

Ù&@^œ^¦ £ Q&È		G€»Á/ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXT ĝi ãÁÜæ&\ ĝi *ÁÛ^•♂{	
	Ü^]¦^•^} ææãç^ÁÔæ∮&` ææã[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 20°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 20.62 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s =$$
 1.00
$$C_s =$$
 0.91
$$C_e =$$
 0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	160 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 40.19 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.05 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.05 (<i>Pressure</i>)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.12 -1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>45</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.87	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
$I_x =$	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	-0.374	k-ft
$M_z =$	-0.012	k-ft
M _{y allowable} =	1.271	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>31%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6	
F _{ty} =	35	ksi
Φ =	0.90	
$S_y =$	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.002	k-ft
$P_n =$	0.090	k
$M_{y \text{ allowable}} =$	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>5%</u>	

A cross brace kit is required every 38 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>351.44</u>	<u>1544.28</u> k	
Compressive Load =	<u>1188.80</u>	1004.52 k	
Lateral Load =	1.47	<u>691.55</u> k	
Moment (Weak Axis) =	0.00	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 21928.5 in-lbs Resisting Force Required = 730.95 lbs A minimum 60in long x 20in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1218.25 lbs to resist overturning. Minimum Width = <u>20 in</u> in Weight Provided = Sliding Force = 159.57 lbs Use a 60in long x 20in wide x 18in tall Friction = 0.4 Weight Required = 398.92 lbs ballast foundation to resist sliding. Resisting Weight = 1812.50 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 159.57 lbs Cohesion = 130 psf Use a 60in long x 20in wide x 18in tall 8.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 906.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

 Ballast Width

 20 in
 21 in
 22 in
 23 in

 P_{ftg} = (145 pcf)(5 ft)(1.5 ft)(1.67 ft) =
 1813 lbs
 1903 lbs
 1994 lbs
 2084 lbs

ASD LC	1.0D + 1.0S				1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in
FA	362 lbs	362 lbs	362 lbs	362 lbs	473 lbs	473 lbs	473 lbs	473 lbs	598 lbs	598 lbs	598 lbs	598 lbs	-160 lbs	-160 lbs	-160 lbs	-160 lbs
FB	256 lbs	256 lbs	256 lbs	256 lbs	410 lbs	410 lbs	410 lbs	410 lbs	480 lbs	480 lbs	480 lbs	480 lbs	-711 lbs	-711 lbs	-711 lbs	-711 lbs
F _V	22 lbs	22 lbs	22 lbs	22 lbs	280 lbs	280 lbs	280 lbs	280 lbs	225 lbs	225 lbs	225 lbs	225 lbs	-319 lbs	-319 lbs	-319 lbs	-319 lbs
P _{total}	2431 lbs	2521 lbs	2612 lbs	2703 lbs	2695 lbs	2786 lbs	2877 lbs	2967 lbs	2890 lbs	2981 lbs	3071 lbs	3162 lbs	216 lbs	271 lbs	325 lbs	379 lbs
M	235 lbs-ft	235 lbs-ft	235 lbs-ft	235 lbs-ft	545 lbs-ft	545 lbs-ft	545 lbs-ft	545 lbs-ft	568 lbs-ft	568 lbs-ft	568 lbs-ft	568 lbs-ft	519 lbs-ft	519 lbs-ft	519 lbs-ft	519 lbs-ft
е	0.10 ft	0.09 ft	0.09 ft	0.09 ft	0.20 ft	0.20 ft	0.19 ft	0.18 ft	0.20 ft	0.19 ft	0.19 ft	0.18 ft	2.40 ft	1.92 ft	1.60 ft	1.37 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	257.9 psf	256.0 psf	254.2 psf	252.6 psf	245.0 psf	243.7 psf	242.5 psf	241.4 psf	265.0 psf	262.7 psf	260.6 psf	258.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	325.5 psf	320.3 psf	315.7 psf	311.4 psf	401.9 psf	393.1 psf	385.2 psf	377.9 psf	428.7 psf	418.6 psf	409.5 psf	401.1 psf	874.2 psf	177.3 psf	130.9 psf	116.6 psf

Maximum Bearing Pressure = 874 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$

Resisting Force Required = 0.00 lbsS.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 20 in in Weight Provided = 1812.50 lbs A minimum 60in long x 20in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E				
Width		20 in			20 in			20 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	49 lbs	120 lbs	46 lbs	174 lbs	505 lbs	172 lbs	14 lbs	35 lbs	13 lbs		
F _V	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	2292 lbs	2364 lbs	2290 lbs	2310 lbs	2641 lbs	2308 lbs	670 lbs	691 lbs	670 lbs		
M	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.28 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft		
f _{min}	275.0 sqft	283.6 sqft	274.7 sqft	277.0 sqft	316.8 sqft	276.8 sqft	80.4 sqft	82.9 sqft	80.3 sqft		
f _{max}	275.1 psf	283.7 psf	274.8 psf	277.5 psf	317.1 psf	277.0 psf	80.5 psf	82.9 psf	80.4 psf		

Maximum Bearing Pressure = 317 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 20in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.914 k	Maximum Axial Load =	1.089 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>16%</u>	Utilization =	<u>19%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.319 k	Maximum Axial Load =	0.090 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>6%</u>	Utilization =	<u>1%</u>

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 29.57 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.591 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.003 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 45.00 \text{ in}$$

$$J = 0.255$$

$$117.177$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 = 1/01.56

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)}}]$$

 $\varphi F_L = 29.9 \text{ ksi}$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

Weak Axis:

3.4.14

4.14
$$L_b = 45.00 \text{ in}$$

$$J = 0.255$$

$$121.682$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_L = 29.8$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

 $\phi F_L = 1.3 \phi y F c y$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.9 \text{ ksi} \\ k = & 250988 \text{ mm}^4 \\ & 0.603 \text{ in}^4 \\ y = & 30 \text{ mm} \\ Sx = & 0.511 \text{ in}^3 \\ M_{max} St = & 1.271 \text{ k-ft} \\ \end{array}$$

77.3

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$X = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

S2 =

3.4.9

 $\begin{array}{lll} b/t = & 7.4 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_C y \\ \phi F_L = & 33.3 \text{ ksi} \\ b/t = & 23.9 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \end{array}$

.

 $\phi F_L =$

A =

 $P_{max} =$

3.4.10 Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
 S1 = 6.87 S2 = 131.3
$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.47 \text{ ksi}$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

28.5 ksi

578.06 mm² 0.90 in² 25.51 kips

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.43 \\ & 20.5689 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$\begin{split} &S2 = & 79.2 \\ &\phi F_L = & \phi b [Bc\text{-}Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})] \end{split}$$

$$\phi F_L = 29.9 \text{ ksi}$$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.43 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2\mathcal{C}_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \end{array}$$

 $\phi F_1 = 29.9 \text{ ksi}$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 \text{ ksi}$$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.9 \text{ ksi}$$

$$lx = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

0.589 in³

1.468 k-ft

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

$$x = 29 \text{ mm}$$

Sy =

 $M_{max}Wk =$

0.457 in³

0.513 k-ft

Compression

 $M_{max}St =$

Sx=

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$

3.4.9

b/t = 4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L = 33.3 \text{ ksi}$ b/t = 24.46 S1 = 12.21 S2 = 32.70

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_I = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18
$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.423 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 18.00 \text{ in} \\ J &= & 0.16 \\ & 47.2194 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.2 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ Cc = & 15 \\ \end{array}$$

$$\begin{array}{rcl} S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi \text{yFcy} \\ \phi F_L = & 43.2 \text{ ksi} \\ \end{array}$$

$$\begin{array}{rcl} \phi F_L \text{Wk} = & 31.2 \text{ ksi} \\ \text{ly} = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ \text{x} = & 15 \text{ mm} \\ \text{Sy} = & 0.163 \text{ in}^3 \\ \end{array}$$

$$\begin{array}{rcl} M_{\text{max}} \text{Wk} = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$

$\phi cc = 0.83792$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75

b/t = 7.75
S1 = 12.21
S2 = 32.70

$$\phi F_L = \phi y F_C y$$

$$\varphi F_L = \varphi y F_C y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2
 $P_{max} = 12.31 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_I = 29.8$$

$\phi F_L =$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

y = 15 mm
Sx = 0.163 in³

$$M_{max}St = 0.404 \text{ k-ft}$$

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$
 $y = 39958.2 \text{ mm}^4$
 0.096 in^4
 $x = 15 \text{ mm}$
 $5y = 0.163 \text{ in}^3$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$\int Bt - \frac{\theta_y}{\theta_x} F_{CX}$$

$$S1 = \left(\frac{\theta_b}{Dt} \right)^3$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 33.07 \text{ in}$$
 $J = 0.16$
 86.7548

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.4 \text{ ksi}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_1 = \varphi V F c V$$

3.4.16.1 Not Used Rb/t = 0.0

 $\phi F_1 = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi F C C C C = 43.2 \text{ ksi}$$

$$\varphi F_L St = 30.4 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$

0.096 in⁴

0.163 in³

15 mm

Weak Axis:

3.4.14

$$L_{b} = 33.07 \text{ in}$$

$$J = 0.16$$

$$86.7548$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2})}]$$

$\phi F_L = 30.4$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

S1 =

m =

 $C_0 =$

Cc =

 $M_{max}Wk =$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

7.75

0.65

$$S2 = \frac{k_1 Bbr}{mDbr}$$

 $S2 = 77.3$
 $\varphi F_L = 1.3 \varphi y F c y$
 $\varphi F_L = 43.2 \text{ ksi}$
 $\varphi F_L \text{Wk} = 33.3 \text{ ksi}$
 $\varphi F_L \text{Wk} = 39958.2 \text{ mm}^4$
 $\varphi F_L \text{Wk} = 15 \text{ mm}$
 $\varphi F_L \text{Wk} = 15 \text{ mm}$
 $\varphi F_L \text{Wk} = 15 \text{ mm}$
 $\varphi F_L \text{Wk} = 163 \text{ in}^3$

0.450 k-ft

y = Sx =

 $M_{max}St = 0.411 \text{ k-ft}$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.41804 \\ \textbf{r} = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.77853 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{Fcy})/(\lambda^2) \\ & \phi \textbf{F}_L = & 13.5508 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 13.55 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 6.80 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-57.498	-57.498	0	0
2	M16	Υ	-57.498	-57.498	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-117.695	-117.695	0	0
2	M16	V	-184.95	-184.95	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	237.633	237.633	0	0
2	M16	V	112.091	112.091	0	0

Load Combinations

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	151.372	2	248.797	2	.005	10	0	10	0	1	0	1
2		min	-182.195	3	-377.526	3	178	3	0	3	0	1	0	1
3	N7	max	0	15	307.566	1	.032	10	0	10	0	1	0	1
4		min	114	2	-74.814	3	401	1	0	1	0	1	0	1
5	N15	max	0	15	914.461	2	.085	9	0	9	0	1	0	1
6		min	-1.127	2	-270.337	3	54	3	0	3	0	1	0	1
7	N16	max	474.94	2	772.71	2	0	11	0	9	0	1	0	1
8		min	-531.963	3	-1187.911	3	-71.274	3	0	3	0	1	0	1
9	N23	max	0	15	307.819	1	.467	1	0	1	0	1	0	1
10		min	114	2	-74.355	3	032	10	0	10	0	1	0	1
11	N24	max	151.373	2	251.04	2	71.86	3	0	9	0	1	0	1
12		min	-182.627	3	-376.725	3	005	10	0	3	0	1	0	1
13	Totals:	max	776.33	2	2772.113	2	0	9						
14		min	-897.095	3	-2361.667	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
1	M2	1	max	222.952	1	.649	4	.093	1	0	10	0	12	0	1
2			min	-356.333	3	.153	15	112	3	0	1	0	1	0	1
3		2	max	223.059	1	.608	4	.093	1	0	10	0	9	0	15
4			min	-356.253	3	.143	15	112	3	0	1	0	3	0	4
5		3	max	223.165	1	.567	4	.093	1	0	10	0	9	0	15
6			min	-356.173	3	.134	15	112	3	0	1	0	3	0	4
7		4	max	223.272	1	.525	4	.093	1	0	10	0	9	0	15
8			min	-356.093	3	.124	15	112	3	0	1	0	3	0	4
9		5	max	223.379	1	.484	4	.093	1	0	10	0	9	0	15
10			min	-356.013	3	.114	15	112	3	0	1	0	3	0	4
11		6	max	223.485	1	.443	4	.093	1	0	10	0	9	0	15
12			min	-355.933	3	.105	15	112	3	0	1	0	3	0	4
13		7	max	223.592	1_	.402	4	.093	1	0	10	0	9	0	15
14			min	-355.853	3	.095	15	112	3	0	1	0	3	0	4
15		8	max	223.698	1	.36	4	.093	1	0	10	0	9	0	15
16			min	-355.773	3	.085	15	112	3	0	1	0	3	0	4
17		9	max	223.805	1	.319	4	.093	1	0	10	0	9	0	15
18			min	-355.694	3	.075	15	112	3	0	1	0	3	0	4
19		10	max	223.911	1	.278	4	.093	1	0	10	0	9	0	15
20			min	-355.614	3	.066	15	112	3	0	1	0	3	0	4
21		11	max	224.018	1	.236	4	.093	1	0	10	0	1	0	15
22			min	-355.534	3	.056	15	112	3	0	1	0	3	0	4
23		12	max	224.124	1_	.195	4	.093	1	0	10	0	1	0	15
24			min	-355.454	3	.046	15	112	3	0	1	0	3	0	4
25		13	max	224.231	1	.154	4	.093	1	0	10	0	1	0	15
26			min	-355.374	3	.037	15	112	3	0	1	0	3	0	4
27		14	max	224.337	1	.114	2	.093	1	0	10	0	1	0	15
28			min	-355.294	3	.027	15	112	3	0	1	0	3	0	4
29		15	max	224.444	1_	.082	2	.093	1	0	10	0	1_	0	15
30			min	-355.214	3	.014	12	112	3	0	1	0	3	0	4
31		16	max	224.551	1	.05	2	.093	1	0	10	0	1	0	15
32			min	-355.134	3	005	3	112	3	0	1	0	3	0	4
33		17	max	224.657	_1_	.018	2	.093	1	0	10	0	_1_	0	15
34			min	-355.054	3	029	3	112	3	0	1	0	3	0	4
35		18	max	224.764	1_	012	15	.093	1	0	10	0	1_	0	15
36			min	-354.974	3	054	3	112	3	0	1	0	3	0	4
37		19	max	224.87	1_	022	15	.093	1	0	10	0	1_	0	15

Schletter, Inc.HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
38			min	-354.894	3	094	4	112	3	0	1	0	3	0	4
39	M3	1	max	101.163	2	1.799	4	.007	10	0	10	0	1	0	4
40			min	-88.038	3	.423	15	125	1	0	1	0	10	0	15
41		2	max	101.095	2	1.622	4	.007	10	0	10	0	1	0	4
42			min	-88.089	3	.382	15	125	1	0	1	0	10	0	15
43		3	max		2	1.444	4	.007	10	0	10	0	1	0	2
44			min	-88.14	3	.34	15	125	1	0	1	0	10	0	3
45		4	max	100.96	2	1.266	4	.007	10	0	10	0	1	0	15
46		1	min	-88.191	3	.298	15	125	1	0	1	0	10	0	4
47		5		100.892	2	1.089	4	.007	10		10	0	1	-	15
48		1 3	max	-88.242			15	125	1	0	1	0	10	0	
			min		3	.256				0				0	4
49		6	max		2	.911	4	.007	10	0	10	0	1	0	15
50		_	min	-88.293	3	.214	15	125	1	0	1	0	10	0	4
51		7	max	100.756	2	.733	4	.007	10	0	10	0	_1_	0	15
52			min	-88.344	3	.173	15	125	1	0	1	0	10	0	4
53		8	max		2	.556	4	.007	10	0	10	0	_1_	0	15
54			min	-88.395	3	.131	15	125	1	0	1	0	10	0	4
55		9	max	100.62	2	.378	4	.007	10	0	10	0	1	0	15
56			min	-88.445	3	.089	15	125	1	0	1	0	10	001	4
57		10	max	100.552	2	.2	4	.007	10	0	10	0	1	0	15
58			min	-88.496	3	.047	15	125	1	0	1	0	10	001	4
59		11	max		2	.037	2	.007	10	0	10	0	1	0	15
60			min	-88.547	3	003	3	125	1	0	1	0	10	001	4
61		12	max	100.417	2	036	15	.007	10	0	10	0	1	0	15
62		12	min	-88.598	3	155	4	125	1	0	1	0	10	001	4
63		13	max		2	078	15	.007	10	0	10	0	1	0	15
		13	min		3	332	4	125	1		1	0	10	001	
64		4.4		-88.649						0	_				4
65		14	max		2	12	15	.007	10	0	10	0	9	0	15
66		4.5	min	-88.7	3	51	4	125	1	0	1	0	10	001	4
67		15	max	100.213	2	161	15	.007	10	0	10	0	10	0	15
68			min	-88.751	3	688	4	125	1	0	1	0	1_	0	4
69		16	max		2	203	15	.007	10	0	10	0	10	0	15
70			min	-88.802	3	865	4	125	1	0	1	0	1_	0	4
71		17	max	100.077	2	245	15	.007	10	0	10	0	10	0	15
72			min	-88.853	3	-1.043	4	125	1	0	1	0	1_	0	4
73		18	max	100.009	2	287	15	.007	10	0	10	0	10	0	15
74			min	-88.903	3	-1.221	4	125	1	0	1	0	1	0	4
75		19	max	99.942	2	328	15	.007	10	0	10	0	10	0	1
76			min	-88.954	3	-1.398	4	125	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	.033	10	0	1	0	3	0	1
78				-75.687	3	0	1	423	1	0	1	0	2	0	1
79		2	max		1	0	1	.033	10	0	1	0	15	0	1
80			min	-75.639	3	0	1	423	1	0	1	0	1	0	1
81		3	max	306.531	1	0	1	.033	10	0	1	0	10	0	1
82		3		-75.59	3	0	1	423	1	0	1	0	1	0	1
		4	min				1				-		_		-
83		4	max		1	0		.033	10	0	1	0	10	0	1
84		_	min	-75.542	3	0	1	423	1	0	1	0	1_	0	1
85		5	max		1	0	1_	.033	10	0	1	0	10	0	1
86			min	-75.493	3	0	1	423	1	0	1	0	1_	0	1
87		6	max	306.725	1	0	1	.033	10	0	1	0	10	0	1
88			min	-75.445	3	0	1	423	1	0	1	0	1_	0	1
89		7	max	306.79	1	0	1	.033	10	0	1	0	10	0	1
90			min	-75.396	3	0	1	423	1	0	1	0	1	0	1
91		8	max	306.855	1	0	1	.033	10	0	1	0	10	0	1
92			min	-75.348	3	0	1	423	1	0	1	0	1	0	1
93		9	max		1	0	1	.033	10	0	1	0	10	0	1
94		Ĭ	min	-75.299	3	0	1	423	1	0	1	0	1	0	1
			1111111	10.200		U		.720		U		U		U	

