

《线性代数》

课时一 行列式(一)

考点	重要程度	分值	常见题型
1. 逆序数	***	0~3	选择/填空
2. 行列式性质与计算	必考	6~15	大題

1. 逆序数

题 1: 排列 5 2 6 1 4 5 的逆序数为 , 是 (奇/偶) 排列。

解: 逆序 0 1 0 3 2 1 逆序数 0+1+0+3+2+1=7, 为奇排列

题 2: 在四阶行列式中, 项 $a_{11}a_{22}a_{44}a_{32}$ 的符号应取_____。

解: 行排列 1 2 4 3 逆序数 $t_1 = 0 + 0 + 0 + 1 = 1$

t=1+2=3, 符号为负。

列排列 1 3 4 2 逆序数 $t_2 = 0 + 0 + 0 + 2 = 2$

2. 行列式的性质与计算

①互换行(列),变号

$$\begin{vmatrix} 3 & 1 & 4 \\ 2 & -1 & -2 \\ 1 & 0 & 2 \end{vmatrix} = -\begin{vmatrix} 2 & -1 & -2 \\ 3 & 1 & 4 \\ 1 & 0 & 2 \end{vmatrix} \qquad \begin{vmatrix} 3 & 1 & 4 \\ 2 & -1 & -2 \\ 1 & 0 & 2 \end{vmatrix} = -\begin{vmatrix} 3 & 4 & 1 \\ 2 & -2 & -1 \\ 1 & 2 & 0 \end{vmatrix}$$

②提公因子

$$\begin{vmatrix} 3 & -6 & 4 \\ 2 & 6 & -2 \\ 1 & 0 & 2 \end{vmatrix} = 2 \begin{vmatrix} 3 & -6 & 4 \\ 1 & 3 & -1 \\ 1 & 0 & 2 \end{vmatrix} = 2 \times 3 \begin{vmatrix} 3 & -2 & 4 \\ 1 & 1 & -1 \\ 1 & 0 & 2 \end{vmatrix}$$

③倍加

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \xrightarrow{r_2 + 3r_1} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + 3a_{11} & a_{22} + 3a_{12} & a_{23} + 3a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \xrightarrow{c_2 + 2c_3} \begin{vmatrix} a_{11} & a_{12} + 2a_{13} & a_{13} \\ a_{21} & a_{22} + 2a_{23} & a_{23} \\ a_{31} & a_{32} + 2a_{33} & a_{33} \end{vmatrix}$$

④拆分

$$\begin{vmatrix} a_1 & b_1 + d_1 & c_1 \\ a_2 & b_2 + d_2 & c_2 \\ a_3 & b_3 + d_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$$

⑤对应成比例值为零

$$\begin{vmatrix} 3 & 1 & 4 \\ 2 & 4 & 6 \\ 1 & 2 & 3 \end{vmatrix} = 0 \qquad \begin{vmatrix} 3 & 1 & 4 \\ 0 & 0 & 0 \\ 1 & 2 & 3 \end{vmatrix} = 0$$

解:
$$(1-k)(k-1)-(-2)\times 2=0$$
 得 $k=-1$ 或 3

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

题 2: 计算
$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 3 & 7 & 2 \end{vmatrix}$$
 。

M:
$$D = \begin{vmatrix} 1 & -1 & 0 \\ 2 & 3 & 2 \\ 3 & 7 & 2 \end{vmatrix} = \begin{vmatrix} r_2 - 2r_1 \\ 2 - 2 \times 1 & 1 - 2 \times (-1) & 0 - 2 \times 0 \\ 3 & 7 & 2 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$$

$$= \begin{vmatrix} 1 & -1 & 0 \\ 0 & 5 & 2 \\ 3 & 7 & 2 \end{vmatrix} \xrightarrow{r_3 - 3r_1} \begin{vmatrix} 1 & -1 & 0 \\ 0 & 5 & 2 \\ 3 - 3 \times 1 & 7 - 3 \times (-1) & 2 - 3 \times 0 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 5 & 2 \\ 0 & 10 & 2 \end{vmatrix}$$

$$\frac{r_3 - 2r_2}{ } \begin{vmatrix} 1 & -1 & 0 \\ 0 & 5 & 2 \\ 0 - 0 & 10 - 2 \times 5 & 2 - 2 \times 2 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ 0 & 5 & 2 \\ 0 & 0 & -2 \end{vmatrix} = 1 \times 5 \times (-2) = -10$$

题 3: 计算行列式
$$D = \begin{vmatrix} 0 & 1 & 1 & 3 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & 3 & 0 \\ 2 & 1 & 1 & 0 \end{vmatrix}$$
.

$$\mathbf{M}: D = \begin{vmatrix} 0 & 1 & 1 & 3 \\ 1 & -1 & 0 & 2 \\ 1 & -2 & 3 & 0 \\ 2 & 1 & 1 & 0 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 1 & -2 & 3 & 0 \\ 2 & 1 & 1 & 0 \end{vmatrix} \xrightarrow{r_3 - r_1} - \begin{vmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & -1 & 3 & -2 \\ 0 & 3 & 1 & -4 \end{vmatrix}$$

$$\frac{r_3 + r_2}{r_4 - 3r_2} - \begin{vmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 4 & 1 \\ 0 & 0 & -2 & -13 \end{vmatrix} \xrightarrow{r_3 \leftrightarrow r_4} \begin{vmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & -2 & -13 \\ 0 & 0 & 4 & 1 \end{vmatrix} \xrightarrow{r_4 + 2r_3} \begin{vmatrix} 1 & -1 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & -2 & -13 \\ 0 & 0 & 0 & -25 \end{vmatrix} = 50$$

题 4:
$$D = \begin{vmatrix} 5 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 \\ 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 5 \end{vmatrix}$$
。

$$\mathbf{#:} \quad D = \begin{bmatrix} r_1 + r_2 + r_3 + r_4 \\ 1 & 5 & 1 & 1 \\ 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 5 \end{bmatrix} = 8 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 \\ 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 5 \end{vmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 5 & 1 & 1 \\ 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 5 \end{vmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ r_2 - r_1 \\ r_3 - r_1 \\ r_4 - r_1 \end{bmatrix} = 8 \times 4^3 = 512$$

题 5: 箭型
$$D = \begin{vmatrix} 1 & 4 & 6 & 9 \\ 4 & 1 & 0 & 0 \\ 6 & 0 & 2 & 0 \\ 9 & 0 & 0 & 3 \end{vmatrix}$$
.

$$\mathbf{M}: D = \begin{vmatrix} 1 & 4 & 6 & 9 \\ 4 & 1 & 0 & 0 \\ 6 & 0 & 2 & 0 \\ 9 & 0 & 0 & 3 \end{vmatrix} \underbrace{c_1 - 4c_2}_{-15} \begin{vmatrix} -15 & 4 & 6 & 9 \\ 0 & 1 & 0 & 0 \\ 6 & 0 & 2 & 0 \\ 9 & 0 & 0 & 3 \end{vmatrix} \underbrace{c_1 - 3c_3}_{-15} \begin{vmatrix} -33 & 4 & 6 & 9 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 9 & 0 & 0 & 3 \end{vmatrix} \underbrace{c_1 - 3c_4}_{-15} \begin{vmatrix} -60 & 4 & 6 & 9 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{vmatrix} = -360$$

课时一 练习题

- 1. 排列21798的逆序数为____。
- 2. 五阶行列式 $D + a_{12}a_{25}a_{34}a_{41}a_{53}$ 的符号是 。
- 3. 设 A 为三阶矩阵,且 det(A) = -2,若将 A 按列分块 $A = (A_1, A_2, A_3)$,其中 A 的第 j 列 (j=1,2,3), $\Re |A_3-2A_1,3A_2,A_1|$.
- 4. 计算下列行列式的值。

$$(4) \begin{vmatrix} 4 & 1 & 1 & 1 \\ 1 & 4 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 4 \end{vmatrix}$$

注: 练习题答案在文档最后

课时二 行列式(二)

