Erratum to: Section Chapter 14.3.2, pp307–308 Benchmarks and Examples for

Thermo-Hydro-Mechanical/Chemical Processes in Porous Media

The analytical solutions of thermal stress analysis of hollow cylinder

November 17, 2017

Analytical solution

For the hollow cylinder with the inner radius R1 and the outer radius R2 the following analytical solution for radial displacement u_r , stress σ_r and temperature in dependency on the radius was used.

$$u_{r} = -\frac{qR_{1}\beta}{2\psi\kappa}r\left(\ln r - \frac{1}{2}\right) + \frac{A_{0}}{2}r + \frac{A_{1}}{r} \text{ sign - is missing in the book}$$

$$\sigma_{r} = \psi\left[-\frac{qR_{1}\beta}{2\psi\kappa}r\left(\ln r + \frac{1}{2}\right) + \frac{A_{0}}{2} - \frac{A_{1}}{r^{2}}\right]$$

$$+\lambda\left[-\frac{qR_{1}\beta}{2\psi\kappa}r\left(\ln r - \frac{1}{2}\right) + \frac{A_{0}}{2} + \frac{A_{1}}{r^{2}}\right] \text{ this r has to be dropped}$$

$$-\beta\left[\frac{R_{1}q}{\kappa}\ln\left(\frac{R_{2}}{r}\right) + T_{0}\right]$$

$$(14.19)$$

$$T(r) = \frac{R_1 q}{\kappa} \ln \left(\frac{R_2}{r}\right) + T_0 \tag{14.20}$$

where

$$\psi = \lambda + 2G$$
 and $\beta = \alpha (3\lambda + 2G)$

with

 λ – Lamé elastic constant

G — shear modulus

α – thermal expansion coefficient

 κ — thermal conductivity

 A_0, A_1 – integration constants

At the outer surface of the hollow cylinder (where $r = R_2$) there is no deformation, that means the displacement u_{R2} is zero. Therefore equation (14.18) is set equal to zero for this boundary and adapted to A_0 .

$$A_0 = -\frac{2A_1}{R_2^2} - 2B\left(\ln R_2 - \frac{1}{2}\right) \tag{14.21}$$

where

$$B = \frac{q R_1 \beta}{2 \psi \kappa}$$

At the inner surface of the hollow cylinder (where $r = R_1$) no stress is effected by the expansion because this boundary is phreatic. Therefore equation (14.19) is set equal to zero and A_1 is calculated by using equation (14.23).

$$A_{1} = \frac{\beta\left(\frac{R_{1} q}{\kappa} \ln\left(\frac{R_{2}}{r^{2}}\right) + T_{0}\right) + \lambda B\left(\ln R_{1} - \frac{1}{2}\right) + \psi B\left(\ln R_{1} + \frac{1}{2}\right) - \left(\frac{\lambda + \psi}{2}\right) 2B\left(\ln R_{2} - \frac{1}{2}\right)}{\frac{\lambda - \psi}{R_{1}^{2}} - \frac{\lambda + \psi}{2} \cdot \frac{2}{R_{1}^{2}}}$$

$$r \text{ should be } R_{1}$$

$$R_{1}^{2} \text{ should be } R_{2}^{2}$$

$$(14.23)$$

After having solved this equation, A_1 is used to calculate A_0 . The solution figures in the book display the correct solutions as the following figures.

For verification of these analytical solutions, a C++ source code for computing the analytical solutions is provided via link:

https://github.com/wenqing/ExampleCollections/blob/master/ogs5/AnalyticalSolutionAxiTM/ana