

VT82C686B "Super South" South Bridge

PSIPC PCI Super-I/O Integrated Peripheral Controller

PC99 COMPLIANT PCI-TO-ISA BRIDGE
WITH INTEGRATED SUPER-I/O (FDC, LPT, COM1/2, AND IR),
INTEGRATED SOUNDBLASTER/DIRECTSOUND AC97 AUDIO,
ULTRADMA-33/66/100 MASTER MODE PCI-EIDE CONTROLLER,
USB CONTROLLER, KEYBOARD CONTROLLER, RTC,
DISTRIBUTED DMA, SERIAL IRQ, PLUG AND PLAY,
ACPI, ENHANCED POWER MANAGEMENT, SMBUS, AND
TEMPERATURE, VOLTAGE, AND FAN-SPEED MONITORING

Revision 1.71 June 9, 2000

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2000 VIA Technologies Incorporated. Printed in the United States. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT82C686A, VT82C686B and Super South may only be used to identify products of VIA Technologies, Inc.

ia a registered trademark of VIA Technologies, Incorporated.

PS/2TM is a registered trademark of International Business Machines Corp.

PentiumTM, Pentium-ProTM, Pentium-IIITM, Pentium-IIITM, CeleronTM, and GTL+TM are registered trademarks of Intel Corp. Windows 95TM, Windows 98TM, Windows NTTM, and Plug and PlayTM are registered trademarks of Microsoft Corp.

PCITM is a registered trademark of the PCI Special Interest Group.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable to the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office:Taipei Office:1045 Mission Court8th Floor, No. 533Fremont, CA94539Chung-Cheng Road, Hsin-TienUSATaipei, Taiwan ROC

 USA
 Taipei, Taiwan ROC

 Tel: (510) 683-3300
 Tel: (886-2) 218-5452

 Fax: (510) 683-3301
 Fax: (886-2) 218-5453

Online Services:

Home Page: http://www.via.com.tw -or- http://www.viatech.com

FTP Server: <u>ftp.via.com.tw</u>
BBS: <u>886-2-2185208</u>

REVISION HISTORY

Document Release	Date	Revision	Initials
Revision 1.6	5/22/00	Initial release based on 82C686A Data Sheet revision 1.6	DH
		"CD/CE" info and "CD-CG" silicon revision comments removed	
		Added Function 0 Rx8 Revision ID of "2x" for 686B	
Revision 1.7	6/8/00	Added UDMA100 support to title, feature bullets, and overview	DH
		Removed external APIC support, added IRQ0 input & internal THRM# output	
		Updated pin descriptions: MCCS# (U5/U8 select), GPI3, GPI10, GPI11,	
		GPO6, GPO10, GPO11, GPO21, GPIOC, GPIOD, CHAS, ATEST,	
		THRM, LID	
		Updated bit descriptions F0 Rx8,41[6],59,74[7],75[6],76[4-3],77[4],85[7-6]	
		Updated bit descriptions F1 Rx41[3-0],42,44[4,2],45[4,1-0],46[5-0],4E-4F,	
		53-50[28,26-24,20-19,12,4-3],54[5,1,0],70[1-0],74-5,78[1-0],7C-D,C0-7	
		Updated bit descriptions F2/3 Rx43	
		Updated bit descriptions F4 Rx41[1], 4D[3], 55[2], 57[0], D2[2]	
		Updated bit descriptions ACPI I/O Rx5-4[8],	
		Updated bit descriptions SMBus I/O Rx	
		Updated bit descriptions F5 Rx	
Revision 1.71	6/9/00	Changed Audio / Game / MIDI ports to dedicated pins (SDD removed)	DH
		Strap description removed from SPKR pin	

TABLE OF CONTENTS

PC99	
TEMPERATURE, VOLTAGE, AND FAN-SPEED MONITORING	
REVISION HISTORY	
TABLE OF CONTENTS	
LIST OF FIGURES	IV
LIST OF TABLES	IV
OVERVIEW	4
PINOUTS	
PIN DIAGRAM	
PIN LISTS	
PIN DESCRIPTIONS	
REGISTERS	27
REGISTER OVERVIEW	27
REGISTER DESCRIPTIONS	39
Legacy I/O Ports	30
Keyboard Controller Registers	
DMA Controller I/O Registers	
Interrupt Controller Registers	
Timer / Counter Registers	
CMOS / RTC Registers	
Super-I/O Configuration Index / Data Registers	
Super-I/O Configuration Registers	
Super-I/O I/O Ports	
Floppy Disk Controller Registers	
Parallel Port Registers	
Serial Port 1 Registers	
Serial Port 2 Registers	
SoundBlaster Pro Port Registers	
FM Registers	
Mixer Registers	
Sound Processor Registers	
Game Port Registers	
PCI Configuration Space I/O	
Function 0 Registers - PCI to ISA Bridge	
PCI Configuration Space Header ISA Bus Control.	
Plug and Play Control	
Distributed DMA / Serial IRQ Control	
Miscellaneous / General Purpose I/O	
Function 1 Registers - Enhanced IDE Controller	
PCI Configuration Space Header	
IDE-Controller-Specific Configuration Registers	
IDE I/O Registers	74
Function 2 Registers - USB Controller Ports 0-1	
PCI Configuration Space Header	
USB-Specific Configuration Registers	
USB I/O Registers	77

Function 3 Registers - USB Controller Ports 2-3	
PCI Configuration Space Header	78
USB-Specific Configuration Registers	79
USB I/O Registers	80
Function 4 Regs - Power Management, SMBus and HWM	81
PCI Configuration Space Header	81
Power Management-Specific PCI Configuration Registers	82
Hardware-Monitor-Specific Configuration Registers	89
System Management Bus-Specific Configuration Registers	89
Power Management I/O-Space Registers	90
System Management Bus I/O-Space Registers	
Hardware Monitor I/O Space Registers	
Function 5 & 6 Registers - AC97 Audio & Modem Codecs	106
PCI Configuration Space Header – Function 5 Audio	
PCI Configuration Space Header – Function 6 Modem	
Function 5 & 6 Codec-Specific Configuration Registers	
I/O Base 0 Registers -Audio/Modem Scatter/Gather DMA	
I/O Base 1 Registers – Audio FM NMI Status Registers	
I/O Base 2 Registers – MIDI / Game Port	
I/O Base 3 Registers – Codec Register Shadow	114
Memory Mapped I/O APIC Registers	
Indexed I/O APIC 32-Bit Registers	
FUNCTIONAL DESCRIPTIONS	117
POWER MANAGEMENT	117
Power Management Subsystem Overview	117
Processor Bus States	
System Suspend States and Power Plane Control	118
General Purpose I/O Ports	
Power Management Events	
System and Processor Resume Events	119
Legacy Power Management Timers	
System Primary and Secondary Events	
Peripheral Events	
ELECTRICAL SPECIFICATIONS	121
ABSOLUTE MAXIMUM RATINGS	121
DC CHARACTERISTICS	121
PACKAGE MECHANICAL SPECIFICATIONS	122

LIST OF FIGURES

FIGURE 1. PC SYSTEM CONFIGURATION USING THE VT82C686B	5
FIGURE 2. VT82C686B BALL DIAGRAM (TOP VIEW)	6
FIGURE 3. VT82C686B PIN LIST (NUMERICAL ORDER)	
FIGURE 4. VT82C686B PIN LIST (ALPHABETICAL ORDER)	
FIGURE 5. STRAP OPTION CIRCUIT	60
FIGURE 6. POWER MANAGEMENT SUBSYSTEM BLOCK DIAGRAM	117
FIGURE 8 MECHANICAL SPECIFICATIONS – 352 PIN BALL GRID ARRAY PACKAGE	122

LIST OF TABLES

TABLE 1.	PIN DESCRIPTIONS	. 9
	SYSTEM I/O MAP	
	REGISTERS.	
	KEYBOARD CONTROLLER COMMAND CODES	
	CMOS REGISTER SUMMARY	

VT82C686B PSIPC PCI SUPER-I/O INTEGRATED PERIPHERAL CONTROLLER

PC99 COMPLIANT PCI-TO-ISA BRIDGE
WITH INTEGRATED SUPER-I/O (FDC, LPT, COM1/2, AND IR),
INTEGRATED HARDWARE SOUNDBLASTER/DIRECT SOUND AC97 AUDIO,
ULTRADMA-33/66/100 MASTER MODE PCI-EIDE CONTROLLER,
USB CONTROLLER, KEYBOARD CONTROLLER, RTC,
DISTRIBUTED DMA, SERIAL IRQ, PLUG AND PLAY,
ACPI, ENHANCED POWER MANAGEMENT, SMBUS, AND
TEMPERATURE, VOLTAGE, AND FAN-SPEED MONITORING

Inter-operable with VIA and other Host-to-PCI Bridges

- Combine with VT82C598 for a complete Super-7 (66/75/83/100MHz) PCI / AGP / ISA system (Apollo MVP3)
- Combine with VT8501 for a complete Super-7 system with integrated 2D / 3D graphics (Apollo MVP4)
- Combine with VT82C693 for a complete 66 / 100 / 133 MHz Socket-370 or Slot-1 system (Apollo Pro133)
- Combine with VT8601 for a complete 66 / 100 / 133 MHz Socket-370 or Slot-1 system with integrated 2D / 3D graphics (Apollo ProMedia)
- Inter-operable with Intel or other Host-to-PCI bridges for a complete PC99 compliant PCI / AGP / ISA system

PCI to ISA Bridge

- Integrated ISA Bus Controller with integrated DMA, timer, and interrupt controller
- Integrated Keyboard Controller with PS2 mouse support
- Integrated DS12885-style Real Time Clock with extended 256 byte CMOS RAM and Day/Month Alarm for ACPI
- Integrated USB Controller with root hub and four function ports
- Integrated UltraDMA-33/66/100 master mode EIDE controller with enhanced PCI bus commands
- PCI-2.2 compliant with delay transaction and remote power management
- Eight double-word line buffer between PCI and ISA bus
- One level of PCI to ISA post-write buffer
- Supports type F DMA transfers
- Distributed DMA support for ISA legacy DMA across the PCI bus
- Serial interrupt for docking and non-docking applications
- Fast reset and Gate A20 operation
- Edge trigger or level sensitive interrupt
- Flash EPROM, 4Mb EPROM and combined BIOS support
- Supports positive and subtractive decoding

• UltraDMA-33 / 66 / 100 Master Mode PCI EIDE Controller

- Dual channel master mode PCI supporting four Enhanced IDE devices
- Transfer rate up to 33MB/sec to cover PIO mode 4, multi-word DMA mode 2 drives, and UltraDMA-33 interface
- Increased reliability using UltraDMA-66 transfer protocols
- Increased performance using UltraDMA-100 mode 5
- Thirty-two levels (doublewords) of prefetch and write buffers
- Dual DMA engine for concurrent dual channel operation
- Bus master programming interface for SFF-8038I rev.1.0 and Windows-95 compliant
- Full scatter gather capability
- Support ATAPI compliant devices including DVD devices
- Support PCI native and ATA compatibility modes
- Complete software driver support

Integrated Super IO Controller

- Supports 2 serial ports, IR port, parallel port, and floppy disk controller functions
- Two UARTs for Complete Serial Ports

Programmable character lengths (5,6,7,8)

Even, odd, stick or no parity bit generation and detection

Programmable baud rate generator

High speed baud rate (230Kbps, 460Kbps) support

Independent transmit/receiver FIFOs

Modem Control

Plug and play with 96 base IO address and 12 IRQ options

- Infrared-IrDA (HPSIR) and ASK (Amplitude Shift Keyed) IR port multiplexed on COM2
- Multi-mode parallel port

Standard mode, ECP and EPP support

Plug and play with 192 base IO address, 12 IRQ and 4 DMA options

Floppy Disk Controller

16 bytes of FIFO

Data rates up to 1Mbps

Perpendicular recording driver support

Two FDDs with drive swap support

Plug and play with 48 base IO address, 12 IRQ and 4 DMA options

SoundBlaster Pro Hardware and Direct Sound Ready AC97 Digital Audio Controller

- Dual full-duplex Direct Sound channels between system memory and AC97 link
- PCI master interface with scatter / gather and bursting capability
- 32 byte FIFO of each direct sound channel
- Host based sample rate converter and mixer
- Standard v1.0 or v2.0 AC97 Codec interface for single or cascaded AC97 Codec's from multiple vendors
- Loopback capability for re-directing mixed audio streams into USB and 1394 speakers
- Hardware SoundBlaster Pro for Windows DOS box and real-mode DOS legacy compatibility
- Plug and play with 4 IRQ, 4 DMA, and 4 I/O space options for SoundBlaster Pro and MIDI hardware
- Hardware assisted FM synthesis for legacy compatibility
- Direct two game ports and one MIDI port interface
- Complete software driver support for Windows-95/98/2000 and Windows-NT

Voltage, Temperature, Fan Speed Monitor and Controller

- Five positive voltage (one internal), three temperature (one internal) and two fan-speed monitoring
- Programmable control, status, monitor and alarm for flexible desktop management
- External thermister or internal bandgap temperature sensing
- Automatic clock throttling with integrated temperature sensing
- Internal core VCC voltage sensing
- Flexible external voltage sensing arrangement (any positive supply and battery)

Universal Serial Bus Controller

- USB v.1.1 and Intel Universal HCI v.1.1 compatible
- Eighteen level (doublewords) data FIFO with full scatter and gather capability
- Root hub and four function ports
- Integrated physical layer transceivers with optional over-current detection status on USB inputs
- Legacy keyboard and PS/2 mouse support

System Management Bus Interface

- Host interface for processor communications
- Slave interface for external SMBus masters

Sophisticated PC99-Compatible Mobile Power Management

- Supports both ACPI (Advanced Configuration and Power Interface) and legacy (APM) power management
- ACPI v1.0 Compliant
- APM v1.2 Compliant
- CPU clock throttling and clock stop control for complete ACPI C0 to C3 state support
- PCI bus clock run, Power Management Enable (PME) control, and PCI/CPU clock generator stop control
- Supports multiple system suspend types: power-on suspends with flexible CPU/PCI bus reset options, suspend to DRAM, and suspend to disk (soft-off), all with hardware automatic wake-up
- Multiple suspend power plane controls and suspend status indicators
- One idle timer, one peripheral timer and one general purpose timer, plus 24/32-bit ACPI compliant timer
- Normal, doze, sleep, suspend and conserve modes
- Global and local device power control
- System event monitoring with two event classes
- Primary and secondary interrupt differentiation for individual channels
- Dedicated input pins for power and sleep buttons, external modem ring indicator, and notebook lid open/close for system wake-up
- Up to 12 general purpose input ports and 23 output ports
- Multiple internal and external SMI sources for flexible power management models
- One programmable chip select and one microcontroller chip select
- Enhanced integrated real time clock (RTC) with date alarm, month alarm, and century field
- Thermal alarm on either external or any combination of three internal temperature sensing circuits
- Hot docking support
- I/O pad leakage control

Plug and Play Controller

- PCI interrupts steerable to any interrupt channel
- Steerable interrupts for integrated peripheral controllers: USB, floppy, serial, parallel, audio, soundblaster, MIDI
- Steerable DMA channels for integrated floppy, parallel, and soundblaster pro controllers
- One additional steerable interrupt channel for on-board plug and play devices
- Microsoft Windows 98[™], Windows NT[™], Windows 95[™] and plug and play BIOS compliant

• Integrated I/O APIC (Advanced Peripheral Interrupt Controller)

- Built-in NAND-tree pin scan test capability
- 0.35um, 3.3V, low power CMOS process
- Single chip 27x27 mm, 352 pin BGA

OVERVIEW

The VT82C686B PSIPC (PCI Super-I/O Integrated Peripheral Controller) is a high integration, high performance, power-efficient, and high compatibility device that supports Intel and non-Intel based processor to PCI bus bridge functionality to make a complete Microsoft PC99-compliant PCI/ISA system. In addition to complete ISA extension bus functionality, the VT82C686B includes standard intelligent peripheral controllers:

- a) Master mode enhanced IDE controller with dual channel DMA engine and interlaced dual channel commands. Dedicated FIFO coupled with scatter and gather master mode operation allows high performance transfers between PCI and IDE devices. In addition to standard PIO and DMA mode operation, the VT82C686B also supports the UltraDMA-33 standard to allow reliable data transfer rates up to 33MB/sec throughput. The VT82C686B also supports the UltraDMA-66 and UltraDMA-100 (ATA-100) standards. The IDE controller is SFF-8038I v1.0 and Microsoft Windows-family compliant.
- b) Universal Serial Bus controller that is USB v1.1 and Universal HCI v1.1 compliant. The VT82C686B includes the root hub with four function ports with integrated physical layer transceivers. The USB controller allows hot plug and play and isochronous peripherals to be inserted into the system with universal driver support. The controller also implements legacy keyboard and mouse support so that legacy software can run transparently in a non-USB-aware operating system environment.
- c) Keyboard controller with PS2 mouse support.
- d) Real Time Clock with 256 byte extended CMOS. In addition to the standard ISA RTC functionality, the integrated RTC also includes the date alarm, century field, and other enhancements for compatibility with the ACPI standard.
- e) Notebook-class power management functionality compliant with ACPI and legacy APM requirements. Multiple sleep states (power-on suspend, suspend-to-DRAM, and suspend-to-Disk) are supported with hardware automatic wake-up. Additional functionality includes event monitoring, CPU clock throttling and stop (Intel processor protocol), PCI bus clock stop control, modular power, clock and leakage control, hardware-based and software-based event handling, general purpose I/O, chip select and external SMI.
- f) Hardware monitoring subsystem for managing system / motherboard voltage levels, temperatures, and fan speeds
- g) Full System Management Bus (SMBus) interface.
- h) Two 16550-compatible serial I/O ports with infrared communications port option on the second port.
- i) Integrated PCI-mastering dual full-duplex direct-sound AC97-link-compatible sound system. Hardware soundblaster-pro and hardware-assisted FM blocks are included for Windows DOS box and real-mode DOS compatibility. Loopback capability is also implemented for directing mixed audio streams into USB and 1394 speakers for high quality digital audio.
- j) Two game ports and one MIDI port
- k) ECP/EPP-capable parallel port
- 1) Standard floppy disk drive interface
- m) Distributed DMA capability for support of ISA legacy DMA over the PCI bus. Serial IRQ is also supported for docking and non-docking applications.
- n) Plug and Play controller that allows complete steerability of all PCI interrupts and interrupt interrupts / DMA channels to any interrupt channel. One additional steerable interrupt channel is provided to allow plug and play and reconfigurability of onboard peripherals for Windows family compliance.
- o) Internal I/O APIC (Advanced Programmable Interrupt Controller)

The VT82C686B also enhances the functionality of the standard ISA peripherals. The integrated interrupt controller supports both edge and level triggered interrupts channel by channel. The integrated DMA controller supports type F DMA in addition to standard ISA DMA modes. Compliant with the PCI-2.2 specification, the VT82C686B supports delayed transactions and remote power management so that slower ISA peripherals do not block the traffic of the PCI bus. Special circuitry is built in to allow concurrent operation without causing dead lock even in a PCI-to-PCI bridge environment. The chip also includes eight levels (doublewords) of line buffers from the PCI bus to the ISA bus to further enhance overall system performance.

Figure 1. PC System Configuration Using the VT82C686B

PINOUTS

Pin Diagram

Figure 2. VT82C686B Ball Diagram (Top View)

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	SMEM		USB	USB	KB	WRT	W DATA#	DS	CTS	DCD	TXD	DCD	PD	PD	ERR#	PIRQ	AD	AD	AD	AD
	R# SMEM	RDY	P0+ USB	P2+ USB	DT USB	PRT# R	DATA# W	1# DS	2# DTR	2# RXD	1 RTS	1# RXD	7	2 PD	PD	A# PCI	31 PIRQ	28 AD	26 AD	25 AD
В	W#	AEN	P0-	P2-	P3+		GATE#	0#	2#	2	1#	1	ACK#	3	0	RST#	D#	29	27	24
C	ROM CS#	IO W#	USB CLK	USB P1+	MS DT	DSK CHG#	HD SEL#	MTR 1#	RI 2#	DSR 2#	CTS 1#	DSR 1#	BUSY	PD 4	P INIT#	AUTO FD#	PIRQ C#	AD 30	C/BE 3#	ID SEL
D	IO R#	DACK 3#	DRQ 3	USB P1-	MS CK	DRV DEN1	IN DEX#	DIR#	DRV DEN0	TXD 2	DTR 1#	IR RX	PE	PD 5	PD 1	STR OBE#	PIRQ B#	AD 23	AD 22	AD 21
E	DACK 1#	DRQ 1	RFSH#	OSC	KB CK	USB P3-	TRK 00#	STEP#	MTR 0#	RTS 2#	RI 1#	IR TX	SLCT	PD 6	SLCT IN#	P CLK	AD 20	AD 19	AD 18	AD 17
F	MCS 16#	S BHE#	IOCS 16#	IO CHK#	IRQ 7	GND	VCC	GND U	VCC U	VCC	GND	vcc	VCC	vcc	GND	AD 16	C/BE 2#	FRM#	I RDY#	T RDY#
G	IRQ6 SLPB	IRQ 5	IRQ 4	IRQ 3	DACK 2#	GND	G7	8	9	10	11	12	13	G14	GND	DEV SEL#	STOP#	SERR#	PAR	CBE1#
Н	TC	BALE	DRQ2 SIRQ	IRQ 9	B CLK	vcc	Н	-					_	Н	vcc	AD 15	AD 14	AD 13	AD 12	AD 11
J	RST DRV	LA 23	LA 22	LA 21	LA 20	vcc	J		GND	GND	GND	GND		J	VCC	AD 10	AD 9	AD 8	C/BE 0#	AD 7
K	SA 19	SA 18	IRQ 10	IRQ 11	IRQ 15	vcc	K		GND	GND	GND	GND		K	vcc	AD 6	AD 5	AD 4	AD 3	AD 2
L	IRQ 14	DACK 0#	DRQ 0	DACK 5#	SD 8	GND	L		GND	GND	GND	GND		L	GND	AD 1	AD 0	PREQ#	PGNT#	PD CS1#
M	DRQ 5	SD 9	DACK 6#	SD 10	DRQ 6	vcc	M		GND	GND	GND	GND		M	vcc	PD CS3#	PD A0	PD A2	PD A1	PD DACK#
N	SD 11	DACK 7#	SD 12	DRQ 7	SD 13	vcc	N	•					_	N	VCC	PD RDY	PD IOR#	PD IOW#	PD DRQ	PDD 15
P	SD 14	SD 15	SA 17	SA 16	SA15 SDD15	GND	P7	8	9	10	11	12	13	P14	GND	PDD 0	PDD 14	PDD 1	PDD 13	PDD 2
R	SA14 SDD14	SA13 SDD13	SA12 SDD12	SA11 SDD11	SA10 SDD10	GND	VCC	VCC	VCC S	VCC S	vcc	VCC H	GND H	VCC	GND	PDD 12	PDD 3	PDD 11	PDD 4	PDD 10
Т	SA9 SDD9	SA8 SDD8	SA7 SDD7	SA6 SDD6	XDIR	INIT	SLP#	GPO 0	SMB DATA	SUS CLK	THRM PME#	FAN 1	VREF	GPIO A	SDD10 JAB2	PDD 5	PDD 9	PDD 6	PDD 8	PDD 7
U	SA5 SDD5	SA4 SDD4	SA3 SDD3	MEM R#	SOE#	SMI#	NMI	GPIO D	SMB CLK	LID	BAT LOW#	FAN 2	V SENS1	JBX GPI23	ACRS	JBB2	SD CS1#	SD CS3#	SD A0	SD A2
V	SA2 SDD2	SA1 SDD1	SD 5	MEM W#	SPKR	RSM RST#	FERR#	CPU RST#	SUS A#	SUS ST1#	RING#	PCI STP#	V SENS2	GPIO C	JAX GPO23	SYNC	SDI	SD A1	SD DACK#	SD RDY
w	SA0 SDD0	SD 2	SD 4	SD 7	RTC X2	PWR GD	STP CLK#	INTR	SUS B#	SMB ALRT#	IRQ8#	PCK RUN#	T SENS1	V SENS3	JBY GPI22	JAB1	JBB1	втск	SD IOR#	SD IOW#
Y	SD 0	SD 1	SD 3	SD 6	RTC X1	VBAT	A20 M#	IGN NE#	SUS C#	EXT SMI#	PWR BTN#	CPU STP#	T SENS2	V SENS4	JAY GPO22	SDO	SDI2	MSO	MSI	SD DRQ

Note: Some of the pins above have alternate functions and alternate names. The table above contains only one name (usually the most often used function), but the pin lists and pin descriptions contain all names.

Pin Lists

Figure 3. VT82C686B Pin List (Numerical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
A01	О	SMEMR#	D12	Ю	IRRX / GPO15	H19	Ю	AD12	N06	P	VCC	U13	I	VSENS1 (2.0V)
A02	I	IOCHRDY	D13	I	PE / WDATA#	H20	Ю	AD11	N15	P	VCC	U14	I	JBX / GPI23
A03	Ю	USBP0+	D14	Ю	PD5	J01	О	RSTDRV	N16	I	PDRDY	U15	O	ACRST
A04	Ю	USBP2+	D15	Ю	PD1 / TRK00#	J02	Ю	LA23	N17	О	PDIOR#	U16	I	JBB2
A05		KBDT / KBRC	D16	Ю	STROBE#	J03	Ю	LA22	N18	О	PDIOW#	U17	O	SDCS1#
A06	I	WRTPRT#	D17	I	PIRQB#	J04	Ю	LA21	N19	I	PDDRQ	U18	O	SDCS3#
A07	O	WDATA#	D18	Ю	AD23	J05	Ю	LA20	N20	Ю	PDD15	U19	O	SDA0
A08	O	DS1#	D19	Ю	AD22	J06	P	VCC	P01	Ю	SD14	U20	0	SDA2
A09	Ĭ	CTS2#	D20	IO	AD21	J09	P	GND	P02	IO	SD15	V01	IO	SA02 / SDD2
A10	I	DCD2#	E01	O	DACK1# / IDEIROB	J10	P P	GND	P03	IO	SA17	V02 V03	IO	SA01 / SDD1
A11 A12	O I	TXD1 DCD1#	E02 E03	I IO	DRQ1 RFSH#	J11 J12	P	GND GND	P04 P05	IO IO	SA16 SA15 / SDD15	V03	IO	SD05 / KBIN4 MEMW#
A12	IO	PD7	E03	I	OSC	J15	P	VCC	P06	P	GND	V04 V05	IO	SPKR
A14		PD2 / WRTPRT#	E05	Ю	KBCK/A20GATE	J16	Ю	AD10	P15	P	GND	V05	I	RSMRST#
A15	I	ERROR#/HDSL#	E06	IO	USBP3-	J17	IO	AD09	P16	IO	PDD00	V07	Î	FERR#
A16	Ī	PIROA#	E07	I	TRK00#	J18	IO	AD08	P17	IO	PDD14	V08		CPURST
A17	Ю	AD31	E08	О	STEP#	J19	Ю	CBE0#	P18	Ю	PDD01	V09	O	SUSA#/O1/APD0
A18	IO	AD28	E09	О	MTR0#	J20	Ю	AD07	P19	Ю	PDD13	V10	O	SUSST1# / GPO3
A19	Ю	AD26	E10	О	RTS2#	K01	Ю	SA19	P20	Ю	PDD02	V11	I	RING# / GPI7
A20	Ю	AD25	E11	I	RI1#	K02	Ю	SA18	R01	Ю	SA14 / SDD14	V12	O	PCISTP#/GPO5
B01	O	SMEMW#	E12	О	IRTX / GPO14	K03	I	IRO10	R02	Ю	SA13 / SDD13	V13	I	VSENS2 (2.5V)
B02	O	AEN	E13	I	SLCT / WGATE#	K04	I	IRQ11	R03	Ю	SA12 / SDD12	V14	Ю	GPIOC(10)/CHAS
B03		USBP0-	E14	IO	PD6	K05	I	IRQ15	R04	IO	SA11 / SDD11	V15	I	JAX / GPO23
B04	IO	USBP2-	E15	IO	SLCTIN# / STEP#	K06	P	VCC	R05	IO	SA10 / SDD10	V16	Ō	ACSYNC
B05		USBP3+	E16	I	PCLK	K09	P	GND	R06	P	GND	V17	I	ACSDI
B06	I	RDATA#	E17	IO	AD20	K10	P	GND	R07	P	VCC	V18	0	SDA1
B07 B08	0	WGATE# DS0#	E18 E19	IO	AD19 AD18	K11	P P	GND GND	R08 R09	P P	VCC VCCS	V19 V20	O	SDDACK# SDRDY
B09	0	DTR2#	E19 E20	IO	AD17	K12 K15	P P	VCC	R10	P P	VCCS	W01	IO	SA00 / SDD0
B10	I	RXD2	F01	I	MCS16#	K15	IO	AD06	R11	P	VCCS	W01	Ю	SD02
B10		RTS1#	F02		SBHE#	K10	IO	AD05	R12	P	VCCH	W02	Ю	SD02 SD04 / KBIN3
B12		RXD1	F03	I	IOCS16#	K18	IO	AD04	R13	P	GNDH	W04	IO	SD07 / KBIN6
B13	Ī	ACK# / DS1#	F04	I	IOCHCK# / GPI0	K19	Ю	AD03	R14	P	VCC	W05	O	RTCX2
B14	IO	PD3 / RDATA#	F05	I	IRQ7	K20	Ю	AD02	R15	P	GND	W06	I	PWRGD
B15	Ю	PD0 / INDEX#	F06	P	GND	L01	I	IRO14	R16	Ю	PDD12	W07	OD	STPCLK#
B16	O	PCIRST#	F07	P	VCC	L02	О	DACK0#/IA	R17	Ю	PDD03	W08	OD	1
B17	I	PIRQD#	F08	P	GNDU	L03	I	DRQ0	R18	Ю	PDD11	W09	O	SUSB# / GPO2
B18	IO	AD29	F09	P	VCCU	L04	0	DACK5#/MI	R19	IO	PDD04	W10	Ĭ	SMBALRT#/GPI6
B19		AD27	F10	P	VCC	L05	IO	SD08	R20	IO	PDD10	W11	I	IRQ8#/GPI1
B20 C01	IO I	AD24 ROMCS#/KBCS#	F11 F12	P P	GND VCC	L06 L09	P P	GND GND	T01 T02	IO IO	SA09 / SDD9 SA08 / SDD8	W12 W13	IO I	PCKRUN# TSENS1
C02	Ю	IOW#	F13	P	VCC	L10	P	GND	T03	IO	SA07 / SDD7	W13	Ī	VSENS3 (5V)
C03	I	USBCLK	F14	P	VCC	L11	P	GND	T04	IO	SA06 / SDD6	W15	Ī	JBY / GPI22
C04	Ю	USBP1+	F15	P	GND	L12	P	GND	T05	О	XDIR/O12/PCS0#	W16	I	JAB1
C05	Ю	MSDT / IRQ12	F16	Ю	AD16	L15	P	GND	T06	OD	INIT	W17	I	JBB1
C06	I	DSKCHG#	F17	Ю	CBE2#	L16	Ю	AD01	T07	OD	SLP# / GPO7	W18	I	ACBTCK
C07	O	HDSEL#	F18	Ю	FRAME#	L17	Ю	AD00	T08	О	GPO0 / SLOWCLK	W19	O	SDIOR#
C08	O	MTR1#	F19	Ю	IRDY#	L18	О	PREQ#	T09	Ю	SMBDATA	W20	O	SDIOW#
C09	I	RI2#	F20	IO	TRDY#	L19	I	PGNT#	T10	O	SUSCLK / APICD1	Y01	IO	SD00
C10	I	DSR2# CTS1#	G01	I	IRO6/I4/SLPBTN#	L20	O	PDCS1#	T11	I I	THRM / PME# / GI5	Y02		SD01 SD03
C11 C12	I I	DSR1#	G02 G03	I	IRO5 IRQ4	M01 M02		DRO5 SD09	T12 T13	P	FAN1 VREF	Y03 Y04	Ю	SD05 SD06 / KBIN5
C13	Ī	BUSY / MTR1#	G04	Ī	IRO3	M03	O	DACK6#/UA		IO	GPIOA/8/GPOWE#	Y05	I	RTCX1
C14	IO	PD4 / DSKCHG#	G05	Ō	DACK2#/I13/O25/OC0#		IO	SD10	T15	I	JAB2	Y06	P	VBAT
C15		PINIT# / DIR#	G06	P	GND	M05	I	DRQ6	T16	Ю	PDD05	Y07		A20M#
C16	IO	AUTOFD#/DRV0	G15	P	GND	M06	P	VCC	T17	Ю	PDD09	Y08		IGNNE#
C17	I	PIRQC#	G16	Ю	DEVSEL#	M09	P	GND	T18	Ю	PDD06	Y09	O	SUSC#
C18	Ю	AD30	G17	Ю	STOP#	M10	P	GND	T19	Ю	PDD08	Y10	IOD	EXTSMI#
C19	IO	CBE3#	G18	I	SERR#	M11	P	GND	T20	Ю	PDD07	Y11	I	PWRBTN#
C20		IDSEL	G19	Ю	PAR	M12	P	GND	U01	Ю	SA05 / SDD5	Y12	O	CPUSTP#/GPO4
D01		IOR#	G20	IO	CBE1#	M15	P	VCC	U02	IO	SA04 / SDD4	Y13	I	TSENS2
D02		DACK3#/ACIRO	H01	0	TC	M16	0	PDCS3#	U03	IO	SA03 / SDD3	Y14	I	VSENS4 (12V)
D03 D04		DRQ3 USBP1-	H02 H03	O I	BALE DRQ2/I12/O24/SQ/OC1	M17 M18	0	PDA0 PDA2	U04 U05	IO O	MEMR# SOE#/O13/MCCS#	Y15 Y16	O	JAY / GPO22 ACSDO
D04 D05	IO	MSCK / IRQ1	H04	I	IRO9	M18	0	PDA2 PDA1	U05	OD	SMI#	Y17	I	ACSDI2
D03	0	DRVDEN1	H05	Ó	BCLK	M20	ő	PDDACK#	U07	OD	NMI	Y18	Ó	MSO
D07	I	INDEX#	H06	P	VCC	N01	Ю	SD11	U08	IO	GPIOD/SO#/MCCS#	Y19	I	MSI
D08	Ô	DIR#	H15	P	VCC	N02	ő	DACK7#/UB	U09	IO	SMBCLK	Y20	Î	SDDRO
D09	O	DRVDEN0	H16	Ю	AD15	N03	Ю	SD12	U10	I	LID / GPI3 / WSC#			
D10	O	TXD2	H17		AD14	N04	I	DRQ7	U11	I	BATLOW#/GPI2			
D11	O	DTR1#	H18	IO	AD13	N05	IO	SD13	U12	Ю	FAN2/GPIOB(9)			

Figure 4. VT82C686B Pin List (Alphabetical Order)

Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name	Pin		Pin Name
Y07	OD	A20M#	N04	I	DRO7	K05	I	IRO15	A16	I	PIROA#	T07	OD	SLP# / GPO7
B13	I	ACK# / DS1#	D09	_	DRVDEN0	D12		IRRX / GPO15	D17	I	PIROB#	W10	I	SMBALRT# / GPI6
W18		ACBTCK	D06	О	DRVDEN1	E12		IRTX / GPO14	C17	I	PIRQC#	U09	Ю	SMBCLK
U15		ACRST	B08	_	DS0#	W16		JAB1	B17	_I_	PIROD#	T09	IO	SMBDATA SMEMB#
V17		ACSDI	A08	O	DS1#	T15		JAB2	L18		PREQ#	A01	0	SMEMR#
Y17 Y16		ACSDI2 ACSDO	C06 C12	I	DSKCHG# DSR1#	V15 Y15	I I	JAX / GPO23 JAY / GPO22	Y11 W06	I I	PWRBTN# PWRGD	B01 U06	OD	SMEMW# SMI#
V16		ACSYNC	C12	Ī	DSR1# DSR2#	W17	_	JBB1	B06	I	RDATA#	U05	o	SOE#/GPO13/MCCS#
L17	Ю	AD00	D11	_	DTR1#	U16		JBB2	E03		RFSH#	V05	Ю	SPKR
L16		AD01	B09		DTR2#	U14		JBX / GPI23	E11	I	RI1#	E08	0	STEP#
K20	Ю	AD02	A15	I	ERROR#/HDSEL#	W15	I	JBY / GPI22	C09	I	RI2#	G17	Ю	STOP#
K19	Ю	AD03	Y10	IOD	EXTSMI#	E05	Ю	KBCK / A20G	V11	I	RING# / GPI7	W07	OD	STPCLK#
K18		AD04	T12	i	FAN1	A05	IO	KBDT / KBRC	C01	O	ROMCS#/KBCS#	D16	IO	STROBE#
K17	IO	AD05	U12	IO	FAN2/GPIOB(9)	J05	IO	LA20	V06	I	RSMRST#	V09	0	SUSA# / O1 / APICD0
K16		AD06	V07	I	FERR#	J04 J03		LA21	J01	0	RSTDRV	W09	0	SUSB# / GPO2
J20 J18		AD07 AD08	F18 F06	IO P	FRAME# GND	J03 J02		LA22 LA23	Y05 W05	I O	RTCX1 RTCX2	Y09 T10	0	SUSC# SUSCLK / APICD1
J17		AD08 AD09	F11	P	GND	U10		LID/GPI3/WSC#	B11		RTS1#	V10	Ö	SUSST1# / GPO3
J16	IO	AD10	F15	P	GND	F01		MCS16#	E10	ŏ	RTS2#	H01	O	TC
H20		AD11	G06	P	GND	U04		MEMR#	B12	I	RXD1	T11	Ĭ	THRM / PME# / GI5
H19		AD12	G15	P	GND	V04	Ю	MEMW#	B10	I	RXD2	F20	Ю	TRDY#
H18	Ю	AD13	J09	P	GND	D05	Ю	MSCK / IRQ1	W01	Ю	SA00 / SDD0	E07	I	TRK00#
H17	Ю	AD14	J10	P	GND	C05		MSDT / IRO12	V02	Ю	SA01 / SDD1	W13	I	TSENS1
H16		AD15	J11	P	GND	Y19	I	MSI	V01	Ю	SA02 / SDD2	Y13	I	TSENS2
F16		AD16	J12	P	GND	Y18	1	MSO	U03		SA03 / SDD3	A11	0	TXD1
E20		AD17	K09	P	GND	E09		MTR0# MTR1#	U02	IO	SA04 / SDD4	D10	0	TXD2
E19 E18	IO IO	AD18 AD19	K10	P P	GND GND	C08 U07		NMI	U01 T04		SA05 / SDD5 SA06 / SDD6	C03 B03	IO	USBCLK USBP0-
E17		AD19 AD20	K11 K12	P	GND	E04	I	OSC	T03		SA00 / SDD0 SA07 / SDD7	A03	IO	USBP0+
D20		AD21	L06	P	GND	G19	Ю	PAR	T02		SA08 / SDD8	D04	IO	USBP1-
D19		AD22	L09	P	GND	W12	IO	PCKRUN#	T01		SA09 / SDD9	C04	IO	USBP1+
D18		AD23	L10	P	GND	E16	I	PCLK	R05		SA10 / SDD10	B04	Ю	USBP2-
B20	Ю	AD24	L11	P	GND	B16	О	PCIRST#	R04	Ю	SA11 / SDD11	A04	Ю	USBP2+
A20	Ю	AD25	L12	P	GND	V12	О	PCISTP#/GPO5	R03	Ю	SA12 / SDD12	E06	Ю	USBP3-
A19		AD26	L15	P	GND	B15	Ю	PD0 / INDEX#	R02		SA13 / SDD13	B05	Ю	
B19		AD27	M09	P	GND	D15		PD1 / TRK00#	R01		SA14 / SDD14	Y06		VBAT
A18	IO	AD28	M10	P	GND	A14	IO	PD2 / WRTPRT#	P05	IO	SA15 / SDD15	F07	P	VCC
B18 C18		AD29 AD30	M11 M12	P P	GND GND	B14 C14	IO	PD3 / RDATA# PD4 / DSKCHG#	P04 P03	IO IO	SA16 SA17	F10 F12	P P	VCC VCC
A17		AD31	P06	P	GND	D14		PD5	K02		SA17 SA18	F13	P	VCC
B02	0	AEN	P15	P	GND	E14	Ю	PD6	K01	Ю	i	F14	P	VCC
C16	ΙÖ	AUTOFD#/DR0	R06	P	GND	A13	IO	PD7	F02		SBHE#	H06	P	VCC
H02	О	BALE	R15	P	GND	M17	О	PDA0	Y01	Ю	SD00	H15	P	VCC
U11	I	BATLOW#/GPI2	R13	P	GNDH	M19	О	PDA1	Y02	Ю	SD01	J06	P	VCC
H05	О	BCLK	F08	P	GNDU	M18	О	PDA2	W02		SD02	J15	P	VCC
C13	I	BUSY / MTR1#	T14	IO	GPIOA(8)/GPOWE#	L20	0	PDCS1#	Y03	IO	SD03	K06	P	VCC
J19		CBE0#	V14	IO	GPIOC(10)/CHAS	M16	0	PDCS3#	W03	IO	SD04 / KBIN3	K15	P	VCC
G20	IO	CBE1#	U08	IO O	GPIOD(11)/MCCS# GPO0 / SLOWCLK	P16	IO	PDD00	V03	IO	SD05 / KBIN4	M06	P	VCC
F17 C19		CBE2# CBE3#	T08 C07		HDSEL#	P18 P20		PDD01 PDD02	Y04 W04	IO IO	SD06 / KBIN5 SD07 / KBIN6	M15 N06	P P	VCC VCC
V08		CPURST	C20		IDSEL#	R17		PDD03	L05		SD077 KBINO SD08	N15	P	VCC
Y12		CPUSTP#/GPO4	Y08		IGNNE#	R19		PDD04	M02		SD09	R07	P	VCC
C11		CTS1#	D07	I	INDEX#	T16	Ю	PDD05	M04		SD10	R08	P	VCC
A09	I	CTS2#	T06	OD	INIT	T18	Ю	PDD06	N01	Ю	SD11	R11	P	VCC
L02		DACK0#/IDEA	W08	i	INTR	T20	Ю	PDD07	N03	Ю	SD12	R14	P	VCC
E01		DACK1#/IDEB	F04	I	IOCHCK# / GPI0	T19	IO	PDD08	N05		SD13	R12	P	VCCH
G05		DAK2#/I13/O25	A02	I	IOCHRDY	T17	IO	PDD09	P01		SD14	R09		VCCS
D02		DACK5#/AIRO	F03	I	IOCS16#	R20	IO	PDD10	P02	IO		R10	P	VCCS
L04 M03		DACK5#/MIRO DACK6#/USBIA	D01 C02		IOR# IOW#	R18 R16	IO	PDD11 PDD12	U19 V18		SDA0 SDA1	F09 T13		VCCU VREF
N02		DACKO#/USBIA DACK7#/USBIB	F19		IRDY#	P19	IO	PDD12 PDD13	U20	Ö	SDA1 SDA2	U13	I	VSENS1 (2.0V)
A12		DCD1#	G04	I	IRO3	P17	Ю	PDD14	U17		SDCS1#	V13	Ī	VSENS2 (2.2V)
A10	Ì	DCD2#	G03	Ī	IRQ4	N20	IO	PDD15	U18	ŏ	SDCS3#	W14	Ī	VSENS3 (5V)
G16	Ю	DEVSEL#	G02	I	IRO5	M20	О	PDDACK#	V19	O	SDDACK#	Y14	I	VSENS4 (12V)
D08	:	DIR#	G01	I	IRO6/I4/SLPBTN#	N19	I	PDDRO	Y20	I	SDDRO	A07	О	WDATA#
L03		DRO0	F05	I	IRO7	N17	О	PDIOR#	W19	O	SDIOR#	B07	О	WGATE#
E02		DRO1	W11	I	IRO8# / GPI1	N18	0	PDIOW#	W20	O	SDIOW#	A06	I	WRTPRT#
H03	I	D2/I12/O24/SQ	H04	I	IRQ9	N16	I	PDRDY	V20	Ĭ	SDRDY	T05	О	XDIR/GPO12/PCS0#
D03		DRQ3	K03	I	IRQ10	D13	I	PE / WDATA#	G18	I	SERR#			
M01		DRQ5	K04	I	IRQ11	L19	I	PGNT#	E13	I	SLCT / WGATE#			
M05	1	DRQ6	L01	I	IRQ14	C15	IO	PINIT# / DIR#	E15	IU	SLCTIN#/STEP#			I

Pin Descriptions

Table 1. Pin Descriptions

	PCI Bus Interface										
Signal Name	Pin #	I/O	Signal Description								
AD[31:0]	(see pin list)	Ю	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.								
C/BE[3:0]#	C19, F17, G20, J19	Ю	Command/Byte Enable. The command is driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.								
FRAME#	F18	Ю	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.								
IRDY#	F19	IO	Initiator Ready. Asserted when the initiator is ready for data transfer.								
TRDY#	F20	IO	Target Ready. Asserted when the target is ready for data transfer.								
STOP#	G17	IO	Stop. Asserted by the target to request the master to stop the current transaction.								
DEVSEL#	G16	Ю	Device Select. The VT82C686B asserts this signal to claim PCI transactions through positive or subtractive decoding. As an input, DEVSEL# indicates the response to a VT82C686B-initiated transaction and is also sampled when decoding whether to subtractively decode the cycle.								
PAR	G19	IO	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0]#.								
SERR#	G18	I	System Error. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, the VT82C686B can be programmed to generate an NMI to the CPU.								
IDSEL	C20	I	Initialization Device Select. IDSEL is used as a chip select during configuration read and write cycles. Connect this pin to AD18 using a 100Ω resistor.								
PIRQA-D#	A16, D17, C17, B17	I	PCI Interrupt Request. These pins are typically connected to the PCI bus INTA#-INTD# pins as follows: PIRQA# PIRQB# PIRQC# PIRQD# PCI Slot 1 INTA# INTB# INTC# INTD# PCI Slot 2 INTB# INTC# INTD# INTA# PCI Slot 3 INTC# INTD# INTA# INTB# PCI Slot 4 INTD# INTA# INTB# INTC#								
PREQ#	L18	О	PCI Request. This signal goes to the North Bridge to request the PCI bus.								
PGNT#	L19	I	PCI Grant. This signal is driven by the North Bridge to grant PCI access to the VT82C686B.								
PCLK	E16	I	PCI Clock. PCLK provides timing for all transactions on the PCI Bus.								
PCKRUN#	W12	Ю	PCI Bus Clock Run. This signal indicates whether the PCI clock is or will be stopped (high) or running (low). The VT82C686B drives this signal low when the PCI clock is running (default on reset) and releases it when it stops the PCI clock. External devices may assert this signal low to request that the PCI clock be restarted or prevent it from stopping. Connect this pin to ground using a 100 Ω resistor if the function is not used. Refer to the "PCI Mobile Design Guide" and the VIA "Apollo MVP4 Design Guide" for more details.								
PCIRST#	B16	О	PCI Reset. Active low reset signal for the PCI bus. The VT82C686B will assert this pin during power-up or from the control register.								

