

Probabilistic Reasoning

Russell Chap 13, 14, 15 Luger Chap. 5, 9

1

Managing Uncertainty

- Abduction
 - If $P \Rightarrow Q$, Q then $P \rightarrow Not$ sound
- Most diagnostic rules are abduction
 - True implication (causal relation):
 - Problem ⇒ Symptom
 Ex> Problem in battery ⇒ Light gone
 - Expert system rule:
 - Symptom ⇒ Problem
 Ex> Light gone ⇒ Problem in battery
 - → Not 100% true
 - → Need measure of uncertainty

Certainty Factor

Certainty Theory

- Confidence measure (expert heuristic) + combining rules
 E(evidence) → H(hypothesis) : Confidence?
- Certainty Factor(CF) of H(hypothesis) given E(evidence)
 - CF(H | E) = MB(H | E) MD(H | E)
 - MB: Measure of belief of H given E
 - MD: Measure of disbelief of H given E
- Inference with CF
 - Rule: if P then Q (CF = 0.9)
 - Fact: P (CF = 0.9)

Q (CF = 0.9*0.9 = 0.81)

- Combining CF
 - CF(P1 and P2) = min (CF(P1), CF(P2))
 - CF(P1 or P2) = max (CF(P1), CF(P2))

Certainty Factor

Example

- Rule: (P1 and P2) or P3 → R1(0.7) and R2(0.3)
- During production cycle, it is found that

$$CF(P1) = 0.6$$

 $CF(P2) = 0.4$
 $CF(P3) = 0.2$

Then

$$CF((P1 \text{ and } P2) \text{ or } P3) = \max \text{ (min (0.6, 0.4), 0.2)}$$

= 0.4

$$\therefore$$
 CF(R1) = 0.4 * 0.7 = 0.28
CF(R2) = 0.4 * 0.3 = 0.12

Purpose

 Expert system: determines the organism that causes meningitis and provides therapy

Inference

- Start from a hypothesis(organism), perform backward chaining
- Use certainty factor

Example rule

Fuzzy Logic

Fuzzy set

- Set membership is a function to [0, 1]
 Ex> S = set of small integer
 fs(1) = 1.0, fs(5) = 0.7, fs(100) = 0.001
- Membership function
 - Sets: S, M, T

$$f_T(178) = 0.7, f_M(178) = 0.3$$

4 F

Fuzzy Logic

Fuzzy logic

```
• If f_A(x) = a, f_B(x) = b then
f_{A \cap B}(x) = \min (a, b)
f_{A \cup B}(x) = \max (a, b)
```

Fuzzy rules

- If (speed = high) and (no. of cars = many) then (push brake)
- If (temp = hot) then (fan speed = high)

Reasoning with Fuzzy Logic

Define fuzzy sets

Temperature Hot, Warm, Cold, ...

2. Build logical rules with the fuzzy sets

If (temp is Hot) then (fan_speed is High)

Perform inference

- Fuzzification : real value (30° C) → fuzzy set (Hot)
- Apply rules : use fuzzy logic
- Defuzzification : fuzzy set (High) → real_value (4500 RPM)

Reasoning with Fuzzy Logic

- Example: Inverted Pendulum
 - Input: $x1 = \theta$, $x2 = d\theta/dt$
 - Output: u = movement M

Figure 7.15 The inverted pendulum and the angle θ and $d\theta/dt$ input values.

Fuzzy set

- x1, x2: Z(zero), P(positive), N(negative)
- u: Z, P, PB(positive big), N, NB(negative big)

Rules

- 1. If (x1 = P and x2 = Z) then u = P
- 2. If (x1 = P and x2 = N) then u = Z
- 3. If (x1 = Z and x2 = Z) then u = Z
- 4. If (x1 = Z and x2 = N) then u = N
- 5.

- When $x1 = \theta = 1$, $x2 = d\theta/dt = -4$
 - 1. from fuzzy set membership

x1: 0.5P, 0.5Z

x2: 0.8N, 0.2Z

•

Reasoning with Fuzzy Sets

2. From fuzzy rules

```
u = 0.2P (1. If x1 = P(0.5) and x2 = Z(0.2) then u = P(min(0.5,0.2)) u = 0.5Z (2. If x1 = P(0.5) and x2 = N(0.8) then u = Z(min(0.5,0.8)) u = 0.2Z (3. If x1 = Z(0.5) and x2 = Z(0.2) then u = Z(min(0.5,0.2)) u = 0.5N (4. If x1 = Z(0.5) and x2 = N(0.8) then u = N(min(0.5,0.8))
```


