

INTRODUCTION TO DATA ANALYSIS

PARAMETER ESTIMATION

LEARNING GOALS

- understand Bayes rule for parameter estimation
 - (conjugate) priors, likelihood
- point-valued & interval-based estimators
 - frequentist: MLE, confidence intervals
 - Bayes: mean of posterior, credible intervals
- implement probabilistic models in greta
- compute with posterior samples

ESTIMATES

- point-valued: single "best" values
- interval-range: "good" values (around "best" value)

estimate	Bayesian	frequentist
best value	mean of posterior posterior	maximum likelihood estimate
interval range	credible interval (HDI)	confidence interval

model-based hypothesis testing

MENTAL CHRONOMETRY

- ► N=50 participants recruited via Prolific
- three blocks / conditions
 - reaction press button when a shape appears
 - go/no-go press button for shape 1; don't press for shape 2
 - discrimination press one button for shape 1, another for shape 2

MENTAL CHRONOMETRY

T-TEST MODEL [TWO UNCOUPLED MEANS]

T-TEST MODEL [WITH DIFFERENCE BETWEEN MEANS]

HYPOTHESES & PARAMETER VALUES

- point-valued null hypothesis: $\delta = 0$
- lack observe data D
- three ways of testing [recall three pillars of DA]:
 - \blacktriangleright estimation: is 0 among the parameters estimated from D?
 - prediction: is D among the data predicted by a model with $\delta=0$?
 - comparison: take two models: one with $\delta=0$, one where δ takes on different values, too; which one explains D better?

Bayes rule for parameter estimation

BAYES RULE FOR PARAMETER ESTIMATION

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)}$$

marginal likelihood

$$P(D) = \int_{\text{marginal likelihood}} P(D \mid \theta) P(\theta) d\theta$$

REMARKS ON NOTATION

- if there is only one model M, we leave out the model index, writing $P(\theta)$ instead of $P_M(\theta)$
- we write $P(\theta \mid D)$ instead of $P(\Theta = \theta \mid \mathcal{D} = D)$
- short-hand with non-normalized probabilities (implicit normalizing constant):

$$P(\theta \mid D) \propto P(\theta) \quad P(D \mid \theta)$$

posterior prior likelihood

EXAMPLE

model:

$$k \sim \text{Binomial}(N, \theta)$$

 $\theta \sim \text{Beta}(\alpha, \beta)$

data:

$$k = 7$$
 $N = 24$

• "KoF"
$$k = 109$$
 $N = 311$

[number of "true" responses to all sentences with a false presupposition]

PRIOR

LIKELIHOOD

POSTERIOR

Bayesian point- & interval-estimates

EXAMPLE

- ▶ model: $k \sim \text{Binomial}(N, \theta), \theta \sim \text{Beta}(1, 1)$
- data: k = 7, N = 24

POSTERIOR MEAN & MAP

posterior mean:

$$\mathbb{E}_{P(\theta|D)} = \int \theta \ P(\theta \mid D) \ d\theta$$

maximum a posteriori:

$$\mathsf{MAP}(P(\theta \mid D)) = \arg\max_{\theta} P(\theta \mid D)$$

- posterior mean is proper Bayesian measure, because it is holistic = influenced by whole distribution
- •MAP is local, not influenced by whole distribution
- estimation of posterior mean is (usually) less error-prone than estimation of MAP

CREDIBLE INTERVAL

• interval [l; u] is a $\gamma\%$ credible interval for a random variable X if

(I)
$$P(l \le X \le u) = \frac{\gamma}{100}$$
, and

- (II) for every $x \in [l; u]$ and $x' \notin [l; u]$ we have P(X = x) > P(X = x')
- "range of values too probable to properly ignore"

[see David Lewis on "Elusive Knowledge"]

posteriors from conjugacy

BAYES RULE FOR PARAMETER ESTIMATION

$$P(\theta \mid D) = \frac{P(\sqrt{\text{fast & easy}}) \sqrt{\text{fast & easy}}}{P(\sqrt{\text{possibly intractable }})} d\theta$$

CONJUGACY

- prior $P(\theta)$ is a conjugate prior for likelihood $P(D \mid \theta)$ iff prior $P(\theta)$ and posterior $P(\theta \mid D)$ are of the same kind of probability distribution (possibly with different parameter values)
- e.g., prior and posterior are both normal distributions, but have different means and standard deviations

