? logon

*** It is now 2007/06/22 13:16:31 ***
(Dialog time 2007/06/22 12:16:31)

? b351

22jun07 12:16:41 User293335 Session C7.1 \$0.00 0.245 DialUnits File415 \$0.00 Estimated cost File415 \$0.03 INTERNET \$0.03 Estimated cost this search \$0.03 Estimated total session cost 0.245 DialUnits

File 351: Derwent WPI 1963-2007/UD=200739

Set Items Description

? s pn=EP 1059851

S1 1 PN=EP 1059851

? t s1/7

1/7/I

DIALOG(R)File 351: Derwent WPI

(c) 2007 The Thomson Corporation. All rights reserved.

0009709790 Drawing available WPI Acc no: 1999-540701/199945 XRAM Acc no: C1999-157942

Emulsifier-free suspensions of hydrophobic and/or high melting substances in an aqueous medium

Patent Assignee: CIE DANONE SA GERVAIS (DANO-N)

Inventor: DOAT S; WEILL R

Patent Family (12 patents, 83 countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Type
WO 1999044442	A1	19990910	WO 1999FR496	A	19990304	199945	В
FR 2775620	A1	19990910	FR 19982707	A	19980305	199945	E
AU 1999273I9	A	19990920	AU 199927319	A	19990304	200007	E
EP 1059851	A1	20001220	EP 199990766I	A	19990304	200105	Е
			WO 1999FR496	A	19990304		
JP 2002505093	W	20020219	WO 1999FR496	A	19990304	200216	E

			JP 2000534065	A	19990304		
EP 1059851	В1	20020508	EP 1999907661	A	19990304	200231	E
			WO 1999FR496	Α	19990304		
DE 69901433	Е	20020613	DE 69901433	Α	19990304	200246	Е
			EP 1999907661 A		19990304		
			WO 1999FR496	Α	19990304		
ES 2174592	Т3	20021101	EP 1999907661	Α	19990304	200279	Е
MX 2000008528	A1	20011101	MX 20008528	Α	20000831	200279	E
US 6627245	B1	20030930	WO 1999FR496	Α	19990304	200367	E
			US 2000623421	A	20001120		
US 20040028795	A1	20040212	WO 1999FR496	Α	19990304	200412	Е
			US 2000623421	Α	20001120		
			US 2003638431	Α	20030812		
MX 228545	В	20050615	WO 1999FR496	Α	19990304	200627	Е
			MX 20008528	A	20000831		-

Priority Applications (no., kind, date): FR 19982707 A 19980305 Patent Details

Patent Number		Kind Lan Pgs Drav		Draw	Filing No	otes
WO 1999044442	A1	FR	28	1		
National Designated States, Original	DE I KE F	OK EE KG KF	ES I	FI GB (KZ LC	A BB BG BR BY CA C GD GE GH GM HR HU CLK LR LS LT LU LV PL PT RO RU SD SE S	J ID IL IN IS JP MD MG MK
	TM '	TR TT	'UA	UG US	S UZ VN YU ZW	
Regional Designated States, Original					K EA ES FI FR GB GH IL OA PT SD SE SL SZ	
AU 199927319	A	EN			Based on OPI patent	WO 1999044442
EP 1059851		FR			PCT Application	WO 1999FR496
					Based on OPI patent	WO 1999044442
Regional Designated States,Original AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC I					T LI LU MC NL	
JP 2002505093	W	JA	27		PCT Application	WO 1999FR496
					Based on OPI patent	WO 1999044442
EP 1059851	В1	FR			PCT Application	WO 1999FR496
					Based on OPI patent	WO 1999044442
Regional Designated States,Original AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE						T LI LU MC NL
DE 69901433	Е	DE			Application	EP 1999907661
					PCT Application	WO 1999FR496

ES 2174592	T3 ES
US 6627245	B1 EN
US 20040028795	A1 EN
MX 228545	BES

Based on OPI patent	EP 1059851
Based on OPI patent	WO 1999044442
Application	EP 1999907661
Based on OPI patent	EP 1059851
PCT Application	WO 1999FR496
Based on OPI patent	WO 1999044442
Division of application	WO 1999FR496
Division of application	US 2000623421
Division of patent	US 6627245
PCT Application	WO 1999FR496
Based on OPI patent	WO 1999044442

Alerting Abstract WO A1

NOVELTY - Homogenous emulsifier-free suspensions of hydrophobic and/or high melting substances in an aqueous medium containing a thickener.

DESCRIPTION - Homogenous emulsifier-free suspensions of at least one hydrophobic and/or high melting substance (I) with a melting point of above 130(deg)C, and a thickener (II) in an aqueous medium.

INDEPENDENT CLAIMS are included for:

- A method of preparing the above suspension;
- 2. A food product containing the suspension; and
- A method of preparing the above food product.

USE - The emulsifier-free suspensions are especially useful in the preparation of food products, particularly for incorporating phytosterols into food products based on milk and milk derivatives. ADVANTAGE - The phytosterols have a favorable activity on the metabolism and when taken regularly have the effect of lowering blood cholesterol. They do not affect the organoleptic or microbiological characteristics of the food product.

DESCRIPTION OF DRAWINGS - The diagram shows a schematic representation of the production process of the food product.

- 1. 4 Reservoir 2 Metering Pump
- 5 Preheater
- 6 Homogenizer
- 7 Heat Treatment Stage

Technology Focus

ORGANIC CHEMISTRY - The (I) are selected e.g. from phytosterols, phytostanols and esterified derivatives of these. 43 compounds (I) are specifically claimed and particularly where (I) is selected from beta-sitosterol, beta-sitostanol, beta-sitostanol ester, campesterol and brassicasterol. (II) is used in a concentration such that the viscosity of the suspension is about 0.05 - 0.15 (preferably 0.05 - 0.1) Pas. Claimed (II) are xanthan gum, carraghenans, pectins, starch, especially gelatinised starch, gelan gum, cellulose or cellulose derivatives. The aqueous suspension e.g. contains 0.01-10 % w/v of the thickener (II) and 0.1-30 (preferably 0.5-20) % w/v of the active substance (I). The composition may also contain lipids in an amount of less than about 5 %.

FOOD - Food products are claimed having a water content of at least about 60 % and comprising 0.5-30 (preferably 1-25) % of a stable homogeneous suspension as claimed and 75-99.5 % of a fluid composition comprising at least 60 % water and containing not more than 18 % fatty substances. The content of (I) in the product is e.g. 0.001-7.5 (preferably 0.4-2) %. The product may also contain proteins in an amount of less than about 10 %, especially about 4 %, and carbohydrates in an amount of 4-20 %. The products are preferably free from chelating agents, fermentation inhibitors and preservatives. The fluid composition is preferably milk of animal or vegetable origin and derivatives of this such as lactoserum. The product may also contain lactic bacteria. The products are prepared by feeding the premixed aqueous suspension of water, thickener and phytosterol from reservoir (1) and metering pump (2) and feeding the fluid composition from reservoir (4) and metering pump (4) to a preheater (5) where it is heated to 60-80(deg)C to allow good homogenization. The two feed streams are mixed in the required ratio at a point immediately after the preheater (5) and before the homogenizer (6). The mixed stream is homogenized (6) e.g. at 50-500 bar to reduce the particle size of the phytosterol to about 50-100 mum. After homogenization the product is treated in heat treatment stage (7) e.g. by pasteurization at 85-130(deg)C to inhibit bacterial contamination and optionally to develop the potential texture of the product, followed by cooling to 45-4(deg)C. The pasteurized dispersion may be inoculated with lactic bacteria followed by fermentation. The product from the homogenizer may also be sterilized at 90-130(deg)C followed by cooling to 70 - 4(deg)C. Claimed food products made in this way contain less than about 20 %, preferably less than 18 % fats, and 0.001-7.5 (preferably 0.05 - 4, especially 0.005-2.5) % (I).

Title Terms /Index Terms/Additional Words: EMULSION; FREE; SUSPENSION; HYDROPHOBIC; HIGH; MELT; SUBSTANCE; AQUEOUS; MEDIUM

Class Codes

International Patent Classification

IPC	Class Level	Scope	Position	Status	Version Date
A23C-011/10; A23D-007/00; A23L-001/48; B01F- 003/14			Main		"Version 7"
A23C-013/14; A23C-009/13; A23C-009/20; A23L-001/03; A23L-001/05; A23L-001/30; C07J-009/00			Secondary		"Version 7<

US Classification, Issued: 426601000, 426601000, 426602000

File Segment: CPI

DWPI Class: A97; D13; E13

Manual Codes (CPI/A-N): A12-W09: D03-B: D03-H01T2: E01

Original Publication Data by Authority

Australia

Publication No. AU 199927319 A (Update 200007 E)

Publication Date: 19990920

Assignee: CIE DANONE SA GERVAIS; FR (DANO-N)

Language: EN

Application: AU 199927319 A 19990304 (Local application)

Priority: FR 19982707 A 19980305

Related Publication: WO 1999044442 A (Based on OPI patent)

Original IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B) Current IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B)

Germany

Publication No. DE 69901433 E (Update 200246 E)

Publication Date: 20020613

Assignee: CIE DANONE SA GERVAIS; FR (DANO-N)

Language: DE

Application: DE 69901433 A 19990304 (Local application)

EP 1999907661 A 19990304 (Application) WO 1999FR496 A 19990304 (PCT Application)

Priority: FR 19982707 A 19980305

Related Publication: EP 1059851 A (Based on OPI patent)

WO 1999044442 A (Based on OPI patent)

EPO

Publication No. EP 1059851 A1 (Update 200105 E)

Publication Date: 20001220

HOMOGENE UND STABILE SUSPENSION OHNE EMULGIERMITTEL, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG IN

NAHRUNGSMITTELZUSAMMNENSETZUNGEN

STABLE HOMOGENEOUS EMULSIFIER-FREE SUSPENSION, PREPARATION METHOD AND USES IN FOOD COMPOSITIONS

SUSPENSION HOMOGENE STABLE DEPOURVUE D'EMULSIFIANT, SON PROCEDE DE PREPARATION ET SON UTILISATION DANS DES COMPOSITIONS ALIMENTAIRES

Assignee: COMPAGNIE GERVAIS-DANONE, 126-130 rue Jules Guesde, F-92302 Levallois Perret. FR (DANO-N)

Inventor: DOAT, Stephane, 28, chemin de la Justice, F-92290 Chatenay Malabry, FR

WEILL, Ricardo, Emilio Mitre 279, 1706 Haedo, Pcia de Buenos-Aires, AR

Agent: Grosset-Fournier, Chantal Catherine, Grosset-Fournier & Demachy s.a.r.l., 20, rue de Maubeuge, 75009 Paris, FR

Language: FR

Application: EP 1999907661 A 19990304 (Local application)

WO 1999FR496 A 19990304 (PCT Application)

Priority: FR 19982707 A 19980305

Related Publication: WO 1999044442 A (Based on OPI patent)

Designated States: (Regional Original) AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

PT SE

Original IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B)

Current IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B)

Original Abstract:

The invention concerns a stable homogeneous emulsifier-free suspension of at least one hydrophobic substance and/or a substance whereof the melting point is higher than about 130 (deg)C, and a

thickening agent, in an aqueous medium. Said suspensions can be used in food compositions, in particular based on milk and milk derivatives.

Publication No. EP 1059851 B1 (Update 200231 E)

Publication Date: 20020508

HOMOGENE UND STABILE SUSPENSION OHNE EMULGIERMITTEL, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG IN

NAHRUNGSMITTELZUSAMMNENSETZUNGEN

STABLE HOMOGENEOUS EMULSIFIER-FREE SUSPENSION, PREPARATION METHOD AND USES IN FOOD COMPOSITIONS

SUSPENSION HOMOGENE STABLE DEPOURVUE D'EMULSIFIANT, SON PROCEDE DE PREPARATION ET SON UTILISATION DANS DES COMPOSITIONS ALIMENTAIRES Assignes: COMPAGNIE GERVAIS-DANONE, 126-130 rue Jules Guesde, F-92302 Levallois Perret,

Assignee

Inventor: DOAT, Stephane, 28, chemin de la Justice, F-92290 Chatenay Malabry, FR

WEILL, Ricardo, Emilio Mitre 279, 1706 Haedo, Pcia de Buenos-Aires, AR

Agent: Grosset-Fournier, Chantal Catherine, Grosset-Fournier & Demachy s.a.r.l., 20, rue de

Maubeuge, 75009 Paris, FR

Language: FR

Application: EP 1999907661 A 19990304 (Local application)

WO 1999FR496 A 19990304 (PCT Application)

Priority: FR 19982707 A 19980305

Related Publication: WO 1999044442 A (Based on OPI patent)

Designated States: (Regional Original) AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL

PT SE

Original IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B) Current IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B) Claim:

- Stabile homogene Suspension ohne Emulgiermittel mit wenigstens einer Substanz, die hydrophob ist und/oder deren Schmelzpunkt oberhalb von 130(deg)C liegt, und mit einem Verdickungsmittel in einem wassrigen Milieu.
- Stable emulsifier free homogeneous suspension, with at least one hydrophobic substance and/or the melting point of which is higher than 130(deg)C, and a thickener, in an aqueous medium.
- Suspension homogene stable depourvue d'emulsifiant, d'au moins une substance hydrophobe et/ou dont le point de fusion est superieur a 130(deg)C, et d'un epaississant, dans un milieu aqueux.

Spain

Publication No. ES 2174592 T3 (Update 200279 E)

Publication Date: 20021101

Assignee: CIE DANONE SA GERVAIS (DANO-N)

Language: ES

Application: EP 1999907661 A 19990304 (Application)

Priority: FR 19982707 A 19980305

Related Publication: EP 1059851 A (Based on OPI patent)

France

Publication No. FR 2775620 A1 (Update 199945 E)

Publication Date: 19990910

Assignee: CIE DANONE SA GERVAIS (DANO-N)

Inventor: DOAT S WEILL R

Language: FR

Application: FR 19982707 A 19980305 (Local application)

Original IPC: B01F-3/14(A) A23C-9/20(B) A23L-1/05(B) A23L-1/30(B) Current IPC: B01F-3/14(A) A23C-9/20(B) A23L-1/05(B) A23L-1/30(B)

Japan

Publication No. JP 2002505093 W (Update 200216 E)

Publication Date: 20020219

Language: JA (27 pages)

Application: WO 1999FR496 A 19990304 (PCT Application)

JP 2000534065 A 19990304 (Local application)

Priority: FR 19982707 A 19980305

Related Publication: WO 1999044442 A (Based on OPI patent)

Original IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B) C07J-9/00

(B)

(B) (Current IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B) C07J-9/00 (B)

Mexico

Publication No. MX 2000008528 A1 (Update 200279 E) Publication Date: 20011101

Assignee: CIE DANONE SA GERVAIS (DANO-N)

Inventor: DOAT S

WEILL R Language: ES

Application: MX 20008528 A 20000831 (Local application)

Priority: FR 19982707 A 19980305

Original IPC: A23C-11/10(A) A23C-9/13(B) A23C-13/14(B) A23L-1/03(B) A23L-1/48(B)

Current IPC: A23C-11/10(A) A23C-9/13(B) A23C-13/14(B) A23L-1/03(B) A23L-1/48(B)

Publication No. MX 228545 B (Update 200627 E)

Publication Date: 20050615

Assignee: CIE DANONE SA GERVAIS (DANO-N)

Inventor: DOAT S WEILL R Language: ES

Application: WO 1999FR496 A 19990304 (PCT Application)

MX 20008528 A 20000831 (Local application)

Priority: FR 19982707 A 19980305

Related Publication: WO 1999044442 A (Based on OPI patent)

Original IPC: A23C-11/10(A) A23C-13/14(B) A23C-9/13(B) A23L-1/03(B) A23L-1/48(B) Current IPC: A23C-11/10(A) A23C-13/14(B) A23C-9/13(B) A23L-1/03(B) A23L-1/48(B)

United States

Publication No. US 20040028795 A1 (Update 200412 E)

Publication Date: 20040212

Stable homogeneous emulsifier-free suspension, its method of preparation and use in food compositions

Assignee: COMPAGNIE GERVAIS DANONE, LEVALLOIS PERRET CEDEX, FR (DANO-N)

Inventor: Doat, Stephane, Chatenay Malabry, FR Weill, Ricardo, Heodo, AR

Agent: YOUNG & THOMPSON, 745 SOUTH 23RD STREET 2ND FLOOR, ARLINGTON, VA

Language: EN

Application: WO 1999FR496 A 19990304 (Division of application)

US 2000623421 A 20001120 (Division of application)

US 2003638431 A 20030812 (Local application)

Priority: FR 19982707 A 19980305

Related Publication: US 6627245 A (Division of patent)

Original IPC: A23D-7/00(A)

Current IPC: A23D-7/00(A)
Original US Class (secondary): 426601

Original Abstract:

The invention concerns a stable homogeneous emulsifier-free suspension of at least one hydrophobic substance and/or a substance whereof the melting point is higher than about 130(deg) C., and a thickening agent, in an aqueous medium. Said suspensions can be used in food compositions, in particular based on milk and milk derivatives.

Claim:

 1. An emulsifier-free food composition, comprising less than about 20% fat, and from about 0.001 to about 7.5% of a substance which is hydrophobic and/or has a melting point greater than about 130(deg) C., balance of said composition being one or more additional emulsifier-free foodgrade edible components.

Publication No. US 6627245 B1 (Update 200367 E)

Publication Date: 20030930

Stable homogeneous emulsifier-free suspension, preparation method and uses in food compositions

Assignee: Compagnie Gervais Danone, Levallois Perret Cedex, FR

Inventor: Doat, Stephane, Chatenay Malabry, FR

Weill, Ricardo, Pcia de Buenos-Aires, AR

Agent: Young & Thompson, US

Language: EN

Application: WO 1999FR496 A 19990304 (PCT Application)

US 2000623421 A 20001120 (Local application)

Priority: FR 19982707 A 19980305

Related Publication: WO 1999044442 A (Based on OPI patent)

Original IPC: A23D-7/00(A) Current IPC: A23D-7/00(A)

Original US Class (secondary): 426601 426602

Original Abstract:

The invention concerns a stable homogeneous emulsifier-free suspension of at least one hydrophobic substance and/or a substance whereof the melting point is higher than about 130(deg) C., and a thickening agent, in an aqueous medium. Said suspensions can be used in food compositions, in particular based on milk and milk derivatives.

Claim:

What is claimed is:

1. 1. A food composition comprising:

- o (a) from about 0.5 to about 25% of a stable emulsifier-free homogeneous suspension, said suspension comprising at least one substance that is hydrophobic and/or has a melting point greater than about 130(deg) C., and a thickener, in an aqueous medium; and
- o (b) from about 75% to about 99.5% of a liquid composition containing at least about 60% water and not more than about 18% fat:
- o wherein said food composition has a water content of at least about 60%.

WIPO

Publication No. WO 1999044442 A1 (Update 199945 B)

Publication Date: 19990910

STABLE HOMOGENEOUS EMULSIFIER-FREE SUSPENSION, PREPARATION METHOD

AND USES IN FOOD COMPOSITIONS

SUSPENSION HOMOGENE STABLE DEPOURVUE D'EMULSIFIANT, SON PROCEDE DE PREPARATION ET SON UTILISATION DANS DES COMPOSITIONS ALIMENTAIRES

Assignee: (except US) COMPAGNIE GERVAIS DANONE, 126, rue Jules Guesdes, F-92302 Levallois

Perret Cedex, FR Residence: FR Nationality: FR (DANO-N)

(only US) DOAT, Stephane, 28, chemin de la Justice, F-92290 Chatenay Malabry, FR Residence: FR Nationality: FR

(only US) WEILL, Ricardo, Emilio Mitre 279, 1706 Haedo, Pcia de Buenos-Aires, AR Residence: FR Nationality: FR

Inventor: DOAT, Stephane, 28, chemin de la Justice, F-92290 Chatenay Malabry, FR Residence: FR Nationality: FR

WEILL, Ricardo, Emilio Mitre 279, 1706 Haedo, Pcia de Buenos-Aires, AR Residence: FR

Nationality: FR

Agent: GROSSET-FOURNIER, Chantal, Grosset-Fournier & Demachy, 20, rue de Maubeuge, F-75009 Paris FR

Language: FR (28 pages, 1 drawings)

Application: WO 1999FR496 A 19990304 (Local application)

Priority: FR 19982707 A 19980305

Designated States: (National Original) AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US IZ VN YJ ZW

(Regional Original) AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SL SZ UG ZW

Original IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B) Current IPC: A23L-1/48(A) A23C-9/13(B) A23C-11/10(B) A23C-13/14(B) A23L-1/03(B) Original Abstract:

The invention concerns a stable homogeneous emulsifier-free suspension of at least one hydrophobic substance and/or a substance whereof the melting point is higher than about 130 (deg)C, and a thickening agent, in an aqueous medium. Said suspensions can be used in food compositions, in particular based on milk and milk derivatives.

L'invention a pour objet une suspension homogene stable depourvue d'emulsifiant, d'au moins une substance hydrophobe et/ou dont le point de fusion est superieur a environ 130 (deg)C, et d'un epaississant, dans un milieu aqueux. Les suspensions de l'invention peuvent etre utilisees dans des compositions alimentaires, notamment a base de lait ou de derives lactes.

Europäisches Patentamt

European Patent Office Office européen des brevets

EP 1 059 851 B1

(12)

FASCICULE DE BREVET EUROPEEN

- (45) Date de publication et mention de la délivrance du brevet: 08.05.2002 Bulletin 2002/19
- (21) Numéro de dépôt: 99907661.5
- (22) Date de dépôt: 04.03.1999

- (51) Int CL⁷: **A23L 1/48**, A23L 1/03, A23C 9/13, A23C 11/10, A23C 13/14
- (86) Numéro de dépôt international: PCT/FR99/00496

(11)

- (87) Numéro de publication internationale: WO 99/44442 (10.09.1999 Gazette 1999/36)
- (54) SUSPENSION HOMOGENE STABLE DEPOURVUE D'EMULSIFIANT, SON PROCEDE DE PREPARATION ET SON UTILISATION DANS DES COMPOSITIONS ALIMENTAIRES HOMOGENE UND STABILE SUSPENSION OHNE EMULGIERMITTEL, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERTWENDLING IN NAHRUNGSMITTELZUSAMMNENSETZUNGEN STABLE HOMOGENEOUS EMULSIFIER-FREE SUSPENSION PEPPARATION METHOD AND
- (84) Etats contractants désignés: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

USES IN FOOD COMPOSITIONS

- (30) Priorité: 05.03.1998 FR 9802707
- (43) Date de publication de la demande: 20.12.2000 Bulletin 2000/51
- (73) Titulaire: COMPAGNIE GERVAIS-DANONE F-92302 Levallois Perret (FR)
- (72) Inventeurs:
 - DOAT, Stéphane
 F-92290 Chatenay Malabry (FR)
 - WEILL, Ricardo
 Pcia de Buenos-Aires (AR)

- (74) Mandaiaire: Grosset-Fournier, Chantal Catherine Grosset-Fournier & Demachy s.a.r.l. 20, rue de Maubeuge 75009 Paris (FR)
- (56) Documents cités: EP-A- 0 092 076

EP-A- 0 092 076 WO-A-92/19640 WO-A-96/38047 FR-A- 2 240 717 US-A- 4 195 084 US-A- 5 244 887

- DATABASE WPI Section Ch, Week 8140 Derwent Publications Ltd., London, GB; Class A88, AN 81-73090D XP002088720 & SU 794 018 A (LENINGRAD FORESTRY ACAD)
- DATABASEWPI Section Ch, Week 8123 Derwent Publications Ltd., London, GB; Class D13, AN 81-41212D XP002088721 -& JP 56 042546 A (NISSHIN OIL MILLS LTD). 20 avril 1981

Il est rappelé que: Dans un délai de neuf mois à compter de la date de publication de la mention de la délivrance du brevet européen, bute personne peut faire opposition au brevet européen délivré, auprès de l'Office européen des brevets. L'opposition doit être formée par écrit et motivée. Elle n'est réputée formée qu'après paiement de la taxe d'opposition. (Art. 99(1) Convention sur le brevet européen).

Description

[0001] La présente invention conceme l'incorporation de produits à point de fusion élevé et/ou hydrophobes, et notamment dotés d'une activité biologique d'intérêt, dans des compositions présentant une teneur élevée en eau.

[0002] Plus particulièrement, l'invention se rapporte à une supension homogène, stable, de produits l'ont de fusion élevé étou hydrophobes, notamment de phylostérols, et à ses applications à la préparation de compositions alimentaires, tels que des produits laillers. [0003] En effet, pour améliorer les propriétés diététques de produits à usage alimentaire, on est améné à

10003] En effet, pour ameliorer les proprietes dieteirques de produits à usage alimentaire, on est amené à incorporer de petites quantités d'ingrédients ayant une activité favorable sur le métabolisme; toutefois, les caractéristiques organoleptiques et microbiologiques des produits doivent être préservées.

[0004] Parmi les substances à activité biologique, les phytostèrols et leurs dérivés présentent un intérêt par 20 ticulier en raison de leurs propriétés physiologiques et pharmacologiques ; en effet, il a été montré que certains de ces composés ont une activité hypocholestèrolé-miante lorsqu'ils sont absorbés de façon régulière. Il a donc été préconisé de prépare des stérols en quantité 2 appropriée pour les utiliser à des fins diététiques, en vue de diminuer le taux de hollestérol sanguin. Ces stérols sont obtenus notamment à partir des fractions insaponifiéables issues de la saponification des hulles et graisses animales et violétales.

[0005] Les deux grandes approches envisagées à ce jour pour l'incorporation de phytostèrols et leurs dérivés dans des compositions allmentaires ou pharmaceutiques font appel respectivement à la solubilisation de phytostérios et de leurs dérivés dans les phases lipidides de leurs dérivés dans les phases lipidides de matière grasse de laux de matière grasse se laux de matière grasse étant toutefois supérieur à 20 %, et dou à rutilisation d'agents émissifiants.

[0006] Plusieurs publications ont ainsi décrit l'incorporation de ces composés dans des compositions ayant 40 une teneur élevée en matière grasse.

[0007] La demande internationale WO92/19640 décrit des produits alimentaires contenant des β-sitostanol esters et de la matière grasse à un taux supérieur à 50%.

[0008] La demande de brevet japonais nº 2.299.548 décrit un biscuit contenant des phytostérols et son procéde de fabrication, soit par utilisation d'une huile enrichie en je-sitostérol en mélange avec de la farine avant le mélange des autres ingrécients, soit par mélange préalable des phytostérols avec du blanc d'oeuf avant l'introduction des autres ingrécients.

[0009] Toutefois, il serait préférable de pouvoir les incorporer dans des aliments ayant une teneur réduite en matière grasse et présentant des qualités diététiques reconnues, tels que les produits laitiers, fermentés ou non. Une telle incorporation pose alors des difficultés intérentes aux caractéristiques physico-chimiques des phytostérols et aux contraintes propres à ce type de produits alimentaires, généralement classés dans les produits frais.

