IMPERIAL COLLEGE LONDON DEPARTMENT OF MATHEMATICS

Solutions to Question Sheet 4

MATH40003 Linear Algebra and Groups

Term 2, 2019/20

Problem sheet released on Wednesday of week 5. All questions can be attempted before the problem class on Monday Week 7. Question 1 is suitable for tutorials. Solutions will be released on Wednesday of week 7.

Question 1 The Fibonacci sequence $(F_n)_{n\geq 0}$ is defined by $F_0=0$, $F_1=1$ and the recurrence relation $F_n=F_{n-1}+F_{n-2}$ (for $n\geq 2$). Find a matrix $A\in M_2(\mathbb{R})$ with the property that

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = A \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}.$$

Compute the eigenvalues and eigenvectors of A and express $(1,0)^T$ as a linear combination of eigenvectors. Hence, or otherwise, find a general expression for F_n (in terms of n).

Solution: Take $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. This has characteristic polynomial $x^2 - x - 1$ and eigenvalues $\lambda_1 = (1 + \sqrt{5})/2$ and $\lambda_2 = (1 - \sqrt{5})/2$. We have corresponding eigenvectors $v_i = \begin{pmatrix} \lambda_i \\ 1 \end{pmatrix}$ (for i = 1, 2). (Note that these are orthogonal, which is what we should expect as A is symmetric.)

Now,

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = A^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix} = A^{n-1} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

At this point, we can either produce a general expression for A^k , using the method in the lectures, or we can note that $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{5}}(v_1 - v_2)$ and therefore

$$A^{n-1}\begin{pmatrix}1\\0\end{pmatrix} = \frac{1}{\sqrt{5}}(A^{n-1}v_1 - A^{n-1}v_2) = \frac{1}{\sqrt{5}}(\lambda_1^{n-1}v_1 - \lambda_2^{n-1}v_2).$$

Comparing the first coordinates gives $F_n = \frac{1}{\sqrt{5}}(\lambda_1^n - \lambda_2^n)$.

Question 2 Suppose $A \in M_n(F)$ has characteristic polynomial

$$\chi_A(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + x^n.$$

The Cayley - Hamilton Theorem states that

$$\chi_A(A) = a_0 I_n + a_1 A + \ldots + a_{n-1} A^{n-1} + A^n = 0.$$

(A special case of this was given on Question 7 of sheet 3.) Here is the start of a proof of the result. Finish the proof:

Let B = B(x) denote the adjugate matrix of $(xI_n - A)$. So each entry in B is a cofactor of $xI_n - A$ and is therefore a polynomial of degree at most n - 1 in x. Thus we

can write $B(x) = B_{n-1}x^{n-1} + \ldots + B_1x + B_0$ for some matrices $B_{n-1}, \ldots, B_1, B_0 \in M_n(F)$ (so these do not involve the variable x). By 5.3.2 in the lectures:

$$(a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + x^n) I_n = \det(x I_n - A) I_n = B(x) (x I_n - A) = (B_{n-1} x^{n-1} + \ldots + B_1 x + B_0) (x I_n - A).$$
(1)

Multiplying out the right-hand side and equating coefficients of the various powers of x we obtain:

$$a_0I_n = -B_0A, \dots$$

Solution: We obtain

$$a_0I_n = -B_0A$$
, $a_1I_n = B_0 - B_1A$, $a_2I_n = B_1 - B_2A$, ..., $a_{n-1}I_n = B_{n-2} - B_{n-1}A$, $I_n = B_{n-1}$.

Multiply (on the right) each of these equations in turn by $I_n, A, A^2, \ldots, A^{n-1}$ and add together. The left hand side is $\chi_A(A)$. The right-hand side is zero - everything cancels!

Question 3 Suppose $S, T: V \to V$ are linear and $S \circ T = T \circ S$. For $\lambda \in F$ let $E_{\lambda}(S) = \{v \in V : Sv = \lambda v\}$. Show that if $v \in E_{\lambda}(S)$, then $T(v) \in E_{\lambda}(S)$.

Solution: For $v \in E_{\lambda}(S)$, we have $S(T(v)) = T(S(v)) = T(\lambda v) = \lambda T(v)$, so $T(v) \in E_{\lambda}(S)$.

Question 4 (i) Suppose $v_1, \ldots, v_r \in \mathbb{R}^n$ is an orthogonal set of non-zero vectors. Show that v_1, \ldots, v_r are linearly independent.

- (ii) Suppose $A \in M_n(\mathbb{R})$. Prove that A is an orthogonal matrix if and only if for all $u \in \mathbb{R}^n$ we have ||Au|| = ||u||.
- (iii) Suppose $A \in M_2(\mathbb{R})$ is an orthogonal matrix and $\det(A) = 1$. Show that there is $\theta \in \mathbb{R}$ such that $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ (so A is a rotation matrix).
- (iv) Suppose $C \in M_3(\mathbb{R})$ is an orthogonal matrix and $\det(C) = 1$. Show that 1 is an eigenvalue of C. Is this true for 4×4 matrices?

Solution: (i) Consider $v = \sum_{i=1}^r a_i v_i$. Then $v_j \cdot v = \sum_i a_i (v_j \cdot v_i) = a_j ||v_j||^2$ as the v_i are orthogonal. In particular, if v = 0, then as the v_i are non-zero, we deduce that $a_j = 0$ for all $j \leq r$.

(ii) Suppose $A^TA = I_n$. Then $||Au||^2 = (Au)^T(Au) = u^TA^TAu = u^TI_nu = ||u||^2$, which gives one direction.

