INTO 10TH STATE

INSTRUCTIONS

NUMBER OF QUESTIONS: 100

TIME: 2 Hrs

- 1. ATTEMPT ALL OUESTIONS WITHIN THE TIME.
- 2. EACH OUESTION CARRIES 1 MARK
- 3. NO NEGATIVE MARKS.
- 4. DON'T DO ROUGH WORK ON QUESTION PAPER AND OMR.
- 5. USE BLACK (OR) BLUE PEN FOR BUBBLING ON OMR.

- The radical form of $15^{\overline{3}}$ is _____
 - 1. $\sqrt[3]{25}$
- 2. $\sqrt{225}$ 3. $\sqrt[3]{15}$ 4. $\sqrt[3]{225}$
- $\sqrt[4]{81} 8\sqrt[3]{343} + 15\sqrt[5]{32} + \sqrt{225} =$
 - 1.8

- 2. 8
- 3.5
- 4. Does not exist
- If n is even, then the remainder when $(x^n 1)$ is divided by (x + 1) is _____
 - 1. 1

- 2. 1 3. 0 4. $(x^{n} 1)$ is not divisible by (x + 1)
- $x^{3} + y^{3} + z^{3} 3xyz = \frac{1}{2} (x + y + z)p \text{ then } p = \underline{\hspace{1cm}}$
 - 1. $(x y)^2 + (y z)^2 + (z x)^2$ 2. $(x + y)^2 + (y + z)^2 + (z + x)^2$ 3. $(x y)^2 + (y z)^2 (z x)^2$ 4. $(x + y)^2 + (y + z)^2 (z x)^2$
- If $(x^2 1)$ is a factor of $ax^4 + bx^3 + cx^2 + dx + e$ then $a + c + e = ______$
 - 1. b d
- 2. b + d
- 3.d-b 4. 1
- The word geometry is derived from _____

- 3. English 4. Sanskrit
- 1. Greek 2. Latin 3. English

 The number of dimensions of a solid is ______
 - 1.2

2. 1

- 3.0
- 4. 3
- The angle between two hands of a clock when the time in the clock is 7:00 PM is
 - 1.360^{0}
- 2.90^{0}
- 3.0^{0}
- $4. 210^{0}$
- The number of solutions in positive integers of 2x + 3y = 24 is
 - 1. 1

2. 2

- 3. 3
- 4.4

24.	•	and curved surface	s a sphere of radius r. To area of the cylinder is 3.1:1	
25.	The volume of a p			
	1. $\frac{1}{3}$ × area of bas		2. $\frac{1}{2}$ × area of	base × height
	3. Area of base \times 1	height	4. Perimeter of	f base × height
26.			OY and XY are drawn a	
			ΔBXY is 4 and area of	
	Δ CYD is 3. If the	area of DXY can b	be expressed as \sqrt{x} who	ere _D
	$x \in N$ then is equal	al to		-
			3.84	
27.		-	nen its surface area bec	
	1.4 times	2. Twice	3.8 times	4. Does not change
28.	If 1 cm represents	2.5 m then area of	a square with side 10n 3.2.5 cm ²	n is
	1. 16 cm ²	2. 4 cm ²	3. 2.5 cm ²	4. 1 cm ²
29.			base 16 cm. Then its l	
20			3.3 m	
30.	Let 'O' be the centre of a circle. The distance of chord AB from O is greater than the distance of chord CD from 'O' then			
			2 AB GB	4 D: 4 D GD
				1. Diameter = $AB + CD$
31.	_	=	be a circle is	
	1.1			
32.			of the circle and AB, C	\sim ν
	are equal chords. If $\angle AOB = 70^{\circ}$, then the angle of $\triangle OCD$ are			
				$\langle O \rangle \setminus \rangle$
	0 0 0		0 0	$A \sim 70^{\circ}$ C
	$1.70^{0}, 55^{0}, 55^{0}$		$2.60^{\circ}, 60^{\circ}, 60^{\circ}$	11 10
	$3.90^{0}, 45^{0}, 45^{0}$		$4.50^{0}, 50^{0}, 80^{0}$	B
33.				
11		·····		
55.			ors to the base angles th	
55.				
	1. $90^{\circ} + \frac{1}{2} \angle A$	2. $90^{\circ} - \frac{1}{2} \angle A$	$3.180^{\circ} - \frac{1}{2} \angle A$	4. None
34.	1. $90^{\circ} + \frac{1}{2} \angle A$	2. $90^{\circ} - \frac{1}{2} \angle A$	$3.180^{\circ} - \frac{1}{2} \angle A$	
	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen is	2. $90^{\circ} - \frac{1}{2} \angle A$	$3.180^{\circ} - \frac{1}{2} \angle A$	4. None
	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen is	$2. 90^{\circ} - \frac{1}{2} \angle A$ from English alpha	$3.180^{\circ} - \frac{1}{2} \angle A$ The abet then the probability	4. None y of a letter comes after 'p'
	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen	2. $90^{\circ} - \frac{1}{2} \angle A$	$3.180^{\circ} - \frac{1}{2} \angle A$	4. None
	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen is 1. $\frac{8}{13}$	2. $90^{\circ} - \frac{1}{2} \angle A$ from English alpha	$3.180^{\circ} - \frac{1}{2} \angle A$ The abet then the probability	4. None y of a letter comes after 'p' 4. $\frac{5}{13}$
34.	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen is 1. $\frac{8}{13}$ The sum of the pro-	2. $90^{\circ} - \frac{1}{2} \angle A$ from English alpha 2. 1 obabilities of all out	$3.180^{\circ} - \frac{1}{2} \angle A$ The abet then the probability $3. \frac{5}{26}$ Successor of random exp	4. None y of a letter comes after 'p' 4. $\frac{5}{13}$ eriment is always
34.	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen is 1. $\frac{8}{13}$	2. $90^{\circ} - \frac{1}{2} \angle A$ from English alpha	$3.180^{\circ} - \frac{1}{2} \angle A$ The abet then the probability $3. \frac{5}{26}$	4. None y of a letter comes after 'p' 4. $\frac{5}{13}$
34.	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen is 1. $\frac{8}{13}$ The sum of the properties of t	2. $90^{\circ} - \frac{1}{2} \angle A$ from English alpha 2. 1 obabilities of all out 21	$3.180^{\circ} - \frac{1}{2} \angle A$ The abet then the probability $3. \frac{5}{26}$ That it is a simple of the probability of the probabilit	4. None y of a letter comes after 'p' 4. $\frac{5}{13}$ eriment is always
34.	1. $90^{\circ} + \frac{1}{2} \angle A$ A letter is chosen is 1. $\frac{8}{13}$ The sum of the properties of t	2. $90^{\circ} - \frac{1}{2} \angle A$ from English alpha 2. 1 obabilities of all out	$3.180^{\circ} - \frac{1}{2} \angle A$ The abet then the probability $3. \frac{5}{26}$ That it is a simple of the probability of the probabilit	4. None y of a letter comes after 'p' 4. $\frac{5}{13}$ eriment is always 4. $\frac{1}{2}$

