Trigonometry Functions - Class XI

Past Year JEE Questions

Questions

Quetion: 01

The value of $\cos \frac{\pi}{2^2}$. $\cos \frac{\pi}{2^3}$ $\cos \frac{\pi}{2^{10}} \sin \frac{\pi}{2^{10}}$ is -

- A. $\frac{1}{256}$ B. $\frac{1}{2}$ C. $\frac{1}{1024}$ D. $\frac{1}{512}$

Solutions

Solution: 01

Explanation

Given $\cos \frac{\pi}{2^2} \cdot \cos \frac{\pi}{2^9} \cdot \dots \cdot \cos \frac{\pi}{2^{10}} \sin \frac{\pi}{2^{10}}$

Let
$$\frac{\pi}{2^{1}0} = \theta$$

$$\therefore \frac{\pi}{2^{\prime}} = 2\theta$$

$$\frac{\pi}{2^\circ} = 2^2 \theta$$

$$\frac{\pi}{2'} = 2^3 \theta$$

$$\frac{\pi}{2^2} = 2^8 \theta$$

So given term becomes,

$$\cos 2^8 \theta \cdot \cos 2^7 \theta \cdot \ldots \cdot \cos \theta \cdot \sin \frac{\pi}{2^{10}}$$

=
$$(\cos \theta. \cos 2\theta. \dots \cos 2^8\theta) \sin \frac{\pi}{2^{10}}$$

$$= \frac{\sin 2\theta}{2^{2} \sin \theta} \sin \frac{\pi}{2^{1}}$$

$$=\frac{\sin 2\theta \left(\frac{n}{2^{10}}\right)}{2^{2}\sin \frac{\pi}{2^{10}}}\sin \frac{\pi}{2^{10}}$$

$$=\frac{\sin(\frac{n}{2})}{2^2}$$

$$=\frac{1}{27}=\frac{1}{512}$$

Note:

 $(\cos\theta.\cos 2\theta...\cos 2^{n-\frac{1}{\theta}}) = \frac{\sin 2\theta}{2^{n}\sin \theta}$