

### Distributed tasking algorithms

Siarhei Dymkou

**Temasek Laboratories** 

National University of Singapore

T-Lab Building 5A, Engineering Drive 1,05-02 Singapore 117411

#### Motivation

Modern missions involve multi-agent teams cooperating to perform tasks:



- search and track;
- classify targets, monitor status;
- rescue operations.

#### Key questions:

- How to coordinate team behavior to improve mission performance?
- How to hedge against uncertainty in dynamic environments?
- How to handle varying communication constraints?

#### **Problem Statement**

Objective: Automate task allocation to improve mission performance

#### **Problem Statement:**

- Maximize mission score
- Satisfy constraints
- Decision variables:
  - Team assignments, Service times

- Spatial and temporal coordination of team;
- Computational efficiency for real-time implementation;

#### Key Technical Challenges::

- Complex agent modeling (stochastic, nonlinear, time-varying)
- Constraints due to limited resources (fuel, payload, bandwidth, etc)
- Dynamic networks and communication requirements

#### Tasking approaches

#### Most involve centralized planning

- GCS plans and distributes tasks to all agents;
- Requires full situational awareness;
- High bandwidth, slow reaction to local changes

#### Key questions for distributed planning:

- What quantities should the agents agree upon? (Information / tasks and plans / objectives / constraints)
- How to ensure that planning is robust to inaccurate information and models?

#### Motivates distributed planning

- Agents make plans individually and coordinate with each other;
- Faster reaction to local information:
- Increased agent autonomy

#### **Distributed Planning**

#### **Centralized Problem:**

- Maximize mission score
- Satisfy constraints
- Decision variables:
  - Team assignments, Service times



#### **Distributed Problem:**

- Maximize mission score individually
- Satisfy constraints
- Decision variables:
  - Agent assignments, Service times

#### Main issues: Coupling and Communication:

- Agent score functions depend on other agents decisions
- Joint constraints between multiple agents
- Agent optimization is based on local information

#### Key challenge: How to design appropriate protocols?

- Specify what information to communicate
- Create rules to process received information and modify plans
- Performance guarantees
- Will algorithm converge to a feasible assignment?

#### **Contract Net Protocol (CNP)**

CNP is starting when the UAV found a target or received corresponding message



Application: An autonomous team of UAVs performing search and track missions

Team of UAVs autonomously searching an area for vehicles that could be stationary or moving. Once found, the UAVs will track the vehicles. This is performed autonomously. Algorithms are required to run onboard the UAVs to make them work collaboratively to complete the mission.

#### **Contract Net Protocol (CNP)**

CNP is starting when the UAV found a target or received corresponding message



Application: Scenario parameters are as follows:

- 6 Mini-class UAVs(Speeds; Climb rates; Max bank angles; Turn radius; GPS navigation accuracy; Endurance; Communications range; Sensor footprint)
- 10 Targets and the area to search (2 km x 2 km)

Team of UAVs autonomously searching an area for vehicles that could be stationary or moving. Once found, the UAVs will track the vehicles. This is performed autonomously. Algorithms are required to run onboard the UAVs to make them work collaboratively to complete the mission.



- Recognition;
- Announcement;
- Bidding;
- Awarding;
- Expediting.



In this stage, an agent recognises it has a problem it wants help with.

Agent has a goal, and either

- realises it cannot achieve the goal in isolation does not have capability;
- realises it would prefer not to achieve the goal in isolation (typically because of solution quality, deadline, etc)

As a result, it needs to involve other agents.



In this stage, the agent with the task sends out an announcement of the task which includes a specification of the task to be achieved.

Specification must encode:

- description of task itself (maybe executable);
- any constraints (e.g., deadlines, quality constraints).
- meta-task information (e.g.,bids must be submitted by...)

The announcement is then broadcast.



In this stage, the agent with the task sends out an announcement of the task which includes a specification of the task to be achieved.

Specification must encode:

- description of task itself (maybe executable);
- any constraints (e.g., deadlines, quality constraints).
- meta-task information (e.g.,bids must be submitted by...)

The announcement is then broadcast.



UAVs that receive the announcement decide for themselves whether they wish to bid for the task.

#### Factors:

- agent must decide whether it is capable of expediting task;
- agent must determine quality constraints and price information (if relevant).

If they do choose to bid, then they submit a tender.



UAVs that receive the announcement decide for themselves whether they wish to bid for the task.

#### Factors:

- agent must decide whether it is capable of expediting task;
- agent must determine quality constraints and price information (if relevant).

If they do choose to bid, then they submit a tender.



Agent that sent task announcement must choose between bids and decide who to "award the contract" to.

The result of this process is communicated to agents that submitted a bid.



Agent that sent task announcement must choose between bids and decide who to "award the contract" to.

The result of this process is communicated to agents that submitted a bid.

The successful contractor then expedites the task.

May involve generating further manager-contractor relationships: sub-contracting.

May involve another contract net.

| Manager<br>UAV | Contractor | Contractor<br>2 | Contractor |
|----------------|------------|-----------------|------------|
| O/ (V          | <b>!</b>   |                 | n          |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |
|                |            |                 |            |









# **Issues for Implementing Contract Net**

#### How to. . .

- ... specify tasks?
- ... specify quality of service?
- ... decide how to bid?
- ... select between competing offers?
- ... differentiate between offers based on multiple criteria?



