Density Estimation Using Real NVP

Laurent Dinh, et al. · 2016

Map

Definition · 2 Models · Adding Latent z · Uses

Def 1. A **probabilistic generative model (PGM)** is a model that attempts to estimate the probability distribution $p_X(x)$ parametrized by θ over a random variable X given a dataset $\mathcal{D} = \{x_1, ..., x_N\}$ with $x_i \in \mathbb{R}^D$.

Definition · 2 Models · Adding Latent z · Uses

Def 1. A **probabilistic generative model (PGM)** is a model that attempts to estimate the probability distribution $p_X(x)$ parametrized by θ over a random variable X given a dataset $\mathcal{D} = \{x_1, ..., x_N\}$ with $x_i \in \mathbb{R}^D$.

Definition · 2 Models · Adding Latent z · Uses

Add an additional variable $\mathbf{z} \in \mathbb{R}^{D'}$ with some known simple distribution $p_{\mathbf{Z}}(\mathbf{z})$ (e.g. $p_{\mathbf{Z}}(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0},\mathbf{I})$) which is easy to evaluate and sample from.

Definition · 2 Models · Adding Latent z · Uses

- Generate data (e.g., images) like the samples in \mathcal{D}
- Interpolate between samples in a meaningful way
- Unsupervised clustering
- Denoising
- Data reconstruction
- Build a prior $p_X(x)$ to some other model (Bayesian setting)

(Gaussian) Mixture Model

- Used mostly for unsupervised clustering.
- Parameters $\theta = \{\pi, \mu_{z_1, \dots, z_k}, \Sigma_{z_1, \dots, z_k}\}$ estimated with EM algorithm.
- + Density estimation is easy: $p_X(x) = \sum_z p_{X|Z}(x|z)p_Z(z)$
- + Sampling is easy: $\mathbf{z} \sim p_{\mathbf{Z}}(\cdot)$ then $\mathbf{x} \sim p_{\mathbf{X}|\mathbf{Z}}(\cdot|\mathbf{z})$
- EM requires initial guess for θ .
- Scales poorly with large *D*.
- Number of clusters *k* is fixed.

 $k \in \mathbb{N}$: number of clusters

 $x \in \mathbb{R}^D$: data point

 $z \in \{0,1\}^k$: cluster membership

$$p_{Z|X}(z|x) = \frac{p_{X|Z}(x|z)p_{Z}(z)}{p_{X}(x)}$$

•
$$p_{X|Z}(x|z) = \mathcal{N}(x|\mu_z, \Sigma_z))$$

•
$$p_{\mathbf{Z}}(\mathbf{z}) = \mathbf{Cat}(\mathbf{z}|\pi_1, ..., \pi_k)$$

Variational Autoencoder

- Used for compression, data generation/reconstruction/denoising.
- Parameters θ estimated by optimizing ELBO.
- ± Density estimation is approximate: $p_X(x) \approx \frac{p_{X|Z}(x|z)p_Z(z)}{q_{Z|X}(z|x)}$
- + Sampling is easy: $\mathbf{z} \sim p_{\mathbf{Z}}(\cdot)$ then $\mathbf{x} \sim p_{\mathbf{X}|\mathbf{Z}}(\cdot | \mathbf{z})$

 $x \in \mathbb{R}^D$: data point

 $\mathbf{z} \in \mathbb{R}^{D'}$: latent data point

$$p_{Z|X}(z|x) = \frac{p_{X|Z}(x|z)p_{Z}(z)}{p_{X}(x)}$$

•
$$p_{\mathbf{Z}}(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I})$$

$$q_{Z|X}(z|x) \approx p_{Z|X}(z|x)$$

Generative Adversarial Networks

- Used mainly for data generation.
- Parameters θ estimated by playing the minimax game.
- + Sampling is easy (built for this): $\mathbf{z} \sim p_{\mathbf{Z}}(\cdot)$ then $\mathbf{x} = \mathbf{G}(\mathbf{z}|\boldsymbol{\theta}_{\mathbf{G}})$
- Density estimation $p_X(x)$ is not possible.

 $x \in \mathbb{R}^D$: data point

 $\mathbf{z} \in \mathbb{R}^{D'}$: latent data point

 $\min_{G} \max_{D} V(D,G)$

Map

Introduction · Change of Variable · Diagram · Example

- A PGM to directly approximate $p_X(x)$.
- Turn a simple distribution $p_{\mathbf{Z}}(\mathbf{z})$ into a complex one in an *invertible manner*.
- + Easier to train than GANs and VAEs.
- + Easy to scale.
- + We can directly compute and optimize the likelihood.
- + Density estimation $p_X(x)$ is easy.
- + Sampling $x \sim p_X(\cdot)$ is easy.

Introduction · Change of Variable · Diagram · Example

Lemma 1. (Change of Variable) Let X and Z be random variables related by an *invertible* and *differentiable* mapping $f: \mathbb{R}^D \to \mathbb{R}^D$ such that Z = f(X), then the following equality holds:

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(f(\mathbf{x})) |\det(Df(\mathbf{x}))|$$

 $x \in \mathbb{R}^D$: data point

 $\mathbf{z} \in \mathbb{R}^D$: "latent" variable

$$Df(\mathbf{x}) = \begin{bmatrix} \partial_{x_1} f_1(\mathbf{x}) & \cdots & \partial_{x_D} f_1(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_D(\mathbf{x}) & \cdots & \partial_{x_D} f_D(\mathbf{x}) \end{bmatrix}$$

$$p_{X}(x) = p_{Z} \begin{pmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} x \end{pmatrix} \cdot 4$$

Introduction · Change of Variable · Diagram · Example

Density Estimation

$$p_X(x)$$

$$f(x) = z \qquad p_{Z}(z)$$

$$x \rightleftharpoons \theta \rightleftharpoons z \rightarrow z \rightarrow x \rightarrow p$$

$$x = f^{-1}(z)$$

$$|\det(Df(x))|$$

$$x \sim p_X(\cdot)$$

$$f(x) = z z \sim p_Z(\cdot)$$

$$x \rightleftharpoons \theta \rightleftharpoons z - z -$$

$$x = f^{-1}(z)$$

Introduction · Change of Variable · Diagram · Examples

"Glow: Generative flow with invertible 1x1 convolutions." (2018).

Training

Maximum Likelihood · Problems

Given a dataset $\mathcal{D} = \{x_1, ..., x_N\}$ where $x_1, ..., x_N \sim_{i.i.d.} p_X(\cdot)$ we want to find the best parameters $\boldsymbol{\theta}$ of $f(\boldsymbol{x}|\boldsymbol{\theta})$ that maximize the likelihood of \mathcal{D} .

$$L(\mathcal{D}|\boldsymbol{\theta}) = L(\boldsymbol{x}_1, ..., \boldsymbol{x}_N | \boldsymbol{\theta})$$

$$= \prod_{i=1}^{N} p_{\boldsymbol{X}}(\boldsymbol{x}_i | \boldsymbol{\theta})$$

$$= \prod_{i=1}^{N} p_{\boldsymbol{Z}}(f(\boldsymbol{x}_i | \boldsymbol{\theta})) |\det(Df(\boldsymbol{x}_i | \boldsymbol{\theta}))|$$

$$\widehat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} L(\mathcal{D}|\boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \log L(\mathcal{D}|\boldsymbol{\theta})$$

$$= \arg \max_{\boldsymbol{\theta}} \log \prod_{i=1}^{N} p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) |\det(Df(\boldsymbol{x}_{i}|\boldsymbol{\theta}))|$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \log|\det(Df(\boldsymbol{x}_{i}|\boldsymbol{\theta}))|$$

Training

Maximum Likelihood · Problems

- Problem 1: How do we enforce the fact that *f* must be invertible (standard NNs aren't)?
- Problem 2: How do we compute the determinant which is usually computationally prohibitive for large *D* ?

$$\widehat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \log \left| \det(Df(\boldsymbol{x}_{i}|\boldsymbol{\theta})) \right|$$

Solution To Problem 1 · Solution To Problem 2

Solution To Problem 1 · Solution To Problem 2

$$f_{(1)}(\cdot | \boldsymbol{\theta}) = NN(\cdot | \boldsymbol{\theta}) = \boldsymbol{t}$$

Assuming...

$$f_{(2)}(\mathbf{x}^{\prime\prime},\mathbf{t})=\mathbf{x}^{\prime\prime}+\mathbf{t}$$

$$f_{(2)}^{-1}(\mathbf{z}^{\prime\prime},\mathbf{t})=\mathbf{z}^{\prime\prime}-\mathbf{t}$$

We found a way to compute *f* in an invertible manner!

