Chapitre 21 : Formes différentielles de degré 1, intégrales curvilignes

I Formes différentielles de degré 1 de classe C^k , $k \in [0,+\infty]$.

- Soit U un ouvert de \mathbb{R}^n . On appelle forme différentielle de degré 1 de classe C^k toute application $\omega: U \to (\mathbb{R}^n)^*$ de classe C^k .
- Soit $(\varepsilon_1,...\varepsilon_n)$ la base canonique de \mathbb{R}^n , $(\varepsilon_1^*,...\varepsilon_n^*)$ sa base duale.

Ainsi, toute application $\omega: U \to (\mathbb{R}^n)^*$ s'écrit de manière unique :

 $\omega: M \in U \mapsto \sum_{j=1}^{n} P_{j}(M)\varepsilon_{j}^{*}$ où $P_{j}: U \to \mathbb{R}$ sont les fonctions coordonnées.

Proposition:

 ω est une forme différentielle de classe C^k si et seulement si pour tout $j \in [0, n]$, P_j est de classe C^k .

II Formes différentielles exactes (de degré 1)

• Théorème :

Pour toute application $f: U \subset \mathbb{R}^n \to \mathbb{R}$ de classe C^k $(k \ge 1), df: U \to (\mathbb{R}^n)^*$ est une forme différentielle de degré 1 et de classe C^{k-1} .

De plus, pour
$$M \in U$$
, on a $df_M = \sum_{j=1}^n \frac{\partial f}{\partial x_j}(M) \mathcal{E}_j^*$.

Définition:

Une forme différentielle de classe C^k $\omega: U \to (\mathbb{R}^n)^*$ est dite exacte (ou totale) lorsqu'il existe $f: U \to \mathbb{R}$ de classe C^{k+1} telle que $\omega = df$, c'est-à-dire:

Si $\omega: M \in U \mapsto \sum_{j=1}^{n} P_{j}(M)\varepsilon_{j}^{*}$, alors ω est exacte si et seulement si il existe f de classe

 C^{k+1} telle que $\forall j \in [0, n], P_j = \frac{\partial f}{\partial x_j}$. Dans ce cas, f est appelée primitive de ω .

• Proposition:

Si U est convexe et si f, g sont deux primitives de la même forme différentielle ω sur U, alors f-g est constante.

Remarque:

C'est vrai pour U connexe par arcs.

Démonstration:

Si $\omega = df = dg$, alors $\forall M \in U, d(f - g)_M = 0$

• Cas particulier et nouvelle notation :

Soit $f: \mathbb{R}^n \to \mathbb{R}$. Alors f est de classe C^{∞} , et la différentielle de f est $(x_1,...x_n) \mapsto x_i$

$$df: \mathbb{R}^n \to (\mathbb{R}^n)^*$$

$$M \mapsto df_M = f$$

En utilisant $(\varepsilon_1^*,...\varepsilon_n^*)$, base duale de la base canonique, on a $df = \varepsilon_i^*$, fonction constante (de $(\mathbb{R}^n)^*$)

Notation:

On pose $\varepsilon_i^* = dx_i$

Ainsi, toute forme différentielle de classe C^k s'écrit de manière unique $\omega: M \mapsto \sum_{j=1}^n P_j(M) dx_j$ où $P_j: U \to \mathbb{R}$ est de classe C^k .

En particulier, si $f: U \to \mathbb{R}$ est de classe C^{k+1} , on aura $df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_j$.

III Formes différentielles de degré 1 fermées, théorème de Schwarz, théorème de Poincaré

• Théorème (Schwarz):

Soit $\omega: U \subset \mathbb{R}^n \to (\mathbb{R}^n)^*$ une forme différentielle de classe C^k , $k \ge 1$.

$$M \mapsto \sum_{j=1}^{n} P_{j}(M) dx_{j}$$

Si ω est exacte, alors $\forall i, j \in [1, n], \forall M \in U, \frac{\partial P_j}{\partial x_i}(M) = \frac{\partial P_i}{\partial x_i}(M)$

Démonstration :

Si
$$\omega = df$$
, où $f: U \to \mathbb{R}$ est de classe C^{k+1} $(k \ge 1)$, alors $\forall i \in [1, n]$, $P_i = \frac{\partial f}{\partial x_i}$

Comme f est de classe C^2 , on a

$$\forall M \in U, \frac{\partial P_j}{\partial x_i}(M) = \frac{\partial^2 f}{\partial x_i \partial x_j}(M) = \frac{\partial^2 f}{\partial x_j \partial x_i}(M) = \frac{\partial P_i}{\partial x_j}(M)$$

• Définition :

Une forme différentielle $\omega = \sum_{j=1}^{n} P_{j} dx_{j}$ de classe C^{k} $(k \ge 1)$ telle que

$$\forall i, j \in [1, n], \frac{\partial P_j}{\partial x_i} = \frac{\partial P_i}{\partial x_j}$$
 est dite fermée.

