# **Computer Organization and Architecture**

#### Module 5

**Prof. Indranil Sengupta** 

Dr. Sarani Bhattacharya

Department of Computer Science and Engineering

IIT Kharagpur

# Multiplication

## **Multiplication of Unsigned Numbers**

- Multiplication requires substantially more hardware than addition.
- Multiplication of two n-bit number generates a 2n-bit product.
- We can use shift-and-add method.
  - Repeated additions of shifted versions of the multiplicand.

Multiplicand M (10) Multiplier Q (13)

Product P (130)

#### A General Case



- Each A<sub>i</sub>B<sub>j</sub> is called a partial product.
- Generating the partial products is easy.
  - Requires just an AND gate for each partial product.
- Adding all the n-bit partial products in hardware is more difficult.

# Design of a Combinational Array Multiplier

- We can directly map the multiplication process as discussed to hardware.
  - We use an array of cells to generate the partial products.
  - Instead of adding the partial products at the end, we add the partial products at every stage of the multiplication.
- The required multiplication cell is as shown.
  - Combines capabilities of partial product generation and also addition of partial products.



- Extremely inefficient, and requires very large amount of hardware.
- Requires n<sup>2</sup> multiplication cells for an n x n multiplier.
- Advantage is that it is very fast.



Product:  $p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0$ 

#### **Unsigned Sequential Multiplication**

- Requires much less hardware, but requires several clock cycles to perform multiplication of two n-bit numbers.
  - Typical hardware complexity: O(n).
  - Typical time complexity: O(n).
- In the "hand multiplication" that we have seen:
  - If the *i*-th bit of the multiplier is 1, the multiplicand is shifted left by *i* bit positions, and added to the partial product.
  - The relative position of the partial products do not change; it is the multiplicand that gets shifted left.

- In the "shift-and-add" multiplication that we discuss now, we make the following modifications.
  - We do not shift the multiplicand (i.e., keep its position fixed).
  - We right shift an 2n-bit partial product at every step.



M: n-bit multiplicand

Q: n-bit multiplier

A: n-bit temporary register

C: 1-bit carry out from adder

#### **Example 1**: (10) x (13)

Assume 5-bit numbers.

M:  $(0 1 0 1 0)_2$ 

Q:  $(01101)_2$ 

Product = 130=  $(0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0)_2$ 

| C | A         | Q                                    |        |
|---|-----------|--------------------------------------|--------|
| 0 | 0 0 0 0 0 | 0 1 1 0 1 Initialization             |        |
| 0 | 0 1 0 1 0 | $0 \ 1 \ 1 \ 0 \ 1 $ $A = A + M$     | Step 1 |
| 0 | 0 0 1 0 1 | 0 0 1 1 0 Shift                      |        |
| 0 | 0 0 1 0 1 | $0 \ 0 \ 1 \ 1 \ 0 \qquad A = A + 0$ | Step 2 |
| 0 | 0 0 0 1 0 | 1 0 0 1 1 Shift                      |        |
| 0 | 0 1 1 0 0 | $1 \ 0 \ 0 \ 1 \ 1 \qquad A = A + M$ | Step 3 |
| 0 | 0 0 1 1 0 | 0 1 0 0 1 Shift                      | -      |
| 0 | 1 0 0 0 0 | $0 \ 1 \ 0 \ 0 \ 1 \qquad A = A + M$ | Step 4 |
| 0 | 0 1 0 0 0 | 0 0 1 0 0 Shift                      | •      |
| 0 | 0 1 0 0 0 | $0 \ 0 \ 1 \ 0 \ 0 $ $A = A + 0$     | Step 5 |
| 0 | 0 0 1 0 0 | 0 0 0 1 0 Shift                      | 3.56   |

#### **Example 2**: (29) x (21)

Assume 5-bit numbers.

