

Solving the Diffusion equation in parallel

- •The Diffusion Equation
- •Parallel simulation of time dependent diffusion
- •Parallel simulation of time independent diffusion
 - -direct methods
 - -iterative methods
- Diffusion Limited Aggregation

Ways to study a system

Modeling and Simulation Cycle

Diffusion Equation

- Our case will be diffusion
 - derivation on black board

$$\frac{\partial c}{\partial t} = D\nabla^2 c$$

- c(x, y, z, t) concentration
- D diffusion coefficient

Exact solutions 1

- One dimensional domain, $-\infty < x < \infty$
- delta pulse

$$c(x,t=0) = \delta(x)$$

$$c(x;t) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(\frac{-x^2}{4Dt}\right)$$

Exact solutions 2

• One dimensional domain, $0 \le x < \infty$

$$c(x = 0, t) = H(t)$$

$$c(x=0,t) = \text{rrfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$

solid: Dt = 0.005dashed: Dt = 0.1dotted: Dt = 0.4solid: Dt = 1.0 where $\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$

Exact solutions 3

• One dimensional bounded domain, $0 \le x \le 1$

step at time t = 0.

$$c(x,t=0)=0$$

$$c(x=1,t) = H(t)$$

$$c(x;t) = \sum_{i=0}^{\infty} \left[\operatorname{erfc} \left(\frac{1 - x + 2i}{2\sqrt{Dt}} \right) + \operatorname{erfc} \left(\frac{1 + x + 2i}{2\sqrt{Dt}} \right) \right]$$

No exact solution...

• two dimensional bounded domain, $0 \le x$, $y \le 1$, with object immersed in it.

$$c(x, y = 0, t) = 0$$

 $c(x, y = 1, t) = H(t)$
 $c(x, y, t = 0) = 0$

Final solution for
$$t \to \odot$$

Numerical Solution

- With a discretization $x = l\delta x$, $y = m\delta y$, $z = n\delta z$ with (l, m, n) integers, and writing $c(x, y, t) \equiv c_{l,m}^n$
- finite differencing gives
 - with time step δt and spatial steps δx
 - derived on blackboard

$$c_{l,m}^{n+1} = c_{l,m}^{n} + \frac{D\delta t}{\delta x^{2}} \left[c_{l+1,m}^{n} + c_{l-1,m}^{n} + c_{l,m+1}^{n} + c_{l,m-1}^{n} - 4c_{l,m}^{n} \right]$$

• explicit finite difference schema with a local 5 point stencil

Consequences

- The maximum allowed time step δt is limited by the "diffusion time" over the lattice $t_D \sim \delta x^2/D$.
- Assume we simulate in a domain with spatial scales $\lambda = L\delta x$. The diffusion time through the domain is $\tau \sim \lambda^2/D$.
- The number of time steps therefore is in the order of $\tau/t_D = \lambda^2/\delta x^2 = L^2$.
 - Bad scaling, huge amount of time steps...
 - Solution lies in implicit methods not discussed here.

An example 1

- Two dimensional domain, $0 \le x$, $y \le 1$
 - periodic boundary conditions in x-direction
 - c(x,y,t) = c(x+1,y,t)
 - other boundary conditions
 - c(x,y=0,t) = 0
 - $c(x,y,t \le 0) = 0$ for $0 \le x \le 1$ and $0 \le y < 1$
 - c(x,y=1,t) = H(t) (i.e. a step from 0 to 1 at time t=0)
 - Note that because of symmetry the solution will not depend on the x-coordinate, and that the exact solution number 3 applies in y-direction.

An example 2

- Compare the finite difference simulation with the exact solution.
 - $\delta x \frac{1}{20}$; $D \delta x^2 / \delta t = \frac{1}{4}$; D = 1; $\delta t = 0.01$.

lines : exact solution dots : numerical results

Parallelization

- Domain decomposition of spatial domain
 - here, as an example, strip wise decomposition
- one strip of grid points on the edge of the sub-domains (gray zone) must be communicated to neighbors, due to 5-point stencil (green lines).

