NABIL SOFT

الجمهورية الجزائرية الديمقر اطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2014

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة :علوم تجريبية

اختبار في مادة: الرياضيات المدة: 3 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = \frac{2}{3}u_n - \frac{4}{3}$ ، n ومن أجل كل عدد طبيعي $u_0 = 1$ المتتالية العددية المعرّفة كما يلي: $u_0 = 1$

 $v_n = u_n + 4$ ، $v_n = u_n + 4$ ، المتتالية العددية المعرّفة كما يلي: من أجل كل عدد طبيعي المعرّفة المعرّفة المعرّفة (v_n)

- بيّن أنّ (v_n) متتالية هندسية يُطلب تعيين أساسها و حدّها الأوّل.
 - $\cdot n$ و u_n و اكتب كلا من v_n و اكتب كلا (2
 - \mathbb{N} ادرس اتجاه تغیّر المتتالیة (u_n) علی (3
- $S_n = u_0 + u_1 + u_2 + \ldots + u_n$ المجموع S_n حيث (4
- . $w_n = 5\left(\frac{1}{v_n + 5} 1\right)$: لتكن (w_n) المتتالية العددية المعرّفة على $\mathbb N$ كما يلي: (5
 - أ) بيّن أنّ المتتالية (w_n) متزايدة تماما على \mathbb{N}
 - $\lim_{n\to +\infty} (u_n-w_n)$ بالحسب (ب

التمرين الثاني: (05 نقاط)

 $(O;\vec{i},\vec{j},\vec{k})$ الفضاء منسوب إلى المعلم المتعامد والمتجانس

.D(1;1;1) و C(1;-1;2) ، B(-1;2;1) ، A(2;-1;1) و نعتبر النقط

- اً) أي تحقق أنّ النقط $B \cdot A$ و C تُعيّن مستويا.
- $\vec{n}(1;1;1)$ بين أن $\vec{n}(1;1;1)$ هو شعاع ناظمي للمستوي
 - (ABC) اكتب معادلة ديكارتية للمستوي
- $\{(A;1),(B;2),(C;-1)\}$ التكن النقطة G مرجح الجملة المثقلة (2
 - G أ) احسب إحداثيات
- $\|\overrightarrow{MA} + 2\overrightarrow{MB} \overrightarrow{MC}\| = 2 \|\overrightarrow{MD}\|$ يتكن (Γ) مجموعة النقط M من الفضاء التي تحقق: $\|\overrightarrow{MD}\| = 2 \|\overrightarrow{MD}\|$ بيّن أنّ (Γ) هي المستوي المحوري للقطعة المستقيمة (Γ).
 - .6x-4y+2z+3=0 : هي (Γ) هعادلة (Γ) ثبت أنّ معادلة
-) بيّن أنّ المستويين (ABC) و (Γ) يتقاطعان وفق مستقيم (Δ) يُطلب تعيين تمثيل وسيطي له.

BIL SOFT التمرين الثالث: (05 نقاط)

. $z^2 - 6\sqrt{2}z + 36 = 0$ المعادلة $\mathbb C$ المعادلة الأعداد المركبة (1

لتي المركّب منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ ، لتكن النقط C، B ، A و C التي (2)

$$z_D = \frac{z_C}{2}$$
 و $z_C = 6\sqrt{2}$ ، $z_B = \overline{z_A}$ ، $z_A = 3\sqrt{2}(1+i)$: لاحقاتها على الترتيب

أ) اكتب z_A و z_B ، و الشكل الأسي.

$$\cdot \left(\frac{(1+i)z_A}{6\sqrt{2}}\right)^{2014} \quad (\psi$$

ج) بيّن أنّ النقط $B \cdot A \cdot O$ و C تنتمي إلى نفس الدائرة التي مركزها D، يطلب تعيين نصف قطرها.

$$OACB$$
 ثم جد قيسا للزاوية $\left(\overrightarrow{CA};\overrightarrow{CB}\right)$. ما هي طبيعة الرباعي $\frac{z_B-z_C}{z_A-z_C}$ (2)

يكن R الدوران الذي مركزه O و زاويته π .

