Unsupported Cell Type. Double-Click to inspect/edit the content.

Weather Forcasting

```
import pandas as pd #importing panda
import numpy as np #importing numpy
import seaborn as sns #importing seaborn
from numpy import math #This module provides access to the mathematical functions
```

datasets=pd.read_csv("C:\\Users\\Somu\\Downloads\\WEATHER FORCASTING (Project).csv") #Read a comma-separated values (csv) file
X = datasets.iloc[:, :-1].values # : - Represent all the rows , :-1 - Taking all the columns from (n-1),-2
Y = datasets.iloc[:, 4].values # : - Represent all the rows , 4 - upto 5th column
datasets

	Temperature (C)	Humidity	Visibility (km)	Precip	Wind Speed (km/h)	Loud Cover	Apparent Temperature (C)
0	9.472222	0.89	15.8263	rain	14.1197	0	7.388889
1	9.355556	0.86	15.8263	rain	14.2646	0	7.227778
2	9.377778	0.89	14.9569	rain	3.9284	0	9.377778
3	8.288889	0.83	15.8263	rain	14.1036	0	5.944444
4	8.755556	0.83	15.8263	rain	11.0446	0	6.977778
94	7.827778	0.72	15.8263	rain	13.8943	0	5.405556
95	7.855556	0.72	15.0052	rain	9.8049	0	6.122222
96	7.316667	0.75	15.8746	rain	6.6654	0	6.211111
97	7.244444	0.75	15.8746	rain	7.1162	0	6.005556
98	5.438889	0.88	9.9820	rain	3.7191	0	5.438889

99 rows × 7 columns

#To view top 10 Weather records
datasets.head(10)

	Temperature (C)	Humidity	Visibility (km)	Precip	Wind Speed (km/h)	Loud Cover	Apparent Temperature (C)
0	9.472222	0.89	15.8263	rain	14.1197	0	7.388889
1	9.355556	0.86	15.8263	rain	14.2646	0	7.227778
2	9.377778	0.89	14.9569	rain	3.9284	0	9.377778
3	8.288889	0.83	15.8263	rain	14.1036	0	5.944444
4	8.755556	0.83	15.8263	rain	11.0446	0	6.977778
5	9.222222	0.85	14.9569	rain	13.9587	0	7.111111
6	7.733333	0.95	9.9820	rain	12.3648	0	5.522222
7	8.772222	0.89	9.9820	rain	14.1519	0	6.527778
8	10.822222	0.82	9.9820	rain	11.3183	0	10.822222
9	13.772222	0.72	9.9820	rain	12.5258	0	13.772222

To select Data by Label
Weather=datasets.loc[25]
Weather

Temperature (C)	9.91111
Humidity	0.66
Visibility (km)	15.8263
Precip	rain
Wind Speed (km/h)	17.2109
Loud Cover	0
Apparent Temperature (C)	7.56667
Name: 25, dtype: object	

datasets.info() #This method prints information about a DataFrame including the index dtype and columns, non-null values and

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 99 entries, 0 to 98

Data columns (total 7 columns):

```
Column
                                    Non-Null Count Dtype
          Temperature (C)
                                                    float64
      0
                                    99 non-null
      1
          Humidity
                                    99 non-null
                                                    float64
      2
          Visibility (km)
                                    99 non-null
                                                    float64
      3
          Precip
                                    99 non-null
                                                    object
                                    99 non-null
          Wind Speed (km/h)
                                                    float64
      4
          Loud Cover
      5
                                    99 non-null
                                                    int64
          Apparent Temperature (C) 99 non-null
                                                    float64
     dtypes: float64(5), int64(1), object(1)
     memory usage: 5.5+ KB
# check datatypes
datasets.dtypes
     Temperature (C)
                                 float64
                                 float64
     Humidity
     Visibility (km)
                                 float64
                                  object
     Precip
     Wind Speed (km/h)
                                 float64
     Loud Cover
                                   int64
     Apparent Temperature (C)
                                 float64
     dtype: object
rows, col=datasets.shape #Return a tuple representing the dimensionality of the DataFrame
print("Rows: %s, column: %s" % (rows,col)) #Convert a number or string to an integer, or return 0 if no arguments are given
     Rows : 99, column : 7
print(datasets.columns) #Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for
     Index(['Temperature (C)', 'Humidity', 'Visibility (km)', 'Precip',
             'Wind Speed (km/h)', 'Loud Cover', 'Apparent Temperature (C)'],
           dtype='object')
#Categorical variables:
categorical = datasets.select_dtypes(include = ["object"]).keys()
print(categorical)
     Index(['Precip'], dtype='object')
#Quantitative variables:
quantitative = datasets.select_dtypes(include = ["int64","float64"]).keys()
print(quantitative)
     Index(['Temperature (C)', 'Humidity', 'Visibility (km)', 'Wind Speed (km/h)',
             'Loud Cover', 'Apparent Temperature (C)'],
           dtype='object')
corr=datasets.corr() #Compute pairwise correlation of columns, excluding NA/null values.
print(corr)
                               Temperature (C) Humidity Visibility (km)
     Temperature (C)
                                      1.000000 -0.825571
                                                                 0.048935
                                     -0.825571 1.000000
     Humidity
                                                                 -0.304906
     Visibility (km)
                                      0.048935 -0.304906
                                                                 1.000000
                                      0.026648 -0.099384
                                                                 -0.401903
     Wind Speed (km/h)
     Loud Cover
                                           NaN
                                                     NaN
                                                                       NaN
     Apparent Temperature (C)
                                      0.978764 -0.805435
                                                                  0.125471
                               Wind Speed (km/h) Loud Cover \
     Temperature (C)
                                        0.026648
                                                         NaN
     Humidity
                                        -0.099384
                                                         NaN
     Visibility (km)
                                        -0.401903
                                                         NaN
     Wind Speed (km/h)
                                        1.000000
                                                         NaN
     Loud Cover
                                             NaN
                                                         NaN
     Apparent Temperature (C)
                                       -0.112981
                                                         NaN
                               Apparent Temperature (C)
     Temperature (C)
                                               0.978764
                                               -0.805435
     Humidity
     Visibility (km)
                                               0.125471
     Wind Speed (km/h)
                                               -0.112981
     Loud Cover
                                                    NaN
     Apparent Temperature (C)
                                               1.000000
f,ax = plt.subplots(figsize=(6, 6))
sns.heatmap(datasets.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax) ## Thick values take the relationship to identify
```

plt.show()

#heatmap - Plot rectangular data as a color-encoded matrix.

#Quantitative variables. Missing values
datasets[quantitative].describe()

	Temperature (C)	Humidity	Visibility (km)	Wind Speed (km/h)	Loud Cover	Apparent Temperature (C)
count	99.000000	99.000000	99.000000	99.000000	99.0	99.000000
mean	11.730135	0.742525	10.866036	16.583651	0.0	10.566835
std	4.223573	0.159542	3.449905	7.658931	0.0	5.395910
min	5.438889	0.360000	2.656500	0.644000	0.0	1.494444
25%	8.200000	0.660000	9.982000	11.117050	0.0	5.652778
50%	10.694444	0.770000	10.851400	15.584800	0.0	10.694444
75%	15.058333	0.860000	12.751200	22.588300	0.0	15.058333
max	21.183333	0.990000	15.874600	32.167800	0.0	21.183333

from matplotlib.pyplot import rcParams #A dictionary object including validation.
rcParams['figure.figsize'] = 9, 9 #Validating functions are defined and associated with rc parameters in :mod:`matplotlib.rc:
datasets[quantitative].hist()

```
array([[<AxesSubplot:title={'center':'Temperature (C)'}>,
             <AxesSubplot:title={'center':'Humidity'}>],
            [<AxesSubplot:title={'center':'Visibility (km)'}>,
             <AxesSubplot:title={'center':'Wind Speed (km/h)'}>],
            [/AvacQuhnlot·titla={ 'cantar' 'loud Covar'}
datasets.isnull().any() #Detect missing values.
     Temperature (C)
                                 False
     Humidity
                                 False
     Visibility (km)
                                 False
     Precip
                                 False
     Wind Speed (km/h)
                                 False
     Loud Cover
                                 False
     Apparent Temperature (C)
                                 False
     dtype: bool
        0 4
#'Loud Cover' takes values zero. We drop it
datasets=datasets.drop('Loud Cover',axis=1) #Drop specified labels from rows or columns.
#Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. WI
datasets.fillna(method='ffill', inplace=True) #Fill NA/NaN values using the specified method
# Calculate total number of cells in dataframe
totalCells = np.product(datasets.shape) #Return a tuple representing the dimensionality of the DataFrame.
# Count number of missing values per column
missingCount = datasets.isnull().sum() #Detect missing values
# Calculate total number of missing values
totalMissing = missingCount.sum()
# Calculate percentage of missing values
print("The weather history dataset contains", round(((totalMissing/totalCells) * 100), 2), "%", "missing values.")
```

The weather history dataset contains 0.0 % missing values.

rcParams['figure.figsize'] = 8, 5 #A dictionary object including validation.
sns.countplot(y=datasets['Precip']) #Show the counts of observations in each categorical bin using bars.

<AxesSubplot:xlabel='count', ylabel='Precip'>


```
datasets['Precip'].value_counts(dropna=False)
```

rain 97 snow 2

Name: Precip, dtype: int64

sns.pairplot(datasets,corner=True); #Two-dimensional, size-mutable, potentially heterogeneous tabular data.
To find the relationship between different type of Column

Multilinear Regression

pd.get_dummies(datasets.Precip) #One-dimensional ndarray with axis labels (including time series).

#A dummy variable is a binary variable that indicates whether a separate categorical variable takes on a specific value.

	rain	snow
0	1	0
1	1	0
2	1	0
3	1	0
4	1	0
94	1	0
95	1	0
96	1	0
97	1	0
98	1	0

99 rows × 2 columns

```
# Label Encoder - Convert multiple String Value to the numerical Value
# One Hot Encoder - Dividing Value into column
```

from sklearn.preprocessing import LabelEncoder, OneHotEncoder #ncode categorical features as a one-hot numeric array. labelencoder_X = LabelEncoder() #Encode target labels with value between 0 and n_classes-1. #convert string values to float integers $X[:, 3] = labelencoder_X.fit_transform(X[:, 3])$ #Fit label encoder and return encoded labels

```
print(X[:, 3])
```

```
X = datasets["Apparent Temperature (C)"].values.reshape(-1,1)
```

```
Y = datasets["Temperature (C)"].values.reshape(-1,1)
```

from sklearn.model_selection import train_test_split #Split arrays or matrices into random train and test subsets X_Train, X_Test, Y_Train, Y_Test = train_test_split(X, Y, test_size = 0.5, random_state = 0) #The data will not be changed by

from sklearn.linear_model import LinearRegression #Ordinary least squares Linear Regression.
regressor = LinearRegression()

regressor.fit(X_Train, Y_Train)# Fit linear model.
Training

LinearRegression()

Y_Pred = regressor.predict(X_Test) #Predict using the linear model.
#Predict the data using X_Test

from sklearn.metrics import mean_squared_error,r2_score #R^2 (coefficient of determination) regression score function. print("mean squared error",mean_squared_error(Y_Test,Y_Pred)) #estimator measures the average of error squares #Points how much far from regression line mean squared error is used print("root square",r2_score(Y_Test,Y_Pred)) #Root Square is finding the accuracy , about how much Data is accurate math.sqrt(mean_squared_error(Y_Test,Y_Pred)) #Return the square root of x

mean squared error 0.820642394464359 root square 0.9569110317047951 0.9058931473768631

→ Simple Linear Regression

```
from sklearn.model_selection import train_test_split #Split arrays or matrices into random train and test subsets X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 1/3, random_state = 0)
```

from sklearn.linear_model import LinearRegression #Ordinary least squares Linear Regression.
regressor = LinearRegression()
regressor.fit(X_train, Y_train) #Fit linear model.

