

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

DESCOBERTA DE CONHECIMENTO

Ficha 6 - Algoritmos de Classificação

5 de Abril de 2019

Gil Cunha (A77249)

Conteúdo

1	Parte 1 - Data Understanding	2
	1.1 Exercicio 1	2
	1.2 Exercicio 2	3
	1.3 Exercicio 3	3
2	Parte 2 - Data Preprocessing	5
	2.1 Exercicio 1	5
	2.2 Exercicio 2	
3	Parte 3 - Mining the Data	6
	3.1 Exercicio 1	6
	3.2 Exercicio 2	8
	3.3 Exercicio 2	12
4	Parte 4 - Clustering Tendency	13

1 Parte 1 - Data Understanding

1.1 Exercicio 1

Atributos do dataset heart-c.arff:

- a)
- age numeric
- sex nominal male, female
- cp nominaltyp_angina,asympt,non_anginal,atyp_angina
- trestbps numeric
- col numeric
- chol numeric
- fbs binary t,f
- restecg nominalleft_vent_hyper,normal,st_t_wave_abnormality
- thalach numeric
- exang binary no,yes
- oldpeak numeric
- slope nominal down,flat,up
- ca numeric
- thal nominal fixed_defect,normal,reversable_defect
- num binary $< 50, > 50_{-1}$

b)

Atributo **ca** tem 5 dados nulos (2% *missing values*). Atributo **thal** tem 2 dados nulos (1% *missing values*). Todos os restantes atributos não possuem *missing values*.

c)

Apenas é possível saber estas estatisticas, dos seguintes atributos numéricos:

- age min:29 ,max:77 , mean:54.366 ,stddev:9.082 ;
- trestbps min:94, max:200, mean:131.624, stddev:17.538;
- col min:0, max:1, mean:0.275, stddev:0.118;
- chol min:126 ,max:564 , mean:246.264 ,stddev:51.831 ;
- thalach min:71 ,max:202 , mean:149.647 ,stddev:22.905 ;
- oldpeak min:0, max:6.2, mean:1.04, stddev:1.161;

• ca - min:0, max:3, mean:0.674, stddev:0.938;

d)

- age :4 (1%) valores únicos;
- trestbps:16 (5%) valores únicos;
- col:62 (20%) valores únicos;
- chol:62 (20%) valores únicos;
- fbs:28 (9%) valores únicos;
- exang: 10 (3%) valores únicos

e)

Ao passar o cursor do rato por cima de cada coluna no histograma, apresenta-se uma mensagem a identificar o valor do atributo o qual a coluna representa e o número de registos que têm esse valor para esse atributo no *dataset*.

Ao analisar cada atributo podemos deduzir que, quanto maior for a idade e oldpeak, maior é a probabilidade de ter uma doença no coração. Também podemos deduzir que pessoas do sexo masculino têm maior probalidade de ter este tipo de doenças.Registos que contêm os valores reversable_defect no atributo thal, flat no atributo slope e asympt no atributo cp, têm maior probabilidade de ter doenlas no coração.

f) Atributos com outliers: trestbps, col, chol, oldpeak.

1.2 Exercicio 2

- a) Os atributos mais ligados à probabilidade de ter doenças de coração é a age e thal.
- b) Correlação positiva: age- trestbps.

Correlação negativa: talach-oldpeak, talach-age.

1.3 Exercicio 3

Figura 1: age-oldpeak

Figura 2: thalach-oldpeak

Figura 3: thalach-chol

2 Parte 2 - Data Preprocessing

2.1 Exercicio 1

Figura 4: O filtro **AttributeSelection = BestFirst + CfsSubsetEval** selecionou os atributos *cp*, *restecg*, *thalach*, *exang*, *oldpeak*, *ca*, *thal e num*, como atributos com capacidade para desenvolver bons modelos de previsão, de entre todos os atributos utilizados no dataset.

Apesar de estes atributos terem sido selecionados, adicionei tambem o atributo *age* visto que, após uma análise prévia, identifiquei este atributo com uma boa relação com o atributo classe *num*.