M:  $(11101)_2$ 

Q:  $(10101)_2$ 

Product = 609=  $(1001100001)_2$ 

| C | A       |         | Q       |                               |        |
|---|---------|---------|---------|-------------------------------|--------|
| 0 | 0 0 0 0 | 0 0 1 0 | 1 0 1   | Initialization                |        |
| 0 | 1 1 1 0 | 1 1 0   | 1 0 1   | A = A + M                     | Step 1 |
| 0 | 0 1 1 1 | L 0 1 1 | 0 1 0   | Shift                         | •      |
| 0 | 0 1 1 1 | L 0 1 1 | 0 1 0   | $\mathbf{A} = \mathbf{A} + 0$ | Step 2 |
| 0 | 0 0 1 1 | L 1 0 1 | 1 0 1   | Shift                         |        |
| 1 | 0 0 1 0 | 0 0 0 1 | 1 0 1   | A = A + M                     | Step 3 |
| 0 | 1 0 0 1 | L 0 0 0 | 1 1 0   | Shift                         | •      |
| 0 | 1 0 0 1 | L O O   | 1 1 0   | $\mathbf{A} = \mathbf{A} + 0$ | Step 4 |
| 0 | 0 1 0 0 | 0 0     | 0 0 1 1 | Shift                         | •      |
| 1 | 0 0 1 1 | L O O   | 0 1 1   | A = A + M                     | Step 5 |
| 0 | 1 0 0 1 | L 1 0 0 | 0 0 1   | Shift                         |        |

# Data Path for Shift-and-Add Multiplier



## **Signed Multiplication**

- We can extend the basic shift-and-add multiplication method to handle signed numbers.
- One important difference:
  - Require to sign-extend all the partial products before they are added.
  - Recall that for 2's complement representation, sign extension can be done by replicating the sign bit any number of times.

```
0101 = 0000 \ 0101 = 0000 \ 0000 \ 0000 \ 0101 = 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0101
```

```
1011 = 1111 1011 = 1111 1111 1111 1011 = 1111 1111 1111 1111 1111 1111 1111 1011
```

# An Example: 6-bit 2's complement multiplication

Note: For n-bit multiplication, since we are generating a 2n-bit product, overflow can never occur.

```
(-11)
 (+26)
(-286)
```

## **Booth's Algorithm for Signed Multiplication**

- In the conventional shift-and-add multiplication as discussed, for n-bit multiplication, we iterate n times.
  - Add either 0 or the multiplicand to the 2n-bit partial product (depending on the next bit of the multiplier).
  - Shift the 2n-bit partial product to the right.
- Essentially we need n additions and n shift operations.
- Booth's algorithm is an improvement whereby we can avoid the additions whenever consecutive 0's or 1's are detected in the multiplier.
  - Makes the process faster.

## **Basic Idea Behind Booth's Algorithm**

- We inspect two bits of the multiplier (Q<sub>i</sub>, Q<sub>i-1</sub>) at a time.
  - If the bits are same (00 or 11), we only shift the partial product.
  - If the bits are 01, we do an addition and then shift.
  - If the bits are 10, we do a subtraction and then shift.
- Significantly reduces the number of additions / subtractions.
- Inspecting bit pairs as mentioned can also be expressed in terms of *Booth's Encoding*.
  - Use the symbols +1, -1 and 0 to indicate changes w.r.t.  $Q_i$  and  $Q_{i-1}$ .
  - $01 \rightarrow +1$ ,  $10 \rightarrow -1$ ,  $00 \text{ or } 11 \rightarrow 0$ .
  - For encoding the least significant bit  $Q_0$ , we assume  $Q_{-1} = 0$ .

Examples of Booth encoding:

```
a) 01110000 :: +1 0 0 -1 0 0 0 0
b) 01110110 :: +1 0 0 -1 +1 0 -1 0
c) 00000111 :: 0 0 0 0 +1 0 0 -1
d) 01010101 :: +1 -1 +1 -1 +1 -1
```

- The last example illustrates the worst case for Booth's multiplication (alternating 0's and 1's in multiplier).
  - In the illustrations, we shall show the two multiplier bits explicitly instead of showing the encoded digits.



M: n-bit multiplicand

Q: n-bit multiplier

A: n-bit temporary register

Q<sub>-1</sub>: 1-bit flip-flop

Skips over consecutive 0's and 1's of the multiplier Q.

#### **Example 1**: (-10) x (13)

Assume 5-bit numbers.

M:  $(10110)_2$ 

-M:  $(0 1 0 1 0)_2$ 

Q:  $(01101)_2$ 

Product = -130=  $(110111110)_2$ 

|   | , | A      |   |   |   |   | Q |   |   | Q_ | -1              |              |
|---|---|--------|---|---|---|---|---|---|---|----|-----------------|--------------|
| 0 | 0 | 0      | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0  | Initialization  |              |
| 0 |   | 0<br>1 |   | 0 | 0 |   | 1 | 0 | 0 | 0  | A = A - M Shift | e <b>p</b> 1 |
| _ |   | 0      | 1 | 1 | 0 | _ | 0 | 1 | 0 | 0  | A = A + M Sto   | ep 2         |
|   |   | 1      | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0  |                 | ep 3         |
| 0 | 0 | 0      | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1  | Shift           | ep 4         |
| 1 | 0 | 1      | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1  | A = A + M       | <b>.</b> .   |
| 1 | 1 | 0      | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0  | Shift           | ep 5         |

#### Example 2:

(-31) x (28)

Assume 6-bit numbers.