Schletter, Inc.HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	306.984	1	0	1	.033	10	0	1	0	10	0	1
96			min	-75.25	3	0	1	423	1	0	1	0	1	0	1
97		11	max	307.049	1	0	1	.033	10	0	1	0	10	0	1
98			min	-75.202	3	0	1	423	1	0	1	0	1	0	1
99		12	max	307.114	1	0	1	.033	10	0	1	0	10	0	1
100			min	-75.153	3	0	1	423	1	0	1	0	1	0	1
101		13		307.178	1	0	1	.033	10	0	1	0	10	0	1
102		10	min	-75.105	3	0	1	423	1	0	1	0	1	0	1
103		14	max	307.243	1	0	1	.033	10	0	1	0	10	0	1
104		17	min	-75.056	3	0	1	423	1	0	1	0	1	0	1
105		15		307.308	_ <u></u>	0	1	.033	10	0	1	0	10	0	1
		15	max				_								
106		40	min		3	0	1	423	1	0	1_	0	1	0	1
107		16	max		_1_	0	1	.033	10	0	_1_	0	10	0	1
108			min	-74.959	3	0	1	423	1	0	1_	0	1	0	1
109		17	max	307.437	_1_	0	1	.033	10	0	_1_	0	10	00	1
110			min	-74.911	3	0	1	423	1	0	1	0	1	0	1
111		18	max	307.502	1	0	1	.033	10	0	_1_	0	10	0	1
112			min	-74.862	3	0	1	423	1	0	1	0	1	0	1
113		19	max	307.566	1	0	1	.033	10	0	1	0	10	0	1
114				-74.814	3	0	1	423	1	0	1	0	1	0	1
115	M6	1	max		1	.644	4	.022	9	0	3	0	3	0	1
116				-1089.04	3	.152	15	292	3	0	2	0	2	0	1
117		2		695.359	1	.603	4	.022	9	0	3	0	3	0	15
118				-1088.96	3	.142	15	292	3	0	2	0	2	0	4
		3								-				_	
119		3			1_	.562	4	.022	9	0	3	0	3	0	15
120		1		-1088.88	3	.133	15	292	3	0	2	0	2	0	4
121		4	max		_1_	.52	4	.022	9	0	3	0	3	0	15
122				-1088.801	3	.123	15	292	3	0	2	0	1	0	4
123		5	max	695.679	_1_	.479	4	.022	9	0	3	0	3	0	15
124			min	-1088.721	3	.113	15	292	3	0	2	0	1	0	4
125		6	max		<u>1</u>	.438	4	.022	9	0	3	0	9	0	15
126			min	-1088.641	3	.104	15	292	3	0	2	0	3	0	4
127		7	max	695.892	1	.397	4	.022	9	0	3	0	9	0	15
128			min	-1088.561	3	.094	15	292	3	0	2	0	3	0	4
129		8	max	695.999	1	.356	2	.022	9	0	3	0	9	0	15
130			min	-1088.481	3	.084	15	292	3	0	2	0	3	0	4
131		9	max		1	.324	2	.022	9	0	3	0	9	0	15
132				-1088.401	3	.075	15	292	3	0	2	0	3	0	4
133		10	max	696.212	1	.292	2	.022	9	0	3	0	9	0	15
134		10		-1088.321	3	.065	15	292	3	0	2	0	3	0	4
135		11		696.318	<u>ა</u> 1	.259	2	.022	9	0	3	0	9	0	15
				-1088.241								_			
136		40			3_	.054	12	292	3	0	2	0	3	0	4
137		12	max		_1_	.227	2	.022	9	0	3	0	9	0	15
138			min	-1088.161	3	.038	12	292	3	0	2	0	3	0	4
139		13		696.531	1_	.195	2	.022	9	0	3	0	9	0	15
140			min	-1088.081	3	.022	12	292	3	0	2	0	3	0	4
141		14	max		_1_	.163	2	.022	9	0	3	0	9	0	15
142			min	-1088.001	3	.002	3	292	3	0	2	0	3	0	4
143		15	max	696.744	1	.131	2	.022	9	0	3	0	9	0	15
144			min		3	022	3	292	3	0	2	0	3	0	2
145		16	max		1	.099	2	.022	9	0	3	0	9	0	15
146			min	-1087.842	3	046	3	292	3	0	2	0	3	0	2
147		17	max		1	.066	2	.022	9	0	3	0	9	0	15
148			min	-1087.762	3	07	3	292	3	0	2	0	3	0	2
149		18		697.064	<u>ა</u> 1	.034	2	.022	9	0	3	0		0	15
		10		-1087.682	3		3				2	0	9	0	
150		40	min			094		292	3	0		_	3	_	2
151		19	max	697.171	_1_	.002	2	.022	9	0	3	0	9	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC					Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
152			min	-1087.602	3	119	3	292	3	0	2	0	3	0	2
153	M7	1	max	318.527	2	1.798	4	.012	3	0	9	0	1	0	2
154			min	-224.386	3	.423	15	018	1	0	3	0	3	0	15
155		2	max	318.459	2	1.621	4	.012	3	0	9	0	1	0	2
156			min	-224.437	3	.381	15	018	1	0	3	0	3	0	12
157		3	max		2	1.443	4	.012	3	0	9	0	1	0	2
158			min	-224.488	3	.34	15	018	1	0	3	0	3	0	3
159		4	max	318.323	2	1.265	4	.012	3	0	9	0	1	0	2
160			min	-224.539	3	.298	15	018	1	0	3	0	3	0	3
161		E		318.255		1.088		.012	3		9		<u> </u>	_	
		5	max		2		4			0		0		0	15
162			min	-224.589	3	.256	15	018	1	0	3	0	3	0	4
163		6	max		2	.91	4	.012	3	0	9	0	1_	0	15
164			min	-224.64	3	.214	15	018	1	0	3	0	3	0	4
165		7	max	318.119	2	.732	4	.012	3	0	9	0	_1_	0	15
166			min	-224.691	3	.173	15	018	1	0	3	0	3	0	4
167		8	max	318.052	2	.555	4	.012	3	0	9	0	<u>1</u>	0	15
168			min	-224.742	3	.131	15	018	1	0	3	0	3	0	4
169		9	max	317.984	2	.377	4	.012	3	0	9	0	1	0	15
170			min	-224.793	3	.089	15	018	1	0	3	0	3	001	4
171		10	max	317.916	2	.21	2	.012	3	0	9	0	1	0	15
172			min	-224.844	3	.047	15	018	1	0	3	0	3	001	4
173		11	max		2	.072	2	.012	3	0	9	0	1	0	15
174			min	-224.895	3	032	3	018	1	0	3	0	3	001	4
175		12	max	317.78	2	036	15	.012	3	0	9	0	1	0	15
		12		-224.946					1		3	0	3		
176		4.0	min		3	156	4	018		0		_		001	4
177		13	max		2	078	15	.012	3	0	9	0	1_	0	15
178			min	-224.997	3	334	4	018	1	0	3	0	3	001	4
179		14	max		2	12	15	.012	3	0	9	0	1_	0	15
180			min	-225.048	3	511	4	018	1	0	3	0	3	001	4
181		15	max	317.576	2	161	15	.012	3	0	9	0	_1_	0	15
182			min	-225.098	3	689	4	018	1	0	3	0	3	0	4
183		16	max		2	203	15	.012	3	0	9	0	1	0	15
184			min	-225.149	3	867	4	018	1	0	3	0	3	0	4
185		17	max	317.441	2	245	15	.012	3	0	9	0	9	0	15
186			min	-225.2	3	-1.044	4	018	1	0	3	0	3	0	4
187		18	max		2	287	15	.012	3	0	9	0	9	0	15
188			min	-225.251	3	-1.222	4	018	1	0	3	0	3	0	4
189		19	max		2	328	15	.012	3	0	9	0	9	0	1
190		13	min	-225.302	3	-1.4	4	018	1	0	3	0	3	0	1
191	M8	1	max		2	0	1	.09	9	0	1	0	2	0	1
192	IVIO	1		-271.21	3	0	1	517	3	0	1	0	3	0	1
		2													
193		2		913.361	2	0	1	.09	9	0	1	0	9	0	1
194					3	0	1	517	3	0	1	0	3	0	1
195		3	max		2	0	1	.09	9	0	1	0	9	0	1
196			min	-271.113	3	0	1	517	3	0	1	0	3	0	1
197		4	max	913.49	2	0	1	.09	9	0	_1_	0	9	0	1
198			min	-271.065	3	0	1	517	3	0	1	0	3	0	1
199		5	max	913.555	2	0	1	.09	9	0	1	0	9	0	1
200			min	-271.016	3	0	1	517	3	0	1	0	3	0	1
201		6	max		2	0	1	.09	9	0	1	0	9	0	1
202			min	-270.968	3	0	1	517	3	0	1	0	3	0	1
203		7		913.684	2	0	1	.09	9	0	1	0	9	0	1
204				-270.919	3	0	1	517	3	0	1	0	3	0	1
205		8	max		2	0	1	.09	9	0	1	0	9	0	1
206		0				0	1	517	3	0	1		3	0	1
			min	-270.871	3							0			
207		9	max		2	0	1	.09	9	0	1	0	9	0	1
208			min	-270.822	3	0	1	517	3	0	1	0	3	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	913.878	2	0	1	.09	9	0	1	0	9	0	1
210			min	-270.774	3	0	1	517	3	0	1	0	3	0	1
211		11	max	913.943	2	0	1	.09	9	0	1	0	9	0	1
212			min	-270.725	3	0	1	517	3	0	1	0	3	0	1
213		12	max		2	0	1	.09	9	0	1	0	9	0	1
214			min	-270.677	3	0	1	517	3	0	1	0	3	0	1
215		13		914.072	2	0	1	.09	9	0	1	0	9	0	1
216			min	-270.628	3	0	1	517	3	0	1	0	3	0	1
217		14	max	914.137	2	0	1	.09	9	0	1	0	9	0	1
218		17		-270.58	3	0	1	517	3	0	1	0	3	0	1
219		15	min				1	.09	9		1	0			1
		15	max		2	0				0	_		9	0	_
220		40	min	-270.531	3	0	1	517	3	0	1	0	3	0	1
221		16	max		2	0	1	.09	9	0	1	0	9	0	1
222			min	-270.483	3	0	1	517	3	0	1	0	3	0	1
223		17	max		2	0	1	.09	9	0	1	0	9	0	1
224			min	-270.434	3	0	1	517	3	0	1	0	3	0	1
225		18	max	914.396	2	0	1	.09	9	0	1	0	9	0	1
226			min	-270.385	3	0	1	517	3	0	1	0	3	0	1
227		19	max	914.461	2	0	1	.09	9	0	1	0	9	0	1
228			min	-270.337	3	0	1	517	3	0	1	0	3	0	1
229	M10	1	max	224.174	1	.649	4	.002	10	0	1	0	1	0	1
230			min	-302.992	3	.153	15	106	1	0	3	0	3	0	1
231		2	max	224.28	1	.608	4	.002	10	0	1	0	1	0	15
232			min	-302.912	3	.143	15	106	1	0	3	0	3	0	4
233		3	max	224.387	1	.567	4	.002	10	0	1	0	1	0	15
234		-	min	-302.832	3	.134	15	106	1	0	3	0	3	0	4
		1									1			_	
235		4	max		1	.525	4	.002	10	0		0	1	0	15
236		-	min	-302.752	3	.124	15	106	1	0	3	0	3	0	4
237		5	max	224.6	1	.484	4	.002	10	0	1	0	1	0	15
238			min	-302.672	3	.114	15	106	1	0	3	0	3	0	4
239		6	max	224.707	1	.443	4	.002	10	0	1	0	10	0	15
240			min	-302.592	3	.105	15	106	1	0	3	0	3	0	4
241		7	max	224.813	1_	.401	4	.002	10	0	1	0	10	0	15
242			min	-302.512	3	.095	15	106	1	0	3	0	3	0	4
243		8	max	224.92	1	.36	4	.002	10	0	1	0	10	0	15
244			min	-302.432	3	.085	15	106	1	0	3	0	3	0	4
245		9	max	225.026	1	.319	4	.002	10	0	1	0	10	0	15
246			min	-302.352	3	.075	15	106	1	0	3	0	3	0	4
247		10	max	225.133	1	.278	4	.002	10	0	1	0	10	0	15
248		1	min	-302.273	3	.066	15	106	1	0	3	0	3	0	4
249		11	max	225.239	1	.236	4	.002	10		1	0	10	0	15
250				-302.193	3	.056	15	106	1	0	3	0	3	0	4
251		12	max		1	.195	4	.002	10	0	1	0	10	0	15
252		14	min	-302.113	3	.046	15	106	1	0	3	0	3	0	4
		40								_	<u> </u>		_		
253		13			1	.154	4	.002	10	0		0	10	0	15
254		4.4	min	-302.033	3	.037	15	106	1	0	3	0	3	0	4
255		14	max		1	.114	2	.002	10	0	1	0	10	0	15
256					3	.027	15	106	1	0	3	0	3	0	4
257		15	max	225.666	1	.082	2	.002	10	0	1	0	10	0	15
258			min	-301.873	3	.017	15	106	1	0	3	0	3	0	4
259		16	max		1	.05	2	.002	10	0	1	0	10	0	15
260			min	-301.793	3	.008	15	106	1	0	3	0	3	0	4
261		17	max	225.879	1	.018	2	.002	10	0	1	0	10	0	15
262			min	-301.713	3	016	9	106	1	0	3	0	3	0	4
263		18		225.985	1	012	15	.002	10	0	1	0	10	0	15
264		'0	min	-301.633	3	053	4	106	1	0	3	0	3	0	4
265		19			1	022	15	.002	10	0	1	0	10	0	15
200		19	max	220.092		022	_เบ	.002	LIU			U	ΙU	U	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
266			min	-301.553	3	094	4	106	1	0	3	0	3	0	4
267	M11	1	max	100.776	2	1.799	4	.128	1	0	3	0	3	0	4
268			min	-88.757	3	.423	15	035	3	0	10	0	1	0	15
269		2	max	100.708	2	1.622	4	.128	1	0	3	0	3	0	4
270			min	-88.808	3	.382	15	035	3	0	10	0	1	0	15
271		3	max	100.64	2	1.444	4	.128	1	0	3	0	3	0	2
272			min	-88.858	3	.34	15	035	3	0	10	0	1	0	3
273		4	max	100.572	2	1.266	4	.128	1	0	3	0	3	0	15
274			min	-88.909	3	.298	15	035	3	0	10	0	1	0	3
275		5	max	100.504	2	1.089	4	.128	1	0	3	0	3	0	15
276		5	min	-88.96	3	.256	15	035	3	0	10	0	1	0	4
		_													
277		6	max	100.436	2	.911	4	.128	1	0	3	0	3	0	15
278		_	min	-89.011	3	.214	15	035	3	0	10	0	1	0	4
279		7	max	100.369	2	.733	4	.128	1	0	3	0	3	0	15
280			min	-89.062	3	.173	15	035	3	0	10	0	1	0	4
281		8	max	100.301	2	.556	4	.128	1	0	3	0	3	0	15
282			min	-89.113	3	.131	15	035	3	0	10	0	1	0	4
283		9	max	100.233	2	.378	4	.128	1	0	3	0	3	0	15
284			min	-89.164	3	.089	15	035	3	0	10	0	1	001	4
285		10	max	100.165	2	.2	4	.128	1	0	3	0	3	0	15
286			min	-89.215	3	.047	15	035	3	0	10	0	1	001	4
287		11	max	100.097	2	.037	2	.128	1	0	3	0	3	0	15
288			min	-89.266	3	015	3	035	3	0	10	0	1	001	4
289		12	max	100.029	2	036	15	.128	1	0	3	0	3	0	15
290		12	min	-89.317	3	155	4	035	3	0	10	0	1	001	4
291		13	max	99.961	2	078	15	.128	1	0	3	0	3	0	15
		13							3						
292		4.4	min	-89.367	3	333	4	035		0	10	0	1	001	4
293		14	max	99.894	2	12	15	.128	1	0	3	0	3	0	15
294			min	-89.418	3	51	4	035	3	0	10	0	1	001	4
295		15	max	99.826	2	161	15	.128	1	0	3	0	3	0	15
296			min	-89.469	3	688	4	035	3	0	10	0	10	0	4
297		16	max	99.758	2	203	15	.128	1	0	3	0	3	0	15
298			min	-89.52	3	866	4	035	3	0	10	0	10	0	4
299		17	max	99.69	2	245	15	.128	1	0	3	0	3	0	15
300			min	-89.571	3	-1.043	4	035	3	0	10	0	10	0	4
301		18	max	99.622	2	287	15	.128	1	0	3	0	3	0	15
302			min	-89.622	3	-1.221	4	035	3	0	10	0	10	0	4
303		19	max	99.554	2	328	15	.128	1	0	3	0	3	0	1
304			min	-89.673	3	-1.398	4	035	3	0	10	0	10	0	1
305	M12	1	max	306.655	1	0	1	.492	1	0	1	0	2	0	1
306	10112	-		-75.228	3	0	1	033	10		1	0	3	0	1
307		2	max		1	0	1	.492	1	0	1	0	1	0	1
308			min	-75.18	3	0	1	033	10	0	1	0	15	0	1
		3			1		1	.492	1		1		1		
309		3	max	306.784		0	1			0	1	0		0	1
310		-	min	-75.131	3	0	_	033	10	0		0	10	0	-
311		4	max		1	0	1	.492	1	0	1	0	1	0	1
312			min	-75.083	3	0	1_	033	10	0	1	0	10	0	1
313		5	max	306.913	1	0	1	.492	1	0	1	0	1	0	1
314			min	-75.034	3	0	1	033	10	0	1	0	10	0	1
315		6	max	306.978	1	0	1	.492	1	0	1	0	1	0	1
316			min	-74.985	3	0	1	033	10	0	1	0	10	0	1
317		7	max	307.043	1	0	1	.492	1	0	1	0	1	0	1
318			min	-74.937	3	0	1	033	10	0	1	0	10	0	1
319		8	max	307.108	1	0	1	.492	1	0	1	0	1	0	1
320			min	-74.888	3	0	1	033	10	0	1	0	10	0	1
321		9	max	307.172	1	0	1	.492	1	0	1	0	1	0	1
322			min	-74.84	3	0	1	033	10	0	1	0	10	0	1
JZZ			1111111	-7 4.04	J	U		000	IU	U		U	10	U	

