1	1.	A method for optimizing a wireless electromagnetic communications network,
2	comp	rising:
3		a wireless electromagnetic communications network, comprising
4		a set of nodes, said set of nodes further comprising,
5		at least a first subset wherein each node is MIMO-capable,
6		comprising:
7		an antennae array of M antennae, where $M \ge $ one,
8		a transceiver for each antenna in said spatially diverse
9		antennae array,
10		means for digital signal processing to convert analog radio
11		signals into digital signals and digital signals into analog
12		radio signals,
13		means for coding and decoding data, symbols, and control
14		information into and from digital signals,
15		diversity capability means for transmission and reception of
16		said analog radio signals,
17		and,
18		means for input and output from and to a non-radio
19		interface for digital signals;
20		said set of nodes being deployed according to design rules that prefer
21		meeting the following criteria:
22		said set of nodes further comprising two or more proper subsets of
23		nodes, with a first proper subset being the transmit uplink / receive
24		downlink set, and a second proper subset being the transmit
25		downlink / receive uplink set;
26		each node in said set of nodes belonging to no more transmitting
27		uplink or receiving uplink subsets than it has diversity capability
28		means;
29		each node in a transmit uplink / receive downlink subset has no
30		more nodes with which it will hold time and frequency coincident

1	communications in its field of view, than it has diversity
2	capability;
3	each node in a transmit downlink / receive uplink subset has no
4	more nodes with which it will hold time and frequency coincident
5	communications in its field of view, than it has diversity
6	capability;
.7	each member of a transmit uplink / receive downlink subset cannot
8	hold time and frequency coincident communications with any
9	other member of that transmit uplink / receive downlink subset;
10	and,
11	each member of a transmit downlink / receive uplink subset cannot
12	hold time and frequency coincident communications with any
13	other member of that transmit downlink / receive uplink subset;
14	transmitting, in said wireless electromagnetic communications network
15	independent information from each node belonging to a first proper subset, to one
16	or more receiving nodes belonging to a second proper subset that are viewable
17	from the transmitting node;
18	processing independently, in said wireless electromagnetic communications
19	network, at each receiving node belonging to said second proper subset
20	information transmitted from one or more nodes belonging to said first proper
21	subset;
22	and,
23	dynamically adapting the diversity capability means and said proper subsets to
24	optimize said network.
25	
26	
27	2. A method for optimizing a wireless electromagnetic communications network,
28	comprising:
29	a wireless electromagnetic communications network, comprising
30	a set of nodes, said set of nodes further comprising,

1	at least a first subset wherein each node is MIMO-capable,
2	comprising:
3	a spatially diverse antennae array of M antennae, where M
4	≥ two,
5	a transceiver for each antenna in said spatially diverse
6	antennae array,
7	means for digital signal processing to convert analog radio
8	signals into digital signals and digital signals into analog
9	radio signals,
10	means for coding and decoding data, symbols, and control
11	information into and from digital signals,
12	diversity capability means for transmission and reception of
13	said analog radiosignals,
14	and,
15	means for input and output from and to a non-radio
16	interface for digital signals;
17	said set of nodes being deployed according to design rules that prefer
18	meeting the following criteria:
19	said set of nodes further comprising two or more proper subsets of
20	nodes, with a first proper subset being the transmit uplink / receive
21	downlink set, and a second proper subset being the transmit
22	downlink / receive uplink set;
23	each node in said set of nodes belonging to no more transmitting
24	uplink or receiving uplink subsets than it has diversity capability
25	means;
26	each node in a transmit uplink / receive downlink subset has no
27 .	more nodes with which it will hold time and frequency coincident
28	communications in its field of view, than it has diversity
29	capability;
30	each node in a transmit downlink / receive uplink subset has no
31	more nodes with which it will hold time and frequency coincident

1		communications in its field of view, than it has diversity
2		capability;
3		each member of a transmit uplink / receive downlink subset cannot
4		hold time and frequency coincident communications with any
5		other member of that transmit uplink / receive downlink subset;
6		and,
7		each member of a transmit downlink / receive uplink subset cannot
8		hold time and frequency coincident communications with any
9		other member of that transmit downlink / receive uplink subset;
10	ti	ransmitting, in said wireless electromagnetic communications network
11	i	ndependent information from each node belonging to a first proper subset, to one
12	o	or more receiving nodes belonging to a second proper subset that are viewable
13	f	rom the transmitting node;
14	ľ	processing independently, in said wireless electromagnetic communications
15	r	network, at each receiving node belonging to said second proper subset
16	i	nformation transmitted from one or more nodes belonging to said first proper
17	S	subset;
18	a	and,
19	ć	lynamically adapting the diversity capability means and said proper subsets to
20	(optimize said network.
21		
22		
23		•
24	3.	A method as in claim 1, wherein dynamically adapting the diversity channels and
25	said pro	per subsets to optimize said network further comprises:
26		
27	1	using substantive null steering to minimize SINR between nodes transmitting and
28	1	receiving information.
29		
30	4.	A method as in claim 1, wherein dynamically adapting the diversity channels and
31	said pro	per subsets to optimize said network further comprises: