RLPBWT

Davide Cozzi

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

Outline

RLPBWT

2 Example

3 A new Idea

Outline

RLPBWT

2 Example

A new Idea

Some definitions

The permutation, panel M, $n \times m$

In *RLPBWT* we have a permutation π_j , $\forall \ 1 \leq j \leq m$ that stably sorts the bits of the *j*-th column of the PBWT.

This permutation can be stored in space proportional to the number of runs in the j-th column of the PBWT

Some definitions

The permutation, panel M, $n \times m$

In *RLPBWT* we have a permutation π_j , $\forall \ 1 \leq j \leq m$ that stably sorts the bits of the *j*-th column of the PBWT.

This permutation can be stored in space proportional to the number of runs in the j-th column of the PBWT

The positions in the columns of the PBWT of the bits in the i-th row of M are:

Some definitions

The permutation, panel M, $n \times m$

In *RLPBWT* we have a permutation π_j , $\forall \ 1 \leq j \leq m$ that stably sorts the bits of the *j*-th column of the PBWT.

This permutation can be stored in space proportional to the number of runs in the j-th column of the PBWT

The positions in the columns of the PBWT of the bits in the i-th row of M are:

$$i, \pi_1(i), \pi_2(\pi_1(i)), \ldots, \pi_{m-1}(\cdots(\pi_2(\pi_1(i)))\cdots)$$

Extracting the bits of the i-th row of M reduces to iteratively applying the π_{m-1} permutations, corresponding to iteratively apply LF in a standard BWT

The permutation

Computing the permutation

$$\pi_j(p) = egin{cases} p - count_1 & ext{if } column[pref[p]] = 0 \ count_0 + count_1 - 1 & ext{if } column[pref[p]] = 1 \end{cases}$$

- count₀: total number of zeros in the PBWT column
- lacksquare count $_1$: number of ones in the PBWT column as far as index p

"LF-mapping" in Durbin's algorithm

$$w(i,\sigma) = \begin{cases} u[i] & \text{if } \sigma = 0\\ c + v[i] & \text{if } \sigma = 1 \end{cases}$$

- c: total number of zeros in the column
- ullet u[i]: number of zeros in the column as far as index i
- $\mathbf{v}[i]$: number of ones in the column as far as index i

Travis's example

	1	2	3	4	5	6	7	8	9	10	11	12
0	0 1		0 0	0 0	0 0	01	0 0	0	01	0 1	0 1	0 1
1	0 1	0 1	0 0	0 0	0 0	0 1	0 0	0 0	0 1	0 1	0 1	0.1
2	0 1	0 1	0 1	0	0 0	0 0	0 1	0 1	0 1	00	0 1	0 1
3	0 1	0 1	0	0 0	0 0	0 1	0 0	0 0	0 1	0 1	0 0	0.1
4	0 1	0 0	0 1	0 0	0 0	0 <u>1</u> 0 0	0 0	0 0	0 1	0 <u>1</u> 0 <u>0</u>	0 0	0.1
5	0 1	0	0 1	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0.1
6	0 1	0 0	0 1	0 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0
7	0 1	0 1	0 1	0 0	0 0	0 0	0 0	0 0	0 0	1 1	0 0	0 1
8	0 0	0 1	0 0	0 0	0 0	0 1	0 0	0 0	0 0	1 1	0 0	0.1
9	0 1	10	0 0	0 0	0 0	0 1	0 0	0 0	0 0 1	10	0 0	0.1
10	0 1	1 1	0	0 0	0 0	0 0	0 0	0 0	0 1	1 1	0 0	0.1
11	0 0	1 1	1 0	0 1 0	0 1	0 0	0 0	0 0	0 1	1 0	0 0	0.1
12	0 0	1 1	1 0		0 1	0 0	0 0	0 0	0 0	1 0	0 0	0.1
13	0 0	$1\overline{0}$	1 0	0 0	0 1	0 0	0 0	0 0	0 0	1 0	1 0	0 1
14	0 0	1 0	10	0 0	0 0	0 0	1 0	0 0	0 0	10	1 0	0 1
15	0 0	1 0	1 0	10	0 0	0 0	1 0	0 0	0 0	10	1 0	0 1
16	0 1	1 0	1 0	1 0	0 0	0 0	1 0	0 0	11	1 0	1 0	0 1
17	0 0	1 0	10	1 0	0 0	1 0	1 0	0 1	1 1	1 0	1 0	1 1
18	1 0	10	1 0	1 0	0 0	1 0	10	0 1	1 1	1 0	1 0	1 1
19	10	\square 0	1 0	10	10	1 0	1 0	11	1 1	10	10	11

The compressed data structure

The tables

- a set of *m* tables in which the *m*-th table stores only the positions of the run-heads in the *m*-th column and a bool to check the first symbol: 0 or 1
- the *i*-th row of the *j*-th table stores a quadruple

The compressed data structure

The tables

- a set of *m* tables in which the *m*-th table stores only the positions of the run-heads in the *m*-th column and a bool to check the first symbol: 0 or 1
- the *i*-th row of the *j*-th table stores a quadruple

The quadruple

- the position p of the i-th run-head in the j-th column of the PBWT
- ② the permutation $\pi_i(p)$
- lacksquare the index of the run containing bit $\pi_j(p)$ in the (j+1)-st column of the PBWT
- the threshold, that's the index of the minimum *LCP value* (current column minus divergence array value) in the run

Row extraction

First step

We start by finding the row of the first table that starts with the position p of the head of the run containing bit i in first column of the PBWT, computing:

Row extraction

First step

We start by finding the row of the first table that starts with the position p of the head of the run containing bit i in first column of the PBWT, computing:

$$\pi_1(i) = \pi_1(p) + i - p$$

Row extraction

First step

We start by finding the row of the first table that starts with the position p of the head of the run containing bit i in first column of the PBWT, computing:

$$\pi_1(i) = \pi_1(p) + i - p$$

looking up the row for the run containing bit $\pi_1(p)$ in the the second table and scanning down the table until we find the row for the run containing bit $\pi_1(i)$

Next step

We continue repeating this procedure for each column

Travis's example I

	ta	ble 1	1	ta	ble :	2	tε	ble :	3	tε	ible 4	1	tε	ble 5	5	ta	ıble 6	3
0	0	9	3	0	11	4	0	0	0	0	0	0	0	0	0	0	14	2
1	8	0	0	4	0	0	2	15	2	11	19	2	11	17	5	2	0	0
2	9	17	5	7	15	4	3	2	0	12	11	1	14	11	5	3	16	2
3	11	1	0	9	3	2	4	16	2							5	1	0
4	16	19	5	10	17	4	8	3	0							8	18	2
5	17	6	1	13	4	3										10	4	2

	ta	ble 7	7	ta	ble 8	3	$t\epsilon$	ble 9	9	ta	ble 1	0	ta	ble 1	1	table 12
0	0	0	0	0	0	0	0	7	4	0	13	1	0	17	2	0
1	2	19	3	2	16	4	7	0	0	2	0	0	3	0	0	6
2	3	2	1	3	2	0	10	14	7	3	15	1				7
3				17	17	4	12	3	2	5	1	0				
4							16	16	7	7	17	1				
5										9	3	1				
6										10	19	1				
7										11	4	1				

Travis's example II

Extraction of row 9, $\pi_i(i) = \pi_i(p) + i - p$

$$\pi_1(9) = 17 + 9 - 9 = 17$$

$$\pi_2(17) = 4 + 17 - 13 = 8$$

$$\pi_3(8) = 4 + 8 - 8 = 3$$

$$\pi_4(3) = 0 + 3 - 0 = 3$$

$$\pi_5(3) = 0 + 3 - 0 = 3$$

$$\pi_6(3) = 16 + 3 - 3 = 16$$

$$\pi_7(16) = 2 + 16 - 3 = 15$$

$$\pi_8(15) = 2 + 15 - 3 = 14$$

$$\pi_9(14) = 3 + 14 - 12 = 5$$

$$\pi_{10}(5) = 1 + 5 - 5 = 1$$

$$\pi_{11}(1) = 17 + 1 - 0 = 18$$

Outline

RLPBWT

2 Example

3 A new Idea

The matrixes

Panel and query	Panel	and	query
-----------------	-------	-----	-------

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1	0	1	0	0	1	1	1	1	1	0	0	1	0	0	1	0	0	1
0	1	0	0	0	0	1	1	1	1	1	0	0	1	1	1	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1	1	1	0	0	0	1	0	1	0
1	0	0	1	1	0	1	0	1	0	0	0	1	1	1	0	0	0	1	0
0	1	1	0	1	1	1	1	1	0	0	1	0	0	1	1	1	1	0	0
1	1	0	0	1	0	1	0	1	0	1	0	1	0	0	0	1	1	1	1
0	0	0	1	0	1	1	1	1	1	1	1	0	0	1	0	0	0	1	1
0	0	1	0	1	1	1	1	1	1	1	0	0	1	0	0	0	1	1	1