			CPU Interface
Signal Name	Pin#	I/O	Signal Description
CPURST	V8	OD	CPU Reset. The VT82C686B asserts CPURST to reset the CPU during power-up.
INTR	W8	OD	CPU Interrupt. INTR is driven by the VT82C686B to signal the CPU that an interrupt request is pending and needs service.
NMI	U7	OD	Non-Maskable Interrupt. NMI is used to force a non-maskable interrupt to the CPU. The VT82C686B generates an NMI when either SERR# or IOCHK# is asserted.
INIT	Т6	OD	Initialization. The VT82C686B asserts INIT if it detects a shut-down special cycle on the PCI bus or if a soft reset is initiated by the register
STPCLK#	W7	OD	Stop Clock. STPCLK# is asserted by the VT82C686B to the CPU to throttle the processor clock.
SMI#	U6	OD	System Management Interrupt. SMI# is asserted by the VT82C686B to the CPU in response to different Power-Management events.
FERR#	V7	I	Numerical Coprocessor Error. This signal is tied to the coprocessor error signal on the CPU. Internally generates interrupt 13 if active.
IGNNE#	Y8	OD	Ignore Numeric Error. This pin is connected to the "ignore error" pin on the CPU.
SLP# / GPO7	Т7	OD	Sleep (Rx75[7] = 0). Used to put the CPU to sleep. Used with slot-1 CPUs only. Not currently used with socket-7 CPUs.
A20M#	Y7	OD	A20 Mask. Connect to A20 mask input of the CPU to control address bit-20 generation. Logical combination of the A20GATE input (from internal or external keyboard controller) and Port 92 bit-1 (Fast_A20).

Note: Connect each of the above signals to 4.7K Ω pullup resistors to VCC3.

Advanced Programmable Interrupt Controller (APIC)									
Signal Name	Pin#	I/O	Signal Description						
WSC# / GPI3 / LID	U10	I	Write Snoop Complete. Asserted by the north bridge to indicate that all snoop activity on the CPU bus initiated by the last PCI-to-DRAM write is complete and that it is safe to perform an APIC interrupt.						
APICD0 / GPO1 / SUSA#	V9	IO	APIC Data 0.						
APICD1 / SUSCLK	T10	IO	APIC Data 1.						

For programming information, refer to Function 0 Rx74,77, Function 4 Rx54[3-2], and Memory Mapped / Indexed APIC registers. Rx77[4] is "Internal APIC Enable".

The clock source used by the chip to clock the internal I/O APIC is OSC (14.31818 MHz), so OSC must be externally connected to the CPU I/O APIC clock input.

	Unive	rsal S	erial Bus Interface
Signal Name	Pin#	I/O	Signal Description
USBP0+	A3	IO	USB Port 0 Data +
USBP0-	В3	IO	USB Port 0 Data -
USBP1+	C4	IO	USB Port 1 Data +
USBP1-	D4	IO	USB Port 1 Data -
USBP2+	A4	IO	USB Port 2 Data +
USBP2-	B4	IO	USB Port 2 Data -
USBP3+	B5	IO	USB Port 3 Data +
USBP3-	E6	IO	USB Port 3 Data -
USBCLK	C3	I	USB Clock. 48MHz clock input for the USB interface
USBOC0# / GPO25 / DACK2# / FDCIRQ	G5	I	USB Port 0 Over Current Detect. Port 0 is disabled if low. USBOC0# if $Rx76[7] = 1$ and $Rx76[6] = 0$
USBOC1# / GPO24 / DRQ2 / FDCDRQ / SERIRQ	НЗ	I	USB Port 1 Over Current Detect. Port 1 is disabled if this input is low. Direct inputs are provided for overcurrent protection for ports 0 and 1 which may be used if the alternate functions of these two pins are not required. If overcurrent protection is desired on all four ports (or it is desired to use the alternate functions of these two pins), an external buffer may be used to drive the state of USBOC[3-0]# onto SD[3-0] during ISA bus refresh cycles (i.e., while ISA bus RFSH# is low, so that RFSH# may be used as the buffer enable). USCOC1# if Rx76[7] = 1 and Rx76[6] = 0.
USBOC0# (SD2 & RFSH#)	(W2)	I	USB Port 0 Over Current Detect
USBOC1# (SD1 & RFSH#)	(Y2)	I	USB Port 1 Over Current Detect
USBOC2# (SD0 & RFSH#)	(Y1)	I	USB Port 2 Over Current Detect
USBOC3# (SD3 & RFSH#)	(Y3)	I	USB Port 3 Over Current Detect
USBIRQA / DACK6#	M3	O	USB Interrupt Request A. Output of internal block.
USBIRQB / DACK7#	N2	О	USB Interrupt Request B. Output of internal block.

System Management Bus (SMB) Interface (I ² C Bus)					
Signal Name	Pin#	I/O	Signal Description		
SMBCLK	U9	IO	SMB / I ² C Clock.		
SMBDATA	Т9	IO	SMB / I ² C Data.		
SMBALRT# / GPI6	W10	Ι	SMB Alert. (System Management Bus I/O space Rx08[3] = 1) When the chip is enabled to allow it, assertion generates an IRQ or SMI interrupt or a power management resume event. The same pin is used as General Purpose Input 6 whose value is reflected in Rx48[6] of function 4 I/O space		

	UltraDMA-33 / 66 / 100 Enhanced IDE Interface					
Signal Name	Pin #	I/O	Signal Description			
PDRDY / PDDMARDY / PDSTROBE	N16	I	EIDE Mode: Primary I/O Channel Ready. Device ready indicator UltraDMA Mode: Primary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Primary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers			
SDRDY / SDDMARDY / SDSTROBE	V20	I	EIDE Mode: Secondary I/O Channel Ready. Device ready indicator UltraDMA Mode: Secondary Device DMA Ready. Output flow control. The device may assert DDMARDY to pause output transfers Secondary Device Strobe. Input data strobe (both edges). The device may stop DSTROBE to pause input data transfers			
PDIOR# / PHDMARDY / PHSTROBE	N17	O	EIDE Mode: Primary Device I/O Read. Device read strobe UltraDMA Mode: Primary Host DMA Ready. Primary channel input flow control. The host may assert HDMARDY to pause input transfers Primary Host Strobe. Output data strobe (both edges). The host may stop HSTROBE to pause output data transfers			
SDIOR# / SHDMARDY / SHSTROBE	W19	O	EIDE Mode: Secondary Device I/O Read. Device read strobe UltraDMA Mode: Secondary Host DMA Ready. Input flow control. The host may assert HDMARDY to pause input transfers Host Strobe B. Output strobe (both edges). The host may stop HSTROBE to pause output data transfers			
PDIOW# / PSTOP	N18	O	EIDE Mode: Primary Device I/O Write. Device write strobe UltraDMA Mode: Primary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.			
SDIOW#/ SSTOP	W20	0	EIDE Mode: Secondary Device I/O Write. Device write strobe UltraDMA Mode: Secondary Stop. Stop transfer: Asserted by the host prior to initiation of an UltraDMA burst; negated by the host before data is transferred in an UltraDMA burst. Assertion of STOP by the host during or after data transfer in UltraDMA mode signals the termination of the burst.			
PDDRQ	N19	I	Primary Device DMA Request. Primary channel DMA request			
SDDRQ	Y20	I	Secondary Device DMA Request. Secondary channel DMA request			
PDDACK#	M20	О	Primary Device DMA Acknowledge. Primary channel DMA acknowledge			
SDDACK#	V19	О	Secondary Device DMA Acknowledge. Secondary channel DMA acknowledge			
IRQ14	L1	I	Primary Channel Interrupt.			
IRQ15	K5	I	Secondary Channel Interrupt.			

UltraDMA-33 / 66 / 100 Enhanced IDE Interface (continued)							
Signal Name	Pin #	I/O	Signal Description				
PDCS1#	L20	О	Primary Master Chip Select. This signal corresponds to CS1FX# on the primary IDE connector.				
PDCS3#	M16	О	Primary Slave Chip Select. This signal corresponds to CS3FX# on the primary IDE connector.				
SDCS1#	U17	О	Secondary Master Chip Select. This signal corresponds to CS17X# on the secondary IDE connector.				
SDCS3#	U18	О	Secondary Slave Chip Select. This signal corresponds to CS37X# on the secondary IDE connector.				
PDA[2-0]	M18, M19, M17	О	Primary Disk Address. PDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.				
SDA[2-0]	U20, V18, U19	О	Secondary Disk Address. SDA[2:0] are used to indicate which byte in either the ATA command block or control block is being accessed.				
PDD[15-0]	N20, P17, P19, R16, R18, R20, T17, T19, T20, T18, T16, R19, R17, P20, P18, P16	IO	Primary Disk Data				
SDD[15-0] / SA[15-0]	P5, R1-R5, T1-T4, U1-U3, V1, V2, W1	Ю	Secondary Disk Data muxed with ISA Bus Address.				
IDEIRQA / DACK0#	L2	О	IDE Interrupt Request A. Output of internal block.				
IDEIRQB / DACK1#	E1	О	IDE Interrupt Request B. Output of internal block.				

MIDI Interface					
Signal Name Pin # I/O Signal Description					
MSI	Y19	I	MIDI Serial In		
MSO	Y18	О	MIDI Serial Out		

AC97 Audio / Modem Interface					
Signal Name	Pin#	I/O	Signal Description		
ACRST	U15	0	AC97 Reset		
ACSDOUT	Y16	О	AC97 Serial Data Out		
ACSYNC	V16	О	AC97 Sync		
ACSDIN2	Y17	I	AC97 Serial Data In 2		
ACSDIN	V17	I	AC97 Serial Data In		
ACBTCK	W18	I	AC97 Bit Clock		
AC97IRQ / DACK3#	D2	О	AC97 Interrupt Request. Output of internal block.		
MC97IRQ / DACK5#	L4	О	MC97 Interrupt Request. Output of internal block. Rx77[7] = 1, Rx77[3] = 1,		
/ SERIRQ / GPO19			Rx74[6] = 0.		

Game Port Interface					
Signal Name	Pin #	I/O	Signal Description		
JAB1	W16	I	Joystick A Button 1		
JAB2	T15	I	Joystick A Button 2		
JBB1	W17	I	Joystick B Button 1		
JBB2	U16	I	Joystick B Button 2		
JAX / GPO23	V15	I	Joystick A X-axis		
JAY / GPO22	Y15	I	Joystick A Y-axis		
JBX / GPI23	U14	I	Joystick B X-axis		
JBY / GPI22	W15	I	Joystick B Y-axis		

See Function 0 Rx77[6]

Floppy Disk Interface				
Signal Name	Pin#	I/O	Signal Description	
DRVDEN0	D9	О	Drive Density Select 0.	
DRVDEN1	D6	О	Drive Density Select 1.	
MTR0#	E9	О	Motor Control 0. Select motor on drive 0.	
MTR1#	C8	О	Motor Control 1. Select motor on drive 1	
DS0#	B8	О	Drive Select 0. Select drive 0.	
DS1#	A8	О	Drive Select 1. Select drive 1	
DIR#	D8	О	Direction. Direction of head movement $(0 = \text{inward motion}, 1 = \text{outward motion})$	
STEP#	E8	О	Step. Low pulse for each track-to-track movement of the head.	
INDEX#	D7	I	Index. Sense to detect that the head is positioned over the beginning of a track	
HDSEL#	C7	0	Head Select. Selects the side for R/W operations $(0 = \text{side } 1, 1 = \text{side } 0)$	
TRK00#	E7	I	Track 0. Sense to detect that the head is positioned over track 0.	
RDATA#	B6	I	Read Data. Raw serial bit stream from the drive for read operatrions.	
WDATA#	A7	Ο	Write Data. Encoded data to the drive for write operations.	
WGATE#	В7	0	Write Gate. Signal to the drive to enable current flow in the write head.	
DSKCHG#	C6	Ι	Disk Change. Sense that the drive door is open or the diskette has been changed since the last drive selection.	
WRTPRT#	A6	Ι	Write Protect. Sense for detection that the diskette is write protected (causes write commands to be ignored)	
FDCIRQ / DACK2# / USBOC0# / GPO25	G5	I	FDC Interrupt Request. $Rx75[2] = 0$.	
FDCDRQ / DRQ2 / USBOC1# / GPO24 / SERIRQ	Н3	I	FDC DMA Request. $Rx75[3] = 1$.	

Parallel Port Interface					
Signal Name	Pin#	I/O	Signal Description		
PINIT# / DIR#	C15	IO / O	Initialize. Initialize printer. Output in standard mode, I/O in ECP/EPP mode.		
STROBE# / nc	D16	IO / -	Strobe. Output used to strobe data into the printer. I/O in ECP/EPP mode.		
AUTOFD# / DRVEN0	C16	IO / O	Auto Feed. Output used to cause the printer to automatically feed one line after		
CL CONTU / CTCD#	F15	10 / 0	each line is printed. I/O pin in ECP/EPP mode.		
SLCTIN# / STEP#	E15	IO / O	Select In. Output used to select the printer. I/O pin in ECP/EPP mode.		
SLCT / WGATE#	E13	I/O	Select. Status output from the printer. High indicates that it is powered on.		
ACK#/DS1#	B13	I/O	Acknowledge. Status output from the printer. Low indicates that it has received		
			the data and is ready to accept new data		
ERROR# / HDSEL#	A15	I/O	Error. Status output from the printer. Low indicates an error condition in the		
			printer.		
BUSY / MTR1#	C13	I/O	Busy. Status output from the printer. High indicates not ready to accept data.		
PE / WDATA#	D13	I/O	Paper End. Status output from the printer. High indicates that it is out of paper.		
PD7 / nc,	A13,	IO / -	Parallel Port Data.		
PD6 / nc,	E14,	IO / -			
PD5 / nc,	D14,	IO / -			
PD4 / DSKCHG#,	C14,	IO / I			
PD3 / RDATA#,	B14,	IO / I			
PD2 / WRTPRT#,	A14,	IO / I			
PD1 / TRK00#,	D15,	IO / I			
PD0 / INDEX#	B15	IO / I			

As shown by the alternate functions above, in mobile applications the parallel port pins can optionally be selected to function as a floppy disk interface for attachment of an external floppy drive using the parallel port connector (see Super I/O Configuration Index F6[5]).

	Serial Ports and Infrared Interface					
Signal Name	Pin#	I/O	Signal Description			
TXD1	A11	О	Transmit Data 1. Serial port 1 transmit data out.			
TXD2	D10	О	Transmit Data 2. Serial port 2 transmit data out.			
IRTX / GPO14	E12	О	Infrared Transmit. IR transmit data out $(Rx76[5] = 0)$ from serial port 2. General Purpose Output 14 if $Rx76[5] = 1$			
RXD1	B12	I	Receive Data 1. Serial port 1 receive data in.			
RXD2	B10	I	Receive Data 2. Serial port 2 receive data in.			
IRRX / GPO15	D12	IO	Infrared Receive. IR receive data in $(Rx76[5] = 0)$ to serial port 2. General Purpose Output 15 if $Rx76[5] = 1$			
RTS1#	B11	О	Request To Send 1. Indicator that serial output port 1 is ready to transmit data. Typically used as hardware handshake with CTS1# for low level flow control. Designed for direct input to external RS-232C driver.			
RTS2##	E10	О	Request To Send 2. Indicator that serial output port 2 is ready to transmit data. Typically used as hardware handshake with CTS2# for low level flow control. Designed for direct input to external RS-232C driver.			
CTS1#	C11	I	Clear To Send 1. Indicator to serial port 1 that external communications device is ready to receive data. Typically used as hardware handshake with RTS1# for low level flow control. Designed for input from external RS-232C receiver.			
CTS2#	A9	I	Clear To Send 2. Indicator to serial port 2 that external communications device is ready to receive data. Typically used as hardware handshake with RTS2# for low level flow control. Designed for input from external RS-232C receiver.			
DTR1#	D11	О	Data Terminal Ready 1. Serial port 1 indicator that port is powered, initialized, and ready. Typically used as hardware handshake with DSR1# for overall readiness to communicate. Designed for direct input to external RS-232C driver.			
DTR2#	В9	О	Data Terminal Ready 2. Serial port 2 indicator that port is powered, initialized, and ready. Typically used as hardware handshake with DSR2# for overall readiness to communicate. Designed for direct input to external RS-232C driver.			
DSR1#	C12	I	Data Set Ready 1. Indicator to serial port 1 that external serial communications device is powered, initialized, and ready. Typically used as hardware handshake with DTR1# for overall readiness to communicate. Designed for direct input from external RS-232C receiver.			
DSR2#	C10	I	Data Set Ready 2. Indicator to serial port 2 that external serial communications device is powered, initialized, and ready. Typically used as hardware handshake with DTR2# for overall readiness to communicate. Designed for direct input from external RS-232C receiver.			
DCD1#	A12	I	Data Carrier Detect 1. Indicator to serial port 1 that external modem is detecting a carrier signal (i.e., a communications channel is currently open). In direct connect environments, this input will typically be driven by DTR1# as part of the DTR/DSR handshake. Designed for direct input from external RS-232C receiver.			
DCD2#	A10	I	Data Carrier Detect 2. Indicator to serial port 2 that external modem is detecting a carrier signal (i.e., a communications channel is currently open). In direct connect environments, this input will typically be driven by DTR2# as part of the DTR/DSR handshake. Designed for direct input from external RS-232C receiver.			
RI1#	E11	I	Ring Indicator 1. Indicator to serial port 1 that external modem is detecting a ring condition. Used by software to initiate operations to answer and open the communications channel. Designed for direct input from external RS-232C receiver (whose input is typically not connected in direct connect environments).			
RI2#	C9	I	Ring Indicator 2. Indicator to serial port 2 that external modem is detecting a ring condition. Used by software to initiate operations to answer and open the communications channel. Designed for direct input from external RS-232C receiver (whose input is typically not connected in direct connect environments).			

	ISA Bus Interface					
Signal Name	Pin #	I/O	Signal Description			
SA[19:16], SA[15-0] / SDD[15-0]	K1, K2, P3, P4, P5, R1, R2, R3, R4, R5, T1, T2, T3, T4, U1, U2, U3, V1, V2, W1	IO IO	System Address Bus. SA[19-16] are connected to ISA bus SA[19-16] directly. SA[19-17] are also connected to LA[19-17] of the ISA bus. If the audio interface is disabled (SPKR pin strapped low), SA[15-0] are connected directly to ISA address bus pins SA[15-0] (the audio interface pins are used for the IDE secondary data bus). If the audio interface is enabled (SPKR pin strapped high), SA[15-0] are multiplexed with the IDE Secondary Data Bus. In this case, SA[15-0] may be connected to both SDD[15-0] and ISA bus SA[15-0]. However, if ISA address bus loading is a concern, 74F245 transceivers may be used to externally drive ISA address bus pins SA[15-0]. In this case, these pins would connect directly to the IDE secondary data bus and to the transceiver "A" pins and the ISA address bus would connect to the transceiver "B" pins. SOE# would be used to control the transceiver output enables and the ISA bus MASTER# signal would drive the transceiver direction controls.			
LA[23:20]	J2, J3, J4, J5	IO	System "Latched" Address Bus : The LA[23:20] address lines are bi-directional. These address lines allow accesses to physical memory on the ISA bus up to 16Mbytes. LA[19-17] on the ISA bus are connected to SA[19-17] (see notes above).			
SD[15:0]	P2, P1, N5, N3, N1, M4, M2, L5, W4, Y4, V3, W3, Y3, W2, Y2, Y1	Ю	System Data. SD[15:0] provide the data path for devices residing on the ISA bus. X-Bus data signals XD[7:0] may be derived if needed from SD[7:0] using an external 74F245-type transceiver (see the XDIR pin description for transceiver connection details). SD7:4 are strap options for keyboard inputs 6:3 (see Function 0 Rx5A)			
SBHE#	F2	Ю	System Byte High Enable. SBHE# indicates, when asserted, that a byte is being transferred on the upper byte (SD[15:8]) of the data bus. SBHE# is negated during refresh cycles.			
IOR#	D1	Ю	I/O Read. IOR# is the command to an ISA I/O slave device that the slave may drive data on to the ISA data bus.			
IOW#	C2	Ю	I/O Write. IOW# is the command to an ISA I/O slave device that the slave may latch data from the ISA data bus.			
MEMR#	U4	IO	Memory Read. MEMR# is the command to a memory slave that it may drive data onto the ISA data bus.			
MEMW#	V4	Ю	Memory Write. MEMW# is the command to a memory slave that it may latch data from the ISA data bus.			
SMEMR#	A1	О	Standard Memory Read. SMEMR# is the command to a memory slave, under 1MB, which indicates that it may drive data onto the ISA data bus			
SMEMW#	B1	О	Standard Memory Write. SMEMW# is the command to a memory slave, under 1MB, which indicates that it may latch data from the ISA data bus.			
BALE	H2	0	Bus Address Latch Enable. BALE is an active high signal asserted by the VT82C686B to indicate that the address (SA[19:0], LA[23:17] and the SBHE# signal) is valid			
IOCS16#	F3	I	16-Bit I/O Chip Select. This signal is driven by I/O devices on the ISA Bus to indicate that they support 16-bit I/O bus cycles.			
MCS16#	F1	I	Memory Chip Select 16. ISA slaves that are 16-bit memory devices drive this line low to indicate they support 16-bit memory bus cycles.			
IOCHCK#/ GPI0	F4	I	I/O Channel Check (Rx74[0] = 1). When this signal is asserted, it indicates that a parity or an uncorrectable error has occurred for an I/O or memory device on the ISA Bus. The same pin may optionally be used as General Purpose Input 0.			
IOCHRDY	A2	Ι	I/O Channel Ready (Rx74[0] = 1). This signal is normally high. Devices on the ISA Bus assert IOCHRDY low to indicate that additional time (wait states) is required to complete the cycle.			
AEN	B2	О	Address Enable. AEN is asserted during DMA cycles to prevent I/O slaves from misinterpreting DMA cycles as valid I/O cycles.			

	ISA Bus Interface (continued)					
Signal Name	Pin#	I/O	Signal Description			
RFSH#	E3	IO	Refresh. Indicates when a refresh cycle is in progress. Also driven by 16-			
			bit ISA Bus masters to indicate a refresh cycle.			
IRQ0 / GPI10 / GPO10 / GPIOC / CHAS / ATEST	V14	I	Interrupt Request 0. $(Rx77[3] = 1)$			
IRQ1 / MSCK	D5	I	Interrupt Request 1. $(Rx5A[1] = 0)$ (used for external KBC interrupt)			
IRQ3	G4	I	Interrupt Request 3. (typically used for COM2 serial port interrupt)			
IRQ4	G3	I	Interrupt Request 4. (typically used for COM1 serial port interrupt)			
IRQ5	G2	I	Interrupt Request 5.			
IRQ6 / GPI4 / SLPBTN#	G1	I	Interrupt Request 6. (typically used for FDC floppy ctrlr interrupt)			
IRQ7	F5	I	Interrupt Request 7. (typically used for LPT parallel port interrupt)			
IRQ8# / GPI1	W11	I	Interrupt Request 8 from ext RTC if int RTC disabled (Rx5A[2] = 0)			
IRQ9	H4	I	Interrupt Request 9.			
IRQ10	К3	I	Interrupt Request 10.			
IRQ11	K4	I	Interrupt Request 11.			
IRQ12 / MSDT	C5	I	Interrupt Request 12. $(Rx5A[1] = 0)$			
IRQ14	L1	I	Interrupt Request 14. (typically used for IDE primary chan interrupt)			
IRQ15	K5	I	Interrupt Request 15. (typically used for IDE secondary ch interrupt)			
DRQ7 / GPI21,	N4,	I	DMA Request. Used to request DMA services from the internal DMA			
DRQ6 / GPI20,	M5,	I	controller.			
DRQ5 / GPI19,	M1,	I				
DRQ3 / GPI18,	D3,	I				
DRQ2 / FDCDRQ / SERIRQ	Н3,	I	DRQ2: $Rx68[3] = 0 & Rx75[3] = 1 & Rx75[1] = 0$			
/ GPO24 / USBOC1#			See also Function 0 Rx77[7]			
DRQ1 / GPI17,	E2,	I				
DRQ0 / GPI16	L3	I				
DACK7# / USBIRQB / GPO21 / THRM#,	N2,	О	Acknowledge. Used by the internal DMA controller to indicate that a request for DMA service has been granted.			
DACK6# / USBIRQA / GPO20,	M3,	О				
DACK5# / MC97IRQ / GPO19 / SERIRQ,	L4,	О	DACK5#: Rx77[7] = 0			
DACK3 # / AC97IRQ / GPO18,	D2,	О				
DACK2# / USBOC0# / GPO25 / FDCIRQ	G5,	О	DACK2#: Rx68[3] = 0 & Rx75[3] = 1 & Rx75[2] = 0 See also Function 0 Rx77[7], Rx77[3], and Rx58			
DACK1# / IDEIRQB / GPO17,	E1,	О				
DACK0# / IDEIRQA / GPO16	L2	О				
TC	H1	О	Terminal Count. Terminal count indicator asserted to DMA slaves.			
SPKR	V5	О	Speaker Drive. Output of internal timer/counter 2.			
SOE# (default pin function)	U5	О	ISA Address (SA) Output Enable. Asserted low when ISA address (SA) is			
/ GPO13			valid (deasserted when SDD is valid) when SA and SDD are multiplexed on			
/ MCCS#			SA pins 15-0 (i.e., when SPKR is strapped low to enable the audio interface			
			pins). SOE# is tied directly to the output enable of 74F245 transceivers that			
			buffer IDE Secondary Bus data and ISA-address (see SA pins for more			
			information).			

XD Interface			
Signal Name	Pin#	I/O	Signal Description
XDIR / PCS0# / GPO12	T5	O	X-Bus Data Direction. (Rx76[1]=0) Asserted low for all I/O read cycles and for memory read cycles to the programmed BIOS address space. XDIR is tied directly to the direction control of a 74F245 transceiver that buffers the X-Bus data and ISA-Bus data. The transceiver output enable may be grounded. SD0-7 connect to the "A" side of the transceiver and XD0-7 connect to the "B" side. XDIR high indicates that SD0-7 drives XD0-7.

Serial IRQ					
Signal Name	Pin#	I/O	Signal Description		
SERIRQ / DRQ2 / GPO24 / FDCDRQ / USBOC1#	Н3	I	Serial IRQ $(Rx68[3] = 1, Rx74[6] = 0 \text{ and } Rx75[3] = 1)$		
SERIRQ / DACK5# / GPO19 / MC97IRQ	L4	I	Serial IRQ $(Rx68[3] = 1 \text{ and } Rx74[6] = 1)$		

Internal Keyboard Controller				
Signal Name	Pin#	I/O	Signal Description	
MSCK / IRQ1	D5	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx5A[1]) Rx5A[1]=1 Mouse Clock. From internal mouse controller.	
			Rx5A[1]=1 Infouse Clock. From Internal mouse controller. Rx5A[1]=0 Interrupt Request 1. Interrupt input 1.	
MSDT / IRQ12	C5	IO / I	MultiFunction Pin (Internal mouse controller enabled by Rx5A[1]) Rx5A[1]=1 Mouse Data. From internal mouse controller. Rx5A[1]=0 Interrupt Request 12. Interrupt input 12.	
KBCK / A20GATE	E5	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx5A[0]) Rx5A[0]=1 Keyboard Clock. From internal keyboard controller Rx5A[0]=0 Gate A20. Input from external keyboard controller.	
KBDT / KBRC	A5	IO / I	MultiFunction Pin (Internal keyboard controller enabled by Rx5A[0]) Rx5A[0]=1 Keyboard Data. From internal keyboard controller. Rx5A[0]=0 Keyboard Reset. From external keyboard controller (KBC) for CPURST# generation	
KBCS# / ROMCS# / strap	C1	O/O/I	Keyboard Chip Select (Rx5A[0]=0). To external keyboard controller chip. Power-Up Configuration Strap (Sampled At Reset) : 4.7K to GND = Socket-7, 4.7K to VCC3 = Socket-370 / Slot-1	
KBIN[6-3] / SD[7-4]	W4, Y4, V3, W3	I / IO	Keyboard Inputs 6-3. Sampled at reset on SD[7-4] and latched into Rx5A[7-4].	

Chip Selects				
Signal Name	Pin#	I/O	Signal Description	
ROMCS# / KBCS# / strap	C1	О	ROM Chip Select (Rx5A[0]=1). Chip Select to the BIOS ROM.	
			Power-Up Configuration Strap (Sampled At Reset):	
			4.7K to GND = Socket-7, 4.7K to VCC3 = Socket-370 / Slot-1	
PCS0# / GPO12 / XDIR	T5	О	Programmable Chip Select 0 (Rx76[1] = 1 and Rx8B[0] = 1). Asserted	
			during I/O cycles to programmable read or write ISA I/O port ranges.	
			Addressed devices drive data to the SD pins (XDIR is disabled and the X-	
			Bus is not implemented). See also Rx59[3] and Rx77[2].	
MCCS# / GPO13 / SOE#	U5	О	Microcontroller Chip Select $(Rx76[3] = 1, Rx76[4] = 0, Rx77[0] = 1).$	
			Asserted during read or write accesses to I/O ports 62h or 66h.	
MCCS# / GPI11 / GPO11	U8	О	Microcontroller Chip Select (Alternate Pin) (Rx76[4] = 0 selects MCCS#	
/ GPIOD			on pin U8, Rx76[4] = 1 selects MCCS# on pin U5). Rx76[3] = 1 enables	
			MCCS# output on the selected pin.	

General Purpose Inputs				
Signal Name	Pin #	I/O	Signal Description	
GPI0 / IOCHCK#	F4	I	General Purpose Input 0 (Rx74[0] = 0)	
GPI1 / IRQ8#	W11	I	General Purpose Input 1 (Rx5A[2] = 1)	
GPI2 / BATLOW#	U11	I	General Purpose Input 2	
GPI3 / LID / WSC#	U10	I	General Purpose Input 3 (see Rx74[7] and Rx77[3])	
GPI4 / IRQ6 / SLPBTN#	G1	I	General Purpose Input 4	
GPI5 / THRM / PME#	T11	I	General Purpose Input 5 (Read pin state at PMU IO Rx48[5])	
GPI6 / SMBALRT#	W10	I	General Purpose Input 6	
GPI7 / RING#	V11	I	General Purpose Input 7	
GPI8 / GPO8 / GPIOA / GPOWE#	T14	I	General Purpose Input 8 (Rx74[2] = 0)	
GPI9 / GPO9 / GPIOB / FAN2 / DTEST	U12	I	General Purpose Input 9 (Rx74[3] = 0)	
GPI10 / GPO10 / GPIOC / CHAS	V14	I	General Purpose Input 10 (Rx74[4] = 0)	
/ IRQ0 / ATEST				
GPI11 / GPO11 / GPIOD / MCCS#	U8	I	General Purpose Input 11 $(Rx74[5] = 0)$	
GPI16 / DRQ0	L3	I	General Purpose Input 16 ($Rx77[7] = 1$). Read at PMU IO 44[2]	
GPI17 / DRQ1	E2	I	General Purpose Input 17 (Rx77[7] = 1). Read at PMU IO 44[3]	
GPI18 / DRQ3	D3	I	General Purpose Input 18 (Rx77[7] = 1)	
GPI19 / DRQ5	M1	I	General Purpose Input 19 (Rx77[7] = 1)	
GPI20 / DRQ6	M5	I	General Purpose Input 20 (Rx77[7] = 1)	
GPI21 / DRQ7	N4	I	General Purpose Input 21 (Rx77[7] = 1)	
GPI22 / JBY	W15	I	General Purpose Input 22 (Rx77[6] = 1, game disa)	
GPI23 / JBX	U14	I	General Purpose Input 23 (Rx77[6] = 1, game disa)	
GPI[23-16] (SD[7-0] & RFSH#)	n/a	I	General Purpose Inputs 16-23 (enabled on SD by RFSH# active) GPI if Rx77[7] = 0 , SD if Rx77[7] = 1	

See also Function 0 Rx77[7-6]

General Purpose Outputs					
Signal Name	Pin#	I/O	Signal Description		
GPO0 (H) / SLOWCLK	T8	О	General Purpose Output 0 (Function 4 Rx54[1-0] = 00). Output value		
CDO1 (II) / SUS A# / ADICACV#	V9	0	determined by PMU I/O Rx4C[0]		
GPO1 (H) / SUSA# / APICACK#	W9	0	General Purpose Output 1 (Rx74[7] = 0 and Function 4 Rx54[2] = 1)		
GPO2 (H) / SUSB# / APICCS#	W9 V10		General Purpose Output 2 (Rx74[7] = 0 and Function 4 Rx54[3] = 1)		
GPO4 / GPUSTP# (L)		0	General Purpose Output 3 (Function 4 Rx54[4] = 1)		
GPO4 / CPUSTP# (L)	Y12 V12	0	General Purpose Output 4 (Rx75[4] = 1)		
GPO5 / PCISTP# (L)	V12	0	General Purpose Output 5 (Rx75[5] = 1)		
GPO6	T07	0	General Purpose Output 6 (Rx75[6] = 1)		
GPO7 / SLP# (OD)	T7	0	General Purpose Output 7 (Rx75[7] = 1)		
GPO8 / GPI8 / GPIOA / GPOWE#	T14	0	General Purpose Output 8 (Rx74[2] = 1 and Rx76[0] = 0)		
GPO9 / GPI9 / GPIOB / FAN2	U12	0	General Purpose Output 9 (Rx74[3] = 1)		
GPO10 / GPI10 / GPIOC/CHAS/IRQ0	V14	O	General Purpose Output 10 $(Rx74[4] = 1 \text{ and } Rx76[2] = 0)$		
GPO11 / GPI11 / <u>GPIOD</u> / MCCS#	U8	О	General Purpose Output 11 $(Rx74[5] = 1 \text{ and } Rx76[3] = 0)$		
GPO12 / <u>XDIR (H)</u> / PCS0#	T5	О	General Purpose Output 12 $(Rx76[1] = 1 \text{ and } Rx76[4] = 0)$		
GPO13 / <u>SOE# (L)</u> / MCCS#	U5	О	General Purpose Output 13 $(Rx77[0] = 1)$ see also $Rx76[4-3]$		
GPO14 / <u>IRTX (L)</u>	E12	O	General Purpose Output 14 $(Rx76[5] = 1)$		
GPO15 / <u>IRRX (L)</u>	D12	O	General Purpose Output 15 $(Rx76[5] = 1)$		
GPO16 / DACK0#	L2	O	General Purpose Output 16 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO17 / DACK1#	E1	О	General Purpose Output 17 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO18 / DACK3#	D2	О	General Purpose Output 18 ($Rx77[7] = 1$ and $Rx77[3] = 0$)		
GPO19 / DACK5#	L4	О	General Purpose Output 19 (Rx77[7] = 1, Rx77[3] = 0 and Rx74[6] = 0)		
/ SERIRQ / MC97IRQ					
GPO20 / DACK6#	M3	0	General Purpose Output 20 (Rx77[7] = 1 and Rx77[3] = 0)		
GPO21 /DACK7#/THRM#/USBIRQB	N2	О	General Purpose Output 21 $(Rx77[7] = 1, Rx77[3] = 0, F4Rx57[0] = 0)$		
GPO22 / JAY	Y15	О	General Purpose Output 22 (Rx77[6] = 1, game disabled)		
GPO23 / JAX	V15	O	General Purpose Output 23 (Rx77[6] = 1, game disabled)		
GPO24 / DRQ2 (H)	НЗ	0	General Purpose Output 24 (Rx75[3] = 1 & Rx75[1]=1 & Rx68[3]=0)		
/ FDCDRQ					
/ USBOC1# / SERIRQ					
GPO25 / DACK2# (H)	G5	О	General Purpose Output 25 (Rx75[3] = 1 & Rx75[2]=1 & Rx68[3]=0)		
/ FDCIRQ					
/ USBOC0#					
GPO[23-16] (latched from SD[7-0])	n/a	О	General Purpose Output 23-16 (Rx74[7]=0) latched by GPOWE# rising		
GPOWE# / GPIOA / GPI8 / GPO8	T14	О	General Purpose Output Write Enable $(Rx74[2] = 1 \text{ and } Rx76[0] = 1).$		

Default pin functions are underlined in table above (with default level following in parentheses) See also Function 0 Rx77[7-6]

General Purpose I/Os				
Signal Name	Pin#	I/O	Signal Description	
GPIOA / GPI8 / GPO8 / GPOWE#	T14	IO	General Purpose I/O A / 8 (Rx76[0] = 0). GPOWE# if Rx76[0] = 1. See also Rx74[2]	
GPIOB / GPI9 / GPO9 / FAN2 / DTEST	U12	Ю	General Purpose I/O B / 9. See also Rx74[3]	
GPIOC / GPI10 / GPO10 / CHAS / IRQ0 / ATEST	V14	Ю	General Purpose I/O C / 10. $(Rx76[2] = 0)$. See also $Rx74[4]$	
GPIOD / GPI11 / GPO11 / MCCS#	U8	IO	General Purpose I/O D / 11. $(Rx76[3] = 0)$. See also $Rx74[5]$	

Hardware Monitoring					
Signal Name	Pin#	I/O	Signal Description		
VSENS1	U13	I	Voltage Sense 2.0V. Monitor for CPU core voltage.		
VSENS2	V13	I	Voltage Sense 2.5V. Monitor for North Bridge core voltage.		
VSENS3	W14	I	Voltage Sense 5V.		
VSENS4	Y14	I	Voltage Sense 12V. Connect +12V through a resistive voltage divider to insure 5V max to the input pin (see MVP4 Design Guide for details).		
VREF	T13	P	Voltage Reference for Thermal Sensing (2.48V ±5%)		
TSENS1	W13	I	Temperature Sense 1.		
TSENS2	Y13	I	Temperature Sense 2.		
FAN1	T12	I	Fan Speed Monitor 1. (3.3V only)		
FAN2 / GPIOB/9 / DTEST	U12	I	Fan Speed Monitor 2.		
CHAS / GPIOC/10 / IRQ0 / ATEST	V14	Ι	Chassis Intrusion Detect (Func 0 Rx76[2] = 1). Used for system security purposes.		
DTEST / FAN2 / GPIOB/9	U12	0	Hardware Monitor Digital Test Out		
ATEST / CHAS / GPIOC/10 / IRQ0	V14	О	Hardware Monitor Analog Test Out		

Power Management					
Signal Name	Pin #	I/O	Signal Description		
THRM / GPI5 / PME#	T11	I	Thermal Alarm Monitor Input. (Rx74[1] = 1)		
THRM# / GPO21 / DACK7#	N2	О	Internal Thermal Alarm Output. (F4 Rx57[0] = 1)		
PWRBTN#	Y11	I	Power Button. Used by the Power Management subsystem to monitor an external system on/off button or switch. The VT82C686B performs a 200us debounce of this input if Function 4 Rx40[5] is set to 1. (3.3V only)		
SLPBTN# / IRQ6 / GPI4	G1	I/I/ I	Sleep Button. Used by the Power Management subsystem to monitor an external system sleep button or switch. (Function 4 Rx40[6]=1) (10K PU to VCC if not used)		
RSMRST#	V6	I	Resume Reset. Resets the internal logic connected to the VCCS power plane and also resets portions of the internal RTC logic.		
EXTSMI#	Y10	IOD	External System Management Interrupt. When enabled to allow it, a falling edge on this input causes an SMI# to be generated to the CPU to enter SMI mode. (10K PU to VCCS if not used) (3.3V only)		
PME# / GPI5 / THRM	T11	I	Power Management Event. (Rx74[1]=0) (1K PU to VCCS if not used)		
SMBALRT# / GPI6	W10	I	SMB Alert (System Management Bus I/O space Rx08[3] = 1). When the chip is enabled to allow it, assertion generates an IRQ or SMI or power management event. (10K PU to VCCS if not used)		
LID / GPI3 / WSC#	U10	I	Notebook Computer Display Lid Open / Closed Monitor. Used by the Power Management subsystem to monitor the opening and closing of the display lid of notebook computers. Can be used to detect either low-to-high and/or high-to-low transitions to generate an SMI#. The VT82C686B performs a 200 usec debounce of this input if Function 4 Rx40[5] is set to 1. (10K PU to VCCS if not used)		
RING# / GPI7	V11	I	Ring Indicator. May be connected to external modem circuitry to allow the system to be re-activated by a received phone call. (10K PU to VCCS if not used)		
BATLOW# / GPI2	U11	I	Battery Low Indicator. (10K PU to VCCS if not used) (3.3V only)		
CPUSTP# / GPO4	Y12	О	CPU Clock Stop (Rx75[4] = 0). Signals the system clock generator to disable the CPU clock outputs. Not connected if not used. See also PMU I/O Rx2C[3].		
PCISTP# / GPO5	V12	О	PCI Clock Stop ($Rx75[5] = 0$). Signals the system clock generator to disable the PCI clock outputs. Not connected if not used.		
SUSA# / GPO1 / APICD0	V9	O	Suspend Plane A Control (Rx74[7]=0 and Function 4 Rx54[2]=0). Asserted during power management POS, STR, and STD suspend states. Used to control the primary power plane. (10K PU to VCCS if not used)		
SUSB# / GPO2	W9	O	Suspend Plane B Control (Rx74[7]=0 and Function 4 Rx54[3]=0). Asserted during power management STR and STD suspend states. Used to control the secondary power plane. (10K PU to VCCS if not used)		
SUSC#	Y9	O	Suspend Plane C Control. Asserted during power management STD suspend state. Used to control the tertiary power plane. Also connected to ATX power-on circuitry.		
SUSST1# / GPO3	V10	0	Suspend Status 1 (Func4 Rx54[4] = 1 for GPO3). Typically connected to the North Bridge to provide information on host clock status. Asserted when the system may stop the host clock, such as Stop Clock or during POS, STR, or STD suspend states. Connect 10K PU to VCCS.		
SUSCLK / APICD1	T10	О	Suspend Clock. 32.768 KHz output clock for use by the North Bridge (e.g., Apollo MVP3 or MVP4) for DRAM refresh purposes. Stopped during Suspend-to-Disk and Soft-Off modes. Connect 10K PU to VCCS.		