Pseudo code

```
main () /* pseudo code for parallel FD simulation */
   decompose lattice;
   initialize lattice sites:
   set boundary conditions;
   for N time steps {
       exchange boundary strips with neighboring processors;
       for all grid points in this processor {
          update according to FD scheme
      print results to file; /* e.g. after every n time steps */
```


Time complexity for single iteration

$$T_1 = N^2 \tau_{calc}$$

$$T_p = \frac{N^2}{p} \tau_{calc} + T_{comm}$$

 N^2 grid points (assume square $N \otimes N$ domain)

assume strip wise decomposition

 τ_{calc} : time to update 1 grid point

 au_{setup} : latency of exchange communication

 $\tau_{exchange}$: time to exchange 1 date point with neighbor

$$= \frac{N^2}{p} \tau_{calc} + 2(\tau_{setup} + N\tau_{exchange})$$

$$\varepsilon_{p} = \frac{S_{p}}{p} = \frac{T_{1}}{pT_{p}} = \frac{1}{1 + \frac{2p}{N^{2}} \frac{\tau_{setup}}{\tau_{calc}} + \frac{2p}{N} \frac{\tau_{exchange}}{\tau_{calc}}}$$

Time independent diffusion

- No transient behavior, all time derivatives are zero: $\nabla^2 c = 0 \rightarrow$ the Laplace equation.
- Finite differencing:

$$c_{l,m} = \frac{1}{4} \left[c_{l+1,m} + c_{l-1,m} + c_{l,m+1} + c_{l,m-1} \right], \forall (l,m)$$

• The equations can be reformulated as

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

A: $N \times N$ matrix, **x**, **b** are vectors of length N.

• i.e. a set of coupled linear equations.

Example in 1 dimension

$$\frac{c_{l-1} - 2c_l + c_{l+1}}{\delta x^2} = 0, \quad 0 \le l \le L$$

$$\frac{c_{l-1} - 2c_l + c_{l+1}}{\delta x^2} = 0, \quad 0 \le l \le L$$

$$\frac{c_{l-1} - 2c_l + c_{l+1}}{\delta x^2} = 0, \quad 0 \le l \le L$$

$$\frac{c_{l-1} - 2c_l + c_{l+1}}{\delta x^2} = 0, \quad 0 \le l \le L$$

$$\frac{c_{l-1} - 2c_l + c_{l+1}}{\delta x^2} = 0, \quad 0 \le l \le L$$

$$\frac{c_{l-1} - 2c_l + c_{l+1}}{\delta x^2} = 0, \quad 0 \le l \le L$$

- Banded matrix, N = L 1
- more complicated structure in higher dimensions, but still banded (try yourself!)

Direct vs iterative methods

- Ax = b: solution via direct or iterative methods
 - direct: solve the equation directly within numerical error
 - iterative : approximate the solution using some iterative procedure

Direct Methods

- Gaussian elimination
- LU factorisation
- BLAS, (parallel) software libraries

Gaussian Elimination

Approach: reduce the system to an equivalent upper triangular system Easily solved through backward substitution

$$\begin{pmatrix} a_{11} & \Lambda & a_{1N} \\ M & O & M \\ a_{N1} & \Lambda & a_{NN} \end{pmatrix} \begin{pmatrix} x_1 \\ M \\ x_N \end{pmatrix} = \begin{pmatrix} b_1 \\ M \\ b_N \end{pmatrix} \qquad x_N = \frac{b'_N}{a'_{NN}}$$

$$x_{N-1} = \frac{b'_{N-1} - a'_{N-1,N}}{a'_{N-1,N-1}}$$
or
$$\begin{pmatrix} a'_{11} & a'_{12} & \Lambda & a'_{1N} \\ 0 & a'_{22} & M \\ M & O & a'_{N-1,N} \\ 0 & \Lambda & 0 & a'_{NN} \end{pmatrix} \begin{pmatrix} x_1 \\ M \\ x_N \end{pmatrix} = \begin{pmatrix} b'_1 \\ M \\ b'_N \end{pmatrix} \qquad x_i = \frac{b'_i - \sum_{j=i+1}^N a'_{ij} x_j}{a'_{ii}}$$

$$x_N = \frac{b'_N}{a'_{NN}}$$

$$x_{N-1} = \frac{b'_{N-1} - a'_{N-1,N}x_N}{a'_{N-1,N-1}}, \text{ etc.}$$

$$x_i = \frac{b_i' - \sum_{j=i+1}^N a_{ij}' x_j}{a_{ii}'}$$

Sweeping the matrix 1

Consider the composed matrix
$$(\mathbf{A}, \mathbf{b}) = \begin{pmatrix} a_{11} & \Lambda & a_{1N} & b_1 \\ M & O & M & M \\ a_{N1} & \Lambda & a_{NN} & b_N \end{pmatrix}$$
 be an element $a_{11} \neq 0$, proceed

- a) Determine an element $a_{r1} \neq 0$, proceed with (b). If such element does not exist, **A** is singular, stop.
- b) Interchange row r and row 1 of (A, b), result is $(\overline{A}, \overline{b})$
- c) For i = 2, 3, ..., N, subtract multiple $l_{i1} = \overline{a}_{i1} / \overline{a}_{11}$ of row 1 from row i.