R أ) اكتب العبارة المركبة للدوران

ب) عيّن لاحقة النقطة ' C صورة C بالدوران R ثم تحقق أنّ النقط A ، C و ' C في استقامية.

A بالدوران A ثم حدّد صورة الرباعي A بالدوران A بالدوران A

التمرين الرابع: (06 نقاط)

نعتبر الدالة العددية f المعرّفة على المجال $|0;+\infty[$ كما يلي: $f(x)=1+\frac{2\ln x}{x}$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j})$.

ا) أ) احسب f(x) و $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ فسّر النتيجتين هندسيا. و أ) احسب اتجاه تغيّر الدالة f(x) على المجال f(x) ثم شكّل جدول تغيّر اتها.

y=1 :الذي معادلته: (Δ) الذي المستقيم (أ (Δ)) الذي معادلته: (C_f)

.1 كتب معادلة المماس T للمنحنى المنطة C_f في النقطة ذات الفاصلة

 $e^{-0.4} < \alpha < e^{-0.3}$ حيث أنّ المعادلة f(x) = 0 تقبل في المجال]0;1 حلا وحيدا α (C_f) و (T) انشی (3

 $h(x)=1+rac{2\ln |x|}{|x|}$ كما يلي: $\mathbb{R}-\{0\}$ كما يلي: $h(x)=1+\frac{2\ln |x|}{|x|}$

و ليكن (C_h) تمثيلها البياني في نفس المعلم السابق.

أ) بيّن أنّه من أجل كل عدد حقيقي x غير معدوم، h(x) - h(-x) = 0. ماذا تستنج ؟

 (C_f) اعتمادا على المنحنى (C_h) إعتمادا على المنحنى

 $\ln x^2 = (m-1)|x|$: عدد حلول المعادلة: m عدد المعادلة: المعادلة:

NABIL SOFT

الموضوع الثاني

التمرين الأول: (04 نقاط)

- $u_n = e^{\frac{1}{2}-n}$: المعرفة على مجموعة الأعداد الطبيعية $\mathbb N$ بحدها العام (u_n) المعرفة على مجموعة الأعداد الطبيعية
 - . (e هو أساس اللو غاريتم النيبيري e
 - بيّن أنّ (u_n) متتالية هندسية ، يُطلب تعيين أساسها و حدّها الأوّل.
 - ? احسب $\lim_{n\to +\infty} u_n$ ماذا تستنتج (2
 - $S_n = u_0 + u_1 + u_2 + \dots + u_n$ المجموع S_n حيث: n المجموع (3
 - نضع، من أجل كل عدد طبيعي n , $n=\ln(u_n)$, n يرمز إلى اللوغاريتم النيبيري).
 - (v_n) عبّر عن v_n بدلالة n ثم استنج نوع المتتالية (1
 - $P_n = \ln(u_0 \times u_1 \times u_2 \times ... \times u_n)$ أي احسب بدلالة n العدد P_n حيث: (2
 - $P_n + 4n > 0$: ب) عيّن مجموعة قيم العدد الطبيعي n بحيث

التمرين الثاني: (05 نقاط)

.C(2;0;0) و B(1;-2;-3) ، A(1;-1;-2) انعتبر النقط $(O;\vec{i},\vec{j},\vec{k})$ و والمتجامد و المتجامد والمتجامد والمتجام والمتجامد والمتجامد والمتجامد والمتجام والمتجامد والمتجامد والمتجام والمتجام والمتجامد والمتجام والمتعام و

- . ایست فی استقامیه $B \cdot A$ و $B \cdot A$ ایست A
 - (ABC) ب) اكتب تمثيلا وسيطيا للمستوي
- (ABC) جـ) تحقق أنّ x+y-z-2=0 هي معادلة ديكارتية للمستوي
 - نعتبر المستويين (P) و (Q) المعرّفين بمعادلتيهما كما يلي:

$$(Q):3x+2y-z+10=0$$
 $(P):x-y-2z+5=0$

$$\begin{cases} x=t-3 \\ y=-t \end{cases}$$
 ; $(t\in\mathbb{R})$: التمثيل الوسيطي: (Δ) و و فق المستقيم و المستقيم و المستقيم (Δ) المستقيم و المستقي

