[CSED211] Introduction to Computer Software Systems

Lab 1: Introduction & Data Lab1

Yonggon Park

2024.09.05

Today's Agenda

- Lab Introduction
 - Tips/Cautions
- About Programming Server
 - How to Access Programming Server
- Linux Command Basics
- Data Lab1

Introducing TAs

- How to contact TAs
 - Use PLMS for most things (e.g., any questions, requests, discussions, …)
 - Please use Q&A board and Lab Q&A board
 - Use e-mail for private/urgent issues (e.g., attendance, scores, …)
 - Please use the alias email: <u>csed211-ta@postech.ac.kr</u>
 - Adding "[CSED211]" to the title of your mail will make it easier for TA to find your mail
 - Do not reply to the announcement email: Only a TA who sent a email can recieve
 - Search google for simple problems (e.g., how to unzip a file in Linux?)

현재 올라와있는 shell-lab 압축 폴더가 .zip형태로 되어있습니다. 이 폴더를 리눅스 상에서 열려고 하면 어떻게 해야 합니까?

용곤 이수철

오형민

오승훈

손도원

About Lab Session

- Lab session will be held every Thursday, at 6:20 PM
 - TJ Park library 506 (청암학술정보관 506호)
 - If there is no lab session, TA will announce it in PLMS
- Attendance: No late/absence penalty
 - However, you will be responsible for any penalties caused by your absence,
 unless you have an acceptable excuse for your absence
- We will provide (1) skeleton code(s), (2) write-up PDF, (3) Q&A histories
 - And the (4) PPT slide, which is used during the lab session
 - This will help your assignment a lot: <u>Use them wisely!</u>
 - If the TA forgets to provide any of these things, ask for TAs immediately

About Lab Session: Lab Schedule and Weights

Week	Lab Date	Lab	Deadline	Weight
1	09.05	Data Lab1	09.11	20
2	09.12	Data Lab2	09.18	40
3	09.19	Make Up Class		
4	09.26	Bomb Lab	10.00	100
5	10.03	DOMO Lab	10.09	100
6	10.10	Attack Lab	10.27	100
7	10.17	Attack Lab	10.27	100
8		Midterm week		
9	10.31	Optimization Lab	-	-
10	11.07	Cache Lab	11 20	100
11	11.14	Cache Lab	11.20	100
12	11.21	Chall Lab	12.02	100
13	11.28	Shell Lab	12.03	100
14	12.04	Mallog Lab	12.10	100
15	12.11	Malloc Lab	12.18	100
16	-	Final week	-	

About Lab Session: Submissions

- You have to submit (1) lab report in PDF and (2) source code in PLMS
 - Due: Day before the next lab session (Data Lab1 and Data Lab2 are different!)
 - Submit them in the following format (do not compress, just submit 2 files)
 - Incorrect format will not be graded, no exception (i.e., you will get 0 points)
 - Source code name: [student id].c (e.g., 20231234.c)
 - Report name: [student id].pdf (e.g., 20231234.pdf)
- Evaluations: Quiz (10 pt.) + Lab report (40 pt.) + Source code (50 pt.)
 - Lab report will have 90 pt. of the score if code submission is not required
- Late penalty: No late submission!
 - Unless there is acceptable excues (e.g, PLMS server is down)

About Lab Session: Cheating Policy

- If you understand (1) how to solve problem and (2) how your code works, you are allowed to search the internet and use chatGPT
 - Otherwise, you will be considered cheating (i.e., You will get F on this class)
- Starting from this semester, we will have an integrity meeting
 - TA will ask several questions related to the lab
 - If student cannot answer the questions, he/she will be considered as cheating
 - Submitted lab report and provided materials is allowed
 - The meeting will be recorded for the purposes of the archive
- TA will schedule integrity meetings for some students, such as:
 - 1. Who is caught by copykiller or submitted very simple reports (very likely)
 - 2. Randomly sampled students

About Lab Session: How to Write Lab Report

- In the report, you should explicitly show and explain:
 - 1. The problem(s) to be solved
 - 2. How to solve the problem (solution)
 - 3. How to implement a solution to a code
 - 4. (Optional) Internet link you referenced during your assignment
 - TA will also show the pages during extra meeting
 - Link with explicit solution (code or solution process) will be considered as cheating
- You can use both Korean and English
 - However, any sentences that TA cannot understand will be ignored
- Note that if your report does not fully shows the above detail, TA will schedule integrity meeting to check your work

About Lab Session: Tips/Cautions

- 1. Use the provided materials wisely!
 - The write-up file will give you the guidelines for the lab report
 - Actively check the Q&A documents instead of waiting for answers from TAs
- 2. Choose the appropriate way when you contact TAs
 - Professor is also included in alias e-mail, who makes the big decisions
 - TAs will not answer your question if you do not use an alias email or PLMS
- 3. Always double-check your submission(s)
 - Does your code compile/run correctly on the programming server?
 - Did you rename the file correctly?
 - Is your report in a PDF format?

Today's Agenda

- Lab Introduction
 - Tips/Cautions
- About Programming Server
 - How to Access Programming Server
- Linux Command Basics
- Data Lab1

About Programming Account

- In this class, lab session will be processed on programming server
 - Your lab will be graded on the programming server
- You have to be connected to POSTECH wifi to access programming server
 - I assume that dormitory wifi is fine
 - If you are out of the campus, you can access the server using POSTECH VPN
 - Go to https://vpn.postech.ac.kr and follow the instructions
- You have to generate the programming server account to access them

Programming Account Registration

- 1. Login and enter the hemos (https://hemos.postech.ac.kr/)
- 2. Click "Server/File" → "Programming Account"

Programming Account Registration

- 3. Click the "request" button
 - You have to longin to request account
- 4. Fill the blanks and "submit"

Creating an account can take multiple days, so start early!

How to Access Programming Server

- In the Window machine, (1) XShell and (2) Putty can be used to access server
 - Personally, XShell is recommended
- In the MacOS Machine, terminal can be used to access server
 - Also Window user can user Powershell
- TA will not teach you about the tools/languages
 - Any problems with tools should be solved by the student
 - But you can get some help from FAQ in PLMS
 - Discussions in PLMS on your own are encouraged, but TA may not respond

XShell Tutorial: How to Install

1. Go to Hemos and click "Software"

XShell Tutorial: How to Install (Cont.)

- 2. Click "Tool(Utility)"
- 3. download "Xmanager Enterprise"

소프트웨어 배포 (Software Library)

XShell Tutorial: How to Access Programming Server

- 1. Open new session (Press Alt + N)
- 2. Fill IP (Host) and Port number
 - IP: programming2.postech.ac.kr
 - o Port: 2022

Putty Tutorial: How to Install

• 1. Search Putty in Google

• 2. Click "Download PuTTy"

• 3. Download putty.exe

Select the file that matches with your OS

Putty Tutorial: How to Access Programming Server

- 1. Run putty.exe
- 2. Select SSH in Connection
- 3. Fill Host Name and Port
 - IP: programming2.postech.ac.kr
 - o Port: 2022

SSH Tutorial: How to Use Terminal or PowerShell

• Run "ssh [povis id]@programming2.postech.ac.kr -p2022"

```
[yonggonpark@bag-yong-gon-ui-MacBookPro ~ % ssh nanimdo@programming2.postech.ac.kr -p2022
Last login: Thu Dec 28 13:54:03 2023 from 141.223.145.26
-bash: warning: setlocale: LC_CTYPE: cannot change locale (UTF-8): 그런 파일이나 디렉터리가 없습니다
[[nanimdo@programming2 ~]$ ls
20210782_mm.c 20220341_mm.c 20220848_mm.c malloclab-handout
[nanimdo@programming2 ~]$ ■
```

- (Optional) If you are tired of typing passwords, register your SSH key in server
 - This is not mandatory: Search Google for it

Today's Agenda

- Lab Introduction
 - Tips/Cautions
- About Programming Server
 - How to Access Programming Server
- Linux Command Basics
- Data Lab1

Linux Command Basics

- \$ 1s
 - List information of files in the directory
 - Option: –a (to show every files)
- \$ cd [directory name]
 - Move current location to [directory name]
 - Use "." for current directory, ".." to parent directory
- \$ cp [source file name] [new file name]
 - Generate copy file of source file with given new file name

Linux Command Basics (Cont.)

- \$ mv [source file name] [new file name]
 - Rename the source file to given new file name
- \$ mkdir [directory name]
 - Generate new directory with given directory name
- \$ rm [file name]
 - Delete given file (this command is irreversible!)
 - To delete directory, you have to give -rf option

Linux Command Basics (Cont.)

- \$ gcc [file(s) to compile]
 - Compiles the given file(s) to executable file
 - Default output name is a.out: To specify output file name, run:
 - \$ gcc -o [output file name] [file(s) to compile]
- \$./[exceutable file name]
 - Run the given executable file (e.g. a.out)
- \$ chmod [option] [file name]
 - Change the permission (read/write/executable) of the specified file(s)
 - E.g., To make a.out executable, run chmod +x a.out

Linux Command Basics (Cont.)

- \$ tar [option] [.tar file name]
 - Compress (option: -cvf) or Decompress (option: -xvf) the .tar file
 - E.g., To get code for Data lab, run \$ tar -xvf data_lab1.tar
- \$ cat [file name]
 - Print the content of the file
- For more information, google 'linux commands'
 - E.g., https://www.digitalocean.com/community/tutorials/linux-commands

About Vim

- Vim is one of the most representative text editor
 - We highly encourage students to use this
- Simple tutorial:
 - Open file with vim: \$ vi [file name]
 - To edit, press a
 - To save and quit, press esc, :wq
 - For the vim commands and configurations, please refer below websites
 - https://www.cs.colostate.edu/helpdocs/vi.html
 - http://vimconfig.com

Today's Agenda

- Lab Introduction
 - Tips/Cautions
- About Programming Server
 - How to Access Programming Server
- Linux Command Basics
- Data Lab1

Data Lab1: Overview

- You should implement simple functions using bitwise operations while:
 - 1. Using only allowed operations
 - 2. Using less than a limited number of operations
 - 3. Following other programming rules (will be discussed later)
 - Any violation will be regarded as 0 point
- Due: 09/11 23:59
 - Late submission will not be accepted
- Submit a code file and your lab report (in pdf)
 - Source code name: [student id].c (e.g., 20231234.c)
 - Report name: [student id].pdf (e.g., 20231234.pdf)

Review: Bit and Byte

- Byte = **8** bits
 - Binary: 00000000₍₂₎ to 11111111₍₂₎
 - Decimal: 000₍₁₀₎ to 255₍₁₀₎
 - Hexadecimal: 00₍₁₆₎ to 11₍₁₆₎
 - Base-16 number representation
 - Uses symbols '0' to '9' and 'A' to 'F'
- E.g., Int a = 0xb9602353;

Review: Bitwise Operations

- A bitwise operation operates on binary numerals or bit pattern(s) at bit-level
- Bitwise operators (E.g., ~, &, |, ^)
 - Works on "each bit" of the operands
 - Do not confuse with logical operators where output is always a binary (0 or 1)
 - E.g., &&, ||, !
- Shift operators (E.g., << , >>)
- Bitwise assignment operators (E.g., &=, |=, ^=, <<=, >>=)

Review: Bitwise Operators

AND: A&B=1 when both A=1 and B=1

&	0	1	
0	0	0	
1	0	1	

NOT: ~**A=1** when **A=0**

~	
0	1
1	0

OR: A | B=1 when either A=1 or B=1

XOR (Exclusive OR)

A^B=1 when either A=1 or B=1, but not both

Review: Shift Operators

- Left shift: x << y
 - Shift bit vector x to left by y positions
 - Fill with o's on right

•	R	ig	ht	S	hit	t:	x	>>	У
---	---	----	----	---	-----	----	---	----	---

- Shift bit vector x to right by y positions
- Logical shift: Fill with o's on left
- Arithmetic shift: Fill with sign bit on left

Argument a	01100010
a << 3	00010000
a >> 2 (logical)	00011000
a >> 2 (arithmetic)	00011000

Argument b	10100010		
b << 3	00010000		
b >> 2 (logical)	00101000		
b >> 2 (arithmetic)	11 101000		

- In C, >> operator depends on the type of the operand
 - >> opertior is logical shift when shifting unsigned value
 - >> opertior is arithmetic shift when shifting signed value

Review: Bitwise Assignment Operators

Assigns the output value to the left operand

Data Lab1: Problems

- Q1. int bitNor(int x, int y)
 - Perform bitwise NOR operation (i.e., ~ (x|y))
 - Legal operations: ~, &
 - Maximum operations: 8
- Q2. int isZero(int x)
 - Return 1 if x is 0, otherwise retrun 0
 - Legal operations: !, ~, &, ^, |, +, <<, >>
 - Maximum operations: 2

Data Lab1: Problems (Cont.)

- Q3. int addOK(int x, int y)
 - Return 1 if x+y can be computed without overflow, otherwise return 0
 - Legal operations: !, ~, &, ^, |, +, <<, >>
 - Maximum operations: 20
- Q4. int absVal(int x)
 - Return absolute value of x $(TMin \le x \le Tmax)$
 - Legal operations: !, ~, &, ^, |, +, <<, >>
 - Maximum operations: 10

Data Lab1: Problems (Cont.)

- Q5. int logicalShift(int x, int n)
 - ∘ Perform logical right shift to input x by n (0 ≤ n ≤ 31)
 - Legal operations: ~, &, ^, |, +, <<, >>
 - Maximum operations: 20

Data Lab1: Programming Rules

- You are allowed to use only the followings:
 - 1. Integer constants 0 through 255 (0xFF)
 - 2. Function arguments and local variables
 - 3. Unary integer operations (if allowed): !, ~
 - 4. Binary integer operations (if allowed): &, ^, |, +, <<, >>
- You are not allowed to use any of the followings:
 - 1. Use any control constructs: if, do, while, for, switch
 - 2. Define or use any macros
 - 3. Call any other functions

 - 5. Use any data type other than int (cannot use arrays, structs, or unions)

Data Lab1: How To Do

- Download the datalab.tar from PLMS, upload it to programming server
 - Use scp command to upload/download the files

```
• $ scp -P 2022 [path to datalab.tar] [povis ID]@programming2.postech.ac.kr:./
```

- \$ scp -P 2022 [povis ID]@programming2.postech.ac.kr:./[path to bits.c] [dst]
- Decompress the tar file (Check slide #23)
- Open the bits.c file and implement 5 functions
 - Use minimum number of operators as you can
 - Follow the programming rules (0 point if violated)
- We provided grading program (btest) and programming rule checker (dlc)
 - TA will use this two programs to grade your works

Data Lab1: SCP Tutorial

Uploading a file

```
[yonggonpark@bag-yong-gon-ui-MacBookPro test % ls
datalab.tar
[yonggonpark@bag-yong-gon-ui-MacBookPro test % scp -P 2022 ./datalab.tar nanimdo@programming2.postech.ac.kr:./
datalab.tar
[yonggonpark@bag-yong-gon-ui-MacBookPro test % ssh nanimdo@programming2.postech.ac.kr -p2022
Last login: Wed Aug 7 15:25:55 2024 from 141.223.234.240
-bash: warning: setlocale: LC_CTYPE: cannot change locale (UTF-8): 그런 파일이나 디렉터리가 없습니다
[[nanimdo@programming2 ~]$ ls
datalab.tar malloclab-handout
```

Downloading a file

```
[yonggonpark@bag-yong-gon-ui-MacBookPro test % rm datalab.tar
[yonggonpark@bag-yong-gon-ui-MacBookPro test % ls
[yonggonpark@bag-yong-gon-ui-MacBookPro test % scp -P 2022 nanimdo@programming2.postech.ac.kr:./datalab.tar ./
datalab.tar
[yonggonpark@bag-yong-gon-ui-MacBookPro test % ls
datalab.tar
yonggonpark@bag-yong-gon-ui-MacBookPro test % |
```

Quiz (5 Points for Each)

- 1. Write the name of the file(s) that "you" should submit for Data Lab 1.
- 2. Write the name of the given file that will be used to check whether or not you have violated the programming rules
- Go to PLMS, and start the quiz!

Questions?

[CSED211] Introduction to Computer Software Systems

Lab 1: Introduction & Data Lab1

Yonggon Park

2024.09.05