LL(k): Deterministic top-down parsing Parsing ISCL-BA-06

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

So far ...

- Formal languages and automata
- General parsing techniques
 - Top-down Bottom-up
 - Directional non-directional
- Chart parsing
 - CKY
 - Early

So far ...

- Formal languages and automata
- General parsing techniques
 - Top-down Bottom-up
 - Directional non-directional
- Chart parsing
 - CKY
 - Early

Coming next:

- Deterministic context-free parsing
- Probabilistic context-free parsing
- Dependency parsing

Recap: top-down parsing

- General idea: try to generate the input using the grammar rules
 - Initialize with the start symbol
 - Rewrite each non terminal, replacing them with matching RHS in the grammar
 - When there are multiple options, follow one, backtrack and follow others when done
 - Repeat until input sentence is generated (or failed)
- If we always expand the left-most symbol first, the parser is directional, the resulting derivation is the left-most derivation
- Parsing proceeds with two actions:

predict expanding all RHS of the left-most non-terminal match if the left-most item is a terminal, it has to match the next input symbol

Матснед	Sent. Form	Input	Action
	S \$	d n v a n	init

Матснед	Sent. Form	Input	Action
	NP VP \$	d n v a n	$P:S \rightarrow NP VP$

Матснед	Sent. Form	Input	Action
	d AN VP \$	d n v a n	$\boxed{\text{P: NP } \rightarrow \text{ d AN}}$
	AN VP \$	d n v a n	$P: NP \rightarrow AN$

Матснед	Sent. Form	Input	Action
	d AN VP \$	d n v a n	$\boxed{\text{P: NP } \rightarrow \text{ d AN}}$
	n VP \$	d n v a n	$P: AN \rightarrow n$
	a AN VP \$	d n v a n	$P:AN \rightarrow a AN$

Матснер	Sent. Form	Input	Action
	d AN VP \$	d n v a n	$\boxed{\text{P: NP } \rightarrow \text{ d AN}}$
	n VP \$	d n v a n	$P:AN \rightarrow n$
	a AN VP \$	d n v a n	P: match X

Матснед	Sent. Form	Input	Action
	d AN VP \$	d n v a n	$\boxed{\text{P: NP } \rightarrow \text{ d AN}}$
	n VP \$	d n v a n	P: match X

Матснед	Sent. Form	Input	Action
d	AN VP \$	nvan	match d

Матснед	Sent. Form	Input	Action
d	d VP \$	n v a n	$P:AN \rightarrow n$
n	a AN VP \$	nvan	$P:AN \rightarrow a AN$

Матснед	Sent. Form	Input	Action
d	d VP \$	n v a n	$P:AN \ \to \ n$
n	a AN VP \$	n v a n	P: match X

Матснед	Sent. Form	Input	Action
d n	VP \$	v a n	match n

Матснед	Sent. Form	Input	Action
d n	v NP \$	v a n	$P: VP \rightarrow v NP$

Матснед	Sent. Form	Input	Action
d n v	NP \$	a n	match v

Матснед	Sent. Form	Input	Action
d n v	AN \$	a n	$P: NP \rightarrow AN$
d n v	d AN \$	a n	$P: NP \rightarrow d AN$

Матснед	Sent. Form	Input	Action
d n v	AN \$	a n	$P: NP \rightarrow AN$
d n v	d AN \$	a n	P: match X

Матснед	Sent. Form	Input	Action
d n v	a AN \$	a n	$P:AN \ \to \ a \ AN$
d n v	n \$	a n	$P:AN \rightarrow n$

Матснед	Sent. Form	Input	Action
d n v	a AN \$	a n	$P:AN \ \to \ a \ AN$
d n v	n \$	a n	P: match X

Матснед	Sent. Form	Input	Action
d n v a	AN \$	n	match a

Матснед	Sent. Form	Input	Action
d n v a	n \$	n	$P:AN \rightarrow n$

Матснед	Sent. Form	Input	Action
d n v a	n \$	n	$P:AN \rightarrow n$
n	a AN \$	n	$P:AN \rightarrow a AN$

3 / 18

Матснед	Sent. Form	Input	Action
d n v a	n \$	n	$P:AN \ \to \ n$
n	a AN \$	n	match 🗶

Матснед	Sent. Form	Input	Action
d n v a n	\$		match n

Top-down parsing

- If we follow the predicted productions, we obtain a *leftmost* derivation
- Lots of unnecessary work, backtracking because of useless predictions
- Most of the unnecessary work is done in predict
- In this lecture we will look at ways to reduce this
- For some grammars, the unnecessary predictions can be completely avoided, resulting in a *deterministic* parser

Recursive descent parser

- Recursive descent parsers are top-down, recursive parsers where each non-terminal is implemented as a procedure
- For each symbol on a RHS, we either
 - call the sub-procedure (another nonterminal)
 - or match the input symbol

```
    procedure A()
    select a rule A → X<sub>1</sub>,..., X<sub>k</sub>
    for i = 1 to k do
    if X<sub>i</sub> is a nonterminal then
    call X<sub>i</sub>()
    else if X<sub>i</sub> = current input then
    advance the input pointer
    else
    return error
```

Recursive descent parser

some remarks

- The interesting idea is that now the parser is a program in a(ny) programming language
- In its general form a recursive descent parser is a backtracking parser
- If we can select a rule deterministically, then we can get a deterministic parser
- Deterministic parsing generally requires a *lookahead* mechanism:
 - Given the non-terminal to expand/rewrite, and the next input symbol(s), for some grammars, we can build a table that can deterministically guide a parser

Table driven parsing

non-term.	input (lookahead)				
	d	a	n	V	\$
S	$S \to NPVP$	$S \to NPVP$	$S \to NPVP$	$S \to NPVP$	
NP	$NP \to d \; AN$	$NP \to AN$	$NP \to AN$		
VP				$VP \ \to \ v \ NP$	
AN		$AN \to a AN$	$AN \to n$		

non-term.		input (lookahead)					
	d		a		n	v	\$
S NP					$\begin{array}{c} S \to NP VP \\ NP \to AN \end{array}$	$S \rightarrow NP VP$	
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$	
Матснед		S	ent. Form	Inpu	Т	ACTION	
			S \$	d n	v a n	init	

non-term.		input (lookahead)						
	d		a		n	V	\$	
S NP					$\begin{array}{c} S \to NP VP \\ NP \to AN \end{array}$	$S \to NPVP$		
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$		
Матснед		S	ent. Form	Inpu	Т	Action		
			NP VP \$	d n	v a n	$P: S \rightarrow NP V$	P	

non-term.	input (lookahead)								
	d		a		n	V	\$		
S NP					$\begin{array}{c} S \to NP VP \\ NP \to AN \end{array}$	$S \to NP VP$			
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$			
Матснед		S	ent. Form	Inpu	Т	Action			
		d	AN VP \$	d n	v a n	$P: NP \rightarrow dA$	N		

non-term.	input (lookahead)								
	d		a		n	v	\$		
S NP			$S \rightarrow NP VP$ $NP \rightarrow AN$			$S \to NP VP$			
VP AN			$AN \rightarrow a$	AN	$AN \rightarrow n$	$VP \rightarrow v NP$			
Матснед		S	ent. Form	Inpu	Г	Action			
d			AN VP \$	n v a	ı n	match d			

non-term.	input (lookahead)								
	d		a		n	V	\$		
S NP			$S \rightarrow NP VP$ $NP \rightarrow AN$			$S \rightarrow NP VP$			
VP AN			$AN \rightarrow a AN$		$AN \to n$	$VP \rightarrow v NP$			
Матснед		S	ent. Form	Inpu	т	Action			
d			n VP \$ n v		a n	$P:AN \rightarrow n$			

non-term.	input (lookahead)								
	d		a		n	V	\$		
S NP			$\begin{array}{c} S \ \rightarrow \ NP \ VP \\ NP \ \rightarrow \ AN \end{array}$			$S \to NP VP$			
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$			
Матснер		S	ent. Form	Inpu	т	Action			
d n			VP \$	v a r	า	match n			

non-term.	input (lookahead)								
	d		a		n	V	\$		
S	$S \rightarrow NP VP$		$S \rightarrow NP VP$		$S \to NPVP$	$S \to NP VP$			
NP	$NP \to d AN$		$NP \rightarrow AN$		$NP \rightarrow AN$				
VP						$\mathrm{VP}\rightarrow\mathrm{v}\mathrm{NP}$			
AN			$AN \to a$	AN	$AN \to n$				
MATCHED		S	ent. Form	INIDI	īŦ	Action			
WIAICHED		5	ENI. TOKWI	INPU) 1	ACTION			
d n			v NP \$	v a :	n	$P: VP \rightarrow v N$	Р		

non-term.		input (lookahead)						
	d		a		n	v	\$	
S NP					$S \rightarrow NP VP NP \rightarrow AN$	$S \to NP VP$		
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$		
Матснед		S	ent. Form	Input	Γ	Action		
d n v			NP \$	a n		match v		

non-term.		input (lookahead)						
	d		a		n	V	\$	
S NP					$\begin{array}{c} S \rightarrow NP VP \\ NP \rightarrow AN \end{array}$	$S \rightarrow NP VP$		
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$		
Матснед		S	ent. Form	Inpu	TT	Action		
d n v			AN \$	a n		$P: NP \rightarrow AN$		

non-term.		input (lookahead)						
	d		a		n	V	\$	
S NP					$\begin{array}{c} S \rightarrow NP VP \\ NP \rightarrow AN \end{array}$	$S \to NPVP$		
VP AN			$AN \rightarrow a$	AN	$AN \to n$	VP o v NP		
Матснед		S	ent. Form	Inpu	JT.	Action		
d n v			a AN \$	a n		P: AN \rightarrow a A	N	

non-term.		input (lookahead)					
	d		a		n	v	\$
S NP					$\begin{array}{c} S \to NP VP \\ NP \to AN \end{array}$	$S \rightarrow NP VP$	
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$	
Матснед		S	ent. Form	Inpu	T	Action	
d n v a			AN \$	n		match a	

non-term.		input (lookahead)						
	d		a		n	v	\$	
S NP			$S \rightarrow NP$ $NP \rightarrow A$		$\begin{array}{c} S \rightarrow NP VP \\ NP \rightarrow AN \end{array}$	$S \rightarrow NPVP$		
VP AN	141	, 4111			$AN \rightarrow n$	$VP \ \rightarrow \ v \ NP$		
MATCHED		S	ent. Form	Inpu	JT	Action		
d n v a			n \$	n		$P: AN \rightarrow n$		

non-term.		input (lookahead)						
	d		a		n	V	\$	
S NP					$\begin{array}{c} S \to NP VP \\ NP \to AN \end{array}$	$S \rightarrow NP VP$		
VP AN			$AN \rightarrow a$	AN	$AN \to n$	$VP \rightarrow v NP$		
Матснед		S	ent. Form	Inpu	т	Action		
dnvan			\$			match n		

FIRST and FOLLOW sets

- FIRST and FOLLOW sets are useful for both top-down and bottom-up table driven parsers
- FIRST set of a non-terminal A, FIRST(A), is the set of initial terminal symbols of all strings generated by A
- FOLLOW set of a non-terminal A, FOLLOW(A), is the set of initial terminals that may follow any A according to the grammar
- Both sets generalize to any sentential form
- FIRST and FOLLOW sets are also useful for error recovery during parsing

Computing the FIRST set

- The FIRST set of a terminal symbol contains only itself
- To compute the FIRST sets of nonterminals, repeat the following until no new symbols are added to any of the sets
 - 1. For each rule $X \rightarrow Y_1 Y_2 \dots Y_k$ in the grammar,
 - place all terminals in FIRST(Y_i) if $Y_1Y_2...Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$
 - if ϵ is in all FIRST(Y_i) for all i = 1, ..., k, add ϵ to FIRST(X)
 - 2. if the rule processed is $X \rightarrow \epsilon$, add ϵ to FIRST(X)
- Then, FIRST set of any sentential form, FIRST($X_1X_2...X_k$) can be computed:
 - For $i = 1, \ldots, k$
 - 1. Add all non- ϵ symbols from X_i to FIRST $(X_1X_2...X_k)$
 - 2. If $\epsilon \notin FIRST(X_i)$, stop
 - if $\epsilon \in FIRST(X_i)$ for all i = 1, ..., k, add ϵ to $FIRST(X_1 X_2 ... X_k)$

Computing the FOLLOW set

- Calculate the FIRST sets
 - 1. Place \$ in the FOLLOW(S)
 - 2. For a production $A \to \alpha B \beta$, add everything in FIRST(β) except ε to FOLLOW(B)
 - 3. For a production $A \to \alpha B$, or $A \to \alpha B\beta$ where FIRST(β) contains ϵ , add all items in FOLLOW(A) to FOLLOW(B)
 - 4. Repeat 3 until no more items are added to any of the FOLLOW sets

