

Word Embeddings and Translation

WE_HGA

Hamza Touzani, Alexis Hummel, Guillaume Kunsch

Plan

- I. Supervised setting
 - A. "Classical" approach
 - 1. Theory
 - 2. Results
 - B. Procrustes method
 - a. Motivation
 - b. Results
- II. Unsupervised setting
 - A. Unsupervised theory
 - B. Results

Supervised Setting - Classical approach

Final objective

"Hello!" ------ "Bonjour!"

Words to Vectors

Basic idea: similar words are closed in a sentence (Harris, 1954)

Knowing a dictionary of elements $\{x_i, y_i\}$

$$\min_{W} \sum \|Wx_i - y_i\|^2$$

Exploiting Similarities among Languages for Machine Translation, Mikolov et al., 2013

Word Translation Without Parallel Data, Conneau et al., 2017

Supervised Setting - Classical approach

Embedding

FastText (from Meta)

Data

dictionaries from MUSE (Meta)

Train set : 10k words

Test set: 1k words

Evaluation

- Cosine distance (not squared loss)
- kNN to find closest words

Supervised Setting - Procrustes method

$$W^* = \underset{W \in M_d(\mathbb{R})}{\operatorname{argmin}} \|WX - Y\|_{\mathcal{F}}$$

$$W^* = \underset{W \in O_d(\mathbb{R})}{\operatorname{argmin}} \|WX - Y\|_{\mathcal{F}} = UV^T, \text{ with } U\Sigma V^T = \text{SVD}(YX^T).$$

➡ Ensures that the monolingual quality of the embeddings is preserved

Supervised Setting - Procrustes method

	EN-FR	EN-FR	FR-EN	FR-EN	EN-TR	EN-TR	TR-EN	TR-EN
	P@1	P@5	P@1	P@5	P@1	P@5	P@1	P@5
SGD	73.4	86.4	75.4	85.8	75.2	86.0	83.0	93.2
Procrustes alignement	79.6	90.0	81.8	88.8	86.0	93.0	92.8	96.0

Word translation **P@1** and **P@5** for 2 language pairs (using d=300 **fastText** embeddings).

We consider 1000 test queries with 10k target words for each language pair.

Generative Adversarial Networks

Two player game

Mapping

Discriminator

$$\mathcal{L}_{W}(W|\theta_{D}) = -\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta_{D}} \left(\text{source} = 0 \middle| Wx_{i} \right) - \frac{1}{m} \sum_{i=1}^{m} \log P_{\theta_{D}} \left(\text{source} = 1 \middle| y_{i} \right)$$

$$\mathcal{L}_D(\theta_D|W) = -\frac{1}{n} \sum_{i=1}^n \log P_{\theta_D} \left(\text{source} = 1 \big| Wx_i \right) - \frac{1}{m} \sum_{i=1}^m \log P_{\theta_D} \left(\text{source} = 0 \big| y_i \right)$$

Discriminator

2 Hidden Layers of size 1028

Optimizer for discriminator/generator : SGD

Generator

Linear mapping W of size 300x300

What should we do next?

Improve our training method for the GAN