Assignment 3 Documentation

BHANU CHANDU RAVIPATI

700728966

1. Titanic dataset

- ✓ Read train and test dataset using pandas.
- ✓ Check head to see columns and type of data.
- ✓ Check for data imbalance using value counts on y variable.
- ✓ Plot histogram for survived vs age.

- ✓ Drop unnecessary columns and separate y variable. Out: X_train, Y_train, X_test
- ✓ Check for null values and fill them with mean or median accordingly.
- ✓ Convert categorical columns to numerical with label encoding.
- ✓ Sample data after preprocessing is as below.

	Pclass	Sex	Age	Fare	Embarked
0	3	male	34.5	7.8292	Q
1	3	female	47.0	7.0000	S
2	2	male	62.0	9.6875	Q
3	3	male	27.0	8.6625	S
4	3	female	22.0	12.2875	S

✓ Fit 4 naïve bayes models(gaussian, multinomial, Bernoulli, complement) on X_train and Y_train. Use scikit-learn for the same.

- ✓ Predict on X_test.
- ✓ Since X_test original labels are not available we calculate accuracy on train data itself.
- ✓ Find classification_report, confusion_matrix, accuracy_score for each of the 4 models using scikit-learn
- ✓ Gaussian:

	precisio	on recal	ll f1-scc	re suppo	ort	
			0.82 0.70		0.82 0.71	549 342
	accura macro a weighted a	avg (0.77	891 891 891
✓	Multinomial:]] is 0.776655				
	precision	recall	il-score	e support		
			0.72 0.64		0.77 0.55	549 342
	accura macro weighted a	avg (0.65	0.66	891 891 891
√	[[457 92] [179 163] accuracy 2		7362514029	2		
	precision	recall	f1-score	support	-	
			0.81		0.83 0.71	549 342
	accura macro a weighted a	avg (0.77 0.79	0.77	891 891 891
	-		5453423120	1		
✓	<pre>Complement: precision</pre>	recall	f1-score	e support	<u>.</u>	
			0.72 0.64	0.83	0.77 0.55	549 342
	accura macro weighted a	avg (0.68 0.69	0.66	0.70 0.66 0.69	891 891 891

✓ Best fit model is Bernoulli naïve as it works well on binary dataset.

2. Glass dataset

- ✓ Read glass dataset using pandas.
- ✓ Check head to see columns and type of data.

RI	Na	Mg	Αl	Si	K	Ca	Ва	Fe	Type		
0	1.5210	1	13.64	4.49	1.10	71.78	0.06	8.75	0.0	0.0	1
1	1.5176	1	13.89	3.60	1.36	72.73	0.48	7.83	0.0	0.0	1
2	1.5161	8	13.53	3.55	1.54	72.99	0.39	7.78	0.0	0.0	1
3	1.5176	6	13.21	3.69	1.29	72.61	0.57	8.22	0.0	0.0	1
4	1.5174	2	13.27	3.62	1.24	73.08	0.55	8.07	0.0	0.0	1

- ✓ Check for data imbalance using value_counts on y variable. This dataset is highly **imbalanced**.
- ✓ Plot histogram for Type vs Na and Type vs Si to observe the relation of dependant variables with independent variable.

- ✓ Separate X and Y data.
- ✓ Split data for train and test with 20% test using train_test_split. Set random_set to get same split on repetition. Out: X_train, Y_train, X_test, Y_test.
- ✓ Fit 4 naïve bayes models(gaussian, multinomial, Bernoulli, complement), SVC and Linear SVC on X_train and Y_train. Use scikit-learn for the same.
- ✓ Predict on X_test.
- ✓ Calculate accuracy on test data with Y_test and Y_pred_test.
- ✓ Find classification_report, confusion_matrix, accuracy_score for each of the 4 models using scikit-learn.
- ✓ Gaussian:

precision]	recall	f1-scc	re	su	pport			
	1	0.	19	0.4	44	(.27		9
	2	0.	33	0.3	16		.21	-	19
	3	0.	33	0.2	20		.25		5