LL(1) grammars

- A grammar is called and LL(1) grammar, if we can find a table similar to our example:
 - If there is only a single prediction for each (non-terminal, lookahead) pair, then the grammar is an LL(1) grammar
- L's stand for *Left-to-right* and *Leftmost derivation*, (1) indicates the number of lookahead symbols needed
- If we increase the number of lookahead symbols, we get LL(k) grammars
- LL(k) grammar can be parsed with a top-down parser without backtracking
- Not every context free grammar is LL(k)
- But, programming language grammars are mostly LL(1)

LL(1) grammars

formal definition

- If a grammar is LL(1) then whenever $A \to \alpha$ and $A \to \beta$ are two rules in the grammar, then
 - The sets of non-terminals of strings derived from α and β are disjoint
 - Only one (or none) of α and β can derive the empty string
 - − If β $\stackrel{*}{\Rightarrow}$ ε, α cannot start with a terminal that may follow A
- In other words:
 - FIRST(α) and FIRST(β) are disjoint
 - if ε is in FIRST(α), then FIRST(β) and FOLLOW(A) are disjoint sets

Construction of LL(1) table

- If there are no ε productions, the table can be easily constructed from the FIRST sets
- Otherwise, after computing FIRST and FOLLOW sets, the following procedure fills the LL(1) table
 - For each rule $A \rightarrow \alpha$ in the grammar
 - 1. For each terminal a in FIRST(α), add $A \rightarrow \alpha$ to table cell [A, a]
 - 2. If ε is in FIRST(α), then for each terminal b in FOLLOW(A) add A $\to \alpha$ to table cell [A, b]

calculating FIRST sets

$$S \,\rightarrow\, BA \quad A \,\rightarrow\, aBA \,|\,\, \varepsilon \quad B \,\rightarrow\, CD \quad D \,\rightarrow\, bCD \,|\,\, \varepsilon \quad C \,\rightarrow\, cSc \,|\,\, d$$

- Repeat until no additions
 - 1. For each $X \rightarrow Y_1 Y_2 \dots Y_k$
 - place all terminals in FIRST(Y_i) if $Y_1Y_2...Y_{i-1} \stackrel{*}{\Rightarrow} \varepsilon$
 - if ϵ is in all FIRST(Y_i) for all i = 1, ..., k, add ϵ to FIRST(X)
 - 2. if the rule processed is $X \rightarrow \varepsilon$, add ε to FIRST(X)

- FIRST(S) =
- FIRST(A) =
- FIRST(B) =
- FIRST(C) =
- FIRST(D) =

calculating FIRST sets

$$S \,\rightarrow\, BA \quad A \,\rightarrow\, aBA \,|\, \varepsilon \quad B \,\rightarrow\, CD \quad D \,\rightarrow\, bCD \,|\, \varepsilon \quad C \,\rightarrow\, cSc \,|\, d$$

- Repeat until no additions
 - 1. For each $X \rightarrow Y_1 Y_2 \dots Y_k$
 - place all terminals in FIRST(Y_i) if $Y_1Y_2...Y_{i-1} \stackrel{*}{\Rightarrow} \varepsilon$
 - if ε is in all FIRST(Y_i) for all i = 1, ..., k, add ε to FIRST(X)
 - 2. if the rule processed is $X \rightarrow \varepsilon$, add ε to FIRST(X)

```
FIRST(S) = \{c,d\}
FIRST(A) = \{a,\epsilon\}
FIRST(B) = \{c,d\}
FIRST(C) = \{c,d\}
FIRST(D) = \{b,\epsilon\}
```

calculating FOLLOW sets

$$S \,\rightarrow\, BA \quad A \,\rightarrow\, aBA \,|\, \varepsilon \quad B \,\rightarrow\, CD \quad D \,\rightarrow\, bCD \,|\, \varepsilon \quad C \,\rightarrow\, cSc \,|\, d$$

- 1. Place \$ in the FOLLOW(S)
- 2. For a production $A \rightarrow \alpha B\beta$, add everything in FIRST(β) except ϵ to FOLLOW(B)
- 3. For $A \rightarrow \alpha B$, or $A \rightarrow \alpha B\beta$ where FIRST(β) contains ϵ , add items in FOLLOW(A) to FOLLOW(B)

	S	A	В	С	D
FIRST	{c,d}	$\{a, \epsilon\}$	{c,d}	{c,d}	$\{b,\epsilon\}$

$$FIRST(S) =$$

$$FIRST(A) =$$

$$FIRST(B) =$$

$$FIRST(C) =$$

$$FIRST(D) =$$

calculating FOLLOW sets

$$S \rightarrow BA \quad A \rightarrow aBA \mid \varepsilon \quad B \rightarrow CD \quad D \rightarrow bCD \mid \varepsilon \quad C \rightarrow cSc \mid d$$

