Secant Method

Tamas Kis | tamas.a.kis@outlook.com | https://tamaskis.github.io

CONTENTS

1 Secant Method 2

References 5

Copyright © 2021 Tamas Kis

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1 SECANT METHOD

Newton's method is a root-finding technique that uses the derivative of a function to find its root¹. Newton's method is defined iteratively as [2, Eq. (1)]

 $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \tag{1}$

But what if we don't know f'(x)? Then we need to approximate it using some numerical method. Specifically, for the secant method, we use the backward approximation of a derivative, given by Eq. (2) below.

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \tag{2}$$

This approximation can be visualized using the finite difference stencil shown in Fig. 1.

Figure 1: Backward approximation.

Substituting Eq. (2) into Eq. (1),

$$x_{i+1} = x_i - \left[\frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})}\right] f(x_i) = \frac{[f(x_i) - f(x_{i-1})] x_i}{f(x_i) - f(x_{i-1})} - \frac{(x_i - x_{i-1}) f(x_i)}{f(x_i) - f(x_{i-1})}$$

$$= \frac{x_i f(x_i) - x_i f(x_{i-1})}{f(x_i) - f(x_{i-1})} + \frac{x_{i-1} f(x_i) - x_i f(x_i)}{f(x_i) - f(x_{i-1})} = \frac{x_i f(x_i) - x_i f(x_i) + x_{i-1} f(x_i) - x_i f(x_{i-1})}{f(x_i) - f(x_{i-1})}$$

$$x_{i+1} = \frac{x_{i-1} f(x_i) - x_i f(x_{i-1})}{f(x_i) - f(x_{i-1})}$$
(3)

Equation (3) iteratively defines the **secant method**, which can be essentially thought of as a finite difference approximation of Newton's method for finding the root of a univariate function (based on an initial guess²). But how do we actually use Eq. (3)? Given an initial guess x_0 , we can keep coming up with new estimates of the root. But how do we know when to stop? To resolve this issue, we define the **error**³ as

$$\varepsilon = |x_{i+1} - x_i| \tag{4}$$

¹ For a discussion/MATLAB implementation of Newton's method, see [2].

Often, a function f(x) will have multiple roots. Therefore, the secant method typically finds the root closest to the initial guess x_0 . However, this is not always the case; the algorithm depends heavily on the derivative of f(x), which, depending on its form, may cause it to converge on a root further from x_0 .

Note that ε is an approximate error. The motivation behind using this definition of ε is that as i gets large (i.e. $i \to \infty$), $x_{i+1} - x_i$ approaches $x_{i+1} - x^*$ (assuming this sequence is convergent), where x^* is the true root (and therefore $x_{i+1} - x^*$ represents the exact error).

Once ε is small enough, we say that the estimate of the root has **converged** to the true root, x^* , within some **tolerance** (which we denote as TOL). Therefore, if we predetermine that, at most, we can *tolerate* an error of TOL, then we will keep iterating Eq. (3) until ε < TOL. In some cases, the error may never decrease below TOL, or take too long to decrease to below TOL. Therefore, we also define the **maximum number of iterations** (i_{max}) so that the algorithm does not keep iterating forever, or for too long of a time.

In any implementation, we first have to make an initial guess x_0 for the root. Additionally, we need to set the root estimate at the second iteration (i.e. x_2) to a value slightly different than x_0 – otherwise, we will just have $x_{i+1} = x_i$ for all i and the algorithm will never "get started" (we can think of this has "kick-starting" the algorithm)⁴ [1, 3, 4].

There are two basic algorithms for implementing the secant method. The first implementation, shown in Algorithm 1 below, does *not* store the result of each iteration. On the other hand, the second implementation, shown in Algorithm 2, *does* store the result of each iteration. secant method implements both of these algorithms.

Since Algorithm 2 first needs to preallocate a potentially huge array to store all of the intermediate solutions, Algorithm 1 is significantly faster. Even if $i_{\rm max}$ (determines size of the preallocated array) is set to be a small number (for example, 10), Algorithm 1 is still faster. The reason we still consider and implement Algorithm 2 is so that convergence studies may be performed.

