This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 0 576 941 B1 (11)

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 03.09.1997 Bulletin 1997/36
- (21) Application number: 93109826.3
- (22) Date of filing: 19.06,1993

- (51) Int. Cl.6: C07C 235/60, C07C 259/06, C07D 295/185, C07D 239/48, C07D 207/263, A61K 31/165, A61K 31/395, C07C 237/06, C07C 237/08, C07C 237/10, C07D 239/50
- (54) N-benzoylamino acid derivatives, pharmaceutical compositions containing them and process for preparing same

N-Benzoylaminosäurederivate, diese enthaltende pharmazeutische Zusammensetzungen und Verfahren zur deren Herstellung

Dérivés d'un acide N-benzoylamino, compositions pharmaceutiques les contenant et procédé de leur préparation

- (84) Designated Contracting States: BE CH DE DK FR GB IT LI NL SE
- (30) Priority: 30.06.1992 HU 217292
- (43) Date of publication of application: 05.01.1994 Bulletin 1994/01
- (73) Proprietor: NISSHIN FLOUR MILLING CO., LTD. Chuo-ku, Tokyo (JP)
- (72) Inventors:
 - · Matyus, Peter, Dr. H-1025 Budapest (HU)
 - Zara, Erzsébet, Dr. H-1071 Budapest (HU)
 - · Farkos, Lajos, Dr. H-1172 Budapest (HU)
 - · Papp, Agnes, Dr. H-1041 Budapest (HU)
 - · Simay, Antal, Dr. H-1124 Budapest (HU)
 - Toldy, Lajos, Dr. H-1118 Budapest (HU)
 - Andrasi, Ferenc, Dr. H-1125 Budapest (HU)
 - · Goldschmidt, Katalin, Dr. H-1025 Budapest (HU)
 - · Hodula, Eszter, Dr. H-1107 Budapest (HU)

- · Mathé, Ildiko, Dr. H-1046 Budapest (HU)
- Sutka, Klara, Dr. H-1031 Budapest (HU)
- Fittler, Zsuzsanna
- H-1088 Budapest (HU) · Vitkoczi, Valeria
- H-1157 Budapest (HU)
- · Sebestyén, Laszlo H-1157 Budapest (HU)
- · Sziraki, Istvan, Dr. H-1054 Budapest (HU)
- · Rusz, Marta, Dr. H-1117 Budapest (HU)
- · Gal, Eva, Dr. H-1163 Budapest (HU)
- (74) Representative: Türk, Gille, Hrabal, Leifert Brucknerstrasse 20 40593 Düsseldorf (DE)
- (56) References cited:

EP-A- 0 011 845

EP-A- 0 051 828

EP-A- 0 059 108

EP-A-0 173 441

GB-A- 858 426

US-A- 4 515 920

· JOURNAL OF ORGANIC CHEMISTRY. vol. 46, no. 22, 23 October 1981, EASTON US pages 4524 - 9 R.J.BERGERON ET. AL. 'Flexible Synthesis of Polyamine Catecholamides'

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

This invention relates to novel N-benzoylamino acid derivatives of the general formula /l/,

CONHICH₂I_nCOR³

(I)

wherein

10

15

20

25

30

R¹ and R², which are the same or different, stand for a hydroxyl group optionally bearing an acetyl group;

represents: hydroxyl group; C_{1-10} alkoxy group; or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent; or an -NR 4 R 5 group, where R 4 and R 5 , which are the same or different, mean: hydrogen; hydroxyl group; C_{1-12} alkyl group; C_{1-4} alkyl group optionally substituted by a hydroxyl group or an amino group; or

R⁴ and R⁵ together with the adjacent nitrogen form an optionally substituted 5- or 6-membered heterocyclic group optionally containing an additional nitrogen atom, this heterocyclic group optionally being substituted by an oxo group or an optionally phenyl-substituted C₁₋₄alkyl group or C₃₋₅alkenyl group; and when being piperazine, this heterocyclic group may be substituted also by a diaminopyrimidinyl or di(pyrrolidino)-pyrimidinyl group; and

n means an integer from 2 to 15

with the proviso that:

when both R^1 and R^2 represent a hydroxyl group at the same time and n is 5, R^3 is not a hydroxyl group or a C_{1-10} alkoxy group;

as well as their tautomers, racemates and optically active individual (pure) isomers or mixtures thereof, the salts of these compounds and pharmaceutical preparations containing these compounds.

As an other aspect of the invention, a process is provided for the preparation of the new compounds of general formula (I).

The novel amino acid derivatives of general formula (I) according to the invention significantly inhibit the peroxidation of lipids and as a consequence, exert a number of valuable biological effects.

In a particularly preferred group of the compounds of general formula (I) each of R¹, R² and R³ is hydroxyl group and n is 3, 4 or 11.

In an other preferable group of the compounds of general formula (I) both $\rm R^{1}$ and $\rm R^{2}$ stand for hydroxyl group, $\rm R^{3}$ means a $\rm C_{1\cdot10}$ alkoxy group and n is 10 or 11.

A further advantageous group of the compounds of general formula (I) consists of substances, wherein both R¹ and R² mean hydroxyl and R³ stands for a C₆₋₁₀alkylamino group or a piperazinyl group substituted by a 3-phenylpropyl or di(pyrrolidino)pyrimidinyl group.

The compounds of general formula (I) of the invention represent a substance class only less studied up to the present.

A few publications concerning this type of compounds are only found in the literature. Thus, A Bottazi et al. [Riv. Farm. Ter. 11, 215 (1971)] described the synthesis of 6-(3,4,5-trimethoxybenzoyl)aminohexanoic acid and analogues thereof containing carbon chains of various length. G. Razzaboni et al. [ibidem. 11, 221 (1971)] published the effect of these compounds against the heart-damaging effect of vasopressin. In these papers, 6-(4-hydroxy-3-methoxybenzoyl)aminohexanoic acid was also described but proved to be inactive in the test mentioned.

EP 0 011 845 A2 describes N-benzoylamino acid derivatives, wherein one of the possible substituents has to be an alkoxy group with C₁₋₄ carbon atoms. These compounds are described as being useful as a means for shampoos for dandruff

[(Dihydroxybenzoyl)aminomethyl]cyclohexanecarboxylic acids and 6-(dihydroxybenzoyl)aminocaproic acids inhibiting the platelet aggregation and migration of polynuclear leukocytes were described in the European patent specifica-

tion No. 59, 108. Out of the (dihydroxybenzoyl)aminocaproic acids, 6-(3,4-dihydroxybenzoyl)aminocaproic acid has only been characterized without any data about its biological activity.

4-(2,3-Dimethoxybenzoyl)aminobutanoic acid was used as intermediate in the synthesis of polyamine-catecholamides [R. J. Bergeron et al.: J. Org. Chem. 46, 4524 (1981)].

Benzamides substituted by one, two or three hydroxyl group(s), were described in the published European patent application No. 0,353,753 to inhibit the glutamate receptor. Mono and dihydroxybenzamides with a related structure were published by S. A. Minasyan et al. [Arm. Khim. Zh. 39, 169 (1986)].

It is known that, due to their adverse (harmful) effects damaging the various organs of vital importance, free radicals contribute to the pathomechanism (pathogenesis) of many diseases, such as disorders accompanied with ischaemic reperfusion tissue injuries, degenerative neurological diseases, inflammatory processes or atherosclerosis [see e.g. C. Cross et al.: Ann. Intern. Med. 107, 526 (1987)].

It has been shown that primarily the phospholipids of the cellular membrane are damaged since changes accompanied by partial or total loss of function are induced in the membrane by the reactive lipid radicals formed by a radical initiator in the presence of metal ions.

Thus, recently a continuously increasing therapeutic demand has appeared for active agents capable to protect against the harmful (adverse) effects of free radicals. From this point of view compounds inhibiting the chain reaction of the lipid peroxidation process by trapping of the radicals and/or metal complex formation may be particularly valuable.

The best known natural antioxidant is vitamin E. Recently, a number of compounds with closely related structure have been published [see e.g. D. A. Janero et al.: Biochem. Pharm. 40, 551 (1990)]. Although these substances strongly inhibit the lipid peroxidation in vitro, their therapeutical use raised several problems: e.g. usually high doses of these compounds are effective under in vivo conditions and their acute use is limited.

Lipid peroxidation is strongly inhibited by a novel-type steroid derivative, the compound U74006F [J. M. Braughter et al.: J. Biol. Chem. <u>262</u>, 10438 (1987)]. Although the <u>in vivo</u> activity of this substance has also been proven, its expected therapeutic use (mainly in the treatment of acute brain injuries) is a priori significantly limited by its weak absorption and relivatively rapid metabolism.

It has surprisingly been found during our investigations that the novel N-benzoylamino acid derivatives of general formula (I) of the invention inhibit the lipid peroxidation and, due to their favourable biological effects, they can advantageously be utilized in the indications mentioned above.

According to the invention the compounds of general formula (I) are prepared by:

a) reacting a benzoic acid of general formula (II),

30

35

45

wherein R¹ and R² are as defined above, or a derivative thereof suitable for acytating with a compound of the general formula (III)

$$H_2N(CH_2)_nCOR_3$$
 (III)

wherein R^3 means hydroxyl group, C_{1-10} alkoxy group or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent, and n is as defined above, to obtain compounds of the general formula (I), wherein R^3 means hydroxyl group, C_{1-10} alkoxy group or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent and R^1 , R^2 and n are as defined above: or

b) reacting a compound of general formula (I) prepared according to the process a) above, wherein R^3 means hydroxyl group, and R^1 , R^2 and n are as defined above, or a derivative thereof suitable for acylating, with a compound of the general formula R^3 H, wherein R^3 means C_{1-10} alkoxy group or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substitutent,

to obtain compounds of the general formula (I), wherein R^3 means C_{1-10} alkoxy group or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent, and R^1 , R^2 and n are as

defined above; or

10

15

30

c) reacting a compound of general formula (I) obtained according to the process b) above, wherein R^3 stands for a methoxy or ethoxy group, and R^1 , R^2 and n are as defined above, with an amine of the general formula R^4R^5NH ; to obtain compounds of the general formula (I), wherein R^3 means an R^4R^5N - group and R^1 , R^2 , R^4 , R^5 and n are as defined above; or

d) reacting a compound of the general formula (I) obtained according to the process a) above, wherein R^3 means hydroxyl group, and R^1 , R^2 and n are as defined above, or a derivative thereof suitable for acylating, with an amine of the general formula R^4 h, to obtain compounds of the general formula (I), wherein R^3 stands for an R^4 h-Sn-group, R^1 and R^2 are as defined above, except the hydroxyl group, and R^4 , R^5 and n are as defined above; or e) preparing a compound of the general formula (I) according to any of the processes a) - d) above, wherein one of

e) preparing a compound of the general formula (I) according to any of the processes a) - d) above, wherein one of R¹ and R² is a benzyloxy group and the other one is as defined above or both R¹ and R² are benzyloxy groups, and R³ and n are as defined above, and hydrogenating the thus obtained compound to obtain compounds of the general formula (I), wherein one of R¹ and R² is hydroxyl group and the other one is as defined above, or both R¹ and R² represent hydroxyl groups, and R³ and n are as defined above; or

f) hydrogenating a compound of the general formula (I), prepared according to any of the processes c), d) or e) above, wherein R³ stands for a 4-(3-phenyl-2-propenyl)piperazinyl group and R¹, R² and n are as defined above, to obtain compounds of the general formula (I), wherein R³ means a 4-(3-phenylpropyl)piperazinyl group, R¹ and R² are as defined above and n is as defined above.

and, if desired, removing (a) protective group(s) optionally being present in the R¹ and/or R² group(s) from the compound of general formula (I) obtained and, if desired, converting a compound of general formula (I) obtained to its salt and/or transforming a salt thereof to an other salt thereof and/or, if desired, liberating the free acid or base from a salt of a compound of the general formula (I).

