AD-A079 652 CORPS OF ENGINEERS BUFFALO N Y BUFFALO DISTRICT F/8 6/6 WATER QUALITY DATA FOR LAKE ERIE BASIN TRIBUTARY MOUTH SAMPLING--ETC(U) DEC 78 UNCLASSIFIED NĻ | OF 4 Al' A9652

MOA 0 79652

JAN 1 . 1980

MY CORPS OF ENGIN

DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited

BASIN

1776 NIAGARA STREET, BUTTALO, NEW YORK 14207

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOGUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER TITLE (and Substitute) TYPE OF REPORT & PERIOD COVERED Water Quality Date Lake Erie Basin Tributary Mouth Sampling Stations. Final re 6. PERFORMING ORG. P. PORT NUMBER 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s) Water Qualtiy Section NCBED-HQ U. S. Army Corps of Engineers / N/A 1776 Niagara Street, Buffalo, NY 14207 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Same as Block 7 11. CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE December NUMBER OF PAGES Same as Block 7 14. MONITORING AGENCY NAME & ADDRESSIT-414 15. SECURITY CLASS. (of this report) 302 Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES Copies are available from National Technical Information Service, Springfield, VA 22161 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Water Quality Lake Erie Water Chemistry Lake Erie Drainage Basin Lake Erie ABSTRACT (Continue on reverse side if necessary and identify by block number) The data presented in this report represents water quality information collected at 22 Lake Erie Basin tributary mouth sampling stations for the Lake Erie Wastewater Managment Study. A list of these stations along with the U. S. Geological Survey station identification number and drainage area is provided and the approximated location

DD FORM 1473

EDITION OF ! NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

410090

of the sampling stations in relation to the Lake Erie drainage basin are indicated.

Samples collected were analyzed for the following parameters: total phosphorus, amonia nitrogen, nitrite-nitrate nigrogen, chlorides, dissolved silica, suspended solids, and conductivity. Twenty percent of the samples were analyzed for total kjeldahl nitrogen and iron. Two percent of the samples were analyzed for total solids, total dissolved solids, total organic carbon, dissolved organic carbon, total carbon, and chemical oxygen demand. In addition, less than I percent of the samples were analyzed for soluble phosphorus.

TRIBUTARY MOUTH SAMPLING STATIONS WATER QUALITY DATA FOR LAKE ERIE BASIN

LAKE ERIE WASTEWATER MANAGEMENT STUDY
U.S. ARMY CORPS OF ENGINEERS
BUFFALO DISTRICT

DECEMBER 1978

ACKNOWLEDGEMENTS

The Lake Erie Wastewater Management Study would like to acknowledge the following organizations for their participation in the collection and analysis of the data in this report:

Organization Michigan Department of Natural Resources Lansing, MI

Water Quality Laboratory

Tiffin, OH

Heidelberg College

for Water Year 1977

Supporting Data Stations (1) 1-7

Stations 8-11 for Water Years 1975-1977 and Stations
$$14-\frac{1}{2}$$
 for Water Year $1977(\frac{1}{2})$

Stations 12, 13, 15 and 17 for Water Year 1975	Station 21 fcr Water Year 1975
City of Cleveland Water Quality Program	State University of New York

	1977
15, and	er Year
14,	r Wat
Stations 14, 15,	17-21 fo
0,	
•	

Great Lakes Laboratory Buffalo State College

Buffalo, NY

at Fredonia

The Michigan, Ohio, and New York Divisions of the U.S. Geological Survey have provided the flow data.

- Station numbers are taken from map shown in Figure 1.
- (2) Portions of Water Year 1977 data for Stations 14-17 were collected by the U.S. Geological Survey and analyzed by Heidelberg College.

PAGE

CONTENTS

INTRODUCTION	'
ANALYTICAL PROCEDURES	×
STATION LOCATION DESCRIPTION	Ξ×
WATER QUALITY DATA	
Black River near Fargo, Michigan	
Mill Creek near Avoca, Michigan	വ
Belle River at Memphis, Michigan	თ
Clinton River at Mt. Clemens, Michigan	<u>–</u>
Rouge River at W. Jefferson Bridge, Michigan	17
Huron River at S. Metropolitan Parkway, Michigan	2
River Raisin near Monroe, Michigan	25
Maumee River at Waterville, Ohio	59
Maumee River near Waterville, Ohio	35
Portage River at Woodville, Ohio	83

WATER QUALITY DATA CONT'D

Sandusky River near Fremont, Ohio
Huron River at Milan, Ohio
Vermilion River near Vermilion, Ohio
Black River at Elyria, Ohio
Rocky River near Berea, Ohio
Cuyahoga River at Independence, Ohio
Euclid Creek near Euclid, Ohio
Chagrin River at Willoughby, Ohio
Grand River at Painesville, Ohio
Ashtabula River near Ashtabula, Ohio

Cattaraugus Creek at Gowanda, New York

INTRODUCTION

The data presented in this report represents water quality information collected at twenty-two Lake Erie Basin tributary mouth sampling stations for the Lake Erie Wastewater Management Study.

A list of these stations along with the U.S. Geological Survey station identification number $^{(1)}$ and drainage area is provided in Table 1. Figure 1 shows the approximate location of the sampling station in relation to the Lake Erie drainage basin.

the following criteria: (a) whether a U.S.G.S. gaging station was presently in existence for purpose of determining flow $^{(2)}$ and (b) whether the station location was best suitable for The selection of the Lake Erie Basin tributary mouth sampling stations were based on the determining tributary pollutant loads to Lake Erie.

nic carbon, dissolved organic carbon, total carbon, and chemical oxygen demand. In addition, less Two percent of the samples were analyzed for total solids, total dissolved solids, total organitrogen, nitrite-nitrate nitrogen, chlorides, dissolved silica, suspended solids and conductivity. Twenty percent of the samples were analyzed for total kjeldahl nitrogen and iron. Samples collected were analyzed for the following parameters: total phosphorus, ammonia than one percent of the samples were analyzed for soluble phosphorus.

(1)Stations with map reference numbers 5 and 6 are not located at a U.S.G.S. continuous level station and have been assigned a code number by the Michigan Department of Natural Resources. (2)Since stations 5 and 6 do not have U.S.G.S. gages present, flow data for station 5 was provided by the Detroit District, U.S. Army Corps of Engineers. Flow data for station 6 was provided by the U.S.G.S. in Okemos, Michigan, through use of a staff gage.

LAKE ERIE BASIN TRIBUTARY MOUTH SAMPLING STATIONS	APLIN	IG STA	TIONS		TABLE	-
STATION IDENTIFICATION	CODE	USGS	DRAINAGE AREA IN 8Q. MILES	MAP * REFERENCE		
Black River near Fargo, Michigan	OIBF	04159500	087	1		
Mill Creek near Avoca, Michigan	OIMA	04159900	169	. 4		
Belle River at Memphis, Michigan	05ВМ	04160600	151	m (
Clinton River at Mt. Clemens, Michigan	07СМ	04165500	734	4		
Rouge River at West Jefferson Bridge City of River Rouge, Michigan	09RJ	820070**	467	'n		
Huron River at South Metropolitan Parkway near New Boston, Michigan	11НЖ	821114**	849	9		
River Rasin near Monroe, Michigan	13RM	04176500	1,042			•
*Numbers refer to Figure 1. **Michigan Department of Natural Resources code number.						

LAKE ERIE BASIN TRIBUTARY MOUTH SAMPLING STATIONS	APLIN	G STA	TIONS	•	TAE
STATION IDENTIFICATION	LEWIS	USGS	DRAINAGE AREA IN SQ. MILES	HAP *	
Maumee River at Waterville, Ohio	01MW	04193500	6,330	∞	
Maumee River near Waterville, Ohio	03HGV	04193490	6,313	80	
Portage River at Woodville, Ohio	03PW	04195500	428	6	
Sandusky River near Premont, Ohio	03SF	04198000	1,251	10	
Huron River at Milan, Ohio	ознж	04199000	371	11	
Vermillion River near Vermillion, Ohio		04199500	262	12	
Black River at Elyrea, Ohio	08BE	04200500	396	13	

LAKE ERIE BASIN TRIBUTARY MOUTH SAMPLING STATIONS	MPLI	NG ST	ATIONS		TABLE	— į
	TEMMS	USGS NUMBER	DRAINAGE AREA IN 8Q. MILES	MAP * REFERENCE		
Rocky River near Beres, Ohio	33RB	04201500	267	14		
Cuyahoga River at Independence, Ohio	33CI	04208000	707	15		
Euclid Creek near Euclid, Ohio	33EE	04208690	22.6	16		
Chagrin River at Willoughby, Ohio	06си	04209000	246	17		
Grand River at Painesville, Ohio	37GP	04212200	701	18		
Ashtabula River near Ashtabula, Ohio	39AA	04212500	121	19		
Conneaut Creek at	4100	04213000	175	20		
Cattaraugus Creek at Gowanda, New York	4906	04213500	432	21		

ANALYTICAL PROCEDURES

Parameter :	: : City of Cleveland : : Water Quality Program :	SUNY at Predonia	: Heidelberg College : : River Studies : : Laboratory :	Michigan Department of a	SUNY Great Lakes Laboratory
Total Phosphorus: Single Resgent : Automated :	***************************************	Manuel Digestion on Hot Plate All Samples Filtered	Automated Hated in Autoclave High SS Filtered Fersulfate Digestion Ascorbic Acid/Single	Automated Block Digester 300° Perchloric Sulfuric 5 Digestion Accorbic Acid 6 Filtration 6	Acid Sulfate (K ₂ SO ₄) Block Digestion Automated Single Resgent Addition
Dissolved : Inorganic :	Single Begent	Manual Single Respont	: Automated Single : Reagent	Supernatant Analate : Centrifuged for very hi SS: Otherwise Just Settled :	: Prevashed Millepore MAMP SS: Single Reagent
Suspended Solide	By Calculation Bes T - Res Filt - SS :	Milipore Filter .45 103° - 105°C	Glass Fiber Filter : 103° - 105°C :	Glass Fiber Filter : 103° - 105°C	GF/C (Whatman) Glass Fiber .1 Mg Sens. 103* - 105°C
Mitrate & Mitrate Mitrate	Brucine Sulfate	Brucine Sulfate Hanual	i Automated Cadmium : Reduction :	Cadmium Reduction, s Automated	Cadmium Reduction, Automated
i Ammonia-Hitrogen: Messlerization : Automated Phen	Meslerization :	Nesslerization	. Automated Phenate	Automated Phenate	Automated Phenate
Specific :	Instrumental 125°C Correction	H.D.	: Barnetead Mod. : : PM FOCB : : YSI Probe : : Samples Adj to 25°C :	YSI 25° Correction	YSI, LAN 25° Correction
Silice :	<u>.</u>	Atomic Absorption After Filtration	: Automated : Holybdosilicate :	Automated Molybdomilicate:	Automated Molybdosilicate
Chloride :	Mercuric Mitrate	Mercuric Mitrate	: Mercuric Mitrate :	Automated : Perrous Cyanide : (BPA) :	ion Selective Electrode

M.D. - indicates not determined

ANALYTICAL PROCEDURES

Parabeter	City of Cleveland : Mater Quality Progrem :	BUNT at Predonia	Meidelberg College River Studies Leboretory	Michigan Department of Matural Resources	SUNY Great Lakes Laboratory
Iros	4	• G •2	Automated Phenanthroline	å.	,
Total Kjeldahl : Wirrogen	Automated Phenate	Calculation (Mij-M+Organic-N)	Ultra Micro Semi-Automated Todophenol Blue Mathod	Same Digestion as TP Automated Selenium	Ultra Micro Semi-Automated Iodophenol Blue Method
Chemical Oxygem : Demand	a	SN Nod EPA Reflux	. G. H.	K.D.	
Total Carbon	. Pleme lonization	X.D.	Plane Ionization	H.D.	: X.D.
Total Solids	Brying, 180°C	Drying, 180°C	M.D.	Ġ.z.	. H.D.
Total Dissolved : Solide :	Filtration, 180°C	Filtration, 180°C	H.D.	M.D.	#.D.
Total Organic Carbon	Plane Ionization	K.D.	Plane Ionization	N.D.	
Dissolved Organic Carbon	Flame Ionization	, O. H	Plame lonization	K.D.	
			N.D.	Meter in Leb	: Meter in Field, L 6 M
Temperature	H.D.	K.D.	N.D.	Field, Thermometer	: N.D.

M.D. - indicates not determined

STATION LOCATION DESCRIPTION

Lat 43005'32", long 82037'05", in NWk sec.32, T.8 N., R.16 E., St. Clair County, on left bank 20 ft (6 m) downstream from bridge on Norman Road, 2.1 mi (3.4 km) east of Fargo, 5.3 mi (8.5 km) upstream from Mill Creek, and 12 mi (19 km) northwest of Port Huron. 04159500 BLACK RIVER NEAR PARCO, MI

Lat 43003'16", long 82044'05", in NW4 sec.8, T.7 N., R.15 E., St. Clair County, on left bank at downstream side of bridge on Bricker Road, 0.2 mi (0.3 km) upstream from Gleason Drain, and 2.3 mi (3.7 km) west of Avoca. 04159900 MILL CREEK NEAR AVOCA, MI

Lat 42054'03", long 82046'09", in NW SEX sec. 35, T.6 N., R.14 E., St. Clair County, Hydrologic Unit 04090001, on right bank, at downstream side of bridge on State 04160600 BELLE RIVER AT MEMPHIS, MI Highway 19 at Memphis.

Lat 42035'45", long 82054'35", Macomb County, Hydrologic Unit 04090003, on left bank 20 ft (6 m) downstream from bridge on Moravian Drive, 0.2 mi (0.3 km) downstream from North Branch, and 0.5 mi (0.8 km) west of Mount Clemens. 04165500 CLINTON RIVER AT MOUNT CLEMENS, MI

Lat 42016'50", long 83007'44", T.25, R.11 E., Wayne County, at the West Jefferson Avenue MDNR 820070 ROUGE RIVER AT CITY OF RIVER ROUGE, MI bridge, in the City of River Rouge. MDNR 821114 HURON RIVER NEAR NEW BOSTON, MI Lat 42011'15", long 83025'31", in sec. 36, T.3 S., R.8 E., Wayne County, Van Buren Township, at South Metropolitan Parkway in the Lower Huron Metropark, below French Landing. Lat 41057'38", long 83031'52", Monroe County, Hydrologic Unit 04100002, on left bank 0.8 mi (1.3 km) downstream from bridge on Ida Maybee Road, 5.0 mi (8.0 km) downstream from Saline River, and 7.5 ml (12.1 km) west of Monroe. 04176500 RIVER RAISIN NEAR MONROE, MI

3 mi (5 km) downstream from Tontogany Creek, and 20.7 mi (33.3 km) upstream from mouth. Lat 41030'00", long 83042'46", Lucas County, Hydrologic Unit 04100009, on downstream side of second pier from left end of bridge on State Highway 64 at Waterville, 04193500 MAUMEE RIVER AT WATERVILLE, OH

Lat $41^{0}28'34"$, long $83^{0}44'20"$, Lucas County, Hydrologic Unit 04100009, in Bowling Green water-treatment plant, 2.0 mi (3.2 km) upstream from discharge station at Waterville. 04193490 MAUMEE RIVER NEAR WATERVILLE, OH

Lat 41026'58", long 83021'41", in sec. 28, T.6 N., R.13 E., Sandusky County, Hydrologic Unit 04100010, on left bank at upstream side of bridge on U.S. Highway 20 in Woodville, 600 ft (183 m) downstream from unnamed right bank tributary, and 10.3 mi (16.6 km) 04195500 PORTAGE RIVER AT WOODVILLE, OH upstream from Sugar Creek.

Lat 41018'28", long 8309'32", in sec. 17, T.4 N., R.15 E., Sandusky County, Hydrologic Unit 04100011, on left bank at downstream side of county road bridge, 2.3 mi (3.7 km) upstream from Bellville diversion dam, 2.5 mi (4.0 km) downstream from Wolf Creek, and 3.5 mi (5.6 km) southwest of Fremont. 04198000 SANDUSKY RIVER NEAR FREMONT, OH

04199000 HURON RIVER AT MILAN, OH

Hydrologic Unit 04100012, on right bank 500 ft (152 m) downstream from bridge on Lat 41018'06", long 82036'25", in SW 1/4 sec. 4, T.5 N., R.22 W., Erie County, U.S. Highway 250, 0.2 ml (0.3 km) northwest of Milan and 2.0 ml (3.2 km) downstream from confluence of East and West Branches.

04199500 VERMILION RIVER NEAR VERMILION, OH

Unit 04100012, on right bank 40 ft (12 m) downstream from bridge on North Ridge Road, 3.5 mi (5.6 km) southeast of Vermillon and 4.5 mi (7.2 km) upstream from Lat 41022'55", long 82019'01", in T.6 N., R.19 W., Lorain County, Hydrologic

04200500BLACK RIVER AT ELYRIA, OH Lat 41°22'49", long 82°06'17", in T.6 N., R.17 W., Lorain County, Hydrologic Unit 04110001, on left bank in Cascade Park at Elyria, 0.8 mi (1.3 km) downstream from confluence of East and West Branches.

04201500 ROCKY RIVER NEAR BEREA, OH

Rocky River Reservation, just downstream from confluence of East and West Branches, Lat 41°24'24", long 81°53'14", in T.6 N., R.15 W., Cuyahoga County, Hydrologic Unit 04110001, on right bank at downstream side of Cedar Point Road Bridge in and 3.0 mi (4.8 km) northwest of Berea.

04208000 CUYAHOGA RIVER AT INDEPENDENCE, OH

Unit 04110002, on left bank 240 ft (73 m) downstream from bridge on 01d Rockside Road, 0.8 mi (1.3 km) northeast of Independence, and 3.0 mi (4.8 km) downstream Lat 41°23'43", long 81°37'48", in T.6 N., R.12 W., Cuyahoga County, Hydrologic from Tinkers Creek.

04208690 EUCLID CREEK NEAR EUCLID, OH

', Cuyahoga County, Hydrologic Unit 04110003, on right bank 150 ft (46 m) upstream from St. Clair Avenue bridge, 0.3 mi (0.5 km) from city of Cleveland waterworks, 1.6 mi (2.6 km) upstream from mouth. Lat 41034'28", long 81032'51",

800 ft (244 m) downstream from East Branch, 1.0 mi (1.6 km) southeast of Willoughby, O4209000 CHAGRIN RIVER AT WILLOUGHBY, OH

Lat 41037'51", long 81024'13", in T.9 N., R.10 W., Lake County, Hydrologic Unit
04110003, on left bank, 150 ft (46 m) downstream from city waterworks dam, and 5.0 ml (8,0 km) upstream from mouth.

04212200 GRAND RIVER AT PAINESVILLE, OH

(3.5 km) upstream Lat 41044'09", long 81015'59", in T.11 N., R.8 W., Lake County, Hydrologic Unit 04110004, at bridge on State Highway 535 in Painesville, 2.2 mi from mouth, and 8.0 mi (12.9 km) downstream from Kellogg Creek.

04212500 ASHTABULA RIVER NEAR ASHTABULA, OH

Lat 41°51'20", long 80°45'44", Ashtabula County, Hydrologic Unit 04110003, on left Hubbard Run, 1.3 m1 (2.1 km) southeast of Ashtabula, and 5.5 mi (8.8 km) upstream bank at downstream side of State Road bridge, 1.1 mi (1.8 km) upstream from from mouth.

04213000 CONNEAUT CREEK AT CONNEAUT, OH Lat 41°55'37", long 80°36'15", Ashtabula County, Hydrologic Unit 04120101, on right bank at downstream side of Keefus Road bridge at Conneaut, and 6.4 mi (10.3 km) upstream from mouth.

04213500 CATTARAUGUS CREEK AT GOWANDA, NY

Lat 42027'50", long 78056'10", Erie County, Hydrologic Unit 04120102, on right bank 380 ft (116 m) downstream from bridge on State Highways 39 and 62 at Gowanda, and 4.2 mi (6.8 km) downstream from South Branch. Water-quality sampling site at discharge station. BLACK RIVER NEAR FARGO, MICHIGAN

LAKE ERIE WASTEWATER MANAGEMENT STULY - WATER GUALITY INFORMATION

HAJOR RIVER BASIN : BLACK RIVER

STREEM : BLACK RIVER

LOCATION W/CODE : NEAR FARGU. MICHIGAN

USGS NO. 04159500

COND 25C. UMHO	150.	300	285	355.	315.	280.	275.	270.	270.	280.	290.	305.	320.	340	290	305	315.	315.	295.	999	640.	635.	615.	565	530.	500	490	480	510.	535	540.	555.	570.	586.	605.	635.
IRON MG/L																																				
S102	. 00	4.70	4.30	0+.+	4.10	3.80	3.60	3.40	3.30	3.50	3.70	3.70	3.20	4.00	00.4	4.10	4.10	4.10	4.30	7.00	09•9	6.50	6.30	6.10	6.10	6.10	5.80	5.80	5.80	5.90	6.00	6.26	6.16	6.36	6.30	0 • • 9
CHLO RIDE MG/L	24.00	20.00	19.96	38.00	29.00	26.00	26.00	25.06	26.00	28.00	33.00	36.00	36.00	40.06	24.00	27.00	29.00	26.00	23.00	38.00	37.00	38.00	38.00	36.00	38.00	35.00	33.00	35.00	38.00	40.00	42.00	30.44	96.00	G	•	56.33
SUSPEND SOL10S MG/L		250.00	180-00	170.00	180.00	140.00	150.00	190.00	190.00	130.00	98.00	93.00	100.00	86.00	62.00	64.00	96.00	82.00	74.00	25.00	51.00	91.00	85.00	89.00	89.00	92.00	92.00	140.00	140.00	á	9.8	99.00	4.0	•	•	99.48
C0D																																				
TOTAL KJELD MG/L																				1.130	1.430	1.660	1.590	1.440	1.670	1.776	1,530	1.930	1.590	1.743	1.746	1.736	·	1.613	1.620	1.603
ORG. NTT. MG/L																																				
NH-3	9		.570	.740	. 8 30	. 740	.750	.760	.840	.956	1.030	096.	.820	.800	.810	. 800	.790	.750	.736	.210	• 192	.190	.191	.173	.180	.165	.162	.155	.157	. 148	.152	.167	•149	.138	.121	.112
NO-2 NO-3		1.370	1.370	1.330	1.360	1.370	1.340	1.360	1.556	1.580	1.420	1.400	1.380	1.380	1.400	1.390	1.370	1.270	1.260	2.200	1.830	1.830	1.850	1.990	2.500	2.800	5.203	3.960	004.4	4.700	4.800	4.700	4.580	604.4	0	4-266
ORTHU PHOS. MG/L	è	0 C	105	.149	•20€	.190	.178	.162	.168	.193	.210	.192	.181	.170	.182	.186	.174	.157	.165	.048	.043	.039	•00•	.040	. 043	.046	.055	• 90 •	.061	.055	. 053	390 •	• 056	.052	+40.	• 639
TOTAL PHCS. MG/L		0.00	310	.470	009•	.540	.550	.640	.680	.660	. 6.00	.500	.460	.410	.390	004.	.426	. 360	.362	.091	*60*	.140	.137	.129	.165	.178	. 186	.290	•28€	.250	.220	.193	.260	.155	.144	.142
FLOW	•	100	980	1350	520	8 8 8	150	620	1490.	22.0	660	330	892	F52.	816.	724.	680.	780.	824.	215.	268.	365.	523.	760.	62	1200.	1306.	1320.	1256.	150	330	n 9 F. e	712.	628.	41.5	469.
SAMPLING TIME DATE 24:0 YR MO DY HRS.) <i>a</i>	: M	1 M		9	9	19	۲.	7	3 7	P 10	10 100	6 0		. 60	6	e E	3 28	3 28	3 28 1	3 28 2	5 29	3 29 1	3 29 1	3 29 2	(C) (P)	3 30 1	3 30	3 3 2	3 31	3 31 1	31 1	33.2	-

LAKE ERIE WASTEWATER HANAGEMENT STUCY - WATER GUALITY INFORMATION

The second secon

MAJOR RIVER BASIN : BLACK RIVER

STREAM : BLACK RIVER

USGS NO. 04159500 : NEAR FARGO. MICHIGAN LOCATION W/CODE

25C.		655	670.	695.	619.	620.	638.	645.	655.	.059	.059	.099	670	670 •	650.	670.	695 °	705.	695.	705	715.	720.	720.	710.	810.	
IRON MG/L																										
S102		6.40	6.50	09-9	2.90	2.60	2.40	2.20	1.92	1.80	1.62	1.36	1.22	1.18	. 85	.67	.75	• 65	. 40	.55	19.	• 59	.52	84.	• •	
CHLO RIDE NG/L		29.00	61.00	65.00	45.00	40.00	00.04	43.00	41-00	41.60	45.00	41.00	43.00	94.00	43.00	43.00	44.00	46.00	46.00	46.00	46.00	47.00	49.00	47.00	64.00	
SUSPEND SOLIDS MG/L		37.00	32.00	20.00	12.00	14.00	11.00	10-00	29.00	10.00	10.00	8.00	11.00	10.00	9.00	14.00	15.00	14.00	00.9	10.00	7.00	2.00	10.00	12.00	26.00	
000																										
10TAL KJELD HG/L		1.100	1.070	1.196	1.176	. 766	1.083	1.036	1.100	1.120	900.	. 783	- 860	.920	.950	.770	.847	.940	1.000	.850	1.043	040	.963	066*	.620	
086. NIT.																										
N-17		• 070	• 629	.009	•006	.001	• 002	.008	• 005	• 062	+00.	• 000	• 000	• 005	100	.005	.010	.003	- 002	• 003	.001	.001	.001	.003	- 002	
NO-2 NC-3		4.100	4.300	4.200	.260	-156	.157	.174	.169	.109	.070	.07C	.079	.032	• 000	.010	.014	.009	•000	600.	.005	• 003	+00-	•00•	.005	
PHOS.		•034	• 026	• 624	. 029	.028	. 632	.031	• 032	.033	• 032	.027	.028	.028	• 026	.023	.025	.026	• 025	.027	. 022	.023	.022	. 025	• 046	
PHOS.		•12€	•106	• 093	.085	• 086	.081	•076	+80-	.095	.078	.068	.071	.074	.081	.077	• 072	.074	.083	080 •	.085	.076	.081	•084	• 099	
FL OV CF S		720.	628.	520.	154.	116.	131.	127.	119.	114.	108.	107.	103.	97.	93.	92.	90.	96.	83.	81.	78.	77.	72.	74.	38.	
11ME 24.9	2	1660	1420	2155	1110	1800	2230	340	935	1435	2135	004	940	1450	2130	340	935	1450	2125	410	935	1440	2120	355	1155	
SAMPLING DATE	5	~	-	-	25	25	52	5 6	56	5 6	3 6	27	27	27	27	28	28	28	58	5	53	59	53	30	16	
A TE		L	4 L		1 4			4 1			17 4		4		1	1			+ 1	+ _	1		1	+ -	7 5	

MILL CREEK NEAR Avoca, Michigan

LAKE ELIE WASTEJATER MANAGEMENT STUOY - WATER GUALITY INFORMATION

MAJOK RIVER BASIN : BLACK RIVER

: MILL CREEK

STREAM

USGS NO. 04159900 : NEAR AVOCA. SICHIGAN LOCATION W/CODE

COND 25C.	0445	590.	395.	405.	355.	385.	340.	345.	350.	390.	370.	385.	415.	370.	345.	365.	365.	390.	+02•	+10.	+02.	420.	435.	720.	715.	695.	640.	605.	575.	560.	570.	585.	590.	590.	595.	605.	605.
NO KI	H6/L																																				
S 1 0 2	H6/L	7.90	5.70	•	*	5.40	7	~	5.20	5.60	5.20	5.20	5.30	5.30	5.00	5.20	5.20	5.50	2-60	5.70	5.60	5.70	5.90	2-00	9.80	4.80	4.90	5.30	5.50	5.70	5.76	6.10	6.50	6.80	6.90	6 - 80	6 - 80
CMLO RIDE	N6/L	34.00	27.00	26.00	25.00	25.06	20.00	20.00	19.80	21.00	21.00	22.00	22.00	19.40	19.20	19.80	19.60	21.06	21.00	20.05	21.00	21.00	22.00	39.00	00.0	46.00	42.00	37.00	33.00	32.00	32.00	32.30	32.00	34.00	34.30		33.30
SUSPEND SOLIDS	H6/L	•	200.00	0.09	•	64.00	•	•	54.00	00.44	43.00	99	0	9	•	9:0	00-09	9•9	18.00	2.0	•	•	0.0	9 • 00	3.0	•	5.0	9.	•	5.0	52.00	6.0	41.00	9	4.0	•	34.00
000	M6/L																																				
TOTAL	H6 /L	1.190			1.950					1.740	1.850													.740	1.010	1.373	1.340	1.520	1.560	1.515	1.450	1.563	1.697	1.543	1.713	1.170	1.373
ORG. NIT.	HG/L															•																					
N-12	H6/L	964.	064.	.460	. 390	.500	.570	.560	.500	.480	.500	.580	.600	. 710	.710	.660	• 660	.660	.630	•620	.619	.580	• 550	. 022	•046	.052	. 046	• 065	• 068	• 059	• 10.	.071	. 083	. 981	₹60	.671	610.
NO-2	HG/L	2.400	2.400	2.200	•	1.810	1.700	1.680	1.720	1.810	1.840	1.980	2.100	1.930	1.730	1.830	1.840	1.960	2.100	2.200	2.100	2.000	2.000	1.260	1.280	1.210	1.420	1.560	1.740	1.820	1.950	•		50	•	•	2.900
ORTHO PHOS.	HG/L	.077	.079	.074	060•	.120	.132	.121	.111	.100	.116	.116	.111	-114	.110	• 102	•102	-109	• 102	. 093	.085	.083	.080	. 023	• 026	.039	.030	• 039	.039	.02R	.031	.033	•026	. 624	• 024	•02₽	.031
TOTAL PHOS.	H6/L	.13?	C 0 4 •	.390	.330	.330	.326	-320	.296	.245	.270	.210	.280	.280	•28€	.270	.270	•24€	.220	.240	.220	.200	.193	• 052	150.	080 €	.111	.151	.150	.125	.137	.135	.116	.114	.121	•11b	.100
FLOV	;	158.	359.	381.	426.	416.	365.	352.	357.	352.	331.	333.	339.	337.	324.	318.	320.	280.	267.	307.	299.	305.	316.	65 •	77.	106.	151.	208.	280.	292.	294.	301.	296.	280.	266.	240.	226.
11ME	HBS.	355	2030	2123	300	710	1330	1435	1755	235	743	1340	1805	220	749	1310	1720	202	735	1316	1705	205	735	330	626	1610	2115	310	1005	1500	2030	325	640	1525	2030	333	C R's
AMPLING ATE	0 DY	•	•	•	8	80	Ŋ	S	s	9	•	•	•	1	_	1	3 7	•	6 0	œ	Œ	5	•	28	28	5 8	5 8	58	53	5	53	Ŋ	.	3	.	3	31
SAMPL	78 70																																				77

LAKE EPIE "ASTEUATER MANAGEMENT STULY - MATER QUALITY INFORMATION

MAJOK RIVER BASIN : BLACK RIVER

STREAM : MILL CREEK

USGS NO. 04159900 LOCATION W/CODE : NEAR AVOCA. MICHIGAN

25C.	CARO	610.	615.	625.	646.	640-	655.	615.	620	630	645	750.	755.	755.	755.	755.	760.	745.	760.	175.	785.	795.	800.	795.	775.	805.	815.	920.	875.	680.
NO N	H6/L																													
S102	#6/L	9.90	6.80	6.70	6.70	09-9	6.50	2 • 90	2.60	2.40	2.20	2.40	2.20	1.73	1.30	1.04	.93	•64	**.	0 * •	• 46	64.	.50	•52	• 55	•46	• • 5	•10	1.09	3.06
CHLO RIDE	HG/L	34.00	34.00	34.60	34.00	34.00	35.00	45.00	90.04	40.00	40.00	00.44	00.44	46.30	46.00	46.06	47.00	48.00	48.00	55.00	90.69	29-00	60.00	61.00	62.06	63.06	65.60	81.00	67.00	56.00
SUSPEND SOL10S	H6/L	28.00	34.00	29.00	19.00	13.00	4.00	9	8.00	6.00	2.00	2.00	9.00	8.00	5.00	9.00	7.00	12.00	14.00	9.00	11.00	10.00	10.00	9.00	9.00	9.00	10.00	8.00	6.00	9.00
000	HC/L																													
TCTAL KJELD	KG/L	1.443	1.073	1.520	1.150	1.150	1.150	.953	1.110	1.023	1.240	1.340	1.350	1.060	.930	1.160	1.233	1.180	1.290	1.280	1.270	1.493	1.173	1.116	1.290	1.276	1.430	.673	.783	.690
CRG.	H6/L																													
€ 112	16/L	• 068	.067	• 069	• 056	.036	• 029	. 301	.003	+00	400•	+30.	• 005	+00.	•00•	.003	. 002	.001	• 002	• 005	.063	• 003	• 003	.001	.001	.001	.001	.003	.001	.005
NO-2	HG/L	2.800	2.730	2.560	2.400	2.300	2-200	.045	.008	.026	.048	060.	+0-	•050	.023	.003	• 002	• 002	•005	+00+	+00•	+00.	003	+00+	.001	• 0 0 1	.001	900	.003	.008
ORTHO	46.A	9.02.	• 025	.028	027	• 024	.021	6 00 0	. 048	.051	• 054	.082	• 08	• 0.82	.072	.069	• 064	•061	•059	• 06₽	• 069	.071	.074	.063	• 056	. 047	900	140	.032	.039
TOTAL	# 6/L	460	*60 *	0 80		.076	• 068	960.	.095	*60*	.095	.122	.128	123	.132	126	119	.125	.121	.137	.157	.170	148	- 145	.149	.135	.142	0.40	900	.076
FL3#	•	9.0		16.6		1 di	130	76.	72.	69	66.	63.	. 29	20.00	90	90.00	- P	£1.		4	• 9	R1		2	.2.	•	17.		, ,	
1166	HRS.	919		200	, ,	1413	2120	1040	1736	2200	326	200	1410	21.05	330	5	1420	2055	316	90	1425	2055	200	51.6	1415	2055	\$ C P	110	1 4 6	, ,
ر 2	70					• -																								
191	VR NO DY	*	۳ ۲	•	•	•	•	•	•	•	•	•	•	•	•	•	- ◀	•			•	•	• •	•	•					9 4
SA	5 ×	,	: :				7.	7	1	7	1					1			-			7		1	1	7				: [

BELLE RIVER AT MEMPHIS, MICHIGAN

PRICEDING PAGE BLANK-JOP FILLED

LAKE ERIE WASTEMATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : BELLE RIVER

: BELLE RIVER

STREAM

: AT MEMPHIS. HICHIGAN LOCATION M/CODE

USGS NO. 04160600

COND 25C.	CH C	655.	310.	305.	330.	330.	325.	330.	340	375.	420.	450	450.	480-	495.	525.	545	525.	605.	620.	620.	615.	615.	960.	810.	175.	670.	615.	570.	585.	585.	600	615.	635.	64 3•	670.	407
# O # O	H6/L																																				
2018	H6/L	8.80	4.90	8	7	*	•	7	5.10	•	?	*	•	•		•	7	ů	6.60	6.70	6.70	6.70	6.80	5.70	5.70	5.50	5.80	5.90	6.20	6.50	6.60	•	7-20	4	•	•	٠
RIDE	H6/L	57.60	24.00	25.00	27.00	26.00	24.00	25.00	25.00	_	4.0	1.0	0	5.0		_	63.00	_	_	_	_	_	-	_	_	~	_	_	_	_	_	_	52.00	_	_	_	000
SUSPEND SOLIDS	H6/L	26.00	20	190.00	8	00	120.00	9	96 • 00	94.00	12.00	80.00	•	9.0	9.0	S	44.00	•		•	•	00.04		•	•	•	•	•	ċ	ċ	20.	ŝ	26.00	34.00	÷	41.00	
000	#6/L																																				
10TAL KJELD	H6/L	1.283																1.793	1.800	1.850		1.880	1.950	.980	• 990	1.053	1.610	1.370	1.663	1.910	1.753	1.880	1.497	1.460	1.393	1.263	
086. NIT.	H6/L																																				
NH-N	H6/L	.350	.800	.670	.450	.400	064.	• 500	.500	009*	.830	. 730	• 680	.560	064.	0+4.	• 420	.380	.380	. 380	.360	.300	.032	190*	• 061	. 048	.078	.081	.121	.115	• 103	.116	060.	663.	. 254	.091	
NO-2	H6/L	1.940	•	•	•	2.100		•	2.300	•	•	2.300	•	2.500	2.100	2.100	2.100	2.200	2.300	.30	2.200	-20	2.200	1.650	1.470	1.410	1.550	1.960		3.100	3.600	4.300	4.500	4.360	.90	3.500	
08 TH0 PHOS.	H6/L	. 095	.230	•200	.115	• 105	.109	.116	.122	.130	.132	.134	.124	.102	.09B	. 088	• 082	•10.	•078	.072	• 062	• 059	.067	. 040	• 042	.032	• 045	**0.	600.	.048	640.	.052	- 042	.042	.041	.639	
TOTAL PHOS.	H6/L	.156	.843	.710	.430	.376	.380	004.	.370	.380	.370	.360	.320	.250	.230	.220	.220	.184	.170	.175	.203	.172	.168	.106	.107	.102	.194	.210	.240	.263	.245	.200	.164	.140	.12P	.114	
FLOW		54.	351.	349.	313.	293.	285.	299.	321.	357.	363.	397.	+00+	309.	279.	245.	229.	221.	231.	185.	173.	171.	173.	65.	78.	113.	193.	271.	337.	365.	395.	415.	398.	357.	315.	261.	1 (
11MF 2450		300	2000	2155	220	635	1310	1500	1730	202	710	1315	1710	150	710	1240	1655	135	705	1240	1645	135	705	300	825	1515	2045	245	928	1425	1955	300	855	1445	2010	300	
SAMPLING Sate		•	*	•	S	S	80	S	80	9	•	9	•	7	_	~	~	€0	60	•	80	•	•	58	28	28	28	53	54	53	53	3	33	30	()	31	
PP.	YN NO								77 3																												

LAKE EPIE WASTEBATER MANAGEMENT STULY - MATER GUALITY INFORMATION

PAJOA KIVER BASIN : BELLE RIVER

STREAM : BELLE RIVER

USGS NO. 04160600 LOCATION W/CODE : AT MEMPHIST MICHIGAN

0 0 0 0	250		690	705.	705.	720.	735.	755.	800.	790.	790.	800	795.	805	810.	815.	630	825	835.	855	870.	865.	855.	860.	875.	845	845	895	995	190	786.
KON	;	1/91																													
2018	;	167	7.60	7.40	7.20	7.10	7.10	7-10	6.10	9.00	6-10	5.80	5.20	4.90	4.70	3.90	3.60	3.30	2.70	2.20	1.85	1.54	1.39	1.25	1.25	1.07	.75	• 24	.33	1.82	4
CHC	RIDE	1/94	90.09	63.00	58.00	61.00	62.00	64.00	86.30	83.00	82.06	81.00	83.00	84.00	86.00	86.00	30.68	69.00	90.00	93.06	96.00	97.00	94.00	90.06	69.69	00°ú6	92.00	99.00	119.00	82.00	ì
SUSPEND	SOLIDS	H6/L	25.00	28.00	25.00	19.00	19.00	18.00	10.00	00.6	9.00	11.06	8.00	90.9	9.00	5.00	00.9	7.00	3.60	00.6	30.8	2.00	7.00	2.00	3.00	2 • 0 0	3.00	4.60	7.00	00.4	•
000	•	H6/L																													
TOTAL	KJELD	H6/L	1.473	066	1.460	C 25 C	930	1.670	1.310	1.133	1.250	1.310	1.116	1.200	1.270	1.056	.973	1.040	•880	.920	1.033	1.160	1.123	1.240	.830	.960	1.083	1.110	.770	009.	11
086	N.T.	H6/L																													
SH-N		#6/L	.074	190	480	960	990	5 € 0 •	.076	.026	. 023	.018	.015	. 005	+00.	.007	♦00•	• 003	.001	.003	.008	.005	•00•	100.	.003	•001	.001	• 002	•00•	• 000	1
NO-2	NO-3	#6/L	3.100	4.000		001.0	001.0	2-000	1.160	1.120	1.160	1.140	1.150	1.090	1.040	066*	.970	.850	.740	.710	.650	.490	.460	.480	.470	.280	.144	.176	.018	.270	1 . 1
OR THG	PHOS.	H6/L	0.042		7.60			.038	.083	.074	.074	• 070	.071	.070	• 066	• 057	• 05₽	• 059	.051	• 050	• 050	.051	.047	.045	**0.	+ +0 •	.033	• 032	. 095	.077	, ,
TOTAL	PHOS.	H6/L	1111			4 6	40.0	.091	. 147	.126	.131	.121	.115	.109	.128	.100	.095	.098	.098	•00•	.092	•102	960.	.081	.080	•084	160.	.109	.123	- 092	1 . >
FLOL	CFS		197.	1 2 1	166		1430	123.	151	133.	125.	119.	111.	106.	99.	94.	98.	83.	78.	72.	9	64.	61.	59.	55.	42.	51.	50.	24.	14.	,
	2400		1 4 4 6	7 6	1 4 6			2055																		1350	2030	300	1350	101	, ,
LING		YR MO DY	7		7				·	25	25	26	4 26	4 26	4 26	4 27	4 27	4 27	1 27	28	2.8	4 28	28	29	1 29	29	66.	9.0	5 16	7	•
AMP	ATE	Ĭ.				- •					. ~	_	_	_	_	_			<u> </u>	. ~	. ~	_	. ~	. ~	,	. ~	_	_	77		•

CLINTON RIVER AT MT. CLEMENS, MICHIGAN

LAKE EPIE HASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CLINTON RIVER

STREAM : CLINTON RIVER

USGS NO. 04165500 : AT HT. CLEMENS. MICHIGAN LOCATION W/CODE

COND 25C.	CHHO	780.	750.	595.	545.	485.	465.	500	515.	505.	515.	520.	535.	240.	260.	605.	620.	629.	630.	670.	705.	790.	625.	735	623	620.	260.	535.	900	565	59¢•	290.	•009	605.	620.	635.	655.
IROM	16/L																																				
2018	HG/L	7.30	6.40	6.10	5.90	5.40	5.50	5.80	5.90	9.00	6.10	6.10	9	6.50	6.70	6.80	06.9	7.10	7.20	7.40	7.60	5.50	2.00	5.30	5.90	6.10	•	6.80	•	•	₹	•	7.60	•	7.50	•	ď
CHLO	HG/L	128.00	143.00	101.00	87.0	9	63.00		64.00	1.0	62.00	60.09	œ	63.00	•	73	7	72	72.00	8	91.0	97.0	149.0	125.00	95.0	88.0	24.0	68.00	65.06	ė	71.00	9	ç	ŗ	90. ¥9	•	71.00
SUSPEND	30C123	38.00	200.00	430.00	240.00	230.00	190.00	126.00	110.00	96.00	100.00	76.00	•	•	9	53.00	36.00	40.00	43.00	53.00	46.00	22.00	180.00	210.00	290.00	240-00	170.00	ó	9	•	•	•	•	•	65.00	•	•
000	H6/L																																				
TOTAL	MG/L	1.280	1.690	1					1.680	1.760	1.740	1.760	1.770	. 70	85			1-360	.28	1.090	.17	.660	.37	38	3.840	•51	•46	1.670	.33	.42	.12	1.200	1.260	.960	.900	.950	.760
086	#6/L																																				
NH H	HG/L	0.00	055		470	, 4 B C	27.5		930	000	350	920	380	376	048	420	310	900	.290	•280	.280	.133	.160	• 146	•220	.141	. 122	• 200	.115	.084	960•	.107	060.	.082			• 0 88
10-2	NO-3	0.000	1.720	1.610	1.525	46.	2000		1.780	2 2 2 2	1.000	1.890	1.670	1.540	02701	•	•			1.720	1.740	2.300	1.780	1.670	1.620	1.610	1.610	1.580		1.710	1.800	1.920	97	1.930	•	6	.91
I	PHOS.	193	42 L		124				401.	.01		×010		700		9 6	700	101	1887	• 092	.127	.126	.114	€00.	.099	.136	.085	• 076	. 063	.058	.058	190.	6900	3.0	6.00	195	.079
TOTAL	PHOS.	6	١.		u 6	١.	0 ×	3 1	" "	4 -		9	O P	- 4			3 C	a	9 6	•	100	•	• 60	•	- 67	n	0	0	•	•	. 3	-	•		у ил		
FL 04	CFS		7 6	2 .	100	700	9 4 4 6		2120.		1016	9 6			717	-0021			1070	555	1365.	920	786	071	750	3324	534	520	661	282	096	617	342	0	1475	750	009
110	24:0 HRS.	6		C/91	Ç i		1140	1650	8	670	0221	0101	,	210	2671	5041) ;	1138	1555	9 6	620	155	1110	1410	1950	125	450	1330	1855	125	740	1355	2051	4	7.0	126.1	1946
INF	2		•	• 1	.		-	n	۰ و				- 1				8 0 (C a				, K			200		60	5	6	, ,	, co	(C)	C 17		; ;	; =	31
IPL 1	ATE NO	•																																			r Pro
SAI	2 %	;	-		2	-	= :	-	בן	= 1	= :	= ;	= ;	: 1	= :	= :	= ;	::	: ;		11			1	11	7	7.7	7.	11	7.7	77	7.7	7				7

LAKE ERIE WASTEWATER MANAGEMENT STUCY - WATER QUALITY INFORMATION

HAJOR RIVER BASIK : CLINTON RIVER

: CLINTON KIVER

STREBM

USGS NO. 04165500 : AT HT. CLEMENS. MICHIGAN LUCATION W/CODE

COND	7 DC :		670.	680.	705.	710.	585.	525.	515.	535.	560.	280	620.	650.	670.	680 •	68 0•	700.	720.	735.	745.	745.	755.	760.	765.	765.	965.	830.	720.
IRON		1 01																								•			
S102		H6/L	7.00	6-80	9.90	08.9	7.10	6.50	6 - 50	9.90	09-9	6.80	7.00	6.70	09•9	6.40	00•9	5.90	5.50	5.40	5.20	5.10	4.90	5.00	5.10	00.4	2.20	3.10	2.20
CHLO	RIOE	N6/L	73.00	75.06	79.00	90.08	60.00	56.00	53.00	56.00	58.00	00.09	63.00	90-19	71.00	70-06	72.00	74.00	78.00	19.00	81.00	83.00	84.00	84.00	86.00	85.00	106.00	1111.00	98.00
SUSPEND	SOL 105	H6/L	48.80	40.00	40.00	38.00	99 - 99	96.00	67.00	73.00	24.00	48.00	32.00	41.00	52.00	94.00	44.00	20.00	43.00	49.00	34.00	00.44	30.00	25.00	22.00	27.00	36.00	30.00	23.00
000		M6/L																											
TOTAL	KJELD	H6/L	.900	.853	1.049	1.053	1-150	1.080	1.140	1.220	1.200	1.310	1.180	1.210	1.170	1.063	1.240	066.	.970	.973	1.013	1.130	.933	.813	.820	.893	.910	1.023	.790
ORG.	Z Z	H6/L																											
8H-3		¥6/L	.092	.101	.117	129	. 098	.137	.117	.144	.105	.198	.115	.119	.167	.115	.110	.117	.143	.132	.119	.147	.183	•154	.155	.165	.198	.250	•101
NO-2	NO-3	H6/L	1.860	1-830	1.950	1.920	1.910	1.600	1.490	1.560	1.450	1.460	1.500	1.610	1.680	1.760	1.710	1.650	1.720	1.720	1.720	1.670	1.880	1.870	1.900	1.850	3.600	3.600	301.2
ORTHO	PHOS.	H6/L	070	5.00	800	101	290	111	200	106	•00•	• 085	.078	690	.063	• 072	5.60	. 061	062	0.00	0.60	.053	0.54	1056	.063	. 063	.290	300	•266
TOTAL	PHOS.	1/9.		187				2560	000	220	-210	-166	1155	100	156	-142	641		106	131	61.	151	126	122	129	1132	0	C 4 17 1	.330
FLOW	CFS	1	1494.	1 490	1440		25.06	10 M	3401	3450	3282	2834	23.09	1938	1690	1564.	1456.	1472	1256	1240	1000	778.	778.	778.	778.	647	219.	223	179.
T 1 KE	24.0	HRS.	140	2 4	1255	0000		1616	1010	120	220	1250	1014	2 6	725	1300	200	2 4 2	1	1 6 6			7.	1 2 0 0			000	916	936
			-			٠,	٦ ٧			2 %																			
SAMPL	DATE	YR PO DY	***	•	•	: !		1:	•	* * *		7	7.2	1	7.	71	11	* **	1:	•		11:	77	• • • •		11	77		11.6

ROUGE RIVER

CITY OF RIVER ROUGE, MICHIGAN AT WEST JEFFERSON BRIDGE

LAKE ERIE VASTEVATER HANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : ROUGE RIVER

ROUGE RIVER

STREAM

LOCATION W/CODE : AT WEST JEFFERSON BRIDGE. MICH.

HDNR NO. 620070

COND 25C. UNHO	665 845 745		9000 9000 9000	6 4 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IRON NG/L						
S102	8 4 9 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	000000	4 4 W W W	04.70 04.70 04.60 04.60		4 4 V 8 M 4 4 G
RIDE MG/L	137.08 172.00 168.00 155.00	78.00 77.00 78.00	77.00 74.00 72.00 70.00	69.00 70.00 70.00 96.00	96 96 96 96 96 96 96 96 96 96 96 96 96 9	883.00 78.00 73.00 73.00
SUSPEND SOLIDS MG/L	2 4 4 W	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120.00 120.00 140.00 1151.00	9
C0D						
TOTAL KJELD MG/L	1.210	1.550 1.550 1.550 1.550				1.250 1.250 1.190 .730 1.020
0R6. NIT. M6/L						
KH-3	.470 1.220 1.000	944444 944444 944444	99999 99999 99999	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	
NO-2 NO-3 NG/L	1.040 1.040 1.040 1.040			444		11.0000
ORTHO PHOS. MG/L	.034 .072 .704 .111					
TOTAL PHOS. NG /L	.430	12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4011196		. 1220 . 130 . 130 . 154
FLOW	1300. 765. 600. 750.		10000 10000 10000 10000		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11 9900. 11 9900. 11 9900.
SAMPLING TIME DATE 2408 YR NO DY MRS.	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1		112 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 80 1810 8 80 1880 8 81 715 8 81 715 9 81 1710

LAKE ERIE NASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : ROUGE RIVER

STREAM : ROUGE RIVER

MDNR NO. \$20070 : AT WEST JEFFERSON BRIDGE, MICH. LOCATION W/CODE

COND 25C.	CHRO	515.	550.	540.	550.	485.	560.	525.	520.	495.	510.	520.	535.	555.	560.	570.	585.	595.	570.	570.	565.	560.	535.	535.	545.	+00+	345.	290.
NO N	1/9H																	•						-				
S102	N6/L	4.70	4.90	9.4	4.60	5.70	6.40	6.40	6.60	9.60	6.80	7.20	7.10	7.20	7.20	9.30	7.80	6.70	6.40	5.90	5.80	5.70	5.40	5.20	4.90	04.	.97	.87
CHLO RIDE	N6/L	96.00	68.00	65.00	96.00	63.00	71.00	65.00	00-09	54.00	54.00	54.00	57.00	61.00	64.00	00.99	96.00	69-00	99	63.00	63.00	00-49	61.00	60.00	62.00	41.00	30.00	23.00
SUSPEND SOLIDS	H6/L	25.00	18.00	24.00	18.00	32.00	88.00	74.00	90.00	140.00	94.00	120.00	74.00	45.00	36.00	32.00	29.00	31.00	25.00	21.00	38.00	16.00	16.00	14.00	30.00	17.00	19.00	10.00
000	1/9H																											
TOTAL	1/9H	.640	.700	• 690	069.	1.240	1.860	1.570	1.670	1.700	1.570	1.380	1.370	1.280	1.350	1.790	1.460	1.470	1.340	1.350	1.080	.810	.830	.970	1-140	.590	.670	. 560
OR6. NIT.	M6/L																											
n-IX	H6/L	.310	.260	.250	-260	. 320	004.	• 4 30	.280	.260	.240	.260	.260	.220	.220	.320	.290	.420	.360	.380	.310	.260	.240	.290	.330	.210	.310	-240
NO-2	H6/L	.910	.910	906	.860	1.460	2.000	1.700	1.520	1.430	1.480	1.520	1.420	1.380	1.390	1.260	1-190	1.160	1.050	.970	.910	. 680	.830	.790	.770	.220	.300	.220
OR THO PHOS.	H6/L	• 076	.071	•059	. 055	. 055	.053	.082	•086	-074	• 080	•00•	.092	.102	.097	.070	.095	.093	.135	.105	.072	.038	.046	.059	• 056	.032	.033	.059
TOTAL PHOS.	H6/L	.131	.119	• 096	960.	.290	.350	048.	.320	• 330	.270	.300	.260	.230	.210	.210	.188	.240	-230	.200	.179	•116	.110	.122	•176	060•	.033	.097
FLOW		858.	1350.	1250.	1861.	5800.	6800.	6550.	6100.	6280.	5500.	4378.	3365.	2150.	2350.	1440.	1600.	1600-	1700.	1450.	1015.	950.	1200.	1280.	1000.	176.	1395.	697.
71E	ES S.	9	1305	1410	2	1340	2020	30	240	1220	1710	10	630	1230	1725	=	583	1150	1720	•	615	1220	1715	•	550	0++1	1400	1415
9	2	-	-	_	~	25	23	26	56	26	26				27					_								27
SAMPL ING DATE	Ş	•	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	'n	•	4
SAI	=	77	11	77	11	11	11	77	11	77	11	77	77	11	11	11	77	11	11	11	11	11	11	11	11	11	11	11

AT
SOUTH METROPOLITAN PARKWAY
NEAR NEW BOSTON, MICHIGAN

LAKE ERIE BASTEVATER MANAGEMENT STUCY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

TREAM : HURON RIVER

HOMR NO. 821114 : AT SOUTH METROPOLITAN PKEY LOCATION W/CODE

COND 25C.	720.	750.	730.	715.	720.	720.	720.	705.	705.	710.	730.	695.	700-	695.	.069	685.	680	680.	-089	680 •	585.	595.	590.	580.	570.	580.	580.	580.	585.	580.	590.	590.	595.	600	605.	595
IRON MG/L																																				
S102	8.00	8.40	8.70	9.70	8.40	8-60	•	8.30	ď	7	7	7	ş	8.10	ç	8 • 60	8.10	8.10	•	9 - 60	7.40	7	7.30	•	•	-	7.80	7.30	7.40	7.40	7.50	7.50	7.10	7.40	7.50	Ŧ
CHLO RIDE MG/L	79.00	•	83.00	80.00	80.00	80.00	80.00	19.00	19.00	19.00	78.00	78.00	78.00	76.00	75.00	74.00	74.00	73.00	73.00	72.00	24.00	57.00	54.00	53.00	50.00	3.0	0.0	1:0	1.0	2.0	3.0	54.00	3.0	5.0	0.9	5.0
SUSPEND SOLIDS MG/L	17.00	50.00	5.00	9.00	16.00	15.00	3.00	13.00	17.00	16.00	14.00	9.00	13.00	30.00	15.00	5.00	11.00	25.00	13.00	13.00	13.00	45.00	24.00	22.00	13.00	25.00	45.00		Ð	6.0	5.0	24.03	6.0	8.0	2.0	6.0
C00																																				
TOTAL KJELD MG/L																		1.880	1.840		1.190	1.440	1.500	1.580	1.420	1.520	1 - 8 4 0	1.900	1.840	1.420	1.506	1.533	1.273	1.320	1.420	1.020
ORG. NIT. HG/L																																				
NH-3	2.100	1.900	2.000	2.000	2.000	2.000	2.000	2.000	2.000	1.900	1.910	1-930	1.890	1.880	1.810	1.770	1.760	1.730	1.680	1.680	.760	.730	.730	. 750	.740	.720	.766	. 750	.750	.750	.770	.776	. 780	. 790	. 780	.790
NO-2 NO-3 M6/L	530	580	-550	.540	. 530	.540	.550	.560	.560	.570	.580	.570	.580	.580	009.	.610	.610	.630	.630	.640	.810	.790	.010	.810	.800	.810	.800	.790	.780	. 780	.760	.750	.730	.740	.740	.750
ORTHO PHOS. HG/L	.027	.035	.032	.039	• 036	.035	.045	.044	.041	.048	.037	+0.	.040	.039	.040	.040	.039	.037	.034	.034	• 023	. 022	.026	.023	. 021	.019	•019	.021	. 021	• 02€	. 023	.022	.021	.023	• 029	.021
TOTAL PHOS. MG/L	•			60	6	-	10	10	2	=	•	11	5	9	60	8	80	69	80	8	90	80	90	90	5	٠	07	10	-	90	90	'n		90	9	• 056
FLOW	91.	1	920	150	180	1430.	99	430	500	520	2	380	900	-	33	220	•	150	8	330	23	330	_	420	-	900	1	700	70	300	200	10	950	900	430	
6 TIME 24 CO V MRS.	•	-	. 4	•	_	5 1515	~		-	_	~			_	~		~	~	~		•	8	8	•	•	9	9	0	0	. 0	0	_	-	1	~	-
SAMPLING Date yr mo dy	867	, pr) p :	M	17	m	m	m	m	m	m	Ю	m	m	M	m	М	m	m	m	3	3	3	3	3	E 2	3	1 0	5	10	N	E.)	E.	10	10)

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

MDNR NO. 821114 LOCATION W/CODE : AT SOUTH METROPOLITAN PKWY

U W D	9	6 1	109	290	545	580	580	580	565	280	570	565	570	570	570.	565	580	585	580,	580.	580	580.	580	580.	570.	570.	535.
IRON MG/L																											
S102	7.30	. 73	7.40	7.40	1 - 62	2.30	2.60	2.30	2.00	2.20	2.30	2.20	2.40	2.60	2.70	2.60	2.50	2.60	2.70	2.70	2.50	2.70	2.60	2.40	•0•	1.27	1.00
CHLO RIDE NG/L	26.00	57.00	26.00	55.00	49.00	50.00	49.00	48.00	47.00	47.00	47.00	46.00	46.00	47.00	47.00	47.00	46.00	46.00	46.00	46.00	46.00	48.00	47.00	46.00	50.00	52.00	57.00
SUSPEND SOLTOS MG/L	24.00	14.00	21.00	19.00	25.00	23.00	22.00	19.00	18.00	17.00	15.00	31.00	18.00	13.00	17.00	19.00	17.00	20.00	12.00	18.00	14.00	14.00	14.00	15.00	15.00	15.00	12.00
C00																											
TOTAL KJELD MG/L	1.000	1.140	1.310	1.360	.850	.990	1.000	1-100	1.140	1.263	1.310	1.286	1.420	1.450	1.230	1.370	1.100	1.230	1.340	1.310	1.050	1.100	1.290	1.240	.860	1.150	1-140
ORG. NIT. MG/L																											
NH-3	.780	.740	. 760	.760	.182	.220	.240	.250	.240	.210	•240	-250	.210	.220	.230	.220	• 250	•260	•280	.270	.230	.210	•200	• 191	• 016	004.	• 085
NO-2 NO-3 NG/L	.750	.750	.750	.750	.740	.720	.730	.710	.790	. 700	.690	.630	.620	.620	•620	•630	• 6 0 0	.590	.580	• 560	.560	.580	•560	.540	.390	.320	.370
ORTHO PHOS.	.018	.020	. 023	.021	-002	.001	+00•	.001	-005	- 005	• 005	• 003	.003	. 003	• 003	- 002	• 006	900•	.009	.010	+00•	.003	.003	• 005	.010	• 084	.012
TOTAL PHOS.	390.	.049	.053	• 0 • 9	0 90 •	• 069	.063	-062	.061	• 059	. 0.01	000	.058	• 065	190.	1901	• 059	.057	.061	.061	• 056	.053	.076	-057	.054	.125	.087
FLOV	1150.	840.	960.	1150.	2250.	1850.	1600.	1600.	2350.	1600.	1450.	2100.	2300.	1400.	1220.	1220.	1250.	1500.	1500.	1580.	1650.	780.	1250.	1290.	182.	240.	180.
2400 MPS.	900	1610	1925	325	1650	2305	325	835	1523	2025	305	940	1450	1945	300	830	1425	1955	245	925	1455	2025	300	830	1725	1640	1445
SAMPLING DATE VR MO DY	17 4 1	17 4 1	77 4 1	77 4 2																77 4 29							17 6 27

RIVER RAISIN NEAR Monroe, Michigan

LAKE ERIE "ASTEVATER MANAGENENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : RIVER RAISIN

: RIVER KAISIN

STREAM

: NEAR MONROE, MICHIGAN LOCATION W/CODE

USGS NO. 04176500

COND 25C. URHO		ម្តេច មួន
IRON MG/L		
S102		20000000000000000000000000000000000000
CHLO Ride MG/L	33 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
SUSPEND SOLICS MG/L		310.00 150.00 1150.00 1120.00 1120.00
7/9W 000		
TOTAL KJELD MG/L	1.650 1.650 1.650 1.650 1.650 1.660	1
086. NIT. MG/L		
NH-3	60 10 4 4 4 4 8 4 9 4 4 4 8 8 8 8 8 8 8 8 1 1 1 1 1 1 1 1 1	.109 .1140 .1140 .095 .073
NO-2 NO-3		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
ORTHO PHOS. MG/L	4 1 2 2 2 2 3 3 4 4 4 4 7 1 1 1 1 1 1 2 2 2 3 3 4 4 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TOTAL PHOS. PG/L		
FLOV	1352 23472 24472 24472 24472 24472 24475 24475 24475 24475 24475 24475 24475 24475 24475 24475	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
11ME 240 HRS•		11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S .0	ちゅんちゅうしゅう りょくんとり タカッちょうちゃっち	
<u> </u>	. 162 163 163 163 163 163 163 163 163 163 163	
SAMPLING Date Yr no dy		

LAKE ERIE WASTEWATER MANAGEMENT STUCY - WATER GUALITY INFORMATION

HEJOR RIVER BASIN : RIVER RAISIN

STREAM : RIVER RAISIN

USGS NO. 04176500 : WEAR' MONROE. MICHIGAN LOCATION W/CODE

COND 25C.	510. 520. 525.	4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 66 64 64 64 64 64 64 64 64 64 64 64	**************************************	
IRON MG/L						
S102	8.00 7.90 8.10	8 8 8 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	\$ \$ \$ \$ \$ \$	**************************************	
CHLO RIDE MG/L	31.00	27.00	26.00 26.00 26.00	27.00 27.00 27.00	28	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
SUSPEND SOLIDS MG/L	00.48 00.48	80.00 75.00 170.00	150.00 110.00 100.00	76.00 71.00 58.00 63.00	N N + N +	00 00 00 00 00 00 00 00 00 00 00 00 00
7/9M COD				•		
TOTAL KJELD MG/L	1.060	1.130	1.810 1.540 1.500	1.2560 1.4560	1.450 1.050 1.090	1.192 910 910 980 980 990
ORG. NIT. MG/L						
NH-3 MG/L	. 659 659	230	.220 .220 .196	139	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
NO-2 NO-3 MG/L	7.500	7.200 9.100 8.800	8.600 8.600 8.500	8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.900 7.500 7.500	7.200 7.200 7.200 7.100 7.000 2.500 2.400
URTHO PHOS.	150.	.055 .120 .115	.104	000000000000000000000000000000000000000		. 065 . 066 . 067 . 104 . 132
TOTAL PHOS. MG/L	.188	.175	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1848	.166 .157 .151	
FLOW	3168.	2924. 2792. 4464. 4724.	5076.5588.5684.	5204 5204 4850	8 4 8 4 8 4 8 4 8 4 8 4 8 4 8 8 8 8 8 8	2246. 29996. 2756. 1098. 1566.
117E 24:0 18S.	755	1810 140 1550 2140	220 735 1415	125 850 1350	115 115 735 1325 1855	1355 1355 125 125 1620 1540 1540
ING		2 2 2 2	2222	2777	3 5 5 5 5 7	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
SAMPLING Date Vr no dy		• • • •	****			*******
SA	ור רך	 				

MAUMEE RIVER AT WATERVILLE, OHIO

LAKE ERIE LASTEVATER HANAGEMENT STUDY - MATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUMEE RIVER

STREAM : MAUNEE RIVER

USES NO. 04193500 LOCATION W/CODE : AT WATERVILLE, OHIO

MIN MO															405.	441.	454	468.	482.	496.	516.	545.	559.	582.	583.	590•	630.	646.	655.	662.	.699	489.	-044	405.	418.	467.	506.	509.
1400 27440	IRON MG/L																																					
THE FLOW TOTAL CORPUS NH-2 NH-5 NH-5 CHG COLDS NH-15 NH-15 NH-16 NH-16 NH-2 NH-2 NH-15 NH-16 NH-	S102			0.00	9.50	6.10	ç	5.70	9.60	7.60	7.40	8.20	7.20	8.20	7.80	7.60	8.80	7.70	*	•	•															8.60	9.10	9.00
TIPE FLOW TOTAL ORTHO NO-2 NH-3 ORG. TOTAL COD NR. TOTAL C	R I OE														20.00	18.00	18.00	20.00	19.00	19.00	24.00	29.00	35.00	35.00	35.00	37.00	46.00	43.00	36.00	35.00	36-00	29.00	21.00	18.00	17.00	33.00	35.00	36.00
TIPE FLOW TOTAL ORTHO ND-2 NH-3 CRG TOTAL HRS. HRS. NG-3 NG-3 NIT: WJCLD HRS. NG-1 NG-1 NG-1 NG-1 NIT: WJCLD HRS. NG-1 NG-1 NG-1 NG-1 NG-1 NG-1 NG-1 NG-1	SUSPEND SOLIDS MG/L	•	7 0		00.079	632.00	656.00	671.00	252.00	372.00	305.00	267.00	571.00	408.00	241.00	227.00	157.00	89.60	16.60	63.50	20.40								17.30	80.60	166.00	473.00	444	•	0	•	N	m
71PF FLOW TOTAL ORTHO NG-2 NH-3 CRG 24C0 CFS PHOS: PHOS: NG-3 NIT: 18D0 27140: 1-05C -095 B-00 -340 24C0 31460: 1-05C -095 B-00 -340 24C0 31460: 1-090 -109 B-400 -340 24C0 31460: 1-090 -109 B-400 -340 24C0 31460: 1-090 -1090 B-400 -170 24C0 23460: 1-090 -090 B-000 -170 24C0 23460: 1-090 -090 B-200 -170 24C0 18C0 18C0 -090 B-200 24C0 18C0 18C0 -090 B-200 24C0 18C0 -090 B-200 24C0 18C0 -090 B-200 24C0 18C0 18C0 18C0 24C0 18C0 18C0 1	000 Me/I																												30.00	31.00	34.00	60.00	63.00	46.00	54.00			
TIME FLOW TOTAL ORTHO ND-2 NH-3 2400 CFS PHOS. NG-3 1800 27140. 1.05C .095 8.000 .300 2400 31800. 1.120 .105 7.600 .340 2400 31800. 1.120 .105 8.400 .365 1800 29660. 1.080 .105 8.400 .365 1800 29660. 1.080 .085 8.000 .170 2400 29680990 .085 8.000 .170 2400 29680990 .085 8.000 .170 2400 18460982 .085 7.700 .320 1800 29680990 .085 7.700 .221 1800 19210572 .096 8.500 .170 1800 2730220 .107 8.500 .221 1800 2730220 .127 8.000 .251 1800 2230200 .185 7.700 .258 1800 2230200 .185 7.400 .428 1800 2730220 .185 7.400 .428 1800 2860982 .185 7.400 .428 1800 2860310 .185 7.400 .428 1800 2860310 .185 7.400 .428 1800 2860310 .185 7.400 .428 1800 18640855 .187 6.500 .255 1800 18650485 .187 6.300 .255 1800 18650485 .187 6.300 .255 1800 18650485 .187 6.300 .255 1800 18650485 .185 6.500 .325 1800 5660485 .185 6.500 .255 1800 18650485 .185 6.500 .255 1800 18650485 .186 6.500 .255	TOTAL KJELD MG/L																												1.500	1.200	1.700	2.200	1.900	1.830	1.600			
TIPE FLOW TOTAL ORING NO-2 2400 CFS PHOS. PHOS. NO-3 HRS. RG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L N	CRG. NIT.																																					
1800 25980	S-HN	101	000	100	- 365	.360	.200	.170	.170	.180	.170	.180	.160	.320	.177	•202	.191	.220	.221	.215	.258	.240	.242	.218	.253	. 428	004.	. 4 CB	.542	.750	• 520	-655	-485	.442	.295	.325	-285	• 300
1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 2580 - 2800 1800 1850 - 2800 1800 1850 - 2800 1800 1850 - 2800 1800 1800 1850 - 2800 1800 1850 - 2800 1800 1850 - 2800 1800 1850 - 2800 1800 1850 - 2800 1800 1850 - 2800 1800 1800 1800 1800 1800 1800 1800	2-0N NO-3				8-400	8-400	7.600	0000	8.000	8.000	8.200	8.500	7.700		•50	8-500	8.500	8.500	8.000	7.700	7.700	8.100	A • 000	7.750	7.600	7.500	7.400	7.400	6.900	6.200	• 52	. 38	•62	. 87	.30	.65	.30	6.550
### FLOW 100 1	PHOS.		-095	C01.	• 085	-100	080	• 075	.080	060-	.070	• 085	.085	.320	.107	• 096	.100	. 032	.051	•103	.101	.165	.127	.135	.160	.160	.182	.170	.187	.125	.123	.171	.136	.105	13	13	_ €	•
22	TOTAL PHOS.		0	9.	-15	• 0 8	.29	•0•	.91	9	•	9	82	9	65	57	50	3	33	32	27	26	22	20	20	29	19	19	25	31	40	80	8	72	67	\$	*	_
	FLOV		911		1800	1960	1320	0996	8540	6989	5850	3680	0440	8460	4900	1020	_		•	o.	•	•	•	•	•	-	•	~	•	_	5650	9640	6500	2500	-	_	-	_
	717E		900	2400	660	1900	2400	009	1200	1600	2400	900	1800	2400	1800	1800	1 8 0 0	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	18c0	0081	1960	1800	0081	0381	6381	996	9381	0081	0381
	_			-																																		
ទី. 🕳 ស្រាស់ស្ត្រសស់ស្ត្រសស់ស្ត្រសស្ទិស្ត្រសាល់សស្ត្រសស្ត្រសស្ត្រស	4 F F		- •	-	_	-	-	-	-	-4	-	-	-	-	-	-	-	-	~	-	-	-	~	-	_	-	_	-	-	-	-	~	~	~	~	~	~	~

LAKE ERIE WASTENATER MAMAGEMENT STUDY - WATER GUALITY INFORMATION

STREAT : MAUNEE RIVER

USGS NO. 04193500 : AT WATERVILLE, OHIO LOCATION V/CODE

COND	CHEC	520.	535-	581.	154	.909	616.	643.	.999	670.	.999	471.	637.	630.	672.	691.	701.		322.	342.	355.	368.	584.	350.	423.	458.	494.	504	+14-	575.	585.	579.	590.	583.	594.	616.	384.
IRON	H6/L																																				
\$102	NG/L	9.50	8.80	9.10																									6.7	•	~	•	4:9	4.3	14.70	3.1	_
CHLO	H6/L	38.00	36.00		9.0	9.0	0.0	:	8.0	58.00	2.0	;	2.5	5.5	5.5	2.0	2.0		18.00	18.90	19.90	21.20	20.80	26.50	20.00	25.00	23.70	28.90	28.00	35.00	32.00	36.00	37.00	21.00	38.00	43.00	23.00
SUSPEND	H6/L	70.40	57.50	08.64	39.40	33.30	35.90	33.40	29.10	28.10	21.70	143.00	82.70	253.00	657.00	714.00	703.00		0	0	0	0	0	0	•	•	9	Ð	0	N	~	•	•	•	32.40	~	9
COD	HG/L				64.00	65.00	61.00	65.03	61.00	61.00	61.00	76.00	68.00	61.00	92.00	96.00		-	33.00	$\overline{}$	$\overline{}$	_	$\overline{}$														
TOTAL	H6/L				.700	.900	006+	006.	.800	.800	1.000	1.500	006.	.730	1.200	1.200		1.100	1.200	1.000	1.000	.800	.800														
ORG.	HG/L																																				
F) I Z	H6/L	.285	.300	.335	.367	.351	. 428	.503	.330	.303	.345	.767	.607		•104	.104	- 092		.161	•260	. 445	.200	.212	1.000	• 285	• 185	.340	004.	.355	544	. 18	.421	.312	.318	.380	. 387	•225
N0-2	#6/L	ູ	5.950	6.200	4.600	6-400	6.400	6.300	.00	.30	•	9	.32	:	• 56	.94	.28		5.760	5.600	5.160	4.800	4.760	4.640	4.980	5.243	5.663	000.9	5.560	6.780	6.790	6.700	6.820	6.700	6.903	7.300	3.700
ORTHO	MG/L	.125	.120	.115	•100	=	.140	15	.120	15	15	.150	.166	.030	.104	10	6		.100	.115	060.	.516	. 151	.106	.090	. 084	.114	• 096	060.	.155	.120	.107	•106	.107	.115	.115	.070
TOTAL	F6/L	_	.330	•	•	0	•	20	0	20	19	37	29	0	91	.12	-		•	~	69	N	.41	ň	n	~	100	N	10	0	25	22	•	_	.210	0	-
FLOW	2	3450.	•	3150.	5	2280.		-	ō	3	-	2	921	564	-	1220		9600	9080	648	0066	550	1140	7730	5	~	•	-	•	_	•	-	•	-	5130.		-
711ME	E S.E	•	1860		-	-	•	•	•	•	•	•	•	•	•	-	•	•	•	•	8	æ		•	•	•	•	•	•	40	•	•	•	€0	1800	æ	40
																																			16 1		
SAMPL ING	2																																		**		
SAM	- E	75	75	75	75	75	7.	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	15	75	22

LAKE ERIE LASTEMATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

œ
Ž
Ξ
•
w
'n
5
ĩ
Ī
••
MISE
2
ä
8
_
œ
IVE
-
Œ
٥.
ĕ
Ŧ
Ĩ
=

_
-
_
-
14
-
-
8
-
-
-
MANNE
•
•
•
_
- 8
•
-
•
4
u

USES NO.
0H10
WATERVILLE.
: AT
3000/A
L DCAT 10N

COMO 25C.	CHAO	517.	580.	575.	548.	559.	545	565.	580.	625.	556.	508.	529.	509.	196	479.	• 16.	-96+	515	- PO 1	926	24%	000	+72.	9	100	.776	•	571.	576.	581.	585	594	596.	559	-98+	482.
IRON	1/94																																				
2102	N6/L	8.78	7.90	7.77	7.75	7.60	7-10	6.10	7.70	7.70	7.55																								7.00	12.20	11.60
CHLO RIDE	N6/L	40.00	40.00	38.00	29.50	48.00	47.00	45.00	47.00	58.00	45.00	52.00	67.00	65.00	62.00	51.00	64.00	66.00	69-00	00.89		•		58.00	64.00	62.00	60.00	58.00	29.00	54.00	60.00	60.00	62.00	59.00	61.00	47.00	46.00
SUSPERD	N6/L	80.90	74.50	99.99	90.80	57.90	61.30	49.30	46.30	65.20	146.00	192.00	206.00	182.00	210.00	218.00	162.00	111.00	115.00	185.00	74.20	84.40	82.90	112.00	71.30	54.10	62.90	55.30	56.10	47.40	46.30	13.30	41.00	38.60	105.00	184.00	173.00
000	H6/L																																				
TOTAL	H67L							:																													
CR6.	7/9H																																				
2-HZ	H6/L	.311	. 405	• 253	.244	•160	.160	.140	-140	-230	.210	.520	.410	- 295	.270	.285	• 265	.245	• 250	.245	.175	• 195	.175												.630	.140	.156
NO-2	NG/L	6.820	7.300	7.200	7-120	9005-9	6.800	6.300	6.200	6.300	5.400	7.800	7.570	7.680	7.830	7.930	8.170	8.310	8.500	8.250	7.350	7.200	6.950												5.200	7.900	8 • 0 0 0
ORTHO	#6/L	.103	-113	-116	.110	.115	.100	.110	.115	.155	.170	.035	.105	.100	.090	060.	.095	-100	.105	.110	060.	.160	.180												•02€	. 895	.105
TOTAL	25	26		30	3000							454	.314	.28€	28	.342	.261	.246	.211	.160	15	17			80	19	2	18	20	19	-	17	11	16	- 0	0	39
FL0W	r S	9300.	ė	_	6699	•				960	5556		9540	1691	6730.	-	•	-		6040.	•	ò	4890.	e i	3870.	3690.	3420.	3210.	-	-	2810.	_	-	_		15850.	9610
TIME	MRS.	•	•	•	•	•				909	000	600	300	500	•	107	~	•	м	-	S.	1	n	· vo	m	v.	m	1O	•	•	m	n	6	•	•	•	1806
40	_																																				27
MPLIN	2 2	117	17	pr)	17	-	M7	107	M	P7	17	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
SAN		5	2	2	2	2	2	1	2	2	2	2	2	47	ŗ	5	2	2	2	2	5	2	2	5	3	2	5	5	5	2	5	5	10	5	'n	5	2

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: AT MATERVILLE, OHIO LOCATION W/CODE

: MAUNEE RIVER

STREAM

USES NO. 04193500

COND 25C. URNO	482.	456. 511. 527.	343.	5000	514 531	
IRON NG/L						
S102	12.60	13.10	10-60		12.40	13.50 12.80 14.80
CHLO RIDE MG/L	30.00	36.50 36.50 35.50	20.50	30.00	4 4 4	•
SUSPEND SOLIDS MG/L	134.00	163.00 111.00 68.00	189.00	101.00	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23.90 111.00 103.00 102.00
7/9H						
TOTAL KJELD MG/L						
0RG. N11. MG/L						
NH-3 NG/L	.130	.148 .279 .082	.057		080	1.630 1.400 .070
NO-2 NO-3 NG/L	8.800	7.200 7.920 7.450	3.740	5-130	4.070 3.750	10.200 10.500 9.350 9.030
ORTHO PHOS.	.056	.059 .079	.028	070		• 132 • 132 • 150
TOTAL PHOS. MG/L	.319	240	.143	. 425		1
FLOW	7240.	9610. 7000. 5466.	5160.	8480. 6190. 2090.	2050.	3750. 3110. 2600.
TIME 2403 ARS.	0081	000	000	000		
		0 m	.u. ►	K C 2	199	329
SAMPLING Date Yr mo dy	* 0	10 to 10		សសស		
SAN DAT	27 25	27 27 27	5 2 2	2 2 2 2 2	222	5255

MAUMEE RIVER NEAR Waterville, ohio

LAKE ERIE WASTEWATER MAKAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OHIO

USBS NO. 04193490

COND 25C.	CHEO	504.	504.	507.	503.	485.	+80	483.	483.	493.	-06+	491.	495	-020	- 116	523.	524.	240	547	545	255	533	976	900		8 q	26.0	86.5	200	577	250.0	585	582.	568	582.	605.
RON	1/9u																																			
S102	H6/L																													6 6	90.08	8.70	9.75	9.50	9.85	9.50
CHLO	1/94	•	0	50.00	•	49.00	10	0	49.50	0	50.50	0	•	n (51.00	•	8	•	9	51.00	•	8	9 (00-24	-		2017				90.00	ō	•	00.09	0	ā
SUSPEND	H6/L	240.00	9	ó	ė	•	•	9	÷	173.00	•	•	٩	•	9	ů.		ů.	Ņ	•	?	•	•	•	? •	•	•	, "	20.04	` <	^	^	9	~	•	~
000	1/9H																																			
10TAL KJELD	1/9H																																			
0R6.	1/9H																																			
N-13	N6/L	-200	.170	.155	. 165	.150	.150	. 045	.180	.165	.145	060	.050	• 075	.130	• 0 7 0	.025	. 620	.130	. 065	.135	.105	• 020	• 025	620.	101.						075	080	.120	1.436	.210
2-07	M6/L	9.960	9.500	9.500	9.400	9.300	9.300	9.100	2	9.600	3	2	9.200	9.300	9.200	9.000	8.400	8.300	8.200	7.700	7.500	7.500	7.400	7.400	7-266					3 6		26	9		5	3
ORTHO	MG/L	.140	.116	.115	.105	-110	.100	-095	.110	.120	•120	.110	.100	.095	.105	.100	• 090	.085	.100	.100	.110	.110	99	.085	• 065	001.	2011	•	2 G) (6	60	6.6	083
TOTAL	#6/L	.563	5	:	.457		.485	ţ	.422	.339	904.	.401	. 345	.302	.295	-246	.246	.216	.127	.211	.239	•225	.211	.211	23	7	7		7 6	, ,	36		5	2	5	.200
F10	6	2358	10906.	9748	9560.	-0019	1770.	7970.	6966.	6778.	5966.	6120.	6500	6530.	6198.	6120.		5976.	5798.	5720.	5540.	5340.	5090	1990.	4090	• 120	-000	-0791	1620			4160-	3660	3870	3870	3846.
3416	HAS.	500	2160	300	960	2100	380	900	1500	2110	300	900	1500	2100	300	900	1500	7100	300	900	1500	2160	300	100	1500	0012	200	200	1030		96.4		4 4 9	2230	5	1030
ING	2				~			m			•				•				9				~				10 (ے ،	72
٦,	. £	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
E P	5 =	•	ķī	'n	'n	'n	9	•	'n	'n	9	2	2	2	į,	£	5	9	ě	'n	ñ	Š	2	£.	1 0	0	0	0 :	٠.	0 4	9		٠,		¥	2 2

LAKE ERIE UASTEYATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUMEE RIVER

STRESH : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OHIO

USGS NO. 04193490

COMD	CHEC	595	600	607	606.	683.	664.	669	610.	605.	612.	614.	617.	611.	627	635	620	630.	629.	637.	659	637.	636.	640	654	999	659	674.	653.	657.	699	682.	688.	695	695.	693.	640
HOKI	H6/L																																				
S102	MG/L	10.20	9.80	10.00	9.90	9.95	9.70	6.32	8.50	9.40	9.52	9.10	9.20	9.40	8.20	9.28	8-80	9.30	8.30	8 • 02	4.97	0 • • 6	1.90	6.30	8.90	7.70	8.00	8.00	8.00	9.20	8.30	8.20	00 • r	8.20	8.60	8.96	9.20
CHLO RIDE	H6/L	58.00	58.00	58.00	58 • 0 C	56.00	56.00	56.00	56.00	57.00	59.00	59.00	60.00	00.09	61.00	62.00	61.00	62.00	64.00	62.00	63.00	62.00	62.00	61.00	64.00	66.00	66.00	69.00	96.00	85.00	68.00	69.00	94.00	95.00	96.00	92.00	87.00
SUSPEND SOLIDS	1/9H	56.00	58.30	54.20	45.70	49.50	54.30	47.56	49.50	52.90	61.60	55.50	53.20	20.60	56 - 30	58.10	49.40	26.40	20.90	42.20	32.80	32.90	35.40	67.60	112.00	70.20	63.50	63.50	79.10	17.96	72.90	61.50	75.80	78.90	74.90	92.50	86.63
000	H6/L																																				
TOTAL	H6/L																																				
086. NIT.	NG/L																																				
ZH-3	H6/L	060.	. 045	.060	.030	.115	1.280	• 025	.060	• 080	.390		• 290	. 180		•100		. 255	.230	1.120	• 030	.120	• 0 4 0	• 050	• 080	060•	•060	.050	. 663	.050	.050	. 365	• 060	• 020	• 060	1.000	. 350
X0-2	H6/L	5.800	5.920	5.980	5.900	5.800	5.700	5.850	5.780	5.680	5.750	5.650	5.550	5.600	5-650	5.620	5.450	5.480	5.450	5.480	5.500	5.300	5.000	4.900	6.600	5.000	4.900	6.100	004-9	6.400	6.400	6-300	6.200	5.900	2.600	4.400	5.600
PHOS	HC/L	.080	. 08C	. 080	.000	080.	080.	.080	.090	.070	.070	010.	.080	1000	• 000	080.	.290	•190	- 24 €	.100	• 060	• 050	.045	• 025	• 09 ¢	. 035	• 025	.070	.070	.070	010.	.080	•075	•08€	် မော့ •	.12	.080
TOTAL PHOS.	1/9X	20	•	20	•	13	.196	2	2	•	20	•	2	18	13	Ð		0	13	18	2	•	5	0	27	20	20	19	22	•	22	23	3	•24C	•	\$	•
FLOS) ;	636	420	396	30	180	950	990	063	95	970	640	949	590	570	366	910	200	150	310	2	200	780	5	300	820	80	960	080	86	9 e c	970	270	6426.	200	5.7	0
TIPE	· w	Œ	2230	•	0	•	2230	430	6	1630	N	•	0	•	2230	•	•	1630	~	•	S	1500	S.	S.	S.	S.	S	N	•	•	6°0	N	1800	2450	v	1200	8
IN G	4	10	3	=	=	11	1	12	12	12	12	13	13	13	13	=	±	=	±	15	15	16	11	18	13	ټ ۷	21	22	22	22	23	23	23	23	5	5	24
AHPL		G	'n	'n		G	ın.	1 0	<u>.</u>	10	S	.	'n	ç	s	'n	'n	'n	'n	s	ıc.	ທ	.	'n	S.	S	s	S.	'n	'n	S	S.	'n	•	'n	'n	S
2 9	>	7	7	7	-	ř	-	7	7.	-	-	7	7	~	7	ž	7	7	7	7	7	7.	Ž.	7	7	ï	-	7	7	7	7	-	7	7.5	-	-	7

LAKE ERIE WASTEWATER PANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : MAUNEE RIVER

US65 NO. 04193490 : NEAR BATERVILLE, ONIO LOCATION W/CODE

COND 25C. UMHO	.009	585.	545.	543.	545.	556.	555.	555.	530.	517.	508.	505	507.	504.	506.	512.	512.	513.	525.	533.	534.	532.	531.	543.	559.	568.	584.	559.	536.	-906	492.	+97.	543.	510.	550.	535.
IRON M6/L																																				
S102	12.30	11.30	12.00		11.90	10.60	11.40	12.40	11.40	12.40	12.80	14.00	12.70	12.90	13.80	13.80	12.50	13.30	?	8.40	8-60	8.20	9.60	9.30	8.30	8.60	9.80	10.90	4	*	۲	11.20	12.10	å	11.00	9.45
CHLO R 1DE MG/L	17.00	•	69.00		68.00	73.00	10.00	70.00	65.00	99.99	63.00	63.00	49.00	73.00	43.00	-	73.00	_		1.0	33.00	32-00	33.00	34.00	33.00	34.00	32.50	30.00	27.00	26.06	25.06	25.00	32.00	26.50	•	41.00
SUSPEND SOLIDS MG/L	112.00	124.00	94.0	•	210.00	é	296.00	á	ė	á	9	192.00	•	•	ē	•	123.00	119.00	114.00	161.00	53.0	157.00	120.00	ė	∹	7	109.00	101.00	214.00	189.00	•	•	9	ė	•	09.66
C0D																																				
TOTAL KJELD HG/L																							•													
086. 11. 16/L																																				
NH-3	.050	.055	.070	090	• 060	.070	.060	080	1000	• 080	.095	.075	. 095	.110	.125	.125	.125	.120	.050	• 065	• 055	.070	. 979	.071	• 0 56	.034	• 056	0.0.	.022	. 040	.070	.054	.074	.411	.103	.457
K0-2 R0-3	5.900	6.100	7.100	7.200	7.200	7.000	7.200	7.400	7.400	7.400	7.400	7.400	8.100	8.200	8.400	6.600	8.700	8.800	8-500	8.200	7-400	8.200	8.600	8.000	7.200	7.000	8.620	10.700	11.900	10.800	9.546	8.050	.00	7.400	.46	4.620
ORTHO PHOS. RG/L	080	.075	.075	.070	090	.090	. 095	.080	÷10.	.070	.100	060.	. 08 0	.080	3 80 -	060.	060.	.080	.092	.123	*098	.105	.116	060.	.095	.087	.118	.126	.110	• 092	•078	.091	• 082	.065	. 636	990•
TOTAL PHOS.	.26:	26	.360	36	39	.410	.500	064.	ţ	5	42	37	35	3	32	29	.296	.290									.295	.473	.398	*	.312	.302	23	29		
FLOW	A310.	0420	290	4480	5000	_	166	3950	270	1700	0200	9610	8820.	7850.		•	8690.	9630.	050	295	11500.	085	7440.	6460.	•	4820-	9430.	12850.	8560.	7126.	6270.	6080.	5900.	5540.	2950.	2080-
11ME 24CO HRS.	0	209	1200	1800	24 00	009	1200	1830	2400	009	1200	1850	2400	909	1260	1800	2400	600	1100	1165	116c	1100	1100	1360	1100	909	1530	1530	1530	1530	1530	1535	1803	1520	1100	0211
	•	6	5	S	G		9		٠	_	_	~	_	•	•		60	6	6	0	-										-	Ξ	_	~	ŝ	9
SAMPLING SATE TR HO DY	•	•	•	•	•	•	•	•																								N.				_
AUNA	7.5	7.5	75	75	75	73	7.5	7.5	7.5	75	75	75	75	15	7.5	75	75	7.5	7.5	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75

LAKE ERIE HASTEJATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAURE RIVER

USGS NO. 04193490 : NEAR WATERVILLE. ONIO LOCATION W/CODE

250.	OHE S	529.	530.	530.	537.	534.	543.	540.	550.	563.	573	569	596.	617.	581	519.	487	•11•		437	4.34	441.	452.	464.	471.	499.	206•	501.	495.	491.	204	503	496.	500	469.
1 0 X 10 X	NG/L																																		
2102	HG/L	10.30	13.60	90-9	10.70	6.83	13.20	9.80	10.60	11.50	12.20	11.70	10.90	10.80	11.00	11.50	12.50	13.90	13.70		14.20	13.70	13.60	12.50	14.80	15-10	15.20	13.80	13.50	14.20	•	5.0	9	16.00	•
CHLO R IDE	H6/L	39.00	39.00	39.00	40.00	45.00	45.00	46.00	47.00	_	_	_		_	_							36.00	37.00	37.00	38.00	40.00	45.00	45.00	41.00	•	9.0	45.00	•		
SUSPEND SOLIDS	H6 /L	115.00	90	38.48	92.60	72.40	19.00	74.80	110.00	96.10	125.00	131.00	138.00	111.00	195.00	260.00	412.00	522.00	373.00	90.179	822.00	700.00	00.669	469.00	398.00	370.00	366.00	271.00	99.0	99.0	66.0	05.0		0.59	35.0
000	1154																																		
TOTAL KJELD	H6/L																																		
0 KG	HG/L																																		
n 1 1	H6/L	.081	• 659	.141	990.	• 026	.057	. 357	.036	.062	.077	.657	• 059	• 90 •	.091	.082	.082	. 093		3000	201	. 113	. 0.88	. 198	• 014	.057	. 041	.057	• 0.62	- 362	.051	• 064	• 058	• 055	0.50
NO-2	1/9H	4.100	3.680	3.320	3.100	3.540	3.530	3.270	3.470	3.330	3.090	2-740	3.346	3.680	3.980	4.920	6.460	8.416	8.630	3000	7.296	7.820	8.450	8.620	9.050	9.340	9.230	9.270	• 59	•	.51		.20	4	1
PHOS.	H6/L	.083	.051	.037	.055	.098	.095	. 093	• 0.65	.105	.115	• 085	.100	.115	•115	.100	.112	• 095	.047	-102	0710	.080	.165	.028	.110	.107	• 095	.115	• 055	.105	.105	• 093	.148	.142	. 16.9
TOTAL PHOS.	HG/L					.265	~	N	m	.590	.397	004.	.391	164.	.457	.572	_	8	Ċ,	9 (•		7	-	.705	3 49 •	. 89 0	•	364.	.507	586.	9	S	.523	
FL 01) ;	9	0	9	0	20	0	2	9	2	075	1180	0200	0000	0270	2150	614	9420	106	2420	2407	9 0	7959	5650	3900	2450	20	10	•	20	30	20	-	0	•
		1103	1100	1100	1100	1130	1730	2330	530	1130		330	530	130		330	530	130		330	200		330	530	130	1730	2339	530	1130	1730	2330	530	1115	1715	2116
9	2	17	18	13	ر. د	ر ا	20	5	21	21	2	21	25	25	22	22	23	23	23	53		2	2	23	25	25	25	5 6	5 6	56	56	27	27	27	•
SAMPL ING	2			Ī											-											<u>د</u>									
48	5	75	75	5	75	75	75	5	2	5	75	75	75	75	75	75	15	2	75	2	C	. 5	75	2	2	75	75	75	75	75	75	5	75	75	4

LAKE ERIE VASTEVATER HANAGEMENT STUDY - WATER GUALITY INFORMATION

The state of the s

MAJOR RIVER BASIN : MAUNEE RIVER

STREAM : MAUNEE RIVER

USES NO. 84193498 : NEAR WATERVILLE, OHIO LOCATION W/CODE

COMD	CHE	465.	+74.	461.	479.	186.	+99.	490.		507.	518.	521.	524.	521.	540.	536.	547.	538.	549.	526.	543.	525.	554.	549.	550.	548.	543.	545	556.	573.	578.	584.	590.		590.	581.	585.
IROM	H6/L																																				
2018	1/9H	14.50	15.68	16.58	15.40	15.00	16.40	16.10	15.40	15.60	15.60	15.30	16.00	15.60	15-30	15.90	17.20	14.00	15.80	15.00	15.00	15.30															
CHLO	N6/L	61-00	47.00	61.00	47.00	96.00			53.00	68-00		69.00			55.00							63.00	39.50	38.50	37.50	37.00	36.50	36.90	36.00	39.00	38.00	38.00	38.00	•	8.0	7.0	9:0
SUSPEND SOLIDS	N6./L	279.00	254.00	199.00	196.00	166.00	146.00	141.00	156.00	155.00	146.00	112.00	237.00	137.00	105.00	103.00	133.00	113.00	109.00	111.00	135.00	133.00	213.00	150.00	164.00	170.00	162.00	182.00	197.00	187.00	167.00	179.00	187.00	168.00	215.00	260.00	298.00
000	H6/L																																				
TOTAL	M6 /L																																				
ORG.	H6/L																																				
N-TR	H6/L	.410	• 060	• 052	.046	.170	• 066	.070	• 058	• 056	. 050	.060	.070	. 048	060.	.053	040	.030	. 022	. 028	.037	040	.070	.100	-100	.110	.118	960 -	060.	• 090	.080	.065	.065	. 060	.050	.050	.075
N0-2	H6/L	8.870	9.050	9.180	9.550	9.300	9.300	9.300	9.300	9.150	9.050	9.000	9.900	8.750	8-600	9.500	6.150	8.380	8.200	7.450	7.570	7.300															
PHOS	H6/L	.190	.145	-140	.145	.140	.145	.145	.145	.146	.131	.137	.140	.139	.130	.121	.122	.120	.115	.117	.120	-115	•150	.140	.148	.130	.130	.131	.139	.140	.145	.142	.140	.130	.126	.110	.100
TOTAL	H6/L	.633	.481	.431	.442	-485	.374		.392	.393	+96.	.332	.353	.377	.315	.311	.349	.330	.319	.325	.358	.344	.422	.331	.363	.359	.349	.368	.398	.383	.363	-369	.397	.370	.386	.414	.461
FL 08	•	5448.	5130.	4510.	4358.	4130.	3750.	3578.	4290.	5100.	3878.	2730.	2540.	2620.	2578.	2410.	2410-	2448-	2468-	2678.	1570.	2921.	3240.	3810.	4220.	4420.	4550.	4820.	4960	5620.	6610.	7730.	2	050	15	13150.	13700.
11FC	HRS.	1115	1715	2315	515	1115	1715	2315	515	1115	1715	2315	515	1115	1715	2315	515	1115	1715	2315	515	1115	1450	2050	256	50	1458	2050	250	850	1450	2050	259	358	1456	2050	256
981	6								30				31											_	m	m		_		•			6	6 7			9
SAMPL ING	2																																9				
35	5 5	7	1	7	7	2	7	7	7	-	7	-	7	2	7	7	Ľ	-	7.	7	-	7.	-	7	-	7	7	7	7.	7	7	7.	75	7.	7.	7	7

the state of the s

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUNEE RIVER

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OHIO

US68 NO. 84193490

25C.	OHYO	589.	599.	909	600.	582	554	534.	523	515	916	521.	522	225		970	537	20.4	242			948	546.	557.	550.	556.	564.	563.	573.	579.	588	589.		602	598.
	NG/L																						•	-											
2016	N6/L	15.40	16.10	•	i	•	2.6	5.6	4.6	5.6	2	5.9		12.90	14.10	13.60	13.50	13.90	1001	13.70		13.60	13.30	15.60	15.40	12.90	13.20	•	7	12.70	•	ç	•	2.1	12.70
A 10E	1/9H	36.00	37.00	38.00	39.00	37.00	35.00	32.50	32.00	31.50	32-00	43.00	34.50	28.00	30.05	31.00	31.50	32.00	33.CC			00°00	34.00	34.00	34.50	35.00	35.50	35.50	36.00	38.50	38.00	38.00	37.50	38.50	38.50
SOL 10S	H6/L	317.00	324.00	298.00	243.00	243.00	281.00	264.00	259.00	222.00	209.00	189.00	194-00	264.00	260.00	184.00	198.00	165.00	20.00	175.00		179.00	165.00	238.00	167.00	169.00	173.00	188.00	177.00	177.00	163.00	164.00	157.00	176.00	159.00
9	HG/L																																		
KJELD	H6/L																																		
0RG •	H6/L																																		
N-HZ	H6/L	. 925	.020	• 025	.018	.020	. 043	.031	.030	.030	. 045	.030	• 032	• 070	.919	.128	.160	.121	. 091	• 164	180.	. 0.91	0.00	174.	.087	. 677	.058	.054	.050	.041	.030	• 620	.011	•019	• 016
NO-2	H6/L	9.700	10.300	9.800	9.800	9.670	9.670	9.480	9.480	9.670	9.750	9.850	9.680	10.300	.59	8.500	8.350	9.700	9.600	9.600	9.600	9.500	9-170	9.000	8.800	8.800	6.653	8.676	8.653	8.603	8.200	8.003	6.883	9.600	6.250
PHOS	H6/L	.100	.105	.117	.114	-107	.104	.100	.105	.100	.105	-103	•104	.102	•119	.110	.144	.111	.102	060	-104	960•			.102	.105	• 092	. 099	.09 ਨ	.103	• 092	060•	• 093	100	.105
TOTAL	H6/L	.477	.483	.466	.427	.390	.418	.428	• • 1 •	.363	.354	.361	.360	.520	•520	.354	.350	.356	.341	.332	.354	.327		1981	.332	.332	.327	.345	•354	.354	.332	.350	.323	.345	.327
F. 02	2	13556.	750	25	11350.	55	129	8261.	7600.	7040.	6278.	5966.	5510.	5370.	4790.	4558.	4388.	4000	3510.	3420.	3660.	3420.	1240		3480	4426	5160.	2700.	6120.	6340.	5960.	5900.	5900.	5720.	5370.
1186	HRS.			25.0		90		251	850	1450	2050	258	850	1100	1700	2300	500	1100	1700	2300	20	2100	3 7 6 6	2 6	1100	1700	2300	800	1100	1700	2300	900	1133	1706	2300
9	70	•	•	-	-	~	_	•	•	•	•	•	•	•	•	•	10	10	2	10	=	= :	3 :	: :	::	12	2	13	13	13	13	=	=	=	1
SAMPL 1MG	5	4	_																			•													
3	5 5	25	2		2	2		2	2	13	75	75	75	73	75	73	73	75	75	73	73	2:	. 4	: "	1	2	75	13	75	5	5	75	75	75	75

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: NEAR WATERVILLE, OHIO LOCATION W/CODE

: MAUNEE RIVER

STREAM

USGS NO. 04193490

COND 25C. UNHO	578 573	566.	528.	427	427.	• 68.	496	512.	516.	545.	559.	574.	597.	486.	523.	• + B +	483.	+64.	470.	478.	471.	525.	526.	533.	518.	470.	424	448.	446.	443.	453.	466.	
IRON H6/L																																	
\$102	12.30	12.50	12.96	13.20	13.00	13.60	13.60	14.20	13.40	17.60	14.90	16.50	16.40	12.20	13.30	14.40	13.70	12.30	14.80	16.20	14.90	13.50	15.20	ŝ	13-00								
CHLO RIDE MG/L	36.50	36.50	35.00	24.10	23.50	27.00	28.10	28.90	30.50	20.40	20.50	20.60	20.90	20-20	20.70	20.10	20.20	32.00	31.00	31.00	30.50	37.00	33.00	34.00	12.00	30.00	27.00	30.00	28.00	31.00	32.00	33.00	
SUSPEND SOLIDS MG/L	180.00	210.00	00.44.0	•	788.00	9	321.00	229.00	140.00	159.00	192.00	190.00	218.00	238.00	309.00	319.00	243.00	247.00	202.00	•	59.0	194.00	•	•	•	•	289.00	•	•	•	13.0	17	3.0
1/9H																																	
TOTAL KJELD HG/L											•																						
ORG. NIT. MG/L																																	
NH-3	.013	•054	020			920	.010			. 125	• 025	.035	.080	. 090	• 055	• 025	• 020	°115	.145	.242	.210	.137	080	. 055	.165								
NO-2 NO-3 MG/L	5.950	6.300	9.530	.43	6.983	9.570	8.980	9.320	8.840	8.570	8.370	7.950	9-460	5.550	5.310	4.780	4.730	5.000	4.880	4.900	5.010	5.210	5.030	4.530	4.920								
ORTHO PHOS.	.108	-108	135	.115	-110		. 100	. 095	060.	.118	.143	.137	.142	. 155	.155	.115	.120	• 138	.145	.148	.152	.150	. 140	-140	.238								
TOTAL PHOS. ME/L	.372	•	•	-	•	• (•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 343	.316	.328	.280	• 505	.520	.364	.376	.372	940	.345	.326
FLOW	5260.	11188.	23888	21240.	14950.	- 1009	4450	3696.	3636.	2988.	5568.	7360.	9210.	7818.	5300.	3660.	2090.	2620.	2080-	1660.	2510.	4420.	3488.	3360.	150	2980.	230	2080.		150		1320.	1010.
7 1 1 1 2 2 4 0 0 HRS.	1100	300	1130	130	130	961	1138	130	530	913	1015	913	1015	1015	015	015	415	315	315	1315	315	1315	1315	1315	715	1400	1400	00+1	1400	1400	1400	1400	800
	15		-						23								-								•							±	12
SAMPLING DATE YR NO DY	_	•		_			_																										
A A A	25	21	5 E	2	73	5 2		75	73	75	75	73	75	73	73	73	75	75	73	75	75	75	75	73	75	75	75	75	73	75	75	75	75

LAFE ERIE HASTEMATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAT : MAUNEE RIVER

US6S NO. 04193490 : NEAR VATERVILLE, OHIO LOCATION W/CODE

0046	7 E	PHOS	ORTHO	0 P	NH-3	ORG.	TCTAL	000	SUSPEND	CHLO	\$102	IRON	COND
	2	#6/L	M6/L	H6/L	HG/L	#6/L	H6 /L	HG/L	H6 /L	#6/L	N6/L	H6/L	CHEO
_	998.	.308	.116	4.110	.068				78.0	38.30	6.70		514
	970.	.272	.075	4.080	.142				131.00	43.00	7.00		538.
_	971.	-28≎	-100	4.280	.076				9	44.00	7.20		543
_	920.	.268	• 100	•	.161				127.00	43.50	7.10		542
_	878.	.306	.110	3.850	.260				ó	43.00	7.10		548.
_	820.	-252	.087	3.460	.193				9	46.00	7.00		555
_	1070.	30	.085	3.250	191.				0	00.44	7.00		565
_	"	.288	.075	2.850	.177				162.00	42.80	6.70		515.
_	**	-645	.070	2.300	.143				ó	37.60	7		461.
_	•	37	• 065	•	.118				259.00	37.90	7.10		487
_	14	36	.100	.68	.111				253.00	42.00	*		529.
_	5370.	.360	.110	٠	.106				239.00	47.00	*		551.
_	4480.	~	• 045	•	• 031				239.00	52.00	•		581.
_	3630.	•	040	2.510	. 040				232.00	48.00			549.
_	3150.	100	• 040	2.270	.083				308.00		7		
	2700.	51	.107	.760	• 300				216.00	0.0	7		399.
_	1598.	040	.071	2.680	.080				228.00	30.00	7.10		371.
2	1390.	-	• 065	2.840	.220				277.00	5.0	7		361
445	1110.	ä	• 075	2.640	.170				212.00	5.0	•		383.
	990.	a	.035	.52	.105				208.00	8	•		409
_	1010.		• 075	•24	.076				193.00	•	8.30		436.
_	720.	~	• 055	• 02	• 055				183.00	3.0	•		451.
_	630.	2	.010	1.900	• 190				136.00		7.40		
_	600.	-	.127	2.180	.067				139.00	10	ç		480.
	510.	•	.124	1.860	.203				113.00	9.0	4		498.
~	478.	~	.105	1.770.	• 268				83.60	29.00	7		515.
~	470.	•	.091	1.620	.224				66.70	2.0	6.46		536.
~	420.	66	• 38€	1.520	•220				83.80	2.0	5.61		545
	620.	~	•084	1.483	•162				68.80	•	5.68		554
٠.	•	•	.060	• 56	040				99.10	4.5	Š		541.
	•	~	.115	1 - 730	960.				97.10		•		
	w	0	.137	.18	.115				81.75	5.0	*		524.
	2120.		.106	.80	.303				119.00	52.00	1.22		539.
_	•	•	. 983	1.530	-205				137.00	0.0	•		513.
_	1	80	• 082	•	.137				141.00	2.0	4.72		509
	1												

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

US6S NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

COND 25C.	0110	536.	547	568.	436.	456.	499.	452.																													523.
IRON	1/9H																							-													
2018	7/94	6.55	6.37	2.66	16.20	18.00	18.60	17.40	11.00	11.60	12.20	11.80	12.10	10.60	11.60	12.00	11.80	13.00	11.60	12.10	11.90	11.90	12.10	11-10	12.00	08.01	~	-	-	12.20	~	N	N	~	10.90	_	8.49
CHLO RIDE	7/9#	53.00	26.00	58.00	35.00	20.00	19.50	16.00																													23.00
SUSPEND SOLIDS	7/9H	101.00	90.50	76.20	190.00	93.0	61.0	77.0																													113.00
000	H6/L																																				
TOTAL	H6/L																																				
ORG.	1/9H																																				
N-11	H6/L	+90-	.010	.127	.271	106	.081		. 223	.154	.217	.160	.240	. 189	.254	.237	.194	.243	.219	.290	•194	.252	.192	.238	. 138	.214	105	.203	.100	.201	.054	.168	• 0 1 9	. 169	.073	.167	•109
X0-2	¥6.7	1.130	.855	. 850	1.940	2.150	2 - 190	2-100	1.950	1.960	2.230	2-210	2.180	2.070	2.040	2.060	2.030	1.940	1.910	1.620	1.880	1.940	1.910	1.840	1.840	1.820	1.830	1.830	1-890	2.000	2.040	2.090	2.150	2.160	2 • 0 9 0	2.080	1.610
PHOS.	N6/L	.058	+60.	660.	.132	.142	.136	.129	.167	.132	.148	.136	.160	. 143	.157	.154	• 156		.186	-182	.178	. 188	.172	.192	• 160	.179	• 162	.181	• 166	.176	.151	.187	.168	.182	.144	.157	•146
PHOSE	1/9K	.259	.306	.236					.360	.490	.490	.510	.450	.470	.470	• 450	.510	_	_	.360	.360	.360	.350	.380	.420	.490	.430	.460	.520	.550	38€.	.450	.500	.520	.580	.560	.530
FLOW) ;	780.	750.	640.	3870.	2950.	2510.	2510.	6010.	7280.	7850.	8560.	6560.	8310.	7320-	6770.	6160.	5680.	4920.	4450.	3940.	3690.	3360.	3040.	2750.	2670.	2440.	2230.	2100.	2020.	2020-	2000	3180.	4890.	5620.	5620.	4350.
7 1 ME	HR S.	1500	1500	900	1015	1015	1015	1015	1100	1700	2300	500	1100	1700	2300	500	1100	1700	2300	200	1100	1700	2300	200	1 1 0 0	1700	2300	500	1100	1700	2300	200	1100	1700	2300	500	1900
		0			N					٠		_								•			•		0	0	0		_	~	-		~	C,	N		
SARPL ING	2	•	•	•	•	•	•	•	•	6	•	•	•	•	•	•	•	•	6	•	•	•	•	•	•	•	D.	•	•	•	•	•	•	•	•	•	•
	*	•	•	•	_		•				ĸ	80	'n	75	'n	10	6	6	'n	'n	5	6	6	•	6	n	'n	'n	'n	m	6	6	•	•	2	'n	•

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNCE RIVER

USGS NO. 04193490 : NEAR WATERVILLE. OHIO LOCATION W/CODE

COND 25C. UMHO	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
IRON MG/L		-
\$102 MG/L	11111111111111111111111111111111111111	
CHLO RIDE MG/L	12225.50 12225.50 12225.50 12225.50	
SUSPEND SOLIDS MG/L	98 .20 86 .20 86 .60 96 .90 142 .00 144 .10 56 .80 56 .80	
C0D		
TOTAL KJELD MG/L		
ORG. NIT. MG/L		
NH-3	.111 .169 .109 .216 .216 .023 .062 .062	
7/9H NO-3	1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	11.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ORTHO PHOS. MG/L		
TOTAL PHOS. MG/L		
FLOW		6 9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
SAMPLING TIME DATE 2400 YR MO DY HRS.		75 9 29 1015 75 10 2 1015 75 10 2 1015 75 10 3 1015 75 10 6 1015 75 10 6 1030 75 10 7 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030 75 10 11 1030

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUNÉE RIVER

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OHIO

US6S NO. 04193490

COND 25C.	9	625.	644.	625	629	614.	626.	630.	634.	630.	628.	623.	450.	523	624.	586.	622.	631.	652	648.	658	685.	721.	718.	74.	788.	804	903.	975.	854.	817.		725.	728.	. 69	650.	620.
IRON	1/9H																																				
\$102	H6/L	5.16	4.83	4.68	5.45	4.01	4.76	1.61	4.89	4.18	3.56	3.18	2.86	2.66	2.75	1.99	1.81	3.05	3.97	4.68	2.08	60.9	7.26	8.96	10.80	8.58	11.90	6.19	6.19	7.13	9.39	9.18	•	9.25	•	9.20	8.23
CHLO	1/9H	57.00	43.00	60-00	60.00	56.00	56.00	60.09	53.00	56.00	54.00	54.00	62.00	58.00	24.00	62.00	56.00	58.00	50.00	50.00	52.00	26.00	58.00	54.00	43.00	45.00	47.00	58.00	66.00	52.00	50-00		•		62.00	_	58.00
SUSPEND	H6/L	72.70	103.00	82.00	74.50	78.10	3.9	70.90	99.00	77.70	105.00	88.80	106.00	112.00	109.00	99.40	85.50	82.40	61.00	71.20	66.80	113.00	78.80	56.80	95.20	110.00	107.00	105.00	ņ	93.20	7	۲.	75.60	8.6	2	8	42.90
C0D	H6/L																																				
TOTAL	N6/L																																				
ORG.	H6/L																							•													
NH-3	N6/L	. 292	.331	.212	.252	.220	• 200	.221	•295	•183	.337	. 235	.257	.170	-202	.257	.301	.176	.223	. 168	.149	. 114	• 180	.144	•228	. 183	.284	•214	. 365	.330	.416	.287	• 430	.230	.221	.202	.159
N0-2	N6/L	069.	.760	.680	•690	.570	.710	• 580	.530	084.	.450	.380	•350	.320	• 360	.300	.330	.450	.630	.730	1.620	2.360	2-800	3.280	4.280	3.000	2.310	3.050	3.330	3.160	3.330	3.230	3.240	3.310	3.430	.86	4.110
ORTHO	H6/L	.012	.039	.001	-013	.016	• 003	•000	. 045	.008	.008	•000	• 000		900•	+00+	• 001	•016	.001	•024	•010	• 015	.030	090•	.087	• 093	• 085	.103	.184	.157	.138	.144	.141	.129	.137	.117	•119
TOTAL	191	-	•	_	10	0	21	•	N	.226	6	-	•	•		80	~	~	~		•	•	•	~	•	8	•	33	8	-	40	•	~		.352	~	∞ .
FLOW	• ;	670.	758.	611.	560.	.009	630.	590.	180.	460.		510.	180.	430.	-	20	590.	0	50	850.	92	2280.	95	3870.	4750-	16	4820.	0	73	2590.	1830.	1710.	7.1	390	1170.	0.10	970.
1 1ME	HRS.	1630	2230	430	1030	1630	2230	430	1030	1630	2238	430	1030	1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1030	1030	1030	1130	1030	1030	1030	430	1030	1030	1030	1030	1030
		=	:	15	S.	10	'n	9	•	٠	9	11	~	_	_	18	•	•	60	13	6	6	•		0	_	~	m		N.	9	27	7	30	53	0	_
SAMPL ING	2	-	-	~	-	~	-	~	~	~	=	-	~	~	~	-	~	-	~	-	-	~	~	-	~	-	7	_	-	-	-	-	~	-	0	-	~
78	¥ 5	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

USGS NO. 04193490 LOCATION WACODE : NEAR WATERVILLE. OHIO

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

RIVER	
. MAUNEE	
BASIN	
RIVER	
MAJOR	

•
Ξ
7
:
Ξ
٠
988
-
=
1
•
-
-
į

04193490	
USES NO.	
HEAR WATERVILLE, OHIO	
LOCATION W/CODE	

COND 25C.	612.	655.	• • • • • • • • • • • • • • • • • • • •	6730	701.	710.	603.	529	556	558.		512	933	204	182.	0/4	294	1	483.	489.	495.	208	563.	516.	533.	526.	524.	533.	534.	532.	537.	541.	548.	248.
IRON MG/L																					•													
\$102 MG/L																																		
CHLO RIDE NG/L	37.00	00-0+	41.00		9 9	41.00	36.00	31.00	32.00	32.00	22.60	50 + 50	31.00	29.00	9	9	9		•	•	•	30.00	•	•	•	•	•	•	•	•	32.00	0	32.00	•
SUSPEND SOLIDS MG/L	71.40	40.50	45.00	M 2 . U.S.	52.30	52.40	387.00	470.00	955.00	611.00	3	2	0	_	1475-00	1239700	1116.00		•	238.00	•	696.0	ė	÷	÷	9	ė	•	9	ė	•	113.00	ó	120.00
COD M6/L																																		
TOTAL KJELD MG/L																																		
086. NIT. 86/L																																		
NH-3	.200	.300	.290	.260	230	.190	.230	. 180	.170	.110	•150	.110	. 140	.110	.140	• 090	.130	.130	.180	.120	.120	.070	.100	.080	.140	.110	.110	.100	.120	.100	.110	.100	.100	060•
NO-2 NO-3 A6/L	5.180	4.700	4.430	004.4		4.600	5.000	5.900	6.500	7.000	6-800	6.500	6.200		6.300	6-100	6-200	6-100	6.200	6.300	9.400	6.400		009-9	•	6.500		50	30		9	.30	6.300	6.200
ORTHO PHOS. MG/L	.190	.150	.150	. 150		057.	.150	.160	.160	.150	.170	.140	.150	.140	.130	.120	.110	.110	.110	.120	-120	.120	.120	.120	-130	.120	.130	.120	-126	.320	.110	• 10c	• 100	•100
TOTAL PHOS. H&/L	.296	.254	.285	.257		. 276	.719	.936	1.110	1-140	1.420	1.720	1.820	1.660	1.820	1.720	1.590	1-480	1.350	1.210	1.180	1.170	.992	.852	.798	.758	.758	•626	•696	.633	•612	.520	.473	***
FLOW	6727.	1696	. 190+	3904	26.34	.96	6119.	8349.	16650.	23388.	29588.	30840.	32040.	32360.	31400.	29900.	27546.	25430.	23448.	21488.	19720.	15150.	14000.	13050.	12300.	11180.	10268.	9828.	9080.	8263.	7810.	7200.	7160.	6688.
7 1 ME 2 4 0 0 MRS.	1330	330	330	7		38		30		230	333		639	230	439	033		230		030		230		030	633		439	033		230		039	630	
LING 0	•	-	N				2	•			_	٠	•	•	~	_	_	-	18	•	•	•	13	•	•	6	0	0		0	21	_	_	_
SAMPLI DATE YR HO	75 12	~	~	•	-	• ~	-	~	~	-	~	~	~	~	~	~	~	~	~	-	~	~	_	~	M	~	~	-	-	-	-	_	_	_

LAKE ERIE HASTEVATER MANAGEMENT STUDY - VATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

USGS NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

25C.		547.	• 069	705	į	678	672.	699	783.	190	000	675		•17)	9	9 5	136	-	900	• • • • • • • • • • • • • • • • • • • •	200	687	• • • • •	25	000	135	123	2/2	551.	166.	498.	435	457	469	493.	523.	602.
NO NO	H6/L								•	1.15	•		K7 • 7	40.	Ÿ	1.19	? '	•						~													
S I 02	H6/L																																				
CHLO RIDE	N6/L	32.00	45.00	46.00	41.00	41.00	00.04	41.00	43.00	92.00		20.04			42.00	00-54	00.44	20.00	51.00	49.00	20.7.	52.00	00.20	00.00	20.10	26.00	28.00	90.04	46.00	00.44	42.00	34.00	34.00	35.00	33.00	36.00	00.04
SUSPEND SOLIOS	N6 /L	107.00	33.40	25.90	21.30	21.50	23.40	19.00	18.40	15.60	17.30	17.20	26.80	04.4	12.90	13.80	10.20	10.20	5.10	5.60	3 · 6	2.00	0.00	5.20	0.2°9	5.20	0 0 0 0	31.40	26.80	27.70	21.50	34.00	Š	25.10	8.9	1:3	5.6
000	HG/L																		• 24	.21	•21	•19	• 50	•19	• 20	•21	• 50										
TOTAL KJELD	H6/L																																				
ORG.	M6/L											_																									
M-II	HG/L	.100	.490	.460	.360	.320	.320	• 300	• 320	.370	• 330	004.	044	• 200	•460	044.	• 4 30	•210	1.000	•950	.760	• 730	. 720	• 690	.710	. 700	•683	.570	.540	. 520	.460	.510	.510	.500	• 530	.660	.960
NO - 2 NO - 3	H6/L	6.100	-20	4.200	30	4.500	•60	.70	4.700	. 70	• 60	- 2	.50	.50		004-4	• 20	96.	50	3.600	3.500	3.300	3.200	3.200	3.100	3.000	3 • 0 0 0	2.500	2.500	2.203	2.200	2.400	2.300	2-400	2.400	2.600	2.800
PHOS.	H6/L	.100	.160	-170	.140	.140	.150	.140	.140	.150	.140	.160	.170	.180	.160	• 150	.150	.210	•220	.190	.180	•170	.170	.170	.180	.190	.180	.170	.173	.170	. 160	.179	.160	.160	.150	.160	• 180
TOTAL PHOS.	1/94	~	-	•	_	_	•	~	-		_		•	•		-	•	-	-	•	•	-	-	-	-	•	•	•	•		-	-	.282	•		•	.325
FLOW) ;	60	5	000	720	900	120	20	260	20	000	900	000	00	0	9	000	0	190	710	340	800	7.0	8	810	7.0	910	320	80	650	680	20	9350	3600	380	6140	4620
11ME	-	430	11	1	7	13	=	11	1115	5	Ξ	9	5	9	0	01	9	=	5	5	5	1010	9	5	5	2	410	6	1615	2	-	5	1615	2	7	-	1615
SAMPL ING	R HO DY	12 2		9	~	*	6	1 10	1 11	1 12	1 12	1 13	1 14	1 15	1 16	1 17	1 18	1 19	-	1 2	7	1 2	1 2	1 2	1	1 2	7	7	1	1 2	1	7	-	7	1 2	-	76 1 28

LAKE ERIE WASTEWATER HANAGEMENT STUDY - WATER QUALITY IMFORMATION

MAJOR RIVER BASIN : MAUNEE RIVER

STREAM : MACHEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, ONTO

US6S NO. 04193498

COND 25C.			177	374	385	405	408.	396	389.	375.	373.	573	582.	365	294	298.	+	421.	429.	434	449.	+73.	190.	501.	505.	522	524.	552.	996	567.	568.	584.	596.	536.	421.
IRON NG/L																						-						1.15				1.05			
\$102 NG/L										•																									
RIDE RIDE RG/L	34.00		29.00	29.00	90.00	32.00	32.00	29.00	28.00	27.00	26.00	26.00	26-11	25.89	25.80	26.00	26.00	25.00	25.00	25.00	26.00	26.10	28.00	29.00	29.00	30.00	30.00	64.00	00.09	•	61.00	•	65.00	57.00	55.00
50 5 PEND 50 L 1 DS 76 / L	50.70																	28.90	17.40	18.60	14.30	19.00	9.6	70.00	7.80	7.30	8.90	7.90	1.6	10.90	2.9	9.10	~	17.60	84.10
1/9H																																			
TOTAL KJELD MG/L																																			
986. RIT. H6/L																												•							
NH-3 H6 /L	919				290	. 190	.560	. 340	. 520	94.	-	• • • •	.516	.420	•	.410	-950	• 460	. 470	0.4.	. 556	. 490	. 600	.510	.530	. 540	. 556	.320	.330	.330	. 330	.330	. 360	.340	.310
#0-2 #6-1	2.406		9000	90000	2.100	2.200	2.200	2.380	2.200	2.200	2.200	2.300	2.300	2.300	2.300	2.400	2.510	2.700	2.800	2.800	2.600	2.700	2.600	2.600	2.600	2.600	2-600	1.700	1.700	1.800	1.800	1.800	1.900	1.700	1.100
PHOS. PHOS.	.170			198	941	.130	.140	.120	.140	.130	.140	.120	.130	•138	-130	.140	.140	.120	.130	.130	.120	.120	.130		.140	.150	.160							.260	.288
TOTAL PHOS. NG/L	.346																																		
7. cfs cfs	16020.			15250	15450	14100.	12500.	12200.	12650.	11366.	.171	9178.	9178.	7768.	6630.	. 2608	6300.	5790.	.0809	3600.	3600.	2600.	2200.	1600.	1200.	1100.	1040.	1350.	1410.	1390.	1410.	1410.	1550.	2220.	4388.
717 2460 185	2215			2000	919	1015	1615	2215	415	1013	1615	2215	115	1015	1615	2215	415	176	2306	566	1166	1166	1100	1163	1160	0011	2	999	0091	2200	100	0001	9991	2260	• • •
2 6	2	•		٠.				•	-	_	_	_																			•		•	•	~
SAMPL I DATE YR NO	76 3																																		

LAKE ERIE YASTEVATER MAMBEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE. ONTO

US6S NO. 84193490

C080	OHES		384	361.	361		391.			330	333.			319.			313	318.			347	356.	352	337	518	319	320		140	338	338	337	340.	341.	341.	346.
NO N	H6/L	1.57				1.43			1.99				3.96			2.05				2.96				-												
S102	H6/L														•																					
CHLO	H6/L	50.00	55.00	47.00	64.00	65.00	59.00	76.00	57.00	55.00	36.00	20.00	47.00	51.00	42.00	41.00	44.00	43.00	37.00	39.00	19.00	20.00	20.00	18.00	17.00	17.00				0.6	19.00	0	19.00	9.0	20.00	9
SUSPEND	H6/L	Š	88.30	7	97.30	9	195.00	9	456.00	909	579.00	930.00	1231.00	503.00	610.00	434.00	240.00	536.00	523.00	571.00	446.00	422.00	647.00	766.00	581.00	762.00	134.00			00.469	671.00	581.00	•	9	461.00	5
000	H6/L																																			
TOTAL	1/94																																			
ORG.	1/9H																																			
n-II	1/9H	.260	.290	.250	.270	.270	.250	.210	.210	.220	. 220	•200	.190	.190	• 180	.170	.170	•170	.170	.170	• 360	.330	• 260	1-000	• 500	• 250	• 250	984	007	170	260	.220	•220	.210	•200	410
K0-2	H6/L	1.300	1.300	1.200	1-500	1.500	1.200	1.300	1.300	1.200	.900	.800	-400	.800	•600	.700	-800	.800	008.	.900	2-800	3.100	3-200	3-100	3.000	3 · 300	2000				000	4.500	4.600	4.600	4.600	4
PHOS	H6./L	.180	.180	.180	.170	.198	.200	.170	.160	.170	.170	.170	.180	.200	.210	.240	.230	•246	.250	.260	.070	.100	•100	.110	.110	000				0.00	6	07	.070	•07€	.070	•
TOTAL	H6/L	_	0	17		•	5	m	.685	.713	.854	.727	.834	.893	.873	.531	.892	.825	.570	.584	.832	.753	.902	1.620	. 943	1-100	116.	0.44	1.140	196	941	.907	.897	. 624	.792	101
FLOU	,		10501	_	~	44	26010	2992	CA)	30568	3900	5940	49360	48196	46390	4190	437	42440	47110	16840	416	11	51800	29600	63	64860	64200	90000	0 0 7 0 0 7	69320	69440	68120	66500	64000	645	4480
TIRE 34 BB	HAS.	1000	1600	2200	000	1000	2200	400	1000	1600	2200	004	1001	1600	2200	1000	400	1600	2200	004	1000	1600	2200	00	1000	1600	2200				1000	1600	2200	004	1000	44.00
9	Ď	=======================================	=	11	12	12	12	13	13	13	13	=	=	=	=	15	2	2	13	16	91	16	16	1	1	_	2:	9 4	•	9 5	13	13	13	20	_	
SAMPLI	2																										N (
¥ 5	X	76	16	76	76	16	76	16	76	16	16	16	76	16	76	76	7,6	16	76	76	16	16	76	7	76	9	2,5		, פ	7	76	16	16	16	16	,

LAKE ERIE VASTEVATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : NAUMEE RIVER

STREAM : NAUMEE RIVER

LOCATION W/CODE : NEAR WATERVILLE. ONIO

US68 NO. 04193490

COND 25C. URMO	350	36.94 16.94	378.	391.	397.	299.	295	399	397	+02	***	416.	426.	404	900	479.	200	• 416	527	527.	920	26.2	565	572.	521.	475.	425.	431.	390.	438.	417.	380.	382.	368.
IRON .																•	•		•			-												
\$ 102 H6/L																																		
CHLO RIDE MG/L	20-00	21.00	21.00	22.00	22.00	23.00	22.00	22-00	22-00	22.00	23.10													16.00	11.00	6.00	12.00	5.00	5.00	5.00	8.00	7.00	9.00	13.00
SUSPEND SOLIDS MG/L	397-60	316.00	314.00	281.00	196.00	268.00	252.00	274.00	249.60	204 -00	198.00	238.00	231.00	175.00	140.00	130.00	110.00	10.00		00.44	16.40		69.10	105.00	605.00	720.00	656.00	632.00	771.00	00.409	663.00	178.00	•	686.00
1/9H																																		
TOTAL KJELD MG/L									,																									
ORG. NIT. HG/L																																		
NH-3	-210	000	130	.170	.160	.130	.130	-140	.130	-140	• 130																							
NO-2 NO-3 NG/L	4.700	007.4	4.700	4.800	4.700	4.900	006-4	1.900	4.800	S.000	5.00													000	200	004	.500	.500	.500	•500	.500	.500	009.	.600
ORTHO PHOS. MG/L	080	0.00	90	.090	.090	• 0 7 0	000	.070	.070	• 0 7 0	.070	090	• 000	• 060	• 0 1 0	090	• 0 7 9	. 0 7 B	• 100															
TOTAL PHOS. MG/L	.710	3 :	593	36	38	.514	• 508	2	.486	433	.420	•475	.462	.403	. 455	.355	.293	-292	- 288	. 265	•225	7 6	0 C	266	72	5		9	1.060	90	.925	• 02	1.040	.925
FLOW	200	2 3			000	9009	2	9	2	-00009	2	2	9	•	2	5	2	2	_	9			9	12550	9	2	9	9	2	-	9	2	2	_
7 1 ME 2400 HRS.			7666	2200		000	99		904		902	002	002	005	002	002	000	003	402	010		210			210	410	010	610	610		010	210		
9 4	20	2 :	3 2	2	22	22	22	22	23	53	5	23	2	52	5	21	58	53	~	-	~ 1	N F) H	3 60	P	•	•	*	•	•	'n	S	9	9
SAMPLING DATE TR HO DV			٧ ٨																															
SAM	2	9,	: :	2	12	7,	16	16	22	16	76	92	16	16	16	76	16	9 2	26	9	92	9 7	9 7	, 4	7	76	16	92	16	16	16	16	16	16
																												•						

LAKE ERIE MASTEMATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: NEAR NATERVILLE, OHIO : MAUNEE RIVER LOCATION W/CODE STREAM

USES NO. 04193490

COND 25C. UMHO	361.	364.	364.	364.	365.	370.	377.	377.	396.	417.	445.	472.	491.	524.	534.	547.	556.	575.	585.	597.	610.	634.	635.	645.	654.	676.	679.	660.	675.	658.	640.	625.	653.	666.	660.	653.
IRON MG/L																	•	•		•																
\$102 H6/L																																				
CHLO RIDE HG/L	9.00	9.00	40.00	14.00	13.00	5.00	11.00	23.00	23.00	24.00	25.00	27.00	27.00	28.00	30.00	25.00	26.00	27.00	28.00	29.00	29.00	30.00	31.00	32.00	33.00	35.00	35.00	35.00	35.00	34.00	33.00	32.00	31.00	33.00	32.00	33.00
SUSPEND SOL 1DS MG/L	625.00	560.00	492.00	438,00	355.00	353.00	379.00	248.00	121.00	88.60	119.00	110.00	114.00	98.30	37.90	66.80	90.50	57.70	47.40	40.50	51.70	57.60	14.50	70.10	57.60	55.90	83.30	67.10	83.40	82.70	55.20	49.90	29.60	55.20	45.60	45.40
000 000																																				
TOTAL KJELD MG/L																																				
ORG. NIT. MG/L																																				
NH-3								. 08C	.100	•100	•100	.150	.100	.120	.140	.190	.190	.190	-230	.250	.210	.260	.250	.330	.230	.350	•300	.180	.180	.380	.270	.150	.540	.050	.050	.050
NO-2 NO-3 NG/L	999	.500	.500	.600	.500	• 500	.700	4.100	3.900	3.700	3.700	3.600	3.500	3.400	3.400	3.300	3.300	3.100	3.200	3 . 300	3.100	3.200	3.100	3.100	3.600	3.000	3.200	3.100	3.000	2.800	2.900	3.200	2.500	3.003	2.800	2.750
ORTHO PHOS.								.060	. 08 C	.080	.070	.070	090	090•	.080	.080	.070	. 680	.080	.080	.070	.080	.080	.080	010.	.081	.080	.070	•090	.089	.080	.070	.080	.063	. 069	.070
TOTAL PHOS. MG/L	.894	98	83	=	7	70	169.	.439	.439	35	.324	.275	•266	.239	20	23	20	20	19	17	.186	24	.221	•268	.228	.233	.209	.234	.202	.295	24	.320	20	.194	.197	.175
FLOV	170	8620	49630	6570	4100	003	20	348	499	2	456	1250	-	0	0	0	0	0	Ö	-	_	-	2	•	-	60	93	230	260	9	990	120	060	9	930	90
717E 2400 HRS.	3	2210	=	5	9	2210	7	953	950	950	950	950	950	950	350	20	8	20	1000	5	9	00	₩.	93	93	03	9	6	1035	93		1000	2	5	0	1000
24 70								æ	6	10	11	12	13	:	15		٠	~	•	•		_	~	ر.	~		s		7	Œ	6	29			_	
SAMPLING DATE YR NO DY										m	m	147	~	1	P 7	1	17	107	~	~	•	•	m	m	m	m	m	m	~	m	m	m	107	•	•	
SA	7,	76	7	76	7	76	76	76	76	76	76	76	76	16	76	76	76	76	76	76	16	76	76	16	76	76	76	76	16	76	76	16	76	16	16	16

LAKE ERIE JASTEVATER MAMAGEMENT STUDY - WATER QUALITY IMFORMATION

247

NAJOR RIVER BASIN : NAUNEE RIVER

: NEAR VATERVILLE. OHIO LOCATION W/CODE

: MAUNEE RIVER

STREAM

USGS NO. 04193490

25C.	663.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	949	. 655.	651.	655.	664.	654.	643.	641.	637.	628.	627.	689.	610.	6145	625.	603.	.909	601.	601.	.+09	605.	604.	623.	758.	769.	754.	765.	752.	744.	756.	751.	666.	652.
IRON																•						-	•												
\$102 H6/L																																			
CHLO RIDE NG/L	32.00	33.00	33.00	33.00	32.00	33.00	33.00	NN. DO	24.00	35.00	36.00	36.00	34.00	33.00	33.00	33.00	34.00	37.00	37.00	37.00	36.00	36.00	35.00	34.00	35.00	38.00	38.00	39.00	42.00	36.00	36.00	36.00	38.00	43.00	45.00
SUSPEND SOLIOS HG/L	36.00		12.90	34.70	00.04	49.10	29.10	43.40	26.60	40.00	39.60	09-04	51.00	43.30	56.80	94·19	41.80	36.20	59.30	69.30	64.30	53.90	66.20	84.90	93.30	56.40	72.20	99.90	120.00	78.00	104.00	19.40	99.90	102.00	59.70
C00																																			
TOTAL KJELD M6/L																																			
ORG. NIT. MG/L																																			
MH-3			.050	.070	0+0	• 060	• 090	.110	.070	.470	.380	.460	.330	.390	.290	.180	.150	.300	.220	.200	.100	.050	.040	1.340	.320	.180	.100	.030	.110	.120	.140	.170	.250	.110	. 070
NO-2 NO-3 NG/L	2.550	0 4 · 7	2.700	2.600	2.400	2.000	1.600	1.600	1.500	1.500	1.300	1.000	1.000	.700	.700	.700	.700	-900	.700	009-	009-	004.	308.	1.300	3.200	3.500	4.700	3.800	4.600	7.000	6.400	6.300	000-9	6.600	6.300
ORTHO PHOS. RG/L	.030		90	• 020	040	• 030	. 010			• 830	- 630	.020	080	.020	.010	- 010	• 630	• 620	.050	.020	- 630	040	-030	• 020	• 050	.070	.070	.080	.100	.060	.070	.070	• 050	.063	.060
TOTAL PHOS. MG/L	-179	6/10	177	.173	-182	.197	.155	.158	.178	.190	-164	.175	-236	-186	.213	-205	.173	-142	.192	.187	.179	.151	.163	.179	.220	.083	.117	.115	.152	-182	.162	.291	.189	.354	•255
7. 67.8	3540	1210	3140.	2880.	2630.	2390.	2290.	1950.	1460.	1600.	1370.	1390.	1330.	1200.	1260.	1440.	1500.	1500.	1330.	1840.	2000-	1500.	1810.	3140.	6440.	8010.	11850.	8220.	6780.	5330.	4390.	3960.	3020.	3200.	2320.
113E 2460 188.			5	915	415	110	945	945	915	930	930	930	930	930	930	930	330	945	345	945	945	945	45	945	345	1000		1000	1000	1000	1000	1000	400	950	950
2 2	m .		•	•	~	•	•	2	11	12	13	:	15	16	11	2	13	19	20	5	22	23	24	23	56							-	m	m	•
SAMPLING DATE YR NO DY	•	• •	•	•	•	•	*	•	•	•	•	•	•	-	•	•	•	•	•	•	•	•	•	•	•	•							80		
N A E	2	2 %	7	16	16	7,6	16	16	16	16	16	7,6	76	16	16	76	16	16	76	16	16	76	16	16	16	16	16	76	16	16	16	16	16	16	16

LAKE ERIE VASTEVATER MAMAGEMENT STUDY - MATER GUALITY INFORMATION

MAJON RIVER BASIN : MAUNEE RIVER

STAEAM : NAUNEE RIVER

US6S NO. 04193498 LOCATION W/CODE : NEAR WATERVILLE, OHIO

COND 250.	0 E 3	657.	664.	646.	677.	660.	699	687.	701.	711.	701.	681	675	• • • • • • • • • • • • • • • • • • • •		, p 4 .	664	585.	553.	605.	631.	643.	679.	670			6 20 0	678.	679	699	673.	685.	675.	
I PON	H 6/L																	•	•															
2102	1 /9 1																																	
RIDE	1/9H	40.00	•	00.34		39.00		0.0	4.0	5.0	00-44	42.00	42.00	42.00	00-14		00.00	33.00	31.00	33.00	35.00	36.00	37.00	37.00	2000				39.00	39.00	41.00	41.00	41.00	•
SUSPEND SOLIDS	1/9H	9	ó	•	~	•	9					125.00					105.00	•	•	•	•	•	•	-	•	•	•			09	90	•	•	
000	H6/L																																	
TOTAL	H6/L																																	
ORG.	#6/L																																	
N-II	H6/L	.150	.430	.130	•100	. 050	. 080	• 060	. 090	.100	-140	100	• 0 7 0	•	0110			.120	1.200	.010		.030	.010	• 020		000	170	800	180	.210	.057	.140	- 063	
20-5 20-2	1/9H	Ç	.50	ů	:	60.	:5	3	•	.90		6	80	9	2 ;		6.000	7.600	.20	8-100	9.500	8.700	3	5.300		? .	э с			0	.80	0	3.000	•
PHOS.	1/94	.040	.010	.020	000	.010	.150	.110	080	.100	• 100	•100	110	060	001.		901	.110	.120	.210	.140	.140	.080	.050		0.00			0 0 0	.030	.028	.015		
TOTAL PHOS.	H6/L	2	2	20	22	.263	.422	•28€	.252	36	•416	.387	.422	•419	S :	. 500	000	5	51	•692	.485	•470	• 305	.322	,		2	•	2	.232	25	~	5	1
FL08 CFS		360	720	630	30	560	330	390	910	200	3	120	630	25	999	000	4230	390	99	980	480	410	960	25			2 6	4 6	800	220	28	18	0	
71ME	a	950	950	950	956	950	955	955	955	955	955	955	955	£	8	1660		8	1600	20	=	8	8	1000	3	2 3	,	, 6	9	1005	00	30	8	
9	<u>^</u>	•	•	~	•	•	10	11	12	13	1	15	1 9	- 1	~ 1			•	•	•	•	19	20	21	22	5 6	•	, ,	9	27	28	59	30	
=	2	5	5	40	ĸ)	S																												
SAN	æ	•	9	9	2	9	9	9	2	92	92	9/	9	9	9	4	2	9	•	9	9	و	٠	و	٠,		0 :	9	2	9	٠	9	9	

LAKE ERIE WASTEWATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

Control of the second of the s

MAJOR RIVER BASIN : MAUNEE RIVER

STREAM : MAUNEE RIVER

US65 NO. 04193490 LOCATION W/CODE : NEAR WATERVILLE, ONIO

COND 25C.	691.	964	701	698.	695.	695.	714.	716.	712.	705.	701.	694.	688.	671.	672.	677.	695.	711.	738.	752.	787.	808	808	808	786.	781.	797.	759.	751.	745.	729.	715.	713.	725.	721.
IRON																						-													
\$102 MG/L																																			
CNLO RIDE R6/L	42-00		43.00	43.00	43.00	00.44	•	45.00	00.44	43.00	43.00	43.00	42.00	43.00	43.00	43.00	44.00	45.00	46.00	48.00	52.00	54.00	54.00	54.00	53.00	52.00	51.00	48.00	48.00	48.00	47.00	47.00	•	47.00	ē
SUSPEND SOLIDS MG/L	116.00		102.00	117.00	83.60	118.00	102.00	124.00	83.90	98.60	93.80	117.00	90.50	103.00	72.50	101.00	87.50	77.80	74.70	88.70	94.00	63.60	86.10	72.30	77.70	42.50	04.44	89.40	96.40	62.50	•	04.46	•	103.00	12.0
1/9H																																			
TOTAL KJELD MG/L												•										•	•	•											
ORG. NIT. MG/L																																			
NH-3	.120	920		000	. 080	. 080	. 040	. 140	.070	.160	.110	.190	.120	.180	.080	.200	.200	.180	.220	.130	• 050	. 090	. 060	.040	.070	.270	.120	•260	.380	.250	.420	000.	964.	.290	. 400
NO-2 NO-3 NG/L	3-100			2.700	2.800	3.000	2.900	2.900	3.100	3-100	3.600	2-900	2.900	3.500	3.600	3.100	3.200	3.700	4.200	4.300	4-300	5.100	6 - 300	7.300	8-400	9.600	10.100	10.800	11.000	11.300	•	•	•	u	10-700
OR THO PHOS. MG/L	-120		341.	190	.110	.130	.120	.110	.116	.120	.110	.100	.100	080-	090	.060	090.	.070	.100	. 050	040	. 070	. 650	.020	.030	.070	.110	.670	9 90•	.080	• 065	• 06 3	.060	090-	.050
TOTAL PHOS. MG/L	.360	000	262	.292	.247	.302	.286	.276	.242	.235	.244	.270	.226	.265	.218	.260	.260	.256	.307	-280	.244	-262	.204	.274	.260	.212	•266	.319	.365	.389	.306	•265	.286	.299	.301
FLOW	1530.	1556	1620	1650	1970	2340.	2740.	2520.	3448	4658.	5050.	4990.	5860.	6330.	.0409	5366.	5220.	1950.	4420.	4050.	3350.	3110.	2888.	2580.	2470.	2320.	2320.	2090.	1930.	1900.	1950.	1936.	1770.	1700.	1770.
7 17E 24 00 HRS.													2225	425	113	1635	2225	425	1025	163	425	31123	1625	2225	Ş	935	940	2140	340	910	1540	=	340	916	1546
116													~	•	•	•	•	•	•	-		•		_	~	-	•	•		•		•	•		_
SAMPLING DATE VR NO DY					•	_	•	•	•	9	7.6	•	•	76 6		7.6	76 6	76 6	76 6	7.6	76 6	•	•	•	•	•	7.6	•	•	76 6	76 6	76 6	76 6	9	•

a de incluy politique in a construction de la const

LAKE ERIE UASTEUATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : MAUNEE RIVER

TREAM : MAUNEE RIVER

USGS NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

COND 25C.	OHEO	711.	709.	723.	726.	709.	712.	721.	729.	716.	715.	729.	734.	133.	737	737.	727.	737	739	729.	733			728.	721.	722.	728.	745.	755.	737.	738.	736.	737.	729.	711.	705.
NO NO	N6/L																																			
\$102	H 6/L																																			
CHLO RIDE	H6 /L	47.00	47.00	47.00	47.00	47.00	47.00	47.00	46.00	46.00	9.0	46.00	46.00	45.00	42.00	45.00	45.00	9	•	•	9	•	•		9	9	45.00	•	•	•	47.00	48.00	•	•	47.00	6
SUSPEND SOL I DS	H6/L	108.00	125.00	134.00	128-00	146.00	96.30	136.00	119.00	133.00	116.00	143.00	181.00	139.00	113.00	244.00	200.00	145.00	128.00	85.80	64.50		20.40	04.35	36.48	9 6	87.20	118.00	132.00	82.10	132.00	96.70	4	148.00	30.0	4
000	HG/L																																			
TOTAL KJELD	H6 /L																																			
086. NIT.	H6/L																																			
£+±Z	H6/L	.370	.420	. 380	• 520	.460	.430	.430	.320	• 280	.500	.210	.290	.150	.170	.150	.130	.170	090•	• 020	• 0 70	.140	060.	120	901		050	090	.060	.190	.070	• 200	. 100	.120	.110	
NO-2 NO-3	HG/L		10.300	16.600	10.600	10.500	10.600	11.200	11,500	11.800	12.000	12-100	12.300	12.500	12.500	12.700	13.000	13.200	13.700	11.800	13.000	13.100	13.100	12-600		11.6600	13.700	13.300	12.500	12.600	12.700	12.300	12.600	11.900	11.200	
PHOS.	H6/L	0 40 .	040.	090•	040	0 • 0 •	.030	• 050	c #0 *	0 • 0 •	.030	0 40 •	.040	040.	. 030	0 00	0 40	0 40	• 050	.160	.160	•160	.140	•120) 		361	140	.120	060.	.110	.090	.100	960.	060.	,
TOTAL	H6/L	.307	36	.357	36	.370	.292	Š	.323	35	.329	.395	• 455	.395	35	56	\$.378	.351	.315	.287	.267	.281	200	2 6	100		320	500	29	.350	.324	.367	.379	.352	, , , , , , , , , , , , , , , , , , ,
FLOW) ;	172	160	150	1460	1580	1160	1100	124	1220	920	790	790	710	780	1020	1040	950	810	736	617	631	532	495.	2	168	867	1670	1170	1170	1190	105	1:90	1499	1408	
7176	SE	2140	340	940	1540	2140	340	940	1540	2140	340	940	1540	2140	340	940	1540	2140	340	935	935	935	935	935	0.0	755	740	2147	947	2147	746	2147	947	2147	947	
SAMPL ING	R NO DY	9	6 10	9	9	6 10	6 11	6 11	6 11	6 11	6 12	6 12	7	6 12	6 13	6 13	6 13	6 13	6 14	6 14	6 15	6 16	6 17	6 18	9	9	ָּהָרָהְ הַיּהָרָהְ	2 2	2 2 2	6 22	6 23	6 23	6 24	6 24	2 2	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUMEE RIVER

STREAM : MAUNEE RIVER

USGS NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

COND 25C. UMHO	782-	907	694	•969	700.	717.	735.	735.	714.	693.	715.	733.	759.	770.	174.	772.	715.	694.	.069	674.	672.	675.	673.	674.	.899	664.	658.	629.	631.	• 609	623.	648.	628.	603.	6 21.
IROM MG/L																						-													
\$102 #6/L																																			
CHLO RIDE MG/L	47.00		50.00	51.00	48.00	49.00	49.00	49.00	49.00	51.00	52.00	50.00	49.00	50.00	51.00	50.00	7:0	44.00	00.44	•	•	45.00	•	•	43-00	•	•	•	0	•		•	41.00	ē	•
SUSPEND SOLIDS MG/L	124.00		102.00	104.00	99.00	108.00	96.70	86.00	106.00	90.06	86.60	117.00	77.50	109.00	79.40	96.90	88.30	102-00	83.60	37.10	107.00	99.70	93.00	83.00	118.00	89.10	91.90	ú	116.00	'n	0	ė	94.50	2.0	83.20
7/9W																																			
TOTAL KJELD MG/L					1.700	1.900	•60	1.700	ŝ		1.580	•5	•85	.81	.88	.61	1.670	1.830	2.100																
ORG. NIT. MG/L																																			
NH-3	900	9 6 6	010	• 020	• 090	.110	.110	.160	•120	.230	.240	• 250	.200	.150	.120	060•	.100	• 020	• 020	.050	.130	• 020		.080	.040	.130	060•	. 180	.120	.150	.160	.210	040	.010	.280
NO-2 NO-3 HG/L	10.200		7.400	7.200	4.900	5.500	5.300	5.100	4.600	3.100	2.000	2.000	2-200	2.200	2.500	2.900	3.600	3.600	3.700	4.800	5-200	6.300	6.500	6-300	6.400	6.300	6.300	•	9.000	٦.	•	٦,	•		4.600
ORTHO PHOS. MG/L	.070		96	• 030	060.	.070	.070	• 020	.030		• 050	• 050	• 640	• 030	.070	.050	060.	.070	.080	.170	•160	.160	.150	.110	•120	.090	060•	.040	.040	• 010	•010		.010		.080
TOTAL PHOS. MG/L	.517	000	.297	.304	.313	•309	.300	.267	.276	.277	.278	.321	.288	.347	.321	.341	.352	.348	.364	.358	• 369	.365	.339	.325	.365	.305	.318	•265	.314	.261	.319	.333	.300	.286	.142
FL OF	1342.	2506.	2922	2010.	2670.	2894.	2950.	2488.	2566.	2698.	2176.	1900.	2075.	2125.	1876.	1430.	1756-	1614.	1756.	1780.	1499.	1499.	1276.	1190.	1190.	974.	921.	921.	992.	1010.	1070.	1050.	1408.	199.	659.
71MC 2400 MRS.	2	1912	2347	347	744	2147	947	2147	247	2147	947	2147	947	2147	947	2147	746	2147	347	940	2140	2	2140	940	2140	940	2140	940	2140	940	2140	940	2140	340	1300
9 6	56																																		
F			4																																
SAMPLING Date Yr no dy	2	2;	2	16	16	76	16	9/	16	16	16	16	16	16	16	16	76	16	16	30	£.	16	76	9,2	16	16	16	16	16	16	16	16	16	16	16

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OMIO

US6S NO. 04193490

COND 25C.	589.	593.	585.	596.	588.	601.	592.	598	584.	608	588.	266.	568.	567	581.	260.	269	584.	594	597.	610.	618.	597	617.	611.	623.	624.	624	613.	603.	667.	695.	657.	635.	627.	•09
IRON MG/L																							-									÷				
S102																																				
CHLO RIDE #6/L	43.00	-	•	•	1:0	N	2.0	•	3.0	~	1.0	0.0	0	41.00	8.0	8.0	39.00	9.0	40.00	38.00	38.00	39.00	38.00	38.00	37.00	38.00	38.00	38.00	37.00	39.00	41.00	52.00	46.00	42.00	43.00	49.00
SUSPEND SOLIDS MG/L	19.60	۲.	•	•	06.69	61.70	73.50	73.80	29.90	69.20	83.80	19.80	65.60	97.90	71.60	60.00	72.90	107.00	69.80	73.10	93.70	86.10	67.70	96.60	73.70	64.30	85.10	80.10	91.6	104.00	9	?	ó	04.06	107.00	88.60
7/9W 000																																	,			
TOTAL KJELD MG/L																																				
ORG. NIT. MG/L																																				
NH-3	. 180	.110	.260	.190	.210	.110	.150	.110	.140	.070	• 060				.180	• 380	.110	.150	• 300	.130	.110	•200	•290	.280	• 130	.130	.120	.080	.070	.110	060.	.110	.010			.030
100 - 100 -	3.900		004.4	4.500	4-500	4.400	4.200	9	90	202	4.200	4.200	.10	4.100	5.100	4.300	4.600	4.300	4.200	3.800	3.600	3.300	3.000	2.800	2.700	2.700	2.700	. 20	.60	. 60	5,	2.400		20	2.300	3.000
DRTHO PHOS.	.100	080	.060	.070	.060	060.	.070	.160	.120	• 080	010	• 050	.040	.050	.100	090-	.100	.080	.140	060.	060.	.080	• 0 9 0	.080	.050	.076	÷ 09 €	• 080	.050	.05c	080.	J60 ·	.100	:60.	060.	.210
TOTAL PHOS. MG/L	.112	0	90	.059	5	.061	07	07	.052	90	.063	*	03	.048	55	.235	2	.253	.322	.250	.270	.276	.234	.310	.263	.246	.287	.286	.294	.298	.316	33	3.3	32	-342	.321
FLOW	784.	532	532.	645.	956.	574.	938.	560.	645.	470.	520.	445.	603.	482.	432.	457	432.	532.	645.	588.	574.	560.	799.	930	298	1364.	342	1298.	342	591	732	1756.	684	1614.	1614.	1684.
7 1 ME 2400 HRS.		1300	100	1300	100	1300	100	1300	100	1300	100	1300	100	700	1300	100	1300	100	1300	100	1300	160	700	1300	1900	100	703	1300	1900	1 00	700	1309	1960	100	709	1300
SAMPLING Date Yr ho dy	76 7 11	~	-	. ~	^	. ~	~	~	_	~	^	_	~	_	~	^	~	~	_	~	_	^	~	~	_	1	1	1	~	~	1	^	1		_	76 7 26

LAKE ERIE WASTEWATER MANAGEMEN; STUDY - WATER QUALITY INFORMATION

をおけることが、これでは、これでは、これでは、「これでは、「ないできる」というできます。 できません はいました これできる これでき これできる これ

MAJOR RIVER BASIN : MAUMEE RIVER

: MAUNEE RIVER

STREAM

US6S NO. 04193490 : NEAR WATERVILLE, ONIO LOCATION W/CODE

COND 25C.		607.	580.	575	576.	576.	590	595.	599.	595	595.	588.	584.	567.	576.	587.	587.	590.	589.	588.	5 8 0.	567.	585.	573.	578.	579.	574.	578.	586.	584.	580.	577.	578.	576.	580.	579.	580.
I NON	H 6/L										-	1.30	*	96.	7	1.10	۲.	7	1.70	1.50	•	1.10	•	1.10	ç	7	ď	1.40	•	4		ņ	•	ç	•	•	•
2105	H6/L																																				
CHLO	H 6/L	_	_	Ä	_	•	-	•	a	~	_	-	•	-	•		•	•	_	_	_	•			•	~	_	_	•	~	9	•	•	•	52.00	•	•
SUSPEND SOLIDS	1/94	ů	89.30	٠	'n	•	•	81.90	73.50	58.10	51.30	70.00	50.90	61.30	57.60	59.50	06.480	50.70	82.50	67.80	73.30	57.20	47.00	65.20	54.10	55.60	61.90	64.30	63.80	26.60	60.30	ė	~	~	87.30	•	96.70
900	1/9H																																				
TOTAL	H6/L																																				
ORG. NIT.	H6/L																																				
N-II	H6/L	. 080	.060	.120	.140	.160	• 150	.150	.120	• 090	010	.020	.020	• 020	.020	060•	. 060	. 160	.070	.110	.190	.180	.300	.430	.320	• 300	.280	.320	.320	• 300	.310	. 250	.310	.260	.170	.110	9
K0-2 K0-3	H6/L	2.600	2.500	2.100	2-100	1.700	1.500	1.300	1.100	1.000	1.000	. 800	.800	.700	.700	1.200	1.300	1.300	1.100	1-200	1.100	1.000	. 800	•600	.700	• 700	.600	.500	.500	• 500	004.	000	• 500	400	004.	.400	6
08 THO P HOS.	9	.170	.170	.140	.170	.120	.130	.130	.120	.120	.120	.090	.100	.050	.070	.120	•130	.140	•120	.120	.110	.100	.090	.090	.070	.090	.070	.070		.080	.076	.070	.086	• 0 7 0	• 0 6 0	• 050	.076
TOTAL Phos.	7/9	.302	.290	.275	.313	.250	.295	.243	-264	.235	.264	.279	.267	.264	.242	223	.249	.270	•246	.199	.175	.172	•172	.196	.216	.240	.227	.245	.244	.243	.241	.233	.291	.259	6663	.289	.319
FLOW		1522.	1614.	320	1254.	232	170	992	867.	1030.	1110.	903	831.	831.	768.	631.	1000	588.	645	705	705.	720.	689	631.	603.	482.	445.	560.	560.	495	432.	507.	588.	631.	560.	495	432.
7 1 ME 2400	•	100	300	100	1300	100	300	100	1300	100	1300	100	1300	1 00	783	1900	100	700	300	1900	100	700	300	1900	100	700	300	1900	100	700	360	1900	100	760	300	1900	100
1 9 1	DY	27	27 1				29 1								۰ ۱			-				•				10				•				_			•
SAMPL I																																					•
SAN	*	7	2	76	16	16	76	9	2	92	16	16	7	7	7	7	2	7	2	2	76	7	7	76	16	16	76	16	16	76	16	16	16	7	76	76	2

LAKE ERIE JASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : MAUMEE RIVER

USES NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

250.	CHEO		558.	564.	668.	612.	620.	625.	624.	631.	632.	642.	630	637		644	999	658.		1 0 7	715	716.	724.	731.	731.	752.	737.	741.	747.	745	743	753	752.	751.	749.	755
20 2	1/9H	2.00	1.10	2.10	2.00	1.60	1.70	1.40	1.40	•		9																								
2010	H6/L																																			
2 TE 0	H6/L	50.00	49.00	49.00	56.20	57-10	58.00	57.90	58.30	59.40	60.00	59.70	60.30	61.60	62.20	63.30	63.80	64.40	09.69	00.00	07-17	90.00	69.20	69.30	69.30	10.00	68.90	69.80	10.10	71-10	71.20	1.6	7.7	•	ç	•
SOLIDS	1/9H	5.9	*	103.00	63.5	51-60	57.80	47.40	52.20	50.20	47.30	2.40	58.40	72.20	57.90	47.70	02.99	99.70		71.50	06-11		93.00	85.90	87.90	71.20	111.00	71.80	96.00	72.30	65.50	72.40	58.20	6.8	2 • 7	•
200	H6/L																																			
KJELD	H6/L																																			
DR G	N6/L																																			
N I	H6/L	•110	.010	.070	.084	.118	.147	.128	.087	. 012	.051	• 026	.141	. 122	.211	. 169	.128	• 000	. 065	+00	.117		141	.159	.119	.136	.111	• 089	•019	• 025	• 046	.010	.003	900•	.243	
K0-2	HG/L	004	.200	.300	.020	.260	.300	.180	.110	.070	.070	.040	.280	.190	• 060	090.	.060	.070	.050	000	0000	2020	012	.120	.160	.090	.150	.150	.130	.100	.130	.070		.030	•	
DHON	HG/L	.060	.030	030	.183	.172	.178	.153	.151	.135	.144	.133	•203	.184	.176	.170	.147	•146	.158	.151	.218	140		.178	.168	.166	.166	.141	-142	.142	.144	.128	.112	.105	4 T +	
TOTAL	H6/L	.307	.270	2	32	31	31	2	.295	3	33	37	32	35	046.	.317	ň	.396	• • • 5	2	39	205.	9 4	460	35	m	38	31	36	32	.329	.330	.286	.283	.289	
FL 04	2	482.	470.	2	1330	2	185	140.	177.	5	9	100.	5	11	192.	70	2	133.	ď.	234.	6	374		216.	00	9	6	96	340.	53	25	234.	20	69	278.	
TIME	HRS.	700	1900	100	1300	1300	1300	1300	1300	1300	1300	700	1300	1300	1360	1300	1300	1360	1300	700	1300	001		300	100	1300	300	1300	100	1300	100	1369	100	10 0	1330	,
9	0					1	•										_	_	~	~	-	= :		-	•	_	~	~	~		_	~	~	N	~	•
<u>۲</u> ۔	TR HO DY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6	T	•	•	o	0	•	•	•	6	•	6	•	6	•	•	•	•	
YS.	5 %	76	7	2	2	2	2	76	9	9	9	16	16	16	16	92	16	2	9	16	9	9	2 2	2 2	9	92	9	16	92	16	16	16	16	16	16	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

The second design of the second secon

MAJOR RIVER BASIN : MAUNEE RIVER

: NEAR WATERVILLE, OHIO LOCATION W/CODE

: MAUNEE RIVER

STREAM

US6S NO. 04193490

COND 25C. URHO	7461 7461 7461 7461 7461 7461 7461 7461	760.
IRON MG/L	-	1.32
S102		
RIDE N6/L		74.70
SUSPEND SOLIDS MG/L		18.90
COD	•	
TOTAL KJELD MG/L	· ·	
ORG. NIT. MG/L		
NH-3	1173 1173 1173 1173 1173 1173 1173 1173	.103
NO-2 NO-3 NG/L		.170
ORTHO PHOS. NG/L		.126
TOTAL PHOS. HG/L		.299
FLOW CFS		495.
16 TIME 2400 17 MRS.	30000000000000000000000000000000000000	_
SAMPLING DATE YR RO DY		101

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUNEE RIVER

STREAM : MAUNEE RIVER

USGS NO. 04193490 LOCATION W/CODE : NEAR WATERVILLE, OHIO

25C.		750	150	756.	753	751.	160.	769.	757	100	90,		2 5				747	7	750	757	771.	771.	111.	779.	776.	787	7730		• 67.7	777.	1130	9/	187	5.5	* F = 0	\$ 12•
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H6/L	1.55	1.21	1.11	1.26	66 i	.71	.81															-													
2102	M6/L																		48	6	• 46	1.04	1.16	1.18	1.06	P 0	1.17	02.	1.18	1.24	2.65	1:11	6/•			1.23
RIDE	H 6/L	74.30	72.90	73.20	73.90	74.70	15.60	75.30	72.90	72.90	72.70	71.90	72.70	06.07	71.90	72.20	0000	72.010	70.00	10.50	73.10	72.30	71.60	74.00	73.10	72.90	71.00	72.70	13.30	72.50	72.20	71.20	72.00	72.10	73.90	14.60
SUSPEND SOLIDS	H6/L	57.40	45.70	39.40	48.40	38.80	27.60	~	٠,	28-86	104.00	308.00	105-00	99.20	87.70	99.69	33.66	07-14			21.70	27.40	24.50	22.40	26.80	28.80	16-90	31.30	22.00	19.80	16.80	13.20	13.30	17.60	16.20	24.30
000	H6/L																																			
TOTAL	1/9H																													-						
ORG. NIT.	H6/L																																			
N-TX	HG /L	. 075	• 0 7 4	.030	. 007	.068	.152	*008	.145	.111	.071	• 076	• 024	• 034	.048	.015	•119	*00*	A00.	•22 •	1 1 1	157	• 106	.198	.172	• 170	. 623	.531	.421	. 245	.158	.135	. 091	• 036	• 196	• 139
20-2 20-3	H6/L	.140	. 020	.010	.010	.010	.010	010.			.020		. 110							010			900	.350	.350	• 360	.380	.410	0++.	.430	.430	.460	.470	044.	984.	944
PHOS.	1/9H	.100	. 168	.057	. 0 4 8	• 620	000	.035	.065	• 074	• 072	.050	•639	• 020	.047	.04	9 * 9 •	***	100	020	1000		600	•052	-047	.050	•129	• 083	.101	• 065	•052	• 650	.039	• 031	.057	040
TOTAL PHOS.	H6/L	.311	.271	.270	-269	.235	.222	.239	.204	.225	.371	.325	.360	.330	.318	.285	.235	.235	.243	.236	•199	.211	224	.238	.239	.233	-282	.261	.252	.256	.217	.214	-205	•199	. 197	.202
FLOW	,	445.	396.	200	318.	155.	177.	234.	234.	170.	736.	705.	1010.	705.	432.	329.	140.	363.	407	374.	• • • •		1010-	445	532.	407.	396.	432.	374.	278.	340.	374.	133.	352.	269.	243.
TIME	HRS	1300	1300	1300	1300	1300		100	1380	1 300	1300	1300	1900	100	700	1300	1900	1300	100	1300	1 500			1300	1300	700	1300	1300	1300	1300	1300	1300	1300	700	1300	1300
SAMPL ING	6	12		=	£	7	-	18	2	19	50	21	21	22		22	23	2	5 2	%	9 7		9 6	e M	3	-	-	~	m	•	50	•	_			
<u> </u>	2	-	~	-	-	•	-	-	-	***	76 10	~	~	~	~	-	~	~	~	70	۰,	٦.	•	-	~	_	-	-	-	-	_	-	~	_	~	~

LAKE ERIE HASTEMATER MANAGEMENT STUDY - MATER QUALITY INFORMATION

截 :: 1

MAJOR RIVER BASIK : MAUMÉE RIVER

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE. ONIO

US6S NO. 04193490

COND 25C.	.15	812.	013.	613.	614.	618.	814.	622.	833.	836.	663.	919.	929.	932.	919.	915.	912.	914.	903.	987.	863.	853.	903.	909.	909.	920.	932.	938.	965.	964.	951.	946	926.	938.	941.	924.
IRON NG/L																							•	7.00	•29	.19	.19	•16	.15	•16						
S102	.57	1.15	1.30	.63	. 88	1.65									1.17	2.34	4.19	1.77	1.83	2.54	2-12	2.94	3.68	2.82	3.19	3.49	3.96	3.10	3.27	3.20	1.07	1.61	3.34	1.36	1.44	1.48
CHLO RIDE NG/L	19.50	73.90	72.90	72.70	73.40	73.70	67.80	04.69	71-10	71.30	75.90	80.10	81.50	82.40	84.70	84.80	83.70	83.40	83.60	82.50	80.00	80.00	74.80	77.60	16.10	78.50	77.60	75.50	77.90	77.90	76.60	75.30	74.70	71.70	69.20	72.80
SUSPEND SOLIDS MG/L	23.90	17.80	19.70	16.80	21.00	16.40	10.90	09.6	11.80	12.70	19.40	16.90	14.70	15.30	11.60	11.00	13.00	15.60	24.80	22.20	21.20	22 - 20	23.60	41.40	30.90	29.20	22.90	24.20	22.70	21.70	24.30	13.30	7	17.50	34.40	13.00
C00																																				
TOTAL KJELD NG/L																							2.230	2.500	2.450	2.273	2.110	2.230	2.330	2.190	2.320	2-310	1.890	1.940	3.160	1.990
ORG. NIT. HG/L																																				
MH-3	.136	.101	• 092	.032	. 021	. 031	.213	.231	.241	.158	.276	.123	.122	• 068	• 266	.143	.158	.161	• 062	.014	• 018	.017	•279	254	. 193	• 088	.093	.041	• 090	• 032	.343	•319	. 254	.226	. 151	.118
NO-2 NO-3 NG/L		.460	•430	.450	044.	.460	0 * * *	.420	.450	.510	. 630	1.040	1.170	1.200	1.450	1.180	1.170	1.130	1.180	1.140	1.080	1.050	.970	1.130	1.090	1.060	1.060	1.030	1.090	1.120	.710	.960	.980	.970	.940	.980
ORTHO PHOS. NG/L		.019	.024	.025	.023	. 021	++0.	• 034	•039	.021	.031	.015	.009	900•	• 042	• 085	.016	• 060	.008	.005	600•	-005	-037	. 032	. 021	.001	.003	-005	. 011	.012	.048	• 059	.048	.051	. 132	.026
TOTAL PHOS. MG/L	.214	.132	-187	.176	.184	.167	.198	-182	-185	-174	.284	•199	-173	.157	.163	.175	.174	.185	.191	.188	.192	.184	.225	.278	.240	.220	.207	.217	.217	.219	.224	-207	-203	.213	.204	.203
FLOV	252	225.	287.	352.	192.	225.	133.	252.	252.	1298.	631.	352.	207.	420.	363.	307.	185.	225.	374.	+07.	133.	234.	532.	603.	243.	720.	650.	550.	+80.	420.	420.	360.	330.	310.	290.	270.
SAMPLING TIME DATE 24:00 YR NO DY HRS.	-	76 11 11 1900	11 12 1	11 13 1	11 14 1	11 15	11 15 1	11 16 1	11 17 1	11 18 1	11 19 1	11 20 1	11 21 1	11 22	11 22 1	11 23 1	11 24 1	11 25 1	11 26 1	11 27 1	11 26 1	11 29	11 29 1	11 30 1	12 1 1	12 2 1	12 3 1	12 4 1	12 5 1	12 6	12 6 1	12 7 1	12 8 1	12 9	12 10 1	12 11 1

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

US65 NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

COND 25C. UNHO	928.	959.	973.	980.	976	975.	954.	963.	976.	988.	973.	1017.	1047.	1064.	1084.	1074.	1074.	1056.	1056.	1665.	1054.	1062.	1029.	1020.	1021.	1001	984.	971.	988.	977.	1046.	1045.	1051.
IRON MG/L	, S.	61.	61.	.32	.21	•26																											
S192 MG/L	1.51	01.		•	.56	• 30	2.74	2.11	1.53	1.99	1.98	1.60	1.11	1.90	1.93	1.18	•	2.45	• 79	1.55	•6•	1.28									2.46	2.98	2.64
CHLO RIDE MG/L	71.10	76.30	56.60	74.80	76.30	76.90	77.90	19.90	90.60	80.80	82.00	82.80	85.70	86.10	87.30	87.30	85.30	84.60	85.50	84.00	84.30	84.60	81.60	79.70	79.80	79.50	78.30	79.10	79.10	79.90	62.50	84.30	N .
SUSPEND SOLIDS MG/L	14.40	70	12.30	16.20	17.70	18.30	10.10	12.20	12.50	11.40	10.40	10.00	10.00	10.70	7.00	20.10	6.50	6.30	5.80	6.20	7.30	7.00	7.80	09.4	4.20	3.80	2.20	3.80	3.10	2.80	5.30	3.90	5.20
C00																																	
TOTAL KJELD H6/L	2.430	1.630	1.970	2.420	2.220	2.270	2-130	2.570	2.270	2.330	2.160	2.140	2.040	2.020	2.670	1.860	1.990	2.080	1.690	3.390	2.140	ç											
ORG. NJT. MG/L								-																									
NH-3	.045	.250	.129	.168	. 067	• 026	.310	. 295	.246	.169	. 181	. 136	.091	.093	.357	.146	.374	• 394	.372	• 438	.415	.545	• 638	• 662	• 664	-682	.714	. 685	. 753	.810	.976	. 992	.991
NO-2 NO-3 MG/L	.960	1-150		1.070	.04	• 05	•13	1.170	.33	. 45	1.580		• 92	1.980	.207	•25	• 23	2.190	2.230	2.180	2.190	2.180	2.180	2.020	1.980	1.920	1.810	1.760	1.686	1.650	1.510	9	1.650
ORTHO PHOS. RG/L	.029	• 089	.051	• 062	• 056	.049	.098	•102	960 •	.080	.081	.070	• 069	•070	.105	•105	.137	.135	.121	.137	.130	.176	.178	•176	•178	.187	.193	•200	.201	.211	.246	•260	.257
TOTAL PHOS. HG/L	.210	9.	.181	25	.241	3	.235	•239	•226	.237	.228	.234	.226	.229	.217	.294	.252	.251	.243	•260	•255	.272	2	25	•262	•256	.301	.362	.288	.295	.340	.314	.314
FLOW	250.	200	180.	170.	150.	252.	269.	363.	+00+	780.	100.	620.	560.	1684.	708	1200.	900	900	600.	700-	620.	560.	560.	500.	460.	430.	400	370.	340.	320.	260.	250.	240.
11ME 24cd HRS.	1300	1300	1300	1360	1300	700	1300	1300	1300	1300	1300	1300	1 300	700	1300	1300	1300	1360	1300	1300	1 300	750	1300	1360	1300	1300	1300	1 300	1300	700	1300	1300	1300
2 7	12		n va	~				_	o.	M	•	ID.	٠	21	_		•	30	_			m				•		- •	•			æ	6
SAMPLING Date Yr ho dy	22 2		~ ~	٦.	• ~	-	-	_	~	~	-4	~	~	~	~	_	~	~	-														
Y A A	76 76	2;	2,2	2,2	72	76	76	76	16	16	92	16	16	16	76	16	16	16	16	11	11	11	11	11	11	77	7.7	11	11	11	11	11	11

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OHIO

USES NO. 04193490

COND 25C. UMO	1061.			12560. 12511. 12212. 12215. 1223.	122210 122210 122210 122210 122210 122210 122210 122210 122210
IRON NG/L				-	
S102	20.72	2.10			00000000000000000000000000000000000000
RIDE RE/L	86.30 86.90	8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	900000000000000000000000000000000000000	94.10 94.70 1110.00 1110.00 1111.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUSPEND SOLIDS MG/L	4 70 4 4	47.49.40	20000000000000000000000000000000000000	# # # # # # # # # # # # # # # # # # #	
C00					
TOTAL KJELD MG/L				·	1
ORG. NIT. HG/L		•			
NH-3	.998	100000000000000000000000000000000000000			2000 2000 2000 2000 2000 3000 3000 3000
NO-2 NO-3 #6/L	1.700	1.560	1.720 1.720 1.720 1.720		11.6650 11.665
08TH0 PHOS. H6/L	.254	2222			887 + 88 804 + 88 804 + 88
TOTAL PHOS. MG/L	.313 .312 .296				10444444444444444444444444444444444444
FLOW	9 0 0	2220			1149000 11490000 11490000 1140000 1140000 1140000 1140000 1140000 114000
11HE 2480 HRS.	1300				
9 6		•			31038755344W2
SAMPL I DATE YR HO					######################################

LAKE ERIE VASTEVATER HANAGEMENT STUDY - VATER QUALITY INFORMATION

STREAM : MAUMEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OMIO

US&S NO. 04193490

COND 25C.	OME	1029.	744.	625.	598.	475.	456.	442.	166.	451.	460.	416.	411.	399.	397.	398.	386.	406.	385.	381.	375.	368.	412.	412.	396.	401.	399.	401.	393.	407	+07.	416.	420.	396.	424.	424.	429.
IRON	H6/L			4.30		4.50		5.30		4.10		0.70	8.90	14.40	15.90	15.20	20.00		26.40	29.60	25.90	04.48			30.50	28.89	20.20										
\$102	1/9H	6.28	6.81	4.95	6.15	4.60	5.40	4.78	5.48	5.15	94.9	4.90	4.87	4.81	4.76	4.65	4.93	60 • 9	4.85	5.01	4.93	4.86	6.26	5.91	4.83	5.28	5.18	5.77	6.05	6.40	5.87	5.17	6.48	5.82	6.04	6.30	6.10
CHLO	1/94	86.10	71.80	71.50	64-10	54.30	43.20	50.40	46.70	46.50	47.20	45.40	45.50	43.10	42.10	40.30	37.90	33.30	36.80	35.30	35.40	36.80	38.80	35.10	38.30	38.90	39.20	38.60	00.40	38.90	39.40	39.90	•	34.90	•	42.30	42.30
SUSPEND SOLIDS	1/9M	31.50	46.60	131.00	96.70	120.00	228.00	135.00	183.00	78.20	93.60	147.00	166.00	355.00	459.00	475.00	597.00	760.00	814.00	915.00	779.00	1131-00	586.00	625.00	932.00	873.00	572.00	405-00	285.00	290.00	328.00	270.00	249.00	145.00	241.00	240.00	164.00
COD	H6/L																																				
TOTAL	1/9H	2.060	1.600	4-100	1.900	2.250	2.340	2-450	2.120	2-020	1.750	2.180	2.350	3.190	2.060	1.870	2.910	4.220	3.300	3.300	3.640	5.220	2-830	3.810	4.620	3.410	2.730	2.920	2.573	3.050	2.380	2.673	.610	.93	٠,	2.833	2-540
ORG.	H6/L																																				
Z + Z	1/9H	.068	•074	3.110	.214	1.140	.041	1.080	.119	.629	• 099	.570	.537	.478	.441	.401	.397	.152	.361	. 389	. 367	.414	.112	160.	.632	.551	-486	.383	• 076	. 368	.376	.380	.357	• 079	.271	.345	.367
NO-2	H6/L	7.680	3.970	3.020	3-120	3.960	5.370	969.4	6.290	5.480	6.030	5.120	5.080	5.380	5,220	5.330	5.410	5.500	5.740	5.800	6.200	6.150	7.140	6.910	6.100	6-550	6.750	6.920	7.390	7.070	7.230	7.340	•	•	7.230		•
PHOS.	H6./L	.711	.339	.295	.216	.207	.230	.172	.229	.137	-202	.139	.141	.129	•129	.127	.112	.155	• 096	• 095	160.	.091	•126	. 141	060•	.101	.107	960•	.150	.108	• 109	.112	•108	.152	160.	• 092	.089
TOTAL PHOS.	H6/L	1.070	.746	.752	.642	.536	.628	.584	.641	.399	.461	.465	. 488	.719	-885	.851	1.120	1.310	1.130	1.550	1.210	1.670	1.030	1.120	1.490	1.430	-992	.852	.747	.825	.735	.653	.587	-552	.548	.526	•458
FLOW	•	8514.	9888.	1160.	14100.	14988.	15660.	13650.	13786.	9620.	9650	10396.	14350.	19240.	22420.	25380.	30420.	31640.	28710.	_	26570.	32120.	36440.	53150.	51250.	34680.	26850.	_	25380.	22180.	20800.	19660.	18380.	19480.	17150.	16140.	15040.
11ME	HRS.	819	200	386	785	300	935	300	1725	1300	1745	700	1300	1900	100		300		900	100		300		613	906			300		906			300	1900	1900	100	700
9	5	56	27	28	28	-	-	~	~	M	m	•	*	*	ĸ	ĸ	'n	S	'n	9	•	9	•	9	•	~	~	_	~	~	•	•	•	•	•	6	•
SAMPL ING Date	47 70								7																												

69

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

: NEAR WATERVILLE. OHIO LOCATION W/CODE

: MAUNEE RIVER

STREAM

USES NO. 04193490

COND 25C. UMNO	437.	299	• • • •	101	***	2		76.2	453.	+50.	396.	455.	459.	462.	+69•	410.	+8 5•	504	517.	525	431.	531.	529.	240	256	471.	538.	181	541.	508.	571.	534.	581.	555.	269
IRON HG/L																								•	3.10	1	3.30		4.00		3.70		2.40		6.70
\$102 M6/L	1.97	2.46	910	6.24	67.0		200	710	7.19	5.86	5.16	5.92	5.88	6.37	7.00	5.49	6.68	6.35	6.57	6.23	2.84	6.43	7.07	7.03	6.52	6.43	6.78	6.60	6.50	6.81	6.87	7.35	7.04	7.23	6.89
CMLO R1DE R6/L	38.70	34.30			24.04	96.75	04.04		41.50	41.20	32.30	41.10	41.30	41.80	42.50	34.90	42.50	42.90	45.90	47.60	34.50	47.00	46.90	47.30	45.70	37.90	45.70	38.90	46.60	40.20	50.00	43.70	50.30	44.50	49.10
SUSPEND SOLIDS MG/L	214.00	119.00	99.897			36.06	04-9/		A0.30	56.70	72.10	71.20	75.10	67.60	78.20	69.40	85.80	127.00	1.20	68-80	48.90	78.40	85.20	65.50	29.20	55.20	58.10	53.90	100.00	04.64	86.50	39.90	50.40	39.30	182.00
000 MG/L																																			
TOTAL KJELD MG/L	1.530	3.230		2.640	1.11	1.790	1.990			1-410	1.440	2.080	1.430	1.720	1.590	1.600	1.750	1.830	1.960	1.530	1.620	1.660	1.560	1.723		1.330		1.180		1.940		2.263		1.270	
ORG. NIT. MG/L																																			
1/9H	. 460	110.	* 200	.319	• 204	480.	. 353	2000	917	316	. 076	.225	. 320	.300	.351	. 081	.316	.364	.274	. 333	. 123	.245	.270	.309	.294	• 074	.370	• 036	.329	. 098	.416	• 2 92	. 459	.116	.333
NO-2 NO-3 N6/L	9.900	7.500	7.560	7.600	7.700	7.760	7.070	0.C.)		6.740	5.760	6.530	6.580	6.690	7.090	6.200	7.010	7.230	7.260	7.330	5.990	7.510	7.720	7.850	7.690	6.560	7.230	6.190	6.670	6.380	6.540	6.500	6.660	6.390	8.820
ORTHO PHOS. HG/L	.081	.142	. 093	960.	• 092	.083	-142	100	060	780	141	. 686	•010	.083	.089	.127	.088	.091	•076	.072	.118	-077	• 075	.077	• 069	.120	•073	.118	.070	.119	.062	.113	•056	• 106	• 024
TOTAL PHOS. MG/L	. 454	.512	. 400	.390	• 34	.327	-412	.321	022		373		.308	.290	.302	.309	.389	.356	.328	-284	.283	.279	.281	-268	.247	• 262	•235	.259	.278	-257	.272	.233	-214	•206	•326
FLOU	14500.	15400.	12650.	10900	10396.	10292.	11700.	10344	10580.	10366	11400	3845	9755.	9440	8992	10240.	9530.	9640.	6364.	8220.	9530.	8304.	7884.	7520.	7166.	8010.	6445.	110	5576.	968	200	5088.	685	5470.	13900.
11ME 2400 HRS.	1300	1700	1900	100	700	1300	1710	1900	100		1810	1900	100	700	1300	1815	1900	100	700	1300	1645	1900	100	700	1300	1700	1300	1850	1300	1015	1300	1755	1300	1750	1300
9 4	•	•	•	-	9	=	0	-	=:	::	: =	:=	2	12	12	12	7	2	13	13	13	13	*	=	=	=	15	15	16	16	17	17		18	13
ار 1 م	m	m	m	m	m	~	m i	1 0	m ,	O =	۰ -) PT	1 7	M	17	m	, IN	m	m	m	~	m	m	m	~	m	m	M	m	•	M	-	107	m	m
SAMPLING DATE YR HO DY	11	11	7	11	11	11	11	11	7	::	: :	. [1	: [11		1	1	11	1	11	1	11	11	77	11	11	11	11	7.7	11	77	11	77	11

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: MAUNEE RIVER

STREAM

: NEAR VATERVILLE, OHIO LOCATION W/CODE

USGS NO. 04193490

COND 25C. UMNO	588.	580.	606	555.	538	542			• • • • • • • • • • • • • • • • • • • •	000		900	900	943	916	545	551.	523	996	551.	574	582	287	562	269	268	200	546.	505	490	481.	484.	485	+86.	540•
IRON HG/L	5.70	6.00	9.60	8.80		11.50		39.01	9.20		0 /		2			5.00	•		4.30	(5	7.80	•												8.70
\$102 MG/L	6.93	6.55	6.73	ç	7.05	7	9 - 50	B 9 9	11.9	•	7.63	1.02	7.47	7.79	6.75	7.18	7.40	96.9	7.57	7.69	7.65	1.54	8.85	6.89	7.19	7.25	7.07	3.73	6.51	7.07	7.18	1.65	6.95	7.27	68.9
CHLO RIDE MG/L	45.60	50.20	53.90	49.50	42.90	0 0 0 0	9.00	49.70	43.60	43.20	43.80	9.0	2.1	41.60	41.30	41.80	42.30	43.00	43.40	43.40	43.90	00.44	44.20	45.90	45.70	6.1	•	:	9.2	38.90	38.00	8.9	0.7	8	8.7
SUSPEND SOLIDS MG/L	71.20	166.00	181.00	202.00	87.70	257.00	183.00	250.00	178.00	136.00	118.00	234.00	103.60	06.99	82.60	06.46	128.00	53.50	66.00	52.60	49.80	62.00	50.80	38.10	51.60	49.00	44.30	70.10	184.00	188.00	160.00	211.00	05.0	71.0	93.
COD																																			
TOTAL KJELD MG/L	1.160				2.230				2.060	1.930	1.590		1.500	1.480	1.330	1.440	1.520	1.160	1.530	2.890	3.020	1.340	1.240	1.480	1.240	1.360	1.230	1.460	2.970	2.600	2.420	1.680	1.669	1.860	-
086. NIT. MG/L																																			
NH-3	.018	884	.501	.209	. 097	.346	.416	.450	.167	.087	.155	-202	• 198	.172	.057	.176	•179	• 159	.208	.031	.161	.143	.216	•059	• 019	.108	. 426	.217	.153	.441	.184	.128	.025	.084	• 050
NO - 2 NO - 3 NO - 3	6.100	00000	8.060	8.540	8.350	9.730	9.810	9.920	9.900	7.890	10.100	10.000	9.770	9.390	8.130	9.380	9.430	9.500	9.490	8.920	9.450	9.510	9.590	8.540	8.300	7.950	7.900	8.230	7.980	7.770	7.850	2.680	7.860	8.070	7-170
ORTHO PHOS. MG/L	.117	7900	7 80	500	.137	.075	.067	• 065	.075	.140	.068	.074	.077	• 075	.128	• 076	•075	.071	.073	.114	690•	.058	• 062	• 106	.102	.114	•110	• 089	-088	160.	.111	. 027	.114	.112	690•
TOTAL PHOS. HG/L	.279	9 6			56	3	42	164.	7	9	37	•	32	20	-	28	27	25	25	26	23	22	20	2	23	5	22	24	8	55	684.	1		38	10
FLOW	•	9		9	9	0	0	•	9	9	9			9		9	9	9		2	•	6	2		0	9	9	9	9	9	9	9	2	9	15000.
118E 2408 HRS.	1745	1960	100		1640	1900	100	700	1300	1810	1900	100	700	1 400	1705	1960		700	1300	1845	1900	100	700	1900	1825	1900	1310	1840	1925	1950	1340	3 4 6	. 6	;	1039
SAMPLING DATE YR RO DY	7 3 19	m ·	N 6	, .) k) M	N (N)	~	× 2	, r	N 19		, e	, ,	. ~	, M		, m	, r.	, e.			, C) P	, M		, PC) P	יא נ וא נ	יאנ אינ) P	, 4	11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

USES NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

CONO 25C. URHO	55 55 55 55 55 55 55 55 55 55 55 55 55		4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IRON MG/L	10.50	111111111111111111111111111111111111111	12.00 11.50 10.10	9.10 7.90 6.10 6.50 6.30 5.70	664 6666 664 6666
S102	66.44	66664460 6666460 6666460 6666460	66 66 66 66 66 66 66 66 66 66 66 66 66		00 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CHLO RIDE RE/L	300 00 00 00 00 00 00 00 00 00 00 00 00	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26.30 28.30 28.30 28.30 28.30 29.30	00000000000000000000000000000000000000
SUSPEND SOLIDS MG/L	200.00000000000000000000000000000000000	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	173.00 223.00 186.00 290.00	66.00 100.00 100.00 100.00 100.00 100.00 100.00	8 10 2 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10
1/9M 000					
TOTAL KJELD MG/L	3.240 1.298 6.120 2.570	2 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 ·	2.540	11.00000000000000000000000000000000000	1.220
ORG. NIT. MG/L					
NH-3	.057		. 023 . 118 . 102		
20-2 20-3 76/1	7.120 6.740 6.930	66.500000000000000000000000000000000000	6.940 6.940 6.940	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ORTHO PHOS. MG/L			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 0 4 0 4 0 6 4 6 6 6 6 6 6 6 6 6 6	.093 .073 .0046 .018 .017 .017 .073
TOTAL PHOS. MG/L			0000 0000 0000 0000 0000 0000		
FLOW	2000				770000 770000 770000 770000 770000
7116 2400 HRS.	1630 1800 2230 430	1630 1945 2230 430 1630	2230 2230 430 1030	2230 430 1630 1630 1630 1930 1030	1615 1630 1630 1630 1630 1815 2230 1360 1705
SAMPLING Date yr ho dy	5555				**********

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

US6S NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

COND 25C.	CHEO	531.	555.		556.		564.		581.		594.		592.	595.			608.	• 009	• 609	620.	631.	637.	638.	644.	644.	650.	644.	654.	650.	661.	653.	646.	582.	514.	504.	517.	469.
IRON	N6/L			5.80		00.4		4.20		4.70		3.80			2.90	2.70	3.60		4.50		3.80	3.80		3.80	3.40	6.50		5.40	4.30	4.70	4.80	9.00	12.20	27.80	34.80		50.10
S102	1/9H	7.14	6.54	5.80	7.83	2.67	7.53	2.60	7.22	5.47	6.76	5.06	7.63	6.18	4.82	3.39		5.29		4.31			5.30				4.70									5.36	
CHLO RIDE	1/9H	32.40	32.20	34.40	31.90	35.10	33.20	36.80	34.10	36.80	34.70	36.00	34.00	34.30	35.70	38.80	38.00	35.00	39.00	36.20	41.20	41.80	37.80	42.10	42.00	42.90	38.70	4.3	43.80	00.44	3.8	m	40	•	32.20	ņ	28.40
SUSPEND SOLIDS	H6/L	39.30	54.20	231.00	•	•	ง	131.00		221.00		161.00	37.30		98.10	123.00	120.00	33.20	184.00	33.10	126.00	123.00	30.30	130.00	111.00	217.00	35.10	179.00	139.00	170.00	161.00	205.00	Ö	810.00	41.0	. 556.60	1731.00
COD	1/9H																							•													
TOTAL KJELD	H6/L	1.230	1-490		1.260		1.120		1.090		1-130		1.370	2.560			1.480	.870	• 75	1.080	2.090	1.630	1.130	1.560	1.370	2.220	.49	•29	1.670	1.680	•9•	2.050	2-470	4.460	• 36	٠	8.240
ORG.	7/9H	•																																			
ET-3	H67L	.013	.024	.032	• 029	.187	• 022	.060	.020	.047	.021	.067	• 022	• 026	.063	.091	•105	• 029	.070	• 026	-047	.114	• 038	• 058	. 091	• 096	•056	.114	• 064	• 059	.060	.070	.121	.256	.216	• 039	•174
NO-2	1/9H	5.390	5.720	5.800	5.770	5.560	5.770	5.400	5.700	5.210	5.450	4.710	4.900	4.510	4.100	4.010	4.470	4.290	4.270	4.210	4.140	4.060	.12	4.100	4.070	4-180	4.000	4.110	4.110	4.100	96.	3.750	5-150		9.390	ę.	9.400
PHOS.	1/91	-102	.104	•086	• 660 •	.087	•00•	.088	•60•	.078	.091	.067	•084	•075	.047	.038	-105	• 075	.085	090•	• 065	-050	.054	.063	. 063	.061	.036	.039	• 059	.070	• 062	-063	.078	.103	.103	• 092	•106
TOTAL PHOS.	H6/L	.215	.230	.364	.217	.281	.207	.298	•192	.356	.185	•304	.173	.176	.252	.246	.273	.172	.355	.159	.279	.273	.146	.278	•258	.374	.157	.340	.299	.327	.345	.382	.578	1.080	1.550	.912	2.160
FLOW	•	3352.	3352.	3507	3260.	3170.	2880.	2570.	2570.	2548.	2738.	2265.	2575.	2575.	2290.	1927.	1835.	2046.	1927.	2118.	2094.	2265.	2365.	2022.	1927.	1974.	2290.	2094.	1835.	1858.	1927.	2046.	3990.	12750.	27130.	46030.	41900-
T 1 ME 2400	HRS	1000	1001	1300	2250	1300	1900	1300	1840	1300	1860	1300	1720	1130	1300	700	1300	1740	1300	1720	1300	1960	2120	100	700	1300	1730	1900	100	700	1300	1900	100	700	1300	1800	1900
	7	~	~	N	N	m				'n	2	٠	۰	~		80	•	60	6	•	6	_	e	_	21	_	_	_	22	22	~	~	23	23	23	·	•
AMPL ING	2	•	•	*	•	•	•	•	4	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
20 50	=	7.1	7	7.	7	7	7	7	7	77	7	7	7.	7.7	7	7	7	7.	7	7	7	7	7	7	7	7	7	7	2	7	7	7	77	7	11	7	11

LAKE ERIE GASTEVATER MANAGEMENT STUDY - MATER GUALITY INFORMATION

STREAM : MAUNEE RIVER

US6S NO. 04193490 : NEAR WATERVILLE, OHIO LOCATION W/CODE

COND 25C.	451.	363.	401.	396.	406	389	•1•	576.	420	435	437	+01	004	+48.	458.	+17.	468.	473.	481.	492.	445.	498 •	507.	511.	475.	515.	528.	530	535.	494.	. 561.	521.	565.	527.	569.	
IRON NG/L	64.00		49.70	51.60	40.70	36.80	7	٠	20.10	2.6	13.90			11.80	•		10.10	10.00	8.70	9.10		9.80	9.00	8.20		7.60	6.70	5.50	5.20		04.4		1.10		1.70	
S102		7.51				;	7.41	7.88	1.69	7.64	0.0	•	9	7	•	ŗ	8.16	ç	7.87	7.94	60 • 6	7.84	8.23	8.05	12.20	8.01	7.74	7.86	7.88	•	Ñ	9	7.54		96.9	
CHLO RIDE MG/L	26.20	ŝ	7	21.40	٠	ů.	`	•	7	21.80	23.50	21.10	21.90	24.40	24.70	23.50	25.00	25.70	25.80	26.60	25.70	27.20	27.70	27.90	27.30	28.50	28.80	29.70	29.60	29.10	31.80	31.60	31.80	30.30	32.40	
SUSPEND SOLIDS MG/L	2444.00	á	ó	-	ė	ó.	o d	ė	9	9	260.00	165.00	165.00	214.00	267.00	146.00	184.00	171.00	223.00	202.00	102.00	207.00	234.00	177.00	94.90	188.00	138.00	•	27.0	Ç.	۳.		96.40	3	•	
7/9# C0D																																				
TOTAL KJELD NG/L	10.300	.02	5-140	906-9	7.480	.92	9	ŗ,	6.100	3.200	3.000	1.920	1.950	20	30	.82	50	30	20	90	.70	.70	2.000	10	46	90	1.700	1.800	. 40	•	•	1.740	•	1.620	1.410	
ORG. NIT. MG/L																																				
NH-3	.237	540.	.179	.227	.237	.217	.120	• 070	• 068	• 066	. 047	• 065	.084	• 058	• 058	• 080	• 064	. 053	.057	• 068	.063	• 068	.078	• 082	• 055	• 076	. 073	. 095	060*	• 025	. 087	• 025	.073	• 0 • 6		
NO-2 NO-3 N6/L	8-100	8	8.030	8.200	20	20	8-100	7-270	8.430	8.410	9.010	8.270	8.310	31	9.330	30	9	9.510	27	9.330	53	9.270	•19	5	• 06	8.900	.85	8.870	•62	.72	8.050	• 29	7.310	*	. 08	
DRTHO PHOS. MG/L	1117	.111	.106	.107	.106	.113	• 078	.122	• 095	. 088	• 00 •	.129	.126	• 089	.089	.164	*00	. 095	. 087	.087	•156	. 086	.083	.080	.143	.082	.077	.076	.071	.125	.057	.122	.060		.053	
101 k L PHOS. H6/L	3.140	. 83	.29	3.090	.11	• 64	•46	•596	.964	.725	•652	.481	.481	• 566	.564	694.	.496	.512	.458	.471	.372	.516	.463	434	.338	+0+	.361	.319	.307	.277	.280	.229	•176	.210	.243	
FL08 CFS	52680.		•	•	55050.	_	~	55260.	ė.		32900.	•	33880.	32900.	_	•	25700.	2:700.	20700.	•	0	0		0	•	0	0	0		1:188.	8	5916.	6668	7440.	5792.	
711 2466 HBS.	100	245	300				300		926	160		205	206	300		150	100		300		945	100		360	840		160		20	723	303	125			700	
SAMPLING DATE YR MO DY	77 + 24	•	•	•	*	•	•	*	•	*	•	•	•	•	•	•	•	•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	r un	•	'n	

LAKE ERIE UASTEUATER MANAGEMENT STUDY - VATER GUALITY INFORMATION

MAJOR RIVER BASIN : MAUMEE RIVER

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE, OHIO

US6S NO. 04193490

COND 25C.	UNHO	572.	535.	591.	588.	586.	589.	581.	517.	502	539.	477.	419.	479.	469.	501.	473.	480.	419.	479.	481.	497.	509.	523.	537.	536.	548.	554.	550.	538.	546.	553.	551.	554.	560.	571.	570
NO NO	H6/L	4.50		5.90	7.30		6.50	6.20		14.90		15.80	15.60	15.60	16.80		16.70	15.70	16.60		17.20	14.20	12.50	10.60	11.60		10.40	~	8.90		11.30	9.20	06•9	5.70		5.00	
S I 02	H6/L	6.55	7.96	7.19	7.21	6.97	7.38	7.26	7.13	7.09	7.09	7.47	`•22	7.50	7.63	7.34	7.01	7.15	7.17	7.69	7.11	7.09	7.37	7.28	7.34	8.49	7.75	7.04	7.63	8.72	7.29	7.58	7.36	8.14	9.63	7.82	•
CALO RIDE	H6/L	33.50	30.80	34.40	33.00	35.20	34.30	33.40	29.60	27.10	29.70	24.20	24.40	24.80	24.40	27.80	26.70	25.60	25-60	25.60	25.80	27.00	28.20	29.70	30.80	30.40	31.80	31.70	31.70	30.50	31.90	32.10	32.70	36.90	31.70	38.40	
SUSPEND	7/91	101.00	37.10	137.00	164.00	55.60	147.00	135.00	237.00	301.00	101.00	305.00	294.00	320.00	388.00	183.00	394.00	332.00	386.00	156.00	432.00	323.00	273.00	213.00	316.00	121.00	273.00	236.00	206.00	89.70	325.00	219.00	63.40	124.00	24.60	0	•
000	H6/L																																				
TOTAL	H6/L	1.680	.940	1.710	2.600	1.630	2.080	1.360	2.060	2.470	1.100	2.550	2.290	2.550	2.920	1.790	3.020	2.950	3.410	2.590	3.300	2.440	2.860	2.740	2.910	1.520	2-400	2.210	1.990	1.260	2.140	.17	2.110		1.030		
086. NIT.	1/94											۵.																									
N-T2	HG/L	170.	040	.101	• 095	.055	°128	. 977	.120	.068	.045	•105	.107	• 066	• 106	.049	2.000	•109	.114	150.	.202	.105	.130	.184	.248	.045	• 085	•639	.061	940.	.085	.117	. 125	. 022	040	.032	:
N0-2	H6./L	6.910	6.220	8.570	8.670	6.170	9.080	8.750	8.430	9.090	5.820	8.940	8.940	8.660	8-440	5.520	8.320	7.830	7.560	5.800	7.510	•	8.220	8.340	8 • 620	7.840	8.630	8.570	•		•	8.820		•	•	•	
OR THO	H67L	• 196	• 096	• 076	. 087	.101	.082	•60•	.074	.077	.103	• 076	.087	.078	.082	.112	•014	•084	.080	.119	.081	.073	.091	-087	• 089	.136	-085	• 082	060.	.131	. 088	.081	• 085	• 082	.125	.085	
TOTAL	H6/L	.281	.186	0000	•370	.213	.325	.317	.524	.584	.280	.593	.600	•611	.670	•425	.691	•656	.706	.418	.740	-631	.585	.523	.577	.387	.539	•495	•484	.313	•579	+6+-	.397	.373	.248	.346	
FLOV) ;	5684.	_	_		12960.	_	109601	12250.	15550.	18580.	20140.	21640.	23020.	23340.		22660.				19660.		16260.	525	395	560	12650.	11990.	0620	190	5	8694.	•	20	0	4	
7 1 1 2 2 2 2 3	HR S.	1300	910	300	900	2045	100	700	300	1900	9	100	700	300	1900	015	100	700	300	1705	900	100	700	1300	1900	1920	100	700	1309	1345	1900	100	730	1300	1915	1300	
	6					173		•					ß					4					1				60	60					0				
AAPL 186 A75	4	•				· •																															
3 2	5		-	_	^	7	~	-	~	_	-	_	-	-	_	-	-	_	_	-	-	-	_	~	~	-	~	~	-	-	_	-	_	~	-	-	. i

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUMEE RIVER : MAUMEE RIVER STREAM

USES NO. 04193490 : NEAR VATERVILLE, OHIO LOCATION W/CODE

COND 25C.	CMHO	451.	439.	363.	401.	396.	406.	389.	414.	376.	420.	435	437	401.	4004	448.	458.	417.	468.	473.	481.	492.	445.	498.	507	511.	475.	515.	528.	530.	535.	194.	. 561.	521.	565.	527.	569.
IRON	H6/L	00-49	51.90		49.70	51-60	40-70	36.80	-		:	9.6	13.90			11.80	•		10-10	10.00	8.70	9.10		9.80	9.00	8.20		7.60	6.70	5.50	5.20		01.4		1.10		1.70
2018	H6/L			7.51					7.41	۳.	7.69	7.64	•	•	8.88	7.88	•	7.99	8.16	•	7.87	7.94	60.6	7.84	8.23	8.05	12.20	8.01	7.74	7.86	7.88	9.6	~		•	8.60	96.9
CHLO RIDE	H6/L	26.20	26.30	17.50	22-10	21.40	21.60	22.50	19.70	18.40	21.10	21.80	23.50	21.10	21.90	24.40	24.70	23.50	25.00	25.70	25-80	26.60	25.70	27.20	27.70	27.90	27.30	28.50	28.80	29.70	29.60	29.10	31.80	31.60	31.80	30.30	32.40
SUSPEND SOLIDS	#6/L	2444.00	2024.00	379.00	1751.00	1878.00	1336.00	1167.00	1141.00	204.00	244.00	323.00	260.00	165.00	165.00	214.00	267.00	146.00	184.00	171.00	223.00	202.00	102.00	207.00	234.00	177.00	94.90	188.00	138.00	101.00	127.00	31.90	93.30	51.70	96.40	•	101.00
000	#6/L																																				
TOTAL KJELD	N6 /L	10.300	6.380	3.020	5-140	906.9	7.480	5.920	6.000	1.740	6.100	3.200	3.000	1.920	1.950	2.200	2.300	1.820	2.500	2.300	2.200	2.900	1.700	2.700	2.000	2.100	2.460	1.900	1.700	1.800	1.400	1.196	1.500	1.740	1.560		1.410
ORG. N.11.	1/9H																																				
NH-3	H6/L	.237	. 156	.043	•179	.227	.237	.217	.120	.070	. 068	• 066	.047	• 065	• 084	• 058	. 058	• 080	• 064	. 053	.057	• 068	• 063	• 063	• 078	• 082	• 055	• 076	.073	• 095	060*	• 025	.087	• 025	.073	• 0 46	• 059
NO-12	1/9H	8.100	7.890	5.950	8.030	8.200	8.200	8.200	8.100	7.270	8-430	8.410	9.010	8.270	8.310	9.310	9.330	8.300	9-400	9.510	9.270	9.330	8.530	9.270	.19	9.040	8.060	8.900	8.850	8.870	8.620	7.720	.05	•	7.310	•	7.080
ORTHO PHOS.	1/9H	.117	.110	.111	•106	.107	.106	.113	• 078	.122	.095	.088	• 00 •	.129	.126	• 089	.089	.164	•60•	• 095	. 087	.087	•156	• 086	.083	• 080	.143	.082	.077	• 076	.071	.125	.057	.122	• 000		.053
TOTAL PHOS.	1/9H	.14	7	83	•29	• 0 9	.11	1.640	.16	•596	•96•	.725	• 652	.481	.481	• 566	-564	•469	964.	.512	.458	.471	.372	.516	.463	484.	.338	+0+	.361	.319	.307	.277	.280	.229	.176	.210	.243
FLOW	ı •	52600.	677	220	6950	56950.	505	0	690	5260	630	8800	290	3980	3880	2900	290	0140	0013	:70	0100	5700	2320	320	3200	0	2900	3200	170	170	17	18	980	4	•	:	•
717E	HBS.	108	700	1245	1300	1944	100	180	1300	1825	1960	DO T	700	1205	1206	1360	1960	2150	100	763	1300	1900	1945	305	206	1360	1840	190c	160	7.00	1366	1723	1307	132:	1303	2633	100
		2	24					2	52	25	25	5 6	5 6						27					28	28				53	53					_		~
SAMPLING Date	2	*	•	-	Ī	*	-	•	Ī	•	•	Ī					•			•	-	-	-	•	•										'n		_
SA	-	11	11	11	11	11	77	11	11	11	11	7.7	77	11	11	77	77	77	77	11	11	11	77	77	77	11	11	11	11	77	11	11	77	11	11	11	11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

i

MAJOR RIVER BASIN : NAUREE RIVER

STREAM : MAUNEE RIVER

USES NO. 84193490 LOCATION W/CODE : NEAR WATERVILLE, OHIO

	290		565.	563.	585.	591.	583.	609	597.	618.	611.	614.	618.	607.	613.	616.	567.	588.	547.	584.	550.	589.	553.	610.	553.	607.	578.	622.	563.	547.	557.	569.	572.	583.	576.	588.	573.	571.	
HOM	,	16/L			4.68	2.80		:		2.90		3.50	3.70		4.30	3.30		4.10		4.10		2.70		9.90	- ,	8.50		04.4	5.60				3.10		2.10		2.30		
S 102	,	H6/L	6.17	7-11	7.18	90-9	8.35	7.46	7.26	7.41	7.54	6.10	6.01	6.61	2.61	2.55	5.03	1.55	4.59	1.49	5.59	1.30	3.51	1.25	3.99	1.34	÷	1.14	2.49	2.77	5.44	ŝ	2.68	3.98	1.84	•	1.64	4.87	
CHLO	R 105	H6/L	58.50	50.30	42.50	40.90	53.70	39.60	52.00	37.80	53.70	39.80	41.70	52.90	46.10	44.70	53.90	47.80	56.60	44.20	56.30	45.40	48.30	48.10	49.00	45.90	49.90	46.80	44.10	40.10	81.80	72.00	47.70	63.90	55.20	53.30	57.00	71.50	
SUSPEND	SOL 1 08	7/9E	25.50	31.50	132.00	113.00	18.50	103.00	23.10	111.00	19.30	81.30	107.00	18.20	168.00	107.00	25.00	160.00	9.90	145.00	13.30	92.60	10.40	226.00	7.10	329.00	10.60	152.00	193.00	17.50	21.20	10.50	93.30	14.50	51.46	20.30	9	17.70	
90		7/9H																																					
TOTAL	KJELD	1	.930	.970			.700		1.380		.780			009-			.880		.640		.790		1-170		1.000		.570		1.130	.450	.747	.960		.840		.700		069•	
086.	WIT.	H6/L			•																																		
NH-N		H6/L	.108	.107	.024	• 046	.112	.040	. 085	.081	.098	.112	940.	.089	.038	.049	.093	. 058	• 109	.031	.103	.100	. 047	.067	• 069	040	. 087	• 028	.047	. 067	• 302	.151	. 085	.181	.077	.085	• 086	•199	
NO-2	N-02	H6/L	5.340	6.870	7.410	7.370	6.110	•	5.500	6.950	5.280	6.810	6.700	5.290	5.000	5-140	4.820	0+++	004-4	4.600	4.340	4.300	4.470	4.060	÷.260	4.040	4.050	3.860	4.190	4.250	3.070	2.810	3.590	3.110	3.000	3.570	2.780	2.650	
ORTHO	PHOS.	794			.078	• 079	•	.072				1000	.052		.090	.083		.080		• 056		.065		.081		.060		•024	-087				•076		.092		. 095		
TOTAL	PHOS.	1/9H	.266	.201	31	.295	.101	30	15	.303	13	28	.286	.102	35	26	8	.317	-064	.301	5	.232	-042	.493	3	.491	. 822	.282	38	9	.184	.035	.257	.040	.167	.045	.203	. 0 .	
FLOU	CFS		5728.	-	•		3990.	2906-	•	•	e.	ă	-	1861.	1648.	•	1881.	1480.	1904.	1120.	1200.	1220.	1326.	1042.	1060.	1006.	1348.	1006.	952.	-	988.	1024.	934.	1042.	970.	760.	812.	605.	
TIME	215	ers.	1331	1935	1300	1300	1930	1380	1 800	1300	1440	1300	700	1100	1300	1300	1915	1300	1910	1300	1940	1300	1930	1300	1410	1300	2010	700	1300	1445	1446	1935	1300	2119	1360	2010	1360	2115	
SAMPL ING	DATE	YR HO DY	10	8	8	8	77 5 12	50	20	2	20	5	5	2	2	2	5	5 1	5	2	5	2	5	2	5 5	8	5	5	5	5	5 2	5	5	5	5	5	5	5	

LAKE ERIE VASTEVATER MANAGEMENT STUDY - VATER QUALITY INFORMATION

STREAM : MAUNEE RIVER

USES NO. 84193490 LOCATION W/CODE : NEAR WATERVILLE. OHIO

COND 25C.	555.	557.	544.	564	204	567.	566	534	562.	569.	550.	575	516.	554	529	247	2	245			538	558	523.	560.	547.	550	548	555.	551.	582	609	590	610.
IRON RG/L	1.80	2.50		4.60	,	2-80	3.80)	3.30	2.00		2.30		2-10	1	2.30	•	2.30	9		2	1.60		.60		2.60		2.30	,	2.30	2.00		2.20
\$102 H67L	1.90	1.98	1.42	1.91	2.60	2.10	1.45	1.39	1.14	1.09	2.51	1.03	2.29	**	5.26	64.	*:	•75	1.07	79.7	19.5	•9•	2.03	. 88	1.38	1.10	2.48	1.03	2.01	96.	. 93	1.18	• •
CHLO RIDE RG/L	62.00	62.10	94.30	61.30	46.20	64.80		47.70	45.30	46.30	46.40	46.50	46.30	47.10	69.70	45.70	64.90	46.50	60.70	00.00	00.70	58.40	46.00	59.90	47.40	58.80	47.70	60.50	47.80	59.80	28.60	8.9	62.90
SUSPEND SOLIDS MG/L	53.90	79.80	18.40	152.00	18.70	92.20	20.04	11.10	134.00	96.99	13.30	81.00	7.00	80.20	21.00	85.10	16.50	84.20	89.30	31.70		100.00	13.90	78.60	44.80	110.00	38.70	100.00	35.90	92.20	75.30	•	82.90
1/9# #6/L																																	
TOTAL KJELD MG/L	6	0.70	.710	,	.710	1.610	0.040	1.200			1.170		1.510		1.020		1.230	2.240	1.350	1.160	1.000		1.150		2.070		1-110		1.060		2.080	1.100	1.520
ORG. NIT.																																	
NH-3	.098	112	• 076	.110	.051	660 •	. 055		.210	.402	-047	. 369	.615	.360	.059	.265	.301	.137	-208	. 012	•217	639	• 016	.284	.951	.210	.050	-205	.053	.196	.157	.417	• 069
NO-2 NO-3 NG-1	2.420	2.316	2.740	2.210	2.320	2.230	2.400	0 · 0 · 0	1.870	1.270	1.770	1.090	.620	.700	2.320	.580	1.750	.550	1-100	1.350	.980	• •	.980	.920	•050	.820	.850	.950	.900	900	.830	.160	. 650
ORTHO PHOS. RG/L	.109	111	•	160.		.114			.079	.050		.031							.159	1	•139	78.1	•	.149		.127		.148		.141	.125		•154
107AL PH05.	.170	0.00	.077	• 355	.080	.261	.120		.311	.261	.121	.267	.115	•266	.144	.275	-144	.298	.267	.160	.306		-147	.291	.190	.309	.182	.283	.178	.330	.272	.207	.261
FLOW	916.		829.	529.	420.	605.	760.	9630	498.	305	392.	379.	451.	+0+	605.	529.	529.	+0+	605.	605.	354	4 6 6 6	300	649	560.	649.	619.	694.	726.	934.	880.	934.	898.
717E 2400 HRS.		N -	4	· ~	N			~ ^	-	' -	~	-		-	~	~	-		_	_	-	-	٠,-	. ~	-	_	~	~	-	_	,	_	~
L 186 0 07	~	~ •	v ~	N	N	2	5 30	7	1																	-	-	~	~	7	-	~	~
SAMPL.) DATE TR NO	11	:	- [1	11	11	77	: ;	: [7.2	11	11	11	11	11	11	11	11	77	11	77	- [1	11	11	11	11	11	11	11	11	11	11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: MAUMEE RIVER

STREAM

.US68 NO. 04193490 : NEAR VATERVILLE, OHIO LOCATION W/CODE

CONO 25C	CHEO	628.	607.	637.	601.	614.	580.	609	591.	599.	610.	614.	593.	640.	670.	654.	658.	620.	638.	593.	589.	585.	621.	584	663	589.	612.	619.	628.	649.	. 499	634.	656 •		671.	661.	688 .
LAON	1/9H	2.10		1.90		1.90		2.50			3.00	2.10		2.70	2-00		1.90		1.70				1.90					1.70	1.40	1.40	1.90	2.20		3.80		2.70	
2018	1/9H	•65	1.74	.7.	2.23	1.00	-25	1.45	1.68	• 65	1.39	• 5	•68	1-15	.71	1.77	.97	1.78	• 69	• 25	.31	3.71	• 72	7.73	4.19	2.90	3.77	.32	• 94	. 79	.78	1.17	5.15	4.07	5.77	3.85	5.20
CHLO	H6/L	65.30	52.70	63.40	53.10	63.70	54.10	64.30	53.90	53.80	61.70	63.30	54.00	64.80	64.70	58.80	09-09	58-40	62.60	56.50	55.30	56.70	58.00	55.70	55.10	57.70	57.30	58.30	63.00	61.00	61.00	57.70	59.20	55.00	00.09	56.20	61.30
SUSPEND	H6/L	114.00	44.80	78.90	34.20	90.10	22.90	114.00	35.40	28.60	134.00	97.50	40.00	106.00	109.00	41.80	101.00	32.60	92.30	39.90	01.11	56.60	97.00	30.20	17.60	30.70	12.50	96.40	72.10	00.69	6.3	85.70	•		130.00	97.60	68.60
C0D	H6/L																																				•
TOTAL K.IFI O	#6/L		1.020		1.510		1.460		1.860	1.330			1.040	2.360		1.640		2.160		2.170	1.960	2.080		1.080	1.080	.730	.760						.710		.920		•650
OR6.	HG/L																																				
N-12	N6/L	. 041	.009	.118	• 021	. 181	. 320	.240	.354	.313	.145	.198	.274	.070	• 196	. 266	.478	.410	-192	. 232	.213	. 355	.419	. 255	• 035	.049	. 019	.276	.150	. 162	• 065	• 053	. 011	• 072	.015	.130	.010
NO-12	H6/L	.570	.780	.590	.680	.450	.300	.370		•200	.280	.330	.170	.340	0++•	.030	069.	.010	.720				.150		. 680	.950	.760	• 000	.190	.150	.130	2.660	.580	8.070	.930	7.260	0++
DATHO	H6/L	.160		.158		.154		.151			.121	.116		.139	.159		.123		.129			•016	.080	• 018	.124	.121	.113	• 062	.113	.103	.083	.144	.127	.106	.205	.130	•199
TOTAL	H6/L	.301	.175	-264	.189	.273	. 188	.344	.206	.220	.363	.350	-202	.376	.442	.201	+84.	.199	.384	.187	.223	.160	.385	.173	-286	.188	.163	.394	.333	.364	• 345	.360	.193	. 443	.389	.415	•336
FL08	2		976.	988	129.	129.	980	863.	1086.	1024.	1060.	980.	898.	620.	. 69	1024.	166.	620.	590.	544.	544.	513.	529.	529.	529.	435.	420.	•••	451.	305	466.	466.	379.	934.	1326.	1980.	1436.
717		1300	500	1300	1 650	1300	1830	1380	1950	915	1300	1300	303	700	1300	1825	300	2020	1300	1330	1331	5081	1300	0++1	1441	2135	1210	1 360	1300	1 300	700	1309	2105	1363	1835	1300	1910
311	<u>_</u>																		22																		
1	YR HO	•	•	•	•	•	•	•	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9	9	•	9	•	9	•	9
8	5 5	11	11	11	11	11	11	11	77	11	11	11	11	1	11	1	11	11	11	1	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : MAUMEE RIVER

STREAM : MAUNEE RIVER

LOCATION W/CODE : NEAR WATERVILLE. OHIO

USES NO. 04193490

COND 25C.	CHEC	672.	665.	666.	656.	653.	999	683.	617.	621.	613.	641.	656.	574.	507.	194	506.	521.	554	538.	543.	576.	578.	571.	581.	571.	564.	562.	554.	564.	561.	552.	535.	525.	529.	525.	519.
IRON	MG/L	2.50	3.00	3.80	4.20	5.40	8 - 00		15.00	5.4	÷	15.30		-	26.60	•		17-10	13.30	11.70		14.40	9.10		9.50	8.20	7.10	7.40		7.70	8.00	8.00			6.80		7.30
\$102	H6/L	1.80	3.69	3.86	3.10	14.10	10.10	3.74	9.59	11.80	4.35	4.16	7.56	4.80	5.14	5.25	9.10	5.97	5.46	5.74	9. 00	5.65	7.15	6.49	7.84	6.26	6.18	6.20	8 • 66	6.26	6 - 55	6.47	7.56	6.40	6.22	10.70	6.17
CHLO R 10E	H6/L	59.00	57.30	56.30	56.40	55.10	54.40	61.70	52.90	52,20	50.90	49.90	50.70	48.50	34.50	33.20	35.20	36.30	14.90	41.70	42.10	41.90	43.00	43.40	42.70	42.50	41.90	41.20	40.90	41.20	41.50	41.60	0.0	39.20	2.2	39.60	40.70
SUSPEND SOLIDS	N6/L	88.60	106.00	133.00	138.00	179.00	262.00	92.40	432.00	415.00	412.00	453.00	174.00	60+.00	825.00	596.00	327.00	450.00	397.00	332.00	213.00	434.00	265.00	124.00	274.00	223.00	188.00	198.00	116.00	211.00	230.00	268.00	131.00	92.10	148.00	0	∞ −
000	H6/L																																				
TOTAL	HG/L							1.130					1.950				1.570				1.230	3.990		1.360					1.060				1.223	1.300	· ·	1.480	
ORG	H6/L																																				
N-HN	H6/L	.191	. 190	.128	.169	.130	.172	• 022	.158	.254	•193	.177	. 022	.171	.251	.235	.030	.161	• 245	.210	• 036	.012	.017	.043	• 036	• 019	.033	.031	.021	.020	.034	.047	.012	• 014	• 065	• 020	• 040
2 - ON	#6/L	2.800	5.360	7.550	5.720	8.470	9-290	1.500	8.720	8.790	8.550	8.130	1.530	8.580	6.730	6.720	6.750	7.150	6.420	6.620	6-640	6.680	6.870	6.710	7.450	7-440	7.650	7.790	7.760	7.830	7.730	7.170	8.040	8.170	7.800	8-190	7.980
ORTHO	H6/L	.124	120	107	1117	660	660	.194	.097	•106	.103	• 095	.168	• 095	.101	.091	.116	.081	• 90•	.075	.124	.153	.135	.140	.130	.124	. 121	.117	.129	.118	.110	•109	.132	.131	.103	130	.106
TOTAL	H6/L	.382	193	084	414	640	-547	.365	.721	.777	.769	.811	• 4 58	. 933	1.020	•	-507	649	.530	184.	.393	.782	.537	.341	-557	.491	-413	.355	.304	.420	.425	.463	.303	.323	.371	.319	.409
FLOU	8	379.	952	2494	4751	76.80	8772	9845	8598.	1200	11350	2750	2900	1300	0032	9530	9350	8178	7049.	6371.	7283.	4170.	3810.	4140.	3110.	2794.	2738.	2710.	2794.	2240	2118.	2118.	2440	1480	1408	1 4 80	1200.
TIME	INS.	1360	1900	96	7.00	60%	1900	2005	100	700	1300	1900	2125	100	700	1300	1745	1900	160	700	1055	1300	1900	2030	100	100	1 300	1900	2310	100	700	1300	2010	1345	1 300	1046	1300
		ی	-	· -						^					1					•	•	•	'n		•	•					_					: a c	
AMPL ING																																					
	5 =					•		-		•		-								-	-	~	. ~	-	•	•		-	-	-	-	•	-		. ;-		11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

MAJOR RIVER BASIN : NAUNEE RIVER

STREAM STREET STREET STREET

LOCATION W/CODE : NEAR WATERVILLE, ONTO

US68 NO. 04193490

COND 25C.		519.				512.		514.	514.	513.	515.	516.	513.	531.	534.	514.	549.	535.	561.				526.	557.	241.	953.	561.	556.	965.	556.	579.	565.	587.	569.	590.	561.
2 0 1	191		7.1		6.70		5.5																	-												
2102	16/L	6.49	6.20	1-21	6.77	7.50	6-17	6.65	7.51	7.10	7.67	D • 18	7.53	6.02	6.63	5.38	7.00	5.17																	2.44	3.49
RIDE RIDE	H6/L	36.50	39.50	37.20	37.90	36.30	37.68	35.30	34.70	34.48	34.30	34.00	34.00	35.00	36.10	36.70	37.50	37.10	28.98	31.60	35.90	37.20	38-10	38.98	39.50	39-60	40.90	41.70	41.30	39.70	40.50	10.90	44.50	43.10	42.70	41.90
SOLIDS	1/9H	78.30	156.10	121.00	143.60	103.00	105.00	74.00	97.80	62.30	60.30	69.50	49.30	42.70	45.60	61.80	74.40	36.30	52.20				29.48	20.50	62.20	24.40	32.70	27.10	07.74	75.50	53.60	96.90	65.30	70.70	63.00	59.70
000	1/9#																																			
TOTAL KJELD	N6/L	1.000		1.080		1.160	1.670	.970	1.250	1.050	.908	1-610	.970	1.150	1.150	1.160	1.110	1.030	1.680	1.200	1.190	940	1.050	1.190	1.030	.920	1.080	1.040	1.360	1.500	1.220	1.340	1.080	1.330	1.500	1.020
086. NIT.	H6/L																				,															
r) - II	H6 /L	.016	.056	. 119	690.	. 024	• 082	.060	.018	.012	.015	.013	.036	. 022	.018	.036	•624	.016					. 010				• 028			. 843			.010	. 042	. 015	.019
20-2 20-3	N6/L	7.960	1.190	8.286	8.650	8.438	8.590	8.380	8.300	8.290	8.130	7.910	7.680	7.290	6.950	6.760	904.9	5.290	5.79				4.100	3.620	3.580	3.220	2.710	2.450	2.350	2.000	2-240	2.130	2.020	2.020	2-140	2.130
08 110 P1108•	16/L	.132	101	.140	•100	.139	. 091	.124	.127	-124	-119	. 123	.120	.106	- 095	- 085	. 097	.129	.140				.077	. 167	.081	•	0	•	• 079	•	.087	0	•	~	•	.127
TOTAL PHOS.	16/	. 333	-411	.302	.360	.319	.329	.299	.263	.260	.243	.230	-226	.193	• 1 80	• 165	-238	.206	•229				.144	.130	.183	•156	•139	.142	.177	.232	•199	•200	.222	.239	.263	.229
7.5 C7.8		1000	1000	911.	1006.	1010.	916.	1042.	898.	1006.	812.	743.	. 199	620.	726.	177.	1392.	679.	679.	628.	451.			379.	529.	330.	188.	196.	270.	2215.	1611.	1858.	1927.	1835.	1835.	1858.
12 %						2245																2030	2315													
SAMPL 146 Date	6					11																														
Ž۲						77 7										•								-		_	_					-		_		

LAKE ERIE HASTEMATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

TREAM : MAUNEE RIVER

US65 NO. 04193498 LOCATION W/CODE . : NEAR WATERVILLE, ONIO

COMD 25C.	Caro	620.	613.	599.	653.	576.	536.	614.	628.	497.	634.	199.	627.	169.	624.	628.	•73	641.	663.	192.	:	500.	672.	672.	659.	600.	519.	567.	563.	569.	563.	551.	511.	544.	573.	604.	597.
IRON	1/98																							-													
\$102	1/9H	6.19	10.50	7.24	4.52	6-58	7.58	7.78	6.67	8-41	5.92	8.33	7.15	8.23	5.31	5.59	8.39	9.0	6.41	8.53	6.80	9.10	9.04	6.59	6.47	96.9	6.84	6.49	7.30	6.72	6.28	5.28	4.76	5.01	5.99	7.41	9.46
CHLO R 10E	1/9H	43.10	01.01	10.90	49.20	37.30	40.10	45.90	42.70	35.20	44.80	35.60	44.70	34.70	45.50	45.50	35.40	47.30	49.00	32.80	51.20	32.40	51.30	52.10	50.80	46.50	44.10	42.70	41.00	41.40	41.20	42.30	43.30	43.70	45.80	44.50	45.00
SUSPEND SOL IOS	N6/L	74.80	57.80	49.70	104.00	94.60	151.00	40.20	33.80	118.00	35.30	113.00	37.40	119.00	43.40	39.00	101.00	49.00	48.70	89.80	49.10	76.90	47.80	42.90	43.00	45.70	46.20	32.40	36.60	41.40	32.40	30.30	24.20	48.60	37.70	48.80	45.80
000	1/9H																																				
TOTAL KJELD	194 197	1.520	1.520	1.620	. 567	1.490	1.690	1.430	• 8 B D	.790	1.410	.743	1.310	2.100	1.140	1.260	1.230	.231	996.	1.070	.327	.735	1.270	1.350	. ++7	1.530	.055	.687		. 848	1.160	.840	.765	. 199	.923	.882	.848
ORG. NIT.	H6/L																																				
N-HZ	H6/L	• 026	. 025	.072	.029	- 087	• 028	.154	• 020	• 029	.021	. 030	.013	• 027	• 036	.036	• 025	• 022	.019	. 023	• 026	.027	.027	.017	. 032	• 021	.019	.017	- 041	. 042	. 041	960.	.048	.054	. 620	• 0 •	• 069
20-2 10-3	1/9H	2.500	2.620	2-190	1.980	2.150	3-140	2.080	2.250	3.250	2.160	3.460	2.170	3-140	2.310	2.320	2.960	2.550	2.590	3.070	2.640	3.140	2.750	2.720	2.640	2.520	2.450	2.310	2.160	2.170	2.040	1.770	1.600	1.570	1.550	1.580	1.350
PHOS.	1/94	.142	.142	.132	.178	.149	•209	.284	.126	•199	.113	.192	.128	.175	.113	.115	.176	.155	.142	.163	.146	.162	• 159	.152	.145	.149	.146	.128	•136	.123	.114	• 102	.111	• 125	.165	.116	• 155
101 AL PH05.	1/9H	.263	.261	.239	.363	.266	.500	.248	.208	• 455	.187	.432	-203	.398	.200	.200	•364	.229	.201	.328	.221	.315	.218	.211	.197	.195	.197	.183	.191	.184	•166	.137	.131	.161	161.	.169	•162
FL08		5156.	2575.	2166.	1992.	2656.	12750.	2022-	1220.	11600.	906	11950.	1458.	10188.	1200.	1200.	7968.	1200.	1140.	6009	1282.	2602.	1200-	1080.	988.	863.	726.	635.	694.	768.	694.	379.	575.	898.	596.	560.	498.
71.K 2400	HRS.	1040	1935	2020	1425	1818	1040	1945	1740	2310	1856	2010	1135	1915	1725	1726	2120	2140	1935	1950	2035	1355	2220	2005	2820	1840	2135	2135	2130	2145	2150	2105	1910	1950	1955	2215	2130
9	6	-	n	•	-	~	_	•	•	•		•	_	_	~	~	~	C.	m	m	•	6	•	5 6	_	•	•	•	-	_							
AMPLING ATE	2					_									_			-		_				•						_	_	-		_	-		_
SA	X	11	11	77	11	77	11	11	7	11	11	11	11	11	11	77	11	11	11	77	77	77	11	11	11	77	11	11	77	11	11	11	11	11	11	77	11

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

LOCATION W/CODE : NEAR WATERVILLE, OHIO

: MAUNEE RIVER

STREAM

US65 NO. 04193498

COND 25C.		
IRON RG/L		
\$102 #6/L		2007
CHLO RIDE MG/L		
SUSPEND SOLIDS MG/L	888744488899999999999999999999999999999	
C0D		
TOTAL KJELD MG/L		
ORG. NIT. MG/L	-	•
NH-3		
NO-2 NO-3 NG/L		220.0
ORTHO PHOS. MG/L	1179 2166 2166 1171 1184 1186 1186 1187 1187 1187	007.
TOTAL PHOS. MG/L		
FLOV	6220 5240 5240 5240 5240 5240 5240 5240 5	. 1 2 1 .
71ME 2400 HRS.		1040
SAMPLING DATE YR MO DY		71 11 15

PORTAGE RIVER AT WOODVILLE, OHIO

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

The Administration of the Control of

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

US6S NO. 04195500

CONO 25C. UNHO	568. 578.	605	618.	644.	c 10 4 4	643.	663.	694.	697.	753.	164	756.	8 21.	803.	611.	. 669	586.	567.	473.	442.		***	•		+14.		•	429.	***
IRON HG/L							•																						
\$102 MG/L					9.00	9.20	8.60	00.6	9.30	8.90	9 - 50	8.90	9 - 10	9.60	8.80	7.80	8.60	8.70	8.60	9.00	7.90	6))	8.03	•		0 6 0 7	8.00
CHLO RIDE NG/L						62.00	62.00	58.00	70.00	92.00	00.48	00.06		76.00	74.00	74.00	50.00	51.00	39.00	36.00		40			24.00			25.00	25.00
SUSPEND SOLIDS M6/L	102.00	50.90	42.10	30-10	53.80	37.30	35.80	26.50	19.40	20.80	15.10	13.00	17.00	16.80	15.70	180.00	313.00	ó	625.00	ó		417 00			330.00		4	202.00	195.00
1/9H COD																						30.05		63.00)		54.00		
TOTAL KJELD MG/L																													
ORG. NIT. MG/L																													
NH-3 ' N6/L																				.014	.195	:	111	;		.264			• 1 06
NO-2 NO-3 NG/L	11.200	10-400	10.200	10.200	10.200	10-100	9-800	9.700	9.100	8.700	9.800	6.500	7.900	7.800	7.900	6.500	8.400	8.500	9.100	9.400	8-800	9	0000	3	8.600	8.600	,	6.700	
OR THO PHOS. MG/L					.185	.148	.110	.152	.152	•149	.145	.138	171	.165	. 186	.110	.120	.128	• 088	J80·	.105	•) 2 4	.077	.103	į	.078	.087 .087
TOTAL PHOS. MG/L	N 00 0	.260	.250	19	.333	23	.212	.214	•216	•202	.194	æ :) C	207	23	33	3	.756	.972	.923	999•		0 47			.570			3 6 •
FLOW	909.	272.	241.	161.	202.	354	328.	303.	277.	254.	215.	208.	205	185.	195.	205.	277.	697.	2071.	3270.	3300.	330	360	3210	100	2976.	2848.	718	2606. 2438.
2400 2400 HRS.		- ~		~	- ~	,	_	4		~	N	•	- (_	C.		_	N	_	-	~ (A 4	4				•	
SAMPLING Date Yr ho dy	74 12 19	121	122	12 2	7 7 7	-	-	-	-	-	~	۰,	- -		-	-	-	-	-	-	-	-	٠.	-		1	-	-	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : PORTAGE RIVER

: PORTAGE RIVER

STREAM

: AT WOODVILLE. OHTO LOCATION M/CODE

US68 NO. 04195500

COND	CHES		453.		479.		493.	495.			196.			194.			486.			189.		492.		507.		511.		987.	987.	964.	963.	990.	992.	972.	926.	1000	913.
IRON	H6/L																																				
\$102	HG/L	8.00	8.00	8.10	8.20	8.00	8.20	8.30	8.30		8.40	8.40		8.40	8.60		8.50	8-40		8.40	8.40	8.40	8.40	8.40	9.10	8.50	8.60										
CHLO	N6/L		27.00		28.00		29.00	20.00			21.00			22.00			22.00			22.00		22.00		24.00		25.00		100.00	98.00	98.00	96.00	00.96	100.001	98.00	88.00	100.00	90.00
SUSPEND SOL TOS	HG/L	٠	143.00		148.00		118.00	126.00			189.00			182.00			189.00	-		267.00		242.00		218.00		186.00		20.70				7.40				24.00	
000	1/9H						٠			52.00			35.00			51.00			44.00																		
TOTAL	N6 /L																																				
ORG.	N6/L																																				
NH-3	H6/L	. 075		.139	.033	• 083	.033	060•	.150		. 070	.210		040.	.180		• 080	•200		.140	.200	.100	.240	. 060	. 190	.130	.180	.760	.480	.480	.590	.610	.480	.390	•650	.560	.520
NO-2	H6/L	8.400	8.400	8.500	8.600	8.600	8.600	9.900	9.700		9.700	9.600	•	9.500	9.700		9.600	9.500		9.400	9.300	9.300	9.200	9.460	9.500	9.700	9.900	6.000	5.950	6 • 0 5 0	9.000	5.650	5.300	4-800	5.450	5.050	4.953
OR THO PHOS.	H6/L	- 092	.100	.104	060.	100	• 082	. 0 80	.080		• 090	.075		.07¢	.070		.085	060.		.110	.105	060.	9 60•	• 09 c	3 60 •	. 095	.09c	.230	•240	•250	• 260	.270	.270	•22€	.270	.250	•200
TOTAL PHOS.	H6/L	964.		084.		•466		.450	.450		084.	•460		.480	.340		.330	.360		.530	.530	.530	•520	.510	.490	.460	044.	.280				.310				.310	
FLOW	•	2366.	2242.	2184.	2128.	2113.	2120.	2113.	2078.	2057.	2018.	1978.	1935.	1893.	1844.	1781.	1718.	1641.	1571.	1496.	1408.	1224.	1116.	947.	880.	760.	674.	68.	.99	61.	82.	.99	64.	74.	78.	87.	96.
	1 X	1700	2100	2300	300	500	900	1100	1300	1500	1700	1900	2100	2300	100	300	500	700	900	1100	1300	1700	1900	2300	100	200	700	1400	2000	200	800	1400	0	200	800	•	2000
ING	4																					12				13	13	23	23	24	2			52	25		
SAMPL ING	YR HO	6	S	'n	_E	6	S	'n	S.	10	s	S	'n	'n	E.	S	6	'n	¥9	S.	50	75 1	S.	5	'n	٠.	'n	'n	'n	6	'n	5	'n	φ.	.	'n	75 1

LAKE ERIE VASTEVATER MANAGENENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : PORTAGE RIVER

: AT MODDVILLE, OHIO LOCATION W/CODE

: PORTAGE RIVER

STREAM

US\$\$ NO. 04195500

COND 25C.	884.	663	899.	849.	655.	811.	820.	802	841.	807.	895.	209	.899	627.	;	624.	542.		*24			404)	418.		* P # 4		416		505	521.	530.	557.	599.
1808 16/L																	٠																	
\$102 #6/L																																		
RIDE NG/L	81.00	86.44	93.00	80.00	87.00	82-00	80.00	78.00	84.00	90.00	80.60	•	73.00	•	1	20.00	64.00	1	49.00		90.24	44.00		43.00		46.00		50.00		52.00	52.00	54.00	57.00	
SUSPENO SOLIDS MG/L	•	01-1	10.20	10.90	15.70	13.30	11.70	11.10	34.00	13.20	27.30	108.00	141.00	88.00		98.50	294.00		661.00	1	929.020	116.00		236.00		188.00		150.00		112.00	106.00	1.6	48.80	1.3
1/9H H6/L															46.00		68-00	65-00		182.00	20.40	9	42-00	58.00	27.00		34.00	26.00	27.00					
TOTAL KJELD MG/L															1.600		2.600	.50		2.200	1 - 7 d d	201.1	1.700	1.200	1.100		.10	1.000	006•					
086. N11. M6/L																																		
NH-3	.580	999	.640	•620	•650	. 580	.480	044.	-450	.460	.430	.330	.220	.280		.360	.432		.333	,	-287	136		.247	!	.221		.207		• 185	.160	.155	. 155	200
NO-2 NO-3 NG/L	5.300	5 - 56 E	901.0	5.600	5.600	5.450	5.450	5.200	4.700	5-100	5.000	3.400	4.750	5.850		2.900	6.750		7.950	,	8.680	9		9.030	i i i	9.220		9.540		9.900	10.000	10.000	10.200	006.8
PHOS.	.240	.240	250	.270	.260	.260	.260	.250	.240	.230	.230	.180	. 166	.210		.210	.200		.105	,	• 095	900		.110) - 	.120		.113				.110		
TOTAL PHOS. HG/L		3	200)	.330	32	.310	.300	.276	.290	.340	.300	.370	.370		.420	.710		-930	,				£ .))	.48€		30¢*		•	0	.290	-	6
FL 04	111.	137.	159.	190	205.	178.	195.	157.	149.	134.	119.	141.	202.	373.	719.	1278.	1795.	2302.	2406.	2446.	2398.	2200.		1732	1496.	1378.	1260.	1695.	1000.	966.	665.	770.	767.	
7186 2460 MRS.	200	•		. 4	900	•	2000	200	•	1400	8	200	•	•	1800	•	4	200	00+	•	Θ.	• •		2200	N	004	900	•	1400	•	N	•	1000	
SAMPLING Date Yr no dy	-	-	1 26	• =	-	-	-	~	-	-		~	-	~	~	~	~	~	~	~	_	۰.	•	• -	-	~	-	-	-	~	-	~		•

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

TREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OMIO

USGS NO. 04195500

COND 25C. UMMC	618.	655.	661.	684.	714.	746.	750.	834. 834.	976.	951.	1113.	1047	1009	964.	1 00 P.	920	839.	1014.	535.
IRON																			
S102						8.20	4.4	7.70 8.50											
CHLO RIDE MG/L	30.00	33.00	32.00	34.50	55.00	56.00	64.00	79.00	82.00	103.00	107.00	103.00	101.00	96.00	100.00	98.00	80.00	100.00	34.00
SUSPEND SOLIDS MG/L	48.10	35,30	22.90	15,30	16.70	13.90	10.60	7.40	38.60	7.60	13.30	6.50	5.60	6.60	7.00	æ	32.80	212.00	147.00
1/9H COD	23.00	18.00																	
TOTAL KJELD MG/L	900	0 0 4																	
ORG. NIT. MG/L																			
1/9W	.310	.170	.230	240	000	.265	• 285 • 315	.330	.415	.760	. 595 . 550	-540	.590	0690	.920	• 430	.495	- 4 - 4 - 4 - 4	
NO-2 NO-3 NG/L	8.900	9.600 009.8	6.700 8.700 8.500	8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.200	8.300	8.100 7.600	7.300	5.350	000-9	6.250	4.950	4 .300	5.500		• 90	99		8.200
ORTHO PHOS. HG/L	.120	.130	.140	140	.170				-205	.290	.295	•255	.269	340	.360	.230	-233	0.00	.190
TOTAL PHOS. HG/L	0 8 8	•	.230	.200		.280	.295	• 255 255 5	29	.320	.360	29	.280	36		• 295	.300	9	9 60
FLOW	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	800	398. 364. 337.	77	200	57	35	20 6	16	99.	 	30 0	84.	91.	70	7	277.	2) 4 4 0	1641.
11ME 2430 HRS.	000 F T T T T T T T T T T T T T T T T T	~	N	~ ~	•	-	~ ~		1 (1)	_	- "	•	-	4	-	_	••	•	
SAMPLING Date Yr ho dy	75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~~~	~ ~ ~	~ ~ ~	, ~ c	v ~	~ ~	· ~ ~		~ ~	20	. ~ .	. ~	~	, ₂	~	2 1	~ .	. ~

CORPS OF ENGINEERS BUFFALO N Y BUFFALO DISTRICT F/6 6/6
WATER QUALITY DATA FOR LAKE ERIE BASIN TRIBUTARY MOUTH SAMPLING--ETC(U)
DEC 78 AD-A079 652 UNCLASSIFIED NL 2004 AL) A 0.79652

417. 401. 386. 382. 398. 402.

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

: PORTAGE RIVER

STREAM

COND 25C. URKO

04195500	IRON														•	•													•							
NO. 0419	S 102																																			
NS68	CHLO RIDE MG/L		30.00	29.50		33.55	22.50			D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36.30		34.30		42.00	29.30	91.00	00.00	90.44	20.00	20.00	32.00	27.50	22.30	77.00		25.00	 	23.00		22.00	•	22.00	20.00)	24.00
	SUSPEND SOLIDS ME/1		136.00	96.86		99-64	0+**	39.60			37.30		34.30	28-70	24.90	32.50								•			405.00	•	422.00		369.00	•	316-03	954.00	•	194.00
	000	E .															• • •	15.00	24.00	24.00	24.00	32.00	37.00	00.44	•	39.00		33.00	i i	33.00	•	39.00	•	23.60	39.00	
AT WOODVILLE, ONIO	TOTAL KJELD MG/1	7															;	.700	. 500	.500	.700	1.000	1.100	1.100	•	-600		008)))	1.300		1.200		7 - 500	900	
NOODVIL	086. NIT.																																			
••	E- H-3	7,94	0+9•	.487	-460	.274	• 225	-181	. 205	.240	.170	• 195	•296	• 155	- 135	.258	.185	. 525	•160	.123	-248	.143	•196	€0 :	• 096		. 40		.071		.093	,	. 085	92.0		.081
LOCATION W/CODE	N N N N N N N N N N N N N N N N N N N	7/94	8.060	8-400	000.0	9.200	9.600	9.800	10.300	10.300	10.000	10.000	9.800	9.600	9.700	9.800	9.900	Š		9.200	11.000	8	11.400	•	11-600				10.900)	10-600		10.300			10-100
L0CAT1	PHOS.	M6/L	.140	.140	.130	.110	.110	•100	.100	.100	.100	.110	.100	.100	.110	•116	.120	.120	.110	.110	.110	.080	0 40	•25.0	• 085		6		.091		.083		•098		9	160.
	TOTAL PHOS.	•	.540	0440	.370	.350	.280	.260	.240	.240	.240	•240	.220	•200		.220	.240	.240	-300	.330	.460	.670	.800	.750	.821				.798	•	.758		•674	7 6 9	•	.552
	FL0# CFS		-	1434	~	1036	910		770		619			532	508			524		1042	æ	3160	#7	4349	•	4678	•	407	33.00	525	5542	5530	gr)	0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	•	3865
	7.1 MC 2400	Œ	2300	200	1100	1700	2300	500	1100	1700	2300	500	1100	1700	2300	200	1100	1700	2300	500	1100	1700	2300	500	700	1 000	9977			2260	100	400	700	1000	1 200	1960
		•	5 2 1	5 2 3	5 2 1	5 2 1	5 2 3	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	5 2 2	2	5 2 2	5 2 2	2 2	20	, . , .		, , , ,		. c.	5 2 2	5 2 2	20	6 H 6 K 7 K 7 K	75 2 25

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

: AT MOODVILLE, OMIO LOCATION W/CODE STREAM

: PORTAGE RIVER

USES NO. 04195500

COND 25C. UNNO	124.		70	486.	514.	527.		551.	9	562	568	594.	599.	603	615.	624	633	9	662	9	686.	600	693.	671.	744.		776.	778.	775.	745.	757.
IRON MG/L																															
\$102 MG/L																															
CHLO RIDE MG/L	25.00	6	9 • 8 7	32.00	36.00	37.00		39.00		37.40	39-20	43.80	43.80	41.20	43.60	46.40	47.20	48.20	20.00	52.40	54.60	01.26	Ň	8.0	68.00		69.00	67.00	62.00	61.00	62.00
SUSPEND SOLIDS MG/L	165.00			119.00	103.00	105.00		93.90	71. 10	72.60	68 - 50	61.80	24.60	52-10	51.30	45.60	39.00	37.60	29.70	30.60	28.60	20.00	23.00	18.20	15.00		14.10	10.10	11.90	12.80	14.60
T/9#	35.00	23.00	26.00	96	7	27.00	23.00		21.00																						
TOTAL KJELD MG/L	1.100	.200	.500		•	.700	.800	•	. 100																						
086. N11. HG/L																															
NH-3	070		9/0.	.179	.081	660.		. 093		21.	. 055	.165	- 045	.185	.160	.180	.143	•092	.186	.167	.195	.100		.035	.195	.170	.140	.145	.195	+505	• 265
NO-2 NO-3 MG/L	10.200		16.400	10.800	10.800	11.000)))	10.800		306.01	8.980	8.760	8.860	8.800	8.800	8.760	8.640	8.760	8.440	8.120	8.080	8.200	8.120	7.700	7.120	7.140	6.960	7.020	7.260	7.280	7.380
ORTHO PHOS. MG/L	60		. 094	.112	.102	.109		•105	Ì	111	105	. 106	.125	.120	.125	.137	.121	.136	.160	.155	-147	•134	.130	. 159	.186	.151	.146	.156	•206	.207	.195
TOTAL PHOS. HG/L	£.		•42B	.384	.349	.321		.285	į	•274	219	-201	. 189	.195	.191	.178	•162	•166	.180	.170	.153	•152	.148	.245	.265	*	C4	~	•	0	an.
FLOV	3270.	2518.	2221.	1704.	1332.	1200.	994	931.	865.	e 1 e	712.	642.	577.	516.	481.	451.	422.	387.	350.	315.	298.	263.	225.	182.	135.	145.	151.	135.	112.	125.	137.
71ME 2400 HRS.	2200	004	1000	1300	1900	2200	400	700	1000	1300	0 4 4 5 0	245	845	1445	2045	245	845	1445	2045	245	845	1445	2045	1115	2315	515	1115	1715	2315	515	1115
	25.4				9 7 8 7	26		27	27	2 5	, ,	2 6		58	28			-	~		~	~	~	•	•		ĸ	'n	۴		
SAMPLING Date yr mo dy					25 2 2 2																										

8

LAKE ERIE KASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, ONIO

US68 NO. 04195500

		•		•	•	•	•	•									•												•				•			_
COND 25C. UNHO	757	778		831	775	709	700	665	581	548	555	996	579	596	609	628	699	619.	739.	759	720	:	765	783	725	101	406	731	792	196	672	740	745	751	738	752
IRON MG/L																	,	•					-													
S102																	14.00	5.00	11.60	11.30	12.50	10.90	10.60	9.70	7.25	6.78	5.05	4.88	3.78	3.37	3.16	2.70	2.50	3-00	3.40	3.62
RIDE RIDE RG/L	62.00	99.00	74.00	86.00	82.00	60.00	60-00	62.00	49.00	45.00	99.44	44.20	43.80	43.60	47.00	47.50	56.90	45.00	57.00	61.00	50.00	61.00	61.00	65.00	59.00	53.00	53.00	57.50	70.00	67.00	105.00	67.00	73.00	73.50	72.00	75.00
SUSPERD SOLIDS MG/L	10.30	11.30	13.10	16.20	43.30	32.90	50.70	134.00	217.00	196.00	130.00	102.00	83.50	67.10	24.80	33.80	57.10	22.40	21.40	15.20	28.20	18.10	12.20	18.50	21.10	20.80	24.00	47.40	15.40	12.10	19.70	19.80	30.60	28.10	21.70	20.80
C00																																				
TOTAL KJELD MG/L																																				
0R6. WIT. MG/L																																				
NH-3	. 405	• 265	.270	.295	• 465	.150	.160	•475	1.000	-410	1.000	.310	.135	. 660	.240	• 080									• 089	• 056	• 064	• 063	.068	.033	• 022	090•	.070	• 060	.040	• 080
NO-2 NO-3 AG/L	7.220	006-9	6.240	6.500	5.740	6.840	0+6-9	8.320	9.700	10.000	9.300	9.940	9.740	9.600	9.420	9.500	10.000	9.950	9.300	9.000	9.400	9.500	8.150	8-120	8.100	7.900	7.600	7.400	6-650	6.600	5.940	6.600	6.030	6.160	6-250	6.200
ORTHO PHOS. MG/L	.207	.201	.205	.254	.151	.138	.160	.144	-102	.081	• 076	•106	- 097	•100	.098	.097	.104	.130	.155	.145	. 123	.158	.155	.179	.158	.167	.142	.127	.107	.149	.145	.200	.180	•165	.170	•220
TOTAL PHOS. MG/L	.285	.286	.285	. 325	-255	.250	.310	.415	.445	•395	.335	.310	.265	.255	.235	.225	.210	.200	.210	•200	.190	.220	.200	.230	.275	.230	•200	•220	.180	.220	.230	.262	.199	.181	.172	.222
FLOV	137.	130.	126.	145.	202	462.	1194.	1532.	1408-	158	936	758.	594.	520.	401.	437	426.	312.	241.	321.	277.	200.	246.	292.	347.	283.	254.	192.	172.	170.	143.	263.	286.	277.	286.	246.
717E 2400 HRS.	1715	2315	515	1115	1715	2315	515	1115	1715	2315	515	1115	1715	2315	515	1115	1230	1230	1230	1230	1230	1230	1230	630	1130	1130	1130	1130	1130	1130	1130	1500	2106	306	900	1500
186	•	•	٢	_	~	~	•	•	•	•	•	6	•	•	10	0	0	11	7	13	*	2	16	11	10	13	20	21	22	23	7	25	23	56	56	26
_ 0	n																																			
SAMP DATE YR N	75	75	75	75	7	75	75	75	75	2	2	75	75	75	7.5	2	2	2	75	75	7.	75	2	75	75	75	75	75	75	2	75	75	75	75	2	2

The second secon

LAKE ERIE GASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

US6S NO. 04195500

COND 25C.	CHHO	739.	697.	176.	769	729.	738.	904.	613.	826.	868.	960.	832.	753.	693.	602.	581.	589.	598.	620.	624.	634.	662.	675.	656.	712.	754	711.	787.	781.	785.	782.	904.	837.	828.	838
IRON	19T																							-												
S102	H6/L	3.89	3.90	4.00	3.82	4.50	4.24	4.05	4.05	64.4	4.35	4.95	4-20	3.80	5.45	7.40	7.40	7.36	7.50	7.40	7.40	7.35	7.15	6 • 95								2.75	4.55	5.60	0 + • +	4.10
CHLO R IDE	H6/L	69.00	67.00	75.00					83.00		~	_	92.00											57.0			_		103.0	102.0	104.0	78.00	88.00	11.0	113.00	15.0
SUSPEND SOLIDS	H6/L	28.70	22.00	33.30	47.30	15.20	25.40	16.30	144.00	12.50	14.30	12.50	14.90	28.10	158.00	251.00	198.00	142.00	127.00	96.40	04.40	58.60	41.80	27.80	27.20	18.10	18.60	9.20	8.20	8.60	5.80			8 - 40	6.10	9
000	H6/L																																			
TOTAL KJELD	H6/L																																			
ORG.	767																																			
NH-3	H6/L	• 020	.060	.030	040	• 060	040	040.	.030	.030	• 050	.030	• 020	•010	• 080	.120	• 030	• 060	• 0 7 0	• 060	.030	• 020	• 0 7 0	.040	.105	• 050	• 020	.150	• 105	.160	• 050	.220	•100	• 105	.160	120
NO-2 NO-3	H6/L	6.300	5.980	6.100	6.400	6.350	5.800	5.780	5.490	5.350	5.400	5.280	6.050	6.200	8.000	10.100	16.100	9.600	9.550	9.700	9.700	9.600	9.150	9.000	10.000	9.900	9.700	9.300	7.800	7.500	3.200	.25	• 75	5.400	4.900	
ORTHO PHOS.	H6/L	.240	.180	.170	.175	.190	.165	.160	.160	-155	.150	.130	.125	.110	.110	•165	• 085	.100	.100	• 095	060*	.100	.100	-09c	.115	.100	.115	.140	.130	.175	.185	060*	•106	.280	.350	44.
TOTAL PHOS.	HG/L	~	0	•	C4	20	19	_	.335	•	•	m	m	~	37	8	0	0	-	•	•	•	M	~								•	.375	0	•	4
FLOY CFS		212.	188.	170.	157.	147.	135.	128.	130.	128.	139.	157.	220.	582	1236.	272	1122.	926.	755.	624.	528.	447.	4 31.	367.	321.	244.	233.	208.	174.	149.	132.	125.	78.	78.	84.	. 48
10	HRS.	2100	300	900	1500	2100	300	900	1500	2100	300	906	1500	2100	300	900	1500	2100	300	900	1500	2100	300	906	1700	1709	1709	1700	1700	1700	1700	1130	535	1800	1800	1800
ING	D	~	N	N	N	~	N	N	N	~	N	N	N	N	~	m	m	m	M	~	n	m									_		_	~	_	-
_	2		m	m							5																				•					

LAKE ERIE WASTEVATER RANGERENT STUDY - VATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER : PORTAGE RIVER

STREAM

: AT WOODVILLE, DHIO LOCATION W/CODE

USES NO. 04195500

COME 255. URMO	752.	799.	765	761.	164		1836	9000	177			172.		• > > > > > > > > > > > > > > > > > > >	697.	106.	755	-651	769.	690.	667.	543	515	516.	557	587	626.	640.	745.	762.	768.	901.	824.	823.	793.	795.
IRON MG/L																	•	٠																		
\$102 HG/L		7.90	7.80	10.20	6.70	00.0		90.7						900	1.60	6.70	5.20	00.4					12.60								4.2	S.	3.5	1.95	S	9
RIOE REOE	94.10	113.00	109.00	94.00	94.00	27.00	96-66	00.07	00.67		112.80									00.04	00°84	29.50	27.88	26.00	30.00	31.50	35.00	36.00	69.00	73.00	77.00	100.00	87.00	92.00	100.00	103.00
SUSPEND SOLIOS MG/L	26.30	19.50	12.70	20.00	19.60	27.10	27.50	50.02	74.20	17.61	99.61	23.50	0000	06.01	32.30	25.40	16.60	15.10	30.60	49.50	125.00	466.00	294.00	212.00		80.20	63.20	33.60	29.20	18.80	19.90	11.30	12.40	19.30	20.40	16.80
7/9H																																				
TOTAL KJELD MG/L																																				
OR6. N.11.																																				
NH-3		• 060	.190	• 165	. 095	0.00	000	• 060	040.	020	. 025	. 062	• 092	. 141	.045	.073	.073	.072	• 033	.023	. 097	.037	.023	010.	. 019	.015	• 032	.007	. 300	.511	.101	.133	• 00	.272	• 065	.200
NO-2 NO-3 NG-1		6.700	6.450	9.900	6-100	5.500	5-500	8-600	7.900	6.200	5.660	6.200	6-100	7.400	8.400	8.400	7.200	9.06-9	5.800	7.910	8-290	12.600	13.300	13.800	13.100	12.600	11.500	11.000	3.850	5.310	4.840	3.910	4.220	3.600	3.920	3.670
ORTHO PHOS. MG/L		.175	.265	.160	.160	• 16 c	.140	.120	-140	-140	.140	-187	.197	•150	.158	.154	.114	.126	.070	.152	.177	.132	.112	•126	.114	. 095	.134	.125	.101	- 164	•211	.162	.146	.148	•186	.229
TOTAL PHOS. MG/L	385	. 285	.265	.212	.238	•265	.240	.190	.190	•212	.169									.290	.430	.790	.548	.319	.374	.435	.543	.196	. 388	.323	.325	.242	.25P	.281	.346	.336
FLOV	263.	289	182.	145.	135.	481.	481.	321.	220.	200.	228.	254.	334.	459.	679.	419.	341.	295.	+0+	835.	7.90S.	2152.	1311.	890.	501.	337.	260.	228.	137.	130	114.	102.	98.	93.	93.	98.
7176 2458 HRS.	996	1860	1900	1300	1300	1300	1300	1300	1300	1300	100	1200	1200	1200	1200	1200	1200	1200	600	1630	430	1630	430	1630	1630	1630	1639	1630	1200	1200	1200	1200	1260	1200	1230	1630
186																																				2 50
SAMPLING Date Yr no dy																																				75

LAFE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

USGS NO. 04195500

COND 25C.	2 2	810.	813.	830.	819.	781.	706.	395.	400	398.	+06.	402.	414.	437	470.	501.	514.	510.	498.	515.	544.	573.	597.	617.	630.	643.	654.	599.	639.	633.	619.	644.	675.	681.	689	731.	732.
IRON	H6/L						٠																														
\$102	H6/L	5.87	6.73	5.56	6.43	5.66	ç	9.83	10.50	12.50	13.50	13.90	13.50	14.20	14.40	14.60	14-40	14.40	14.50	14.40	13.90	13.90	15.40	14.70	14.80	15.00	7	17.30	16.90	16.40	16.20	15.20	16.50	16.20	15.40	15.40	14.80
CHL 0 R 10£	MG/L	100.00	106.00	103.00	105.00	102.00	85.00	39.00	37.00	36.00	35.50	34.00	37.00	39.00	43.00	00.44	46.00	45.00	46.00	47.00	51.00	54.00	57.00	59.00	61.00	63.00	66.00	82.00	65.00	88.00	17.00	90.00	•	71.00	102.00	ō	120.00
SUSPEND SOLIDS	1/9M	21.00	16.20	17.40	30.40	31.90	362.00	2353.00	1489.00	1202.00	949.00	781.60	200.00	353.00	257.00	200.00	267.00	352.00	447.00	326.00	223.00	174.00	157.00	•	17.0	105.00	•	7	•	74.60	•	•	÷	45.10	~	4	39.50
000	HG/L																																				
TOTAL	H6/L																																				
OR 6.	H6/L																															,					
NH-3	H6/L	• 095	• 930	.115	•235	.085	• 075	.205	.268	•235	•225	.270	.180	.170	.123	.112	.115	0.0.	.070	• 055	.190	• 060	• 050	• 058	.187	.100	.114	0 0 0	3 ♦ 0 •	.070	• 030	•280	.040	040.	• 030	060.	060.
0 F 0 V 0 V	N6/L	3.540	3.280	3.150	3.280	3.120	3.596	5.350	7.410	9.710	10-600	11.000	11.300	11.400	11.300	11.500	11.300	10.800	9.900	9.950	10.000	9.800	9.640	099.6	9.200	9.260	8.730	9.180	8.600	8.550	7.950	8.570	8.000	8.100	7.700	7.400	7.050
PHOS.	H6/L	.233	.238	.238	.222	.217	.171	.046	.083	.098	.098	. 04 1	-077	.129	•139	.072	.124	.093	•103	• 109	.072	.119	.116	.143	.155	.163	.186	.180	.185	.190	.186	.208	-202	.225	.230	.236	.243
TOTAL PHOS.	H6/L	.365	.357	.365	.390	.365	.584	۲,	m		g,	•869	.701	.553	. 484	.464	ഹ	.574	•	.568	•474	•	•	-417	.385	.395	.385	.779	•466	. 351	.337	.356	-292	.347		~	.359
FLOW	•		98.	N	•	6	52	18	•	638	911	100	5	154	9	599	38	C)	75.	875.	716.	594.	505.	*	19	90	\$	318.	283.	254.	228.	220.	182.	125.	5	114.	8
7 1 ME	. E	30	630	N	1831		630	n	1835		630	a	1830		639	~	1839		63.1	N	1630	37	635	W	1835		630	n	80	2400	•	N	æ	2405	•	N	1863
ING	DY	~	2	21	21	22	22	25	22	23	23	23	23	24	24	24	24	25	25	25	25	56	5 6	56	56	27	27	27	27	27	2	28	5 8	26	53	59	53
AMPL	€.	S	s	ç	s	s	S	r	S.	S.	'n	ις.	s	s	s	S	S.	s	S	S	6	S	S	S	S	S	S	S	S	6	~	'n	S.	5	S.	S	ç
3 6	` ₹	-	7	~	-	-	7	~	_	7	-	ř	_	1	7	7	7	7	7,	7	7	7	7	1	7.	7	7	7	7	7	7	1	7	7	7	7	11

LAKE ERIE WASTEWATER MANAGEMENI STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

USGS NO. 04195500

Me/L	FLOI	W TOTAL PHOS.		ORTHO PHOS.	NO-2 NO-3	NH-3	ORG.	TOTAL KJELD	000	SUSPEND SOL 10S	RIDE	S102	I OR	COK0 25C.
256 7.350 .070 .070 .070 .070 .070 .070 .070 .0		-			H67L	H6/L	1/9H	H6/L	H6/L	1/9H	1/9H	H6/L	H6/L	0110
259 7.550 .084 .6440 117.00 155.60 258 6.2670 .110 .95.20 .25.00 135.60 250 6.250 .080 .96.20 .25.00 135.60 250 6.250 .085 .95.20 .25.00 135.60 250 5.450 .056 .25.00 .25.00 .25.00 250 5.450 .070 .040 .05.00 .25.00 .25.00 250 5.450 .070 .070 .070 .070 .070 250 5.450 .070 .070 .070 .070 .070 250 5.450 .050 .070 .070 .070 .070 .070 250 5.450 .050 .070		~	9	•260	7.300	.070				46.00	77.00	15.20		709.
248 6.870 110 33.40 35.40 14.00 14.00 12.20 12.20 10 14.00 12.20 12.20 10 15.00 12.20 10 12.2		•	•	•259	7.550	• 084				48.40	17.0	15.60		725.
256 6.250 .110 .256 .256 .110 .255 .256 .110 .255 .256 .256 .256 .256 .256 .256 .256			m	.248	6.870	.110				34.40	90.0	•		750.
250 5.250 .000 .000 .000 .000 .000 .000		•	m	.258	6.250	.110				35.20	120.00	5.6		743.
260 5.950 0070 12.90 13.00 13.		•	•	.250	6.200	. 080				40.60	102.00	15.00		785.
260 6.250 062 38.90 96.60 13.60 270 5.470 0.40 41.00 13.40 12.30 280 5.450 0.40 41.00 13.00 12.30 280 5.450 0.56 39.10 149.00 12.30 280 5.400 0.30 43.10 149.00 12.30 281 5.400 0.50 43.10 149.00 12.30 282 5.400 0.50 43.10 13.60 12.50 300 5.600 0.50 43.40 13.60 12.50 301 4.100 13.50 13.60 13.60 13.60 302 4.000 2.00 10.40 10.50 13.60 303 4.000 2.000 10.40 10.40 10.40 304 4.000 1.200 40.00 10.40 10.40 305 4.000 2.24 2.24 2.24 2.24 2.24 2.24		-	_	.263	5.950	• 0 7 0				40.80	141.00	12.90		798.
270 5.670 .636 35.600 134.00 184.30 184.30 184.50		ö	'n	.260	6.250	• 06 ž				38.90	96.00	13.60		774.
290 5.700 .040 41.00 110.00 11.80		Ξ		.370	5.870	• 056				35.00	134.00	12.30		764.
-280 5.450 .048 41.00 149.00 13.10 -280 5.310 .058 39.10 107.00 12.30 -280 5.430 .050 45.10 13.00 12.50 -275 5.250 .061 45.30 11.50 12.50 -386 5.550 .061 42.20 15.50 11.50 -386 5.550 .061 42.20 15.00 11.50 -396 4.500 .367 42.20 16.00 11.50 -462 5.000 .203 30.40 90.60 17.70 -462 5.000 .203 30.40 10.20 17.70 -462 5.000 .203 30.40 10.20 10.20 -552 4.40 .204 10.20 10.20 10.20 -560 -101 .200 11.20 10.20 10.20 10.20 -560 -101 -101 -101 10.20 10.20 10.20<		5	_	.290	5.700	000				41.60	110.00	11.80		815.
.320 5.330 .058 39.10 107.00 12.30 .26 5.400 .034 27.00 143.00 12.30 .276 5.400 .030 45.10 13.00 12.30 .276 5.20 .050 .050 43.10 13.00 11.40 .376 5.600 .061 .070 42.20 76.00 11.40 .376 4.60 .209 .070 42.20 76.00 11.50 .400 5.00 .203 30.70 77.00 11.50 .401 .226 5.070 2.00 10.40 11.50 .402 5.070 2.00 10.40 11.50 11.50 .545 5.070 2.00 10.40 11.50 11.50 .556 5.070 2.00 11.50 11.50 11.50 .557 5.070 2.00 11.50 11.50 11.50 .558 5.070 2.01 1.50 49.00		25		.280	5.450	.048				41.00	149.00	13.10		812.
-284 5.400 .034 43.10 12.50 1		G		.320	5.330	• 058				39.10	107.00	12.30		791.
-260 5-430 -030 46-50 112-00 12-50 -275 5-230 -050 -650		86		.284	5.400	.034				27.00	143.00	12.30		781.
275 5-250 -050 -050 -11-40 306 5-600 -061 -061 -061 -061 -061 -061 -070		6		• 260	5.430	• 030				46.50	112.00	12.50		626.
*300 5.600 *061 *368 5.150 *061 *368 41.40 81.80 10.50 *316 4-660 *209 48.80 46.00 17.30 *401 \$5.000 *205 *30.60 78.00 10.30 10.30 *402 \$5.000 *203 *30.60 78.00 10.20 10.20 *462 \$5.000 *203 *30.60 78.00 10.20 10.20 *462 \$5.000 *203 *30.00 10.20 10.20 10.20 10.20 *545 \$5.000 *200 *30.00 *30.00 11.50		2		.275	5.230	• 050				43-10	153.00	11.40		834.
368 5.150 .090 41.40 81.00 11.10 791 316 4.900 .367 48.80 46.00 7.70 796 401 5.000 .209 48.80 48.80 12.70 835 402 5.000 .226 30.60 76.00 12.70 835 462 5.010 .236 .236 .236 12.70 12.70 835 462 5.010 .236 .341 .236 .36.00 10.40 762 545 5.010 .236 .441 .129.00 .49.00 11.30 .49.00 516 5.560 .138 .227.00 .49.00 .11.50 .49.00 .40.00 .560 252 9.400 .138 .227.00 .49.00 .11.50 .40.00 .560 252 9.400 .138 .29.00 .40.00 .12.00 .40.00 .12.00 .40.00 .12.00 .40.00 .12.00 .40.00		5	_	•300	5.600	• 061				55.90	105.00	10.50		805.
*316 4.900 367 42.20 76.00 7.70 796 *295 4.660 203 30.60 10.30 839 *401 5.52 4.660 2.27 835 *462 5.010 2.28 30.70 90.00 10.27 835 *462 5.010 2.28 30.70 10.20 7.50 743 *545 5.070 2.000 10.40 10.40 7.50 7.40 *260 5.560 113 129.00 40.00 11.50 63 *252 7.400 40.00 12.00 40.00 12.00 563 *273 8.340 13.8 138.00 40.00 12.00 563 *273 8.340 13.8 138.00 40.00 12.00 563 *274 8.340 13.20 40.00 13.20 60.00 *275 9.400 12.00 40.00 13.20 62.00 *129		8		.368	5.150	060•				41.40	81.00	11-10		791.
295 4-660 -209 48-80 86-00 10-30 838 401 5-010 -225 30-50 30-50 762 815 462 5-010 -226 39-50 69-00 10-20 762 545 5-070 2-010 -226 39-50 69-00 10-40 762 546 5-50 141 2-26 69-00 10-40 762 546 5-50 141 173 174 174 174 512 6-60 173 173 173 173 173 173 174 174 174 174 174 174 174 174 174 174 174 174 174 174 175		62		.316	4.900	.367				42.20	76.00	7.70		796.
***401 \$5.000 **226 \$4.000 \$2.700 </td <td></td> <td>6</td> <td>_</td> <td>.295</td> <td>4.660</td> <td>•209</td> <td></td> <td></td> <td></td> <td>48.80</td> <td>86.00</td> <td>10.30</td> <td></td> <td>839.</td>		6	_	.295	4.660	•209				48.80	86.00	10.30		839.
552 4-440 -226 30-70 90-80 10-20 10-20 10-20 10-20 10-40 16-20 10-40 16-20 10-40 16-20 10-40 16-20 10-40 16-20 10-40 16-20 10-40 16-30 10-40 16-30 16-30 16-30 10-40 16-30 16-30 10-40 16-30 10-40 16-30 10-40 10		3	_	004.	5.000	.203				30.60	78.00	12.70		815.
-462 5-000 -236 39-50 69-00 10-40 745 -545 5-070 2-000 141 179-00 64-00 7-30 745 -250 5-560 -141 179-00 49-00 11-30 598 -252 7-600 -211 227-00 49-00 12-00 598 -252 9-600 -173 199-00 48-00 11-30 601 -252 9-600 -138 198-00 48-00 11-30 601 -252 9-600 -129 198-00 48-00 12-00 601 -252 9-600 -129 281-00 48-00 12-00 601 -172 14-400 -120 48-00 13-20 634 -172 14-400 -120 555-00 47-00 13-50 634 -183 14-400 -120 556-00 37-50 13-50 564 -181 16-200 -135 556-00 13-50 564 -182 16-200 -136 13-50 <		S		.552	4.40	.226				30.70	90.06	10.20		835
.545 5.070 2.000 7.30 7.30 7.30 7.30 7.30 7.30 6.55 .141 6.55 .141 6.55 .141 6.55 .130 6.55 .230 .130 .230 .130 .230 .130 .231 .237.00 41.00 12.00 .553 .253 .237.00 41.00 .120 .604 .230 .230 .237.00 48.00 .130 .604 .230		ĕ		•462	•	.238				39.50	69.00	*		762.
250 5.560 .141 179.00 48.00 11.50 538 312 6.600 .138 227.00 49.00 11.60 564.00 273 6.00 .138 221.00 48.00 12.00 564.00 252 9.03 .173 198.00 48.00 12.00 601.00 252 9.040 .129 281.00 48.00 12.00 601.00 272 19.400 .129 281.00 47.00 12.00 639.00 172 14.400 .120 265.00 45.00 13.20 639.00 183 16.000 .120 565.00 45.00 13.50 565.00 181 16.200 .35.00 14.00 14.20 565.00 565.00 181 16.200 35.00 14.00 14.00 14.00 64.40 182 15.20 40.00 14.00 14.00 14.00 64.40		ň	_	.545		2.000				129.00	00.49	7.30		143.
312 6.600 .138 227.00 49.00 11.60 598. .252 7.600 .211 237.00 48.00 12.00 56.00 .252 9.030 .138 198.00 48.00 12.00 600. .252 9.040 .138 197.00 47.00 12.00 610 .260 12.600 .129 281.00 47.00 13.20 653. .172 14.400 .120 265.00 48.00 13.20 653. .151 16.000 .135 255.00 37.50 13.80 564. .121 16.200 .086 234.00 14.20 564. .121 16.200 .086 234.00 14.80 564. .132 15.20 .086 192.00 41.00 14.90 64.44		92		.260	•	.141				179.00	48.00	11.30		633.
252 7.660 .211 2237.00 41.00 12.00 563. 563. 563. 563. 563. 563. 563. 563.		-	_	.312	9.600	.138				227.00	49.00	11.60		598
221.00 48.00 11.30 604. 222 9.030 .173 8.340 13.80 48.00 11.30 604. 222 9.040 .138 199.00 48.00 12.00 610. 208 12.600 .129 281.00 46.00 13.20 653. 2172 14.400 .120 265.00 45.00 13.50 653. 213 16.800 .584 324.00 34.00 13.50 564. 2130 16.300 .114 19.50 585.00 13.50 618. 2130 16.300 .114 19.50 653.		Ŧ	ھ	.252	7.800	.211				237.00	41.00	12.00		563.
.252 9.030 .173 198.00 48.00 12.00 610 .222 9.400 .138 .198.00 47.00 12.00 610 610 .222 9.400 .128 .128 .128 .129 .281.00 45.00 13.50 653.01 .120 .120 .120 .120 .120 .120 .120 .		S	•	.273	8.340	.149				221.00	48.00	?		
.222 9.400 .138 .197.00 47.00 12.00 634 .228 .228 .228 .228 .228 .228 .228 .22		-	•	.252	9.030	•173				198.00	48.00	2.0		601.
*208 12*600 *129 634 *172 14*400 *120 555 *183 14*400 *120 555 *183 14*400 *135 555 *181 16*400 584 554 *181 16*200 584 518 *180 16*300 *114 *180 16*300 *114 *180 16*300 *114 *180 16*300 *114 *180 16*300 114*80 644		-		.222	9.400	.138				197.00	47.00	2.0		610.
-172 14-400 -120 265-00 45-00 13-50 585-00 -143 14-400 -120 585-00 37-50 13-80 584- -121 16-800 -584 324-00 35-00 14-50 518- -121 16-200 -086 234-00 40-00 14-80 618- -130 16-300 -114 192-00 39-50 15-20 633- -132 15-900 -083 16-600 41-00 14-90 64-4-		-	_	.208	N	•129				281.00	46.00	3.2		
-143 14-400 -120 -120 -135 -135 -130		-		.172	•	.120				265.00	45.00	3.5		653.
-132 16.000 -135 518.00 34.00 14.20 564 -121 16.00 -584 324.00 35.00 13.50 585 -12C 16.20 -086 234.00 40.00 14.80 618 -13C 16.30 -114 192.00 39.50 15.20 633 -132 15.90 -083 166.00 41.00 14.90 644		•	7	.143	14.400	.120				555.00	37.50	3.8		
.121 16.800 .584 324.00 35.00 13.50 585 585 512C 16.200 .086 238 518C 518 518 518 518 518 518 518 518 518 518		0	5	.132	16.000	.135				518.00	34.00	4.2		564.
*12C 16.200 *086 234.00 40.00 14.80 618 *13C 16.30C *114 192.00 39.50 15.2C 633 *132 15.9CC *083 16.0C 41.0C 14.9C				.121	16.800	.584				324.00	35.00	3.5		585.
.130 16.300 .114 192.00 39.50 15.20 .132 15.900 .083 16.00 41.00 14.90		••	23	•12C	16.200	• 086				234.00	40.00	4.8		618.
-132 15-900 -083 146-00 41-00 14-90 (•	35	.130	•	•114				2.0	9.50	5.2		633.
	•	9	~	.132	•	.083				•	•	•		• • • •

5

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OMIO

USES NO. 04195500

COND 25C.	CHRO	655.	689.	701.	714.	723.	749.	824.	192.	768.	830.	832.	797.	831.	864.	678.	650.	672.	707	762.	589.	613.	634.	714.	732.	736.	638.	769.	495	544.	616.	703.	820.	679.	691.	686.	653.
IRON	H6/L																																				
\$102	H6/L	4.6	•	4.8	;	÷	÷	÷	ċ	•	ŝ	ŝ	ŝ	ŝ	•	•	÷	•	:	ċ	:				12.40	11.10	7.40	11.20	13.70	15.30	16.30	13.00	15.10	10.40	9.38	3.55	1.90
CHL 0 R 1 DE	1/9H	41.00	46.00	47.00	49.00	50.00	55.00	69.00	56.50	52.50	61.00	67.00	65.00	71.00	91.00	52.00	40.00	46.00	47.50	62.00	39.50	41.00	44.00	55.00	60.50	65.00	77.00	103.00	55.00	24.00	60.00	96.00	112.00	78.00	69.00	84.00	89.00
SUSPEND SOLIDS	H6/L	57.0	126.00	12.0	94.20	81.50	81.00	69.80	52.30	20.60	36.40	43.70	51.40	29.60	19.20	05.0	122.00	93.70	95.20	26.00	00.544				209-00	182.00	144.00	141.00	938.00	421.00	429.00	283.00	177.00	187.00	274.00	144.00	83.00
000	N6/L																																				
TOTAL KJELD	1/9H																																				
ORG. NIT.	H6/L																																				
E-112	MG/L	.193	2-000	•104	.165	.120	.172	.110	• 058	• 062	.101	• 088	• 069	• 022	• 021				• 080	• 065	• 030	040	• 080	• 062	090•		• 045	• 045	• 065	.112	• 0 9 0	• 060	• 620	.015	.070	. 400	• 650
NO-2 NO-3	M67L	15.500	14.400	13.700	13.100	12.800	12.200	10.500	6.420	6.180	5.950	5.920	5.870	5.720	•	6.940		12.200	11.200	7.510	8.880	9.190	8.560	7.580	7.390	6.770	5.980	•	•	.71	7.950	5	5.620	*	:	70	.47
ORTHO PHOS.	H6/L	.151	.153	.169	.165	•166	.172	.165	.180	.229	.238	•309	.229	• 182	,151	.173	.250	.195	.210	.205	.150	,180	+172	•145	.130	.070	.155	.160	.165	.157	.175	.150	.140	.140	.138	• 096	•100
TOTAL PHOS.	H6/L	.336	.327	.300	.286	.282	.354	.246	.287	.326	.315	+0+.	.357	.217	.228	.356	.364	.324	.316	.300	1.080	.750	.710	.560	.545	.575	.610	.451	1.360	.805	.825	.625	.386	.437	.665	.304	.256
FLOU		440.	370.	315.	272.	235.	208.	185.	160.	126.	111.	121.	135.	104.	93.	437.	244.	135.	165.	172.	249.	208.	176.	149.	132.	98.	70.	71.	451.	208.	228.	119.	75.	57.	47.	37.	30.
11ME	M.S.																																				1405
SAMPLING DATE	M0 DY	•	•	9	•	•	9	9	9	9	9	6 1	9	9	9	6 1	9	9	6 1	9	9	9	9	9	9	9	9	9	9	9	9	9	9	6 3	~	7	
SAI	=	75	75	75	75	75	75	73	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75

LAKE ERIE HASTEVATER MANAGEMENI STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

US65 NO. 04195500 LOCATION W/CODE : AT WOODVILLE, OHIO

COND	CARO	714.	708.	844	:	908	738.	785.	692.	815.	652.	749.	585.	726.	698.	695.	713.	726.	778.	727.	766.	996	755.	770.	011	.999	750.	686.		751.	797.	864.	846.	802.	894.	828.	
IRON	1/9H																																				
\$102	1/9H	• 63	7.55	9.00 0.00	5.10	3.34															• 30	.90	.20			. 50	• •	.90	2.00	2.60	~	•	2.08	~	•	1.68	3.90
CHLO	H6/L	110.00	99.00	134.00	95.00	00.09	76.00	88.00	72.00	99.00	110.00	130.00	80.00	115.00	105.00	93-00	105.00	110.00	130.00	136.00	118.00	163.00	116.00	114.00	130.00	:	110.00	9.9		88.00	120.00	134.00	132.00	130.00	155.00	140.00	
SUSPEND	H6/L	61.60	14.60	04.70	41.30	29.10	32.80	43.70	27.10	42.60	56.80	44.20	44.10	42.50	20.00	47.90	46.70	00.40	52.00	66.30										87.80	56.60	73.10	89.40	87.40	ກຸ	443.00	•
000	1/9H																																				
TOTAL	M6/L																																				
OR G.	H6.7.																																				
N-HR	H6/L	- 480	-240	.150	040	.070															.070	.007	.170	. 144	.268	. 329	.024	900•	.061	. 092	.160	•100	• 095	• 076	. 089	• 050	110-
NO-2	H6/L	969.	5.210	2.760	2.820	2.210															.870	1.310	.930	.530	.650	.600	.720	.920	1.033	2.000	.500	1-100	.670	• 689	.360	044.	•202
ORTHO	M6/L	.128	.270	.140	-180	.342															.290	.350	.390	.250	.230	• 560	.280	.280	.340	.260	.260	-205	.161	.145	.130	.145	•230
TOTAL	M6/L	.264	.368	.244	-292	.342	.292	.296	•356	.320	.368			.272		•268		.312		.530	.615		.720	•645	.505	1.110	.505	.545	.376	.610	•605	• 580	.580	.575	.515	1.890	•
FLOV	5	52.	152.	106.	63.	47.	46.	118.	88	70.	55.	43.	35.	31.	30.	26.	23.	26.	24.	39.	57.	52.	47.	33.	42.	•	30.	•	33.	30.	22.	16.	13.	11.	10.	•	•
TIME	KAS.	1405	1405	1465	14.05	805	1445	245	1445	245	1445	245	1445	245	1445	245	1445	245	1445	245	1615	415	1615	1615	1615	1615	1615	1615	1015	1630	1630	1630	1630	1630	1630	1635	830
AMPLING	YR HO DY	5	2	2	5	5 7	5	_	2	5 7	2	5 7	-	5	5	5	5 7	5 7	2 7	5 7	5 7	5 7 16	5	5 7	5 7	5	5 7	5 7	5 7	5	5 7	2	5 7	5 7	5 7	5	5 7

97

A COMMITTED TO THE STATE OF THE

The second secon

LAKE ERIE MASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

USGS NO. 04195500 LOCATION W/CODE : AT WOODVILLE, OHIO

COND 25C.	CHEO	857.	947.	946	973.	1008.	1035.	904.		844.			į	870.	717.	576.	647.	691.	760.	692.	608	396.	582	591.	244	590*	604	618.	420.	566.	622.	488	99	603.	710.	588.	767.
RON	HG/L																									•											
S102	HG/L	2.51	1.72	1.90	2.26	1.36	2.84	4.17	3.60	3.36	2 • 05	3.26	. S.	3.24	6 • 05	8.33	9.50	8 - 55	5.81	3.20	N	12.00	N	13.20	N	12.70	C)	2.5	5.6	12.20	12.60	5.6	2.7	12.70	12.30	11.80	12.80
RIDE	H6/L	108.00	115.00	107.00	110.00	119.00	133.00	109.00		130-00				•	92.00	63.00	74.00	76.00	88.00	92.00	28.00	27.50	27.00	25.00	24.50	21.00	26.00	29.00	30.00	27.00	19.50	31.50	28.00	31.00	41.00	_	=
SUSPEND SOLIDS	H6/L	•	10.70	ů	•	4	ů	~	77.80	59.10	82.50	25.30	78.80	9	124.00	15.60	04.69	63.00	04.49	82.60	245.00	1538.00	939.00	1273.00	812.00	1438.00	3787.00	1294.00	1604.00	257.00	276.00	353.00	245.00	184.00	182.00	29	10
0 00	H6/L																																				
TOTAL KJELD	H6/L																																				
GRG. NIT.	H6/L																																				
%H-13	M6/L	.118	• 209	.391	.473	.312	•212	.124	. 121	.395	.118	• 130	• 118	.287	.103	.130	. 128	.116	• 036	.051	.039	• 185	.230	.173	• 023	.170	• 030	• 172	.001	.179	• 005	• 156	• 030	•156	.013	.112	.018
X 0 - 2 X 0 - 3	H6/L	.740	•330	.110	• 0 6 0	.070	.470	006*	1.090	.855	•	•37	• 15	• 03	2.980	• 54	• •	2.620	1.610	1.330	2.050	2.500	1.920	2.210	1.830	2.120	1.650	1.980	1.810	1.870	1.250	.88	• 95		•95	.80	~
PHOS.	H6/L	.378	•300	.328	.305	.332	.221	.342	.250	.321	• 289	.290	•282	.243	.219	.248	.217	• 205	.126	.152	.190	.180	.195	.175	.177	.182	.170	•195	.142	.163	•150	.170	• 159	.160	•14B	.157	.152
TOTAL PHOS.	H6/L	.965	•660	.640	98	•675	.356	.550	.340	.787			,	.561	.372	.341	.341	.351	.352	.231																	
FL0¥ CFS		7.	•	•	•9	9.	N	60	56.	~	٠	•	ě	5	5	C	•	27.	0	•	بر ت	2.	2	2	•	G.	•	æ	•	•	•	O	9	•	•	~	235
71ME 24:0	HRS.	1615	1615	1615	1615	1615	1615	1615	1015	1639	2230	430	1030	1630	1630	1639	1630	1630	1633	1033	2002	2400	4 0 0	900	1226	1623	2002	2400	€	ပ ယ (၁)	1263	1600	2300	2956	C' \ ◆	C ()	1220
9 2	70	59	30	31	-	~	m	•	S	ß	40	9	9	9	^	€0	•		=		,- 4	-	~	~	N	~	~	~	m	~						•	•
AMPL III Ate	9																										6										
SAO	£	75	75	75	75	75	75	75	75	75	75	75	15	75	75	75	75	75	75	75	35	75	75	73	15	75	75	7.5	75	75	75	75	75	75	75	75	75

LAKE ERIE VASTEVATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND 25C. UNNO	729.	785. 715.	531.	510.	5 14 •	566.	595.	626.		725.	760	719.	710.	721.	865	745	917	* 100 E	852	872.	829.	829.	962.	474.	35.5	364.	403.	595.	672.	856.
IRON MG/L																														
S102	11-60	10.80	11.50	11.20	11.30	12.00	12.20	13.20	11.70	11.40	11.50	12.00	11.90	11.90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.60	01-11	10.00	10.90	10.30	9.90	9.90		1 9. •	9.60	10.90	10.20	9.13	9.96	8.28
CHLO RIDE NG/L	44.00	28.50 18.50	30 + 00 K	29.00	29.00	12.00	20-00	14.50	20.00	46.00	17.00	37.00	14.00	35.00	24.00	42.00	18.50		54.00	24.00	42.00	42.00	30.00	24.50	10.00	15.50	10.00	26.00	31.00	00.00
SUSPEND SOLIDS MG/L	170.00	53.10	3029.00	1463-00	1103.00	535-00	572.00	435.00	338-00	314.00	204.00	187.00	185.00	232.00	230.00	51.80	31.20	30°00	56 • 20	26.20	39.90	39.90	34.50	389.00	378.00	191.00	144.00	98.00	47-10	27.20
T/9W																														
TOTAL KJELD MG/L																														
086. NIT. #6/L																														
NH-3	.128	.150	.005	. 035	•219	.141	.072	• 198	• 036	.121	.087	. 035	.113	• 025	.103	• 095	680	- 072	068	.120	.052	• 052	• 103	.078	.140	• 100	.221	.057	.057	.037
NO-2 NO-3 NG-1	1.770	1.740	-28	84.	2.170	2.150	2.800	2.200	2.460	2.190	1.990	2.080	2.100	2.120	1.950	2.120	2.050	2.000	2.030	1.850	1.960	1.960	1.810	2.290	1.840	1.960	2.110	•	2.360	• 16
ORTHO PHOS. RG/L	.200	.170	.137	.160	.157	.146	.145	.158	.142	141	139	.145	.184	.153	• 152	.160	.160	160	1165	.180	.149	.149	.145	.167	.142	.127	.119	.121	.124	.118
107AL PH0S. MG/L																												•	21	~
FLOW	192.	151.	1508.	1332	036	6110	493.	408.	341.	289.	210.	182.	159.	143.	130.	116.	106.	96		. 60	906	90.	130.	956	350	2278.	886	312.	202.	157.
SAMPLING TIME DATE 2408 YR HO DY HRS.	••		• •	- 0 - 0 - 0	9		9 7 2	•	60	e e	•	9 9 1	9 9 1	9 9	9 10	9 10 1	9 10 1	9 10 2	4 11 4	9 11 1	9 11 2	9 11 2	9 12	9 12 1	9 12 1	9 12 2	9 13	9 15 1	9 16 1	9 17 1
A Q A	55	2 t	2;	7.5	75	7 2	75	75	5	7.5	. 6	75	75	75	75	75	2	2,	2 %	2.5	75	75	75	75	75	75	75	75	75	75

LAKE EKIE MASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND 25C.	OHEN	722.	720.	607.	514.	564.	571.	628.	768•	758.	902.	966.	944.	948	928.	1141.	1142.	958.	976.	1200.	1198.	875.	809.	917.	1019.	1062.	1130	1045.	886.	903.	1114.	1177.	1075.	907.	945.	930.	1045.
IRON	H6/L																																				
\$102	MG/L	9.59	8.82	9.56	99.6	96.6	12.70	12.10	11.20	12.80	60.6	8.42	8.79	8.11	7.65	6.17	5.66	8	5.80	6.01	۳.	66.9	6.55	4.97	۳.	5.06	4.59	8	3.89	•	4.60	•	•	•	3.23	~	3.33
CHLO	H6/L	33.00	32.00	22.00	18.50	14.50	34.00	37.00	38.00	41.00	00.09	71.00	70.00	70.00	68.00	100.00	45.00	56.00	00.09	92.00	94.00	52.00	43.00	100.00	122.00	130.00	140.00	119.00	95.00	88.00	130.00	155.00	127.00	90.00	92.00	8.0	7
SUSPEND	7/9H	25.90	65.00	16.0	123.00	6	43.78	40.20	29.10	48.60	17.20	12.00	8.00	7.50	7.70	9.30	15.10	7.10	٠. ده	10.40	27.90	15.20	10.90	10.70	8 - 40		?	۳,	7.70	•	ç.	۳.	7		17.40	ŝ	
000	M6/L																																				
TOTAL	HG/L																																				
ORG.	1/9H																																				
N-HN	HG/L	.077	• 054	• 065	.077	.104	.217	.179	.117	•124	.133	.032	.077	• 092	.078	• 035	.107	.198	•166	.189	.181	.140	.148	.182	.102	.172	.121	. 168	•109	.212	.164	.194	.102	.207	.126	.169	• 083
N 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	H6/L	•	2.540	•	.03	2.160	.33	3.790	2.320	2.080	1.990	1.990	1.960	2.020	1.960	1.590	1.630	2.030	1.880	1.200	1.570	2.090	2.330	1.420	1.170	1.080	1.000	1.070	.870	.910	.910	.910	.890	.970	.950	.940	.790
PHOS	H6/L	.189	.173	.113	160.	.104	.118	.125	.129	.161	.169	•156	.158	.228	. 222	.102	•089	•106	• 0 96	**0	• 0 •	.080	.108	•90•	• 039	• 055	•035	• 0 • 6	.048	• 0 4 8	• 035	+ 634	•028	•046	• 0 •	.050	•031
TOTAL	M6/L	•	•	31	36	24	30	~	27	•	19	-	0	N	N	N	12	S	•	5	8	*	•	.092	•	æ	3	-	0	8	•	9	-	•	0	40	0.7
FLOW	, ;	134.	528.	670.	5	9	520.	92	218.	145.	118.	6	99.	88.	81.	70.	59.	55.	51.	48.	78.	135.	135.	74.	71.	70.	67.	64.	•09	59.	59.	57.	56.	56.	56.	55.	54.
TIME	HRS.	1100	1100	1100	1100	200	1200	1200	009	1110	1110	1110	1110	1110	1110	1110	510	1130	1130	1130	1130	1130	1730	1130	1730	2330	530	1130	1730	2330	530	1130	1730	2330	530		1730
SAMPL ING	R NO DY	5 9 1	5 9 1	5 9 2	5	5 9 2	5 9 2	5 9 2	5 9 2	5 9 2	5 9 3	5 10	5 10	5 10	5 10	5 10	5 10	5 10	5 10	5 10	5 10	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	5 10 1	75 10 16

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE. OHIO

20ND	OHEO	1064.	1190.	935	1024.	1052.	1118.	879.	807	741.	652.	909	594	616.	6220	620.	686			886.	984.	1008	907.	910.	936.	987.	877.	897	1111.	1130.	885.	1049.	920.	1033.	1022.
NO N	H6/L																																		
2102	H6/L	2.12	4.18	ې	•	2.07	6.83	5.86	8.11	7.77	10.40	9.92	11.40	10.80	11.50	9.93	11.80	12.20		10.40	9.64	7.45	6 - 36	7.05	6.81	3.61	3.33	3.60	A . A . A	3.58					
RIDE	H6/L	127.00	43.0	93.0	21.0	142.00	22.0	86.00	60-09	28.00	00-94	00-94	35.00	90-74		37.00	41-00		_	90.09	_	_	_	_	_	_	_	92.0	9	0	0		Ö	170-00	0.0
SUSPEND SOLIDS	1/9H	26.00	5.40	ċ		21.00	•	36.00	21.90	76.80	110.00	60	94.90	96.00	71.50	08. 69	06.04	66.2		00000		7	7.80	•	~	ç	ů	ç.	•	ç	ç	7	ç	9	ņ
000	H6/L																																		
TOTAL	16/																																		
ORG NIT.	MG/L																																		
N-IN	HG/L	.136	660•	. 160	.149	• 065	•108	• 026	• 061	.053	020	• 0 59	• 072	• 085	660.	•105	• 092	.161	00 T •	039	.048	• 056	.190	. 193	• 205	.192	.116	•109	• 0 78	++0-	.171	.142	.135	.127	.077
K0-2	H6/L	.780	.820	.910	066.	1.040	1.800	3.150	•26	3.400	.94	*	.77	• 69	• 60	*.	4.370	99	94		00.	.90	.97	.98	.88	•75	• 19	1.710	.39	•	•90	•59	• 73	.18	.41
ORTHO PHOS.		-	•	9	•	0	•	•	ω,	~	~	0	~ '	9	•	-	•	•	3 6	089		~	~	~	~	~	~	~	•	•	~	•	~	-	0
TOTAL PHOS.	7/9H	.068	•024	•113	.173	• 083	.081	.128	•199	.350	.493	.421	.367	.341	•342	.238	.112	*		128	.128	.154	-184	.142	.126	.219	.197	.183	.137	.071	•169	.151	.183	.162	.171
FLOW		54.	54.	52.	57.	68.	90.	39	•	1224.	629	_	795	711	•	360	5	5		* C C C	6	32	25	6	99.	84.	71.	•99	70.	71.	70.	67.	63.	63.	61.
71ME	HRS.	2330	530	1130	1730	2330	530	1130	1730	2330	530	1130	1730	2330	530	1130	1130	1130	2011	1130	1150	530	1330	1330	1330	1330	1330	1339	1330	730	1130	1130	1130	1136	1130
MPL ING TE	0 0Y	0	7	0	0	0	0	0	. 0	0	70	0	0	0	0	0	0	0	, c	* C	. 0	0	0	0	0	9	0	_	_	~	_	_	_		_

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

USGS NO. 04195508 : AT WOODVILLE, OHIO LOCATION W/CODE

COND 25C. UNHO	1062.	1056.	977	906	1073.	888	1240-	906	1200.	933.	1111.	946	939.	787.	714.	719.	820.	768.	816.	835.	904	;	728.	715.	765.	908	890.	837.	912.	669	819.	800	616.
IRON MG/L																				-													
S102		2.20	2.02	3.22	3.65	30.00	3.27	1.25	2.42	3.42	2.01	2.94	4.17	5.39	96-9																		
CHLO RIDE M6/L	180.00	120,00	110.00	94.00	140.00	93.00	180-00	92.00	180.00	110.00	150.00	105.00	115.00	72.00	62.00	51.00	60.00	49.00	53.00	53.00	71.00	•		00.44	90.44	49.00	64.00	54.00	64.00	47.00	53.50	51.00	41.00
SUSPEND SOLIDS MG/L	8.30	17.70	09.9	13.80	00.4	9.40	0000	4.20	5.90	5.20	2.90	4.00	00.09	3.9	49.90	*:	•	8.10	4	4.9	31.70		25.10	7.10	94.90	22.10	21.40	5.20	9.20	87.00	16.80	32.20	227.00
7/9K									•																								
TOTAL KJELD HG/L																																	
ORG. NIT. MG/L								-																									
NH-3	.118	.148	202	.207	• 079	.179	990	.169	. 073	.112	.137	.214	.060	.127	. 193		.130	.170	.180	•220	.180	• 090	010	• 0 7 0	.125	060.	.130	-200	.260	• 1 30	.110	060.	.135
NO-2 NO-3 NG/L	1.250	1.340	1.660	1.750	1.320	1.560	1.180	2.530	1.770	2.970	2.530	2.750	2.090	4.770	4.750	4.500	4.400	4.500	4.000	3.800	2.500	000	4.300	004.4	4.100	3.700	3.200	3.300	3.250	•20	3.200	•	4.100
ORTHO PHOS. MG/L	.114	-040	101	•040	.007	-005	900	.359	.129	-202	.138	• 182	• 093	•145	.145	•120	• 090	060.	• 090	• 090	.050	080	060.	• 095	• 100	.080	• 0 8 0	060•	• 000	• 065	. 085	• 0 1 0	• 040
TOTAL PHOS. MG/L	.190	22	. 168	27	.181	-207	19	1.120	.42	•620	.460	.594	.460	069.	.710	.276	• 194	.170	•153	.147	.141	.194	•229	.198	•156	.156	.130	.132	.119	.239	.162	.173	.527
FLOW	70.	71:	184.	5	91.	70.	61.	96	57.	57.	.99	64.	104.	493.	179.	745.	328.	263.	180.	151.	220.	779.	556.	520.	379.	309.	252.	210.	205.	283.	520.	512.	940.
71ME 2408 HRS.	1130	1440		1440	1440	1440	0 4 4	1630	1630	1630	1630	1630	1630	1630	1030	1700	500	1700	1700	1700	1700	1700	1100	1430	1430	1430	1430	1430	1430	239	1430	2030	830
SAMPLING Date Yr no dy		~	-	•	~	_	~ -	• ^	~	~	N	N	~	m												~	~	_	~	-	7	~	_
TE NO	11	-	-	·	-	~	۰,	• -	-	~	~	-	-	_	_	-	-	-	~	~	9~4	~	•	-	_	_	-	7	~	_	7	~	-
A O A	25 E	7.	7 6	75	75	7.5	~ ^		- K	75	75	75	75	75	75	75	75	75	75	75	7.5	5	7.	75	75	75	75	75	75	75	75	75	75

LAKE ERIE VASTEVATER MANAGEMENT STUDY - VATER GUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE AIVER

RIVER
PORTAGE
••
_
STREAM

04195500	
US6S NO.	
0110	
: AT MODDVILLE.	
LOCATION W/CODE	

COMB 25C. UMHO		922.
IRON NG/L		5.63
S102		
RIDE M6/L		58.00
SUSPEND SOL1DS MG/L		7.40
1/9H		
TOTAL KJELD MG/L		
ORG. NIT. FG/L		
NH-3		.220
NO-2 NO-3 BG/L	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.500 3.900
087H0 PHOS. RG/L	11150 11150	.110
TOTAL PHOS. MG/L		.147
FLOW		280.
SAMPLING TIME DATE 2400 VR HO DY HRS.	75 12 15 1136 75 12 15 1136 75 12 15 1136 75 12 16 130 75 12 16 130 75 12 16 130 75 12 17 150 75 12 17 150 75 12 24 1100 75 12 24 1100 75 12 25 1100 75 12 27 1100 75 12 29 1100 76 1 3 1700 76 1 5 1700 76 1 5 1700 76 1 5 1700 76 1 5 1700	- 0

LAKE ERIE UASTEVATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

USGS NO. 04195500 LOCATION W/CODE : AT WOODVILLE, OHIO

25C.		918.	917.	1315.	1086.	985.	1066.	675.	718.	673	716.	810.	829	873	106	764		/ B G	7 7 7	1000	2 4		420	314.	298.	271.	264.	273.	300.	311.	319.	346.	384	416	457.
IR ON	1/9H	4.59	4.27	3.98	3.91																														
2102	H6/L																																		
CHLO RIDE	H6/L	9.0	_	-		80.00	~	~	3.0	56.00	•	•	•	9	•	•	•	•	•		? <			0	•	•	•	ċ	ė	ė	•	9	29.00	ē	ē
SUSPEND SOLIDS	N6/L	00.9		8.70	ç	11.20	9.9	6.3	40.70	N I	٠ ا	9.0	7.30	ů	'n	1.60		26.	ŗ	•	ë, ‹	17.50		26.0	•	ŝ	•	•	ů	M	2.0	5.1	30.60	2.5	27.00
000	H6/L																																		
10TAL KJELD	₩6./L					1.030	1.120	.937	1.110	.899	1.020	• 908	966•																						
OR6. NIT.	H6/L																																		
N-HN	H6/L	.330	.370	.430	•600	. 580	.630	.530	.560	.420	0++•	.450	.380	004.	.410	. 450	• 550	.610	. 780	.840	069.	200	000	350	.390	.430	.380	.260	.370	.400	.300	.300	.270	.460	0.440
NO - 2	HG/L	4.500		0	3.700	.70	.90	.30	3.000	94.	3.400	•	3.500	3.500	3.300	3.200	3-100	20	500	00.	ָ פֿ	1.300		99	.70	.70	.80	90	.00	-20	.30	•	.70	.80	3.000
PHOS.	1/9H	.120	.130	.120	.110	•110	.130	.120	.120	• 120	.110	.123	•110	.156	•110	.120	•220	•170	.150	•130	100	080	0410	130	.140	.130	.130	.130	.130	.130	.140	.130	.130	- 120	121
TOTAL PHOS.	H6/L	.154	.144	2	2	.281	27	15	19	-209	.163	.178	17	.173	.183	.161	•220	.210	.197	.175	.107	.160	96.00	362	646	.191	.317	.298	•264	.257	.253	.228	.211	-200	196
FLOV	•	120.	110.	107.	113	114.	128.	295	835	544.	437.	312.	274.	252.	151.	143.	130.	130.	137.	109.	113.	607		28.9	302	360	900	520	65	2590.	942	1906.	1384.	1030.	905
71ME	3	1205	1205	1265	80.5	1110	1110	1110	1110	1110	1110	1110	510	1100	1100	1160	1100	1100	1100	1100	1700	500	1100	1 C	500	1105	1795	2365	80.0	1195	1705	2365	505	1105	1768
IN 6	4	•		=	-	12	2	:	15	16	11	18	13	19	20	21	22	23	2	5 2	22	56	9 6	2 6	2	2	27	27	28	58	28	28	29	53	0
AMPL 1	2																					~ 1													
SAN	E	9	•	,		ي د	9	9	4	2	16	9	9	9	9	9	9	9	9	9	٠	9	•	9	9	9	9	9	9	9	2	9	9	9	7

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

٤		
ė		
•		
٠		
£		
J		
į		
ŧ		
Ś		
ž		
Š		
_		
•		
E		
٠		
2010		
Ċ		
٥		
Š		
٠		
•		
٠		
ď		
Ľ		
3		
2		
¢		

: PORTAGE RIVER

STREAM

0H10
WOODVILLE.
A
••
N/CODE
CAT 10N
٦,

COND 25C. UMHO	550.	569.	563.	588.	615.	621.	643.	656.	-989	711.	718.	725.	711.	771.	808.	864.	903.	931.	988	1010.	1020.	982.	1023.	1020.	1006.	1058.	684.	+36 •	426.	417.	321.	293.	268.	260.	269.	284.
IRON MG/L																									.30	• 20	04.4	4.20	4.20	•	7.60	10.20	9.20	7.50	7.70	6.60
\$102 MG/L																																				
CHLO RIDE NG/L	39.00	40.00	40.00	40.00	42.00	42.00	43.00	43.00	46.00	51.00	51.00	49.00	51.00	51.00	51.00	58.00	60.00	63.00	71.00	99.00	73.00	82.00	75.00	72.00	75-00	99.99	46.00	77.00	96.00	92.00	82.00	72.00	80.00	71.00	74.00	53.00
SUSPEND SOLIDS NG/L	20.20	15.80	14.60	12.30	13.70	6.1	10.60		00.6	8.00	9.20	8.20	316.00	420.00	200.00	4.70	6.20	3.20	00.4	3.20	7.80	21.70	19.70	24.30	33.30	01.11	128.00	81.50	90.30	102.00	171.00	221.00	144.00	131.00	143.00	128.00
COD MG/L																																				
TOTAL KJELD MG/L																						.960				1.080				.820				1.100		
ORG. N11. HG/L																																				
NH-3	.370	.490	.360	904.	.370	-400	.360	• 450	.430	.380	.340	.400	.250	.590	.670	. 450	•460	. 500	.560	.590	948.	.660	. 720	.710	. 700	. 780	.660	.350	.320	.350	-290	.240	.220	.190	. 180	.180
NO-2 NO-3 M6/L	3.000	3.000	3.000	3.000	3.000	3.000	.00	9	9	.90	2.900	3.000	3.600	3.500	3.500	2.800	.70	2.600	2.300	9	.30	÷	1.400		1.300	1.200	1.200	1.500	2.200	2.900	2-100	•	.90	9	.80	99
ORTHO PHOS. MG/L	.100	• 100	.100	.100	.100	060•	060.	100	.110	• 090	060•	.090	•070	.220	.100	.100	.110	.240	.360	.120	.120	.240	.230	-230	.240	.230	-130	.120	.150	.150	.130	.136	•140	.150	.160	.180
TOTAL PHOS. MG/L	.173	.156	.154	.156	.148	.164	-146	.144	.154	.149	.140	.136	•956	.689	.544	.145	.157	.240	.360	.120	•169	.242	.230	.230	.240	.230	.323	.365	. 453	.577	.569	.570	.511	.476	064.	.439
FLOW	745.	661.	532.	501.	174.	415.	387.	391.	367.	315.	277.	263.	260.	223.	161.	155.	141.	125.	121.	102.	96.	99.	91.	85.	82.	82.	186.	437	1242.	2120.	3340	3766.	3986.	4641.	4491.	4420-
71ME 2408 HRS.	60	1105	1705	2305	503	1105	1705	2305	505	1105	1705	2305	S	1220	1820	1220	1220	1220	1220	1220	620	1050	1650	2250	450	1050	1650	2250	450	1050	1650	2250	450	1850	1656	2250
ING DY		30	8	9	33	31	3	3	-	-	-	~	~	~	~	•	S	•	~	æ	6	•	•	•	10	70	70	10	11	=	7		12	12	12	12
SAMPLING Date Yr no dy																																				~
A D A	76	7	16	2	26	7	16	16	16	16	16	76	16	76	76	7	76	16	16	76	16	76	76	16	76	16	76	76	2	76	76	76	16	75	7	16

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

US6S NO. 04195500 : AT MODDVILLE, OHIO LOCATION W/CODE

25C.	O I	304.	330	333	340	346	350	369	385.	+0+	428.	441.	450.	446.	439.	437	376.	355.	320	305	295	298	316	325	242	369	299	418	-	**	473.	•	508	524.	547.	552.
NO N	H6/L	5.60	6.50	7.90	7.40	6.50	6.20	5.40	4.70	5.10	4.30	4.50	3.90	6.40																						
2018	H6/L																																			
RIDE	M6/L	•	•	•	•	35.00	0	0	26.00	_	_	-	-	_	$\overline{}$	~	_	-	-	_	_	•	•	?	•	•	•	•	?	ė	•	•	27.00	•	•	0
SOLIOS	7/9H	97.40	05.0	60.0	25.0	•	•	3.6	75.90	5.2	09-99	55.20	55.60	91.50	6	ó	438.00	ó	ó.	ó	ó	536.00	Ö	75.0	142.00	61.0	16.0	79.0	37.	9.0	05.0	9.0		3.2	:	7
900	H6/L																																			
TOTAL KJELD	H6/L		1.020				.329				1.210			1.380	1.680	• 28	2.170	•10	2.450	2.650	2.490	2.470	1.990	1.810	1.890	1.550	1.660	•650	1.450	1.290	1.610	1.350	1.420	• 098	1.020	1.160
ORG. NIT.	1/9H																																			
N-II	H6/L	.190	.180	.180	.180	•180	.180	.190	.200	.210	•230	.230	.230	•230	•100	.160	.310	•130	.170	.170	•220	.160	• 190	•190	• 180	.170	. 140	.130	•110	.160	.160	.110	.110	.100	.150	.240
00	H6/L	1.600	1.500	1.600	1.400	1.400	1.200	1.300	1.200	1.300	1.200	1.100	1.000	1.000	•	3.400	9	3.300	•20	3.200	3.400	3.700	3.900	4.200	4.400	4.600	.70	•90	ō	ē	8	4.900	4.800	70	4.500	4.600
PHOS.	H 6/L	.190	.190	.200	.200	.210	•220	.250	.260	.270	.270	.270	.290	.290	•100	.090	.120	069•	.080	.080	.080	089•	• 680	.090	.090	080.	.080	.087	.070	• 0 7 0	0.00	• C 6 C	.053	• 050	. 05 0	.050
TOTAL PHOS.	H6/L	904.	604.	. 448	43	39	35	*	.315	28	.282	.270	•290	30	36	.415	•676	.861	.817	.941	.915	.859	.711	•626	.534	.473	.398	.368	.333	.306	.277	.263	•245	.226	.224	•225
FLOU		3590.	3210.	3200.	3100.	2952	2678.	2566.	2207.	1914.	1771.	1641.	1830.	2249.	2534.	3009.	4272.	5302.	6108.	6992.	7718.	8110.	8138.	7774.	6979.	5922.	4875.	941	3380.	•	534	N	935	*	Ð	T
2 1	HR S.		020	650		450	920	650		450		650		450	010	640		0++	040		240	044	946		240	440	040	1640	2240	4	1040	1640	2240	0 • •	1040	1649
SAMPL ING Date	6	-	-	~	7		· ~	-	-	-	7	7	~	~	~	~	_	-	~	-	~	~	~	~	_	~	_	~	_	~	~	~	26	~	~	~
걸	E .																																9		76 2	

LAKE ERIE HASTEBATER MANAGEMENT STUDY - MATER GUALITY INFORMATION

STREAM : PORTAGE RIVER

2
E
ILLE
1000
> -
٠.
ODE
3/7
100
LOCAT
-

COND 25C. UMMO	521.	9 6 6	900	477	511.	+30.	561.	623.	637.	677.	702.	733	748.	642.	.999	.699	693.	709.	823	799.	769.	197	782.	789.	760.	772.	792.	177.	786.	786.	788.	810.	812.	758.	745.	812.
1808 86/L																																				
S102																								٠												
CHLO RIDE MG/L	29.00	27.00	2000	27.00	28.00	31.10	34.20	37.30	36.80	96.04	45.90	45.70	47.80	43.00	45.00	42.00	43.00	43.00	51.00	48.60	47.00	52.00	20.00	51.00	45.00	44.00	46.00	6.9	8.0	8.0	8.0	•	4:0	5.0	ė	•
SUSPEND SOLIDS MG/L	183.00	192.00	06.51	14.80	04.96	85.90	49.30	37.80	37.20	29.10	14.50	19.10	55.60	339.00	178.00	140.00	94.90	74.40	04.65	30.00	37.50	32.00	24.00	21.40	20.90		35.40	N	7.40	7.40	8	~	m	12.20	9.00	11.80
000 000																																				
TOTAL KJELD MG/L	1.660	• 19	3	• 66	• 45	:	1.460	. 18	1.210	• 29	.820	2.470	• 21																							
ORG. N11. N6/L																																				
NH-3	.150	. 150	. 160	060.	.120	. 070	.070	.110	.140	. 160	.150	.150	.210	• 0 30	.570	.160	.270	• 080	.272	• 020	• 050	.010	040	• 020	• 060	060•	. 070	.080	.030	.030	.020			.100	.080	• 050
NO-2 NO-3 H6/L	4.600	4.900	4.800	5.000	5-100	5.300	5.060	4.700	4.300	=	3.900	3.700	3.500	3.900	3.980	•	•	•	•	•		•		•	•	•	•	.65	555	2.550	.75	.40	.20	.20	2.000	.70
PHOS. PHOS.	0	- 650	• 050	• 020	.050	.070	.070	.080	.060	.070	.060	.060	.070	.050	.050	.070	.070	.070	.050	.060	.070	040	040	• 650	040.	0+0-	.070	.050	.07£	.070	.060	. 020	• 023	.030	.020	
TOTAL PHOS. MG/L	.360	.396	. 393	.327	.283									.533	.369	.311	.245	-246	.130	.129	.153	.135	.117	.120	.107	.123	.133	.123	.115	.115	.120	.097	.084	.092	.072	.057
FLOW	3110.	3450.	3520.	3330.	2928.	2502.	1462.	1048.	775.	549.	+19.	328.	298.	286.	272.	260.	246.	238.	228.	252.	235.	252.	252.	241.	241.	220.	188.	193.	241.	241.	238.	223.	200	195.	190.	165.
717E 2400 HRS.	0	1040	1640	2240	011	1100	1100	1100	1100	1100	1190	1100	500	1300	1900	100	700	1300	1300	1300	1300	100	1300	100	1300	1390	1300	1300	1360	1300	1300	1300	700	1300	1300	1300
	22			_							-			22	22	23	23						28												•	
SAMPLING SATE TR NO DY																																		•		•
MAN	22	16	76	16	2	7.	16	76	76	16	16	76	16	16	76	16	16	76	16	16	16	9,	16	16	16	16	76	76	16	16	16	16	16	16	16	16

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND 25C.	CHHO	747.	803.	748.	860.	841.	900	929	016.	776.	843	882	826	763.	908	853	822	824.	890	695	915.	821.	770	768	768	842	90%	868	916.	908	808	971.	946	943	914.	709.	693.
IRON	H6/L																																				
2102	H6/L																																				
CHLO	1/9H	46.00	51.00	20.00	2.0	0:0	25.00	58.00	57.00	57.00	62.00	62.00	90-09	58.00	54.00	58.00	57.00	63.00	26.00	65.00	9.00	57.00	49.00	47.00	•	52.00	-	_	_	_	~		2.0	2.0	2.0		•
SUSPEND SOL 10S	HG/L	. 7	•	11.00	9.10	11.60	6.20	7.10	9.00	5.70	9.4		14.80	9	1.7	Ø.	19.20	12.00	11.90	13.60	13.50	16.50	21.20	16.70	7.30	8.20	91.0	9.9	9.00	7.00	8.90		9.80	0.7	8.1	45.75	62.60
000	HG/L																																				
KJELD	N6/L																																				
ORG.	1/9H																																				
NH-N	H6/L	• 050	.030	• 020	• 050	.520	.230	• 240	•230	•220	.210	•150	•170	• 0 90	•100	.140	•190	• 080	.190	• 080	.180	.170	• 050	.030	• 060	• 050	• 020	.150	0 0 0	.180	.140	• 150	.030		• 080	.350	.380
NO-2	1/9H	1.700	1.700	•	1.500	•	1.500	1.600	1.600	1.500	1.300	1.300	• 900	1.000	.700	• 500	004.	1.100	-200	• 700	1.200	3.400	3.900	7.100	5.900	008.4	3.900	3.200	2.700	2.400	3.000	2.400	2.200	200	•	12.000	•
08710	H6/L	.010	.010				•036	• 030	• 030	.080	0+0	• 090	• 060	.040	.080	090•	.070	• 0 6 0	• 0 6 0	• 050	060•	.110	• 060	060•	• 010	• 000	• 020	040.	.030	040.	.100			.010	060.	060.	.100
TOTAL	#6/L	.078	•90•	• 068	. 047	•066	•014	•076	.058	• 095	.083	.103	.113	• 110	.198	.129	.117	.119	.125	.108	.116	.190	.197	•166	.129	-08-	• 077	. 045	.030	.049	.100	.037	.036	.028	060.	.245	.273
FLOW	ŝ	143.	132.	134.	35	130.	126.	123.	130.	121.	121.	141-	7	170.	55	165.	83	190.	167.	235.	740.	20	415.	277.	200	170.	5	7	143.	132.	118.	104.	93.	205.	223.	670.	549.
TIME	ERS.	m	m	1300	m	700	m	1300	10	n	m	*	•	700	3	1	1300	m	1300	m	m	~	F 7	1300	n	•	S,	n	m	700	Ð	1	1300	3	2	9	100
		40	•	10	11	22	~	13	•	'n	•	~	&	19	•	0	_	~	m	•	60	56	92	21	28	23	9	-	~	m						•	•
Į,	•	•	•					•																				S	S.	'n	S.	ĸ	s	S.	au	S.	6
MAS	YR HO DY	9,	92	16	91	9/	16	92	92	91	92	92	92	92	9/	9.	9	9.	9.	92	9.	9.	9	92	9.	9	96	92	91	16	9,	9.	92	92	16	91	94

109

LAKE ERIE HASTEVATER RANGERENT STUDY - WATER QUALITY INFORMATION

The control of the second of the control of the second of

MAJOR RIVER BASIN : PORTAGE RIVER

: PORTAGE RIVER STREAM

_
9
Ŧ
_
ŭ
3771
3
0
8
3
1
••
90
8
Š
5
ATION
3
ŏ
_

US68 NO. 04195500

COND 25C. UNNO	673.	749.	749.	760.	779.	819.	861.	851.	961.	936.	969.	759.	614.	651.	.969	6699	712.	745.	762.	784.	953.	958.	832.	. 150	864.	941.	870.	971.	999.	949.	987.	945.	996	907.	586.	.699
180k																																				
\$102 #6/L															•																					
CHLO RIDE NG/L	49.80	51.00	51.00	51.00	54.00	59.00	69.00	90-99	69.00	15.00	01.00	55.16	39.00	39.00	39.00	37.00	38.00	42.00	00.44	49.00	76.00	76.00	57.00	62.00	63.00	76.00	63.00	9.0	76.00	34.00	80.00	76.00	77.00	71.00	00*04.	41.00
SUSPEND SOLIDS MG/L	106.00	41.30	32.50	25.30	27.10							61.90	295.00	579.00	429.00	280.00	55.50	48.00	50.50	33.40	45.10	37.70	40.90	43.30	43.40	39.90	46.30	50.90	50.90	94.30	•	•	36.00	ė	419.00	9
C00																																				
TOTAL KJELD MG/L																																				
ORG. NIT. PG/L									`		_,																									
NH-3	.380	.340	.330	.410	.160	.010	.070	• 050	• 090	040	• 030	• 070	.080	.110	• 090	• 090	• 090	.170	.120	.080	. 080	•110	.160	• 023	.240	• 092	.220	.110	• 170	.250	000	040	• 020	• 080	• 010	• 050
NO-2 NO-3 H6/L	12.100	11.100	11.000	9.900	8.900	9.900	5.500	4.400	3.800	3.200	2.800	3.300	9.100	13.700	16.800	16.900	14.700	13.800	10.900	8.300	2.000	4.100	4.800	3.900	3.400	2.800	2.500	2.100	1.800	2-100	2.000	1.900	1.800	2.500	12.300	15.000
ORTHO PHOS. MG/L	.170	.180	.160	.140	.150	.100	.126	.110	.110	• 080	• 080	.150	.120	.120	.140	.140	.146	.120	.110	.110	.050	.060	.141	.102	080	• 090	• 0 8 4	•90•	.057	.040	.140	.120	.140	.120	.100	.100
TOTAL PHOS. MG/L	.422	.345	.361	.227	.196	.140	.133	.134	.139	.132	.144	.259	.562	.748	.688	.501	.230	.215	.209	.212	.169	.166	.266	.223	.228	.181	.224	.230	.228	.224	.200	.223	.222	.264	.582	.313
FLOW	466.	401.	354.	315.	283.	193.	161.	128.	109.	102.	161.	387.	731.	1024.	850.	716.	360.	203.	147.	116.	93.	82.	. 80.	71.	70.	59.	51.	50.	• 9 •	54.	52.	51.	59.	223.	493.	334.
7176 2400 885.	700	1300	1900	100	700	1300	1300	1300	1300	1300	1360	1300	1960	100	100	1300	1300	1300	1300	1300	1300	709	1300	1300	1300	1300	1300	1300	1300	700	1300	1900	100	700	1369	1961
186 07	•	•	•	70	70	1	12	13	=	15	76	17	11	2	18	7.0	19	() ()	2	22	23	24	2	22	5 6	27	28	29	30	3	31	31	_	-	-	~
SAMPLING Date Yr no dy																							76 5													9 91

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OMIO

COND 25C.	CHEO	645.	644.	690	750.	849.	867.	879.	989.	901.	890	903	817	760.	2	815.	841	739.	775.	847	828	762.	773	822.	619	772.	787.	826.	807	772.	760.	803.	800	821	797	836.	832.
NORI	N6/L																																				
2018	1/9H																																				
CHLO	N6/L	37.80								61.00	65.00	68.00	63.00	63.00	61.00	66.00	70.00	63.00	67.00	76.00	72.00	69.00	69.00	73.00	71.00	70.00	71.00	73.00	69.00	70.00	70-00	72.00	71.00	72.00	72.00	75.00	74.00
SUSPEND	1/9H	•	80.20	53.40	60.90	55.80	68.20	42.70	40.20	36.20	46.80	•	ņ	•	36.20	6	•	30.8	•	57.60	•	63.90	•	26.80		•	7	e.	~		42.20	7	60.70	7	•	ŵ	~
000	1/94																																				
TOTAL	#6/L																																				
086. NT.	H6/L																																				
E-HZ	H6/L	.020	• 020	• 010	• 020	.010	• 020	• 020	• 020	. 140	.120	• 080	.030	.140	.100	• 200	040.	. 720	•670	004.	.530	.850	•810	.550	1.000	.700	.870	1.070	.910	• 720	.520	. 800	.510	.330	.240	.400	• 220
NO-2	179H	15.700	13.700	13.500	13.400	12.700	12.100	12.200	10.300	7.500	5.000	4.000	4-400	3.600	3.900	3.000	3.500	1.700	1.500	2-100	1.700	1.600		1.200	040	.040	•020	• 020	.010	.010	.010	.010	•010	.010	•010	5	• 010
DECTHO	H6/L		090	090	090	090		080	080	080													-140	.170	.220	.130	•156	.220	-180	.140	.110	.190	•14€	•100	•07€	-150	.110
TOTAL	179H	.258	.190	.172	.170	.163	.162	.176	.186	.196	.210	•202	.213	.218	-209	.245	.271	.423	.314	•303	.350	.307	.307	.443	.295	.396	.520	.467	.394	.281	.562	•429	.307	164.	.427	.654	.354
FLOW	6 73	266.	228.	205.	225.	223.	. 198.	170.	106.	17.	47.	55.	50.	50.	48.	46.	46.	• 8 •	47.	43.	43.	;	:	42.	42.	42.	42.	41.	38.	37.	37.	35.	37.	35.	23.	33.	32.
7 1 ME	MRS.	1 00	700	1300	1900	100	700	1300	1300	1300	1300	700	1900	160	700	1300	1900	100	700	1300	1900	100	700	1300	1900	100	700	1300	1900	100	700	1900		709	1309		100
	70																		•	•	•	0.7	61	10	10	11	11	11	11	12	12	12	13	13	13	-	: =
AMPL ING	•	•	•	•	•	•	•	•	•	•	•	•	•	9	•	•	9	•	9	9	9										9	9	9	9	•	•	•
SAM	YR B	76	7	2	76	7	16	76	12	92	16	16	92	76	92	16	16	16	91	92	16	16	92	92	16	16	91	16	16	9,	76	92	16	92	92	4	16

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER DUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

: PORTAGE RIVER STREAM : AT MOODVILLE, BHID LOCATION W/CODE

COND	CER	.855	857.	848		923	935	706.	•	404	756	196	900	100	916	914	900	927	964	863.	981	825	801	899	705	126	424	925	887.	890.	861.	918.	881.	914.	873.	893.	869.
IRON	7/9H																																				
S102	1/9H																																				
CHLO	H6/L	73.00	70-00	70.00	00-67	19.00	80.08	19.00	63.00	81.00	96.00	87.00	86.00	91.00	93.00	90.06	83.00	87.00	82.00	82.00	82.00	76.00	75.00	81.00	89.00	91.00	92.00	92.00	96.00	3.0	81.00	83.00	78.00	81.03	19.00	79.00	80.00
SUSPEND	80C103	72.60	126.00	46.30	63.90	26.90	41.50	46.50	74.00	63.20	53.20	00.60	04.00	68.70	57.90	85.50	08-89	26.00	66.20	101.00	00.96	61.30	ç	70.00	92.40	46.90	94.90	63.10	70.80	56.90	6.5	40.90	79.10	*	•	67.30	•
000	HG/L																																				
TOTAL	RJELD MG/L																																				
086	M6/L																																				
N-IN	MG/L	.070	• 060	.070	040	.110	.150	.140	.110	. 040	040	. 020	.100	.030	.240	.110	.140	.160	.210	.240	.170	.080	.040	.030	• 0 60	.160	.120	.180	.360	.240	.240	.230	.190	. 120	. 100	.140	• 050
NO-2	MG/L	.010	3.100	2.300	1.700	1.100	1.100	1.100	1.000	2.000	•89	1.010	.820	.980	.370	.670	.520	.590	.060	•610	.640	-480	.190	1.300	1.100	.890	. 700	.460	•200	.190	.110	.220	0 0 0	6	.040	.110	-
ORTHO	PHOS.	• 100	.240	.220	.240	.230	.236	•250	.220	.150	.220	.230	-200	.240	-200	.260	.263	.220	.180	•200	.150	.130	.100	-290	.260	.250	.240	.230	.240	.220	.210	.200	.210	.180	. 140	.193	.140
TOTAL	PHOS.	.386	.630	.400	.441	.369	.376	.412	.408	.395	. 388	.414	104.	.412	.424	.479	.390	.367	.424	.505	.484	.423	.415	.457	.457	.399	.493	. 450	.479	.461	. 483	.377	.484	. 653	.607	.519	.507
FLOY	CFS	31.	29.	12.	21.	22.	22.	26.	38.	42.	27.	27.	12.	22.	21.	12.	30.	30.	56.	54.	46.	39.	38.	32.	27.	24.	21.	20.	20.	21.	12.	12.	21.	21.	24.	18.	15.
1116	24 CB HR S.	700	1300	1300	1300	1360	1300	1900	1300	700	100	1300	100	1300	100	1300	100	1300	100	100	1360	100	700	1300	100	1300	100	1300	100	1360	100	1300	100	1300	100	1300	100
941	DATE YR MG DY	=	=	15	16	11	18	13																													· •0
7	7 £	4	•						_	_	_		-	_																							_
SA	4 ×	76	16	16	76	16	16	7	2	76	76	76	16	76	76	16	76	76	76	76	76	16	76	76	22	76	16	16	16	76	16	76	76	16	76	16	16

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND 250.	886	707.	910.	932.	929.	935.	923.	921.	960.	1052.	985	945.	839.	860.	625.	655.	782.	855	729.	816.	784.	834.	658	961.	867.	962.	988.	947.	945.	1041.	955	956.	693.	861.	653.
IRON HG/L																																			
\$102 MG/L																																			
CHLO RIDE MG/L	82.00		81.00	83.00	96.00	86.00	84.00	82.00	83.00	89.00	95.00	88.00	74.00	73.00	73.00	77.00	71.00	75.00	74.00	77.00	19.00	80.00	81.00	83.00	86.00	92.00	95.00	94.00	94.00	91.00	87.00	88.00	87.00	٠	84.00
SUSPEND SOLIDS MG/L	93.70	04.10	49.70	62.60	48.10	112.00	41.30	86.00	59.70	50.30	28.40	83.80	72.60	80.90	74.50	58.20	91.90	17.60	76.40	82.70	96.30	76.50	123.00	47.10	279.00	199.00	177.00	142.00	170.00	160.00	166.00	129.00	109.00	76.20	115.00
7/9H 000																																			
TOTAL KJELD MG/L																																			
ORG. NIT. MG/L																											•								
NH-3	.030	0 6		030	.160	.150	.250	•220	.290	.150	.360	.270	.200	.110	.040	. 180	• 130	.190	1.050	.680	1.250	• 420	044.	.270	• 1 70	.190	. 090	.040	.070	044.	.420	044.	• 390	.330	.390
NO-2 NO-3 NG/L	ţ	9	4	700	00++	009.	.100	004.	.100	009-	-200	1.000	1.300	1.300	1.000	1.670	1.600	1.520	.580	.530	.110	060*	• 020	.080	.070	.020	• 030			.010	.010	.010	.030	.010	.010
ORTHO PHOS. NG/L	.150	.310	0.5	0450	.360	.390	.363	.380	-260	.240	-110	.190	.190	.160	-100	.270	.230	•260	• 080	.140	.190	-210	-240	.340	•290	.230	.250	.180	.190	•570	.320	.320	.370	• 38	.370
TOTAL PHOS. MG/L	0.540	-477		5.46	.587	.700	949.	.716	•600	.428	.449	.531	.512	.467	-467	.306	.349	.318	.173	-253	.270	.250	.361	.639	.519	.397	.403	.305	.329	1.049	80	.703	.699	-607	• 706
FLOW	14.	• :			•	10.	10.	51.	:	35.	23.	30.	24.	20.	19.	15.	÷	10.	9.	7.	;	•		:	9.	12.	19.	15.	14.	11.		10.			10.
717E 2400 HRS.	700	1960		-	100	1300	100	1300	100	1300	100	11	1300	=	7 00	1306	100	1300	100	1300	100	1300	100	1300	100	100	1390	100	700	1300	1300	100	1 60	1300	100
2 A	ĸ	1 0	n 4	9 4	۰.	-	•	•	•	•	10	11	11	12	12												13	19	19	19	20	50	21	21	22
SAMPLING Date Yr ho dy	7	~ (- 1	- 1	- 1	-	~	-	~	7	-	_	•	~	~	_	_	7	-	7	-	_	_	7	1	_	-	7	-	_	-	~	-	~	-
SAP TAD	16	92	9,	2 7	2 2	76	16	16	16	16	16	16	76	76	2	16	16	16	16	16	16	16	16	16	16	76	92	16	16	16	16	16	76	16	16

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, ONTO

COND 25C.	CAHO	885.	955.	841.	656.	710.	686.		692.	610.	673.	650.	644.	641.	658.	724.	712.	791.	706.	789.	724.	835.	737.	786.	1045.	982.	991.	954	954	926	958.	645.	964.	910.	871.	674.	513.
RON	H6/L																				1.50	90	•60	9													
S102	7/9K																																				
CHLO	H6/L	85.00	86.80	91.00	82.00	56.00	57.00	51.00	51.00	48.00	51.00	50-00	49.00	51.00	57.00	29.00	65.00	61.00	47.00	46.00	74.00	74.00	80.00	80.00	99.00	101-00	99.00	98.00	98.00	100.00	100.00		96.00		99.00	74.00	0
SUSPEND SOLIOS	7/98	91.40	103.00	56.10	120.00	147.00	155.00	99.30	121.00	98.20	92.70	65.50	67.30	21.50	15.50	45.20	14.30	24.70	28.90	34.50	70.30	39.70	54.00	39.50	64.10	64.60	29.80	40.60	52.20	47.90	•	•6	\sim	39.00	1.2	ů	7.0
900	H6/L																																				
TOTAL	1/9H																																				
ORG. NIT.	H6/L																																				
17 T	H6.1.	.200	040	. 050	.250	.170	.130	090•	090•	. 060	.010	• 020	.010	.080	.100	.310	.210	.270	.220	.140	.100	• 020	.020	.010	0.00	040	.080	.110	.100	.170	.190	.300	•170	.350	.290	.240	.160
NO-2 NO-3	N 6/L	. 010	. 020	.050	.450	.460	. 430	044.	.470	. 560	4.100	4.100	4.200	3.700	3-100	1.900	1.900	1.500	1.500	1.600	1.600	1.000	1.100	.500	006.	1.100	.900	.800	000.	• 600	.500	.500	004.	-200	1.100	1.800	2.700
ORTHO PHOS.	H6/L	.333	.260	.220	.220	.260	.240	.210	.190	.220	.190	.270	.210	.170	.170	.090	.130	.050	.110		090*			340.	.160	.270	.230	.230	.230	.210	•230	-200	.180	-180	.240	330	.230
TOTAL PHOS.	H6/L	.626	•619	.483	.523	.571	.501	.428	.419	.424	.385	.345	.418	.257	.250	.319	-290	.279	.274	.297	.347	.288	.282	.305	.275	.379	.257	.274	.317	.352	.326	.376	•289	.332	. + + 3	.451	.448
FLOV		16.	41.	+6.	178.	228.	220.	161.	126.	104.	74.	. • 22	43.	37.	35.	39.	30.	26.	25.	12.	21.	20.	18.	20.	18.	15.	14.	;	11.	11.	11.	27.	27.	29.	387.	470.	391.
71M 2100		1306	=======================================	1300	100	100	1300	100	100	1300	100	1300	700	1900	100	1300	100	1300	160	1300	200	1300	100	700	1360	100	1300	100	1300	100	1300	100	1369	3 00	790	1300	1900
SAMPL ING DATE	R NO 0Y	7 22	7 23	7 23	7 24	7 25	7 25	7 26	7 26	7 26	7 27	7 27	7 28	7 28	7 29	7 29	7 39	7 30	7 31	7 31	~ &	-	~ *	~	6	8 10	9 10	8 11	8 11	8 12	8 12	8 13	8 13	6 14	8 14	8 24	: =

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: AT WOODVILLE, OHIO LOCATION W/CODE

: PORTAGE RIVER

STREAM

COND 25C.	CMMO	496.	543.	585.	640.	695.	700	670.	725.	703.	741.	719.	693.	619.	689.	750.	759.	764.	785.	812.	802.	807.	817.	869.	855.	876.	897.	974.	927.	981.	017	1004.	981.	976.	984.	949.	956
IRON	1/9H																													~	ç	ŝ	٠,	ŝ	2.80	~	3.20
S102	H6/L																																				
CHLO RIDE	H6/L	9			0					60.00		_		•	_		0	_	•	•	83-00	9	•	•	•	0	9	•	•	9	ŭ	7	8	*	Š	9	-
SUSPEND SOLIDS	N6 /L	•	6		7	99.00	•	•	•	64.40	ç	•	۳.	50.3	•	~	ŝ	70.6	56.0	31.0	•	93.0	ů	•	•		۳.	5	7	6	8	7	ç	÷	41.0	10.0	•
000	H6/L																																				
TOTAL KJELD	H6/L																																				
086. N1T.	1/9H																																				
NH-3	1/9W	.110	.140	.130	، 090	060.	.110	.030	040.	• 0 7 0	.110	• 360	• 330	.190	.100	.220	.110	.150	.660	• 500	.930	•450	.360	•280	• 360	.240	.210	.080	.030	• 065	.158	•121	•175	• 228	.158	• 0 36	.048
20-12 20-13	1/9H	•	2.800	2.600	2.500	2.300	.30	.10	•60	2.100	.70	• 10	• 300	•200	.200	.800	.700	• 600	•200	•200	•100	• 200	.100	.100	•100	• 1 00	• 100	•200		.410	.580	.780	.780	•380	.190	.030	.010
PHOS.	H6/L	.210	.220	.190	.190	.170	.170	.220	.210	•190	.190	.160	.080	.100	.140	.270	.270	•280	.320	.340	.380	•280	.340	.320	•330	.300	• 250	• 250	.170	.195	.188	• 193	.174	.123	• 082	. 041	.064
TOTAL PHOS.	1/9H	.517	• 509	.388	.272	.263	37	.312	•296	•296	.373	•362				.633	.461	•425	.673	58	1.480	7.3	• 542	*	20	664.	.518	26	+94.	.282	25	.305	32	36	•459	.501	99
FLOV	;	•	223.	10	=	0	0	-	ø	29.	0	15.	_	•	11.	0	0	0	9	.6	9	0	0	11.	0	10.	0	_	~	•	ø	0	8	8 0	7.	•9	7.
TIME 2400	Š	100	100	•	1900	-	700	m	•	1300	m	3	*	M	700	1300	100	1300	~	1300	~	1300	~	1300	_	1300	~	1300	~	ĸ	•		~	1	1339	σ	-
Z Z	Ď	15	15	15	15	16	16	16	11	18	19	23	21	22	23	23	24	24	52	22	56	56	27	27	28	28	53	53	() ()	K)	3.1		7	m	•	•	s
IPL ING	2	40	•	€0	•	•	•	∞	6 0	•	•	8	æ	æ	€0	∞	∞	80	æ	6 0	3 0	Œ	€0	6 0	80	€0	€0	80	œ	യ	6 0	σ,	6	6	6	6	σ
SAM	· œ	92	9	9	9	9	9	9	9	9.	92	92	92	16	9.	9	9	9	9	9	٠	9	9	9	9	9	9	9	9	9	9	9/	9/	9	9	9.	9/

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND	UNNO	496	543.	585.	640.	695.	700.	670	725.	703.	741.	719.	693.	619.	689.	750.	759.	764.	785.	812.	802.	807.	817.	869.	855.	876.	897.	974.	927.	981.	1017.	1004.	981.	976.	984.	949.	956
IRON	1/9H																													1.20	1.20	1.50	1.70	1.50	2.80	2.20	3.20
2018	1/9H																																				
CHLO	N6/L	41.00	46.00	50.00	55.00	29.00	59.00	57.00	62.00	60.00	64.00	64.00	70.00	74.00	79.00	81.00	83.00	84.00	85.00	85.00	83.00	83.00	84.00	86.00	90.00	93.00	95.00	92.00	97.00	92.60	95.50	98.30	95.80	93.40	94.20	104.00	107.00
SUSPEND	301103 M6/L	244.00	20.90	91.80	71.10	99.00	123.00	53.00	04.69	64.40	47.50	48.00	48.30	50.30	163.00	78.70	90.50	10.60	156.00	31	568.00	193.00	86.50	55.60	78.90	62.20	73.30	29.30	71.30	29.90	32.80	48.10	52.90	65.50		•	74.0
000	H6/L																																				
TOTAL	H6/L																																				
ORG.	1/94																																				
NH-3	H6/L	.110	.140	.130	060•	060.	.110	.030	040.	.070	•110	.360	.330	•190	.100	.220	.110	• 150	•660	.500	.930	.450	.360	•280	•360	.240	.210	.080	.030	• 065	• 158	.121	.175	.228	• 158	• 0 36	.048
NO-2	H6/L	2.900	2.800	2.600	2.500	2.300	2.300	3.100	2.600	2.100	1.700	1.100	.300	•200	.200	.800	.700	•600	•200	•200	.100	• 200	•100	•100	•100	• 1 00	•100	•200		.410	.580	. 780	• 780	.380	.190	.039	.010
ORTHO	#6/L	.210	.220	.190	.190	.170	.170	.220	.210	.190	.190	.160	• 080	100	- 140	.270	.270	•280	.320	.340	• 380	.280	• 340	.320	•330	• 300	• 250	• 250	.170	.195	.188	.193	.174	.123	.082	. 041	• 90 •
TOTAL	H6/L	-	0	8	~	9	37	-	.296	•	~	•				m	•	~	~	58	•	73	5	C	20	•	-	56	•	80	10	0	C	•360	5	0	•
FLOV	2	295.	223.	170.	*	109.	9	.11.	46.	29.	20.	15.	11.	÷	11.	10.	10.	10.	9.	•	9.	10.	10.	11.	10.	10.	10.	11.	11.	14.	16.	10.	80	•	7.	•	7.
TIME	HRS.	100	100	*	1900	-	760	*	1300	•	*	*	*	*	100	1300	100	1300	-	1300	~	1300	-	1300	100	1339	1 20	1300	100	ĸ	r	1	3	1399	m	9	193
PL ING	4	15	15	s	S	9	16	9		•	6	6	_	N	23	•	24	24	25	25	9	9	_	27	28	7 8	53	53	3	N	3	-4	~	m	•	•	S
E :	-	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	6 9	9	9	9
s c	× 5	ř	~	ř	7	ř	~	Ē	~	~	^	~	~	~	_	~	ř	~	Ē	_	Ē	~	ř	ř	Ē	Ē	~	~	~	~	ř	_	~	7	7	~	7

LAKE ERIE UASTEVATER MANAGENENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

SIREAM : PORTAGE RIVER

0	
Ξ	
• OHIO	
•	
DOVILLE	
Ξ	
5	
8	
5 3	
_	
•	
- -	
۶	
ដ	
LON E/CODE	
z	
2	
5	
200	

COND 25C.	994.	1001	962.	970.	1009.	1002	983.	976	0000	• • • • • • • • • • • • • • • • • • • •	986	986	1010	1035	1006.	1007	1009.	1024.	8 50.	916.	936.	839	872.	923.	920.	920.	929.	977.	997.	978.	971.	981.	1000	824.	841.	960.
IRON NG/L	3.70	3.50	2.90	4.60	10.60																															
S102																																				
CHLO RIDE MG/L	101.00	99.70	110.00	110.00	101.00	101-00	110.00	00-111	00.00		113.00	112-00	112-00	104.00	113.00	113.00	12.0	106.00	92.50	93.70	92.80	97.00	96.10	92.90	94.50	96.00	101-00	107.00	102.00	109.00	107-00	6.0	104.00	78.60	3.4	83.30
SUSPEND SOLTDS MG/L	181.00	173.00	156.00	220.00	335.00	143.00	172.00	228-06	189.00	146.00	120-00	209-00	217.00	214.00	181.00	248-00	197.00	210.00	322.00	154.00	316.00	170.00	194.00	255.00	164.00	193.00	196.00	225.00	188.00	153.00	179.00	163.00	199.00	462.00	589.00	152.00
COD																																				
TOTAL KJELD MG/L																																				
ORG. NIT.																																				
E-HN	1 85	.038	. 025	. 078	• 036	. 553	.487	. 583	. 711	. 592	. 795	.915	.807	. 763	. 718	.713	.744	.707	.872	.508	.749	.377	.348	. 534	.364	.373	. 356	.276	.228	.131	.028	.032	.075	.490	.200	• 0 7 0
NO-2 NO-3		090	.020	.010	.010	.190	.130	040	060	.170	0 0 0	060	.180	.230	. 070	•030	0+0	.070	.130	.190	.180	.130	0+0•	0+0	•070	-080	.110	.650	1.120	1.940	2.150	2.190	2.160	37	1.630	.55
OR THO PHOS.	200	-040	.041	.054	. 053	.225	.232	.217	•246	.208	.210	• 260	•261	.273	.228	•228	.259	.241	.270	.191	.250	.194	.171	•229	.178	.167	.147	121	.117	160.	.098	6 40 •	• 065	.254	.300	+222
TOTAL PHOS.	3.50	658	•656	.744	.864	•603	• 166	.831	.711	. 605	•119	1.080	.894	.794	.756	.919	.883	.840	1.150	.671	1.010	.588	.673	.915	•605	.757	.778	.747	•646	.593	.612	.610	.719	1.700	1.740	.631
FLOW	•	: .:	•			•	•	;	•	•	•	ů	;	÷	;	;	;	;	22.	.6	•	10.	11.	21.	29.	35.	37.	32.	27.	12.	20.	19.	18.	47.	41.	35.
7 1 ME 24 08			906	100	700	300	900	7 00	100	300	900	100	100	1300	1900	100	700	300	006	100	700	1300	1900	100	100	300	1900	100	700	1300	1903	100	709	1300	1 900	100
9 2	5		1 15		9		6 1	-		7		•	₩				6		6	6	10	0	6	-	11	_	_	~	12	~	~	~	13	0	0	
SAMPL ING DATE			•	•	0	•	6	•	•	•	D	•	•	•	•	6	6	•	•	•	6	6	•	•	•	•	•	•	•	•	•	6	•	•	•	•
SAL	K ,	2 2	76	16	16	16	16	16	16	16	16	16	16	76	16	76	16	16	76	76	76	16	16	16	16	76	16	16	16	16	76	16	76	76	16	76

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND 25C. UMNO	873.	867.	720.	842	857	882.	869	913.	907	906	909	935	937	918.	818.	884.	892.	907.	960	918.	648	649	776.	903	928.	1019.	1040	1013.	1052.	1051.	1002.	979.	971.	879.	1033.	1075.
IRON HG/L																																				
\$102 H6/L																																				
CHLO RIDE MG/L	81.50	82.80	73.40	76.60	18.90	77.60	83.50	78.20	81.70	81.60	84.90	82.50	82.50	82.40	86.50	80.50	77.20	77.90	79.60	76.90	76.10	85.60	85.60	62.90	85.50	86.00	82.00	88.90	86.50	•	•	17.90	78.90	71.90	72.90	82.70
SUSPEND SOLIDS MG/L	158.00	110.00	129.00	97.20	84.60	137.00	61.20	71.40	06.96	71.60	67.20	77.10	284.00	43.10	09.69	59.50	24.60	43.30	54.10	51.30	48.80	24.00	72.90	26.80	31.00	29.00	37.30	25.70	30.50	27.80	38.00	23.70	22.00	32.70	10.00	21.90
C00																																				
TOTAL KJELD MG/L																																				
ORG. NIT. HG/L																																				
NH-3 MG/L	.089	.060	• 068	**0.	••0•	0.00	• 066	.110	. 048	.043	.038	.016	• 026	• 049	• 063	• 025	•024	• 028	.051	• 006	• 035	. 081	. 055	.051	.081	.078	.038	.014	.019	• 026	.007	.103	• 099	.073	.025	• 075
NO-2 NO-3 #6/L	1.540	1.230	1.170	1.230	1.200	1.500	1.210	1.450	1.550	1.790	1.490	1.390	1.190	1.340	1.090	068*	.790	.900	.970	1.020	1.120	1.360	1.600	1.370	2 - 150	1.570	1.270	1.780	1.430	.980	1.200	1.320	1.070	• 860	.710	2.000
ORTHO PHOS. MG/L	.172	.181	.148	.154	.152	.135	• 188	•165	.175	•150	.164	. 145	.165	.138	.194	.130	•121	.101	.111	• 075	• 086	•019	.114	.147	•194	-205	•162	.161	.149	.145	.178	.185	.177	.138	.065	•166
TOTAL PHOS. MG/L	0 40	•416	.382	.345	0000	.430	.331	.344	.375	.324	.341	.336	.323	.278	.391	.291	-250	.230	.308	• 262	.223	.221	.278	.231	.252	.255	.233	.228	.190	.193	.234	.264	-244	-242	.103	.236
FLOW	32.	32.	23.	30.	26.	25.	24.	24.	12.	21.	19.	19.	19.	19.	18.	18.	16.	16.	15.	21.	22.	22.	22.	12.	50.	•••	32.	26.	12.	21.	19.	19.	16.	29.	30.	70.
11ME 2400 HRS.		1300	1900	100	700	1300	1900	100	700	1300	1900	100	700	1300	1900	100	700	1300	1900	1300	1900	100	700	1300	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1300
SAMPLING Date Yr mo dy	76 9 21	•	•	•	•	•	•	•		0	•	•	6	•	6	•	•	6	•	•	•	•	•	•	•	•	•	10	0	10	C	~	10	10	2	76 10 8

117

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

IRON COND 25C. NG/L UMMO	1078. 1170. 1260.			1117 1244 1292 1393	11980 11980 11980 11990 11900	1276. 1178. 1178. 1126. 1126. 1163.
S102 1	9599	668999	85555			2 - 45 1 - 45 2 - 47 1 - 89 2 - 45 8 - 68
CHLO RIOE NG/L	9000	89.10 89.10 89.10 90.50	92.30 68.00 93.00 92.10	90.20 90.00 91.70 113.00	11126.000	1108.00 108.00 108.00 1108.00
SUSPEND SOLIDS MG/L	46.10	110.30 119.70 119.70 119.70 7.70	11 11 11 11 11 11 11 11 11 11 11 11 11	11	1 M M M M 4 M	00 00 00 00 00 00 00 00 00 00 00 00 00
C00						
TOTAL KJELD MG/L						
ORG. NIT. MG/L						
NH-3	.035				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	. 050 . 049 . 2111 . 209 . 013
NO-2 NO-3		1.200 1.200 1.200 1.100 740		1.080	20000000000000000000000000000000000000	1 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0R1H0 PHOS. MG/L	.107	.120 .158 .157 .152	.131 .103 .117 .084	151.		
TOTAL Phos. MG/L	. 146 . 072 . 078		712111	20000		
FLOW	32.	コラトトト		• •• •• •• •		2222
6 TIME 2400 Y MRS.	8077					8 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000 1 1000
SAMPLING Date Yr no dy	0000		00000		1100000	76 11 76 11 76 11 76 11 76 11 76 11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

US6S NO. 04195500 : AT WOODVILLE, OHIO LOCATION W/CODE

COND 25C.	CARO	1142.	1062.	1026.	1062.	025	6	1134.	1150.	1182.	1179.	1187.	1215	1243.	1205.	1175.	1120.	1146.	1204	1185	1152.	1139.	1126.	1131.	1261.	1348	1417	1444	1572.	1481.	1453.	1456.	1432	1452.	1460.	N	1382.
IRON	H6/L																									•1•	.13	.13	•1•	• 55	.12	• 1 •					
\$102	H6/L	2.06	1.23	1.21	1.11	1.29	• 46	• 59									1.38	2.71	1.93	. 78	2.19	1.17	. 78		2.66	5.15	•	3.16	90-9	4.61	4.74	4.15	1.33	• 89	1.64	1 • 39	1.64
CHLO	N6/L	110.00	106-00	102.00	103.00	104.00	109.00	112.00	107.00	109.00	112.00	115.00	118.00	120-00	113.00	108.00	105.00	109.00	114.00	113.00	117.00	114.00	110.00	109.00	109.00	114.00	118.00	121.00	134.00	126.00	119.00	117.00	•	24.0	121.00		•
SUSPEND	H6/L	-20	_	8	-80	99	9								3.30	3.20	6.70	14.60	10.20	8 .90	9.10	7.60	8.60	9.60	3.90	4.30	08.4	5.70	•	•		ů	7.40	7	4.80	06.4	
000	H6/L					٠																															
TOTAL KAFI D	HG/L								•																.80	1.800	•98	1.920		1.933	1.870	2.063	3.160	3.900	4.093	.82	5.280
ORG.	H6/L																																				
NH-3	H6/L	.037	.030	.077	• 020	• 066	• 078	• 062	• 046	• 0 7 9	.158	• 198	.174	.212	•208	.176	.112	.217	• 256	.307	.291	.432	.531	.539	• 456	.507	• 544	.388	•556	.579	.582	.686	1.350	•	2.000		2.000
2 - 0 N	H6/L	.63	2.590	.91	2.970	3.850	4.360	4.700	4.330	4.460	4.550	5	4.340	4.380	4.400	4.570	4.120	4.690	4.920	4.690	4.330	3.880	3.750	3.990	.91	•65	4.690	.17	3.980	3.370	3.470	3.930	3.423	.93	~	.11	2.830
ORTHO	M6/L	•238	.260	.294	.277	046.	.373	.357	.358	.354	.343	• 329	.312	.326	.342	.308	.313	.314	.302	.303	.253	•256	.298	.285	•289	.315	.305	.243	.197	.271	-48€	•564	.772	.764	.450	•410	.508
TOTAL	H6/L	.297	.321	.352	.357	. 445	9	-	4	4	4	42	41	-	-	9	38	.392	.383	35	.329	35	• 396	.367	.387	12	.398	S.	1.110	.41	9	70	.931	8	5	5	3
FLOW	S.	•	12.	N	M		N	0	•	13.	•		0	-	-		0	~	0	•	0	N	C	30.	~	N	•	m	1	~	12.	-	-	-	-	-	-
=	Y HRS.	-			2 13				5 23	6 13	7 13	8	9 13	0 13	1 13	2	2	3	13	5 13	6 13	7	8	6	9 19	6	1 13		13		-	-	19		-	-	0
SAMPL ING	DATE YR MO DY	=	11 1	1	11	11	11	11:	11 1	11 1	111	11 1	11 1	11 2	11 2	11 2	11 2	11 2	11 2	11 2	11 2	11 2	11 2	11 2	11 2	11 3	12	12	12	12	2	12	12	12	12	12	76 12 1

119

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND 25C.	OH C	1435.	1486.	1644.	1670.	1636.	1545.	1551.	1553.	1492.	1554.	1364.	1288.	1339.	1480.	1406.	1400-	1410.	1434	1502-	1482.	1475	1450.	1429.	1435.	1443.	121	1441.	1442.	1490.	481	1486.	1486.	1430.	1434.	1446.	1370.
I OR	H6/L				•14	.15	98.	.16	-22	.12	.13	•2•																									
S102	1/94	1.83	1.76	1.70	1.88	2.03		1.58	1.59	3.10	1.24	1.14	3.05	1.63	2.72	3.26	2.97	2.38	2.39	3.34	2.38	2.38	2.73	2.57	3.39	4.08	4.98	4.07									7.20
CHLO R IDE	H6/L	115.00	123.00	139.00	126.00	133.00	126.00	125.00	128.00	111.00	131.00	124.00	121.00	120.00	124.00	120.00	118.00	120.00	122.00	125.00	124.00	124.00	120.00	117.00	117.00	117.00	114.00	114.00	117.00	121.00	120.00	120.00	120.00	114.00	116.00	115.00	116.00
SUSPEND SOL 10S	N6/L	.50	.50	.60	•	.98	:00	2.50	.10	•	===	.7	• 10	• 90	.30	• 20	.30	•	•60	•	5	5.10	.10	99	•	8.70	.80	9	.30	.10	.70	99.	9	9.	.70	.10	9.10
000	H6/L	•																																			
TOTAL KJELD	H6/L	.60	.15	.58	5.300	.40	.70	5.290	.15	.19	9	S	58	2	4.690	18	.17	4.970	4.680	•	88		5.050	.97	. 68	.13	=	0									
ORG. NIT.	H6/L																																				
N-TN	H6/L	2.000	0	8	8	8	8	2.000	9	.628	2-000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	-	9
NO-2 NO-2	1/9H	2.970	2.620	2-300	2.290	2.240	2.570	2.490	2.370	.910	2.220	2.030	2.010	2.230	2.340	2.500	2.510	2-420	2.300	2.030	2.190	2.290	2.180	2.040	1.650	.29	-14	•5•	.11	. 10	.00	.880	.830	.710	.470	.350	.430
ONTHO PHOS.	1/9H	.521	.471	.411	.373	466.	.353	.338	•	-	1.010	•	.861	•	6690	299•	.765	.748	.751	•649	•696	•715	•619	.739	•662	-682	164.	.477	.463	.559	.564	õ	.712	~	•	1.050	Š
TOTAL PHOS.	H6/L	.671	.628	.546	164.	.421	. 445	•422	.558	.242	1.620	1.030	066.	.993	.063	.820	.943	.921	.920	.786	.824	.018	. 808	.882	.814	.875	.611	• 565	.548	. 663	•686	.713	.909	.953		1.370	
FLOU CFS		11.	11.		11.		11.	110	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	10.	•	•	9.
7 2	DY HRS.	~	-	•	~				_	-	_		-	=	-	-	-	-	~		~	20 1363	-	-	-	•	~		-	~	-	-	-	-	~		~
SANPL ING DATE	VR NO D	12	7	7	7	12	12	12	12	12	12	12	12	12	7	7	~	2	12	7	12	12	12	12	12	-	-	-	-	-	-	-	-	-	~	~	~

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAH : PORTAGE RIVER

US6S NO. 04195500 : AT WOODVILLE, OHIO LOCATION W/CODE

CONO 25C.	CHRO	1351.	1379.	1380.	1424.	1454.	1399.	1647.	1469.	1432.	1427.	1423.	1041	1456.	1525	1450	1444	1430	1510	1313	1624	1 3 3 4 4	1616	1435	1361.	1350.	1329	1330.	1332.	1316.	1328.	1333.	1325.	1322.	1313.	1117
10 K	1/9H							1.63	1.21	1.15	1.04	•	1.09																							
2018	7/9:	7.15	7.08	7.57	7.47	7.18	6.98	7.70	7.64	8.60	7.50	8.21	• 18	6.78	6.97	9.30	6.90	7.27	1.60	11.20	98.97	9.00		7.25	6.95	7.50	7.72	7.49	8-25	45.6	8.41	•	8.25	Ġ	7.26	4
RIDE	H6/L	115.00	115.80	•	•	121.00	122.00	121.00	118.00	115.00	114.00	114.00	115.00	117.00	122.00	116.00	114.00	132.00	154.00	246.00	319-80	324.00		301-00	291.00	147.00	142.00	142.00	142.00	145.00	•	•	•	•	0	•
SUSPEND SOL TOS	M6/L	5.60	11.30	4.50	4.70	3.90	6.20				14.10		12.20								9	-		8.70	_		6.80	_	_	_	٩	0 • • 9	•	00·n	7	•
200	H6/L																																			
TOTAL KJELD	H6/L																									9.960	9.850	9.530	9.790	8.820	9.910	9.240	8.670	10.000	9.550	
ORG. NIT.	H6/L															•																				
n-II	H6/L	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2 - 000	2.000	2.000	2.000	2.000	2.000	2.000	6.620	6.630	7.360) • U	7.590	7.030	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	
20-10 20-10 20-10	H6/L	044.	.250	.260	.240	090-		0+0-	.120	.133	.180	.210	.220	.250	.270	.230	-260	-200	.260	5.00	3.950	900			009•	.230	.180	.190	.210	.190	.220	.200	.220	.210	.150	· (
PHOS.	H6/L	.937	.993	1.040	1.070	1.210	1.180	1.180	.874	.912	.817	.663	.939	.720	.770	. 803	.817	•842	-88	•975	. 865				.815	.822	.736	.724	.721	.579	.734	.727	•169	.807	.172	
TOTAL PHOS.	9	• 0 9	.18	.20	•24	• 19	.19	1.830		.51	.50	*5	. 12	=	.17		.51	9	.5	• 52	• 29	-	- 1	0000	13	-27	.28	-20	.16	.14	.14	.11	.15	.14	.20	
FLOW		9.	9.	•	9.	•	•	9.	•	6	•	•	9.	9.	•	9.	9.	9.	•	•	6	6	2	170.	•	35		*	32	32	132.	130.	130.	128.	128.) (
71ME	HRS.	1900	1900	1900	1900	1900	1300	1360	100	1300	100	1300	100	1300	1300	1300	1300	1900	700	1300	1300	1300	1500		1300	1300	1445	1630	1815	1900	2045	2230	15	200	345) i
311	4																							9 6												
SAMPL	2										17 1													- r												

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

RIVER
PORTAGE
BASIN :
RIVER
HAJOR

PORTAGE RIVER

STREAM

SAMPLING Date Yr mo dy

COND 25C. UNHO

IRON H6/L

The FLOW TOTAL DRTHO NO-2 NH-3 ORG TOTAL COD SULFEND CHLO STORE			LOCATI	LOCALION W/COUR	4							
1-22)	0 1	TOTAL	OR THO	2 F	N-HN	086.	TOTAL	000	SUSPEND	CHLO	\$102	IRON
1.222 .807 .000 2.000 9.220 9.60 114.00 11.10 11.22	2	H6/L	#6/L	NG/L	MG/L	H6/L	H6/L	H6/L	1/9H	1/9H	H6/L	H6/L
1.250	126.	1.223		•	00		8.720		09.6	11.0	Ñ	
1.180	125.	1.250	.871	6	00		7.580		4.10	44.0	8.50	
10.140 0.744 0.340 2.000 9.890 13.50 144.00 19.00 19.0000 19.000 19.000 19.000 19.000 19.000 19.000 19.00000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.00000 19.0000 19.0000 19.0000 19.0000 19.00000 19.00	125.	1.180	.827	.100	•		9.020		9.40	0.44	8.45	
1.070 .714 .340 2.000 7.210 115.40 145.00 1 1.070 .213 .220 720 2.000 7.210 115.40 145.00 1 1.020 .220 .220 7.210 1.220 113.80 143.00 1.220 .220 7.220 7.220 1.220	125	1.140	.747	• 150	•		8.890		3.5	44.0	7.07	
1.043C .655 .650 .650 .2000 7.650 13.00 13	126.	1.070	.714	.340	•		9.800		5.4	145.00	7.63	
1996 655 720 2.000 7.610 13.80 142.00 7.650	130.	1.030	•659	.630	2.000		7.670		2.7	137.00	8.03	
1.002	137	966*	•655	.720	2.000		7.210		3.8	142.00	7.26	
995 .663 .750 2.000	61.	1.02C	.630	.750	•		7.650		7.5	143.00	7.17	
915 596 5.70 2.000 10.40 130.00 10.40 130.00 7.00 5.50 5.50 5.50 5.50 5.50 5.50	145.	.945	.603	.750	•				6.0	134.00	7.13	
938	151.	606.	.682	.790	2.000					130.00	7.17	
172. 936 .645 .819 2.000 172. 956 .663 .819 2.000 18.60 125.00 18.60 125.00 18.60 125.00	161	.915	.596	.760	2.000				9.70	129.00	6.88	
10 5 5 5 5 5 5 5 5 5	172.	.938	.645	.810	2.000				8.60	125.00	98.9	
1.050 .726 .780 2.000 2.000 9.70 127.00 7 .981 .658 .800 2.000 9.70 127.00 7 1.090 .786 1.070 .760 2.070 12.00 126.00 7 1.091 .786 1.070 .760 2.070 2.070 2.710 371.00 58.70 4 .823 .180 6.40 .513 1.680 371.00 58.7	178.	.969	•653	.800	2.000				0.5	126.00	7.72	
9013 -656 -800 2-000	188.	1.050	.726	.780	2 • 000				8 .90	29.0	7.56	
993	198.	.981	•658	.800	2.000				`	27.0	7.44	
12.00 126.00 12	208.	.903	649	.830	2.000				09.6	27.0	7.29	
1.096	210.	.931	• 644	.990	•				12.00	26.0	7.34	
-422 -181 6-440 -513 1-830 81-80 52-60 4 -323 -186 6-790 -556 1-800 78-90 55-90	1648.	1.090	. 786	1.070	.760		.1		371.00	_	4.67	10.8
323 -180 6.790 -506 1.730 37.00 53.90 53.90 -281 -176 6.670 -554 1.680 78.00 57.40 57.40 -669 -167 6.390 -554 1.680 78.00 57.40 58.00 -669 -177 6.320 -537 2.380 4.54.00 55.70 59.00 -950 -132 6.850 -4.020 4.020	1434	.422	.181	6.440	.513		.83		81.80		4.65	•
281 .176 6.670 .563 1.680 30.00 57.40 56 .869 .180 .2.80 .2.80 .2.80 .2.80 .2.80 .8.90 .8.90 .8.90 .860 .177 6.850 .430 .4.02 <	794.	.323	.180	6.790	S		.13		37.00	ç	5.68	2.3
.395 .167 6.390 .554 800 78.90 58.00 58.00 .669 .17 6.320 .537 2.380 454.00 49.50 55.70 55.70 .950 .132 .430 .430 40.20 .621.00 49.50 55.70 55.70 .645 .132 .380 .2.640 .399.00 49.50 56.50 56.50 .629 .137 7.520 .381 2.580 316.00 51.50 51.50 51.50 51.50 51.50 51.50 51.50 51.50 51.50 51.50 51.50 51.50 51.10 51.	549.	.281	•176	.67	26		•68		30.00	*	*	1.6
2.150 255.00 255.70 5 5 3 7 2.380 454.00 55.70 5 5 6 8	794.	.395	-167	.39	52		.80		78.90	•	7	+.1
### ### ### ### ### ### ### ### ### ##	1378.	•669					-15		255.00			9.0
950 -132 6.850 -430 4.020 621.00 49.50 5 -845 -126 7.320 -342 2.730 522.00 48.50 5 -629 -131 7.520 -380 2.640 399.20 5 6 -629 -137 -381 2.580 316.00 51.50 5 -540 -125 9.080 -349 -770 214.00 51.50 5 -436 -126 9.380 -364 1.390 132.00 50.40 5 -381 -119 9.470 -329 1.140 9.10 51.70 5 -351 -116 9.660 -306 -306 -920 109.00 51.70 5 -258 -130 -410 -410 -410 58.70 7 68.70 7	2092.	-810	.177	6.320	.537		.38		454.00	55.70	5.14	13.2
.845 .126 7.320 .392 2.730 .822.00 .48.50 .391 .2.640 .399.00 .499.10 .399.00 .499.10 .399.00 .499.10 .399.00 .499.10 .399.00 .399.00 .399.00 .399.00 .399.00 .399.00 .399.00 .399.00 .399.00 .399.00 .399.00 .399.00 .316.00 .316.00 .316.00 .399.00 <td>2614.</td> <td>.950</td> <td>.132</td> <td>6.850</td> <td>.430</td> <td></td> <td>• 02</td> <td></td> <td>621.00</td> <td>•</td> <td>5.03</td> <td>20.0</td>	2614.	.950	.132	6.850	.430		• 02		621.00	•	5.03	20.0
.763 .131 7.780 .380 2.640 399.00 49.10 5 .629 .137 7.520 .381 2.580 316.00 51.50 5 .436 .128 9.380 .364 1.390 132.00 50.40 5 .381 .119 9.470 .329 1.140 121.00 51.10 <td>2710.</td> <td>.845</td> <td>.126</td> <td>.32</td> <td>. 392</td> <td></td> <td>.73</td> <td></td> <td>522.00</td> <td>0</td> <td>5.17</td> <td>18.8</td>	2710.	.845	.126	.32	. 392		.73		522.00	0	5.17	18.8
.629 .137 7.520 .381 2.580 316.00 51.50 5 .540 .125 9.080 .349 .770 .214.00 48.70 5 .436 .128 9.380 .364 1.390 132.00 50.40 5 .381 .114 9.470 .329 1.140 121.00 51.70 5 .351 .110 9.650 .306 .306 .920 10.9.08 51.70 5 .24 .120 8.900 .386 .335 .136 9.130 .446 58.70 7 .258 .137 8.540 .410 .410	2686.	.763	.131	7.780	38		•64		399.00	-	5.30	16.7
.540 .125 9.080 .349 .770 214.00 48.70 5 3.4	2454.	•659	.137	7.520	.381		.58		316.00	51.50	2.47	13.5
.436 1.390 132.00 50.40 50.40 .387 .329 1.140 121.00 51.10 51.10 .351 .110 9.470 .300 1.120 98.00 51.70 5 .362 .310 9.660 .306 .920 109.00 53.50 5 .254 .120 8.900 .386 53.50 57.90 7 .358 .137 8.560 .410 58.70 7	2113.	045	.125	9.080	.349		.770		214.00	48.70	5.51	10.4
386 -119 9.470 -329 1.140 321.00 51.10 53.10 51.70 53.50 1.120 98.00 51.70 53.70 51.70 53.50 53.50 53.50 53.50 53.50 53.50 53.50 53.50 7.80	1648.	•	.128	9.380	.364		• 39		132.00	50.40	5.64	2.5
.351 .114 9.720 .300 1.120 98.00 51.70 55 .362 .110 9.660 .306 .920 109.00 53.50 5 .244 .120 8.900 .386 51.80 57.90 7 .335 .136 9.130 .446 88.40 54.70 7 .258 .137 8.540 .410 58.70 8	1490.	•	.119	9.470	.329		÷:		121.00	51.10	5.17	6.1
.262 .110 9.660 .306 .920 109.00 53.50 5 .244 .120 8.900 .386 .386 51.80 57.90 7 .335 .136 9.130 .446 88.40 54.70 7 .258 .137 8.540 .410 .410	1346.	m	.114	9.720	.300		• 12		98.00	51.70	5.77	5.8
.254 .120 8.900 .386 51.90 7 .335 .136 9.130 .446 88.40 54.70 7 .258 .137 8.540 .410 610 58.70 8	1105.	~	.110	9.660	• 306		ā		109.00	53.50	5.83	N,
.255 .136 9.130 .410 .410 .410 .43.40 59.70 8	619.	N	.120	6.900	.386				51.80	57.90	7.96	
. 258 . 137 8.550 .410 .410 .410	976.	3	.136	.13	:				8.4	54.70	~	
	697.	25	.137	.54	.410				3.4	58.70	8.01	

11111990 11111190 11111190 1111190 1111190 1111190 11111190 1111190 11111190 11111190 1111190 1111190 111190 111190 111190 1190 119

10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: AT MODDVILLE, OHIO LOCATION W/CODE

: PORTAGE RIVER

STREAM

COND 25C.	596.	610.	•699	664.	680.	695.	.099	643.	680.	712.	748.	744.	689.	557.	524.	521.	536.	553.	576.	591.	615.	632.	641.	637.	667.	716.	647.	611.	599.	612.	630.	633.	635.	644.	657.	663.
IRON MG/L								3.40	1.80	1.60	• 80	1.30	4.70	17.50	16.30	10.50	6.70	4.50	3.70	3.00	2.60	2.30	2.00	2.40	1.80	1.60	3.50	5.10	4.10	3.10	2.50	2.50	2.40	2.00	2.10	2.10
\$102 H6/L	7.72	7.94	7.75	8.28	7.94	8.31	7.68	8.74	7.38	7.90	7.68	6.41	6.51	6.13	6.15	6.98	6.82	6.87	6.83	7.15	68.9	7.04	7.41	7.47	8.42	8.46	7.30	7.56	7.81	7.04	7.72	7.94	7.13	6.94	7.83	7.41
CHLO RIDE NG/L	57.70	58.70	63.70	64.30	64.40	65.70	62.90	61.80	64.30	65.80	68.70	77-10	65.00	53.30	50.00	50.20	50.80	50.80	52.50	55.00	55.50	56.60	57.90	49.80	52.00	58.30	52.50	48.30	47.90	48.50	49.00	49.10	49.10	49.10	49.50	49.70
SUSPEND SOLIDS MG/L	57.30	50.50	=	•	•	105.00	137.00	73.20	38.40	44.10	19.10	30.00	144.00	502.00	430.00	234.00	130.00	83.70	72.80	52.70	52.10	39.40	35.50	45.60	32.80	23.10	71.70	100.00	64.80	47.00	32.40	36.20	32.80	31.90	31.70	33.10
COD #6/L																																				
TOTAL KJELD HG/L																								.961	•954	1.310	.891	2.800	2.290	1.160	.821	1.010	1.310	1.710	1.980	.835
ORG. NIT. MG/L																																				
NH-3	.414	.401	• 562	.229	.246	.350	•226	. 386	.267	.278	. 322	.346	•282	.242	.212	.204	•195	.170	.168	.197	-134	•134	.144	.144	.116	•226	. 092	.102	• 095	.106	.110	.248	.154	.155	. 331	• 098
NO-2 NO-3 NG/L	8.210	8.730	9.030	11.600	10.300	9.410	11.500	11.300	10.500	9.450	8.530	7.180	7.570	9.200	10.200	10.200	10.400	10.500	10.600	10.500	0	0	10.400	• 30	0	9.110	9.210	9.390	•	.61	.43	•	.36	•	.32	9.210
ORTHO PHOS. MG/L	•115	•116	• 60 •	.078	+085	.093	• 075	•106	.111	.131	.142	.127	.124	.128	.120	.114	.114	.111	.111	•115	.110	•109	.107	• 061	090*	• 066	.051	. 053	.054	.053	090•	.054	.048	•046	.046	.055
TOTAL PHOS. MG/L	.265	.240	•223	-437	.487	.334	.311	•262	.187	•208	.190	.188	.330	•639	.589	•429	. 333	.260	-236	.212	19	17	.166	.190	.155	=	.203	•225	.197	.165	.153	•149	.141	•135	.137	15
FLOW	770.	40	•	30	514	1402.	20	5	647.	110.		350.	78	96	33	3290.	91	55	17	83	69	648	62	514	981.	760.	73	69	5	31	21	122	35	1924.	6	865
SAMPLING TIME DATE 2400 YR HO DY MRS.	3 10 1	3 11 1	3 12 1	3 13 1	3 13 1	3 14	3 14	3 14 1	3 15 1	3 16 1	3 17 1	3 18 1	3 18 1	3 19	3 19	3 19 1	3 19 1	3 20	3 20	3 20 1	3 20 1	3 21	3 21	3 21 1	3 22 1	3 23 1	3 24 1	3 24 1	3 25	3 25	3 25 1	3 25 1	3 26	۰	3 26 1	3.2

LAKE ERIE VASTEVATER MANAGERENT STUDY - VATER GUALITY INFORMATION

NAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, ONIO

COND	220	638.	578.	626.	546.	538.	537.	544.	562.	583.	616.	670.	710.	733.	730.	737.	693.	596.	583	587.	597	594	619.	633.	652.	670	704	722.	730.	730.	748.	751.					12
HON	H6/L	3.80	7.00	4.70	13.50	13.00	12.90	9.80	7.30	7	2.00	3.00	1-80	1.40	1.70	2.30	5.30	11.40	9.90	9-10	7.30	5.50	4.70	00.0	3.20	2.70	1.90	1.20	1.60	1.30	1.40	1.40	96.	. 70	.30	95.	• 10
\$102	H6/L	7.50	6.94	98-9	8.05	7.79	7.98	9.15	7.99	8.93	44.0	8.48	7.27	7.37	6.43	6.64	6.18	6.82	7.46	7.78	7.79	69.9	6.73	6.02	5.95	5.82	2.62	5.29	5.30	4.18	3.47	2.57	2.95	3.06	2-15	2.21	2.47
CHLO	1/9H	49.90	39.20	42.60	34.70	33.60	33.60	33.80	35.70	36.90	39.00	04.44	47.50	50.80	51.80	52.80	49.90	36.80	36.20	36.70	37.00	38.10	39.70	38.80	41.30	42.20	9.9	7:1		'n			53.00		8	•	56.80
SUSPEND SOLIDS	H6 /L	47.90	108.00	80.68	250.00	218.00	197.00	179.00	121.00	99.20	74.00	48.10	31.10	25.00	33.90	50.80	131.00	223.00	146.00	129.00	102.00	84.70	56.10	63.40	56.20	40.70	28.30	16.60	•	16.40	20.90	23.60	45.40	36.90	25.83	•	20.00
000	1/9H																																				
TOTAL	M6 /L	1.080																																			
086. NIT.	H6/L																																				
NH-H	H6/L	.105	. 058	.076	• 0 9 0	• 0 6 0	.083	.054	. 053	.057	. 057	.105	741.	. 162	.172	.180	.140	•208	.122	• 583	.121	.081	• 083	• 052	• 069	•129	.134	. 168	•216	.232	.179	.132	.034	•119	• 068	-047	• 064
NO-2	1/9H	9.070	8.150	8.410	8.890	9.370	9.740	9.760	9.960	9.850	9.850	9.290	8.400	7.690	7.360	7.440	6.930	7.140	7.540	7.780	7.790	8.040	8.090	8.080	8.050	8.080	7.600	7.050	9.690	6.680	6.230		•		5.000	•	4.580
PHOS	H6/L	▶90•	660*	.100	.108	.104	.104	-104	.108	.110	.106	-112	.108	.123	.120	.151	.122	•104	.104	.114	.113	•60•	.107	101	.097	•096	.111	.121	.127	.137	• 156	.131	• 135	.119	.116	.131	•162
TOTAL	HG/L	.201	.359	.264	-502	.486	.489	.397	.335	.307	•28€	.228	.195	-188	.198	-262	.339	.495	.417	.421	.362	.297	.285	.252	.224	•200	.184	.179	.213	• 206	.240	.211	.230	• 223	.192	.229	.233
FL 04	• ;	1010.	1427.	2374.	2839.	3036.	2902.	2502.	2064.	1655.	1372.	712.	415.	354.	+08-	643.	1339.	1564.	1402.	1152.	957.	825.	745.	684.	638.	603.	+08.	292.	303.	236.	200.	190.	185.	151.	141.	134.	128.
71 ME		700	1360	1900	100	700	1300	1900	100	700	1300	1300	1300	1300	1900	100	700	1300	1900	100	700	1300	1900	100	700	1300	1300	1300	1300	1300	1300	100	1300	1900	1300	1300	1300
9 H	7	28	28	28	2	53	53	53	30	30	8	3	-	~	~	m	m	m	m	•	•	•	•	€C	5	'n	9	_	•	6	10	1	11	12	13	=	15
SAMPL ING	YR 40										77 3							17 4	•	_	_	-	-	11 4	-	_	•								11 4		17 4

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : PORTAGE RIVER

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, ONIO

COND 25C. Unho		793.	793.	811.	645	635.	586.	562.	563			50.8	644	619.	713.	718.	730.	747	676.	656.	654.	653.	661.	• 009	551.	478.	463.	460.	462.	476.	194.
IRON MG/L	100	06	9.	.50	4.90	8.00	12.10	10.60	8	6.30	9/•0		2.40	2 - 30	1.40	1.40	1.40	1.90	3.50	5.70	5.50	4-80	3.80	7.70	3.1	1.2	18.90	14.90	12.10	9.50	7.70
\$102 MG/L	2.09	2.58	7.50 7.00	1.20	6.42	7.41	8.57	10-10	D	9.60	00.4	7,4	7.11	7.22	6.65	6.39	5.65	4.67	5.97	6.38	6.95	6.92	7.11	7	7.20		7.49		8.07	7.64	•
CHLO R1DE MG/L	63.10	64.28	67.10	69.20	49.00	49.20	41.70	38.10	36.90	37.30	20.00	37.80	38.90	41.30	42.20	44.80	45.80	46.90	42.90	43.70	41.20	40.30	40.90	36-80	36.60	26.00	24.40	23.90	4.3	31.40	0.1
SUSPEND SOLIDS MG/L	11.00	20.00	17.50	14.90	111.00	190.00	266.00	159.00	116.00	00.87	00.50	47.80	39.70	43.90	29.80	27.90	33.40	24.10	76.00	141.00	138.00	93.20	86.00	132.00	235.00	351.00	368.00	228.00	8.0	105.00	
1/9W								;																							
TOTAL KJELD MG/L												1.600	1.610	1.530	1.170	1.090	1.050	1.360	1.720	2.090	2.920	2.410	1.620	1.850	2 • 6 4 0	3.440	2.840	2.860	3,150	2.460	1.920
ORS. NIT. MG/L																															
NH-3	. 385	0 20	. 150	.152	.388	.243	. 385	• 355	.330	.315	. 265	041.	113	• 095	.127	• 079	.035	.581	• 056	-036	.037	.021	• 025	.067	. 144	.070	.082	.080	• 072	.122	.080
NO-2 NO-3 RG/L	3.950	3.850	3.320	2.310	7.950	12.000	13.500	14.200	14.200	13.900	12.400	12.400	9.560	10.000	8.990	8.150	7.980	7.870	7.830	9.540	10.300	10.300	10.100	9.090	9.410	9.400	10.300	10.500	10.800	9.950	10.200
ORTHO PHOS.	171.	.153	.159	.154	.174	.154	.140	.115	.107	•106	-104	200	082	.107	.082	• 095	.093	.118	.106	•136	.137	.126	.124	.122	.117	.127	.126	.125	.118	-102	.103
TOTAL PHOS. MG/L	.230	-252	.229	• 228	0 0 F	.576	•639	.546	. 438	.374	. 335 100 100	. 323	195	.199	.169	.171	.180	.239	.265	.392	.375	.335	.293	.403	.595	.803	•716	.600	.523	.445	.383
FLOW	101.	96	93.		799.	545	3722.	4294.	4502.	217	3230	29762	1434	700	475.	350.	940	200	200.	245.	245.	500.	500.	500.	500.	1950.	1950.	1950.	1950.	1300.	1300.
TIPE 2400 HRS.	1300	1300	1300	1300	700	1300	1900	100	700	1300	700	1 500	1360	1300	1300	1300	1300	700	1300	1300	1900	100	700	1300	1900	100	700	1309	1900	100	793
	17	9 1	200	22	2 2	23	23	24	5	24									~	m	m	•	•				s.	S	พ	9	9
SAMPLING Date Tr no dy	• • •	• •	• •	•	• •	•	•	•	*	•	•		•																		
SAR	11	::	7,	7:	: [1	11	11	11	11	11	==	: 1	11	11	11	11	11	11	11	11	11	11	11	17	11	11	11	11	11	7.7

LAKE ERIE VASTEVATER MAMAGEMENT STUDY - WATER GUALITY INFORMATION

HAJOR RIVER BASIN : PORTAGE RIVER

REAM : PORTAGE RIVER

USES NO. 04195500 LOCATION W/CODE : AT WOODVILLE, OHIO

COMD 256.	523.	547.	575.	597.	620.	682.	714.	710.	746.	778.	788.	501.	809.	804	809•	852.	857.	859	865.	852.	877.	915.	903.	844.	851.	853.	867.	890	834.	830.	830.	883.	900	940.	1034.	938.
IRON NG/L	9.80	5.80	Š.	ę	3.70	i	1.00	•	00.	9	96.	• •	•	•30	•30	• 20	01.	0+•	•	04.	.30	•20	.20	04.	04.	•50	.50	.50	••0	.50	9.	• 90	• 50	0	.30	•30
S102	8.54	8.76	8.49	8-11	8.20	7.37	7.02	7.80	7.73	6.88	6.20	5.34	4.12	3.90	4.21	.67	•61	•9•	•	. 19	•19	.70	.75	1.73	2.72	2.17	2.53	1.30	•69	1.42	1.83	2.07	1.13	1.32	1.93	1.17
CHLO RIDE RG/L	29.70	29-00	32.30	33.80	35.60	39.80	42.20	41.80	44.50	49.00	49.00	51.60	52.80	50.50	50.30	56.70	59.50	61.00	61.70	61.30	63.50	65.10	66.10	67.60	65.90	65.30	66.60	70.70	73.10	72.40	70.00	19.60	81.70	85.20	92.70	88.10
SUSPEND SOLIDS MG/L	91.90	86.70	78.10	80.30	58.20	47.50	26.60	30.50	23.70	20.50	23.40	10.80	11.00	7.40	7.80	12.10	11.50	6.10	09.9	3.40	8.60	7.40	13.40	4.30	7.10	5.00	2.50	14.10	20.00	17.10	16.60	63.70	21.90	16.70	9.90	11.90
C0D																																				
TOTAL KJELD MG/L	1.900	1.880	1.390	1.280	1.580	1.070	1.720																	.390							2.450	4.060				
0R6. NIT. M6/L																																				
NH-3	.108	.053	• 052	.083	• 028	.118	.079	.031	. 021	• 028	.031	. 037	• 022	• 024	.030	. 038	.061	• 095	.067	.035	.027	.010	.016	.118	•166	.192	.188	. 732	.908	.499	. 384	. 199	.331	.291	.192	•195
NO-2 NO-3 BG/L	10.200	10-100	9.970	9-830	9.710	8-940	8.700	7.880	7.690	7.330	6-760	6.550	090-9	090-9	060.9	4.350	4.420	3.970	3-830	3.090	2.960	2.900	2.810	2.120	1.830	•	•	•	•	•	• 960	.680	.350	.380	.630	064.
ORTHO PHOS. NG/L	•100	-116	.115	.114	.117	•116	.126	.080	.104	.120	•120	.137	.103	•106	.109	.118	.154	•162	.224	.176	.198	.186	.220	• 202	.184	.181	•199	.173	.179	.179	.163	.318	405	. 401	.360	.433
TOTAL PHOS. HG/L	.365	.345	.313	.279	.276	.257	.222	.207	.198	.225	.248	.247	.212	-220	.231	.224	.237	.253	.357	.295	.272	289	.331	.331	.371	. 401	.410	M. C.	.475	.476	458	.782	55.0	.511	.421	.513
FLOW	1386.	1380	36	964.	964.	611.	429	387	266.	208.	165.	121.	125.	109.	66	96	80 80	920	74.	7	67.	66	6		8	•	.68	N.	35	32.	900	24.	27.0	26.	26.	25.
7 1 2 5 2 4 0 8 1 K S.	1300	1900	001	708	1300	1300	700	1300	1300	1300	1 300	1308	1300	1300	700	1300	1300	1300	1300	1300	1300	1300	707	1300	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1300
	4	•	~	^	. ~	•	•	•	70	11	12	2	1	2	2	16	17		19					, C	2 5	2	56	27	28	29		F.	; -	٠ ٧	1 107	•
5 F I																																				•
SAMPLING Date yr no dy	11	7.	11	11	-	7.7	11	11	7.7	11	11	11	11	7.7	11	11	77	7.7	7.7	7.7	7.	7.1	1	77	11	77	77	11	11	77	77	77		77	7.7	11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND	CMHO	764.	845	888	889.	847.	929.	928.	929.	896.	893.	883.	921•	943.	884.	874.	927.	894.	958.	952.	969.	952.	939.	944.	918.	851.	811	879.	893.	895.	727.	708.	725.	648.	445.	485.	534.
IRON	H6/L	110	04.	9	•	04.	04.	04.	04.	04.	•30	•30	•30	.30	04.	•30	•30	0	• 60	• 50	0	•30	•30	• 30	04.	•	• 50	04.	.30	.80	04.	• 70	5.00	3.90	2.4	8.1	25.60
2018	H6/L	1.37	1.23	1.05	.70	1.47	1.16	.88	1.02	.85	1.52	1.15	1.89	1.66	.94	1.29	3.09	1.47	1.42	1.03	2.59	2.47	1.92	1.84	2.42	3.81	4.15	5.14	4.58	3.36	2.94	4.42		*	•	5.99	•
CHLO	HG/L	79.10	73.20	76.40	75.40	69.80	69.50	78.80	76.70	73.40	74.50	79.60	82.60	83.40	78.70	73.80	75.80	78.10	81.90	76.70	6.3	3.0	88.80	'n	87.20	88.20											
SUSP FND	M6 / L	17.80	18.80	17.10	19.50	17.10	14.00	11.80	13.90	10.60	9.80	18.30	16.90	13.70	12.80	13.90	13.70	15.00	23.90	19.10	13.86	11.70	7.90	10.10	15.40	20.00	20.20	15.60	26.80	14.60	22.70	185.00	85.10	679.00	1198.00	570.00	350.00
000	H6/L																																				
TOTAL	#6/L	.975	1.090							1.000	.710							1.270																			
086.	#6/L																																				
NH-3	HG/L	.071	•218	.212	.186	• 166	. 148	.162	.113	.131	• 106	.143	.124	• 106		• 068	.105	.070	.089	.248	.107	• 095	.119	.093	• 074	.067											
NO-2	#6/L	.920	1.280	1.360	1.430	1.420	1.510	1.890	1.600	1.270	.900	.940	.770	.470	.310	004.	.420	340	.430	.820	1.580	-410	.170	.200	.110	• 050											
ORTHO	#6/L	.393	.329	.369	.469	.273	.225	.337	•281	.302	.264	.357	349	440.	.322	-284	.287	356	.373	• 260	. 395	440	.364	•282	.278	.294											
TOTAL	MG/L	.508	.514	.564	.687	688	.416	459	•416	.47	.397	.436	6443	.463	. 505	1607	519	•610	609	.536	.512	.493	.472	450	.511	.716	•99•	.708	908	1.030	8.5	+604	.744	2	1.490	88	.639
FLOW	N	32.	31.					-	32.	_		10	-	Ň					- 40	-		60	150			N	~			0	-	2	9	, M	128	1 K	1571.
	NA CO	1300	1300	1300	1300	1 4 0 0	1300	1300	1300	200	1300	1300	1300	1300	1300	1 3 0 0	1300	700	1300	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1906	00 2	700	1300	1900	100	700
1 N G	D	•	•	^	• «	•	` -	=	12	=	1	-	<u>د</u>	9	-		•	, ,	, 0	2	22	. 6	2 6	25	4	27	27	× ~	6		, F	, -	٠ -	-	. ~	٠,	~ ~
7	17E																																				- ~
-	Y DA	77	7.7	11			7.7	7.	7.7	7.	7.	1.		7.	7.7					7.	77	7.7		7.7	7.7	7.7	77	7.7	7.7	11	7.	7.		7.7	77		11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : PORTAGE RIVER

LOCATION W/CODE : AT WOODVILLE, OHIO

COND 25C.	OHEO	566.	594.	608.	623.	640.	658.	675.	692.	521.	549.	633.	635.	620.	687.	727.	150.	172.	810.	755.	
IRON	H6/L	16.30	11.30	8.30	6.90	5.90	4.50	4.90	3.70	18.00	14.50	8.10	6.30	9.00	3.30	2.10	1.40	1.10	9.	.90	
S102	1/9H	8.45	8.79	9.03	9.30	9.22	9.24	9.30	9.37	7.96	8.10	8.62	8.24	7.19	8.24	8.20	8.45	6.13	5.44	4.68	
CHLO R I DE	1/9H									32.80	32.70	39.10	40-10	39.70	45.20	48-40	50.90	54.50	62.10	60.30	
SUSPEND SOLIDS	7/9H	256.00	180.00	138.00	121.00	88.70	118.00	104.00	67.50	479.00	370.00	216.00	150.00	133.00	76.10	53.20	34.00	41.50	28.80	32.90	
Q00	7/9H																				
TOTAL KJELD	1/9H																				
ORG.	7/9#																				
NH-3	H6/L									.031	.016	.024	• 036	. 024	. 020	.067	. 162	. 225	.153	990.	
20-2 20-2	H6/L									12.400	14.100	12.700	11.700	10-800	8.690	7.160	5.450	4.020	3.090	3.330	
OR THO PHOS.	H6/L									.142	.154	.160	•161	.144	.150	.152	.154	•126	-115	140-	
TOTAL PHOS.	1/9H	.493	.423	.387	.349	.308	6.843	.284	.250	. 731	•661	+44	•419	.378	.304	.283	.293	-295	.320	.287	
FLOW	,	1158.	3000	638.	493.	391.	321.	266.	218.	544.	524.	481.	405	325	135	85.	1	52.	35.	29.	
7114 2007	IRS.	300	900	100	700	300	906	100	700	300	900	100	700	300	300	300	300	300	300	700	
•	70	~	. ~		1	-	M	•	•	5	S	•	•	9				10		•	
AMPL ING	200	-		. ~	-	-			_	-			-	_		. ~	-		_	_	
SAMI	~ ~	7.7	11	. ~	11	11	11	77	1	11	11	11	-	11	11	7	1	11	11	11	

SANDUSKY RIVER NEAR FREMONT, OHIO

LAKE ERIE VASTEYATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREMONT, OHIO

COND 25C. UNHO	00000000000000000000000000000000000000	
IRON MG/L		
S102		# # # # # # # # # # # # # # # # # # #
CHLO RIDE NG/L		
SUSPEND SOLIDS MG/L	1122-20 1122-20 1122-20 1221-123 1221-123 122-20 123-20 12	
000 000		
TOTAL KJELD NG/L		
ORG. NIT. NG/L		
MH-3		2.5.00.00
NO-2 NO-3 NG/L		
ORTHO PHOS. RG/L	00011111111111111111111111111111111111	
TOTAL PHOS. MG/L		
FLOV		
7 1 2 5 0 0 1 1 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 000 000 000 000 000 000 000 000 00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SAMPLING DATE YR NO DY		

The state of the s

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

US6S NO. 04198000 LOCATION W/CODE : NEAR FRENONT. OHIO

COND	CHE			432.	420.	+01.	+0+	407.	+00+	410.	+08-	422.	412.	462.	447.	483.	200	553.	610.	555.		6350	561.	567.	-995	625.	.,,,	647.	623.	523.	+64.	+0+	381.	467.	516.
RON	H6/L																			•															
\$10 2	H6/L	9.40	7.90	8.20	7.80	7.90	8.50	8.20	8.00	8.10	Ç	8.20	9.00	9.80	9.20	9.40	9.10	9.80	10.50	9.00	9	10.40	8.60	9.10	9.80	8.70	10.00	9.30	9.10	8.20	7.70	7.50	7.00	7.00	7.00
CHLO	HG/L																																	29.00	35.00
SUSPEND SOLIDS	H6/L	233.00	338.00	360.00	230.00	282.00	242.00	303.00	174.00	ó	•	å	90.30	ş	74.70	ņ	ě	32.30		28.90		17.50	28.80	36.20	28.60	25.50	22.80	30.10	63.30	113.00	138.00	214.00	174.00	•	58.90
000	N6/L																																		
TOTAL KAFI D	H6/L																			i															
ORG.	H6/L																																		
N-12	H6/L	.070	000	080	.310	.070	.140	.160	.180	040	.060	090																						.060	.080
NO - 0	H6/L	9-400	50	9.100	9.000	8.800	8.900	9.000	8.800	99	8.700	8.500	7.600	==	8.800	9	9	•80	4.400	7.800	4		•	6.800	6.500	006-9	7.100	7.000	6.500	6.300	6.100	6.200	6.400	4.300	6.400
PHOS	H6/L	090•	090•	• 055	.050	090-	• 060	090-	• 065	• 060	.070	090•	. 080	.070	080.	•070	•075	. 085	080.	• 075	•		• 075	.070	.085	- 095	060-	.100	• 095	.090	- 080	• 040	.080	.030	• 050
													_	•	•	60	22	25	37	53	•	1 6	084	910		100		110	m	90	N	9	G	•	1
TOTAL	H6/L												•25	.19	•16	.1	7	7	7	7	•	•	•			•		•	•	7		•		N	
FLOU TOTAL			6351.	. 1989	6972.	6702.	6324.	.0009	5714.	5376.	4934.	3556.	•22	•	•	•	•	•	•	1180.		• •	•	•		•		•	•	•	•	•	•		•
TIME FLOW	HRS.	100 5584	00 6351	300 6864	00 6972	100 6702	700 6324	0009 00	500 5714	100 5376	700 4934	100 3556	00 318422	300 2824.	500 2497.	00 2140.	300 1606.	500 1417.	100 1290.	•	700 1186.	300 1100.	100 950.		300 833.	997 00	100 740.	00 716.	300 728.	00 911.	100 1807.	700 3772.	300 5818.	00 24552	200 2000.
HE FLOW	HRS.	16 1100 5584	16 1700 6351	16 2300 6864	17 500 6972	17 1100 6702	17 1700 6324	17 2300 6000	18 500 5714	18 1100 5376	18 1700 4934	19 1100 3556	19 1700 318422	19 2300 2824.	20 500 2497.	20 1100 2140.	20 2300 1606.	21 500 1417.	21 1100 1290.	700 1180.	21 1760 1186	22 500 11000	22 1100 950.	22 1700 885.	22 2300 833.	23 500 786.	23 1100 740.	23 1700 716.	23 2300 728.	24 500 911.	24 1100 1807.	24 1700 3772.	24 2300 5818.	3 1600 24552	3 2200 2000.

133

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : SANDUSKY RIVER

: SANDUSKY RIVER

STREAM

	COND 25C.	CHRO	548.	568.	574.	586.	.909	617.	623.	633.	640	646.	654	653.		628.	583	478.	428.	334.	339.	į	341.	78.6	900	346.		348.		358.		428.	467.	477.	461.	425.	380•
04198000	10 10 10	1/9H																																			
NO. 0419	S102	N6/L	7.20	7.20	7.00	7.20	7.20	7.20	7.20	7.30	7.40	7.30	7.40	7.20	6.60	9.60	09-9	6.40	00•9	7.30	7.30	7.50	7.50	7.60	9 0	0 0 0	06-7		7.90	8.10	8.00	•	ŝ				
40	CHL 0 R 10E	H67L	37.00	39.50	40.00	42.00	44.00	00-44	44.00	0	45.00	45.00	46.00	51.00	51.00	8.0	å	0		20.00	19.00	•	18.00		9	17.50		17.00	 	18.00		20.00	21.00	24.00	24.00	21.00	17.00
	SUSPEND SOLIDS	H6/L	45.70	34.20	25.30	25.70	25.10	17.80	17.70	18.30	3.7	6.7	3.3	22.00	43.00	?	113.00	264.00	9	238.00	280.00	312.00	288 - 00	315-00	00.102	00.766	26.046	206.00	239 - 00	186.00	223.00	88	٠,	73.8	157.00	82.0	463.00
	000	1/9H																			19.00		19.00		20.20	-											
MEAR FRENONT, ONIO	TOTAL	H67L																																			
AR FRENC	ORG.	19 V																																			
••	NH-3	16 1	.070	. 080	. 060	.070	.080	.070	.070	• 0 7 0	.070	.080	• 080	.050	.080	.080	• 080	.100	• 080			•										• 060	• 090	.330	.281	.251	.761
CATION W/CODE	20-2 20-2	H6/L	6.600	5	6-100	6-200	6-100	9 0 0 0 9	000-9	9.000	9.000	5.900	5.900	5-860	5.900	000-9	5.800	5.200	4.800	5.200	5.100	5.100	5-100	5.200	5.200	0.500			5.000	5.300	5.200	5.600	5.800	3.830	.05	3.850	3.670
LOCATIO	PHOS		. 656	• 050	.030	040	.050	.050	.050	.050	040.	. 060	.060	• 050	. 060	.050	040.	.050	• 050	.070	.067	.072	. 067	. 068	0.00	.062			640	.075	.067	.070	.080	.135	•112	.120	.110
	TOTAL	H6/L	1	=	-116	2)	•	5	•	8	8	5	0	18	~	23	-	6	51	22	N	2	2	9	B (֓֞֜֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֜֜֓֓֡֓֓֓֡֓֜֡֓֡֓֡֓֡֡֡֡֡֓		• •	9	1	28	•	•	•	7	•
	FLOW	• •	1570.	1606.	1328.	1380.	1300.	1240.	1050.	1030-	1010.	956	1050.	978.	797.	762.	740.	762.	7512.	8628.	8712.	8712.	8488.	8348.	8068	7872-	1073	7101		6702.	6540.	2518.	1502.	1696.	3460.	5766.	7242.
	711K	Ĭ	-		2200	•	=	16	22	•	7	16	22	4	-	7	22	•	7	7	16	18	22	2	•	•	7	7 7		2	2	17	•	-	16	22	•
	SAMPLING	YR NO DY	-		75 1	-	۰,	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1 1	7	1 1	-	# (7	7 .	•			-	1	1 2	7	1	-

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: SANDUSKY RIVER

STREAM

: NEAR FREHONT, OHIO LOCATION W/CODE

COND 25C. UMHO	347.	331.	328.	319.	320.	318.	311.	311.	320.	330.	944	356.	372.	394.	413.	427.	446.	459	+16.	491.	512.	533.		545	481.	431.	394.	388.	383.	381.	386.	+01.	413.	425.	433.	525.
IRON M6/L																		,																		
\$102 HG/L																																				
CHLO RIDE MG/L	16.00	15.00	14.50	15.00	15.00	14.00	13.50	13.00	13.00	13.00	14.00	14.50	15.00	16.00	17.00	17.00	18.00	18.00	19.00	19.00	20.00	20.50	18.00	20.50	31.80	29.00	23.30	22.90	21.50	21.00	21.20	21.30	21.70	22.00	22.30	29.00
SUSPEND SOLIDS MG/L	459.00	503.00	486.00	498.00	413.00	358.00	348.00	319.00	288.00	241.00	171.00	141.00	114.00	125.00	87.40	96.10	74.20	58.10	24.00	53.70	31.60	37.80	67.30	33.60	279.00	247.00	193.00	148.00	147.00		104.00	72.00	90.50	91.10		158.00
7/9H 000																										32.00										
TOTAL KJELD NG/L																										1-100				.700						
086. NIT. H6/L																																				
NH-3	.300	.243	•225	.215	•175	.387	.145	.145	.133	.118	.143	.128	.120	.123	• 098	.093	• 083	• 068	• 083	.081	• 0 78	.122	• 182	. 082	.315	. 395	.218	. 162	. 125	• 080	.110	.100	.105	.115	• 055	.067
NO-2 NO-3 M6/L	3.710	3.900	4.090	3.970	4.120	4.030	3.920	3.870	3.910	4.380	4.550	4.880	5.020	5-150	5.510	5.400	5.580	5-650	5.610	5.850	5.700	5.720	5.220	5.570	5.300	6-200	7.000	006.9	6.800	6.700	6.800	•	•	7.400	7.300	7.000
ORTHO PHOS. MG/L	• 132	• 092	.080	.113	- 097	• 092	. 085	-067	060	. 087	160.	• 085	• 065	.087	. 082	. 090	.080	.048	• 095	• 092	.092	.075	.279	. 095	• 090	060.	080*	.060	.060	.050	090•	.050	• 060	.050	• 020	.080
TOTAL PHOS. RG/L	•	7	•	92	9	m	.620	0	-	~	-	3	38	•	m	0	28	•	2	•	2	-		2	m	10	-	•	8	2	•	•	ō	.200	•	60
FLOV	7485.	7053.	6621.		6432.	6432.	6405.	6297.	-	-	ă.	4390.	3772.	3207.	_	2308.	1980.	1750.		-	•	1270.	~	ė.	6189.	_	•	5922.	_	•	5584.	4726.		3796.	3437	1788.
11ME 2400 MRS.	1630	1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1600	2200	400	1000	1600	2200	00+	1600	2200	000	1000	2200
12 6 0 7	9	8	30	3	31	3	3	~	-	-	~	N	~	N	~	m	m	•	~	•	•	•	•	•										21		
SAMPLING DATE YR MO DY																																		75 2		

LAKE ERIE WASTEWATER NAMAGEMENT STUDY - WATER QUALITY INFORMATION

the standard many conservations and the second of the seco

MAJOR RIVER BASIN : SANDUSKY RIVER

: SANDUSKY RIVER

STREAM

LOCATION W/CODE : MEAR FREMONT. OHIO

COND	418.	399. 396.	395. 391.	;	286.	262.	252.	256.	259.	.00N
IROM MG/L						•				
S102										
CMLO RIDE MG/L	64.00 64.00 64.00 64.00	22.80	22.00		18.00	16.00	15.00	15.00	1111 6	21.70
SUSPEND SOLIDS MG/L	637.00 651.00 725.00	76.00	699.00 644.00 734.00		384.00	760.00	708.00	513.00	477-00 280-00 368-00	154.00
1/9H		37.00		43.00 44.00 17.00	39.00	38.00	22.00	22.00	33.00	
TOTAL KJELD MG/L		.700			.500	.500	.500	. 700	9 9	
0RG, N1T. HG/L										
NH-3	.257	.113	.220 .217		960•	.095	.123			
NO-2 NO-3 MG/L						• •	7 7	.120	. 126 . 079 . 109	. 093
2 2 2	6.100 6.100 6.100		5. 900 5. 400 5. 400		1.920	4.240	3.860 .1	3.760 .10	•	4.560 .093 4.560 .095
ORTHO NO PHOS. NO MG/L MG	000	0 6 0 0 4 0 0 4 0 0 4 0	. 070 5.900 . 070 5.900 . 060 5.700	n =		.200			•	063 4-560
710 72.	990		.990 .070 .920 .070		040 1.920	062 4.240	068 3.980 070 3.860	053 3.760 074 3.760	4 .066 3.788 9 .061 3.800 5 .077 4.020 1 .074 4.260	506 -082 4-560 360 -063 4-580
ORTHO PHOS.	8544790 .870 8852840 .660 9132820 .670	9598846 .676 9598940 .060 9851910 .070	10112890 .070 10344900 .070 10576920 .080	140060 150060 150060 150060	15650681 .040 1.920 15485.	15518 1.060 .062 4.240 15353. 15419925 .052 4.200	15716- 1-030 -068 3-960 15716- 1-030 -070 3-860	15586028 .053 3.760 15122083 .074 3.760	14125. 13937784 .066 3.788 12770689 .061 3.800 10112645 .077 4.250 6208652 .074 4.250	5688 . 586 . 082 4.560 2356 . 360 . 063 4.560
FLOU TOTAL ORTHO CFS PHOS. PHOS. NG/L NG/L	8544790 .870 8852840 .660 9132820 .670	9598846 .676 9598940 .060 9851910 .070	10112890 .070 10344900 .070 10576920 .080	140060 150060 150060 150060	15650681 .040 1.920 15485.	15518 1.060 .062 4.240 15353. 15419925 .052 4.200	15716- 1-030 -068 3-960 15716- 1-030 -070 3-860	15586028 .053 3.760 15122083 .074 3.760	14125. 13937784 .066 3.788 12770689 .061 3.800 10112645 .077 4.250 6208652 .074 4.250	5688 . 586 . 082 4.560 2356 . 360 . 063 4.560
TIME FLOW TOTAL ORTHO 2408 CFS PHOS. PHOS. MRS. NG/L MG/L	1588 8544790 .878 1538 8652840 .060 1688 9132826 .870	1430 9338840 .070 1700 9598940 .060 1730 9851910 .070	1850 10112896 .070 1850 1034996 .070 1900 10576920 .080	1636 15584. 1638 15584. 1638 1546. 1638 17296.	1550 15550 • 661 • 040 1•920 1630 15485•	1860 15516. 1.060 .062 4.240 2230 15353. 2400 15419925 .052 4.200 430 15518.	600 15485- 1-050 -068 5-980 1030 15716- 1-030 -070 3-860	1840 15386828 -053 3.760 2230 15122883 -074 3.760	1356. 3937784 .066 3.788 .2770. 2320609 .061 3.800 .0112645 .077 4.020 .626 .626 .626 .626 .626 .626 .626	1200 5688. 556 .082 4.560 1400 2350360 .063 4.560
FLOU TOTAL ORTHO CFS PHOS. PHOS. NG/L NG/L	23 1588 8544790 .878 23 1538 8652840 .060 23 1688 9132826 .670	23 1630 9358840 .070 23 1700 9598940 .060 23 1730 9851910 .070	23 1868 10112890 .070 23 1838 10344900 .070 23 1908 10576920 .080	24 1838 183840 24 1838 183840 25 438 183840 26 438 183840	23 1500 15650 • 601 • 040 1•920 25 1680 15465 •	25 1860 15518 1.060 .062 4.240 25 2230 15353. 25 2400 15419 .925 .052 4.280	26 600 15485. 1.050 .068 3.980 26 1030 15716. 1.030 .070 3.860	26 1880 15386- 6828 -053 3.760 26 2230 15122- 683 -074 3.760	450 14126. 600 13937. • 784 • 066 3• 788 1030 12770. • 609 • 061 3• 800 1800 10112. • 645 • 077 4• 020 2400 6508. • 622 • 074 4• 260 664	28 1200 5688. 506 .082 4.560 1 1400 2350360 .063 4.580

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

RIVER	
SANDUSKY	
••	
STREAM	

0HI0
REHONT
•
NEAR
••
3002/R
2
0CAT10
100

COND 25C. UNHO	429.		481.	503	506.	523	537	551.	558	571.	584	586	602	602	900	613	• 070	956	637	635	627.	505	461.	485.	496.	514.	556.	596.	598	555	543.
IRON NG/L													•	•		•			-												
S102																						11.50	13.00	6.30	5.63	14.10	15.60	13.80	•	"	11.90
CHLO RIDE MG/L	26.70	29.50	29.50	31.30	30.90	31.00	31.80	32.50	31.90	33.00	35.00	34.50	35.50	36.20	30.40	26.10	00.00	200		41.70	42.20	26.00	25.00	27.00	28.00	28.50	29.50	_	30.00	31.00	33.00
SUSPEND SOLIDS MG/L	158-60	111.00	87.40	98.70	84.40	66.30	02.50	48.40	38.50	60.70	56.90	32.70	37.10	50.10		07.04	20.72	90.00		44.50	80.60	302.00	142.00	113.00	136.00	17.00	66.80	24.00	39.20	•	19.60
7/9H 000																															
TOTAL KJELD MG/L																															
OR6. N1T. M6/L																															
NH-3	.070	. 070	. 045	. 069	. 048	.057	900	. 083	.063	•019	• 084	. 070	•08•	.087	.071	. 830	• 034	• 00 •	7.00	700	. 092	. 221	.163	.179	.182	.135	.128	. 091	.060	.107	.105
NO-2 NO-3 NG/L	4.780	4.660	4.480	0 0 0	0++•+	4.460		000	4.460	4.380	4.460	4.380	4.320	0+++	4.180	4.220	4.340	4.160	009-4	0 * C * V	5.000	5.040	5.300	5.400	5.480	5.490	5.600	5.350	5.140	5.540	5.640
ORTHO PHOS. MG/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 069	•029	0 40	• 065	• 065	.063	.067	• 060	- 065	•074	. 067	• 066	990•	.053	-062	-062	• 024	• 064	9 6 6	070	• 065	090-	.060	• 068	• 052	•90•	• 063	.050	• 0 7 0	• 065
TOTAL PHOS. NG/L	. 245	.290	23	. 255	-230	.235	25	220	18	-195	.200	.180	.160	.180	.155	.170	.155	.140	1	9 4	-210	5.5	2	.360	# E	.250	.220	.170	.140	21	.220
FLOW	2120.	1732.	502	200	220	1140.	980	911	629	808	786.	740-	716.	684.	663.	642.	621.	632.	705		2626.	203	096	1732.	1570.	1451.	240	588	140	1750.	1270.
71ME 2400 MRS.	2000	900	2000		1400	2000	200		200	900	1400	2000	200	900	1400	2000	200	000	1400		900	1530	2130	330	930	1530	1530	1530	1530	1530	1530
9 40	→ 8	~ ~	~	n r	מו נ	m	•	•	W 1	•	•	6	•	•	•	•	_	_	~ 1	~ 6	0 <	-		1	11	=	12	13	=	15	2
SAMPLING DATE YR NO DY	nn																														
A D A P	5 5	2 t 2 t	75	5 K		75	21	ָרָ גָּ	5	75	75	75	75	75	75	7	75	75	75	2 1	C K	7.5	12	7.5	75	75	75	75	75	75	75

LAKE ERIE VASTEVATER HANAGEMENT STUDY - VATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION V/CODE : MEAR FRENONT, ONIO

US65 NO. 04198880

COND 25C.	0 1 1 2	568.	589.	• 009	487.	+14.	492.	534.	550.	560.	557.	567.	564.	545	513.	394.	368.	372.	389.	392.	420.	423.	435.	445.	459.	478.	525.	547.	557.	555.	510.	166.	433.	414.	420.	428.	***
I BOR	79H																																				
2102	16/L	13.60	8.09	7.94	7.69	7.64	8.01	7.56	8.36	7.72	8.20	9.18	9.40	9.20	9.20	7.70	9.80	10.10	10.20	10.20	9.10	9.00	10.30	- 10.50	10.00	10.20	10.20	9.00	9.90	9.70	9.00	6.50	8.20				
RIOF	H6/L	33.00	•	•	•	40.00	_	43.00	45.00	46.00	45.00	45.00	38.50	38.00	35.50	30.00	27.50	27.50	27.50	27.00	29.00	29.50	29.50	31.00	34.80	34.50	43.00	44.00	41.00	41-00		34.50	÷	ċ	•	41.00	
SUSPEND SOLIDS	1/9H	49.40	64.00	69.20	97.00	52.90	42.60	33.10	26.90	35.30	25.00	49.00	94.70	327.00	387.00	873.00	870.00	738.80	786.00	195.00	350.00	263.00	496.00	00-+0+		÷	•	÷	•	•	4	447.00	•	9	9	20	99.0
200	N6/L																																				
TOTAL KJELD	1/9H																																				
ORG. NIT.	1/9H																																				
RI-13	19 1	.102	.129	.221	.077	• 082	• 069	920.	• 069	• 084	• 062	• 052	•110	• 100	•100	•180	.170	.150	.150	.140	.180	.150	.180	.140	.130	.150	.140	.140	.110	.160	.190	.170	-160	• 180	.165	.120	115
20-2 20-2	19H	9.660	5.090	4.990	5.210	4.820	5.000	4.850	4.790	4.590	4.550	4.690	4.700	004.4	4.200	4.100	009-+	4.600	909-+	4.500	4.100	4.200	4.300	4-100	4.200	4.000	004.4	4.800	5	8	9	5.100	.00	• 59	-	.55	
ORTHO PHOS.	H6/L	.067	.039	.051	.050	.042	.034	.039	.042	.049	. 048	• 056	.070	• 080	.070	.080	. 085	. 080	.065	-065	. 045	. 065	.070	.075	• 075	. 075	.080	• 090	. 080	. 085	.085	. 085	• 000	.060	-050	.050	6.0
TOTAL PHOS.	H6 /L	.180	.213	.190	.210	.175	.160	.140	.130		.130	.130	.210	.507	.598	906	1-120	.941	906.	.932	.003	.77.	.671	.728	.637	.457	.395	.353	.287	.306	.509	•666	.715	.392	.352	.283	476
7.0£ CF\$		1260.	1570.	2539.	3115.	2392.	1678.	1200.	1030.	992.	978.	1150.	1756.	5480.	5356.	4190.	3724.	3253.	2934.	2626.	1588.	1350.	1200-	1080.	1920.	1020.	1160.	1883.	3796.	1648.	4674.	+++0.	4240.	2392.	2080-	1732.	1485
71M 246	Ŧ.	930	100	900	900	906	9	906	2100	300	900	1500	1900	100	1300	100	700	1300	1900	700	100	700	1300	1900	100	700	1300	1900	100	700	1300	1900	100	1700	2300	500	1100
186	5	11	=	5	20	21	22	23	23	5	2	3	3	25	25	5 6	26	5 6	5 6	27	5	59	58	5	23	62	23	29	30	30	30	30	3	-	-	N	•
SAMPL DATE	Ş																	~																			
15	5	5	5	2	2	75	75	75	5	75	75	23	2	2	25	75	75	75	75	2	5	25	75	5	5	73	5	75	75	75	2	75	75	75	75	75	1

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

SANDUSKY RIVER
NAS :
STREAM

OH10
FREHONT.
. NEAR
W/CODE
LOCAT 10N

COND 25C. UMHO		722 724. 724. 724. 726. 706. 710. 66.
IRON RG/L	· ·	
\$102 HG/L	4 4 4 4 9 N N N N N 9 N N N 9 N N 9 N N 9 N N 9 N N 9 N N 9 N N 9 N N 9 N N 9 N N N 9 N N N 9 N	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CHLO RIDE MG/L	66 66 66 66 66 66 66 66 66 66 66 66 66	4
SUSPEND SOLIDS MG/L		94.90 11.00
C00		
TOTAL KJELD MG/L		
ORG. NIT. MG/L		
NH-3		
NO-2 NO-3 NG/L		
ORTHO PHOS. NG/L		00000000000000000000000000000000000000
TOTAL PHOS. MG/L		152 59
FLOV		
ING TIME 2400 DY HRS.		
SAMPLING DATE YR NO DY	***************************************	

LAKE ERIE WASTEWATER RANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: SANDUSKY RIVER

STREAM

04198000	
USES NO.	
OHIO	
: NEAR FREHONT.	
LOCATION W/CODE	

COMD 2000 CHC.	575.	576.	571.	593.	611.	656.	678.	701.		114		900	744		607	724	719.	693.	694	706.	732.	735.	742.	134.	738.	723.	711.	715.	771.	119.	176.	778.	152.	612.
IROM NG/L																					•													
\$102 #6/L	8.14	11.70	10.40	10.40	10.00	5.55	4.62	44.0	***	66.1		2000	04-51				12.40	12.00	13.30	12.50	13.00	12.50	12.10	10.80	11.20	10-30	10.20	8.90	11.00	11.40	11.20	12.10	11.80	14.50
CHLO RIDE NG/L	29.50	30.00	31.08	34.00	34.00	46.00	49.00	51.00		20.00				37400				64.00	65.00	75.00	77.00	78.00	15.00	75.00	73.00	72.00	72.00	72.00	83.00	82.00	83.00	81-00	19.00	76.00
Ne/L Solids Suspend Suspend	67.90	45.20	30.20	11.00	20.20	14.10	74.80	11.50	0c• L		20.17.2	742.00	90.00		90.6707	264.00		241.00	235.00	224.00	310.00	235.00	226.00	274.00	537.00	358.00	290.00	280.00	1597.00	287.00	375.00	323.00	499.00	350.00
7/9W 000																																		
TOTAL KJELD MG/L																																		
086. N17. M6/L																																		
##-3 #6/L	.113	.020	. 042	. 042	500	.592	.139	.112		91.	6/1.	-21/	020	9 1	.510	900		.724	934	. 920	1.050	1.020	.918	.780	.780	-620	.590	.327	1.360	1.160	1.400	1.600	1.380	1.240
NO-2 NO-3 NG/L	5.410	5.310	5.620	4.340	3.790	2.450	2.270	1.920	1.680	1.290	- 656 616	0/4-	021.	001.	999				0 0	000	.020	.010									.020	.020		- 450
ORTHO PHOS. MG/L	000	040	.052	040	• 029	.012	• 022	.025	.013		949	990.		6684	900	000	646	1057	1900	000	. 060	•040	040	.040	.050	.032	. 025	.018	090•	.020	.036	.039	0+0•	.015
707AL PH05. #6/L	.239	178	=	1	10					•	2	-27		2	•29	0 1 1	ה ה		5	5	18	70	67	2	5	73	.657	65	2.026	91	.887	82	20	.784
FL 04	2455.	100	705	534.	471.	368.	345.	332.	338	512.	642.	524	471.	924	674.	607.	100	906	6.52	552	480.	420.	382.	352.	325.	299.	279.	279.	267.	267.	255.	237.	225.	213.
11ME 2400 HRS.	1700	1700	1700	1700	1700	930	930	930	926	926	3	1542	2145	0	945	1040	C+17	0 4	1545	2145	345	945	1545	2145	345	945	1545	2145	345	945	1545	2145	345	945
SAMPLING DATE VR RO DY	75 5 7		. es	2 70	5 11	5 15	5 16	5 17	2	5	5 27	5 27	5 27	2 28	2 5	6	0 0	, c		5 29	5 30	5 30	5 30	5 30	5 31	5 31	5 31	5 31	7	9	9	9	9	9

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

USES NO. 04198000 : NEAR FREHONT, OHIO LOCATION W/CODE

COND 25C.	CHHO	667.	667	•969	747	749.	704.	. 069	691.	712.	•669	999	667	627.	665	639	650	•	605	602	943	579	010	573	604	604	64Z•	603	521.	619.	622.	644.	657	648.	653	658	697.
NO N	N6/L																		•		•																
S102	H6/L	ıñ.	13.60	5.0	15.20	•	4:9	2.5	15.20	16.10	15.40	14.70	15.10	15.30	15.40	14.80	15.40	15.80	÷	14.00	13.70	14-30	14.20	14.20	07.01	12.20	14.00	15.20	15.40	14.50	0	4.5	÷	*:	•	13.90	•
CHLO RIDE	H6./L	49.00	45.00	45.00	49.00	53.00	52.00	45.00	43.00	43.00	•	•	00.44	42.00	51.00	49.00	48-00	38.00	36-00	36.00	34.00	34.00	36.00	35.00	36.00	37.00	36.00	37.00	38.00	40.50	44.00	46-20	47.50	48.00	49.00	ċ	50.80
SUSPEND SOLIDS	H6/L	326.00	•	37.0	26.0	391.00	24.0	69.0	438.00	303.00	524.00	390.00	673.00	765.00	2975.00	3359.00	1671.00	409.0	1017.00	1326.00	427.00	379.00	424.00	356.00	369.00	408.00	292.00	200.00	483.00	292.00	1311.00	344.00	248.00	334.00	211.00	191.00	187.00
000	H6/L																																				•
TOTAL KJELD	MG/L																																				
ORG.	N6/L											-																									
N-II	1/9#	.922	.107	•836	.107	.135	.131	• 984	.740	• 685	.515	• 062	.034	.038	. 748	.551	• 455	.080	• 069	•164	040	• 036	• 035	• 030	• 030	• 025	• 020	• 030	• 025	. 035	.038	• 039	.036	.061	.070	• 066	.038
NO-2 NO-2	H6/L	.048	.027	.027	.023	.020	• 025	.020	.015	.015	.013	6.300	7-620	7.080	1.200	1.700	1.700	900-9	5.490	5.520	6.420	6.300	5.400	6-100	6.270	6.220	009-9	. 70		7.710	5.020	.31	8.200	8.000	7.160	7.110	9.990
PHOS	H6/L	. 055	• 056	• 055	040	• 064	040	040	.042	0+0-	• 055	. 055	. 060	•106	. 060	• 060	.058	.063	.028	040	.070	• 060	.067	.063	• 060	.060	.067	• 0 62	.070	.073	• 075	.100	.087	.109	.125	.080	.082
TOTAL	H6/L	.673	.887	.863	.867	.824	.931	.785	.819	.926	.770	.629	. + 78	.958	. 49	.50	1.430	.13	.09	1.250	.692	.585	•09•	.532	.585	.595	***	.375	.697	.362	.984	.403	• 417	.408	0 + 4 .	.366	.389
FL 02	•	213.	219.	237.	286.	368.	375.	375	368.	368.	375.	396.	428.	188.	562.	684.	716.	833.	937.	885.	820.	762.	. +69	632.	581.	534.	585.	+88+	462.	428.	390.	352.	325.	299.	273.	255.	237.
11	E E	_	_	N	•	-	_	•	•	~	-			_	_	~		_	-	"		_	_			_	_	"		_	_	~		_	_	•••	
LING	0 07																							. 9									~	-	-4	~	~
4	7 X	-		_											•	10		•		· m	5		_										•			10	

LAKE ERIE VASTEVATER MAMAGEMENT STUDY - MATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION U/CODE : NEAR FREHONT, OHIO

COND USC.		592. 593. 501.
IRON R&/L		
\$102 MG/L		19.20 16.60 10.70
CHLO RIDE MG/L		00000000000000000000000000000000000000
SUSPEND SOLIDS MG/L	11100000000000000000000000000000000000	4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
COD M6/L		
TOTAL KJELD MG/L		
ORG. NIT. MG/L		
NH-3		.038
NO-2 NO-3 NG/L		3.130 2.780 1.810 .799
ORTHO PHOS. NG/L		.058 .063 .021
TOTAL PHOS. MG/L		0000
FLOV		
SAMPLING TIME DATE 2400 YR NO DY MRS.	755 6 111 1000 755 6 112 2200 755 6 112 2200 755 6 112 2200 755 6 113 1000 755 6 113 1000 755 6 114 1000 755 6 114 1000 755 6 115 1000 755 6 15 1000 755 6 25 1000 755 6 20 1000 755 6 20 1000 757 75 75 1000 757 75 75 1000 757 75 75 1000 757 75 75 1000	25.55 27.77 24.50 24.50

LAKE ERIE UASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: SANDUSKY RIVER

STREAM

04198000	
USGS NO.	
NEAR FREMONT. OHIO	
CATION W/CODE :	

SAMPL ING	L ING	1	FLOV	TOTAL	0R TH0	NO.	E I	086.	TOTAL	000	SUSPEND	CHLO	\$102	IRON	COND
# # # # # # # # # # # # # # # # # # #	0	IN S	•	H6/L	H6/L	H6/L	H6/L	H6/L	1/9H	1/9H	1/9H	H6/L	N6/L	H6/L	CHHO
75			•		.009	.460						50.80	7.58		576.
5			55.	5	• 025	.500	.080				36.60	53.00	9.60		581.
25			10	0	040.	004.	.050				94.10	51.50	6.80		569.
75			N	•	.030	• 280	.073				47.20	50.50	5.90		583.
75	~		10	m	.050	.480	.105				35.00	58.00	7.70		622
7.5	-		•	•	.045	.680	.115				50.10	54.00	8.50		598.
22	-		0	m	040	.600	.080				37.00	57.50	8.20		• • • • •
2	7 13	945	46.	.132	.035		.027				•	57.50	10.50		654.
75	_		49.	8	• 030		.035				53.30		7.60		691.
7.5	-	-	N	9	.070	.750	.310				24.80	64.00			643.
75	-	æ	52.	~	• 025	.630	.270				33.80	63.50			671.
7.5	-	-	•	*	• 030	.500	.280				30.90	63.50			699
75	-	W	~	m	•015	.230	.223				47.40	61.80			654.
7.5	~	_	•	3	•020	.100	.238				47.80	60.50			651.
75	-	~	N	•	.015	.100	. 195				80.56	62.10			667.
75	_	~	N	9	• 020	.100	.238				47.00	61-80			661.
75	-	N	13	0	.010	• 030	.172				105.00	65.20		,	681.
75	~	_	1	9	.015		.180				58.80	60.80			691.
75	-	CA.	00	•	.010		• 0 7 0				95.30	62.00			109.
75	~	~	~	3	.015		• 075				31.20	62.70			693.
75	-	N	9	•	• 005		•020				48.60	62.20			711.
75	~	-	8	5	.010		• 0 38				41.90	65-10			7.18.
75	N	N	5	•	.010		.020				41.90	62.40			718.
75	~		8	S	.110	.030	.035				155.00				
75	N	~	9	S	.027		.075				119.00	52.00	.51		762.
75	N	~	Ň	S	• 029		• 095				50.30	26.00	.44		172.
75	~	~	9	2	. 021		• 072				192.00	57.00	99.		758
75	N	-	92.	3	• 035		•178				129.00	51.00	.65		722.
75	N	~	8	8	• 064		.075				09-99	52.00	.87		734
75	Ñ	_	55.	8	• 082		• 035				20.60	26.00	1.09		753.
75	N	~	9	1	.051		.034				51.70	60.00	1.27		747
75	~		40.	O	.135		• 055				65.70	76.00	1.58		729.
75	~	-	0	•	.210	.050	•230				35.40	84.00	4.16		859
75	N	-	•	~	.154	.030	• 086				48.30	99.00	4.72		748
75	m	-	Ð.	-	.122	•050	.148				44.90	0	4.42		755.
75	17)	_		*	• 095	.020	• 040				45.90	18.00	5.36		767.

143

LAKE ERIE WASTEWATER MARAGEMENT STUDY - WATER. QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STAEAN : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREHONT, OMIO

COND 25C. UMMO	767.	6006. 6024. 6024. 6024. 6037. 742. 742. 742. 753. 764. 753.
IRON MG/L		
\$102 M6/L	50000000000000000000000000000000000000	
CHLO RIDE NG/L	000	N N 4 4 N 4 4 N N N N N N N N N N N N N
SOF 10S SOF 10S SOF 10S		
C00		
TOTAL KJELD MG/L		
OR6. NIT. M6/L		
NN-3 NG/L		
NO-2 NO-3 NG/L	10000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ORTHO PHOS. NG/L		00.00000000000000000000000000000000000
707AL PH0S. N6/L		
FLOW		
SAMPLING TIME DATE 2409 YR RO DY MRS.		75 9 23 300 75 9 29 1200 75 10 2 1200 75 10 3 1200 75 10 5 1200 75 10 6 1200 75 10 6 1200 75 10 6 1200 75 10 10 10 10 1200

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREMONT, OHIO

COND 25C. UMHO	739 . 729 .	753. 750. 760. 750. 748. 777.
IRON MG/L		
S102		
CHLO RIDE MG/L	00000000000000000000000000000000000000	
SUSPEND SOLIDS MG/L		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
COD		
TOTAL KJELD MG/L		
ORG. NIT. MG/L		
NH-3		
NO-2 NO-3 NG/L	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21.00
ORTHO PHOS. MG/L	00000000000000000000000000000000000000	
TOTAL PHOS. MG/L	00000000000000000000000000000000000000	000 cm
FLOW	10000000000000000000000000000000000000	N P B M B M B B
NG TIME 2400 DY HRS.	15 620 16 1220 17 1220 18 1220 19 1220 19 1220 20 1225 21 1225 22 1225 24 1225 25 1225 26 1225 27 1225 28 1225 29 1225 20 1225 20 1225 20 1225 21 1225 22 1225 23 1225 24 1225 25 1225 26 1225 27 1225 28 1225	
SARPLING Date Yr mo dy		1100000

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

RIVER
SANDUSKY
BASIN :
RIVER
MAJOR

_	
=	
2	
_	
>	
×	
u	
2	
3	
-	
10	
•	
4	
1	
ā	
Ē	

C110	
STATES OF THE PARTY.	-
9454	
700071	
2011406	

US65 NO. 04198000

COND 25C. UNHO	819. 761.	112.	767.	812.	821.	836.	838.	916.	867.	824.	818.	804	833.	833.	847.		682	879.	986.	886.	661.	9 4 6		000	9 6	136.	917	155	140.	768.	762.	778.	776.	176.
IRON NG/L																																		
\$ 102	1.56	2.11	3.65	.77	* C * C * C * C * C * C * C * C * C * C	1.95	2.36	2.91	2.90	1.91	• 16	-52	.57	. 49	1.14	1 • 06	1.76																	
REVLO RIDE MG/L	\$6.00 88.00	86.00	17.00	62.00	90.00	50.00	58.00	64.00	63.00	70.00	68.00	63.00	72.00	70.00	70.00	4.00	78.00	26.00	53.00	54.00	20.00	20.00	99-16	00.00	3 6	90.00		00.64	48.00	48.00	48.00	47.00	48.00	47.00
SUSPEND SOLIDS MG/L	13.40	34.60	29.30	15.10	29.00	16.24	8 • 10	9.40	7.40	9.20	5.60	10.10	7.40	00.4	4.70	4.20	3.70	2.60	96.4	9		97.4					30.00	25.40	ů.	÷ 1	8.70		~	31.70
000 000																																		
TOTAL KJELD MG/L																																		
ORG. NIT. MG/L																																		
NH-3	. 052	.104	.042	.031	***	• 035	•10.	.013	. 017	. 097	.085	.062	• 086	. 105	•075	-	. 073		.140	.150	. 130	040	0110	017.	7	611.	0.1.	•160	.180	•220	- 180	.120	. 060	090
NO-2 NO-3 A6/L	1.100	.840	.700	-190	• 290	.250	-240	.270	.410	.340	.320	.360	.480	.690	•650	.740	.980	• 900	• 900	.750	.700	000	1.100	000.		2.600	20000	3.100	3.500	3.400	3.000	3.200	3-100	3.100
087H0 PHOS. R6/L	.011	.017	.011	260.	.055	• 04	.002	.001	-007	• 964	• 068	.071	.072	- 095	.058	- 064	. 065	.020	0 0 0	• 020		,		9 6	900	.120	0 + 1 + 0	. 120	.130	.120	• 100	060.	.090	
TOTAL PHOS. RG/L	. 150	:	.118	19 C	2	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	90	5	10	.350	.410	7	.350	.458	0.40	.360	040	-105	.141	.129	-106	9	1) C	"	-238	+CZ+	-200	.214	.184	.162	.183	-180	•199
7.0% CFS	145.	145.	138.	213.	267.	286.	237.	197.	180.	123.	123.	118.	123.	118.	123.	145.	163.	174.	243.	338.	336	267	292	- 9 - 9 - 1	131	652.	652.	514.	462.	390.	+24	652.	663.	705.
- 4 I	1230	1230	1230	1540	1546	1540	1540	1540	946	1730	1730	1730	1730	1730	1730	1730	1130	1730	1730	1730	1730	1730	1730	1750	200	1730	1730	1730	1730	1730	1730	1730	2330	530
SAMPLING Date Yr no dv	22	-	-	~	-			-	_	-	_	_	_	~	_	_	8	~	~	N	~	~	Ν.	N C	v (N (N .	~	~	~	~	~	N	N

LAKE ERIE VASTEVATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: NEAR FREMONT, DHIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

COND 25C. UMHO	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
I RON	, ·
S102	
CHLO RIDE MG/L	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
SUSPEND SOLIDS MG/L	00000000000000000000000000000000000000
COD MG/L	
TOTAL KJELD MG/L	
ORG. NIT. MG/L	
NH-3	
NO-2 NO-3 NG/L	
ORTHO PHOS. MG/L	
TOTAL PHOS. MG/L	
FLOU	
7 1 1 E 2 4 0 0 H R S •	11711111
SAMPLING Date Yr no dy	
A A A A	**************************************

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: MEAR FREMONT, ONIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

US65 NO. 84198800

COND	CHAO	755.	749.	823.	331.	357.	209.	235.	209.	207.	210.	223.	241.	259.	272.	275.	274.	279.	288.	298.	308.	316.	334.	342.	361.	374.	403.	+06.	433.	454	478.	+8+	+01.	431.	610.	595.	718.
NOE I	H6/L																	4							•												
\$102	16/L																																				
CHLO	H6/L	43.00	40.00	49.00	24.00	34.00	23.00	19.00	17.00	18.00	18.00	18.00	18.00	21.00	22.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	21.00	23.00	24.00	24.00	24.00	25.00	25.00	26.00	26.00	20.00	20.00	28.00	28.00	46.00
SUSPEND	321:123 H6/L	4.50	4.70	3.20	21.40	229.00	441.00	394.00	327.00	222.00	23.30	151.00	116.00	98.70	109.00	114.00	95.90	106.00	120.00	112.00	91.20	64.80	57.30	66.70	39.60	32.10	55.80	50.20	47.60	32.60	35.30	21.90	47.50	34.60	93.90	31.50	
000	H6/L																																				
101AL	M6/L																																				
086. M17.	1/94																																				
MT-13	7/9H	.260	.270	.300	.270	00+	-260	-530	• 560	•930	.760	.610	.710	.550	.570	.530	•420	•650	•290	.350	• 430	.420	004.	.510	.360	.376	.270	.320	.320	.220	. 290	.360	.240	.210	.240	.270	200
20-5 10-7 10-7	M67L	2.800	2.700	2.700	1-100	1.400	1.300	1.300	1.300	1.500	1.600	1.900	2.100	2.300	2.400	2.500	2.500	2.600	2.700	2.700	2.900	2.900	3.000	3.100	3.200	3.300	3.400	3.500	3.500	3.500	3.600	3.700	2.800	2.500	3-400	3.300	
ORTHO	7467L	.070	.070	090-	.130	.120	•100	.100	.110	•100	.130	.120	.140	.110	.120	.110	.120	060•	-110	•100	.120	.120	-120	.110	.120	.100	-110	•100	•100	.100	.090	060.	.160	.060	.080	•020	
TOTAL	7.03.	.104	660.	.102	.194	.554	.887	699-	699.	.543	.566	.449	.413	.386	M60.	.394	.361	.359	.374	-362	.337	.301	.294	.298	.261	.236	.273	• 260	.251	.215	.222	.191					
20.5	ŝ	. 199	566.	520.	496.	7200.	7200.	7200.	8500.	.0058	8560.	8500.	.0099	. 0099	.0099	.0099	4000	4004	+000+	*000	2000.	2000.	2000.	2006.	1200.	1200.	1200-	1200.	.000	800.	900	800-	680.	540.	540.	500.	- 674
TIME	HRS.	1140	1140	1140	540	1145	1745	2345	545	1145	1745	2345	545	1145	1745	2245	545	1145	1745	2245	545	1145	1745	2245	545	1145	1745	2245	545	1145	1745	2245	1300	1300	1960	100	
9	5								21																												
INPL.	YR HO																																				
3	5 5	76	2	2	2	2	2	2	7	16	76	7	2	2	2	76	2	2	2	2	16	76	7	2	16	2	2	16	2	16	76	16	26	76	16	76	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: NEAR FREMONT. OHIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

25C.	Ž	760	745	25	751,	773	960	99	499	507.	302	305	328	319	319.	330	324.	323.	317.	322.	319.	320.	342	359	273	295	403	+1+	393	329	295	265	00	419	459.	530
JY9M MG/L			• 50	• 50	.70	00.	7	7	2.90	ņ	ŝ	٠.	7.20	•		ŝ	8.20	9.40	6.80	9.30	7		6.10	5.50 0.00	?	7.70	9.00									
\$102 M6/L																																				
RIDE NG/L	36.00	36.00	49.00	•	45.00	~	61.00	44.00	98.00	19.00	80.00	•	9	•	81.00	69-00	54.00	55.00	45.00	51.00	45.00	37.00	•	36.00	•	9	•	•	•	•	•	•	•	•	9	
SUSPEND SOLIDS MG/L	3.30	1.60	6.30	3.30	4.30	9.40	9.90	46.80	64.60	09-29	123.00	121.00	137.00	84.60	84.30	81.30	161.00	165.00	101.00	135.00	125.00	162.00	97.60	73.70	110.00	163.00	176.00	125.00	315.00	685.00	1079.00	1116.00	178.00	136.00	99.70	đ
1/9H																																				
TOTAL KJELD NG/L			.800				009.				1.100				1.400	1.400				1.400				1.500			1.500						1.100	1.500	1.700	
ORG. NIT. NG/L																																				
NH-3	.310	.280	.360	.360	.370	.370	•630	.360	.310	.270	.190	•200	.210	,190	.190	•220	.210	.190	•190	.180	.170	.170	•170	.180	.190	.190	.190	.710	1.000	.320	.800	.470	• 070	• 0 7 0	• 060	1
NO-2 NO-3 NG/L	3.100	3.200	006.	.700	.900	.900	3.000	1.200	2.500	2.000	1.900	2.200	1.900	1.500	1.500	1.300	1.100	1.100	.900	• 900	• 900	• 600	009	.800	.700	•600	• 500	3.600	3.300	3.000	00.	90	4.600	4.600	4.700	
ORTHO PHOS. RG/L	0.00	• 060	.330	.310	.310	3	.280	-240	-180	.190	.170	.180	•210	.230	.220	-220	•210	.220	.230	.240	.240	.260	.270	-290	.290	.300	.320	090•	•100	• 050	• 050	040	040	.050	.050))))
T0TAL PH0S. M6/L			.330	510	.310	.310	.422	.320	.476	.381	.503	.524	434	.368	. 385	.385	.391	.398	.321	.330	.311	.345	.283	.290	.290	.325	. 323	.263	.591	•	1.410	•				
FLOW	450.		450			9	9	9	_	9	2	0	9	2	0	9	2	9	9	0	0	2	8	2	0	8	8	2	0	•	100	100	6210	9	0	4 1
7176 2408 HRS.	9	700	1130	1730	2330	530	1130	1730	2230	530	1130	1730	2330	530	1130	1130	1730	2330	530	1130	1730	2330	530	1130	1730	2330	530	1100	1700	200	1100	1700	1730	1130	530) (
2 P	•	• •	•	•	•	9	2	9	9	=	12	12	12	13	13	2	2	13	=	=	=	=	15	15	2	15	16	91	16	17	11	17	23	2	2	;
SAMPL DATE YR HO	•		۰ ۵									76 2																								

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

RIVER
: SANDUSKY
IVER BASIN
MAJOR RI

						STREAM		: SAN	SANDUSKY RIVER	VER						
						LOCATIO	OCATION W/CODE	: MEAR	R FREKON	FREHONT, OHIO			C 868	NO. 0419	04198008	
. 49) L 386	•	1	2	TOTAL	081110	E0-2	N-11	0 9 8	TOTAL	000	SUSPEND	CHLO	\$102	IROR	COMO
2	147E	≈ 3	tte CFS	-	PHOS.	PH08.	F0-7	794	NIT.	KJELO MG/L	M6/L	50L 10 \$ #6/L	RIDE RG/L	MG/L	1/9#	25C.
	5	_							•			•				
22	2 26	-	1730 2050.	•		:	1.300	. 830		1.206		67.88	20.00			558.
: 2	· ~			:		.050	+:	0.00		.900			28.98			
2	~ (•		•		920	4-100	6		900-1		63.50	29.50			579
2 %	N	P =		•				921.		1.200		51.40	30.00			1
: 2					•	090		. 060				36.90	28.00			:
2				Š	.135	. 060	3.900	.160				33.60	28.00			647.
2				.0		• 050	•	.080					30.00			667.
2				1.		• 0 2 0	3.700	.380					1:0			672.
2				::	.149	.060	3.600	.120				43.70				670.
16					.363	.070	3.700	-110				207.00	32.00			661
2					997	670	9-400	000				711-00	20.62	,		516
2 %													20.00			757
2				•	158	0.00	3.300	900				•	21.00			100
12				.61	.628	.050	3.900	. 080				402.00	19.00			+0+
2				.90	.657	.050	3.600	• 020				390.00	16.00			375.
1,5				12.	.596	090-	4.000	. 060				335.00	19.00		•	386.
2				•	.596	.070	3.900	000				492.00	19.00		•	385
2;				•	909.		3.900	070				357-00	18.00			27.
2;				•			20705	001				00.000				• • • • • • • • • • • • • • • • • • • •
2					613	070	3.600	250				357.00	18.00		-	366.
2				•	.589	090	3.600	090				324.00	17.00			365.
2					.526	.070	3.600	.120				269 - 00	17.00			374.
2				•	.505	90	3.700	• 080				267.00	17.00			379.
2				•	.502	090-	3.890	. 080			•	166.00	17.00			389.
2				•	.442	090•	9	• 100				93	9.0			+0+
2				ů.	.417	090	2	060.		•		9.0	18.00		•	415
2						- 620	=	.170		1.200		ġ	2.0		7.5	+00
2				3.	.246	090-	=	-120		009		•			10.00	475
2	~			•	-200	0.00	4.000	.230		-700		ç,	0.0		9	527.
2;	-				951.	090	٠,	2:		200		7	32.00		4.20	568.
e i	~ •			•	9110	0/0		977		1.00		14.00			2000	3776
=	~			•	FTT	- 40	ů					Š	:		?	963.

LAKE ERIE YASTEVATER MANAGEMENT STUDY - UATER QUALITY INFORMATION

MAJOR RIVER BASIN: SANDUSKY RIVER

: NEAR FREMONT, OHIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

COND 25C.	OMEO	637.	672.	. 59	667.	644.	664.	969	691.	668.	625.	161.	470-	462.	461.	473.	477.	184	492.	509.	521.	536.	561.	. 109	630.	646.	659.	678.	683.	692.	700.	669	688.	679.	672.	673.
IRON	H6/L	2.00																•	•																	
\$102	7/9H																																			
CHLO	H6/L	34.00																						•	•	9	9	9	•	•	9	30.00	•	9	9	•
SUSPEND SOLI DS	N6/L	28.30			7	54.10	9	ď	34.20	7	102.00	9	9	9	•	•	232.00	-	•	•	9	ė	ó	*	7	ó	*	7	7	3	9	29.40	ě	Ň	'n	9
COD	1/9H																																			
TOTAL	7/9H	-100	1.200	1-700	2.500	1.900	3.000	1.500	1.600	1-600																										
ORG.	N6/L																																			
RH-3	N6/L	0.00	.390	• 090	.090	.030	040.	. 020	.030	.060	.150	.080	.010	• 050	.080		.010	.120	.630	. 080			.010	.030		• 080		. 030	.010	.010	.010			.130	.070	.110
NO-2	N6/L	3.300	3.100	3.000	3.000	2.900	2.900	2.800	2.700	2.600	2.900	3.500	3.400	3.500	3.500	3.300	3.300	3.400	3.400	3.400	3.300	3.400	3.200	2.900	2.700	2.600	2.700	2.350	2.000	2.000	1.900	1.700	1.700	1.700	1.500	1.600
PHOS.	H6./L	. 060	• 050	.030	040	.030	•020	• 020	.010	.010	.030	.050	• 050	0 40	.040	040.	.040	940.	.030	•030	• 030	• 020	.030	.020	. 030	.020	0+0•	• 030	. 020	.030	• 030	.050	.050	.040	•030	.020
TOTAL PHOS.	H6/L	.107	.118	.164	•100	.125	.115	.118	.116	-204	-214	.680	. 543	.528	-505	.445	50	.481	5	.387	.348	.316	.272	.200	.151	.135	.119	1	.110	6	60	.109	.089	.097	.099	•095
FLOW		692.	873.	670.	544.	473.	407.	.099	172.	1864.	2140.	2371.	2020-	1696.	1417.	1182.	1012.	886.	795.	726.	680.	650.	590.	499.	449.	517.	535.	473.	482.	+07.	620.	784.	738.	715.	490.	+01.
7 I ME	HRS.	1130	1150	1150	1150	1150	1150	1150	1150	550	1200	1200	1800	2400	909	1200	1800	2400	909	1200	1800	2400	1200	1200	1200	909	1125	1125	1125	1125	1125	1125	525	1115	1115	1115
9 11	6	===	2	91	11	-	13	20	2	22	22	23	23	23	24	ş	2	2	23	23	22	52	5	27	28	29	53	30	~	N	•	•	5	•	•	-
SAMPL 1 Date	2	m 11																														-				
SAO	*	2,2	*	16	16	16	16	16	7.	16	7,	76	76	76	16	16	16	1,6	16	76	2	22	76	76	76	76	16	16	76	76	16	76	16	76	7,	1,5

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

Consequence of the Consequence o

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : NEAR FAEHONT, OHIO

US68 NO. 04196000

COND 25C. UMNO	685.	683.	696•	673.	670.	667.	679	670.	685.	7111-	•999	. 189	706.	716.	733.	745.	749.	763.	640.	679.	669	702.	650.	641.	. 099	676.							•
IRON MG/L																•	٠			•													
\$102 #6/L																																	
CHLO RIDE MG/L	34.08	32.00	33.00	33.00	33.00	34.00	35.00	33.00	35.00	35.00	36.00	36.00	36.00	36.00	37.00	38.00	38.00	38.00	42.00	42.00	43.00	41.00	41.00	42.00	43.00	00.44	49.00	46.00	46.00	46.00	51.00	51.00	49.00
SUSPEND SOLIDS MG/L	15.18	7.00	0 CO	10.60	10.50	9 - 20	26.60	12.60	19.10	23.90	17.10	10.50	15.30	12.50	19.60	14.90	26.00	28.30	20.30	29.60	12.40	22.30	18.50	15.60	13.30	14.60	12.70	12.40	11.40	12.00	23.50	13.60	20.80
C00																																	
TOTAL KJELD MG/L																																	
ORG. NIT. NG/L																																	
MH-3	.080	040	• 020 • 010	.190	•220	•230	-260	.290	.170	• 100	•230	• 260	.210	.180	•220	• 130	• 040	.090	•100	.110	• 070	• 0 9 0	•190	• 130	.180	• 090	.570	.420	.320	.450	.540	.230	• 160
H0-2 H0-3 H6/L	1.600	1.300		906	.900	900		900	-100	-100	• 500	400	004.	004.	. 400	004.	.300	004.	• 700	.600	•600	•600	004.	.300	.600	.700					3.600	5.700	3.900
ORTHO PHOS. RE/L	.010			.010	.010	•010	020	.020	.010	•010	• 030	040.	040.	.030	.050	.020	• 050	• 050	•020	• 030	• 020	.010	• 030	.250	. 020	.010	• 020	• 010	• 010	•010	.010	.010	• 010
TOTAL PHOS. NG/L	.066	-		.075	.052	.061	110	.111	.103	.101	•086	.098	• 089	.085	.093	.091	• 098	. 091	.053	• 0 6 0	.078	.015	-047	.250	.067	.067	.071	.080	.073	.071	.149	.080	•070
FL04 CFS	424.	323.	281.	281.	267.	670.	2415	248.	260.	260.	201.	295.	309.	323.	330.	338.	415.	424.	432.	473.	473.	457.	384.	338.	302.	274.	267.	241.	229.	210.	392.	473.	399.
SAMPLING TIME DATE 2408 YR MO DY MMS.	6 4 8 1115	10	11	4 12	4 13	+ 11+	15.	4 17	4 18	4 19	4 19	4 20	4 21	4 22	4 23	1 24	4 25	4 26	4 26	4 27	4 28	+ 29	4	7 10	2	10 10	5	4	50 10	9	5	S	S
ń ä F	76	~	ř	. F	ĭ	ř.		. Ā	ř	ř	ř	F	7	Ĭ.	ř	ř	ř	ř	ř	ř	~	ř	ř			ř	7	ř	F	7	7	ř	ř

*

And the second of the second o

LAKE ERIE VASTEVATER NANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREMONT, ONIO

COND 25C. UNNO		74	7.	760.	764.	750.	773		00,	727	681	546	653.	738.	771.	74	750.	757	172.	787	770.	759.	774.	791.	775.	778.	759.	656.	479.	569.	636.	543
IRON MG/L															•	•																
\$102 M6/L																		٠														
CHLO RIDE MG/L	40.00	49.00		49.00	49.00	49.00	53.00	53.00		14.00	400	10.00	35.00	38.00	38.00	37.00	37.00	00.00	41.00			43.00	47.00	47.00	47.00	45.00	38.00	33.00	26.00	30.00	32.00	28.00
SUSPEND SOLIDS MG/L	16.60	15.60	17.00	17.10	17.80	11.20	13.20	15.30	06.6	12.40		224.00	53.40	46.60	19.90	45.70	39.10	131.60	38.50	26.20		23.70	13.50	48.40	55.00	209.00	112.00	197.00	279.00	332.00	218.00	397.00
C00																																
TOTAL KJELD MG/L																																
086. NIT. HG/L																																
MH-3	000	1	010		.050	.080		• 010	- 50	96.			090	. 060	. 100	• 0 7 0	040	• 070	.110	. 050		340	100	. 180	.010	.020	.010	.010	-010	0+0	.020	. 020
NO-12 NO-13 NO-13	3.500	000.0	2.900	1.400	1.000	.900	008.	.900	1.100	1.300	2000	13,000	15.500	11.300	8.400	9.600	7.800	7.400	7.900	7-600	9	307.5	3-100	2.700	2.900	3.000	3.400	9.900	6.200	9.200	10.100	12.500
DRTHO PHOS. NG/L	.610	0+0	020	020	.030	.040	.030	. 020	.050	040		020	070	.050	040	000	.020		.040	000	900		• 010		. 830	090	.070	.060	000	.120	•100	.090
TOTAL PHOS. MG/L	.091	•092	000	.073	.077	.070	.087	.115	.125	.198		100	203	•160	.202	.164	.130	.257	.112	660.		47.6	000	.125	.125	.307	.243	.303	.770	.596	.422	.575
FLOV	369.	302.	254.	198.	172.	166.	177.	187.	193.	267.	-667	2182	1118.	680	407	345.	267.	229.	217.	102.	161.	1 2 2	105.	323.	323.	1041.	1400.	1166.	1696.	1960.	2392.	2476.
717E	1110	1100	1100		1100	1100	1100	200	1115	1715	2313			1115	1115	1115	1115	515	1130	1130	1130	11.50	1130	530	1200	1800	2400	900	1200	1800	2400	9
2 2	• =																													~	~	~
¥"	in in																													•	•	•
SAMPLING DATE TR HO DY	22	2	2	2 2	: ;	2	22	16	2	2	2;	? ;	: 2	2	2	12	76	2	16	2	2	2 %	2	75	16	16	7,6	16	75	2	16	16
																															_	

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER BUALITY INFORMATION

HAJOR RIVER BASIN : SANDUSKY RIVER

STAEAN : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREHONT, OHIO

	IRON COND	MG/L UNHO	620	634	631	629	619	613	929	651	681	106	722	728	724	724	728	738	741	642	967	877	274	692	191	164	160	759	.092	756	44	755	758	156	166	767.
	2018	N6/L																																		
•	S T DE	H6 /-	31.00	32.00	33.00	33.00	32.00	31.00	32.00	33.00	34.00	35-00	36.00	37.00	37.00	37.00	37.00	00.00	29.00		11.00		44.00	43.00	43.00	44.00	44.00	44.00	44.00	45.00	45.00	46.00	45.00	45.00	•	00.84
	SOLIOS	16 /L	222.00	207.00	197.00	254.00	206.00	223.00	228.00	179.00	141.00	135.00	107-00	94.50	90.06	16.70	09.00	92.70	67.90	49.20	99.20	94°54	33.50	38.20	40.10	37.30	26.60	33.00	28.50	19.67	18.70	23.80	39.70	32.30	34.20	41.40
į	900	1/9H																																		
	KJELD	H6/L																•																		
į	086. N.T.	1/9H																																		
•	n - I	1/9H	.010	• 020	• 050	•010		• 050	• 020	.100	. 030	•210		.120	• 030	.120	• 0 7 0	.130	090	• 020	9		020	040	• 030	.050	.110	• 050	.050	060•	.230	.170	.070	.110	.140	.150
•	2 - S	N6/L	13.800	13.500	13.000	13.000	13.600	13.000	13.400	13.100	13.500	14.300	14.700	15.200	16.100	16.700	16.900	16.200	15-300	15.300	14-600	204.61	13.200	12.400	11.900	11.400	10-900	10.900	11.200	11.100	10.900	10.700	10-700	10.500	10-400	10-100
	PHON	N6./L	000	.080	.080	080	090-							.070	.070	.070	• 070	.080	000	090	.070		000	940	000	040	-110	• 020	.030	060•	.230	.170	•070	• 100	.140	.150
	TOTAL	NG/L	.393	.359	.321	+0+	.359	.352	.374	.331	.281	.282	-245	.230	.212	-214	.219	.221	-184	.158	•165	94.	126	.124	.129	.122	.113	.117	.120	.108	.230	.170	•120	•120	-140	•150
i	25	•	2161.	1864.	1678.	536	1434.	1417.	1349.	100	1070.	925.	808	715.	630.	562.	508.	457.	415.	376.	345	3636	288	267	254.	235.	223.	217.	204.	198.	182.	177.	166.	161.	141.	125.
	7116	E S.																					1 7 6 6													
		YA MO DY	~	~	N	~	m	n	m	•	•	•	•	₩,	n	'n	I O	•	•	•	91	- 1	- 1-	-	•	•	•	•	•	•	•	•	10	70	=======================================	12
	۳ و	2	•	•	•	•	9	•	9	9	9	9	9	•	•	9	•	9	•	•	•	۰,	0 4	9	•	9	9	9	9	9	9	9	9	9	9	4
																92																				

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : MEAN FREMONT. OHIO USES NO. 0.198000

COND 25C. Unio	778. 735.	751.	732.	754	.00/	727	743.		795.	į	851.		783.		787.	782.	775.	768.	783.	770.	172.	-96-	746.		200	916	-22-	764.	765.	176.	730.	744.	753.	728.
IRON MG/L																																		
\$102 M6/L																																		
CHLO RIDE NG/L	52.60	48.00	20.00	51.00	21.00		52.00	52.00		47.00	41.00	42.00	43.00	45.00	40.00	1	41.00		46.00		46.00		45.00			•	42.00		39.00	39.00	37.00	37.00	38.00	37.00
SUSPEND SOLIDS MG/L	00 · +0 c	47.00	14.70	72.80	47.10	64.50	126.00	124.00	164.00	,	125.00	119.00	104.00	60.70	49.10		53.90		80.20		76.20		96.70		101-00		285.00		50.30	20.60	114.00	112.00	101.00	74.80
1/9H 000																																		
TOTAL KJELD MG/L																															1.500	1.100	1.200	2-100
ORG. NIT. NG/L																													•					
NH-3	.054	.020	•200	.240	.420	.280	907	010		• 010	• 020	.030	.030	. 070	040.		.110		.160		.110		.120		. 050		040.		040.	.030	.010	.010	.010	.030
NO-2 NO-3 NG-3	8.900	9.400	7.100	6.300	5.400	000°C	1.800	3.200		3.200	3.200	2.300	1.400	2.300	4.400		6.200		6.400		6.000		7.900		9.700		11.500		13.100	13.200	10.000	10.000	10.700	10.100
PHOS.	. 650	.070	.090	.060	.050	• 030	900	. 070		.080	• 080	.050	.050	• 020	.070		.070		.080		. 060		.070		. 060		.060		. 050	.050	.090	000	0.00	900
TOTAL PHOS. MG/L	.150	.166	164	.131	.185	100	• 100	6	.250		.305		.247		.219	.211	.169	.179	.176	.239	.212	.234	.231	.484	.174	.164	.221	.226	.380	.307	.236	.225	230	.186
FLOW	95.	90	81.	85.	95.	121.	210	267	323	482.	784.	680.	482.	399.	302.	309.	323.	330.	316.	323.	323.	353.	392.	432.	465.	517.	• 009	640.	620.	562.	508.	415.	376.	330.
7 1 ME 2 + 00 HRS.	500									2305											2305								2305					2300
SAMPLING Date yr ho dv	76 6 14	•	•	•	•	76 6 19	۰ م	ۍ ه	•	•	•	•	٠	•	•	•	•	•	9	•	•	•	9	•	•	•	•	•	•	•	•	•	4	•

LAKE ERIE WASTEWATER HAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

• OH10
FREHONT
: NEAR !
TON W/CODE
LOCATION

US65 NO. 04198060

COND 25C.	CHRO	726.	720.	728.	732.	730.	722.	704.	675.	677.	686.	693.	689.	. 099	627.	633.	653.	. 664 .	656.	615.	602.	608.	609	•909	620.	607.	597.	453.	433.	++0.	453.	461.	484.	485.	492.	548.	515.
NORI	H6/L																																				
\$102	H6/L																																				
CHLO RIDE	H6/L	36.00	39.00	40.00	ō	42.00	0	39.00	37.00	36.00	0	•	38.00	0	0	9	0	40.00	•	0	36.00	35.00	35.00	36.00	37.00	38.00	ā	29.00	0	8	0	30.00	•	•	0	41.00	41.00
SUSPEND SOLIDS	H6/L	71.70	22.60	43.90	119.00	35.00	24.90	82.40	204.00	88.20	60.70	61.80	65.80	73.80	63.90	26.00	57.00	61.10	52.50	54.10	70.20	105.00	94.09	48-40	45.00	45.00	43.70	218.00	137.00	146.00	108.00	102.00	-	-	*	211.00	167.00
000	H6/L																																				
TOTAL	H6.1.	1.300	100	.970	1-670	.780	.940	1.080	1.690	.860	.940	1.250																									
ORG. NIT.	1/9H																																				
N-13	1/91	. 020	.030	.040	• 060	• 090	• 090	• 080	.070	.060		• 070	. 090	•600	.130	• 020		• 020	• 050	.350	.190	.030	• 020	060.	. 180	.310	.330	.100	• 050		.200	.160	.050	• 050	.060	• 030	.200
N0-2 N0-3	H6/L	10.000	10.200	9.900	9.400	9.700	8.600	8.100	8.100	8.100	8.200	8.400	9.000	9.006	8.500	009.8	8.700	8.800	9	0	9	8.300	9	2	9	6	.80	4.940	5.270	.30	.51	.17	4.990	.73	4.480	.300	1.700
ORTHO PHOS.	H6/L	000	.090	. 080	.060	.050	• 060	0 0 0	.030	.010		010	.170	• 030	• 030	•030	.050	.050	• 050	• 020	• 010	• 020	• 030	040	-010			.120	-140	.130	.130	.120	.110	.110	.080	.010	.010
TOTAL PHOS.	H6/L	.189	.146	.193	.271	.173	.184	.203	.349	.188	.148	.189	.287	.184	.161	.167	.167	.171	.162	.153	.192	.231	•165	.150	.155	.142	.162	.437	-307	.296	.281	.266	.207	-214	.208	.410	.269
FLOU CFS	!	260.	229.	223.	204.	204.	201.	295.	281.	254.	217.	193.	182.	172.	161.	150.	141.	137	133.	129.	125.	121.	113.	109.	105.	102.	102.	353.	267.	217.	177.	105.	125.	117.	105.	.99	7.
11ME	ERS.	1100	2300	1100	2300	1100	2300	1100	2300	1100	2300	500	1100	1500	1900	2300	300	700	1100	1500	1900	2300	300	700	1100	1500	1700	1300	100	1300	100	1300	100	1300	1900	1300	100
9	7		9															•						_				N	m	~	•	*	15	15	15	61	20
Ĭ.,	9		•																																		
SAMPL ING DATE	T.	16	2	76	16	76	76	16	16	16	76	16	16	16	16	16	76	16	16	91	16	16	16	16	9/	92	76	16	16	16	76	9,	16	16	16	9/	9,

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: SANDUSKY RIVER

STREAM

MAJOR RIVER BASIN : SANDUSKY RIVER

	COND 25C. URHO	498.	497.		521.	518.	617.	561.	582.	116		000	561.	532.	572.	585.	.989	691.	687.	-089	940	717	758	752.	746.	740.	744.	736.	742.	748.	762.	60.0	9 9 9	700
	_	-			-	-	_																		•-	•-	•-	• -	, -	•				_
04198000	IRON MG/L																		.36	7	Ġ.													
NO. 041	\$102.																																	
	CHLO RIDE RG/L	41.00	42.00		00.4	42.00	00.44	45.00	00.00		20.00			38.00	41.00	43.00	63.00	63.00	63-00	62.00	00.09	90.70	76.00	72.00	69.00	67.00	65.00	90.99	00.99	67-00	67.00	63.50	00.00	04.40
	SUSPEND SOLIDS MG/L	57.40	41.10	94.04	47.20	53.80	29.90	128.00	107-00	20.00		30.00	29.30	37.90	43-60	34.80	34.60	19.00	18.80	17.40	27.70	20.00	32.60	15.40	20.80	19.50	23.40	15.90	17.30	28.50	25.60	41.50	00.1	10.60
	7/9# 000																																	
NEAR FREMONT, ONIO	TOTAL KJELD HG/L																																	
AR FRENO	ORG. NIT. MG/L																																	
••	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.160	.160	901	9 6 7 7	• 030	-110	.080	040	- 256	022.	910	.250	.170	.210	.130	• 0 30	-540	.360	.310	•230	9530		930	.290	.230	.190	.340	.310	.300	• 290	• 356	990	• 9 0 •
LOCATION W/CODE	20-2 20-2 36/1	1.600	1.500	000-1		. 700	. 700	000	.900	1-106		9 6 9 6	2007	.600	.700	.700	.070	-120	-110	090	100	001.		100	.100	.150	.170	.100	.100	•100	.100	.580	.590	-670
LOCATIO	ORTHO PHOS. RG/L			,		.010	.010	.010	• 020	060.				030	.030	. 030	.050	.090	.050	040	0 0			020	• 000	090-	• 060	.070	040	.050	• 060	1100	860.	
	TOTAL PHOS. NG/L	.113	060•	.125	120	.122	.173	.234	-166	.169	400	120	.126	160.	.124	.107	.240	.155	.126	.124	.119	121.	1133	.142	.138	.132	.137	.153	.138	.136	.141	.220	6133	. 131
	FLOW	78.	ż			81.	102.	353.	369.	113.	103		88.	9		78.	45.	41.	+1-	33.	29.			•	430	43.	45.	47.	49.	•6•	+8•	71.	78.	•
	7 1 1 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3	1386	100	1300	1300	100	300	1300	1900	300	200			996	001	700	1300	1300	1300	1 300	300	1300		300	1900	100	700	1300	1900	100	100	1400	300	300
					- 222 232											•											•							
	SAMPLING DATE VR NO DY																																	
	SAN	76	16	9	2 %	::	16	2	2	2	2	2;	2 %		2	76	7,	2	7	16	7	2;	: ;	4	7	76	16	16	1,6	76	16	16	2	9

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : NEAR FRENONT. OHIO

USGS NO. 64198000

COND 25C. URNO	783.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	633. 763. 762. 788.	711. 769. 802. 793.	8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
IRON MG/L						
\$102						
CHLO R IDE R6/L	51-10 49-80 49-20	52	510.10			74.90
SUSPEND SOLIDS MG/L	12.00	17.40 17.40 17.40 17.60 115.60	221.00		90000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C00						
TOTAL KJELD MG/L						
ORG. NIT. HG/L						
NN-3	.296 .218 .167				10000000000000000000000000000000000000	
NO-2 NO-3	99000		1100			
ORTHO PHOS. RG/L			M D D D D D D D D D D D D D D D D D D D		000000000000000000000000000000000000000	
TOTAL PHOS. MG/L						. 1093
FLOW CFS	8444 9844	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	140 F F F			4 4 10 10 10 10 10 10 4 0 4 0 4
6 TIME 2400 7 MRS.	7777 7789	 		- 40	74547 C	
SAMPLIN DATE YR NO D					7444444 7000000	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIM : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

US65 NO. 04198000 : NEAR FREHONT, ONIO LOCATION W/CODE

COND 25C.	894.	887.	989.	891.	900	919.	• 1.06	936.	921.	918.	943.	949.	959.	931.	976.	990.	1002.	980.	963.	936.	929.	936.	942.	974.	923.	926.	962.	966.	926.	994.	•696	951.	1003.	1060.	1043.
IRON MG/L																																	•20	•30	
S102	;	1.30	08.	1.40	1.40	2.10	2.10	1.20	1.60	1.00	1.00	2.00	3.20	2.30	2.00	2.50	4.80	2.60	2.10	1.70	1.10	• 90	.80	. 60	0	1.50	• 50	. 50	09.	0	• 70	08.	2.20	3.10	4.30
CHLO R 10E RG/L	74-70	62.50	60.80	60.80	59.70	61.60	59.00	58.30	56.50	55.70	58.60	58.20	60.39	58.50	58.00	57.80	62.30	62.60	.62.30	61.50	62.10	65.40	67.10	68.60	69.46	69.40	73.00	73.80	69.30	78.80	72.20	70.50	65.80	68.10	09.69
SUSPEND SOLIDS MG/L	17.90	9.10	9.00	6.70	5.90	6.10	5.90	7.30	7.60			2.90	2.50	3.00	2.40	6.10	6.10	6.20	5.90	6.30	6.50	5.90	5.50	7.20	9.00	5.20	4.80	5.00	00.4	5.40	5.60	6.20	4.30	5.50	5.70
C0D																																			
TOTAL KJELD MG/L						•																													.900
ORG. NIT. MG/L																																			
NH-3	.036	.286	.138	.149	. 196	.129	.329	. 134	. 365	.188	•192	.167	.148	.129	.143	. 121	.127	• 068	.077	940.	• 080	• 059	.048	.032	• 045	.043	• 076	• 055	• 018	• 029	• 021	• 066	.073	• 106	.235
NO-2 NO-3 AG/L	. +60	664.	.330	.380	.240	.310	.370	.260	.270	.270	.230	.290	.360	.330	.370	.480	0440	.560	.500	.420	.460	.630	.780	.870	.670	.670	.610	-510	.560	.590	.580	.610	. 750	. 700	. 660
ORTHO PHOS. MG/L	600-	700		.007	.039		.013	• 005	-102	040	.045	.053	. 048	.038	-062	040.	.035	.030	.018	.021	.017	.033	.023	.012	.016	. 022	.019	• 020	•019	.028	• 023	• 028	.024	•019	.043
TOTAL PHOS. NG/L	.108		.078	.089	.127	190.	.078	.058	.115	.057	.071	.080	990•	.061	• 092	.058	.093	• 064	040.	.052	.052	.048	- 062	•020	• 056	.047	•056	.049	.055	•076	• 065	•055	• 069	.065	.090
FLOU	91.	78.	81.	88.	91.	99.	95.	95.	86.	85.	95.	95.	91.	88.	85.	78.	78.	7.	69.	57.	61.	61.	59.	57.	52.	57.	78.	61.	61.	.69	61.	59.	59.	60.	58.
71ME 2400 HRS.	700	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1360	1300	1300	100	1300	1300	1360	1300	1300	1360	1300	700	1145	1360	1360	1300	1300	1360	1300	700	1300	1360	1360
SAMPLING DATE YR NO DY	10	76 10 25	9	0	0	10	7	=	=	=	=	=	Ξ	1	=	=	11	Ξ	=	1	=	=	=	=	=	=	11	11	-	1	11	==	=	=	12

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: NEAR FREHONT. OHIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

COND 25C. URHO	1.062.	1132.	1098.	1164.	1162.	1129.	1122.	1177.	1205.	1146.	1142.	973.	1.062.	1029.	1055.	1070.	1199.	1091.	1127.	1149.	1 095.	1115.	123.	1212.	1241.	290	279.	284-	1268.	283.	1226.	291.	300	322	.080	1360.
IRON NG/L	••											•19						•		-7			-	-7	~~	~	-	-7		-		-	7	-		
SIO2 NG/L	2.98	•51	1.05	. 81	. 35	.35	.76	84.	.51	. 47	•24	.41	. 55	• 50	.47	• 24	.41	• 69	1.18	.82	• 39	04.	• 76	• 68	• 45	1.13	.47	• 98		•61						
CHLO RIDE NG/L	75.20	75.20	67.20	71.10	70.70	62.90	69.70	19.80	79.20	80.00	74.70	66.50	64.10	62.40	62.00	61.90	100.00	17.70	73.30	77.50	73.70	75.00	78.30	88.00	87.50	88.30	83.90	84.70	86.20	84.90	85.30	88.40	87.20	89.70	165.00	100.00
SUSPEND SOLIDS NG/L	4.80	13.60	5.50	8.90	10.20	9.00	7.00	6.50	5.40	2.10	2.90	2.80	2.80													3.70	2 - 40	2.20	23.36	7.50	16.90	24.80				
7/9H																																				
TOTAL KJELD MG/L	.700	1.400	.700	1.000	900	.900	1.000	.700	.800	.700	2.400	006*	-800	.700	.700	• 900	.800	.700	. 700	.800	.500	.700	-900	1.100	.700	.700	.700	.900	.300	.925						
086. N17. M6/L																																				
NH-3	990.	.212	.243	.411	.263	.213	. 262	.311	.133	. 165	1.160	.411	•164	.186	.165	• 206	. 162	.126	.163	.112	.140	.073	.118	.157	.148	.231	•249	•200	• 006	.492	.293	.377	. 295	.282	.305	.330
NO-2 NO-3 H6/L	.710	.720	. 580	000.	.740	.680	.670	•710	.720	.710	.710	.750	.080	.780	.850	.930	1.000	1.010	1.160	1.260	1.260	1.260	1.290	1.380	1.470	1.610	1.650	1.730	1.560	1.740	1.710	1.710	1.800	1.850	1.640	1.670
OR THO PHOS. MG/L	.017	.140	-067	040	.035	.042	.037	.061	.035	.073	.110	• 068	.097	.047	.077	• 086	.073	.054	.037	• 030	• 034	.036	.042	•066	. 055	• 0 7 9	.010	.061	• 016	.067	• 0 •	.036	.058	• 082	.081	• 082
TOTAL PHOS. NG/L	6.62	.201	.098	.074	.057	190	• 069	.112	.077	.138	•169	.107	.212	.082	•179	.231	.141	.097	980.	.063	.061	.063	.080	.118	.103	.136	.127	.125	.167	.118	.120	.112	.121	.133	.140	.150
FLOW	60	52.	52.	52.	52.	52.	53.	54.	55.	52.	58.	64.	74.	76.	78.	85.	78.	74.	• •	•	84.		83.	90.	78.	78.	75.	72.	64.	55.	55.	53.	52.	52.	52.	52.
11ME 2400 HRS.	1300	1900	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1300	1300	1300	100	1300	1300	1300	900	700	1300	1300	1300	1300	1300	1900
SAMPLING Date VR no dv	12	12	12	76 12 0	12	12	12	12	7	15	12	12	12	7	12	12	7	12	12	12	75	12	7	12	12	12	12	12	12	-	-	~	-	-	-	-

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

US65 NO. 84198000 LOCATION W/CODE : NEAR FREHONT, OHIO

SAMPL ING DATE	11ME 2400	FLOV	TOTAL PHOS.	ORTHO Phos.	NO-2 NO-3	NH-N	086. NIT.	TOTAL KJELD	000	SUSPEND SOLIOS	CHLO RIDE	\$102	180 N	COND 25C.
	HRS.		H6/L	H6/L	H6/L	H6/L	7/9H	N6/L	#6/L	N6/L	1/9H	H6/L	H6/L	
	700	52.	.139	.073	1.440	-284				8.50	84.70			1253.
	1900	N	.154	.081	1.540	.282				9.90	17.70			1199
	1900	N	.146	•109	1.640	-285				3.00	77.40			1211
_	1900	N	.163	.116	1.710	.312				2 - 00	75.20			1226
	1900	52.	.186	.142	1.680	.332				3.20	72.30			1217.
	1900	52.	.124	-112	1.780	.428				3.30	124.00			1566.
	1900	~	.121	+116	1.770	. 438				2.00	100.00			1382.
_	1900	N	.181	.126	1.760	. 593				2.80	84.80			1327.
_	700	53.	•185	.124	1.770	. 592				2.70	82.50			1328.
•	1300	•	.250	.126	1.650	•616				4.60	82.70	4.58		1303.
_	1300	9	.179	.123	1.480	.634				5.20	79-10	4.16		1340.
_	1300	N	.172	.122	1.310	.617				4.50	75.00	4.64		1305.
_	1300	•	.164	.120	1.250	. 559				5.10	72.50	4.47		1245.
~	1300	~	.175	.128	1.280	.537				9.60	71.00	4.98		1198.
_	1300	•09	•166	.115	1.410	.550				4.80	69.10	5.24		1158.
_	1300	1	.162	.123	1.510	.712				4.80	66.40	4.22		1090.
	1300	5	.146	.118	1.370	.713				3.70	66.10	7.33		1078.
_	1300	53.	.146	.133	1.290	. 700				3.60	64.50	40.4		1057.
_	1300	~	•149	•128	1.230	• 655				3.50	64.60	5.31		1049.
_	1300	0	.159	.142	•	.634				3.30	63.50	4.99		1036.
_	1300	0	.170	.142	1.580	. 695				2.90	61.40	4.78		1021.
_	1300	~	•114	.136	1.440	.842				12.40	110.00	4.99		1323.
_	700	52.	.164	.129	1.410	.833				2.60	133.00	5.49		1543.
~	1900	•	.204	.157	1.210	.927				22.80	76.20	ç		1149.
_	1900	55.	.191	.160	1-270	• 786				•	73.00	9.4		1131.
_	1900	ń	.200	.171	1 • 360	.773					10.60	1.47		1129.
	1900	m	.214	.182		.776				8.60	68.90	1.61		1119.
	1900	N	.223	.184	1-440	. 822				2.90	67.90	1.81		1125.
~	1300	51.	.257	• 186	1.490	.683				4.30	77.10	5.08		1097
•	1300	0	.215	.171	1.570	.820				5.10	76.40	5.62		1100.
•	1300	48.	.213	.173	1.530	. 739				0 + • +	77.00	5.46		1112.
_	1300		-217	.178	1.460	1.050				5.90	81.80	5.55		1124.
-	1300	•	.234	.187	1.490	.835				16.20	82.20	5.54		1127.
•	1300	•8•	.291	.224	1.600	. 197				7.90	80.40	5.51		1115

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY AIVER

LOCATION W/CODE : MEAR FREHONT, ONIO

US&S NO. 64198000

COND 25C.		1334.	1251.	1140.	1346.	1068.	963.	932.	690.	884.	868.	872.	699	960.	841.	833.	788.	790.	763.	709.	624.		511.	412.	366.	357.	343.	351.	354.	365.	352.	344.	345.	358.	382.	367.	382.
INORI	H6/L		• 36	4	90.	.57	• 52	61.													~																
\$102	H6/L	5.65	6.50	6.47	9	8.04	6.51	6.18	99.9	6. 08	7.98	8.24	7.43	7.73	7.38	8-27	69.9	7.40	6.93	6.70	5.44	5.47	5.25	5.76	4.39	ç	5.69	4.99	5.19	5.00	4.85	4.41	7	5.89	7	5.28	6.25
CHLO	N6/L	128.00	116.00	111.00	155.00	82.30	80.50	89.20	90.50	90.50	90.30	89.70	89.10	89.20	89.50	87.40	85.20	85.60	83.70	83.00	71.30	69.80	61.80	51.50	46.10	43.90	42.70	43.70	43.70	44.10	44.30	43.30	44.30	45.20	48.00	48.10	48.80
SUSPEND SOL IDS	7 98	9.6	12.60	17.30	17.20	23.00	16.70	16.20	12.30	6.70	12.80	15.10	14.10	18.40	13.50	16.70	16.70	15.10	46.90	82.30	123.00		368.00	372.00	339.00	296.00	276.00	285.00	296-00	333.00	306.00	304.00	277.00	266.00	272.00	250.00	129.00
000	7/9H																																				
TOTAL	79H																										2.900	3.400	3.980	2.830	2.510	2.510	2.280	2.510	2.370	2.220	2.340
ORG.	1/9H																																				
N-13	16/L	1.010	1-170	1-110	1 • 34 D	1.600	1-460	1-470	1.640	1.360	1.340	1.230	1.230	1.110	1.260	1.120	1.130	1.070	. 954	. 192	• 674	•619	•645	• 596	.520	.468	.442	.518	.487	•499	.461	.463	.373	.333	.289	.280	. 336
NO-2 NO-3	194 1	1.660	1.780	1.030	1.780	1.660	2.080	2.440	2.600	2.600	2.600	2.630	2.660	2.670	2.660	2.480	2.380	2-400	2.340	2.300	2-200	2-190	2.320	2.280	2.420	2.640	2.880	3.070	3.230	3.290	3.460	3.540	3.690	3.730	4.010	4.470	5.100
ORTHO PHOS.	H6/L	-244	-255	-264	• 249	.275	.317	.296	.320	.280	.274	.265	•262	.260	.260	.275	.293	.292	.284	.281	-266	•266	.164	.159	.144	•130	•122	.134	.123	•104	.105	060•	• 00 •	.093	.097	• 099	• 585
TOTAL PHOS.	H6/L	.341	.357	.410	•412	.441	.471	•459	.482	.421	.384	.379	.360	.362	.370	• 386	.420	.413	.481	.535	-584	.491	•	1.030	-867	.777	. 700	.863	.763	.766	•660	.630	.595	.571	.588	.522	-585
FLOV		761.	772.	1116.	1468.	1281.	1264.	1027.	847.	772.	715.	680.	680.	650.	490.	562.	490.	680.	899.	6459.	9300.	8348.	6310	16820.	7194	7670	6889	0282	9445	10025.	9532.	9132.	9132.	9188.	8964.	8936.	8320.
11HE 2400	HAS.	100	1300	1300	1300	1300	1300	1300	1300	700	1300	1900	100	700	1300	1900	100	700	1300	1900	100	700	1300	1900	100	100	1300	1900	100	700	1300	1900	100	700	1300	1900	100
	2												22	22				23			23	24			25	25				56				27			28
¥ 11	Ë	~	~	N	N	~	~	~	~	~	~	N	~	~	~	~	~	~	~	~	~	~	~	~	~	~	N	~	~	N	N	~	~	~	N	~	~
SA	*	11	11	1	11	1	11	11	11	11	11	77	11	77	11	11	77	11	11	11	77	11	11	11	11	11	11	11	77	11	11	11	11	77	11	11	11

LAKE ERIE VASTEVATER MANAGEMENT STUDY - VATER QUALITY INFORMATION

MAJOR BIVER BASIN & SANDUSKY RIVER

STREAH : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREMONT. OMIO

USGS NO. 04198000

Name	COND 25C. Unho	377.	515.	566	509. 496.	533.	562.	579.	603.	646.	649.	693.	646.	629	481.	++7.	++9.	468.	479.	472.	+16.	166.	177.	485.	519.	522	545	541.	523
FLUE TIME FLOW TOTAL ORTHO NO-2 NH-3 ORG. TOTAL COD SUSPEND CHLO SIGNED RIVER TOTAL NHOS. NO-3 NH-3 ORG. TOTAL COD SUSPEND CHLO SIGNED RIVER TOTAL NHOS. NO-3 NH-3 ORG. TOTAL COD SUSPEND CHLOS SIGNED RIVER TOTAL NHOS. NHO-3 NH-3 NHO-3		0.0	2.0	900	000	•30				00	.20		•	9 6		00.	9.		70	.10	04.	9	-90	-20	9	• 20	~	?'	
FLINE TIME FIGH 1974. 10	H 9	با (کا	, cı .	→ (V)	vo ◆	IN)				~	~	~	~ •	n a	10	75	11	•	•	70	-	07	_	_	_	.	וח	ម្ចា	r
FLING TINE FLOW TOTAL ORTHON NO-2 NN-3 ORG. TOTAL COD SULPEND NO DY NRS. RO DY NRS. RO DY NRS. ROLL ROLL NO DY NRS. ROLL NRS. ROLL NO DY NRS. ROLL NRS	S102	20 cm	5.82	5.79	5.59 5.58	6.02	6.58	7.22	9	4.96	6.94	7.06	6.75	6.81	6.83	6.07	6.49			6.38	6.33	6.51	6.99	7.15	7.64	80.8	8.50	7.21	٠
PLINE TIME FLOW TOTAL ORTHO NO-2 NH-3 ORG. TOTAL COD NO DAY NRS. NG DAY NRS. N	CHLO RIDE MG/L	49.40	51.10	58.30	51.90 51.70	52.10	54.30	54.90	57.70	58.60	59.20	68.40	64.50	9	7 9	9	ŗ		45.40	45.10	44.90	•	ņ	'n	٥	•	-	ŝ	•
FLIME TIME FLOW TOTAL ORTHON NO-2 NH-5 ORG. TOTAL NO DY HRS. 2 28 700 6945443 -110 4.830 .297 1.800 22.86 1300 5249329 .126 6.550 .236 1.550 1.550 22.85 1300 5249329 .126 6.550 .236 1.530 22.85 1300 5249220 1315 6.550 .236 1.530 1.530 22.85 1300 5249220 1315 6.520 .343 1.530 22.85 1.530 22.85 12.80 1325 .226 1.230 1.52	SUSPEND SOLIDS NG/L	131.00		49.80	170.00	73-60		29.70	29.90	00-861	54.40	41.00	41.00	102-00	263.00	261.00	244.00		176.00	180.00	188.00	151.00	94.80	104.00	102.00	81.70	82.40	67.90	67.00
FLING TIME FLOW TOTAL ORTHO NG-2 NW-3 ORG. NG/L AG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L M	C00																												
FLING TIME FLOW TOTAL ORTHO NG-2 NW-3 FLING TIME FLOW TOTAL ORTHON NG-2 NG-2 S-45 NG-1 NG-1 NG-1 NG-1 NG-1 NG-1 NG-1 NG-1	TOTAL KJELD MG/L	1.580	1.370	1.510	1.240	1.210	1.240																	1.690	1.400	1.540	2.160	1.760	1.480
PLING TIME FLOW TOTAL ORTHO NO-2 NO DY MRS. PHOS. PHOS. NO-3 NO DY MRS. PHOS. PHOS. NO-5 NO DY MRS. PHOS. PHOS. NO-5 NO DY MRS. PHOS. PHOS. NO-5 NO DY MRS. PHOS. PHOS. PHOS. NO-5 NO DY MRS. PHOS. PH	ORG. NIT. MG/L																												
PLING TIME FLOW TOTAL ORTHONS. RO DY MRS. PHOS.	NH-3	.297	. 282	.389	.339	. 394	948	. 135	.112	400	133	•108	•100	• 088	. 126	208	. 233		252	. 188	.176	• 138	•202	• 048	• 048	• 066	0121	• 075	.160
PLING TIME FLOW TOTAL OR PALING TIME TOTAL OR PALING TOTAL OR	NO-2 NO-3 HG/L	4.830	6.360	6.010 5.210	6.420	7.280	7.350	7.460	6.930	9.130	6.380	5.930	6.340	6.350	6.480	7.310	7.850	•	7.970	7.850	7.800	7.920	7.850	8.140	8.130	8.250	8.190	8.000	7.840
PLING TIME FLOW TO TAKE THE TA	ORTHO PHOS. MG/L	.110	.129	.149	.131	.115	. 098 800	. 098	. 089	.140	0.00	.051	-065	990•	.067	990	.067		. 063	-075	.071	• 90 •	• 055	• 067	• 0 7 0	.074	.070	• 062	•050
THE TIME TIME FLOW NO. 1	TOTAL PHOS. MG/L	4 8	32	25		.299	.251	.193		•	.213	.173	.190	.247	.429	104	• 465	•		466	.452	.424	.341	.299	.291	.285	• 262	。234	.212
	FLOW	6945. 5610.	2245. 1315.	925.	2604.	2413.	1921.	1.020	784.	670.	1827	692.	1400.	2934.	4882.	6189	6081.	5610.	5246.	5670	4856.	4544.	4115.	3748.	3368.	3023.	2824.	2780.	3000.
	717E	700	1 300	1300	700	9061	100	1300	1300	1300		1300	1300	1900	2	300	1900	1980	000	1300	1900	100	700	1300	1900	100	700	1145	1900
AAN CLECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC									•	۰.	n v		•	•	13			•	9 6			21	21	_	-	22	22	22	22
AS C C C C C C C C C C C C C C C C C C C	1 0 E	~ ~	n n	n r	P) P)	מו ניו	m :	1 3	m	ا دا	7 P	'n	m	m	n,	0 10	n	n	17	9	n	m	m	m	m	m	m	2	*1
	SAN	!! !!	<u> </u>	7,	:::	: [71	=======================================	11	=:	- [11	11	7;		12	11	7	: [77	7.7	77	77	77	11	11	11	11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: NEAR FRENONT, OMIO LOCATION W/CODE

: SAMBUSKY RIVER

STREAM

US68 NO. 04198808

COND 25C.	515.	511.	500.	504.	504.	492.	513.	900	597		512	527	551.	569.	598.	621.	•009	557.	+85.	427.	424	•14	402		•040	0000	- 100	397	412.	423.	432.	445.		678.
IRON NG/L	5.48	6.80	7.40	6.80	6.10	5.50	4.70	9.0	2.70			00.9	5.00	3.10	3.40	3.40	06.4	8.10	15.00	21.80	19.40	19.80	18.50	17.60	19.10	18.50	17.10	15.90	13.60	12.00	10.70	9.80	1.20	1.30
\$102	7.40	6.51	6.92	6.89	6.58	7.27	6.43	7.59	7-14		0 • 0 C	7.50	8.23	7.65	5.51	6.44	2.67	6.97	7.76	7.35	20.0	7.80	19-9	6.65	19.0	1.29	7 - 18	7.06	6.98	7.38	~	7	ŝ	3.01
CHLO RIDE NG/L	42-70	39.70	39.70	40-20	39.80	38.70	39-10	40-50	42.90		33.60	35.90	37.30	38-10	42.20	45.00	39.60	35.50	30-70	26.70	27-30	26.10	20.90	21.50	20.10	19.30	19.20	19.40	19.90	20.60	21.10	21.50	36.60	37.30
SUSPEND SOLIDS MG/L	79.80	97.40	111.00	206.00	91.70	84.30	99.00	47.80		05.50	126.00	133.00	112.00	69.70	72.00	73.50	115.00	221.00	382.00	485.00	485.00	394-00	279.00	277.00	248.00	262.00	243.00	232.00	232.00	177.00	174.00	102.00	49.80	06.04
C00																															•			
TOTAL KJELD MG/L	1.500	1.570	1.710	1.790	1.530	3.400	1.160	2.060	2.060	10101																								
OR6. NIT. H6/L										-																								
NH-3	.178	.073	.078	• 058	. 081	.137	- 565	+02+	640	700	120	400	• 024	.162	.103	.076	• 024	.058	.115	.115	-202	• 169	. 031	• 027	• 030	• 029	• 109	.119	• 069	040.	.035	.030	• 086	.113
20-2 20-3 26/L	7.720	7.510	7.780	8.010	8.080	7.970	7-840	7.780	7.320	0.4.0	7.610	7.430	6-820	6.470	6-060	6.130	5-880	5.350	4.860	5.160	5.600	5-710	6.310	6.370	6-120	5-940	5.860	5.810	5.990	6.080	0 9 0 • 9	6.090	4.100	3.660
ORTHO PHOS. MG/L	999	96.	.073	• 065	.067	090	000	840.	240	160.		999	.068	.064	990.	.067	• 024	. 061	.070	.075	.080	- 00	. 105	-106	•60•	. 089	• 083	• 079	. 680	.080	.071	•10•	. 046	.052
TOTAL PHOS. NG/L	.236	276	.300	.225	.261	.236	-208	.177	-148	291	0110	292	.265	.189	.199	.199	.248	•366	.603	.786	.720	.734	. 708	.675	• 708	.682	•635	.599	.533	.473	.415	.392	.133	. 085
FLOU	4065.	5012	5012.	5064.	5142.	4908	3092.	1826.	1400	1264.	1642.	3069	2140.	1214.	1070.	1400.	2476.	5012.	6432.	6702.	6540.	6216.	6081.	6027.	6 000 .	6054.	5896.	5584.	5194.	4778.	4265.	3820.	526.	•65•
71ME 2400 MRS.	100	1300	1900	100	705	1300	1300	1300	1300	907		1 300	1300	1300	1300	1900	100	700	1300	1900	100	100	1300	1900	7 00	700	1300	1900	100	700	1300	1900	1300	1300
SAMPLING DATE VR HO DY	77 3 23) P	•	m	m	m	m	•	m (י מי	n #	•	·*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

LAKE ERIE KASTEMATER HAMAGEMENT STUDY - WATER QUALITY IMFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: SANDUSKY RIVER STREAM

0HI0
FREHONT
. NEAR
ON M/CODE
LOCATIO

COND 25C. UMHO	690. 670. 659.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	652. 631. 631.	6.44 6.44 6.24 6.24 6.34	
IRON MG/L	1111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 · · · · · · · · · · · · · · · · · · ·	4	100.7 100.7 100.00 100.00 100.00 100.00 100.00 100.00 100.00
S102	7.23	1 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		4 4 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.00 6.00 6.00 6.00 7.00 7.00 7.00 7.00
RIDE M6/L	37.70 31.10 40.70	52 60 52 60 54 60 56 60 66 60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
SUSPEND SOLIDS NG/L	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	69.90 64.80 70.20 39.60	2 4 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	133.00 2540.00 1851.00 1955.00 185.00 175.00 1175.00 1186.00
C0D					
TOTAL KJELD MG/L			1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2	
ORG. NIT. MG/L					
NH-3	.126 .068 .096	. 203 . 199 . 151 . 151			200. 200. 200. 200. 200. 200. 200. 200.
NO-2 NO-3 NG/L	3.200 7.860 2.710 2.000	1.250 1.250 1.250 5.250 5.350 5.30	6.390 7.580 7.580 6.360	6 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
ORTHO Phos. MG/L	.030 .121 .038		6000 6000 6000 6000 6000		0000 0000 0000 0000 0000 0000 0000 0000
TOTAL PHOS. MG/L	.108 .121 .116		. 154 . 158 . 158 . 167	.102 .120 .117	6 1 4 4 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6 6 6 1 6
FLOW	415. 376. 274.	254. 281. 281. 873. 1845.	2203. 1980. 1980. 1417.	968. 772. 703. 795.	2890 4090 64882 4194 4198 4098 2098 2098 2098
717E 2408 HRS.					1900 11400 11400 11400 11400 11400 11400 11600 11600
ING O	110				4 N N N N A A A A F F F F B
SAMPLING Date Yr mo dy	1111				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LAKE ERIE WASTEMATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN ; SANDUSKY RIVER

: MEAR FREHONT, ONIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

USSS NO. 84198888

COND 25C.	545	567.	575.	5	596.	624.	647.	663.	705.	702.	683.	969.	732.	891.	750.	752.	692.	.669	709.	679.	712.	776.	724.	828.	765.	730.	714.	702.	725.	738.	767.	785.	1033.	798.	805.
IRON B6/L	5.00	3.98	3.70	3.50	3.30	2.30	2.00	1.80	1.30	1.00	.70	1.00	.70	.90	9	96.	1.00	1.20	1-10	3.30	2-20	5.80	3.70	3.50	2.90	2-20	1.40	1.40	1.30	96.	2.00	-80	.70	1.70	1.80
\$102 H6/L	7.67	7.75	7.65	7.35	10.40	8.37	8-12	5.80	4.59	3.55	2 - 55	60.4	96.	.93	• 78	.61	.73	•62	.78	1-11	1.87	2.12	2.52	2.06	1-88	1.27	1.16	.91	•29	•26	40.	.35	.13	•29	• \$5
CHLO RIDE MG/L	32.80	33.50	33.60	34.70	31.90	34.00	35.60	36.00	43.40	39.50	40.20	77.40	51.30	62.90	48.50	47.90	46.90	45.00	45.30	47.10	57.00	66.10	60.70	69.30	51.50	48.10	54.30	52.00	47.70	46.70	46.50	47.90	112.00	68.60	24.90
SUSPEND SOLIDS MG/L	116.00	67.30	76.70	70.50	60.80	45.60	38.80	34.10	28.20	21.50	29.80	25.80	36.80	35.60	37.90	33.90	31.00	39.50	31.30	88.60	09.09	153.00	72.70	91.80	63.80	53.40	34.20	24.20	30.10	25.00	64.60	11.50	17.60	49.90	51.30
7/9H																																			
TOTAL KJELD MG/L	1.820	1.750	1.270	1.320																	046.							1.720	-862						1.340
OR6. NIT. N6/L																																			
NH-3 ORG. NIT. NG/L NG/L	0.00	.075	.063	.051	.015	• 020	.042	-047	.07	. 063	• 025	.016	.020	.020	• 026	.020	.015	• 029	.057	.037	. 055	• 054	• 056	.016	. 036	. 236	.178	. 156	.043	• 226	.103	-254	. 355	.302	.139
	8.618 .040 8.510 .056					6.960 .020																													
EH-3		0.310	8.150	8.020	7.680	096.9	6.330	5.760	5-180	4.500	3.760	3.810	3.700	3.750	3.370	3.240	2.880		2.010	2.390	1.930	2.030	2.590	1.760	1.290	.790	1.130	.740	•820	.390	•410	-240	.150	.320	090-
NO-2 NN-3 NO-3 N6/L	8.610	.061 0.310	.057 8.150	.058 8.020	.085 7.680	096-9 990-	.062 6.330	.061 5.760	.847 5-180	.022 4.500	3.760	3.810	.669 3.700	.651 3.750	.055 3.370	.060 3.240	.052 2.860	.041 2.250	.037 2.010	.076 2.390	.107 1.930	.126 2.030	.129 2.590	.096 1.760	.092 1.290	.060 .790	.075 1.130	.051 .740	.077 .820	.057 .390	.051 .410	.043 .240	.024 .150	.020 .320	090•
ORTHO NO-2 NH-3 PHOS: NO-3 NG/L NG/L	663310 .060 8.610 624265 .856 8.510	.241 .061 8.310	247229 .057 8.150	102· .218 .058 8.020	.219 .085 7.680	.172 .086 6.980	.146 .062 6.330	.124 .061 5.760	.104 .847 5.180	.893 .022 4.580	.085	. 699 3-810	.106 .069 3.700	091 .651 3.750	.080 .055 3.370	.087 .060 3.240	.089 .052 2.880	.099 .041 2.250	.092 .037 2.010	.249 .076 2.390	.184 .107 1.930	.367 .126 2.030	.253 .129 2.590	.249 .096 1.760	.215 .092 1.290	.200 .066 .790	.165 .075 1.130	.166 .051 .740	.193 .077 .820	.160 .057 .390	.192 .051 .410	.043 .043 .240	.152 .024 .150	.241 .020 .320	.217 .080
TOTAL ORTHO NO-2 NH-3 PHOS. PHOS. NO-3 HG/L HG/L HG/L NG/L	# 700 1803310 .060 8-610 # 1300 1624265 .056 8-510	5 8 1980 1417241 .061 8.310	5 9 100 1247229 .057 8.150	5 9 700 1102218 .058 8.020	5 9 1300 963219 .085 7.680	5 10 1300 692172 .086 6.980	5 11 1380 553146 .062 6.330	5 12 1300 449124 .061 5.760	5 13 1500 376104 .847 5.180	5 14 1380 338893 .022 4.588	5 15 1300 302085 3.760	5 16 700 201099 3.810	5 16 1300 281106 .069 3.700	5 17 1369 267091 .651 3.750	5 18 1500 241080 .055 3.370	5 19 1500 248087 .060 3.240	5 20 1500 255089 .052 2.880	5 21 1300 210099 .041 2.250	5 22 1300 177092 .037 2.010	5 23 700 166249 .076 2.390	5 23 1300 161184 .107 1.930	5 24 1500 137367 .126 2.030	5 25 1300 133253 .129 2.590	5 26 1300 150249 .096 1.760	5 27 1500 157215 .092 1.290	5 28 1300 113200 .068 .790	5 29 1300 95165 .075 1.130	5 30 700 81166 .051 .740	5 31 1300 78193 .077 .820	6 1 1300 70160 .057 .390	6 2 1300 64192 .051 .410	6 3 1300 61043 .043 .240	6 4 1300 59152 .024 .150	6 5 1300 66241 .020 .320	6 6 700 78217 .080

7

and the state of t

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREMONT, OHIO

Ä 8	FLOW CFS	TOTAL PHOS.	ORTHO PHOS.	20-2 20-2 20-3	P-TH	ORG. NIT.	TOTAL	8	SUSPEND SOLIDS	RIDE	2018	MOM	25C.
)	H6/L	H6/L	H6/L	16/L	1/9H	1/9H	798	N6/L	M6/L	N6/L	798	
	•	.182	. 629	. 830	.164		1.360		54.38	50.40	• 10	1.30	769.
	:	.196	.024	. 120	•126				10.30	52-10	•16	2.10	773.
	9 1.	.120		.270	. 059				20.60	56.00	.37	1-10	200
		.222	.100	.110	690.		1.200		74.70	20.00	1.39	2.40	797
	-99	.148	.067	919.	.016		.610		31.50	04.64	47.	1.50	729.
	81.	.151	• 086	.690	.016				57.50	74.98	.41	1.60	968.
	78.	.203	.118	.570	• 070				93.30	77.30	• 51	2.60	917.
	6.3	.149	.097	.380	• 064				44.30	62.40	:	1.60	166.
	•	.164	-124	0++-	.100				09.44	61.90	•76	1.30	712.
	•	149	148	064	.087				24.90	64.80	.73	2.00	729.
	100		107	490	10.				17.70	65.50	• 59	2-50	786.
			0.00	180	.026		1.760		161.00	59.80	.35	4.50	829.
		26.0	100	004	106) -		19.90	60.80	• 36	1.70	821.
		176		260	171				20.60	55.90	94.	1.00	825.
_	• • •		980	190	150	/			41.70	55.90	.52	.70	625.
	2	1183	200	150	. 286				31.60	54.90	.38	.7	845.
		168	100	.170	.181				42.40	54.60	.51	1.10	853.
	619	.159	.115	-250	.278				34.80	60.70	• 68	1.00	823.
	9	.082))	.450	.101				17.70	64.10	.70	•	824.
	57.	.176		.270	.227				40.40	62.50	69.	1.00	837.
	57.	186	.090	.710	.028				35.60	58.00	• 59	1.10	882.
	40	.153	090	.520	.038				21.70	54.00	.57	.70	675.
	52.	.205	.081	.530	. 013				29.80	65.40	84.	1.00	932.
	49.	.206	.080	.570	. 010				36.20	84-90	• 50	1.10	1042.
	*1.	.225	.077	.810	• 099				26.90	109.00	.47	1.00	1186.
	+7.	.180	.067	1.750	.210				33.00	119.00	. 58	0	1319.
	45.	. 169	. 070	-220	.197				40.10	137.00	.35	1.10	1382.
_	49.	-214	.063	.420	980•				72.40	130.00	. 49	2.00	1345.
300	.64	.193	.070	•210	.251				39.20	120.00	• 31	1.10	1269.
_	57.	-142	.043	. 690	.228				27.70	114.00	•24	.80	1212.
_	-	.160	. 048	049.	. 078				39.90	105.00	• 66	1.10	171
_		.168	.050	.480	.037				36.70	102.00	.74	7	1164.
_	1000	.134	.04	- 700	• 102				36.70	96.10	.95	• 90	1127.
_		.405	•	1-150	. 070				218.00	81.10	1.86	•	921.
_		. 600	-	9.26.0	140				C C E	4	•	•	9 7 0
	•	1			י י					20.00	****)	• 0 0 0

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

: NEAR FREHONT. OHIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

COND 25C.	723.	704.	737.	820.	629.	541.	538.	462.	482.	472.	466.	+94	502.	533.	552.	565.	566.	571.	530.	410.	418.	421.	++9.	441.	441.	578.	495.	514.	545.	571.	575.	591.	659.	683.	559.
IRON C	11.60	14.90	4.90	3.70	22.20	35.00	33.80	27.50	24.00	22.90	21.10	18.20	16.30	17.30	9.40	8.40	8.90	8.50	11.60	24-10	19.80	20.20	14.30	13-10	12.80	7.90	_	• 50	•20	00-	•10		• 70	•	_
\$102 M6/L	4.65	5.28	4.50	3.83	4.27	5.68	5.53	60.9	6 . 33	6.17	6.48	6.74	6.28	6 • 9	6.80	6.32	6.95	6.89	7.02	6.02	6.19	6.25	7.56	6.99	7.24	7.97	7.05	6.77	7.48	6.53	7.82	9.20	5.67	3.68	3.52
CHLO RIDE MG/L	54.70	_	47.20	52.50	42.70	34.30	32.80	27.10	33.50	31.60	29.60	29.90	37.90	39.10	35.40	36.60	34.40	34.40	30.80	24.30	25.00	24.30	25.40	25.60	25-60	58.20	31.60	32.20	38.70	42.40	38.60	36.00	50.50	71.50	46.00
SUSPEND SOLIDS NG/L	357.00	475.00	158.00	105.00	571.00	00-9+9	635.00	751.00	613.00	603.00	528.00	457.00	410.00	455.00	228.00	231.00	262.00	252.00	315.00	613.00	200-00	503.00	333.00	07.0	ó	•	é	6	7	•	ŝ	40.30	~	24.80	33.70
1/9H 000																																			
TOTAL KJELD MG/L								3.680	2.488	2.400	3.840	2-430	2.550	2.590	2.020	1.510	1.910	2-110	2-170	2.580	2.200	2.420	2.260	2.220	1-600										
086. NIT. H6/L																																			
HH-3	.019	.056	. 083	. 073	*90 *	• 059	.077	040•	.031	• 030	• 030	. 047	.041	.037	.032	• 036	400.	640.	.027	• 049	++0•	. 035	• 078	.030	• 039	• 054	.156	.087	.110	.127	. 123	.018	• 019	. 031	. 263
NO-2 NO-3 NG/L	••••	9.370	6.230	4.890	6.190	8.090	9.940	10.400	10.600	10.200	10.800	11.300	11.900	11.300	11.900	12.100	12-100	11.900	11.800	009-6	9.990	10-100	9.870	9.670	9.510	6.350	5.680	5.310	4.140	3.520	3-680	3.510	3.720	3.150	2.630
OR THO PHOS. MG/L	.175	990	990.	090	.061	.058	990•	.113	.107	•109	.110	.104	. 097	.111	.100	.081	.080	• 082	.070	.063	• 069	• 076	• 079	•019	• 076	. 083	•071	-067	-047	.050	• 038	• 036	.053	.042	.029
TOTAL PHOS. HG/L	789.	.683	.302	.237	.776	1.020	.978	.941	.824	.781	.739	099*	.589	•686	•429	. 383	.415	*0 * •	.456	.729	.650	• 664	.553	.528	+6+-	.356	.276	.263	.216	.190	.180	.158	.153	.135	.132
FLOV		2150.	2150	2150.	2150.	1000	1000-	1000	1000	650.	650.	650.	650.	455	+55.	700.	700.	700.	700.	900	900	900.	660.	.099	.099	280.	220.	182.	129.	85.	88.	.69	•99	57.	59.
AMPLING TIME ATE 2408 IR NO DY HRS.	7 1 1300	. ~	7	7 2 1	7 2 1	0	P	7 3 1	7 3 1	٠ ,	•	7 4 1	7 4 1		7 5 1	4	9 ~	7 6 1	7 6 1		7 7	7 7 1	7	7 8 1	7 8 1	7 12 1	7 13 1	7 14 1	7 15 1	7 16 1	7 17 1	7 18 1	7 18 1	7 19 1	7 20 1
404	11		7	7	7	-	7	77	7	77	7	77	77	77	7	7	77	7	77	7	77	7	77	77	7.7	7.7	77	77	77	7.7	77	77	77	77	11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIR : SANDUSKY RIVER

: MEAR FREHONT. OHIO LOCATION W/CODE

: SANDUSKY RIVER

STREAM

COND 25C.	524.	9 6	608.	674.	639.	571.	463.	++0.	451.	745.	604.	551.	533.	488.	475.	457.	499.	501.	520.	564.	594.	655.	761.	853.	781.	133.	669	712.	• 604	556.	• 6 0 4 •	569.	548.	570.	523.
IRON NG/L	900	999	2.00	2.90	2.90	2.60	3.00	2-40	1.70	1.50	1.50	.70	• 70	19.	0+•	.60	2:20	2.30				•	-												
\$102 NG/L	2.98		3-17	3.69	3.07	2.30	4.58	4.93	4.87	4.99	4.27	4.02	4.05	3.46	3.74	3.65	2.17	.73														•			
CHLO RIDE #6/L	38-10	41.00	45.20	38.90	37.60	38.20	31.70	28.00	28.80	95.60	71.10	56.10	50.40	36.90	34.30	30.30	31.80	34.40	38.30	•	38.50	55.70	86.10	99.66	79.10	65.20	54.20	58.80	?	~	~	37.70	•	39.60	•
SUSPEND SOLIDS MG/L	22.20		55.4	75.50	80.10	68.10	67.70	28.60	36.10	36.60	34.30	20.70	27.40	16.60	17.60	15.20	106.00	94.40	80.60	65.70	58.80	\$2.00	87.00	78.10	167.00	132.00	150.00	152.00	158.00	152.00	141.00	146.00	148.00	127.00	92.10
7/9 4																																			
TOTAL KJELD HG/L						1.030	.919	.764	104	1.040	1.180																								
ORG. NIT. MG/L																																			
NH-3	.159		•054	.031	. 039	.017	• 034	.016	.107	.137	• 082	. 045	040	.071	.224	.257	• 065	• 039	.125	.020	• 026	• 084	.173	•100	.077	.100	.152	• 095	.085	. 099	.111	.120	.144	• 102	.087
NO-2 NO-3 NG/L	2.060		2.290	009-	1.130	1-400	2.130	2.380	2-460	2.620	2.410	2.570	2.670	2.060	1.670	1.330	1.440	1.050	1.560	1.490	1.390	1-110	1.190	1.310	.890	1.350	.410	190	.17	•86	1.750	• 76	•	2-210	2.390
ORTHO PHOS. NG/L	.024		.013	•040	.085	.079	.115	. 095	.080	• 082	• 064	• 068	.073	. 045	.047	.052	•054	.040	.116	.087	• 08 7	.091	.116	.090	•078	- 047	• 054	• 066	.082	.093	-100	• 090	• 086	.071	.071
TOTAL PHOS. MG/L	•126	476	.156	.233	.201	.316	.214	.176	.138	.138	.123	.231	.172	.120	.110	.122	.268	.314	.315	-242	.228	.234	.330	.272	.375	.294	.340	.341	.371	.387	.375	.376	• 364	.336	.301
FLOW	57.		726.	35	5	Š	19	17	91.	74.	57.	57.	57.	59.	47.	49.	5	187.	99	137.	117.	5	2	109.	2	2	32	465.	8	Š	6	650.	9	620.	.0+
1186 2408 185.	1980		1900	1300	1900	1900	1900	1900	1900	1900	1300	1900	1900	1900	1900	1900	1900	1300	1900	1900	1300	1300	1900	100	700	1300	1900	100	700	1300	1900	100	700	1300	700
SAMPLING Date VR HO DY	77 7 21		- ~	_	_	_	_	_	-	~	•	•	•	•	•	6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

	RIVER
nacon mivin engin o emposor nivin	SANDUSKY RIVER
•	••
4 4 6 4	_
	STREAM

1	04198000
	CRES NO.
	* MEAR FREMONT. OHIO
	LOCATION W/CODE

0000 250.	0110	499.	506.	500.	505.	490.	537.	625.	565.	555.	578.	561.	615.	611.	613.	605.	626.	621.	610.	659.	629.	.999	670.	98 0•	883.	673.	.899	643.	654.	753.	680.	703.	. 169	619.	68 0.	710.	713.
10 E	187 187										2.20	2.20	3.70	2.90	2.90	1.00	1.20	1.30								2.20	1.40	1.50	1.40	1.50	2.60	1.40	7				
\$102	19H										04.4	2.17	3.59	3.28	4.34	3.19	1.20	1 - 03	64.	09•	• 62	.67	. 93	•91	1.07	1.04	1.09	1.25	1-13	-67	•23	• 70	•28	1.96	3.78	3.40	4.74
CHLO RIDE	#6/L	18.00	19-60	16.80	22.00	18-40	26.70	92.70	29.00	25-60	29.20	29.70	43.50	31.60	29.30	30.40	36.00	33.70	34.60	36.70	37.10	37.60	42.60	87.00	87.70	43.40	57.60	50.90	52.70	75.50	56.50	53.70	53.80	00.00	04.04	44.50	•
SUSPEND SOLIDS	H6/L	106.00	96.90	00.04	20.40	35.80	30.60	34.70	30.90	53.70	61.50	73.00	109.00	66.50	81.20	68.80	52.10	43.70	37.50	36.00	35.70	29.90	42.20	32.80	35.80	57.30	33.30	33.40	27.10	36.70	89.80	33.70	34.20	25.80	34.60	117.00	104.00
900	1/94																																				
TOTAL	16/L																																				
NIT.	N6/L																																				
n- 12	H6/L	. 125	• 029	. 039	-017	. 049	. 132	.116	•114	. 101	0 0 0	.031	.103	.173	• 166	•216	. 043	.031	.031			. 094	.147	.036	.078	. 068	.031	.132	.170	.217	. 238	.105	.048	.039	.050	.039	040
K0-2 K0-3	H6/L	2.648	2.610	2.900	2.610	2.370	2.000	1.940	1.540	1.530	2.110	1.800	1.690	1.280	1.170	.630	.670	.180	.530	•510	.370	.180	.150	.490	.160	.740	-880	.320	•290	.240	• 030	.140	•059	1.090	1.800	1.630	1.610
0 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	•	.117	.116	.102	• 089	-085	.077	-061	.051	840.	.100	• 024	.085	.043	• 013				. 056	• 075	.058	.053	.063	.035	+0.	.067	. 090	• 054	.042	.017				.077	•109	.114	.117
TOTAL PHOS.	H6/L	.292	•269	-280	.210	.179	.173	.173	.180	-217	.213	.217	.285	.239	.228	.180	.147	.133	.128	•165	.153	.121	.141	.113	.131	.188	.182	•146	.130	.139	-203	.124	•108	.132	.158	.271	.270
2 s 2 s		384.	295.	235.	150.	102.	.98	.99	61.	91.	102.	105.	177.	204.	105.	98.	78.	64.	64.	.69	57.	47.	49.	78.	129.	113.	95.	85.	•99	54.	49.	+7.	+1.	41.	.1.	182.	353.
717E		1300	700	1300	1300	1300	1300	1300	1300	700	1900	1900	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1300	1300	100	1300	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300
SAMPL ING Date	NO DY	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6	6	•	•	
55	٢	11	11	77	11	11	77	77	11	11	11	77	77	11	11	77	77	11	11	11	11	11	11	11	11	77	11	11	11	77	11	77	77	11	11	11	11

Consider the Military and Considerate Marian Considerate Considera

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : SANDUSKY RIVER

STREAM : SANDUSKY RIVER

LOCATION W/CODE : NEAR FREMONT, OHIO

COND 25C.	
IRON MG/L	
\$102	
CHLO RIDE NG/L	30000000000000000000000000000000000000
SUSPEND SOLIDS M6/L	
C00	
TOTAL KJELD MG/L	
ORG. NIT. MG/L	
NH-3	
NO-2 NO-3 NG/L	
ORTHO PHOS. MG/L	
TOTAL PHOS. MG/L	
FLOW	
6 TIME 2400 V HRS.	1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SAMPLING DATE YR RO DY	

