★ Spé - St Joseph/ICAM Toulouse ★

Math. - CC 3 - S1 - Analyse

vendredi 13 décembre 2019 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

On considère l'équation différentielle suivante :

$$x^{2}(1-x)y'' - x(x+1)y' + y = 2x^{3}$$
 (E)

PARTIE I

Dans cette partie on cherche les solutions développables en série entière de l'équation différentielle homogène associée à (E):

$$x^{2}(1-x)y'' - x(x+1)y' + y = 0 \quad (H)$$

On considère une suite de réels $(a_n)_{n\in\mathbb{N}}$ telle que la série entière $\sum a_n x^n$ ait un rayon de convergence r>0. On définit la fonction $f:]-r,r[\longrightarrow\mathbb{R}$ par :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n$$

- 1. Justifier que la fonction f est de classe C^2 et que les fonctions f' et f'' sont développables en série entière. Exprimer avec la suite $(a_n)_{n\in\mathbb{N}}$ les développements respectifs des fonctions f' et f'' en précisant leur rayon de convergence.
- **2.** Montrer qu'il existe une suite $(b_n)_{n\geq 2}$ de nombres réels non nuls telle que pour tout $x\in]-r,r[$ on a :

$$x^{2}(1-x)f''(x) - x(x+1)f'(x) + f(x) = a_{0} + \sum_{n=2}^{+\infty} b_{n} (a_{n} - a_{n-1}) x^{n}.$$

- **3.** Montrer que f est solution de (H) sur l'intervalle]-r,r[si et seulement si, $a_0=0$ et $a_{n+1}=a_n$ pour tout $n\in\mathbb{N}^*$.
- **4.** En déduire que si f est solution de (H) sur]-r,r[, alors $r\geq 1$ et il existe $\lambda\in\mathbb{R}$ tel que :

$$\forall x \in]-1,1[, \quad f(x) = \frac{\lambda x}{1-x}$$

5. Réciproquement, montrer que si $\lambda \in \mathbb{R}$, alors la fonction

$$g:]-1,1[\longrightarrow \mathbb{R}, \quad x\mapsto \frac{\lambda x}{1-x}$$

est une solution de (H) sur]-1,1[, développable en série entière.

PARTIE II

Soit $y:]0,1[\longrightarrow \mathbb{R}$ une fonction de classe C^2 . On définit la fonction $z:]0,1[\longrightarrow \mathbb{R}$ par la relation :

$$\forall x \in]0,1[, \quad z(x) = \left(\frac{1}{x} - 1\right)y(x)$$

- 1. Justifier que z est de classe C^2 sur [0,1[, puis exprimer z' et z'' avec y,y' et y''.
- 2. Montrer que y est solution de (E) sur]0,1[si, et seulement si z est solution sur]0,1[de l'équation différentielle :

$$xz'' + z' = 2x \quad (E_1)$$

3. Montrer que si z est solution de (E_1) sur]0,1[, alors il existe $\lambda\in\mathbb{R}$ tel que

$$\forall x \in]0,1[, \quad z'(x) = \frac{\lambda}{x} + x$$

4. En déduire l'ensemble des solutions de (E) sur]0,1[.

Fin de l'énoncé d'analyse