TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH BÀI TẬP MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

HOMEWORK #1: ĐÁNH GIÁ THUẬT TOÁN DÙNG KỸ THUẬT TOÁN SƠ CẤP

GV hướng dẫn: Huỳnh Thị Thanh Hương

Người thực hiện: Nguyễn Đỗ Quang 20520720

TP.HCM, ngày 15, tháng 9, năm 2022

Bài 1:

$$\frac{5a. 1 + 3}{a. 1 + 3 + 5 + 7 + \dots + 999}$$

$$= \frac{n[2a1 + (n-1)*2]}{2} = \frac{500*[2 + 499*2]}{2} = 250000$$

b.
$$2+4+8+16+...+1024 = 2^{n+1}-1-1 = 2^{33}-2=2046$$

c.
$$\sum_{i=3}^{n+1} 1 = 3 + 3 + ... = (n+1-3+1)*3 = 3*(n-1) = 3n-3$$

d.
$$\sum_{i=3}^{n+1} i = 3 + 4 + 5 + \dots + n + 1 = \frac{(n+1)(n+1+1)}{2} - 2 - 1 = \frac{n^2 + 3n + 2}{2} - 3 = \frac{n^2 + 3n - 4}{2}$$

e.
$$\sum_{i=0}^{n-1} i(i+1) = \sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} i = \frac{n(n+1)(2n+1)}{6} - n^2 + \frac{n^2+n}{2} - n$$

= $\frac{2n^3 - 3n^2 + n}{6} + \frac{n^2 - n}{2} = \frac{2n^3 - 2n}{6} = \frac{n^3 - n}{3}$

f.
$$\sum_{j=1}^{n} 3^{j+1} = 3^2 + 3^3 + 3^4 + ... + 3^{n+1} = \frac{3^{n+2}-1}{3-1} - 3 - 1 = \frac{3^{n+2}-9}{2}$$

g.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij = 1*1+1*2+1*3+ \dots 1*n+\dots +2*1+2*2 +\dots 2*n+\dots n*n$$

$$= 1*(\frac{n(n+1)}{2}) + 2*(\frac{n(n+1)}{2}) + \dots +n*(\frac{n(n+1)}{2})$$

$$= (\frac{n(n+1)}{2})(\frac{n(n+1)}{2}) = (\frac{n^4+2n^3+n^2}{4})$$

h.
$$\sum_{i=0}^{n} \frac{1}{i(i+1)} = \sum_{i=1}^{n} \frac{1}{i} - \frac{1}{i+1} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

i.
$$\sum_{j \in \{2,3,5\}} (j^2 + j) = (2^2 + 2) + (3^2 + 3) + (5^2 + 5) = 6 + 12 + 30 = 48$$

$$j.\sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{100} (i+j) = 101 \sum_{i=1}^{m} \sum_{j=0}^{n} (i+j)$$

$$= 101[(1+0) + (1+1) + (1+2) + \dots + (2+0) + (2+1) + \dots + (m+n)]$$

$$= 101 \left(\sum_{i=1}^{m} i + 0 + \sum_{i=1}^{m} i + 1 + \dots + \sum_{i=1}^{m} i + n \right)$$

$$= 101((n+1)(\sum_{i=1}^{m} i) + \frac{n(n+1)}{2}m)$$

$$= 101((n+1)\frac{m(m+1)}{2} + \frac{n(n+1)}{2}m)$$

$$= \frac{101}{2} ((n+1)(m^2 + m) + (n^2 + n)m)$$

<u>Bài</u> 2:

```
end do;
```

Gọi a là số lần lặp của while trong (xét độc lập với while ngoài) ta có: $1 \le n^2$

$$a = 1 + 4 + 9 + \dots i^{2} = \sum_{1}^{n} i^{2}$$

$$Gán(n) = 2 + 2n + 2a = 2 + 2n + 2 * \frac{n(n+1)(2n+1)}{6} = \frac{2n^{3} + 3n^{2} + 7n + 6}{3}$$

$$So sánh(n) = n + 1 + \sum_{1}^{n} (i^{2} + 1) = 2n + 1 + \frac{n(n+1)(2n+1)}{6}$$

