Problema

Il metodo appena presentato nel par. 2.5.1 presenta un serio problema di fondo. Esso è infatti valido nell'ipotesi che l'insieme di vettori $\hat{\Pi}$ costituisca una base di \mathbb{R}^6 , ovvero che essi siano linearmente indipendenti. Tuttavia è facile dimostrare che det $\hat{\Pi}=0$ indipendentemente dai valori assegnati alle sei coppie di elementi non nulli della matrice. Conseguenza immediata è che la matrice $\hat{\Pi}$ non è invertibile e che dunque non è possibile risolvere il problema con questa via.

Conclusioni

Interessante è individuare l'origine della lineare dipendenza dei vettori di $\hat{\Pi}$. Come già osservato, l'insieme di vettori Π è un buon candidato a divenire base di \mathbb{R}^6 , purché nella scelta dei 12 elementi non nulli si rispetti la condizione (2.4).

Tale condizione viene dunque a mancare nel momento in cui si impongono i vincoli (2.5); in altre parole, il metodo viene a fallire quando si impone che le condizioni di carico di base siano una ad una equilibrate. D'altronde il vincolo di condizioni di carico di base equilibrate è imprescindibile dato che altrimenti risulta impossibile risolvere con metodi numerici agli EF il sottomodello. È dunque necessario trovare un'altra strada per risolvere il problema della scomposizione della condizione di carico generica applicata al giunto Φ .