考点	重要程度	分值	常见题型
1. 行列式展开	****	4~6	填空/大题
2. 范德蒙行列式	***	0~6	大题

1. 行列式展开

余子式
$$M_{ij}$$
: 去掉 a_{ij} 所在的行与列
代数余子式: $A_{ij} = (-1)^{i+j} M_{ij}$

#:
$$M_{12} = \begin{vmatrix} 1 & 7 \\ 3 & 1 \end{vmatrix} = 1 \times 1 - 7 \times 3 = -20$$
, $M_{23} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = 2 \times 2 - 3 \times 3 = -5$

$$M_{23} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = 2 \times 2 - 3 \times 3 = -5$$

$$A_{12} = (-1)^{1+2} M_{12} = 20$$
,

$$A_{23} = (-1)^{2+3} M_{23} = 5$$

题 2: 用行列式展开计算 D = 2 1 1。 1 3 2

解:按第一行展开:

$$D = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 2 \end{vmatrix} = 1A_{11} + 2A_{12} + 3A_{13} = 1 \times (-1)^{1+1}M_{11} + 2 \times (-1)^{1+2}M_{12} + 3 \times (-1)^{1+3}M_{13}$$

$$= M_{11} - 2M_{12} + 3M_{13} = \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} - 2 \times \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + 3 \times \begin{vmatrix} 2 & 1 \\ 1 & 3 \end{vmatrix} = -1 - 6 + 15 = 8$$

按第二列展开:

$$D = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 2 \end{vmatrix} = 2A_{12} + A_{22} + 3A_{32} = 8$$

題 3:
$$D = \begin{vmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 2 & 4 \\ 2 & -4 & 6 & -8 \\ 1 & 3 & 5 & 7 \end{vmatrix}$$
, 求: ① $2A_{11} - 4A_{12} + 6A_{13} - 8A_{14}$, ② $A_{11} + A_{12} + A_{13} + A_{14}$, ③ $M_{11} + M_{12}$

 $+M_{13} + M_{14}$ •

M: ①
$$2A_{11} - 4A_{12} + 6A_{13} - 8A_{14} = 0$$

$$2A_{11} + A_{12} + A_{13} + A_{14} = 1 \times A_{11} + 1 \times A_{12} + 1 \times A_{13} + 1 \times A_{14}$$

$$= \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 2 & -4 & 6 & -8 \\ 1 & 3 & 5 & 7 \end{vmatrix} \underbrace{\begin{vmatrix} r_3 - 2r_1 \\ r_4 - r_1 \end{vmatrix}}_{0} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & -6 & 4 & -10 \\ 0 & 2 & 4 & 6 \end{vmatrix} \underbrace{\begin{vmatrix} r_3 + 6r_2 \\ r_4 - 2r_2 \end{vmatrix}}_{0} \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 16 & 14 \\ 0 & 0 & 0 & -2 \end{vmatrix} = -32$$

$$= \begin{vmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 2 & 4 \\ 2 & -4 & 6 & -8 \\ 1 & 3 & 5 & 7 \end{vmatrix} \underbrace{ \begin{vmatrix} r_3 - 2r_1 \\ r_4 - r_1 \end{vmatrix} }_{0} \begin{vmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 2 & 4 \\ 0 & -2 & 4 & -6 \\ 0 & 4 & 4 & 8 \end{vmatrix} \underbrace{ \begin{vmatrix} r_3 + 2r_2 \\ r_4 - 4r_2 \end{vmatrix} }_{0} \begin{vmatrix} 1 & -1 & 1 & -1 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 8 & 2 \\ 0 & 0 & -4 & -8 \end{vmatrix}$$

$$\frac{r_3 \leftrightarrow r_4}{0 \quad 0 \quad -4 \quad -8} = -56$$

2. 范德蒙行列式

題 1. 求
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ a & b & c & d \\ a^2 & b^2 & c^2 & d^2 \\ a^3 & b^3 & c^3 & d^3 \end{vmatrix}$$
的值。

M:
$$D = (d-c)(d-b)(d-a)(c-b)(c-a)(b-a)$$

題 2. 求
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 4 & 5 \\ 1 & 9 & 16 & 25 \\ 1 & 27 & 64 & 125 \end{vmatrix}$$
。

$$\mathbf{M}: D = \begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 3 & 4 & 5 \\
1 & 9 & 16 & 25 \\
1 & 27 & 64 & 125
\end{vmatrix} = \begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 3 & 4 & 5 \\
1 & 3^2 & 4^2 & 5^2 \\
1 & 3^3 & 4^3 & 5^3
\end{vmatrix} = (5-4)(5-3)(5-1)(4-3)(4-1)(3-1) = 48$$

课时二 练习题

 $A_{24} = 2$, $A_{25} = -1$, 试求常数x和行列式D。

2.
$$abla D = \begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 9 & 9 & 9 \\
10 & 11 & 12 & 13
\end{bmatrix}$$
, $abla A_{41} + A_{42} + A_{43} + A_{44} = \underline{\qquad}$, $abla_{31} + A_{32} + A_{33} + A_{34} = \underline{\qquad}$.

$$3. \not \Re D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{vmatrix}.$$

课时三 矩阵

考点	重要程度	分值	常见题型
1. 矩阵的运算	***	3~8	填空/大题
2. 常见矩阵	***	6~8	选择/填空/大题
3. 方阵的行列式计算	必考	3~5	选择/填空

1. 矩阵的运算

	行列式	矩阵			
形式	$D = \begin{vmatrix} 1 & 2 & 3 \\ 1 & 5 & 4 \\ 2 & 3 & 5 \end{vmatrix}$	$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 5 & 4 \\ 2 & 3 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 9 & 6 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 5 \\ 6 & 4 \\ 5 & 3 \end{pmatrix}$			
	 行列式是数值,矩阵是数表 行列式是n×n阶,矩阵是m×n阶(m,n可等,可不等) 				
区别	3) $\lambda A $ 是将行列式某行(列)乘以 λ ;而 λA 是矩阵每个元素都乘以 λ				
	4) 矩阵如果是方阵 $(m=n)$,才有行列式值				
	5) 行列式加减是数值运算;矩阵加减只能是同型矩阵,对应元素加减				

題 1:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, 求 $A + B$, $2A$.

$$\mathbf{#:} \ \ A+B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1+1 & 2+1 & 3+0 \\ 1+0 & 1-3 & 1+2 \\ 1+0 & 1+0 & 1+1 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 3 \\ 1 & -2 & 3 \\ 1 & 1 & 2 \end{pmatrix}$$

$$2A = 2 \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 \times 1 & 2 \times 2 & 2 \times 3 \\ 2 \times 1 & 2 \times 1 & 2 \times 1 \\ 2 \times 1 & 2 \times 1 & 2 \times 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

$$\mathbf{\textit{M}:} \quad AB = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \times 2 + (-1) \times 1 + 0 \times (-1) & 1 \times 3 + (-1) \times (-2) + 0 \times 1 \\ 0 \times 2 + 2 \times 1 + 0 \times (-1) & 0 \times 3 + 2 \times (-2) + 0 \times 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 2 & -4 \end{pmatrix}$$

$$BA = \begin{pmatrix} 2 & 3 \\ 1 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 \times 1 + 3 \times 0 & 2 \times (-1) + 3 \times 2 & 2 \times 0 + 3 \times 0 \\ 1 \times 1 + (-2) \times 0 & 1 \times (-1) + (-2) \times 2 & 1 \times 0 + (-2) \times 0 \\ (-1) \times 1 + 1 \times 0 & (-1) \times (-1) + 1 \times 2 & (-1) \times 0 + 1 \times 0 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 0 \\ 1 & -5 & 0 \\ -1 & 3 & 0 \end{pmatrix}$$

$$AB \neq BA \implies (A \pm B)^2 \neq A^2 + B^2 \pm 2AB$$
, $A^2 - B^2 \neq (A + B)(A - B)$

题 3:
$$\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} (2 \quad 1 \quad 1)$$
 。

解: 原式 =
$$\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$$
 (2 1 1) $\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$... (2 1 1) $= \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$ (2 1 1) $= \begin{pmatrix} 2 & 1 & 1 \\ -6 & -3 & -3 \\ 4 & 2 & 2 \end{pmatrix}$

