Original Bias Factors

Henri Urpani

Overview

In this document, I outline in detail the series of bias factors which govern ants' behaviours in the original simulation model for the FIT2082 research project linked <u>here</u>. These form the rules which underlie the movements of ants in our simulation model, since motion is chosen according to an ant's preferences or <u>biases</u>. Not every possible location is equally-appealing to an ant, and this allows us to distinguish between them by behaviour.

Notation

Let's represent the state of an ant as a triple

$$\mathcal{A} = (a, d, h)$$

where $a \in \mathbb{R}^*$ is the age of the ant in days, $d \in \{-1, 0, 1\}^2$ is the direction the ant is facing, and $h \in \mathbb{R}^*$ is its "holdness" attribute, determining the strength of the ant's preference to continue moving in an approximately-fixed direction.

By default, ants have fixed h=40, and an initial age which is determined to mimic the experimental conditions in the study (Mersch, Crespi, and Keller 2013).

Behaviour

At each step, there is a 20% chance that an ant will remain stationary. Otherwise, it considers a sequence of cardinal and intercardinal directions $d_1, ...d_8 \in \{-1,0,1\}^2$ with associated weightings $w_1, ..., w_8 \in \mathbb{R}^*$, where w_i is initially 0 if following d_i leads to an obstruction, and 1 otherwise. We apply the following to each ant $\mathcal{A} = (a,d,h)$.

Hold-direction bias

First, we apply

$$\underbrace{w_i \mapsto \underbrace{w_i h}_{1 + ||d_i - d||_2}}_{}$$

which is the hold-direction bias. This serves to have ants prefer to move in roughly-straight lines; about one third of the time, a small "wobble" is added to this step.

The new hold-direction bias is simpler. A turn of strictly-less than ninety degrees has its associated weight w_i mapped to $w_i h$, and a turn of ninety degrees has its associated weight mapped to $\frac{1}{2}w_i h$. Greater turns than these are associated with weight zero and won't be selected.

If an ant moves diagonally into a corner, this could cause it to get stuck indefinitely, however. To remedy this, we can instead map w_i to $\frac{1}{100}w_ih$ so that there is still some positive weighting to the steeper changes in direction.

General Pheromone bias

We compute

$$b = \frac{1}{5} \exp\left(-\frac{a}{50}\right)$$

If d_i is not obstructed and leads to c general pheromones, then we apply the following

$$w_i \mapsto w_i + bc$$

to form the general pheromone bias.

Brood Pheromone bias

We compute

$$b = \left(A + \frac{B(x-D)}{E}\right) \exp\left(-\frac{C(x-D)}{E}\right)$$

with

$$A = 3, B = 1.65, C = 0.07, D = -4.8, E = 2.33$$

calibrated to obtain a peak factor around roughly the age of 25 days, followed by decay, as interpreted from the real-world study by Mersch, Crespi, and Keller 2013. Once again, if d_i is not obstructed and leads to c brood pheromones, then we apply the following

$$w_i \mapsto w_i + bc$$

where c denotes the broad pheromone count in the associated location, is the broad pheromone bias.

Exploration bias

Suppose that d_i leads to a location with less than 3 general pheromones and less than 3 brood pheromones, or that d_i leads to a location with at least 3 foraging pheromones. In this case, we apply

$$w_i \mapsto 0.065 \left(\tanh \left(\frac{a - 130}{10} \right) + 2 \right) w_i$$

which forms the exploration bias.

Food/Foraging bias

Finally, for every tile in a radius of 5 from the ant's current location which is not contained within the nest area, we apply

$$w_i \mapsto w_i + 15c$$

where c denotes the amount of food at that location and where d_i corresponds to the general direction of that food.

Selection of Direction

A direction d_i is chosen at random, where the chance of selection d_i is given by

$$p_i = \frac{w_i}{\sum_i w_i}$$

for each $1 \le i \le 8$, under the assumption that at least one direction is not obstructed.

References

[1] Danielle P. Mersch, Alessandro Crespi, and Laurent Keller. "Tracking Individuals Shows Spatial Fidelity Is a Key Regulator of Ant Social Organization". In: Science 340.6136 (2013), pp. 1090-1093. ISSN: 0036-8075. DOI: 10.1126/science.1234316. eprint: https://science.sciencemag.org/content/340/6136/1090. full.pdf. URL: https://science.sciencemag.org/content/340/6136/1090.