LinearRegression()

Y_pred = regressor.predict(X_test) # Predict using the linear model.

print(regressor.coef_) #Prints the values to a stream, or to sys.stdout by default.

[[0.78073585]]

print(regressor.intercept_) #Double-precision floating-point number type, compatible with Python `float`

[3.55327436]

from sklearn.metrics import r2_score #R^2 (coefficient of determination) regression score function. r2_score(Y_test,Y_pred)

0.9209023074598142

```
# plotting scatter plot for the Training dataset
plt.style.use('dark_background') #ploting with bg color black
plt.scatter(X_train, Y_train, color = 'blue') #A scatter plot of *y* vs. *x* with varying marker size and/or color.
plt.plot(X_train, regressor.predict(X_train), color = 'red') #Plot y versus x as lines and/or markers
plt.title('Temperature vs Apperent Temperature (Training set)') #Set a title for the axes.
plt.xlabel('Temperature') #Set the label for the x-axis.
plt.ylabel("Apperent Temperature") #Set the label for the y-axis
plt.show() #Display all open figures.
```

```
Temperature vs Apperent Temperature (Training set)

20 -

18 -

14 -
```

```
# plotting scatter plot for the Testing dataset
plt.scatter(X_test, Y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('Temperature vs Apperent Temperature(Test set)')
plt.xlabel('Temperature')
plt.ylabel('Apperent Temperature')
plt.show()
```


→ Polynomial Regression

```
#Training the Linear Regression model on the whole dataset from sklearn.linear_model import LinearRegression #sklearn is a Python module integrating classical machine #LinearRegression fits a linear model with coefficients w = (w1, ..., wp) to minimize the residual sum of squares between the lin_reg = LinearRegression() lin_reg.fit(X, Y) #Fit linear model
```

LinearRegression()

```
#Training the Polynomial Regression model on the whole dataset
#In Polynomial Linear Regression , line of graph change in the form of curve to predict accurately depending on degrees
from sklearn.preprocessing import PolynomialFeatures #Generate polynomial and interaction features.
poly_reg = PolynomialFeatures(degree = 4) #Generate a new feature matrix consisting of all polynomial combinations of the feature poly_reg.fit_transform(X) #Fit to data, then transform it
lin_reg_2 = LinearRegression()
lin_reg_2.fit(X_poly, Y) #Fit linear model
```

LinearRegression()

```
#Visualising the Linear Regression Results
plt.scatter(X, Y, color = 'red')
plt.plot(X, lin_reg.predict(X), color = 'blue')
plt.title('Temperature vs Apperent Temperature (Linear Regression)')
plt.xlabel('Temperature')
plt.ylabel('Apperent Temperature')
plt.show()
```

```
Temperature vs Apperent Temperature (Linear Regression)
```

#Visualising the Polynomial Regression results
plt.scatter(X, Y, color = 'red') #A scatter plot of *y* vs. *x* with varying marker size and/or color.
plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue') #Plot y versus x as lines and/or markers
plt.title('Temperature vs Apperent Temperature (Polynomial Regression)') #Set a title for the axes
plt.xlabel('Temperature') #Set the label for the x-axis
plt.ylabel('Apperent Temperature')
plt.show() #Display all open figures

#Visualising the Polynomial Regression results (for higher resolutionand smoother curve)
X_grid = np.arange(min(X), max(X), 0.1) #Return evenly spaced values within a given interval.
X_grid = X_grid.reshape((len(X_grid), 1)) #Returns an array containing the same data with a new shape.
plt.scatter(X, Y, color = 'red') #A scatter plot of *y* vs. *x* with varying marker size and/or color.
plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color = 'blue') #Plot y versus x as lines and/or markers
plt.title('Temperature vs Apperent Temperature (Polynomial Regression)') #Set a title for the axes
plt.xlabel('Temperature') #Set the label for the x-axis
plt.ylabel('Apperent Temperature') #Set the label for the y-axis.
plt.show() #Display all open figures

#Predicting a new result with Linear Regression
lin_reg.predict([[6.5]]) #Predict using the linear model.

array([[8.61447618]])

#Predicting a new result with Polynomial Regression
lin_reg_2.predict(poly_reg.fit_transform([[6.5]])) #Predict using the linear mode and Fit to data, then transform it.

array([[8.47256823]])

→ Decision Tree Regression

#Training the Decision Tree Regression model on the whole dataset
from sklearn.tree import DecisionTreeRegressor #A decision tree regressor
regressor = DecisionTreeRegressor(random state = 0)

```
regressor.fit(X, Y) #Build a decision tree regressor from the training set (X, y)
```

```
DecisionTreeRegressor(random_state=0)
```

K-Means Clustering

```
datasets=pd.read_csv("C:\\Users\\Somu\\Downloads\\WEATHER FORCASTING (Project).csv")
X = datasets.iloc[:, [1, 2]].values
```

```
#Using the elbow method to find the optimal number of clusters
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
         kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)#each cluster
         kmeans.fit(X)#data set of x value
         wcss.append(kmeans.inertia_)#sse values is stored inwcss
plt.plot(range(1, 11), wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```



```
#Training the K-Means model on the dataset
kmeans = KMeans(n_clusters = 5, init = 'k-means++', random_state = 42)
# Each and every cluster number represent what is the Humidity
#Numbers represent clusting numbers
y_kmeans = kmeans.fit_predict(X) #To identify the y- value
y_kmeans
```

```
#Visualising the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
#0 represent first cluster , other 0 represent annual income and 1 represent pending score , s=100 total number of points
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label="Centroids")
plt.title('Clusters of customers')
plt.xlabel('Humidity')
plt.legend()
plt.show()
```


Classifications

```
datasets=pd.read_csv("C:\\Users\\Somu\\Downloads\\WEATHER FORCASTING 1 (Project).csv")#Read a comma-separated values (csv) f:
x = datasets.iloc[:, :-1].values # : - Represent all the rows , :-1 - Taking all the columns from (n-1),-2
y = datasets.iloc[:, 4].values # : - Represent all the rows , 4 - upto 5th column
datasets
```

	Temperature (C)	Humidity	Visibility (km)	Precip	Wind Speed (km/h)	Loud Cover	Apparent Temperature (C)
0	9.472222	0.89	15.8263	1	14.1197	0	7.388889
1	9.355556	0.86	15.8263	1	14.2646	0	7.227778
2	9.377778	0.89	14.9569	1	3.9284	0	9.377778
3	8.288889	0.83	15.8263	1	14.1036	0	5.944444
4	8.755556	0.83	15.8263	1	11.0446	0	6.977778
94	7.827778	0.72	15.8263	1	13.8943	0	5.405556
95	7.855556	0.72	15.0052	1	9.8049	0	6.122222
96	7.316667	0.75	15.8746	1	6.6654	0	6.211111
97	7.244444	0.75	15.8746	1	7.1162	0	6.005556
98	5.438889	0.88	9.9820	1	3.7191	0	5.438889

99 rows × 7 columns

→ LOGISTICS REGRESSION

```
y=datasets.iloc[:,-4]
x= datasets.iloc[:,[3,5]]

