Supplemental Materials for EE203001 Students

II. Determinant Functions

Chung-Chin Lu
Department of Electrical Engineering
National Tsing Hua University

May 22, 2003

1 Three Axioms for a Determinant Function

Let d be a scalar-valued function on the space $M_{n\times n}$ of all $n\times n$ matrices. Let A_1,A_2,\ldots,A_n be the n rows of an $n\times n$ matrix A. We will denote the value d(A) of A under the function d as $d(A)=d(A_1,A_2,\ldots,A_n)$, indicating that d is a scalar-valued function of n n-dimensional row vectors A_1,A_2,\ldots,A_n . The scalar-valued function d is called a determinant function of order n if it satisfies the following three axioms:

Axiom 1. Homogeneity in each row. If matrix B is obtained from matrix A by multiplying one row, says the ith row, of A by a scalar α , then $d(B) = \alpha \ d(A)$, i.e.,

$$d(A_1,\ldots,\alpha A_i,\ldots,A_n)=\alpha\ d(A_1,\ldots,A_i,\ldots,A_n).$$

Axiom 2. Invariance under row addition. If matrix B is obtained from matrix A by adding one row, says the kth row, of A to another row, says the ith row, of A, then d(B) = d(A), i.e.,

$$d(A_1,\ldots,A_i+A_k,\ldots,A_k,\ldots,A_n)=d(A_1,\ldots,A_i,\ldots,A_k,\ldots,A_n).$$

Axiom 3. The determinant of the identity matrix is one.

$$d(I_{n \times n}) = d(e_1, e_2, \dots, e_n) = 1.$$

The primary purpose of this supplement is to show that there exists such a determinant function d of order n and it is unique. Before being able to do so, we will derive important properties of such a determinant function d if exists.