Tesis

Una tesis

Elio Campitelli

Índice general

1	Inti	roducción	5	
2	Métodos y Materiales			
	2.1	Conceptos básicos	7	
	2.2	Fuentes de datos	7	
	2.3	Descripción de SPEEDY	7	
3	Cli	natología observada	9	
	3.1	Altura geopotencial	9	
Re	esume	en.		
(L	istad	o de abreviaturas		
R	evisa	r TODOS los epígrafes		

Capítulo 1

Introducción

- Antecedentes
 Además de lo que hay en lo de las becas + lo que fui encontrando, agregar sobre las climatologías disponibles y sus limitaciones.
- Objetivo General
- Objetivo particular

Esto es para probar una referencia bibliográfica: Vera et al. (2004) y (Vera et al. 2004)

Capítulo 2

Métodos y Materiales

Agregar en algún lugar algo sobre las estadísticas circulares

2.1 Conceptos básicos

- Ondas cuasiestacionarias
- fourier
- wavelets
- Flujo de actividad de onda.

chequear este paper:

https://link.springer.com/article/10.1007/s00024-012-0635-9

Ejemplo:

Cosas para ver de Figura 3.1:

la @ref(fig:fourier-ejemplo) Descripción del "rol" de cada número de onda en generar el campo final. La QS1 es la principal, marcando altas presiones al sur del pacífico y bajas al sur de África. La onda 3 modifica ese patrón simple haciendo que los máximos y mínimos no sean continuos.

• Wavelets

Cosas para ver:

Cambio en el máximo. Localización en vez de un número para cada latitud.

2.2 Fuentes de datos

2.3 Descripción de SPEEDY

Capítulo 3

Climatología observada

En esta sección se presentan campos medios y anomalías zonales de altura geopotencial, temperatura, viento zonal, viento meridinal, gradiente meridional de vorticidad absoluta y el número de onda estacionario, y función corriente como introducción general al estado medio de la atmósfera sobre el cual se desarrollan las ondas estacionarias. Luego se analizan los campos de amplitud y varianza explicada por las ondas cuasiestacionarias (QS) en sí mismas.

3.1 Altura geopotencial

Campo medio:

Vera, Carolina, Gabriel Silvestri, Vicente Barros, y Andrea Carril. 2004. «Differences in El Niño response over the Southern Hemisphere». *Journal of Climate* 17 (9): 1741-53. doi:10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2.

Índice de figuras

3.1	Ejemplo fourier - fig:fourier-ejemplo	12
3.2	Wavelets - fig:wavelet-ejemplo	12
3.3	Campo de Z (NCEP) - fig:gh-ncep	13

12 FIGURES

Figura 3.1: Ejemplo fourier - fig:fourier-ejemplo

Figura 3.2: Wavelets - fig:wavelet-ejemplo

Figura 3.3: Campo de Z (NCEP) - fig:gh-ncep