Modelos Vetoriais Autoregressivos

Alessandro Martim Marques

Finanças Quantitativas - MPFE - EESP - FGV

22 de novembro de 2012

Sumário

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

Modelos Vetoriais Autoregressivos

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

Objetivos

Se **possuímos observações passadas** de uma série temporal e se os **dados passados contém informação** sobre o comportamento futuro de alguma variável, é plausível utilizar como *forecast* alguma função dos dados coletados.

Formalmente: sendo y_t o valor da variável de interesse no período t, um *forecast* para o período T+h, feito no final do período T, pode ter a forma

$$\hat{y}_{T+h} = f(y_T, y_{T-1}, \dots) \tag{1}$$

O maior objetivo da **análise univariada** de séries temporais é especificar as formas sensatas para $f(\bullet)$.

Em muitas aplicações, **funções lineares** têm sido utilizada, de modo que, por exemplo, pode-se fazer a seguinte especificação:

$$\hat{y}_{T+h} = v + \alpha_1 y_T + \alpha_2 y_{T-1} + \cdots$$

Ao lidar-se com **variáveis econômicas** freqüentemente os valores de uma variável dependem não apenas de seus próprios valores passados mas também dos valores passados de outras variáveis relacionadas à primeira.

Denotando as variáveis relacionadas por $y_{1t}, y_{2t}, ..., y_{Kt}$ temos formalmente:

$$\hat{y}_{1,T+h} = f_1(y_{1,T}, y_{2,T}, \dots, y_{K,T}, y_{1,T-1}, y_{2,T-1}, \dots, y_{K,T-1}, y_{1,T-2}, \dots)$$

Esta última especificação pode valer para todo um conjunto de variáveis inter-relacionadas de modo que, de uma forma geral, o *forecast* para a *k*-ésima variável pode ser expresso como:

$$\hat{y}_{k,T+h} = f_k(y_{1,T}, \dots, y_{K,T}, y_{1,T-1}, \dots, y_{K,T-1}, \dots)$$
 (2)

Um conjunto de séries temporais

$$y_{kt}$$
 $k = 1, ..., K$ $t = 1, ..., T$

é chamado uma série temporal múltipla e a equação (2) expressa o forecast $\hat{y}_{k,T+h}$ como uma função dessa série temporal múltipla.

Em analogia com o caso univariado, o objetivo principal da análise de séries temporais múltiplas é especificar formas adequadas para as funções $f_1, \ldots f_K$ as quais possam ser utilizadas para bons *forecasts*.

Processos autoregressivos vetoriais

Por razões de simplicidade comecemos com *forecasts* lineares. Consideremos uma série univariada e um *forecast* de h=1 período no futuro. Se $f(\bullet)$ na equação (1) é linear, teremos

$$\hat{y}_{T+1} = v + \alpha_1 y_T + \alpha_2 y_{T-1} + \cdots$$

Assumindo que apenas um número finito p das observações passadas de y são utilizados na fórmula de predição obtemos

$$\hat{y}_{T+1} = v + \alpha_1 y_T + \alpha_2 y_{T-1} + \dots + \alpha_p y_{T-p+1}.$$
 (3)

O valor verdadeiro y_{T+1} não será, em geral, igual ao *forecast* \hat{y}_{T+1} . Haverá um erro no *forecast*, o qual denotaremos por

$$u_{T+1} := y_{T+1} - \hat{y}_{T+1}$$

de modo que

$$y_{T+1} = \hat{y}_{T+1} + u_{T+1}$$

= $v + \alpha_1 y_T + \alpha_2 y_{T-1} + \dots + \alpha_p y_{T-p+1} + u_{T+1}$ (4)

Assumindo agora que os valores da série temporal são **realizações de uma variável aleatória** e que o mesmo **processo gerador de dados** prevalece em cada período, a equação (4) tem a forma de um **processo autoregressivo**,

$$y_t = v + \alpha_1 y_{t-1} + \dots + \alpha_p y_{t-p} + u_t,$$
 (5)

onde as quantidades $y_t, y_{t-1}, ..., y_{t-p}$ e u_t são agora variáveis aleatórias.

Assumindo agora que os valores da série temporal são **realizações de uma variável aleatória** e que o mesmo **processo gerador de dados** prevalece em cada período, a equação (4) tem a forma de um **processo autoregressivo**,

$$y_t = v + \alpha_1 y_{t-1} + \dots + \alpha_p y_{t-p} + u_t,$$
 (5)

onde as quantidades $y_t, y_{t-1}, ..., y_{t-p}$ e u_t são agora variáveis aleatórias.

Importante

Para verdadeiramente obtermos um processo AR assumimos que os erros u_s e u_t são não correlacionados para $s \neq t$. Isto equivale a dizer que toda a **informação útil** contida no passado de y_t foi utilizada nos *forecasts* de modo que **não existem erros sistemáticos** nos *forecasts*.

Se considerarmos agora séries temporais múltiplas a extensão natural de

$$\hat{y}_{T+1} = v + \alpha_1 y_T + \alpha_2 y_{T-1} + \dots + \alpha_p y_{T-p+1}$$

seria

$$\hat{y}_{k,T+1} = v + \alpha_{k1,1} y_{1,T} + \alpha_{k2,1} y_{2,T} + \dots + \alpha_{kK,1} y_{K,T} + \dots + \alpha_{k1,p} y_{1,T-p+1} + \dots + \alpha_{kK,p} y_{K,T-p+1}$$
 (6)

$$k=1,\ldots K$$
.

Para simplificar a notação, vamos definir

$$y_t := (y_{1t}, ..., y_{Kt})^T,$$

 $\hat{y}_t := (\hat{y}_{1t}, ..., \hat{y}_{Kt})^T,$
 $v_t := (v_{1t}, ..., v_{Kt})^T$

e

$$A_i := egin{bmatrix} lpha_{11,i} & lpha_{12,i} & \cdots & lpha_{1K,i} \ lpha_{21,i} & lpha_{22,i} & \cdots & lpha_{2K,i} \ dots & dots & \ddots & dots \ lpha_{K1,i} & lpha_{K2,i} & \cdots & lpha_{KK,i} \end{bmatrix}.$$

Utilizando esta notação

$$\hat{y}_{k,T+1} = v + \alpha_{k1,1} y_{1,T} + \alpha_{k2,1} y_{2,T} + \dots + \alpha_{kK,1} y_{K,T} + \dots + \alpha_{k1,p} y_{1,T-p+1} + \dots + \alpha_{kK,p} y_{K,T-p+1}$$

pode ser escrita de forma compacta como

$$\hat{y}_{T+1} = v + A_1 y_T + \dots + A_p y_{T-p+1}. \tag{7}$$

Se os y_t 's são considerads vetores aleatórios, este preditor é o *forecast* ótimo obtido de um modelo autoregressivo vetorial da forma

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
, (8)

na qual os erros

$$u_t = (u_{1t}, \ldots, u_{Kt})^{\mathrm{T}}$$

formam uma seqüência de K-vetores i.i.d, com média zero.

Se os y_t 's são considerads vetores aleatórios, este preditor é o *forecast* ótimo obtido de um modelo autoregressivo vetorial da forma

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
, (8)

na qual os erros

$$u_t = (u_{1t}, \ldots, u_{Kt})^{\mathrm{T}}$$

formam uma seqüência de K-vetores i.i.d, com média zero.

É sempre bom lembrar ...

O modelo descrito pela equação (8) é uma tremenda simplificação se comparado com a forma geral dada pela equação

$$\hat{y}_{k,T+h} = f_k(y_{1,T}, \dots, y_{K,T}, y_{1,T-1}, \dots, y_{K,T-1}, \dots).$$

Por causa desta estrutura simples tal modelo desfruta de grande popularidade.

Modelos Vetoriais Autoregressivos

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

VAR(p) Estável

Seja o seguinte modelo VAR(p) (VAR de ordem p):

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t \quad t = 0, \pm 1, \pm 2, \dots$$
 (9)

no qual

$$y_t = (y_{1t}, ..., y_{Kt})^T$$
: vetor aleatório $(K \times 1)$

$$A_i : \text{matrizes } (K \times K) \text{ de coeficientes constantes}$$

$$v_t = (v_{1t}, ..., v_{Kt})^T : \text{vetor constante } (K \times 1) \text{ de interceptos}$$

e $u_t = (u_{1t}, ..., u_{Kt})^T$ é um **ruído branco** K-dimensional ou **processo de inovação**, *i.e.*,

$$\mathbf{E}[u_t] = \mathbf{0} \ \mathbf{E}[u_t u_t^T] = \Sigma_u \ \mathbf{E}[u_t u_s^T] = \mathbf{0} \text{ para } s \neq t$$

A matriz de covariância Σ_u é considerada não singular.

Para melhor compreender o processo descrito pela equação

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$

consideremos o modelo VAR(1):

$$y_t = v + A_1 y_{t-1} + u_t (10)$$

Se o processo inicia em um tempo t = 1 temos

$$y_{1} = v + A_{1} y_{0} + u_{1}$$

$$y_{2} = v + A_{1} y_{1} + u_{2} = v + A_{1} (v + A_{1} y_{0} + u_{1}) + u_{2}$$

$$= (\mathbb{I}_{K} + A_{1}) v + A_{1}^{2} y_{0} + A_{1} u_{1} + u_{2}$$

$$\vdots$$

$$y_{t} = (\mathbb{I}_{K} + A_{1} + \dots + A_{1}^{t-1}) v + A_{1}^{t} y_{0} + \sum_{i=0}^{t-1} A_{1}^{i} u_{t-i}$$

$$\vdots$$

$$\vdots$$

$$(11)$$

Desta última expressão

$$y_t = (\mathbb{1}_K + A_1 + \dots + A_1^{t-1}) \nu + A_1^t y_0 + \sum_{i=0}^{t-1} A_1^i u_{t-i}$$

podemos notar que:

- ► os vetores $y_1,...,y_t$ são determinados por $y_0,u_1,...,u_t$
- ► a distribuição conjunta $y_1,...,y_t$ é determinada pela distribuição conjunta de $y_0, u_1,...,u_t$.

Apesar de, em geral, assumirmos que o processo iniciou-se num período específico freqüentemente é conveniente assumir-se que ele iniciou-se num passado infinito.

Esse pressuposto já estava presente na definição do processo VAR(p):

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
 $t = 0, \pm 1, \pm 2, \dots$

Apesar de, em geral, assumirmos que o processo iniciou-se num período específico freqüentemente é conveniente assumir-se que ele iniciou-se num **passado infinito**.

Esse pressuposto já estava presente na definição do processo VAR(*p*):

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t \quad t = 0, \pm 1, \pm 2, \dots,$$

Pergunta: que tipo de processo é consistente com o mecanismo definido na equação acima?

Consideremos novamente o processo VAR(1): fazendo j = t - 1 na equação (11) obtemos

$$y_t = v + A_1 y_{t-1} + u_t$$

$$y_t = (\mathbb{I}_K + A_1 + \dots + A_1^j) v + A_1^{j+1} y_{t-j-1} + \sum_{i=0}^j A_1^i u_{t-i}.$$

Se todos os autovalores de A_1 possuem módulo menor do que 1, a seqüência A_1^i , i = 0, 1, ... é absolutamente somável.

Como consequência desta "somabilidade" temos que:

► a soma infinita

$$\sum_{i=1}^{\infty} A_1^i u_{t-i}$$

existe em média quadrática.

$$(\mathbb{I}_{\mathsf{K}} + A_1 + \dots + A_1^j) \, \nu \xrightarrow[i \to \infty]{} (\mathbb{I}_{\mathsf{K}} - A_1)^{-1} \, \nu$$

► A_1^{j+1} converge a zero rapidamente com $j \to \infty$ o que nos leva a ignorar o termo A_1^{j+1} y_{t-j-1} neste limite.

Nestas condições dizer que y_t é o processo VAR(1) da equação

$$y_t = v + A_1 y_{t-1} + u_t$$

equivale a dizer que y_t é um processo estocástico bem definido o qual pode ser escrito como

$$y_t = \mu + \sum_{i=0}^{\infty} A_1^i \ u_{t-1}, \quad t = 0, \pm 1, \pm 2, \dots$$
 (12)

no qual

$$\mu := (\mathbb{1}_K - A_1)^{-1} \nu$$
.

O primeiros momentos do processo y_t são dados por:

$$\mathbf{E}[y_t] = \mu \ \forall \ t \,. \tag{13}$$

Já os segundos momentos do processo y_t são dados por:

$$\Gamma_{y}(h) = \mathbf{E}[(y_{t} - \mu)(y_{t-h} - \mu)^{\mathrm{T}}]$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{n} A_{1}^{i} \mathbf{E}[u_{t-i} u^{\mathrm{T}}_{t-h-j}] A_{1}^{\mathrm{T}j}$$

$$= \lim_{n \to \infty} \sum_{i=0}^{n} A_{1}^{h+i} \Sigma_{u} A_{1}^{\mathrm{T}j}$$

$$= \sum_{i=0}^{\infty} A_{1}^{h+i} \Sigma_{u} A_{1}^{\mathrm{T}j}$$

$$(14)$$

pois

$$\mathbf{E}[u_t \, u^{\mathrm{T}}_s] = 0 \text{ para } s \neq t$$

e

$$\mathbf{E}[u_t u_t^{\mathrm{T}}] = \Sigma_u \ \forall t.$$

Estabilidade:

Dizemos que um processo VAR(1) é estável se todos os autovalores de A_1 possuem módulo menor do que 1. Esta condição é equivalente a

$$\det(\mathbb{1}_{K} - A_{1} z) \neq 0 \text{ para } |z| \leq 1.$$
 (15)

Estabilidade:

Dizemos que um processo VAR(1) é estável se todos os autovalores de A_1 possuem módulo menor do que 1. Esta condição é equivalente a

$$\det(\mathbb{I}_K - A_1 z) \neq 0 \text{ para } |z| \leq 1.$$
 (15)

Importante:

O processo y_t para $t=0,\pm 1,\pm 2,\ldots$ pode ainda ser definido mesmo quando a condição (15) não é satisfeita. Daqui por diante sempre assumiremos a estabilidade dos processos definidos para todo $t\in\mathbb{Z}$.

Estabilidade:

Dizemos que um processo VAR(1) é estável se todos os autovalores de A_1 possuem módulo menor do que 1. Esta condição é equivalente a

$$\det(\mathbb{I}_{K} - A_{1} z) \neq 0 \text{ para } |z| \leq 1.$$
 (15)

Importante:

O processo y_t para $t=0,\pm 1,\pm 2,\ldots$ pode ainda ser definido mesmo quando a condição (15) não é satisfeita. Daqui por diante sempre assumiremos a estabilidade dos processos definidos para todo $t\in\mathbb{Z}$.

A discussão anterior pode ser estendida para processos VAR(p) com p > 1 pois todo processo VAR(p) pode ser escrito na forma de um processo VAR(1).

Se y_t é um processo VAR(p), o processo VAR(1) Kp-dimensional correspondente é definido como

$$Y_t = \mathbf{v} + \mathbf{A}Y_{t-1} + U_t \tag{16}$$

no qual

$$Y_t := \begin{bmatrix} y_t \\ y_{t-1} \\ \vdots \\ y_{t-p+1} \end{bmatrix}_{(Kp \times 1)} \qquad \mathbf{v} := \begin{bmatrix} v \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{(Kp \times 1)}$$

$$\mathbf{A} := \begin{bmatrix} A_1 & A_2 & \cdots & A_{p-1} & A_p \\ \mathbb{1}_{\mathsf{K}} & 0 & \cdots & 0 & 0 \\ 0 & \mathbb{1}_{\mathsf{K}} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \mathbb{1}_{\mathsf{K}} & 0 \end{bmatrix}_{(Kp \times Kp)} \qquad U_t := \begin{bmatrix} u_t \\ 0 \\ \vdots \\ 0 \end{bmatrix}_{(Kp \times 1)}$$

Agora, Y_t é estável se

$$\det(\mathbb{I}_{Kp} - \mathbf{A}z) \neq 0 \text{ para } |z| \leq 1$$
 (17)

Já o vetor média de Y_t é

$$\boldsymbol{\mu} := \mathbf{E}[Y_t] = (\mathbb{1}_{Kp} - \mathbf{A})^{-1} \boldsymbol{\nu}$$

e suas autocovariâncias são

$$\Gamma_Y(h) = \sum_{i=0}^{\infty} \mathbf{A}^{h+i} \Sigma_U \mathbf{A}^{Ti}$$
 (18)

na qual

$$\Sigma_U := \mathbf{E} \big[U_t U^{\mathsf{T}}_t \big] .$$

Definindo a seguinte matriz $K \times Kp$:

$$J := \left[\mathbb{1}_{\mathsf{K}} : 0 : \dots : 0 \right] \tag{19}$$

o processo y_t pode ser recuperado a partir de Y_t como

$$y_t = J Y_t$$
.

A média de v_t é

$$\mathbf{E}[y_t] = J\boldsymbol{\mu}$$
 (constante $\forall t$)

e suas autocovariâncias

$$\Gamma_{y}(h) = J \Gamma_{Y}(h) J^{T}$$
 (também **invariantes**)

Não é muito difícil ver que

$$\det(\mathbb{I}_{Kp} - \mathbf{A}z) = \det(\mathbb{I}_K - A_1 z - \dots - A_p z^p)$$

Este é o chamado **polinômio característico reverso** do processo VAR(p).

Não é muito difícil ver que

$$\det(\mathbb{I}_{Kp} - \mathbf{A}z) = \det(\mathbb{I}_K - A_1 z - \dots - A_p z^p)$$

Este é o chamado **polinômio característico reverso** do processo VAR(p).

Condição de estabilidade:

O processo

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
 $t = 0, \pm 1, \pm 2, \dots$

é **estável** se seu polinômio característico reverso não possui raízes **sobre ou dentro** do círculo unitário complexo. Formalmente, y_t é estável se

$$\det(\mathbb{I}_{K} - A_1 z - \dots - A_p z^p) \neq 0 \text{ para } |z| \leq 1.$$
 (20)

Em resumo: dizemos que y_t é um processo VAR(p) estável se vale a condição (20) e

$$y_t = J Y_t = J \mu + J \sum_{i=0}^{\infty} \mathbf{A}^i U_{t-i}.$$
 (21)

Devido ao fato de

$$U_t := (u^{\mathrm{T}}_t, 0, \dots, 0)^{\mathrm{T}}$$

envolver o processo de ruído branco u_t , o processo y_t é dito ser determinado por seu processo de inovação e freqüentemente são tomados pressupostos específicos relativos a u_t .

Um exemplo importante é o pressuposto de que u_t é um ruído branco gaussiano, *i.e.*:

$$u_t \sim \mathcal{N}(0, \Sigma_u) \ \forall t$$

e u_t e u_s independentes para $t \neq s$.

Neste caso pode-se mostrar que y_t é um **processo gaussiano**, *i.e.*, subconjuntos $y_t, ..., y_{t+h}$ possuem distribuições **normais multivariadas** para todo t e h.

A condição de estabildade da equação (20), *i.e.*,

$$\det(\mathbb{I}_{\mathbb{K}} - A_1 z - \dots - A_p z^p) \neq 0 \text{ para } |z| \leq 1$$

nos provê uma ferramenta útil para a verificão da estabilidade de um processo VAR.

Exemplo:

Processo VAR(1) de dimensão 3:

$$y_t = v + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} y_{t-1} + u_t$$

Polinômio característico reverso:
$$\det \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} z \right)$$

Exemplo: (cont.)
Polinômio característico reverso:

Exemplo: (cont.)

Polinômio característico reverso:

$$\det \begin{pmatrix} \begin{bmatrix} 1 - 0.5z & 0 & 0 \\ -0.1z & 1 - 0.1z & -0.3z \\ 0 & -0.2z & 1 - 0.3z \end{bmatrix} \end{pmatrix} =$$

$$= (1 - 0.5z)(1 - 0.4z - 0.03z^{2})$$

Exemplo: (cont.)

Polinômio característico reverso:

$$\det \left(\begin{bmatrix} 1 - 0.5z & 0 & 0 \\ -0.1z & 1 - 0.1z & -0.3z \\ 0 & -0.2z & 1 - 0.3z \end{bmatrix} \right) =$$

$$z_1 = 2$$
 $z_2 = 2,1525$ $z_3 = -15,4858$

 $|z_1|, |z_2|, |z_3| > 1 \Longrightarrow$ o processo é **estável**.

 $=(1-0.5z)(1-0.4z-0.03z^2)$

Processo VAR(2) de dimensão 1:

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

Polinômio característico reverso:

Processo VAR(2) de dimensão 1:

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

Polinômio característico reverso:

$$\det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} z \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} z^2 =$$

$$= 1 - z + 0.21 z^2 - 0.025 z^3$$

Processo VAR(2) de dimensão 1:

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

Polinômio característico reverso:

$$\det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} z \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} z^2 =$$

$$= 1 - z + 0.21 z^2 - 0.025 z^3$$

Raízes do polinômio:

$$z_1 = 1,3$$
 $z_2 = 3,55 + 4,26i$ $z_3 = 3,55 - 4,26i$

Processo VAR(2) de dimensão 1:

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

Polinômio característico reverso:

$$\det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} z \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} z^2 =$$

$$= 1 - z + 0.21 z^2 - 0.025 z^3$$

Raízes do polinômio:

$$z_1 = 1,3$$
 $z_2 = 3,55 + 4,26i$ $z_3 = 3,55 - 4,26i$

Estável?

Processo VAR(2) de dimensão 1:

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

Polinômio característico reverso:

$$\det \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} z \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} z^2 \right) =$$

$$= 1 - z + 0.21 z^2 - 0.025 z^3$$

Raízes do polinômio:

$$z_1 = 1,3$$
 $z_2 = 3,55 + 4,26i$ $z_3 = 3,55 - 4,26i$

Estável? Sim!
$$|z_2| = |z_3| = \sqrt{3,55^2 + 4,26^2} = 5,545 > 1$$
.

Modelos Vetoriais Autoregressivos

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

Representação de Média Móvel

Relembrando: o processo VAR(*p*)

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
 $t = 0, \pm 1, \pm 2, \dots$

tem a seguinte representação VAR(1):

$$Y_t = \mathbf{v} + \mathbf{A}Y_{t-1} + U_t$$

a qual, assumindo estabilidade pode ser escrita como

$$Y_t = \boldsymbol{\mu} + \sum_{i=0}^{\infty} \mathbf{A}^i U_{t-i}.$$
 (22)

Esta é a chamada **representação de média móvel** do processo, ou **representação MA**.

A representação MA de y_t pode ser encontrada se fizermos uso novamente da matriz

$$J:=\left[\mathbb{1}_{\mathsf{K}}:0:\cdots:0\right].$$

Se multiplicarmos

$$Y_t = \boldsymbol{\mu} + \sum_{i=0}^{\infty} \mathbf{A}^i U_{t-i}$$

por *J* obtemos:

$$y_{t} = JY_{t} = J\boldsymbol{\mu} + \sum_{i=0}^{\infty} J\mathbf{A}^{i} J^{\mathsf{T}} U_{t-i}$$
$$= \boldsymbol{\mu} + \sum_{i=0}^{\infty} \Phi_{i} u_{t-i}, \tag{23}$$

na qual

$$\mu := J \boldsymbol{\mu},$$

$$\Phi_i := I \mathbf{A}^i J^{\mathrm{T}}.$$

Agora, dada a estrutura do ruído branco U_t , temos

$$U_t = I^T I U_t$$
 e $I U_t = u_t$.

Dado que \mathbf{A}^i é absolutamente somável, o mesmo vale para as matrizes Φ_i .

A média de y_t é dada por

 $\Gamma_{\nu}(h) = \mathbf{E}[(\gamma_t - \mu)(\gamma_{t-h} - \mu)^{\mathrm{T}}]$

 $= \sum_{i=0}^{\infty} \Phi_{h+i} \Sigma_u \Phi^{\mathrm{T}}_i.$

 $\mathbf{E}[y_t] = \mu$

 $= \mathbf{E} \left[\left(\sum_{i=0}^{h-1} \Phi_i \, u_{t-i} + \sum_{i=0}^{\infty} \Phi_{h+i} \, u_{t-h-i} \right) \left(\sum_{i=0}^{\infty} \Phi_i \, u_{t-h-i} \right)^{\mathrm{T}} \right]$

(24)

Existe uma alternativa mais direta para o cálculo das matrizes Φ_i através da utilização do **operador de lag** L. Este operador é definido da seguinte forma:

$$L y_t = y_{t-1}$$
,

i.e., ele desloca o índice um período para trás (**operador de backshift**).

Utilizando este operaod
r a formulação original do processo VAR(p),

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
 $t = 0, \pm 1, \pm 2, \dots$

pode ser reescrita como

$$y_t = v + (A_1 L + \dots + A_p L^p) y_t + u_t$$

ou

$$A(L) y_t = v + u_t, (25)$$

na qual

$$A(L) := \mathbb{1}_{K} - A_1 L - \cdots - A_p L^p.$$

Seja agora

$$\Phi(L) := \sum_{i=0}^{\infty} \Phi_i L^i$$

um operador tal que

$$\Phi(L) A(L) = \mathbb{I}_{K}. \tag{26}$$

Multiplicando

$$A(L) y_t = v + u_t$$

por $\Phi(L)$ nos dá

$$y_t = \Phi(L) v + \Phi(L) u_t$$

$$= \left(\sum_{i=0}^{\infty} \Phi_i\right) v + \sum_{i=0}^{\infty} \Phi_i u_{t-i}.$$
(27)

O operador $\Phi(L)$ é o **inverso** de A(L) e muitas vezes denotado $A(L)^{-1}$.

Geralmente o operador A(L) é dito inversível se

$$|A(z)| \neq 0$$
 para $|z| \leq 1$.

Se esta condição é satisfeita as matrizes

$$\Phi(L) = A(L)^{-1}$$

são absolutamente somáveis e daí o processo

$$\Phi(L) u_t = A(L)^{-1} u_t$$

é bem definido.

As matrizes Φ_i pode ser obtidas de

$$\Phi(L)A(L)=\mathbb{1}_{\kappa},$$

utilizando-se

$$\mathbb{1}_{K} = \Phi(L)A(L)
= (\Phi_{0} + \Phi_{1}L + \Phi_{2}L^{2} + \cdots)(\mathbb{1}_{K} - A_{1}L - \cdots - A_{p}L^{p})
= \Phi_{0} + (\Phi_{1} - \Phi_{0}A_{1})L + (\Phi_{2} - \Phi_{1}A_{1} - \Phi_{0}A_{2})L^{2} + \cdots
+ (\Phi_{i} - \sum_{i=1}^{i}\Phi_{i-j}A_{j})L^{i} + \cdots$$

Esta última equação nos dá:

$$\mathbb{I}_{K} = \Phi_{0} \\
0 = \Phi_{1} - \Phi_{0} A_{1} \\
0 = \Phi_{2} - \Phi_{1} A_{2} - \Phi_{0} A_{2} \\
\vdots \qquad \vdots \\
0 = \Phi_{i} - \sum_{j=1}^{i} \Phi_{i-j} A_{j} \\
\vdots \qquad \vdots \qquad \vdots$$

(28)

nas quais $A_j = 0$ para j > p.

Assim podemos calcular Φ_i recursivamente usando

$$\Phi_0 = \mathbb{1}_K$$

$$\Phi_i = \sum_{j=1}^i \Phi_{i-j} A_j, \quad i = 1, 2, ...$$
(29)

A média μ de ν_t é dada por:

$$\mu = \Phi(1) v = A(1)^{-1} v = (\mathbb{1}_{K} - A_{1} - \dots - A_{p})^{-1} v$$
 (30)

Para um processo VAR(1), as recursões da equação (29) implicam em

$$\Phi_0 = \mathbb{I}_{\scriptscriptstyle K}, \quad \Phi_1 = A_1, \ldots, \quad \Phi_i = A_1^i, \ldots$$

Exemplo:

Retornando ao VAR(1) de dimensão 3:

$$y_t = v + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} y_{t-1} + u_t$$

Temos $\Phi_0 = \mathbb{1}_3$,

$$\Phi_1 = \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0 \\ 0 & 0.2 & 0.3 \end{bmatrix}, \quad \Phi_2 = \begin{bmatrix} 0.25 & 0 & 0 \\ 0.06 & 0.07 & 0.12 \\ 0.02 & 0.08 & 0.15 \end{bmatrix},$$

$$\Phi_3 = \begin{bmatrix} 0.125 & 0 & 0 \\ 0.037 & 0.031 & 0.057 \\ 0.018 & 0.038 & 0.069 \end{bmatrix}, \quad \textit{etc}.$$

Já para um processo VAR(2) a recursão (29) resulta em

$$\Phi_{-} = A_{-}$$

$$\Phi_1 = A_1$$

 $\Phi_2 = \Phi_1 A_1 + A_2 = A_1^2 + A_2$

 $\Phi_i = \Phi_{i-1}A_1 + \Phi_{i-2}A_2$

 $\Phi_3 = \Phi_2 A_1 + \Phi_1 A_2 = A_1^3 + A_2 A_1 + A_1 A_2$

Retornando ao VAR(2) de dimensão 2:

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

$$y_t = v + \begin{bmatrix} 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$
 Temos as seguintes matrizes de coeficientes MA: $\Phi_0 = \mathbb{I}_2$,

 $\Phi_1 = \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix}, \quad \Phi_2 = \begin{bmatrix} 0.29 & 0.1 \\ 0.65 & 0.29 \end{bmatrix}, \quad \Phi_3 = \begin{bmatrix} 0.21 & 0.079 \\ 0.566 & 0.21 \end{bmatrix}, \quad etc.$

Temos as seguintes matrizes de coeficientes MA:
$$\Phi_0 = \mathbb{I}_2$$
,
$$\Phi_1 = \begin{bmatrix} 0.5 & 0.1 \end{bmatrix} \qquad \Phi_2 = \begin{bmatrix} 0.29 & 0.1 \end{bmatrix} \qquad \Phi_3 = \begin{bmatrix} 0.21 & 0.079 \end{bmatrix}$$

É importante notar que, para ambos os processos usados como exemplos,

$$\lim_{i\to\infty}\Phi_i=0.$$

Esta é uma consequência da estabilidade de ambos os processos.

Faz-se importante é o fato de que a representação MA de um processo VAR(*p*) estável **não é necessariamente de ordem infinita**.

Ou seja, Φ_i pode ser **zero** para *i* maior que algum ineiro finito *q*.

Exemplo: VAR(1) bivariado

$$y_t = v + \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} y_{t-1} + u_t$$

 $\begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix}^{t} = 0 \text{ para } i > 1.$

$$y_t = \mu + u_t + \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} u_{t-1}$$

epiesemação MA.
$$\begin{bmatrix} 0 & \alpha \end{bmatrix}$$

$$y_t = v +$$

pois

Modelos Vetoriais Autoregressivos

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

Processos Estacionários

Relembrando ...

Um processo estocástico é dito estacionário se seu primeiro e segundo momentos são invariantes com o tempo.

Formalmente, um processo estocástico y_t é estacionário se:

(31)

 $\mathbf{E}[y_t] = \mu < \infty \quad \forall t$

(todo y_t tem o mesmo vetor de médias finito μ) e

(as autocovariâncias não dependem de
$$t$$
 mas apenas do intervalo h que separa y_t e y_{t-h})

 $\mathbf{E}[(y_t - \mu)(y_{t-h} - \mu)^{\mathrm{T}}] = \Gamma_{\nu}(h) = \Gamma^{\mathrm{T}}_{\nu}(-h) < \infty \quad \forall t, h = 0, 1, 2, \dots$ (32)

O ruído branco que utilizamos na definição do processo VAR(p)

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
 $t = 0, \pm 1, \pm 2, \dots$

é um exemplo de processo estacionário.

Já vimos também que, para um processo VAR(p) estável

$$\mathbf{E}[y_t] = \mu \quad \mathbf{e} \quad \Gamma_y(h) = \sum_{i=0}^{\infty} \Phi_{h+i} \Sigma_u \Phi^{\mathrm{T}}_i$$

ou seja:

Proposição: (condição de estacionariedade)

Um processo VAR(p) estável y_t , $t = 0, \pm 1, \pm 2, ...$ é estacionário.

Importante:

1. Estabilidade implica estacionariedade e por isso a condição de estabilidade

$$\det(\mathbb{I}_{K} - A_1 z - \dots - A_p z^p) \neq 0 \text{ para } |z| \leq 1$$

é muitas vezes chamada de condição de estacionariedade.

 O reverso da proposição acima não é verdade. Ou seja, um processo não estável não é necessariamente não estacionário.

Cálculo de Autocovariâncias e Autocorrelações

É possivel obter-se expressões analíticas para as matrizes de autocovariâncias e autocorrelações para processos VAR(p) estáveis.

Os resultados são obtidos a partir das chamadas **equações de Yule-Walker** e os detalhes podem ser encontrados em [Lütkepohl 2005, capítulo 2, seção 2.1.4]

Modelos Vetoriais Autoregressivos

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

Forecasts

Situação:

- ▶ Precisamos fazer afirmações sobre valores futuros $y_1,...,y_K$
- ► Temos em mãos:
 - 1. um modelo para o processo gerador de dados e
 - 2. um conjunto informacional Ω_t contendo a informação disponível no período t.

Forecasts

Situação:

- ► Precisamos fazer afirmações sobre valores futuros $y_1,...,y_K$
- ▶ Temos em mãos:
 - 1. um modelo para o processo gerador de dados e
 - 2. um conjunto informacional Ω_t contendo a informação disponível no período t.

Exemplo:

- ► PGD: processo VAR(p)
- $y_s = y_{1s}, \dots, y_{Ks}^{\mathrm{T}}$
- ► *t* é a origem do *forecast*
- ► *h* é o horizonte do *forecast*
- ► um preditor, *h* períodos à frente, é um **preditor de** *h*-**passos**.

Estratégia comum: uma **função custo** específica é associada aos erros de *forecast* e um *forecast* é considerado **ótimo** se ele minimiza essa função custo.

Estratégia comum: uma **função custo** específica é associada aos erros de *forecast* e um *forecast* é considerado **ótimo** se ele minimiza essa função custo.

No contexto de modelos VAR, preditores que minimizam o erro quadrático médio (MSE) são os mais utilizados.

Estratégia comum: uma **função custo** específica é associada aos erros de *forecast* e um *forecast* é considerado **ótimo** se ele minimiza essa função custo.

No contexto de modelos VAR, preditores que minimizam o erro quadrático médio (MSE) são os mais utilizados.

Seja $y_t = y_{1t}, \dots, y_{Kt}^T$ um processo VAR(p) K-dimensional estável. O preditor de mínimo MSE para um forecast com origem em t e horizonte h é esperança condicional

$$\mathbf{E}_{t}[y_{t+h}] := \mathbf{E}[y_{t+h}|\Omega_{t}] = \mathbf{E}[y_{t+h}|\{y_{s}|s \leq t\}]. \tag{33}$$

Estratégia comum: uma **função custo** específica é associada aos erros de *forecast* e um *forecast* é considerado **ótimo** se ele minimiza essa função custo.

No contexto de modelos VAR, preditores que minimizam o erro quadrático médio (MSE) são os mais utilizados.

Seja $y_t = y_{1t}, \dots, y_{Kt}^T$ um processo VAR(p) K-dimensional estável. O preditor de mínimo MSE para um forecast com origem em t e horizonte h é esperança condicional

$$\mathbf{E}_{t}[y_{t+h}] := \mathbf{E}[y_{t+h}|\Omega_{t}] = \mathbf{E}[y_{t+h}|\{y_{s}|s \le t\}]. \tag{33}$$

Este preditor minimiza o MSE para cada componente de y_t .

Formalmente, se $\bar{y}_t(h)$ é qualquer preditor de h-passos na origem t,

$$\mathbf{MSE}[\bar{y}_{t}(h)] = \mathbf{E}[(y_{t+h} - \bar{y}_{t}(h))(y_{t+h} - \bar{y}_{t}(h))^{\mathrm{T}}]$$

$$\geq \mathbf{MSE}[\mathbf{E}_{t}[y_{t+h}]]$$

$$= \mathbf{E}[(y_{t+h} - \mathbf{E}_{t}[y_{t+h}])(y_{t+h} - \mathbf{E}_{t}[y_{t+h}])^{\mathrm{T}}], \quad (34)$$

na qual o sinal de desigualdade entre duas matrizes significa que a diferença é uma matriz não negativa definida (também denominada positiva semidefinida).

De forma equivalente, para qualquer vetor c ($K \times 1$),

$$\mathbf{MSE}[c^{\mathrm{T}}\bar{y}_{t}(h)] \geq \mathbf{MSE}[c^{\mathrm{T}}\mathbf{E}_{t}[y_{t+h}]]$$

Uma forma de verificar-se o caráter ótimo da esperança condicional é notarmos que:

é notarmos que:
$$\mathbf{MSE}[\bar{y}_t(h)] = \mathbf{E}[(y_{t+h} - \mathbf{E}_t[y_{t+h}] - \bar{y}_t(h)) \times$$

$$\times (y_{t+h} - \mathbf{E}_t[y_{t+h}] - \bar{y}_t(h))^{\mathrm{T}}]$$

$$= \mathbf{MSE}[\mathbf{E}_t[y_{t+h}]] + \mathbf{E}[(\mathbf{E}_t[y_{t+h}] - \bar{y}_t(h))(\mathbf{E}_t[y_{t+h}] - \bar{y}_t(h))^{\mathrm{T}}]$$

na qual foi usado que

$$\mathbf{E}[(y_{t+h} - \mathbf{E}_t[y_{t+h}])(y_{t+h} - \mathbf{E}_t[y_{t+h}])^{\mathrm{T}}] = 0$$

A última igualdade

$$\mathbf{E}[(y_{t+h} - \mathbf{E}_t[y_{t+h}])(y_{t+h} - \mathbf{E}_t[y_{t+h}])^{\mathrm{T}}] = 0$$

é valida pois

$$(y_{t+h}-\mathbf{E}_t[y_{t+h}])$$

é uma função das inovações posteriores ao período t e, portanto, não correlacionadas com os termos contidos em

$$\left(\mathbf{E}_t\big[y_{t+h}\big] - \bar{y}_t(h)\right)$$

os quais são funções de y_s , $s \le t$.

O caráter ótimo da esperança condicional implica que o preditor de h-passos ótimo para o processo VAR(p) é dado por

$$\mathbf{E}_{t}[y_{t+h}] = v + A_{1} \mathbf{E}_{t}[y_{t+h-1}] + \dots + A_{p} \mathbf{E}_{t}[y_{t+h-p}]. \tag{35}$$

O caráter ótimo da esperança condicional implica que o preditor de h-passos ótimo para o processo VAR(p) é dado por

$$\mathbf{E}_{t}[y_{t+h}] = v + A_{1} \mathbf{E}_{t}[y_{t+h-1}] + \dots + A_{p} \mathbf{E}_{t}[y_{t+h-p}].$$
 (35)

Esta última equação é válida apenas se o processo de inovação é um ruído branco independente tal que u_t e u_s são independentes para $s \neq t$ e, portanto,

$$\mathbf{E}_t[u_{t+h}] = 0 \quad \text{para } h > 0.$$

A equação (35) pode ser usada para calcular-se recursivamente o

preditor de
$$h$$
-passos, começando com $h = 1$:

$$\mathbf{E}_{t}[y_{t+1}] = v + A_{1} y_{t} + \dots + A_{p} y_{t-p+1}$$

$$\mathbf{E}_{t}[y_{t+2}] = v + A_{1} \mathbf{E}_{t}[y_{t+1}] + A_{2} y_{t} + \dots + A_{p} y_{t-p+2}$$

A equação (35) pode ser usada para calcular-se recursivamente o preditor de h-passos, começando com h = 1:

$$\mathbf{E}_{t}[y_{t+1}] = v + A_{1} y_{t} + \dots + A_{p} y_{t-p+1}$$

$$\mathbf{E}_{t}[y_{t+2}] = v + A_{1} \mathbf{E}_{t}[y_{t+1}] + A_{2} y_{t} + \dots + A_{p} y_{t-p+2}$$

$$\vdots$$

Utilizando essas recursões obtemos, para o processo VAR(1):

$$\mathbf{E}_{t}[y_{t+h}] = (\mathbb{1}_{K} + A_{1} + \dots + A_{1}^{h-1}) v + A_{1}^{h} y_{t}.$$

Retornando ao VAR(1) de dimensão 3:

$$y_t = v + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} y_{t-1} + u_t$$

$$\mathbf{E}_t[y_{t+1}] =$$

Retornando ao VAR(1) de dimensão 3:

$$y_t = v + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} y_{t-1} + u_t$$

$$\mathbf{E}_{t}[y_{t+1}] = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} \begin{bmatrix} -6 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -3.0 \\ 3.2 \\ 3.1 \end{bmatrix}$$

Retornando ao VAR(1) de dimensão 3:

$$y_t = v + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} y_{t-1} + u_t$$

$$\mathbf{E}_{t}[y_{t+1}] = \begin{bmatrix} 0\\2\\1 \end{bmatrix} + \begin{bmatrix} 0.5 & 0 & 0\\0.1 & 0.1 & 0.3\\0 & 0.2 & 0.3 \end{bmatrix} \begin{bmatrix} -6\\3\\5 \end{bmatrix} = \begin{bmatrix} -3.0\\3.2\\3.1 \end{bmatrix}$$

$$\mathbf{E}_t[y_{t+2}] =$$

Retornando ao VAR(1) de dimensão 3:

$$y_t = v + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} y_{t-1} + u_t$$

$$\mathbf{E}_{t}[y_{t+1}] = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 0.5 & 0 & 0 \\ 0.1 & 0.1 & 0.3 \\ 0 & 0.2 & 0.3 \end{bmatrix} \begin{bmatrix} -6 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} -3.0 \\ 3.2 \\ 3.1 \end{bmatrix}$$

$$\mathbf{E}_{t}[y_{t+2}] = (\mathbb{I}_{3} + A_{1}) v + A_{1}^{2} y_{t} = \begin{bmatrix} -1.50 \\ 2.95 \\ 2.57 \end{bmatrix}$$
, etc.

Outro exemplo:

Retornando ao VAR(2) de dimensão 2:

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

Com
$$y_t = (0.06, 0.03)^T, y_{t-1} = (0.055, 0.03)^T$$
 e $v = (0.02, 0.03)^T$ teremos:

Outro exemplo:

Retornando ao VAR(2) de dimensão 2:

 $= \begin{bmatrix} 0.053 \\ 0.08275 \end{bmatrix}$

$$y_t = v + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} y_{t-1} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} y_{t-2} + u_t$$

Com $y_t = (0.06, 0.03)^T$, $y_{t-1} = (0.055, 0.03)^T$ e $v = (0.02, 0.03)^T$ teremos:

Com
$$y_t = (0.06, 0.03)^1, y_{t-1} = (0.055, 0.03)^1 \text{ e } v = (0.02, 0.03)^1 \text{ teremos:}$$

$$\mathbf{E}_t[y_{t+1}] = \begin{bmatrix} 0.02 \\ 0.03 \end{bmatrix} + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} \begin{bmatrix} 0.06 \\ 0.03 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} \begin{bmatrix} 0.055 \\ 0.03 \end{bmatrix}$$

Com
$$y_t = (0.06, 0.03)^T, y_{t-1} = (0.055, 0.03)^T \text{ e } v = (0.02, 0.03)^T \text{ teres}$$

$$\mathbf{E}_{t}[y_{t-1}] = \begin{bmatrix} 0.02 \\ -1 \end{bmatrix} \begin{bmatrix} 0.5 & 0.1 \\ -1 \end{bmatrix} \begin{bmatrix} 0.06 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ -1 \end{bmatrix} \begin{bmatrix} 0.055 \\ -1 \end{bmatrix}$$

