Heroes of Pymoli

Video game analysis:

Observable Trends

- Consumers of Heros of Pymoli were vastly male. Out of 780 players, 83.59% (652) were male.
- The most popular age demographic was ages 20-24, making up 46.79% of players.
- Female players, on average, spent 18 cents more on the items in the game than male players.

```
In [12]: # Dependencies and Setup
import pandas as pd
import numpy as np

# File to Load (Remember to Change These)
file_to_load = "purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data = pd.read_csv(file_to_load)
purchase_data_df = pd.DataFrame(purchase_data)
purchase_data_df.head()
```

Out[12]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	Price
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	2	Ithergue48	24	Male	92	Final Critic	4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	4	Iskosia90	23	Male	131	Fury	1.44

Player Count

```
In [13]: all_players = purchase_data_df["SN"].count()
all_players
Out[13]: 780
```

Purchasing Analysis

```
In [21]:
         unique items total = len(purchase data df["Item ID"].unique())
         unique items total
         purchases total = purchase data df["Purchase ID"].count()
         purchases total
         total revenue = purchase data df["Price"].sum()
         total revenue
         price_mean = purchase_data_df["Price"].mean()
         price mean
         price_average = total_revenue/purchases_total
         price average
         purchasing_analysis_df = pd.DataFrame([{"Number of Unique Items": unique_items
         total, "Average Price": price mean,
                                                "Number of Purchases": purchases_total,
         "Total Revenue": total_revenue}])
         purchasing_analysis_df["Average Price"] = purchasing_analysis_df["Average Pric
         e"].map("${:,.2f}".format)
         purchasing_analysis_df["Total Revenue"] = purchasing_analysis_df["Total Revenu
         e"].map("${:,.2f}".format)
         purchasing analysis df["Number of Purchases"] = purchasing analysis df["Number
         of Purchases"].map("${:,.2f}".format)
         purchasing_analysis_df = purchasing_analysis_df.loc[:,["Number of Unique Item
         s", "Average Price", "Number of Purchases", "Total Revenue"]]
         purchasing analysis df
```

Out[21]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	179	\$3.05	\$780.00	\$2,379.77

Gender Demographics

```
In [19]: gender_df = pd.DataFrame(purchase_data_df["Gender"].value_counts())
    gender_df

percent_players = (purchase_data_df["Gender"].value_counts()/all_players)*100
    percent_players

gender_df["Percentage of Players"] = percent_players
    gender_df["Percentage of Players"] = gender_df["Percentage of Players"].map("
    {:,.2f}%".format)
    gender_df

summary_gender_df = gender_df[["Percentage of Players", "Gender"]]
    summary_gender_df

rename_gender_df = summary_gender_df.rename(columns={"Gender":"Total Count"})
    rename_gender_df
```

Out[19]:

	Percentage of Players	Total Count
Male	83.59%	652
Female	14.49%	113
Other / Non-Disclosed	1.92%	15

Purchasing Analysis by Gender

```
In [3]: | gender grouped data df = purchase data df.groupby(["Gender"])
        gender_grouped_data_df["Purchase ID"].count().head()
        total_purchases_value = gender_grouped_data_df["Price"].sum()
        total_purchases_value.head()
        analysis total purchases = total purchases value.map("${:,.2f}".format)
        analysis total purchases.head()
        average_purchase_price = gender_grouped_data_df["Price"].mean()
        average purchase price.head()
        analysis_average_purchase_price = average_purchase_price.map("${:,.2f}".format
        analysis average purchase price.head()
        norm_totals = total_purchases_value/gender_grouped_data_df["Purchase ID"].coun
        t()
        analysis_norm_totals = norm_totals.map("${:,.2f}".format)
        analysis_norm_totals.head()
        org_gender_purchased_data_df = pd.DataFrame(gender_grouped_data_df["Purchase I
        D"].count())
        org gender purchased data df["Average Purchase Price"] = analysis average purc
        hase_price
        org_gender_purchased_data_df["Total Purchase Value"] = analysis_total_purchase
        org gender purchased data df["Average Total Purchase per Person"] = analysis n
        orm_totals
        org_gender_purchased_data_df
        summary_gender_purchased_data_df = org_gender_purchased_data_df.rename(columns
        ={"Purchase ID":"Purchase Count"})
        summary gender purchased data df
```

Out[3]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Average Total Purchase per Person
Gender				
Female	113	\$3.20	\$361.94	\$3.20
Male	652	\$3.02	\$1,967.64	\$3.02
Other / Non- Disclosed	15	\$3.35	\$50.19	\$3.35

Age Demographics

```
In [18]: age bins = [0, 9.90, 14.90, 19.90, 24.90, 29.90, 34.90, 39.90, 99999]
         group names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "4
         0+"]
         agegroup_purchase_data_df = purchase_data_df
         agegroup_purchase_data_df["Age Summary"] = pd.cut(agegroup_purchase_data df["A
         ge"], age_bins, labels=group names)
         agegroup_purchase_data df
         agegroup_purchase_data_df = agegroup_purchase_data_df.groupby("Age Summary")
         agegroup_purchase_data_df.count()
         summary by age df = pd.DataFrame(agegroup purchase data df.count())
         summary by age df
         all_players = purchase_data_df["SN"].count()
         summary_by_age_df["Purchase ID"] = (summary_by_age_df["Purchase ID"]/all_playe
         rs)*100
         summary_by_age_df
         summary by age df["Purchase ID"] = summary_by_age_df["Purchase ID"].map("{:,.2
         f}%".format)
         summary_by_age_df
         org summary by age df = summary by age df[["Purchase ID", "SN"]]
         org_summary_by_age_df
         agegroup_summary_df = org_summary_by_age_df.rename(columns={"Purchase ID":"Per
         centage of Players", "SN":"Total Count"})
         agegroup summary df
```

