Дифференциальные уравнения Дифференциальные уравнения I-го порядка

Тип	иальные уравнения д Вид уравнения	Особенность	Метод решения
уравнения		уравнения	
Уравнения с разделяю- щимися перемен- ными	$P_1(x)Q_1(y)dx + P_2(x)Q_2(y)dy = 0$ $y' = f_1(x) \cdot f_2(y)$	Коэффициенты при dx и dy представляют собой произведения двух функций, одна из которых зависит от x, а другая только от у	$\int \frac{P_1(x)}{P_2(x)} dx + \int \frac{Q_2(y)}{Q_1(y)} dy = c$ $y' = \frac{dy}{dx}$
однородное	$P(x,y)dx + Q(x, y)dy = 0$ $y' = \varphi(\frac{y}{x})$	Р(х,у) и Q(х, у) -однородные функции одного порядка	$\frac{y}{x} = u y = u \cdot x$ $y = u \cdot x + u$ $dy = x \cdot du + u \cdot dx$
линейное	$y' + p(x) \cdot y = g(x)$	Искомая функция у и её производная у входят в уравнение в первой степени, не перемножаясь между собой	$y = uv$ подстановка $y = (\int g(x) \cdot e^{\int p(x)dx} dx + c) \cdot e^{-\int p(x)dx}$
Бернулли	$y' + p(x) \cdot y = g(x)$ $\cdot y^{n}$ $n \in R, \qquad n \neq 0, n$ $\neq 1$		$y = u \cdot v$

Уравнения, допускающие понижение порядка

Тип уравнения	Метод решения		
$y^{(n)} = f(x)$	Порядок понижается путём последовательного интегрирования n раз		
y'' = f(x, y')	y'=t, p=t(x), y''=t'		
$y^{,,}=f(y,y^{,})$	$y' = p$, $p = p(y)$, $y'' = p \cdot p' = p \cdot \frac{dp}{dy}$		

Линейные однородные дифференциальные уравнения с постоянными коэффициентами

 $y'' + p \cdot y' + gy = 0$ р и g – некоторые числа.

 $k^2 + p \cdot k + g = 0$ - характеристическое уравнение

При решении характеристического уравнения возможны случаи

дискриминант	корни	Частное решение	Общее решение
D> 0	$k_1 \neq k_2$	$y_1 = e^{k_1(x)}$ $y_2 = e^{k_2(x)}$	$y = c_1 e^{k_1(x)} + c_2 e^{k_2(x)}$
D=0	$k_1 = k_2$	$y_1 = e^{k_1(x)}$ $y_2 = xe^{k_2(x)}$	$y = (c_1 + c_2 x) \cdot e^{k_1(x)}$
D< 0	$k_1 = \alpha + \beta i$ $k_2 = \alpha - \beta i$	$y_1 = e^{(\alpha + \beta i)x}$ y_2 $= e^{(\alpha - \beta i)x}$	$y = e^{\alpha x} (c_1 cos \beta x + c_2 sin \beta x)$

ЛНДУ второго порядка с постоянными коэффициентами и правой частью специального вида

 $y'' + p \cdot y' + gy = f(x)$ р и g – некоторые числа.

 $y = y_{\text{o.o}} + y_{\text{ч.н.}}$ - общее решение

Случай 1. Правая часть уравнения $y'' + p \cdot y' + gy = f(x)$ имеет вид $f(x) = P_n(x) \cdot e^{\alpha x}$

 $lpha \epsilon R$, $P_n(x)$ -многочлен степени n.

В этом случае частное решение $y_{\text{ч.н.}} = x^r \cdot Q_n(x) \cdot e^{\alpha x}$

r- число, показывающее, сколько раз \propto является корнем характеристического уравнения $k^2 + p \cdot k + g = 0$

 $Q_n(x)$ - многочлен степени n, записанный с неопределёнными коэффициентами

Случай 2. Правая часть имеет вид $f(x) = e^{\alpha x}(P_n(x)cos\beta x + Q_m(x)sin\beta x)$ $P_n(x)$, $Q_m(x)$ - многочлены степени n и m соответственно, α , β - действительные числа

В этом случае частное решение $y_{\text{ч.н.}} = x^r \cdot e^{\alpha x} (M_l(x) cos \beta x + N_l(x) sin \beta x)$ г- число, равное кратности $\alpha + \beta i$ как корня характеристического уравнения $k^2 + p \cdot k + g = 0$

 $M_l(x)$ и $N_l(x)$ - многочлены степени l с неопределёнными коэффициентами l- наивысшая степень многочленов $P_n(x)$, $Q_m(x)l = \max(n.m)$