Figura 5: Seleção de atributos

2.2 Exercicio 2

Os valores em falta do atributo ca foram substituidos pela média: 0.7;

Os valores em falta do atributo thal foram substituidos pelo atributo mais frequente: normal;

Figura 6: Tratamento de valores nulos

3 Parte 3 - Mining the Data

3.1 Exercicio 1

É possível observar que com o dataset processado obtemos melhores resultados, nomeadamente, uma percentagem de instâncias corretamente classificadas maior.

```
=== Stratified cross-validation ===
=== Summary ===
                                    217
86
                                                      71.6172 %
Correctly Classified Instances
Incorrectly Classified Instances
                                                      28.3828 %
                                      0.4305
0.2838
Kappa statistic
Mean absolute error
Root mean squared error
                                       0.5328
Root mean squared error
Relative absolute error
Root relative squared error
                                      57.2125 %
                                    106.9685 %
Total Number of Instances
                                     303
=== Detailed Accuracy By Class ===
                TP Rate FP Rate Precision Recall F-Measure MCC
                                                                         ROC Area PRC Area Class
                0,715 0,283 0,752 0,715 0,733 0,431 0,716 0,693 <50
                0,717 0,285 0,678 0,717 0,697 0,431 0,716 0,615 0,716 0,284 0,718 0,716 0,717 0,431 0,716 0,657
                                                                                  0,615
                                                                                             >50_1
Weighted Avg.
=== Confusion Matrix ===
  a b <-- classified as
 118 47 | a = <50
 39 99 | b = >50_1
```

Figura 7: OneR com dataset original - cross-validation 10 folds

```
=== Stratified cross-validation ===
=== Summary ===
                              219
84
                                              72.2772 %
Correctly Classified Instances
Incorrectly Classified Instances
                                             27.7228 %
                               0.4424
0.2772
Kappa statistic
Mean absolute error
Root mean squared error
                                0.5265
Relative absolute error
                                55.882 %
Root relative squared error
                              105.7174 %
Total Number of Instances
                               303
=== Detailed Accuracy By Class ===
              TP Rate FP Rate Precision Recall F-Measure MCC
                                                              ROC Area PRC Area Class
             >50_1
Weighted Avg.
=== Confusion Matrix ===
  a b <-- classified as
121 44 | a = <50
40 98 | b = >50_1
```

Figura 8: OneR com dataset processado - cross-validation 10 folds

Quando é utilizado o prório dataset de treino, como dataset de teste, é de esperar que a percentagem de instâncias classificadas corretamente seja ainda maior, visto que está a testar casos, com os quais aprendeu anteriormente. Isto é um caso de *overfitting*. Se testado com casos novos (como visto nas imagens anteriores), os resultados apresentados são mais baixos.

```
=== Summary ===
Correctly Classified Instances
                                                     76.8977 %
                                    233
                                   70
Incorrectly Classified Instances
                                                     23.1023 %
Kappa statistic
                                      0.5331
Mean absolute error
                                     0.231
Root mean squared error
                                     0.4806
Relative absolute error
                                     46.572 %
Root relative squared error
                                    96.5137 %
Total Number of Instances
                                    303
=== Detailed Accuracy By Class ===
                TP Rate FP Rate Precision Recall F-Measure MCC
                                                                     ROC Area PRC Area Class
                0,800 0,268 0,781 0,800 0,790 0,533 0,766 0,734 0,732 0,200 0,754 0,732 0,743 0,533 0,766 0,674
                                                                                         <50
                                                                                         >50_1
               0,769 0,237 0,769 0,769 0,769 0,533 0,766
Weighted Avg.
                                                                               0,706
=== Confusion Matrix ===
  a b <-- classified as
 132 33 | a = <50
 37 101 | b = >50_1
```

Figura 9: OneR com dataset processado - training set

3.2 Exercicio 2

Pelas imagens seguintes podemos verificar que, ao aplicar JRip ao dataset original, com pruning, obtemos melhores resultados (com cross-validation 10 fold), pois é mais geral: o facto de ter mais atributos e menos ramos na arvore de decisão (pruning), torna a árvore mais geral e indicada para avaliar novos casos de teste.

```
JRIP rules:
(cp = asympt) and (ca >= 1) => num => 50_1 (77.0/5.0)
(thal = reversable_defect) and (thalach <= 142) => num=>50_1 (24.0/3.0)
(thal = reversable_defect) and (restecg = left_vent_hyper) => num=>50_1 (23.0/8.0)
(oldpeak >= 2.6) => num=>50_1 (9.0/3.0)
 => num=<50 (170.0/24.0)
Number of Rules : 5
Time taken to build model: 0.03 seconds
=== Stratified cross-validation ===
=== Summary ===
                                          246
                                                              81.1881 %
18.8119 %
Correctly Classified Instances
                                          57
Incorrectly Classified Instances
                                             0.6183
Kappa statistic
Mean absolute error
                                              0.2651
Root mean squared error
                                             0.3841
                                           53.4387 %
77.1287 %
Relative absolute error
Root relative squared error
Total Number of Instances
=== Detailed Accuracy By Class ===
                  TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0,861 0,246 0,807 0,861 0,833 0,620 0,835 0,801 <50 0,754 0,139 0,819 0,754 0,785 0,620 0,835 0,843 >50 0,812 0,198 0,812 0,812 0,811 0,620 0,835 0,820
                                                                                     ROC Area PRC Area Class
                                                                                                            >50_1
Weighted Avg.
=== Confusion Matrix ===
   a b <-- classified as
142 23 | a = <50
34 104 | b = >50_1
```

