

the width determined at quarter peak height is greater than 15°C, wherein such process comprises the direct polymerization of propylene or copolymerization of propylene with olefins of the formula $R^aCH = CHR^b$, in which R^a and R^b are identical or different and are a hydrogen atom or an alkyl radical having 1 to 14 carbon atoms, or R^a and R^b , together with the atoms connecting them, can form a ring,

SUB E1

to at least two polyolefins of different melting points, wherein the melting points of the polyolefins must differ by at least 5° C, and wherein the polymerized is carried out at a temperature of from -60 to 200°C, and a pressure of from 0.5 to 100 bar, in solution, in suspension or in the gas phase, in the presence of a catalyst, wherein the catalyst comprises

(A) at least two metallocenes as transition-metal components and an aluminoxane of the formula II

Serial No. 08/120,105

1992/F 294

for the linear type and/or of the formula III

for the cyclic type, where in the formulae II and III, the radicals R may be identical or different are a C₁-C₆-alkyl group, a C₁-C₆-fluoroalkyl group, a C₆-C₁₈-aryl group, a C₆-C₁₈-fluoroaryl group or hydrogen, and n is an integer from 0 to 50, and the aluminoxane component may additionally contain a compound of the formula AlR₃, or

- (B) at least two metallocenes as transition-metal components and a salt-like compound of the formula R_xNH_{4-x} or of the formula R₃PHBR'₄ wherein x is 1, 2 or 3, R is identical or different and is alkyl or aryl, and R' is aryl, which may also be fluorinated or partly fluorinated,

where the transition-metal component used comprises at least two metallocenes of the formula I:

in which

M^1 is Zr or Hf,

R^1 and R^2 are identical or different and are a hydrogen atom, a C_1-C_{10} -alkyl group, a C_1-C_{10} -alkoxy group, a C_6-C_{10} -aryl group, a C_6-C_{10} -aryloxy group, a C_2-C_{10} -alkenyl group, a C_7-C_{40} -arylalkyl group, a C_7-C_{40} -alkylaryl group, a C_8-C_{40} -arylalkenyl group, or a halogen atom,

R^3 and R^4 are identical or different and are a monocyclic or polycyclic, unsubstituted or substituted hydrocarbon radical, together with the metal atom M^1 , can form a sandwich structure,

R^5 is

where R^{11} , R^{12} [and R^{13}] are identical or different and are a hydrogen atom, a halogen atom, a C_1 - C_{10} -alkyl group, a C_1 - C_{10} -fluoroalkyl group, a C_6 - C_{10} -aryl group, a C_6 - C_{10} -fluoraryl group, a C_1 - C_{10} -alkoxy group, a C_2 - C_{10} -alkenyl group, a C_7 - C_{40} -arylalkyl group, a C_8 - C_{40} -arylalkenyl group or a C_7 - C_{40} -alkylaryl group, or R^{11} and R^{12} [or R^{11} and R^{13} , in each case] together with the atoms connecting them, form a ring,

M^2 is silicon or germanium,

R^8 and R^9 are identical or different and are as defined for R^{11} and

m and n are identical or different and are zero or 1.

SJF 3

24. (Once amended) The process as claimed in claim 17, wherein R¹ and R² are identical or different and are a hydrogen atom, a C₁-C₃- alkyl group, a C₁-C₃- alkoxy group, a C₆-C₈-aryl group, a C₆-C₈-aryloxy group, a C₂-C₄-alkenyl group, a C₇-C₁₀-arylalkyl group, a C₇-C₁₂-alkylaryl group, a C₈-C₁₂-arylalkenyl group, or chlorine R¹¹, R¹² and R¹³ are identical or different and are a hydrogen atom, a C₁-C₄- alkyl group, CF₃ group, a C₁-C₄-alkoxy group, a C₆-C₈-aryl group, pentafluorophenyl group, a C₂-C₄-alkenyl group, a C₇-C₁₀-arylalkyl group, a C₇-C₁₂-alkylaryl group, a C₈-C₁₂-arylalkenyl group, or R¹¹ and R¹² [or R¹¹ and R¹³, in each case] together with the atoms connecting them, form a ring.

DR

25. (Once amended) The process as claimed in claim 17, wherein R¹ and R² are identical and are methyl or chlorine, R⁴ and R³ are indenyl, cyclopentadienyl or fluorenyl, where these ligands may carry additional substituents as defined for R¹¹[, R¹² and R¹³]. --

Please add the following new claim:

*SJF 3
CH₃SiCH₃.--*

- - 28. The process as claimed in claim 25, wherein R⁵ is ethylene or