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0) #One-dimensional ndarray with axis
st_x= StandardScaler() #Standardise the Value , Set the range of Dataset
x_train= st_x.fit_transform(x_train)##Two-dimensional, size-mutable, potentially heterogeneous tabular data.
x_test= st_x.transform(x_test)
#scaler = MinMaxScaler()
#X_train= scaler.fit_transform(X_train)
#X_test= scaler.fit_transform(X_train)
#X_test= scaler.fit_transform(X_test)
Training_Accuracy=[]
Testing_Accuracy=[]
model=[]
```

from sklearn.model_selection import train_test_split #importing train_test_split from sklearn.preprocessing x_Train, x_Test, y_Train, y_Test = train_test_split(x, y, train_size=0.7,test_size = 0.3, random_state=0) #assigned testsize

from sklearn.linear_model import LogisticRegression #importing logistic regression
from sklearn import metrics #import matrices
logreg = LogisticRegression() #classifier.
logreg.fit(x_Train, y_Train) # Fitted estimator.

LogisticRegression()

```
#Predicting the Test set results
v need = logneg predict(v test)
```

```
x_pred = logreg.predict(x_Train) #predicting x values based on traning features
y_pred = logreg.predict(x_Test) #predicting y values based on x_test
Training_Accuracy.append(metrics.accuracy_score(y_Train, x_pred))#add traning accuracy to the list
Testing_Accuracy.append(metrics.accuracy_score(y_Test, y_pred))#add testing accuracy to the list
model.append('LogisticRegression')#add the specified name
print("Training Accuracy:",metrics.accuracy_score(y_Train, x_pred)) #print traning accuracy
print("Testing Accuracy:",metrics.accuracy_score(y_Test, y_pred))#print testing accuracy
```

Training Accuracy: 0.9710144927536232

Testing Accuracy: 1.0

SupportVectorMachine

```
yy=datasets.iloc[:,-4]
xx= datasets.iloc[:,[3,5]]
xx_train, xx_test, yy_train, yy_test= train_test_split(xx, yy, test_size= 0.25, random_state=0) #One-dimensional ndarray witl
st_x= StandardScaler() #Standardise the Value , Set the range of Dataset
xx_train= st_x.fit_transform(xx_train)##Two-dimensional, size-mutable, potentially heterogeneous tabular data.
xx_test= st_x.transform(xx_test)
#scaler = MinMaxScaler()
#X_train= scaler.fit_transform(X_train)
#X_test= scaler.fit_transform(X_test)
Training_Accuracy=[]
Testing_Accuracy=[]
model=[]
from sklearn.svm import SVC
svclassifier = SVC(kernel='linear')
svclassifier.fit(xx_train, yy_train)
     SVC(kernel='linear')
y_pred = svclassifier.predict(X_test)
x_pred = svclassifier.predict(X_train)
#Predicting the Test set results
y_pred=svclassifier.predict(xx_test)
Training_Accuracy.append(metrics.accuracy_score(yy_train, x_pred))
Testing_Accuracy.append(metrics.accuracy_score(yy_test, y_pred))
model.append('SVM')
print("Training Accuracy:",metrics.accuracy_score(yy_train, x_pred))
print("Testing Accuracy:",metrics.accuracy_score(yy_test, y_pred))
     Training Accuracy: 1.0
     Testing Accuracy: 1.0
```

- KNN

```
b=datasets.iloc[:,-4] #[row,column start number: column end number(n-1)]
a= datasets.iloc[:,[3,5]]

a_train, a_test, b_train, b_test= train_test_split(a, b, test_size= 0.25, random_state=0) #One-dimensional ndarray with axis
st_x= StandardScaler() #Standardise the Value , Set the range of Dataset
a_train= st_x.fit_transform(a_train)##Two-dimensional, size-mutable, potentially heterogeneous tabular data.
a_test= st_x.transform(a_test)
#scaler = MinMaxScaler()
#X_train= scaler.fit_transform(X_train)
#X_test= scaler.fit_transform(X_test)
Training_Accuracy=[]
Testing_Accuracy=[]
model=[]

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(a_train, b_train)
```

KNeighborsClassifier()