[0010] Le brevet US 3,085,939 décrit des composi-5 tions pharmaceutiques contenant du sitostèrol qui sont stabilisées par la présence d'émulsifiants et d'un matériau colloïde évitant le contact entre le sitostèrol et l'hui-

[0011] Le brevet US 4.195.084 décrit des suspensons pharmaceutiques contenant des sitostérois dont le goût et la stabilité sont rendus acceptables par la présence combinée d'agent chéiatant, de carboyméthycellulose, de sorbitol, d'émulsifiant et de siméthicone. [0012] Le recours à de tels adjuvants n'est pas admis-

[0012] Le recours à de tels adjuvants n'est pas admissible dans des produits à usage alimentaire, consommés en quantité importante par des sujets sains.

[0013] Cependant, comme il a été dit plus haut, fincorporation de substances à point de fusion eleve étou hydrophobes, dans un produit laitier fini à fote teneur en au et faible teneur en matière grasse, tout en preservant leurs propriètés, sans avoir recours à ces adjuvants pose des problèmes techniques qui n'avalent pas été résolus jusqu'à ce jour.

[0014] En effet, il n'est pas possible, à ce jour, d'incorporer des substances hydrophobes à point de fusion élevé au début du procéde de fabrication d'un produit laitier à forte teneur en eau et à faible teneur en matière grasse. D'une part, leur hydrophobicité les empèche de se dissoudre dans le mélange initial, essentiellement à queux et, d'autre part, leur point de fusion est supérieur à la température généralement rencontrée dans les procédés de préparation des produits laitlères et ne permet pas de les faire fondre. On est alors confronté à un probléme de répartition hétérogène dans le produit laitler de nuestion.

[0015] Par ailleurs, ces substances hydrophobes à point de fusion élevé se présentent généralement sous forme d'une poudre dont la granulomètrie est importante. Leur incorporation, à la fin du procédé de préparation du produit laitier à forte teneur en eau et à faile teneur en matière grasse, n'est donc pas envisageable, ca relie entraînerait une impression sableuse en bouche due à la taille des particules de poudre. De plus, on risquerait d'être confronté à des problèmes de contamination mi-sorbolopique.

[0016] De manière inattendue, on a maintenant trouvé que de telles compositions, présentant des caracténistiques organoleptiques et microbiologiques satisfaisantes, peuvent être obtenues en l'absence des adjuvants requis dans la technique antérieure, et notamment d'émusifiants.

[0017] L'un des aspects de l'invention est de proposer de nouvelles compositions alimentaires dépourvues d'émulsifiants, contenant une forte teneur en eau, un faible taux de maitière grasse et des substances hydrophobes étitou de point de fusion supérieur à 130°C. Avantageusement, la teneur en matière grasse est inférieure à 20 %. [0018] Un autre aspect de l'invention est de proposer des suspensions homogènes stables, dépourvues d'émulsifiant, contenant des substances hydrophobes et/ou de point de fusion supérieur à 130°C, dans un milieu auçueux et qui peuvent servir d'intermédiaire dans la préparation des compositions allmentaires de l'invender.

[0019] C'est pourquoi, la présente invention a pour objet une suspension homogène stable dépourvue d'émulsifiant, d'au moins une substance hydrophobe et ou dont le point de fusion est supérieur à 130°C, et d'un épaississant, dans un milieu aqueux.

[0020] On s'est aperçu que l'épaississant confère à la solution aqueuse une viscosité permettant de maintenir les particules d'une substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C en suspension selon une répartition homogène.

[0021] Parmi les susbtances hydrophobes et/ou dont le point de fusion est supérieur à 130°C, on peut citer les phytostérois, les phytostanois et leurs dérivés esté- 20 rifiés correspondant, et les composés choisis parmi : 5.7.22-cholestatrienol, 7-dehydrocholesterol, 22-dehydrocholesterol, 24-dehydrocholesterol, zymosterol, Δ^7 cholesterol, 7-coprostenol, cholestanol, coprostanol, epicoprostanol, cerebrosterol, 22-α-oxycholesterol, 22-dihydroerogosterol, 7,24(28)-erogostadienol, campesterol, neospongosterol, 7-ergostenol, cerebisterol, corbisterol, stigmasterol, focosterol, α-spinasterol, sargasterol, 7-dehydrocryonasterol, poriferasterol, chondrillasterol, β-sitosterol, cryonasterol (y-sitosterol), 7-stigmasternol, 22-stigmasternol, dihydro-y-sitosterol, β-sitostanol, 14-dehydroergosterol, 24(28)-dehydroergosterol, ergosterol, brassicasterol, 24-methylenecholesterol, ascosterol, episterol, fecosterol, 5-dihydroergosterol, et leurs mélanges et plus particulièrement βsitostanol, β-sitosterol, β-sitostanol ester, campesterol et brassicaterol.

[0022] La taille des particules des stérols utilisés est d'60 μ m à 1 mm, et généralement 85% des particules ont une granulométrie comprise entre 90 et 185 μ m.

[0023] Dans le cadre de l'invention, le β-sitostèrol ou le β-sitostanol sont avantageusement utilisés.

10024] Parépaississant, on définit une famille d'imprécients alimentaires utiliés épenteilement comme additifs technologiques afin d'accroître la viscosité du milleu. Ces ingrédients sont généralement des polymères ydrophiles qui, lorsqu'ils sont introduits dans un milleu queux, sont capables d'absorber de l'eau et idonc d'augmenter de volume, développant ainsi de la viscosière.

[0025] Dans les suspensions homogènes stables de l'invention, la substance hydrophobe de/ou dont le point de fusion est supérieur à 130°C, ne peut pas jouer le rôle d'émulsifiant car elle est en suspension en phase aqueuse.

[0026] Selon un mode de réalisation avantageux du procédé de l'invention, l'agent épaississant est en concentration telle que la viscosité de la suspension est d'environ 0.05 Pas à environ 0.15 Pas, notamment d'environ 0.05 Pas à environ 0.1 Pas.

[0027] La viscosité peut être mesurée par des méthodes connues de l'homme de métier et notamment par un rhéomat 108 (Marque Gontraves) à un cisaillement

de 1290 s⁻¹.

[0028] S'agissant de la viscosité, si elle est inférieure à 0.05 Pas, la solution ne présente pas suffisamment

de viscosité pour maintenir les particules de la substano ce hydrophobe et/ou dont le point de fusion est supéneur à 130°C, notamment les phytostérols, en suspension.

[0029] Si la viscosité est supérieure à 0.15 Pas, la solution devient visqueuse et on ne peut pas garantir un écoulement.

[0030] Comme épaississant, on peut choisir la gomme xanthane, les carraghénanes, les pectines, l'amidon, notamment gélatinisé, la gomme gélane, ou la cellulose et ses dérivés.

9 [0031] Selon un mode de réalisation avantageux, l'invention concerne une suspension aqueuse telle que définie ci-dessus, contenant de 0.01 % (p/v) à 10% (p/v) d'épaississant et de 0.1% (p/v) à 30% (p/v) de substance hydrophobe et/ou dont le point de fusion est supéfeir à 130°C.

[0032] Selon un autre mode de réalisation, la suspension aqueuse de l'invention contient de 0,5 à environ 20 % (p/v) de substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C.

go [0033] Selon un autre mode de réalisation avantageux, la suspension aqueuse de l'invention contient des lipides en quantité inférieure à 5%.

[0034] Il peut être intèressant d'ajouter des lipides torsque la substance hydrophobe et/ou dont le point de 5 fusion est supérieur à 130°C est présente en quantité supérieure à 2%, ce qui aide à homogénéiser la suspension et à la rendre plus pompable.

[0035] L'invention concerne également un procédé de préparation d'une suspension homogène stable telle que définie ci-dessus, dans lequel :

 on prépare une solution présentant une viscosité de 0,05 Pas à 0,15 Pas, en mélangeant une solution aqueuse avec un épaississant,

5 - on additionne à la solution visqueuse obtenue à l'étape précédente une substance hydrophobe et/ ou dont le point de fusion est supérieur à 130°C, à une concentration telle que la concentration dans la solution visqueuse soit de 0,1% à 30% p/c.

pour obtenir une suspension homogène stable. [0038] A titre d'ilustration du procédé de préparation de la solution homogène stable définie ci-dessus, on ajoute dans de l'eau chaude (50-60°C) un épaississant pour obtenir une solution présentant une viscosifé comprise entre 0.05 Pas (limite basse pour le maintien en suspension) et 0.15 Pas (limite haute pour garantir un écoulement). La viscosifé ex mesurée sur un réconst

108 à un cisaillement de 1290 s¹ On ajoute ensuite progressivement et sous agitation manuelle ou à l'aide d'un mélangeur 50-100 rpm en prenant soin de ne pas incorporer d'air, la pouter de phytostèro. Le réseau créé par les molécules d'épaississant et la viscosité de la solution aqueuse permettent de maintenir les particules de phytostèrol en suspension selon une répartition homogène.

[0037] Les suspensions homogènes stables de l'invention sont avantageusement utilisées dans des compositions alimentaires nouvelles.

