Санкт-Петербургский Государственный Политехнический Университет Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ

По лабораторной работе №6

Дисциплина: Телекоммуникационные технологии

Тема: Цифровая модуляция

Выполнила студентка гр. 33501/2		Белобородова В. Г.
Преподавателн		Богач Н.В.
	>	2018 г.

Оглавление

1. Цель работы	3
2. Постановка задачи	3
3. Теоретические сведения	3
BPSK, PSK	3
OQPSK	4
QAM	5
MSK	6
MFSK	6
4. Ход работы	6
BPSK	6
PSK-8	8
OQPSK	10
genQAM	11
MSK	13
FSK	14
5. Вывод	16
Список иллюстраций	
Список иллюстраций Рис. 4.1 – Сигнальное созвездие BPSK без шума	7
-	
Рис. 4.1 – Сигнальное созвездие BPSK без шума	7
Рис. 4.1 – Сигнальное созвездие BPSK без шума	7 8
Рис. 4.1 – Сигнальное созвездие BPSK без шума	7 8 9
Рис. 4.1 – Сигнальное созвездие BPSK без шума	
Рис. 4.1 – Сигнальное созвездие BPSK без шума	7 9 9
Рис. 4.1 – Сигнальное созвездие BPSK без шума	
Рис. 4.1 – Сигнальное созвездие BPSK без шума	
Рис. 4.1 – Сигнальное созвездие BPSK без шума	79101111
Рис. 4.1 — Сигнальное созвездие BPSK без шума	7910111112
Рис. 4.1 – Сигнальное созвездие BPSK без шума	7910111213
Рис. 4.1 – Сигнальное созвездие BPSK без шума	7991011121314

1. Цель работы

Изучить методы модуляции цифровых сигналов.

2. Постановка задачи

- 1. Получить сигналы BPSK, PSK, OQPSK, genQAM, MSK модуляторов.
- 2. Построить их сигнальные созвездия.
- 3. Провести сравнение изученных методов модуляции цифровых сигналов.

3. Теоретические сведения

BPSK, PSK

Binary phase-shift keying. Двоичная фазовая манипуляция. Так как кодируемыми значениями могут быть только 0 и 1, значения фазы несущего колебания принимают значение 0 и 180 градусов.

Вот пример такой модуляции:

PSK отличается от двоичного PSK тем, что можно выбрать другое количество состояний. Например, 8:

OQPSK

Offset quadrature phase-shift keying. Четырехпозиционная фазовая модуляция со сдвигом квадратур.

Разобьём исходный цифровой сигнал и поделим чётные и нечётные отчеты по группам:

Передавать сообщение будем по парам d(четн)+d(нечетн). В таком случае за раз не может измениться более одного компонента данной структуры. Потому переходы фазы между единицами сообщения не могут быть более 90 градусов:

Сообщение, полученное для рассмотренного выше кода:

QAM

Квадратурная амплитудная модуляция КАМ служит примером модуляции с большим числом бит в символах. Следовательно, можно получить и большее число состояний. Название 16-QAM означает 16 состояний на сигнальном созвездии, а 64-QAM означает 64 состояния. КАМ совмещает в себе амплитудную и фазовую модуляции. Выходные колебания образуются сложением модулированных сигналов квадратурных каналов, как и при фазовой манипуляции, однако обе несущие теперь модулированы и по амплитуде.

Логической 1 соответствует сигнал \pm Am. (знак минус соответствует смене фазы модулированных колебаний на π ;), а логическому 0 соответствует нулевой уровень. Причем логическая 1 создает на выходе модулятора колебания с амплитудой Am, а логический 0 не создает колебаний. Выходной сигнал, таким образом, будет модулирован (точнее, манипулирован) и по фазе, и по амплитуде.

Пример карты для QAM-16:

MSK

Minimal Shift Keying. Модуляция с минимальным разносом частот.

MFSK

Multiple frequency-shift keying. Многопозиционная частотная модуляция.

Это FSK с более чем двумя словами в алфавите.

FSK передаёт биты 0 и 1 разными частотами. Пример:

4. Ход работы

BPSK

```
% Сигнал m2 = 2; s2 = randi([0 m2-1], [1 256]); % BPSK bpsk = pskmod(s2, m2); % Модуляция scatterplot(bpsk); % Созвездие bpsk_noise = awgn(bpsk, 10); % Добавление помех scatterplot(bpsk_noise); bpsk_demod = pskdemod(bpsk_noise, m2); [a1, b1] = symerr(s2, bpsk_demod)
```


Рис. 4.1 – Сигнальное созвездие BPSK без шума

Рис. 4.2 – Сигнальное созвездие BPSK с шумом

Приводить 256-битные сообщения смысла нет. Функции symerr и biterr рассчитали, что сообщения оригинальное и декодированное из шума совпадают полностью.