CONJUGACY OF BETA & BINOMIAL

- claim: beta & binomial are conjugate
- proof:

$$P(\theta \mid k, N) \propto \text{Binomial}(k; N, \theta) \text{ Beta}(\theta \mid a, b)$$

$$P(\theta \mid k, N) \propto \theta^{k} (1 - \theta)^{N-k} \theta^{a-1} (1 - \theta)^{b-1}$$

$$P(\theta \mid k, N) \propto \theta^{k+a-1} (1 - \theta)^{N-k+b-1}$$

$$P(\theta \mid k, N) = \text{Beta}(\theta \mid k + a, N - k + b)$$

sequential updating

SEQUENTIAL UPDATING IN THE BETA-BINOMIAL MODEL

SEQUENTIAL UPDATING IN GENERAL

• claim: if D_1 and D_2 are disjoint and $D_1 \cup D_2 = D$, $P(\theta \mid D) \propto P(\theta \mid D_1) \ P(D_2 \mid \theta)$

[from multiplicativity of likelihood]

[for random positive k]

[rules of integration; basic calculus]

[Bayes rule with
$$k = \int P(\theta)P(D_1 \mid \theta)d\theta$$
]

frequentist estimation

MAXIMUM LIKELIHOOD ESTIMATE

maximum likelihood estimate:

$$\hat{\theta} = \arg\max_{\theta} P(d \mid \theta)$$

CONFIDENCE INTERVAL [MATHEMATICALLY]

- lacktriangle let ${\mathcal D}$ be the random variable describing the probability of data
- X_l and X_u are random variables derived from $\mathcal D$ via functions g_l and g_u so that $g_{l,u}\colon D\mapsto \mathbb R$
- \blacktriangleright a $\gamma\,\%$ confidence interval for observed data $D_{\rm obs}$ is the interval:

$$[g_l(D_{\text{obs}}), g_u(D_{\text{obs}})]$$

• where functions $g_{l,u}$ are constructed so that:

$$P(X_l \le \theta_{\text{true}} \le X_u) = \frac{\gamma}{100}$$

• and where $\theta_{\rm true}$ is the true value

CONFIDENCE INTERVAL [ALGORITHMICALLY]

CONFIDENCE INTERVAL [ALGORITHMICALLY]

- \blacktriangleright fix number of coin flips N (not really necessary, but easier)
- > suppose the true coin bias is $\theta_{\rm true}$ (but we don't know it)
- we have a magic function $MF: k \mapsto [u_k; l_k]$
- we now sample repeatedly $k \sim \text{Binomial}(N, \theta_{\text{true}})$
- for each sample k, compute $MF(k) = [u_k; l_k]$
- MF gives us a γ % confidence interval if $\theta_{\rm true}$ is inside of $MF(k) = [u_k; l_k]$ in γ % of the sampled ks

addressing point-valued hypotheses with estimation

ADDRESSING POINT-VALUED HYPOTHESES [FREQUENTIST]

- $\Theta_i = \theta_i^*$ is out point-valued hypothesis
- we do not consider a ROPE
- for a frequentist credible interval [l; u] for Θ_i , we:
 - reject the point-valued hypothesis iff $\theta_i^* \notin [l; u]$; and
 - withhold judgement otherwise.

ADDRESSING POINT-VALUED HYPOTHESES [BAYES]

- $\Theta_i = \theta_i^*$ is out point-valued hypothesis
- a region of practical equivalence [ROPE] is an ϵ -region around θ_i^* : $ROPE(\theta_i^*) = [\theta_i^* - \epsilon, \theta_i^* + \epsilon]$
- for a Bayesian credible interval [l; u] for Θ_i , we:
 - accept the point-valued hypothesis iff $ROPE(\theta_i^*)$ is contained entirely in [l; u];
 - reject the point-valued hypothesis iff $ROPE(\theta_i^*)$ and [l;u] have no overlap; and
 - withhold judgement otherwise.

EXAMPLE

- 24/7 example, uninformative priors for Bayesian model
- point- and interval estimates:

comparison

BAYESIAN VS FREQUENTIST ESTIMATES

- for Bayesianism the full posterior is the primary object of concern; point- and interval-estimates are essentially just summary statistics for the full posterior
- for frequentists the point- and interval-estimates are the primary object of concern
- MLEs are much easier to compute but might not exist
- posteriors can be very hard to compute (long run time)

A PUZZLE ABOUT POINT-ESTIMATES

- If the flip a coin of unknown bias once
- suppose you see heads
- what's your best estimate of the bias?

