8 - Linguagens Recursivamente Enumeráveis e Sensíveis ao Contexto

- 8.1 Máquina de Turing 8.1.1 Noção Intuitiva 8.1.2 Modelo
- 8.2 Modelos Equivalentes à Máquina de Turing
- 8.3 Hipótese de Church
- 8.4 Máquina de Turing como Reconhecedor
- 8.5 Propriedades das Linguagens Recursivamente Enumeráveis e Recursivas
- 8.6 Gramática Irrestrita
- 8.7 Linguagem Sensível ao Contexto
- 8.8 Máquina de Turing com Fita Limitada

8.1.2 Modelo

◆ Constituído de três partes

- Fita, usada simultaneamente como dispositivo de
 - * entrada, saída e memória de trabalho
- Unidade de Controle
 - * reflete o estado corrente da máquina
 - * possui uma unidade de leitura e gravação (cabeça da fita)
 - * acessa uma célula da fita de cada vez
 - * se movimenta para a esquerda ou para a direita
- Programa, Função Programa ou Função de Transição
 - * define: estado da máquina
 - * comanda: leituras, gravações e sentido de movimento (cabeça)

◆ Fita: finita à esquerda e infinita à direita

- infinita: "tão grande quanto necessário"
- dividida em células, cada uma armazenando um símbolo

Símbolos podem

- pertencer ao alfabeto de entrada
- pertencer ao alfabeto auxiliar
- ser "branco"
- ser "marcador de início de fita"

Inicialmente

- * palavra a ser processada: células mais à esquerda (após o marcador de início de fita)
- * demais células: "branco"

Unidade de controle

- número finito e predefinido de estados
- cabeça da fita
 - * lê um símbolo de cada vez e grava um novo símbolo
 - * move uma célula para a direita ou para a esquerda
- símbolo gravado e o sentido do movimento
 - * definidos pelo programa

Def: Máquina de Turing

$$M = (\Sigma, Q, \delta, q_0, F, V, \beta, \diamondsuit)$$

- > > alfabeto (de símbolos) de entrada
- Q conjunto de estados possíveis da máquina (finito)
- δ (função) programa ou função de transição (função parcial)
 - * suponha que ∑ ∪ V e { β, ◊ } são conjuntos disjuntos

$$\delta: Q \times (\Sigma \cup V \cup \{\beta, \emptyset\}) \rightarrow Q \times (\Sigma \cup V \cup \{\beta, \emptyset\}) \times \{E, D\}$$

- * transição da máquina: $\delta(p, x) = (q, y, m)$
- q₀ estado inicial: elemento distinguido de Q
- F conjunto de estados finais: subconjunto de Q
- V alfabeto auxiliar (pode ser vazio)
- β símbolo especial branco
- 🕸 símbolo de início ou marcador de início da fita

Símbolo de início de fita

• ocorre exatamente uma vez e na célula mais à esquerda da fita

◆ Função programa

- considera
 - * estado corrente
 - * símbolo lido da fita
- determina
 - * novo estado
 - * símbolo a ser gravado
 - * sentido de movimento da cabeça (E e D)

Função programa interpretada como um diagrama

- estados inicial e finais: como nos autômatos finitos
- suponha a transição $\delta(p, x) = (q, y, m)$)

Computação de uma máquina de Turing M, para uma palavra de entrada w

- sucessiva aplicação da função programa
 - * a partir do estado inicial
 - * cabeça posicionada na célula mais à esquerda da fita
 - até ocorrer uma condição de parada
- processamento pode
 - * parar ou
 - * ficar processando indefinidamente (ciclo ou loop infinito)

Aceita a entrada w

- atinge um estado final
 - * máquina pára
 - * w é aceita

Rejeita a entrada w

- função programa é indefinida para o argumento (símbolo lido e estado corrente)
 - * máquina pára
 - * w é rejeitada
- argumento define um movimento à esquerda, e a cabeça da fita já se encontra na célula mais à esquerda
 - * máquina pára
 - * w é rejeitada

Exp: Máquina de Turing: Duplo Balanceamento

$$L = \{ a^n b^n \mid n \ge 0 \}$$

Máquina de Turing

$$M = (\{a, b\}, \{q_0, q_1, q_2, q_3, q_4\}, \delta, q_0, \{q_4\}, \{A, B\}, \beta, \emptyset)$$

é tal que

$$ACEITA(M) = L$$
 e $REJEITA(M) = \sim L$

e, portanto, $LOOP(M) = \emptyset$

qualquer palavra que n\u00e3o esteja na forma a^xb^x \u00e9 rejeitada

Exp: Máquina de Turing: Duplo Balanceamento

δ		а	b	А	В	β
90	(q ₀ , ②, D)	(q ₁ , A, D)			(q ₃ , B, D)	(q_4, β, D)
91		(q ₁ , a, D)	(q ₂ , B, E)		(q ₁ , B, D)	
q ₂		(q ₂ , a, E)		(q ₀ , A, D)	(q ₂ , B, E)	
q 3					(q ₃ , B, D)	(q_4, β, D)
Q 4						

