Introdução à Probabilidade e Estatística

Universidade de Évora

Departamento de Matemática

Ano lectivo 2015/16

Ana Isabel Santos

Estatística Descritiva e Probabilidades

Aula 3

Covariância

Covariância: mede o grau de associação linear entre duas variáveis quantitativas obtidas do mesmo indivíduo ou unidade.

Covariância amostral:

$$S_{XY} = Cov(X, Y) = \frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i Y_i - n \overline{X} \overline{Y} \right)$$

Covariância populacional:

$$\sigma(X,Y) = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \overline{X} \overline{Y}$$

> 0 associação linear positiva; = 0 não existe associação linear; < 0 associação linear negativa.

Correlação

Coeficiente de Correlação de Pearson: mede o grau de associação linear entre duas variáveis quantitativas e assume a normalidade dos dados. Não depende das unidades de medida.

$$r = \frac{Cov(X, Y)}{\sqrt{var(X)}\sqrt{var(Y)}}, \quad -1 \le r \le 1$$

Se $0 \le |r| < 0.2$, não existe associação linear entre as variáveis ou é desprezível;

Se $0.2 \le |r| < 0.7$, existe associação linear moderada;

Se $0.7 \le |r| < 0.9$, existe associação linear forte;

Se $|r| \ge 0.9$, existe associação linear muito forte.

Exercício 4:

No quadro seguinte indicam-se os preços (X) de pacotes de arroz (em euros) praticado durante 12 meses consecutivos e o número de pacotes vendidos (Y) em cada mês:

X	1.10	0.90	0.80	0.76	0.74	0.71	0.70	0.65	0.63	0.60	0.55	0.50
Y	55	70	90	100	90	105	80	110	125	115	130	131

- a) Represente graficamente a informação.
- b) Comente a seguinte afirmação: "Parece existir relação linear entre as duas variáveis".
- c) Calcule o valor do coeficiente de correlação de Pearson.
- d) Responda novamente à alínea b).

Álgebra de Acontecimentos

Sejam $A \subseteq \Omega$ e $B \subseteq \Omega$ dois acontecimentos quaisquer.

- O acontecimento reunião, $A \cup B$, ocorre se e só se pelo menos um dos acontecimentos ocorrer.
- O acontecimento intersecção, $A \cap B$, ocorre se e só se ambos os acontecimentos ocorrem.
- O acontecimento diferença, A B, ocorre quando ocorre A mas não ocorre
 B. O acontecimento complementar, Ω A ou Ā, ocorre se e só se A não ocorre.
- Dois acontecimentos A e B dizem-se mutuamente exclusivos, disjuntos ou incompatíveis se não ocorrem em simultâneo, isto é,

$$A \cap B = \emptyset$$

Propriedades das Operações

Propriedades

União

Comutativa

$$A \cup B = B \cup A$$

Associativa

$$(A \cup B) \cup C = A \cup (B \cup C)$$

Distributiva

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Idempotência

$$A \cup A = A$$

Lei do Complementar

$$A \cup \overline{A} = \Omega$$

Leis de De Morgan

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Elemento Neutro

$$A \cup \emptyset = A$$

Elemento Absorvente

$$A \cup \Omega = \Omega$$

Propriedades das Operações

Propriedades

Intersecção

Comutativa

$$A \cap B = A \cap B$$

Associativa

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Distributiva

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Idempotência

$$A \cap A = A$$

Lei do Complementar

$$A \cap \overline{A} = \emptyset$$

Leis de De Morgan

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Elemento Neutro

$$A \cap \Omega = A$$

Elemento Absorvente

$$A \cap \emptyset = \emptyset$$

Definição clássica (ou de Laplace) de Probabilidade

Para uma dada experiência aleatória em que os resultados possíveis são disjuntos e igualmente prováveis.

Probabilidade Laplaciana

$$P(A) = \frac{\text{número de casos favoráveis a A}}{\text{número de casos possíveis}}$$

Definição Axiomática de Probabilidade

1º Axioma: Para qualquer acontecimento $A \subseteq \Omega$,

$$P(A) \geq 0$$
.

2º Axioma: A probabilidade associada ao acontecimento certo é

$$P(\Omega) = 1$$
.

3º Axioma: Se dois acontecimentos A e B, definidos em Ω , forem mutuamente exclusivos, ou seja, $A \cap B = \emptyset$, então

$$P(A \cup B) = P(A) + P(B).$$

Resultados importantes da Teoria das Probabilidades

Teoremas: Sejam A, B dois acontecimentos quaisquer de Ω .

1.
$$P(\emptyset) = 0$$
.

2.
$$0 \le P(A) \le 1$$
.

3.
$$P(\overline{A}) = 1 - P(A)$$
.

4.
$$P(B-A) = P(B) - P(A \cap B)$$
.

5.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

Probabilidade condicionada

Probabilidade Condicionada: Sejam A, B dois acontecimentos definidos em Ω . A probabilidade de A condicionada por B é dada por

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 se $P(B) > 0$.

Da igualdade anterior obtém-se a importante relação:

$$P(A \cap B) = P(A \mid B) \times P(B) = P(B \mid A) \times P(A), \text{ se } P(A) > 0 \text{ e } P(B) > 0.$$

Acontecimentos independentes

Definição: Dois acontecimentos A e B são independentes se e só se

$$P(A \cap B) = P(A) \times P(B)$$
, $\operatorname{com} P(A) \ge 0$ e $P(B) \ge 0$.

Consequências: Se A e B são acontecimentos independentes, então:

- $P(A \mid B) = P(A)$, se P(A) > 0.
- $P(B \mid A) = P(B)$, se P(B) > 0.

Partição do espaço amostra

Definição de Partição: Os acontecimentos A_1, A_2, \dots, A_k dizemse uma partição de Ω se e só se:

i. Os acontecimentos são mutuamente exclusivos, dois a dois,

$$A_i \cap A_j = \emptyset, \ \forall i,j \in \{1,2,\cdots,k\}$$

ii. A união de todos os acontecimentos é o espaço amostra Ω ,

$$A_1 \cup A_2 \cup \cdots \cup A_k = \Omega;$$

iii. Todos os acontecimentos têm probabilidade não nula,

$$P(A_i) > 0, \ \forall i \in \{1, 2, \dots, k\}.$$

Teorema da Probabilidade Total

Teorema: Se B é um acontecimento qualquer de Ω e A_1,A_2,\cdots,A_k é uma partição de Ω , então tem-se que

$$P(B) = P(A_1 \cap B) + P(A_1 \cap B) + \dots + P(A_k \cap B)$$

$$= P(B \mid A_1)P(A_1) + P(B \mid A_2)P(A_2) + \dots + P(B \mid A_k)P(A_k)$$

$$=\sum_{i=1}^k P(B \mid A_i)P(A_i).$$

Teorema de Bayes

Teorema: Se B é um acontecimento de Ω , tal que P(B) > 0, e A_1, A_2, \dots, A_k uma partição de Ω , então

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{P(B \mid A_1)P(A_1)\cdots + P(B \mid A_k)P(A_k)}$$

$$= \frac{P(B \mid A_i)P(A_i)}{\sum_{i=1}^{k} P(B \mid A_i)P(A_i)},$$

para qualquer $i \in \{1, 2, \dots, k\}$.

