local tests of global entanglement

and a counterexample to the generalized area law

1 q. expanders maximally entangled states

2 entanglement

testing and communication

3 area law

gaps, connections, correlations

walk on these graphs? mix fast!

walk on these graphs? mix fast!

walk on these graphs? mix fast! divide in two? cut a lot (fraction) of edges!

walk on these graphs? mix fast! divide in two? cut a lot (fraction) of edges!

examples: Ramanujan, Cayley

 walk on these graphs? mix fast! divide in two? cut a lot (fraction) of edges! examples: Ramanujan, Cayley

explicit, constant-degree approximations to the full graph

normalized adjacency matrix second largest eigenvalue 1–λ

a review [Hoory Linial Wigderson]a talk [Harrow quantum expanders youtube]

Mixing up something quantum

applying random unitaries

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{\kappa} U_i X U_i^{\dagger}$$

classical expanders:
 explicit, constant-degree
 approximations to the full graph fast-mixing

 applying random unitaries from a small set a discrete approx. to Haar

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{k} U_i X U_i^{\dagger}$$

classical expanders:
 explicit, constant-degree
 approximations to the full graph
 fast-mixing

 applying random unitaries from a small set a discrete approx. to Haar

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{k} U_i X U_i^{\dagger}$$

transform $N \times N$ matrices
I stays, everything else changes

$$\|\mathcal{E}(X)\|_2 \le \lambda \|X\|_2$$
 small 2nd largest sing. value

■ QE constructions for fixed k (…, 8, 4, 3) $1-\lambda \approx k^{-c}$ [Ben-Arroya+ 07, Hastings '07, Gross & Eisert '08, Hast. & Harr. '09, Gross '15]

■ transform N×N matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{n} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

$$X = \mathbb{I}$$

$$oxed{U_i oxed{X} U_i^{\scriptscriptstyle\dagger}}$$

$$U_i X = X U_i$$

■ transform *N*×*N* matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{n} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

$$X = \mathbb{I}$$

$$oxed{X} oxed{U_i} oxed{U_i^\dagger}$$

$$U_i X = X U_i$$

■ transform *N*×*N* matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{n} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

$$X = \mathbb{I}$$

interpreting matrices as 2-register states

$$X_{
m density} = \sum_{a,b} X_{ab} |a
angle \langle b|$$

■ transform *N*×*N* matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{n} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

$$X = \mathbb{I}$$

interpreting matrices as 2-register states

$$|X
angle = \sum_{a,b} X_{ab} |a
angle |b
angle$$
 state

■ transform *N*×*N* matrices

$$\mathcal{E}(X) = \frac{1}{k} \sum_{i=1}^{\kappa} U_i X U_i^{\dagger}$$

a matrix that doesn't change?

$$X = \mathbb{I}$$

interpreting matrices as 2-register states

$$\frac{1}{k} \sum_{i=1}^{k} (U_i \otimes U_i^*) \sum_{a,b} X_{ab} |a\rangle |b\rangle$$

applying an expander distributively

a stationary state?

max. entangled!
$$\frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

Quantum expanders & 2 registers

transform *N*⊗*N* states close to the depolarizing channel

$$\|\tilde{\mathcal{E}} - |\phi_N\rangle\langle\phi_N|\| = \lambda$$

interpreting matrices as 2-register states

$$\frac{1}{k} \sum_{i=1}^{k} (U_i \otimes U_i^*) \sum_{a,b} X_{ab} |a\rangle |b\rangle$$

applying an expander distributively

a stationary state?

max. entangled!
$$\frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

how costly is it to certify that we share a maximally entangled state?

$$\frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

 $O(\log\log(N) + \log(1/\lambda))$ qubits. [BDSW '96, BCGST '02]

how costly is it to certify that we share a maximally entangled state?

$$\frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

 $O(\log(1/\lambda))$ qubits for error λ .

- how costly is it to certify that we share a maximally entangled state?
- apply a quantum expander distributively

$$\frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

$$U_i \otimes U_i^*$$

when does the qutrit remain uniform?

$$\frac{1}{\sqrt{3}} \sum_{i=1}^{3} |i\rangle \left(U_i \otimes U_i^* \right) \sum_{a,b} X_{ab} |a\rangle |b\rangle$$

lacktriangleright when does the qutrit remain uniform? for max. entangled X

$$\frac{1}{\sqrt{3}} \sum_{i=1}^{3} |i\rangle \left(U_i \otimes U_i^*\right) \frac{1}{\sqrt{N}} \sum_{x=1}^{N} |x\rangle |x\rangle$$

quantum expander property ... soundness

little communication local tests constant error

global correlations

few connections local interactions constant gap

local correlations

few connections local interactions constant gap

global correlations

Ground states of gapped quantum spin systems

entanglement entropy

$$S = -\mathrm{Tr}(\rho_A \ln \rho_A) \sim \mathrm{volume}$$
 surface area

area law --> a simple ground state?

3 Gapped 1D Hamiltonians

Nothing closer than Δ to the ground state.

the AKLT (spin-1) chain

$$\sum_{j=1}^{N-1} \vec{S}_j \cdot \vec{S}_{j+1} + \frac{1}{3} \left(\vec{S}_j \cdot \vec{S}_{j+1} \right)^2$$

a biased walk in 1D

$$\sum_{j=1}^{N-1} (|j\rangle - B|j+1\rangle) \left(\langle j| - B\langle j+1|\right)$$

exp. falloff of corelations, MPS/DMRG work well

Without a gap, the entropy can be large. [Verstraete, Latorre+]

Ground states of gapped H's & the area law

entanglement entropy

$$S = -\mathrm{Tr}(\rho_A \ln \rho_A) \sim \mathrm{volume}$$
 surface area

a gapped system \implies an area law

Ground states of gapped H's & the area law

entanglement entropy

$$S = -\mathrm{Tr}(\rho_A \ln \rho_A) \sim \mathrm{volume}$$
 surface area

- **1D... theorems** [Hastings 07, Arad+ 13] algorithms [White 92, Vidal 03, Landau+ 13]
- 2D ... we're close

a gapped system \longrightarrow an area law

Ground states of gapped H's & the area law

entanglement entropy

$$S = -\mathrm{Tr}(\rho_A \ln \rho_A) \sim \mathrm{volume}$$
 surface area

1D... theorems [Hastings 07, Arad+ 13] algorithms [White 92, Vidal 03, Landau+ 13]

2D ... we're close

generalized area conjecture entropy ~ cut size

a gap a few links O(1) terms

not much entanglement

(a "simple" ground state)

generalized area conjecture entropy ~ cut size

Generalized area conjecture: the counterexample

- \blacksquare an $N \times 3 \times 3 \times N$ dimensional system
- ullet a gapped, frustration-free Hamiltonian an O(1) interaction between the qutrits

Generalized area conjecture: the counterexample

- \blacksquare an $N \times 3 \times 3 \times N$ dimensional system
- ullet a gapped, frustration-free Hamiltonian an O(1) interaction between the qutrits
- ullet a unique, very entangled ground state O(N) entanglement entropy across the cut

lacktriangle a projector P_L with ground states

$$\frac{1}{\sqrt{3}}\left(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle\right)$$

as a vector

x

as a matrix

 X_1

 X_2

 X_3

 $|Ax| \otimes |j\rangle \otimes |y\rangle$

Bx

 AX_1

 AX_2

 AX_3

 BX_1

 BX_2

 BX_3

 $|i\rangle \otimes |x\rangle \otimes$

lacksquare a projector P_R with ground states

$$\frac{1}{\sqrt{3}}\left(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle\right)$$

yA

as a vectoras a matrix

 P_R

yB

lacksquare a projector P_L a projector P_R

$$(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle)/\sqrt{3}$$
$$(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle)/\sqrt{3}$$

a projector P_L a projector P_R a projector P_M

$$(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle) / \sqrt{3}$$
$$(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle) / \sqrt{3}$$

$$egin{array}{c|cccc} X & XA & XB \\ \hline AX & AXA & AXB \\ \hline BX & BXA & BXB \\ \hline \end{array}$$

- a projector P_L a projector P_R a projector P_M
- who commutes with A and B? only the identity,

as [I, A, B] is a q. expander

 $(|1\rangle|x\rangle + |2\rangle A|x\rangle + |3\rangle B|x\rangle)/\sqrt{3}$

 $(|1\rangle|y\rangle + |2\rangle A|y\rangle + |3\rangle B|y\rangle)/\sqrt{3}$

enforce symmetry: 12 & 21

13 & 31

- a projector P_L a projector P_R a projector P_M
- who commutes with A and B? only the identity, as [I, A, B] is

a q. expander

a unique, very entangled ground state a gapped Hamiltonian, O(1) terms, frust. free

3

Making the counterexample local

a quantum circuit, history state
 Kitaev's LH, 1D, qudits

prepare
$$\frac{1}{\sqrt{3}}\left(|1\rangle|x\rangle+|2\rangle A|x\rangle+|3\rangle B|x\rangle\right)$$
 from
$$\frac{1}{\sqrt{3}}\left(|1\rangle+|2\rangle+|3\rangle\right)|x\rangle$$

 P_M

 P_R

a quantum circuit, history state Kitaev's LH, 1D, qudits

prepare
$$\frac{1}{\sqrt{3}}\left(|1\rangle|x\rangle+|2\rangle A|x\rangle+|3\rangle B|x\rangle\right)$$
 from
$$\frac{1}{\sqrt{3}}\left(|1\rangle+|2\rangle+|3\rangle\right)|x\rangle$$

 P_L

 P_{M}

 P_{R}

a quantum circuit, history state Kitaev's LH, 1D, qudits

The history state: a ground state of a qudit chain

$$|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle$$

The history state: a ground state of a qudit chain

 $|\cdots\rangle|0\rangle\otimes|0\rangle$

$$|arphi_t
angle\otimes|t
angle$$
 .

$$|\varphi_{t+1}\rangle\otimes|t+1\rangle$$

$$|\psi_{hist}\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |\varphi_t\rangle \otimes |t\rangle$$

initialization

idling

a quantum circuit, history state
 Kitaev's LH, 1D, qudits
 an approx. groundstate, a small 1/poly(n) gap

- a quantum circuit, history state
 Kitaev's LH, 1D, qudits
 an approx. groundstate, a small 1/poly(n) gap
- rescale P_L , P_R (not the middle!) a constant gap, huge couplings

- a quantum circuit, history state
 Kitaev's LH, 1D, qudits
 an approx. groundstate, a small 1/poly(n) gap
- rescale P_L , P_R (not the middle!) a constant gap, huge couplings

decompose using gadgets [Cao, N.]
 huge couplings many spins, high degree

A local Hamiltonian, $(N \times M) \times 3 \times 3 \times (N \times M)$

a unique and very entangled ground state

a constant gap
 O(1) or smaller norm terms, frustration

3 What next?

a longer middle chain?

3 What next?

- a longer middle chain?
- a nice lattice on the sides?

- a longer middle chain?
- a nice lattice on the sides?
- a new area conjecture: count the cut & things nearby?

1 q. expanders
maximally entangled states

2 entanglement

testing and communication

3 area law

gaps, connections, correlations

local tests of global entanglement and a counterexample to the generalized area law