Resets and Clocks				
Signal Name	Pin#	I/O	Signal Description	
PWRGD	W6	I	Power Good. Connected to the PWRGOOD signal on the Power Supply.	
PCIRST#	B16	О	PCI Reset. Active low reset signal for the PCI bus. The VT82C686B will assert this pin during power-up or from the control register.	
RSTDRV	J1	О	Reset Drive. Reset signal to the ISA bus. Connect through an inverter to the chipset north bridge RESET# input and to PCI bus RESET#.	
BCLK	Н5	0	Bus Clock. ISA bus clock.	
OSC	E4	I	Oscillator. 14.31818 MHz clock signal used by the internal Timer.	
RTCX1	Y5	I	RTC Crystal Input : 32.768 KHz crystal or oscillator input. This input is used for the internal RTC and for power-well power management logic.	
RTCX2	W5	0	RTC Crystal Output: 32.768 KHz crystal output	
SLOWCLK / GPO0	T8	О	Slow Clock. Frequency selectable if PMU function 4 Rx54[1-0] is nonzero (set to 01, 10, or 11).	

	Power and Ground					
Signal Name	Pin#	I/O	Signal Description			
VCC	F7, F10, F12-F14, H6, H15, J6, J15, K6, K15, M6, M15, N6, N15, R7-R8, R11, R14	Р	Core Power. 3.3V nominal (3.15V to 3.45V). This supply is turned on only when the mechanical switch on the power supply is turned on and the PWRON signal is conditioned high. This pin should be connected to the same voltage as the CPU I/O circuitry. Internally connected to hardware monitoring system voltage detection circuitry for 3.3V monitoring.			
GND	F6, F11, F15, G6, G15, J9-J12, K9- K12, L6, L9-L12, L15, M9-M12, P6, P15, R6, R15	Р	Ground. Connect to primary motherboard ground plane.			
VCCS	R9-R10	Р	Suspend Power. Always available unless the mechanical switch of the power supply is turned off. If the "soft-off" state is not implemented, then this pin can be connected to VCC. Signals powered by or referenced to this plane are: PWRGD, RSMRST#, PWRBTN#, SMBCLK, SMBDATA, SUSCLK, SUSA# / GPO1, SUSB# / GPO2, SUSC#, SUSST1# / GPO6, GPI1 / IRQ8#, GPI2 / BATLOW#, GPI3 / LID, GPI5 / PME#, GPI6 / SMBALRT#, GPI7 / RING#, GPO0			
VBAT	Y6	P	RTC Battery. Battery input for internal RTC (RTCX1, RTCX2)			
VREF	T13	P	Voltage Reference (5V \pm 5%). For thermal sensing and 5V input tolerance.			
VCCH	R12	P	Hardware Monitor Power. Power for hardware monitoring subsystem (voltage monitoring, temperature monitoring, and fan speed monitoring). Connect to VCC through a ferrite bead.			
GNDH	R13	P	Hardware Monitor Ground. Connect to GND through a ferrite bead.			
VCCU	F9	P	USB Differential Output Power. Power for USB differential outputs (USBP0+, P0-, P1+, P1-, P2+, P2-, P3+, P3-). Connect to VCC through a ferrite bead.			
GNDU	F8	P	USB Differential Output Ground. Connect to GND through a ferrite bead.			

REGISTERS

Register Overview

The following tables summarize the configuration and I/O registers of the VT82C686B. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated

Table 2. System I/O Map

00-1F 20-3F 40-5F	Master DMA Controller Master Interrupt Controller	0000 0000 000x nnnn
	Master Interrupt Controller	
40-5F	master interrupt controller	0000 0000 001x xxxn
10 31	Timer / Counter	0000 0000 010x xxnn
60-6F	Keyboard Controller	0000 0000 0110 xnxn
(60h)	KBC Data	0000 0000 0110 x0x0
(61h)	Misc Functions & Spkr Ctrl	0000 0000 0110 xxx1
(64h)	KBC Command / Status	0000 0000 0110 x1x0
70-77	RTC/CMOS/NMI-Disable	0000 0000 0111 0nnn
78-7F	-available for system use-	0000 0000 0111 1xxx
80	-reserved- (debug port)	0000 0000 1000 0000
81-8F	DMA Page Registers	0000 0000 1000 nnnn
90-91	-available for system use-	0000 0000 1001 000x
92	System Control	0000 0000 1001 0010
93-9F	-available for system use-	0000 0000 1001 nnnn
A0-BF	Slave Interrupt Controller	0000 0000 101x xxxn
C0-DF	Slave DMA Controller	0000 0000 110n nnnx
E0-FF	-available for system use-	0000 0000 111x xxxx
100-CF7	-available for system use*	
CF8-CFB	PCI Configuration Address	0000 1100 1111 10xx
CFC-CFF	PCI Configuration Data	0000 1100 1111 11xx
D00-FFFF	-available for system use-	

* On-Chip Super-I/O Functions – PC-Standard Port Addresses

200-20F	Game Port
2E8-2EF	COM4
2F8-2FF	COM2
378-37F	Parallel Port (Standard & EPP)
3E8-3EF	COM3
3F0-3F1	Configuration Index / Data
3F0-3F7	Floppy Controller
3F8-3FF	COM1
778-77A	Parallel Port (ECP Extensions) (Port 378+400)

Table 3. Registers

Legacy I/O Registers

Port	Master DMA Controller Registers	<u>Default</u>	Acc
00	Channel 0 Base & Current Address		RW
01	Channel 0 Base & Current Count		RW
02	Channel 1 Base & Current Address		RW
03	Channel 1 Base & Current Count		RW
04	Channel 2 Base & Current Address		RW
05	Channel 2 Base & Current Count		RW
06	Channel 3 Base & Current Address		RW
07	Channel 3 Base & Current Count		RW
08	Status / Command		RW
09	Write Request		WO
0A	Write Single Mask		WO
0B	Write Mode		WO
0C	Clear Byte Pointer FF		WO
0D	Master Clear		WO
0E	Clear Mask		WO
0F	Read / Write Mask		RW

Port	Master Interrupt Controller Regs	Default	Acc
20	Master Interrupt Control	_	*
21	Master Interrupt Mask	_	*
20	Master Interrupt Control Shadow	_	RW
21	Master Interrupt Mask Shadow		RW

^{*} RW if shadow registers are disabled

Port	Timer/Counter Registers	<u>Default</u>	Acc
40	Timer / Counter 0 Count		RW
41	Timer / Counter 1 Count		RW
42	Timer / Counter 2 Count		RW
43	Timer / Counter Control		WO

Port	Keyboard Controller Registers	Default	Acc
60	Keyboard Controller Data		RW
61	Misc Functions & Speaker Control		RW
64	Keyboard Ctrlr Command / Status		RW

Port	CMOS / RTC / NMI Registers	<u>Default</u>	Acc
70	CMOS Memory Address & NMI Disa		WO
71	CMOS Memory Data (128 bytes)		RW
72	CMOS Memory Address		RW
73	CMOS Memory Data (256 bytes)		RW
74	CMOS Memory Address		RW
75	CMOS Memory Data (256 bytes)		RW

NMI Disable is port 70h (CMOS Memory Address) bit-7. RTC control occurs via specific CMOS data locations (0-Dh). Ports 72-73 may be used to access all 256 locations of CMOS. Ports 74-75 may be used to access CMOS if the internal RTC is disabled.

Legacy I/O Registers (continued)

Port	DMA Page Registers	<u>Default</u>	Acc
87	DMA Page – DMA Channel 0		RW
83	DMA Page – DMA Channel 1		RW
81	DMA Page – DMA Channel 2		RW
82	DMA Page – DMA Channel 3		RW
8F	DMA Page – DMA Channel 4		RW
8B	DMA Page – DMA Channel 5		RW
89	DMA Page – DMA Channel 6		RW
8A	DMA Page – DMA Channel 7		RW

<u>Port</u>	System Control Registers	<u>Default</u>	Acc
92	System Control		RW

Port	Slave Interrupt Controller Regs	<u>Default</u>	<u>Acc</u>
A0	Slave Interrupt Control	_	*
A1	Slave Interrupt Mask	_	*
A0	Slave Interrupt Control Shadow	_	RW
A1	Slave Interrupt Mask Shadow		RW

^{*} RW accessible if shadow registers are disabled

Port	Slave DMA Controller Registers	Default	Acc
C0	Channel 0 Base & Current Address		RW
C2	Channel 0 Base & Current Count		RW
C4	Channel 1 Base & Current Address		RW
C6	Channel 1 Base & Current Count		RW
C8	Channel 2 Base & Current Address		RW
CA	Channel 2 Base & Current Count		RW
CC	Channel 3 Base & Current Address		RW
CE	Channel 3 Base & Current Count		RW
D0	Status / Command		RW
D2	Write Request		WO
D4	Write Single Mask		WO
D6	Write Mode		WO
D8	Clear Byte Pointer FF		WO
DA	Master Clear		WO
DC	Clear Mask		WO
DE	Read / Write Mask		RW

Super-I/O Configuration Registers (I/O Space)

Port	Super-I/O Configuration Registers	<u>Default</u>	<u>Acc</u>
3F0	Super-I/O Config Index (Rx85[1]=1)	00	RW
3F1	Super-I/O Config Data (Rx85[1]=1)	00	RW

<u>Super-I/O Configuration Registers (Indexed via Port 3F0/1)</u>

Offset	Super-I/O Control	<u>Default</u>	Acc
00-DF	-reserved-	00	RO
E0	Super-I/O Device ID	3C	\mathbf{RW}
E1	Super-I/O Device Revision	00	\mathbf{RW}
E2	Function Select	03	\mathbf{RW}
E3	Floppy Ctrlr Base Addr (def = 3F0-7)	FC	\mathbf{RW}
E4-E5	-reserved-	00	RO
E6	Parallel Port Base Addr (def = 378-F)	DE	\mathbf{RW}
E7	Serial Port 1 Base Addr (def = 3F8-F)	FE	\mathbf{RW}
E8	Serial Port 2 Base Addr (def = 2F8-F)	BE	RW
E9-ED	-reserved-	00	RO
EE	Serial Port Configuration	00	\mathbf{RW}
EF	Power Down Control	00	\mathbf{RW}
F0	Parallel Port Control	00	\mathbf{RW}
F1	Serial Port Control	00	\mathbf{RW}
F2	Test Mode (Do Not Program)	00	\mathbf{RW}
F3	-reserved-	00	RO
F4	Test Mode (Do Not Program) 2	00	RW
F5	-reserved-	00	RO
F6	Floppy Controller Configuration	00	\mathbf{RW}
F7	-reserved-	00	RO
F8	Floppy Controller Drive Select	00	RW
F9-FB	-reserved-	00	RO
FC	General Purpose I/O	00	RW
FD-FF	-reserved-	00	RO

Super-I/O I/O Ports

Offset	Floppy Disk Controller (Base = E3)	<u>Default</u>	Acc
00-01	-reserved-	00	
02	FDC Command	-	RW
03	-reserved-	00	
04	FDC Main Status		RO
04	FDC Data Rate Select	02	WO
05	FDC Data	1	RW
06	-reserved-	00	
07	Disk Change Status		RO

Offset	Parallel Port (Base = E6)	Default	Acc
00	Parallel Port Data	-	RW
01	Parallel Port Status	1	RO
02	Parallel Port Control	E 0	RW
03	EPP Address		RW
04	EPP Data Port 0		RW
05	EPP Data Port 1		RW
06	EPP Data Port 2		RW
07	EPP Data Port 3		RW
400h	ECP Data / Configuration A		RW
401h	ECP Configuration B		RW
402h	ECP Extended Control		RW

Offset	Serial Port 1 (Base = E7)	<u>Default</u>	Acc
0	Transmit (Wr) / Receive (Rd) Buffer		RW
1	Interrupt Enable		RW
2	FIFO Control		WO
2	Interrupt Status		RO
3	UART Control		RW
4	Handshake Control		RW
5	UART Status		RW
6	Handshake Status		RW
7	Scratchpad		RW
9-8	Baud Rate Generator Divisor		RW
A-F	-undefined-		

Offset	Serial Port 2 (Base = E8)	Default	<u>Acc</u>
0	Transmit (Wr) / Receive (Rd) Buffer		RW
1	Interrupt Enable		RW
2	FIFO Control		WO
2	Interrupt Status		RO
3	UART Control		RW
4	Handshake Control		RW
5	UART Status		RW
6	Handshake Status		RW
7	Scratchpad		RW
9-8	Baud Rate Generator Divisor		RW
A-F	-undefined-		

PCI Function 0 Registers - PCI-to-ISA Bridge

Configuration Space PCI-to-ISA Bridge Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0686	RO
5-4	Command	0087	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	06	RO
С	-reserved- (cache line size)	00	_
D	-reserved- (latency timer)	00	_
Е	Header Type	80	RO
F	Built In Self Test (BIST)	00	RO
10-27	-reserved- (base address registers)	00	_
28-2B	-reserved- (unassigned)	00	_
2F-2C	Subsystem ID Read	00	RO
30-33	-reserved- (expan. ROM base addr)	00	_
34-3B	-reserved- (unassigned)	00	_
3C	-reserved- (interrupt line)	00	_
3D	-reserved- (interrupt pin)	00	_
3E	-reserved- (min gnt)	00	_
3F	-reserved- (max lat)	00	_

Configuration Space PCI-to-ISA Bridge-Specific Registers

Offset	ISA Bus Control	<u>Default</u>	Acc
40	ISA Bus Control	00	RW
41	ISA Test Mode	00	RW
42	ISA Clock Control	00	RW
43	ROM Decode Control	00	RW
44	Keyboard Controller Control	00	RW
45	Type F DMA Control	00	RW
46	Miscellaneous Control 1	00	RW
47	Miscellaneous Control 2	00	RW
48	Miscellaneous Control 3	01	RW
49	-reserved-	00	_
4A	IDE Interrupt Routing	04	RW
4B	-reserved-	00	_
4C	DMA / Master Mem Access Control 1	00	RW
4D	DMA / Master Mem Access Control 2	00	RW
4F-4E	DMA / Master Mem Access Control 3	0300	RW

Offset	Plug and Play Control	<u>Default</u>	Acc
50	PnP DMA Request Control	2D	RW
51	PnP Routing for LPT / FDC IRQ	00	RW
52	PnP Routing for COM2 / COM1 IRQ	00	RW
53	-reserved-	00	

Offset	Plug and Play Control (cont'd)	<u>Default</u>	Acc
54	PCI IRQ Edge / Level Select	00	RW
55	PnP Routing for PCI INTA	00	RW
56	PnP Routing for PCI INTB-C	00	RW
57	PnP Routing for PCI INTD	00	RW
58	APIC IRQ Output Control	00	RW
59	-reserved-	04	_
5A	KBC / RTC Control	x4†	RW
5B	Internal RTC Test Mode	00	RW
5C	DMA Control	00	RW
5D-5E	-reserved-	00	_
5F	-reserved- (do not program)	04	RW

† Bit 7-4 power-up default depends on external strapping

Offset	Distributed DMA	<u>Default</u>	Acc
61-60	Channel 0 Base Address / Enable	0000	RW
63-62	Channel 1 Base Address / Enable	0000	RW
65-64	Channel 2 Base Address / Enable	0000	RW
67-66	Channel 3 Base Address / Enable	0000	RW
69-68	Serial IRQ Control	0000	RW
6B-6A	Channel 5 Base Address / Enable	0000	RW
6D-6C	Channel 6 Base Address / Enable	0000	RW
6F-6E	Channel 7 Base Address / Enable	0000	RW

Offset	Miscellaneous	Default	Acc
70	Subsystem ID Write	00	WO
71-73	-reserved-	00	_
74	GPIO Control 1	00	RW
75	GPIO Control 2	00	RW
76	GPIO Control 3	00	RW
77	GPIO Control 4	10	RW
79-78	PCS0# I/O Port Address	0000 0000	RW
7B-7A	PCS1# I/O Port Address	0000 0000	RW
7D-7C	PCI DMA Channel Enable	0000	RW
7F-7E	32-Bit DMA Control	0000	RW
80	Programmable Chip Select Mask	00	RW
81	ISA Positive Decoding Control 1	00	RW
82	ISA Positive Decoding Control 2	00	RW
83	ISA Positive Decoding Control 3	00	RW
84	ISA Positive Decoding Control 4	00	RW
85	Extended Function Enable	00	RW
86-87	PnP IRQ/DRQ Test (do not program)	00	RW
88	PLL Test	00	RW
89	PLL Control	00	RW
8A	PCS2/3 I/O Port Address Mask	00	RW
8B	PCS Control	00	RW
8D-8C	PCS2# I/O Port Address	0000	RW
8F-8E	PCS3# I/O Port Address	0000	RW
90-FF	-reserved-	00	_

PCI Function 1 Registers - IDE Controller

Configuration Space IDE Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0571	RO
5-4	Command	0080	RO
7-6	Status	0280	$\mathbf{R}\mathbf{W}$
8	Revision ID	nn	RO
9	Programming Interface	85	$\mathbf{R}\mathbf{W}$
A	Sub Class Code	01	RO
В	Base Class Code	01	RO
C	-reserved- (cache line size)	00	
D	Latency Timer	00	\mathbf{RW}
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Base Address – Pri Data / Command	000001F0	RO
17-14	Base Address – Pri Control / Status	000003F4	RO
1B-18	Base Address – Sec Data / Command	00000170	RO
1F-1C	Base Address – Sec Control / Status	00000374	RO
23-20	Base Address – Bus Master Control	0000CC01	\mathbf{RW}
24-2F	-reserved- (unassigned)	00	
30-33	-reserved- (expan ROM base addr)	00	_
34	Capability Pointer	C0	RO
35-3B	-reserved- (unassigned)	00	
3C	Interrupt Line	0E	$\mathbf{R}\mathbf{W}$
3D	Interrupt Pin	00	RO
3E	Minimum Grant	00	RO
3F	Maximum Latency	00	RO

Configuration Space IDE-Specific Registers

Offset	Configuration Space IDE Registers	<u>Default</u>	Acc
40	IDE Chip Enable	00	RW
41	IDE Configuration 1	06	RW
42	IDE Configuration 2	09	RW
43	IDE FIFO Configuration	0A	RW
44	IDE Miscellaneous Control 1	68	RW
45	IDE Miscellaneous Control 2	00	RW
46	IDE Miscellaneous Control 3	C0	RW
4B-48	IDE Drive Timing Control	A8A8A8A8	RW
4C	IDE Address Setup Time	FF	RW
4D	-reserved- (do not program)	00	RW
4E-4F	-reserved-	00	_

Configuration Space IDE-Specific Registers (continued)

Offset	Configuration Space IDE Registers	<u>Default</u>	Acc
53-50	UltraDMA Extended Timing Control	07070707	RW
54	UltraDMA FIFO Control	06	RW
55-5F	-reserved-	00	
61-60	IDE Primary Sector Size	0200	RW
62-67	-reserved-	00	
69-68	IDE Secondary Sector Size	0200	RW
69-6F	-reserved-	00	_
70	IDE Primary Status	00	RW
71	IDE Primary Intrpt Control	00	RW
72-77	-reserved-	00	
78	IDE Secondary Status	00	RW
79	IDE Secondary Intrpt Control	00	RW
7A-7F	-reserved-	00	_
83-80	IDE Primary S/G Descriptor Address	0000 0000	RW
84-87	-reserved-	00	_
8B-88	IDE Secondary S/G Descriptor Addr	0000 0000	RW
8C-BF	-reserved-	00	_
C3-C0	PCI PM Block 1	0002 0001	RO
C7-C4	PCI PM Block 2	0000 0000	RW
C8-FF	-reserved-	00	_

<u>I/O Registers – IDE Controller (SFF 8038 v1.0 Compliant</u>

Offset	IDE I/O Registers	<u>Default</u>	Acc
0	Primary Channel Command	00	RW
1	-reserved-	00	
2	Primary Channel Status	00	WC
3	-reserved-	00	
4-7	Primary Channel PRD Table Addr	00	RW
8	Secondary Channel Command	00	RW
9	-reserved-	00	
Α	Secondary Channel Status	00	WC
В	-reserved-	00	
C-F	Secondary Channel PRD Table Addr	00	RW

PCI Function 2 Registers – USB Controller Ports 0-1

Configuration Space USB Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
C	Cache Line Size	00	RO
D	Latency Timer	16	RW
Е	Header Type	00	RO
F	BIST	00	RO
10-1F	-reserved-	00	_
23-20	USB I/O Register Base Address	00000301	RW
24-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	_

Configuration Space USB-Specific Registers

Offset	USB Control	Default	Acc
40	USB Miscellaneous Control 1	00	RW
41	USB Miscellaneous Control 2	10	\mathbf{RW}
42	USB FIFO Control	00	\mathbf{RW}
43	-reserved-	00	_
44-45	-reserved- (test, do not program)		\mathbf{RW}
46-47	-reserved- (test)		RO
48-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	
83-80	PM Capability	0002 0001	RO
84	PM Capability Status	00	$\mathbf{R}\mathbf{W}$
85-BF	-reserved-	00	_
C1-C0	USB Legacy Support	2000	$\mathbf{R}\mathbf{W}$
C2-FF	-reserved-	00	

<u>I/O Registers – USB Controller</u>

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
С	Start Of Frame Modify	40	RW
11-10	Port 0 Status / Control	0080	WC
13-12	Port 1 Status / Control	0080	WC
14-1F	-reserved-	00	_

PCI Function 3 Registers – USB Controller Ports 2-3

Configuration Space USB Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3038	RO
5-4	Command	0000	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	03	RO
В	Base Class Code	0C	RO
С	Cache Line Size	00	RO
D	Latency Timer	16	RW
Е	Header Type	00	RO
F	BIST	00	RO
10-1F	-reserved-	00	_
23-20	USB I/O Register Base Address	00000301	RW
24-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	04	RO
3E-3F	-reserved-	00	_

Configuration Space USB-Specific Registers

Offset	USB Control	<u>Default</u>	Acc
40	USB Miscellaneous Control 1	00	RW
41	USB Miscellaneous Control 2	10	\mathbf{RW}
42	USB FIFO Control	00	\mathbf{RW}
43	-reserved-	00	_
44-45	-reserved- (test only, do not program)		RW
46-47	-reserved- (test)		RO
48-5F	-reserved-	00	_
60	USB Serial Bus Release Number	10	RO
61-7F	-reserved-	00	_
83-80	PM Capability	0002 0001	RO
84	PM Capability Status	00	RW
85-BF	-reserved-	00	_
C1-C0	USB Legacy Support	2000	RW
C2-FF	-reserved-	00	_

I/O Registers - USB Controller

Offset	USB I/O Registers	<u>Default</u>	Acc
1-0	USB Command	0000	RW
3-2	USB Status	0000	WC
5-4	USB Interrupt Enable	0000	RW
7-6	Frame Number	0000	RW
B-8	Frame List Base Address	00000000	RW
C	Start Of Frame Modify	40	RW
11-10	Port 2 Status / Control	0080	WC
13-12	Port 3 Status / Control	0080	WC
14-1F	-reserved-	00	_

PCI Function 4 Registers - Power Management

<u>Configuration Space Power Management Header</u> <u>Registers</u>

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3057	RO
5-4	Command	0000	RO
7-6	Status	0280	WC
8	Revision ID	nn	RO
9	Programming Interface	00‡	RO
Α	Sub Class Code	00‡	RO
В	Base Class Code	00†	RO
С	Cache Line Size	00	RO
D	Latency Timer	00	RO
Е	Header Type	00	RO
F	BIST	00	RO
10-3F	-reserved-	00	_

 $[\]ensuremath{^\dagger}$ The default values for these registers may be changed by writing to offsets 61-63h (see below).

Configuration Space Power Management Registers

Offset	Power Management	<u>Default</u>	Acc
40	General Configuration 0	00	RW
41	General Configuration 1	00	RW
42	ACPI Interrupt Select	00	RW
43	Internal Timer Read Test		RO
45-44	Primary Interrupt Channel	0000	RW
47-46	Secondary Interrupt Channel	0000	RW
4B-48	Power Mgmt I/O Base (256 Bytes)	0000 0001	RW
4C	Host Bus Power Management Control	00	RW
4D	Throttle / Clock Stop Control	00	RW
4E-4F	-reserved-	00	_
53-50	GP Timer Control	0000 0000	RW
54	Power Well Control	00	RW
55	USB Wakeup Control	00	RW
56	-reserved-	00	
57	Miscellaneous Control	00	RW
58	GP2 / GP3 Timer Control	00	RW
59	GP2 Timer	00	RW
5A	GP3 Timer	00	RW
5B-60	-reserved-	00	
61	Write value for Offset 9 (Prog Intfc)	00	WO
62	Write value for Offset A (Sub Class)	00	WO
63	Write value for Offset B (Base Class)	00	WO
64-7F	-reserved-	00	_

Configuration Space Hardware Monitor Registers

Offset	System Management Bus	<u>Default</u>	Acc
71-70	Hardware Mon IO Base (128 Bytes)	0001	RW
72-73	-reserved-	00	_
74	Hardware Monitor Control	00	RW
75-8F	-reserved-	00	_

Configuration Space SMBus Registers

Offset	System Management Bus	<u>Default</u>	Acc
93-90	SMBus I/O Base (16 Bytes)	0000 0001	RW
94-D1	-reserved-	00	_
D2	SMBus Host Configuration	00	RW
D3	SMBus Host Slave Command	00	RW
D4	SMBus Slave Address Shadow Port 1	00	RW
D5	SMBus Slave Address Shadow Port 2	00	RW
D6	SMBus Revision ID	nn	RO
D7-FF	-reserved-	00	

I/O Space Power Management- Registers

Offset	Basic Control / Status Registers	Default	Acc
1-0	Power Management Status	0000	WC
3-2	Power Management Enable	0000	RW
5-4	Power Management Control	0000	RW
6-7	-reserved-	00	_
B-8	Power Management Timer	0000 0000	RW
C-F	-reserved-	00	_

Offset	Processor Registers	<u>Default</u>	Acc
13-10	Processor and PCI Bus Control	0000 0000	RW
14	Processor LVL2	00	RO
15	Processor LVL3	00	RO
16-1F	-reserved-	00	_

Offset	General Purpose Registers	<u>Default</u>	Acc
21-20	General Purpose Status	0000	WC
23-22	General Purpose SCI Enable	0000	RW
25-24	General Purpose SMI Enable	0000	RW
26-27	-reserved-	00	—

Offset	Generic Registers	<u>Default</u>	Acc
29-28	Global Status	0000	WC
2B-2A	Global Enable	0000	RW
2D-2C	Global Control	0010	RW
2E	-reserved-	00	
2F	SMI Command	00	RW
33-30	Primary Activity Detect Status	0000 0000	WC
37-34	Primary Activity Detect Enable	0000 0000	RW
3B-38	GP Timer Reload Enable	0000 0000	RW
3C-3F	-reserved-	00	

Offset	General Purpose I/O Registers	<u>Default</u>	Acc
40	Extended I/O Trap Status	00	WC
41	-reserved-	00	
42	Extended I/O Trap Enable	00	RW
43	-reserved-	00	_
44	External SMI / GPI Input Value	input	RO
45	SMI / IRQ / Resume Status	00	RO
46-47	-reserved-	00	
4B-48	GPI Port Input Value	input	RO
4F-4C	GPO Port Output Value	03FF FFFF	RW
50-FF	-reserved-	00	_

I/O Space System Management Bus Registers

Offset	System Management Bus	<u>Default</u>	Acc
0	SMBus Host Status	00	WC
1	SMBus Slave Status	00	RW
2	SMBus Host Control	00	RW
3	SMBus Host Command	00	RW
4	SMBus Host Address	00	RW
5	SMBus Host Data 0	00	RW
6	SMBus Host Data 1	00	RW
7	SMBus Block Data	00	RW
8	SMBus Slave Control	00	RW
9	SMBus Shadow Command	00	RO
A-B	SMBus Slave Event	0000	RW
C-D	SMBus Slave Data	0000	RO
E-F	-reserved-	00	

I/O Space Hardware Monitor Registers

Offset	Hardware Monitor	Default	Acc
00-3F	Value RAM		
00-12	-reserved-	00	_
13	Analog Data 15-8	00	RW
14	Analog Data 7-0	00	RW
15	Digital Data 7-0	00	RW
16	Channel Counter	00	RW
17	Data Valid & Channel Indicators	00	RW
18-1C	-reserved-	00	_
1D	TSENS3 Hot Hi Limit	00	RW
1E	TSENS3 Hot Hysteresis Lo Lim	00	RW
1F	TSENS3 (Int) Temp Reading	00	RW
20	TSENS1 (W13) Temp Reading	00	RW
21	TSENS2 (Y13) Temp Reading	00	RW
22	VSENS1 (U13) Voltage Reading	00	RW
23	VSENS2 (V13) Voltage Reading	00	RW
24	Internal Core VCC Voltage Reading	00	RW
25	VSENS3 (W14) Voltage Reading	00	RW
26	VSENS4 (Y14) Voltage Reading	00	RW
27	-reserved- (-12V Voltage Reading)	00	_
28	-reserved- (-5V Voltage Reading)	00	
29	FAN1 (T12) Count Reading	00	RW
2A	FAN2 (U12) Count Reading	00	RW
2B	VSENS1 (CPU) Voltage High Limit	00	RW
2C	VSENS1 (CPU) Voltage Low Limit	00	RW
2D	VSENS2 (NB) Voltage High Limit	00	RW
2E	VSENS2 (NB) Voltage Low Limit	00	RW
2F	Internal Core VCC High Limit	00	RW
30	Internal Core VCC Low Limit	00	RW
31	VSENS3 (5V) Voltage High Limit	00	RW
32	VSENS3 (5V) Voltage Low Limit	00	RW
33	VSENS4 (12V) Voltage High Limit	00	RW
34	VSENS4 (12V) Voltage Low Limit	00	RW
35	-reserved- (-12V Sense High Limit)	00	_
36	-reserved- (-12V Sense Low Limit)	00	_
37	-reserved- (-5V Sense High Limit)	00	_
38	-reserved- (-5V Sense Low Limit)	00	
39	TSENS1 Hot High Limit	00	RW
3A	TSENS1 Hot Hysteresis Lo Lim	00	RW
3B	FAN1 Fan Count Limit	00	RW
3C	FAN2 Fan Count Limit	00	RW
3D	TSENS2 Hot High Limit	00	RW
3E	TSENS2 Hot Hysteresis Lo Lim	00	RW
3F	Stepping ID Number	00	RW

Offset	Hardware Monitor (continued)	<u>Default</u>	Acc
40	Hardware Monitor Configuration	08	RW
41	Hardware Monitor Interrupt Status 1	00	RO
42	Hardware Monitor Interrupt Status 2	00	RO
43	Hardware Monitor Interrupt Mask 1	00	RW
44	Hardware Monitor Interrupt Mask 2	00	RW
45-46	-reserved-	00	
47	Hardware Monitor Fan Configuration	50	RW
48	-reserved-	00	_
49	HW Mon Temp Value Lo-Order Bits	00	RW
4A	-reserved-	00	
4B	Temperature Interrupt Configuration	15	RW
4C-FF	-reserved-	00	_

PCI Function 5 & 6 Registers - AC97 / MC97 Codecs

Function 5 Configuration Space AC97 Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3058	RO
5-4	Command	0000	RW
7-6	Status	0210	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	01	RO
В	Base Class Code	04	RO
C	Cache Line Size	00	RO
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	BIST	00	RO
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 - FM NMI Status	0000 0001	RW
1B-18	Base Address 2 - MIDI Port	0000 0000	RW
1F-1C	Base Address 3 (reserved)	0000 0000	_
23-20	Base Address 4 (reserved)	0000 0000	
27-24	Base Address 5 (reserved)	0000 0000	_
28-29	-reserved-	00	_
2F-2C	Subsys ID / SubVendor ID	0000 0000	RW
33-30	Expansion ROM (reserved)	0000 0000	_
34	Capture Pointer	00	RW
35-3B	-reserved-	00	_
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E-3F	-reserved-	00	

Configuration Space Audio Codec-Specific Registers

Offset	Audio Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	Plug and Play Control	1C	RW
44	MC97 Interface Control	00	RO
45-47	-reserved-	00	_
48	FM NMI Control	00	RO
49	-reserved-	00	_
4B-4A	Game Port Base Address	0000	RW
4C-FF	-reserved-	00	

Note that these registers are the same as function 6 except for offset 44 (Read / Write in function 6)

Function 6 Configuration Space MC97 Header Registers

Offset	PCI Configuration Space Header	<u>Default</u>	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	3068	RO
5-4	Command	0000	RW
7-6	Status	0200	WC
8	Revision ID	nn	RO
9	Programming Interface	00	RO
A	Sub Class Code	80	RO
В	Base Class Code	07	RO
C	Cache Line Size	00	RO
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	BIST	00	RO
13-10	Base Address 0 - SGD Control/Status	0000 0001	RW
17-14	Base Address 1 - FM NMI Status	0000 0001	RW
1B-18	Base Address 2 - MIDI Port	0000 0000	RW
1F-1C	Base Address 3 (reserved)	0000 0000	_
23-20	Base Address 4 (reserved)	0000 0000	_
27-24	Base Address 5 (reserved)	0000 0000	_
28-29	-reserved-	00	_
2F-2C	Subsys ID / SubVendor ID	0000 0000	RW
33-30	Expansion ROM (reserved)	0000 0000	_
34	Capture Pointer	00	RW
35-3B	-reserved-	00	
3C	Interrupt Line	00	RW
3D	Interrupt Pin	03	RO
3E-3F	-reserved-	00	

Configuration Space Modem Codec-Specific Registers

Offset	Modem Codec Link Control	<u>Default</u>	Acc
40	AC-Link Interface Status	00	RO
41	AC-Link Interface Control	00	RW
42	Function Enable	00	RW
43	Plug and Play Control	1C	RW
44	MC97 Interface Control	00	RW
45-47	-reserved-	00	_
48	FM NMI Control	00	RO
49	-reserved-	00	_
4B-4A	Game Port Base Address	0000	RO
4C-FF	-reserved-	00	

Note that these registers are the same as function 5 except for offset 44 (Read Only in function 5)

Function 5 I/O Base 0 Registers - AC97 Audio S/G DMA

Offset	AC97 SGD I/O Registers	Default	Acc
0	SGD Read Channel Status	00	WC
1	SGD Read Channel Control	00	RW
2	SGD Read Channel Type	00	RW
3	-reserved-	00	_
7-4	SGD Read Chan Table Pointer Base	0000 0000	WR
	SGD Read Channel Current Address		RD
B-8	Reserved (Test)	0000 0000	RO
F-C	SGD Read Chan Current Count	0000 0000	RO
10	SGD Write Channel Status	00	WC
11	SGD Write Channel Control	00	RW
12	SGD Write Channel Type	00	RW
13	-reserved-	00	_
17-14	SGD Write Chan Table Pointer Base	0000 0000	WR
	SGD Write Channel Current Address		RD
1B-18	Reserved (Test)	0000 0000	RO
1F-1C	SGD Write Channel Current Count	0000 0000	RO
20	SGD FM Channel Status	00	WC
21	SGD FM Channel Control	00	RW
22	SGD FM Type	00	RW
23	-reserved-	00	_
27-24	SGD FM Channel Table Pointer Base	0000 0000	WR
	SGD FM Channel Current Address		RD
2B-28	Reserved (Test)	0000 0000	RO
2F-2C	SGD FM Channel Current Count	0000 0000	RO
30-7F	-reserved-	00	_
Offset	AC97 / Audio Codec I/O Registers	<u>Default</u>	Acc
83-80	AC97 Controller Command / Status	0000 0000	RW
87-84	SGD Status Shadow	0000 0000	RO
88-FF	-reserved-	00	

<u>Function 5 I/O Base 1 Registers – FM NMI Status</u>

Offset	FM NMI Status Registers	<u>Default</u>	<u>Acc</u>
0	FM NMI Status	00	RO
1	FM NMI Data	00	RO
2	FM NMI Index	00	RO
3	-reserved-	00	_

Function 5 I/O Base 2 Registers – MIDI / Game Port

Offset	FM NMI Status Registers	<u>Default</u>	Acc
1-0	MIDI Port Base	0330	RW
3-2	Game Port Base	0200	RW

Function 6 I/O Base 0 Registers - MC97 Modem S/G DMA

Offset	MC97 SGD I/O Registers	Default	Acc
40	SGD Read Channel Status	00	WC
41	SGD Read Channel Control	00	RW
42	SGD Read Channel Type	00	RW
43	-reserved-	00	_
47-44	SGD Read Chan Table Pointer Base	0000 0000	WR
	SGD Read Channel Current Address		RD
4B-48	-reserved- (Test)	0000 0000	RO
4F-4C	SGD Read Chan Current Count	0000 0000	RO
50	SGD Write Channel Status	00	WC
51	SGD Write Channel Control	00	RW
52	SGD Write Channel Type	00	RW
53	-reserved-	00	_
57-54	SGD Write Chan Table Pointer Base	0000 0000	WR
	SGD Write Channel Current Address		RD
5B-58	Reserved (Test)	0000 0000	RO
5F-5C	SGD Write Channel Current Count	0000 0000	RO
60-7F	-reserved-	00	_
Offset	AC97 / Modem Codec I/O Registers	Default	Acc
83-80	AC97 Controller Command / Status	0000 0000	RW
87-84	SGD Status Shadow	0000 0000	RO
8B-88	Modem Codec GPI Intr Status / GPIO	0000 0000	WC
8F-8C	Modem Codec GPI Interrupt Enable	0000 0000	RW
90-FF	-reserved-	00	_

I/O Registers - SoundBlaster Pro

Offset	SB Pro Registers (220 or 240h typ)	Default	Acc
0	FM Left Channel Index / Status		RW
1	FM Left Channel Data		WO
2	FM Right Channel Index / Status		RW
3	FM Right Channel Data		WO
4	Mixer Index		WO
5	Mixer Data		RW
6	Sound Processor Reset		WO
7	-reserved-	00	
8	FM Index / Status (Both Channels)		RW
9	FM Data (Both Channels)		wo
A	Sound Processor Data		RO
В	-reserved-	00	
C	Sound Processor Command / Data		WR
	Sound Processor Buffer Status		RD
D	-reserved-	00	
Е	Snd Processor Data Available Status		RO
F	-reserved-	00	

Port	SB Pro Regs (same as offsets 8 & 9)	Default	<u>Acc</u>
388h	FM Index / Status		RW
389h	FM Data		wo

The above group of registers emulates the "FM", "Mixer", and "Sound Processor" functions of the SoundBlaster Pro.

I/O Registers - Game Port

<u>Offset</u>	Game Port (200-20F typical)	<u>Default</u>	Acc
0	-reserved-	00	
1	Game Port Status		RO
1	Start One-Shot		WO
2-F	-reserved-	00	

Register Descriptions

Legacy I/O Ports

This group of registers includes the DMA Controllers, Interrupt Controllers, and Timer/Counters as well as a number of miscellaneous ports originally implemented using discrete logic on original PC/AT motherboards. All of the registers listed are integrated on-chip. These registers are implemented in a precise manner for backwards compatibility with previous generations of PC hardware. These registers are listed for information purposes only. Detailed descriptions of the actions and programming of these registers are included in numerous industry publications (duplication of that information here is beyond the scope of this document). All of these registers reside in I/O space.