SIMULATION-BASED COMPARISON OF INTERVAL-ESTIMATES

- fix $N \in \{10,25,100,1000\}$
- repeatedly do:
 - ▶ sample $\theta_{\text{true}} \sim \text{Beta}(1,1)$
 - ▶ sample $k \sim \text{Binomial}(\theta_{\text{true}}, N)$
 - lack compute intervals for k and N
 - HDI, exact CI, approximate CI
- look at percentage that $\theta_{\rm true}$ is included in each interval construction

RESULTS

computing estimates

OPTIMIZING FUNCTIONS

```
# function for the negative log-likelihood of the given
# data and fixed parameter values
nll = function(y, x, beta_0, beta_1, sd) {
    # negative sigma is logically impossible
    if (sd <= 0) {return( Inf )}
    # predicted values
    yPred = beta_0 + x * beta_1
    # negative log-likelihood of each data point
    nll = -dnorm(y, mean=yPred, sd=sd, log = T)
    # sum over all observations
    sum(nll)
}</pre>
```

```
## [1] 1.425080e+00 -2.247373e-08 3.950978e-01
```

```
lm(average_price ~ total_volume_sold, avocado_data)$coef

## (Intercept) total_volume_sold
## 1.425096e+00 -2.247455e-08
```

MARKOV CHAIN MONTE CARLO

probabilistic models with greta

 $\theta \sim \text{Beta}(1,1)$ $k \sim \text{Binomial}(\theta, N)$

```
# greta data
k <- as_data(109)
N <- as_data(311)
# coin bias & prior (here: uninformative)
theta <- beta(1,1)
# likelihood of data given theta
distribution(k) <- binomial(N, theta)</pre>
# declare the greta model
m <- model(theta)</pre>
# take 4 chains of 1000 samples
draws <- greta::mcmc(</pre>
  model = m,
  n_samples = 1000,
  warmup = 1000,
  chains = 4
```


 $\theta \sim \text{Beta}(1,1)$ $k \sim \text{Binomial}(\theta, N)$

```
# cast results (type 'mcmc.list') into tidy tibble
tidy_draws = ggmcmc::ggs(draws)
tidy_draws
```

```
## # A tibble: 4,000 \times 4
      Iteration Chain Parameter value
          <int> <int> <fct>
##
                                <dbl>
                                0.343
                    1 theta
                    1 theta
                                0.323
                                0.352
                    1 theta
## 4
                    1 theta
                                0.356
                                0.356
##
                    1 theta
                    1 theta
                                0.398
##
                    1 theta
                                0.398
                    1 theta
                                0.346
##
                    1 theta
                                0.405
## 9
             10
                                0.308
## 10
                    1 theta
## # ... with 3,990 more rows
```


 $\theta \sim \text{Beta}(1,1)$ $k \sim \text{Binomial}(\theta, N)$

```
# obtain Bayesian point and interval estimates
Bayes_estimates <- tidy_draws %>%
    group_by(Parameter) %>%
    summarise(
        '|95%' = HDInterval::hdi(value)[1],
        mean = mean(value),
        '95|%' = HDInterval::hdi(value)[2]
    )
Bayes_estimates
```


 $\theta \sim \text{Beta}(1,1)$

 $k \sim \text{Binomial}(\theta, N)$

T-TEST MODEL [WITH DELTA]


```
# isolate data vectors
RT_goNoGo <- mc_data_cleaned %>% filter(block == "goNoGo") %>% pull(RT)
RT_discrm <- mc_data_cleaned %>% filter(block == "discrimination") %>% pull(RT)
# declare as greta data arrays
y0 <- as_data(RT_goNoGo)
y1 <- as_data(RT_discrm)</pre>
```

```
# priors
mean_0 <- normal(430, 50)
delta <- normal(0, 100)
sigma <- normal(100, 10, truncation = c(0, Inf))
# derived prameters
mean_1 <- mean_0 + delta
# likelihood
distribution(y0) <- normal(mean_0, sigma)
distribution(y1) <- normal(mean_1, sigma)
# model
m <- model(mean_0, mean_1, delta, sigma)## --- sampling ---
draws <- greta::mcmc(m, warmup = 4000, n_samples = 6000, thin = 2)</pre>
```

T-TEST MODEL [WITH DELTA]

A tibble: 4 x 4 Parameter `|95%` mean `95|%` <fct> <dbl> <dbl> <dbl> ## 1 delta 49.6 60.1 71.2 ## 2 mean_0 419. 427. 436. ## 3 mean_1 481. 488. 494. ## 4 sigma 101. 105. 109.