According to the definition accepted in the literature [A. L. J. Beckwith: "Synthesis of Amides", in: "The Chemistry of Amides", Ed. J. Zabiczky, Interscience Publishers, London (1970)] the term "a derivative suitable for acylating" means an acid derivative being suitable for the N-acylation of amino compounds, e.g. for the synthesis of peptides usually under mild conditions. Acid derivatives of such type are e.g. acyl halides, first of all acyl chlorides and bromides, acid anhydrides, mixed anhydrides, e.g. the mixed anhydrides formed with ethyl chloroformate, as well as esters e.g. reactive esters and the methyl or ethyl esters.

In the carrying out of the processes according to the invention the mixed anhydride formed with ethyl chloroformate is a suitable acylating acid derivative in the case of acids of the general formula (I); whereas the acyl chloride is particularly useful in the case of acids of the general formula (II).

According to a preferred embodiment of process a) of the invention, the acyl chloride or anhydride of a compound of general formula (II) is reacted with an amino acid of the general formula (III) or with a derivative thereof. This reaction is carried out in water or in an organic solvent or in a mixture thereof in the presence of an acid binding agent at a temperature between 0 °C and 80 °C. Suitable organic solvents are e.g. ethers such as dioxane or tetrahydrofuran or an aromatic hydrocarbon, e.g. benzene or toluene. An inorganic or organic base may be used as acid binding agent. When carrying out the reaction with an amino acid of general formula (III), it is suitable to work in a mixture of water and dioxane in the presence of sodium hydroxide as acid binding agent at a temperature between 20 °C and 40 °C. When realizing the reaction with an amino acid ester of the general formula (III), it is suitable to work in benzene or toluene at a temperature between 50 °C and 80 °C in the presence of e.g. triethylamine as acid binding agent.

The progress and termination of the reaction can most simply be observed by using thin layer chromatography (TLC).

According to a preferable embodiment of process b) of the invention, an acid of the general formula (I) is reacted with an alcohol of the general formula R³H in an organic solvent, conveniently in an excess of the alcohol used at a temperature between 0 °C and the boiling point of the solvent in the presence of thionyl chloride or an acid catalyst to obtain compounds of the general formula (I), wherein R³ means a lower alkoxy group. An inorganic or organic acid, e.g. hydrogen chloride or p-toluenesulfonic acid may be used as acid catalyst.

Alternatively, in order to obtain compounds of the general formula (I), wherein R³ stands for a substituted alkoxy group and R¹ as well as R² are different from the hydroxyl group, the process b) of the invention is preferably carried out in such a way that an acid of the general formula (I) is reacted with an alcohol of the general formula R³H-in an organic solvent, suitably in a halogenated hydrocarbon solvent, e.g. methylene chloride, in the presence of dicyclohexylcarbodiimide and optionally a catalyst at a temperature between 0 °C and 40 °C. It is suitable to use a nucleophilic catalyst, e.g. 4-(N,N-dimethylamino)pyridine.

In order to obtain compounds of the general formula (I), wherein ${\sf R}^3$ stands for an optionally substituted ${\sf C}_{1-4}$ alkoxy group and both ${\sf R}^1$ and ${\sf R}^2$ are different from hydroxyl group, the process b) of the invention is preferably performed in such a way that the acyl chloride prepared from the acid of general formula (I) is reacted with a compound of the general formula ${\sf R}^3$ H in an organic solvent in the presence of an acid binding agent at a temperature between 0 °C and the boiling point of the solvent. Suitable solvents are aromatic hydrocarbons, e.g. benzene or toluene.

According to a preferred embodiment of process c) of the invention, the methyl or ethyl ester of an acid of the general formula (I) is reacted with an amine of the general formula R⁴R⁵NH in an organic solvent, suitably in the excess of the amine used at a temperature between 50 °C and the boiling point of the solvent.

According to a preferable embodiment of process d) of the invention, an acid of the general formula (I) is reacted with an amine of the general formula R⁴R⁵NH in an organic solvent in the presence of dicyclohexylcarbodiimide and optionally a nucleophilic catalyst at a temperature between 20 °C and 50 °C.

According to an other preferred embodiment of the process d) of the invention, an acyl chloride or mixed anhydride, e.g. a mixed anhydride formed with ethyl chloroformate prepared from an acid of the general formula (I) is reacted with an amine of the general formula $\rm R^4R^5NH$ in an organic solvent optionally in the presence of an acid binding agent at a temperature between 0 °C and 80 °C.

In the process d) of the invention an aromatic hydrocarbon, e.g. toluene or benzene, halogenated hydrocarbon such as methylene chloride or an ether-type solvent, e.g. dioxane or tetrahydrofuran may preferably be used as solvents. An inorganic or organic base, e.g. potassium carbonate or triethylamine may be applied as acid binding agent.

According to a preferable ambodiment of the process e) of the invention, a compound of the general formula (I) is hydrogenated in a Parr apparatus in an organic solvent in an acidic medium, suitably at a pH value between 3 and 5 in the presence of a palladium-on-carbon catalyst under atmospheric pressure. When R³ is different from the hydroxy group, it is suitable to use an alcohol, e.g. ethanol as solvent; when R³ stands for hydroxyl group, an ester such as ethyl acetate, or the mixture of water and an alcohol, or an aromatic hydrocarbon, e.g. benzene may be applied. The pH of the reaction mixture is suitably adjusted to the value desired by using an inorganic acid, e.g. hydrochloric acid.

Alternatively, the process e) of the invention may preferably carried out by performing the hydrogenation under the conditions of catalytic transfer hydrogenation. For this purpose, cyclohexene or ammonium formate are used as hydrogen sources, whereas the catalysts and solvents defined above are applied. This reaction is carried out at a temperature between 20 °C and the boiling point of the solvent, preferably at a temperature between 60 °C and 80 °C.

According to a preferred embodiment of the process f) of the invention, the hydrogenation is carried out by using a palladium-on-carbon catalyst at room temperature under atmospheric pressure conveniently in ethanol at a pH value between 3 and 6.

The reaction mixture resulting from the processes described above can be worked up by methods commonly used in the practice of organic chemistry: e.g. by extraction, chromatography and/or crystallization following the removal of excess of the reactant and/or solvent optionally under reduced pressure. If desired, the compound of general formula (I) thus obtained may be purified e.g. by using chromatography and/or recrystallization or optionally converted to an acid addition salt which latter may be purified, if desired, by recrystallization following its separation.

It is obvious for one skilled in the art that the compounds used in the carrying out of process a) and b) have to be provided with protective group(s) in order to prevent side reactions. Such protective groups are well-known; from these, for the preparation of compounds according to the invention benzyl group and/or acetyl group are particularly useful, which can be removed in a known manner after carrying out the desired reaction(s), e.g. by hydrogenolysis in the case of benzyl group and by hydrolysis in the case of acetyl group.

Compounds of the general formula (f) according to the invention, which contain a sufficiently strong basic group, may be transformed to acid addition salts. This tranformation is carried out by dissolving the base in an appropriate solvent and portionwise adding the corresponding acid or a solution of this acid in a solvent under stirring. The product obtained is separated by filtration or crystallization after evaporating the solvent and, if desired, it is purified by recrystallization. An organic or inorganic acid, preferably a pharmaceutically acceptable acid such as hydrochloric acid, suffuric acid, fumaric or tartaric acid may be used as acid components. An alcohol, ester, ether and/or ketone may be used as solvent. The salt formation is accomplished at a temperature between 0 °C and 80 °C: in the case of mineral acids preferably at 0-20 °C, in the case of organic acids preferably at 50-80 °C.

Compounds of the general formula (I) of the invention, wherein a free carboxyl group is present, can form a salt with a suitable cation. Cations of such type are suitably pharmaceutically acceptable inorganic or organic cations such as alkaline metal cations e.g. potassium or sodium cation, alkaline earth metal cations such as magnesium or calcium, or ammonium cation including e.g. the cations derived from an organic nitrogen-containing base, e.g. trialkylamine-derived cations such as the triethylammonium ion. These salts are prepared e.g. by dissolving the acid in a suitable solvent and portionwise adding the corresponding base optionally as a solution in a solvent. Alcohols, esters, ethers and/or ketones may be used as solvents. The salt formation is carried out at a temperature between 0 °C and 80 °C.

Benzoic acids of the general formula (II) or the derivatives thereof suitable for acylating in the embodiment of process a) of the invention are for the most part known in the literature. E.g. the various isomeric benzyloxy-hydroxy-benzoic acids and their esters are known [see e.g.: J. Pharm. Soc. Jap. <u>72</u>, 1081 (1952); Arch. Pharm. <u>293</u>, 393 (1960)], furthermore the various isomeric acetoxyhydroxy-benzoic acids [see e.g.: Arch. Pharm. <u>292</u>, 282 and <u>ibidem</u> 341 and 731 (1959); Liebigs Ann. Chem. <u>1984</u>, 1230] as well as 2-acetoxy-3-methoxy- and 2,5-di(benzyloxy)benzoic acid and their acyl chlorides are also known [see: J. Pharm. Chim. <u>18</u>, 247 (1933) and J. Org. Chem. <u>29</u>, 2078 (1964), respectively]. Compounds of the general formula (II) not described till now can be prepared by using processes described in the literature or by analogous methods. For these an example will be given later in section "Preparation of Starting Sub-

stances".

The major part of the compounds of general formula (III) used in the process a) of the invention are known from the literature (see e.g.: T Wieland et al.: "Methoden zur Herstellung und Umwandlung von Aminosäuren und Derivaten", in: Houben-Weyl, Methoden der Organischen Chemie, Vol. XI/2 page 269, Georg Thieme, Stuttgart 1958). The novel compounds can be prepared by using methods described in the literature or analogous processes.

The most part of the amines of general formula R⁴R⁵NH applied as starting substances in the processes c) and d) of the invention are known from the literature: e.g. the derivatives of 1,2-ethanediamine and 1,3-propanediamine as well as the 1-substituted piperazines can be prepared as described in the literature [see e.g.: published European patent application No. 0.344,577; Belgian patent specification No. 523,902; published PCT patent application No. 87/01706; as well as J. Med. Chem. 11... 804 /1968)]. The amines of general formula R⁴R⁵NH not yet described in the literature can be prepared by methods known from the literature or by using analogous processes.

As mentioned above, the compounds of general formula (I) of the invention possess valuable biological activities, e.g. lipid peroxidation-inhibiting effect as well as a protective action against ischaemic and/or reperfusion-induced tissue injuries and favorable central nervous system (CNS) effects. It has also been found, that compounds of formula (I) with the following substituents also show the above mentioned biological activities. Thus the invention also refers to the use of such amino acid derivatives of general formula (I)

(I)

wherein

R4 and R5

30

40

50

R¹ and R², which are the same or different, stand for a hydroxyl group optionally bearing an acetyl group; or a C₁₋ salkoxy group optionally substituted by a phenyl group;

represents: hydroxyl group; C₁₋₁₀alkoxy group; or a C₁₋₄alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent; or an -NR⁴R⁵ group, where R⁴ and R⁵, which are the same or different, mean: hydrogen; hydroxyl group; C₁₋₁₂alkyl group; C₁₋₄alkyl group optionally substituted by a hydroxyl group or an amino group; or

together with the adjacent nitrogen form an optionally substituted 5- or 6-membered heterocyclic group optionally containing an additional nitrogen atom, this heterocyclic group optionally being substituted by an oxo group or an optionally phenyl-substituted C_{1-4} alkyl group or C_{3-5} alkenyl group; and when being piperazine, this heterocyclic group may be substituted also by a diaminopyrimidinyl or di(pyrrolidino)-pyrimidinyl group; and

45 n means an integer from 2 to 15

with the proviso that:

when R^3 means hydroxyl group and n is 5, as well as one of R^1 and R^2 means a 4-hydroxyl group, then the other one of R^1 and R^2 is different from a 3-hydroxyl or 3-methoxy group; and when n is 2 or 3, then R^1 and R^2 cannot simultaneously stand for 2- and 3-methoxy group.

as well as their tautomers, racemates and optically active individual (pure) isomers or mixtures thereof, the salts of these compounds and pharmaceutical preparations containing these compounds for the preparation of medicaments for the treatment of patients suffering from disorders being in an indirect or direct connection with pathological oxidation processes occurring in the organism, particularly ischaemic and reperfusion tissue injuries, inflammations, atherosclerosis, or degenerative neurological disorders.

The lipid peroxidation-inhibiting effect of the compounds was evaluated by the methods described hereinafter.

A) The effect of compounds of general formula (I) on the iron(II)-dependent peroxidation of arachidonic acid

The peroxidation of arachidonic acid was measured by using the method of J. M. Braughler [J. Biol. Chem. <u>262</u>, 10438 (1986)] at 37 °C in methanol. The compound to be tested was investigated at various concentrations. The peroxidation was initiated by adding 10⁻⁴ mol of iron(II) (ferrous) ion (to result in a final volume of 0.5 ml).

The thiobarbituric acid-reactive products were determined by a modification of J. A. Buege [Meth. Enzymology $\underline{52}$, 302 (1978)] as follows. 0.55 ml of 2% thiobarbituric acid was added to the solution and the samples were boiled for 20 minutes. After cooling down, the samples were diluted with distilled water, then chloroform was added. After centrifuging the tubes at 400 x g for 7 minutes, the quantity of the thiobarbituric acid-reactive products was determined in the supernatant by spectrophotometry at 535 nm. The effect of the compound to be tested was characterized by its IC50 value (i.e. the concentration resulting in an 50% inhibition). α -Tocopherol was used as reference compound. The results together with those of methods B) and C) are summarized in Table 1.

B) The effect of compounds of general formula (I) on the iron(II) ion-dependent peroxidation of brain homogenate

The measurement was carried out by using the method of J. M. Braughler [J. Biol. Chem. <u>262</u>, 10438 (1987)]. In these experiments OFA rats with a body-weight of 150-200 g were decapitated and brain homogenates were prepared in Krebs buffer solution, then the Method A) was followed.

20 C) The effect of compounds of general formula (I) on the NADPH-dependent peroxidation of brain microsomes

This study was carried out by using the method of T. J. Player and A. A. Morton [J. Neurochem. 37, 422 (1981)].

Microsome preparation

15

25

50

OFA rats of 3 months age were decapitated and their whole brain was homogenized in ice-cold 0.25 M saccharose solution. After centrifuging the homogenate at 15000 x g for 10 minutes, the supernatant was decanted and the residue was further centrifuged at 78000 x g for 60 minutes. The preparation having a concentration of 10-20 mg of protein/ml was divided to aliquots.

2) Measurement of the microsomal lipid peroxidation

The measurement was carried out at 73 °C in a reaction mixture with the following composition; 0.05 M Tris maleate (pH 6.8) buffer, 1.0 mM KH₂SO₄, 1.0 mM ADP, 0.2 mM FeCl₃ and 0.4 mM NADPH. NADPH was not added to the reaction mixture used for determination of the baseline activity. The reaction was initiated by adding 0.5 mg of membrane protein and stopped after incubation for 15 minutes. Subsequently, the samples were centrifuged at $950 \times g$ for 20 minutes. The thiobarbituric acid-reactive products were determined in 1 ml of supernatant each by using the method of Z. Dunied [Biochem. Pharmacol. 32, 2283 (1983)].

Table 1

Lipid peroxid	ation-inhibiting effect of co	npounds of the general forn	nula (I)
Compound (Example) No.	arachidonic acid sub- strate	IC ₅₀ [µmol/litre] on brain homogenate	brain microsome
24	40	4.8	37
25	15	100	100
29	100	9	4.5
31	100	16	6.6
32	100	12	7.9
34	100	40	8.6
35	27	3.3	5.3
36	3.4	100	100
37	31	100	100
α-Tocopherol	1.5	7	>100

It is obvious from the data of Table 1 that the lipid peroxidation-inhibiting effect of compounds tested of the invention is similar to or in several cases higher than of α -tocopherol used as reference compound.

The protective action of the compounds according to the invention against ischaemic and reperfusion -induced tissue injuries was evaluated by using the following iv vivo methods.

A) Effect of compounds of the general formula (I) on the ischaemic intestine injury in rats

5

10

15

20

45

50

The method of D. A. Parks et al. [Surgery 92, 869 (1985)] was employed in these experiments.

Male CFY rats with an average body-weight of 250 g were starved for 24 hours before the surgical intervention but water was allowed <u>ad libitum</u>. The compound to be tested was orally administered in a 25 mg/kg dose by 2 hours before the operation.

The abdominal wall was opened along the median line under ether anaesthesia. The appropriate small intestine section was made ischaemic by ligating both small branches belonging to the pancreatico-duodenal artery. The sham-operated control animals were subjected only to the surgical intervention but their blood vessels were not ligated. The wound was closed and after 2 hours the abdominal cavity of the animals was again opened under ether anaesthesia. The thickened intestinal section was removed, its length and weight were determined and the significance was calculated by Duncan's test [D. B. Duncan: Biometrics 11, 1 (1955)](with the weights corrected for a length of 20 mm) on the one hand, between the sham -operated and ischaemized vehicle-control animals; and on the other hand, between the ischaemized control animals and ischaemized animals treated with the compound to be tested. The edema-induced weight increase in the intestinal section was expressed as percentage. The results are summarized in Table 2.

Table 2

Effect of compounds of the general formula (I) on ischaemized intestinal section in rats after ora administration of a 25 mg/kg dose				
Compound (Example) No.	Inhibition of ischaemia (%)			
24	63			
25	61			
29	52			
30	70			
35	63			
36	76			
37	73			
40	72			
41	75			

Based on the above results, compounds of the invention tested possess a highly significant inhibitory effect against the adverse (harmful) sequels of ischaemia induced in the small intestine section.

B) Investigations on the model of repertusion-induced arrhythmia in rats

In these experiments, the reperfusion-induced arrhythmia was developed in male SPRD rats weighing 400 g in average by using the method of D. Lamontagne et al. [Fundam. Clin. Pharmacol. 3, 671 (1989)].

The chest of artificially respirated animals was opened under pentobarbital anaesthesia and a thread was implanted under the left coronary. After an equilibration period of 15 minutes, in the case of an arterial blood pressure of at least 60 Hgmm, a myocardial ischaemia was induced by ligating the coronary for 5 minutes. This was followed by a reperfusion lasting for 10 minutes. The duration of arrhythmia, ventricular tachycardia (VT) and ventricular fibrillation (VF), respectively, developed within 3 minutes after reperfusion were registered in a lead-II ECG.

The average durations of VT and VF, respectively related to 1 minute were determined and the number of deaths induced by arrhythmia was also registered.

The compound to be tested was orally administered one hour before the experiment.

The statistical data were calculated by using Duncan's test (duration of VT and VF, respectively) or the chi² test (number of deaths) [S. Bolton in: "Pharmaceutical Statistics", pages 169-173 (1990), Marcel Dekkar] following the variance analysis in relation to the vehicle control.

The results are shown in Table 3.

5

45

Table 3

5	Compound (Example) No.	Dose (mg/kg) p.o.	No. of cases N	Average duration of VT/VF S± SE/min	No. of deaths (lethal VT/VF)
	25	100	10	28.0±5.1**	1/10*
		50	8	37.3±5.7	4/8
10	36	100	8	20.6±6.3**	0/10*
		50	8	33.0±9.9	4/8
	a-Tocopherol	250	8	27. <u>2±</u> 7.1**	1/8*
		100	10	33.1±7.1	4/8*
15	Vehicle control		10	51.8±3.1	9/10

^{*} p<0.05;

20

25

40

45

50

55

Based on the above results, both compounds of the invention showed a significant protective action against the reperfusion arrhythmia in a lower dose in comparison with α -tocopherol and considerably decreased the lethality.

C) Study on the neurotoxicity-inhibiting effect in mice

This study was carried out by using the method of R. E. Heikkila at al. [Science <u>224</u>, 1451 (1984)] or by some modification of this method being very suitable to investigate compounds which are potentially active against Parkinson's disease.

The neurotoxic effect (dopamine depletion) was induced by 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (hereinafter abbreviated: MPTP).

Male C-57 mice weighing 30 g in average were intraperitoneally treated with vehicle or with 100 mg/kg of the compound to be tested once daily for 3 successive days. One hour after the last administration, 40 mg/kg of MPTP and then an additional amount of 50 mg/kg of the compound to be tested were intraperitoneally administered. The animals were killed after 4 days, their brain was removed and the corpus striatum was separated. The dopamine level of corpus striatum was determined by high performance liquid chromatography (HPLC).