- A bundle of targets,  $\mathbf{b}_i \doteq \{b_{i1}, ..., b_{i|\mathbf{b}_i|}\}$
- A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1}, ..., p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1},..., au_{i| au_i|}\}$

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values |
|--------|------------|------------|------------|----------------|--------|
| Bandle |            |            |            |                |        |
| Path   |            |            |            |                |        |
| Time   |            |            |            |                |        |





- A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|--------|------------|------------|------------|----------------|------------------|
| Bandle | · V        |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



Recognition phase
Type of target (static or moving);

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|--------|------------|------------|------------|----------------|------------------|
| Bandle | <b>√</b>   |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



|        |            |            | $\smile$   |                |                  |
|--------|------------|------------|------------|----------------|------------------|
| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



|        |            |            | <u> </u>   |                |                          |
|--------|------------|------------|------------|----------------|--------------------------|
| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                   |
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}, b_{i2}]$ |
| Path   | $p_{i1}$   |            |            |                | $p_i = [p_{i1}]$         |
| Time   |            |            |            |                |                          |



| i      | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                 |
|--------|--------------|------------|------------|----------------|------------------------|
| Bandle | $\checkmark$ |            |            |                | $b_i = [b_{i1}]$       |
| Path   | $p_{i1}$     |            |            |                | $p_i = [p_{i1}]$       |
| Time   | $	au_{i1}$   |            |            |                | $\tau_i = [\tau_{i1}]$ |



| i             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|---------------|------------|------------|------------|----------------|------------------|
| Winning Agent | i          |            |            |                | $z_i = [z_{i1}]$ |
| WinningBids   | $y_{i1}$   |            |            |                | $y_i = [y_{i1}]$ |



| i             | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|---------------|--------------|------------|------------|----------------|------------------|
| Bandle        | $\checkmark$ |            |            |                | $b_i = [b_{i1}]$ |
| Winning Agent | i            |            |            |                | $z_i = [z_{i1}]$ |
| WinningBids   | $y_{i1}$     |            |            |                | $y_i = [y_{i1}]$ |



Recognition phase

Type of target (static or moving);

Add target to current pass and calculate the bid for new pass, then send message announcement to potential contractor

| i      | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|--------|------------|------------|------------|----------------|------------------|
| Bandle | ✓          |            |            |                | $b_i = [b_{i1}]$ |
| Path   |            |            |            |                |                  |
| Time   |            |            |            |                |                  |



Recognition phase

Type of target (static or moving);

Add target to current pass and calculate the bid for new pass, then send message announcement to potential contractor.

| i             | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|---------------|--------------|------------|------------|----------------|------------------|
| Bandle        | $\checkmark$ |            |            |                | $b_i = [b_{i1}]$ |
| Winning Agent | i            |            |            |                | $z_i = [z_{i1}]$ |
| WinningBids   | $y_{i1}$     |            |            |                | $y_i = [y_{i1}]$ |



Recognition phase Type of target (static or moving); Do this until number of static target in the bundle  $\leq 2$ .

| i             | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values           |
|---------------|--------------|------------|------------|----------------|------------------|
| Bandle        | $\checkmark$ |            |            |                | $b_i = [b_{i1}]$ |
| Winning Agent | i            |            |            |                | $z_i = [z_{i1}]$ |
| WinningBids   | $y_{i1}$     |            |            |                | $y_i = [y_{i1}]$ |



For example two static targets a found then each UAVs have the following information

| k             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                   |
|---------------|------------|------------|------------|----------------|--------------------------|
| Bandle        | ✓          | ✓          |            |                | $b_k = [b_{k1}, b_{k2}]$ |
| Winning Agent | i          | j          |            |                | $z_k = [z_{k1}, z_{k2}]$ |
| WinningBids   | $y_{k1}$   | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$ |



Recognition phase
Type of target (static or moving);

| k             | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                           |
|---------------|--------------|------------|------------|----------------|----------------------------------|
| Bandle        | $\checkmark$ | ✓          | *          |                | $b_k = [b_{k1}, b_{k2}, b_{kk}]$ |
| Winning Agent | i            | j          |            |                | $z_k = [z_{k1}, z_{k2}]$         |
| WinningBids   | $y_{k1}$     | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$         |



Recognition phase
Type of target ( static or moving);
Check of existence of another new static target, if exist more then 1, select a manager UAV.

| k             | $Target_1$ | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                               |
|---------------|------------|------------|------------|----------------|--------------------------------------|
| Bandle        | ✓          | ✓          | *          | *              | $[b_{k1}, b_{k2}, b_{kk}, b_{kN_t}]$ |
| Winning Agent | i          | j          |            |                | $z_k = [z_{k1}, z_{k2}]$             |
| WinningBids   | $y_{k1}$   | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$             |



Recognition phase

Then do "Separation procedure": where input are: locations of static targets and

Number of subgroups -Total static

Number of subgroups =Total static target - number of new static targets)

| k             | $Target_1$   | $Target_2$ | $Target_k$ | $Target_{N_t}$ | Values                               |
|---------------|--------------|------------|------------|----------------|--------------------------------------|
| Bandle        | $\checkmark$ | ✓          | *          | *              | $[b_{k1}, b_{k2}, b_{kk}, b_{kN_t}]$ |
| Winning Agent | i            | j          |            |                | $z_k = [z_{k1}, z_{k2}]$             |
| WinningBids   | $y_{k1}$     | $y_{k2}$   |            |                | $y_k = [y_{k1}, y_{k2}]$             |

## **Agent Information**



Recognition phase

Then do "Separation procedure": where input are: locations of static targets and

Number of subgroups = current length of bundle |b| - number of new static targets)

|               |           | <u> </u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                      |
|---------------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|
| k             | $Task_1$  | $Task_2$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Values                               |
| Bandle        |           |           | The state of the s | * | $[b_{k1}, b_{k2}, b_{kk}, b_{kN_t}]$ |
| Winning Agent |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | $z_k = [z_{kt1}, z_{kt2}]$           |
| WinningBids   | $y_{kt1}$ | $y_{kt2}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | $y_k = [y_{kt1}, y_{kt2}]$           |

## **Agent Information**



Recognition phase

Then do "Separation procedure": where input are: locations of static targets and

Number of subgroups = current length of bundle |b| - number of new static targets)

| k             | $Task_1$  | $Task_2$  | Values                     |
|---------------|-----------|-----------|----------------------------|
| Bandle        | <b>√</b>  | <b>√</b>  | $[b_{kt1}, b_{kt2}]$       |
| Winning Agent |           |           | $z_k = [z_{kt1}, z_{kt2}]$ |
| WinningBids   | $y_{kt1}$ | $y_{kt2}$ | $y_k = [y_{kt1}, y_{kt2}]$ |

