Esame scritto di Geometria 2

Università degli Studi di Trento Corso di laurea in Matematica A.A. 2013/2014 12 Gennaio 2015

Esercizio 1

Sia \mathbb{E}^3 lo spazio euclideo tridimensionale reale dotato di un riferimento cartesiano ortonormale di coordinate (x, y, z) e si indichi con k un parametro reale. Si considerino i punti P = (-1, 2, -4), $Q_k = (0, -3k/2 - 1, 4k)$ e R = (-2, 0, 0) e il piano π_k di equazione $k^2(x + y) + z = 0$.

- Sia r la retta passante per l'origine e per P e si consideri la retta s_k passante per R e per Q_k . Scrivere delle equazioni cartesiane per r, delle equazioni parametriche per s_k e un generatore per la sua giacitura.
- Per quali valori di k si ha che il punto $P \in \pi_k$? Per tali valori dire qual è la posizione reciproca di r e s_k e di π_k e s_k .
- Sia T il punto di coordinate (5,0,4). Ricavare la distanza di T da π_2 e da r.
- Ricavare le coordinate della proiezione ortogonale di T su π_1 .

Esercizio 2

Sia \mathbb{P}^2 il piano proiettivo reale dotato del riferimento proiettivo standard di coordinate omogenee $[x_0, x_1, x_2]$. Si consideri la retta r_{∞} descritta dalla relazione $x_0 = 0$ e sia $\mathbb{A}^2 = \mathbb{P}^2 \setminus r_{\infty}$ il piano affine con coordinate affini $(y_1, y_2) = (x_1/x_0, x_2/x_0)$. Si consideri, al variare del parametro reale k, la conica proiettiva C_k descritta dall'equazione

$$C_k: 2(k+1)x_1x_2 + 2(k+3)x_1^2 - 4x_2^2 + 2x_0x_1 - x_0^2.$$

- Per quali valori di k, C_k è non degenere?
- Determinare una proiettività che manda C_{-5} nella sua forma canonica.
- Sia \mathcal{D}_{-1} la conica affine associata alla conica proiettiva \mathcal{C}_{-1} . Si trovino gli eventuali punti di intersezione di \mathcal{C}_{-1} con r_{∞} . Dedurre da questo la forma canonica affine di \mathcal{D}_{-1} .

Esercizio 3

Si consideri X := [-1, 1] e

$$\tau := \{X, \emptyset\} \cup \{A \subset X \,:\, 0 \not\in A\} \cup \{A \subset X \,:\, (-1, 1) \subset A\}.$$

- Dimostrare che (X, τ) è uno spazio topologico la cui topologia non è confrontabile con la topologia euclidea su [-1, 1].
- Dimostrare che (X, τ) è T_0 . (X, τ) è T_1 o T_2 ?
- Determinare l'interno degli insiemi $\{0\}$, $\{1\}$, (1/3, 2/3) e [-1/2, 1/2) e la chiusura degli insiemi $\{0\}$, $\{1/2\}$ e $\{1\}$.
- Dire se $\{1\}$ è una componente connessa di X e se (X,τ) è connesso.

Esercizio 4

Siano τ_e e τ_c rispettivamente la topologia euclidea su \mathbb{R} e la topologia cofinita su \mathbb{R} . Si consideri la topologia prodotto $\tau_{pr} := \tau_e \times \tau_c$ su \mathbb{R}^2 . Si considerino gli insiemi

$$Y:=\left\{(x,y)\,:\,x^2+y^2<1\right\}, Z:=\left\{(x,y)\,:\,x^2+y^2\leq 1\right\} \text{ e}$$

$$T:=\left\{(0,y)\,:\,y\in(-1,1)\right\}.$$

- La topologia τ_{pr} è confrontabile con quella euclidea su \mathbb{R}^2 ?
- Dimostrare che Y non è compatto rispetto alla topologia euclidea su \mathbb{R}^2 e rispetto a τ_{pr} mentre Z è compatto rispetto a entrambe le topologie.
- Dire se T è compatto rispetto a τ_{pr} e rispetto alla topologia euclidea su \mathbb{R}^2 .
- Calcolare la chiusura di $E := \{(0, 1/n) : n \ge 1\}$ in $(\mathbb{R}^2, \tau_{pr})$.

