DUKELEC

CD485B1 數據手冊

Duke Fong

August 6, 2017

Contents

1	功能描述	3
	1.1 概述	3
	1.2 特性	3
2	CD-BUS 協議	3
3	硬件	4
	3.1 電路參考	4
	3.2 內部結構	5
	3.3 引腳定義	5
	3.4 尺寸規格	6
	3.5 極限參數	6
	3.6 建議工作參數	6
	3.7 直流参数	6
4	寄存器列表	7
5	流程圖	10
	5.1 RX	11
	5.2 TX	12

DUKELEC

	設備接口	12
	6.1 SPI	
	6.2 I2C	13
	操作示例	13
	7.1 初始化	13
	7.1.1 兼容模式和傳統模式	
	7.2 TX	
	7.3 RX	14
8	版權說明	15

DUKELEC 2 CD-BUS 協議

1 功能描述

1.1 概述

CD-BUS 是一款基於 RS485 的通訊協議,它只定義了 ISO/OSI 模型的數據鏈路層。 CD-BUS 協議由 DUKELEC 公司於 2009 年設計,以便捷、多主對等、高速通訊爲目標。

1.2 特性

CD485B1 型號模組支持:

- 支持 CD-BUS 多主對等通訊協議,使用發送方地址按位仲裁
- 每個數據幀可裝載 253 字節數據
- 8 個接收緩衝頁, 2 個發送緩衝頁, 每個頁 256 字節
- 16 位硬件 CRC 校驗
- 波特率範圍 412 bps 至 9 Mbps (如果需要可以支持更高)
- 仲裁字段和後續數據可設定不同波特率
- 可兼容傳統 RS485 總線設備
- 支持 SPI 和 I2C 接口
- 配置和使用簡單

2 CD-BUS協議

CD-BUS 示例時序:

 SILENCE
 0~25.5
 分隔數據幀

 默認:
 總線在數據幀結束後繼續保持 SILENCE 位長的時間爲 1, 總線便進入

 2 (20 bits)
 空間模式。

 當總線爲空間模式才允許接收。
 當總線持續空間一段時間(默認 10 bit)後才開始發送。

DUKELEC 3 硬件

-		-
FROM_ID	1	發送方 ID 在發送此字段時,所有的 1 不使能 TX_EN 腳,從而回讀總線狀態以 判斷是否有更高優先級節點同時在發送。若有,該節點立即停止並推 後發送;若無,在最後一次回讀後使能 TX_EN 並保持到數據幀結束。 此字段會在所有數據 1 的中間位置進行回讀,因爲發送與接收存在延 時,所以通常設置低於 1 Mbps.
TO_ID	1	接收方 ID, 255 爲廣播幀。
DATA_LEN	1	裝載的數據長度,範圍: 0~253 字節,每個緩存頁是 256 字節,最前 3字節被 FROM_ID、TO_ID 和 DATA_LEN 使用。
DATA	0~253	裝載的數據
CRC_L	1	CRC 低 8 位,與 Modbus RTU 使用相同的 CRC 標準。
CRC_H	1	CRC 高 8 位

CD-BUS協議只定義數據幀格式,不規定所裝載數據格式;只支持单播和廣播,不支持多播;只提供硬件避讓、避讓後自動重傳,而應答及出錯處理則由上層軟件負責。

3 硬件

3.1 電路參考

CD-BUS

+3V3

4.7K R4

SPI

DUKELEC 3 硬件

3.2 內部結構

3.3 引腳定義

引腳	定義	I/O	上下拉	描述
1	TX_EN	O	下拉 (10 kOhm)	使能腳,連接 RS485 收發器
2	TX	O	-	發送腳,連接 RS485 收發器
3	RX	I	-	接收腳,連接 RS485 收發器
46	I2C_ADDR	I	上拉 (40 kOhm)	設置 I2C 地址
7	RESERVED			留空
8	VCC			電源
9	GND			地
10	RST_N	I	上拉 (10 kOhm)	復位, ≥ 200 ns 低脈衝復位 (可選)
11	SS	I	上拉 (40 kOhm)	SPI片選
12	SCK/SCL	I	-	SPI/I2C 時鐘
13	SDI	I	-	SPI MOSI
14	SDO/SDA	I/IO	-	SPI MOSI / I2C SDA
15	SEL	I	上拉 (40 kOhm)	輸入高選擇 SPI 模式; 低爲 I2C 模式
16	INT_N	О	-	中斷,低有效,開漏輸出

DUKELEC 3 硬件

3.4 尺寸規格

3.5 極限參數

參數	最小	最大
VCC 電壓	-0.5 V	3.60 V
環境溫度	-65 °C	150 ℃
	-65 °C	125 ℃

3.6 建議工作參數

參數	最小	最大
VCC 電壓	3.14 V	3.46 V
節溫	-40 ℃	100 ℃
上電速度	0.6 V/ms	10 V/ms

3.7 直流参数

參數	最小	典型	最大
$ m V_{IL}$	-0.3 V	-	0.8 V
$ m V_{IH}$	2.0 V	-	VCC + 0.2 V
V_{OL}	0.2 V	-	0.4 V
V_{OH}	VCC - 0.4 V	-	VCC - 0.2 V
I_{OL}	-	-	8 mA
I_{OH}	-	-	-8 mA
Input 或 I/O 漏電流	-	-	+/-10 uA

DUKELEC 4 寄存器列表

I/O 寄生電容 (25℃, 1.0 MHz)	-	6 pF	-
器件功耗	-	-	15 mW
V _{PORUP} (上電復位電壓閾值)	0.7 V	-	1.6 V
V _{PORDN}	-	-	1.6 V

4 寄存器列表

地址	名稱	R/W	說明	
0x00	VERSION	R	硬件版本,	當前爲: 0x01
0x01	SETTING	RW	Bits:	
			bit0	TX_PUSH_PULL 如果關閉,TX 爲開漏輸出,且 TX_EN 懸空不使用。
			bit1	TX_INVERT 如果設置,TX 將會反向輸出。
			bit2	USER_CRC 關閉硬件 CRC 如果關閉:用戶需要自行計算兩字節 CRC 並追寫在數 據之後;在讀完數據之後再多讀兩字節 CRC 數據以便 自行校驗。用戶數據最大長度將會降至 251 字節。
			bit3	NO_DROP 如果設置,當接收出錯置位 RX_ERROR 標誌時會同時保 留出錯的數據幀。 通過 RX_PAGE_FLAG 判斷當前 RX 緩存頁中的數據幀 是否有錯。
			bit[5:4]	TX_EN_ADVANCE(僅 NO_ARBITRATE 置位時有效) TX_EN 提前 TX 使能的位長(額外加上 1 個系統時鐘週期)。
			bit6	NO_ARBITRATE 關閉仲裁功能,輸出時 TX_EN 一直有效。
			默認: x00	10000 (x: 不關心,寫 0)
0x02	SILENCE_LEN	RW		據幀結束後繼續保持 SILENCE 位長的時間爲 1, 總線便進 式, 默認 20 (bits)
0x03	TX_DELAY	RW	可以爲越高	\空閒並保持此段時間,才允許發送,默認 10 (bits) 高優先級節點設置越低的值,但至少要保留 1 bit, 以確保 都有足夠時間檢測到總線 IDLE 狀態。

DUKELEC 4 寄存器列表

0x04	SELF_ID	RW	僅用做接收過濾:(由上至下進行匹配)			
			FROM_ID	TO_ID	SELF_ID	接收或丟棄
			not care	not care	255	接收(嗅探模式)
			= SELF_ID	not care	!= 255	丟棄(避免環路)
			!= SELF_ID	255	not care	接收(廣播)
			!= SELF_ID	!= 255	= TO_ID	接收(點對點)
			not care	!= 255	!= TO_ID	丟棄
			默認: 255			
0x05	PERIOD_LS_L	RW	EN_ADVANC 計算公式 fac	TX_DELA E). $stor = syscale$	AY 和 FROM clock ÷ bone	[_ID 字段設置波特率(也包括 d_rate - 1 设置 233 最接近 115200 bps(默認
0x06	PERIOD_LS_H	RW	PERIOD_LS 声	高8位,共	16 位(默認	召 0)
0x07	PERIOD_HS_L	RW	PERIOD_HS { 爲 TO_ID、D	,		默認 233) CRC_L/H 字段設置波特率。
0x08	PERIOD_HS_H	RW	PERIOD_HS 7	高8位,共	、16 位(默 記	忍 0)

DUKELEC 4 寄存器列表

INT FLAG 中斷標誌: 0x09R BUS IDLE bit0 指示總線是否進入 IDLE 模式。 RX PENDING bit1 指示 RX 緩存是否有頁待讀。 寫 1 到 RX CTRL[CLR RX PENDING] 清除當前頁待讀 標誌。 bit2 RX LOST 當一個幀正確抵達且不被過濾,但卻因爲沒有更多頁用 做下一次接收而被丟棄,此標誌置位。 寫 1 到 RX_CTRL[CLR_RX_LOST] 清此標誌。 RX ERROR bit3 當一個不被過濾的幀停止位錯誤、超時或校驗錯誤,此 標誌置位。 寫1到RX CTRL[CLR RX ERROR] 清此標誌。 TX BUF CLEAN bit4 指示是否所有 TX 緩存頁都未標記爲待發送。 bit5 TX CD 當檢測到有更高優先級節點時推後發送並置此標誌。 寫 1 到 TX CTRL[CLR TX CD] 清此標誌。 此位用作調試使用。 bit6 TX ERROR 檢測到衝突後,當總線再次空閒超過設定時間硬件會自 動重發,但如果連續重發3次都發生衝突,則取消發送, 並置位此標誌。 寫 1 到 TX CTRL[CLR TX ERROR] 清此標誌。 RW 中斷允許 0x0AINT MASK 當 INT FLAG & INT MASK!= 0 時 INT N 輸出低, 否則輸出高阻 (默認 0x00) 0x0BRX R 讀 RX 緩存頁數據,地址自動增加 共有8個RX緩存頁,每一頁256字節。 當硬件端成功接收到不被過濾的幀:如果下一頁未標記爲待讀(可 用作下一次接收),將當前頁標記爲待讀並切換到下一頁;否則丟 棄該幀並置位 RX LOST. RX_PENDING 位指示用戶端當前頁待讀,寫1到CLR_RX_PENDING 清除當前頁的待讀標誌並切換到下一頁。寫1到RSTRX清除所有 頁的待讀標誌,並復位接收邏輯。

