Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA Ano letivo 2017/2018

TRABALHO 2: MOVIMENTO DE PROJÉTEIS

Objetivos

- Determinar a velocidade inicial do projétil através das equações do movimento
- Verificar a dependência do alcance com o ângulo de lançamento
- Determinar a velocidade inicial do projétil utilizando um pêndulo balístico

1. INTRODUÇÃO

A posição de um projétil, de massa M e velocidade inicial v_0 , que se desloca no plano x, y é dada por:

$$x = x_0 + v_0 t \cos \theta_0, \tag{1}$$

$$y = y_0 + v_0 t \sin \theta_0 - \frac{1}{2} g t^2, \tag{2}$$

onde g é a aceleração da gravidade, t é o tempo, x_0 e y_0 são as coordenadas da posição inicial do projétil e θ_0 é a inclinação do vetor velocidade inicial relativamente ao eixo dos x. Eliminando a variável t das equações (1) e (2), obtém-se uma nova equação para o alcance x em função do ângulo que permite determinar o ângulo correspondente ao alcance máximo, θ_{amax} . Se um corpo é lançado de uma altura y_i e atinge uma altura final y_f , θ_{amax} é dado por:

$$\theta_{a\max} = arctg \frac{1}{\sqrt{1 + \frac{2g(y_i - y_f)}{v_0^2}}}$$
(3)

Se a altura inicial for igual à final $(y_i = y_f)$ então, $tg\theta_{amax} = 1$ pelo que $\theta_{amax} = 45^\circ$.

Pêndulo Balístico

O pêndulo balístico consiste numa massa M suspensa de um fio ou uma barra, cujo valor é muito superior à massa, m, do projétil (m<M). Se o projétil for disparado contra essa massa e nela ficar retido, então o conjunto adquire uma energia cinética, E_c , que, à medida que o pêndulo se move, vai sendo transformada em energia potencial gravítica, E_p . A altura máxima, h, atingida será tal que a energia potencial gravítica máxima iguala a energia cinética inicial, devido à conservação da energia mecânica. Considerando v_0 a velocidade inicial do projétil e v_2 a velocidade do conjunto massa + projétil logo após a colisão, obtémse:

$$E_c(inicial) = \frac{1}{2}(m+M)v_2^2 = (m+M)gh = E_p(max)$$
 (4)

A conservação de momento linear na colisão implica que:

$$mv_0 = (m+M)v_2 \tag{5}$$

de onde se tira a relação entre a velocidade inicial v_o e a altura h

$$v_0 = \left(\frac{m+M}{m}\right)\sqrt{2gh} \tag{6}$$

2. PREPARAÇÃO DO TRABALHO¹

- 1. Serão as equações (1) e (2) aplicáveis ao movimento de um projétil de longo alcance? Assuma a ausência de atrito. Justifique, sucintamente, a sua resposta.
- 2. Elimine a variável t das equações (1) e (2) e obtenha uma nova equação para o alcance x.
- 3. Utilizando a equação (3), determine θ_{amax} supondo que $y_i y_f = 0.2 \ m \ e \ v_0 = 3 \ ms^{-1}$.
- 4. No lançamento do projétil, o efeito do atrito do ar tem um efeito desprezável. Para obter a melhor marca possível, um atleta utilizará um ângulo de lançamento superior, inferior ou igual a 45°? Justifique a sua resposta.
- 5. Deduza a equação (6) a partir das equações (4) e (5).
- 6. Considerando v = s/t e utilizando a teoria da propagação dos erros, determine a equação para o erro associado à velocidade de um projétil em movimento retilíneo uniforme.
- 7. Deduza a relação entre h, o comprimento do pêndulo, l, e α , tendo em conta a figura 4, bem como o respetivo erro associado, utilizando a fórmula de propagação dos erros.
- 8. Utilizando a equação (6) e recorrendo à teoria de propagação dos erros, determine a equação para o erro associado à velocidade inicial, v_0 .

¹ Se tiver dúvidas consulte o docente.

3. PROCEDIMENTO EXPERIMENTAL

A Figura 1 mostra uma fotografia da montagem experimental. Identifique os elementos descritos no material fornecido.

Figura 1. Esquema da montagem experimental disponível na aula.

MATERIRAL FORNECIDO

- Lançador de projéteis
- Sensores de passagem
- Sensor de impacto
- Esfera plástica

Parte A - Determinação da velocidade inicial

Figura 2. Montagem experimental para a realização da experiência A. (LEGENDA: 1-Lançador de projéteis (LP); 2-Base de fixação para o LP; 3-Sensor de passagem (inicia a contagem do tempo); 4-Sensor de passagem (termina a contagem do tempo); 5-Sistema de controlo dos sensores.)

