Module Interface Specification for the Companion Cube Calculator (\mathbb{C}^3)

Geneva Smith

November 23, 2017

1 Revision History

Date	Version	Notes
1.0		Initial draft completed

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at https://github.com/GenevaS/CAS741/tree/master/Doc/SRS for project symbols, abbreviations, and acronyms.

Contents

1	Revision History							
2	Symbols, Abbreviations and Acronyms							
3	Introduction							
4	Notation							
5	Module Decomposition							
6	MIS of the Control Flow Module							
	6.1 Module							
	6.2 Uses							
	6.3 Syntax							
	6.3.1 Exported Access Programs							
	6.4 Semantics							
	6.4.1 State Variables							
	6.4.2 Access Routine Semantics							
7	MIS of the User Input Module							
	7.1 Module							
	7.2 Uses							
	7.3 Syntax							
	7.3.1 Exported Access Programs							
	7.4 Semantics							
	7.4.1 State Variables							
	7.4.2 Access Routine Semantics							
3	MIS of the Interval Conversion Module							
	8.1 Module							
	8.2 Uses							
	8.3 Syntax							
	8.3.1 Exported Access Programs							
	8.4 Semantics							
	8.4.1 State Variables							
	8.4.2 Access Routine Semantics							
9	MIS of the Equation Conversion Module							
	9.1 Module							
	9.2 Uses							
	9.3 Syntax							
	9.3.1 Exported Access Programs							

	9.4	Semantics
		9.4.1 State Variables
		9.4.2 Access Routine Semantics
10	MIS	of the Variable Consolidation Module
	10.1	Module
		Uses
		Syntax
		10.3.1 Exported Access Programs
	10.4	Semantics
	10.1	10.4.1 State Variables
		10.4.2 Access Routine Semantics
		10.4.2 Recess fround Schamoles
11	MIS	of the Range Solver Module
		Module
		Uses
		Syntax
	11.0	11.3.1 Exported Access Programs
	11 /	
	11.4	
		11.4.2 Access Routine Semantics
12	MIS	of the Output Module
14		Module
		Uses
	12.5	
	10.4	12.3.1 Exported Access Programs
	12.4	Semantics
		12.4.1 State Variables
		12.4.2 Environment Variables
		12.4.3 Assumptions
		12.4.4 Access Routine Semantics
10	NATO	Coffic Internal Data Characters Madel
13		S of the Interval Data Structure Module 13
		Module
		Uses
	13.3	Syntax
		13.3.1 Exported Access Programs
	13.4	Semantics
		13.4.1 State Variables
		13.4.2. Access Routing Computies

14 MI	IS of the Equation Data Structure Module
14.1	1 Module
14.2	2 Uses
14.3	3 Syntax
	14.3.1 Exported Access Programs
14.4	4 Semantics
	14.4.1 State Variables
	14.4.2 Assumptions
	14.4.3 Access Routine Semantics

3 Introduction

The following document details the Module Interface Specifications for the Companion Cube Calculator (C^3) , a mathematical tool which determines the range of a user-specified function given the domains of the function's variables. The calculations are performed using interval arithmetic.

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at https://github.com/GenevaS/CAS741.

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Companion Cube Calculator.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Companion Cube Calculator uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Companion Cube Calculator uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project. It can be found at https://github.com/GenevaS/CAS741/blob/master/Doc/Design/MG.

Level 1	Level 2
Hardware-Hiding Module	-
Behaviour-Hiding Module	Control Flow Module User Input Module Interval Conversion Module Equation Conversion Module Variable Consolidation Module Range Solver Module Output Module
Software Decision Module	Interval Data Structure Module Equation Data Structure Module

Table 1: Module Hierarchy

6 MIS of the Control Flow Module

6.1 Module

[Short name for the module —SS]

- 6.2 Uses
- 6.3 Syntax

6.3.1 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS			

6.4 Semantics

6.4.1 State Variables

6.4.2 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

7 MIS of the User Input Module

7.1 Module

[Short name for the module —SS]

7.2 Uses

7.3 Syntax

7.3.1 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS			

7.4 Semantics

7.4.1 State Variables

7.4.2 Access Routine Semantics

- transition: [if appropriate —SS]
- ullet output: [if appropriate —SS]
- \bullet exception: [if appropriate —SS]

8 MIS of the Interval Conversion Module

8.1 Module

[Short name for the module —SS]

8.2 Uses

8.3 Syntax

8.3.1 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS			

8.4 Semantics

8.4.1 State Variables

8.4.2 Access Routine Semantics

- ullet transition: [if appropriate —SS]
- ullet output: [if appropriate —SS]
- \bullet exception: [if appropriate —SS]

9 MIS of the Equation Conversion Module

9.1 Module

[Short name for the module —SS]

9.2 Uses

9.3 Syntax

9.3.1 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS			

9.4 Semantics

9.4.1 State Variables

9.4.2 Access Routine Semantics

- transition: [if appropriate —SS]
- ullet output: [if appropriate —SS]
- \bullet exception: [if appropriate —SS]

10 MIS of the Variable Consolidation Module

10.1 Module

[Short name for the module —SS]

10.2 Uses

10.3 Syntax

10.3.1 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
SS]			

10.4 Semantics

10.4.1 State Variables

10.4.2 Access Routine Semantics

- transition: [if appropriate —SS]
- output: [if appropriate —SS]
- exception: [if appropriate —SS]

11 MIS of the Range Solver Module

11.1 Module

[Short name for the module —SS]

11.2 Uses

11.3 Syntax

11.3.1 Exported Access Programs

Name	In	Out	Exceptions
[accessProg	-	-	-
—SS]			

11.4 Semantics

11.4.1 State Variables

11.4.2 Access Routine Semantics

- transition: [if appropriate —SS]
- ullet output: [if appropriate —SS]
- \bullet exception: [if appropriate —SS]

12 MIS of the Output Module

12.1 Module

Output

12.2 Uses

intervalStruct (Section 13), equationStruct (Section 14)

12.3 Syntax

12.3.1 Exported Access Programs

Name	In	Out	Exceptions
printIntervalList	$intervalStruct^n$	-	-
${\tt printEquationTree}\ equationStruct$		-	-

12.4 Semantics

12.4.1 State Variables

N/A

12.4.2 Environment Variables

- cmd: the command-line interface
- win: a 2D sequence of pixels displayed on the screen

12.4.3 Assumptions

- There are no exceptions in this module because it is assumed that only well-formed inputs will be passed in. This assumption is made knowing that this module will only be called post-process and any errors in the data structures have already been identified.
- The object passed to printEquationTree is the root of the equation tree

12.4.4 Access Routine Semantics

 $printIntervalList(intervalStruct^n)$:

• transition: If the user interface is the command-line, write the list of intervals to cmd. If the user interface is a GUI, modify win so that the list of intervals is displayed. In both cases, the variable name of the interval must also be displayed.

• exception: N/A

 ${\tt printEquationTree}(equationStruct) :$

• transition: If the user interface is the command-line, write the equation tree to cmd. If the user interface is a GUI, modify win so that the equation tree is displayed.

• exception: N/A

13 MIS of the Interval Data Structure Module

13.1 Module

intervalStruct

13.2 Uses

N/A

13.3 Syntax

13.3.1 Exported Access Programs

Name	In	Out	Exceptions
			IV_NOT_REAL_TYPE,
intervalStruct	\mathbb{R}^2	interval Struct	IV_INSUFF_PARAMS,
			$ORD_{-}VIOLATED$
GetMinRange	-	\mathbb{R}	-
GetMaxRange	-	\mathbb{R}	-
			IV_NOT_REAL_TYPE,
SetMinRange	\mathbb{R}	-	IV_INSUFF_PARAMS,
· ·			ORD_VIOLATED
			IV_NOT_REAL_TYPE,
SetMaxRange	\mathbb{R}	-	IV_INSUFF_PARAMS,
			ORD_VIOLATED

13.4 Semantics

13.4.1 State Variables

For R2 using DD1

• $a: \mathbb{R}$

• $b: \mathbb{R}$

13.4.2 Access Routine Semantics

intervalStruct(val1, val2):

• output: out := intervalStruct

 \bullet transition: Update state variables a and b with the provided values val1 and val2

```
• exception: exc := (val1 \notin \mathbb{R} \lor val2 \notin \mathbb{R} \Rightarrow IV\_NOT\_REAL\_TYPE)

| (\nexists val1 \lor \nexists val2 \Rightarrow IV\_INSUFF\_PARAMS)

| (val1 \gt val2 \Rightarrow ORD\_VIOLATED)
```

interval Struct. Get Min Range:

• output: out := a

• exception: N/A

interval Struct. Get Max Range:

• output: out := b

• exception: N/A

intervalStruct.SetMinRange(val):

 \bullet transition: Update state variable a with the provided value val

```
• exception: exc := (val \notin \mathbb{R} \Rightarrow IV\_NOT\_REAL\_TYPE)

|

(\nexists val \Rightarrow IV\_INSUFF\_PARAMS)

|

(val > b \Rightarrow ORD\_VIOLATED)
```

intervalStruct.SetMaxRange(val):

• transition: Update state variable b with the provided value val

```
• exception: exc := (val \notin \mathbb{R} \Rightarrow IV\_NOT\_REAL\_TYPE)

| (\nexists val \Rightarrow IV\_INSUFF\_PARAMS)

| (val < a \Rightarrow ORD\_VIOLATED)
```

14 MIS of the Equation Data Structure Module

14.1 Module

equationStruct

14.2 Uses

N/A

14.3 Syntax

14.3.1 Exported Access Programs

Name	In	Out	Exceptions
equationStruct	String,	equation Struct	EQ_INSUFF_PARAMS,
	$equation Struct^2$		EQ_WRONG_OPERATOR_TYPE
			EQ_WRONG_OPERAND_TYPE
GetOperator	-	String	-
GetLeftOperand	-	equation Struct	-
GetRightOperand	-	equation Struct	-
SetLeftOperand	equation Struct	-	EQ_INSUFF_PARAMS,
			EQ_WRONG_OPERAND_TYPE
SetRightOperand	equation Struct	-	EQ_INSUFF_PARAMS,
			EQ_WRONG_OPERAND_TYPE

14.4 Semantics

14.4.1 State Variables

To support R4 and R6

 \bullet op : string

 \bullet x: equationStruct

 \bullet y: equationStruct

14.4.2 Assumptions

- The decomposition of the user equation is handled by the Equation Conversion module (Section 9).
- Unsupported operators are identified and handled in the Equation Conversion module (Section 9).

- There is no setter method for the *op* field because it will not be changed after initialization.
- The values for x and y can be set to NULL as required.

14.4.3 Access Routine Semantics

equationStruct(operator, eStruct1, eStruct2):

- output: out := equationStruct
- transition: Update state variables op, x, and y with the provided values operator, eStruct1, and eStruct2

```
• exception: exc := (\nexists operator \lor \nexists eStruct1 \lor \nexists eStruct2 \Rightarrow EQ\_INSUFF\_PARAMS)

| (operator \neq string \Rightarrow EQ\_WRONG\_OPERATOR\_TYPE)

| (eStruct1 \neq equationStruct \lor eStruct2 \neq equationStruct \Rightarrow EQ\_WRONG\_OPERAND\_TYPE)
```

equationStruct.GetOperator:

- output: out := op
- exception: N/A

equationStruct.GetLeftOperand:

- output: out := x
- exception: N/A

equationStruct.GetRightOperand:

- output: out := y
- exception: N/A

SetLeftOperand(eStruct):

- transition: Update state variable x with the provided value eStruct
- exception: $exc := (\nexists eStruct \Rightarrow EQ_INSUFF_PARAMS)$ | $(eStruct \neq equationStruct \Rightarrow EQ_WRONG_OPERAND_TYPE)$

${\bf SetRightOperand}(eStruct):$

ullet transition: Update state variable y with the provided value eStruct

```
• exception: exc := (\not \equiv eStruct \Rightarrow EQ\_INSUFF\_PARAMS)

| (eStruct \neq equationStruct \Rightarrow EQ\_WRONG\_OPERAND\_TYPE)
```

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

15 Appendix

Table 2: Possible Exceptions

Message ID	Error Message	
EQ_INSUFF_PARAMS	Error: Insufficient number of parameters provided to equation data structure.	
$EQ_WRONG_OPERAND_TYPE$	Error: Operands must have type equationStruct.	
EQ_WRONG_OPERATOR_TYPE	Warning: The operator must have type <i>string</i> . String type conversion has been applied.	
IV_NOT_REAL_TYPE	Error: Interval values must be of type real.	
IV_INSUFF_PARAMS	Error: Insufficient number of parameters provided to interval data structure.	
ORD_VIOLATED	Warning: Value provided for intervals are not in increasing order. The values have been exchanged to maintain the interval ordering.	