 Result is $(\mathbf{A}^{(1)}, \mathbf{b}^{(1)}) = \begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \Lambda & a_{1N}^{(1)} & b_{1}^{(1)} \\ a_{11}^{(1)} & a_{12}^{(1)} & \Lambda & a_{1N}^{(1)} & b_{1}^{(1)} \\ 0 & a_{22}^{(1)} & M & M & M \\ M & O & & & \\ 0 & a_{N1}^{(1)} & a_{NN}^{(1)} & b_{N}^{(1)} \end{pmatrix} = \begin{bmatrix} a_{11}^{(1)} & a_{11}^{(1)} &$

Sweeping the matrix 2

$$(\mathbf{A}^{(1)}, \mathbf{b}^{(1)}) = \begin{bmatrix} a_{11}^{(1)} & (\mathbf{a}^{(1)})^T & b_{1}^{(1)} \\ 0 & \widetilde{\mathbf{A}} & \widetilde{\mathbf{b}} \end{bmatrix}$$

Apply the same procedure to $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{b}})$, etc.

$$(\mathbf{A}, \mathbf{b}) := (\mathbf{A}^{(0)}, \mathbf{b}^{(0)}) \to (\mathbf{A}^{(1)}, \mathbf{b}^{(1)}) \to \Lambda \to (\mathbf{A}^{(N-1)}, \mathbf{b}^{(N-1)}) =: (\mathbf{U}, \mathbf{c})$$

The matrix (\mathbf{U}, \mathbf{c}) has the desired upper triangular form, and the solution \mathbf{x} can now be found using backward substitution.

Pivoting

- The element a_{r1} in step (a) is called the pivot element.
- Not a good idea to choose any element, or e.g. always $a_{r1} = a_{11}$.
 - Leads to loss of accuracy, or even instability of the Gaussian elimination.
- Always apply partial pivoting.

$$|a_{r1}| = \max_{i} |a_{i1}|$$

i.e. pick the maximum element (in absolute measure) as the pivot.

More on sweeping the matrix 1

Note that step (b), i.e. the interchanging of rows, can be formulated as

$$(\overline{\mathbf{A}}, \overline{\mathbf{b}}) = \mathbf{P}_1(\mathbf{A}, \mathbf{b})$$

where P_1 is a permutation matrix,

nere
$$P_1$$
 is a permutation matrix,
e.g. for $N = 4$, exchange row 1 and 2:
$$\mathbf{P}_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Note that
$$\mathbf{P}_1\mathbf{P}_1 = \mathbf{I} \Rightarrow \mathbf{P}_1^{-1} = \mathbf{P}_1$$

More on sweeping the matrix 2

Note that step (c), i.e. the actual sweeping, can be formulated as $(\mathbf{A}^{(1)}, \mathbf{b}^{(1)}) = \mathbf{G}_1(\overline{\mathbf{A}}, \overline{\mathbf{b}})$

where
$$\mathbf{G}_1 = \begin{pmatrix} 1 & 0 & \Lambda & 0 \\ -l_{21} & 1 & & \\ \mathbf{M} & \mathbf{O} & \\ -l_{N1} & 0 & 1 \end{pmatrix}$$

Note that

$$\mathbf{G}_{1}^{-1} = \begin{pmatrix} 1 & 0 & \Lambda & 0 \\ l_{21} & 1 & & \\ M & O & \\ l_{N1} & 0 & 1 \end{pmatrix}$$

More on sweeping the matrix 3

So, we find $(A^{(1)}, b^{(1)}) = G_1P_1(A, b)$ and in general $(\mathbf{A}^{(j)}, \mathbf{b}^{(j)}) = \mathbf{G}_{i} \mathbf{P}_{i} (\mathbf{A}^{(j-1)}, \mathbf{b}^{(j-1)})$

with
$$\mathbf{G}_{j} = \begin{pmatrix} 1 & & & 0 \\ & O & & \\ & & 1 & \\ & & -l_{j+1,j} & \\ & & M & O \\ & & M & O \\ 0 & & -l_{N,j} & & 1 \end{pmatrix}$$
 and \mathbf{P}_{j} a permutation matrix

final solution $(\mathbf{U}, \mathbf{c}) = \mathbf{G}_{N-1} \mathbf{P}_{N-1} \mathbf{G}_{N-2} \mathbf{P}_{N-2} \Lambda \mathbf{G}_1 \mathbf{P}_1 (\mathbf{A}, \mathbf{b})$

LU factorization 1

Now, suppose no row exchanges are needed, i.e. $P_j = I$. In that case we find $U = G_{N-1}G_{N-2}\Lambda G_1A$

$$\Rightarrow$$
 A = **LU**, where **L** = $\mathbf{G}_1^{-1}\mathbf{G}_2^{-1}\Lambda \mathbf{G}_{N-1}^{-1}$

It is easily verified that
$$\mathbf{L} = \begin{pmatrix} 1 & 0 & \Lambda & 0 \\ l_{21} & O & & \mathbf{M} \\ \mathbf{M} & & 1 & 0 \\ l_{N1} & \Lambda & l_{N,N-1} & 1 \end{pmatrix}$$

So, L is a lower triangular matrix, and the result of the sweeping process U is an upper triangular matrix.

LU factorization 2

This LU factorization is important, because with it we can now easily solve for many arguments **b**.

original system : Ax = b

after factorization : LUx = b

first solve : $\mathbf{L}\mathbf{y} = \mathbf{b} \rightarrow \text{forward substitution}$

then solve : $\mathbf{U}\mathbf{x} = \mathbf{y} \rightarrow \text{backward substitution}$

LU factorization 3

- In general LU = PA
- with $\mathbf{P} = \mathbf{P}_{N-1} \mathbf{P}_{N-2} \dots \mathbf{P}_1$
- and **L** some permutation of elements from the G_j matrices.
- Many algorithms exist to find LU factorizations
 - See e.g. Stoer and Bulirsch, Introduction to Numerical Analyis.
- Finally note that also many optimized algorithms exist for special matrices, e.g for banded matrices.

Example

$$\begin{pmatrix} 3 & 1 & 6 \\ 1 & 1 & 3 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 23 \\ 12 \\ 6 \end{pmatrix}$$

Solution: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

Work this out yourself! and check all results....

$$\mathbf{L} = \begin{pmatrix} 1 & 0 & 0 \\ 1/3 & 1 & 0 \\ 1/3 & 1 & 1 \end{pmatrix}$$

$$\mathbf{U} = \begin{pmatrix} 3 & 1 & 6 \\ 0 & 2/3 & 1 \\ 0 & 0 & -2 \end{pmatrix}$$

BLAS

- Basic Linear Algebra Subprograms
 - BLAS 1 O(N) operations on O(N) data items
 - typically a vector update, e.g. : $\mathbf{y} = \alpha \mathbf{x} + \mathbf{y}$
 - BLAS 2 O(N^2) operations on O(N^2) data items
 - typically matrix vector products, e.g. : $\mathbf{y} = \alpha \mathbf{A} \mathbf{x} + \beta \mathbf{y}$
 - BLAS 3 O(N^3) operations on O(N^2) data items
 - typically matrix matrix products, e.g. : $\mathbf{C} = \alpha \mathbf{A} \mathbf{B} + \beta \mathbf{C}$
- Typically highly optimized BLAS libraries available.
 - More information via http://www.netlib.org

Solving equations with BLAS

- Gaussian elimination, or LU factorisation can be implemented using either BLAS-1, BLAS-2 or BLAS-3.
 - Typically performance increases in going from BLAS-1 to BLAS-3 due to better ratio between amount of calculations and needed memory references.
 - Modern linear algebra libraries use BLAS-3, where the algorithms are formulated as block algorithms.
 - Example of such a block LU factorization, see reader.

Linear Algebra Libraries 1

EISPACK

- Fortran routines for calculation of eigenvectors and eigenvalues for dense and banded matrices.
- Based on BLAS-1.

LINPACK

- Fortran routines to solve linear equations for dense and banded matrices.
- Column oriented BLAS-1 approach.