Bài 3:

Gọi a là số lần lặp của while trong (xét độc lập với while ngoài)

Ta có:
$$n - i^2 \le i^2$$

 $\iff \frac{n}{2} \le i^2$
 $\iff i >= \sqrt{\frac{n}{2}}$

$$\mathbf{a} = \begin{cases} 0 & khi \ i < \sqrt{\frac{n}{2}} \\ i^2 - (n - i^2) + 1 = 2i^2 - n + 1 & khi \ i > = \sqrt{\frac{n}{2}} \end{cases}$$

Kêt luận:

$$\begin{aligned} &\text{Gán}(\mathbf{n}) = 2 + 2\mathbf{n} + 2\mathbf{a} = 2 + 2\mathbf{n} + 2\sum_{i=\sqrt{\frac{n}{2}}}^{n} (2i^{2} - n + 1) \\ &= 2 + 2\mathbf{n} + 2(\sum_{i=ceil(\sqrt{\frac{n}{2}})}^{n} 2i^{2} + \sum_{i=ceil(\sqrt{\frac{n}{2}})}^{n} n + \sum_{i=ceil(\sqrt{\frac{n}{2}})}^{n} 1) \\ &= 2 + 2\mathbf{n} + 2(2(\frac{n(n+1)(2n+1)}{6} - \sum_{i=1}^{\sqrt{\frac{n}{2}}} i^{2}) + (\mathbf{n} - ceil(\sqrt{\frac{n}{2}}))\mathbf{n} + (\mathbf{n} - ceil(\sqrt{\frac{n}{2}}))) \end{aligned}$$

$$\begin{split} \text{So sánh}(\mathbf{n}) &= \mathbf{n} + 1 + \sum_{i = \sqrt{\frac{n}{2}}}^{n} (2i^2 - n + 1) + \sum_{i = 1}^{n} 1 \\ &= \mathbf{n} + 1 + 2(\frac{n(n+1)(2n+1)}{6} - \sum_{i = 1}^{\sqrt{\frac{n}{2}}} i^2) + (\mathbf{n} - ceil(\sqrt{\frac{n}{2}}))\mathbf{n} + (\mathbf{n} - ceil(\sqrt{\frac{n}{2}})) + \frac{n(n+1)}{2} \end{split}$$