[0038] Par conséquent, l'invention concerne également une composition alimentare substantiellement dépourvue d'émulsifiant, dans laquelle la teneur en eau est d'au moins 60%, comprenant une suppension homogiens stable telle que définie ci-dessus, à raison de 0,5% à 30% notamment à raison de 1% à 25%, et une composition fluide contenant au moins 60% d'eau et ne contenant pas plus de 18% de matières grasses, à raison de 75% a 90.5 %.

[0039] A titre d'exemple, dans une composition alimentaire contenant 95.8 % de composition fluide dont la teneur en matières grasses est de 18 %, le taux de matières grasses dans la composition alimentaire est de 17.9 %, ce qui correspond bien à une teneur en matères grasses inférieure à 20 %. Toutefois, on fera varier le taux de matière grasse de la composition fluide en fonction de la quantité de suspension aqueuse. Par exemple, on mélangera 25 % de suspension aqueuse avec 75 % de composition fluide contenant moins de 27 % de matière pour obtenir une composition alimentaire dont la teneur en - matière grasse finale est inférieure à 20 %.

[0040] Les pourcentages sont des pourcentages en poids.

[0041] Dans une composition alimentaire avantageuse selon l'invention, la suspension homogène stable définie ci-dessus est présente à raison de 0,5 à 20 %.

[0042] Dans ce qui suit, la composition fluide est également désignée par "mix".

[0043] Selon un mode de réalisation avantageux de l'invention, dans les compositions alimentaires de l'invention, la teneur en substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C est de 0,001 à 7,5%, notamment de 0,4% à 2%.

[0044] Dans une composition alimentaire avantageuse selon l'invention, la teneur en substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C, est de 0.05 à 4 %.

[0045] Selon un mode de réalisation avantageux, les compositions alimentaires de l'invention contiennent des protéines en quantité inférieure à 10%, notamment à 4%.

[0046] Selon un autre mode de réalisation avantageux de l'invention, les compositions alimentaires de l'invention contiennent des hydrates de carbone à raison de 4 à 20%.

[0047] Selon un autre mode de réalisation avanta-

geux de l'invention, les compositions alimentaires de l'invention sont dépourvues des éléments suivants : agents chélatants, agents susceptibles d'inhiber la fermentation et acents conservateurs.

[5] [0048] Pour fixer les idées, les compositions de l'invention sont avantageusement dépourvues d'agent chélatant, de carboxyméthylcellulose de sodium, d'agent tensioactif et de siméthicone.

[0049] Selon un autre mode de réalisation avantao geux de l'invention, les compositions alimentaires de l'invention sont telles que la composition fluide est constitude essentiellement de lait ou ses dérivés tels que le lactosérum, d'origine animale ou végétat.

[0050] A titre d'exemple, on peut citer le lait de soja, le lait d'amande ou une préparation liquide végétale obtenue à partir de céréales (avoine, riz, orgeat).

[0051] Les compositions alimentaires peuvent avantageusement contenir des bactéries lactiques.

[0052] L'invention concerne également toute composition a timentaire dépourvue d'émulsifiant, contenant moins de 20 %, et de préférence moins de 18 % de matière grasse, et de 0.001 à 7.5 %, de préférence de 0,05 à 4 %, et plus particulièrement de 0,005 à 2,5 % de substance dont le point de fusion est supérieur à 130°C et/

ou hydrophobe, notamment choisi parmi les phytostérols, les phytostanols et leurs dérivés estérifiés respectifs

[0053] Une telle composition alimentaire présente les caractéristiques de celle décrite ci-dessus et qui fait appel à la suspension homogène stable, mais elle peut également être obtenue par d'autres procédés ne faisant pas intervenir cette suspension homogène stable.

[0054] L'invention concerne également un procédé de préparation d'une composition alimentaire comprenant les édapes suivantes :

- on prépare une suspension homogène stable par mélange d'une solution aqueuse, d'une substance hydrophobe et/ou présentant un point de fusion supérieur à 130°C, et d'un épaississant,
- on mélange la suspension homogène stable avec une composition fluide dont la teneur en eau est d'au moins 60% et ne contenant pas plus de 18% de matières grasses, à une température de 60°C à 80°C.
- on soumet le mélange obtenu à l'étage précédente à une homogénésiation sous une pression de 50 à 500 bar pour obtenir une dispersion homogénéisée stable dans laquelle les particules constituant la substance hydrophobe ét/du dont le point de fusion est supérieur à 130°C, sont broyées à une taille de 50 um à 100 um.

[0055] La suspension est mélangée à une composition fluide (mix) pendant l'étape de traitement thermique, juste avant l'étape d'homogénéisation. En effet, cette étape entraîne une réduction suffisante des particules (70 µm en moyenne) pour surmonter les problèmes organoleptiques rencontés jusqu'alors avec ce type de composès. En outre, leur plus failbe granulomé trie leur permet de se maintenir après traitement thermique en suspension dans le mix constitute par exmique en suspension dans le mix constitute par experiment de la constitute de la constitute de la constitute la constitute de la c

[0056] La suspension est pompée vie une pompe positive (type PCM), ou via une pompe haute pression. 10 puis injectée en ligne avant l'étape d'homogénésation. Deux circuits se reloignant ainsi avant l'étape d'homogénésation, le circuit contenant la suspension et le circuit contenant la composition fluide. On prend soin que la pompe amenant la suspension puisse généres suffisamment de pression pour permettre d'injecter la totalité de la suspension dans la composition fluide.

[0057] Agrés l'étape d'homogénéisation, le produit résultant de ce mélange est pasteurisé selon un couple temps/température qui permet, d'une part, de réduire la charge microbienne initiale et, d'autre part, de développer le potentiel texturant des épaississants (cas de l'amidon), pour maintenir en suspension les fines particules de phytostériol.

[0058] On peut ajuster les daux débits, en fonction de zis la quantité de suspension à introduire. Par exemple, si on veut introduire 2% de poudre biologiquement active dans le produit fini et ce, par l'intermédiaire d'une suspension contenant 25% de cette poudre, il faudra que le débit de la suspension soit de 8% celui de la composition fluide.

[0059] La pression d'homogénéisation peut varie en to 50 et 500 has. En dessous de cette valeur, l'effet cisaillant n'est pas suffisant pour blen réduire la taille des particules de physication (ou de substance) et assurer un bon mélange avec la composition fluide. Audessus de cette valeur, on endommage l'appareil. L'intensité du traitement thermique appliqué est généralement comprise entre 85°C et 130°C pendant 30 secondes à 8 minutes.

[0060] Selon l'un des modes de réalisation du procédé de l'invention, à l'issue de l'étape d'homogénéisation, on pasteurise la dispersion homogénéisée stable à une température allant de 85°C à 130°C, puis on refroidit à une température de 4°C à 45°C.

[0061] Dans le procédé de l'invention, à l'issue de l'étape de pasteurisation, on ensemence la dispersion homogénéise stable pasteurisée à la température de 35°C à 45°C, ce qui permet le développement optimal des bactéries lactiques, puis on fermente.

[0062] L'ensemencement avec des bactéries lactiques permet de fabriquer des yoghourts et des laits fermentés et procéder à une fermentation lactique selon les méthodes connues de l'homme du métier.

[0063] Selon un autre mode de réalisation de l'invention, à l'issue de l'étape d'homogénéisation, on stérilise la dispersion homogénéisée stable à une température de 90°C à 130°C, puis on refroidit à une température de

70°C à 4°C.

[0064] Ce procédé permet d'obtenir des compositions alimentaires sucrées.

[0065] Il est en effet possible d'ajouter à la dispersion homogénéisée mentionnée ci-dessus des excipients connus de l'homme de métier, tels que ceux choisis parmi des aromatisants, des édulcorants ou des colorants. [0066] L'invention concerne également une composition alimentaire dépouvrue d'émulsifiant, susceptible

d'être obtenue par le procédé décrit ci-dessus.

FIGURE:

100671

- La Figure 1 représente un procédé schématique de l'invention.
- [0068] Le bac contenant la suspension de phytostérol est représenté par (1).
- [0069] La pompe d'envoi de la suspension du phytostérol est symbolisée par P2 et représentée par (2); elle permet de régler le débit de la suspension de phytostérol.
- 25 [0070] On a représenté par (3) le bac contenant la composition fluide (mix) et par (4) la pompe d'envoi de la composition fluide (symbolisée par P1), qui permet de régler le débit.
- [0071] En (5) on a représenté le préchauffeur de la composition fluide (traitement thermique à une température de 60 à 80°C pour permettre une bonne homodénéisation).
- [0072] La suspension de phylostérol et la composition fluide sont mélangées juste après le préchauffage de la 50 composition fluide et juste avant l'étape d'honogénéisation du mélange, à l'aide d'un homogénéisateur qui permet de réduire la taille des particules de phytostérol à une valeur de 50 µm à 100 µm.
- [0073] Après l'étape d'homogénéisation, le produit résultant du mélange
 - soit est pasteurisé selon un couple temps/température qui permet, d'une part, de supprimer la charge microbienne et, d'autre part, de développer le potentiel texturant des énaississants.
 - soit est stérilisé à une température de 90°C à 130°C, pendant 1 min, puis refroidi à une température de 50°C à 4°C.

