Filter Summary Report: TIA,simple,Z2,Z3,Z4

Generated by MacAnalog-Symbolix

December 10, 2024

Contents

1 Examined
$$H(z)$$
 for TIA simple Z2 Z3 Z4: $\frac{Z_3Z_4(Z_2g_m+1)}{2Z_2Z_3g_m+Z_2Z_4g_m+2Z_3+Z_4}$

$$H(z) = \frac{Z_3 Z_4 (Z_2 g_m + 1)}{2 Z_2 Z_3 g_m + Z_2 Z_4 g_m + 2 Z_3 + Z_4}$$

2 HP

3 BP

3.1 BP-1
$$Z(s) = \left(\infty, R_2, R_3, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

 $H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$

Parameters:

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.2 BP-2
$$Z(s) = \left(\infty, R_2, R_3, \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \infty, \infty\right)$$

 $H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$

Parameters:

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3+R_4}{2C_4R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.3 BP-3
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

 $H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$

$$\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2} \\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}} \\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \end{array}$$

3.4 BP-4
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

Q:
$$\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.5 BP-5
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}R_{3}R_{4}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}(C_{3}+2C_{4})}{2R_{3}+R_{4}}\\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}\\ \text{bandwidth:} \ \frac{2R_{3}+R_{4}}{R_{3}R_{4}(C_{3}+2C_{4})}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_{3}R_{4}}{2R_{3}+R_{4}}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.6 BP-6
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.7 BP-7
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3}$$

$$H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2L_3 s + R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}} \\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.8 BP-8
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2} \\ \text{wo:} \ \sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}} \\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.9 BP-9
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{C_3R_3R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.10 BP-10
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{1}{C_4 s}, \infty, \infty\right)$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

$$H(s) = \frac{L_3 L_4 R_4 s}{C_3 L_3 L_4 R_4 s^2 + 2 C_4 L_3 L_4 R_4 s^2 + 2 L_3 L_4 s + 2 L_3 R_4 + L_4 R_4}$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$$

3.11 BP-11
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.12 BP-12
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_{3s}}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_3 s}{C_3 L_3 L_4 R_3 s^2 + 2 C_4 L_3 L_4 R_3 s^2 + L_3 L_4 s + 2 L_3 R_3 + L_4 R_3}$$

Parameters:

Q:
$$R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.13 BP-13
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_{3s}}{C_3 L_3 R_{3s}^2 + L_3 s + R_3}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{C_3L_3L_4R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4R_3s + L_3L_4R_4s + 2L_3R_3R_4 + L_4R_3R_4}$$

Parameters:

3.14 BP-14
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$

bandwidth:
$$\frac{1}{2C_4R_3}$$
 K-LP: 0
K-HP: 0
K-BP: R_3 Qz: 0
Wz: None

3.15 BP-15
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3+R_4}{2C_4R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.16 BP-16
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{\sqrt{2}R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.17 BP-17
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

Q:
$$\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

$$H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$$

$$H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

$$H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3}$$

3.18 BP-18
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s+1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Q:
$$\frac{\sqrt{2}R_{3}R_{4}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}(C_{3}+2C_{4})}{2R_{3}+R_{4}}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}$$
 bandwidth:
$$\frac{2R_{3}+R_{4}}{R_{3}R_{4}(C_{3}+2C_{4})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{4}}{2R_{3}+R_{4}}$$
 Qz: 0 Wz: None

3.19 BP-19
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.20 BP-20
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{R_4\sqrt{L_3(C_3+2C_4)}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.21 BP-21
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

Q:
$$\frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$

$$H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4}$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2L_3 s + R_4}$$

$$H(s) = \frac{L_3 L_4 R_4 s}{C_3 L_3 L_4 R_4 s^2 + 2 C_4 L_3 L_4 R_4 s^2 + 2 L_3 L_4 s + 2 L_3 R_4 + L_4 R_4}$$

bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$ Qz: 0
Wz: None

3.22 BP-22
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4, \infty, \infty\right)$$

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3L_3}}$$
 bandwidth:
$$\frac{2R_3+R_4}{C_3R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.23 BP-23
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{1}{C_4 s}, \infty, \infty\right)$$

Parameters:

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.24 BP-24
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$\begin{array}{c} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

3.25 BP-25
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_3 s}{C_3 L_3 L_4 R_3 s^2 + 2 C_4 L_3 L_4 R_3 s^2 + L_3 L_4 s + 2 L_3 R_3 + L_4 R_3}$$

Q:
$$R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.26 BP-26
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{C_3L_3L_4R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4R_3s + L_3L_4R_4s + 2L_3R_3R_4 + L_4R_3R_4}$$

Parameters:

Q:
$$\frac{R_3R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.27 BP-27
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$I(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

Parameters:

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.28 BP-28
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, R_3, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s}{2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4}$$

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
wo: $\sqrt{\frac{1}{C_4L_4}}$

bandwidth: $\frac{2R_3+R_4}{2C_4R_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3R_4}{2R_3+R_4}$ Qz: 0 Wz: None

3.29 BP-29
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$

Parameters:

Q: $\frac{\sqrt{2}R_{4}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}(C_{3}+2C_{4})}{2}$ wo: $\sqrt{2}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}$ bandwidth: $\frac{2}{R_{4}(C_{3}+2C_{4})}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_{4}}{2}$ Qz: 0 Wz: None

3.30 BP-30
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3}$

Parameters:

Q: $\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}$ (C_3+2C_4) wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$ bandwidth: $\frac{1}{R_3(C_3+2C_4)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.31 BP-31
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4}$

Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}R_3R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$

3.32 BP-32
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$

Parameters:

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.33 BP-33
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2L_3 s + R_4}$

Parameters:

Q:
$$\frac{R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.34 BP-34
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_3L_4R_4s}{C_3L_3L_4R_4s^2 + 2C_4L_3L_4R_4s^2 + 2L_3L_4s + 2L_3R_4 + L_4R_4}$

Parameters:

Q:
$$\frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.35 BP-35
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

Q:
$$\frac{C_3 R_3 R_4 \sqrt{\frac{1}{C_3 L_3}}}{2R_3 + R_4}$$

wo: $\sqrt{\frac{1}{C_3 L_3}}$

bandwidth: $\frac{2R_3 + R_4}{C_3 R_3 R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_3 R_4}{2R_3 + R_4}$ Qz: 0

3.36 BP-36
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \frac{1}{C_4s}, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$

Parameters:

Wz: None

Q: $R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$ ($C_3 + 2C_4$) wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$ bandwidth: $\frac{1}{R_3(C_3+2C_4)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.37 BP-37
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4}$

Parameters:

 $\begin{array}{l} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$

3.38 BP-38
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$H(s) = \frac{L_3 L_4 R_3 s}{C_3 L_3 L_4 R_3 s^2 + 2 C_4 L_3 L_4 R_3 s^2 + L_3 L_4 s + 2 L_3 R_3 + L_4 R_3}$

Parameters:

Q: $R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$ (C_3+2C_4) wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$ bandwidth: $\frac{1}{R_3(C_3+2C_4)}$ K-LP: 0 K-HP: 0 K-BP: R_3 Qz: 0 Wz: None

3.39 BP-39
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_3 R_4 s}{C_3 L_3 L_4 R_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 R_4 s^2 + 2 L_3 L_4 R_3 s + L_3 L_4 R_4 s + 2 L_3 R_3 R_4 + L_4 R_3 R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.40 BP-40
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$

Parameters:

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.41 BP-41
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$$

Parameters:

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3+R_4}{2C_4R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.42 BP-42
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$$

Q:
$$\frac{\sqrt{2}R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$

bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$

K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

3.43 BP-43
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3}$

Parameters:

Q:
$$\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.44 BP-44
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}R_3R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.45 BP-45
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.46 BP-46
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

 $H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2 C_4 L_3 R_4 s^2 + 2 L_3 s + R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}} \\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.47 BP-47
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_4 s}{C_3 L_3 L_4 R_4 s^2 + 2C_4 L_3 L_4 R_4 s^2 + 2L_3 L_4 s + 2L_3 R_4 + L_4 R_4}$$

Parameters:

Q:
$$\frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.48 BP-48
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{C_3R_3R_4}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.49 BP-49
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$

bandwidth:
$$\frac{1}{R_3(C_3+2C_4)}$$

K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.50 BP-50
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

Q:
$$\frac{R_3R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.51 BP-51
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_{3s}}{C_3 L_3 R_{3s}^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_3 s}{C_3 L_3 L_4 R_3 s^2 + 2C_4 L_3 L_4 R_3 s^2 + L_3 L_4 s + 2L_3 R_3 + L_4 R_3}$$

Parameters:

Q:
$$R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.52 BP-52
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{C_3L_3L_4R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4R_3s + L_3L_4R_4s + 2L_3R_3R_4 + L_4R_3R_4}$$

Q:
$$\frac{R_3R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.53 BP-53
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.54 BP-54 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

Parameters:

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3+R_4}{2C_4R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.55 BP-55 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2} \\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}} \\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.56 BP-56 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$

Q:
$$\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}\left(C_3+2C_4\right)$$

wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$

$$H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

$$H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$$

$$H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

$$H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3}$$

bandwidth:
$$\frac{1}{R_3(C_3+2C_4)}$$

K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.57 BP-57
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4}$

Parameters:

Q:
$$\frac{\sqrt{2}R_3R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.58 BP-58
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.59 BP-59
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

Q:
$$\frac{R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2}$$
wo:
$$\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
K-LP: 0
K-HP: 0
K-BP:
$$\frac{R_4}{2}$$
Qz: 0
Wz: None

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2L_3 s + R_4}$$

3.60 BP-60
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

 $H(s) = \frac{L_3 L_4 R_4 s}{C_3 L_3 L_4 R_4 s^2 + 2 C_4 L_3 L_4 R_4 s^2 + 2 L_3 L_4 s + 2 L_3 R_4 + L_4 R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2}\\ \text{wo:} \ \sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_4}{2}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.61 BP-61
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$

Parameters:

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{C_3R_3R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.62 BP-62
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{1}{C_4 s}, \infty, \infty\right)$$

 $H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$

Parameters:

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 ($C_3 + 2C_4$)
wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.63 BP-63
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2C_4 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

Q:
$$\frac{R_3R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$

bandwidth:
$$\frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}$$

K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.64 BP-64
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_3 s}{C_3 L_3 L_4 R_3 s^2 + 2 C_4 L_3 L_4 R_3 s^2 + L_3 L_4 s + 2 L_3 R_3 + L_4 R_3}$$

Q:
$$R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.65 BP-65
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{C_3L_3L_4R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4R_3s + L_3L_4R_4s + 2L_3R_3R_4 + L_4R_3R_4}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.66 BP-66
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.67 BP-67
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

 $H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$

Parameters:

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{2R_3+R_4}{2C_4R_3R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.68 BP-68
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

 $H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$

Parameters:

Q:
$$\frac{\sqrt{2}R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$ bandwidth: $\frac{2}{R_4(C_3+2C_4)}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.69 BP-69
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

 $H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$

Parameters:

Q:
$$\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.70 BP-70
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

 $H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4}$

Q:
$$\frac{\sqrt{2}R_3R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$

bandwidth:
$$\frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}$$

K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.71 BP-71
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$

Parameters:

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.72 BP-72
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2L_3 s + R_4}$$

Parameters:

Q:
$$\frac{R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.73 BP-73
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_4s}{C_3L_3L_4R_4s^2 + 2C_4L_3L_4R_4s^2 + 2L_3L_4s + 2L_3R_4 + L_4R_4}$$

Q:
$$\frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.74 BP-74
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{C_3R_3R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0

3.75 BP-75
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$$

Parameters:

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 ($C_3 + 2C_4$)
wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.76 BP-76
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2C_4 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.77 BP-77
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_3 s}{C_3 L_3 L_4 R_3 s^2 + 2C_4 L_3 L_4 R_3 s^2 + L_3 L_4 s + 2L_3 R_3 + L_4 R_3}$$

Q:
$$R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$

bandwidth:
$$\frac{1}{R_3(C_3+2C_4)}$$

K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.78 BP-78
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{C_3L_3L_4R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4R_3s + L_3L_4R_4s + 2L_3R_3R_4 + L_4R_3R_4}$$

3.79 BP-79
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

Parameters:

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.80 BP-80
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$$

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3+R_4}{2C_4R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.81 BP-81
$$Z(s) = \left(\infty, \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \frac{1}{C_3s}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}R_4\sqrt{\frac{1}{L_4(C_3+2C_4)}}(C_3+2C_4)}{2} \\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}} \\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.82 BP-82
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{R_3}{C_3R_3s+1}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

Parameters:

Q:
$$\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.83 BP-83
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{R_3}{C_3R_3s+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{\sqrt{2}R_{3}R_{4}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}(C_{3}+2C_{4})}{2R_{3}+R_{4}} \\ \text{wo:} \ \sqrt{2}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}} \\ \text{bandwidth:} \ \frac{2R_{3}+R_{4}}{R_{3}R_{4}(C_{3}+2C_{4})} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_{3}R_{4}}{2R_{3}+R_{4}} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.84 BP-84
$$Z(s) = \left(\infty, \ \frac{L_{2}s}{C_{2}L_{2}s^{2}+1} + R_{2}, \ \frac{L_{3}s}{C_{3}L_{3}s^{2}+1}, \ R_{4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$$

Q:
$$\frac{C_3 R_4 \sqrt{\frac{1}{C_3 L_3}}}{2}$$
 wo: $\sqrt{\frac{1}{C_3 L_3}}$

bandwidth:
$$\frac{2}{C_3R_4}$$
 K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$ Qz: 0
Wz: None

3.85 BP-85
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2L_3 s + R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}} \\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)} \\ \text{K-LP:} \ 0 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

3.86 BP-86
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_4 s}{C_3 L_3 L_4 R_4 s^2 + 2 C_4 L_3 L_4 R_4 s^2 + 2 L_3 L_4 s + 2 L_3 R_4 + L_4 R_4}$$

Parameters:

Q:
$$\frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2}$$
 wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 bandwidth:
$$\frac{2}{R_4(C_3+2C_4)}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_4}{2}$$
 Qz: 0 Wz: None

3.87 BP-87
$$Z(s) = \left(\infty, \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \frac{L_3R_{3s}}{C_3L_3R_3s^2+L_3s+R_3}, R_4, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{C_3R_3R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.88 BP-88
$$Z(s) = \left(\infty, \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \frac{L_3R_{3s}}{C_3L_3R_3s^2+L_3s+R_3}, \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.89 BP-89
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2C_4 L_3 R_3 R_4 s^2 + 2L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

Parameters:

3.90 BP-90
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3L_4R_3s}{C_3L_3L_4R_3s^2 + 2C_4L_3L_4R_3s^2 + L_3L_4s + 2L_3R_3 + L_4R_3}$$

Parameters:

Q:
$$R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.91 BP-91
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{C_3L_3L_4R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4R_3s + L_3L_4R_4s + 2L_3R_3R_4 + L_4R_3R_4}$$

Q:
$$\frac{R_3R_4\sqrt{\frac{2L_3+L_4}{l_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$

bandwidth:
$$\frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}$$

K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.92 BP-92
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 s}{2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$

Parameters:

Q:
$$2C_4R_3\sqrt{\frac{1}{C_4L_4}}$$

wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{2C_4R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.93 BP-93
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_3 R_4 s}{2C_4 L_4 R_3 R_4 s^2 + 2L_4 R_3 s + L_4 R_4 s + 2R_3 R_4}$

Parameters:

Q:
$$\frac{2C_4R_3R_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3+R_4}{2C_4R_3R_4}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 Qz: 0 Wz: None

3.94 BP-94
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$H(s) = \frac{L_4 R_4 s}{C_3 L_4 R_4 s^2 + 2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$

Q:
$$\frac{\sqrt{2}R_{4}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}(C_{3}+2C_{4})}{2}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}$$
 bandwidth:
$$\frac{2}{R_{4}(C_{3}+2C_{4})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{4}}{2}$$
 Qz: 0 Wz: None

3.95 BP-95
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 s}{C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3}$$

Q:
$$\sqrt{2}R_3\sqrt{\frac{1}{L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{2}\sqrt{\frac{1}{L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

3.96 BP-96
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s}{C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4}$$

Parameters:

Q:
$$\frac{\sqrt{2}R_{3}R_{4}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}(C_{3}+2C_{4})}{2R_{3}+R_{4}}$$
 wo:
$$\sqrt{2}\sqrt{\frac{1}{L_{4}(C_{3}+2C_{4})}}$$
 bandwidth:
$$\frac{2R_{3}+R_{4}}{R_{3}R_{4}(C_{3}+2C_{4})}$$
 K-LP: 0 K-HP: 0 K-BP:
$$\frac{R_{3}R_{4}}{2R_{3}+R_{4}}$$
 Qz: 0 Wz: None

