Поиск гена СОІ в траснкриптомных сборках

Шаг 1. Выравнивание (blast) транскриптомов на референс -> множественное выравнивание топ5 на референс -> выбор лучшего хита -> тримминг по границам гена (отдельно для сборок rnaspades/trinity)

Заполнение config.py

```
python main_pipeline_step1.py
python main_pipeline_step2.py
python main_pipeline_step3.py
python main_pipeline_step4.py
python main_pipeline_step5.py
```

Если не работает mafft (см. файл для логов)-> использование онлайн выравнивания https://mafft.cbrc.jp/alignment/server/spool с настройками::

```
mafft --reorder --adjustdirection --maxiterate 2 --retree 1 --globalpair
```

Шаг 2. Фильтрация полученных последовательностей по длине + выбор лучшего хита вручную (rnaspades/trinity)

```
python main pipeline check1.py
```

Рассмотрим обрезанные гены, не прошедшие проверку по длине (зеленые - удалось исправить, желтые - последовательность из другой сборки прошла проверку):

Nº	Вид	Решение / Комментарий	Результат
		rnaspades	
1	Boeckaxelia_carpenterii	выбор подходящего хита (без вставки) для обрезки	проверку по длине прошел
2	Brachyuropus_grewingkii	н/п	берем trinity
3	Caprella_sp	выбор хита с лучшим покрытием для обрезки не помог	не рассматриваем далее, вид не байкальский
4	Echiuropus_macronychus	перемещение последнего нуклеотида в best_to_ref (выравнивание лучшего хита с референсом) вручную	проверку по длине прошел
5	Eulimnogammarus_spgam2 quest	есть гэпы в конце	берем trinity
6	Gammarus_lacustris	выбор подходящего хита (без вставки) для обрезки	проверку по длине прошел
7	Gammarus_minus	имеет гэпы в начале, выравнивание хита с лучшим покрытием mafftreorderadjustdirectionmaxiterate 2retree 1globalpair не помогло	берем trinity
8	Gammarus_pisinnus	1. гэпы в начале и конце	берем trinity
9	Hyalella_azteca	2. гэпы в середине	берем trinity
10	Hirondellea_gigas	выбор подходящего хита (без вставки) для обрезки	проверку по длине прошел
11	Hyalellopsis_grisea	выбор подходящего хита (без вставки) для обрезки	проверку по длине прошел

Nº	Вид	Решение / Комментарий	Результат
12	Hyalellopsis_stebbingi	перемещение первого нуклеотида в best_to_ref (выравнивание лучшего хита с референсом) вручную, гэпы в конце	берем trinity
13	Macrohectopus_branickii	выравнивание хита с лучшим покрытием mafft reorderadjustdirectionmaxiterate 2 retree 1globalpair	проверку по длине прошел
14	Macropereiopus_parvus	выравнивание 2х лучших хитов по отдельности mafftreorderadjustdirectionmaxiterate 2retree 1globalpair, trimmed_best c гэпами	берем trinity
15	Marinogammarus_marinus	выравнивание без хита с худшим покрытием mafft reorderadjustdirectionmaxiterate 2 retree 1globalpair	проверку по длине прошел
16	Micruropus_wahlii	выравнивание на хит с худшим покрытием, но без nnn mafftreorderadjustdirectionmaxiterate 2retree 1globalpair помогло, но ок ли? так как есть различия между ним и остальными в топе	берем trinity
17	Ommatogammarus_albinus	выравнивание на топ 20 хитов без nnn	после удаления гэпов проверку по длине прошел
18	Oxyacanthus_flavus	выравнивание без хита с худшим покрытием mafft reorderadjustdirectionmaxiterate 2 retree 1globalpair	проверку по длине прошел
19	Pallasea_cancelloides	гэп ближе к концу	берем trinity

Nº	Вид	Решение / Комментарий	Результат
20	Pallasea_cancellus	выравнивание без хитов с nnn mafftreorderadjustdirectionmaxiterate 2retree 1globalpair	проверку по длине прошел
21	Parapallasea_borowskii	выравнивание без хитов с nnn mafftreorderadjustdirectionmaxiterate 2retree 1globalpair не помогло	берем trinity
22	Parapallasea_wosnessenskii	выравнивание хита с лучшим покрытием mafftreorderadjustdirectionmaxiterate 2retree 1globalpair Не ПОМОГЛО	берем trinity
23	Parhyale_hawaiensis	перемещение первого нуклеотида в best_to_ref (выравнивание лучшего хита с референсом) вручную	проверку по длине прошел
		trinity	
1	Baikalogammarus_pullus	выбор подходящего по длине хита	проверку по длине прошел
2	Eulimnogammarus_violaceus	гэпы в начале	берем rnaspades
3	Gammarus_lacustris	всего 2 хита, второй лучше по длине	проверку по длине прошел
4	Gammarus_pisinnus	выбор подходящего по длине хита	проверку по длине прошел
5	Gmelinoides_fasciatus	выбор подходящего по длине хита	проверку по длине прошел
6	Heterogammarus_sophianosii	выбор подходящего по длине хита	проверку по длине прошел
7	Macrohectopus_branickii	гэпы в начале	берем rnaspades

Nº	Вид	Решение / Комментарий	Результат
8	Micruropus_glaber	выбор подходящего по длине хита	проверку по длине прошел
9	Oxyacanthus_flavus	выбор подходящего по длине хита	проверку по длине прошел
10	Palicarinus_puzyllii	делеция?	берем rnaspades
11	Pallasea_cancelloides_2	выбор подходящего по длине хита	проверку по длине прошел
12	Parapallasea_borowskii	выравнивание на подходящий по длине хит	проверку по длине прошел

Шаг 3. Проверка полученных последовательностей в blast (rnaspades/trinity)

python main_pipeline_check2.py

Обсудим лучшие хиты по e-value, вызывающие вопросы:

Name	Sequence_ID	Subject_ID	Organism	E-value	Identit y	Align _len	Comment
Eulimnogammarus_ cyaneus_rnaspades	NODE_25_length_11911_ cov_9730.845389_g4_i1	NC_033360.1	Eulimnogammarus cyaneus mitochondrion	0.0	98%	1534	Внутривидовое разнообразие
Eulimnogammarus_ vittatus_rnaspades	NODE_34_length_9586_c ov_5778.005243_g10_i1	NC_025564.1	Eulimnogammarus vittatus mitochondrion	0.0	91%	1532	Внутривидовое разнообразие
Gammarus_lacustri s_rnaspades	_R_NODE_80_length_66 34_cov_2707.503113_g4	NC_044469.1	Gammarus lacustris mitochondrion,	0.0	98%	1534	indel?

Name	Sequence_ID Subject_ID Organism		Organism	E-value	Identit y	Align _len	Comment
	8_i1		complete genome				
Hirondellea_gigas_r naspades	NODE_1517_length_4709 _cov_11508.664508_g83 3_i1	KU558990.1	Hirondellea gigas clone mito1 mitochondr	0.0	98%	1534	Не байкальский вид, не интересует
Eulimnogammarus_ cyaneus_T285	TRINITY_DN1663_c0_g1 _i1	NC_033360.1	Eulimnogammarus cyaneus mitochondrion	0.0	98%	1534	Внутривидовое разнообразие
Eulimnogammarus_ vittatus_T285	TRINITY_DN7079_c0_g1 _i1	NC_025564.1	Eulimnogammarus vittatus mitochondrion	0.0	91%	1532	Внутривидовое разнообразие
Gammarus_lacustri s_T285	_R_TRINITY_DN2922_c0 _g1_i1	NC_044469.1	Gammarus lacustris mitochondrion, complete genome	0.0	98%	1533	Внутривидовое разнообразие

Шаг 4. Промежуточное сравнение последовательностей из разных сборок

python main_pipeline_check3.py

Сравнение результатов сборок (пока без 12 желтых для rnaspades). Рассмотрим результаты выравнивания для видов с низкой идентичностью между сборками :

	Nº	Seguence ID	Length Seq	Length Seq	Identity	Alignment	Comment
		Sequence ib	rnaspades	trinity	Percentage	Length	Comment

1	Boeckaxelia_carp enterii	1534	1461	95.241199	1534	Для trinity remafft без наиболее подходящей по длине последовательности, trimmed_best с гэпами в начале - берем последовательность из сборки rnaspades
2	Cornugammarus _maximus	1534	1535	83.061889	1535	Для trinity в топ5 2 пула похожих последовательностей, remafft на другой пул помог
3	Eulimnogammaru s_violaceus	1534	1523	82.398957	1536	Для trinity в топ5 есть пул последовательностей, remafft на него помог, но большой кусок с гэпами в конце - берем последовательность из сборки rnaspades
4	Garjajewia_dersh awini	1537	1534	97.722837	1554	У trinity всего 1 последовательность в топе - берем последовательность из сборки rnaspades
5	Hyalellopsis_cost ata	1534	1537	66.428107	1609	Для trinity в топ5 есть разные последовательности, remafftы не помогли - берем последовательность из сборки rnaspades
6	Hyalellopsis_seto sa	1538	1534	75.357607	1559	Для trinity remafft без изначально выбранной последовательности
7	Macrohectopus_ branickii	1534	1520	74.576271	1554	Для trinity сильно отличаются все последовательности в топ5 - берем последовательность из сборки rnaspades
8	Palicarinus_puzyl lii	1534	1534	78.09648	1544	У trinity всего 1 последовательность в топе - берем последовательность из сборки rnaspades

Шаг 5. Финальное сравнение последовательностей из разных сборок

python main_pipeline_check3.py

Запустим сравнение теперь для всех последовательностей. Итого 69 видов имеют обе сборки, из них:

- 26 видов имеют на 100% одинаковые последовательности в разных сборках
- 26 видов имеют идентичность > 99%, < 100% между сборками

- 17 видов имеют низкую идентичность между сборками

Из 52 видов с идентичностью > 99% только 38 имеют одинаковую длину последовательностей и выравнивания. Для 14 остальных выберем финальную сборку:

Nº	Sequence_ID	Len_Seq_rna spades	Len_Seq_ trinity	Identi ty	Alignment _Len	Justification	Final_se q
1	Acanthogammarus_godlewskii	1535	1534	99.93	1535	indel в 1141 позиции у rnaspades	trinity
2	Baikalogammarus_pullus	1535	1534	99.93	1535	indel в 1266 позиции у rnaspades	trinity
3	Eulimnogammarus_messerschmidtii	1534	1534	99.35	1540	trinity лучше выровнялась на проверке (шаг 6)	trinity
4	Eulimnogammarus_similis	1535	1535	99.87	1536	y trinity indel в 434 позиции, у rnaspades лишний нуклеотид на конце - удалим его	rnaspades
5	Eulimnogammarus_verrucosus	1534	1536	99.87	1536	indel в 434 позиции у trinity	rnaspades
6	Gammarus_lacustris	1535	1534	99.87	1535	indel в 191 позиции у rnaspades	trinity
7	Hyalellopsis_setosa	1538	1534	99.74	1538	indels в 191-191, 786-787 позициях у rnaspades	trinity
8	Macropereiopus_wagneri	1535	1535	99.74	1536	indel в 434 позиции у rnaspades, в 1266 у trinity	trinity
9	Ommatogammarus_flavus	1535	1534	99.93	1535	indel в 81 позиции у rnaspades	trinity
10	Oxyacanthus_sowinskii	1534	1534	99.48	1536	у trinity выровнялся более длинный участок на проверке (шаг 6)	trinity

11	Pallasea_cancelloides_2	1534	1535	99.93	1535	indel в 1330 позиции у trinity (согласно Pallasea_cancelloides)	rnaspades
12	Pandorites_podoceroides	1535	1534	99.87	1535	trinity лучше выровнялась на проверке (шаг 6)	trinity
13	Pentagonurus_dawydowi	1536	1534	99.87	1536	trinity лучше выровнялась на проверке (шаг 6)	trinity
14	Sluginella_kietlinskii	1535	1534	99.93	1535	indel в 191 позиции у rnaspades	trinity

Выбор сборки для случаев выравнивания с низкой идентичностью (сравнение результатов mafft топ5 хитов):

Nº	Sequence_ID	Len_Seq_r naspades	Len_Seq _trinity	Identity	Alignment _Len	Len_Seq_wo_ gaps_rnaspad es	Len_Seq_ wo_gaps_t rinity	Identity _wo_ga ps	Final_s eq
1	Boeckaxelia_carpenterii	1534	1534	95.24	1534	1534	1461	100.0	rnaspad es
2	Brachyuropus_grewingkii	1680	1534	91.31	1680	1680	1534	n/a	trinity
3	Eulimnogammarus_spgam2q uest	1534	1534	97.46	1536	1502	1534	99.53	trinity
4	Eulimnogammarus_violaceus	1534	1534	65.19	1534	1534	1001	99.9	rnaspad es
5	Gammarus_minus	1534	1534	93.68	1534	1437	1534	100.0	trinity
6	Gammarus_pisinnus	1538	1534	70.29	1642	1496	1534	72.26	trinity
7	Garjajewia_dershawini	1537	1534	97.72	1554	1537	1534	n/a	rnaspad es
8	Hyalellopsis_costata	1534	1537	66.56	1609	1534	1537	n/a	rnaspad es