HURON RIVER AT MILAN, OHIO

LAKE ERIE WASTEVATER MANAGEMENT STUDY - MATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

	MG/L	NIT. KJELO MG/L MG/L	NIT KJELD NIT KJELD NG/L MG/L	HOS. NO-3 NIT-3 ON-1 NOTE COLUMN NO-3 NO-3 NO-3 NO-4 HG/L HG/L HG/L HG/L	PHOS. NO-3 NIT. KJELO PHOS. NO-3 NG/L NG/L NG/L	1 101AL OKIND NO-2 NN-3 OKS COLOR OKS COLOR OKS NO-3 NS/L MS/L MS/L MS/L MS/L MS/L	TIME FLOW TOTAL UNITS NO.2 NIT. CO. STATE OF THE RELL MACK. MACK. MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L
		16/L 16/L 16/L 16/L 16/L	16/L 16/L 16/L 16/L 16/L 16/L	M6/L M6/L M6/L M6/L M6/L M6/L M6/L	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	M5/L M6/L M6/L M6/L M6/L M6/L M6/L M6/L M6	MAS. MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L
	0.09	• 09	09	09	09 09.9. 600	099 9. 640 061	099 9. 640 061
•20	80	80		046 6-800	230 .046 6.800	.230 .046 6.800	400 1478 - 230 -046 6-800
00	202-0	202	•600	042 6.800	330 .042 6.800	.330 .042 6.800	1000 2040 6330 6042 6-800
00	325.0	325	D 00+	033 6.400	40 .033 6.400		1600 2440 • 640 • 633 6• 400
96	2595	2595	.200	6.200	.058 6.200	.058 6.200	250 2458
00.	853	853		050 5.400	050 50-400	.970 .050 5.400	400 2195
00.	808	505	808		550 • 042	.550 .042	1000 1830 - 550 - 042
00	***	**************************************	900•	00009	000000000000000000000000000000000000000	1.070 .058 6.000	1600 1494. 1.070 .058 6.000
00	512-00	512	5.600 512	5.600	•75¢ •140 5•600	•75C •140 5•600	2200 1228750 .140 5.600
00	201	201	000•	015 6.000	290 .075 6.000	•290 •075 6•000	400 1043290 -075 6-000
00	224	224	000•	6.000	000.000	.270 .058 6.000	1000 889270 .058 6.000
90	461	+c1	000•	6.000	210 •067 6•000	.210 .067 6.000	1600 772210 .067 6.000
99				9.000	000.9 .067 6.000	•24C •067 6•000	2200 671. •246 •067 6.000
00	167	167		000*9	270 .072 6.000	.270 .072 6.000	400 588270 .072 6.000
? (000*9	000.9 940. 3	190 016 6.000	1000 522. •190 •076 6•000
9 6	0.641	•	647	5-800	270 .076 5.800	270 .076 5.800	1600 475270 -076 5-800 149
	46.5		•		508° 508° 50		2200 435190 .083 5.800
			00/00		007-00-00-00-00-00-00-00-00-00-00-00-00-	207 - 208 3-700	400 387. 250 0099 0.700
09							CORP. M. COC. DATE . CAS. DOOL
06	16.69	•69				0000 316 0000 0000 0000 0000 0000 0000 0	1860 5490 - 517c - 507c
	32.2(32.2		00000	23.0 21.0 3.100	0010 0010 0000 0010 0010 0000	400 001 100 011 010 010 010 010 010 010
•	25.6	25.6		5.100	170 5116 51100		**************************************
20	21.0	21.0		5,100	104 5-100	170 104 50100	1000 1100 1100 1100 1000 1000 1000 100
08	16.	16.1		5.000	145 5104 55-600	516 5000	ACTION AND ACTION AND ACTION AND ACTION AND ACTION AND ACTION ACT
_	12.2	12.		4.800	170 .130 4.800	-170 -130 4-800	400 272 -170 -130 4-800
.60 5.4	+1.		.800 .420	4.800 .420	4 .080 4.800 .420	•134 •080 4.800 •420	16.0 221
•10	22		.150	4.500 .150	115 .080 4.500 .150	115 .080 4.500 .150	2200 215 .115 .080 4.500 .150
10	22		.110	4.400 .110	129 .090 4.400 .110	129 .090 4.400 .110	400 198 - 129 -090 4-400 -110
10	25.1		400 • 160	4.400 .160	129 .100 4.400 .160	-129 -100 4-400 -160	1000 196129 -100 4-400 -160
0	26.		200 .410	.200 .410	134 .100 4.200 .410	.134 .100 4.200 .410	1600 219134 .100 4.200 .410
20	~		080 00+	4.400 .080	161 .110 4.400 .080	161 . 110 4.400 . 080	2200 662161 .110 4.400 .080
	164	16	800 •110	4.800 .110 16	228 .066 4.800 .110	.228 .066 4.800 .110	400 1735 - 22H - 06C 4-800 - 110
ó,	Š	324	324	554 A.K.OC.3.0	450 000 000 000 000 000 000 000 000 000	426 A A C A C A C A C A C A C A C A C A C	#200 CEC - C
	,			2007	202 202 202	202 202 202 202 202 202 202 202 202 202	000 0000 0000 0000 0000 0000 0000

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

TRE AP : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

COND 25C. Unho	317.	305	304	307	316.	334	358	384	9 0 0	423	-	•11	-066	504	516.	532	546.	558	623	596	594	264	571.	549	558	247	518	12.	477	436	435	434	464.	•69•	498	503.
IRON MG/L																	,			٠																
S102																																				
CHLO RIDE MG/L																																				
SUSPEND SOLIDS MG/L	396.00	335.00	301.00	225.00	186.00	154.00	130.00	103.00	19.40	29.90	26.00	52.30	45.90	36.60	27.40	30.80	27.80	26.40	20.40	33.80	23.30	34.80	34.70	32.50	26.90	27.80	47.10	73.20	71.50	53.60	48.70	37.30	34.70	26.70	25.20	32.50
COD																																				
TOTAL KJELD MG/L																																				
0F6. N11. MG/L																																				
NH-3	.020	• 060	• 030	.010	•200	• 020	.020	.200	.380	.030	.040	060.	.020	.330	.020	.080	.120	.100	060.	.100	.010	.030	0.00	.020	.220	• 080	.950	.940	.570	.260	.250	.070	.130	.110	.120	. 060
NO-2 NO-3 MG/L	4.600	4.500	4.600	4.500	4.600	4.800	4.800	4.800	5.000	4.800	2.000	5.000	4.900	4.800	4.800	4.800	4.600	4.600																		
ORTHO PHOS. MG/L	036	• 020	.02r	.030	.030	•020	.020	• 050	-050	• 050	3 50 •	· 0 •	ગ +0∗	380 •	9 90 •	• 06 C	.120	.130	.126	• 070	• 050	•08€	090 •	• 050	.070	.070	ુ90•	• 060	.070	• 062	• 06 C	· 065	.90.	370.	• 086	• 080
TOTAL PHOS. MS/L	.396	2	•	N	N	N	-	_	.175	_	•152	.138	-145	_	~	.129	•179	.219	.120	.134	.116	_	•125	.116	•	.134	.152	_	N	.179	_	_	.143	~	~	.170
FLOW	. 522.	554	740	216	3350.	320	526	130	937	746.	629.	565.	516.	462.	422.	392.	372.	355.	360.	417.	497.	525.	505.	486.	494.	650.	899.	074	1012.	859	680.	562.	404	454	417.	399.
7146 2450 HRS.	2260	•	•	•	2200	•	0	•	2200	•	0	1600	N	•	c.	ೂ	2209	•	~	•	2300	N.	1100	•	2300	S	_	•	2300	ഗ	_	1700	1	•	1166	
SAMPLING DATE YR MO DY	12.2	12 2	12.2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 2	12 3	12 3	12 3	12 3	-	12 3	12 3	-	_	-	-	-	-	-	_	·-		75 1 3

LAKE ERIE HASTEUATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

The second secon

HAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

US6S NO. 04199000

COND 25C.		376. 736.		390. 395.	399.
IRON MG/L					
S 102			00000000000000000000000000000000000000	88 88 89 44 44 44 44 44 44 44 44 44 44 44 44 44	A.50
CHLO RIDE MG/L		26.00 32.00 46.00	26.00 23.00 23.00 23.00 23.00 20.00 15.00	16.00	16.00
SUSPEND SOLICS MG/L		11 18 19 19 19 19 19 19 19 19 19 19 19 19 19	11111111111111111111111111111111111111	160.00	149.00
T/9H COD				18.00 39.00 38.00	
TOTAL KJELD HG/L					
ORG. NIT. MG/L					
NH-3)) 4	• 130 • 160		•760
NO-2 NO-3 MG/L		4444	10000000000000000000000000000000000000	00 00 00 00 00 00 00 00 00 00 00 00 00	4.200
ORTHO PHOS. MG/L	000000000000000000000000000000000000000	150	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		• 965
101 AL PHOS. MG/L		. 297 290 290 290		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	• 33 €
FLOW		282 319 287 267	787. 2007. 2007. 2008. 3038. 3128. 1318.	14666 115866 115896 116500 116500 116500 116500 116500	450
6 TIME 24:0 THRS.	444		7 2200 8 1000 8 1000 9 2200 9 1000 0 1500		-
ž O	•				7
SAMPLING Date Yr mo dy					

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOK RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

25 C.		* 114		347.		357	142.		+++	609		•	247		467			547.	1		582.			587.		•	262		600	326		603		
IRON	# 6/L																																	
2018	H6/L	9.60	0 · 0 · 0	8.70	8.50	8.50	9 4 80 4	9.30	`	10.90	8.90	10.20	9.00	60.6	10.20	00011		11.40	100	10.70	11.40	9.85	10.30	11.40	10.60	10.40	12.20	0.00		****	7.	11.60		•
RIDE	HG/L		• • •	16.00		17.00	0	•	18.00	24.00			26.00		•	21.00		44	•		36.00			38.00		4	45.00			0000		40.00		
SUSPEND SOL 10S	M6/L		7 - 0 - 0	113.00		06.46	•	n 2 • / /	61.90	53.80	04.49	69.50	51.00	58.70	60-10						42.60	49.70	58.10	40.90	48.50	50.80	41.10	01.44	20.74	20.70	34.70	02.44	22.00	24.50
000	H6/L																																	
TOTAL KJELD	H6 /L																																	
046. N11.	HG/L																																	
NH-3	H6/L	.190	0.00		170	040	• 080	• 160	060	921	180	.275	.152	.193	• 353	.210	.212	.287	.157	• 223	•	962	320	.245	185	.305	.160	.213	.287	.203	. 185	-292	.357	.243
NO-2 NO-3	HG/L	4.200	4.100	* 500 * 500	4.100	4.100	4.200	000	002-4		4.450)))	4.550	4.500		4.600	4.650	i	4.790	4.750		007.4		4.800	4.700		4.850	4.850		5.100	5.150		5.000	5.050
ORTHO PHOS.	H6/L	010	010	• 060	26.0	• 060	.070	070	070	6.20		.140	.085	.085	.210	• 075	• 122	.178	•110	•100	502	•125	.212	157	• 055	.220	.130	•102	•152	•072	.078	.145	•123	•126
TOTAL PHOS.	1/94			32	200		28			, .	10	18		20	25							22	7 6	, 6		2	20		=	2	16		Ξ	
FLOV		10	1204.	- (958.	6	708.	32	6	542	4 5	2 6	6	379.	77	348.	20	50	20	250.	20	2	0 0	2 6	5.0	50	20	20	20	20	20	120.	26	20
11ME	· &	-	N	N	000		~	_	_	~	- •	-				CA						_			-	• ••	• • •	•						-
AMPLING ATE	HO 04	1	_	_	1 12	-		-	-	-	- ·					-	1	1	1	-	-	-					-		-	-	-	-	-	_

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

US6S NO. 04199000

COND 25C.			618.	649.	682.	691.	705.	707.	716.	717	722,	769.	753.	788.	751.	753.	749.	752.		742.	734.	744.	743.	137.	731.	731.	734.	156.	749.	751.	739.	748.	759.	857.	765.	761.	722.
IRON	101																																				
2015	7/96	10.60	12.10	10.20	•	10.90	10.30	10.70	11.20	11.80	9.65	10.40	9.45	11.10	9.35	9.40	9.40	9.45	9.45	9.45	10.60	9.35	10.40	9.20	9.00	9.00	9.00										
CHLO RIDE	1/06		41.00	•	40.00	•	9	•	•	0	•	•	•	•	•	•	46.00	ė						52.00											45.00	•	51.00
SUSPEND SOLIDS	1	40.20	33.80	11.60	17.00	8.30	14.10	7.60	27.30	9 • 60	9.00	9.40	7.30	7.50	7.20	7.60	8.80	7.80	8.30	8.30	00.9	7.20	8.10	7.80	6.20	8.30	7.90	8.50	6.50	14.60	7.90	8.60	•		7.80	7	86.50
000	1																																				
TOTAL KJELD	J 01																																				
ORG. NIT.	H6/L																																				
E-HZ	H6/L	.357	.217	.193	.173	.152	.147	.145	.155	.140	.180	.213	.195	.182	.165	.117	.160	.193	.170	.191	.186	.208	.205	• 195	.245	.280	.272	.175	.128	.147	.145	•170	• 092	.145	.105	• 130	• 183
NO-2	٦٠ / ٩ ١		•	•	•	•	•	•	3.800	3.700	3.700	3.700	3.550	3.450	3.250	3.200	3-150	2.950	2.950	2.950	2.900	3.000	3.000	2.950	2.850	2.700	2.609	2.500	2.400	2.400	2.400	2-350	2.500	2.400	2.300	2.350	2.250
PHOS.	794	.230	.110	.110	.120	.140	.151	.150	•132	•143	.170	.195	.170	.135	.112	.112	•115	.105	•105	.133	.132	.160	.155	• 145	.150	.135	.081	.172	.180	.150	.180	.196	•225	• 205	.160	•205	•240
TOTAL PHOS.	H6/L		• 19 C	• 395	•206	.193	-202	.202	.193	.185	•203	.258	.250	.185	.167	.153	.161	.161	.177	•193	.226	.226	.218	.218	.185	•169	•185	.190	-200	.220	.220	.20%	•260	.22(.225	.255	
FLOV		20	120.	95.	95.	95.	95.	95.	95.	95.	9	6	9	00	10	20	10	10	100.	00	00	00	95	95.	95.	95.	85.	85.	85.	85.	90.	-06	-06	•06	90.	90.	• 06
2400 2400	Ĕ	4	=	=	=	2	un.	=	=	2		Ξ	1	2	·	=	Ξ	2	w	11	=	2	67	=	17	2	W)	-	16	22	•	7	22	•		16	22
SAMPL INC DATE	2																																		1 25		
SAM	¥	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75

LAKE ERIE WASTEMATER MANAGEMENT STUFY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

: HURON RIVER

STREAM

USGS NO. 04199000 : AT MILAN. OHIO LOCATION W/CODE

0.000 2.50.0 2.50.0		606 514		472	744	44	456	459.	475.	492.	506.	525.	546.	540.	369.	340.	298.	312.	345.	371.	384.	+0+	423.	442.	460.	478.	478.	461.	483.	502	520.	541.	552.	616.		625.
IRON RG/L																		·	•	•																
S102																																				
CHLO RIDE MG/L	1 1	10.05		3 6			0	•	33.00	33.00	35.00	32.00	33.00	46.00	26.00	21.00	21.00	25.00	26.00	29.00	31.00	32.00	33.00	34.00	35.00	35.00	36.00	21.00	21.00	21.00	22.00	21.50	23.00	00.04		00.04
SUSPEND SOLIDS MG/L		119.00	145		02.00	73.60	66.70	09.69	52.40	43.10	35.40	31.60	32.20	219.00	676.00	656.00	206.00	338.00	366.00	176.00	117.00	95.10	76.80	55.80	33.60	35.60	33.50	27.20	29.60	29.50	17.10	19.30	18.80	13.70		12.90
C00) }																		51.00	45.00	35.00	37.00	26.00	19.00		٠ ش	18.00				17.00		37.00		41.00	
TOTAL KJELD MG/L	•																		1.200	1.100	1.030	3.800	.700	.700	.700	.700	•600				1.100		.703		.900	
ORG. NIT.																																				
NH-3		6 2 N D		0 1 1	400	312	280	.198	.245	.273	.194	.213	.190	.120	.275	.245	• 190	.172	.147	.149	.135	.130	.124	.141	•131	• 135	.124	.108	• 070	.130	.321	.281	• 065			0.05
NO-2 NO-3 NG/L		2.100				2	.60	.65	.80	•	•65	•	2.600	2.700	3.000	2.750	2.800	3.040	3.450	3.680	3.890	4.030	4.000	4.040	4.120	4.230	4.200	4.110	4.030	4.170	4-150	4.030	3.920	•		1.650
PHOS.		C.60.		- 10	2011	6110	095	.123	.132	•138	.185	• 165	.132	.157	.113	• 092	•098	• 062	• 080	.071	• 075	• 096	• 082	• 086	• 084	• 086	-092	.081	• 097	.115	.103	-105	.123	.215		116
TOTAL PHOS.		0 D Q 0		0 6		3 6	2	•	24	25	25	22	21	n	8	•	69	•	2	~	35	31	•	•	23	0	m	~	16	17	•	~	~			
FLOW		1174.		717	7 40 .	98.4	545	4 02 •	342.	299.	270.	265.	419.	246	506	424B.	888	146	636	212	993.	855.	749.	684.	626.	582.	534.	534.	454	399.	345.	319.	319.	279.	242.	24.2
TIME 24 CO MR.S.		074		0200			1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1030	1630	2230	430	1030	1630	1700	500	1700	500	1700	200	1500	500	
		5 6																											~		М		•		S	
IMPLING 116	:																																			
SA	•	75		C 4		, k	5	7.5	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	15	75	75	75	75	75	75	75	75	75	

LAKE ERIE UASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

USES NO. 04199000

COND 25C.	656.	715.	197	48.0		346.	368.	385.	101	428.	• • • •	•	• 19	•	• • • • • • • • • • • • • • • • • • • •	0000	- 176	6 2 2 2		5.52	556	559.	362.	306.	380.	272.	263.			259.		266.	
IRON MG/L															•	•					-												
S102																																	
CHLO RIDE MG/L	42.50	47.50	47.00			20.30	21.50	22.30	22.40	24.30	24.60	25.00	25.90	26.80	27.00	27.98	26.46	00.67		20.70	31010	36.90	23.30	18.30	17.50	17.00	12.00			12.00		13.00	: } }
SUSPEND SOL 10S NG/L	12.40	8.60	•			211,60	141.00	105-00	69.10	65.20	54.40	85.90	38.30	39.60	29.50	23.10	02.42	020/2	25.10		20.00	189.00	1028.00	1002.00	765.00	734.00	710.00			498.00		389.00	 - - - -
7/9W																						19.00	68.00	69.00	50.00	51.00		51.00	32.00		90.0	22.0	
TOTAL KJELD MG/L																						.700	0000	200	.700	.700		.700	.800		.700		
ORG. NIT. MG/L																																	
NH-3	.030	.030	. 055	. 060	.030	.090	27.0	100	.065	.067	• 080	• 065	. 043	• 058	.055	• 020	.049	. 028	040	000	100	000	200	965	075	060	80	- -		.071		. 23.0	1
NO-2 NO-3 NG/L	3.050	2.800	2.750	2.800	3.200	009		000	5-400	5.500	5.500	5.500	5-400	5.300	5.200	5.200	5.000	4.900	4.800	001.	9-6-6			0000	3.700	3.600	3.580	•		3.440		171.1)))
ORTHO PHOS.	135	.145	.155	•145	• 010	• 050			• 020	.050	.040	-040	.050	• 050	• 000	• 060	.060	• 060	• 070	• 0 7 0	0.00						0.038	}		.041		96.	9
TOTAL PHOS. MG/L					.500	.420	010		150	.150	.150	.180	.120	.120	.120	.120	.120	.120	.120	.120	.110	077	•				757	; ;		.610		4	•
FLOV	263.	292.	196.	396.	3401.	2716.	1982	1372	1070	930	828.	721.	626.	548.	502.	464.	435.	409.	399.	392.	387.	406.	1276.			2210	7466	7479	7306.	6630.	6830.	6380.	2/60
1136 2430 HRS.	1900	9 6	. 0061	900	000	909	9022		999	2200	4 00	000	909	2200	004	000	1600	2200	004	900	1600	2200					9 6	000	1230	1530	1600	1830	2130
													-					-				-						, 4 0		2	5	56	2
SAMPLING Sate Tr no dy	~ 0																																
SAM DATE	5	. v	75	2	75	75	2	C #		2	2	2	E P	75	5	75	15	75	75	75	2	5	C;	C	C	0 4		;		5	75	75	C

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

USGS NO. 04199000 : AT MILAN, OHIO LOCATION W/CODE

COND	9		280.		309.		341.		371.	101		+00+		426.		•		160.		470.	488.	484	495.	503.	516.	522.	531.	538.	544.	551.	558.	565.	570.	573.	609	654.
IRON	H6/L																	•	•																	
2102	H6/L		`																																	
CHLO RIDE	1/9H		13.00		16.00		18.00		20.00	22.08		23.00		24.00		25.00		28.00		28.00	25.10	24.50	25.30	25.90	27.20	27.20	27.80	28.20	27.50	28.20	28.70	29.10	a.	29.90	•	56.00
SUSPEND SOL IDS	N6/L		341.00		129.00		230.00		167.00	151.00		87.30		109.00		77.80		61.00		62.00	58.10	60.30	59.50	41.50	42.50	35.40	39.20	36.30	30.00	25.10	28.30	23.70	26.00	8.7	14.10	12.00
000	N6/L	30.00		28.00		36.00		16.00	6		20.00		22.00		19.00		21.00		29.00																	
TOTAL	H6/L	308.		-800		.700		004.	Ġ	906•	.300		.500		709.		.500		004.																	
ORG.	H6/L																																			
NH-3	MG /L		• 062		.070		-077	,	• 080	070	, ,	• 080		• 069		• 0 74		• 090		• 040	.105	.032	.087	. 087	. 383	• 045	• 046	.112	.105	.446	• 095	• 100	. 295	• 108	.045	.103
NO-2	H6/L		3.340		3.520		3.720		4-120	A. 220		4.260		4.140		4.240		4.180		0+0-4	3.960	3.600	3.480	3.480	3.440	3.420	3.400	3.360	3-460	3.180	3.120	3.130	3.040	.94	•88	2.800
PHOS	H6/L		• 052		*068		.067		• 963	600		.079		.083		• 092		.088		• 102	060•	960•	660.	.105	•175	• 105	•115	•102	.110	.110	• 109	•109	.110	.111	• 105	• 095
TOTAL	1/9H		.492		084.		.411		• 328	970		.268		.264		.232		•224		•230	• 196	.221	.185	.194	.205	.184	•169	.192	•165	.176	.159	.152	.143	.163	•176	.176
FLOV) ;	5350.	4716.	4176-	3064-	355	1845.	1650.	1470		1165.	1067.	1004.	920.	872.	818.	785.	743.	715.	.069	674.	624.	573.	534.	502-	480.	456.	432.	+06.	399.	387.	360.	317.	345.	260.	275.
71PE	MRS.	33	330	630	S.	~	1530	•	2130	0 6	630	930	N	1530	æ	_	30	339	639	930	•	1730	•	530	~	1730	m	S.	-	1730	1	S	•	1739	~	بد
2	٥								52																											
SAMPL ING	2	'n	s	S	'n	<u>ب</u>	s	.	6	n 4		· 60	'n	5	ın	S	S	ις.	6	.	2	S	ب	.	1 0	2	5	٠,	٠,	5	ıc.	50	·C	~	Δ.	_
3 6	>	~	~	7	~	~	~	~	~ 1			-	~	7	7	7	7	<u>.</u>	7	7	7	7.	-	7.	7	7.	7.	1	7:	7	7	7	7.	7	7.	7

LAKE ERIE VASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

US6S NO. 04199000

25C.	CHIO	643.	641.	.919	645.	644.	641.	649	655	643.	9 4 4	• • • • • • • • • • • • • • • • • • • •	551	431	206	263.	200	999	101	0.37 A			472	464	551.	571.	546.	527.	538.	668.	621.	•6••	378.	423.	459.	517.
Z 0 Z	H6/L																				•															
S102	1 /9 1																							•	9.10	6.50	6.15	9.60	6.55	6.50	6.88	8.90	9.35	0	10.50	0
CHLO R IDE	1/9H	_	46.00	-	43.80	-	41.80	_	_	43.00	-	_	_	_	28.50	_	27.20		- 4		Ξ.	10.50		_	<u> </u>	_	_	-	_	_	_	_	_	-	_	
SUSPEND SOLIDS	H6/L	~	-	~	~			•	•	•	•	•	-		_	_	a	-	~ 1	-	Λ.	02.10		۰.		_	ഹ	0	~	•	8	151.00	7		9	
000	H6/L																																			
TOTAL KJELD	H6/L																																			
ORG. WIT.	H6/L																																			
NH-3	H6/L	.083	. 068	660	670	.067	.003	.121	.100	• 066	.061	. 045	.037	• 086	.016	.239	.080	.126	. 097	.015	• 029	• 0 46	9/0	000	100.		0.74	47.0	500	680	10	. 092	6	07	- 092	• 075
NO-2 NO-3	H6/L	2.660	2.720	2.6.80	2.740	2.620	2.680	2.700	2.700	2-660	2.540	2.580	2.860	3.460	3.300	2.540	2.560	3.700	3.700	3.580	3.660	3.600	3.660	3-520	3.920	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		,			0 1	2	00	000		3.760
PHOS.	1	1100	100	ָרָבָּיִרָּיִי בּירַיִּייִ	466	980	. 085	•00•	.114	-101	• 084	•076	• 050	.036	• 026	0 0 0	.033	.042	• 036	• 041	• 029	.035	160.	• 055	080	400	870	9	400	9 6	6	550	.046		1 60	.089
TOTAL	HG/L	26.	8	0 7 6	791	201	161	187	.185	.166	.177	.155	.412	.524	.486	•479	.406	.335	.273	.244	.217	.201	.196	-174) B ()	0 4 7		7 .	- 1		27.	010		0 F C	27.	165
FLOW	,	7 2 6		9 4 6		256	25.1	260.	263.	275.	317.	659	1755.	2675.	2722	2040.	1434.	1070.	782.	653.	635.	573.	545	516.	511.	•13•	• • • • • • • • • • • • • • • • • • • •		40.5	9	1000	•	376	1210.	7	427
TIME	EES.	*	2			6401	7	1245	1845	5	645	1245	1845	\$	643	1245	1845	4	645	1245	1845	÷	645	1245	1400	0000						7 6	700		200	1300
INC	7	¥	n #				9 4				_				60	•	æ	•	•			10	0	<u>_</u>	Б,	- (. .	n 4	- 4		9 6		9 0	, ,	, .	2 2
SAMPLI		,	7 F	•	7 =	3 #) F) ×	P 7	, M	P 7	107	-	947	M	P 7	m	~	m	m	m	m	m	m	m	n ,	o 1	,	n #	3 "	7 ~) F	2 "	n =	3 6	0 10
4 4	5	ļ			C	2 4	ת ה ע	3 1	2		2	75	13	2	2	2	75	2	75	15	73	75	2	73	7	2	C;	2	C	? ;	2 1	. K	2 #	, t) 	5 K

LAKE ERIE UASTEVATER HANAGEMENT STUDY - VATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

COND 25C.	CHHO	555.	571.	357.	307.	315.	343.	392.	411.	430.	454	475.	491.	501.	511.	531.	537.	549.	559.	567.	575.	579.	581.	559.	542.	483.	467.	477.	487.	482.	488.	501.	563.	522.	523.	564.	.065
IRON	H6/L																																				
\$102	H6/L	9.62	9.63	8.48	7.96	8.86	7.35	8.10	8.40	8.60	8.80	9.00	8.80	8.90	8.90	9.50	9.20	9.30	9.20	9.10	8.80	8.70	8.50	8.80	7.90	7.40	7.50	7.60	7.70	8.00	8.10	8.20	8.20	8.20	9.90	7.90	7.00
CHL 0	1/9H	33.00	36.50	22.50	19.00	19.50	25.00	29.50	31.00	29.50	32.50	35.00	38.00	37.00	37.50	38.50	39.00	39.50	39.50	40.00	41.00	41.00	36.00	41.50	37.50	35.50	34.50	35.50	38.00	34.50	36.50	ŝ	38.00	39.50	0	59.00	61.00
SUSPEND	MG/L	15.40	103.00	662.00	930.00	106.00	512.00	270.00	168.00	98.00	90.20	57.00	61.90	31.20	42.20	27.40	30.40	23.10	24.90	13.90	18.20	15.20	16.30	15.30	26.50	106.00	151.00	211.00	176.00	72.60	ç		84.70	46.10	26.70	23.50	34.40
000	H6/L																																				
TOTAL	M6/L																																				
ORG.	H6/L																																				
N-12	HG/L	.118	.161	.202	.131	.126	.100	.110	.110	.110	.100	.110	060*	060.	060•	. 085	.080	.080	.070	. 100	060•	.070	• 080	• 040	.110	0.00	• 100	.100	• 090	• 0 7 0	060•	• 090	.080	.050	.430	069.	•210
NO-12	1/9#	3.470	2.910	2.840	2.630	2.750	2-800	3-000	3.100	3-100	3.000	2.900	2.800	2.700	2.700	2.700	2.600	2.600	2.600	. 2.500	2.500	2.400	2.400	2.400	2.400	2.500	2.500	2.600	2.700	2.700	2.700	• 70	•60	2.700	2.820	9	2.390
ORTHO PHOS.	1/9H	.091	.186	•039	•033	.042	• 050	•055	• 065	.070	.070	.070	• 065	2000	• 075	• 080	• 085	.080	.080	060	.100	060•	060.	.080	060.	• 060	• 0 6 0	093.	•050	•060	• 060	• 066	0.00	• 0 7 0	.116	060.	.100
TOTAL PHOS.	1/9#	.130	.330	.18	1.000	.820	.591	.478	.327	.216	.165	.120	.107	.081	-085	• 095	.115	080.	.093				•	•	.184	•254	.267	.247	.187	.158	.124	.124	.103	.109			
FLOW	•	350.	1995.	3271.	2576.	1510.	1174.	869.	702.	597.	522.	464.	424.	394.	367.	350.	335.	324.	314.	309.	306.	327.	409.	730.	1012.	920.	730.	618.	534.	470.	417.	389.	365.	342.	330.	284.	275.
71 PE	HRS.	1300	1300	1900	100	700	1015	1615	2215	415	1015	1615	2215	415	1015	1615	2215	415	1015	1615	2215	415	1015	1615	2215	415	1015	1615	2215	415	1015	1615	2215	415	930	939	930
9	۵	23																												33	31	31	31	_	-	~	M
SAMPLING DATE	0																							17)													•
SAM	¥	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	15	15	75	15	75	75	75	75	75	75	75	75	7.5	75

LAKE ERIE LASIEVATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

USES NO. 04199800

1/9H
RIDE RG/L
20F1DS MC/L
KJELD MG/L MG/L
MIT. MG/L
N6/L M6/L
PHOS.
PHOS.
ÇFS

LAFE ERIC WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STRE # : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

COND 25C.		639.	•999	619.	701.	716.	726.	694.	711.	718.	726.	719.	711.	712.	679.	641.	648.	563.	472.	509.	552.	587.	608.	622•	629.	631.	631.	630.	633.	644.	+07.	411.	463.	426.	394.	414.	425.
IRON MG/L																																					
S102		5.35	4.96	4.88	*	5.04	5.04	5.48	8.77	96•9	7.48	09•9	8.61	8.23	8.32	9.60	9.34	11.20	11.70	12.30	13.10	13.10	12.20	11.90	12.10	13.40	13.70	12.70	13.80	12.40	11.60	12.80	12.80	12.40	12.40	12.50	14.80
CHLO RIDE MG/L	ļ.	36.00	53.00	52.00	55.00	54.00	51.00	64.00	.61.00	63.00	65.00	65,00	64.00	67.00	67.00	63.00	61.00	56.00	48.00	53.00	55.00	57.00	57.00	59.00	59.00	59.00	60.00	60.00	60.00	62.00	42.00	39.00	40.00	39.00	36.00	37.00	40.50
SUSPEND SOLIDS MG/L	1	28.00	45.00	37.30	44.00	31.80	34.40		54.10	10.70	30.60	41.40	37.10	33.90	74.20	67.60	19.60	199.00	492.00	281.00	249.00	131.00	122.00	132.00	102.00	08.09	87.40	101.00	70.10	87.20	1519.00	950.00	884.00	970.00	692.00	2	301.00
C0D																																					
TOTAL KJELD MG/L	1																																				
ORG. NIT.		÷																																			
NH-3		• 084	.117	• 205	•081	• 193	•119	• 022	• 076	• 025	• 028	• 026	.050	•020	• 025	. 021	0 0 0	• 029	.040	• 030	• 054	.038	.041	.040	• 058	• 050	.071	• 051	• 067	• 055	.114	. 121	.134	.140	.144	.168	.042
NO-2 NO-3 NO-3		•500	.800	.750	1.020	.770	0+9•	.960	1.080	1.150	1.190	1.320	1.280	.950	1.300	2.360	3.310	5.300	5.120	5.870	6.030	5.540	5.140	4.900	4.610	4.620	4.320	4.130	3.780	3.470	4.800	5.500	5.120	6.300	7.000	7.530	7.820
ORTHO PHOS.	:	.132	. 09a	.166	.178	.209	.155	.158	. 196	.220	.210	.218	.255	. 295	.287	.165	.091	.175	.110	.102	.100	.100	.128	.159	.151	.140	.115	.146	.169	.147	.070	• 038	. 051	.050	.040	.067	.670
TOTAL PHOS.		.221	.234	.246	.273	•294	.264	.297	.312	.354	.328	.386	.384	. 414	.464	.354	.270	.518	.720	•505	.474	•369	.340	.384	.356	.297	• 303	.341	.309	.345	•	.10	10	. 11	.51	8	.517
FLOW		95.	92.	86.	81.	91.	72.	88.	85.	83.	19.	82.	156.	299.	270.	244.	0	445.	304.	251.	210.	185.	168.	154.	140.	126.	122.	115.	112.	90	930.	96	0	1043.	740.	545.	414.
11ME 24:0	,	700	1400	1400	•	•	1400	1400	2000	200	900	1400	2000	2 20	800	1400	2000	200	800	1400	2000	200	800	1400	2000	200	900	1400	2000	200	800	1400	2000	200	800	1345	1945
		15	15	16	11	13	19	2	20	21	5	21	21	22	22	22	22	23	23	23	23	24	24	5	24	25	25	25	23	56	56	56	56	27	27	21	27
SAMPLING DATE XP MC OV	2	S	ស	S.	ĸ	ĸ	ĸ	S	ĸ	6	6	5	10	S	60	•	10	'n	60	S	S	ľ	S	S	€0	ĸ	S	S	ĸ	80	S.	NO.	ĸ	S	'n	· C	ď
SAI	•	75	75	75	75	75	75	15	7.5	75	75	75	75	15	75	75	75	75	75	75	75	75	7.5	75	75	75	75	75	75	75	75	75	75	75	75	75	75

LAKE ERIE UASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

US6S NO. 04199000

COND 25C.	445.	673	491.	500.	518.	540	551.	900	577	582	593.	603.	613.	613.	619.	623.	632.	632.	637.	631.	635	633.	642.	664.	• 099	612.	582.	577.	562.	537	514.	518.	505	505
IRON NG/L																	•				-	-												
S102	16.60	16.56	15.80	16.70	17.00	17.60	17-60	00.41	18.70	15.30	16.60	14.50	15.90	16.40	16.20	16.80	13.00	16.60	14.90	11.00	11.00	13.80	13.60	14.10	14.50	14-10	14.20	14.80	14.80	14.60	14.10	14.30	11.60	14.80
CHLO RIDE NG/L	41.50	•		50.00	51.00	52.00	24.00		38.00	57.00	58.00	58.00	60.00	59.00	61.00	61.00	00.09	63.00	65.00	62.00	72.00	68.00	67.00	65.00	68.00	99.00	57.00	57.00	54.00	51.00	52.00	58.00	26.00	9.0
SUSPEND SOLIOS MG/L	244.00	200	151.00 48	116.00	124.00	159.00	435.00	00.441		141.00	122.00	114.00	128.00	86.10	94.60	103.00	84.70	103.00	121.00	105.00	14.60	103.00	00-96	85.10	81.20	9	ö	146.00	9	173.00	•	98	27.	1025.00
COD																																		
TOTAL KJELD HG/L																																		
ORG. Nit. MG/L																																		
NH-3	. 040	2CD •	105	.038	• 0 + 9	.080	• 046	.119	900	240	060.	. 125	• 086	060.	060•	. 087	.610	.070	.286	• 095	1.870	. 058	.030	• 038	.038	.053	.033	.061	• 030	. 061	.127	• 062	.920	.073
NO-2 NO-3 NG/L	2	05/-,	7.500	6.700	6-870	9-400	9.500	5-680			4.800	4.550	3.950	3.900	3.700	3.420	3.170	2.820	2.920	2.650	2.950	2.680	2.380	2.250	2.700	2-670	3.600	4.170	4.670	4.520	006**	6.350	6.320	7.020
ORTHO PHOS. HG/L	.070	100	105	.110	. 125	.140	.141	.130	361.	2 4 7	160	.167	.160	.162	.190	.180	.183	.230	.30c	•246	.232	•206	.169	.146	•588	•186	.108	.114	.112	.117	.11A	.181	.121	.117
TOTAL PHOS. MG/L	5++	246		.315	.332	.390	.517	495	-282	3000	366	.330	.350	.313	.345	.340	.322	.405	.519	.446	.355	.342	.292	.256	604.	.337	.274	.288	.301	.337	.381	.431	• 3 A 6	.458
FLOV	9	1	225	0	81	71	9	20			5 0	9	5	8	22	24	22	15	26	2	20	38	96	23	11	+09.	82	9	82	282.	396.	412.	12	1312.
71% 2400 HRS.	145	:	1 945	: =	745	ň	1945	145	::	,	145			1945	*	745	3	46	=	745	1100	70	30	50	10	1700	30	50	10	70	30	S	1	1700
3 D	28	8 6	E 6	5	29	29	53	C N	0 F	3 C	7	5	7	5	-	-	-	~	~	~	~	8	~	m	m	m	m	•	•	•	•	S	S	S
7 n 8	6	n :	n u	6	N.	6	ß	6	6	n w	n v			'n	9	9	9	9	9	9	•	9	9	9	9	9	9	9	•	9	9	9	٩	9
SAMPL ING Date Yr mo dy	75	5 ;	נ צ	7.5	75	75	15	75	7.5	C F	- r			7.5	75	75	75	75	75	75	75	75	75	15	75	75	75	75	75	75	75	75	75	75

LAKE ERIE BASTEBATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREPH : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

USES NO. 04199000

COND 25C•	CHEO	+00+	378	382.	394	421.	8 4	465		200	225	926			200	243	202				1000	979	649	637	646.	648.	652	99	658.	£70•	9	• • •	199	607	.69.	/23•
I KON	H6/L																				•						•									
\$102	1/9H	14.00	13.20	13,50	13.90	÷.5	14.80	13.80	15.90	16.00		15.20	13.40	16.10	15.0	13.00	13.30	10.10	11.00	2.0	100			9.01	9.80	14.50	15.00	4.2	3.0	14.30	14.90	15.10	14.50	•	14.30	14.10
CHLO	HG/L	33.00	36.00	38.50	41.00	44.00	47.00	00.64	50.00	52.00	52.00	20.40	35.00	26.00	57.00	29.50	32.00	33.00	24.00	00.40	00.00	37.50		37.50	38.50	38.00	37.50	39.50	40.00	ŝ	•	00.04	40.50	ŗ,	ñ	43.00
SUSPEND	30 C I D S	1328.00	1353.00	1067.00	•	ó	9	9	9	218.00	9	9	143.00	23.50	124.00	152.00	149.00	151-00	114-00	149.00	16/91	00.84	2 5	08.00	149.00	Š	~	5	18.60	80.60	•	9	•	:	,	117.00
000	M6/L																																			
TOTAL	#6/L																																			
ORG.	H6/L																																			
M-HZ	H6/L	.114	.130	.122	.183	.185	.171	.224	.175	.151	.152	.117	.117	• 0 9 9	.112	• 0 • 8	.050	.042	.032	. 042	0.042	.031	000	100	032	.037	.043	.041	.057	• 069	.730	.068	• 060	.058	• 064	.390
NO-2	NG/L	5.460	6.100	6.300	7.320	8.200	8.380	•	8.300	8.100	7.830	7.470	7.080	6.730	6.450	12.500	11.900	9.810	8.360	086-9	• 69	5.480		7.550	7.390	4.870	4.950	4.550	4.310	4.130	3.920	•64	3.490	3.390	• 39	3.170
ORTHO	PHOS.	.070	• 082	.061	• 055	.961	.070	.081	•080	• 096	•102	.117	.117	963•	.102	•108	•109	•113	.113	•122	•130	•145	• 162	• 148	101	122	. 188	•228	•218	.177	.161	.161	.158	.162	.141	• 143
TOTAL	PHOS.	14	8	6	8	9	. 526	43	S	31	0	9	8	9		30	0		O.	56	28	•	27	.285	0 -	. 5	28	32	31	26	~	•	æ	o	·	0
FLOW	CFS S	898	•	S. P.	9	859	32	16	5	2	46	9	36	15	96	69	56	:	35	29	19	0	0	105.	, (9	"	. `	1	115.	12	19	17	117.	10	05
1	24.0 HRS.	100	. C	•	1700			-	-	2300	S	~	1700	m	S	17)	1900	100	700	1300	g	109	^	1300	•	2 6		1900	-	700	- 77	1900	_	1 00	•	1900
1 K G	DY																	-	_	7	_	_	_	= :		٠,-	-	-	-	-	_	-	_	_	_	_
SAMPL	DATE YR MO DY	.e	٠.	٠.	n .e			, aC	۰.		'n	٠.	5	'n		'n	'n	'n	ı,	- An	'n	'n	.	75 6	.	ח ול	, ₄	ی د	, K	, 1C		10	S	'n	ۍ.	EC.

CORPS OF ENGINEERS BUFFALO N Y BUFFALO DISTRICT F/6 6/6
MATER QUALITY DATA FOR LAKE ERIE BASIN TRIBUTARY MOUTH SAMPLING--ETC(U)
DEC 78 AD-A079 652 UNCLASSIFIED NL 3 of 4

LAKE ERIE JASTEVATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

US65 NO. 04199000

COND	CHEO	722.	746.	751.	747.	735.	100.	654.	654.	625.	631.	633.	637.	619.	619.	623.	607.	601.	607.	608.	609	611.	616.	630.	641.	631.	629.	663.	668.	665.	630.	573.	561.	532.	529.	626.	6 70.
IRON	H6/L																		•																		
\$102	1/9H	14.00	13.80	13.20	13.00	12.10	12.00	13.50	13.80	13.80	15.40	18.20	16.40	17.10	15.40	15.60	17.30	16.80	16.20	14.80	15.50	11.00	16.20	16.40	15.30	14.00	16.60	17.90	16.70	16.10	16.70					30.40	40.80
CHLO	H6/L	3.5	43.00	2.0	2.5	5.0	45.50																														
SUSPEND	H6/L	71.10	84.70	83.70	67.50	64.20	97.60	93.40	70.20	85.20	85.20	7	94.50	112.00	135.00	150.00	168.00	101.00	99.20	140.00	114.00	67.40	96.69	66.00	79.60	53.70	121.00	120.00	82.60	57.70	80.40	88.40	74.40	75.40	•	68.70	•
000	H6/L																																				
TOTAL	M6/L																																				
086.	H6/L					,																															
N-TR	HG/L	. 055	. 048	. 041	+00	.030	. 027	.010	• 005			• 005	.005	.010	• 005	• 005	.010	• 005	.016				.016	.010	• 005	-005		.016	. 021	• 026	•010	.016	.037	• 042	• 026		•160
10 - 5 10 - 5	1/9H	2.860	2.320	2.240	1.970	.67	1.420	1.990	2-130	3.230	3.780	4.170	3.990	4.100	4.260	4.410	4.800	5.020	4.930	4.880	4.770	4.730	4.610	4.369	3.990	3.700	3.460	2.750	2.780	2.740	3.080	3.670	3.730	.11	4.400	.72	3.310
ORTHO	M6/L	.148	.151	.132	.123	.150	.130	.210	.130	.125	.130	.147	.140	. 140	.157	.175	.200	.210	.175	.170	.172	.19R	.210	-210	.270	.175	.145	•14ū	.145	.145	.140	.159	•150	.155	.155	.236	.374
TOTAL	H6/L	•286	.260	.251	.280	.280	.338	.236	.20¢	.188	.196	.216	.144	.196	.284	.320	.408	.316	.288	.324	.276	.244	.252	.210	.356	.248	• 304	.196	.256	•252	.260	.264	-265	.276	.326	100.	.465
FLOV	Š	107.	133.	124.	120.	146.	232.	317.	340.	289.	256.	208.	179.	168.	154.	150.	138.	127.	120.	115.	122.	152.	136.	126.	319.	238.	210.	177.	150.	127.	112.	102.	92.	86.	82.	52.	45.
> (HRS.	100	700	1300	1900	100	700	1400	2000	200	909	1400	2000	200	800	1400	2000	200	800	1400	2000	200	800	1400	2000	200	800	1400	2000	200	800	1400	2600	200	008	1030	1030
3 N C	Ď	55		15	15	16	16	16	16	17	17	17	11	13	18	8	4	19	19	19	19	20	20	20	25	21	21	21	5	22	22	22	22	23	23	56	27
SAMPL ING	. Q	9	•	9	•	9	•	9	9	•	9	•	•	9	•	•	•	•	9	9	9	9	•	•	9	•	•	9	-0	9	9	9	9	9	9	•	9
SA	4 ×	75	75	75	75	75	75	75	75	75	75	75	75	75	75	7.5	75	75	7.5	75	7.5	15	2	75	75	7.5	15	75	75	75	75	75	75	75	75	75	15

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STRE 4" : HURON RIVER

LOCATION W/CODE : AT HILAN, OHIO

ט מו		674.	919	592	547	580	1490	677	651	702	703	671	671	697	703	673	1	678.		671.		069	1	700.	;		737	129	202	989	624.	603	635	665		687.	
I RON	H6/L																			•																	
2102	H6/L	40.50	40.40	30-40	30-10	30.20	30.80	9.94	11.20	8.60	8.10	5.65	29.62	5.88	6.20																					3.89	3.17
RIDE	H6/L							46.00	38.00	47.00	49.00	48.00	44.00	45.00	13.50	50.00		48.50		48.50		49.00	•	49.50		52.00	52.00	49.50	51.00	50.50	20.00	47.00	44.00	46.00		44.50	
SUSPEND SOLIDS	#6/L	60 • 80	99.40	281.00	97.20	69.30	88.00	99.10	119.00	137.00	133.00	148.00	102.00	129.00	117.00	77.30				88.10		83.30		120.00		78.20	94.80	86.40	110.00	96.00	99.50	94.70	89.50	93.10		146.00	
000	H6/L																																				
TOTAL	46.1L																																				
ORG. NIT.	H6/L																																				
Ð T	H6/L	•209	. 392	+00+	1.710	1.800	1.330	• 085	060•	•115	.280	•260	•220	.170	.110	• 050	.140	• 100	.155	• 165	•140	•170	.110	.160	• 205		.120		• 160		.250		.140		.140	. 07B	.257
NO - 2	H6/L	2.520	1.210	2.000	2.320	1.720	.870	1.620	1.560	1.390	1.350	1.300	•620	•600	1.190	1.700	1.200	1.470	1.100	1-470	.950	1.130	•870	1.230	830		.840		006•		1.500		.830		086	.960	000
ORTHO PHOS.	H6/L	.290	• 359	.208	.133	•124	.466	.140	•166	.185	.245	.273	•165	.155	.220	.290	•225	.220	.190	• 255	.210	.165	.160	.160			.145		.355		. 4.16		.150		.130	.130	.135
TOTAL PHOS.	16/L	004.	.590	.535	.329	.291	.466	.272	.326	.392	.530	• 565	.320	.352	.530	• 580				.360				.336	•		.288		9 09 •		.775		•304		.312	.316	
FL OV CFS		34.	83.	65.	41.	33.	25.	27.	•	42.	42.	35.	39.	46.	33.	33.	30.	56 •	24.	25.	25.	22.	21.	21.	22.	21.	56.	74.	67.	.89	82.	62.	49.	•	36.	31.	29.
6 TIME 2400			9		1	~		~	_	_	_	_	_	_		.		0	_			2	ر د	2 1045	~ ~	∾ ∾	~	2	-	7	5.2	7	9	9	7	7	7
-	HO DY	9	9	6 3	~	_	~	7	7	7	7	_	_	^	7 1	7 1	7 1	7	7	7 1	7	7 1	7	7	7	~	7	7 1	7 1	7	7 1	7 1	7 3	7 1	7 1	7	-

LAKE ERIE VASTEVATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

STRELM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

USES NO. 04199800

250.	CARO	690.		711.	715.	682.	664.	619	590.		999	664.	695.	702.	709.	711.	727.		728.		766.	77.	776.	817.	623.						753.	785.	789.	793.	794	793.
NO NO	H6/L																			ı																
2102	HG /L	2.89	1.51	2.45	.76	2.40	.98	2.23	•6•	.70	2.41	3.20	1.10	.78	3.20	1.08	1.99	1.18	3.55	1.97	4.50	2.05	3.09	3.76	2.17	4.68	3.57	2.72	2.93	2.39	2.77	2.73	1.61	• 65	.37	-27
CHLO RIDE	H6/L	43.50		40.20	45.00	48.00	48.50	48.00	47.00		54.00	53.50	54.00	54.50	24.00	54.20	56.20		54.00	55.90	58.10	56.00	58.00	68.10	59.00		64.00				00.09	60.00	60.00	00.09	29.00	29.00
SUSPEND SOLIDS	H6/L			94.30	118.00	00.44	168.00	75.80	141.00		390.00	57.70	92.80	67.40	122.00	121.00	134.00	64.50	105.00	111.00	60.30	81.50	82.70	70.30	67.10	64-10	8.50	70.20	108.00	54.10	57.20	76.20	117.00	69.50	15.70	19.20
000	N6/L																																			
TOTAL KJELD	MG/L																																			
ORG. NI7.	MG/L																																			
n - I - I - I	H6/L	.156	.177	.190	.242	. 303	.224	-204	.173	. 166	.170	• 082	. 152	. 288	• 200	.185	.200	• 095	• 057	• 256	.257	900•	• 002	. 007	• 010	• 007	• 001	.216	.051	.160	• 076	• 002	.245	.251	• 167	• 066
20-2 20-3	H 6/L	.070	.013	.039	.021	.061	•029	•073	. 026	-017	.830	.290	• 025	• 025	• 025	• 025	• 025	• 025	•574	.574	. 255	.170	.276	,616	.871	1.160	1.390	.845	1.000	• 695	.835	• 605	-245	.050	• 025	.030
ORTHO PHOS.	H6/L	.130	.120	.120	.150	.330	.198	•250	.100	• 095	.290	-200	.193	-234	.215	.222	.224	.215	•276	•265	.278	.271	•248	• 392	.430	•433	644.	• 4 1 4	•358	.343	.334	.307	•296	.261	-254	•256
TOTAL PHOS.	H6/L			.328	.360	.710	.540	•605	.392	.585	0++•	.372	.510	.392	.530	.525	.565	.324	.510	.535	-409	.510	-400	• 67 0	.745	•685	•625	. 4 1 4	•500	.343	.372	.396	.352	.369	446.	• 36R
FLOV		:	42.	33.	20.	• 0 •	58.	38.	28.	25.	25.	21.	19.	18.	17.	15.	15.	15.	13.	12.	11.	19.	47.	38.	29.	32.	30.	27.	24.	22.	19.	19.	15.	15.	15.	18.
71ME 24c0	SET	2300	200	1100	1100	1100	1160	1100	1100	500	1145	1145	1145	1145	1145	1145	1145	545	1245	1245	1245	1245	1245	1245	1245	645	1300	1900	100	100	1300	1300	1306	1300	1 300	1300
SAMPL ING DATE	DY	11	18	18	19	ے د	21	22	23	5	2	25	5 6	27	28	53	E)	3	33	-	~	m	•	R)	•	~	_	~	œ	Œ	Œ	9	=	=	12	13
I MPL	0 10																																			
200	Y	7.8	7.	7.5	7	75	75	7.5	75	75	75	7.5	75	75	75	75	75	7.5	7.5	75	7.5	75	75	7.5	7.5	7.5	75	75	75	75	75	75	7.5	75	75	75

LAKE ERIE LASTEMATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON HIVER

USGS NO. 04199000 : AT MILAN, OHIO LOCATION W/CODE

COND	CARO	484.	500.	592.	546.	539.	659	269		6699	685	696•	740.	748.	178.	789.	784.	764.	765.	749.	783.	766.	743.	760	-01	755		795	199	199.	609	584.	617.	649	675.	698.	721.
IRON	1/9H																				•																
\$102	MG/L	2.08	2.12	1.96	1.72	1.78	1.89	1.88	1.86	10.50	11.30	12.30	10-10	10-10	9.79	11.10	8.19	5 • 68	4-10	3.09	2.71	3.28	4.19	3.01	20°0	9 ° C	0	7.28	7.08	6.29	12.10	11.30	12.10	8.19	7.60	6.19	7.60
CHLO	MG/L	00.04	35.50	43.00	34.00	23.00				27.00	30-00	31.00	33.00	32.00	35.00	37.00	37.00	62.00	64.00	00.49	72.00	78.00	63.00	58.00	00.20	24.00	00.00	52.00	52.00	27.00	40.00	39.00	45.00	47.00	46.00	47.00	48.00
SUSPEND	N6/L	88.20	71.20	58.70	61.30	72.70	44.10	40.50	45.50	53.20	41.60	33.20	26.60	43.40	26.30	38.50	35.10	27.80	44.70	37.30	37.00	36.00	46.50	08.44	07.65	45.70		46.50	07.4	38.70	75.70	39.10	36.30	36.00	31.50	37.10	42.20
000	H6/L																																				
TOTAL	M6/L																																				
086.	M6/L																																				
N-TN	H6/L	.114	.203	.254	.280	. 238	.124	•119	.157			• 052	• 089	• 056	.017	• 052	.063	.048	.077	.159	.014	.208	• 102	.027	• 069	• 198	• 160	.222	.141	.120	• 085	.047	. 038	• 055	.003	.033	.019
NO-2	MG/L	2.270	1.780	1.500	1.150	1.220	1.330	1.230	1.010	1.910	1.870	1.120	1.070	1.090	1.000	.890	.800	.860	.700	006•	008-	• 760	.520	.480	.460	. 590	•600	.890	.770	.530	5.330	5-190	5.130	3.700	2.980	2.610	2.070
ORTHO	M6/L	.223	.313	.300	.195	•219	-249	.238	-230									•266	.256	.256	• 365	.438	.209	.241	-202	•225	.241	.298	.284	.397	.063	.050	690.	• 126	.106	.111	.134
TOTAL	F#654									.395	.288	.401	.373	004.	104.	.427	.451	.372	.377	.493	.649	.718	.352	• 506	.392	.473	.482	.564	.537	.682	.294	.208	.183	.217	.197	.207	.273
FLOW	n t	42.	79.	54.	50.00	46.	42.	37.	16.	76.	62.	54.	47.	• 0	36.	34.	31.	29.	26.	49.	+0+	48.	:	•0•	38.	36.	36.	42.	41.	327.	693.	. 194	350.	170.	120.	100.	83
E	Z4 CO	_	-	-	-	-	-	-	•	_	-	-	~	~	~	~	,	_	~	-	~	~		1515		~	-	_	_	-	~	_		_	-	_	-
SAMPL ING	DATE YR MO DY	•	•	•	•	. 6	• •	•	• •	•	=	10	1 2	<u>د</u>	10	2	-	10	9	10	10	0 [J [5 10 13	-	<u>.</u>	-] [ù T	c)	=	:	<u>.</u>	10	-	Ċ	ں

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREFM : HURON RIVER

LOCATION W/CODE : AT HILAN, OHIO

US&S NO. 04199000

COND 25C. UNHO	730.	722.	725.	721.	742.	752.	751.	175.	768.	174.	769.	775.	797.	810.	618.	909	779.	778.	111.	745.	759.	814.	196.	797.	801.	789.	763.	761.	739.	768.	174.	179.	190	176.	793.	613.
IRON MG/L																		•	•																	
S102	5.08	4.01	3.79	2.98	2.32	2.16	2.01	2-10	1.55	1.42	1.24	1.55	1.30	1 - 36	1.13	1-40	1.90	2.24	3.60	3.96	4.07	3.02	3.17	100	5.15	4.71	3.82	4.39	4.49	2.87	3.28	2 • 65	2.86	5.32		
CHLO RIDE R6/L	46.00	48.00	54.00	55.00	57.00	58.00	58.00	60.00	58.00	56.00	00.04	37.00	41.00	39.00	42.00	45.00	42.00	43.00	63.00	60.00	58.00	54.00	58.00	58.00	59.00	58.00	00.09	56.00	66.00	62.00	66.00	64.00	64.00	58.00	50.00	46.00
SUSPEND SOLIDS MG/L	26.50	27.50	57.50	27.30	29.50	17.10	20.30	16.50	34.10	96.04	38.40	32.00	47.10	54.20	41.00	56.70	77.70	45.60	67.10	13.80	14.00	5.90	11.30	7.30	6.50	7.40	28.10	5.30	22.40	00.9	5.70	25.70	23.20	10.20	12.80	3.50
C00																																				
TO TAL KJELD MG/L																																				
086. N17. M6/L																																				
NH-3		.024	.164	.135	.145	• 1079	.116	.704	.126	.127	.060	• 266	• 089	.057	• 069	.102	•125	.224	.284	.235	•219	.239	.307	.273	.259	.292	.120	.141	•165	.169	•225	.119	.337	•246	• 100	• 030
NO-2 NO-3	1.710	1.360	1.340	1.260	.930	.700	•850	.730	• 680	.550	.690	1.240	.480	004.	.350	.330	. 500	.460	.570	009.	.430	.370	.550	.460	.480	064.	.570	009•	066.	.710	0+6*	.750	1.143	•630	.703	• 700
ORTHO PHOS. MG/L	.160	.172	.139	.186	.257	.274	.257		.321	.233	.228	1.110	.296	.248	.260	.228	.398	. 343	.140	• 006	•00•	.005	.101	690.	.089	• 10 7		•594	.536	• 395	•659	.269	.333	.235	.190	•200
TOTAL PHOS. MG/L	.273	.285	.210	.316	.320	.390	.390	.520	.470	.390	.370	1.320	.420	.248	.410	.370	.590	.348	.463	.315	.259	•262	•362	.318	.292	.312	.349	.309	.617	.455	049.	.328	.472	.29R	.312	.282
FLOV	75.	67.	67.	63.	59.	54.	52.	54.	56.	56.	56.	63.	61.	62.	41.	38.	56.	53.	61.	85.	71.	62.	50.	46.	;	40.	50.	39.	35.	41.	38.	38.	+1.	45.	45.	65.
16 TIME 2408 17 HRS.	7	8	6	6	6	7	~	~	3 1500		-	~	~	~	_	_	-	~	_	_	~	-	-	_	_	_	_	~	~	-	_	~	_		~	2 1030
SAMPLING Date Yr no dy	9 1		-	G.	i T	~	=	11	=	7	11	1	11	7	11	1	11	11	11	11	=	11	1	11	11	11	11	=	=	=	11	-	-	12	12	٥

LAKE ERIE JASTEJATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : HURON RIVER

STRE ## : HURON KIVER

USGS NO. 04199000 LOCATION W/CODE : AT MILAN, OMIO

COND 25C.	853.	852.	831.	769.	734.	772.	150.	708.	692.	683		737	107	723	722.	693.	618.	549.	534.	508.	490	504.	526.	535.	558.	574.	593.	602.	650.	629	674	178.	713.	713.	539.
IRON MG/L																																			
S102 F67L																																			
RIDE NG/L	*0.00	46.00	45.00	50.00	45.00	94.00	43.00	41.00	46.00	45.00	•	•	00.00		43.00	41.00	40.00	35.00	33.00	33.00	33.00	34.00	34.00	35.00	35.00	36.00	36.00	37.00	39.00	39.00	39.00	44.50	30.00	32.00	34.00
SUSPEND SOLIDS MG/L	2.70	3.20	ø	•	0	σ	20.00	•••	8.20	1.80	12-10	0.°°	0.00	10.40	35.20	8.70	7.30	29.10	130.00	730.00	454.00	384.00	273.00	286.00	111.00	71.40	53.10		34.10	17.60	47.13	4.20	446.00	٩	28.60
7/9H																																			
10TAL KJELD MG/L																																			
CKG. NIT. MG/L																																			
NH-3 HG/L	.010	• 020	• 050		•250	• 020	• 060	• 0 90	.135	.080	010	060.	050		96.	.030	• 060	033	.040	040	• 000	•080	.090	.090	.100	.110	.130	.130	004.	.590	.570	.215	040	• 040	.140
NO-2 NO-3 NG/L	004.	.403	.400	. 900	1.100	1.900	2.000	2.100	2.300	2-250	2.200	1.850	1.900	002.7	2.700	2.800	3.800	5.300	5.200	5.400	6.000	•	6.200	•	6.200	0000-9	• 90	.80	5.400	30	30	9	?		5.500
ORTHO PHOS.	.190	•260	•210	.680	•060	040	• 035	•100	•225	.100	•150	0 41	2/0.	0.0	90.	.070	. 050	.030	.030	•030	• 030	ე ♦ 0 •	•050	•020	• 653	• 06 0	•010	.070	.030	• 060	· 06 ū	.110	.619	•020	. 03
TOTAL PHOS. MG/L	.276	•326	•294	.812	.141	.129	.119	~	•588	.174	•174	-215	001.	701.	£0.7.	.140	.215	•645	.66R	•492	ĸ	~	.293	~	~	-	.155	~	2	•29€	.288	.191	•684	.181	.174
FLOV	82.	58.	54.	63.	Š	6	=	143.	2	35	127.	2	2	9 6	200	521.	Ü	o	A20	28	_	7.0	83	00	60	9	9	9	20	9	180.	0	9	00	0
SAMPLING TIME DATE 24.0 YR NO DY HRS.	12 3 1	12 4 1	12 5 1	12 6 1	12 6 2	12 7 1	12 8 1	12 9 1	12 10 1	12 11 1	12 12 1	2 13 1	12 14 1	12 14 1	12 12	12 15 1	12 15 1	12 16	12 16	12 16 1	12 16 1	12 17	12 17	12 17 1	12 17 1	12 18	12 1R	12 18 1	12 19 1	12 20 1	12 21	12 30 1	12 31 1	1 1 1	1 2 1

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

USES NO. 04199000

COND 25C. UNHO	573.	558	562	944	266	612.	580	• 009	607.	656.	106.	686.	742.	807.	809.	810.	191.	609	794.	413.	403.	418.	•	453.	465.	476.	502.	507.	522.	532	546.	568.	584.	595.	611.	623.
IRON RG/L																		•		•																
S102																						•														
CHLO RIDE RG/L	37.00	34.00	ŝ.	•	42.00	42.00	46.00	43.00	43.00	42.00	41.00	42.00	42,00	46.00	43.00	43.00	43.00	45.00	00-09	28.00	27.00	26.00	29.00	29.00	29.00	29.00	31.00	30.00	31.00	31.00	35.00	32.00	34.00	35.00	37.00	36.00
SUSPEND SOLIES MG/L	52.70	24.40	73.30	9.0	11.30	10.90	4.10	9.90	5.50	5.90	8.90	2.00	7.90	4.90	6.20	2.00	5.20	6.50	20.60	209.00	45.30	42.80	41.80	26.70	28.60	33.30	32.80	25.10	۲.	~	8.6	14.70	٠.	16.80		10.80
7/9H 000																																				
TOTAL KJELD NG/L				,	• 200	004.	.300	. 300	.500	006.	.900	.900	•200	•200	.200	.200	.200	•200	004.																	
086. N1T. M6/L																																				
NH-3	.196	•180	.310	044.	.140	.290	.300	• 280	.280	.360	.050	.340	.020	.490	• 220	• 190	.240	.300	• 500	.130	.270	.250	.290	•260	.260	.230	.240	.820	.260	.230	.240	.230	.260	.230	.250	•220
NO-2 NO-3 R6/L	5.700	5.700	5.400	•	•	•	2.500				.90	2.500	90.	-20	2.100	.00	1.900	9	2-100	3.000	3.100	3.000	3-100	3.100	3.100	3.100	3.000	3.000	3.000	.00	•	•	•	.70	.70	9
ORTHO PHOS. MG/L	.040	.050	.030	.030	• 070	.100	060•	060•	.110	.110	.130	.130	.160	.120	.160	.150	.170	•190	.380	.050	.050	• 050	.050	.050	.060	.050	.050	000	.050	.050	.050	• 060	• 060	05€	.050	360.
TOTAL PHOS. MG/L	.217	.256	.276	.288	.150	.204	-207	.224	.263	.217		.201								.394	.207	.175	. 158	.151	.151	.159	.146	.129	.140	.131	.134	.122	.129	.129	.133	.133
FLOW	900.	1000.	600.	350.	900	+50.	450.	280.	280.	200.	200.	200.	150.	120.	120.	294.	372.	424.	7466.	1300.	1177.	1040.	941.	842.	693.	550.	550.	550.	550.	350.	350.	350.	350.	250.	250.	250.
7 1 ME 24 00 HRS.	1030	1030	1030	1032	1545	345	1545	345	1545	345	1426	1545	1426	1426	1426	1426	2 0 2 6	226	826	1605	2205	465	1005	1605	2205	405	1005	605	2205	4 65	1005	1655	2265	405	1005	1605
	. •	•	S	9	16	11	11	13	18	19	19	19	20	23	24	52	22	56	56	5 8	28	53	29	53	53	0	30	30	30	33	31	31	3.1	-	-	-
AMPLING ATE R NO DY																																				2
365	7	Ę	ř	ž	ズ	ζ.	F	۲	7	7	7	Z	7	7	7.	7	7	7	7	7	~	7	7	7	7	7	7	7	7	7	7	7,	7	7	7,	16

LAKE ERIE WASTEWATER MANAGIMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

COND 25C.	0 H D	623.	620.	624.	633.	644.	665.	706.	717.	689	688.	7111.	705.	705.	698.	714.	712.	737	150.	740.	111.	810.	795.	786.	780	788.	789.	789.	119.	760.	174.	773.	771.	.782.	776.	772.	781.
NO N	H6/L																																				
2102	M6/L																																				
RIDE	H6/L	35.00	34.00	33.00	35.00	35.00	36.00	39.00	40-00	38.00	38.00	36.00	38.00	35.00	35.00	34.00	34-00	34.00	37.00	37.00	36.00	00.04	48.00	46.00	44.00	47.00	47.00	48.00	•	•	4:0	S	•	45.00	43.00	45.00	46.00
SUSPEND SOLIDS	M6/L	3.40	9.80	7.80	18.20	15.90	17.20	17.10	12.80	6.10	7.20	24.70	7.30	4.20	12.30	10.50	7.50	8.20	8.30	08· •	2.60	2.20	9.10	12.00	9.50	8 • 50	7.50	10.70	9.80	8.30	7.50	7.30	8.00	•	•	8.50	9.40
000	1/9H																		2																		
TOTAL KJELD	1/9H																						1.320	•			1.320				1.000		٠		.772		
CRG.	1/9H																																				
n-π2	H6/L	•290	.270	.300	.280	• 330	.320	.400	0 * * •	• 390	•320	•290	- 380	.270	• 280	.250	.230	.270	• 330	• 35 <i>1</i>	• 430	.500	• 350	• 880	• 390	. 540	044.	2.000	.430	2.000	.330	.350	2.000	•	•420	044.	. 500
NO-2	H6/L	2.600	2.600	2.500	2.600	2.600	2.600	2.600	2.700	2.700	2.700	2.700	2.800	2.600	2.600	2.400	2.300	2.100	2.100	1.900	1.900	1.700	1.600	1-700	1.600	99	• 70	• 70	1.700	1.700	1.700	1.700	1.700	1.700	1.600	1.600	1.700
ORTHO PHOS.	H6/L	• 060	.070	090°	• 05c	• 050	0.00	.110	.110	• 090	• 090	•110	•100	•110	060•	0.00	060•	• 080	.110	.110	•110	.110	•100	•130	•130	.130	•130	.140	.140	.140	.170	.150	.150	-140	.140	•150	.140
TOTAL PHOS.	H6/L	.133	.141	.129	.134	•136	.140	.155	.203	.189	.175	.219	•186	.175	.157	.127	.144	•149	.182	.177	.171	.170	.207	•200	•25•	.216	•212	•211	.216	.232	•229	•246	.238	.241	.241	.226	.222
FLOW		50	2	10	10	10	9	9	•	90	20	70	20	2	70	70	7.0	70	70	2	70	70	96	332	£ 74	798	380	-	414	702	106	494	€16	156	234	171	.236.
71ME	S.	2205	•	0	•	2205	•	0	1605	~	•	0	0	0	-	_	\sim	•	•	€	0	~	0	٠	~	•	1001	£	~	•	C	9	22 C C	•	c	9	2200
9 2	5	-	N	~	~	~	*	•	m	m	•	•	•	•	•	•	•	•	•	•	•																13
#PL 1 TE																																					~
SA	¥	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	9/	91	16	91	16	16	16	16	16	91	91	16	16	16	16	92	16	16	16	16

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

The second section of the second seco

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN. ONIO

COND 25C. UMHO	794. 802. 775.	763. 760. 763.	778. 779. 6658. 296.	268. 298. 326.	00000000000000000000000000000000000000	64444 6444 6446 6446 6446 6446 6446 64
IRON MG/L						
S102						
RIDE MG/L	44.00 47.00 47.00	25.000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20000000000000000000000000000000000000	25 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	28.00 29.00 32.00 27.00 24.00 25.00
SUSPEND SOLIUS MG/L	11.20	00000000000000000000000000000000000000	62.20 109.00 161.00 213.00 240.00	1440.00 1080.00 756.00	004 424 424 004 004 004 004 004 004 004	175.00 128.00 87.50 105.00 581.00 622.00 83.00
7/9H 000						
TOTAL KJELD MG/L	.762		1.050	1.390	1.310	1.190 .800
ORG. NIT. MG/L						
NH-3	. 400	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
NO-2 NO-3 NG/L	1.600	11.5000	2.100 2.100 1.500 1.900	N W W W W W W W W W W W W W W W W W W W	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44444NNNN
ORTHO PHOS. MG/L	0000	.120 .120 .120	.250	010		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL PHOS. MG/L		. 213 . 210 . 210 . 250				
FLOW		715. 562. 579.	2000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
ING TIME 24:0 DY HRS.	101	26 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1242	23 21 23 21	23 11 1 5 3 5	20 1700 20 2300 21 1700 21 1700 22 2500 22 1100 22 1700 22 2500
SAMPLING Date Yr no dy		_				7

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

COND	CHHO	•00•	423.	436.	464.	477.	476.	511.	533.	554.	580.	608.	611.	624.	633.	642.	629	667.	491.	386.	347	326.	324.	331.	330.	336.	352.	373.	795.	416.	437.	457.	*82 *	488.	497.	209	515.
NON I	MG/L																			•																	
2015	H6/L																																				
CHLO	H67L	25.00	27.00	28.00	30.00	31.00	28.00	30.00	31.00	31.00	31.00	32.00	32.00	32.00	18.00	14.00	14.00	13.00	11-00	11.00	9.00	8.00	7.00	9.00	8.00	10.00	8.00	11.00	7.00	12-00	11.00	10.00	6.00	1.0		•	18.06
SUSPEND	1/9H H6/L	0	06.06	73.90	97.20	9	84.20	6.	7	49.30	36.60	39.70	17.70	33.10	24.10	25.30	24.70	60.30	9	991.00	ó	ó	533.00	415.00	ó	434.00	370.00	315.00	213.00	154.00	123.00	97.80	89.00	66.80	•	٥	46.00
000	HG/L																																				
TOTAL	HG/L		1.010			1.120	1-440	.840	•860	008*	.500	.540	• 900	•690																							
086	1/9H																																				
NH-N	H6/L	.100	• 0 90	.100	.110	.110	.160	.100	.070	.130	• 0 9 0	.100	.110	.170		,																					
NO-2	MG /L	3.800	3.900	3.900	3.900	4.000	3.100	000.	3.900	3.500	3.400	3.200	3.000	2.900	.900	1.400	1.000	1.200	000-9	4-000	2.000	2.000	2.000	2-000	2.000	2.000	3.000	•	•	•	•	•	9	•	4.003	•	000.9
ORTHO	MG/L	.030	• 03€	• 030	• 030	040	060.	.060	• 06.9	J90 ·	90°	.070	• 08 C	960•																							
TOTAL	FROS.						.177	.165	.180	1.1	16	.199	.188	.174	.154	19	16	.222	76	11	9	•689	59	53	53	50	48	45	36	30	.265	22	22	18	.191	.181	.172
FLOW	_	518	264	1110.		919	0	*	82	486.	*	63	27	19	19	8	*	8	79	11	60	66	304	3032.	216	466	P 3 1	450	350	782	015	486	153	995	F 3.P.		677.
_	NKS.	500	1100	1700	2300	200	1100	1100	1100	1100	1100	1100	1100	1700	1730	1130	1730	2330	530	1130	1730	2330	530	1130	1730	2330	530	1130	1730	2330	539	1130	1730	2339	530	1130	1730
Z M Z	70	2			2	2	*	25	5 6	27	(C)	53				N	~	~	۳				•					r	u1	u)	9	9	•	9	_	~	1
4	. E																																		•		
	4 2 4 8	16	76	7	7	76	76	16	76	2	16	7	16	76	16	76	2	16	76	76	16	16	16	16	16	76	76	76	76	76	16	16	76	16	16	76	16

LAKE ERIE MASTEMATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

LOCATION W/CODE : AT MILAN, OHIO

: HURON RIVER

STREAM

COND 25C.		523.	7	576.	204	623.	623.	623.	639.	631.	646.	668.	675.	652.	511.	613.	589.	517.	481.	421.	416.	427.	***	453.	476.	492.	548.	592.	602.	614.	576.	598.	542.	592.	575.	560.	602.
IRON	₩6/L		١	2.20	ŗ	•	•	1.60	7	1.50																											
2018	H6/L																																		•		
CHLO R 10E	N6/L	16.00	00 - 1	36.00	38.00	37.00	39.00	37.00	38.00	38.00	20.00	18.00	17.00	15.00	22.00	16.00	16.00	17.00	17.00	20,00	32	21.00	22.00	22.00	23.00	22.00	30.00	31.00	32.00	32.00	32.00	31.00	30.00	32.00	31.00	29.00	32.00
SUSPEND SOLIDS	H6/L	46.00		23.70	16.80	19.20	21.10	19.80	-	2.0	9.30	3.30	9 • 00	•	_	•	44.60	•	•	•	•	103.00		4	7	Ñ	ď	8	9	ຜ	53.40	•	32.40	9	6	9	9.40
000	H6/L																																				
TOTAL KJELD	H6/L			.100	1.100	1.100	.800	.700	.800	.900																											
ORG. NIT.	H6/L											_	_																								
NH-3	H6/L			060.	.100	• 050	.070	060.	.130	.140	.170	.110	.110	.220	060•	040.	.030	.060	• 060	.050	0.00	• 060	. 080	060*	• 080	• 080	.120	060*	• 010	.080	• 050	.110	.200	• 050	• 030	.010	.070
NO-2 NO-3	HG/L	5.000	0000	2.600	2.500	2.200	2.200	2.000	2.000	1.900	3.700	3.800	3.600	3.300	2.800	3.400	3.900	2.900	2.500	2.400	2-400		2.500	2.600	2.600	2.700	.10	1.800	1.500	1.100	1.200	1.100	1.200	•	1.000	•080	.850
PHOS.	v							. 020	• 030	•030	.110	.070	• 090	.056	.080	• 050	0 0 0	.020	.020	.030	.030	•030	0 00 0	0 0 0	.050	.070	• 050	040		0 0 0	• 025	• 030	.050	3 9 0•	900	.050	960 •
TOTAL PHOS.	H6/L	.164	•	•	•	12	12	12	13	15	18	=	15	80	22	60	6	23	38	51	7	35	3	•	N	•	~	-	16	9	5	12	•	=	16	16	•
FLOW		626.	9	0	13	5	:	2	2	199.	8	164.	3	332	32	15		1212.	962	749.	97	1	5	417.	389.	372.	330.	299.	82	92	92	52	254.	5	27	223.	277.
7 1 MC 24 C0	IRS.	2330	530	1700	1700	1700	1700	1700	1700	1700	950	950	950	950	1035	950	1550	2150	350	950	1550	2150	350	950	1550	350	1600	1600	1600	1600	1600	1600	920	1000	920	926	920
		~	•	G	_	~		•				18	6	20	0	-		-	~	22	~	N	~	23	~			s	و	_	a	6	ے	دء	_	-	~
SAMPL ING DATE	2	M	M																																		•
SAR	٣	16	2	16	76	16	14	7	76	7	7	16	76	9	16	76	2	2	2	19	16	2	92	16	16	16	16	16	16	16	16	16	16	16	16	16	91

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

COND 25C.	OHHO	586.	612.	591.	583.	603.	612.	632.	646.	654	648.	629	658.	663.	668.	674.	674.	683.	684.	669	692.	728.	735.	745.	762.	767.	771.	766.	727.	767.	759.	764.	777.	767.	753.	775.	761.	
IRON	M6/L																		•.	•	•								• 50		• 50	•50	1.10	1.50	2.36	1.92	1.71	
2018	H6/L																																					
CHLO RIDE	HG/L	•	C		0	•	$\overline{}$	_	33.00	~	$\overline{}$	\sim	_	$\overline{}$	~	$\overline{}$	_	_	•				_	36.00		•	~	_	•	$\overline{}$	_	C 3	$\overline{}$	$\overline{}$	$\overline{}$	_	36.00	
SUSPEND SOLIDS	M6/L	9.00	3.3	13.40	40.70	7.80	1.4	13.90	4.30	9.90	13.40	2.00	19.10	14.20	13.60	21.20	3.70	13.50	3.90	0 - 9	10.20	14.20	26.80	23.80	22.10	30.10	22.90	26.40	4.80	9.50	3.70	6.20	17.50	14.40	34.80	31.30	25.90	
000	H6/L																																					
TOTAL KJELD	M6/L																																					
ORG.	H6/L																																					
NH-13	H6/L	.030	• 0 4 0	.070	• 0 6 0	• 060	• 060	040	• 050	0.00	• 030	• 020	.030	• 1 4C	.100	.100	.120	• 560	• 100	.226	0 0 0	• 080	• 360	.240	.260	099•	.080	.180	.170	040	.160	.180	.260	.130	.130	0 0 0	• 020	
NO-2	H6/L	950	.850	1.150	1.050	1.200	1.000	• 800	.700	• 700	.800	• 900	006.	.790	• 800	•600	.500	.500	000	004.	• 500	• 600	.990	•600	.700	•600	9.600	• 500	006.	.800	.700	• 600	.500	.500	.400	•600	• 600	
PHOS.	HG/L	040.	0 4 0	.060	• 050	.060	.080	.080	090*	٠06 و	.070	•100	.100	•120	.160	.150	.150	.180	.140	.130	.160	.150	.190	.170	.190	.190	.150	.180	.170	.239	. 140	.170	.170	.180	. 166	•190	.140	
TOTAL PHOS.	7	- 5	0	1	~	8	12	2	.082	~	10	•	٠C	18	_	-	21	O.	21	~	м	~	•	S	o	_	•	O.	F	•	Œ	-	*	•	~	1	80	
FLOW		92	m	87	60	S	27	=	183.	70	70	•	35	35	27	19	4	8	•	•	02	90	62	122.	46	3.	20	50	46	42	3.3	4	C J	97	ပ	~	63	
7 I ME	ž	920	920	92 h	320	930	930	930	930	930	930	930	330	930	930	930	936	930	930	930	336	930	933	930	930	93,	936	930	1900	339	1900	1966	1960	1960	0 061	1960	1366	
IN G	ρ¥	110	+	S	9	9	~	€	5	1 C	11	12	13	13	14	15	16	17	18	19	20	6	2 1	22	23	24	25	56	56	27	_	æ	6	۲.				
SAMPL ING	2								•																													
20.5	*	76	7	7	7	76	76	76	16	76	76	7	76	76	76	76	76	76	76	76	76	76	76	76	76	76	76	76	76	16	76	76	16	76	76	76	16	

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY IMFORMATION

: AT MILAN, OHIO LOCATION W/CODE

: HURON RIVER

STREAM

US65 NO. 04199600

COND 25C. UMHO	757.	754.	788	786.	767.	739	752.	766.	•969	711.	727	722.	718.	726.	702.	695.	698.	695	740.	711.	711.	702	717	708.	719.	715.	723.	725.	734.	732.	725.	727.	716.	725.	704.	655.
IRON MG/L																	•																			
S102																																				
CHLO RIDE MG/L	36.00	36.00	39.00	39.00	41.00	. 43.00	38.00	37.00	45.00	41.00	42.00	43.00	43.00	44.00	45.00	46.00	40.00	38.00	36.00	38.00	40.00	39.00	37.00	39.00	39.00	41.00	42.00	43.00	42.00	45.00	46.00	46.00	45.00	44.00	42.00	38.00
SUSPEND SOL 1 DS MG/L	24.70	20.70	20.60	14.70	36.90	21:80	16.40	16.60	16.50	23.80	22.40	36.70	29.50	34.30	56.10	50.10	49.20	50.30	21.10	22.30	35.10	22.10	12.90	15.60	19.20	14.50	19.30	16.00	22-10	5.6	28.00	28.00	36.70	22.80	31.20	19.70
COD MG/L																																				
TOTAL KJELD MG/L																																				
ORG. NIT. MG/L																																				
NH-3	.330	.360	.270	.120	.300	.190	. 050	.170	. 400	1.000	1.000	1.000	1.000	• 140	.040	•020	000	• 020	• 080	.110	060.	• 080	• 050	. 030	.120	.100	.210	.180	.210	.110	• 360	100	.140	.130	040	.126
NO-2 NO-3 NG/L	.800	.800	.800	.700	.800	1.200	1.000	006.	.900	.900	. 800	.700	.700	• 600	.900	.900	1.200	000-9	5.300	4.900	3.800	2.600	1.900	1.500	1.500	1.600	1.300	1.000	.810	.780	.700	.550	•	2.640	3.090	10.800
ORTHO PHOS. MG/L	.166	.160	.150	.150	•300	.120	.100	.080	.110	.130	-140	.150	.180	.180	.290	.150	.170	.290	.080	• 093	.170	-200	.130	.120	.110	.120	.190	.210	.190	.190	.220	.200	•24€	.240	.260	•120
TOTAL PHOS. MG/L	.286	.284	.263	.252	.501	.202	.191	.171	•269	.292	.308	. 779	.524	455.	.290	.273	.283	.290	.119	.154	.229	. 263	.196	.170									.321	.327	.364	•245
FLOV	60	76.	71.	146.	154.	127.	114.	102.	100.	91.	85.	72.	81.	119.	100.	221.	260.	249.	164.	133.	126.	110.	85.	79.	76.	71.	•	•	•9•	•	56.	61.	59.	387.	505.	505
71ME 2400 HRS.	930	930	930	930	930	930	930	330	920	920	920	920	920	920	920	320	915	925	925	925	925	925	925	325	1015	1015	1015	1015	1015	1015	1015	415	930	1530	2130	330
N E	•	w	•	~	•	•	20	7	-	12	13	=	15	16	11	8	10	19	20	21	22	23	24	25	25	56	27	28	29	30	33	~	~	~	~	~
7 . 10 .	•	•	'n	•	5	'n	'n	•	•	5	so.	ĸ	40	'n	W)	6	•	•	80	ĸ	6	6	6	6	6	S	S	•	6	80	S)	9	•	9	9	•
SAMPLING DATE YR HO DY	16	76	16	16	16	76	92	16	16	91	16	76	16	16	16	16	16	16	16	16	16	16	16	16	76	16	16	16	76	16	16	16	92	16	16	16

LAKE ERIE UASTEUATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

US6S NO. 04199000

IRON COND 25C. NG/L UMHO	746.	767.	703.	683.	683.	• +69	702.	712.	720.	725.		730.	730.	730. 736. 748.	730. 736. 758.	730. 736. 754. 755.	7000 7000 7000 7000	730. 736. 748. 755. 755.	736. 736. 754. 755. 753.	736. 746. 756. 755. 753.	736. 756. 755. 755. 755. 755.	746. 746. 756. 755. 752. 752.	736. 736. 736. 753. 752. 753. 754.	736. 736. 756. 753. 753. 753. 754. 761.	736. 736. 755. 755. 752. 757. 757. 761.	736. 756. 755. 755. 757. 757. 757. 761.	736. 746. 756. 752. 752. 753. 754. 761.	736. 736. 755. 752. 752. 754. 761. 761. 763.	730. 736. 736. 752. 752. 753. 763. 763. 763. 763.		736. 736. 756. 753. 753. 754. 757. 761. 761. 761. 776.	736. 736. 756. 757. 757. 751. 761. 761. 763. 776. 776. 776.	736. 756. 757. 757. 757. 757. 757. 767. 777. 77	736. 756. 757. 757. 757. 761. 761. 763. 776. 777.	786. 786. 787. 787. 787. 787. 788. 788. 778. 778. 778. 778. 778. 778.
S102 I																						· · · · · · · · · · · · · · · · · · ·			, ·	· ·	· ·	·	· ·			•	•	•	· ·
RIDE MG/L	39.00	39.00	37.00	37.00	38.00	39.00	00.04	39.00	40.00	00.00		22.4	42.00	45.00 43.00	1000 1000 1000 1000 1000 1000																				
SUSPEND SOLIDS RG/L	5.5	S	35.00	9:0	32.40	S	43.40	33.90	34.20	38.00	•	98.7.	35.50	47.80 35.50 43.20	47.80 35.50 43.20 31.10	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5																			
7/9H																																			
TOTAL KJELD MG/L																																·		·	
NIT.																																			
NH-3	090	• 020	060	040	040	.210	• 020	• 020	• 090	• 060		.060	.060	.060 .080	.060 .080 .070	. 080 . 080 . 120			. 060 . 070 . 070 . 090 . 060				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
NO-3	13.200	12.300	12.100	12.300	14.000	12.400	12.400	13.600	13.800	13.900		13.700	13.700 13.800	13.700 13.800 12.600	13.700 13.800 12.600	13.700 13.800 12.800 12.900	13.700 13.800 12.800 12.900 12.600	13.700 13.800 12.800 12.900 12.600 10.800	13.700 13.800 12.800 12.900 12.600 11.600	13.700 12.800 12.800 12.600 12.600 11.600	13.700 12.800 12.800 12.900 12.600 11.900 11.500	133.700 113.800 112.900 112.900 112.600 111.600 111.900	13.700 12.800 12.800 12.800 12.600 12.200 11.500 11.600	13.700 12.800 12.800 12.800 12.800 12.800 11.800 11.900 11.900	13.700 112.800 112.800 112.800 112.800 112.800 111.600 111.900 111.000	13.700 12.800 12.800 12.900 112.600 11.600 11.900 11.000 11.100 9.100	13.700 12.800 12.800 12.600 11.600 11.600 11.600 11.000 11.100 11.100 11.100 11.100	13.700 112.800 112.800 112.600 112.600 111.600 111.000 111.000 111.000 111.000 110.100 8.6100	13.700 12.800 12.800 12.800 12.800 11.800 11.900 11.900 11.900 10.100 8.100 8.100	13.700 12.500 12.500 12.500 11.500 11.500 11.500 11.000 11.000 10.100 9.100 8.600 7.600	13.700 12.800 12.800 12.800 112.800 113.800 111.900 111.900 111.900 111.900 10.100 8.400 7.600	13.700 12.800 12.800 112.600 110.600 111.600 111.000 111.000 111.000 110.700 100.700 100.700 100.700 100.700 100.700 100.700 100.700 100.700 100.700 100.700 100.700	13.700 12.800 12.800 12.800 11.8600 11.6600 11.900 11.900 11.100 10.100 8.600 7.600 6.700	13.700 112.800 112.800 112.600 111.600 111.600 111.000 111.000 111.000 111.000 110.100 10.100 10.100 10.100 10.100 10.100 10.100 10.100 10.100 10.100 10.100 10.100 10.100	13.700 12.800 12.800 12.800 12.800 11.800 11.800 11.900 11.900 10.100 8.100 8.100 7.500 7.500 6.700 6.700
PHOS.	.360	060•	.070	•010	• 080	.080	060•	090-	090•	• 070		080	080.	080																					
PHOS.	.360	•146	.127	.145	.151	.148	.158	.146	•145	.172		•198	.198	.198 .184	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 198 . 198 . 169																			
FLOW	.67.	12	358.	9	9	227.	198.	175.	80	144.		2	124.	904	900	9 2 2 4	400 00 00 00 00 00 00 00 00 00 00 00 00	7 6 8 9 7 4 9 7 9 7 9 9 7 9 9 9 9 7 9 9 9 9 7 9	5069974	500000000000000000000000000000000000000	4 1 2 6 3 4 3 6 3 4 4 6 6 5 4 4 6 6 6 7 4 6 6 6 7 4 6 6 7 4 6 6 7 4 6 7 6 7	4 2 2 3 4 4 5 5 4 4 5 6 5 4 4 6 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 7 4 6 6 7 4 6 6 7 4 6 7 6 7	4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3											
24 CD HRS.	930	1530	2130	330	930	1530	2130	330	930	1530		2130	2130	2130 330 930	2130 330 930 1530	2130 330 930 1530 2130	2130 330 1530 330 330	2130 330 2130 2130 330	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2130 2130 2130 2130 2130 2130 2130	213 213 213 213 213 213 213 213 213 213	2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 9 44 9 41 9 41 9 41 9 41 9 41 9 41 9	2	2	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		24 44 44 44 44 44 44 44 44 44 44 44 44 4		21	24 44 44 44 44 44 44 44 44 44 44 44 44 4		
SAMPLING DATE TR NO DY																																	-		
SAMPL DATE YR NO									9	9		م ،																~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							

LAKE ERIE UASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : MURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

US65 NO. 04199000

250		179.	176.	775	769.	759.	689	695.	701.	732.	0001		788	162.	784.	823.	942	786.	900	699	• • • •	136.		701	- 6	692.	689	685.	703.	707	707	707	693.	677	697.	693.
2	H6/L																		•		٠															
2016	H6/L																																			
RIDE	H6/L	48.00	48.00	49.00	47.00	46.00	44.00	11.00	46.00	55.00	56.00	52.00	58.00	51.00	51.00	47.00	90.74	51.00	00.64	90.94		38 - 00	00.14			41.00	40.00	41.00	41.00	41.00	41.00	42.00	45.00	42.00	45.00	42.00
SOLIDS	7/94	23.20	34 . 30	57.30	29.10	55.80	35.00	55.00	42.00	43.00	₽2°00	43.00	41.00	24.00	62.00	43.00	42.00	00.44	20.00	00.44	00.00	51.60	33.00			41.50	43.80	46.90	34.30	55.50	43.30	62.10	190.00	63.80	62.90	50,50
900	H6/L																																			
KJELD	#67L																																			
ORG.	H6/L																																			
N-17	NG /L	.260	.320	.320	.270	.080	.010	• 020	.070	.260	•190	•200	.310	.130	.070	.010	• 090	.070	.150	• 050	• 030		.020	040			140	060	.020	.140	040	.120	.030	.316	.030	9
2 - 0 X	H6/L	4.600	3.900	2.600	1.300	006.	1.400	1.000	.700	004.	.500	009.	.700	004.	.720	009.	• 600	906.	1.500	2.600	2-800	2.490	2.730	2.820	3.310	0000	2.230	1.880	2.500	2.300	2.400	2-200	2.500	1.800	7	4
PHOS.	H6/L	.270	.240	.240	-220	.200	.280	.280	.290	.290	.360	.390	.470	.270	.250	.200	.220	.270	.360	.120	.079	. 160	-200	-210	.310	300		900	.170	.140	.160	.170	.205	•150	• 130	•
TOTAL PHOS.	H6/L	.341	. 328	588	5.65	465.	.379	000	.420	.437	.495	.532	-639	.423	.352	.390	.522	.270	.360	.232	.224	.260	.309	.307	• 426			240	.283	.276	.256	.308	.493	.301	.283	5
FLOV	•	37.	35.	31.	29.	27.	29.	28.	36.	33.	57.	52.	88.	75.	63.	50.	35.	99.	150.	82.	48.	.69	61.	78.	92.	•			26.	23.	22.	21.	15.	18.	19.	;
11ME	IRS	406	904	106	1	304	912	912	912	912	912	912	912	312	915	915	915	915	915	915	915	920	920	920	920	2 6	2 0 0	125	931	1531	2131	330	931	1531	2131	
SAMPL ING	Ď	11	12		•	2			17											~			~		~ 1											
141	2	•	•	• • • • • • • • • • • • • • • • • • •		•			•																-											
SAG	2	76	76	7,	7	7	,	7	76	76	16	76	76	76	76	16	76	16	76	16	76	16	76	76	16	- ;				76	76	76	7.5	76	76	

LAKE ERIE WASTEWATER MANAGEMENT STUGY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

SAMPL ING	-		FLOW	TOTAL	ORTHO	NO-2	NH-3	086.	TOTAL	000	SUSPEND	CHLO	\$102	IRON	COND
DATE	~	00	CFS	S.	PHOS.	NO-3	;	NIT.	KJELD	17.00	SOL IDS	RIDE	1/39	1/3	250.
E 0	ž O	æ	,	H6/L	N6/L	H 6 / L	1 07	1/9#	704	1/94	7.96	1011	1	101	
		120	pr pr	•	.170	1.900	040				67.30	42.00			.969
76		3 3 3		270	130	1.400	.340				53.80	42.00 \			697.
			37.		140	1.400	.210				68.60	45.00			707.
	•		39.	3	.140	1.100	.350				65.60	45.00			707
		931	36.	35	.150	1.300	.230				80.60	45.00			706.
	-	531	31.	36	.160	1-100	• 290				93.20	45.00			710.
		131	27.	*	.130	1.000	• 200				81.30	45.00			712.
~	, c		- PC	28	100	.800	.300				55.20	45.00			687.
		931	0.4	39	.160	1.100	.250				88.30	43.00			702.
	, ,		6	8	170	1.000	• 330				93.80	43.00			709.
	• 0		37.) P	.210	1.100	.230				87.60	44.00			721.
	, , -	24.4	46	9	.230	1.100	.230				82.10	44.00			723.
. ~		931	31.	53	345	1.200	.170				80.30	46.00			733.
	-	531	26.	6	.250	1.200	.170				80.50	45.00			727.
	. ~	131	23.	47	.200	1.100	• 090				95.50	45.00			721.
		330	21.	56	.280	1.000	.0R0				85.90	46.00			725.
	~	931	19.	58	.260	1.000	• 100				113.00	46.00			730
~	2	531	18.	0	•290	1.000	.130				65.20	46.00			731
_	2	131	17.	•	.250	.900	• 020				24.60	46.00			717
~	n	331	15.	•	•250	006.	.020				67.00	47.00			726.
_	3	000	15.	ø	.280	1.080	• 010				26.90	49.00			731.
	M	200	14.	4	.240	.840	• 030				65.80	49.00			728.
	•	000	13.	7	.250	.870	.010				36.30	49.00			733.
	4	200	16.	0	•220	.800	. 020				00.69	49.00			726.
	2	000	18.		•220	•610	• 060				57.00	49.00			728.
	20	200	20.	•	. 190	450	060•				54.20	48.00		:	727
		000	19.	•	.210	.300	.180				32.40	47.00			128.
_	9	1200	34.	Ф	.200	.280	.150				62.80	48.00			726.
	7	000	45.	•	.210	.230	-200				55.50	46.00			729
	-	200	31.	43	.230	.120	•260				50.30	46.00			736.
-		000	22.	Q.	•296	• 300	.210				62.40	47.00			747
	6	200	19.	~	.280	•280	.150				65.40	48.00			752.
	6	000	23.	•	.340	• 390	•200				51.60	_;			765
-	6	200	19.	•	.320	.300	.190				69.40	20.00			763.
-	63	409	16.	55	.275	.190	.010				ູ້	51.00			755.
	22	907	16.	58	.54 G	1.200	0 0 0				•	51.00			768.

LAKE ERIE KASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

US6S NO. 84199800

COND 25C. URHO	111.	784.	759.	731.	758.	620.	555	570.	556.	726.	675.	627.	616.	613.	601.	605.	605.	608.	609	614.	613.	617.	623.	631.	635.	635.	649.	643.	656.	643.	652.	•099	670.	658.	667.	.929
IRON NG/L															4.30	3.20	2.20	.5 • 60	2:40	2.10	1.70	1.10	1.00	1.00	1.20	••	1.00	1.10	.90	2.60	1.80	1.30	÷	2.40	2.20	1.70
S 102																																				
CHLO RIDE MG/L	52.00	52.00	51.00	47.00	47.00	44.00	32.00	36.00	32.00	31.00	32.00	32.00	32.00	33.00	39.00	40.00	00.04	40.00	40.00	41.00	41.00	42.00	00.44	46.00	46.00	47.00	51.00	52.00	53.00	52.00	53.00	53.00	53.00	53.00	•	53.00
SUSPEND SOLIDS MG/L	0.80	59.20	96.50	52.50	53.10	63.50	69.30	29.60	71.40	50.20	55.80	29.00	68.80	76.30	86.90	89.10	70.20	89.80	99.99	83.30	58.60	36.10	34.60	44.50	37.10	43.00	48.00	40.20	73.60	104.00	06.09	41.20	41.30	7	68.40	56.90
7/9H 000																																				
TOTAL KJELD MG/L																																				
ORG. NIT. MG/L																																				
NH-3	0.50	0	040	040	.060	• 080	• 080	.110	• 0 7 0	.050	040	.050	.060	.020	•020	• 020	.010	.010	.030	.370	.080	.360	.230	.380	.430	.280	• 300	•620	.320	. 080	.430	.130	0 0 0	090•	• 200	• 080
NO-2 NO-3 MG/L	1.200	1.100	.900	008*		1.200	1.200	2-400	2.300	1.400	1.400	1.500	1.600	1.500	1.900	1.800	1.700	1.700	1.600	1.500	1.300	1.000	1.000	-800	. 700	• 600	.300	.100	.100	•900	004.	.700	006*	• 700	• 600	1.000
ORTHO PHOS. MG/L	670	9	.470	.470	.623	.520	.220	.34€	.230	.190	.160	.190	.200	.180	.270	•250	.230	.24€	.240	•240	•230	.230	.250	• 26€	•25€	.230	•240	.210	.290	.420	.370	.356	.379	.340	.330	.340
TOTAL PHOS. MG/L	3	575	.526	.485	.681	.597	•266	.368	.265	•210	.212	.258	.281	.287	• 354	.345	-292	.332	•298	.343	.289	.273	.311	.345	.316	.323	.364	.383	.461	÷605	.467	.422	.461	.466	.455	.487
FLOV	\$	98.1	115.	173.	102.	166.	152.	294.	206.	144.	99.	75.	54.	•••	37.	31.	26.	22.	23.	26.	26.	27.	26.	25.	22.	20.	16.	17.	29.	26.	26.	24.	22.	19.	16.	16.
16 TIME 24.0 24.0	7000	21 807					3 2007																11 907													
SAMPLING Date yr ho dv	36 1 9	76 7 2	-	~	_	_	_	_	_	~	^	_	_	~	_	_	_	_	~	~	_	_	-	1	•	80	•	60	•	Œ	60	•	œ	60	•	

LAKE ERIE WASTEWATER MANAGEMENI STUDY - WATER QUALITY INFORMATION

LOCATION W/CODE : AT MILAN, OHIO

: HURON RIVER

STREZM

25 C	CHEO	676.	682.	619.	679.	671.	677.	685.	684.	680.	685	734	699	524	474	493	90	563	220	574	602.	617.	637	633	651.	623	636	• 200	64.7	9/0	688	9 5	653		000	• 1 •	451.
NO N	H6/L	1.70	2.30	2.50	2.10	1.80	1.70	1.90	1.50	1.60	2.00	7	2.40	Ğ,	ç	3.10		•	9	ή.	•	1.90															
2018	MG/L																																				
CHLO RIDE	H6/L	52.00				52.00				53.00							38.00						37.00				41.00							32.00			C C P F
SUSPEND SOLIDS	1/9H	51.60	52.30	81.90	71.00	59.50	56.50	45.90	•	04.44	~	64.60	61.30	69.50	72.20	72.70	64.10	47.60	62.00	49.20	49.00	37.90	67.10	54.80	04.04	29.60	39.10	94.60	47.00	Ņ	34.80	``	♦1.00	342.00	263.00	9	•
000	H6/L																																				
TOTAL KJELD	H6/L																																				
ORG.	HG/L																																				
NH-3	HG/L	.300	.190	•260	090	.110	090•	.120	.130	.280	.280	.160	.190	.190	• 100	.110	.100	060.	.070	• 060	090•	.080	.010	.010	.050	• 030	.110	•100	.100	. 100	.100	.160	. 080	.250	• 100	• 080	•
NO-2	H6/L	.500	•600	.500	900	900	. 700	.700	• 600	.300	.300	.700	1.000	.800	1.500	1.800	2.000	2.100	2.100	1.900	1.900	1.800	1.800	2.000	1.900	1.900	1.700	•60	1.300	•	1.000	?	.800	• 50	0	9.	•
OPTHO	. .	346	3330	OFF.	319	286	300	300.	.316	•30€	.300	.430	•520	.230	.186	•200	.180	.170	.170	.170	.160	.160	•18C	.230	.220	. 230	.230	• 260	• 26 Û	•30€	.410	•88•	.39r	•29C	.120	. 125	
TOTAL	#6/L			4	;		5	7	38	37	-	52	89	3	26	25	22	9	-	20	19	80	10	26	N	•	10	•	28	_	6	S.	•	~	n	8	
FLOW	_	15.	120					27.	26.	60	2	392.	Ç	5	7.0	254	211.	7.1	9	27	0	94.	70.	52.	39.	32.	28.	70.	19	2	73	35	86	ĸ,	92	3	. '
~	HRS.	952	1552	23.50	46.5	200	15.52	2152	352	952	1552	2152	352	952	1552	2152	352	952	1552	2152	352	952	100	1309	100	1300	109	1309	100	700	1300	1900	100	750	1300	1900	
Ş	۵	•				8 4	,	9 4	·	. ~	-	_	•	40	•	•	•	6	6	σ	1		Ξ	11	12	12	13	13	~	=	•	=	15	2	15	:	,
~	1 K				_	0 4																															
SAR	3 %	76	7.	2	2	6 4		5 %	76	7	76	16	16	76	16	16	16	16	16	16	16	16	91	16	16	92	16	92	76	16	16	16	9,	16	16	16	. :

LAKE ERIE HASTEMATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

USES NO. 04199000

		•	7	•	5	Š	66	700	20			770				219	•	2 2	9 .	70	683	2 .	691	2 :	2;	136	6	7 6	20.	647	772	723	200	9 0		***
IRON MG/L															1		,	•																		
S 102																									٠											
CHLO RIDE MG/L		•	~ 1	•	•	•	D0 • 0 4	•	•		- 4	- 6	3	•	~ 4	-	•	-	-		56.00	-	.	-	-	-	_	_	_	_	o .	8	•	ο,	•	9
SUSPEND SOLIDS MG/L	99.30	90.80	119.00	82.50	59.70	61.50	38.70	38-70	50.80	50.20	07.06		20.00	34.45	29.30	35.40	45.28	73.30	42.30	40.10	41.80	26.80	48.80	23.20	56.30	50.70	33.70	25.80	04.10	41.20	45.10	39.50	92 • 1	150.00	8	ູ
7/9W 000																																				
TOTAL KJELD MG/L																																				
ORG. NIT. MG/L																																				
NH-3	. 080	.100	• 090	.350	. 120	.023	.023	.023	. 023	• 023	•023	• 056	• 0 7 9	060.	.180	.135	.248	.147	-214	.180	. 135	•135	040	.040	.030	• 050	.180	.170	.160	.170	.190	.360	.180	080.	.070	• 000
NO-2 NO-3 NG/L		3.400	3.300	3.200	3.200	3.240	3.090	3.090	2.970	2.790	2.790	2.550	2.070	1.680	1.300	1.130	-800	.820	.530	.320	.180	.130	•600	009.	009.	009-	006.	.500	004.	• 500	1.000	1.600	006.	1.000	1.000	1.200
ORTHO PHOS. MG/L	.150	.150	• 150	.150	.170	•170	.180	.180	.219	•230	.230	•230	-230	.210	.210	.210	.170	. 180	.180	.160	.160	.140	.240	.260	.260	.319	•290	.290	.270	.290	• 410	. 84 0	• 250	.140	.130	.146
TOTAL PHOS. MG/L	306	.281	.290	•259	.248	.263	•246	•246	.257	.273	.273	•250	•256	.258	.271	.294	.297	.324	.338	•266	.302	• 262	• 355	.327	.386	.416	.393	.374	.415	•421	.553	1.020	.481	.37H	.301	•303
FLOV		140	17	6	88.	76.	62.	62.	49.	45.	42.	35.	32.	28.	26.	22.	20.	20.	20.	19.	19.	18.	17.	15.	16.	13.	16.	13.	12.	12.	+07.	322.	17	394.	244.	192.
71HE 24:0 HRS.	700	1300	1900	100	700	1300	100	100	1300	100	100	1300	100	1300	100	1300	100	1300	100	1300	100	700	1900	700	1900	700	1960	700	1900	700	100	700	1300	1900	100	100
SAMPLING DATE YR NO DY	76 A 16		•	6	60	•	76 8 18	60	•	*	9	6 0	60 9	6 0	40	9	60	6 0	9	60	•	8	•	æ	9	9	e c	9	æ	6 0	89	8	æ 9	æ	8	6 0

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

0110
AT MILAN.
300
5/7 NO
LOCATION W/CODE

US6S NO. 04199000

25C.		468.	463.	533.	581.	695	703.	727.	*02	693.	636		676	777	• • • • • • • • • • • • • • • • • • • •	- 1.	127		9 4 6		7.4	739	737	784.	669	7.1.	752.	728.	715.	735	123		763	,,,,		107
I KO	H6/L					1.66	1.50	1.60	2.00	1.30	19	1.04																								
S102	H6/L																																			
CHLO R 10E	H6/L	30.00	31.00	31.00	31.00	40.50	44.00	48.50	50.00	52.50	34.30	57.90	58.00	00.29	00.00	00-09	00.09	90.00		00.00		00.10	53.50	64.00	57.10	47.60	45.30	9	9.2	51.50	9	6	61.00	63.40	•	48.63
SUSPEND SOLIDS	HG/L	~	59.90	46.10	•	00.0	6.2	46.40	63.80	42.70	30.00	29.50	41.60	02.50	47.20	96.64		37.20	02.20	07.00	200		9.3.60	51.90	48.20	58.60	43.10	52.70	54.10	37.70	28.40	23.70	23.70	25.30	2.6	22.90
0 00	MG/L																																			
TOTAL KJELD	H6/L																																			
ORG.	1/94																																			
N-IN	H6/L	080	• 090	.110	.130	.041	• 076	• 055	.027	.041	• 028	.013	• 060	090.	• 160	.140	.130	. 090	060	.030	• 046	*80*	790	446	.203	.077	-072	• 052	.119	.068	.127	.124	. 144	• 226	• 255	.057
N0-2 N0-3	H6/L	1.300	1.400	1.400	1.300	.890	.780	.630	.680	.640	•620	.630	1.000	068.	. 700	1.180	1.290	1.130	1.010	.780	956	. 260		1.790	. 920	.530	• 500	168.	.670	.650	• 100	.700	006.	.580	- 700	.740
CRTHO PHOS.	H6/L	150	.140	.130	.120	.238	.259	.254	.252	.24R	•249	.293	.326	. 33.	.310	000.	.480	.520	.550	.460	694	.371	6.50	793	.390	•220	.203	•239	.229	.223	•219	.273	.310	.426	.337	.156
TOTAL PHOS.	HG/L	332	30	25	23	25	30	30	.352	.324	.315	•379	.386	.433	.417	.503	•09•	•652	.713	.611	•619	2	7 6	1.010	51	32	.282	.375	.417	.330	.304	.349	.393	.544	.411	• 18C
FLOW CFS	•	4	126.	20	85	31.	22.	15.	17.	13.	10.	14.	13.	14.	.	28.	26.	22•	12.	13.	13.	10.		126.	95	94.	.99	61.	31.	24.	22.	19.	22.	£1.		22
TIME	HRS.	1300	1900	1.00	700	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1300	1300	1300	100	1960	1300	1366	1300	0000	1300	0 û L	1300	1309	1300	1300	1366	1300	1369	661	1369
S N C	Ď				, F		۰ ۸	1 177	*	ıū	9	-	_	æ	6	ć.	11	12	2	£	=	5	9 :	- =	5	ä	5	5	22	23	2	25	26	27	2 E	28
-	2																							, 0												
SAI	E	76	7	7	76	76	76	76	16	16	92	16	16	76	16	16	16	16	16	16	16	16	76	2 2	7	76	76	76	16	76	16	16	76	16	16	16

207

LAKE ERIE MASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, ONIO

US65 NO. 84199800

COND 25C.	CHEO	608.	592.	613.	637.	661.	671.	. 69	691.	699.	703.	725.	741.	768.	795.	748.	721.	716.	740.	778.	788.	811.	831.	828.	946	826.	924	780.	783.	794.	823.	795.	792.	801.	808	816.	813.
IR OR	1/9#																			•				÷0.	•	.32	• 33	•29	.23	.22	•19						
S 102	1/9H																															5.09	9.30	6.92	6.13	6.59	5.07
CHLO R 1DE	46/L	44.50	44.50	48.20	48.20	51.60	53.90	55.10	53.60	54.90	54.50	54.30	55.80	61.90	60.10	53.90	55.90	52.90	53.10	55-10	55.80	59.20	61.70	71.20	63.20	71.10	14.00	66.80	68.00	06-99	69.20	46.30	46.60	7	6	•	49.70
SUSPEND SOL 10S	H6/L	28.10	30.60	34.00	35.90	22.10	38.50	24.40	22.50	31.80	35.20	24.80	32.70	32.80	19.00	22.80	29.40	39.10	41.70	51.30	39.40	30.10	21.40	27.00	23.40	14.30	14.30	9.90	9.50	7.00	9.90	13.50	8.90	8.00	7.80	8.20	
000	H6/L																																				
TOTAL KJELD	H6/L																																				
ORG. NIT.	HG/L																																				
N-TR	H6/L	- 062	• 064	• 069	.208	• 095	.123	• 115	.120	.110	.121	. 307	.420	.353	.234	.218	• 039	• 062	. 221	• 095	.172	.206	.239	.264	. 283	.274	. 405	.129	.136	.132	.240	. 222	.139	.130	.162	.188	169
NO-2 NO-3	H6/L	•	1.970	2.540	2.590	2.330	2.000	1.790	1.780	1.650	1.490	1.370	1.100	.770	.630	.370	.460	.720	.660	.540	.490	.530	•600	.580	•680	•600	.610	.190	.300	.310	0 • • •	-480	364.	.640	.750	.760	048
ORTHO PHOS.		.191	.195	.248	.233	.257	.312	.311	.279	.304	.284	. 332	.396	+2+	.472	.350	-250	.251	.293	• 309	.325	.354	.379	• 609	.458	.591	.725	.333	.313	• 354	.475	.217	• 125	.128	.175	.180	. 247
TOTAL PHOS.	H6/L	•205	.235	.300	.334	.280	.375	.356	.421	.425	.422	•4.79	.554	.638	.530	.416	.286	.311	.366	.411	-402	.433	644.		.482							.291	.174	.175	-242	.254	312
FL OU		168.	102.	63.	48.	39.	33.	31.	26.	26.	28.	26.	33.	59.	67.	62.	53.	45.	36.	35.	33.	31.	26.	27.	27.	32.	53.	62.	72.	59.	72.	146.	108.	79.	63.	57.	- 67
7 1 ME	HRS.	1300	1300	1300	1300	1300	1300	700	1900	1300	1300	1300	1300	300	1 300	700	0061	1300	1300	1 300	1300	1300	300	100	700	100	100	100	100	100	100	1300	300	1300	1300	306	
		5		_					9					0	_	~	N	m	•	S	9	7	•	19	19	20	21	22	23	24	25	9	_	28 1	•	0	
SAMPL ING	9	•	•	10	30	10	0.7	C	10	ũ	10	10	10	0	0	6	6	0	0	0	0	0	-	6	0	6	6	6	3	0	0	E	0	_	0	c	c
3 2	a c	•	٠	۰	9	•	•	9	16	9	9	9	•	9	9	9	9	9	٠	٠	ø	٠	•	٠	•	g	9	9	9	9	9	٠	9	9	٠	و	

the second and the second second section is the second second second second second section se

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREIM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

COND 25C. UMH0		799.	100	100	735	132.	773.	178		75.1	101	766.		788	797	809	617.	802	799.	803.	778.	812.	919.	623.		6 7 G		949			9 3 7	764	0 4		9000) }
IRON MG/L] 																		•	,																
S102		4.42	70.F	4	5.20	4.25	3.19	30.00	2-81	1.63	2001	7.04		1 - 00	90 • 7	,		,							ć	7 · • • •	9 6	1000	77.7			7.00	01.		17.0	74.0
CHL0 R 1DE R6/L	• • •	52.00	46.30	43.60	46.90	45.20	45.80	99.90	08074	98.00		100	000	00.00		52.10		0 F - 8 4	45.30	47.90	47.30	46.70	47.80	46.30		47.66	07.20			07.00			٥,	•	ю,	•
SUSPEND SOLIDS MG/L		6 - 80	5.10	7.60	6-80	7.90	8.60	6.70	3 • 30	6.50		D 6	200	1.50	200	2.50			0.00	8.10	6.00	5.10	0+.4	6.00		36.0	0.0		01.01	70.07	200		86.80	37.41	000	>0.
C00 F6/L																																				
TOTAL KJELD MG/L	4																																			
ORG. NIT.	1																																			
NH-3	1	.185	.147	.148	.230	.141	. 181	.207	.178	• 186	.465	. 568	.657	•555	946	• 35.0 0	6674	2.7	0.10	227	104	.321	. 285	.312	• 322	.316	0	. 748	.648	. 387	. 329	. 413	. 388	014	.413	•532
NO-2 NO-3	7,94	.890	.850	096.	1.079	.930	.800	.820	.760	.650	.740	.820	000	069.	•670	.470	016.		050.			044	.520	-500	.540	.470	.540	.600	•640	•390	.383	• 360	.390	. 550	.610	.640
PHOS.	1 0/F	.457	.197	. 155	.195	-203	.227	.271	.208	.232	N 4 10 •	•434	•432	• 449	.497	.331	• 363	• 527	. 452	404	4 6 6	345	.463	• 402	.458	-364	• 483	964.	•619•	• 392	.393	.281	.303	. 343	•309	• 369
TOTAL PHOS.	7/9K	_	25	0	22	2	26	33	27	2	10	•	22	26	~	-	13	7	- 4	ה נו	4537	7	•	4		÷	5	_	8	S.	9	9	89	0	• 506	~
FLOW CFS		100.	112.	107.	6	. E	62.	57.	49.	42.	36.	33.	• 0 •	• 0 •	•6•	49.	39.	29.	90.	• • •	• • • • • • • • • • • • • • • • • • •	29.	30.	31.	36.	36.	+0+	+0+	• 0 •	37.	35.	35.	36.	37.	•64	39.
7 1 ME	Æ	1300	700	1315	1300	1300	1300	1300	1300	1300	100	1300	100	1300	1300	1300	1300	700	1300	0061	0001	300	1300	1300	100	1300	1390	1300	1300	1300	1300	1300	1906	1360	1366	1990
SN S	2			^	m	•	•	•	1	€	11	_	12	12	13	-	15	76	9 !	11	E .	. 6		N	W	**	N	"	"	"	"	"	٣,			
AMPL	O E	_	_	_	-	_		-	· ~	-		_	_	_	-	~	_	_	_	-	= :		-	-	~	~	~	~		_		_	-	_	76 12	_

LAKE ERIE WASTEWATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

HAJOR RIVER BASIN : HURON RIVER

04199000
USES NO.
0H10
AT MILANS
: AT

COND 25C.	CHEO	1011.	1003.		1022.	1003.	983.	900	1002.	1021.	1007	970.	957.	+8+	951.	942.	978.	952.	945	933.	868	853.	826.	969	965.	1045.	1009.	997.	1012.	005	1010.	640.	667.	800.	39.	960.	981.
RON	H6/L																								•												
S102	H 6/L	5.71	5.14	5.30	6.41	5.35	3.30	4.72	4.29	4	80.4	3.91	3.42	3.33	2 - 89	2 • 89	2.79	2.36	2.24	2.29	1.99	3.45	3.82	3.45	3.50	3.40	3.66	3.67	4.06	4.27	4904	3.73	40.4	4.23	**	7.11	7.68
CHLO	H6/L	54.20	59.10	56.00	57.40	60-10	57.20	55.50	61.00	66.70	94.60	60.50	54.40	52.80	55.60	54.70	59.20	59.30	58.80	55.60	53.50	63.80	54.50	65.20	61.00	67.00	65.30	63.90	64.50	62.50	62.70	48.10	53.40	62.50	64.60	53.50	55.00
SUSPFND SOLIDS	1/9H	8.70	4.20	44.30	4.70	5.30	5.80	4.80	4.20	4.30	4.00	4.30	3.90	3.60	•	•	2.40	2.10	1.50	2.60	2.60	2.40	2.40	0+•	1.40	•20	0.00	• 10	2.30	4.20	N	5.6	98.40	5.8	5.3	9.00	0
000	H6/L																																				
TOTAL KJELD	H6/L														1-100	1.000	1.500	1.550	1.220	1.190	1.320	1-350	1.060	1.640	1.530	2.100	1.690	1.810	1.560	1.470	1.740				1.000		
ORG.	HG/L																																				
NI - IN	H6/L	.778	.827	.623	.578	.510	.611	.637	1.130	•626	484.	. 480	.493	. 483	.448	.450	.892	.737	• 526	•646	.527	.236	.549	. 198	.589	1.190	1.150	.930	.937	.901	106.	.778	1.110	1.360	1.220	1.910	•
NO-2	N6./L	.770	.630	.570	.530	.580	.500	.520	.690	.550	-450	0++•	04.	.420	.350	-410	.570	.460	.420	.420	.390	1.650	.430	084.	0440	.610	.550	•650	.670	.720	.760	.540	.610	.800	. 800	.610	
PHOS.	H6/L	.509	.548	.542	.462	.564	.538	.516	.828	• 465	.391	-417	•455	.382	.399	.718	.558	.531	.498	• 204	.475	.203	.526	•596	.372	•585	.487	.452	.380	• 430	.429	.260	.405	.475	.546	.516	
TOTAL PHOS.	H6 /L	.693	999•	5	3	63	65	66	22	-514	\$	-582	.498	£	5	.718	99	3	909.	•626	•596	.697	.760	.747	.508	• 109	.583	.583	.518	.558	.541	.485	.601	.650	.707	.713	
FLOW)	37.	34.	32.	31.	30.	30.	29.	28.	26.	27.	27.	28.	29.	30.	26.	33.	30.	32.	28.	11.	31.	31.	31.	30.	30.	30.	30.	30.	29.	29.	29.	29.	29.	28.	23.	
11 ME	HAS.	100	1300	1300	300	700	0061	1900	006	0061	9061	0061	1900	100	1300	300	300	1300	1300	1300	300	100	700	0061	0061	0061	0061	0061	0061	0061	300	0061	0061	0061	1900	100	
		4									_	~	100			-	•	_	60	•	0	27	23	_	•	•	_	_	_								
SAMPL ING	2	12	75	12	12	12	12	12	12	~	8	~	~	N	N	~	~	~	~	~	~	12	~	~	~	~	~	~		-	-	-	-	-	_	8	•
= =																		16		_	_			_	_	_			_	_	_		_	_	_	_	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

COND 25C. UMHO	972.	982.	998.	989.	992.	992.	969.	975.	1063.	1279.	894.	775.	786.	.768	757.	761.	754.	767.	788.	791.	796.	789.	763.	642.	509.	443.	+06.	390.	368.	371.	379.	393.	415.	***	164.
IRON MG/L																		•																	
S 102	7.79	8.01	7.71	10.60	10.60	10.70	11.00	10.80	11.40	10.40	5.70	5.80	6.60	6 • 75	6.70	6.45	6.30	7.00	99•9	6.54	96.9	6.33	6.36	5.45	5.01	5.01	4.86	4.64	4 • 88	5.00	4.97	4.97	5.08	5.17	5.30
CHLO RIDE MG/L	56.80	56.30	60.80	69.80	71.70	71.00	96.99	70.10	94.60	132.00									63.30	67.80	65.90	62.50	72.70	59.70	51.90	47.20	46.70	45.50	45.90	47.00	46.30	45.20	45.90	•	48.70
SUSPEND SOLIDS MG/L	3.60		4.50	06.6	9.20	8.50	7.00	5.60	7.90	10.70	12.10	9.10	9.50	7.80	•	5.90	ŗ	3.20	11.90	8.00	04.4	6.10	10.40	59.50	173.00	495.00	357.00	366.00	292.00	234.00	232.00	232.00	213.00	136.00	116.00
C0D																																			
TOTAL KJELD MG/L																			2.120	1.940	1.180	1.680	2.040	2.830	1.720	3.780	2.760	2.880	5.110	2.010	2.420	1.830	1.580	1.200	1.270
ORG. NIT. MG/L																																			
NH-3	1.930	1.880	1.740	1.660	1.710	1.640	1.770	1.820	1.570	1.680									964.	.653	• 109	• 565	• 752	• 458	.377	.279	.272	.294	. 295	.304	• 305	• 300	. 301	• 333	.313
NO-2 NO-3 MG/L	.630	.680	.720	.950	. 680	.870	.850	.890	1.000	1.100									2.950	2.850	3.020	3.250	2.680	3.340	3.690	4-190	4.120	4.070	4.400	4.610	4.640	4.700	4.760	4.650	4.810
ORTHO PHOS.	.567	.594	•594	-602	•599	•615	.610	.549	.491	.427									•186	•230	.260	.254	.352	.164	.111	•092	.087	.087	060.	• 092	• 091	• 085	.087	.100	160.
101AL Phos. #6/L	.708	.740	.764	.775	.773	.787	.78¢	.750	.734	.748	.260	.245	.223	.202	.223	.214	.220	•226	.265	.318	.352	.372	.463	.368	.486	. 77A	.614	.568	.477	• 365	.353	.339	.343	.248	.218
FLOW	23.	N	~	N	N	21.	_	~	-	0	0	9	30	25	22	92	43	Ð	9	9	Ξ	~	15	000	37	91	512	5	082	708	22	00	927.	•	•
INPLING TIME ITE 24:0 I MO DY HPS.	2 4 1300	9	-	8		6	10	11	12	13	14 1	15 1	16 1	17 1	18 1	19 1	20 1	21 1	22 1	22 1	23	23	23 1	23 1	24	25	52	25 1	25 1	56	56	26 1	26 1	27	21
SAM	77	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	7.7	11	77	17	7.7	11	11	7.7	11	11	11	11	11	11	11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN. OHIO

04199000

COND 25C.	CHEO	475.	505	539.	526.	505	501.	512.	525.	576.	621.	641.	670.	632.	568.	529.	513.	501.	504.	523	536.	589.	624.	652.	667.	672.	686.	700	693.	659	627.	603	637.	675.	595.	451.	386.
IRON	H6/L									1.+0	1.90	96.	.90	2.10	8.60	9.90	7.40	4.80	5.30	3.80	3.80	1.30	1.00		-							1.50	1.80	• 70	9.5	30.70	27.00
\$102	MG/L	5.35	5.37	2.66	5.55	2.60	5.63	ŝ	5.96	6.66	96•9	6.91	6.81	6.59	6.27	6.15	6.22	6.37	6.59	6.43	6.63	6.63	6.81	7.16	7.45	6.98	96•9	7.13	8	7.65	7.46						
CHLO RIDE	N6/L	48.60	49.70	55.20	54.70	53.60	53.10	51.60	53.30	152.00	53.00	53.80	56.00	57.80	55.30	51.50	50.80	50.90	51.40	51.70	52.00	52.10	53.40	54.80	55.10	53.60	54.60	54.30	61.60	55.80	56.50	56.50	54.50	57.20	60.80	;	37.90
SUSPEND SOLIDS	.H6/L		78.90	89.30	138.00	181.00	139.00	86.30	76.30	31.10	17.40	15.50	23.20	99.30	309.00	292.00	220.00	172.00	103.00	72.20	54.20	22.40	16.70	23.30	44.90	21.80	20.50	34.30	61.70	56.10	31.20	24.60	45.70	15.00	25.70	772.00	629.00
000	H6/L																																				
TOTAL	H6/L	1.390	1.320	1.510	•66	÷	•	30	1.340	1.580	1.210	1.020	1.270	•	1.880	•	1.730	1.900	1.900	1.700	1.400	1.300	1.140														
086. NIT.	H6./L																																				
NH-W	M6/L	.314	.316	.375	.309	.280	.282	.283	.287	. 325	.430	. 359	•479	.267	• 296	.289	.318	.248	.246	.293	•260	.285	.346	.330	.277	• 306	.301	.293	.485	.350	.304	.548	. 384	.317	.371	.217	.261
NO-2	H6/L	4.810	4.800	4.810	5.060	5.750	060•9	5.810	6.310	6.150	5.720	5.240	4.640	4.620	5.800	6.560	6.820	6.920	086.9	7.040	6.990	6.380	5.710	5.590	5.140	4.430	4.310	4.190	5.320	5.210	5.640	5.540	4.860	4.470	3.470	4.650	006-4
PHOS.	1/9H	• 095	160.	.123	•00•	.087	.088	• 092	.087	.077	•019	• 084	.142	.078	•059	• 050	.051	• 052	• 053	- 065	.061	• 069	• 082	.083	.089	.081	.102	. 082	• 042	.057	• 066	• 088	• 075	160*	• 085	.022	• 625
TOTAL PHOS.	H6/L	.198	•199	+271	.262	.267	.249	.227	.193	•149	.135	.143	.245	.169	. 323	.333	.270	.205	.236	.214	.194	.154	.162	.169	.182	.155	•194	.164	.148	.155	.165	.171	.181	.161	.553	.82	•689
FLOW	•	1344.	1568.	416	119	881.	176.	638.	480.	458.	285.	253.	475.	815.	1320.	1436.	1212.	944.	761.	614.	512.	370.	288.	275.	235.	240.	221.	209.	638.	554.	400.	368.	273.	201.	1332.	3424.	4681.
	Ĭ	_	1900			_	•			_	~	***	~	~			_	_			~	•		-	-	~	•	-	~	~		-	~	~	-	-	
9	DΥ	27	27	28	28	8	88	-	~	-	~	m	•	4	S	60	ĸ	r	9	9	•	_	€0	80	•	10	=	12	13	=	15	15	16	17	18	18	19
SAMPL ING	2	~	~	~	ď	~	~	M	m	m	M	m	m	m	m	m	F	*	'n	m	m	'n	m	M	m	M	m	m	m	m	m	₩)	m	m	m	r	'n
SAR	*	7.7	11	11	11	11	11	11	77	11	11	11	11	11	11	7.7	11	11	11	11	11	11	11	11	77	11	11	11	11	11	11	11	11	11	11	11	11

LAKE ERIE MASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

COND 25C. Unho	367.	401.	432.	441.	432.	435.	441.	462.	484	531.	565.	608	623	576.	534.	491.	462.	464.	461.	497	569.	600	636.	539.	467.	373.	345	357	387.	411.	+++	456.	479.	506.	524.	528.
IRON MG/L	20.70	8.4	12.30	23.00	8.80	5.90	5.10	4.20	4.00	ē	2.40	1.20	1.50	1.80	4.10	7.50	10.90	10.80	8.60	6.60	2.70	1.20	1.80	11.80	20.00	48.60	39.60	6	19.40	~	9.90	•	5.70		4.80	04.4
S102					6.18	6.24	7.18	7.00	7	7.05	6.89	6.95	₩6•9	6.54	9 • 00	6.07	6.71	•	•	9.89	9.59	9.13	8.54	5.68	6.10	8.30	6.21	•	8.26	-	9.35	~	3	9.63	•	8.44
CHLO R 1DE MG/L	37.00	38.90	41.40	41.70	36.00	36.90	35.50	37.50	38.50	40.30	42.40	43.00	43.90	45.90	46.50	42.20	38.70	36.10	27.80	31.00	34.50	35.40	40.20	35.40	27.30	19.60	18.60	19.30	21.00	22.80	24.80	23.10	24.50	26.10	27.10	25.80
SUSPEND SOLIDS MG/L	460.00	9	265.00	•	•	•	89.30	5	•	•	52.60	9	25.10	30.80	74.50	131.00	171.00	162.00	146.00	92.90	41.70	13.90	31.40	191.00	304.00	1019.00	657.00	353.00	237.00	159.00	104.00	20.00	94.20	96.70	69.20	43.30
000 000																																				
TOTAL KJELD MG/L					.535	1.470	2.080	2.090	1.660	.370	.723	1.010	.200	.584	.758	1.220	2.350	2.090																		
ORG. NIT.																																				
NH-3	197	.608	• 299	.267	•166	.151	.172	.201	•209	.173	.160	.185	.151	.163	.143	.134	.175	.136	.053	• 063	• 084	.139	.148	.101	.071	.100	.110	.108	.124	.110	.102	.119	.196	.160	. 325	.146
NO-2 NO-3	5.670	6.100	6.450	5.380	6.630	6.810	6.580	6.620	6.350	5.960	5.490	4.990	4.860	4.720	4.390	5.040	5.440	5.580	060-9	6.140	5.420	4.550	3.820	3.970	4.060	3.400	3.870	4.080	4.310	0 4 4 . 4	4.460	4.010	•	4.250	4.240	000.
ORTHO PHOS.	900	.024	• 028	• 028	.038	• 0 4 6	.047	.041	.038	•046	.053	• 054	•054	•064	• 056	•046	.051	.053	.040	•052	• 062	• 068	.122	• 056	.041	.037	• 042	•046	.053	.061	• 050	• 052	.058	• 065	693•	.056
101AL PHOS.		, 6	.364	.640	∾	~	.183	.163	.15A	.119	~	~	.125	.148	~	N	m	М	.279	•253	.165	-	.198	.385	S	1.050	8	9	£	.41	~	.243	.216	.21B	.218	.179
FLOW	4196.	578	3311.	530	A 02	784	58	28	C 18	590.	10	'n	'n	465.	848.	300	1847.	8	15	77	445.	_	593.	1	0.3	3928.	9	752	348	38	92	P 00.	722.	698.	•	815.
118E	•	130	1900	150	190	70	7.0	130	190	190	196	190	10	7	130	190	=	70	190	130	130	130	130	190	7	70	130	190	1 (7	130	196	<u>.</u>	7.5	000	196
ING	-	1 6	5	22	23	2	24	2	24	25	26	27	28	28	28	28	29	29	29	Ŋ	31	_	~	8	M	М	М	'n	•	•	•	4	ĸ.	S	'n	u)
, ,	~) #F	~ 3	P 7	*	~	m	M	F)	P)	M	F	(*)	M	m	ĸ	•	₩)	M	m	٣	•	•	•	•	•	•	•	•	•	•	•	•	•	4	•
SAMPI			7.7	11	11	11	17	11	11	77	11	17	11	11	11	77	11	11	11	11	11	11	11	7.7	11	11	11	11	11	11	11	7.7	11	11	11	7.7

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

LOCATION 4/CODE : AT MILAN. OHIO

250.		530.	531.	516.	514.	554.	579.	610.	623.	643.	670.	671.	668.	677.	686.	685.	690.	707	707	7.18.	714.	676.	581.	584.	601.	601.	603.	623.	639.	623.	597.	627.	640.	633.	545.	498.	486.
10 to	1/94	4.40	4.00	4.80	4.70	2.30	1.60	1.30	1.70	2.50	2.40	3.00	2.90	2.00	1.40	1.00	1.00	1.30	1.70	1.70	1.70	1-60	2.40	1.60	96•	.70	1.10	• 50	• 50	.70	.90	1.10	96.	1.30	6.10	14.20	14.00
2010	#6/L	8.50	9.07	8.74	8.88	8.73	8.00	8.43	8 - 49	7.83									3.42	3.62	3.60	5.42	1.94	8.56	7.24	6.41	5.52	4.82	3.35	2.37	2.39	3.79	1.50	1.39	3.79	5.28	5.65
RIDE	H6/L	25.40	24.90	24.60	25.50	24.80	26.90	28.90	28.40	30.50									41.20	42.70	42.50	45.80	37.70	39.10	39.80	38.20	38.90	06.04	39.70	40.00	40.20	43.90	42.80	38.90	ŝ	29.80	80
SOLIDS	M67L	37.70	68.20	47.10	37.60	19.00	15.10	17.90	30.30	58.40	72.70	89.70	78.90	56.10	35.10	27.40	27.20	32.60	31.30	34.40	31.10	28.20	34.20	24.60	12.00	18.20	19.10	10.60	14.20	30.60	28.50	40.40	14.20	18.80	133.00	345.00	302.00
ר פס	₩																																				
KJELD	#67																								1.020	• 900	.900	.680	.810	.780	006.	1.090					
NI N	H6/L																																				
	#6/L	.115	.114	.346	.107	.123	. 125	.137	.133	.142							-		0+0	• 059	.080	.177	.114	•165	.047	640.	.082	• 043	• 066	. 073	. 022	.077	. 124	-112	. 100	.253	151
2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	H6/L	3.960	3.900	3.700	3.870	3.570	3.620	3.650	3.540	3.470									1.140	1.110	.720	1.080	4.040	4.840	4.720	4.430	4.010	3.380	2.670	2.300	2.000	1.980	2-100	2.500	5.940	7.590	
PHOS.	H6/L	• 058	.057	• 052	• 055	• 059	• 061	• 062	.061	.062									.142	.296	.136	.233	•04	.071	•90•	.049	• 063	.061	•040	• 062	• 046	• 059	060.	• 060	.053	•036	100
PHOS.	H6/L	.186	.178	.193	.191	.150	.129	.123	. 140	.167	.211	.254	.243	.20R	.201	.190	.180	-202	-242	+0+-	.236	.334	.166	.167	.108	• 0 7 9	.117	660.	.081	.102	•13€	.146	.152	.134	.299	.516	. 677
FL OU		.60g	728.	626.	539.	470.	370.	295.	248.	213.	169.	141.	125.	125.	161.	95.	89.	87.	84.	77.	94.	131.	410.	725.	458.	465.	300.	320.	273.	197.	207.	305.	315.	483.	1546.	2265.	2175.
2400 2400	IRS.	100	700	1300	1900	1900	1900	1900	1900	1300	1300	1300	1300	1300	1300	1300	1300	700	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	1300	700	1300	1303	1966	11.0	
	<u>۸</u>	•																															ю				
AMPL	e E	•	•	*	•	*	•	•	•	Ī	Ī	77 4	-	-	-	•	•	•	•	•	*	•	*	•	•	•	•					S	S	S	Ç	4	_

LAKE ERIE BASTEBATER MANAGEMENT STUDY - BATER QUALITY INFORMATION

MAJOR RIVER BASIN : HURON RIVER

USES NO. 04199000 : AT MILAN. OHIO LOCATION W/CODE

25C.	CHHO	473.	504.	513.	527.	539.	587.	622.	650	668	681.	694	703	:	77.	. 16	725	701	709.	723.	729.	742.	745.	733.	732.		751	500	762	2	166	173.	176.	765	781.	795
2	H6/L	9.00	6.70	5.40	4.70	3.30	2.10	1.70	1.80	1.00	-20	1.10	1.50	1.90	1.00	00.		00.5	1.70	1.90	1.70	1.70	1.80	1.60	2-30		•	•	۰	•	•	1.90	7	8	6 0 (ç
3105	H6/L	6.03	6 - 58	6.77	6.84	6.68	6.39	5.29	4.39	3.78	5.62		00°0	10.0	3.18	26.0	2000	1.66	1.67	1.85	1.87	2.14	2.07	2.97	2.68	50.5	1.90	***	82.	20	66.	50.19	40 °C	3.27	3.31	2.17
8 I DE	HG/L	28.00	31.40	31.60	32.10	32.10	35.10	36.10	37.80	38.20	38.50	38.30	39.10	27.40	34.40	20.00	01.04		44.60	44.50	46.00	47.20	46.70	47.70	46.50	48.20	50.20	50.50	50.20	94.50	8	49.70	47.90	47.90	~ ,	•
SOL 10S	HG/L	•	•	•	~	3	6	8	•	æ	8	•	æ '		Ņ	9	200-42	9	7	9	9	54.20	۲.		20.60	•	ŗ,	•	6	~	•	•	•	8.3	6.3	104.00
3	1/9H																																			
XJELD	1/9H																							1.210							1.250					
0 X 6	N6/L																																			
n - T2	H6/L	• 126	.110	060*	.115	.119	.127	.139	.241	.201	• 051	.048	.072	.048	.081	.147	. 268	.195	9 4	960	2560	.041	.095	• 0 •	.037	.116	.147	• 168	.338	.246	.121	1.170	.849	.825	.660	
2 F 0 7 2	1794	7.160	7.730	7.700	7.460	7-140	6.160	5.040	4.430	3.810	3.910	3.140	2.740	2.650	1.940	1.750	1.510	1.490	1.900	1.540	1.400	1.230	1.030	1.060	.950	1.000	.730	. 600	.080	0 0 0	.050	2.690	2.240	2.250	2.110	
ORTHO	#6/L	920	.055	350	200 a	650	• 062	.063	.067	• 065	.093	.101	.105	.130	.100	.104	.124	.172	121	171	169	185	.173	.203	•205	.249	.259	•676	.392	.279	-207	.463		80	• 36 _b	
TOTAL	M6/L	- F	•	7 () W	0	. 5	25	16	2	12	16	18	•	18	20	.228	2 8	,	0 6	2 0	, e	33	0	35	_	0	~		\sim	_	9	0	•	_	
FL04	<i>n</i>	56.8		600	. «	0	: 5	×	217	8	2	2	19	70	•	9	•99	-	•	٠,	4 F) P		107	0	M	•	9	5	•	S.	1	-	26.	6	,
-	Z. U	2	•	? =				, 6		7.0	30	36	-	30	30	30	1300	20	9	Э 6	2 5	9 6	3	F		30	5	30	•	30	7	6	36		90	,
AMPLING	Δ									•	-	-	-	-	~	_	16	-	-		٦ ،	, c			. ~	~	N	2	~	*	m	1				
چَ.	<u>2</u>	ď	ى د) k	n 4	ט ר	·										ហ																			
ž.	- «								-																											

LAKE ERIE WASTEWAJER MANAGEMENT STUDY - WATER GUALITY INFORMATION

HAJOR RIVER BASIN : HURON RIVER

LOCATION W/CODE : AT MILAN, OHIO

USES NO. 04199000

COND 25C.	625.	576. 622.	596.	.909	629.		729.	679.	717.	736.	748.	7.7.	727.	731.	732.	736.	536.	591.	625.	625.	662.	691.	712.	693.	627.	;	696.	738.	760.	595.	417.	409.	+13.
IRON MG/L	3.50		6.9	7.50	7.90		2.90	3.68	3.30	2.70	2.60	2.90	4.20	2:5	2.70	2.70	7.60	5.90	3.40	3.70	5.28	•••	2.30	3.70	3.70	3.20	3.10	2.70	3.80	6.20	35.20	34.60	24.10
S102 #6/L	3.32	5.15	5.06	6.14	6.19	2040	6.34	5.69	5.89	5.98	2.08	5.78	5.17	4.96	3.75	2.94	5.96	5.29	5.70	7.06	5.99	4.57	2.51	3.22	4.93	5.31	6.02	4.74	4.59	5.59	5.29	6.70	6.17
RIDE RIDE RG/L	49.60	47.20	49.50	46.70	46.30		53.10	56.00	56.70	55.00	56.50	56.40	19.80	49.40	48.80	49.80	40.70	43.90	44.20	41-10	43.10	47.20	49.50	52.70	43.40	45.10	44.10	94.30	43.90	41.50	27.10	24.30	24.20
SUSPEND SOLIDS MG/L	39.30	155.00	132.00	06.96	114.00	79.97	67.20	78.50	76.60	69.30	56.10	61.00	127.00	100-00	67.30	10.40	130.00	127.00	10.60	94.50	94.60	81.70	61.50	72.30	81.10	54.40	129.00	90.90	114.00	184.00	735.00	9	628-00
COD NG/L																																	
TOTAL KJELD MG/L					1-640	2 + 0 + +						1.320	1.720						1.790														
ORG. NIT. NG/L																	•																
NH-3	1.020	1.100	1.190	1.110	.378	1/0.	1.310	1.220	1.300	1.070	1.280	1,260	. 011	.010	.012	.032	. 019	• 056	.173	• 010	.017		.111	.289	+00•		960•	.618	.163	.051	. 056	.070	.028
80-2 80-3 86/1	1.790	6.940	7.240	10.000	11.000	13-160	002-11 8-930	7.230	6.560	6.790	6.420	6.410	7.020	6.470	5.300	4.590	9.160	7.480	7.700	10-100	7.760	6-270	4.430	1.870	3.630	4.110	3.570	2-470	2-140	2.470	4.710	7-140	009-6
ORTHO PHDS. MG/L	.450	80 -					,						.188	.288	.201	.210	.125	.127	.151	.185	.176	.227	.252	.701	• 136	.111	.180	.217	.258	•416	•60•	• 90 •	•90•
TOTAL PHOS. NG/L	.499	904	274	.298	.310	152.	22.5	197	.235	.221	.290	.279	.367	.382	.339	.369	.388	.356	.333	.349	.411	• 456	.473	.986	.367	.350	.364	.299	.384	.717	1.010	.890	• 665
FLOW	355.	521.	•65•	388	200.	- 0 - 2	1630	185	99.	74.	59.	50.	+1.	38.	30.	27.	290.	125.	65.	37.	27.	22.	20.	121.	52.	96.	33.	95.	165.	635.	930.	686.	+88.
11M 2400 MMS.	1900	186		100	9		1580	100	300	300	1300	100	1300	1300	300	1300	1300	1300	700	1360	1300	1300	1300	1300	1300	1300	1300	1900	100	700	1300	1900	100
	10 va	•	• •	_																=	25	2	*	Š	92	1	9	82	53	6	6	53	9
2.0	• •										•							9													•		
SAMPLING Date Yr no dy	==	<u>:</u> :	: ::	11	1	<u> </u>	::	: [7	11	11	11	11	11	11	11	11	11	11	1	11	11	77	11	11	11	11	11	11	11	1	11	11

LAKE ERIE UASTEUATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : MUROM RIVER

STREAM : HURON RIVER

US65 ND. 04199808 LOCATION W/CODE : AT MILAN, OHIO

COMD		458.		176	7	433	.1	198.	505.	525	941	995	200		913		\$ C C Z	25%		362.	900		451	472	n (*26*		429.	452		419	459	478	200	
IROR	#6/L	22.10			90.00	21.80	18.40	13.10	9.90	8.70	7.50	99.7	91.0		91.0	96.0	42.00	00°C0	20.40	16.48	11.48	9.30	7.70	7.90	5 · 6	•		00.01	3.6	6.6	S	19.80	9.9	9.90	6.80	n	
\$102	1/94	6.78			7000	26.9	1.69	7.97	8.19	8.36	8.53	8.38	9		16.8	8.17	ė.	2.66	•	7.21	8.20	6.05	- T - E	9.65	9		90.0	?		•	8.03	9	•	8.11	8.59	9.19	
CML 0 R10E	1/9H	26.20	26.80	26.10	17.00	24.10	27.60	29.30	30.40	31.60	32.90	33.30	34.70	04.40	35.20	35.90	14.10	14.50	17.40	21.40	25.10	26.60	28.00	29.40	30.30	31.20	33.20	29.10	28.40	25.50	ç	`	7	27.50	~	~	
SUSPEND SOLIDS	W6/L	563.00	00.460	99.00				309.00	223.00	172.00	142.00	261.00	144.00	152.00	133.00	128.00	1258.00	00.848	264.00	376.00	249.00	224.00	146.00	192.00	91.30	121.00	90.50	224.00	379.00	486.00	349.00	226.00	432.00	141.00	121.00	122.00	
000	H6/L										•																										
TOTAL	H6/L																4.910	2.870	2.240	2.000	1.640	1.320	1.260	1.320	000.	. 790	.920	1.610	1.590	.620	3	2.270	1.620	1.270	1.110	1.150	
ORG.	1/9H																																				
N I	1/9H	.048	.039	. 037	.067	• 063	/90•	707.	166	. 087	. 103	. 088	.152	.124	.103	.130	.042	• 078	.055	.041	.056	840.	. 041	• 052	.050	.058	• 046	.061	. 052	.053	.053	. 052	. 048	• 062	.063	.050	
200	1/94	11.700	.50	10.400	9.990	10-400	12-100	2000	12.300	12-100	11.700	11.300	10.800	10.400	10.200	9.510	4-810	5.550	6.560	7.320	7.790	7.630	7.510	7.330	7.090	6.840	6.520	5.170	5.450	5.030	4.720	4.660	4.580	4.580	4.740	4.730	
ORTHO	H6/L	80	.073	.063	.028	.037	640.	000	1.50	650	.081	690*	960.	.087	• 969	10	.038	5	5	5	.063	• 062	• 066	.069	. 073	.068	.080	.078	. 061	. 055	450	.064	. 066	990*	.077	•076	
TOTAL	H6/L	669	.505	55	1.270	.879	-586	.528	; ;	100	28	.276	.220	.228	22	26	6	85	S	5	.342	29	26	28	22	5	19		Š		7	56	.507	32	-264	.253	
Ft.08	Š	700		668	3429	4735	4416	3016			623	495	404	345	295	253	5690	4488	2285	1396		785			463	415	677	701	881							300	
11ME	KA DE	9	1300	1900	100	700	1300	1909			1 4 5 5	100	700	1300	1900	1 00	1300	1900	100	700	1300	1990	1 8 8	7 0 0	1300	1900	3 00	700	1300	190	7 00	700	1300	900	100	700	
9	Ď			0	_	-	-	 (N (~ ~				1	- 7	•	•	a	4	•	•	4	•	-		. ~	•	•	•	•	•	•	•	٠.	٠, ۵	2	
114	VA NO	•		_																																_	
SAN	4 K	;		77	11	11	11	77	2:	11				7.7					7.7		11				11	1	77	11	7.7			7.7	7.			::	

LAKE ERIE LASTEVATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

MAJOR RIVER BASIN : HURON RIVER

STREAM : HURON RIVER

LOCATION W/CODE : AT MILAN, ONIO USES NO. 04199000

COND 25C. UMHD	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
IRON MG/L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
S102 MG/L	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CHLO RIDE MG/L	2000 000 000 000 000 000 000 000 000 00
SUSPEND SOLIDS MG/L	1002 1002 1002 1002 1008 1008 1008 1009 1009 1009 1009
1/9H 10D	
TOTAL KJELD MG/L	1.3860 1.9860 1.1660 1.6000 2.720
ORG. NIT. MG/L	
NH-3	
NO-2 NO-3 NG-3	24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ORTHO PHOS. MG/L	
TOTAL PHOS. MG/L	
FLOU	2248. 2248. 2248. 2248. 1946.
7.1 ME 24.50 HRS.	11 19 19 19 19 19 19 19 19 19 19 19 19 1
7.0	77777 11111111111111111111111111111111
SAMPL ING Date Yr ng dy	

VERMILION RIVER NEAR VERMILION, OHIO

LAKE ERIE UASTEUATER MANAGEMENT STUDY - NATER QUALITY INFORMATION

STREAM : VERMILION RIVER

LOCATION W/CODE : NEAR VERMILION. OMIO

·											
1/9H 80H 80T	.10	•10	• 50	•20	•10	• 50	•10	0 .	01.	•10	.10
TOTAL C MG/L											
DIS. ORG C MG/L	10.6	9.0	10.0	0.6	80 • 0	9•0	. 0 • 6	8 .0	0.6	10.0	
TOTAL DRG C MG/L	10.0	10.0	14.0	11.0	11.0	14.0	10.0	10.0	18.0	12.0 10.0	
TOT DIS SOLIDS MG/L	343.0	323.0	243.0	256.0	9.77.0		239.0	259.0	226.0	180° E	
TOTAL SOL 10S MG/L	463.0	633.0	9 42 6	818.0	•		1090.0	1211.0	1210.0	762.0	
FLOW	340. 426. 536.	678. 872. 1078.	1255. 1456. 1660.	2020- 2215- 230-	2566	3120	3580. 3580.	4250 4700 5700 5700 5700	5950. 6050. 5975.	58 57 50 58 50 58 50 58 50 58 50 58 50	5300.
7116 2400 HRS.				9 9 9	000			00000	9 6 6 6	1500 1500 2400 2400	300
LING				222	22.25	288	2222	2222			2
SAMPL Date VR Ho										5 5 5 5 5	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: NEAR VERMILION. OHIO LOCATION W/CODE

: VERMILION RIVER

STREAM

																								•								
SOL PHOS #6/L		4	•13		;	.		.19	•		•20		:	• 10																		
TOTAL C MG/L																	0.04		38.0		35.0	26))	0.44		38+0		35.0	,	13 e M	3.3.0	; ;
DIS. ORG C MG/L		9.0		(9•6		9	•		9•0		,	8•0		•	9 6	•	15.0		15.0		•	32.0		34.0		36.0		35.0	0	34.0	35.0
T0TAL 0RG C MG/L		10.0			15.0	_	10.0			9.0			10.0		•	• •		17.0		15.0	:	7	34.0		38.0		37.0		35.0	9	3000	35.0
TOT DIS SOLIDS MG/L	155.C			163.0			1910		204.0			219.0			234.0	9 2 6	0.00		396.0		385.0	7.814		390.0		393.0		388°C	•	343.0	349.5	, , ,
101AL SOL 10S #6/L	0.949		4	224.0		•) •		393.0			360.0			342.0		733.0		474.0		451.6	2.48.7		566.6		537.0		626.0		679.3	573.0)
FLOW	5260.	4775.	4150.	3520.	2820	2215.	1492	1277	1112.	1000	900	836.	773.	719.	6/8	9 6 6	985	61.	81.	95.	99.	101	199.	195.	195.	183.	177.	165.	166.	155.	186.	209
7 1 ME 24 30 HRS.	603	963	1200	1500	200	2100		6 6	900	1200	1500	1800	2100	2495	306			1900	2103	2200	2400		0 0	600	700	0 0	1630	1200	1300	1560	1800	1961
DA DA	25	52	2	%	22	52	2 2	2 2	92	5 6	5 6	5 6	56	9 (27	5 6	9 5	5	21	53	2 5	, ,	25	25	22	22	22	55	25	25	2 %	2
AMPLI ATE R MO																															0 10 0 10	
760	=	=	i i			~ `	2 4	: :		-	Z.	=	= :	- 1				: 2	Ξ.	Ξ.			. 2,	2"	Ξ.	Ξ'	Ξ.	Ξ.	= :			

LAKE ERIE UASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : VERMILION RIVER

LOCATION W/CDDE : NEAR VERMILION, OMIO

US6S NO. 04199560

SOL	#6/L																						
TOTAL	NG/L	35.0		33.0		31.0		34.0		35.0		35.0		36.0		35.0		36.0		35.0		29.0	
01S.	OK C NG/L		14.0		13.0		13.0		14.0		13.0		14.0		12.0		14.0		13.0		13.0	14.0	•
TOTAL	MG/L		14.0		15.0		14.0		15.0		13.0		15.0		13.0		14.0		14.0		14.0	15.0	
TOT 018	NG/L	361.0		297.0		301.0		338.0		326.0		335.0		327.0		345.0		376.0		385.0		265.0	
TOTAL	SOL 10S MG/L	605.0		853.0		725.0		206.0		494.0		419.0		399.0		399.0		128.0		431.0		1025.6	
FLOD	e S	220.	302.	266.	238.	199.	186.	160.	153.	136.	129.	118.	114.	107.	103.	95.	92.	86.	85.	79.	78.	719.	•
-	2460 HRS.	2100	2300	360	260	960	1100	1500	1700	2100	2300	300	200	900	1100	1500	1700	2100	2300	360	500	1000	
S C	5	25	22	23	23	23	23	23	23	23	23	24	2	24	24	24	5	2	24	25	25	27	
1	DATE FR NO DY	10	r	80	40	'n	6	40	80	6	Ð	5	S	N)	ĸ	ĸ	so.	80	'n	'n	δ,	6	
SAN	2 %	15	15	75	75	15	15	13	13	15	75	75	13	75	75	75	73	13	75	73	13	13	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

REAM : VERMILION RIVER

LOCATION W/CODE : NEAR VERMILION, OHIO

COND 25C. UMNO					
IRON MG/L				-	
S102					
CHLO RIDE MG/L	•				
SUSPEND SOLIDS MG/L	310.00	652.00	562.00	771.00 851.00	982.00 851.00 582.00
1/9W	+ 1 • 0 0 + 6 • 0 0	69.00	65.03	71.60	66 - 60 3 4 - 60 3 - 4 - 60
TOTAL KJELD MG/L		• .			
ORG. NIT. MG/L	.660	.100	1.200	1.400	1.000 1.000 1.000
NH-3	.200	.200	.200	.200	.200
NO-2 NO-3 HG/L	2.550	2.000	2 • 0 9 0	2.140	1.690
ORTHO PHOS.	•010	0 0 0 0	0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL PHOS. HG/L	.210	.	0 0 0 M M	.370	ပ
FLOW	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ന ് 4 ന ് എ പ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000	######################################
7 1 ME 24 CO HRS.	2 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	111111111111111111111111111111111111111		00000000000000000000000000000000000000
SAMPLING Date Yr ho dy	23322	222222	222222	********	2222222222
3 - 2					~~~~~~~~~
SAI	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5555	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	######################################

LAKE ERIE HASTEMATER MANAGEMENT STUDY - MATER GUALITY INFORMATION

STREAM : WERMILION RIVER

USGS NO. 04199500 LOCATION W/CODE : NEAR VERNILION. DMIO

			•		•
COND 25C. Unho	•	528. 525.	525.	525. 528.	528.
IRON RG/L					
\$102 #6/L					
CYLO R10E MG/L		39.00	36.00	00.04	35.00
SOLIDS SOLIDS SOLIDS	491.00 249.00 189.00 141.00	310.00	99	176.00	144.00
COD H6/L	8 4 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00.09	51.00	72.03	
TOTAL KJELD MG/L		80	006.	1.200	
0R6. NIT. HG/L		9 9 9 9 9		1.100	
NH-3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• 100	.160	.100	
N0-2 N0-3 NG/L	1.590	350	•720	.920	1.390
ORTHO PHOS. MG/L	.030 .020 .020 .020	• 020	020) n	• 630
101AL PHOS. MG/L	.250 .24 6 .190	.160	96 6	0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.116
FLOV	11124916. 11124916. 11124916. 11124916. 1124916. 1124916. 1124916.	581 714 814	96.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	189.
1176 24:0 HRS.	25 11 12 12 12 12 12 12 12 12 12 12 12 12	0000	000000000000000000000000000000000000000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900
9 6	20				
1 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
SAMPLING DATE YR NO DY	********************	22225	2	022222	75

LAKE ERIE WASTEVATER MANAGEMENT STUCY - WATER QUALITY INFORMATION

MAJOK RIVER BASIN : VERMILION RIVER

EFE : VERMILION RIVER

LOCATION W/CODE : NEAR VERMILION, OHIO

US6S NO. 04199500

COND 25C. UMHO	* #0 #7	•	476.	488	436.	+10.	+61.	491.	+61.	***	486.	491.
IRON												
S102												
CHLO RIDE NG/L	36.00	34.00	36.00	34.00	29.00	30.00	33.00	32.00	33.00	31.00	34.00	36.00
SUSPEND SOLIDS MG/L	238.00	336.00	224.00	244.00	556.00	424.00	168.00	168.00	84 • 00	72.00	54.00	52.00
1/9W 000	71.00	84.00	72.00	43.00	72.00	52.00	41.00	35.60	37.00	36-03	37.00	
TOTAL KJELD MG/L	2.000	3.100	2.000	006•	1.200	1.100	1.100	1.100	1.000	.900	000	
ORG. NIT. MG/L	1.900	3.000	1.900	. 800	1.000	1.006	3 06 •	1.066	.900	.,080	30 2•	
NH-3	.100	.100	.100	.100	.200	•100	.200	.100	.100	.100	.100	
NO-2 NO-3 AG/L	2.330	2.830	2.670	2.770	064.	• • 20	2.810	3.100	2.150	2.200	2.380	2.320
ORTHO PHOS. #6/L	ŷ € 0 •	9.00	999	0 4 0	3 90 •	. 140	. 100	960•	090 ·	2 60•	9 40 •	• 020
TOTAL PHOS. MG/L	.140	.170	.160	.180	.380	009•	. 390	.270	• 50	• 220	. 180	.236
FLOW	177. 171. 165.	158. 155.	163. 186. 209.	21 6. 220. 302.	297. 266. 238.	220. 199. 186.	171. 160. 153.	143. 136. 129.	122.	107.	99. 95.	90. 86.
71ME 2400 HRS.	1000 1100 1260 1360	1400 1500 1600	1700 1800 1900	2000 2100 2300	3 0 0 0 3 0 0 0	700 900 1100	1500 1500 1700	1960 2100 2360	300 300 500	700 400 1100	1300 1560 1760	1900
ING	2222											
SAMPLING Date Yr mo dy	សសសស សសសស											
707		ボボド				~~~			~~~	~ ~ ~		-

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY IMFORMATION

MAJOR RIVER BASIN : VERMILION RIVER

: NEAR VERHILION. OHIO LOCATION W/CODE

: VERMILION RIVER

STREAM

COND 25C.	461.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	296 2996 3999 3999	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	280. 272. 286. 323. 366. 390.
IRON MG/L						-	
S102		6 - 52 5 - 15 6 - 6	5.11	6.53 6.53 6.55	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5
CHLO RIDE NG/L	32.00	26.00 30.40 32.30	21.30 20.70 20.10 25.50	32.30 22.30 48.40 26.70	39.00 25.50 18.10 17.10	18.70 20.40 20.40 28.10 18.20	112.60 112.60 112.70 115.60 11.60
SUSPEND SOL 1 DS MG/L	46-00	760.00 11.00 490.00 520.00	287.00 19.00 43.00 26.00 36.00	32.00 81.00 20.00 46.00	53.00 391.00 227.00 21.00	87.00 30.00 30.00 29.00 117.00 592.00	519.00 1248.00 1548.00 1578.00 10.00
C00	25.00	79.00					·
TOTAL KJELD MG/L	0.80	1.300					
086. NIT. MG/L	• 700	29.					
NH-3	.100	. 167 . 003 . 003	. 000 . 000 . 000 . 000 . 000				
NO-2 NO-3 #6/L	3.083	4.200 2.710 2.720 2.840	4.060 4.600 4.500	4.040 4.040 4.040	4.230 3.620 4.720 3.790	4.200 3.420 3.030 1.030 1.080 2.170	2.210 2.210 2.010 2.006 2.006 2.100 2.130
ORTHO PHOS. MG/L	0.50						
101AL PH0S. MG/L	.140	0					
FLOW	25.	78. 719. 200. 1275. 1936.	3694. 3299. 1467. 1264.	1230. 922. 779. 765.	689. 1622. 1716. 1806.	1208 673 673 435 428 392 903 3593	3415. 2127. 1029. 903. 745.
11PE 24C0 MRS•	2300 100 300	1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	11650 1220 2250 2250	45 1456 2230 235	345 11045 1125 1235	1340 1200 1300 1300 1410 1610	135 23115 23115 1135 1413 1413
ING	4 8 8 8	222	202 13	22122	22222	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	መመቀቀመ ጠወ
SAMPLING Date Yr Mo Dy						K K K K K K K K K K K K K K K K K K K	

LAKE ERIE WASTEWATER MAMAGEMENI STUDY - WATER GUALITY INFORMATION

STREAM : VERMILION RIVER

USGS NO. 04199500 LOCATION W/CODE : NEAR VERMILION, OHIO

COND 25C. UNHO	373.	417.	418.	418.	420-		423.	594.	594	298.	276.	272.	262	243	615	• 7 6 9	254	332	322.	329.	338.	338.	345	339.	369.	368.	370	379.
IRON MG/L																												
S102	6.26	6.26	6.34	6.35	6.35	6.40	6.32	.55	1.33	5.80	5.72	5.55	u • • •	9.0	000		0 ° °	6.35	6.95	6.80	7.08	7.35	7.05	7.80	7.65	7.70	7.90	8.00
CHLO RIDE RG/L	22.30	23.50	23.10	25.60	19-80	19.20	20-40	34.80	31.50	18.30	16.50	21.30	15.40	14.90	10.60	92011	14.20	08.48.1	17.70	19.30	19.10	19.40	19.70	23.70	20.90	20.80	20.70	20.90
SUSPEND SOLIDS MG/L	79.00	47.00	90.9	57.00	30.00	35.00	41.00	3.00	8.00	1055.00	1088.00	1732.00	1181.00	980-00	929-00	22.40%	75.00	752.00	393.00	377.00	311.00	334.00	315.00	308.00	208.00	200.00	180.00	176.00
COD																												
TOTAL KJELD MG/L																												
OR 6. N I T. M G / L								-																				
NH-3	.003	.003	.022	.012	• 008	003	.003	• 006	.003	.150	.590	.270	.110	.120	.112	.110	.010	•	200	.135	.180	. 108	.164	.160	.300	.120	• 100	.120
NO-2 NO-3 NG/L	2.070	2.010	2.060	2.050	2.060	2.060	2.070	.060	.150	10.200	10.100	9-400	8.700	9.000	7.800	8.500			10.000	10-100	10.200	10.400	9.800	10.400	10.200	9.100	10.200	9.800
ORTHO PHOS. MG/L	•039	. 023	.033	.013	• 030	4 NO 4	• 052	.001	.013	•00•	.121	.124	. 048	•054	•072	• 0 7 0	.067	•	280	250	960•	.080	• 075	.088	.118	• 088	.088	•084
TOTAL PHOS. MG/L	.136	.085	.110	990.	•108	• 100	160	.075	.013	.750	.121	1.110	1.140	.860	1.160	•96•	976.	80.0	87.40		0 + + •	.430	.564	.424	.340	.284	.254	.260
FLOW	729.	.00	.80		180.	180	.064	8	30.	2797.	2846.	2880.	2913.	2913.	2913.	2830.	2731.	2604	-1107	912	848	196.	737	689	392.	374.	352.	336.
71ME 2430 HRS.	1410	1110	1210	1310	1505	1605	1700																				~	1215
	9	م ۵	~	, r	. ~	~ :	-	11	23	-	-	-		-	-	-	-		٠ ,	4 0	۰ ۸	~	۰ ۵	~	r			
SAMPLING DATE YR MO DY	*	• •	. ~	* *		*	• •			-	1						7	1 1										
305	-		11	, i	· i~	-		. j-	-	~	_	_	-	~	-	_	77	~ i	- i	• F	- 1	_	-	~	~	7	_	1

BLACK RIVER AT ELYRIA, OHIO

LAKE ERIE JASTEVATER MANAGEMENT STUDY - MATER GUALITY INFORMATION

: BLACK RIVER

STREAM

: AT ELYRIA. OHIO LOCATION W/CODE

									•		
SOL PHOS MG/L	•15	.13	•11	•12	•15		.17	•15	•16	: :	.11
TOTAL C MG/L											
015. 086 C 86/L	10.0	0	9•6	0.6	10.0	10.0	10.0	0 6	12.0	10.0	10.0
TOTAL ORG C NG/L	10.0	10.0	9•0	9.0	10.0	12.0	13.3	10.0	13.0	13.0	11.0
TOT DIS SOLIDS MG/L	413.0	459.0	411.0		0.800	278.0	400	317.0	262.6	198.C 169.D	206.0
TOTAL SOL 10S #6/L	4.38 + 0	165.0	580 t	0 4 8 4 9 6		734.0	0 0	81.8	794.3	729.6	563.6
FLOW	585. 670. 695.	888	9000	62 11	320	770	0.00	9 4 2 2 2	2000	6996. 7060. 7140.	00
71ME 2400 HRS.	1100	300	2000		200	2 2 2	9 6	2200		1140 140 170 200 200	300
SAMPLING Date Yr ho dy	000				222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222			75 2 24 75 2 24 75 2 24	222

LAKE ERIE JASTEVATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : BLACK RIVER

LOCATION W/CODE : AT ELYRIA, OHIO

SOL Phos	HG/L	,	•13		(•12		;	•13			.15			•1•		ļ	•13				:	97.							,						
101AL C	H6/L																						,	39.3	,	200	27.0		30.0))	23.0		23.0		23.0	
01 S.	1/9H	10.0		1	12.0		•	11.0		•	11.0			10.0			0.6			10.0		11.0		•	7.00	0.41	•	0.11		12.0) 	13.0		13.0		13.0
TOTAL ORG C	HG/L	13.0			12.0			12.0		1	12.0			13.0			11.0		,	10.0		11.0		4	0.02	10.0	•	0.01	•	12.0		17.0		14.0		15.0
201 103	H6/L			190.0			193.0			193.0			223.0			222.0			257.0		290.0		•	467.0	,	4 79 • 0	9 4	119.0	3486		271.0		241.0		252 € €	
TOTAL SOI TOS	H6/L			504.3			433.0			464.0			386.0			372.0			348.0		346.0		1	889.0		703.0	6	3000	1101.0		1107.0		883.0		1630.0	
FLOW	2	•	æ	a	5	•	•	m	œ	2300.	80	S	1	S	_	•	980.	920.	£60•	~	572.	~	~	0	•	1426.	9	3 0	9 6			50	53	···	8	3.8
11 ME	r Œ	800	1100	1400	1700	2000	2300	200	200	800	1100	1400	1700	2000	2300	200	500	860	1160	1600	1300	1300	1300	1700	1800	2000	2 2 2 2	2300			500	660	078	960	1100	1200
3 N E	DY	22	52	5 2	22	52	52	56	56	56	5 8	5 6	5 6	5 6	56	27	27	21	27	21	28	2B	5 8	51	5	2 :	7	5 5	7 6	, ,	2 2	22	25	25	22	22
	1 E		٠,	ω.	2	'n		'n	1 0	'n	'n	· •	S	ıc.	Δ.	2	S	'n	'n	Δ.	2	'n	S	2	'n	មា	ი ,	<u>.</u>	e .	ח ש	n vC		, r		S	S

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

STREAM : BLACK RIVER

LOCATION W/CODE : AT ELYRIA. OHIO

USES NO. 84288588

ند ده															
SOL PHOS MG/L															
101AL C P6/L	25.0	23.0	25.0	23.0	č	9	26.0	27.0	27.0	28.0	0.80		29.0	29.0	35.0
DIS. ORG C MG/L	15.6	15.0		3.41	16.0	170.0	16.0	15.0		16.0	18.0	18.0	16.0	17.0	17.0
TOTAL ORG C MG/L	15.0	9.6		9.51	9-0	50.0	8.6	0 6		7.0	9.0	9.0	0.0		8
						••									
TOT 018 SOLIDS MG/L						••									
TOTAL TOT DIS SOLIDS SOLIDS MG/L MG/L	246.0		169.0	230.0	•	320-0	327.0	290.0	284.0	340.0	94	•	360.0	312.0	296.0
-	954.0 246.0	281.0	675.0 169.0	686.0 230.0		652.0 320.0	587.0 327.0	474.0 290.D	444.0 284.0	448.0 340.0			444.0 360.0	380.0 312.0	480.0 296.0
101AL 1 50L IDS NG/L	3117. 954.0 246.0	897.0 281.0	2378. 675.0 169.0	1934. 1508. 686.0 230.0	1520.	1120. 652.0 320.0	1008, 587.0 327.0 964.	872. 474.0 290.0	744. 444.0 284.0	695. 604. 448.0 340.0	562.	475.	420° 444.0 360.0	351. 380.0 312.0	649. 480.0 296.0
TIME FLOW TOTAL 1 2400 CFS SOLIDS MRS. NG/L	3117. 954.0 246.0	2606. 897.0 281.0 2432.	2378. 675.0 169.0	1934. 1508. 686.0 230.0	1520.	1120. 652.0 320.0	1008, 587.0 327.0 964.	872. 474.0 290.0	744. 444.0 284.0	695. 604. 448.0 340.0	562.	475.	420° 444.0 360.0	351. 380.0 312.0	649. 480.0 296.0
11ME FLOW TOTAL 1 2400 CFS SOLIDS HRS. NG/L	3117. 954.0 246.0	2606. 897.0 281.0 2432.	2378. 675.0 169.0	1934. 1508. 686.0 230.0	1520.	1120. 652.0 320.0	1008, 587.0 327.0 964.	872. 474.0 290.0	744. 444.0 284.0	695. 604. 448.0 340.0	562.	475.	420° 444.0 360.0	351. 380.0 312.0	649. 480.0 296.0

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : BLACK RIVER

STREAM : BLACK RIVER

LOCATION W/CODE : AT ELYRIA, OHIO

US6S NO. 04200500

COND 25C. UNHO													
IRON MG/L							•						
S102													
CHLO RIDE MG/L													
SUSPEND SOLIDS MG/L	25.00	9	169.00	161-00	313.60	421.00	166.00	456.00	501.00	532.80	531.00	448.00	357.00
7/9M	37.00	42.00	00.04	36.00	50.00		62.00	47.00		67.00	67.00	59.00	
TOTAL KJELD MG/L													
ORG. NIT. MG/L	00		. 9 0 0	1.000	1.400		1.300	7.		1.600	1.100	1.200	
NH-3	00+	004.	.300	•200	• 300		.200			100	.100	•100	
NO-2 NO-3 R6/L	1.730	1.570	1.690		1.668	1.650		1.690	1.520	1.410	;	1.950	1.390
ORTHO PHOS. MG/L	060	979-	0.00		• 1 00	.070		•	0 0 0	.020	• 030	020	.020
TOTAL PHOS. MG/L	-200		160		•218			•250	.280	.330	390	.360	.330
FLOW	585. 670.	9000	1260-	2500.	2830. 3110. 3320.	3460.	3930.	4250.	4 4 90	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6996.	7140. 7140. 7120.	7070.
7 1 ME 24 00 MRS.	1100	200	200	000	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1400	1700	1 900	2200	200	900	1700 2000 2300	200 200
SAMPLING DATE YR NO DY											222		5 2 5 2
TE HO											~~~		
ANDA	225	25.5	22.5	25.	25 to 25	25	555	27.5	25.5	2 2 2 2	22.25	27 25 25 25	27 25

LAKE ERIE VASTEVATER MAMAGRENT STUDY - YATER QUALITY INFORMATION

STREAM : BLACK RIVER

LOCATION W/CODE ; AT ELVRIA, ONTO

US65 NO. 04206500

																					٠									
COND	CARO																			656.					100	1 	:			224.
101	7/9H																				-									
2018	H6/L																													
CHLO	1/9H																			67.00					10.0+		•	20.67		22.00
SUSPEND AN IDS	179H			314.00					271.00		163.00			186.60		91.10		96.00		122.00		******			520.00		96. 94			136.00
9	1/91	50.00	-	:	42.8		39.00					45.00		41.00			28.00	•	20.62		153.00		126.00			134.60		116.00	· ·	
TOTAL KJELD	12 LE																				2.100		2.700			2.100		2.000		
086. 17.	1/9H	1.500		,	1.200		986			90	_			780			9				2.800		2.300			2.200		1.700	! !	
n-22	79H	.100					-20E			•208		•••		401			• 500				2.211		900	•		.260		.360	i 	
NO-2	798		1.280		i	.711		-916					.53		.601	,			1.468	. 520			}				1.14.	•	,	3.640
PHOS	787		.020			- 121		2					.05		. 030				1111	1	į			.150		1	0		.13	
TOTAL	H6 /L		.310			• 161		.190		476			.211		.274	! !			.328		,	1.230		-380	.250	į	.290))	.350	.240
3,5	•		6878.	6278.	9999		3335	2010.	2300.	1810	1395	1240.	1130.	1050.	920.	860.	175.	572.	572.		423.	1930	2206.	2697.	2816.	3061.	3167.	3299.	3346.	3435.
712		:	1100	1400	1700	2002	200	200	99		7.00	000	1300	2 5 0 5		1100	1600			1700	0001	100	100	1200	300	00 62	700	100	000	200
SAMPL ING	2	23												27																
٦.	. 9	~												~ ~																
3 :																														

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY IMFORMATION

RIVER	
BLACK	
BASIN :	
RIVER	
MAJOR	

TREAM : BLACK RIVER DCATION W/CODE : AT ELYRIA• ONIO
NN-3 ORG. TOTAL COD NIT. KJELD NG/L NG/L NG/L
.280 1.680 1.800 102.86
.300 1.400 1.700 120.00
.200 .200 1.600
.200 .200 1.900
999-1 988- 988-
.200 .200 1.600
.268 .280 1.708
3
.260 1.460 1.500
.200 1.506 1.700
.200 1.200 1.400
.300 1.400 1.700

LAKE ERIE WASTEYATER MANAGEMENT STUDY - JATER QUALITY INFORMATION

STREAM : 3LACK RIVER

LOCATION W/CODE : AT ELYRIA. OHIO

US65 NO. 64208500

COND 25C.	0 H H O	4			770.		401.	704.	447	357.	320.	332.	359.	358.	378.	428.	:	+00+	182	293.	470.	472.	•96•	515	366	410.	469.	516.	552.	180.	320.	324.	323.	330.	372.	419
NO N	H6/L																						-													
2102	H6/L							7.00	5.36	5.89	1.94	4.96	5.56	5.61	5.97	6.41	6.54	6.70	6.70	3.24	6.63	6.27	6.16	6-11		11.9	9.26	9.40	5.38	5.45	5.30	5.41	99.5	5.94	6 - 15	47.79
EMLO RIDE	16/L				30.00		30.00	28.60	50.40	31.40	24.60	26.40	29.40	27.50	28.80	32.20	34.80	46.60	44.10	26.70	58.20	42.70	45.60	99-86	24-10	24.50	32.90	9.6	5.6	2.9	8.1	17.60	9.0	1.3	ŝ	-
SUSPEND SOLIDS	194 194	4	•		99.00		184.00	35.00	201.00	293.00	304.00	291.00	850.00	197.00	111.00	81.00	•	9.00	•	•	29.0	37.0	•	9.61	0.95	•	•	9	ė	•	•	428.00	ė	9	•	A 1. A
000	H6/L		39.00	•		ō	27.00																													
TOTAL KJELD	H6 /L		3.800)		1.500	•50																													
086. N11.	1/9H		1.500			•	1.000																													
77 1 1 1	H6/L		300			.200	•50	1.830	• 003	.003	- 003	.051	• 005	• 003	900*	• 028	990.	.273	.150	.164	• 228	• 152	. 330	990	.003	• 165	• 204	. 505	2-030	.345	. 024	.016	.124	.061	.167	•
20-10 20-10 20-10	H6/L	ŕ	10130		1.630		.70	2.850	1.930	2.300	2.430	2.480	2.730	2.720	2.830	3.510	2.950	000.	2.930	1.480	2.940	•	2.550	'n.	2.730	2.940	2.820	2.550	1.590	1.510	1.510	1.660	1.690	.86	1.980	
081H3	1/9H	.160		.150			20	10	62	92	26	.032	5	03	9	.036	07	0	• 093	01	90	• 083	.081	. 061	• 026	*0*	90	.095	.248	60	90	Š	• 674	5	.068	
TOTAL PHOS.	1/9H	.300		.310	,		.570	.325	.460	964.	1.700	.270	.161	.126	.124	.145	.173	.150	• 200	.110	.140	.238	•239	.145	.335	•199	.156	.246	.597	.535	.130	.360	. 188	.096	.185	
71.0E		***	1961	372.	351.	335.	649.	242.	3958.	4662.	5110.	5046.	2462.	2157.	1798.	1303.	1174.	997.	960.	952.	936.	1439.	1521.	2366.	2962	1470.	830.	516.	603.	1738.	4237.	4295.	.212.	2913.	1510.	
7 I ME	~	1868	2266	2400	260	804	960	1630	1530	1900	815	1330	1	1250	1609	930	1530	2359	140	202	310	955	1125	1545	1300	1410	1110	1130	755	1839	1000	1623	2255	10.0	2265	
AMPL ING ATE	R NO DV	75 5 24	n d	יש ר	•	*	S	m	~	*	m	m	m	m	m	m	10	₩	m	m	M 7	m	m	M	m	m	m	m	•	•	•	*	•	•	*	٠.

LAKE ERIE WASTEVATER MANAGEMENT STUDY - MATER QUALITY INFORMATION

: BLACK RIVER

STREAM

LOCATION W/CODE : AT ELYRIA. OHIO

US65 NO. 04200500

COND 25C.				
IRON MG/L				
\$102 MG/L				
CHLO RIDE MG/L	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25		
SUSPEND SOLIDS MG/L	1111-90 1211-90 123-00 99-00 76-00	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	925.00 894.00 934.00 901.00 748.00 920.00 1134.00	714.00 753.00 671.00 672.00 442.00 417.00 351.00
C0D				
TOTAL KJELD MG/L				
ORG. NIT. MG/L		••		
NM-3				
NO-2 NO-3 MG/L	1	1	1100.200 1100.200 1100.3000 1100.3000 1100.3000 1100.3000 1100.3000	10.000 10.100 9.400 10.300 10.300 10.000
ORTHO PHOS. MG/L	.064 .125 .097 .099	1000 1000 1000 1000 1000 1000 1000	.224 .254 .256 .256 .178 .174 .171	.126 .127 .134 .134 .234
TOTAL PHOS. MG/L	. 335 . 251 . 255 . 255 . 245			0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FLOW	1288- 1322- 1274- 1192- 374- 681-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1434. 1541. 1673. 1759. 1899. 1995. 1998.	646. 646. 291. 291. 256.
11ME 2400 MRS.	11226 11226 11226 11660 11660 1240	1540 1535 1535 1630 1725 1613	11130 11230 11340 11540 11650 11650 12055 12055	1200 11320 11350 11350 11350 11250 11255
JNG DV				
SAMPLING Date Yr no dy	******			
SAI				:

ROCKY RIVER NEAR BEREA, OHIO

LAKE ERIE VASTEVATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

The figure of the state of the

RAJOR RIVER BASIN : ROCKY RIVER

STREAM : ROCKY RIVER

LOCATION W/CODE : NEAR BEREA, OHIO

US6S NO. 04201580

256.	1221.	1207. 1355. 1126.	1190. 1192. 1015. 563.	**************************************	720. 720. 785.	6 69 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	862. 862. 965. 965. 241.
IRON NG/L							
\$102 NG/L	7.31	7.56	7.12 7.80 6.64 5.95	5.25	6.26	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
CHLO RIDE RE/L	151.00	154.00 163.00 143.00	150.00 148.00 157.80	90.30 70.00 79.60	87.40 109.00 102.00 116.00	144.00 73.70 64.20 64.30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUSPEND SOLIDS R6/L				1290.00 504.00 309.00		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20000000000000000000000000000000000000
C00							
TOTAL KJELD NG/L	3.050	1.460	.750 .730 2.580 1.960	3.130 1.390 1.030		11.000	
ORG. NIT. MG/L							
NH-3	2.000	059	. 536 . 536 . 086	. 073 . 082 . 138	. 331 . 553 . 695		
80-2 80-3 86/L	2.000	2 . 1 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	2.730	1.950 2.750 2.750 3.00 3.00	1.500 1.500 1.500 2.400	1.320 1.470 1.420 1.270	1++10 1++10 1++10 1+10 1+10
PHOS.	1.320	.227	.555		169		000000000000000000000000000000000000000
TOTAL PHOS. REAL	1.230	.932	. 566 . 718 2.638	1.418 .576 .379	.254 .254 .351		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
71.08 CFS	• • • • • • • • • • • • • • • • • • •		226.	5200. 4160. 1903.	200 200 200 200 200		11994. 11966. 1916. 1918.
AMPLING TIME ATE 2400 A NO DY HRS.	997		6222	2222	222 222 222	いないないないと	3 19 1240 3 19 1240 3 19 2240 3 20 2240 3 20 1440 3 20 1440
A T T T				::::::	22223	CCCCCCC	

LAKE ERIE BASTEBATER HANAGENENT STUDY - WATER QUALITY INFORMATION

STREAM : ROCKY RIVER

USGS NO. 04201500 LOCATION W/CODE : NEAR BEREA, OHIO

COND 25C.	514.	485.	48 5•	96.0		•	520.	464.	+87.	620.	į	704	525	491.	•69•	541.	549.	510.	200	* C C C	370	-0/0	1004					664	•00	437	561.	529.	450	433.
IRON HG/L																																		
\$102 M6/L	6.24	5.87	2.86	()		0	6.47	5.93	6.02	6.10	1	7.57	6.53	6.07	6.14	6.59	5.36	5.36	# 1 P	5.45	5.70	9 0	7000	7 4		0	5.72	6.53	10.9	90•9	49.9	9.60	5.55	5.17
CHLO RIDE MG/L	70.30	59.30	26.80		30.19		15.70	61.00	53.00	15.70		82.00	67.70	62.80	53.50	69-10	72.70	68.30	51.70	43.20	36.90		200			36.60	41.00	09-09	00.00	39.30	69.60	65.80	38.20	41-10
SUSPEND SOLIDS MG/L	109.00	115.00	140.00	110-00			286.00	148.00	99	23.00	106.00	142.00	128.00	169.00	207.00	38.90	00.444	491.00	435.00	159.00	290.00	269.00	281-80	000.000	262 - 00	234.00	2	05.0	ò	82.00	ó	ė	215.00	191.00
C00																																		
TOTAL KJELD MG/L												1.400	.767	1.920	1.030	.591												.680			. 805	.892		
ORG. NIT. NG/L																																		
NH-3	N 0 0 0	100	.003	;	100	. 003	700	100	- 005	.143		.174	.014	. 097	. 071	.016	.003	. 003	.005	.021	. 003	. 003	.005	.021	. 003	• 003	. 003	.022	.003	.003	. 027	.010	. 003	. 003
NO-2 NO-3 NG/L	1.350	1.500	1.510		1.510	1.390	1.260	1.440	1.520	1.380		1.190	1.090	1.250	1.570	1-130	1.260	1.180	1.090	.968	.890	.900	. 895	1.070	1.080	1.070	1.120	1.070	1.080	1.150	1.330	.950	1.080	• 05
ORTHO PHOS. Re/L	840	. 618	• 006			.070	. B.2.	1029	.042	.061		.141	.147	.093	•00•	.120	.075	.053	+10.	•052	•046	.038	. 028	•013	• 022	.027	.021	.110	• 056	.082	. 184	.091	-062	.027
TOTAL PHOS. HG/L	.146	.146	.175	.228	.148	•129	6.007	950	1.184	.135	.402	. 445	.356	.352	.341	.294	•650	. 595	. 325	•656	.271	.245	. 195	.310	.223	.198	.181	.359	.125	.182	-418	333	.394	• 300
FLOW	1277-	1300	1244.	1066.	633.	555		11911	823	280.	626.	1181.	1846.	1668.	1668.	966.	1037	1404.	2125.	3443.	4261.	3849.	2734.	2234.	1721.	1381.	1277.	807.	687.	611.	590.	1244.	1384	1428.
71ME 2408 HRS.	1920	2338	135	630	2002	8	630	1107	1115	1400	930	1700	630	915	916	1900	1220	1435	1825	2230	915	1105	1445	1735	1855	2140	2240	009	1240	1700	2000	630	1 020	1520
SAMPLING DATE YR NO DY	3 20	9 6	3 21	3 21	3 21	3 22	3 22	7 7 7	2 6	3 26	3 28	3 28	3 29	3 29	29	3 29	7	~	~	7	•	•	m •	n +	•	n •	•	•	•	•	•	• •		

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

.

MAJOR RIVER BASIN : ROCKY RIVER

STREAM : ROCKY RIVER

US65 NO. 84201500 : NEAR BEREA, OHIO LOCATION W/CODE

COND 25C. UMHO			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	669. 730. 729. 803. 975. 861.	015. 038. 995. 995. 997. 177. 177. 177. 177. 177. 177. 177
IRON .					പ പ് ് പ്
S102	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CHLO RIDE RG/L	57 - 70 47 - 40 46 - 20 50 - 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	77.80 72.50 72.50 56.40 59.60	66.40 81.90 73.50 68.80 75.70 93.10	4000000
SUSPEND SOLIDS MG/L	188 7 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		11.7 - 0.0 11.7 - 0.0 15 6.0	25	44 48 48 48 48 48 48 48 48 48 48 48 48 4
C00					
TOTAL KJELD MG/L	.617	2.554 2.554 1.1550 1.1550		1.210 .530 .910 .136 .3.290	1.610 1.200 1.150 1.480 1.280
ORG. NIT. MG/L					
NH-3				00000000000000000000000000000000000000	. 152 . 120 . 120 . 547 . 547 . 950 . 155 . 155
NO-2 NO-3 NO-1	1	11.25.000011.12.12.12.12.12.12.12.12.12.12.12.12.1		2 • 620 2 • 620 3 • 620 3 • 640 1 • 540 1 • 540 1 • 540	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
ORTHO PHOS. MG/L	00000			4 4 W W & O W	1.030 1.170 1.0460 1.0430 1.0230 1.0200 1.0260 1.0260 1.0260
TOTAL PHOS. MG/L			66000000000000000000000000000000000000	+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.567 1.9830 1.9830 1.9830 1.9830 1.7410 1.2410
FLOW	22 66 66 66 66 66 66 66 66 66 66 66 66 6	1170. 1186. 136. 136. 736.	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		48. 25. 25. 46. 77.
SAMPLING TIME DATE 2400 YR HO DY HRS.			មានមានមាន មាន មានមានមាន មានមានមាន		77 5 25 1400 77 5 25 1401 77 6 5 900 77 6 6 1500 77 6 6 2015 77 6 7 630 77 6 7 630 77 6 7 630

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: ROCKY RIVER

STREAM

USGS NO. 04201500 LOCATION W/CODE : NEAR BEREA. OHIO

COND 25C.	CHHO	392.	246	496	542	582	360	582	596.	583.	582	584.	574.	574	488.	460.	486.	520.	881.	604.	758.	609	591.	722.	709.	753.	642.	640.	649	728.	839	857.	811.	861.	820.	744.	747	727.
IRON	H6/L																																					
\$102	NG/L	4.62	2.96	4.12	3.16	4.86	4.96	2.15	2.15	2.32	2.06	2-05	2.02	2.07	3.07	3.20	2.86	2.35			11.10	7.19	6.64	7.83	90.9			9.24	5	7	8.70	7	9	ç	`.	6.44	4	9.05
CHLO	H6/L	107.00	189.00	164.00	194.00	105.00	92.80	211.00	217.00	214.00	202.00	206.00	207.00	202.00	165.00	153.00	53.0	76.0			81.70	67.90	70.20	85.50	81.20	9.5	60.20	5.6		ņ	83.00	5.9	•	S	~	75.90	~	69.50
SUSPEND	HG/L	74.00	•	•	ö	9	28.00	•	•	Ó	•	9	ð	•	9	•	9	9	27.30	83.30	Ç	9	4	6.3	ູ	1.2	1.5	4.8	•	7.1	11.90	5.4		7.2	0.2	50.30	8.7	21.50
000	1/9H																																					
TOTAL	#6/L																				.670	.580	• 864	1.020	.633	.950	- 880	1.300	.591	.415	.431	.550	.608	.742	1.050	.425	.908	•605
086.	H6/L																																					
N-HZ	H6/L	2.210	.225	1.340	.510	3.500	3.600	. 325	.275	.370	.300	.325	.393	. 335	1.290	1.380	1.230	•	1.520	1.170	• 029	.041	. 020	.724	.013		.010		.032	• 039	.027	.032	.030	•00•	.010	. 010		• 639
K0-2	H6/L	1.590	1.310	2.110	1.690	1.850	1.830	2.950	2.980	3.080	3.050	3.140	3.160	3.120	2.700	2.650	2.760	2.880	4.320	2.590	2.770	1.950	1.750	3.560	2.870	3.290	1.610	2.000	2.080	3.120	2.930	3.040	3.130	2.940	4.230	1.920	•65	•
ORTHO	H6/L	• 082	.670	747	.764	.826	. 845	1.170	1-150	.960	1.170	1.180	1.190	1.180	.978	-986	.972	1.000	1.320	.488	.624	• 466	.471	. 760	. 658	.911	.568	•579	.379	-827	169.	.744	.826	.673	1.060	84.	.478	• 459
TOTAL	PHOS.	1-140	.930	1.070	.975	5967	1.180	1.40	1.480	1.370	1.550	1.530	1.500	1.610	1.440	1.360	1.320	1.380	1.580	.750	.753	-637	•659	.978	1.070	1.060	.794	.755	.848	1.180	.852	.849	176.	.781	1.260	.769	.780	• 630
FLOW	8	75.	7.3	66.	6.5	99	4	6		-		.7.	*1.	47.	47.	*1.		. 7	121.	124.	52.	136.	136.	96	37.	38.	70.	70.	341.	520	36.3.	3630	363.	43.		- 4C	68.	173.
TIME	240 HAS:																																					1330
1 × 6	9	-																			•		. ~		•			-	-		. ~			. ~		4		•
MP	DATE YR MO DY	-	. ~																																	_	٠,	7 10
S	35	,						-			: [-																						. ~	11

CUYAHOGA RIVER AT INDEPENDENCE, OHIO

LAKE ERIE WASTEMATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUYANGGA RIVER

STREAM : CUYANDGA RIVER

LOCATION 4/CODE : AT INDEPENDENCE, OHIO

US6S NO. 04208000

SOL PHOS MG/L	1.037	*5*	.16	•13	.16	•1•	.13	86.	•13	90.	• •
T0TAL C H6/L											
018. 086 C NG/L	;	•	•	9.0	10.0	0.0	10.0	9.6			O •
TOTAL ORG C NG/L	9.0	10.0	10.0	11.6	10.0	11.0	13.0	10.0	12.0	•	11.0
TOT DIS SOLIDS MG/L	333.0	371.0	4 0 0 1	9.64.6		311.6	322.0	306.0	298.0	240.0	161.0
S	396.0	483.0	664.0	1179.0				593.0	934.0	1460.0	794.0
FLOV	1570. 1610. 1680.	1872.	2620. 2880. 3270.	7 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5000		4900. 4750. 4600.	4300. 4150. 4300.	4550. 4900. 5500.	8000	10200. 10500. 10400. 9700.
7146 2408 485.	2166 2266 2366	24 00 2 4 00 2 4 00 2 4 00	0 0 0 0 0 0	9000	1000	1300	1500	1 9 0 0 2 0 0 0 2 1 0 0	2200	96	2 + 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 40	2 2 2 2 2 3 2 3	222	2222	2222	222	222	222	2222	2323		2222
755	~ ~ ~	~ ~ ~		~ ~ ~ .	· ~ ~ ·	~ ~ ~	~ ~ ~	~ ~ ~ ~	~ ~ ~ ~	N 70 70	~ ~ ~ ~ ~
SAMPLING Date Yr ng dy	555	222	255	2222	525	555	22.5	5252	222	522	22222

LAKE ERIE UASTEUATER HANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA RIVER

STREAM : CUVAHOGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, OMIO

201 PH0S H6/L		2	.03	. 05		.01		.00		.10		.07												
101AL C M6/L													29.0	38.0	1	28.0	26.0	! !	32.0		25.0	25.0		
DIS. ORG C NG/L	7.0	6		7.0	0 • 0		6		0.0		•	9 0		12.0	12.0	•	• > 1	14.0		10.0	10.0	! !	12.0	12.0
TOTAL ORG C MG/L	10.0			"	•		•		19.0		•	17.0		17.0	16.0	:		16.0		15.0	13.0	!	14.0	13.0
TOT DIS SOLIDS MG/L		242.0	284.0		299.0						272.0	279.0	455.0	574.8		2490.0	521.0		415.0	,	285.0	297.0		278.0
TOTAL SOLIDS MG/L		542.0	543.0	! :	547.0			6 834			459.0	332.0	610.0	3756.0		5108.0	4477.0	•	3831.0	1	2293.0	1453.0	•	1054.0
FLOW	8200.	6906.	6300.	5800.	5300.	4850.	+500.	4450-	4350	+308.	4200	4150.	715.	1542.	4435.	4166.	8128.	9040	•	_	12208. 12128.	-	9 (8610. 7644.
7 I I I I Z 4 0 0 HR S .	99		1800	40	900	~ *	n oo	2100	rm	909	•	~ •	•	2000	. 17	700		500	0	000	0 0 0	300	00+	1600 1700
ING	25		252		2¢					27						25	N 6	2	22					
- 0			. ~ ~																					
SAMP	5:	i to t	222	27	55	5;	5 2	2;	C 12	75	2	2 2	2	22	7.5	2	C 2	2	75	7.5	2.5	75	25	22

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA RIVER

STREAM : CUVANGGA RIVER

LOCATION W/CODE : AT INDEPENDENCE. DHIO

USGS NO. 04208000

•					
SOL PHOS MG/L					
TOTAL C NG/L	27.0	30.0	31.0	32.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIS. ORG C NG/L	12.0	10.0	12.0	12.0	12.0
TOTAL ORG C NG/L	13.0	12.0	14.0	12.0	12.0
TOT DIS SOLIDS M6/L	348.0	311.0	272.0	369.0	376.0 446.0 367.0
TOTAL SOLIDS MG/L	1000.0	677.0		591.0	+92.0 552.0 469.0
FLOW	5450. 4477. 3250. 2769.	2214. 2028. 1868.	1596.	1148.	939
7.1 ME 24.00 NRS.	2222	1200	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 6	2222	2222	2222		2222
SAMPLING DATE YR HO DY	•	. ស ស ស ស			
SAR	2 t t t t	5 E E E	2222		22222

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIW : CUYANOGA RIVER

STREAM : CUTAHOGA RIVER

USGS NO. 8428888 LOCATION W/CODE : AT INDEPENDENCE, OMIO

SAMPL ING DATE	11ME	FLON	TOTAL PHOS.	PHOS.	NO - 2 NO - 2	N-12	ore. RIT.	TOTAL KJELD	000	SUSPEND SOL 10S	RIDE	S 1 0 2		25C.
10 04	HRS.	•	1/9#	1/94	167	N6/L	N6/L	N6/L	H6/L	1/9H	1/91	H6/L	1/91	9
		1578				200	90		32.00	63-60				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2300	1680	1.528	.260	1.210					•				
		1872-				.280	.900		32.00	20071				
		2370.	.610	.130	1-160		•			,				
		2620.					000		41.66	261.80				
		3278.	.628	. 070	1.040									
		3600.							,	815.00				
		4400.				.600	009		65.00					
		1600.	.150	•••	. 836					00-050	•			
		4950				• 200	1.200		63.00					
		5006	.550	. 060	.985)))								
		5000								639.00				
		5000.				.500	1.100		71.00					
		4950.	.96		. 850									
		+900					,		-	632-00				
		4750.			9	3 0 •	9		200					
		609	• • • • • • • • • • • • • • • • • • • •	000	• 620				٠	334.00				
		9				-200	. 600		44.00					
		150	.420	.150										
		4300.								287.00				
		4550.				004.	.600		38.00					
		•	.540	. 650	• 699					, ,				
		0				1	1			636.00				
		9				900			101-00					
		00	• • •	. 110	.647									
		3								1220.00				
		970			•				20.00					
		0200	. 120	.010	.672									
		9				•				20.774				
		•		,	ì	000	004.		36.00					
			-240	010	• 5 7 6									

LAKE ERIE HASTEVATER RANAGEMENT STUDY - WATER BUALITY INFORMATION

MAJOR RIVER BASIN : CUVAHOGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, OHIO

: CUYANDGA RIVER

STREAM

COND 25C.				744.	• • • •	289.	288. 251
IRON MG/L							
S102							
RIDE RIDE RG/L				105.00	71.00	36.00	34.00
SUSPEND SOLIDS MG/L	300.00	246.00	202.00	187.00	3182.80	3956.00	3416.00
1/9H	56.08	6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36.00 19.00 129.00	260.00	219.00	207.00
TOTAL KJELD MG/L				2.2	3.100	1.700	2-100
ORG. NIT. NG/L	.				1.800	1.300	1.800
RH-3				1.360	1.300	•	. 300
H0-2 H0-3	•		. 156	1.050	• • •	1.210	1.020
OR THO PHOS. NO.	•		~ ~			950	•
TOTAL Phos. Ne/L	.20	.256			 		0 0 0
FLOW	9180. 7580. 6980.	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4556 4456 4156 4166	7228. 8128. 9040.	10620. 11462. 11966.
71K 2400 HRS-	500 1200 1200 1200 1200	00000000000000000000000000000000000000			2 2 2 2 2 2 3 3 3 4 3 4 3 4 3 4 3 4 3 4	0000	9 9 9 9
3 A			288888				2222
SAMPLING DATE YR NO DY					-		
402	2522	55555	*****	55555	22222	255	125

LAKE ERIE VASTEVATER MANAGEMENT STUDY - VATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA RIVER

: CUYAHOGA RIVER

STREAM

USGS NO. 04208000 LOCATION W/CODE : AT INDEPENDENCE, OHIO

COND CANO	304.	304.	347.	391.	+28•	516.	504.		516.	50 60 60	576.	
IRON MG/L							•					
S102												
CHLO RIDE MG/L	28.00	39.00		42.00		57.00		61.00	9	00.00	66.00	
SUSPEND SOLIDS MG/L	2008.00	1156.00	176.00	999	654.00	522.00	352.00	294.00	240.00	104.00	222.00	184.00
7/9H COD	149.00	108.00	100-00	107.00	57.00	63.00	53.80	57.60	51.00	42.00	41.00	39.00
TOTAL KJELD MG/L	1.000	2-100	1.266	1.100	1.700	1.400	1.700	1.580	1.508	1.000	1.200	1.200
086. NIT. HG/L	.700	1.800	.900	99	1.500	1.100	1.500	1.200	1.200	.700	. 900	900
NH-3	. 300	906	.308	.300	. 200	. 360	.280	900	. 300	900	.300	•
80-2 80-3 86/L		.96	.97	•			.620	.780	.678	. 628		
ORTHO PHOS. NG/L				6	• • • • • • • • • • • • • • • • • • • •	•130	• • •		198			000
TOTAL PHOS. MG/L	0	90 1	.200	.150	.170		_	996				-
FLOU	12208.	111766. 11156. 10372.	9516. 8610. 7644.	6542. 5450. 4477.	3751. 3256. 2769.	2509. 2214. 2028.	1926.	1602.	1586. 1586.	1398.	1145.	1002 975 965
71ME 2400 HRS.	1 0 0 0 1 1 1 0 0 0	1700	1500	1806 1900 2000	2500		1000	1000	7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1200	1600 1800 2000
SAMPLING Date Yr no dy	10 10		n m m	& & &	60 10 10	មា មា	6 60 60		0 KD KD KD	10 10 to	n vo vo v	755 S S S S S S S S S S S S S S S S S S

LAKE ERIE VASTEVATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA RIVER

STREAM : CUTAHOGA RIVER

04208000
USGS NO. 0420001
2
: AT INDEPENDENCE, OHIC
. AT
LOCATION W/CODE

COND 25C.		1000. 900. 904.	921. 961. 1398. 1135.	1071. 1497. 908. 998. 1021. 998.	1055 11282 11286 1126 1017	1021. 1011. 1006. 913. 253
IRON NG/L						
S102		7.0.7 7.8.7 7.1.8	5.00 5.00 5.00 5.00 5.00 5.00 5.00	7 · · · · · · · · · · · · · · · · · · ·	6 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7.55 7.11 7.90
CHLO RIDE MG/L	59 . 00 0 . 00	99.00 1117.00 107.00	1100 000 1150 000 1150 000	1100 1100 1100 1100 1100 1100 1100 100	11111111111111111111111111111111111111	118.00 118.00 106.00
SUSPEND SOLIDS MG/L	116.00	126.10 15.00 15.00	24.00 24.00 24.00 24.00	1	00000000000000000000000000000000000000	14.50 14.50 14.60 14.00
1/9H	9 · 0	31.00				
TOTAL KJELD MG/L	1.200	0 0 0 0 0 0				1.000
ORG. NIT. NG/L	006.					
NH-3	900		2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 4 4 0 0 0 4 4 0 0 0 4 4 0 0 0 4 4 0 0 0 4 4 0 0 0 4 4	1000	1
20-5 20-3 26/1		4.630 4.630 4.050	44 10 600000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
08 THO PHOS. R6/L	. 05	41. 45. 45. 45. 45. 45.				
TOTAL Phos. RG/L	.370	1981	7			. 553 . 712 . 711 . 557
FLOW	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1112. 1112. 1150. 1150.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • • • • • • • • • • • • • • • • • •) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
NG TIME 2408 DY HRS.				110 736 111 904 115 730 115 725 117 740 118 955		
SAMPLING DATE YR HO DY	មាលមា	•••	222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		222

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

RIVER
CUYAHOGA
BASIN :
R RIVER
574

	USES NO. 84288888
	OHIO
: CUTANGGA RIVER	: AT INDEPENDENCE, OHIO
STREAM	LOCATION W/CODE

COND USC.			
IRON NG/L			
S102	9.20		0 0 •
A I DE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	137-00	127.00
SUSPEND SOLIDS MG/L		# # # # # # # # # # # # # # # # # # #	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
7/9H			
TOTAL KJELD MG/L		0 0 0 1	• n • • • • • • • • • • • • • • • • • •
ORG. NIT.			
NH-3 N6/L		2	0 P P P P P P P P P P P P P P P P P P P
R0-2 R0-3 R6/L	+	1 c	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PHOS.	35.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(7 65 ™ 67 • • •
TOTAL PHOS. NG/L	1000 1000 1000 1000 1000 1000 1000 100	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FLOW			
SAMPLING TIME DATE 2409 YR NO DY NRS.		77 1 19 1738 77 1 20 1788 77 1 22 1649 77 1 25 1661 77 1 26 1657 77 1 26 1657 77 1 28 1657 77 1 28 1657	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY IMFORMATION

