VC-DENSITY IN AN ADDITIVE REDUCT OF P-ADIC NUMBERS

ANTON BOBKOV

ABSTRACT. [1] computed a bound 2n + 1 for the VC function in p-adic numbers, but it is not known to be optimal. I investigate a C-minimal additive reduct of p-adic numbers and using techniques of [2] I compute an optimal bound n for that structure.

VC density was introduced in [1] by Aschenbrenner, Dolich, Haskell, MacPherson, and Starchenko as a natural notion of dimension for NIP theories. In a NIP theory we can define the VC function

$$vc : \mathbb{N} \longrightarrow \mathbb{N}$$

Where vc(n) measures complexity of definable sets in an n-dimensional space. Simplest possible behavior is vc(n) = n for all n. [1] computes an upper bound for this function to be 2n + 1, and it's not known whether it's optimal. This same bound would hold in any reduct of p-adic numbers, so one may hope that the simplified structure of the reduct would allow a better bound. In [2], Leenknegt provides a cell decomposition result for the C-minimal additive reduct of p-adic numbers. Using that Γ able to improve the bound for the VC function, showing that vc(n) = n.

1. Cell Decomposition

We work with the reduct of p-adic numbers in the language $\mathcal{L} = \{\mathbb{Q}_p, Q_{n,m}, +, -, \{\bar{c}\}_{c \in K}\}$, where \bar{c} is a scalar multiplication by c, and $Q_{n,m}$ is a unary predicate

$$Q_{n,m} = \left\{ \bigcup_{k \in \mathbb{Z}} p^{kn} (1 + p^m \mathbb{Z}_p) \right\}$$

[2] provides a cell decomposition result for this structure. Any formula $\phi(t,x)$ with t singleton decomposes as the union of the following cells:

$$\{(x,t)\in D\times K\mid \operatorname{val} a_1(x)\square_1\operatorname{val}(t-c(x))\square_2\operatorname{val} a_2(x), t-c(x)\in\lambda Q_{n,m}\}$$

where D is a cell of a smaller dimension, a_1, a_2, c are linear polynomials in x, \square is < or no condition, $\lambda \in \mathbb{Q}_v$.

We analyze a formula $\phi(x;y)$ to find an upper bound of its VC-density. Using cell decomposition, without loss of generality we may assume that we only need to bound the following family of formulas $\Psi(x,y)$

$$\text{val}\, p_i(x) - c_i(y) < \text{val}\, p_j(x) - c_j(y)$$

$$i, j \in I$$

$$\text{val}\, p_i(x) - c_i(y) \in \lambda_k Q$$

$$i \in I, k \in K$$

where I,K some finite index sets, p_i is linear in x, c_i is a linear polynomial in $y, \lambda_k \in \mathbb{Q}_p$, and $Q = Q_{n,m}$ for some n', m'.

To see that apply cell decomposition theorem to $\phi(x_1, \bar{x}; y)$. Extract from the cells all the polynomials $a_1(\bar{x}, y), a_2(\bar{x}, y), x_1 - c(\bar{x}, y)$, and separate x and y parts into $p_i(x) - c_i(y)$. Choose n', m' large enough to cover all n, m that come up in the cells. Finally choose λ_k to go over all cosets of Q.

Then (x,y),(x',y') agreeing on Ψ , will agree on being contained in those cells, and thus will agree on satisfying ϕ .

1

ANTON BOBKOV

2. Key Lemmas and Definitions

Definition 2.1. A tuple $p \in \mathbb{Q}_p^m$ can be viewed as a vector \vec{p} , treating \mathbb{Q}_p^m as a vector space over \mathbb{Q}_p .

We may rewrite our collection of formulas $\Psi(x,y)$ as

$$\operatorname{val}(\vec{p_i} \cdot \vec{x}) - c_i(y) < \operatorname{val}(\vec{p_j} \cdot \vec{x}) - c_j(y)$$
 $i, j \in I$
 $\operatorname{val}(\vec{p_i} \cdot \vec{x}) - c_i(y) \in \lambda_k Q$ $i \in I, k \in K$

Lemma 2.2. Suppose we have a collection of vectors $\{\vec{p_i}\}_{i\in I}$ with each $\vec{p_i}\in\mathbb{Q}_p^m$. Pick a subset $J\subset I$ and $j\in I$ such that

$$\vec{p}_i \in \operatorname{span} \{\vec{p}_i\}_{i \in I}$$

Suppose we have $\vec{x} \in \mathbb{Q}_p^m$, $\alpha \in \mathbb{Z}$ with

$$val(\vec{p_i} \cdot \vec{x}) > \alpha \text{ for all } i \in J$$

Then

$$\operatorname{val}(\vec{p_i} \cdot \vec{x}) > \alpha - \gamma$$

for some $\gamma \in \mathbb{Z}^{\geq 0}$. Moreover γ can be chosen independent of choice of J, j, \vec{x}, α depending only on $\{\vec{p}_i\}_{i \in I}$ independent of their order.