9	Hyalellopsis_stebbingi	1535	1534	98.5	1535	1514	1534	99.87	trinity
10	Macrohectopus_branickii	1534	1534	74.58	1554	1534	1520	75.39	rnaspad es
11	Macropereiopus_parvus	1536	1534	96.55	1565	1536	1534	n/a	trinity
12	Micruropus_wahlii	1534	1534	79.66	1536	1534	1534	n/a	trinity
13	Ommatogammarus_albinus	1534	1534	83.57	1539	1534	1534	n/a	rnaspad es
14	Palicarinus_puzyllii	1534	1534	78.1	1544	1534	1534	n/a	rnaspad es
15	Pallasea_cancelloides	1541	1534	95.46	1587	1541	1534	n/a	trinity
16	Parapallasea_borowskii	3036	1534	50.26	3039	3036	1534	n/a	trinity
17	Parapallasea_wosnessenskii	1549	1534	94.06	1563	1520	1534	95.86	trinity

Шаг 6. Финальная проверка последовательностей в blast

python main_pipeline_check2.py

Финальная проверка в blast (2 лучших хита: по e-value и по идентичности). Ниже приведены последовательности, вызывающие вопросы. Дополнительно запустили для них main_pipeline с топ20 - не помогло или стало хуже.

Name	Sequence_I D	Subject_I D	Organism	E-value	Identit y	Align_le n	Вопрос	Решение
	l		l	rnaspades	<u>. </u>	<u> </u>		
Acanthogamm arus_godlewsk ii	NODE_41_le ngth_9587_c ov_15664.56 0390_g2_i2	JN39375 5.1	Acanthogammaru s cf. maculosus MED-2011 h	0.0e+00	99.66	585	высокая идентичность для короткой последовательност и соседнего вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Brandtia_latissi ma	NODE_6_len gth_14004_c ov_4175.113 149_g1_i2	FJ756302 .1	Brandtia latissima lata voucher BLATA66	0.0e+00	95.85 %	626	низкая идентичность для короткой последовательност и того же вида	внутривидовое разнообразие
Eulimnogamm arus_spgam 2quest	NODE_2643 _length_4669 _cov_13692. 467316_g13_ i13	AY92666 3.1	Eulimnogammaru s maacki cytochrome oxidas	0.0e+00	99%	450	можем ли утверждать, что это вид maacki, берем trinity	найденный ген 18S в сборке выравнивается на Е. maackii с высокой идентичностью
Eulimnogamm arus_viridulus	_R_NODE_2 1_length_143 73_cov_1157 6.668389_g1 _i2	MK88774 2.1	Eulimnogammaru s vittatus voucher Evi_Lis	0.0e+00	99.84 %	640	высокая идентичность для короткой последовательност и соседнего вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"

Name	Sequence_I D	Subject_I D	Organism	E-value	Identit y	Align_le n	Вопрос	Решение
Micruropus_gla ber	NODE_299_I ength_7239_ cov_6437.71 7524_g7_i3	AY92668 2.1	Micruropus glaber cytochrome oxidase sub	0.0e+00	91.79 %	694	низкая идентичность для короткой последовательност и того же вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Micruropus_wa hlii	NODE_2224 7_length_163 5_cov_1417. 979219_g115 19_i0	FJ756340 .1	Micruropus wahlii voucher MWAH2 cytochro	0.0e+00	90.26	626	низкая идентичность для короткой последовательност и того же вида	берем trinity
Odontogamma rus_calcaratus	_R_NODE_2 35_length_81 68_cov_1388 8.785442_g5 _i10	FJ756341 .1	Odontogammaru s calcaratus voucher OCAL20	0.0e+00	92.82 %	627	низкая идентичность для короткой последовательност и того же вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Oxyacanthus_ curtus	_R_NODE_1 7_length_177 53_cov_5185 .770843_g0_i 10	JN39384 7.1	Oxyacanthus flavus cytochrome oxidase su	0.0e+00	99.66	585	высокая идентичность для короткой последовательност и соседнего вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Pachyschesis_	NODE_1_len	MN14835	Pachyschesis	0.0e+00	98.44	705	низкая	последовательност

Name	Sequence_I D	Subject_I D	Organism	E-value	Identit y	Align_le n	Вопрос	Решение
branchialis_2	gth_14059_c ov_26894.74 6966_g0_i0	9.1	branchialis isolate 35-6 cy		%		идентичность для короткой последовательност и того же вида	ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Pachyschesis_ branchialis	NODE_4411 _length_3344 _cov_10806. 215175_g4_i 14	MN14835 9.1	Pachyschesis branchialis isolate 35-6 cy	0.0e+00	87.68 %	706	низкая идентичность для короткой последовательност и того же вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Pallasea_grub ei	NODE_1153 _length_5420 _cov_10579. 713461_g494 _i1	AY92668 8.1	Pallasea grubei cytochrome oxidase subun	0.0e+00	92.17 %	498	низкая идентичность для короткой последовательност и того же вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Pallaseopsis_k essleri	_R_NODE_1 4_length_197 11_cov_8846 .089971_g0_i 8	GQ91920 2.1	Babr nigromaculatus isolate A60 cytochro	0.0e+00	98.56 %	627	высокая идентичность для короткой последовательност и соседнего вида, на сам <u>ген</u> из NCBI	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"