DUKELEC 5 流程圖

0x0C	TX	W	寫 TX 緩存頁數據,地址自動增加 共有 2 個 TX 緩存頁,每一頁 256 字節。 當用戶寫完數據,需要等待 TX_BUF_CLEAN 置位,然後才可以通 過 START_TX 置位當前頁的待發送標誌,並自動切換到下一頁(否 則什麼都不會發生)。 當頁的待發送標誌被置上,硬件將會啟動發送,當發送完畢,硬件 端清頁的待發送標誌並切換到下一頁。
0x0D	RX_CTRL	W	RX 控制: bit0 RST_RX_POINTER
0x0E	TX_CTRL	W	TX 控制: bit0 RST_TX_POINTER
0x0F	RX_ADDR	RW	讀寫當前 RX 緩存頁的讀指針
0x10	RX_PAGE_FLAG	R	(僅 NO_DROP 置位時使用) 0 代表當前 RX 緩存頁中的數據幀正確; 非 0 表示數據幀錯誤,其值指示最後接收到的字節地址,包含 CRC 字段。

5 流程圖

DUKELEC 5 流程圖

5.1 RX

如果當前幀接收不夠兩個字節,或者將會被丟棄則不會設置 RX_ERROR 標誌。

DUKELEC 6 設備接口

5.2 TX

6 設備接口

SPI 和 I2C 頻率低於 sysclock÷10.

DUKELEC 7 操作示例

除了 RX 和 TX, 其餘寄存器通常只讀寫 1字節。

```
6.1 SPI
   讀寫:
start (NSS = 0)
Write reg address with bit7: 0: read, 1: write
Read or write arbitrary length of data
stop (NSS = 1)
6.2 I2C
Write address: 0xc0 | (I2C_ADDR << 1)</pre>
Read address: 0xc1 | (I2C_ADDR << 1)</pre>
I2C_ADDR is the value of I2C_ADDR_n pins.
   寫:
start
write the write address
write 1 byte reg address
write arbitrary length of data
stop
   讀:
start
write the write address
write 1 byte reg address
restart (or stop + start)
write the read address
read arbitrary length of data, ACK all bytes except last byte
stop
    操作示例
7
7.1 初始化
// enable OUTPUT
CD485_write(REG_SETTING, TX_PUSH_PULL);
// set SELF_ID
CD485_write(REG_SELF_ID, 0xcd);
```

// set bondrate, PERIOD_XX_H default 0

// clean RX buffer

CD485_write(REG_PERIOD_LS_L, 35); // 750000 bps CD485_write(REG_PERIOD_HS_L, 2); // 9 Mbps

13

DUKELEC 7 操作示例

```
CD485_write(REG_RX_CTRL, RST_RX);
// enable interrupt
// CD485_write(REG_INT_MASK, TX_ERROR | RX_ERROR | RX_LOST | RX_PENDING);
```

7.1.1 兼容模式和傳統模式

PERIOD_LS 和 PERIOD_HS 設置相同爲兼容模式。

進一步置位 NO_ARBITRATE 進入傳統模式:

7.2 TX

```
header_buf[0] = 0xcd; // FROM_ID
header_buf[1] = 0x02; // T0_ID
header_buf[2] = 12; // DATA_LEN

CD485_write_chunk(REG_TX, header_buf, 3); // write HEADER
CD485_write_chunk(REG_TX, data_buf, header_buf[2]); // write DATA

while (CD485_read(REG_INT_FLAG) & TX_BUF_CLEAN == 0); // make sure TX_BUF_CLEAN is set
CD485_write(REG_TX_CTRL, START_TX); // sent frame
```

7.3 RX

```
while (CD485_read(REG_INT_FLAG) & RX_PENDING == 0);

CD485_read_chunk(REG_RX, header_buf, 3);  // read HEADER
CD485_read_chunk(REG_RX, data_buf, header_buf[2]); // read DATA

CD485_write(REG_RX_CTRL, CLR_RX_PENDING);  // release page
```

DUKELEC 8 版權說明

8 版權說明

CD-BUS(又或 CD485)是一個相當開放的協議,硬件實現也相對簡單,除了芯片生產商需要支付少量版權費,其餘任何人都可以免費使用此協議及其變種,只需要在產品說明中保留原始的版權信息。

聯絡: info@dukelec.com