<u>TP3 SAD - Sanna Blanchon</u>	Pt		Α	В	C D	Note		
INSTRUMENTATION								
Mise à l'échelle de l'affichage des mesures	2	Х				0		
Cablage électrique et pneumatique	3	Α				3		
REGULATION								
Mise en place de la régulation	3	Α				3		
Réglage de la boucle de régulation	3	Α				3		
AUTOMATISMES								
GRAFCET	3	С				1,05		
SUPERVISION								
Respect du synopsys	3	С				1,05		
Programmation du bouton	3	Х				0		
		Note: 11,1/20						

1)

tp3 sad

Mesure M01

FT2

Puissance

Alimentation 2

Mo2

Vanne

P01

On règle les paramètres du capteurs du pid et de la vanne sur lintools, on cherche Xp ti et td à l'aide de la méthode simple pour cela on règle en position initial la pression à 1,35bar et une commande de 60% cela nous fait un débit de 12,6m^3/h

on réalise un échelon de commande de 10%

quand on augmente y, x diminue procédé inverse donc régulateur direct

$$kr = 2,5/5,1 = 0,5 \rightarrow pid //$$

$$A = 9.05$$
 $xp = 100/A = 11.04$

$$ti = 0.73s$$

$$td=8,11s$$

on regle le pid

on modifie notre boucle pour prendre en compte la perturbation

C0,X>49,3 10s/x2 C0X<39,5 10s/x1