# **Agent Information**



| k             | $Task_1$  | $Task_2$  | Values                     |
|---------------|-----------|-----------|----------------------------|
| Bandle        | ✓         | <b>√</b>  | $[b_{kt1}, b_{kt2}]$       |
| Winning Agent |           |           | $z_k = [z_{kt1}, z_{kt2}]$ |
| WinningBids   | $y_{kt1}$ | $y_{kt2}$ | $y_k = [y_{kt1}, y_{kt2}]$ |

| Manager $UAV_i$ |  |  | Values       |
|-----------------|--|--|--------------|
| Bundle          |  |  | $b_i = []$   |
| Path            |  |  | $p_i = []$   |
| Time            |  |  | $	au_i = []$ |

#### Performing Search

| Manager $UAV_i$  |  |  | Values     |
|------------------|--|--|------------|
| $Winning\ Agent$ |  |  | $z_i = []$ |
| WinningBids      |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |  | Values       |
|-----------------|------------|--|--------------|
| Bundle          | ¥          |  | $b_i = []$   |
| Path            |            |  | $p_i = []$   |
| Time            |            |  | $	au_i = []$ |

#### $Found\ target$

| Manager $UAV_i$  |  |  | Values     |
|------------------|--|--|------------|
| $Winning\ Agent$ |  |  | $z_i = []$ |
| WinningBids      |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |     |     | Values       |
|-----------------|------------|-----|-----|--------------|
| Bundle          | *          |     |     | $b_i = []$   |
| Path            |            |     |     | $p_i = []$   |
| Time            |            |     |     | $	au_i = []$ |
|                 |            | mov | ing |              |

| Manager $UAV_i$  |  |  | Values     |
|------------------|--|--|------------|
| $Winning\ Agent$ |  |  | $z_i = []$ |
| WinningBids      |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |  | Values       |
|-----------------|------------|--|--------------|
| Bundle          | <b>√</b>   |  | $b_i = []$   |
| Path            |            |  | $p_i = []$   |
| Time            |            |  | $	au_i = []$ |



Switch to track

| Manager $UAV_i$ | $Target_1$ |      |     | Values       |
|-----------------|------------|------|-----|--------------|
| Bundle          | *          |      |     | $b_i = []$   |
| Path            |            |      |     | $p_i = []$   |
| Time            |            |      |     | $	au_i = []$ |
|                 |            | star | tic |              |

| Manager $UAV_i$ |  |  | Values     |
|-----------------|--|--|------------|
| Winning Agent   |  |  | $z_i = []$ |
| WinningBids     |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |  | Values               |
|-----------------|------------|--|----------------------|
| Bundle          | *          |  | $b_i = [b_{i1}]$     |
| Path            | $p_{i1}$   |  | $p_i = [p_{i1}]$     |
| Time            | $	au_{i1}$ |  | $	au_i = [	au_{i1}]$ |

Calculate arrival time  $\tau_{i1}(p)$  and corresponding bid  $y_{i1}$ 

| Manager $UAV_i$ |  |  | Values     |
|-----------------|--|--|------------|
| Winning Agent   |  |  | $z_i = []$ |
| WinningBids     |  |  | $y_i = []$ |

| Manager $UAV_i$ | $Target_1$ |  | Values                 |
|-----------------|------------|--|------------------------|
| Bundle          | ¥          |  | $b_i = [b_{i1}]$       |
| Path            | $p_{i1}$   |  | $p_i = [p_{i1}]$       |
| Time            | $	au_{i1}$ |  | $\tau_i = [\tau_{i1}]$ |

Calculate arrival time  $\tau_{i1}(p)$  and corresponding bid  $y_{i1}$ 

| Manager $UAV_i$ | $Target_1$ |  | Values           |
|-----------------|------------|--|------------------|
| Winning Agent   | i          |  | $z_i = [z_{i1}]$ |
| WinningBids     | $y_{i1}$   |  | $y_i = [y_{i1}]$ |

## Manager statecharts



#### Potential contractors statecharts



| Potential Contractor $UAV_j$ |  |  | Values       |
|------------------------------|--|--|--------------|
| Bundle                       |  |  | $b_j = []$   |
| Path                         |  |  | $p_j = []$   |
| Time                         |  |  | $	au_j = []$ |

Performing Search

| Potential Contractor $UAV_j$ | $Target_1$ |  | Values       |
|------------------------------|------------|--|--------------|
| Bundle                       | ¥          |  | $b_i = []$   |
| Path                         |            |  | $p_i = []$   |
| Time                         |            |  | $	au_i = []$ |

 $Recieve\ message$ 

| Potential Contractor $UAV_j$ | $Target_1$ |  | Values                 |
|------------------------------|------------|--|------------------------|
| Bundle                       | ¥          |  | $b_j = [b_{j1}]$       |
| Path                         | $p_{j1}$   |  | $p_j = [p_{j1}]$       |
| Time                         | $	au_{j1}$ |  | $\tau_j = [\tau_{j1}]$ |

Calculate arrival time  $\tau_{j1}(p)$  and corresponding bid  $y_{j1}$ 

| Potential Contractor $UAV_j$ | $Target_1$ |  | Values           |
|------------------------------|------------|--|------------------|
| $Winning \ Agent$            | j          |  | $z_j = [z_{j1}]$ |
| WinningBids                  | $y_{j1}$   |  | $y_j = [y_{j1}]$ |

| $UAV_k$ | $Target_2$   | $Target_k$ | Values                         |
|---------|--------------|------------|--------------------------------|
| Bundle  | $\checkmark$ | ✓          | $b_k = [b_{k2}, b_{kk}]$       |
| Path    | $p_{k2}$     | $p_{kk}$   | $p_k = [p_{kk}, p_{k2}]$       |
| Time    | $	au_{k2}$   | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$ |

Performing Tracking

| $UAV_k$ | $Target_1$ | $Target_2$   | $Target_k$ | Values                         |
|---------|------------|--------------|------------|--------------------------------|
| Bundle  | ¥          | $\checkmark$ | ✓          | $b_k = [b_{k2}, b_{kk}]$       |
| Path    |            | $p_{k2}$     | $p_{kk}$   | $p_k = [p_{kk}, p_{k2}]$       |
| Time    |            | $	au_{k2}$   | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$ |

