Mathematical Models for Security

Contrôle de zone et théorie des graphes

Emmanuel BAUDVIN
Lucien CASSAGNES
Lucas LAVILLE
Antoine PUISSANT

 $\underline{\text{Enseignant}:} \ \text{M. FILIOL}$

2015 - 2016

Résumé

L'objectif de ce mini-projet est de découvrir une application de la théorie des graphes dans le domaine de la sécurité. Vous allez étudier le problème MCS (Minimum Cut Set ou coupure minimale d'un graphe) dans le contexte du contrôle de zone. Ce dernier peut être envisagé de manière duale :

- dans le cas défensif, il s'agit de protéger optimalement une zone donnée et ce, avec des ressources les plus limitées possibles,
- dans le cas offensif, par exemple, retarder, dans les mêmes conditions (optimalement et avec des ressources limitées), l'arrivée des forces d'intervention face à une attaque sur une zone donnée (point sensible)

Mini-projet MAT5041 BAUDVIN - CASSAGNES - LAVILLE - PUISSANT

Table des matières

1	Question 1	3
2	Question 2	4
3	Question 3	5
4	Question 4	6
R	Références	

 $\label{lem:expliquez} Expliquez \ ce \ qu'est \ le \ problème \ du \ Minimum \ Cut \ Set \ (MCS) \ en \ th\'eorie \ des \ graphes.$

 $\label{lem:condition} \textit{Etudiez l'algorithme de Ford-Fulkerson pour résoudre le problème du flot maximal. Décrivez-en le principe et les principales étapes algorithmiques.}$

 $\label{eq:continue} \textit{Expliquez le principe de résolution du problème MCS par l'algorithme de Ford-Fulkerson.}$

On peut résoudre le Minimum Cut Set Problem par l'algorithme de Ford Fulkerson grâce au théorème suivant :

Si f est un flot dans un grpahe G, les trois propositions suivantes sont équivalentes :

- f est un flot maximum (à fortiori, il le sera si on le calculle avec l'algorithme de Ford Fulkerson
- Le réseau résiduel du gr
pahe G ne contient pas de chemin améliorant (puisqu'
on aura appliqué Ford Fulkerson)
- Il existe une coupe du graphe G séparant s et t dans deux sous graphes, dont la capacité vaut —f—

Décrivez et expliquez les principaux résultats de la référence [1] et comment les auteurs ont résolus le problème du contrôle de zone via l'algorithme de Ford-Fulkerson.

L'article donné en référence pour ce projet est à propos d'une étude réalisée par cinq chercheurs aux Etat-Unis. Cette dernière consiste en l'identification de postes de contrôles afin de protéger les grandes villes américaines.

Afin de trouver les localisions optimales des points de contrôle, les chercheurs ont trouvés plusieurs approches. Cependant, celle retenue consiste à chercher les points de contrôles minimum permettant de sécuriser la région choisie. Cet ensemble de points de contrôle est le appelé Minimum Cut Set (MCS) en théorie des graphes. En effet, nous pouvons représenter la ville à protéger par un graphe. Les liens seraient alors la représentation des axes de circulation et les nœuds les intersections entre plusieurs axes (un un changement d'état pour un axe). Ainsi, le MCS permet de réaliser une coupe du graphe en deux parties disjointes.

Dans notre cas, nous souhaitons avoir le moins de liens à couper afin de ne mettre en place que des points de contrôles stratégiques. Ce problème peut être résolu par l'algorithme de flux maximum de Ford-Fulkerson.

Dans le cadre de cette étude, il ne sera pas pris en compte le coût des points de contrôle qui pourront être mis en place.

Tout au long de cet articles, les chercheurs se sont focalisés sur les 50 plus grandes villes américaines (c.f. annexe ??).

Dans un premier temps, il est nécessaire de définir deux variables que nous allons réutiliser tout au long de cette explication :

- r_i , le rayon interne. Celui-ci définie la zone que nous souhaitons protéger. Si un acteur malveillant parvient à rentrer au sein de cette zone, alors nous devons considérer cette dernière comme perdue.
- $-r_o$, le rayon externe. Celui-ci va correspondre à la zone au sein de laquelle nous allons effectuer nos contrôles.

Nous avons ici un système de cercles concentriques. Le cercle interne doit avoir un rayon r_i inférieur ou égal à celui du cercle externe, r_o comme le montre l'image suivante :

FIGURE 1: Représentation des cercles interne et externe pour la ville de Phoenix

Références

[1] Daniel M. Watkins; Leticia Cuellar; Deborah A. Kubicek; Erick Rodriguez; Phillip D. Stroud. « Identifying Security checkpoints Locations to Protect the Major US Urban Areas ». In: *Homeland Security Affairs* (2015).