5.1.1 – SAS: Logistic Regression

<u>Example:</u> (Text Table 14.3) Individuals were randomly sampled within two sectors of a city, and checked for presence of disease (here, spread by mosquitoes). Subjects' age (in years), socioeconomic status (low, medium, high), and city sector are to be used to <u>predict the probability of contracting the disease</u>.

```
/* Input data -- see Table 14.3 in text
     Case = subject ID
     Age = years
     SES mid = indicator of middle socioeconomic status
     SES low = indicator of low socioeconomic status
       (upper is reference level for socioeconomic status)
     Sector = indicator of sector 2 in city
       (sector 1 is reference level)
     Disease = indicator of disease presence
  */
filename myurl url
"http://users.stat.ufl.edu/~rrandles/sta4210/Rclassnotes/data/tex
tdatasets/KutnerData/Chapter%2014%20Data%20Sets/CH14TA03.txt";
data outbreak;
  infile myurl delimiter = '09'x;
  input Case Age SES mid SES low Sector Disease;
  Observation = n ;
run;
/* Run logistic regression, checking for lack of fit */
proc logistic data=outbreak plots=(roc effect);
  model Disease(event = '1') = Age SES mid SES low Sector /
                             clparm=wald alpha=.05 lackfit;
  SES: test SES mid=SES low=0;
  output out=alout prob=phat;
  title1 'Logistic Regression';
run;
```

Logistic Regression

Probability modeled is Disease=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	124.318	111.054			
SC	126.903	123.979			
-2 Log L	122.318	101.054			

Testing Global Null Hypothesis: BETA=0						
Test Chi-Square DF Pr > ChiSq						
Likelihood Ratio	21.2635	4	0.0003			
Score	20.4067	4	0.0004			
Wald	16.6437	4	0.0023			

Analysis of Maximum Likelihood Estimates							
Parameter	Parameter DF Estimate Standard Error Wald Chi-Square		Pr > ChiSq				
Intercept	1	-2.3127	0.6426	12.9545	0.0003		
Age	1	0.0297	0.0135	4.8535	0.0276		
SES_mid	1	0.4088	0.5990	0.4657	0.4950		
SES_low	1	-0.3051	0.6041	0.2551	0.6135		
Sector	1	1.5746	0.5016	9.8543	0.0017		

Odds Ratio Estimates					
Effect	Point Estimate	95% Wald Confidence Limits			
Age	1.030	1.003	1.058		
SES_mid	1.505	0.465	4.868		
SES_low	0.737	0.226	2.408		
Sector	4.829	1.807	12.907		

Association of Predicted Probabilities and Observed Responses						
Percent Concordant77.5Somers' D0.554						
Percent Discordant	22.1	Gamma	0.556			
Percent Tied	0.3	Tau-a	0.242			
Pairs	2077	c	0.777			

Parameter Estimates and Wald Confidence Intervals					
Parameter Estimate 95% Confidence Limits					
Intercept	-2.3127	-3.5721	-1.0533		
Age	0.0297	0.00328	0.0562		
SES_mid	0.4088	-0.7653	1.5828		
SES_low	-0.3051	-1.4891	0.8789		
Sector	1.5746	0.5915	2.5578		

Linear Hypotheses Testing Results				
abel	Wald Chi-Square	DF	Pr > ChiSq	
ES	1.2053	2	0.5474	

Partition for the Hosmer and Lemeshow Test						
Group	Total	Diseas	se = 1	Diseas	se = 0	
		Observed	Expected	Observed	Expected	
1	10	0	0.79	10	9.21	
2	10	1	1.02	9	8.98	
3	11	2	1.51	9	9.49	
4	10	1	1.78	9	8.22	
5	10	3	2.34	7	7.66	
6	10	4	3.09	6	6.91	
7	10	7	3.91	3	6.09	
8	11	3	5.51	8	5.49	
9	10	5	6.32	5	3.68	
10	6	5	4.75	1	1.25	