2. 转置矩阵、伴随矩阵、单位矩阵、逆矩阵

1) 转置矩阵:
$$A^{T}$$
 若 $A = \begin{pmatrix} 2 & 4 & 0 \\ 1 & -5 & 0 \\ -1 & 3 & 0 \end{pmatrix}$, 则 $A^{T} = \begin{pmatrix} 2 & 1 & -1 \\ 4 & -5 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ 行变列,列变行

2) 伴随矩阵:
$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}$$

3) 单位矩阵: E

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad |E| = 1 \text{ If } AE = EA = A$$

4) 逆矩阵: A^{-1} 若 AB = BA = E, 则称 $B \to A$ 的逆矩阵, 记 $B = A^{-1}$; 即 $AA^{-1} = E$ 。

公式:
$$A^{-1} = \frac{A^*}{|A|}$$
, A 可逆 $\Leftrightarrow |A| \neq 0$

题 1: 设方阵 A 满足 $A^2 + 5A + 7E = 0$,求出 $(A + 3E)^{-1}$ 。

解:
$$A^2 + 5A + 6E = -E$$
 $\Rightarrow (A+3E)(A+2E) = -E$
 $\Rightarrow (A+3E)(-A-2E) = E$ $\Rightarrow (A+3E)^{-1} = -A-2E$

3. 方阵的行列式计算

1. 转置矩阵: A^T

$$2(A^T)^T = A$$

2. 伴随矩阵: A*

$$2|A^*| = |A|^{n-1}$$

①
$$(AB)^* = B^*A^*$$
 ② $|A^*| = |A|^{n-1}$ ③ $A^* = |A|A^{-1}$ (若 A 可逆) ④ $(kA)^* = k^{n-1}A^*$

3. 可逆矩阵: A-1

$$2(A^{-1})^{-1} = A$$

$$(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}$$

4. 矩阵的行列式计算

$$2|AB| = |A||B|$$

$$\boxed{4} |A^{\mathrm{T}}| = |A|$$

题 1:设 A 为三阶方阵,且 $|A|=rac{1}{2}$,则|-2A|=______, $\left|(2A)^{-1} ight|=$ _____, $\left|A^* ight|=$ _____。

#:
$$|-2A| = (-2)^3 |A| = -8 \cdot \frac{1}{2} = -4$$

$$\left| \left(2A \right)^{-1} \right| = \left| \frac{1}{2} A^{-1} \right| = \left(\frac{1}{2} \right)^3 \frac{1}{|A|} = \frac{1}{4}$$

$$|A^*| = |A|^{3-1} = |A|^2 = \frac{1}{4}$$

题 2: 设 A , B 为三阶方阵,|A|=2 , |B|=-3 , 则 $|2A^*B^{-1}|=$ ______。

#:
$$|2A^*B^{-1}| = 2^3 |A^*B^{-1}| = 2^3 |A^*||B^{-1}| = 2^3 |A|^{3-1} \cdot \frac{1}{|B|} = 8 \cdot 2^2 \cdot \left(-\frac{1}{3}\right) = -\frac{32}{3}$$

题 3. 设 A 为三阶方阵,且|A|=-2, A^* 是 A 的伴随矩阵,则 $|4A^{-1}+A^*|=$ _____。

#:
$$|4A^{-1} + A^*| = |4A^{-1} + |A|A^{-1}| = |4A^{-1} - 2A^{-1}| = |2A^{-1}| = 2^3 |A^{-1}| = 2^3 \cdot \frac{1}{|A|} = 2^3 \cdot \frac{1}{-2} = -4$$

课时三 练习题

3. 设
$$A$$
 , B 为 n 阶方阵, $|A|=2$, $|B|=3$, 则 $\left|\frac{1}{2}A^*B^{-1}\right|=$ ______。

4. 设
$$A$$
 为三阶方阵, $|A| = \frac{1}{2}$,求 $|(3A)^{-1} - 2A^*| =$ ______。

5. 设
$$A$$
 为二阶方阵, B 为三阶方阵, $|A| = \frac{1}{|B|} = \frac{1}{2}$, 则 $\begin{vmatrix} B & 0 \\ 0 & (2A)^{-1} \end{vmatrix} = \underline{\qquad}$ 。

6. 已知A 为n 阶方阵,E 为n 阶单位阵,且 $A^2+A-3E=0$,证明A-E 可逆,并求 $\left(A-E\right)^{-1}$ 。

初等行变换 课时四

考点	重要程度	分值	常见题型
1. 初等行变换	必考	基础知识	大題
2. 求逆矩阵	 	6~10	入型
3. 矩阵的秩	***	3~6	选择/填空

1. 初等行变换

题 1: 用初等行变换将矩阵
$$A = \begin{pmatrix} 0 & 4 & -12 & 2 \\ 3 & -1 & -6 & -2 \\ -1 & -1 & 6 & 2 \\ 2 & -2 & 0 & 0 \end{pmatrix}$$
 化成阶梯形和最简形。

$$\mathbf{M}: A = \begin{pmatrix} 0 & 4 & -12 & 2 \\ 3 & -1 & -6 & -2 \\ -1 & -1 & 6 & 2 \\ 2 & -2 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} -1 & -1 & 6 & 2 \\ 3 & -1 & -6 & -2 \\ 0 & 4 & -12 & 2 \\ 2 & -2 & 0 & 0 \end{pmatrix}$$

$$\frac{r_3 + r_2}{r_4 - r_2} \begin{pmatrix} 1 & 1 & -6 & -2 \\ 0 & -4 & 12 & 4 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix} \underbrace{r_2 \div (-4)}_{r_3 \div 6} \begin{pmatrix} 1 & 1 & -6 & -2 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\underline{r_1 - r_2} \begin{pmatrix} 1 & 0 & -3 & -1 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \underbrace{r_1 + r_3}_{r_2 + r_3} \begin{pmatrix} 1 & 0 & -3 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

阶梯形

- ①若有全零行,则全零行 位于最下方
- ②每个阶梯首项为主元, 主元依次往右
- ③阶梯形不唯一

最简形

- ①主元为1
- ②主元所在列的其他元素 都为0
- ③最简形是唯一

2. 求逆矩阵

题 1: 若
$$A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
,求 A^{-1} 。

$$\mathbf{M}: \quad A^{-1} = \frac{1}{2 \times 3 - 5 \times 1} \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -5 \\ -1 & 2 \end{pmatrix}$$

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 主对调,次反号,除以值

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

題 2:
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 0 & 3 \\ 2 & 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$, (1)若矩阵 X 满足 $AX = E$, 求 X ; (2)若矩阵 Y 满足

BY = B + 2Y, Rightarrow Y.

$$\mathbf{#:} \ \ \mathbf{(1)} \ \ (A:E) = \begin{pmatrix} 1 & 2 & 2 & \vdots & 1 & 0 & 0 \\ 1 & 0 & 3 & \vdots & 0 & 1 & 0 \\ 2 & 3 & 4 & \vdots & 0 & 0 & 1 \end{pmatrix} r_3 - 2r_1 \begin{pmatrix} 1 & 2 & 2 & \vdots & 1 & 0 & 0 \\ 0 & -2 & 1 & \vdots & -1 & 1 & 0 \\ 0 & -1 & 0 & \vdots & -2 & 0 & 1 \end{pmatrix} r_2 \leftrightarrow r_3 \begin{pmatrix} 1 & 2 & 2 & \vdots & 1 & 0 & 0 \\ 0 & 1 & 0 & \vdots & 2 & 0 & -1 \\ 0 & -2 & 1 & \vdots & -1 & 1 & 0 \end{pmatrix}$$

$$\frac{r_3 + 2r_2}{0} \begin{pmatrix} 1 & 2 & 2 & \vdots & 1 & 0 & 0 \\ 0 & 1 & 0 & \vdots & 2 & 0 & -1 \\ 0 & 0 & 1 & \vdots & 3 & 1 & -2 \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & 2 & \vdots & -3 & 0 & 2 \\ 0 & 1 & 0 & \vdots & 2 & 0 & -1 \\ 0 & 0 & 1 & \vdots & 3 & 1 & -2 \end{pmatrix} \xrightarrow{r_1 - 2r_2} \begin{pmatrix} 1 & 0 & 0 & \vdots & -9 & -2 & 6 \\ 0 & 1 & 0 & \vdots & 2 & 0 & -1 \\ 0 & 0 & 1 & \vdots & 3 & 1 & -2 \end{pmatrix} \rightarrow \left(E : A^{-1} \right)$$

$$\Rightarrow X = A^{-1} = \begin{pmatrix} -9 & -2 & 6 \\ 2 & 0 & -1 \\ 3 & 1 & -2 \end{pmatrix}$$

