Radomized Algorithms Solution to Hw3.

- 15.- (*) (This was an important problem) The way the algorithm works flips coins $c_n, c_{n-1}, \ldots, c_{s_1}$, recall in the flip of c_i : $\Pr[c_i = H] = 1/i$. After flip $c_{s_1}, \ldots c_{s_3}$ and so on. Every coin will be flipped and s_i will be selected as many times as it flip to H (they have to be consecutive ones). That numbers are the m's in the list item (a).
 - (a) If we pick each s_i using the method of the coins, it is equivalent to flipping each coin c_j for $j=n,n-1,\ldots$ until it lands T, and then go to generate next one. The value $m_j=\#$ times c_j lands H before it lands T. The probability c_j lands exactly m_j times H's before the first T is $(1/j)^{m_j}(1-1/j)$. Notice that j=1 is missed because we always have $m_j=1$, therefore, the probability it generates all sequence $\{s_i\}$ is $\prod_{j=2}^n (\frac{1}{j})^{m_j}(1-\frac{1}{j})$.
 - (b) Write $r \in \{1, ..., n\}$ in factored form as $\prod_p p^{\beta_p} \Rightarrow \mathbf{Pr} [m_p = \beta_p \text{for all primes } p \leq n] = \prod_{n = \infty} (1/p)^{\beta_p} (1 1/p) = \alpha_n/r$, so the algorithm outputs r with prob. $\frac{r}{n} \frac{\alpha_n}{r} = \frac{\alpha_n}{n}$.
 - (c) The probability that the algorithm does not fail is $\sum_{r=1}^{n} \mathbf{Pr}$ [algo. outputs r] $= n\alpha_n/n = \alpha_n$. So the expected number of trials is $\alpha_n^{-1} \sim \ln n$.
 - (d) Let X = number of primality tests performed by one trial of the algorithm. We can write this as $X = \sum_{i=1}^{n} X_i$ where X_i is an indicator rv of the event that j is tested for primality, which happens iff $m_j \geq 1$, so by analysis of part (a) $\Rightarrow \mathbf{E}[X] = \sum_{i=1}^{n} \mathbf{E}[X_i] = H_n$.
 - (e) If we are making T trials, let Z be a rv counting the total number of primality tests performed. Then $\mathbf{E}[Z] = \sum_{j=1}^T \mathbf{E}[Z_j]$, where Z_t denotes the number of tests done at tth trial. Note T is a rv!!!!, so we are summing on a rv. Then $\mathbf{E}[Z_t] = H_n$ (from (d)), moreover from (e) we get that $\mathbf{E}[T] = \alpha_n^{-1}$. Notice, that if we argue that since Z is the sum of T rv each with same expectation $\mathbf{E}[Z_1]$, then $\mathbf{E}[Z] = \mathbf{E}[T] \mathbf{E}[Z_1] = H_n/\alpha_n$, which turns to be the correct answer but the wrong argument, as the Z_t are NOT independent of T. Write $Z = \sum_{t=1}^{\infty} \sum_{j=1}^{n} Y_{t,j}$, where $Y_{t,j}$ is an ind. rv taking value 1 iff j is tested for primality on the tth trial (0 otherwise). Let A_t the event we do t or more trials, then $\mathbf{E}[Y_{t,j}] = \mathbf{Pr}[j$ is tested in trial t = $\mathbf{Pr}[j$ is tested in trial t = $(1 \alpha_n)^{t-1} 1/j$ $\mathbf{E}[Z] = \sum_{t=1}^{\infty} \sum_{j=1}^{n} \mathbf{E}[Y_{t,j}] = \sum_{t=1}^{\infty} \sum_{j=1}^{n} (1 \alpha_n)^{t-1} 1/j = \sum_{t=1}^{\infty} (1 \alpha_n)^{t$
- 19.- (a) All possible *i*th pairs of bits (b_{i_1}, b_{i_2}) are (0, 0), (0, 1), (1, 0), (1, 1). Recall $b_{i_1} \oplus b_{i_2} = 1$ iff $b_{i_1} \neq b_{i_2}$, thus $\mathbf{Pr}[Y_i = 0] = \mathbf{Pr}[y_2 = 1] = 1/2$