Definition 2.3. For $c \in \mathbb{Q}_n$, $\alpha \in \mathbb{Z}$ we define an open ball

$$B(c, \alpha) = \{c' \in \mathbb{Q}_p \mid \operatorname{val}(c' - c) \le \alpha\}$$

Definition 2.4. Suppose we have a finite $T \subset \mathbb{Q}_p$. We view it as a tree as follows. Branches through the tree are elements of T. With this tree we associate open balls $B(t_1, \operatorname{val}(t_1 - t_2))$ for all $t_1, t_2 \in T$. An interval is two balls $B(t_1, v_1) \supset B(t_2, v_2)$ with no balls in between. An element $a \in \mathbb{Q}_p$ belongs to this interval if $a \in B(t_1, v_1) \setminus B(t_2, v_2)$. There are at most 2|T| different intervals and they partition the entire space.

Fix a parameter set B of size N.

Consider a tree $T = \{c_i(b) \mid b \in B, i \in I\}$ It has at most $O(N) = N \cdot |I|$ many intervals. Denote the set of all intervals as Pt. For the remainder of the paper we work with this tree.

Definition 2.5. $a, a' \in \mathbb{Q}_p^m$ have the same Ψ -type if they have the same Ψ type over B.

Definition 2.6. $x, x' \in \mathbb{Q}_p$ have the same tree type if

- $x + c_i(b)$ is in the same Q-coset as $x' + c_i(b)$ for all $i \in I, b \in B$
- $\operatorname{val}(x + c_i(b)) < \operatorname{val}(x + c_i(b))$ iff $\operatorname{val}(x' + c_i(b)) < \operatorname{val}(x' + c_i(b))$ for all $i, j \in I, b \in B$

Lemma 2.7. Let $a, a' \in \mathbb{Q}_p^m$. If $p_i(a), p_i(a')$ have the same tree type for all $i \in I$, then a, a' have the same Ψ -type.

The following lemma is an adaptation of lemma 7.4 in [1].

Lemma 2.8. For n, m there exists $D = D(n, m) \in \mathbb{Z}$ such that for any $x, y, a \in \mathbb{Q}_p$ if

$$val(x - a) = val(y - a) < val(x - y) - D$$

then x - a, y - a are in the same coset of $Q_{n,m}$.

Next lemma is along the lines of lemma 7.5 of [1].

Lemma 2.9. Using D from the previous lemma define an enumeration of near balls

$$B_1(c,\alpha), B_2(c,\alpha), \dots B_{N_D}(c,\alpha)$$

Definition 2.10. Let $c \in \mathbb{Q}_p$. It lies in our tree in one of the intervals $B(c_L, \alpha_L) \setminus B(c_U, \alpha_U)$. Suppose c lies in one of the near balls corresponding to $B(c_L, \alpha_L)$ or $B(c_U, \alpha_U)$. Then define its interval type to be the index of that near ball. Otherwise define its interval type to be the coset of $c - c_U$ of Q. Denote the space of all the possible branch types Bt. We have

$$|\operatorname{Bt}| = N_D + \text{number of cosets of } Q$$

depending only on Ψ , independent from B.

VC-DENSITY IN AN ADDITIVE REDUCT OF P-ADIC NUMBERS

Lemma 2.11. If c, c' are in the same interval and have the same interval type then they have the same tree type.

Definition 2.12. For $c \in \mathbb{Q}_p$ and $\alpha, \beta \in \mathbb{Z}$ let $c \upharpoonright [\alpha, \beta] \in \mathbb{Z}/p\mathbb{Z}^{\beta-\alpha}$ be the record of coefficients of c for valuations between α, β . More precisely write c in its power series form

$$c = \sum_{\gamma \in \mathbb{Z}} c_{\gamma} p^{\gamma}$$
 with $c_{\gamma} \in \mathbb{Z}/p\mathbb{Z}$

Then $c \upharpoonright [\alpha, \beta]$ is just $(c_{\alpha}, c_{\alpha+1}, \dots c_{\beta})$

Definition 2.13. Let $c \in \mathbb{Q}_p$. It lies in our tree in one of the intervals $B(c_L, \alpha_L) \setminus B(c_U, \alpha_U)$. Define F(c), the floor of c to be α_L .

3. Main Proof

Fix γ corresponding to $\{\vec{p_i}\}_{i\in I}$ according to Lemma 2.2.

Definition 3.1. Denote $\mathbb{Z}/p\mathbb{Z}^{\gamma}$ as Ct.

Definition 3.2. Let $f: \mathbb{Q}_p^n \longrightarrow \mathbb{Q}_p^I$ with $f(\bar{c}) = (p_i(\bar{c}))_{i \in I}$. Define segment space Sg to be the image of f.