(2)
$$BY = B + 2Y$$
 $\Rightarrow BY - 2Y = B$ $\Rightarrow (B - 2E)Y = B$

$$B - 2E = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

$$(B-2E:B) = \begin{pmatrix} 2 & 2 & 3 & \vdots & 4 & 2 & 3 \\ 1 & -1 & 0 & \vdots & 1 & 1 & 0 \\ -1 & 2 & 1 & \vdots & -1 & 2 & 3 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_1} \begin{pmatrix} 1 & -1 & 0 & \vdots & 1 & 1 & 0 \\ 2 & 2 & 3 & \vdots & 4 & 2 & 3 \\ -1 & 2 & 1 & \vdots & -1 & 2 & 3 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & -1 & 0 & \vdots & 1 & 1 & 0 \\ 0 & 4 & 3 & \vdots & 2 & 0 & 3 \\ 0 & 1 & 1 & \vdots & 0 & 3 & 3 \end{pmatrix}$$

$$\frac{r_2 \leftrightarrow r_3}{0} \begin{pmatrix} 1 & -1 & 0 & \vdots & 1 & 1 & 0 \\ 0 & 1 & 1 & \vdots & 0 & 3 & 3 \\ 0 & 4 & 3 & \vdots & 2 & 0 & 3 \end{pmatrix} \underbrace{r_3 - 4r_2}_{0} \begin{pmatrix} 1 & -1 & 0 & \vdots & 1 & 1 & 0 \\ 0 & 1 & 1 & \vdots & 0 & 3 & 3 \\ 0 & 0 & -1 & \vdots & 2 & -12 & -9 \end{pmatrix} \underbrace{r_1 + r_2}_{0} \begin{pmatrix} 1 & 0 & 1 & \vdots & 1 & 4 & 3 \\ 0 & 1 & 1 & \vdots & 0 & 3 & 3 \\ 0 & 0 & -1 & \vdots & 2 & -12 & -9 \end{pmatrix}$$

$$\frac{r_1 + r_3}{r_2 + r_3} \begin{pmatrix} 1 & 0 & 0 & \vdots & 3 & -8 & -6 \\ 0 & 1 & 0 & \vdots & 2 & -9 & -6 \\ 0 & 0 & -1 & \vdots & 2 & -12 & -9 \end{pmatrix} \xrightarrow{-r_3} \begin{pmatrix} 1 & 0 & 0 & \vdots & 3 & -8 & -6 \\ 0 & 1 & 0 & \vdots & 2 & -9 & -6 \\ 0 & 0 & 1 & \vdots & -2 & 12 & 9 \end{pmatrix} \implies Y = \begin{pmatrix} 3 & -8 & -6 \\ 2 & -9 & -6 \\ -2 & 12 & 9 \end{pmatrix}$$

3. 矩阵的秩

题 1: 用初等变换求下列矩阵的秩:
$$A = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 4 & -2 \\ 1 & 1 & -1 \end{pmatrix}$$
。

秩=主元个数

$$\mathbf{#:} \quad A = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 4 & -2 \\ 1 & 1 & -1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -1 \\ -2 & 4 & -2 \\ 2 & -1 & 1 \end{pmatrix} \xrightarrow{r_2 + 2r_1} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 6 & -4 \\ 0 & -3 & 3 \end{pmatrix} \xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -3 & 3 \\ 0 & 6 & -4 \end{pmatrix}$$

$$\frac{r_3 + 2r_2}{0} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -3 & 3 \\ 0 & 0 & 2 \end{pmatrix} \implies R(A) = 3$$

题 2: 设 A , B 为三阶方阵,若 A 可逆, R(B)=2 , R(AB)= ________。

解: 若A可逆,不妨取
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $AB = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies R(AB) = 2$

题 3: 设 A 是 4 阶方阵,R(A)=2,则 $R(A^*)=$ _____。

解:
$$R(A) = 2 < 4 - 1 = 3 \Rightarrow R(A^*) = 0$$

①若
$$R(A) = n$$
, 则 $R(A^*) = n$

③若
$$R(A) < n-1$$
,则 $R(A^*) = 0$

矩阵秩的性质

②若矩阵
$$P$$
, Q 可逆,则 $R(PA)=R(AQ)=R(PAQ)$

⑤设
$$A$$
, B 分别是 $m \times n$ 矩阵与 $n \times s$ 矩阵,

则
$$R(AB) \le \min\{R(A), R(B)\}$$
, $R(AB) \ge R(A) + R(B) - n$

若
$$AB = 0$$
, 则 $R(A) + R(B) \le n$

课时四 练习题

1. 将矩阵
$$A = \begin{pmatrix} 2 & 3 & 1 & -3 \\ 1 & 2 & 0 & -2 \\ 3 & -2 & 8 & 3 \\ 2 & -3 & 7 & 4 \end{pmatrix}$$
 化为最简形。

2. 若
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$$
, 求 A^{-1} 。

3. 若
$$A = \begin{pmatrix} 1 & 0 & -1 \\ -2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$
, 求 A^{-1} 。

4.
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 $\mathbb{H} AB - E = A + B$, $\mathbb{R} B$.

6. 设
$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 3 & 2 & \lambda & -1 \\ 5 & 6 & 3 & \mu \end{pmatrix}$$
, 已知 $R(A) = 2$,求 λ 与 μ 的值。

课时五 向量组

考点	重要程度	分值	常见题型
1. 向量组	必考	6 15	大題
2. 线性相关与线性无关	少 夕	0~15	人观

1. 向量组

$$a = (1,1)^T$$
 是二维向量, $b = (1,2,3)^T$ 是三维向量, $c = (1,2,3,4)^T$ 为四维向量

$$a_1 = (1,0,1)^T$$
 $a_2 = (1,2,0)^T$ $a_3 = (0,2,3)^T$ $A = (a_1,a_2,a_3) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 0 & 3 \end{pmatrix}$ 是向量组

题 1: $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (0,1,0)^T$, $\alpha_3 = (1,2,1)^T$, $\beta = (4,4,3)^T$, 用 α_1 , α_2 , α_3 线性表示 β 。

解: 设 k_1 , k_2 , k_3 满足 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \beta$

$$\Rightarrow k_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + k_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + k_{3} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix} \quad \Rightarrow \begin{cases} k_{1} + k_{3} = 4 \\ k_{2} + 2k_{3} = 4 \end{cases} \quad \Rightarrow \begin{cases} k_{1} = 1 \\ k_{2} = -2 \\ k_{3} = 3 \end{cases} \Rightarrow \beta = \alpha_{1} - 2\alpha_{2} + 3\alpha_{3}$$

2. 线性相关与线性无关

①若存在一组不全为0的数 $k_1,k_2,\cdots k_m$,使 $k_1\alpha_1+k_2\alpha_2+\cdots k_m\alpha_m=0$,

则称向量组 $\alpha_1,\alpha_2,\cdots\alpha_m$ 线性相关,否则称向量组 $\alpha_1,\alpha_2,\cdots\alpha_m$ 线性无关。

② $R(\alpha_1,\alpha_2,\cdots\alpha_m)$ <m ⇔ 向量组 $\alpha_1,\alpha_2,\cdots\alpha_m$ 线性相关;

 $R(\alpha_1,\alpha_2,\cdots\alpha_m)=m$ ⇔ 向量组 $\alpha_1,\alpha_2,\cdots\alpha_m$ 线性无关。

