In [1]: import pandas as pd
 import numpy as np
 from matplotlib import pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Ridge,Elastifrom sklearn.model_selection import train_test_split

Out[2]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	0_3	PM10	PM25	PXY
0	2005- 11-01 01:00:00	NaN	0.77	NaN	NaN	NaN	57.130001	128.699997	NaN	14.720000	14.91	10.65	NaN
1	2005- 11-01 01:00:00	1.52	0.65	1.49	4.57	0.25	86.559998	181.699997	1.27	11.680000	30.93	NaN	1.59
2	2005- 11-01 01:00:00	NaN	0.40	NaN	NaN	NaN	46.119999	53.000000	NaN	30.469999	14.60	NaN	NaN
3	2005- 11-01 01:00:00	NaN	0.42	NaN	NaN	NaN	37.220001	52.009998	NaN	21.379999	15.16	NaN	NaN
4	2005- 11-01 01:00:00	NaN	0.57	NaN	NaN	NaN	32.160000	36.680000	NaN	33.410000	5.00	NaN	NaN
236995	2006- 01-01 00:00:00	1.08	0.36	1.01	NaN	0.11	21.990000	23.610001	NaN	43.349998	5.00	NaN	NaN
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	4.95	1.49	1.00
236997	2006- 01-01 00:00:00	0.19	NaN	0.26	NaN	0.08	26.730000	30.809999	NaN	43.840000	4.31	2.93	NaN
236998	2006- 01-01 00:00:00	0.14	NaN	1.00	NaN	0.06	13.770000	17.770000	NaN	NaN	5.00	NaN	NaN
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	5.67	2.11	1.09

237000 rows × 17 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 237000 entries, 0 to 236999 Data columns (total 17 columns): Column Non-Null Count Dtype _____ ---------237000 non-null object 0 date 1 BEN 70370 non-null float64 2 CO 217656 non-null float64 3 EBE 68955 non-null float64 4 MXY 32549 non-null float64 5 92854 non-null NMHC float64 6 235022 non-null float64 NO 2 7 NOx235049 non-null float64 8 0XY 32555 non-null float64 9 0 3 223162 non-null float64 10 PM10 232142 non-null float64 11 PM25 69407 non-null float64 32549 non-null float64 12 PXY 13 SO 2 235277 non-null float64 93076 non-null 14 TCH float64 15 TOL 70255 non-null float64 16 station 237000 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 30.7+ MB

In [4]: df1=df.dropna()
 df1

Out[4]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	O_3	PM10	PM25
5	2005- 11-01 01:00:00	1.92	0.88	2.44	5.14	0.22	90.309998	207.699997	2.78	13.760000	18.07	17.600000
22	2005- 11-01 01:00:00	0.30	0.22	0.25	0.59	0.11	18.540001	19.020000	0.67	46.799999	9.88	6.020000
25	2005- 11-01 01:00:00	0.67	0.49	0.94	3.44	0.17	48.740002	74.349998	1.57	23.430000	13.88	10.260000
31	2005- 11-01 02:00:00	3.10	0.84	3.21	6.82	0.22	89.919998	224.199997	3.72	12.390000	28.74	21.870001
48	2005- 11-01 02:00:00	0.39	0.20	0.29	0.68	0.11	16.639999	17.080000	0.40	47.689999	8.78	5.350000
								•••				
236970	2005- 12-31 23:00:00	0.37	0.39	1.00	1.00	0.10	4.500000	5.550000	1.00	57.779999	8.26	6.380000
236973	2005- 12-31 23:00:00	0.92	0.45	1.26	3.42	0.14	37.250000	49.060001	2.57	31.889999	19.73	10.270000
236979	2006- 01-01 00:00:00	1.00	0.38	1.11	2.35	0.04	35.919998	59.480000	1.39	35.810001	4.22	0.860000
236996	2006- 01-01 00:00:00	0.39	0.54	1.00	1.00	0.11	2.200000	4.220000	1.00	69.639999	4.95	1.490000
236999	2006- 01-01 00:00:00	0.50	0.40	0.73	1.84	0.13	20.940001	26.950001	1.49	48.259998	5.67	2.110000

20070 rows × 17 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

```
Out[6]: <AxesSubplot:>
```



```
In [7]: plt.plot(df1["EBE"],df1["PXY"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x27bd222a160>]


```
In [8]: data=df[["EBE","PXY"]]
```

```
In [9]: # sns.stripplot(x=df["EBE"],y=df["PXY"],jitter=True,marker='o',color='blue')
```

```
In [10]: x=df1.drop(["EBE"],axis=1)
y=df1["EBE"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [11]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[11]: LinearRegression()

```
prediction=li.predict(x_test)
In [12]:
         plt.scatter(y_test,prediction)
Out[12]: <matplotlib.collections.PathCollection at 0x27bd22e7bb0>
          25
          20
          15
          10
                                         15
                        5
                                10
                                                  20
In [13]: lis=li.score(x_test,y_test)
In [14]: df1["TCH"].value_counts()
Out[14]: 1.31
                  845
         1.33
                  820
         1.28
                  812
         1.30
                  806
         1.34
                  794
         3.04
                    1
         3.22
                    1
         2.79
                    1
         2.68
                    1
         3.37
         Name: TCH, Length: 198, dtype: int64
In [15]: df1.loc[df1["TCH"]<1.40,"TCH"]=1</pre>
         df1.loc[df1["TCH"]>1.40,"TCH"]=2
         df1["TCH"].value_counts()
Out[15]: 1.0
                 12093
         2.0
                 7977
         Name: TCH, dtype: int64
         Lasso
In [16]: la=Lasso(alpha=5)
```

```
In [16]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[16]: Lasso(alpha=5)
```

```
In [17]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)
```

Out[17]: <matplotlib.collections.PathCollection at 0x27bd2ed5880>


```
In [18]: las=la.score(x_test,y_test)
```

Ridge

```
In [19]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[19]: Ridge(alpha=1)

In [20]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)

Out[20]: <matplotlib.collections.PathCollection at 0x27bd22002e0>


```
In [21]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
madrid_data(2005_06) - Jupyter Notebook
          en=ElasticNet()
In [22]:
          en.fit(x_train,y_train)
Out[22]: ElasticNet()
In [23]: prediction2=rr.predict(x test)
          plt.scatter(y_test,prediction2)
Out[23]: <matplotlib.collections.PathCollection at 0x27bd2f5acd0>
           25
           20
           15
           10
                                  10
                                           15
                                                    20
```

```
In [24]:
         ens=en.score(x_test,y_test)
```

```
In [25]:
         print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
```

0.9254069105731428

Out[25]: 0.9242640908733394

Logistic

```
In [26]: | g={"TCH":{1.0:"Low",2.0:"High"}}
         df1=df1.replace(g)
         df1["TCH"].value counts()
Out[26]: Low
                 12093
         High
                  7977
         Name: TCH, dtype: int64
         x=df1.drop(["TCH"],axis=1)
In [27]:
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [28]: lo=LogisticRegression()
         lo.fit(x_train,y_train)
```

Out[28]: LogisticRegression()

```
In [29]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[29]: <matplotlib.collections.PathCollection at 0x27bd2fbaa60>


```
In [30]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [31]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
In [32]:
         g1={"TCH":{"Low":1.0,"High":2.0}}
         df1=df1.replace(g1)
In [33]: x=df1.drop(["TCH"],axis=1)
         y=df1["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [34]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[34]: RandomForestClassifier()
In [35]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n_estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[36]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
                       scoring='accuracy')
```

```
In [37]:
                     rfcs=grid_search.best_score_
In [38]: rfc best=grid search.best estimator
In [39]: | from sklearn.tree import plot tree
                      plt.figure(figsize=(80,40))
                      plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
                      [1120, 235]\nclass = Yes'),
                        Text(413.3333333333337, 465.9428571428573, 'PM10 <= 27.1\ngini = 0.481\nsamples =
                      256\nvalue = [244, 164]\nclass = Yes'),
                        Text(372.0, 155.3142857142857, 'gini = 0.359\nsamples = 147\nvalue = [183, 56]\ncla
                      ss = Yes'),
                        Text(454.666666666667, 155.3142857142857, 'gini = 0.461\nsamples = 109\nvalue = [6
                      1, 108]\nclass = No'),
                        Text(578.666666666667,\ 465.9428571428573,\ 'NMHC <= 0.175 \\ line = 0.139 \\ lin
                      612\nvalue = [876, 71]\nclass = Yes'),
                        Text(537.33333333334, 155.3142857142857, 'gini = 0.098\nsamples = 585\nvalue = [8
                      47, 46]\nclass = Yes'),
                        Text(620.0, 155.3142857142857, 'gini = 0.497\nsamples = 27\nvalue = [29, 25]\nclass
                      = Yes'),
                        Text(992.0, 1087.2, 'TOL <= 4.435\ngini = 0.427\nsamples = 483\nvalue = [542, 242]
                      \nclass = Yes'),
                        Text(826.66666666667, 776.5714285714287, 'PXY <= 0.715\ngini = 0.218\nsamples = 2
                      01\nvalue = [303, 43]\nclass = Yes'),
                        Text(744.0, 465.9428571428573, 'NMHC <= 0.135\ngini = 0.34\nsamples = 92\nvalue =
                      [119, 33]\nclass = Yes'),
                        Text(702.666666666667, 155.3142857142857, 'gini = 0.097\nsamples = 65\nvalue = [9
In [40]: print("Linear:",lis)
                      print("Lasso:",las)
                      print("Ridge:",rrs)
                      print("ElasticNet:",ens)
                      print("Logistic:",los)
                      print("Random Forest:",rfcs)
                      Linear: 0.9254053895586418
                      Lasso: 0.7070521306882476
                      Ridge: 0.9254069105731428
                      ElasticNet: 0.9042630713701663
```

Logistic: 0.6027238000332171 Random Forest: 0.9084634785463566

Best Model is RidgeRegression

In [41]: df2=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/madrid_2000
df2

Out[41]:

	date	BEN	со	EBE	MXY	имнс	NO_2	NOx	ОХҮ	0_3	PM10	Р
0	2006- 02-01 01:00:00	NaN	1.84	NaN	NaN	NaN	155.100006	490.100006	NaN	4.880000	97.570000	40.25§
1	2006- 02-01 01:00:00	1.68	1.01	2.38	6.36	0.32	94.339996	229.699997	3.04	7.100000	25.820000	
2	2006- 02-01 01:00:00	NaN	1.25	NaN	NaN	NaN	66.800003	192.000000	NaN	4.430000	34.419998	
3	2006- 02-01 01:00:00	NaN	1.68	NaN	NaN	NaN	103.000000	407.799988	NaN	4.830000	28.260000	
4	2006- 02-01 01:00:00	NaN	1.31	NaN	NaN	NaN	105.400002	269.200012	NaN	6.990000	54.180000	
230563	2006- 05-01 00:00:00	5.88	0.83	6.23	NaN	0.20	112.500000	218.000000	NaN	24.389999	93.120003	
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.09	0.08	51.900002	54.820000	0.61	48.410000	29.469999	15.64(
230565	2006- 05-01 00:00:00	0.96	NaN	0.69	NaN	0.19	135.100006	179.199997	NaN	11.460000	64.680000	35.000
230566	2006- 05-01 00:00:00	0.50	NaN	0.67	NaN	0.10	82.599998	105.599998	NaN	NaN	94.360001	
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.00	0.24	107.300003	160.199997	2.01	17.730000	52.490002	27.92(

230568 rows × 17 columns

In [42]: df2.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 230568 entries, 0 to 230567 Data columns (total 17 columns): Column Non-Null Count Dtype _____ ---------0 date 230568 non-null object 1 BEN 73979 non-null float64 2 CO 211665 non-null float64 3 EBE 73948 non-null float64 4 MXY 33422 non-null float64 5 90829 non-null NMHC float64 6 228855 non-null float64 NO 2 7 NOx228855 non-null float64 8 0XY 33472 non-null float64 9 0 3 216511 non-null float64 PM10 10 227469 non-null float64 11 PM25 61758 non-null float64 33447 non-null float64 12 PXY 13 SO 2 229125 non-null float64 14 TCH 90887 non-null float64 15 TOL 73840 non-null float64 16 station 230568 non-null int64 dtypes: float64(15), int64(1), object(1) memory usage: 29.9+ MB

In [43]: df3=df2.dropna()
df3

Out[43]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	OXY	0_3	PM10
5	2006- 02-01 01:00:00	9.41	1.69	9.98	19.959999	0.44	142.199997	453.500000	11.31	5.990000	89.190002
22	2006- 02-01 01:00:00	1.69	0.79	1.24	2.670000	0.17	59.910000	120.199997	1.11	2.450000	25.570000
25	2006- 02-01 01:00:00	2.35	1.47	2.64	9.660000	0.40	117.699997	346.399994	5.15	4.780000	59.029999
31	2006- 02-01 02:00:00	4.39	0.85	7.92	17.139999	0.25	92.059998	237.000000	9.24	5.920000	35.139999
48	2006- 02-01 02:00:00	1.93	0.79	1.24	2.740000	0.16	60.189999	125.099998	1.11	2.280000	26.719999
230538	2006- 04-30 23:00:00	0.42	0.40	0.37	0.430000	0.10	49.259998	51.689999	1.00	64.599998	24.680000
230541	2006- 04-30 23:00:00	1.63	0.94	1.53	2.200000	0.33	63.220001	211.399994	1.35	17.670000	55.419998
230547	2006- 05-01 00:00:00	3.99	1.06	3.71	7.960000	0.26	202.399994	343.500000	3.92	11.130000	64.300003
230564	2006- 05-01 00:00:00	0.76	0.32	0.48	1.090000	0.08	51.900002	54.820000	0.61	48.410000	29.469999
230567	2006- 05-01 00:00:00	1.95	0.74	1.99	4.000000	0.24	107.300003	160.199997	2.01	17.730000	52.490002

24758 rows × 17 columns

In [44]: df3=df3.drop(["date"],axis=1)

```
In [45]: sns.heatmap(df3.corr())
```

Out[45]: <AxesSubplot:>


```
In [46]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [47]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[47]: LinearRegression()

In []:

In [48]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)

Out[48]: <matplotlib.collections.PathCollection at 0x27bd2fd2610>


```
lis=li.score(x_test,y_test)
In [49]:
         df3["TCH"].value_counts()
In [50]:
Out[50]: 1.35
                  921
         1.30
                  916
         1.36
                  914
         1.33
                  909
         1.31
                  908
         0.94
                    1
         0.81
                    1
         0.72
                    1
         3.33
                    1
         2.91
         Name: TCH, Length: 188, dtype: int64
In [51]: df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[51]: 1.0
                 14706
          2.0
                 10052
         Name: TCH, dtype: int64
 In [ ]:
```

Lasso

```
In [52]: la=Lasso(alpha=5)
la.fit(x_train,y_train)

Out[52]: Lasso(alpha=5)

In [53]: prediction1=la.predict(x_test)
plt.scatter(y_test,prediction1)

Out[53]: <matplotlib.collections.PathCollection at 0x27bd3026760>

24-
22-
```

2.0

1.8

1.6

1.4

1.0

1.5

2.0

2.5

3.0

```
In [54]: las=la.score(x_test,y_test)
```

Ridge

```
In [55]: rr=Ridge(alpha=1)
    rr.fit(x_train,y_train)
```

Out[55]: Ridge(alpha=1)

```
In [56]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[56]: <matplotlib.collections.PathCollection at 0x27bd3075d30>

In [57]: rrs=rr.score(x_test,y_test)

ElasticNet

```
In [58]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[58]: ElasticNet()

```
In [59]: prediction2=rr.predict(x_test)
plt.scatter(y_test,prediction2)
```

Out[59]: <matplotlib.collections.PathCollection at 0x27bd30d1880>


