CONTENTS

MIXOMICS - R WORKSHOP - MACQUARIE UNIVERSITY

Pat Buerger (patrick.buerger@mq.edu.au)

07-09-2023

Contents

1	INT	TRODUCTION	2	
	1.1	Load Packages	2	
	1.2	Load Data	2	
2	Pri	ncipal Component Analysis (PCA)	3	
3	Par	rtial Least Squares – Discriminant Analysis (PLS-DA)	5	
4 sparse Partial Least Squares – Discriminant Analysis (sPLS-DA)				
5	Mu	ltiblock PLS-DA (DIABLO)	19	
	5.1	Parameter choice	19	
		5.1.1 Design matrix	19	
		5.1.2 Number of components	19	
		5.1.3 Number of variables to select	20	
	5.2	Final model	21	
	5.3	Sample plots	21	
		5.3.1 plotDiablo	21	
		5.3.2 plotArrow	25	
		5.3.3 plotVar	26	
		5.3.4 circosPlot	27	
		5.3.5 cimDiablo	28	
		5.3.6 plotLoadings	28	
	5.4	Model performance and prediction	32	
6	WO	ORKING WITH OWN DATA	32	
7	SES	SSION INFO	33	

1 INTRODUCTION

Abstract:

MixOmics example: Case Study of DIABLO with Breast TCGA Dataset, using PCA, PLS-DA (supervised), sparse PLS-DA (supervised + data reduction), and multiblock sparse PLS-DA (DIABLO).

Modified code from MixOmics R package

Source for R-code: https://mixomicsteam.github.io/mixOmics-Vignette/

1.1 Load Packages

```
#install.packages('markdown')
#install.packages('mixOmics')
#install.packages('tidyverse')
library(mixOmics)
library(tidyverse)
```

1.2 Load Data

```
## Basal Her2 LumA
## 45 30 75
```

2 Principal Component Analysis (PCA)

```
# Check data first with PCA to detect outliers and general structure of data.
# 1 Run the method
MyResult.pca_miRNA <- pca(X$miRNA)

MyResult.pca_mRNA <- pca(X$mRNA)

MyResult.pca_protein <- pca(X$protein)</pre>
```


FIGURE: miRNA PCA: comp 1 - 2

FIGURE: mRNA PCA: comp 1 - 2

FIGURE: protein PCA: comp 1 - 2

2.0.0.1 PCA: Conclusion Data looks all right. No outliers detected. Seems to be some grouping of samples present. -> Problem: There is some source of variation in the data that we can not explain with our strain groupings. -> We need to have some sort of supervised analysis to resolve this.

3 Partial Least Squares – Discriminant Analysis (PLS-DA)

```
##### PLS-DA, sPLS-DA ####
# 1 Run the method
MyResult.plsda_miRNA <- plsda(X$miRNA, Y)

MyResult.plsda_mRNA <- plsda(X$mRNA, Y)

MyResult.plsda_protein <- plsda(X$protein, Y)</pre>
```


FIGURE: miRNA PLS-DA: comp 1 - 2, supervised analysis using the full data.

```
# sPLS-DA NEEDS TO BE TUNED AND NUMBERS OF COMPONENTS OPTIMISED. SKIPPED HERE DUE TO TIME CONSTRAINTS. #https://mixomicsteam.github.io/mixOmics-Vignette/id_05.html
```


FIGURE: mRNA PLS-DA: comp 1 - 2, supervised analysis using the full data.

FIGURE: protein PLS-DA: comp 1 - 2, supervised analysis using the full data.

3.1 Plot the variables plotVar(MyResult.plsda_miRNA)

FIGURE: miRNA: PLS-DA: contributing variables to PLS-DA comp 1 - 2, supervised analysis using the full data.

3.2 Plot the variables
plotVar(MyResult.plsda_mRNA)

FIGURE: mRNA: PLS-DA: contributing variables to PLS-DA comp 1 - 2, supervised analysis using the full data.

FIGURE: Protein: PLS-DA: contributing variables to PLS-DA comp 1 - 2, supervised analysis using the full data.

3.0.0.1 PLS-DA: Conclusion Lots of variable and some noise in the data. Data reduction might be beneficial using a sparse PLS-DA in order to separate groups and get a clear picture of the data and important variables.

4 sparse Partial Least Squares – Discriminant Analysis (sPLS-DA)

```
# DATA REDUCTION APPROACH.
#########
# miRNA
#########

# sPLS-DA NEEDS TO BE TUNED AND NUMBERS OF COMPONENTS OPTIMISED. SKIPPED HERE DUE TO TIME CONSTRAINTS.
#https://mixomicsteam.github.io/mixOmics-Vignette/id_05.html

#### sPLS-DA, using reduced data, TOP 15 variables
MyResult.splsda.miRNA <- splsda(X$miRNA, Y, keepX = c(15,15)) # 1 Run the method

plotIndiv(MyResult.splsda.miRNA) # 2 Plot the samples</pre>
```


FIGURE: miRNA sparse PLS-DA: comp 1 - 2, supervised analysis using the only the most influential variables, here TOP 15.

plotVar(MyResult.splsda.miRNA) # 3 Plot the variables

FIGURE: miRNA contributing variables to sparse PLS-DA: comp 1 - 2, supervised analysis using the only the most influential variables, here TOP 15.

selectVar(MyResult.splsda.miRNA, comp = 1)\$value

```
##
                  value.var
## hsa-mir-17
                  0.53512288
## hsa-mir-505
                  0.41390204
## hsa-mir-590
                  0.40421610
## hsa-mir-130b
                 0.33995192
## hsa-mir-20a
                  0.30646439
## hsa-mir-106a
                 0.27838707
## hsa-mir-106b
                 0.25493987
## hsa-mir-186
                  0.10531789
## hsa-mir-197
                  0.08915897
## hsa-mir-1301
                 0.06329850
## hsa-let-7d
                  0.03813361
## hsa-mir-93
                  0.03323711
## hsa-mir-146a
                 0.02821574
## hsa-mir-19b-2 0.01874094
## hsa-mir-532
                  0.01422720
plotLoadings(MyResult.splsda.miRNA, comp = 1, method = 'mean', contrib = 'max')
```


FIGURE: miRNA contributing variables to sparse PLS-DA: comp 1.

```
selectVar(MyResult.splsda.miRNA, comp = 2)$value
##
                    value.var
## hsa-mir-30a
                  0.731118807
## hsa-mir-30c-2
                  0.394949283
## hsa-mir-101-2
                  0.330579061
## hsa-mir-101-1
                  0.213529839
## hsa-let-7b
                  0.194235330
## hsa-mir-497
                  0.187334933
## hsa-mir-125a
                  0.133615000
## hsa-mir-195
                  0.130327422
## hsa-mir-192
                 -0.123881223
## hsa-mir-2355
                 -0.111398761
## hsa-mir-148a
                 -0.103392290
## hsa-mir-181c
                  0.082626636
## hsa-mir-181d
                  0.037126166
## hsa-let-7a-3
                  0.016992438
## hsa-let-7a-2
                  0.001561175
```

plotLoadings(MyResult.splsda.miRNA, comp = 2, method = 'mean', contrib = 'max')

FIGURE: miRNA contributing variables to sparse PLS-DA: comp 2.

```
# DATA REDUCTION APPROACH.
##########
# mRNA
#########

# sPLS-DA NEEDS TO BE TUNED AND NUMBERS OF COMPONENTS OPTIMISED. SKIPPED HERE DUE TO TIME CONSTRAINTS.
#https://mixomicsteam.github.io/mixOmics-Vignette/id_05.html

#### sPLS-DA, using reduced data, TOP 15 variables
MyResult.splsda.mRNA <- splsda(X$mRNA, Y, keepX = c(15,15)) # 1 Run the method

plotIndiv(MyResult.splsda.mRNA) # 2 Plot the samples</pre>
```


FIGURE: mRNA sparse PLS-DA: comp 1 - 2, supervised analysis using the only the most influential variables, here TOP 15.