Name	Sequence_I D	Subject_I D	Organism	E-value	Identit y	Align_le n	Вопрос	Решение
							выравнился очень плохо - 78%	
				trinity	•			
Acanthogamm arus_godlewsk ii	_R_TRINITY _DN65_c0_g 2_i1	JN39375 5.1	Acanthogammaru s cf. maculosus MED-2011 h	0.0e+00	99.66	585	высокая идентичность для короткой последовательност и соседнего вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Brandtia_latissi ma	_R_TRINITY _DN94_c0_g 2_i4	FJ756302 .1	Brandtia latissima lata voucher BLATA66	0.0e+00	95.85 %	626	низкая идентичность для короткой последовательност и того же вида	внутривидовое разнообразие
Eulimnogamm arus_spgam 2quest	_R_TRINITY _DN531_c0_ g1_i4	AY92666 3.1	Eulimnogammaru s maacki cytochrome oxidas	0.0e+00	99%	450	можем ли утверждать, что это вид maacki	найденный ген 18S в сборке выравнивается на E. maackii с высокой идентичностью
Eulimnogamm arus_viridulus	TRINITY_DN 93_c0_g3_i2	MK88774 2.1	Eulimnogammaru s vittatus voucher Evi_Lis	0.0e+00	99.84 %	640	высокая идентичность для короткой последовательност и соседнего вида	последовательност ь не включаем в базу данных, откладываем в папку

Name	Sequence_I D	Subject_I D	Organism	E-value	ldentit y	Align_le n	Вопрос	Решение
								"no_pass_blast_che ck"
Micruropus_gla ber	_R_TRINITY _DN7569_c0 _g1_i1	AY92668 2.1	Micruropus glaber cytochrome oxidase sub	0.0e+00	91.79	694	низкая идентичность для короткой последовательност и того же вида (но для 18s все хорошо)	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Odontogamma rus_calcaratus	_R_TRINITY _DN1782_c0 _g1_i4	FJ756341 .1	Odontogammaru s calcaratus voucher OCAL20	0.0e+00	92.82	627	низкая идентичность для короткой последовательност и того же вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Oxyacanthus_ curtus	TRINITY_DN 1_c0_g1_i4	JN39384 7.1	Oxyacanthus flavus cytochrome oxidase su	0.0e+00	99.66 %	585	высокая идентичность для короткой последовательност и соседнего вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Pachyschesis_ branchialis_2	TRINITY_DN 40_c0_g1_i4	MN14835 9.1	Pachyschesis branchialis isolate 35-6 cy	0.0e+00	98.44 %	705	низкая идентичность для короткой последовательност	последовательност ь не включаем в базу данных, откладываем в

Name	Sequence_I D	Subject_I D	Organism	E-value	Identit y	Align_le n	Вопрос	Решение
							и того же вида (но для 18s все хорошо)	папку "no_pass_blast_che ck"
Pachyschesis_ branchialis	_R_TRINITY _DN387_c0_ g1_i3	MN14835 9.1	Pachyschesis branchialis isolate 35-6 cy	0.0e+00	87.68 %	706	низкая идентичность для короткой последовательност и того же вида (но для 18s все хорошо)	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Pallasea_grub ei	TRINITY_DN 56_c0_g1_i1	AY92668 8.1	Pallasea grubei cytochrome oxidase subun	0.0e+00	92.17 %	498	низкая идентичность для короткой последовательност и того же вида	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"
Pallaseopsis_k essleri	TRINITY_DN 670_c0_g1_i 5	GQ91920 2.1	Babr nigromaculatus isolate A60 cytochro	0.0e+00	98.56 %	627	высокая идентичность для короткой последовательност и соседнего вида, на сам <u>ген</u> из NCBI выравнился плохо - 78%	последовательност ь не включаем в базу данных, откладываем в папку "no_pass_blast_che ck"

Поиск гена 18S в траснкриптомных сборках

Шаг 1. Выравнивание (blast) транскриптомов на референс -> множественное выравнивание топ5 на референс -> выбор лучшего хита -> тримминг по границам гена (rnaspades/trinity)

Заполнение config.py

```
python main_pipeline_step1.py
python main_pipeline_step2.py
python main_pipeline_step3.py
python main_pipeline_step4.py
python main_pipeline_step5.py
```

Шаг 2. Фильтрация полученных последовательностей по длине + выбор лучшего хита (rnaspades/trinity)

```
python main pipeline check1.py
```

Все последовательности содержат гэпы, рассмотрим результаты mafft для тех, что имеют большое количество гэпов или длину >> 2267 (зеленые - удалось исправить, желтые - последовательность из другой сборки прошла проверку, кроме Pachyschesis_branchialis_2):

#	Species	Seq_ID	Seq_len	Cleaned_seq_len (without gaps)	Without 'NNN'	Decision/comment	Result				
	rnaspades										
1	Baikalogammaru s_pullus	NODE_159_length_ 5935_cov_26498.83	2347	2333	True	Замена в best_to_ref на хит без вставки	проверку по длине прошел				

		4523_g1_i4					
2	Caprella_sp	NODE_8049_length _2019_cov_1517.79 4027_g4408_i0	3508	2019	True	Не байкальский вид	Не интересует
3	Echinogammarus _berilloni	_R_NODE_675_len gth_9538_cov_2297. 755945_g503_i0	2389	2377	True	Не байкальский вид	Не интересует
4	Eogammarus_po ssjeticus	_R_NODE_272_len gth_9513_cov_2210. 622192_g140_i0	2338	2288	True	Не байкальский вид	Не интересует
5	Eulimnogammaru s_testaceus	NODE_3500_length _3924_cov_14024.0 27097_g747_i10	2380	2371	True	топ 20	проверку по длине прошел
6	Eulimnogammaru s_ussolzewii	NODE_1759_length _4552_cov_29029.2 99134_g1279_i0	5365	4552	True	топ20 - не помогло	trinity
7	Eulimnogammaru s_viridulus	_R_NODE_1211_len gth_5584_cov_3421 7.632159_g42_i9	2277	2214	True	топ20	проверку по длине прошел
8	Gammarus_chev reuxi	NODE_479_length_ 9075_cov_495.1039 22_g118_i0	2291	2275	True	Не байкальский вид	Не интересует
9	Gammarus_lacus tris	_R_NODE_16_lengt h_8577_cov_613.01 7237_g9_i0	2306	2287	True	топ20 - не помогло, мало контигов, низкие покрытия	trinity

10	Gammarus_pisin nus	_R_NODE_522703_ length_4619_cov_26 .735526	4692	4619	True	Не байкальский вид	Не интересует
11	Hirondellea_giga s	_R_NODE_811_leng th_5757_cov_5491.4 91197_g338_i1	2556	2534	True	Не байкальский вид	Не интересует
12	Hyalella_azteca	NODE_26_length_1 0142_cov_641.9593 27_g11_i1	2441	2370	True	Не байкальский вид	Не интересует
13	Hyalellopsis_seto sa	_R_NODE_3972_le ngth_2187_cov_318 8.257250_g547_i3	2267	2187	True	топ20 - не помогло	trinity
14	Linevichella_vort ex	_R_NODE_14_lengt h_11798_cov_4941. 989957_g9_i0	2270	2249	True	топ20 - не помогло	trinity
15	Macropereiopus_ parvus	_R_NODE_9621_le ngth_2238_cov_942 0.869804_g15_i26	2268	2238	True	топ20 - не помогло	trinity
16	Marinogammarus _marinus	_R_NODE_429_len gth_10268_cov_258 6.597979_g246_i1	2379	2361	True	Не байкальский вид	Не интересует
17	Ommatogammar us_albinus	NODE_8224_length _3017_cov_15755.7 05526_g5424_i0	2364	2292	True	топ20	проверку по длине прошел

18	Pachyschesis_br anchialis_2	_R_NODE_23_lengt h_6446_cov_20621. 238706_g3_i3	2294	2292	True	гетаfft без лучшего контига (немного отличается от остальных последовательностей) - много гэпов, топ 20 - не помогло	trinity
19	Palicarinus_puzyl lii	NODE_2889_length _4280_cov_11925.1 44174_g830_i5	2277	2215	True	топ20	проверку по длине прошел
20	Pallasea_cancell oides	_R_NODE_1545_le ngth_2819_cov_688 3.720217_g1047_i0	2267	2211	True	топ 20 - не помогло	trinity
21	Pallasea_grubei	NODE_12_length_1 5903_cov_8094.016 021_g7_i1	2319	2257	True	топ20	проверку по длине прошел
22	Pandorites_podo ceroides	NODE_4_length_98 29_cov_950.867280 _g2_i0	2273	2224	True	Не байкальский вид	Не интересует
23	Parhyale_hawaie nsis	NODE_54_length_1 0241_cov_1174.547 913_g31_i0	2533	2490	True	Не байкальский вид	Не интересует
24	Sluginella_kietlin skii	NODE_309_length_ 3524_cov_3241.044 291_g220_i0	2268	2242	True	топ 20 - не помогло	trinity
25	Talitrus_saltator	NODE_36_length_9 591_cov_379.38189	2368	2290	True	Не байкальский вид	Не интересует

