

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа №15 по курсу "Функциональное и логическое программирование"

Тема Использование правил в программе на Prolog

Студент Ковалец К. Э.

Группа ИУ7-63Б

Преподаватели Толпинская Н. Б., Строганов Ю. В.

1 Практические задания

1.1 Условие задания

В одной программе написать правила, позволяющие найти

- 1. Максимум из двух чисел
 - Без использования отсечения.
 - С использованием отсечения.
- 2. Максимум из трех чисел
 - Без использования отсечения.
 - С использованием отсечения.

Убедиться в правильности результатов. Для каждого случая пункта 2 обосновать необходимость всех условий тела. Для одного из вариантов вопроса и каждого варианта задания 2 составить таблицу, отражающую конкретный порядок работы системы.

1.2 Листинг программы

```
PREDICATES
      max2(real, real, real).
      max2_cut(real, real, real).
      max3(real, real, real, real).
      max3_cut(real, real, real, real).
  CLAUSES
      \max 2(A1, A2, A1) :- A1 >= A2.
      max2(A1, A2, A2) :- A1
10
      max2_cut(A1, A2, A1) :- A1 >= A2, !.
11
      max2_cut(_, A2, A2).
12
13
      \max 3 (B1, B2, B3, B1) :- B1 >= B2, B1 >= B3.
14
      \max 3(B1, B2, B3, B2) :- B2 >= B1, B2 >= B3.
15
      \max 3(B1, B2, B3, B3) :- B3 >= B1, B3 >= B2.
16
17
      \max_{a} cut(B1, B2, B3, B1) :- B1 >= B2, B1 >= B3, !.
18
      \max 3_{\text{cut}}(_{\text{,}} B2, B3, B2) :- B2 >= B3, !.
19
      max3_cut(_, _, B3, B3).
20
  GOAL
22
      % max2(1, 2, Max).
23
      % max2(2, 1, Max).
25
      % max2_cut(1, 2, Max).
26
      % max2_cut(2, 1, Max).
27
28
      % max3(1, 2, 3, Max).
29
      % max3(1, 3, 2, Max).
      % max3(3, 1, 2, Max).
31
32
      max3_cut(1, 2, 3, Max).
33
      % max3_cut(1, 3, 2, Max).
34
      % max3_cut(3, 1, 2, Max).
```

```
Max = 3

- max3_Cut(1, 2, 3, Max).
```

Рисунок 1.1 – Результат работы программы для поиска максимума из 3 чисел с использованием отсечения

1.3 Обоснование необходимости всех условий тела для каждого случая пункта 2

В случае нахождения максимума из 3-х чисел без отсечения, каждое из 3-х условий необходимо, чтобы проверить, что одно из 3-х чисел больше 2-х других или равно им.

В случае нахождения максимума из 3 чисел с отсечением:

- первое правило нужно для проверки, является ли 1-ое переданное число наибольшим (больше ли оно 2-ого и 3-го или равно им)
- второе правило нужно для проверки, является ли 2-ое переданное число больше или равным 3-ему (такой проверки будет достаточно, чтобы утверждать, что 2-ое число является наибольшим, так как известно, что первое число не явялется максимальным)
- если условие 2-го правила не выполняется, то 3-е число является наибольшим среди 3-х переданных чисел (так как известно, что 1-е и 2-е числа не подошли).

2 Таблицы для Лабораторной работы №15

Вопрос: max3(3, 1, 2, Max).