FIGURE: mRNA contributing variables to sparse PLS-DA: comp 1 - 2, supervised analysis using the only the most influential variables, here TOP 15.

value.var

```
## ZNF552 -0.50951316
## KDM4B
           -0.42377034
## LRIG1
           -0.32072098
## PREX1
           -0.31919977
## CCNA2
            0.28423322
## TTC39A -0.26899129
## C4orf34 -0.26022547
## FUT8
           -0.24803089
## ASPM
            0.14511409
## MEX3A
            0.13460957
## SLC43A3 0.13183948
## SEMA3C
           -0.12219842
## STC2
           -0.03245939
## LMO4
            0.02781010
## E2F1
            0.01908383
```

plotLoadings(MyResult.splsda.mRNA, comp = 1, method = 'mean', contrib = 'max')

FIGURE: mRNA contributing variables to sparse PLS-DA: comp 1.

```
selectVar(MyResult.splsda.mRNA, comp = 2)$value
##
              value.var
## TP53INP2 0.59228590
## CDK18
            -0.54781654
## TRIM45
            -0.30488946
## NDRG2
            -0.27745506
## STAT5A
            -0.25011165
## PLEKHA4
            -0.22742692
## ZNF37B
            -0.20035670
## PLCD3
            -0.08312372
## OGFRL1
            -0.06966381
```

```
## ELP2 -0.06901105
## STC2 -0.05971429
## NES -0.04906850
## SDC1 0.03447395
## AMN1 -0.03046066
## PROM2 0.01090741
```

```
plotLoadings(MyResult.splsda.mRNA, comp = 2, method = 'mean', contrib = 'max')
```


FIGURE: mRNA contributing variables to sparse PLS-DA: comp 2.

```
# DATA REDUCTION APPROACH.
#########
# Protein
#########

# sPLS-DA NEEDS TO BE TUNED AND NUMBERS OF COMPONENTS OPTIMISED. SKIPPED HERE DUE TO TIME CONSTRAINTS.
#https://mixomicsteam.github.io/mixOmics-Vignette/id_05.html

#### sPLS-DA, using reduced data, TOP 15 variables
MyResult.splsda.protein <- splsda(X$protein, Y, keepX = c(15,15)) # 1 Run the method

plotIndiv(MyResult.splsda.protein) # 2 Plot the samples</pre>
```


FIGURE: Protein sparse PLS-DA: comp 1 - 2, supervised analysis using the only the most influential variables, here TOP 15.

FIGURE: Protein contributing variables to sparse PLS-DA: comp 1 - 2, supervised analysis using the only the most influential variables, here TOP 15.

Component 1

selectVar(MyResult.splsda.protein, comp = 1)\$value # Selected variables on comp 1
value.var

```
## ER-alpha
                  -0.49448387
## GATA3
                  -0.44990575
## ASNS
                   0.31478915
## Cyclin_B1
                   0.28559119
## PR
                  -0.27669620
## JNK2
                  -0.25604971
## AR
                  -0.24232685
## INPP4B
                  -0.23251218
## Cyclin_E1
                   0.21296917
## CDK1
                   0.18216101
## Bcl-2
                  -0.17753398
## p53
                   0.06524030
## Chk2_pT68
                   0.03984212
## PDK1_pS241
                  -0.03067046
## ER-alpha_pS118 -0.02585243
```

plotLoadings(MyResult.splsda.protein, comp = 1, method = 'mean', contrib = 'max')

FIGURE: Protein contributing variables to sparse PLS-DA: comp 1.

ult.splsda.protein,	comp = 2)\$value	# Selected variables on comp
value.var		
0.638805635		
0.602765329		
0.367647086		
-0.178052507		
0.154661976		
0.131304702		
-0.110377739		
-0.057959733		
-0.050270698		
	value.var 0.638805635 0.602765329 0.367647086 -0.178052507 0.154661976 0.131304702 -0.110377739 -0.057959733	0.638805635 0.602765329 0.367647086 -0.178052507 0.154661976 0.131304702 -0.110377739 -0.057959733

```
## Shc_pY317 0.034489077

## 14-3-3_epsilon -0.030816673

## c-Myc -0.013079244

## mTOR_pS2448 0.011728989

## ACC1 0.005450146

## PTEN 0.005076423
```

```
plotLoadings(MyResult.splsda.protein, comp = 2, method = 'mean', contrib = 'max')
```


FIGURE: Protein contributing variables to sparse PLS-DA: comp 2.

4.0.0.1 sPLS-DA: Conclusion Data reduction seems beneficial using a sparse PLS-DA in order to separate groups and get a clear picture of the data and important variables. Lets try the integrated data analysis using all three data sets.

5 Multiblock PLS-DA (DIABLO)

5.1 Parameter choice

5.1.1 Design matrix

```
# HERE WE LOOK AT DESIGN MATRIX WITH 0.1.
# A full design with weights = 1 will favour the latter, but at the expense of classification accuracy,
# FOR A FULLY WEIGHTED DESIGN: use "matrix(1, ncol...", WHICH IS FOCUSSING ON EXTRACTING THE MOST CORRE
design <- matrix(0.1, ncol = length(X), nrow = length(X),</pre>
                 dimnames = list(names(X), names(X)))
diag(design) <- 0</pre>
design
##
           mRNA miRNA protein
## mRNA
            0.0
                  0.1
## miRNA
            0.1
                  0.0
                           0.1
## protein 0.1
                  0.1
                           0.0
# How much correlation between data sets?
pls.res1 <- pls(X$mRNA, X$protein, ncomp = 1)</pre>
cor(pls.res1$variates$X, pls.res1$variates$Y)
              comp1
## comp1 0.9031761
pls.res2 <- pls(X$mRNA, X$miRNA, ncomp = 1)</pre>
cor(pls.res2$variates$X, pls.res2$variates$Y)
             comp1
## comp1 0.8456299
pls.res3 <- pls(X$protein, X$miRNA, ncomp = 1)</pre>
cor(pls.res3$variates$X, pls.res3$variates$Y)
             comp1
## comp1 0.7982008
# Decent amount of correlation between data sets. The data sets taken in a pairwise manner are highly c
```

5.1.2 Number of components

```
## ----diablo-perf, message=FALSE, fig.cap='(ref:diablo-perf)'----
diablo.tcga <- block.plsda(X, Y, ncomp = 5, design = design)
set.seed(123) # For reproducibility, remove for your analyses</pre>
```

5.1 Parameter choice 20

```
perf.diablo.tcga = perf(diablo.tcga, validation = 'Mfold', folds = 5, nrepeat = 5)
# The validation of the folds parameter was too high and had to be reduced.
# Plot of the error rates based on weighted vote
plot(perf.diablo.tcga)
```


FIGURE: Multi block PLS-DA, error rates: based on weighted vote. Choosing the number of components. Error rate is minimum using how many dimensions?

```
## -----
perf.diablo.tcga$choice.ncomp$WeightedVote

## max.dist centroids.dist mahalanobis.dist
## Overall.ER 3 2 2
## Overall.BER 3 2 2
## -----
ncomp <- perf.diablo.tcga$choice.ncomp$WeightedVote["Overall.BER", "centroids.dist"]</pre>
```

5.1.3 Number of variables to select

5.2 Final model 21

```
## $mRNA

## [1] 10 15

##

## $miRNA

## [1] 14 7

##

## $protein

## [1] 5 20
```

5.2 Final model

```
## mRNA miRNA protein Y
## mRNA 0.0 0.1 0.1 1
## miRNA 0.1 0.0 0.1 1
## protein 0.1 0.1 0.0 1
## Y 1.0 1.0 0.0
```

```
## ---- eval = FALSE-----
## # mRNA variables selected on component 1
## selectVar(diablo.tcga, block = 'mRNA', comp = 1)
```