Figura 10: JRip com dataset original - 10X - pruning

```
JRIP rules:
(cp = asympt) and (ca >= 0.7) => num => 50_1 (78.0/5.0)
(thal = reversable_defect) and (thalach <= 141) => num=>50_1 (23.0/3.0)
(thal = reversable_defect) and (cp = asympt) => num=>50_1 (12.0/3.0)
(age >= 57) and (age <= 61) and (ca >= 1) => num=>50_1 (11.0/2.0)
=> num=<50 (179.0/27.0)
Number of Rules: 5
Time taken to build model: 0.04 seconds
=== Stratified cross-validation ===
=== Summary ===
                                                   74.2574 %
Correctly Classified Instances
                                  225
Incorrectly Classified Instances
                                                  25.7426 %
                                   0.4798
0.3139
Kappa statistic
Mean absolute error
Root mean squared error
                                    0.4429
                                   63.2836 %
88.9291 %
Relative absolute error
Root relative squared error
Total Number of Instances
                                  303
=== Detailed Accuracy By Class ===
               TP Rate FP Rate Precision Recall F-Measure MCC
                                                                   ROC Area PRC Area Class
              >50_1
Weighted Avg.
=== Confusion Matrix ===
  a b <-- classified as
 128 37 | a = <50
41 97 | b = >50_1
```

Figura 11: JRip com dataset processado - 10X - pruning

```
(cp = asympt) and (ca >= 1) and (oldpeak >= 0.6) and (col <= 0.394977) => num=>50 1 (50.0/0.0)
(thal = reversable\_defect) \ and \ (cp = asympt) \ and \ (oldpeak >= 0.8) \ => num => 50\_1 \ (23.0/0.0)
(ca >= 1) and (sex = male) and (cp = asympt) and (thalach >= 150) => num=>50_1 (11.0/0.0)
(slope = flat) and (ca >= 1) and (age <= 61) and (age >= 45) => num=>50_1 (10.0/0.0)
(thal = reversable_defect) and (col >= 0.262557) and (trestbps >= 124) and (col <= 0.369863) and (age <= 57) => num=>50_1 (6.0/0.0)
(age >= 58) and (sex = male) and (col >= 0.335616) and (age <= 65) => num=>50_1 (8.0/0.0)
(oldpeak >= 2.8) and (thalach <= 144) => num=>50_1 (3.0/0.0)
(oldpeak >= 0.8) and (slope = flat) and (thalach <= 156) and (trestbps >= 128) and (thalach >= 147) and (col <= 0.3379) => num=>50_1
(thalach <= 136) and (ca >= 3) => num=>50_1 (3.0/0.0)
(thal = reversable_defect) and (age <= 48) and (slope = flat) => num=>50_1 (2.0/0.0)
(ca >= 1) and (age <= 59) and (age >= 58) => num=>50_1 (3.0/0.0)
(cp = asympt) and (age <= 42) and (thal = reversable_defect) => num=>50_1 (2.0/0.0)
(thalach \ll 146) and (exang = yes) and (oldpeak \ll 0.1) and (age \gg 59) = num \gg 50_1 (3.0/0.0)
(thalach \le 97) and (age \ge 62) = num = 50_1 (2.0/0.0)
=> num=<50 (171.0/6.0)
Number of Rules: 15
Time taken to build model: 0.01 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                    235
                                                       77.5578 %
Incorrectly Classified Instances
                                                        22.4422 %
                                       0.5421
Kappa statistic
Mean absolute error
                                       0.2357
Root mean squared error
                                       0.4645
                                       47.5198 %
Relative absolute error
Root relative squared error
                                      93.2732 %
Total Number of Instances
                                      303
=== Detailed Accuracy By Class ===
                 TP Rate FP Rate Precision Recall F-Measure MCC
                                                                         ROC Area PRC Area Class
                 0,855
                         0,319 0,762
                                             0,855 0,806
                                                                 0,547 0,762
                                                                                    0,719 <50
                 0,681
                         0,145
                                  0,797
                                             0,681
                                                      0,734
                                                                 0,547
                                                                         0,762
                                                                                    0,717
                                                                                             >50_1
                         0,145 0,797
0,240 0,778
                                                                0,547 0,762
0,547 0,762
                                            0,776 0,773
                                                                                    0.718
Weighted Avg.
                 0,776
```