Soluzione dell'esercizio 1

Un sistema di equazioni parametriche per r è

$$r: \begin{cases} x = -\alpha \\ y = 2\alpha \\ z = -4\alpha \end{cases}$$

da cui si ricavano le equazioni cartesiane

$$r: \left\{ \begin{array}{l} y + 2x = 0 \\ z - 4x = 0 \end{array} \right.$$

Un generatore per la giacitura di s_k è il vettore $d_k := Q_k - R = (2, -3k/2 - 1, 4k)$ da cui ricaviamo anche un'espressione parametrica:

$$s_k: \left\{ \begin{array}{l} x = -2 + 2\alpha \\ y = -(3k/2 + 1)\alpha \\ z = 4k\alpha \end{array} \right..$$

Il punto P=(-1,2,-4) è un punto di π_k se e solo se le sue coordinate soddisfano l'equazione del piano, cioè se e solo se $k^2(-1+2)-4=0$ da cui ricaviamo $k=\pm 2$. Per k=2 si ha $d_2=(2,-4,8)$ che è proporzionale alla direttrice di r quindi le giaciture delle due rette coincidono. Siccome $R \notin r$ concludiamo che r e s_2 sono parallele (e non coincidenti). La normale al piano π_2 è (4,4,1) che è una direzione ortogonale a d_2 : questo vuol dire che s_2 è parallela a π_2 (e non contenuta poichè R non appartiene al piano).

Per k=-2 si ha $d_2=(2,2,-8)$ che non è multiplo della direttrice di r: le due rette sono incidenti o sghembe. Sostituendo l'espressione parametrica di s_{-2} nelle equazioni cartesiane di r abbiamo

$$r: \begin{cases} 2\alpha + 2(-2+2\alpha) = 0 \\ -8\alpha - 4(-2+2\alpha) = 0 \end{cases}.$$

che non ha soluzioni: le due rette sono disgiunte e quindi sghembe. La direzione normale di π_{-2} è (4,4,1) che non è perpendicolare alla direzione di s_{-2} : abbiamo quindi che s_{-2} e π_{-2} sono incidenti.

La distanza di T dalla retta r possiamo ottenerla come minimo delle distanze dei punti di r da T. Se indichiamo con P_{α} la parametrizzazione ricavata per la retta r abbiamo

$$d(T,r) = \min_{\alpha \in \mathbb{R}}(||P_{\alpha} - T||) = \min_{\alpha \in \mathbb{R}}(||(5 + \alpha, -2\alpha, 4 + 4\alpha)||)$$

che è uguale a

$$\min_{\alpha \in \mathbb{R}} (\sqrt{21\alpha^2 + 42\alpha + 41}) = \sqrt{20} = 2\sqrt{5}.$$

La distanza tra T e π_2 è

$$d(T, \pi_2) = \frac{|20+4|}{\sqrt{16+16+1}} = \frac{24}{\sqrt{33}}.$$

L'equazione cartesiana di π_1 è x+y+z=0 quindi (1,1,1) individua la normale al piano. La retta per T ortogonale al piano è

$$\begin{cases} x = 5 + \alpha \\ y = \alpha \\ z = 4 + \alpha \end{cases}$$

e interseca il piano π_1 nella proiezione cercata. Il punto di intersezione corrisponde all'unico valore di α tale che

$$(5+\alpha) + \alpha + (4+\alpha) = 0$$

cioè $\alpha = -3$. Il punto cercato è quindi (2, -3, 1).

Soluzione dell'esercizio 2

La matrice associata alla conica è

$$\begin{bmatrix} -1 & 1 & 0 \\ 1 & 2(k+3) & (k+1) \\ 0 & (k+1) & -4 \end{bmatrix}$$

e ha determinante $k^2 + 10k + 29$. Questo non si annulla mai su \mathbb{R} quindi la conica è sempre non degenere.