- (b) Let $b_1, ..., b_n$ be n random bits. Let $Y_1 = b_1 \oplus b_2, Y_2 = b_2 \oplus b_3, Y_3 = b_1 \oplus b_1$. From (a) we get $\mathbf{Pr}[Y_1 = 1] = \mathbf{Pr}[Y_2 = 1] = \mathbf{Pr}[Y_3 = 1] = 1/2$. Moreover, $\mathbf{Pr}[Y_1 = 1 \cap Y_2 = 1 \cap Y_3 = 1] = 0$, since when $Y_1 = Y_2 = 1$, we have $b_1 = b_3$ so Y_3 can't be 1.
- (c) Any two bits, which do not share a bit are independent so $\mathbf{E}[Y_iY_j] = \mathbf{E}[Y_i]\mathbf{E}[Y_j]$. Consider the case they share a bit: $Y_i = b_1 \oplus b_2$ and $Y_j = b_2 \oplus b_3$ (share b_2) Then the possible outcomes for b_1, b_2, b_3 are 0,1 but the possible cases are 8, so $\mathbf{Pr}[Y_i = 1 \cap Y_j = 1] = 2/8 = 1/4$ so that $\mathbf{E}[Y_iY_j] = 1\mathbf{Pr}[Y_i = 1 \cap Y_j = 1] = 1/4 = \mathbf{E}[Y_i]\mathbf{E}[Y_j]$.
- (d) Using exercise ??) if $\mathbf{E}[Y_iY_j] = \mathbf{E}[Y_i]\mathbf{E}[Y_j]$ for every of pairs i, j then $\mathbf{Var}[Y] = \sum_{i=1}^m \mathbf{Var}[X_i]$, then by (c) $\mathbf{Var}[Y] = \sum_{i=1}^m \mathbf{Var}[X_i] = \sum_{i=1}^m \mathbf{E}[Y_i^2] (\mathbf{E}[Y_i])^2 = m(\frac{1}{2} (\frac{1}{2})^2) = \frac{\binom{n}{2}}{4}$.
- (e) $\mathbf{Pr}[|Y \mathbf{E}[Y]| \ge n] \le \frac{\mathbf{Var}[Y]}{n^2} \frac{n(n-1)/8}{n^2} = \frac{1}{8} \Omega(n^{-1})$

20.- (*) (More sampling)

(a) Let $Y_t = \left(\sum_{i=1}^t X_i/t\right)$, then

$$\mathbf{E}[Y_t] = \mathbf{E}\left[\left(\sum_{i=1}^t X_i\right)/t\right] = \mathbf{E}\left[\sum_{i=1}^t X_i\right]/t$$
$$=\left(\sum_{i=1}^t \mathbf{E}[X_i]\right)/t = \frac{t\mathbf{E}[X]}{t} = \mathbf{E}[X].$$

By independence,

$$\mathbf{Var}\left[Y_{t}\right] = \mathbf{Var}\left[(\sum_{i=1}^{t} X_{i})/t\right] = (\sum_{i=1}^{t} \mathbf{Var}\left[X_{i}\right])/t^{2} = \mathbf{Var}\left[X\right]/t.$$

Using Chebyshev's on Y_t we have:

$$\begin{aligned} \mathbf{Pr}\left[\left|\frac{1}{t}\sum_{i=1}^{t}X_{i} - \mathbf{E}\left[X\right]\right| < \epsilon\mathbf{E}\left[X\right]\right] &= 1 - \mathbf{Pr}\left[\left|\frac{1}{t}\sum_{i=1}^{t}X_{i} - \mathbf{E}\left[X\right]\right| \ge \epsilon\mathbf{E}\left[X\right]\right] \\ &= 1 - \mathbf{Pr}\left[\left|Y_{t} - \mathbf{E}\left[Y_{t}\right]\right| \ge \epsilon\mathbf{E}\left[Y_{t}\right]\right] \ge 1 - \frac{\mathbf{Var}\left[Y_{t}\right]}{\epsilon^{2}\mathbf{E}\left[Y_{t}\right]^{2}} \\ &= 1 - \frac{\mathbf{Var}\left[X\right]/t}{\epsilon^{2}\mathbf{E}\left[X\right]^{2}} = 1 - \frac{1}{t}\frac{r^{2}}{\epsilon^{2}} \end{aligned}$$

Taking $t \geq r^2/\epsilon^2 \delta$ we get

$$\mathbf{Pr}\left[\left|\frac{1}{t}\sum_{i=1}^{t}X_{i}-\mathbf{E}\left[X\right]\right|<\epsilon\mathbf{E}\left[X\right]\right]\geq1-\frac{1r^{2}}{t\epsilon^{2}}\geq1--\frac{1}{r^{2}/\epsilon^{2}\delta}\frac{r^{2}}{\epsilon^{2}}=1-\delta,$$

which shows that $O(r^2/\epsilon^2\delta)$ samples suffice.

(b) Using the previous bound, if $t \ge 4r^2/\epsilon^2$ we get

$$\mathbf{Pr}\left[|\frac{1}{t} \sum_{i=1}^{t} X_i - \mathbf{E}\left[X\right]| < \epsilon \mathbf{E}\left[X\right] \right] \ge 1 - \frac{1}{t} \frac{r^2}{\epsilon^2} \ge 1 - \frac{r^2}{t\epsilon^2} \frac{1}{4r^2/\epsilon^2} = 1 - \frac{1}{4} = \frac{3}{4}.$$

So $4r^2/\epsilon^2$ samples are sufficient for this weak estimate.