Inhaltsverzeichnis

Vorwort technische Kunststoffe als Konstruktionswerkstoffe	4
Werkstoff-Übersicht	5
Polyamide (PA)	6-10
Oilamid [®]	11-13
Calaumid®612/Calaumid®1200	14-15
Calaumid® 612-Fe /Calaumid® 1200-Fe	16
Polyacetal (POM)	17-19
Polyethylenterephtalat (PET)	20-21
Polyethylen (PE)	22-24
Polypropylen (PP)	25-26
Polyvinylchlorid (PVC)	27-28
Polyvinylidenfluorid (PVDF)	29
Polytetrafluorethylen (PTFE)	30-31
	22
Polyetheretherketon (PEEK)	33
Polysulfon (PSU)	34
Polyetherimid (PEI)	35
Aufbau und Eigenschaften von Kunststoff	36-43
Brandverhalten	44-45
Strahlen- und Witterungsbeständigkeit	46-47
Lagerhinweise	48
Lagerminvelse	40
Gleitlager aus Kunststoff	49-60
Gleitplatten aus Kunststoff	61-64
Laufrollen aus Kunststoff	65-75
Seilrollen aus Kunststoff	76-85
Zahnräder aus Kunststoff	86-100
Bewegungsmuttern aus Kunststoff	101-104
Toleranzen	105-113
Bearbeitungsrichtlinien	114-118
Physikalische Werkstoffrichtwerte und Chemische Beständigkeiten	119-133
Hinweise zum Gebrauch der Arbeitsunterlage / Literaturverweis	134

Vorwort

Technische Kunststoffe als Konstruktionsstoffe finden im Maschinen-, Anlagen- und Apparatebau große Beachtung. Konstrukteure und Anwender erkennen die Vorzüge des Kunststoffes und nutzen die wirtschaftlichen Vorteile.

Für L-Tech als Anbieter von Leichtbau-Technik haben Kunststoffe traditionell eine große Bedeutung. Viele Maschinenteile konnten in der langjährigen Firmengeschichte neu aus Kunststoffen hergestellt werden. Dazu beigetragen hat nicht zuletzt die gewaltig angestiegene Anzahl der technischen Kunststoffe mit ihren verschiedensten Modifikationen und Eigenschaften und den daraus resultierenden Einsatzmöglichkeiten. Viele Kunststoffe sind aufgrund ihrer Eigenschaften in vielen Punkten mit den konventionellen Konstruktionswerkstoffen gleichzusetzen, oder haben diese aufgrund überragender Eigenschaften bereits verdrängt.

Dabei sind als größte Vorteile gegenüber den Metallen die Gewichtsersparnis, die Verschleißfestigkeit, die gute Schwingungsdämpfung und die rationellere Bearbeitbarkeit zu nennen. Aber auch die hohe Chemikalienbeständigkeit und die immer weiter steigende Wärmefestigkeit einiger Kunststoffe sowie die gute Recyclierbarkeit sind gute Argumente, sich für den Einsatz von Kunststoffen zu entscheiden.

Die in Jahrzehnten bei der Bearbeitung und Anwendung gewonnenen Erfahrungen mit technischen Kunststoffen für den Maschinen-, Anlagen- und Apparatebau und viele weitere Bereiche haben L-Tech zu einem führenden Unternehmen gemacht.

In der Anwendung modernster Materialien und der gesamtheitlichen Betrachtung der Konstruktionen auf die Fragestellung des Leichtbaus bedeutet die Zusammenarbeit bei jedem Auftrag neu eine Herausforderung. Wir legen unseren Schwerpunkt auf die optimale Integration von Bauteilen in den spezifischen Anwendungen mit der Zielsetzung diese leichter, schneller und kostengünstiger zu realisieren. Wir bearbeiten dadurch nebst Kunststoffen auch Leichtmetalle und faserverstärkte Werkstoffe.

Damit es für den Konstrukteur und Anwender einfacher wird, den für ihren speziellen Einsatzfall richtigen Kunststoffe zu bestimmen, haben wir unsere Erfahrungen in Form von Werkstoffbeschreibungen und Konstruktions- und Verarbeitungshinweisen in dieser Informationsschrift zusammengestellt.

Werkstoff-Übersicht

Die bedeutendsten technischen Kunststoffe sind

Polyamid (PA)
Polyacetal (POM)
Polyethylenterephtalat (PET)

Sie werden in ihren verschiedensten Materialmodifikationen bei gleit- und verschleißbeanspruchten Teilen eingesetzt.

Weitere Werkstoffe werden nur teilweise für Gleitbeanspruchung, aber hauptsächlich bei chemischer Beanspruchung, eingesetzt. Hierzu zählen

Polyethylen (PE)
Polypropylen (PP)
Polyvinylchlorid (PVC)
Polyvinylidenfluorid (PVDF)
Polytetrafluorethylen (PTFE)

Hochleistungskunststoffe sind eine weitere Gruppe moderner Werkstoffe, die sich insbesondere durch hohe Steifigkeit und Festigkeit bei hohen Temperaturen auszeichnen. Nachteilig ist das hohe Preisgefüge, dass teilweise bis zu 30mal höher liegt als bei den technischen Kunststoffen. Zu den Hochleistungskunststoffen zählen

Polyetheretherkon (PEEK) Polysulfon (PSU) Polyetherimid (PEI)

Polyamide (PA)

Polyamide werden in verschiedene Grundtypen unterteilt. Die wichtigsten sind PA 6, PA 66 und PA 12. Die Unterschiede in den physikalischen Eigenschaften liegen in der Zusammensetzung und Struktur der Molekülketten.

Bei der Halbzeugherstellung wird nach gegossenem und extrudiertem Material unterschieden.

Die zentralen Eigenschaften von Polyamid sind:

- hohe mechanische Festigkeit, Härte, Steifigkeit und Zähigkeit
- hohes mechanisches Dämpfungsvermögen
- gute Ermüdungsfestigkeit
- sehr hohe Verschleißfestigkeit
- gute Gleit- und Notlaufeigenschaften
- qute spanende Bearbeitbarkeit

Nach dem Gießverfahren hergestelltes Halbzeug hat aufgrund seiner höheren Kristallinität weitaus bessere physikalische Eigenschaften als extrudiertes Polyamid.

Extrudierte Polyamide

Polyamid 6

ist das bekannteste extrudierte Polyamid. PA 6 bietet eine gute Kombination von mechanischer Festigkeit, Schlagzähigkeit und Dämpfung, hat aber im Vergleich zu PA 6 G eine weitaus geringere Verschleißfestigkeit, eine höhere Feuchtigkeitsaufnahme und ist weniger maßstabil. Anwendungsbeispiele: schock- und schlagbeanspruchte Teile, Zahnräder, Hammerköpfe. Farbe: natur, schwarz

Polyamid 66

ist ein im kleineren Abmessungsbereich zur Verwendung kommendes Material mit gegenüber PA 6 höherer Härte und Verschleißfestigkeit, aber niedriger Schlagzähigkeit. Anwendungsbeispiele: Gleitlager, Gleitplatten. Die mechanischen Eigenschaften sind ähnlich deren von PA 6 G. Dieses ist bedeutend preiswerter und verdrängt PA 66 weitgehend.

Farbe: natur

Polyamid 12

hat ein sehr gutes Schlagverhalten, ist zäh und aufgrund sehr geringer Wasseraufnahme maßstabil. Es ist als Halbzeug in geringem Umfang verfügbar, scheidet aber meist aufgrund des hohen Preises (3-4 mal teurer als PA 6) bei Konstruktionsüberlegungen aus.

Guss-Polyamide

Das sogenannte Monomergussverfahren, bei dem das Halbzeug durch eine gesteuerte chemische Reaktion entsteht, bedeutet eine wesentliche Verfahrensverbesserung im Vergleich zur herkömmlichen Extruder- oder Spritzgussfertigung und ist von besonderer Bedeutung für die Leistungsqualität dieses Werkstoffes. Typische physikalische Materialeigenschaften werden gezielt verbessert.

Werkstoffsortiment Guss-Polyamide

PA 6 G

Gusspolyamid für verschleißbeanspruchte Konstruktionsteile im Maschinen- und Anlagenbau, Standardqualität.

Farben: natur, schwarz, blau

Oilamid®

PA 6 G mit eingebauter Ölschmierung, selbstschmierender Effekt, verbesserter Verschleißwiderstand.

Farben: schwarz, gelb, natur

PA 6 G/WS

im Wesentlichen vergleichbar mit der Standardqualität, jedoch mit Wärmealterungsstabilisator gegen thermisch-oxidativen Abbau besser geschützt.

Farbe: natur

PA 6 G/MoS

im Wesentlichen vergleichbar mit der Standardqualität, jedoch weist diese Type durch Molybdändisulfid- Anteile einen höheren Kristallinitätsgrad auf.

Farbe: schwarz

Calaumid®612

Mischpolyamid auf Basis PA 6/12-G mit höherer Schlag- und Stoßfestigkeit, geringerer Feuchtigkeitsaufnahme und verbessertem Kriechverhalten gegenüber reinem PA 6 G.

Als Calaumid®612-Fe auch mit Stahlkern erhältlich (siehe gesonderte Werkstoffbeschreibung).

Farbe: natur

Calaumid®1200

Gusspolyamid auf Rohstoffbasis Laurinlactam. Sehr gutes Schlagverhalten, Zähigkeit, überaus maßstabil, geringste Wasseraufnahme, sehr gute Zeitstandfestigkeit, Hydrolysebeständigkeit, gute Beständigkeit gegenüber Chemiekalien. PA 12 G ist in seinem gesamten Eigenschaftsbild dem extrudierten PA 12 weitaus überlegen.

Als Calaumid®1200-Fe auch mit Stahlkern erhältlich (siehe gesonderte Werkstoffbeschreibung). Farbe: natur

PA 6 G ist ein beigefarbener, fester, homogener, spannungsarmer Werkstoff mit hohem Kristallinitätsgrad. Durch Modifikation, spezielle Einstellungen und Zusatzstoffe werden darüber hinaus Eigenschaftsausprägungen ausgebaut.

Werkstoffeigenschaften

PA 6 G bietet bewährte charakteristische Werkstoffeigenschaften:

Hohe Abrieb- und Verschleißfestigkeit bei niedrigen bis mittleren Geschwindigkeiten, insbesondere unter rauen Bedingungen (Sand, Staub) gegenüber Gusseisen, Stahl oder Bronze.

Schwingungs- und Geräuschdämpfung

verlängert die Lebensdauer von Maschinenteilen durch die Viskoelastizität des Kunststoffes und kommt den Umweltanforderungen entgegen, z.B. Lärmdämpfung durch PA 6 G–Rollen, Zahnräder etc.

Niedriges Gewicht

Bei einem spezifischen Gewicht von 1,15 g/cm³ wiegt PA 6 G bei gleichem Volumen nur ca. 13% von Bronze, 15% von Stahl und 43% von Aluminium, wodurch besonders bei rotierenden Teilen weniger Fliehkraft und Unwucht auftritt.

Chemische Widerstandsfähigkeit

gegenüber schwachen Säuren und Alkalien sowie allen gebräuchlichen organischen Lösungsmitteln.

Sehr gute Gleiteigenschaften

zeichnen PA 6 G als klassischen Gleitlager-Werkstoff aus für stark verschleißbeanspruchte Maschinenteile wie Lagerbuchsen, Gleit- und Führungsplatten, Zahn- und Kettenräder sowie Rollen. Durch den niedrigen Reibungskoeffizienten kann vielfach auf Schmierung verzichtet werden, oder es genügt eine Anfangsschmierung beim Einbau.

Stabilität physikalischer Eigenschaften

Die Eigenschaftswerte von PA 6 G werden von Temperatur und Feuchtigkeitsgehalt beeinflusst. Sowohl bei Temperaturerhöhungen als auch bei Feuchtigkeitsaufnahme nehmen Zug- und Druckfestigkeit, E-Modul und Härte ab, wogegen Schlagzähigkeit und Dehnung zunehmen.

PA 6 G

Maßstabilität

Auch hier besteht eine Abhängigkeit von Temperatur und Feuchtigkeit. Die hohe Kristallinität von PA 6 G reduziert die Feuchtigkeitsaufnahme allerdings erheblich. Wasser wird sehr langsam aufgenommen. Die Aufnahmegeschwindigkeit nimmt mit der Eindringtiefe progressiv ab.

Richtwerte für Feuchtigkeit

Sättigungswert im Normalklima (23 Grad C / 50% RF) je nach Typ 1,5 - 2%. Längenänderung durch Feuchtigkeitsaufnahme ca. 0,15 - 0,20% pro 1% aufgenommenen Wassers. Längenänderung durch Temperaturveränderung ca. 0,1% pro 10° C Temperaturdifferenz.

Spanabhebende Bearbeitung

PA 6 G lässt sich ohne Schwierigkeiten auf den herkömmlichen Maschinen der Metall- und Holzbearbeitung verarbeiten. Zur Vermeidung von Verzug soll möglichst immer eine allseitig gleichmäßige Spanabnahme erfolgen. Bei ungleichmäßiger Spanabnahme empfiehlt sich ein Vorarbeiten, eine Zwischentemperung und eine anschließende 24-stündige Lagerung, bevor die Endbearbeitung vorgenommen wird. Wegen der Kerbempfindlichkeit der Kunststoffe allgemein sind scharfkantige Übergänge zu vermeiden.

Kerbschlagzähigkeit

von Polyamid 6 G bei tiefen Temperaturen

Kerbschlagzähigkeit

von Polyamid 6-G bei verschiedenen Wassergehalten

Wasseraufnahme

von Polyamid 6 G in Wasser bei Raumtemperatur und in Normklima (Prüfkörper: Normkleinstab)

Oilamid®

Oilamid ist ein hochmolekularer thermoplastischer Kunststoff auf der Basis von PA 6 G. Oilamid hat ein feinkristallines Gefüge mit hochverschleißfesten und selbstschmierenden Eigenschaften. Der hohe Verschleißwiderstand und die außergewöhnliche Gleitfähigkeit werden durch Zusatz von Öl, Festschmierstoffen und Stabilisatoren gezielt ausgebaut.

Gesteigerte Abrieb- und Verschleißfestigkeit

Das Öl wird bereits vor dem Polymerisationsprozess zugesetzt und gibt dem Material einen selbstschmierenden Effekt. Die Reibungszahl ist um 50% reduziert und macht Oilamid besonders bei
hochbelasteten, sich langsam bewegenden Trockenlauf-Gleitelementen zu einem idealen Konstruktionswerkstoff mit bis zu 10mal höherem Verschleißwiderstand als ungefülltes Polyamid.
Oilamid hat bei niedrigen bis mittleren Geschwindigkeiten, insbesondere bei rauen Bedingungen
(Sand, Staub), im Vergleich zu Gusseisen, Stahl oder Bronze eine erheblich gesteigerte
Abrieb- und Verschleißfestigkeit. Bei Gleitelementen wird in der Regel ein pv-Wert als Belastungsgrenze angegeben. Oilamid kann im Vergleich zu PA 6 G unter höheren Belastungen und Geschwindigkeiten arbeiten. Der Einfluss auf die Höhe des Gleitverschleißes unterliegt den Parametern Oberflächenrauigkeit des metallischen Gleitpartners, Flächendruck, Gleitgeschwindigkeit,
Gleitflächentemperatur sowie Schmierung. Oilamid hat durch den niedrigen Reibwert eine kleine
Verschleißrate und eignet sich in speziellen Anwendungsbeispielen zum Trockenlauf.

Schwingungs- und Geräuschdämpfung

Die Schwingungs- und Geräuschdämpfung von Oilamid verlängert die Lebensdauer von Maschinenteilen durch die Viskoelastizität des Kunststoffes und kommt den Umweltanforderungen z.B. nach Lärmdämpfung durch Oilamid-Zahnräder und -Rollen entgegen.

Ausgezeichnete Gleiteigenschaften

Oilamid wird durch seine schmierunterstützende Wirkung zu einem wichtigen Gleitlagerwerkstoff für Maschinen- und Anlagenteile wie z.B. Lagerbuchsen, Gleit- und Führungsplatten, Führungskurven, Zahn- und Kettenräder.

Gleitverschleiß als Funktion der Lagerbelastung

Belastung innerhalb der zul. pv-Werte; Schmierung: Trockenlauf; Gleitflächentemperatur: 80 °C; Oberflächenrauigkeit des Stahlpartners Rz = 2μm

Für Gleitelemente, die für den Trockenlauf bestimmt sind, wird eine Anfangsschmierung als Hilfe bei der Einlaufbeanspruchung empfohlen. Der Gleitreibungskoeffizient von Oilamid verhält sich bei steigender Anpresskraft stabil. Das Stick-Slip-Verhalten ist im Vergleich zu anderen Thermoplasten geringer.

Durch den niedrigen Gleitreibungskoeffizienten entsteht bei Oilamid-Gleitelementen eine geringere Reibungswärme als bei anderen Polyamid-Qualitäten, wodurch diese bei höheren Belastungen und Geschwindigkeiten arbeiten können.

Gleitreibungskoeffizient von Polyamid 6 G und Oilamid,

Reibring ST 50 K (v = 1m/s)

Oberflächentemperatur nach 1 Std.

Gleitreibung von Polyamid 6 G und Oilamid Reibring ST 50 K (v=1m/s)

Calaumid 612 ist ein Mischpolyamid auf Basis PA 6/12 G. Im Vergleich zu reinem PA 6 G sind bei Calaumid 612 die Schlag- und Stoßfestigkeit höher, die Feuchtigkeitsaufnahme geringer und das Kriechverhalten verbessert. Aufgrund dieser Werkstoffeigenschaften eignet sich Calaumid 612 besonders für den Einsatz in den Bereichen, wo erhöhte Stoßbeanspruchung zu erwarten ist, bzw. eine höhere Ermüdungsfestigkeit und Flexibilität gefordert wird.

Typische Anwendungsbeispiele sind:

- Zahnräder
- Zahnstangen
- Ritzel
- Kranstützfüße

Calaumid 1200 ist die Handelsbezeichnung für das ebenfalls im drucklosen Monomergussverfahren hergestellte PA 12 G aus dem Rohstoff Laurinlactam. Durch einen nahtlosen Übergang von der Polymerisation zur Kristallisation wird ein hochkristallines Gefüge erreicht. Dies führt zu Materialeigenschaften, die dem extrudierten PA 12 weit überlegen sind.

Vorteile von Calaumid 1200 gegenüber anderen Polyamiden:

- geringe Wasseraufnahme gegenüber anderen Polyamiden
- hierdurch dimensionsstabil und kaum Abhängigkeit der mechanischen Eigenschaften vom Wassergehalt
- gutes Langzeitverhalten auch bei höheren Temperaturen
- gute Schlag- und Kerbschlagzähigkeit auch bei Temperaturen bis –50° C
- gute Hydrolyse- und Chemikalienbeständigkeit von ph 2-14
- Temperaturbeständigkeit von -60 bis +110° C
- gutes Gleit- und Abriebverhalten
- Unempfindlichkeit gegen Spannungsrisse
- niedriges spezifisches Gewicht

Die Kombination dieser Eigenschaften macht Calaumid 1200 zu einem idealen Werkstoff für Getriebebauteile, besonders wenn bei der Herstellung Stahlnaben eingegossen werden. Von anderen thermoplastischen Kunststoffen und Bronze wird dieses Eigenschaftsbild nur unvollständig erreicht.

Abhängigkeit mechanischer Eigenschaften vom Wassergehalt für Calaumid 1200

Calaumid-Fe

Calaumid-Fe wird im drucklosen Gussverfahren kraft-und formschlüssig um einen 2 bis 2,5 mm tief ränderierten Stahlkern gegossen. Es sind auch Kombinationen mit Aluminium, Edelstahl und Messing möglich. Die Kunststoffummantelung besteht wahlweise aus Calaumid 612 oder Calaumid 1200.

Die Kombination des Kunststoffmantels mit dem Metallkern eignet sich vorwiegend zur optimierten Drehmomentübertragung für Konstruktionsteile wie

- Stirnräder
- Schneckenräder
- Kegelräder
- Kettenräder
- Führungs-, Lauf- und Seilrollen
- Kurvenscheiben

Durch die Kombination von Stahlkern und Kunststoffmantel werden die in der Konstruktion geschätzten Eigenschaften von Stahl und Kunststoff in einer besonderen Art vereint. Die Wellen-Naben-Verbindung wird wie bei Stahl berechnet und bietet somit die Möglichkeit einer hohen Kraftübertragung. Vorteile von Calaumid-Fe:

- Erhalt der bewährten metallischen Wellen-Naben-Verbindungen
- geräuscharmer Lauf
- Gewichtsvorteil gegenüber reinen Stahlkonstruktionen
- gutes Dämpfungs- und Schwingungsverhalten
- gute Trocken- und Notlaufeigenschaften
- optimale Kraftübertragung (Berechnung der Krafteinleitung wie bei Stahl)
- maßgenauer Lagersitz, hohe Passgenauigkeit
- hohe Rundlaufgenauigkeit

MO

Polyacetal (POM)

Polyacetal ist ein hochkristalliner, thermoplastischer Kunststoff mit hoher Festigkeit und Steifigkeit sowie guten Gleiteigenschaften und Verschleißfestigkeit bei geringer Feuchtigkeitsaufnahme. Die gute Dimensionsstabilität und besonders gute Ermüdungsfestigkeit sowie die hervorragende Spanbarkeit machen Polyacetal zu einem vielseitig einsetzbaren Konstruktionswerkstoff auch für komplexe Bauteile. Es genügt den hohen Anforderungen an Oberflächengüten.

Festigkeit, Steifigkeit und Dimensionsstabilität lassen sich durch Zugabe von Glasfasern als Füllstoff noch verbessern, womit jedoch eine Verschlechterung der Gleiteigenschaften einhergeht.

Es wird zwischen Homopolymeren (POM-H) und Copolymeren (POM-C) unterschieden, wobei die Homopolymere aufgrund ihres höheren Kristallinitätsgrades eine etwas höhere Dichte, Härte und Festigkeit aufweisen. Copolymere besitzen jedoch eine höhere Schlagzähigkeit, größere Abriebfestigkeit und thermische/chemische Beständigkeit.

Die von uns angebotenen Polyacetal-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden aus Copolymerisaten im Extrusionsverfahren hergestellt.

Haupteigenschaften

- hohe Festigkeit
- hohe Steifigkeit
- hohe Härte
- gute Schlagzähigkeit auch bei niedrigen Temperaturen
- geringe Feuchtigkeitsaufnahme (bei Sättigung 0,8 %)
- gute Kriechfestigkeit
- hohe Dimensionsstabilität
- hydrolysebeständig (bis + 60 °C)
- physiologisch unbedenklich

Farben:

POM – C : natur/schwarz POM – C + GF: schwarz

Gleiteigenschaften

POM-C verfügt über ausgezeichnete Gleiteigenschaften bei guter Verschleißfestigkeit. Zusammen mit seinen anderen hervorragenden Eigenschaften eignet sich POM-C gut für den Einsatz bei Gleitanwendungen bei mittleren bis hohen Belastungen. Dies gilt auch für Anwendungsbereiche, in denen mit hoher Feuchte oder Nässe gerechnet werden muss.

Aufgrund der eng beieinander liegenden statischen und dynamischen Reibungskoeffizienten lassen sich geringe Anfahrmomente realisieren.

Ausgenommen hiervon sind die mit Glas gefüllten Typen, deren Gleiteigenschaften gegenüber den ungefüllten Typen erheblich schlechter sind.

Witterungseinflüsse

POM-C ist nicht gegen UV-Strahlen beständig. Unter Einwirkung von UV-Strahlen in Verbindung mit Luftsauerstoff wird die Oberfläche oxidiert und es treten Verfärbungen auf, bzw. die Oberfläche wird stumpf. Bei längerem Einwirken von UV-Strahlung neigt der Werkstoff zur Versprödung.

Chemische Beständigkeit

POM ist gegen schwache Säuren, schwache und starke Laugen, organische Lösemittel sowie Benzin, Benzol, Öle und Alkohole beständig.

Gegen starke Säuren (pH < 4) und oxidierende Medien ist POM-C unbeständig.

Brandverhalten

POM-C ist als normal entflammbar eingestuft. Nach Entfernung der Zündquelle brennt POM-C unter Abtropfen weiter. Bei der thermischen Zersetzung besteht die Möglichkeit der Bildung von Formaldehyd. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt mit 15% im Vergleich zu anderen Kunststoffen sehr niedrig.

Einsatzbereiche

- allgemeiner Maschinenbau
- Fahrzeugbau
- Feinwerktechnik
- Elektroindustrie
- Nachrichtentechnik

Anwendungen

- Federelemente
- Buchsen
- Zahnräder
- Gleitelemente
- Isolatoren
- Pumpenteile
- Gehäuseteile
- Ventile und Ventilkörper
- Zählwerkteile
- Präzisionsteile

Bearbeitung

POM-C entwickelt einen Bruchspan und ist somit hervorragend zur Bearbeitung auf Drehautomaten geeignet. Aber auch die spangebende Bearbeitung auf Werkzeugmaschinen ist problemlos möglich. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Die Verwendung einer Kühl-Schmieremulsion ist in der Regel nicht notwendig.

Zur Begrenzung des Materialverzugs aufgrund innerer Restspannungen im Halbzeug sollten die Teile möglichst immer von der geometrischen Mitte des Halbzeugs aus mit gleichmäßiger Spanabnahme bearbeitet werden.

Ist eine maximale Dimensionsstabilität der Fertigteile gefordert, müssen die zu fertigenden Teile grob vorgearbeitet werden und einer Zwischenlagerung oder Wärmebehandlung unterzogen werden. Anschließend können die Teile dann fertig bearbeitet werden. Genauere Angaben zur Vorgehensweise bezüglich Zwischenlagerung und Wärmebehandlung sowie weitere Hinweise zur spangebenden Bearbeitung werden im Kapitel "Bearbeitungsrichtlinien" gegeben.

Polyethylentherephtalat (PET)

Polyethylentherephtalat kann in seiner Molekülstruktur entweder als amorpher oder teilkristalliner, thermoplastischer Kunststoff hergestellt werden, wobei der amorphe Typ glasklar ist und niedrigere mechanische Festigkeit sowie ein wesentlich schlechteres Gleitverhalten zeigt.

Die teilkristallinen Typen dagegen haben eine hohe Härte, Steifigkeit und Festigkeit bei hervorragendem Gleitverhalten und niedrigem Gleitverschleiß. Aufgrund der guten Kriechfestigkeit sowie der niedrigen Feuchteaufnahme und hervorragenden Dimensionsstabiliät eignet sich der Werkstoff exzellent zur Anwendung bei komplexen Teilen mit höchsten Ansprüchen an die Maßhaltigkeit und Oberflächengüte. Für den Einsatz bei Gleitanwendungen kommt aus den vorstehenden Gründen nur die teilkristalline Type zum Einsatz.

Durch Zusatz eines speziellen, homogen verteilten Festschmierstoffes wurden bei der Type PET-GL sowohl die Gleiteigenschaften als auch die Verschleißfestigkeit gegenüber reinem PET nochmals gezielt verbessert.

Die von uns angebotenen Polyethylentherephtalat-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden aus teilkristallinen Typen im Extrusionsverfahren hergestellt.

Haupteigenschaften

- · hohe Festigkeit
- hohe Steifigkeit
- hohe Härte
- geringe Feuchtigkeitsaufnahme (bei Sättigung 0,5 %)
- sehr gute Kriechfestigkeit
- sehr hohe Dimensionsstabilität
- konstant geringe Gleitreibung
- sehr geringer Gleitverschleiß
- hydrolysebeständig (bis +70 °C)
- physiologisch unbedenklich

Farben

PET: natur, schwarz PET-GL: hellgrau

Gleiteigenschaften

PET verfügt über hervorragende Gleiteigenschaften bei sehr guter Verschleißfestigkeit und ist in Verbindung mit seinen anderen Eigenschaften ein exzellenter Werkstoff für hochbelastete Gleitanwendungen. Dies gilt auch für Anwendungsbereiche in denen mit hoher Feuchte oder Nässe gerechnet werden muss.

Die modifizierte Type PET-GL ist durch den integrierten Festschmierstoff speziell für hochbelastete Gleitanwendungen im Trockenlaufbereich geeignet. Der Festschmierstoff sorgt für eine "Selbstschmierung" des PET-GL, was zu herausragenden Gleiteigenschaften und höchster Verschleißfestigkeit bei gleichzeitig weitaus höherer Tragfähigkeit (pv-Grenzwert) gegenüber reinem PET führt. Des Weiteren verhindert er den Stick-Slip-Effekt. Gegenüber reinem PET zeigen sich bezüglich der übrigen Eigenschaften keine Einbußen.

Witterungseinflüsse

PET ist nicht gegen UV-Strahlen beständig. Unter Einwirkung von UV-Strahlen in Verbindung mit Luftsauerstoff verändert sich die Werkstoffoberfläche. Bei längerem Einwirken von UV-Strahlung wird die Verwendung einer schwarz eingefärbten Type empfohlen.

Chemische Beständigkeit

PET ist gegen schwache Säuren und Laugen, Salzlösungen, perchlorierte und fluorierte Kohlenwasserstoffe, Öle, Kraftstoffe, Lösemittel und oberflächenaktive Stoffe beständig. Stark polare Lösemittel wirken irreversibel quellend. Gegen starke Säuren und Laugen, Ester, Ketone und Chlorkohlenwasserstoffe ist PET nicht beständig.

Brandverhalten

PET ist als normal entflammbar eingestuft. Nach Entfernung der Zündquelle brennt PET unter Abtropfen weiter. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) ist mit 23% im Vergleich zu anderen Kunststoffen durchschnittlich.

Einsatzbereiche

- allgemeiner Maschinenbau
- Fahrzeugbau
- Feinwerktechnik
- Elektroindustrie
- Nachrichtentechnik

Anwendungsbeispiele

- Schalträder
- Buchsen
- Zahnräder
- Gleitelemente
- Isolatoren
- Gehäuseteile
- Zählwerkteile
- Präzisionslager
- Kurvenscheiben

Bearbeitung

PET entwickelt einen brüchigen Fließspan und ist zur Bearbeitung auf Drehautomaten geeignet. Aber auch die spangebende Bearbeitung auf Werkzeugmaschinen ist problemlos möglich. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Die Verwendung einer Kühl-Schmieremulsion ist in der Regel nicht notwendig.

Polyethylen (PE)

Polyethylen ist ein teilkristalliner, thermoplastischer Kunststoff mit hoher Zähigkeit und hoher chemischer Beständigkeit, aber im Vergleich zu anderen Kunststoffen sehr niedriger mechanischer Festigkeit, und ist nicht bei höheren Temperaturen einsetzbar. Die einzelnen Polyethylene werden durch ihre molaren Massen (Molekulargewicht) unterschieden, die für die jeweiligen physikalischen Eigenschaften maßgeblich sind. Dies führt neben den auf alle Typen anwendbaren Eigenschaften zu typenspezifischen Eigenschaften.

Die von uns angebotenen Polyethylen-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, bestehen aus Polyethylentypen hoher Dichte, die im Extrusionsverfahren oder Pressverfahren hergestellt werden.

Haupteigenschaften

- niedrige Dichte im Vergleich zu anderen Werkstoffen (0,94 g/cm³)
- hohe Schlagzähigkeit auch im niedrigen Temperaturbereich
- minimale Wasseraufnahme (< 0,01 %)
- · hervorragende chemische Beständigkeit
- hohe Korrosionsbeständigkeit
- antiadhäsiv
- sehr guter elektrischer Isolator
- hohe Schwingungsdämpfung
- physiologisch unbedenklich (gilt nicht für Regenerat-Halbzeuge)

Farben

PE – HD: natur, schwarz PE – HMW: natur, grün

PE – UHMW: natur, grün, schwarz

Andere Farben auf Anfrage möglich.

Gleiteigenschaften

PE-HD (PE 300; molare Masse ca. 200.000 g/mol) ist bedingt durch seine relativ niedrige molare Masse sehr gut schweißbar, aber nicht abriebfest und hat niedrige Festigkeitswerte. Dies führt zu einem hohen Gleitverschleiß, der den Einsatz bei Gleitanwendungen ausschließt.

PE-HMW (PE 500; molare Masse ca. 500.000 g/mol) hat aufgrund seiner höheren molaren Masse bessere Gleiteigenschaften und ist abriebfester als PE-HD. In Verbindung mit der guten Zähigkeit ist es für den Einsatz bei niedrig belasteten Bauteilen geeignet, die keinem hohen Gleitverschleiß unterliegen.

PE-UHMW (PE 1000; molare Masse ca. 4.500.000 g/mol) verfügt infolge seiner hohen molaren Masse über eine sehr gute Verschleißfestigkeit, Biegefestigkeit und Schlagzähigkeit und ist stark geräuschdämpfend. Aufgrund seiner hervorragenden Gleiteigenschaften und niedrigem Gleitverschleiß bildet er den idealen Werkstoff für niedrig belastete Bauteile.

Die Werkstoffe PE-HMW und PE-UHMW sind auch als Regenerat erhältlich, wobei zu beachten ist, dass die jeweiligen physikalischen Eigenschaften leicht herabgesetzt sind.

Chemische Beständigkeit

Alle PE-Typen sind gegen Säuren, Laugen, Salze und Salzlösungen, Alkohole, Öle, Fette, Wachse und viele Lösemittel beständig. Aromate und halogenierte Kohlenwasserstoffe führen zur Quellung. Gegen stark oxidierende Medien (z.B. Salpetersäure, Chromsäure oder Halogene) sind alle PE-Typen nicht beständig und es besteht die Gefahr von Spannungsrisskorrosion.

Witterungseinflüsse

Generell sind alle PE-Typen nicht gegen UV-Strahlen beständig. Ausgenommen hiervon sind die schwarz eingefärbten Typen, die eine Beständigkeit gegen UV-Strahlen auch in Verbindung mit Luftsauerstoff aufweisen.

Brandverhalten

Alle PE-Typen sind als normal entflammbar eingestuft. Nach Entfernung der Zündquelle brennen sie unter Abtropfen weiter. Es werden jedoch außer Kohlendioxid, Kohlenmonoxid und Wasser nur geringe Mengen von Ruß und molekulare Anteile des Kunststoffs als Brandgas entwickelt. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt mit 18% im Vergleich zu anderen Kunststoffen niedrig.

Einsatzbereich

PE-HD

- Galvanoindustrie
- chemische Industrie
- chemischer Apparatebau

PE-HMW

- Lebensmittelindustrie
- fleischverarbeitende Industrie
- Sportstättenbau

PE-UHMW

- Galvanoindustrie
- allgemeiner Maschinenbau
- Kohleaufbereitung
- Verpackungsindustrie
- Fördertechnik
- Papierindustrie
- Elektroindustrie

Anwendungsbeispiele

PE-HD

- Konstruktionsteile im chemischen Anlagenbau
- Armaturen
- Einlegböden
- Stapelkästen

PE-HMW

- Schneidtischauflagen
- Rührspaten
- Wandverkleidungen in Kühlhäusern
- Stoßbanden
- Messerblöcke

PE-UHMW

- Seilführungsrollen
- Kettenumlenkräder und -ritzel
- Zahnräder
- Kettenführungen
- Schieber
- Saugleisten und -platten
- Walzenrakel und Abstreifer
- Schüttenauskleidungen für Bunker
- Förderrinnenauskleidungen
- Abriebschutzleisten

Bearbeitung

Neben der guten Schweißeignung von PE – HD und PE – HMW lassen sich alle PE – Typen auch auf Werkzeugmaschinen spangebend bearbeiten. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Die Verwendung einer Kühl – Schmieremulsion ist in der Regel nicht notwendig.

Polypropylen (PP)

Polypropylen ist ein teilkristalliner, thermoplastischer Kunststoff mit einer hohen Steifigkeit und sehr guten chemischen Beständigkeit. Kennzeichnend für das Polypropylen ist eine CH₃-Seitengruppe im Monomerbaustein, welcher während der Polymerisation in verschiedenen räumlichen Lagen angeordnet werden kann. Die unterschiedlichen räumlichen Anordnungen sind für die physikalischen Eigenschaften maßgebend und werden unterschieden nach

- isotaktischer (regelmäßige, einseitige Anordnung im Makromolekül)
- syndiotaktischer (regelmäßige, doppelseitige Anordnung im Makromolekül)
- ataktischer (unregelmäßige, zufällige Anordnung im Makromolekül)

Anordnung

Weiterhin wird zwischen Homopolymeren und Copolymeren unterschieden, wobei die Copolymerisate zäher, aber mechanisch und chemisch weniger belastbar sind.

Da sich die physikalischen Eigenschaften maßgeblich mit Zunahme des isotaktischen Anteils am Polymer verbessern, ist für den technischen Einsatz das isotaktische Polypropylen-Homopolymer als erstrangig anzusehen. Die von uns angebotenen Polypropylen-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden im Extrusionsverfahren oder Pressverfahren hergestellt.

Haupteigenschaften

- niedrige Dichte im Vergleich zu anderen Werkstoffen (0,91 g/cm³)
- minimale Wasseraufnahme (< 0,01 %)
- hervorragende chemische Beständigkeit auch gegen Lösemittel
- hohe Korrosionsbeständigkeit
- relativ hohe Oberflächenhärte
- sehr guter elektrischer Isolator
- physiologisch unbedenklich

Farben

natur (weiß), grau (≈ RAL 7032) Andere Farben auf Anfrage möglich.

Gleiteigenschaften

PP-H unterliegt einem starken Gleitverschleiß und ist somit für den Einsatz bei Gleitanwendungen nicht geeignet.

Chemische Beständigkeit

PP-H ist gegen Säuren, Laugen, Salze und Salzlösungen, Alkohole, Öle, Fette, Wachse und viele Lösemittel beständig. Aromate und halogenierte Kohlenwasserstoffe führen zur Quellung. Gegen stark oxidierende Medien (z.B. Salpetersäure, Chromsäure oder Halogene) ist PP-H nicht beständig und es besteht die Gefahr von Spannungsrisskorrosion.

Brandverhalten

PP - H ist als normal entflammbar eingestuft. Nach Entfernung der Zündquelle brennt PP-H unter Abtropfen weiter. Es werden jedoch außer Kohlendioxid, Kohlenmonoxid und Wasser nur geringe Mengen von Ruß und molekulare Anteile des Kunststoffs als Brandgas entwickelt.

Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt mit 18% im Vergleich zu anderen Kunststoffen niedrig.

Witterungseinflüsse

PP-H ist nicht gegen UV-Strahlen beständig. Unter Einwirkung von UV-Strahlen in Verbindung mit Luftsauerstoff wird die Oberfläche oxidiert und es treten Verfärbungen auf. Bei längerem Einwirken von UV-Strahlung kommt es zur irreparablen Schädigung und Zersetzung der Werkstoffoberfläche.

Einsatzbereiche

- Galvanoindustrie
- chemische Industrie
- Maschinenbau
- Stanzwerke

Anwendungsbeispiele

- Pumpenteile
- Konstruktionsteile im chemischen Apparatebau
- Armaturen
- Ventilkörper
- Warengestelle für Galvanisierungsprozesse
- Stanzplatten

Bearbeitung

Neben der guten Schweißeignung läßt sich PP-H auch auf Werkzeugmaschinen spangebend bearbeiten. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Die Verwendung einer Kühl-Schmieremulsion ist in der Regel nicht notwendig.

Bei der spangebenden Bearbeitung ist darauf zu achten, dass die verwendeten Werkzeuge immer ausreichend scharf geschliffen sind. Stumpfe Werkzeuge haben eine übermäßige Erwärmung der Werkstoffoberfläche zur Folge, was zum "schmieren" und infolgedessen zu inakzeptablen Oberflächengüten führt.

P

Polyvinylchlorid (PVC)

Polyvinylchlorid – hart (PVC-U) ist ein amorpher, thermoplastischer Kunststoff ohne Weichmacherzusätze mit einer hohen Härte und Steifigkeit. Der Werkstoff wird nach DIN 16 927 als normalschlagzäh eingestuft, liegt aber in seinen Zähigkeitswerten an der Grenze zur Einstufung als erhöht schlagzäh und birgt damit in dieser Hinsicht ein hohes Maß an Sicherheit bei der konstruktiven Auslegung von Bauteilen. Die von uns angebotenen Polyvinylchlorid-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden im Extrusionsverfahren oder Pressverfahren hergestellt.

Haupteigenschaften

- harte Oberfläche
- hohe Steifigkeit
- geringe Wasseraufnahme
- hervorragende chemische Beständigkeit
- schwer entflammbar (UL 94 V 0)
- leicht warmformbar
- klebbar
- gute spanende Bearbeitungsmöglichkeit

Farben

grau (≈ RAL 7011), schwarz, rot, transparent

Andere Farben auf Anfrage möglich.