"NICE: NON-LINEAR INDEPENDENT COMPONENTS ESTIMATION (2015).

Solution To Problem 1 · Solution To Problem 2

- Problem 1: How do we enforce the fact that *f* must be invertible (standard NNs aren't)?
- Problem 2: How do we compute the determinant which is usually computationally prohibitive for large *D* ?

$$\widehat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \log \left| \det(Df(\boldsymbol{x}_{i}|\boldsymbol{\theta})) \right|$$

Solution To Problem 1 · Solution To Problem 2

Lemma 2. (Determinant LT Matrix) Let $\mathbf{A} \in \mathbb{R}^{D \times D}$ be a lower triangular matrix, then:

$$\det \mathbf{A} = \prod_{i=0}^{D} a_{ii}$$

E.g.:
$$\det \begin{bmatrix} a_{11} & 0 & 0 \\ * & a_{22} & 0 \\ * & * & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33}$$

Solution To Problem 1 · Solution To Problem 2

Derivatives

• How much does \mathbf{z}' change if we change \mathbf{x}'' ?

Solution To Problem 1 · Solution To Problem 2

Derivatives

- How much does \mathbf{z}' change if we change \mathbf{x}'' ?
- How much does z' change if we change x'?

Solution To Problem 1 · Solution To Problem 2

Derivatives

- How much does \mathbf{z}' change if we change \mathbf{x}'' ?
- How much does z' change if we change x'?
- How much does \mathbf{z}'' change if we change \mathbf{x}'' ? Assuming $f_{(2)}(\mathbf{x}'', \mathbf{t}) = \mathbf{x}'' + \mathbf{t}$

Solution To Problem 1 · Solution To Problem 2

Derivatives

- How much does \mathbf{z}' change if we change \mathbf{x}'' ?
- How much does z' change if we change x'?
- How much does \mathbf{z}'' change if we change \mathbf{x}'' ? Assuming $f_{(2)}(\mathbf{x}'', \mathbf{t}) = \mathbf{x}'' + \mathbf{t}$

$$Df(x) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & 0 & 1 & 0 \\ * & * & * & 0 & 0 & 1 \end{bmatrix} Z'$$

Solution To Problem 1 · Solution To Problem 2

Assuming
$$f_{(2)}(x'', t) = x'' + t$$

$$Df(x) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ * & * & * & 1 & 0 & 0 \\ * & * & * & 0 & 1 & 0 \\ * & * & * & 0 & 0 & 1 \end{bmatrix} Z'$$

The Jacobian is lower triangular; hence we can easily compute the determinant!

Solution To Problem 1 · Solution To Problem 2

- Problem 1: How do we enforce the fact that *f* must be invertible (standard NNs aren't)?
- Problem 2: How do we compute the determinant which is usually computationally prohibitive for large *D* ?

$$\widehat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \log \left| \det(Df(\boldsymbol{x}_{i}|\boldsymbol{\theta})) \right|$$

Flow Composition

Diagram · Determinant Jacobian Lemma

$$\widehat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \log |\det(Df(\boldsymbol{x}_{i}|\boldsymbol{\theta}))|$$

$$f(x \mid \theta) = z$$

$$f^{(1)} \qquad f^{(2)} \qquad f^{(K)}$$

$$x \mapsto \cdots \mapsto z = z$$

$$f^{-1}(z \mid \theta) = x$$

Flow Composition

Diagram · Determinant Jacobian Lemma

Lemma 3. (Determinant Jacobian Composition) Let $f = f^{(1)} \circ f^{(2)} \circ \cdots \circ f^{(K)}$ with $f^{(j)} : \mathbb{R}^D \to \mathbb{R}^D$, then:

$$\det Df(x) = \det \prod_{j=1}^{K} Df^{(j)}(x) = \prod_{j=1}^{K} \det Df^{(j)}(x)$$

$$\widehat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \log|\det(Df(\boldsymbol{x}_{i}|\boldsymbol{\theta}))|$$

$$= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \log\left|\prod_{j=1}^{K} \det Df^{(j)}(\boldsymbol{x})\right|$$

$$= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p_{\mathbf{Z}}(f(\boldsymbol{x}_{i}|\boldsymbol{\theta})) + \sum_{j=1}^{K} \log|\det Df^{(j)}(\boldsymbol{x})|$$

