Geometric Interpretation of Simpson's Paradox

-Dhruv Desai

Problem

Prove that the inequalities $a_i/b_i < c_i/d_i$, i=1,2,....,n and $(\sum a_i)/(\sum b_i) > (\sum c_i)/(\sum d_i)$ can be satisfied simultaneously, provided at least one of c_i/d_i is less than $(\sum a_i)/(\sum b_i)$

Solution

- -> The numbers can be represented as vectors $v1, v2, \dots Vn$ with coordinates $(b_1,a_1),(b_2,a_2),\dots,(b_n,a_n)$ and $v1',v2',\dots,vn'$ with coordinates $(d_1,c_1),(d_2,c_2),\dots$ (d_n,c_n)
- ->Hence, the problem becomes finding a set of vectors with angles $\theta_1, \theta_2, \dots, \theta_n$ and $\theta_1', \theta_2', \dots, \theta_n'$ such that resultant of unprimed vectors $\theta > \theta'$, provided at least one of $\theta_1', \theta_2', \dots, \theta_n'$ is less than θ

Solution(cont'd)

-> Choose the magnitude of the unprimed vectors and calculate the resultant angle using the equation:

$$tan(\theta) = (\sum v_i sin\theta_i) / (\sum v_i cos\theta_i)$$

-> We can always find primed vectors' angles using the following boundary conditions:

 θ_i '> θ_i and at least one of θ_i '< θ

Solution(cont'd)

- -> Let θ_1 ', θ_2 ',, θ_x ' < θ and θ_{x+1} ', θ_{x+2} ',, θ_n ' > θ , Pick a value R'_{max} such that $\tan \theta = ((\Sigma^x_{i=1} vi'sin\theta_i') + R_{max}'sin\theta_a') / ((\Sigma^x_{i=1} vi'cos\theta_i') + R_{max}'cos\theta_a')$
- -> Pick a Value of R'<R_{max}' and calculate the angle θ '. It turns out to be less than θ .
- -> Express **R'** (which makes angle θ_a with the horizontal axis) as a linear combinations of vectors $\mathbf{v'}_{x+1}, \mathbf{v'}_{x+2}, \dots, \mathbf{v'}_{n}$.

6

Examples

- -> UC Berkeley Gender Bias
- ->Kidney Stone Treatment