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec		Axial[lb]							LC	y-y Mome		I -	
323		10	max	307.237 -74.791	1	0	1	.492 033	1	0	1	0	10	0	1
324		11	min	307.302	3	0	1	.492	10	0	1	0	1	0	1
			max	-74.743	3	0	1	033	10	0	1	0	10	0	1
326		12	min				1				1		1		1
327		12	max	307.366 -74.694	3	0	1	.492 033	10	0	1	0	10	0	1
329		13	min	307.431	1	0	1	.492	1	0	1	0	1	0	1
		13	max	-74.646	3	_	1	033	10		1		10		1
330		14	min			0	1	033 .492		0		0		0	
331		14	max	307.496	1	0	1		10	0	1	0	10	0	1
332		15	min	-74.597	<u>3</u> 1	0	1	033 .492	1	0	1	0	1	0	1
333		15	max	307.561 -74.549		_	1			0	1	0			1
334		16	min		3	0	1	033	10	0	1		10 1	0	_
335		10	max	307.625	3	0	1	.492 033	10	0	1	0	10	0	1
336		17	min	-74.5		0	1			0	1			0	_
337		17	max	307.69 -74.452	3	0	1	.492 033	10	0	1	0	10	0	1
338		10	min				1	.492			1		1		
339		18	max	307.755	3	0	1	033	10	0	1	0	10	0	1
		10	min	-74.403		0	1			0		0		0	
341		19	max	307.819	1	0	1	.492	1	0	1	0	1	0	1
342	N/1	1	min	-74.355 F0 F40	3	0		033	10	0		.025	10	0	-
343	<u>M1</u>		max	58.549	1	337.118	3	.703	10	0	2		1	0	3
344		2	min	2.003	15	-226.986	1	-12.461	1	0	3	001	10	0	$\overline{}$
345			max	58.644	1	336.921	3	.703	10	0	2	.022	1	.05	1
346		2	min	2.031	15	-227.248	1	-12.461	1	0	3	001	10	073	3
347		3	max	46.755	1	3.984	9	.7	10	0	3	.019	1	.098	1
348		4	min	-2.118	10	-19.06	3	-12.402	•	0	1	001	10	145	3
349		4	max	46.85	1	3.765	9	.7	10	0	3	.016	1	.102	2
350		_	min	-2.038	10	-19.256	3	-12.402	1	0	1	0	10	141	3
351		5	max	46.946	1	3.546	9	.7	10	0	3	.014	1	.105	2
352		6	min	<u>-1.958</u> 47.041	10 1	-19.453 3.328	9	-12.402 7	10	0	3	.011	10 1	137 .109	2
353 354		0	max	-1.879	10	-19.65	3	-12.402	1	0	1	.011	10	132	3
355		7			1	3.109	9	-12.402 .7	10	0	3	.008	1	.113	2
			max	47.137 -1.799	10	-19.847	3	-12.402	1	0	1	.008	10	128	3
356 357		8		47.232	1	2.89		.7	10		3	.005	1	120 .117	2
358		0	max min	-1.72	10	-20.044	9	-12.402	1	0	1	.005	10	124	3
359		9	max	47.328	1	2.672	9	.7	10	0	3	.003	1	.121	2
360		9	min	-1.64	10	-20.24	3	-12.402	1	0	1	0	10	119	3
361		10	max	47.423	1	2.453	9	.7	10	0	3	.002	3	.125	2
362		10	min	-1.56	10	-20.437	3	-12.402	1	0	1	0	10	115	3
363		11		47.540	1	2.234	9	.7	10	0	3	0	3	.13	2
364		11	max	-1.481	10	-20.634	3	-12.402	1	0	1	003	1	111	3
365		12			1	2.016	9	.7	10	0	3	0	10	.134	2
366		12	min	-1.401	10	-20.831	3	-12.402	1	0	1	005	1	106	3
367		13			1	1.797	9	.7	10	0	3	0	10	.138	2
368		13	min	-1.322	10	-21.028	3	-12.402	1	0	1	008	1	102	3
369		1/	max		1	1.578	9	.7	10	0	3	0	10	.142	2
370		17	min	-1.242	10	-21.224	3	-12.402	1	0	1	011	1	097	3
371		15	max		1	1.36	9	.7	10	0	3	0	10	.147	2
372		13	min	-1.162	10	-21.421	3	-12.402	1	0	1	013	1	092	3
373		16	max	79.838	2	50.887	2	.707	10	0	1	0	10	.151	2
374		10	min	-31.045	3	-86.231	3	-12.517	1	0	10	016	1	087	3
375		17	max		2	50.625	2	.707	10	0	1	.001	10	.14	2
376		17	min	-30.973	3	-86.427	3	-12.517	1	0	10	019	1	068	3
377		18		-2.03	15	323.685	2	.74	10	0	3	.001	10	.071	2
378		10	min	- <u>58.611</u>	1	-157.817	3	-12.941	1	0	2	022	1	034	3
379		10	max		15	323.423	2	.74	10	0	3	.001	10	0	2
013		l 13	πιαλ	- <u>-</u> 2.001	IJ	JZJ.4ZJ		.74	ΙŪ		_ J	.001	ΙŪ		

Model Name

: Schletter, Inc. : HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	
380			min	-58.515	1_	-158.013	3	-12.941	1	0	2	025	1	0	3
381	M5	1	max	147.967	1	1073.036	3	0	11	0	9	.01	3	0	3
382			min	-3.912	3	-717.293	1	-64.612	3	0	3	0	11	0	2
383		2	max	148.062	1	1072.839	3	0	11	0	9	0	9	.155	1
384			min	-3.84	3	-717.555	1	-64.612	3	0	3	004	3	232	3
385		3	max	109.936	1	5.561	9	6.892	3	0	3	0	9	.308	1
386			min	.166	10	-68.529	3	101	9	0	9	018	3	46	3
387		4	max	110.031	1	5.342	9	6.892	3	0	3	0	9	.319	2
388			min	.246	10	-68.726	3	101	9	0	9	016	3	445	3
389		5	max	110.127	1	5.124	9	6.892	3	0	3	0	9	.332	2
390			min	.326	10	-68.922	3	101	9	0	9	015	3	43	3
391		6	max	110.222	1	4.905	9	6.892	3	0	3	0	9	.345	2
392			min	.405	10	-69.119	3	101	9	0	9	013	3	415	3
393		7	max	110.318	1	4.686	9	6.892	3	0	3	0	9	.358	2
394			min	.485	10	-69.316	3	101	9	0	9	012	3	4	3
395		8	max	110.413	1	4.468	9	6.892	3	0	3	0	9	.371	2
396			min	.564	10	-69.513	3	101	9	0	9	01	3	385	3
397		9	max	110.509	1	4.249	9	6.892	3	0	3	0	9	.384	2
398			min	.644	10	-69.71	3	101	9	0	9	009	3	37	3
399		10	max	110.604	1	4.03	9	6.892	3	0	3	0	1	.397	2
400			min	.724	10	-69.906	3	101	9	0	9	007	3	355	3
401		11	max	110.7	1	3.812	9	6.892	3	0	3	0	2	.411	2
402			min	.803	10	-70.103	3	101	9	0	9	006	3	339	3
403		12	max	110.795	1	3.593	9	6.892	3	0	3	0	2	.424	2
404			min	.883	10	-70.3	3	101	9	0	9	004	3	324	3
405		13	max	110.891	1	3.374	9	6.892	3	0	3	0	2	.437	2
406			min	.962	10	-70.497	3	101	9	0	9	003	3	309	3
407		14	max	110.986	1	3.156	9	6.892	3	0	3	0	11	.451	2
408			min	1.042	10	-70.694	3	101	9	0	9	001	3	294	3
409		15	max	111.082	1	2.937	9	6.892	3	0	3	0	3	.464	2
410			min	1.121	10	-70.89	3	101	9	0	9	0	9	278	3
411		16	max	249.517	2	168.037	2	6.863	3	0	3	.001	3	.476	2
412			min	-94.447	3	-233.341	3	104	9	0	2	0	9	261	3
413		17	max	249.612	2	167.775	2	6.863	3	0	3	.003	3	.439	2
414			min	-94.376	3	-233.537	3	104	9	0	2	0	9	211	3
415		18	max	-1.537	12	1022.108	2	6.347	3	0	3	.004	3	.221	2
416				-148.142	1	-489.36	3	019	9	0	9	0	9	106	3
417		19	max	-1.489	12	1021.846	2	6.347	3	0	3	.006	3	0	3
418				-148.047	1	-489.557	3	019	9	0	9	0	9	0	2
419	M9	1	max	58.538	1	337.049	3	68.154	3	0	3	.001	10	0	2
420					15	-226.986			10		2	025	1	0	3
421		2	max		1	336.852	3	68.154	3	0	3	.001	10	.05	1
422			min	2.028	15	-227.248	1	703	10	0	2	022	1	073	3
423		3	max	47.066	1	3.973	9	12.348	1	0	1	.013	3	.098	2
424			min	-1.815	10	-18.961	3	-2.732	3	0	10	019	1	145	3
425		4	max	47.161	1	3.754	9	12.348	1	0	1	.013	3	.102	2
426			min	-1.736	10	-19.158	3	-2.732	3	0	10	016	1	141	3
427		5	max	47.257	1	3.535	9	12.348	1	0	1	.012	3	.105	2
428			min	-1.656	10	-19.354	3	-2.732	3	0	10	013	1	137	3
429		6	max	47.353	1	3.317	9	12.348	1	0	1	.012	3	.109	2
430			min	-1.577	10	-19.551	3	-2.732	3	0	10	011	1	132	3
431		7	max	47.448	1	3.098	9	12.348	1	0	1	.011	3	.113	2
432			min	-1.497	10	-19.748	3	-2.732	3	0	10	008	1	128	3
433		8	max	47.544	1	2.879	9	12.348	1	0	1	.01	3	.117	2
434			min	-1.417	10	-19.945	3	-2.732	3	0	10	005	1	124	3
435		9	max	47.639	1	2.661	9	12.348	1	0	1	.01	3	.121	2
436			min	-1.338	10	-20.142	3	-2.732	3	0	10	003	1	119	3
			1111111	1.000		20.172		2.702				.000			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]	LC				
437		10	max	47.735	1	2.442	9	12.348	1	0	1	.009	3	.125	2
438			min	-1.258	10	-20.338	3	-2.732	3	0	10	0	1	115	3
439		11	max	47.83	1	2.223	9	12.348	1	0	1	.009	3	.13	2
440			min	-1.179	10	-20.535	3	-2.732	3	0	10	0	10	111	3
441		12	max	47.926	1	2.005	9	12.348	1	0	1	.008	3	.134	2
442			min	-1.099	10	-20.732	3	-2.732	3	0	10	0	10	106	3
443		13	max		1	1.786	9	12.348	1	0	1	.008	1	.138	2
444		10	min	-1.019	10	-20.929	3	-2.732	3	0	10	0	10	102	3
445		14	max	48.117	1	1.567	9	12.348	1	0	1	.011	1	.142	2
446		14	min	94	10	-21.126	3	-2.732	3	0	10	0	10	097	3
447		15		48.212	1	1.349	9	12.348		0	1	.013	1	.147	2
		15	max						1						
448		40	min	86	10	-21.322	3	-2.732	3	0	10	0	10	092	3
449		16	max	79.932	2	50.629	2	12.466	1	0	10	.016	1	.151	2
450			min	-31.999	3	-86.655	3	-2.756	3	0	3	0	10	087	3
451		17	max	80.027	2	50.367	2	12.466	1	0	10	.019	1	.14	2
452			min	-31.928	3	-86.851	3	-2.756	3	0	3	001	10	068	3
453		18	max	-2.026	15	323.685	2	12.956	1	0	2	.022	1	.071	2
454			min	-58.588	1	-157.809	3	-2.368	3	0	3	001	10	034	3
455		19	max	-1.998	15	323.423	2	12.956	1	0	2	.024	1	0	2
456			min	-58.492	1	-158.005	3	-2.368	3	0	3	001	10	0	3
457	M13	1	max	68.15	3	226.83	1	-1.999	15	0	2	.025	1	0	2
458			min	703	10	-337.09	3	-58.536	1	0	3	001	10	0	3
459		2	max	68.15	3	161.853	1	-1.512	15	0	2	.012	3	.12	3
460			min	703	10	-240.024	3	-43.81	1	0	3	003	2	081	1
461		3	max	68.15	3	97.037	2	54	10	0	2	.01	3	.2	3
462		1	min	703	10	-142.958	3	-29.085	1	0	3	012	1	135	1
		1					2						3		3
463		4	max	68.15	3	32.304		.806	10	0	2	.007		.239	
464		-	min	703	10	-45.893	3	-14.36	1	0	3	021	1	162	2
465		5	max	68.15	3	51.173	3	3.228	2	0	2	.005	3	.238	3
466			min	703	10	-33.079	1	-5.113	3	0	3	024	1	162	2
467		6	max	68.15	3	148.239	3	15.091	1	0	2	.003	3	.197	3
468			min	703	10	-98.056	1	-4.404	3	0	3	021	1	135	2
469		7	max	68.15	3	245.305	3	29.816	1	0	2	0	3	.115	3
470			min	703	10	-163.033	1	-3.695	3	0	3	011	1	081	2
471		8	max	68.15	3	342.371	3	44.541	1	0	2	.005	2	.002	1
472			min	703	10	-228.01	1	-2.986	3	0	3	0	3	008	3
473		9	max	68.15	3	439.437	3	59.267	1	0	2	.026	1	.11	1
474			min	703	10	-292.987	1	-2.278	3	0	3	001	3	171	3
475		10	max	68.15	3	-7.385	15	73.992	1	0	2	.054	1	.246	1
476			min	703	10	-536.503	3	1.187	12	0	3	012	3	374	3
477		11	max		1	292.987		3.071	3	0	3	.026	1	.11	1
478			min	703	10		3	-59.256	1	0	2	011	3	171	3
479		12	max	12.479	1	228.01	1	3.78	3	0	3	.005	2	.002	1
480		12	min	703	10	-342.371	3	-44.531	1	0	2	009	3	008	3
481		13		12.479	1	163.033	1	4.489	3	_	3	009	10	.115	3
482		13		703	10	-245.305	3	-29.805	1	0	2	011	1		2
		4.4	min				-		_				-	081	
483		14	max		1	98.056	1	5.198	3	0	3	0	15	.197	3
484			min	703	10	-148.239	3	-15.08	1	0	2	021	1_	135	2
485		15	max	12.479	1	33.079	1	5.907	3	0	3	0	15	.238	3
486			min	703	10	-51.173	3	-3.228	2	0	2	024	1	162	2
487		16	max	12.479	1	45.893	3	14.37	1	0	3	0	12	.239	3
488			min	703	10	-32.304	2	806	10	0	2	021	1	162	2
489		17	max	12.479	1	142.959	3	29.096	1	0	3	.002	3	.2	3
490			min	703	10	-97.037	2	.54	10	0	2	012	1	135	1
491		18	max	12.479	1	240.024	3	43.821	1	0	3	.005	3	.12	3
492			min	703	10	-161.853	1	1.516	15	Ö	2	003	2	081	1
493		19			1	337.09	3	58.546	1	0	3	.025	1	0	2
		_ ' '	mux	12.710	_	007.00		_ 				.020			