50 EXEMPLES

 $\underline{\underline{\text{Example 1}}}: \text{Préparation de yoghourt écrémé avec} \\ \underline{0,5\%} \text{ de } \beta\text{-sitostérol}$

55 [0074] Dix pour cent de β-sitostérol sont mis en suspension dans l'eau additionnée de xanthane à 0,3%, L'homogénéisation manuelle à l'aide d'un fouet permet d'obtenir une pâte pompable. La pâte obtenue est injectée dans le circuit de la composition fluide (mix) préparée selon la formule suivante :

- lait à 0% de matière grasse 95 %
- poudre de lait écrémé 3 %
- amidon modifié 2%.

[0075] Le débit de la pompe d'injection. P2 de la pâte est calé à 5% du débit de la pompe, P1 convoyant la composition fluide (mix). Les deux circuits se regrou- 10 pent pour être homogénéisés dans H1 à une température de 75°C et à une pression de 200 bars (homogénéisateur Rannie). Le mélange obtenu est pasteurisé pendant 10 minutes à 95°C, puis refroidi à 45°C sur l'échangeur E1. Le tout est récupéré en container stéri- 15 le. On ensemence avec une culture de ferments lactiques, et on conduit la fermentation jusqu'à l'obtention d'un pH de 4.5. Le produit est alors brassé, puis refroidi dans un échangeur à plaques, puis conditionné en pots individuels. Le produit ainsi obtenu peut aussi être mé- 20 langé avec une préparation de fruits avant d'être conditionné ou dosé par dessus une préparation de fruits au moment du conditionnement.

Exemple 2 : Préparation d'une crème dessert contenant 0.5% 6-sitostérol

[0076] La suspension aqueuse de β-sitostérol est préparée selon le mode décrit dans l'exemple 1. On injecte la pâte ainsi obtenue comme décrit dans l'exemple 1. Cependant, la pression d'homogénélsation est icl réduite à 50 bars, et la composition de la composition fluide (mix) est la suivante :

- lait à 0% de matière grasse 67,92%
- crème à 40% de matière grasse 12%
- carraghénanes 0.05%
- amidon modifié 4,0%.
- poudre de lait écrémé 4
- sucre 12% - arôme vanille 0.01%
- colorant 0.01%.
- [0077] On applique ensuite un traitement thermique à 130°C pendant 1 minute sur E1, puis on refroidit à 45 10°C avant de conditionner en pots individuels.

[0078] On peut également ajouter du cacao dans la composition fluide (mix) pour obtenir une crème au cho-colat.

Exemple 3 : Préparation d'un yoghourt entier (3,7% de matière grasse) 0,8% de β -sitostanol

[0079] Quinze pour cent de β-sitostanol sont mis en suspension dans de l'eau additionnée de xanthane à 50 0,3% et d'huile (5%), puis on homogénéise manuellement à l'aide d'un fouet. Il en résulte une pâte pompable. [0080] La pâte est injectée dans le circuit de la com-

position fluide (mix) préparée selon la formule suivante :

- lait entier 95%
- poudre de lait écrémé 3 %
- amidon modifié 2%.

[0081] Le débit de la pompe d'injection, P2 de la pâte est calé à 5.3% du débit de la pompe P1 convoyant la composition fluide. Les deux circuits se regroupent pour être homogénéisses à une température de 75°C et al. persission de 200 bars (flomogénéissateur Annie). Le mélange obtenu est pasteurisé pendant 10 minutes à 95°C, puis refolid à 45°C sur £1.

[0082] Le tout est récupéré en container stérile. On 6 ensemence avec une culture de ferments lactiques, et on conduit la fermentation jusqu'é l'obtention d'un pH de 4.5. Le produit est alors brassé, puis refroid dans un échangeur à plaques, puis conditionné en pots indivituele

De 10083 Le produit ainsí obtenu peut aussi être mélangé avec une préparation de fruits avant d'être conditionné ou dosé par dessus une préparation de fruits au moment du conditionnement.

25 Exemple 4 : Préparation de produit végétal enrichi en β-sitostérol

[0084] La suspension aqueuse de β-sitostérol estpréparée seion le mode décrit dans l'exemple 1. On injecte of 9 la pâté ainsi obtenu comme décrit dans l'exemple 1, dans la composition fluide; mais, le lait est substitué par une préparation liquide végétale à base de céréales comme l'avoine, l'orge, le rîz ou le bile ou par du lais es oiga, ou par le mélange des deux. On peut aussi remplacer la poudre de lait écrémé par une poudre de protéine de soja ou une poudre d'avoine.

[0085] On obtient ainsi soit des produits fermentées 100% végétaux, soit des crèmes desserts 100% végétaux.

Exemple 5 : Conservation du β-sitostérol dans les produits

[0086] Yoghourt, cible = 0,45% de β-sitostérol, dosa-45 ge dans les pots :

- T+0 jour: 0,42%, 0,41%
- T+15 jours: 0,42%, 0,42%
- T+30 jours : 0,42% , 0,41%

[0087] Crème dessert cible = 0,50% de β -sitostérol, dosage dans les pots :

- T+0 jour: 0,47%, 0,47%
- T+15 jours : 0,49%, 0,49%
- T+30 jours: 0.51%, 0.52%

[0088] Yoghourt, cible = 0,4% de β-sítostanoi, dosage

50

des pots :

Début production	0,31%
Fin production	0,38%.

11

100891 Les valeurs attendues sont proches des valeurs théoriques. De plus, le produit reste stable durant le processus, ainsi que durant la conservation produit. [0090] Ces produits ont été faits par rapport à un produit témoin ne contenant pas de phytositostérol. La déaustation de ces produits fait ressortir une impression légèrement poudreuse, mais tout à fait acceptable due au phytositostérol. L'intensité aromatique n'est pas affectée

Revendications

- Suspension homogène stable dépourvue d'émulsifiant, d'au moins une substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C, et d'un épaississant, dans un milieu aqueux.
- 2. Suspension aqueuse selon la revendication 1, dans laquelle la substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C, est choisie parmi les phytostérols, les phytostanols et leurs dérivés estérifiés respectifs, et notamment les composés choisis parmi : 5,7,22-cholestatrienol, 7-de-hydrocholesterol, 22-dehydrocholesterol, 24-dehydrocholesterol, zymosterol, cholesterol, Δ^7 -cholesterol, 7-coprostenol, cholestanol, coprostanol, epicoprostanol, cerebrosterol, 22-a-oxycholesterol, 22-dihydroerogosterol, 7,24(28)-erogostadienol, campesterol, neospongosterol, 7-ergostenol, cerebisterol, corbisterol, stigmasterol, focosterol, α-spinasterol, sargasterol, 7-dehydrocryonasterol, poriferasterol, chondrillasterol, B-sitosterol, cryonasterol (γ-sitosterol), 7-stigmasternol, 22-stigmasternol, dihydro-γ -sitosterol, β-sitostanol, 14-dehydroergosterol, 24(28)-dehydroergosterol, ergosterol, brassicasterol, 24-methylenecholesterol, ascosterol, episterol, fecosterol et 5-dihydroergosterol, et leurs mélanges et est avantageusement le β-sitostérol, le 8-sitostanol, le 8-sitostanol ester, le campesterol ou le brassicasterol.
- 3. Suspension aqueuse selon la revendication 1 ou 2, dans laquelle l'agent épaississant est à une concentration telle que la viscosité de la suspension est de 0.05 Pas à 0.15 Pas, notamment de 0.05 Pas à 0.1 Pas
- Suspension aqueuse selon l'une quelconque des revendications 1 à 3, dans laquelle l'agent épaississant est choisi parmi : la gomme xanthane, les carrachénanes, les pectines, l'amidon, notamment gé-

- latinisé, la gomme gélane, ou la cellulose et ses dérívés.
- Suspension aqueuse selon l'une quelconque des revendications 1 à 4, contenant de 0.01% (p/v) à 10% (p/v) d'épaississant et de 0.1% (p/v) à 30% (p/ v) de substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C.
- 10 6. Suspension aqueuse selon l'une des revendications 1 à 5, contenant de 0,5 à 20 % (p/v) de substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C.
- 15 7. Suspension aqueuse selon l'une quelconque des revendications 1 à 6, contenant des lipides en quantité inférieure à 5%.
- 8. Procédé de préparation d'une suspension homogène stable selon l'une quelconque des revendications 1 à 7, dans lequel :
 - on prépare une solution présentant une viscosité de 0.05 Pas à 0.15 Pas, en mélangeant une solution aqueuse avec un épaississant.
 - on additionne à la solution visqueuse obtenue à l'étape précédente une substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C, à une concentration telle que la concentration dans la solution visqueuse soit de 0.1% à 30% p/v
 - pour obtenir une suspension homogène stable dépourvue d'émulsifiant.
- Composition alimentaire dans laquelle la teneur en eau est d'au moins 60 %, caractérisée en ce qu'elle comprend une su spension homogène stable, se-Ion l'une quelconque des revendications 1 à 7, à raison de 0.5% à 30% notamment à raison de 1% à 25%, et une composition fluide contenant au moins 60% d'eau et ne contenant pas plus de 18% de matières grasses, à raison de 75% à 99,5 %.
- 10. Composition alimentaire selon la revendication 9. dans laquelle la suspension homogène stable selon l'une des revendications 1 à 7 est présente à raison de 0.5 à 20 %.
- 11. Composition alimentaire selon l'une des revendications 9 ou 10, dans laquelle la teneur en substance hydrophobe et/ou dont le point de fusion est supérieur à 130°C est de 0,001 à 7,5%, notamment de 0.4% à 2%.
 - 12. Composition alimentaire selon l'une des revendications 9 à 11, contenant des protéines en quantité inférieure à 10%, notamment à 4%.

