	CS 181 HW6
l. a)	tn ∃p, x, y ¬(x x y = p) Λ¬(x=1) Λ ¬(x=p)
	There exists prime numbers "p" such that there is not any x,y where $\forall xy = p$ and $x \neq l$ and $x \neq p$.
	The key is to not allow one of the numbers (x) be I or p, as this will utilate the constraint of the prime numbers,
6)	"1729 is the smallest natural number that can be expressed as a sum of two cubes in two different ways." $P(n) = \exists a,b,c,d \ (n = a \cdot a \times a + b \times b \times b) \qquad [a^3 + b^3 \wedge c^3 + d^5]$ $\wedge (n = c \times c \times c + d \times d \times d) \qquad [a \times c, a \neq d]$
	$P(172a) \wedge (\forall n ((n < 172a) \Rightarrow ^7P(n)))$ for enough at least one number is different
0	

p392 Z.	FINO PROOF: 80,130 -> 80,18	
	V = a turing machine x = a string	
	FINDPROOF(V,x) = { 1 1.f.f there exists w such that V(x, w) =1	
	X is a statement, wis a proof.	
	V(x, w) = 1 if the statement/proof are valid,	
	FIND PROOFLY, x) = 1 if a proof exists for the statement.	
	. Intultively, this is ancomputable due to fiedel's First	
	Incompleteness Theorem. There will always be free	
	Statements with no proof.	
	Reduction using HUTEMPTY	
	· For any 7M M:	
	NOTEMPTY (M) = { 1 If there exists x such that M(x) =1 }	
	· Reduce NOTEMPTY to FINDPROOF	
	def N(z,w):	
	Return EVAL(M, w) = Run Mon input w	
	R(M) = (N, 0)	
	NOTEMPTY(M) = FINDPROOF(R(M))	
(ase 1	There exists a w such that M(n) = 1	
	* N(O, w) returns 1	
	· FIND PROOF (R(M)) = FINDPROOF(N,O) = 1	
	· NOTEMPTY(M) = STACE M(w) =	
lase 2	There does not exist is we such that M(w)=1	
	· N(O, w) does not half (jet's say it returns 0)	
	· FINDPROOF(RLM)) = FINDPROOF(N,O) = O	
	· NOTEMPTY (M) = O STACE M(W) = O (did not his H)	
	Dove	