

Capítulo 5

Entrada/Saída

- **5.1** Princípios do hardware de E/S
- 5.2 Princípios do software de E/S
- 5.3 Camadas do software de E/S
- 5.4 Discos
- 5.5 Relógios
- 5.6 Terminais com base em caracteres
- 5.7 Interfaces gráficas do usuário
- 5.8 Terminais de rede
- 5.9 Gerenciamento de energia

Princípios do Hardware de E/S

Dispositivo	Taxa de dados	
Teclado	10 bytes/s	
Mouse	100 bytes/s	
Modem 56 K	7 KB/s	
Canal telefônico	8 KB/s	
Linhas ISDN dual	16 KB/s	
Impressora a laser	100 KB/s	
Scanner	400 KB/s	
Ethernet clássica	1,25 MB/s	
USB (universal serial bus — barramento serial universal)	1,5 MB/s	
Câmara de vídeo digital	4 MB/s	
Disco IDE	5 MB/s	
CD-ROM 40x	6 MB/s	
Ethernet rápida	12,5 MB/s	
Barramento ISA	16,7 MB/s	
Disco EIDE (ATA-2)	16,7 MB/s	
FireWire (IEEE 1394)	50 MB/s	
Monitor XGA	60 MB/s	
Rede SONET OC-12	78 MB/s	
Disco SCSI Ultra 2	80 MB/s	
Ethernet Gigabit	125 MB/s	
Dispositivo de Fita Ultrium	320 MB/s	
Barramento PCI	528 MB/s	
Barramento da Sun Gigaplane XB	20 GB/s	

Taxas de dados típicas de dispositivos, redes e barramentos

Controladores de Dispositivos

- Componentes de dispositivos de E/S
 - mecânico
 - eletrônico
- O componente eletrônico é o controlador do dispositivo
 - pode ser capaz de tratar múltiplos dispositivos
- Tarefas do controlador
 - converter fluxo serial de bits em bloco de bytes
 - executar toda detecção e correção de erros necessária
 - tornar o bloco disponível para ser copiado para a memória principal

Interface vs Controlador

Interface:

- Define o padrão de comunicação e interconexão entre o barramento e o dispositivo.
- É basicamente a documentação
 - os comandos e como usá-los
 - os códigos de erro
- Exemplos:
 - ATA, SATA, SAS, etc...

Interface vs Controlador

Controlador:

- É a instanciação da interface.
- Cada fabricante projeta e constrói a sua porém, para permitir a interconexão com o barramento e sua operação ela deverá adotar um padrão (ou interface)
- Exemplo:
 - Controladora do disco rígido
 - Placas de rede

Princípios do Software de E/S Objetivos do Software de E/S (1)

- Independência de dispositivo
 - Programas podem acessar qualquer dispositivo de E/S sem especificar previamente qual (disquete, disco rígido ou CD-ROM)
- Nomeação uniforme
 - Nome de um arquivo ou dispositivo pode ser uma cadeia de caracteres ou um número inteiro que é independente do dispositivo
- Tratamento de erro
 - Trata o mais próximo possível do hardware

Objetivos do Software de E/S (2)

- Transferências Síncronas vs. Assíncronas
 - transferências bloqueantes vs. orientadas a interrupção
 - utilização de buffer para armazenamento temporário
 - dados provenientes de um dispositivo muitas vezes não podem ser armazenados diretamente em seu destino final
- Dispositivos Compartilháveis vs. Dedicados
 - discos são compartilháveis
 - Impressoras não são

Comandos de E/S

- CPU envia endereço
 - Identificação do módulo (e dispositivo se mais de 1 dispositivo por módulo
- CPU envia commando
 - Controle especifica o que o módulo deve fazer
 - Ex: Rodar disco rígido
 - Teste checar estado
 - Ex: está ligado? Ocorreu um erro? Esta processando?
 - Leitura/Escrita
 - Transfere dados para o dispositivo através do módulo

Endereçamento de Dispositivos de E/S

- E/S programada:
 - transferência de dados é parecida com acessos à memória
 - Do ponto de vista da CPU
- Cada dispositivo possui um identificador único associado
- Comandos da CPU contém identificadores (endereço)

Entrada/Saída Programada

- CPU tem o controle "direto" sobre o dispositivo
 - Verifica estado (ocupado, livre, pronto, etc...)
 - Envia comando de leitura ou escrita
 - Transfere os dados
- A CPU espera até que o módulo de E/S complete a operação
- DESPERDÍCIO DE TEMPO DE PROCESSAMENTO

E/S Programada - detalhes

- 1. CPU requisita operação de E/S
- 2. Módulo de E/S inicia a operação
- 3. Módulo de E/S liga bits de estado (ocupado)
- 4. CPU checa bits de estado periodicamente
- 5. Módulo de E/S termina operação
- 6. Módulo de E/S liga bits de estado (pronto)
- 7. CPU checa bits de estado e "pega" o resultado

E/S Programada – detalhes (2)

Observações:

- Módulo de E/S não informa a CPU diretamente
- Módulo de E/S não interrompe a CPU
- CPU pode esperar ou "voltar depois"

E/S mapeada na memória (1)

- a) Espaços de memória e E/S separados
- b) E/S mapeada na memória
- c) Híbrido

E/S Dirigida por Interrupções

- Elimina o problema de "espera" da CPU
- A CPU n\u00e3o precisa checar o dispositivo repetidamente
- O módulo de E/S faz a interrupção quando terminar

E/S Dirigida por Interrupção Operação Básica

- 1. CPU emite um comando de leitura
- 2. Módulo de E/S vai buscar os dados
 - Enquanto a CPU executa outras instruções
- 3. Módulo de E/S interrompe a CPU
 - Ao terminar de buscar os dados
- 4. CPU faz requisita os dados
- 5. Módulo de E/S transfere dados para CPU

Interrupções Revisitadas

Como ocorre uma interrupção. Conexões entre dispositivos e controlador de interrupção usam linhas de interrupção no barramento em vez de fios dedicados

Do ponto de vista da CPU...

