International University School of Electrical Engineering

Introduction to Computers for Engineers

Dr. Hien Ta

Lecturely Topics

```
Lecture 1 - Basics – variables, arrays, matrices
Lecture 2 - Basics – matrices, operators, strings, cells
Lecture 3 - Functions & Plotting
Lecture 4 - User-defined Functions
```

Lecture 5 - Relational & logical operators, if, switch statements

Lecture 6 - For-loops, while-loops

Lecture 7 - Review on Midterm Exam

Lecture 8 - Solving Equations & Equation System (Matrix algebra)

Lecture 9 - Data Fitting & Integral Computation

Lecture 10 - Representing Signal and System

Lecture 11 - Random variables & Wireless System

Lecture 12 - Review on Final Exam

References: H. Moore, *MATLAB for Engineers*, 4/e, Prentice Hall, 2014 G. Recktenwald, *Numerical Methods with MATLAB*, Prentice Hall, 2000 A. Gilat, *MATLAB*, *An Introduction with Applications*, 4/e, Wiley, 2011

Data Fitting

- data fitting with polynomials polyfit, polyval
- examples: Moore's law,
- Hank Aaaron,
- US census data
- nonlinear fits nlinfit, lsqcurvefit, fminsearch
- least-squares polynomial regression
- least-squares with other basis functions
- examples: exponential models
- trigonometric basis functions
- trigonometric with polynomial trends (CO2 data)

key methods & concepts

For Exam-3, you will need to be able to apply the following:

- 1. least-squares fits with polyfit, polyval
- 2. least-squares fits with basis functions method
- 3. transform data before applying polyfit or basis functions
- 4. least-squares fits with nlinfit
- 5. do-it-yourself L1 and L2 criteria with fminsearch
- 6. interpolation functions, interp1, interp2

These are covered in week-11 and week-12 lecture notes.

$$P(x) = p_1 x^M + p_2 x^{M-1} + \cdots + p_M x + p_{M+1}$$

$$\mathbf{p} = [p_1, p_2, ..., p_M, p_{M+1}]$$

$$P(x) = 5x^4 - 2x^3 + x^2 + 4x + 3$$

$$\mathbf{p} = [5, -2, 1, 4, 3]$$

polynomial P(x) is represented by its coefficients **p**

Given N data points $\{x_i, y_i\}$, i=1,2,...,N, find an M-th degree polynomial that best fits the data – (polyfit)

```
% design procedure:
xi = [x1,x2,...,xN];
yi = [y1,y2,...,yN];

p = polyfit(xi,yi,M);

y = polyval(p,x);
```

evaluate P(x) at a given vector x

M =polynomial order

if N = M+1, the polynomial interpolates the data

if N > M+1, the polynomial provides the best fit in a least-squares sense

$$J = \sum_{i=1}^N ig(P(x_i) - y_iig)^2 = \min$$

```
xi = [1, 3, 4, 6, 9];
yi = [4, 4, 7, 11, 19];
x = linspace(0,10,101);
for M = [1,2,3,4]
  p = polyfit(xi,yi,M);
  y = polyval(p,x);
  figure;
  plot(x,y,'r-', xi,yi,'b.', 'markersize',25);
  yaxis(-2,22,0:5:20); xaxis(0,10,0:2:10);
  xlabel('x'); title('polynomial fit');
  legend([' fit, {\itM} = ',num2str(M)],...
         ' data', 'location','se');
end
```


િલ	year	ti	Н
용			
	1954	1	13
	1955	2	27
	1956	3	26
	1957	4	44
	1958	5	30
	1959	6	39
	1960	7	40
	1961	8	34
	1962	9	45
	1963	10	44
	1964	11	24
	1965	12	32
	1966	13	44
	1967	14	39
	1968	15	29
	1969	16	44
	1970	17	38
	1971	18	47
	1972	19	34
	1973	20	40


```
A = load('aaron.dat');
ti = A(:,2); H = A(:,3);
yi = cumsum(H);
p = polyfit(ti,yi,1)
응
 p
     37.2617 -39.8474
t = linspace(1, 20, 101);
y = polyval(p,t);
plot(t,y,'r-', ...
     ti, yi, 'b.', ...
     'markersize', 18);
```