③极大无关组

例: 三维坐标中
$$a_1 = (1,0,0)^T$$
, $a_2 = (0,1,0)^T$, $a_3 = (0,0,1)^T$

任给一个三维向量 $a_4 = (2,3,6)^T$, $a_4 = 2a_1 + 3a_2 + 6a_3$

向量组 a_1,a_2,a_3 是任意一组三维向量 $a_1,a_2,a_3\cdots a_m$ 的一个极大无关组

题 1: 已知 $a_1 = (1,1,1)^T$, $a_2 = (1,0,2)^T$, $a_3 = (-1,-4,a)^T$,则 a 为何值时,该向量组 a_1,a_2,a_3 线性相关。

$$\mathbf{M}: (a_1, a_2, a_3) = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -4 \\ 1 & 2 & a \end{pmatrix} \frac{r_2 - r_1}{r_3 - r_1} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & -3 \\ 0 & 1 & a+1 \end{pmatrix} \frac{r_3 + r_2}{r_3 + r_2} \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & -3 \\ 0 & 0 & a-2 \end{pmatrix}$$

$$R(a_1, a_2, a_3) < 3 \Rightarrow a - 2 = 0 \Rightarrow a = 2$$

题 2: 求向量组 $a_1 = (2,4,2)^T$, $a_2 = (1,1,0)^T$, $a_3 = (2,3,1)^T$, $a_4 = (3,5,2)^T$ 的秩及一个极大无关组,并将其余向量用此极大无关组线性表示。

$$\mathbf{M}: A = \begin{pmatrix} a_1, a_2, a_3, a_4 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \frac{r_2 - 2r_1}{r_3 - r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \frac{r_3 - r_2}{r_3 - r_2} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\frac{r_1 + r_2}{0} \begin{pmatrix} 2 & 0 & 1 & 2 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \frac{1}{-r_2} \begin{pmatrix} 1 & 0 & 1/2 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$R(A)=2$$
, 极大无关组为 a_1,a_2 , $a_3=\frac{1}{2}a_1+a_2$, $a_4=a_1+a_2$

题 3: 已知向量组 a_1, a_2, a_3 线性无关, $b_1 = a_1 - 2a_2$, $b_2 = a_2 - 2a_3$, $b_3 = a_3 - 2a_1$,求证: 向量组 b_1, b_2, b_3 线性无关。

证: 若向量组 b_1,b_2,b_3 线性相关,则存在一组不全为0的 k_1,k_2,k_3 使得 $k_1b_1+k_2b_2+k_3b_3=0$,

$$k_1(a_1-2a_2)+k_2(a_2-2a_3)+k_3(a_3-2a_1)=0$$

$$(k_1 - 2k_3)a_1 + (k_2 - 2k_1)a_2 + (k_3 - 2k_2)a_3 = 0$$

又
$$a_1, a_2, a_3$$
 线性无关,故
$$\begin{cases} k_1 - 2k_3 = 0 \\ k_2 - 2k_1 = 0 \end{cases} \Rightarrow \begin{cases} k_1 = 0 \\ k_2 = 0 \end{cases}$$
 与假设矛盾
$$k_3 - 2k_2 = 0$$

故向量组*b*₁,*b*₂,*b*₃线性无关。

课时五 练习题

1. 判断向量组
$$\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
, $\begin{pmatrix} -2\\2\\0 \end{pmatrix}$, $\begin{pmatrix} 3\\-5\\2 \end{pmatrix}$ 的线性相关性。

2. 设向量组 $a_1 = (1,1,0)^T$, $a_2 = (1,3,-1)^T$, $a_3 = (5,3,k)^T$ 线性相关,则k =_____。

3. 设
$$A = \begin{pmatrix} 1 & 0 & 1 & -2 & 1 \\ -1 & 3 & -4 & -1 & 2 \\ 2 & -1 & 4 & 2 & -3 \\ 2 & 3 & 1 & 3 & -3 \end{pmatrix}$$
, 求矩阵 A 的秩,并给出一个极大无关组。

4. 设
$$A = \begin{pmatrix} 1 & 2 & 4 & 3 \\ 2 & -3 & 1 & -1 \\ -1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
,求矩阵 A 的一个极大无关组,并将其余列向量用极大无关组线性表示。

5. 已知向量组 a_1, a_2, a_3 线性无关, $b_1 = a_1 - a_2$, $b_2 = a_2 - a_3$, $b_3 = a_1 + a_3$,证明: b_1 , b_2 , b_3 线 性无关。

课时六 解方程组

考点	重要程度	分值	常见题型
1. 齐次线性方程组	必考	6~12	大題
2. 非齐次线性方程组	火 石	0~12	人类

1. 齐次线性方程组 AX=0

题 1. 求下列线性方程组的基础解系及通解。

$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 = 0 \\ 3x_1 - x_2 - 4x_3 + 5x_4 = 0 \\ 2x_1 + 4x_2 - 5x_3 - 6x_4 = 0 \end{cases}$$

解的判定:系数矩阵A

R(A) = n 只有零解

R(A) < n 无穷多解且有 n - R(A) 个解向

解:写出系数矩阵 A,并进行初等行变换,直至转化为最简形矩阵。

$$A = \begin{pmatrix} 1 & 1 & -2 & -1 \\ 3 & -1 & -4 & 5 \\ 2 & 4 & -5 & -6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & -1 \\ 0 & -4 & 2 & 8 \\ 0 & 2 & -1 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 & -1 \\ 0 & 2 & -1 & -4 \\ 0 & 2 & -1 & -4 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & -2 & -1 \\ 0 & 1 & -1/2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -3/2 & 1 \\ 0 & 1 & -1/2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

R(A) = 2 < 4,方程有无穷多解,n-R(A) = 4-2 = 2个解向量

令
$$x_3 = 1, x_4 = 0 \Rightarrow x_1 = \frac{3}{2}, x_2 = \frac{1}{2}$$
 得基础解系: $\xi_1 = \left(\frac{3}{2}, \frac{1}{2}, 1, 0\right)^T$ 令 $x_3 = 0, x_4 = 1 \Rightarrow x_1 = -1, x_2 = 2$ $\xi_2 = \left(-1, 2, 0, 1\right)^T$

$$-x_3 = 0, x_4 = 1 \implies x_1 = -1, x_2 = 2$$

戏解系:
$$\xi_1 = \left(\frac{3}{2}, \frac{1}{2}, 1, 0\right)^T$$

$$\xi_2 = (-1, 2, 0, 1)^2$$

故通解为
$$(x_1, x_2, x_3, x_4)^T = k_1 \xi_1 + k_2 \xi_2 = k_1 \left(\frac{3}{2}, \frac{1}{2}, 1, 0\right)^T + k_2 \left(-1, 2, 0, 1\right)^T \quad k_1, k_2 \in R$$

2. 非齐次线性方程组 $AX = \beta$

題 1. 求非齐次线性方程组 $\begin{cases} x_1 - x_2 + x_3 + x_4 = 3 \\ x_1 - x_3 + x_4 = 2 \end{cases}$ 的通解。 $x_1 - x_2 + 2x_3 + x_4 = 1$

解:写出增广矩阵 $(A:\beta)$,并进行初等行变换

判定: 增广矩阵 $(A:\beta)$

 $R(A) = R(A:\beta) = n$ 方程组有唯一解

 $R(A) = R(A:\beta) < n$ 方程组有无穷解

 $R(A) \neq R(A:\beta)$ 方程组无解

$$(A:\beta) = \begin{pmatrix} 1 & -1 & 2 & 1 & \vdots & 1 \\ 2 & -1 & 1 & 1 & \vdots & 3 \\ 1 & 0 & -1 & 1 & \vdots & 2 \\ 3 & -1 & 0 & 3 & \vdots & 5 \end{pmatrix} \frac{r_2 - 2r_1}{r_3 - r_1} \begin{pmatrix} 1 & -1 & 2 & 1 & \vdots & 1 \\ 0 & 1 & -3 & -1 & \vdots & 1 \\ 0 & 1 & -3 & 0 & \vdots & 1 \\ 0 & 2 & -6 & 0 & \vdots & 2 \end{pmatrix}$$

$$\frac{r_4 - 2r_3}{r_3 - r_2} \begin{pmatrix}
1 & -1 & 2 & 1 & \vdots & 1 \\
0 & 1 & -3 & -1 & \vdots & 1 \\
0 & 0 & 0 & 1 & \vdots & 0 \\
0 & 0 & 0 & 0 & \vdots & 0
\end{pmatrix}
\frac{r_1 + r_2}{r_2 + r_3} \begin{pmatrix}
1 & 0 & -1 & 0 & \vdots & 2 \\
0 & 1 & -3 & 0 & \vdots & 1 \\
0 & 0 & 0 & 1 & \vdots & 0 \\
0 & 0 & 0 & 0 & \vdots & 0
\end{pmatrix}$$

 $R(A) = R(A:\beta) = 3 < 4$ ⇒ 该方程组有无穷多解。

① 齐通:由
$$\begin{cases} x_1 - x_3 = 0 \\ x_2 - 3x_3 = 0 \\ x_4 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_3 \\ x_2 = 3x_3 \\ x_4 = 0 \end{cases}$$
 非齐次方程通解 X $X = ($ 齐次通解+非齐次特解)

令 $x_3 = 1$, 得基础解系: $\xi = (1,3,1,0)^T$ 齐通: $x = k(1,3,1,0)^T$

②非特: $x = (2,1,0,0)^T$ 方程通解: $X = k(1,3,1,0)^T + (2,1,0,0)^T$ $k \in \mathbb{R}$

題 2. 非齐次线性方程组
$$\begin{cases} x_1 + x_2 + \lambda x_3 = 1 \\ x_1 + \lambda x_2 + x_3 = \lambda \end{cases}$$
, 当 λ 取何值时,方程组无解?有唯一解?有无穷 $\lambda x_1 + x_2 + x_3 = \lambda^2$

多解?在方程组有无穷多解时,求出它的通解。

解:对增广矩阵 $(A:\beta)$ 作初等行变换把它变成行阶梯形矩阵:

$$(A:\beta) = \begin{pmatrix} 1 & 1 & \lambda & \vdots & 1 \\ 1 & \lambda & 1 & \vdots & \lambda \\ \lambda & 1 & 1 & \vdots & \lambda^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & \vdots & 1 \\ 0 & \lambda - 1 & 1 - \lambda & \vdots & \lambda - 1 \\ 0 & 1 - \lambda & 1 - \lambda^2 & \vdots & \lambda^2 - \lambda \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & \lambda & \vdots & 1 \\ 0 & \lambda - 1 & 1 - \lambda & \vdots & \lambda - 1 \\ 0 & 0 & 2 - \lambda - \lambda^2 & \vdots & \lambda^2 - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & \lambda & \vdots & 1 \\ 0 & \lambda - 1 & 1 - \lambda & \vdots & \lambda - 1 \\ 0 & 0 & -(\lambda + 2)(\lambda - 1) & \vdots & (\lambda - 1)(\lambda + 1) \end{pmatrix}$$

1) 无解:
$$R(A) \neq R(A:\beta)$$
, 则
$$\begin{cases} -(\lambda+2)(\lambda-1)=0 \\ (\lambda-1)(\lambda+1)\neq 0 \end{cases} \Rightarrow \lambda = -2$$

2) 有唯一解:
$$R(A) = R(A:\beta) = 3$$
, 则
$$\begin{cases} -(\lambda+2)(\lambda-1) \neq 0 \\ \lambda-1 \neq 0 \end{cases} \Rightarrow \lambda \neq -2 \mathbb{L} \lambda \neq 1$$

3) 有无穷多解:
$$R(A) = R(A:\beta) < 3$$
, 则
$$\begin{cases} -(\lambda+2)(\lambda-1) = 0 \\ (\lambda-1)(\lambda+1) = 0 \end{cases} \Rightarrow \lambda = 1$$

将
$$\lambda = 1$$
代入 $(A:\beta)$ 阶梯型得: $(A:\beta) \rightarrow \begin{pmatrix} 1 & 1 & 1 & \vdots & 1 \\ 0 & 0 & 0 & \vdots & 0 \\ 0 & 0 & 0 & \vdots & 0 \end{pmatrix}$

①齐通:
$$bx_1 + x_2 + x_3 = 0$$
 $\Rightarrow x_1 = -x_2 - x_3$

$$\diamondsuit x_2 = 1, x_3 = 0 \Rightarrow x_1 = -1$$
 得基础解系: $\xi_1 = \begin{pmatrix} -1, 1, 0 \end{pmatrix}^T$ $\xi_2 = \begin{pmatrix} -1, 0, 1 \end{pmatrix}^T$

②非特:
$$x = (1,0,0)^T$$
, 方程通解为 $X = k_1 (-1,1,0)^T + k_2 (-1,0,1)^T + (1,0,0)^T$

课时六 练习题

1. 求齐次线性方程组的基础解系及通解。

$$\begin{cases} 2x_1 - 4x_2 + 17x_3 - 6x_4 = 0 \\ x_1 + x_2 - 2x_3 + 3x_4 = 0 \\ 3x_1 + x_2 + x_3 + 5x_4 = 0 \\ 3x_1 - x_2 + 8x_3 + x_4 = 0 \end{cases}$$

- 2. 解非齐次线性方程组: $\begin{cases} x_1 + x_2 3x_3 x_4 = 1 \\ 3x_1 x_2 3x_3 + 4x_4 = 4 \\ x_1 + 5x_2 9x_3 8x_4 = 0 \end{cases}$
- 3. 非齐次线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda 3 \\ x_1 + \lambda x_2 + x_3 = -2 \end{cases}$,当 λ 取何值时,方程组无解?有唯一解?有无穷多 $x_1 + x_2 + \lambda x_3 = -2$

解?在方程组有无穷多解时,求出它的通解。

课时七 特征值、特征向量、对角化

考点	重要程度	分值	常见题型
1. 求特征值,特征向量			
2. 相似对角化	必考	6~15	大题
3. 正交相似对角化			
4. 特征值的性质	***	3~6	选择/填空

1. 求特征值、特征向量

题 1: 求矩阵 $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$ 的特征值。

M:
$$|A - \lambda E| = \begin{vmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1 = 8 - 6\lambda + \lambda^2 = (4 - \lambda)(2 - \lambda) = 0$$

所以 A 的特征值为 $\lambda_1 = 2$, $\lambda_2 = 4$

题 2: 求矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
 的特征值和特征向量。

$$\mathbf{M}: |A - \lambda E| = \begin{vmatrix} 2 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & -1 \\ 1 & 0 & 1 - \lambda \end{vmatrix} = (2 - \lambda)A_{11}$$

 $= (2-\lambda) \begin{vmatrix} 2-\lambda & -1 \\ 0 & 1-\lambda \end{vmatrix} = (2-\lambda)(2-\lambda)(1-\lambda) = (2-\lambda)^2(1-\lambda) = 0$

故特征值为 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 2$

当
$$\lambda_1 = 1$$
 时,解 $(A - E)x = 0$: $A - E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow \begin{cases} x_1 = 0 \\ x_2 = x_3 \end{cases}$

 $\lambda_1 = 1$ 对应的全部特征向量为 $k_1 (0,1,1)^T (k_1 \neq 0)$

当
$$\lambda_2 = \lambda_3 = 2$$
 时,解 $\left(A - 2E\right)x = 0$: $A - 2E = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow x_1 = x_3$

$$x_2 = 1, x_3 = 0$$
 $\Rightarrow x_1 = 0$, $x_2 = 0, x_3 = 1$ $\Rightarrow x_1 = 1$

得基础解系:
$$a_2 = (0,1,0)^T$$
, $a_3 = (1,0,1)^T$

则 $\lambda_2 = \lambda_3 = 2$ 对应的全部特征向量为 $k_2 (0,1,0)^T + k_3 (1,0,1)^T$ (k_2, k_3 不全为零)

特征值、特征向量求解步骤:

2. $\bar{x}(A-\lambda_i E)x=0$ 对应的基础解系

1. 求特征值λ,

2. 相似对角化

题 1: 矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
, 求 P , 使 $P^{-1}AP$ 对角化。

