ODE Model — mmt base 1

Bijou M. Smith

July 24, 2025

Table 1: Parameters			
Name	Symbol	Value	
K	K	100.0	
nu	ν	2.5	
alpha	α	0.02	
N	N	100.0	
J	J	0.5	
$jg_{-}wage$	w_j	0.9	
phi	ϕ	1.0	
gamma	γ	0.05	
varphi	φ	1.0	
u_init	u_0	0.8	
P_init	P_0	1.0	
phi0	ϕ_0	0.03	

Table 2: Name	Initial Co Symbol	
Pi	П	1.0
Y	Y	50.0
u	u	0.6
lambda	λ	0.9

Auxiliary Equations

$$Y_j = \varphi \cdot (1 - \lambda) \cdot N \cdot J$$
$$Y_r = K/\nu$$

$$\Phi = \phi_0 \cdot (\lambda/(1-\lambda))$$

ODE Equations

$$\frac{d\lambda}{dt} = \lambda \cdot (\gamma \cdot (1 - \omega) - \alpha)$$

$$\frac{d\omega}{dt} = \omega \cdot (\Phi - \alpha)$$

$$\frac{du}{dt} = u \cdot (\Phi + (\omega/\lambda) \cdot \frac{d\lambda}{dt} + (1/P) \cdot \frac{dP}{dt} - \alpha)$$

$$\frac{dP}{dt} = \Phi + 0.01 \cdot (\omega - w_j)$$