Outro exemplo: (cont.)

$$\mathbf{E}_{t}[y_{t+2}] = \begin{bmatrix} 0.02 \\ 0.03 \end{bmatrix} + \begin{bmatrix} 0.5 & 0.1 \\ 0.4 & 0.5 \end{bmatrix} \begin{bmatrix} 0.053 \\ 0.08275 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0.25 & 0 \end{bmatrix} \begin{bmatrix} 0.06 \\ 0.03 \end{bmatrix}$$

A esperança condicional tem as seguintes propriedades:

1. É um preditor não viesado (*unbiased*):

$$\mathbf{E}[\gamma_{t+h} - \mathbf{E}_t[\gamma_{t+h}]] = 0.$$

2. Se u_t é independente,

$$\mathbf{MSE}\big[\mathbf{E}_t\big[y_{t+h}\big]\big] = \mathbf{MSE}\big[\mathbf{E}_t\big[y_{t+h}\big]\,|y_t,y_{t-1},\ldots\big] ,$$

ou seja, o MSE do preditor é igual ao MSE condicional dados y_t, y_{t-1}, \dots

Intervalos de Confiança para os Forecasts

Para realizar-se o cálculo dos intervalos ou regiões de confiança faz-se normalmente o pressuposto de que estamos lidando com **processos gaussianos** nos quais $y_t, y_{t+1}, ..., y_{t+h}$ possuem uma distribuição multivariada normal para quaisquer t e h.

De forma equivalente pode-se supor que u_t é multivariado normal, *i.e.*,

$$u_t \sim \mathcal{N}(0, \Sigma_u)$$

com u_t e u_s independentes para $t \neq s$.

Sob estas condições **os erros de** *forecast* **também são normalmente distribuídos** pois são transformações lineares de vetores gaussianos:

$$y_{t+h} - y_t(h) = \sum_{i=0}^{h-1} \Phi_i \, u_{t+h-i} \sim \mathcal{N}(0, \Sigma_y(h)). \tag{36}$$

Sob estas condições **os erros de** *forecast* **também são normalmente distribuídos** pois são transformações lineares de vetores gaussianos:

$$y_{t+h} - y_t(h) = \sum_{i=0}^{h-1} \Phi_i \, u_{t+h-i} \sim \mathcal{N}(0, \Sigma_y(h)). \tag{36}$$

Este resultado implica em que os erros de *forecast* de cada componente individual do processo possuem distribuição gaussiana de modo que:

$$\frac{y_{k,t+h} - y_{k,t}(h)}{\sigma_k(h)} \sim \mathcal{N}(0,1), \tag{37}$$

na qual

- ► $y_{k,t}(h)$ é a k-ésima componente de $y_t(h)$
- $\sigma_k(h)$ é a raíz quadrada do k-ésimo elemento da diagonal de $\Sigma_{\gamma}(h)$

Denotando por $z_{(\alpha)}$ o $\alpha \times 100$ ponto percentual superior da distribuuição normal obtemos

$$1 - \alpha = \Pr\left[-z_{(\alpha/2)} \le \frac{y_{k,t+h} - y_{k,t}(h)}{\sigma_k(h)} \le z_{(\alpha/2)}\right]$$
$$= \Pr\left[y_{k,t}(h) - z_{(\alpha/2)}\sigma_k(h) \le y_{k,t+h} \le y_{k,t}(h) + z_{(\alpha/2)}\sigma_k(h)\right].$$

Portanto, um intervalo de confiança $(1 - \alpha)100\%$, do *forecast h* períodos à frente, para o *k*-ésimo componente de y_t é dado por

$$y_{k,t}(h) \pm z_{(\alpha/2)} \,\sigma_k(h) \tag{38}$$

ou

$$[y_{k,t}(h) - z_{(\alpha/2)} \sigma_k(h), y_{k,t}(h) + z_{(\alpha/2)} \sigma_k(h)].$$
 (39)

O resultado (36), i.e.,

$$y_{t+h} - y_t(h) = \sum_{i=0}^{h-1} \Phi_i u_{t+h-i} \sim \mathcal{N}(0, \Sigma_y(h))$$

também pode ser utilizado para estabelecer intervalos de confiança conjuntos para duas ou mais variáveis.

Os detalhes, que fazem uso do chamado **método de Bonferroni**, podem ser encontrados em [Lütkepohl 2005, capítulo 2, seção 2.2.3].

Análise Estrutural com Modelos VAR

Análise de certos aspectos das relações entre variáveis de interesse presentes num modelo do tipo VAR.

Estes aspectos incluem:

- Causalidade de Granger
- Causalidade Instantânea
- ► Causalidade *Multi-Step*
- Análise de Impulso-Resposta

Discussão completa e detalhada em [Lütkepohl 2005, capítulo 2, seção 2.3].

Modelos Vetoriais Autoregressivos

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

Estimação do VAR

Vamos assumir possuímos os dados de uma série temporal múltipla, K-dimensional,

$$y_1, \dots, y_T$$
 com $y_t = (y_{1t}, \dots, y_{Kt})^T$

e que sabemos que esta série é gerada por um processo VAR(*p*) estável, *i.e.*:

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
 (40)

com

$$\mathbf{E}[y_t] = \mu \ \forall t$$

e

$$\mathbf{E}[(y_t - \mu)(y_{t-h} - \mu)^{\mathrm{T}}] = \Gamma_y(h) = \Gamma_y^{\mathrm{T}}(-h) \quad \forall t, h = 0, 1, 2, \dots$$

Assumimos agora que as matrizes de coeficientes $v, A_1, ..., A_p$, bem como Σ_u são desconhecidos.

Nossa tarefa agora é, a partir dos dados da série temporal, estimar os coeficientes.

Esta tarefa será realizada utilizando-se uma **estimação de mínimos quadrados multivariada**.

Vamos assumir que temos uma **amostra de comprimento** T para cada uma das K variáveis, todas as amostras correspondendo ao mesmo período temporal.

Adicionalmente temos à nossa disposição p valores pré-amostrais de cada variável:

$$y_{-n+1}, y_{-n+2}, \dots, y_{-1}, y_0$$
.

Este particionamento em amostra e pré-amostra é conveniente para simplificação notacional

Em seguida definimos:

$$Y := (y_{1},...,y_{T}) (K \times T)$$

$$B := (v,A_{1},...,A_{p}) (K \times (Kp+1))$$

$$Z_{t} := \begin{bmatrix} 1 \\ y_{t} \\ \vdots \\ y_{t-p+1} \end{bmatrix} ((Kp+1) \times 1)$$

$$Z := (Z_{0},...,Z_{T-1}) ((Kp+1) \times t) (41)$$

$$U := (u_{1},...,u_{T}) (K \times T)$$

$$\mathbf{y} := \text{vec}(Y) (KT \times 1)$$

$$\boldsymbol{\beta} := \text{vec}(B) ((K^{2}p+K) \times 1)$$

$$\mathbf{b} := \text{vec}(B^{T}) ((K^{2}p+K) \times 1)$$

$$\mathbf{u} := \text{vec}(U) (KT \times 1)$$

Fazendo uso destas últimas definições, para t = 1,..., T, o modelos VAR(p)

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$

pode ser reescritos das seguintes três formas compactas:

$$Y = BZ + U \tag{42}$$

ou

$$\operatorname{vec}(Y) = \operatorname{vec}(BZ) + \operatorname{vec}(U) = (Z^{\mathsf{T}} \otimes \mathbb{1}_{\mathsf{K}}) \operatorname{vec}(B) + \operatorname{vec}(U)$$

ou

$$\mathbf{y} = (Z^{\mathrm{T}} \otimes \mathbb{1}_{\mathrm{K}}) \boldsymbol{\beta} + \mathbf{u}. \tag{43}$$

Cabe notar que a matriz de covariância de **u** é

$$\Sigma_{\mathbf{u}} = \mathbb{1}_{\mathsf{T}} \otimes \Sigma_{\mathcal{U}}. \tag{44}$$

Sendo assim, a estimação multivariada de mínimos quadrados para

$$\boldsymbol{\beta}$$
 equivale escolher um estimador que minimize
$$S(\boldsymbol{\beta}) = \mathbf{u}^{\mathrm{T}} (\mathbb{I}_{\mathrm{T}} \otimes \Sigma_{u})^{-1} \mathbf{u} = \mathbf{u}^{\mathrm{T}} (\mathbb{I}_{\mathrm{T}} \otimes \Sigma_{u}^{-1})^{-1} u$$

 $= \operatorname{vec}(Y - BZ)^{\mathrm{T}}(\mathbb{1}_{\mathrm{T}} \otimes \Sigma_{u}^{-1})^{-1} \operatorname{vec}(Y - BZ)$

(45)

$$S(\boldsymbol{\beta}) = \mathbf{u}^{\mathrm{T}} (\mathbb{1}_{\mathrm{T}} \otimes \Sigma_{u})^{-1} \mathbf{u} = \mathbf{u}^{\mathrm{T}} (\mathbb{1}_{\mathrm{T}} \otimes \Sigma_{u}^{-1})^{-1} u$$
$$= \left[\mathbf{y} - (Z^{\mathrm{T}} \otimes \mathbb{1}_{\mathrm{K}}) \boldsymbol{\beta} \right]^{\mathrm{T}} (\mathbb{1}_{\mathrm{T}} \otimes \Sigma_{u}^{-1})^{-1} \left[\mathbf{y} - (Z^{\mathrm{T}} \otimes \mathbb{1}_{\mathrm{K}}) \boldsymbol{\beta} \right]$$

= $\operatorname{Tr}\left[(Y-BZ)^{\mathrm{T}}\Sigma_{u}^{-1}(Y-BZ)\right]$.

