Master of Computer Applications (MCA)

MCAC-301: Design and Analysis of algorithms

Unique Paper Code: 223401301

Semester: III

December 2022

Year of admission: 2021

Time: 3 Hours

Max. Marks: 70

Instructions for the Students:

Attempt all questions. Parts of a question should be answered together.

Arrange the following functions in the increasing order of their rate of growth:

2

 n^{lgn} , \sqrt{n} , nlogn, n, $\frac{100}{n}$, $n^{\sqrt{n}}$

4

4

3

Consider the algorithm for integer multiplication using divide and conquer approach. Fill the missing details correctly.

Multiply (a, b)

Assume
$$n = length(a) = length(b)$$

if length(a)_1 then return a * b

Partition a, b into $a = a_1 * 10^{\frac{n}{2}} + a_2$ and $b = b_1 * 10^{\frac{n}{2}} + b_2$

 $A = Multiply (a_1, ___)$ $= Multiply (b__, b__)$ $C = Multiply (a_1 + ___, b_1 + ____)$

Return $A * 10^n + (_ -A - _) * 10^{\frac{n}{2}} + _ -$

Suppose you are given an array A having 8 integers {10, 20, 30, 40, 50, 60, 70, 80}.

Draw a randomized binary search tree (BST) using the randomized Quicksort. Why ordinary quick sort is not good for drawing a randomized BST. Justify your answer.

Consider sorting algorithm A with run time O(n). What is the condition on A for it to be usable as the intermediate sort in Radix sort? Is it possible to use quick sort as intermediate

sort? Justify your answer.

Write a recursive algorithm for insertion sort. b.

Interval Number (i)	Starting time (s _i)	Finishing time (fi)	Weight (w _i)	
1	0	2	2	
2	1	3	4	
3	2	4	4	
4	. 1	5	7	
5	4	5	2	
(6)	4	(6)	1	

With the help of the above example argue that the memoized recursive algorithm solves lesser number of subproblems than the corresponding iterative algorithm.

Consider a complete undirected graph with vertex set {1, 2, 3, 4, 5, 6, 7, 8, 9}. Entry Wij in the matrix W below is the weight of the edge {i, j}.

	\wedge		and of the edge (1, j).							
	(1	2	3	4	S	6	1	8	9/	
1	0	7	3	∞	12	∞	∞	∞	∞	
2	7	0	∞	4	∞	13	∞	∞	∞	
3	3	∞	0	8	9	5	∞	∞	∞	
W = 4	∞	4	8	0	∞	15	∞	∞	∞	
S	12	∞	9	∞	0	1	∞	∞	∞	
6	∞	13	5	15	1	0	∞	∞	∞	
7	∞	∞	∞	∞	∞	∞	0	2	6	
E	∞	∞	∞	∞	∞	∞	2	0	10	
9	∞,	∞	∞	∞	∞	∞	6	10	0	

Find a minimum spanning tree (MST) T in the above graph. Suppose you increase the weight of each edge by five in the graph, will T still be an MST or not.

Consider (QA) be Quick sort algorithm to sort integers in non-decreasing order using last element as pivot. C1 and C2 be the number of comparisons made by QA for the given inputs {12, 8, 6, 7, 8, 10} and {4, 4, 4, 4, 4, 4} respectively. What will be the values of C1 and C2?

5

5

2

Analyze the time complexity of the following algorithm (written in Pseudo-code) by b. counting the number of steps. Assume $n=2^{2^k}$ for some positive integer k.

4

A(n)

for $(i=1; i \le n; i++)$ 1=1 22 (K2) j=2while $(j \le n)$ 1,4,16,32

0 0 Ø HO 0 0 0

We define Fibonacci numbers as follows:

$$F(0) = 0$$

$$F(1) = 1$$

$$F(n) = F(n-1) + F(n-2)$$
 for all $n>1$

Write a Fib_memoize(n) to find the nth fibonacci number using memoization.

What are the two key factors that decide whether dynamic programming is applicable for an optimization problem or not.

2

Prove that the number of comparisons required by any comparison based sorting algorithm in the worst case is Ω (n log n).

3

Is the following recurrence for the knapsack problem, correct? If yes, then run it on a suitable example else give the correct recurrence.

5