Gleiteigenschaften

PVC-U unterliegt einem starken Gleitverschleiß und ist somit nicht für den Einsatz bei Gleitanwendungen geeignet.

Witterungseinflüsse

PVC-U ist nicht gegen das Einwirken von UV-Strahlung beständig. In Verbindung mit dem Luftsauerstoff wird die Oberfläche oxidiert und es treten Verfärbungen auf. Bei langem Einwirken von UV-Strahlung und Luftsauerstoff kommt es zur irreparablen Schädigung und Zersetzung der Werkstoffoberfläche.

Lebensmittelrechtliche Eignung

PVC-U entspricht nicht den Anforderungen der BgVV und der FDA und darf nicht zur Herstellung von Bedarfsgütern, die im direkten Kontakt mit Lebensmitteln stehen, verwendet werden.

Chemische Beständigkeit

PVC-U ist gegen Säuren, Laugen, Alkohole, Öle, Fette, aliphatische Kohlenwasserstoffe und Benzin beständig.

Gegen Benzol, chlorierte Kohlenwasserstoffe, Ketone und Ester ist PVC-U unbeständig. In Verbindung mit starken oxidierenden Medien (z.B. Salpetersäure oder Chromsäure) besteht die Gefahr von Spannungsrisskorrosion.

Brandverhalten

PVC ist auch ohne Additive in der höchsten Stufe als schwer entflammbar eingestuft. Nach Entfernung der Zündquelle ist PVC selbstverlöschend.

Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt mit 40% im Vergleich zu anderen Kunststoffen sehr hoch.

Einsatzbereiche

- Galvanoindustrie
- Maschinenbau
- Abfüllanlagenbereich
- Fotoindustrie

Anwendungsbeispiele

- Pumpenteile
- Armaturen
- Ventilkörper
- Konstruktionsteile im chemischen Anlagenbau
- Fördersterne
- Maschinen- und Geräteabdeckungen

Bearbeitung

Neben der guten Schweißeignung und der Möglichkeit der Verbindung durch Kleben läßt sich PVC-U auch auf Werkzeugmaschinen spangebend bearbeiten. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Die Verwendung einer Kühl-Schmieremulsion ist in der Regel nicht notwendig.

Bei der Bearbeitung ist unbedingt darauf zu achten, dass die verwendeten Werkzeuge immer ausreichend scharf geschliffen sind. Ist dies nicht der Fall, kann es aufgrund der an der stumpfen Werkzeugschneide auftretenden hohen Temperaturen zur Materialzersetzung und dadurch, in Verbindung mit der Luftfeuchtigkeit, zur Entstehung von geringen Mengen Salzsäure in Form von Aerosolen kommen.

Des Weiteren empfehlen wir für Konstruktionsteile aus PVC-U, die durch Schrauben befestigt werden, aufgrund seiner hart-spröden Eigenschaft Elastomer- oder Thermoplastunterlegscheiben. Die Verwendung solcher Scheiben vermindert die Gefahr der Übertragung von unzulässig hohen Spannungen durch das Anziehen der Schrauben und den dadurch am Bohrungsrand auftretenden Spannungsrissen.

VDF

Polyvinylidenfluorid (PVDF)

Polyvinylidenfluorid ist ein hochkristalliner, thermoplastischer Kunststoff mit guten mechanischen, thermischen und elektrischen Eigenschaften. Als Fluor-Kunststoff hat Polyvinylidenfluorid hervorrragende chemische Beständigkeit, ohne jedoch die Nachteile der niedrigen mechanischen Werte bzw. schwierigen Bearbeitbarkeit der anderen Fluor-Kunststoffe zu teilen. Die von uns angebotenen Polyvinyliden-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden im Extrusionsverfahren oder Pressverfahren hergestellt.

Haupteigenschaften

- niedrige Dichte im Vergleich zu anderen Fluor-Kunststoffen
- gute mechanische Festigkeit im Vergleich zu anderen Fluor-Kunststoffen
- hohe Dauergebrauchstemperatur (+ 140 °C in Luft)
- praktisch keine Wasseraufnahme
- gute Dimensionsstabilität

- hohe chemische Beständigkeit
- gute Hydrolysebeständigkeit
- witterungsbeständig
- strahlenbeständig
- guter elektrischer Isolator
- schwer entflammbar (UL 94 V 0)
- physiologisch unbedenklich
- hohe Abriebfestigkeit

Farben

natur (weiß bis elfenbein)

Gleiteigenschaften

PVDF hat gute Gleiteigenschaften, ist verschleißfest und eignet sich gut für chemisch beanspruchte Gleitanwendungen bei gleichzeitiger Wärmeeinwirkung. Bei der konstruktiven Gestaltung ist jedoch der relativ hohe Wärmeausdehnungskoeffizient zu berücksichtigen.

Strahlenbeständigkeit / Witterungseinflüsse

PVDF ist sowohl gegen β -Strahlen und γ -Strahlen als auch gegen UV-Strahlen in Verbindung mit Luftsauerstoff beständig. Damit eignet sich PVDF hervorragend für den Einsatz im Bereich der Pharma- und Nuklearindustrie und unter Witterungseinflüssen.

Chemische Beständigkeit

PVDF ist gegen Säuren und Laugen, Salze und Salzlösungen, aliphatische und aromatische Kohlenwasserstoffe, Alkohole und Aromate beständig. Gegen Ketone, Amine, rauchende Schwefelsäure und Salpetersäure sowie einige heiße Alkalien (konzentrationsabhängig) ist PVDF unbeständig. Dimethylformamid und Dimethylacetamid lösen PVDF.

Brandverhalten

PVDF ist auch ohne Additive in der höchsten Stufe als schwer entflammbar eingestuft. Nach Entfernung der Zündquelle ist PVDF selbstverlöschend. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt mit 78 % im Vergleich zu anderen Kunststoffen sehr hoch.

Einsatzbereiche

- chemische und petrochemische Industrie
- pharmazeutische Industrie
- Textilindustrie
- Papierindustrie
- Lebensmittelindustrie

Anwendungsbeispiele

- Pumpenteile
- Armaturen und Armaturenteile
- Ventilkörper und Ventilteile
- Dichtungen
- Gleitlager
- Konstruktionsteile im Anlagen-/Apparatebau

Bearbeitung

Neben der guten Schweißeignung läßt sich PVDF auf Werkzeugmaschinen spangebend bearbeiten. Nach entsprechender Oberflächenbehandlung kann PVDF mit einem speziellen Lösemittelkleber geklebt werden. Fluorpolymere zersetzen sich oberhalb einer Temperatur von ca. 360 °C unter Bildung von hochagressiver und giftiger Flusssäure. Da bei der spanenden Bearbeitung Polymerstaub enstehen kann, ist darauf zu achten, dass im Entstehungs- und Arbeitsbereich nicht geraucht wird.

Polytetrafluorethylen (PTFE)

Polytetrafluorethylen ist ein hochkristalliner, thermoplastischer Kunststoff mit hervorragenden Gleiteigenschaften, antiadhäsiven Oberflächen, besten Isolationseigenschaften, einer fast universellen chemischen Beständigkeit und einem äußerst breiten Einsatztemperaturspektrum. Dem stehen jedoch niedrige mechanischen Festigkeiten und ein im Vergleich zu anderen Kunststoffen hohes spezifisches Gewicht gegenüber. Zur Verbesserung der mechanischen Eigenschaften wird Polytetrafluorethylen als Compound mit den Füllstoffen Glasfaser, Kohle oder Bronze versehen. Die von uns angebotenen Polytetrafluorethylen-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden im Press-Sinterverfahren und Ramextrusionsverfahren, Folien im Schälverfahren hergestellt.

Haupteigenschaften

- · hervorragende Gleiteigenschaften
- höchste chemische Beständigkeit auch gegen Lösemittel (bei PTFE + Bronze eingeschränkt)
- hydrolysebeständig (bei PTFE + Bronze eingeschränkt)
- hohe Korrosionsbeständigkeit (bei PTFE + Bronze eingeschränkt)
- breites Temperatureinsatzspektrum (- 200 °C bis + 260 °C)
- witterungsbeständig
- keine Aufnahme von Feuchtigkeit
- physiologisch unbedenklich (nicht PTFE + Kohle / + Bronze)
- guter elektrischer Isolator (nicht PTFE + Kohle / + Bronze)
- guter thermischer Isolator (nicht PTFE + Kohle / + Bronze)
- antiadhäsiv
- · kaum mit Flüssigkeit benetzbar
- nicht brennbar

Farben

PTFE rein: weiß
PTFE + Glas: hellgrau
PTFE + Kohle: schwarz
PTFE + Bronze: braun

Gleiteigenschaften

PTFE hat hervorragende Gleiteigenschaften und verhindert aufgrund der eng beieinanderliegenden statischen und dynamischen Reibwerte den "Stick-Slip-Effekt". Wegen seiner niedrigen mechanischen Festigkeit hat PTFE jedoch einen hohen Gleitverschleiß und die Neigung zum Kriechen (kalter Fluß). Damit eignet sich ungefülltes PTFE nur für Gleitanwendungen mit niedriger mechanischer Belastung. Die Belastbarkeit kann konstruktiv durch die Kammerung des Gleitelementes erhöht werden. Dabei ist darauf zu achten, dass die Kammer vollständig geschlossen ist, damit der Gleitbelag nicht ausweichen ("herausfließen") kann.

PTFE + Glas besitzt durch den Füllstoff schlechtere Gleiteigenschaften als reines PTFE, ist aber mechanisch wesentlich höher belastbar. Der Gleitverschleiß und der Längenausdehnungskoeffizient nehmen bei gleichzeitiger Zunahme der Kriechfestigkeit und Dimensionsstabilität ab. Die im Werkstoff eingebetteten Glaspartikel erzeugen gegenüber reinem PTFE beim Gleitpartner einen höheren Verschleiß.

PTFE + Kohle besitzt ähnlich gute Gleiteigenschaften als reines PTFE, hat aber aufgrund seiner Füllstoffzugabe eine erheblich bessere mechanische Festigkeit. Wie beim Füllstoff Glas nimmt der Gleitverschleiß und Längenausdehnungskoeffizient bei gleichzeitiger Zunahme der Kriechfestigkeit und Dimensionsstabilität ab. Mit Kohle gefüllte Gleitelemente können problemlos für Anwendungen eingesetzt werden, die zeitweilig oder ständig mit Wasser umspült sind.

PTFE + Bronze hat von allen gefüllten PTFE-Typen die besten mechanischen Werte und eignet sich hervorragend für Gleitanwendungen. Der Füllstoff führt zum niedrigsten Gleitverschleiß aller PTFE-Typen. Zusätzlich wird gegenüber anderen Gleitwerkstoffen die Wärmeleitfähigkeit und damit die Abfuhr von entstehender Reibungswärme aus dem Gleitlager erheblich verbessert, was zu längerer Lebensdauer führt.

Witterungseinflüsse

Alle PTFE-Typen sind hervorragend beständig gegen UV-Strahlen, auch in Verbindung mit Luftsauerstoff. Oxidationserscheinungen oder Verfärbungen wurden nicht beobachtet.

Chemische Beständigkeit

Ungefülltes PTFE ist gegen fast alle Medien außer elementarem Fluor, Chlortrifluorid und geschmolzenen oder gelösten Alkalimetallen beständig. Halogenierte Kohlenwasserstoffe führen zu einem geringfügigen, reversiblen Quellen. Bei gefülltem PTFE ist aufgrund der Füllstoffe mit einer herabgesetzten chemischen Beständigkeit zu rechnen, wobei nicht das PTFE sondern der Füllstoff den Reaktionspartner gegenüber dem Medium bildet.

Generell kann man sagen, dass die mit Kohle gefüllten Typen nicht wesentlich unbeständiger als reines PTFE sind. Die mit Glas gefüllten Typen sind beständig gegen Säuren und Oxidatoren, aber unbeständiger gegen Alkalien. Die mit Bronze gefüllten Typen zeigen gegenüber reinem PTFE eine erheblich herabgesetzte chemische Beständigkeit.

Vor Einsatz von gefüllten PTFE-Typen in chemisch belasteter Umgebung sollten diese in jedem Fall auf Beständigkeit gegen das jeweilige Medium getestet werden.

Brandverhalten

PTFE ist in der höchsten Stufe als schwer entflammbar eingestuft. Es brennt auch unter Hinzufügen einer Zündquelle nicht. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) ist mit 95% einer der höchsten im Vergleich zu anderen Kunststoffen.

Einsatzbereiche

- chemische Industrie
- Maschinenbau
- Feinwerktechnik
- Elektroindustrie
- Textilindustrie
- Papierindustrie
- Lebensmittelindustrie
- Luft- und Raumfahrtindustrie
- Hoch- und Brückenbau

Anwendungsbeispiele

- Gleitlager
- Lagerbuchsen
- Wellendichtungen
- Kolbenringe
- Ventildichtsitze/-ringe
- Isolatoren
- Flachdichtungen
- O Ringe
- Meßbuchsen
- Fadenführer
- antiadhäsive Beläge

Bearbeitung

PTFE ist nur mit Spezialverfahren unter größtem Aufwand schweißbar, läßt sich aber auf Werkzeugmaschinen spangebend bearbeiten. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Nach entprechender Oberflächenbehandlung (Ätzen mit speziellen Ätzmitteln) kann PTFE geklebt werden.

Bis ca. 19 °C unterliegt PTFE einer Phasenumwandlung, welche üblicherweise mit einer Volumenvergrößerung um bis zu 1,2% einhergeht. Dies hat zur Folge, dass Fertigteile, die bei 23 °C maßhaltig sind, bei Temperaturen unter 19 °C erhebliche Maßabweichungen aufweisen können. Bei der konstruktiven Gestaltung und Bemaßung von Teilen aus PTFE ist dies zu berücksichtigen. Bei der spanenden Bearbeitung ist darauf zu achten, dass bei eng tolerierten Teilen eine gute Wärmeabfuhr gewährleistet ist, da es sonst aufgrund der guten Isoliereigenschaften zu Wärmestau bzw. Wärmedehnung und infolgedessen nach Abkühlung zu Fertigteilen mit Maßabweichungen kommen kann.

Fluorpolymere zersetzen sich oberhalb einer Temperatur von ca. 360 °C unter Bildung von hochaggressiver und giftiger Flusssäure. Da bei der spanenden Bearbeitung Polymerstaub entstehen kann, ist darauf zu achten, dass im Entstehungs- und Arbeitsbereich nicht geraucht wird.

Polyetheretherketon (PEEK)

Polyetheretherketon ist ein teilkristalliner, thermoplastischer Kunststoff mit hervorragenden Gleiteigenschaften bei gleichzeitig sehr guten mechanischen Eigenschaften auch unter thermischer Belastung in Verbindung mit einer ausgezeichneten chemischen Beständigkeit. Die hohe Dauergebrauchstemperatur rundet das Profil dieses Hochleistungskunststoffes ab und macht ihn zu einem fast universell einsetzbaren Konstruktionswerkstoff für stark belastete Teile. Die von uns angebotenen Polyetheretherketon-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden im Extrusionsverfahren oder Pressverfahren hergestellt.

Haupteigenschaften

- hohe Dauergebrauchstemperatur (+ 250 °C in Luft)
- hohe mechanische Festigkeit
- hohe Steifigkeit
- hohe Kriechfestigkeit auch bei hohen Temperaturen
 strahlenbeständig
- gute Gleiteigenschaften
- hohe Verschleißfestigkeit

- hohe Dimensionsstabilität
- hervorragende chemische Beständigkeit
- hydrolysebeständig
- guter elektrischer Isolator
- physiologisch unbedenklich
- schwer entflammbar (UL 94 V 0)

Farbe

natur (≈ RAL 7032), schwarz

Gleiteigenschaften

PEEK verbindet auf ideale Weise gute Gleiteigenschaften mit einer hohen mechanischen Festigkeit und Temperaturstandfestigkeit sowie einer hervorragenden chemischen Beständigkeit. Es eignet sich aus diesem Grund gut für Gleitanwendungen. Für besonders hoch reib- und verschleißbeanspruchte Konstruktionsteile steht eine mit Kohlefaser, PTFE und Grafit modifizierte Type zur Verfügung, die höchste Verschleißfestigkeit bei niedriger Reibungszahl und hohem pv-Grenzwert realisiert.

Witterungsbeständigkeit

PEEK ist gegen Röntgen, β-Strahlen und γ-Strahlen beständig. Damit eignet sich PEEK hervorragend für den Einsatz im Bereich der Pharma- und Nuklearindustrie. Gegen UV-Strahlen in Verbindung mit Luftsauerstoff ist PEEK nicht beständig.

Chemische Beständigkeit

PEEK ist gegen nicht oxidierende Säuren, konzentrierte Laugen, Salzlösungen sowie Reinigungsmittel und Paraffinöle beständig. Gegen stark oxidierende Medien wie z. B. konzentrierte Schwefelsäure und Salpetersäure sowie Fluorwasserstoff ist es unbeständig.

Brandverhalten

PEEK ist in der höchsten Stufe als schwer entflammbar eingestuft. Nach Entfernung der Zündquelle ist PEEK selbstverlöschend. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt bei 35%.

Einsatzbereiche

- chemische und petrochemische Industrie
- pharmazeutische Industrie
- Lebensmittelindustrie
- Nuklearindustrie
- Luft- und Raumfahrtindustrie
- Wehrtechnik

Anwendungsbeispiele

- Zahnräder
- Gleitlager
- Spulenkörper
- Armaturen (z.B. Gehäuse für Heißwasserzähler)
- Ventile
- Kolbenringe
- Teile für Automotoren (z. B. Lagerkäfige)

Bearbeitung

Neben seiner guten Schweißeignung und Klebbarkeit läßt sich PEEK problemlos auf Werkzeugmaschinen spangebend bearbeiten. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Die Verwendung einer Kühl-Schmieremulsion ist in der Regel nicht notwendig.

NSC SC

Polysulfon (PSU)

Polysulfon ist ein amorpher, thermoplastischer Kunststoff mit hoher mechanischer Festigkeit und Steifigkeit sowie einer für amorphe Kunststoffe bemerkenswert hohen Kriechfestigkeit über einen weiten Temperaturbereich und hohen Dauergebrauchstemperatur. Darüber hinaus ist Polysulfon aufgrund seiner amorphen Molekülstruktur lichtdurchlässig. Eine sehr gute Hydrolysebeständigkeit sowie sehr gute Dimensionsstabilität runden das Bild ab. Die von uns angebotenen Polysulfon-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden im Extrusionsverfahren hergestellt.

Haupteigenschaften

- hohe Dauergebrauchstemperatur (+ 160 °C in Luft)
- sehr gute Hydrolysebeständigkeit (für wiederholte Dampfsterilisation geeignet)
- hohe Zähigkeit auch bei niedrigen Temperaturen
- hohe Dimensionsstabilität
- guter elektrischer Isolator
- hohe mechanische Festigkeit
- hohe Steifigkeit
- hohe Kriechfestigkeit über einen weiten Temperaturbereich
- gute Strahlenbeständigkeit
- physiologisch unbedenklich
- schwer entflammbar (UL 94 V 0)

Farbe

natur (honiggelb, transluszent)

Gleiteigenschaften

PSU unterliegt einem starken Gleitverschleiß und ist somit für Gleitanwendungen nicht geeignet.

Strahlenbeständigkeit/Witterungseinflüsse

PSU ist gegen Röntgen, β -Strahlen , γ -Strahlen und Mikrowellen beständig. Damit eignet sich PSU hervorragend für den Einsatz im Bereich der Pharma-, Lebensmittel- und Nuklearindustrie. Gegen UV-Strahlen in Verbindung mit Luftsauerstoff ist PSU nicht beständig.

Chemische Beständigkeit

PSU ist gegen anorganische Säuren, Laugen und Salzlösungen sowie Reinigungsmittel und Paraffinöle beständig. Gegen Ketone, Ester, Chlorkohlenwasserstoffe und aromatische Kohlenwasserstoffe ist es unbeständig.

Brandverhalten

PSU ist in der höchsten Stufe als schwer entflammbar eingestuft. Nach Entfernung der Zündquelle ist PSU selbstverlöschend. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt bei 30 %.

Einsatzbereiche

- Elektrotechnik
- Elektronik
- Fahrzeugbau
- Gerätebau
- Luft- und Raumfahrtindustrie

Anwendungsbeispiele

- Spulenkörper
- Schaugläser
- Dichtungsringe
- Gerätegehäuse
- Isolatormuffen

Bearbeitung

Neben seiner guten Schweißeignung und Klebbarkeit läßt sich PSU problemlos auf Werkzeugmaschinen spangebend bearbeiten. Die Halbzeuge können gebohrt, gefräst, gesägt, gehobelt und gedreht werden. Ebenso ist Gewindeschneiden oder das Einbringen von Gewindeeinsätzen möglich. Die Verwendung einer Kühl-Schmieremulsion ist in der Regel nicht notwendig.

Polyetherimid (PEI)

Polyetherimid ist ein armorpher, thermoplastischer Kunststoff mit hoher mechanischer Festigkeit und Steifigkeit sowie einer für amorphe Kunststoffe bemerkenswert hohen Kriechfestigkeit über einen weiten Temperaturbereich und einer hohen Dauergebrauchstemperatur. Darüber hinaus ist Polyetherimid aufgrund seiner amorphen Molekülstruktur lichtdurchlässig. Eine sehr gute Hydrolysebeständigkeit sowie sehr gute Dimensionsstabilität runden das Bild ab.

Die von uns angebotenen Polyetherimid-Halbzeuge, aus denen wir ebenfalls alle Fertigteile herstellen, werden im Extrusionsverfahren hergestellt.

Haupteigenschaften

- hohe Dauergebrauchstemperatur (+ 170 °C in Luft)
- hohe mechanische Festigkeit
- hohe Steifigkeit
- hohe Kriechfestigkeit über einen weiten Temperaturbereich
- hohe Dimensionsstabilität
- sehr gute Hydrolysebeständigkeit (für wiederholte Dampfsterilisation geeignet)
- guter elektrischer Isolator
- gute Strahlenbeständigkeit
- physiologisch unbedenklich
- schwer entflammbar (UL 94 V 0)

Farbe

natur (amber, transluszent)

Gleiteigenschaften

PEI unterliegt einem starken Gleitverschleiß und ist somit für Gleitanwendungen nicht geeignet.

Strahlenbeständigkeit/Witterungseinflüsse

PEI ist sowohl gegen Röntgen, β -Strahlen und γ -Strahlen als auch gegen UV-Strahlen in Verbindung mit Luftsauerstoff beständig.

Damit eignet sich PEI hervorragend für den Einsatz im Bereich der Pharma- und Nuklearindustrie und unter Witterungseinflüssen.

Chemische Beständigkeit

PEI sollte vor Einsatz bei Ketonen, aromatischen Kohlenwasserstoffen und hologenierten Kohlenwasserstoffen auf Beständigkeit getestet werden. Alkalische Reagenzien mit pH-Werten > 9 sollten gänzlich gemieden werden.

Brandverhalten

PEI ist auch ohne Additive in der höchsten Stufe als schwer entflammbar eingestuft. Nach Entfernung der Zündquelle ist PEI selbstverlöschend. Der Sauerstoffindex (= zur Verbrennung benötigte Sauerstoffkonzentration) liegt mit 47% im Vergleich zu anderen Kunststoffen sehr hoch.

Einsatzbereiche Anwendungsbeispiele

- Elektrotechnik
- Elektronik
- Fahrzeugbau
- Gerätebau
- Spulenkörper
- Schaugläser
- Gerätegehäuse
- Isolatormuffen

Aufbau und Eigenschaften von Kunststoffen

1. Grundsätzliches

Als Kunststoffe gelten im Allgemeinen makromolekulare Verbindungen, die durch chemische Umwandlung von vorhandenen Naturstoffen oder durch Synthese aus Produkten des chemischen Aufschlusses von Kohle, Erdöl oder Erdgas hergestellt werden. Die bei der Umwandlung oder Synthese hergestellten Rohstoffe werden in der Regel unter Einwirkung von Temperatur und Druck als plastische Schmelze zu Halbzeugen oder Fertigteilen geformt. Zu diesen Verfahren zählen unter anderem das Spritzgießen und die Extrusion. Eine Ausnahme stellen die im Stand- und Schleudergussverfahren hergestellten Polyamid-Halbzeuge dar, da diese Verfahren drucklos arbeiten.

2. Aufbau

2.1 Einteilung

Üblicherweise werden Kunststoffe in zwei Hauptgruppen, die der Thermoplaste und die der Duroplaste, eingeteilt.

- Thermoplaste erweichen bei ausreichender Erwärmung bis zur Schmelze und erhärten durch Abkühlen wieder. Das Ur- und Umformen von Thermoplasten basiert auf diesem wiederholbaren Vorgang. Sofern durch das Erwärmen keine übermäßige Temperaturbeanspruchung zu chemischer Zersetzung führt, werden die Makromoleküle dabei nicht verändert.
- **Duroplaste** sind nach dem Urformen aufgrund ihrer Molekularstruktur auch bei hohen Temperaturen plastisch nicht mehr verformbar. Das Urformen basiert auf einer chemischen Reaktion von Vorprodukten, die überwiegend nicht makromolekular sind, zu eng vernetzten Makromolekülen.

In DIN 7724 werden Kunststoffe nach ihrem Verhalten unter Temperatureinwirkung gegliedert. Daraus ergibt sich folgende Gliederung:

- **Plastomere** (= Thermoplaste) sind unvernetzte Kunststoffe, die im Gebrauchstemperaturbereich energieelastisch (metallelastisch) reagieren und ab einer bestimmten, werkstoffspezifischen Temperatur erweichen und schmelzen.
- Thermoplastische Elastomere sind physikalisch oder chemisch weitmaschig vernetzte Kunsststoffe oder Kunststoffgemische. Sie verhalten sich im normalen Gebrauchstemperaturbereich entriopieelastisch (gummielastisch), erweichen aber bei höheren Temperaturen bis zum Aufschmelzen.
- Elastomere sind weitmaschig temperaturstabil vernetzte Kunststoffe, die im Gebrauchstemperaturbereich entriopieelastisch (gummieelastisch) und reversibel verformbar sind und bis zum Erreichen des Zersetzungstemperaturbereichs nicht fließen.
- **Duromere** (= Duroplaste) sind engmaschig vernetzte Kunststoffe, die im Gebrauchstemperaturbereich energieelastisch (metallelastisch) reagieren und bis zum Erreichen des Zersetzungstemperaturbereichs nicht fließen.

2.2 Aufbau und Gestalt der Makromoleküle

Die heute hergestellten Kunststoffe basieren mit wenigen Ausnahmen in der Regel auf der Fähigkeit des Kohlenstoffs, durch die Atombindung lange Ketten zu bilden. Im Unterschied zur Ionenbindung füllt sich dabei die äußere Schale des Kohlenstoffs bis zur Edelgaskonfiguration mit acht Elektronen auf. Bindungspartner können dabei ganze Atomgruppen oder einzelne Atome wie z.B. Wasserstoff, Sauerstoff, Stickstoff, Schwefel oder Kohlenstoff sein.

Durch Synthese werden viele einzelne kleine Moleküle (= Monomere) eines oder mehrerer Ausgangsprodukte chemisch zu Makromolekülen verbunden (= Polymere). Im Allgemeinen liegt die Länge der dabei entstehenden Ketten zwischen 10-6 und 10-3 mm. Die Größe der Makromoleküle wird durch den Polymerisationsgrad n ausgedrückt bzw. durch das Molekulargewicht angegeben. Da bei der Polymerisation keine homogene Verteilung der Kettenlänge erzielt werden kann, gibt man die Werte als mittlere Werte an. In der Technik ist es auch üblich, statt des Polymerisationsgrads oder des Molekulargewichts ein Maß für die Viskosität (z.B. Schmelzindex) anzugeben. Dabei gilt: je höher n, um so höher die Viskosität.

Bei der Makromolekülbildung wird zwischen linearen, verzweigten und vernetzten Molekülstrukturen unterschieden.

- Verbinden sich die Monomere an je zwei Stellen (bifunktionell) miteinander, entsteht ein fadenförmiges, lineares Makromolekül
- Verbinden sich einzelne Monomere an mehr als zwei Stellen, so kommt es zu Molekülverzweigungen
- Verbinden sich die Monomere überwiegend an drei Stellen (trifunktionell) miteinander, entsteht ein räumliches, entweder schwach oder stark vernetztes Makromolekül

Lineare bzw. verzweigte Makromoleküle führen zu Thermoplasten, schwach vernetzte zu Elastomeren und stark vernetzte zu Duromeren.

Da wir uns auf den Vertrieb von Halbzeugen und Fertigteilen aus thermoplastischen Kunststoffen (Plastomeren) spezialisiert haben, kommen für die weiteren Ausführungen nur die Kunststoffgruppe der Thermoplaste mit seinen verschiedenen Untergruppen in Betracht. Für die anderen Kunststoffgruppen sei an dieser Stelle auf die diesbezüglich verfügbare Fachliteratur verwiesen.

2.3 Molekulare Bindungskräfte

Der Zusammenhalt der Makromoleküle basiert auf chemischen und physikalischen Bindungskräften.

Bei den Polymerwerkstoffen sind dies

- die Hauptvalenzkräfte als chemische Bindungskraft
- die Nebenvalenzkräfte (van der Waalsche Kräfte) als physikalische Bindungskraft

Die Hauptvalenzkräfte sind im Wesentlichen für die chemischen, die Nebenvalenzkräfte für die physikalischen Eigenschaften des Kunststoffs und die Ordnung der Makromoleküle verantwortlich.

2.3.1 Hauptvalenzkräfte (Primärbindungskräfte)

Die Hauptvalenzkräfte, die durch den Bindungsabstand und die Bindungsenergie erzeugt werden, gehen aus der Atombindung der Polymere hervor. Je kleiner der Bindungsabstand zwischen den einzelnen Atomen der Polymerkette ist, um so höher ist die Bindungsenergie. Mit der Bindungsanzahl der einzelnen Atome steigt die Bindungsenergie ebenfalls.

2.3.2 Nebenvalenzkräfte (Sekundärbindungskräfte)

Die Nebenvalenzkräfte gehen aus den zwischenmolekularen Bindungen hervor. Sie setzen sich aus drei Kräften zusammen.

1. Dispersionskräfte

sind die in der Materie wirkenden Anziehungskräfte zwischen den einzelnen Molekülen. Diese sind um so größer, je näher die Moleküle aneinander liegen. In den kristallinen Bereichen der teil-kristallinen Kunststoffe sind sie in Folge dessen besonders hoch. Dies erklärt die mechanische Überlegenheit gegenüber amorphen Kunststoffen.

Durch Vergrößern der Abstände nehmen die Kräfte rasch ab. Ursache für die Vergrößerung der Abstände können Schwingungen infolge Erwärmung des Polymerwerkstoffs sein. Aber auch Einlagern von Fremdatomen zwischen den Molekülen (wie z. B. Lösemittel oder Wasser) kann zur Abstandsvergrößerung führen.

Durch die Einlagerung von Weichmachern in die Molekülkette lässt sich dieser Effekt zur Herstellung von bei Raumtemperatur gummielastischen Kunststoffen nutzen.

2. Dipolkräfte

sind nicht bei allen Kunststoffen anzutreffen. Sie entstehen nur dann, wenn bei der Atombindung durch die Einordnung der Atome in die galvanische Reihe ein starkes Übergewicht zu einer Seite entsteht. Diese kann nur dann geschehen, wenn ungleiche Partner eine Bindung eingehen. Dabei zieht das elektronegati-

vere Atom einer Bindung das Elektronenpaar zu sich heran (→ Polarisation) und es bildet sich einen Dipol. Die benachbarten polarisierten Gruppen ziehen sich aufgrund der elektrisch ungleichen Ladungen an.

Polymerwerkstoffe mit Dipolcharakter sind im Allgemeinen weniger löslich (mit Ausnahme stark polarer Lösemittel) und erweichen bei höheren Temperaturen als Polymerwerkstoffe ohne Dipolcharakter. Als wichtigster Vertreter der Polymerwerkstoffe mit Dipolcharakter ist PVC zu nennen.

3. Wasserstoffbrücken

sind Bindungen von sich gegenüberstehenden Sauerstoff- und Wasserstoffmolekülen verschiedener Molekülketten aufgrund ihrer hohen Affinität zueinander. Dieser Bindungstyp ist der festeste aller Nebenvalenzbindungen. Die Wasserstoffbrücken werden erst unter Einwirken sehr großer Kräfte gelöst und bauen sich sofort nach Wegfallen der Verschiebekräfte ähnlich einem Klettverschluss wieder auf. Diverse Polymerwerkstoffe wie z.B. die Polyamide, verdanken ihre hervorragenden Eigenschaften, wie den hohen Schmelzpunkt oder die außergewöhnlichen Zähigkeit, den Wasserstoffbrückenbindungen.

Als weitere, rein physikalische zwischenmolekulare Bindungen sind noch Verhaken, Verschlaufen von Ketten oder Einbinden in teilkristalline Bereiche zu nennen. Diese werden als physikalische Netzstellen bezeichnet, die eine molekül-formschlüssige Kraftübertragung zulassen.

Bei sehr schlanken und symmetrischen Molekülketten sind die Nebenvalenzkräfte, abgesehen von Molekülteilen in teilkristallinen Bereichen, meist nicht so ausgeprägt. Die Molekülketten solcher Polymerwerkstoffe können unter mechanischer Belastung leicht aneinander vorbeigleiten. Diese Werkstoffe zeigen ein sehr gutes Gleitverhalten, unterliegen aber gleichzeitig einem hohen Verschleiß durch Abrieb und neigen stark zum Kriechen. Als Beispiel lassen sich hier PE-UHMW und PTFE nennen.

2.4 Ordnung der Makromoleküle

Die thermoplastischen Kunststoffe werden nach der Ordnung ihrer Makromoleküle in zwei Gruppen unterteilt. Es wird unterschieden zwischen

 amorphen Thermoplasten mit vollkommen ungeordneten Makromolekülen (watteähnliche Struktur) aufgrund der Form der Grundbausteine und /oder der Anordnung von möglicherweise vorhandenen Seitengruppen. Amorphe Thermoplaste sind hart, spröde und transparent.

• teilkristalline Thermoplaste mit stellenweise hoch geordneten, parallel liegenden Makromolekülketten, die Kristallite bilden. Eine Vielzahl von Kristalliten bilden sogenannte Sphärolithe. Aufgrund von Kettenverschlaufungen im Polymerisationsverlauf ist eine vollständige Kristallisation (→ teilkristalliner Kunststoff) nicht möglich. Teilkristalline Kunststoffe sind zähhart und opak bis weiß.

Teilkristalline Kunststoffe haben gegenüber amorphen Kunststoffen aufgrund der höheren Nebenvalenzkräfte andere Eigenschaften. Sie erweichen später, sind mechanisch belastbarer, abriefester, zähelastisch statt spröde und in der Regel chemisch beständiger. Aus diesem Grund haben die teilkristallinen Thermoplaste bei den technischen Kunststoffen die größere Bedeutung.

2.5 Anordnung der Moleküle im Makromolekül

Es wird grundsätzlich zwischen drei Anordnungsmöglichkeiten des Substituten "R" in der Molekülkette unterschieden.

 ataktisch zufällige Anordnung in der Kette

isotaktisch regelmäßig einseitige Anordnung in der Kette

3. syndiotaktisch regelmäßig wechselnde Anordnung in der Kette

Ein kristalliner Aufbau des Polymerwerkstoffs ist nur dann möglich, wenn eine regelmäßige Kettenanordnung über eine zumindest gewisse Länge der Gesamtsequenz vorliegt. Infolgedessen hat die Molekülanordnung unmittelbaren Einfluss auf die mechanischen Eigenschaften.

2.6 Homo-/Copolymerisate

Kunststoffe, die aus gleichen Monomerbausteinen polymerisiert werden, heißen Homopolymere. Kunststoffe, die aus zwei oder mehreren Monomerbausteinen bestehen, werden als Copolymerisate bezeichnet. Bei der Herstellung von Copolymerisaten werden die Monomerbausteine nicht nur vermischt, sondern in die Molekülkette chemisch integriert. Durch die Copolymerisation lassen sich bestimmte Werkstoffeigenschaften gezielt verbessern.

Im Wesentlichen werden vier verschiedene Arten von Copolymerisaten unterschieden.

1. statistischer Kettenaufbau (zufällige Verteilung der verschiedenen Monomerbausteine)

2. alternierender Kettenaufbau (regelmäßiger Wechsel der einzelnen verschiedenen Monomer-

bausteine)

3. blockweiser Kettenaufbau (regelmäßige wechselnde Blöcke der verschiedenen Monomer-

bausteine)

4. Pfropfpolymerisat (homogene Kette eines Bausteins mit aufgepfropften Seiten-

ketten eines anderen Bausteins)

Eine weitere Möglichkeit der Eigenschaftsveränderung stellt das (physikalische) Mischen zweier Polymere dar. Die so erhaltenen Werkstoffe werden als Polyblend bezeichnet.

3. Eigenschaften

Aus dem vorstehend beschriebenen molekularen Aufbau der Kunststoffe ergeben sich eine Reihe besonderer Eigenschaften und Eigenarten. Einige sollen hier näher vorgestellt und beschrieben werden.

3.1 Mechanische Eigenschaften

Die mechanischen Eigenschaften von Kunststoffen werden in erster Linie durch die Sekundärbindungskräfte bestimmt. Je ausgeprägter diese sind, um so besser sind die mechanischen Eigenschaften.

Aufgrund des morphologischen Aufbaus von Kunststoffen sind die Eigenschaften von Faktoren wie

- Zeit
- Temperatur
- Feuchtigkeit
- Chemikalieneinwirkung

abhängig und schwanken je nach Einfluß einer oder mehrere Faktoren stark.

3.1.1 Viskoelastisches Verhalten

Alle Kunststoffe zeigen ein mehr oder weniger stark ausgeprägtes viskoelastisches Verhalten. Durch die mechanische Belastung werden die Sekundärbindungen im Molekülaufbau gelöst und die Molekülketten gleiten aneinander vorbei. Je länger die Belastung andauert, um so mehr entfernen sich die Ketten voneinander.

Das bedeutet, dass sich Kunststoffe gegenüber metallischen Werkstoffen unter hohen Belastungen, die über einen längeren Zeitraum andauern, verformen (→ kalter Fluss). Wird die maximale Dehnung erreicht, verfestigt sich der Kunststoff wieder und die Dehnung sinkt. Diese Eigenschaften sind um so ausgeprägter, je schwächer die Sekundärbindungen des Makromoleküls sind.

Ein einfacher Molekülaufbau ohne sich verhakende Seitengruppen oder ein geringer Kristallinitätsgrad des Kunststoffs begünstigt dabei das Vorbeigleiten der Ketten.

Die Verformung wird durch Temperatureinfluss noch zusätzlich gefördert. Die Moleküle werden zu Schwingungen angeregt, die zu größeren Abständen der Ketten und damit schwächeren Sekundärbindungen führen. Demzufolge können Festigkeitswerte zur Dimensionierung von Bauteilen nicht als Einpunktwert verwendet werden, sondern müssen in Abhängigkeit von Belastungszeit und Temperatureinwirkung in die statische Berechnung eingehen.

3.1.2 Feuchteaufnahme

Speziell die durch Polykondensation (→ Polymerisation unter Abspaltung von z.B. Wasser) hergestellten Kunststoffe haben die Neigung, Wasser aus der Umgebung durch Eindiffundieren aufzunehmen. Dieser Vorgang ist eine reversible Gleichgewichtsreaktion, wobei die Kunststoffe um so mehr Wasser aufnehmen, je höher das Angebot in der Umgebung ist. Die eingelagerten Wassermoleküle vergrößern den Abstand zwischen den Molekülketten und verursachen so eine

Schwächung der Sekundärbindungen. Die Ketten werden beweglicher und eine Abnahme der mechanischen Werte bei Zunahme der Elastizität sowie Quellung ist die Folge.

Bei Polyamiden sorgen die Wasserstoffbrücken nicht nur für hervorragende mechanische Eigenschaften, wie besonders gute Abriebfestigkeit, mechanische Festigkeit und Zähigkeit, sondern führen auch zur Einlagerung von Wasser in die Molekülketten.

Da Wasser ebenso wie die Moleküle des Polyamids zu Wasserstoffbrückenbildung fähig ist, trennt dieses nach dem Eindiffundieren in die Molekülkette die bestehende Wassserstoffbrücke auf und besetzt die freien Valenzen. Die Polymerkette wird durch die Wassermoleküle etwas beweglicher, womit Platz für weitere Wassermoleküle geschaffen wird. Dieser Vorgang setzt sich bis zur Sättigung fort. Sinkt die Wasserkonzentration in der Umgebung wieder ab, kehrt sich der Vorgang um. Begünstigt wird die Wasseraufnahme durch Temperaturerhöhung und hohe Umgebungsfeuchte. Durch die Wasseraufnahme werden die Polyamide zähelastischer und weniger fest und steif.

