DATA SCIENCE FOR ENGINEERS

Week 5

Session Co-Ordinator: Abhijit Bhakte

Constraints Optimization

- > Un<u>constraint optimization</u>: In the Last week, the functions we examined were unconstrained, meaning they either had **no boundaries**, **or the boundaries were soft**.
- Constraint optimization: In the week, we will be examining the functions with constraint. A constraint is a hard limit placed on the value of a variable, which prevents us from going forever in certain directions.

➤ <u>Example</u>: Travel car from Surat to Mumbai
Constraint → must visit the Nashik city

- ☐ <u>Task/Problem</u>: Climb as high as possible on the mountain to have a better view of the moon.
- ☐ Constraint: The car must be on the road

Equality constraint optimization

$$\min_{x_1, x_2} 2x_1^2 + 4x_2^2$$

st
$$3x_1 + 2x_2 = 12$$

 $3x_1 + 2x_2 = 12$

Lagrange Multipliers

- The Lagrangian multiplier is a technique used in optimization problems that involve constraints.
- It helps us find the optimal solution of an objective function while satisfying one or more constraints
- \triangleright For the objective function f(x,y) with constraint function g(x,y)

$$\nabla f(x,y) = -\lambda \nabla g(x,y)$$

Que: find Minima for
$$f(x_1, x_2) = 2x_1^2 + 4x_2^2$$
 with constraint $g(x_1, x_2) \to 3x_1 + 2x_2 = 12$

Applying 1st order condition

$$\begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{bmatrix} = -\lambda \begin{bmatrix} \frac{\partial g}{\partial x_1} \\ \frac{\partial g}{\partial x_2} \end{bmatrix} \rightarrow \begin{bmatrix} 4x_1 \\ 8x_2 \end{bmatrix} = -\lambda \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$4x_1 = -3\lambda$$
 (1) $8x_2 = -2\lambda$ (2) $3x_1 + 2x_2 = 12$ (3)

- Solving equation (1) and (2) we get $x_1 = 3x_2$
- Substituting above variables in the constraint equation (3)

$$3x_1 + 2x_2 = 12 \rightarrow 3(3x_2) + 2x_2 = 12 \rightarrow x_2 = 1.09$$

• Calculating other point by putting x_2 in the above equations gives $x_1 = 3.27$

$$(x_1, x_2) = (3.27, 1.09)$$

Que: For a rectangle whose perimeter is 20m, find the dimensions that will maximize the area?

Let consider breadth = b, length = I, Area = A and Perimeter = P

Maximize
$$f(x) = A = l \times b$$

$$st g(x) = 2l + 2b = 20$$

Applying 1st order condition

$$\nabla f(l,b) = -\lambda \nabla g(l,b)$$

•
$$b = -2\lambda$$
 (1)

$$l = -2\lambda \quad (2)$$

•
$$b = -2\lambda$$
 (1) • $l = -2\lambda$ (2) • $2l + 2b = 20$ (3)

• Solving above equation (1) and (2) gives l = b. Putting these value in equation (3) gives

$$l = 5m$$
 and $b = 5m$

Calculating the dimensions, the Area of the rectangle is A = 5*5 = 25

Que: Find the pt. on the circle $x^2 + y^2 = 80$ which are closest to & farthest from the point (1,2)?

• Distance d from any point (x,y) to the point (1,2) is $d = \sqrt{(x-1)^2 + (y-2)^2}$

Maximize
$$f(x,y) = (x-1)^2 + (y-2)^2$$

$$st g(x) = x^2 + y^2 = 80$$

Applying 1st order condition

$$\nabla f(x,y) = -\lambda \nabla g(x,y)$$

$$\frac{\partial f}{\partial x} = 2(x - 1)$$

$$\frac{\partial g}{\partial x} = 2x$$

$$\frac{\partial f}{\partial y} = 2(y-2)$$

$$\frac{\partial g}{\partial y} = 2y$$

Putting all derivatives into the main 1st order equation gives

$$\frac{x-1}{x} = -\lambda \quad (1) \qquad \frac{y-2}{y} = -\lambda \quad (2) \qquad x^2 + y^2 = 80 \quad (3)$$

• Solving equation (1) and (2) gives y = 2x. This value substituted in equation (3)

$$x^2 + y^2 = 80 \rightarrow x^2 + (2x)^2 = 80 \rightarrow x^2 + 4x^2 = 80 \rightarrow x = \pm 4$$