解: ①特征值 $\lambda_1 = 1, \lambda_2 = \lambda_3 = 2$

③
$$P = (a_1, a_2, a_3) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
, $\notin P^{-1}AP = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 2 \end{pmatrix}$

解题方法:

- ①求特征值 λ_1 , $\lambda_2 \cdots \lambda_m$
- ②求基础解系 a_1 , $a_2 \cdots a_m$

使
$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_m \end{pmatrix}$$

题 2: 已知矩阵 $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 3 & 4 \end{pmatrix}$, 判断 A 能否对角化?若能, 求相似变换矩阵 P,使 $P^{-1}AP$ 对角化

解:
$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & 0 \\ 0 & 3 & 4 - \lambda \end{vmatrix} = (1 - \lambda)^2 (4 - \lambda) = 0$$
 得特征值 $\lambda_1 = 4, \lambda_2 = \lambda_3 = 1$

当
$$\lambda_1 = 4$$
 时,解 $(A - 4E)X = 0$: $A - 4E = \begin{pmatrix} -3 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow \begin{cases} x_1 = \frac{1}{3}x_3 \\ x_2 = 0 \end{cases}$

 $\diamondsuit x_3 = 3 \implies x_1 = 1, x_2 = 0, 得基础解系 <math>a_1 = (1,0,3)^T$

当
$$\lambda_2 = \lambda_3 = 1$$
 时,解 $(A - E)X = 0$: $A - E = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow x_2 = -x_3$

$$x_1 = 1, x_3 = 0 \implies x_2 = 0, \qquad x_1 = 0, x_3 = 1 \implies x_2 = -1$$

得基础解系
$$a_2 = (1,0,0)^T$$
, $a_3 = (0,-1,1)^T$

因为矩阵有三个线性无关的特征向量, 所以 A 能相似对角化

$$P = (a_1, a_2, a_3) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & -1 \\ 3 & 0 & 1 \end{pmatrix} \qquad \notin P^{-1}AP = \begin{pmatrix} 4 & & \\ & 1 & \\ & & 1 \end{pmatrix}$$

3. 正交相似对角化

题 1: 设
$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, 求一个正交矩阵 P , 使 $P^{-1}AP = \Lambda$ 为对角矩阵。

解: 由
$$|A - \lambda E|$$
 = $\begin{vmatrix} -\lambda & -1 & 1 \\ -1 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix}$ = $-(\lambda - 1)^2(\lambda + 2) = 0$,

得特征值为 $\lambda_1 = \lambda_2 = 1$ $\lambda_3 = -2$

$$\lambda_1 = \lambda_2 = 1$$
 时, $A - E = \begin{pmatrix} -1 & -1 & 1 \\ -1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\Rightarrow x_1 = -x_2 + x_3$

得基础解系 $a_1 = (-1,1,0)^T$ $a_2 = (1,0,1)^T$

$$\lambda_3 = -2 \; \text{Hz} \; , \quad A + 2E = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \Rightarrow \begin{cases} x_1 = -x_3 \\ x_2 = -x_3 \end{cases}$$

得基础解系 $a_3 = (-1, -1, 1)^T$

正交化:

$$b_1 = a_1 = (-1, 1, 0)^T$$

$$b_{2} = a_{2} - \frac{\begin{bmatrix} a_{2}, b_{1} \end{bmatrix}}{\begin{bmatrix} b_{1}, b_{1} \end{bmatrix}} \cdot b_{1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1 \end{pmatrix}$$

$$b_{2} = a_{2} - \frac{\begin{bmatrix} a_{2}, b_{1} \end{bmatrix}}{\begin{bmatrix} b_{1}, b_{1} \end{bmatrix}} b_{1}$$

施密特正交化: a, a,

解题步骤: 1. 求特征值 2. 求基础解系

3. 正交化

$$b_{1} = a_{1}$$

$$b_{2} = a_{2} - \frac{\begin{bmatrix} a_{2}, b_{1} \end{bmatrix}}{\begin{bmatrix} b_{1}, b_{1} \end{bmatrix}} b_{1}$$

 $b_3 = a_3 = (-1, -1, 1)^T (a_3 + a_1, a_2)$ 已经正交,不用再正交化)

单位化:

25

$$e_1 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T \text{,} \quad e_2 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)^T \text{,} \quad e_3 = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T \quad \text{if } \text{if } \text{if } e = \frac{b}{\|b\|}$$

$$P = (e_1, e_2, e_3) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}, \quad \notin P^{-1}AP = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$$

4. 特征值的性质

①
$$\lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn}$$

③若A的特征值为 λ ,则:

矩阵	kA	A^2	aA+bE	A^m	A^{-1}	A^*
特征值	kλ	λ^2	$a\lambda + b$	λ^m	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$

题 1: 已知 A 的三个特征值为 1,2,3, 则 |A| = ______。

解: $|A| = 1 \times 2 \times 3 = 6$

题 2: 设三阶方阵 A 的特征向量为 1,-2,3, 则 $|A^2+A-E|=$ _____。

M: $A^2 + A - E \rightarrow \lambda^2 + \lambda - 1$

$$\lambda^2 + \lambda - 1 = \begin{cases} 1, & \lambda = 1 \text{ b} \\ 1, & \lambda = -2 \text{ b} \end{cases} \Rightarrow A^2 + A - E \text{ 的特征值为 } 1, 1, 11$$

$$11, \lambda = 3 \text{ b}$$

故
$$|A^2 + A - E| = 1 \times 1 \times 11 = 11$$

课时七 练习题

1. 已知矩阵 $A = \begin{pmatrix} 3 & 2 & -1 \\ -2 & -2 & 2 \\ 3 & 6 & -1 \end{pmatrix}$ ①求特征值、特征向量; ②判断 A 能否对角化,若能对角化,

求可逆矩阵P, 使得P-1AP为对角矩阵。

2. 设
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 4 & -4 \\ 2 & -4 & 4 \end{pmatrix}$$
, 求一个正交矩阵 P ,使 $P^{-1}AP = \Lambda$ 为对角矩阵。

3. 已知 A 的特征值为 1,-1,2, 求 $|A^{-1}+2A-E|=$ ______。

课时八 二次型

考点	重要程度	分值	常见题型
1. 二次型及其矩阵表示	**	0~3	大题
2. 求正交变换、化标准形	必考	8~10	人概
3. 顺序主子式	***	3~6	填空

1. 二次型及其矩阵表示

题 1: 二次型 $f(x_1,x_2,x_3)=x_1^2-2x_2^2+2x_1x_2-4x_1x_3+8x_2x_3$ 所对应的矩阵 A 为________,该二次

型的秩为。

$$\mathbf{#}: A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 4 \\ -2 & 4 & 0 \end{pmatrix} \frac{r_2 - r_1}{r_3 + 2r_1} \begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 6 \\ 0 & 6 & -4 \end{pmatrix} \frac{r_3 + 2r_2}{r_3 + 2r_2} \begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 6 \\ 0 & 0 & 8 \end{pmatrix} \Rightarrow R(A) = 3$$

2. 求正交变换, 化标准型

题 1: 用正交变换化二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + 7x_3^2 + 4x_1x_2 - 8x_1x_3 - 8x_2x_3$ 为标准型。

解:二次型矩阵
$$A = \begin{pmatrix} 1 & 2 & -4 \\ 2 & 1 & -4 \\ -4 & -4 & 7 \end{pmatrix}$$

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 2 & -4 \\ 2 & 1 - \lambda & -4 \\ -4 & -4 & 7 - \lambda \end{vmatrix} = -(\lambda + 1)^{2} (\lambda - 11) = 0$$

解题步骤:

- 1. 写二次型矩阵
- 2. 求特征值
- 3. 求基础解系
- 3. 氷基础 4. 正交化
 - 5. 单位化

$$\lambda_1 = \lambda_2 = -1$$
, $\lambda_3 = 11$

$$\lambda_1 = \lambda_2 = -1, \quad A + E = \begin{pmatrix} 2 & 2 & -4 \\ 2 & 2 & -4 \\ -4 & -4 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \implies x_1 = -x_2 + 2x_3$$

$$x_2 = 1$$
, $x_3 = 0$ $\Rightarrow x_1 = -1$, $x_2 = 0$, $x_3 = 1$ $\Rightarrow x_1 = 2$