Corollaire:

Toute forme différentielle exacte est fermée.

• Exemple:

Il existe des fonctions fermées non exactes :

On pose
$$d\theta = \frac{xdy - ydx}{x^2 + y^2}$$
 sur $\mathbb{R}^2 \setminus \{(0,0)\}$

Ainsi,
$$d\theta = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy = P(x, y) dx + Q(x, y) dy$$

 $d\theta$ est de classe C^{∞} et fermée sur $\mathbb{R}^2 \setminus \{(0,0)\}$, mais non exacte.

En effet,
$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \frac{\partial P}{\partial y}(x,y) = \frac{-(x^2+y^2)+2y^2}{(x^2+y^2)^2} = \frac{y^2-x^2}{(x^2+y^2)^2}$$

Et
$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \frac{\partial Q}{\partial x}(x,y) = \frac{x^2 + y^2 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

Donc $d\theta$ est fermée.

Mais $d\theta$ n'est pas exacte, car on verra que si elle l'était, l'intégrale curviligne de $d\theta$ sur le cercle unité serait nulle ce qui n'est pas le cas.

Remarque:

 $d\theta$ est exacte sur $\mathbb{R}_{+}^{*} \times \mathbb{R}$ car en posant $f(x, y) = \operatorname{Arctan} \frac{y}{x}$, on a $d\theta = df$

• Théorème de Poincaré :

Rappel:

Une partie A de \mathbb{R}^n est dite étoilée par rapport à $M_0 \in A$ si $\forall M \in A, [M_0, M] \subset A$

Proposition:

Un convexe est étoilé par rapport à chacun de ses points.

Une partie étoilée est connexe par arcs ; la réciproque est fausse.

Remarque :

 $\mathbb{R}^2 \setminus \{(0,0)\}$ n'est pas étoilé mais est connexe par arcs.

Théorème (Poincaré):

Soit U un ouvert étoilé de \mathbb{R}^n , $\omega:U\to(\mathbb{R}^n)^*$ une forme différentielle de degré 1 et de classe C^k ($k\ge 1$)

Alors ω est exacte sur U si et seulement si elle est fermée sur U.

Démonstration:

Le sens direct est déjà vu.

Pour l'autre :

On se place dans le cas n = 2 (pour simplifier les notations) :

Soit $M_0 \in U$ de sorte que U soit étoilé par rapport à $M_0 = (x_0, y_0)$

Soit
$$\omega: U \subset \mathbb{R}^2 \to (\mathbb{R}^2)^*$$
 une forme différentielle fermée de classe C^1 . $(x,y) \mapsto P(x,y) dx + Q(x,y) dy$

Pour
$$M \in U$$
, on pose $f(M) = \int_0^1 x P(tM + (1-t)M_0) + yQ(tM + (1-t)M_0)dt$

On va montrer que f est de classe C^2 et que $df = \omega$.

On suppose pour simplifier que $M_0 = (0,0)$.

On fixe x au voisinage de 0 et on considère l'application $y \mapsto \int_0^1 x P(tx, ty) + y Q(tx, ty) dt$

On pose $\varphi(t, y) = xP(tx, ty) + yQ(tx, ty)$ pour $t \in [0,1]$ et y au voisinage de 0.

Alors φ est continue sur $[0,1] \times I$ où I est un intervalle de \mathbb{R} contenant 0, admet une dérivée selon y $\frac{\partial \varphi}{\partial y}(t,y) = tx \frac{\partial P}{\partial y}(tx,ty) + Q(tx,ty) + ty \frac{\partial Q}{\partial y}(tx,ty)$ pour tout $t \in [0,1]$, qui est aussi continue.