Given a tuple $(a_i)_{i\in I}$ in segment space look at corresponding floors $\{F(a_i)\}_{i\in I}$. Those are ordered as elements of $\mathbb Z$ Partition the segment space by order type of $\{F(a_i)\}$. Work in a fixed partition Sg'. After relabeling we may assume that

$$F(a_1) \geq F(a_2) \geq \dots$$

Consider (relabeled) sequence of vectors $\vec{p}_1, \vec{p}_2, \dots, \vec{p}_I$. There is a unique subset $J \subset I$ such that all vectors with indices in J are linearly independent, and all vectors with indices outside of J are a linear combination of preceding vectors. For any index $i \in I$ we call it independent if $i \in J$ and we call it dependent otherwise. Now, we define the following function

$$g: \operatorname{Sg}' \longrightarrow \operatorname{Bt}^I \times \operatorname{Pt}^J \times \operatorname{Ct}^{I-J}$$

Let $\bar{a} = (a_i)_{i \in I} \in Sg'$. To define $g(\bar{a})$ we need to specify where it is taking in each individual component of the product.

For all a_i record its interval type \in Bt giving the first component.

For a_i with $j \in J$, record the interval of a_i giving the second component.

For the third component do the following computation. Pick a_i with i dependent. Let j be the largest independent index with j < i. Record $a_i \upharpoonright [F(a_j) - \gamma, F(a_j)]$.

Lemma 3.3. For $\bar{a}, \bar{a}' \in Sg'$ if $g(\bar{a}) = g(\bar{a}')$ then a_i, a'_i have the same tree type for all $i \in I$.

Proof. For each i we show that a_i, a_i' are in the same interval and have the same interval type, so the conclusion follows by Lemma 2.11. Bt records interval type of each element, so if $g(\bar{a}) = g(\bar{a}')$ then a_i, a_i' have the same interval type for all $i \in I$. Thus it remains to show that a_i, a_i' lie in the same interval for all $i \in I$. Suppose i is an independent index. Then by construction, Pt records interval for a_i, a_i' , so those have to belong to the same interval. Now suppose i is dependent. Pick largest j < i such that j is independent. We have $F(a_i) \le F(a_j')$ and $F(a_i') \le F(a_j')$. Moreover $F(a_j) = F(a_j')$ as they are mapped to the same interval (using the earlier part of the argument as j is independent).

Claim 3.4. $val(a_i - a_i') > F(a_i) - \gamma$

Proof. Let $\vec{x}, \vec{x}' \in \mathbb{Q}_p^m$ be some elements with

$$\vec{p}_k \cdot \vec{x} = a_k$$

 $\vec{p}_k \cdot \vec{x}' = a'_k \text{ for all } k \in I$

It is always possible to do that as $\bar{a}, \bar{a}' \in Sg'$. Let J' be the set of independent indices less than i. We have

$$\operatorname{val}(a_k - a_k') > F(a_k)$$
 for all $k \in J'$

ANTON BOBKOV

as for independent indices a_k, a'_k lie in the same interval.

$$\operatorname{val}(a_k - a_k') > F(a_j)$$
 for all $k \in J'$ by monotonicity of $F(a_k)$
 $\operatorname{val}(\vec{p}_k \cdot \vec{x} - \vec{p}_k \cdot \vec{x}') > F(a_j)$ for all $k \in J'$
 $\operatorname{val}(\vec{p}_k \cdot (\vec{x} - \vec{x}')) > F(a_j)$ for all $k \in J'$

J' and i match the requirements of Lemma 2.2 so we conclude

$$val(\vec{p}_i \cdot (\vec{x} - \vec{x}')) > F(a_j) - \gamma$$

$$val(\vec{p}_i \cdot \vec{x} - \vec{p}_i \cdot \vec{x}') > F(a_j) - \gamma$$

$$val(a_i - a_i')) > F(a_i) - \gamma$$

as needed.

moreover because a_i, a_i' have the same image in Ct component under g we can conclude that

$$\operatorname{val}(a_i - a_i')) > F(a_j)$$

As $F(a_i) \leq F(a_i)$, a_i, a'_i have to lie in the same interval

Corollary 3.5. $\Psi(x,y)$ has dual VC-density $\leq |x|$

Proof. Suppose we have $c, c' \in \mathbb{Q}_p^m$ such that f(c), f(c') are in the same partition and g(f(c)) = g(f(c')). Then by the previous lemma $p_i(c)$ has the same tree type as $p_i(c')$ for all $i \in I$. Then by Lemma 2.7 c, c' have the same Ψ -type. Thus the number of possible Ψ -types is bound by the size of the range of g times the number of possible partitions.

$$|\operatorname{Ct}| = p^{\gamma}$$

$$|\operatorname{Pt}| \leq N \cdot I^2 \text{ (the only component dependent on } N)$$

Moreover we need at most |I|! many partitions of Sg. This gives us

$$|I|! \cdot |Bt|^{|I|} \cdot (N \cdot |I|^2)^{|J|} \cdot p^{\gamma |I-J|} = O(N^{|J|})$$

upper bound for the possible number of Ψ -types.

References

- [1] M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, preprint (2011)
- [2] insert citation

 $E ext{-}mail\ address: bobkov@math.ucla.edu}$