- Composition alimentaire selon l'une des revendications 9 à 12, contenant des hydrates de carbone à raison de 4 à 20%.
- 14. Composition alimentaire selon l'une des revendications 9 à 13, dépourvue des éléments suivants: agents chélatants, agents susceptibles d'inhiber la fermentation, et agents conservateurs.
- 15. Composition alimentaire selon l'une des revendications 9 à 14, dans laquelle la composition fluide est constituée essentiellement de lait ou ses dérivés tels que le lactosèrum, d'origine animale ou végétale.
- Composition alimentaire selon l'une des revendications 9 à 15, contenant des bactéries lactiques.
- 17. Procèdé de préparation d'une composition alimentaire selon l'une des revendications 9 à 16, comprenant les étapes suivantes :
 - on prépare une suspension homogène stable par mélange d'une solution aqueuse, d'une substance hydrophobe et/ou présentant un point de fusion supérieur à 130°C, et d'un épaississant.
 - on mélange la suspension homogène stable avec une composition fluide dont la teneur en eau est d'au moins 60% et ne contenant pas plus de 18% de matières grasses, à une température de 60°C à 80°C,
 - on soumet le mélange obtenu à l'étape précédente à une homogénésiation sous une pression de 50 à 500 bar pour obtenir une disper-35 soin homogénésée stable dans laquelle les particules constituant la substance, hydrophoe et d'u dont le point de fixion est supérieur à 130°C, sont broyées à une taille de 50 µ à 100
- Procédé selon la revendication 17, dans lequel, à l'issue de l'étape d'homogénéisation, on pasteurise la dispersion homogénéisée stable à une température allant de 85°C à 130°C, puis on refroidit à une 45 température de 4°C à 45°C.
- 19. Procédé selon la revendication 18, dans lequel à l'issue de l'étape de pasteurisation, on ensemence la dispersion homogénéisée stable pasteurisée à la température de 35°C à 45°C, ce qui permet le développement optimal des bacléries lactiques, puis on fermente.
- 20. Procédé selon la revendication 17, dans lequel à l'issue de l'étape d'homogénéisation on stérilise la dispersion homogénéisée stable à une température de 90°C à 130°C puis on refroidit à une température

de 70°C à 4°C.

- 21. Composition alimentaire susceptible d'être obtenue par le procédé selon l'une des revendications 17 à 20
- 22. Composition alimentaire dépourvue d'émulsifiant, contenant moins de 20 %, et de préférence moins de 18 % de matière grasse, et de 0,001 à 7,5 %, de préférence de 0,005 à 4 %, et plus particulièrement de 0,005 à 2,5 % de substance dont le point de fusion est supérèure à 130°C et/ou hydrophobe, no-tamment choisis parmi les phylostérols, les phylosteriats, les phylosteriats et leurs dérivés estérifiés respectifs.

Patentansprüche

- Stabile homogene Suspension ohne Emulgiermittel
 o mit wenigstens einer Substanz, die hydrophob ist
 und/oder deren Schmelzpunkt oberhalb von 130°C
 liegt, und mit einem Verdickungsmittel in einem
 wässriden Milieu.
- 5. 2. Wässrige Suspension gemäß. Anspruch 1, in weicher die Substanz, die hydrophob ist und/oder deren Schmeitzpunkt oberhalb 130°C liegt, aus den Phytosterolen, den Phytostanolen und deren jeweiligen versetrefen Derivaten ausgewählt sit, und insbesondere aus den Verbindungen, die aus den folgenden ausgewählt sind.
 - 5.7,22-Cholestatrienol, 7-Dehydrocholesterol, 22-Dehydrocholesterol, 24-Dehydrocholesterol, Zymosterol, Cholesterol, A⁷-Cholesterol, 7-Coprostenol, Cholestanol, Coprostanol, Epicoprostanol, Carebrosterol,
 - 22-α-Oxycholesterol, 22-Dihydroerogosterol, 7,24(28)-Erogostadienol, Campesterol, Neospongosterol.
 - 7-Ergostenol, Cerebisterol, Corbisterol, Stigmasterol, Focosterol, α-Spinasterol, Sargasterol.
 - 7-Dehydrocryonasterol, Poriferasterol, Chondrillasterol, β-Sitosterol, Cryonasterol (γ-Sitosterol).
 - 7-Stigmasternol, 22-Stigmastenol, Divytro-ysitosterol, β-Sitostanol, 14-Dehydroergosterol, 24(28)-Dehydroergosterol, Ergosterol, Brassicasterol, 24-Methylencholesterol, Ascosterol, Episterol, Fecosterol und 5-Divydroergosterol und ihre Mischungen, vorteilhafter Weise β-Sitosterol, β-Sitostanol, β-Sitostanolester, Campesterol older franssicasterol.
 - Wässrige Suspension gemäß Anspruch 1 oder 2, in welcher das Verdlckungsmittel eine derarlige Konzentration besitzt, dass die Viskosität der Sus-

20

pension 0,05 Pas bis 0,15 Pas beträgt, insbesondere 0,05 Pas bis 0,1 Pas beträgt.

- 4. Wässrige Suspension gemäß einem der Ansprüche 1 bis 3, in welcher das Verdickungsmittel aus den 5 folgenden ausgewählt ist: Xanthangummi, Carrageene, Pektine, Stärke, insbesondere gelatiniert, Gelangummi, oder Cellulose und deren Derivate.
- Wässrige Suspension gemäß einem der Ansprüche 10 bis 4. die von 0,01 % (w/v) bis 10 % (w/v) der kungsmittel und von 0,1 % (w/v) bis 30 % (w/v) der Substanz, die hydrophob ist und/oder deren Schmelzpunkt oberhalb von 130°C liegt, enthält.
- Wässrige Suspension gemäß einem der Ansprüche 1 bis 5, die 0,5 bis 20 % (w/v) der Substanz, die hydrophob ist und/oder deren Schmelzpunkt oberhalb von 130°C liegt, enthält.
- Wässrige Suspensiongemäß einem der Ansprüche 1 bis 6, die Lipide in einer Menge unterhalb von 5 % enthält.
- Herstellungsverfahren für eine homogene stabile 25 Suspension gemäß einem der Ansprüche 1 bis 7, in welchem:
 - eine Lösung mit einer Viskosität von 0,05 Pas bis 0,15 Pas hergestellt wird, indem eine wässrige Lösung mit einem Verdickungsmittel vermischt wird.
 - zu der in dem vorhergehenden Schritt erhaltenen viskosen Lösung eine Substanz, die hydrophob ist und/oder deren Schmeizpunkt oberhalb von 130°C liegt, gegeben wird, so dass die Konzentration in der viskosen Lösung 0,1 % bis 30 % w/v beträgt,

um eine homogene stabile Suspension ohne 40 Emulgiermittel zu erhalten.

- Nahrungsmitlötzusammensetzung, in welcher der Wassergehalt wenigstens 60% beträgt, dadurch gekennzeichnet, dass diese eine stabile homogene Suspension gemäß einem der Ansprüche 1 bis 7 in der Größenordnung von 0.5 % bis 30 %, insbesondere in der Größenordnung von 1 % bis 25 % und eine flüssige Zusammensetzung, die wenigstens 60 % Wasser enthält und nicht mehr als 18 % Fettsubstanzen enthält, in der Größenordnung von 75 % bis 99,5 % unifasts.
- Nahrungsmittelzusammensetzung gemäß Anspruch 9, in weicher die homogene stabille Suspension gemäß einem der Ansprüche 1 bis 7 in der Größenordnung von 0,5 bis 20 % enthalten ist.

