

Maria Vanrell
DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

La generación de candidatos es el paso que define las regiones de interés en la imagen y ayuda a resolver el problema de la localización del objeto dentro de la imagen.





# UAB Universitat Autònoma de Barcelona

# Esquema general de un sistema detector de objetos



#### Esquema:





Descriptor( $\rho$ ) =  $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$  =  $\begin{pmatrix} R \\ G \\ B \end{pmatrix}$ 

3 dimensiones:

su descriptor cae dentro de la clase piel

 $G_{p} B_{p}$ Clase piel











Clase piel:  $(R_p \quad G_p \quad B_p) \quad S_1 \quad S_2 \quad S_3$ 

**Blanco:** píxeles dentro de la clase piel **Negro:** píxeles fuera de la clase piel



Generación de ventanas

#### Dos pasos:

- 1. Etiquetaje de regiones conectadas (*Labelling*)
- 2. Localización de ventanas





# La generación de ventanas en dos pasos:



- 1. Etiquetaje de regiones conectadas (*Labelling*)
- 2. Localización de ventanas

#### Extracción de componentes conexas (Etiquetaje/Labelling)

**Algoritmo de Etiquetaje:** Dada una imagen binaria retorna un imagen con etiquetas numéricas, de manera que todos los píxeles que pertenecen a una misma región conectada compartan la misma etiqueta.

#### Dos recorridos de la imagen

(Un recorrido pasa por cada píxel de la imagen de izquierda a derecha y de arriba abajo)

**Paso 1:** Etiqueta cada píxel de la imagen atendiendo a sus <u>vecinos superior e izquierdo</u> según la conectividad y guarda <u>posibles equivalencias</u>.

**Paso 2:** Resuelve todas las equivalencias detectadas de etiquetas y selecciona una etiqueta para cada equivalencia, el segundo recorrido las <u>resuelve y asigna la etiqueta seleccionada</u>.



Concepto preliminar: CONECTIVIDAD, en las imágenes digitales hay de dos tipos



**4-Conectividad:** Considera la conectividad <u>horizontal</u> y <u>vertical</u>.







4 Etiquetas asignadas

8-Conectividad: Considera la conectividad horizontal, vertical y diagonal.







2 Etiquetas asignadas



#### Algoritmo de etiquetaje de regiones:

**Paso 1:** Etiqueta cada píxel de la imagen atendiendo a sus vecinos superior e izquierdo según la conectividad y guarda posibles equivalencias.

Consideramos solamente los píxeles etiquetados a 1:





Caso 2: Si (Un Vecino <> 0) entonces Asignar la etiqueta del VECINO



Caso 3: Si (Más de un Vecino <> 0) entonces Asignar una etiqueta del VECINO e indicar equivalencia



**Paso 2:** Resuelve todas las equivalencias detectadas de etiquetas y selecciona una etiqueta para cada equivalencia, el segundo recorrido las resuelve y asigna la etiqueta seleccionada.



# **Ejemplo:** aplicación del algoritmo

# **Imagen**



#### 4-conectividad

Paso 1:

|   |   |   |   |   | 1 | 1 |   |  |
|---|---|---|---|---|---|---|---|--|
| 2 |   | 3 |   | 4 |   |   |   |  |
| 2 |   | 3 | 3 | 3 |   |   |   |  |
|   | 5 | 5 | 5 |   |   |   |   |  |
|   | 5 |   | 5 |   |   | 6 | 6 |  |
|   | 5 | 5 | 5 |   |   | 6 | 6 |  |
|   |   |   |   |   | 7 |   | 6 |  |
| 8 |   |   |   | 9 |   |   |   |  |

Paso 2:

Equiv: Resolución 3=4 Equiv:

3=5 3=4=5 Etiqueta: 3

|   |   |   |   |   | 1 | 1 |   |  |
|---|---|---|---|---|---|---|---|--|
| 2 |   | 3 |   | 3 |   |   |   |  |
| 2 |   | 3 | 3 | 3 |   |   |   |  |
|   | 3 | 3 | 3 |   |   |   |   |  |
|   | 3 |   | 3 |   |   | 6 | 6 |  |
|   | 3 | 3 | 3 |   |   | 6 | 6 |  |
|   |   |   |   |   | 7 |   | 6 |  |
| 8 |   |   |   | 9 |   |   |   |  |

#### 8-conectividad

Paso 1:



Paso 2:

1=3

Resolución Equiv: 1=3 Etiqueta: 1





**Ejemplo:** aplicación del algoritmo

# **Imagen**



#### Resultado 4-conectividad:

|   |   |   |   |   | 1 | 1 |   |  |
|---|---|---|---|---|---|---|---|--|
| 2 |   | 3 |   | 3 |   |   |   |  |
| 2 |   |   | 3 | 3 |   |   |   |  |
|   | 3 | ვ | 3 |   |   |   |   |  |
|   | 3 |   | 3 |   |   | 6 | 6 |  |
|   | 3 | ფ | 3 |   |   | 6 |   |  |
|   |   |   |   |   | 7 |   | 6 |  |
| 8 |   |   |   | 9 |   |   |   |  |

| Resultado | 8-cone | ctivida | <b>ا</b> |
|-----------|--------|---------|----------|
|           |        |         |          |

|   |               |               |   |   | 1 | 1 |   |  |
|---|---------------|---------------|---|---|---|---|---|--|
| 2 |               | 1             |   | 1 |   |   |   |  |
| 2 |               | 1             | 1 | 1 |   |   |   |  |
|   | $\overline{}$ | $\overline{}$ | 1 |   |   |   |   |  |
|   | ┺             |               | 1 |   |   | 4 | 4 |  |
|   | 1             | 1             | 1 |   |   | 4 | 4 |  |
|   |               |               |   |   | 4 |   | 4 |  |
| 5 |               |               |   | 4 |   |   |   |  |

# **Etiquetas:**















# La generación de ventanas en dos pasos:



1. Etiquetaje de regiones conectadas (*Labelling*)



Localización de ventanas

#### Localización de las ventanas es el paso más simple

# Para cada etiqueta: $E_{k}$

$$x_{1}^{k} = \min_{x_{i}} \{(x_{i}, y_{j}) : etiqueta(x_{i}, y_{j}) = E_{k}\}$$

$$y_{1}^{k} = \min_{y_{i}} \{(x_{i}, y_{j}) : etiqueta(x_{i}, y_{j}) = E_{k}\}$$

$$x_{2}^{k} = \max_{x_{i}} \{(x_{i}, y_{j}) : etiqueta(x_{i}, y_{j}) = E_{k}\}$$

$$y_{2}^{k} = \max_{y_{i}} \{(x_{i}, y_{j}) : etiqueta(x_{i}, y_{j}) = E_{k}\}$$





Imagen entrada



UAB
Universitat Autònoma
de Barcelona

Clasificación



Etiquetaje



Localización



# **Etiquetas:**

- 1
- 2
- 3
- 4
- 5



#### En resumen:

- Se ha tratado el problema de la generación de ventanas candidatas a contener objetos, partiendo del resultado obtenido por un clasificador a nivel de píxel.
- Se ha definido el problema del etiquetaje de componentes conexas.
- Se ha visto un algoritmo de etiquetaje de regiones conexas.
- Se ha calculado la ventana que contiene la componente conexa.