Wassergehalt →

Für Anwendungen, wo diese Eigeschaften gewünscht werden, läßt sich der Wassergehalt gezielt durch Lagerung in heißem Wasser (→ Konditonieren) erhöhen.

Für die Wasseraufnahme durch Luftfeuchtigkeit ist anzumerken, dass sich der Vorgang bei dickwandigen Bauteilen ausschließlich im oberflächennahen Bereich abspielt und eine Wasseraufnahme im Bauteilinneren mit den geschilderten Folgen im Normalfall nicht zu erwarten ist.

3.1.3 Chemikalieneinwirkung

Chemikalien können die Primär- und Sekundärbindungen der Molekülketten angreifen und trennen, was sich durch Quellung oder Zersetzung des Kunststoffs bemerkbar macht. Die Quellung des Kunststoffes wird durch das Eindiffundieren der Chemikalie in den Molekülaufbau hervorgerufen, was zu Festigkeitsverlust führt. Bei einem rein chemischen Angriff kann der Festigkeitsverlust ohne nennenswerte Volumen- und Gewichtsvergrößerung einhergehen.

Durch das Eindiffundieren der Fremdmoleküle werden die Nebenvalenzkräfte so weit herabgesetzt, dass es aufgrund von Eigenspannungen im Werkstoff oder durch äußere Krafteinwirkung zu (Spannungs-) Rissen, kommen kann (→ Spannungsrisskorrosion).

3.2 Chemische Beständigkeit

Kunststoffe haben im Vergleich zu metallischen Werkstoffen eine hohe chemische Beständigkeit. Dies ist auf die Verbindung der Moleküle durch Atombindungen zurückzuführen. Die Nebenvalenzkräfte spielen aufgrund ihrer eher physikalischen Natur nur eine untergeordnete Rolle. Die meisten Kunststoffe sind gegen viele Säuren und Laugen sowie wässrige Salzlösungen und Lösemittel beständig.

Oxidierende Säuren oder organische Lösemittel stellen in vielen Fällen jedoch ein Problem dar, sind aber mit speziellen Kunststoffen beherrschbar.

Die Widerstandsfähigkeit gegen Chemikalien sinkt mit zunehmender Temperatur und Einwirkdauer und zeigt sich durch Gewichts- und Volumenzunahme sowie den Rückgang der mechanischen Werte. Unbeständigkeit gegen ein Medium zeigt sich in der Regel durch Quellung des Kunststoffs ohne nennenswerten chemischen Angriff oder durch chemischen Angriff mit mäßiger oder starker Quellung.

3.3 Elektrische Eigenschaften

Durch die Atombindung der Moleküle verfügen Kunststoffe nicht, wie z.B. metallische Werkstoffe mit Ionenbindungen, über freie Elektronen und gehören damit zu den Nichtleitern. Durch Wasseraufnahme und / oder Zugabe von metallischen Füllstoffen, Grafit oder Ruß können die Isolationseigenschaften jedoch stark herabgesetzt oder aufgehoben werden.

Viele Kunststoffe eignen sich für den Einsatz im Hochfrequenzbereich, da ihre dielektrischen Verlustzahlen sehr gering sind und sie sich infolgedessen nur wenig erwärmen.

Die Verlustzahl sollte im Anwendungsbereich

• für Hochfrequenzisolatoren $\epsilon_{\rm r} \cdot \tan \delta < 10^{-3}$

• für Hochfrequenzerwärmung $\epsilon_{\rm r} \cdot \tan \delta > 10^{-2}$

sein.

Kunststoffe weisen im Allgemeinen einen Oberflächenwiderstand von >10 8 Ω auf. Dies führt bei Reibung mit einem zweiten Nichtleiter durch Elektronenübertritt an der Grenzfläche zu elektrostatischer Aufladung. Für die Verwendung in explosionsgeschützten Bereichen sind Kunststoffe ohne Leitfähigkeitsadditive nicht geeignet, da es beim Berühren mit geerdeten Gegenständen zu Funkenbildung kommen kann.

3.4 Dimensionsstabilität

Mit zunehmender Wärme, bzw. durch Einlagern von Fremdmolekülen (z.B. Wasser oder Lösemittel) in den Kettenverbund der Molekülketten, nimmt der Abstand der Ketten zu. Das hat eine Volumenveränderung der aus Kunststoff gefertigten Bauteile und damit eine Maßvergrößerung zur Folge. Umgekehrt findet mit zunehmender Kälte oder abnehmendem Wassergehalt eine Volumenverkleinerung statt, die mit entsprechender Schwindung und Maßverkleinerung einhergeht.

Kunststoffe werden im Allgemeinen aus der Schmelze zu Halbzeugen ur- oder umgeformt. Bei den von uns hergestellten Halbzeugen handelt es sich dabei in der Regel um Produkte mit dicken Wandstärken und hohem Volumen wie z.B. Vollstäbe, Tafeln und Blöcke. Da Kunststoffe schlechte Wärmeleiter sind, kühlen die Randbereiche wesentlich schneller ab, als der Kern des Produkts. Dieser hat jedoch aufgrund der Wärmedehnung ein größeres Volumen als die Randbereiche. Der Außenbereich ist schon unter Volumenverlust und damit verbundenem Schwinden erstarrt. Es entstehen durch den Schwund des Kerns innere Spannungen, die beim weiteren Abkühlen im Produkt "einfrieren". Diese Spannungen lassen

sich durch Wärmebehandlung (\rightarrow Tempern, ähnlich dem spannungsfreien Glühen bei Stahl) minimieren. Ein Restanteil dieser Spannungen kann jedoch erhalten bleiben. Diese bauen sich im Lauf der Zeit aufgrund des viskoelastischen Verhaltens der Kunststoffe ab (\rightarrow Relaxatation).

Durch einseitige Spanabnahme bei der Bearbeitung sowie durch Erwärmen können diese inneren Restspannungen frei werden, was sich entweder in Form von Maßänderungen oder durch Verzug bemerkbar machen kann.

Die vorangegangen beschriebenen Eigenschaften der Kunststoffe sind mehr oder weniger stark ausgeprägt und durch konstruktive Maßnahmen gut zu beherrschen und kompensieren. Sie müssen aber bei der konstruktiven Auslegung eines Bauteils in jedem Fall ausreichend berücksichtigt werden. Auf spezielle Problematiken, wie z. B. Hinweise bezüglich Brandverhalten, Lagerung, werkstoffgerechte Tolerierung von Bauteilen und vieles mehr wird in den nachfolgenden Kapiteln eingegangen.

Brandverhalten

1. Brandverhalten von Kunststoffen und Eingruppierung in Brandklassen

Kunststoffe sind im Allgemeinen organische Stoffe oder Abwandlungen von organischen Stoffen, die, wie andere organische Stoffe auch, bei höheren Temperaturen durch Kettenbruch, Abspaltung von Substituten und Oxidation bedroht sind. Bis auf wenige Ausnahmen sind Kunststoffe daher mehr oder weniger brennbar, was im konkreten Einsatz von Kunststoffen ein ernsthaftes technisches Problem darstellen kann.

1.1 Brennbarkeit

Werden Kunststoffe örtlich oder großflächig über ihre spezifische Zersetzungstemperatur hinaus erwärmt, spalten sie flüchtige, niedermolekulare Bestandteile ab. In vielen Fällen bilden diese mit dem Sauerstoff der Umgebung ein brennbares Gasgemisch, welches sich unter Hinzufügen einer Zündquelle und ausreichendem Sauerstoff entzünden kann.

Dabei ist es für die Entstehung eines Brandes und den Brandfortschritt von entscheidender Bedeutung, wie hoch die zugeführte Wärmemenge ist und auf welches Volumen mit welcher Oberflächengröße eines brennbaren Stoffes sie einwirken kann. Als weiterer entscheidender Faktor ist die Lufsauerstoffkonzentration anzusehen.

So ist es z.B. möglich, dass eine große Wärmemenge, die auf ein großes Volumen mit großer Oberfläche eines Stoffes einwirkt, unter Sauerstoffmangel anfangs nur zur pyrolytischen Spaltung (→ Abspaltung von leicht brennbaren, flüchtigen und niedermolekularen Bestandteilen) führt. Fügt man Sauerstoff in der richtigen Konzentration hinzu, kann es unter ungünstigen Umständen zur Verpuffung oder Explosion kommen.

Bei gleichem Volumen jedoch niedrigerer Wärmezufuhr und ausreichend hoher Sauerstoffkonzentration brennt derselbe Stoff dagegen nur langsam ab.

Eine brandtechnische Voraussage ist aufgrund dieses Verhaltens sehr schwierig, wenn nicht sogar unmöglich.

1.2 Brandgase

Wie bei der Verbrennung von anderen Stoffen entstehen auch beim Verbrennen von Kunststoffen diverse Brandgase. Diese werden in der Regel als besonders toxisch wirkend dargestellt. Dies ist insofern nicht richtig, als dass zum einen die Toxidität von der Art und Menge des am Brand beteiligten Kunststoffs abhängt, zum anderen grundsätzlich alle bei einer Verbrennung (stoffunabhängig) entstehenden Brandgase als toxisch wirkend anzusehen sind.

Als Beispiel ist das bei der Verbrennung von Polyethylen entstehende Brandgas zu nennen, welches neben geringen Mengen von Ruß und niedermolekularen Kunststoffanteilen, fast ausschließlich Kohlenmonoxid, Kohlendioxid und Wasser enthält. Dies ist vergleichbar mit dem Brandgas, welches bei der Verbrennung von Holz oder Stearin entsteht.

Dahingegen besteht bei der Verbrennung von Polyvinylchlorid die Gefahr des Abspaltens von Chlor, das mit der Luftfeuchtigkeit oder Löschwasser zu Salzsäure reagiert.

Viele Kunststoffe verbrennen unter starker Rußentwicklung, was die Erreichbarkeit des Brandherdes für die Rettungskräfte erschwert. Zu diesen Kunststoffen gehören die Poleolefine PE und PP, aber auch Styrolkunststoffe wie PS und ABS.

Für Konstruktionen in brandtechnisch kritischen Bereichen ist dies zu berücksichtigen.

1.3 Brandverhalten

Fast alle Kunststoffe sind brennbar. Eine Ausnahme bilden PTFE und Silikone, die als praktisch unbrennbar gelten. Die meisten Kunststoffe brennen nach Entzünden und Entfernen der Zündquelle weiter. Einige verlöschen nach Entfernen der Zündquelle, wohingegen andere wiederum nicht entzündet werden können. In vielen Fällen schmilzt der Kunststoff durch die entstehende Verbrennungswärme und tropft dann brennend ab, was die Brandverbreitung fördern kann. Die Brennbarkeit kann durch Zugeben von entsprechenden Additiven herabgesetzt werden. Es werden Additive, die auf folgenden Mechanismen basieren, verwendet:

• Wärmeverbrauch

Die Temperatur des Kunststoffs wird durch Abbau bzw. Verdampfen des Additivs herabgesetzt. Diese ist z.B. durch Wasserdepots (Aluminiumhydroxid) oder zugesetzte Phosphorverbindungen im Kunststoff möglich.

Radikalenbindung

Die während des Brands entstehenden Radikale werden durch das Additiv gebunden und so der thermische Zerfall und damit die Abspaltung von brennbaren, flüchtigen Bestandteilen gebremst.

Bildung von schweren Gasen

Durch die thermische Einwirkung auf das Additiv bilden sich schwere Gase, vorzugsweise Halogene, die den Kunststoff vom Luftsauerstoff abschirmen und somit eine Oxidation verhindern. Die Verwendung von brandmindernden Additiven ermöglicht es jedoch nicht, Kunststoffe unbrennbar zu machen. Für Anwendungen, die eine Unbrennbarkeit des Kunststoffs fordern eignen sich ausschließlich die als unbrennbar geltenden Kunststoffe.

1.4 Brandklassen

Zur Beurteilung des Brandverhaltens von Kunststoffen werden in der Regel nicht genau abgrenzbare Begriffe wie z. B. "leicht brennbar", "schwer entflammbar" oder "nicht entzündlich" verwendet. Diese geben das tatsächliche Verhalten des Kunststoffs nur unzulänglich wieder und erlauben nur bedingt einen Rückschluss auf die Verwendbarkeit eines Kunststoffs für einen bestimmten Anwendungsfall. Für die Beurteilung des Brandverhaltens von Kunststoffen in den Einsatzbereichen Elektrotechnik, Verkehrswesen, Bauwesen usw. existieren z.Zt. ca. 700 nationale und internationale Prüfverfahren. Im Elektrosektor hat sich das Verfahren UL 94 HB bzw. UL 94 V der Underwriters-Laboratories (USA) als das Bedeutendste durchgesetzt. Diese Prüfungen bezie-

hen sich auf die Abbrennzeit und das Abbrennverhalten von Kunststoffen. In der Prüfung UL 94 V werden die Klassen V0 bis V2 unterschieden, wobei V0 die günstigste Klasse darstellt.

Eine weitere Möglichkeit, die Entflammbarkeit von Kunststoffen zu vergleichen, stellt der Sauerstoffindex dar. In einem regelbaren O₂/N₂-Gemisch wird eine vertikal angeordnete Kunststoffprobe entzündet und der Volumenanteil an O₂ gemessen, der zur Verbrennung des Kunststoffs mindestens notwendig ist. Diese Prüfung erlaubt auch die Beobachtung der Wirkung von Flammschutzmitteln. Die nebenstehende Grafik enthält einige Sauerstoffindizes zum Vergleich.

Indexwerte ≤ 21 % können zum Weiterbrennen nach Entfernen der Zünquelle führen.

Strahlen- und Witterungsbeständigkeit

1. Strahlen- und Witterungsbeständigkeit von Kunststoffen

Die Veränderung von Kunststoffen durch Witterungseinflüsse und energiereichen Strahlen wird häufig in Anlehnung an den Vorgang des biologischen Verfalls mit dem Begriff »Altern« bezeichnet. Dies liegt insofern nahe, als dass Kunststoffe als organische Werkstoffe nicht nur in ihren Bestandteilen eine Analogie zu den Naturstoffen zeigen, sondern auch in ihrem makromolekularen Aufbau.

Deutlich wird die Parallele auch daran, dass häufig von der "Lebensdauer" eines Kunststoffprodukts gesprochen wird. Die Dauer wird vom Abbau des Kunststoffs bestimmt. Sie ist im Verhältnis zu anderen Naturstoffen recht lang, aber tatsächlich begrenzt.

1.1 Strahlung

Die Mehrzahl der Kunststoffe unterliegt unter Einwirkung von energiereicher Strahlung einem Abbau oder einer Vernetzung der makromolekularen Strukturen. Welche Strukturveränderung sich dabei im molekularen Aufbau ergibt, ist vom Luftsauerstoff abhängig.

Bei Anwesenheit von Sauerstoff tritt in der Regel der oxidative Abbau des Kunststoffs ein. Dies ist insbesondere dann der Fall, wenn die Strahlendosis klein, die Oberfläche des Produkts groß und die Wandstärken gering sind. Unter diesen Voraussetzungen hat der Luftsauerstoff ausreichend Zeit, in den Kunststoff einzudiffundieren und die durch die Strahlung entstandenen freien Valenzen zu besetzen.

In Abwesenheit von Sauerstoff wird der Kunststoff teilweise durch Hauptkettenbrüche abgebaut und teilweise vernetzt. Im Allgemeinen kommen Abbau- und Vernetzungsreaktion zur gleichen Zeit vor, wobei eine der Reaktionen überwiegt.

In jedem Fall gehen die Veränderungen des Kunststoffs durch Strahlung mit dem Verlust von mechanischen Eigenschaften, wie z.B. mechanischer Festigkeit, Steifigkeit und Härte oder Versprödung einher. Kunststoffe, die einer Vernetzung unterliegen, können eine Eigenschaftsveränderung bis zum gummielastischen Zustand erfahren. Zudem werden sowohl bei der Vernetzung als auch beim Abbau der Kunststoffe in geringen Mengen gasförmige Stoffe, wie z.B. Kohlenmonoxid oder Kohlendioxid abgespalten.

Zu berücksichtigen ist jedoch, dass sich die beschriebenen Veränderungen nur allmählich einstellen und es keinesfalls plötzlich und ohne Vorankündigung zu Eigenschaftsänderungen kommt. Die Wirkung von Strahlung auf Kunststoffe ist von der Teilegeometrie, Dosierleistung, mechanischen Belastung, Temperatur und dem umgebenden Medium abhängig. Eine pauschale Angabe von Schädigungsdosen für die einzelnen Kunststoffe ist daher nicht möglich.

1.2 Witterungseinflüsse

Die Bewertung der Witterungsbeständigkeit wird größtenteils an der optischen Veränderung der Oberfläche festgemacht. Dabei bleibt die Frage nach den Veränderungen der mechanischen Werte jedoch unbeantwortet. Es ist nicht auszuschließen, dass einerseits Kunststoffe, die keiner nennenswerten optischen Veränderung unterliegen, einen gravierenden Verlust der mechanische Eigenschaften aufweisen und andererseits Kunststoffe mit erheblichen optischen Veränderung nur unwesentliche Einbußen der mechanischen Eigenschaften verzeichnen. Für die Bewertung der Witterungsbeständigkeit müssen aber in jedem Fall auch die mechanischen Eigenschaften ein Maß der Dinge sein. Als Folge von Witterungseinflüssen sind der Rückgang von Festigkeit und Härte sowie Zunahme der Elastizität oder eine Versprödung zu nennen. Daneben kann die Oberfläche des Kunststoffs ausbleichen oder oxidativ zersetzt werden bzw. durch Spannungsrissbildung aufreißen.

Die Veränderungen der Kunststoffe unter Witterungseinflüssen wird hauptsächlich durch thermo- und photooxidative Reaktionen sowie durch die Einlagerung von Wassermolekülen in den Kettenaufbau des Kunststoffs hervorgerufen.

Einwirkende UV – Strahlung und Erwärmung durch direkte Sonneneinstrahlung führen zu Kettenabbau und freien Valenzen, die durch eindiffundierten Sauerstoff gesättigt werden. Die Oberfläche vergilbt bzw. bleicht aus.

Bei teilkristallinen Kunststoffen kann es zur Nachkristallisation und damit zu höherer Härte und Steifigkeit kommen. Folglich werden diese Kunststoffe aber auch spröder und verlieren einen Teil ihrer Elastizität. Eingefrorene Restspannungen aus dem Fertigungsprozess können durch die Wärmeeinwirkung, ähnlich eines Tempervorgangs, relaxieren und Verzug hervorrufen. Hiervon sind vor allem dünnwandige Fertigteile bedroht.

Durch die Aufnahme von Wasser werden die Kunststoffe zähelastisch und die Festigkeit und Steifigkeit gehen zurück, was bei dünnwandigen Fertigteilen ebenfalls ein Problem darstellen kann.

Ähnlich wie bei den Brandschutzadditiven lässt sich auch die Witterungsbeständigkeit durch Additive verbessern. Ein vollkommener Schutz gegen Abbau durch Witterungseinfluss ist aber auch hier nicht realisierbar.

Leider ist bis heute keine gültige Prüfnorm und damit einheitlicher Parameter bezüglich der künstlichen Bewitterung und deren Messgrößen zum Vergleich der Beständigkeiten festgelegt. Tendenziell läßt sich jedoch sagen, dass die mit Ruß schwarz eingefärbten oder gegen UV – Licht durch Additive stabilisierten Kunststoffe gegenüber Licht- und Witterungseinflüssen stabiler sind als die hell eingefärbten oder naturbelassenen Typen. Eine Ausnahme hiervon bilden die Kunststoffe PVDF und PTFE, die auch ohne Einfärbung oder Additive hervorragende Beständigkeit gegenüber Licht- und Witterungseinflüssen zeigen.

Bei der Bewertung der Witterungsbeständigkeit ist zudem noch zu beachten, dass sich die Veränderungen durch Witterungseinflüsse in der Regel in oberflächennahen Bereichen der Produkte abspielen. Tieferliegende Schichten werden im Allgemeinen nicht angegriffen, so dass dickwandige Bauteile weniger von Veränderungen betroffen sind als dünnwandige.

Lagerhinweise

Hinweise zum werkstoffgerechten Umgang mit Kunststoffen bei Wareneingang und Lagerung

Die in den vorangegangenen Abschnitten beschriebenen Werkstoffeigenschaften und Besonderheiten von Kunststoffen machen deutlich, dass Kunststoffprodukte ungewollte Qualitätseinbußen durch Umwelteinflüsse erfahren können.

Für den Erhalt der hochwertigen Qualität und Funktionalität unserer Produkte – auch über einen längeren Lagerzeitraum – sind daher einige Faktoren bei Handhabung und Lagerung zu berücksichtigen.

- 1. Kunststoffe verspröden bei tiefen Temperaturen und werden dann hart, unelastischer und schlagempfindlich. In diesem Zustand ist die Bruch- und Rissgefahr durch äußere Krafteinwirkung besonders bei Fertigteilen sehr hoch. Kalte Kunststoffprodukte sollten in keinem Fall geworfen, geschüttet oder fallen gelassen werden.
- 2. Die Eigenschaften von Kunststoffen können sich unter Einwirkung von Witterungseinflüssen verändern. Durch Sonneneinstrahlung, Luftsauerstoff und Feuchtigkeit können die Werkstoffeigenschaften nachhaltig negativ beeinflusst werden (z.B. durch Ausbleichen und/oder Oxidieren der Oberfläche, Wasseraufnahme etc.). Bei direkter Sonneneinstrahlung oder einseitiger Erwärmung besteht die Gefahr von dauerhaftem Verzug durch Wärmedehnung und frei werdenden inneren Restspannungen. Daher sollten Fertigteile nicht, Halbzeuge möglichst nicht über eine längere Zeit im Freien gelagert werden.
- 3. Kunststoffe haben kratzempfindliche Oberflächen. Scharfe Kanten an Regalen, Nägel in Paletten, grobe Schmutzpartikel zwischen den Produkten und anderen scharfkantigen Gegenständen können zu Kratzern und/oder Riefen und ggf. durch diese zu Kerbwirkung und Bruch führen. Bei Transport und Lagerung auf Erhalt einer kratz- und riefenfreien Oberfläche achten und Verschmutzung durch Anhaften von groben Partikeln vermeiden.
- 4. Nicht alle Kunststoffe sind gleichermaßen gegen Chemikalien, Lösemittel, Öle und Fette beständig. Einige werden durch solche Substanzen angegriffen, was zu Oberflächentrübung, Quellung, Zersetzung und nachhaltigen Veränderungen der mechanische Eigenschaften führen kann. Daher sind Substanzen, die Kunststoffe angreifen und schädigen können, während der Lagerung unbedingt von den Produkten fernzuhalten.
- 5. Kunststoffe unterliegen bei großen Temperaturschwankungen aufgrund von Schwindung oder Dehnung reversiblen Maßveränderungen. Maßkontrollen können nur dann unmittelbar nach Wareneingang durchgeführt werden, wenn die Produkte im Anlieferzustand Raumtemperatur (≈ +23°C) aufweisen. Produkte mit höheren oder tieferen Temperaturen können aufgrund von Dehnung oder Schrumpfung des Kunststoffs zu falschen Messwerten führen. Zu warme/kalte Produkte müssen vor der Maßkontrolle an einem trockenen Ort zwischengelagert und auf Raumtemperatur gebracht werden.
- 6. Kunststoffe und daraus hergestellte Fertigteile sind Produkte, die bedingt durch ihre Herstellungsverfahren und trotz Temperung mit Restspannungen im Werkstoff behaftet sein können. Diese haben die Tendenz, sich bei Lagerung über einen längeren Zeitraum unter Temperatureinfluss (z.B. durch Sonneneinstrahlung) zu entspannen. Polyamide haben zusätzlich die Neigung bei erhöhter Luftfeuchtigkeit Wasser aufzunehmen, wodurch eine Volumenzunahme hervorgerufen wird. Diese Vorgänge sind in der Regel mit Maßveränderungen und Formveränderungen durch Verzug verbunden.

Für die langfristige Einlagerung von Fertigteilen empfehlen wir daher, diese in geschlossenen Kartons bei gleichbleibenden Bedingungen (≈ Normklima +23°C/50% RF) zu lagern. Die zu erwartenden Maß- und Formänderungen sind dann minimal und beeinflussen die Funktionstüchtigkeit in der Regel nicht.

Gleitlager aus Kunststoff

Einsatz von thermoplastischen Kunststoffen als Gleitlagerwerkstoff

Anforderungen an einen Gleitlagerwerkstoff wie z.B.

- gute Gleit und Notlaufeigenschaften
- Verschleißfestigkeit
- Druckfestigkeit
- lange Lebensdauer
- Wärmeformbeständigkeit

werden durch moderne thermoplastische Kunststoffe ohne Schwierigkeiten erfüllt. Der Einsatz von Kunststoffen erfolgt insbesondere dort, wo

- Trockenlauf oder Mischreibung auftritt
- spezielle kunststoffspezifische Eigenschaften gefordert werden
- geringe Herstellkosten auch bei niedrigen Stückzahlen Vorteile bringen

Dabei werden vor allem

- gute Gleiteigenschaften
- niedrige Reibwerte
- hohe Verschleißfestigkeit
- gutes Dämpfungsvermögen
- geringes Gewicht
- gute Trocken- und Notlaufeigenschaften
- Korrosionsbeständigkeit
- chemische Beständigkeit
- weitgehende Wartungsfreiheit nach einmaliger Einlaufschmierung
- teilweise physiologische Unbedenklichkeit

als kunststoffspezifische Eigenschaften geschätzt.

Nachteile, wie niedrige Wärmeleitfähigkeit, temperaturabhängige Festigkeitswerte, relativ hohe Wärmedehnung, Kriechneigung unter Langzeitbelastung sowie die teilweise Neigung zur Feuchtigkeitsaufnahme sind durch werkstoffgerechtes Gestalten weitgehend zu beherrschen.

1.1 Werkstoffe

Von der Vielzahl der zur Verfügung stehenden Kunststoffe eignen sich die mit teilkristallinen oder hochkristallinen Molekulargefügen für die Verwendung als Gleitelement. Einige Werkstoffe dieser Gruppe und deren speziell für Gleitanwendung eingestellte Modifikationen sind in Tabelle 1 aufgelistet.

Tabelle1: Gleitlagerwerkstoffe mit Eigenschaften

Material	Kurzbezeichnung	Eigenschaft
Polyamid 6 Guss	PA 6 G	hohe Verschleißfestigkeit
Polyamid 6 Guss + Molybdändisulfid	PA 6 G + MoS ₂	höhere Kristallinität als PA 6 G
Oilamid®	PA 6 G + ÖL	höchste Verschleißfestigkeit, niedriger Reibwert
Calaumid® 1200	PA 12 G	hohe Verschleißfestigkeit, hohe Tragfähigkeit
Polyamid 6	PA 6	mittlere Verschleißfestigkeit
Polyamid 66	PA 66	hohe Verschleißfestigkeit
Polyacetal (Copolymer)	POM	mittlere Verschleißfestigkeit, druckfest
Polyethylenterephthalat	PET	hohe Verschleißfestigkeit, niedriger Reibwert
Polyethylenterephthalat und Gleitmittel	PET-GL	hohe Verschleißfestigkeit, sehr niedriger Reibwert
Polyethylen UHMW	PE - UHMW	niedriger Reibwert, geringe Festigkeit, säurebeständig
Polytetrafluorethylen	PTFE	sehr gute Gleiteigenschaft, niedrige Festigkeit
Polytetrafluorethylen und Glasfaser	PTFE + Glas	bedingt gute Gleiteigenschaft, gute Festigkeit
Polytetrafluorethylen und Kohle	PTFE + Kohle	sehr gute Gleiteigenschaft, gute Festigkeit
Polyetheretherketon	PEEK	hoher pv-Wert, hohe Belastbarkeit, hoher Preis
Polyetheretherketon modifiziert	PEEK - GL	beste Gleiteigenschaften höchster pv-Wert und höchster Preis

1.2 Herstellung

Gleitlager können spanabhebend oder im Spritzgießverfahren hergestellt werden. Im Spritzgussverfahren hergestellte Polyamidlager sind aufgrund ihrer amorphen Anteile im Molekulargefüge weitaus weniger verschleißfest als spanend hergestellte. Das feinkristalline Gefüge des im Gießverfahren spannungsarm hergestellten Polyamid-Halbzeugs garantiert eine optimale Verschleißfestigkeit.

Spanend hergestellte Gleitlager ermöglichen gegenüber spritzgegossenen Gleitlagern eine hohe Maßgenauigkeit. Hohe Zerspanungsleistungen von konventionellen Werkzeugmaschinen, Drehautomaten und CNC-Bearbeitungszentren ermöglichen eine kostengünstige Herstellung sowohl als Einzelteil, wie auch in kleinen und mittleren Losgrößen. Flexible, fast grenzenlos gestalterische Möglichkeiten, insbesondere bei großen Wandstärken sind ein weiterer Vorteil von spanend hergestellten Gleitlagern.

1.3 Gleitverschleiß/Gleitpaarung

Der Gleitverschleiß ist in erster Linie vom Werkstoff und der Oberflächenbeschaffenheit des Gleitpartners abhängig. Als günstiger Gleitpartner für Kunststoffe hat sich gehärteter Stahl mit einer Mindesthärte von 50 HRc herausgestellt. Werden Oberflächen mit einer geringeren Härte verwendet, besteht die Gefahr, dass Rauheitsspitzen abbrechen und im Gleitlager zu erhöhtem Kunststoff-/Metallabrieb führen.

Der Einfluss der Oberflächenrauheit auf Gleitverschleiß und Gleitreibungszahl ist unterschiedlich zu bewerten. Bei den verschleißfesteren, rauheitsunempfindlicheren Kunststoffen (z.B. PA und POM) lässt sich beobachten, dass bei besonders glatten Oberflächen die Gleitreibungszahl relativ hoch ist (Abbildung 1).

Mit zunehmender Rauheit nimmt sie bis auf ein Minimum ab und steigt dann im weiteren Verlauf wieder an. Der Gleitverschleiß wird dabei mit zunehmender Rauheit größer.

Dagegen zeigen die verschleißanfälligeren Kunststoffe (z. B. PE-UHMW, PTFE) mit zunehmender Rauheit eine stetig steigende Gleitreibungszahl. Der Bereich, in dem sich die Gleitreibungszahl durch zunehmende Rauheit verbessern lässt, ist nur minimal ausgeprägt. Der Gleitverschleiß wird dabei mit zunehmender Rauheit größer.

Die Modellvorstellung zur Erklärung dieses Verhaltens geht davon aus, dass der Abrieb im Gleitlager eine Schmiermittelfunktion übernimmt. Dabei ist zu beobachten, dass günstiges Gleitverhalten dann vorliegt, wenn Menge und Form des Abriebs optimal sind.

Bei den rauheitsunempfindlichen Kunststoffen wirken im niedrigen Rauheitsbereich des Gleitpartners Adhäsionskräfte und Klebebrücken. Bedingt durch die glatte Oberfläche erfolgt kein nennenswerter Abrieb, der Schmierfunktion übernehmen kann. Mit zunehmender Rauheit werden die bewegungshemmenden Kräfte weniger, so dass sich durch den zunehmenden Abrieb die Gleitreibungszahl verbessert. Ab einer bestimmten Rauheit setzt die Zerspanung des Kunststoffs ein, was höhere Bewegungskräfte erforderlich macht. Die Menge des Abriebs übersteigt das Optimum. Bedingt durch diese Mechanismen verschlechtert sich die Gleitreibungszahl.

Da bei den rauheitsempfindlichen Kunststoffen das optimale Abriebvolumen sehr gering ist, haben dies Kunststoffe nur einen sehr engen Bereich, in dem sich eine Verbesserung des Gleitverhaltens durch Abrieb zeigt. Mit zunehmender Rauheit überwiegt der Einfluss der Zerspanungsarbeit. Eine Verbesserung des Gleitverhaltens ist nicht möglich. Umgekehrt stellt sich demzufolge nur bei Gleitpartnern mit extrem glatter Oberfläche aufgrund des fehlenden Abriebs eine Verschlechterung des Gleitverhaltens ein.

Die Oberflächenrauheit der Kunststoffe spielt bei dieser Betrachtung keine Rolle, da sie im Vergleich zu den metallischen Gleitpartnern eher weich sind und sich dem Tragbild dieser schnell anpassen. Maßgeblich für die Auswahl der Oberflächengüte der Stahlgleitfläche ist demzufolge die Frage, ob die Funktionalität des Gleitelements eher durch die Höhe des Gleitverschleiß oder die der Gleitreibungszahl in Frage gestellt wird. Für die Kombination mit Kunststoffgleitlagern können die in der Tabelle 2 genannten Gleitpartner mit den zugehörigen Oberflächengüten empfohlen werden:

Tabelle 2: Empfohlene Oberflächengüten für Gleitpaarungen

		PA 6 G	PA 12 G	PA 6	PA 66	PA 12	РОМ	PET	PE- UHMW	PTFE
Gleit-	Härte									
partner	HRc min.	50	50	50	50	50	50	50	50	50
gehärte-										
ter Stahl	R _Z [µm]	2 – 4	2 – 4	2 – 4	2 – 4	2 – 4	1 – 3	0,5 – 2	0,5 – 2	0,2 – 1
Gleit-	Werkstoff	POM	POM	POM	POM	POM	PA	PA/POM	PA/POM	PA/POM/PET
partner										
Thermo-	R _Z [µm]	10	10	10	10	10	10	10	10	5
plast										

Geringere Oberflächenhärten und kleinere/größere Oberflächenrauheiten als die angegebenen fördern den Gleitverschleiß des Lagers und verkürzen somit die Lebensdauer.

Neben den oben genannten Faktoren sind auch die Gleitgeschwindigkeit, Flächenpressung und Temperatur Faktoren, die den Gleitverschleiß beeinflussen. Hohe Gleitgeschwindigkeiten, Flächenpressungen und Temperaturen steigern ebenfalls den Gleitverschleiß. Die nachfolgende Tabelle enthält Richtwerte für den Gleitverschleiß von Kunststoffen.

Tabelle 3: Gleitverschleiß von Kunststoffen

Werkstoff	Gleitverschleiß in µm/km	Werkstoff	Gleitverschleiß in µm/km
Oilamid®	0,05	POM-C	8,9
PA 6 G	0,1	PET	0,35
PA 6	0,23	PET-GL	0,1
PA 66	0,1	PE-UHMW	0,45
PA 12	0,8	PTFE	21,0

Die angegebenen Werte sind vom Gleitsystem abhängig und können sich durch Parameterveränderung des Gleitsystems ebenfalls verändern.

1.4 Schmierung/Trockenlauf

Für Gleitlager, die aus Kunststoff gefertigt sind, existieren zur Zeit noch keine allgemeingültigen Schmiervorschriften. Es können die für Metallgleitlager üblichen Schmiermittel verwendet werden. Die Verwendung von Schmierstoffen empfiehlt sich trotz der guten Trockenlaufeigenschaften von Kunststoffen, da der Schmierstoff zur Verringerung der Reibwerte und somit der entstehenden Reibwärme führt. Des Weiteren trägt eine kontinuierliche Schmierung zur besseren Abfuhr der Lagerwärme bei. Die Schmierung der Gleitlager führt zu höherer Tragfähigkeit sowie geringerem Verschleiß und damit zu längerer Lebensdauer. In stark staubbelasteter Umgebung sollte auf eine Schmierung jedoch verzichtet werden, da die Staubpartikel im Schmierstoff gebunden werden und eine Schleifpaste bilden können, die zu erhöhtem Verschleiß führt. Die in der Tabelle auf Seite 53 empfohlenen Kunststoff-Lagerwerkstoffe sind gegen die heute meist eingesetzten Schmierstoffe beständig.

Eine Alternative zur externen Schmierung stellen Kunststoffe mit Selbstschmiereigenschaften wie z.B. Oilamid oder PET-GL dar. Diese Werkstoffe haben aufgrund des bereits im Kunststoff integrierten Schmierstoffs niedrigste Verschleißraten bei gleichzeitig hervorragenden Trocken- und Notlaufeigenschaften. Wenn es aus konstruktiven Gründen erforderlich ist, besteht jedoch auch die Möglichkeit, Kunststoff – Gleitlager ohne Schmierung zu betreiben.

Dabei ist jedoch darauf zu achten, dass die Belastungswerte innerhalb der in Tabelle 4 angegebenen pv – Werte liegen. In jedem Fall sollte, wenn möglich, auch bei vorgesehenem Trockenlauf eine einmalige Schmierung beim Einbau vorgesehen werden. Dadurch wird das Einlaufverhalten beträchtlich verbessert und die Lebensdauer kann gesteigert werden. Eine Nachschmierung in empirisch zu ermittelnden Zeitabständen ist möglich.

1.5 Verschmutzung/Korrosion

Bei Gleitlagern, die im Trockenlauf betrieben werden, besteht die Gefahr, dass durch einwandernde Feuchtigkeit die Stahlwelle korrodiert. Eine durch Korrosion beschädigte Oberfläche des Gleitpartners verursacht erhöhten Gleitverschleiß und kann zu vorzeitigem Versagen des Lagers führen. Dem kann durch Abschotten der Lagerstelle gegen die Feuchtigkeit entgegengewirkt werden. Weitere wirksame Maßnahmen stellen das Verchromen des Gleitpartners bzw. die Fertigung des Gleitpartners aus rostfreiem Stahl dar.

Die Neigung zu Reiboxidation ist bei Kunststoffgleitlagern aufgrund ihrer niedrigen Gleitreibungszahlen wesentlich geringer, als bei metallischen Lagerwerkstoffen. Durch Schmierung kann der Verschleiß durch Reiboxidation noch weiter gesenkt werden. Gegenüber metallischen Lager-

werkstoffen ist der Verschleiß von Kunststoffgleitlager durch Verschmutzungen wie z.B. Staub oder Abrieb wesentlich geringer, da Kunststoffe, speziell die Polyamide, die Eigenschaft haben, Schmutzpartikel einzubetten und so die schmirgelde Wirkung zu verhindern. Bei Betrieb in Umgebungen mit starker Schmutzbelastung wird empfohlen, die Lagerung mit Schmiernuten zu versehen. Das darin enthaltene Schmiermittel bindet die Schmutzpartikel und hält diese aus der Gleitzone fern.

1.6 Belastungsgrenzen

Belastungsgrenzen für Gleitlager aus thermoplastischen Kunststoffen werden durch die Druckfestigkeit und Lagertemperatur festgelegt. Dabei steht die Lagertemperatur im direkten Zusammenhang mit der Gleitgeschwindigkeit und der Umgebungstemperatur, bei dynamisch belasteten Gleitlagern zusätzlich mit der Einschaltdauer. Aber auch der gewählte Gleitpartner, dessen Oberflächengüte sowie die gewählte Betriebsart (geschmiert oder ungeschmiert) haben Einfluss auf die Lagertemperatur eines thermoplastischen Gleitlagers.

In Tabelle 4 sind Richtwerte für die einzelnen Kunststoffe zusammengestellt. Für statisch belastetete Lager bzw. Gleitlager mit sehr niedrigen Gleitgeschwindigkeiten können die Angaben zur Dauerdruckbelastung angewendet werden. Für dynamisch belastete Lager wird üblicherweise der pv-Wert (Produkt aus Flächenpressung und mittleren Gleitgeschwindigkeit) als Kenngröße gewählt. Dabei ist zu beachten, dass dieser Wert keine Werkstoffkenngröße darstellt, da die Belastungsgrenze der Kunststoffe von den oben genannten Größen abhängig ist.

Tabelle 4: Werkstoffrichtwerte

	PA 6 G	Oilamid [®]	Calaumid®1200	PA 6	PA 66	PA 12	POM-C	PET	PET-GL	PE-UHMW	PTFE	PTFE Kohle	PEEK	PEEK-GL
Dauerdruckbelastung statisch MPa nicht gekammert, Verformung < 2%	23	20	24	15	18	10	22	35	33	5	5	12	57	68
gekammert; Verformung < 2%	70	60	-	50	60	43	74	80	75	20	20	-	105	120
Reibungszahl µ (mittlerer Wert) Trockenlauf auf Stahl	0,36 - 0,42	0,18 - 0,23	0,40 - 0,60	0,38 - 0,42	0,35 - 0,42	0,32 - 0,38	0,30	0,25	0,2	0,29	0,08	0,1	0,30 - 0,38	0,11
pv-Richtwert MPa·m/s Trockenlauf/ Einbauschmierung V = 0,1 m/s V = 1,0 m/s kontinuierlich geschmiert	0,13 0,08 0,50	0,23 0,15 0,50	0,12 0,10 0,35	0,11 0,07 0,40	0,13 0,08 0,50	0,08	0,15 0,10 0,50	0,15 0,10 0,50	0,25 0,15 0,50	0,08 0,05 0,40	0,05 0,40	0,40 0,50	0,34 0,22 1,0	0,66 0,42 1,0
Wärmeausdehnungs- koeffizient +20°C bis +60°C in 10 ⁻⁵ · K ⁻¹	8	8	10	9	8	10	10	8	8	18	20	11	5	4,5
Maximal zulässige Lagertemperatur im Dauerbetrieb (RF< 80%)	+90	+90	+90	+80	+90	+80	+90	+80	+90	+50	+160	+200	+250	+250
Feuchtigkeitsaufnahme in % bei 23°C/50% RF bei Sättigung in Wasser	2,2 7,0	1,8 7,0	0,9	2,1	3,1 9	0,8 1,5	0,2	0,2	0,2	0 < 0,01	0 < 0,01	0 < 0,01	0,2 0,45	0,14

2. Konstruktive Gestaltung

2.1 Lagerspiel

Bei der Gestaltung von Gleitlagern wird zwischen dem Betriebsspiel h_0 , Einbauspiel h_e und Fertigungsspiel h_f unterschieden (siehe Abbildung 3).

- Das Betriebsspiel (Grundspiel oder Mindestspiel)
 h₀ ist das Spiel, das unter ungünstigsten Bedingungen als Minimalspiel noch vorhanden sein muss, um ein Klemmen des Lagers zu vermeiden.
- Das Einbauspiel h_e ist das im eingebauten, jedoch nicht betriebswarmen Zustand vorhandene Spiel
- Das Fertigungsspiel h_f ist das Maß, um das der Lagerinnendurchmesser größer als der Wellendurchmesser gefertigt werden muss, damit unter Betriebsbedingungen das Betriebsspiel gewährleistet ist.

verschiedenen Lagerspiele

ho

Abbildung 3: Schematische Darstellung der

Das erforderliche Betriebslagerspiel h₀ kann aus Diagramm 1 entnommen werden. Bei höheren Führungsansprüchen ist es möglich, das Lagerspiel kleiner zu wählen. Die Literatur empfiehlt als Berechnungsgrundlage

Diagramm 1: erforderliches Betriebslagerspiel

 $h_0 = 0.015\sqrt{d_w}$

h₀ = Betriebslagerspiel in mmd_w = Wellendurchmesser in mm

Für die rechnerische Ermittlung sollten jedoch unbedingt die Betriebsbedingungen genau bekannt sein, da sonst der Temperatur- und Feuchteeinfluss nicht sicher genug berücksichtigt werden kann.

Lagerinnendurchmesser in mm

2.2 Wanddicken/Lagerbreite

Die Wanddicken thermoplastischer Gleitlager sind im Hinblick auf die guten Isoliereigenschaften der Kunststoffe von großer Bedeutung. Zur Gewährleistung einer ausreichenden Wärmeabfuhr und guten Maßhaltigkeit sollte die Wandstärke des Gleitlagers gering sein. Die Wahl der Lagerwandstärke hängt jedoch auch von der Höhe und Art der Belastung ab. Lager mit hohen Umfangsgeschwindigkeiten und/oder hohen Flächenpressungen sollten dünnwandig, solche mit hohen Stoßbelastungen dickwandiger sein. Die von uns in Abhängigkeit vom Wellendurchmesser und der Belastungsart empfohlenen Lagerwanddicken sind in Diagramm 2 dargestellt.

Dort, wo thermoplastische Gleitlager als Ersatz für Lager aus anderen Werkstoffen zum Einsatz kommen sollen, sind die Wanddicken in der Regel bereits durch die vorhandenen Wellen und La-

gergehäuse festgelegt. In diesen Fällen ist darauf zu achten, dass die Mindestwanddicken aus Diagramm 2 nicht unterschritten werden. Zur Vermeidung eines Wärmestaus in der Gleitlagermitte ist bei der Festlegung der Lagerbreite darauf zu achten, dass diese im Bereich von 1 – 1,5 d_w liegt. Erfahrungswerte zeigen, dass eine Lagerbreite von ca. 1,2 d_w in Bezug auf die Vermeidung eines Wärmestaus in der Lagermitte als ideal anzusehen ist.

2.3 Zuschläge

Für Gleitlager, die in Umgebungen mit erhöhten Temperaturen eingesetzt werden sollen, ist bei

der Dimensionierung eine entsprechende Maßveränderung aufgrund von Wärmedehnung zu berücksichtigen.

Die zu erwartende Maßänderung errechnet sich aus

 $\Delta I = s_I \cdot k_w$ [mm]

mit

 $\Delta I = Maßänderung$

s_L = Lagerwandstärke

k_W = Korrekturfaktor für Wärmeausdehnung

Der Korrekturfaktor k_W für die jeweilig max. auftretende Umgebungstemperatur wird aus Diagramm 3 abgelesen.

Die so rechnerisch bestimmte Maßänderung muss dem Betriebslagerspiel zugeschlagen werden.

Ist absehbar, dass aus Polyamiden gefertigte Gleitlager dauerhaft unter Bedingungen mit erhöhter Luftfeuchtigkeit oder mit Wasserschmierung eingesetzt werden sollen, ist aufgrund der Feuchteaufnahme eine zusätzliche Maßveränderung zu berücksichtigen.

Die zu erwartende Maßänderung errechnet sich aus

 $\Delta I = s_L \cdot k_F$ [mm]

mit

 $\Delta l = Maßänderung$

sı = Lagerwandstärke

k_F = Korrekturfaktor für Feuchteaufnahme

Der Korrekturfaktor k_F für die jeweilig max. auftretende Luftfeuchtigkeit wird aus Diagramm 4 abgelesen.

Die so rechnerisch bestimmte Maßänderung muss dem Betriebslagerspiel zugeschlagen werden.

Für Einsatzbedingungen, die eine Korrektur des Betriebslagerspiels aufgrund von Temperatur und Feuchte erfordern, werden beide Werte ermittelt und addiert. Die Summe der Ergebnisse bildet den erforderlichen Zuschlag.

2.4 Gestaltung als geschlitzte Lagerbuchse

Für den Einsatz unter extremen Feuchtigkeits- und Temperaturbedingungen hat sich die Ausführung der Lagerbuchse mit einem zwischen 15° - 30° schräg zur Wellenachse verlaufenden Axialschlitz bewährt.

Der Schlitz nimmt dabei die Umfangsausdehnung der Lagerbuchse auf, so dass eine Durchmesserveränderung aufgrund von Temperatur- oder Feuchteeinwirkung bei der Lagerspielberechnung nicht berücksichtigt werden muss. Es ist lediglich die Wandstär-

kenänderung in die Berechnung einzubeziehen, wobei diese im Vergleich zur Durchmesserveränderung infolge von Umfangslängung nur gering ist.

Bei geschmierten Lagern kann der Schlitz zusätzlich die Aufgabe eines Schmiermitteldepots erfüllen und zur Aufnahme von Abriebteilchen dienen.

Wir empfehlen ca. 1 – 1,5 % des Gleitlagerumfangs als Schlitzbreite.

2.5 Befestigung

In der Praxis hat es sich bewährt, Gleitlager mit Übermaß in Lagerbohrungen einzupressen. Beim Einpressen wird die Lagerbuchse um den Betrag des Übermaßes zusammengedrückt. Daher muss dieses äußere Übermaß als Zuschlag zum Betriebslagerspiel am Innendurchmesser der Buchse berücksichtigt werden. Das erforderliche Übermaß ist aus Diagramm 6 zu entnehmen.

Infolge von Temperaturerhöhungen werden die Spannungen im Lager größer und es besteht nach

Abkühlung die Gefahr der Relaxation. Dies kann dazu führen, dass die Presskraft nicht mehr ausreichend groß ist, um das Gleitlager kraftschlüssig im Lagersitz zu halten. Aus diesem Grund empfehlen wir für Temperaturen über 50 °C eine zusätzliche Sicherung mit einem im Maschinenbau üblichen, formschlüssigen Sicherungselement.

3. Berechnung dynamisch belasteter Gleitlager

Im Unterschied zu Gleitlagern, die ausschließlich durch eine ruhende Normalkraft belastet werden, sind statisch belastete Gleitlager zusätzlich durch eine Tangentialkraft beansprucht. Dies führt zur Zunahme der Schubspannungen im Kunststoff und infolgedessen zu höherer Werkstoffanstrengung.

3.1 Dauerbetrieb

Als Kenngröße für die dynamische Belastbarkeit von Gleitlagern wird üblicherweise der pv-Wert (das Produkt aus mittlerer Flächenpressung und mittlerer Gleitgeschwindigkeit) gewählt. Zur Berechnung der dynamischen Belastbarkeit von Querlagern ist die Ermittlung des pv_{Dauer} - Wertes notwendig.

Die mittlere Flächenpressung für Querlager ist

$$p = \frac{F}{d_w \cdot L} \quad [MPa]$$

mit

F = Lagerlast in N

 d_{w} = Wellendurchmesser in mm

L = Lagerbreite in mm

Die mittlere Gleitgeschwindigkeit für Querlager ist

$$v = \frac{d_w \cdot \pi \cdot n}{60000} \quad [m/s]$$

mit

d_w = Wellendurchmesser in mm

n = Drehzahl in min-1

Somit wird pv_{Dauer} bei dynamischer Belastung für Querlager ohne Schmierung zu

$$pv_{Dauer} = \left(\frac{F}{d_w \cdot L}\right) \cdot \left(\frac{d_w \cdot \pi \cdot n}{60000}\right) \quad [MPa \cdot m/s]$$

Der errechnete pv_{Dauer} - Wert sollte kleiner oder gleich dem in Tabelle 4 angegebenen werkstoffspezifischen pv – Wert sein.

3.2 Aussetzbetrieb

Die dynamische Belastbarkeit von thermoplastischen Gleitlagern ist maßgeblich von der im Betrieb entstehenden Wärme abhängig. Demzufolge sind Gleitlager im Aussetzbetrieb mit abnehmender Einschaltdauer zunehmend belastbar. Dem wird durch Einsetzen eines Korrekturfaktors für die relative Einschaltdauer (= ED) Rechnung getragen.

Unter diesen Voraussetzungen wird für Querlager im Aussetzbetrieb

$$pv_{Aus} = \frac{pv_{Dauer}}{f}$$

mit

f = Korrekturfaktor für ED

Die relative Einschaltdauer ED wird als das Verhältnis der Belastungsdauer t zur gesamten Spieldauer T in Prozent definiert.

$$ED = \frac{t}{T} \cdot 100 \quad [\%]$$

Für Gleitlager aus thermoplastischen Kunststoffen ist die Gesamtspieldauer T = 60 min festgelegt. Die Summe aller während dieser 60 min auftretenden Einzelbelastungszeiten bildet die Belastungsdauer.

Mit dem so errechneten Wert kann nun aus Diagramm 7 der Korrekturfaktor f bestimmt werden. Dabei ist zu beachten, dass jede Belastungsdauer t, die über 60 min hinaus geht (unabhängig davon, ob dies eventuell nur einmal auftritt), als Dauerbelastung zu bewerten ist.

3.3 Bestimmung des Gleitverschleißes

Die Vorausbestimmung des Gleitverschleißes zur Bestimmung der zu erwartenden Lebensdauer eines Gleitlagers ist äußerst problematisch. In der Regel ist eine ausreichend genaue Erfassung der äußeren Bedingungen nicht möglich oder die Bedingungen verändern sich im Laufe des Betriebs auf nicht nachvollziehbare Weise. Dennoch ist es möglich, den zu erwartenden Gleitverschleiß für eine grobe Abschätzung der Lebensdauer ausreichend genau zu berechnen. Hierzu werden Rauheits-, Druck- und Temperaturanteile zur Ermittlung in einer auf vereinfachten Annahmen basierenden Gleichung zusammengefasst.

Damit wird der Gleitverschleiß Δ S zu

$$\Delta S = 10p_{N} \left(S_{0} + S_{1} \cdot R_{V} \cdot + S_{2} \cdot R_{V}^{2} \right) \cdot \left[1 - \frac{\vartheta_{F}}{\vartheta_{0}} + 400 \frac{\vartheta_{F} \cdot \vartheta_{0}}{\delta_{0}} \right] \cdot \rho_{2} \gamma \quad [\mu \text{m/km}]$$

mit

 S_0 = Mess- und Erfahrungswert S_1 = Mess- und Erfahrungswert S_2 = Mess- und Erfahrungswert ϑ_0 = Mess- und Erfahrungswert ϑ_F = Gleitflächentemperatur in °C

 $R_V =$ mittlere Rautiefe in μ m $p_N =$ maximale Pressung in MPa $\rho_2 =$ Riefenrichtungsfaktor

 γ = Glättungsfaktor

Der Riefenrichtungsfaktor ρ_2 wird nur dann in die Gleichung eingesetzt, wenn die Gleitrichtung mit der Richtung der Bearbeitungsriefen des Metallpartners übereinstimmen. Dadurch wird der Einfluss der unterschiedlichen Rauheiten bei der Relativbewegung des Metallgleitpartners in Richtung und senkrecht zur Richtung der Bearbeitungsriefen berücksichtigt.

Der Glättungsfaktor γ soll die Glättung des Metallpartners durch Abtrag von Rauheitsspitzen und/oder die Füllung von Rauheitstälern durch Kunststoffabrieb beschreiben.

Die maximale Pressung p_N wird durch eine Näherungsgleichung zu

$$p_N = \frac{16}{3\pi} \cdot \frac{F}{d_w \cdot L}$$
 [MPa]

mit

F = Lagerlast in N

d_W = Wellendurchmesser in mm

L = Lagerbreite in mm

wobei $p_N \ge (0.8 \text{ bis } 1.0) \cdot \sigma_D$ (Druckfestigkeit des gewählten Kunststoffs) nicht überschreiten darf.

Die aufgeführten Mess- und Erfahrungswerte könne aus Tabelle 5, die Riefenrichtungsfaktoren aus Tabelle 6 entnommen werden. Für andere als die unten aufgeführten Werkstoffe liegen uns keine Mess- und Erfahrungswerte vor.

Tabelle 5: Mess- und Erfahrungswerte für die einzelnen Kunststoffe

Werkstoff	S ₀	S ₁	S ₂	ϑ_0	γ
PA 6	0,267	0,134	0	120	0,7
PA 66	0,375	0,043	0	120	0,7
PA 12	0,102	0,270	0,076	110	0,7
POM-C	0,042	0,465	0,049	120	0,8
PE-UHMW	1,085	- 4,160	4,133	60	0,7
PET	0,020	0,201	- 0,007	110	0,8
PTFE	1,353	-19,43	117,5	200	0,6

Tabelle 6: Riefenrichtungsfaktoren für Kunststoffe

R _v senkrecht zur Richtung der Bearbeitungsriefen in μm			PET	PE-UHMW
> 0,5	1,0	0,9	0,8	0,8
0,5 – 1	0,9	0,6	0,6	0,4
1 – 2	0,8	0,3	0,4	0,2
2 – 4	0,8	0,2	0,3	_
4 – 6	0,8	0,2	0,3	_

3.4 Bestimmung der Lebensdauer

Das Ende der Lebensdauer eines Kunststoffgleitlagers ist in der Regel dann erreicht, wenn das Lagerspiel einen unzulässig hohen Wert erreicht hat. Das Lagerspiel setzt sich aus mehreren Faktoren zusammen. Zum einen liegen Verformungsanteile aufgrund der Lagerlast vor, zum anderen ist das Betriebsspiel und der im Betrieb erfolgende Verschleiß zu berücksichtigen. Da dieser im voraus nur rechnerisch zu ermitteln ist und in die Berechnung der Lebensdauer nur der nach 3.3 angenähert ermittelte Gleitverschleiß eingeht, ist die ermittelte Lebensdauer ebenfalls nur als Näherungswert zur groben Abschätzung zu betrachten.

Unter diesen Voraussetzungen und in Verbindung mit der Gleitgeschwindigkeit wird die zu erwartende Lebensdauer H zu

$$H = \frac{\left[\Delta h_{zul} - \Delta h - \frac{h_0}{2}\right]}{\Delta S \cdot v \cdot 3.6} \cdot 10^3 \text{ [h]}$$

mit

 Δh_{zul} = zulässige Zapfeneinsenkung in mm

 Δh = Zapfeneinsenkung in mm

 h_0 = Betriebsspiel in mm ΔS = Verschleißrate in μ m

v = Gleitgeschwindigkeit in m/s

Für eine grobe Annäherung an die tatsächliche Lebensdauer ist es vertretbar, die Zapfeneinsenkung Δh in der Berechnung zu vernachlässigen, da diese unter realistischen Bedingungen sehr klein ist und häufig im Bereich der Fertigungstoleranzen liegt.

Gleitplatten aus Kunststoff

1. Gleitplatten aus thermoplastischen Kunststoffen

Genau wie Gleitlagerbuchsen zur Lagerung von Wellen bei Rotationsund Hubbewegungen eingesetzt werden, lassen sich die gleichen Kunststoffe natürlich auch für Längsbewegungen in Form von Gleitplatten verwenden. Grundsätzlich sind alle im Kapitel "Gleitlager" aufgeführten Kunststoffe für die Anwendung als Gleitplatte geeignet. Einige eignen sich jedoch besonders. Diese werden mit ihren Vorzügen nachfolgend geschildert.

1.1 Werkstoffe

Der Einsatz als Gleitplatte erfordert von dem verwendeten Kunststoff neben guten Gleiteigenschaften auch möglichst hohe Festigkeiten und Elastizität bei gleichzeitiger Kriechfestigkeit. Diese Anforderungen werden durch Polyamid 6 Guss in besonderer Weise erfüllt. Die im Vergleich zu anderen Thermoplasten hohe Festigkeit erlaubt höhere Belastungen. Die gute Elastizität sorgt bei schockartig auftretenden Belastungsspitzen für eine Rückstellung der Verformungen. Dauerhafte Deformierungen werden, sofern die Belastung nicht über die zulässige Grenze hinaus geht, dadurch weitgehend ausgeschlossen.

Für hochbeanspruchte Gleitplatten steht mit der ölgefüllten Modifikation Oilamid® ein Werkstoff zur Verfügung, der durch das in die Molekülstruktur eingebettet Öl um 50% reduzierte Gleitreibungszahlen realisiert. Zusätzlich wird der Gleitverschleiß erheblich gesenkt.

Wo mit erhöhtem Feuchtigkeitsaufkommen gerechnet werden muss, ist der Werkstoff PET bestens geeignet. Der Werkstoff zeichnet sich durch eine hohe mechanische Festigkeit, Kriechfestigkeit, Maßstabilität und gute Gleiteigenschaften aus. Die Wasseraufnahme ist gering und beeinflusst die mechanischen und elektrischen Eigenschaften kaum.

Gegenüber Polyamiden ist PET jedoch nicht so verschleißfest. Es steht jedoch mit dem Werkstoff PET-GL eine mit Festschmierstoff modifizierte Type zur Verfügung. Diese hat verbesserte Gleiteigenschaften bei wesentlich besserer Verschleißfestigkeit.

2. Konstruktionshinweise

2.1 Reibungswärme

Im Gegensatz zu Gleitlagern, die meistens kontinuierlich unter hohen Geschwindigkeiten laufen, arbeiten Gleitplatten und Führungsschienen normalerweise unter Bedingungen, die die Entstehung von Reibungswärme minimieren. Die Laufgeschwindigkeiten sind relativ gering und der Betrieb verläuft eher aussetzend als kontinuierlich. Unter diesen Bedingungen ist nicht zu erwarten, dass Reibungswärme in einem Maß entsteht, die zu erhöhtem Verschleiß oder Versagen der Konstruktion führen kann.

2.2 Druck- und Gleitgeschwindigkeit

Üblicherweise werden für die Dimensionierung und konstruktive Gestaltung von Gleitelementen die Druck- und Geschwindigkeitsverhältnisse betrachtet. Unter ungünstigen Druck- und Geschwindigkeitsverhältnissen führt die entstehende Reibungswärme zu übermäßig hohem Verschleiß und gegebenenfalls zu vorzeitigem Versagen der Konstruktion. Erfahrungen in der Konstruktion und im Betrieb von Führungsplatten haben jedoch gezeigt, dass es aufgrund der günstigen Betriebsbedingungen von Gleitplatten in der Regel nicht notwendig ist, Druck- Geschwindigkeitswerte zu berechnen. Es können statt dessen die nachstehenden begrenzenden Druckwerte als Anhaltspunkte für die meisten Führungsschienen-Anwendungen eingesetzt werden. Die Werte sind auf eine Normaltemperatur von 23°C bezogen.

PA	PET	Belastung	Bewegung	Schmierung
28 MPa	21 MPa	unterbrochen	unterbrochen	periodisch
14 MPa	10 MPa	kontinuierlich	unterbrochen	periodisch
3,5 MPa	2,5 MPa	kontinuierlich	kontinuierlich	keine

2.3 Schmierung

Auch hier gelten die im Kapitel "Gleitlager" gemachten Aussagen bezüglich Trockenlauf und der Verwendung von Schmierstoffen. Grundsätzlich ist anzumerken, dass eine Einbauschmierung die Standzeit und das Einlaufverhalten beträchtlich verbessert. Die mit Schmierstoff modifizierten Werkstoffe wie z.B. Oilamid zeigen gegenüber allen anderen Kunststoffen bedeutend längere Standzeiten.

2.4 Befestigung

Polyamid-Gleitplatten oder Führungsleisten mit mechanischen Gleitfunktionen werden im Regelfall auf Stahlkonstruktionen montiert.

Ein Verschrauben mittels Senkkopfschrauben oder Zylinderschrauben ist bei Einsatz unter Raumtemperatur und normalen klimatischen Bedingungen (50% RF) problemlos. Für Betriebsbedingungen mit hoher Luftfeuchte empfehlen wir, die Verwendungsmöglichkeit von PET / PET-GL zu prüfen.

Abbildung 1: Beispiel für Gewindeeinsätze

Ist eine höhere Umgebungstemperatur zu erwarten, muss die ca.10mal höhere Längendehnung des Kunststoffes gegenüber Stahl berücksichtigt werden. Fest verschraubte Kunststoffleisten können sich aufgrund von Längendehnung wellenförmig aufwerfen. Um dies zu vermeiden, ist ein Abstand der Befestigungspunkte von < 100 mm anzustreben. Bei längeren Gleitleisten ist eine einzige Fix-Punkt-Verschraubung zu empfehlen. Die übrigen Verschraubungen sollten in Langlöchern die auftretende thermische Ausdehnung aufnehmen können. Die Leisten können auch anstelle der Langlöcher in Gleitnuten, T-Nuten oder dergleichen gehalten werden. Hierbei haben Längenänderungen durch extreme Umgebungsbedingungen keinen Einfluss auf die Befestigung und Funktion.

Bei Polyamid Gleitplatten für Hochleistungsansprüche, wie sie in teleskopierbaren Auslegerelementen mobiler Kranwagen vorkommen, empfehlen sich Spezialmuttern, die in Stufenbohrungen der Gleitplatten eingepresst werden. Durch das Einpressen der Mutter in die Stufenbohrung wird diese gegen Herausfallen und Verdrehen gesichert. Die Unterseite der Gleitplatte sollten absolut plan aufliegen.

Unter vollem Drehmoment wird das Polyamid durch den Gewindeeinsatz unter Spannung gehalten und der Gewindeeinsatz sitzt auf dem Stahlträger fest. Bei derartigen Befestigungen reichen Lagerdicken zwischen 12 - 25 mm für eine optimale Leistung aus.

2.5 Anwendungs- und Formbeispiele

Gleit- und Führungsplatten in Teleskopkranen, Müllpressen, Karosseriepressen, Straßen- und Schienenfahrzeugen, Holzbearbeitungsmaschinen und -anlagen, Verpackungs- und Abfüllanlagen, Transport- und Fördersystemen, für Kettenführungen usw.

Laufrollen aus Kunststoff

1. Kunststoffe als Laufrollenwerkstoff

Räder und Rollen aus Kunststoff werden in Anlagen und Materialflusssystemen zunehmend eingesetzt und verdrängen immer häufiger solche aus konventionellen Werkstoffen. Dazu tragen nicht zuletzt ihre Vorteile, wie

- kostengünstige Herstellung
- hohe Laufruhe
- hohe Verschleißfestigkeit
- gute Schwingungs- und Geräuschdämpfung
- geringes Gewicht
- Schonung der Laufbahn
- Korrosionbeständigkeit

bei. Dabei haben sich neben den weichelastischen Rädern aus Polyurethanen die hartelastischen Räder und Rollen aus Guss-Polyamid, POM und PET für höhere Belastungen durchgesetzt. Im Vergleich zu den üblichen metallischen Rad- und Rollenwerkstoffen sind jedoch bei der Berechnung und Auslegung einige kunststoffspezifische Eigenschaften zu berücksichtigen.

1.1 Werkstoffe

Als ideale Werkstoffe haben sich PA 6 G, PA 6/12 G und PA 12 G gezeigt. Auch POM und PET können als Werkstoff verwendet werden. Es hat sich jedoch herausgestellt, dass diese zwar ähnlich hoch belastbar sind wie die Guss - Polyamide, aber wesentlich höherem Verschleiß unterliegen. Das Rückstellvermögen dieser Werkstoffe ist geringer als das der Polyamide. Abplattungen, die unter statischer Last entstehen, werden daher im dynamischen Betrieb wesentlich schlechter zurückgebildet als bei Polyamidrollen.

1.2 Unterschiede zwischen Stahl und Kunststoff

Im Vergleich zu Stahl hat Kunststoff einen erheblich niedrigeren Elastizitätsmodul, was unter Last zu einer vergleichsweise größeren Verformung des Kunststoffrades führt. Gleichzeitig wird auf diese Weise aber auch eine größere Druckfläche und damit eine niedrigere spezifische Flächenpressung erzeugt, was zur Schonung der Laufbahn beiträgt. Bleibt die Belastung des Rades im zulässigen Bereich, stellt sich die Verformung im Betrieb aufgrund der elastischen Eigenschaften der Kunststoffe schnell wieder zurück.

Trotz der größeren Druckfläche sind Kunststoffräder jedoch nicht so hoch belastbar, wie in den Abmessungen identische Stahlräder. Dies liegt zum einen daran, dass Kunststoffräder nur wesentlich kleinere Druckspannungen (Pressungen) in der Kontaktflächer verkraften, zum anderen durch die stark unterschiedlichen Steifigkeiten von Rollen- und Bahnwerkstoff Schubspannungen auftreten. Diese behindern das Rad bei der Verformung und beeinflussen die Druckspannungsverteilung im Rad negativ.

1.3 Herstellung

Zur Herstellung von Kunststoffrollen stehen mehrere Fertigungsverfahren zur Verfügung.

Bei sehr hohen Stückzahlen mit kleinen Abmessungen ist das Spritzgussverfahren zur Herstellung geeignet. Größere Abmessungen lassen sich im Spritzgussverfahren aus fertigungstechnischen Gründen in der Regel nur als ausgesparte und verrippte Stegrolle herstellen. Dabei ist zu beachten, dass diese nur die halbe Belastbarkeitkeit einer in den Abmessungen vergleichbaren Massivrolle aufweist. Zudem ist die Berechnung einer solchen Rolle im Vergleich zu Massivrollen sehr aufwendig und der Einsatz bei Rollgeschwindigkeiten oberhalb 3 m/s aufgrund herstellungsbedingt auftretender Rundlauffehler nicht empfehlenswert.

Als wirtschaftliche und technische Alternative zum Spritzguss ist die spangebende Herstellung aus Halbzeugen zu nennen. Im kleinen Abmessungsbereich bis ø 100 mm werden die Rollen auf Drehautomaten von der Stange, darüber hinaus auf CNC-Drehmaschinen aus Ronden hergestellt.

Als weitere Alternative kann das Schleudergussverfahren aufgeführt werden. Dabei werden die Außenkonturen der Rolle auf Maß gegossen und anschließend nur die Lagersitze bzw. Achsbohrungen spangebend auf die erforderlichen Fertigmaße gebracht. Damit lassen sich auch größere Abmessungen in höheren Stückzahlen besonders wirtschaftlich herstellen.

Mit diesen Verfahren werden Rundlaufgenauigkeiten erzielt, die einen Einsatz mit Rollgeschwindigkeiten bis 5 m/s ermöglichen.

1.4 Rollenausführung und Gestaltung

Neben den vier Grundformen der Rollenkörper unterscheiden sich Rollen haupsächlich durch Art und Gestaltung der Lagerung. Analog zu Seilrollen können auch massive Laufrollen mit einer Gleitlagerung versehen werden. Voraussetzung hierfür ist, dass die werkstoffspezifischen max. Belastungskennwerte nicht überschritten werden. Die Berechnung der Gleitlagerung sowie die für einen sicheren Betrieb der Lagerung maßgeblichen Faktoren können dem Kapitel »Gleitla-

ger« entnommen werden. Ist eine Gleitlagerung aufgrund zu hoher Lagerlast oder anderer Faktoren nicht mehr möglich, empfiehlt sich der Einsatz von Wälzlager.

Auf die werkstoffgerechte Gestaltung der Lagersitze wird im Kapitel »Toleranzen«, Abschnitt 2.5.2 näher eingegangen.

Bei Einsatztemperaturen über 50 °C kann es zu Loslösungen von eingepressten Wälzlagern kommen. Dem kann konstruktiv durch das Einpressen des Lagers in eine mit dem Rollenkörper verschraubten Bundbuch-

se aus Stahl begegnet werden. Alternativ dazu empfehlen wir den Einsatz unserer Konstruktionswerkstoffe Calaumid-Fe (PA mit Metallkern), die die Vorzüge von Kunststoff als Rollenwerkstoff und Stahl als Lagersitzwerkstoff vereinen. Dieser Werkstoff empfiehlt sich aufgrund seiner formund kraftschlüssigen Verbindung des Stahlkerns mit dem Kunststoff ebenfalls dort, wo Antriebsmomente übertragen werden müssen.

Bei Rollendurchmesser > 250 mm ist die Ausführung als Bandagenrolle vorteilhaft. Dabei wird die Kunststoffbandage auf dem metallischen Rollenkern durch Aufschrumpfen befestigt. Näheres zu dieser Gestaltungsmöglichkeit wird in einem gesonderten Abschnitt beschrieben.

2. Berechnung

Bei der Berechnung von Laufrollen aus Kunststoff sind einige wesentlichen Dinge zu berücksichtigen. Der Werkstoff besitzt viskoelastische Eigenschaften, was sich durch Steifigkeitsabnahme mit zunehmender Belastungsdauer bemerkbar macht. Dies hat zur Folge, dass bei gleichbleibender Belastung die Kontaktfläche des stehenden Rades mit fortschreitender Belastungsdauer größer wird. Im Allgemeinen sind die Werkstoffe aufgrund ihrer elastischen Eigenschaften jedoch in der Lage, diese Verformungen während des Rollens schnell wieder zurückzubilden. Somit ist im Fahrbetrieb kein nachteiliges Verhalten zu erwarten. Wird jedoch die zulässige Streckspannung der Werkstoffe überschritten, kann es zum »Fließen« des Werkstoffs und damit zu bleibenden Verformungen kommen. Dies führt beim Wiederanfahren zu erhöhten Anfahrkräften und in der Rollbewegung zu unrundem und unruhigem Lauf. Hohe Umgebungstemperatur und, speziell bei Polyamiden, hohe Luftfeuchtigkeit fördern dieses Verhalten, da sie die maximale Streckspannung herabsetzen. Eine Ausnahme davon bildet bei den Polyamiden der Werkstoff PA 12 G, da dieser eine geringe Neigung zur Wasseraufnahme aufweist.

Weiterhin ist zu beachten, dass es aufgrund der guten Dämpfungseigenschaften der Werkstoffe bei zu hohen Laufgeschwindigkeiten oder Belastungen zur Eigenerwärmung des Rollenkörpers kommen kann. Im Extremfall können dabei Temperaturen entstehen, die zum Versagen des Kunststoffrades führen. Bleiben die Belastungen innerhalb der zulässigen Grenzen, ist in der Regel jedoch ein sicherer und zuverlässiger Betrieb von Kunststoffrollen und -rädern gewährleistet.

2.1 Berechnungsgrundlagen

Es liegt nahe, bei der Berechnung von Laufrollen die Hertzschen Beziehungen heranzuziehen. Räder aus Kunststoff erfüllen aber nicht alle Bedingungen für diese Betrachtungsweise. So besteht

zum Beispiel zwischen Spannung und Dehnung kein linearer Zusammenhang und aufgrund der Elastizität der Werkstoffe entstehen in der Kontaktfläche während des Rollens Schubspannungen. Dennoch ist eine für den sicheren Betrieb ausreichend genaue Berechnung auf der Grundlage der Hertzschen Theorie möglich. Mit den nachfolgenden Berechnungen wird der Pressungskennwert p´ ermittelt. Dieser wird im Allgemeinen mit dem bei Raumtemperatur ermittelten Kurzzeitelastizitätsmodul errechnet und gibt deswegen nicht die in der Kontakfläche tatsächlich auftretende Pressung wieder. Daher sind die ermittelten Werte nur in Verbindung mit den Diagrammen 1 bis 4 aussagefähig.

Die berechneten Werte sind gewöhnlich etwas höher, als die im Betrieb tatsächlich auftretenden und bergen somit ein gewisses Maß an Sicherheit. Trotzdem kann es zum Versagen einer Rolle kommen, da nicht alle im Betrieb auftretenden und häufig auch nicht genau bekannten Parameter in ausreichendem Maß in der Berechnung berücksichtigt werden können.

Bei Rollen mit Gleitlagerung ist die Belastungsgrenze des Gleitlagers ausschlaggebend. In der Regel kann die volle Tragfähigkeit der Lauffläche nicht ausgenutzt werden, da vorher die Belastungsgrenze des Gleitlagers erreicht wird (siehe Kapitel »Gleitlager«).

2.2 Rollsystem zylindrische Rolle/ebene Laufbahn

Unter Last entsteht eine projizierte Kontaktfläche mit der Länge 2a und der Breite B, über der sich die Pressung halbellipsenförmig verteilt. Bemerkenswert dabei ist, dass es dabei an den Rändern der Rolle zu Spannungserhöhungen kommt. Diese Spannungserhöhung wird durch quer zur Laufrichtung auftretende Schubspannungen erzeugt. Diese haben ihren Ursprung im elastischen Verhalten des Rollenwerkstoffs. Die Spannungserhöhungen werden um so größer, je größer der Steifigkeitsunterschied zwischen Laufbahn- und Rollenwerkstoff ist. Da der Spannungszuwachs einer Rolle aus hartelastischem Kunststoff eher niedrig und daher für den Betrieb vernachlässigbar ist und zudem die auftretenden Schubspannungen mit der Hertzschen Theorie nicht berechnet werden können, bleiben diese unberücksichtigt.

Unter der Voraussetzung, dass der Laufflächenwerkstoff einen wesentlich höheren Elastizitätsmodul als der Rollenwerkstoff aufweist und die Radien in der Hauptkrümmungsebene (HKE) 2 unendlich sind, wird

der Pressungskennwert p´zu

$$p' = f_w \sqrt{\frac{F}{r_{11} \cdot B}} \quad [MPa]$$

mit:

F = Radlast in N

 r_{11} = Rollenradius in mm aus HKE 1

B = Radbreite in mm

 $f_w = Material faktor$

$$PA 6 G = 25,4$$

$$PA 6 = 38$$

$$POM = 33,7$$

Sind die Elastizitätsmodule von Rollen- und Laufbahnwerkstoff bekannt, kann mit folgenden Gleichungen gerechnet werden:

$$p' = \sqrt{\frac{F \cdot E_e}{2 \cdot \pi \cdot r_{11} \cdot B}} \quad [MPa]$$

und

$$\frac{1}{E_{e}} = \frac{1}{2} \left[\frac{1 - V_{1}^{2}}{E_{1}} + \frac{1 - V_{2}^{2}}{E_{2}} \right]$$

Bei identischem Laufbahn - und Rollenwerkstoff gilt für E

$$E_e = \frac{E}{1 - v^2}$$

mit

F = Radlast in N

E_e = Ersatzmodul in MPa

 r_{11} = Rollenradius in mm aus HKE 1

B = Radbreite in mm

E₁ = Elastizitätsmodul des Rollenkörpers in MPa

v₁ = Querkontraktionszahl des Rollenkörpers aus Tabelle 1

E₂ = Elastizitätsmodul des Laufbahnwerkstoffs in MPa

v₂ = Querkontraktionszahl des Laufbahnwerkstoffs aus Tabelle 1

Tabelle 1: Querkontraktionszahlen für verschiedene Werkstoffe

	PA 6 PA 6 G				Gusseisen					
	POM PET	ferritische Stähle	Stähle mit ca. 12% Cr	austenitische Stähle	GG 20	GG 30	GG 40	GGG 38 bis 72	Aluminium- legierungen	Titan- legierungen
Querkontrak- tionszahl µ bei 20° C	0,4 bis 0,44	0,3	0,3	0,3	0,25 bis 0,26	0,24 bis 0,26	0,24 bis 0,26	0,28 bis 0,29	0,33	0,23 bis 0,38

Die für die Abschätzung der Abplattung notwendige halbe Kontaktflächenlänge errechnet sich aus

$$a = \sqrt{\frac{8 \cdot F \cdot r_{11}}{\pi \cdot E_e \cdot B}} \quad [mm]$$

mit

F = Radlast in N

E_e = Ersatzmodul in MPa

 r_{11} = Rollenradius in mm aus HKE 1

B = Radbreite in mm

2.3 Rollsystem zylindrische Rolle/gekrümmte Laufbahn

Auch bei diesem System entsteht eine projizierte Kontaktfläche mit der Länge 2a und der Breite B, über der sich die Pressung halbellipsenförmig verteilt. Ebenso kommt es zu der bereits beschriebenen Spannungserhöhung in den Randzonen.

Die Berechnung erfolgt analog der des Systems "zylindrische Rolle/ebene Laufbahn" aus Abschnitt 2.2. Aufgrund des zweiten Radius in der HKE 1 wird jedoch aus den Radien r_{11} und r_{21} der Ersatzradius r_{e} gebildet. Dieser wird in die, den Verhältnissen der Elastizitätsdmodule ent-

Hauptkrümmungsebene

sprechenden Gleichung zur Berechnung des Pressungskennwertes eingesetzt. Läuft die Rolle auf einer gekrümmten Bahn, wird der Ersatzradius zu

$$r_e = \frac{r_{11} \cdot r_{21}}{r_{11} + r_{21}}$$
 [mm]

Für Rollen, die in einer gekrümmten Bahn laufen, wird der Ersatzradius zu

$$r_e = \frac{r_{11} \cdot r_{21}}{r_{11} - r_{21}}$$
 [mm]

mit

 r_{11} = Rollenradius in mm aus HKE 1

 r_{21} = Laufbahnradius in mm aus HKE 1

In die Gleichung zur Berechnung der halben Kontaktflächenlänge a wird ebenfalls der Ersatzradius r. verwendet.

2.4 Rollsystem gekrümmte Rolle/ebene Laufbahn

Das in Abschnitt 2.2 beschriebene Phänomen der Spannungserhöhung im Randbereich lässt sich konstruktiv durch die Form des Rades eindämmen. Wird die Lauffläche auch quer zur Rollrichtung leicht gekrümmt, lassen sich nur noch geringfügige Spannungserhöhungen beobachten. Es hat sich bewährt, als Krümmungsradius den Raddurchmesser zu verwenden. Diese Maßnahme wirkt auch der Entstehung von übermäßigen Kantenpressungen, die durch Ausrichtungsfehler bei der Montage entstehen können, entgegen.

Eine Rolle mit Krümmungen in der HKE 1 und 2 bildet eine ellipsenförmige Kontaktfläche mit den Achsen 2a und 2b, über der sich die Pressung in Form eines Ellipsoids verteilt. Die Halbachsen der ellipsenförmigen Kontaktfläche errechnen sich aus

$$a = s \cdot \sqrt[3]{3 \cdot F \cdot r_e \cdot \frac{1}{E_e}} [mm] \quad und \quad b = I \cdot \sqrt[3]{3 \cdot F \cdot r_e \cdot \frac{1}{E_e}} [mm]$$

sowie

$$r_e = \frac{r_{11} \cdot r_{12}}{r_{11} + r_{12}}$$
 [mm]

mit

F = Radlast in N

E_e = Ersatzmodul in MPa

s = Hertzscher Beiwert aus Tabelle 2

r_e = Ersatzradius

I = Hertzscher Beiwert aus Tabelle 2

Hauptkrümmungsebene

Der Ersatzmodul wird wie in Abschnitt 2.2 beschrieben ermittelt.