The results are shown in Table 4.

Table 4

	labio	•	
Compound (Example) No.	MPTP treatment	Dopamine level (µg/g tissue)	% of control
36	-	20,67±0,5	103
	+	6,68±1,0 ^a	33
24	· -	20,44±0,6	102
	+	4,85±1,7 ^b	. 24
vehicle	-	20,13±0,6	100
	+	1,74 <u>±</u> 0,2	3

a p<0.01 in relation to the MPTP control

Based on the results summarized in Table 4, the decrease in the dopamine level developed under the effect of MPTP was significantly moderated by the compounds of the invention.

On the basis of the pharmacological results, the compounds of general formula (I) are expected to be useful for the treatment of diseases being in an indirect or direct connection with pathological oxidation processes occurring in the

^{**} p<0.01

^b p<0.05 in relation to the MPTP control

organism [B.Halliwell: Drugs 42, 570 (1991)]. Thus, these compounds can be particularly useful for the treatment and/or prevention of ischaemic and reperfusion tissue injuries, inflammatory reactions, atherosclerosis, various degenerative neurological disorders as well as for delaying the natural process of the ageing of cells.

The toxicity of the compounds was studied in rats. The acute oral LD_{50} values of all the compounds No. 24, 25, 29, 35, 36 and 37 were found to be higher than 1000 mg/kg, i.e. low.

The effectivity and low toxicity of the compounds together mean a valuable spectrum of activities and therapeutic safety.

For therapeutical use, the daily dose of these compounds is usually in the range from 1 mg/kg of body-weight to 10 mg/kg of body weight, preferably from 1 mg/kg of body weight to 5 mg/kg of body which is optionally administered in divided daily subdoses by considering the conditions of the adsorption.

For a therapeutical use, the active agents are suitably transformed to pharmaceutical compositions by mixing them with nontoxic, inert, solid or liquid carriers and/or additives commonly used in the pharmaceutical practice, which are useful for enteral or parenteral administration. E.g. water, gelatine, lactose, starch, pectin, magnesium stearate, stearic acid, talc or vegetable oils may be used as carriers. As additives e.g. preservatives, wetting agents (surface active agents) as well as emulsifying and dispersing agents, buffers and flavours may be applied.

The active agents can be transformed to the usual pharmaceutical compositions, e.g. solid forms (such as tablets, capsules, pills, suppositories) or liquid forms (such as aqueous or oily solutions, suspensions, emulsions, syrups as well as injectable solutions, suspensions and emulsion) by using the carriers and/or additives mentioned above.

The invention also relates to the pharmaceutical compositions containing a compound of the general formula (I) of the invention or a pharmaceutically acceptable salt thereof as active ingredient; as well as to a process for preparing these compositions.

The invention also relates to the use of compounds of the formula (I) or pharmaceutically acceptable salt thereof for the preparation of medicaments for treating diseases being in connection with pathological oxidation processes, i.e. for the treatment and/or prevention of ischaemic and reperfusion tissue injuries, inflammations, atherosclerosis and various degenerative neurological disorders.

The invention is illustrated in detail by the aid of the following Examples. The melting points given in the Examples are uncorrected. Compounds having a melting point lower than room temperature were characterized by the retention value (R_t) obtained in thin layer chromatography.

Abbreviations: benzyl group is abbreviated by "Bz", ethyl group by "Et" and methyl group by "Me".

Example 1

40

45

Preparation of 4-{N-[2,5-di(benzyloxy)benzoyl]amino-butyric acid

28.00 g (79.4 mmol) of 2,5-di(benzyloxy)benzoyl chloride were portionwise added to a sulution containing 17.32 g (168 mmol) of 4-aminobutyric acid in a mixture of 160 ml of water, 40 ml dioxane and 46 ml of 4 M sodium hydroxide solution at 25-28 °C during 90 minutes while stirring. After stirring the reaction mixture at 30 °C for 2.5 hours, 150 ml of water were added and the pH value of the solution was adjusted to 4 by adding 12 M hydrochloric acid. The precipitate was filtered after cooling, washed with ice-cold water and dried to give 32.9 (99%) of the aimed product, m.p.: 135-138

By using the appropriate acyl chloride and amino acid as described above the compounds summarized in Table 5 were prepared.

Table 5

Compounds of the general formula (I), wherein R ³ means hydroxyl group							
Example No.	R ¹	R ²	n	Yield %	M.p. °C		
2	2-OBz	5-OBz	4	77	105-110		
3	2-OBz	5-OBz	5	93	135-137		
4	2-OBz	5-OBz	7	94	98-100		
5	2-OBz	5-OBz	10	77	114-116		
6	2-OBz	5-OBz	11	80	107-108		
. 7	2-OBz	5-OBu	5	50	100-101		

Example 8

Preparation of ethyl 12-{N-[2,5-di(benzyloxy)benzoyl]amino}dodecanoate

To a solution of 4 g (7.5 mmol) of 12-{N-[2,5-di(benzyloxy)benzoyl]amino}dodecanoic acid (compound of Example 6) in 23 ml of anhydrous ethanol, 7.5 mmol of 20% ethanolic hydrogen chloride solution were added and the reaction mixture was stirred for 4.5 hours. After cooling the precipitate was filtered, washed with ether and dried to give 2.69 g (64%) of the aimed compound, m.p.: 70-71 °C.

The following compounds were prepared from the correspondig amino acid and alkanol containing hydrogen chloride as described above:

Ethyl 11-{N-[2,5-di(benzyloxy)-benzoyl]amino}undecanoate (compound of Example 9), yield 79%, m.p.: 50-53 °C. Methyl 6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoate (compound of Example 10), yield 87%, m.p.: 61-63 °C.

Example 11

15

40

Preparation of 2-[4-(acetylamino)phenoxy]ethyl 4-[N-[2,5-di(benzyloxy) benzoyl]amino}butanoate

0.57 g (2.75 mmol) of dicyclohexylcarbodiimide was portionwise added to a solution of 1.05 g (2.5 mmol) of 4-{N-[2,5-di(benzyloxy)benzoyl] amino}butyric acid (compound of Example 1) in 16 ml of anhydrous methylene chloride at room temperature under stirring. After stirring the solution at the same temperature for 10 minutes 0.54 g (2.75 mmol) of 2-[4-(acetylamino)phenoxy]ethanol and 0.03 g (0.25 mmol) of 4-(N,N-dimethyl-amino)pyridine were added. The reaction mixture was stirred at room temperature for 4 hours, then diluted with methylene chloride and the solid product was filtered. The filtrate was successively washed with 5% acetic acid, 5% sodium hydrogen carbonate solution and water, then dried and evaporated under reduced pressure. The residue was separated by chromatography on a silica gel column by eluating with a 95:5 mixture of chloroform and methanol to obtain 0.82 g (55%) of the aimed product, m.p.: 141-143 °C.

Example 12

30 Preparation of octyl 6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoate

Step A) Preparation of 6-{N-[2,5-di(benzyloxy)benzoyf]amino}hexanoyl chloride

4.6 g (40 mmol) of thionyl chloride dissolved in 12 ml of anhydrous toluene were dropwise added to a suspension of 9.0 g (20 mmol) of 6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoic acid (compound of Example 3) in 60 ml of anhydrous toluene and 0.93 g (13 mmol) of anhydrous dimethylformamide at room temperature during 5 minutes stirring. The reaction mixture was stirred at 50 °C for 1 hour then evaporated under reduced pressure to dryness at a temperature below 50 °C. The residue obtained was thoroughly triturated with ether, filtered to obtain 7.68 g (82%) of the aimed product, m.p.: 90-94 °C.

Step B) Reaction of the acyl chloride with 1-octanol

0.66 g (5 mmol) of 1-octanol was dropwise added to the solution of 1.5 g (3.2 mmol) of 6-{N-[2,5-di(benzyloxy)benzoyl]amino]hexanoyl chloride in 15 ml of anhydrous acetonitrile and 0.29 g (3.7 mmol) of anhydrous pyridine during 5 minutes under cooling and stirring at 0-5 °C. The reaction mixture was stirred at room temperature for 10 hours, then evaporated under reduced pressure to dryness at a temperature below 50 °C. The residue obtained was dissolved in 40 ml of ether and was successively washed with water, 2% sodium hydroxide solution and finally with water, then dried and evaporated under reduced pressure. The residue was purified on a silicagel column by using ethyl acetate as eluent to give 0.96 g (54%) of the aimed compound, m.p.: 48-50 °C.

Example 13

Preparation of N-(2-hydroxyethyl)-(6-{N-[2,5-di(benzyloxy)benzoyl] amino}hexanoic acid amide}

A solution containing 1.60 g (3.5 mmol) of methyl 6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoate (compound of Example 10) in 4.9 g (70 mmol) of 2-aminoethanol was reacted under nitrogen at 100 °C for 2 hours while stirring. After cooling down, the reaction mixture was diluted with 70 ml of chloroform and acidified to pH 3 by adding 5 M hydrochloric acid. After separation the aqeuous phase was extracted twice with chloroform, the combined organic phase was washed with water, dried and evaporated under reduced pressure. The residue was washed with ether and recrystal-

lized from ethyl acetate to give 1.1 g (63%) of the aimed compound, m.p.: 103-104 °C.

The following compounds were similarly prepared by carrying out the reaction with the corresponding amine at the boiling point of the amine:

N-(2-Aminoethyl)-{6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoic acid amide}(compound of Example 14), yield 43%, m.p.: 88-89 °C.

N-Octyl-{6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoic acid amide} (compound of Example 15), yield 47%, m.p.: 111-112 °C.

By carrying out the above reaction with a solution of methylamine in ethanol at room temperature N-methyl-{4-{N-[2,5-di(benzyloxy)benzoyl] amino}butanoic acid amide}(compound of Example 16), was obtained in a yield of 88%, m.p.: 135-137 °C.

Example 17

Preparation of 5-{N-[2,5-di(benzyloxy)benzoyl]amino}pentylcarbohydroxamic acid

Step A) Preparation of 6-{N-[2,5-di(benzyloxy)benzoyl]amino} hexanoyl chloride

0.36 g (5 mmol) of anhydrous dimethylformamide and 35 ml of anhydrous methylene chloride were added to 2.23 g (5 mmol) of 6-{N-[2,5-di(benzyloxy) benzoyl]amino}caproic acid (compound of Example 3). To the solution obtained 1.43 g (11.25 mmol) of oxalyl chloride were portionwise added at 0 °C under stirring, then the reaction mixture was stirred at the same temperature for 40 minutes. The solution thus obtained was used in the following step B).