M:  $(100001)_2$ 

-M: (0 1 1 1 1 1)<sub>2</sub>

Q:  $(011100)_2$ 

Product = -868= (110010 $011100)_2$ 

| Α                          | $Q \qquad Q_{-1}$              |                        |
|----------------------------|--------------------------------|------------------------|
| 0 0 0 0 0                  | 0 1 1 1 0 0 0                  | Initialization         |
| 0 0 0 0 0                  | 0 0 1 1 1 0 0                  | Shift Step 1           |
| 0 0 0 0 0                  | 0 0 0 1 1 1 0                  | Shift Step 2           |
| 0 1 1 1 1 1<br>0 0 1 1 1 1 | 0 0 0 1 1 1 0<br>1 0 0 0 1 1 1 | A = A - M Step 3 Shift |
| 0 0 0 1 1 1                | 1 1 0 0 0 1 1                  | Shift Step 4           |
| 0 0 0 0 1 1                | 1 1 1 0 0 0 1                  | Shift Step 5           |
| 1 0 0 1 0 0                | 1 1 1 0 0 0 1                  | A = A + M Step 6       |
| 1 1 0 0 1 0                | 0 1 1 1 0 0 0                  | Shift                  |

# Arithmetic shift right

# Data Path for Booth's Algorithm



# **Design of Fast Multiplier**

#### a) Bit-Pair Recoding of Booth's Multiplication

- A technique that halves the maximum number of summands; derived directly from the Booth's algorithm.
- If we group the Booth-coded multiplier digits in pairs, we observe:
  - (+1, -1): (+1, -1) \* M = 2 \* M M = M• (0, +1): (0, +1) \* M = M
- We need a single addition instead of a pair of addition & subtraction.
  - Other similar rules can be framed.
  - Shown on next slide.

| Original Booth-coded Pair | Equivalent Recoded Pair |
|---------------------------|-------------------------|
| (+1, 0)                   | (0, +2)                 |
| (-1, +1)                  | (0, -1)                 |
| (0, 0)                    | (0, 0)                  |
| (0, 1)                    | (0, 1)                  |
| (+1, 1)                   | <del></del>             |
| (+1, -1)                  | (0, +1)                 |
| (-1, 0)                   | (0, -2)                 |

- Every equivalent recoded pair has at least one 0.
- Worst-case number of additions or subtractions is 50% of the number of multiplier bits.
- Reduces the worst-case time required for multiplication.

Example: (+13) X (-22) in 6-bits.

```
Original: Multiplier -- 1 0 1 0 1 0
Booth: Multiplier -- -1 +1 -1 +1 -1 0
Recoded: Multiplier -- 0 -1 0 -1 0 -2
```

- M = 001101 (+13)
- -1 \* M = 110011
- -2 \* M = 100110

#### b) Carry Save Multiplier

- We have seen earlier how carry save adders (CSA) can be used to add several numbers with carry propagation only in the last stage.
- The partial products can be generated in parallel using n<sup>2</sup> AND gates.
- The n partial products can then be added using a CSA tree.
- Instead of letting the carries ripple through during addition, we save them and feed it to the next row, at the correct weight positions.

# 4 x 4 Carry Save Multiplier



#### Wallace Tree Multiplier

- A Wallace tree is a circuit that reduces the problem of summing n n-bit numbers to the problem of summing two  $\Theta(n)$ -bit numbers.
- It uses n/3 (floor of) carry-save adders in parallel to convert the sum of n numbers to the sum of 2n/3 (ceiling of) numbers.
- It then recursively constructs a Wallace tree on the 2n/3 (ceiling of) resulting numbers.
- The set of numbers is progressively reduced until there are only two numbers left.
- By performing many carry-save additions in parallel, Wallace trees allow two n-bit numbers to be multiplied in  $\Theta(\log_2 n)$  time using a circuit of size  $\Theta(n^2)$ .

- The figure shows a Wallace tree that adds 8 partial products m<sup>(0)</sup>, m<sup>(1)</sup>, ..., m<sup>(7)</sup>.
- The partial product m<sup>(i)</sup> consists of (n+i) bits.
- Each line represents an entire number – the label of an edge indicates the number of bits.
- The carry-lookahead adder at the bottom adds a (2n-1)-bit number to a 2n-bit number to give the 2n-bit product.