Port 61	- Misc Functions & Speaker ControlRW
7	Reservedalways reads 0
6	IOCHCK# ActiveRO
	This bit is set when the ISA bus IOCHCK# signal is
	asserted. Once set, this bit may be cleared by setting
	bit-3 of this register. Bit-3 should be cleared to
	enable recording of the next IOCHCK#. IOCHCK#
	generates NMI to the CPU if NMI is enabled.
5	Timer/Counter 2 OutputRO
_	This bit reflects the output of Timer/Counter 2
	without any synchronization.
4	Refresh DetectedRO
-	This bit toggles on every rising edge of the ISA bus
	REFRESH# signal.
3	IOCHCK# DisableRW
Č	0 Enable IOCHCK# assertionsdefault
	1 Force IOCHCK# inactive and clear any
	"IOCHCK# Active" condition in bit-6
2	Reserved RW, default=0
1	Speaker Enable
•	0 Disable default
	1 Enable Timer/Ctr 2 output to drive SPKR pin
0	Timer/Counter 2 EnableRW
v	0 Disable default
	1 Enable Timer/Counter 2
	1 Enable Timel/Council 2
Port 92	h - System ControlRW
7-6	Hard Disk Activity LED Status
	0 Offdefault
	1-3 On
5-4	Reserved always reads 0
3	Power-On Password Bytes Inaccessable default=0
2	Reserved always reads 0
1	A20 Address Line Enable
	0 A20 disable / forced 0 (real mode) default
	1 A20 address line enable
0	High Speed Reset
	0 Normal
	1 Briefly pulse system reset to switch from
	protected mode to real mode

Keyboard Controller Registers

The keyboard controller handles the keyboard and mouse interfaces. Two ports are used: port 60 and port 64. Reads from port 64 return a status byte. Writes to port 64h are command codes (see command code list following the register descriptions). Input and output data is transferred via port 60.

A "Control" register is also available. It is accessable by writing commands 20h / 60h to the command port (port 64h); The control byte is written by first sending 60h to the command port, then sending the control byte value. The control register may be read by sending a command of 20h to port 64h, waiting for "Output Buffer Full" status = 1, then reading the control byte value from port 60h.

Traditional (non-integrated) keyboard controllers have an "Input Port" and an "Output Port" with specific pins dedicated to certain functions and other pins available for general purpose I/O. Specific commands are provided to set these pins high and low. All outputs are "open-collector" so to allow input on one of these pins, the output value for that pin would be set high (non-driving) and the desired input value read on the input port. These ports are defined as follows:

<u>Bit</u>	<u>Input Port</u>	Lo Code	Hi Code
0	P10 - Keyboard Data In	B0	B8
1	P11 - Mouse Data In	B1	B9
2	P12 - Turbo Pin (PS/2 mode only)	B2	BA
3	P13 - user-defined	B3	BB
4	P14 - user-defined	B6	BE
5	P15 - user-defined	B7	BF
6	P16 - user-defined	_	_
7	P17 - undefined	_	_
Bit	Output Port	Lo Code	Hi Code
0	P20 - SYSRST (1=execute reset)	_	_
1	P21 - GATEA20 (1=A20 enabled)	_	_
2	P22 - Mouse Data Out	B4	BC
3	P23 - Mouse Clock Out	B5	BD
4	P24 - Keyboard OBF Interrupt (IRC	Q1) –	_
5	P25 - Mouse OBF Interrupt (IRQ 1	2) –	_
6	P26 - Keyboard Clock Out	_	_
7	P27 - Keyboard Data Out	_	_
Bit	Test Port	Lo Code	Hi Code
0	T0 - Keyboard Clock In	_	_
1	T1 - Mouse Clock In	_	_
Note:	Command code C0h transfers inp	ut port da	ta to the

Note: Command code C0h transfers input port data to the output buffer. Command code D0h copies output port values to the output buffer. Command code E0h transfers test input port data to the output buffer.

Port 60 - Keyboard Controller Input Buffer WO
Only write to port 60h if port 64h bit-1 = 0 (1=full).

Port 60 - Keyboard Controller Output BufferROOnly read from port 60h if port 64h bit-0 = 1 (0=empty).

7	Parit	y Error
	0	No parity error (odd parity received) default
	1	Even parity occurred on last byte received
		from keyboard / mouse
6	Gene	eral Receive / Transmit Timeout
	0	No errordefault
	1	Error
5	Mou	se Output Buffer Full
	0	Mouse output buffer emptydefault
	1	Mouse output buffer holds mouse data
4	-	ock Status
		Locked
2	1	Free
3	Com	mand / Data
	1	East Wille Was date Wille
2	-	Last write was command write
4	Syste 0	Power-On Default default
	1	Self Test Successful
1	-	t Buffer Full
•	0	Input Buffer Emptydefault
	1	Input Buffer Full
0	Keyb	ooard Output Buffer Full
	ŏ	Keyboard Output Buffer Emptydefault
	1	Keyboard Output Buffer Full
VDC C	'amtwal	Desigton (D/W rie Commands 20h/60h)
		Register(R/W via Commands 20h/60h)
7	Rese	rvedalways reads 0
	Reser PC C	rvedalways reads 0
7	Reser PC C	rvedalways reads 0 Compatibility Disable scan conversion
7	Reser PC C	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-
7	Reser PC C	compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible
7	Reser PC C 0 1	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-
7 6	Reser PC C 0 1	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6	Reser PC C 0 1	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6	Reserve PC C	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5	Reserve PC C	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5	Reser PC C 0 1 Mous 0 1 Keyb	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5	Reserve PC C O 1	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5	Mous 0 1 Keyb 0 1 Reserved	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5 4	Reser PC C 0 1 Mous 0 1 Keyb 0 1 Reser Syste	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5 4	Mous 0 1 Keyb 0 1 Reset Syste This	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default se Disable Enable Mouse Interface default Disable Mouse Interface default Disable Keyboard Interface default
7 6 5 4	Mous O 1 Reset Syste This O 0	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default se Disable Enable Mouse Interface default Disable Mouse Interface default Disable Keyboard Interface default Disable Mouse interrupts default default
7 6 5 4	Mous 0 1 Keyb 0 1 Reset Syste This	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default se Disable Enable Mouse Interface default Disable Mouse Interface Coard Disable Enable Keyboard Interface default Disable Keyboard Interface default Disable Keyboard Interface default Disable se Interface default default Disable se Interface default defaul
7 6 5 4 3 2	Mous 0 1 Keyb 0 1 Reses Syste Mous 0 1	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes default se Disable Enable Mouse Interface default Disable Mouse Interface default Disable Keyboard Interface default Disable Mouse interrupts default Disable mouse interrupts default Generate interrupt on IRQ12 when mouse data comes in output bufer
7 6 5 4	Reserve	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5 4 3 2	Reserve PC C O 1	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5 4 3 2	Reserve	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes
7 6 5 4 3 2	Reserve PC C O 1	Compatibility Disable scan conversion Convert scan codes to PC format; convert 2-byte break sequences to 1-byte PC-compatible break codes

Port 64 - Keyboard / Mouse StatusRO

Port 64 - Keyboard / Mouse Command...... WO

This port is used to send commands to the keyboard / mouse controller. The command codes recognized by the VT82C686B are listed n the table below.

Note: The VT82C686B Keyboard Controller is compatible with the VIA VT82C42 Industry-Standard Keyboard Controller except that due to its integrated nature, many of the input and output port pins are not available externally for use as general purpose I/O pins (even though P13-P16 are set on power-up as strapping options). In other words, many of the commands below are provided and "work", but otherwise perform no useful function (e.g., commands that set P12-P17 high or low). Also note that setting P10-11, P22-23, P26-27, and T0-1 high or low directly serves no useful purpose, since these bits are used to implement the keyboard and mouse ports and are directly controlled by keyboard controller logic.

Table 4. Keyboard Controller Command Codes

<u>Code</u>	Keyboard Command Code Description	Code	Keyboard Command Code Description
20h	Read Control Byte (next byte is Control Byte)	C0h	Read input port (read P10-17 input data to
21-3Fh	Read SRAM Data (next byte is Data Byte)		the output buffer)
60h	Write Control Byte (next byte is Control Byte)	C1h	Poll input port low (read input data on P11-13
61-7Fh	Write SRAM Data (next byte is Data Byte)		repeatably & put in bits 5-7 of status
9xh	Write low nibble (bits 0-3) to P10-P13	C2h	Poll input port high (same except P15-17)
A1h	Output Keyboard Controller Version #	C8h	Unblock P22-23 (use before D1 to change
A4h	Test if Password is installed	Con	active mode)
	(always returns F1h to indicate not installed)	C9h	Reblock P22-23 (protection mechanism for D1)
A7h	Disable Mouse Interface		•
A8h	Enable Mouse Interface	CAh	Read mode (output KBC mode info to port 60
A9h	Mouse Interface Test (puts test results in port 60h)		output buffer (bit-0=0 if ISA, 1 if PS/2)
	(value: 0=OK, 1=clk stuck low, 2=clk stuck high,	D0h	Read Output Port (copy P10-17 output port values
	3=data stuck lo, 4=data stuck hi, FF=general error)	Don	to port 60)
AAh	KBC self test (returns 55h if OK, FCh if not)	D1h	Write Output Port (data byte following is written to
ABh	Keyboard Interface Test (see A9h Mouse Test)	DIII	keyboard output port as if it came from keyboard)
ADh	Disable Keyboard Interface	D2h	Write Keyboard Output Buffer & clear status bit-5
AEh	Enable Keyboard Interface	DZII	(write following byte to keyboard)
AFh	Return Version #	D3h	Write Mouse Output Buffer & set status bit-5 (write
DOI:	G.4 D10.1	DJII	following byte to mouse; put value in mouse input
B0h	Set P10 low		buffer so it appears to have come from the mouse)
B1h	Set P11 low	D4h	Write Mouse (write following byte to mouse)
B2h	Set P12 low	DHII	write Wouse (write following byte to mouse)
B3h	Set P13 low	E0h	Read test inputs (T0-1 read to bits 0-1 of resp byte)
B4h	Set P22 low	Exh	Set P23-P21 per command bits 3-1
B5h	Set P23 low	Fxh	Pulse P23-P20 low for 6usec per command bits 3-0
B6h B7h	Set P14 low Set P15 low	All otho	r codes not listed are undefined.
		All otne	r codes not fisted are underined.
B8h	Set P10 high		
B9h	Set P11 high		
BAh	Set P12 high		
BBh	Set P13 high		

Set P22 high Set P23 high

Set P14 high

Set P15 high

BCh

BDh BEh

BFh

DMA Controller I/O Registers

Ports 00-0F - Master DMA Controller

Channels 0-3 of the Master DMA Controller control System DMA Channels 0-3. There are 16 Master DMA Controller registers:

I/O Address Bits 15-0 Register Name 0000 0000 000x 0000 Ch 0 Base / Current Address RWCh 0 Base / Current Count \mathbf{RW} 0000 0000 000x 0001 0000 0000 000x 0010 Ch 1 Base / Current Address RW0000 0000 000x 0011 Ch 1 Base / Current Count RW Ch 2 Base / Current Address 0000 0000 000x 0100 RWCh 2 Base / Current Count 0000 0000 000x 0101 RWCh 3 Base / Current Address 0000 0000 000x 0110 \mathbf{RW} 0000 0000 000x 0111 Ch 3 Base / Current Count RW Status / Command 0000 0000 000x 1000 RWWrite Request 0000 0000 000x 1001 WO Write Single Mask 0000 0000 000x 1010 WO 0000 0000 000x 1011 Write Mode WO 0000 0000 000x 1100 Clear Byte Pointer F/F WO 0000 0000 000x 1101 **Master Clear** wo WO 0000 0000 000x 1110 Clear Mask R/W All Mask Bits 0000 0000 000x 1111 RW

Ports C0-DF - Slave DMA Controller

Channels 0-3 of the Slave DMA Controller control System DMA Channels 4-7. There are 16 Slave DMA Controller registers:

I/O Address Bits 15-0	Register Name	
0000 0000 1100 000x	Ch 4 Base / Current Address	\mathbf{RW}
0000 0000 1100 001x	Ch 4 Base / Current Count	\mathbf{RW}
0000 0000 1100 010x	Ch 5 Base / Current Address	\mathbf{RW}
0000 0000 1100 011x	Ch 5 Base / Current Count	\mathbf{RW}
0000 0000 1100 100x	Ch 6 Base / Current Address	\mathbf{RW}
0000 0000 1100 101x	Ch 6 Base / Current Count	\mathbf{RW}
0000 0000 1100 110x	Ch 7 Base / Current Address	\mathbf{RW}
0000 0000 1100 111x	Ch 7 Base / Current Count	\mathbf{RW}
0000 0000 1101 000x	Status / Command	\mathbf{RW}
0000 0000 1101 001x	Write Request	WO
0000 0000 1101 010x	Write Single Mask	WO
0000 0000 1101 011x	Write Mode	WO
0000 0000 1101 100x	Clear Byte Pointer F/F	WO
0000 0000 1101 101x	Master Clear	WO
0000 0000 1101 110x	Clear Mask	WO
0000 0000 1101 111x	Read/Write All Mask Bits	WO

Note that not all bits of the address are decoded.

The Master and Slave DMA Controllers are compatible with the Intel 8237 DMA Controller chip. Detailed description of 8237 DMA controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports 80-8F - DMA Page Registers

There are eight DMA Page Registers, one for each DMA channel. These registers provide bits 16-23 of the 24-bit address for each DMA channel (bits 0-15 are stored in registers in the Master and Slave DMA Controllers). They are located at the following I/O Port addresses:

I/O Address Bits 15-0	Register Name
0000 0000 1000 0111	Channel 0 DMA Page (M-0)RW
0000 0000 1000 0011	Channel 1 DMA Page (M-1)RW
0000 0000 1000 0001	Channel 2 DMA Page (M-2)RW
0000 0000 1000 0010	Channel 3 DMA Page (M-3)RW
0000 0000 1000 1111	Channel 4 DMA Page (S-0)RW
0000 0000 1000 1011	Channel 5 DMA Page (S-1)RW
0000 0000 1000 1001	Channel 6 DMA Page (S-2)RW
0000 0000 1000 1010	Channel 7 DMA Page (S-3)RW

DMA Controller Shadow Registers

The DMA Controller shadow registers are enabled by setting function 0 Rx77 bit 0. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard DMA controller registers (writes are unchanged).

Port 0 - Channel 0 Base AddressRO
Port 1 -Channel 0 Byte CountRO
Port 2 - Channel 1 Base AddressRO
Port 3 - Channel 1 Byte CountRO
Port 4 - Channel 2 Base AddressRO
Port 5 - Channel 2 Byte CountRO
Port 6 - Channel 3 Base AddressRO
Port 7 - Channel 3 Byte CountRO
D 40 48 D 101 102 C 1D 14 DO
Port 8 –1 st Read Channel 0-3 Command RegisterRO
Port 8 – 2 nd Read Channel 0-3 Request RegisterRO
Port 8 – 3 rd Read Channel 0 Mode RegisterRO
Port 8 -4 th Read Channel 1 Mode RegisterRO
Port 8 – 5 th Read Channel 2 Mode RegisterRO
Port 8 –6 th Read Channel 3 Mode RegisterRO
Port F - Channel 0-3 Read All MaskRO
Port C4 - Channel 5 Base AddressRO
Port C6 – Channel 5 Byte CountRO
Port C8 - Channel 6 Base AddressRO
Port CA -Channel 6 Byte CountRO
Port CC - Channel 7 Base AddressRO
Port CE -Channel 7 Byte CountRO
Doub DO 1st Dood Channel 4.7 Command Doctors DO
Port D0 –1 st Read Channel 4-7 Command RegisterRO
Port D0 – 2 nd Read Channel 4-7 Request RegisterRO Port D0 – 3 rd Read Channel 4 Mode RegisterRO
Port DU – 5 Read Channel 4 Mode RegisterRO
Port D0 4 th Read Channel 5 Mode RegisterRO
Port D0 – 5 th Read Channel 6 Mode RegisterRO
Port D0 –6 th Read Channel 7 Mode RegisterRO
Port DE -Channel 4-7 Read All MaskRO

Interrupt Controller Registers

Ports 20-21 - Master Interrupt Controller

The Master Interrupt Controller controls system interrupt channels 0-7. Two registers control the Master Interrupt Controller. They are:

I/O Address Bits 15-0 Register Name

0000 0000 001x xxx0	Master Interrupt Control	RW
0000 0000 001x xxx1	Master Interrupt Mask	RW

Note that not all bits of the address are decoded.

The Master Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Ports A0-A1 - Slave Interrupt Controller

The Slave Interrupt Controller controls system interrupt channels 8-15. The slave system interrupt controller also occupies two register locations:

I/O Address Bits 15-0 Register Name

0000 0000 101x xxx0	Slave Interrupt Control	RW
0000 0000 101x xxx1	Slave Interrupt Mask	RW

Note that not all address bits are decoded.

The Slave Interrupt Controller is compatible with the Intel 8259 Interrupt Controller chip. Detailed descriptions of 8259 Interrupt Controller operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Interrupt Controller Shadow Registers

The following shadow registers are enabled by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard interrupt controller registers (writes are unchanged).

Port 20 - Master Interrupt Control Shadow	RO
Port A0 - Slave Interrupt Control Shadow	RO

- 7 Reservedalways reads 0
- 6 OCW3 bit 2 (POLL)
- **5** OCW3 bit 0 (RIS)
- 4 OCW3 bit 5 (SMM)
- 3 OCW2 bit 7 (R)
- 2 ICW4 bit 4 (SFNM)
- 1 ICW4 bit 1 (AEOI)
- 0 ICW1 bit 3 (LTIM)

Port 21 - Master Interrupt Mask Shadov	vRO
Port A1 - Slave Interrupt Mask Shadow	RO

- **7-5 Reserved**always reads 0
- 4-0 T7-T3 of Interrupt Vector Address

Timer / Counter Registers

Ports 40-43 - Timer / Counter Registers

There are 4 Timer / Counter registers:

I/O Address Bits 15-0	Register Name	
0000 0000 010x xx00	Timer / Counter 0 Count	\mathbf{RW}
0000 0000 010x xx01	Timer / Counter 1 Count	\mathbf{RW}
0000 0000 010x xx10	Timer / Counter 2 Count	\mathbf{RW}
0000 0000 010x xx11	Timer / Counter Cmd Mode	WO

Note that not all bits of the address are decoded.

The Timer / Counters are compatible with the Intel 8254 Timer / Counter chip. Detailed descriptions of 8254 Timer / Counter operation can be obtained from the Intel Peripheral Components Data Book and numerous other industry publications.

Timer / Counter Shadow Registers

The following shadow registers are enabled for readback by setting function 0 Rx47[4]. If the shadow registers are enabled, they are read back at the indicated I/O port instead of the standard timer / counter registers (writes are unchanged).

Port 40 – Counter 0 Base Count Value (LSB 1st MSB 2nd)RO Port 41 – Counter 1 Base Count Value (LSB 1st MSB 2nd)RO Port 42 – Counter 2 Base Count Value (LSB 1st MSB 2nd)RO

Binary Range BCD Range

CMOS / RTC Registers

Port 70) - CMOS AddressRW	00	Seconds 00-3Bh 00-59h
7	NMI DisableRW	01	Seconds Alarm 00-3Bh 00-59h
	0 Enable NMI Generation. NMI is asserted on	02	Minutes 00-3Bh 00-59h
	encountering IOCHCK# on the ISA bus or	03	Minutes Alarm 00-3Bh 00-59h
	SERR# on the PCI bus.	04	Hours am 12hr: 01-1Ch 01-12h
	1 Disable NMI Generationdefault		pm 12hr: 81-8Ch 81-92h
6-0	CMOS Address (lower 128 bytes)RW		24hr: 00-17h 00-23h
	•	05	Hours Alarm am 12hr: 01-1Ch 01-12h
Port 7 1	- CMOS DataRW		pm 12hr: 81-8Ch 81-92h
7-0	CMOS Data (128 bytes)		24hr: 00-17h 00-23h
Note:	Ports 70-71 may be accessed if Rx5A bit-2 is set to	06	Day of the Week Sun=1: 01-07h 01-07h
11000	one to select the internal RTC. If Rx5A bit-2 is set to	07	Day of the Month 01-1Fh 01-31h
	zero, accesses to ports 70-71 will be directed to an	08	Month 01-0Ch 01-12h
	external RTC.	09	Year 00-63h 00-99h
Port 72	2 - CMOS AddressRW	0A	Register A
7-0	CMOS Address (256 bytes)RW		7 UIP Update In Progress
	<u> </u>		6-4 DV2-0 Divide (010=ena osc & keep time)
Port 73	3 - CMOS DataRW		3-0 RS3-0 Rate Select for Periodic Interrupt
7-0	CMOS Data (256 bytes)		
Note:	Ports 72-73 may be accessed if Rx5A bit-2 is set to	0B	Register B
11010.	one to select the internal RTC. If Rx5A bit-2 is set to		7 SET Inhibit Update Transfers
	zero, accesses to ports 72-73 will be directed to an		6 PIE Periodic Interrupt Enable
	external RTC.		5 AIE Alarm Interrupt Enable4 UIE Update Ended Interrupt Enable
	V		4 UIE Update Ended Interrupt Enable 3 SQWE No function (read/write bit)
Port 7 4	I - CMOS AddressRW		2 DM Data Mode (0=BCD, 1=binary)
7-0	CMOS Address (256 bytes)RW		1 24/12 Hours Byte Format (0=12, 1=24)
D . =	. C150G D		0 DSE Daylight Savings Enable
	5 - CMOS DataRW		
7-0	CMOS Data (256 bytes)	0C	Register C
Note:	Ports 74-75 may be accessed only if Function 0 Rx5B		7 IRQF Interrupt Request Flag
	bit-1 is set to one to enable the internal RTC SRAM		6 PF Periodic Interrupt Flag
	and if Rx48 bit-3 (Port 74/75 Access Enable) is set to		5 AF Alarm Interrupt Flag
	one to enable port 74/75 access.		4 UF Update Ended Flag
Note:	Ports 70-71 are compatible with PC industry-		3-0 Unused (always read 0)
11010.	standards and may be used to access the lower 128	0.10	D 14 D
	bytes of the 256-byte on-chip CMOS RAM. Ports	0D	Register D
	72-73 may be used to access the full extended 256-		7 VRT Reads 1 if VBAT voltage is OK 6-0 0 Unused (always read 0)
	byte space. Ports 74-75 may be used to access the		0-0 Unused (arways read 0)
	full on-chip extended 256-byte space in cases where	OF 70	C Software-Defined Storage Registers (111 Bytes)
	the on-chip RTC is disabled.	UE-/(C Software-Defined Storage Registers (111 Bytes)
NI	•	Offca	et Extended Functions Binary Range BCD Range
Note:	The system Real Time Clock (RTC) is part of the	7 D	Date Alarm 01-1Fh 01-31h
	"CMOS" block. The RTC control registers are	7E	Month Alarm 01-0Ch 01-12h
	located at specific offsets in the CMOS data area (0-	7E 7F	Century Field 13-14h 19-20h
	ODh and 7D-7Fh). Detailed descriptions of CMOS /	/ E	Cincury Ficia 13-1-11 19-2011
	RTC operation and programming can be obtained	8∪-Li	F Software-Defined Storage Registers (128 Bytes)
	from the VIA VT82887 Data Book or numerous	00-1 I	boltware-Defined Storage Registers (120 Dytes)

Offset Description

definition of the RTC register locations and bits are

For reference, the

other industry publications.

summarized in the following table:

Table 5. CMOS Register Summary

Super-I/O Configuration Index / Data Registers

Super-I/O configuration registers are accessed by performing I/O operations to / from an index / data pair of registers in system I/O space at port addresses 3F0h and 3F1h. The configuration registers accessed using this mechanism are used to configure the Super-I/O registers (parallel port, serial ports, IR port, and floppy controller).

Super I/O configuration is accomplished in three steps:

- 1) Enter configuration mode (set Function 0 Rx85[1] = 1)
- 2) Configure the chip
 - a) Write index to port 3F0
 - b) Read / write data from / to port 3F1
 - c) Repeat a and b for all desired registers
- 3) Exit configuration mode (set Function 0 Rx85[1] = 0)

Port 3F0h - Super-I/O Configuration Index.....RW

7-0 Index value

Function 0 PCI configuration space register Rx85[1] must be set to 1 to enable access to the Super-I/O configuration registers.

Port 3F1h - Super-I/O Configuration DataRW

7-0 Data value

This register shares a port with the Floppy Status Port (which is read only). This port is accessible only when Rx85[1] is set to 1 (the floppy status port is accessed if Rx85[1] = 0).

Super-I/O Configuration Registers

These registers are accessed via the port 3F0 / 3F1 index / data register pair using the indicated index values below

Index E0 – Super-I/O Device ID (3Ch)RO
7-0 Super-I/O ID
Index E1 – Super-I/O Device Revision (00h)RO
7-0 Super-I/O Revision Code default = 0
Index E2 – Super-I/O Function Select (03h)RW
7-5 Reservedalways reads 0
4 Floppy Controller Enable
0 Disable default
1 Enable
3 Serial Port 2 Enable
0 Disabledefault
1 Enable
2 Serial Port 1 Enable
0 Disabledefault
1 Enable
1-0 Parallel Port Mode / Enable
00 Unidirectional mode
01 ECP
10 EPP
11 Parallel Port Disable default
Index E3 – Floppy Controller I/O Base Address (00h) RW
7-2 I/O Address 9-4 default = 0
1-0 Must be 0 default = 0
Index E6 – Parallel Port I/O Base Address (00h)RW
7-0 I/O Address 9-2 default = 0
If EPP is not enabled, the parallel port can be set to 192
locations on 4-byte boundaries from 100h to 3FCh. If EPP is
enabled, the parallel port can be set to 96 locations on 8-byte
boundaries from 100h to 3F8h.
Index E7 – Serial Port 1 I/O Base Address (00h)RW
7-1 I/O Address 9-3 default = 0
$0 \qquad \mathbf{Must be 0} \qquad \dots $
Index E8 – Serial Port 2 I/O Base Address (00h)RW
7-1 I/O Address 9-3 default = 0

Must be 0

<u>Index I</u>	EE – Serial Port Configuration (00h)RW	Index	<u> F0 – Parallel Port Control (00h)</u>	<u> RW</u>
7	Serial Port 2 High Speed Enable	7	PS2 Type BiDirectionl Parallel Port	
	0 Disabledefault		0 Disable	default
	1 Enable		1 Enable	
6	Serial Port 1 High Speed Enable	6	EPP Direction by Register not by IO	\mathbf{W}
	0 Disabledefault		0 Disable	
	1 Enable		1 Enable	
5-3	Serial Port 2 Mode	5	EPP+ECP	
	000 Standarddefault		0 Disable	default
	001 IrDA (HIPSIR)		1 Enable	
	010 Amplitude shift keyed IR @ 500KHz	4	EPP Version	
	011 -reserved-		0 Version 1.9	default
	1xx -reserved-		1 Version 1.7	
2	Serial Port 2 Half Duplex	3-0	Reserved	always reads 0
	0 Disabledefault			•
	1 Enable			
1	Serial Port 2 TX Output Inversion			
	0 Disabledefault	<u>Index</u>	F1 – Serial Port Control (00h)	
	1 Enable	7-6	Reserved	always reads 0
0	Serial Port 2 RX Input Inversion	5	IR Loop Back	
	0 Disabledefault		0 Disable	default
	1 Enable		1 Enable	
		4	Serial Port 2 Power-Down State	
			0 Normal	default
			1 Tristate output in power down n	node
Index I	EF – Power Down Control (00h)RW	3	Serial Port 1 Power-Down State	
7-6	Reserved always reads 0		0 Normal	default
5	Clock Power Down		1 Tristate output in power down n	node
	0 Normal operationdefault	2	IR Dedicated Pin (IRTX/IRRX) Sele	ct
	1 Power Down		0 IRTX / IRRX Output from Seria	al Port 2 def
4	Parallel Port Power Down		1 Function $0 \text{ Rx76[5]} = 0$:	
	0 Normal operationdefault		IRRX output from dedicated	pin D12
	1 Power Down		IRTX output from dedicated	pin E12
3	Serial Port 2 Power Down	1-0	Reserved	always reads 0
	0 Normal operationdefault			
	1 Power Down			
2	Serial Port 1 Power Down			DII
	0 Normal operationdefault	Index	F2 – Test Mode (Do Not Program)	RW
	1 Power Down	Indov	E4 Test Mode (De Not Program)	DW
1	FDC Power Down	muex	F4 – Test Mode (Do Not Program)	K VV
	0 Normal operationdefault			
	1 Power Down			
0	All Power Down			
	0 Normal operationdefault			
	1 Power Down All			

7-6 Reserved alway

5 Floppy Drive On Parallel Port

- 0 Parallel Port (SPP) Modedefault
- 1 FDC Mode

This bit is used in notebook applications to allow attachment of an external floppy drive using the parallel port I/O connector:

SPP Mode	Pin Type	FDC Mode	Pin Type
STROBE#	I/O	-	n/a
PD0	I/O	INDEX#	I
PD1	I/O	TRK00#	I
PD2	I/O	WRTPRT#	I
PD3	I/O	RDATA#	I
PD4	I/O	DSKCHG#	I
PD5	I/O	-	n/a
PD6	I/O	-	n/a
PD7	I/O	_	n/a
ACK#	I	DS1#	O
BUSY	I	MTR1#	O
PE	I	WDATA#	O
SLCT	I	WGATE#	O
AUTOFD#	I/O	DRVEN0	O
ERROR#	I	HDSEL#	O
PINIT#	I/O	DIR#	O
SLCTIN#	I/O	STEP#	O

4 3-Mode FDD

- 0 Disabledefault
- 1 Enable
- ${\bf 3} \qquad {\bf Reserved} \qquad \dots \\ \qquad \qquad \text{always reads } 0$
- 2 Four Floppy Drive Option
 - 0 Internal 2-Drive Decoderdefault
 - 1 External 4-Drive Decoder
- 1 FDC DMA Non-Burst
 - 0 Burstdefault
 - 1 Non-Burst
- 0 FDC Swap
 - 0 Disabledefault
 - 1 Enable

Index F8 - Floppy Drive ControlRW

- **7-6 Floppy Drive 3** (see table below)
- 5-4 Floppy Drive 2 (see table below)
- **3-2 Floppy Drive 1** (see table below)
- 1-0 Floppy Drive 0 (see table below)

	DRVEN1	DRVEN0
00	DRATE0	DENSEL
01	DRATE0	DRATE1
10	DRATE0	DENSEL#
11	DR ATF1	DRATEO

Super-I/O I/O Ports

Floppy Disk Controller Registers

These registers are located at I/O ports which are offsets from "FDCBase" (index E3h of the Super-I/O configuration registers). FDCBase is typically set to allow these ports to be accessed at the standard floppy disk controller address range of 3F0-3F7h.

Port F	DCBase+2 – FDC CommandRW	Port FDCBase+4 - FDC Data Rate SelectWO			
7	Motor 3 (unused in VT82C686B: no MTR3# pin)	7	Software Reset		
6	Motor 2 (unused in VT82C686B: no MTR2# pin)		0 Normal operationdefault		
5	Motor 1		1 Execute FDC reset (this bit is self clearing)		
	0 Motor Off	6	Power Down		
	1 Motor On		0 Normal operationdefault		
4	Motor 0		1 Power down FDC logic		
	0 Motor Off	5	Reservedalways reads 0		
	1 Motor On	4-2	Precompensation Select		
3	DMA and IRQ Channels		Selects the amount of write precompensation to be		
	0 Disable		used on the WDATA output:		
	1 Enable		000 Defaultdefault		
2	FDC Reset		001 41.7 ns		
	0 Execute FDC Reset		010 93.3 ns		
	1 FDC Enable		011 125.0 ns		
1-0	Drive Select		100 166.7 ns		
	00 Select Drive 0		101 208.3 ns		
	01 Select Drive 1		110 250.0 ns		
	1x -reserved-		111 0.0 ns (disable)		
		1-0	Data Rate		
Port F	DCBase+4 – FDC Main StatusRO		MFM FM Drive Type		
7	Main Request		00 500K 250K bps 1.2MB 5" or 1.44 MB 3"		
	0 Data register not ready		01 300K 150K bps 360KB 5"		
	1 Data register ready		10 250K 125K bps 720KB 3" default		
6	Data Input / Output		11 1M illegal bps		
	$0 \text{CPU} \Rightarrow \text{FDC}$		Note: these bits are not changed by software reset		
	1 FDC \Rightarrow CPU		• •		
5	Non-DMA Mode	Port Fl	DCBase+5 – FDC DataRW		
	0 FDC in DMA mode				
	1 FDC not in DMA mode	Port Fl	DCBase+7 – FDC Disk Change StatusRW		
4	FDC Busy	7	Disk ChangeRO		
	0 FDC inactive		0 Floppy not changeddefault		
	1 FDC active		1 Floppy changed since last instruction		
3-2	Reserved always reads 0	6-2	Undefinedalways reads 1's		
1	Drive 1 Active	1-0	Data RateWO		
	0 Drive inactive		00 500 Kbit/sec (1.2MB 5" or 1.44 MB 3" drive)		
	1 Drive performing a positioning change		01 300 Kbit/sec (360KB 5" drive)		
0	Drive 0 Active		10 250 Kbit/sec (720KB 3" drive)		
	0 Drive inactive		11 1 Mbit/sec		
	1 Drive performing a positioning change				

-48-

Parallel Port Registers

These registers are located at I/O ports which are offsets from "LPTBase" (index E6h of the Super-I/O configuration registers). LPTBase is typically set to allow these ports to be accessed at the standard parallel port address range of 378-37Fh.

Port L	PTBas	e+0 – Parallel Port DataRW	Port L
7-0	Para	llel Port Data	Dout I
Port L	PTBas	e+1 – Parallel Port StatusRO	Port L
7	BUS		Port L
	0	Printer busy, offline, or error	D 4 T
	1	Printer not busy	Port L
6	ACK	T #	Port L
	0	Data transfer to printer complete	1 01 t L
	1	Data transfer to printer in progress	
5	PE		
	0	Paper available	Port L
	1	No paper available	<u> </u>
4	SLC'		Port L
	0	Printer offline	
	1	Printer online	Port L
3	ERR	OR#	7-5
	0	Printer error	
	1	Printer OK	
2-0	Rese	rvedalways read 1 bits	
Port L		se+2 - Parallel Port Control RW efined always read back 1	
4		lware Interrupt	
-	11a1 (Disabledefault	4
	1	Enable	
3	-	ter Select	
3	0	Deselect printerdefault	
	1	Select printer	
2	_	ter Initialize	
_	0	Initialize Printerdefault	•
	1	Allow printer to operate normally	3
1		omatic Line Feed	
-	0	Host handles line feedsdefault	•
	1	Printer does automatic line feeds	2
0	Strol		
-	0	No data transferdefault	
	1	Transfer data to printer	
		•	1

Port LI	PTBase	e+3 – Parallel Port EPP Address RW
Port LI	PTBase	e+4 – Parallel Port EPP Data Port 0 RW
Port LI	PTBase	+5 – Parallel Port EPP Data Port 1 RW
Port LI	PTBase	e+6 – Parallel Port EPP Data Port 2 RW
Port LI	PTBase	e+7 – Parallel Port EPP Data Port 3 RW
Port LI	PTBase	<u> +400h – Parallel Port ECP Data / Cfg A RW</u>
Port LI	PTBase	e+401h – Parallel Port ECP Config B RW
Port LI	PTBase	e+402h – Parallel Port ECP Extd Ctrl RW
7-5	Paral	lel Port Mode Select
	000	Standard Modedefault
	001	PS/2 Mode
	010	FIFO Mode
	011	ECP Mode
	100	EPP Mode
	101	-reserved-
	110	-reserved-
	111	Configuration Mode
4	Paral	lel Port Interrupt Disable
	0	Enable an interrupt pulse to be generated on
		the high to low edge of the fault. An interrupt
		will also be generated if the fault condition is
		asserted and this bit is written from 1 to 0.
	1	Disable the interrupt generated on the asserting
		edge of the fault condition
3	Paral	lel Port DMA Enable
	0	Disable DMA unconditionally
	1	Enable DMA
2	Paral	lel Port Interrupt Pending
	0	Interrupt not pending
	1	Interrupt pending (DMA & interrupts disabled)
	This b	oit is set to 1 by hardware and must be written to
	0 to re	e-enable interrupts
1	FIFO	FullRO
	0	FIFO has at least 1 free byte
	1	FIFO full or cannot accept byte
0	FIFO	EmptyRO
	0	FIFO contains at least 1 byte of data
	1	FIFO is completely empty

Port COM1Base+4 - Handshake ControlRW

Serial Port 1 Registers

These re	egisters are located at I/O ports which are offsets from	7-5	Undefined always read 0
"COM1	Base" (index E7h of the Super-I/O configuration	4	Loopback Check
registers	s). COM1Base is typically set to allow these ports to		0 Normal operation
be acces	ssed at the standard serial port 1 address range of 3F8-		1 Loopback enable
3FFh.		3	General Purpose Output 2 (unused in 82C686B)
		2	General Purpose Output 1 (unused in 82C686B)
Port Co	OM1Base+0 – Transmit / Receive BufferRW	1	Request To Send
7-0	Serial Data		0 Disable
.			1 Enable
	OM1Base+1 – Interrupt EnableRW	0	Data Terminal Ready
7-4	Undefinedalways read 0		0 Disable
3	Interrupt on Handshake Input State Change		1 Enable
2	Intr on Parity, Overrun, Framing Error or Break	D 40	IOMAD - WARES
1	Interrupt on Transmit Buffer Empty	Port C	OM1Base+5 – UART StatusRW
0	Interrupt on Receive Data Ready	7	Undefined always read 0
D 4 C4		6	Transmitter Empty
	OM1Base+1-0 – Baud Rate Generator DivisorRW		0 1 byte in transmit hold or transmit shift register
15-0	Divisor Value for Baud Rate Generator		1 0 bytes transmit hold and transmit shift regs
	Baud Rate = 115,200 / Divisor	5	Transmit Buffer Empty
	(e.g., setting this register to 1 selects 115.2 Kbaud)		0 1 byte in transmit hold register
D 4 C4	OMAD A LA AGLA DO		1 Transmit hold register empty
	OM1Base+2 – Interrupt StatusRO	4	Break Detected
7-3	Undefinedalways read 0		0 No break detected
2-1	Interrupt ID (0=highest priority)		1 Break detected
	00 Priority 3 (Handshake Input Changed State)	3	Framing Error Detected
	01 Priority 2 (Transmit Buffer Empty)	_	0 No error
	10 Priority 1 (Data Received)		1 Error
	11 Priority 0 (Serialization Error or Break)	2	Parity Error Detected
0	Interrupt Pending	_	0 No error
	0 Interrupt Pending		1 Error
	1 No Interrupt Pending	1	Overrun Error Detected
		1	0 No error
Port Co	OM1Base+2 – FIFO Control WO		1 Error
~.		0	Received Data Ready
Port Co	OM1Base+3 – UART ControlRW	U	0 No received data available
7	Divisor Latch Access		
	O Access xmit / rcv & int enable regs at 0-1		1 Received data in receiver buffer register
	1 Access baud rate generator divisor latch at 0-1	Port C	OM1Base+6 – Handshake StatusRW
6	Break		DCD Status (1=Active, 0=Inactive)
	0 Break condition off	6	RI Status (1=Active, 0=Inactive)
	1 Break condition on	5	DSR Status (1=Active, 0=Inactive)
5-3	Parity	4	CTS Status (1=Active, 0=Inactive)
	000 None	3	DCD Changed (1=Changed Since Last Read)
	001 Odd	2	RI Changed (1=Changed Since Last Read)
	011 Even		
	101 Mark	1	DSR Changed (1=Changed Since Last Read)
	111 Space	0	CTS Changed (1=Changed Since Last Read)
2	Stop Bits	Port C	OM1Base+7 – ScratchpadRW
_	0 1	7	
	1 2	,	Scratchpad Data
1-0	Data Bits		
1-0	00 5		
	01 6		
	10 7		
	11 8		
	11 0		

Serial Port 2 Registers	Port COM2Base+4 - Handshake ControlRW				
These registers are located at I/O ports which are offsets from	7-5 Undefined always read 0				
"COM2Base" (index E8h of the Super-I/O configuration	4 Loopback Check				
registers). COM2Base is typically set to allow these ports to	0 Normal operation				
be accessed at the standard serial port 2 address range of 2F8-	1 Loopback enable				
2FFh.	3 General Purpose Output 2 (unused in 82C686B)				
	2 General Purpose Output 1 (unused in 82C686B)				
Port COM2Base+0 - Transmit / Receive BufferRW	1 Request To Send				
7-0 Serial Data	0 Disable				
Dest COMADes at 1 Leterand Early DW	1 Enable				
Port COM2Base+1 – Interrupt EnableRW	0 Data Terminal Ready				
7-4 Undefined always read 0	0 Disable				
3 Interrupt on Handshake Input State Change	1 Enable				
2 Intr on Parity, Overrun, Framing Error or Break	Port COM2Base+5 - UART StatusRW				
1 Interrupt on Transmit Buffer Empty					
0 Interrupt on Receive Data Ready	7 Undefined				
Port COM2Base+1-0 - Baud Rate Generator DivisorRW	6 Transmitter Empty				
15-0 Divisor Value for Baud Rate Generator	0 1 byte in transmit hold or transmit shift register				
Baud Rate = 115,200 / Divisor	1 0 bytes transmit hold and transmit shift regs				
(e.g., setting this register to 1 selects 115.2 Kbaud)	5 Transmit Buffer Empty				
(e.g., setting this register to 1 selects 113.2 Kbatta)	0 1 byte in transmit hold register				
Port COM2Base+2 – Interrupt StatusRO	1 Transmit hold register empty				
7-3 Undefinedalways read 0	4 Break Detected				
2-1 Interrupt ID (0=highest priority)	No break detected Break detected				
00 Priority 3 (Handshake Input Changed State)					
01 Priority 2 (Transmit Buffer Empty)	3 Framing Error Detected 0 No error				
10 Priority 1 (Data Received)	0 No error 1 Error				
11 Priority 0 (Serialization Error or Break)	1 21101				
0 Interrupt Pending	2 Parity Error Detected 0 No error				
0 Interrupt Pending	0 No error 1 Error				
1 No Interrupt Pending	1 Overrun Error Detected				
	0 No error				
Port COM2Base+2 - FIFO Control WO	1 Error				
	0 Received Data Ready				
Port COM2Base+3 – UART ControlRW	0 No received data available				
7 Divisor Latch Access	1 Received data in receiver buffer register				
O Access xmit / rcv & int enable regs at 0-1	1 Received data ili leceivel bullet legister				
1 Access baud rate generator divisor latch at 0-1	Port COM2Base+6 - Handshake StatusRW				
6 Break	7 DCD Status (1=Active, 0=Inactive)				
0 Break condition off	6 RI Status (1=Active, 0=Inactive)				
1 Break condition on	5 DSR Status (1=Active, 0=Inactive)				
5-3 Parity	4 CTS Status (1=Active, 0=Inactive)				
000 None	3 DCD Changed (1=Changed Since Last Read)				
001 Odd	2 RI Changed (1=Changed Since Last Read)				
011 Even	1 DSR Changed (1=Changed Since Last Read)				
101 Mark	0 CTS Changed (1=Changed Since Last Read)				
111 Space					
2 Stop Bits	Port COM2Base+7 – ScratchpadRW				
0 1	7 Scratchpad Data				
1 2					
1-0 Data Bits					
00 5					
01 6					
10 7					
11 8					

SoundBlaster Pro Port Registers

These registers are located at offsets from "SBPBase" (defined in Rx43 of Audio Function 5 PCI configuration space). SBPBase is typically set to allow these ports to be accessed at the standard SoundBlaster Pro port address of 220h or 240h.

