7. Machine Learning

7.1. Introduction to Learning by Rational Agents

- ✓ Learning: Improving performance through careful study of experiences.
- ✓ Rational agents must learn, because 'Designers neither can anticipate all possible future situations and changes over time, nor have idea of solutions for some problems'.
- √ Various approaches to learning:
 - Inductive versus Deductive Learning
 - Empirical, statistical and example based learning
 - Explanation based learning

04-Sep-21

- √ Types of learning based on feedback types:
 - Unsupervised, for example, partitioning of objects without given labeled examples
 - Reinforcement, for example, fixing rules through rewards and punishments
 - Supervised, for example, discovering rules using labeled training dataset (commonly used)
 - Semi-supervised, Hypotheses verification, Generalization, etc.
- ✓ Learning models in practice:

Linear regression, nonlinear regression, decision tree, neural network, naïve Bayes, clustering, support vector machines, etc.

✓ Learning by ensembles of models

04-Sep-21

- First we take a simple example of supervised learning (example based, inductive).
- ➤ Most examples are taken from 'Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann Publishers, 2012, by Jiawei Han, Micheline Kamber & Jian Pei'.
- ➤ In general, the task of supervised learning is this:

Given a **training set** of N example input-output pairs

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N),$$

where each y_i was generated by an unknown function y=f(x), discover a function h that approximates the function f.

x can be numeric or non numeric; h is a hypothesis from a hypothesis space H.

04-Sep-21

7.2 Learning Decision Trees

➤ Training Samples: [Described through attribute values along with the class they belong to]

ID	Age	Income	Student	Credit	Decision/
				Rating	Class/ Label
1	≤ 30	high	no	fair	negative
2	≤ 30	high	no	excellent	negative
3	3140	high	no	fair	positive
4	> 40	medium	no	fair	positive
5	> 40	low	yes	fair	positive
6	> 40	low	yes	excellent	negative
7	3140	low	yes	excellent	positive
8	≤ 30	Medium	no	fair	negative
9	≤ 30	low	yes	fair	positive
10	> 40	medium	yes	fair	positive
11	≤ 30	medium	yes	excellent	positive
12	3140	medium	no	excellent	positive
13	3140	high	yes	fair	positive
14	> 40	medium	no	excellent	negative

Class Concepts:
positive ('Buys a
computer', and
negative ('Does not
buy a computer')

Some Rules, such as 'A student of age not over 30 buys a computer', ultimately show up that can classify an unknown sample.

04-Sep-21 4