LIST OF TODOS

It's not immediately obvious which relations analogous to the original R3 relations we want to choose. Here we try out several possible relations, in each case trying to prove an analogous lemma to Lemma 4.1 in Barot and Marsh's paper.

1. Attempts

1.1. Here we test out the set of relations R3' where if $i_{a_0}, i_{a_1}, \dots, i_{a_{d-1}}, i_{a_0}$ is a chordless cycle with all weights 1, then we add in the relation

$$s_0s_1^{-1}s_2s_3^{-1}\cdots s_{d-2}^{(-1)^{d-2}}s_{d-1}s_{d-2}^{(-1)^{d-1}}\cdots s_4^{-1}s_3s_2^{-1}s_1=s_1^{-1}s_2s_3^{-1}\cdots s_{d-2}^{(-1)^{d-2}}s_{d-1}s_{d-2}^{(-1)^{d-1}}\cdots s_4^{-1}s_3s_2^{-1}s_1s_0$$
 We then have

$$\begin{split} s_{d-1}s_0^{-1}s_1s_2^{-1}s_3\cdots s_{d-3}^{(-1)^{d-2}}s_{d-2}s_{d-3}^{(-1)^{d-3}}\cdots s_4s_3^{-1}s_2s_1^{-1}s_0\\ &=s_0^{-1}s_0s_{d-1}s_0^{-1}s_1s_2^{-1}s_3\cdots s_{d-3}^{(-1)^{d-2}}s_{d-2}s_{d-3}^{(-1)^{d-3}}\cdots s_4s_3^{-1}s_2s_1^{-1}s_{d-1}s_0\\ &=s_0^{-1}s_{d-1}^{-1}s_0s_{d-1}s_1s_2^{-1}s_3\cdots s_{d-3}^{(-1)^{d-2}}s_{d-2}s_{d-3}^{(-1)^{d-3}}\cdots s_4s_3^{-1}s_2s_1^{-1}s_{d-1}s_0\\ &=s_0^{-1}s_{d-1}^{-1}s_0s_{d-1}s_1s_2^{-1}s_3\cdots s_{d-3}^{(-1)^{d-2}}s_{d-2}s_{d-3}^{(-1)^{d-3}}\cdots s_4s_3^{-1}s_2s_1^{-1}s_{d-1}s_0\\ &=s_0^{-1}s_0^{-1}s_0^{-1}s_0s_{d-1}s_1s_2^{-1}s_3\cdots s_{d-3}^{(-1)^{d-2}}s_{d-2}s_{d-3}^{(-1)^{d-3}}\cdots s_4s_3^{-1}s_2s_1^{-1}s_{d-1}s_0\\ &=s_0^{-1}s_0^{-1}s_0^{-1}s_0s_{d-1}s_1s_2^{-1}s_3\cdots s_{d-3}^{(-1)^{d-2}}s_{d-2}s_{d-3}^{(-1)^{d-3}}\cdots s_4s_3^{-1}s_2s_1^{-1}s_{d-1}s_0\\ &=s_0^{-1}s_0^{-1}s_0^{-1}s_0s_{d-1}s_1s_2^{-1}s_3\cdots s_{d-3}^{(-1)^{d-2}}s_{d-2}s_{d-3}^{(-1)^{d-3}}\cdots s_4s_3^{-1}s_2s_1^{-1}s_{d-1}s_0\\ &=s_0^{-1}s_0$$

...so I don't think this direction is going to work from here, simply because I don't see a way to flip all of the generators in the middle to their inverses. An R3 that seems promising:

Definition 1.1. Using the notation as in Barot - Marsh, given a chordless cycle C in Γ so that all edges in C have weight 1, we define $r(a, a + 1) = s_a s_{a+1}^{-1} s_{a+2}^{-1} \dots s_{a-2}^{-1} s_{a-1} s_{a-2} s_{a-3} \dots s_{a+1} = s_{a+1}^{-1} \dots s_{a-3}^{-1} s_{a-2}^{-1} s_{a-1} s_{a-2} \dots s_{a+1} s_a$.

Lemma 1.2. The relation r(a,a+1) for some vertex $a \in C$ implies the relation r(b, b+1) for all $b \in C$.

Proof. As in Barot-Marsh, it suffices to prove that the relation r(0, 1) implies the relation r(d-1, 0). So suppose W_{γ} satisfies the relation r(0, 1). Then we have

$$\begin{split} s_{d-1}s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_0 \\ &= s_0^{-1}s_0s_{d-1}s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_{d-1}^{-1}s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}s_0s_{d-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_{d-1}^{-1}s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}s_0s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-1}^{-1}s_{d-3}\dots s_1s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}(s_0s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-1}s_{d-2}s_{d-3}\dots s_1)s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}(s_1^{-1}\dots s_{d-2}^{-1}s_{d-2}s_{d-1}s_{d-2}s_{d-3}\dots s_0)s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}(s_1^{-1}\dots s_{d-3}^{-1}s_{d-1}s_{d-2}s_{d-1}^{-1}s_{d-3}\dots s_0)s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_{d-1}^{-1}s_0s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_0s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_d^{-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_d^$$

as required. Note that line 3 is equal to 4 and line 7 is equal to line 8 since the cycle is chordless, meaning that s_{d-1} commutes with every element except s_0 and s_{d-2} .

Definition 1.3. Let Γ be a weighted diagram of finite type, and suppose $\Gamma' = \mu_k(\Gamma)$. If s_1, \ldots, s_n are the generators in W_{Γ} , define:

$$t_i = \begin{cases} s_k s_i s_k^{-1} & \text{if there is arrow from i to k} \\ s_i & \text{otherwise} \end{cases}$$

Lemma 1.4. (Generalized Lemma 5.1) Let i and j be vertices of Γ .

- (a) If i = k or j = k, then $(t_i t_j)^{m'_{ij}/2} = (t_i t_i)^{m'_{ij}/2}$.
- (b) If at most one of i,j is connected to k, then $(t_i t_j)^{m'_{ij}/2} = (t_j t_i)^{m'_{ij}/2}$

Proof. We begin with case (a). Suppose that i=k. As in Barot-Marsh, we have that $m_{ij} = m'_{ij}$, and the only nontrivial case is when there is an arrow from j to k. Note that m_{ij} cannot be 2 in this case since there is an arrow from j to k, so suppose $m_{ij} = 3$. Then we have

$$s_j s_k s_j = s_k s_j s_k$$

and so

$$s_k s_k s_j s_k = s_j s_k s_j s_k.$$

Multiplying both sides on the right by s_k^{-1} , we then obtain that

$$s_k s_k s_j = s_k s_j s_k s_j s_k^{-1},$$

and so we find that

$$t_i t_j t_i = s_k s_k s_j s_k^{-1} s_k = s_k s_j s_k^{-1} s_k s_k s_j s_k^{-1} = t_j t_i t_j.$$

Now suppose $m_{ij} = 4$. Then

$$s_k s_j s_k s_j = s_j s_k s_j s_k$$

which means that

$$s_k s_k s_j s_k s_j = s_k s_j s_k s_j s_k$$
.

This then gives us that

$$s_k s_k s_j s_k s_j s_k^{-1} = s_k s_j s_k s_j,$$

and so

$$t_i t_j t_i t_j = s_k s_k s_j s_k^{-1} s_k s_k s_j s_k^{-1} = s_k s_j s_k^{-1} s_k s_k s_j s_k^{-1} s_k = t_j t_i t_j t_i.$$

Finally, suppose $m_{ij} = 6$. Then we know

$$s_k s_j s_k s_j s_k s_j = s_j s_k s_j s_k s_j s_k,$$

and so

$$s_k s_k s_j s_k s_j s_k s_j = s_k s_j s_k s_j s_k s_j s_k.$$

Then

$$s_k s_k s_j s_k s_j s_k s_j m_k^{-1} = s_k s_j s_k s_j s_k s_j,$$

and so

 $t_i t_j t_i t_j t_i t_j = s_k s_k s_j s_k^{-1} s_k s_k s_j s_k^{-1} s_k s_k s_j s_k^{-1} = s_k s_j s_k^{-1} s_k s_k s_j s_k^{-1} s_k s_k s_j s_k^{-1} s_k = t_j t_i t_j t_i t_j t_i.$

A similar argument holds when j=k. This concludes (a).

Now considering case (b), suppose i is connected to k. We once again have $m_{ij} = m'_{ij}$, and the only nontrivial case is when the arrow points from i to k. Suppose $m_{ij} = 2$. Then we have

$$s_i s_j = s_j s_i$$
,

and so we have

$$s_k s_i s_j = s_k s_j s_i = s_j s_k s_i$$

since j is not connected to k by assumption. But then

$$t_i t_j = s_k s_i s_k^{-1} s_j = s_k s_i s_j s_k^{-1} = s_j s_k s_i s_k^{-1} = t_j t_i.$$

If $m_{ij} = 3$, then we have $s_j s_k = s_k s_j$, and so we have $s_k^{-1} s_j s_k = s_j$. This means that

$$s_i s_k^{-1} s_j s_k s_i = s_i s_j s_i = s_j s_i s_j,$$

and we then have that

$$t_i t_j t_i = s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} = s_k s_j s_i s_j s_k^{-1} = s_j s_k s_i s_k^{-1} s_j = t_j t_i t_j.$$

If $m_{ij} = 4$, we have $s_i s_j s_i s_j = s_j s_i s_j s_i$. Then

$$s_i s_k^{-1} s_j s_k s_i s_j = s_i s_k^{-1} s_k s_j s_i s_j = s_j s_i s_k^{-1} s_k s_j s_i = s_j s_i s_k^{-1} s_j s_k s_i.$$

But then conjugating the right and left sides by s_k , we find that

$$s_k s_i s_k^{-1} s_j s_k s_i s_j s_k^{-1} = s_k s_j s_i s_k^{-1} s_j s_k s_i s_k^{-1},$$

and thus by the commutativity of s_i and s_k , we have

$$t_i t_j t_i t_j = s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} s_j = s_j s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} = t_j t_i t_j t_i.$$

Finally, if $m_{ij} = 6$, we have $s_i s_j s_i s_j s_i s_j = s_j s_i s_j s_i s_j s_i$. Thus conjugating by s_k and using the commutativity of s_k and s_j , we find that

$$s_k s_i s_j s_i s_j s_i s_k^{-1} s_j = s_j s_k s_i s_j s_i s_j s_i s_k^{-1}.$$

But this occurs if and only if

$$t_i t_j t_i t_j t_i t_j = s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} s_j = s_j s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} s_j s_k s_i s_k^{-1} = t_j t_i t_j t_i t_j t_i.$$

A similar argument holds when j is connected to k, so we are done. \Box