FM Registers

Port SI	BPBase+0 – FM Left Channel Index / StatusRW
7-0	FM Right Channel Index / Status
Port SI 7-0	BPBase+1 – FM Left Channel Data WO Right Channel FM Data
Port SI 7-0	BPBase+2 – FM Right Channel Index / StatusRW FM Right Channel Index / Status

7-0 Right Channel FM Data

Port SBPBase+3 – FM Right Channel Data WO

Port 388h or SBPBase+8 – FM Index / StatusRW 7-0 FM Index / Status (Both Channels)

Writing to this port programs both the left and right channels (the write programms port offsets 0 and 2 as well)

Port 389h or SBPBase+9 – FM Data WO

7-0 FM Data (Both Channels)

Writing to this port programs both the left and right channels (the write programms port offsets 1 and 3 as well)

Mixer Registers

Port SI	BPBase+4 – Mixer Index	<u>wo</u>
7-0	Mixer Index	

Port SBPBase+5 – Mixer DataRW 7-0 Mixer Data

Sound Processor Registers

Port Sl	<u>BPB</u>	<u>ase+6 – </u>	<u>Sound</u>	Processor	Reset	WO
	-1	G 1	T)	D 4		

0 1 = Sound Processor Reset

Port SBPBase+A - Sound Processor Read DataRO

7-0 Sound Processor Read Data

Port SBPBase+C - Sound Processor Command / Data WO

7-0 Sound Processor Command / Write Data

Port SBPBase+C - Sound Processor Buffer Status.....RO

7 1 = Sound Processor Command / Data Port Busy

Port SBPBase+E - Sound Processor Data Avail Status..RO

7 1 = Sound Processor Data Available

Register Summary - FM

<u>Index</u>	<u>Bit-7</u>	<u>Bit-6</u>	<u>Bit-5</u>	<u>Bit-4</u>	Bit-3	<u>Bit-2</u>	<u>Bit-1</u>	<u>Bit-0</u>		
01		Test								
02	Fast Counter (80 usec)									
03	Slow Counter (320 usec)									
04	IRQ	MFC	MSC				SSSC	SSFC		
08	CSM	SEL								
20-35	AM	VIB	EGT	KSR	Multi					
40-55	K	SL		Γ	otal Le	vel (TI	رـ)			
60-75	Α	ttack R	ate (AF	₹)	D	ecay R	ate (DF	₹)		
80-95	Sı	ıstain L	evel (S	L)	Re	elease I	Rate (R	R)		
A0-A8				F-Nu	mber					
B0-B8			Key		Block		F-Nu	mber		
BD	Int AN	M VIB	Ryth	Bass	Snare Tom		Cym	HiHat		
C0-C8				Feedback			k	FM		
E0-F5							W	/S		

MFC=Mask Fast Counter
MSC=Mask Slow Counter
SSFC=Start / Stop Fast Counter
SSSC=Start / Stop Slow Counter

Register Summary - Mixer

Index	<u>Bit-7</u>	Bit-6	Bit-5	Bit-4	Bit-3	Bit-2	Bit-1	Bit-0
00				Data	Reset			
02	SP Volume L				SP Volume R			
0A						Mic	Mic Vol	
0C			Finp		TFIL	Sel	Select	
0E			Fout				ST	
22	General Volume		lume		Gene	eral Vo	lume	
26	FM Volume L		ne L		FM Volume R		ne R	
28	CD Volume L		ne L		CD Volume R		ne R	
2E	Line	e Volun	ne L		Line Volume R			

Finp = Input Filter Fout = Output Filter

TFIL = Input Filter Type

ST = Stereo / Mono Mode

Select = Input Choices (0=Microphone, 1=CD, 3=Line)

Command Summary - Sound Processor (see next page)

-52-

Command Summary - Sound Processor

<u>#</u>	Type	Command
<u>"</u>	Play	8 bits directly
14	Play	8 bits via DMA
91	Play	High-speed 8 bits via DMA
16	Play	2-bit compressed via DMA
17	Play	2-bit compressed via DMA with reference
74	Play	4-bit compressed via DMA
	Play	4-bit compressed via DMA with reference
	Play	2.6-bit compressed via DMA
77	Play	2.6-bit compressed via DMA with reference
, ,	Tay	2.0 bit compressed via Divira with reference
20	Record	Direct
24	Record	Via DMA
99	Record	High-speed 8 bits via DMA
		8 · r
D1	Speaker	Turn on speaker connection
D3		Turn off speaker connection
D8	Speaker	Get speaker setting
	_	
40	Misc	Set sample rate
48	Misc	Set block length
80	Misc	Set silence block
D0	Misc	Stop DMA
D4	Misc	Continue DMA
E1	Misc	Get version
30	MIDI	Direct MIDI input
31	MIDI	MIDI input via interrupt
32	MIDI	Direct MIDI input with time stamp
33	MIDI	MIDI input via interrupt with time stamp
34	MIDI	Direct MIDI UART mode
35	MIDI	MIDI UART mode via interrupt
36	MIDI	Direct MIDI UART mode with time stamp
37	MIDI	MIDI UART mode via interrupt with time stamp
38	MIDI	Send MIDI code

Game Port Registers

These registers are fixed at the standard game port address of 201h.

I/O Port 201h - Game Port StatusRO

- 7 Joystick B Button 2 Status
- 6 Joystick B Button 1 Status
- 5 Joystick A Button 2 Status
- 4 Joystick A Button 1 Status
- 3 Joystick B One-Shot Status for Y-Potentiometer
- 2 Joystick B One-Shot Status for X-Potentiometer
- 1 Joystick A One-Shot Status for Y-Potentiometer
- 0 Joystick A One-Shot Status for X-Potentiometer

I/O Port 201h - Start One-Shot......WO

7-0 (Value Written is Ignored)

1-0 Fixed

PCI Configuration Space I/O

PCI configuration space accesses for functions 0-6 use PCI configuration mechanism 1 (see PCI specification revision 2.2 for more details). The ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration AddressRW				
31	Configuration Space Enable			
	0 Disabledefault			
	1 Convert configuration data port writes to			
	configuration cycles on the PCI bus			
30-24	Reserved always reads 0			
23-16	PCI Bus Number			
	Used to choose a specific PCI bus in the system			
15-11	Device Number			
	Used to choose a specific device in the system			
10-8	Function Number			
	Used to choose a specific function if the selected			
	device supports multiple functions			
7-2	Register Number			
	Used to select a specific DWORD in the device's			
	configuration space			

Port CFF-CFC - Configuration DataRW

always reads 0

There are 7 "functions" implemented in the VT82C686B:

Function #	Function
0	PCI to ISA Bridge
1	IDE Controller
2 USB Controller Ports 0-1	
3	USB Controller Ports 2-3
4 Power Management, SMBus & Hardy Monitor	
5	AC97 Audio Codec Controller
6	MC97 Modem Codec Controller

The following sections describe the registers and register bits of these functions.

Function 0 Registers - PCI to ISA Bridge

All registers are located in the function 0 PCI configuration space of the VT82C686B. These registers are accessed through PCI configuration mechanism #1 via I/O address CF8/CFC.

PCI Configuration Space Header

Offset 1-0 - Vendor ID = 1106hRO				
Offset 3	Offset 3-2 - Device ID = 0686hRO			
Offset :	5-4 - CommandRW			
15-8	Reserved always reads 0			
7	Address / Data Stepping			
	0 Disable			
	1 Enabledefault			
6-4	Reserved always reads 0			
3	Special Cycle Enable Normally RW†, default = 0			
2	Bus Master always reads 1			
1	Memory Space Normally RO†, reads as 1			
0	I/O Space Normally RO†, reads as 1			
† If the Rx46[4] test bit is set, access to bits 0, 1, and 3 above				
is rever	sed: bit-3 becomes read only (reading back 1) and bits			
0-1 become read / write (with a default of 1).				

Offset 7-6 - StatusRWC				
15	Detected Parity Error	write one to clear		
14	Signalled System Error	always reads 0		
13	Signalled Master Abort	write one to clear		
12	Received Target Abort	write one to clear		
11	Signalled Target Abort	write one to clear		
10-9	DEVSEL# Timing	fixed at 01 (medium)		
8	Data Parity Detected	always reads 0		
7	Fast Back-to-Back	always reads 0		
6-0	Reserved	always reads 0		

Offset 8 - Revision ID = nnRO 7-0 Revision ID

- Keyisidii ID

- 0x VT82C686
- 1x VT82C686A
- 4x VT82C686B

Offset 9 - Program Interface = 00hRO
Offset A - Sub Class Code = 01hRO
Offset B - Class Code = 06hRO
Offset E - Header Type = 80hRO
7-0 Header Type Code 80h (Multifunction Device)
Offset F - BIST = 00hRO
Offset 2F-2C - Subsystem IDRO
Use offset 70-73 to change the value returned.

ISA Bus Control

Offset	40 - ISA Bus ControlRW
7	ISA Command Delay
,	0 Normal default
	1 Extra
6	Extended ISA Bus Ready
v	0 Disable default
	1 Enable
5	ISA Slave Wait States
	0 4 Wait States default
	1 5 Wait States
4	Chipset I/O Wait States
	0 2 Wait Statesdefault
	1 4 Wait States
3	I/O Recovery Time
	0 Disable default
	1 Enable
2	Extend-ALE
	0 Disabledefault
	1 Enable
1	ROM Wait States
	0 1 Wait Statedefault
	1 0 Wait States
0	ROM Write
	0 Disabledefault
	1 Enable
Offset	41 - ISA Test ModeRW
7	Bus Refresh Arbitration (do not program) default=0
6	I/O Recovery Time
ŭ	0 Normal (13 BCLKs) default
	1 Medium (8 BCLKs)
5	Port 92 Fast Reset
	0 Disabledefault
	1 Enable
4	A20G Emulation (do not program)default=0
3	Double DMA Clock
	0 Disable (DMA Clock = ½ ISA Clock) default
	1 Enable (DMA Clock = ISA Clock)
	This function can be enabled for external ISA devices
	(e.g., advanced Super-IO or FIR controllers) which
	support 8MHz DMA channels. However, if this bit is
	set to 1, then <u>all</u> DMA channels will be 8 MHz. If
	this bit is set to 1 and Rx45[n] is set to 1, then ISA
	DMA channel 'n' will be 16 MHz. Therefore,
	typically this bit is set to 0 and the appropriate bits of
	Rx45 should be set to 1 to enable 8 MHz DMA clock
•	only for specific channels that support the higher rate.
2	SHOLD Lock During INTA (do not program) def=0
1	Refresh Request Test Mode (do not program).def=0
0	ISA Refresh 0 Disabledefault
	1 Enable
	This bit should be set to 1 for ISA compatibility.
	This on should be set to 1 for ISA companionity.

Offset 42 - ISA Clock ControlRW	Offset 43 - ROM Decode ControlRW
7 Latch IO16# 0 Enable (recommended setting)default	Setting these bits enables the indicated address range to be included in the ROMCS# decode:
1 Disable 6 MCS16# Output 0 Disable	7 FFFE0000h-FFFEFFFFh default=0 6 FFF80000h-FFFDFFFFh default=0 5 FFF00000h-FFF7FFFFh default=0 4 000E0000h-000EFFFFh default=0
5 Master Request Test Mode (do not program) 0 Disabledefault 1 Enable	3 000D8000h-000DFFFFhdefault=0 2 000D0000h-000D7FFFhdefault=0 1 000C8000h-000CFFFFhdefault=0
4 Reserved (Do Not Program)	0 000C0000h-000C7FFFh default=0
1 BCLK selected per bits 2-0 2-0 ISA Bus Clock Select (if bit-3 = 1)	7 KBC Timeout Test (do not program)default = 0 6-4 Reserved (do not program)default = 0
000 BCLK = PCICLK / 3default 001 BCLK = PCICLK / 2 010 BCLK = PCICLK / 4	3 Mouse Lock Enable 0 Disable default 1 Enable
011 BCLK = PCICLK / 6 100 BCLK = PCICLK / 5 101 BCLK = PCICLK / 10	2-1 Reserved (do not program)default = 0 0 Reserved (no function)default = 0
110 BCLK = PCICLK / 12 111 BCLK = OSC / 2	Offset 45 - Type F DMA ControlRW 7 ISA Master / DMA to PCI Line Buffer
Note: Procedure for ISA Clock switching: 1) Set bit 3 to 0; 2) Change value of bit 2-0; 3) Set bit 3 to 1	 0 Disable default 1 Enable 6 DMA type F Timing on Channel 7 default=0

4

3

2

1

Note:

DMA type F Timing on Channel 6.....default=0

DMA type F Timing on Channel 5.....default=0

DMA type F Timing on Channel 3.....default=0

DMA type F Timing on Channel 2.....default=0 **DMA type F Timing on Channel 1**.....default=0

DMA type F Timing on Channel 0.....default=0

For bits 0-6 above, see also Rx41[3]

ffset	46 - Miscellaneous Control 1RW	Offset 4	47 - Miscellaneous Control 2RW
7	PCI Master Write Wait States	7	CPU Reset Source
	0 0 Wait Statesdefault		0 Use CPURST as CPU Resetdefault
	1 1 Wait State		1 Use INIT as CPU Reset
6	Gate INTR	6	PCI Delay Transaction Enable
	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
5	Flush Line Buffer for Int or DMA IOR Cycle		The "Posted Memory Write" function is
	0 Disabledefault		automatically enabled when this bit is enabled,
	1 Enable		independent of the state of Rx46 bit-0.
4	Config Command Reg Rx04 Access (Test Only)	5	EISA 4D0/4D1 Port Enable
	0 Normal: Bits 0-1=RO, Bit 3=RWdefault		0 Disable (ignore ports 4D0-1)default
	1 Test Mode: Bits 0-1=RW, Bit-3=RO		1 Enable (ports 4D0-1 per EISA specification)
3	Reserved (do not program) default = 0	4	Interrupt Controller Shadow Register Enable
2	Reserved (no function)default = 0		0 Disabledefault
1	PCI Burst Read Interruptability		1 Enable (for test purposes, enable readback of
	0 Allow burst reads to be interrupted by ISA		interrupt controller internal functions on I/O
	master or DMAdefault		reads from ports 20-21, A0-A1, A8-A9, and
	1 Don't allow PCI burst reads to be interrupted		C8-C9) (Contact VIA Test Engineering
0	Posted Memory Write Enable		department)
	0 Disabledefault	3	Reserved (always program to 0)default = 0
	1 Enable		Note: Always mask this bit. This bit may read back
	The Posted Memory Write function is automatically		as either 0 or 1 but must always be
	enabled when Delay Transaction (see Rx47 bit-6) is		programmed with 0.
	enabled, independent of the state of this bit.	2	Write Delay Transaction Time-Out Timer
			0 Disabledefault
			1 Enable
		1	Read Delay Transaction Time-Out Timer
			0 Disable default

1 Enable

Software PCI Reset write 1 to generate PCI reset

Offset	48 - Miscellaneous Control 3RW	<u>4C - IS</u>	A DMA/Master Memory Access Control 1 RW
7-4	Reserved always reads 0	7-0	PCI Memory Hole Bottom Address
3	Extra RTC Port 74/75 Enable		These bits correspond to HA[23:16]default=0
	0 Disabledefault		
	1 Enable		A DMA/Master Memory Access Control 2 RW
2	Integrated USB Controller Disable	7-0	PCI Memory Hole Top Address (HA[23:16])
	0 Enabledefault		These bits correspond to HA[23:16]default=0
	1 Disable	Note:	Access to the memory defined in the PCI memory
1	Integrated IDE Controller Disable	11010.	hole will not be forwarded to PCI. This function is
	0 Enabledefault		disabled if the top address is less than or equal to the
	1 Disable		bottom address.
0	512K PCI Memory Decode		ottom address.
	0 Use Rx4E[15-12] to select top of PCI memory	4F-4E ·	· ISA DMA/Master Memory Access Control 3 RW
	1 Use contents of Rx4E[15-12] plus 512K as top	15-12	Top of PCI Memory for ISA DMA/Master accesses
	of PCI memorydefault		0000 1Mdefault
0.00			0001 2M
	4A - IDE Interrupt RoutingRW		
7	Wait for PGNT Before Grant to ISA Master /		1111 16M
	DMA	Note:	All ISA DMA / Masters that access addresses higher
	0 Disabledefault		than the top of PCI memory will not be directed to the
	1 Enable		PCI bus.
6	Bus Select for Access to I/O Devices Below 100h	11	Forward E0000-EFFFF Accesses to PCIdef=0
	0 Access ports 00-FFh via XD busdefault	10	Forward A0000-BFFFF Accesses to PCIdef=0
	1 Access ports 00-FFh via SD bus (applies to	9	Forward 80000-9FFFF Accesses to PCIdef=1
	external devices only; internal devices such as	8	Forward 00000-7FFFF Accesses to PCIdef=1
	the mouse controller are not effected)	7	Forward DC000-DFFFF Accesses to PCI def=0
5-4	Reserved (do not program) default = 0	6	Forward D8000-DBFFF Accesses to PCIdef=0
3-2	IDE Second Channel IRQ Routing	5	Forward D4000-D7FFF Accesses to PCIdef=0
	00 IRQ14	4	Forward D0000-D3FFF Accesses to PCIdef=0
	01 IRQ15default	3	Forward CC000-CFFFF Accesses to PCIdef=0
	10 IRQ10	2	Forward C8000-CBFFF Accesses to PCIdef=0
	11 IRQ11	1	Forward C4000-C7FFF Accesses to PCIdef=0
1-0	IDE Primary Channel IRQ Routing	0	Forward C0000-C3FFF Accesses to PCIdef=0
	00 IRQ14default		
	01 IRQ15		
	10 IRQ10		
	11 IRQ11		

Plug and Play Control

Offset :	50 – PNP DMA Request ControlRW
7-4	Reserved $default = 0$
3-2	PnP Routing for Parallel Port DRQ def = DRQ3
1-0	PnP Routing for Floppy DRQ def = DRQ2
DRQ M	Tapping: 00=DRQ0, 01=DRQ1, 10=DRQ2, 11=DRQ3
0.00	
	51 - PNP IRQ Routing 1RW
7-4	PnP Routing for Parallel Port IRQ (see PnP IRQ
	routing table)
3-0	PnP Routing for Floppy IRQ (see PnP IRQ routing
	table)
Offset :	52 - PNP IRQ Routing 2RW
7-4	PnP Routing for Serial Port 2 IRQ (see PnP IRQ
	routing table)
3-0	PnP Routing for Serial Port 1 IRQ (see PnP IRQ
	routing table)
Offset 5	54 - PCI IRQ Edge / Level SelectRW
7-4	Reserved
	The following bits all default to "level" triggered (0)
3	PIRQA# Invert (edge) / Non-invert (level)(1/0)
2	PIRQB# Invert (edge) / Non-invert (level)(1/0)
1	PIRQC# Invert (edge) / Non-invert (level)(1/0)
0	PIRQD# Invert (edge) / Non-invert (level)(1/0)
Note:	PIRQA-D# normally connect to PCI interrupt pins
Note.	INTA-D# (see pin definitions for more information).
0.00	· · · · · · · · · · · · · · · · · · ·
	55 - PNP IRQ Routing 4RW
7-4	PIRQA# Routing (see PnP IRQ routing table)
3-0	Reserved always reads 0
Offset :	56 - PNP IRQ Routing 5RW
7-4	PIRQC# Routing (see PnP IRQ routing table)
3-0	PIRQB# Routing (see PnP IRQ routing table)
Offset :	57 - PNP IRQ Routing 6RW
7-4	PIRQD# Routing (see PnP IRQ routing table)
3-0	Reservedalways reads 0
	•
	PnP IRQ Routing Table
	0000 Disabledefault
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 Reserved
	1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1101 Reserved
	1110 IRQ14 1111 IRQ15
	1111 11(V1)

Offset 58 - External APIC IRQ Output Control RW				
7-5	Reservedalways re	ads 0		
4	ACPI IRQ to APIC[23:16] with Rx42[2:0]			
	0 Disablede	efault		
	1 Enable			
3	MC97 IRQ to APIC[23:16] with Rx3C[2:0]			
	0 Disablede	efault		
	1 Enable			
2	AC97 IRQ to APIC[23:16] with Rx3C[2:0]			
	0 Disablede	efault		
	1 Enable			
1	USB Port 1 IRQ to APIC[23:16] with Rx3C[23	:01		
	0 Disablede	_		
	1 Enable			
0	USB Port 0 IRQ to APIC[23:16] with Rx3C[23	:01		
	0 Disablede	-		
	1 Enable			

|--|

Bits 7-4 of this register are latched from pins SD7-4 at power-up but are read/write accessible so may be changed after power-up to change the default strap setting:

7	Keyl	ooard RP16 latched from SD7
6	Keyl	ooard RP15 latched from SD6
5	Keyl	ooard RP14 latched from SD5
4		ooard RP13 latched from SD4
3	Audi	o Function Enable
		RO, strapped from SPKR pin V5
	0	Disable (SDD pins function as SDD)
	1	Enable (SDD pins function as Audio / Game)
2	Inter	nal RTC Enable
	0	Disable
	1	Enabledefault
1	Inter	rnal PS2 Mouse Enable
	0	Disabledefault
	1	Enable
0	Inter	nal KBC Enable
	0	Disabledefault

Note: External strap option values may be set by connecting the indicated external pin to a 4.7K ohm pullup (for 1) or driving it low during reset with a 7407 TTL open collector buffer (for 0) as shown in the suggested circuit below:

Enable

1

Figure 5. Strap Option Circuit

Offset:	5B - Internal RTC Test ModeRW
7-4	Reserved always reads 0
3	Map RTC Rx32 to Rx3F
	0 Disabledefault
	1 Enable
2	RTC Reset Enable (do not program)
	0 Disabledefault
	1 Enable
1	RTC SRAM Access Enable
	0 Disabledefault
	1 Enable
	This bit is set if the internal RTC is disabled but it is
	desired to still be able to access the internal RTC
	SRAM via ports 74-75. If the internal RTC is
	enabled, setting this bit does nothing (the internal
	RTC SRAM should be accessed at either ports 70/71
	or 72/73.
0	RTC Test Mode Enable (do not program) .default=0
Offset	5C - DMA ControlRW
7	PCS0# & PCS1# 16-Bit I/O
	0 Disabledefault
	1 Enable
6	Passive Release
	0 Disabledefault
	1 Enable
5	Internal Passive Release
	0 Disabledefault
	1 Enable
4	Dummy PREQ
	0 Disabledefault
	1 Enable
3	Reserved always reads 0
2	APIC Connection
	0 APIC on SD Busdefault
	1 APIC on XD Bus
1	Reserved (Do Not Program) default = 0
0	DMA Line Buffer Disable
	0 DMA cycles can be to/from line buffer def
	1 Disable DMA Line Buffer

Distributed DMA / Serial IRQ Control

Offset 6	61-60 - Distributed DMA Ch 0 Base / EnableRW		
15-4	Channel 0 Base Address Bits 15-4 default = 0		
3	Channel 0 Enable		
	0 Disabledefault		
	1 Enable		
2-0	Reserved always reads 0		
Offset (63-62 - Distributed DMA Ch 1 Base / EnableRW		
15-4	Channel 1 Base Address Bits 15-4 default = 0		
3	Channel 1 Enable		
	0 Disabledefault		
	1 Enable		
2-0	Reserved always reads 0		
Offset 6	65-64 - Distributed DMA Ch 2 Base / EnableRW		
15-4			
3	Channel 2 Enable		
	0 Disabledefault		
	1 Enable		
2-0	Reserved always reads 0		
Offset (67-66 - Distributed DMA Ch 3 Base / EnableRW		
	67-66 - Distributed DMA Ch 3 Base / EnableRW Channel 3 Base Address Bits 15-4 default = 0		
15-4	Channel 3 Base Address Bits 15-4 default = 0		
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable		
15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable		
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable		
15-4 3 2-0	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW		
15-4 3 2-0 Offset (Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0		
15-4 3 2-0 Offset (15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW		
15-4 3 2-0 Offset (15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable always reads 0 Keserved RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4)		
15-4 3 2-0 Offset (15-4	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 0 Disable default		
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 Disable default 1 Enable		
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 Disable default 1 Enable Serial IRQ Mode		
15-4 3 2-0 Offset 6 15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default		
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable default 0 Disable default 1 Enable Reserved always reads 0 Feserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode		
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable		
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable default 1 Enable Reserved always reads 0 69-68 - Serial IRQ Control RW Reserved always reads 0 ISA IRQ Asserted Via Serial IRQ (Pin H3 or L4) 0 Disable default 1 Enable Serial IRQ Mode 0 Continuous Mode default 1 Quiet Mode Serial IRQ Start-Frame Width 00 4 PCI Clocks default		
15-4 3 2-0 Offset (15-4 3	Channel 3 Base Address Bits 15-4 default = 0 Channel 3 Enable 0 Disable		

The frame size is fixed at 21 PCI clocks.

<u>Offset 6</u>	<u>6B-6A</u>	- Distributed	<u>l DMA Ch 5 Base / Enable RW</u>
15-4	Char	nnel 5 Base A	ddress Bits 15-4 default = 0
3	Channel 5 Enable		
	0	Disable	default
	1	Enable	
2-0	Rese	rved	always reads 0
Offset 6	6D-6C	- Distributed	l DMA Ch 6 Base / Enable RW
15-4	Char	nnel 6 Base A	ddress Bits 15-4 default = 0
3	Char	nnel 6 Enable	•
	0	Disable	default
	1	Enable	
2-0	Rese	rved	always reads 0
Offset 6	6F-6E	- Distributed	DMA Ch 7 Base / Enable RW
15-4	Char	nnel 7 Base A	ddress Bits 15-4 default = 0
3		nnel 7 Enable	
	0	Disable	default
	1	Enable	
2.0	Dogg	myod	almong roads (

Miscellaneous / General Purpose I/O

31-0	Subsystem ID / Vendor ID always reads 0
	Contents may be read at offset 2C.
Offset 7	4 – GPIO Control 1RW
7	Reserved (Do Not Program) default = 0
6	SERIRQ Pin
	0 SERIRQ input from DRQ2 (Pin H3)default
	1 SERIRQ input from DACK5# (Pin L4)
5	GPIOD Direction (Pin U8)
	0 Inputdefault
	1 Output (GPO11)
4	GPIOC Direction (Pin V14)
	0 Inputdefault
	1 Output
3	GPIOB Direction (Pin U12)
	0 Inputdefault
	1 Output
2	GPIOA Direction (Pin T14)
	0 Inputdefault
	1 Output
1	THRM Enable (Pin T11)
	0 PME# / GPI5 (see Func 4 Rx48[5])default
	1 THRM
0	GPI0 / IOCHCK# Select
	0 GPI0default
	1 IOCUCK#

Offset 73-70 - Subsystem ID WO

Offset	75 – G	PIO Control 2RW	
7	GPO7 Enable (Pin T7)		
	0	Pin defined as SLP#default	
	1	Pin defined as GPO7	
6	GPO	6 Enable (Pin ??)	
	0	Pin defined as ??default	
	1	Pin defined as GPO6	
5	GPO	5 Enable (Pin V12)	
	0	Pin defined as PCISTP# default	
	1	Pin defined as GPO5	
4	GPO	4 Enable (Pin Y12)	
	0	Pin defined as CPUSTP#default	
	1	Pin defined as GPO4	
3	FDC	External IRQ / DRQ Via DACK2# / DRQ2	
	0	Pin G5 is FDCIRQ, pin H3 is FDCDRQ def	
	1	Pin G5 is DACK2# or other alternate function	
		Pin H3 is DRQ2 or other alternate function	
		(see bits 1-2 and Rx76[7-6])	
2	GPO	25 Enable (Pin G5)	
	0	See bit-3 & Rx76[7-6] for G5 pin function def	
	1	Pin G5 defined as GPO25	
1	GPO	24 Enable (Pin H3)	
	0	See bit-3 & Rx68[3] for H3 pin functiondef	
	1	Pin H3 defined as GPO24	
0	Posit	ive Decode	
	0	Subtractive Decode default	

Positive Decode

-62-

Offset	76 – G	PIO Control 3 (00)RW	Offset	<u> 77 – GPIO</u>
7	Over	-Current (OC) Input	7	DRQ / D
	0	Disabledefault		0 Di
	1	Enable (pins G5 and H3 are USBOC0# and		1 En
		USBOC1# if bit- $6 = 0$)	6	Game Po
6	OC[3	3:0] From SD[3:0] By Scan		0 Di
	0	Disable (pins G5 & H3 are USBOC0# and		1 En
		USBOC1# if bit-7 = 1)default	5	Reserved
	1	Enable	4	Internal
5	GPO	14 / GPO15 Enable (Pins E12 / D12)		0 Di
	0	Pins used for IRTX and IRRXdefault		1 En
	1	Pins used for GPO14 and GPO15		AF
4	MCC	CS# Pin Select	3	IRQ0 Ou
	0	MCCS# is on Pin U5default		0 Di
	1	MCCS# is on Pin U8		1 En
3	MCC	CS# Function	2	RTC Rx
	0	Disable MCCS# functiondefault		0 Di
	1	Enable MCCS# function		1 En
		(see bit-4 for select of U5 or U8 for MCCS#)	1	RTC Rx
2	CHA	S Enable (Pin V14)		0 Di
	0	Pin is defined as GPIOCdefault		1 En
	1	Pin is defined as CHAS	0	GPO13 I
1	GPO	12 Enable (Pin T5)		0 Pir
	0	Pin is defined as XDIRdefault		1 Pir
	1	Pin is defined as GPO12		
0	GPO	WE# (GPO[23-16]) Enable (Pin T14)		
	0	Pin is defined as GPIOAdefault		
	1	Pin is defined as GPOWE# (Rx74[2] also must		
		be set to 1)		

ffset	<u>77 – G</u>	<u> PIO Control 4 Control (10h)RW</u>
7	DRQ	/ DACK# Pins are GPI / GPO
	0	Disabledefault
	1	Enable
6	Gam	e Port XY Pins are GPI / GPO
	0	Disabledefault
	1	Enable
5	Rese	rvedalways reads 0
4	Inter	rnal APIC Enable
	0	Disable
	1	Enable (U10 = WSC $\#$, V9 = APICD0, T10 =
		APICD1)default
3	IRQ() Output
	0	Disabledefault
	1	Enable IRQ0 output to GPIOC
2	RTC	Rx32 Write Protect
	0	Disabledefault
	1	Enable
1	RTC	Rx0D Write Protect
	0	Disabledefault
	1	Enable
0	GPO	13 Enable (Pin U5)
	0	Pin defined as SOE#default
	1	Pin defined as GPO13

Offset	79-78 – PCS0# I/O Port AddressRW	Offset 7F-7E - 32-Bit DMA ControlRW
15-0	PCS0# I/O Port Address [15-0]	15-3 32-Bit DMA High Page (A31-24) Registers IOBase
	7B-7A – PCS1# I/O Port AddressRW PCS1# I/O Port Address [15-0]	2-1 Reserved always reads 0 0 32-Bit DMA default 0 Disable default 1 Enable
		1 Bhasic
Offset	7D-7C – PCI DMA Channel EnableRW	Offset 80 – Programmable Chip Select MaskRW
	7D-7C – PCI DMA Channel EnableRW Reservedalways reads 0	Offset 80 – Programmable Chip Select Mask RW 7-4 PCS1# I/O Port Address Mask [3-0]
15-9		Offset 80 – Programmable Chip Select MaskRW
15-9	Reserved always reads 0	Offset 80 – Programmable Chip Select Mask RW 7-4 PCS1# I/O Port Address Mask [3-0]

Offset	81 – ISA Positive Decoding Control 1RW	Offset	83 – ISA Positive Decoding Control 3 RV
7	On-Board I/O Port Positive Decoding	7	COM Port B Positive Decoding
	0 Disabledefault		0 Disabledefaul
	1 Enable		1 Enable
6	Microsoft-Sound System I/O Port Positive	6-4	COM-Port B Decode Range
	Decoding		000 3F8h-3FFh (COM1)defaul
	0 Disabledefault		001 2F8h-2FFh (COM2)
	1 Enable		010 220h-227h
5-4	Microsoft-Sound System I/O Decode Range		011 228h-22Fh
	00 0530h-0537hdefault		100 238h-23Fh
	01 0604h-060Bh		101 2E8h-2EFh (COM4)
	10 0E80-0E87h		110 338h-33Fh
	11 0F40h-0F47h		111 3E8h-3EFh (COM3)
3	APIC Positive Decoding	3	COM Port A Positive Decoding
	0 Disabledefault		0 Disable defaul
	1 Enable		1 Enable
2	BIOS ROM Positive Decoding	2-0	COM-Port A Decode Range
_	0 Disabledefault	- 0	000 3F8h-3FFh (COM1)defaul
	1 Enable		001 2F8h-2FFh (COM2)
1	Reservedalways reads 0		010 220h-227h
0	PCS0 Positive Decoding		011 228h-22Fh
v	0 Disabledefault		100 238h-23Fh
	1 Enable		101 2E8h-2EFh (COM4)
	1 Litable		110 338h-33Fh
			110 338h-3374 111 3E8h-3EFh (COM3)
			111 SEGII-SELII (COMS)
Offset	82 – ISA Positive Decoding Control 2RW		
7	FDC Positive Decoding		
	0 Disabledefault	Offset	84 – ISA Positive Decoding Control 4RV
	1 Enable	7-4	Reservedalways reads
6	LPT Positive Decoding	3	FDC Decoding Range
	0 Disabledefault		0 Primary defaul
	1 Enable		1 Secondary
5-4	LPT Decode Range	2	Sound Blaster Positive Decoding
	00 3BCh-3BFh, 7BCh-7BEhdefault		0 Disable defaul
	01 378h-37Fh, 778h-77Ah		1 Enable
	10 278h-27Fh, 678h-67Ah	1-0	Sound Blaster Decode Range
	11 -reserved-		00 220h-22Fh, 230h-233hdefaul
3	Game Port Positive Decoding		01 240h-24Fh, 250h-253h
Č	0 Disabledefault		10 260h-26Fh, 270h-273h
	1 Enable		11 280h-28Fh, 290h-293h
2	MIDI Positive Decoding		11 200n 201 n, 270n 270n
_	0 Disabledefault		
	1 Enable		
1-0	MIDI Decode Range		
1-0	00 300h-303hdefault		
	oo soon sosnuclaun		
	01 310h-313h		
	01 310h-313h		
	01 310h-313h 10 320h-323h 11 330h-333h		

Offset 85 – Extended Function EnableRW				
7-6	PCI Master Grant Timeout Select			
	00 Disabledefault			
	01 32 PCI Clocks			
	10 64 PCI Clocks			
	11 96 PCI Clocks			
5	Reserved always reads 0			
4	Function 3 USB Ports 2-3			
	0 Enabledefault			
	1 Disable			
3	Function 6 Modem / Audio			
	0 Enabledefault			
	1 Disable			
2	Function 5 Audio			
	0 Enabledefault			
	1 Disable			
1	Super-I/O Configuration			
	0 Disabledefault			
	1 Enable			
0	Super-I/O			
	0 Disabledefault			
	1 Enable			

Offset 86 – PNP IRQ/DRQ Test 1 (Do Not Program) ... RW

Offset 87 – PNP IRQ/DRQ Test 2 (Do Not Program) ... RW

Offset	88 – PLL TestRW
7	PCS0# Access Status
6	RTC Rx32 / Rx7F Write Protect
	0 Disabledefault
	1 Enable
5	MC IRQ Test (Do Not Program)
	0 Disabledefault
	1 Enable
4	PLL PU (Do Not Program)
	0 Disabledefault
	1 Enable
3	PLL Test Mode (Do Not Program)
	0 Disabledefault
	1 Enable
2-0	PLL Test Mode Select
Offset	89 – PLL ControlRW
	Reserved always reads 0
	PLL PCLK Input Delay Select
	PLL CLK66 Feedback Delay Select
	•

Offset 8	SA – PCS	2/3 I/O Port Address MaskRW
7-4	PCS3# I	O Port Address Mask 3-0
3-0	PCS2# I	O Port Address Mask 3-0
O. C.C. 4. G	D DCC	C 4 I
		ControlRW
7		For Internal I/O
		isabledefault
		nable
6		For Internal I/O
		isabledefault
		nable
5		For Internal I/O
	0 D:	isable default
	1 Eı	nable
4	PCS0# I	For Internal I/O
	0 D	isabledefault
	1 Eı	nable
3	PCS3#	
	0 D	isabledefault
	1 Eı	nable
2	PCS2#	
	0 D	isabledefault
	1 Eı	nable
1	PCS1#	
	0 D:	isabledefault
	1 Eı	nable
0	PCS0#	
	0 D:	isabledefault
	1 Eı	nable
Offset 8	<u> BD-8C – P</u>	CS2# I/O Port AddressRW
15-0	PCS2# I	O Port Address
Offset 8	8F-8E – P	CS3# I/O Port AddressRW
		O Port Address

Function 1 Registers - Enhanced IDE Controller

This Enhanced IDE controller interface is fully compatible with the SFF 8038i v.1.0 specification. There are two sets of software accessible registers -- PCI configuration registers and Bus Master IDE I/O registers. The PCI configuration registers are located in the function 1 PCI configuration space of the VT82C686B. The Bus Master IDE I/O registers are defined in the SFF8038i v1.0 specification.

PCI Configuration Space Header

Offset 1	-0 - Vendor ID (1106h=VIA)RO
Offset 3	2-2 - Device ID (0571h=IDE Controller)RO
Offset 5	-4 - CommandRW
15-10	Reserved always reads 0
9	Fast Back to Back Cycles default = 0 (disabled)
8	SERR# Enable default = 0 (disabled)
7	Address Stepping fixed at 1 (enabled)
	A value of 1 provides additional address decode time
	to IDE devices.
6	Parity Error Response default = 0 (disabled)
5	VGA Palette Snoopfixed at 0 (disabled)
4	Memory Write & Invalidatefixed at 0 (disabled)
3	Special Cycles fixed at 0 (disabled)
2	Bus Master default = 0 (disabled)
	S/G operation can be issued only when the "Bus
	Master" bit is enabled.
1	Memory Spacefixed at 0 (disabled)
0	I/O Space default = 0 (disabled)
	When the "I/O Space" bit is disabled, the device will
	not respond to any I/O addresses for both compatible
	and native mode.
Offcot 7	7-6 - StatusRO
15	Detected Parity Error always reads 0

Offset 8	8 - Revision ID (06)R0	<u>)</u>
0-7	Revision Code for IDE Controller Logic Block	

Signalled System Error..... always reads 0

Received Master Abort..... always reads 0

Received Target Abort always reads 0 **Signalled Target Abort** always reads 0

DEVSEL# Timingalways reads 01 (medium)

Data Parity Detected..... always reads 0

Fast Back to Back always reads 1

..... always reads 0

Offset ^Q	- Programming Interf	ace	RW
7	Master IDE Capability		
6-4	_ ,	alw	
3	Programmable Indica		
	Supports both modes (•	
	writing bit-2)	may be bet to crim	n mode of
2	9	alw	ays reads 0
1	Programmable Indica	tor - Primary	fixed at 1
	Supports both modes (
	writing bit-0)		
0	Reserved	alw	ays reads 0
Compat	ibility Mode (fixed IRQs	and I/O addresses)	<u>):</u>
	Command Block	Control Block	
Chann	el Registers	Registers	<u>IRQ</u>
Pri	1F0-1F7	3F6	14
Sec	170-177	376	15
Native 1	PCI Mode (registers are p	orogrammable in I/O	O space)
	Command Block	Control Block	
Chann	el Registers	<u>Registers</u>	
Pri	BA @offset 10h	BA @offset 14h	
Sec	BA @offset 18h	BA @offset 1Ch	
	nd register blocks are 8 b registers are 4 bytes of I		2 is used)
	A - Sub Class Code (01h	1 , , , ,	ŕ
Offset 1	B - Base Class Code (01)	h=Mass Storage C	<u>(trlr)RO</u>
Offset (Offset C – Cache Line Size (00h)RO		
Offset D - Latency Timer (Default=0)RW			
Offset 1	E - Header Type (00h)		RO

Offset F - BIST (00h).....RO

Reserved

14

13

12

11 10-9

8

7

6-0

Offset 1	3-10 - Pri Data / Command Base AddressRW
Specifie	s an 8 byte I/O address space.
31-16 15-3 2-0	Reservedalways read 0Port Addressdefault=01F0hFixed at 001bfixed
Offset 1	7-14 - Pri Control / Status Base AddressRW
	s a 4 byte I/O address space of which only the third active (i.e., 3F6h for the default base address of 3F4h).
31-16 15-2 1-0	Reservedalways read 0Port Addressdefault=03F4hFixed at 01bfixed
Offset 1	B-18 - Sec Data / Command Base AddressRW
Specifie	s an 8 byte I/O address space.
31-16 15-3 2-0	Reservedalways read 0Port Addressdefault=0170hFixed at 001bfixed
Offset 1	F-1C - Sec Control / Status Base AddressRW
	s a 4 byte I/O address space of which only the third ctive (i.e., 376h for the default base address of 374h).
	Reservedalways read 0Port Addressdefault=0374hFixed at 01bfixed
Offset 2	3-20 - Bus Master Control Regs Base AddressRW
	s a 16 byte I/O address space compliant with the SFF- ev 1.0 specification.
15-4	Reserved always read 0 Port Address default=CC0h Fixed at 0001h fixed

Offset 3	3D - Interri	upt Pin (00h)	RO
7-0	00h Leg	Routing Mode accy mode interrupt routing ive mode interrupt routing	default
Offcot 1	RF - Min C	nt (00h)	PΩ

IDE-Controller-Specific Confliguration Registers

Offset 4	<u> 10 - Chip Enable (00h)RW</u>
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) R/W , default = 0
1	Primary Channel Enable default = 0 (disabled)
0	Secondary Channel Enable default = 0 (disabled)
Offset 4	41 - IDE Configuration I (06h)RW
7	Primary IDE Read Prefetch Buffer
	0 Disabledefault
	1 Enable
6	Primary IDE Post Write Buffer
	0 Disabledefault
	1 Enable
5	Secondary IDE Read Prefetch Buffer
	0 Disabledefault
	1 Enable
4	Secondary IDE Post Write Buffer
	0 Disabledefault
2.2	1 Enable
3-2	Reserved always reads 0
1	Reserved (Do Not Program) default=1
0	Reserved always reads 0
Offset 4	42 - IDE Configuration II (09h)RW
7-2	Reserved (Do Not Program) default = 000010b
1-0	DEVSEL# Timing Select default = 01b
	(also reflected in Rx07)
Offset 4	43 - FIFO Configuration (0Ah)RW
7-4	Reserved always reads 0
3-2	Threshold for Primary Channel
	00 0
	01 1/4
	10 1/2default
	11 3/4
1-0	Threshold for Secondary Channel
	00 0
	01 1/4
	40.44
	10 1/2default 11 3/4

Offset 4	44 - Miscellaneous Control I (68h) RW
7	Reserved always reads 0
6	Master Read Cycle IRDY# Wait States
	0 0 wait states
	1 1 wait statedefault
5	Master Write Cycle IRDY# Wait States
	0 0 wait states
	1 1 wait state default
4	PIO Read Prefetch Byte Counter
	0 Disabledefault
	1 Enable
3	Bus Master IDE Status Register Read Retry
	Retry bus master IDE status register read when
	master write operation for DMA read is not complete
	0 Disable
	1 Enable
2	Packet Command Prefetching
_	0 Disable default
	1 Enable
1	Reservedalways reads 0
0	UltraDMA Host Must Wait for First Strobe
U	Before Termination
	0 Enable
	1 Disable
	1 Distole
Offset 4	45 - Miscellaneous Control 2 (00h)RW
7	Reserved always reads 0
6	Interrupt Steering Swap
	0 Don't swap channel interruptsdefault
	1 Swap interrupts between the two channels
5	Reserved always reads 0
4	Rx3C Write Protect
-	0 Disable default
	1 Enable
3	Memory Read Multiple Command
	0 Disable default
	1 Enable
2	Memory Read and Invalidate Command
_	0 Disable default
	1 Enable
1-0	Reservedalways reads 0
1-0	Reservedarways roads o
Offset 4	46 - Miscellaneous Control 3 (C0h)RW
7	Primary Channel Read DMA FIFO Flush
	0 Disable
	1 Enable FIFO flush for Read DMA when
	interrupt asserts primary channel default
6	Secondary Channel Read DMA FIFO Flush
v	0 Disable
	1 Enable FIFO flush for Read DMA when
	interrupt asserts secondary channel default
5-0	Reservedalways reads 0

Offset 4B-48 - Drive Timing Control (A8A8A8A8h).....RW

The following fields define the Active Pulse Width and Recovery Time for the IDE DIOR# and DIOW# signals:

31-28	Primary Drive 0 Active Pulse Width def=1010b
27-24	Primary Drive 0 Recovery Time def=1000b
23-20	Primary Drive 1 Active Pulse Width def=1010b
19-16	Primary Drive 1 Recovery Time def=1000b
15-12	Secondary Drive 0 Active Pulse Width def=1010b
11-8	Secondary Drive 0 Recovery Time def=1000b
7-4	Secondary Drive 1 Active Pulse Width def=1010b
3-0	Secondary Drive 1 Recovery Time def=1000b
The cote	val value for each field is the areaded value in the field

The actual value for each field is the encoded value in the field plus one and indicates the number of PCI clocks.

