5. Implementacija logičkih sklopova (2)

Sadržaj predavanja

- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

Koncept integriranog sklopa

- integrirani logički sklop
 - ~ inkapsulacija složenije funkcijske cjeline u *modul*
 - minijaturizacija i integriranje složenije cjeline
 - ~ crna kutija s određenim funkcijskim svojstvima, uz zadovoljene uvjete:
 - primjerena pobuda (područja za 0 i 1, granice smetnji)
 - odgovarajući režim rada (napon napajanja, temperatura okoline, opterećenje izlaza)
 - apstrakcija funkcija (funkcijska apstrakcija)
 ne zagleda se u unutrašnjost crne kutije

funkcija

Koncept integriranog sklopa

- električka svojstva:
 - prijenosna karakteristika
 - granica smetnji
 - faktor grananja
 - disipacija snage
- dinamička svojstva:
 - vrijeme kašnjenja
 - mjera dobrote integiranog sklopa
 - vrijeme porasta i vrijeme pada signala na izlazu sklopa

Sadržaj predavanja

- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
 - naponska područja
 - prijenosna karakteristika
 - smetnje
 - opterećenje i faktor grananja
 - disipacija snage
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- naponska područja *na ulazu i izlazu* logičkog sklopa:
 - naponska područja:
 - varijacije parametara
 - utjecaj opterećenja
 - zabranjeno područje
 - ~ "diskriminacija" naponskih razina V i N
 - uže tolerancije na izlazu logičkih sklopova
 - ~ moguće djelovanje (superponiranih) smetnji na ulazu

naponska područja na ulazu i izlazu logičkog sklopa

- prijenosna karakteristika
 (engl. transfer characteristic): u_i = f(u_u)
 - temeljni sklopovi pojedinih skupina logičkih sklopova
 ~ univerzalne funkcije (NI, NILI)
 - ⇒ invertorska karakteristika
 - idealna karakteristika: oštri prijelaz
 ~ nema zabranjenog područja!

- smetnje (engl. noise)
 - superponirani napon na ulazu logičkog sklopa, može dovesti do neželjene promjene stanja na mjegovu izlazu
- definira se posebno za V, a posebno za N
- vrste smetnji:
 - vanjske: indukcija (iskrenja, munje?)
 - unutarnje: preslušavanje, refleksije, parazitni induktivitet strujnih krugova signala, strujni šiljci prebacivanja stanja izlaznog stupnja

- granica istosmjerne smetnje (engl. DC noise margin)
 iznos smetnji koji dovodi logički sklop
 na rub zabranjenog područja
- djeluje duže od t_d ~ "isto toliko dugo kao i signal"

Primjer:

$$U_{OLmax} = 1 V; U_{OHmin} = 4 V$$

$$U_{ILmax} = 2.3 \text{ V}; \quad U_{IHmin} = 2.7 \text{ V}$$

$$\Delta"1" \equiv U_{GSV} = U_{OH \min} - U_{IH \min}$$

$$\Delta"0" \equiv U_{\mathit{GSN}} = U_{\mathit{IL}\max} - U_{\mathit{OL}\max}$$

$$U_{GSV} = 1.3 \text{ V}$$

$$U_{GSV} = 1,3 \text{ V}$$

 $U_{GSN} = 1,3 \text{ V}$

- granica izmjenične smetnje (engl. AC noise margin):
 - impuls smetnje kraći od t_p
 - mehanizam nabijanja/izbijanja C_T
 - vrlo kratke smetnje ne utječu!

$$U_{GS|AC} > U_{GS|DC}$$

- opterećenje izlaza ulazima narednog stupnja
 promjena električkih/dinamičkih osobina signala
 - bipolarni sklopovi
 ~ promjena naponske razine zbog pada napona na R_i
 - MOSFET/CMOS sklopovi
 ~ promjena dinamičkih svojstava zbog većeg C_T
- mjera opterećenja
 - ~ faktor grananja
 - na izlazu (engl. fan-out)
 - na ulazu (engl. fan-in)

- faktor grananja na izlazu bipolarnog sklopa, N_R:
 broj ulaza istovrsnih sklopova koje je moguće spojiti
 na izlaz logičkog sklopa, a da sklopovi sigurno rade u
 predviđenom režimu
 - osigurano da u_i padne u odgovarajuća područja za V i N

Primjer:

	I _{OL} [mA]	I _{IL} [μΑ]	Ι _{ΟΗ} [μΑ]	I _{IH} [μA]
74N	16	1600	400	40
74LS	8	400	400	20

74LS pobuđuje 74LS: $N_R = 20$

74N pobuđuje 74LS: $N_R = ?$

74LS pobuđuje 74N: $N_R = ?$

$$I_{OH} = \sum I_{IH}$$

 faktor grananja na izlazu MOSFET/CMOS sklopa, N_R: broj ulaza istovrsnih sklopova koje je moguće spojiti na izlaz logičkog sklopa, a da se previše ne pokvare dinamička svojstva:

$$C_T = N_R \cdot C_{ul} \rightarrow t_r, t_f$$

kompenzacija djelovanja C_T
 snažniji pobudni MOSFET

- faktor grananja na ulazu bipolarnog sklopa, N: koliko je puta veće opterećenje ulazom sklopa od jediničnog, za temeljni sklop skupine
- "jedinična ulazna struja":
 za temeljni sklop skupine,
 u odnosu na koju se računa faktor grananja

- faktor grananja *na ulazu* MOSFET/CMOS sklopa, N:
 - broj ulaza nekog logičkog sklopa
- serija tranzistora (npr. NI):
 - serija MOSFET $\rightarrow t'_p \approx N \cdot t_p$,
 - $U_{OL} = \sum U_{OLi}$
 - izbjegavati!
- CMOS: uvijek serija NMOS ili PMOS
 ~ zadržati N ▶

- faktor grananja na ulazu MOSFET/CMOS sklopa, N: broj ulaza nekog logičkog sklopa
- paralela tranzistora (npr. NILI):
 - paralela MOSFET ≈ jedan (jači) MOSFET :

$$t'_p \approx t_p/N$$
,
 $C'_{Pul} = N \cdot C_{Pul}$

N ne utječe na t_p
 ~ radije NILI

- statička disipacija snage:
 - pretpostavka: sklop je u svakom od stanja 50% vremena

$$P_{st} = U_{napajanja} \cdot \frac{I_{napajanja}^{V} + I_{napajanja}^{N}}{2}$$

- ograničenje temperature T u logičkom sklopu
 ograničena mogućnost odvođenja topline
- ograničenje P_{st}:
 - ograničenje stupnja integracije
 - ograničenje N_R
 - ograničenje smanjivanja t_d (postoji C_T, a I_i je ograničena!)

- dinamička disipacija snage~ pri prebacivanju stanja!
 - model: nabijanje/izbijanje C_T
 - nabijanje C_T ~ i_{C1}:

$$dW = i_{C_1} \cdot U \cdot dt; W = \int dW = U \cdot Q = C_T \cdot U^2$$

$$W_{C_T} = \frac{C_T \cdot U^2}{2} \quad \text{energija u } C_T$$

$$W_{R_1} = W_{C_T} = \frac{C_T \cdot U^2}{2}$$
 disipirana energija

izbijanje C_T ~ i_{C2}:

$$W_{R_2} = W_{C_T} = \frac{C_T \cdot U^2}{2}$$

• *ukupna* disipirana snaga: f uklj./isklj. [sec-1]

$$W_{disipirano} = W_{C_T} + W_{R_2} = C \cdot U^2; P_d = f \cdot C \cdot U^2$$

Primjer:

$$U_{\text{nap1}} = 5 \text{ V;} \quad f_1 = 100 \text{ MHz}$$
 $U_{\text{nap2}} = 3,3 \text{ V;} \quad f_2 = ? \text{ uz } P_{\text{d}} = \text{const.}$
 $P_d = f \cdot C \cdot U^2$
 $f_1 \cdot C \cdot U_1^2 = f_2 \cdot C \cdot U_2^2$
 $f_2 = f_1 \cdot \frac{U_1^2}{U_2^2}$
 $f_2 = 230 \text{ MHz}$
 $U_{\text{nap3}} = 1,1 \text{ V;} \quad f_3 = ? \text{ uz } P_{\text{d}} = \text{const.}$

Sadržaj predavanja

- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
 - vrijeme kašnjenja
 - mjera dobrote integiranog sklopa
 - vrijeme porasta i vrijeme pada signala na izlazu sklopa
- skupine integriranih logičkih sklopova

- kašnjenje (odziva) logičkog sklopa
 - ~ promjena (naponske razine) signala na izlazu u odnosu na promjenu (naponske razine) signala na ulazu:
 - vrijeme kašnjenja logičkog sklopa, t_d
 izvedeni parametar,
 iz vremene rasprostiranja
 - vrijeme rasprostiranja signala, t_p
 za pojedine prijelaze
 - mjeri se za 0,5⋅U, odnosno U_T

vrijeme rasprostiranja (proleta, propagacije), t_p (engl. propagation time)
 ~ različito za prijelaz V → N, odnosno N → V

$$t_{PHL}(t_{DVN}) \neq t_{PLH}(t_{DNV})$$

vrijeme kašnjenja, t_d:

$$t_d = \frac{t_{PHL} + t_{PLH}}{2}$$

- produkt vremena kašnjenja i disipirane snage
 mjera dobrote integriranog sklopa
 - usporedba skupina integriranih logičkih sklopova
 - dimenzija [ns] × [mW] = [pJ]
 - manji produkt ~ kvalitetniji integrirani sklopovi

- vremenski hazard kao posljedica konstrukcije sklopa
 ~ funkcijski hazard:
 - električki i dinamički parametri sklopa
 kašnjenja stvarnih sklopova
 - konkretni dizajn složenijeg sklopa
 struktura sklopa izražena
 kombinacijom jednostavnijih sklopova
 - sinkronizam ulaza (signala)

- vrijeme porasta i vrijeme pada signala na izlazu logičkog sklopa
 utjecaj izvedbe izlaznog stupnja:
 - "pasivno" opterećenje:
 R₁ >> R₂ → t_r >> t_f

"aktivno" opterećenje:
 R₁' ~ R₂ → t_r ~ t_f
 ~ brža izvedba!

izvedba izlaznog stupnja "pasivnim" opterećenjem:

$$R_1 >> R_2 = R_{Tzasi\acute{c}enje} \rightarrow t_r >> t_f$$

- pritezanje izlaza ka masi
 ~ "izlazni" tranzistor
- pritezanje izlaza ka napajanju
 ~ (pasivni) otpornik

- izvedba izlaznog stupnja "aktivnim" opterećenjem:
 - $R_1' \sim R_2 = R_{Tzasi\acute{c}enie} \rightarrow t_r \sim t_f$
 - pritezanje izlaza ka masi ~ "izlazni" tranzistor
 - pritezanje izlaza ka napajanju \sim također tranzistor (R_C za ograničavanje I_{AC})

Sadržaj predavanja

- koncept integriranog sklopa
- električka svojstva integriranih izvedbi
- dinamička svojstva integriranih izvedbi
- skupine integriranih logičkih sklopova

- klasifikacija integriranih logičkih sklopova
 - ~ prema *stupnju integracije*
 - = u odnosu na složenost sklopova na čipu:
 - funkcijska
 - ~ broj "osnovnih funkcija"
 (→ osnovnih logičkih sklopova) na čipu
 - tehnološka
 - ~ broj "komponenata" (*naprava*, engl. devices) ostvarenih na čipu;
 - naprave: Tr, D, R, C (sve preko Tr!)

 klasifikacija integriranih logičkih sklopova prema stupnju integracije

		tehnološka	funkcijska
niski stupanj integracije	SSI	< 100	< 10
srednji stupanj integracije	MSI	100-1.000	10-100
visoki stupanj integracije	LSI	1.000-10.000	100-1.000
vrlo visoki stupanj integracije	VLSI	> 10.000	> 1.000
sustav na waferu	WSI		

- pregled skupina integriranih logičkih sklopova:
 - danas u primjeni:
 - CMOS, već 1960tih
 - TTL, 1962
 - ECL, 1963
 - povijesno zanimljive:
 - RTL, 1961~ prva skupina!
 - DTL/HTL, 1962
 - NMOS/PMOS, 1970te
 - I²L, 1972

 usporedba osnovnih parametara poznatih skupina integriranih logičkih sklopova:

			P [mW]				
skupina	serija	t _d [ns]	statička	dinamička (100 kHz)	t _d ·P [pJ]	N _R	U _{GSmin} [V]
RTL		30	10		300	5	0,3
DTL		25	15		375	8	0,9
HTL		100	50		5000	10	7
TTL	74	9	10		90	8	0,4
	74S	3	20		60	10	0,3
	74LS	9,5	2		19	100	0,3
	74AS	1,7	8		13,6	10	0,3
	74ALS	4	1,2		4,8	100	0,4
ECL	10k	3	25		75	10	0,25
	100k	0,75	40		30	10	0,25
l ² L		40	1		40	8	
NMOS		50	0,1		5	50	
CMOS	4000	50	0,001	0,1	5	> 100	1,5
	74C	30	<0,001			> 100	0,6
	74HC	8	0,02	0,17	1,4	> 100	0,9

Literatura

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 3: Osnove digitalne logike; Poglavlje 6: Elektroničke izvedbe logičkih sklopova.
- koncept integriranog sklopa: str. 199-204
- električka svojstva integriranih izvedbi: str. 209-216
- dinamička svojstva integriranih izvedbi: str. 217
- integrirani logički sklopovi: str. 207-209, 245-246

- U. Peruško, V. Glavinić: *Digitalni sustavi*, Poglavlje 3: Osnove digitalne logike; Poglavlje 6: Elektroničke izvedbe logičkih sklopova.
- električka svojstva integriranih izvedbi: 6.4, 6.5
- dinamička svojstva integriranih izvedbi: 6.9

- M. Čupić: *Digitalna elektronika i digitalna logika. Zbirka riješenih zadataka*, Cjelina 2: Osnovni logički sklopovi; Cjelina 14: Integrirani logički sklopovi.
- električka svojstva integriranih izvedbi:
 - riješeni zadaci: 2.11-2.14, 14.15
 - zadaci za vježbu: 5 (str.452-453)