Poniamo k = -5 e applichiamo il metodo del completamento dei quadrati:

$$-8x_1x_2 - 4x_1^2 - 4x_2^2 + 2x_0x_1 - x_0^2 =$$

$$= -4(x_1 + x_2)^2 - (x_0^2 - 2x_0x_1 + \underline{x_1^2} - \underline{x_1^2}) =$$

$$= -4(x_1 + x_2)^2 - (x_0 - x_1)^2 + x_1^2$$

Definendo la proiettività

$$F: [x_0, x_1, x_2] \mapsto [x_1, 2(x_1 + x_2), x_0 - x_1]$$

riusciamo a scrivere la conica in forma canonica infatti, usando le relazioni

$$[X_0, X_1, X_2] = F([x_0, x_1, x_2]),$$

avremo

$$-8x_1x_2 - 4x_1^2 - 4x_2^2 + 2x_0x_1 - x_0^2 = [\dots] =$$

$$= -4(x_1 + x_2)^2 - (x_0 - x_1)^2 + x_1^2 = -X_1^2 - X_2^2 + X_0^2$$

La conica proiettiva C_{-1} ha equazione

$$x_0^2 - 2x_0x_1 - 4x_1^2 + 4x_2^2 = 0.$$

Per ottenere gli eventuali punti di intersezione di \mathcal{C}_{-1} con r_{∞} basta risolvere il sistema

$$\begin{cases} x_0^2 - 2x_0x_1 - 4x_1^2 + 4x_2^2 = 0 \\ x_0 = 0 \end{cases} \implies \begin{cases} x_1^2 - x_2^2 = 0 \\ x_0 = 0 \end{cases}$$

le cui soluzioni sono $(0, x_1, \pm x_1)$ al variare di $x_1 \in \mathbb{R}$. Queste infinite soluzioni corrispondono a due punti su \mathbb{P}^2 , cioè i punti [0, 1, -1] e [0, 1, 1]. Siccome sappiamo che la conica è non degenere e siccome abbiamo appena dimostrato che la retta all'infinito taglia la conica in due punti distinti possiamo concludere che \mathcal{D}_{-1} è un'iperbole. La sua equazione canonica affine è quindi

$$X^2 - Y^2 = 1$$
.

Soluzione dell'esercizio 3

Siano A e B due elementi di τ diversi da X e dal vuoto. Se entrambi contengono 0 allora entrambi contengono l'intervallo (-1,1) quindi $(-1,1) \subset A \cap B$ e l'intersezione apparterrà a τ . Se uno dei due non contiene 0 allora nemmeno l'intersezione lo contiene. Di conseguenza τ è chiuso per intersezioni finite. Sia ora $\{A_i\}_{i\in I}$ una collezione di elementi di τ . Se nessun elemento contiene 0 allora l'unione non lo conterrà e apparterrà a τ . Se invece esiste i per cui $0 \in A_i$ allora

$$(-1,1) \subset A_i \subset \bigcup_{i \in I} A_i$$

che quindi appartiene a τ . Questo basta per mostrare che τ è una topologia. τ non è confrontabile con la topologia euclidea su [-1,1] infatti [-1,1) è un aperto di (X,τ) che non è aperto per la topologia euclidea e (-1/2,1/2) è un aperto per la topologia euclidea che non è un elemento di τ .

Siccome appartengono a τ tutti i sottoinsiemi di X che non contengono 0, per ogni $x, y \neq 0$ abbiamo che $\{x\}$ e $\{y\}$ sono due aperti disgiunti che contengono rispettiamente x e y. Se $x \neq 0$ e se definiamo U := (-1,1) e $V := \{x\}$ abbiamo che U e V sono due aperti che contengono rispettiamente 0 e x e tali che $0 \notin V$. Questo mostra che (X,τ) è T_0 . Se $x \neq 0, \pm 1$ si vede anche che non è possibile scegliere U e V in modo che di abbia anche $0 \notin U$: questo mostra che (X,τ) non è T_1 (e quindi nemmeno T_2).