Offset 4	4C - Address Setup Time (FFh)RW
7-6	Primary Drive 0 Address Setup Time def = 11
5-4	Primary Drive 1 Address Setup Time def = 11
3-2	Secondary Drive 0 Address Setup Time def = 11
1-0	Secondary Drive 1 Address Setup Time def = 11
	For each field above:
	00 1T
	01 2T
	10 3T

.....default

11 4T

Offset 5	3-50 - UltraDMA Extended Timing Control RW
31	Pri Drive 0 UltraDMA-Mode Enable Method
	0 Enable by using "Set Feature" command def
	1 Enable by setting bit-30 of this register
30	Pri Drive 0 UltraDMA-Mode Enable
	0 Disable default
	1 Enable UltraDMA-Mode Operation
29	Pri Drive 0 Transfer Mode
	0 DMA or PIO Modedefault
	1 UltraDMA Mode
28	Pri Drive 0 Cabal Type Reporting
	0 Disabledefault
	1 Enable
27	Reserved always reads 0
26-24	Pri Drive 0 Cycle Time (T = 10nsec)
	000 2T
	001 3T
	010 4T
	011 5T
	100 6T
	101 7T
	110 8T
	111 9Tdefault
23	Pri Drive 1 UltraDMA-Mode Enable Method
22	Pri Drive 1 UltraDMA-Mode Enable Pri Drive 1 UltraDMA-Mode Enable
21	Pri Drive 1 Transfer Mode
20	Pri Drive 1 Cabal Type Reporting
20	0 Disable default
	1 Enable
19	Reservedalways reads 0
	Pri Drive 1 Cycle Time (see above for default)
	•
15	Sec Drive 0 UltraDMA-Mode Enable Method
14	Sec Drive 0 UltraDMA-Mode Enable
13	Sec Drive 0 Transfer Mode
12	Sec Drive 0 Cabal Type Reporting
	0 Disable default
11	1 Enable
	Reserved always reads 0
10-8	Sec Drive 0 Cycle Time (see above for default)
7	Sec Drive 1 UltraDMA-Mode Enable Method
6	Sec Drive 1 UltraDMA-Mode Enable
5	Sec Drive 1 Transfer Mode
4	Sec Drive 1 Cabal Type Reporting
	0 Disabledefault
	1 Enable
3	Reserved always reads 0
2-0	Sec Drive 1 Cycle Time (see above for default)

Each byte defines UltraDMA operation for the indicated drive. The bit definitions are the same within each byte.

Offset 5	54 – UltraDMA FIFO Control (06h)RW
7-5	Reserved always reads 0
4	One Frame For Each PCI Request For IDE PCI
	Master Cycles
	0 Disabledefault
	1 Enable
3	Reserved always reads 0
2	Change Drive to Clear All FIFO & Internal States
	0 Disable
	1 Enabledefault
1	Reserved always reads 0
0	Complete DMA Cycle with Transfer Size Less
	Than FIFO Size
	0 Enabledefault
	1 Disable

Offset 6	61-60 - Primary Sector Size (0200h)RW
15-12	Reserved always reads 0
11-0	Number of Bytes Per Sector def=200h (512 bytes)
Offset 6	69-68 - Secondary Sector Size (0200h)RW
15-12	Reserved always reads 0
11-0	Number of Bytes Per Sector def=200h (512 bytes)

<u> Offset</u>	/0 – Primary IDE StatusRW	Offset 78 – Secondary IDE Status RW
7	Interrupt Status	7 Interrupt Status
6	Prefetch Buffer Status	6 Prefetch Buffer Status
5	Post Write Buffer Status	5 Post Write Buffer Status
4	DMA Read Prefetch Status	4 DMA Read Prefetch Status
3	DMA Write Prefetch Status	3 DMA Write Prefetch Status
2	S/G Operation Complete	2 S/G Operation Complete
1	FIFO Empty Status	1 FIFO Empty Status
0	Response to External DMAREQ	0 Response to External DMAREQ
Offset '	71 – Primary Interrupt ControlRW	Offset 79 - Secondary Interrupt ControlRW
7-1	Reservedalways reads 0	7-1 Reservedalways reads (
0	Flush FIFO Before Generating IDE Interrupt	0 Flush FIFO Before Generating IDE Interrupt
	0 Disabledefault	0 Disabledefaul
	1 Enable	1 Enable

Offset 8	<u> 83-80 – Prim</u>	ary S/G Descriptor AddressRW
Offset 8	<u> 8B-88 – Seco</u>	ndary S/G Descriptor AddressRW
Offset (C3-C0 – PCI	PM Block 1RO
31-0	PCI PM Bl	ock 1 always reads 0002 0001h
Offset (C 7-C4 – PCI	PM Block 2RO
31-2	Reserved	always reads 0
1-0	Power Stat	e
	00 On	default
	01 Off	

1x -reserved-

IDE I/O Registers

These registers are compliant with the SFF $8038I\ v1.0$ standard. Refer to the SFF $8038I\ v1.0$ specification for further details.

I/O Offset 0 - Primary Channel Command

I/O Offset 2 - Primary Channel Status

I/O Offset 4-7 - Primary Channel PRD Table Address

I/O Offset 8 - Secondary Channel Command

I/O Offset A - Secondary Channel Status

I/O Offset C-F - Secondary Channel PRD Table Address

Function 2 Registers - USB Controller Ports 0-1

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 2 PCI configuration space of the VT82C686B. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 0-1 (see function 3 for ports 2-3).

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO
0-7	Vendor ID (1106h = VIA Technologies)
0.00	14 P + T
Offset 3	3-2 - Device IDRO
0-7	Device ID (3038h = VT82C686B USB Controller)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address Stepping default=0 (disabled)
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Spacedefault=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
0.6	11 Reserved
8-0	Reserved always reads 0

	S - Revision ID (nnn)RO
7-0	Silicon Revision Code (0 indicates first silicon)
	06h Corresponds to Chip Revision D
Offset 9	9 - Programming Interface (00h)RO
Offset A	A - Sub Class Code (03h=USB Controller)RO
Offset 1	B - Base Class Code (0Ch=Serial Bus Controller)RO
Offset (C – Cache Line Size (00h)RO
Offset 1	D - Latency TimerRW
7-0	Timer Value default = 16h
Offset 1	E - Header Type (00h)RO
Offset 1	F - BIST (00h)RO
Offset 2	23-20 - USB I/O Register Base AddressRW
	Reservedalways reads 0
15-5	USB I/O Register Base Address. Port Address for
	the base of the 32-byte USB I/O Register block,
	corresponding to AD[15:5]
	* *
4-0	00001b
	3C - Interrupt Line (00h)RW
Offset 3	3C - Interrupt Line (00h)RW
Offset 3	Reservedalways reads 0
Offset 3	BC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1
Offset 3	BC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0101 IRQ5
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9
Offset 3	RC - Interrupt Line (00h) RW Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 default 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ9
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12 1101 IRQ13
Offset 3	Reserved always reads 0 USB Interrupt Routing default = 16h 0000 Disable default 0001 IRQ1 0010 Reserved 0011 IRQ3 0100 IRQ4 0101 IRQ5 0110 IRQ6 0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1RW	Offset 4	41 - Miscellaneous Control 2RW
7	PCI Memory Command Option	7	USB 1.1 Improvement for EOP
	0 Support Memory-Read-Line, Memory-Read-		0 USB Specification 1.1 Compliant default
	Multiple, & Memory-Write-&-Invalidate def		If a bit stuffing error occurs before EOP, the
	1 Only support Mem Read, Mem Write Cmds		receiver will accept the packet
6	Babble Option		1 USB Specification 1.0 Compliant
	0 Automatically disable babbled port when EOF		If a bit stuffing error occurs before EOP, the
	babble occursdefault		receiver will ignore the packet
	 Don't disable babbled port 	6-5	Reserved (Do Not Program) default = 0
5	PCI Parity Check Option	4	Hold PCI Request for Successive Accesses
	O Disable PERR# generationdefault		0 Disable
	1 Enable parity check and PERR# generation		1 Enabledefault
4	Frame Interval Select		Setting this bit to "enable" causes the system to treat
	0 1 ms framedefault		the USB request as higher priority
	1 0.1 ms frame	3	Frame Counter Test Mode
3	USB Data Length Option		0 Disabledefault
	O Support TD length up to 1280default		1 Enable
	1 Support TD length up to 1023	2	Trap Option
2	USB Power Management		0 Set trap 60/64 status bits only when trap 60/64
	O Disable USB power managementdefault		enable bits are setdefault
	1 Enable USB power management		1 Set trap 60/64 status bits without checking
1	DMA Option		enable bits
	0 8 DW burst access with better FIFO latency def	1	A20gate Pass Through Option
	1 16 DW burst access (original performance)		0 Pass through A20GATE command sequence
0	PCI Wait States		defined in UHCIdefault
	0 Zero waitdefault		1 Don't pass through Write I/O port 64 (ff)
	1 One wait	0	USB IRQ Test Mode
			0 Normal Operation default

Generate USB IRQ

Offset 4	42 - FIFO ControlRW
7-4	Reserved always reads 0
3-2	Reserved (Do Not Program) default = 0
1-0	Release Continuous REQ After "N" PCICLKs
	00 Do Not Releasedefault
	01 N = 32 PCICLKs
	10 N = 64 PCICLKs
	11 $N = 96$ PCICLKs
Offset (60 - Serial Bus Release NumberRO
7-0	Release Number always reads 10h
7-0	Release Number atways leads 1011
Offset 8	83-80 – PM CapabilityRO
	PM Capability always reads 00020001h
	· · · · · · · · · · · · · · · · · · ·
Offset 8	84 – PM Capability StatusRW
7-0	PM Capability Status default = 00h
	Supports 00h (Off) and 11h (On) only
O 00 · ·	G1 G0 T
Offset (C1-C0 - Legacy SupportRO
15-0	IJHCI v1 1 Compliant always reads 2000h

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Function 3 Registers - USB Controller Ports 2-3

This Universal Serial Bus host controller interface is fully compatible with UHCI specification v1.1. There are two sets of software accessible registers: PCI configuration registers and USB I/O registers. The PCI configuration registers are located in the function 3 PCI configuration space of the VT82C686B. The USB I/O registers are defined in UHCI specification v1.1. The registers in this function control USB ports 2-3 (see function 2 for ports 0-1).

PCI Configuration Space Header

Offset 1	1-0 - Vendor IDRO
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
0-7	Device ID (3038h = VT82C686B USB Controller)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address Stepping default=0 (disabled)
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidate . default=0 (disabled)
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master default=0 (disabled)
1	Memory Space default=0 (disabled)
0	I/O Space default=0 (disabled)
Offset 7	7-6 - StatusRWC
15	Reserved (detected parity error) always reads 0
14	Signalled System Errordefault=0
13	Received Master Abortdefault=0
12	Received Target Abort default=0
11	Signalled Target Abort default=0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8-0	Reserved always reads 0

Offset 8	<u>8 - Revision ID (nnh)RO</u>
7-0	Silicon Revision Code (0 indicates first silicon)
Offset 9	O - Programming Interface (00h)RO
Offset A	A - Sub Class Code (03h=USB Controller)RO
Offset I	B - Base Class Code (0Ch=Serial Bus Controller)RO
Offset (C – Cache Line Size (00h)RO
Offset I	O - Latency TimerRW
7-0	Timer Value default = 16h
Offset 1	E - Header Type (00h)RO
Offset 1	F - BIST (00h)RO
	Reserved
Offset 3	BC - Interrupt Line (00h)RW
7-4	Reserved always reads 0
3-0	USB Interrupt Routingdefault = 16h
5-0	0000 Disable default
	0001 IRQ1
	0010 Reserved
	0011 IRQ3
	0100 IRQ4
	0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	0111 IRQ7 1000 IRQ8
	0111 IRQ7 1000 IRQ8 1001 IRQ9
	0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10
	0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11
	0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10
	0111 IRQ7 1000 IRQ8 1001 IRQ9 1010 IRQ10 1011 IRQ11 1100 IRQ12

Offset 3D - Interrupt Pin (04h).....RO

USB-Specific Configuration Registers

Offset	40 - Miscellaneous Control 1RW	Offset 4	41 - Miscellaneous Control 2RW
7	PCI Memory Command Option	7	USB 1.1 Improvement for EOP
	0 Support Memory-Read-Line, Memory-Read-		0 USB Specification 1.1 Compliant default
	Multiple, & Memory-Write-&-Invalidate def		If a bit stuffing error occurs before EOP, the
	1 Only support Mem Read, Mem Write Cmds		receiver will accept the packet
6	Babble Option		1 USB Specification 1.0 Compliant
	O Automatically disable babbled port when EOF		If a bit stuffing error occurs before EOP, the
	babble occursdefault		receiver will ignore the packet
	1 Don't disable babbled port	6-5	Reserved (Do Not Program) default = 0
5	PCI Parity Check Option	4	Hold PCI Request for Successive Accesses
	O Disable PERR# generationdefault		0 Disable
	1 Enable parity check and PERR# generation		1 Enabledefault
4	Frame Interval Select		Setting this bit to "enable" causes the system to treat
	0 1 ms framedefault		the USB request as higher priority
	1 0.1 ms frame	3	Frame Counter Test Mode
3	USB Data Length Option		0 Disabledefault
	O Support TD length up to 1280default		1 Enable
	1 Support TD length up to 1023	2	Trap Option
2	USB Power Management		0 Set trap 60/64 status bits only when trap 60/64
	O Disable USB power managementdefault		enable bits are setdefault
	1 Enable USB power management		1 Set trap 60/64 status bits without checking
1	DMA Option		enable bits
	0 8 DW burst access with better FIFO latency def	1	A20gate Pass Through Option
	1 16 DW burst access (original performance)		0 Pass through A20GATE command sequence
0	PCI Wait States		defined in UHCIdefault
	0 Zero waitdefault		1 Don't pass through Write I/O port 64 (ff)
	1 One wait	0	USB IRQ Test Mode
			0 Normal Operation default

Generate USB IRQ

Offset 42	- FIFO ControlRW
7-4 R	Reserved always reads 0
3-2 R	Reserved (Do Not Program) default = 0
1-0 R	Release Continuous REQ After "N" PCICLKs
	00 Do Not Releasedefault
	01 N = 32 PCICLKs
	10 N = 64 PCICLKs
	11 $N = 96$ PCICLKs
	- Serial Bus Release NumberRO Release Numberalways reads 10h
Offset 83-	80 – PM CapabilityRO
31-0 P	M Capability always reads 00020001h
Offset 84	- PM Capability StatusRW
7-0 P	M Capability Statussupports 00h and 11h only
Offset C1	-C0 - Legacy SupportRO

15-0 UHCI v1.1 Compliant..... always reads 2000h

USB I/O Registers

These registers are compliant with the UHCI v1.1 standard. Refer to the UHCI v1.1 specification for further details.

I/O Offset 1-0 - USB Command

I/O Offset 3-2 - USB Status

I/O Offset 5-4 - USB Interrupt Enable

I/O Offset 7-6 - Frame Number

I/O Offset B-8 - Frame List Base Address

I/O Offset 0C - Start Of Frame Modify

I/O Offset 11-10 - Port 0 Status / Control

I/O Offset 13-12 - Port 1 Status / Control

Function 4 Regs - Power Management, SMBus and HWM

This section describes the ACPI (Advanced Configuration and Power Interface) Power Management system of the VT82C686B which includes a System Management Bus (SMBus) interface controller and Hardware Monitoring (HWM) subsystem. The power management system of the VT82C686B supports both ACPI and legacy power management functions and is compatible with the APM v1.2 and ACPI v1.0 specifications.

PCI Configuration Space Header

Offset 1	<u>-0 - Vendor IDRO</u>
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	3-2 - Device IDRO
0-7	Device ID (3057h = ACPI Power Mgmt)
Offset 5	5-4 - CommandRW
15-8	Reserved always reads 0
7	Address Steppingfixed at 0
6	Reserved (parity error response)fixed at 0
5	Reserved (VGA palette snoop)fixed at 0
4	Memory Write and Invalidatefixed at 0
3	Reserved (special cycle monitoring)fixed at 0
2	Bus Master fixed at 0
1	Memory Spacefixed at 0
0	I/O Spacefixed at 0
Offset 7	7-6 - StatusRWC
15	Detected Parity Error always reads 0
14	Signalled System Error always reads 0
13	Received Master Abortalways reads 0
12	Received Target Abort always reads 0
11	Signalled Target Abort always reads 0
10-9	DEVSEL# Timing
	00 Fast
	01 Mediumdefault (fixed)
	10 Slow
	11 Reserved
8	Data Parity Detected always reads 0
7	Fast Back to Back Capable always reads 1
6-0	Reserved always reads 0

Offset 9 - Programming Interface (00h)RO
The value returned by this register may be changed by writing the desired value to PCI Configuration Function 4 offset 61h.
Offset A - Sub Class Code (00h)RO
The value returned by this register may be changed by writing the desired value to PCI Configuration Function 4 offset 62h.
Offset B - Base Class Code (00h)RO
The value returned by this register may be changed by writing the desired value to PCI Configuration Function 4 offset 63h.
Offset 0D - Latency TimerRW
7-0 Timer Value default = 0
Offset 0E - Header Type (00h)RO

Offset 8 - Revision ID (nnh).....RO

7-0 Silicon Revision Code

Power Management-Specific PCI Configuration Registers

Offset	40 – General Configuration 0RW	Offset 4	41 - General Configuration 1RW
7	Thermal Alarm Source Select	7	I/O Enable for ACPI I/O Base
	0 From pin T11 (Function 0 Rx74[1] must be set		0 Disable access to ACPI I/O block default
	to define the pin as THRM#)default		1 Allow access to Power Management I/O
	1 From any of the three internal temperature		Register Block (see offset 4B-48 to set the
	sensing circuits (see Rx43 and Rx44 of		base address for this register block). The
	Hardware Monitoring configuration space)		definitions of the registers in the Power
6	Sleep Button		Management I/O Register Block are included
	0 Disabledefault		later in this document, following the Power
	1 Sleep Button is on IRQ6 pin (pin G1)		Management Subsystem overview.
5	Debounce LID and PWRBTN# Inputs for 200us	6	ACPI Timer Reset
	0 Disabledefault		0 Normal Timer Operationdefault
	1 Enable		1 Reset Timer
4	Reserved always reads 0	5-4	PMU Timer Test Mode (Do Not Program) $def = 0$
3	Microsoft Sound Monitor in Audio Access	3	ACPI Timer Count Select
	0 Disabledefault		0 24-bit Timerdefault
	1 Enable		1 32-bit Timer
2	Game Port Monitor in Audio Access	2	RTC Enable Signal Gated with PSON (SUSC#) in
	0 Disabledefault		Soft-Off Mode
	1 Enable		0 Disabledefault
1	SoundBlaster Monitor in Audio Access		1 Enable
	0 Disabledefault	1	STPCLK Timer Tick Base Select
	1 Enable		0 30 usecdefault
0	MIDI Monitor in Audio Access		1 1 msec
	0 Disabledefault	0	DEVSEL# Test Mode (Do Not Program)def = 0
	1 Enable		

Offset	42 - ACPI Interrupt SelectRW	Offset	45-44 - Primary Interrupt Channel (0000h) RW
7	ATX / AT Power IndicatorRO	15	1/0 = Ena/Disa IRQ15 as Primary Intrpt Channel
	0 ATX	14	1/0 = Ena/Disa IRQ14 as Primary Intrpt Channel
	1 AT	13	1/0 = Ena/Disa IRQ13 as Primary Intrpt Channel
6	SUSC# StateRO	12	1/0 = Ena/Disa IRQ12 as Primary Intrpt Channel
5	Reserved always reads 0	11	1/0 = Ena/Disa IRQ11 as Primary Intrpt Channel
4	SUSC# AC-Power-On Default ValueRO	10	1/0 = Ena/Disa IRQ10 as Primary Intrpt Channel
	This bit is written at RTC Index 0D bit-7.	9	1/0 = Ena/Disa IRQ9 as Primary Intrpt Channel
3-0	SCI Interrupt Assignment	8	1/0 = Ena/Disa IRQ8 as Primary Intrpt Channel
	0000 Disabledefault	7	1/0 = Ena/Disa IRQ7 as Primary Intrpt Channel
	0001 IRQ1	6	1/0 = Ena/Disa IRQ6 as Primary Intrpt Channel
	0010 Reserved	5	1/0 = Ena/Disa IRQ5 as Primary Intrpt Channel
	0011 IRQ3	4	1/0 = Ena/Disa IRQ4 as Primary Intrpt Channel
	0100 IRQ4	3	1/0 = Ena/Disa IRQ3 as Primary Intrpt Channel
	0101 IRQ5	2	Reserved always reads 0
	0110 IRQ6	1	1/0 = Ena/Disa IRQ1 as Primary Intrpt Channel
	0111 IRQ7	0	1/0 = Ena/Disa IRQ0 as Primary Intrpt Channel
	1000 IRQ8	Offcot	47-46 - Secondary Interrupt Channel (0000h) RW
	1001 IRQ9		
	1010 IRQ10	15	1/0 = Ena/Disa IRQ15 as Secondary Intr Channel
	1011 IRQ11	14	1/0 = Ena/Disa IRQ14 as Secondary Intr Channel
	1100 IRQ12	13	1/0 = Ena/Disa IRQ13 as Secondary Intr Channel
	1101 IRQ13	12	1/0 = Ena/Disa IRQ12 as Secondary Intr Channel
	1110 IRQ14	11	1/0 = Ena/Disa IRQ11 as Secondary Intr Channel
	1111 IRQ15	10	1/0 = Ena/Disa IRQ10 as Secondary Intr Channel
Occ 4	42 I 4 175' P 175 4 PO	9	1/0 = Ena/Disa IRQ9 as Secondary Intr Channel
	43 – Internal Timer Read TestRO	8 7	1/0 = Ena/Disa IRQ8 as Secondary Intr Channel 1/0 = Ena/Disa IRQ7 as Secondary Intr Channel
7-0	Internal Timer Read Test	6	1/0 = Ena/Disa IRQ6 as Secondary Intr Channel
		5	1/0 = Ena/Disa IRQ5 as Secondary Intr Channel
		5 4	1/0 = Ena/Disa IRQ5 as Secondary Intr Channel 1/0 = Ena/Disa IRQ4 as Secondary Intr Channel
		3	1/0 = Ena/Disa IRQ4 as Secondary Intr Channel 1/0 = Ena/Disa IRQ3 as Secondary Intr Channel
		2	Reservedalways reads 0
		1	1/0 = Ena/Disa IRQ1 as Secondary Intr Channel
		1	1/v – Ena/Disa INQI as secondary find Chainlei

1/0 = Ena/Disa IRQ0 as Secondary Intr Channel

Offset 4	B-48	– Power	Managemen	at I/O BaseRW	
31-16	1-16 Reservedalways reads 0				
15-7	Powe			Register Base Address.	
				e of the 128-byte Power	
				block, corresponding to	
				ce" bit at offset 41 bit-7	
	enabl	les acces	s to this regis	ter block. The definitions	
				Power Management I/O	
				d in the following section	
	_	locument		<u> </u>	
6-0	0000	001b			
Offset 4				gement ControlRW	
7-4			y Cycle (TH		
	This	4-bit fi	eld determine	es the duty cycle of the	
				e THRM# pin is asserted	
	low.	The field	d is decoded a	as follows:	
	0000) Reserve	ed	default	
		1 0-6.259			
		0 6.25-12			
		1 18.75-2			
		31.25-3			
		1 37.50-4			
) 43.75-5			
		1 50.00-5			
) 56.25-6			
		1 62.50-6			
		0 68.75-7			
		1 75.00-8			
		75.00-8			
		1 81.25-8			
		87.50-9			
•		1 93.75-1			
3		M Enab		1.6.1	
	0			default	
2	1	Enable			
2	_		as Resume E	default	
	1	Enable		deraun	
1	Rese			alwaye roade ()	
0			rant Cycle Se	always reads 0	
U	0			Grant Cycledefault	
	1		Stop Grant Cy		
	_			h I/O space Rx2C[3] for	
				PUSTP# assertion during	
		_	nd mode:	resir assertion during	
		2C[3]	Rx4C[0]		
		ction 4	Function 4		
			Cfg Space	CPUSTP# Assertion	
	<u></u>	0	X	Immediate	
		1	0	Wait for CPU Halt	
				/ Stop Grant cycle	
		1	1	Wait for CPU	
				Stop Grant cycle	
				-	

Offset 4D – Throttle / Clock Stop ControlRW			
7	Throttle Timer Reset def = 0		
6-5	Throttle Timer		
	0x 4-Bitdefault		
	10 3-Bit		
	11 2-Bit		
4	Fast Clock (7.5us) as Throttle Timer Tick		
	0 Disabledefault		
	1 Enable		
3	SMI Level Output (Low)		
	0 Disabledefault		
	1 Enable (set this bit for socket-370 coppermine)		
2	Internal Clock Stop for PCI Idle		
	0 Disabledefault		
	1 Enable		
1	Internal Clock Stop During C3		
	0 Disabledefault		
	1 Enable		
0	Internal Clock Stop During Suspend		
	0 Disabledefault		
	1 Enable		

Offset 53-50 - GP Timer Control (0000 0000h)RW 31-30 Conserve Mode Timer Count Value 00 1/16 seconddefault 01 1/8 second 10 1 second 11 1 minute **Conserve Mode Status** This bit reads 1 when in Conserve Mode 28 **Conserve Mode Enable** Disabledefault 1 Enable 27-26 Secondary Event Timer Count Value 00 2 milliseconds......default 01 64 milliseconds 10 ½ second 11 by EOI + 0.25 milliseconds **Secondary Event Occurred Status** This bit reads 1 to indicate that a secondary event has occurred (to resume the system from suspend) and the

24 Secondary Event Timer Enable

- 0 Disabledefault
- 1 Enable

23-16 GP1 Timer Count Value (base defined by bits 5-4) Write to load count value; Read to get current count

secondary event timer is counting down.

15-8 GP0 Timer Count Value (base defined by bits 1-0) Write to load count value; Read to get current count

7 GP1 Timer Start

On setting this bit to 1, the GP1 timer loads the value defined by bits 23-16 of this register and starts counting down. The GP1 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP1 timer counts down to zero, then the GP1 Timer Timeout Status bit is set to one (bit-3 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP1 Timer Timeout Enable bit is set (bit-3 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP1 Timer Automatic Reload

- 0 GP1 Timer stops at 0default
- 1 Reload GP1 timer automatically after counting down to 0

5-4 GP1 Timer Base

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

3 GP0 Timer Start

On setting this bit to 1, the GP0 timer loads the value defined by bits 15-8 of this register and starts counting down. The GP0 timer is reloaded at the occurrence of certain peripheral events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP0 timer counts down to zero, then the GP0 Timer Timeout Status bit is set to one (bit-2 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP0 Timer Timeout Enable bit is set (bit-2 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP0 Timer Automatic Reload

- 0 GP0 Timer stops at 0default
- 1 Reload GP0 timer automatically after counting down to 0

1-0 GP0 Timer Base

- 00 Disable.....default
- 01 1/16 second
- 10 1 second
- 11 1 minute

Offset :	54 – Power Well Control WO
7	SMBus Clock Select
	0 SMBus Clock from 14.31818 MHz Divider def
	1 SMBus Clock from RTC 32.768 KHz
6	STR Power Well Output Gating
	0 Disabledefault
	1 Enable
5	SUSC# = 0 for STR
	0 Disabledefault
	1 Enable
4	SUSST1# / GPO3 Select (Pin V10)
	0 SUSST1#default
	1 GPO3
3	GPO2 / SUSB# Select (Pin W9)
	0 SUSB#default
	1 GPO2
	Before chip rev C, this definition was reversed
	See also Function 0 Rx74[7] and 77[4]
2	GPO1 / SUSA# Select (Pin V9)
	0 SUSA#default
	1 GPO1
	Before chip rev C, this definition was reversed
	See also Function 0 Rx74[7] and 77[4]
1-0	GPO0 (SLOWCLK) Output Selection (Pin T8)
	00 From GPO0 (PMU I/O Rx4C[0])default
	01 1 Hz
	10 4 Hz
	11 16 Hz

RW	ıkeup	<u> 55 – USB W</u>	Offset :
always reads 0		Reserved	7-3
Rising for S5	USST1# Before PWRGD	Deassert S	2
		Wakeup	
default	ole	0 Disa	
	le	1 Ena	
always reads 0		Reserved	1
J	up for STR/STD/Soff		0
default	ole		
		1 Ena	
	-		
RW	neous Control	<u> 57 – Miscell</u>	Offset :
always reads 0		Reserved	7-1
l	HRM# Output on GPO21	Internal T	0
	ole		
	le	1 Ena	

Offset 58 - GP2 / GP3 Timer ControlRW

7 GP3 Timer Start

On setting this bit to 1, the GP3 timer loads the value defined by Rx5A and starts counting down. The GP3 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP3 timer counts down to zero, then the GP3 Timer Timeout Status bit is set to one (bit-13 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP3 Timer Timeout Enable bit is set (bit-13 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

6 GP3 Timer Automatic Reload

- 0 GP3 Timer stops at 0default
- 1 Reload GP3 timer automatically after counting down to 0

5-4 GP3 Timer Tick Select

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

3 GP2 Timer Start

On setting this bit to 1, the GP2 timer loads the value defined by Rx59 and starts counting down. The GP2 timer is reloaded at the occurrence of certain events enabled in the GP Timer Reload Enable Register (Power Management I/O Space Offset 38h). If no such event occurs and the GP2 timer counts down to zero, then the GP2 Timer Timeout Status bit is set to one (bit-12 of the Global Status register at Power Management Register I/O Space Offset 28h). Additionally, if the GP2 Timer Timeout Enable bit is set (bit-12 of the Global Enable register at Power Management Register I/O Space Offset 2Ah), then an SMI is generated.

2 GP2 Timer Automatic Reload

- 0 GP2 Timer stops at 0default
- 1 Reload GP2 timer automatically after counting down to 0

1-0 GP2 Timer Tick Select

- 00 Disabledefault
- 01 1/16 second
- 10 1 second
- 11 1 minute

<u>Offset</u>	<u> 59 – GP2 Timer</u>	RW
7	Write: GP2 Timer Load Value	default = 0
	Read: GP2 Timer Current Count	
Offset	5A – GP3 Timer	RW
7	Write: GP3 Timer Load Value	default = 0
	Read: GP3 Timer Current Count	

Offset 61 - Program Interface Read Value......WO

7-0 Rx09 Read Value

The value returned by the register at offset 9h (Programming Interface) may be changed by writing the desired value to this location.

Offset 62 - Sub Class Read Value...... WO

7-0 Rx0A Read Value

The value returned by the register at offset 0Ah (Sub Class Code) may be changed by writing the desired value to this location.

Offset 63 - Base Class Read Value WO

7-0 Rx0B Read Value

The value returned by the register at offset 0Bh (Base Class Code) may be changed by writing the desired value to this location.

Hardware-Monitor-Specific Configuration Registers

Offset 7	71-70 – Hard	lware Monitor I/O BaseRW
15-7	I/O Base (1	28-byte I/O space) default = 0
6-0	Fixed	always reads 0000001b
Offset 7	74 –Hardwa	re Monitor ControlRW
7-4	Reserved	always reads 0
3	Hardware	Monitoring Interrupt
	0 SMI	default
	1 SCI	
2-1	Reserved	always reads 0
0	Hardware	Monitoring I/O Enable
	0 Disal	ble hardware monitor functionsdefault
	1 Enab	le hardware monitor functions

System Management Bus-Specific Configuration Registers

Offset 9	<u>3-90 – SMBus I/O Base RW</u>
31-16	Reservedalways reads (
15-4	I/O Base (16-byte I/O space) default = 00h
3-0	Fixedalways reads 0001b
Offset I	02 – SMBus Host ConfigurationRW
7-4	Reservedalways reads (
3	SMBus Interrupt Select
	0 SMIdefaul
	1 SCI
2	SMBus Clock Select
	0 Divide down from 14.31818 MHzdefaul
	1 64 KHz derived from 32.768 KHz RTC clock
1	SMBus IRQ
	0 Disabledefaul
	1 Enable
0	SMBus Host Controller Enable
	0 Disable SMB controller functions defaul
	1 Enable SMB controller functions
Offset I	03 - SMBus Host Slave CommandRW
7-0	${\bf SMBus\ Host\ Slave\ Command\ Code}{\bf default} = 0$
Offset I	94 – SMBus Slave Address for Port 1RW
7-0	SMBus Slave Address for Port 1default=0
Bit-0 mu	ast be set to 0 for proper operation
O.66 4 T	of CMD CL All 6 D 42 DW
	05 – SMBus Slave Address for Port 2RW
7-0	SMBus Slave Address for Port 2default=0
Bit-0 mu	ast be set to 0 for proper operation
Offset I	06 – SMBus Revision IDRO
7-0	SMBus Revision Code

Power Management I/O-Space Registers

Basic Power Management Control and Status

I/O Offset 1-0 - Power Management Status			<u>I/O Offset 3-2 - Power Management Enable</u> <u>RW</u> The bits in this register correspond to the bits in the Power Management Status Register at offset 1-0.	
15	Wakeup Status (WAK_STS)	15	Reservedalways reads 0	
14-12	Reserved always reads 0	14-12	Reserved always reads 0	
11	Abnormal Power-Off (APO_STS) default = 0	11	Reserved always reads 0	
10	RTC Status (RTC_STS) default = 0	10	RTC Enable (RTC_EN)default = 0	
	This bit is set when the RTC generates an alarm (on		This bit may be set to trigger either an SCI or an SMI	
	assertion of the RTC IRQ signal).		(depending on the setting of the SCI_EN bit) to be generated when the RTC_STS bit is set.	
9	Sleep Button Status (SB_STS) default = 0	9	Sleep Button Enable (SB_EN)default = 0	
	This bit is set when the sleep button (SLPBTN# /		This bit may be set to trigger either an SCI or SMI	
	IRQ6 / GPI4) is pressed.		when the SB_STS bit is set.	
8	Power Button Status (PB_STS)default = 0	8	Power Button Enable (PB_EN)default = 0	
	This bit is set when the PWRBTN# signal is asserted		This bit may be set to trigger either an SCI or an SMI	
	LOW. If the PWRBTN# signal is held LOW for more than four seconds, this bit is cleared and the		(depending on the setting of the SCI_EN bit) to be generated when the PB_STS bit is set.	
	system will transition into the soft off state.		generated when the LD_S15 of 15 set.	
7-6	Reserved always reads 0	7-6	Reserved always reads 0	
5	Global Status (GBL_STS) default = 0	5	Global Enable (GBL_EN)default = 0	
	This bit is set by hardware when BIOS_RLS is set		This bit may be set to trigger either an SCI or an SMI	
	(typically by an SMI routine to release control of the SCI/SMI lock). When this bit is cleared by software		(depending on the setting of the SCI_EN bit) to be generated when the GBL_STS bit is set.	
	(by writing a one to this bit position) the BIOS_RLS		generated when the GDL_S13 bit is set.	
	bit is also cleared at the same time by hardware.			
4	Bus Master Status (BM_STS) default = 0	4	Reserved always reads 0	
	This bit is set when a system bus master requests the			
	system bus. All PCI master, ISA master and ISA DMA devices are included.			
3-1	Reservedalways reads 0	3-1	Reservedalways reads 0	
0	ACPI Timer Carry Status (TMR_STS) default = 0	0	ACPI Timer Enable (TMR_EN)default = 0	
	The bit is set when the 23^{rd} (31st) bit of the 24 (32)		This bit may be set to trigger either an SCI or an SMI	
	bit ACPI power management timer changes.		(depending on the setting of the SCI_EN bit) to be	
			generated when the TMR_STS bit is set.	

I/O Offset 5-4 - Power Management ControlRW

- 15 Soft Resume
- **14 Reserved**always reads 0

12-10 Sleep Type (SLP_TYP)

- 000 Normal On
- 001 Suspend to RAM (STR)
- 010 Suspend to Disk (STD) (also called Soft Off). The VCC power plane is turned off while the VCCS and VBAT planes remain on.
- 011 Reserved
- 100 Power On Suspend without Reset
- 101 Power On Suspend with CPU Reset
- 110 Power On Suspend with CPU/PCI Reset
- 111 Reserved

In any sleep state, there is minimal interface between powered and non-powered planes so that the effort for hardware design may be well managed.

- **9 Reserved** always reads 0
- **8 STD Command Generates System Reset Only**
 - 0 Disabledefault
 - 1 Enable
- **7-3 Reserved** always reads 0
- 1 Bus Master Reload (BMS_RLD)
 - O Bus master requests are ignored by power management logic......default
 - 1 Bus master requests transition the processor from the C3 state to the C0 state
- 0 SCI Enable (SCI_EN)

Selects the power management event to generate either an SCI or SMI (for Power / Sleep Buttons & RTC only)

- 0 Generate SMIdefault
- 1 Generate SCI

Note that certain power management events can be programmed individually to generate an SCI or SMI independent of the setting of this bit (refer to the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24). Also, TMR_STS & GBL_STS always generate SCI and BIOS_STS always generates SMI.

I/O Offset 0B-08 - Power Management Timer RW

31-24 Extended Timer Value (ETM_VAL)

This field reads back 0 if the 24-bit timer option is selected (Rx41 bit-3).

23-0 Timer Value (TMR_VAL)

This read-only field returns the running count of the power management timer. This is a 24/32-bit counter that runs off a 3.579545 MHz clock, and counts while in the S0 (working) system state. The timer is reset to an initial value of zero during a reset, and then continues counting until the 14.31818 MHz input to the chip is stopped. If the clock is restarted without a reset, then the counter will continue counting from where it stopped.

Processor Power Management Registers

I/O Off	set 13-10 - Processor & PCI Bus ControlRW		
	Reserved always reads 0		
11	PCI Stop (PCISTP# asserted) when PCKRUN# is		
	Deasserted (PCI_STP)		
	0 Enabledefault		
	1 Disable		
10	PCI Bus Clock Run Without Stop (PCI_RUN)		
	0 PCKRUN# will be de-activated after the PCI		
	bus is idle for 26 clocksdefault		
	1 PCKRUN# is always asserted		
9	Host Clock Stop Enable (HOST_STP)		
	0 STPCLK# will be asserted in the C3 state, but		
	the CPU clock is not stoppeddefault		
	1 CPU clock is stopped in the C3 state		
8	Assert SLP# for Processor Level 3 Read		
	0 Disabledefault		
	1 Enable		
	Used in Slot-1 systems only.		
7-5	Reserved always reads 0		
4	Throttling Enable (THT_EN)		
	Setting this bit starts clock throttling (modulating the		
	STPCLK# signal) regardless of the CPU state. The		
	throttling duty cycle is determined by bits 3-0 of this		
	register.		
3-0	Throttling Duty Cycle (THT_DTY)		
	This 4-bit field determines the duty cycle of the		
	STPCLK# signal when the system is in throttling		
	mode (the "Throttling Enable" bit is set to one). The		
	duty cycle indicates the percentage of time the		
	STPCLK# signal is asserted while the Throttling		
	Enable bit is set. The field is decoded as follows:		
	0000 Reserved		
	0001 0-6.25%		
	0010 6.25-12.50%		
	0011 18.75-25.00%		
	0100 31.25-37.50%		
	0101 37.50-43.75%		
	0110 43.75-50.00%		
	0111 50.00-56.25%		
	1000 56.25-62.50%		
	1001 62.50-68.75%		
	1010 68.75-75.00%		
	1011 75.00-87.50%		
	1100 75.00-81.25%		
	1101 81.25-87.50%		
	1110 87.50-93.75%		
	1111 93.75-100%		

I/O Offset 14 - Processor Level 2.....RO

7-0 Level 2always reads 0 Reads from this register put the processor into the Stop Grant state (the VT82C686B asserts STPCLK# to suspend the processor). Wake up from Stop Grant state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

I/O Offset 15 - Processor Level 3.....RO

Level 3always reads 0 Reads from this register put the processor in the C3 clock state with the STPCLK# signal asserted. If Rx10[9] = 1 then the CPU clock is also stopped by asserting CPUSTP#. Wakeup from the C3 state is by interrupt (INTR, SMI, and SCI).

Reads from this register return all zeros; writes to this register have no effect.

