AI Notes

Context

Exam:

Monday 30th, 9:30am – 12:00pm

4 Questions:

- 1. Clustering
- 2. Supervised Learning
- 3. Search
- 4. Optimisation

Each 15 marks, total 60 marks

**note: no GMM and weka

Content:

Clustering (Week 1 & 2)
Supervised Learning (Week 3 - 6)
Search (Week 7 & 8)
Optimisation (Week 9 & 10)

Clustering:

- Hierarchical Clustering
- K-means
- GMM/EM
- DBSCAN

Supervised Learning:

- Linear Regression
- Gradient Descent
- Logistic Regression
- Neural Network
- Evaluate & Hyperparameter Tuning
- Naive Bayes
- KNN-algorithm

Search:

- Search Problem
- BFS
- DFS
- A*

Optimisation:

- Hill Climbing
- Simulated Annealing
- Formulation
- Constraint handling

Introduction

Basic Introduction:

Assuming a data set with $m{n}$ samples, and each sample has $m{d}$ dimensions :

$$\begin{aligned} [(x_1^1, x_2^1, \dots x_d^1), (x_1^2, x_2^2, \dots x_d^2), \dots, (x_1^n, x_2^n, \dots x_d^n)] \\ &= 1, 2 \dots n \end{aligned}$$

Instance: One data sample

Dimension: Number of coordinates to specify the

samples

Feature / Attribute : The value at each dimension

you can think of $m{n}$ samples as data inputs, and $m{d}$ dimensions as attributes

(or in Objects terms,

n : Objects

d: properties)

There are 3 types of Machine Learning:

• Supervised Learning

(Labelled Data)

Unsupervised Learning

(Unlabeled Data, may be due to data being too big / unclear)

• Reinforced Learning

(Learns from rewards, rewards changes by time)

Classification

Outputs are categorical

eg: handwritten numbers \rightarrow [1,2,3,..]

Regression

Outputs are continuous numbers

eg: Student Score Marks → 83.2%

Clustering

Hierarchical Clustering:

Terminology

Singleton: one data point

Cluster: multiple data points

Segments data into clusters such that there is a "natural grouping" among objects, it creates a hierarchical decomposition of the set of objects using some criterions

eg:

And produces a dendrogram:

Note : the distance between clusters are noted as **height**

In the end, there will be only 1 cluster all grouped together

Measuring Distance

we will be using Euclidean Distance only

$$distance(a,b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

extra: it is also Minkowski with dimension = 2

There are 2 ways of Hierarchical clustering:

- Agglomerative (bottom-up merging)
- **Divisive** (top-down merging)

Divisive is <u>not recommended</u> as it can be computationally expensive

There are 3 ways to measure distance between clusters:

Single Linkage

- > Distance of the closest pair
- Produces long chain shape of clusters

$$c_1, c_2 = min\left(\forall distance(p_{c_1}, p_{c_2})\right)$$

Where c_1 , c_2 are clusters and return ${
m \underline{minimum}}$ distance between 2 points in c_1 and c_2

• Complete Linkage

- > Distance of the **furthest pair**
- Produces compact shape clusters
- > Sensitive to noise

Eg:

$$c_{1},c_{2}=max\left(\forall distance\left(p_{c_{1}},p_{c_{2}}\right)\right)$$

return $\underline{\text{maximum}}$ distance between 2 points in c_1 and c_2

Group Average

- Average of all distances
- Most used
- Robust against noise

$$c_1, c_2 = \frac{\sum \forall distance(p_{c_1}, p_{c_2})}{Num \ p_{c_1} + Num \ p_{c_2}}$$

return Average distance of all the points in c_1 and c_2

Advantages

- Deterministic results (same result for any run)
- Does not need to specify number of clusters
- Can create cluster of arbitrary shapes

Disadvantages

- Does not scale up to larger datasets, time complexity is $O(n^2)$
- Will impose hierarchical structure even though data is not appropriate for it
- Once a decision is made, cant be undone

Algorithm (agglomerative):

Step 1: Find every Euclidean distance

(create distance matrix)

Step 2: Get the minimum distance, which the 2 points/cluster joins becoming the new cluster

Step 3 : Recalculate the distance matrix with the new cluster

Complete Linkage → Max

• Single Linkage → Min

Group Average → Average

Step 4 : Repeat **Step 2**, until only 1 cluster left , Done!

