Лабораторная работа 4.

Функции

Требования к выполнению заданий

- 1. На оценку 3 балла:
 - а) реализовать программу в соответствии с заданием.
- 2. На оценку 4 балла:
- а) добавить проверку входных аргументов и вывод сообщений об ошибках (используя исключения);
- 3. На оценку 5 баллов:
 - а) реализовать интерфейс командной строки;
- б) оценить полученный алгоритм в нотации «О» большое Плюсом будет наличие документации полученной программы.

Задания

Вариант 1

Напишите функцию, реализующую решето Эратосфена.

Входные значения: верхняя граница интервала [0, N].

Выходные значения: список простых чисел.

Вариант 2

Написать функцию, реализующую алгоритм бинарного поиска.

Входные значения: отсортированный список длиной n, значение, которое необходимо найти в списке.

Выходные значения: индекс элемента в списке, если таковой найден или None если элементов нет.

Вариант 3

Написать функцию, реализующую алгоритм сортировки выбором.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 4

Написать функцию, реализующую алгоритм поиска в ширину.

Входные значения: граф, в котором производится поиск, элемент который необходимо найти.

Выходные значения: True если элемент есть в графе, иначе False.

Вариант 5

Напишите функцию, реализующую решение задачи покрытия множества с помощью жадных алгоритмов.

Входные значения: словарь, ключи которого наименование радиостанций, а значения — множества регионов, которые покрывают радиостанции; множество всех регионов, которые необходимо покрыть.

Выходные значения: минимальное количество станций, множество которых покрывает все регионы.

Жадный алгоритм:

- а) выбрать станцию, покрывающую наибольшее количество регионов, еще не входящих в покрытие. Если станция будет покрывать некоторые регионы, уже входящие в покрытие, это нормально.
 - б) повторять, пока остаются непокрытые элементы множества.

Вариант 6

Напишите функцию, реализующую алгоритм поиска Боуэра-Мура.

Входные значения: строка, в которой необходимо произвести поиск; множество слов которые необходимо найти.

Выходные значения: словарь, ключи которого найденные слова, а значения – кортежи индексами начала и конца слова в исходной строке.

Вариант 7

Напишите функцию, реализующую поиск счастливые простые числа.

Входные значения: верхняя граница интервала [0, N].

Выходные значения: список счастливых простых чисел.

Вариант 8

Написать функцию, реализующую алгоритм Дейкстры.

Входные значения: взвешенный граф, стартовый узел, целевой узел.

Выходные значения: кортеж, состоящий из дистанции между начальным и целевым узлом и путь из начального в целевой узел в виде словаря.

Вариант 9

Написать функцию, реализующую алгоритм сортировки Шелла.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 10

Написать функцию, реализующую алгоритм Прима.

Входные значения: взвешенный граф в виде хеш-таблицы (словаря).

Выходные значения: минимальное оставное дерево в виде словаря.

Вариант 11

Написать функцию, реализующую алгоритм поиска в глубину.

Входные значения: граф (в виде словаря), в котором производится поиск, элемент который необходимо найти.

Выходные значения: True если элемент есть в графе, иначе False.

Вариант 12

Написать функцию, реализующую алгоритм сортировки вставками.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 13

Написать функцию, реализующую алгоритм Флойда – Уоршелла.

Входные значения: взвешенный граф, стартовый узел, целевой узел.

Выходные значения: кортеж, состоящий из дистанции между начальным и целевым узлом и путь из начального в целевой узел в виде словаря.

Вариант 14

Написать функцию, реализующую алгоритм Грэхема (построение выпуклой оболочки).

Входные значения: множество точек $Q(|Q| \ge 3)$.

Выходные значения: список точек образующих выпуклую оболочку.

Вариант 15

Написать функцию, реализующую алгоритм А*.

Входные значения: взвешенный граф, стартовый узел, целевой узел.

Выходные значения: кортеж, состоящий из дистанции между начальным и целевым узлом и путь из начального в целевой узел в виде словаря.

Вариант 16

Написать функцию, реализующую решето Сундарама.

Входные значения: верхняя граница интервала [1, N].

Выходные значения: список простых чисел в интервале [1, 2N + 1].

Вариант 17

Написать функцию, реализующую метод Ньютона.

Входные значения: функция f(x), производная функции f(x) - f'(x), границы интервала поиска [a, b].

Выходные значения: координаты минимума и значение функции в этой точке.

Вариант 18

Написать программу, реализующую ПИД-регулятор.

Входные значения: коэффициенты усиления пропорциональной K_p , интегрирующей K_i , дифференцирующей K_d составляющих регулятора; значение выхода объекта x(t), значение уставки x^* .

Выходные значения: значение управления u.

По желанию студента реализовать фабрику регуляторов с заданными K_p, K_i, K_d .

Вариант 19

Написать функцию, реализующую алгоритм быстрой сортировки.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 20

Написать функцию, реализующую алгоритм Краскала.

Входные значения: взвешенный граф в виде хеш-таблицы (словаря).

Выходные значения: минимальное оставное дерево в виде словаря.

Вариант 21

Написать функцию, реализующую алгоритм сортировки подсчетом.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 22

Написать функцию, преобразующую строку с математическим выражением в обратную польскую запись.

Входные значения: строка с математическим выражением.

Выходные значения: строка с обратной польской записью.

Вариант 23

Написать функцию, реализующую Ро-алгоритм Полларда.

Входные значения: число N, которое необходимо разложить на множители; начальный элемент последовательности x_0 .

Выходные значения: список множителей числа N.

Вариант 24

Написать функцию, реализующую алгоритм Беллмана-Форда.

Входные значения: взвешенный граф, стартовый узел, целевой узел.

Выходные значения: кортеж, состоящий из дистанции между начальным и целевым узлом и путь из начального в целевой узел в виде словаря.

Вариант 25

Написать функцию, реализующую алгоритм сортировки прямым обменом.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 26

Написать функцию, реализующую алгоритм поиска Кнута-Морриса-Пратта.

Входные значения: строка, в которой необходимо произвести поиск; множество слов которые необходимо найти.

Выходные значения: словарь, ключи которого найденные слова, а значения – кортежи индексами начала и конца слова в исходной строке.

Вариант 27

Написать функцию, реализующую алгоритм сортировки слиняем.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 28

Написать функцию, реализующую алгоритм сортировки выбором.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 29

Написать функцию, реализующую алгоритм сортировки перемешиванием.

Входные значения: список длиной n.

Выходные значения: отсортированный список длиной n.

Вариант 30

Написать функцию, реализующую алгоритм кодирования на основе кода Хаффмана.

Входные значения: строка, которую необходимо сжать.

Выходные значения: исходная строка закодированная кодом Хаффмана.

Контрольные вопросы

- 1. Понятие области видимости. Четыре области видимости в Python.
- 2. Функции. Возвращаемые значения.
- 3. Замыкания и декораторы.

- 4. Ключевые аргументы, аргументы по умолчанию. Неименованные аргументы. Упаковка и распаковка аргументов.
 - 5. Операторы global и nonlocal. Варианты применения.
- 6. Функциональное программирование в Python (map, zip, filter). Анонимные функции.
- 7. Исключения. Метод обработки и возбуждения исключений. Пользовательские исключения.
 - 8. Нотация «О» большое. Цель определения сложности алгоритма.
 - 9. Аннотация типов в Python, модуль typing.
 - 10. Передача аргументов по ссылке и по значению.