		1_g28_i0					
				trinity			
1	Asprogammarus_ rhodophthalmus	_R_TRINITY_DN112 5_c0_g1_i2	2270	2085	True	топ20 - не помогло	rnaspades
2	Dorogostaiskia_p arasitica	_R_TRINITY_DN14 30_c0_g2_i6	2267	2245	True	только 2 последовательности длины > 2000	rnaspades
3	Eulimnogammaru s_cruentus_2	TRINITY_DN1113_c 0_g1_i6	3536	3533	True	в best_to_ref перенос последнего нуклеотида вручную	проверку по длине прошел
4	Eulimnogammaru s_testaceus	_R_TRINITY_DN13 8_c0_g1_i15	2321	2318	True	топ20 - не помогло	rnaspades
5	Eulimnogammaru s_vittatus	TRINITY_DN10693_ c0_g2_i3	2304	2299	True	только 1 контиг длинный	rnaspades
6	Hyalella_azteca	_R_TRINITY_DN55 96_c0_g1_i1	3449	3370	True	Не байкальский, не нужен	
7	Hyalellopsis_cost ata	_R_TRINITY_DN11_ c0_g1_i11	2267	1686	True	топ20 - не помогло	rnaspades
8	Hyalellopsis_gris ea	_R_TRINITY_DN11_ c0_g1_i6	2267	1644	True	топ20 - не помогло	rnaspades
9	Hyalellopsis_steb bingi	_R_TRINITY_DN70 _c0_g1_i24	2269	1636	True	топ20 - не помогло	rnaspades
10	Micruropus_parv	_R_TRINITY_DN14	2270	1980	True	топ20 - не помогло	rnaspades

		ulus	_c0_g2_i3					
1	1	Pachyschesis_br anchialis_2	_R_TRINITY_DN12 _c0_g1_i5	2294	2292	True	топ20 - не помогло	rnaspades
1	2	Pandorites_podo ceroides	_R_TRINITY_DN18 59_c0_g1_i11	2273	2224	True	Не байкальский, не нужен	

Шаг 3. Проверка последовательностей в blast (rnaspades/trinity)

python main pipeline check2.py

Большинство последовательностей выровнялись с максимальной идентичностью/e-value на референсную последовательность - проверка малоинформативна.

Шаг 4. Сравнение последовательностей из разных сборок

python main_pipeline_check3.py

Итого 65 байкальских видов имеют обе сборки, из них:

- 14 видов имеют на 100.000% одинаковые последовательности в разных сборках
- 37 видов имеют идентичность > 99%, < 100% между сборками
- 14 видов имеют низкую идентичность между сборками

Из 51 вида с идентичностью > 99% только 36 имеют одинаковую длину последовательностей и выравнивания (+ не имеют гэпов). Для 15 остальных выберем финальную сборку:

		Len_Seq				Len_Seq_wo_				Final
Nº		_rnaspa	Len_Seq		Alignme	gaps_rnaspad	Len_Seq_wo	Identity_wo	Justification	_
	Sequence_ID	des	_trinity	Identity	nt_Len	es	_gaps_trinity	_gaps		seq

									1	
1	Baikalogammarus_p ullus	2272	2270.0	99.428	2274.0	2272	2270.0	n/a	выше идентичность в бласте	trinity
2	Boeckaxelia_carpen terii	2270	2271.0	99.119	2271.0	2259	2271.0	99.65	нет гэпов в начале	trinity
3	Brandtia_latissima	2268	2268.0	99.471	2268.0	2257	2268.0	99.96	нет гэпов в начале	trinity
4	Cornugammarus_m aximus	2268	2268.0	99.515	2268.0	2257	2268.0	100.0	нет гэпов в начале	trinity
5	Echiuropus_macron ychus	2269	2268.0	99.956	2269.0	2269	2268.0	n/a	выше идентичность в бласте	trinity
6	Eucarinogammarus_ wagii	2268	2272.0	99.604	2272.0	2268	2272.0	n/a	выше идентичность с референсом	rnaspa des
7	Eulimnogammarus_ czerskii	2267	2268.0	99.162	2268.0	2249	2268.0	100.0	нет гэпов в конце	trinity
8	Eulimnogammarus_ spgam16.4	2268	2268.0	99.868	2270.0	2268	2268.0	n/a	выше идентичность с референсом	rnaspa des
9	Hyalellopsis_carinat a	2268	2268.0	99.735	2270.0	2268	2268.0	n/a	выше идентичность с референсом	rnaspa des
10	Linevichella_vortex	2270	2271.0	99.648	2271.0	2270	2271.0	n/a	выше идентичность в бласте	rnaspa des
11	Macrohectopus_bra	2269	2270.0	99.031	2278.0	2269	2270.0	n/a	выше длина выравнивания на реф	rnaspa des
12	Odontogammarus_c alcaratus	2268	2268.0	99.868	2270.0	2268	2268.0	n/a	выше идентичность с референсом	trinity
13	Ommatogammarus_ albinus	2268	2268.0	99.515	2268.0	2257	2268.0	100.0	нет гэпов в начале	trinity

14	Pallasea_spgam7.	2268	2268.0	99.427	2268.0	2268	2257.0	99.91	нет гэпов в начале	rnaspa des
15									cleaned	rnaspa
	Pentagonurus_dawy								одинаковые	des/trin
	dowi	2268	2268.0	99.912	2269.0	2268	2268.0	n/a		ity

Выбираем, какую сборку будем брать для случаев выравнивания с низкой идентичностью:

Nº	Sequence_ID	Len_Se q_rnas pades	Len_S eq_trin ity	Identit y	Alignm ent_Le n	Len_Seq_wo _gaps_rnasp ades	Len_Seq_ wo_gaps_t rinity	Identity_ wo_gaps	Justification	Final_s eq
1	Asprogammarus_rh odophthalmus	2270	2270.0	87.445	2387.0	2270	2210.0	89.82	нет гэпов в начале	rnaspad es
2	Dorogostaiskia_par asitica	2268	2267.0	98.589	2281.0	2257	2267.0	99.07	чуть длиннее, но вместе - целый ген	rnaspad es
3	Eulimnogammarus_ testaceus	2285	2321.0	94.313	2355.0	2285	2321.0	n/a	по длине	rnaspad es
4	Eulimnogammarus_ ussolzewii	5365	2268.0	33.439	5414.0	4579	2268.0	79.1	по длине	trinity
5	Eulimnogammarus_ vittatus	2268	2304.0	98.264	2304.0	2268	2304.0	n/a	по длине	rnaspad es
6	Gammarus_lacustri s	2306	2269.0	98.395	2306.0	2306	2269.0	n/a	по длине	trinity
7	Hyalellopsis_costata	2268	2267.0	73.545	2695.0	2268	1691.0	98.64	нет гэпов	rnaspad es

8	Hyalellopsis_grisea	2268	2267.0	71.825	2336.0	2268	1648.0	99.03	нет гэпов	rnaspad es
9	Hyalellopsis_setosa	2267	2268.0	96.649	2268.0	2192	2268.0	100.0	нет гэпов	trinity
10	Hyalellopsis_stebbin gi	2268	2269.0	71.177	2309.0	2268	1638.0	98.29	нет гэпов	rnaspad es
11	Macropereiopus_pa rvus	2268	2268.0	98.589	2268.0	2241	2268.0	99.78	нет гэпов	trinity
12	Micruropus_parvulu s	2271	2338.0	73.524	2490.0	2271	2338.0	n/a	по длине	rnaspad es
13	Pallasea_cancelloid es	2267	2268.0	97.531	2268.0	2214	2268.0	99.91	нет гэпов	trinity
14	Sluginella_kietlinskii	2268	2268.0	98.765	2277.0	2255	2268.0	99.33	нет гэпов	trinity

Добавление последовательностей COI и 18S в базу данных

Из всех последовательностей 18S были исключены "-".

В файле seqs_to_database.csv сведена информация по добавленным из транскриптомных сборок последовательностям. Также для COI отмечены последовательности, которые не прошли проверку в NCBI, они собраны в отдельном файле final_seqs/COI_no_pass_NCBI_check.fasta.

Создание бд для приложения:

makeblastdb -in database_specoident999.fa -parse_seqids -blastdb_version 5 -taxid_map table_lang_and_latit.csv
-title "bestdb" -dbtype nucl -out specoident99.blastdb