- Putting x values in equation (3) gives $y = \pm 8$
- So we obtained the points where (4,8) is the nearest and (-4,-8) is the farthest point from (1,2)

Que:
$$f(x, y, z) = x + z$$

 $g(x, y, z) = x^2 + y^2 + z^2 = 1$

Applying 1st order condition

$$\nabla f(x, y, z) = -\lambda \nabla g(x, y, z)$$

$$1 = -2\lambda x$$
 (1) $0 = -2\lambda y$ (2) $1 = -2\lambda z$ (3)

- Solving equation (1) and (3) we get x = z. And with equ. (2) we get y = 0
- Substituting above variables in the constraint equation

$$x^{2} + y^{2} + z^{2} = 1 \rightarrow x^{2} + x^{2} = 1 \rightarrow z^{2} = 1 \rightarrow z = \pm \sqrt{\frac{1}{2}}$$

Calculating other point by putting x in the above equations gives

Pt.1=
$$(\sqrt{\frac{1}{2}}, 0, \sqrt{\frac{1}{2}})$$
 pt.2 = $(-\sqrt{\frac{1}{2}}, 0, -\sqrt{\frac{1}{2}})$

- **Q)** Which of the following methods is used to solve optimization problems with equality constraints?
- a) Simplex Method
- b) Gradient Descent
- c) Lagrange Multipliers
- d) Genetic Algorithm
- **Q)** In an optimization problem with equality constraints, the objective is to:
- a) Minimize the objective function only.
- b) Maximize the objective function only.
- c) Satisfy the equality constraints only.
- d) Optimize the objective function while satisfying the equality constraints.

Lagrange Multipliers is a technique commonly used to solve optimization problems with equality constraints.

Solution

The objective is to optimize the objective function while satisfying the equality constraints.

- **Q)** Which of the following represents an equality constraint in a linear programming problem?
- a) 3x+2y≤10
- b) 2x-5y=8
- c) 4x+6y≥20
- d) 7x+3y>15

An equality constraint is represented by an equation with an equal sign, where the left-hand side is equal to the righthand side.

- Q) Consider the optimization problem: Minimize: $f(x, y) = x^2 + y^2$ Subject to: x + y = 5What are the coordinates (x, y) of the optimal solution?
- a) (2, 3)
- b) (3, 2)
- c) (2.5, 2.5)
- d) (1, 4)

Applying 1st order condition f(x,y) and g(x,y)

$$\nabla f(x,y) = -\lambda \nabla g(x,y)$$

$$2x = -\lambda \quad (1)$$

$$2x = -\lambda$$
 (1) $2y = -\lambda$ (2) $x + y = 5$ (3)

$$x + y = 5 \quad (3)$$

- Solving equation (1) and (2) we get x = y
- Substituting above variables in the constraint equation

$$x + y = 5 \rightarrow x + x = 5 \rightarrow x = \frac{5}{2} = 2.5$$

$$x + x = 5 \rightarrow$$

$$x = \frac{5}{2} = 2.5$$

• As we know x=y; hence optimal solution is (x,y)=(2.5,2.5)

Inequality constraint optimization

$$\min_{x_1, x_2} 2x_1^2 + 4x_2^2$$

$$st 3x_1 + 2x_2 \le 12$$

Constraint Minimum

★ Unconstraint Minimum

$$\min_{x_1, x_2} 2x_1^2 + 4x_2^2$$

$$st 3x_1 + 2x_2 \ge 12$$

Multivariate inequality constraint

$$\min_{x_1, x_2} 2x_1^2 + 4x_2^2$$

$$\text{st } 3x_1 + 2x_2 \le 12$$

$$2x_1 + 5x_2 \ge 10$$

$$x_1 \le 1$$

$$\min_{x_1, x_2} 2 x_1^2 + 4 x_2^2$$

$$st$$

$$3 x_1 + 2 x_2 \le 12 \implies (a)$$

$$2 x_1 + 5 x_2 \ge 10 \implies (b)$$

$$x_1 \le 1 \implies (c)$$

Lagrangian

$$L(x_1, x_2, \mu_1, \mu_2, \mu_3) = 2x_1^2 + 4x_2^2 + \mu_1(3x_1 + 2x_2 - 12) + \mu_2(10 - 2x_1 - 5x_2) + \mu_3(x_1 - 1)$$

