Mathematical Proof

The Frisch-Waugh-Lovell Theorem

1 Mathematical Foundation

1.1 Problem Setup

Consider the linear regression model:

$$y = X_1 \beta_1 + X_2 \beta_2 + u \tag{1}$$

where the components are defined as follows:

- $y \in \mathbb{R}^{n \times 1}$ is the vector of outcomes
- $X_1 \in \mathbb{R}^{n \times k_1}$ is the matrix of regressors of interest with rank $(X_1) = k_1$
- $X_2 \in \mathbb{R}^{n \times k_2}$ is the matrix of control variables with rank $(X_2) = k_2$
- $\beta_1 \in \mathbb{R}^{k_1 \times 1}$ is the parameter vector of primary interest
- $\beta_2 \in \mathbb{R}^{k_2 \times 1}$ is the parameter vector for control variables
- $u \in \mathbb{R}^{n \times 1}$ is the error vector with $\mathbb{E}[u|X_1, X_2] = 0$

Definition 1.1 (Projection and Annihilator Matrices). For a full-rank matrix $X_2 \in \mathbb{R}^{n \times k_2}$, we define:

$$P_{X_2} = X_2(X_2'X_2)^{-1}X_2'$$
 (Projection matrix) (2)

$$M_{X_2} = I_n - P_{X_2} = I_n - X_2(X_2'X_2)^{-1}X_2'$$
 (Annihilator matrix) (3)

These matrices satisfy the following fundamental properties:

- (i) P_{X_2} and M_{X_2} are symmetric: $P_{X_2}' = P_{X_2}, M_{X_2}' = M_{X_2}$
- (ii) P_{X_2} and M_{X_2} are idempotent: $P_{X_2}^2 = P_{X_2}, M_{X_2}^2 = M_{X_2}$
- (iii) $M_{X_2}X_2 = 0$ and $P_{X_2}X_2 = X_2$
- (iv) $P_{X_2} + M_{X_2} = I_n$

2 Main Result

2.1 The Frisch-Waugh-Lovell Theorem

Theorem 2.1 (Frisch-Waugh-Lovell Theorem). The OLS estimate of β_1 in the full regression of y on $\begin{bmatrix} X_1 & X_2 \end{bmatrix}$ is identical to the OLS estimate obtained from the following two-step partialling-out procedure:

Step 1: Regress y on X_2 and obtain residuals: $\tilde{y} = M_{X_2}y$

Step 2: Regress X_1 on X_2 and obtain residuals: $\tilde{X}_1 = M_{X_2}X_1$

Step 3: Regress \tilde{y} on $\tilde{X_1}$ to obtain: $\hat{\beta_1}^{\text{FWL}} = (\tilde{X_1}'\tilde{X_1})^{-1}\tilde{X_1}'\tilde{y}$

Formal Statement:

$$\hat{\beta}_{1} = \hat{\beta}_{1}^{\text{FWL}} = (\tilde{X}_{1}'\tilde{X}_{1})^{-1}\tilde{X}_{1}'\tilde{y}$$
(4)

2.2 Proof

Proof. We establish the equivalence by demonstrating that both approaches yield identical coefficient estimates through rigorous matrix algebra.

Part I: Full Regression Setup

The full regression model in partitioned form is:

$$y = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + u = X\beta + u \tag{5}$$

where $X = [X_1 \ X_2] \in \mathbb{R}^{n \times (k_1 + k_2)}$ and $\beta = [\beta'_1 \ \beta'_2]' \in \mathbb{R}^{(k_1 + k_2) \times 1}$.

