Chapitre 2 : Second degré

Premières Spécialité Mathématiques

1 Définition

Définition 1. Une fonction polynomiale du second degré est une fonction f définie sur les réels qui à tout nombre x associe un réel f(x) de la forme :

$$ax^2 + bx + c$$

où a, b et c sont des réels avec $a \neq 0$.

Remarque. L'hypothèse $a \neq 0$ est essentielle, sinon la fonction est polynomiale de degré au plus 1.

L'objectif de ce chapitre est d'étudier les fonctions polynomiales du second degré : l'allure de leur courbe représentative, leur extremum, leurs racines...

2 Allure du graphique

On trace la courbe représentative de deux fonctions polynomiales du second degré : une avec a>0 et une avec a<0.

Définition 2. Soit f une fonction polynomiale de degré 2. Sa courbe représentative est appelée une **parabole**.

Proposition 1. Soit f une fonction polynomiale de degré 2. telle que $f(x) = ax^2 + bx + c$. Alors:

- Si a > 0, il existe une valeur de x, notée x_m telle que f est décroissante sur $]-\infty; x_m]$ et croissante sur $[x_m; +\infty[$
- Si a < 0, il existe une valeur de x, notée x_M telle que f est croissante sur $]-\infty; x_M]$ et décroissante sur $[x_M; +\infty[$

Remarque.

- Dans le cas a > 0, les « branches de la paraboles sont tournées vers le haut ». Dans le cas contraire (a < 0), elles sont « tournées vers le bas ».
- Dans le cas a > 0, f admet un unique minimum, et ce minimum est atteint en x_m . Dans le cas contraire (a < 0), f admet un maximum, et ce maximum est atteint en x_M .

3 Recherche de l'extremum

3.1 Forme canonique

Proposition 2. Soit f une fonction polynomiale du second degré telle que $f(x) = ax^2 + bx + c$. Alors il existe α et β tel que	
,	$f(x) = a(x - \alpha)^2 + \beta$
Remarque. Dans ce cas, $\alpha = \frac{-b}{2a}$ et $\beta = f(\alpha)$.	
Exemple. Soit l'expression polynomiale du second degré $-x^2 + 2x - 5$. Déterminer sa forme canonique.	
Méthode 1 Par identification :	
Méthode 2 En utilisant les « presque » identités remarquables :	

3.2 Extremum

Proposition 3. Soit une fonction polynomiale du second degré $f: x \mapsto ax^2 + bx + c$. On suppose que $f(x) = a(x-\alpha)^2 + \beta$ pour tout x réel. Alors, f admet un extremum qu'il atteint en α et ayant pour valeur β .

Remarque. Comme dit précédemment, si a>0, alors f admet un minimum qu'il attent en $\alpha=\frac{-b}{2a}$. Sinon, si a<0, alors f admet un maximum qu'il atteint en $\alpha=\frac{-b}{2a}$. Dans les deux cas, cet extremum vaut $\beta=f(\alpha)$.

Exemple. Soit la fonction polynomiale $g: x \mapsto 4x^2 + 32x - 5$.

- a) Cette fonction admet-elle un minimum ou un maximum?
- b) En quelle valeur cet extremum est-il atteint?
- c) Que vaut cet extremum?

Proposition 4. Soit $f: x \mapsto ax^2 + bx + c$ une fonction polynomiale du second degré. On suppose que $f(x) = a(x - \alpha)^2 + \beta$. Alors la courbe représentative C_f est une parabole admettant comme axe de symétrie la droite $x = \alpha$.

Exemple. Soit $f: x \mapsto x^2 - 2x + 1$. Alors f admet un minimum (car a > 0) atteint on $\alpha = -\frac{b}{2a} = -\frac{-2}{2} = 1$. Alors \mathcal{C}_f admet la droite x = 1 comme axe de symétrie.

4 Racines

4.1 Définition

Définition 3. Soit f une fonction. On appelle **racine** de la fonction f un nombre r tel que f(r) = 0.

Exemple. Montrer que $r_1 = 1$ et $r_2 = -3$ sont deux racines de la fonction $f: x \mapsto 2x^2 + 4x - 6$.