Step B)

The solution of the acyl chloride obtained in the preceding Step A) was added in four portions to a solution of 1.4g (20 mmol) of hydroxylamine hydrochloride and 3.0 g (30 mmol) of triethylamine in 17.5 ml of tetrahydrofuran and 1.75 ml of water during 10 minutes at 0 °C under stirring. After stirring the reaction mixture at 20 °C for 90 minutes, 60 ml of 2 N hydrochloric acid were added, the phases were separated and the aqueous phase was extracted twice with methylene chloride.

The organic phase was washed with water, dried and evaporated under reduced pressure at a temperature below 40 °C. The residue was purified on a silica gel column by using a 9:1 mixture of ethyl acetate with methanol as eluent to give the aimed compound in a yield of 16%, m.p.: 61-63 °C.

The compound of Example 18 was obtained by using pyrrolidone sodium salt in dimethylformamide at 40 °C. 1-{6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoyl}-5(1H)-pyrrolidone (compound of Example 18), yield 27%, m.p.: 94-95 °C.

Example 19

Preparation of 1-{6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoyl}-4-methyl-piperazine

Step A) Preparation of mixed anhydride

0.24 g (2.2 mmol) of ethyl chloroformate was added to a solution of 1 g (2.2 mmol) 6-{N-[2,5-di(benzyloxy)benzoyl]amino}hexanoic acid (compound Example 3) in 4.5 ml of anhydrous methylene chloride and 0.22 g (2.2 mmol) of triethylamine at 0 °C under stirring. After stirring the reaction mixture at 0 °C for 30 minutes 5 ml of ice-water were added, the phases were separated, the organic phase was dried over anhydrous magnesium sulfate, then concentrated to a volume of 2 ml under reduced pressure at 25 °C. The residual liquid was used in this form in the next step without delay.

Step B)

40

The mixed anhydride prepared in the preceding step A) was poured to the solution of 0.22 g (2.2 mmol) of methylpiperazine in 2.2 ml of anhydrous tetrahydrofuran at 0°C, then the reaction mixture was stirred at 0 °C for 1 hour. After pouring the mixture into 5 ml of ice-water, tetrahydrofuran was distilled off under reduced pressure and the aqueous phase was extracted with chloroform. The organic phase was washed with water, dried and the solution was evaporated under reduced pressure. The residue was purified by chromatography on a silicagel column by using a 10:1 mixture of chloroform and methanol as eluent to obtain 0.91 g (78%) of the aimed compound, m.p.: 78-79 °C.

The compounds summarized in Table 6 were prepared as described above, i.e. by preparing the mixed anhydride from the corresponding acid according to step A) and by reacting the mixed anhydride with the corresponding amine

according to the step B).

Table 6

Compounds of the general formula (I), wherein R^1 means 2-benzyloxy group, R^2 stands for 5-benzyloxy group

10	Example No.	R ³ .	n	Yield %	M.p. ^O C or R _f
15	20	N - CH ₂ -CH = CH-	5	72	0,5 ^a
20	21	N - ⟨N =	5		139-141

chloroform/methanol = 24 : 1 was used as eluent

Example 22

45

50

Preparation of 8-[N-(2,5-dihydroxybenzoyl)amino]octanoic acid

1.85 g (22.5 mmol) of cyclohexene, 0.5 g of 10%, palladium-on-carbon catalyst and 0.15 g of hydroquinone were added to a solution of 1.2 g (2.5 mmol) of 8-{N-[2,5-di(benzyloxy)benzoyl]amino)octanoic acid (compound of Example 4) in 18 ml of anhydrous ethanol under nitrogen. After boiling under reflux for 1 hour while stirring, the reaction mixture was cooled down, diluted with 12 ml of water, the catalyst was filtered off under nitrogen and washed with a 9:1 mixture of ethanol and water. After evaporating the solvent under reduced pressure, the residue was thoroughly triturated with 10 ml of water and then stirred at 0 °C for 1 hour.

The crystalline product was filtered, washed with ice-water and dried to give 0.35 g (46%) of the aimed compound, m.p.: 150-151 °C.

The compounds listed in Table 7 were prepared as described above by using the corresponding starting substances. (In the cases of compounds of Examples 23 and 27 a sixty-fold amount of cyclohexene was used.)

Table 7
Compounds of the general formula (I)

Example No.	RJ	R2	я ^З	C	Yield %	ო.р. ^ი ი
23	2-0H	5-0H	뀸	10	47	136-138
24	2-0H	5-0H	꿈	11	74	142-143
25	2-0H	5-0H	НО	ن	74	126-127 ^a
26	2-0H	5-08u	НО	5	89	95-96
27	2-0H	5-0H	$0-(CH_2)_2-0-\langle\bigcirc\rangle$ -NHAC	n	72	140-141
28	2-0H	5-0H	NH-CH ₂ -CH ₂ -NH ₂	'n	87	113-115 (dihydrochloride)
29	2-0H	S-0H	NH-(CH ₂) ₇ -CH ₃	2	. 50	101-102
R	2-0H	5-0H	Ż	2	61	130-131

 $^{\rm a}$ After recrystallization from aqueous hydrochloric acid (pH = 3) m.p.: 142–144 $^{\rm o}$ C (crystal dimorphism).

Example 31

Preparation of ethyl 11-[N-(2,5-dihydroxybenzoyl)amino]undecanoate

A solution containing 3.55 g (6.5 mmol) of ethyl 11-{N-[2,5-di(benzoyloxy)benzoyl]amino}undecanoate (compound of Example 9) in 95 ml of ethanot was adjusted to a pH value of 3 by adding concentrated hydrochloric acid, and hydrogenated in the presence of 1.3 g of 10% palladium-on-carbon catalyst under environmental pressure. After filtering off the catalyst, the solution was evaporated under reduced pressure, the residue was thoroughly triturated with 10 ml petroleum ether and dried to obtain 1.60 g (67.3%) of the aimed compound, m.p.: 72-74 °C.

The compounds listed in Table 8 were prepared as described above by using the corresponding di(benzyloxy)benzoylamino acid derivatives as starting substances. The compound of Example 34 was obtained from the corresponding 4-(3-phenyl-2-propenyl)piperazinyl derivative (compound of Example 20).

Table 8	Compound of the general formula (I), wherein ${ m R}^1$ stands for 2-hydroxyl group, and ${ m R}^2$ represents an 5-hydroxyl group
---------	--

M.p. ^O C or R _f value	94-95	134-137 (dihydrochloride)	0,4 ^a (hydrochloride	dihydrate) 218-223
Yield %	09 .	75	. 56	. 32
C	11	v	٧.	
R3	0Et	SHO-Z SHO-SHO	$\sqrt{\sum_{j=1}^{N}(c_{H_2})^2}$	
Example No.	. 32	33	34	35

a ethyl acetate/methanol/ammonium hydroxide = 9:1:0.5 was used as eluent;

Example 36

15

25

30

Preparation of 4-[N-(2,5-dihydroxybenzoyl)amino]butyric acid

5 Step A) Preparation of the acylating component

To a suspension containing 7.52 g (49 mmol) of 2,5-dihydroxybenzoic acid in 50 ml of anhydrous toluene, 0.1 mol of anhydrous pyridine was added, then 7.18 g (60 mmol) of thionyl chloride were dropped to the solution while cooling at 10 °C under stirring. Subsequently, the reaction mixture was stirred at 60 °C for 6 hours, then the solution was decanted from the undissolved oil. The solution was evaporated at a temperature below 30 °C under reduced pressure and then evaporated to constant weight by a pump under a pressure of 1 Torr. The yellow foam obtained was immediately used in the next step. The product was obtained in a yield of 6.7 g, m.p.: 55-58 °C.

Step B) Acylation of the amino acid

4.33 g (42 mmol) of 4-aminobutyric acid were dissolved in a mixture containing 34 ml of water, 10 ml of dioxane and 11.5 ml (46 mmol) of 4 M sodium hydroxide solution and reacted with the acylating component obtained in the preceding step A) as described in Example 1 to give 2.4 g (42%) of the aimed compound, m.p.: 152-156 °C.

The compounds summarized in Table 10 were prepared as described in step A) and step B) above, respectively, from the corresponding dihydroxybenzoic acid and amino acid as starting substances.

	Compounds of the general formula (I)							
	Example No.	R ¹	R ²	R ³	n	Yield %	M.p. °C	
	37	2-OH	5-OH	ОH	4	28	144-146	
į	38	2-OH	3-OH	ОН	5	50	58-64	
	39	з-ОН	4-OH	ОН	3	53	159-163	

35 <u>Example 40</u>

Preparation of methyl 4-[N-(2,5-dihydroxybenzoyl)amino]butanoate

After dropwise adding 8.5 g (71 mmol) of thionyl chloride to 30 ml of anhydrous methanol at 10 °C during 30 minutes under cooling by ice while stirring, the solution was stirred at the same temperature for additional 45 minutes, then 5.1 g (20 mmol) of 4-[N-(2,5-dihydroxybenzoyl)amino]butyric acid (compound of Example 36) were portionwise added. The reaction mixture was allowed to warm to room temperature and stirred at 80 °C for 8 hours. After filtering the precipitate by suction and washing with methanol 3.7 g (68%) of the aimed compound were obtained, m.p.: 155-159 °C.

The following compound was prepared as described above by using the corresponding amino acid:

Methyl 6-[[N-(2,5-dihydroxybenzoyl)amino]hexanoate](compound of Example 41), yield 73%, m.p.: 100-103 °C.

Example 42

50

Preparation of methyl 6-[N-(2-hydroxy-3-methoxybenzoyl)amino] hexanoate

2.3 g (10 mmol) of 2-acetoxy-3-methoxybenzoyl chloride dissolved in 18 ml of anhydrous benzene were dropwise added to the suspension of 1.80 g (10 mmol) methyl 6-aminohexanoate hydrochloride in 2.2 g (22 mmol) of anhydrous triethylamine and 18 ml of anhydrous benzene under nitrogen at room temperature while stirring. After boiling under reflux for 2 hours while stirring, the reaction mixture was cooled down, the precipitate was filtered by suction and the filtrate was evaporated. 20 ml of water were portionwise added to the residue, the solution was extracted with ethyl acetate, the organic phase was washed with 1 M hydrochloric acid and water, then dried. The solvent was evaporated under reduced pressure. The residue was purified by chromatography on a silica gel column by using a 3:4 mixture of petroleum ether and ethyl acetate to obtain 1.62 g (55%) of the title compound, m.p.: 69-70 °C.

<u>Preparation of the novel starting substances</u> is illustrated by the following Example.

The novel benzoic acid derivatives of the general formula (II) can obtained e.g. as follows.

