

Udine, 29 September 2025

directors ● IT

World directors (directors)

Lino e Tino sono stati recentemente nominati come i due nuovi Direttori al Mondo.

Il mondo è formato da N città, numerate da 0 a N-1, e N-1 strade a doppio senso. È possibile spostarsi tra qualsiasi coppia di città usando una sequenza di strade. La distanza tra due città è il numero minimo di strade che devono essere percorse per spostarsi da una città all'altra.

In qualità di direttori appena nominati, Lino e Tino devono effettuare una tradizionale *pattuglia* di tutto il mondo, che consiste in quanto segue:

- Prima, Lino e Tino si spostano in alcune città iniziali X e Y.
- Poi, ogni giorno, uno dei due direttori si sposta dalla sua città attuale a una città adiacente. Si continua così finché entrambi i direttori non hanno visitato ogni città almeno una volta e non sono tornati alle loro città di partenza. Nota che un direttore può muoversi per più giorni di fila: i due non devono per forza alternarsi.

Lino e Tino sanno molto bene che la loro pattuglia sarà considerata più solenne quanto più distanti saranno l'uno dall'altro: la *solennità* di una pattuglia è la distanza tra i due direttori nel momento in cui sono più vicini.

I due direttori ti hanno quindi assunto per aiutarli a pianificare la loro pattuglia e il tuo compito è rispondere a Q domande del seguente tipo:

• Se Lino parte dalla città X e Tino parte dalla città Y, qual è la massima solennità che possono ottenere con la loro pattuglia?

Implementazione

Devi inviare un singolo file con estensione .cpp.

Tra gli allegati di questo problema, troverai un template directors.cpp con un'implementazione d'esempio.

Devi implementare le seguenti funzioni:

```
C++ void init(int N, vector<int> A, vector<int> B);
```

- L'intero N è il numero di città.
- Gli array $A \in B$, indicizzati da 0 a N-2, contengono le strade. In particolare, la *i*-esima strada collega $A_i \in B_i$.
- La funzione sarà chiamata una sola volta all'inizio dell'esecuzione del tuo programma.

```
C++ int patrol(int X, int Y);
```

- Gli interi X e Y sono le città di partenza di Lino e Tino.
- La funzione dovrebbe restituire la massima solennità di una pattuglia in cui Lino e Tino partono dalle città X e Y.
- La funzione sarà chiamata Q volte durante l'esecuzione del tuo programma.

directors Pagina 1 di 3

Grader di prova

Una versione semplificata del grader usato durante la correzione è disponibile nella cartella relativa a questo problema. Puoi usarla per testare le tue soluzioni in locale. Il grader d'esempio legge i dati di input da stdin, chiama le funzioni che devi implementare e scrive su stdout nel seguente formato.

Il file di input è composto da N + Q linee, contenenti:

- Linea 1: gli interi $N \in Q$.
- Linea 2 + i $(0 \le i < N 1)$: gli interi A_i e B_i .
- Linea N+1+j $(0 \le j < Q)$: gli interi X_j e Y_j .

Il file di output è composto da Q linee, contenenti i valori restituiti dalla funzione patrol.

Assunzioni

- $1 \le N \le 200\,000$.
- $1 \le Q \le 100000$.
- $0 \le X, Y < N$ in ogni query.

Assegnazione del punteggio

- Subtask 0 [0 punti]: Caso d'esempio.
- Subtask 1 [8 punti]: $A_i = 0, B_i = i + 1 \text{ per ogni } 0 \le i < N 1.$
- Subtask 2 [16 punti]: $A_i = 0$, $B_i = i+1$ o $A_i = i$, $B_i = i+1$ per ogni $0 \le i < N-1$.
- Subtask 3 [13 punti]: $N, Q \le 200$.
- Subtask 4 [14 punti]: $N \le 1000$.
- Subtask 5 [18 punti]: In ogni query, X e Y massimizzano la risposta su tutte le possibili città di partenza.
- Subtask 6 [17 punti]: $Q \leq 200$.
- Subtask 7 [14 punti]: Nessuna limitazione aggiuntiva.

Esempi di input/output

stdin	stdout
10 3	2
0 4	1
1 2	2
8 5	
6 0	
9 6	
2 4	
7 0	
3 6	
5 7	
9 8	
0 6	
6 4	

Spiegazione

Nel **primo caso d'esempio** il mondo ha la seguente struttura:

directors Pagina 2 di 3

Per la prima query possiamo ottenere una pattuglia di solennità 2 con le seguenti mosse:

- Lino segue il percorso: $9 \rightarrow 6 \rightarrow 3 \rightarrow 6 \rightarrow 0 \rightarrow 4 \rightarrow 2 \rightarrow 1$;
- Tino segue il percorso: $8 \rightarrow 5 \rightarrow 7 \rightarrow 0 \rightarrow 6 \rightarrow 3 \rightarrow 6 \rightarrow 9$;
- Lino segue il percorso: $1 \rightarrow 2 \rightarrow 4 \rightarrow 0 \rightarrow 7 \rightarrow 5 \rightarrow 8$;
- Tino segue il percorso: $9 \rightarrow 6 \rightarrow 3 \rightarrow 6 \rightarrow 0 \rightarrow 4 \rightarrow 2 \rightarrow 1$;
- Lino segue il percorso: $8 \rightarrow 5 \rightarrow 7 \rightarrow 0 \rightarrow 6 \rightarrow 3 \rightarrow 6 \rightarrow 9$;
- Tino segue il percorso: $1 \rightarrow 2 \rightarrow 4 \rightarrow 0 \rightarrow 7 \rightarrow 5 \rightarrow 8$.

Si può dimostrare che non esiste alcuna pattuglia di solennità 3 o più.

directors Pagina 3 di 3