The OLS estimator is given by:

$$\hat{\beta} = (X'X)^{-1}X'y = \begin{bmatrix} \hat{\beta}_1\\ \hat{\beta}_2 \end{bmatrix} \tag{6}$$

Part II: Matrix Partitioning

We partition the cross-product matrices:

$$X'X = \begin{bmatrix} X_1'X_1 & X_1'X_2 \\ X_2'X_1 & X_2'X_2 \end{bmatrix} = \begin{bmatrix} A & B \\ B' & D \end{bmatrix}$$
 (7)

$$X'y = \begin{bmatrix} X_1'y \\ X_2'y \end{bmatrix} \tag{8}$$

where:

$$A = X_1' X_1 \in \mathbb{R}^{k_1 \times k_1}, \quad B = X_1' X_2 \in \mathbb{R}^{k_1 \times k_2}, \quad D = X_2' X_2 \in \mathbb{R}^{k_2 \times k_2}$$
(9)

Part III: Partitioned Matrix Inverse

Using the block matrix inversion formula:

$$(X'X)^{-1} = \begin{bmatrix} (A - BD^{-1}B')^{-1} & -(A - BD^{-1}B')^{-1}BD^{-1} \\ -D^{-1}B'(A - BD^{-1}B')^{-1} & D^{-1} + D^{-1}B'(A - BD^{-1}B')^{-1}BD^{-1} \end{bmatrix}$$
(10)

Part IV: Key Algebraic Identity

We establish the fundamental relationship:

$$A - BD^{-1}B' = X_1'X_1 - X_1'X_2(X_2'X_2)^{-1}X_2'X_1$$
(11)

$$= X_1'(I_n - X_2(X_2'X_2)^{-1}X_2')X_1 \tag{12}$$

$$= X_1' M_{X_2} X_1 \tag{13}$$

Part V: Extracting $\hat{\beta_1}$

From the normal equations $(X'X)\hat{\beta} = X'y$, the first block gives us:

$$\hat{\beta}_1 = (A - BD^{-1}B')^{-1}(X_1'y - BD^{-1}X_2'y) \tag{14}$$

$$= (X_1' M_{X_2} X_1)^{-1} (X_1' y - X_1' X_2 (X_2' X_2)^{-1} X_2' y)$$
(15)

$$= (X_1' M_{X_2} X_1)^{-1} X_1' (I_n - X_2 (X_2' X_2)^{-1} X_2') y$$
(16)

$$= (X_1' M_{X_2} X_1)^{-1} X_1' M_{X_2} y (17)$$

Part VI: Two-Step Procedure Analysis

The partialling-out procedure yields:

$$\tilde{y} = M_{X_2} y \quad \text{(Step 1)} \tag{18}$$

$$\tilde{X}_1 = M_{X_2} X_1 \quad \text{(Step 2)} \tag{19}$$

$$\hat{\beta}_1^{\text{FWL}} = (\tilde{X}_1'\tilde{X}_1)^{-1}\tilde{X}_1'\tilde{y} \quad \text{(Step 3)}$$

Part VII: Establishing Equivalence

Substituting the definitions from Steps 1 and 2:

$$\hat{\beta}_1^{\text{FWL}} = ((M_{X_2}X_1)'(M_{X_2}X_1))^{-1}(M_{X_2}X_1)'(M_{X_2}y)$$
(21)

$$= (X_1' M_{X_2}' M_{X_2} X_1)^{-1} X_1' M_{X_2}' M_{X_2} y$$
(22)

Part VIII: Applying Matrix Properties

Using the symmetry and idempotency of M_{X_2} from Definition 1.1:

$$M'_{X_2} = M_{X_2}$$
 (symmetry) (23)

$$M_{X_2}M_{X_2} = M_{X_2}$$
 (idempotency) (24)

Therefore:

$$\hat{\beta}_1^{\text{FWL}} = (X_1' M_{X_2} M_{X_2} X_1)^{-1} X_1' M_{X_2} M_{X_2} y \tag{25}$$

$$= (X_1' M_{X_2} X_1)^{-1} X_1' M_{X_2} y (26)$$

Part IX: Final Equivalence

Comparing equations (17) and (26):

$$\hat{\beta}_1 = (X_1' M_{X_2} X_1)^{-1} X_1' M_{X_2} y = \hat{\beta}_1^{\text{FWL}}$$
(27)

This establishes the desired result:

$$\hat{\beta}_1 = (\tilde{X}_1' \tilde{X}_1)^{-1} \tilde{X}_1' \tilde{y}$$
(28)