General Purpose Power Management Registers

I/O Offset 21-20 - General Purpose Status (GP STS).RWC

- **15 Reserved**always reads 0
- 14 USB Wake-Up Status (UWAK_STS) For STR / STD / Soff
- 13 AC97 Wake-Up Status (AWAK_STS)
 Can be set only in suspend mode
- 12 Battery Low Status (BL_STS)
 This bit is set when the BATLOW# input is asserted low.
- 11 Notebook Lid Status (LID_STS)

 This bit is set when the LID input detects the edge selected by Rx2C bit-7 (0=rising, 1=falling).
- Thermal Detect Status (THRM_STS)
 This bit is set when the THRM input detects the edge selected by Rx2C bit-6 (0=rising, 1=falling).
- 9 USB Resume Status (USB_STS)
 This bit is set when a USB peripheral generates a resume event.
- 8 Ring Status (RING_STS)
 This bit is set when the RING# input is asserted low.
- 7 GPI18 Toggle Status (GPI18_STS)
 This bit is set when the GPI18 pin is toggled.
- 6 GPI6 / EXTSMI6 Toggle Status (GPI6_STS)
 This bit is set when the GPI6 pin is toggled.
- 5 GPI5 Toggle Status (GPI5_STS)
 This bit is set when the GPI5 pin is toggled.
- 4 GPI4 / EXTSMI4 Toggle Status (GPI4_STS)
 This bit is set when the GPI4 pin is toggled.
- 3 GPI17 Toggle Status (GPI17_STS)
 This bit is set when the GPI17 pin is toggled.
- 2 GPI16 Toggle Status (GPI16_STS)
 This bit is set when the GPI16 pin is toggled.
- 1 GPI1 Toggle Status (GPI1_STS)
 This bit is set when the GPI1 pin is toggled.
- **O** EXTSMI# Status (EXT_STS)
 This bit is set when the EXTSMI# pin is asserted low.

Note that the above bits correspond one for one with the bits of the General Purpose SCI Enable and General Purpose SMI Enable registers at offsets 22 and 24: an SCI or SMI is generated if the corresponding bit of the General Purpose SCI or SMI Enable registers, respectively, is set to one.

The above bits are set by hardware only and can only be cleared by writing a one to the desired bit.

I/O Offset 23-22 - General Purpose SCI EnableRW

- 15 Reservedalways reads 0
- 14 Enable SCI on setting of the UWAK_STS bit def=0
- 13 Enable SCI on setting of the AWAK_STS bit def=0
- 12 Enable SCI on setting of the BL_STS bitdef=0
- 11 Enable SCI on setting of the LID STS bitdef=0
- 10 Enable SCI on setting of the THRM STS bit def=0
- 9 Enable SCI on setting of the USB_STS bitdef=0
- 8 Enable SCI on setting of the RING_STS bit .def=0
- 7 Enable SCI on setting of the GPI18_STS bit..def=0
- Enable SCI on setting of the GPI6_STS bit....def=0
 Enable SCI on setting of the GPI5_STS bit....def=0
- 4 Enable SCI on setting of the GPI4 STS bit....def=0
- 3 Enable SCI on setting of the GPI17_STS bit..def=0
- 2 Enable SCI on setting of the GPI16_STS bit..def=0
- 1 Enable SCI on setting of the GPI1_STS bit....def=0
- 0 Enable SCI on setting of the EXT_STS bit def=0

These bits allow generation of an SCI using a separate set of conditions from those used for generating an SMI.

I/O Offset 25-24 - General Purpose SMI Enable RW

15-14 Reservedalways reads 0

- 13 Enable SMI on setting of the AWAK_STS bit def=0
- 12 Enable SMI on setting of the BL STS bit def=0
- 11 Enable SMI on setting of the LID_STS bitdef=0
- 10 Enable SMI on setting of the THRM_STS bit def=0
- 9 Enable SMI on setting of the USB STS bit ...def=0
- 8 Enable SMI on setting of the RING_STS bit $\,\mathrm{def}{=}0$
- 7 Enable SMI on setting of the GPI18_STS bit.def=0
- Enable SMI on setting of the GPI6_STS bit...def=0
 Enable SMI on setting of the GPI5 STS bit...def=0
- 4 Enable SMI on setting of the GPI4 STS bit...def=0
- 3 Enable SMI on setting of the GPI17 STS bit...def=0
- 2 Enable SMI on setting of the GPI16_STS bit.def=0
- 1 Enable SMI on setting of the GPI1_STS bit...def=0
- **0** Enable SMI on setting of the EXT_STS bit....def=0

These bits allow generation of an SMI using a separate set of conditions from those used for generating an SCI.

Generic Power Management Registers

I/O Off	Set 29-28 - Global StatusRWC
15	GPIO Range 1 Access Status (GR1_STS) def=0
14	GPIO Range 0 Access Status (GR0_STS) def=0
13	GP3 Timer Timeout Status (G3TO_STS) def=0
12	GP2 Timer Timeout Status (G2TO_STS) def=0
11	SERIRQ SMI Status (SSMI_STS)def=0
10	SLP Ena (Rx5[5]) Wr SMI Status (SE_STS). def=0
9	Reserved always reads 0
8	PCKRUN# Resume Status (PRRSM_STS) def=0
	This bit is set when PCI bus peripherals wake up the
	system by asserting PCKRUN#
7	Primary IRQ Resume Status (PIRSM_STS) . def=0
	This bit is set at the occurrence of primary IRQs as
	defined in Rx45-44 of PCI configuration space
6	Software SMI Status (SW_SMI_STS)def=0
	This bit is set when the SMI_CMD port (offset 2F) is
	written.
5	BIOS Status (BIOS_STS)def=0
	This bit is set when the GBL_RLS bit is set to one
	(typically by the ACPI software to release control of
	the SCI/SMI lock). When this bit is reset (by writing
	a one to this bit position) the GBL_RLS bit is reset at
	the same time by hardware.
4	Legacy USB Status (LEG_USB_STS) def=0
	This bit is set when a legacy USB event occurs.
2	
3	GP1 Timer Time Out Status (GP1TO STS) def=0

- **3 GP1 Timer Time Out Status** (**GP1TO_STS**).. def=0 This bit is set when the GP1 timer times out.
- **2 GP0 Timer Time Out Status (GP0TO_STS)**.. def=0 This bit is set when the GP0 timer times out.

Note that SMI can be generated based on the setting of any of the above bits (see the offset 2Ah Global Enable register bit descriptions in the right hand column of this page).

The bits in this register are set by hardware only and can only be cleared by writing a one to the desired bit position.

I/O Off	set 2B-2A - Global EnableRW
15	GPIO Range 1 SMI Enable (GR1_EN) def=0
14	GPIO Range 0 SMI Enable (GR0_EN)def=0
13	GP3 Timer Timeout SMI Enable (G3TO_EN) def=0
12	GP2 Timer Timeout SMI Enable (G2TO_EN)def=0
11	SERIRQ SMI Enable (SSMI_EN)def=0
10	SERIRQ SMI Enable (SE_EN)def=0
9	Reserved always reads 0
8	PCKRUN# Resume Enable (PRRSM_EN) def=0
	This bit may be set to trigger an SMI to be generated
	when the PRRSM_STS bit is set.
7	Primary IRQ Resume Enable (PIRSM_EN)def=0
	This bit may be set to trigger an SMI to be generated
	when the PIRSM_STS bit is set.
6	SMI on Software SMI (SW_SMI_EN)def=0
	This bit may be set to trigger an SMI to be generated
	when the SW_SMI_STS bit is set.
5	SMI on BIOS Status (BIOS_EN)def=0
	This bit may be set to trigger an SMI to be generated
	when the BIOS_STS bit is set.

- 4 SMI on Legacy USB (LEG_USB_EN).....def=0 This bit may be set to trigger an SMI to be generated when the LEG_USB_STS bit is set.
- 3 SMI on GP1 Timer Time Out (GP1TO_EN) .def=0 This bit may be set to trigger an SMI to be generated when the GP1TO_STS bit is set.
- 2 SMI on GP0 Timer Time Out (GP0TO_EN) .def=0 This bit may be set to trigger an SMI to be generated when the GP0TO_STS bit is set.
- 1 SMI on Secondary Event Timer Time Out (STTO_EN)def=0
 This bit may be set to trigger an SMI to be generated when the STTO_STS bit is set.
- **O** SMI on Primary Activity (PACT_EN)def=0 This bit may be set to trigger an SMI to be generated when the PACT_STS bit is set.

I/O Offs	set 2D-2C - Global Control (GBL CTL)RW	
15-12	Reserved always reads 0	
11	IDE Secondary Bus Power-Off	
	0 Disabledefault	
	1 Enable	
10	IDE Primary Bus Power-Off	
	0 Disabledefault	
	1 Enable	
9	Reserved always reads 0	
8	SMI Active (INSMI)	
	0 SMI Inactivedefault	
	1 SMI Active. If the SMIIG bit is set, this bit	
	needs to be written with a 1 to clear it before	
_	the next SMI can be generated.	
7	LID Triggering Polarity	
	0 Rising Edgedefault	
	1 Falling Edge	
6	THRM# Triggering Polarity	
	0 Rising Edgedefault	
-	1 Falling Edge	
5	Battery Low Resume Disable 0 Enable resumedefault	
	1 Disable resume from suspend when	
	BATLOW# is asserted	
4	SMI Lock (SMIIG)	
-	0 Disable SMI Lock	
	1 Enable SMI Lock (SMI low to gate for the	
	next SMI)	
3	Wait for Halt / Stop Grant Cycle for CPUSTP#	
	Assertion	
	0 Don't waitdefault	
	1 Wait	
	This bit works with Rx4C[7] of PCI configuration	
	space to control the start of CPUSTP# assertion.	
2	Power Button Triggering Select	
	0 SCI/SMI generated by PWRBTN# rising edge	
	default	
	1 SCI/SMI generated by PWRBTN# low level	
	Set to zero to avoid the situation where PB_STS is set	
	to wake up the system then reset again by	
	PBOR_STS to switch the system into the soft-off	
	state.	
1	BIOS Release (BIOS_RLS)	
	This bit is set by legacy software to indicate release	
	of the SCI/SMI lock. Upon setting of this bit,	
	hardware automatically sets the GBL_STS bit. This	
	bit is cleared by hardware when the GBL_STS bit	
	cleared by software.	
	Note that if the GBL_EN bit is set (bit-5 of the Power	
	Management Enable register at offset 2), then setting	
	this bit causes an SCI to be generated (because setting	
Λ	this bit causes the GBL_STS bit to be set).	
0	SMI Enable (SMI_EN) 0 Disable all SMI generationdefault	
	<u> </u>	
	1 Enable SMI generation	

I/O Offset 2F - SMI Command (SMI CMD)RW

7-0 SMI Command

Writing to this port sets the SW_SMI_STS bit. Note that if the SW_SMI_EN bit is set (see bit-6 of the Global Enable register at offset 2Ah), then an SMI is generated.

I/O Offset 33-30 - Primary Activity Detect Status......RWC

These bits correspond to the Primary Activity Detect Enable bits in offset 37-34. All bits default to 0, are set by hardware only, and may only be cleared by writing 1s to the desired bit.

31-11	Reserved	always read 0
10	Audio Access Status	(AUD_STS)
	Set if Audio is accessed.	, – ,

- 9 Keyboard Controller Access Status..... (KBC_STS) Set if the KBC is accessed via I/O port 60h.
- 8 VGA Access Status......(VGA_STS) Set if the VGA port is accessed via I/O ports 3B0-3DFh or memory space A0000-BFFFFh.
- 7 Parallel Port Access Status......(LPT_STS) Set if the parallel port is accessed via I/O ports 278-27Fh or 378-37Fh (LPT2 or LPT1).
- 6 Serial Port B Access Status (COMB_STS)
 Set if the serial port is accessed via I/O ports 2F82FFh or 2E8-2Efh (COM2 and COM4 respectively).
- 5 Serial Port A Access Status (COMA_STS) Set if the serial port is accessed via I/O ports 3F8-3FFh or 3E8-3EFh (COM1 and COM3, respectively).
- 4 Floppy Access Status.....(FDC_STS) Set if the floppy controller is accessed via I/O ports 3F0-3F5h or 3F7h.
- 3 Secondary IDE Access Status.....(SIDE_STS) Set if the IDE controller is accessed via I/O ports 170-177h or 376h.
- 2 Primary IDE Access Status (PIDE_STS) Set if the IDE controller is accessed via I/O ports 1F0-1F7h or 3F6h.
- Primary Interrupt Activity Status..... (PIRQ_STS)
 Set on the occurrence of a primary interrupt (enabled via the "Primary Interrupt Channel" register at Function 4 PCI configuration register offset 44h).
- O PCI Master Access Status(DRQ_STS)
 Set on the occurrence of PCI master activity.

Note: The bits above correspond to the bits of the Primary Activity Detect Enable register at offset 34 (see right hand column of this page): if the corresponding bit is set in that register, setting of the above bits will cause the PACT_STS bit to be set (bit-0 of the Global Status register at offset 28). Setting of PACT_STS may be set up to enable a "Primary Activity Event": an SMI will be generated if PACT_EN is set (bit-0 of the Global Enable register at offset 2Ah) and/or the GPO timer will be reloaded if the "GPO Timer Reload on Primary Activity" bit is set (bit-0 of the GP Timer Reload Enable register at offset 38 on this page).

Note: Bits 2-9 above also correspond to bits of the GP Timer Reload Enable register (see offset 38 on next page): If bits are set in that register, setting a corresponding bit in this register will cause the GP1 timer to be reloaded.

I/O Offset 37-34 - Primary Activity Detect Enable...... RW

These bits correspond to the Primary Activity Detect Status bits in offset 33-30. Setting of any of these bits also sets the PACT_STS bit (bit-0 of offset 28) which causes the GP0 timer to be reloaded (if PACT_GP0_EN is set) or generates an SMI (if PACT_EN is set).

(if PACT_EN is set).			
31-11	Rese	rved always read 0	
10	SMI	on Audio Status(KBC_EN)	
	0	Don't set PACT_STS if AUD_STS is set def	
	1	Set PACT_STS if AUD_STS is set	
9	SMI	on Keyboard Controller Status (KBC_EN)	
	0	Don't set PACT_STS if KBC_STS is set def	
	1	Set PACT_STS if KBC_STS is set	
8	SMI	on VGA Status(VGA_EN)	
	0	Don't set PACT_STS if VGA_STS is set def	
	1	Set PACT_STS if VGA_STS is set	
7	SMI	on Parallel Port Status(LPT_EN)	
	0	Don't set PACT_STS if LPT_STS is set def	
	1	Set PACT_STS if LPT_STS is set	
6	SMI	on Serial Port B Status(COMB_EN)	
	0	Don't set PACT_STS if COMB_STS is set.def	
	1	Set PACT_STS if COMB_STS is set	
5	SMI	I on Serial Port A Status (COMA_EN)	
	0	Don't set PACT_STS if COMA_STS is set. def	
	1	Set PACT_STS if COMA_STS is set	
4	SMI	on Floppy Status(FDC_EN)	
	0	Don't set PACT_STS if FDC_STS is set def	
	1	Set PACT_STS if FDC_STS is set	
3	SMI	on Secondary IDE Status(SIDE_EN)	
	0	Don't set PACT_STS if SIDE_STS is set def	
	1	Set PACT_STS if SIDE_STS is set	
2	SMI	on PrimaryIDE Status(PIDE_EN)	
	0	Don't set PACT_STS if PIDE_STS is set def	
	1	Set PACT_STS if PIDE_STS is set	
1	SMI	on Primary INTR Status(PIRQ_EN)	
	0	Don't set PACT_STS if PIRQ_STS is set def	
	1	Set PACT_STS if PIRQ_STS is set	
0	SMI	on PCI Master Status(DRQ_EN)	

0 Don't set PACT_STS if DRQ_STS is set def

Set PACT_STS if DRQ_STS is set

I/O Off	set 3B-38 - GP Timer Reload EnableRW		
All bits	in this register default to 0 on power up.		
31-8	Reservedalways read 0		
7	GP1 Timer Reload on KBC Access		
	0 Normal GP1 Timer Operationdefault		
	1 Setting of KBC_STS causes the GP1 timer to		
	reload.		
6	GP1 Timer Reload on Serial Port Access		
	0 Normal GP1 Timer Operationdefault		
	1 Setting of COMA_STS or COMB_STS causes		
	the GP1 timer to reload.		
5	Reserved always read 0		
4	GP1 Timer Reload on <u>VGA Access</u>		
	0 Normal GP1 Timer Operationdefault		
	1 Setting of VGA_STS causes the GP1 timer to		
	reload.		
3	GP1 Timer Reload on IDE/Floppy Access		
	0 Normal GP1 Timer Operationdefault		
	1 Setting of FDC_STS, SIDE_STS, or		
	PIDE_STS causes the GP1 timer to reload.		
2	GP3 Timer Reload on GPIO Range 1 Access		
_	0 Normal GP3 Timer Operationdefault		
	1 Setting of GR1_STS causes the GP3 timer to		
	reload.		
1	GP2 Timer Reload on GPIO Range 0 Access		
-	0 Normal GP2 Timer Operationdefault		
	1 Setting of GR0_STS causes the GP2 timer to		
	reload.		
	1010401		
0	GP0 Timer Reload on Primary Activity		
	0 Normal GP0 Timer Operationdefault		
	1 Setting of PACT_STS causes the GP0 timer to		
	reload. Primary activities are enabled via the		
	Primary Activity Detect Enable register (offset		
	37-34) with status recorded in the Primary		
	Activity Detect Status register (offset 33-30).		
	,		

I/O Off	<u>set 40 – Extended I/O Trap Status.</u>	RWC	
7-5	Reserved	always read 0	
4	BIOS Write Enable Status		
	(Function 0 Rx40[7])		
3-2	Reserved	always read 0	
1	GPIO Range 3 Access Status	(GPR3_STS)	
0	GPIO Range 2 Access Status		
I/O Offset 42 – Extended I/O Trap EnableRW			
7-5	Reserved	always read 0	
4	SMI on BIOS Write	(BWR_EN)	
	0 Disable		
	1 Enable		
3-2	Reserved	always read 0	
1	SMI on GPIO Range 3 Access	(GPR3_EN)	
	0 Disable	default	
	1 Enable		
0	SMI on GPIO Range 2 Access	(GPR2_EN)	
	0 Disable		
	1 Enable		

General Purpose I/O Registers

I/O Offset 44 – External SMI / GPI Input ValueRO
Depending on the configuration, up to 8 external SCI/SMI
ports are available as indicated below. The state of these
inputs may be read in this register.

outs	may be read in this register.
7	RING# Input Value(GPI7 pin)
6	SMBALRT# Input Value (GPI6 pin)
5	PME# Input Value(GPI5 pin)
4	SLPBTN# Input Value(GPI4 pin)
3	General Purpose Input 17 Value (GPI17 pin)
2	General Purpose Input 16 Value (GPI16 pin)
1	General Purpose Input 1 Value(GPI1 pin)
0	EXTSMI# Input Value

I/O Offset 45 – SMI / IRQ / Resume StatusRO

- **7-5 Reserved** always reads 0
- 4 Latest PCSn Status
 - 0 Latest PCSn was an I/O Read
 - 1 Latest PCSn was an I/O Write
- 3 FM SMI or Serial SMI Status
- 2 Hardware Monitor IRQ Status
- 1 SMBus IRQ Status
- **0** SMBus Resume Status

I/O Offs	<u>set 4B-48 - GPI Port Input Va</u>	<u>lue (GPIVAL) RO</u>
31-24	Reserved	always read 0
23-16	GPI[23-16] by Refresh Scan.	Read Only
15-12	Reserved	always read 0
11-0	GPI[11-0] Input Value	Read Only
I/O Offs	set 4F-4C - GPO Port Output	Value (GPOVAL)RW
Reads fi	rom this register return the last	value written (held on
31-26	Reserved	always reads 0
25-0	GPO[25-0] Output Value	def = 3FFFFFFh

System Management Bus I/O-Space Registers

The base address for these registers is defined in Rx93-90 of the Function 4 PCI configuration registers. The System Management Bus I/O space is enabled for access by the system if RxD2[0] = 1.

<u>set 00</u>	<u>– SMBus Host StatusRWC</u>
Reser	vedalways reads 0
Faile	d Bus TransactionRWC
0	SMBus interrupt not caused by failed bus
	transactiondefault
1	SMBus interrupt caused by failed bus
	transaction. This bit may be set when the
	KILL bit (I/O Rx02[1]) is set and can be
	cleared by writing a 1 to this bit position.
Bus (CollisionRWC
0	SMBus interrupt not caused by transaction
	collisiondefault
1	SMBus interrupt caused by transaction
	collision. This bit is only set by hardware and
	can be cleared by writing a 1 to this bit
	position.
Devic	ee ErrorRWC
0	SMBus interrupt not caused by generation of
	an SMBus transaction errordefault
1	SMBus interrupt caused by generation of an
	SMBus transaction error (illegal command
	field, unclaimed host-initiated cycle, or host
	device timeout). This bit is only set by
	hardware and can be cleared by writing a 1 to
	this bit position.
SMB	us InterruptRWC
0	SMBus interrupt not caused by host command
	completiondefault
1	SMBus interrupt caused by host command
	completion. This bit is only set by hardware
	and can be cleared by writing a 1 to this bit
	position.
Host	BusyRO
0	SMBus controller host interface is not
	processing a commanddefault
1	SMBus host controller is busy processing a
	command. None of the other SMBus registers
	should be accessed if this bit is set.
	Reser Failed 0 1 Bus (0 1 Device 0 1 SMB 0 1

I/O Off	set 01h –	SMBus Slave StatusRWC
7-6	Reserve	dalways reads 0
5		atusRWC
		MBus interrupt not caused by SMBALERT#
		gnaldefault
	1 SI	MBus interrupt caused by SMBALERT#
	si	gnal. This bit will be set only if the Alert
	Ei	hable bit is set in the SMBus Slave Control
	Re	egister at I/O Offset R08[3]. This bit is only
	se	t by hardware and can be cleared by writing
	a	1 to this bit position.
4	Shadow	2 StatusRWC
	0 SI	MBus interrupt not caused by address match
	to	SMBus Shadow Address Port 2 default
	1 SI	MBus interrupt or resume event caused by
	sla	ave cycle address match to SMBus Shadow
		ddress Port 2. This bit is only set by
	ha	ardware and can be cleared by writing a 1 to
	th	is bit position.
3	Shadow	1 StatusRWC
	0 SI	MBus interrupt not caused by address match
	to	SMBus Shadow Address Port 1 default
	1 SI	MBus interrupt or resume event caused by
		ave cycle address match to SMBus Shadow
		ddress Port 1. This bit is only set by
	ha	ardware and can be cleared by writing a 1 to
	th	is bit position.
2	Slave St	atusRWC
	0 SI	MBus interrupt not caused by slave event
		atchdefault
		MBus interrupt or resume event caused by
		ave cycle event match of the SMBus Slave
		ommand Register at PCI Function 4
		onfiguration Offset D3h (command match)
		d the SMBus Slave Event Register at
		MBus Base + Offset 0Ah (data event match).
		his bit is only set by hardware and can be
		eared by writing a 1 to this bit position.
1	Reserve	ž
0	Slave Bu	
		MBus controller slave interface is not
		ocessing data default
	1 SI	MBus controller slave interface is busy

receiving data. None of the other SMBus registers should be accessed if this bit is set.

O Of	iset U2n – SMBus Host ControlRW	1/O Offset 03n – SMBus Host CommandRW
7 6	Reservedalways reads 0Startalways reads 0	7-0 SMBUS Host Command default = 0 This field contains the data transmitted in the
Ū	0 Writing 0 has no effectdefault	command field of the SMBus host transaction.
	1 Start Execution of Command	
	Writing a 1 to this bit causes the SMBus	I/O Offset 04h – SMBus Host AddressRW
	controller host interface to initiate execution of	The contents of this register are transmitted in the address field
	the command programmed in the SMBus	of the SMBus host transaction.
	Command Protocol field (bits 4-2). All	7-1 SMBUS Address
	necessary registers should be programmed	This field contains the 7-bit address of the targeted
	prior to writing a 1 to this bit. The Host Busy	slave device.
	bit (SMBus Host Status Register bit-0) can be	0 SMBUS Read or Write 0 Execute a WRITE command default
	used to identify when the SMBus controller	1 Execute a READ command
	has completed command execution.	1 Execute a READ command
5-2	SMBus Command Protocol	I/O Offset 05h - SMBus Host Data 0RW
	0000 Quick Read or Writedefault 0001 Byte Read or Write	The contents of this register are transmitted in the Data 0 field
	0010 Byte Data Read or Write	of SMBus host transaction writes. On reads, Data 0 bytes are
	0011 Word Data Read or Write	stored here.
	0100 Process Call	7-0 SMBUS Data 0 default = 0
	0101 Block Read or Write	For Block Write commands, this field is programmed
	0110 I2C with 10-bit Address	with the block transfer count (a value between 1 and
	0111 Reserved	32). Counts of 0 or greater than 32 are undefined.
	1000 -reserved-	For Block Read commands, the count received from
	1001 -reserved-	the SMBus device is stored here.
	1010 -reserved-	I/O Offset 06h – SMBus Host Data 1RW
	1011 -rreserved-	
	1100 I2C Process Call	The contents of this register are transmitted in the Data 1 field of SMBus host transaction writes. On reads, Data 1 bytes are
	1101 I2C Block	stored here.
	1110 I2C with 7-bit Address	7-0 SMBUS Data 1default = 0
	1111 Universal	7 0 Simbol Data I
1	Kill Transaction in Progress	I/O Offset 07h - SMBus Block DataRW
	0 Normal host controller operationdefault	Reads and writes to this register are used to access the 32-byte
	1 Stop host transaction currently in progress.	block data storage array. An internal index pointer is used to
	Setting this bit also sets the FAILED status bit (Host Status bit-4) and asserts the interrupt	address the array. It is reset to 0 by reads of the SMBus Host
	selected by the SMB Interrupt Select bit	Control register (I/O Offset 2) and incremented automatically
	(Function 4 SMBus Host Configuration	by each access to this register. The transfer of block data into
	Register RxD2[3]).	(read) or out of (write) this storage array during an SMBus
0	Interrupt Enable	transaction always starts at index address 0.
•	0 Disable interrupt generationdefault	7-0 SMBUS Block Datadefault = 0
	1 Enable generation of interrupts on completion	

of the current host transaction.

I/O Offset 08h - SMBus Slave Control.....RW always reads 0 Reserved 3 **SMBus Alert Enable** 0 Disabledefault Enable generation of an interrupt or resume event on the assertion of the SMBALERT# signal 2 **SMBus Shadow Port 2 Enable** 0 Disabledefault 1 Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus Slave Shadow Port 2 register (PCI function 4 configuration register RxD5). **SMBus Shadow Port 1 Enable** 1 0 Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus Slave Shadow Port 1 register (PCI function 4 configuration register RxD4). **SMBus Slave Enable** 0 Disabledefault Enable generation of an interrupt or resume event on external SMBus master generation of a transaction with an address that matches the SMBus host controller slave port of 10h, a command field which matches the SMBus Slave Command register (PCI function 4

configuration register RxD3), and a match of

one of the corresponding enabled events in the

SMBus Slave Event Register (I/O Offset 0Ah).

I/O Offset 09h - SMBus Shadow CommandRO

This register is used to store command values for external SMBus master accesses to the host slave and slave shadow ports.

I/O Offset 0Ah – SMBus Slave EventRW

This register is used to enable generation of interrupt or resume events for accesses to the host controller's slave port.

I/O Offset 0Ch - SMBus Slave DataRO

This register is used to store data values for external SMBus master accesses to the shadow ports or the SMBus host controller's slave port.

Hardware Monitor I/O Space Registers

The I/O base address for access to the Hardware Monitor registers is defined in Rx71-70 of function 4 PCI configuration space. The hardware monitor I/O space is enabled for I/O access by the system if Rx74[0] = 1.

Offset 13 – Analog Data 15-8	RW
Offset 14 – Analog Data 7-0	RW
Offset 15 – Digital Data 7-0	RW
Offset 16 – Channel Counter	RW
Offset 17 – Data Valid & Channel Indicators	RW

Offset 1D – TSENS3 Hot Temperature High LimitRW Offset 1E – TSENS3 Hot Temp Hysteresis Lo Limit.....RW Offset 1F – TSENS3 Temperature ReadingRW

Temperature sensor 3 is an internal bandgap-type sensor which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx49[7-6]. Only the high order 8 bits are used for comparison with the limit values in offsets 1D and 1E.

Offset 20 - TSENS1 Temperature ReadingRW

Temperature sensor 1 is an external sensor input on pin W13 which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx4B[7-6]. Only the high order 8 bits are used for comparison with the limit values in offsets 39 and 3A.

Offset 21 – TSENS2 Temperature ReadingRW

Temperature sensor 2 is an external sensor input on pin Y13 which has 10-bit resolution. The high order 8 bits are stored here and the low order 2 bits are stored in Rx49[5-4]. Only the high order 8 bits are used for comparison with the limit values in offsets 3D and 3E.

Offset 22	2 – VSENS1 (I	<u> Pin U13) Vo</u>	ltage Reading (2.0V).RW
Offset 2	3 – VSENS2 (I	Pin V13) Vo	ltage Reading (2.5V).RW
Offset 2	4 – Internal Co	ore Voltage	Reading (3.3V)	RW
Offset 2	5 – VSENS3 (I	Pin W14) Vo	oltage Reading	(5V)RW
Offset 20	6 – VSENS4 (I	Pin Y14) Vo	ltage Reading (12V)RW

Offset 27 - Reserved (-12V Sense Voltage Reading)F	<u>kW</u>
Offset 28 - Reserved (-5V Sense Voltage Reading)	<u>kW</u>

Offset 29 – FAN1 (Pin T12) Count Reading	RW
Offset 2A – FAN2 (Pin U12) Count Reading	RW
The above two locations store the number of counts o	f the
internal clock per fan revolution	

•
Offset 2B – VSENS1 Voltage High Limit (CPU 2.0V) RW
Offset 2C - VSENS1 Voltage Low Limit (CPU 2.0V) RW
Offset 2D – VSENS2 Voltage High Limit (NB 2.5V) RW
Offset 2E - VSENS2 Voltage Low Limit (NB 2.5V) RW
Offset 2F – Internal Core Voltage High Limit (3.3V) RW
Offset 30 – Internal Core Voltage Low Limit (3.3V) RW
Offset 31 – VSENS3 Voltage High Limit (5V)RW
Offset 32 – VSENS3 Voltage Low Limit (5V)RW
Offset 33 – VSENS4 Voltage High Limit (12V)RW
Offset 34 – VSENS4 Voltage Low Limit (12V)RW
Offset 35 – Reserved (-12V Sense High Limit)RW
Offset 36 - Reserved (-12V Sense Low Limit)RW
Offset 37 – Reserved (-5V Sense High Limit)RW
Offset 38 - Reserved (-5V Sense Low Limit)RW
Offset 39 – TSENS1 Hot Temperature High Limit RW
Offset 3A – TSENS1Hot Temp Hysteresis Lo Limit RW
Offset 3B – FAN1 Fan Count LimitRW
Offset 3C - FAN2 Fan Count LimitRW
The above two locations store the number of counts of the
internal clock per fan revolution for the low limit of the fan speed.

Offset 3D – TSENS2 Hot Temperature High Limit...... RW Offset 3E – TSENS2 Hot Temp Hysteresis Lo Limit..... RW

Offset 3F – Stepping ID NumberRW

Note: For high limits, comparisons are "greater than" comparisons. For low limits, comparisons are "less than or equal" comparisons.

One consequence of the above is that if high limits are set to all ones (FFh or 11111111b), interrupts are disabled for high limits (i.e., interrupts will only be generated for cases when voltages are <u>equal to</u> or <u>below</u> the <u>low</u> limits).

Offset 40 - Hardware Monitor ConfigurationRW

7 Initialization

- Normal operationdefaultRestore power-up default values to this
- 1 Restore power-up default values to this register, the interrupt status and mask registers, the FAN/RST#/OS# register, and the OS# Configuration / Temperature Resolution register. This bit automatically clears itself since the power-on default is 0.

6 Chassis Intrusion Reset

- 0 Normal operationdefault
- 1 Reset the Chassis Intrusion pin
- 5-4 Reserved (R/W) default = 0

3 Hardware Monitor Interrupt Clear

- 0 Normal operation
- 2 Reserved always reads 0

1 Hardware Monitor Interrupt Enable

- 0 Disable hardware monitor interrupt output.. def
- 1 Enable hardware monitor interrupt output

0 Start

- 0 Place hardware monitor in standby mode.... def
- 1 Enable startup of hardware monitor logic.

At startup, limit checking functions and scanning begins. All high and low limits should be set prior to turning on this bit. Note: the hardware monitor interrupt output will not be cleared if the user writes a zero to this bit after an interrupt has occurred (the hardware monitor interrupt clear bit must be used for this purpose).

Oliset	41 – Hardware Womtor Interrupt Status 1	Oliset	45 - Haruware Monitor Interrupt Mask I Kw
7	Fan 2 Error	7	Fan 2 Count Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 Fan 2 count limit exceeded		1 Disable interrupt on error status bit set
6	Fan 1 Error	6	Fan 1 Count Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 Fan 1 count limit exceeded		1 Disable interrupt on error status bit set
5	Reserved always reads 0	5	TSENS1 Thermal Alarm Control Mask
	itebel ved arways leads o		0 Enable TSENS1 over-temp condition to
			control the thermal alarm (function 4 Rx40[7]
4	TSENS1 Temperature Error		automatic CPU clock throttling must be set)def
7	0 No errordefault		1 Disable
	1 High or low hot temperature limit exceeded.	4	TSENS1 Temperature Error Mask
	The interrupt mode is determined by	7	0 Enable interrupt on error status bit set def
	Temperature Resolution register Rx4B[1-0].		Disable interrupt on error status bit set
2		2	VSENS3 Voltage Error Mask (5V)
3	VSENS3 Voltage Error (5V)	3	
	0 No errordefault		0 Enable interrupt on error status bit set def
•	1 High or low limit exceeded	2	1 Disable interrupt on error status bit set
2	Internal Core VCC Voltage Error (3.3V)	2	Internal Core VCC Voltage Error Mask (3.3V)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded	1	1 Disable interrupt on error status bit set
1	VSENS2 Voltage Error (2.5V NB Core Voltage)	1	VSENS2 Voltage Error Mask (2.5V NB Core)
	0 No errordefault		0 Enable interrupt on error status bit setdef
0	1 High or low limit exceeded	•	1 Disable interrupt on error status bit set
0	VSENS1 Voltage Error (2.0V CPU Core Voltage)	0	VSENS1 Voltage Error Mask (2.0V CPU Core)
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
Offset	42 –Hardware Monitor Interrupt Status 2RO	Offset	44 –Hardware Monitor Interrupt Mask 2RW
7	TSENS3 (Internal Bandgap) Temp Error	7	TSENS3 Temperature Error Mask
,	0 No errordefault	,	0 Enable interrupt on error status bit set def
	1 High or low hot temperature limit exceeded.		Disable interrupt on error status bit set
		6	TSENS3 Thermal Alarm Control Mask
6-5	Interrupt mode is determined by Rx4B[5-4].	U	0 Enable TSENS3 over-temp condition to
	Reserved always reads 0		control the thermal alarm (function 4 Rx40[7]
4	Chassis Error		
	0 No errordefault		automatic CPU clock throttling must be set) def 1 Disable
•	1 Chassis Intrusion has gone high	_	
3	TSENS2 Temperature Error	5	TSENS2 Thermal Alarm Control Mask
	0 No error default		0 Enable TSENS2 over-temp condition to
	1 High or low hot temperature limit exceeded.		control the thermal alarm (function 4 Rx40[7]
	Interrupt mode is determined by Rx4B[3-2].		automatic CPU clock throttling must be set) def
2-1	Reserved always reads 0		1 Disable
0	VSENS4 Voltage Error (12V)	4	Chassis Error Mask
	0 No errordefault		0 Enable interrupt on error status bit set def
	1 High or low limit exceeded		1 Disable interrupt on error status bit set
	When either status register is read, status conditions in	3	TSENS2 Temperature Error Mask
	gister are reset. In the case of voltage priority		0 Enable interrupt on error status bit setdef
	ons, if two or more voltages were out of limits, then		1 Disable interrupt on error status bit set
	indication would automatically be generated if it was	2-1	Reserved always reads 0
	idled during interrupt service. Errant voltages may be	0	VSENS4 Voltage Error Mask (12V)
	d in the control register until the operator has time to		0 Enable interrupt on error status bit set def
clear th	e errant condition or set the limit higher or lower.		1 Disable interrupt on error status bit set

Offset 4	47 -Hardware Monitor Fan ConfigurationRW	Offset 4	4B –Temperature Interrupt Configuration RW
7-6	Fan 2 RPM Control	7-6	TSENS1 Value Low-Order Bitsdef = 00
	00 Divide by 1		Upper 8 bits are stored in offset 20h
	01 Divide by 2default	5-4	TSENS3 Hot Temp Interrupt Mode def = 01
	10 Divide by 4	3-2	TSENS2 Hot Temp Interrupt Modedef = 01
	11 Divide by 8	1-0	TSENS1 Hot Temp Interrupt Mode def = 01
5-4	Fan 1 RPM Control		The following applies to each of the above 3 fields
	00 Divide by 1		00 Default Interrupt Mode. An interrupt occurs if
	01 Divide by 2default		the temperature goes above the hot limit. The
	10 Divide by 4		interrupt will be cleared once the status register
	11 Divide by 8		is read, but will be generated again when the
3-0	Reserved always reads 0		next conversion is completed. Interrupts will
O.CC 4	40 H. J. M. Y. L. DW		continue to be generated until the temperature
	49 -Hardware Monitor Temp Low Order Value RW		goes below the hysteresis limit.
7-6	TSENS3 Value Low-Order Bits		01 One-Time Interrupt Mode. An interrupt is
	Upper 8 bits are stored in offset 1Fh		generated if the temperrature goes above the
5-4	TSENS2 Value Low-Order Bits		hot limit. The interrupt will be cleared when
	Upper 8 bits are stored in offset 21h		the status register is read. Another interrupt
3	Over Temperature Active Low for PMU to		will not be generated until the temperature first
	Control Stop Clock		drops below the hysteresis limitdefault
	0 Disabledefault		10 Comparator mode. An interrupt occurs if the
_	1 Enable		temperature goes above the hot limit. This
2	Chassis Active Low Output 20 msec		interrupt remains active until the temperature
	0 Disabledefault		goes below the hot limit (i.e., no hysteresis).
_	1 Enable		11 Default Interrupt Mode (same as 00)
1	Interrupt Active High Output		
	0 Disabledefault		
	1 Enable		
0	Reserved always reads 0		

Function 5 & 6 Registers - AC97 Audio & Modem Codecs Offset 9 - Programming Interface (00h)......RO The codec interface is hardware compatible with AC97 and Offset A - Sub Class Code (01h=Audio Device).....RO SoundBlaster Pro. There are two sets of software accessible registers: PCI configuration registers and I/O registers. The Offset B - Base Class Code (04h=Multimedia Device) RO PCI configuration registers for the Audio Codec are located in Offset D - Latency Timer (00h).....RO the function 5 PCI configuration space of the VT82C686B. The PCI configuration registers for the Modem Codec are Offset E - Header Type (00h).....RO located in the function 6 PCI configuration space. The I/O registers are located in the system I/O space. Offset F - BIST (00h)RO Offset 13-10 - Base Address 0 - SGD Control / Status.. RW **PCI Configuration Space Header – Function 5 Audio**always reads 0 31-16 Reserved **Base Address** default = 00h 15-8 Offset 1-0 - Vendor IDRO 7-0 00000001b (256 bytes) **Vendor ID**(1106h = VIA Technologies) Offset 17-14 - Base Address 1 - FM NMI Status RW Offset 3-2 - Device ID.....ROalways reads 0 31-16 Reserved **0-7 Device ID** (3058h = 82C686B Audio Codec) Offset 5-4 - CommandRW 1-0 01b (4 bytes) 15-10 Reserved always reads 0 Offset 1B-18 - Base Address 2 - MIDI PortRW Fast Back-to-Back.....fixed at 0 31-16 Reservedalways reads 0 8 SERR# Enable fixed at 0 **15-2 Base Address** default = 0330h 7 1-0 01b (4 bytes) 6 Parity Error Response......fixed at 0 VGA Palette Snoopfixed at 0 Offset 1F-1C - Base Address 3 - Codec Register ShadowRW 4 Memory Write and Invalidatefixed at 0 31-16 Reservedalways reads 0 3 Special Cycle Monitoringfixed at 0 2 Bus Masterfixed at 0 1-0 01b (4 bytes) 1 I/O Spacedefault=0 (disabled) Offset 2F-2C - Subsystem ID / Sub Vendor ID.....RO* *This register is RW if function 5-6 Rx42[5] = 1Offset 7-6 - Status.....RWC Offset 34 - Capture Pointer (C0h)RO 15 **Detected Parity Error**.....always reads 0 14 Signalled System Error.....default=0 Offset 3C - Interrupt Line.....RW 13 Received Master Abort.....fixed at 0 7-4 Reservedalways reads 0 12 Received Target Abortfixed at 0 3-0 **Audio Interrupt Routing** 11 0000 Disable default 10-9 DEVSEL# Timing 0001 IRO1 00 Fast 0010 Reserved 01 Medium fixed 0011 IRQ3 10 Slow 0100 IRQ4 11 Reserved 0101 IRO5 8 Data Parity Error.....fixed at 0 0110 IRO6 7 Fast Back-to-Back Capable.....fixed at 0 0111 IRQ7 6-5 always reads 0 Reserved 1000 IRQ8 PM 1.1fixed at 1 1001 IRO9 3-0 Reserved always reads 0 1010 IRQ10 1011 IRQ11 Offset 8 - Revision ID (nnh)RO 1100 IRQ12 Silicon Revision Code 1101 IRO13 10h Revision A 1110 IRQ14 11h Revision B 1111 Disable 12h Revision C Offset 3D - Interrupt Pin (03h).....RO 13h Revision D

14h Revision E

20h Revision H

Offset 3E - Minimum Grant (00h).....RO

Offset 3F - Minimum Latency (00h).....RO

PCI Configuration Space Header – Function 6 Modem

Offset 1	<u>-0 - Vendor IDRO</u>
0-7	Vendor ID (1106h = VIA Technologies)
Offset 3	-2 - Device IDRO
0-7	Device ID (3068h = 82C686B Modem Codec)
Offset 5	-4 - CommandRW
	Reserved always reads 0
9	Fast Back-to-Backfixed at 0
8	SERR# Enable fixed at 0
7	Address Steppingfixed at 0
6	Parity Error Response
5	VGA Palette Snoopfixed at 0
4	Memory Write and Invalidate fixed at 0
3	Special Cycle Monitoringfixed at 0
2	Bus Master fixed at 0
1	Memory Space
0	I/O Space default=0 (disabled)
Offset 7	-6 - StatusRWC
15	Detected Parity Error always reads 0
14	Signalled System Errorfixed at 0
13	Received Master Abortfixed at 0
12	Received Target Abortfixed at 0
11	Signalled Target Abortfixed at 0
10-9	DEVSEL# Timing
	00 Fast
	01 Medium fixed
	10 Slow
	11 Reserved
8	Data Parity Error fixed at 0
7	Fast Back-to-Back Capablefixed at 0
6-0	Reserved always reads 0
Offset 8	- Revision ID (nnh)RO
7-0	Silicon Revision Code (0 indicates first silicon)
Offset 9	- Programming Interface (00h)*RO
Offset A	A - Sub Class Code (80h)*RO
Offeet T	Page Class Code (07h)
	8 - Base Class Code (07h) **RO
*Kegiste	ers 9-B are RW if function 5-6 Rx44[5] = 1
Offset I	O - Latency Timer (00h)RO
Offset I	E - Header Type (00h)RO
Offset I	F - BIST (00h) RO