5.3 Sample plots

5.3.1 plotDiablo

```
## variables selected on component 1
selectVar(diablo.tcga, block = 'miRNA', comp = 1)$miRNA$name
```

```
"hsa-mir-130b" "hsa-mir-106b"
##
    [1] "hsa-mir-17"
                       "hsa-mir-590" "hsa-mir-505"
##
    [6] "hsa-mir-20a"
                       "hsa-mir-106a" "hsa-mir-197"
                                                     "hsa-mir-1301" "hsa-mir-186"
## [11] "hsa-mir-93"
                       "hsa-let-7d"
                                      "hsa-mir-532"
                                                     "hsa-mir-146a"
selectVar(diablo.tcga, block = 'mRNA', comp = 1)$mRNA$name
    [1] "ZNF552"
                            "CCNA2"
                                      "LRIG1"
                                                           "FUT8"
##
                  "KDM4B"
                                                "PREX1"
                                                                     "C4orf34"
    [8] "TTC39A"
                  "ASPM"
                            "SLC43A3"
selectVar(diablo.tcga, block = 'protein', comp = 1)$protein$name
## [1] "ER-alpha"
                   "GATA3"
                               "ASNS"
                                            "Cyclin_B1" "AR"
plotDiablo(diablo.tcga, ncomp = 1)
                          mRNA
                        0.82
                                          miRNA
```

FIGURE: Multi block PLS-DA, diagnostic plot: component 1, 95% confidence intervals are plotted. Numbers indicate correlation coefficients between the first components from each data set.

0.71

Basal Her2 LumA

protein

0.87

```
selectVar(diablo.tcga, block = 'miRNA', comp = 2)$miRNA$name
## [1] "hsa-mir-30a"
                        "hsa-mir-30c-2" "hsa-mir-101-2" "hsa-mir-101-1"
## [5] "hsa-mir-192"
                        "hsa-mir-181c" "hsa-mir-195"
selectVar(diablo.tcga, block = 'mRNA', comp = 2)$mRNA$name
                               "NDRG2"
                                          "TRIM45"
                                                                 "PLEKHA4"
    [1] "TP53INP2" "CDK18"
                                                      "STAT5A"
    [7] "ZNF37B"
                    "OGFRL1"
                               "PLCD3"
                                          "SDC1"
                                                      "STC2"
                                                                 "NES"
## [13] "ELP2"
                   "PROM2"
                               "PSIP1"
```

selectVar(diablo.tcga, block = 'protein', comp = 2)\$protein\$name

```
"EGFR_pY1068"
##
    [1] "HER2"
                          "HER2_pY1248"
                                                               "c-Kit"
    [5] "AR"
                          "HER3_pY1289"
                                            "XRCC1"
##
                                                              "Smad4"
   [9] "c-Myc"
                          "PCNA"
                                            "ACC1"
                                                               "Shc_pY317"
## [13] "14-3-3_epsilon"
                          "mTOR_pS2448"
                                            "PTEN"
                                                               "Akt"
## [17] "4E-BP1_pS65"
                          "ACC_pS79"
                                                               "MIG-6"
                                            "Cyclin_E1"
```

```
## ----plot-diablo, message=FALSE, fig.cap='(ref:plot-diablo)'----
plotDiablo(diablo.tcga, ncomp = 2)
```


FIGURE: Multi block PLS-DA, diagnostic plot: component 2, 95% confidence intervals are plotted. Numbers indicate correlation coefficients between the first components from each data set.

FIGURE: Multi block PLS-DA, individual omes: Check that extracted data sets can discriminate between samples: True.

plotIndiv(diablo.tcga, ind.names = FALSE, legend = TRUE, ellipse = TRUE, title = 'TCGA, DIABLO comp 1 -

 ${\bf FIGURE:\ Multi\ block\ PLS-DA:\ } {\bf Main\ plot\ that\ includes\ all\ three\ data\ sets\ -\ with\ symbols.}$

FIGURE: Multi block PLS-DA: Main plot that includes all three data sets - with individual sample names.

5.3.2 plotArrow

FIGURE: arrow plot for Multi block PLS-DA: Shows agreement between the three data sets. Some samples have a bit of variability between data sets.

5.3.3 plotVar

TCGA, DIABLO comp 1 - 2

FIGURE: circle plot for Multi block PLS-DA: Shows correlation between variables.

TCGA, DIABLO comp 1 - 2

FIGURE: circle plot for Multi block PLS-DA: Shows correlation between variables - and names, which are overlapping unfortunately.

5.3.4 circosPlot

FIGURE: circos plot for Multi block PLS-DA: Plot represents the correlations between variables of different types, represented on the side quadrants..

5.3.5 cimDiablo

```
# USE THIS CODE INSTEAD TO EXPORT HEATMAP
time<-format(Sys.time(),"%d-%m-%Y")
Title <- paste("Clustered Image Map for Multi block PLS-DA")
FileName <- paste(Title,time,".jpg")
jpeg(file=FileName, width = 2280, height = 1280, res = 210)
#
cimDiablo(diablo.tcga, color.blocks = c('darkorchid', 'brown1', 'lightgreen'), comp = 1, margin=c(8,20)</pre>
```

##

trimming values to [-3, 3] range for cim visualisation. See 'trim' arg in ?cimDiablo

```
#
dev.off()
```

pdf ## 2

FIGURE: Clustered Image Map (CIM) for Multi block PLS-DA: Shows correlation between variables - and names.

5.3.6 plotLoadings

```
## ----diablo-loading, message=FALSE, fig.cap='(ref:diablo-loading)'----
plotLoadings(diablo.tcga, comp = 1, contrib = 'max', method = 'median')
```


FIGURE: SYMBIONT contributing variables to sparse PLS-DA: comp 1.

```
## ----diablo-loading, message=FALSE, fig.cap='(ref:diablo-loading)'----
plotLoadings(diablo.tcga, comp = 2, contrib = 'max', method = 'median')
```


FIGURE: SYMBIONT contributing variables to sparse PLS-DA: comp 2.

```
## variables selected for block LIPIDS on component 1 & 2 selectVar(diablo.tcga, block = 'miRNA', comp = 1)$miRNA$value
```

```
##
                 value.var
## hsa-mir-17
                0.50784008
## hsa-mir-590
               0.44637708
## hsa-mir-505 0.41777112
## hsa-mir-130b 0.38936001
## hsa-mir-106b 0.26105215
## hsa-mir-20a 0.24302558
## hsa-mir-106a 0.24255557
## hsa-mir-197 0.10400667
## hsa-mir-1301 0.09207592
## hsa-mir-186 0.08917724
## hsa-mir-93
                0.03781788
## hsa-let-7d
                0.03212231
## hsa-mir-532 0.02281795
## hsa-mir-146a 0.02094122
```

selectVar(diablo.tcga, block = 'miRNA', comp = 2)\$miRNA\$value

```
## value.var
## hsa-mir-30a -0.88888510
## hsa-mir-30c-2 -0.26428373
```

variables selected for block METABOLITES on component 1 & 2
selectVar(diablo.tcga, block = 'mRNA', comp = 1)\$metabolites\$value

NUT.T.

```
selectVar(diablo.tcga, block = 'mRNA', comp = 2)$metabolites$value
```

NULL

```
## variables selected for block PROTEOME on component 1 & 2
selectVar(diablo.tcga, block = 'protein', comp = 1)$protein$value
```

```
## value.var

## ER-alpha -0.7416120

## GATA3 -0.6291728

## ASNS 0.1598018

## Cyclin_B1 0.1313683

## AR -0.1065784
```

selectVar(diablo.tcga, block = 'protein', comp = 2)\$protein\$value

```
##
                     value.var
## HER2
                   0.637172330
## HER2_pY1248
                  0.595322093
## EGFR_pY1068
                   0.355593269
## c-Kit
                  -0.212945250
## AR
                  0.156324373
## HER3_pY1289
                  0.144008226
## XRCC1
                  -0.087589029
## Smad4
                  -0.070788022
## c-Myc
                  -0.040872523
## PCNA
                  -0.040097552
## ACC1
                   0.039151934
## Shc_pY317
                   0.038155173
## 14-3-3_epsilon -0.035791135
## mTOR_pS2448
                   0.029555915
## PTEN
                   0.022830962
## Akt
                   0.019951184
## 4E-BP1_pS65
                  0.019412723
## ACC_pS79
                  0.013973232
## Cyclin_E1
                  -0.004477490
## MIG-6
                  -0.004385699
```

```
## -----
# Performance with Majority vote
perf.diablo.tcga$MajorityVote.error.rate
```

```
## $max.dist
##
                              comp2
                                        comp3
                   comp1
                                                   comp4
                                                               comp5
## Basal
              0.02666667 0.03555556 0.02222222 0.06222222 0.062222222
## Her2
              1.00000000 0.27333333 0.18666667 0.17333333 0.146666667
## LumA
              ## Overall.ER 0.20800000 0.06533333 0.04400000 0.05333333 0.050666667
## Overall.BER 0.34222222 0.10296296 0.06962963 0.07851852 0.071407407
##
##
  $centroids.dist
##
                   comp1
                              comp2
                                        comp3
                                                   comp4
                                                              comp5
              0.07111111 0.04000000 0.03555556 0.05333333 0.04888889
## Basal
              0.24666667 0.11333333 0.10000000 0.12000000 0.13333333
## Her2
## LumA
              0.06933333 0.04533333 0.04000000 0.03466667 0.03466667
## Overall.ER 0.10533333 0.05733333 0.05066667 0.05733333 0.05866667
  Overall.BER 0.12903704 0.06622222 0.05851852 0.06933333 0.07229630
##
##
  $mahalanobis.dist
##
                              comp2
                   comp1
                                        comp3
                                                   comp4
                                                              comp5
## Basal
              0.07111111 0.04000000 0.03111111 0.05333333 0.06222222
              0.24666667 0.09333333 0.08666667 0.05333333 0.08666667
## Her2
## T.11m A
              0.06933333 0.05333333 0.04266667 0.01866667 0.01333333
## Overall.ER 0.10533333 0.05733333 0.04800000 0.03600000 0.04266667
## Overall.BER 0.12903704 0.06222222 0.05348148 0.04177778 0.05407407
```

```
## ------
# Performance with Weighted vote
perf.diablo.tcga$WeightedVote.error.rate
```

```
## $max.dist
##
                   comp1
                              comp2
                                        comp3
                                                   comp4
                                                               comp5
              0.02666667 0.02666667 0.02222222 0.04888889 0.048888889
## Basal
              1.00000000 0.24000000 0.15333333 0.14666667 0.133333333
## Her2
              ## Overall.ER 0.20800000 0.05600000 0.03733333 0.04400000 0.044000000
  Overall.BER 0.34222222 0.08888889 0.05851852 0.06518519 0.062518519
##
## $centroids.dist
##
                              comp2
                                        comp3
                   comp1
                                                   comp4
## Basal
              0.06666667 0.03111111 0.02666667 0.04000000 0.03555556
## Her2
              0.22666667 0.07333333 0.06666667 0.09333333 0.10666667
              0.06933333 0.04266667 0.03733333 0.03466667 0.03466667
## T.11m A
## Overall.ER 0.10000000 0.04533333 0.04000000 0.04800000 0.04933333
  Overall.BER 0.12088889 0.04903704 0.04355556 0.05600000 0.05896296
##
##
## $mahalanobis.dist
##
                   comp1
                              comp2
                                        comp3
                                                   comp4
                                                              comp5
              0.06666667 0.01777778 0.02666667 0.04000000 0.04444444
## Basal
              0.22666667 0.07333333 0.06666667 0.04666667 0.08666667
## Her2
              0.06933333 0.04800000 0.03200000 0.01866667 0.01333333
## LumA
```

```
## Overall.ER 0.10000000 0.04400000 0.03733333 0.03066667 0.03733333 ## Overall.BER 0.12088889 0.04637037 0.04177778 0.03511111 0.04814815
```