Out[18]:

Percentage of Players Total Count

Age Summary

 <10	2.95%	23
10-14	3.59%	28
15-19	17.44%	136
20-24	46.79%	365
25-29	12.95%	101
30-34	9.36%	73
35-39	5.26%	41
40+	1.67%	13

```
In [12]:
         analysis by age df = pd.DataFrame(agegroup purchase data df["Purchase ID"].cou
         nt())
         analysis_by_age_df
         total purchase value age = agegroup purchase data df["Price"].sum()
         total_purchase_value_age
         analyze total purchase value age = total purchase value age.map("${:,.2f}".for
         mat)
         analyze_total_purchase_value_age
         avg_purchase_price_age = agegroup_purchase_data_df["Price"].mean()
         avg_purchase_price_age
         analyze_avg_purchase_price_age = avg_purchase_price_age.map("${:,.2f}".format)
         analyze_avg_purchase_price_age
         avg_totals_age = total_purchase_value_age/agegroup_purchase_data_df["Purchase
          ID"].count()
         analyze_avg_totals_age = avg_totals_age.map("${:,.2f}".format)
         analyze_avg_totals_age
         analysis_by_age_df["Average Purchase Price"] = analyze_avg_purchase_price_age
         analysis_by_age_df["Total Purchase Value"] = analyze_total_purchase_value_age
         analysis by age df["Average Total Purchase per Person"] = analyze avg totals a
         ge
         analysis_by_age_df
         summary_age_purchased_data_df = analysis_by_age_df.rename(columns={"Purchase I
         D":"Purchase Count"})
         summary_age_purchased_data_df
```

Out[12]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Average Total Purchase per Person
Age Summary				
<10	23	\$3.35	\$77.13	\$3.35
10-14	28	\$2.96	\$82.78	\$2.96
15-19	136	\$3.04	\$412.89	\$3.04
20-24	365	\$3.05	\$1,114.06	\$3.05
25-29	101	\$2.90	\$293.00	\$2.90
30-34	73	\$2.93	\$214.00	\$2.93
35-39	41	\$3.60	\$147.67	\$3.60
40+	13	\$2.94	\$38.24	\$2.94

Top Spenders

```
In [19]:
         orig purchase data df = pd.DataFrame(purchase data)
         orig purchase data df.head()
         group SN top spender df = orig purchase data df.groupby("SN")
         group SN top spender df.count()
         analysis by spender df = pd.DataFrame(group SN top spender df["Purchase ID"].c
         ount())
         analysis_by_spender_df
         total purchase value SN = group SN top spender df["Price"].sum()
         total purchase value SN
         avg purchase price SN = group SN top spender df["Price"].mean()
         avg purchase price SN
         analyze_avg_purchase_price_SN = avg_purchase_price_SN.map("${:,.2f}".format)
         analyze_avg_purchase_price_SN
         analysis_by_spender_df["Average Purchase Price"] = analyze_avg_purchase_price_
         analysis by spender df["Total Purchase Value"] = total purchase value SN
         analysis_by_spender_df
         total_SN_purchased_data_df = analysis_by_spender_df.rename(columns={"Purchase
          ID":"Purchase Count"})
         topfive spenders df = total SN purchased data df.sort values("Total Purchase V
         alue", ascending=False)
         topfive_spenders_df.head()
         analyze_total_purchase_value_SN = total_purchase_value_SN.map("${:,.2f}".forma
         t)
         topfive spenders df["Total Purchase Value"] = analyze total purchase value SN
         topfive spenders df.head()
```

Out[19]:

	i dichase oodiit	Average i dichase i nice	Total i di chase value
SN			
Lisosia93	5	\$3.79	\$18.96
ldastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
lskadarya95	3	\$4.37	\$13.10

Purchase Count Average Purchase Price Total Purchase Value

Most Popular Items

```
In [69]:
         group by item df = orig purchase data df.groupby(["Item ID", "Item Name"])
         group by item df.count()
         analysis by item df = pd.DataFrame(group by item df["Purchase ID"].count())
         analysis by item df
         total_purchase_value_item = group_by_item_df["Price"].sum()
         total purchase value item
         analyze_total_purchase_value_item = total_purchase_value_item.map("${:,.2f}".f
         ormat)
         analyze_total_purchase_value_item
         purchase_price_item = group_by_item_df["Price"].mean()
         purchase price item
         analyze_purchase_price_item = purchase_price_item.map("${:,.2f}".format)
         analyze_purchase_price_item
         analysis_by_item_df["Item Price"] = analyze_purchase_price_item
         analysis_by_item_df["Total Purchase Value"] = analyze_total_purchase_value_ite
         analysis_by_item_df
         sum items purchased data df = analysis by item df.rename(columns={"Purchase I
         D":"Purchase Count"})
         topfive_items_df = sum_items_purchased_data_df.sort_values("Purchase Count", a
         scending=False)
         topfive items df.head()
```

Out[69]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
132	Persuasion	9	\$3.22	\$28.99
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77

Most Profitable Items

Out[76]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
132	Persuasion	9	\$3.22	\$28.99
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77