			I NUNE					
La	modu	lazion	e numerio	:d e	necessa	rid pe	or poter	trasmettere
seguer	nze	binarie	dHuavers	o vn	mezzo t	'rasmiss	ivo. In	particulare, per
adess	0, 61	conc	entre remo	> 5V	canali	trasmi	ssivi in	banda base, co
	i i		doppino					
Sol	26	bin]	COSIFIC.	n[n]	INTERP	s(t)	CAVALE DI	
BIN	ARIA	Tb		T _s	ρ(+)		CONUNICA Z	
		5[n]		(47.17	YUN	Ts y	/H - 1-11	DEMODULATO
BIN		D(N)	DECODIF.	- 131 DE	Ecisone "		RICEZIONE	punenco
						_ + -		
·) con	LFICAT	one ;	trasforma	Segu	enze di	bit in	simboh*	M-ari apparten
			dd un al	Pabelo	A.			
\ ,,,,,	SO 80 LA	A-0.6		•		10:	cin hali	x [4] in ingress
9 1200	.16 10 22	10100 ;						
			per prod	lurve	una se	grentu	di impi	olsi s(t)
			/1\ 5	ν. Γυ.*	1 1/t 1	,T\		
		5	s(t) = Z	N Ln	Spice	(15)		
-\ < 44/	ALG N) (oD	UNICA 7 LOAS	g . 5	and disp	ont i	trasdutta	eri in quanto
						nove h	el mezzo	trasmissivo e
				e (ettuica			
				011		1. 0		
) FILTI	no bl	RICE	200 ME;	allru c	componen	iti di entuali	rumore distorsio	generate nel cana
								alo y(t)
			'				•	
						1 1		d ogni campion
DECO	bl Fi CA	TO ME	: trusfor	ma i	simboli' i	in scy	venze bi	nane
CODIF	FICAT	one						
Deve	esse	re si	'n croro	ion l	a souser	nle		
			Ts = Tb l	09 2 M				
			$R_{5} = \frac{1}{T_{5}} =$	The Ros	<u></u>			

) La sequenza di simboli generale dal codficatore viene considerala come un processo stazionario. Spesso, i simboli trasmessi sono considerat egriprobabili P{x[n]=di} = 1 , Vi INTERPOLATORS In un sistema d' comunicazione numerico in banda base, l'interpolation da solo svolge il compito di modulatore numerico, in quanto effettui la sajonatura, mentre non è prevista nessuna traslazione in freguenza. Il filtro sajonatore è realizzato tranite la generazione dell'impulso plt. Infatti, si può pensare di Pl1) come allo spettro del sinjolo impulso. Bp: banda dell'impulso p(+) Ep: energia dell'impulso p(t) $E_{\rho} = \int_{-\infty}^{+\infty} \rho'(1) d1 = \int_{-\infty}^{+\infty} |\rho(1)|^2 d1$ Data l'aleatorcia della sequenza di simboli xia], s(+) deve esseve interpretato come la realizzazione du un processo d'eatorio S(t) stazionario.

Il processo S(t) ha una autocorrelazione $R_s(\tau)$ ed una densità spettrale di potonza $S_s(f)$.

Per cui e definita una potenza P_s ed una banda B_{τ} .

Finerala ser hit Energia per bit L'energia media per bit pur essere calcolate come Eb = Ts Ps = Es , Es = energia media per simbolo

Il formato di modulazione e equienevatico se $E_S(i)$: E_S $\forall i$ ORTOGONALITA Il formato di modulazione è dello ortogonale se $\int_{-\infty}^{\infty} S_i(t) S_j(t) dt = 0 \qquad \forall i \neq j$ EFFICIENZA ENERGETICA Fissatu una PED, l'efficienza energetica e definita come il valore $M_{P} \stackrel{\triangle}{=} \frac{1}{SNR}$, $SNR \stackrel{\triangle}{=} \frac{P_{S}}{P_{N}}$ che permette de ottenere tale BEP.

Quinchi tanto maggiore e Mp, tanto minore dere esser il sur
ohe sarantice una data BEP. EFFICIENTA SPETTALE L'efficienza spettrale e définite come il rapporto tra il tasso di progazione binario e la banda de trasmissione $M_B \stackrel{\triangle}{=} \frac{R_b}{B_T} \left[bit/s/H_Z \right]$ avivdi l'efficienca cresce quando a parità tasso di engazon la bounda utilizzata in trasmissione si viduce. In termini di Ts e 17: MB = RoseM BrTs

PULSE AMPLITUDE MODULATION (PAM) La PATI nel caso generico è dette anche 17-PATI o PATT M-avid, dove con M si indica il numero di simboli present nell'alfabelo As. nin 3 $\rho(1)$ s(1)PROPRIETA CHE DEFINISCONO UNA M-PAM 1) S(+) = = > > Z > Z [1] p (t - KTs) 2) Gli M valori (ND, 2) che costituisco vo l'alfabelu As: { &, d, ..., an } sono definit come $\alpha_{i} = 2i - 1 - 17$, i = 1, 2, ..., 17Esempio $\Pi = 4$ = 3 $\alpha_1 = -1$ $\alpha_3 = 1$ $\alpha_4 = 3$ 17=4 $E_{s}(i) = \int_{-\infty}^{+\infty} s_{i}^{2}(t) dt = \int_{-\infty}^{+\infty} \alpha_{i} \rho(t - \kappa T_{s}) dt =$ $= \left(\left(2i - 1 - \pi \right)^{2} \rho(t) \right) dt = \left(2i - 1 - \pi \right)^{2} E_{\rho}$ $\Rightarrow A_{5} = \left\{ \begin{array}{c} \pm 1 \\ \pm 3 \end{array}, \begin{array}{c} \pm (n-1) \end{array} \right\}$ 17 PARI => A; = {0, ±2, ±4, ..., ± (n-1)} A DISPARI

I formati 17-PATI de più largo impiego sono quelli dove 11 è una potenza di 2. Esempio 4-PATT sequenzu => {x[-2]=-1, x[-1]=+1, x[0]=-3, x[1]=+1, n[2]=+3} $p(t) = vect(\frac{t-is/2}{TS})$ -2is Is +t Is 2T5 3Ts PROPRIETA DERIVATE NELLA M-PAM 1) F[s(+)]= 0 \tag{t} se i simboli soro equiprobabili $E\left[\begin{array}{cc} +\infty \\ \geq \times [n] & p(t-\kappa) \end{array}\right] = \left[\begin{array}{cc} +\infty \\ \geq & \geq \\ n=-\infty \end{array}\right] p(t-\kappa) = 0$ E[x[u]] = 2 x. P{x.3 = 1 \ 2 (2i-1-11) $S_s(1) = \frac{1}{T_s} \overline{S}_x(1) |P(1)|^2$ dove $\delta_{x}^{2} = E\left[\left(\frac{\pi^{2}-1}{3}\right)\right] = \left(\frac{\pi^{2}-1}{3}\right)$

$$R_{S}(\tau) = E\left[S(t) s'(t-\tau)\right] = \frac{1}{2} \sum_{k=-\infty}^{\infty} x i \cdot x p(t-n)s \sum_{k=-\infty}^{\infty} x i x p(t-n)s$$

$$R_{s}(\eta) = \frac{1}{T_{s}} TCF \left[|P(\xi)|^{2} S_{x}(\xi) \right]$$

$$\Rightarrow S_{s}(1) = \frac{1}{T_{s}} S_{x}(1) |P(1)|^{2}$$

Nel caso in cui:

Si hà che:

$$S_{S}(1) = \frac{\delta_{K}^{2}}{T_{S}} |P(1)|^{2}$$

In questo caso la BT è coincidente con quella del sagonatore P(P).

$$\delta_{x}^{2} = E[(x - \eta_{x})^{2}] = \int (x - \eta_{x})^{2} f_{x}(x) dx =$$

$$= \frac{1}{M} \left(2 \sum_{i=1}^{N} i^{2} + (1+M)M - 4(1+M) \sum_{i=1}^{N} i \right)$$

Spruttando i seguenti visultati noti

Si othere

$$\int_{x}^{2} \frac{n^{2}-1}{3}$$

3)
$$P_s = \frac{\delta x^2 F \rho}{T s} - \frac{n^2 - 1}{3} \frac{E \rho}{T s}$$

se i simboli sono

equiprobabili

$$= \sum_{k=-\infty}^{\infty} \left[\frac{1}{2} (+1) + \frac{1}{2} (-1) \right] p(1-n) = 0$$

·)
$$M_B = \frac{1}{T_b B_P}$$
 (Per impulsi rettangolari $B_P = \frac{1}{T_b}$ e gundi $M_B = 1$)

$$A_{s} = \{0, 1\}$$

e impulsi reHangulari
$$p(1) = rect(\frac{\xi - Tb/2}{Tb})$$

$$\begin{cases} S_1(t) = 0 \\ S_2(t) = \text{vest}\left(\frac{t - \frac{15}{2}}{\frac{1}{5}}\right) \Rightarrow E_{S_2} = \frac{7}{5} \end{cases}$$

·)
$$E\left[s(t)\right] = Z E\left[x \left[n\right]\right] \rho\left(t - \kappa T_{b}\right) = \frac{1}{2}$$

·)
$$E_{5} = \frac{1}{2} E_{5_{1}} + \frac{1}{2} E_{5_{2}} = \frac{7_{5}}{2}$$

$$P_{5} = \frac{E_{5}}{\overline{1}b} = \frac{1}{2}$$

$$) R_{X}[m] = C_{X}[m] + \eta_{X} = \frac{1}{4} \delta[m] + \frac{1}{4}$$

$$5s(1) = \frac{1}{T_{b}} S_{x}(1) |P(1)|^{2} = \frac{1}{T_{b}} \left(\frac{1}{4} + \frac{1}{4T_{b}} S(1)\right) T_{b}^{2} sinc^{2} (T_{b} 1)$$

$$= \frac{Tb}{4} \left(1 + \frac{S(f)}{Tb} \right) sinc^2 \left(Tb f \right)$$

Considerazioni

- -) L'efficienza spettrale della modulazione on-off è unitaria come nel caso della 2-PAM
- positivi) questa pro essere utilizzata su candli di comunicazione che, per loro natura, non possono supportave segnali bipolari.
- nell organissione deve over una insposta in frequenza che non sia nulla nell'organi.