Para encontrar o mínimo desta função notemos que

$$S(\boldsymbol{\beta}) = \mathbf{y}^{\mathsf{T}} (\mathbb{1}_{\mathsf{T}} \otimes \Sigma_{u}^{-1}) \mathbf{y}$$

 $= \mathbf{v}^{\mathrm{T}}(\mathbb{1}_{\mathrm{T}} \otimes \Sigma_{u}^{-1})\mathbf{v}$

$$S(\boldsymbol{\beta}) = \mathbf{y}^{\mathrm{T}}(\mathbb{I}_{\mathrm{T}} \otimes \Sigma_{u}^{-1})\mathbf{y}$$
$$+\boldsymbol{\beta}^{\mathrm{T}}(Z \otimes \mathbb{I}_{\mathrm{K}}) (\mathbb{I}_{\mathrm{T}} \otimes \Sigma_{u}^{-1}) (Z^{\mathrm{T}} \otimes \mathbb{I}_{\mathrm{K}}) \boldsymbol{\beta}$$
$$-2 \boldsymbol{\beta}^{\mathrm{T}}(Z \otimes \mathbb{I}_{\mathrm{K}}) (\mathbb{I}_{\mathrm{T}} \otimes \Sigma_{u}^{-1})\mathbf{y}$$

 $+\boldsymbol{\beta}^{\mathrm{T}}(ZZ^{\mathrm{T}}\otimes\Sigma_{u}^{-1})\boldsymbol{\beta}$

$$-2\boldsymbol{\beta}^{\mathrm{T}}(Z\otimes\Sigma_{u}^{-1})\mathbf{y}.$$

Isto nos permite escrever a seguinte derivada:

$$\frac{\partial S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 2(ZZ^{\mathsf{T}} \otimes \Sigma_{u}^{-1}) \boldsymbol{\beta} - 2(Z \otimes \Sigma_{u}^{-1}) \mathbf{y}.$$

Igualando a derivada a zero obtemos as chamadas **equações normais**:

$$(ZZ^{\mathsf{T}} \otimes \Sigma_{u}^{-1}) \,\hat{\boldsymbol{\beta}} = (Z \otimes \Sigma_{u}^{-1}) \,\mathbf{y} \tag{46}$$

e, consequentemente, o estimador de mínimos quadrados será:

$$\hat{\boldsymbol{\beta}} = ((ZZ^{\mathsf{T}})^{-1} \otimes \Sigma_{u}^{-1})(Z \otimes \Sigma_{u}^{-1})\mathbf{y}$$

$$= ((ZZ^{\mathsf{T}})^{-1}Z \otimes \mathbb{1}_{\mathsf{K}})\mathbf{y}. \tag{47}$$

A matriz hessiana de $S(\beta)$

$$\frac{\partial^2 S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\mathrm{T}}} = 2 \left(Z Z^{\mathrm{T}} \otimes \Sigma_u^{-1} \right),$$

é positiva definida, confirmando que $\hat{\beta}$ é o vetor que minimiza $S(\beta)$.

O estimador de mínimos quadrados pode ser escrito de diferentes formas:

$$\hat{\boldsymbol{\beta}} = ((ZZ^{T})^{-1}Z \otimes \mathbb{I}_{K}) \left[(Z^{T} \otimes \mathbb{I}_{K}) \boldsymbol{\beta} + \mathbf{u} \right]$$

$$= \boldsymbol{\beta} + ((ZZ^{T})^{-1}Z \otimes \mathbb{I}_{K}) \mathbf{u}$$
(48)

ou

$$\operatorname{vec}(\hat{B}) = \hat{\beta} = ((ZZ^{\mathsf{T}})^{-1}Z \otimes \mathbb{1}_{\mathsf{K}})\operatorname{vec}(Y)$$
$$= \operatorname{vec}(YZ^{\mathsf{T}}(ZZ^{\mathsf{T}})^{-1}).$$

Portanto,

$$\hat{B} = YZ^{T}(ZZ^{T})^{-1}$$

$$= (BZ + U)Z^{T}(ZZ^{T})^{-1}$$

$$= B + UZ^{T}(ZZ^{T})^{-1}$$
(49)

Outra possibilidade é multiplicar

$$y_t = BZ_{t-1} + u_t$$

por Z_{t-1}^{T} e tomar o valor esperado:

$$\mathbf{E}[y_t Z^{\mathsf{T}}_{t-1}] = B\mathbf{E}[Z_{t-1} Z^{\mathsf{T}}_{t-1}]. \tag{50}$$

Estimando $\mathbf{E}[y_t Z^{\mathsf{T}}_{t-1}]$ por

$$\frac{1}{T}\sum_{t=1}^{T}y_{t}\mathbf{Z}^{\mathrm{T}}_{t-1}=\frac{1}{T}\mathbf{Y}\mathbf{Z}^{\mathrm{T}},$$

 $\operatorname{e}\mathbf{E}[Z_{t-1}Z^{\mathrm{T}}_{t-1}]\operatorname{por}$

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{Z}_{t-1} \mathbf{Z}^{\mathsf{T}}_{t-1} = \frac{1}{T} \mathbf{Z} \mathbf{Z}^{\mathsf{T}}$$

Obtemos as equações normais

 $\frac{1}{-}\mathbf{V}\mathbf{Z}^{\mathrm{T}}$

e, desta última,

$$\frac{1}{T}\mathbf{Y}\mathbf{Z}^{\mathrm{T}} = \hat{\mathbf{B}}\,\frac{1}{T}\mathbf{Z}\,\mathbf{Z}^{\mathrm{T}}$$

 $\hat{\mathbf{B}} = \mathbf{Y}\mathbf{Z}^{\mathrm{T}}(\mathbf{Z}\mathbf{Z}^{\mathrm{T}})^{-1}.$

Uma terceira possibilidade é escrever o estimador de mínimos quadrados como

$$\hat{\mathbf{b}} = \text{vec}(\hat{\mathbf{B}}^{\text{T}}) = (\mathbb{1}_{K} \otimes (\mathbf{Z}\mathbf{Z}^{\text{T}})^{-1}\mathbf{Z}) \text{ vec}(\mathbf{Y}^{\text{T}}).$$

Escrito desta forma é fácil ver que a estimação de mínimos quadrados multivariada é equivalente à estimação de mínimos quadrados ordinária, separadamente, para cada uma das K equações em

$$y_t = v + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t$$
.

Mostremos este fato ...

Seja b^{T}_k a k-ésima linha de B, i.e., b_k contém todos os parâmetros da k-ésima equação.

Obviamente $\mathbf{b}^{\mathrm{T}} = (b^{\mathrm{T}}_{1}, \dots, b^{\mathrm{T}}_{k}).$

Além disso, seja

$$y_{\ell}(k) = (y_{k1}, \dots, y_{kT})^{\mathrm{T}}$$

a série temporal disponivel para a k-ésima variável, tal que

$$\operatorname{vec}\left(\mathbf{Y}^{\mathrm{r}}\right) = \begin{vmatrix} y_{(1)} \\ \vdots \\ y_{(K)} \end{vmatrix}.$$

Com esta notação

$$\hat{b}_k = (ZZ^{\mathrm{T}})^{-1}Zy_{(k)}$$

é o estimador de mínimos quadrados ordinário do modelo

$$y_{(k)} = Z^{\mathrm{T}} b_k + u_{(k)},$$

no qual

$$u_{(k)} = (u_{k1}, \ldots, u_{kT})^{\mathrm{T}}$$

e

$$\mathbf{b}^{\scriptscriptstyle \mathrm{T}} = (\hat{b}_1^{\scriptscriptstyle \mathrm{T}}, \dots, \hat{b}_K^{\scriptscriptstyle \mathrm{T}})$$
 .