Example of a run (Complete Linkage):

point	x-axis	y-axis
\boldsymbol{a}	0.40	0.53
b	0.22	0.38
c	0.35	0.32
d	0.26	0.19
e	0.08	0.41
f	0.45	0.30

Step 1 – Use Euclidean distance to create distance matrix

(in this case we are only calculating point a and b)

$$distance(a,b) = \sqrt{(a_x - b_x)^2 + (a_y - b_y)^2}$$

$$distance(a,b) = \sqrt{(0.40 - 0.22)^2 + (0.53 - 0.38)^2}$$

$$= \sqrt{(0.18)^2 - (0.15)^2}$$

$$= \sqrt{0.0549}$$

$$= 0.23$$

Distance Matrix:

	а	b	С	d	е	f
а	0					
b	0.23	0				
С	0.22	0.15	0			
d	0.37	0.20	0.15	0		
е	0.34	0.14	0.28	0.29	0	
f	0.23	0.25	0.11	0.22	0.39	0

Step 2 - get minimum value, forms the cluster

	а	b	С	d	е	f
а	0					
b	0.23	0				
С	0.22	0.15	0			
d	0.37	0.20	0.15	0		
е	0.34	0.14	0.28	0.29	0	
f	0.23	0.25	0.11	0.22	0.39	0

Step 3 – Recalculate the distance matrix (Complete Link)

to update the table:

NewValue = $\max(distance(p_1, n), distance(p_2, n))$

Which concludes:

 $\max(distance(c, a), distance(f, a)) = 0.23$ $\max(distance(c, b), distance(f, b)) = 0.25$ $\max(distance(c, d), distance(f, d)) = 0.22$ $\max(distance(c, e), distance(f, e)) = 0.39$

Updated Table:

	а	b	c,f	d	е
а	0				
b	0.23	0			
c,f	0.23	0.25	0		
d	0.37	0.20	0.15	0	
е	0.34	0.14	0.28	0.29	0

Step 4 – Repeat Step 2 until 1 cluster left

Will give an output of the distance of the final 2 cluster

**many more steps here but will skip ahead till 1 cluster left as it's just a repeat

Clustering Order

 \rightarrow 1 (c, f)(a)(b)(d)(e) \rightarrow 2 (c, f)(a)(d)(e, b) \rightarrow 3 (c, f, d)(a)(e, b) \rightarrow 4 (c, f, d)(e, b, a) \rightarrow 5 (c, f, d, e, b, a)

K-Means:

Terminology

K: number of clusters

Centroid: the center of uniform density

Centroid Based – Describes each cluster by its mean

Its objective is to *minimize the within cluster variances* of all clusters that you set, **K**

eg(K=2):

Advantages

- Easy to implement
- Efficient

Disadvantages

- Non-deterministic results (different result for every run)
- May result in local optima (multiple restart to get global optima)
- Require number of clusters in advance

Algorithm:

Step 1: Set number of cluster, K

(K will usually have coordinates, if not → set random)

Step 2: Calculate the distance matrix of every points to K centroid

Step 3 : Assign the points to the closest K centroid (minimum)

Step 4 : Recalculate the cluster centroid mean

Step 5: Repeat Step 2, until K-mean stop changing,

Done!

