Aula 2 – Qualidade de Software

Prof. Paulo R. Nietto

O que é qualidade?

Atendimento às expectativas dos clientes.

Atendimento dos requisitos de qualidade definidos pelos clientes.

Visões de qualidade

Usuário

Desenvolvedor |

Organização

Facilidade de Uso Desempenho, Confiabilidade

Conformidade com os Requisitos , Facilidade de Manutenção e a taxa de não conformidades

Prazo, Custo e Produtividade

 Qualidade n\u00e3o pode ser inserida em um produto depois de pronto

 Qualidade tem de ser inserida no produto durante o processo de desenvolvimento

Conceitos

<u>Erro</u> engano mistake	Ação humana que produz um resultado incorreto
<u>Falha</u> Fault - Bug	Incorreção em um passo, processo ou definição de tipo de dado. Manifestação no software de um engano cometido pelo programador
<u>Erro</u>	Diferença entre o valor gerado pelo programa e o esperado. Resultado inesperado na execução do software
<u>Defeito</u> Failure	Incapacidade de fornecer o serviço conforme especificado

Qualidade de Software

 Os requisitos de software formam a base de onde a qualidade é avaliada.

- Para ter qualidade o software precisa satisfazer:
 - requisitos explícitos e implícitos.

Qualidade de Software

"Um software de qualidade deve encantar o cliente e não somente funcionar e não ter erros"

Bill Gates

Decorrências indiretas da qualidade

- Demonstrar que as funções estão de acordo com a especificação
- Demonstrar que requisitos de desempenho foram cumpridos
- Aumentar confiabilidade do software e sua qualidade
- Auxiliar na etapa de manutenção
- Garantir que os requisitos foram atendidos

Fatores da Qualidade de Software (McCall)

- Conjunto de fatores que avalia o software a partir de 3 pontos de vista distintos:
- Operação do Produto (uso)

Revisão do Produto (manutenção)

 Implantação do Produto (adaptação para ambiente diferente)

Fatores da Qualidade de Software (McCall)

- 2. Confiabilidade
- 3. Eficiência
- 4. Integridade
- 5. Usabilidade

Visões de qualidade de software

Corretude

 Quando um programa satisfaz sua especificação e contempla os objetivos do cliente

Corretude

- Como é percebida pelos usuários:
 - Necessidades dos usuários atendidas

 Sistema operando de acordo com as especificações

Confiabilidade

 O programa realiza a função pretendida com a precisão exigida

Confiabilidade

- · Como é percebida pelos usuários:
 - Ausência ou baixo número de erros
 - Resultados iguais para mesmos dados de entrada
 - Comportamento previsível
 - O sistema está disponível para os usuários por todo tempo (ou quase todo tempo)

Manutenibilidade

 Quantidade de esforço exigido para localizar e reparar erros, bem como efetuar uma mudança em um sistema

Manutenibilidade

- Como é percebida pelos usuários:
 - Baixo custo de manutenção
 - Erros detectados são corrigidos rapidamente
 - Correção de erros não provoca novos erros!

Flexibilidade

 Quantidade de esforço exigido para modificar um sistema de modo a atender novas necessidades

Flexibilidade

- Como é percebida pelos usuários:
 - Novas necessidades atendidas com prontidão
 - Mudanças no sistema feitas com pouca ou nenhuma participação dos analistas
 - O <u>sistema não constitui um impedimento para</u> o desenvolvimento dos <u>negócios</u>
 - Vantagem competitiva pela rápida adequação dos processos às mudanças no ambiente de negócios.

Testabilidade

 Quantidade de esforço exigido para testar um sistema a fim de garantir que ele execute sua função pretendida.

Testabilidade

- Como é percebida pelos usuários:
 - Menor ocorrência de erros
 - Maior confiabilidade

Eficiência

 Uso mínimo de recursos de computação e de código exigido para que o sistema execute as funções previstas

Eficiência

- Como é percebida pelos usuários:
 - Requisitos mínimos de processador e de memória
 - Baixo tempo de resposta
 - Rapidez no processamento de transações
 - Baixo custo de operação

Integridade

 Controle do acesso ao sistema ou aos seus dados por pessoas não autorizadas

Integridade

- Como é percebida pelos usuários:
 - Ausência de fraudes
 - Dados críticos e sigilosos preservados
 - Baixa probabilidade de invasão por hackers
 - Identificação dos responsáveis por cada transação realizada

Usabilidade

 Esforço exigido para aprender, operar, preparar a entrada e interpretar a saída do sistema.

Usabilidade

- Como é percebida pelos usuários:
 - Facilidade de operação
 - Operação intuitiva
 - Baixo número de erros de operação
 - Baixo custo de treinamento para usar o sistema
 - Baixo custo de suporte ao uso do sistema

Portabilidade

 Quantidade de esforço exigido para transferir um sistema de um ambiente de hardware/software para outro

Portabilidade

- Como é percebida pelos usuários:
 - Fácil adaptação do sistema para novos ambientes de hardware e software

- Inexistência de diversas versões do mesmo sistema para ambientes diferentes
- Facilidade na atualização dos equipamentos usados pela empresa

Reusabilidade

 Possibilidade de reaproveitar partes de uma aplicação que podem ser usadas em outras aplicações

Reusabilidade

- Como é percebida pelos usuários:
 - Menor custo de desenvolvimento e manutenção

Menor prazo para conclusão de sistemas

Maior confiabilidade e flexibilidade

Interoperabilidade

 Quantidade de esforço exigido para se acoplar um sistema a outro

Interoperabilidade

- Como é percebida pelos usuários:
 - Rápida integração com demais sistemas da empresa

 Eliminação de tarefas de alimentação manual de sistemas

 Possibilidade de visão integrada dos dados da empresa

Garantia da qualidade de software

- Minimizar o número de defeitos no software entregue
- Criar mecanismos para controlar o desenvolvimento e a manutenção de software
 - cumprimento dos prazos dentro dos custos estimados
- Garantir que os produtos possam ser utilizados nas condições previstas
- Melhorar a qualidade de futuras versões e produtos

Obstáculos à Qualidade

- Falta de constância de propósito
- Ênfase exclusiva em prazos
- Rotatividade do pessoal
- Gerência através do "dados visíveis" apenas
- Custos excessivos de pessoal
- Custos excessivos de manutenção

Atividades para garantia da qualidade

- Aplicação de técnicas adequadas de desenvolvimento
- Realização de revisões técnicas formais
- Testes de software
- Aplicações de padrões
- Controle de mudanças
- Medição da qualidade
- Manutenção de registros de ocorrências relativas à qualidade.

Resumo das características

Corretude	Como um programa satisfaz e cumpre os objetivos que o cliente visa.	Ele faz aquilo que eu preciso?
Confiabilidade	Como um programa executa a função pretendida com a precisão exigida.	Ele se comporta com precisão 100% tempo?
Manutenibilidade	Capacidade de localizar e reparar erros em um programa.	Posso consertar o programa?
Flexibilidade	Esforço necessário para mudar um programa operacional.	Posso mudar o programa? (novo requisito)
Testabilidade	Esforço exigido para se testar o software, a fim de garantir que atende as expectativas.	Posso testar o programa?
Eficiência	Quantidade exigida de recursos para que o programa execute sua função.	Ele rodará no meu hardware tão bem quanto possível?

Resumo das características

Integridade	Como o controle de acessos ou dados por pessoas não-autorizadas pode ser controlado.	O programa é seguro?
Usabilidade	Facilidade para operar e preparar a entrada e saída de um programa.	O programa foi projetado para este usuário? É fácil de usar?
Portabilidade	esforço para transferir um programa de um ambiente para outro.	Poderei utilizá-lo em outro ambiente?
Reusabilidade	medida em que um programa (ou partes de um programa) podem ser reaproveitados em outras aplicações relacionadas ao escopo.	Poderei utilizá-lo novamente em outro sistema?
Interoperabilidade	esforço exigido para acoplar um sistema a outro.	Poderei compor uma interface com outro sistema?

Importância de cada característica depende do tipo Software

Sistema para biblioteca

Corretude Confiabilidade Manutenibilidade Flexibilidade **Testabilidade** Eficiência Integridade Usabilidade Portabilidade Reusabilidade Interoperabilidade Sistema para controle caldeira de fundição aço

- Alta relevância
- Média relevância
- Irrelevante

Referências

- JINO, M., MALDONADO, J. C., DELAMARO, M. E, Introdução ao Teste de Software. São Paulo, Campus, 2007.
- COSTA, Ivani et al. Qualidade em tecnologia da informação: conceitos de qualidade nos processos, produtos, normas, modelos e testes de software no apoio às estratégias empresariais. São Paulo, Atlas, 2013.
- SOMMERVILLE, I, Engenharia de Software [recurso digital, Biblioteca Virtual 3.0]. São Paulo, Addison Wesley, 2007 8a ed.
- Complementar
- PFLEEGER, Shari Lawrence. Engenharia de Software. São Paulo, Pearson Education, 2004.
- PRESSMAN, R. S., Engenharia de Software [recurso digital, Minha Biblioteca]. Porto Alegre: Grupo A, 2010.
- RIOS, Emerson; MOREIRA, Trayahú. Teste de Software: Rio de Janeiro: Alta Books, 2013.
- ANTONIONI, José A. Qualidade em software. São Paulo, Makron Books, 1995.
 PEARSON, Academia. Gestão da Qualidade [recurso digital, Biblioteca Virtual 3.0].
 Pearson Education. Livro digital.

Obrigado

paulo.nietto@animaeducacao.com.br

