Возрастающе-убывающей перестановкой называется перестановка, которая поочередно возрастает и убывает: $x_1 < x_2 > x_3 < x_4 \dots$ Обозначим количество возрастающе-убывающих перестановок размера n как a_n . Докажите, что экспоненциальной производящей функцией для последовательности a_n является $(1+\sin t)/\cos t$.

112.1 Простое решение

Рассмотрим перестановку длины n+1. Для неё выполняется такая рекурсия:

$$2A_{n+1} = \sum_{k=0}^{n} A_k A_{n-k}$$

и в случае n=0 база 1, в случае n=1 база тоже 1.

Тогда $2A' = A^2 + 1$. Решаем дифур, получаем искомое.

112.2 $\pi \leftrightarrow T$

Будем сопоставлять перестановкам деревья: $x_1 \dots x_n \leftrightarrow$ корень $\min_i x_i$, левое поддерево $x_1 \dots x_{\arg\min_i x_i - 1}$ и правое поддерево $x_1 \dots x_{\arg\min_i x_i - 1}$. Такие деревья возрастающие, т.е. $a \to b \Rightarrow a < b$

112.3 $n \equiv 1 \mod 2$

Несложно заметить, что у деревьев, соответствующим таким перестановкам, нет бамбуковых поддеревьев кроме T_1 и T_2 (и тогда последняя вершина — лист).

$$A = t + t^{\square} \cdot (A \cdot A)$$

$$A' = 1 + (t^{\square} \cdot (A \cdot A))'$$

$$A' = 1 + A^{2}$$

$$A = \operatorname{tg} t$$

112.4 $n \equiv 1 \mod 2$

Аналогичными суждениями:

$$B = 1 + (t^{\square} \cdot A \cdot B)$$

$$B' = A \cdot B$$
$$B' = \operatorname{tg} t \cdot B$$
$$B = \frac{1}{\cos t}$$

Производящая функция Ньютона. Для последовательности $g_0,g_1,\ldots,g_n,\ldots$ производящая функция Ньютона определена как $\dot{G}(z)=\sum_n g_n\binom{z}{n}$. Пусть выполнено равенство: $\dot{H}(z)=\dot{F}(z)\cdot\dot{G}(z)$. Как связаны последовательности f_i,g_i и h_i ?

Пусть $\Delta f(x)=f(x+1)-f(x)$, Δ^n есть n композиций Δ . В терминах операторов $\Delta^n=(S-1)^n$, где S — оператор сдвига $f(x)\mapsto f(x+1)$, а также действует обратное соотношение $S^n=(\Delta+1)^n$.

Заметим, что для ПФ Ньютона $g_n = \Delta^n \dot{G}(0)$ по ряду, аналогичному ряду тейлора:

$$\dot{G}(a+x) = \sum_{n} \frac{\Delta^{n} \dot{G}(a)}{n!} x^{n}$$

$$\Delta^n \dot{F}(z) \cdot \dot{G}(z) = \sum_k \binom{n}{k} (\Delta^k S^{n-k} \dot{F}(z)) (\Delta^{n-k} \dot{G}(z))$$

Это аналогично обобщенной формуле n-той производной двух функций, доказывается так же по индукции.

$$\Delta^{n} \dot{F}(z) \cdot \dot{G}(z) = \sum_{k} \binom{n}{k} (\Delta^{k} (\Delta + 1)^{n-k} \dot{F}(z)) (\Delta^{n-k} \dot{G}(z))$$

$$\Delta^{n} \dot{F}(z) \cdot \dot{G}(z) = \sum_{k} \binom{n}{k} (\Delta^{k} \sum_{j} \binom{n-k}{j} \Delta^{j} \dot{F}(z)) (\Delta^{n-k} \dot{G}(z))$$

$$h_{n} = \sum_{k} \binom{n}{k} \sum_{j} \binom{n-k}{j} f_{j+k} g_{n-k}$$

114

Найдите ЭПФ для чисел Эйлера I рода

115

Найдите ЭП Φ для чисел Эйлера II рода

Утром отпарсить!