 $Recieve\ message$ 

| $UAV_k$ | $Target_1$ | $Target_2$   | $Target_k$ | Values                                                  |
|---------|------------|--------------|------------|---------------------------------------------------------|
| Bundle  | <b>√</b>   | $\checkmark$ | ✓          | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} 1)$ |
| Path    |            | $p_{k2}$     | $p_{kk}$   | $p_k = [p_{kk}, p_{k2}]$                                |
| Time    |            | $	au_{k2}$   | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$                          |

 $Update\ current\ bundle\ of\ targets$ 

| $UAV_k$ | $Target_1$   | $Target_2$ | $Target_k$ | Values                                                  |
|---------|--------------|------------|------------|---------------------------------------------------------|
| Bundle  | $\checkmark$ | ✓          | ✓          | $\mathbf{b}_k \leftarrow (\mathbf{b}_k \oplus_{end} 1)$ |
| Path    | $p_{k1}$     | $p_{k2}$   | $p_{kk}$   | $\mathbf{p}_k \leftarrow (\mathbf{p}_k \oplus_{n_1} 1)$ |
| Time    |              | $	au_{k2}$ | $	au_{kk}$ | $\tau_k = [\tau_{kk}, \tau_{k2}]$                       |

Update current pass

| $UAV_k$ | $Target_1$ | $Target_2$   | $Target_k$ | Values                                                    |
|---------|------------|--------------|------------|-----------------------------------------------------------|
| Bundle  | <b>√</b>   | $\checkmark$ | ✓          | $\mathbf{b}_k \leftarrow (\mathbf{b}_k \oplus_{end} 1)$   |
| Path    | $p_{k1}$   | $p_{k2}$     | $p_{kk}$   | $\mathbf{p}_k \leftarrow (\mathbf{p}_k \oplus_{n_1^*} 1)$ |
| Time    |            | $	au_{k2}$   | $	au_{kk}$ | $	au_k = [	au_{kk}, 	au_{k2}]$                            |

Update current pass

 $\Longrightarrow$  And optimal location  $n_1^*$  is then given by  $n_1^* = \max_{n_1} c_1(\tau_{k1}^*(\mathbf{p}_k \oplus_{n_1} 1))$ 

| $UAV_k$ | $Target_1$ | $Target_2$ | $Target_k$ | Values                                                                         |
|---------|------------|------------|------------|--------------------------------------------------------------------------------|
| Bundle  | <b>√</b>   | <b>√</b>   | ✓          | $\mathbf{b}_k \leftarrow (\mathbf{b}_k \oplus_{end} 1)$                        |
| Path    | $p_{k1}$   | $p_{k2}$   | $p_{kk}$   | $\mathbf{p}_k \leftarrow (\mathbf{p}_k \oplus_{n_1^*} 1)$                      |
| Time    | $	au_{k1}$ | $	au_{k2}$ | $	au_{kk}$ | $\tau_k \leftarrow (\tau_k \oplus_{n_1*} \tau_{k1}(\mathbf{p}_k \oplus_{n_1*}$ |

 $Update\ current\ pass$ 

 $\Longrightarrow$  And optimal location  $n_1^*$  is then given by  $n_1^* = \max_{n_1} c_1(\tau_{k1}^*(\mathbf{p}_k \oplus_{n_1} 1))$ 

| $UAV_k$ | $Target_1$ | $Target_2$ | $Target_k$ |                               | Values                                                |
|---------|------------|------------|------------|-------------------------------|-------------------------------------------------------|
| Bundle  | <b>√</b>   | <b>√</b>   | ✓          | $\mathbf{b}_k$                | $\leftarrow (\mathbf{b}_k \oplus_{end} 1)$            |
| Path    | $p_{k1}$   | $p_{k2}$   | $p_{kk}$   | $\mathbf{p}_k$                | $\leftarrow (\mathbf{p}_k \oplus_{n_1^*} 1)$          |
| Time    | $	au_{k1}$ | $	au_{k2}$ | $	au_{kk}$ | $	au_k \leftarrow (	au_k \in$ | $\oplus_{n_1*} \tau_{k1}(\mathbf{p}_k \oplus_{n_1*})$ |

#### $Update\ current\ pass$

- $\Longrightarrow$  And optimal location  $n_1^*$  is then given by  $n_1^* = \max_{n_1} c_1(\tau_{k1}^*(\mathbf{p}_k \oplus_{n_1} 1))$
- $\Longrightarrow$  Then the final score for new task j (which is include  $|b_k|$  targets) is

$$c_{kj}(\mathbf{p}_i) = c_j(\tau_{kj}^*(\mathbf{p}_k \oplus_{n_j^*} j))$$

# Compare bids

For case, when bundle of manager UAV3 was not empty  $|b_3| \neq \emptyset$ 

|      | Proposal1 | Proposal2 | Proposal3 |
|------|-----------|-----------|-----------|
| UAV1 | $c_{11}$  | -         |           |
| UAV2 | -         | $c_{22}$  | -         |
| UAV3 | -         | -         | $c_{33}$  |

## Compare bids

For case, when bundle of manager UAV3 was not empty  $|b_3| \neq \emptyset$ 

|      | Proposal1 | Proposal2 | Proposal3 |
|------|-----------|-----------|-----------|
| UAV1 | $c_{11}$  | -         | -         |
| UAV2 | -         | $c_{22}$  | -         |
| UAV3 | -         | -         | $c_{33}$  |

For case, when bundle of manager UAV3 was empty  $|b_3|=\emptyset$ 

|      | Proposal1 | Proposal2 | Proposal3 |
|------|-----------|-----------|-----------|
| UAV1 | $c_{11}$  | -         | -         |
| UAV2 | -         | $c_{22}$  | -         |
| UAV3 | $c_{31}$  | $c_{32}$  | $c_{33}$  |

## Potential contractors and Manager



## Consensus-Based Bundle Algorithm



#### Core features of CBBA:

- Task selection Polynomial-time, provably good approximate solutions
- Guaranteed real-time convergence even with inconsistent environment knowledge
- Time-varying score functions (e.g. time-windows of validity for tasks)

Application is the "Tethered UAVs Self-Assignment Problem": Find a logic that will enable the Tethered UAVs to self-deploy one UAV to each specified location.