JRIP rules:

Figura 12: JRip com dataset original - 10X - no pruning

```
JRIP rules:
(cp = asympt) and (ca >= 0.7) and (oldpeak >= 0.6) and (age <= 63) => num=>50_1 (47.0/0.0)
(thal = reversable_defect) and (cp = asympt) and (oldpeak >= 0.8) => num=>50_1 (22.0/0.0)
(ca >= 1) and (cp = asympt) and (restecg = left_vent_hyper) and (thalach <= 158) => num=>50_1 (11.0/0.0)
(thal = reversable_defect) and (ca >= 0.7) and (restecg = left_vent_hyper) => num=>50_1 (8.0/0.0)
(thal = reversable_defect) and (age <= 50) and (age >= 48) => num=>50_1 (4.0/0.0)
(age >= 57) and (ca >= 1) and (age <= 61) and (thalach <= 156) => num=>50_1 (4.0/0.0)
(exang = ves) and (oldbeak >= 1.6) and (restecg = normal) => num => 50.1 (5.0/0.0)
(age >= 57) and (oldpeak <= 0.3) and (age <= 61) and (thalach <= 162) and (thal = reversable_defect) => num=>50_1 (5.0/0.0)
(exang = yes) and (age \geq 66) and (age \leq 68) => num=\geq50_1 (2.0/0.0)
(cp = asympt) and (exang = yes) and (age >= 59) and (age <= 63) => num=>50_1 (3.0/0.0)
(ca >= 1) and (thalach >= 160) and (cp = asympt) => num=>50_1 (5.0/0.0)
(age >= 55) and (restecg = left_vent_hyper) and (thalach >= 164) and (ca >= 1) => num=>50_1 (3.0/0.0)
(thalach <= 158) and (oldpeak >= 3) and (cp = non_anginal) => num=>50_1 (2.0/0.0)
(thalach <= 132) and (oldpeak >= 0.8) and (oldpeak <= 1.2) and (restecg = normal) => num=>50_1 (3.0/0.0)
=> num=<50 (179.0/14.0)
Number of Rules: 15
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summary ===
                                                     76.5677 %
Correctly Classified Instances
                                    232
                                    71
Incorrectly Classified Instances
                                                     23.4323 %
Kappa statistic
                                     0.5228
Mean absolute error
                                     0.2571
Root mean squared error
                                     0.4667
                                    51.8205 %
Relative absolute error
Root relative squared error
                                     93.7055 %
Total Number of Instances
=== Detailed Accuracy By Class ===
               ROC Area PRC Area Class
                                                    0,795 0,526 0,750 0,704
                                                                                          <50
                0,681
                      0,164 0,777
                                           0,681
                                                    0,726
                                                              0,526
                                                                       0,750
                                                                                0,699
                                                                                          >50_1
Weighted Avg.
               0,766
                       0,248 0,767
                                         0,766
                                                   0,764
                                                            0,526 0,750
                                                                                0.702
```

Figura 13: JRip com dataset processado - 10X - no pruning

3.3 Exercicio 2

Os casos em que se aplicou *pruning* apresentam melhores resultados visto que tornam a árvore mais geral, podendo o caso em que o número minimo de folha é 5 apresentar uma percentagem de instâncias corretamente classificadas ligeiramente maior, visto que com mais folhas abrage-se mais casos de teste específicos.

```
=== Summary ===
Correctly Classified Instances
                                   234
                                                     77.2277 %
Incorrectly Classified Instances
                                                     22.7723 %
                                    69
                                     0.5379
Kappa statistic
Mean absolute error
                                      0.277
Root mean squared error
                                     0.4344
                                     55.8332 %
Relative absolute error
Root relative squared error
                                    87.2107 %
Total Number of Instances
```