HAJOR RIVER BASIN : CUYANDGA RIVER

STREAM : CUTAHOGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, ONIO

US68 NO. 04208880

COND 25C. UNKO	1306.	56.	91.	61.	718. 651.	612.	26.	599.	52.	97.							•		676.				54.	51.	37.	595.	63. 255
2 % 5	12	2 2	12	-	~ 4	9	•	. W.	- 43	•									•				ĸ	S	'n	S	S)
IRON MG/L																											
S102 M6/L	8.33	7.57	7 - 88	7.17	6.29	6.43	6.28	6.77	6.98	6 • 4 5				•					6 • 65				8.18	6.43	5.68	5.49	5.56
RIDE M6/L	163.00 147.00 143.00	120.00	143.00	133.00	114.00	101.00	105.00	96.90	80.10	81.60									99.20				83.10	73.50	72.30	79.00	80.90
SUSPEND SOLIDS MG/L	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	68.40	145.00	1327.00	816.00	422.00		261.00	213.00	174.00	00-69	146.00	98.70	110.00	60.10	61.80	75.66	58.50	10.00	204.00	145.00	87.50	78.10	73.70	80.90	737.00	1548.00
1/9H																											
TOTAL KJELD MG/L	.939	2.100	2.560	7.000	2.580	1.320	;	988	1.050	.910													1.080	.378	.399	1.270	
ORG. MIT. MG/L																											
NH-3	. 828	. 399	1.250	.766	.326	+60	.071	. 293	0 + +	.043									.335				.526	.117	. 158	.139	.093
NO-2 NH-3 NO-3 H6/L	3.460 .028 2.820 .186 2.880 .148			•		930	9.0		1.780 .440	.240									1.110 .335				340	670	. 790		
	2.000	2.390	257 1.970 1	257 .970	1.570	052 1.990	1.990	6+6 1.620 .	1.780	2.240									•				77 1.340	096 1.670	1.790	630	024 .870
NO-2 NO-3	.194 3.460 .160 2.820 .170 2.880	.151 2.390 .138 2.080	.692 .257 1.970 1	.450 .257 .970	.101 1.570	.626 .052 1.990	.054 1.990		.061 1.780	.067 2.240	B#N •		2000	.297	-257	. 522		0 PM •	.066 1.110 .			23.2	.077 1.340	.096 1.670	.891 1.790	.109 1.630	.024 .670
ORTHO NO-2 PHOS. NO-3 HG/L NG/L	.194 3.460 .160 2.820 .170 2.880	414 .131 2.390 532 .138 2.000	.692 .257 1.970 1	3.450 .257 .970	1.250 .101 1.570	.626 .052 1.990			. 0.994 . 0.63 3 3 7 8 0	338 .067 2.240 .									130 .066 1.110 .				276 .077 1.340	267 .096 1.670	275 .891 1.790	. 907 .109 1.630	580 .624 .670
FLOU TOTAL ORTHO NO-2 CFS PHOS. PHOS. NO-3 AG/L HG/L HG/L	774481 .194 3.460 784584 .160 2.820 689418 .170 2.880	665414 .141 2.490 566542 .148 2.680	574692 .257 1.970 1 244. 1.020 .254 1.550 1	2440. 3.450 .257 .970	6690 1-290 -101 1-570 6690 -101 1-570	6260 .626 .052 1.990	6268639 .054 1.990		3180394 .061 1.780 .	2640338 .067 2.240 .	2640.	2080.	1990.	1950.	1370.	1330.	1240	983	1011130 .066 1.110 .	1230	2090	1880.	1880276 .077 1.340	1880267 .096 1.670	1680275 .891 1.790	5380907 .109 1.630	6147580 .024 .870
TIME FLOW TOTAL ORTHO NO-2 2400 CFS PHOS. PHOS. NO-3 HRS. MG/L MG/L MG/L	401 .194 3.460 504 .160 2.820 418 .170 2.880	1426 665414 .131 2.390 1648 566532 .138 2.080	1652 574692 .257 1.970 1 798 2448, 1.898 .258 1.558 1	1715 2448. 3.450 .257 .970	735 6690. 1.290 .101 1.570 1480 4480. 1.260 .075 1.550	1710 6260626 .052 1.990	1730 6268639 .054 1.990	1245 4818 .446 .548 1.650 . 165 1456 .155 .651 1.666 .	735 3180	1631 2640338 .067 2.240 .	730 2640.	722 2080.	730 1990.	1345 1950.	730 1370.	1729 1530.	1750 1240.	730 983	1045 1011130 .066 1.110 .	11620 1230	715 2090	720 1880.	900 1880276 .877 1.340	901 1880267 .096 1.670	734 1680275 .891 1.790	730 5380907 .109 1.630	1280 6147580 .024 .870
FLOU TOTAL ORTHO NO-2 CFS PHOS. PHOS. NO-3 AG/L HG/L HG/L	1730 774401 .194 3.460 1730 704504 .160 2.820 1657 609418 .170 2.880	2 19 1426 665414 .131 2.390 2 21 1648 566532 .138 2.080	2 22 1652 574692 .257 1.970 1	2 23 1715 2440. 3.450 .257 .970	2 24 735 6690. 1.290 .101 1.570 .24 1450 4491 1.260 .075 1.550	2 25 1710 6260626 .052 1.990	2 25 1730 6268639 .054 1.990	2 26 1245 4818: .446 .546 1.657 .	2 28 735 3188	3 1 1631 2640338 .067 2.240 .	3 1 730 2640.	3 2 722 2000.	10 4 100 1990.	3 5 1345 1950.	3 7 750 1370.	3 8 1729 1330.	3 9 1738 1240. 4 10 138 1118.	3 11 730 9830	3 11 1045 1011130 .066 1.110 .	3 12 1225 125Uo	3 15 715 2090	3 16 720 1880	3 16 900 1880276 .077 1.340	3 16 901 1880267 .096 1.670	3 17 734 1680275 .891 1.790	3 18 730 5380	3 18 1200 6147580 .024 .870

LAKE ERIE MASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUYANGGA RIVER

STREAM : CUYANGGA RIVER

US6S NO. 04208000 : AT INDEPENDENCE. OHIO LOCATION W/CODE

COND 25C. UMHO	479.	+85.	497.	4894 5134	515.	549.	533.	533	528	524.	530.	552.	552.	567	- 200	518.	£17.		538.		-116	642.	611.	576.	566.	560.			538.
IRON M6/L																			-										
\$102	5.21	5.83	5.87	0 e	6.05	6.51	6.07	60.9	90.9	5.95	5.97	90•9	6.07	5.0	9	6.15	4		5.84	•	200	5.18	6.49	5.44	5.84	5.59			4.78
CHLO RIDE MG/L	72.10	72.40	73.00	83.00	83.00	75.00	85.10		30.00	63.30	81.60	96.90	88.30	86-10		17.30	95.30		99.20		0	79.70	76.70	75.40	74.50	74.50			91.30
SUSPEND SOLIDS MG/L	1011.00	167.00	291.00	176-00	145.00	191.00	84.00	157.00	128.00	131.00	71.00	26.00	00°00	00.09	119.00	110.00	132.00	96.70	25.00	80.20		174.00	247.00	205.00	09.66	92.20	47.40	98.20	53.00
COD NG/L																													
TOTAL KJELD MG/L			.378			.356								9	70.							. 733	. 805	.975	1.200	.865			
ORG. NIT. HG/L									-																				
n _			_	.	2	•	<u>ا</u>	2	ŭ =		2	•	<u>-</u>	٠.	=	•	•	2	3	•	חַ	9	=	•	6	2			.240
NH-3	.033	. 090	.266	. 060	-	.14	-			.18	. 093	111	•19	•220	162.	.140			.168	;	000	.266	.421	.418	ř	1.11			
NO-2 NO-3 M6/L M6/L	888 . 888 .	.970														.830 .14			.840 .16		700					1.800 1.1			.840 .2
		.970	1.370	. 958	1.030	1.440	. 920	. 890		986	.894	. 952	.950	•952	1.40		878				•		091 1.200	103 1.190	1.200	092 1.800 1			
NO-2 NO-3	. 938	.006 .970	.076 1.370	. 865 . 958 . 1. 628	.016 1.030	.081 1.440	. 628		0/0° 0/0°		+60° LEO.	.042 .952	.041 .950	2660 +400	04-1	. 891 . 850	600		.025 .840			.088 1.430	.091 1.200	.103 1.190	.066 1.200	.092 1.800 1		10 M	.061 .840
ORTHO NO-2 PHOS. NO-3 NG/L NG/L	600. 600.	.180 .006 .970	.406 .076 1.370		.234 .018 1.030	.329 .081 1.440	•125 •028 •920·		0100 0200 010 0100 0200 010	145 612 930	.123 .037 .894	160 .042 .952	.120 .041 .950	•132 •044 •952	.279	.201 .091 .830	.274	171	.115 .025 .840	-209	• 275 • • • • • • • • • • • • • • • • • • •	.363 .088 1.430	.448 .091 1.200	.554 .103 1.190	.263 .066 1.200	.239 .092 1.800 1	.213		.715 .061 .840
TIME FLOW TOTAL ORTHO NO-2 2488 CFS PHOS. PHOS. NO-3 NRS. NG/L NG/L NG/L	7471 .678 .007 .838 7781 .466 .005 .930	4811180 .006 .970	5320406 .076 1.370	4226140 .003 .950 4686242 .634 1.626	4027234 .018 1.030	3898329 .081 1.440	3791125 .028 .920.	4227110 .043 .890	41880 0180 0818 0818	0000 0100 0010 00000	2796123 .037 .894	2796160 .042 .952	2767120 .041 .950	2743. 132 .044 .952	5708279 .637 t.439	4356201 .091 .830	.274	730 2770 171	2755115 .625 .840	2220209	1668275	2470363 .088 1.430	2470448 .091 1.200	2490554 .103 1.190	330 2311263 .066 1.200	2311239 .092 1.800 1	1740213	1450	1337715 -061 -840
TIME FLOW TOTAL ORTHO NO-2 2488 CFS PHOS. PHOS. NO-3 NRS. NG/L NG/L NG/L	.678 .007 .838 .466 .805 .930	1120 4611180 .006 .970	1145 5320406 .076 1.370	1486 4226148 .883 .958 1811 1886212 .833 1.828	2140 4027234 .018 1.030	1110 3898329 .081 1.440	1300 3791125 .028 .920	1615 4227110 .043 .890	0/00 0200 00To 0000 0X	220 34580 0145 0012 0950	1845 2796123 .037 .894	2145 2796160 .042 .952	5 2767120 .041 .950	140 2743	730 3700279	1530 4356201 .091 .830	730 3310 .274	730 2770 -171	1015 2755115 .025 .840	730 2220	1440 18880 • 170 • 844 • 868 • 1844 1848 • 1888 • 1888	720 2470	1100 2470448 .091 1.200	715 2490554 .103 1.190	1530 2511263 .066 1.200	1331 2311239 .092 1.800 1	730 1740213	730 1450.	125 1337715 -061 -840
FLOW TOTAL ORTHO NO-2 CFS PHOS. PHOS. NO-3 MG/L MG/L MG/L	1715 7471678 .007 .838 2320 7781466 .885 .930	19 1120 4811180 .006 .970	19 1145 5528406 .076 1.370	19 1486 42280 - 148 - 1893 - 1958 18 1811 18844 - 1919 - 1811 1-1008	19 2140 4027234 .018 1.030	20 1110 5896329 .081 1.440	20 1300 3791125 .028 .920.	20 1615 4227110 .043 .890	26 2015 4186186 .026 .078	21 220 3438145 .612 .930	21 1845 2796123 .037 .894	21 2145 2796160 .042 .952	22 5 2767120 .041 .950	22 140 2743132 .044 .952	22 730 3700279 .07/ 1.470	22 1530 4356201 .091 .830	23 730 3310	24 730 2770 a171	24 1015 2755115 .025 .840	25 730 2220209	20 1443 18881/3 .844 .838 .	28 720 2470363 .088 1.430	28 1100 2470448 .091 1.200	29 715 2490554 .103 1.190	29 1330 2311263 .066 1.200	29 1331 2311239 .092 1.800 1	30 730 1740213	31 730 1450.	2 125 1337 .715 .061 .840

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER BUALITY INFORMATION

MAJOR RIVER BASIN : CUYANDGA RIVER

STAEAN : CUYAMOGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, ONIO

USGS NO. 8428888

COND 25C. UMM0	520. +51.	66 46 66 66 66 66 66 66 66 66 66 66 66 6	952 952 955 955 955		•
180k				-	
\$102 N6/L	8 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 4846 8 4944 8 4944			89 • •
CHLO RIDE N6/L	89.10 75.50 67.40	722.1	75.16 78.66 193.00 162.60	1000	9.70
SUSPEND SOLIDS NO/L	622.00 6745.00 677.00	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
C00				•	
TOTAL KJELD HEAL					1.670
086. N17. N6/L				•	
MM-3	900		170	100	. 112
20-2 20-3 26/L	200	2	695		2 2 3
PHOS.	. 021		100		•
101AL PH08. 86/L		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		100000000000000000000000000000000000000	
71 0E	3528. 4934. 5651.	200 - 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3047. 3132. 3520. 3374.		11220 1220 1220 1220 1540 1540 1540
SAMPLING TINE DATE 2400 VR NO DV NRS.		77	· • • • • • • •	77	

LAKE ERIE VASTEVATER MANAGENEMT STUDY - BATER GUALITY INFORMATION

MAJOR RIVER BASIM : CUVANGGA RIVER

: CUVAHOGA RIVER

STREAM

0420800	
US65 MO. 042000	
• OH10	
AT INDEPENDENCE.	
LOCATION W/CODE	

COND 25C.	4 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9	961. 945.	•	1274.	1000
18 ON		-			
\$102 NG/L	က ထ စက • • ဟ ဟ	0 to		7.08	5.13
RIDE RIDE REVI	2	0 9 · 9 6	195.8	122.00	306.00
SUSPEND SOLIDS MG/L			20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	######################################	90 · 41
C00					
TOTAL KJELD MG/L	0.00			1.400	
086. NIT. NG/L	-				
MH-3				.168	.76
E - 0 = 1		2 · 2 3 0		3.150 2.070	3.260
ORTHO PHOS. RG/L	• 6 6 4 7 • •	.180	• • • • • • • • • • • • • • • • • • • •	.254	.355
TOTAL PHOS. NG/L			-		
FL 08			292 292 286 289	2007	219.
SAMPLING TIME DATE 2400 YR RO DY MRS.	777 • 25 728 777 • 26 728 777 • 27 738 777 • 27 738 777 • 28 738 777 • 38 1009 777 • 38 1009 778 • 38 730 779 • 38 730 779 • 38 730 770 • 38 7	13 13 13 13 13 13 13 13 13 13 13 13 13 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 24 1336 5 24 1338 5 25 738 9 26 738	5 26 2530 5 27 1705
					. •

259

LAKE ERIE UASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, OHIO

: CUVAHOGA RIVER

STREAM

USES NO. 04208000

COND CANO.		4 4 9 9 4 4 1 1 2 4 1 2	4111	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4099 4029 4029 4039
IRON NG/L					
\$102 N6/L			7.96 7.96 7.92 7.71	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
RIDE RIDE		196.00 190.00 165.00	1199	1150.00 1150.00 1152.00 1152.00 1152.00 1152.00	126.00 126.00 126.00 108.00
SUSPEND SOLIDS MG/L	00000000000000000000000000000000000000	65.00 77.00 127.00 65.10	M W W W	2	
C00					
TOTAL KJELD MG/L					
086. MIT. 16 7.					
2 - N - N - N - N - N - N - N - N - N -		2.460	1.130 1.080 1.110	1.120 1.120 1.120 1.120	11 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
# 0 - 2 # 0 - 5 # 0 - 5		3.110	2000 2000 2000 2000 2000 2000 2000 200		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PHOS.		+ 0 + 0 0 + 0 + + 0 0 + 0 0 0 + 0 0	00000000000000000000000000000000000000		+ + + + + + + + + + + + + + + + + + +
101AL PH0S.				**************************************	ំនៃ ។ • • • • • • • • • • • • • • • • • •
FL 04 CF S	11111111111111111111111111111111111111			2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2115 2115 2115 2115 2115 2115
7116 2488 485.	950 729 729 720 720 730	735 1645 1715 725 930	000000000000000000000000000000000000000	123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	725 725 725
92 2					
SAMPL I DATE YE MO	********	***		••••••	
140	2222222	アアアア	: : : : : : : : : : : : : : : : : : : :	CCCCCCCC	

LAKE ERIE VASTEVATER NANAGHENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUVAHOGA RIVER

: CUYAHOGA RIVER

STREAM

USGS NO. 04208000 : AT INDEPENDENCE, OHIO LOCATION W/CODE

COND 25C. URNO	•	• • • • • • • • • • • • • • • • • • • •	1829.	4 8 6 9
IRON HG/L			-	
S102		9.09	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 . 38
CHLO RIDE NG/L	٠	. 82.80	121.00	82 • 58 101 • 00
SUSPEND SOLIOS MG/L		272.460 13.460 111.000	24 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1/9N 000				
TOTAL KJELD NG/L		9.64	1.820	. 958
ORG. NIT. NG/L				
NH-3		• +50	. 627	. 346
NO-2 NO-3 NG/L		•	2.510	. 6 90 2 . 35
OR THO PHOS. MG/L		•213	.393	.317
TOTAL PHOS. MG/L				
FLOW		1390 299 292 396	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 1 ME 2 4 0 0 MR S.	715 715 726 726 726 727 727 725 745 745	730 1050 715 720	735 736 736 736	725 726 726 1100 1706 1735 1230
SAMPLING Y	777777777777777777777777777777777777777	8 0 0 0		777 7 7 1 1 1 2 2 1 7 7 7 7 7 7 7 7 7 7

LAKE ERIE VASTEVATER HANAGENEMT STUDY - NATER GUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA MIVER

STREAM : CUVANGGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, OMIO

C080 25C.	914	2 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	928.	723. 656. 656. 842.
IRON M6/L				
S102	10.40	* * * * * * * * * * * * * * * * * * *		*
CHLO RIDE R6/L	106.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	118.66 84.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUSPEND SOLIDS NG/L	204.00		112 123 123 123 124 124 124 124 124 124 124 124 124 124	
C00				
TOTAL KJELD NG/L	1.100	2.130	1.610	0 0 9 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ORG. NIT. MG/L				·
NH-3	• 112		.119	9 6 6
NO-2 NO-3 NG/L	2.200	0 0 0 0 0 0 0 0 0 0 0 0	1-420	
ORTHO PHOS. MG/L	.234		.263	
TOTAL PHOS. HG/L			1000 · 10	
710 CF8	696.		299. 269. 1489. 139.	
7.1% 24.00 MRS.	136	138 138 138 138 128 128 158 153 128	745 732 1056 1106 717	11 10 10 10 10 10 10 10 10 10 10 10 10 1
9 4	2222		486766	
SAMPLING DATE YR HO DY	1 11			

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA RIVER

STREAM : CUTAMOGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, OHIO

13.70 15.10 15.10 15.10 15.10 15.10 15.20	NO-3	1/98	
113.70 113.70 113.70 113.70 113.00 11	16.1. 16.1.		9 9 8 9
10.00 10			G PN N •
2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /			90 90 90 96
11			9 9 8 9
6.26 8.36 8.36 8.36 8.36 8.36 8.36 8.36 8.3			9 9 8 9
11.00 11			90 90 90 90
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			9 9 8 9
11 10 00 00 00 00 00 00 00 00 00 00 00 0			90 90 90 90
11 10 00 00 00 00 00 00 00 00 00 00 00 0			8 8 8 8
11.00 6.20 6.20 13.00 14.00 14.00 14.00 15.00 15.00 15.00 10.0			9 90 90 90
11.00 6.20 6.20 11.00 14.00 14.00 10.00 11.0			8 8 8 8
66.00 12.10 13.00 14.00 14.00 15.00 16.00			5.2 %
6.60 10.60 14.00 14.00 14.00 15.00 15.00 15.00 16.00 16.00 10.60 10.60 10.60 10.60 10.60 10.60 10.60			5.230
112.00 124.00 124.00 125.00			5.230
11111111111111111111111111111111111111			
142:00 140:00 460:00 100:00 110:00 100:00 100:00 110:00 110:00 110:00 110:00 10:00		910 · 050 · 0	
4 000 000 000 000 000 000 000 000 000 0			
00.000 00 00 00 00 00 00 00 00 00 00 00		. 970	.216 1.970 .062
			1.980
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

263

LAKE ERIE VASTEVATER HANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : CUYANGGA RIVER

STREAM : CUYAHOGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, ONIO

0 • 0 E C C C C C C C C C C C C C C C C C C C	. 693
IRON ME/L	
8102 H6/L	6.5
A TIDE A	
SOUND	
7/9H	
MO/L MO/L	2.560
BEIT.	
EH-3	• 5 9 4
N N O - 0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	
PNOS.	9 10 10
	1. 4. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
	453. 1490. 636. 1160.
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	735 735 725 725
SAMPLE SA	22222

LAKE ERIE HASTEHATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : CUYAHOGA RIVER

STREAM : CUYANDGA RIVER

LOCATION W/CODE : AT INDEPENDENCE, OHIO USES NO. 04208000

COND 25C.	្នា មា មា
IRON HG/L	
\$103 M6/L	7.36
CHLO RIDE MG/L	57.70
SUSPEND SOLIDS MG/L	
1/9H 000	
TOTAL KJELD MG/L	2 • 33 0
ORG. NIT. NG/L	
NH-3	
NO-2 NO-3 NG/L	
ORTHO PHOS. NG/L	. 553
TOTAL PHOS. NG/L	
FLOW	
11 M	1180 1190 1190 1190 120 120 130 131 131 131 131 130 130 130 130 13
SAMPL DATE YR MO	777777777777777777777777777777777777777

EUCLID CREEK NEAR EUCLID, OHIO

LAKE ERIE VASTEVATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : EUCLID CREEK

: EUCLID CREEK STREAM

	COND	250.		503.		246.					,		100		294.			298.											467.		465.)						. 76
04208690	IRON		H6/L																																			
	\$102	•	M6/L			4.52						4.29																			8.16							
.02 808 08 808	CHLO	RIDE	H6/L	56.90		31.10					1	59.50	49.20		26.90			25.90											51.80		51.80							
	SUSPEND	SOLIOS	H6/L	51.00	13.10	1299.00	01-12	156.00		67.30	19.30	28-00	304.00	53.60	227.00	15.70	12.50	631-00	18-10	13.10	28.60	109.00		32.30	01.00	27.50			97.94	42.10	34.00	98.4	6.50	97.50	8.50	7.50	15.90	10.30
	000	,	H6/L																																			
0 H 10	TOTAL	KJELD	H6/L	.618		2.860					i	. 783	1.320		1.050			1.820													1.130							
MEAR EUCLID. OHIO	OR 6.	MIT	1/9H																																			
••	N-12		M6 /L	1.000		.482					,	.115	. 012		.011			• 059													111							
CATION W/CODE	NO-2	N-08	794 1	.780		004.						.540	1.250		1.210			.870													1.640							
L0CAT10	ORTHO	PHOS.	N6/ L			• 138						-005	.124		.121			- 065											770		7.00							
	TOTAL	PHOS.	1/91	191	.054	.785	.181	+14.	• 226	.214	.174	.192	.435	.282	.378	.210	.187	.617	.192	.194	171.	.221	.219	.186	.221	-202	.192	562	.169	7470			111	. 829	. 100	.112	180	•224
	FLOW	CFS		14.	12.	175.	72.	20.	•	24.	54.	23.	93.	93.	166.	37.	160.	160.	201.	201.	201.	258.	258.	258.	72.	72.	72.	27.	72				9 6	20.	20.	21.	41.	37.
	TINE	2400	2	1201	1200	1200	2100	955	1160	1600	2100	1200	1300	2015	1930	1 2 6 6	936	1330	230	900	1930	930	1230	1530	100	1330	2000	238					1 2 8 0	1700	2130	1200	1200	1030
		-			•	53	0	-									•		_	=	_	N	N	N	•		•	2	n ,				- 0				53	22
	SAMPL ING	16	2			_																					-											
	Z S	30	Ĕ	11	77	11	11	11	7	7	11	11	77	11	11	1	11	11	11	11	11	11	11	11	11	11	11	2	-:	- 1	: ;	: ;	: +	1	1	11	11	11

A MANAGER AND THE STATE OF THE

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : EUCLID CREEK

CREEK
EUCL ID
••
¥
STREAM

04208690
USES NO.
2
NEAR EUCLID, OHIO
••
LOCATION W/CODE

COND 25C. URHO	• •	
IRON HG/L		
\$102	4 4 10	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
CHLO R10E M6/L	2	10
SUSPEND SOLIDS MG/L	111 101 101 101 101 101 101 101	1737 1737 1737 1737 1737 1737 1737 1737
U6/L		
TOTAL KJELD MG/L		70007 70000 10000 10000 10000
ORG. NIT. MG/L	_	
NH-3		666 666 666 666 666 666
NO-2 NO-3 NG/L		11
ORTHO PHOS.		
TOTAL PHOS. MG/L		
FLOW		
7 1 ME 24 08 HRS.		
SAMPLING SATE FR NO DY		************
SAR		

LAKE ERIE WASTEMATER MANAGEMENT STUDY - MATER QUALITY INFORMATION

MAJOR RIVER BASIN : EUCLID CREEK

USES NO.
0HI0
NEAR EUCLID.
N/CODE : NE
LOCATION U/

04208690

O C C C C C C C C C C C C C C C C C C C	
IRON MG/L	-
S102	1
ME/L ME/L Me/L	0 1 •
SUSPEND SOLIDS NOLIDS 25-10 11-56 11-56 13-56 13-56 13-56 25-26 25-26 25-26	
7/9H	
TOTAL KJELD NG/L	
ORG. NJ 7.	
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	20 P
7	
PROS. PROS.	
707AL 707AL 707AL 1165 1171 1175 1175 1175 1175 1175	
11 11 11 11 11 11 11 11 11 11 11 11 11	
0 > 000 = 00	

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : EUCLID CREEK

: EUCLID CREEK STREAM

04268690	IRON	1/9H																																
NO. 0421	\$102	1/9K		7.41				5.56	2.34	7.06	6.16	•	5.45	7.26	7.67	8.01	7.37	8.29	9 • 0 •	9.97	7.08	2.5	16.51	90.0	7.58	7.88	5.56	7	6.68	6.33	7.11	7.49	•	6.05
. 898J	CHLO	1/9H		40.70				72.70	112.00	159.00	559.00	353.00	81.70	129.00	166.00	231.00	163.00	224.00	152.00	144.00	140.00	82.58		81.70	149.00	162.00	176.00	162.00	7.2	76.90	78-10	•	62.10	78.00
	SUSPEND	100 HE/L	124.00	20.00	12.96	13.98	724.00	526.00	226.00	22.50	48.30	321.00	668.00	227.00	57.70	32.10	21.00	16.20	18.60	100.00	120.00	00-416	91.18	60.70	17.20	17.20	37-10	20.80	56.10	67.60	04.09	172.00	7:0	56.10
	000	1/9H																																
O. OH10	TOTAL	M6/L						1.130	1.200	.340	1.050	1.750	2.580	1.260	. 500	.410	• 90	.430	.035	. 780	. 082	5.620	961			.370	064.	.550	• 900	.970	1.020	1.320	•	.900
MEAR EUCLID, OHIO	086	H6/L																																
••	N-IX	NG/L		• 032				910	000	.038	.024	.019	.034	• 025	.013	. 020	.107	.031	.014	. 026	• 025	-202	• 624		020	.038	.089	.140	.042	• 020	• 019	.047	.023	. 0 38
LOCATION W/CODE	NO-2	1/9H		1.190				1.240	1-450	1.830	2.760	2.880	2.270	2.320	2.050	2.030	1.710	1.840	1.700	1.630	1.810	1.070	1.546		1.750	1-600	1.590	1.370	1.690	1.470	1.800	1.810	1.330	1.750
LOCATIO	ORTHO	M6/L		.158				.823				• 156	.049	• 020	.019	• 010		.012	.015	.034	•010	•	919	0.70		•			• 029	.032	.039	. 613	. 055	.013
	TOTAL	7403. 86/L	.361	-211	.199	.154	.372		.574	.224	.299	.530	.580	.386	.168	-115	.153	.176	. 144	-206	.211	. 783	-204			135	.143	. 158	.217	.215	.225	.377	.886	.187
	FLOW	9	191.	115.	179.	23.	į	148.	3	27.	36.		1287.	189.	189.	70.	38.	57.	50.	189.	85.	57.	57.			37.	34.	31.	121.	165.	189.	62.	822.	70.
	HPL 286 T	DATE 2488 YR NO DY HRS.	77 11 10 1606	11 17 1	11 17 1	11 24 1	11 28	1 2 1 6 1	12 29 1		3 10 1	3 13 1	3 14 1	3 15 1	3 16 1	3 17 1	3 17 1	3 19 1	3 20 1	3 21 1	3 22 1	3 23 1	3 25 1		2 00 E	000		7	1 10 4	W 10 4	1 2 1	1 + -	~ +	- O
	(3	-	~ ~	-		-	<u>, , , , , , , , , , , , , , , , , , , </u>	- 1		~	~	~	~	_	~	~	_	_	•	~	-		~ 1	٠,	• •	. 1	~	1	1	-	-	-	-	_

383.

COND 25C. UNHO

4226 120006 649000 64900 74500 74500 74500 74500 74500 74500 74500 74500 74500

- PARTITION SPIKE

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

MAJOR RIVER BASIN : EUCLID CREEK

STREAM : EUCLID CREEK

LOCATION W/CODE : NEAR EUCLID, OHIO

USES NO. 04208690

COND 25C.	OHHO	598.	.00	816.	700.	599.	633.	896.	836.	706.	865.	442.	391.	317.	376.	545.	549.	597.	623.	648.	721.	701.	754.	. + 0 9	782.	786.	788.	653.	57.	775.	757.	689.	793.	797.	714.	476.	611.
20 K	H6/L 1																																				
2102	H6/L	7.26	7.12	7.28	6.44	5.21	5.95	7.99	4.58	3.29	1.11	2.81	6.56	5.98	7.17	7.10	7.49	6.67	6.17	4.42	5.91	3.91	3.86	4.51	99.9	7.37	J. 98	1.72	1.87	3.79	5.19	•	6.30	*	1.67	1.01	2.21
CHCO RIDE	1/91	82.20	137.00	140.00	98.00	86.80	90.40	86.10	104.00	84-20	111.00	45.90	44.70	35.90	45.30	67.80	68.30	16.60	76.40	90-40	89.40	85.70	93.30	73.10	96-00	96.30	97.10	79.50	64.10	95.68	94.20	86.70	98.40	98.90	89.30	49.60	0
SUSPEND	H6/L						39.40	163.00	9.30	21.50	26.60	419.00	2596.00	311.00	70.00	25.50	17.50	34.30	57.50	127.00	170.00	43.40	179.00	92.00	17.90	21.60	23.30	56.60	56.50	20.00	20.90	44.20	15.00	14.40	52.80	00.449	47-40
900	1/9H																																				
TOTAL	N6/L	.930	.930	1.230	2.090	1.080	.88	1.900	.430	.450	.880	4.320	5.860	1.060	.670	.640	. 600	• 600	1.200	1.130	1.810	0 49 *	2.430	1.790	.640	. 360	.420	.960	1.960	.510	.380	.910	0 + + •	.710	5.800	• 560	10.200
DRG.	H6/L																																				
N-12	N6/L	.124	.189	. 505	. 760	. 151	.197	•264	.333	.081	• 070	1.090	• 068	.112	• 042	• 059	• 052	• 064	.071	• 032	.019	• 083	.071	. 588	.071	840.	•109	.933	1.180	**0*	• 030	• 039	000	.030	.038	• 088	• 088
20-5 20-5 20-7	N6/L	1.680	1.360	1.260	1.210	1.340	1.110	-900	.980	1.020	1.830	0+0	.550	1.600	1.550	1.690	1.790	1.590	1.620	1.710	1.570	3.400	2.160	.620	1.030	1.100	1.300	1.170	•620	1.930	1.390	2.670	2.340	2.410	2.470	2.230	1.070
08 THO	H6/L				.010	. 025	900		.010				0	-047	.045	.019	.011		.010		.010												.010				
TOTAL	H6/L	.196	. 293	.232	.310	.282	. 233	.314	. 062	960.	+0+•	1.070	1.770	1940	-205	.142	.121	.164	.239	.356	.150	.194	• 169	.330	.104	.082	.098	.221	-200	.137	. 122	.237	.117	.106	.176	1.510	.196
FLOE	, ;	57.	70.	34.	69	133.	76.	38.	27.	36.	121.	• •	1686.	•	160.	79.	87.	*1.	43.	38.	31.	34.	31.	18.	24.	24.	23.	39.	24.	23.	32.	35.	29.	31.	24.	•6•	23.
TIME		2110	1000	1340	1830	140	1630	1400	1000	930	1500	1530	1945	900	1630	930	1300	1340	1400	1530	1445	900	1540	1400	906	930	1045	930	1220	1510	1230	1930	900	1300	1600	900	1900
9	5	i.		10	=	11	1	12	15	11	2	13	13	20	20	21	21	22	23	2	25	56	27	28	29	9	~	~	~	•	ĸ	ĸ	•	•	1	•	•
SAMPL ING	5																																		*		
38	5 5	7	2	7	2	7	7	78	2	=	7.8	7	7	2	78	78	2	78	7	7.8	78	78	78	76	78	78	78	78	78	78	78	78	78	78	2	78	2

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : EUCLIO CREEK

STREAM : EUCLID CREEK

LOCATION W/CODE : NEAR EUCLID, ONIO

US65 #0. 84208690

COND	CHHO	613.	506.	532.	508.	449.	427	531.	577.	526.	596.	667.	638.	847.	++6	414.	615.	685.	588.	395.	409.	537.	651.	692.	742.	691.	759.	705.	719.	568.	639.	637	505	409.	691.	1427.
IRON	1/9H																							-												
2018	N6/L	2.16	5.15	04.9	5.36	7.24	7.72	19.0	7.07	6.22	5.43	4.25	1.28	3.45	4.67	5.15	3.87	3.44	10 · 10	5.49	6.14	5.25	6.70	4.01	2.89	5.05	5.57	5.43	5.26	3.63	2-15	5.31	5.36	60.9	5.81	12.30
CHLO	1/9H	67.30	64.90	70.59	65.80	53.20	51.30	62.60	70.70	63.80	16.60	63.78																								
SUSPEND	MG/L	998.00	180.00	72.40	197.00	406.00	93.00	17.50	26.60	85.40	56.10	156.00																								
000	1/9H																																			
TOTAL	M6/L	1.310	.690	1.200	2.070	.940	.650	.910	1.020	.820	108.	1.410																								
086.	H6/L																																			
E - E	N6/L		.163	-137	-112	. 488	.060	.052	1.00	000	•056	• 064																								
NO-2	H6/L		1.540	1.450	1.620	.630	1.260	1.320	1.270	1.420	1.270	1.230																								
ORTHO PHDS.	H67L		.081	.045	.097	.048	• 062	•029	•020																		,									
TOTAL	N6/L	.890	.425	.230	.++5	994.	. 503	.258	.234	.269	+295	.478																								
FLOW	• ;	35.	189.	77.	111.	189.	192.	62.	43.	35.	34.	•09	31.	23.	402.	68.	27.	24.	42.	9 2•	70.	35.	25.	24.	19.	22.	31.	23.	21.	23.	37.	25.	102.	309.	23.	19.
711ME	HAS.	930	1900	1100	1300	1620	2030	1000	1830	1000	1035	930	1100	100	2000	1130	1530	915	1945	915	1800	906	930	1330	1230	930	1700	930	1530	1545	2030	930	1500	1930	1700	1000
9	6																				23															
SANPL ING	2	ın	'n	ĸ	•	•	6	•	80	10	10	'n	E	•	S	80	10	80	'n	s	50	80	•	•	5	₩.	•	4	•	•	9	•	•	•	•	9
4	E			•		•	•				7							•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•

CHAGRIN RIVER AT WILLOUGHBY, OHIO

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY IMFORMATION

HAJOR RIVER BASIN : CHAGRIN RIVER

: CHAGRIN RIVER

STREAM

LOCATION W/CODE : AT WILLOUGHBY, OHIO

USES NO. 04209000

	s s	_																																			
SOL	PHOS	79 H			-11			• 20 2			-01			• 06			• 08			• 1 1		,	• 06			•01		4	•	.0.			• 0 •		(. 0 .	
TOTAL	U	7																																			
ĭ		Ī																																			
8	ORG C	ځ		6-9			7:0			7.0			7.0			7.0			7.0			7.0			7.0		,	•							0.7		
01	ĕ	£																																			
TOTAL	ORG C	7		8.0						8.0			9.0			8.0			15.0			9.0			8		•	9	17.0						10.0		
																			-										•	•					-		
018	SOLIDS	۲	311.6			369.0			295.0			287.0			259.0			224.0			226.0			243.0.		•	22100				2.0	213.0		254.0		,	246.0
101	So	S E	31			36			53			78			9			22			22			7			N N				11	21		\$2		1	2
TOTAL	SOL 108	~	648.0			567.0			541.0			145.0			0.180			89.0			625.0			851.0		,	3.40				ر و	0.509		315.0			295.(
10	8	9	9			56			Š			-			108			80			9			35		,	20				20	9		3			5
2	s		52.	20.	•	28.	:	50.	96.	33.	.02	•			73.	<u>:</u>	.1.	• 0 •		52.	9.	2.	56.	:	. 89	00	:			2		51.	.00	.81	25	96.	20.
7	5		٠	•	-	12	91	17	25	28	3	32	33	31	53	28]	261	25	24	23	21	21	21	21	25	3080	26	֓֞֞֞֜֞֜֞֜֜֞֜֜֜֞֜֜֜֜֜֓֓֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓		51	6	13	12	=======================================	-	<u>5</u>	ř
I HE	2450	ins.	160	260	300	00+	208	660	760	90	96	000	1100	200	360	094	969	0991	1700	900	900	090	160	200	300	900		200		900	1300	999	25.0	123	0,	736	1000
			23	23	23	23	23	23	23	23											-			-		23	2	7 6						56	56		
161	1	IR NO DY	N	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	N (, (۰ ،	۱ ۵	~	~	~	~	~	~
SAR	DAT	¥,	75	75	75	75	75	2	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	75	13	2	2			7.5	75	75	7.5	75	73	75

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

: CHAGRIN RIVER

STREAM

LOCATION W/CODE : AT WILLOUGHBY. OHIO

USGS NO. 04209600

PHOS PHOS MG/L	ř.		11			•		•																							
TOTAK SO C PH MG/L MG	•		•					60.					9. 36			28.0			27.0	•			27.0			28.0		29.0		23.0	
DIS. ORG C NG/L	9.0	9	;	,	9		9.9	7.0	,	13.0		100						9.0				10.0			10-0			16.0	1	13.0	
TOTAL ORG C MG/L	7.0	9.7		•	~		7:0	•	•	24.0		9.61						10.0							11.6			22.8	•	19.0	
TOT DIS SOLIDS MG/L		214.0		218.0		229.0		270.0	305.0	4	273.0		• 00 •	9	9-8-5		494.8			250.8	251.0			245.0			172.0		228.0		234.6
TOTAL SOLIDS NG/L		374.0		319.0		283.0	 	330.0	4625.0	•	2175.0	,	2020-0		90700		1263.0			1096.0	749.0			559.0			164.0		336.0	•	9 - 6 5 7
FLOV	824.	794.	746.	716.	674.	590.	536.	390.	2487.	2667.	1734.	1750.	1128.		1175	1249.	1277	1296.	1305.	1193.	968.	914.	854.	.906	176.	7.6.	.989	632.	194	150	200
71ME 2400 HRS.	1300	1900	100	+00	100	1300	1900	1400	1900	2000	2200	2500				906	1000	1100	1200	1300	1680	1700	1800	1900	2000	2100	2200	2300	00+	9	7 0 0 0
		56																													
SAMPLING DAIE YR NO DY	~ ~	~ ~	w ~	~	~ (N N	~	~	'n	S	S	n :	n u	n u	n u	n sh	6	'n	'n	6	n en	8	10	S	₩.	S)	'n	ŧ0	so.	S	n
ă ă ă	27	21	. t	75	25		2	75	75	75	2	£ i	£ ;	ָרְ בְּ	. r	5	75	75	75	51	2 2	75	75	75	75	75	75	75	73	75	7.5

LAKE ERIE WASTEVATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

STREAM : CHAGRIN RIVER

LOCATION W/CODE : AT MILLOUGHBY, OHIO

USGS NO. 04209000

												•			
SOL PHOS MG/L															
707AL C MG/L	25.0	. 0.62	25.0		27.0		23.0		22.0		23.0		23.0	31.0	31.0
015. 086 C 86/L		10.0			11.0		9.0		14.0		12.0		10.0		10.0
TOTAL ORG C HG/L		14.0			12.0		10.0		15.0		16.0		10.0		10.0
TOT DIS SOLIDS MG/L	4	0.967		363.0		233.0		270.0		284.0		287.0		364.0	
TOTAL SOL IDS M6/L	4	7500		423.0		291.0		314.0		316.0		323.0		430.0	
FLOW	325.	270.	251.	238.	226.	196.	198.	180.	175.	164.	161.	157.	154.	147.	147.
1186 2408 MRS-	1400		2002	2201	2400	00+	109	1000	1260	1600	1800	2201	2400	400	009
IPL ING TE NO DY	23	2 2	23	23	23	53	5	2	š	24	5	2	24	22	25
SAMPLING Date Yr ho dy	75 5	75 135 19	75 5	75 5	75 5	75 5	75 5	75 5	75 5	75 5	75 5	75 5	75 5	75 5	75 5

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

	USGS NO. 04209660
: CHAGRIN RIVER	: AT WILLOUGHBY, OHIO
STREAM	LOCATION W/CODE

COND 25C.											
IRON RG/L								_			
\$102 #67L										•	
CHLO RIDE MG/L											
SUSPEND SOLIDS MG/L	337.00	198.00	246.00	458.00	828.00	665.00	399.00	608.00	613.00	326 926 900	61.00
C0D	26.00	00.04	36.00	00 •	37.00	78.00	25.00	47.00	36.00	105.00	29.00
TOTAL KJELD MG/L											
ORG. NIT. MG/L	300	009.	700	600	.503	000	500	926	9.	• 500	336.
NH-3 MG/L	.100	• 100	100	• 100	100	• 100	.100	.100	.100	.100	• 100
NO-2 NO-3 MG/L	ć	* •	.893	1.520	. 898	698.	.725	.69B	649.	. 59	.575
ORTHO PHOS.	•	a .	•010	• 630	.010	• 610	.010	. 010	0 6	.010	.020
TOTAL PHOS. MG/L	,	9 1 7	•630	.650	.760	•290	• 320	- 580	95 6	.530	.110
FLOW	632	1064. 1228. 1654.	1750.	3290 3290 3290	3160-2973-	2567-	2352. 2199. 2142.	2126- 2174- 2568-	3000. 3677. 4500.	5184. 5162. 4597.	. W = G & &
71ME 2400 HRS.	200	0 0 0 0 0 0 0 7 1		909	200	200	9000	2200	2400	2000	7000
											58888
											,,,,,,,
SANPI DATE YR N	27	2	25 E	25.5	222	25.5	222	27.25	555	5	22222

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

STREAM : CHAGRIN RIVER

0420981	
USES NO.	
0H10	
S AT WILL OUGHBY.	
. AT E	
JON W/CODE	
LOCAT 10M	

25C.									į	273	•	428.		312.	;		723		282.		282.		3	582		282.
IAON MG/L																-										
S102																										
RIDE NG/L							44.00			20.00		60.10	,	34.00			33.00		27.88		32.00		6	80.87		26.00
SUSPEND SOL 1 0 S MG/L		760.00	101.00		54.00	,		00.0364		BA • > A C T		1628.00		592.00			769.00		946.00		498.00					292.00
7/9H	25.00	28.00		22.00		17.00	19.60	286.80		102.00) 								;	118.00		109-00		51.00	•	
TOTAL KJELD MG/L								1.800		1.700							•		;	1.200		1.100		1.200		
ORG. NIT. MG/L	00	.100		•100		• 100	9	1.600		1.300) 							9		900	•	.900		1.100)	
NH-3	• 050	.100		.100		100		.200		904.							•	2	•	. 200		-200-		.100	! !	
NO-2 NO-3 NG/L	.616		.613	;		į	992		;	• (3		1.170		•170			• • • •		.670		.670		,	24.		.410
ORTHO PHOS. MG/L	.010		• 010		929•	į	0.50		• • 50						• 060	. 830		.030		0 40			040		.060	
TOTAL PHOS. MG/L	.180		.100	•	0 • 1 •		190		.230	. 1	.190		.160		.220	.170	• 150	.126	.210	9	.120		080	999	•	
1 0 E	966.	794. 776.	746.	•	5 32.	536.	390.	2667.	2038.	1750.	1403.	1128.	902.	928.	410.	1249.	1277	1305.	1193.	1100.	968.	914.	854.	776.	746.	707
1116 2400 185	1300	1900 2200										100	300	0 6	9 0	986	900	1200	1300	900	1600	1700	1800	1 700 2 0 0 0	2100	
SAMPLING DATE VR NO DY	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 % 7 7 7	2 27	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 27	2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 21	5 21 S 21	5 21	\$ 22	\$ 22	25	5 23	5 22	\$ 55	2	5 22	e e	2 5 5	5 22	\$ 55	22	5 22	
325	25	22	22	2	2 2	2	5	5 2	2	C 2	2	73	2	21	5 2	2	2	C E	2	2 5	2	75	2	C 5	75	,

LAKE ERIE HASTEUATER MANAGENENT STUDY - VATER GUALITY INFORMATION

MAJOR RIVER BASJU : CHAGRIN RIVER

US68 NO. 81289888 : AT WILLOUGHBY. OHIO : CHAGRIN RIVER LOCATION W/CODE STREAM

COND 25C.		290.	302.		352.		353.		365.		1	397.		470			103.		.161		512.	166.	197.	541.	569	738.	•		
IRON NG/L																		-										•	
\$102 H6/L																					7.07	7.71	7.77	1.12	1.56	7.76		,	
RIDE RIDE RE/L		27.00			34.00		35.11		35.00			25.80		16.00			36.11		34.00			56.30	51.68	51.20	97.00	57.90	91.9	105.00	20.00
SUSPEND SOLIDS NO/L		100.00	72.66		11.11		••••		90.08					19.61			26.11		99		16.20	9.61	5.5	3.70	2.10	3.50		•	
COD	45.00	;	32-90			21.10		24.88		25.11		•	10.01		19.80			15.66		12.00									
TOTAL KJELD MG/L	•		- 700			- 78		.78		.70		1	. 580		200			. 700		.700						. 250	.207	•	2
086. N17. N6/L	.700	,	99					•		•••		1	.300		9	;		. 500		•••									
##-3 #6/L	.100	•	:					=				,	.286					.200		.108	.016	. 024	• 054	.078	.047	.207		;	•11•
NO-2 NO-3 NG/L		.670			1.10		3.90		486.			-230			• • • • • • • • • • • • • • • • • • • •		.200		.376	}	.568	••••	.630	009.	•620	.930		•	
ORTHO PHOS. NG/L	•			. 050		181		1	9		. 151			:		. 65		į			.024	.024	. 010	.020	.016	. 150			791
TOTAL PHOS. NG/L	.29))		.188	1	110		,	.16		.100			• 120		.150		į	•17		. 169	.151	. 028	. 628	.127	.097		į	• • • • • • • • • • • • • • • • • • • •
FLOW	632.	194	900	325.	295.	251.	230.	226.	214.	196.	106.	198.	175.	170.		161.	157.	154.	150.	147	260.	250.	227.	214.	130.	130.	130.	130	•000
7176 2400 5400	2380	•			760	1 9 0 0	2200	2400	200		000	1000	1200	1400		2 0 0 0	2200	2110	=======================================	9	900	912	1300	1300	1600	1230	1231	1500	9
	22																												
SAMPLING Date yr no dy	w w																				-	~	~	-	~				
SAL	2 K	75	2 :	5 K	2	5 t	2.5	75	5;	5	2	75	7	2;	ָרָ בָּ	2	75	73	2 5	, 5	2	16	16	76	16	11	11	2	11

LAKE ERIE LASTEVATER MANAGEMENT STUDY - MATER QUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

STREAM : CHAGRIN RIVER

US65 NO. 01209868 LOCATION W/CODE : AT WILLOUGHBY, OHIO

COND 25C.	CHEO	905.	497.	+0+	345.	432.	513.	535.					::		423.	•00		124.	388.	373.	395.	395.	297.	289.	285.	284.	289.	298.	340.	341.	341.	340.	384.	372.	337.	338.	350.
30	1/9H																							-													
\$102	H6/L	7.79	6.81	6.40	99.9	6.68	7.09	7.65					5.50		7.63	99-9		6.13	6.28	5.89	6.07	6.07	4.19	::	5.06	5.16	5.32	5.44	5.63	5.83	5.86	5.64	5.82	5.92	5.59	5.76	10.9
CHLO	H6/L	126.00	5	97.40	109.80	6	80.50	80.40					61.50		65.70	7		67.00	63.90	60.40	60.20	60.20	28.10	28.90	29.80	29.60	32.60	32.60	39.60	39.10	35.40	42.70	44.10	43.40	42.40	39.10	35.10
SUSPEND	H6/L	11.60	1343.00	2191.00	654.00	82.50	65.20	25.00	252.00	28.90	17.60	26.10	10.00	146.00	18.00	85.00	47.70	2007.00	1647.00	1446.00	1319.00	1319.00	1639-00	757.00	1029.00	674.00	441.00	339.00	268.00	297.00	153.00	167.00	302.00	195.00	226.00	117.00	158.00
000	1/9H																																				
TOTAL	#6/L	.470	3.060	3.600	1.200	.330	.650	.530							.760	1.070		5.090	4-420	3.890	.300	3.680															
ORG.	M6/L																					,															
E I	HG/L	.114	.394	.319	.464	.419	.136	. 059					.010		.110	.137		.277	• 138	.122	. 085	• 085	.003	.003	• 003	.003	• 017	- 007	• 003	• 003	.010	. 010	.010	.013	.010	.010	• 003
NO-2	H6/L	1.440	1.520	1.550	1.460	1.340	1.060	1.240					.760		.850	1.100		1-190	1.170	1.120	1.080	1.080	.850	.829	. 192	-809	.830	.830	.860	.872	.842	.855	. 798	. 835	. 790	.782	.789
PHOS	MG/L	90	.112	6	.129	20	3	.042					.012		2	.073		• 088	• 076	.057	.052	95	5	5	.015	9	• 00 £	.011	. 023	01	9	• 030	÷00°	• 006	.017	-017	.017
TOTAL	R6/L	.094	_	~				•	.236	•	0		m	•	•	=	11	• 06	m	93	88	88	•	46	11	42	•	40	•	*	~	1	12	0	17	90	.081
FL04		300.	4500.	4500.	2877	551.	551.	400	974.	525.	349.	369.	280.	-866	546.	546.	429.	3111.	4615.	4283.	5634.	5034.	5052.	3360.	2094.	1734.	1501.	1326.	1207.	1186.	1179.	1179.	1256.	1354.	1870.	1106.	902.
7175	IRS.		400	730		900	00	100		900				800	100					115		315	535	•		200	201		904	931	039		036	204		912	33
9	7	17	•			_			•		•	30	N	•	S	5	16	16	18	•	•	80	•	6	19	•	6	•	6	6	6	đ	ں	.5	(3	-	22
4 7	78 F0							77 3	P7																												

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

: AT WILLOUGHBY, OMIO LOCATION W/CODE

: CHAGRIN RIVER

STREAM

USGS NO. 04209000

COND 25C. UNHO	395.	411.	396.	374.	368.	401.	398.	122.	432.	451.	399.	388.	384.	437.	+09.	510.	348.	326.	314.	282.	288	341.	297.	331.	361.	358.	401.	360.	332.	344	334.	340	356.	573.	491.	470.
IRON MG/L																							-													
S102	5.96	6.84	6.64	5.98	5.96	6.51	6.24	7.49	6.33	6.9	6.63	7.59	5.90	4.84	64.4	4.82	4.95	5.47	5.61	5.25	5.45	5.17	5.70	5.71	5.65	5.80	6.17	5.83	29.6	5.44	~	5.42	٣.	5.44	5.58	3.56
CHLO RIDE NG/L	44.50	62.40	64.90	46.00	43.60	65.40	34.70	64.30	43.40	63.90	63.40	66.20	49.80	51.60	56.20	60.50	36.30	28.10	27.70	25.00	27.50	43.40	26.40	29.10	35.90	36.90	49.80	36.50	29.00	34.40	27.40	29.40	38.00	93.20	68.60	50.90
SUSPEND SOLIDS MG/L	658.00	411.00	102.00	127.00	67.00	54.10	34.00	30.70	34.00	27.30	ė	149.00	142.00		76.00	402.00	523.00	1143.00	00.909	623.00	247.00	0	190.00	0	0	90.00	147.00	221.00	294.00	196.00	•	•	72.00	•	66.00	Ç
000 COD																																				
TOTAL KJELD MG/L		1-420	1-340			.710		.730		1.510	1.470	1.490	.970	060.													.541									• 0 90
0RG. NIT. MG/L											_																									
NH-3	.003	.087	.170	.003	• 00 •	.121	• 003	.168	.003	.212	.100	.146		.029	.060	• 076	.003	.120	.031	. 003	.035	. 012	.029	.003	. 003	.003	•019	.003	.012	. 003	. 003	.003	-003	.003	.00	. 049
NO-2 NO-3 NG/L	.834	1.030	1.070	.776	.760	1.050	.794	.990	. 199	.910	.950	1.080	. 790	• 450	.442	.590	. 588	.630	649	. 558	.544	• 558	.570	.578	.595	.597	.710	.610	.530	.495	.508	.500	.526	.570	080	.290
ORTHO PHOS. MG/L	• 005	.063	.081	.013	.017	.085	.014	080	• 013	• 070	+00+	.092	.048	. 031	900•	100	.017	- 085	•016	• 026	.020	.300	690.	.053	.011	.115	. 047	100	.040	.054	.045	.017	.021	200	.017	. 023
TOTAL PHOS. MG/L	.103	.335	05.	.125	580	.107	.035	.091	050	.243	.232	-204	104	640	.073	.139	.174	694	.360	.300	.174	365	.314	.140	.135	.290	.212	-286	.238	.225	.220	.153	811.	460	160	.045
FLOU	1286.	2191.	94.1	1154	914	774.	542.	•	378	1583.	1360.	1200.	1200-	325.	388	36.2	2014.	2658.	2847	2370	1100.	968.	932.	716.	698.	842.	1200	1207	1112.	1176.	1628.	866.	758.	716.	426.	252
11ME 2400 HRS.		1415	15.00	2312	1 0 2 3	1430	1019	1445	1239	1300	008	1100	1101	800		9	2228		207	606	2030	2335	*	1035	2045	2	808	1140	1704	1832	2028	247		2115	1030	900
ING	0	2	. 6	3 6		2	2	2	2	2	5	. 5	Š	-	• •	• •	• •	• •	1 7	107	147		•	•	•	•	*	, Æ		· 10	4	•	1	9 4	م و	12
SAMPLING Date Yr ho dy	•			3 M														•	•	•	•	•		•	•	•	•	•	•	Ī	_	•		,	. .	•
ANA	11		: ;	7.7		77	7.7			7.7	7.7		7.					: [7.7	77		77	7.7	7.7	11	7.7	7.7	7.7	7.	7.7	7	7.7				11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

The second and decimal and the control of the second and the second second and the second second as the second

MAJOR RIVER BASIN : CHAGRIN RIVER

STREAM : CMAGRIN RIVER

LOCATION W/CODE : AT WILLOUGHBY, OHIO

US6S NO. 04209800

COND 25C. UMMO	184.	198.	537.	559.	119.	+21.	421.	114.	419.	+78.	435.	•	503.	528.	545.	954.	572.	566.	+96+	+90.	452.	512.	•11.	334.	373.	427.	461.	125.	.72.	524.	561.	566.	556.	533.	533.	534.	283
IRON MG/L																																					
\$102 MG/L	1.47	5.20	2.65	3.27	6.49	6.16	5.07	4.74	4.72	5.61	5.92	5.31	4.20	5.50	5.14	4.90	4.82	6.36	6.64	4.51	4.83	6.21	4.85	29.6	4.64	4.72	5.63	5.24	5.91	5.61	6.55	5.98	5.79	5.63	5.43	5-66	
CHLO RIDE NG/L	52.30	64.80	59.40	62.10	45.80	45.80	73.00	71.00	65.50	66.20	66.70	69.40	60.40	48.80	57.80	56.20	56.70	91.48	91.50	41.70	40.30	15.91	33.60	17.20	41.70	39.10	12.50	46.60	36.50	45.30	90.50	57.20	41.50	52.80	53.20	52.60	
SUSPEND SOLIDS MG/L	18.70	5.90	17.20	2.60	64.70	82.80	78.30	19.30	12.10	75.10	38.60	6.20	2.00	1.00	100.00	57.80	17.50	21.70	63-80	531.00	419.00	348.00	290.00	319.00	188.00	205.00	140.00	64.0	•	•		S	•	9	00.04	9	
T/9H																																					
TOTAL KJELD MG/L		-200	.470	.180	.690	.610	.590	.380	.910	.340	.930	.100				. 720	.070	3.340	.10			1.670									.665	.700					
ORG. NIT. MG/L											-																										
NH-3	.046	.110	. 035	. 045	. 055	• 065	. 048	.037	.037	. 032	040	• 079	. 083	.003	.126	.083	.113	. 335	. 341	.213	.158	.296	.150	. 122	.073	.165	.175	.210	.158	.137	.312	• 066	• 090	.176	.145	.145	! ! !
NO-2 NO-3 NG/L	.080	.550	.270	.220	•590	.570	•	1.090	.850	.930	.910	•950	2.810	.108	2.580	2.220	2.100	2.230	2.280	1.100	1.080	2.090	1.140	1.070	1.100	1.060	1.080	1.090	1.030	1.020	2.230	1.090	.990	1.083	1.110	1.073	;
ORTHO PHOS. MG/L	.014		• 028	.027	. 039	400.								• 005						.033	.128	•419	•056	+280	840.	040	•051	•050	.150	• 065	 	•	=	0	0	-	
TOTAL PHOS. MG/L	• 029	***	• 088	.110	.128	.121	.115	• 069	•053	900.	• 092	.030	•040	.051	• 059	.175	.114	•116	.137	.535	.525	. 433	. 325	.435	.250	.293	.316	.268	.166	. 140	.149	.136	.165	• 165	.155	.218	1
FLOV	223.	223.	287.	159.	683.	614.	614.	459.	320.	620.	334.	148.	148.	115.	111.	120.	132.	132.	148.	394.	355.	301.	315.	275.	265.	248.	210.	198.	168.	164.	148.	148.	157.	150.	147.	141.)) ,
11ME 2400 MRS.	900	801	900	730	1 000	1200	1201	1600	930	715	1600	1700	1701	1815	730	930	1700	1701	1600	1335	1501	1600	1635	1747	1952	2154	25	121	932	1051	1230	1231	1300	1432	1523	1650))
		13																																			
SAMPLING Date yr ho dy	•																																		9		
A A A	11	77	77	11	11	7.7	77	77	77	77	11	77	11	11	11	11	11	77	77	11	77	77	77	11	77	11	77	11	77	77	11	11	77	11	77	7.7	•

LAKE ERIE VASTEVATER MANAGEMENT STUDY - MATER QUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

: AT WILLOUGHBY, OHIO : CHAGRIN RIVER LOCATION W/CODE STREAM

US6S NO. 04209000

00%D	CHEO	513.	3000	543.	557.	510.	208				0000	- 25	000	400	455	509.	395.	437.	460.	475	503.	425.	424.	476.	466.	+71.	366.	•	- 60	527.	451.	397	24.7	318.	1	467	435	:
RON	M6/L																																					
S102	H6/L	5.71	6.13	5.09	4.61	45.4	5.6A						•	16.9	10.40	7.62	6.92	10.60	8.53	9.37	7.18	7.55	7.23	10.60	•	4.63	4.91	-	5.50								i	7.94
CHLO	1/9H	42.40	35.60	52.30	53.00	54.10	47.20							47.90	86.30	49.10	45.50	44.60	43.60	48.10	54.10	42.50	45.60	45.20	45.20	43.40	37.70		49.10	38.70	32.70	27.50	25.80	20.60		37.10	29.00	32.30
SUSPEND	#6/L	39.00	50.00	00.44	38.50	00 6								431.00	6.70	12.80	166.00	97.90	47.40	53.20	148.00	84.30	17.00	31.60	112.00	17.30	495.00	44.80	44.80	45.50	•	ð	•	1409.00	•	17.0	836.00	842.00
000	H6/L																																					
TOTAL	H6/L.	٠												1.640	• 560	0 4 4 0	1.270	.450	.620	.270	.500	.370	.590	• 566	.638	.270	1.369		. 483	.487	1.203	4.850	1.203	2.830		1.270	1.763	2.313
ORG.	#6/L																																					
N-IZ	H6/L	•260	• 008	129	- 062	186	1010	100.						• 062	• 025	.011	.030	.015	.071	.109	. 165	.057	.016	.010	10	.011	.012		. 048	.011	.012	.017	.010	.143		. 023	.032	.012
N0-2	M6/L	.962	.810	1.020	975		9 4	• 10			٠			1.130	1.150	.250	1.240	.680	.560	.780	.530	. 710	.730	.480	.300	.160	1.010		.430	.990	966*	. 790	.910	.270		.740	.740	906.
ORTHO	MG/L	690	010	7.00	4		1	•036						.136	•269	•058	.131	.094	.071	.108	.055	. 091	.093	+074	.035	. 021	.047		.068	•136	.132	. 028	.073	.042		.041	.029	• 045
TOTAL	MG/L	7.095	10.00	9 6 6		701.	.110	.061						.516	.302	.085	743	184	126	.165	.167	.183	200	124	.078	.055	.439	.156	•146	1144	.326	1.360	453	1.000	-223	.362	. 593	665.
FLOW	y	124.	117.				103.	103.	89.	79.	117.	195.	95.	290.	830.	17.	9.48	186.		129.	283.	162.	162.	114	95	87.	780.	173.	132.	132		865	80%	2641.	320	390.	395	395.
TIME	2400 HRS.	23.50	23.32		8007	7 (6	1016	1600	1045	1600	1130	110	1200	1325	1603		1848	16.00	1600	1400		5	1400	200	1600	900	2015	1400	1000	35.0	1330	000	1514	1545	915	930	931
LING	DATE TR NO DY		9 4	•	۰ ،	۰ م	•	9	9	•	9	•	^	^	~	~		-	- 1	. ^	. ~		-		٠,		~	• «	•	•	•	•	•	•	•	•	•	1 8 17
S	4 6 4	,	: [:;	:;		7	11	77	77	77	77	7.7	77	1					-	. [7.					-	-	7.							7		11

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

MAJOR RIVER BASIN : CHAGRIN RIVER

STREAM : CHAGRIN RIVER

USES NO. 04289080 : AT WILLOUGHBY. OHIO LOCATION W/CODE

COND 25C. UMMO	427.	587.	529.	562.	200	- 26	517.	471.	499.	900	• • • •	423.	433.	488.	469.	471.	475.	:
IRON MG/L																		
\$102 MG/L	7.58	9 6 6	9.54	5.07	6.36	7.16	20.7	7.72	8.91	8.18	8.08	8.15	8.62	9.98	7.73	8.98	7.70	7.51
CHL 0 R 1 DE M 6 / L	30.70	42.00	43.10	48.00	51.30	50.40	47.60	40-10	45.30	40.50	41.80	40.80	40.90	42.10	41.70	41.70	41.80	36.10
SUSPEND SOLIDS MG/L	45.70	10.50	35.70	11.60	217.00	155.00	225.00	04.40	204.00	708.00	91.90	64.00	104.00	58.60	110.00	98.30	113.00	10.20
1/9 H																		
TOTAL KJELD MG/L	1.220	42.6	.320	.412	1.253	1.193	. 383	1.720	.319	2-040		.287	1.100	.743	. 343	.431	•409	.592
ORG. NIT. MG/L																		
NH-3	010	010	• 026	.049	• 063	. 060	• 026	. 335	• 029	• 056	. 025	• 0 36	.048	.032	.131	.630	. 023	.031
NO-2 NO-3 NG/L	.600	9 (S)	.380	.110	.980	.990	1.670	1.520	1.680	2-400	2.240	2.200	2.080	1.580	1.640	1.170	.710	.580
ORTHO PHOS. MG/L	. 067	7 7 7	. 0 4 7	.033	.154	.148	.175	.135	.149	.185	.179	.174	.172	.144	.143	.116	• 082	.068
101AL PH05. M6/L	.142	790	. 090	.103	.380	.337	.399	.193	.272	.637	.232	.171	.200	.168	.201	.195	.207	.180
FLOW	159.	69	8	79.	+90-	260.	490.	180.	475.	1390.	349.	252.	330.	248.	305.	320.	305.	330.
7 1 ME 24 50 MR S.	1845	1745	901	1550	1245	1246	1247	1315	1415	1445	1600	1600	1600	1600	1130	1600	1630	1400
	23	5 2 2	3 2	•	:	=	-	15	16	11	18	13	20	22	56	56	2	10
SAMPLING Date yr mo dy	∞ •	0 6 0 6	6 40	•	•	•	•	5	•	•	•	•	6	•	•	6	•	10
A A A A A A A A A A A A A A A A A A A	<u>;</u>	:::	: :	11	11	11	11	11	11	11	11	7.7	11	11	11	11	11	11

GRAND RIVER AT PAINESVILLE, OHIO

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

BAJOR RIVER BASIN : GRAND RIVER

TREAM : SRAND RIVER

LOCATION W/CODE : NEAR PAINESVILLE, OHIO

US65 NO. 04212200

25C.	CHNO	264.	214.	204.	275.	282.	214.	212.	202	190.	204.	211.	200.	182.	212.	196.	216.	212.	226.	214.	259.	- 197	232.	254.	223.	210.	202	192.	•	199.	•	193.	206.	201.
HOM	M6/L																						-											
2102	N6/L	5.34	4.52	4.86	4.37	4.31	4.32	4.24	4.28	4.32	3.84		40.4	7 .	4.52	•	4.56	4.57	4.58	4.54	4.54		• 50	4.16	3.67	3.74	***	3.73	3.79	* O . •	4.06	+0 • +	N 4	2000
RIDE	7/9%	27.30	21.70	22.30	25.80	21.00	23.40	22.30	23.20	22.00	20.78	22.30	22-10	17.7	17.60	21.30	23.20	22.30	21.40	22.70	29.30	04.76	23.70	23.00	25.10	26.70	19.10	16.70	16.40	17.20	17.10	16.20	16-60	18.90
SUSPEND SOLIDS	N6/L	11.80	472.00	137.00	183.80	201.00	25.00	209.00	154.00	107.00	738.00	96.00	90.00	91.18		37.00	30.00	56.00	195-00	20.00	26.00		65.00	118.00	101.00	132.00	167.00	102.00	109.00	97.00	71.00	71.00	29.00	29.00
000	H6/L																																	
TOTAL	H6 /L																																	
ore.	N6/L																																	
n 1	1/9H	.010	. 039	. 003	.110	. 033	. 003	. 003	-015	. 041	. 003	• 03+	010	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500	000	700	.003	. 003	.003	.022	700	500	.000	.003	. 003	.003	. 003	. 003	. 193	.003	-061	. 663	900.
20-2 20-3	1/9H	.560	.615	.524	.499	964.	161.	.492	.538	.520	.520	.588	.532	844	450	***	492	964.	001	.460	.168	040		10 th 0	.340	.350	. 405	.360	.349	000	•360	066	. 880	. 280
PHOS.		•	-002	. 005	. 012	100.	-086	• 006	100	.005	- 012	. 089	700	. 000	•60•	100	90	900-	.005	***	-005			. 663	900-	- 082	• 0 • 5	.045	• 064	• 006	.005	-037	900.	900.
TOTAL PHOS.	1/91	***	.194	. 095	.162	.260	.140	.085	.072	000	.057	• 0 26	. 092	. 039	.150		920	080	.045	• 0 38	•045	900		.210	.119	.435	.110	.130	.079	.173	.135	. 150	-057	0.00
FL02 CF8		714.	5623.	4988.	5861.	6122.	6269.	6184.	6473.	6405.	5156.	5453.	4532-	5284.	5419.	4612.	2350	1610.	1550.	1322.	1268.	918.	7000	2818-	3924.	4148.	4180.	3250.	3055.	3310.	3040.	2950.	2950.	2922.
11R	HRS.	1100	1655	2345	823	1037	1234	1502	2009	2245	1006	1941	156	S	2237	927	2002	1202	2147	926	1219		181	831	2000	2354	1005	2010	2335	1237	1638	2100	225	1125
9	2															2 °																		
SAMPL I Date	9	•	~	~	•	m	m	M	m	m	•	~1	M	m	17 0	M) H) #C	· • • • • • • • • • • • • • • • • • • •	17	m	m.	•	• •	•	•	•	•	•	•	•	•	•	•	•
= -	_	~	_	~	_	~	_	_		_	~	_	~	~	~	-	. ~	. ~	_	_	_		_	. ~	_	_	_	_	_	_	_	_		_

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : GRAND RIVER

STREAM : GRAND RIVER

US65 NO. 04212200 : NEAR PAINESVILLE, OHIO LOCATION W/CODE

SAMPLING TIME FLOW TOTAL ORTHO NO-2 NH-3 ORE- TOTAL COD SUSPEND CHLO STOC TROWN TATAL AND PHOS. NO-3 NH-1 KGLD SOLIDS RAPL NG/L NG/L </th
TIME FLOW TOTAL ORTHON NO-2 NH+3 ORG, TOTAL COD SUSPEND CHLO S 2400 CFS PHOS. NG-3 NG-5 NIT. KJELD SOLIDS RIDE 1135 2436. 0778 0.026 0.305 0.043 1136 2432. 0.076 0.086 0.305 0.043 1138 2423. 0.076 0.085 0.275 0.003 1138 2432. 0.076 0.085 0.275 0.003 1139 2432. 0.076 0.085 0.275 0.003 1139 2432. 0.085 0.275 0.003 1139 2432. 0.127 0.003 1139 2432. 0.127 0.003 1139 2432. 0.127 0.003 1139 2432. 0.127 0.003 1139 2432. 0.127 0.003 1139 2432. 0.127 0.003 1139 2432. 0.127 0.127 1139 101. 0.247 0.127 1139 102. 0.249 0.140 1139 102. 0.127 0.104 1139 103. 0.147 0.127 1139 103. 0.142 0.142 1139 103. 0.142 0.143 1139 103. 0.142 0.143 1139 103. 0.142 0.143 1139 103. 0.142 0.143 1139 0.144 0.144 1139 103. 0.144 0.144 1139 103. 0.144 0.144 1139 0.144 0.144 1139 103. 0.144 0.144 1130 103. 0.145 0.144 1131 103. 0.144 0.144 11
TIME FLOW TOTAL ORTHON NO-2 NH-3 OR6. TOTAL COD SUSPEND NHS. PHOS. NO-3 NH-3 OR6. TOTAL COD SUSPEND NHS. NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L
TIME FLOW TOTAL ORTHO NO-2 NH-3 OR6, TOTAL COD HRS. PHOS. NO-3 NH-3 OR6, TOTAL COD HRS. NO-3 NH-3 OR6, TOTAL COD HRS. NO-3 NH-3 OR6, TOTAL COD HRS. NG-1 NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L
TIME FLOW TOTAL ORTHO NO-2 NH-3 OR6. TOTAL 2400 CFS PHOS. PHOS. NO-3 NIT. KJELD NIT. S. 2400 CFS PHOS. PHOS. NO-3 NIT. KJELD NIT. S. 2400 CFS PHOS. NO-3 NO-3 NIT. KJELD NIT. S. 2400 CFS PHOS. PHOS. NO-3 NO-3 NIT. RJELD NIT. S. 2400 CO.3 CO.3 CO.3 CO.3 CO.3 CO.3 CO.3 CO.3
TIME FLOW TOTAL ORTHO NO-2 NH-3 OR6. 2400 CFS PHOS. NO-3 NIT. HRS. M6/L M6/L M6/L M6/L M6/L M6/L 1135 2436078 .005 .275 .003 1430 2423095 .005 .275 .003 1000 2712022 .068 .344 .003 1000 2712024 .003 1000 2712025 .005 .270 .003 1000 2712025 .005 .270 .003 1000 2712025 .005 .270 .003 1000 2712026 .270 .003 1135 2553240 .021 .660 .143 1440 298280 .027 .700 .126 1755 228247 .027 .010 1755 228247 .027 .010 1756 228247 .027 .010 1757 .216 .275 .027 .010 1758 228248 .007 .026 1758 109275 .027 .010 1056 117190 .062 .590 .164 1152 109234 .142 .660 .056 1152 109234 .142 .660 .053 1251 105127 .017 .650 .157 1629 91117 .007 .650 .105 22101 80127 .010 .023 .051 2226 77110 .023 .651 .130 1015 77110 .023 .661 .130
TIME FLOW TOTAL ORTHO NO-2 NH-3 2400 CFS PHOS. PHOS. NO-3 HRS. H6/L H6/L N6/L N6/L 1135 2436. 078 086 0375 0843 1138 2423. 078 086 0375 083 1138 2553. 0122 086 0376 083 1138 2553. 0124 084 0270 083 1145 2782. 0520 089 0370 083 1155 294. 047 047 0670 0172 1155 294. 047 047 0670 0172 1155 298. 028 0821 0660 0143 1160 274. 0275 0821 0660 0143 11725 253. 024 072 078 018 1185 1172. 0243 084 072 013 1185 1172. 0243 084 072 013 1185 1186. 0183 0827 0810 083 1186 117. 0183 082 083 1186 117. 0183 084 072 018 1186 117. 0183 085 085 1186 99. 0203 0178 080 1186 99. 0203 0178 080 1186 99. 0203 0178 080 1186 99. 0204 0172 1187 089 085 085 1187 089 085 1187 089 085 1187 089 085 1187 089 085 1187 089 085 1187 089 085 1187 089 085 1187 089 085 1188 07. 0110 083
TIME FLOW TOTAL ORTHO NO-2 N 2400 CFS H6/L M6/L M6/L M6/L M6/L M6/L M6/L M6/L M
TIME FLOW TOTAL ORTHON NAMES. PHOS. PHOS. PHOS. PHOS. PHOS. NG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L M
TIME FLOW TOTAL 2400 CFS PHOS. HRS. MG/L 1135 2436. 078 1400 2712. 122 218 2535. 124 221 1400 274. 076 11725 253. 0240 11725 253. 0240 11725 253. 0240 1152 11026 117. 0190 1152 1105. 0197 2201 78. 0200 2220 78. 0
TIME FLOW 2400 CFS HRS. HRS. CFS HRS. L135 2436. L135 2436. L135 2436. L135 2436. L135 2436. L135 2436. L135 2986. L135 2
1010 111111 1111 111 11 11 11 11 11 11 1

ASHTABULA, RIVER NEAR ASHTABULA, OHIO

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : ASHTABULA RIVER

: ASMTABULA RIVER

STREAM

LOCATION W/CODE : NEAR ASHTABULA, OHIO

USGS NO. 84212588

2.	JANO JANO	82.	15.	70.	19.	74.	73.	61.	•	62.	62.	14.	98.	96.	67.	70.	55.	55.	56.	::	• • •	B2.	15.	:
ខ៖	5	-	~	N	~	_	_	~	_	~	-	~	-	_	_	_	-	_	=	-	~	~	•	ñ
INON	N6/L																							
2018	H6/L	3.72	1.96	2.36	2.79		2.81	2.78	3.02	3.01	2.94	2.94	2.96	2.56	2.50	2.51	2.61	2.56	2.58	2.56	2.54	2.51	.78	.70
CHLO	H6/L	16.50	15.60	29.00	26.70	11.50	15.00	15.30	13.20	9.50	12.10	20.70	18.30	15.80	13.20	17.60	14.70	14.60	14.50	16.00	17.10	17.10	51.50	31.90
SUSPEND	1/9H	7.00	27.00	47.00	46.00	97.00	103.00	138.00	00.54	55.00	29.00	37.60	00-86	146.00	00.84	51.00	72.00	57.00	92.00	107.00	15.00	23.00	9.09	00.4
000	H6/L																							
TOTAL	M67L																					•		
086.	M6/L																							
N-H3	1/9H	•014	040	. 126	.210		.003	. 053	• 106	.080	.003	.003	• 000	.003	.003	900.	.003	. 052	.047	.003	.007	. 003	. 035	.003
80-2	N6/L	.298	.180	.306	.329		.327	.345	.318	• 500	.275	• 200	.210	.284	.110	.240	.228	.230	.226	.240	.220	.200	1.520	.140
ORTHO	FHOS.	.003	.001	•00•	• 002		.003	.003	.018	.003	.003	.035	.003	• 005	900-	• 005	• 005	.002	.001	• 002	.003	-002	• 0 0 2	-065
TOTAL	FHOS.	.033	.035	• 1069	• 100	-085	.167	-087	• 052	• 052	.050	.145	• 0 4 6	.098	-152	.080	.146	.120	.090	-145	.053	• 075	.041	• 0 8 9
FLOW	S	123.	105.	275.	355.	1070.	1082.	1026.	366.	322.	295.	290.	479.	680.	.099	641.	360.	344.	333.	322.	246.	246.	•	'n
I HE	2400 HRS.	300	125	630	030	130	630	800	240	445	730	338	534	216	327	23	200	550	049	820	300	350	135	1300
_		2 1	7	7	7	3	7	3.1	-	~	~	2	2	5	5	9	9	7	9	7 9	7	7	7	
Ĺ	F DA	**	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	•		5	5
SAMPL 1NG	A T R	Ļ	-	_	_	7	-	_	11	_	Ļ	_		<u>_</u>	_	1	<u>,</u>	Ļ	-	_	-	<u>,</u>	.	
~ (-	_	-	_	-	_	-	-	~	-	~	~	~	-	~	-	-	-	-	~	-	-	-	_

CONNEAUT CREEK AT CONNEAUT, OHIO

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CONNEAUT CREEK

STREAM : CONNEAUT CREEK

US65 NO. 04215880 LOCATION W/CODE : AT CONNEAUT, OHIO

COND 25C. URNO	
IRON MG/L	
S102	
CHLO RIDE RG/L	35.00 1111.00 112.00 112.00 1111.00 11
SOLIDS SOLIDS MG/L	
7/9H	
TOTAL KJELD MG/L	
ORG. NIT. MG/L	
NH-3	
NO-2 NO-3 NG/L	
ORTHO PHOS. MG/L	
TOTAL PHOS. NG/L	
FLOW	
7 17E	
ě č	
AMPLING ATE R HO DY	
322	

CATTARAUGUS CREEK AT GOWANDA, NEW YORK

LAKE ERIE WASTEMATER MAMAGEMENT STUDY - MATER QUALITY INFORMATION

STREAM : CATTARAUGUS CREEK

LOCATION S/CODE : AT GONANDA, MEN YORK

US68 NO. 04213580

30F	#0 7 #0 7																																			
TOTAL	2 1 1																																			
618.	046 767 100											7:0		12.0			:		:		7:0	•		4.4		•••	7:0	7.0		•	7:		•••		:	
TOTAL	2 7 2 E											10.0		20.0			12.0		11.6		•	(•		9.6	9.0	7.0		9:1	9.0		9.0		7.0	
101 013	801 108 867	115.0	1.0	110.0	91.0	97.0	104.0	134.0	176.0	11.1	189.0		192.1		139.6	168-1		126.0		126.6	1	•••			190) 	126.0		135.8		144.0	135.0		141.0		1691
TOTAL	SOL 108 #6/L	3215.0	3365.6	3213.0	7110.0	694.6	774.0	1111	216.0	131.0	649.6		3772.0		5619.0	6295.1		7346.1		1986.	,	3261.1	•		1389.0		976.1		595.6		944.	325.0		241.1		1.622
FLOV	5														10100.	13488.	11151.	14750.	12000.	12206.	11000	9540		A 5.2 A	617B-	3800	3456.	3238.	2490.	2490.	1700.	1656.	1640.	1130	1120	
7 INC	3 ; 2 ;																																	1200		
2	5																																	⊶.		
	ATE IR NO DY																																	به در دو	-	_

LAKE ERIE VASTEVATER MANASEMENT STUDY - WATER QUALITY INFORMATION

MAJOR RIVER BASIN : CATTARAUGUS CREEK

STREAM : CATTARAUGUS CREEK

LOCATION W/CODE : AT GOVANDA, NEW YORK

US65 MO. 84213508

SOL Phos NG/L																																			
101 AL C 116/L																																			
018. 086 C 86/L)	•				9.0	•			•••		7:		2.0		•		9.0	9 . 0	•	•	7: •	1	7:	7:1	•		•••	7.8			;	9.9	5.0
101AL 086 C 86/L	444		5.0				3.1	9.0			•••	•	9:0		9:0	9.0	••			9.0	9.6	1	7:1	,		:	••			7.0			9:9	•••	9.0
TOT DIS SOLIDS NG/L		170.0		194.0	186.1	175.0			175.0	141.0		139.0		139.0	149.0	141.0		152.0		169.0	127.0	112.0		93.		91.0	69.0	101.0			124.0	123.0	ı	96.8	76.0
107AL \$0\ 10\$ 86/\		220-0		234.0	226.0	245.1			305.0	113.1		439.1		369.0	299.1	241.0		232.0		261.1	1477.0	1732.0		1523.0		3061.0	3419.0	3621.0			3264.0	2393.0	ı I	1556.8	1256.0
200	939			••••	•	541.	500	556.	.986	1636.	1610.	1610.	1448.	1426.	1160.	790.	796.	555.	555.	560.	3428.	4500.	1500.	• • • • • • • • • • • • • • • • • • • •	1881	10400.	12100.	13010.	12350.	11450.	11540.	8700.	7230.	5510.	.0011
7 2 4 7 2 4		:																																	
SAMPLING DATE YR NO DY	•	M	M	3	7	11	11	11	17	=	2	7	13	5	-	2	2	2	21	25	53	23	2	ž	ž	2	*	ž	ż	2	2	2	8	25	2
٣. 5	•	• ~	N	~	N	~	~	~	~	~	N	~	~	~	N	N	~	~	~	N	N	~	~	~	~	~	~	N	~	~	N	~	N	~	N

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

STREAM : CATTARAUGUS CREEK

LOCATION U/CODE : AT GONANDA. NEU YORK

US65 NO. 04213506

78 78																		
30L PHOS 76 /L																		
TOTAL C MG/L		,																
D18. OR6 C																		
TOTAL ORG C NG/L		12.0)	15.0		13.0	7:0	•	:					7-7	,	፧	
101 DIS 80LIDS NGAL	154.0	199.0	178.1	212.0	101.0	137.0	160.0) 	165.1	167.0		106.1	214-0	178.0		167.0		191.0
707AL 80L 1D8 M6/L	374.0	1569.0	3.78.6	342.0	277.5	1097.0	678.0	1	3.65.0	237.0		226.8	244.8	236.0	•••	217.0		511.0
3010	1636-	12.	555	9.0		1010		96	911		:	366.	360.			:	56	500
7 8 5 E	100	120		3	3 2	1050		32	3		2250	316	1020	19261	767	110	916	3
	22	22	22	ä	2 2	2	2 2	2	2	2 2	25	2	3	2	2 2	27	27	27
14.00 DY 18 110 DY	* *	•	•	6	1 0	•	•	10	1	1 0	•	•	S	n ı	n d	•	•	n
325	22	25	22	2	2 2	2	5 £	73	7.5	5 E	73	75	75	C;	. r	73	75	73

LAKE ERIE WASTEUATER MANAGEMENT STUDY - MATER QUALITY INFORMATION

STREAM : CATTARAUGUS CREEK

US6S NO. 04213500 : AT GOYANDA, NEW YORK LOCATION W/CODE

																																			•					
COMO			170.		184.	276		200	312.																															
IRON	798							,	1.54															•			•													
\$102	17 34	1	4.10		5.60	6.48		0.0	5.68	5.60	3.70	2.66	1	96.48	8118			•				,	2.50	***		•	2.5			6.20		5.80						40.50		
CHLO	770	J 20 E	6.60		7.60		9000	12.00	11-00	11.00	12.00		900			2.10					20.01	200			4	99.01					16.00				7.30	00.71				
SUSPEND	SOF 10S	7,91		3100.00	597.00			00.04	20.00				4000			40 40			1	6130-96					7820.00			90.0100			4170.00				2040.00					
000	:	MG/L	16.00		0		9	37.00		24.00																								4 4 7	•				6	2000
TOTAL	KJELD	M 6/L	679	027		7174	. 106	. 140	. 140	140	100	•	4		0		į	. 796				2.070	1.420				. 748	1.610					į	• 124				• • •	201	
OR6.	NIT.	HG/L	004	. 6.6		907	•100				2 4 2			•	7990			.724										. 843						1251					• 230	
N-HZ		¥6/L	070		•	400	. 030	• 1 4 D	140	041		6107		,	90.			.072	.030			.050		•260	 			• 166						.197				•	• 023	
N0-2	NO-3	H6/L	707			1.600	1.400	1.400	1.100			7 - 6			• 680				009•				. 600				008			•	.900		906.				,	1-000		
ORTHO	PHOS.	H6/L	110				0	C	710	3	•	000	900•		•012	.015		•019	.022	•			•603	710			.018	.015			• 618		• 614	-015				010.	43	
TOTAL	PHOS.	H6/L				.282	-124	78.0	9 2 6	• • •		.137	.340										603				.549				.585		.576					. 72t.		
FLOW	CFS)	4		6440.	3040	9				990	_	_	4120.	•		10180.	12800.	12440.	13000	1000				14750.			12888.	12200.	11900.	11900.	9540.	8700.	1920.	7160.	.0899	6200.	5760.	5540.	5320.
7 T	800	ERS.		200	1300	1200	1710			1735	1716	1015	1 055	1215	1255	1335	1455	1935	14.16	444	7.2	1966	2001		2002		2125	2205	2325	'n	4.5	325	405	445	525	605	645	725	802	645
				=	11	10			?	2	2	23	29	29	29	50	29	0		, 6		, ,	,) (, ,	, 6	. 5					30	36	9	30	36	36	9	30	36
- -		YR MO DY		-	~	-	• -	•	٠,	-	-	-	~	-	~	-	-	-	•	4 -	• •	•	٠,	•	-	•	• -	-	~	-	-	~	~	~	~	_	_	_	-	_
4		;	1	2	2	78		2 ;	2	2	2	2	2	2	2	2	1			2 %		2 ;	C	2 ;	, k	1	1	2	2	73	5	75	75	75	15	75	75	5	75	75

LAKE ERIE WASTEWATER MAMAGEMENT STUDY - WATER QUALITY INFORMATION

: CATTARAUGUS CREEK STREAM

	COND 25C. URHO		195.				
0	IRON MG/L						
04213500	S102 M6/L	4	5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .	5. 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5.80
USGS NO.	CHLO RIDE MG/L	00 0 00 k		15.00	12.00		9.60
	SUSPEND SOLIDS MG/L	00 00 M		00-09+	200 200 200 200		100.00
×	7/9# C0D			6		11.60	12.00
NEW YOR	TOTAL KJELD NG/L	.213	.316		.340 .255	.152	450
: AT GOWANDA, NEW YORK	ORG. NIT.	₩ .	•136	.138	090•	0.28	H 7 C
. 11	NH-3 NG/L	. 165	. 160	.206	. 195	.124	701
1TION W/CODE	NO-2 NO-3	3.00	1.000	1.100	1.300	1 - 700	
LOCATIO	CR THO PHOS. MG/L	.012	.015	.011	.0012	0 001 1	
	TOTAL PHOS. 46/L		* •	346.	.193	•21	. 01
	FLOU		N N N N N N N N N N N N N N N N N N N		22 2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	16446 16466 16466 1880 1880	
	717E 2478 NRS.	925 1005 11005 11000 11000 11000					
	MPL 116 176 30 DY		222000	99999			• •

LAKE ERIE JASTEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

: CATTARAUGUS CREEK

US6S NO. 04213500 : AT GOUANDA. NEW YORK LOCATION W/CODE

COND	25C.	0 H C																																		
IRON		#67r													•	2.07	1.83																			
2018		#6/L				,	2.60			•	2.50				,	2.60			,	9.10						8,10	4.10	6.10					•	900	6.20	! ! !
CHLO	RIDE	1/9H			•	11.00							•	14.00					15.00							10.61		13.00				•	12.00	14.00	12.00) })
SUSPEND	SOLIDS	M6/L		•						00.00			•	20.00	00.04		,	10.00							130-00		660.00	300.00			60	20.062)
000	,	HG/L						;	12.00		•	15.00	•	10.00								13.00	•	20.00			38.00		15.00		19.00				•	9.00
TOTAL	KJELD	H6/L						.224							,	. 785	• 726			1	. 197	,	1.050				.223	1	.207				1	666.	•	. 909
OKG.	k] T.	M6 /L	+94•	.481			•632	• 055					. • 381			.451	.540			1	• 662		. 732					1.010					1	.777	6475	•689
NH-N		H6/L						.169								.334	.186			,	•135		.317				. 223		.207					• 222	917.	.220
N0-2	NO-3	N6/L					1.300				1.200					1.300	1.100			1.500						•		1.200	• •					1.000))
ORTHO	PHOS.	H6/L					.010				• 010					.012	.012			• 005						6	200	800		.010				•	• • •	7 7 7
TOTAL	PHOS.	H3/L					•162				.073					.077	.058			.028						;	84 0 0	1.080		.103				3		> •
FLOW	CFS		1080.	998.	670.	670.	670.	870.	878.	689.	680.	688.	688.	480.	188.	188.	480.	540.	540.	540.	540.	540.	556.	550.	550.	584.	617.	1610.	1610.	1470.	1448.	1426.	393	1371.	1160	790.
TIME	2450	HRS.	1640	240	040	1040	1240	1440	1640	4	040	1240	1325	1450	1451	1453	1454	615	715	815	915	1015	1415	1515	1715	1915	C112	1635	1658	30	120	210	360	320	2011	1261
		YR NO DY	2	~	a	۰ ۲	2	N	۵ ۵	~	~	2	~	2 16	2 16	2 16	2 16	2 17	2 17	2 17	2 17	2 17	2 17	2 17	2 17	2 17	71 2	7	2 18	2 19	5 19	2 19	2 19	2 19	2 19	75 2 20

LAKE ERIE WASTEWATER MANAGEMENT STUDY - WATER GUALITY INFORMATION

CREEK	
CATTARAUGUS	
••	
STREAM	

04213500
USES NO.
HEW YORK
AT GOMANDA.
••
LOCATION W/CODE

0.40				8
COND 255. CMHO				
IRON MG/L				
S102 R6/L 6.20 6.20	0 0 0 n	44 N N	0 n · •	5.40
CHLO RIDE R6/L 13.00	9 M		3 4 4 0 0 0	3 4 6 6 3 4 6 6 3 4 6 6 5 6 6 6 6 6 6 6 6
SUSPEND SOLIDS SOLIDS M6/L 80.00 1350.00 1350.00	1430.00	2950.00 3350.00 3720.00	1400.00	1470.00 1166.00 386.00 226.00
7 COD 7 COD	90 • 60	93.00 98.00 98.00 98.00 1.00 1.00	000 6 9 000 000 000 000 000 000	
101AL KJELD MG/L 1.270 .917	1.750	2.720 2.680 2.800 2.660	.825	1.573 1.373 .887
NR 11. NG 11. 1.040 .146	1.540	2.286 2.286 2.586 2.566	.65C	1.386 1.316 1.666 .702 .732
NH-3 HG/L -237	.309	.278 .396 .235	.173	.190 .147 .318 .185
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 700	ଟ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	1.006	
ORTHO PHOS. MG/L • 012	•10.		.014 .010	
TOTAL PHOS. MG/L		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.418	. 255 . 135 . 116
wu ma	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	120000 1320000 1320000 1320000 120000 12000 12000	111550 111560 111600 110400 8440	723 551 646 218 218 163 116
7186 2400 MRS. 11155 11225 1225 1500	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222400 222400 222400 222400 222400 222400 222400	8860 8800 8800 7000 7000	900 1220 1646 1155 1155 1425

7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		~~~~~~~~		
SAMPLING DATE VR MO DY 75 2 21 75 2 21 75 2 23 75 2 23	5555555	222222222	2525555	22222

LAKE EFIE 46STEWATER MANAGEMENT STUDY - WATER QUALITY INFORMATION

USGS NO. 04213500 : AT GOMANDA, NEW YORK LOCATION W/CJDE

: CATTARAUSUS CREEK

STREAM

COND 25C. UMHO						
IRON MG/L						
S102	n • • • • • •	6.10	0000	7 • 60 5 • 40	€ • •	4 4 4 00 0 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CHLO RIDE MG/L	9.10	11.00 8.70	5 - 80 6 - 30		8 • 90 10 • 00	13.00
SUSPEND SOLIDS MG/L	1370.00	130.00 3680.00	2530.00 1880.00	510.00	140.00	4
C0D	76.00 32.00	18.00	160.00	61.00	19.20	19.66 14.60
TOTAL KJELD MG/L	.940	.370	3.140 3.683 .444	. 298	.417	• 2 • 12 2 8 3
ORG. NIT. MG/L	•733 1•430	.242	2.500 3.360 .278 1.190	.170	.341	.314
NH-3	.235	• 128	.645 .318 .166	.128	.800	. 098 . 108
NO-2 NO-3 NG/L	3.00 0.00 0.00	. 800	1.100 1.100 .800	. 502. 008.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
08.7H0 PHOS.	.004	900•	.022 .022 .018	• 61 3	* 00.	* C O •
101AL PHUS.	.182	.016	0 0 0.0 0.0 0.0 0.0	•140	. 68	ទ « មា « ម ម ម •
FLOW	1160. 730. 700. 650.	520. 520. 540.	2790. 2080. 1600. 1410.	1020. 7690. 760. 696.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1145 2400 HRS•	1426 1200 1630 2100	2230 2400 300 430 600	730 900 1020 1050	1450 1650 1850 2050 2250	250 450 650 1050 1250 1450	1850 2050 2250 910 1020 1420 1520 2020
. ING						
SAMPLING Date Yr mo dy	NO NO NO		Section of the sect			**************************************

LAKE ERIE BASTEUATER NANAGENENT STUDY - BATER GUALITY INFORMATION

MAJOR RIVER BASIN : CATTARAUGUS CREEK

STREAM : CATTARAUGUS CREEK

USES NO. 04213500 : AT GOVANDA. NEW YORK LOCATION W/CODE

																																Ř
250.	C##10					332.	193	186.	194.	196.	202	130	186.	104	161			192	208.	190.	214.	186.	19:	210.	187	194.	196.	190.	204.	202.	•	
Inom	1/94																															
\$102	79H					5.20	3.17	3.53	3.45	3.56	3.66	3.64	04.0	3.56	3.75		20 0 N	3.31	2.94	2.78	2.84	3.06	. O.	3.23	N . N	3.50	3.62	3.70	3.82	3.75	3.69	
CHLO RIDE	1/91		12.00			14.70	5.90	00.9	5.80	6-10	9.60	5.70	5.50	6.00	96.9	0 / · q		6-20	5.40	5.00	5.20	5.20	9.00 0.00	2.60	5.40	6.70	7.10	7.50	7.90	8.20	7.90	
SUSPEND SOL 10S	78		90.06		330.00	26.00	1143.00	750.00	541.00	414.00	296.00	90.90	753.00	591.00	00-664	00-6/4		2089.00	3913.00	2612-00	2335.00	1642.00	1911-00	1157.00	945.00	574.00	165.00	561.00	508.00	432.00	401.00	
000	N6/L	21.50			96.77												•															
TOTAL	1/9H	•	-	.389																												
086 811.	1/91	946.		.380																												
Z-X	N6/L	. 054		• • • • • • • • • • • • • • • • • • • •		-200		. 093	.080	. 072	-074	-057	- 062	100		#P 0 4	500	700	. 632	.129	-011	-160	. 071	• 056	.033	. 052	. 152	-132	.133	. 132	. 162	
20-0 10-0	1/94	•				.720	926	.976	1-010	1-060	1.060	7-040	.980	1-060	1.050	1.100		765	106	. 865	-910	.970	.966	1.010	1.040	1.090	1-150	1-100	1.080	1.130	1.130	
PHOS.	1/94					-016	7 6	.007	•	•	.003	• 002	900.	.009	100	100 ·		900	- 00 -	. 005	.000	100.	100.	.005		. 663	.011	.007	.012	-002	.003	
TOTAL PHOS.	N6./L	• • • • • • • • • • • • • • • • • • • •		.166		•000	2 4 4	. 55	. 400	.386	+9+-	•556	.537	.380	.320	.382	9 6	47.00	1-460	1.560	1.740	1.100	1.110	. 798	.420	984.	.360	.368	.291	.212	.144	
7.00 9.00 9.00	,			510		380.	1752	4126	3076.	3263.	4835.	A 155.	4256.	3891.	3403.	3873.	5615.	76.54	11070	11180.	18520.	8228.	.9969	5331.	1581.	4089.	3638.	3368.	5532.	2878.	2764.	
717K	3	2220		3	919	622	122	3	220	919	955	320	ij	730	215	22			7	200	550	951	329	1 2	715	120	45	::	2330	511		
		26 22																														
2	2	***					_					_																				
SAMPL ING	=	222	22	22	5 E	2		1.	11	11	11	1	11	11	11	1	::	: ;	1	11	11	11	11	11	11	11	11	1	11	11	11	

LAKE ERIE UASTEVATER HANAGEMENT STUDY - VATER QUALITY INFORMATION

IAN : CATTARAUGUS CREEK

USGS NO. 84213588 LOCATION W/CODE : AT GOVANDA. NEW YORK

COMD 25C.	CHE	212.	218.	234.	209.	211.	224.	226.	179.	243.	224.	231.	237.	230.	251.	255.	257.	260.	261.	278.	211.	210.	204.	203.	207.	216.	219.	213.	215.	216.	220.	231.	230.	235.	235.	244.	245.
IRON	79H																							-													
S102	N6/L	3.86	76.7	4.14	3.56	3.55	3.63	3.81	3.75	3.76	3.57	3.66	3.56	3.80	3.67	3.85	3.93	3.94	3.90	3.91	3.34	3.17	3.18	3.47	3.46	3.63	3.76	3.86	4.02	00.4	4.05	4:13	4.14	4.17	4-19	4.25	4.21
CHLO	1/91	8.30	8.30	9.30	7.30	7.28	7.70	7.68	9.0	7.80	7.90	0	15.80	8.30	9.00	9.70	10-10	13.70	9.70	9.90	4.70	4.20	4.90	2.1		5.90	5.70	6-10	6.40	6.80	6.60	7.60	"	7.40	7.10	0.10	1.50
SUSPEND SOLIDS	MO/L	313.08	236.00	136.00	565.00	501.00	122.00	126.00	152.00	174.00	201.00	190.00	132.00	58.00	99.99	74.00	55.00	29.00	47.00	47.00	2421.00	2757.00	2349.00	2019.10	1656.00	903.80	870.00	676.00	424.00	396.80	368.00	272.00	222.00	223.00	120.00	149.00	158.00
000	1/9H																																				
TOTAL	1/9H																																				
ORG.	1/91																																				
EH-3	1/9H	.113	.149	. 167	.003	.038	.051	. 053	. 175	. 003	55	. 003	.101	• 062	.076		.071	.107	.137	.120	.012	.105	. 003		.112	.146	. 076	95	. 003	• • • • •	. 961	. 131	.100	:	940.	.268	• 0 36
#0-5 #0-2	18/	1.180	1-190	1.280	1.030	1.020	1-120	1.130	1.080	1.030	1.020	1.020	.965	.955	1.040	1.080	1-110	1.120	1-150	1.170	.924	.916	.960	1.030	1.060	1.160	1.200	1.230	1.290	1.320	1.330	1.430	1-440	1.470	1-480	1.530	1.550
PHOS	18/L	• • • • •	-002	- 002	. 005	+00+	.011	• 00 •		.014	.002		• 005	. 002	. 003	.005	.003	.003		- 002	+00•	***	.003	. 003		100	. 003	. 003	. 003	200	. 662		.003	.003	.003	• 002	- 002
TOTAL	H6./L	•218	.060	.024	.218	.280	.116	. 69	.130	990.	.100	190.	.073	.077	. 000	. 0.05	.065	.050	. 042	. 849	.410	984.	1.540	.814	• + 96	.518	.580	•356	.300	.127	.175	.120	. 659	.145	.115	.030	• • • • •
FLOV	•	2325.	2099.	1441.	3010.	2936.	1646.	1635.	1739.	1909.	1909.	1909.	1921.	1011.	1231.	1184.	1212.	1012.	1092.	1074.	12000.	15788.	13700.	10910.	7859.	5252.	4620.	4635.	3298.	3126.	2778.	2325.	2177.	2138.	1847.	1739.	1658.
71ME																																			330		
		6	2	17																															2		
SAMPL ING	2	17	n	m	17	•	17	M	m	M	n	n	m	m	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	_	_	_							_	_	_	_	11	_	_	_	_	_	•	_	_		_	_	_	_	_	_	_			_	_	11	_	_

LAKE ERIE BASTEBATER MANAGEMENT STUDY - WATER QUALITY WIFORMATION

STREAM : CATTARAUGUS CREEK

LOCATION W/CODE : AT GONANDA, MEW YORK

US65 NO. 04213500

COND 25C.	
IROM N6/L	
S102	
RIDE M6/L	
SUSPEND SOLIDS MG/L	
C0D	
TOTAL KJELD MG/L	
ORG. N17. N6/L	
RH-3	
80-2 80-3 86/L	
08 THO PHOS. 86/L	
T07AL PH05.	
FLOE	
2 1 1 M C 2 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
SAMPLING DATE YR RO DY	