#### Given:

- Locations (These are the locations pre-determined to be able to provide the necessary air-to-ground communications coverage for the ground users.)
- Homogenous UAVs

#### Problem statement

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max \qquad \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned}$$

$$\text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1}, ..., x_{iN_t}\}$$
is a vector of assignments for agent

$$\sum_{t=1}^{N_t} x_{i,i} < L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a}\sum_{j=1}^{N_t}=N_{max};$$
  $\sum_{i=1}^{N_a}x_{ij}\leq 1,\ \forall j\in\mathcal{J}$  The summation term in brackets in the objective function represents the local reward for agent  $i$ .

$$x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$$

 $N_a$  Number of agents

 $N_t$ - Number of tasks

 $L_t$ - Maximum length of the bundle, i.e. each agent can be assigned a maximum  $\mathcal{L}_t$  tasks

 $subject \ to: \ i$ , whose j-th element is  $x_{ij}$ .

the local reward for agent i.

 $\mathcal{I}$ - Index set of agents where  $\mathcal{I} \doteq$  $\{1,...,N_a\}$  $\mathcal{J}$ - Index set of tasks where  $\mathcal{J} \doteq$  $\{1, ..., N_t\}$  $N_{max} \doteq \min\{N_t, N_a, L_t\}$ 

#### Problem statement

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max \qquad \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned}$$

$$\text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1}, ..., x_{iN_t}\}$$
is a vector of assignments for agent

 $subject \ to: \ i$ , whose j-th element is  $x_{ij}$ .

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a}\sum_{j=1}^{N_t}=N_{max};$$
  $\sum_{i=1}^{N_a}x_{ij}\leq 1,\ \forall j\in\mathcal{J}$  The summation term in brackets in the objective function represents the local reward for agent  $i$ .

$$x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$$

the local reward for agent i.

 $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$  - The variable length vector represent the path for agent i,an ordered sequence of tasks where the elements are the task indices,  $p_{in} \in \mathcal{J}$  for  $n = 1, ..., |\mathbf{p}_i|$ , i.e. its n-th element is  $j \in \mathcal{J}$ if agent i conducts task j at the n-th point along the path. The current length of the path is denoted by  $|\mathbf{p}_i| \leq L_t$ .

#### Problem statement

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max \qquad \text{where } x_{ij} = 1 \text{ if agent } i \text{ is assigned}$$

$$\text{to task } j, \text{ and } \mathbf{x}_i \doteq \{x_{i1}, ..., x_{iN_t}\}$$

$$\text{is a vector of assignments for agent}$$

$$subject \ to: \qquad i, \text{ whose } j\text{-th element is } x_{ij}.$$

 $subject \ to: i$ , whose j-th element is  $x_{ij}$ .

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} \sum_{j=1}^{N_t} = N_{max}; \quad \sum_{i=1}^{N_a} x_{ij} \leq 1, \ \, \forall j \in \mathcal{J} \quad \text{in the objective function represents} \\ \text{the local reward for agent } i.$$

$$x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$$

The summation term in brackets the local reward for agent i.

An assignment is said to be free of conflicts if each task is assigned to no more than one agent.

## Key assumptions

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

 $subject\ to:$ 

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} \sum_{j=1}^{N_t} = N_{max}; \quad \sum_{i=1}^{N_a} x_{ij} \le 1, \quad \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0,1\}, \forall (i,j) \in \mathcal{I} \times \mathcal{J}$$

- The score  $c_{ij}$  that agent i obtains by performing task j is defined as a function of the arrival time  $\tau_{ij}$  at which the agent executes the task (or possibly the expected arrival time in a probabilistic setting).
- The arrival time  $\tau_{ij}$  is uniquely defined as a function of the path  $\mathbf{p}_i$  that agent i takes.
- The path  $\mathbf{p}_i$  is uniquely defined by the assignment vector of agent  $i, \mathbf{x}_i$ .

## **Key assumptions**

$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$subject \ to:$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} \sum_{j=1}^{N_t} = N_{max}; \quad \sum_{i=1}^{N_a} x_{ij} \le 1, \quad \forall j \in \mathcal{J}$$
$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

- The score  $c_{ij}$  that agent i obtains by performing task j is defined as a function of the arrival time  $\tau_{ij}$  at which the agent executes the task (or possibly the expected arrival time in a probabilistic setting).
- The arrival time  $\tau_{ij}$  is uniquely defined as a function of the path  $\mathbf{p}_i$  that agent i takes.
- The path  $\mathbf{p}_i$  is uniquely defined by the assignment vector of agent  $i, \mathbf{x}_i$ .

An example is the problem involving time-discounted values of targets, in which the sooner an agent arrives at the target, the higher the reward it obtains. Or for scenario involves re-visit tasks, where previously observed targets must be revisited at some scheduled time. In this case the score function would have its maximum at the desired re-visiting time and lower values at other re-visit times.

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$ 
  - of variable length whose elements are defined by  $b_{in} \in \mathcal{J}$  for  $n=1,...,|\mathbf{b}_i|$ . The current length of the bundle is denoted by  $b_i$ , which cannot exceed the maximum length  $L_t$ , and an empty bundle is represented by  $b_i = \emptyset$  and  $|\mathbf{b}_i| = 0$ . The bundle represents the tasks that agent i has selected to do, and is ordered chronologically with respect to when the tasks were added (i.e. task  $b_{in}$  was added before task  $b_{i(n+1)}$ ).
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i| au_i|}\}$
- lacksquare A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- ullet Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$

whose elements are defined by  $p_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$  for  $n=1,...,|\mathbf{b}_i|$ . The path contains the same tasks as the bundle, and is used to represent the order in which agent i will execute the tasks in its bundle. The path is therefore the same length as the bundle, and is not permitted to be longer than  $L_t$ ;  $|\mathbf{p}_i| = |\mathbf{b}_i| \leq L_t$ .

- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i| au_i|}\}$
- lacksquare A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1}, ..., s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- A vector of times  $\tau_i \doteq \{\tau_{i1},...,\tau_{i|\tau_i|}\}$  whose elements are defined by  $\tau_{in}$  for  $n=1,...,|\tau_i|$ . The times vector represents the corresponding times at which agent i will execute the tasks in its path, and is necessarily the same length as the path.
- lacksquare A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1}, ..., s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1}, ..., b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$  where each element  $z_{ij} \in \{\mathcal{I} \cup \emptyset\}$  for  $j=1,...,N_t$  indicates who agent i believes is the current winner for task j. Specifically, the value in element  $z_{ij}$  is the index of the agent who is currently winning task j according to agent i, and is  $z_{ij} = \emptyset$ ; if agent i believes that there is no current winner.
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1}, ..., s_{iN_a}\}$ , of size  $N_a$

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$  where the elements  $y_{ij} \in [0,\infty)$  represent the corresponding winners bids and take the value of 0 if there is no winner for the task.
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1}, ..., s_{iN_a}\}$ , of size  $N_a$

# Six vectors of information for agent

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$  where each element  $s_{ik} \in [0,\infty)$  for  $k=1,...,N_a$  represents the timestamp

of the last information update agent i received about agent k, either directly or through a neighboring agent.

# Six vectors of information for agent

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- ullet Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$



Each agent must carry these vectors of information in order to be able to perform decentralized algorithm which consists of iterations between two phases:

- a bundle building phase where each vehicle greedily generates an ordered bundle of tasks, and a
- consensus phase where conflicting assignments are identified and resolved through local communication between neighboring agents

# Six vectors of information for agent

- lacksquare A bundle,  $\mathbf{b}_i \doteq \{b_{i1},...,b_{i|\mathbf{b}_i|}\}$
- lacksquare A corresponding path,  $\mathbf{p}_i \doteq \{p_{i1},...,p_{i|\mathbf{p}_i|}\}$
- lacksquare A vector of times  $au_i \doteq \{ au_{i1}, ..., au_{i|\tau_i|}\}$
- ullet A winning agent list  $\mathbf{z}_i \doteq \{z_{i1},...,z_{iN_t}\}$  of size  $N_t$
- ullet A winning bid list  $\mathbf{y}_i \doteq \{y_{i1},...,y_{iN_t}\}$  of size  $N_t$
- ullet Vector of timestamps  $\mathbf{s}_i \doteq \{s_{i1},...,s_{iN_a}\}$ , of size  $N_a$



Algorithm will iterates between these two phases until no changes to the information vectors occur anymore.



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values |
|--------|----------|----------|----------|--------------|--------|
| Bandle | ✓        |          | ✓        |              |        |
| Path   |          |          |          |              |        |
| Time   |          |          |          |              |        |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

|        |          |          |          |              | $c_{J} = (-) + (-)_{J}$  |
|--------|----------|----------|----------|--------------|--------------------------|
| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                   |
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$ |
| Path   |          |          |          |              |                          |
| Time   |          |          |          |              |                          |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                   |
|--------|----------|----------|----------|--------------|--------------------------|
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$ |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$ |
| Time   |          |          |          |              |                          |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{j=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

|        |          |          |          |              | $\sigma_{J} = ( \ ) \ J / (\ ) \sigma_{J}$ |
|--------|----------|----------|----------|--------------|--------------------------------------------|
| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$                   |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$                   |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$          |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | 2        | 4        | i        | k            | $z_i = [z_{21}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   |          |          |          |              |                                            |



$$\sum_{i=1}^{N_a} \left( \sum_{j=1}^{N_t} c_{ij}(\tau_{ij}(\mathbf{p}_i(\mathbf{x_i}))) x_{ij} \right) \to \max$$

$$\sum_{j=1}^{N_t} x_{ij} \le L_t, \ \forall i \in \mathcal{I}$$

$$\sum_{i=1}^{N_a} x_{ij} \le 1, \ \forall j \in \mathcal{J}$$

$$x_{ij} \in \{0, 1\}, \forall (i, j) \in \mathcal{I} \times \mathcal{J}$$

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        |          | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

Calculate a score  $c_{ij} = c_{i2}$  and compare with current

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

Calculate a score  $c'_{ij} = c_{i2}$  and compare with current

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

Calculate a score  $c_{ij} = c_{i2}$  and compare with current

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | /i       | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5 /      | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | *        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

To calculate best score for task j, we "insert" the task in some location  $n_j$ 

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

To calculate best score for task j, we first "insert" the task in some location  $n_j$ 

And new path becomes  $(\mathbf{p}_i \oplus_{n_j} j)$ 

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

To calculate best score for task j, we first "insert" the task in some location  $n_j$ 

And new path becomes  $(\mathbf{p}_i \oplus_{n_j} j)$  and second calculate the optimal execution time for this new path:

$$\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j) = \max_{\tau_{ij} \in [0,\infty)} c_j(\tau_{ij})$$

$$subject \ to:$$

$$\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j) = \tau_{ik}^*, \forall k \in \mathbf{p}_i$$



| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

 $\Longrightarrow$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .

$$\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j) = \max_{\tau_{ij} \in [0,\infty)} c_j(\tau_{ij})$$

$$subject \ to:$$

$$\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j) = \tau_{ik}^*, \forall k \in \mathbf{p}_i$$



| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

 $<sup>\</sup>Longrightarrow$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .

 $<sup>\</sup>Longrightarrow$  And optimal location  $n_j^*$  is then given by  $n_j^* = \max_{n_j} c_j (\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j))$ 

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                         |
|--------|----------|----------|----------|--------------|--------------------------------|
| Bandle | 1        | *        | 2        |              | $b_i = [b_{i1}, b_{i2}]$       |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$       |
| Time   | 20       |          | 10       |              | $	au_i = [	au_{i1}, 	au_{i2}]$ |

- $\implies$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .  $\implies$  And optimal location  $n_j^*$  is then given by  $n_j^* = \max_{n_j} c_j(\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j))$   $\implies$  Final score for task j is  $c_{ij}(\mathbf{p}_i) = c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j^*} j))$

| i      | $Task_1$ | $Task_2$   | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|------------|----------|--------------|-----------------------------------|
| Bandle | 1        | <b>→</b> ⅓ | 2        | ¥.           | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |            | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |            | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

- $\Longrightarrow$  optimal score for the task at location  $n_j$  is  $c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j} j))$ .
- $\Longrightarrow$  And optimal location  $n_j^*$  is then given by  $n_j^* = \max_{n_j} c_j (\tau_{ik}^*(\mathbf{p}_i \oplus_{n_j} j))$
- $\Longrightarrow$  Final score for task j is  $c_{ij}(\mathbf{p}_i) = c_j(\tau_{ij}^*(\mathbf{p}_i \oplus_{n_j^*} j))$
- Final step is to select the highest scoring task to add to the bundle
- $j^{\prime *} = \max_{j \notin \mathbf{p}_i} c_{ij}(\mathbf{p}_i) h_{ij}$ , where  $h_{ij} = \mathbf{I}(c_{ij}(\mathbf{p}_i) > y_{ij})$  the indicator function

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                            |
|--------|----------|----------|----------|--------------|-----------------------------------|
| Bandle | 1        | ¥        | 2        |              | $b_i = [b_{i1}, b_{i2}]$          |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$          |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$ |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                    |
|--------|----------|----------|----------|--------------|-----------------------------------------------------------|
| Bandle | 1        | <b>√</b> | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$ |
| Path   | 2        |          | 1        |              | $p_i = [p_{i1}, p_{i2}]$                                  |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$                         |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                        |
|--------|----------|----------|----------|--------------|---------------------------------------------------------------|
| Bandle | 1        | <b>✓</b> | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$     |
| Path   | 2        |          | 1        |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$ |
| Time   | 20       |          | 10       |              | $\tau_i = [\tau_{i1}, \tau_{i2}]$                             |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i       | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                                                         |
|---------|----------|----------|----------|--------------|------------------------------------------------------------------------------------------------|
| Bandle  | 1        |          | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$                                      |
| Danac   | ✓        | ✓        | ✓        |              | o ( o ciou o )                                                                                 |
| Dath    |          |          |          |              | n / (n / i*)                                                                                   |
| Path    | 2        |          | 1        |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$                                  |
| Time    |          |          |          |              | $	au \leftarrow (\tau \cdot \oplus \cdot  \tau^*  (\mathbf{p} \cdot \oplus \cdot  i^*)$        |
| 1 01100 | 20       |          | 10       |              | $\tau_i \leftarrow (\tau_i \oplus_{n_{j^*}} \tau_{ij^*}^* (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$ |

| i             | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                     |
|---------------|----------|----------|----------|--------------|--------------------------------------------|
| Winning Agent | i        | 4        | i        | k            | $z_i = [z_{i1}, z_{42}, z_{ik}, z_{kN_t}]$ |
| WinningBids   | 9        | 5        | 8        | 7            | $y_i = [y_{i1}, y_{42}, y_{ik}, y_{kN_t}]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                                                         |
|--------|----------|----------|----------|--------------|------------------------------------------------------------------------------------------------|
| Bandle | 1        |          | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$                                      |
|        | <b>√</b> | <b>√</b> | <b>√</b> |              |                                                                                                |
| Path   |          |          |          |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$                                  |
|        | 2        |          | 1        |              | J T                                                                                            |
| Time   |          |          |          |              | $\tau_i \leftarrow (\tau_i \oplus_{n_{j^*}} \tau_{ij^*}^* (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$ |
|        | 20       |          | 10       |              |                                                                                                |

| i             | $Task_1$ | $Task_2$                | $Task_k$ | $Task_{N_t}$ | Values                            |
|---------------|----------|-------------------------|----------|--------------|-----------------------------------|
| Winning Agent | i        | i                       | i        | k            | $z_i = [z_{i1}, z_{i2}, \ldots]$  |
| WinningBids   | 9        | $c_{ij*}(\mathbf{p}_i)$ | 8        | 7            | $y_i = [y_{i1}, 	extbf{y_{i2}},]$ |

| i      | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                                                                                         |
|--------|----------|----------|----------|--------------|------------------------------------------------------------------------------------------------|
| Bandle | 1        |          | 2        |              | $\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{end} j^*)$                                      |
|        | ✓        | <b>√</b> | ✓        |              |                                                                                                |
| Path   |          |          |          |              | $\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$                                  |
|        | 2        |          | 1        |              |                                                                                                |
| Time   |          |          |          |              | $\tau_i \leftarrow (\tau_i \oplus_{n_{j^*}} \tau_{ij^*}^* (\mathbf{p}_i \oplus_{n_{j^*}} j^*)$ |
|        | 20       |          | 10       |              |                                                                                                |

Bundle recursion continues until  $|\mathbf{b}_i| = L_t$  or  $h_{ij} = 0$  for all  $j \notin \mathbf{p}_i$ 

| i             | $Task_1$ | $Task_2$                | $Task_k$ | $Task_{N_t}$ | Values                                        |
|---------------|----------|-------------------------|----------|--------------|-----------------------------------------------|
| Winning Agent | i        | i                       | i        | k            | $z_i = [z_{i1}, \boldsymbol{z_{i2}}, \ldots]$ |
| WinningBids   | 9        | $c_{ij*}(\mathbf{p}_i)$ | 8        | 7            | $y_i = [y_{i1}, \mathbf{y_{i2}},]$            |

### Consensus

| i, (receiver) | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                           |
|---------------|----------|----------|----------|--------------|----------------------------------|
| Winning Agent |          |          |          |              | $z_i = [z_{i1}, z_{i2}, \ldots]$ |
| WinningBids   |          |          |          |              | $y_i = [y_{i1}, y_{i2}, \dots]$  |

