EECS 376: Foundations of Computer Science

Lecture 16 - Introduction to NP-Completeness

Today's Agenda

- * Recap
- * Prove more NP-completeness
 - * 3SAT
 - * Clique
 - * Vertex-Cover

Recap

- P is the set of efficiently decidable decision problems
- NP is the set of efficiently verifiable decision problems

- Major open problem: is P = NP?
 - o Is every easy-to-verify problem also easy to solve?
- Common belief: P ≠ NP
 - Some easy-to-verify problems are not easy to solve.
 - o I treat it like a law of physics: Not proven. But full of evidence.

Polynomial-time mapping reduction from A to B (denoted $A \le p B$)

Defn: $A \leq_p B$ if there is a poly-time-computable function f where

x is a yes-instance of $A \Leftrightarrow f(x)$ is a yes-instance of B.

NP-Hardness and **NP**-Completeness

A problem **L** is **NP**-hard if

• for EVERY problem **X** in NP, $X \leq_p L$.

A problem L is NP-complete if

- L ∈ NP
- L is NP-hard

Exercise

Suppose $A \leq_p B$.

- 1. If $B \in P$, then $A \in P$.
- 2. If A is NP-hard, then B is NP-hard.
- 3. Suppose L is NP-complete. Then, $L \in P$ iff P = NP
 - O Suppose $L \notin P$. As $L \in NP$, then $P \neq NP$.
 - O Suppose $L \in \mathbf{P}$.
 - As L is **NP-hard**, every NP-problem $X \leq_p L$.
 - So, X is in **P** by (1).
 - So, $NP \subseteq P$.

Terminology on Formulas

A **Boolean formula** Φ is made up of:

- "literals": variables and their negations (e.g. x, y, z, $\neg x$, $\neg y$, $\neg z$)
- OR: V
- AND: Λ

Example:

$$\Phi 1 = (x \vee y) \wedge (\neg y \vee x \vee \neg z) \wedge (\neg x \vee (y \wedge \neg z))$$

Φ is **satisfiable** if

- \exists a true/false assignment **A** to the variables so that $\Phi(\mathbf{A}) = \text{true}$
- For example, Φ1 is satisfiable.
 - o Assign x = F, y = T, z = F

Satisfiability (SAT)

Input: A Boolean formula Φ

Output: Is Φ satisfiable?

SAT is NP-complete

Given that SAT is NP-complete,

Today: prove that other problems are NP-complete via reductions

3SAT is NP-complete

A version of SAT called **3SAT** is also NP-complete (proof is in course notes)

A 3SAT instance:

$$(x_1 \vee \overline{x}_2 \vee x_{42}) \wedge (x_2 \vee x_3 \vee \overline{x}_{17}) \wedge \cdots \wedge (\overline{x}_3 \vee x_5 \vee x_{17})$$
Clause 1 Clause 2 Clause m

- Each clause contains the OR (disjunction) of exactly three literals (a literal is a variable or its negation)
- The clauses are ANDed to form a single boolean expression

Input: A 3-CNF formula Φ

Output: Is the formula Φ satisfiable?

Notation: $\neg x$ and \overline{x} both mean "not x" (you can use either)

this type of formula is called a "3-CNF" ("conjunctive normal form")

Vertex Cover is NP-complete

Vertex Cover (VC)

("Coffee Shop Problem")

Put coffee shops on street corners so that every street has a shop on at least one of its two corners.

- A vertex cover of a graph is a set S of vertices such that
 - for every edge, at least one of its two endpoints is in \$\square\$
 (i.e. every edge is "covered")
- Vertex cover problem:
 - Given a graph G and a budget k,
 - does G have a vertex cover of size k or less?

When $k = 3 \Rightarrow$ Answer: Yes

When $k = 4 \Rightarrow$ Answer: Yes

When $k = 2 \Rightarrow$ Answer: No

18

Showing **NP**-Completeness via reductions

To show that **VC** is **NP**-Complete:

- * **VC** is in **NP.** (Why?)
 - Certificate: a vertex set S of size at most k
 - * Verifier: check that, for all edges (u, v), either u in S or v in S
- * **VC** is NP-hard by showing **3SAT** $\leq_p VC$

$$(x_1 \vee \overline{x}_2 \vee x_4) \wedge (x_2 \vee x_3 \vee \overline{x}_{42})$$

3SAT instance

fast conversion machine

Vertex Cover Instance

Showing **NP**-Completeness via reductions

To show that **VC** is **NP**-Complete:

- * **VC** is in **NP.** (Why?)
 - Certificate: a vertex set S of size at most k
 - * Verifier: check that, for all edges (u, v), either u in S or v in S
- * **VC** is NP-hard by showing $3SAT \leq_p VC$
 - 1. Show a mapping f from instances of **3SAT** to instances of **VC**
 - 2. x is a yes-instance for **3SAT** \Leftrightarrow f(x) is a yes-instance of **VC** (both directions!)
 - 3. f(x) runs in poly(|x|) time

$3SAT ≤_p VC$

$3SAT \leq_{p} VC$

Goal: "translate" φ to $(G_{\varphi}, k_{\varphi})$ st:

- φ sat $\Rightarrow G_{\varphi}$ has some k_{φ} -VC
- φ unsat \Rightarrow G_{φ} has no k_{φ} -VC
- * Claim: $3SAT \leq_p VC$
- * Proof idea:
 - * Given a 3CNF formula ϕ with n variables, m clauses:
 - * Make subgraphs ("gadgets") that represent variables and clauses.
 - * Connect the gadgets together in the right way.

 $3SAT \leq_p VC$

Goal: "translate" φ to $(G_{\varphi}, k_{\varphi})$ st:

- φ sat $\Rightarrow G_{\varphi}$ has some k_{φ} -VC
- φ unsat \Rightarrow G_{φ} has no k_{φ} -VC

- * Construction of G_{ω} :
 - * add variable gadgets and clause gadgets (for every variable and clause)
 - * add edge $\{u, v\}$ if
 - * u is in a <u>variable gadget</u> and
 - * v is in a <u>clause gadget and</u>
 - * u and v are <u>labeled the same</u>
- * Set k_{φ} to n + 2m (n number of variables, m number of clauses)
- * Concrete example:

$$\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$$

Goal: "translate" φ to $(G_{\varphi}, k_{\varphi})$ st:

- φ sat $\Rightarrow G_{\varphi}$ has some k_{φ} -VC
- φ unsat $\Rightarrow G_{\varphi}$ has no k_{φ} -VC

$3SAT \leq_{p} VC$

- * Construction of G_{ω} :
 - * add variable gadgets and clause gadgets (for every variable and clause)
 - * add edge $\{u, v\}$ if
 - * u is in a <u>variable gadget</u> and
 - * v is in a <u>clause gadget and</u>
 - * u and v are <u>labeled the same</u>
- * Set k_{ω} to n + 2m (n number of variables, m number of clauses)
- * Concrete example:

$$\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$$

- * Concrete example:
 - * $\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$
 - * A = (1,0,0) is a satisfying assignment
- * Given a satisfying assignment *A*:
 - For each variable gadget,
 - * pick x into vertex-cover if $A_x = 1$ and $\neg x$ otherwise
 - * Claim: can cover all other edges by picking 2 vertices per clause gadget.
 - * For example if x = true, pick other two literals
- * Get a vertex cover of size n + 2m

(n+2m)-VC $\Rightarrow \phi$ satisfiable

- * Claim: In a (n+2m)-VC of G_{φ} ,
 - * each variable gadget has exactly one vertex in cover.
 - * each clause gadget has exactly two vertices in cover.
- * For each variable x,
 - * If x is in cover \Rightarrow set $A_x = 1$. Else, set $A_x = 0$
- * A is a satisfying assignment!
 - * For any clause gadget, for example, if " $\neg z$ " is not picked \Rightarrow " $\neg z$ " must be picked in variable gadget.
 - * So, each clause is satisfied.

$3SAT \leq_{p} VC$

- * Construction of G_{ω} :
 - * **create** variable gadgets and clause gadgets (for every variable and clause)
 - * add edge $\{u, v\}$ if
 - * u is in a variable gadget and
 - * v is in a clause gadget and
 - * u and v are labeled the same
- * Set k_{φ} to n + 2m (n number of variables, m number of clauses)

Goal: "translate" φ to $(G_{\varphi}, k_{\varphi})$ st:

- φ sat \Rightarrow G_{φ} has some k_{φ} -VC φ unsat \Rightarrow G_{φ} has no k_{φ} -VC

* Last check: $(G_{\varphi}, k_{\varphi})$ can be constructed in poly($|\varphi|$) = poly(n,m) time

Clique is NP-complete

Clique Problem

(Friendship problem)

- Given a graph, a *clique* is a set **S** of vertices so that
 - every pair of vertices in S has an edge between them.
- Clique decision problem:
 - Given a graph G and a budget k,
 - does G have a clique of size k or more?