- (Q) و (P)، (ABC) و (3
- (P) نقطة من الفضاء. نسمي $d\left(M,(P)
 ight)$ المسافة بين $M\left(x;y;z
 ight)$ لتكن $M\left(x;y;z
 ight)$
 - و $d\left(M,\left(Q\right)\right)$ المسافة بين M و المستوي M عيّن المجموعة $d\left(M,\left(Q\right)\right)$ بحيث:
 - $.\sqrt{6}\times d\left(M,(P)\right) = \sqrt{14}\times d\left(M,(Q)\right)$

التمرين الثالث: (04 نقاط)

1) حل في مجموعة الأعداد المركبة $\mathbb C$ المعادلة ذات المجهول z حيث:

$$(z-i)(z^2-2z+5) = 0$$

2) في المستوي المركّب المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ وحدة الطول O1)، تعطى

- . النقط $z_C=1-2i$ و $z_B=1+2i$ ، $z_A=i$ على الترتيب B ، A النقط B ، التو تيب
 - $\cdot C$ و B، A و B
 - ب) جد z_H لاحقة النقطة H المسقط العمودي للنقطة A على المستقيم (BC).
 - ج) احسب مساحة المثلث ABC.

NABIL SOFT

- ليكن S التشابه المباشر الذي مركزه A و نسبته $\frac{1}{2}$ وزاويته $\frac{\pi}{2}$.
 - أ) عين الكتابة المركبة للتشابه
- $rac{1}{2}cm^2$ بيّن أنّ مساحة صورة المثلث ABC بالتشابه S تساوي
- |z|=|iz+1+2i| نقطة لاحقتها z، عين مجموعة النقط M حيث: M

التمرين الرابع: (07 نقاط)

- . $g\left(x\right)=2x^3-4x^2+7x-4$ لتكن g الدالة العددية المعرّفة على $\mathbb R$ كما يلي: $g\left(x\right)=2x^3-4x^2+7x-4$
 - $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to -\infty} g(x)$ الحسب (1)
 - ب) ادرس اتجاه تغیّر الدالة g على $\mathbb R$ ثم شكّل جدول تغیّر اتها.
 - $0.7 < \alpha < 0.8$ بيّن أنّ المعادلة g(x) = 0 تقبل حلا وحيدا α حيث (1)
 - $\cdot g(x)$ باستنتج حسب قيم العدد الحقيقي x إشارة
 - $f(x) = \frac{x^3 2x + 1}{2x^2 2x + 1}$:كما يلي: f المعرّفة على f المعرّفة على (II
 - $\cdot \left(O; ec{i}, ec{j}
 ight)$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_f
 ight)$
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (1
 - $f(x) = \frac{1}{2}(x+1) + \frac{1-3x}{2(2x^2-2x+1)} : \mathbb{R}$ من أجل كل x من أجل كل (2)
 - . با استنتج أنّ المنحنى $\left(C_f
 ight)$ يقبل مستقيما مقاربا مائلا $\left(\Delta
 ight)$ يُطلب تعيين معادلة له
 - $\left(\Delta\right)$ و $\left(C_{f}\right)$ ادرس الوضع النسبي للمنحنى
- . f مشتقة الدالة $f'(x) = \frac{x \cdot g(x)}{(2x^2 2x + 1)^2}$: \mathbb{R} مشتقة الدالة (3)
- $(f(\alpha) \approx -0.1)$ ناخذ f'(x) استنتج اشارة f'(x) حسب قیم f'(x) مشکّل جدول تغیّرات الداله ا
 - f(x)=0 المعادلة f(1) ثم حل في المعادلة (4
 - $\cdot (C_f)$ أنشئ المستقيم (Δ) و المنحنى (5
 - $h(x) = \frac{x^3 4x^2 + 2x 1}{2x^2 2x + 1}$ کما یلي: \mathbb{R} کما یلی (6
 - . و المعلم السابق البياني في المعلم السابق (C_h)
 - $h(x) = f(x) 2 : \mathbb{R}$ من x من أجل كل أيتحقق أنّه من أجل كل
 - $.(C_h)$ بتحویل نقطی بسیط یطلب تعیینه، ثم أنشی (C_f) هو صورهٔ (C_f) بتحویل نقطی بسیط یطلب تعیینه، ثم أنشی