Zur Ermittlung der Hertzschen Beiwerte s und I muss der Wert cos τ rechnerisch bestimmt werden.

$$\cos \tau = \frac{\left(\frac{1}{r_{11}} - \frac{1}{r_{12}}\right)}{\left(\frac{1}{r_{11}} + \frac{1}{r_{12}}\right)}$$

mit

 r_{11} = Rollenradius in mm aus HKE 1

 r_{12} = Rollenradius in mm aus HKE 2

Die Hertzschen Beiwerte in Abhängigkeit von $\cos \tau$ können aus Tabelle 2 entnommen werden. Zwischenwerte sind zu interpolieren.

Tabelle 2: Hertzsche Beiwerte in Abhängigkeit von $\cos \tau$

$\cos au$	1	0,985	0,940	0,866	0,766	0,643	0,500	0,342	0,174	0
S	∞	6,612	3,778	2,731	2,136	1,754	1,486	1,284	1,128	1
1	0	0,319	0,408	0,493	0,567	0,641	0,717	0,802	0,893	1
ψ	∞	2,80	2,30	1,98	1,74	1,55	1,39	1,25	1,12	1

Mit den so errechneten Werten läßt sich der Pressungskennwert wie folgt ermitteln

$$p' = \frac{3 \cdot F}{2 \cdot \pi \cdot a \cdot b}$$
 [MPa]

mit

F = Radlast in N

a = Halbachse der Kontaktfläche längs zur Laufrichtung
 b = Halbachse der Kontaktfläche quer zur Laufrichtung

2.5 Rollsystem gekrümmte Rolle/gekrümmte Laufbahn

Sowohl die Form der Kontaktfläche als auch die Berechnung entsprechen dem Abschnitt 2.3. Lediglich bei der Berechnung des Ersatzradius r und dem Wert für cos τ ist zu beachten, dass auch die Laufbahn Krümmungsradien in den HKE 1 und 2 besitzt.

Damit wird der Ersatzradius für Rollen, die auf einer gekrümmten Laufbahn rollen zu

$$\frac{1}{r_e} = \frac{1}{r_{11}} + \frac{1}{r_{12}} + \frac{1}{r_{21}} + \frac{1}{r_{22}}$$
 [mm]

und für Rollen, die in einer gekrümmten Laufbahnlaufen rollen zu

$$\frac{1}{r_e} = \frac{1}{r_{11}} + \frac{1}{r_{12}} + \frac{1}{-r_{21}} + \frac{1}{-r_{22}} \text{ [mm]}$$

mit

 r_{11} = Rollenradius in mm aus HKE 1

 r_{12} = Rollenradius in mm aus HKE 2

 r_{21} = Laufbahnradius in mm aus HKE 1

 r_{22} = Laufbahnradius in mm aus HKE 2

Bei der Ermittlung von cos τ ist darauf zu achten, dass der Wert unabhängig davon zu betrachten ist, ob sich die Rolle auf oder in einer Laufbahn bewegt. In die Gleichung wird daher immer ein positiver Wert für die Radien eingesetzt.

$$\cos \tau = \frac{\left(\frac{1}{r_{11}}, \frac{1}{r_{12}}\right) + \left(\frac{1}{r_{21}}, \frac{1}{r_{22}}\right)}{\left(\frac{1}{r_{11}}, \frac{1}{r_{12}}\right) + \left(\frac{1}{r_{21}}, \frac{1}{r_{22}}\right)}$$

Hinsichtlich der Berechnung der Halbachsen a und b sowie des Pressungskennwerts kann wie im Abschnitt 2.4 vorgegangen werden.

2.6 Zylindrige Bandagen aus Kunststoffen

2.6.1 Berechnung

Bandagen können nach den in Abschnitt 2.2 bis 2.5 angegebenen Gleichungen nur dann berechnet werden, wenn bestimmte Beziehungen der halben Kontaktflächenlänge a, der Radbreite B und der Bandagenhöhe h erfüllt sind.

Als Bedingung sind die Verhältnisse $h/a \ge 5$ und $B/a \ge 10$ zu erfüllen. Sobald diese Grenzwerte unterschritten werden, verkleinert sich die entstehende Kontaktfläche trotz gleicher Belastung und äußerer Radabmessungen. Die Folge daraus ist, dass die Pressung der Kontaktfläche ansteigt und um so größer wird, je geringer die Bandagendicke ist. Trotzdem lassen sich die Pressungsverhältnisse näherungsweise rechnerisch bestimmen.

Die halbe Kontaktflächenlänge a wird zu

$$a = \sqrt[3]{1,5 \cdot r_e \cdot \frac{F}{B} \cdot \frac{E'_1 \cdot h_2 + E'_2 \cdot h_1}{E'_1 \cdot E'_2}}$$
 [mm]

Bei Bandagen, die auf einer ebenen Laufbahn rollen, ist $r_e = r_1$. Für Bandagen, die auf bzw. in einer gekrümmten Laufbahn laufen, wird der Ersatzradius r_e wie in Abschnitt 2.3 beschrieben ermittelt.

Der Pressungskennwert wird zu

$$p' = \sqrt[3]{\frac{9}{32} \cdot \frac{1}{r_e} \cdot \frac{F}{B} \cdot \frac{E'_1 \cdot E'_2}{E'_1 \cdot h_2 + E'_2 \cdot h_1}}$$
 [MPa]

mit

F = Radlast in N

E₁ = Rechenmodul Radwerkstoff in MPa

E₂ = Rechenmodul Laufbahnwerkstoff in MPa

r_e = Ersatzradius in mm

h₁ = Bandagendicke in mm

h, = Laufbahndicke in mm

B = Radbreite in mm

Die Rechenmodule der Werkstoffe müssen unter Berücksichtigung der Querkontraktionszahlen ermittelt werden.

$$E_1' = \frac{E_1}{1 - v_1^2} \cdot \frac{(1 - v_1)^2}{1 - 2v_1} \quad \text{und } E_2' = \frac{E_2}{1 - v_2^2} \cdot \frac{(1 - v_1)^2}{1 - 2v_2} \quad [MPa]$$

mit

E₁= Elastizitätsmodul Rollenwerkstoff in MPa

v₁ = Querkontraktionszahl Rollenwerkstoff aus Tabelle 1

E₂ = Elastizitätsmodul Laufbahnwerkstoff in MPa

v₂ = Querkontraktionszahl Laufbahnwerkstoff aus Tabelle 1

2.6.2 Gestaltungs- und Montagehinweise

Die Form der Kunststoffbandagen bzw. des metallischen Kerns richtet sich in der Regel nach der

Belastungsart der Rolle. Für gering belastete Rollen, bei denen kein axialer Schub erwartet wird und deren Durchmesser < 400 mm ist, kann eine Kernform ohne seitliche Sicherung gewählt werden. Die Betriebstemperaturen dürfen dabei 40 °C nicht überschreiten. Ist abzusehen, dass axiale Kräfte auf die Rolle einwirken, die Bandage insgesamt hochbelastet wird oder die Betriebstemperaturen kurzzeitig oder dauernd über 40 °C liegen, müssen die Bandagen durch seitliche Bunde am Kern bzw. mittels eines Flansches gegen Herunterrutschen gesichert werden. Gleiches gilt bei Rollendurchmesser ≥ 400 mm.

Diagramm 1: Aufschrumpfuntermaß und Axialspiel in Abhängigkeit zur Betriebstemperatur

An den Metallkern werden im Bereich der Bandagenauflagefläche keine besonderen Ansprüche hinsichtlich der Oberflächengüte und Maßhaltigkeit gestellt. Eine sauber gedrehte Oberfläche sowie die Einhaltung einer Durchmessertoleranz von d±0,05 mm sind ausreichend, Riefen in Axialrichtung (z.B. Rändel mit achsparallelen Riefen und gebrochenen Spitzen) zulässig. Als Höhenmaß für die Kunststoffbandage hat sich ca. 0,1 bis 0,15 d bewährt.

Die Fixierung der Bandage auf dem metallischen Kern erfolgt zweckmäßig durch Erwärmen und anschließendem Aufschrumpfen auf dem kalten Kern. Erwärmt werden kann die Bandage entweder durch zirkulierende Heißluft (ca.

120 bis 140 °C) oder im Wasserbad (ca. 90 bis 100°C). Dabei wird die Bandage soweit erhitzt, dass sie mit einem umlaufenden Spalt zwischen Kern und Bandage leicht und ungehindert auf den kalten Kern aufgezogen werden kann. Die Montage sollte möglichst rasch erfolgen, damit ein Erkalten vor dem passgenauen Sitz auf dem Kern vermieden wird. Schockartiges und ungleichmäßiges Abkühlen sollte unbedingt vermieden werden, da sonst Spannungen in der Bandage die Folge sind. Das Aufschrumpfuntermaß, mit dem die Bandage gefertigt werden muss, hängt von der Betriebstemperatur und dem Durchmesser des Metallkerns ab. Aus Diagramm 1 kann das prozentuale Untermaß bezogen auf den Metallkerndurchmesser für Rollen mit Durchmesser > 250 mm entnommen werden. Bei Rollen mit Sicherungsbund/-flansch muss ein geringfügiges Axialspiel zur Aufnahme der Breitenänderung infolge von Wärmedehnung beachtet werden. Das prozentuale Axialspiel bezogen auf die Bandagenbreite kann ebenfalls aus Diagramm 1 abgelesen werden.

2.7 Maximal zulässige Pressungskennwerte

In den Diagrammen 2 bis 5 sind die Grenzbelastungen der Rollenwerkstoffe für verschiedene Temperaturen und in Abhängigkeit von der Rollgeschwindigkeit enthalten. Aus den Berechnungen erhaltene Ergebnisse für den Pressungskennwert müssen mit diesen verglichen werden und dürfen die maximalen Werte nicht überschreiten. Die Kurven in Abhängigkeit zur Rollgeschwindigkeit geben die Belastungsgrenzen im Dauerlauf wieder. Im Aussetzbetrieb können auch höhere Werte zugelassen werden. Unzulässig hohe Belastungen im Stillstand müssen dabei aber vermieden werden, da es sonst zu irreversibler Verformung (Abplattung) der Kontaktfläche kommen kann.

Diagramm 4

Diagramm 5

Abschätzung der elastischen Verformung des Rollenkörpers

Für die Funktion von Rollen und Laufrädern ist häufig die Verformung der Lauffläche (Abplattung) während der Stillstandszeit maßgebend. Unmittelbar nach Lasteinwirkung wird diese mit dem Elastizitätsmodul des Werkstoffs ermittelt. Aufgrund des viskoelastischen Verhaltens der Kunststoffe muss das zeitabhängige Verformungsverhalten jedoch mit dem bauteilspezifischen Kriechmodul ermittelt werden. Der Kriechmodul wird durch Kriechversuche mit Laufrollen experimentell ermittelt und kann den Diagrammen 6 und 7 entnommen werden. Aufgrund der experimentell ermittelten Werte kann die zeitabhängige Abplattung mit den folgenden Gleichungen nur abgeschätzt werden. Eine exakte Berechnung ist wegen der oft nicht genau bekannten tatsächlichen Betriebsparameter und besonderen Kunststoffeigenschaften nicht einwandfrei möglich. Die durch die Gleichung berechneten Werte lassen aber mit ausreichender Sicherheit eine überschlägige Bestimmung der Abplattung zur Beurteilung der Funktionstüchtigkeit zu. Für die Abschätzung des Rollsystems zylindrische Rolle/zylindrische Rolle wird

$$o_{A} = \frac{1.5 \cdot \psi \cdot F}{E_{e} \cdot a} \quad [mm]$$

und das Rollsystem zylindrische Rolle/ebene Laufbahn

$$o_A = \frac{F}{\pi \cdot E_e \cdot B} \cdot \left(2 \cdot \ln \left(\frac{2 \cdot r_{11}}{a} \right) + 0,386 \right)$$
 [mm]

mit

F = Radlast in N

 Ψ = Hertzscher Beiwert aus Tabelle 2

E_e = Elastizitätsmodul bzw. Kriechmodul in MPa

a = Halbachse der Kontaktfläche längs zur Laufrichtung

B = Radbreite in mm

 r_{11} = Rollenradius in mm aus HKE 1

Diagramm 7

Da in Rollsystemen mit Krümmungsradien in der HKE 2 auch Schubspannungen in nicht unerheblichem Maß auftreten, ist eine analytische Abschätzung der Systeme mit Krümmungsradien in der HKE 2 nicht möglich. Diese lassen sich nur numerisch durch ein dreidimensionales FE-Modell bestimmen.

Seilrollen aus Kunststoff

1. Einsatz von PA 6 G als Seilrollenwerkstoff

In der Fördertechnik sind Stahldrahtseile wichtige und hochbeanspruchte Maschinenelemente. Von ihrer Funktionsfähigkeit hängt in vielen Fällen nicht nur die Wirtschaftlichkeit großer Anlagen, sondern auch ihre Sicherheit ab. Sie müssen im Gegensatz zu anderen Maschinenelementen bereits ersetzt werden, bevor sie endgültig zerstört sind.

Für die Lebensdauer und Belastbarkeit eines über Seilrollen laufenden Seils ist die an der Berührungsfläche zwischen Rolle und Seil entstehende Flächenpressung maßgeblich entscheidend. Seilrollenwerkstoffe, die einen geringen E-Modul aufweisen, führen zu geringen Flächenpressungen und damit zur längeren Lebensdauer des Seils. Aus diesem Grund kommen thermoplastische Kunststoffe für die Herstellung von Seilrollen in Betracht.

Dabei werden von dem verwendeten Kunststoff folgende Eigenschaften gefordert:

- seilschonende Elastizität
- ausreichende Druckschwellfestigkeit
- hohe Verschleißfestigkeit
- ausreichende Zähigkeit auch bei tiefen Temperaturen
- Schmierstoffbeständigkeit
- weitgehende Beständigkeit gegen Witterungseinflüsse

Es hat sich gezeigt, dass diese Anforderungen von Guss-Polyamid (PA 6 G) in hervorragender Weise erfüllt werden. Andere Kunststoffe, wie z.B. PE-UHMW oder PVC als schlägzähe Modifikation kommen wegen ihrer geringen Belastbarkeit und schlechteren Verschleißfestigkeit nur in speziellen Einsatzfällen zum Tragen. Aus diesem Grund beschränken wir uns bei den weiteren Ausführungen auf den Kunststoff PA 6 G als Seilrollenwerkstoff.

1.1 Vorteile von Seilrollen aus PA 6 G

1.1.1 Niedriger Seilverschleiß

Seile, die über Seilrollen aus metallischen Werkstoffen laufen, unterliegen einer hohen Beanspruchung durch die zwischen Seil und Rillengrund auftretende Flächenpressung. Beim Überrollen liegen nur die unteren Außenlitzen des Seils im Rillengrund auf. Die Folge davon ist Verschleiß in Form von Einzeldrahtbrüchen an den Außenlitzen bis hin zum Seilbruch.

Seilrollen aus PA 6 G verhindern dies aufgrund ihres elastischen Verhaltens. Die auftretende Pressung zwischen Seil und Rolle bei der Kombination Stahlseil/Polyamidrolle verhält sich etwa 1:10 im Vergleich zu Stahlseil/Stahlrolle. Dies lässt sich aus dem viskoelastischen Verhalten von Polyamid erklären. Es liegen nicht nur einzelne Außenlitzen, sondern nahezu die gesamte projizierte Litzenbreite im Rillengrund auf. Dies senkt die Flächenpressung zwischen Seil und Rolle und führt zu erheblich längerer Lebensdauer des Seils.

1.1.2 Gewichtsreduzierung

Polyamide sind um das siebenfache leichter als Stahl. Aufgrund des Gewichtsvorteils kann durch den Einsatz von Polyamidrollen bei ähnlicher Belastbarkeit eine erhebliche Gewichtsreduzierung erzielt werden. Bei einem Mobillkran mit bis zu 18 Polyamid-Seilrollen kann eine Gewichtseinsparung von ca. 1.000 kg realisiert und so die Achslast entsprechend verringert werden. Zudem wirkt sich das leichtere Rollengewicht auch auf den Kranausleger positiv aus und erleichtert die Handhabung und Montage der Rollen wesentlich.

1.1.3 Dämpfung

Das gute Dämpfungsvermögen von PA 6 G reduziert Schwingungen, die bei metallischen Rollen vom Seil über die Rolle auf Welle und Lager übertragen werden. So werden Seil, Welle und Wellenlagerung geschont. Zudem ist eine Reduzierung der Laufgeräusche zu verzeichnen.

1.2 Schmierung des Seils

Die Verwendung von zähen und haftenden Seilschmierstoffen kann dazu führen, dass diese in der Seilrille festkleben. In Verbindung mit einer staubhaltigen Umgebungsluft oder eingetragenen Schmutzpartikeln bildet das anhaftende Schmiermittel eine Schmirgelpaste, die zu erhöhtem Verschleiß an Seil und Rolle führen kann. Wir empfehlen daher die Schmierung des Seils mit einem niedrigviskosen Korrosionsschutzöl, was Seil und Rolle weitgehend sauber hält.

1.3 Verschleiß von Seilrollen aus PA 6 G

Verschleiß entsteht an Seilrollen aus Polyamid im Wesentlichen durch mechanische Überbeanspruchung oder Schlupf, wobei die Seilrille die am höchsten beanspruchte Stelle ist. Sie wird beim Überrollen durch das Seil schwellend beansprucht und erwärmt sich bei hohen Geschwindigkeiten.

Grundsätzlich ist der Verschleiß von lose mitlaufenden Rollen bzw. Rollen, die über ein gespanntes Seil laufen, geringer als der von angetriebenen Rollen. Sind Litzenseile im Einsatz, können sich die einzelnen Litzen bei hochbeanspruchten Rollen im Rillengrund abdrücken. Bei hochbelasteten, schlupffreien Rollen in Verbindung mit einem offenen Litzenseil darf das Umfangsmaß des Rillengrunds kein ganzzahliges Vielfaches des Litzenschlages bilden. So wird, ähnlich wie bei den kämmenden Zähnen eines Zahnrads, vermieden, dass ständig die gleichen Stellen des Rillengrunds mit einem Seiltal bzw. einer Seilkuppe in Berührung kommen. Bei der Verwendung von geschlossenen Seilen kann es in Verbindung mit Schmierstoffen zu Grübchenbildung kommen, deren Entstehungsursache vermutlich mit denen bei Zahnrädern identisch ist. Im Allgemeinen ist unter normalen Umgebungsbedingungen und bei Einhaltung der Grenzbelastungswerte ein Rillengrundverschleiß von ≤ 0,1µm/km möglich.

2. Konstruktionshinweise

2.1 Seilrillenprofil

Der Seilrillenradius sollte ca. 5 - 10 % größer als der halbe Seildurchmesser sein. Damit sind die Seiltoleranzen in ausreichendem Maß berücksichtigt und eine gute Seilauflage gewährleistet. Die Seilrillentiefe h wird in DIN 15061 Teil 1 für Seilrollen aus Stahl mit mindestens $h_{min} = d\sqrt{2}$ angegeben.

Wir empfehlen für Seilrollen aus Polyamid eine Seilrillentiefe von $h \ge 1.5 d$.

Die Wahl des Öffnungswinkels β ist von der seitlichen Seilablenkung abhängig. Die maximale Seilablenkung in Rillenrichtung sollte 4,0° nicht überschreiten.

Folgende Rillenwinkel in Verbindung mit der Seilablenkung haben sich bewährt:

Seilablenkung
$$0^{\circ} - 2.5^{\circ} \Rightarrow \beta = 45^{\circ}$$

Seilablenkung $>2.5^{\circ} - 4.0^{\circ} \Rightarrow \beta = 52^{\circ}$

Ein Seirillenwinkel < 45° sollte vermieden werden. Die DIN 15061 Teil 1 empfiehlt die in Tabelle 1 enthaltenen Abmessungen als Richtwerte für Seilrillenprofile.

Als Richtwert für den Seilrillengrunddurchmesser von Seilscheiben aus Gusspolyamid empfehlen wir:

 $D_1 = 22 \cdot d_1 [mm]$

Ø d₁ Ø d₁ r_1 r_1 1,6 2,2 2,7 12,5 12,5 3,2 12,5 37,5 3.7 13.5 4,2 12,5

Tabelle 1: Richtwerte für Seilrillenprofile in mm nach DIN 15061 Teil 1

4,5

4,5

17,5

17,5

22.5

27.5

32,5

4,8

5,3

6,0

6,5

7.0

7,5

8,0

8.5

9,0

9,5

10,0

10,5

2.2 Lagerung

Aufgrund der guten Gleiteigenschaften von PA 6 G ist bei gering belasteten Seilrollen eine Ausführung der Lagerung als Gleitlager möglich. Maßgebend ist dabei der pv-Grenzwert. Ist hoher Verschleiß am Lager bei intakter Seilrille zu erwarten, kann durch den Einsatz einer austauschbaren Lagerbuchse das vorzeitige Austauschen der Seilrolle vermieden werden.

Für hochbelastete Seilrollen, deren maximale Belastungswerte über denen für eine Gleitlagerung zulässigen liegen, empfehlen wir den Einbau von Wälzlagern. Diese können durch Einpressen in den mit Untermaßen nach Diagramm 1 und 2 gefertigten Lagersitz befestigt werden. Bei zu erwartenden axialen Belastungen des Wälzlagers empfehlen wir, die Lager durch im Maschinenbau übliche Sicherungselemente wie z.B. Sicherungsringe nach DIN 472 gegen Herausdrücken zu sichern.

Nachfolgende Abbildung zeigt einige mögliche Rollenausführungen

Ausführung mit Lagersitz für Wälzlagerung

Ausführung mit Gleitlagerung

67.5

72.5

72,5

77.5

82,5

12,5

12,5

12,5

12,5

12.5

12,5

12,5

12,5 12,5

12,5

12,5

Diagramm 1: Empfohlenes Einpressuntermaß für Wälzlagersitze

Diagramm 2: Empfohlenes Betriebslagerspiel für Gleitlagerung

Für die Berechnung und Dimensionierung der Lagerung ist speziell bei Gleitlagern zu beachten, dass die Lagerlast bei losen Rollen dem Seilzug entspricht, bei festen Rollen jedoch mit dem Umschlingungswinkel eine resultierende Kraft bildet, die bei 180° das Doppelte des Seilzugs beträgt. Hierzu werden im Abschnitt 3 »Berechnung von Seilrollen« weitere Informationen gegeben.

3. Berechnung von Seilrollen

Für die Berechnung von Seilrollen sind Unterscheidungen hinsichtlich des Belastungsfalls, der verwendeten Seile und der Betriebsart zu treffen.

Man unterscheidet zwischen

- Belastung der Seilrolle durch Punktlast (Seilrolle läuft auf gespanntem Seil)
- Belastung der Seilrolle durch Umfangslast (Seil umschlingt die Seilrolle)

 der Betriebsart lose Rolle (z.B. Laufrolle einer Seilbahn) feste Rolle (z.B. Umlenkrollen)

Die Berücksichtigung dieser Kriterien führt für die einzelnen Lastfälle, Seilarten und Betriebsarten zu unterschiedlichen Rechengängen bzw. kräftemäßigen Betrachtungen.

3.1 Berechnung der Lagerpressung

Soll das Rollenlager als Gleitlager ausgeführt werden, muss der im Lager auftretende pv-Wert errechnet und mit den für PA 6 G zulässigen Werten verglichen werden. Dabei ist das Gleitlager wie eine eingepresste Lagerbuchse zu betrachten. Die Berechnung erfolgt also analog der für dynamisch belastete Gleitlager. Die zu erwartende Lagerlast ist von der Betriebsart der Seilrolle abhängig. Für lose Seilrollen kann bei der Berechnung des pv-Werts der Seilzug F_S als Lagerlast eingesetzt werden.

Damit wird die mittlere Flächenpressung für Querlager in losen Rollen zu

$$p = \frac{F_S}{d_W \cdot L} \qquad [MPa]$$

mit

 F_S = Seilzug in N

d_W = Wellendurchmesser in mm

L = Lagerbreite in mm

und die mittlere Gleitgeschwindigkeit zu

$$v = \frac{d_W \cdot \pi \cdot n}{60000}$$
 [m/s]

mit

d_W = Wellendurchmesser in mm

n = Drehzahl in min⁻¹

Zusammengesetzt wird pv_{Dauer} bei dynamischer Belastung für lose Rollen zu

$$pv_{Dauer} = \left(\frac{F_S}{d_W \cdot L}\right) \cdot \left(\frac{d_W \cdot \pi \cdot n}{60000}\right)$$
 [MPa · m/s]

Bei Aussetzbetrieb ist eine Korrektur der pv_{Dauer} nach dem im Kapitel »Gleitlager« Abschnitt 3.2 beschriebenen Verfahren möglich.

Für feste Rollen ist die Lagerlast vom Umschlingungswinkel, den das Seil mit Rolle bildet, abhängig. Bei einer vollständigen Umschlingung der Rolle (180°) geht der Seilzug doppelt in die Berechnungen ein. Für Umschlingungswinkel α < 180° muss mit Hilfe des Winkels und dem Seilzug eine resultierende Kraft F_{res} errechnet werden.

mit

 F_s = Seilzug in N

 $\alpha = Umschlingungswinkel$

Die ermittelten pv-Werte dürfen bei Rollen aus PA 6 G max. 0,13 MPa \cdot m/s im Trockenlauf und max. 0,5 MPa \cdot m/s bei Schmierung betragen. Liegen die errechneten Werte über diesen maximalen Werten, ist eine Wälzlagerung vorzuziehen.

3.2 Berechnung der Pressung zwischen Seil und Seilrille

Das maßgebliche Kriterium für die Belastbarkeit von Seilrollen stellt die zwischen Seil und Rolle entstehende Pressung dar. Zur rechnerischen Bestimmung der auftretenden Pressungen werden die für diesen Fall modifizierten Hertzschen Gleichungen angewendet. Die Ergebnisse aus den Berechnungen müssen mit den für PA 6 G zulässigen Werten aus den Diagrammen 3 und 4 verglichen werden. Sie sind in Verbindung mit der Seilgeschwindigkeit zu betrachten und dürfen diese nicht überschreiten.

3.2.1 Punktförmige Berührung von verschlossenen Drahtseilen

Bei der Verwendung eines verschlossenen Drahtseils mit einem kleinen Seilablenkwinkel (α < 10°), wie es z.B. bei Seilbahnen der Fall ist, entsteht eine punktförmige Belastung. Die erzeugte Druckfläche ist elliptisch.

Unter diesen Voraussetzungen berechnet sich der Pressungskennwert p´ für Seilrollen aus PA 6 G aus der Gleichung

 $p' = \frac{63.5}{\xi \cdot \eta} \cdot \sqrt[3]{\left(\Sigma \frac{1}{R}\right)^2 \cdot F} \quad [MPa]$

mit

 ξ = Hilfswert

 η = Hilfswert

 Σ_R^1 = Summe der Hauptkrümmungen in mm ⁻¹

F - = Rollenlast in N

Die Summe der Hauptkrümmungen der sich berührenden Körper errechnet sich aus

$$\sum \frac{1}{R} = \frac{2}{d} - \frac{1}{\rho} - \frac{1}{r} + \frac{2}{D}$$
 [mm⁻¹]

Aus der Summe der Hauptkrümmung kann der Hilfswinkel ϑ zur Bestimmung der Hilfswerte ξ und η nach folgender Formel bestimmt werden

$$\cos \vartheta = \frac{\frac{2}{d} + \frac{1}{\rho} - \frac{1}{r} - \frac{2}{D}}{\sum \frac{1}{R}}$$

mit

d = Seildurchmesser in mm

 ρ = Seilkrümmungsradius (i.a. vernachlässigbar, da im Vergleich zu den anderen Radien sehr groß)

r = Rillenradius in mm

D = Rillengrunddurchmesser

Die Hilfswerte ξ und η können aus der Tabelle 1 entnommen werden. Liegt ϑ zwischen den Tabellenwerten, müssen die Hilfswerte interpoliert werden.

Tabel	Tabelle 1: Hilfswerte ξ und η für verschiedene Werte von ϑ										
θ	90°	80°	70°	60°	50°	40°	30°	20°	10°	0°	
ξ	1,0	1,128	1,284	1,486	1,754	2,136	2,731	3,778	6,612	∞	
η	1,0	0,893	0,802	0,717	0,641	0,567	0,493	0,408	0,319	0	

3.2.2 Punktförmige Berührung von offenen Drahtseilen

Es kann davon ausgegangen werden, dass bei Seilrollen aus PA 6 G aufgrund der Elastizität der Rolle in Verbindung mit einem offenen Litzenseil nicht nur ein einzelner Draht der Litze, sondern mehrere Drähte aufliegen und an der Kraftübertragung beteiligt sind. Es wird daher die gesamte Litze als Einzeldraht betrachtet und vorausgesetzt, dass alle belasteten Litzen die gleiche Kraft übertragen. In den Rechengang wird ein Korrekturglied eingeführt, welches die Kraftübertragung von mehreren, jedoch höchstens 40% aller Litzen berücksichtigt.

Mit dieser Betrachtung wird der Pressungskennwert p´zu

$$p' = p'_e \cdot \sqrt[3]{\frac{X}{Z}}$$
 [MPa]

und der Pressungskennwert p $_{\rm e}^{\prime}$ für einen Einzeldraht in Verbindung mit einer Rolle aus PA 6 G

$$p'_{e} = 42 \cdot \sqrt[3]{\left(1 - \frac{d_{1}}{2r} + \frac{d_{1}}{D}\right)^{2} \cdot \frac{F}{d_{1}^{2}}}$$
 [MPa]

mit

X = Korrekturfaktor in Beziehung zu p'_e, zu entnehmen aus Tabelle 2

Z = Anzahl der Außenlitzen d₁ = Litzendurchmesser in mm

r = Rillenradius in mm

D = Rillengrunddurchmesser in mm

F = Rollenlast in N

3.2.3 Umfangslast mit offenen Drahtseilen

Hinsichtlich der Kraftübertragung zwischen Seil und Rolle gilt die gleiche Betrachtungsweise, wie sie unter Punkt 3.2.2 für die punktförmige Belastung beschrieben wurde. Abweichend davon ist lediglich, dass es sich bei einer umschlungenen Rolle nicht um eine Punktlast, sondern Flächenlast handelt.

Damit wird der Pressungskennwert p' zu

$$p' = p'_e \cdot \sqrt{\frac{X}{Z}}$$
 [MPa]

und der Pressungskennwert p $_{\rm e}$ für einen Einzeldraht in Verbindung mit einer Rolle aus PA 6 G

$$p' = 55 \cdot \sqrt{\frac{(2r - d_1) \cdot F_5}{2r \cdot d_1 \cdot D}}$$
 [MPa]

X = Korrekturfaktor in Beziehung zu p'_e zu entnehmen aus Tabelle 2

Z = Anzahl der Außenlitzen

 d_1 = Litzendurchmesser in mm

r = Rillenradius in mm

D = Rillengrunddurchmesser in mm

 F_s = Seilzug in N

Bei der Ermittlung des Korrekturfaktors ist zu beachten, dass bei X > Z in den Wurzelausdruck des Korrekturglieds Z = X einzusetzen ist, damit der Wurzelausdruck zu 1 wird. Liegt der Wert von p'_e zwischen den in der Tabelle angegebenen, muss der Wert für X entsprechend interpoliert werden.

Tabelle 2: Korrekturfaktor X

Flächenpressung p' _e in MPa	Korrekturfaktor X
≤ 50	Z
150	6
300	4
≥ 450	2,5

3.3 Maximal zulässige Flächenpressungen

Die Ergebnisse aus den Berechnungen müssen mit den maximal zulässigen Belastungskennwerten aus den Diagrammen 3 und 4 verglichen werden. Ein Überschreiten dieser Werte sollte vermieden werden.

Diagramm 3: Grenzbelastungswert in Abhängigkeit von der Seilgeschwindigkeit und Umgebungstemperatur für Seilrollen aus PA 6 G unter Umfangslast

Diagramm 4: Grenzbelastungskennwert p´max in Abhängigkeit von der Seilrollengeschwindigkeit und der Umgebungstemperatur für Seilrollen aus PA 6 G mit Punktlast.

Zahnräder aus Kunststoff

1. Einsatz von Kunststoffen als Zahnradwerkstoff

Obwohl sich Zahnräder aus thermoplastischen Kunststoffen nicht für die Anwendung in Hochleistungsgetrieben und für die Übertragung von hohen Leistungen eignen, haben sie sich ein breites Anwendungsfeld erschlossen. Die spezifischen Werkstoffeigenschaften gestatten einen Einsatz unter Bedingungen, wo selbst hochwertige metallische Werkstoffe versagen. So sind Zahnräder aus Kunststoff besonders dann unumgänglich, wenn

- wartungsfreier Einsatz
- hohe Verschleißfestigkeit bei Trockenlauf
- geräuscharmer Lauf
- Schwingungsdämpfung
- Korrosionsbeständigkeit
- niedriges Massenträgheitsmoment durch geringes Gewicht
- preisgünstige Herstellung

zentrale Forderungen des Anwendungsfalls darstellen.

Damit Kunststoff diesen Forderungen gerecht werden kann, ist eine werkstoffgerechte Konstruktion und die Auswahl des richtigen Kunststoffs zwingend notwendig.

1.1 Werkstoffe

Nur wenige thermoplastische Kunststoffe sind für die Zahnradherstellung von Bedeutung. Die Kunststoffe sind in den vorangegangenen Kapiteln bereits einschlägig beschrieben worden, so dass an dieser Stelle nur noch eine Beschreibung mit Sicht auf die Verzahnung folgt.

• PA 6

universeller Zahnradwerkstoff für den Maschinenbau, auch bei rauhem Betrieb verschleißfest und stoßmindernd, weniger geeignet für kleine Zahnräder mit hohen Maßanforderungen.

• PA 66

übertrifft PA 6 in der Verschleißfestigkeit mit Ausnahme bei sehr glatten Gleitpartnern, maßstabiler als PA 6 durch geringere Feuchteaufnahme, ebenfalls weniger für kleine Zahnräder mit hohen Maßanforderungen geeignet.

• PA 6 G

im Wesentlichen wie PA 6 und PA 66, jedoch im Vergleich durch hohen Kristallinitätsgrad besonders verschleißfest.

• Calaumid[®] 612 / 612 – Fe (PA 6/12 G)

zäh eingestelltes Polyamid, geeignet für den Einsatz bei stoßartigen Belastungsspitzen, Verschleißfestigkeit vergleichbar mit der von PA 6 G.

• Calaumid[®] 1200 / 1200 – Fe (PA 12 G)

zäh-hartes Polyamid mit vergleichsweise niedriger Neigung zur Wasseraufnahme, dadurch bessere Dimensionsstabilität gegenüber anderen Polyamiden, besonders geeignet für den Einsatz bei stoßartigen Belastungsspitzen, hervorragende Verschleißfestigkeit.

Oilamid[®]

selbstschmierende Eigenschaft durch im Kunststoff enthaltenes Öl, dadurch hervorragend für Trockenlauf geeignet und besonders verschleißfest.

• POM - C

durch geringe Feuchteaufnahme besonders geeignet für kleine Zahnräder mit hohen Anforderungen an die Dimensionsstabilität, wegen seiner Härte im Trockenlauf nicht so belastbar, bei Dauerschmierung jedoch etwas höher belastbar wie Zahnräder aus Polyamid.

• PE - UHMW

aufgrund der niedrigen Festigkeit nur für wenig belastete Zahnräder verwendbar, gute Dämpfungseigenschaften und chemische Beständigkeit, daher vorwiegend für den Einsatz bei mechanischen Schwingungen und in chemisch aggressiver Umgebung geeignet.

1.2 Gegenlaufpartner

Die Verwendung von flankengehärtetem Stahl ist hinsichtlich der Ausnutzung der Tragfähigkeit und des Verschleiß der am besten geeignete Gegenlaufpartner, da dieser für eine besonders gute Abfuhr der Reibungswärme sorgt. Hinsichtlich der Oberflächenbeschaffenheit gilt wie auch bei einem Gleitlager: je härter der Stahl, um so niedriger der Verschleiß bei Rad und Ritzel. Als Richtwert empfehlen wir sowohl im geschmierten Betrieb als auch bei Trockenlauf eine größte zulässige Rautiefe von $R_{\rm t}=8$ bis 10 µm.

Für niedrig belastete Zahnräder ist eine Paarung Kunststoff/Kunststoff möglich. Dabei spielen die Oberflächenrauheiten für den Verschleiß keine Rolle.

Bei der Auswahl der Werkstoffe ist zu beachten, dass das treibende Ritzel immer einer höheren Verschleißbeanspruchung ausgesetzt ist. Demzufolge sollte für das Ritzel stets der verschleißfestere Werkstoff gewählt werden (→ Ritzel: Stahl, Rad: Kunststoff oder Ritzel: PA, Rad: POM).

1.3 Schmierung

Auch hier gelten die im Kapitel »Gleitlager« gemachten Aussagen bezüglich Trockenlauf und der Verwendung von Schmierstoffen. Grundsätzlich ist anzumerken, dass eine Einbauschmierung die Standzeit und das Einlaufverhalten beträchtlich verbessert. Die mit Schmierstoff modifizierten Werkstoffe wie z.B. Oilamid zeigen gegenüber allen anderen Kunststoffen auch ohne Schmierung bedeutend längere Standzeiten. Eine kontinuierliche Ölschmierung führt zu besserer Wärmeabfuhr und damit zu längerer Lebensdauer bzw. höheren übertragbaren Leistungen.

Bei Fettschmierung soll die Umfangsgeschwindigkeit 5 m/s nicht überschreiten, da sonst die Gefahr besteht, dass das Fett weggeschleudert wird. Eine Wasserschmierung ist für Polyamide aufgrund der Neigung zu Feuchteaufnahme nicht zu empfehlen.

1.4 Geräuschentwicklung

Kunststoffe haben im Allgemeinen gute Dämpfungseigenschaften. Dies führt im Vergleich zu Zahnrädern aus metallischen Werkstoffen zu erheblicher Reduzierung von Laufgeräuschen. Im nebenstehenden Diagramm sind die Schalldruckkurven einer Zahnradpaarung Stahl/Stahl (a) und Stahl/Kunststoff (b) dargestellt. Es zeigten sich Unterschiede von max. 9 dB. Damit ist die Paarung Stahl/Stahl bis zu dreimal so laut, wie die Paarung Stahl/Kunststoff.

1.5 Herstellung

Zahnräder aus Kunststoffen werden in den gleichen spangebenden Verfahren (üblicherweise Wälzstoßen und Abwälfräsen) wie Zahnräder aus metallischen Werkstoffen hergestellt.

Da die Schnittkräfte sehr gering sind, kann das Profil mit hohen Vorschüben in einem Arbeitsgang hergestellt werden, was zur Reduzierung der Herstellkosten führt.

Bei der Herstellung mit hohen Vorschüben können wellige Oberflächen entstehen. Zunächst er-

wecken diese einen unvorteilhaften Eindruck. Im Trockenlauf werden die Zahnflanken jedoch nach kurzer Einlaufphase geglättet. Bei Schmierung wirkt die Wellenform als Schmiertasche, in der sich der Schmierstoff vorteilhaft sammeln kann. Die Wellenbildung stellt also keine Qualitätsminderung der Verzahnung dar.

Grundsätzlich sind bei der spangebenden Herstellung von Kunststoffzahnrädern in Abhängigkeit vom Modul die Qualitäten 9 bis 10 erreichbar. Bezüglich der erreichbaren Verzahnungsqualitäten ist anzumerken, dass sich die abwälzenden Zahnflanken von Kunststoffzahnrädern leicht anpassen. Darum sind im Vergleich zu Rädern aus Metall größere Verzahnungsfehler zulässig. Dies gilt vor Allem bei kraftübertragenden Zahntrieben. Für die ausschließlich am Wälzfehler Fi" und Wälzsprung fi" festgemachte Qualität bedeutet das, dass bis zu zwei Qualitäten mehr zugelassen werden als für vergleichbare Räder aus Metall. Das Zahnspiel wird zum Ausgleich von Temperatur- und Feuchteeinflüssen im Vergleich zu Stahlrädern um ein bis zwei Qualitäten erhöht.

2. Konstruktionshinweise

Die folgenden Konstruktionshinweise sollen bei der Dimensionierung neuer Getriebekonstruktionen unterstützen. Für im Einsatz befindliche und erprobte Getriebekonstruktionen sind die bereits festliegenden Daten vorzuziehen.

