TRUTH TABLES

Is the following proposition a tautology, a contradiction, or neither?

 $(\neg p \land q) \land (p \lor \neg q)$

Can you verify your answer without truth tables?

DISJUNCTIVE NORMAL FORM

Can you find some statement S with this truth table? Hint: disjunctive normal form Can you find a short statement S with this truth table?

DISJUNCTIVE NORMAL FORM

Is disjunctive normal form unique? In other words, is it possible to find different disjunctive normal forms that are equivalent?

BASIC LOGICAL EQUIVALENCES

Idempotence.
$$\rho \vee \rho \equiv \rho$$
 $\rho \wedge \rho \equiv \rho$
Commutativity $\rho \vee q \equiv q \vee \rho$
 $\rho \wedge q \equiv q \wedge \rho$
Associativity $\rho \vee (q \vee r) \equiv (\rho \vee q) \vee r$
 $\rho \wedge (q \wedge r) \equiv (\rho \wedge q) \wedge r$
Distributivity $\rho \vee (q \wedge r) \equiv (\rho \vee q) \wedge (\rho \vee r)$
 $\rho \wedge (q \vee r) \equiv (\rho \wedge q) \vee (\rho \wedge r)$
Double negation. $\neg (\neg \rho) \equiv \rho$
Domination. $\rho \vee T \equiv T$
 $\rho \wedge F \equiv F$
DeMorgan's Laws. $\neg (\rho \vee q) \equiv \neg \rho \wedge \neg q$
 $\neg (\rho \wedge q) \equiv \neg \rho \vee \neg q$
Implications. $\rho \rightarrow q \equiv q \vee \neg \rho$

LOGICAL EQUIVALENCES

Show the following equivalences:

$$\begin{array}{c}
\neg(\rho \rightarrow q) \equiv \rho \wedge \neg q \\
(\rho \rightarrow q) \wedge (\rho \rightarrow r) \equiv \rho \rightarrow (q \wedge r) \\
\neg(\rho \vee (\neg \rho \wedge q)) \equiv \neg \rho \wedge \neg q
\end{array}$$

TAUTOLOGIES

Show that the following statements are tautologies.

1.
$$(\rho \land q) \longrightarrow (\rho \lor q)$$

$$2. \neg \rho \land (\rho \lor q) \rightarrow q$$

TAUTOLOGIES

Determine whether or not the following statements are tautologies.

$$(\neg \rho \land (\rho \rightarrow q)) \rightarrow \neg q$$

$$(\neg q \land (\rho \rightarrow q)) \rightarrow \neg \rho$$