T2TRG: Thing-to-Thing Research Group

IETF 101 March 22, 2018, London

Chairs: Carsten Bormann & Ari Keränen

Note Well

- You may be recorded
- The IPR guidelines of the IETF apply: see http://irtf.org/ipr for details.

Administrivia (I)

- Pink Sheet
- Note-Takers
- Off-site (Jabber, Hangout?)
 - · xmpp:t2trg@jabber.ietf.org?join
- Mailing List: <u>t2trg@irtf.org</u> subscribe at: <u>https://www.ietf.org/mailman/listinfo/t2trg</u>
- Repo: https://github.com/t2trg/2018-ietf101

Agenda

Time	Who	Subject	Docs
15:50	Chairs	Intro, RG Status	draft-irtf-t2trg-iot-seccons draft-irtf-t2trg-rest-iot-00
16:00	Michael Koster / Chairs	Report from WISHI and Hackathon	
16:20	Jan Jongboom, ARM	Deep learning on microcontrollers	
16:50	Soumya Kanti Datta, EURECOM	Semantic Interoperability Testing - Current Trends and Future Outlook	
17:15	Michał Król, UCL	Secure Computations in Decentralized Environments	
17:40	Chairs	Meeting Planning, Wrapup	OCF/W3C-WoT

T2TRG scope & goals

- Open research issues in turning a true "Internet of Things" into reality
 - Internet where low-resource nodes ("things", "constrained nodes") can communicate among themselves and with the wider Internet
- Focus on issues with opportunities for IETF standardization
 - Start at the IP adaptation layer
 - End at the application layer with architectures and APIs for communicating and making data and management functions, including security

Recent activities

- Work on IoT/Semantic Hypermedia Interoperability (WISHI)
- Finalizing "State-of-the-Art and Challenges for the IoT Security" draft
- NDSS Workshop on Decentralized IoT Security and Standards (DISS)
- Side meeting on network coexistence at IETF 101
- Joint WebEx session with OCF on security and ACE

NDSS DISS

- Network and Distributed System Security Symposium (NDSS) is a premier security conference
- Workshop on Decentralized IoT Security and Standards (<u>DISS</u>, 2018-02-18) combined:
 - Non-centralized approaches to IoT security
 - Standardization of IoT security
- 12 papers, from a security analysis of current IETF work to much more speculative ideas (yes, with blockchain)
- Later in this meeting: Updated version of one of the talks, "Secure Computations in Decentralized Environments"

Next meetings

- OCF-W3C WoT joint meeting in Prague tomorrow
- Regular <u>WISHI</u> calls (~ monthly)
- WebEx meetings with OCF
- F2F with OCF?
- Montreal IETF 102
 - More WISHI? Distributed discovery? TBD

RG Doc Status

- "State-of-the-Art and Challenges for the IoT Security" in IRSG review
 - Thorough reviews in particular from Jim & Stephen (thank you!); lots of list discussion
- "RESTful Design for IoT"
 - New hypermedia design guidance PR in review
 - PATCH & FETCH guidance TBD

Network co-existence

- Side meeting Monday, ~ 30 attendees (<u>draft-feeney-t2trg-inter-network-01</u>)
- Main ideas
 - diverse, administratively unrelated networks experience radio interference
 - recent research results suggest that protocol-level interactions lead to episodes of severe performance degradation
- Discussion
 - performance evaluation: hackathon, tests, simulation...set expectations
 - touches many IETF protocols
 - IETF/IEEE border: MAC has to do most of the work, but limited by independence between networks
 - various possibility of active / explicit coordination at high level (synchronization, database as for whitespace spectrum)

Agenda

Time	Who	Subject	Docs
15:50	Chairs	Intro, RG Status	draft-irtf-t2trg-iot-seccons draft-irtf-t2trg-rest-iot-00
16:00	Michael Koster / Chairs	Report from WISHI and Hackathon	
16:20	Jan Jongboom, ARM	Deep learning on microcontrollers	
16:50	Soumya Kanti Datta, EURECOM	Semantic Interoperability Testing - Current Trends and Future Outlook	
17:15	Michał Król, UCL	Secure Computations in Decentralized Environments	
17:40	Chairs	Meeting Planning, Wrapup	OCF/W3C-WoT