2.1 Zahnbreite

Für Zahnräder aus Kunststoff bestehen grundsätzlich keine Bedenken, die Breite bis in die Größenordnung des Durchmessers auszudehnen. Die Bestimmung des kleinsten Breitenmaß orientiert sich an der axialen Stabilität des Zahnrads. Untersuchungen hinsichtlich des Zusammenhangs zwischen Lebensdauer und Zahnbreite bzw. zur Ermittlung der optimalen Zahnbreite liegen nicht vor. Erfahrungen aus dem praktischen Einsatz zeigen jedoch, dass die Zahnbreite mindestens dem

Erfahrungen aus dem praktischen Einsatz zeigen jedoch, dass die Zahnbreite mindestens dem sechs- bis achtfachem Modul entsprechen sollte.

Für die Paarung Stahl/Kunststoff ist es vorteilhaft, das Kunststoffrad etwas schmaler als das Stahlritzel zu gestalten. Dadurch wird sichergestellt, dass das Kunststoffrad über seine gesamte Zahnbreite belastet wird. Analog gilt bei der Paarung Kunststoff/Kunststoff, dass das Rad, an dem der höhere Verschleiß erwartet wird, etwas schmaler dimensioniert sein sollte. Damit wird vermieden, dass sich auf den Zahnflanken erhabene Ränder eines Verschleißbetts bilden, die die Laufverhältnisse stören können.

2.2 Modul, Eingriffswinkel und Zähnezahl

Die Tragfähigkeit von Kunststoffzahnrädern ist mit der Wahl von Modul und Eingriffswinkel direkt beeinflussbar. Wird bei gleicher Umfangskraft der Modul/Eingriffswinkel vergrößert, nimmt die Zahnfußfestigkeit zu. Im Vergleich zu Stahlrädern ist der tatsächliche Zuwachs jedoch weniger groß, da der wirksame Überdeckungsgrad abnimmt und nicht mehr mehrere Zähne gleichzeitig in Eingriff kommen können. Ein hoher Überdeckungsgrad kann jedoch mitunter für die Tragfähigkeit besser sein, als die Steigerung der Zahnfußfestigkeit eines einzelnen Zahns. Daraus lässt sich folgender Zusammenhang ableiten (Anwendung für haupsächlich langsam laufende oder stoßbeanspruchte Zahnräder):

- Bevorzugung eines kleinen Moduls bei zäh-elastischen Thermoplasten (Steigerung des Überdeckungsgrades, → mehrerer Zähne gleichzeitig im Eingriff)
- Bevorzugung eines großen Moduls bei harten Thermoplasten (Steigerung der Zahnfußfestigkeit, da höherer Überdeckungsgrad infolge schlechterem Verformungsverhalten nicht möglich)

Bei Getrieben mit hohen Umfangsgeschwindigkeiten muss beachtet werden, dass durch den wirksamen Überdeckungsgrad der Lauf nicht gestört wird.

Der Eingriffswinkel ist für die Evolventenverzahnung mit 20° festgelegt. Trotzdem kann es gelegentlich notwendig sein, den Eingriffswinkel zu verändern (z.B. zur Herabsetzung der Grenzzähnezahl oder Verminderung von Laufgeräuschen). Eingriffswinkel < 20° führen dabei zu dünnen

und damit weniger belastbaren Zähnen mit steilen Zahnflanken aber niedrigen Laufgeräuschen. Eingriffswinkel > 20° erzeugen spitzere, dicke Zähne mit größeren Zahnfußfestigkeiten und flacheren Zahnflanken.

Hinsichtlich der Zähnezahl ist für Getriebe mit hohen Umfangsgeschwindigkeiten anzumerken, dass das Verhältnis der Zähnezahl kein ganzzahliges Vielfaches sein darf. Ist dies der Fall, kommen stets die gleichen Zähne zum Eingriff, was den Verschleiß begünstigt.

2.3 Schrägverzahnung

Erfahrungen haben gezeigt, dass schrägverzahnte Kunststoffzahnräder bei kleinem Schrägungswinkel geräuschärmer laufen als geradverzahnte. Jedoch ist der zu erwartende Tragfähigkeitszuwachs geringer, als es bei Stahlrädern der Fall ist. Die Länge der Flankenberührungslinie nimmt zwar zu und die Belastung wird auf mehrere Zähne verteilt, aber gleichzeitig wirkt die Last ungleichmäßig und die Zähne werden verformt. Der Vorteil der Schrägverzahnung wird dadurch teilweise wieder aufgehoben.

Die Berechnung von schrägverzahnten Kunststoffzahnrädern erfolgt, wie auch bei Metallrädern üblich, über ein geradverzahntes Ersatzrad. Als günstiger Schrägungswinkel gilt $\beta \approx 10^{\circ}$ - 20°.

2.4 Profilverschiebung

Profilverschiebungen werden in der Regel dann notwendig, wenn

- ein Radpaar einem vorgegebenen Achsabstand angepasst werden muss (positive oder negative Profilverschiebung)
- die Grenzzähnezahl unterschritten wird und dadurch Zahnunterschnitt entsteht (positive Profilverschiebung)

Bei der Anwendung ist darauf zu achten, dass im Fall der negativen Profilverschiebung der Unterschnitt nicht zu groß wird. Die Folge davon wäre eine stark minimierte Zahnfußfestigkeit, die die Lebensdauer und Belastbarkeit des Zahnrads herabsetzen könnte.

Umgekehrt kann es bei positiver Profilverschiebung durch den dickeren Zahnfuß zu Verlust des Verformungsvermögens und damit zur Minderung des Überdeckungsgrads kommen.

2.5 Flankenspiel und Kopfspiel

Aufgrund der hohen thermischen Ausdehnungsfaktoren von Kunststoffen ist bei der Dimensionierung von Zahnrädern auf die werkstoffgerechte Anpassung des Flanken- und Kopfspiels zu achten, damit ein Mindestflankenspiel erhalten bleibt. Beim Einsatz von Kunststoffzahnrädern hat es sich bewährt, ein Mindestflankenspiel von ≈ 0.04 · Modul einzuhalten. Das Einbauflankenspiel ergibt sich somit zu

$$S_e = S_{eo} + 2I \cdot \sin \alpha (k_\alpha \cdot k_F)$$
 [mm]

mit

S_{eo} = Mindestflankenspiel in mm

= Summe der aus Kunststoff bestehenden Strecke zwischen den beiden Drehachsen in mm

 $\alpha = Eingriffswinkel$

k_α = Längenausdehnungskoeffizient

k_F = Korrekturfaktor für Feuchteaufnahme (einzusetzen bei Polyamiden, zu entnehmen aus Kapitel »Gleitlager«)

Für das Einbaukopfspiel hat sich ein Maß von $0,3\cdot$ Modul bewährt. Dieses berücksichtigt Temperaturschwankungen bis \pm 20 °C sowie auch in ausreichendem Maß eventuell auftretende Verzahnungsungenauigkeiten.

2.6 Kraftübertragung

Die im Maschinenbau übliche Verbindungsart mit Passfeder und Nut findet auch bei Kunststoffzahnrädern Anwendung. Für eine solche Verbindung muss die Keilnutflanke auf Überschreiten der zulässigen Flächenpressung überprüft werden.

Die Flächenpressung ergibt sich zu

$$p_F = \frac{M_d \cdot 10^3}{i \cdot r_m \cdot h \cdot b}$$
 [MPa]

mit

M_d = übertragenes Drehmoment in Nm

i = Anzahl der Nutflanken

r_m = Radius von Wellenmitte bis Flankenmitte der tragenden Flanke in mm

h = Höhe der tragenden Flanke in mm

b = Breite der tragenden Flanke in mm

Der aus der Rechnung erhaltene Wert wird mit Diagramm 1 verglichen und darf nicht über den maximal zulässigen Werten liegen.

Zu beachten ist jedoch, dass dieser Wert noch keine Sicherheiten für stoßartige Beanspruchung oder Sicherheitsreserven beinhaltet. Je nach Einsatzfall empfehlen wir einen Sicherheitsfaktor von 1,5 bis 4 zu berücksichtigen.

Wegen der Kerbempfindlichkeit von Kunststoffen ist bei der Fertigung der Keilnuten darauf zu achten, dass die Kanten mit einem Radius ausgeführt werden. Dies scheitert jedoch im Allgemeinen daran, dass die üblichen Räumwerkzeuge und Passfedern scharfkantig sind. Bei großen zu übertragenden Drehmomenten kann es zusätzlich zu Verformungen der Nabe kommen.

Ergeben sich aus der Berechnung der Flankenpressung unzulässig hohe Pressungswerte oder ist zu befürchten, dass Nabenverformungen auftreten, stehen mehrere Möglichkeiten der Kraftübertragung zur Verfügung.

Eine Möglichkeit stellt die kraftschlüssige Verbindung des Radkörpers mit einem Stahleinsatz dar. Dieser wird mit dem Radkörper verschraubt. Eine mögliche konstruktive Lösung zeigt die nebenstehende Abbildung.

Für die Befestigung des Stahleinsatzes empfehlen wir Zylinderschrauben mit Innensechskant nach DIN 912, Festigkeitsklasse 8.8 oder besser in den nachfolgend genannten Größen.

Kopfkreis- durchmesser	Anzahl der Schrauben	Schrauben- größe
bis 100 mm	3	M 6
bis 200 mm	4	M 8
über 200 mm	6	M 8 / M 10

Bei Zahnrädern, die relativ dünnwandig sind, empfiehlt sich die Verwendung von Zylinderschrauben mit Innensechskant und niedrigem Kopf nach DIN 6912, Festigkeitsklasse 8.8 oder besser.

Eine Alternative zur Verwendung eines geschraubten Stahleinsatzes stellt die Ausführung des Zahnrads in Calaumid 612 Fe oder Calaumid 1200 Fe dar. Der mit dem Kunststoff form- und kraftschlüssig verbundene metallische Kern ermöglicht es, die Wellen-Nabenverbindung wie gewohnt als metallisches Bau-

teil zu berechnen und zu dimensionieren. Die form- und kraftschlüssige Verbindung des Kunststoffmantels mit dem metallischen Kern wird dabei durch eine Rändelung hergestellt.

3. Berechnung von Zahnrädern aus thermoplastischen Kunststoffen

Ursache für den vorzeitigen Ausfall von Zahrädern aus thermoplastischem Kunststoff sind im Wesentlichen die gleichen Schadensbilder und Prinzipien, wie sie auch bei Rädern aus metallischen Werkstoffen auftreten. Die Berechnung von Kunststoffzahnrädern unterscheidet sich deswegen grundsätzlich nicht von den bekannten Methoden. Lediglich die werkstoffspezifischen Eigenschaften von Kunststoffen werden in Form von Korrekturfaktoren in die Berechnungen eingeführt.

3.1 Drehmoment M_d, Umfangskraft F_{II} und Umfangsgeschwindigkeit v

Das Drehmoment ergibt sich zu Die Umfangskraft wird zu Die Umfangsgeschwindig-

keit errechnet sich zu $F_U = 2 \cdot 10^3 \cdot \frac{M_d}{d_0}$ [N] $v = \frac{d_0 \cdot \pi \cdot n}{60 \cdot 10^3}$ [m/s] $M_d = 9550 \cdot \frac{P}{n}$ [Nm]

mit

 M_d = Drehmoment in Nm d_0 = Teilkreisdurchmesser in mm d_0 = Teilkreisdurchmesser in mm d_0 = Drehzahl in min⁻¹ P = Leistung in kW n = Drehzahl in min-1

3.2 Zahnkörpertemperatur ϑ_Z und Zahnflankentemperatur ϑ_F im Dauerbetrieb

Wie bei allen Konstruktionen aus thermoplastischen Kunststoffen spielt auch bei Zahnrädern die Temperatur eine für die Belastbarkeit des Bauteils entscheidende Rolle. Es wird zwischen der Zahnkörpertemperatur ϑ_{Z} und der Zahnflankentemperatur ϑ_{F} unterschieden.

Die Zahnkörpertemperatur ist für die zulässige Zahnfußbeanspruchung und die Zahnverformung verantwortlich, wohingegen die Zahnflankentemperatur für die überschlägige Abschätzung des Verschleiß herangezogen wird.

Die genaue Ermittlung dieser beiden Temperaturen ist jedoch mit Schwierigkeiten behaftet, da am rotierenden Zahnrad die Wärmeübergangszahl nur grob abgeschätzt werden kann. Demzufolge kann die rechnerische Ermittlung der Temperaturen nicht fehlerfrei sein. Besonders bei der Berechnung der Zahnflankentemperatur kommt es häufiger zu hohen Werten, die mitunter über den Schmelztemperaturen der Kunststoffe liegen. In der Praxis wurde ein Anschmelzen der Zahnflanken jedoch noch nicht beobachtet. Trotzdem können die Werte als Temperaturkenn- und Vergleichswert angesehen werden.

Es kann davon ausgegangen werden, dass die überhöhten Rechenwerte eine Konstruktion gewährleisten, die sich in jedem Fall auf der sicheren Seite befindet.

Für die thermische Berechnung der Zahnräder sind die entstehende Reibungswärme, die vom Zahnrad in den Getrieberaum abgeführte Wärmemenge und die vom Getrieberaum nach außen abgeführte Wärmemenge zu betrachten.

Unter diesen Voraussetzungen wird

$$\vartheta_{1,2} = \vartheta_{\mathsf{U}} + \mathsf{P} \cdot \mu \cdot 136 \cdot \frac{\mathsf{i} + 1}{\mathsf{z}_{1,2} + 5\mathsf{i}} \cdot \left[\frac{\mathsf{k}_2 \cdot 17100}{\mathsf{b} \cdot \mathsf{z}_{1,2} \cdot (\mathsf{v} \cdot \mathsf{m})^{\frac{3}{4}}} + 7,33 \cdot \frac{\mathsf{k}_3}{\mathsf{A}} \right] \quad [^{\circ}\mathsf{C}]$$

mit

zusetzen

Index 1 für das Ritzel Index 2 für das Rad

 ϑ_{U} = Umgebungstemperatur in °C

P = Leistung in kW v = Umfangsgeschwindigkeit in m/sec

 $\mu = Reibungszahl$ m = Modul in mm

 $z = Z\ddot{a}hne$ A = Oberfläche des Getriebegehäuses in m^2

i = Übersetzungsverhältnis z_1/z_2 mit k_2 = werkstoffabhängiger Faktor

 z_1 = Zähnezahl Kleinrad k_3 = getriebeabhängiger Faktor in m^2 K/W

b = Zahnbreite in mm

Für Faktor k₂ ist je nach zu berechnender Temperatur einzusetzen:

Berechnung der Flankentemperatur: Berechnung der Fußtemperatur:

 $k_2 = 7$ für Paarung Stahl/Kunststoff $k_2 = 1,0$ für Paarung Stahl/Kunststoff $k_2 = 10$ für Paarung Kunststoff/Kunststoff $k_2 = 2,4$ für Paarung Kunststoff/ Kunststoff

 $k_2 = 0$ bei Ölschmierung $k_2 = 0$ bei V ≤ 1 m/sec $k_2 = 0$ bei v ≤ 1 m/sec

Für Faktor k₃ und die Reibungszahl μ sind unabhängig von der zu berechnenden Temperatur ein-

 $k_3 = 0$ für vollkommen offenes Getriebe in m² K/W

 $k_3 = 0,043$ bis 0,129 für teilweise offenes Getriebe in m² K/W

 $k_3 = 0,172$ für geschlossenes Getriebe in m² K/W

 μ = 0,04 für Getriebe mit Dauerschmierung μ = 0,4 PA/PA

 μ = 0,07 für Getriebe mit Ölnebelschmierung μ = 0,25 PA/POM μ = 0,09 für Getriebe mit Montageschmierung μ = 0,18 POM/Stahl

 μ = 0,2 PA/Stahl μ = 0,2 POM/POM

3.2.1 Zahnkörpertemperatur ϑ_7 und Zahnflankentemperatur ϑ_F im Aussetzbetrieb

Analog zu Gleitlagern sind auch Zahnräder im Aussetzbetrieb wegen der geringeren entstehenden Wärmemenge durch Reibung mit abnehmender Einschaltdauer zunehmend belastbar. Die relative Einschaltdauer ED wird durch die Einführung eines Korrekturfaktors f in die unter 3.2 genannte Gleichung berücksichtigt.

Dabei wird die relative Einschaltdauer als Verhältnis der Belastungsdauer t zur gesamten Spieldauer T in Prozent definiert.

$$ED = \frac{t}{T} \cdot 100 \quad [\%]$$

mit

t = Summe aller Belastungszeiten innerhalb der Spieldauer T in min.

T = Spieldauer in min.

Für Zahnräder aus thermoplastischen Kunststoffen ist die Gesamtspieldauer T = 75 min festgelegt. Die Summe aller während dieser 75 min auftretenden Einzelbelastungszeiten bildet die Belastungsdauert.

Mit dem so errechneten Wert kann nun aus dem Diagramm 2 der Korrekturfaktor f bestimmt werden. Dabei ist zu beachten, dass jede Belastungsdauer, die über 75 min hinaus geht (unabhängig davon, ob dies eventuell nur einmal auftritt), als Dauerbelastung zu bewerten ist.

Unter Berücksichtigung des Korrekturfaktors wird die Zahnflankentemperatur bzw. die Zahnkörpertemperatur zu

$$\vartheta_{1,2} = \vartheta_{\mathsf{U}} + \mathsf{P} \cdot \mathsf{f} \cdot \mu \cdot 136 \cdot \frac{\mathsf{i} + 1}{\mathsf{z}_{1,2} + 5\mathsf{i}} \cdot \left[\frac{\mathsf{k}_2 \cdot 17100}{\mathsf{b} \cdot \mathsf{z}_{1,2} \cdot (\mathsf{v} \cdot \mathsf{m})^{\frac{3}{4}}} + 7,33 \cdot \frac{\mathsf{k}_3}{\mathsf{A}} \right] \quad [^{\circ}\mathsf{C}]$$

Für die Faktoren k_2 , k_3 und die Reibungszahl μ können die unter 3.2 genannten Werte verwendet werden.

3.3 Berechnung der Zahnfußtragfähigkeit

Liegt die unter Belastung auftretende Zahnfußspannung σ_F über der zulässigen Spannung σ_{Fzul} muss mit dem Bruch der Zähne gerechnet werden. Aus diesem Grund muss die auftretende Zahnfußspannung errechnet und mit den zulässigen Werten verglichen werden. Wenn Ritzel und Rad aus Kunststoff hergestellt werden, ist die Berechnung für beide getrennt durchzuführen.

Die Zahnfußspannung ergibt sich zu

$$\sigma_{F} = \frac{F_{U}}{b \cdot m} \cdot K_{B} \cdot Y_{F} \cdot Y_{\beta} \cdot Y_{\epsilon} \qquad [MPa]$$

mit

F_U = Umfangskraft in N

b = Zahnradbreite in mm (Bei unterschiedlicher Breite von Ritzel und Rad: als Rechenwert für das breitere Rad die kleinere Breite + m verwenden)

m = Modul in mm

K_R = Betriebsfaktor für unterschiedliche Arbeitsweisen des Antriebs, zu entnehmen aus Tabelle 2

Y_F = Zahnformfaktor aus Diagramm 3

 Y_{β} = Schrägungsfaktor zur Berücksichtigung des Tragfähigkeitszuwachses bei Schrägverzahnung, da bei Zahnrädern aus Kunststoff dieser in Frage steht, ist dieser Wert = 1,0 zu setzen

 Y_{ϵ} = Überdeckungsfaktor aus Tabelle 1, wobei Y_{ϵ} = 1/ ϵ_{α} und ϵ_{α} = $\epsilon_{\alpha z1}$ + $\epsilon_{\alpha z2}$

Tabelle 1: Teilprofilüberdeckung für Verzahnungen ohne Profilverschiebung

z	14	15	16	17	18	19	20	21	22	23	24
$\epsilon_{lpha \mathtt{Z}}$	0,731	0,740	0,749	0,757	0,765	0,771	0,778	0,784	0,790	0,796	0,801
z	25	26	27	28	29	30	31	32	33	34	35
$\epsilon_{lpha \mathtt{Z}}$	0,805	0,810	0,815	0,819	0,822	0,827	0,830	0,833	0,837	0,840	0,843
z	36	37	38	39	40	41	42	43	44	45	46
$\epsilon_{lpha \mathtt{Z}}$	0,846	0,849	0,851	0,854	0,857	0,859	0,861	0,863	0,866	0,868	0,870
z	47	48	49	50	51	52	53	54	55	56	57
$\epsilon_{lpha \mathtt{Z}}$	0,872	0,873	0,875	0,877	0,879	0,880	0,882	0,883	0,885	0,887	0,888
z	58	59	60	61	62	63	64	65	66	67	68
$\epsilon_{lpha \mathtt{Z}}$	0,889	0,891	0,892	0,893	0,895	0,896	0,897	0,898	0,899	0,900	0,901
z	69	70	71	72	73	74	75	76	77	78	79
$\epsilon_{lpha \mathtt{Z}}$	0,903	0,903	0,904	0,906	0,906	0,907	0,909	0,909	0,910	0,911	0,912
z	80	81	82	83	84	85	86	87	88	89	90
ϵ_{lphaZ}	0,913	0,913	0,914	0,915	0,916	0,917	0,917	0,918	0,919	0,919	0,920
z	91	92	93	94	95	96	97	98	99	100	101
$\epsilon_{lpha \mathtt{Z}}$	0,920	0,921	0,922	0,922	0,923	0,924	0,924	0,925	0,925	0,926	0,927

Tabelle 2: Betriebsfaktor K_B

Arbeitsweise der Antriebsmaschine	Arbeitsweise d gleichmäßig	ler getriebene mäßige Stöße	n Maschine mittlere Stöße	starke Stöße
gleichmäßig	1,0	1,25	1,5	1,75
mäßige Stöße	1,1	1,35	1,6	1,85
mittlere Stöße	1,25	1,5	1,75	2,0
starke Stöße	1,5	1,75	2,0	2,25

 ${\bf Diagramm\,3:\,Zahnformfaktor\,Y_F\,als\,Funktion\,der\,Z\ddot{a}hnezahl}$

Bei profilverschobenen Verzahnungen muss der Faktor Y_{ϵ} entsprechend angepasst werden. Es gilt

$$\epsilon_{\alpha} = \frac{z_1}{2 \cdot \pi} \cdot (\tan \alpha_{E1} - \tan \alpha_{A1})$$

sowie

$$\tan \alpha_{A1} = \tan \alpha_{tw} \cdot \left(1 + \frac{z_2}{z_1}\right) - \frac{z_2}{z_1} \tan \alpha_{A2}$$

Der Wert $\tan \alpha_{\rm E1}$ ist abhängig vom Hilfswert

Der Wert $\tan \alpha_{\rm A2}$ ist abhängig vom Hilfswert

$$D_1 = \frac{d_{K1}}{d_{G2}}$$

 $D_2 = \frac{d_{K1}}{d_{G2}}$

mit

mit

 d_{K1} = Kopfkreisdurchmesser Kleinrad d_{G2} = Grundkreisdurchmesser Großrad

d_{K2} = Kopfkreisdurchmesser Großrad d_{G1} = Grundkreisdurchmesser Kleinrad

Die Werte für $\tan \alpha_{E1}$ und $\tan \alpha_{A2}$ können aus dem Diagramm 5 entnommen werden. Der Betriebseingriffswinkel α_{tw} und $\tan \alpha_{tw}$ errechnet sich aus der Profilverschiebung $x_{1,2}$ und der Zähnezahl $z_{1,2}$ wobei Index 1 für das Kleinrad und Index 2 für das Großrad steht. Die Betriebseingriffswinkel für Geradstirnräder sind in Diagramm 4 aufgetragen.

3.4 Berechnung der Zahnflankentragfähigkeit

Infolge von zu hohen Zahnflankenpressungen kann es zu Grübchenbildung (Pittings) oder übermäßigem Verschleiß kommen. Der Verschleiß tritt vor allem an Zahnfuß und Zahnkopf auf, was zur Änderung der Zahnform, und bedingt dadurch, zu ungleichmäßiger Bewegungsübertragung führt.

Um einem vorzeitigen Ausfall durch übermäßigen Verschleiß oder Grübchenbildung vorzubeugen, ist die auftretende Zahnflankenpressung $\sigma_{\rm H}$ zu ermitteln. Die an den Zahnflanken auftretende Pressung wird zu

$$\sigma_{H} = \sqrt{\frac{F_{U} \cdot (z_{1} + z_{2})}{b \cdot d_{0} \cdot z_{2}} \cdot K_{B}} \cdot Z_{\epsilon} \cdot Z_{H} \cdot Z_{M}$$
 [MPa]

mit

 $F_{II} = Umfangskraft in N$

z₁ = Zähnezahl Kleinrad

z₂ = Zähnezahl Großrad

b = Zahnradbreite in mm (Bei unterschiedlicher Breite von Ritzel und Rad: als Rechenwert für das breitere Rad die kleinere Breite + m verwenden) d_0 = Teilkreisdurchmesser in mm

 K_B = Betriebsfaktor für unterschiedliche Arbeitsweise des Antriebs, zu entnehmen aus Tabelle 2

 $Z_{\epsilon} = Überdeckungsfaktor$

 Z_H = Flankenformfaktor

 $Z_{M}^{..}$ = Materialfaktor

Die Überdeckung von mehreren Zähnen wirkt sich wie eine Verbreiterung des Zahns aus. Diese scheinbare Verbreiterung wird durch den Überdeckungsfaktor Z_{ϵ} berücksichtigt und bei geradund schrägverzahnten Rädern gleichgesetzt.

Der Überdeckungsfaktor wird zu

$$Z_{\epsilon} = \sqrt{\frac{4 - (\epsilon_{\alpha z 1} + \epsilon_{\alpha z 2})}{3}}$$

mit

 $\epsilon_{\alpha z 1}$ = Teilprofilüberdeckung Kleinrad aus Tabelle 1 $\epsilon_{\alpha z 2}$ = Teilprofilüberdeckung Großrad aus Tabelle 1

Der Zahnformfaktor Z_H berücksichtigt die Zahnflankenkrümmung. Bei nichtprofilverschobenen Geradverzahnungen mit einem Eingriffswinkel von α = 20° kann der Flankenformfaktor näherungsweise mit Z_H = 1,76 eingesetzt werden. Für profilverschobene Geradverzahnungen kann Z_H aus dem nebenstehenden Diagramm abgelesen werden.

Für andere Eingriffswinkel als 20° gilt :

$$Z_{H} = \frac{1}{\cos \alpha} \cdot \sqrt{\frac{1}{\tan \alpha_{tw}}}$$

mit

 α = Eingriffswinkel im Normalschnitt

 $\tan \alpha_{tw} = Betriebseingriffswinkel aus Diagramm 4$

Die Elastizität des Kunststoffs und damit die effektive Berührungsfläche der Zahnflanken wird durch den Materialfaktor $\mathbf{Z}_{\mathbf{M}}$ berücksichtigt.

Es gilt mit ausreichender Genauigkeit

$$Z_M = \sqrt{0.38 \cdot E'}$$
 und $E' = \frac{E_1 \cdot E_2}{E_1 + E}$

mit

 E_1 = dynamischer E-Modul Ritzel

E₂ = dynamischer E-Modul Rad

womit die Modulunterschiede von verschiedenen Werkstoffen für Ritzel und Rad berücksichtigt werden.

Für die Paarung Kunststoff/Stahl kann der entsprechende Faktor für Z_M aus dem Diagramm 8 entnommen werden.

Für die Paarung von Rädern aus gleichem Kunststoff gilt

$$Z_{M(K/K)} = \frac{1}{\sqrt{2}} \cdot Z_{M(K/St)}$$

Werden Rad und Ritzel aus unterschiedlichen Kunstoffen gefertigt, ist der für den weicheren Kunststoff gültige Faktor $Z_M(K/St)$ einzusetzen.

Die Zahnflankentemperatur wird mit Hilfe der in Abschnitt 3.2 bzw. 3.2.1 angegebenen Formel ermittelt.

3.5 Sicherheitsfaktor S

Die Ergebnisse für σ_F und σ_H aus den Berechnungen sind mit den zulässigen Werten zu vergleichen. Dabei ist in der Regel ein Mindestsicherheitsfaktor von 1,2 bis 2 anzustreben. Es gilt

$$\sigma_{\text{Fzul}} = \frac{\sigma_{\text{Fmax}}}{\varsigma}$$
 sowie $\sigma_{\text{Hzul}} = \frac{\sigma_{\text{Hmax}}}{\varsigma}$

mit

S = angestrebter Sicherheitsfaktor

 $\sigma_{\rm Fmax}$ = zulässige Zahnfußspannung aus Diagramm 9 und 10 in Verbindung mit der Zahntemperatur

bzw.

S = angestrebter Sicherheitsfaktor

 σ_{Hmax} = zulässige Grenzflankenpressung aus Diagrammen 11 bis 14 in Verbindung mit der Zahntemperatur

Die nachstehende Tabelle enthält einige Mindestsicherheitsfaktoren in Abhängigkeit vom Betriebszustand.

Betriebsart	Mindestsicherheit
Normalbetrieb	1,2
hohe Schalthäufigkeit	1,4
Dauerbetrieb mit Lastspielzahl ≥ 10 ⁸	≥2

Die zulässigen Zahnfußspannungen bzw. Grenzflankenpressungen sind in den nachfolgenden Diagrammen dargestellt.

3.6 Berechnung der Zahnverformung

Die bei der Belastung der Zähne autretende Zahnverformung wirkt während des Übergangs vom belasteten zum unbelasteten Zustand des Zahns wie ein Teilungsfehler. Da eine übermäßige Verformung zum Versagen des Zahnrads führen kann, müssen Zahnräder aus Kunststoff auf Einhaltung der maximal zulässigen Zahnverformung überprüft werden.

Die Zahnverformung f_K wird als Verschiebung des Zahnkopfes in Umfangsrichtung zu

$$f_K = \frac{3 \cdot F_U}{2 \cdot b \cdot \cos \alpha_0} \cdot \varphi \cdot \left(\frac{\psi_1}{E_1} + \frac{\psi_2}{E_2}\right)$$
 [mm]

mit

 $\varphi_{\rm F}$ = Beiwert aus Diagramm 15

 $\psi_{1,2}$ = Beiwerte aus Diagramm 16

E_{1,2} = Elastizitätsmodul aus Diagramm 7

Für die Paarung Kunststoff/Stahl gilt

$$\frac{\psi_{ST}}{E_{ST}} = 0$$

Die zulässige Zahnverformung wird im wesentlichen durch die Anforderungen an das Getriebe hinsichtlich Laufgeräusch und Lebensdauer bestimmt. Es hat sich gezeigt, dass die Laufgeräusche ab einer Zahnverformung $f_K = 0.4$ mm deutlich zunehmen. Als weitere Kennzahl wird das Verhältnis von Zahnverformung und Modul genannt.

In Form einer Gleichung werden die zulässigen Grenzwerte zu

$$f_{Kzul} \le 0.4$$
 [mm]

bzw.

$$f_{Kzul} \le 0,1 \cdot m \text{ [mm]}$$

Die berechneten Werte sollten die genannten Grenzwerte nicht überschreiten. Ist dies doch der Fall, muss mit erhöhten Laufgeräuschen und verkürzter Lebensdauer gerechnet werden.

Bewegungsmuttern aus Kunststoff

1. Kunststoffe als Werkstoff für Bewegungsmuttern

Bewegungsmuttern, auch unter der Bezeichnung »Spindelmuttern« bekannt, setzen in Verbindung mit einer Gewindespindel eine Drehbewegung in eine Linearbewegung um. Für die Kraftübertragung ist dabei eine gute Festigkeit des Mutternwerkstoffs, eine große Gewindeauflagefläche und hohe Oberflächengüte von Vorteil. Eine Ausführung des Gewindes als Trapezgewinde nach DIN 103 ist vorteilhaft und zweckmäßig.

Die Belastung der Gewindeflanken kommt dabei der eines Gleitelements gleich, so dass hinsichtlich der Auswahl eines geeigneten Werkstoffs zur Herstellung der Bewegungsmutter in erster Linie die Gleit- und Verschleißeigenschaften ausschlaggebend sind. Für die sichere Krafteinleitung ist die Festigkeit des gewählten Werkstoffs maßgebend.

Dabei ist jedoch zu beachten, dass sich glasfaserverstärkte Kunststoffe nicht zur Herstellung von Bewegungsmuttern eignen. Sie weisen im Vergleich zu den anderen Thermoplasten schlechtere Gleit- und Verschleißwerte auf. Die Glasfasern können zudem zu erhöhtem Verschleiß am Gleitpartner führen. Der verhältnismäßig hohe Elastizitätsmodul dieser Werkstoffe verhindert zudem eine Verformung der Gewindegänge bei Spannungsspitzen, so dass sich die Belastung gleichmäßig auf alle Gewindegänge verteilen kann. Folgen davon sind Gewindegangrisse und wesentlich kürzere Standzeiten im Vergleich zu unverstärkten Kunststoffen.

1.1 Werkstoffe

Für die Herstellung von Bewegungsmuttern haben sich die Guss-Polyamide sowohl mit als auch ohne Gleitzusätze sowie POM, PET und PET mit Gleitzusatz bewährt.

Hinsichtlich der Lebensdauer ist, wie bei allen anderen Gleitanwendungen auch, der Einsatz von Werkstoffen mit Eigenschmierung (wie z.B. Oilamidund PET-GL) vorteilhaft. Es werden im Vergleich zu den anderen Kunststoffen weniger Verschleiß und damit längere Standzeiten erreicht.

1.2 Schmierung

Wie bei allen anderen Gleitanwendungen auch ist eine Schmierung nicht zwingend notwendig, verlängert aber die Lebensdauer der Bauteile mitunter erheblich. Zudem wird der Gefahr der Stick-Slip-Entstehung entgegengewirkt.

Zweckmäßig ist eine einmalige Einbauschmierung, wie sie auch bei Gleitlagern und -platten empfohlen wird, mit einer anschließenden empirischen Nachschmierung. Dies gilt insbesondere für hochbelastete Bewegungsmuttern, wo auf gute Abfuhr der entstehenden Reibungswärme geachtet werden muss.

Auf die Verwendung von Graphit als Schmierstoff in Verbindung mit Bewegungsmuttern aus Polyamiden sollte jedoch verzichtet werden, da bei dieser Kombination die Stick-Slip-Anfälligkeit steigt.

2. Herstellung und konstruktive Gestaltung

Das Gewinde von Bewegungsmuttern kann spangebend auf entsprechenden Werkzeugmaschinen hergestellt werden. Wir empfehlen die Herstellung mit einer Drehmaschine und die Verwendung eines Gewindedrehmeißels. So kann gewährleistet werden, dass das zum Ausgleich von Wärmedehnung und Feuchteaufnahme notwendige größere Spiel an den Gewindeflanken hergestellt werden kann.

Die Verbindung von Bewegungsmutter und Aufnahmegehäuse erfolgt im Allgemeinen über eine Passfeder. Die Belastbarkeit von Kunststoffmuttern richtet sich in diesem Fall nach der zulässigen Pressung in der Passfedernut.

Zum vollständigen Ausschöpfen der Belastbarkeit des Kunststoffgewindes ist eine formschlüssige Verbindung zwischen Stahlaußengehäuse und Kunststoffmutter notwendig.

3. Berechnung der Tragfähigkeit

3.1 Flächenpressung in der Keilnut

Für eine Verbindung mit Passfeder muss die Keilnutflanke auf Überschreiten der zulässigen Flächenpressung überprüft werden.

Die Flächenpressung ergibt sich zu

$$P_{F} = \frac{M_{d} \cdot 10^{3}}{i \cdot r_{m} \cdot h \cdot b}$$
 [MPa]

mit

M_d = übertragenes Drehmoment in Nm

i = Anzahl der Nutflanken

r_m = Radius von Wellenmitte bis Flankenmitte der tragenden Flanke in mm

h = Höhe der tragenden Flanke in mm

b = Breite der tragenden Flanke in mm

Der aus der Berechnung erhaltene Wert wird mit dem Diagramm 1 verglichen und darf den maximalen Wert nicht überschreiten.

3.2 Flächenpressung an der Gewindeflanke

Geht man davon aus, dass alle Gewindeflanken gleichermaßen die Belastung tragen, ergibt sich die an den Flanken auftretende Flächenpressung zu

$$p = \frac{F}{z \cdot H \cdot \sqrt{\left(d_2 \cdot \pi \cdot \frac{I}{P}\right)^2 + I^2}}$$
 [MPa]

mit

F = Axiallast der Spindel in N

P = Steigung in mm

 d_2 = Flankendurchmesser in mm

l = Mutterlänge in mm

H = Tragtiefe für metrisches ISO-Trapezgewinde in mm nach Tabelle 1

Bei statischer Belastung können für Bewegungsmuttern aus PA, POM oder PET bei 20°C ca. 12 MPa, bei 80°C ca. 8 MPa als maximal zulässige Pressung zugelassen werden.

Tabelle 1: Metrisches ISO – Trapezgewinde nach DIN 103

Gewinde- durchmesser	Р	н	d ₂	Gewinde- durchmesser	Р	н	d ₂	Gewinde- durchmesser	Р	н	d ₂
d		= 0,5 · P	= d - H	d		= 0,5 · P	= d - H			= 0,5 · P	= d - H
8	1,5	0,75	7,25	36	6	3	33	75	10	5	70
10	2	1	9	40	7	3,5	36,5	80	10	5	75
12	3	1,5	10,5	44	7	3,5	40,5	85	12	6	79
16	4	2	14	48	8	4	44	90	12	6	84
20	4	2	18	52	8	4	48	95	12	6	89
24	5	2,5	21,5	60	9	4,5	55,5	100	12	6	94
28	5	2,5	25,5	65	10	5	60	110	12	6	104
32	6	3	29	70	10	5	65	120	14	7	113

3.3 Gleitreibung an der Gewindeflanke

Da die Gewindeflanken wie ein Gleitelement betrachtet werden können, kann auch für Bewegungsmuttern der pv-Wert als Richtwert für die Gleitreibbelastung herangezogen werden. Dieser wird für die Gewindeflanke zu

$$pv = p \cdot \frac{n \cdot \sqrt{(d_2 \cdot \pi)^2 \cdot s^2}}{60000}$$
 [MPa · m/s]

mit

 $n = Anzahl der Hübe in 1/min^{-1}$ $d_2 = Flankendurchmesser in mm$

s = Hublänge in mm

Die Frage der zulässigen Gleitreiblast ist, wie bei Gleitlagern auch, ein Problem der durch die Reibung entstandenen Wärme. Wenn sichergestellt ist, dass die Kunststoffmutter im Aussetzbetrieb ausreichende Gelegenheit zum Abkühlen hat, können gegenüber dem Dauerbetrieb entsprechend höhere Werte zugelassen werden.

Die ermittelten Werte dürfen jedoch die in Tabelle 2 aufgeführten maximalen Werte nicht überschreiten.

Tabelle 2: pv – Grenzwerte für Bewegungsmuttern

Dauerbetrieb							Aussetzbetrieb			
PA 6 G Oilamid PET PET						PA 6 G	Oilamid	POM – C	PET	PET – GL
Trockenlauf	0,15	0,23	0,15	0,15	0,25	0,23	0,34	0,23	0,23	0,37
kontinuierliche Schmierung 0,30 0,30 0,30 0,50						0,45	0,45	0,45	0,45	0,50

Toleranzen

1. Werkstoffgerechte Toleranzen für spangebend hergestellte Konstruktionsteile aus Kunststoff

Häufig werden Kunststoffe als Ersatz für konventionelle Werkstoffe in bestehende Konstruktionen integriert. In der Regel erfolgt eine Änderung der Fertigungzeichnung aber nur hinsichtlich des neuen Materials. Oft werden die für das Stahlbauteil gewählten Toleranzen nicht an den neuen Werkstoff angepasst. Aber auch bei Neukonstruktionen, für die Kunststoff als Werkstoff vorgesehen wird, werden häufig die im Stahlbau üblichen Toleranzfelder verwendet.

Die Besonderheiten des Kunststoffs schließen jedoch die Wahl von engen Fertigungstoleranzen, wie sie bei Stahlbauteilen üblich sind, weitgehend aus.

Entscheidend dafür ist nicht die Herstellbarkeit, denn diese ist durch den Einsatz von modernen CNC- gesteuerten Werkzeugmaschinen weitgehend unproblematisch, sondern die dauerhafte Einhaltbarkeit der Toleranzen nach der Fertigung. Dies gilt besonders für Passmaße mit sehr engen Toleranzfeldern (< 0,1 mm). Diese können sich infolge des viskoelastischen Verhaltens der Kunststoffe schon nach dem Abspannen des Werkstücks vom Maschinentisch verändern. Insbesondere die größere Wärmedehnung, die Volumenänderung durch Feuchteaufnahme wie auch die Form- und Maßänderungen durch Relaxatation von fertigungsbedingten Restpannungen im Material sind als Ursachen dafür zu nennen.