	5 6 7		0.00 0.67 1.00	0.00 1.00 1.00	0.00 0.80 1.00	2 2 6
accu: macro weighted	avg		0.42	0.47 0.37	0.37 0.42 0.36	43 43 43
[3 1	1 0 1 1 1 0 0 0 0 0 0 0 is 0.	0 0 2 0	0] 0] 0] 0] 0] 6]] 093023255	81395		
precision	n r	recal	ll f1-sc	ore supp	ort	
	1 2 3		0.28 0.40 0.00	0.89 0.11 0.00	0.42 0.17 0.00	9 19 5

precision		recall	f1-so	core :	support		
	1		0.28	0.89		.42	9
	2		0.40	0.13		.17	19
	3		0.00	0.00	0 0	.00	5
	5		0.00	0.00	0 0	.00	2
	6		0.00	0.00	0 0	.00	2
	7		0.67	1.00	0 0	.80	6
accurac	V				0	.37	43
macro av	a		0.22	0.33	3 0	.23	43
weighted av	_		0.33	0.3		.27	43
[[8 1 0	0	0 0	1				
[16 2 0	0	0 1					
[5 0 0	0	0 0	-				
[0 0 0	0	0 2	_				
[0 2 0	0	0 0	_				
0 0 0	0]]				
accuracy is	0		302325!	581395			

✓ Bernoulli:

precision	recall f1	-score s	upport	
1 2 3 5 6 7	0.27 0.29 0.00 0.00 0.00	0.11 0.00 0.00 0.00	0.41 0.15 0.00 0.00 0.00 0.83	9 19 5 2 2 6
accuracy macro avg weighted avg	0.23 0.30		0.35 0.23 0.27	43 43 43

[[8 1 0 0 0 0]

```
[16 2 0 0 0 1]

[5 0 0 0 0 0]

[0 2 0 0 0 0]

[0 2 0 0 0 0]

[1 0 0 0 0 5]]

accuracy is 0.3488372093023256
```

✓ Complement:

precision	ח	r	ecal	1 1	f1-sc	ore	su	ıpport	:		
	(1 2 3 5 6 7		0.2 0.0 0.0 1.0 0.5	00 00 00 50	0 0 0	.00 .00 .00 .50 .50		0.44 0.00 0.00 0.67 0.50) , ,	9 19 5 2 2 6
accun macro weighted	av	3		0.4			.50 .40		0.40 0.41 0.27		43 43 43
[[9 0 [17 0 [5 0 [0 0 [1 0 [0 0 accuracy	0 0 0 0 0 0	0 0 0 1 0 0	1 0 0 1 0	0] 1] 0] 1] 0] 6]]	372093	3023					

✓ SVC:

precisi	ion	r	recal	l f1-so	core	supp	ort	
		1		0.21	1.		0.35	9
		2 3		0.00	0. 0.	00	0.00	19 5
		5		0.00	0.		0.00	2
		6 7		0.00	0. 0.		0.00	2
aco	curac	У					0.21	43
	ro av	_		0.03	0.		0.06	43
weighte	ed av	g		0.04	0.	21	0.07	43
[[9 (0 0	0	0	0]				
[19 (0 C	0	0	0]				
[5 (0 C	0	0	0]				
[2 (0 0	0	0	0]				
[2 (0 0	0	0	0]				
[6 (0 C	0	0	0]]				
accurac	cy is	0.	2093	02325581	L39536			

✓ Linear SVC(max_iter=1000):

```
precision
            recall f1-score
                            support
          1
                  0.31
                           1.00
                                     0.47
                                                 9
          2
                  1.00
                           0.11
                                     0.19
                                                19
          3
                  0.00
                           0.00
                                     0.00
                                                 5
          5
                                                 2
                 0.50
                           0.50
                                     0.50
                                                 2
          6
                  0.50
                           1.00
                                    0.67
          7
                 1.00
                           1.00
                                    1.00
                                                 6
                                    0.47
                                                43
   accuracy
                 0.55
  macro avg
                           0.60
                                    0.47
                                                43
                 0.69
                           0.47
                                    0.38
                                                43
weighted avg
[[ 9 0
        0 0 0 0]
 [15
     2
       0 1 1
                 0]
 [ 5
     0 0 0 0
                0]
 0 ]
          1
     0 0
              1
                 0]
 [ 0 0 0 0 2 0]
 [000006]]
accuracy is 0.46511627906976744
```

✓ Complement naïve bayes works well for imbalanced dataset. Overall Linear SVC has better accuracy because data may be linearly related.