更多资料到菜鸟导航网站查看:www.cainiaodaohang.com菜鸟导航,国内领先的电路设计导航网站!

2017 年全国大学生电子设计竞赛试题

参寒注意事项

- (1) 8月9日8:00竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题;高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。
- (2) 参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。
- (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。
- (4) 每队严格限制 3人,开赛后不得中途更换队员。
- (5) 竞赛期间,可使用各种图书资料和网络资源,但不得在学校指定竞赛场地外进行设计制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。
- (6) 8月12日20:00竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。

微电网模拟系统(A 题) 【本科组】

一、任务

设计并制作由两个三相逆变器等组成的微电网模拟系统,其系统框图如图 1 所示,负载为三相对称 Y 连接电阻负载。

图 1 微电网模拟系统结构示意图

二、要求

1. 基本要求

(1) 闭合 S, 仅用逆变器 1 向负载提供三相对称交流电。负载线电流有效值 I_0 为 2A 时,线电压有效值 U_0 为 24V±0.2V,频率 f_0 为 50Hz±0.2Hz。

- (2) 在基本要求(1)的工作条件下,交流母线电压总谐波畸变率(THD) 不大于 3%。
- (3) 在基本要求(1)的工作条件下,逆变器 1的效率 η 不低于 87%。
- (4) 逆变器 1 给负载供电,负载线电流有效值 I_0 在 0~2A 间变化时,负载 调整率 $S_{11} \leq 0.3\%$ 。

2. 发挥部分

- (1) 逆变器 1 和逆变器 2 能共同向负载输出功率,使负载线电流有效值 I_0 达到 3A,频率 f_0 为 50Hz \pm 0.2Hz。
- (2) 负载线电流有效值 I_0 在 1~3A 间变化时,逆变器 1 和逆变器 2 输出功率保持为 1:1 分配,两个逆变器输出线电流的差值绝对值不大于 0.1A。负载调整率 $S_{12} \leq 0.3\%$ 。
- (3) 负载线电流有效值 *I*₀在 1~3A 间变化时,逆变器 1 和逆变器 2 输出功率可按设定在指定范围(比值 K 为 1:2~2:1)内自动分配,两个逆变器输出线电流折算值的差值绝对值不大于 0.1A。
- (4) 其他。

三、说明

- (1) 本题涉及的微电网系统未考虑并网功能,负荷为电阻性负载,微电网中风力发电、太阳能发电、储能等由直流电源等效。
- (2) 题目中提及的电流、电压值均为三相线电流、线电压有效值。
- (3) 制作时须考虑测试方便,合理设置测试点,测试过程中不需重新接线。
- (4) 为方便测试,可使用功率分析仪等测试逆变器的效率、THD等。
- (5) 进行基本要求测试时,微电网模拟系统仅由直流电源1供电;进行发挥部分测试时,微电网模拟系统仅由直流电源1和直流电源2供电。
- (6) 本题定义: (1) 负载调整率 $S_{II} = \left| \frac{U_{02} U_{01}}{U_{01}} \right|$, 其中 U_{01} 为 I_{0} =0A 时的输出端线电压, U_{02} 为 I_{0} =2A 时的输出端线电压;(2) 负载调整率 $S_{I2} = \left| \frac{U_{02} U_{01}}{U_{01}} \right|$, 其中 U_{01} 为 I_{0} =1A 时的输出端线电压, U_{02} 为 I_{0} =3A 时的输出端线电压;(3) 逆变器 1 的效率 η 为逆变器 1 输出功率除以直流电源 1 的输出功率。
- (7) 发挥部分(3)中的线电流折算值定义: 功率比值 K>1 时,其中电流值小者乘以 K,电流值大者不变;功率比值 K<1 时,其中电流值小者除以 K,电流值大者不变。
- (8) 本题的直流电源1和直流电源2自备。

四、评分标准

	项 目	主要内容	满分
设计报告	方案论证	比较与选择,方案描述	3
	理论分析与计算	逆变器提高效率的方法,两台逆 变器同时运行模式控制策略	6
	电路与程序设计	逆变器主电路与器件选择,控制 电路与控制程序	6
	测试方案与测试结果	测试方案及测试条件,测试结果及其完整性,测试结果分析	3
	设计报告结构及规范性	摘要,设计报告正文的结构,图 标的规范性	2
	合计		20
基本要求	完成第(1)项		12
	完成第(2)项		10
	完成第(3)项		15
	完成第(4)项		13
	合计		50
发挥部分	完成第(1)项		10
	完成第(2)项		15
	完成第(3)项		15
	其他		10
	合计		50
总 分			120