Linear Algebra Libraries 2

LAPACK

- Successor of EISPACK and LINPACK
- Fortran routines for eigenvalues and solving linear equation, for dense and banded matrices.
- Exploit BLAS-3 (improve speed).
- Runs efficiently on vector machines and distributed memory parallel computers.

Linear Algebra Libraries 3

ScaLAPACK

- Extend LAPACK to run efficiently on distributed memory parallel computers
- Fundamental building blocks are distributed memory versions of BLAS-2 and BLAS-3 routines and a set of Basic Linear Algebra Communication Subprograms (BLACS).

Parallel Linear Algebra routines

- Detailed discussion of parallel algorithms for e.g. LU factorisation is beyond the scope of this lecture.
 - Main features are
 - block oriented BLAS-3 approach
 - in combination with special (scattered) decompositions of the matrices.
 - For more information we refer to e.g.
 - G. Fox et al., Parallel Computing Works, chapter 9.5
 - http://www.npac.syr.edu/copywrite/pcw/
 - J.J. Dongarra and D.W. Walker, "Constructing Numerical Software Libraries for High Performance Computer Environments", in A. Zomaya (editor), *Parallel & Distributed Computing Handbook*, chapter 32.

Iterative methods 1

General idea:

consider an iteration of the form

$$\mathbf{x}^{(n+1)} = \mathbf{\Phi}(\mathbf{x}^{(n)}), \quad n = 0, 1, 2, \dots$$

Construct as follows

$$\mathbf{A}\mathbf{x} = \mathbf{b} \rightarrow \mathbf{B}\mathbf{x} + (\mathbf{A} - \mathbf{B})\mathbf{x} = \mathbf{b}$$

then put

$$Bx^{(n+1)} + (A - B)x^{(n)} = b$$

or

$$\mathbf{x}^{(n+1)} = (\mathbf{I} - \mathbf{B}^{-1}\mathbf{A})\mathbf{x}^{(n)} - \mathbf{B}^{-1}\mathbf{b}$$

Many choices are possible, see e.g. Stoer and Bulirsch, *Introduction to numerical analysis*, chapter 8.

We will return to this point later, first go back to the Finite Difference scheme

Jacobi iteration

• Finite difference scheme for Laplace equation..

$$\nabla^2 c = 0 \rightarrow c_{l,m} = \frac{1}{4} \left[c_{l+1,m} + c_{l-1,m} + c_{l,m+1} + c_{l,m-1} \right], \forall (l,m)$$

• .. Immediately suggests an iterative procedure.

$$c_{l,m}^{(n+1)} = \frac{1}{4} \left[c_{l+1,m}^{(n)} + c_{l-1,m}^{(n)} + c_{l,m+1}^{(n)} + c_{l,m-1}^{(n)} \right]$$

- This is the Jacobi iteration.
 - (*n*) is now the iteration number.
- Note that the Jabobi iteration is immediately found from the time dependent FD scheme with a maximal time step, i.e.

 $D\delta x^2/\delta t = 1/4$, so Jacobi still suffers from large amount of iterations.

Sequential Jacobi iteration

```
/* Jacobi update, square domain, periodic in x, fixed upper and lower boundaries */
do {
  for i=0 to max {
     for j=0 to max {
       if (c_{ii} is a source) c_{ii}^{(n+1)} = 1.0
       else if (c_{ij} is a sink) c_{ij}^{(n+1)} = 0.0 /* e.g. an object in the lattice */
       else {
          west = (i==0) ? c_{max-1,i}^{(n)} : c_{i-1,i}^{(n)} /* periodic boundaries */
          east = (i==max) ? c_{1,i}^{(n)} : c_{i+1,i}^{(n)}
          south = (j==0) ? c0 : c_{i,i-1}^{(n)} /* fixed boundaries */
          north = (j==max) ? cL : c_{i,i+1}^{(n)}
         c_{ij}^{(n+1)} = 0.25 * (west + east + south + north)
       if(|c_{ii}^{(n+1)} - c_{ii}^{(n)}| > tolerance) \delta = |c_{ii}^{(n+1)} - c_{ii}^{(n)}| /* stopping criterion */
while (\delta > \text{tolerance})
```


Example 1

- As before, the two dimensional domain, $0 \le x$, $y \le 1$
 - periodic boundary conditions in x-direction
 - c(x,y) = c(x+1,y)
 - other boundary conditions
 - c(x,y=0) = 0
 - c(x,y=1) = 1
 - Note that because of symmetry the solution will not depend on the *x*-coordinate, and that the exact solution is a simple linear concentration profile:

$$c(x,y) = y$$

derive this result yourself!!