При решении задач этой серии можно при выражении использовать $\zeta(s)$. Обозначим как $\sigma_k(n)$ сумму по всем d|n значений d^k . Найдите ПФД для $\sigma_1(n)$

$$\zeta(s) \cdot \zeta(s-1)$$

117

Найдите ПФД для $\sigma_k(n)$.

$$\zeta(s) \cdot \zeta(s-k)$$

118

Найдите ПФД для последовательности $a_n = \sqrt{n}$.

$$\gamma(s - \frac{1}{2}) = \sum \frac{1}{n^{s - \frac{1}{2}}} = \sum \frac{\sqrt{n}}{n^s}$$

119

Найдите ПФД для последовательности a_n , где $a_n=1$ если n квадрат целого числа, $a_n=0$ иначе.

120

Найдите ПФД для последовательности a_n , где $a_n=1$ если n свободно от квадратов, $a_n=0$ иначе.

$$\frac{\zeta(s)}{\zeta(2s)} = \prod \frac{1 - p^{-2s}}{1 - p^{-s}} = \prod 1 + p^{-s} = \sum \frac{q(n)}{n^s}$$

Т.к. $q(n) = |\mu(n)|$

121

Зная ПФД для последовательности a_n , найдите ПФД для последовательности $a_n \cdot \ln n$.

Докажите, что если f(n) - мультипликативная функция, то $g(n) = \sum\limits_{d|n} f(d)$ тоже мультипликативна.

Если a, b не взаимно простые, то случай не содержателен. Пусть a, b взаимно простые.

$$g(ab) = \sum_{d|ab} f(d)$$

$$= \sum_{d_1|a} \sum_{d_2|b} f(d_1d_2)$$

$$= \sum_{d_1|a} \sum_{d_2|b} f(d_1)f(d_2)$$

$$= g(a)g(b)$$

123

Докажите, что свертка Дирихле двух мультипликативных функций мультипликативна.

124

Докажите, что обратная по Дирихле функция к мультипликативной функции мультипликативна.

125

Используя ПФД, докажите, что $\sum\limits_{d|n} \varphi(d) = n$

126

Используя ПФД, докажите, что $\sum\limits_{d|n}\sigma_1(d)\varphi(n/d)=n\sigma_0(n).$

127

Назовем функцию полностью мультипликативной, если f(ab) = f(a)f(b) для любых a и b. Какие значения f(n) достаточно задать, чтобы определить f на всех положительных натуральных числах?

Найдите ПФД для функции $\lambda(n)=(-1)^k$, где k - количество простых делителей n (с учетом кратности). Чему равна $\sum\limits_{d|n}\lambda(d)$?

129

Рассмотрим строки из 0 и 1. Скажем, что строка s периодичная, если ее можно представить как k копий одной строки p: $s=p^k$. Выведите формулу для количества апериодичных строк для произвольного n. Указание: используйте формулу обращения Мебиуса.

130

Найдите ПФД для последовательности $a_n =$ количество упорядоченных разбиений числа n на (не обязательно простые) k множителей, множитель 1 разрешен.

$$\zeta^k(s)$$

Это очевидно из продления определения умножения $\Pi\Phi Д$ на k аргументов. Дописать!

131

Найдите ПФД для последовательности $a_n =$ количество упорядоченных разбиений числа n на ≥ 0 (не обязательно простых) множителей, множитель 1 запрещен.

$$\sum_{n} \frac{f(n)}{n^s} = \sum_{n} \frac{\sum_{k} f_k(n)}{n^s}$$
$$= 1 + \sum_{k} (\zeta(s) - 1)^k$$
$$= 1 + \frac{\zeta(s) - 1}{1 - \zeta(s) + 1}$$
$$= \frac{\zeta_1}{2 - \zeta(s)}$$

132

Найдите ПФД для последовательности $a_n=2^{\omega(n)}$, где $\omega(n)$ - количество различных простых делителей n.

$$\frac{\zeta^2(s)}{\zeta(2s)}$$

Возьмём результат задачи 120 и домножим на ζ . Таким образом, мы будем считать все безквадратные числа, являющиеся делителями n. Эквивалентность этого и 2^ω — известный факт в теории чисел, доказывается по индукции.