- Emite comando de leitura
- Executa outras instruções
- Verifica se houve interrupção ao final de cada ciclo de execução
- Se a CPU foi interrompida:
 - Salva contexto (Registradores: CP, MAR, MBR, ...)
 - Processa interrupção (pode levar algum tempo)
 - Busca dados e armazena
 - Restaura contexto
- CPU continua a execução de onde parou

Acesso Direto à Memória

- DMA (Direct Memory Access)
- E/S dirigida por interrupção e E/S programada precisam que a CPU "trabalhe"
 - Como a taxa de transferência dos dispositivos é limitada
 - CPU fica ocupada

DMA é a reposta

Funcionamento do DMA

- O Controlador de DMA é um módulo adicional do barramento
- O controlador de DMA "toma" E/S da CPU

Operação do DMA

- CPU passa ao controlador de DMA:
 - Tipo de operação: Leitura/Escrita
 - Endereço do dispositivo
 - Endereço inicial
 - Quantidade de dados a serem transferidos
- CPU vai fazer outro trabalho
- Controlador de DMA faz a transferência
- Controlador de DMA envia interrupção quando terminar

Acesso Direto à Memória (DMA)

Operação de uma transferência com DMA

Transferência DMA Roubo de Ciclos

- Controlador DMA usa o barramento por um ciclo
- Transfere uma palavra de dados
- CPU é suspendida antes de acessar barramento
 - i.e. antes de buscar/escrever dados em algum dispositivo ou memória
- Deixa CPU mais lenta
 - Melhor do que a CPU fazer o trabalho diretamente

Por outro lado...

- Qual o efeito do cache durante uma operação DMA?
 - O cache visa diminuir o acesso à memória pela CPU
 - Economiza acessos ao barramento também
 - DMA usa muito o barramento
- Por outro lado...
 - E se o endereço de memória que está sendo atualizado estiver no cache?
 - INCONSISTÊNCIA!!!
 - "Pendurar" o DMA no cache?

Camadas do Software de E/S

	Software de E/S no nível do usuário	
	Software do sistema operacional independente do dispositivo	
	Drivers do dispositivo	
	Tratadores de interrupções	
Hardware		

Camadas do sistema de software de E/S

Camadas do sistema de software de E/S

Software de E/S no Espaço do Usuário

Camadas do sistema de E/S e as principais funções de cada camada

Software de E/S Independente de Dispositivo (1)

Interface uniforme para os drivers dos dispositivos

Armazenamento em buffer

Relatório dos erros

Alocação e liberação de dispositivos dedicados

Fornecimento de tamanho de bloco independente de dispositivo

Funções do software de E/S independente de dipositivo

Software de E/S Independente de Dispositivo (2)

- (a) Sem uma interface-padrão do driver
- (b) Com uma interface-padrão do driver

Software de E/S Independente de Dispositivo (3)

- a) Entrada sem utilização de buffer
- b) Utilização de buffer no espaço do usuário
- c) Utilização de buffer no núcleo seguido de cópia para o espaço do usuário
- d) Utilização de buffer duplo no núcleo

Drivers dos Dispositivos

- Posição lógica dos drivers dos dispositivos
- A comunicação entre os drivers e os controladores de dispositivos é feita por meio do barramento

Tratadores de Interrupção (1)

- As interrupções devem ser escondidas o máximo possível
 - uma forma de fazer isso é bloqueando o driver que iniciou uma operação de E/S até que uma interrupção notifique que a E/S foi completada
- Rotina de tratamento de interrupção cumpre sua tarefa
 - e então desbloqueia o driver que a chamou

Tratadores de Interrupção (2)

- Passos que devem ser executados em software depois da interrupção ter sido concluída
- 1. salva registradores que ainda não foram salvos pelo hardware de interrupção
- 2. estabelece contexto para rotina de tratamento de interrupção
- 3. estabelece uma pilha para a rotina de tratamento de interrupção
- 4. sinaliza o controlador de interrupção, reabilita as interrupções
- 5. copia os registradores de onde eles foram salvos
- 6. executa rotina de tratamento de interrupção
- 7. escolhe o próximo processo a executar
- 8. estabelece o contexto da MMU para o próximo processo a executar
- 9. carrega os registradores do novo processo
- 10. começa a executar o novo processo

Buffer vs Cache

Cache:

- Mecanismo de armazenamento temporário
- Composto por uma memória ultra rápida e lógica em eletrônica embarcada
- Geralmente serve como intermediário no acesso a disco rígido e memória RAM
- Monitora as requisições:
 - Caso detenha a informação requisitada, ela retorna a informação para o solicitante
 - Caso não tenha, repassa a solicitação para o dispositivo de armazenamento e após obter a resposta salva uma cópia na cache

Buffer vs Cache

Buffer:

- Região de memória, geralmente localizada em controladores.
- 1) Agrupa blocos de dados para envio em lote para o dispositivo de E/S
 - Diminuir a quantidade de acessos aumentando a quantidade de dados enviados de cada vez
- 2) Conciliar tranferência de dados entre dispositivos com velocidades diferentes.
- Exemplo:
 - Implantação em software de gravadoras de DVDs
 - Buffer de envio e recepção de dados em placas de rede

Exercícios

