Search: Reference <random> uniform_real distribution register log in

Information Tutorials Reference Articles Forum

class template

std::uniform_real_distribution

<random>

(i)

template <class RealType = double> class uniform_real_distribution; Uniform real distribution

Random number distribution that produces floating-point values according to a uniform distribution, which is described by the following probability density function:

$$p(x|a,b) = \frac{1}{b-a} , a \le x < b$$

This distribution (also know as rectangular distribution) produces random numbers in a range [a,b) where all intervals of the same length within it are equally probable.

The distribution parameters, a and b, are set on construction.

To produce a random value following this distribution, call its member function operator().

Template parameters

RealType

A floating-point type. Aliased as member type result_type. By default, this is double.

Member types

The following aliases are member types of uniform_real_distribution:

member type	definition	notes
result_type	The first template parameter (RealType)	The type of the numbers generated (defaults to double)
param_type	not specified	The type returned by member param.

C library: Containers Input/Output: Multi-threading: <algorithm:
bitset> <chrono> <codecvt> <complex> <exception> <functional> <initializer list> <iterator> dimits> <locale> <memory> <new> <numeric> <random> <ratio> <regex> <stdexcept> <string> <system_error> <tuple> <typeindex> <typeinfo> <type_traits

distributions

<utility> <valarray:

bernoulli_distribution binomial distribution cauchy_distribution chi_squared_distribution discrete_distribution exponential_distribution extreme_value_distribution fisher f distribution gamma_distribution geometric distribution lognormal distribution negative_binomial_distribution normal distribution piecewise_constant_distribution piecewise linear distribution poisson distribution student t distribution

<random:

uniform int distribution uniform_real_distribution weibull_distribution generators:

default_random_engine discard_block_engine independent_bits_engine

other:

seed_seq

generate canonical

linear_congruential_engine mersenne_twister_engine

minstd_rand minstd_rand0 mt19937 mt19937 64 random device ranlux24 ranlux24 base ranlux48 ranlux48 base shuffle order engine subtract_with_carry_engine

uniform real distribution::(constructor) member functions: uniform real distribution::a uniform real distribution::b uniform real distribution::max

Member functions

(constructor)	Construct uniform real distribution (public member function)	
operator()	Generate random number (public member function)	
reset	Reset distribution (public member function)	
param	Distribution parameters (public member function)	
min	Minimum value (public member function)	
max	Upper bound of range (public member function)	

Distribution parameters:

a	Lower bound of range (public member function)
b	Upper bound of range (public member function)

Non-member functions

operator<<	Insert into output stream (function template)
operator>>	Extract from input stream (function template)
relational operators	Relational operators (function template)

Example

```
1 // uniform_real_distribution
 2 #include <iostream>
3 #include <random>
 5
    int main()
 6 {
       const int nrolls=10000; // number of experiments
       const int nstars=95;  // maximum number of stars to distribute
const int nintervals=10; // number of intervals
 8
10
11
        \begin{array}{lll} & std::default\_random\_engine \ generator; \\ std::uniform\_real\_distribution < & double > \ distribution(0.0,1.0); \\ \end{array} 
12
13
14
       int p[nintervals]={}:
15
16
       for (int i=0; i<nrolls; ++i) {
  double number = distribution(generator);</pre>
17
18
          ++p[int(nintervals*number)];
19
20
21
       std::cout << "uniform_real_distribution (0.0,1.0):" << std::endl;</pre>
22
23
       std::cout << std::fixed; std::cout.precision(1);</pre>
24
       for (int i=0; i<nintervals; ++i) {</pre>
         std::cout << float(i)/nintervals << "." << float(i+1)/nintervals << ": "; std::cout << std::string(p[i]*nstars/nrolls,'*') << std::endl;
25
26
27
28
```

uniform_real_distribution - C++ Reference

```
uniform_real_distribution::min
uniform_real_distribution::operator()
uniform_real_distribution::param
uniform_real_distribution::param
uniform_real_distribution:reset
non-member functions:
operator<<
operator<>
relational operators

Ultra Tune Car Servicing
```

```
Ultra Tune Car Servicing
Contact us for your servicing, tyre, vehicle
maintenance and repair needs. Go to ultratune.com.au
```

```
Possible output:

uniform_real_distribution (0.0,1.0):
0.0-0.1: *********
0.1-0.2: *********
0.2-0.3: *********
0.3-0.4: *********
0.4-0.5: ********
0.5-0.6: *********
0.5-0.6: *********
0.6-0.7: ********
0.7-0.8: *********
0.8-0.9: *********
0.9-1.0: *********
```

Uniform discrete distribution (class template)

generate_canonical Generate canonical numbers (function template)

Home page | Privacy policy

© cplusplus.com, 2000-2017 - All rights reserved - v3.1

Spotted an error? contact us

See also uniform_int_distribution