Figura 14: Dataset processado - 10X - minLeaves: 2 - pruning

=== Summary === Correctly Classified Instances 235 77.5578 % Incorrectly Classified Instances 68 22.4422 % Kappa statistic 0.5465 Mean absolute error 0.244 Root mean squared error 0.4301 Relative absolute error 49.1936 % Root relative squared error 86.3545 % Total Number of Instances 303

Figura 15: Dataset processado - 10X - minLeaves: 5 - pruning

=== Summary ===		
Correctly Classified Instances	231	76.2376 %
Incorrectly Classified Instances	72	23.7624 %
Kappa statistic	0.5198	
Mean absolute error	0.2924	
Root mean squared error	0.4204	
Relative absolute error	58.9493 %	
Root relative squared error	84.4177 %	
Total Number of Instances	303	

Figura 16: Dom dataset original - 10X - minLeaves: 2 - no pruning

229	75.5776 %
74	24.4224 %
0.5065	
0.2818	
0.4241	
56.8127 %	
85.1539 %	
303	
	74 0.5065 0.2818 0.4241 56.8127 % 85.1539 %

Figura 17: Dataset processado - 10X - minLeaves: 5 - no pruning

4 Parte 4 - Clustering Tendency

Na seguinte imagem apresentam-se os resultados do algoritmo *SimpleKMeans*, em que o número de clusters (k) é 5. Quanto menor o *squared error* melhor.

Final cluster centroids:		613			
•		Cluster#			
Attribute	Full Data	0	1 (47 0)	_	
	(303.0)	(50.0)	(47.0)		•
age	54.3663	50.78	56.9574	56.25	55.867
ср	asympt	non_anginal	asympt	non_anginal	asymp
restecg	normal	normal	normal	left_vent_hyper	left_vent_hype
thalach	149.6469	157.94	147.5532	156.1176	134.959
exang	no	no	no	no	уе
oldpeak	1.0396	0.666	1.034	0.7529	1.744
ca	0.6772	0.422	0.8723	0.4118	1.058
thal	normal	normal	normal	normal	reversable_defed
Time taken to build model === Model and evaluation Clustered Instances): 0 seconds			
=== Model and evaluation): 0 seconds			

(40.0)

48.925

normal

166.725

0.2725

0.285

normal

no

atyp_angina

Figura 18: SimpleKMean - k = numClusters = 5

Cluster 1 <-- No class Cluster 2 <-- <50 Cluster 3 <-- >50_1 Cluster 4 <-- No class

Podemos aplicar o algoritmos EM, para tentar descobrir um k ótimo, já que por defeito este algoritmo tenta calcular os melhores resultados tentandod descobrir um número de clusters ótimos para tal. Quanto amis negativa for a loglikelihood melhor.

```
=== Model and evaluation on training set ===
Clustered Instances
0
      143 ( 47%)
       45 ( 15%)
1
2
       48 ( 16%)
       67 ( 22%)
Log likelihood: -12.43524
Class attribute: num
Classes to Clusters:
0 1 2 3 <-- assigned to cluster 119 8 32 6 \mid <50
 24 37 16 61 | >50_1
Cluster 0 <-- <50
Cluster 2 <-- No class
Cluster 3 <-- >50_1
Incorrectly clustered instances :
                                      123.0 40.5941 %
```

Figura 19: EM - k = numClusters = 4

Porém, visto que só há dois tipos de valores no atributo classe (num), o mais lógico seria apenas haver 2 clusters. No entanto, o EM determinou 4 clusters, sendo 2 para os dois valores da classe possíveis (50 e 50_1)eoutrosdoisparaondesãoatribuídososcasosmenosespecíficosemaisdificeisdedeterminar(possivelmenteoutlier

		Cluster#	
Attribute	Full Data	0	1
	(303.0)	(181.0)	(122.0)
age	54.3663	52.7901	56.7049
ср	asympt	non_anginal	asympt
restecg	normal	normal	left_vent_hyper
thalach	149.6469	157.5691	137.8934
exang	no	no	yes
oldpeak	1.0396	0.5994	1.6926
ca	0.6772	0.3674	1.1369
thal	normal	normal	reversable_defect

```
Time taken to build model (full training data): 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0     181 ( 60%)
1     122 ( 40%)

Class attribute: num
Classes to Clusters:

0     1 <-- assigned to cluster

145     20 | <50
     36 102 | >50_1

Cluster 0 <-- <50
Cluster 1 <-- >50_1

Incorrectly clustered instances: 56.0 18.4818 %
```

Figura 20: SimpleKMean - k = numClusters = 2

Figura 21: Visualize clusters: Cluster 0-50; Cluster $1-50_1$