37.		drawing a prime numb	per from a pack of c	eards numbered from 1 to
	10	1	5	2
	1. $\frac{2}{10}$	2. $\frac{1}{10}$	$3.\frac{5}{10}$	4. $\frac{2}{5}$
38.		Rama is a God; the con		
				4. Rama is immortal
39.		consecutive even nur		
40	1.3	2. 5	3.4	4. 8
40.	1. Counter example	ment "Sum of interior		ive reasoning
	-	ning		ive reasoning
4.1				
41.	If $a^{\mathbf{x}} = \left(\frac{a}{k}\right)^{\mathbf{y}} = k^m$	then $=$ $x y$		
	1.0	2 1	2	, 1
	1.0	2. 1	3. <i>m</i>	4. $\frac{1}{m}$
42.	$x^{x\sqrt{x}} = \left(x\sqrt{x}\right)^x$ then	n <i>x</i> =		
	, ,		2	0
	1.0	2. $\frac{3}{2}$	$3.\frac{2}{3}$	4. $\frac{9}{4}$
43.	$\sqrt{2}$, $\sqrt[3]{3}$ satisfy the	∠	3	4
	1. <		3.=	Δ <
44.		os of $x^2 + 1$ is	in real number sys	stem
	1. 2	2. 1	3.0	4. Infinite
45.	The value of ax^2 +	bx + c when $x = 0$ is 6	6. The remainder wh	nen dividing by $x + 1$ is 6.
		en dividing by $x + 2$ is		
46.		2. 6 nomial $x^{2017} + (-1)^{2017}$ i		4. 0
10.	1. 0		31	4. ±1
47.	If $2^x + 3^y = 17, 2^{x+2}$		J. 1	¬, ⊥1
	•	2. $x = 3$, $y = 4$	3.x = 2, y = 3	4. $x = 4, y = 3$
48.	If AB is the diameter of a circle with centre O. $AE = 12$,			\bigcirc D
	BE = 3 then $CD =$			
	1. 10	2. 12		$A \xrightarrow{E} B$
	3. 15	4. 9		
				C
49.	A bag contains lem	non flavoured candies	only. Malini takes o	out one candy without
	•		•	non flavoured candy is
	1.0	2. $\frac{1}{2}$	$3.\frac{1}{}$	4. 1
		<u> </u>	3	
50.	The probability of	getting 6 or a number	less than 6 in a sing	gle throw of a die is
	1.0	2. $\frac{1}{2}$	$3.\frac{1}{3}$	4. 1
		2	3	