 $Update: z_{ij} = z_{kj}, \quad y_{ij} = y_{kj}$ 

Reset:  $z_{ij} = \emptyset$ ,  $y_{ij} = 0$ 

Leave:  $z_{ij} = z_{ij}, \quad y_{ij} = y_{ij}$ 

| k, (sender)   | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                           |
|---------------|----------|----------|----------|--------------|----------------------------------|
| Winning Agent |          |          |          |              | $z_k = [z_{k1}, z_{k2}, \ldots]$ |
| WinningBids   |          |          |          |              | $y_k = [y_{k1}, y_{k2}, \dots]$  |

#### **Decision Rules**

| Agent $k$ thinks $z_{kj}$ is | Agent $i$ thinks $z_{ij}$ is | Receiver Action                                                         |
|------------------------------|------------------------------|-------------------------------------------------------------------------|
| k                            | i                            | if $y_{kj} > y_{ij} \rightarrow update$                                 |
| k                            | k                            | update                                                                  |
| k                            | $m \not \in \{i,k\}$         | $if \ s_{km} > s_{im} \ \text{or} \ y_{kj} > y_{ij} \rightarrow update$ |
| k                            | none                         | update                                                                  |

$$s_{ik} = \begin{cases} \tau_r(i.e. \ message \ reception \ time), & if \ g_{ik} = 1; \\ \max\{s_{mk} | m \in \mathcal{I}, g_{im} = 1\}, & otherwise \end{cases}$$

| Agent $k$ thinks $z_{kj}$ is | Agent $i$ thinks $z_{ij}$ is | Receiver Action                          |
|------------------------------|------------------------------|------------------------------------------|
| i                            | i                            | leave                                    |
| i                            | k                            | reset                                    |
| i                            | $m \not \in \{i,k\}$         | $if \ s_{km} > s_{im} \rightarrow reset$ |
| i                            | none                         | leave                                    |

# **Decision Rules**

| Agent $k$ thinks $z_{kj}$ is | Agent $i$ thinks $z_{ij}$ is | Receiver Action                                                                                                                                                                                      |
|------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $m \not \in \{i,k\}$         | i                            | if $s_{km} > s_{im}$ and $y_{kj} > y_{ij} \rightarrow update$                                                                                                                                        |
| $m \not \in \{i,k\}$         | k                            | $if \ s_{km} > s_{im} \rightarrow update$ $else \rightarrow reset$                                                                                                                                   |
| $m \not \in \{i,k\}$         | m                            | $s_{km} > s_{im} \rightarrow update$                                                                                                                                                                 |
| $m \not \in \{i,k\}$         | $n \not \in \{i,k,m\}$       | $if \ s_{km} > s_{im} \ and \ s_{kn} > s_{in} \rightarrow update$ $if \ s_{km} > s_{im} \ and \ y_{kj} > y_{ij} \rightarrow update$ $if \ s_{kn} > s_{in} \ and \ s_{im} > s_{km} \rightarrow reset$ |
| $m\not\in\{i,k\}$            | none                         | $if \ s_{km} > s_{im} \rightarrow update$                                                                                                                                                            |

| Agent $k$ thinks $z_{kj}$ is | Agent $i$ thinks $z_{ij}$ is | Receiver Action                   |
|------------------------------|------------------------------|-----------------------------------|
| none                         | i                            | leave                             |
| none                         | k                            | update                            |
| none                         | $m \not \in \{i,k\}$         | $if \ s_{km} > s_{im} \to update$ |
| none                         | none                         | leave                             |

#### **Decision Rules**

| i, (receiver) | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                          |
|---------------|----------|----------|----------|--------------|---------------------------------|
| Winning Agent |          |          |          |              | $z_i = [z_{i1}, z_{i2},]$       |
| WinningBids   |          |          |          |              | $y_i = [y_{i1}, y_{i2}, \dots]$ |

 $Update: z_{ij} = z_{kj}, \quad y_{ij} = y_{kj}$ 

 $Reset: z_{ij} = \emptyset, \quad y_{ij} = 0$ 

 $\underline{Leave}: \ z_{ij} = z_{ij}, \ y_{ij} = y_{ij}$ 

| k, (sender)   | $Task_1$ | $Task_2$ | $Task_k$ | $Task_{N_t}$ | Values                           |
|---------------|----------|----------|----------|--------------|----------------------------------|
| Winning Agent |          |          |          |              | $z_k = [z_{k1}, z_{k2}, \ldots]$ |
| WinningBids   |          |          |          |              | $y_k = [y_{k1}, y_{k2}, \dots]$  |

Calculate marginal score for all tasks

$$c_{ij}(\mathbf{p}_i) = \begin{cases} 0, & if \ j \in \mathbf{p}_i; \\ \max_{n \le l_b} S_{path}(\mathbf{p}_i \oplus_n j) - S_{path}(\mathbf{p}_i), & otherwise \end{cases}$$

- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable

$$h_{ij} = \mathbf{I}(c_{ij}(\mathbf{p}_i) > y_{ij}), \forall j \in \mathcal{J}$$

- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_i^*$

$$j^* = \max_{j \in \mathcal{J}} c_{ij} h_{ij}$$
$$n_j^* = \max_{n \in \{0, \dots, l_b\}} S_{path}(\mathbf{p}_i \oplus_n j^*)$$

- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information

$$\mathbf{b}_i \leftarrow (\mathbf{b}_i \oplus_{l_b} j^*)$$

$$\mathbf{p}_i \leftarrow (\mathbf{p}_i \oplus_{n_j^*} j^*)$$

- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors

$$y_{i(j^*)} = c_{i(j^*)}$$

$$z_{i(j^*)} = i$$

• if  $l_b = L_t$ , then return, otherwise, go to 1.

- Calculate marginal score for all tasks
- Determine which tasks are winnable
- Select the index of the best eligible task,  $j^*$ , and select best location in the plan to insert the task,  $n_j^*$
- If  $c_{ij^*} \leq 0$ , then return. otherwise, continue
- Update agent information
- Update shared information vectors
- if  $l_b = L_t$ , then return, otherwise, go to 1.

#### **Simulation**

The solution of Tethered UAVs Self-Assignment problem presented in a figure below, namely, we find the logic that enabled the tethered UAVs (7 UAVs) to self-deploy one UAV to each specified location (7 locations).



### The end

#### Thank you!