For the converse, consider the effect of A on the standard basis. The assumption implies that $||Ae_i|| = ||e_i|| = 1$ and for $i \neq j$ we have $||Ae_i - Ae_j||^2 = ||A(e_i - e_j)||^2 = ||e_i - e_j||^2 = 2$. So

$$2 = ||Ae_i||^2 + ||Ae_j||^2 - 2(Ae_i) \cdot (Ae_j) = 2 - 2(Ae_i) \cdot (Ae_j).$$

Thus $Ae_i \cdot Ae_j = 0$. It follows that the columns Ae_i of A are unit vectors which are pairwise othogonal. So A is an orthogonal matrix.

(iii) Write $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. The conditions give ad - bc = 1, ab + cd = 0, $a^2 + c^2 = 1$, $b^2 + d^2 = 1$. Multiply the first by a and use ab = -cd: we obtain $a = (a^2 + c^2)d = d$.

Similarly b=-c. Finally, by the 3rd of equation, there is $\theta \in \mathbb{R}$ with $a=\cos\theta$ and $c=\sin\theta$.

(iv) It suffices to show that $\det(I_3 - A) = 0$. We know that $\det(A^T) = \det(A) = 1$. Also $A^T(I_3 - A) = A^T - I_3 = -(I_3 - A^T)$. So using the product formula $\det(I_3 - A) = \det(A^T)\det(I_3 - A) = \det(-(I_3 - A^T))$. As these are 3×3 matrices, this is $-\det(I_3 - A^T) = -\det((I_3 - A)^T) = -\det((I_3 - A)^T) = -\det((I_3 - A)^T)$ and the result follows.

 $\det(I_3 - A^I) = -\det((I_3 - A_I)) - -\det(I_3 - A_I) - -\det(I_3 - A_I) = -\det(I_3 - A_I) - -\det(I_3 - A_$

is orthogonal and has characteristic polynomial $(x^2 + 1)^2$.

Question 5 Find an orthogonal matrix $A \in M_4(\mathbb{R})$ whose first column is $\frac{1}{2}(1,1,1,1)^T$.

Solution: The systematic way is to extend the given vector v_1 to a basis (for example u_1, e_1, e_2, e_3) and apply Gram - Schmidt. Then take the orthonormal set of vectors as the columns of the required matrix. A quicker way is to spot some orthogonal vectors such as $v_1 = (1, 1, 1, 1)^T$, $v_2 = (1, -1, 0, 0)^T$, $v_3 = (0, 0, 1, -1)^T$, extend to a basis (eg. include e_1) and then use Gram - Schmidt to obtain

$$v_4 = e_1 - (e_1 \cdot v_1)v_1/4 - (e_1 \cdot v_2)v_2/2 - (e_1 \cdot v_3)v_3/2 = \frac{1}{4}(1, 1, -1, -1)^T,$$

then normalise these.

Question 6 Suppose U is a subspace of \mathbb{R}^n and $T: U \to U$ is linear. Suppose B is an orthonormal basis of U. Prove that $[T]_B$ is symmetric if and only if for all $u, v \in U$ we have $T(u) \cdot v = u \cdot T(v)$.

Solution: Let v_1, \ldots, v_n be the basis of U and $A = (a_{ij})$ be the matrix $[T]_B$. Thus $T(v_j) = \sum_{i=1}^n a_{ij}v_i$. So (as in question 4(i)) $v_k \cdot (T(v_j)) = a_{kj}$ for $1 \le k, j \le n$. Thus, if $T(u) \cdot v = u \cdot T(v)$ for all $u, v \in U$ we obtain (by putting $u = v_k$ and $v = v_j$) that $a_{kj} = a_{jk}$ for all j, k, so A is symmetric. Conversely if A is symmetric, then the calculation shows that for all k, j we have $v_k \cdot (T(v_j)) = v_j \cdot T(v_k) = T(v_k) \cdot v_j$. As v_1, \ldots, v_n span U, we can then use linearity of T to deduce that $v_k \cdot T(v) = T(v_k) \cdot v$ for all k and all $v \in U$, and then finally that $u \cdot T(v) = T(u) \cdot v$ for all $u, v \in U$.

Question 7 Suppose U is a subspace of \mathbb{R}^n . Let $U^{\perp} = \{v \in \mathbb{R}^n : v \cdot u = 0 \text{ for all } u \in U\}$.

- i) Show that U^{\perp} is a subspace of \mathbb{R}^n .
- ii) Show that $U \cap U^{\perp} = \{0\}.$
- iii) Show that $\dim(U^{\perp}) = n \dim(U)$.
- iv) In the case where n=4 and U is the subspace spanned by $u_1=(1,1,0,1)^T$ and $u_2=(1,1,1,0)^T$, compute U^{\perp} .

Solution: (i) Use the test for being a subspace.

- (ii) If $u \in U \cap U^{\perp}$ then $u \cdot u = 0$, so u = 0.
- (iii) By the modular law $n \ge \dim(U + U^{\perp}) = \dim(U) + \dim(U^{\perp}) \dim(U \cap U^{\perp})$. So using (iii), $\dim(U^{\perp}) \le n \dim(U)$. On the other hand, if we take an orthonormal basis u_1, \ldots, u_k of U, then by the Gram Schmidt process, we can find an orthonormal basis $u_1, \ldots, u_k, u_{k+1}, \ldots, u_n$ of \mathbb{R}^n . Then $u_{k+1}, \ldots, u_n \in U^{\perp}$, so $\dim(U^{\perp}) \ge n \dim(U)$ and we therefore have the equality.
- (iv) Note that $U^{\perp} = \{x \in \mathbb{R}^n : u_1 \cdot x = 0 \text{ and } u_2 \cdot x = 0\}$. This is a system of two homogeneous linear equations and you know how to solve such things.