Map

Affine Coupling Transform • Masking Schemes • Architecture • Results

$$f_{(1)}(\cdot | \boldsymbol{\theta}) = NN(\cdot | \boldsymbol{\theta}) = (\boldsymbol{t}, \boldsymbol{s})$$

Assuming...

$$f_{(2)}(x'',(t,s)) = x'' \odot \exp(s) + t$$

$$f_{(2)}^{-1}(\mathbf{z}'',(\mathbf{t},\mathbf{s})) = (\mathbf{z}'' - \mathbf{t}) \odot \exp(-\mathbf{s})$$

$$Df(x) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ * & * & * & \exp(s_1) & 0 & 0 \\ * & * & * & 0 & \ddots & 0 \\ * & * & * & 0 & 0 & \exp(s_D) \end{bmatrix}$$

Affine Coupling Transform • Masking Schemes • Architecture • Results

$$\log|\det Df(\mathbf{x})| = \log \left| \prod_{i=1}^{D} \exp s_i \right| = \log \left| \exp \sum_{i=1}^{D} s_i \right| = \sum_{i=1}^{D} s_i$$

$$Df(x) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ * & * & * & \exp(s_1) & 0 & 0 \\ * & * & * & 0 & \ddots & 0 \\ * & * & * & 0 & 0 & \exp(s_D) \end{bmatrix} Z'$$

Affine Coupling Transform • Masking Schemes • Architecture • Results

Affine Coupling Transform • Masking Schemes • Architecture • Results

Checkboard Masking (M1)

Channel-Wise Masking (M2)

Affine Coupling Transform · Masking Schemes · Architecture · Results

"Affine Coupling Layer"

$$f_{(1)}(\cdot, \boldsymbol{\theta}) = ResNet(\cdot, n_{blocks}, \boldsymbol{\theta})$$

$$f_{(2)}(x'',(t,s)) = x'' \odot \exp(s) + t$$

$$f_{(2)}^{-1}(\mathbf{z}^{\prime\prime},(\mathbf{t},\mathbf{s}))=(\mathbf{z}^{\prime\prime}-\mathbf{t})\odot\exp(-\mathbf{s})$$

RealNVP uses:

- $n_{blocks} = 4$ for 32x32 images.
- $n_{blocks} = 2$ for 64x64 images.

Affine Coupling Transform · Masking Schemes · Architecture · Results

Affine Coupling Transform · Masking Schemes · Architecture · Results

Final Multi-Scale Architecture

$$f(\mathbf{x} \mid \boldsymbol{\theta}) = \mathbf{z}$$

$$f^{-1}(\mathbf{z} \mid \boldsymbol{\theta}) = \mathbf{x}$$

Affine Coupling Transform · Masking Schemes · Architecture · Results

Sampling: CIFAR-10

Affine Coupling Transform · Masking Schemes · Architecture · Results

Sampling: CelebA

Affine Coupling Transform · Masking Schemes · Architecture · Results

Interpolating: CelebA

Affine Coupling Transform · Masking Schemes · Architecture · Results

Interpolating: LSUN (Tower)

Glow (2018)

Sampling: CelebA

My Take

- + Even if the results are not so good, RealNVP laid the groundwork for papers like GLOW.
- + Invertible NN are a very interesting idea.
- The latent space is hard to interpret and "customize".
- Some info about RealNVP is only found in the code.

Map

Thank you for your attention.

References

- RealNVP Paper: https://arxiv.org/abs/1605.08803
- NICE Paper: https://arxiv.org/abs/1410.8516
- Glow Paper: https://arxiv.org/abs/1807.03039
- Code Implementations RealNVP: https://paperswithcode.com/paper/density-estimation-using-real-nvp