- 1. Place \$ in the FOLLOW(S)
- 2. For a production $A \rightarrow \alpha B\beta$, add everything in FIRST(β) except ϵ to FOLLOW(B)
- 3. For $A \rightarrow \alpha B$, or $A \rightarrow \alpha B\beta$ where FIRST(β) contains ϵ , add items in FOLLOW(A) to FOLLOW(B)

constructing the LL(1) table

$$S \,\rightarrow\, BA \quad A \,\rightarrow\, aBA \,|\, \varepsilon \quad B \,\rightarrow\, CD \quad D \,\rightarrow\, bCD \,|\, \varepsilon \quad C \,\rightarrow\, cSc \,|\, d$$

	S	A	В	C	D
FIRST	{c,d}	{a, ∈}	{c,d}	{c,d}	$\{b,\epsilon\}$
FOLLOW	{c,\$}	{c,\$}	{a,c,\$}	{a,b,c,\$}	{a,c,\$}

- For each rule $A \rightarrow \alpha$ in the grammar
 - 1. For each terminal α in FIRST(α), add $A \rightarrow \alpha$ to table cell [A, a]
 - 2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A) add $A \rightarrow \alpha$ to table cell [A, b]

		1				
		a	b	С	d	\$
_	S					
_	A					
	В					
_	С					
	D					

constructing the LL(1) table

$$S \,\rightarrow\, BA \quad A \,\rightarrow\, aBA \mid \varepsilon \quad B \,\rightarrow\, CD \quad D \,\rightarrow\, bCD \mid \varepsilon \quad C \,\rightarrow\, cSc \mid d$$

	S	A	В	С	D
FIRST	{c,d}	{a, ∈}	{c,d}	{c,d}	$\{b,\epsilon\}$
FOLLOW	{c,\$}	{c,\$}	{a,c,\$}	{a,b,c,\$}	{a,c,\$}

- For each rule $A \rightarrow \alpha$ in the grammar
 - 1. For each terminal α in FIRST(α), add $A \rightarrow \alpha$ to table cell [A, a]
 - 2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A) add $A \rightarrow \alpha$ to table cell [A, b]

	a	b	С	d	\$
S			BA	BA	
A	aBA		ϵ		ϵ
В			CD	CD	
C			cSc	d	
D	ϵ	bCD	ϵ		ϵ
	A B C	S A aBA B C	S A aBA B C	S BA A aBA ε B CD C cSc	S BA BA A aBA ε B CD CD C cSc d

Summary

- LL(1) grammars can be parsed deterministically (without backtracking) using top-down parsers
- Like any top-down parser, left-recursion needs additional care
- Not every context free grammar is LL(k), but programming language grammars are mostly LL(1)
- LL(k) parsing is intuitive and relatively easy to construct by hand, but LR(k) grammars (bottom-up, deterministic) are more powerful (next lecture)
- Suggested reading: Grune and Jacobs (2007, ch.8), Aho et al. (2007, Section 4.4)

Summary

- LL(1) grammars can be parsed deterministically (without backtracking) using top-down parsers
- Like any top-down parser, left-recursion needs additional care
- Not every context free grammar is LL(k), but programming language grammars are mostly LL(1)
- LL(k) parsing is intuitive and relatively easy to construct by hand, but LR(k) grammars (bottom-up, deterministic) are more powerful (next lecture)
- Suggested reading: Grune and Jacobs (2007, ch.8), Aho et al. (2007, Section 4.4)

Next:

- Deterministic bottom-up parsing
- Suggested reading: Grune and Jacobs (2007, ch.9), Aho et al. (2007, Section 4.5–4.7)

Acknowledgments, references, additional reading material

Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (2007). Compilers: Principles, Techniques, & Tools. Pearson/Addison Wesley. ISBN: 9780321486813

Grune, Dick and Ceriel J.H. Jacobs (2007). Parsing Techniques: A Practical Guide. second. Monographs in Computer Science. The first edition is available at http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf. Springer New York. ISBN: 9780387689548.

Exercise

compute the FIRST and FOLLOW sets, and LL(1) table for $S \to iEtSQ \mid a = Q \to eS \mid \varepsilon = E \to b$

A.5

A.6