Synchronous FIFO

First in First Out (FIFO) is a very popular and useful design block for purpose of synchronization and a handshaking mechanism between the modules .

Depth of FIFO:

the number of slots or rows in FIFO is called the depth of the FIFO.

Width of FIFO:

the number of bits that can be stored in each slot or row is called the width Of the FIFO.

There are two types of FIFOs

- 1) Synchronous FIFO
- 2) Asynchronous FIFO

Synchronous FIFO

I Synchronous FIFO, data read and write operations use the same clock frequency. Usually they are used with high clock frequency to support high-speed systems.

Synchronous FIFO Architecture:

Synchronous FIFO

Synchronous FIFO Operation

signals description:

wr_en : write enable wr_data: write data full :FIFO is full

empty:FIFO is empty rd_en: read enable rd_data: read data w_ptr: write pointer r_ptr: read pointer

FIFO write operation

FIFO can store/write the wr_data at every posedge of the clock based on wr_en signal till it is full. The write pointer gets incremented on every data write in FIFO memory .

FIFO read operation

the data can be taken out or read from FIFO at every posedge of the clock based on the rd_en signal till it is empty . The read pointer gets incremented on every data read from FIFO memory .

the width of the write and read pointer = $log2(depth \ of \ FIFO)$. The FIFO full and empty conditions can be determined as

Empty condition

 $w_ptr==r_ptr$

write and read pointers has the same value.

Full condition

The full condition means every slot in the FIFO is occupied, but then w_ptr and r_ptr will again have the same value. Thus it is not possible to determine whether it is a full or empty condition. Thus, the last slot of FIFO is intentionally kept empty and the full condition can be wrriten as $(w_ptr+1)==r_ptr$.

References:

VLSI-Verify website

https://vlsiverify.com/verilog/verilog-codes/synchronous-fifo/#google_vignette