Onset 1	5-10 - Dase Address 0 - SGD Collifor / Status KW
31-16	Reserved always reads 0
15-8	Base Address default = $00h$
7-0	00000001b (256 bytes)
0.00	
	F-1C - Base Address 3 – Codec Register ShadowRW
	Reserved always reads 0
15-2	Base Address default = 0000h
1-0	01b (4 bytes)
Offset 3	C - Interrupt LineRW
7-4	Reservedalways reads 0
3-0	Audio Interrupt Routing
3-0	0000 Disable
	0000 Disable default 0001 IRQ1
	0010 Reserved
	0010 Reserved 0011 IRQ3
	0100 IRQ4
	0100 IRQ4 0101 IRQ5
	0110 IRQ6
	0111 IRQ7
	1000 IRQ8
	1000 IRQ8 1001 IRQ9
	1010 IRQ10
	1011 IRQ11
	1100 IRQ12
	1100 IRQ12 1101 IRQ13
	1110 IRQ14
	1111 Disable
Offset 3	D - Interrupt Pin (03h)RO
Offset 3	BE - Minimum Grant (00h)RO
Offset 3	F - Minimum Latency (00h)RO

Function 5 & 6 Codec-Specific Configuration Registers

Offset -	<u>40 – AC97 Interface StatusRO</u>
7-3	Reserved always reads 0
2	Secondary Codec Ready StatusRO
	0 Codec Not Ready
	1 Codec Ready (AC97 ctrlr can access codec)
1	AC97 Codec Low-Power StatusRO
	0 AC97 Codec not in low-power mode
	1 AC97 Codec in low-power mode
0	AC97 Codec Ready StatusRO
	0 Codec Not Ready
	1 Codec Ready (AC97 ctrlr can access codec)

iiset 4	41 – A	C Link interface Control R	W
7	AC-I	Link Interface Enable (ENAC97)	
	0	Disabledefau	ult
	1	Enable	
6	AC-I	Link Reset (ACRST#)	
	0	Assert AC-Link Resetdefau	ult
	1	De-assert AC-Link Reset	
5	AC-I	Link Sync (RSYNCHI)	
	0	Release SYNCdefau	alt
	1	Force SYNC High	
4	AC-I	Link Serial Data Out	
	0	Release SDOdefai	alt
	1	Force SDO High	
3	Vari	able-Sample-Rate On-Demand Mode	
	0	Disable defau	alt
	1	Enable	
		alid in function 5 only (reserved in function 6)	
2	AC I	Link SGD Read Channel PCM Data Output	
	0	Disabledefau	alt
	1	Enable	
	Bit v	alid in function 5 only (reserved in function 6)	
1	AC I	Link FM Channel PCM Data Out (SELFM)	
	0	Disabledefau	alt
	1	Enable	
		alid in function 5 only (reserved in function 6)	
0	AC I	Link SB PCM Data Output (SELSB)	
	0	Disabledefau	alt
	_	Enable	
	Rit v	alid in function 5 only (reserved in function 6)	

Juser	42 - Function Enable XVV (Function 5)		44 - MC9/ Interface Control NO (Function S)
Offset	42 – Function EnableRO (Function 6)	Offset -	44 - MC97 Interface Control RW (Function 6)
7	MIDI PnP	7	AC-Link Interface for Slot-5
-	0 MIDI Port Address Selected by Rx43[3-2]. def		0 Disabledefault
	1 MIDI Port Address Selected by IOBase2		1 Enable
6	Mask MIDI IRQ	6	Secondary Codec Support
Ū	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
5	Function 5 Config Reg Rx2C Writable	5	Function 6 Config Reg Rx9-B Writable
J	0 F5Rx2C-2F ROdefault		0 F6Rx9-B ROdefault
	1 F5Rx2C-2F RW		1 F6Rx9-B RW
4	Gate SoundBlaster PCM When FIFO Empty	4	Function 6 Config Reg 2Ch Writable
-	0 Disabledefault		0 F6Rx2C-2F ROdefault
	1 Enable		1 F6Rx2C-2F RW
3	Game Port Enable (ENGAME)	3-0	Reserved always reads 0
J	0 Disabledefault		•
	1 Enable (200-207h)		
2	FM Enable (ENFM)		
_	0 Disabledefault		48 – FM NMI Control RW (Function 5)
	1 Enable (388-38B)		48 – FM NMI ControlRO (Function 6)
1	MIDI Enable (ENMIDI)	7-3	Reserved always reads 0
_	0 Disabledefault	2	FM IRQ Select
	1 Enable		0 Route FM Trap interrupt to NMIdefault
0	SoundBlaster Enable (ENSB)		1 Route FM Trap interrupt to SMI
U	0 Disabledefault	1	FM SGD Data for SoundBlaster Mixing
	1 Enable		0 Disabledefault
	1 Endoic		1 Enable
		0	FM Trap Interrupt
			0 Enable
Offset	43 – Plug and Play ControlRW (Function 5)		1 Disabledefault
	43 – Plug and Play ControlRO (Function 6)		
7-6	SoundBlaster IRQ Select (SBIRQS[1:0])	Offset	4B-4A – Game Port Base AddressRW
, 0	00 IRQ5default		Game Port Base Addressdefault = 0
	01 IRQ7	10 0	Gaine 1 of t Buse Hadress default
	10 IRQ9		
	11 IRQ10		
5-4	SoundBlaster DRQ Select (SBDRQS[1:0])		
	00 DMA Channel 0		
	01 DMA Channel 1default		
	10 DMA Channel 2		
	11 DMA Channel 3		
3-2	MIDI Decode Select (MIDIBASE)		
· -	00 300-303h		
	01 310-313h		
	10 320-323h		
	11 330-333hdefault		
1-0	SoundBlaster Decode Select (SBBASE)		
- 0	00 220-22Fhdefault		
	00 ZZU-ZZFII		
	01 240-24Fh		
	01 240-24Fh 10 260-26Fh		
	01 240-24Fh		

I/O Base 0 Registers -Audio/Modem Scatter/Gather DMA

Read / Write through function 5, R/O through function 6.

I/O Off	set 0 – Audio SGD Read Channel StatusRWC	I/O Off	set 10 – Audio SGD Write Channel StatusRO
7	SGD Active (0 = completed or terminated)RO	7	
6	SGD PausedRO	6	SGD Active (0 = completed or terminated) RO SGD PausedRO
5-4	Reserved always reads 0	5-4	Reserved always reads 0
3	SGD Trigger Queued (will restart after EOL)RO	3	SGD Trigger Queued (will restart after EOL) RO
2	SGD Stopped (write 1 to resume)RWC	2	SGD Stopped (write 1 to resume)RWC
1	SGD EOLRWC	1	SGD EOLRWC
0	SGD FlagRWC	0	SGD FlagRWC
I/O Off	set 1 – Audio SGD Read Channel ControlRW	I/O Off	set 11 – Audio SGD Write Channel Control RW
7	SGD StartWO (always reads 0)	7	SGD StartWO (always reads 0)
	0 No effect	•	0 No effect
	1 Start SGD read channel operation		1 Start SGD write channel operation
6	SGD TerminateWO (always reads 0)	6	SGD TerminateWO (always reads 0)
	0 No effect	v	0 No effect
	1 Terminate SGD read channel operation		1 Terminate SGD write channel operation
5-4	Reserved always reads 0, writing 1 not allowed	5-4	Reserved always reads 0, writing 1 not allowed
3	SGD Pause	3	SGD Pause
	0 Release SGD read channel pause and resume	3	0 Release SGD write channel pause and resume
	the transfer from the paused line		the transfer from the paused line
	1 Pause SGD read channel operation (SGD read		1 Pause SGD write channel operation (SGD
	channel pointer stays at the current address)		write channel pointer stays at current address)
2-0	Reserved always reads 0	2-0	Reservedalways reads 0
			•
	set 2 – Audio SGD Read Channel TypeRW	I/O Off	set 12 – Audio SGD Write Channel TypeRW
7	Auto-Start SGD at EOL (1=Enable) default = 0	7	Auto-Start SGD at EOL (1=Enable)default = 0
6	Playback FIFO (1=Enable) default = 0	6	Recording FIFO (1=Enable)default = 0
5	PCM 16-Bit Format	5	PCM 16-Bit Format
	0 8-Bit Formatdefault		0 8-Bit Formatdefault
	1 16-Bit Format		1 16-Bit Format
4	PCM Stereo Format	4	PCM Stereo Format
	0 Mono Formatdefault		0 Mono Format default
	1 Stereo Format		1 Stereo Format
3-2	Interrupt Select	3-2	Reserved always reads 0
	00 Interrupt at PCI Read of Last Linedefault	1	Interrupt on EOL @ End of Block (1=Ena) def=0
	01 Interrupt at Last Sample Sent	0	Interrupt on FLAG @ End-of-Blk (1=Ena)def=0
	10 Interrupt at Less Than One Line to Send		-
	11 -reserved-		<u>set 17-14 – Audio SGD W Ch Table Pointer BaseRW</u>
1	Interrupt on EOL @ End of Block (1=Ena) def=0	31-0	SGD Table Pointer Base Address (even addr) W
0	Interrupt on FLAG @ End-of-Blk (1=Ena) def=0		Current Pointer AddressR
I/O Off	set 7-4 – Audio SGD R Ch Table Pointer BaseRW	I/O Off	set 1F-1C – Audio SGD W Ch Current Count RO
31-0	SGD Table Pointer Base Address (even addr)W	31-24	Reserved always reads 0
	Current Pointer AddressR	23-0	Current SGD Write Channel Count
I/O Off	set F-C – Audio SGD R Ch Current CountRO	EOL	End Of Link. 1 indicates this block is the last of the
	Reservedalways reads 0	•	link. If the channel "Interrupt on EOL" bit is set, then
	•		an interrupt is generated at the end of the transfer.
23-0	Current SGD Read Channel Count	FLAG	
	SGD Table Format		block. If the channel "Interrupt on FLAG" bit is set,
<u>63</u>			then an interrupt is generated at the end of this block.
EO		STOP	Block Stop. If set, transfer pauses at the end of this
	Count Address	~ - • -	block. To resume the transfer, write 1 to Rx?0[2].

[23:0]

[31:0]

Read / Write through function 5, R/O through function 6.

The following set of registers is dedicated for FM:

1/0 011	set 20 – FM SGD Read Channel StatusRWC
7	SGD Active (0 = completed or terminated)RO
6	SGD PausedRO
5-4	Reserved always reads 0
3	SGD Trigger Queued (will restart after EOL)RO
2	SGD Stopped (write 1 to resume)RWC
1	SGD EOLRWC
0	SGD FlagRWC
I/O Offs	set 21 – FM SGD Read Channel ControlRW
7	SGD StartWO (always reads 0)
	0 No effect
	1 Start SGD read channel operation
6	SGD TerminateWO (always reads 0)
	0 No effect
	1 Terminate SGD read channel operation
5-4	Reserved always reads 0, writing 1 not allowed
3	SGD PauseRW
	0 Release SGD read channel pause and resume
	the transfer from the paused line
	1 Pause SGD read channel operation (SGD read
	channel pointer stays at the current address)
2-0	Reserved always reads 0
I/O Offs	set 22 – FM SGD Read Channel TypeRW
<u>I/O Offs</u>	·
	set 22 – FM SGD Read Channel TypeRW
7	set 22 – FM SGD Read Channel TypeRW Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select
7 6-4	set 22 – FM SGD Read Channel TypeRW Auto-Start SGD at EOL (1=Enable) default = 0 Reservedalways reads 0 Interrupt Select 00 Interrupt at PCI Read of Last Linedefault
7 6-4	Set 22 – FM SGD Read Channel Type
7 6-4	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select 00 Interrupt at PCI Read of Last Linedefault 01 Interrupt at Last Sample Sent 10 Interrupt at Less Than One Line to Send
7 6-4	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Linedefault O1 Interrupt at Last Sample Sent 10 Interrupt at Less Than One Line to Send 11 -reserved-
7 6-4	Set 22 – FM SGD Read Channel TypeRW Auto-Start SGD at EOL (1=Enable) default = 0 Reservedalways reads 0 Interrupt Select 00 Interrupt at PCI Read of Last Linedefault 01 Interrupt at Last Sample Sent 10 Interrupt at Less Than One Line to Send 11 -reserved- Interrupt on EOL @ End of Block
7 6-4 3-2	Set 22 – FM SGD Read Channel Type
7 6-4 3-2	Set 22 – FM SGD Read Channel Type
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default Interrupt on FLAG @ End-of-Blk
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Linedefault OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disabledefault Interrupt on FLAG @ End-of-Blk O Disabledefault
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default Interrupt on FLAG @ End-of-Blk
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default Interrupt on FLAG @ End-of-Blk O Disable default Enable
7 6-4 3-2 1 0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default Interrupt on FLAG @ End-of-Blk O Disable default Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable
7 6-4 3-2	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default 1 Interrupt at Last Sample Sent 1 Interrupt at Less Than One Line to Send 1 -reserved- Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Interrupt on FLAG @ End-of-Blk The Disable default Enable Set 27-24 - FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W
7 6-4 3-2 1 0 <u>I/O Offs</u> 31-0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent IO Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Set 27-24 – FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W Current Pointer Address R
7 6-4 3-2 1 0 <u>I/O Offs</u> 31-0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default 1 Interrupt at Last Sample Sent 1 Interrupt at Less Than One Line to Send 1 -reserved- Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Interrupt on FLAG @ End-of-Blk The Disable default Enable Set 27-24 - FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W
7 6-4 3-2 1 0 <u>I/O Offs</u> 31-0	Auto-Start SGD at EOL (1=Enable) default = 0 Reserved always reads 0 Interrupt Select O Interrupt at PCI Read of Last Line default OI Interrupt at Last Sample Sent IO Interrupt at Less Than One Line to Send Interrupt on EOL @ End of Block O Disable default I Enable Interrupt on FLAG @ End-of-Blk O Disable default Enable Set 27-24 – FM SGD Rd Ch Table Pointer Base RW SGD Table Pointer Base Address (even addr)W Current Pointer Address R

Read / Write through function 6, R/O through function 5.

<u> 1/O Off</u>	set 40 – Modem SGD Read Channel StatusRWC	<u> 1/O Off</u>	<u> fset 50 – Modem SGD Write Channel Status RO</u>
7	SGD Active (0 = completed or terminated)RO	7	SGD Active (0 = completed or terminated) RO
6	SGD PausedRO	6	SGD PausedRO
5-4	Reserved always reads 0	5-4	Reserved always reads 0
3	SGD Trigger Queued (will restart after EOL)RO	3	SGD Trigger Queued (will restart after EOL) RO
2	SGD Stopped (write 1 to resume)RWC	2	SGD Stopped (write 1 to resume)RWC
1	SGD EOLRWC	1	SGD EOLRWC
0	SGD FlagRWC	0	SGD Flag RWC
I/O Off	set 41 – Modem SGD Read Channel ControlRW	I/O Off	set 51 – Modem SGD Write Channel Control RW
7	SGD StartWO (always reads 0)	7	SGD StartWO (always reads 0)
	0 No effect		0 No effect
	1 Start SGD read channel operation		1 Start SGD write channel operation
6	SGD TerminateWO (always reads 0)	6	SGD TerminateWO (always reads 0)
-	0 No effect	_	0 No effect
	1 Terminate SGD read channel operation		1 Terminate SGD write channel operation
5-4	Test (Do Not Program)always write 0	5-4	Test (Do Not Program) always write 0
3	SGD PauseRW	3	SGD PauseRW
·	0 Release SGD read channel pause and resume		0 Release SGD write channel pause and resume
	the transfer from the paused line		the transfer from the paused line
	1 Pause SGD read channel operation (SGD read		1 Pause SGD write channel operation (SGD
	channel pointer stays at the current address)		write channel pointer stays at current address)
2-0	Reserved always reads 0	2-0	Reserved always reads 0
I/O Off	Set 42 – Modem SGD Read Channel TypeRW	I/O Off	fset 52 – Modem SGD Write Channel Type RW
7	Auto-Start SGD at EOL (1=Enable) default = 0	7	Auto-Start SGD at EOL (1=Enable)default = 0
6-4	Reserved	6-2	Reservedalways reads 0
3-2	Interrupt Select	1	Interrupt on EOL @ End of Block (1=Ena)def=0
3-2	00 Interrupt at PCI Read of Last Linedefault	0	Interrupt on FLAG @ End-of-Blk (1=Ena)def=0
	01 Interrupt at Last Sample Sent	U	interrupt on FLAG @ Enu-or-bik (1-Ena)de1-0
	10 Interrupt at Less Than One Line to Send	I/O Off	fset 57-54 – Modem SGD W Ch Table Ptr Base . RW
	11 -reserved-		SGD Table Pointer Base Address (even addr) W
1	Interrupt on EOL @ End of Block	51 0	Current Pointer Address R
1	0 Disabledefault		Current I diliter requiess
	1 Enable	I/O Off	<u> fset 5F-5C – Modem SGD W Ch Current Count. RO</u>
0	Interrupt on FLAG @ End-of-Blk	31-24	Reservedalways reads 0
U	0 Disabledefault	23-0	•
	1 Enable		
	1 Endoic	EOL	End Of Link. 1 indicates this block is the last of the
I/O Off	Set 47-44 – Modem SGD R Ch Table Ptr Base RW		link. If the channel "Interrupt on EOL" bit is set, then
	SGD Table Pointer Base Address (even addr)W	TT 1.0	an interrupt is generated at the end of the transfer.
010	Current Pointer AddressR	FLAG	
			block. If the channel "Interrupt on FLAG" bit is set,
I/O Off	Set 4F-4C – Modem SGD R Ch Current CountRO	стор	then an interrupt is generated at the end of this block.
31-24	Reserved always reads 0	STOP	Block Stop. If set, transfer pauses at the end of this
23-0	Current SGD Read Channel Count		block. To resume the transfer, write 1 to Rx?0[2].
	SGD Table Format		
62			
63 EO	<u>62 61 60-56 55-32 31-0</u> L FLAG STOP -reserved- Base Base		
LO	Count Address		
	[23:0] [31:0]		
	[23.0] [31:0]		

The audio / modem interface is compliant with AC97. Refer to the AC97 specification and AC97 Codec data sheets for further details.

Read / Write through both functions 5 and 6.

Offset 8	3 -8 0 -	- AC97 Controller Command / StatusRW
Read / V	Vrite th	hrough both functions 5 and 6.
31-30	Code	e c ID RW
	00	Select Primary Codec
	01	Select Secondary Codec
	1x	-reserved-
29-28	Rese	rved always reads 0
27	Secon	ndary Codec Data / Status / Index Valid .RWC
	0	Not Valid
	1	Valid (OK to Read bits 0-23)
26		rved always reads 0
25	Prim	ary Codec Data / Status / Index ValidRWC
	0	Not Valid
		Valid (OK to Read bits 0-23)
24	AC9	7 Controller BusyRO
	0	Primary Codec is ready for a register access
		command
	1	AC97 Controller is sending a command to the
		primary codec (commands are not accepted)
23		c Command Register Write ModeRW
	0	2
	1	Select Codec command register read mode
22-16		c Command Register Index [7:1]RW
		of the AC97 codec command register to access
		e attached codec). Data must be written before
		the same time as Index as writing to the index
		ers the AC97 controller to access the addressed
15.0		c register over the AC-link interface.
15-0		c Command Register Data / Status RW
		Codec Command Register Data
	K	Codec Status Register Data

	27-84 – SGD Status Shadow
31-30	Reservedalways reads 0
29	Modem Write Chan SGD Active Shadow(Rx50[7])
28	Modem Read Chan SGD Active Shadow (Rx40[7])
27-26	Reserved always reads 0
25	Modem Write Chan SGD STOP Shadow (Rx50[2])
24	Modem Read Chan SGD STOP Shadow.(Rx40[2])
23-22	Reserved always reads 0
21	Modem Write Chan SGD EOL Shadow(Rx50[1])
20	Modem Read Chan SGD EOL Shadow(Rx40[1])
19-18	Reserved always reads 0
17	Modem Write Chan SGD FLAG Shadow(Rx50[0])
16	Modem Read Chan SGD FLAG Shadow (Rx40[0])
15	Degenment should be should
15 14	Reserved
	FM Channel SGD Active Shadow(Rx20[7])
13	Audio Write Chan SGD Active Shadow(Rx10[7])
12	Audio Read Chan SGD Active Shadow(Rx00[7])
11	Reserved always reads 0
10	FM Channel SGD STOP Shadow(Rx20[2])
9	Audio Write Chan SGD STOP Shadow (Rx10[2])
8	Audio Read Chan SGD STOP Shadow (Rx00[2])
7	Reserved always reads 0
6	FM Channel SGD EOL Shadow(Rx20[1])
5	Audio Write Chan SGD EOL Shadow (Rx10[1])
4	Audio Read Chan SGD EOL Shadow(Rx00[1])
3	Reserved always reads 0
2	FM Channel SGD FLAG Shadow(Rx20[0])
1	Audio Write Chan SGD FLAG Shadow(Rx10[0])
0	Audio Read Chan SGD FLAG Shadow(Rx00[0])
Read /	Only through function 5 and Read / Write through
function	
O.00	D 00 G 1 ODY 1
	BB-88 – Codec GPI Interrupt Status / GPIO RWC
31-16	GPI Interrupt StatusRWC
	R GPI[15-0] Interrupt Status
	W 1 to clear
15-0	Codec GPIORW
	R Reflect status of Codec GPI[15-0]
	XX

W Triggers AC-Link slot-12 output to codec

.....always reads 0

Offset 8F-8C - Codec GPI Interrupt EnableRW
31-16 Interrupt on GPI[15-0] Change of Status....RW

0 Disable1 Enable

15-0 Reserved

I/O Bas	se 1 Registers – Audio FM NMI Status Registers	I/O Base 2 Registers – MIDI / Game Port
I/O Off	registers are accessable through function 5 only. fset 0 – FM NMI StatusRO	I/O Offset 1-0 – MIDI Base RW 15-0 MIDI Port Base Address default = 0330l
7-2	Reserved	I/O Offset 3-2 – Game Port BaseRV
1-0	FM NMI Status 00 Undefined 01 OPL3 Bank 0 10 OPL3 Bank 1 11 Undefined	15-0 Game Port Base Addressdefault = 02001 These registers are functional only if Rx42[6] = 1
I/O Of	fset 1 – FM NMI DataRO	
7-0	FM NMI Data This register allows readback of the data written to the FM data port	
	fset 2 – FM NMI IndexRO FM NMI Index	<u>I/O Base 3 Registers – Codec Register Shadow</u> These registers are accessable through both functions 5 and 6.

This register allows readback of the data written to

the FM index port

I/O Offset 0-7Fh - Primary Codec Shadow.....RW

The content of these registers is updated when writing data to primary codec registers 0-7Fh or when valid primary codec register status is returned.

I/O Offset 80-FFh - Secondary Codec Shadow.....RW

The content of these registers is updated when writing data to secondary codec registers 0-7Fh or when valid secondary codec register status is returned.

Memory Mapped I/O APIC Registers Memory Address FEC00000 - APIC IndexRW **APIC Index** default = 00h 8-bit pointer to APIC registers. Memory Address FEC00013-10 - APIC 32-bit DataRW **31-0 APIC 32-bit Data** default = 0000 0000h Data for the APIC register pointed to by the APIC index Memory Address FEC00020 - APIC IRQ Pin AssertionWO Reserved always reads 0 4-0 APIC IRQ Numberdefault undefined IRQ # for this interrupt. Valid values are 0-23 only. Memory Address FEC00040 - APIC EOI WO Redirection Entry Cleardefault undefined When a write is issued to this register, the APIC will

check this field and compare it with the vector field for each entry in the I/O redirection table. When a match is found, the "Remote_IRR" bit for that I/O

Redirection Entry will be cleared.

Indexed I/O APIC 32-Bit Registers

<u>Offset U</u>	<u> – APIC Identification (0000 0000h) RW</u>
31-28	Reserved always reads 0
27-24	APIC Identification default = 0
	Software must program this value before using the
	APIC.
23-0	Reserved always reads 0
0.00	1 DYG YY 1 (004 E 0044)
Offset 1	- APIC Version (0017 0011h)RO
31-24	Reservedalways reads 00h
23-16	Maximum Redirectionalways reads 17h
	Equal to the number of APIC interrupt pins minus
	one. For this APIC, this value is 17h (23 decimal).
15-8	Reservedalways reads 00h
7-0	APIC Versionalways reads 11h
	The implementation version for this APIC is 11h.
O 00 4 0	ADICA 12 (1 (0000 00001)
Offset 2	A – APIC Arbitration (0000 0000h)RO
31-28	Reserved always reads 00h
27-24	APIC Arbitration IDalways reads 00h
23-0	Reserved always reads 00h

Offset 3F-10 - I/O Redirection Table

This table contains 24 registers, with one dedicated table entry for each of the 24 APIC interrupt signals. Each 64-bit register consists of two 32-bit values at consecutive index locations, with the low 32 bits at the even index and the upper 32 bits at the odd index. The default value for all registers is xxx1 xxxx xxxx xxxxh.

Offset 11-10 - I/O Redirection - APIC IRQ0	RW
Offset 13-12 - I/O Redirection - APIC IRQ1	RW
Offset 15-14 - I/O Redirection - APIC IRQ2	RW
Offset 17-16 – I/O Redirection – APIC IRQ3	RW
Offset 19-18 – I/O Redirection – APIC IRQ4	RW
Offset 1B-1A – I/O Redirection – APIC IRQ5	RW
Offset 1D-1C – I/O Redirection – APIC IRQ6	RW
Offset 1F-1E – I/O Redirection – APIC IRQ7	RW
Offset 21-20 – I/O Redirection – APIC IRQ8	RW
Offset 23-22 – I/O Redirection – APIC IRQ9	RW
Offset 25-24 – I/O Redirection – APIC IRQ10	RW
Offset 27-26 – I/O Redirection – APIC IRQ11	RW
Offset 29-28 – I/O Redirection – APIC IRQ12	RW
Offset 2B-2A – I/O Redirection – APIC IRQ13	RW
Offset 2D-2C – I/O Redirection – APIC IRQ14	RW
Offset 2F-2E – I/O Redirection – APIC IRQ15	RW
Offset 31-30 – I/O Redirection – APIC IRQ16	RW
Offset 33-32 – I/O Redirection – APIC IRQ17	RW
Offset 35-34 – I/O Redirection – APIC IRQ18	RW
Offset 37-36 – I/O Redirection – APIC IRQ19	RW
Offset 39-38 – I/O Redirection – APIC IRQ20	RW
Offset 3B-3A – I/O Redirection – APIC IRQ21	RW
Offset 3D-3C – I/O Redirection – APIC IRQ22	
Offset 3F-3E – I/O Redirection – APIC IRQ23	
<u> </u>	

Offset 42 – SMI	on BIOS V	Write	RW
0 D	Viceble		dafault

Disabledefault

Enable

Offset 4B-48 – General Purpose InputRW 31-0 GPI 31-0

Offset 4F-4C - General Purpose Output.....RW 31-0 GPO 31-0

F

Format for Each I/O Redirection Table Entry:					
Physical	Mode	(bit-11	=0)		
63-60	Reser	ved	always reads 0		
59-56	APIC	: ID	default = undefined		
Logical	Mode	(bit-11=	<u>=1)</u>		
			default = undefined		
55-17	Reser	ved	always reads 0		
16	Interi	rupt M	asked		
	0	Not ma	asked default		
	1	Maske	d		
15	Trigg	er Mod	le		
	0		Sensitive default		
	1	Level	Sensitive		
14	Remo		(Level Sensitive Interrupts Only). RO		
	0		nessage with a matching interrupt vector		
			ed from a local APIC		
	1		sensitive interrupt sent by IOAPIC		
			ed by local APIC(s)		
13	Interi		put Pin Polarity		
	0		Highdefault		
	1	Active			
12			tusRO		
			current status of the delivery of this		
	interru	-			
	0		o activity)		
	1		Pending (the interrupt has been injected		
			delivery is temporarily delayed either		
			te the APIC bus is busy or because the		
			ing APIC unit cannot currently accept		
11	D 41	the int	* *		
11		nation]			
			ne interpretation of bits 56-63. al Modedefault		
	0 1	•	t Priority		
	1	Lowes	t Filolity		
10-8	Delive	ery Mo	de		
			v the APICs listed in the destination field		
			on reception of this signal		
			default		
			ıl Mode		
		SMI			
	011	-reserv	ved-		
	100	NMI			
	101	INIT			
	110				

7-0 Interrupt Vector

110 -reserved-111 External INT

Contains the interrupt vector for this interrupt. Vector values range from 10h to FEh.

FUNCTIONAL DESCRIPTIONS

Power Management

Power Management Subsystem Overview

The power management function of the VT82C686B is indicated in the following block diagram:

Figure 6. Power Management Subsystem Block Diagram

Refer to ACPI Specification v1.0 and APM specification v1.2 for additional information.

Processor Bus States

The VT82C686B supports the complete set of C0 to C3 processor states as specified in the Advanced Configuration and Power Interface (ACPI) specification (and defined in ACPI I/O space Registers 10-15):

- C0: Normal Operation
- C1: CPU Halt (controlled by software).
- C2: Stop Clock. Entered when the P_LVL2 register is read. The STPCLK# signal is asserted to put the processor in the Stop Grant State. The CPUSTP# signal is not asserted so that host clocks remain running. To exit this state, the chip negates STPCLK#.
- C3: Suspend. Entered when the P_LVL3 register is read. In addition to STPCLK# assertion as in the C2 state, the SUSST1# (suspend status 1) signal is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz suspend clock (SUSCLK) provided by the VT82C686B. If the HOST_STP bit is enabled, then CPUSTP# is also asserted to stop clock generation and put the CPU into Stop Clock State. To exit this state, the chip negates CPUSTP# and allows time for the processor PLL to lock. Then the SUSST1# and STPCLK# signals are negated to resume to normal operation.

During normal operation, two mechanisms are provided to modulate CPU execution and control power consumption by throttling the duty cycle of STPCLK#:

- a. Setting the THT_EN bit to 1, the duty cycle defined in THT_DTY (IO space Rx10) is used.
- b. THRM# pin assertion enables automatic clock throttling with duty cycle pre-configured in THM_DTY (PCI configuration Rx4C).

System Suspend States and Power Plane Control

There are three power planes inside the VT82C686B. The first power plane (VCCS) is always on unless turned off by the mechanical switch. The second power plane (VCC) is controlled by chip output SUSC# (also called "PSON"). The third plane (VCCRTC) is powered by the combination of the VCCS and the external battery (VBAT) for the integrated real time clock. Most of the circuitry inside the VT82C686B is powered by VCC. The amount of logic powered by VCCS is very small; its main function is to control the supply of VCC and other power planes. VCCRTC is always on unless both the mechanical switch and VBAT are removed.

The VT82C686B supports multiple system suspend states by configuring the SLP_TYP field of ACPI I/O space register Rx4-5:

- POS (Power On Suspend): Most devices in the system remain powered. The host bus is put into an equivalent of the C3 state. In particular, the CPU is put into the Stop Grant State or Stop Clock State depending on the setting of the HOST_STP bit. SUSST1# is asserted to tell the north bridge to switch to "Suspend DRAM Refresh" mode based on the 32KHz SUSCLK provided by the VT82C686B. As to the PCI bus, setting the PCLK_RUN bit to 0 enables the CLKRUN protocol defined in the PCI Mobile Design Guide. That is, the PCKRUN# pin will be de-activated after the PCI bus is idle for 26 clocks. Any PCI bus masters including the north bridge may resume PCI clock operation by pulling the PCKRUN# pin low. During the PCKRUN# deactivation period, the PCISTP# pin may be activated to disable the output of the PCI clock generator if the PCI_STP bit is enabled. When the system resumes from POS, the VT82C686B can optionally resume without resetting the system, can reset the processor only, or can reset the entire system. When no reset is performed, the chip only needs to wait for the clock synthesizer and processor PLL to lock before the system is resumed, which typically takes 20ms.
- b) STR (Suspend to RAM): Power is removed from most of the system except the system DRAM. Power is supplied to the suspend refresh logic in the north bridge (VTT of VT82C598) and the suspend logic of the VT82C686B (VCCS). The VT82C686B provides a 32KHz suspend clock to the north bridge for it to use to continue DRAM refresh.
- c) STD (Suspend to Disk, also called Soft-off): Power is removed from most of the system except the suspend logic of VT82C686B (VCCS).
- **d) Mechanical Off:** This is not a suspend state. All power in the system is removed except the RTC battery.

The suspend state is entered by setting the SLP_EN bit to 1. Three power plane control signals (SUSA#, SUSB# and

SUSC#) are provided to turn off more system power planes as the system moves to deeper power-down states, i.e., from normal operation to POS (only SUSA# asserted), to STR (both SUSA# and SUSB# asserted), and to STD (all three SUS# signals asserted). In particular, the assertion of SUSC# can be used to turn off the VCC supply to the VT82C686B.

One additional suspend status indicator (SUSST1#) is provided to inform the north bridge and the rest of the system of the processor and system suspend states. SUSST1# is asserted when the system enters the suspend state or the processor enters the C3 state. SUSST1# is connected to the north bridge to switch between normal and suspend-DRAM-refresh modes.

General Purpose I/O Ports

As ACPI compliant hardware, the VT82C686B includes PWRBTN#, SLPBTN#, and RI# pins to implement power button, sleep button, and ring indicator functionality, respectively. Furthermore, the VT82C686B offers many general-purpose I/O ports with the following capabilities:

- I²C/SMB Support
- Thermal Detect
- Notebook Lid Open/Close Detect
- Battery Low Detect
- Twelve General Purpose Input Ports (multiplexed with other functions).
- Nineteen General Purpose Output Ports (1 dedicated and 18 multiplexed with other functions)
- Four General Purpose Input / Output Ports (multiplexed with other functions)

In addition, the VT82C686B provides an external dedicated SMI pin (EXTSMI#). The external SMI input can be programmed to trigger an SCI or SMI at both the rising and falling edges of the corresponding input signal. Software can check the status of the input pin and take appropriate actions.

Power Management Events

Three types of power management events are supported:

- ACPI-required Fixed Events defined in the PM1a_STS and PM1a_EN registers. These events can trigger either SCI or SMI depending on the SCI_EN bit:
 - PWRBTN# Triggering
 - RTC Alarm
 - · Sleep Button
 - ACPI Power Management Timer Carry (always SCI)
 - BIOS Release (always SCI)
- 2) ACPI-aware General Purpose Function Events defined in the GP_STS and GP_SCI_EN, and GP_SMI_EN registers. These events can trigger either SCI or SMI depending on the setting of individual SMI and SCI enable bits:
 - · External SMI triggering
 - USB Resume
 - Ring Indicator (RI#)
 - Battery Low Detect (BATLOW#)
 - Notebook Lid Open/Close Detect (LID)
 - Thermal Detect (THRM#)

- 3) Generic Global Events defined in the GBL_STS and GBL_EN registers. These registers are mainly used for SMI:
 - PCI Bus Clock Run Resume
 - Primary Interrupt Occurance
 - · GP0 and GP1 Timer Time Out
 - Secondary Event Timer Time Out
 - Occurrence of Primary Events (defined in register PACT_STS and PACT_EN)
 - Legacy USB accesses (keyboard and mouse)
 - Software SMI

System and Processor Resume Events

Depending on the system suspend state, different features can be enabled to resume the system. There are two classes of resume events:

- a) VCCS-based events. Event logic resides in the VCCS plane and thus can resume the system from any suspend state. Such events include PWRBTN#, RI#, BATLOW#, LID, SMBus resume event, RTC alarm, EXTSMI#, and GP1 (EXTSMI1#).
- b) VCC-Based Events. Event logic resides in the VCC plane and thus can only resume the system from the POS state. Such events include the ACPI PM timer, USB resume, and EXTSMIn#.

Figure 7. System Block Diagram Using the VT82C686B Super South Bridge

Legacy Power Management Timers

In addition to the ACPI power management timer, the VT82C686B includes the following four legacy power management timers:

GP0 Timer: general purpose timer with primary event **GP1 Timer**: general purpose timer with peripheral event reload

Secondary Event Timer: to monitor secondary events Conserve Mode Timer: Hardware-controlled return to standby

The normal sequence of operations for a general purpose timer (GP0 or GP1) is to

- 1) First program the time base and timer value of the initial count (register GP_TIM_CNT).
- 2) Then activate counting by setting the GP0_START or GP1 START bit to one: the timer will start with the initial count and count down towards 0.
- 3) When the timer counts down to zero, an SMI will be generated if enabled (GP0TO_EN and GP1TO_EN in the GBL_EN register) with status recorded (GP0TO_STS and GP1TO STS in the GBL STS register).
- 4) Each timer can also be programmed to reload the initial count and restart counting automatically after counting down to 0. This feature is not used in standard VIA BIOS.

The GP0 and GP1 timers can be used just as the general purpose timers described above. However, they can also be programmed to reload the initial count by system primary events or peripheral events thus used as primary event (global standby) timer and peripheral timer, respectively. secondary event timer is solely used to monitor secondary events.

System Primary and Secondary Events

Primary system events are distinguished in the PRI_ACT_STS and PRI_ACT_EN registers:

Bit	Event	<u>Trigger</u>
7	Keyboard Access	I/O port 60h
6	Serial Port Access	I/O ports 3F8h-3FFh, 2F8h-2FFh,
		3E8h-3EFh, or 2E8h-2EFh
5	Parallel Port Access	I/O ports 378h-37Fh or 278h-27Fh
4	Video Access	I/O ports 3B0h-3DFh or memory
		A/B segments
3	IDE/Floppy Access	I/O ports 1F0h-1F7h, 170h-177h,
		or 3F5h
2	Pacarvad	

1 **Primary Interrupts** Each channel of the interrupt controller can be programmed to

be a primary or secondary interrupt

0 ISA Master/DMA Activity

Each category can be enabled as a primary event by setting the corresponding bit of the PRI_ACT_EN register to 1. If enabled, the occurrence of the primary event reloads the GP0 timer if the PACT_GP0_EN bit is also set to 1. The cause of the timer reload is recorded in the corresponding bit of PRI ACT STS register while the timer is reloaded. If no enabled primary event occurs during the count down, the GP0 timer will time out (count down to 0) and the system can be programmed (setting the GP0TO EN bit in the GBL EN register to one) to trigger an SMI to switch the system to a power down mode.

The VT82C686B distinguishes two kinds of interrupt requests as far as power management is concerned: the primary and secondary interrupts. Like other primary events, the occurrence of a primary interrupt demands that the system be restored to full processing capability. Secondary interrupts, however, are typically used for housekeeping tasks in the background unnoticeable to the user. The VT82C686B allows each channel of interrupt request to be declared as either primary, secondary, or ignorable in the PIRO CH and SIRQ_CH registers. Secondary interrupts are the only system secondary events defined in the VT82C686B.

Like primary events, primary interrupts can be made to reload the GP0 timer by setting the PIRQ_EN bit to 1. Secondary interrupts do not reload the GP0 timer. Therefore the GP0 timer will time out and the SMI routine can put the system into power down mode if no events other than secondary interrupts are happening periodically in the background.

Primary events can be programmed to trigger an SMI (setting of the PACT EN bit). Typically, this SMI triggering is turned off during normal system operation to avoid degrading system performance. Triggering is turned on by the SMI routine before entering the power down mode so that the system may be returned to normal operation at the occurrence of primary events. At the same time, the GP0 timer is reloaded and the count down process is restarted.

Peripheral Events

Primary and secondary events define system events in general and the response is typically expressed in terms of system events. Individual peripheral events can also be monitored by the VT82C686B through the GP1 timer. The following four categories of peripheral events are distinguished (via register GP_RLD_EN):

Bit-7 **Keyboard Access** Bit-6 **Serial Port Access** Bit-4 Video Access Bit-3 **IDE/Floppy Access**

The four categories are subsets of the primary events as defined in PRI ACT EN and the occurrence of these events can be checked through a common register PRI_ACT_STS. As a peripheral timer, GP1 can be used to monitor one (or more than one) of the above four device types by programming the corresponding bit to one and the other bits to zero. Time out of the GP1 timer indicates no activity of the corresponding device type and appropriate action can be taken as a result.

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Min	Max	Unit	Comment
Storage temperature	-55	125	oC	T_{S}
Operating temperature - Case	0	85	oC	$T_{\rm C}$
Operating temperature - Ambient	0	70	оС	T _A
Reference Voltage	0	5.5	Volts	V_{REF}
Core Voltage	0	3.6	Volts	V _{CC}
Suspend Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{SUS}
USB Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{USB}
Hardware Monitor Voltage	-0.5	$V_{CC} + 0.3$	Volts	V_{HWM}
Battery Voltage	-0.5	$V_{CC} + 0.3$	Volts	V _{BAT}
Input voltage (3.3V only inputs)	-0.5	$V_{CC} + 0.3$	Volts	FERR#, USBCLK, PWRBTN#, EXTSMI#, BATLOW#, FAN1, FAN2, SMBCLK, SMBDATA
Input voltage (5V tolerant inputs)	-0.5	$V_{REF} + 0.5$	Volts	All other inputs

Note: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

DC Characteristics

 $T_{A} \text{ -0-70}{}^{O}\text{C}, \ V_{REF} = 5\text{V} \pm 5\%, \ V_{CC} = V_{CCS} = V_{CCH} = V_{CCU} = 3.3\text{V} \pm 0.3\text{V}, \ V_{BAT} = 3.3\text{V} + 0.3/-1.3\text{V}, \ GND = 0\text{V} + 0.3/-1.3\text{V}$

Symbol	mbol Parameter		Max	Unit	Condition
V_{IL}	Input low voltage	-0.5	0.8	V	
V _{IH}	Input high voltage	2.0	V _{CC} +0.3	V	
V _{OL}	Output low voltage	-	0.45	V	$I_{OL} = 4.0 \text{mA}$
V _{OH}	Output high voltage	2.4	-	V	$I_{OH} = -1.0 \text{mA}$
$I_{\Pi\!L}$	Input leakage current	-	±10	uA	$0 < V_{\rm IN} < V_{\rm CC}$
I_{OZ}	Tristate leakage current	-	±20	uA	$0.45 < V_{OUT} < V_{CC}$
I_{CC}	Power supply current	-	80	mA	

PACKAGE MECHANICAL SPECIFICATIONS

Figure 8. Mechanical Specifications – 352 Pin Ball Grid Array Package