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	_LC_
494			min	703	10	-226.83	1	2.003	15	0	2	001	10	0	3
495	M16	1	max	2.37	3	323.495	2	-1.998	15	0	3	.024	1	0	2
496			min	-12.938	1	-158.024	3	-58.495	1	0	2	001	10	0	3
497		2	max	2.37	3	230.739	2	-1.511	15	0	3	.004	9	.057	3
498			min	-12.938	1	-113.267	3	-43.77	1	0	2	003	2	115	2
499		3	max	2.37	3	137.983	2	529	10	0	3	0	3	.094	3
500			min	-12.938	1	-68.511	3	-29.045	1	0	2	012	1	192	2
501		4	max	2.37	3	45.227	2	.817	10	0	3	0	15	.114	3
502			min	-12.938	1	-23.754	3	-14.32	1	0	2	021	1	23	2
503		5	max	2.37	3	21.003	3	3.251	2	0	3	0	15	.114	3
504			min	-12.938	1	-47.529	2	-3.243	3	0	2	024	1	23	2
505		6	max	2.37	3	65.76	3	15.131	1	0	3	0	15	.096	3
506			min	-12.938	1	-140.285	2	-2.534	3	0	2	021	1	191	2
507		7	max	2.37	3	110.516	3	29.856	1	0	3	0	10	.059	3
508			min	-12.938	1	-233.04	2	-1.825	3	0	2	011	1	113	2
509		8	max	2.37	3	155.273	3	44.581	1	0	3	.005	2	.004	3
510			min	-12.938	1	-325.796	2	-1.116	3	0	2	006	3	0	15
511		9	max	2.37	3	200.03	3	59.307	1	0	3	.026	1	.158	2
512			min	-12.938	1	-418.552	2	407	3	0	2	006	3	07	3
513		10	max	.74	10	-7.382	15	74.032	1	0	15	.054	1	.352	2
514			min	-12.938	1	-511.308	2	-1.416	3	0	2	006	3	163	3
515		11	max	.74	10	418.552	2	604	12	0	2	.026	1	.158	2
516			min	-12.924	1	-200.03	3	-59.284	1	0	3	001	3	07	3
517		12	max	.74	10	325.796	2	.002	3	0	2	.005	2	.004	3
518		12	min	-12.924	1	-155.273	3	-44.558	1	0	3	001	3	0	15
519		13	max	.74	10	233.04	2	.711	3	0	2	0	10	.059	3
520		10	min	-12.924	1	-110.516	3	-29.833	1	0	3	011	1	113	2
521		14	max	.74	10	140.285	2	1.42	3	0	2	0	12	.096	3
522		17	min	-12.924	1	-65.76	3	-15.108	1	0	3	021	1	191	2
523		15	max	.74	10	47.529	2	2.129	3	0	2	0	3	.114	3
524		13	min	-12.924	1	-21.003	3	-3.251	2	0	3	024	1	23	2
525		16	max	.74	10	23.754	3	14.343	1	0	2	0	3	.114	3
526		10	min	-12.924	1	-45.227	2	817	10	0	3	021	1	23	2
527		17	max	.74	10	68.511	3	29.068	1	0	2	.002	3	.094	3
528		17	min	-12.924	1	-137.983	2	.529	10	0	3	012	1	192	2
529		18	max	.74	10	113.267	3	43.793	1	0	2	.004	3	.057	3
530		10	min	-12.924	1	-230.739	2	1.514	15	0	3	003	2	115	2
531		19	max	.74	10	158.024	3	58.518	1	0	2	.025	1	0	2
532		13	min	-12.924	1	-323.495	2	2.001	15	0	3	001	10	0	3
533	M15	1	max	0	1	.776	3	.152	3	0	1	0	1	0	1
534	IVITO		min	-88.892		0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.69	3	.152	3	0	1	0	1	0	1
536			min	-88.952	3	.09	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.604	3	.152	3	0	1	0	1	0	1
538			min	-89.012	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.518	3	.152	3	0	1	0	1	0	1
540		-	min	-89.071	3	0	1	0	1	0	3	0	3	0	3
541		5		0	1	.431	3	.152	3	0	1	0	1	0	1
		3	max				1		1		_		3		3
542		6	min	-89.131	<u>3</u> 1	245		152		0	1	0	1	0	
543		6	max	0	3	.345	<u>3</u>	.152 0	3	<u>0</u> 	3	0	3	0	3
544		7	min	-89.191		250		_	_						-
545		7	max	0	1	.259	3	.152	3	0	1	0	3	0	1
546		0	min	-89.25	3	172	1	150	1	0	3	0	1	0	3
547		8	max	0	1	.173	3	.152	3	0	1	0	3	0	1
548		_	min	-89.31	3	0	1	150	1	0	3	0	1	0	3
549		9	max	0 00 07	1	.086	3	.152	3	0	1	0	3	0	1
550			min	-89.37	3	0	1	0	1	0	3	0	1	0	3