№ шага	Сравнение термы, результат, подстановка, если есть	Дальнейшие действия, прямой ход или откат (к чему приводит?)
0		Состояние резольвенты: max3(3, 1, 2, Max)
1	Сравнение: $max3(3, 1, 2, Max) == max2(A1, A2, A1)$ Унификация: неуспешно (несовпадение функторов)	Прямой ход Переход к следующему предложению
2-4	—//—	//
5	Сравнение: $max3(3, 1, 2, Max) == max3(B1, B2, B3, B1)$ Унификация: успешно Подстановка: $\{B1=3, B2=1, B3=2, B1=Max\}$	Образование новой резольвенты: 1. Редукция верхней подцели: замена $max3(3, 1, 2, Max)$ телом найденного правила Получена конъюнкция целей: $B1 >= B2$, $B1 >= B3$. 2. Применение подстановки к полученной конъюнкции целей. Новое состояние резольвенты: $3 >= 1$,
6	Сравнение: 3 >= 1	3 >= 2.Образование новой резольвенты:
	Результат: истина	 Редукция верхней подцели: удаление 3 >= 1 так как результат – истина. Получена конъюнкция целей: 3 >= 2. Применение подстановки к полученной конъюнкции целей. Новое состояние резольвенты: 3 >= 2.
7	Сравнение: 3 >= 2	Образование новой резольвенты: 1. Редукция верхней подцели: удаление
	Результат: истина	3 >= 2 так как результат – истина.
		Новое состояние резольвенты: пуста

		Решение найдено: форматирование подстановки в качестве побочного эффекта: {Мах = 3} Система должна найти все возможные ответы.
		Обратная трассировка: 1) Отмена крайней редукции (шаг 7) 2) Восстановление предыдущего состояния резольвенты (шаг 0): <i>max3(3, 1, 2, Max)</i> 3) Реконкретизация переменных с шага 7: { <i>Max</i> = 3}
		Переход к следующему предложению относительно шага 7.
8-14	•••	
15		Конец БЗ Обратная трассировка:
		1) Отмена крайней редукции (шаг 0) 2) Восстановление предыдущего состояния резольвенты: резольвента пуста.
		Завершение работы. На вопрос удалось ответить утвердительно, поэтому в качестве побочного эффекта была возвращена 1 подстановка.

Вопрос: max3_cut(3, 1, 2, Max).

№ шага	Сравнение термы, результат, подстановка, если есть	Дальнейшие действия, прямой ход или откат (к чему приводит?)
0		Состояние резольвенты: max3_cut(3, 1, 2, Max)
1	Сравнение: $max3_cut\ (3,\ 1,\ 2,\ Max) == max2(A1,\ A2,\ A1)$ Унификация: неуспешно (несовпадение функторов)	Прямой ход Переход к следующему предложению
2-7	——//——	//
8	Сравнение: max3_cut (3, 1, 2, Max) == max3_cut (B1, B2, B3, B1)	Образование новой резольвенты: 1. Редукция верхней подцели: замена

	Унификация: успешно	max3_cut (3, 1, 2, Max) телом
		найденного правила
	Подстановка:	
	$\{B1=3, B2=1, B3=2, B1=Max\}$	Получена конъюнкция целей: $B1 >= B2$,
		$B1 \ge B2$, $B1 \ge B3$,
		B1 > B3, !
		2. Применение подстановки к
		полученной конъюнкции целей.
		Новое состояние резольвенты:
		3 >= 1,
		3 >= 2,
		!
9	Coordinate	OF Y Y
9	Cравнение: $3 >= 1$	Образование новой резольвенты:
		1. Редукция верхней подцели: удаление
	Результат: истина	3 >= 1 так как результат – истина.
		Получена конъюнкция целей:
		$3 \ge 2$, !
		2, .
		2. Применение подстановки к
		полученной конъюнкции целей.
		Новое состояние резольвенты:
		3 >= 2, !
10	Сравнение:	Образование новой резольвенты:
	3 >= 2	1. Редукция верхней подцели: удаление
	Результат: истина	3 >= 2 так как результат – истина.
		Новое состояние резольвенты: !
11	!	Решение найдено: формирование
		подстановки в качестве побочного
		эффекта:
		$\{Max = 3\}$
		Встречен системный предикат
		отсечения, завершение работы.
		base states, supermente pucción
		На вопрос удалось ответить
		утвердительно, поэтому в качестве
		побочного эффекта была возвращена 1
		подстановка.
		<u> </u>