Bài 4:

```
float Alpha(float x, long n)
                                \{2, g\}
\{n+1
     long i = 1; float z = 0;
     while (i \le n)
                                        \{n+1, ss\}
           long j = 1; float t = 1;
                                        \{2n, g\}
           while(j<=i)
                                        \{a+1,ss\}
                 t = t*x;
                                        \{2a, g\}
                j = 2*j;
           z = z + i * t;
                                        \{2n, g\}
           i=i+1;
      }
```

```
return z;
Gọi a là số lần lặp của while trong (xét độc lập với while ngoài)
while trong thực hiện khi \{2^0, 2^1, 2^2, \ldots, 2^{\bar{k}-1}\} \le i
k - 1 \le \log_2 i(k \text{ là số lần lặp cuả vòng while trong khi i thay đổi})
<=> k<= \log_2 i + 1 trong đó k thuộc N*
a = \sum_{i=1}^{n} [\log_2(n)] + 1
Có số phép gán:
Gán(n) = 2 + 4n + 2a = 2 + 4n + 2( \sum_{i=1}^{n} \lfloor \log_2(n) \rfloor + n) = 2\sum_{i=1}^{n} \lfloor \log_2(n) \rfloor + 6n + 2
 \approx 2n\log(n) + 6n + 2
Phá tổng \sum_{i=1}^{n} \lfloor \log_2(n) \rfloor = 0.2^0 + 1.2^1 + 2.2^2 + 3.2^3 + .... i 2^{\log_2(n)}
So Sánh(n) = n+1+\sum_{i=1}^{n} (i+1) = \frac{2\sum_{i=1}^{n} \lfloor \log_2(n) \rfloor + 6n + 2}{2} \approx \frac{2n\log(n) + 6n + 2}{2}
\overline{\text{sum}} = 0; i=1;
                                                   \{2, g\}
while (i<=n)
                                                   \{n+1, ss\}
       j = n - i;
                                                   \{n, g\}
       while (j \le 2*i)
                                                   \{a1+1, g\}
              sum = sum + i*j;
                                                 {2a1,g}
              j = j + 2;
       k = i;
                                                   \{n, g\}
       while (k > 0)
                                                   \{a2+1, ss\}
              sum = sum +1;
                                                   {2a2,g}
                                                   \{n, g\}
Gọi a1,a2 lần lượt là số lần lặp của 2 vòng while trong (xét độc lập với while ngoài )
<=>i>==\frac{n}{3}
al = \begin{cases} 0 & khi \ i < \frac{n}{3} \\ 2i - (n-i) + 1 = 3i - n + 1 & khi \ i > = \frac{n}{3} \end{cases}
Ta có: i > 0
a2 = \{\frac{i}{2}, \frac{i}{2^2, 2^3}, \dots \} > 0
a2 = số con k thuộc { k\inN | \frac{i}{2^k}>= 1}
=> \frac{i}{2^k} >= 1 <=> i>= 2^k <=> \log_2 i>= k
a2 = s\hat{o} con k, 0 <= k <= log_2 i = log_2 i + 1
Gán(n) = 2 + 3n + 2a1 + 2a2 = 2 + 3n + 2\sum_{i=ceil(\frac{n}{3})}^{n} 3i - n + 1 + 2\sum_{i=1}^{n} \log_2 i + 1
                                    \approx 2 + 3n + 2(3(\frac{n(n+1)}{2} - \sum_{1}^{ceil(\frac{n}{3})} i) - n(n-ceil(\frac{n}{3})) + (n-ceil(\frac{n}{3})) + n\log_2 n + \frac{n(n+1)}{2})
So sanh(n) = n + 1 \sum_{i=\frac{n}{3}}^{n} (\frac{3i-n+1}{2} + 1) \sum_{i=1}^{n} (\log_2 i + 1 + 1)
```

<u>Bài 6:</u>

```
\overline{i} = 1; count = 0;
                                                 {2, g}
while (i \le 4n)
                                           \{4n+1, ss\}
     x=(n-i)(i-3n);
     y=i-2n;
                                           \{12n, g\}
     j=1;
                                          {a+1, ss}
      while (j \le x)
            count = count - 2;
                                                \{2a,g\}
            j = j + 2;
      if (x>0)
                                          {4n+1, ss}
            if (y>0)
                  count = count + 1; \Rightarrow \{n-1, g\}
      i = i + 1;
                                                \{4n, g\}
}
```

Bảng xét dấu:

	1	n	2n	3n 4n
X	-	0 +	+	0 -
у	-	-	0 +	+

Từ 2n + 1 -> 3n - 1 => có n - 1 phép lặp Gọi a là số lần lặp của while trong (xét độc lập với while ngoài)

