Birla Institute of Technology and Science, Pilani, Hyderabad Campus First Semester 2016-2017 Course Handout (Part-II) CS G524 (Advanced Computer Architecture)

In addition to part-I (General Handout for all courses appended to the time table) this handout gives further details regarding the course.

Course Number : CS G524

Course Title : Advanced Computer Architecture

Instructor-In-Charge: G Geethakumari

Objective

The main objective of this course is to introduce the concepts of advanced computer architectures suitable for high-performance computing.

Scope

The advanced concepts in uni-processor environment will be discussed in detail. The issues in designing and using high performance parallel computers will also be covered. System resources such as memory technology and I/O subsystems needed to achieve proportional increase in performance will be discussed along with the software support required for these systems. This course aims to equip the students with the state of the art in this area through case studies and industry interaction. As this area has lot of scope to pursue research, the course will provide the necessary platform. An insight into latest technologies like multi-core architectures will be given as part of this course work.

Text Books

(T1): Computer Architecture: A Quantitative Approach, J.L Hennessy & D.A.Patterson Morgan Kaufmann, 5th Edition, 2012.

Reference Books:

- (R1): Modern Processor Design, John P Shen & Mikko H. Lipasti., Tata McGraw Hill, 2006.
- (R2): Parallel Computer Architecture: A Hardware / Software Approach, David E Culler & Jaswinder Pal Singh., Morgan Kauffmann / Harcourt India, 2000.
- (R3): Advanced Computer Architecture, Kai Hwang, Tata McGraw Hill, 2001.
- (R4): Computer Architecture & Parallel Processing, Hwang & Briggs, McGraw Hill, latest Edn.

Lecture Schedule

	T Obi	T: T- b1	D - f
Lecture#	Learning Objectives	Topics To be covered	Reference
1	To understand about the	Fundamentals of Quantitative Design and	Ch.1
	importance of	Analysis - Introduction	
2-3	quantitative aspects of	Dependability, Quantitative principles of	Ch.1
	computer design	Computer Design	
4-5	To learn about ILP,	Instruction Level Parallelism and its	Ch.3, Appendix A,
	practical challenges of	exploitation – concepts and challenges	Appendix C
6-7	implementing ILP	Basic compiler techniques for exposing ILP,	Ch.3
		reducing branch costs with advanced branch	
		prediction	
8		Overcoming branch hazards with dynamic	Ch.3
		scheduling	CII.5
9-11		Dynamic scheduling, examples and algorithm,	Ch.3
, 11		hardware-based speculation	C.11.5
12-13	-	Exploiting ILP using Multiple issue and static	Ch.3, Appendix
12-13		scheduling, advanced techniques for	H(online)
		instruction delivery and speculation	H(Ollille)
14	To understand data level	Data Level Parallelism -introduction	Ch.4
	parallelism, GPUs		
15-17	paranensin, Gr Os	Vector Architecture, SIMD Instruction Set	Ch.4
10.10	-	Extensions for Multimedia	Cl. 4
18-19		Graphics Processing Units, detecting and	Ch.4
20.22	T 1 1	enhancing loop level parallelism	Cl. T
20-23	To explore and	Thread Level Parallelism – centralized shared	Ch.5
	understand TLP	memory architectures, symmetric shared	
24.26	-	memory architectures	C1
24-26		Distributed shared memory and directory based	Ch.5
25.20		coherence, synchronization	G1 7 1 11
27 - 29		Models of memory consistency,	Ch.5, Appendix
		multiprocessors and their performance	I(online)
30	To know about the	Memory Hierarchy Design - Introduction	Ch.2, Appendix B
	organization of memroy		
31 - 33	hierarchy and learn	Memory Organization – Ten advanced	Ch.2
	various optimization	optimizations of cache performance	
34 - 35	techniques at each level	Virtual Memory and virtual machines	Ch.2
36-37	To study the	Storage Systems- Introduction, Reliability,	Appendix D (online
	performance aspects of	Availability & RAID	appendix)
38 - 39	storage systems	request-level and data-level parallelism	Ch.6
30 - 39		request-iever and data-iever paranensin	CII.U
40-42	To get an incight into the	Introduction to multi-core architectures, code	Latest reference
40-42	To get an insight into the latest architectures	optimization for multi-core	
	latest architectures	opininzation for mutit-core	material, industry
			case studies, Recent research
			publications
			publications

Evaluation

Component	Mode	Date & Time	Weightage
Test-1	Closed Book		15%
Test-2	Closed Book		15%
Term Papers/Term	Open Book		40%
Project/Lab			
Exercises			
Comprehensive	Closed Book		20%
	Open Book		10%
	_		

Make-up-Policy

Make-up will be granted strictly based on prior permissions and on justifiable grounds only. There is no make up for the Term Papers/Term Project/Lab Exercises component.

Course Notices

All notices pertaining to this course will be displayed on the CS & IS Notice Board.

Chamber Consultation

To be announced in the classroom.

Instructor-In-Charge CS G524