Algorithm 1:

Secant method ("fast" implementation).

Given:

- f(x) univariate, scalar-valued function $(f : \mathbb{R} \to \mathbb{R})$
- $x_0 \in \mathbb{R}$ initial guess for root
- $TOL \in \mathbb{R}$ tolerance
- $i_{\max} \in \mathbb{R}$ maximum number of iterations

Procedure:

1. Initialize the error so that the loop will be entered.

$$\varepsilon = (2)(TOL)$$

Manually set the root estimates at the first and second iterations based on the initial guess.

$$x_{\text{old}} = x_0$$
$$x_{\text{int}} = x_0 + 0.001$$

3. Initialize x_{new} so its scope will not be limited to within the while loop.

$$x_{\text{new}} = 0$$

4. Find the root using the secant method.

$$i = 2$$

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

If $x_i = x_{i-1}$, then the approximation to $f'(x_i)$ will become undefined, resulting in an error.

⁴ The alternative way to view this is by recalling that the derivative approximation is given by

while $(\varepsilon > \text{TOL})$ and $(i < i_{\text{max}})$

(a) Update root estimate.

$$x_{\text{new}} = \frac{x_{\text{old}} f(x_{\text{int}}) - x_{\text{int}} f(x_{\text{old}})}{f(x_{\text{int}}) - f(x_{\text{old}})}$$

(b) Calculate error.

$$\varepsilon = |x_{\text{new}} - x_{\text{int}}|$$

(c) Store current and previous estimates for next iteration.

$$x_{\text{old}} = x_{\text{int}}$$

 $x_{\text{int}} = x_{\text{new}}$

(d) Increment loop index.

$$i = i + 1$$

end

Return:

• $x^* = x_{\text{new}} \in \mathbb{R}$ - converged root

Algorithm 2:

Secant method ("return all" implementation).

Given:

- f(x) univariate, scalar-valued function $(f : \mathbb{R} \to \mathbb{R})$
- $x_0 \in \mathbb{R}$ initial guess for root
- $TOL \in \mathbb{R}$ tolerance
- $i_{\max} \in \mathbb{R}$ maximum number of iterations

Procedure:

1. Initialize the error so that the loop will be entered.

$$\varepsilon = (2)(TOL)$$

- 2. Preallocate $\mathbf{x} \in \mathbb{R}^{i_{\max}}$ to store the estimates of the root at each iteration.
- 3. Manually set the root estimates at the first and second iterations based on the initial guess.

$$x_1 = x_0$$
$$x_2 = 1.01x_0$$

4. Find the root using the secant method.

$$i = 2$$

while $(\varepsilon > \mathrm{TOL})$ and $(i < i_{\mathrm{max}})$

(a) Update root estimate.

$$x_{i+1} = \frac{x_{i-1}f(x_i) - x_i f(x_{i-1})}{f(x_i) - f(x_{i-1})}$$

(b) Calculate error.

$$\varepsilon = |x_{i+1} - x_i|$$

(c) Increment loop index.

$$i = i + 1$$

end

Return:

• $\mathbf{x}^* \in \mathbb{R}^n$ - vector where the first element is the initial guess for the root (x_0) , the subsequent elements are the intermediate root estimates, and the final element is the converged root (x^*)

6 REFERENCES

REFERENCES

[1] Richard L. Burden and J. Douglas Faires. "Newton's Method and Its Extensions". In: *Numerical Analysis*. 9th ed. Boston, MA: Brooks/Cole, Cengage Learning, 2011. Chap. 2.3, pp. 67–78.

- [2] Tamas Kis. Newton's Method. 2021. URL: https://tamaskis.github.io/documentation/Newton_s_Method.pdf.
- [3] Newton's method. Wikipedia. Accessed: June 10, 2020. URL: https://en.wikipedia.org/wiki/Newton% 27s_method.
- [4] Secant method. Wikipedia. Accessed: January 15, 2020. URL: https://en.wikipedia.org/wiki/Secant_method.