Prime factorizations

Learning Objectives. By the end of class, students will be able to:

- State and prove facts about prime factorizations using the Fundamental Theorem of Arithmetic
- Prove there are infinitely many primes of the form 4n + 3.

Corollary 1. Let $a, b \in \mathbb{Z}$ with a, b > 0. Then [a, b] = ab if and only if (a, b) = 1.

A note on "if and only if" proofs:

- You can do two directions:
 - If [a, b] = ab, then (a, b) = 1.
 - If (a, b) = 1, then [a, b] = ab.
- Sometimes you can string together a series of "if and only if statements." Definitions are always "if and only if," even though rarely stated that way. For example, an integer n is even if and only if there exist an integer m such that n = 2m:
 - An integer n is even if and only if $2 \mid n$ (definition of even)
 - if and only if there exist an integer m such that n = 2m (definition of $2 \mid n$).

Theorem (Dirichlet's Theorem). Let $a, b \in \mathbb{Z}$ with a, b > 0 and (a, b) = 1. Then the arithmetic progression

$$a, a+b, a+2b, \ldots, a+nb, \ldots$$

contains infinitely many primes.

Remark 1. Surprisingly, this proof involves complex analysis. The statement that there are infinitely many prime numbers is the case a = b = 1.

Warning 1. You may not use this result to prove special cases, ie, specific values of a and b.

Lemma 1. If $a, b \in \mathbb{Z}$ such that a = 4m + 1 and b = 4n + 1 for some integers m and n, then ab can also be written in that form.

Proof Let a = 4m + 1 and b = 4n + 1 for some integers m and n. Then

$$ab = (4m + 1)(4n + 1)$$
$$= 16mn + 4m + 4n + 1$$
$$= 4(4mn + m + n) + 1.$$

Proposition (Proposition 1.22). There are infinitely may prime numbers expressible in the form 4n + 3 where n is a nonnegative integer.

Proof (Similar to the proof that there are infinitely many prime numbers). Assume, by way of contradiction, that there are only finitely many prime numbers of the form 4n + 3, say $p_0 = 3, p_1, p_2, \ldots, p_r$, where the p_i are distinct. Let $N = 4p_1p_2\cdots p_r + 3$. If every prime factor of N has the form 4n + 1, then so does N, by repeated applications of . Thus, one of the prime factors of N, say p, have the for 4n + 3. We consider two cases:

Learning outcomes:

Author(s): Claire Merriman

- Case 1, p = 3: If p = 3, then $p \mid N 3$ by linear combinations. Then $p \mid 4p_1p_2\cdots p_r$. Then by ??, either $3 \mid 4$ or $3 \mid p_1p_2\cdots p_r$. This implies that $p \mid p_i$ for some $i = 1, 2, \ldots, r$. However, p_1, p_2, \ldots, p_r are distinct primes not equal to 3, so this is not possible. Therefore, $p \neq 3$.
- Case 2, $p = p_i$ for some i = 1, 2, ..., r: If $p = p_i$, then $p \mid N 4p_1p_2 \cdots p_r$ by linear combinations. Then $p \mid 3$. However, $p_1, p_2, ..., p_r$ are distinct primes not equal to 3, so this is not possible. Therefore, $p \neq p_i$ for i = 1, 2, ..., r.

Therefore, N has a prime divisor of the form 4n + 3 which is not on the list p_0, p_1, \ldots, p_r , which contradicts the assumption that p_0, p_1, \ldots, p_r are all primes of this form. Thus, there are infinitely many primes of the form 4n + 3.