Hosmer and Lemeshow Goodness-of-Fit Test				
Chi-Square	DF	Pr > ChiSq		
9.1871	8	0.3268		


```
/* Make better 'Conditional Effect' plot, compare predicted
   disease probabilities for sector 1 (Sector=0) vs
   sector 2 (Sector=1) at low socioeconomic status
   (SES mid=0, SES low=1), as a function of Age */
data new; set outbreak;
  p1 = 1/(1+exp(-(-2.3127+0.0297*Age+0.4088*0))
                  -0.3051*1+1.5746*0)));
  p2 = 1/(1+exp(-(-2.3127+0.0297*Age+0.4088*0))
                  -0.3051*1+1.5746*1)));
  label p1 = 'Sector 1'
        p2 = 'Sector 2';
proc sort data=new; by Age;
proc sgplot data=new;
  series y=p1 x=Age / lineattrs=(pattern=solid);
  series y=p2 x=Age / lineattrs=(pattern=dash);
  xaxis label='Age';
  yaxis label='Predicted Probability';
  title1 'Conditional Effect Plot at Low SES';
run;
```



```
/* Check for multicollinearity */
proc reg data=outbreak;
  model Disease = Age SES_mid SES_low Sector / vif collin;
  title1 'Collinearity Check';
run;
```

Collinearity Check

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation	
Intercept	1	0.04699	0.10470	0.45	0.6546	0	
Age	1	0.00555	0.00238	2.33	0.0218	1.05242	
SES_mid	1	0.07595	0.11139	0.68	0.4970	1.24616	
SES_low	1	-0.04150	0.10323	-0.40	0.6886	1.34514	
Sector	1	0.31702	0.09180	3.45	0.0008	1.09668	

Collinearity Diagnostics								
Number	Eigenvalue	Condition Index	Proportion of Variation					
		index	Intercept Age SES_mid SES_low Sector					
1	2.91249	1.00000	0.01791	0.02993	0.02390	0.01836	0.03753	
2	1.03987	1.67357	0.00177	0.00043477	0.23886	0.23672	0.02873	
3	0.56543	2.26957	0.00369	0.01213	0.41619	0.08529	0.46221	
4	0.36812	2.81280	0.00172	0.50905	0.06301	0.18584	0.37255	
5	0.11410	5.05233	0.97491	0.44845	0.25805	0.47378	0.09897	

Backward Elimination

Probability modeled is Disease=1.

Backward Elimination Procedure

Step 0. The following effects were entered:

Intercept Age SES_mid SES_low Sector

Step 1. Effect SES_low is removed:

Step 2. Effect SES_mid is removed:

Note: No (additional) effects met the 0.1 significance level for removal from the model.

Summary of Backward Elimination						
Step	Effect Removed	DF	Number In	Wald Chi-Square	Pr > ChiSq	
1	SES_low	1	3	0.2551	0.6135	
2	SES_mid	1	2	0.9590	0.3274	

Analysis of Maximum Likelihood Estimates										
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq					
Intercept	1	-2.3350	0.5111	20.8713	<.0001					
Age	1	0.0293	0.0132	4.9455	0.0262					
Sector	1	1.6734	0.4873	11.7906	0.0006					

Variable Selection: best by score

Probability modeled is Disease=1.

Regress	sion Models Se	elected by Score Criterion
Number of Variables	Score Chi-Square	Variables Included in Model
1	14.7805	Sector
1	7.5802	Age
2	19.5250	Age Sector
2	15.7058	SES_low Sector

```
/* Check for outliers using the half-normal probability
   plot with simulated envelope
   -- note that this macro can be slow for large
        sample sizes
   */

/* Two [unused] ways to access simulated envelope macro:
   filename macrourl url
    "http://www.stat.usu.edu/jrstevens/stat5100/simEnv.macro.sas";
   %include macrourl;

filename macrourl "C:\[filepath]\simEnv.macro.sas";
   %include macrourl;

OR Just load the one line version of the macro provided on canvas into your SAS session
   */
```



```
/* Look at suspect observation */
proc print data=outbreak;
  where Case = 48;
  var Case Age SES_mid SES_low Sector Disease;
  title1 'Suspect point';
run;
```

Suspect point							
Obs	Case	Age	SES_mid	SES_low	Sector	Disease	
48	48	65	0	1	1	0	