PBWT Matrix

_	-	_	_					_											
- 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1	0	1	0	0	1	0	0	1	1	0	1	1	1	0	1	0	1	1
0	0	0	1	1	0	0	1	1	0	0	1	1	1	1	0	1	0	1	0
0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	1	0	1	1
1	0	0	0	0	0	1	0	1	1	1	1	0	0	0	1	0	1	1	0
0	1	1	1	0	0	1	0	1	1	1	0	0	1	1	0	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1	0	1	0	0	1	1	0	1	0
0	1	0	0	0	0	1	1	1	0	1	1	0	0	1	0	0	1	0	1

Prefix and Divergence Arrays

Prefix Arrays

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	1	2	2	1	1	1	2	2	2	5	3	3	1	4	5	5	6	6	0
1	2	6	6	5	2	2	1	5	5	3	4	5	0	6	2	2	3	3	4
2	4	3	3	4	6	0	0	3	3	4	5	1	4	5	0	0	1	1	6
3	6	1	1	2	0	5	5	1	1	2	2	0	6	2	4	6	5	2	3
4	0	4	0	6	5	3	3	0	0	1	1	4	3	1	6	3	2	0	1
5	3	0	5	3	4	6	6	6	6	0	0	2	5	0	1	4	0	5	2
6	5	5	4	0	3	4	4	4	4	6	6	6	2	3	3	1	4	4	5

LCP Arrays: current k minus the original Durbin's divergence arrays

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	2	3	3	1	2	0	1	0	6	3	1	9	3	3	4	3	4	1
0	1	1	2	1	5	4	3	4	5	2	0	2	1	1	1	2	1	2	0
0	1	0	1	0	3	1	2	0	1	0	1	8	2	2	0	1	0	1	5
0	0	2	2	4	0	2	3	4	5	1	2	0	0	0	4	2	5	4	3
0	1	1	3	3	2	0	1	2	3	6	7	1	2	10	1	0	3	0	2
0	1	2	0	2	1	1	2	3	4	4	5	3	1	1	2	2	1	2	1

Run-Length PBWT I, p, perm, next perm, threshold

[0, 1, 2, 3, 4]

[5, 6, 7, 8, 9]

Run-Length PBWT II

[10, 11, 12, 13, 14]

[15, 16, 17, 18, 19]

Match with external haplotype I

First case, bits matches at column j-th

- we are looking at *d*-th bit of the *k*-th run, that come from the *i*-th row of the panel
- lacksquare if this bit match the next bit of the pattern we can go to column j+1 and we figure out which bit to look at in that column
- the next bit we look at is still from row i-th

Match with external haplotype II

Second case, bits doesn't matches at column *j*-th

- we are looking at *d*-th bit of the *k*-th run and that bit doesn't match the next bit in the pattern
- we look at the threshold for the k-th run;
 - if d is at most the threshold (check this "at most") than we move to the last bit of the (k-1)-st run in the j-th column and then we proceed as in case 1
 - if d is greater than the threshold than we move to the first bit of the (k-1)-st run in the j-th column and then we proceed as in case 1

Travis's New Version

A column C's representation consists of a bitvector B[0..m-1] and a sequence of thresholds T. It supports the query CANDIDATE STEP, which takes a single integer i and a bit b and returns a boolean flag f and a single integer i'. If B[i] = b, then f = TRUE and i' is the position of B[i] after B is stably sorted. If $B[i] \neq b$ but there is some copy of b in B, the f = FALSE and i' is the position after B is stably sorted of either of the last copy of b before B[i] or of the first copy of b after B[i], depending on whether B[i] is before or after the threshold for the run containing B[i]. If there is no copy of b in B, then f = FALSE and i' = -1. We store B and T run-length compressed, so they take $O(r_c)$ words of space and CANDIDATE STEP takes $O(\log \log m)$ time. We start a search with i = 0; we go from one column to the next setting i = i' when $i' \geq 0$, with f telling us whether we've jumped or not (**but not telling us** whether we've hit the end of a MEM); when i' = -1, we were unable to match a column and we start over at the next column with i = 0.