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

551		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
1	551		10	max	0	1	0	1	.152	3	0		0	3	0	
555	552			min	-89.429	3	0	1			0	3	0		0	3
1555	553		11	max	0	1	0	1	.152	3	0	1	0	3	0	1
556	554			min	-89.489	3	086	3	0	1	0	3	0	1	0	3
556	555		12	max	0	1	0	1	.152	3	0	1	0	3	0	1
1557					-89.549	3	173	3			0	3	0		0	3
1558			13			1		1	.152	3	0	1	0	3	0	
559					-89,608	3	- 259	3				3	0			3
Secondary Seco			14							3				3		
Secondary Seco						3		3					_			
Sec			15							3			_	3		
5653						_										
565			16													
Feeb			10					•								
Se66			17								-			_	-	
567			1 /		_	_		_				_				
568			10		_										_	
See			10			_						_				
S70			10											•		
571 M16A 1 max 0 2 1.329 4 .047 1 0 3 0 1 573 2 max 0 2 1.081 4 .047 1 0 3 0 3 0 2 574 min -88.511 3 0 2 061 3 0 1 0 1 0 4 575 3 max 0 2 1.033 4 .047 1 0 3 0 3 0 2 .566 min -88.451 3 0 2 061 3 0 1 0 1 0 4 .047 1 0 3 0 2 .5738 4 .047 1 0 3 0 3 0 2 .588 4 .047 1 0 3 0 3 0 2 .588 6			19				_	_								
STZ		NA4CA	4							_			_	_		-
S73		IVITOA														
S74												_				_
S756																
S76											_			_	-	
S77			3		_											
578															_	_
579 5 max 0 2 .738 4 .047 1 0 3 0 3 0 2 580 min -88.332 3 0 2 .061 3 0 1 0 1 001 4 581 6 max 0 2 .591 4 .047 1 0 3 0 3 0 2 582 min -88.272 3 0 2 061 3 0 1 0 1 001 4 583 7 max 0 2 .443 4 .047 1 0 3 0 3 0 2 584 min -88.1212 3 0 2 061 3 0 1 0 1 001 4 585 8 max 0 2 .148 4 .047 1			4													
S80														•		_
581 6 max 0 2 .591 4 .047 1 0 3 0 3 0 2 582 min -88.272 3 0 2 061 3 0 1 0 1 001 4 583 7 max 0 2 .443 4 .047 1 0 3 0 2 584 min -88.212 3 0 2 061 3 0 1 0 1 001 4 585 8 max 0 2 .295 4 .047 1 0 3 0 3 0 2 586 min -88.153 3 0 2 061 3 0 1 0 1 001 4 587 9 max 0 2 0.61 3 0 1 0 1			5													
582 min -88.272 3 0 2 061 3 0 1 0 1 001 4 583 7 max 0 2 .443 4 .047 1 0 3 0 3 0 2 584 min -88.212 3 0 2 061 3 0 1 0 1 001 4 585 8 max 0 2 .295 4 .047 1 0 3 0 2 .586 min -88.153 3 0 2 061 3 0 1 0 1 001 4 587 9 max 0 2 .148 4 .047 1 0 3 0 3 0 2 .588 10 max 0 2 0 1 .047 1 0 3 0 2 .591												_	_			
583 7 max 0 2 .443 4 .047 1 0 3 0 3 0 2 584 min -88.212 3 0 2 -061 3 0 1 0 1 -001 4 585 8 max 0 2 .295 4 .047 1 0 3 0 3 0 2 586 min -88.153 3 0 2 -061 3 0 1 0 1 -001 4 587 9 max 0 2 .148 4 .047 1 0 3 0 3 0 2 588 min -88.093 3 0 2 -061 3 0 1 0 1 0 1 -002 4 599 min -88.033 3 0 1 -061			6							_						
584 min -88.212 3 0 2 061 3 0 1 0 1 001 4 585 8 max 0 2 .295 4 .047 1 0 3 0 3 0 2 586 min -88.153 3 0 2 061 3 0 1 0 1 001 4 587 9 max 0 2 .148 4 .047 1 0 3 0 3 0 2 .588 10 min -88.093 3 0 2 061 3 0 1 0 1 002 4 589 10 max 0 2 0 1 .047 1 0 3 0 2 .592 11 max .026 13 0 2 .047 1 0 3 0 1												_				_
585 8 max 0 2 .295 4 .047 1 0 3 0 2 2 586 min -88.153 3 0 2 061 3 0 1 0 1 001 4 587 9 max 0 2 .148 4 .047 1 0 3 0 3 0 2 588 min -88.093 3 0 2 061 3 0 1 0 1 002 4 589 10 max 0 2 0 1 .047 1 0 3 0 2 590 min -88.033 3 0 1 061 3 0 1 002 4 591 11 max .026 13 0 2 .047 1 0 3 0 2 592 min -87.974 3			7													
586 min -88.153 3 0 2 061 3 0 1 0 1 001 4 587 9 max 0 2 148 4 .047 1 0 3 0 2 2 588 min -88.093 3 0 2 061 3 0 1 0 1 002 4 589 10 max 0 2 0 1 .047 1 0 3 0 2 2 590 1 .047 1 0 3 0 2 .002 4 .591 1 1 max .026 13 0 2 .047 1 0 3 0 3 0 2 .592 1 1 min -87.974 3 148 4 061 3 0 1 0 1 .0 1 .0							_							_		_
587 9 max 0 2 .148 4 .047 1 0 3 0 3 0 2 588 min -88.093 3 0 2 061 3 0 1 0 1 002 4 589 10 max 0 2 0 1 .047 1 0 3 0 3 0 2 590 min -88.033 3 0 1 -061 3 0 1 0 1 002 4 591 11 max .026 13 0 2 .047 1 0 3 0 3 0 2 592 min -87.974 3 148 4 061 3 0 1 0 1 002 4 593 12 max .108 13 0 2 .047 1 0 3 0 <			8													
588 min -88.093 3 0 2 061 3 0 1 0 1 002 4 589 10 max 0 2 0 1 .047 1 0 3 0 3 0 2 590 min -88.033 3 0 1 -061 3 0 1 0 1 002 4 591 11 max .026 13 0 2 .047 1 0 3 0 3 0 2 592 min -87.974 3 148 4 061 3 0 1 0 1 002 4 593 12 max .108 13 0 2 .047 1 0 3 0 1 0 1 001 4 061 3 0 1 0 1 001 4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td>							_							_		_
589 10 max 0 2 0 1 .047 1 0 3 0 3 0 2 590 min -88.033 3 0 1 061 3 0 1 0 1 002 4 591 11 max .026 13 0 2 .047 1 0 3 0 3 0 2 592 min -87.974 3 148 4 061 3 0 1 0 1 002 4 593 12 max .108 13 0 2 .047 1 0 3 0 2 594 min -87.914 3 295 4 061 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			9													
590 min -88.033 3 0 1 061 3 0 1 0 1 002 4 591 11 max .026 13 0 2 .047 1 0 3 0 3 0 2 592 min -87.974 3 148 4 061 3 0 1 0 1 002 4 593 12 max .108 13 0 2 .047 1 0 3 0 3 0 2 594 min -87.914 3 295 4 061 3 0 1 0 1 001 4 001 4 5091 4 061 3 0 1 0 1 0 2 .047 1 0 3 0 1 0 2 .047 1 0 3 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>														•		
591 11 max .026 13 0 2 .047 1 0 3 0 3 0 2 592 min -87.974 3 148 4 061 3 0 1 0 1 002 4 593 12 max .108 13 0 2 .047 1 0 3 0 3 0 2 594 min -87.914 3 295 4 061 3 0 1 0 1 001 4 595 13 max .19 13 0 2 .047 1 0 3 0 1 0 2 596 min -87.854 3 443 4 061 3 0 1 0 4 001 4 597 14 max .273 13 0 2 .047			10				_	_					_			
592 min -87.974 3 148 4 061 3 0 1 0 1 002 4 593 12 max .108 13 0 2 .047 1 0 3 0 3 0 2 594 min -87.914 3 295 4 061 3 0 1 0 1 001 4 595 13 max .19 13 0 2 .047 1 0 3 0 1 0 2 596 min -87.854 3 443 4 061 3 0 1 0 4 001 4 597 14 max .273 13 0 2 .047 1 0 3 0 1 0 2 598 min -87.795 3 591 4 061 3 0 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								_								
593 12 max .108 13 0 2 .047 1 0 3 0 3 0 2 594 min -87.914 3 295 4 061 3 0 1 0 1 001 4 595 13 max .19 13 0 2 .047 1 0 3 0 1 0 2 596 min -87.854 3 443 4 061 3 0 1 0 4 001 4 597 14 max .273 13 0 2 .047 1 0 3 0 1 0 2 598 min -87.795 3 591 4 061 3 0 1 0 3 001 4 599 15 max .367 4 0 2 .047 1 0 3 0 </td <td></td> <td></td> <td>11</td> <td>max</td> <td>.026</td> <td>13</td> <td>0</td> <td>2</td> <td>.047</td> <td></td> <td>0</td> <td>3</td> <td>0</td> <td>3_</td> <td>0</td> <td>2</td>			11	max	.026	13	0	2	.047		0	3	0	3_	0	2
594 min -87.914 3 295 4 061 3 0 1 0 1 001 4 595 13 max .19 13 0 2 .047 1 0 3 0 1 0 2 596 min -87.854 3 443 4 061 3 0 1 0 4 001 4 597 14 max .273 13 0 2 .047 1 0 3 0 1 0 2 598 min -87.795 3 591 4 061 3 0 1 0 3 001 4 599 15 max .367 4 0 2 .047 1 0 3 0 1 0 3 001 4 600 min -87.735 3 738 4 <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>148</td> <td>_</td> <td></td> <td>3</td> <td>0</td> <td>_</td> <td>0</td> <td></td> <td>002</td> <td></td>				1			148	_		3	0	_	0		002	
595 13 max .19 13 0 2 .047 1 0 3 0 1 0 2 596 min -87.854 3 443 4 061 3 0 1 0 4 001 4 597 14 max .273 13 0 2 .047 1 0 3 0 1 0 2 598 min -87.795 3 591 4 061 3 0 1 0 3 001 4 599 15 max .367 4 0 2 .047 1 0 3 0 1 0 2 600 min -87.735 3 738 4 061 3 0 1 0 3 001 4 601 16 max .469 4 0 2 .047			12				_	2		_	0	3	0	3		2
596 min -87.854 3 443 4 061 3 0 1 0 4 001 4 597 14 max .273 13 0 2 .047 1 0 3 0 1 0 2 598 min -87.795 3 591 4 061 3 0 1 0 3 001 4 599 15 max .367 4 0 2 .047 1 0 3 0 1 0 2 600 min -87.735 3 738 4 061 3 0 1 0 3 001 4 601 16 max .469 4 0 2 .047 1 0 3 0 1 0 2 602 min -87.675 3 886 4 061 3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>295</td> <td></td> <td></td> <td>3</td> <td>_</td> <td>_</td> <td>0</td> <td>1_</td> <td>001</td> <td></td>							295			3	_	_	0	1_	001	
597 14 max .273 13 0 2 .047 1 0 3 0 1 0 2 598 min -87.795 3 591 4 061 3 0 1 0 3 001 4 599 15 max .367 4 0 2 .047 1 0 3 0 1 0 2 600 min -87.735 3 738 4 061 3 0 1 0 3 001 4 601 16 max .469 4 0 2 .047 1 0 3 0 1 0 2 602 min -87.675 3 886 4 061 3 0 1 0 3 0 4 603 17 max .571 4 0 2 .047 1 0 3 0			13	max				2			0	3	0	1_	_	2
598 min -87.795 3 591 4 061 3 0 1 0 3 001 4 599 15 max .367 4 0 2 .047 1 0 3 0 1 0 2 600 min -87.735 3 738 4 061 3 0 1 0 3 001 4 601 16 max .469 4 0 2 .047 1 0 3 0 1 0 2 602 min -87.675 3 886 4 061 3 0 1 0 3 0 4 603 17 max .571 4 0 2 .047 1 0 3 0 1 0 2 604 min -87.616 3 -1.033 4 061 3				min						3	0		0	4	001	
599 15 max .367 4 0 2 .047 1 0 3 0 1 0 2 600 min -87.735 3 738 4 061 3 0 1 0 3 001 4 601 16 max .469 4 0 2 .047 1 0 3 0 1 0 2 602 min -87.675 3 886 4 061 3 0 1 0 3 0 4 603 17 max .571 4 0 2 .047 1 0 3 0 1 0 2 604 min -87.616 3 -1.033 4 061 3 0 1 0 3 0 4 605 18 max .673 4 0 2 .047 1 0 3 0			14	max			0	2			0	3	0	1_	0	2
600 min -87.735 3 738 4 061 3 0 1 0 3 001 4 601 16 max .469 4 0 2 .047 1 0 3 0 1 0 2 602 min -87.675 3 886 4 061 3 0 1 0 3 0 4 603 17 max .571 4 0 2 .047 1 0 3 0 1 0 2 604 min -87.616 3 -1.033 4 061 3 0 1 0 3 0 4 605 18 max .673 4 0 2 .047 1 0 3 0 1 0 2 606 min -87.556 3 -1.181 4 061 3	598			min	-87.795	3	591	4		3	0	1	0	3	001	4
601 16 max .469 4 0 2 .047 1 0 3 0 1 0 2 602 min -87.675 3 886 4 061 3 0 1 0 3 0 4 603 17 max .571 4 0 2 .047 1 0 3 0 1 0 2 604 min -87.616 3 -1.033 4 061 3 0 1 0 3 0 4 605 18 max .673 4 0 2 .047 1 0 3 0 1 0 2 606 min -87.556 3 -1.181 4 061 3 0 1 0 3 0 4	599		15	max	.367	4	0	2	.047		0	3	0		0	2
602 min -87.675 3 886 4 061 3 0 1 0 3 0 4 603 17 max .571 4 0 2 .047 1 0 3 0 1 0 2 604 min -87.616 3 -1.033 4 061 3 0 1 0 3 0 4 605 18 max .673 4 0 2 .047 1 0 3 0 1 0 2 606 min -87.556 3 -1.181 4 061 3 0 1 0 3 0 4	600				-87.735	3	738		061	3	0	_	0	3	001	
603 17 max .571 4 0 2 .047 1 0 3 0 1 0 2 604 min -87.616 3 -1.033 4 061 3 0 1 0 3 0 4 605 18 max .673 4 0 2 .047 1 0 3 0 1 0 2 606 min -87.556 3 -1.181 4 061 3 0 1 0 3 0 4			16	max	.469	4	0	2	.047	1	0	3	0	1	0	2
604 min -87.616 3 -1.033 4 061 3 0 1 0 3 0 4 605 18 max .673 4 0 2 .047 1 0 3 0 1 0 2 606 min -87.556 3 -1.181 4 061 3 0 1 0 3 0 4	602			min	-87.675	3	886	4		3	0	_	0	3	0	
604 min -87.616 3 -1.033 4 061 3 0 1 0 3 0 4 605 18 max .673 4 0 2 .047 1 0 3 0 1 0 2 606 min -87.556 3 -1.181 4 061 3 0 1 0 3 0 4	603		17	max	.571	4	0	2	.047	1	0	3	0	1	0	2
605 18 max .673 4 0 2 .047 1 0 3 0 1 0 2 606 min -87.556 3 -1.181 4 061 3 0 1 0 3 0 4						3	-1.033	4	061	3		1	0	3	0	
606 min -87.556 3 -1.181 4061 3 0 1 0 3 0 4			18					2			0	3	0	1	0	2
										3			0	3		
			19			4		2			0	3	0		0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-87.496	3	-1.329	4	061	3	0	1	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.007	2	.002	1	1.043e-5	10	NC	3	NC	1
2			min	003	3	006	3	002	3	-1.906e-4	1	4998.868	2	NC	1
3		2	max	.002	1	.006	2	.002	1	9.939e-6	10	NC	3	NC	1
4			min	003	3	006	3	002	3	-1.82e-4	1_	5439.83	2	NC	1
5		3	max	.002	1	.006	2	.001	1	9.452e-6	10	NC	1	NC	1
6			min	003	3	006	3	001	3	-1.735e-4	1	5961.642	2	NC	1
7		4	max	.002	1	.005	2	.001	1	8.964e-6	10	NC	1	NC	1
8			min	002	3	005	3	001	3	-1.649e-4	1	6583.583	2	NC	1
9		5	max	.001	1	.005	2	.001	1	8.477e-6	10	NC	1	NC	1
10			min	002	3	005	3	001	3	-1.564e-4	1	7331.281	2	NC	1
11		6	max	.001	1	.004	2	.001	1	7.989e-6	10	NC	1_	NC	1
12			min	002	3	005	3	0	3	-1.478e-4	1	8239.384	2	NC	1
13		7	max	.001	1	.004	2	0	1	7.502e-6	10	NC	1	NC	1
14			min	002	3	005	3	0	3	-1.393e-4	1	9355.649	2	NC	1
15		8	max	.001	1	.003	2	0	1	7.015e-6	10	NC	1	NC	1
16			min	002	3	004	3	0	3	-1.307e-4	1	NC	1	NC	1
17		9	max	.001	1	.003	2	0	1	6.527e-6	10	NC	1_	NC	1
18			min	002	3	004	3	0	3	-1.222e-4	1	NC	1	NC	1
19		10	max	0	1	.002	2	0	1	6.04e-6	10	NC	1	NC	1
20			min	001	3	004	3	0	3	-1.136e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	0	1	5.552e-6	10	NC	1_	NC	1
22			min	001	3	003	3	0	3	-1.051e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	0	1	5.065e-6	10	NC	1	NC	1
24			min	001	3	003	3	0	3	-9.656e-5	1	NC	1	NC	1
25		13	max	0	1	.001	2	0	1	4.577e-6	10	NC	1	NC	1
26			min	0	3	003	3	0	3	-8.801e-5	1	NC	1	NC	1
27		14	max	0	1	0	2	0	1	4.09e-6	10	NC	1_	NC	1
28			min	0	3	002	3	0	3	-7.946e-5	1	NC	1	NC	1
29		15	max	0	1	0	2	0	1	3.602e-6	10	NC	1_	NC	1
30			min	0	3	002	3	0	3	-7.092e-5	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	3.115e-6	10	NC	1_	NC	1
32			min	0	3	001	3	0	3	-6.237e-5	1_	NC	1	NC	1
33		17	max	0	1	0	2	0	1	2.627e-6	10	NC	_1_	NC	1
34			min	0	3	0	3	0	3	-5.383e-5	1_	NC	1_	NC	1
35		18	max	0	1	0	2	0	1	2.14e-6	10	NC	_1_	NC	1
36			min	0	3	0	3	0	3	-4.528e-5	1_	NC	1_	NC	1
37		19	max	0	1	0	1	0	1	1.652e-6	10	NC	_1_	NC	1
38			min	0	1	0	1	0	1	-3.673e-5	1_	NC	1_	NC	1
39	<u>M3</u>	1	max	0	1	0	1	0	1	1.696e-5	_1_	NC	1	NC	1
40			min	0	1	0	1	0	1	-7.659e-7	10	NC	1	NC	1
41		2	max	0	3	00	2	0		2.405e-5	_1_	NC	_1_	NC	1_
42			min	0	2	0	3	0	1	-1.199e-6	10	NC	1	NC	1
43		3	max	0	3	0	2	0	10		_1_	NC	1	NC	1
44			min	0	2	001	3	0	9	-1.632e-6		NC	1_	NC	1
45		4	max	0	3	0	2	0	10		_1_	NC	1	NC	1
46			min	0	2	002	3	0	9	-2.065e-6	10	NC	1	NC	1
47		5	max	0	3	0	2	0	3	4.534e-5	_1_	NC	1	NC	1
48			min	0	2	003	3	0	9	-2.498e-6		NC	1_	NC	1
49		6	max	0	3	0	2	0	3	5.243e-5	_1_	NC	_1_	NC	1
50			min	0	2	004	3	0	9	-2.932e-6	10	NC	1_	NC	1
51		7	max	0	3	0	2	0	3	5.953e-5	1_	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r LC (n) L/y Ratio LC (n) L/z Ratio LC
52			min	0	2	004	3	0	9 -3.365e-6 10 NC 1 NC 1
53		8	max	0	3	0	2	0	3 6.662e-5 1 NC 1 NC 1
54			min	0	2	005	3	0	10 -3.798e-6 10 NC 1 NC 1
55		9	max	0	3	0	2	0	1 7.372e-5 1 NC 1 NC 1
56			min	0	2	005	3	0	10 -4.231e-6 10 NC 1 NC 1
57		10	max	0	3	.001	2	0	1 8.081e-5 1 NC 1 NC 1
58			min	0	2	006	3	0	10 -4.664e-6 10 NC 1 NC 1
59		11	max	0	3	.002	2	0	1 8.79e-5 1 NC 1 NC 1
60			min	0	2	006	3	0	10 -5.097e-6 10 NC 1 NC 1
61		12	max	0	3	.002	2	0	1 9.5e-5 1 NC 1 NC 1
62			min	0	2	007	3	0	10 -5.53e-6 10 NC 1 NC 1
63		13	max	0	3	.003	2	0	1 1.021e-4 1 NC 1 NC 1
64			min	0	2	007	3	0	10 -5.963e-6 10 NC 1 NC 1
65		14	max	0	3	.004	2	0	1 1.092e-4 1 NC 1 NC 1
66			min	0	2	007	3	0	10 -6.397e-6 10 NC 1 NC 1
67		15	max	0	3	.004	2	.001	1 1.163e-4 1 NC 1 NC 1
68			min	0	2	007	3	0	10 -6.83e-6 10 NC 1 NC 1
69		16	max	0	3	.005	2	.001	1 1.234e-4 1 NC 1 NC 1
70			min	0	2	007	3	0	10 -7.263e-6 10 8831.148 2 NC 1
71		17	max	0	3	.006	2	.001	1 1.305e-4 1 NC 1 NC 1
72			min	001	2	007	3	0	10 -7.696e-6 10 7526.36 2 NC 1
73		18	max	0	3	.007	2	.002	1 1.376e-4 1 NC 3 NC 1
74			min	001	2	007	3	0	10 -8.129e-6 10 6520.266 2 NC 1
75		19	max	.001	3	.008	2	.002	1 1.447e-4 1 NC 3 NC 1
76		10	min	001	2	007	3	0	10 -8.562e-6 10 5736.088 2 NC 1
77	M4	1	max	.001	1	.008	2	0	10 8.891e-6 10 NC 1 NC 1
78	IVIT		min	0	3	006	3	001	1 -1.521e-4 1 NC 1 NC 1
79		2	max	.001	1	.007	2	0	10 8.891e-6 10 NC 1 NC 1
80			min	0	3	006	3	001	1 -1.521e-4 1 NC 1 NC 1
81		3	max	.001	1	.007	2	<u>001</u> 0	10 8.891e-6 10 NC 1 NC 1
82		- 3	min	0	3	006	3	001	1 -1.521e-4 1 NC 1 NC 1
83		4	max	.001	1	.006	2	<u>001</u> 0	10 8.891e-6 10 NC 1 NC 1
84		-	min	0	3	005	3	001	1 -1.521e-4 1 NC 1 NC 1
85		5		.001	1	.006	2	<u>001</u> 0	10 8.891e-6 10 NC 1 NC 1
86		3	max	0	3	005	3	0	1 -1.521e-4 1 NC 1 NC 1
87		6	min	.001	1	005 .005	2	0	
		0	max		3		3		
88		7	min	0		00 <u>5</u>		0	
89		-	max	0	3	.005	2	0	10 8.891e-6 10 NC 1 NC 1 1 -1.521e-4 1 NC 1 NC 1
90			min	0		004	3	0	1 110210 1 1 110 1 110 1
91		8	max	0	1	.005	2	0	10 8.891e-6 10 NC 1 NC 1
92			min	0	3	004	3	0	1 -1.521e-4 1 NC 1 NC 1
93		9	max	0	1	.004	2	0	10 8.891e-6 10 NC 1 NC 1
94		10	min	0	3	003	3	0	1 -1.521e-4 1 NC 1 NC 1
95		10	max	0	1	.004	2	0	10 8.891e-6 10 NC 1 NC 1
96		4.4	min	0	3	003	3	0	1 -1.521e-4 1 NC 1 NC 1
97		11	max	0	1	.003	2	0	10 8.891e-6 10 NC 1 NC 1
98			min	0	3	003	3	0	1 -1.521e-4 1 NC 1 NC 1
99		12	max	0	1	.003	2	0	10 8.891e-6 10 NC 1 NC 1
100			min	0	3	002	3	0	1 -1.521e-4 1 NC 1 NC 1
101		13	max	0	1	.003	2	0	10 8.891e-6 10 NC 1 NC 1
102			min	0	3	002	3	0	1 -1.521e-4 1 NC 1 NC 1
103		14	max	0	1	.002	2	0	10 8.891e-6 10 NC 1 NC 1
104			min	0	3	002	3	0	1 -1.521e-4 1 NC 1 NC 1
105		15	max	0	1	.002	2	0	10 8.891e-6 10 NC 1 NC 1
106			min	0	3	001	3	0	1 -1.521e-4 1 NC 1 NC 1
107		16	max	0	1	.001	2	0	10 8.891e-6 10 NC 1 NC 1
108			min	0	3	001	3	0	1 -1.521e-4 1 NC 1 NC 1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

109		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
111	109		17	max	0	_		2		10		10	NC		NC	
112				min						1		1_				1
1133			18		0		0		0	10		10				1
1144				min	0			3	0	1		1_		1_		1
115			19	max		-		•		1		10				-
116				min					0					•		•
117	115	M6	1	max	.006		.021		0	9		3		3		
118				min	009	3	018	3	005	3		2		2		3
119			2	max	.005		.02		0	9		3		3		
120				min					005	3		•				3
121			3	max								3				
122				min	008	3	016		004	3		1		2		3
123			4	max			.017		0		3.36e-4	3		3		
124	122			min	007	3	015	3	004	3	-3.423e-6	1		2		3
125			5	max	.004	-	.016				3.267e-4	3				
1266				min		3			004	3		1_				3
127			6	max	.004		.014		0			3		3		11
128				min		3			003	3		1_		2		1
129			7	max	.004		.013		0	9		3		3	NC	1
130				min					003	3		1				1
131			8	max								3		3		11
1322				min		3	011		003	3		1_		2		1
133			9	max	.003		.011			9		3		3	NC	1
134	132			min	005	3	01	3	002	3	-9.559e-6	1	3156.893	2	NC	1
135	133		10	max	.003	1	.009	2	0	9	2.802e-4	3	NC	3	NC	1
136	134			min	004	3	009	3	002	3	-1.079e-5	1	3569.869	2	NC	1
137	135		11	max	.003	1	.008	2	0	9	2.709e-4	3	NC	3	NC	1
138	136			min	004	3	008	3	002	3	-1.201e-5	1	4091.01	2	NC	1
139	137		12	max	.002	1	.007	2	0	9	2.616e-4	3	NC	3	NC	1
140	138			min	003	3	007		001	3	-1.324e-5	1	4766.834	2	NC	1
141	139		13	max	.002		.006	2	0	9		3		3	NC	1
142	140			min	003	3	006		001	3	-1.447e-5	1	5674.88	2	NC	1
143 15 max .001 1 .004 2 0 9 2.338e-4 3 NC 1 NC 1 144 min 002 3 004 3 0 3 -1.692e-5 1 8885.526 2 NC 1 145 16 max 0 1 .003 2 0 9 2.245e-4 3 NC 1 NC 1 146 min 001 3 003 3 0 3 -1.815e-5 1 NC 1 NC 1 147 17 max 0 1 .002 2 0 9 2.152e-4 3 NC 1 NC 1 148 min 0 3 002 3 0 3 -1.938e-5 1 NC 1 NC 1 149 18 max 0 1 0 1	141		14	max	.002	1	.005	2	0	9	2.43e-4	3	NC	1	NC	1
144 min 002 3 004 3 0 3 -1.692e-5 1 8885.526 2 NC 1 145 16 max 0 1 .003 2 0 9 2.245e-4 3 NC 1 NC 1 146 min 001 3 003 3 0 3 -1.815e-5 1 NC 1 NC 1 147 17 max 0 1 .002 2 0 9 2.152e-4 3 NC 1 NC 1 148 min 0 3 002 3 0 3 -1.938e-5 1 NC 1 NC 1 149 18 max 0 1 0 2 0 1 2.059e-4 3 NC 1 NC 1 150 min 0 3 001 3 -2.06e-5	142			min	002	3	005	3	0	3	-1.569e-5	1	6954.725	2	NC	1
145 16 max 0 1 .003 2 0 9 2.245e-4 3 NC 1 NC 1 146 min 001 3 003 3 0 3 -1.815e-5 1 NC 1 NC 1 147 17 max 0 1 .002 2 0 9 2.152e-4 3 NC 1 NC 1 148 min 0 3 002 3 0 3 -1.938e-5 1 NC 1 NC 1 149 18 max 0 1 0 2 0 1 2.059e-4 3 NC 1 NC 1 150 min 0 3 001 3 206e-5 1 NC 1 NC 1 151 19 max 0 1 0 1 1.966e-4 3 NC <td></td> <td></td> <td>15</td> <td>max</td> <td></td> <td>-</td> <td>.004</td> <td></td> <td>0</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>1</td>			15	max		-	.004		0			3				1
146 min 001 3 003 3 0 3 -1.815e-5 1 NC 1 NC 1 147 17 max 0 1 .002 2 0 9 2.152e-4 3 NC 1 NC 1 148 min 0 3 002 3 0 3 -1.938e-5 1 NC 1 NC 1 149 18 max 0 1 0 2 0 1 2.059e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -2.06e-5 1 NC 1 NC 1 151 19 max 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	144			min	002	3	004	3	0	3	-1.692e-5	1	8885.526	2	NC	1
147 17 max 0 1 .002 2 0 9 2.152e-4 3 NC 1 NC 1 148 min 0 3 002 3 0 3 -1.938e-5 1 NC 1 NC 1 149 18 max 0 1 0 2 0 1 2.059e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -2.06e-5 1 NC 1 NC 1 151 19 max 0 1 0 1 0 1 1.966e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -2.188e-5 1 NC 1 NC 1 153 M7 1 max 0 1 0 1 1.006	145		16	max	0		.003	2	0	9	2.245e-4	3	NC	1	NC	1
148 min 0 3 002 3 0 3 -1.938e-5 1 NC 1 NC 1 149 18 max 0 1 0 2 0 1 2.059e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -2.06e-5 1 NC 1 NC 1 151 19 max 0 1 0 1 0 1 1.966e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -2.183e-5 1 NC 1 NC 1 153 M7 1 max 0 1 0 1 1.06e-5 1 NC 1 NC 1 154 min 0 1 0 1 -8.991e-5 3 NC 1	146			min	001	3	003	3	0	3	-1.815e-5	1	NC	1	NC	1
149 18 max 0 1 0 2 0 1 2.059e-4 3 NC 1 NC 1 150 min 0 3 001 3 0 3 -2.06e-5 1 NC 1 NC 1 151 19 max 0 1 0 1 0 1 1.966e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -2.183e-5 1 NC 1 NC 1 153 M7 1 max 0 1 0 1 1.006e-5 1 NC 1 NC 1 154 min 0 1 0 1 -8.991e-5 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 9.814e-6 1 NC<	147		17	max	0	-	.002		0	9	2.152e-4	3	NC	1	NC	1
150 min 0 3 001 3 0 3 -2.06e-5 1 NC 1 NC 1 151 19 max 0 1 0 1 0 1 1.966e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -2.183e-5 1 NC 1 NC 1 153 M7 1 max 0 1 0 1 1.006e-5 1 NC 1 NC 1 154 min 0 1 0 1 -2.8991e-5 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 9.814e-6 1 NC 1 NC 1 156 min 0 2 002 3 9.568e-6 1 NC 1 NC				min				3			-1.938e-5					
151 19 max 0 1 0 1 0 1 1.966e-4 3 NC 1 NC 1 152 min 0 1 0 1 0 1 -2.183e-5 1 NC 1 NC 1 153 M7 1 max 0 1 0 1 0 1 1.006e-5 1 NC 1 NC 1 154 min 0 1 0 1 0 1 -8.991e-5 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 9.814e-6 1 NC 1 NC 1 156 min 0 2 002 3 0 1 -6.936e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0	149		18	max	0	1	0	2	0	1	2.059e-4	3	NC	1	NC	1
152 min 0 1 0 1 -2.183e-5 1 NC 1 NC 1 153 M7 1 max 0 1 0 1 0 1 1.006e-5 1 NC 1 NC 1 154 min 0 1 0 1 -8.991e-5 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 9.814e-6 1 NC 1 NC 1 156 min 0 2 002 3 0 1 -6.936e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 9.568e-6 1 NC 1 NC 1 158 min 0 2 003 3 0 1 -4.881e-5 3 NC	150			min	0	3	001	3	0	3	-2.06e-5	1	NC	1	NC	1
153 M7 1 max 0 1 0 1 1.006e-5 1 NC 1 NC 1 154 min 0 1 0 1 0 1 -8.991e-5 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 9.814e-6 1 NC 1 NC 1 156 min 0 2 002 3 0 1 -6.936e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 9.568e-6 1 NC 1 NC 1 158 min 0 2 003 3 0 1 -4.881e-5 3 NC 1 NC 1 159 4 max 0 3 .003 2 .001 3 <t< td=""><td>151</td><td></td><td>19</td><td>max</td><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1.966e-4</td><td>3</td><td>NC</td><td>1</td><td>NC</td><td>1</td></t<>	151		19	max	0	1	0	1	0	1	1.966e-4	3	NC	1	NC	1
154 min 0 1 0 1 -8.991e-5 3 NC 1 NC 1 155 2 max 0 3 .001 2 0 3 9.814e-6 1 NC 1 NC 1 156 min 0 2 002 3 0 1 -6.936e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 9.568e-6 1 NC 1 NC 1 158 min 0 2 003 3 0 1 -4.881e-5 3 NC 1 NC 1 159 4 max 0 3 .003 2 .001 3 9.321e-6 1 NC 1 NC 1 160 min 0 2 005 3 0 1 -2.827e-5 3	152			min	0	1	0	1	0	1	-2.183e-5	1	NC	1	NC	1
155 2 max 0 3 .001 2 0 3 9.814e-6 1 NC 1 NC 1 156 min 0 2002 3 0 1 -6.936e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 9.568e-6 1 NC 1 NC 1 158 min 0 2003 3 0 1 -4.881e-5 3 NC 1 NC 1 159 4 max 0 3 .003 2 .001 3 9.321e-6 1 NC 1 NC 1 160 min 0 2005 3 0 1 -2.827e-5 3 NC 1 NC 1 161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC	153	M7	1	max	0	1	0	1	0	1	1.006e-5	1		1	NC	1
156 min 0 2 002 3 0 1 -6.936e-5 3 NC 1 NC 1 157 3 max 0 3 .002 2 0 3 9.568e-6 1 NC 1 NC 1 158 min 0 2 003 3 0 1 -4.881e-5 3 NC 1 NC 1 159 4 max 0 3 .003 2 .001 3 9.321e-6 1 NC 1 NC 1 160 min 0 2 005 3 0 1 -2.827e-5 3 NC 1 NC 1 161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2 006 3 0 1	154			min	0		0	1	0	1	-8.991e-5	3	NC	1	NC	1
157 3 max 0 3 .002 2 0 3 9.568e-6 1 NC 1 NC 1 158 min 0 2003 3 0 1 -4.881e-5 3 NC 1 NC 1 159 4 max 0 3 .003 2 .001 3 9.321e-6 1 NC 1 NC 1 160 min 0 2005 3 0 1 -2.827e-5 3 NC 1 NC 1 161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2008 3 0 1 0 2 8462.175 2 NC 1	155		2	max	0		.001	2	0	3	9.814e-6	1	NC	1	NC	1
158 min 0 2 003 3 0 1 -4.881e-5 3 NC 1 NC 1 159 4 max 0 3 .003 2 .001 3 9.321e-6 1 NC 1 NC 1 160 min 0 2 005 3 0 1 -2.827e-5 3 NC 1 NC 1 161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2 006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2 008 3 0	156			min	0	2	002	3	0	1	-6.936e-5	3	NC	1	NC	1
159 4 max 0 3 .003 2 .001 3 9.321e-6 1 NC 1 NC 1 160 min 0 2 005 3 0 1 -2.827e-5 3 NC 1 NC 1 161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2 006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 1 0 2 8462.175 2 NC 1	157		3	max	0	3	.002	2	0	3	9.568e-6	1	NC	1	NC	1
159 4 max 0 3 .003 2 .001 3 9.321e-6 1 NC 1 NC 1 160 min 0 2 005 3 0 1 -2.827e-5 3 NC 1 NC 1 161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2 006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 1 0 2 8462.175 2 NC 1					0	2		3	0	1		3		1		1
161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2 006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 1 0 2 8462.175 2 NC 1	159		4	max	0	3	.003	2	.001	3	9.321e-6	1	NC	1	NC	1
161 5 max 0 3 .004 2 .002 3 9.075e-6 1 NC 1 NC 1 162 min 0 2 006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 1 0 2 8462.175 2 NC 1	160				0	2	005	3	0	1		3	NC	1	NC	1
162 min 0 2 006 3 0 1 -7.717e-6 3 NC 1 NC 1 163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 1 0 2 8462.175 2 NC 1			5		0	3	.004		.002	3	9.075e-6	-		1	NC	1
163 6 max 0 3 .005 2 .002 3 1.283e-5 3 NC 1 NC 1 164 min 001 2 008 3 0 1 0 2 8462.175 2 NC 1					0							3		1		1
164 min001 2008 3 0 1 0 2 8462.175 2 NC 1			6		0				.002	3				1		1
														2		1
			7						.002	3	3.338e-5					1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				LC
166			min	001	2	009	3	0	1	0	2	7016.788	2	NC	1
167		8	max	0	3	.008	2	.002	3	5.393e-5	3	NC	3	NC	1
168			min	001	2	011	3	0	1	0	<u>5</u>	5952.111	2	NC	1
169		9	max	.001	3	.009	2	.003	3	7.448e-5	3	NC	3	NC	1
170		40	min	002	2	<u>012</u>	3	0	1	-4.221e-8	13	5130.539	2	NC	1
171		10	max	.001	3	.01	2	.003	3	9.503e-5	3	NC	3	NC	1
172		44	min	002	2	013	3	0	9	-1.351e-7		4475.817	2	NC	1
173		11	max	.001	3	.012	2	.003	3	1.156e-4	3_	NC 2040.07	3_	NC	1
174		40	min	002	2	<u>014</u>	3	0	9	-5.817e-7	9	3942.07	2	NC NC	1
175		12	max	.002	3	.013 015	3	.003	9	1.361e-4 -1.323e-6	3	NC	2	NC NC	1
176 177		13	min	002 .002	3	.015 .015	2	.003	3		9	3499.801 NC	3	NC NC	1
178		13	max min	002	2	016	3	<u>.003</u>	9	1.567e-4 -2.065e-6	9	3128.967	2	NC NC	1
179		14	max	.002	3	.016	2	.003	3	1.772e-4	3	NC	3	NC NC	1
180		14	min	003	2	017	3	<u>.003</u>	9	-2.807e-6	9	2815.305	2	NC	1
181		15	max	.002	3	.018	2	.003	3	1.978e-4	3	NC	3	NC	1
182		10	min	003	2	018	3	0	9	-3.549e-6	9	2548.272	2	NC	1
183		16	max	.002	3	.02	2	.003	3	2.183e-4	3	NC	3	NC	1
184		10	min	003	2	019	3	0	9	-4.291e-6	9	2319.836	2	NC	1
185		17	max	.002	3	.022	2	.003	3	2.389e-4	3	NC	3	NC	1
186		<u> </u>	min	003	2	02	3	0	9	-5.033e-6	9	2123.734	2	NC	1
187		18	max	.002	3	.024	2	.003	3	2.594e-4	3	NC	3	NC	1
188			min	003	2	02	3	0	9	-5.774e-6	9	1954.994	2	NC	1
189		19	max	.003	3	.025	2	.002	3	2.8e-4	3	NC	3	NC	1
190			min	004	2	021	3	0	9	-6.516e-6	9	1809.625	2	NC	1
191	M8	1	max	.004	2	.024	2	0	9	-8.704e-8	10	NC	1	NC	1
192			min	001	3	019	3	002	3	-2.131e-4	3	NC	1	NC	1
193		2	max	.004	2	.023	2	0	9	-8.704e-8	10	NC	1	NC	1
194			min	001	3	018	3	001	3	-2.131e-4	3	NC	1	NC	1
195		3	max	.004	2	.021	2	0	9	-8.704e-8	10	NC	1_	NC	1
196			min	001	3	017	3	001	3	-2.131e-4	3	NC	1_	NC	1
197		4	max	.004	2	.02	2	0	9	-8.704e-8	10	NC	1_	NC	1
198			min	001	3	015	3	001	3	-2.131e-4	3	NC	1_	NC	1
199		5	max	.003	2	.019	2	0	9	-8.704e-8	10	NC	_1_	NC	1
200			min	001	3	014	3	001	3	-2.131e-4	3	NC	1_	NC	1
201		6	max	.003	2	.017	2	0	9	-8.704e-8	<u>10</u>	NC	_1_	NC	1
202		<u> </u>	min	0	3	013	3	0	3	-2.131e-4	3	NC	1_	NC	1
203		7	max	.003	2	.016	2	0	9	-8.704e-8	10	NC	1_	NC	1
204			min	0	3	012	3	0	3	-2.131e-4	3_	NC	1_	NC	1
205		8	max	.003	2	.015	2	0	9	-8.704e-8		NC	1_	NC NC	1
206			min		3	011	3	0		-2.131e-4		NC NC	1	NC NC	1
207		9	max	.002	2	.013	2	0	9	-8.704e-8		NC NC	1_1	NC NC	1
208		10	min	0	3	01	2	0	3	-2.131e-4		NC NC	<u>1</u> 1	NC NC	1
209		10	max	.002	3	.012	3	0 0	9	-8.704e-8 -2.131e-4		NC NC	1	NC NC	1
210		11	min max	.002	2	009 .011	2	0	9	-2.131e-4 -8.704e-8	<u>3</u>	NC NC	1	NC NC	1
212			min	0	3	008	3	0	3		3	NC	1	NC	1
213		12	max	.002	2	.009	2	0	9	-8.704e-8		NC	1	NC	1
214		12	min	0	3	007	3	0	3	-2.131e-4	3	NC	1	NC	1
215		13	max	.001	2	.007	2	0	9	-8.704e-8		NC NC	1	NC NC	1
216		13	min	.001	3	006	3	0	3	-2.131e-4	3	NC NC	1	NC NC	1
217		14	max	.001	2	.007	2	0	9	-8.704e-8		NC	1	NC	1
218		1,7	min	0	3	005	3	0	3	-2.131e-4		NC	1	NC	1
219		15	max	0	2	.005	2	0	9	-8.704e-8		NC	1	NC	1
220		'	min	0	3	004	3	0	3	-2.131e-4	3	NC	1	NC	1
221		16	max	0	2	.004	2	0	9	-8.704e-8		NC	1	NC	1
222		T.,	min	0	3	003	3	0	3	-2.131e-4		NC	1	NC	1
					_								_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	2	.003	2	0	9		10	NC	1_	NC	1
224			min	0	3	002	3	0	3	-2.131e-4	3	NC	1_	NC	1
225		18	max	0	2	.001	2	0	9	-8.704e-8	10	NC	1	NC	1
226			min	0	3	001	3	0	3	-2.131e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-8.704e-8	10	NC	1	NC	1
228			min	0	1	0	1	0	1		3	NC	1	NC	1
229	M10	1	max	.002	1	.007	2	0	3	1.9e-4	1	NC	3	NC	1
230	10110		min	002	3	006	3	001	1	-4.646e-4	3	5005.748	2	NC	1
231		2	max	.002	1	.006	2	0	3	1.812e-4	1	NC	3	NC	1
232			min	002	3	006	3	001	1	-4.505e-4	3	5447.485	2	NC	1
233		3		.002	1	.006	2	0	3	1.724e-4	1	NC	1	NC	1
		3	max												
234		-	min	002	3	006	3	001	1	-4.364e-4	3	5970.246	2	NC NC	1
235		4	max	.002	1	.005	2	0	3	1.636e-4	1_	NC	1_	NC NC	1
236			min	002	3	005	3	001	1	-4.224e-4	3	6593.358	2	NC	1
237		5	max	.001	1	.005	2	0	3	1.548e-4	_1_	NC	_1_	NC	1
238			min	002	3	005	3	0	1	-4.083e-4	3	7342.516	2	NC	1
239		6	max	.001	1	.004	2	0	3	1.46e-4	1	NC	1_	NC	1
240			min	002	3	005	3	0	1	-3.942e-4	3	8252.463	2	NC	1
241		7	max	.001	1	.004	2	0	3	1.372e-4	1	NC	1	NC	1
242			min	002	3	005	3	0	1	-3.802e-4	3	9371.089	2	NC	1
243		8	max	.001	1	.003	2	0	3	1.284e-4	1	NC	1	NC	1
244			min	002	3	004	3	0	1	-3.661e-4	3	NC	1	NC	1
245		9	max	.001	1	.003	2	0	3	1.196e-4	1	NC	1	NC	1
246		Ť	min	001	3	004	3	0	1	-3.521e-4	3	NC	1	NC	1
247		10	max	0	1	.002	2	0	3	1.109e-4	1	NC	1	NC	1
248		10	min	001	3	004	3	0	1	-3.38e-4	3	NC NC	1	NC	1
		11						-					•		
249		11	max	0	1	.002	2	0	3	1.021e-4	1	NC NC	1_	NC	1
250		10	min	001	3	003	3	0	1	-3.239e-4	3_	NC	1_	NC NC	1
251		12	max	0	1	.002	2	0	3	9.327e-5	1_	NC	1_	NC	1
252		10	min	0	3	003	3	0	1	-3.099e-4	3	NC	1_	NC	1
253		13	max	0	1	.001	2	0	3	8.448e-5	1_	NC	1_	NC	1
254			min	0	3	003	3	0	1	-2.958e-4	3	NC	1_	NC	1
255		14	max	0	1	0	2	0	3	7.569e-5	<u>1</u>	NC	<u>1</u>	NC	1_
256			min	0	3	002	3	0	1	-2.817e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	0	3	6.69e-5	1	NC	1	NC	1
258			min	0	3	002	3	0	1	-2.677e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	5.812e-5	1	NC	1	NC	1
260			min	0	3	001	3	0	1	-2.536e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	4.933e-5	1	NC	1	NC	1
262			min	0	3	001	3	0	1	-2.396e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3		1	NC	1	NC	1
264		10	min	0	3	0	3	0	1	-2.255e-4	3	NC	1	NC	1
		10			1				1	3.175e-5	1	NC	1	NC	1
265		19	max	0	1	0 0	1	0		-2.114e-4	2		1		1
266	Maa	4	min	0			1	0	1		3	NC NC		NC NC	-
267	<u>M11</u>	1	max	0	1	0	1	0	1	9.741e-5	3	NC NC	1_	NC NC	1
268			min	0	1	0	1	0	1	-1.469e-5	1_	NC	1_	NC NC	1
269		2	max	0	3	0	2	0	1	7.703e-5	3	NC	_1_	NC	1
270			min	0	2	0	3	0	3	-2.227e-5	1	NC	<u>1</u>	NC	1
271		3	max	0	3	0	2	0	1	5.664e-5	3	NC	1_	NC	1
272			min	0	2	002	3	0	3	-2.986e-5	1	NC	1	NC	1
273		4	max	0	3	0	2	0	1	3.626e-5	3	NC	1	NC	1
274			min	0	2	002	3	001	3	-3.745e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	1	1.588e-5	3	NC	1	NC	1
276			min	0	2	003	3	002	3	-4.503e-5	1	NC	1	NC	1
277		6	max	0	3	<u>.005</u>	2	0	2		10	NC	1	NC	1
278			min	0	2	004	3	002	3	-5.262e-5	1	NC	1	NC	1
279		7		0	3	0	2	0	10		10	NC	1	NC	1
219			max	U	J	U	<u> </u>	U	⊥ IU	J.+108-0	ΙU	INC		INC	

