Ejercicios Fundamentos

#di #csharp #fundamentos

Ejercicios de control de flujo

- 1. Escribe un programa que imprima "APROBADO" si la variable "mark" de tipo entero es mayor o igual a 50; o imprime "SUSPENSO" en caso contrario.
- 2. Escribe un programa que imprima "Número impar" si la variable de tipo entero "number" es impar, o "Número par" en caso contrario.
- 3. Escribe un programa para calcular la suma de 1, 2, 3, ..., hasta un límite superior (por ejemplo, 100). También calcula y muestra el promedio. La salida deberá verse así: La suma es 5050

El promedio es 50.5

- Modifica el programa para usar un bucle "while-do" en lugar de un bucle "for".
- Modifica el programa para usar un bucle "do-while".
- Modifica el programa para sumar solo los números impares del 1 al 100 y calcular el promedio. (Pista: n es un número impar si n % 2 no es igual a 0).
- Modifica el programa para sumar aquellos números del 1 al 100 que sean divisibles por 7 y calcular el promedio.
- Modifica el programa para encontrar la "suma de los cuadrados" de todos los números del 1 al 100, es decir, 1*1 + 2*2 + 3*3 + ... + 100*100."
- 4. Escribe un programa para calcular la suma de una serie armónica, como se muestra a continuación, donde n=50000. El programa debe calcular la suma de izquierda a derecha y de derecha a izquierda. Obtén la diferencia entre estas dos sumas y explica la diferencia. ¿Cuál de las sumas es más precisa?

$$Harmonic(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

5. Escribe un programa para calcular el valor de π utilizando la siguiente expansión en serie. Debes decidir el criterio de terminación utilizado en el cálculo (como el número de términos utilizados o la magnitud de un término adicional). ¿Es esta serie adecuada para calcular π?

$$\pi = 4 \times \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} - \frac{1}{15} + \cdots\right)$$

- 6. Los números Tribonacci son una secuencia de números T(n) similares a los números Fibonacci, excepto que un número se forma sumando los tres números anteriores, es decir, T(n) = T(n-1) + T(n-2) + T(n-3), T(1) = T(2) = 1 y T(3) = 2. Escribe un programa para generar los primeros veinte números Tribonacci.
- 7. Escribe un programa que produzca la siguiente tabla de multiplicación del 1 al 9 usando dos bucles for anidados. Después modifícalo para usar un único bucle for.

Ejercicio de entrada de teclado

8. Escribe un programa que pida al usuario un radio (double) y calcule el volumen y el área de una esfera. La salida debe ser:

```
Enter the radius: __ m
The volume is ____ m³
The surface area is ___ m²
Hints: π is kept in a constant called Math.Pl.
```

Ejercicios de entradas de usuario y cadenas

9. Escribe un programa que pida al usuario por teclado un String e imprima la cadena al revés.

```
Enter a String: abcdef
The reverse of String "abcdef" is "fedcba".
```

10. Una palabra *palíndroma* es una palabra que se lee igual de derecha a izquierda o de izquierda a derecha: mom, dad, ala... Escribe un programa que pida al usuario una palabra y le indique si es o no palíndroma.

El programa debe ser case-insensitive

Modifícalo para que testee una palabra y también una frase.

11. Escribe un programa que convierta una cadena binaria introducida por teclado en el número decimal equivalente. Ejemplo:

```
Enter a Binary string: 1011
The equivalent decimal number for binary "1011" is 11
Enter a Binary string: 1234
Error: Invalid Binary String "1234"
```

12. Escribe un programa que convierta una cadena hexadecimal en su equivalente decimal. Ejemplo.

Enter a Hexadecimal string: 1A

The equivalent decimal number for hexadecimal "1A" is 26

Enter a Hexadecimal string: 1Y3

Error: Invalid Hexadecimal String "1Y3"

Ejercicios POO

13. Similar a la clase Math, escribe una clase Matrix que soporte operaciones de matrices (como suma, resta, multiplicación) de dos dimensiones. Las operaciones deberían soportan doubles y enteros y también escribe una clase para testearla.

```
Hints:
public class Matrix {
......
}
```