```
In [60]: ens=en.score(x_test,y_test)
```

```
In [61]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.6661494572681268

Out[61]: 0.6777209747604127

Logistic

Out[64]: LogisticRegression()

lo.fit(x train,y train)

```
In [65]: prediction3=lo.predict(x_test)
plt.scatter(y_test,prediction3)
```

Out[65]: <matplotlib.collections.PathCollection at 0x27bd2b2d280>


```
In [66]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [67]: from sklearn.ensemble import RandomForestClassifier
         from sklearn.model selection import GridSearchCV
         g1={"TCH":{"Low":1.0,"High":2.0}}
In [68]:
         df3=df3.replace(g1)
In [69]: x=df3.drop(["TCH"],axis=1)
         y=df3["TCH"]
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [70]: rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[70]: RandomForestClassifier()
In [71]:
         parameter={
             'max_depth':[1,2,4,5,6],
             'min_samples_leaf':[5,10,15,20,25],
             'n estimators':[10,20,30,40,50]
         }
         grid_search=GridSearchCV(estimator=rfc,param_grid=parameter,cv=2,scoring="accuracy")
         grid search.fit(x train,y train)
Out[72]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                   'min_samples_leaf': [5, 10, 15, 20, 25],
                                   'n_estimators': [10, 20, 30, 40, 50]},
```

scoring='accuracy')

```
In [73]:
                    rfcs=grid_search.best_score_
In [74]: rfc best=grid search.best estimator
In [75]: from sklearn.tree import plot tree
                    plt.figure(figsize=(80,40))
                    plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes',"No"],fill
Out[75]: [Text(2359.474137931035, 2019.0857142857144, 'PM10 <= 38.115\ngini = 0.483\nsamples
                    = 10996\nvalue = [10272, 7058]\nclass = Yes'),
                      Text(1231.448275862069, 1708.457142857143, 'NO 2 <= 43.88 / ngini = 0.388 / nsamples = 10.388 / nsamples
                    7241\nvalue = [8414, 3010]\nclass = Yes'),
                      Text(615.7241379310345, 1397.8285714285716, 'CO <= 0.535 \setminus gini = 0.223 \setminus gini = 3
                    871\nvalue = [5368, 789]\nclass = Yes'),
                      Text(307.86206896551727, 1087.2, 'PM25 <= 8.135\ngini = 0.139\nsamples = 3284\nvalu
                    e = [4844, 392] \setminus class = Yes'),
                      Text(153.93103448275863, 776.5714285714287, 'EBE <= 0.255\ngini = 0.065\nsamples =
                    1447\nvalue = [2193, 76]\nclass = Yes'),
                      Text(76.96551724137932, 465.9428571428573, 'PM10 <= 9.865\ngini = 0.375\nsamples =
                    10\nvalue = [12, 4]\nclass = Yes'),
                      Text(38.48275862068966, 155.3142857142857, 'gini = 0.5\nsamples = 5\nvalue = [4, 4]
                    \nclass = Yes'),
                      Text(115.44827586206898, 155.3142857142857, 'gini = 0.0\nsamples = 5\nvalue = [8,
                    0]\nclass = Yes'),
                      Text(230.89655172413796, 465.9428571428573, 'CO <= 0.515 \setminus ngini = 0.062 \setminus nsamples = 1
                    437\nvalue = [2181, 72]\nclass = Yes'),
                      Text(192.41379310344828, 155.3142857142857, 'gini = 0.056\nsamples = 1394\nvalue =
                     [2122 62]\_____
In [76]: print("Linear:",lis)
                    print("Lasso:",las)
                    print("Ridge:",rrs)
                    print("ElasticNet:",ens)
                    print("Logistic:",los)
                    print("Random Forest:",rfcs)
                    Linear: 0.665987858680082
                    Lasso: 0.46111308223729897
                    Ridge: 0.6661494572681268
                    ElasticNet: 0.5322012509285768
                    Logistic: 0.598546042003231
                    Random Forest: 0.863531448355453
```

Best model is Random Forest

```
In [ ]:
```