Lista 8, Analiza Matematyczna I

1. Pokazać, że każde z poniższych równań ma rozwiązanie w podanym przedziale.

$$x^3 - x - 5 = 0$$
, $[0, 2]$ $x = \cos x$, $[0, \pi/2]$ $\sin x = 1 - x$, $[0, \pi/6]$ $e^x = 2 + x^2$, $[0, 2]$ $\sqrt{x} + 1 = x^2$, $[1, 2]$

- $\dot{\mathbf{z}}$. Pokazać, że wielomian $p(x) = x^3 3x + 1$ posiada trzy pierwiastki rzeczywiste.
- **3**. Funkcja f(x) jest ciągła na odcinku [0, 1] i spełnia warunki f(0) = 1 i f(1) = 0. Pokazać, że f(x) = x dla pewnego punktu x, 0 < x < 1.
- 4. Pokazać, że równanie:
 - $\dot{\mathbf{a}}$) $3\operatorname{arctg} x = \ln x$,
 - **b**) $\sqrt{x} = \sqrt[3]{x+3}$,

ma rozwiązanie w liczbach rzeczywistych dodatnich.

- 5. a) Wyznaczyć rozwiązanie równania $x^3 = 3$ z dokładnością do 1/16.
 - b) Obliczyć $\sqrt{0,7}$ z dokładnością do 1/16.
- 6. Na odcinku drogi długości 100 km, kontrolowanym na końcach przez policję, obowiązuje ograniczenie prędkości 90 km/h. Samochód przejechał ten odcinek w czasie 54 minut, przy czym na początku i na końcu jechał z przepisową prędkością. Kierowca otrzymał mandat od policjanta, który stwierdził, że w pewnym momencie nastąpiło przekroczenie prędkości o dokładnie 10 km/h. Czy policjant miał rację?
- **7.** Pokazać, że wielomian stopnia nieparzystego zeruje się przynajmniej w jednym punkcie.
- 8. Pokazać, że dla wielomianu w(x) stopnia parzystego istnieje liczba M, taka że w(x) + M ma przynajmniej dwa miejsca zerowe.
- **9.** Pokazać, że dla wielomianu w(x) stopnia 3 istnieje liczba a taka, że wielomian w(x) ax ma 3 miejsca zerowe.
- **10.** Pokazać, że jeśli f jest ciągła na (a,b) oraz $x_1, x_2, \ldots, x_n \in (a,b)$, to istnieje $t \in (a,b)$ takie, że $f(t) = \frac{1}{n} (f(x_1) + f(x_2) + \ldots + f(x_n))$.
- 11. Korzystając z twierdzenia o funkcji odwrotnej uzasadnić, że funkcje $\arcsin x$, $\arccos x$ oraz $\arctan x$ są ciągłe na przedziałach [-1,1], [-1,1] i $(-\infty,\infty)$, odpowiednio.
- 12. Obliczyć granice

a)
$$\lim_{x \to 0} \arctan x \cdot \operatorname{ctg} x$$

$$\lim_{x \to 1^{-}} \frac{(\operatorname{arccos} x)^{2}}{1 - x}$$