Das propriedades assintóticas do estimador de mínimos quadrados e assumindo-se normalidade do ruído branco obtém-se o seguinte estimador para matriz de covariâncias do ruído:

$$\hat{\Sigma}_u = \frac{T}{T - KP - 1} \tilde{\Sigma}_u,\tag{51}$$

na qual

$$\tilde{\Sigma}_{u} = \frac{1}{T} T (\mathbb{I}_{\mathbf{T}} - Z^{\mathbf{T}} (Z Z^{\mathbf{T}})^{-1} Z) Z^{\mathbf{T}}.$$
 (52)

Já para a matriz de covariâncias do estimador $\hat{\beta}$ pode-se obter:

$$\Sigma_{\beta} = \Gamma^{-1} \otimes \Sigma_{u},$$

na qual

$$\Gamma^{-1} = \frac{ZZ^{\mathrm{T}}}{T}.$$

Maiores detalhes sobre a derivação destas matrizes de covariâncias podem ser encontrados em [Lütkepohl 2005, capítulo 3, seção 3.2.2].

Modelos Vetoriais Autoregressivos

Objetivos

Modelos VAR Estáveis

Representação MA de um processo VAR(p)

Processos Estacionários

Forecasts em Modelos VAR

Estimação dos Modelos VAR

Critérios para Seleção de Modelos

Critérios para Seleção de Modelos I

Quando o principal objetivo de um modelo VAR é prover um bom *forecast* é importante selecionar a ordem correta do modelo utilizado com base neste objetivo.

Tendo este objetivo em mente faz sentido escolher a ordem do modelo tal que nossos *forecasts* tenham a melhor precisão.

Sendo assim o **erro quadrático médio** (MSE) do *forecast* é a medida que buscamos e um primeiro critério baseado nesta medida foi construído por Akaike.

Seja $\tilde{\Sigma}_u(m)$ o estimador de Σ_u (matriz de covariância dos resíduos) resultante do ajuste de um modelo VAR(m) K-dimensional.

O critério proposto por Akaike é definido como:

Critério de Erro de Predição Final

$$FPE(m) = \det \left[\frac{T + Km + 1}{T} \frac{T}{T - Km - 1} \tilde{\Sigma}_{u}(m) \right]$$
$$= \left[\frac{T + Km + 1}{T - Km - 1} \right]^{K} \det \tilde{\Sigma}_{u}(m)$$
(53)

Baseado no critério FPE, o estimador $\hat{p}(\text{FPE})$ para p é escolhido de forma que

$$FPE(\hat{p}(FPE)) = \min \{FPE(m) | m = 0, 1, ..., M\}.$$

Ou seja,

- 1. estimam-se modelos VAR(m) de ordens m = 0, 1, ..., M e os correspondentes FPE(m) são calculados,
- 2. a ordem *m* que miminiza o FPE é a ordem escolhida como estimador de *p*.

Akaike (novamente!), baseado num raciocínio completamente diferente derivou um outro critério, bastante similar ao FPE, definido da seguinte forma:

Critério de Informação de Akaike

AIC(m) =
$$\ln |\tilde{\Sigma}_{u}(m)| + \frac{2}{T} (\# \text{ de parâmetros})$$

= $\ln |\tilde{\Sigma}_{u}(m)| + \frac{2mK^{2}}{T}$ (54)

Novamente o estimador $\hat{p}(AIC)$ para p é escolhido de forma a minimizar o valor de AIC.

A similaridade entre os critérios FPE e AIC vem do fato de que, para uma constante N,

$$\frac{T+N}{T-N} = 1 + \frac{2N}{T} + \mathcal{O}\left(T^{-2}\right)$$

a qual permite que escrevamos

$$\ln \text{FPE}(m) = \text{AIC}(m) + \frac{2K}{T} + O(T^{-2})$$

Conseqüentemente, AIC e ln FPE diferem essencialmente por um termo de ordem $O\left(T^{-2}\right)$ e, portanto, os dois critérios são aproximadamente equivalentes para grandes valores de T.

É sempre desejável que um estimador tenha certas **propriedades amostrais**.

Uma propriedade assintótica desejável para um estimador é a chamada **consistência**.

Um estimador \hat{p} da ordem p de um processo VAR é dito consistente se

$$\lim_{T \to \infty} \Pr[\hat{p} = p] = 1. \tag{55}$$

O estimador \hat{p} é dito fortemente consistente se

$$\Pr\left[\lim_{T\to\infty}\hat{p}=p\right]=1. \tag{56}$$

Desta forma a seleção da ordem de um modelo VAR é dita **consistente** ou **fortemente consistente** se os estimadores resultantes possuem estas propriedades. **Mas**

Pode-se mostrar que: se M > p, $\hat{p}(\text{FPE})$ e $\hat{p}(\text{AIC})$ são não consistentes.

Para sanar este problema foram introduzidos dois outros critérios ...

O primeiro desses critérios é devido a Hannan e Quinn:

Critério de Hannan-Quinn

$$HQ(m) = \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{2 \ln \ln T}{T} \left(\text{# de parâmetros} \right)$$
$$= \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{2 \ln \ln T}{T} m K^{2}$$
 (57)

O primeiro desses critérios é devido a Hannan e Quinn:

Critério de Hannan-Quinn

$$HQ(m) = \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{2 \ln \ln T}{T} \left(\text{# de parâmetros} \right)$$
$$= \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{2 \ln \ln T}{T} m K^{2}$$
 (57)

O estimador $\hat{p}(HQ)$ é a ordem que minimiza HQ(m) para m = 0, 1, ..., M.

O primeiro desses critérios é devido a Hannan e Quinn:

Critério de Hannan-Quinn

$$HQ(m) = \ln |\tilde{\Sigma}_{u}(m)| + \frac{2 \ln \ln T}{T} (\# \text{ de parâmetros})$$

$$= \ln |\tilde{\Sigma}_{u}(m)| + \frac{2 \ln \ln T}{T} m K^{2}$$
(57)

O estimador $\hat{p}(HQ)$ é a ordem que minimiza HQ(m) para m = 0, 1, ..., M.

Pode-se mostrar que HQ é fortemente consistente para K > 1.

Já o segundo critério foi derivado por Schwarz e é baseado em	
criterio bayesianos:	

Já o segundo critério foi derivado por Schwarz e é baseado em criterio bayesianos:

Critério de Schwarz

$$HQ(m) = \ln |\tilde{\Sigma}_{u}(m)| + \frac{\ln T}{T} (\# \text{ de parâmetros})$$

$$= \ln |\tilde{\Sigma}_{u}(m)| + \frac{\ln T}{T} mK^{2}$$
(58)

Já o segundo critério foi derivado por Schwarz e é baseado em criterio bayesianos:

Critério de Schwarz

$$HQ(m) = \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{\ln T}{T} (\# \text{ de parâmetros})$$

$$= \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{\ln T}{T} m K^{2}$$
(58)

Novamente o estimador $\hat{p}(SC)$ é a ordem que minimiza SC(m) para m = 0, 1, ..., M.

Já o segundo critério foi derivado por Schwarz e é baseado em criterio bayesianos:

Critério de Schwarz

$$HQ(m) = \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{\ln T}{T} (\# \text{ de parâmetros})$$

$$= \ln \left| \tilde{\Sigma}_{u}(m) \right| + \frac{\ln T}{T} m K^{2}$$
(58)

Novamente o estimador $\hat{p}(SC)$ é a ordem que minimiza SC(m) para m = 0, 1, ..., M.

Pode-se mostrar que SC é fortemente consistente para qualquer *K*.

Uma discussão mais detalhada, com todos os detalhes técnicos,

em [Lütkepohl 2005, capítulo 4, seção 4.3].

sobre os critérios de seleção aqui apresentados pode ser encontrada

Referências

- Lütkepohl, H., New Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin, 2005.
- Hamilton, J., Time Series Analysis, Cambridge University Press, Cambridge, 1994.
- Moretin, P.A., *Econometria Financeira*, Edgard Blucher, São Paulo, 2011.
- Hayashi, F., *Econometrics*, Princeton Univesity Press, Princeton, 2000.
- Greene, W.H., Econometric Analysis, Prentice-Hall, Up Saddle River, 2004.

Homework 1 (Quer dizer que tem mais!?)

```
function [v, A, B, Yhat, critFPE, ...
    critAIC, critHQ, critSC] = estimVAR(Y, p, h)
% Inputs:
            Series das variaveis
           Ordem do VAR
  h Horizonte de forecast
 Outputs:
            Estimadores dos interceptos do VAR(p)
            A(i).
           [v, A(1), ..., A(p)]
  Yhat Forecast do processo para T+1,...,T+h
   critFPE Forecast precision error
  critAIC Akaike's Information Criterion (AIC)
% critHQ Hannan-Quinn criterion (HQ)
   critSC Schwarz's criterion (SC)
Seu codigo aqui ....
```

end

Homework 2 (Sim, tem mais!)

Causalidade de Granger

- 1. Estude o assunto.
- 2. Entenda o teste.
- 3. Implemente.