$pi\!H$	-2
$p\!i\!L$	2
m	1
$y\!H$	-0.2418
yL	0.2418
UH	-0.1201
UL	-0.1201

8 The solution of the 1st order perturbation

Matrix P

	iH_{t-1}	iL_{t-1}	piH_{t-1}	pL_{t-1}	m_{t-1}	yH_{t-1}	yL_{t-1}
$i\!H_t$	/-1.9645	0.069	12.3428	-0.1509	3.028	-0.8651	0.0101
$i\!L_t$	0.0072	-1.9645	-0.0488	3.9893	0.9787	0.0033	-0.2796
piH_t	0	0	1.0204	-0.0103	0	-0.0304	3e - 04
$p\!i\!L_t$	0	0	-0.0103	1.0204	0	3e - 04	-0.0304
m_t	0	0	0	0	0.95	0	0
yH_t	3.9907	-0.1247	-8.4406	0.0853	-4.136	1.2617	-0.0127
yL_t	$\setminus -0.0403$	12.3471	0.0853	-8.4406	-4.136	-0.0127	1.2617

Matrix Q

$$\begin{array}{c} \epsilon^{Z} \\ iH \\ iL \\ piH \\ piH \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \begin{pmatrix} 1.047 \\ 0.3384 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

Matrix R

Matrix S

$$\begin{array}{c} \epsilon^{\rm Z} \\ \lambda^{\rm HIGHREGIME^1} \\ \lambda^{\rm HIGHREGIME^2} \\ \lambda^{\rm LOWREGIME^1} \\ \lambda^{\rm LOWREGIME^2} \\ UH \\ UL \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$$

9 Model statistics

9.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
iH	-0.9551	0.1365	0.0186	Y
iL	2.9552	0.0441	0.0019	Y
$\lambda^{ ext{HIGHREGIME}^1}$	-0.0411	0	0	Y
$\lambda^{ m HIGHREGIME^2}$	0	0	0	N
$\lambda^{ ext{LOWREGIME}^1}$	0.0411	0	0	Y
$\lambda^{ ext{LOWREGIME}^2}$	0	0	0	N
piH	-2	0	0	Y
piL	2	0	0	Y
m	1	0.1303	0.017	Y
yH	-0.2418	0	0	Y
yL	0.2418	0	0	Y
UH	-0.1201	0	0	Y
UL	-0.1201	0	0	Y

9.2 Correlation matrix

	iΗ	iL	m
iН	1	1	1
iL		1	1
m			1

9.3 Cross correlations with the reference variable (iH)

	$\sigma[\cdot]$ rel. to $\sigma[iH]$	iH_{t-5}	iH_{t-4}	iH_{t-3}	H_{t-2}	iH_{t-1}	iH_t	iH_{t+1}	iH_{t+2}	iH_{t+3}	iH_{t+4}	iH_{t+5}
iH_t	1	-0.016	0.11	0.271	0.471	0.713	1	0.713	0.471	0.271	0.11	-0.016
iL_t	0.323	-0.016	0.11	0.271	0.471	0.713	1	0.713	0.471	0.271	0.11	-0.016
m_t	0.955	-0.016	0.11	0.271	0.471	0.713	1	0.713	0.471	0.271	0.11	-0.016

9.4 Autocorrelations

	Lag 1	${\rm Lag}\ 2$	Lag 3	${\rm Lag}\ 4$	Lag 5
iH	0.713	0.471	0.271	0.11	-0.016
iL	0.713	0.471	0.271	0.11	-0.016 -0.016
m	0.713	0.471	0.271	0.11	-0.016

10 Impulse response functions

Figure 1: Impulse responses $(i\!H,i\!L,p\!i\!H,p\!i\!L,y\!H)$ to $\epsilon^{\rm Z}$ shock

Figure 2: Impulse response $(y\!L)$ to $\epsilon^{\rm Z}$ shock