



# Modeling







### **Data Science Projects**

#### Bussiness Understanding

- BusinessObjectives
- Technical constraints
- ProjectPlanning

# Data Understanding

- Raw Data
- Graphics
- QualityVerification

#### Data Preparation

- Cleaning: empty values, outlayers
- Feature selection

#### Modeling

- Model selection
- Parameters selection

#### Evaluation

- Technical evaluation
- Business utility

#### Deployment

- Results presentation
- Application Architecture

- Modeling is only 20% of the total effort
- As a consequence, Data Science is not about learning algorithms. Is about dealing with data in a comprehensive and systematic way to select the best algorithms and apply them correctly
- You must use a systematic approach to develop data science projects





### What is Modeling

- Fit a function to parameters to obtain a result as close as possible to the related outputs
- Dataset (first five lines of csv sample):

```
"preg";"plas";"pres";"skin";"test";"mass";"pedi";"age";"class"
6;148;72;35;0;33.6;0.627;50;1
1;85;66;29;0;26.6;0.351;31;0
8;183;64;0;0;23.3;0.672;32;1
1;89;66;23;94;28.1;0.167;21;0
0;137;40;35;168;43.1;2.288;33;1
. . .
```

- Inputs (features or attributes): preg, plas, skin, test, mass, pedi, age
- Outputs: class
- Modeling: to find a function f such that f(inputs) is as close to outputs as possible.
  - The 'closeness' is measured by using a loss function, dependent of the kind of model and the problem.
  - We have available a list of 'models' in our machine library. Once one model is chosen, the library will fit the model parameters minimizing the loss function for the given inputs.





### What is Modeling

- In the programs we will use the following naming conventions:
  - Inputs -> X
  - Output -> y (usually is a vector but not necessarily)
- In the example:

```
X =
6 148 72 35 0 33.6 0.627 50
1 85 66 29 0 26.6 0.351 31
8 183 64 0 0 23.3 0.672 32
1 89 66 23 94 28.1 0.167 21
0 137 40 35 168 43.1 2.288 33
```

- **y** =
  - 1
  - 0
  - 1
  - 0
  - 1



### Models

#### Model types

- Regression / Classification
- Supervised / Unsupervised / Semi-supervised
- Unsupervised Classification = Clustering / Association (rule-based)
- Unsupervised Regression = ???

|            | Supervised Learning              | Unsupervised Learning    |
|------------|----------------------------------|--------------------------|
| Discrete   | classification or categorization | clustering               |
| Continuous | regression                       | dimensionality reduction |

Source: https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d





### **Typical Models**

The source: <a href="https://scikit-learn.org/stable/supervised\_learning.html">https://scikit-learn.org/stable/supervised\_learning.html</a>

- Classification
  - Logistic regression
  - Nearest Neighbors (KNeighbors, RadiusNeighbors)
  - Decision Trees
  - Support Vector Machines
  - Neural Networks
- Regression
  - Linear Regression
  - Regularizations: Ridge and Lasso
  - Elastic-Net (combination of Ridge and Lasso)
  - Support Vector Machines (SVR)
  - XGBoost
  - Neural <u>Networks</u>
- Clustering
  - k-means (convex surfaces)
  - Autoencoders





#### **Cross Validation**

- Why do we need cross validation?
- What is cross validation?

|              | Train        |              | Test |
|--------------|--------------|--------------|------|
| Test Split 1 |              |              |      |
|              | Test Split 2 |              |      |
|              |              | Test Split 3 |      |

Scikit learn:

```
from sklearn import metrics
scores = cross_val_score(clf, X, y, cv=3, scoring='f1_macro')
```

Stratified cross validation





#### Hyper-parameter tuning

- Why hyper-parameter tuning?
- What do you need to tune parameters?
  - Parameter space (to calculate the parameters combinations)
  - Method for sampling candidates
  - Cross validation and score function
- Methods
  - Exhaustive grid search
  - Randomized optimization
  - Tournament or successive halving (saving resources). Can be used for the two methods above

https://scikit-learn.org/stable/modules/grid\_search.html





#### Scores

- Regression Scores
  - Mean squared error / mean absolute error / max error...
  - Mean squared logarithmic
  - Explained variance
- Classification Scores
  - Accuracy
  - Confusion matrix
  - Receiver Operating Characteristic and Area Under the Curve



#### Session 4 – Modeling

# **Model Selection**

#### Scores – Confusion Matrix

### **Predicted**

**Actual** 

|          | Negative | Positive |
|----------|----------|----------|
| Negative | 123      | 2        |
| Positive | 6        | 432      |

Accuracy: (TN + TP) / samples





#### Scores – Confusion Matrix

### **Predicted**

**Actual** 

|          | Negative | Positive |
|----------|----------|----------|
| Negative | 432      | 2        |
| Positive | 1        | 11       |

<u>Accuracy:</u> (TN + TP) / samples = 434 / 446 = 0,97

Precision: TP / (TP + FP) = TP / Total Predicted Positive = 11/12 = 0,92





#### Scores – Confusion Matrix

#### **Predicted**

### **Actual**

|          | Negative | Positive |  |
|----------|----------|----------|--|
| Negative | 432      | 2        |  |
| Positive | 1        | 11       |  |
|          |          |          |  |

Accuracy: (TN + TP) / samples

Precision: TP / (TP + FP) = TP / Total Predicted Positive = 11/12 = 0,92

**Recall or Sensivity:** TP / (TP + FN) = TP / Total Actual Positive = 11/13 = 0,85

**Specifity:** TN / (TN + FP) = 432/434 = 0.99





#### Scores – Confusion Matrix

#### **Predicted**

**Actual** 

|          | Negative | Positive |  |
|----------|----------|----------|--|
| Negative | 432      | 2        |  |
| Positive | 1        | 11       |  |

Accuracy: (TN + TP) / samples

Precision: TP / (TP + FP) = TP / Total Predicted Positive = 11/12 = 0,92

Recall or Sensivity: TP / (TP + FN) = TP / Total Actual Positive = 11/13 = 0,85

Specifity: TN / (TN + FP) = 432/434 = 0,99

F1: 2 \* (Precision \* Recall) / (Precision + Recall) = 2 \* 0.92 \* 0.85 / (0.92 + 0.85) = 0.88





#### Scores – ROC - AUC



$$FPR = rac{FP}{FP + TN}$$

The ROC curve measures how well the classifier separates the probabilities of positive and negative cases