- Nahrungsmittelzusammensetzung gemäß einem der Ansprüche 9 oder 10, in welcher der Gehalt an hydrophober Substanz und/oder deren Schmelzpunkt oberhalth von 130°C liegt, 0,001 bis 7,5 %, insbesondere 0,4 % bis 2 % beträgt.
- Nahrungsmittelzusammensetzung gemäß einem der Ansprüche 9 bis 11, die Proteine in einer Menge unterhalb von 10 %. insbesondere 4 % enthält.
- Nahrungsmittelzusammensetzung gemäß einem der Ansprüche 9 bis 12, die Kohlenhydrate in der Größenordnung von 4 bis 20 % enthält.
- 15 14. Nahrungsmittelzusammensetzung gemäß einem der Ansprüche 9 bis 13, ohne die folgenden Elemente:
 - Chelatisierende Mittel sowie Mittel, die die Fermentation inhibieren können, und Konservierungsmittel.
- 15. Nahrungsmittelzusammensetzung gemäß einem der Ansprüche 9 bis 14, in welcher die flüssige Zusammensetzung im Wesentlichen aus Milch tierlschen oder pflanzlichen Ursprungs oder deren Derivaten, wie etwa das Lactoserum, zusammengesetzt ist.
- 30 16. Nahrungsmittelzusammensetzung gemäß einem der Ansprüche 9 bis 15, die Lactobakterien enthält.
 - Herstellungsverfahren für eine Nahrungsmittelzusammensetzung gemäß einem der Ansprüche 9 bis 16, das die folgenden Schritte umfasst:
 - Herstellen einer homogenen stabilen Suspension durch Vermischen einer wässrigen Lösung, einer Substanz, die hydrophob ist und/ oder die einen Schmelzpunkt oberhalb von 130°C besitzt, und eines Verdikkungsmittels,
 - Vermischen der homogenen stabilen Suspension mit einer flüssigen Zusammensetzung, deren Wassergehalt wenigstens 60 % beträgt und die nicht mehr als 18 % Fettsubstanzen enthält, bei einer Temperatur von 60°C bis 80°C,
 - Homogenisieren der in dem vorhergehenden Schritt erhaltenen Mischung unter einem Druck von 50 bis 500 bar, um eine homogenisierte stabile Dispersion zu erhalten, in welcher die Teilchen, die die Substanz zusammensetzlen, die hydrophob ist und/oder deren Schmeizpunkt oberhalb von 130°C liegt, auf eine Größe von 50 µ bis 100 µ zerkleimert sind.
 - Verfahren gemäß Anspruch 17, in welchem die homogenisierte stabile Dispersion im Anschluss an den Homogenisierungsschritt bei einer Temperatur

20

von 85°C bis 130°C pasteurisiert wird und dann auf eine Temperatur von 4°C bis 45°C abgekühlt wird.

- 19. Verfahren gemäß Anspruch 18, in welchem die homogenisierte stabile pasteurisierte Dispersion im 5 Anschluss an den Pasteurisierungsschritt bei einer Temperatur von 35°C bis 45°C geimpft wird, was die optimale Entwicklung der Lactobakterien ermöglicht, dann fermenliert wird.
- 20. Verfahren gemäß Anspruch 17, in welchem die stabile homogenisierte Dispersion im Anschluss an den Homogenisierungsschrift bei einer Temperatur von 90°C bis 130°C sterilisiert wird, dann auf eine Temperatur von 70°C bis 4°C abgekühlt wird.
- Nahrungsmittelzusammensetzung erhältlich durch das Verfahren gemäß einem der Ansprüche 17 bis 20.
- 22. Nahrungsmittelzusammensetzung ohne Emulgiermittel, die wenigstens 20 % und vorzugsweise weniger als 18 % Feitsubstanz und von 0,001 bis 7,5 %, vorzugsweise 0,05 bis 4 % und insbesondere 0,005 bis 2,5 % der Substanz: enthält, deren 25 Schmelzpunkt oberhalb von 130°C liegt und/oder die hydrophob ist, insbesondere ausgewählt aus den Phytosterolen, den Phytostanolen und deren ieweiligen versetsferto Derivaten.

Claims

- Stable emulsifier free homogeneous suspension, with at least one hydrophobic substance and/or the melting point of which is higher than 130°C, and a thickener, in an aqueous medium.
- 2. Aqueous suspension according to claim 1, in which the hydrophobic substance and/or the melting point 40 of which is higher than 130°C, is chosen from phytosterols, phytostanols and their respective esterified derivatives, and particularly compounds chosen from: 5,7,22-cholestatrienol, 7-de-hydrocholesterol, 22-dehydrocholesterol, 24-dehydrocho- 45 lesterol, zymosterol, cholesterol, A7-cholesterol, 7-coprostenol, cholestanol, coprostanol, epicoprostanol, cerebrosterol, 22-α-oxycholesterol, 22-dihydroerogosterol, 7,24(28)-erogostadienol, campesterol, neospongosterol, 7-ergostenol, cere- 50 bisterol, corbisterol, stigmasterol, focosterol, αspinasterol, sargasterol, 7-dehydrocryonasterol, poriferasterol, chondrillasterol, β-sitosterol, cryonasterol (y-sitosterol), 7-stigmasternol, 22-stigmasdroergosterol, 24(28)-dehydroergosterol, ergosterol, brassicasterol, 24-methylenecholesterol, ascosterol, episterol, fecosterol and 5-dihydroergosterol,

and their mixtures and is advantageously β -sitosterol, β -sitostanol, β -sitostanol ester, campesterol or brassicasterol.

- 5 3. Aqueous suspension according to claim 1 or 2, in which the thickening agent is in such a concentration that the viscosity of the suspension is 0.05 Pas to 0.15 Pas, particularly 0.05 Pas to 0.1Pas.
- 4. Aqueous suspension, according to anyone of claims 1 to 3, in which the thickening agent is chosen from: xanthan gum, carrageenans, pectins, starch, particularly gelatinised, gelane gum, or cellutose and its derivatives.
 - Aqueous suspension according to any of daims 1 to 4, containing 0.01% (p/v) to 10% (p/v) of thickener and 0.1% (p/v) to 30% (p/v) of hydrophobic substance and/or the melting point of which is higher than 130°C.
 - Aqueous suspension according to one of claims 1 to 5, containing from 0.5 to 20% (p/v) of hydrophobic substance and/or the melting point of which is higher than 130°C.
 - Aqueous suspension according to any of claims 1 to 6, containing lipids in a quantity lower than 5%.
- Preparation process of a stable homogeneous suspension according to any of claims 1 to 7, in which:
 - a solution with a viscosity of 0.05 Pas to 0.15
 Pas is prepared, by mixing an aqueous solution with a thickener.
 - the viscous solution obtained in the preceding stage is added to a hydrophobic substance and/or the melting point of which is higher than 130°C, to such a concentration that the concentration in the viscous solution is 0.1% to 30% p/

to obtain a stable homogeneous emulsifier free suspension.

- 9. Food composition in which the water content is at least 60%, characterised in that it comprises a stable homogeneous suspension, according to any of claims 1 to 7, on the basis of 0.5% to 30% particularly on the basis of 1% to 25%, and a liquid composition containing at least 60% water and containing no more than 18% fat, on the basis of 75% to 99.5%.
- tenol, dihydro-y-sitosterol, β-sitostanol, 14-dehydroergosterol, 24(28)-oehydroergosterol, ergosterol, brassicasterol, 24-methylenecholesterol, accossof claims 1 to 7 is present on the basis of 0.5 to 20%.

30

- 11. Food composition according to any of claims 9 or 10, in which the hydrophobic substance content and/or the melting point of which is higher than 130°C is 0.001 to 7.5%, particularly 0.4% to 2%.
- 12. Food composition according to any of claims 9 to 11, containing proteins in a quantity lower than 10%, particularly 4%.
- 12, containing carbohydrates on the basis of 4 to 20%.
- 14. Food composition according to any of claims 9 to 13, without the following elements: chelating 15 agents, agents likely to inhibit fermentation, and preservatives.
- 15. Food composition according to any of claims 9 to 14, in which the liquid composition is essentially 20 made up of milk or its derivatives such as lactoserum, of animal or vegetable origin.
- 16. Food composition according to any of claims 9 to 15. containing lactic bacteria.
- 17. Preparation process of a food composition according to any of claims 9 to 16, comprising the following stages:
 - a stable homogeneous suspension is prepared by mixing an aqueous solution, a hydrophobic substance and/or the melting point of which is higher than 130°C, and a thickener,
 - the stable homogeneous suspension is mixed 35 with a liquid composition the water content of which is at least 60% and contains no more than 18% fat, at a temperature of 60°C to 80°C,
 - the mixture obtained at the preceding stage is subjected to homogenisation under pressure of 40 50 to 500 bars to obtain a stable homogenised dispersion in which the particles making up the substance, hydrophobic and/or the melting point of which is higher than 130°C, are ground to a size of 50µ to 100µ.
- 18. Process according to claim 17, in which, at the end of the homogenisation stage, the stable homogenised dispersion is pasteurised at a temperature from 85°C to 130°C, then cooled at a temperature 50 from 4°C to 45°C.
- 19. Process according to claim 18, in which at the end of the pasteurisation stage, the pasteurised stable homogenised dispersion is cultured at a tempera- 55 ture from 35°C to 45°C, which allows the optimal development of lactic bacteria, then it is fermented.

- 20. Process according to claim 17, in which at the end of the homogenisation stage the stable homogenised dispersion is sterilised at a temperature from 90°C to 130°C then it is cooled at a temperature from 70°C to 4°C.
- 21. Food composition liable to be obtained by the process according to any of claims 17 to 20.
- 13. Food composition according to any of claims 9 to 10 22. Emulsifier free food composition, containing less than 20%, and preferably less than 18% fat, and from 0.001 to 7.5%, preferably 0.05 to 4%, and more particularly from 0.005 to 2.5% of substance the melting point of which is higher than 130°C and/ or hydrophobic, particularly chosen from phytosterols, phytostanols and their respective esterified derivatives.