Given N data points $\{x_i, y_i\}$, i=1,2,...,N, the following data models can be reduced to linear fits using an appropriate transformation of the data:

```
linear: y = ax + b

exponential: y = b e^{ax} \Rightarrow \log(y) = ax + \log(b)

exponential: y = b 2^{ax} \Rightarrow \log_2(y) = ax + \log_2(b)

exponential: y = b x e^{ax} \Rightarrow \log(y/x) = ax + \log(b)

power: y = b x^a \Rightarrow \log(y) = a \log(x) + \log(b)
```

уi	ti
2.300e+003	1971
2.500e+003	1972
4.500e+003	1974
2.900e+004	1979
1.340e+005	1982
2.750e+005	1985
1.200e+006	1989
3.100e+006	1993
4.300e+006	1996
7.500e+006	1997
8.800e+006	1997
9.500e+006	1999
2.130e+007	1999
2.200e+007	1999
4.200e+007	2000
5.430e+007	2003
1.059e+008	2003
2.200e+008	2003
5.920e+008	2004
2.410e+008	2006
2.910e+008	2006
5.820e+008	2006
6.810e+008	2006
7.890e+008	2007
1.700e+009	2006
2.000e+009	2008

Moore's law

fitted model
$$f(t) = b 2^{a(t-t_1)}$$

$$\log_2 f(t) = \log_2 b + a(t - t_1)$$


```
Y = load('transistor count.dat'); % from textbook
y = Y(:,1); t = Y(:,2);
t1 = t(1);
p = polyfit(t-t1, log2(y), 1);
% p =
% 0.5138 \quad 10.5889 \quad % b = 2^p(2) = 1.5402e+003
f = 2.^(polyval(p,t-t1));
semilogy(t,f,'r-', t,y,'b.', 'markersize',18)
```

```
fitted model:

f(t) = b * 2.^{(a*(t-t1))} = 2.^{(a*(t-t1)+log2(b))};

% a = p(1), log2(b) = p(2) --> b = 2^{(p(2))}
```

The April 2015 issue of the <u>IEEE Spectrum</u> marks the 50th anniversary of Moore's law.

Please see the articles below (accessible from within Rutgers), including an interview with Moore, as well as a link to his original 1965 article.

Moore's 1965 article

Moore's 1975 revision

Moore's 1995 retrospect

<u>The Law That's Not A Law – Moore Interview</u>

The Multiple Lives of Moore's Law (including some incredible facts about transistors)


```
A = load('uspop.dat');
ti = A(:,1); yi = A(:,2);
p = polyfit(ti,log(yi),2) % quadratic fit
% p =
% -0.0001 0.2653 -266.4672
t = linspace(1790, 2010, 201);
y = \exp(polyval(p,t));
figure; plot(t, log(y), 'r-', ...
             ti,log(yi),'b.','markersize',18);
figure; plot(t, y,'r-', ...
             ti,yi,'b.','markersize',18);
```

see problem set-11 for fitting populations with logistic curves

```
A = load('uspop.dat');
ti = A(:,1); yi = A(:,2); t1 = ti(1);
                                 % quadratic fit
p = polyfit(ti,yi,2)
                                 % t1 = 1790
p1 = polyfit(ti-t1,yi,2)
t = linspace(1790, 2010, 201);
y = polyval(p,t);
y1 = polyval(p1, t-t1);
                               % shifted origin
norm (y-y1)
                                % = 7.7100e-011
plot(t, y, 'r-', ti, yi, 'b.', 'markersize', 18);
>> num2str([p',p1'],'%12.2e')
ans =
 6.78e-003 6.78e-003
                            it is always beneficial to
-2.44e+001 -1.32e-001
                            shift origin to t = 0
 2.20e+004 6.51e+000
```


Integral Computing? Following the lecture from Instructor