Example of a run:

185 170 168 179 182	72 56 60 68		P6
168 179	60		P6
179			
	68		
182			
	72		
188	77	P5	P1
P3 P2			

Step 1: Set number of cluster, K

Set K = 2 and in this case: $K_1 = P_1$, $K_2 = P_2$

Initial Centroid

Cluster	X	Y
k1	185	72
k2	170	56

Step 2 : Calculate the distance matrix of every points to K centroid

Using Euclidean Distance formula:

$$distance(a,b) = \sqrt{(a_x - b_x)^2 + \left(a_y - b_y\right)^2}$$

Gives:

Sample No	K1	K2
3	20.809	4.472
4	7.211	15
5	3	20
6	5.831	27.659

Step 3: Assign the points to the closest K centroid

Using formula:

$$\min(distance(P_n, K_1), distance(P_n, K_2))$$

"assign to K closest to it"

Step 4 : Recalculate the cluster centroid mean

Formula for new K-mean if dimension = 2:

$$\frac{\sum P_x}{n}$$
, $\frac{\sum P_y}{n}$

n = number of points in that cluster

Cluster	X	Y
	= (185+179+	= (72+68+
k1	182+188) / 4	72+77) / 4
	= 183	= 72
k2	= (170 + 168) / 2	= (60 + 59) / 2
KZ	= 169	= 58

Step 5: Repeat Step 2, until K-mean stop changing

GMM/EM:

NO (K-means 2.0, instead of centroid, it's a big +1 Dimension radius, something like a ripple)

DBSCAN:

Density Based Spatial Clustering of Application with Noise (you do not need to memorize the name)

Discover clusters by *density* of regions

Usually, there are 2 parameters:

- ➤ Radius of circle (€)
- Minimum number of points in that circle (minPts)

Points are categorized into 3 terms:

Core: point has minPts and within radius €

Border: does not have minPts and point lies within radius ϵ of core

Noise/Outlier: point which are <u>not</u> border or core

COTE n

Core PointBorder PointNoise Point

n = Neighbourhood m = 4

Forming Clusters

Directly Density-Reachable

A point, u is *Directly Density-Reachable* if it is within a core's radius of point v

Indirectly Density-Reachable

A point, u is *Indirectly Density-Reachable* if it is a border but <u>not within</u> a <u>core's</u> radius of point v

Advantages

- Can discover arbitrary shape clusters
- Robust to noise/outliers
- Doesn't need number of cluster

<u>Disadvantages</u>

- Non-deterministic results (border points may have different clusters depending on code)
- If data is not well-explained, choosing and minPts may be difficult
- May fail if data too sparse

Algorithm:

Step 1: Label all the points, core/border/noise

Step 2 : Remove all the noise/outlier points

(or set them as *Noise*)

Step 3 : For every core point, Assign points that are density-Reachable from that core and make it a cluster

Step 4 : Reassign border points belonging to more than 1 cluster to be the one <u>closest</u> to it

Done!

Example of a run:

Step 1: Label all the points , **core/border/noise**

have set:

- Radius of Circle (ϵ) \rightarrow 1.5
- Number of Neighbors (minPts) → 4

Step 2: Remove all the noise/outlier points

(in code, we can just ignore them to increase efficiency of program)

onlyList = core + border

Step 3 : For every core point, Assign points that are density-Reachable from that core and make it a cluster

Without radius shown:

Step 4 : Reassign border points belonging to more than 1 cluster to be the one <u>closest</u> to it

(In this case, we don't need to as border doesn't belong to more than 1 cluster)

Done!

Stuff I yoinked online

Model	Pros	Cons	Use Cases	
K means	Quickest centroid based algorithm	Suffers when there is noise in the data		
	Very lucid and can scale up for large amount of data sets	Outliers can never be identified	Even cluster size, flat geometry,	
	Reduces intra-cluster variance measure	Even though it reduces intra-cluster variance, it faces local minimum problem	not too many clusters and	
		Not ideal for data sets of non-convex shapes	general-purpose	
		Complicated to predict best K value		
	Embedded flexibility regarding level of granularity using dedrogram	Computationaly expensive	Possibly connectivity	
Agglomerative Clustering	Can handle of any forms of similarity or distance	Can't handle outliers	constraints, non Euclidean distances and	
		Ward's algorithm usually generates equal size clusters	many clusters	
	Resistant to outliers	Highly sensitive to the two parameters- Eps and Min points		
DBSCAN	Can handle clusters of different shapes and sizes	DBSCAN cannot cluster data sets well with large variances in densities	Uneven cluster sizes and non- flat geometry	
	Not required to specify the number of clusters		,,	
GMM	Robust to outiers			
	Provides the BIC score for selecting paramteres	The algorithm is highly complex and can be slow	Good for density estimation and	
	Converges fast given good initialisation		flat geometry	

Supervised Learning

Supervised Learning:

Learning with Labelled Data (labelled by humans)

Terminology

Input: Attributes / features / independent variable

Output: target / response / dependent

variable

Function: hypothesis/predictor

How it works:

Needs *labelled* data in the form of (Input, Output) and then it begins to train

Example of a labelled data:

$$((x_1^n, x_2^n, ... x_d^n), y^n)$$

Can be any number of inputs(n), with any number of attributes(d)

After training, present new input and it will provide an Output based on the new input

Supervised Learning is finding a good function, **f**

Some other examples:

Linear Regression:

Learning a function, f that captures a "trend" between input and output in the form of a straight line

Mathematically:

$$y = w_0 + w_1 x$$

Where:

 $y = Dependent \ Variable$ $x = Independent \ Variable$ $w_0 = Intercept \ of \ the \ line$ $w_1 = Linear \ Regression \ coefficient$

Types of Linear Regression

There are mainly 2 types:

Univariate Linear Regression

Only 1 independent variable, x used to predict the value of dependent variable, y

Some examples:

$$y = w_0 + w_1 x_1$$

 $y^n = w_0 + w_1 x^1 + w_2 x^2 + w_3 x^3 + \dots + w_n x^n$

Note: this is nonlinear (polynomial regression model)

• Multivariate Linear Regression

More than 1 independent variables, x used to predict the value of dependent variable, y

Some examples:

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n$$

 $y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 x_2$
Note: this is nonlinear

Loss/Cost Function

Used to find "line of best fit", so needed a function to determine the best value for w_0 and w_1

We use MSE, Mean Square Error:

(which also can be interpreted as "Average of losses")

$$Cost = \frac{1}{N} \sum_{i=0}^{N} (y_{f(x)_i} - y_{(P)_i})^2$$

Where:

$$N = Number of Points/Data$$

 $y_{f(x)} = current line y - value$
 $y_{(P)} = Point y - value$

Example of finding MSE:

And our goal is to minimize MSE (will talk more below in Gradient Descent)

Gradient Descent:

A general strategy to minimize cost function

It does this by finding its steepest descent, $\Delta g(w)$

(I will not explain this in detail)

General Idea:

Step 1: Initialize random values for w and Learning Rate

(0 or random for w, Learning Rate > 0)

Step 2 : Take the gradient (partial derivations) of the Loss function for each parameters, *w* in it

Step 3 : Calculate the Slope using the parameters *(the partial derivations)*

Step 4 : Calculate the Step size

 $Step Size = Slope \times LearningRate$

Step 5 : Calculate the new parameters, w

$$w_{new} = w_{old} - StepSize$$

Step 6 : Repeat Step 3 until no or small changes/ max iteration reached

If **step size** is **too high**, will **never reach minimum**:

Algorithm (Linear Regression):

Step 1 : Initialize Learning Rate (α) , w_0 and w_1

 $(w_0 \text{ and } w_1 \text{ can be anything, 0 or random})$

(Learning Rate (α) must be small and > 0, eg: 0.001)

Step 2: Calculate the Slope, S_w (the partial derivations) using the parameters, w for each parameters (w_0 and w_1)

Since Cost is:

$$\mathcal{C}ost = \tfrac{1}{N} \textstyle \sum_{i=0}^{N} \bigl(y_{f(x)_i} - y_{(P)_i} \bigr)^2 \text{ and } y_{f(x)_i} \ = \ w_1 x_{(P)_i} + w_0 \text{:}$$

$$Cost = \frac{1}{N} \sum_{i=0}^{N} \left(\left(\mathbf{w}_{1} x_{(P)_{i}} + \mathbf{w}_{0} \right) - y_{(P)_{i}} \right)^{2}$$