得基础解系: $a_1 = (-1,1,0)^T$, $a_2 = (2,0,1)^T$

$$\lambda_3 = 11 \ \text{B}, \quad A - 11E = \begin{pmatrix} -10 & 2 & -4 \\ 2 & -10 & -4 \\ -4 & -4 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 0 \end{pmatrix} \quad \Rightarrow \begin{cases} x_1 = -\frac{1}{2}x_3 \\ x_2 = -\frac{1}{2}x_3 \end{cases}$$

 $\diamondsuit x_3 = -2 \implies x_1 = 1$, $x_2 = 1$ 得基础解系: $a_3 = (1,1,-2)^T$

正交化

$$b_1 = a_1 = (-1,1,0)^T$$
 $b_2 = a_2 - \frac{[a_2,b_1]}{[b_1,b_1]}b_1 = (1,1,1)^T$ $b_3 = a_3 = (1,1,-2)^T$

单位化

$$e_1 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^T \text{,} \quad e_2 = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T \text{,} \quad e_3 = \left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)^T$$

3. 顺序主子式

顺序主子式:

设A 为n 阶方阵,依次取前k 行与前k 列构成的子式,称为顺序主子式,例如:

$$\Delta_1 = \begin{vmatrix} a_{11} \end{vmatrix}$$
, $\Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

题 1: 求参数 t 的值,使 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + 3x_3^2 + 2tx_1x_2 + 2x_1x_3$ 为正定二次型。

$$\mathbf{#:} \quad A = \begin{pmatrix} 2 & t & 1 \\ t & 1 & 0 \\ 1 & 0 & 3 \end{pmatrix}, \quad \Delta_1 = |2| = 2 > 0 \qquad \Delta_2 = \begin{vmatrix} 2 & t \\ t & 1 \end{vmatrix} = 2 - t^2 > 0 \qquad \Delta_3 = \begin{vmatrix} 2 & t & 1 \\ t & 1 & 0 \\ 1 & 0 & 3 \end{vmatrix} = -3t^2 + 5 > 0$$

$$\Rightarrow t^2 < \frac{5}{3}, \quad \text{\nota$} t \in \left(-\frac{\sqrt{15}}{3}, \frac{\sqrt{15}}{3}\right)$$

课时八 练习题

- 1. 二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 4x_1x_2$ 所对应的矩阵是_____。
- 2. 求一个正交变换 x = Py,使二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 4x_1x_3 8x_2x_3$ 化为标准型,并判定是否为正定二次型。
- 3. 若二次型 $f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + 3x_3^2 + 2x_1x_2 + 2tx_2x_3$ 正定,求t的取值范围

课时一 练习题答案

- 1.2.
- 2. 正.
- 3.6.
- 4. -5; 26; -2; 189.

课时二 练习题答案

- 1. -10; -12.
- 2.0; 0.
- **3.** 12.

课时三 练习题答案

- 1. $\begin{pmatrix} -5 & 0 \\ 1 & 0 \end{pmatrix}$; $\begin{pmatrix} 3 & 3 \\ 6 & 10 \end{pmatrix}$; $\begin{pmatrix} 3 & 3 \\ 5 & 9 \end{pmatrix}$.
- $2. \begin{pmatrix} 1 & -1 & 1 \\ -4 & -2 & 2 \\ 1 & -2 & 1 \end{pmatrix}.$
- 3. $\frac{1}{6}$.
- 4. $-\frac{16}{27}$.
- 5. 1.
- 6. 证明: $A^2 + A 3E = 0 \Rightarrow (A E)(A + 2E) = E$

等式两边取行列式: |(A-E)(A+2E)| = |A-E||A+2E|=1

 $\Rightarrow |A-E| \neq 0 \Rightarrow A-E \text{ Tide} \Rightarrow (A-E)^{-1} = A+2E.$

课时四 练习题答案

$$1. \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$2. \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}.$$

$$3. \begin{pmatrix} \frac{3}{4} & -\frac{1}{8} & \frac{3}{8} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{8} & \frac{3}{8} \end{pmatrix}.$$

4.
$$B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 3 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
.

$$5. \begin{pmatrix} 0 & \frac{3}{4} \\ \frac{1}{4} & 1 \\ \frac{3}{4} & \frac{1}{4} \end{pmatrix}.$$

6.
$$\begin{cases} \lambda = 5 \\ \mu = 1 \end{cases}$$
.

课时五 练习题答案

- 1. $R(A) = 2 < 3 \Rightarrow$ 线性相关.
- 2. 1.
- 3. R(A) = 3; a_1, a_2, a_3 .
- 4. 一个极大无关组为 α_1, α_2 ; $\alpha_3 = 2\alpha_1 + \alpha_2$, $\alpha_4 = \alpha_1 + \alpha_2$.

5. 证明: 假设 b_1 , b_2 , b_3 线性相关,则存在一组不全为0的常数 k_1 , k_2 , k_3 使得

$$k_1b_1 + k_2b_2 + k_3b_3 = 0$$

$$\mathbb{N} k_1(a_1-a_2)+k_2(a_2-a_3)+k_3(a_1+a_3)=0$$

又
$$a_1, a_2, a_3$$
线性无关 $\Rightarrow \begin{cases} k_1 + k_3 = 0 \\ k_2 - k_1 = 0 \end{cases}$ 得 $\begin{cases} k_1 = 0 \\ k_2 = 0 \Rightarrow 5$ 假设矛盾 $k_3 = 0 \end{cases}$

向量组 b_1 , b_2 , b_3 线性无关, 故得证。

课时六 练习题答案

1. 基础解系: $\xi_1 = (-3, 7, 2, 0)^T$, $\xi_2 = (-1, -2, 0, 1)^T$

通解:
$$X = k_1 \xi_1 + k_2 \xi_2 = k_1 (-3, 7, 2, 0)^T + k_2 (-1, -2, 0, 1)^T$$
 (k_1 , k_2 为任意常数)

2. 方程通解:
$$X = k_1 (3,3,2,0)^T + k_2 (-3,7,0,4)^T + \left(\frac{5}{4}, -\frac{1}{4}, 0, 0\right)^T$$
 (k_1 , k_2 为任意常数)

3. $\lambda = -2$ 时无解; $\lambda \neq -2$ 且 $\lambda \neq 1$ 时有唯一解; $\lambda = 1$ 时有无穷多解, 通解;

$$X = k_1 (-1,1,0)^T + k_2 (-1,0,1)^T + (-2,0,0)^T$$
 (k_1 , k_2 为任意常数)

课时七 练习题答案

1. (1) $\lambda_1 = \lambda_2 = 2, \lambda_3 = -4; \quad a_1 = (-2, 1, 0)^T, a_2 = (1, 0, 1)^T, a_3 = (1, -2, 3)^T;$

(2)
$$P = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$$
.

2.
$$P = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{-2\sqrt{5}}{15} & \frac{1}{3} \\ \frac{1}{\sqrt{5}} & \frac{4\sqrt{5}}{15} & \frac{-2}{3} \\ 0 & \frac{\sqrt{5}}{3} & \frac{2}{3} \end{pmatrix}.$$

3. - 28.

课时八 练习题答案

$$1. \begin{pmatrix} 1 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$2. \ Q = \begin{pmatrix} -\frac{2\sqrt{5}}{5} & \frac{2\sqrt{5}}{15} & \frac{1}{3} \\ \frac{\sqrt{5}}{5} & \frac{4\sqrt{5}}{15} & -\frac{2}{3} \\ 0 & \frac{\sqrt{5}}{3} & -\frac{2}{3} \end{pmatrix} \Rightarrow f = y_1^2 + y_2^2 + 10y_3^2$$
, 容易得出标准型为正定的,由于可逆

线性变换不改变正定性,则原二次型也是正定的.

$$3. t \in \left(-\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}\right).$$