Erschwerend kommt hinzu, dass bis zum jetzigen Zeitpunkt kein allgemeingültiges Normwerk für die kunststoffgerechte Tolerierung von spangebend hergestellten Konstruktionteilen geschaffen wurde. Die fehlende gemeinsame Basis für die werkstoffgerechte Tolerierung solcher Teile führt hinsichtlich der Einstufung als Ausschussteil bzw. mangelhafte Lieferung häufig zu verschiedenen Auffassungen zwischen Kunde und Lieferant. Durch die Auswahl eines werkstoffgerechten Toleranzfeldes lassen sich diese Diskussionen vermeiden und die Funktionstüchtigkeit und Betriebssicherheit von Kunststoffbauteilen gewährleisten.

Die folgenden Abschnitte dieses Kapitels basieren auf unseren langjährigen Erfahrungen mit den verschiedenen Kunststoffen und sollen den Konstrukteuren bei der Festlegung der Toleranzen helfen. Ziel ist es dabei, eine einheitlich Basis zu schaffen und Kosten durch Ausschuss aufgrund nicht werkstoffgerechter Tolerierung zu vermeiden.

Die von uns empfohlenen Toleranzfelder sind mit dem üblichen Fertigungsverfahren und ohne zusätzlichen Aufwand zu erreichen. Im Allgemeinen werden die Funktionstüchtigkeit und Betriebssicherheit der Bauteile durch die vergrößerte Toleranz nicht eingeschränkt. Engere Toleranzen als die angegebenen sind bis zu gewissen Grenzen machbar, erfordern aber einen ungleich höheren Aufwand bei der Bearbeitung und eine notwendige Zwischenbehandlung des Werkstoffs (Tempern) während der Fertigung. Müssen Konstruktionsteile mit Toleranzfeldern < 0,1 mm oder Passungen der ISO-Reihen IT 9 und kleiner versehen werden, sind wir gerne bereit, bei der Auswahl eines technisch/ wirtschaftlich sinnvollen und einhaltbaren Toleranzfelds beratend zu helfen.

2. Kunststoffgerechte Toleranzen

2.1 Allgemeintoleranzen

Die Allgemeintoleranzen für Freimaße können nach der DIN ISO 2768 T1, Toleranzklasse »m«, gewählt werden.

Darin sind die Toleranzen wie folgt festgelegt:

Tabelle 1: Grenzabmaße in mm für Längenmaße (DIN ISO 2768 T1)

	Nennmaßbereich in mm										
Toleranz- klasse	0,5 bis 3	über 3 bis 6	über 6 bis 30	über 30 bis 120	über 120 bis 400	über 400 bis 1000	über 1000 bis 2000	über 2000 bis 4000			
f (fein)	± 0,05	± 0,05	± 0,1	± 0,15	± 0,2	± 0,3	± 0,5	-			
m (mittel)	± 0,1	± 0,1	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 2,0			
g (grob)	± 0,15	± 0,2	± 0,5	± 0,8	± 1,2	± 2,0	± 3,0	± 4,0			
v (sehr grob)	-	± 0,5	± 1,0	± 1,5	± 2,5	± 4,0	± 6,0	± 8,0			

Tabelle 2: Grenzabmaße in mm für Rundungshalbmesser und Fasenhöhen (DIN ISO 2768 T1)

Toleranz- klasse	Nennmaßbereich in mm 0,5 über 3 über 6 bis 3 bis 6							
f (fein)								
m (mittel)	± 0,2	± 0,5	± 1,0					
g (grob)								
v (sehr grob)	± 0,4	± 1,0	± 2,0					

Tabelle 3: Grenzabmaße in Winkeleinheiten für Winkelmaße (DIN ISO 2768 T1)

	Nennmaßbereich des kürzeren Schenkels in mm										
Toleranz- klasse	bis 10	über 10 bis 50	über 50 bis 120	über 120 bis 400	über 400						
f (fein) m (mittel)	± 1°	± 30′	± 20′	± 10′	± 5′						
g (grob)	± 1° 30′	± 1°	± 30′	± 15′	± 10′						
v (sehr grob)	± 3°	± 2°	± 1°	± 30′	± 20′						

Für Längenmaße ist in Sonderfällen die Wahl der Toleranzklasse »f« möglich. Die dauerhafte Einhaltbarkeit der Toleranz, bezogen auf die Werkstückgeometrie, sollte aber unbedingt in Absprache mit dem Hersteller des Konstruktionsteils überprüft werden.

2.2 Form und Lage

Die Allgemeintoleranzen für Freimaße können nach der DIN ISO 2768 T2, Toleranzklasse »K«, gewählt werden.

Darin sind die Toleranzen wie folgt festgelegt:

Tabelle 4: Allgemeintoleranzen für Geradheit und Ebenheit (DIN ISO 2768 T2)

	Nennmaßbereich in mm									
Toleranz- Klasse	bis 10	über 10 bis 30	über 30 bis 100	über 100 bis 300	über 300 bis 1000	über 1000 bis 3000				
Н	0,02	0,05	0,1	0,2	0,3	0,4				
K	0,05	0,1	0,2	0,4	0,6	0,8				
L	0,1	0,2	0,4	0,8	1,2	1,6				

Tabelle 5: Allgemeintoleranzen für Rechtwinkligkeit (DIN ISO 2768 T2)

	Nennmaßbereich in mm								
Toleranz- Klasse	bis 100	über 100 bis 300	über 300 bis 1000	über 1000 bis 3000					
Н	0,2	0,3	0,4	0,5					
K	0,4	0,6	0,8	1,0					
L	0,6	1,0	1,5	2,0					

Tabelle 6: Allgemeintoleranzen für Symmetrie (DIN ISO 2768 T2)

	Nennmaßbereich in mm							
Toleranz- Klasse	bis 100	über 100 bis 300	über 300 bis 1000	über 1000 bis 3000				
Н	0,5							
K	0,	6	0,8	1,0				
L	0,6	1,0	1,5	2,0				

Die Allgemeintoleranz für Rund- und Planlauf für die Klasse »K« beträgt 0,2 mm.

Für Form und Lage ist in Sonderfällen die Wahl der Toleranzklasse »H« möglich. Die Allgemeintoleranz für Rund- und Planlauf für die Klasse »H« beträgt 0,1 mm.

Die dauerhafte Einhaltbarkeit der Toleranz, bezogen auf die Werkstückgeometrie, sollte aber unbedingt in Absprache mit dem Hersteller des Konstruktionsteils überprüft werden.

2.3 Passungen

Wie bereits eingangs beschrieben, ist die Anwendung des ISO-Toleranzsystems mit den bei Stahlbauteilen üblichen Toleranzfeldern nicht möglich. Demnach ist von der Verwendung der Toleranzreihen IT 01 - 9 abzusehen. Zudem muss bei der Bestimmung der richtigen Toleranzreihe sowohl das Bearbeitungsverfahren als auch der verwendete Kunststoff berücksichtigt werden.

2.3.1 Maßkategorien

Die verschiedenen Kunststoffe können entsprechend ihrer Maßhaltigkeit in zwei Kategorien unterteilt werden. Diese sind in der Tabelle 7 dargestellt.

Tabelle 7: Maßkategorien für Kunststoffe

Maßkategorie	Kunststoffe	Bemerkung
А	POM, PET, PTFE+Glas, PTFE+Bronze, PTFE+Kohle,PC,PVC-U, PVDF, PP-H, PEEK, PEI, PSU, HGW (Hartgewebe)	Thermoplaste mit oder ohne Verstärkungs-/ Füllstoffen (mit geringer Feuchtig- keitsaufnahme)
В	PE-HD, PE-HMW, PE-UHMW, PTFE, PA 6, PA 6 G, PA 66, PA 12	weiche Thermoplaste und Polyamide mit Feuchtigkeitsaufnahme

2.3.2 Zuordnung der Toleranzreihen für Frästeile

Zuordnung für Frästeile mit Toleranzangaben

Maßkategorie:

Α

IT 10 - 12

В

IT 11 - 13

Tabelle 8: ISO-Grundtoleranzen in μm nach DIN ISO 286

Nennmaß- bereich												
mm		6	7	8	9	10	11	12	13	14	15	16
von bis	1-3	6	10	14	25	40	60	100	140	250	400	600
über bis	3-6	8	12	18	30	48	75	120	180	300	480	750
über bis	6-10	9	15	22	36	58	90	150	220	360	580	900
über bis	10-18	11	18	27	43	70	110	180	270	430	700	1100
über bis	18-30	13	21	33	52	84	130	210	330	520	840	1300
über bis	30-50	16	25	39	62	100	160	250	390	620	1000	1600
über bis	50-80	19	30	46	74	120	190	300	460	740	1200	1900
über bis	80-120	22	35	54	87	140	220	350	540	870	1400	2200
über bis	120-180	25	40	63	100	160	250	400	630	1000	1600	2500
über bis	180-250	29	46	72	115	185	290	460	720	1150	1850	2900
über bis	250-315	32	52	81	130	210	320	520	810	1300	2100	3200
über bis	315-400	36	57	89	140	230	360	570	890	1400	2300	3600
über bis	400-500	40	63	97	155	250	400	630	970	1550	2500	4000

2.3.3 Zuordnung der Toleranzreihen für Drehteile

Zuordnung für Drehteile mit Toleranzangaben

Maßkategorie:

Α

IT 10 - 11

В

IT 11 - 12

Tabelle 8: ISO-Grundtoleranzen in µm nach DIN ISO 286

Nennmaß- bereich	ISO - To	leranzre	ihe (IT)									
mm		6	7	8	9	10	11	12	13	14	15	16
von bis	1-3	6	10	14	25	40	60	100	140	250	400	600
über bis	3-6	8	12	18	30	48	75	120	180	300	480	750
über bis	6-10	9	15	22	36	58	90	150	220	360	580	900
über bis	10-18	11	18	27	43	70	110	180	270	430	700	1100
über bis	18-30	13	21	33	52	84	130	210	330	520	840	1300
über bis	30-50	16	25	39	62	100	160	250	390	620	1000	1600
über bis	50-80	19	30	46	74	120	190	300	460	740	1200	1900
über bis	80-120	22	35	54	87	140	220	350	540	870	1400	2200
über bis	120-180	25	40	63	100	160	250	400	630	1000	1600	2500
über bis	180-250	29	46	72	115	185	290	460	720	1150	1850	2900
über bis	250-315	32	52	81	130	210	320	520	810	1300	2100	3200
über bis	315-400	36	57	89	140	230	360	570	890	1400	2300	3600
über bis	400-500	40	63	97	155	250	400	630	970	1550	2500	4000

2.4 Oberflächengüte

Die erreichbaren Rauigkeitsgrade sind vom Bearbeitungsverfahren abhängig. In Tabelle 9 sind die ohne zusätzlichen Aufwand realisierbaren Oberflächengüten für die einzelnen Bearbeitungsverfahren aufgeführt.

Tabelle 9: Erreichbare Oberflächengüten für verschiedenen Bearbeitungsverfahren

Bearbeitungsart	max. erreichbarer Rauigkeitsgrad	Mittenrauwert R _a (µm)	gemittelte Rautiefe R _Z (µm)
Fräsen	N7	1,6	8
Drehen	N7	1,6	8
Hobeln	N8	3,2	12,5
Sägen	N8	3,2	16

In Verbindung mit einem höheren Fertigungsaufwand sind auch bessere Oberflächengüten als die in Tabelle 9 enthaltenen möglich. Die Herstellbarkeit unter Beachtung des eingesetzten Kunststoffs und des Bearbeitungsverfahrens sollte aber unbedingt in Absprache mit dem Hersteller des Konstruktionsteils überprüft werden.

2.5 Toleranzen für Presssitzpassungen

2.5.1 Einpressübermaße für Buchsen

Für die sichere Befestigung von Gleitlagerbuchsen in der Lagerbohrung hat sich das Einpressen mit Übermaß bewährt. Im Vergleich zu metallischen Lagerbuchsen sind die Übermaße von Kunststoffbuchsen sehr groß. Aufgrund des viskoelastischen Verhaltens der Kunststoffe ist dies speziell unter Wärmeeinwirkung jedoch notwendig, da sich sonst die Lagerbuchse in der Bohrung lösen würde. Liegen die Einsatztemperaturen bei max. 50°C kann unter Beachtung der Einpressübermaße aus Diagramm 1 auf eine zusätzliche Sicherung der Lagerbuchse verzichtet werden. Bei Temperaturen über 50°C empfehlen wir die Sicherung durch ein im Maschinenbau übliches Sicherungselement (z.B. Sicherungsringe nach DIN 472, siehe auch Kapitel »Gleitlager« Abschnitt 2.5).

Weiterhin ist zu beachten, dass beim Einpressen der Lagerbuchse das Übermaß dazu führt, dass die Buchse zusammengedrückt wird. Daher muss der Betrag des Übermaß als Zuschlag zum Betriebslagerspiel berücksichtigt und der Lagerinnendurchmesser entsprechend größer gewählt werden. Aus Diagramm 2 kann das erforderliche Betriebslagerspiel in Abhängigkeit vom Lagerinnendurchmesser entnommen werden. Um ein Klemmen des Lagers zu verhindern, ist bei Temperaturen über 50 °C die Korrektur des Lagerspiels mit den im Kapitel »Gleitlager« Abschnitt 2.3 genannten Faktoren notwendig.

Hinsichtlich der Bemaßung von dünnwandigen Lagerbuchsen, Ringen und ähnlichen Bauteilen ist anzumerken, dass es bei der Maßkontrolle aufgrund der aufgebrachten Messkräfte und der dadurch hervorgerufenen Verformung zu falschen Messergebnissen kommen kann. Es empfiehlt sich daher die in Bild 1 dargestellte Tolerierung des Außendurchmessers und der Wandstärke.

Bild 1: Beispiel für die Tolerierung einer Lagerbuchse

2.5.2 Einpressuntermaß für Wälzlager

Wälzlager können bei Einsatztemperaturen bis 50°C direkt in den mit Untermaß gefertigten Lagersitz eingepresst werden. Die Sicherung des Lagers ist bei niedrigen Belastungen und Einsatztemperaturen nicht zwingend notwendig, empfiehlt sich aber in jedem Fall bei höheren Belastungen und Einsatztemperaturen. Auch hier liegt die Ursache dafür im viskoelastischen Verhalten der Kunststoffe, was zum Nachlassen der Presskraft und dem Auswandern des Lagers führen kann.

Zur Sicherung können ebenfalls die im Maschinenbau üblichen Sicherungselemente (z.B. Sicherungsringe nach DIN 472) verwendet werde. Bei Einsatz in Bereichen mit hohen Temperaturen oder Belastungen besteht alternativ die Möglichkeit, einen Stahlring in die Lagerbohrung einzusetzen. Dieser Stahlring wird mit zusätzlichen Sicherungselementen in der Lagerbohrung fixiert und das Lager in diesen Ring eingepresst.

In Diagramm 3 sind die notwendigen temperaturabhängigen Untermaße zur Befestigung des Lagers im Lagersitz durch Einpressen dargestellt.

Für Lagersitze, in die Wälzlager zum Betrieb unter normalen Temperatur- und Belastungsbedingungen eingepresst werden sollen, empfehlen wir die folgenden Einpressuntermaße und Toleranzen:

Lagersitzdurchmesser bis 50 mm \Rightarrow - 0,15 / - 0,25 mm Lagersitzdurchmesser über 50 bis 120 mm \Rightarrow - 0,25 / - 0,35 mm Lagersitzdurchmesser über 120 mm \Rightarrow - 0,40 / - 0,50 mm

Die so gefertigten Lagersitze zeigen nach unseren langjährigen Erfahrungen kein übermäßiges Nachlassen der Presskraft und sind in der Lage, die Wälzlager sicher in ihrer Position zu halten. Bei der Anwendung dieser Empfehlung ist jedoch zu beachten, dass es bei extrem kleinen Verhältnissen von Lagersitzdurchmesser zu Außendurchmesser trotz der Einhaltung unserer Empfehlungen zu Loslösungen des Lagers kommen kann. Dies ist darauf zurückzuführen, dass die durch das Einpressen hervorgerufenen Spannungen zu einer Längung des verbliebenen Materials führen. Infolgedessen wird der Lagersitzdurchmesser größer und die erforderliche Presskraft zur Fixierung des Lagers kann nicht mehr aufrecht erhalten werden. Begünstigt wird dieses Verhalten durch hohe Temperaturen und/oder die im Betrieb auftretende Walkarbeit. Abhilfe kann durch die beschriebenen Sicherungsmaßnahmen getroffen werden.

3. Allgemeine Hinweise

Die genannten Grundtoleranzen und Abmaße sind dauerhaft nur unter Normklima (23°C/50 rel. Luftfeuchte) einhaltbar. Unter anderen Umgebungsbedingungen müssen diese durch entsprechende Korrekturfaktoren berücksichtigt werden. Diese können den vorangegangenen Kapiteln für den jeweiligen Anwendungsfall entnommen werden.

3.1 Maß- und Volumenänderung bei Temperatureinfluss

Allgemein gilt: die Längenänderung durch Temperatureinfluss beträgt ca. 0,1% pro 10 K Temperaturänderung. Zusätzlich ist bei Polyamiden eine Volumenänderung durch Feuchtigkeitsaufnahme von ca. 0,15 - 0,20% pro 1% aufgenommenem Wasser zu berücksichtigen.

Unter Beachtung der werkstoffspezifischen Längenausdehnungskoeffizienten können die zu erwartenden Längenausdehnungen und Volumenänderungen bei Temperaturschwankungen näherungsweise rechnerisch ermittelt werden.

Damit wird die zu erwartende Längenausdehnung zu

 $\Delta I = I \cdot \alpha \cdot (v_1 - v_2)$ [mm]

mit:

ΔI = zu erwartende Längenausdehnung

I = Ausgangslänge in mm

 α = werkstoffspezifischer Längenausdehnungskoeffizient

 v_1 = Einbautemperatur in °C v_2 = Betriebstemperatur in °C

Die zu erwartende Volumenänderung errechnet sich unter der Voraussetzung, dass die Ausdehnung in keine Richtung behindert wird, aus:

 $\Delta V = V \cdot \beta \cdot (v_2 - v_1)$ [mm³]

und

 $\beta = 3 \cdot \alpha$

mit:

 $\Delta V = zu$ erwartende Volumenänderung

V = Ausgangsvolumen in mm³

 α = werkstoffspezifischer Längenausdehnungskoeffizient β = werkstoffspezifischer Volumenausdehnungskoeffizient

 v_1 = Einbautemperatur in °C v_2 = Betriebstemperatur in °C

Die werkstoffspezifischen Längenausdehnungskoeffizienten können aus der Tabelle 10 entnommen werden.

Tabelle 10: Lineare Längenausdehnungskoeffizienten verschiedener Kunststoffe

Werkstoff	Kurzzeichen	Ausdehnungskoeffizient α 10 ⁻⁵ · K ⁻¹
Polyamid 6 Guss	PA 6 G	7
Polyamid 6 Guss CC	PA 6 G-CC	8
Oilamid	PA 6 G + Öl	7
Calaumid 612	PA 6/12 G	8
Calaumid 1200	PA 12 G	10
Polyamid 6	PA 6	9
Polyamid 6 + 30% Glasfaser	PA 6 GF30	3
Polyamid 66	PA 66	10
Polyamid 12	PA 12	12
Polyacetal	POM -C	10
Polyacetal GF-gefüllt	POM -C-GF30	2,5
Polyetheylenterephtalat	PET	7
Polyetheylenterephtalat + Gleitzusatz	PET - GL	8
Polytetraflourethylen	PTFE	19
Polytetraflourethylen + 25 % Glasfaser	PTFE -GF25	13
Polytetraflourethylen + 25 % Kohle	PTFE -K25	11
Polytetraflourethylen + 40 % Bronze	PTFE -B40	10
Polyethylen 500	PE-HMW	18
Polyethylen 1000	PE-UHMW	18
Polyetheretherketon	PEEK	4
Polyetheretherketon modifiziert	PEEK-GL	3
Polysulfon	PSU	6
Polyetherimid	PEI	6

3.2 Geometrische Formen

Durch die geometrischen Verhältnisse eines Werkstücks kann es zu Maß- und Formveränderungen nach der Bearbeitung kommen. Daher muss entweder die geometrische Form geändert oder es müssen die empfohlenen Toleranzreihen bei Werkstücken mit extremen geometrischen Formund Wandstärkenverhältnissen wie z.B. starke einseitige Spanabnahme, extrem dünne Wandstärken, starke Wandstärkenunterschiede, entsprechend angepaßt werden. Sollte es bei der Festlegung der geometrischen Form oder von Maß- Form- und Lagetoleranzen zu Unsicherheiten kommen, stehen wir für eine Beratung gerne zur Verfügung.

3.3 Messtechnik

Enge Toleranzen sind bei Kunststoffwerkstücken, insbesondere bei dünnwandigen Teilen, nur schwer messbar. Der über das Messwerkzeug auf das Werkstück ausgeübte Druck kann zu Verformungen des Kunststoffteils führen, oder durch den niedrigen Reibwert von Kunststoffen wird das Anzugsmoment von Messschrauben verfälscht. Dies führt zwangsläufig zu falschen Messwerten. Daher ist der Einsatz von berührungslosen Messsystemen zu bevorzugen.

Bearbeitungsrichtlinien

Spangebende Bearbeitung von thermoplastischen Kunststoffen

Mit der zunehmenden Vielfalt von technischen Kunststoffen und den daraus resultierenden Einsatzmöglichkeiten öffnen sich für den Konstrukteur neue Horizonte, die ihm mit den üblichen Werkstoffen verschlossen blieben. Oft ist, neben den Werkstoffgrenzen, nur das Herstellverfahren als Grenze der gestalterischen Möglichkeiten zu sehen. Insbesondere dann, wenn großvolumige Konstruktionsteile aus Guss-Polyamiden und Polyacetal (POM) oder Polyethylenterephtalat (PET) benötigt werden, können Herstellverfahren wie z.B, Spritzguss nicht eingesetzt werden. Dies gilt ebenso für komplexe Funktionsträger, die eine allseitige Bearbeitung mit engen Toleranzen erfordern.

Hier hat sich die spanabhebende Herstellung als vorteilhaft erwiesen. Sowohl hochpräzise Funktionsträger als auch großvolumige Konstruktionsteile lassen sich in kleinen und mittleren Losgrößen besonders wirtschaftlich durch spanabhebende Bearbeitung herstellen.

Abb. 1: komplexes Funktionsteil aus POM

Für die Herstellung von qualitativ hochwertigen Produkten sind bei der Auswahl von Maschinen und Werkzeugen sowie deren Einsatz einige spezifische Eigenschaften der Kunststoffe zu berücksichtigen.

1.1 Bearbeitungsmaschinen/-werkzeuge

Für die spanabhebende Bearbeitung sind keine besonderen Maschinen oder Verfahren notwendig. Es können die in der Holz- und Metallbearbeitung üblichen Maschinen mit Werkzeugen aus HSS (Hochleistungs-Schnellschnittstahl) oder Hartmetall-Werkzeuge verwendet werden. Lediglich für die Bearbeitung der Kunststoffe mit der Kreissäge empfiehlt sich grundsätzlich der Einsatz von hartmetallbestückten Sägeblättern.

Eine Besonderheit stellt die Gruppe der glasfaserverstärkten Kunststoffe dar. Eine Bearbeitung mit hartmetallbestückten Werkzeugen ist zwar möglich, jedoch können aufgrund der niedrigen Standzeiten der Werkzeuge nur schwer wirtschaftliche Ergebnisse erzielt werden. Hier empfiehlt sich die Verwendung von diamantbestückten Werkzeugen, die zwar wesentlich teurer als herkömmliche Werkzeuge sind, aber erheblich längere Standzeiten aufweisen.

1.2 Bearbeiten und Spannen des Werkstücks

Kunststoffe haben im Vergleich zu metallischen Werkstoffen ein geringes Wärmeableitvermögen sowie einen niedrigen E-Modul. Durch unsachgemäße Bearbeitung kann es zu starker Erwärmung des Werkstücks und damit zu Wärmedehnung kommen. Hohe Spanndrücke und stumpfe Werkzeuge erzeugen Verformungen des Werkstücks während der Bearbeitung. Maß- und Formabweichungen über den Toleranzbereich hinaus sind die Konsequenz.

Zufriedenstellende Arbeitsergebnisse können also nur erzielt werden, wenn bei der Zerspanung von Kunststoffen einige werkstoffspezifische Richtlinien beachtet werden.

Im Einzelnen bedeutet das:

- Es sollten möglichst hohe Schnittgeschwindigkeiten angestrebt werden.
- Eine optimale Spanabfuhr muss gewährleistet sein, damit ein Einziehen der Späne durch das Werkzeug vermieden wird.
- Die verwendeten Werkzeuge müssen absolut scharf geschliffene Schneiden aufweisen. Stumpfe Schneiden können zu starker Erwärmung führen, was Verzug und Wärmedehnung zur Folge haben kann.

- Die Spanndrücke dürfen nicht zu hoch sein, da sonst Deformationen des Werkstücks und Abdrücke der Spannwerkzeuge im Werkstück die Folge sind.
- Aufgrund der geringen Steifigkeit muss das Werkstück auf dem Maschinentisch ausreichend unterstützt werden und möglichst vollflächig aufliegen.
- Einwandfreie, hochwertige Oberflächen lassen sich nur durch vibrationsarmen Maschinenenlauf realisieren.

Unter Beachtung dieser Richtlinien sind auch enge, kunststoffgerechte Toleranzen mit hoher Wiederholgenauigkeit ohne Schwierigkeiten realisierbar.

1.3 Kühlung während der Bearbeitung

Im Allgemeinen ist eine Kühlung während der Bearbeitung nicht unbedingt notwendig. Soll gekühlt werden, empfiehlt sich die Verwendung von Pressluft. Diese hat den Vorteil, dass neben dem Kühleffekt gleichzeitig der Span aus dem Arbeitsbereich entfernt wird und ein Einziehen des Spans in, bzw. ein Umlaufen des Spans um das Werkzeug verhindert wird.

Handelsübliche Bohremulsionen können ebenfalls zur Kühlung verwendet werden und sind besonders für das Einbringen von tiefen Bohrungen und das Gewindeschneiden zu empfehlen. Darüber hinaus lassen sich höhere Vorschübe und damit geringere Laufzeiten erzielen.

Bei der Verwendung von Bohremulsionen ist jedoch darauf zu achten, dass diese nach der Bearbeitung rückstandslos entfernt wird. So wird verhindert, dass deren ölhaltige Bestandteile etwaige Folgearbeitsgänge wie z.B. Verkleben oder Lackieren behindern und speziell bei Polyamiden die Wasseranteile zu Veränderungen der Bauteile durch Feuchteaufnahme führen.

2. Kennwerte für die einzelnen Bearbeitungsverfahren

2.1 Sägen

Kunststoffe können gleichermaßen mit der Band- oder Kreissäge gesägt werden. Die Auswahl richtet sich nach der Form des Halbzeugs. Der Einsatz einer Bandsäge bietet sich insbesondere bei der Verwendung einer "Auflagekehle" (Prisma) für den Zuschnitt von Vollstäben und Rohren an und birgt den Vorteil, dass die entstehende Barbeitungswärme durch das lange Sägeblatt gut abgeführt wird. Es muss jedoch auf eine ausreichende Schränkung des Blattes geachtet werden, damit ein Klemmen des Blattes verhindert wird.

Kreissägen kommen hingegen hauptsächlich für den Zuschnitt von Tafeln und Blöcken mit geraden Schnittkanten in Betracht. Hierbei ist zu beachten, dass mit ausreichenden Vorschüben gearbeitet wird, damit die Spanabfuhr gewährleistet ist und ein Klemmen des Sägeblatts sowie eine Überhitzung des Kunststoffs im Sägeschnitt verhindert wird. Die Tabelle 1 enthält Richtwerte für die Schneidengeometrie der Sägeblätter.

Tabelle 1: Werkzeuggeometrie für Sägeblätter

	PA, PE, POM, PET,	PVDF, PVC
	Bandsäge	Kreissäge
α = Freiwinkel (°)	30 - 40	10 - 15
γ = Spanwinkel (°)	0 - 8	0 - 10
v = Schnittgeschw. m/min	200 - 1000	1000 - 3500
t = Zähnezahl	3 - 5 pro Zoll	24 - 80

2.2 Fräsen

Die Fräsbearbeitung auf den üblichen Bearbeitungszentren ist unproblematisch. Mit hohen Schnittgeschwindigkeiten und unter mittleren Vorschüben lassen sich hohe Zerspanleistungen bei gleichzeitig guter Oberflächenqualität und Genauigkeit erzielen. Hinsichtlich der Schneidengeometrie empfehlen wir die in Tabelle 2 enthaltenen Werte

Tabelle 2: Werkzeuggeometrie für Fräser

2.3 Drehen

Da bei den meisten Kunststoffen ein Fließspan entsteht, ist auf eine besonders gute Abfuhr der Späne zu achten, da sich diese sonst einklemmen und mit dem Drehteil umlaufen. Des Weiteren ist aufgrund der geringeren Steifigkeit der Kunststoffe bei längeren Teilen die Gefahr des Durchhangs groß und deshalb die Verwendung einer Lünette ratsam. Für die Schneidengeometrie gelten die Werte der Tabelle 3

Tabelle 3: Werkzeuggeometrie für Drehstähle

2.4 Bohren

Bohrungen können mit einem handelsüblichen HSS-Bohrer hergestellt werden. Bei der Herstellung von tiefen Bohrungen ist darauf zu achten, dass für eine gute Spanabfuhr gesorgt ist, da es sonst an der Bohrungswand zur Erwärmung des Kunststoffs bis zur Schmelztemperatur kommen kann und der Bohrer "schmiert". Dies gilt insbesondere für tiefe Bohrungen.

Für Bohrungen in dünnwandige Werkstücke empfiehlt sich die Wahl einer hohen Schnittgeschwindigkeit und ggf. eines neutralen (0°) Spanwinkels. So wird ein Einhaken des Bohrers in das Werkstück und das damit verbunde Ausreißen der Bohrung bzw. Hochziehen des Werkstücks am Bohrer vermieden.

In Tabelle 4 sind die empfohlenen Werte für die Bohrerschneidengeometrie dargestellt.

Tabelle 4: Werkzeuggeometrie für Bohrer

2.5 Bohren großer Durchmesser in Rundstababschnitten

Beim Bohren entstehen an den Bohrerschneiden speziell bei hochkristallinen Werkstoffen wie PA 6 G hohe Temperaturen, die aufgrund der guten Isoliereigenschaften der Kunststoffe nicht ausreichend abgeführt werden können. Die Wärme führt zu einer inneren Dehnung des Werkstoffs, was Druckspannungen im Inneren des Stababschnitts hervorruft. Diese können so hoch werden, dass es zum Reißen und Auseinanderplatzen des Rohlings kommt.

Dies kann durch werkstoffgerechte Bearbeitung weitgehend vermieden werden. Es empfiehlt sich, eine Vorbohrung anzubringen und die Fertigbearbeitung mit einem Innendrehmeißel auszuführen. Vorbohrungen sollten dabei im Durchmesser nicht größer als 35 mm sein. Bohrungen in langen Stababschnitten dürfen dabei nur von einer Seite her eingebracht werden, da sich sonst beim Aufeinandertreffen der Bohrungen in der Mitte des Rohlings ein ungünstiges Spannungsverhältnis ergibt, welches das Reißen des Stababschnitts begünstigt. In extremen Fällen kann es notwendig sein, den Rohling auf ca. 120 - 150 °C zu erwärmen und die

In extremen Fällen kann es notwendig sein, den Rohling auf ca. 120 - 150 °C zu erwärmen und die Vorbohrung in diesem Zustand anzubringen. Die Fertigbearbeitung kann dann nach dem vollständigen Abkühlen und Erreichen eines gleichmäßigen Temperaturniveaus innerhalb des Rohlings erfolgen.

Werden die vorstehenden Bearbeitungsrichtlinien beachtet, ist die Herstellung komplexer Produkte aus technischen Kunststoffen mit spangebenden Verfahren auch bei höchsten Qualitätsanforderungen an Genauigkeit und Funktionalität ohne Weiteres möglich.

Physikalische Werkstoffrichtwerte und chemische Beständigkeiten von Kunststoffen

Hinweise und Bedingungen für die Tabelle "Physikalische Werkstoffrichtwerte"

Die Angaben aus der Liste sollen einen Überblick über die Eigenschaften unserer Produkte verschaffen und einen schnellen Werkstoffvergleich ermöglichen. Sie geben den heutigen Stand unserer Kenntnisse wieder und erheben keinen Anspruch auf Vollständigkeit. Aufgrund der starken Abhängigkeit von Umgebungseinflüssen und Bearbeitung sind die genannten Werte nur als Richtwerte zu verstehen. Sie stellen in keinem Fall eine rechtlich verbindliche Zusicherung bezüglich der Eigenschaften unserer Produkte oder deren Eignung zur Anwendung in einem konkreten Einsatzfall dar. Alle genannten Werte wurden als Durchschnittswert aus vielen Einzelmessungen ermittelt und beziehen sich auf eine Temperatur von 23 °C und 50 % RF.

Für den spezifizierten Anwendungsfall empfehlen wir den Eignungsnachweis durch einen praktischen Versuch.

Die Bedingungen, unter denen die einzelnen Werte ermittelt wurden bzw. die Merkmale zu den einzelnen Werten sind in der folgenden Liste mit den entsprechenden Fußnoten gekennzeichnet:

Kennwert	Bedingung	Fußnote
Schlagzähigkeit DIN 53 453	gemessen mit Pendelschlagwerk 0,1 DIN 51 222	1
Zeitdehnspannung DIN 53 444	Spannung, die nach 1.000 h zu 1 % Gesamtdehnung führt	2
Gleitreibungskoeffizient	gegen Stahl gehärtet und geschliffen, $P = 0.05$ MPa, $V = 0.6$ m/s, $t = 60$ °C in Laufflächennähe	3
Linearer Längenausdehnungskoeffizient	für den Temperaturbereich von + 23 °C bis + 60 °C	4
Temperature insatz bereich	Erfahrungswerte, ermittelt an Fertigteilen ohne Belastung in erwärmter Luft, abhängig von Art und Form der Wärmeeinwirkung,	
	kurzzeitig = max. 1 h, langzeitig = Monate	5
Dielektrizitätszahl DIN 53 483	bei 10 ⁶ Hz	6
Farben	PET-natur = weiß PVDF-natur = weiß bis elfenbein (transluzent) PE-natur = weiß PP-H natur = weiß (transluzent) PP-H grau ≈ RAL 7032 PVC-grau ≈ RAL 7011 PEEK-natur ≈ RAL 7032 PSU-natur = honiggelb (transluzent) PEI-natur = amber (transluzent)	7
Einheiten und Abkürzungen	o.B. = ohne Bruch 1 MPa = 1 N/mm ² 1 g/cm ³ = 1.000 kg/m ³ 1 kV/mm = 1 MV/m	ohne

									Me	chani	sche W	/erte		
	nysikalisch Verkstoffrio	e chtwerte	e		Dichte DIN 53 479	Streckspannung DIN 53 455	Reißdehnung DIN 53 455	Elastizitätsmodul aus Zugversuch DIN 53 457	Elastizitätsmodul aus Biegeversuch DIN 53 457	Biegefestigkeit DIN 53 452	Schlagzähigkeit DIN 53 453	Kerbschlagzähigkeit DIN 53 453	Kugeldruckhärte H _{358/30} DIN 53 456	Zeitdehnspannung bei 1% Dehnung DIN 53 444ª
Nr.	Werkstoff	Kurzzeichen	Farben (Standard)	Probekörper- zustand	1 ρ g/cm³	2 σ _{zS} Mpa	$\begin{array}{c} 3 \\ \epsilon_{zR} \\ \mathbf{\%} \end{array}$	4 E _t Mpa	5 E _{B3} Mpa	6 σ _{bB} Mpa	7 a _{cU} kJ/m²	8 a _{cN} kJ/m²	9 H _K Mpa	10 σ _{1/1000} Mpa
1	Polyamid 6 Guss	PA 6 G	natur/schwarz/ blau	trocken luftfeucht	1,15	80 60	40 100	3.100 1.800	3.400 2.000	140 60	o. B.	>4 >15	160 125	>7
2	Polyamid 6 Guss + MoS ₂	PA 6 G + MoS ₂	schwarz	trocken luftfeucht	1,15	85 60	40 100	3.100 1.800	3.300 2.000	130 50	o. B.	>5 >15	150 115	>7
3	Polyamid 6 Guss-CC	PA 6 G-CC	natur/schwarz	trocken	1,15	71	>40	2.800	2.700	97	o. B.	-	125	-
4	Polyamid 6 Guss Wärmestabilisiert	PA 6 G-WS	braungrau/ schwarz	trocken luftfeucht	1,15	90 60	30 80	2.500 2.000	3.000 2.300	120 40	o. B.	>4 >12	170 130	>7
5	Oilamid®	PA 6 G + Öl	gelb/schwarz natur	trocken luftfeucht	1,14	80 55	50 120	2.500 1.500	2.800 1.800	135 55	o. B.	>5 >15	140 100	>7
6	Calaumid® 612	PA 6 / 12 G (schlagzäh)	natur	trocken luftfeucht	1,12	80 55	55 120	2.500 1.500	2.800 1.800	135 55	o. B.	>12 o. B.	140 100	> 15
7	Calaumid® 1200	PA 12 G	natur	trocken luftfeucht	1,03	60 50	55 120	2.200 1.800	2.400	90 -	o. B.	>15	- 100	>11
8	Polyamid 6	PA 6	natur/schwarz	trocken luftfeucht	1,14	70 45	50 180	2.700 1.800	2.500 1.400	130 40	o. B.	>3 o. B.	160 70	>8
9	Polyamid 66	PA 66	natur/schwarz	trocken luftfeucht	1,14	85 65	30 150	3.000 1.900	2.900 1.200	135 60	o. B.	>3 >15	170 100	>8
10	Polyamid 6 / Glasfaser	PA 6 + GF 30	schwarz	trocken luftfeucht	1,40	180 120	4 7	9.000 6.400	8.300 4.800	240 40	55	6 15	220 150	35
11	Polyamid 12	PA 12	natur	trocken	1,02	50	>200	1.800	1.500	60	o. B.	>15	100	>4
12	Polyacetal Copolymer	POM - C	weiß/schwarz	trocken	1,41	65	40	3.000	2.900	115	o. B.	>10	150	13
13	Polyacetal Copolymer / Glasfaser	POM - C GF 30	schwarz	trocken	1,59	125	3	9.300	9.000	150	30	5	210	40
14	Polyethylen- terephtalat	PET	natur ⁷⁾	trocken	1,38	80	40	3.000	2.600	125	o. B.	>4	140	13
15	Polyethylen- terephtalat / Gleitzusatz	PET-GL	grau	trocken	1,43	75	5	2.200	-	-	30	2	-	-
16	Polytetrafluor- ethylen	PTFE	weiß	trocken	2,18	25	380	750	540	6	o. B.	16	30	1,5
17	Polytetrafluor- ethylen / Glasfaser	PTFE + 25% Glasfaser	grau	trocken	2,23	15	280	1.500	1.320	4	o. B.	12	31	-
18	Polytetrafluor- ethylen / Kohle	PTFE + 25% Kohle	schwarz	trocken	2,12	15	180	-	1.275	9	-	8	38	-
19	Polytetrafluor- ethylen / Bronze	PTFE + 40% Bronze	braun	trocken	3,74	14	140	1.400	1.375	8	-	11	39	-
20	Polyvinyliden- fluorid	PVDF	natur ⁷⁾	trocken	1,78	56	22	2.000	2.000	75	o. B.	>15	120	3
21	Polyethylen 300	PE - HD	natur ⁷⁾ schwarz	trocken	0,95	22	300	800	800	32	o. B.	12	40	3
22	Polyethylen 500	PE - HMW	natur ⁷⁾ schwarz/grün	trocken	0,95	28	300	850	850	40	o. B.	50	45	3
23	Polyethylen 1000	PE - UHMW	natur ⁷⁾ schwarz/grün	trocken	0,94	22	350	800	800	27	o. B.	o. B.	40	-
24	Polypropylen	PP - H	natur ⁷⁾ /grau ⁷⁾	trocken	0,91	32	70	1.400	1.400	45	o. B.	7	70	4
25	Polyvinylchlorid	PVC - U	grau ⁷⁾ /schwarz/ rot/weiß	trocken	1,42	58	15	3.000	-	82	o. B.	4	130	-
26	Polycarbonat	PC	transparent	trocken	1,20	60	80	2.300	2.200	95	o. B.	>25	100	40
27	Polyether- etherketon	PEEK	natur ⁷⁾ schwarz	trocken	1,32	95	45	3.600	4.100	160	o. B.	7	230	-
28	Polyetherether- keton (modifiziert)	PEEK - GL	schwarz	trocken	1,48	118	3	8.100	10.000	210	25	2,5	270	-

natur⁷⁾ $All egenannten Werte wurden als Durchschnittswert aus vielen Einzelmessungen ermittelt und beziehen sich auf eine Temperatur von 23 \,^{\circ}C \, und 50\% \, RF.$

natur⁷⁾

PSU

PEI

29

30

Polysulfon

Polyetherimid

1,24

1,27

75

105

>50

>50

2.500

3.100

2.700

3.300

106

145

o. B.