WISHI

Michael Koster + Chairs

Workshop on IoT Semantic/Hypermedia Interoperability

- 8 calls after the IETF 100 WISHI hackathon topics include:
 - Review of existing semantic capabilities IPSO/LWM2M, OCF, Web links, W3C
 WoT, CORAL
 - Semantic annotation with RDF ontologies
 - Using third party vocabularies (QUDT, SOSA, SSN, iotschema)
 - Design patterns for semantic metadata integration
 - Layered semantic stack, e.g. SenML + RDF
 - The nature of abstract semantics; high level data and interaction models
 - Binding abstract semantics to concrete protocols
 - Semantic annotation for the context of connected things, features of interest
 - Extend the collaboration with other SDOs around semantic interoperability
 - Planning for IETF Hackathons
 - Interoperability across data types and engineering units

Wishi Hackathon at IETF 101 - High Level Goals

- Bring diverse connected things to interoperate
- Start with directory based discovery using semantic annotation
- Experiment with software adaptation to data models and protocols
- CoAP, HTTP, MQTT protocols
- Simple application scenarios; turn on a light with a motion sensor
- First hands-on experiments

Wishi Hackathon at IETF 101

- What implementations do we have?
 - W3C WoT
 - YANG & CoMI
 - OMA LwM2M Managed Server and Client
 - Ad-hoc device APIs and data models
 - Connected home and automotive domains
- How can we make them work together?
 - Role of W3C Web of Things technology
- Results
 - Thing Descriptions (TD) generated from LwM2M management server
 - CoMI implementation described by YANG re-described with TD
 - TDs stored in Thing Directory, and consumed by WoT implementation
 - WoT implementation communicating directly with all three implementations

W3C Web of Things - Thing Description

- TD is a file format and mediatype of RDF
- Describes abstract Interactions with things
 - Read temperature
 - Lock the door
 - Change the brightness of a light
- Binds to concrete instances that implement the interactions
 - Defines data shape, payload structure
 - Defines data types and range
 - Transfer layer instructions including URI, methods, options
- Applications use abstract interactions to decouple from the underlying implementation
- Any application, any network, any connected thing, using automated software adaptation

Layered Scope in Data Models and Information Models

Thing Directory

- Things register their metadata with semantic annotation to a Thing Directory
- Applications can discover the capabilities of registered things based on the semantic annotation
- One or more thing directories with well known entry points
- Semantic discovery and thing integration into the application
 - Submit a semantic query to the Thing Directory indicating the required capability types (temperature measurement, light control, door lock)
 - Retrieve Thing Descriptions from registered things that satisfy the query
 - Select Things to integrate into the application that have the required interactions (e.g. color temperature control for a light)
 - Use the protocol binding part of the TD to construct payloads and perform methods on the desired things

Interop Schematic Diagram – Roles and Interactions

CoMI device integration

HTTP Device Integration

LwM2M Client & Server integration

Putting things together with

Next Steps

- Experiment with semantic annotation and discovery using CoRE RD and CoRE Link-format
- Experiment with more diverse end device protocols and data models
- More automation of semantic queries SPARQL syntax from URI-query options
- Automation of protocol bindings using software adaptation or translation
- Binding device capabilities to external Features of Interest (binding an instance of a thing with door lock capability to a specific door of your house) for contextual discovery
- More sophisticated applications, device to device orchestration

Meeting planning

OCF-T2TRG-W3C WoT meeting topics

- Status update of IETF/OCF coordination action items
- WISHI activities report
- Representation format of forms for IoT devices
- Model interoperability:
 WoT Thing Descriptions with OCF and IPSO models
- Push Models for Device data (pub/sub, non-traditional responses, ...)
- Links, Bindings, Interfaces, and Resource Representations
- "Base" CoAP (New Response Codes, RD alignment)
- ACE discussion continuation (multipoint security, etc.)
- Reference implementations and test case (CoAP, CoAP TCP, CBOR, ...)
 - Repo: https://github.com/t2trg/2018-03-ocf-wot