First order KKT conditions

$$4x_1 + 3\mu_1 - 2\mu_2 + \mu_3 = 0$$
$$8x_2 + 2\mu_1 - 5\mu_2 = 0$$

$$\mu_1(3x_1 + 2x_2 - 12) = 0$$

$$\mu_2(10 - 2x_1 - 5x_2) = 0$$

$$\mu_3(x_3 - 1) = 0$$

$$\mu_i \ge 0$$

SI.no	Active (A) /Inactive (I) constraints (a) (b) (c)			Solution (x, μ)	Possible optima (Y/N)	Remark
1	Α	Α	Α	Infeasible	N	Equations do not have a valid solution.
2	Α	Α	1	x = [3.6364 0.5455] $\mu = [-5.2 -1.45 0]$	N	$x_1 \leq 1$ is not satisfied, $\mu_1 < 0, \mu_2 < 0$
3	Α	1	Α	$x = \begin{bmatrix} 1 & 4.5 \end{bmatrix}$ $\mu = \begin{bmatrix} -18 & 0 & 50 \end{bmatrix}$	N	$\mu_1 < 0$
4	1	Α	Α	$x = \begin{bmatrix} 1 & 1.6 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 & 2.56 & 1.12 \end{bmatrix}$	Υ	All constraints and KKT conditions satisfied
5	Α	1	1	x = [3.27 1.09] $\mu = [-4.36 0 0]$	N	$x_1 \le 1$ is not satisfied
6	1	Α	1	$x = [1.21 1.51]$ $\mu = [0 2.45 0]$	N	$x_1 \le 1$ is not satisfied
7	1	1	Α	$x = \begin{bmatrix} 1 & 0 \end{bmatrix}$ $\mu = \begin{bmatrix} 0 & 0 & -4 \end{bmatrix}$	N	$2x_1 + 5x_2 \ge 10$ is not satisfied
8	1	1	1	$ \begin{aligned} x &= \begin{bmatrix} 0 & 0 \\ \mu &= \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \end{aligned} $	N	$2x_1 + 5x_2 \ge 10$ is not satisfied

- **Q)** Which of the following represents an inequality constraint in optimization?
- a) x+y = 10
- b) $2x-3y \le 5$
- c) 4x-3y = 25
- d) 3x+2y = 12
- **Q)** For an optimization problem, what does the feasible region represent?
- a) The region where the objective function is minimized
- b) The region where the objective function is maximized
- c) The region satisfying all the constraints
- d) The region outside the constraints

- **Q)** If the feasible region of an optimization problem is empty, it means that:
- a) The problem has no solution
- b) The problem has multiple solutions
- c) The problem is unbounded
- d) The problem is well-posed

- **Q)** In linear programming, a feasible solution that also satisfies all the constraints with equality is called:
- a) An degenerate solution
- b) A bounded solution
- c) An infeasible solution
- d) A optimal solution

An empty feasible region indicates that there are no valid points that satisfy all the given constraints.

Solution

An optimal solution is one that not only satisfies all the constraints but also optimizes the objective function according to the given optimization criteria.

Q) For given function $z = 4x^2 - 5xy + 6y$ subject to the constraint x + y = 9; $2x - 9y \le 1$ and $xy + x \ge 3$ find lagrangian function

a)
$$L(x, y, \lambda, \mu_1, \mu_2) = 4x^2 - 5xy + 6y + \lambda(x + y - 9) + \mu_1(1 - 2x + 9y) + \mu_2(3 - xy - x)$$

b)
$$L(x, y, \lambda, \mu_1, \mu_2) = 4x^2 - 5xy + 6y + \lambda(x + y - 9) + \mu_1(2x - 9y - 1) + \mu_2(3 - xy - x)$$

c)
$$L(x, y, \lambda, \mu_1, \mu_2) = 4x^2 - 5xy + 6y + \lambda(x + y - 9) + \mu_1(1 - 2x + 9y) + \mu_2(xy + x - 3)$$

d)
$$L(x, y, \lambda, \mu_1, \mu_2) = 4x^2 - 5xy + 6y + \lambda(x + y - 9) + \mu_1(2x - 9y - 1) + \mu_2(xy + x - 3)$$

Thank you