We will show: 3SAT ≤p CLIQUE

Showing **NP**-Completeness via reductions

To show that **CLIQUE** is **NP**-Complete:

- * **CLIQUE** is in **NP.** (Why?)
 - Certificate: a vertex set S of size at least k
 - * Verifier: check that, for all $u, v \in S$, (u, v) is an edge
- * CLIQUE is NP-hard by showing $3SAT \leq_p CLIQUE$

$3SAT \leq_p CLIQUE$

- * Need to "translate" a 3SAT formula φ into $(G_{\varphi}, k_{\varphi})$ such that:
 - * φ is satisfiable \Rightarrow G_{φ} has k_{φ} -clique (clique: "yes")
 - * φ is not satisfiable \Rightarrow G_{φ} doesn't have k_{φ} -clique (clique: "no")
- * Given φ , $(G_{\varphi}, k_{\varphi})$ can be constructed in polynomial time

Example

Goal: " $\underline{translate}$ " 3CNF formula φ into $\left(G_{\varphi},k_{\varphi}\right)$ such that:

- φ satisfiable \Rightarrow G_{φ} has k_{φ} -clique (clique: "yes")
- ϕ not satisfiable \Rightarrow G_{ϕ} doesn't have k_{ϕ} -clique (clique: "no")

Construction of G_{φ} :

- * For each clause, make a vertex for each literal
- * Add an edge between two literals in <u>different clauses</u> only if they're "compatible"
 - * They refer to different variables (e.g. x and $\neg y$) or
 - * They are the same (e.g. z and z)

Set k_{φ} to m --- number of clauses

Concrete example:

$$\varphi = (x \lor y \lor z) \land (\neg x \lor y \lor \neg z) \land (x \lor \neg y \lor z)$$

Observations:

- 1) Any clique can have at most one vertex from a clause $(k_{\varphi} \leq 3)$
- 2) A clique can have several x or $\neg x$, but not both

φ is satisfiable $\Rightarrow G_{\varphi}$ has an m-clique

- * Consider any satisfying assignment A of φ
- * Since φ is satisfied by A, for $1 \le i \le m$,
 - * For each C_i (e.g., $x \lor y \lor z$), select a literal ℓ_i that A sets to true (pick any if there are several choices)
- * Claim: $\{\ell_1, \ell_2, ..., \ell_m\}$ is an m-clique in G_{φ}
 - * Consider any two literals ℓ_i and ℓ_j , $i \neq j$
 - * If $\ell_i = \ell_j$, then there's an edge between them in G_{φ} .
 - * Otherwise, ℓ_i and ℓ_j must refer to <u>different variables!</u> (why?)
 - * Hence, they also have an edge between them.

G_{φ} has an m-clique $\Rightarrow \varphi$ is satisfiable

- * Suppose that $\{\ell_1, \ell_2, ..., \ell_m\}$ is an m-clique in G_{φ}
 - * It corresponds to one literal per clause
- * Define an assignment A of φ
 - * For each literal ℓ_i , A sets ℓ_i to true (if any variables are unset at the end, set them arbitrarily)
- * $\{\ell_1, \ell_2, ..., \ell_m\}$ is a clique in $G_{\varphi} \Rightarrow \underline{no\ conflicts}$ in setting the variables this way
 - * For each ℓ_i and ℓ_i , they are compatible
- * Since A satisfies each clause of φ , it satisfies φ !

Runtime Analysis

Construction of G_{φ} :

- For each clause, make a vertex for each literal
- Add an edge between two literals in <u>different clauses</u> only if they're "compatible"

- * Claim: We can build graph G_{φ} efficiently (poly-time in size of φ)
 - * Suppose φ has m clauses. $|\langle \varphi \rangle| = O(m)$
 - * There are 3m literals in φ
 - * The graph G_{φ} has 3m vertices and $O((3m)^2) = O(m^2)$ edges
 - * Takes $O(m^2)$ time to build and $\left|\left\langle G_{\varphi},k_{\varphi}\right\rangle\right|=O(m^2)$
- * Conclusion: $3SAT \leq_p CLIQUE$,
- * So, CLIQUE is NP-Complete

Wrap Up

NP-Completeness via reductions

To show that a problem **B** is **NP**-Complete:

- * Prove **B** is in **NP**.
 - * Write a verifier V for B, show that it is correct and efficient.
- * Prove **B** is NP-hard
 - * Pick some known NP-hard problem A.
 - * Show $\mathbf{A} \leq_p \mathbf{B}$:
 - 1. Show a mapping f from instances of **A** to instances of **B**
 - 2. x is a yes-instance for $\mathbf{A} \Leftrightarrow f(x)$ is a yes-instance of \mathbf{B} (both directions!)
 - 3. f(x) runs in poly(|x|) time

Classification of Problems: Efficient vs Inefficient

Assuming $P \neq NP$, we have classified problems into two classes