3.97 BP-97
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2L_3 s + R_4}$$

Parameters:

Q:
$$\frac{C_3R_4\sqrt{\frac{1}{C_3L_3}}}{\frac{2}{2}}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{2}{C_3R_4}$ K-LP: 0 K-HP: 0 K-BP: $\frac{R_4}{2}$ Qz: 0 Wz: None

3.98 BP-98
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_4 s}{C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2L_3 s + R_4}$$

Q:
$$\frac{R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2}$$

wo:
$$\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$

bandwidth: $\frac{2}{R_4(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_4}{2}$
Qz: 0
Wz: None

3.99 BP-99
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 R_4 s}{C_3 L_3 L_4 R_4 s^2 + 2 C_4 L_3 L_4 R_4 s^2 + 2 L_3 L_4 s + 2 L_3 R_4 + L_4 R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2}\\ \text{wo:} \ \sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2}{R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_4}{2}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

3.100 BP-100
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s}{C_3 L_3 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4}$$

Parameters:

Q:
$$\frac{C_3R_3R_4\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{C_3R_3R_4}$
K-LP: 0
K-HP: 0
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: 0
Wz: None

3.101 BP-101
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \frac{1}{C_4s}, \infty, \infty\right)$$

$H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + L_3 s + R_3}$

Q:
$$R_3\sqrt{\frac{1}{L_3(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{1}{L_3(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

$$\textbf{3.102} \quad \textbf{BP-102} \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right) \\ H(s) = \frac{L_3R_3R_4s}{C_3L_3R_3R_4s^2+2C_4L_3R_3R_4s^2+2L_3R_3s+L_3R_4s+R_3R_4s}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{1}{L_3(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{1}{L_3(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

$$\textbf{3.103} \quad \textbf{BP-103} \ \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3L_4R_3s}{C_3L_3L_4R_3s^2+2C_4L_3L_4R_3s^2+L_3L_4s+2L_3R_3+L_4R_3}$$

Parameters:

Q:
$$R_3\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$$
 (C_3+2C_4)
wo: $\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}$
bandwidth: $\frac{1}{R_3(C_3+2C_4)}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

$$\textbf{3.104} \quad \textbf{BP-104} \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{L_3R_3s}{C_3L_3R_3s^2 + L_3s + R_3}, \ \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_3L_4R_3R_4s}{C_3L_3L_4R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4R_3s + L_3L_4R_4s + 2L_3R_3R_4 + L_4R_3R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{R_3R_4\sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}(C_3+2C_4)}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{2L_3+L_4}{L_3L_4(C_3+2C_4)}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{R_3R_4(C_3+2C_4)}\\ \text{K-LP:} \ 0\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

- 4 LP
- 5 BS

5.1 BS-1
$$Z(s) = \left(\infty, R_2, R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.2 BS-2
$$Z(s) = \left(\infty, R_2, R_3, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3R_4}{L_4(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

5.3 BS-3
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_4}{2L_3}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.4 BS-4
$$Z(s) = \left(\infty, R_2, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2R_3 + R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.5 BS-5
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.6 BS-6
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \frac{R_4(C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3R_4}{L_4(2R_3+R_4)}$$
 K-LP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 K-HP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_4L_4}}$$

5.7 BS-7
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_4}{2L_3}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$$

Qz: None Wz:
$$\sqrt{\frac{1}{C_3L_3}}$$

5.8 BS-8
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.9 BS-9
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.10 BS-10
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, R_3, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \ \, \frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4} \\ \text{wo:} \ \, \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \, \frac{2R_3R_4}{L_4(2R_3+R_4)} \\ \text{K-LP:} \ \, \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \, \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ \, 0 \\ \text{Qz:} \ \, \text{None} \\ \text{Wz:} \ \, \sqrt{\frac{1}{C_4L_4}} \end{array}$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

5.11 BS-11
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_4}{2L_3}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.12 BS-12
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.13 BS-13
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.14 BS-14
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2C_2 L_2 R_2 s^2 + C_2 L_2 R_4 s^2 + C_2 R_3 R_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3R_4}{L_4(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

5.15 BS-15
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_4}{2L_3}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.16 BS-16
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.17 BS-17 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + 2 C_4 R_3 s + 1}$$

Qz: None Wz:
$$\sqrt{\frac{1}{C_4L_4}}$$

5.18 BS-18
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3R_4}{L_4(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

5.19 BS-19
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{4}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{4}}{2L_{3}} \\ \text{K-LP:} \ \frac{R_{4}}{2} \\ \text{K-HP:} \ \frac{R_{4}}{2} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

5.20 BS-20
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)} \\ \text{K--LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K--HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K--BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2R_3 + R_4}$$

5.21 BS-21
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

 $H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.22 BS-22
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

 $H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1 \right)}{2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}}\\ \text{bandwidth:} \ \frac{2R_3R_4}{L_4(2R_3+R_4)}\\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

5.23 BS-23
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_4 (C_3 L_3 s^2 + 1)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$

Parameters:

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_4}{2L_3}$ K-LP: $\frac{R_4}{2}$ K-HP: $\frac{R_4}{2}$ K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

5.24 BS-24
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2 R_3 + R_4}$

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}}\\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)}\\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{K-BP:} \ 0\\ \text{Qz:} \ \text{None}\\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.25 BS-25
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.26 BS-26
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4}$$
 wo:
$$\sqrt{\frac{1}{C_4L_4}}$$
 bandwidth:
$$\frac{2R_3R_4}{L_4(2R_3+R_4)}$$
 K-LP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 K-HP:
$$\frac{R_3R_4}{2R_3+R_4}$$
 K-BP: 0 Qz: None Wz:
$$\sqrt{\frac{1}{C_4L_4}}$$

5.27 BS-27
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ R_4, \ \infty, \ \infty\right)$$

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{R_4}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_4}{2L_3}$ K-LP: $\frac{R_4}{2}$ K-BP: 0

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$$

Qz: None Wz:
$$\sqrt{\frac{1}{C_3L_3}}$$

5.28 BS-28
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ R_4, \ \infty, \ \infty\right)$$

$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2R_3 + R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

5.29 BS-29
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_4L_4}}$

5.30 BS-30
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}(2R_3+R_4)}{2R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3R_4}{L_4(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

5.31 BS-31
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, L_3s + \frac{1}{C_3s}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 L_3 s^2 + C_3 R_4 s + 2}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{4}} \\ \text{wo:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \\ \text{bandwidth:} \ \frac{R_{4}}{2L_{3}} \\ \text{K-LP:} \ \frac{R_{4}}{2} \\ \text{K-HP:} \ \frac{R_{4}}{2} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_{3}L_{3}}} \end{array}$$

5.32 BS-32
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2R_3 + R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{R_3R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{R_3R_4}{L_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ 0 \\ \text{Qz:} \ \text{None} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6 **GE**

6.1 GE-1
$$Z(s) = \left(\infty, R_2, R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

 $H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{L_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

6.2 GE-2
$$Z(s) = \left(\infty, R_2, R_3, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

Q:
$$C_4\sqrt{\frac{1}{C_4L_4}}$$
 $(2R_3+R_4)$
wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4(2R_3+R_4)}$
K-LP: $\frac{R_3R_4}{2R_3+R_4}$
K-HP: $\frac{R_3R_4}{2R_3+R_4}$
K-BP: R_3
Qz: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.3 GE-3
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{2L_3}$
K-LP: $\frac{R_4}{2}$
K-HP: $\frac{R_4}{2}$
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$

6.4 GE-4
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 L_3 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2L_3 s + 2R_3 + R_4}$$

6.5 GE-5
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$Q: \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4}$$
 wo: $\sqrt{\frac{1}{C_4L_4}}$ bandwidth: $\frac{2R_3+R_4}{L_4}$ K-LP: R_3 K-HP: R_3 K-BP: $\frac{R_3R_4}{2R_3+R_4}$ Qz: $\frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4}$ Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.6 GE-6
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

Parameters:

Q:
$$C_4\sqrt{\frac{1}{C_4L_4}}$$
 $(2R_3+R_4)$
wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4(2R_3+R_4)}$
K-LP: $\frac{R_3R_4}{2R_3+R_4}$
K-HP: $\frac{R_3R_4}{2R_3+R_4}$
K-BP: R_3
Qz: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.7 GE-7
$$Z(s) = \left(\infty, \frac{1}{C_{2}s}, L_{3}s + R_{3} + \frac{1}{C_{3}s}, R_{4}, \infty, \infty\right)$$

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{2L_3}$
K-LP: $\frac{R_4}{2}$
K-HP: $\frac{R_4}{2}$
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 L_3 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2}$$

6.8 GE-8
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} & \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} & \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} & \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} & \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} & \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} & \frac{R_4}{2} \\ \text{Qz:} & C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} & \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.9 GE-9
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, R_3, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{L_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

6.10 GE-10
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

Q:
$$C_4\sqrt{\frac{1}{C_4L_4}}$$
 (2 R_3+R_4)
wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4(2R_3+R_4)}$
K-LP: $\frac{R_3R_4}{2R_3+R_4}$
K-HP: $\frac{R_3R_4}{2R_3+R_4}$
K-BP: R_3
Qz: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2L_3 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$$

6.11 GE-11
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Q:
$$\frac{2L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{2R_{3}+R_{4}}$$
 wo:
$$\sqrt{\frac{1}{C_{3}L_{3}}}$$
 bandwidth:
$$\frac{2R_{3}+R_{4}}{2L_{3}}$$
 K-LP:
$$\frac{R_{4}}{2}$$
 K-HP:
$$\frac{R_{4}}{2}$$
 K-BP:
$$\frac{R_{3}R_{4}}{2R_{3}+R_{4}}$$
 Qz:
$$\frac{L_{3}\sqrt{\frac{1}{C_{3}L_{3}}}}{R_{3}}$$
 Wz:
$$\sqrt{\frac{1}{C_{3}L_{3}}}$$

6.12 GE-12 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.13 GE-13 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{L_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

 $H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 L_3 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2}$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 L_3 s + 2 R_3 + R_4}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

6.14 GE-14
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

Q:
$$C_4\sqrt{\frac{1}{C_4L_4}}$$
 $(2R_3+R_4)$
wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4(2R_3+R_4)}$
K-LP: $\frac{R_3R_4}{2R_3+R_4}$
K-HP: $\frac{R_3R_4}{2R_3+R_4}$
K-BP: R_3
Qz: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.15 GE-15
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

Parameters:

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{2L_3}$
K-LP: $\frac{R_4}{2}$
K-HP: $\frac{R_4}{2}$
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.16 GE-16
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 L_3 s + 2 R_3 + R_4}$$

6.17 GE-17
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{L_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

6.18 GE-18 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$

Parameters:

Q:
$$C_4\sqrt{\frac{1}{C_4L_4}}$$
 $(2R_3 + R_4)$
wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4(2R_3 + R_4)}$
K-LP: $\frac{R_3R_4}{2R_3 + R_4}$
K-HP: $\frac{R_3R_4}{2R_3 + R_4}$
K-BP: R_3
Qz: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.19 GE-19 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$

Parameters:

Q:
$$\frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{2L_3}$
K-LP: $\frac{R_4}{2}$
K-HP: $\frac{R_4}{2}$
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

 $H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2}$$

6.20 GE-20
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2L_3 s + 2R_3 + R_4}$

 $H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$

Parameters:

$$\begin{array}{l} \text{Q:} & \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} & \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} & \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} & \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} & \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} & \frac{R_4}{2} \\ \text{Qz:} & C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} & \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.21 GE-21
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{L_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

6.22 GE-22
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_2 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_2 s^2 + 2R_2$

Parameters:
$$Q: C_4 \sqrt{\frac{1}{C_4 L_4}} (2R_3 + R_4)$$
wo: $\sqrt{\frac{1}{C_4 L_4}}$
bandwidth: $\frac{1}{C_4 (2R_3 + R_4)}$
K-LP: $\frac{R_3 R_4}{2R_3 + R_4}$
K-HP: $\frac{R_3 R_4}{2R_3 + R_4}$
K-BP: R_3
Qz: $C_4 R_4 \sqrt{\frac{1}{C_4 L_4}}$
Wz: $\sqrt{\frac{1}{C_4 L_4}}$

6.23 GE-23
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 L_3 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2}$

Parameters:

$$Q: \frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}$$
wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{2R_3+R_4}{2L_3}$
K-LP: $\frac{R_4}{2}$
K-HP: $\frac{R_4}{2}$
K-BP: $\frac{R_3R_4}{2R_3+R_4}$
Qz: $\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$
Wz: $\sqrt{\frac{1}{C_3L_3}}$

6.24 GE-24
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4, \infty, \infty\right)$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.25 GE-25
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{L_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 L_3 s + 2 R_3 + R_4}$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

6.26 GE-26
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

 $H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$

Parameters:

Q:
$$C_4\sqrt{\frac{1}{C_4L_4}}$$
 $(2R_3+R_4)$
wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4(2R_3+R_4)}$
K-LP: $\frac{R_3R_4}{2R_3+R_4}$
K-HP: $\frac{R_3R_4}{2R_3+R_4}$
K-BP: R_3
Qz: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.27 GE-27 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ R_4, \ \infty, \ \infty\right)$

 $C_{2}L_{2}s^{2}+1+L_{2},\ L_{3}s+L_{3}+L_{3}+L_{4},\ \infty,\ \infty)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{2L_3} \\ \text{K-LP:} \ \frac{R_4}{2} \\ \text{K-HP:} \ \frac{R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.28 GE-28 $Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ R_4, \ \infty, \ \infty\right)$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

 $H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2}$

 $H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 L_3 s + 2 R_3 + R_4}$

6.29 GE-29
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

 $H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{2R_3+R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_4L_4}} \\ \text{bandwidth:} \ \frac{2R_3+R_4}{L_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ R_3 \\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{Qz:} \ \frac{L_4\sqrt{\frac{1}{C_4L_4}}}{R_4} \\ \text{Wz:} \ \sqrt{\frac{1}{C_4L_4}} \end{array}$$

6.30 GE-30
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$

Parameters:

Q:
$$C_4\sqrt{\frac{1}{C_4L_4}}$$
 (2 R_3+R_4)
wo: $\sqrt{\frac{1}{C_4L_4}}$
bandwidth: $\frac{1}{C_4(2R_3+R_4)}$
K-LP: $\frac{R_3R_4}{2R_3+R_4}$
K-HP: $\frac{R_3R_4}{2R_3+R_4}$
K-BP: R_3
Qz: $C_4R_4\sqrt{\frac{1}{C_4L_4}}$
Wz: $\sqrt{\frac{1}{C_4L_4}}$

6.31 GE-31
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, L_3s + R_3 + \frac{1}{C_3s}, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2}$

$$\begin{array}{l} \text{Q:} \ \frac{2L_3\sqrt{\frac{1}{C_3L_3}}}{2R_3+R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}}\\ \text{bandwidth:} \ \frac{2R_3+R_4}{2L_3}\\ \text{K-LP:} \ \frac{R_4}{2}\\ \text{K-HP:} \ \frac{R_4}{2}\\ \text{K-BP:} \ \frac{R_3R_4}{2R_3+R_4}\\ \text{Qz:} \ \frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}\\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

6.32 GE-32
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1} + R_3, R_4, \infty, \infty\right)$$

 $H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2L_3 s + 2R_3 + R_4}$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3\sqrt{\frac{1}{C_3L_3}}(2R_3+R_4)}{2} \\ \text{wo:} \ \sqrt{\frac{1}{C_3L_3}} \\ \text{bandwidth:} \ \frac{2}{C_3(2R_3+R_4)} \\ \text{K-LP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-HP:} \ \frac{R_3R_4}{2R_3+R_4} \\ \text{K-BP:} \ \frac{R_4}{2} \\ \text{Qz:} \ C_3R_3\sqrt{\frac{1}{C_3L_3}} \\ \text{Wz:} \ \sqrt{\frac{1}{C_3L_3}} \end{array}$$

7 AP

8 INVALID-NUMER

8.1 INVALID-NUMER-1 $Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{C_2 C_4 R_2 R_4 s^2 + C_2 R_2 s + 2C_4 R_2 s + C_4 R_4 s + 1}$

Parameters:

Q:
$$\frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}$$
 K-LP: R_3 K-HP: 0 K-BP:
$$\frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}$$
 Qz: 0 Wz: None

8.2 INVALID-NUMER-2 $Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 C_4 R_3 R_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

$$\begin{array}{l} \text{Q:} \ \frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3C_4R_3R_4}}\\ \text{bandwidth:} \ \frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}\\ \text{K-LP:} \ \frac{R_4}{2}\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

8.3 INVALID-NUMER-3 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

Parameters:

Q:
$$\frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}$$
 K-LP: R_3 K-HP: 0 K-BP:
$$\frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}$$
 Qz: 0 Wz: None

8.4 INVALID-NUMER-4 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 C_4 R_3 R_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

Parameters:

Q:
$$\frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}$$
 K-LP:
$$\frac{R_4}{2}$$
 K-HP: 0
K-BP:
$$\frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}$$
 Qz: 0
Wz: None

8.5 INVALID-NUMER-5 $Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

Parameters:

Q:
$$\frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}$$
 K-LP: R_3 K-HP: 0
K-BP:
$$\frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}$$
 Qz: 0
Wz: None

8.6 INVALID-NUMER-6 $Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, R_3 + \frac{1}{C_3s}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 C_4 R_3 R_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

Q:
$$\frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}$$
wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$

8.7 INVALID-NUMER-7 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3 \left(C_4 R_4 s + 1 \right)}{C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

Parameters:

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3C_4R_3R_4}}\\ \text{bandwidth:} \ \frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}\\ \text{K-LP:} \ R_3\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

8.8 INVALID-NUMER-8 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 C_4 R_3 R_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

Parameters:

Q:
$$\frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}$$
 K-LP:
$$\frac{R_4}{2}$$
 K-HP: 0
K-BP:
$$\frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}$$
 Qz: 0
Wz: None

8.9 INVALID-NUMER-9
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

$$\begin{array}{l} \text{Q:} \ \frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4} \\ \text{wo:} \ \sqrt{\frac{1}{C_3C_4R_3R_4}} \\ \text{bandwidth:} \ \frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4} \\ \text{K-LP:} \ R_3 \\ \text{K-HP:} \ 0 \\ \text{K-BP:} \ \frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4} \\ \text{Qz:} \ 0 \\ \text{Wz:} \ \text{None} \end{array}$$

8.10 INVALID-NUMER-10 $Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 C_4 R_3 R_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

Parameters:

Q:
$$\frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}$$
 K-LP:
$$\frac{R_4}{2}$$
 K-HP:
$$0$$
 K-BP:
$$\frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}$$
 Qz:
$$0$$
 Wz: None

8.11 INVALID-NUMER-11 $Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

Parameters:

Q:
$$\frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}$$
 K-LP: R_3 K-HP: 0 K-BP:
$$\frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}$$
 Qz: 0 Wz: None

8.12 INVALID-NUMER-12
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 C_4 R_3 R_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

Parameters:

Q:
$$\frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}$$
 K-LP:
$$\frac{R_4}{2}$$
 K-HP: 0
K-BP:
$$\frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}$$
 Qz: 0
Wz: None

8.13 INVALID-NUMER-13
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{R_3}{C_3R_3s+1}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

Q:
$$\frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}$$

wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$

bandwidth: $\frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}$
K-LP: R_3
K-HP: 0
K-BP: $\frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}$
Qz: 0

8.14 INVALID-NUMER-14
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1 \right)}{2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 R_4 s + 2}$$

Wz: None

$$\begin{array}{l} \text{Q:} \ \frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}\\ \text{wo:} \ \sqrt{\frac{1}{C_3C_4R_3R_4}}\\ \text{bandwidth:} \ \frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}\\ \text{K-LP:} \ \frac{R_4}{2}\\ \text{K-HP:} \ 0\\ \text{K-BP:} \ \frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}\\ \text{Qz:} \ 0\\ \text{Wz:} \ \text{None} \end{array}$$

8.15 INVALID-NUMER-15
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

Parameters:

Q:
$$\frac{C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{C_3R_3+2C_4R_3+C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{C_3R_3+2C_4R_3+C_4R_4}{C_3C_4R_3R_4}$$
 K-LP: R_3 K-HP: 0 K-BP:
$$\frac{C_4R_3R_4}{C_3R_3+2C_4R_3+C_4R_4}$$
 Qz: 0 Wz: None

8.16 INVALID-NUMER-16
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3 + \frac{1}{C_3s}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 C_4 R_3 R_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

Q:
$$\frac{2C_3C_4R_3R_4\sqrt{\frac{1}{C_3C_4R_3R_4}}}{2C_3R_3+C_3R_4+2C_4R_4}$$
 wo:
$$\sqrt{\frac{1}{C_3C_4R_3R_4}}$$
 bandwidth:
$$\frac{2C_3R_3+C_3R_4+2C_4R_4}{2C_3C_4R_3R_4}$$
 K-LP:
$$\frac{R_4}{2}$$
 K-HP: 0
K-BP:
$$\frac{C_3R_3R_4}{2C_3R_3+C_3R_4+2C_4R_4}$$
 Qz: 0
Wz: None

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, R_2, R_3, R_4, \infty, \infty)$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, R_2, R_3, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3}{2C_4R_3s + 1}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, R_2, R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, R_2, R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_3 s + C_4 R_4 s + 1}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, R_4, \infty, \infty\right)$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{1}{s\left(C_3 + 2C_4\right)}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.9 INVALID-ORDER-9 $Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2C_4 \right)}$$

10.10 INVALID-ORDER-10
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.11 INVALID-ORDER-11
$$Z(s) = \left(\infty, \ R_2, \ \frac{1}{C_3 s}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.12 INVALID-ORDER-12
$$Z(s) = \left(\infty, \ R_2, \ \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.13 INVALID-ORDER-13
$$Z(s) = \left(\infty, R_2, \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2C_4 L_4 s^2 + 2C_4 R_4 s + 2}$$

10.14 INVALID-ORDER-14
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.15 INVALID-ORDER-15
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.16 INVALID-ORDER-16
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.17 INVALID-ORDER-17
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.18 INVALID-ORDER-18
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.19 INVALID-ORDER-19
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3}{C_3 R_3 s + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_4 R_3 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.20 INVALID-ORDER-20
$$Z(s) = \left(\infty, R_2, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 R_3 R_4 s + 2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.21 INVALID-ORDER-21
$$Z(s) = \left(\infty, \ R_2, \ R_3 + \frac{1}{C_3 s}, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 R_3 s + C_3 R_4 s + 2}$$

10.22 INVALID-ORDER-22
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.23 INVALID-ORDER-23
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 R_4 s + 1)}{s (2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.24 INVALID-ORDER-24
$$Z(s) = \left(\infty, \ R_2, \ R_3 + \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4)}$$

10.25 INVALID-ORDER-25
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 R_3 s + 1\right)}{2C_3 C_4 L_4 R_3 s^3 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.26 INVALID-ORDER-26
$$Z(s) = \left(\infty, \ R_2, \ R_3 + \frac{1}{C_3 s}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + C_4 R_4 s + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.27 INVALID-ORDER-27
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 R_3 s + 1\right)}{2 C_3 C_4 L_4 R_3 R_4 s^3 + 2 C_3 L_4 R_3 s^2 + C_3 L_4 R_4 s^2 + 2 C_3 R_3 R_4 s + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$$

10.28 INVALID-ORDER-28
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{(C_3R_3s + 1)(C_4L_4R_4s^2 + L_4s + R_4)}{2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2}$$

10.29 INVALID-ORDER-29
$$Z(s) = \left(\infty, R_2, R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.30 INVALID-ORDER-30
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + \frac{1}{C_3 s}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(2C_3 C_4 L_3 s^2 + C_3 + 2C_4\right)}$$

10.31 INVALID-ORDER-31
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.32 INVALID-ORDER-32
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.33 INVALID-ORDER-33
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{s \left(2 C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 + 2 C_4\right)}$$

10.34 INVALID-ORDER-34
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.35 INVALID-ORDER-35
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.36 INVALID-ORDER-36
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_4 s^2 + C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$$

10.37 INVALID-ORDER-37
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + C_3R_4s + 2C_4L_4s^2 + 2C_4$$

10.38 INVALID-ORDER-38
$$Z(s) = \left(\infty, R_2, L_3 s + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 L_4 s^2 + 1 \right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 L_3 s^2 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2$$

10.39 INVALID-ORDER-39
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 2C_4 L_3 s^2 + 1}$$

10.40 INVALID-ORDER-40
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_3s^2+1}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 R_4 s + 1}$$

10.41 INVALID-ORDER-41
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

10.42 INVALID-ORDER-42
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 s}{C_3 L_3 L_4 s^2 + 2C_4 L_3 L_4 s^2 + 2L_3 + L_4}$$

10.43 INVALID-ORDER-43
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_3s^2+1}, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + C_4 R_4 s + 1}$$

10.44 INVALID-ORDER-44
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 L_4 s^3 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + C_4 L_4 R_4 s^2 + 2L_3 s + L_4 s + R_4}$$

10.45 INVALID-ORDER-45
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_4 s^2 + C_4 L_4 R_4 s^2 + 2 L_3 s + R_4}$$

10.46 INVALID-ORDER-46
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(2 C_3 C_4 L_3 s^2 + 2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.47 INVALID-ORDER-47
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.48 INVALID-ORDER-48
$$Z(s) = \left(\infty, \ R_2, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2 C_3 C_4 L_3 s^2 + 2 C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2 C_4\right)}$$

10.49 INVALID-ORDER-49
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.50 INVALID-ORDER-50
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_4 R_3 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.51 INVALID-ORDER-51
$$Z(s) = \left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4s^2 + C_4R_4s + 1\right)}{s\left(2C_3C_4L_3s^2 + C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4\right)}$$

10.52 INVALID-ORDER-52
$$Z(s) = \left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \infty, \infty\right)$$

10.53 INVALID-ORDER-53
$$Z(s) = \left(\infty, R_2, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + 2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_3R_3s + 2C_4L_4s^2 + 2C_4L_4$$

10.54 INVALID-ORDER-54
$$Z(s) = \left(\infty, R_2, L_3s + R_3 + \frac{1}{C_3s}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_5 r^2 + 2 C_4 R_5 r^$$

10.55 INVALID-ORDER-55
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_3 R_4 s^3 + C_3 L_3 R_3 s^2 + 2 C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.56 INVALID-ORDER-56
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_{3s}}{C_3 L_3 R_{3s}^2 + L_3 s + R_3}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2C_4 L_3 R_3 s^2 + C_4 L_4 R_3 s^2 + L_3 s + R_3}$$

10.57 INVALID-ORDER-57
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

10.58 INVALID-ORDER-58
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

10.59 INVALID-ORDER-59
$$Z(s) = \left(\infty, R_2, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

10.60 INVALID-ORDER-60
$$Z(s) = \left(\infty, R_2, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + 1}$$

10.61 INVALID-ORDER-61
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4}$$

10.62 INVALID-ORDER-62
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.63 INVALID-ORDER-63
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.64 INVALID-ORDER-64
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_{3s}^2+1} + R_3, \frac{L_{4s}}{C_4L_4s^2+1}, \infty, \infty\right)$$

10.65 INVALID-ORDER-65
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.66 INVALID-ORDER-66
$$Z(s) = \left(\infty, R_2, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

10.67 INVALID-ORDER-67
$$Z(s) = \left(\infty, R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2L_3s + L_4s + 2R_3 + R_4}$$

10.68 INVALID-ORDER-68
$$Z(s) = \left(\infty, \ R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 C_4 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_4 s^2 + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4 R_4 s^2 + 2 C_4 R_3 R_$$

10.69 INVALID-ORDER-69
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 (C_3 L_3 s^2 + 1)}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.70 INVALID-ORDER-70
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.71 INVALID-ORDER-71
$$Z(s) = \left(\infty, R_2, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 R_4 s + 1 \right)}{2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.72 INVALID-ORDER-72
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + 1}$$

10.73 INVALID-ORDER-73
$$Z(s) = \left(\infty, R_2, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_4 R_3 s^2 + 2C_4 L_4 R_3 s^2 + L_4 s + 2R_3 R_3 s^2 + C_3 L_4 R_3 s^2 + 2C_4 L_4 R_3 s^2 + L_4 s + 2R_3 R_3 R_3 s^2 + 2C_4 L_4 R_4 R_5 r_4 + 2C_4 L_4 R_5 r_5 + 2C_4 L_4 R_5 r_5 + 2C_4 L_5 R_5 r_5 + 2C_5 L_$$

10.74 INVALID-ORDER-74
$$Z(s) = \left(\infty, \ R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ L_4s+R_4+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)\left(C_4L_4s^2+C_4R_4s+1\right)}{C_3C_4L_3L_4s^4+2C_3C_4L_3R_3s^3+C_3C_4L_3R_4s^3+C_3C_4L_4R_3s^3+C_3C_4R_3R_4s^2+C_3L_3s^2+C_3R_3s+C_4L_4s^2+2C_4R_3s+C_4R_4s+1}$$

10.75 INVALID-ORDER-75
$$Z(s) = \left(\infty, R_2, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_3 R_4 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_3 R_4 s^2 + C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 C_4 R_3 R_4 s^2 + 2 R_3 R_4 s^2$$

10.76 INVALID-ORDER-76
$$Z(s) = \left(\infty, R_2, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

10.77 INVALID-ORDER-77
$$Z(s) = \left(\infty, R_2, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

10.78 INVALID-ORDER-78 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, R_4, \infty, \infty\right)$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.79 INVALID-ORDER-79 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3}{2C_4 R_3 s + 1}$$

10.80 INVALID-ORDER-80 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.81 INVALID-ORDER-81 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_3 s + C_4 R_4 s + 1}$$

10.82 INVALID-ORDER-82 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, R_4, \infty, \infty\right)$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.83 INVALID-ORDER-83
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{s(C_3 + 2C_4)}$$

10.84 INVALID-ORDER-84
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.85 INVALID-ORDER-85
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.86 INVALID-ORDER-86
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2C_4 \right)}$$

10.87 INVALID-ORDER-87
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.88 INVALID-ORDER-88
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.89 INVALID-ORDER-89
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.90 INVALID-ORDER-90
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.91 INVALID-ORDER-91
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.92 INVALID-ORDER-92
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.93 INVALID-ORDER-93
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.94 INVALID-ORDER-94
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.95 INVALID-ORDER-95
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.96 INVALID-ORDER-96
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_4 R_3 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.97 INVALID-ORDER-97
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 R_3 R_4 s + 2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.98 INVALID-ORDER-98 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 R_3 s + C_3 R_4 s + 2}$$

10.99 INVALID-ORDER-99 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.100 INVALID-ORDER-100 $Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 R_4 s + 1)}{s (2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.101 INVALID-ORDER-101
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4)}$$

10.102 INVALID-ORDER-102
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 R_3 s + 1\right)}{2C_3 C_4 L_4 R_3 s^3 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.103 INVALID-ORDER-103
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3R_3s+1)(C_4L_4s^2 + C_4R_4s+1)}{s(C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4)}$$

10.104 INVALID-ORDER-104
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

10.105 INVALID-ORDER-105
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2}$$

10.106 INVALID-ORDER-106
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.107 INVALID-ORDER-107 $Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(2 C_3 C_4 L_3 s^2 + C_3 + 2 C_4\right)}$$

10.108 INVALID-ORDER-108 $Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$

$$H(s) = \frac{R_4 (C_3 L_3 s^2 + 1)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.109 INVALID-ORDER-109 $Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.110 INVALID-ORDER-110 $Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 + 2C_4\right)}$$

10.111 INVALID-ORDER-111
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.112 INVALID-ORDER-112
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2 C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2 C_4\right)}$$

10.113 INVALID-ORDER-113
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

10.114 INVALID-ORDER-114
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_4 R_4 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.115 INVALID-ORDER-115
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 L_4 s^2 + 1 \right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 L_3 s^2 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.116 INVALID-ORDER-116 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 2C_4 L_3 s^2 + 1}$$

10.117 INVALID-ORDER-117 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{L_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 R_4 s + 1}$$

10.118 INVALID-ORDER-118 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{L_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

10.119 INVALID-ORDER-119 $Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$

$$H(s) = \frac{L_3 L_4 s}{C_3 L_3 L_4 s^2 + 2C_4 L_3 L_4 s^2 + 2L_3 + L_4}$$

10.120 INVALID-ORDER-120
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + C_4 R_4 s + 1}$$

10.121 INVALID-ORDER-121
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 L_4 s^3 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + C_4 L_4 R_4 s^2 + 2L_3 s + L_4 s + R_4}$$

10.122 INVALID-ORDER-122
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_3 R_4 s^2 + C_4 L_4 R_4 s^2 + 2L_3 s + R_4}$$

10.123 INVALID-ORDER-123
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(2 C_3 C_4 L_3 s^2 + 2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.124 INVALID-ORDER-124
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.125 INVALID-ORDER-125
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_4 R_4 s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (2C_3 C_4 L_3 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.126 INVALID-ORDER-126
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.127 INVALID-ORDER-127
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_4 R_3 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.128 INVALID-ORDER-128
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2 C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2 C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2 C_4\right)}$$

$$\textbf{10.129} \quad \textbf{INVALID-ORDER-129} \ Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 C_4 L_4 R_3 R_4 s^3 + 2 C_3 L_3 L_4 s^3 + 2 C_3 L_4 R_3 s^2 + C_3 L_4 R_4 s^2 + 2 C_3 R_3 R_4 s + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4 R_4 s^2 + 2 C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4 R_4 s^2 + 2 C_5 L_4 R_4 s^2 + 2 C_5 L_5 R_5 R_5 \right)$$

10.130 INVALID-ORDER-130
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + 2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_3R_3s +$$

10.131 INVALID-ORDER-131
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s^$$

10.132 INVALID-ORDER-132
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_3 R_4 s^3 + C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.133 INVALID-ORDER-133
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2C_4 L_3 R_3 s^2 + C_4 L_4 R_3 s^2 + L_3 s + R_3}$$

10.134 INVALID-ORDER-134
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_4 s^2 + C_4 L_4 R_3 s^2 + C_4 L_3 R_4 s + L_3 s + R_3}$$

10.135 INVALID-ORDER-135
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_{3s}}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

10.136 INVALID-ORDER-136
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 R_4 s^4 + C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 s^3 + C_4 L_3 L_4 R_4 s^3 + 2 C_4 L_3 R_3 R_4 s^2 + C_4 L_4 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s + R_$$

10.137 INVALID-ORDER-137
$$Z(s) = \left(\infty, \frac{1}{C_{2s}}, \frac{L_{3s}}{C_{3}L_{3s}^2+1} + R_3, \frac{1}{C_{4s}}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + 1}$$

10.138 INVALID-ORDER-138
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4}$$

10.139 INVALID-ORDER-139
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.140 INVALID-ORDER-140
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.141 INVALID-ORDER-141
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_4 R_3 s^2 + 2 L_3 s + L_4 s + 2 R_3}$$

10.142 INVALID-ORDER-142
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.143 INVALID-ORDER-143
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 s^3 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_3 L_4 s^2 + 2 L_3 R_4 s + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3 s^2 + 2 L_4 R_4 s^2 +$$

10.144 INVALID-ORDER-144
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_4s^4 + C_3L_3L_4s^3 + 2C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2L_3s + L_4s + 2R_3 + R_4}$$

10.145 INVALID-ORDER-145
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_4 s^2 + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4 R_4 s^2 + 2 C_4 R_3 R_4 s^2 + 2 C_4$$

10.146 INVALID-ORDER-146
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.147 INVALID-ORDER-147
$$Z(s) = \left(\infty, \ \frac{1}{C_2 s}, \ \frac{R_3\left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 R_3 R_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.148 INVALID-ORDER-148
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3\left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 R_4 s + 1 \right)}{2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.149 INVALID-ORDER-149
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3\left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + 1}$$

10.150 INVALID-ORDER-150
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3\left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_4 R_3 s^2 + 2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

10.151 INVALID-ORDER-151
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3\left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.152 INVALID-ORDER-152
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3(C_3 L_3 s^2 + 1)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_3 R_4 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_3 R_4 s^2 + C_3 L_4 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3$$

10.153 INVALID-ORDER-153
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 L_4 R_3 s^2 + C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.154 INVALID-ORDER-154
$$Z(s) = \left(\infty, \frac{1}{C_2 s}, \frac{R_3\left(C_3 L_3 s^2+1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{R_4\left(C_4 L_4 s^2+1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_3 s^4 + 2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 R_3 + R_4 R_4 s^2 + 2 C_4 R_3 R_4 s^2 + 2 C_4 R_4 R_$$

10.155 INVALID-ORDER-155
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.156 INVALID-ORDER-156
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{2C_4R_3s + 1}$$

10.157 INVALID-ORDER-157
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.158 INVALID-ORDER-158
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_3 s + C_4 R_4 s + 1}$$

10.159 INVALID-ORDER-159
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.160 INVALID-ORDER-160
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s}, \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{s\left(C_3 + 2C_4\right)}$$

10.161 INVALID-ORDER-161
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.162 INVALID-ORDER-162
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.163 INVALID-ORDER-163
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2 C_4 \right)}$$

10.164 INVALID-ORDER-164
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.165 INVALID-ORDER-165
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2 C_4 \right)}$$

10.166 INVALID-ORDER-166
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.167 INVALID-ORDER-167
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{1}{C_3s}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.168 INVALID-ORDER-168
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.169 INVALID-ORDER-169
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.170 INVALID-ORDER-170
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.171 INVALID-ORDER-171
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.172 INVALID-ORDER-172
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{R_3}{C_3R_3s+1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.173 INVALID-ORDER-173
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_4 R_3 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.174 INVALID-ORDER-174
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 R_3 R_4 s + 2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.175 INVALID-ORDER-175
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 R_3 s + C_3 R_4 s + 2}$$

10.176 INVALID-ORDER-176
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.177 INVALID-ORDER-177
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 R_4 s + 1)}{s (2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.178 INVALID-ORDER-178
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ R_3 + \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4)}$$

10.179 INVALID-ORDER-179
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s (C_3 R_3 s + 1)}{2C_3 C_4 L_4 R_3 s^3 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.180 INVALID-ORDER-180
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3R_3s + 1)(C_4L_4s^2 + C_4R_4s + 1)}{s(C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4)}$$

10.181 INVALID-ORDER-181
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 R_3 s + 1\right)}{2 C_3 C_4 L_4 R_3 R_4 s^3 + 2 C_3 L_4 R_3 s^2 + C_3 L_4 R_4 s^2 + 2 C_3 R_3 R_4 s + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$$

10.182 INVALID-ORDER-182
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 L_4 s^2 + 2C_4 L_4$$

10.183 INVALID-ORDER-183
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1 \right) \left(C_4 L_4 s^2 + 1 \right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.184 INVALID-ORDER-184
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(2C_3 C_4 L_3 s^2 + C_3 + 2C_4\right)}$$

10.185 INVALID-ORDER-185
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_3 L_3 s^2 + 1)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.186 INVALID-ORDER-186
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.187 INVALID-ORDER-187
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 + 2C_4\right)}$$

10.188 INVALID-ORDER-188
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.189 INVALID-ORDER-189
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.190 INVALID-ORDER-190
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ L_3s + \frac{1}{C_3s}, \ \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 R_4 s^4 + 2C_3 L_3 L_4 s^3 + 2C_3 L_3 R_4 s^2 + C_3 L_4 R_4 s^2 + 2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

10.191 INVALID-ORDER-191
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + C_3R_4s + 2C_4L_4s^2 + 2C_4$$

10.192 INVALID-ORDER-192
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, L_3s + \frac{1}{C_3s}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 L_4 s^2 + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2C_4 + 2C_4 L$$

10.193 INVALID-ORDER-193
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 2C_4 L_3 s^2 + 1}$$

10.194 INVALID-ORDER-194
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 R_4 s + 1}$$

10.195 INVALID-ORDER-195
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

10.196 INVALID-ORDER-196
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 s}{C_3 L_3 L_4 s^2 + 2C_4 L_3 L_4 s^2 + 2L_3 + L_4}$$

10.197 INVALID-ORDER-197
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + C_4 R_4 s + 1}$$

10.198 INVALID-ORDER-198
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 L_4 s^3 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + C_4 L_4 R_4 s^2 + 2L_3 s + L_4 s + R_4}$$

10.199 INVALID-ORDER-199
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1}, \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_3 R_4 s^2 + C_4 L_4 R_4 s^2 + 2L_3 s + R_4}$$

10.200 INVALID-ORDER-200
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(2 C_3 C_4 L_3 s^2 + 2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.201 INVALID-ORDER-201
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, L_3s + R_3 + \frac{1}{C_3s}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 R_5 s + 2 C_4 R_5 s + 2 C_4 R_5 s + 2 C_5 R_5 s + 2$$

10.202 INVALID-ORDER-202
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_4 R_4 s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (2C_3 C_4 L_3 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.203 INVALID-ORDER-203
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.204 INVALID-ORDER-204
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_4 R_3 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.205 INVALID-ORDER-205
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4s^2 + C_4R_4s + 1\right)}{s\left(2C_3C_4L_3s^2 + C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4\right)}$$

10.206 INVALID-ORDER-206
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, L_3s + R_3 + \frac{1}{C_3s}, \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \infty, \infty\right)$$

10.207 INVALID-ORDER-207
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + 2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_3R_3s + 2C_4L_4s^2 + 2C_4R_4s^2 + 2C_4R_4s$$

10.208 INVALID-ORDER-208
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_5 r^2 + 2 C_4 R_5 r^$$

10.209 INVALID-ORDER-209
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_3 R_4 s^3 + C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.210 INVALID-ORDER-210
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2C_4 L_3 R_3 s^2 + C_4 L_4 R_3 s^2 + L_3 s + R_3}$$

10.211 INVALID-ORDER-211
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$L_3 R_3 s \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 R_3 s^3 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_4 s^2 + C_4 L_3 R_4 s^2 + C_4 L_4 R_3 s^2 + C_4 R_3 R_4 s + L_3 s + R_3 R_4 s^2 + C_4 R_4 R_4 s^2 + C_4 R_4 R_5 r_4 R_5 r_4 R_5 r_5 + C_4 R_5 R_5 r_5 + C_5 R_5$$

10.212 INVALID-ORDER-212
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

10.213 INVALID-ORDER-213
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

10.214 INVALID-ORDER-214
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + 1}$$

10.215 INVALID-ORDER-215
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 C_4 L_3 R_3 R_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2C_4 R_3 R_4 s + 2L_3 s + 2R_3 + R_4}$$

10.216 INVALID-ORDER-216
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.217 INVALID-ORDER-217
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.218 INVALID-ORDER-218
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2C_3 L_3 R_3 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_4 R_3 s^2 + 2L_3 s + L_4 s + 2R_3}$$

10.219 INVALID-ORDER-219
$$Z(s) = \left(\infty, \frac{R_2}{C_2 R_2 s + 1}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4L_4s^2 + C_4R_4s + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_4L_3L_4s^4 + 2C_3C_4L_3R_3s^3 + C_3C_4L_3R_4s^3 + C_3L_3s^2 + 2C_4L_3s^2 + C_4L_4s^2 + 2C_4R_3s + C_4R_4s + 1}$$

$$\textbf{10.220} \quad \textbf{INVALID-ORDER-220} \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 L_4 R_3 R_4 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_3 R_4 s^2 + 2 L_4 L_4 R_3 R_4 s^2 + 2 L_3 L_4 s^2 + 2 L_3 R_4 s + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_4$$

10.221 INVALID-ORDER-221
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_4s^4 + C_3L_3L_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_4s^2 + 2L_3s + L_4s + 2R_3 + R_4}$$

$$\textbf{10.222} \quad \textbf{INVALID-ORDER-222} \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{R_4 \left(C_4 L_4 s^2 + 1 \right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty \right) \\ H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 C_4 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_4 s^2 + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4 R_4 r_4 r_5 \right) \\ H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_4 R_4 s^2 + 2 C_4 L$$

10.223 INVALID-ORDER-223
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)}{2C_3C_4L_3R_3s^3+C_3L_3s^2+C_3R_3s+2C_4R_3s+1}$$

10.224 INVALID-ORDER-224
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3R_4\left(C_3L_3s^2+1\right)}{2C_3C_4L_3R_3R_4s^3+2C_3L_3R_3s^2+C_3L_3R_4s^2+C_3R_3R_4s+2C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s^2+C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s^2+C_4R_3R_4s^2+C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s^2+C_4R_$$

10.225 INVALID-ORDER-225
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)\left(C_4R_4s+1\right)}{2C_3C_4L_3R_3s^3+C_3C_4L_3R_4s^3+C_3C_4R_3R_4s^2+C_3L_3s^2+C_3R_3s+2C_4R_3s+C_4R_4s+1\right)}$$

10.226 INVALID-ORDER-226
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)\left(C_4L_4s^2+1\right)}{C_3C_4L_3L_4s^4+2C_3C_4L_3R_3s^3+C_3C_4L_4R_3s^3+C_3L_4s^2+2C_4R_3s+1}$$

10.227 INVALID-ORDER-227
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4R_3s\left(C_3L_3s^2+1\right)}{2C_3C_4L_3L_4R_3s^4+C_3L_3L_4s^3+2C_3L_3R_3s^2+C_3L_4R_3s^2+2C_4L_4R_3s^2+L_4s+2R_3s^2+2C_4L_4R_3s^2+2C_4L$$

$$\textbf{10.228} \quad \textbf{INVALID-ORDER-228} \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

$$\textbf{10.229} \quad \textbf{INVALID-ORDER-229} \ Z(s) = \left(\infty, \ \frac{R_2}{C_2 R_2 s + 1}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_4 R_3 R_4 s \left(C_3 L_3 s^2 + 1 \right)}{2 C_3 C_4 L_3 L_4 R_3 R_4 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 C_$$

10.230 INVALID-ORDER-230
$$Z(s) = \left(\infty, \ \frac{R_2}{C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)\left(C_4L_4R_4s^2+L_4s+R_4\right)}{2C_3C_4L_3L_4R_3s^4+C_3C_4L_3L_4R_3s^4+C_3C_4L_4R_3R_4s^3+C_3L_3L_4s^3+2C_3L_3R_3s^2+C_3L_3R_4s^2+C_3R_3R_4s+2C_4L_4R_3s^2+C_4L_4R_4s^2+L_4s+2R_3+R_4}$$

10.231 INVALID-ORDER-231
$$Z(s) = \left(\infty, \frac{R_2}{C_2R_2s+1}, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3R_4\left(C_3L_3s^2 + 1\right)\left(C_4L_4s^2 + 1\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3R_4s^4 + 2C_3C_4L_3R_3R_4s^3 + C_3C_4L_4R_3s^2 + C_3L_3R_4s^2 + C_3L_3R_4s^2 + C_3R_3R_4s + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2C_4R_3R_4s + 2R_3 + R_4R_4s^2 + 2C_4R_3R_4s^2 + 2C_4R_3R_4s^2$$

10.232 INVALID-ORDER-232
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.233 INVALID-ORDER-233
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{2C_4R_3s + 1}$$

10.234 INVALID-ORDER-234
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.235 INVALID-ORDER-235
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_3 s + C_4 R_4 s + 1}$$

10.236 INVALID-ORDER-236
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.237 INVALID-ORDER-237
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{1}{s(C_3 + 2C_4)}$$

10.238 INVALID-ORDER-238
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.239 INVALID-ORDER-239
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.240 INVALID-ORDER-240
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2C_4 \right)}$$

10.241 INVALID-ORDER-241
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.242 INVALID-ORDER-242
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.243 INVALID-ORDER-243
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2}$$

10.244 INVALID-ORDER-244
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.245 INVALID-ORDER-245 $Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ R_4, \ \infty, \ \infty\right)$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.246 INVALID-ORDER-246 $Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.247 INVALID-ORDER-247
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.248 INVALID-ORDER-248
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.249 INVALID-ORDER-249
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.250 INVALID-ORDER-250
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_4 R_3 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.251 INVALID-ORDER-251
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.252 INVALID-ORDER-252
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 R_3 s + C_3 R_4 s + 2}$$

10.253 INVALID-ORDER-253
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.254 INVALID-ORDER-254
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 R_4 s + 1)}{s (2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.255 INVALID-ORDER-255
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4)}$$

10.256 INVALID-ORDER-256
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 R_3 s + 1\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 L_4 s^2 + 2 C_3 R_3 s + 2 C_4 L_4 s^2 + 2}$$

10.257 INVALID-ORDER-257
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3R_3s+1)(C_4L_4s^2 + C_4R_4s+1)}{s(C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4)}$$

10.258 INVALID-ORDER-258
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

10.259 INVALID-ORDER-259
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{(C_3R_3s + 1)(C_4L_4R_4s^2 + L_4s + R_4)}{2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2}$$

10.260 INVALID-ORDER-260
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.261 INVALID-ORDER-261
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(2 C_3 C_4 L_3 s^2 + C_3 + 2 C_4\right)}$$

10.262 INVALID-ORDER-262
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.263 INVALID-ORDER-263
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.264 INVALID-ORDER-264
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 + 2C_4\right)}$$

10.265 INVALID-ORDER-265
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.266 INVALID-ORDER-266
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.267 INVALID-ORDER-267
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_4 s^2 + C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$$

10.268 INVALID-ORDER-268
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + C_3R_4s + 2C_4L_4s^2 + 2}$$

10.269 INVALID-ORDER-269
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 L_3 s^2 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.270 INVALID-ORDER-270
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 2C_4 L_3 s^2 + 1}$$

10.271 INVALID-ORDER-271
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 R_4 s + 1}$$

10.272 INVALID-ORDER-272
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

10.273 INVALID-ORDER-273
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 s}{C_3 L_3 L_4 s^2 + 2C_4 L_3 L_4 s^2 + 2L_3 + L_4}$$

10.274 INVALID-ORDER-274
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + C_4 R_4 s + 1}$$

10.275 INVALID-ORDER-275
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 L_4 s^3 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + C_4 L_4 R_4 s^2 + 2 L_3 s + L_4 s + R_4}$$

10.276 INVALID-ORDER-276
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_3 R_4 s^2 + C_4 L_4 R_4 s^2 + 2L_3 s + R_4}$$

10.277 INVALID-ORDER-277
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(2 C_3 C_4 L_3 s^2 + 2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.278 INVALID-ORDER-278
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 C_4 R_3 R_4 s^2 + 2C_3 L_3 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.279 INVALID-ORDER-279
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_4 R_4 s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (2C_3 C_4 L_3 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.280 INVALID-ORDER-280
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.281 INVALID-ORDER-281
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_4 R_3 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.282 INVALID-ORDER-282
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4s^2 + C_4R_4s + 1\right)}{s\left(2C_3C_4L_3s^2 + C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4\right)}$$

10.283 INVALID-ORDER-283
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

$$\textbf{10.284} \quad \textbf{INVALID-ORDER-284} \ Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty \right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 L_3 s^2 + C_3 L_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2}$$

10.285 INVALID-ORDER-285
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_4 s^3 + 2C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2C_3 C_4 R_3 R_4 s^2 + 2C_3 L_3 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 L_4 s^2 + 2C_4 R_4 s + 2C_4 L_4 s^2 + 2C_4 R_4 s + 2C_4 L_4 s^2 + 2C_4 R_4 s^2 +$$

10.286 INVALID-ORDER-286
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_3 R_4 s^3 + C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.287 INVALID-ORDER-287
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2C_4 L_3 R_3 s^2 + C_4 L_4 R_3 s^2 + L_3 s + R_3}$$

10.288 INVALID-ORDER-288
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 L_4 R_3 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.289 INVALID-ORDER-289
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 R_{3s}}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3R_3s\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{C_3C_4L_3L_4R_3s^4 + C_3L_3L_4R_3s^3 + C_3L_3R_3R_4s^2 + 2C_4L_3L_4R_3s^3 + C_4L_3L_4R_3s^3 + C_4L_4R_3R_4s^2 + L_3L_4s^2 + 2L_3R_3s + L_3R_4s + L_4R_3s + R_3R_4s^2 + L_4R_3s^3 + C_4L_4R_3R_4s^3 + C_4L_4R_3R_4s^2 + L_4R_3s^3 + L_4R_3$$

10.290 INVALID-ORDER-290
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 R_4 s^4 + C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 s^3 + C_4 L_3 L_4 R_3 s^3 + 2 C_4 L_3 R_3 R_4 s^2 + C_4 L_4 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 s + R_$$

10.291 INVALID-ORDER-291
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + 1}$$

10.292 INVALID-ORDER-292
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4}$$

10.293 INVALID-ORDER-293
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.294 INVALID-ORDER-294
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.295 INVALID-ORDER-295
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_4 R_3 s^2 + 2 L_3 s + L_4 s + 2 R_3}$$

10.296 INVALID-ORDER-296
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.297 INVALID-ORDER-297
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

10.298 INVALID-ORDER-298
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2L_3s + L_4s + 2R_3 + R_4}$$

10.299 INVALID-ORDER-299
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

10.300 INVALID-ORDER-300
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_3 L_3 s^2 + 1)}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.301 INVALID-ORDER-301
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.302 INVALID-ORDER-302
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.303 INVALID-ORDER-303
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 L_3 s^2 + C_4 L_4 s^2 + 2 C_4 R_3 s + 1}$$

10.304 INVALID-ORDER-304
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_3 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3}$$

10.305 INVALID-ORDER-305
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.306 INVALID-ORDER-306
$$Z(s) = \left(\infty, \ R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_3 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_3 R_4 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 C_4 L_4 R_4 s$$

10.307 INVALID-ORDER-307
$$Z(s) = \left(\infty, R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_3 L_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2R_3 + R_4}$$

10.309 INVALID-ORDER-309
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.310 INVALID-ORDER-310
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{2C_4R_3s + 1}$$

10.311 INVALID-ORDER-311
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.312 INVALID-ORDER-312
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_3 s + C_4 R_4 s + 1}$$

10.313 INVALID-ORDER-313
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.314 INVALID-ORDER-314
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{s\left(C_3 + 2C_4\right)}$$

10.315 INVALID-ORDER-315
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.316 INVALID-ORDER-316
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.317 INVALID-ORDER-317
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2C_4 \right)}$$

10.318 INVALID-ORDER-318
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2 C_4 L_4 s^2 + 2}$$

10.319 INVALID-ORDER-319
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.320 INVALID-ORDER-320
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.321 INVALID-ORDER-321
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.322 INVALID-ORDER-322
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.323 INVALID-ORDER-323
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.324 INVALID-ORDER-324
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.325 INVALID-ORDER-325
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.326 INVALID-ORDER-326
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.327 INVALID-ORDER-327
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_4 R_3 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.328 INVALID-ORDER-328
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.329 INVALID-ORDER-329
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 R_3 s + C_3 R_4 s + 2}$$

10.330 INVALID-ORDER-330
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.331 INVALID-ORDER-331
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 R_4 s + 1)}{s (2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.332 INVALID-ORDER-332
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4)}$$

10.333 INVALID-ORDER-333
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 R_3 s + 1\right)}{2C_3 C_4 L_4 R_3 s^3 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.334 INVALID-ORDER-334
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3R_3s+1)(C_4L_4s^2 + C_4R_4s+1)}{s(C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4)}$$

10.335 INVALID-ORDER-335
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \infty, \infty\right)$$

10.336 INVALID-ORDER-336
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{(C_3R_3s + 1)(C_4L_4R_4s^2 + L_4s + R_4)}{2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2}$$

10.337 INVALID-ORDER-337
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.338 INVALID-ORDER-338
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(2 C_3 C_4 L_3 s^2 + C_3 + 2 C_4\right)}$$

10.339 INVALID-ORDER-339
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 (C_3 L_3 s^2 + 1)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.340 INVALID-ORDER-340
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2 C_3 C_4 L_3 s^2 + C_3 C_4 R_4 s + C_3 + 2 C_4\right)}$$

10.341 INVALID-ORDER-341
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 + 2C_4\right)}$$

10.342 INVALID-ORDER-342
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.343 INVALID-ORDER-343
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.344 INVALID-ORDER-344
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_4 s^2 + C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4}$$

10.345 INVALID-ORDER-345
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_4 R_4 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.346 INVALID-ORDER-346
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 L_3 s^2 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.347 INVALID-ORDER-347
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 2C_4 L_3 s^2 + 1}$$

10.348 INVALID-ORDER-348
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 R_4 s + 1}$$

10.349 INVALID-ORDER-349
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

10.350 INVALID-ORDER-350
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 L_4 s}{C_3 L_3 L_4 s^2 + 2C_4 L_3 L_4 s^2 + 2L_3 + L_4}$$

10.351 INVALID-ORDER-351
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + C_4 R_4 s + 1}$$

10.352 INVALID-ORDER-352
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3s\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{C_3C_4L_3L_4s^4 + C_3L_3L_4s^3 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + C_4L_4R_4s^2 + 2L_3s + L_4s + R_4}$$

10.353 INVALID-ORDER-353
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_3 R_4 s^2 + C_4 L_4 R_4 s^2 + 2L_3 s + R_4}$$

10.354 INVALID-ORDER-354
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(2 C_3 C_4 L_3 s^2 + 2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.355 INVALID-ORDER-355
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.356 INVALID-ORDER-356
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_4 R_4 s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (2C_3 C_4 L_3 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.357 INVALID-ORDER-357
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.358 INVALID-ORDER-358
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_4 R_3 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.359 INVALID-ORDER-359
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4s^2 + C_4R_4s + 1\right)}{s\left(2C_3C_4L_3s^2 + C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4\right)}$$

10.360 INVALID-ORDER-360
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

10.361 INVALID-ORDER-361
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + 2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_3R_3s +$$

10.362 INVALID-ORDER-362
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s^2$$

10.363 INVALID-ORDER-363
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 R_{3s}}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_3 R_4 s^3 + C_3 L_3 R_3 s^2 + 2 C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.364 INVALID-ORDER-364
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2C_4 L_3 R_3 s^2 + C_4 L_4 R_3 s^2 + L_3 s + R_3}$$

10.365 INVALID-ORDER-365
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

10.366 INVALID-ORDER-366
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{C_3 C_4 L_3 L_4 R_3 R_4 s^4 + C_3 L_3 L_4 R_3 s^3 + C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 s^3 + C_4 L_4 L_4 R_3 R_4 s^2 + L_3 L_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + L_4 R_3 s + R_3 R_4}$$

10.367 INVALID-ORDER-367
$$Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_3R_3s}{C_3L_3R_3s^2 + L_3s + R_3}, \ \frac{R_4\left(C_4L_4s^2 + 1\right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3R_3R_4s\left(C_4L_4s^2 + 1\right)}{C_3C_4L_3L_4R_3R_4s^4 + C_3L_3R_3R_4s^2 + 2C_4L_3L_4R_3s^3 + C_4L_3L_4R_4s^3 + 2C_4L_3R_3R_4s^2 + 2L_3R_3s + L_3R_4s + R_3R_4s^2 + C_4L_3R_3R_4s^2 + C$$

10.368 INVALID-ORDER-368
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + 1}$$

10.369 INVALID-ORDER-369
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 C_4 L_3 R_3 R_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2C_4 R_3 R_4 s + 2L_3 s + 2R_3 + R_4}$$

10.370 INVALID-ORDER-370
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.371 INVALID-ORDER-371
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.372 INVALID-ORDER-372
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_4 R_3 s^2 + 2 L_3 s + L_4 s + 2 R_3}$$

10.373 INVALID-ORDER-373
$$Z(s) = \left(\infty, L_2 s + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.374 INVALID-ORDER-374
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 s^2 + 2 L_3 L_4 s^2 + 2 L_3 R_4 s + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3 s + 2 L_4 R_$$

$$\textbf{10.375} \quad \textbf{INVALID-ORDER-375} \ \ Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty \right)$$

$$H(s) = \frac{\left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 L_3 s + L_4 s + 2 R_3 + R_4 }$$

10.376 INVALID-ORDER-376
$$Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4\left(C_4L_4s^2+1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_4s^4 + 2C_3C_4L_3R_3R_4s^3 + 2C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_3R_4s^2 + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2C_4R_3R_4s + 2L_3s + 2R_3 + R_4}$$

10.377 INVALID-ORDER-377
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.378 INVALID-ORDER-378
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.379 INVALID-ORDER-379
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.380 INVALID-ORDER-380
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + 1}$$

10.381 INVALID-ORDER-381
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_3 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_4 R_3 s^2 + L_4 s + 2 R_3}$$

10.382 INVALID-ORDER-382
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.383 INVALID-ORDER-383
$$Z(s) = \left(\infty, \ L_2s + \frac{1}{C_2s}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4R_3R_4s\left(C_3L_3s^2+1\right)}{2C_3C_4L_3L_4R_3R_4s^4+2C_3L_3L_4R_3s^3+C_3L_3L_4R_4s^3+2C_3L_3R_3R_4s^2+2C_4L_4R_3R_4s^2+2L_4R_3s+L_4R_4s+2R_3R_4s^2+2C_3L_3R_3R_4s^2+C_3L_4R_3R_4s^2+2C_4L_4R_3R_4s^2+2L_4R_3s+L_4R_4s+2R_3R_4s^2+2C_3L_3R_3R_4s^2+2C_3L_3R_3R_4s^2+2C_3L_4R_3R_4s^2+2C_4L_4R_4s^2+2C_4L_4R_$$

10.384 INVALID-ORDER-384
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

10.385 INVALID-ORDER-385
$$Z(s) = \left(\infty, \ L_2 s + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3R_4\left(C_3L_3s^2 + 1\right)\left(C_4L_4s^2 + 1\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3R_4s^4 + 2C_3C_4L_3R_3R_4s^3 + C_3C_4L_4R_3s^2 + C_3L_3R_4s^2 + C_3L_3R_4s^2 + C_3R_3R_4s + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2C_4R_3R_4s + 2R_3 + R_4R_4s^2 + 2C_4R_3R_4s^2 + 2C_4R_4R_4s^2 + 2C_4R_4R_4s^2$$

10.386 INVALID-ORDER-386
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.387 INVALID-ORDER-387
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{2C_4R_3s + 1}$$

10.388 INVALID-ORDER-388
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.389 INVALID-ORDER-389
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_3 s + C_4 R_4 s + 1}$$

10.390 INVALID-ORDER-390
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.391 INVALID-ORDER-391
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{1}{s(C_3 + 2C_4)}$$

10.392 INVALID-ORDER-392
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.393 INVALID-ORDER-393
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.394 INVALID-ORDER-394
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2C_4 \right)}$$

10.395 INVALID-ORDER-395
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2 C_4 L_4 s^2 + 2}$$

10.396 INVALID-ORDER-396
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.397 INVALID-ORDER-397
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.398 INVALID-ORDER-398
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{1}{C_3 s}, \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.399 INVALID-ORDER-399
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.400 INVALID-ORDER-400
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.401 INVALID-ORDER-401
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3}{C_3 R_3 s + 1}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.402 INVALID-ORDER-402
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.403 INVALID-ORDER-403
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3}{C_3R_3s+1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.404 INVALID-ORDER-404
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3}{C_3 R_3 s + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_4 R_3 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.405 INVALID-ORDER-405
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3}{C_3R_3s+1}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 R_3 R_4 s + 2C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.406 INVALID-ORDER-406
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 R_3 s + C_3 R_4 s + 2}$$

10.407 INVALID-ORDER-407
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.408 INVALID-ORDER-408
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 R_4 s + 1)}{s (2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.409 INVALID-ORDER-409
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4)}$$

10.410 INVALID-ORDER-410
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 R_3 s + 1\right)}{2C_3 C_4 L_4 R_3 s^3 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.411 INVALID-ORDER-411
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + C_4 R_4 s + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.412 INVALID-ORDER-412
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ R_3 + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

10.413 INVALID-ORDER-413
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, R_3 + \frac{1}{C_3 s}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + 2C_3 R_3 s + C_3 R_4 s + 2C_4 L_4 s^2 + 2C_4 L_4$$

10.414 INVALID-ORDER-414
$$Z(s) = \left(\infty, L_2s + R_2 + \frac{1}{C_2s}, R_3 + \frac{1}{C_3s}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1 \right) \left(C_4 L_4 s^2 + 1 \right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_$$

10.415 INVALID-ORDER-415
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(2 C_3 C_4 L_3 s^2 + C_3 + 2 C_4\right)}$$

10.416 INVALID-ORDER-416
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.417 INVALID-ORDER-417
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.418 INVALID-ORDER-418
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 + 2C_4\right)}$$

10.419 INVALID-ORDER-419
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.420 INVALID-ORDER-420
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_3s}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.421 INVALID-ORDER-421
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_3s}, \ \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_4 s^2 + C_3 L_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 L_4 s + 2 R_4 R_4 s^2 + 2 C_4 L_4 R_4 s^2 + 2 C_4 L_$$

10.422 INVALID-ORDER-422
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_4 R_4 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.423 INVALID-ORDER-423
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + \frac{1}{C_3s}, \ \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2 + C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 L_3 s^2 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.424 INVALID-ORDER-424
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 2C_4 L_3 s^2 + 1}$$

10.425 INVALID-ORDER-425
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3s (C_4 R_4 s + 1)}{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 R_4 s + 1}$$

10.426 INVALID-ORDER-426
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

10.427 INVALID-ORDER-427
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 s}{C_3 L_3 L_4 s^2 + 2C_4 L_3 L_4 s^2 + 2L_3 + L_4}$$

10.428 INVALID-ORDER-428
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ L_4 s + R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s\left(C_4L_4s^2 + C_4R_4s + 1\right)}{C_3C_4L_3L_4s^4 + C_3C_4L_3R_4s^3 + C_3L_3s^2 + 2C_4L_3s^2 + C_4L_4s^2 + C_4R_4s + 1}$$

10.429 INVALID-ORDER-429
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1}, \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 L_4 s^3 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + C_4 L_4 R_4 s^2 + 2L_3 s + L_4 s + R_4}$$

10.430 INVALID-ORDER-430
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ \frac{R_4 \left(C_4 L_4 s^2 + 1\right)}{C_4 L_4 s^2 + C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_3 R_4 s^2 + C_4 L_4 R_4 s^2 + 2L_3 s + R_4}$$

10.431 INVALID-ORDER-431
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(2 C_3 C_4 L_3 s^2 + 2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.432 INVALID-ORDER-432
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.433 INVALID-ORDER-433
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, L_3 s + R_3 + \frac{1}{C_3 s}, R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{(C_4 R_4 s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (2C_3 C_4 L_3 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.434 INVALID-ORDER-434
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.435 INVALID-ORDER-435
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_4 R_3 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.436 INVALID-ORDER-436
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4s^2 + C_4R_4s + 1\right)}{s\left(2C_3C_4L_3s^2 + C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4\right)}$$

10.437 INVALID-ORDER-437
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ L_3 s + R_3 + \frac{1}{C_3 s}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty\right)$$

10.438 INVALID-ORDER-438
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ L_3s + R_3 + \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + 2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_4R_4s^2 + 2C_4R_4s$$

10.439 INVALID-ORDER-439
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_{2s}}, \ L_3s + R_3 + \frac{1}{C_{3s}}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s^$$

10.440 INVALID-ORDER-440
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_3 R_4 s^3 + C_3 L_3 R_3 s^2 + 2 C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.441 INVALID-ORDER-441
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2C_4 L_3 R_3 s^2 + C_4 L_4 R_3 s^2 + L_3 s + R_3}$$

10.442 INVALID-ORDER-442
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{L_3R_3s\left(C_4L_4s^2 + C_4R_4s + 1\right)}{C_3C_4L_3L_4R_3s^4 + C_3C_4L_3R_3R_4s^3 + C_3L_3R_3s^2 + C_4L_3L_4s^3 + 2C_4L_3R_3s^2 + C_4L_3R_4s^2 + C_4L_4R_3s^2 + C_4L_3R_4s + L_3s + R_3}$$

10.443 INVALID-ORDER-443
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3R_3s}{C_3L_3R_3s^2 + L_3s + R_3}, \ \frac{L_4s}{C_4L_4s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3R_3s\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{C_3C_4L_3L_4R_3R_4s^4 + C_3L_3L_4R_3s^3 + C_3L_3R_3R_4s^2 + 2C_4L_3L_4R_3s^3 + C_4L_3L_4R_3s^3 + C_4L_4R_3R_4s^2 + L_3L_4s^2 + 2L_3R_3s + L_3R_4s + L_4R_3s + R_3R_4s^2 + L_4R_3s^3 + C_4L_4R_3R_4s^2 + L_4R_3R_4s^2 + L_4R_4s^2 +$$

10.444 INVALID-ORDER-444
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3R_3s}{C_3L_3R_3s^2 + L_3s + R_3}, \ \frac{R_4\left(C_4L_4s^2 + 1\right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \infty, \ \infty\right)$$

10.445 INVALID-ORDER-445
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + 1}$$

10.446 INVALID-ORDER-446
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{R_4}{C_4 R_4 s + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4}$$

10.447 INVALID-ORDER-447
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ R_4 + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.448 INVALID-ORDER-448
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.449 INVALID-ORDER-449
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_4 R_3 s^2 + 2 L_3 s + L_4 s + 2 R_3}$$

10.450 INVALID-ORDER-450
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, L_4 s + R_4 + \frac{1}{C_4 s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.451 INVALID-ORDER-451
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 s^3 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_3 L_4 s^2 + 2 L_3 R_4 s + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 L_4 R_3 R_4 s^2 + 2 L_3 R_4 s^2 + 2 L_3 R_4 s^2 + 2 L_4 R_3 s^2 + 2 L_4 R_4 s^$$

10.452 INVALID-ORDER-452
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1} + R_3, \ \frac{L_4 s}{C_4 L_4 s^2 + 1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2L_3s + L_4s + 2R_3 + R_4}$$

10.453 INVALID-ORDER-453
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_4 s^4 + 2 C_3 C_4 L_3 R_3 s^2 + C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4 R_4 s^2 + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4 R_4 R_4 s^2 + 2 C_4 R_3 R_4 s^2 + 2 C_4 R_4 R_4 r_4 r_4 r_4 r_4 r_5 r_4 R_4 r_4 r_5 r_4 r_5 r_5 r_5 r_5 r_5 r_5$$

10.454 INVALID-ORDER-454
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 (C_3 L_3 s^2 + 1)}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.455 INVALID-ORDER-455
$$Z(s) = \left(\infty, L_2 s + R_2 + \frac{1}{C_2 s}, \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \frac{R_4}{C_4 R_4 s + 1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.456 INVALID-ORDER-456
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2 + C_3R_3s + 1}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 R_4 s + 1 \right)}{2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.457 INVALID-ORDER-457
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.458 INVALID-ORDER-458
$$Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1\right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_3 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_4 R_3 s^2 + 2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

10.459 INVALID-ORDER-459
$$Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(C_3L_3s^2 + 1\right)}{C_3L_3s^2 + C_3R_3s + 1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_4L_4s^2 + C_4R_4s + 1\right)}{C_3C_4L_3L_4s^4 + 2C_3C_4L_3R_3s^3 + C_3C_4L_3R_4s^3 + C_3C_4L_4R_3s^3 + C_3C_4R_3R_4s^2 + C_3L_3s^2 + C_3R_3s + C_4L_4s^2 + 2C_4R_3s + C_4R_4s + 1}$$

$$\textbf{10.460} \quad \textbf{INVALID-ORDER-460} \ Z(s) = \left(\infty, \ L_2 s + R_2 + \frac{1}{C_2 s}, \ \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 R_4 s}{C_4 L_4 R_4 s^2 + L_4 s + R_4}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_4 R_3 R_4 s \left(C_3 L_3 s^2 + 1 \right)}{2 C_3 C_4 L_3 L_4 R_3 R_4 s^4 + 2 C_3 L_3 L_4 R_3 s^3 + C_3 L_3 L_4 R_4 s^3 + 2 C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_4 R_3 R_4 s^2 + 2 L_4 R_3 s + L_4 R_4 s + 2 R_3 R_4 s^2 + 2 C_4 L_4 R_4 s^2 +$$

$$\begin{aligned} \textbf{10.461} \quad \textbf{INVALID-ORDER-461} \ \ Z(s) &= \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(C_3L_3s^2 + 1\right)}{C_3L_3s^2 + C_3R_3s + 1}, \ \frac{L_4s}{C_4L_4s^2 + 1} + R_4, \ \infty, \ \infty \right) \\ & H(s) &= \frac{R_3\left(C_3L_3s^2 + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_4s^4 + C_3C_4L_4R_3R_4s^3 + C_3L_3L_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + C_3R_3R_4s + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + L_4s + 2R_3 + R_4} \end{aligned}$$

$$\textbf{10.462} \quad \textbf{INVALID-ORDER-462} \ \ Z(s) = \left(\infty, \ L_2s + R_2 + \frac{1}{C_2s}, \ \frac{R_3\left(C_3L_3s^2 + 1\right)}{C_3L_3s^2 + C_3R_3s + 1}, \ \frac{R_4\left(C_4L_4s^2 + 1\right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \infty, \ \infty \right) \\ H(s) = \frac{R_3R_4\left(C_3L_3s^2 + 1\right)\left(C_4L_4s^2 + 1\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_4s^4 + 2C_3C_4L_3R_3R_4s^3 + C_3C_4L_4R_3s^2 + C_3L_3R_4s^2 + C_3R_3R_4s + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2C_4R_3R_4s + 2R_3 + R_4}$$

10.463 INVALID-ORDER-463
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.464 INVALID-ORDER-464
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3}{2C_4R_3s + 1}$$

10.465 INVALID-ORDER-465
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.466 INVALID-ORDER-466
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_2 s + C_4 R_4 s + 1}$$

10.467 INVALID-ORDER-467
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.468 INVALID-ORDER-468
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{1}{s(C_3 + 2C_4)}$$

10.469 INVALID-ORDER-469
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.470 INVALID-ORDER-470
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.471 INVALID-ORDER-471
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2C_4 \right)}$$

10.472 INVALID-ORDER-472
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.473 INVALID-ORDER-473
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2 C_4 \right)}$$

10.474 INVALID-ORDER-474
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.475 INVALID-ORDER-475
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{1}{C_3s}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.476 INVALID-ORDER-476
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.477 INVALID-ORDER-477
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.478 INVALID-ORDER-478
$$Z(s) = \left(\infty, \ \frac{L_{2}s}{C_{2}L_{2}s^{2}+1} + R_{2}, \ \frac{R_{3}}{C_{3}R_{3}s+1}, \ \frac{R_{4}}{C_{4}R_{4}s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.479 INVALID-ORDER-479
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.480 INVALID-ORDER-480
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.481 INVALID-ORDER-481
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3}{C_3R_3s+1}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 L_4 R_3 s^2 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + L_4 s + 2 R_3 + R_4}$$

10.482 INVALID-ORDER-482
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{R_3}{C_3R_3s+1}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_4 R_3 R_4 s^3 + C_3 R_3 R_4 s + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.483 INVALID-ORDER-483
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 (C_3 R_3 s + 1)}{2C_3 R_3 s + C_3 R_4 s + 2}$$

10.484 INVALID-ORDER-484
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 R_3 s + 1}{s \left(2 C_3 C_4 R_3 s + C_3 + 2 C_4\right)}$$

10.485 INVALID-ORDER-485
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2 C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2 C_4\right)}$$

10.486 INVALID-ORDER-486
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{(C_3 R_3 s + 1) (C_4 L_4 s^2 + 1)}{s (C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4)}$$

10.487 INVALID-ORDER-487
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 s \left(C_3 R_3 s + 1\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 L_4 s^2 + 2 C_3 R_3 s + 2 C_4 L_4 s^2 + 2}$$

10.488 INVALID-ORDER-488
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{(C_3R_3s + 1)(C_4L_4s^2 + C_4R_4s + 1)}{s(C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4)}$$

10.489 INVALID-ORDER-489
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

10.490 INVALID-ORDER-490
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, R_3 + \frac{1}{C_3s}, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2}$$

10.491 INVALID-ORDER-491
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ R_3 + \frac{1}{C_3s}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 R_3 s + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_5 r^2 + 2 C_5 R_5 r^2 + 2$$

10.492 INVALID-ORDER-492
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{s \left(2C_3 C_4 L_3 s^2 + C_3 + 2C_4\right)}$$

10.493 INVALID-ORDER-493
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 C_4 L_3 R_4 s^3 + 2C_3 L_3 s^2 + C_3 R_4 s + 2C_4 R_4 s + 2}$$

10.494 INVALID-ORDER-494
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.495 INVALID-ORDER-495
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 + 2C_4\right)}$$

10.496 INVALID-ORDER-496
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, L_3s + \frac{1}{C_3s}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.497 INVALID-ORDER-497
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.498 INVALID-ORDER-498
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_4 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 R_4 s^4 + 2C_3 L_3 L_4 s^3 + 2C_3 L_3 R_4 s^2 + C_3 L_4 R_4 s^2 + 2C_4 L_4 R_4 s^2 + 2L_4 s + 2R_4}$$

10.499 INVALID-ORDER-499
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 R_4 s^2 + L_4 s + R_4\right)}{2C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_4 R_4 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.500 INVALID-ORDER-500
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + \frac{1}{C_3s}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 L_3 s^2 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 L_4 s^2 + 2 C_$$

10.501 INVALID-ORDER-501
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 2C_4 L_3 s^2 + 1}$$

10.502 INVALID-ORDER-502
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s (C_4 R_4 s + 1)}{C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 R_4 s + 1}$$

10.503 INVALID-ORDER-503
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

10.504 INVALID-ORDER-504
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_3 L_4 s}{C_3 L_3 L_4 s^2 + 2C_4 L_3 L_4 s^2 + 2L_3 + L_4}$$

10.505 INVALID-ORDER-505
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + C_4 R_4 s + 1}$$

10.506 INVALID-ORDER-506
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s \left(C_4 L_4 R_4 s^2 + L_4 s + R_4 \right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 L_4 s^3 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + C_4 L_4 R_4 s^2 + 2L_3 s + L_4 s + R_4}$$

10.507 INVALID-ORDER-507
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_4 s^4 + C_3 L_3 R_4 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_3 R_4 s^2 + C_4 L_4 R_4 s^2 + 2L_3 s + R_4}$$

10.508 INVALID-ORDER-508
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{s \left(2C_3 C_4 L_3 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.509 INVALID-ORDER-509
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.510 INVALID-ORDER-510
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{(C_4 R_4 s + 1) (C_3 L_3 s^2 + C_3 R_3 s + 1)}{s (2C_3 C_4 L_3 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4)}$$

10.511 INVALID-ORDER-511
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 + 2C_4\right)}$$

10.512 INVALID-ORDER-512
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 s^2 + C_3 R_3 s + 1 \right)}{2C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_4 R_3 s^3 + 2C_3 L_3 s^2 + C_3 L_4 s^2 + 2C_3 R_3 s + 2C_4 L_4 s^2 + 2}$$

10.513 INVALID-ORDER-513
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3 L_3 s^2 + C_3 R_3 s + 1\right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{s \left(2C_3 C_4 L_3 s^2 + C_3 C_4 L_4 s^2 + 2C_3 C_4 R_3 s + C_3 C_4 R_4 s + C_3 + 2C_4\right)}$$

10.514 INVALID-ORDER-514
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

10.515 INVALID-ORDER-515
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2 + C_3R_3s + 1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4s^4 + 2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + 2C_3L_3s^2 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_$$

10.516 INVALID-ORDER-516
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ L_3s + R_3 + \frac{1}{C_3s}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 s^2 + C_3 R_3 s + 1\right)}{2 C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_4 s^3 + 2 C_3 C_4 L_4 R_3 s^3 + C_3 C_4 L_4 R_4 s^3 + 2 C_3 C_4 R_3 R_4 s^2 + 2 C_3 L_3 s^2 + 2 C_3 R_3 s + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2 C_4 R_4 s^2 + 2 C_4 R_4 s^$$

10.517 INVALID-ORDER-517
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 R_4 s + 1\right)}{C_3 C_4 L_3 R_3 R_4 s^3 + C_3 L_3 R_3 s^2 + 2C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 R_3 R_4 s + L_3 s + R_3}$$

10.518 INVALID-ORDER-518
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2C_4 L_3 R_3 s^2 + C_4 L_4 R_3 s^2 + L_3 s + R_3}$$

10.519 INVALID-ORDER-519
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 s \left(C_4 L_4 s^2 + C_4 R_4 s + 1\right)}{C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 R_3 s^2 + C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_3 s^2 + C_4 L_3 R_4 s^2 + C_4 L_4 R_3 s^2 + C_4 R_3 R_4 s + L_3 s + R_3 R_4 s^2 + C_4 R_4 R_4$$

10.520 INVALID-ORDER-520
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

10.521 INVALID-ORDER-521
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3 R_3 R_4 s \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 R_3 R_4 s^4 + C_3 L_3 R_3 R_4 s^2 + 2 C_4 L_3 L_4 R_3 s^3 + C_4 L_3 L_4 R_4 s^3 + 2 C_4 L_3 R_3 R_4 s^2 + C_4 L_4 R_3 R_4 s^2 + 2 L_3 R_3 s + L_3 R_4 s + R_3 R_4 r_4 r_5 + 2 C_4 R_3 R_4 r_5 + 2 C_4 R_5 R_5 r_5 + 2 C_5 R_5 r_$$

10.522 INVALID-ORDER-522
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + 1}$$

10.523 INVALID-ORDER-523
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 C_4 L_3 R_3 R_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + 2C_4 L_3 R_4 s^2 + 2C_4 R_3 R_4 s + 2L_3 s + 2R_3 + R_4}$$

10.524 INVALID-ORDER-524
$$Z(s) = \left(\infty, \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_4 R_4 s + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.525 INVALID-ORDER-525
$$Z(s) = \left(\infty, \ \frac{L_{2s}}{C_2L_2s^2+1} + R_2, \ \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{C_3 C_4 L_3 L_4 s^4 + 2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + 2C_4 L_3 s^2 + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.526 INVALID-ORDER-526
$$Z(s) = \left(\infty, \frac{L_2s}{C_2L_2s^2+1} + R_2, \frac{L_3s}{C_3L_3s^2+1} + R_3, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4s \left(C_3 L_3 R_3 s^2 + L_3 s + R_3 \right)}{2C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2C_3 L_3 R_3 s^2 + 2C_4 L_3 L_4 s^3 + 2C_4 L_4 R_3 s^2 + 2L_3 s + L_4 s + 2R_3}$$

10.527 INVALID-ORDER-527
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4L_4s^2 + C_4R_4s + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_4L_3L_4s^4 + 2C_3C_4L_3R_3s^3 + C_3C_4L_3R_4s^3 + C_3L_3s^2 + 2C_4L_3s^2 + C_4L_4s^2 + 2C_4R_3s + C_4R_4s + 1}$$

10.528 INVALID-ORDER-528
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

10.529 INVALID-ORDER-529
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_4s^4 + C_3L_3L_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2L_3s + L_4s + 2R_3 + R_4}$$

10.530 INVALID-ORDER-530
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1\right) \left(C_3 L_3 R_3 s^2 + L_3 s + R_3\right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 C_4 L_3 L_4 R_3 s^4 + 2 C_3 C_4 L_3 R_3 s^2 + 2 C_3 L_3 R_4 s^2 + 2 C_4 L_3 L_4 s^3 + 2 C_4 L_3 R_4 s^2 + 2 C_4 L_4 R_3 s^2 + C_4 L_4 R_4 s^2 + 2 C_4 R_3 R_4 s + 2 L_3 s + 2 R_3 + R_4 R_4 s^2 + 2 C_4 R_3 R_4 s^2 + 2 C_4 R_4 R_4 s^2 + 2 C_4 R_4$$

10.531 INVALID-ORDER-531
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right)}{2C_3 C_4 L_3 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.532 INVALID-ORDER-532
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4 \left(C_3 L_3 s^2 + 1\right)}{2 C_3 C_4 L_3 R_3 R_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_3 R_4 s^2 + C_3 R_3 R_4 s + 2 C_4 R_3 R_4 s + 2 R_3 + R_4}$$

10.533 INVALID-ORDER-533
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 R_4 s + 1 \right)}{2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.534 INVALID-ORDER-534
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1\right) \left(C_4 L_4 s^2 + 1\right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + 1}$$

10.535 INVALID-ORDER-535
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4 R_3 s \left(C_3 L_3 s^2 + 1\right)}{2C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2C_3 L_3 R_3 s^2 + C_3 L_4 R_3 s^2 + 2C_4 L_4 R_3 s^2 + L_4 s + 2R_3}$$

10.536 INVALID-ORDER-536
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 \left(C_3 L_3 s^2 + 1 \right) \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + 2 C_3 C_4 L_3 R_3 s^3 + C_3 C_4 L_3 R_4 s^3 + C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 L_3 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2 C_4 R_3 s + C_4 R_4 s + 1}$$

10.537 INVALID-ORDER-537
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

10.538 INVALID-ORDER-538
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

10.539 INVALID-ORDER-539
$$Z(s) = \left(\infty, \ \frac{L_2s}{C_2L_2s^2+1} + R_2, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3R_4\left(C_3L_3s^2 + 1\right)\left(C_4L_4s^2 + 1\right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3R_4s^4 + 2C_3C_4L_3R_3R_4s^3 + C_3C_4L_4R_3s^2 + C_3L_3R_4s^2 + C_3L_3R_4s^2 + C_3R_3R_4s + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2C_4R_3R_4s + 2R_3 + R_4R_4s^2 + 2C_4R_3R_4s^2 + 2C_4R_4R_4s^2 + 2C_4R_4R_4s^2$$

10.540 INVALID-ORDER-540
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, R_3, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2R_3 + R_4}$$

10.541 INVALID-ORDER-541
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ R_3, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3}{2C_4 R_3 s + 1}$$

10.542 INVALID-ORDER-542
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.543 INVALID-ORDER-543
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, R_3, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 R_4 s + 1)}{2C_4 R_3 s + C_4 R_4 s + 1}$$

10.544 INVALID-ORDER-544
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2}$$

10.545 INVALID-ORDER-545
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{1}{C_3s}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{1}{s\left(C_3 + 2C_4\right)}$$

10.546 INVALID-ORDER-546
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4}{C_3 R_4 s + 2 C_4 R_4 s + 2}$$

10.547 INVALID-ORDER-547
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 R_4 s + 1}{s \left(C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.548 INVALID-ORDER-548
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{1}{C_3s}, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 + 2 C_4 \right)}$$

10.549 INVALID-ORDER-549
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, \frac{L_4s}{C_4L_4s^2+1}, \infty, \infty\right)$$

$$H(s) = \frac{L_4 s}{C_3 L_4 s^2 + 2C_4 L_4 s^2 + 2}$$

10.550 INVALID-ORDER-550
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{C_4 L_4 s^2 + C_4 R_4 s + 1}{s \left(C_3 C_4 L_4 s^2 + C_3 C_4 R_4 s + C_3 + 2C_4 \right)}$$

10.551 INVALID-ORDER-551
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_4 L_4 R_4 s^2 + L_4 s + R_4}{C_3 C_4 L_4 R_4 s^3 + C_3 L_4 s^2 + C_3 R_4 s + 2C_4 L_4 s^2 + 2}$$

10.552 INVALID-ORDER-552
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{1}{C_3s}, \frac{R_4(C_4L_4s^2+1)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4 \left(C_4 L_4 s^2 + 1 \right)}{C_3 C_4 L_4 R_4 s^3 + C_3 R_4 s + 2 C_4 L_4 s^2 + 2 C_4 R_4 s + 2}$$

10.553 INVALID-ORDER-553
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, R_4, \infty, \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2R_3 + R_4}$$

10.554 INVALID-ORDER-554
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3}{C_3 R_3 s + 2C_4 R_3 s + 1}$$

10.555 INVALID-ORDER-555
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{R_3}{C_3R_3s+1}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3 R_4}{C_3 R_3 R_4 s + 2C_4 R_3 R_4 s + 2R_3 + R_4}$$

10.556 INVALID-ORDER-556
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, L_4s + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 (C_4 L_4 s^2 + 1)}{C_3 C_4 L_4 R_3 s^3 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + 1}$$

10.557 INVALID-ORDER-557
$$Z(s) = \left(\infty, \frac{R_2(C_2L_2s^2+1)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3}{C_3R_3s+1}, L_4s + R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{R_3 \left(C_4 L_4 s^2 + C_4 R_4 s + 1 \right)}{C_3 C_4 L_4 R_3 s^3 + C_3 C_4 R_3 R_4 s^2 + C_3 R_3 s + C_4 L_4 s^2 + 2C_4 R_3 s + C_4 R_4 s + 1}$$

10.558 INVALID-ORDER-558
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{R_3}{C_3R_3s+1}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{C_3C_4L_4R_3s^2 + C_3L_4R_3s^2 + C_3L_4R_3s^2 + C_4L_4R_4s^2 + L_4s + 2R_3 + R_4}$$

$$\textbf{10.559} \quad \textbf{INVALID-ORDER-559} \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{R_3}{C_3R_3s+1}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right) \\ H(s) = \frac{R_3R_4\left(C_4L_4s^2+1\right)}{C_3C_4L_4R_3R_4s^3+C_3R_3R_4s+2C_4L_4R_3s^2+C_4L_4R_4s^2+2C_4R_3R_4s+2R_3+R_4s^2+2C_4R_3R_4s+2R_3+R_4s^2+2C_4R_3R_4s+2R_3+R_4s^2+2C_4R_3R_4s^2+2C_4R_3R_4s+2R_3+R_4s^2+2C_4R_3R_4s^2+2C_4R_4s^2+2C_4R_4s^2+2C_4R_4s^2+2C_4R_4s^2+2C_4R_4s^2+2C_4R_4s^2+2C_4R_4s^$$

$$\textbf{10.560} \quad \textbf{INVALID-ORDER-560} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ R_3 + \frac{1}{C_3s}, \ \ R_4, \ \ \infty, \ \ \infty \right)$$

$$H(s) = \frac{R_4\left(C_3R_3s + 1 \right)}{2C_3R_3s + C_3R_4s + 2}$$

$$\textbf{10.561} \quad \textbf{INVALID-ORDER-561} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ R_3 + \frac{1}{C_3s}, \ \ \frac{1}{C_4s}, \ \ \infty, \ \ \infty \right)$$

$$H(s) = \frac{C_3R_3s + 1}{s\left(2C_3C_4R_3s + C_3 + 2C_4 \right)}$$

$$\textbf{10.562} \quad \textbf{INVALID-ORDER-562} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \ R_3 + \frac{1}{C_3s}, \ \ R_4 + \frac{1}{C_4s}, \ \ \infty, \ \ \infty \right) \\ H(s) = \frac{\left(C_3R_3s+1\right)\left(C_4R_4s+1\right)}{s\left(2C_3C_4R_3s+C_3C_4R_4s+C_3+2C_4\right)}$$

$$\textbf{10.563} \quad \textbf{INVALID-ORDER-563} \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2 L_2 s^2 + 1 \right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \ R_3 + \frac{1}{C_3 s}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{\left(C_3 R_3 s + 1 \right) \left(C_4 L_4 s^2 + 1 \right)}{s \left(C_3 C_4 L_4 s^2 + 2 C_3 C_4 R_3 s + C_3 + 2 C_4 \right)}$$

$$\textbf{10.564} \quad \textbf{INVALID-ORDER-564} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ R_3 + \frac{1}{C_3s}, \ \ \frac{L_4s}{C_4L_4s^2 + 1}, \ \ \infty, \ \ \infty \right)$$

$$H(s) = \frac{L_4s\left(C_3R_3s + 1 \right)}{2C_3C_4L_4R_3s^3 + C_3L_4s^2 + 2C_3R_3s + 2C_4L_4s^2 + 2}$$

10.565 INVALID-ORDER-565
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ R_3 + \frac{1}{C_3s}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3R_3s+1\right)\left(C_4L_4s^2 + C_4R_4s+1\right)}{s\left(C_3C_4L_4s^2 + 2C_3C_4R_3s + C_3C_4R_4s + C_3 + 2C_4\right)}$$

$$\textbf{10.566} \quad \textbf{INVALID-ORDER-566} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \ R_3 + \frac{1}{C_3s}, \ \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \ \infty, \ \ \infty\right)$$

$$H(s) = \frac{L_4R_4s\left(C_3R_3s+1\right)}{2C_3C_4L_4R_3R_4s^3 + 2C_3L_4R_3s^2 + C_3L_4R_4s^2 + 2C_3R_3R_4s + 2C_4L_4R_4s^2 + 2L_4s + 2R_4s^2\right)$$

10.567 INVALID-ORDER-567
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, R_3 + \frac{1}{C_3s}, \frac{L_4s}{C_4L_4s^2+1} + R_4, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3R_3s+1\right)\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{2C_3C_4L_4R_3s^3 + C_3C_4L_4R_4s^3 + C_3L_4s^2 + 2C_3R_3s + C_3R_4s + 2C_4L_4s^2 + 2C_3R_3s + 2C_4L_4s^2 + 2C_4R_4s^2 + 2C_4R$$

10.568 INVALID-ORDER-568
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ R_3 + \frac{1}{C_3s}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4\left(C_3R_3s+1\right)\left(C_4L_4s^2+1\right)}{2C_3C_4L_4R_3s^3+C_3C_4L_4R_4s^3+2C_3C_4R_3R_4s^2+2C_3R_3s+C_3R_4s+2C_4L_4s^2+2C_4R_4s+2\right)}$$

10.569 INVALID-ORDER-569
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+\frac{1}{C_3s}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3L_3s^2+1}{s\left(2C_3C_4L_3s^2+C_3+2C_4\right)}$$

$$\textbf{10.570} \quad \textbf{INVALID-ORDER-570} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ L_3s + \frac{1}{C_3s}, \ \ \frac{R_4}{C_4R_4s + 1}, \ \ \infty, \ \ \infty \right)$$

$$H(s) = \frac{R_4\left(C_3L_3s^2 + 1 \right)}{2C_3C_4L_3R_4s^3 + 2C_3L_3s^2 + C_3R_4s + 2C_4R_4s + 2}$$

10.571 INVALID-ORDER-571
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, L_3s + \frac{1}{C_3s}, R_4 + \frac{1}{C_4s}, \infty, \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2+1\right)\left(C_4R_4s+1\right)}{s\left(2C_3C_4L_3s^2+C_3C_4R_4s+C_3+2C_4\right)}$$

10.572 INVALID-ORDER-572
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+\frac{1}{C_3s}, \ L_4s+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2+1\right)\left(C_4L_4s^2+1\right)}{s\left(2C_3C_4L_2s^2+C_2C_4L_4s^2+C_3+2C_4\right)}$$

10.573 INVALID-ORDER-573
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s + \frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4s\left(C_3L_3s^2+1\right)}{2C_3C_4L_3L_4s^4+2C_3L_3s^2+C_3L_4s^2+2C_4L_4s^2+2}$$

10.574 INVALID-ORDER-574
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+\frac{1}{C_3s}, \ L_4s+R_4+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2+1\right)\left(C_4L_4s^2+C_4R_4s+1\right)}{s\left(2C_3C_4L_3s^2+C_3C_4L_4s^2+C_3C_4R_4s+C_3+2C_4\right)}$$

10.575 INVALID-ORDER-575
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+\frac{1}{C_3s}, \ \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4R_4s\left(C_3L_3s^2+1\right)}{2C_3C_4L_3L_4R_4s^4+2C_3L_3L_4s^3+2C_3L_3R_4s^2+C_3L_4R_4s^2+2C_4L_4R_4s^2+2L_4s+2R_4s^2+2C_4L_4R_4s^2+2L_4s+2R_4s^2+2C_4L_4R_4s^2+2L_4s+2R_4s^2+2C_4L_4R_4s^2+2L_4s+2R_4s^2+2C_4L_4R_4s^2+2L_4s+2R_4s^2+2C_4L_4R_4s^2+2L_4s+2R_4s^2+2C_4L_4R_4s^2+2C_4L_$$

10.576 INVALID-ORDER-576
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+\frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}+R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2+1\right)\left(C_4L_4R_4s^2+L_4s+R_4\right)}{2C_3C_4L_3L_4s^4+C_3C_4L_4R_4s^3+2C_3L_3s^2+C_3L_4s^2+C_3R_4s+2C_4L_4s^2+2}$$

10.577 INVALID-ORDER-577
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s + \frac{1}{C_3s}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4\left(C_3L_3s^2+1\right)\left(C_4L_4s^2+1\right)}{2C_3C_4L_3L_4s^4+2C_3C_4L_3R_4s^3+C_3C_4L_4R_4s^3+2C_3L_3s^2+C_3R_4s+2C_4L_4s^2+2C_4R_4s+2\right)}$$

10.578 INVALID-ORDER-578
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_{3s}}{C_3L_3s^2+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_{3s}}{C_2L_2s^2+2C_4L_2s^2+1}$$

10.579 INVALID-ORDER-579
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s\left(C_4R_4s+1\right)}{C_3C_4L_3R_4s^3+C_3L_3s^2+2C_4L_3s^2+C_4R_4s+1}$$

$$\textbf{10.580} \quad \textbf{INVALID-ORDER-580} \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2 L_2 s^2 + 1 \right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \ \frac{L_3 s}{C_3 L_3 s^2 + 1}, \ L_4 s + \frac{1}{C_4 s}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_3 s \left(C_4 L_4 s^2 + 1 \right)}{C_3 C_4 L_3 L_4 s^4 + C_3 L_3 s^2 + 2 C_4 L_3 s^2 + C_4 L_4 s^2 + 1}$$

$$\textbf{10.581} \quad \textbf{INVALID-ORDER-581} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \ \frac{L_4s}{C_4L_4s^2 + 1}, \ \ \infty, \ \ \infty \right) \\ H(s) = \frac{L_3L_4s}{C_3L_3L_4s^2 + 2C_4L_3L_4s^2 + 2L_3 + L_4}$$

10.582 INVALID-ORDER-582
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1}, \ L_4s+R_4+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s\left(C_4L_4s^2+C_4R_4s+1\right)}{C_3C_4L_3L_4s^4+C_3C_4L_3R_4s^3+C_3L_3s^2+2C_4L_3s^2+C_4R_4s+1}$$

10.583 INVALID-ORDER-583
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3s\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{C_3C_4L_3L_4R_4s^4 + C_3L_3L_4s^3 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + C_4L_4R_4s^2 + 2L_3s + L_4s + R_4}$$

$$\textbf{10.584} \quad \textbf{INVALID-ORDER-584} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ \frac{L_3s}{C_3L_3s^2 + 1}, \ \ \frac{R_4\left(C_4L_4s^2 + 1 \right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \ \infty, \ \ \infty \right) \\ H(s) = \frac{L_3R_4s\left(C_4L_4s^2 + 1 \right)}{C_3C_4L_3L_4R_4s^4 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_3R_4s^2 + C_4L_4R_4s^2 + 2L_3s + R_4s^2 + C_4L_4R_4s^2 + 2L_3s + R_4s^2 + C_4L_4R_4s^2 + C$$