Partial Derivations or Slope, S_w for w_0 and w_1 is:

$$S_{w0} = \frac{2}{N} \sum_{i=0}^{N} (y_{f(x)_i} - y_{(P)_i})$$

$$S_{w1} = \frac{2}{N} \sum_{i=0}^{N} \left(\left(y_{f(x)_i} - y_{(P)_i} \right) \times x_{(P)_i} \right)$$
Not needed
$$Cost = Cost + \left(y_{f(x)} - y_{(P)} \right)^2$$

Step 3 : Calculate the Step Size

 $StepSize = S_w \times \alpha$

Step 4 : Calculate the new parameters , , w_0 and w_1

$$w_{0(new)} = w_0 - StepSize$$

$$w_{1(new)} = w_1 - StepSize$$

Step 5: Assign new parameters as the old parameters

$$w_{old} = w_{new}$$

Step 6 : Repeat Step 2 until no or small changes/ max iterations reached

$$Cost = \frac{Cost}{N}$$
 Not needed

Done!

Code:

Example of a run:

Logistic Regression

Similar to Linear Regression, but a better Linear Model for Classification and predictions are usually Binary (True,1/False,0)

Can achieve this by passing Linear model through nonlinearity, which is the Sigmoid Function

Mathematically:

$$y = \sigma(w_0 + w_1 x)$$

Where:

 $\sigma = Sigmoid Function$

 $y = Dependent \ Variable$ $x = Independent \ Variable$ $w_0 = Intercept \ of \ the \ line$ $w_1 = Linear \ Regression \ coefficient$

Sigmoid Function

Also known as the Logistic Function

Function is:

$$\sigma(\mathbf{u}) = \frac{1}{1 + \mathrm{e}^{-\mathrm{u}}}$$

- ➤ Values are always between 0 and 1
- \triangleright Constant, w_0 : shifts the function (left & right)
- \triangleright Gradient, w_n : determine the "steepness" (0 is flat)

More generally:

$$\sigma(\mathbf{u}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 \dots + w_n x_n)}}$$

Understanding the Sigmoid Function

Our goal is to put a **Boundary** between 2 class

 \triangleright If x has 1 attribute, determined by a point

$$u = w_0 + w_1 x_1$$

 \triangleright If x has 2 attributes, determined by a line

$$u = w_0 + w_1 x_1 + w_2 x_2$$

 \triangleright If x has 3 attributes, determined by a plane

$$u = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$$

If x has 4+ attributes, determined by a hyperplane

$$u = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n$$

Where y will usually be either be 1 / 0 (discrete values)

Since Sigmoid function always return a number between 0 and 1, so we can predict classes as :

- If σ(u) < 0.5, Predict label 0
 <p>(This only happens if u < 0 / Negative)</p>
- If $\sigma(\mathbf{u}) > 0.5$, Predict label 1 (This only happens if $\mathbf{u} > \mathbf{0}$ / Positive)
- If $\sigma(\mathbf{u}) = 0.5$, <u>Decision Boundary</u> (This only happens if $\mathbf{u} = \mathbf{0}$)

Note: Decision Boundary is always Linear

Example: (x has 2 attributes)

Suppose we have : $y = \sigma(w_0 + w_1x_1 + w_2x_2)$

And $w_0 = -1$, $w_1 = 1$, $w_2 = 1$:

We get $\rightarrow u = (-1 + x_1 + x_2)$

Since Decision Boundary is $\,u=\,0\,$, we can now determine the labeling :

- Decision Boundary $\rightarrow x_1 + x_2 = 1$
- Label 0 (negative) $\rightarrow x_1 + x_2 < 1$
- Label 1 (positive) $\rightarrow x_1 + x_2 > 1$

Loss/Cost Function

Similar to Linear Regression, requires a function to determine the best value for the parameters, w

Why not MSE?

May *get stuck in local optima* as logistic regression provides *non-convex outcome*

Cost Function

We use Cross-Entropy:

Assume $\mathbf{z} = \mathbf{\sigma}(\mathbf{w}_0 + \mathbf{w}_\mathbf{n} \mathbf{x}_\mathbf{n})$ which is between 0 and 1

$$PerCost_i = \begin{cases} -\log(1 - \mathbf{z}) & \text{if } y = 0\\ -\log(\mathbf{z}) & \text{if } y = 1 \end{cases}$$

Examples:

When y = 0:

- Arr Prediction is = 1 , $PerCost = \infty$
- Prediction is = 0.3 , PerCost = -log(1 0.3)
- Arr Prediction is = 0 , PerCost = 0

When y = 1:

- Arr Prediction is = 1 , PerCost = 0
- Prediction is = 0.3 , PerCost = -log(0.3)
- ❖ Prediction is = 0 , $PerCost = \infty$

Cross Entropy is the Average of these **lost**:

$$Cost = \frac{1}{N} \sum_{i=0}^{N} (PerCost_i)$$

Or:

Cost =
$$-\frac{1}{N} \sum_{i=0}^{N} ((y_i)(\log(z)) + (1 - y_i)(\log(1 - z)))$$

Where:

N = Number of Points/Data

 $PerCost_i = current Cost for that point i$

$$y_{i} = 0 \text{ or } 1$$

Idea of Cross Entropy:

As Predicted labelled deviates from the actual label, cost increases significantly

(cost = 0 for correctly labelled , cost = ∞ for completely incorrectly labelled)

Same as before, our goal is to minimize Cross-Entropy

Gradient Descent:

(Could refer back to Linear Regression on concept of gradient descent) Slope is now

$$\nabla g(\mathbf{w}) = -\frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{\sigma}(\mathbf{w_0} + \mathbf{w_i} \mathbf{x_i} ... + \mathbf{w_n} \mathbf{x_n})) x_i$$

Algorithm (Logistic Regression):

Step 1 : Initialize Learning Rate (α) , w_0 and w_1

 $(w_0$ and w_1 can be anything, 0 or random)

(Learning Rate (α) must be small and > 0 , eg: 0.5)

Step 2 : Calculate the **Slope** , S_w (the partial derivations) using the parameters, w for each parameters (w_0 and w_1)

Since Cost is:

Cost =
$$-\frac{1}{N} \sum_{i=0}^{N} ((y_i)(\log(z)) + (1 - y_i)(\log(1-z)))$$

and $\mathbf{z} = \mathbf{\sigma}(\mathbf{w}_1 \mathbf{x}_{(P)_i} + \mathbf{w}_0)$:

$$Cost = -\frac{1}{N} \sum_{i=0}^{N} ((y_i) (log(\sigma(w_1 x_{(P)_i} + w_0))) + (1 - y_i) (log(1 - \sigma(w_1 x_{(P)_i} + w_0))))$$

Partial Derivations or Slope, S_w for w_0 and w_1 is:

$$S_{w0} = -\frac{1}{N} \sum_{i=0}^{N} \left(y_{(P)_i} - \sigma(\mathbf{w}_1 x_{(P)_i} + \mathbf{w}_0) \right)$$

$$S_{w1} = -\frac{1}{N} \sum_{i=0}^{N} \left(y_{(P)_i} - \sigma (w_1 x_{(P)_i} + w_0) \right) x_{(P)_i}$$

Step 3: Calculate the Step Size

$$StepSize = S_w \times \alpha$$

Step 4 : Calculate the new parameters , , w_0 and w_1

$$w_{0(new)} = w_0 - StepSize$$

$$w_{1(new)} = w_1 - StepSize$$

Step 5 : Assign new parameters as the old parameters

$$w_{old} = w_{new}$$

Step 6 : Repeat Step 2 until no or small changes/ max step size set (iterations finish)

$$Cost = -\frac{Cost}{N}$$

Cost is negative initially

Done

Example of a run:

Neural Networks

**note: I have no clue what this is and its very vague but here you go

What is it, types of NN cost function , Gradient descent , overfitting , Dealing with overfitting