

Numération binaire

Dans la majorité des ordinateurs les nombres sont représentés sous forme de mot 8 bits, 16 bits, 32 bits.

Le bit est la plus petite unité d'information manipulable par une machine.

Dans un mot, le bit le plus à droite représente 2 à la puissance 0.

On l'appelle le bit de plus **faible poids**.

Le bit le plus à gauche est le bit de **poids fort**.

Dans le cas d'un mot de 8 bits il représente 2 puissance 7 (soit en décimal 128)

Autrement dit le nombre :

b7 b6 b5 b4 b3 b2 b1 b0

représente :

$$b_{7.2}^{7} + b_{6.2}^{6} + b_{5.2}^{5} + b_{4.2}^{4} + b_{3.2}^{3} + b_{2.2}^{2} + b_{1.2}^{1} + b_{0.2}^{0}$$

$$2^{7} = 128$$
 $2^{6} = 64$
 $2^{5} = 32$
 $2^{4} = 16$
 $2^{3} = 8$
 $2^{2} = 4$
 $2^{1} = 2$
 $2^{0} = 1$

Ces multiplicateurs sont les poids des différents bits.

Que représente en Base 10 le nombre binaire suivant ? : 10110101

 1×2^{7} = 128 $+ 0 \times 2^{6}$ = 0 $+ 1 \times 2^{5}$ = 32 $+ 1 \times 2^{4}$ = 16 $+ 0 \times 2^{3}$ = 0

 $+1 \times 2^{2}$

 $+0 \times 2^{1}$

 $+1 \times 2^{0}$

Ce tableau donne en même temps un moyen de convertir un nombre binaire en décimal

Soit en décimal 181

4

Les régles de l'arithmétique binaire sont rigoureusement les mêmes que celles de l'arithmétique décimale.

Ainsi pour l'addition:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0 + retenue(1)$$

On voit que, par ce moyen, on ne peut représenter que des nombres positifs allant de : 0 à 1111111

soit:

0

255

L'**octet** est une unité d'information composée de 8 bits. Il permet de stocker un caractère, telle qu'une lettre, un chiffre ...

Un **kilo-octet** (Ko) ne vaut pas 1000 octets mais $2^{10} = 1024$ octets

Un **méga-octet** (Mo) vaut 2^{10} Ko = **1024 Ko** = **1 048 576 octets**

Hexadécimal

La base hexadécimale consiste à compter sur une base 16, c'est pourquoi au-delà des 10 premiers chiffres on a décidé d'ajouter les 6 premières lettres :

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Base décimale	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Base hexa - décimale	o	1	2	3	4	5	6	7	8	9	A	В	с	D	E	F
Base binaire	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Exemples

Le nombre 27 (en base 10) = $1*16^1 + 11*16^0 = 1*16^1 + B*16^0$ ce qui nous donne 1B en base 16.

Le nombre FB3 (en base 16) = $F*16^2 + B*16^1 + 3*16^0 = 3840 + 176 + 3 = 4019$

Conversion octet en hexadécimal

Pour convertir un octet en hexadécimale, on le partage en 2 groupes de 4 bits, qui correspondent chacun à un chiffre hexadécimal.

2	Α	D	5
0010	1010	1101	0101

TABLE ASCII

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	į.	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	c
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	٤	70	46	F	102	66	£
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	j
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	a
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	V	119	77	w
24	18	Cancel	56	38	8	88	58	X	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3 B	;	91	5B	[123	7B	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	I
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	ЗF	?	95	5F		127	7F	