51.	If Arithmetic mean = 39, median = 37.5 then mode =			
	1.38	2. 38.5	3.34.5	4. 39.5
52.	Which of the follo	wing is the "year of	f mathematics"	
	1. 2017	2. 2012	3.2011	4. 1887
53.	Each edge of a cul	oe is increased by 50	0% then percentage	increase in the surface area
	is			
	1. 125%		sed 3. Does not cha	
54.			•	It takes 500 complete
	ground in m ² is		ground to level. The	n the area of the play
	1. 15.84 m ²	2. 1584 m ²	3.1584 cm^2	4. 15.84 cm^2
55.				o variables "Bhargavi got
		n double of the man		
				= 0 4. 2x - y - 10 = 0
56.			on of the equation 2:	
	1. (0, -2)	2. (5, 0)	$3.(2\sqrt{3},-\sqrt{3})$	4. $\left(1, \frac{-8}{5}\right)$
57	If $a^3 + b^3 + c^3 = 3a$			(3)
57.			3 a + b + c = 0 (or	$) a = b = c 4. a \neq b \neq c$
58.		2. u - v - c	3.4 + 0 + c = 0 (or	1.47070
	$\frac{3 \cdot 2^{n+1} + 2^n}{2^{n+2} - 2^{n-1}} =$			
		2. 1	3.2	4. 3
59.	$(256)^{0.16} \cdot (256)^{0.09} =$	=		
	1.8	2. 4	3.2	$4. 1$ by x^{91} are respectively
60.		remainder when x^{200}		
	1. $x^{91\times22}$, 2001		3. $x^{91\times 21}$, -2001	4. $x^9, -2001$
			PHYSICS	
61.		alk eastward along		1 40-
	· · · · · · · · · · · · · · · · · · ·	graph of his position		₹ 20-
	whole time interva	wing figure. His avoid is equal to	erage speed for the	20 - 5 10 15 20 - Time (min)
	whole time interva	ii is equal to	0	Time (min) →
	1.8 m/min	2. 6 m/min	3. $\frac{8}{3}$ m/min	4. 2 m/min
62.	The velocity-time	and acceleration-tir	ne graphs of a partic	ele are given as
02.	††	At /	ne graphs of a partie	the die given ds
	- mojij	[]		
	Acceleration -	Velocity		
	Time	Time		
	Its position-time g	raph may be given	as	
	11 /	11 /	11 /	1
	1. uoitisod	2. figure 2	3. hostiton	4. Joseph A. 4.
		<u> </u>	, L	<u> </u>
	Time 	Time	Time	Time→

74.	A force F ₁ accelerates a particle fr	om res	t to a velocity v. a	nother for	ce F_2 decelerates
	the same particle from v to rest, th	en			
	1. F_1 is always equal to F_2				
	2. F ₂ is greater than F ₁				
	3. F_2 may be smaller than, greater	than or	equal to F ₁		
	4. F ₂ cannot be equal to F ₁	man or	equal to 11		
75.	An open knife of mass m is dropp	ad fron	n a haight h on a v	wooden fle	or If the blade
15.	penetrates up to the depth d into the		•		
	1 1	ie wood	u, tile average resi	stance on	ered by the wood
	to the knife edge is	^ 2	()		(1)
	1. $mg\left(1+\frac{h}{d}\right)$ 2. $mg\left(1+\frac{h}{d}\right)$		3 mg $\left(1-\frac{h}{h}\right)$	4 m	$g\left(1+\frac{d}{d}\right)$
	$\frac{1}{d}$)	$\frac{3. \text{ms}}{2} \left(\frac{1}{2} \text{d} \right)$	7. 111	\mathbf{h}
76.	If R is the radius of the earth and	the ac	celeration due to	gravity on	the earth's
, 0.	surface, the mean density of the ea			8100 (10) 011	
	1. $4\pi g/3gR$ 2. $3\pi R/4gG$		$3 3 \sigma / 4 \pi RG$	$4 \pi R$	2G/12G
77	There is no atmosphere on the mo	on beca	3.3 <u>8</u> 1700		
, , .	1. It is close to the earth		ause		
	2. It revolves round the earth				
	3. The escape velocity of the gas i	nolecul	les is less than the	ir rms vel	ocity on the moon
	4. The escape velocity of the gas i				
	moon.				
78.	Choose the correct statement				
	1. Sound waves are transverse wa	ves			
	2. Sound travels faster through vac	cuum			
	3. Sound travels faster in solids th	an in ga	ases		
	4. Sound travels faster in gases that	an in lic	quids		
79.	A stone is dropped into a well. If	he dep	th of water below	the top be	h and velocity of
	sound is v then the splash in water is heart after T sec. then				
	1. $T = \sqrt{\left(\frac{2h}{g}\right)} + \frac{h}{v}$ 2. $T = 2\sqrt{\left(\frac{2h}{g}\right)}$	h)	2 T 2h	4 55	(2h) h
	1. $T = \sqrt{\frac{1}{g}} + \frac{1}{g} = 2$. $T = 2\sqrt{\frac{1}{g}} = 2$	_	3. $T = \frac{1}{V}$	4. T	$=\sqrt{\left \frac{1}{\alpha}\right }\times\frac{1}{\alpha}$
80.	The minimum distance to hear ech				
	1.15m 2.16m		3.17m	4. 18	m
			MISTRY		
81.	The gas that diffuses from lungs to	o blood	is		
	1. Oxygen 2. Carbondio	oxide	3. Hydrogen	4. He	lium
82.	Volume of water shinks between				
	Volume of water shinks between 1.0° C to 4° C	00^{0} C	3.60^{0} C to 70^{0} C	4. 10	0^{0} C to 120^{0} C
83.	The reason for high rate of diffusi				
	1. Higher speed of gas particles	_		veen gas p	particles
	3. Both A and B		nigh viscosity	<i>C</i> 1	
84.	Oxygen and carbon dioxide from			lissolve in	water is essential
01.	for survival of	штовр	note diffuse und d		water is ossemilar
	1. Human beings 2. Land anim	nals	3 Rirds	Δ Δα	matic animals
85.	Feeling cooler after sweating is ar	aus	ence of	Τ. Δί	1 datie ammais
ου.	1. Melting 2. Boiling	cybett	2 Sublimation	- 1 D	moration
06	Tyndell offest senset he shows by		J. Submination	4. EV	aporation
86.	Tyndall effect cannot be shown by		2 E1-:	4 0	-14: - m -
	1. Colloids 2. Suspension	IIS	3. Emuisions	4. 50	DIULIONS

87.	Which of the following is an emulsion			
	1.Salt solution	2.Mixture of oil	and water	
	3.Nail polish	4.Cheese		
88.	If the difference in boiling points of two m	niscible liquids is g	reater than 25°C, then	
	they are separated by			
	1.Distillation	2.Fractional dist	tillation	
	3.Separating funnel	4.Evaporation		
89.	Statement –I: Air is homogeneous mixture of many gases.			
	Statement –II: They are separated by fractional distillation.			
	1.Both the statements are true			
	2.Statement –I is true and statement –II is	false		
	3.Statement –I is false and statement –II is true			
	4.Both the statements are false			
90.	In automobile exhaust, the dispersion med	ium is		
		3. Gas	4. Solution	
91.	Molar mass of 1.5055×10^{23} number of ca			
	1. 20gm 2. 40gm	3.10gm	4. 30gm	
92.	Dalton proposed atomic theory based on			
		2.Law of consta		
	3.Both A & B	4. Neither A nor		
93.	Standard reference for measuring atomic			
	1.Atomic mass of carbon - 12	2.Atomic mass	of carbon – 14	
	3.Atomic mass of oxygen -16	4.Atomic mass	of oxygen -18	
94.	Number of particles in 7.75g of phosphoro $1.6.022 \times 10^{23}$ $2.3.011 \times 10^{23}$	ous is		
	$1.6.022 \times 10^{-5}$ $2.3.011 \times 10^{-5}$	3.1.5055 ×10 ⁻⁵	4. 6.022 × 10	
95.	Avogadro constant $N_A = $ 1. 6.022×10^{20} 2. 6.022×10^{21}	2 (022 10 ²²	4 (000 . 10 ²³	
			4. 0.022 × 10	
96.	Rutherford's model could not explain		41	
	1. Positivity of the atom	2. Negativity of the atom		
97.	3. Neutrality of the atom The rules for distribution of electrons is given.	4.Stability of the		
91.	The rules for distribution of electrons is gi 1. Bohr 2. Rutherford			
98.	The isotopes of Uranium is used as fuel in	3. Bury		
70.	1. Thermal 2. Hydro			
99.	Match the following:	J. W IIIQ	T. INUCICAL	
<i>))</i> .	a) Carbon 1) 2, 8, 8			
	b) Argon 2) 2, 8, 7			
	c) Chlorine 3) 2			
	d) Helium 4) 2, 4			
	the correct match is			
		2. $a \rightarrow 3, b \rightarrow 2$	$c, c \rightarrow 1, d \rightarrow 4$	
	3. $a \rightarrow 2, b \rightarrow 3, c \rightarrow 4, d \rightarrow 1$	•		
100	Maximum number of electrons that can be			
100.	1. 2 2. 8			
	THE EN		4. 32	