CD4527BMS

December 1992

CMOS BCD Rate Multiplier

Features

- High Voltage Type (20V Rating)
- · Cascadable in Multiples of 4-Bits
- · Set to "9" Input and "9" Detect Output
- 100% Tested for Quiescent Current at 20V
- . 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Standardized Symmetrical Output Characteristics
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Numerical Control
- Instrumentation
- Digital Filtering
- Frequency Synthesis

Description

CD4527BMS is a low power 4-bit digital rate multiplier that provides an output pulse rate which is the clock input pulse rate multiplied by 1/10 times the BCD input. For example, when the BCD input is 8, there will be 8 output pulses for every 10 input pulses. This device may be used to perform arithmetic operations (add, subtract, divide, raise to a power), solve algebraic and differential equations, generate natural logarithms and trigonometric functions, A/D and D/A conversion, and frequency division.

For fractional multipliers with more than one digit, CD4527BMS devices may be cascaded in two different modes: the Add mode and the Multiply mode (see Figures 9 and 11). In the Add mode,

Output Rate =

(Clock Rate) [0.1BCD1 + 0.01BCD2 + 0.001BCD3 + . . .]

In the Multiply mode, the fraction programmed into the first rate multiplier is multiplied by the fraction programmed into the second one.

e.g.
$$\frac{9}{10} \times \frac{4}{10} = \frac{36}{100}$$
 or 36 output

pulses for every 100 clock input pulses.

The CD4527BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H4X
Frit Seal DIP H1F
Ceramic Flatpack H6W

Pinout

16 VDD "9" OUT 1 15 B С 14 A D **SET TO "9"** 13 CLEAR OUT 12 CASCADE OUT 11 INHIBIT IN (CARRY) **INHIBIT OUT (CARRY)** 10 STROBE VSS 8 9 CLOCK

CD4527BMS TOP VIEW

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs -0.5V to VDD +0.5V DC Input Current, Any One Input±10mA Operating Temperature Range -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) -65°C to +150°C Lead Temperature (During Soldering) +265°C At Distance $1/16 \pm 1/32$ Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ja}	$\theta_{\sf jc}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD) at +125°C	
For T _A = -55°C to +100°C (Package Typ	e D, F, K)	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package T		
		C to 200mW
Device Dissipation per Output Transistor .		100mW
For T _A = Full Package Temperature Ran		
Junction Temperature		+175°C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	DD = 10V, VOUT = 0.5V		+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	.6V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	٧
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	٧
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	٧
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	٧
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	٧
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	٧

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	300	ns
Clock to Output	TPLH1		10, 11	+125°C, -55°C	-	405	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	760	ns
Clear to Output	TPLH2	10, 11		+125°C, -55°C	-	1026	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	180	ns
Cascade to Output	TPLH3		10, 11	+125°C, -55°C	-	243	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	1.2	-	MHz
Frequency			10, 11	+125°C, -55°C	.89	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μА
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μА
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay TPHL1		VDD = 10V	1, 2, 3	+25°C	-	150	ns
Clock to Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	120	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	350	ns
Clear to Output	TPLH2	VDD = 15V	1, 2, 3	+25°C	-	260	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	90	ns
Cascade to Output	TPLH3	VDD = 15V	1, 2, 3	+25°C	-	70	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	220	ns
Clock to Out	TPLH	VDD = 10V	1, 2, 3	+25°C	-	110	ns
		VDD = 15V	1, 2, 3	+25°C	-	90	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	640	ns
Clock to INHIBIT Out		VDD = 10V	1, 2, 3	+25°C	-	290	ns
		VDD = 15V	1, 2, 3	+25°C	-	200	ns
Propagation Delay	TPLH	VDD = 5V	1, 2, 3	+25°C	-	500	ns
Clock to INHIBIT Out		VDD = 10V	1, 2, 3	+25°C	-	200	ns
		VDD = 15V	1, 2, 3	+25°C	-	150	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	260	ns
INHIBIT IN to INHIBIT Out	TPLH	VDD = 10V	1, 2, 3	+25°C	-	120	ns
INTIIBIT Out		VDD = 15V	1, 2, 3	+25°C	-	90	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	600	ns
Clock to "9" or "15" Out	TPLH	VDD = 10V	1, 2, 3	+25°C	-	250	ns
		VDD = 15V	1, 2, 3	+25°C	-	180	ns
Propagation Delay	TPHL	VDD = 5V	1, 2, 3	+25°C	-	660	ns
Set to Out	TPLH	VDD = 10V	1, 2, 3	+25°C	-	300	ns
		VDD = 15V	1, 2, 3	+25°C	-	220	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input	FCL	VDD = 10V	1, 2	+25°C	2.5	-	MHz
Frequency		VDD = 15V	1, 2	+25°C	3.5	-	MHz
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	-	100	ns
Time - Inhibit		VDD = 10V	1, 2, 3	+25°C	-	40	ns
		VDD = 15V	1, 2, 3	+25°C	-	20	ns
Minimum Inhibit Removal	TREM	VDD = 5V	1, 2, 3	+25°C	-	240	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	130	ns
		VDD = 15V	1, 2, 3	+25°C	-	110	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	330	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	170	ns
		VDD = 15V	1, 2, 3	+25°C	-	100	ns
Maximum Clock Rise and	TRCL	VDD = 5V	1, 2, 3, 4	+25°C	-	15	μs
Fall Time	TFCL	VDD = 10V	1, 2, 3, 4	+25°C	-	15	μs
		VDD = 15V	1, 2, 3, 4	+25°C	-	15	μs

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Minimum Clear Removal	TREM	VDD = 5V	1, 2, 3	+25°C	-	60	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	40	ns
		VDD = 15V	1, 2, 3	+25°C	-	30	ns
Minimum Set Removal	TREM	VDD = 5V	1, 2, 3	+25°C	-	150	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	80	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Minimum Set or Clear	TW	VDD = 5V	1, 2, 3	+25°C	-	160	ns
Pulse Width		VDD = 10V	1, 2, 3	+25°C	-	90	ns
		VDD = 15V	1, 2, 3	+25°C	-	60	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. If more than one unit is cascaded, TRCL should be made less than or equal to the sumof the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND	1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A

TABLE 6. APPLICABLE SUBGROUPS (Continued)

CONFOR	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	1, 5-7	2-4, 8-15	16			
Static Burn-In 2 Note 1	1, 5-7	8	2-4, 9-16			
Dynamic Burn- In Note 1	-	2, 4, 8, 10, 12-15	3, 16	1, 5-7	9	11
Irradiation Note 2	1, 5-7	8	2-4, 9-16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

CD4527BMS

TRUTH TABLE

INPUTS										OUTPUTS			
NUMBER OF PULSES OR INPUT LOGIC LEVEL (0 = Low; 1 = High; X = Don't Care)										NUMBER OF PULSES OR OUTPUT LOGIC LEVEL (L = Low; H = High)			
D	С	В	Α	CLK	INH IN	STR	CAS	CLR *	SET *	OUT	OUT	INH OUT	"9" OUT
0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	L 1 2 3	H 1 2 3	1 1 1	1 1 1
0 0 0	1 1 1	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	4 5 6 7	4 5 6 7	1 1 1	1 1 1 1
1 1 1	0 0 0 0	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	8 9 8 9	8 9 8 9	1 1 1	1 1 1 1
1 1 1	1 1 1	0 0 1 1	0 1 0 1	10 10 10 10	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	8 9 8 9	8 9 8 9	1 1 1	1 1 1 1
X X X	X X X	X X X	X X X	10 10 10	1 0 0	0 1 0	0 0 1	0 0 0	0 0 0	** L H	** H ***	H 1 1	** 1 1
1 0 X	X X X	X X X	X X X	10 10 10	0 0 0	0 0 0	0 0 0	1 1 0	0 0 1	10 L L	10 H H	H H L	L L H

^{*} Clear and Set Inputs should not be high at the same time; device draws increased quiescent current when in this non-valid state.

Typical Performance Characteristics

FIGURE 2. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 3. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

^{**} Depends on internal state of counter.

^{***} Output same as the first 16 lines of this truth table (depending on values of A, B, C, D).

Typical Performance Characteristics (Continued)

FIGURE 4. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 6. TYPICAL DYNAMIC POWER DISSIPATION AS A FUNCTION OF INPUT FREQUENCY

FIGURE 5. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL PROPAGATION DELAY TIME AS A FUNC-TION OF LOAD CAPACITANCE (CLOCK OR STROBE TO OUT)

FIGURE 8. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

Applications

TIMING DIAGRAM SHOWING ONE OF FOUR OUTPUT PULSES CONTRIBUTED BY DRM ② TO OUTPUT FOR EVERY 100 CLOCK PULSES IN FOR PRESET NO. 94

FIGURE 9. TWO CD4527BMS's CASCADED IN THE "ADD" MODE WITH A PRESET NUMBER

OF 94
$$\left(\frac{9}{10} + \frac{4}{100} = \frac{94}{100}\right)$$

FIGURE 10. TWO CD4527BMS'S CASCADED IN THE "MULTIPLY" MODE WITH A PRESET NUMBER

OF 36
$$\left(\frac{9}{10} \times \frac{4}{100} = \frac{36}{100}\right)$$

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Timing Diagram

FIGURE 11. (SEE LOGIC DIAGRAM)

Chip Dimensions and Pad Layout

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches