P. Maurer

ENS Rennes

Recasages: 122, 141, 142.

Référence : Perrin, Cours d'Algèbre & FGN, Oraux X-ENS, Algèbre 1

Critère d'Eisenstein

A désigne un anneau factoriel, et K désigne son corps des fractions.

Definition 1. $P \in A[X]$ est dit irréductible si il n'est ni inversible ni produit de deux polynômes non inversibles dans A[X].

Definition 2. Si $P \in A[X]$, on appelle contenu de P et on note c(P) le plus grand diviseur commun de ses coefficients, défini à un inversible près. P est dit primitif si c(P) = 1.

Lemma 3. (Gauss)

Soit $P, Q \in A[X]$. Alors c(PQ) = c(P) c(Q).

Theorem 4. Soit $P \in A[X]$. Alors P est irréductible dans A[X] si et seulement si P est irréductible dans K[X] et primitif.

Proof.

 \implies Par définition du contenu, on peut écrire $P = c(P) \cdot \tilde{P}$. Comme P est irréductible, c(P) est nécessairement inversible, d'où c(P) = 1 (à inversible près).

Soit $Q, R \in K[X]$ tels que P = QR. Il existe $r \in A$ et $q \in A$ tels que rR et qQ soient dans A[X] et primitifs. On a alors $qrP = (rR) \, (qQ)$, donc d'après le lemme de Gauss, $qr = c(rR) \, c(qQ) = 1$. Donc q et r sont des inversibles de A[X], d'où $R \in A[X]$ et $Q \in A[X]$: comme P est irréductible, Q est un inversible dans A[X] ou R est un inversible dans A[X], donc Q est un inversible dans A[X]. Ainsi, P est irréductible dans K[X].

Soit $P \in A[X]$, primitif et irréductible dans K[X]. Soit $Q, R \in A[X]$ tels que P = QR. Comme $Q \in K[X]$ et $R \in K[X]$, on en déduit que l'un des deux, disons Q, est un élément de K^{\times} . On a alors, en passant au contenu : c(P) = c(Q) c(R) = Qc(R).

D'après le lemme de Gauss, 1=Qc(R), avec $c(R)\in A$: on en déduit que $Q\in A^{\times}$. Donc P est irréductible dans A[X].

Theorem 5. (Critère d'Eisenstein)

Soit $P = \sum_{i=1}^{n} a_i X^i \in A[X]$, avec $n \ge 1$. On suppose qu'il existe $p \in A$ irréductible tel que :

- p divise a_i pour tout $i \in [0, n-1]$.
- p ne divise pas a_n .
- p^2 ne divise pas a_0 .

Alors P est irréductible dans K[X].

Proof. Supposons par l'absurde que P n'est pas irréductible dans K[X]. D'après le théorème précédent, P n'est pas non plus irréductible dans A[X]. Le degré de P étant au moins 1, $P \notin A^{\times}$, donc il existe $Q, R \in A[X]$ non inversibles tels que P = QR.

Ecrivons $Q = \sum_{i=0}^q b_i X^i$ et $R = \sum_{i=0}^r c_i X^i$, avec $r+q=\deg(P)$, et $b_i, c_i \in A$. Comme p est irréductible, l'idéal engendré par p est premier, donc B = A/(p) est intègre. On projette l'égalité P = QR dans

B[X], en désignant par $\pi: A \to B$ la projection canonique. On a alors :

$$\pi(P) = \pi(a_n) X^n = (\pi(b_q) X^q + \dots + \pi(b_0))(\pi(c_r) X^r + \dots + \pi(c_0))$$

Comme $a_0 = b_0 c_0$, on a $\pi(a_0) = \pi(b_0) \pi(c_0) = 0$. Comme B est intègre et que p^2 ne divise pas a_0 , on a soit $\pi(b_0) = 0$ et $\pi(c_0) \neq 0$, soit $\pi(b_0) \neq 0$ et $\pi(c_0) = 0$. Par symétrie, on peut supposer qu'on est dans le premier cas.

On a alors $\pi(Q) \neq 0$, donc il existe $i \in [0, r-1]$ tel que $\pi(b_{i+1}) \neq 0$, et $\pi(b_j) = 0$ pour tout $j \leq i$.

On a alors, par intégrité de $B: \pi(a_{i+1}) = \sum_{k=0}^{i+1} \pi(b_k) \pi(c_{i+1-k}) = \pi(b_{i+1}) \pi(c_0) \neq 0$, mais $i+1 \leq r < n$, contradiction puisque p divise a_{i+1} .

Références

D. PERRIN, Cours d'Algèbre.

FGN, Algèbre 1.