14. Escribe un programa POO que permita generar los siguientes patrones.

							_							-		•											_				•										
ŧ											#	#	#	#	#	#	: #	: #	#			#	#	#	#	#	#	#	#											#	
# #	:										#	#	#	#	#	#	#	1					#	#	#	#	#	#	#										#	#	
# #	: ;	#									#	#	#	#	#	#	:							#	#	#	#	#	#									#	#	#	
# #	: ;	#	#								#	#	#	#	#										#	#	#	#	#							;	#	#	#	#	
# #	: ;	#	#	#							#	#	#	#												#	#	#	#						4	# :	#	#	#	#	
# #	: :	#	#	#	#						#	#	#														#	#	#					#	# #	# :	#	#	#	#	
# #		#	#	#	#	#					#	#																#	#				4	# #	# #	# :	#	#	#	#	
##		-	-	#		-	#				#	-																-	#				# #	# #	# #	# :	#	#	#	#	
			 a)		-	-	-				-			(b)										(د)										(d	-	-	-		
		`	-/											`	-/										`	-,											,				
Hin	+	٠.	0	n	+1		di.			nə	.1		ro	la.	_		.1		0		+h	_	on	no	e i	+_	А	is	TOP	. = 1		r	2007	_	-	-1	_	_	i -		
1111		٥.	_	•••	٠.	ıc	u	ae	,01	IIG	-	,		"	_	-	΄.		0			_	ΟР	Рυ	21		u	10	БОІ	IGI	,		,,,,	_	٠,	-	_	3	12		٠.
# #	. ,	#	#	#	#	#		#		#	#	#	#	#	#			#	#	#	#	#	: #	#			# .	# -	# #	: #			±		#	#	#	#	. #	. #	#
, ,,	,		**	**	**	#		-		#	#	**	**	**	**			**	**	**	**	***	#				-	#	" "		#		•			#	**	**	-	-	#
,						#			1		#											#					,		#	#					#	**	#		#		#
, ‡						#					**	#									#							,	*						#		**	#	-		#
;						#						#	#							#									# 1	#					#		#		. #		#
* #						#							#							**								#	H .	#	. ±						#		*		
														#					#																	#					#
# #	;	# ,	#	#	#	#		#		#	#	#	#	#	#			#	#	#			#	#			# :			# #	#	#	#		#	#			#	#	#
		(e)									(f)								(g)							(ł	1)								(i	.)		
# #		-				#			#	#	ŧ									#													#								
#		#			#	-	#		#									#	# #													#	#								
	1	-				-	#	#									#	#	# #	#	#	#									#	#	#	#	#						
						#	#									#	#	#	# #	#	#	#	#							#	#	#	#	#	#	#					
					#	#									#	#	#	#	# #	#	#	#	#	#					#	#	#	#	#	#	#	#	#				
					#									#	#	#	#	#	# #	#	#	#	#	#	#			#	#	#	#	#	#	#	#	#	#	#	:		
				(j))													(1	k)									#	#	#	#	#	#	#	#	#				
																														#	#	#	#	#	#	#					
																															#	#	#	#	#						
																																#	#	#							
																																	#								
																																((1)								
																																,									

15. Ejercicio Alquiler Puerto

En un puerto se alquilan amarres para barcos de distinto tipo. Para cada ALQUILER se guarda el nombre y el DNI del cliente, las fechas inicial y final del alquiler, la posición del amarre y el barco que lo ocupará. Un BARCO se caracteriza por su matrícula, su eslora en metros y año de fabricación.

Un alquiler se calcula multiplicando los días de ocupación (incluyendo los días inicial y final) por un módulo función de cada barco (obtenido simplemente multiplicando por 10 los metros de eslora) y por un valor fijo (12€ en la actualidad).

Sin embargo, ahora se pretende diferenciar la información de algunos tipos de barcos:

- Número de mástiles para veleros
- Potencia en CV para embarcaciones deportivas a motor
- Potencia en CV y número de camarotes para yates de lujo

El módulo de los barcos de un tipo especial se obtiene como el módulo normal sumándole:

- El número de mástiles para veleros
- La potencia en CV para embarcaciones deportivas a motor
- La potencia en CV más el número de camarotes para los yates de lujo

Utilizando la herencia de forma apropiada, diseñe el diagrama de clases y sus relaciones, con detalle de atributos y métodos necesarios.

Programe en C# los métodos que permitan calcular el alquiler de cualquier tipo de barco.