Ta có: (n-i)(i-3n) >= 1 <=> (n-i)(i-3n) > 0

		n	3n
(n-i)(i-3n) > 0	-	0 +	0

$$\begin{array}{l} n+1 <= \mathrm{i} <= 3\mathrm{n} - 1 \\ => \mathrm{a} = \sum_{i=n+1}^{3\mathrm{n} - 1} \frac{(\mathrm{n} - \mathrm{i})(\mathrm{i} - 3\mathrm{n}) + 1}{2} = \frac{1}{2} \sum_{i=n+1}^{3\mathrm{n} - 1} (\mathrm{n} - \mathrm{i})(\mathrm{i} - 3\mathrm{n}) + 1 \\ \mathrm{Gán}(\mathrm{n}) = 1 + 18\mathrm{n} + \sum_{i=n+1}^{3\mathrm{n} - 1} (\mathrm{n} - \mathrm{i})(\mathrm{i} - 3\mathrm{n}) \\ \mathrm{So \ sánh}(\mathrm{n}) \approx \frac{\mathrm{Gán}(\mathrm{n})}{2} \end{array}$$

```
Bài 7:
i = 1;
count = 0;
                                            {2, g}
while(i \le 4n)
     x=(n-i)(i-3n)
     y=i-2n
                                            \{12n, g\}
     j=1
     while(j \le x)
           if(i \ge 2y)
                count = count - 2
           j = j+1
                                            \{a, g\}
     i=i+1
                                            \{4n, g\}
}
Có 1 \le (n-i)(i-3n)
<=> (n-i)(i-3n) >= 0
```

Bảng xét dấu:

_	1	n	2n	3n 4n
X	-	0 +	+	0 -
y	-	-	0 +	+

Xét số lần (thực hiện câu lệnh j = j +1) = $\sum_{i=n+1}^{3n-1}$ (n - i)(i - 3n)

Để if(i>=2y) xảy ra => i>=2(i-2n) <=> i<=4n vậy if luôn được thực hiện Gán(n) = 2 + 16n + 2* $\sum_{i=n+1}^{3n-1} (n-i)(i-3n)$

So $sánh(n) \approx \frac{Gán(n)}{2}$

Bài 8:

```
\overline{i} = 1; count = 0;
                                                           {2, g}
while (i \le 3*n)
     x = 2*n - i;
     y = i - n;
                                                     \{9n, g\}
     j = 1;
     while (j \le x)
           if(j \ge n)
                 count = count - 1;
           j = j+1;
     if(y > 0)
           if (x > 0)
                                                           => \{n-1, g\}
                 count = count +1;
     i = i+1;
                                                           {3n, g}
}
```

Gọi a là số lần lặp của while trong (xét độc lập với while ngoài)

Bảng xét dấu:

Dang Act dad.					
	1	n	2n	3n	
X	+	+	0 -		
V	_	0 +	+		

```
Em sử dụng máy tính để tìm được mỗi dòng lần lượt là số phép gán của (*) và (**)
t\dot{v} = 0 - 14
  (0, 0)
  (1, 1)
(3, 6)
(6, 15)
  (10, 28)
  (15, 45)
  (21, 66)
  (28, 91)
  (36, 120)
(45, 153)
(55, 190)
  (66, 231)
  (78, 276)
  (91, 325)
  (105, 378)
Sử dụng phương pháp truy hồi đối với (*) ta có
n=0 => g=0
n=1 => g=1
n=2 => g=1+2=3
n=3 \Rightarrow g=1+2+3=6
n=4 \Rightarrow g=1+2+3+4=10
=> Gán(*) = \frac{(n+1)n}{2}
Sử dụng phương pháp truy hồi đối với (**) ta có
n=0 => g=0
n=1 => g=1
n=2 \Rightarrow g=1+5=6
n=3 \Rightarrow g=1+5+9=15
n=4 \Rightarrow g=1+5+9+13=28
=>g = Tổng cấp số cộng với công sai d = 4 với n số các số hạng Gán(**) = \frac{n[2 + (n-1)4]}{2}
Gán(n) = 2 + 12n + (n-1) + Gán(*) + Gán(**)
           =1+13n+\frac{(n+1)n}{2}+\frac{n[2+(n-1)4]}{2}1+13n+\frac{5n^2-n}{2}
So sánh(n) =
<u>Bài 9:</u>
i = 1;
                                                         {2, g}
res = 0;
while i<=n do
                                                    \{n+1, g\}
     j=1;
                                                    \{2n, g\}
      k=1;
      while j<=i do
                                                    \{a1+1, g\}
           res = res + i*i;
           k = k+2;
                                                         {3a,g}
           j = j+k;
      endw
      i = i+1;
                                                         \{n, g\}
endw
Gọi a là số lần lặp của while trong (xét độc lập với while ngoài )
j thuộc {1, 4, 9 ... }
a = s\hat{o} con k thuộc {k \in N \mid k^2 <= i}
```