- 1. Efetue a montagem de acordo com a figura tendo o cuidado de:
 - a. fixar a base (2) à mesa com um grampo adequado e colocar o LP na posição horizontal.
 - b. garantir que o sistema de controlo (5) está ligado à fonte de alimentação e que se encontra na posição de desligado (OFF).
 - c. garantir que o sensor (3) está colocado imediatamente à saída do LP (1) e que o sensor (4) está ligado ao sistema de controlo (5).
- **2.** Meça a distância, *s*, entre os sensores.
- **3.** Carregue o LP na posição de tiro curto "SHORT RANGE". Colocar a esfera na boca do LP, empurrá-la para o interior com a vareta de carregar (tubo de plástico preto) até o indicador amarelo, no LP, se encontrar na posição pretendida.
- **4.** Coloque o sistema de controlo (5) na posição de "TWO GATES". Carregar em START/STOP.
- **5.** Dispare o LP puxando o fio do disparador verticalmente e com suavidade. Registe o tempo indicado pelo sistema de controlo (5).
- **6.** Repita os passos de 1) a 5) para 5 medidas. Tenha o cuidado de verificar a horizontalidade do LP antes de cada lançamento.

Parte B - Dependência do alcance com o ângulo de disparo

Figura 3. Montagem experimental para a realização da experiência B. (LEGENDA: 1-Lançador de projéteis (LP); 2-Base de fixação para o LP; 3-Alvo.)

- 1. Efetue a montagem de acordo com a figura tendo o cuidado de:
 - a. fixar a base (2) à mesa com um grampo adequado e colocar o LP a fazer um ângulo de 30° com a horizontal.
- **2.** Coloque o alvo (conjunto de papel/químico/papel milimétrico) a uma distância tal que a esfera plástica caia sobre a sua superfície. A distância é determinada por tentativa e erro.
- 3. Carregue o LP na posição de tiro curto "SHORT RANGE" com a esfera.
- **4.** Dispare o LP. Registe o alcance, x, e o ângulo de lançamento, θ . Repita mais duas vezes, tendo o cuidado de verificar se o ângulo de lançamento se mantém constante.
- **5.** Repita os passos anteriores, para ângulos de 32° , 34° , 36° , 38° , 40° , 43° , 46° e 50° .
- **6.** Meça rigorosamente, em relação à bancada, a altura, y_i , a que a esfera plástica é lançada.

Parte C - Pêndulo Balístico / Método alternativo para determinação da velocidade inicial de um projétil

Figura 4. Montagem experimental para realização da experiência C.

- **1.** Meça as massas do projétil, *m*, e do pêndulo, *M*.
- 2. Meça o comprimento do pêndulo, I.
- 3. Carregue o LP na posição de tiro curto "SHORT RANGE".
- **4.** Efetue um disparo e meça o ângulo máximo, α , descrito pelo pêndulo.
- **5.** Repita o ponto anterior mais 4 vezes.

4. ANÁLISE E TRATAMENTO DE DADOS

Com base nesta secção, deverá preparar o relatório preliminar <u>obrigatoriamente</u> entregue ao docente no final da aula.

Parte A - Determinação da velocidade inicial

- Calcule a média dos 5 tempos obtidos e o erro respetivo, Δt.
- Determine a velocidade inicial v_o e o erro respetivo, Δv_o .
- Indique qual a maior fonte de erro. Discuta estratégias para melhorar o resultado obtido.

Parte B - Dependência do alcance com o ângulo de disparo

- Para cada ângulo θ_0 determine a média dos 3 alcances obtidos, x_{ob} (não é necessário determinar o respetivo erro associado).
- Verifique a dependência do alcance, médio x_{ob} , com o ângulo de lançamento, θ .
- Faça o gráfico de x_{ob} médio em função de θ .
- Determine o ângulo θ_{max_ob} , correspondente ao alcance máximo observado. Atendendo a que está a fazer uma amostragem discreta considere o erro associado θ amax ob igual a 1°.
- Comente os resultados obtidos.

Parte C - O Pêndulo Balístico

- Calcule a média dos ângulos, α , e o erro respetivo, $\Delta \alpha$.
- Determine o valor da altura, h, e o erro respetivo, Δh .
- Obtenha um valor final para v_o , e para o respetivo erro, Δv_o .
- Determine qual a maior fonte de erro. Discuta estratégias para melhorar o resultado obtido.
- Compare a velocidade inicial com a obtida na parte A.

Sugestões adicionais para a elaboração do relatório final

- Comente a exatidão e a precisão dos valores obtidos.
- Utilize a equação obtida na questão n^2 2 da seção "Preparação do Trabalho" e a velocidade inicial determinada na parte A, v_0 , para determinar o alcance do projétil para os diferentes ângulos experimentais, x_{det} (não é necessário determinar o respetivo erro associado).

BIBLIOGRAFIA

- [1] Serway, R. A., Physics for Scientist and Engineers with modern Physics, 2000, Saunder College Publishing.
- [2] Alonso & Finn, *Física um curso universitário*, vol. 1, 3ª edição, editora Edgard Blucher, 1981: Cap.5 e 7.
- [3] R. Resnick e D. Halliday, *Física*, vol. 2, 4ª ed.. editora Livros Técnicos e Científicos, 1990.