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC .	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio) LC
280			min	0	2	004	3	002	3	-6.02e-5	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10	3.858e-6	10	NC	1_	NC	1
282			min	0	2	005	3	002	3	-6.779e-5	1_	NC	1_	NC	1
283		9	max	0	3	0	2	0	10	4.299e-6	10	NC	1_	NC	1
284			min	0	2	005	3	003	3	-7.538e-5	1	NC	1	NC	1
285		10	max	0	3	.001	2	0	10	4.741e-6	10	NC	1	NC	1
286			min	0	2	006	3	003	3	-8.603e-5	3	NC	1	NC	1
287		11	max	0	3	.002	2	0	10	5.182e-6	10	NC	1	NC	1
288			min	0	2	006	3	003	3	-1.064e-4	3	NC	1	NC	1
289		12	max	0	3	.002	2	0	10	5.623e-6	10	NC	1	NC	1
290			min	0	2	007	3	003	3	-1.268e-4	3	NC	1	NC	1
291		13	max	0	3	.003	2	0	10	6.065e-6	10	NC	1	NC	1
292		1	min	0	2	007	3	003	3	-1.472e-4	3	NC	1	NC	1
293		14	max	0	3	.004	2	0	10	6.506e-6	10	NC	1	NC	1
294		17	min	0	2	007	3	003	3	-1.676e-4	3	NC	1	NC	1
295		15	max	0	3	.004	2	<u>.005</u>	10	6.947e-6	10	NC	1	NC	1
296		10	min	0	2	007	3	003	3	-1.879e-4	3	NC	1	NC	1
297		16	max	0	3	.005	2	<u>003</u>	10	7.389e-6	10	NC	1	NC	1
298		10	min	0	2	007	3	003	3	-2.083e-4	3	8841.912	2	NC NC	1
299		17		0	3	.006	2	- <u>003</u> 0	10	7.83e-6	10	NC	1	NC	1
300		17	max min	001	2	007	3	002	3	-2.287e-4	3	7534.578	2	NC NC	1
		10			3		2					NC		NC NC	_
301		18	max	0		.007		0	10	8.271e-6	<u>10</u>		3		1
302		10	min	001	2	007	3	002	3	-2.491e-4	3	6526.731	2	NC NC	1
303		19	max	.001	3	.008	2	0	10	8.713e-6	10	NC 5744.00	3_	NC	1
304	N440	-	min	001	2	007	3	002	3	-2.695e-4	3	5741.32	2	NC NC	1
305	M12	1	max	.001	1	.008	2	.002	1	2.819e-4	3	NC	1_	NC	1
306		+_	min	0	3	006	3	0		-9.065e-6	10	NC	_1_	NC	1
307		2	max	.001	1	.007	2	.001	1	2.819e-4	3	NC	_1_	NC	1
308		_	min	0	3	006	3	0	10	-9.065e-6	10	NC	1_	NC	1
309		3	max	.001	1	.007	2	.001	1	2.819e-4	3_	NC	1_	NC	1
310			min	0	3	006	3	0	10	-9.065e-6	10	NC	1_	NC	1
311		4	max	.001	1	.006	2	.001	1	2.819e-4	3_	NC	_1_	NC	1
312			min	0	3	005	3	0	10	-9.065e-6	10	NC	1_	NC	1
313		5	max	.001	1	.006	2	.001	1	2.819e-4	3	NC	1_	NC	1
314			min	0	3	005	3	0	10	-9.065e-6	10	NC	1	NC	1
315		6	max	.001	1	.005	2	0	1	2.819e-4	3	NC	1	NC	1
316			min	0	3	005	3	0	10	-9.065e-6	10	NC	1	NC	1
317		7	max	0	1	.005	2	0	1	2.819e-4	3	NC	1	NC	1
318			min	0	3	004	3	0	10	-9.065e-6	10	NC	1	NC	1
319		8	max	0	1	.005	2	0	1	2.819e-4	3	NC	1	NC	1
320			min	0	3	004	3	0	10	-9.065e-6		NC	1	NC	1
321		9	max	0	1	.004	2	0	1	2.819e-4	3	NC	1	NC	1
322			min	0	3	004	3	0		-9.065e-6	10	NC	1	NC	1
323		10	max	0	1	.004	2	0	1	2.819e-4	3	NC	1	NC	1
324		1.0	min	0	3	003	3	0		-9.065e-6	10	NC	1	NC	1
325		11	max	0	1	.003	2	0	1	2.819e-4	3	NC	1	NC	1
326			min	0	3	003	3	0		-9.065e-6	10	NC	1	NC	1
327		12	max	0	1	.003	2	0	1	2.819e-4	3	NC	1	NC	1
328		12	min	0	3	002	3	0		-9.065e-6	10	NC	1	NC	1
329		13	max	0	1	.003	2	0	1	2.819e-4	3	NC	1	NC	1
330		13	min	0	3	002	3	0		-9.065e-6	10	NC NC	1	NC	1
		11										NC NC	•		
331		14	max	0	1	.002	2	0	1	2.819e-4	3		1_1	NC NC	1
332		4 =	min	0	3	002	3	0		-9.065e-6	10	NC NC	1_	NC NC	1
333		15	max	0	1	.002	2	0	1	2.819e-4	3	NC NC	1_	NC	1
334		40	min	0	3	001	3	0		-9.065e-6	10	NC	1_	NC	1
335		16	max	0	1	.001	2	0	1	2.819e-4	3	NC	1_	NC	1
336			min	0	3	001	3	0	10	-9.065e-6	10	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	2.819e-4	3	NC	1	NC	1
338			min	0	3	0	3	0	10	-9.065e-6	10	NC	1	NC	1
339		18	max	0	1	0	2	0	1	2.819e-4	3	NC	1	NC	1
340			min	0	3	0	3	0	10	-9.065e-6	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	2.819e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	-9.065e-6	10	NC	1	NC	1
343	M1	1	max	.006	3	.022	3	.003	3	5.361e-3	2	NC	1	NC	1
344	141.1		min	007	2	018	2	0	9	-7.61e-3	3	NC	1	NC	1
345		2	max	.006	3	.012	3	.002	3	2.65e-3	2	NC	4	NC	1
346			min	007	2	01	2	001	9	-3.735e-3	3	5022.059	3	NC	1
347		3		.006	3	.003	3	.002	3	6.802e-5	3	NC	4	NC	1
		3	max												
348		-	min	007	2	002	2	002	1	-7.743e-5	1_	2606.176	3	NC NC	1
349		4	max	.006	3	.005	2	.001	3	6.677e-5	3	NC	4_	NC	1
350			min	007	2	004	3	002	1	-6.09e-5	1_	1863.889	3	NC	1
351		5	max	.006	3	.011	2	.001	3	6.553e-5	3	NC	_4_	NC	1
352			min	007	2	01	3	002	1	-4.792e-5	9	1511.284	3	NC	1
353		6	max	.006	3	.016	2	0	3	6.429e-5	3	NC	4	NC	1
354			min	007	2	015	3	002	1	-3.503e-5	9	1315.748	3	NC	1
355		7	max	.006	3	.02	2	0	3	6.304e-5	3	NC	4	NC	1
356			min	007	2	019	3	002	1	-2.214e-5	9	1175.781	2	NC	1
357		8	max	.006	3	.023	2	0	3	6.18e-5	3	NC	4	NC	1
358			min	007	2	022	3	001	1	-9.247e-6	9	1087.271	2	NC	1
359		9	max	.006	3	.025	2	0	3	6.056e-5	3	NC	4	NC	1
360		Ť	min	007	2	023	3	0	9	-1.222e-6	10	1035.226	2	NC	1
361		10	max	.006	3	.025	2	0	3	5.931e-5	3	NC	4	NC	1
362		10		007	2	023	3	0	9	-2.198e-6	10	1011.718	2	NC	1
		11	min					_							
363		11	max	.006	3	.025	2	0	3	5.807e-5	3	NC 4040,000	4_	NC	1
364		10	min	007	2	022	3	0	10	-3.173e-6	10	1013.929	2	NC NC	1
365		12	max	.006	3	.023	2	0	1	7.139e-5	1_	NC	4	NC	1
366		10	min	007	2	021	3	0	10	-4.148e-6		1043.089	2	NC	1
367		13	max	.006	3	.021	2	.001	1	8.792e-5	_1_	NC	4	NC	1
368			min	007	2	018	3	0	10	-5.123e-6	10	1105.126	2	NC	1
369		14	max	.006	3	.017	2	.002	1	1.045e-4	<u>1</u>	NC	4	NC	1
370			min	007	2	014	3	0	10	-6.098e-6	10	1213.633	2	NC	1
371		15	max	.006	3	.011	2	.002	1	1.21e-4	1	NC	4	NC	1
372			min	007	2	009	3	0	10	-7.074e-6	10	1398.34	2	NC	1
373		16	max	.006	3	.004	2	.002	1	1.335e-4	1	NC	4	NC	1
374			min	007	2	004	3	0	10	-7.807e-6	10	1731.566	2	NC	1
375		17	max	.006	3	.002	3	.001	1	5.09e-5	3	NC	4	NC	1
376			min	007	2	004	2	0	10		10	2441.285	2	NC	1
377		18	max	.006	3	.009	3	0		3.723e-3	2	NC	4	NC	1
378		10	min	007	2	013	2	0		-1.927e-3		4722.155	2	NC	1
379		19		.006	3	013 .017	3	0	3	7.505e-3		NC	1	NC NC	1
		19	max					_			2		1		1
380	N.4.5	A	min	007	2	023	2	0	9	-3.943e-3	3	NC NC	•	NC NC	
381	<u>M5</u>	1	max	.017	3	.067	3	.003	3	5.671e-6	3	NC NC	1_	NC NC	1
382			min	021	2	057	2	0	9	0	1	NC	1_	NC NC	1
383		2	max	.017	3	.037	3	.004	3	9.742e-5	3	NC	_4_	NC	1
384			min	021	2	031	2	0	9	-1.03e-5	9	1610.298	3	NC	1
385		3	max	.017	3	.009	3	.005	3	1.874e-4	3	NC	5	NC	1
386			min	021	2	006	2	0	9	-2.046e-5	9	836.087	3	NC	1
387		4	max	.017	3	.016	2	.006	3	1.836e-4	3	NC	5	NC	1
388			min	021	2	014	3	0	9	-1.925e-5	9	598.704	3	NC	1
389		5	max	.017	3	.035	2	.006	3	1.797e-4	3	NC	5	NC	1
390			min	021	2	033	3	0	9	-1.804e-5	9	486.08	3	NC	1
391		6	max	.017	3	.05	2	.007	3	1.759e-4	3	NC	5	NC	1
392			min	021	2	048	3	0	9	-1.683e-5	9	417.14	2	NC	1
393		7		.017	3	.063	2	.007	3	1.72e-4	3	NC	5	NC	1
JyJ			max	.017	_ ວ_	.003		.007	⊥ ວ	1.728-4	J	INC	Ü	INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
394			min	021	2	059	3	0	9	-1.562e-5	9	372.176	2	NC	1
395		8	max	.017	3	.072	2	.007	3	1.682e-4	3	NC	5_	NC	1
396			min	021	2	067	3	0	9	-1.441e-5	9	344.076	2	9901.612	3
397		9	max	.017	3	.078	2	.006	3	1.644e-4	3	NC	5	NC	1
398			min	021	2	071	3	0	9	-1.32e-5	9	327.545	2	NC	1
399		10	max	.017	3	.081	2	.006	3	1.605e-4	3	NC	5	NC	1
400			min	021	2	072	3	0	9	-1.2e-5	9	320.064	2	NC	1
401		11	max	.017	3	.079	2	.006	3	1.567e-4	3	NC	5	NC	1
402			min	021	2	069	3	0	9	-1.079e-5	9	320.738	2	NC	1
403		12	max	.017	3	.074	2	.005	3	1.528e-4	3	NC	5	NC	1
404			min	021	2	063	3	0	9	-9.578e-6	9	329.954	2	NC	1
405		13	max	.017	3	.065	2	.004	3	1.49e-4	3	NC	5	NC	1
406			min	021	2	055	3	0	9	-8.369e-6	9	349.587	2	NC	1
407		14	max	.017	3	.052	2	.004	3	1.452e-4	3	NC	5	NC	1
408			min	021	2	043	3	0	9	-7.161e-6	9	383.942	2	NC	1
409		15	max	.017	3	.035	2	.003	3	1.413e-4	3	NC	5	NC	1
410		10	min	021	2	029	3	0	9	-5.952e-6	9	442.434	2	NC	1
411		16	max	.017	3	.014	2	.002	3	1.341e-4	3	NC	5	NC	1
412		10	min	021	2	012	3	0	9	-5.447e-6	9	547.972	2	NC	1
413		17	max	.017	3	.007	3	.002	3	4.68e-5	3	NC	5	NC	1
414		17	min	021	2	012	2	0	9	-2.167e-5	9	772.838	2	NC	1
415		18	max	.017	3	.028	3	.001	3	2.239e-5	3	NC	4	NC	1
416		10		021	2		2					1495.3	2		1
		40	min			042		0	9	-1.112e-5	9			NC NC	
417		19	max	.017	3	.051	3	0	3	0	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
418	MO	1	min	021	2	074	2	0	9	-8.322e-7	3	NC NC		NC NC	1
419	<u>M9</u>	1_	max	.006	3	.021	3	.002	3	7.622e-3	3_	NC	1	NC NC	1
420			min	007	2	018	2	0	9	-5.361e-3	2	NC	1_	NC NC	1
421		2	max	.006	3	.012	3	.001	3	3.78e-3	3	NC	4	NC NC	1
422			min	007	2	01	2	0	10	-2.65e-3	2	5024.807	3	NC	1
423		3	max	.006	3	.003	3	.001	1	5.738e-5	_1_	NC	_4_	NC	1
424			min	007	2	002	2	0	3	-4.447e-6	10	2607.636	3	NC	1
425		4	max	.006	3	.005	2	.002	1	4.184e-5	_1_	NC	_4_	NC	1
426			min	007	2	005	3	001	3	-3.48e-6	10	1864.924	3	NC	1
427		5	max	.006	3	.011	2	.002	1	2.631e-5	1_	NC	4	NC	1
428			min	007	2	011	3	002	3	-1.062e-5	3	1512.081	3	NC	1
429		6	max	.006	3	.016	2	.002	1	1.078e-5	<u>1</u>	NC	4_	NC	1
430			min	007	2	016	3	003	3	-2.041e-5	3	1316.393	3	9663.36	3
431		7	max	.006	3	.02	2	.001	1	2.734e-6	11	NC	4	NC	1
432			min	007	2	019	3	004	3	-3.02e-5	3	1176.033	2	8862.526	3
433		8	max	.006	3	.023	2	0	1	3.877e-7	10	NC	4	NC	1
434			min	007	2	022	3	004	3	-3.999e-5	3	1087.513	2	8432.038	3
435		9	max	.006	3	.025	2	0	1	1.355e-6	10	NC	4	NC	1
436			min	007	2	023	3	004	3	-4.977e-5	3	1035.466	2	8267.157	3
437		10	max	.006	3	.025	2	0	11	2.322e-6	10	NC	4	NC	1
438			min	007	2	023	3	004	3	-5.956e-5	3	1011.961	2	8324.627	3
439		11	max	.006	3	.025	2	0	10	3.288e-6	10	NC	4	NC	1
440			min	007	2	023	3	004	3	-6.935e-5	3	1014.179	2	8599.556	_
441		12	max	.006	3	.023	2	0	10	4.255e-6	10	NC	4	NC	1
442		12	min	007	2	021	3	004	3	-8.243e-5	1	1043.353	2	9121.236	3
443		13	max	.006	3	.021	2	004	10	5.222e-6	10	NC	4	NC	1
444		13	min	007	2	018	3	004	3	-9.796e-5	1	1105.412	2	9963.327	3
		11													
445		14	max	.006	3	.017	2	0	10	6.189e-6	<u>10</u>	NC	4	NC NC	1
446		4.5	min	007	2	<u>014</u>	3	003	3	-1.135e-4	1	1213.953	2	NC NC	1
447		15	max	.006	3	.011	2	0	10	7.156e-6	10	NC	4_	NC NC	1
448		1.0	min	007	2	009	3	003	3	-1.29e-4	1_	1398.711	2	NC	1
449		16	max	.006	3	.004	2	0	10	7.874e-6	10	NC 1700 001	4	NC NC	1
450			min	007	2	004	3	002	3	-1.409e-4	<u>1</u>	1732.021	2	NC	1