5.4 Model performance and prediction

NOT COVERED HERE

6 WORKING WITH OWN DATA

```
#setwd("PATH/TO/FOLDER")
# REQUIRED FORMAT:
# -> Your data in columns, with short and unique names
# Load from csv file
data_1 <- read.csv("PATH/TO/FOLDER/file1.csv", row.names = 1, header = TRUE, sep = '\t')</pre>
data_2 <- read.csv("PATH/TO/FOLDER/file1.csv", row.names = 1, header = TRUE, sep = '\t')
data_3 <- read.csv("PATH/TO/FOLDER/file1.csv", row.names = 1, header = TRUE, sep = '\t')</pre>
data_1 <- as.matrix(data_1)</pre>
data_2 <- as.matrix(data_2)</pre>
data_3 <- as.matrix(data_3)</pre>
# Generate list of the data sets
X <- list(data_1 = data_1,</pre>
          data_2 = data_2,
          data_3 = data_3)
summary(X)
data_meta <- read.csv("PATH/TO/FOLDER/MetaData.csv", header = TRUE, sep = '\t')</pre>
Y_factor <- data_meta$YourFactor %>% as.factor()
summary(Y)
Y_scale <- data_meta$YourScale %>% as.numeric()
summary(Y_scale)
```

7 SESSION INFO

sessionInfo()

```
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.6 LTS
##
## Matrix products: default
           /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
## BLAS:
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8
                                   LC_NUMERIC=C
   [3] LC_TIME=en_GB.utf8
                                   LC_COLLATE=en_GB.UTF-8
  [5] LC_MONETARY=en_GB.UTF-8
                                   LC_MESSAGES=en_GB.UTF-8
  [7] LC_PAPER=en_GB.UTF-8
                                   LC_NAME=C
                                   LC_TELEPHONE=C
   [9] LC_ADDRESS=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Australia/Sydney
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                    base
## other attached packages:
  [1] lubridate_1.9.2 forcats_1.0.0
                                        stringr_1.5.0
                                                         dplyr_1.1.2
                        readr 2.1.4
   [5] purrr 1.0.1
                                        tidyr 1.3.0
                                                         tibble 3.2.1
## [9] tidyverse_2.0.0 mix0mics_6.24.0 ggplot2_3.4.2
                                                         lattice 0.21-8
## [13] MASS_7.3-60
                        knitr_1.43
## loaded via a namespace (and not attached):
## [1] utf8_1.2.3
                            generics_0.1.3
                                                 stringi_1.7.12
## [4] hms_1.1.3
                            digest_0.6.33
                                                 magrittr_2.0.3
## [7] timechange_0.2.0
                                                 grid_4.3.1
                            evaluate_0.21
## [10] RColorBrewer_1.1-3
                            fastmap_1.1.1
                                                 plyr_1.8.8
## [13] Matrix_1.6-0
                                                 RSpectra_0.16-1
                            ggrepel_0.9.3
## [16] gridExtra_2.3
                            fansi_1.0.4
                                                 scales_1.2.1
## [19] codetools_0.2-19
                                                 rlang_1.1.1
                            cli_3.6.1
## [22] munsell 0.5.0
                            withr 2.5.0
                                                 yaml 2.3.7
## [25] ellipse_0.5.0
                            tools_4.3.1
                                                 parallel_4.3.1
## [28] tzdb 0.4.0
                            reshape2_1.4.4
                                                 BiocParallel_1.34.2
## [31] colorspace_2.1-0
                            corpcor_1.6.10
                                                 vctrs_0.6.3
## [34] R6_2.5.1
                            matrixStats_1.0.0
                                                 lifecycle_1.0.3
## [37] pkgconfig_2.0.3
                            pillar_1.9.0
                                                 gtable_0.3.3
## [40] glue_1.6.2
                            rARPACK_0.11-0
                                                 Rcpp_1.0.11
## [43] xfun_0.39
                            tidyselect_1.2.0
                                                 rstudioapi_0.15.0
## [46] farver_2.1.1
                            snow_0.4-4
                                                 htmltools_0.5.5
## [49] igraph_1.5.0.1
                            labeling_0.4.2
                                                 rmarkdown_2.23
## [52] compiler_4.3.1
```