Magnetic circuits

- Convenient method (when it is applicable) for reducing magnetic 'field' problems to much simpler circuit type problems
- Relies on having dominant and well understood flux paths in the device
- Can be useful for 1st order analysis of some aspects of electrical machines – but not all.

Electrical and magnetic circuit analogy

Electric circuit			Magnetic circuit		
Voltage (V)	V	V	Magneto-motive force	F	A or A.turns
Current (I)	1	Α	Flux	ф	Wb
Resistance	R	Ω	Reluctance	S	Н
Conductivity	σ	Sm- ¹	Permeability	μ	Hm ⁻¹

Electric Circuit

For a circuit made up of a number of elements we have:

$$I = \frac{E}{\Sigma R} = \frac{\text{emf}}{\text{cct resistance}} \frac{(V)}{(\Omega)} A$$

where for each element: $R = \frac{L}{\sigma A} \Omega$

Magnetic Circuit

By analogy, the magnetic circuit quantities are related by:

$$\Phi = \frac{F}{\Sigma S} = \frac{mmf}{cct reductance}$$
 Wb

where $\Phi = \text{flux in Webers (Wb)}$

$$S = \frac{L}{\mu A} \quad H^{-1} \quad (Henry^{-1})$$

Simple magnetic circuit

Each section having a length, L_n , area, A_n , and permeability, μ_n .

Where
$$S_1 = \frac{L_1}{\mu_1 A_1}$$
 etc

and flux

$$\Phi = \frac{NI}{S_1 + S_2 + S_3 + S_4 + S_5 + S_6}$$

$$= \frac{NI}{S_{T}}$$

$$\mathbf{or} \qquad \Phi = \frac{\mathbf{N}}{\Sigma \mathbf{S}}$$

Simplified representation of the field winding of a salient pole AC synchronous machine

Simplified magnetic circuit

Some dimensions used in reluctance calculations based on approximations

Element	Symbols	Length	Cross- sectional Area	Reluctance
Rotor core	S1 and S5	$\frac{d_r}{2}$	w_1L	$\frac{d_r}{2w_1L\mu_{core1}}$
Airgap	S2 and S6	l_g	$\frac{d_r \theta}{2} L$	$rac{l_g}{w_1 L \mu_0}$
Stator core	S3 and S4	$\sim \frac{1}{2} \times \frac{\pi(d_S + d_r)}{2}$	w_2L	$\frac{\pi(d_s + d_r)}{4w_2L\mu_{core2}}$

Example

- Put in some representative dimensions and properties for a medium sized (several kW) machine
- $d_s = 250$ mm; $d_r = 150$ mm, $l_g = 0.5$ mm, $w_1 = 100$ mm, $w_2 = 75$ mm, $l_g = 250$ mm which gives $\theta = 1.458$ rad
- $\mu_{core1} = \mu_{core2} = 10,000\mu_0$

	Reluctance (note use of SI units)
S1 and S5	0.15 - 230.4/Mb
	$\frac{313}{2 \times 0.1 \times 0.25 \times 10000 \times 4\pi \times 10^{-7}} = 239 A/Wb$
S2 and S6	2×0.0005
	$\frac{2 \times 0.0003}{0.15 \times 1.458 \times 0.25 \times 4\pi \times 10^{-7}} = 14,544 A/Wb$
S3 and S4	$\pi(0.25 \pm 0.15)$
	$\frac{h(0.23 + 0.13)}{4 \times 0.075 \times 0.25 \times 10000 \times 4\pi \times 10^{-7}} = 1,333 A/Wb$

Note: Dominated by reluctance of the airgap when permeability of the cores is high

The total effective reluctance is 30,253 A/Wb

For a current density of 1A/mm² in the entire coil area this gives a total mmf (NI) of 900 A.turns

Flux in magnetic circuit = 0.297Wb

Approximate airgap flux density = Flux /area of pole = 1.09T

Given a number of turns, the inductance can be calculated from N²/S

Also possible to estimate airgap flux density from Ampere's Law assuming that the reluctance of the iron can be neglected from

$$B_g = \frac{\mu_0 NI}{2l_g} = \frac{4\pi \times 10^{-7} \times 900}{0.001} = 1.13T$$

Check with finite element analysis

