2/2

2/2

2/2

2/2

-1/2

0/2

Xu Christian Note: 12/20 (score total : 12/20)

+218/1/21+

QCM T	THLR 2
Nom et prénom, lisibles :	Identifiant (de haut en bas) :
. XU	
	2 0 1 2 3 4 5 6 7 8 9
. Ohiston	2 0 1 2 3 4 5 6 7 8 9
	2 0 □1 □2 □3 □4 □5 □6 □7 □8 □9
olutôt que cocher. Renseigner les champs d'identité. ieurs réponses justes. Toutes les autres n'en ont qu'u olus restrictive (par exemple s'il est demandé si 0 est oas possible de corriger une erreur, mais vous pouve ncorrectes pénalisent; les blanches et réponses multi J'ai lu les instructions et mon sujet est comple	et: les 1 entêtes sont $+218/1/xx+\cdots+218/1/xx+$.
Q.2 Pour toutes expressions rationnelles e, f, g , on $e(f+g) \equiv ef + eg$ et $(e+f)g \equiv eg + fg$.	 contient toujours (⊇) un langage rationnel peut n'inclure aucun langage dénoté par une expression rationnelle
🧃 vrai 🗌 faux	peut avoir une intersection non vide avec son
Pour toute expression rationnelle e , on a e +	complémentaire peut être indénombrable
$\equiv e$.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$
💹 vrai 🗌 faux	Σ^{\star} , on a $L_1^{\star} = L_2^{\star} \implies L_1 = L_2$.
Pour toutes expressions rationnelles e, f , on a	🗌 vrai 🔀 faux
$(ef)^*e \equiv e(ef)^*.$	O.O. Cos douy expressions rationnelles:
■ faux □ vrai	Q.9 Ces deux expressions rationnelles :
aux Viai	$(a^* + b)^* + c((ab)^*(bc))^*(ab)^* \qquad c(ab + bc)^* + (a + b)^*$
2.5 Pour toutes expressions rationnelles e, f , on a $e + f$)* $\equiv (e^* f)^* e^*$.	dénotent des langages différentsne sont pas équivalentes
🍘 faux 🔀 vrai	
Q.6 Un langage quelconque ☐ est toujours récursivement énumérable ☐ est toujours inclus (⊆) dans un langage rationnel	Q.10 \triangle Donner une expression rationnelle pour le langage des mots sur $\{a,b\}$ ayant un nombre pair de a .
est toujours récursif peut n'être inclus dans aucun langage dénoté par une expression rationnelle Un langage quelconque	

Fin de l'épreuve.