Занятие № 2 «Производственное освещение» Расчёт освещённости рабочих мест

Цель работы

Проведение расчетов освещенности на рабочих местах с целью обеспечения соответствия нормативным требованиям и оптимизации условий производственного освещения.

Теоретические сведения

Методы расчета освещенности

Общие положения:

Рассчитать тремя методами по коэффициенту использования светового потока, удельной мощности и светящейся линии, для производственного помещения осветительную установку, обеспечивающую общее равномерное освещение - Е.

Для расчета освещенности производственного помещения применяются:

- метод расчета по удельной мощности (метод Ватт);
- метод коэффициента использования осветительной установки, который основан на связи между световым потоком источников света и средней освещенностью на горизонтальной поверхности (расчет по световому потоку);
 - точечный метод;
 - комбинированный метод.

Рисунок 2.1. Методы расчета освещенности

Метод расчета по удельной мощности и метод коэффициента использования применяются при расчете общего равномерного освещения на заданную горизонтальную рабочую поверхности, если отсутствует затеняющее оборудование и применяются светильники любого типа.

Точечный метод используется при расчете общего равномерного, общего локализованного и местного освещения помещений, при наличии или отсутствии затемнений и при любом расположении освещаемых поверхностей. Расчет ведется только для светильников прямого света при наружном освещении на максимальную освещенность.

Рисунок 2.2. Соотношение светового потока к площади поверхности

В точечном методе не учитывается коэффициент отражения стен и отраженный световой поток. Комбинированный метод применяется, когда отдельно учитываются прямая и отраженная составляющие освещенности, и другие методы неприемлемы.

искусственного освещения расчета системы необходимы следующие данные: линейные помещения (А, В), высота подвеса светильников над (H_p) , рабочей поверхностью ТИП светильников, светильников, коэффициенты отражения расположение помещения (ρ_{Π}, ρ_{c}) , стен характеристика помещения по выделениям пыли, дыма и копоти (К), количество ламп в одном светильнике (n).

Рисунок 2.3. Световой поток

Цель занятия

Рассчитать тремя методами по коэффициенту использования светового потока, удельной мощности и светящейся линии, для производственного помещения с размерами: ширина - B, длина - L, высота - H, - и коэффициентами отражения потолка - ρ_1 , стен - ρ_2 , пола - ρ_3 осветительную установку, обеспечивающую общее равномерное освещение пола с освещенностью - E. Применяемые светильники: тип - ЛСП (люминесцентный подвесной производственный) 01 - 2 x 40. Светильники подвешены на расстоянии 0,3м от потолка.

Рисунок 2.4. Телесный угол и световой поток в нем

По своей природе видимый человеком свет - это электромагнитные волны длиной от 380 до 770 нм. К основным светотехническим величинам относятся световой поток, сила света, яркость, освещенность, коэффициент отражения.

Рисунок 2.5. Зависимость силы света от угла раскрытия светового пучка

Качественными показателями являются:

- фон;
- контраст;
- видимость;
- ослепляемость;
- дискомфорт.

Освещение рабочих помещений должно удовлетворять следующим условиям:

✓ Уровень освещённости рабочих поверхностей должен

соответствовать гигиеническим нормам для данного вида работы, освещение должно быть оптимально по величине;

- ✓ Равномерность и устойчивость уровня освещённости в помещении, отсутствие резких контрастов, освещение
- помещении, отсутствие резких контрастов, освещение должно быть равномерно распределено по площади;
- ✓ Не должно создаваться источниками света блеска в поле
 зрения, нежелательна пульсация величины освещения во времени.
- ✓ Искусственный свет по спектральному составу должен

приближаться к естественному.

Недостатки искусственного освещения:

- желтизна света;
- краснота в спектре.

Рисунок 2.6. Цвет (спектральный состав света)

В производственных условиях используется три вида освещения: естественное, т.е. солнечное, искусственное, создаваемое электрическими или люминесцентными лампами и комбинированное.

Факторы, учитываемые при нормировании искусственного освещения:

- 1. характеристика зрительной работы;
- 2. минимальный размер объекта различения с фоном;
- 3. разряд зрительной работы;
- 4. контраст объекта с фоном;
- 5. светлость фона;
- 6. система освещения;
- 7. тип источника света.

Светильники, в зависимости от светораспределения, разделяют на три класса:

- прямого света не менее 90% всего светлого потока излучается в нижнюю полусферу;
- отражённого света не менее 90% всего светового потока излучается в верхнюю полусферу;
- рассеянного света световой поток распределён по обеим полусферам так, что в одну из них излучается более 10%, в другую не менее 90%.

КПД светильников лучших образцов составляет свыше 0,8. Защитный угол светильника определяет степень защиты глаза от воздействия ярких частей лампы.

В угла зависимости защитного otвеличины светильника, нормируют высоту подвеса исходя требований ограничения слепящего действия. Чем больше действие защитный угол, тем меньше слепящее светильника.

Исходные данные

Таблица 2.1.

Дано	Последняя цифра студенческого билета										
	0	1	2	3	4	5	6	7	8	9	
L(M)	11	12	13	14	15	16	17	18	19	20	
В(м)	5	6	7	8	9	10	11	12	13	14	
Н(м)	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8	2	2,2	
Фл(лк)	2300	2310	2280	2290	2320	2330	2340	2285	2295	2305	
Ен(лк)	450	180	100	120	150	200	250	300	350	400	

Таблица 2.2.

Дано	Предпоследняя цифра студенческого билета									
	0	1	2	3	4	5	6	7	8	9
К з(лк)	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4
Z	1	1,02	1,04	1,06	1,07	1,08	1,09	1,1	1,12	1,13
WT	5	5,2	5,4	5,6	5,8	6	6,2	6,4	6,6	6,8
Sn (m ²)	22	210	220	230	240	250	260	270	280	280
n	1	2	3	4	5	6	7	8	9	10
η	45%	45%	45%	45%	45%	45%	45%	45%	45%	45%

Методика решения

1. Способ «Коэффициента использования светового потока»

Рисунок 2.7. Схема расположения светильника Определяем индекс помещения:

$$i = \frac{L \cdot B}{H_P \cdot (L + B)}.$$
 (2.1.)

где L – длина помещения,

В – ширина помещения,

НР – высота подвеса светильников,

$$H_P = H-0.3.$$
 (2.2.)

Световой поток светильника:

$$\Phi_{cs} = \frac{E_H \cdot Sn \cdot K_3 \cdot z \cdot 100}{N \cdot \eta}. \quad (2.3.)$$

Где $\Phi_{\scriptscriptstyle \rm II}$ – световой поток лампы,

Ен лк – освещенность;

 $S = L \cdot B$ площадь помещения;

К₃ – коэффициент запаса;

z – коэффициент неравномерности освещения

N – количество светильников.

Отсюда количество светильников найдем по формуле

$$N = \frac{E_H \cdot Sn \cdot K_3 \cdot z \cdot 100}{\Phi_{cs} \cdot \eta}$$
 (2.4.)

 $\Phi_{\text{св}} = 2 \cdot \Phi_{\text{п}}$ - световой поток светильника; (2.5.) E_{H} - освещенность.

Рисунок 2.8. Факторы освещения

2. Способ «Удельной мощности светильника»

Рисунок 2.9. Схема расположения светильника

Электрическая мощность светильника по методу удельной мощности определяется по формуле:

$$P = 40 B.$$
 (2.6.)

Следовательно, количество светильников найдем по формуле:

$$N = \frac{W_p \cdot S_n}{n \cdot P} \quad . \quad (2.7.)$$

 S_{π} – площадь помещения, м² (по условию)

Р – номинальная мощность светильника

N – количество светильников,

N - количество ламп в светильнике, т.к. светильник ЛСП (люминесцентный подвесной производственный)

$$W_p = K \times W_T$$
. (2.8.)

