Numerical Linear Algebra - Sheet 3

to be handed in until November 8, 2023, 11am.

Normal and Hermitian Matrices

Problem 1. Consider a Hermitian matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ and a unitary linear operator $\mathbf{Q} \in \mathbb{C}^m \to \mathbb{C}^n$, m < n. Prove, that an eigenvalue $\lambda_k(\mathbf{B})$ of the matrix $\mathbf{B} = \mathbf{Q}^* \mathbf{A} \mathbf{Q} \in \mathbb{C}^{m \times m}$ is either equal to 0, or the following estimate holds

$$|\lambda_{\min}(\mathbf{A})| \le |\lambda_k(\mathbf{B})| \le |\lambda_{\max}(\mathbf{A})|,$$

where $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues of \mathbf{A} measured by their magnitude.

Problem 2. Show that a normal triangular matrix is diagonal. *Hint*: look at the norms of \mathbf{Ae}_i and $\mathbf{A}^*\mathbf{e}_i$.

Well-posedness of EVP

Problem 3. Construct a counterexample that the problem of finding eigenvectors is *not* well-posed, if the eigenspaces are almost parallel.

Problem 4. Consider the following matrix

$$\mathbf{A} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}^T \begin{pmatrix} 1 \\ c \end{pmatrix} \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

with parameters $\varphi \in [0, 2\pi]$ and $c \in (0, 1)$.

- 1. Compute the eigenvalues and eigenvectors of **A**.
- 2. (Programming) Write a program which computes the sequence $\mathbf{x}^{(n)} \in \mathbb{R}^2$ defined as

$$\mathbf{x}^{(n)} = \mathbf{A}\mathbf{x}^{(n-1)},$$
$$\mathbf{x}^{(0)} = \mathbf{x}^*.$$

for $\mathbf{x}^* = (1,\ 0)^T,\ c = 0.1,$ and $\varphi = \frac{\pi}{4}.$ Try playing with different values of those parameters.

- 3. Is there a limit of $\mathbf{x}^{(n)}$? What is about the case c=1?
- 4. Compute the limit: $\lim_{n\to\infty} \mathbf{A}^n$.

Vector Iterations: Simple Iterations

Problem 5. A diagonalizable real matrix **A** has the following spectrum:

$$\sigma(\mathbf{A}) = \{-2, 1-2i, 1+2i, 1, -i, i, 2\}.$$

Consider using the inverse power method (vector iteration) to compute its eigenvalues.

- (a) Find a set of all shift parameters for which the inverse power method may not converge. Draw a sketch.
- (b) For every *real* eigenvalue find a *real* range of shifts that, if used in the inverse power method, will reduce the error of approximation of the eigenvalue by a factor of 10 in each iteration.

Problem 6. Propose shift parameters that will allow you to compute *all* eigenvalues and eigenvectors of the matrix

$$\begin{pmatrix} 100 & 15 & 3 \\ 15 & 20 & 5 \\ 3 & 5 & 65 \end{pmatrix}.$$

Prove that your choice is correct. Hint: Gershgorin circle theorem

Problem 7 (Programming). Write a program that computes all eigenvectors and eigenvalues of the matrix

$$\mathbf{A}_{\varepsilon} = \begin{pmatrix} 100 & 15 & 3 & 0 & 0 & \varepsilon \\ 15 & 20 & 5 & 0 & \varepsilon & 0 \\ 3 & 5 & 65 & \varepsilon & 0 & 0 \\ 0 & 0 & \varepsilon & 110 & 20 & 5 \\ 0 & \varepsilon & 0 & 20 & 80 & 4 \\ \varepsilon & 0 & 0 & 5 & 4 & 30 \end{pmatrix}$$

using the shifted (inverse) power method by observing the following steps:

- (a) Consider the matrix \mathbf{A}_0 with $\varepsilon=0$ and examine the structure of the eigenvalue problem.
- (b) Compute all eigenvalues and eigenvectors of \mathbf{A}_0 .
- (c) Does the algorithm work, if you use Gerschgorin for the computation of all six eigenvalues?
- (d) Can you use part (??) to get something better?