

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

- 1 Doble andregradsulikheter
 - Løsning ved regning
 - Grafisk løsning

2 Likninger og ulikheter av tredje grad

En dobbel andregradsulikhet er en dobbel ulikhet som er gitt ved en andregradsformel.

- En dobbel andregradsulikhet er en dobbel ulikhet som er gitt ved en andregradsformel.
- Vi må alltid dele dette opp i to ulikheter, og løse hver for seg.

- En dobbel andregradsulikhet er en dobbel ulikhet som er gitt ved en andregradsformel.
- Vi må alltid dele dette opp i to ulikheter, og løse hver for seg.
- Vi må til slutt slå sammen svarene.

- En dobbel andregradsulikhet er en dobbel ulikhet som er gitt ved en andregradsformel.
- Vi må alltid dele dette opp i to ulikheter, og løse hver for seg.
- Vi må til slutt slå sammen svarene.

Eksempel

Den doble andregradsulikheten

$$-6 < x^2 + x - 6 < x - 2$$

må deles opp i

$$-6 < x^2 + x - 6$$
 og $x^2 + x - 6 < x - 2$.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

Oppgave

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

■ Vi løser først $-6 < x^2 + x - 6$.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

$$-2 -1 0 1$$

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Oppgave

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Så svaret blir x < -1 eller x > 0.

Oppgave

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser først $-6 < x^2 + x 6$.
- Vi flytter over -6 og får $0 < x^2 + x = x(x+1)$.
- Vi tegner en fortegnslinje:

Så svaret blir x < -1 eller x > 0. Kan skrive $x \in \langle \leftarrow, -1 \rangle \cup \langle 0, \rightarrow \rangle$.

■ Vi fant $-6 < x^2 + x - 6$ når x < -1 eller x > 0.

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x + 2)(x 2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x + 2)(x 2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

Svaret blir da -2 < x < 2.

- Vi fant $-6 < x^2 + x 6$ når x < -1 eller x > 0.
- Vi må løse $x^2 + x 6 < x 2$. Flytter over x 2 og får $x^2 4 < 0$.
- Konjugatsetningen gir $x^2 4 = (x+2)(x-2)$.
- Tegner fortegnsskjema:

■ Svaret blir da -2 < x < 2. Vi kan også skrive $x \in \langle -2, 2 \rangle$.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

Oppgave

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

■ Den ene uliheten ga oss x < -1 eller x > 0.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Den ene uliheten ga oss x < -1 eller x > 0.
- Den andre ga oss -2 < x < 2.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Den ene uliheten ga oss x < -1 eller x > 0.
- Den andre ga oss -2 < x < 2.
- Vi vil at begge påstandene skal holde. Vi kan illustrere ulikhetene:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Den ene uliheten ga oss x < -1 eller x > 0.
- Den andre ga oss -2 < x < 2.
- Vi vil at begge påstandene skal holde. Vi kan illustrere ulikhetene:

$$x < -1$$
 eller $x > 0$ $\xrightarrow{-3 -2 -1 \ 0 \ 1 \ 2 \ 3}$

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Den ene uliheten ga oss x < -1 eller x > 0.
- Den andre ga oss -2 < x < 2.
- Vi vil at begge påstandene skal holde. Vi kan illustrere ulikhetene:

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Den ene uliheten ga oss x < -1 eller x > 0.
- Den andre ga oss -2 < x < 2.
- Vi vil at begge påstandene skal holde. Vi kan illustrere ulikhetene:

Oppgave

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Den ene uliheten ga oss x < -1 eller x > 0.
- Den andre ga oss -2 < x < 2.
- Vi vil at begge påstandene skal holde. Vi kan illustrere ulikhetene:

Løsningen av ulikheten blir derfor -2 < x < -1 eller 0 < x < 2.

- 1 Doble andregradsulikheter
 - Løsning ved regning
 - Grafisk løsning

2 Likninger og ulikheter av tredje grad

Oppgave

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

Vi løser oppgaven grafisk ved å tegne opp hver bit.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser oppgaven grafisk ved å tegne opp hver bit.
- Vi vil at $y = x^2 + x 6$ skal ligge mellom de to linjene.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser oppgaven grafisk ved å tegne opp hver bit.
- Vi vil at $y = x^2 + x 6$ skal ligge mellom de to linjene.
- Vi ser at det skjer når -2 < x < -1 eller når 0 < x < 2.

Løs
$$-6 < x^2 + x - 6 < x - 2$$
.

- Vi løser oppgaven grafisk ved å tegne opp hver bit.
- Vi vil at $y = x^2 + x 6$ skal ligge mellom de to linjene.
- Vi ser at det skjer når -2 < x < -1 eller når 0 < x < 2.
- Svaret er er derfor

$$-2 < x < -1$$
 eller $0 < x < 2$.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET