Частоти

На матриці розміру $n \times n$, початково порожній, ви маєте виконати m операцій. Кожна операція може бути одного з двох наступних типів:

- Горизонтальна(l,r,x): В усі клітинки у рядках $l,l+1,\ldots,r$ заноситься значення x;
- Вертикальна(l,r,x): В усі клітинки у стовпцях $l,l+1,\ldots,r$ заноситься значення x.

Після виконання усіх операцій повідомте, скільки разів (частота) найменш та найбільш часті елементи зустрічаються в матриці.

Формат вхідних даних

Перший рядок містить розмір матриці n та кількість операцій m. Кожен з наступних m рядків описує одну операцію. i-та операція описується чотирма значеннями t_i, l_i, r_i, x_i , де t_i - це символ, що описує тип i-тої операції (або $\mathbf H$ для горизонтальної, або $\mathbf V$ для вертикальної), а l_i, r_i, x_i описують саму операцію.

Формат вихідних даних

Вихідні дані складаються з одного рядка, який містить частоту елемента, який зустрічається найменше всього разів fr_{min} , та частоту елемента, який зустрічається найбільше всього разів fr_{max} у матриці після виконання усіх m операцій.

Обмеження

- $1 \le n \le 1\ 000\ 000$
- $t_i \in \{\mathtt{H}, \mathtt{V}\}$
- $1 \leq l_i \leq r_i \leq n$
- $1 < m < 200\ 000$
- $1 \le x_i \le 100\ 000$

Оцінювання

- Для 20 балів: $1 \le n \le 1000, 1 \le m \le 100, 1 \le x_i \le 40$
- ullet Для ще 20 додаткових балів: $1 < n < 2~000, 1 < n^2 \cdot m < 1~000~000~000$
- Для ще 20 додаткових балів: $1 \le n \le 6\,000, 1 \le m \le 100\,000$
- Для ще 20 додаткових балів: $1 \le n \le 200~000$

• Для ще 20 додаткових балів: Без додаткових обмежень

Примітка: Тести для цього завдання оцінюються по одному!

Приклади

Приклад вхідних даних #1

```
5 4
H 1 4 2
H 3 5 1
V 2 2 1
H 3 4 3
```

Приклад вихідних даних #1

```
7 10
```

Приклад вхідних даних #2

```
6 5
V 5 5 3
H 4 5 4
V 1 6 3
V 1 2 2
V 4 4 2
```

Приклад вихідних даних #2

```
18 18
```

Приклад вхідних даних #3

```
6 5
H 3 4 2
V 4 5 1
V 4 6 2
H 5 6 2
H 5 6 4
```

Приклад вихідних даних #3

```
12 18
```

Приклад вхідних даних #4

```
8 8
H 4 8 3
H 2 3 3
V 5 7 3
V 4 5 2
H 1 6 2
V 7 8 2
V 5 6 2
H 2 4 4
```

Приклад вихідних даних #4

```
6 34
```

Пояснення

У **першому прикладі**, після виконання усіх операцій, матриця виглядає наступним чином:

 $2 \quad 1 \quad 2 \quad 2 \quad 2$

 $2 \quad 1 \quad 2 \quad 2 \quad 2$

3 3 3 3 3

3 3 3 3 3

1 1 1 1 1

Найменш частий елемент це 1 що зустрічається 7 разів, і найчастіший елемент це 3 що зустрічається 10 разів.

У третьому випадку, після виконання усіх операцій, матриця виглядає наступним чином:

_ _ _ 2 2 2

 $$

 $2\quad 2\quad 2\quad 2\quad 2\quad 2$

 $2 \quad 2 \quad 2 \quad 2 \quad 2 \quad 2$

- $4 \quad 4 \quad 4 \quad 4 \quad 4 \quad 4$
- $4\quad 4\quad 4\quad 4\quad 4\quad 4$

Найменш частий елемент це 4 що зустрічається 12 разів, і найчастіший елемент це 2 що зустрічається 18 разів.