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.006	3	.002	3	0	10	6.66e-6	3	NC	4	NC	1
452			min	007	2	004	2	002	1	-6.589e-5	1	2441.878	2	NC	1
453		18	max	.006	3	.009	3	00	10		3	NC	4_	NC	1
454			min	007	2	013	2	0	1	-3.723e-3	2	4723.263	2	NC	1
455		19	max	.006	3	.017	3	0	3	3.941e-3	3	NC	_1_	NC	1
456	1440		min	007	2	023	2	0	9	-7.506e-3	2	NC	1_	NC	1
457	M13	1	max	0	9	.021	3	.006	3	3.621e-3	3	NC	1	NC NC	1
458			min	002	3	018	2	007	2	-3.168e-3	2	NC NC	1_	NC NC	1
459		2	max	0	9	.058	3	.004	3	4.48e-3	3	NC	4	NC NC	1
460		2	min	002	9	044	3	006	2	-3.926e-3 5.339e-3	2	2441.349 NC	3	NC NC	1
461 462		3	max	0 002	3	.089	2	.005	9	-4.683e-3	2	1323.853	3	NC NC	1
463		4	min	<u>002</u> 0	9	066 .111	3	006 .007	9		3	NC	<u>5</u>	NC NC	1
464		4	max	003	3	082	2	006	2	6.197e-3 -5.441e-3	2	1006.354	3	NC NC	1
465		5		003 0	9	062 .121	3	.007	9	7.056e-3	3	NC	<u>5</u>	NC NC	1
466		1 5	max	003	3	09	2	008	2	-6.198e-3	2	906.571	3	NC	1
467		6	max	<u>003</u>	9	.119	3	.008	3	7.915e-3	3	NC	5	NC	1
468			min	003	3	09	2	01	2	-6.956e-3	2	922.436	3	NC	1
469		7	max	<u>.000</u>	9	.108	3	.01	3	8.774e-3	3	NC	5	NC	1
470			min	003	3	083	2	013	2	-7.713e-3	2	1042.24	3	NC	1
471		8	max	0	9	.091	3	.013	3	9.632e-3	3	NC	4	NC	1
472			min	003	3	073	2	017	2	-8.471e-3	2	1291.965	3	8784.906	2
473		9	max	0	9	.075	3	.015	3	1.049e-2	3	NC	4	NC	1
474			min	003	3	062	2	02	2	-9.228e-3	2	1681.764	3	6928.675	2
475		10	max	0	9	.067	3	.017	3	1.135e-2	3	NC	4	NC	4
476			min	003	3	057	2	021	2	-9.986e-3	2	1959.762	3	6350.521	2
477		11	max	0	9	.075	3	.019	3	1.049e-2	3	NC	4	NC	1
478			min	003	3	062	2	02	2	-9.228e-3	2	1681.763	3	6928.697	2
479		12	max	0	9	.091	3	.019	3	9.636e-3	3	NC	4	NC	1
480			min	003	3	073	2	017	2	-8.471e-3	2	1291.964	3	6926.608	
481		13	max	00	9	.108	3	.018	3	8.778e-3	3	NC	5_	NC	1
482			min	003	3	083	2	013	2	-7.713e-3	2	1042.24	3	7304.621	3
483		14	max	0	9	.119	3	.017	3	7.921e-3	<u>3</u>	NC	_5_	NC	1
484			min	003	3	09	2	01	2	-6.956e-3	2	922.436	3	8289.056	
485		15	max	0	9	.121	3	.015	3	7.064e-3	3	NC	5	NC	1
486		40	min	003	3	09	2	008	2	-6.198e-3	2	906.571	3_	NC	1
487		16	max	0	9	.111	3	.012	3	6.207e-3	3	NC 4000.054	5	NC NC	1
488		47	min	003	3	082	2	006	2	-5.441e-3	2	1006.354	3	NC NC	1
489		17	max	0	9	.09	3	.01	3	5.35e-3	3	NC	4	NC NC	1
490		10	min max	003	9	066	3	006	3	-4.683e-3 4.493e-3	2	1323.853	3	NC NC	1
491		18		0		.058	2	.008	2			NC	4	NC NC	1
492 493		19	min	003 0	9	044 .022	3	006 .006	3	-3.926e-3 3.636e-3	3	2441.348 NC	<u>3</u> 1	NC NC	1
494		19	max min	003	3		2	007	2	-3.169e-3	2	NC NC	1	NC NC	1
494	M16	1	max	003 0	9	018 .017	3	.006	3	3.87e-3	2	NC NC	1	NC NC	1
496	IVITO		min	0	3	023	2	007	2	-2.782e-3	3	NC	1	NC	1
497		2	max	0	9	.036	3	.008	3	4.798e-3	2	NC	4	NC	1
498			min	0	3	06	2	006	2	-3.414e-3	3	2474.967	2	NC	1
499		3	max	0	9	.052	3	.01	3	5.727e-3	2	NC	4	NC	1
500		J	min	0	3	091	2	006	2	-4.047e-3	3	1339.108	2	NC	1
501		4	max	0	9	.064	3	.012	3	6.655e-3	2	NC	5	NC	1
502			min	0	3	112	2	006	2	-4.679e-3	3	1014.008	2	NC	1
503		5	max	0	9	.07	3	.014	3	7.584e-3	2	NC	5	NC	1
504			min	0	3	123	2	008	2	-5.312e-3	3	907.894	2	NC	1
505		6	max	0	9	.071	3	.016	3	8.512e-3	2	NC	5	NC	1
506		Ĭ	min	0	3	122	2	01	2	-5.944e-3	3	915.063	2	9018.559	-
507		7	max	0	9	.067	3	.017	3	9.441e-3	2	NC	5	NC	1
										,	_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
508			min	0	3	112	2	014	2	-6.576e-3	3	1018.664	2	8055.349	
509		8	max	0	9	.061	3	.018	3	1.037e-2	2	NC	4	NC	1
510			min	0	3	096	2	017	2	-7.209e-3	3	1233.778	2	7620.76	3
511		9	max	0	9	.054	3	.018	3	1.13e-2	2	NC	4_	NC	1
512		40	min	0	3	081	2	02	2	-7.841e-3	3	1555.308	2	6865.291	2
513		10	max	0	9	.051	3	.017	3	1.223e-2	2	NC 1	4	NC NC	4
514			min	0	3	<u>074</u>	2	021	2	-8.474e-3	3	1773.889	2	6295.972	2
515		11	max	0	9	.054	3	<u>.016</u>	3	1.13e-2	2	NC	4	NC	1
516		40	min	0	3	081	2	02	2	-7.84e-3	3	1555.308	2	6865.306	
517		12	max	0	9	.061	3	.015	3	1.037e-2	2	NC	4_	NC	1
518		40	min	0	3	096	2	<u>017</u>	2	-7.206e-3	3	1233.778	2	8689.862	2
519		13	max	0	9	.067	3	.014	3	9.441e-3	2	NC	5	NC NC	1
520		4.4	min	0	3	112	2	<u>014</u>	2	-6.572e-3	3	1018.664	2	NC NC	1
521		14	max	0	9	.071	3	.012	3	8.513e-3	2	NC	5	NC NC	1
522			min	0	3	122	2	01	2	-5.938e-3	3	915.063	2	NC	1
523		15	max	0	9	.07	3	.011	3	7.584e-3	2	NC	5	NC	1
524		10	min	0	3	<u>123</u>	2	008	2	-5.305e-3	3	907.894	2	NC	1
525		16	max	0	9	.064	3	.009	3	6.656e-3	2	NC	5	NC NC	1
526		H	min	0	3	112	2	007	2	-4.671e-3	3	1014.008	2	NC	1
527		17	max	0	9	.052	3	.008	3	5.728e-3	2	NC	4_	NC	1
528		10	min	0	3	091	2	006	2	-4.037e-3	3	1339.108	2	NC	1
529		18	max	0	9	.036	3	.007	3	4.8e-3	2	NC	4	NC	1
530		10	min	0	3	06	2	006	2	-3.403e-3	3	2474.967	2	NC	1
531		19	max	0	9	.017	3	.006	3	3.871e-3	2	NC	_1_	NC	1
532			min	0	3	023	2	007	2	-2.769e-3	3	NC	1_	NC	1
533	M15	1	max	0	1	0	1	0	1	3.56e-4	3	NC	_1_	NC	1
534			min	0	1	0	1	0	1	-4.348e-5	2	NC	1_	NC	1
535		2	max	0	3	0	15	0	1	7.595e-4	<u>3</u>	NC	1_	NC	1
536			min	0	1	002	4	0	3	-4.396e-4	2	NC	1_	NC	1
537		3	max	0	3	0	15	.002	1	1.163e-3	3	NC	_1_	NC	1
538			min	0	1	004	4	003	3	-8.356e-4	2	NC	1_	NC	1
539		4	max	0	3	001	15	.005	1	1.567e-3	3	NC	_1_	NC	4
540		<u> </u>	min	0	1	<u>005</u>	4	006	3	-1.232e-3	2	NC	1_	5914.164	
541		5	max	0	3	002	15	.008	1	1.97e-3	3	NC	_1_	NC	4
542			min	0	1	007	4	01	3	-1.628e-3	2	8087.269	4_	3868.237	3
543		6	max	0	3	002	15	.012	1	2.374e-3	3	NC	3	NC NC	4
544		<u> </u>	min	0	1	008	4	014	3	-2.024e-3	2	6806.292	4	2809.85	3
545		7	max	0	3	002	15	.015	1	2.777e-3	3	NC	3	NC To t	4
546			min	001	1	009	4	<u>019</u>	3	-2.42e-3	2	6035.953	4_	2192.704	
547		8	max	0	3	002	15	.019	1	3.181e-3	3	NC 5570 004	5_	NC 1005 100	4
548			min	001	1	01	4	023	1			5573.634		1805.499	
549		9	max	0	3	002	15	.022	1	3.584e-3	3	NC	5	NC 4550 404	4
550		10	min	<u>001</u>	1	011	4	027	3	-3.212e-3	2	5324.786	4_	1552.424	
551		10	max	0	3	003	15	.024	1	3.988e-3	3	NC	5	NC 1205	4
552		4.4	min	002	1	<u>011</u>	4	03	3	-3.608e-3	2	5246.063	4_	1385.471	3
553		11	max	0	3	003	15	.026	1	4.391e-3	3	NC	5_	NC 1070 105	4
554		1.0	min	002	1	<u>011</u>	4	033	3	-4.004e-3	2	5324.786	4_	1279.465	
555		12	max	0	3	002	15	.027	1	4.795e-3	3	NC	5	NC	4
556		10	min	002	1	01	4	033	3	-4.4e-3	2	5573.634	4_	1221.892	
557		13	max	0	3	002	15	.026	1	5.198e-3	3	NC COOF OFO	3_	NC	4
558		4.4	min	002	1	01	4	033	3	-4.797e-3	2	6035.953	4	1209.044	
559		14	max	0	3	002	12	.025	1	5.602e-3	3	NC	3_	NC 1010 000	4
560		-	min	002	1	009	4	03	3	-5.193e-3	2	6806.292	4_	1246.082	
561		15	max	.001	3	001	12	.021	1	6.005e-3	3_	NC	_1_	NC 4050.070	4
562		4.0	min	003	1	007	4	026	3	-5.589e-3	2	8087.269	4_	1352.272	3
563		16	max	.001	3	0	3	.015	1	6.409e-3	3	NC	1_	NC 4500.050	4
564			min	003	1	006	4	019	3	-5.985e-3	2	NC	1	1580.058	3

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	0	3	.008	1	6.812e-3	3	NC	1	NC	4
566			min	003	1	004	4	009	3	-6.381e-3	2	NC	1	2094.073	3
567		18	max	.001	3	.002	3	.004	3	7.216e-3	3	NC	1	NC	4
568			min	003	1	002	4	007	2	-6.777e-3	2	NC	1	3727.262	3
569		19	max	.001	3	.003	2	.02	3	7.619e-3	3	NC	1	NC	1
570			min	003	1	001	9	021	2	-7.173e-3	2	NC	1	NC	1
571	M16A	1	max	0	2	0	2	.006	3	2.228e-3	3	NC	1	NC	1
572			min	001	3	0	9	007	2	-2.253e-3	2	NC	1	NC	1
573		2	max	0	2	0	15	0	9	2.137e-3	3	NC	1	NC	1
574			min	001	3	002	4	002	2	-2.148e-3	2	NC	1	NC	1
575		3	max	0	2	0	15	.003	1	2.047e-3	3	NC	1	NC	4
576			min	001	3	004	4	004	3	-2.044e-3	2	NC	1	5849.619	3
577		4	max	0	2	001	15	.006	1	1.957e-3	3	NC	1	NC	4
578			min	001	3	006	4	007	3	-1.939e-3	2	NC	1	4446.15	3
579		5	max	0	2	002	15	.008	1	1.867e-3	3	NC	1	NC	4
580			min	001	3	007	4	01	3	-1.835e-3	2	8087.269	4	3836.998	3
581		6	max	0	2	002	15	.009	1	1.777e-3	3	NC	3	NC	4
582			min	0	3	008	4	011	3	-1.73e-3	2	6806.292	4	3569.691	3
583		7	max	0	2	002	15	.009	1	1.687e-3	3	NC	3	NC	4
584			min	0	3	01	4	012	3	-1.625e-3	2	6035.953	4	3502.305	3
585		8	max	0	2	002	15	.009	1	1.596e-3	3	NC	5	NC	4
586			min	0	3	01	4	012	3	-1.521e-3	2	5573.634	4	3586.091	3
587		9	max	0	2	003	15	.009	1	1.506e-3	3	NC	5	NC	4
588			min	0	3	011	4	011	3	-1.416e-3	2	5324.786	4	3814.058	3
589		10	max	0	2	003	15	.008	1	1.416e-3	3	NC	5	NC	4
590			min	0	3	011	4	01	3	-1.312e-3	2	5246.063	4	4208.941	3
591		11	max	0	2	002	15	.007	1	1.326e-3	3	NC	5	NC	4
592			min	0	3	011	4	009	3	-1.207e-3	2	5324.786	4	4828.013	3
593		12	max	0	2	002	15	.005	1	1.236e-3	3	NC	5	NC	4
594			min	0	3	01	4	007	3	-1.102e-3	2	5573.634	4	5785.092	3
595		13	max	0	2	002	15	.004	1	1.145e-3	3	NC	3	NC	2
596			min	0	3	009	4	006	3	-9.977e-4	2	6035.953	4	7307.004	3
597		14	max	0	2	002	15	.003	1	1.055e-3	3	NC	3	NC	1
598			min	0	3	008	4	004	3	-8.931e-4	2	6806.292	4	9883.363	3
599		15	max	0	2	002	15	.002	1	9.652e-4	3	NC	1_	NC	1_
600			min	0	3	007	4	002	3	-7.885e-4	2	8087.269	4	NC	1
601		16	max	0	2	001	15	0	9	8.75e-4	3	NC	_1_	NC	1
602			min	0	3	005	4	001	3	-6.84e-4	2	NC	1_	NC	1
603		17	max	0	2	0	15	0	4	7.848e-4	3	NC	_1_	NC	1
604			min	0	3	004	4	0	2	-5.794e-4	2	NC	1	NC	1
605		18	max	0	2	0	15	0	4	6.947e-4	3	NC	_1_	NC	1
606			min	0	3	002	4	0	2	-4.748e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	6.045e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-3.702e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.