```
from sklearn import metrics
x_pred = knn.predict(a_train)
y_pred = knn.predict(a_test)
Training_Accuracy.append(metrics.accuracy_score(b_train, x_pred))
Testing_Accuracy.append(metrics.accuracy_score(b_test, y_pred))
model.append('KNeighbors')
print("Training Accuracy:",metrics.accuracy_score(b_test, y_pred))
print("Testing Accuracy:",metrics.accuracy_score(b_test, y_pred))
```

Training Accuracy: 0.972972972973
Testing Accuracy: 1.0

→ DECISION TREE CLASSIFICATION

```
Y=datasets.iloc[:,-4] #[row,column start number: column end number(n-1)]
X= datasets.iloc[:,[3,5]]
X_train, X_test, Y_train, Y_test= train_test_split(X, Y, test_size= 0.25, random_state=0) #One-dimensional ndarray with axis
st_x= StandardScaler() #Standardise the Value , Set the range of Dataset
X train= st x.fit transform(X train)##Two-dimensional, size-mutable, potentially heterogeneous tabular data.
X_test= st_x.transform(X_test)
#scaler = MinMaxScaler()
#X_train= scaler.fit_transform(X_train)
#X_test= scaler.fit_transform(X_test)
Training Accuracy=[]
Testing_Accuracy=[]
model=[]
#Training the Decision Tree Classification model on the Training set
from sklearn.tree import DecisionTreeClassifier #A decision tree classifier
classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
classifier.fit(X_train, Y_train)
     DecisionTreeClassifier(criterion='entropy', random_state=0)
y_pred = classifier.predict(X_test)
y_pred = classifier.predict(X_test)
x_pred = classifier.predict(X_train)
Training_Accuracy.append(metrics.accuracy_score(Y_train, x_pred)) #add traning accuracy to the list
Testing_Accuracy.append(metrics.accuracy_score(Y_test, y_pred))#add testing accuracy to the list
model.append('DecisionTree')#add the specified name
print("Training Accuracy:",metrics.accuracy_score(Y_train, x_pred))#print traning accuracy
print("Testing Accuracy:",metrics.accuracy_score(Y_test, y_pred))#print testing accuracy
     Training Accuracy: 1.0
```

→ Random Forest Classification

Testing Accuracy: 1.0

```
#Training the Random Forest Classification model on the Training set
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=20)
classifier.fit(X_train, Y_train)
```

RandomForestClassifier(n_estimators=20)

```
y_pred = classifier.predict(X_test) #prediction
x_pred = classifier.predict(X_train)
Training_Accuracy.append(metrics.accuracy_score(y_train, x_pred))
Testing_Accuracy.append(r2_score(y_test,y_pred))
model.append('RandomForest')
print("Training Accuracy:",metrics.accuracy_score(y_train, x_pred))
print("Testing Accuracy:",r2_score(y_test,y_pred))
```

Training Accuracy: 1.0 Testing Accuracy: 1.0

#Predicting the Test set results

```
y_pred = classifier.predict(X_test)
```

```
#Graph showing Training and Testing accuracy of Decision Tree and Random Forest Classification
# set width of bar
barWidth = 0.10
# set height of bar
fig = plt.gcf(); #create new figure
fig.set_facecolor("black")
fig.set_size_inches(15,10);
# Set position of bar on X axis
r1 = np.arange(len(Training_Accuracy))
r2 = [x + barWidth for x in r1]
r3 = [x + barWidth for x in r2]
# Make the plot
plt.bar(r1,Training_Accuracy, color='springgreen', width=barWidth, edgecolor='yellow', label='Training_Accuracy')
plt.bar(r2,Testing_Accuracy, color='darkblue', width=barWidth, edgecolor='lime', label='Testing_Accuracy')
# Add xticks on the middle of the group bars
plt.xlabel('Models', fontweight='bold')
plt.ylabel('Accuracy', fontweight='bold')
plt.xticks([r + barWidth for r in range(len(Training_Accuracy))], model)
# Create legend & Show graphic
plt.legend()
plt.show()#show barplot
```


×