o. B.

trocken

trocken

150

165

22

				Therm	nische '	Werte	1			Ele	ektrisch	ne We	erte			so	nstige Daten
Gleitreibungskoeffizient gegen Stahl (Trockenlauf) ³⁾	Gleitverschleiß gegen Stahl (Trockenlauf)®	Schmelztemperatur DIN 53 736	Wärmeleitfähigkeit DIN 52 612	Spezifische Wärmekapazität	Linearer Ausdehnungskoeffizient⁴)	Temperatureinsatzbereich langzeitig ^{s)}	Temperatureinsatzbereich kurzzeitig ^{s)}	Brandverhalten nach UL	Dielektrizitätszahl® DIN 53 483	Dielektrischer Verlustfaktor [®] DIN 53 483	Spezifischer Durchgangs- widerstand DIN 53 482	Oberflächenswiderstand DIN 53 482	Durchschlagfestigkeit DIN 53 481	Kriechstromfestigkeit DIN 53 480	Feuchtigkeitsaufnahme im NK bis zur Sättigung DIN 53 715	Wasseraufnahme bis zur Sättigung DIN 53 495	Spezielle Eigenschaften
11 μ -	12 V μm/km	13 T _m °C	14 λ W/(K·m)	15 c J/(g·K)	16 α 10 ⁻⁵ ·K ⁻¹	17 - °C	18 - °C	19 - -	20 ε _R	21 tanδ -	$ ho_{ m D}$ $\Omega\cdot$ cm	23 R _o Ω	24 E _d kV/mm	25 - -	26 w(H ₂ O) %	27 W _s %	28 -
0,36 0,42	0,10	+ 220	0,23	1,7	7 - 8	- 40 + 105	+ 170	НВ	3,7	0,03	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹²	50 20	KA 3c KA 3b	2,2	6,5	hart, druck- und abriebfest größte Abmessungen herstellbar
0,32 0,37	0,10	+ 220	0,23	1,7	7 - 8	- 40 + 105	+ 160	НВ	3,7	0,03	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹²	50 20	KA 3c KA 3b	2,2	6,5	wie PA 6 G, jedoch erhöhte Kristallinität
0,36 0,42	-	+ 220	0,23	1,7	8 - 9	- 40 + 90	+ 150	НВ	3,7	0,03	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹²	50 20	KA 3c KA 3b	2,5	7,5	schlagzäher als PA 6 G
0,36 0,42	0,10	+ 220	0,23	1,7	7 - 8	- 40 + 105	+180	НВ	3,7	0,03	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹²	50 20	KA 3c KA 3b	2,2	7	wie PA 6 G, jedoch wärmealterungsstabilisiert
0,18 0,23	0,05	+ 220	0,23	1,7	7 - 8	- 40 + 105	+ 160	НВ	3,7	0,03	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹²	50 20	KA 3c KA 3b	1,8	7	höchste Abriebfestigkeit, niedrige Gleitreibung
0,36 0,42	0,12	+ 220	0,23	1,7	7 - 8	- 40 + 105	+ 160	НВ	3,7	0,03	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹²	50 20	KA 3c KA 3b	2,2	7	wie PA 6G, jedoch hoch schlagzäh eingestellt
0,40	-	+ 190	0,23	1,7	10 - 11	- 60 +110	+ 150	НВ	3,7	0,03	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹²	50 20	KA 3c KA 3b	0,9	1,4	niedrige Wasseraufnahme, sehr gute Zeitstandfestigkeit
0,38 0,42	0,23	+ 218	0,23	1,7	8 - 9	-30 + 100	+ 140	НВ	3,7 7	0,031 0,3	10 ¹⁵ 10 ¹²	10 ¹³ 10 ¹⁰	50 20	KA 3c KA 3b	3,0	10,0	zäh, gute Schwingungsdämpfung
0,35 0,42	0,10	+ 265	0,23	1,7	9 - 10	- 30 + 100	+ 150	НВ	3,2 5,0	0,025 0,2	10 ¹⁵ 10 ¹²	10 ¹² 10 ¹⁰	50 20	KA 3b CTI 600	2,5	9,0	hohe Abriebfestigkeit (ähnlich wie PA 6 G)
0,46 0,52	-	+ 220	0,25	1,5	2 - 3	- 30 + 120	+ 180	НВ	3,7 7,0	0,021 0,2	10 ¹⁵ 10 ¹³	10 ¹⁴ 10 ¹²	60 30	KA 3c KA 3a	2,1	6,3	hohe Festigkeit, niedrige Wärmeausdehnung
0,32	0,80	+ 178	0,30	2,09	11 - 12	- 70 + 70	+ 140	НВ	3,1	0,03	2 x 10 ¹⁵	10 ¹³	30	KA 3b CTI 600	0,8	1,5	zäh, hydrolysebeständig, geringe Feuchteaufnahme
0,32	8,90	+ 168	0,31	1,45	9 - 10	- 30 + 100	+ 140	НВ	3,9	0,003	1015	10 ¹³	70	KA 3c KC>600	0,2	0,8	hohe Festigkeit, schlagfest, geringe Kriechneigung
0,50	-	+ 168	0,40	1,21	3 - 4	- 30 + 110	+ 140	НВ	4,8	0,005	1015	10 ¹³	65	KA 3c KC>600	0,17	0,6	hohe Festigkeit, niedrige Wärmeausdehnung
0,25	0,35	+ 255	0,24	1,1	7 - 8	- 20 + 100	+ 160	НВ	3,6	0,008	10 ¹⁶	1014	60	KC 350	0,25	0,5	zäh, hart, geringer Kaltfluss dimensionsstabil
0,20	0,10	+ 255	0,23		7 - 8	- 20 + 110	+ 160	НВ	3,6	0,008	10 ¹⁶	1014	_	_	0,2	0,4	wie PET, zusätzlich höchste
0,08	21,0	+ 327	0,23	1	18 - 20	- 200	+ 280	V - 0	2,1	0,0005	10 ¹⁸	10 ¹⁷	40	KA 3c	<0,01	<0,01	Verschleißfestigkeit hohe Chemikalienbeständigk.,
0,14	1,30	+ 327	0,41		12 - 13	+ 260	+ 280	V - 0	2,85	0,0028	1016	10 ¹⁶	13	KB>600	<0,01	<0,01	geringe Festigkeit wie PTFE, jedoch höhere
0,12	1,0	+ 327	0,70		10 - 11	+ 260 - 200	+ 280	V - 0	-,	-	10³	10³	2,8	_	<0,01	<0,01	Festigkeit wie PTFE, jedoch niedrigerer
0,14	0,50	+ 327	0,70	_	9 - 10	+ 260	+ 280	V - 0	-	_	10 ⁸	10 ⁸	-	_	<0,01	<0,01	Gleitverschleiß höhere Festigkeit wie PTFE,
0,30	-	+ 178	0,19	0,96	13	+ 260 - 40	+ 160	V - 0	8,0	0,165	5 x 10 ¹⁴	10 ¹³	25	CTI 600	<0,04	<0,04	jed. chemisch weniger bestdg. Beständigkeit gegen UV-, β-
0,29	7,4	+ 128	0,38	1,86	18	+ 140 - 50	+ 80	НВ	2,4	0,004	> 10 ¹⁶	1014	47	KA 3c	<0,04	<0,04	und γ -Strahlung, abriebfest hohe chemische Beständigkeit,
0,29	1,0	+ 133	0,38	1,88	18	+ 50 - 100	+ 80	НВ	2,9	0,0002	> 10	1014	44	KA 3c	<0,01	<0,01	niedrige Dichte, hoher Abrieb wie PE-HD, jedoch
0,29	0,45	+ 133	0,38	1,84	18	+ 50 - 260	+ 80	НВ	3,0	0,0002	> 10	1014	44	KC>600 KA 3c	<0,01		wesentlich abriebfester wie PE-HMW, jedoch abrieb-
0,25		+ 162	0,22		16	+ 50	+ 100	НВ		0,0003	> 10	1014	52	KC>600 KA 3c		<0,01	wie PE-HD, jedoch höhere
	11,0			1,7		+ 80			2,25						<0,01		Wärmefestigkeit gute chemische Beständigkeit,
0,60	56,0	- 220	0,159	1,05	8	+ 50 - 40	+ 70	V-0	3,3	0,025	1017	1013	39	KA 3b	<0,01	<0,01	hart und spröde transparent, schlagzäh,
0,55	22,0	+ 230	0,21	1,17	6-7	+ 110	+ 140	V - 2	3,0	0,006	1017	1015	32	KA 1	0,20	0,36	geringer Kaltfluss hochtemperaturfest, hydrolyse-
0,34	-	+ 340	0,25	1,06	4-5	+250	+ 310	V - 0	3,2	0,002	1016	1016	24	CTI 150	0,20	0,45	beständig, dimensionsstabil wie PEEK, jedoch höherer pv-
0,11	-	+ 340	0,24	-	3	+250	+ 310	V - 0	-	-	10⁵	-	24,5	- KA 1	0,14		Wert, bessere Gleiteigenschaften dampfsterilisierbar, hydrolyse-
0,40	-	-	0,26	1	5 - 6	+ 160	+ 180	V - 0	3,0	0,002	1017	1017	30	CTI 150	0,40	0,80	beständig, strahlenbeständig hohe Festigkeit und Steifigkeit,
-	-	-	0,22	-	5 - 6	-40 + 170	+ 200	V - 0	3,0	0,003	1018	1017	33	CTI 175	0,75	1,35	hohe Wärmefestigkeit

E-Modul aus Zugversuch in MPa (Kurzzeitwert)

Zulässige Streckspannung in MPa (Kurzzeitwert)

Biegefestigkeit in MPa (Kurzzeitwert)

Gleitreibungskoeffizient gegen Stahl

(gehärtet und geschliffen, P = 0,05 MPa, v = 0,6 m/s, t = 60 °C in Laufflächennähe)

Dauergebrauchstemperatur in °C (in Luft ohne statische Belastung)

Linearer Längenausdehnungskoeffizient (10⁻⁵ · K⁻¹)

pv-Richtwerte in MPa · m/s (Trockenlauf mit Einbauschmierung, v = 0,1 m/s)

Wasseraufnahme bis zur Sättigung in %

Hinweise zur Verwendung der Liste "Chemische Beständigkeit"

Die Angaben zur chemischen Beständigkeit in der nachfoldenden Liste beziehen sich auf Versuche, in denen die Probekörper frei von äußeren Spannungen und Belastungen den jeweiligen Medien ausgesetzt waren. Hinzu kommen unsere Erfahrungen aus dem praktischen und zum Teil langjährigen Einsatz der Kunststoffe im Kontakt mit den Medien. Die vorliegende Liste stellt aufgrund der Medienvielfalt nur einen Auszug aus den uns zur Verfügung stehenden Daten dar. Sollte das von Ihnen verwendete Medium nicht darin enthalten sein, geben wir Ihnen auf Nachfrage gerne Auskunft zur Beständigkeit der von uns gelieferten Kunststoffe.

Bei der Anwendung der Liste ist zu beachten, dass Faktoren wie z. B.

- abweichender Reinheitsgrad des Mediums
- abweichende Konzentration des Mediums
- andere Temperaturen als die angegebenen
- Wechseltemperaturen
- mechanische Belastung
- Teilegeometrien, insbesondere solche, die zu dünnen Wandstärken oder starken Wandstärkenunterschieden führen
- Spannungen, die durch die Verarbeitung erzeugt werden
- Mischungen, die aus den verschiedenen Medien zusammengesetzt sind
- Kombinationen aus den vorstehend genannten Faktoren

die chemische Beständigkeit beeinflussen können.

Dennoch kann ein Teil aus Kunststoff trotz der Einstufung »bedingt beständig« einem aus metallischen Werkstoffen bestehenden überlegen und wirtschaftlich sinnvoller sein.

Bei oxidierenden Medien wie z. B. Salpetersäure und polaren organischen Lösemitteln besteht trotz der chemischen Beständigkeit gegen das Medium bei vielen thermoplastischen Kunststoffen die Gefahr von Spannungsrissbildung. Für die Herstellung von Teilen, die mit solchen Medien in Kontakt kommen, ist daher ein Herstellverfahren zu wählen, dass möglichst wenige mechanische Spannungen im Werkstück erzeugt. Eine Alternative bildet der Abbau der Spannungen durch Temperung der Halbzeuge bzw. Halbfertigprodukte vor und während der Fertigung des Produkts.

Für Gemische aus verschiedenen Medien kann die Beständigkeit in der Regel nicht vorhergesagt werden, auch wenn der Kunststoff gegen die einzelnen Bestandteile des Gemischs beständig ist. Daher empfehlen wir für diesen Fall einen Einlagerungsversuch mit dem entsprechenden Mischmedium unter den zu erwartenden Umgebungsbedingungen. Dabei ist zu beachten, dass bei Teilen, die im Bereich des unmittelbaren Zusammentreffens zweier oder mehrerer Medien eingesetzt werden sollen, zusätzlich eine Temperaturbelastung aufgrund der entstehenden Reaktionswärme auftreten kann.

Trotz der Einstufung »beständig« kann es in verschiedenen Fällen im Kontakt mit dem Medium zu Oberflächenveränderungen wie z. B. Mattierung oder Verfärbung, bei transparenten Kunststoffen zur Trübung kommen. Die Widerstandsfähigkeit bleibt jedoch trotz dieser Oberflächenveränderung erhalten.

Die in den Listen enthaltenen Angaben entsprechen dem derzeitigen Stand unserer Kenntnisse und sind als Empfehlung und Richtwert zu verstehen. Wir empfehlen für den konkreten Einsatzfall bzw. im Zweifel die Beständigkeit durch einen Einlagerungsversuch unter den zu erwartenden Einsatzbedingungen zu überprüfen.

			1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
			PA 6 G PA 6 G - WS	PA 6 G + MoS ₂	PA 6/12 G	PA 12 G	PA 6 G + ÖI	PA 6	PA 6 + GF 30	PA 66	PA 12	POM - C	POM - C - GF 30	PET	PET - GL	PTFE	PTFE + GF 25	PTFE + 25 % Kohle	PTFE + 40 % Bronze	PVDF	PE - HD	PE - HMW	PE - UHMW	PP - H	PVC - U	PC	PEEK	PEEK - GL	PSU	PEI
Konzentration %	Townstatin of		Polyamid 6 Guss wärmestabilisiert	Polyamid 6 Guss / MOS	Calaumid® 612	Calaumid® 1200	Oilamid®	Polyamid 6	Polyamid 6/Glasfaser	Polyamid 66	Polyamid 12	Polyacetal-Copolymer	Polyacetal-Copolymer/Glasfaser	Polyethylenterephtalat	Polyethylenterephtalat/Gleitzusatz	Polytetrafluorethylen	Polyte trafluore thy len/Glas faser	Polytetrafluorethylen/Kohle	Polytetrafluorethylen/Bronze	Polyvinylidenfluorid	Polyethylen 300	Polyethylen 500	Polyethylen 1000	Polypropylen	Polyvinylchlorid	Polycarbonat	Polyetheretherketon	Polyetheretherketon modifiziert	Polysulfon	Polyetherimid
1 Acetalaldehyd 40	0 2	0	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	/	/	/	-	+	+	+	+	-	-	+	+	-	+
2 Acetamid 50	0 2	0	+ +	+	+	+	+	+	+	+	+	+	+	/	/	+	/	/	/	-	+	+	+	+	/	1	+	+	/	+
3 Aceton UN	V R	Т	+ +	+	+	+	+	+	+	+	+	+	+	0	o	+	/	/	/	-	+	+	+	+	-	-	+	+	-	-
4 Acrylnitril UN	V R	Т	+ +	+	+	+	+	+	+	+	+	/	/	/	/	+	/	/	/	+	+	+	+	+	/	1	+	+	-	/
5 Allyalkohol UV	V R	т	0 0	0	0	0	0	0	0	0	0	/	/	+	+	+	/	/	/	/	+	+	+	+	-	+	+	+	o	/
6 Aluminiumchlorid 10	0 R	Т	+ +	+	+	+	+	+	+	+	+	0	0	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+
7 Ameisensäure 2	2 R	т	0 0	0	0	0	0	0	0	0	o	+	+	+	+	+	/	/	/	+	+	+	+	+	+	/	+	+	/	+
8 Ameisensäure UN	V R	Т	L L	L	L	0	L	L	L	L	0	-	-	0	0	+	/	/	/	+	+	+	+	+	+	-	0	0	-	1
9 Ammoniak 10	0 R	т	+ +	+	+	+	+	+	+	+	+	+	+	-	-	+	/	/	/	+	+	+	+	+	+	/	o	0	-	-
10 Ammoniumhydroxid 30	0 R	Т	+ +	+	+	+	+	+	+	+	+	-	-	-	-	+	/	/	/	-	+	+	+	+	/	-	+	+	+	-
11 Ammoniumnitrat UV	V R	т	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	-	-
12 Anilin UV	V R	Т		-	-	0	-	-	-	-	0	0	0	+	+	+	/	/	/	+	+	+	+	0	-	-	+	+	-	1
13 Anon 10	0 2	0	+ +	+	+	+	+	+	+	+	+	+	/	/	/	+	/	/	/	+	+	+	+	/	/	1	+	+	-	/
14 Antimontrichlorid 10	0 R	Т		-	-	-	-	-	-	-	-	/	/	/	/	+	/	/	/	+	+	+	+	+	+	/	+	+	/	1
15 Benzaldehyd UV	V R	т	0 0	o	0	0	0	0	0	0	o	+	+	+	+	+	/	/	/	o	+	+	+	+	-	-	+	+	-	-
16 Benzin, normal	Ü 4	0	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	+	0	+	+	0	-
17 Benzin, super	Ü 4	0	+ +	+	+	+	+	+	+	+	+	+	+	/	/	+	+	+	+	+	o	o	o	o	-	o	+	+	o	-
18 Benzol UV	V R	Т	+ +	+	+	+	+	+	+	+	+	0	0	+	+	+	/	/	/	+	0	0	0	0	-	-	+	+	-	-
19 Benzolsäure UN	V R	т		-	-	+	-	-	-	-	+	0	0	+	+	+	/	/	/	+	+	+	+	+	+	-	+	+	/	/
20 Benzylalkohol UV	V R	Т	0 0	0	0	0	0	0	0	0	0	+	+	+	+	+	/	/	/	+	+	+	+	+	/	-	+	+	0	-
21 Bleichlauge (12,5% AC)	ÜR	т		-	-	o	-	-	-	-	0	-	1	+	+	+	/	/	/	+	+	+	+	+	+	-	+	+	-	+
22 Borax W	L R	Т	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	/	/	+	+	+	/	1
23 Borsäure 10	0 R	Т	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+
24 Bromwasserstoffsäure 10	0 R	Т		-	-	-	-	-	-	-	-	-	0	0	-	+	/	/	/	+	+	+	+	+	+	1	+	+	+	1
25 Bromwasserstoffsäure 50	0 R	Т		-	-	-	-	-	-	-	-	-	-	-	-	+	/	/	/	+	+	+	+	+	+	1	o	o	/	/
26 Butanol UN	V R	Т	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	0	+

UV = unverdünnt

WL = wässrige Lösung

GL = gesättigte Lösung

HÜ = handelsüblich

RT = Raumtemperatur

+ = beständig

o = bedingt beständig

- = nicht beständig

L = löslich

/ = nicht geprüft

Stand 08/2001

29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1			
PEI	PSU	PEEK - GL	PEEK	PC	PVC - U	PP - H	PE - UHMW	PE - HMW	PE - HD	PVDF	PTFE + 40 % Bronze	PTFE + 25 % Kohle	PTFE + GF 25	PTFE	PET - GL	PET	POM - C - GF 30	POM - C	PA 12	PA 66	PA 6 + GF 30	PA 6	PA 6 G + Öl	PA 12 G	PA 6/12 G	PA 6 G + MoS ₂	PA 6 G - WS	PA 6 G			
Polyetherimid	Polysulfon	Polyetheretherketon modifiziert	Polyetheretherketon	Polycarbonat	Polyvinylchlorid	Polypropylen	Polyethylen 1000	Polyethylen 500	Polyethylen 300	Polyvinylidenfluorid	Polytetrafluorethylen/Bronze	Polytetrafluorethylen/Kohle	Polytetrafluorethylen/Glasfaser	Polytetrafluorethylen	Polyethylenterephtalat/Gleitzusatz	Polyethylenterephtalat	Polyacetal-Copolymer/Glasfaser	Polyacetal-Copolymer	Polyamid 12	Polyamid 66	Polyamid 6/Glasfaser	Polyamid 6	Oilamid®	Calaumid® 1200	Calaumid® 612	Polyamid 6 Guss / MOS	Polyamid 6 Guss wärmestabilisiert	Polyamid 6 Guss	Temperatur °C	Konzentration %	
+	o	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	o	o	+	+	+	+	+	+	+	+	+	+	RT	5	Calciumchlorid 28
+	0	+	+	/	/	+	+	+	+	+	/	/	1	+	+	+	-	-	-	L	L	L	-	-	-	-	-	-	RT	20	"" in Alkohol 29
/	/	+	+	+	+	+	+	+	+	+	/	/	/	+	0	0	-	-	-	-	-	-	-	-	-	-	-	-	RT	GL	Calciumhypochlorid 30
-	L	+	+	L	-	0	0	0	0	+	/	/	1	+	+	+	0	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Chlorbenzol 31
/	/	+	+	/	/	+	+	+	+	+	/	/	/	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	RT	UV	Chloressigsäure 32
-	L	+	+	L	-	0	0	0	0	+	/	/	/	+	-	-	-	-	0	0	0	0	0	0	0	0	0	0	RT	UV	Chloroform 33
+	О	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	О	o	o	o	o	О	o	o	0	o	О	o	RT	1	Chromsäure 34
/	0	+	+	/	+	0	0	0	0	+	/	/	1	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	RT	50	Chromsäure 35
/	o	+	+	o	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Cyclohexan 36
-	0	+	+	0	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Cyclohexanol 37
/	L	+	+	-	+	+	+	+	+	o	/	/	/	+	-	-	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Cyclohexanon 38
0	+	+	+	-	/	/	0	0	0	0	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Dibutylphtalat 39
-	L	+	+	-	-	o	o	o	o	+	/	/	/	+	-	-	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Dichlorethan 40
/	/	+	+	/	-	0	-	-	-	+	/	/	/	+	L	L	L	L	+	+	+	+	+	+	+	+	+	+	RT	UV	Dichlorethylen 41
+	-	+	+	+	+	+	+	+	+	+	/	/	/	+	/	/	o	o	-	-	-	-	-	-	-	-	-	-	RT	GL	Eisen(II)chlorid 42
+	-	+	+	+	+	+	+	+	+	+	/	/	/	+	/	/	0	0	-	-	-	-	-	-	-	-	-	-	RT	GL	Eisen(III)chlorid 43
/	/	+	+	/	+	+	+	+	+	o	/	/	/	+	+	+	+	+	+	-	-	-	-	+	-	-	-	-	RT	ΗÜ	Essig 44
+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	5	Essigsäure 45
+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	o	o	+	o	o	o	o	+	o	o	О	o	RT	10	Essigsäure 46
+	+	+	+	0	+	+	+	+	+	+	/	/	/	+	+	+	-	-	0	-	-	-	-	0	-	-	-	-	50	10	Essigsäure 47
-	-	+	+	-	o	+	+	+	+	+	/	/	/	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	RT	95	Essigsäure 48
-	-	+	+	-	-	0	0	0	0	0	/	/	1	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	50	95	Essigsäure 49
+	o	+	+	-	-	o	o	o	o	+	/	/	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Ethylether 50
0	-	L	L	-	+	+	+	+	+	+	/	/	/	+	-	-	-	-	L	L	L	L	L	L	L	L	L	L	RT	WL	Flusssäure 51
-	-	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	+	0	o	o	o	o	o	0	o	o	o	RT	UV	Formaldehyd 52
+	0	+	+	-	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Glycerin 53
+	+	+	+	-	+	+	+	+	+	/	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	ΗÜ	Heizöl 54
				L :	= lös	lich			,					R	T	= Ra	umte	emp	eratı	ur				•	UV	= (unve	rdür	nnt		

129

WL = wässrige Lösung

GL = gesättigte Lösung

Stand 08/2001

HÜ = handelsüblich

= beständig

= bedingt beständig

= nicht beständig

/ = nicht geprüft

				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
				PA 6 G	PA 6 G - WS	PA 6 G + MoS ₂	PA 6 / 12 G	PA 12 G	PA 6 G + Öl	PA 6	PA 6 - GF 30	PA 66	PA 12	POM - C	POM - C - GF 30	PET	PET - GL	PTFE	PTFE + GF 25	PTFE + 25 % Kohle	PTFE + 40 % Bronze	PVDF	PE - HD	PE - HMW	PE - UHMW	PP-H	PVC - U	PC	PEEK	PEEK - GL	PSU	PEI
		Konzentration %	Temperatur °C	Polyamid 6 Guss	Polyamid 6 Guss wärmestabilisiert	Polyamid 6 Guss / MOS	Calaumid® 612	Calaumid® 1200	Oilamid®	Polyamid 6	Polyamid 6/Glasfaser	Polyamid 66	Polyamid 12	Polyacetal-Copolymer	Polyacetal-Copolymer/Glasfaser	Polyethylenterephtalat	Polyethylenterephtalat/Gleitzusatz	Polytetrafluorethylen	Polytetrafluorethy len/Glasfaser	Polytetrafluorethylen/Kohle	Polytetrafluorethylen/Bronze	Polyvinylidenfluorid	Polyethylen 300	Polyethylen 500	Polyethylen 1000	Polypropylen	Polyvinylchlorid	Polycarbonat	Polyetheretherketon	Polyetheretherketon modifiziert	Polysulfon	Polyetherimid
55 H	Heptan	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	o	+	+	+	+	o	+
56 H	Hexan	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	-	+	+	0	+
57 I	sopropanol	υv	RT	+	+	+	+	+	+	+	+	+	+	+	+	0	0	+	/	/	/	+	+	+	+	+	+	-	+	+	o	/
58 k	Kalilauge	10	RT	+	+	+	+	+	+	+	+	+	+	+	+	-	-	+	/	/	/	+	+	+	+	+	+	-	+	+	0	+
59 H	Kalilauge	10	80	+	+	+	+	+	+	+	+	+	+	+	+	-	-	+	/	/	/	o	-	-	-	+	-	-	+	+	o	-
60 H	Kalilauge	50	RT	0	0	0	0	+	0	0	0	0	+	+	+	-	-	+	/	/	/	+	+	+	+	+	+	-	+	+	0	-
61 k	Ketone (aliphatisch)	υv	RT	0	0	0	0	0	0	0	0	0	0	+	+	-	-	+	/	/	/	/	+	+	+	/	/	/	+	+	/	/
62 N	Methanol	50	RT	+	+	+	+	+	+	+	+	+	+	+	0	0	+	+	/	/	/	+	+	+	+	+	+	-	+	+	0	+
63 1	Methanol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	0	0	+	+	/	/	/	+	+	+	+	+	+	-	+	+	o	+
64 1	Methylenchlorid	UV	RT	-	-	-	-	0	-	-	-	-	0	-	-	-	-	+	/	/	/	+	0	0	0	0	L	-	+	+	L	L
65 N	Mineralöl	ΗÜ	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
66 1	Natrium hypochlorid	10	RT	-	-	-	-	-	-	-	-	-	-	-	-	0	0	+	/	/	/	+	+	+	+	0	+	+	+	+	+	/
67 1	Natronlauge	10	RT	+	+	+	+	+	+	+	+	+	+	+	+	0	o	+	/	/	/	o	+	+	+	+	+	o	+	+	+	o
68 1	Natronlauge	10	80	-	-	-	-	-	-	-	-	-	-	+	+	-	-	+	/	/	/	0	0	0	0	+	0	-	+	+	+	-
69 1	Natronlauge	50	RT	0	0	0	0	o	0	o	0	0	0	+	+	-	-	+	/	/	/	o	+	+	+	+	+	-	+	+	+	-
70 N	Natronlauge	50	80	-	-	-	-	-	-	-	-	-	-	+	+	-	-	+	/	/	/	0	0	0	0	+	0	-	+	+	+	-
71 ľ	Nitrobenzol	UV	RT	-	-	-	-	-	-	-	-	-	-	o	0	0	o	+	/	/	/	+	+	+	+	+	-	L	+	+	-	-
72 N	Nitrotoluol	UV	RT	0	0	0	0	0	0	0	0	0	0	0	0	+	+	+	/	/	/	/	+	+	+	+	-	-	+	+	/	/
73 (Oxalsäure	10	RT	0	o	o	o	o	o	0	0	o	o	-	-	+	+	+	/	/	1	+	+	+	+	+	+	+	+	+	+	+
74 F	Phenol	90	RT	L	L	L	L	L	L	L	L	L	L	-	-	-	-	+	/	/	/	+	+	+	+	+	0	L	+	+	-	-
75 F	Phenol	UV	40	L	L	L	L	L	L	L	L	L	L	-	-	-	-	+	/	/	/	+	+	+	+	+	-	L	+	+	-	-
76 F	Phenol	UV	60	L	L	L	L	L	L	L	L	L	L	-	-	-	-	+	/	/	/	0	-	-	-	-	-	L	+	+	-	-
77 F	Phenol	UV	80	L	L	L	L	L	L	L	L	L	L	-	-	-	-	+	/	1	1	o	-	-	-	-	-	L	+	+	-	-
78 F	Phosphorsäure	10	RT	-	-	-	-	-	-	-	-	-	-	+	+	+	+	+	/	/	1	+	+	+	+	+	+	+	+	+	+	+
	Phosphorsäure	25	RT	-	-	-	-	-	-	-	-	-	-	0	0	+	+	+	/	/	1	+	+	+	+	+	+	+	+	+	+	+
	Phosphorsäure	85	RT	L	L	L	L	L	L	L	L	L	L	-	-	+	+	+	/	/	/	+	+	+	+	+	+	+	+	+	0	-
	Propanol	UV		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	/	1	1	+	+	+	+	+	+	+	+	+	+	+
<u> </u>	er		<u> </u>			لـنــا	-	<u> </u>				•							Ľ	<u> </u>	L					<u> </u>	Ľ	Ľ	Ľ	_	Ľ	\sqcup

UV = unverdünnt

WL = wässrige Lösung

GL = gesättigte Lösung

HÜ = handelsüblich

RT = Raumtemperatur

+ = beständig

o = bedingt beständig

- = nicht beständig

L = löslich

/ = nicht geprüft

Stand 08/2001

29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1			
PEI	PSU	PEEK - GL	PEEK	PC	PVC - U	PP - H	PE - UHMW	PE - HMW	PE - HD	PVDF	PTFE + 40 % Bronze	PTFE + 25 % Kohle	PTFE + GF 25	PTFE	PET - GL	PET	POM - C - GF 30	POM - C	PA 12	PA 66	PA 6 + GF 30	PA 6	PA 6 G + ÖI	PA 12 G	PA 6/12 G	PA 6 G + MoS ₂	PA 6 G - WS	PA 6 G			
Polyetherimid	Polysulfon	Polyetheretherketon modifiziert	Polyetheretherketon	Polycarbonat	Polyvinylchlorid	Polypropylen	Polyethylen 1000	Polyethylen 500	Polyethylen 300	Polyvinylidenfluorid	Polytetrafluorethylen/Bronze	Polytetrafluorethylen/Kohle	Polytetrafluorethylen/Glasfaser	Polytetrafluorethylen	Polyethylenterephtalat/Gleitzusatz	Polyethylenterephtalat	Polyacetal-Copolymer/Glasfaser	Polyacetal-Copolymer	Polyamid 12	Polyamid 66	Polyamid 6/Glasfaser	Polyamid 6	Oilamid®	Calaumid® 1200	Calaumid® 612	Polyamid 6 Guss / MOS	Polyamid 6 Guss wärmestabilisiert	Polyamid 6 Guss	Temperatur °C	Konzentration %	
+	+	+	+	-	+	+	+	+	+	+	/	/	/	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	RT	10	Salpetersäure 82
/	/	+	+	-	-	-	-	-	-	+	/	/	/	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	RT	80	Salpetersäure 83
/	+	o	o	-	-	-	-	-	-	+	/	/	/	+	-	-	-	-	L	L	L	L	L	L	L	L	L	L	RT	50	Salpetersäure 84
/	+	0	0	-	-	-	-	-	-	0	1	/	/	+	-	-	-	-	L	L	L	L	L	L	L	L	L	L	RT	80	Salpetersäure 85
+	+	+	+	+	+	+	+	+	+	+	/	/	/	+	0	0	-	-	-	-	-	-	-	-	-	-	-	-	RT	10	Salzsäure 86
+	+	+	+	+	+	+	+	+	+	+	1	/	/	+	0	0	-	-	-	-	-	-	-	-	-	-	-	-	RT	20	Salzsäure 87
+	o	+	+	o	+	+	+	+	+	+	/	/	1	+	-	-	-	-	L	L	L	L	L	L	L	L	L	L	RT	30	Salzsäure 88
+	+	0	0	+	+	+	+	+	+	+	1	/	/	+	0	0	-	-	-	-	-	-	-	-	-	-	-	-	RT	40	Schwefelsäure 89
o	О	-	-	o	o	+	+	+	+	+	1	/	1	+	0	o	-	-	-	-	-	-	-	-	-	-	-	-	60	40	Schwefelsäure 90
-	L	L	L	-	+	0	0	0	0	+	1	/	/	+	-	-	-	-	L	L	L	L	L	L	L	L	L	L	RT	96	Schwefelsäure 91
-	L	L	L	-	o	-	-	-	-	+	/	/	/	+	-	-	-	-	L	L	L	L	L	L	L	L	L	L	60	96	Schwefelsäure 92
+	+	+	+	-	-	-	-	-	-	+	/	/	/	+	+	+	0	0	+	+	+	+	+	+	+	+	+	+	RT	UV	Tetrachlorkohlenstoff 93
-	-	+	+	-	-	0	o	o	o	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Toluol 94
-	L	+	+	-	-	0	0	0	0	+	/	/	1	+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	RT	UV	Trichlorethylen 95
+	+	+	+	+	+	+	+	+	+	+	1	/	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	10	Wasserstoffperoxid 96
+	+	+	+	+	+	+	+	+	+	+	1	/	1	+	+	+	+	+	0	-	-	-	-	0	-	-	-	-	RT	20	Wasserstoffperoxid 97
+	+	+	+	+	+	+	+	+	+	+	1	/	/	+	+	+	o	o	-	-	-	-	-	-	-	-	-	-	RT	30	Wasserstoffperoxid 98
/	/	+	+	/	0	0	0	0	0	/	/	/	/	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	60	30	Wasserstoffperoxid 99
0	o	+	+	-	-	0	0	0	o	+	/	/	/	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	RT	UV	Xylol 100
+	0	+	+	+	+	+	+	+	+	+	/	/	/	+	+	+	+	+	+	0	0	0	0	+	0	0	0	0	RT	10	Zitronensäure 101
+	0	+	+	/	+	+	+	+	+	+	/	/	/	+	+	+	-	-	0	0	0	0	0	0	0	0	0	0	50	10	Zitronensäure 102
					= lös	1: -1-								_	_	D -	umte								1157			rdür			

L = löslich

/ = nicht geprüft

RT = Raumtemperatur

+ = beständig

o = bedingt beständig

- = nicht beständig

UV = unverdünnt

WL = wässrige Lösung

GL = gesättigte Lösung

HÜ = handelsüblich

Stand 08/2001

Unsere spangebenden Bearbeitungsmöglichkeiten:

- CNC-Fräsmaschinen bis Arbeitsbereich 2000 x 1000 mm
- 5-Achsen CNC-Fräsmaschinen
- CNC-Drehmaschinen bis Ø 1560 mm und 2000 mm Länge
- konventinellen Drehautomaten bis Ø 100 mm Spindeldurchlaß
- CNC-Drehautomaten bis Ø 100 mm Spindeldurchlaß
- Verzahnungensmaschinen bis Modul 10 / Ø 400 mm
- Tischfräsen
- Kreissägen bis 170 mm Schnittstärke und 3100 mm Schnittlänge
- Vierseitenhobel bis 125 mm Dicke und 225 mm Breite
- Dickenhobel bis 230 mm Dicke und 1000 mm Breite

Wir verarbeiten:

- Polyamid
- Polyacetal
- Polyethylenterephthalat
- Polyethylen 1000
- Polyethylen 500
- Polyethylen 300
- Polypropylen
- Polyvinylchlorid (hart)
- Polyvinylidenfluorid
- Polytetraflourethylen
- Polyetheretherketon
- Polysulfon
- Polyetherimid

PA POM **PET**

PE-UHMW PE-HMW

PE-HD PP-H

PVC-U PVDF

PTFE PEEK

PSU PEI

Beispiele für Konstruktionsteile:

- Seil- und Laufrollen
- Führungsrollen
- Umlenkrollen
- Gleitlager
- Gleitplatten
- Gleitleisten
- Zahnräder
- Kettenräder

Einlaufschnecken

- Bewegungsmuttern
- Einlaufbögen
- Einlaufsterne

- Bogenführungen
- Dosierscheiben
- Kurvenscheiben
- Verschraubungen
- Dichtungen
- Schaugläser
- Ventilgehäuse
- Gerätegehäuse
- Spulenkörper
- Vakuumleisten/-platten
- Abstreiferleisten
- Stanzunterlagen

Hinweise zum Gebrauch

Alle Berechnungen, Ausführungen sowie technischen Angaben dienen zur Information und Beratung und entbinden nicht von der eigenen Prüfung hinsichtlich der Eignung der Werkstoffe für konkrete Anwendungsfälle. Aus dem Inhalt dieser Arbeitsunterlage können keine rechtsverbindlichen Zusicherungen von Eigenschaften und/oder Ergebnissen aus den Berechnungen abgeleitet werden. Die angegebenen Werkstoffkennwerte sind nicht als verbindliche Mindestwerte sondern als Richtwerte zu verstehen und wurden, wenn nicht ausdrücklich anders angegeben, mit genormten Prüfkörpern bei Raumtemperatur und 50 % relativer Luftfeuchtigkeit ermittelt. Die Entscheidung, welcher Werkstoff für einen konkreten Anwendungsfall verwendet wird, sowie die Verantwortung für die daraus hergestellten Teile liegen beim Kunden. Wir empfehlen daher vor dem Serieneinsatz einen Eignungsnachweis durch einen praktischen Versuch. Irrtümer und Änderungen hinsichtlich des Inhalts dieser Arbeitsunterlage bleiben ausdrücklich vorbehalten.

Literaturverweis

Für die Erstellung der Arbeitsunterlage "Konstruieren mit Kunststoffen" wurde folgende Literatur hinzugezogen:

Ebeling, F.W. / Lüpke, G. Kunststoffverarbeitung; Vogel Verlag

Schelter, W. / Schwarz, O.

Biederbick, K. Kunststoffe; Vogel Verlag

Carlowitz, B. Kunststofftabellen; Hanser Verlag

Böge, A. Das Techniker Handbuch; Vieweg Verlag

Ehrenstein, Gottfried W. Mit Kunststoffen Konstruieren; Hanser Verlag

Strickle, E. / Erhard G. Maschinenelemente aus thermoplastischen Kunststoffen

Grundlagen und Verbindungselemente; VDI Verlag

Strickle, E. / Erhard G. Maschinenelemente aus thermoplastischen Kunststoffen

Lager und Antriebselemente; VDI Verlag

Erhard, G. Konstruieren mit Kunststoffen; Hanser Verlag

Severin, D. Die Besonderheiten von Rädern aus Polymerwerkstoffen;

Fachbericht TU-Berlin

Severin, D. / Liu, X. Zum Rad-Schiene-System in der Fördertechnik,

Fachbericht TU-Berlin

Severin, D. Lehrunterlage Nr. 701, Pressungen

Liu, X. persönliche Mitteilungen
Becker, R. persönliche Mitteilungen

VDI 2545 Zahnräder aus thermoplastischen Kunststoffen; VDI Verlag

DIN 15061 Teil 1 Rillenprofile für Seilrollen; Beuth Verlag

DIN ISO 286 ISO-System für Grenzmaße und Passungen; Beuth Verlag

DIN ISO 2768 Teil 1 Allgemeintoleranzen; Beuth Verlag

DIN ISO 2768 Teil 2 Allgemeintoleranzen für Form und Lage; Beuth Verlag