> Transistor Ratings:

- Specified by two parameters:
 - ❖ Breakdown Voltage
 - * Maximum Power Rating
- Breakdown Voltage:
 - riangle Maximum positive/negative V_{CE} that can be applied to an npn/pnp BJT
 - o Known as the *Collector-to-Emitter Breakdown Voltage with Base Open* (BV_{CE0})
 - \bullet Focus on Q_1 (Q_2 will be similar)
 - A Refer to the diagram in the next slide (*Output characteristic of Q₁ along with the load line*)
 - \clubsuit In the analysis, the *offset in the VTC*, the *small standby current*, and $V_{CEI}(HS)$ are *neglected*

The Output Characteristic of Q 1 along with the Load Line

- At Q-point: $V_o = 0 \Rightarrow V_{ce1} = V_{CC}$
- **During positive half cycle:**

$$V_o(max) \approx V_{CC} \Rightarrow V_{cel} \approx 0$$

- \Rightarrow V_{ce1} ranges between 0 and V_{CC} during the positive half cycle
- The slope of the load line in this part of the characteristic = $-1/R_L$
- ***** For negative half cycle, Q_1 cuts off (Q_2 conducts during this period)
 - $\Rightarrow I_{c1} = 0$ for V_o ranging between 0 and $-V_{CC}$
 - $\Rightarrow V_{cel}(max) = 2V_{CC}$
 - $\Rightarrow BV_{CE0} = 4V_{CC}$ [using a **Safety Factor** (or **Factor** of **Safety**) of 2]

Maximum Power Rating:

- \clubsuit Same for both Q_1 and Q_2
- ❖ Average power P_L delivered by Q_I to R_L during the positive half cycle = area covered under the load line

$$\Rightarrow P_{L} = \frac{1}{2} \times V_{CC} \times \frac{V_{CC}}{R_{L}} = \frac{V_{CC}^{2}}{2R_{L}}$$

- ❖ Refer to the *constant power hyperbola* $(V_{ce1} \times I_{c1})$ shown in the figure
- * Maximum power dissipation of Q_1 happens when this hyperbola becomes tangent to the load line, which is right at the middle of the load line
- * Proof:

Constant power hyperbola (P_1) :

$$P_1 = V_{ce1} \times I_{c1} = (V_{CC} - I_{c1}R_L) \times I_{c1} = V_{CC}I_{c1} - I_{c1}^2R_L$$

Plug $dP_1/dI_{c1} = 0$ to get $I_{c1} = V_{CC}/(2R_L)$

This is the *mid-point of the load line*, with *coordinates* $[V_{CC}/2, V_{CC}/(2R_L)]$

$$\Rightarrow P_{\text{max}} = \frac{V_{\text{CC}}^2}{2R_{\text{L}}} \text{ (using a Safety Factor of 2)}$$

There is also *standby power*:

$$P_{Standby} = V_{CC} \times I_{Standby}$$

- ightharpoonup In general, $P_{max} >> P_{Standby}$
- * Refer to the figure in the next slide
 - o V_{cel} oscillates between 0 and $2V_{CC}$
 - o I_{c1} appears only during the positive half cycle, with peak value of V_{CC}/R_L (when $V_{cel} = 0$)
 - o $P_1 = V_{ce1} \times I_{c1}$ oscillates between 0 and $V_{CC}^2/(4R_L)$ at twice the frequency only during the positive half cycle