

# Regularized Regression

Shrinkage Methods

# Shrinkage Methods

- ullet Instead of Least Squares, a model is fitted using some p predictors with a technique that shrinks the coefficient estimates towards zero
- Shrinking the coefficient estimates can reduce their variance
- Ridge Regression, Lasso Regression and also Elastic Net Regression are the shrinkage methods which will be covered in this topic



# $\ell_1 \& \ell_2$ Forms

- Consider the elements  $\beta_1$ ,  $\beta_2$  ...  $\beta_p$ .
- The  $\ell_1$  form of the elements, also denoted by  $\|\beta\|_1$  is given by the expression  $\|\beta\|_1 = \sum_{j=1}^p |\beta_j|$
- The  $\ell_2$  form of the elements, also denoted by  $\|\beta\|_2$  is given by the expression  $\|\beta\|_2=\sqrt{\sum_{j=1}^p\beta_j^2}$



# Least Squares (Quick Recap)

• In Least Squares Method, the estimates of  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$  ...  $\beta_p$  are calculated by minimizing the following expression

Residual 
$$SS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij})^2$$

#### Where

- $y_i$ : Response value for ith observation
- $x_{ij}$ : Value of jth observation in ith predictor



# Ridge Regression

• For Ridge Regression, regression coefficients  $\beta_0$ ,  $\beta_1$ ,  $\beta_2$  ...  $\beta_p$  are calculated by minimizing the following expression

Residual 
$$SS + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$
  
i.e.  $\sum_{i=1}^{n} (y_{i} - \beta_{0} - \sum_{i=1}^{p} \beta_{i} x_{ij})^{2} + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$   
where  $\lambda \geq 0$  is a tuning parameter

- The term  $\sum_{j=1}^p \beta_j^2$  is called shrinkage penalty. It is small if  $\beta_1, \beta_2 \dots \beta_p$  are close to zero.
- For selecting optimal value for  $\lambda$ , cross-validation can be used



# Lasso Regression

- Ridge Regression selects all the predictors in the final model. This is a disadvantage of it.
- The Lasso overcomes this disadvantage. It finds the coefficients estimates of  $\beta_0, \beta_1, \beta_2 \dots \beta_p$  by minimizing the quantity,

Residual 
$$SS + \lambda \sum_{j=1}^{P} |\beta_j|$$

i.e. 
$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

• The  $\ell_1$  penalty of Lasso has the effect of forcing some of the coefficient estimates to zero when tuning parameter  $\lambda$  is sufficiently large.



### Variable Selection

- It can be proved that the regularized regression coefficient estimates solve the optimization problems namely,
- Minimizing  $\sum_{i=1}^n (y_i \beta_0 \sum_{i=1}^p \beta_i x_{ij})^2$  subject to  $\sum_{j=1}^p |\beta_j| \le s$  for some finite value s (Lasso)
- Minimizing  $\sum_{i=1}^n (y_i-\beta_0-\sum_{i=1}^p \beta_i x_{ij})^2$  subject to  $\sum_{j=1}^p \beta_j^2 \leq s$  for some finite value s (Ridge)



# Elastic Net Regression

- Elastic Net Regression is a combination of Ridge and Lasso Regression Methods
- Elastic Net minimises:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (y - \hat{y})^2 + r\lambda \sum_{j=1}^{n} |w_j| + \frac{1 - r}{2} \lambda \sum_{j=1}^{n} |w_j|^2$$