Example 2

- Set the stop condition $\delta = 10^{-p}$
- measure number of iterations as function of number of gridpoints (N^2) and p.

Number of iterations approximately as $O(N^2)$

Compare to number of expected time steps in the time dependent scheme.

Parallel Jacobi

- Update procedure is straightforward, just like the time dependent FD scheme.
 - Thanks to the local five-point stencil operation.
- However, the stopping condition requires a global communication operation.
 - This will reduce the efficiency of the parallel iteration.
 - May need some clever procedures to fine-tune
 - e.g. only check for convergence after every q iterations.
 - this is part of the lab course.

Pseudo code

```
main () /* pseudo code for parallel Jacobi iteration */
    decompose lattice;
    initialize lattice sites:
    set boundary conditions;
    do {
        exchange boundary strips with neighboring processors;
        for all grid points in this processor {
            update according to Jacobi iteration;
            calculate local \delta_i parameter; /* stopping criterion */
        obtain the global maximum \delta of all local \delta_l values
    while (\delta > \text{tolerance})
    print results to file;
```


Gauss-Seidel iteration

- Idea: use new values as soon as they are calculated:
 - proceed along the rows, incrementing l for fixed m

$$c_{l,m}^{(n+1)} = \frac{1}{4} \left[c_{l+1,m}^{(n)} + c_{l-1,m}^{(n+1)} + c_{l,m+1}^{(n)} + c_{l,m-1}^{(n+1)} \right]$$

- Note that Gauss-Seidel iteration is done in place
 - no need to have a buffer holding a copy of all lattice points, as in the Jacobi iterations, saves a lot of memory!

Example Continued

• Compare Jacobi and Gauss-Seidel (N = 40)

Gauss-Seidel needs a factor 2 less iteration than Jacobi.

Also expected from theory, see e.g. Press et al., Numerical Recipes, chapter 17.5

http://www.ulib.org/webRoot/Books/Numerical_Recipes/bookcpdf.html

Parallel Gauss-Seidel

- The inherent parallelism in the Jacobi iteration is destroyed, and at first sight the Gauss-Seidel iteration is sequential...
- ...however, this is only true because of the specific order (proceeding along the rows) in which the points are updated.
- Changing this update order will again restore the inherent parallelism.

Red Black ordering 1

- Color the grid as a checkerboard, with red and black lattice points.
- All the red points are independent from each other (only depend on black points), and also all the black points are independent from each other (only depend on red points).
- So, a parallel procedure would be to first update, in parallel, all red points, and next all black points, etc..

Red Black ordering 2

Red Black ordening

Parallel Gauss-Seidel with R/B ordering

```
/* only the inner loop of the parallel Gauss-Seidel method with */
/* Red Black ordering */
   do {
       exchange boundary strips with neighboring processors;
       for all red grid points in this processor {
           update according to Gauss-Seidel iteration;
       exchange boundary strips with neighboring processors;
       for all black grid points in this processor {
           update according to Gauss-Seidel iteration;
       obtain the global maximum \delta of all local \delta_{\scriptscriptstyle 7} values
   while (\delta > \text{tolerance})
```


Efficiency

- Note that the Red Black ordening requires one extra exchange operation!
 - However, the exchange operation only needs to sent half the amount of grid points (why?).
- So, we recover parallelism, at the expense of twice as much communication setup time
 - need larger grain size for good parallel performance
 - make a detailed analysis yourself!

Coarse grained Red Black ordering

• A coarse grained R/B ordering is off course also possible, e.g. for a strip-decomposition.

• within each red or black block the natural row wise ordering can be used again (why?).

Successive Over Relaxation

• An final improvement is to make an *over correction* of the Gauss-Seidel iteration, thus creating the Successive Over Relaxation method (SOR)

$$c_{l,m}^{(n+1)} = \frac{\omega}{4} \left[c_{l+1,m}^{(n)} + c_{l-1,m}^{(n+1)} + c_{l,m+1}^{(n)} + c_{l,m-1}^{(n+1)} \right] + (1 - \omega) c_{l,m}^{(n)}$$

- One can prove that:
 - method is convergent only for $0 < \omega < 2$
 - $0 < \omega < 1$: under relaxation
 - $\omega = 1$: Gauss-Seidel
 - $1 < \omega < 2$: over relaxation
 - usually, for finite differencing, over relaxation gives a faster convergence then Gauss-Seidel.