10.585 INVALID-ORDER-585
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3L_3s^2+C_3R_3s+1}{s\left(2C_3C_4L_3s^2+2C_3C_4R_3s+C_3+2C_4\right)}$$

10.586 INVALID-ORDER-586
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4\left(C_3L_3s^2+C_3R_3s+1\right)}{2C_3C_4L_3R_4s^3+2C_3C_4R_3R_4s^2+2C_3L_3s^2+2C_3R_3s+C_3R_4s+2C_4R_4s+2}$$

10.587 INVALID-ORDER-587
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ R_4+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4R_4s+1\right)\left(C_3L_3s^2+C_3R_3s+1\right)}{s\left(2C_3C_4L_3s^2+2C_3C_4R_3s+C_3C_4R_4s+C_3+2C_4\right)}$$

10.588 INVALID-ORDER-588
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ L_4s+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4L_4s^2+1\right)\left(C_3L_3s^2+C_3R_3s+1\right)}{s\left(2C_3C_4L_3s^2+C_3C_4L_4s^2+2C_3C_4R_3s+C_3+2C_4\right)}$$

10.589 INVALID-ORDER-589
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_4s\left(C_3L_3s^2+C_3R_3s+1\right)}{2C_3C_4L_3L_4s^4+2C_3C_4L_4R_3s^3+2C_3L_3s^2+C_3L_4s^2+2C_3R_3s+2C_4L_4s^2+2}$$

10.590 INVALID-ORDER-590
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ L_4s+R_4+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2+C_3R_3s+1\right)\left(C_4L_4s^2+C_4R_4s+1\right)}{s\left(2C_3C_4L_3s^2+C_3C_4L_4s^2+2C_3C_4R_3s+C_3C_4R_4s+C_3+2C_4\right)}$$

10.591 INVALID-ORDER-591
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, L_3s+R_3+\frac{1}{C_3s}, \frac{L_4R_4s}{C_4L_4R_4s^2+L_4s+R_4}, \infty, \infty\right)$$

$$H(s) = \frac{L_4R_4s\left(C_3L_3s^2+C_3R_3s+1\right)}{2C_3C_4L_3L_4R_4s^4+2C_3C_4L_4R_3R_4s^3+2C_3L_3L_4s^3+2C_3L_3R_4s^2+2C_3L_4R_3s^2+C_3L_4R_4s^2+2C_3R_3R_4s+2C_4L_4R_4s^2+2L_4s+2R_4s^2+2C_3L_4R_4s^2+$$

10.592 INVALID-ORDER-592
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ \frac{L_4s}{C_4L_4s^2+1}+R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_3L_3s^2+C_3R_3s+1\right)\left(C_4L_4R_4s^2+L_4s+R_4\right)}{2C_3C_4L_3L_4s^4+2C_3C_4L_4R_3s^3+C_3C_4L_4R_4s^3+2C_3L_3s^2+C_3L_4s^2+2C_3R_3s+C_3R_4s+2C_4L_4s^2+2}$$

10.593 INVALID-ORDER-593
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ L_3s+R_3+\frac{1}{C_3s}, \ \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4\left(C_4L_4s^2+1\right)\left(C_3L_3s^2+C_3R_3s+1\right)}{2C_3C_4L_3L_4s^4+2C_3C_4L_3R_4s^3+2C_3C_4L_4R_3s^3+C_3C_4L_4R_4s^3+2C_3C_4R_3R_4s^2+2C_3L_3s^2+2C_3R_3s+C_3R_4s+2C_4L_4s^2+2C_4R_4s+2}$$

10.594 INVALID-ORDER-594
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3R_3s\left(C_4R_4s+1\right)}{C_3C_4L_3R_3R_4s^3+C_3L_3R_3s^2+2C_4L_3R_3s^2+C_4R_3R_4s^2+C_4R_3R_4s+L_3s+R_3}$$

$$\textbf{10.595} \quad \textbf{INVALID-ORDER-595} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ \frac{L_3R_3s}{C_3L_3R_3s^2 + L_3s + R_3}, \ \ L_4s + \frac{1}{C_4s}, \ \ \infty, \ \ \infty \right)$$

$$H(s) = \frac{L_3R_3s\left(C_4L_4s^2 + 1 \right)}{C_3C_4L_3L_4R_3s^4 + C_3L_3R_3s^2 + C_4L_3L_4s^3 + 2C_4L_3R_3s^2 + C_4L_4R_3s^2 + L_3s + R_3}$$

$$\textbf{10.596} \quad \textbf{INVALID-ORDER-596} \ \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{L_3R_3s}{C_3L_3R_3s^2 + L_3s + R_3}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_3R_3s \left(C_4L_4s^2 + C_4R_4s + 1 \right)}{C_3C_4L_3L_4R_3s^4 + C_3C_4L_3R_3R_4s^3 + C_3L_3R_3s^2 + C_4L_3R_4s^3 + 2C_4L_3R_3s^2 + C_4L_3R_4s^2 + C_4L_4R_3s^2 + C_4R_3R_4s + L_3s + R_3}$$

10.597 INVALID-ORDER-597
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3R_3s}{C_3L_3R_3s^2+L_3s+R_3}, \ \frac{L_4s}{C_4L_4s^2+1} + R_4, \ \infty, \ \infty\right)$$

$$H(s) = \frac{L_3R_3s\left(C_4L_4R_4s^2 + L_4s + R_4\right)}{C_3C_4L_3L_4R_3R_4s^4 + C_3L_3L_4R_3s^3 + C_3L_3R_3R_4s^2 + 2C_4L_3L_4R_3s^3 + C_4L_3L_4R_3s^3 + C_4L_4R_3R_4s^2 + L_3L_4s^2 + 2L_3R_3s + L_3R_4s + L_4R_3s + R_3R_4s^2\right)}$$

$$\textbf{10.598} \quad \textbf{INVALID-ORDER-598} \ \ Z(s) = \left(\infty, \ \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \ \frac{L_3R_3s}{C_3L_3R_3s^2 + L_3s + R_3}, \ \ \frac{R_4\left(C_4L_4s^2 + 1 \right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \ \infty, \ \ \infty \right) \\ H(s) = \frac{L_3R_3R_4s \left(C_4L_4s^2 + 1 \right)}{C_3C_4L_3L_4R_3R_4s^4 + C_3L_3R_3R_4s^2 + 2C_4L_3L_4R_3s^3 + C_4L_3L_4R_3s^3 + 2C_4L_3R_3R_4s^2 + 2L_4R_3R_4s^2 + 2L_3R_3s + L_3R_4s + R_3R_4s^2 + 2C_4L_3R_3R_4s^2 + 2C_4L_3R_3R_4s^2$$

10.599 INVALID-ORDER-599
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{C_3L_3R_3s^2 + L_3s + R_3}{2C_3C_4L_3R_3s^3 + C_3L_3s^2 + 2C_4L_3s^2 + 2C_4R_3s + 1}$$

10.600 INVALID-ORDER-600
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ \frac{R_4}{C_4R_4s+1}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_4\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{2C_3C_4L_3R_3R_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + 2C_4L_3R_4s^2 + 2C_4R_3R_4s + 2L_3s + 2R_3 + R_4}$$

10.601 INVALID-ORDER-601
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4R_4s+1\right)\left(C_3L_3R_3s^2+L_3s+R_3\right)}{2C_3C_4L_3R_3s^3+C_3C_4L_3R_4s^3+C_3L_3s^2+2C_4L_3s^2+2C_4R_3s+C_4R_4s+1\right)}$$

10.602 INVALID-ORDER-602
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ L_4s + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4L_4s^2+1\right)\left(C_3L_3R_3s^2+L_3s+R_3\right)}{C_3C_4L_3L_4s^4+2C_3C_4L_3R_3s^3+C_3L_3s^2+2C_4L_3s^2+2C_4R_3s+1}$$

$$\textbf{10.603} \quad \textbf{INVALID-ORDER-603} \ \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \frac{L_4s}{C_4L_4s^2 + 1}, \ \infty, \ \infty \right)$$

$$H(s) = \frac{L_4s\left(C_3L_3R_3s^2 + L_3s + R_3 \right)}{2C_3C_4L_3L_4R_3s^4 + C_3L_3L_4s^3 + 2C_3L_3R_3s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_3s^2 + 2L_3s + L_4s + 2R_3 \right)$$

10.604 INVALID-ORDER-604
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{L_3s}{C_3L_3s^2+1} + R_3, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{\left(C_4L_4s^2 + C_4R_4s + 1\right)\left(C_3L_3R_3s^2 + L_3s + R_3\right)}{C_3C_4L_3L_4s^4 + 2C_3C_4L_3R_3s^3 + C_3C_4L_3R_4s^3 + C_3L_3s^2 + 2C_4L_3s^2 + C_4L_4s^2 + 2C_4R_3s + C_4R_4s + 1}$$

$$\textbf{10.605} \quad \textbf{INVALID-ORDER-605} \ \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \ \infty, \ \infty \right) \\ H(s) = \frac{L_4R_4s\left(C_3L_3R_3s^2 + L_3s + R_3 \right)}{2C_3C_4L_3L_4R_3R_4s^4 + 2C_3L_3L_4R_3s^3 + C_3L_3L_4R_4s^3 + 2C_3L_3R_3R_4s^2 + 2C_4L_3L_4R_3R_4s^2 + 2L_3L_4s^2 + 2L_3R_4s + 2L_4R_3s + L_4R_4s + 2R_3R_4s^2 + 2C_4L_3L_4R_4s^3 + 2C_4L_4R_3R_4s^2 + 2L_3L_4s^2 + 2L_4R_3s + L_4R_4s + 2R_3R_4s^2 + 2C_4L_4R_3R_4s^2 + 2C_4L_4R_4s^2 +$$

$$\textbf{10.606} \quad \textbf{INVALID-ORDER-606} \ \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{L_3s}{C_3L_3s^2 + 1} + R_3, \ \frac{L_4s}{C_4L_4s^2 + 1} + R_4, \ \infty, \ \infty \right) \\ H(s) = \frac{\left(C_3L_3R_3s^2 + L_3s + R_3 \right) \left(C_4L_4R_4s^2 + L_4s + R_4 \right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_3s^4 + C_3L_3L_4s^3 + 2C_3L_3R_3s^2 + C_3L_3R_4s^2 + 2C_4L_3L_4s^3 + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2L_3s + L_4s + 2R_3 + R_4}$$

10.607 INVALID-ORDER-607
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \frac{L_3s}{C_3L_3s^2+1} + R_3, \frac{R_4\left(C_4L_4s^2+1\right)}{C_4L_4s^2+C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_4\left(C_4L_4s^2+1\right)\left(C_3L_3R_3s^2+L_3s+R_3\right)}{2C_3C_4L_3L_4R_3s^4+C_3C_4L_3L_4R_4s^4+2C_3C_4L_3R_3R_4s^3+2C_3L_3R_3s^2+C_3L_3R_4s^2+2C_4L_3L_4s^3+2C_4L_3R_4s^2+2C_4L_4R_3s^2+C_4L_4R_4s^2+2C_4R_3R_4s+2L_3s+2R_3+R_4s^2+2C_4L_3L_4s^3+2C_4L_3R_4s^2+2C_4L_4R_3s^2+2C_4L_4R_4s^2+2C_4R_3R_4s+2L_3s+2R_3+R_4s^2+2C_4L_3R_4s^2+2C_4L_4R_4s^2+2C_4L_4R_4s^2+2C_4R_3R_4s+2L_3s+2R_3+R_4s^2+2C_4L_3R_4s^2+2$$

10.608 INVALID-ORDER-608
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)}{2C_3C_4L_3R_3s^3+C_3L_3s^2+C_3R_3s+2C_4R_3s+1}$$

10.609 INVALID-ORDER-609
$$Z(s) = \left(\infty, \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \frac{R_4}{C_4R_4s+1}, \infty, \infty\right)$$

$$H(s) = \frac{R_3R_4\left(C_3L_3s^2+1\right)}{2C_3C_4L_3R_3R_4s^3+2C_3L_3R_3s^2+C_3L_3R_4s^2+C_3R_3R_4s+2C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s^2+C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s^2+C_4R_3R_4s+2R_3+R_4s^2+C_4R_3R_4s^2+C_4R_4s^2+C_4R_3R_4s^2+C_4R_4s$$

10.610 INVALID-ORDER-610
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ R_4 + \frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)\left(C_4R_4s+1\right)}{2C_3C_4L_3R_3s^3+C_3C_4L_3R_4s^3+C_3C_4R_3R_4s^2+C_3L_3s^2+C_3R_3s+2C_4R_3s+C_4R_4s+1\right)}$$

10.611 INVALID-ORDER-611
$$Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2+1\right)}{C_2L_2s^2+C_2R_2s+1}, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ L_4s+\frac{1}{C_4s}, \ \infty, \ \infty\right)$$

$$H(s) = \frac{R_3\left(C_3L_3s^2+1\right)\left(C_4L_4s^2+1\right)}{C_3C_4L_3L_4s^4+2C_3C_4L_3R_3s^3+C_3C_4L_4R_3s^3+C_3L_3s^2+C_3R_3s+C_4L_4s^2+2C_4R_3s+1}$$

$$\textbf{10.612} \quad \textbf{INVALID-ORDER-612} \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2 L_2 s^2 + 1 \right)}{C_2 L_2 s^2 + C_2 R_2 s + 1}, \ \frac{R_3\left(C_3 L_3 s^2 + 1 \right)}{C_3 L_3 s^2 + C_3 R_3 s + 1}, \ \frac{L_4 s}{C_4 L_4 s^2 + 1}, \ \infty, \ \infty \right) \\ H(s) = \frac{L_4 R_3 s \left(C_3 L_3 s^2 + 1 \right)}{2 C_3 C_4 L_3 L_4 R_3 s^4 + C_3 L_3 L_4 s^3 + 2 C_3 L_3 R_3 s^2 + C_3 L_4 R_3 s^2 + 2 C_4 L_4 R_3 s^2 + L_4 s + 2 R_3 }$$

$$\textbf{10.613} \quad \textbf{INVALID-ORDER-613} \ \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{R_3\left(C_3L_3s^2 + 1 \right)}{C_3L_3s^2 + C_3R_3s + 1}, \ L_4s + R_4 + \frac{1}{C_4s}, \ \infty, \ \infty \right) \\ H(s) = \frac{R_3\left(C_3L_3s^2 + 1 \right) \left(C_4L_4s^2 + C_4R_4s + 1 \right)}{C_3C_4L_3L_4s^4 + 2C_3C_4L_3R_3s^3 + C_3C_4L_3R_4s^3 + C_3C_4L_4R_3s^3 + C_3C_4R_3R_4s^2 + C_3L_3s^2 + C_3R_3s + C_4L_4s^2 + 2C_4R_3s + C_4R_4s + 1}$$

$$\textbf{10.614} \quad \textbf{INVALID-ORDER-614} \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{R_3\left(C_3L_3s^2 + 1 \right)}{C_3L_3s^2 + C_3R_3s + 1}, \ \frac{L_4R_4s}{C_4L_4R_4s^2 + L_4s + R_4}, \ \infty, \ \infty \right) \\ H(s) = \frac{L_4R_3R_4s\left(C_3L_3s^2 + 1 \right)}{2C_3C_4L_3L_4R_3R_4s^4 + 2C_3L_3L_4R_3s^3 + C_3L_3L_4R_4s^3 + 2C_3L_3R_3R_4s^2 + C_3L_4R_3R_4s^2 + 2C_4L_4R_3R_4s^2 + 2L_4R_3s + L_4R_4s + 2R_3R_4s^2 + 2C_4L_4R_3R_4s^2 + 2C_4L_4R_4s^2 + 2C_4$$

$$\textbf{10.616} \quad \textbf{INVALID-ORDER-616} \ \ Z(s) = \left(\infty, \ \frac{R_2\left(C_2L_2s^2 + 1 \right)}{C_2L_2s^2 + C_2R_2s + 1}, \ \frac{R_3\left(C_3L_3s^2 + 1 \right)}{C_3L_3s^2 + C_3R_3s + 1}, \ \frac{R_4\left(C_4L_4s^2 + 1 \right)}{C_4L_4s^2 + C_4R_4s + 1}, \ \infty, \ \infty \right) \\ H(s) = \frac{R_3R_4\left(C_3L_3s^2 + 1 \right) \left(C_4L_4s^2 + 1 \right)}{2C_3C_4L_3L_4R_3s^4 + C_3C_4L_3L_4R_4s^4 + 2C_3C_4L_3R_3R_4s^3 + C_3C_4L_4R_3s^2 + C_3L_3R_4s^2 + C_3R_3R_4s + 2C_4L_4R_3s^2 + C_4L_4R_4s^2 + 2C_4R_3R_4s + 2R_3 + R_4}$$

11 PolynomialError