Preparation of 2-benzyloxy-5-butoxybenzoic acid

A suspension containing 1.9 g (9 mmol) of 5-butoxy-2-hydroxybenzoic acid, 3.85 g (30 mmol) of benzyl chloride and 5 g (36 mmol) of anhydrous potassium carbonate in 18 ml of anhydrous ethanol was boiled under reflux for 20 hours while stirring. The reaction mixture was cooled to room temperature and after adding 20 ml of water and thoroughly shaking, the three phases formed were separated. The medium phase was boiled under reflux with 1.1 g (27.5 mmol) of sodium hydroxide dissolved in 7 ml of ethanol and 5 ml of water for 2.5 hours under stirring. After cooling down the solution was mixed with 15 ml of water under cooling by ice, the pH value of the mixture was adjusted to 4 by adding 5 M hydrochloric acid and stirred for 1 hour. After extracting the product with ethyl acetate and drying, the solution was evaporated to dryness under reduced pressure to give 1.5 g (55%) of the aimed product, m.p.: 79-82 °C.

Claims

15

20

30

35

40

45

50

1. N-Benzoylamino acid derivatives of the general formula (I),

CONH(CH₂)_nCOR³

(I)

wherein

R¹ and R², which are the same or different, stand for a hydroxyl group optionally bearing an acetyl group; represents: hydroxyl group; C₁₋₁₀alkoxy group; or a C₁₋₄alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent; or an -NR⁴R⁵ group, where R⁴ and R⁵, which are the same or different, mean: hydrogen; hydroxyl group; C₁₋₁₂alkyl group; C₁₋₄alkyl group optionally substituted by a hydroxyl group or an amino group; or together with the adjacent nitrogen form an optionally substituted 5- or 6-membered heterocyclic group optionally containing an additional nitrogen atom, this heterocyclic group optionally bearing an acetyl group; R⁴ and R⁵

together with the adjacent nitrogen form an optionally substituted 5- or 6-membered heterocyclic group optionally containing an additional nitrogen atom, this heterocyclic group optionally being substituted by an ∞ group or an optionally phenyl-substituted C_{1-4} alkyl group or C_{3-5} alkenyl group; and when being piperazine, this heterocyclic group may be substituted also by a diaminopyrimidinyl or di(pyrrolidino)-pyrimidinyl group; and

means an integer from 2 to 15

with the proviso that:

when both R^1 and R^2 represent a hydroxyl group at the same time and n is 5, R^3 is not a hydroxyl group or a C_{1-10} alkoxy group;

as well as their tautomers, racemates and optically active individual (pure) isomers or mixtures thereof, the salts of these compounds and pharmaceutical preparations containing these compounds.

- 2. A compound as claimed in claim 1, wherein each of R¹, R² and R³ is hydroxyl group, and n is 3, 4 or 11.
- A compound as claimed in claim 1, wherein both R¹ and R² mean hydroxyl group, R³ means a C₁₋₁₀alkoxy group and n is 10 or 11.
 - 4. A compound as claimed in claim 1, wherein each of R¹ and R² is hydroxyl group, R³ means a C₁₋₁₀alkylamino group or a piperazinyl group substituted by a 3-phenylpropyl or di(pyrrolidino)pyrimidinyl group,

- 5. A pharmaceutical composition, which comprises as active ingredient one or more N-benzoylamino acid derivatives according to claims 1 to 4 or a tautomer or racemate or optically active individual (pure) isomer or a mixture thereof or a pharmaceutically salt thereof optionally in admixture with carriers and/or additives commonly used in the pharmaceutical industry.
- 6. A process for the preparation of the N-benzoylamino acid derivatives of any of claims 1 to 4, as well as their tautomers, racemates and optically active individual (pure) isomers or mixtures thereof, the salts of these compounds and pharmaceutical preparations containing these compounds, which is characterised by
 - a) reacting a benzoic acid of general formula (II),

5

10

15

20

25

30

35

45

50

55

wherein R¹ and R² are as defined in claim 1, or a derivative thereof suitable for acylating with a compound of the general formula (III),

$$H_2N(CH_2)_nCOR^3$$
 (III)

wherein R^3 means hydroxyl group, C_{1-10} alkoxy group or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent, and n is as defined in claim 1, to obtain compounds of the general formula (I), wherein R^3 means hydroxyl group, C_{1-10} alkoxy group or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent and R^1 , R^2 and n are as defined above; or

b) reacting a compound of general formula (i) prepared according to the process a) above, wherein R³ means hydroxyl group, and R¹, R² and n are as defined above, or a derivative thereof suitable for acylating, with a compound of the general formula R³H, wherein R³ means C₁₋₁₀alkoxy group or a C₁₋₄alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substitutent,

to obtain compounds of the general formula (I), wherein R^3 means C_{1-10} alkoxy group or a C_{1-4} alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent, and R^1 , R^2 and n are as defined above; or

c) reacting a compound of general formula (I) obtained according to the process b) above, wherein R^3 stands for a methoxy or ethoxy group, and R^1 , R^2 and n are as defined above, with an amine of the general formula R^4R^5NH ;

to obtain compounds of the general formula (I), wherein R³ means an R⁴R⁵N- group and R¹, R², R⁴, R⁵ and n are as defined above; or

d) reacting a compound of the general formula (I) obtained according to the process a) above, wherein R^3 means hydroxyl group, and R^1 , R^2 and n are as defined above, or a derivative thereof suitable for acylating, with an amine of the general formula R^4R^5NH .

to obtain compounds of the general formula (I), wherein R^3 stands for an R^4R^5N - group, R^1 and R^2 are as defined above, except the hydroxyl group, and R^4 , R^5 and n are as defined above; or

e) preparing a compound of the general formula (I) according to any of the processes a) - d) above, wherein one of R¹ and R² is a benzyloxy group and the other one is as defined above or both R¹ and R² are benzyloxy groups, and R³ and n are as defined above, and hydrogenating the thus obtained compound to obtain compounds of the general formula (I), wherein one of R¹ and R² is hydroxyl group and the other one is as defined above, or both R¹ and R² represent hydroxyl groups, and R³ and n are as defined above; or

f) hydrogenating a compound of the general formula (I), prepared according to any of the processes c), d) or
 e) above, wherein R³ stands for a 4-(3-phenyl-2-propenyl)piperazinyl group and R¹, R² and n are as defined above.

to obtain compounds of the general formula (I), wherein R³ means a 4-(3-phenylpropyl)piperazinyl group, R¹ and R² are as defined above and n is as defined above,

and, if desired, removing (a) protective group(s) optionally being present in the $\rm R^1$ and/or $\rm R^2$ group(s) from the compound of general formula (I) obtained and, if desired, converting a compound of general formula (I) obtained to its salt and/or transforming a salt thereof to an other salt thereof and/or, if desired, liberating the free acid or base from a salt of a compound of the general formula (I).

- 7. A process for the preparation of a pharmaceutical composition which is characterised by mixing as active ingredient a N-benzoytamino acid derivative according to claims 1 to 4 or prepared according to claim 6 or a tautomer form or optically active individual (pure) isomer or a racemic mixture thereof or a pharmaceutically acceptable salt thereof with carriers and/or additives commonly used in the pharmaceutical industry and transforming them to a pharmaceutical composition.
- Use of the compounds of formula (I)

CONH(CH₂)_nCOR³

(I)

wherein

 R^3

R4 and R5

10

15

30

35

50

R¹ and R², which are the same or different, stand for a hydroxyl group optionally bearing an acetyl group; or a C₁₋₆alkoxy group optionally substituted by a phenyl group;

represents: hydroxyl group; C₁₋₁₀alkoxy group; or a C₁₋₄alkoxy group optionally substituted by a phenoxy group optionally bearing a nitrogen-containing substituent; or an -NR⁴R⁵ group, where R⁴ and R⁵, which are the same or different, mean: hydroxyl group; C₁₋₁₂alkyl group; C₁₋₄alkyl

group optionally substituted by a hydroxyl group or an amino group; or together with the adjacent nitrogen form an optionally substituted 5- or 6-membered heterocyclic group optionally containing an additional nitrogen atom, this heterocyclic group optionally being substituted by an oxo group or an optionally phenyl-substituted $C_{1.4}$ alkyl group or $C_{3.5}$ alkenyl group; and when being piperazine, this heterocyclic group may be substituted also by a diaminopyrimidinyl or di(pyrrolidino)-pyrimidinyl group; and

means an integer from 2 to 15

with the proviso that:

when R^3 means hydroxyl group and n is 5, as well as one of R^1 and R^2 means a 4-hydroxyl group, then the other one of R^1 and R^2 is different from a 3-hydroxyl or 3-methoxy group; and when n is 2 or 3, then R^1 and R^2 cannot simultaneously stand for 2- and 3-methoxy group,

as well as their tautomers, racemates and optically active individual (pure) isomers or mixtures thereof, the salts of these compounds and pharmaceutical preparations containing these compounds for the preparation of medicaments for the treatment of patients suffering from disorders being in an indirect or direct connection with pathological oxidation processes occurring in the organism, particularly ischaemic and reperfusion tissue injuries, inflammations, atherosclerosis, or degenerative neurological disorders.

Patentansprüche

1. N-Benzoylaminosäure-Derivate der allgemeinen Formel (I),

(I)

wobei

15

10

R¹ und R², die gleich oder verschieden sind, für eine gegebenenfalls eine Acetylgruppe tragende Hydroxylgruppe stehen;

R³ darstellt: Hydroxylgruppe; C₁₋₁₀Alkoxygruppe; oder eine

20

 C_{1-4} Alkoxygruppe, die gegebenenfalls durch eine Phenoxygruppe substituiert ist, welche gegebenenfalls einen stickstoffhaltigen Substituenten trägt; oder eine -NR 4 R 5 -Gruppe, wobei R 4 und R 5 , die gleich oder verschieden sind, bedeuten: Wasserstoff; Hydroxylgruppe; C_{1-12} Alkylgruppe; C_{1-4} Alkylgruppe, die gegebenenfalls durch eine Hydroxylgruppe oder eine Aminogruppe substituiert ist; oder

25

R⁴ und R⁵ gemeinsam mit dem benachbarten Stickstoff eine gegebenenfalls substituierte 5- oder 6-gliedrige heterocyclische Gruppe bilden, die gegebenenfalls ein zusätzliches Stickstoffatom enthält, wobei diese heterocyclische Gruppe gegebenenfalls durch eine Oxogruppe oder eine gegebenenfalls Phenyl-substituierte

30

C_{1.4}Alkylgruppe oder C_{3.5}Alkenylgruppe substituiert ist; und wobei diese heterocyclische Gruppe, falls sie Piperazin ist, durch eine Diaminopyrimidinyl- oder Di(pyrrolidino)pyrimidinyl-Gruppe substituiert sein kann; und

n eine ganze Zahl von 2 bis 15 bedeutet,

unter der Voraussetzung, daß:

wenn sowohl R^1 als auch R^2 gleichzeitig eine Hydroxylgruppe darstellen und n 5 ist, R^3 keine Hydroxylgruppe oder C_{1-10} Alkoxygruppe ist;

und ihre Tautomere, Racemate und optisch aktiven einzelnen (reinen) Isomere oder deren Mischungen, die Salze dieser Verbindungen und diese Verbindungen enthaltende pharmazeutische Präparate.

 Verbindung wie in Anspruch 1 beansprucht, wobei R¹, R² und R³ jeweils eine Hydroxylgruppe ist und n 3, 4 oder 11 ist

‡5

55

- Verbindung wie in Anspruch 1 beansprucht, wobei sowohl R¹ als auch R² eine Hydroxylgruppe bedeuten, R³ eine C₁₋₁₀Alkoxygruppe bedeutet und n 10 oder 11 ist.
- Verbindung wie in Anspruch 1 beansprucht, wobei sowohl R¹ als auch R² eine Hydroxylgruppe ist, R³ eine C₁.
 Alkylaminogruppe oder eine Piperazinylgruppe ist, die durch eine 3-Phenylpropyl- oder Di(pyrrolidino)pyrimidinyl-Gruppe substituiert ist.
 - 5. Pharmazeutische Zusammensetzung, die als aktiven Bestandteil ein oder mehr N-Benzoylaminosäure-Derivate nach Ansprüchen 1 bis 4 oder ein Tautomer oder Racemat oder optisch aktives einzelnes (reines) Isomer oder eine Mischung davon oder ein pharmazeutisch verträgliches Salz davon umfaßt, gegebenenfalls im Gemisch mit Trägern und/oder Additiven, die üblicherweise in der pharmazeutischen Industrie eingesetzt werden.
 - Verfahren zur Herstellung der N-Benzoylaminosäure-Derivate nach einem der Ansprüche 1 bis 4, genauso wie ihrer Tautomere, Racemate und optisch aktiven einzelnen (reinen) Isomere oder deren Mischungen, der Salze die-

ser Verbindungen und diese Verbindungen enthaltenden pharmazeutischen Präparate, welches charakterisiert ist durch

a) Umsetzung einer Benzoesäure der allgemeinen Formel (II)

5

10

15

20

25

35

40

50

55

wobei \mathbb{R}^1 und \mathbb{R}^2 wie in Anspruch 1 definiert sind, oder eines für die Acylierung geeigneten Derivates davon mit einer Verbindung der allgemeinen Formel (III)

$$H_2N(CH_2)_nCOR^3$$
 (III)

wobei R^3 Hydroxylgruppe, C_{1-10} Alkoxygruppe oder eine C_{1-4} Alkoxygruppe bedeutet, die gegebenenfalls durch eine Phenoxygruppe substituiert ist, die gegebenenfalls einen stickstoffhaltigen Substituenten trägt, und n wie in Anspruch 1 definiert ist,

zur Herstellung von Verbindungen der allgemeinen Formel (I), wobei R^3 Hydroxylgruppe, C_{1-10} Alkoxygruppe oder C_{1-4} Alkoxygruppe bedeutet, die gegebenenfalls durch eine Phenoxygruppe substituiert sein kann, die gegebenenfalls einen stickstoffhaltigen Substituenten trägt, und R^1 , R^2 und n wie oben definiert sind; oder

b) Umsetzung einer nach dem obigen Verfahren a) hergestellten Verbindung der allgemeinen Formel (I), wobei R³ Hydroxylgruppe bedeutet und R¹, R² und n wie oben definiert sind, oder eines für die Acylierung geeigneten Derivates davon mit einer Verbindung der allgemeinen Formel R³H, wobei R³ C₁₋₁₀Alkoxygruppe oder C₁. 4Alkoxygruppe bedeutet, die gegebenenfalls durch eine Phenoxygruppe substituiert sein kann, die gegebenenfalls einen stickstoffhaltigen Substituenten trägt,

zur Herstellung von Verbindungen der allgemeinen Formel (I), wobei R^3 C_{1-10} Alkoxygruppe oder eine C_{1-4} Alkoxygruppe bedeutet, die gegebenenfalls durch eine Phenoxygruppe substituiert sein kann, die gegebenenfalls einen stickstoffhaltigen Substituenten trägt, und R^1 , R^2 und n wie oben definiert sind; oder

c) Umsetzung einer nach dem obigen Verfahren b) erhaltenen Verbindung der allgemeinen Formel (I), wobei R³ für eine Methoxy- oder Ethoxygruppe steht und R¹, R² und n wie oben definiert sind mit einem Amin der allgemeinen Formel R⁴R⁵NH;

zur Herstellung von Verbindungen der allgemeinen Formel (I), wobei R³ eine R⁴R⁵N-Gruppe bedeutet und R¹, R², R⁴, R⁵ und n wie oben definiert sind; oder

d) Umsetzung einer nach dem obigen Verfahren a) erhaltenen Verbindung der allgemeinen Formel (I), wobei R³ Hydroxylgruppe bedeutet und R¹, R² und n wie oben definiert sind, oder eines für die Acylierung geeigneten Derivates davon mit einem Amin der allgemeinen Formel R⁴R⁵NH,

zur Herstellung von Verbindungen der allgemeinen Formel (I), wobei R³ für eine R⁴R⁵N-Gruppe steht, R¹ und R² wie oben definiert sind, mit Ausnahme von Hydroxylgruppe, und R⁴, R⁵ und n wie oben definiert sind, oder

e) Herstellung einer Verbindung der allgemeinen Formel (I) nach einem der obigen Verfahren a) bis d), wobei einer von R^1 und R^2 eine Benzyloxygruppe ist und der andere wie oben definiert ist oder sowohl R^1 als auch R^2 Benzyloxygruppen sind und R^3 und

f) Hydrieren einer nach den obigen Verfahren c), d) oder e) hergestellten Verbindung der allgemeinen Formel

(I), wobei R³ für eine 4-(3-Phenyl-2-propenyl)piperazinyl-Gruppe steht und R¹, R² und n wie oben definiert sind,

zur Herstellung von Verbindungen der allgemeinen Formel (I), wobei R³ eine 4-(3-Phenylpropyl)piperazinyl-Gruppe bedeutet, R¹ und R² wie oben definiert sind und n wie oben definiert ist,

und, falls gewünscht, Entfernen von gegebenenfalls in den R¹- und/oder R²-Gruppe(n) vorhandenen Schutzgruppe(n) aus der Verbindung der allgemeinen Formel (I), und, falls gewünscht, Umwandeln einer Verbindung der allgemeinen Formel (I) in ihr Salz und/oder Umwandeln eines Salzes davon in ein anderes Salz davon und/oder, falls gewünscht, Freisetzen der freien Saure oder Base aus einem Salz der Verbindung der allgemeinen Formel (I).

- 7. Verfahren zur Herstellung einer pharmazeutischen Zusammensetzung, das charakterisiert ist durch Mischen eines N-Benzoylaminosäure-Derivates nach den Ansprüchen 1 bis 4, oder das hergestellt wurde nach Ansprüch 6, oder einer tautomeren Form oder eines optisch aktiven einzelnen (reinen) Isomeren oder einer racemischen Mischung davon oder eines pharmazeutisch verträglichen Salzes davon als aktiven Bestandteil mit Trägern und/oder Additiven, die üblicherweise in der pharmazeutischen Industrie verwendet werden, und Umwandeln in eine pharmazeutische Zusammensetzung.
- 8. Verwendung von Verbindungen der Formel (I)

(I)

wobei

5

10

15

20

25

30

35

40

45

55

R¹ und R², die gleich oder verschieden sind, für eine gegebenenfalls eine Acetylgruppe tragende Hydroxylgruppe stehen oder für eine

C₁₋₆Alkoxygruppe, die gegebenenfalls durch eine Phenylgruppe substituiert ist;

R3 darstellt: Hydroxylgruppe; C₁₋₁₀Alkoxygruppe; oder eine

C₁₋₄Alkoxygruppe, die gegebenenfalls durch eine Phenoxygruppe substituiert ist, welche gegebenenfalls einen stickstoffhaltigen Substituenten trägt; oder eine -NR⁴R⁵-Gruppe, wobei R⁴ und R⁵, die gleich oder verschieden sind, bedeuten: Wasserstoff; Hydroxylgruppe; C₁₋₁₂Alkylgruppe; C₁₋₄Alkylgruppe, die gegebenenfalls durch eine Hydroxylgruppe oder eine Aminogruppe substituiert ist; oder

R⁴ und R⁵ gemeinsam mit dem benachbarten Stickstoffatom eine gegebenenfalls substituierte 5- oder 6-gliedrige heterocyclische Gruppe bilden, die gegebenenfalls ein zusätzliches Stickstoffatom enthält, wobei diese heterocyclische Gruppe gegebenenfalls durch eine Oxogruppe oder eine gegebenenfalls Phenyl-substituierte

C₁₋₄Alkylgruppe oder C₃₋₅Alkenylgruppe substituiert sein kann; und wobei diese heterocyclische Gruppe, wenn sie Piperazin ist, auch durch eine Diaminopyrimidinyl- oder Di(pyrrolidino)pyrimidinyl-Gruppe substituiert sein kann; und

n eine ganze Zahl von 2 bis 15 bedeutet,

unter der Voraussetzung, daß:

wenn R³ eine Hydroxylgruppe bedeutet und n 5 ist, und wenn einer von R¹ und R² eine 4-Hydroxylgruppe bedeutet, dann der andere von R¹ und R² von einer 3-Hydroxylgruppe oder 3-Methoxygruppe verschieden ist;

und wenn n 2 oder 3 ist, R¹ und R² nicht gleichzeitig für eine 2- und 3-Methoxygruppe stehen können,

und ihre Tautomere, Racemate und optisch aktiven einzelnen (reinen) Isomere oder deren Mischungen, die Salze dieser Verbindungen und diese Verbindungen enthaltende pharmazeutische Präparate für die Herstellung eines Medikaments für die Behandlung von Patienten, die an Erkrankungen leiden, welche in indirekter oder direkter Verbindung mit pathologischen Oxidationsprozessen stehen, die in Organismen auftreten, insbesondere ischämischen und Repertusions-Gewebeverletzungen, Entzündungen, Atherosklerose oder degenerativen neurologischen Erkrankungen.

10 Revendications

15

20

35

40

45

1. Dérivés de N-benzoylaminoacide de formule générale (I) :

CONALC

CONH(CH₂)_nCOR³

(I)

dans laquelle

R4 et R5

R¹ et R², qui sont identiques ou différents, représentent un groupe hydroxyle comportant éventuellement un groupe acétyle ;

R³ représente un groupe hydroxyle un groupe alloxy en Co-Co-signue alloxy en Co-Co-signue alloxy.

représente un groupe hydroxyle, un groupe alkoxy en C_1 - C_{10} ; ou un groupe alkoxy en C_1 - C_4 éventuellement substitué avec un groupe phénoxy comportant éventuellement un substituant azoté; ou un groupe -NR⁴R⁵, dans lequel R⁴ et R⁵, qui sont identiques ou différents, représentent un atome d'hydrogène; un groupe hydroxyle; un groupe alkyle en C_1 - C_{12} ; un groupe alkyle en C_1 - C_4 éventuellement substitué avec un groupe hydroxyle ou un groupe amino; ou

forment ensemble avec un groupe nydroxyte ou un groupe amino; ou forment ensemble avec l'atome d'azote adjacent un groupe hétérocyclique à 5 ou 6 chaînons éventuellement substitué, comportant éventuellement un atome d'azote supplémentaire, ce groupe hétérocyclique étant éventuellement substitué avec un groupe oxo ou un groupe alkyle en C₁-C₄ comportant éventuellement un substituant phényle ou un groupe alcényle en C₃-C₅; et lorsqu'il s'agit d'un groupe pipérazine, ce groupe hétérocyclique peut être également substitué avec un groupe diaminopyrimidinyle ou di(pyrrolidino)pyrimidinyle; et

n représente un entier de 2 à 15 ;

à condition que :

lorsque tant R^1 que R^2 représentent simultanément un groupe hydroxyle, et que n est égal à 5, R^3 ne représente pas un groupe hydroxyle ou un groupe alkoxy en C_1 - C_{10} ;

ainsi que leurs tautomères, leurs racémates et leurs isomères individuels optiquement actifs (purs) ou leurs mélanges, les sels de ces composés et les compositions pharmaceutiques contenant ces composés.

- Composé selon la revendication 1, dans lequel chacun des groupes R¹, R² et R³ représente un groupe hydroxyle, et n est égal à 3, 4 ou 11.
- Composé selon la revendication 1, dans lequel tant le groupe R¹ que le groupe R² représentent un groupe hydroxyle, R³ représente un groupe alkoxy en C₁-C₁₀ et n est égal à 10 ou 11.
 - 4. Composé selon la revendication 1, dans lequel chacun des groupes R¹ et R² représente un groupe hydroxyle, R³ représente un groupe alkylamino en C₁-C₁₀ ou un groupe pipérazinyle substitué avec un groupe 3-phénylpropyle ou di(pyrrolidino)pyrimidinyle.

- 5. Composition pharmaceutique comprenant, comme ingrédient actif, un ou plusieurs dérivés de N-benzoylaminoacide selon les revendications 1 à 4, ou un tautomère, un racémate, un isomère, individuel optiquement actif (pur), un mélange de ceux-ci ou un sel pharmaceutiquement acceptable de celui-ci, éventuellement en mélange avec des véhicules et/ou des additifs habituellement utilisés dans l'industrie pharmaceutique.
- 6. Procédé de préparation des dérivés de N-benzoylaminoacide selon l'une quelconque des revendications 1 à 4, ainsi que de leurs tautomères, de leurs racémates et de leurs isomères individuels optiquement actifs (purs), des sels de ces composés et des compositions pharmaceutiques contenant ces composés, caractérisé en ce qu'il comprend les étapes consistant :
 - a) à faire réagir un acide benzoïque de formule générale (II),

5

10

15

25

35

40

45

50

55

dans laquelle R¹ et R² sont tels que définis dans la revendication 1, ou un dérivé de celui-ci approprié pour une acylation;

avec un composé de formule générale (III)

$$H_2N(CH_2)_nCOR^3$$
 (III)

dans laquelle R^3 représente un groupe hydroxyle, un groupe alkoxy en C_1 - C_{10} ou un groupe alkoxy en C_1 - C_4 éventuellement substitué avec un groupe phénoxy comportant éventuellement un substituant azoté, et n est tel que défini dans la revendication 1, pour obtenir des composés de formule générale (I) dans laquelle R^3 représente un groupe hydroxyle, un groupe alkoxy en C_1 - C_1 0 ou un groupe alkoxy en C_1 - C_4 4 éventuellement substitué avec un groupe phénoxy comportant éventuellement un substituant azoté, et R^1 , R^2 et n sont tels que définis ci-dessus : ou

b) à faire réagir un composé de formule générale (I) préparé selon le procédé a) mentionné ci-dessus, dans laquelle R³ représente un groupe hydroxyle, et R¹, R² et n sont tels que définis ci-dessus, ou un dérivé de celui-ci approprié pour une acylation, avec un composé de formule générale R³H dans laquelle R³ représente un groupe alkoxy en C₁-C₁ ou un groupe alkoxy en C₁-C₄ éventuellement substitué avec un groupe phénoxy comportant éventuellement un substituant azoté,

pour obtenir des composés de formule générale (I) dans laquelle ${\rm R}^3$ représente un groupe alkoxy en ${\rm C}_1$ - ${\rm C}_1$ ou un groupe alkoxy en ${\rm C}_1$ - ${\rm C}_4$ éventuellement substitué avec un groupe phénoxy comportant éventuellement un substituant azoté, et ${\rm R}^1$, ${\rm R}^2$ et n sont tels que définis ci-dessus ; ou

c) à faire réagir un composé de formule générale (I) obtenu selon le procédé b) mentionné ci-dessus, dans laquelle ${\sf R}^3$ représente un groupe méthoxy ou éthoxy, et ${\sf R}^1$, ${\sf R}^2$ et n sont tels que définis ci-dessus, avec une amine de formule générale ${\sf R}^4{\sf R}^5{\sf NH}$;

pour obtenir des composés de formule générale (I) dans laquelle R³ représente un groupe R⁴R⁵N-, et R¹, R², R⁴, R⁵ et n sont tels que définis ci-dessus ; ou

 d) à faire réagir un composé de formule générale (I) obtenu selon le procédé a) mentionné ci-dessus, dans laquelle R³ représente un groupe hydroxyle, et R¹, R² et n sont tels que définis ci-dessus, ou un dérivé de celui-ci approprié pour une acylation, avec une amine de formule générale R⁴R⁵NH,

pour obtenir des composés de formule générale (I) dans lesquels R³ représente un groupe R⁴R⁵N-, R¹ et R² étant tels que définis ci-dessus, à l'exception du groupe hydroxyle, et R⁴, R⁵ et n sont tels que définis ci-dessus : ou

e) à préparer un composé de formule générale (I) selon l'un quelconque des procédés a) à d) mentionnés cidessus, dans laquelle l'un des groupes R¹ et R² représente un groupe benzyloxy et l'autre un groupe tel que défini ci-dessus, ou tant le groupe R¹ que le groupe R² représentent un groupe benzyloxy, et R³ ainsi que n sont tels que définis ci-dessus, et à hydrogéner le composé ainsi obtenu pour obtenir des composés de for-

mule générale (I) dans laquelle l'un des groupes R^1 et R^2 représente un groupe hydroxyle et l'autre est tel que défini ci-dessus, ou tant le groupe R^1 que le groupe R^2 représentent un groupe hydroxyle, et R^3 ainsi que n sont tels que définis ci-dessus ; ou

f) à hydrogéner un composé de formule générale (I) préparé selon l'un quelconque des procédés c), d) et e) mentionnés ci-dessus, dans laquelle R³ représente un groupe 4-(3-phényl-2-propényl)pipérazinyle, et R¹, R² et n sont tels que définis ci-dessus, pour obtenir des composés de formule générale (I) dans lesquels R³ représente un groupe 4-(3-phénylpropyl)pipérazinyle, R¹ et R² sont tels que définis ci-dessus, et n est tel que défini ci-dessus, et

on élimine, si on le souhaite, un ou plusieurs groupes protecteurs éventuellement présents dans les groupes R¹ et/ou R² du composé de formule générale (I) obtenu et, si on le souhaite, on convertit un composé de formule générale (I) obtenu en son set et/ou on transforme un set de celui-ci en un autre set de celui-ci et/ou, si on le souhaite, on libère l'acide ou la base libre à partir d'un set d'un composé de formule générale (I).

- 7. Procédé de préparation d'une composition pharmaceutique, caractérise en ce que l'on mélange, comme ingrédient actif, un dérivé de N-benzoylaminoacide selon les revendications 1 à 4, ou préparé selon la revendication 6, ou une forme tautomère, un isomère individuel optiquement actif (pur), un mélange racémique de celui-ci ou un sel pharmaceutiquement acceptable de celui-ci avec des véhicules et/ou des additifs habituellement utilisés dans l'industrie pharmaceutique, et on les transforme en une composition pharmaceutique.
- 8. Utilisation des composés de formule générale (I) :

CONH(CH₂)_nCOR³

$$R^{1} R^{2}$$
(I)

dans laquelle

35

40

45

50

55

10

R¹ et R², qui sont identiques ou différents, représentent un groupe hydroxyle comportant éventuellement un groupe acétyle ; ou un groupe alkoxy en C₁-C₆ éventuellement substitué avec un groupe phényle ; représente un groupe hydroxyle, un groupe alkoxy en C₁-C₁₀ ; ou un groupe alkoxy en C₁-C₄ éventuellement substitué avec un groupe phénoxy comportant éventuellement un substituant azoté ; ou un groupe ·NR⁴R⁵, dans lequel R⁴ et R⁵, qui sont identiques ou différents, représentent un atome d'hydrogène ; un groupe hydroxyle ; un groupe alkyle en C₁-C₁₂ ; un groupe alkyle en C₁-C₄ éventuellement substitué avec un groupe hydroxyle ou un groupe amino ; ou

tuellement substitué avec un groupe hydroxyle ou un groupe amino ; ou forment ensemble avec l'atome d'azote adjacent un groupe hétérocyclique à 5 ou 6 chaînons éventuellement substitué, comportant éventuellement un atome d'azote supplémentaire, ce groupe hétérocyclique étant éventuellement substitué avec un groupe oxo ou un groupe alkyle en C₁-C₄ comportant éventuellement un groupe phényle ou un groupe alcényle en C₃-C₅; et, lorsqu'il s'agit d'un groupe pipérazine, ce groupe hétérocyclique peut être également substitué avec un groupe diaminopyrimidinyle ou un groupe di(pyrrolidino)pyrimidinyle; et

à condition que :

lorsque R^3 représente un groupe hydroxyle et que n est égal à 5, ainsi que lorsque l'un des groupes R^1 et R^2 représente un groupe 4-hydroxyle, l'autre des groupes R^1 et R^2 est différent d'un groupe 3-hydroxyle ou 3-méthoxy; et

lorsque n est égal à 2 ou 3, R^1 et R^2 ne peuvent alors pas représenter simultanément des groupes 2- et 3-méthoxy,

ainsi que leurs tautomères, leurs racémates et leurs isomères individuels optiquement actifs (purs) ou leurs mélan-

ges, les sels de ces composés et les compositions pharmaceutiques contenant ces composés, pour la préparation de médicaments destinés au traitement de patients souffrant de troubles indirectement ou directement liés à des processus d'oxydation pathologique dans l'organisme, en particulier des lésions tissulaires ischémiques et de reperfusion, des inflammations, une athérosclérose ou des troubles neurologiques dégénératifs.