=> ta có phép gán (***) trong 2 câu lệnh if = 2n-1 - (n+1) +1 = n-1

Bài 11:

Gọi a là số lần lặp của while trong (xét độc lập với while ngoài) Ta có s thuộc $\{1,1+\frac{1}{2},1+\frac{1}{2}+\frac{1}{3},1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4},....,1+\frac{1}{2}+\frac{1}{3}+...\frac{1}{n}\}$ mỗi vòng lặp while trong khi qua mỗi vòng while ngoài là $\sum_{k=1}^{s}\frac{1}{k}\approx \ln(s)+\gamma \text{ trong đó } \boldsymbol{\gamma}\approx \textbf{0.5772}$

$$Gán_1(n) = 3 + 3n + 2\sum_{i=1}^{n} [ln(i) + \gamma] \approx 2n.ln(n) + 2n*\gamma + 3n+3$$

So
$$sanh(n) = n + 1 + \sum_{i=1}^{n} [ln(i) + \gamma] + \sum_{i=1}^{n} 1$$

= $2n + 1 + n.ln(n) + n*\gamma$

Do công thức trên chưa tính đến việc làm tròn xuống số thực nên kết quả từ công thức sẽ lớn hơn số phép gán thức sự. Ta có thể loại bỏ việc cộng thêm hằng số Euler ($\gamma \approx 0.5772$), để giảm sai số.

Gán
$$2(n) = 2n \cdot \ln(n) + 3n + 3$$

So
$$sánh_2(n) = 2n + 1 + n.ln(n)$$

Bảng so sánh kết quả:

	Gán công thức 1	Gán công thức 2	số phép gán thực	So sánh công thức 1	So sánh công thức 2	số phép so sánh thực
1	7	6	8	3	3	4
2	14	11	13	7	6	7
3	22	18	18	12	10	10
4	30	26	25	16	14	14
5	39	34	32	21	19	18
6	49	42	39	27	23	22
7	59	51	46	32	28	26
8	69	60	53	38	33	30
9	79	69	60	43	38	34
10	90	79	67	49	44	38
11	101	88	76	55	49	43
12	112	98	85	61	54	48
13	123	108	94	67	60	53
14	135	118	103	74	65	58
15	146	129	112	80	71	63
16	158	139	121	86	77	68
17	169	150	130	92	83	73
18	181	161	139	99	89	78
19	193	171	148	105	94	83
20	205	182	157	112	100	88

<u>Bài 12:</u>

Gọi a là số lần lặp của while trong (xét độc lập với while ngoài)
$$a=1+3+5+..=\frac{(n+1)\ ceil(\frac{n}{2})}{2}$$

$$Gán(n)=2+\frac{n}{2}+\frac{n}{2}+2a=2+n+2^*\ \frac{(n+1)\ ceil(\frac{(n)}{2})}{2}$$

	Gán công thức	Kết quả thực
1	5	6
2	7	6
3	13	14
4	16	14
5	25	26
6	29	26
7	41	42
8	46	42
9	61	62
10	67	62
11	85	86
12	92	86
13	113	114
14	121	114
15	145	146
16	154	146
17	181	182
18	191	182
19	221	222
20	232	222

```
\frac{\mathbf{B\grave{a}i\ 13:}}{\mathsf{sum}=0}
                                                  \{2, g\}
i=n
while (i>0) do
      j = i
                                                  \{(\log_2 n + 1, \mathbf{g}\}\
       while (j > 0) do
             sum = sum + 1
                                                   \{2a,g\}
              j = j - 1
       endw
                                                  \{(\log_2 n + 1, \mathbf{g}\}\
       i = i/2
endw
```