Comme on intègre sur un segment, pour tout compact $K \subset I$, on a domination par des constantes sur le compact $[0,1] \times K$, donc le théorème de dérivation des intégrales dépendant d'un paramètre s'applique et on a, d'après la formule de Leibnitz :

$$\frac{\partial f}{\partial y}(x,y) = \int_0^1 tx \frac{\partial P}{\partial y}(tx,ty) + Q(tx,ty) + ty \frac{\partial Q}{\partial y}(tx,ty)dt$$

$$= \int_0^1 tx \frac{\partial Q}{\partial x}(tx,ty) + Q(tx,ty) + ty \frac{\partial Q}{\partial y}(tx,ty)dt$$

$$= \int_0^1 \frac{d}{dt}(tQ(tx,ty))dt = Q(x,y)$$
De même, $\frac{\partial f}{\partial x} = P$

IV Intégrales curvilignes

• Chemin C^1 par morceaux et continu :

On appelle chemin C^1 par morceaux toute application $\varphi:[a,b] \to \mathbb{R}^n$ continue et de classe C^1 par morceaux. Il sera dit fermé si $\varphi(a) = \varphi(b)$

• Intégrales curvilignes :

Définition:

Soit $\omega: U \to (\mathbb{R}^n)^*$ une forme différentielle continue; on note $P_1,...P_n$ tels que $\forall M \in U, \omega(M) = \sum_{j=1}^n P_j(M) dx_j$.

Soit aussi $\varphi:[a,b] \to U$ un chemin continu C^1 par morceaux, on note $\varphi_i, i=1..n$ les applications coordonnées $(\forall t \in [a,b], \varphi(t) = (\varphi_1(t),...,\varphi_n(t)))$

On appelle intégrale de ω sur φ la quantité :

$$\int_{\varphi} \omega = \sum_{i=0}^{p-1} \int_{a_i}^{a_{i+1}} \sum_{i=1}^{n} P_j(\varphi(t)) \varphi'_j(t) dt$$

Où $a_0 = a < a_1 \dots < a_p = b$ sont tels que pour tout $j \in \left[\left[0, p - 1 \right] \right], \varphi_{/\left[a_j, a_{j+1}\right]}$ est de classe C^1 .

NB : si
$$\varphi$$
 est de classe C^1 , $\int_{\varphi} \omega = \int_a^b \sum_{j=1}^n P_j(\varphi(t)) \varphi_j^{\dagger}(t) dt$.

Théorème (invariance par changement de paramètre croissant):

Soit $\varphi:[a,b] \to U$ un chemin continu C^1 par morceaux, $\omega = \sum_{j=1}^n P_j dx_j$ une forme

différentielle continue sur U, et $\theta:[c,d] \to [a,b]$ un C^1 -difféomorphisme croissant.

Ainsi, $\psi = \varphi \circ \theta$ est une représentation paramétrique admissible de la même courbe orientée que φ .

Alors
$$\int_{\omega} \omega = \int_{w} \omega$$

Autrement dit, $\int_{\varphi} \omega$ ne dépend pas de φ mais seulement de la courbe paramétrée par φ .

Définition:

Soit $\vec{\Gamma}$ une courbe orientée continue et C^1 par morceaux incluse dans U.

On pose $\int_{\Gamma} \omega = \int_{\alpha} \omega$ où φ est une représentation paramétrique admissible quelconque de

 $\vec{\Gamma}$.

Démonstration

Pour φ de classe C^1 (pour C^1 par morceaux, il suffit de couper le segment) :

On note φ_i , i = 1..n les applications coordonnées de φ , ψ_i , i = 1..n celles de ψ .

Ainsi, $\forall j \in [1, n], \psi_j = \varphi_j \circ \theta$. On a alors:

$$\int_{\psi} \omega = \int_{c}^{d} \sum_{j=1}^{n} P_{j}(\psi(t)) \psi'_{j}(t) dt$$

$$= \int_{c}^{d} \sum_{j=1}^{n} P_{j}(\varphi(\theta(t))) \varphi'_{j}(\theta(t)) \theta'(t) dt$$

$$= \int_{a}^{b} \sum_{j=1}^{n} P_{j}(\varphi(u)) \varphi'_{j}(u) du = \int_{\varphi} \omega$$

Où on a fait à l'avant-dernière égalité le changement de variables $u = \theta(t)$.

• Cas d'une forme exacte :

Théorème:

Soit $f: U \to \mathbb{R}$ de classe C^1 , $\vec{\Gamma}$ un chemin continu, C^1 par morceaux inclus dans U, d'origine A et d'extrémité B.

Alors
$$\int_{\vec{\Gamma}} df = f(B) - f(A)$$

En particulier, l'intégrale curviligne d'une forme différentielle exacte sur un chemin fermé est nulle.

Démonstration:

Soit $\varphi: [a,b] \to U$ un paramétrage admissible de $\vec{\Gamma}$.

