Engineering Fundamentals

Major Contributors

Jean-Francois Chamberland and Henry D. Pfister

August 27, 2018

Contents

1	Log	and Set Theory	1
	1.1	Statements	2
	1.2	Relations between Statements	6
		1.2.1 Fallacious Arguments	9
		1.2.2 Quantifiers	9
	1.3	Strategies for Proofs	Э
	1.4	Set Theory	2
	1.5	Functions	7
2	Met	c Spaces and Topology 21	1
	2.1	Metric Spaces	1
		2.1.1 Metric Topology	3
		2.1.2 Continuity	4
		2.1.3 Completeness	5
		2.1.4 Compactness	9
		2.1.5 Sequences of Functions	2
	2.2	General Topology*	2
		2.2.1 Closed Sets and Limit Points	4
		2.2.2 Continuity	5
3	Line	r Algebra 41	1
	3.1	Fields	1
	3.2	Matrices	2
	3.3	Vector Spaces	4
		3.3.1 Subspaces	5
		3.3.2 Bases and Dimensions	7

iv CONTENTS

		3.3.3	Coordinate System
	3.4	Linear	Transformations
		3.4.1	Definitions
		3.4.2	Properties
	3.5	Norms	5
	3.6	Inner I	Products
		3.6.1	Induced Norms
	3.7	Sets of	f Orthogonal Vectors
		3.7.1	Hilbert Spaces
	3.8	Linear	Functionals
4	Rep	resenta	tion and Approximation 73
	4.1	Best A	Approximation
		4.1.1	Projection Operators
	4.2	Comp	uting Approximations in Hilbert Spaces
		4.2.1	Normal Equations
		4.2.2	Orthogonality Principle
	4.3	Appro	ximation for Systems of Linear Equations
		4.3.1	Matrix Representation
		4.3.2	Standard Inner Products
		4.3.3	Generalized Inner Products
		4.3.4	Minimum Error
	4.4	Applic	eations and Examples in Signal Processing
		4.4.1	Linear Regression
		4.4.2	Linear Minimum Mean-Squared Estimation 85
		4.4.3	The Wiener Filter
		4.4.4	LMMSE Filtering in Practice
	4.5	Dual A	Approximation
		4.5.1	Minimum-Norm Solutions
		4.5.2	Underdetermined Linear Systems
	4.6	Projec	tion onto Convex Sets
		4.6.1	Minimum Distance Between Two Convex Sets 93

CONTENTS v

5	Opti	mization 9	5
	5.1	Derivatives in Banach Spaces	5
	5.2	Unconstrained Optimization	6
	5.3	Convex Functionals	7
	5.4	Constrained Optimization	9
		5.4.1 The Lagrangian	0
		5.4.2 Lagrangian Duality	4
		5.4.3 Convex Optimization	5
6	Line	ar Transformations and Operators 10	9
	6.1	The Algebra of Linear Transformations	9
	6.2	The Dual Space	2
	6.3	Operator Norms	4
		6.3.1 Bounded Transformations	5
		6.3.2 The Neumann Expansion	7
		6.3.3 Matrix Norms	8
	6.4	Linear Functionals on Hilbert Spaces	9
	6.5	Fundamental Subspaces	3
	6.6	Pseudoinverses	4
		6.6.1 Least Squares	4
7	Mat	rix Factorization and Analysis 12	7
	7.1	Triangular Systems	7
		7.1.1 Solution by Substitution	7
		7.1.2 The Determinant	9
	7.2	LU Decomposition	9
		7.2.1 Introduction	9
		7.2.2 Formal Approach	1
		7.2.3 Partial Pivoting	3
	7.3	LDLT and Cholesky Decomposition	4
		7.3.1 Cholesky Decomposition	5
		7.3.2 QR decomposition	5
	7.4	Hermitian Matrices and Complex Numbers	6

vi *CONTENTS*

8	Canonical Forms								
	8.1	Eigenvalues and Eigenvectors							
	8.2	Applications of Eigenvalues							
		8.2.1 Differential Equations							
		8.2.2 Functions of a Matrix							
	8.3	The Jordan Form							
	8.4	Applications of Jordan Normal Form							
		8.4.1 Convergent Matrices							
9	Sing	Singular Value Decomposition 149							
	9.1	Diagonalization of Hermitian Matrices							
	9.2	Singular Value Decomposition							
	9.3	Properties of the SVD							
A	Opti	ional Topics 155							
	A.1	Dealing with Infinity*							
		A.1.1 The Axiom of Choice							
		A.1.2 Well-Ordered Sets							
		A.1.3 The Maximum Principle							