Чтобы получить неверное сообщение, нужно сильно увеличить уровень шума, например, в 5 раз:

```
bpsk_noise = awgn(bpsk, 2); % Добавление помех scatterplot(bpsk_noise);
```

```
bpsk_demod = pskdemod(bpsk_noise, m2);
[a1, b1] = symerr(s2, bpsk_demod)
```


Рис. 4.3 – Сигнальное созвездие BPSK с сильным шумом

Действительно, теперь посылки не совпадают и получены результаты:

```
a1 = 7
b1 = 0.027343750000000
```

Т.е. 7 символов не удалось декодировать верно. Такое значение шума недопустимо для передачи данной посылки.

PSK-8

```
% Сигнал
m8 = 8;
s8 = randi([0 m8-1], [1 256]);

%PSK-8
psk = pskmod(s8, m8); % Модуляция
scatterplot(psk); % Созвездие
psk_noise = awgn(psk, 20); % Добавление помех
scatterplot(psk_noise);
psk_demod = pskdemod(psk_noise, m8);

[a1, b1] = symerr(s8, psk_demod)
```


Рис. 4.4 – Сигнальное созвездие PSK-8

Рис. 4.5 – Сигнальное созвездие PSK-8 с шумом

Как ясно из прошлого эксперимента, можно на глаз определить, сможет ли сигнал декодироваться верно. В данном случае шум не достаточно сильный, чтобы перепутать слова посылки. Сообщение декодировалось полностью верно.

Стоит заметить, что с увеличением количества фаз система может работать без ошибок при меньшем и меньшем шуме. Это относится к любым методам кодирования, ведь чем

больше состояний, тем меньше расстояния между ними и больше вероятность ошибочного декодирования при наличии шума.

Рис. 4.6 – Вероятность ошибки разных манипуляций в зависимости от шума

OQPSK

```
% Сигнал m4 = 4; s4 = randi([0 m4-1], [1 256]);
% OQPSK oqpsk = oqpskmod(s4, m4); % Модуляция scatterplot(oqpsk); % Созвездие oqpsk_noise = awgn(oqpsk, 15); % Добавление помех scatterplot(oqpsk_noise); oqpsk_demod = oqpskdemod(oqpsk_noise, m4);
[a1, b1] = symerr(s4, oqpsk_demod)
```


Рис. 4.7 – Сигнальное созвездие OQPSK

Рис. 4.8 – Сигнальное созвездие OQPSK с шумом

Сообщение получено 100% верно.

genQAM

Шум специально подобран так, чтобы сообщение передавалось верно.

```
inphase = [1/2 1 1 1/2 1/2 2 2 5/2];
quadr = [0 1 -1 2 -2 1 -1 0];
```

```
inphase = [inphase; -inphase]; inphase = inphase(:);
quadr = [quadr; quadr]; quadr = quadr(:);
const = inphase + 1i*quadr;
m = 16;
signal = randi([0 m-1], [1 256]);
y = genqammod(signal, const);
scatterplot(y);
sig_noise = awgn(y, 18);
scatterplot(sig_noise);
sig_demod = genqamdemod(sig_noise, const);
[a1, b1] = symerr(signal, sig_demod)
```


Рис. 4.9 – Сигнальное созвездие QAM

Рис. 4.10 – Сигнальное созвездие QAM с шумом

MSK

```
m = 2;
n = 7;
signal = randi([0 m-1], [1 256]);
y = mskmod(signal, n);
scatterplot(y);
sig_noise = awgn(y, 2);
scatterplot(sig_noise);
sig_demod = mskdemod(sig_noise, n);
[a1, b1] = symerr(signal, sig_demod)
```


Рис. 4.11 – Сигнальное созвездие MSK

Рис. 4.12 – Сигнальное созвездие MSK с шумом

В декодированном сообщении обнаружен 1 неверный бит из 256. Для получения большей ошибки необходимо уменьшить количество слов на бит п.

FSK

```
m = 2;
nsamp = 8;
```

```
freq = 8;
signal = randi([0 m-1], [1 256]);
fs = 32;
y = fskmod(signal, m, freq, nsamp, fs);
scatterplot(y);
sig_noise = awgn(y, 15);
scatterplot(sig_noise);
sig_demod = fskdemod(sig_noise, m, freq, nsamp, fs);
[a1, b1] = symerr(signal, sig_demod)
```


Рис. 4.13 – Сигнальное созвездие FSK

Рис. 4.14 - Сигнальное созвездие FSK с шумом

Посылка получена верно на 100%.

5. Вывод

В данной работе проведены манипуляции цифровых сигналов с 2, 4, 8, 16 состояниями. Сигналы закодированы и декодированы.

На основе полученных диаграмм можно сделать вывод, что различные способы модуляции (манипуляции) следует использовать в различных случаях. Например, если передача ведётся по достаточно помехозащищённому каналу, можно выбрать модуляцию с 4, 16 или 32 состояниями и передавать за 1 единицу времени больше информации. Если канал наоборот настолько зашумлён, что даже BPSK не может дать нужной надёжности, стоит использовать MSK-8+.