Alors:

$$\int_{\bar{\Gamma}} df = \int_{\varphi} df = \int_{a}^{b} \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} (\varphi(t)) \varphi'_{j}(t) dt$$
$$= \int_{a}^{b} \frac{d}{dt} (f(\varphi_{1}(t), ..., \varphi_{n}(t)) dt = f(B) - f(A)$$

Exemple:

$$d\theta = \frac{xdy - ydx}{x^2 + y^2}$$
 n'est pas exacte sur $\mathbb{R}^2 \setminus \{(0,0)\}$

En effet, en prenant pour $\vec{\Gamma}$ le cercle unité orienté dans le sens trigonométrique paramétré par $P:[0,2\pi] \to \mathbb{R}^2 \setminus \{(0,0)\}$, on a :

$$\int_{\bar{\Gamma}} d\theta = \int_0^{2\pi} \frac{\cos t(\cos t.dt) - \sin t(\sin t.dt)}{\cos^2 t + \sin^2 t} = 2\pi$$

V Interprétation en termes de champs de vecteurs et de circulation

• Définition :

On munit \mathbb{R}^n de son produit scalaire canonique.

Un champ de vecteurs sur U ouvert de \mathbb{R}^n est une application $\vec{V}: U \to (\mathbb{R}^n)$. $M \mapsto \vec{V}(M)$

A toute forme différentielle $\omega: U \to (\mathbb{R}^n)^*$, on peut associer un champ de vecteurs et vice-versa. En effet, à $\omega: U \to (\mathbb{R}^n)^*$, on peut associer $\vec{V}: U \to (\mathbb{R}^n)$ caractérisé par $\forall M \in U, \forall \vec{h} \in \mathbb{R}^n, \omega(M)(h) = \langle \vec{V}(M), \vec{h} \rangle$

Théorème:

Si ω est la forme différentielle définie par $\forall M \in U, \omega(M) = \sum_{j=1}^{n} P_{j}(M) dx_{j}$, alors le

champ de vecteurs associé est $\vec{V}: M \mapsto \sum_{j=1}^{n} P_{j}(M)\varepsilon_{j}$

• Intégrale curviligne, circulation :

Soit $\vec{\Gamma}$ un chemin continu et C^1 par morceaux inclus dans U.

Si \vec{V} est le champ associé à ω , on pose :

$$\int_{\vec{\Gamma}} \langle \vec{V}(M), d\vec{M} \rangle = \int_{\vec{\Gamma}} \omega = \int_{a}^{b} \sum_{j=1}^{n} V_{j}(\varphi(t)) \varphi'_{j}(t) dt \quad \text{où} \quad \varphi : [a, b] \to U \quad \text{est un paramétrage}$$

admissible de $\vec{\Gamma}$ et $\vec{V} = \sum_{j=1}^{n} V_j \vec{\varepsilon}_j$.

• Forme exacte et potentiel (pour n=3):

Proposition:

- (1) La forme différentielle ω est exacte si et seulement si \vec{V} dérive d'un potentiel; plus précisément, $\omega = df$ signifie $\vec{V} = \overrightarrow{\text{grad}} f$.
- (2) ω est fermée si et seulement si le rotationnel de \vec{V} est nul.

Corollaire (Poincaré) :

Soit \vec{V} un champ de classe C^1 sur $U \subset \mathbb{R}^3$ étoilé.

Alors \vec{V} dérive d'un potentiel si et seulement si son rotationnel est nul.

Exercices

Soit $f: U \to \mathbb{R}$ où U est un ouvert étoilé de \mathbb{R}^2 , et f de classe C^2 harmonique.

Alors il existe $g: U \to \mathbb{R}^3$ de classe C^2 harmonique telle que (*) $\begin{cases} \frac{\partial g}{\partial x} = \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial y} = -\frac{\partial f}{\partial x} \end{cases}$

Idée:

On pose
$$\omega(x, y) = \frac{\partial f}{\partial y}(x, y)dx - \frac{\partial f}{\partial x}(x, y)dy$$
 pour $(x, y) \in U$

Alors $\omega: U \to (\mathbb{R}^2)^*$ est une forme différentielle de classe C^1 , elle est fermée car f est harmonique. Comme U est étoilé, ω est donc exacte d'après le théorème de Poincaré.

Ainsi, il existe g telle que (*)

De plus, g est harmonique car
$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = \frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} = 0$$

Remarque:

On peut en déduire que $f: U \to \mathbb{R}$ est harmonique si et seulement si il existe $\varphi: U \to \mathbb{C}$ holomorphe telle que $\forall (x, y) \in U, f(x, y) = \text{Re}(\varphi(x+iy))$.