3. From fuzzy set membership,
 computing centroid of the union
 → u = -2

For an experiment that produces outcomes

Sample space S: set of all outcomes

Event E: a subset of S

Probability P(E) = |E|/|S| (if outcomes are equally likely)

Probability distribution

Function P: x → [0, 1] (x: random variable)

S	Х	P(x)	y(odd)	P(y)
1	1	1/6	1	1/2
2	2	1/6	0	1/2
6	6	1/6	0	

S	x(# of H)	P(x)
H	2	1/4
НТ	1	1/2
TH	1	
TT	0	1/4

Joint probability distribution

- P(x,y): represents joint probability distribution of x and y
- Example
 - Gas{true,false}, Meter{empty, full}, Start{yes, no}
 - P(G,M,S):

Gas	Meter	Start	P(G,M,S)
false	empty	no	0.1386
false	empty	yes	0.0014
false	full	no	0.0594
false	full	yes	0.0006
true	empty	no	0.0240
true	empty	yes	0.0560
true	full	no	0.2160
true	full	yes	0.5040

Probability

Gas	Meter	Start	P(G,M,S)
false	empty	no	0.1386
false	empty	yes	0.0014
false	full	no	0.0594
false	full	yes	0.0006
true	empty	no	0.0240
true	empty	yes	0.0560
true	full	no	0.2160
true	full	yes	0.5040

- P(Gas=false, Meter=empty, Start=no) = 0.1386
- P(Start=yes) = 0.5620
 - Prior probability
- P(Start=yes), given that Meter=empty?
 - Posterior probability (conditional probability)

Conditional Probability

Conditional probability

- $P(A|B) = P(A \land B) / P(B)$
- Example

•
$$P(A \land B) = 4 / 100 = 0.04$$

•
$$P(B) = 5 / 100 = 0.05$$

•
$$P(A \mid B) = 4 / 5 = 0.80$$

Independence

- P(A|B) = P(A)
- P(A ∧ B) = P(A|B) P(B)
 = P(A) P(B) if A, B are independent

Bayesian Reasoning

- Let H: Hypothesis (Problem)
 - E: Evidence (Symptom)
- Then the probability of E → H is P(H | E)

$$P(H \cap E) = P(H \mid E) * P(E)$$

= $P(E \mid H) * P(H)$

$$\therefore \frac{P(H \mid E) = P(E \mid H) * P(H)}{P(E)}$$

Bayesian Reasoning

If we want to compare P(H1 | E), P(H2 | E), ...

$$P(H1 | E) = P(E | H1) * P(H1)$$
 $P(E)$
 $P(H2 | E) = P(E | H2) * P(H2)$
 $P(E)$
 $P(E)$

$$\therefore \qquad \mathsf{P}(\mathsf{Hi} \mid \mathsf{E}) = \alpha \; \mathsf{P}(\mathsf{E} \mid \mathsf{Hi}) \; \mathsf{P}(\mathsf{Hi})$$

Bayesian Reasoning

For multiple, conditionally independent evidences

$$P(E1, E2, ... En | Hi) = P(E1 | Hi)P(E2 | Hi) ... P(En | Hi)$$

```
\therefore P(\text{Hi } | \text{E1, E2, ... En})
= \alpha P(\text{E1, E2, ... En } | \text{Hi}) P(\text{Hi})
= \alpha P(\text{E1 } | \text{Hi}) P(\text{E2 } | \text{Hi}) ... P(\text{En } | \text{Hi}) P(\text{Hi})
= \alpha P(\text{Hi}) \prod_{i=1..n} P(\text{Ei } | \text{Hi})
```

These probabilities are obtained from sample data

No.	age	income	student	credit_rating	buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	3140	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	3140	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	3140	medium	no	excellent	yes
13	3140	high	yes	fair	yes
14	>40	medium	no	excellent	no


```
X: (age="<30", income="medium", student="yes", credit="fair") → yes / no?
```

- P(Yes | X) = α P(Yes) P(X|Yes) = α P(Yes) P(<30|Yes) P(m|Yes) P(y|Yes) P(f|Yes) = α x 9/14 x 2/9 x 4/9 x 6/9 x 6/9 = 0.028 α
- $P(No \mid X) = \alpha P(No) P(X|No)$ = $\alpha P(No) P(<30|No) P(m|No) P(y|No) P(f|No)$ = $\alpha \times 5/14 \times 3/5 \times 2/5 \times 1/5 \times 2/5 = 0.007 \alpha$
 - X is classified to yes