Siccome $\{1\}$ e (1/3,2/3) non contengono 0, questi sono aperti e coincidono con il loro interno. $\{0\}$ non è aperto e, essendo un punto, non può che avere interno vuoto. L'insieme [-1/2,1/2) non è aperto perchè contiene 0 ma non l'intervallo (-1,1). Il sottoinsieme ottenuto rimuovendo 0 è un aperto e coincide con l'interno (per ragioni di massimalità): $[-1/2,1/2)^o = [-1/2,0) \cup (0,1/2)$.

Sia C un chiuso contenente 0 (e diverso da X). Allora C^c è un aperto che non contiene 0 e questi sono tutti i sottoinsiemi di X che non contengono 0. La famiglia dei chiusi che contengono 0 coincide quindi con

$${A \subseteq X : 0 \in A}.$$

Se C è un chiuso che non contiene 0 allora il suo complementare è un aperto che contiene 0 e quindi, necessariamente, tutto l'intervallo (-1,1). La famiglia dei chiusi che non contengono 0 è quindi

$$\{\emptyset, \{1\}, \{-1\}, \{-1, 1\}\}.$$

In particolare abbiamo mostrato che $\{0\}$ e $\{1\}$ sono chiusi (e quindi coincidono con la loro chiusura) mentre $\{1/2\}$ non lo è. $\{1/2,0\}$ è un chiuso e, per ragioni di minimalità, è la chiusura di $\{1/2\}$.

Per concludere basta osservare che abbiamo già dimostrato che $\{1\}$ è sia aperto che chiuso. Da questo concludiamo che è una componente connessa di X (poichè non contiene sottoinsiemi propri connessi ed è connesso essendo un punto) e che X non è connesso.

Soluzione dell'esercizio 4

Ogni aperto di τ_{pr} si può scrivere come unione di rettangoli aperti, cioè di insiemi che sono prodotto di un aperto della topologia euclidea su \mathbb{R} e di un aperto per la topologia cofinita. Questi infatti sono gli elementi della base standard \mathcal{B} della topologia prodotto. Essendo la topologia cofinita su \mathbb{R} confrontabile (e più debole) di quella euclidea avremo che ogni elemento di \mathcal{B} è anche un rettangolo aperto per la topologia euclidea su \mathbb{R}^2 . Questo basta per concludere che τ_{pr} è confrontabile e più debole della topologia euclidea su \mathbb{R}^2 .

L'insieme Z è compatto rispetto alla topologia euclidea di \mathbb{R}^2 in quanto è chiuso e limitato. Essendo τ_{pr} più debole della topologia euclidea avremo che Z è compatto anche rispetto a τ_{pr} . Si consideri il ricoprimento di Y

$$\mathcal{U} := \{(-1 + 1/n, 1 - 1/n) \times \mathbb{R}\}_{n \ge 1}.$$

Gli insiemi del ricoprimento sono aperti sia rispetto alla topologia euclidea su \mathbb{R}^2 sia rispetto a τ_{pr} . Tuttavia si vede facilmente che non esistono sottoricoprimenti finiti di \mathcal{U} .

Mostriamo che T è un insieme compatto rispetto alla topologia τ_{pr} mentre non lo è rispetto alla topologia euclidea. Per farlo basta ricordare che il prodotto di due spazi topologici è compatto se e solo se i suoi fattori lo sono. Essendo $\{0\}$ e (-1,1) compatti rispettivamente in (\mathbb{R}, τ_e) e (\mathbb{R}, τ_c) abbiamo che $T = \{0\} \times (-1,1)$ è compatto in $(\mathbb{R}^2, \tau_{pr})$. Se invece consideriamo la topologia euclidea abbiamo che T non è compatto perchè non è chiuso (o perchè (-1,1) non è compatto in (\mathbb{R}, τ_e)).

Si consideri l'insieme $W := \{0\} \times \mathbb{R}$. Questo è compatto per la topologia τ_{pr} ed è un chiuso che contiene l'insieme E. Questo vuol dire che la chiusura di E sarà contenuta in W. Ma tutti i chiusi contenuti propriamente in W sono insiemi del tipo $\{0\} \times C$ con C che è un insieme finito di punti. Questo vuol dire che nessun chiuso contenuto propriamente in W può contenere l'insieme E. Questo basta per concludere che la chiusura di E in $(\mathbb{R}^2, \tau_{pr})$ è W.