где W_p - расчетная удельная мощность светильника, $B_T/\text{M}^2.$

где К - коэффициент коррекции;

W_T - табличная удельная мощность.

Для светильников типа ЛД-40 без стеклянного рассеивателя без перфорации и решетки при высоте подвеса светильника h и $S_{\rm II}$, $W_{\rm T}$ $B{\rm T}/{\rm M}^2$ для E лк при $\rho_{\rm not}$ =50%, $\rho_{\rm ct}$ = 30 %, $\rho_{\rm пола}$ = 10 %, $K_{\rm 3}$, Z.

Т.к. $\rho_{\text{пот}}$ =50%, $\rho_{\text{ст}}$ =50%, $\rho_{\text{пола}}$ =10%, по условию, то W_T необходимо уменьшить на 10 % т.е.

$$W = 0.9 \cdot W_{\dot{O}}$$
 (2.9.)

По условию K_3 , необходимо W умножить на коэффициент коррекции

$$\underline{\alpha_{\text{K}_3}} = \frac{1,3}{1,5}$$
. (2.10.)

По условию z необходимо W, полученное в следствии умножения α_{K_3} умножить на коэффициент коррекции

$$\alpha_{\rm Z} = \frac{1,15}{1.1}$$
. (2.11.)

По условию Ен необходимо W, полученное в следствии умножения α_Z , умножить на коэффициент коррекции

$$\alpha_E = \frac{400}{100}$$
. (2.12.)

Рисунок 2.10. Схема проектирования освещения

3. Способ «Метод светящихся линий»

Рисунок 2.11. Схема проектирования освещения

$$l = 0.5L' \text{ m.}$$
 (8)

где l - расстояние от стены до линии расположения ламп.

Линейная плотность светового потока линий равна:

$$\Phi_{_{\pi}}^{'} = \frac{1000 \cdot E_{_{H}} \cdot K_{_{3}} \cdot z}{\mu \cdot \Sigma e} \quad (1.16)$$

К₃ - коэффициент запаса;

 μ - коэффициент, учитывающий влияние удаленной линии и отраженного света

$$L = L = 20 \text{ M}$$

$$E_H = 400$$
 лк

Σе - суммарная условная освещенность в расчетной точке от всех участков линий принимаем равной - 42,84.

Результативная таблица:

Таблица 2.3.

P	P'=P/H'	L	L'=L/H'	e

Количество светильников в одной линии

$$N_1 = \frac{\Phi_{\pi}' \cdot L_{\pi}}{\Phi_{cs}} \qquad (2.18)$$

Общее количество светильников

Рисунок 2.12. Схемы размещения светильников:

A - равномерное (I - расстояние от стены до крайних рядов;

L - расстояние между рядами светильников); δ - шахматное; ϵ - прямоугольное (L_a и I_A - расстояние между светильниками в ряду и рядами светильников); ϵ - рядами (ϵ - расстояние от стены до крайних рядов; ϵ - расстояние между рядами светильников); ϵ - параметры размещения светильника (ϵ - высота помещения; ϵ - расчетная высота;

 ${
m h_{p\,-}}$ высота рабочей поверхности над полом; h_e - расстояние до светильника от перекрытия

Контрольные вопросы

- 1. Основные светотехнические величины, требования к освещению рабочих мест.
- 2. Расчет естественного освещения, основные виды, требования к измерению освещенности.
 - 3. Основные виды искусственного освещения.
- 4. Требования к аварийному и эвакуационному освещению.
 - 5. Основные типы ламп и светильников.
 - 6. Источники света.
 - 7. Виды и системы освещения.
 - 8. Коэффициент отражения.
 - 9. Критическая частота мельканий.
 - 10. Что такое фон?