- Category C1: # of sample documents 60
 Keywords information (2), network (12), algorithm (6), system (10)
- Category C2: # of sample documents 40
 Keywords information (10), database (8), algorithm (4), system (8)
- New document D: has keywords information, system

```
P(C1 | information, system)
= k * P(information | C1) * P(system | C1) * P(C1)
= k * 2/30 * 10/30 * 60/100 = 0.013 k

P(C2 | information, system)
= k * P(information | C2) * P(system | C2) * P(C2)
= k * 10/30 * 8/30 * 40/100 = 0.036 k
```

D is classified to C2

- Breast cancer classification
 - Compute P(recur | age=40-49, menop=ge40, ...)
 - Based on P(recur), P(age=40-49 | recur), P(menop=ge40 | recur), ...

Bayesian Belief Network

Nodes: Random variables

Edges: Direct influence

Each node x stores P(x | parents(x))

 $P(G,M,S) = P(G) P(M \mid G) P(S \mid G)$

Dependency

- A, B are independent
 - P(B|A) = P(B)
- A, B are conditionally dependent
 - $P(B|A,C) \neq P(B|C)$

- A, B are dependent
 - $P(B|A) \neq P(B)$
- A, B are conditionally independent
 - P(B|A,C) = P(B|C)

Dependency

- Gas and Start are dependent
- Gas and Plug are independent
- Gas and Plug are conditionally dependent given Start
- Meter and Start are conditionally independent given Gas
 - P(S | M, G) = P(S | G)

Chain Rule and Independence

- $P(A,B) = \frac{P(A,B)}{P(A)} P(A) = \frac{P(B|A)}{P(A)} P(A)$
- $P(A,B,C) = \frac{P(A,B,C)}{P(A,B)} \frac{P(A,B)}{P(A)} P(A) = P(C|B,A) P(B|A) P(A)$
- P(A,B,C,D) = P(D|C,B,A) P(C|B,A) P(B|A) P(A)
- P(G,M,S) = P(S | G,M) P(M | G) P(G) (Chain rule)
 = P(S | G) P(M | G) P(G)
 (If S, M are conditionally independent given G)
 = P(S) P(M) P(G)
 (If S, M, G are all independent)

Computing Joint Distribution from Bayesian Network

- In general,
 Joint probability ← product of conditional probabilities
- Ex>

P(A,B,C,D,E) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)P(E|A,B,C,D)= P(A)P(B|A)P(C|B) P(D|B,C) P(E|C,D)

Bayesian Reasoning with Full Probability Distribution

Gas	Meter	Start	P(G,M,S)
false	empty	no	0.1386
false	empty	yes	0.0014
false	full	no	0.0594
false	full	yes	0.0006
true	empty	no	0.0240
true	empty	yes	0.0560
true	full	no	0.2160
true	full	yes	0.5040

- P(Gas=false, Meter=empty, Start=no) = 0.1386
- P(Gas=false) = 0.2
- P(Start=yes | Meter=full) = P(S=yes, M=full) / P(M=full)
 - = (0.5040 + 0.0006) / (0.5040 + 0.0006 + 0.2160 + 0.0594)
 - = 0.6469

Bayesian Reasoning with Full Probability Distribution

P(Start=yes | Meter=full)

Gas	Meter	Start	P(G,M,S)
false	full	no	0.0594
false	full	yes	0.0006
true	full	no	0.2160
true	full	yes	0.5040

Select M=full

Gas	Start	P(G,M,S)
ALL	no	0.2754
ALL	yes	0.5046

Sum G

Start	P(G,M,S)
no	0.3531
yes	0.6469

Normalize

Reasoning with Bayesian Belief Network

- Inference for P(H | E)
 - From the product of probability table,
 - Remove all rows except E
 - Compute product
 - 3. Sum over irrelevant variables
 - 4. Normalize
- Example
 - P(S=yes | M=full)

Reasoning with Bayesian Belief Network

p(S,G,M)

P(G)	
false	0.2
true	0.8

	P(M G)	G = f	G = t
-	empty	0.7	0.1
	full	0.3	0.9

P(S G)	G = f	G = t
no	0.99	0.30
yes	0.01	0.70

p(S,G | M=f)

S	G = f	G = t
no	0.0594	0.2160
yes	0.0006	0.5040

Product

Remove M=empty

p(S | M=f)

S	
no	0.2754
yes	0.5046

Sum over G

p(S | M=f)

S	
no	0.3531
yes	0.6469

Normalize

Advantage of Reasoning with Bayesian Belief Network

Advantage of Reasoning with Bayesian Belief Network

- Assume 20 boolean variables: 19 E → 1 H
- Compute P(H | E1, E2, ..., E19)
 = P(E1, E2, ... E19 | H) P(H)
 P(E1, E2, ..., E19)
- 1) From full joint distribution

→ We need to know $2^{20} = 1,048,576$ prob.

Н	E1	E2	•••	P(H,E1,E2,)
Т	Т	Т	•••	0.xxxx
F	F	F		0.xxxx

H3

Advantage of Reasoning with Bayesian Belief Network

P(E1 | H) P(E2 | H) ... P(E19 | H) P(H)
→
$$4*19 + 2 = 78$$
 prob.

- 2) Consider actual dependences (Bayesian Network)
 P(E1) P(E2) P(E3 | E1, E2) ...
 (assume less than 2 parents in Bayesian Network)
 → less than 8*20 = 160 prob.
 - Actual dependences are considered, yet need small # of probabilities.

Markov Model

- Markov process (Markov chain)
 - Probability of a state at time t depends on its previous n states $P(X_t \mid X_{t-1}, X_{t-2}, X_{t-3}, ..., X_{t-n})$
- First-order Markov process
 - Probability of a state at time t depends on its previous 1 state
 P(X_t | X_{t-1})

Markov Model

Example

4 states: S1(sunny), S2(cloudy), S3(Foggy), S4(Rainy)

	S ₁	S ₂	S_3	S_4
S ₁	0.4	0.3	0.2	0.1
S_2	0.4 0.2	0.3	0.2	0.3
S_3	0.1	0.3	0.3	0.3
S ₄	0.1 0.2	0.3	0.3	0.2

Today is sunny. Prob. of next 2 days are rainy?

$$P(S1, S4, S4) = P(S1) P(S4 | S1) P(S4 | S1,S4)$$

= $P(S1) P(S4 | S1) P(S4 | S4)$
= $1 * 0.1 * 0.2 = 0.02$

Hidden Markov Model (HMM)

HMM

- States are "hidden"
- Probability of observation is given. P(Oj | Si)

4

Hidden Markov Model (HMM)

```
P(s1 ... sn | o1 ... on)
= \underbrace{P(o1 ... on | s1 ... sn) P(s1 ... sn)}_{P(o1 ... on)}
= \mathbf{\alpha} P(o1 ... on | s1 ... sn) P(s1 ... sn)
= \mathbf{\alpha} P(o1 | s1)P(o2 | s2)...P(on | sn) P(s1 ... sn)
= \mathbf{\alpha} P(o1 | s1)P(o2 | s2)...P(on | sn) P(s1)P(s2 | s1)...P(sn | sn-1)
= \prod_{i=1...n} P(oi | si) P(si | si-1)
```

Hidden Markov Model (HMM)

Example

Markov process

Output process

Hidden Markov Model (HMM)

- Which cup is selected? → hidden
- Only output sequence is observed

Most likely sequence

```
= argmax _X P(X_0, X_1, ..., X_t | E_1, E_2, ..., E_t)

= argmax _{X1,X2} (1/3*(S1)*3/6 * 0.6(S1)*3/6 ,

1/3*(S1)*3/6 * 0.2(S2)*1/6 ,

1/3*(S1)*3/6 * 0.2(S3)*1/6 ,

1/3*(S2)*1/6 * 0.1(S1)*3/6 , ...) = S1, S1
```


- The problem
 - Observed: sequence of acoustic signals
 - Determine: which phoneme? → which word?

Compute P(phoneme | signal) by using HMM

Find argmax P(p1, p2, p3, ... | o1, o2, o3, ...)= argmax $\prod_{i=1..n} P(oi | pi) P(pi | pi-1)$

Speech Recognition

Handwriting Recognition

Hand-written character recognition

Handwriting Recognition

The problem

- Observed: sequence of moving directions (d1.. dn)
- Determine: which character? states (s1.. sn)

```
Find argmax P(s1 ... sn | d1 ... dn)
= argmax \prod_{i=1..n} P(di | si) P(si | si-1)
```


Handwriting Recognition

Example

- Writing: [8, 8, 7, 7, 7, 6, 6, 5, 5, ...]
- P(States of 'zero' | 8, 8, 7, 7, 7, 6, 6, 5, 5, ...) >>
 P(States of 'one' | 8, 8, 7, 7, 7, 6, 6, 5, 5, ...)
- Markov process for '0':

Output process: