ДИС 2 Числови Редове

Гранични критерии

Граничен критерий на Даламбер

Нека
$$\sum_{n=0}^{+\infty} a_n$$
 е числов ред с положителни членове, т.е. $a_n > 0 \ \forall n \in \mathbb{N}$.

Нека
$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = L$$
, тогава:

Ако
$$L < 1$$
, то редът $\sum_{n=0}^{+\infty} a_n$ е сходящ.

Ако
$$L>1$$
, то редът $\displaystyle\sum_{\substack{n=0\\+\infty}}^{n=0}a_n$ е разходящ.

Ако
$$L=1$$
, то редът $\displaystyle \sum_{n=0}^{n=0} a_n$ може да е както сходящ, така и разходящ.

Граничен критерий на Коши

Нека
$$\sum_{n=0}^{+\infty} a_n$$
 е числов ред с положителни членове, т.е. $a_n > 0 \ \forall n \in \mathbb{N}$.

Нека
$$\lim_{n\to+\infty} \sqrt[n]{a_n} = L$$
, тогава:

Ако
$$L<1$$
, то редът $\sum_{n=0}^{+\infty}a_n$ е сходящ.

Ако
$$L>1$$
, то редът $\sum_{n=0}^{+\infty}a_n$ е разходяш

Ако
$$L>1$$
, то редът $\sum_{n=0}^{+\infty}a_n$ е разходящ. Ако $L=1$, то редът $\sum_{n=0}^{+\infty}a_n$ може да е както сходящ, така и разходящ.

Граничен критерий на Раабе-Дюамел

Нека
$$\sum_{n=0}^{+\infty} a_n$$
 е числов ред с положителни членове, т.е. $a_n > 0 \ \forall n \in \mathbb{N}$.

Нека
$$\lim_{n\to+\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = L$$
, тогава:

Ако
$$L>1$$
, то редът $\sum_{n=0}^{+\infty}a_n$ е сходящ.

Ако
$$L < 1$$
, то редът $\sum_{n=0}^{+\infty} a_n$ е разходящ.

Ако
$$L=1$$
, то редът $\sum_{n=0}^{+\infty} a_n$ може да е както сходящ, така и разходящ.