Compare all three methods

- Again for the example of the bounded domain (N = 40)
- Number of iterations
- error (defined as maximum between numerical solution and exact solution)

Iterative methods in matrix notation

 Remember that iterative methods can be constructed through

-
$$\mathbf{B}\mathbf{x}^{(n+1)} + (\mathbf{A} - \mathbf{B})\mathbf{x}^{(n)} = \mathbf{b}$$

• Now, write

$$\mathbf{A} = \mathbf{D} + \mathbf{E} + \mathbf{F},$$

$$\mathbf{D} = \begin{pmatrix} a_{11} & 0 \\ 0 & 0 \\ 0 & a_{NN} \end{pmatrix}$$

Now, write
$$\mathbf{A} = \mathbf{D} + \mathbf{E} + \mathbf{F}, \qquad \mathbf{D} = \begin{pmatrix} a_{11} & 0 \\ 0 & 0 \\ 0 & a_{NN} \end{pmatrix}$$

$$\mathbf{E} = \begin{pmatrix} 0 & 0 \\ a_{21} & 0 \\ M & 0 \\ a_{N1} & \Lambda & a_{N,N-1} & 0 \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} 0 & a_{12} & \Lambda & a_{1N} \\ 0 & 0 & M \\ 0 & 0 & 0 \end{pmatrix}$$

Matrix notation 2

Jacobi

$$\mathbf{B} = \mathbf{D} \implies a_{ii} x_i^{(n+1)} = -\sum_{i \neq j} a_{ij} x_j^{(n)} + b_i$$

Gauss-Seidel

$$\mathbf{B} = \mathbf{D} + \mathbf{E} \implies a_{ii} x_i^{(n+1)} = -\sum_{i < j} a_{ij} x_j^{(n+1)} - \sum_{i > j} a_{ij} x_j^{(n)} + b_i$$

• SOR

$$\mathbf{B} = \frac{1}{\omega}\mathbf{D} + \mathbf{E} \implies$$

$$a_{ii}x_i^{(n+1)} = \omega(-\sum_{i < j} a_{ij}x_j^{(n+1)} - \sum_{i > j} a_{ij}x_j^{(n)} + b_i) + (1-\omega)a_{ii}x_i^{(n)}$$

Diffusion Limited Aggregation

- Diffusion Limited Aggregation (DLA)
 - model for non-equilibrium growth
 - e.g. a Bacillus subtilis bacteria colony in a petri dish
 - colony feeds on nutrients in the immediate environment
 - probability of growth is determined by the concentration of nutrients.
 - concentration of nutrients in its turn is determined by diffusion
 - DLA algorithm
 - 1. Solve Laplace equation to get distribution of nutrients, assume that the object is a sink (i.e. c = 0 on the object)
 - 2. Let the object grow
 - 3. Go back to (1)

Ways to study a system

Growth of a colony of the bacterial species Bacillus subtilis (after Matsushita & Fullikawa 1990

Abiotic growth and form: Viscous fingering

Abiotic growth and form:Lichtenberg patterns

Abiotic growth and form:metal deposit

Construction of the object

- 1. Determine growth candidates black circles are part of the object open circles are growth candidates
- 2. Determine growth probabilities

$$p_{g}((i,j) \in o \to (i,j) \in \bullet) = \frac{\left(c_{i,j}\right)\eta}{\sum_{(i,j) \in o} \left(c_{i,j}\right)\eta}$$

 η is a free parameter, usually $0 \le \eta \le 2$, for classical DLA, $\eta = 1$.

3. Grow the object

for each grow candidate, draw a random number between 0 and 1, and if this number is smaller then p_g , add the candidate to the object.

Some results

256² grid, Laplace equation solved with SOR.

Top lane: $\eta = 0.0$ (Eden cluster), $\eta = 0.5$

bottom lane : $\eta = 1.0$, $\eta = 1.5$, $\eta = 2.0$

Diffusion limited aggregation in 3D

Flow limited aggregation in 3D

Parallel DLA

- Easiest is to keep using the same decomposition as for the iterative solvers
 - growth step is local, completely in parallel, but
 - calculation of the growth probabilities requires a global communication (for the normalization, i.e. the denominator of the equation for the probability)
- However, due to the growing object the load balancing gets worse and worse during the simulation.
 - We will return to this issue in the part on domain decomposition.