Il suffit en effet de prendre $\varphi(x+iy) = f(x,y) + ig(x,y)$.

Comme une fonction holomorphe est de classe C^{∞} , il en résulte qu'une fonction harmonique est aussi de classe C^{∞} .

Etude de $\omega(x,y) = e^{-(x+iy)^2}(dx+idy) = P(x,y)dx + Q(x,y)dy$ Calculer $\int_{\vec{\Gamma}_{a}} \omega$ par deux méthodes, où $\vec{\Gamma}_{R}$ est la courbe fermée :

En déduire $\int_0^{+\infty} e^{ix^2} dx$.

Par la définition, $\overrightarrow{OA}: x \in [0, R] \mapsto (x, 0)$, $\overrightarrow{AB}: \theta \in [0, \theta_0] \mapsto (R\cos\theta, R\sin\theta)$ et $\overrightarrow{BO}: r \in [R, 0] \mapsto (r\cos\theta_0, r\sin\theta_0)$

Donc

$$\int_{\tilde{\Gamma}_R} \omega = \int_0^R e^{-x^2} dx + \int_0^{\theta_0} e^{-R^2 e^{2i\theta}} R(-\sin\theta + i\cos\theta) d\theta + \int_R^0 e^{-r^2 e^{2i\theta_0}} (\cos\theta_0 + i\sin\theta_0) dr$$

$$= \int_0^R e^{-x^2} dx + Ri \int_0^{\theta_0} e^{-R^2 e^{2i\theta}} e^{i\theta} d\theta - \int_0^R e^{i\theta_0} e^{-r^2 e^{2i\theta_0}} dr$$

Deuxième méthode:

 ω est fermée. En effet,

$$\frac{\partial P}{\partial y}(x,y) = -2i(x+iy)e^{-(x+iy)^2} \text{ et } \frac{\partial Q}{\partial x}(x,y) = i(-2(x+iy)e^{-(x+iy)^2})$$

Donc comme \mathbb{R}^2 est étoilé, $\int_{\overline{\Gamma}_b} \omega = 0$

Donc
$$\int_0^R e^{-x^2} dx + \underbrace{Ri \int_0^{\theta_0} e^{-R^2 e^{2i\theta}} e^{i\theta} d\theta}_{\in \mathcal{R}} = e^{i\theta_0} \int_0^R e^{-r^2 e^{2i\theta_0}} dr$$

Si
$$\theta_0 \le \frac{\pi}{4}$$
: Pour $t \in [0, \theta_0]$, on a $2t \in \left[0, \frac{\pi}{2}\right]$

Donc
$$\cos(2t) = \sin\left(\frac{\pi}{2} - 2t\right) \ge \frac{2}{\pi} \left(\frac{\pi}{2} - 2t\right)$$

Donc

$$\begin{aligned} \left| \mathcal{E}(R) \right| &\leq \int_0^{\theta_0} R.e^{-R^2 \cos(2\theta)} d\theta \leq \int_0^{\theta_0} R.e^{-R^2 \left(1 - \frac{4\theta}{\pi}\right)} d\theta = R.e^{-R^2} \left[\frac{e^{R^2 \frac{4\theta}{\pi}}}{\frac{4R^2}{\pi}} \right]_0^{\theta_0} \\ &\leq \frac{\pi}{4R} e^{R^2 \left(\frac{4\theta_0}{\pi} - 1\right)} \xrightarrow[R \to +\infty]{} 0 \end{aligned}$$

De plus,
$$\int_0^R e^{-x^2} dx \xrightarrow[R \to +\infty]{} \sqrt{\frac{\pi}{2}}$$

Donc l'intégrale est semi convergente, et : $\forall \theta_0 \in [0, \frac{\pi}{4}], e^{i\theta_0} \int_0^{+\infty} e^{-r^2 e^{2i\theta_0}} dr = \int_0^{+\infty} e^{-x^2} dx$

Donc
$$\int_0^{+\infty} e^{-r^2 e^{2i\theta_0}} dr = e^{-i\theta_0} \sqrt{\frac{\pi}{2}}$$

Si
$$\theta_0 = \frac{\pi}{4}$$
, $\int_0^{+\infty} e^{-ir^2} dr = \sqrt{\pi} (1 - i)$

Et
$$\int_0^{+\infty} \cos(x^2) dx = \int_0^{+\infty} \sin(x^2) dx = \sqrt{\pi}$$