Outline

RLPBWT

2 Example

3 A new Idea

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00		. 1	0 ,	1)	1	0	0	0	1	0	0	1	1	1	1
01	1	1	0	1	1	0	0	0	1	0	0	1	1	1	1
02	1 /	' 1	0 ,	. 1	1	1	0	0	0	1	1	1	0	1	1
03	1:	1	0	1	1	0	0	0	1	0	0	1	1	0	1
04	0 3	1)	0	1	0	1	0	0	1	0	0	1	1	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0 >	(1)	0 ,	(1)	, 0	0	0	0	0	1	0	0	0
07	0	1	0	1	1	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1
09	0	1	0	1	0	0	0	0	1 0	0	0	0	0	0	1
10	0	1	0	1	1	0	0	0 >	0	<u>O</u> .	0	1	1	0	1
11	0	1	0	0 3		0	1	1	0	0	0	1	0	0	1
12	0	1	0	0	1	0	0	1	0	0	0	0	0	0	1
13	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
14	0	1	0	0	0	0	0	0	0	0	0	0	0 🤌	0	1
15	(0)	. 0	0	0 >	0	0	0	0	0	0	0	0	0	0	1
16	0	0	0	1	0	0	0 ,	0	0	0	0		0	0	1
17	1 /	0 >	1	0	0	0	0	0	0	0	lacktriangle		0		\bigcirc
18	0	0	, 1	0	0	0	0	0	0	0	1	1	Ô.	0	1
19	0 3	1	0	0	0	0		0	0	0	1	1	0	0	1
								1				3		1	
\mathbf{z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1

	e = 0						e = 3	3			e = 7		e = 11	Į.		
\mathbf{X}	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
00	(0)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
01	0	0	0	0	0	0	0	0	0	2	2	2	7	9	6	15
02	0	0	0	0	0	1	4	4	4	5	5	5	8	0	0	6
03	0	0	0	0	0	4	2	2	2	0	3	6	9	12	0	0
04	0	0	2	2	0	2	0	0	0	3	6	4	0	6	8	0
05	0	0	0	0	0	0	0	0	0	6	4	0	4	0	0	8
06	0	0	0	0	1	0	5	5	5	4	0	0	0	0	11	0
07	0	0	0	0	3	0	0	0	0	0	0	0	12	8	9	11
08	0	0	0	0	0	0	0	0	0	0	0	7	2	0	0	0
09	0	0	0	0	4	0	0	0	0	0	7	8	5	11	10	10
10	0	0	0	0	0	0	3	3	3	7	8	0	6	9	13	13
11	0	0	0	0	0	5	0	4	6	8	0	0	4	0	7	7
12	0	0	0	0	0	0	4	0	4	0	0	9	0	10	9	9
13	0	0	0	0	2	0	0	0	0	0	9	0	0	13	0	0
14	Q	0	0	0	0	0	0	6	0	9	0	4	8	7	12	12
15	0	1	0	0	0	3	6	4	0	0	4	0	0	9	2	2
16	0	0	0	0	0	0	4	0	7	4	0	11	11	0	6	6
17	0	0	0	1	0	4	0	0	8	0	(5)	9	9	12	14	14
18	0	0	0	3	0	0	0	0	0	5	0	0	0	2	9	9
19	0	0	1	0	0	0	(0)	7	0	0	10	10	10	6	0	0

37	1 00	0.1	00	0.0	0.4	05	00	07	00	00	10	1.1	10	10	1.4	1 =
X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15
00	0	4	0	0	8	14	14	14	14	0	0	0	7	1	18	11
01	1	5	1	1	11	15	15	15	15	16	16	16	19	9	4	18
02	2	6	2	2	12	17	0	0	0	8	11	18	1	10	5	4
03	3	7	3	3	13	0	9	9	9	11	18	17	14	18	6	5
04	4	8	4	4	14	4	10	10	10	18	17	4	15	4	2	6
05	5	9	5	5	15	5	16	16	16	17	4	5	9	5	3	2
06	6	10	6	6	17	6	8	8	8	4	5	6	10	6	11	3
07	7	11	7	7	18	7	11	11	11	5	6	7	0	2	12	12
08	8	12	8	8	19	9	12	12	12	6	7	19	16	3	13	13
09	9	13	9	9	0	10	13	13	13	7	19	1	18	11	8	8
10	10	14	10	10	1	16	18	18	18	19	1	2	17	12	7	7
11	11	15	11	11	2	8	19	1	17	1	2	3	4	13	19	19
12	12	16	12	12	3	11	1	2	4	2	3	14	5	8	14	14
13	13	18	13	13	4	12	2	3	5	3	14	15	6	7	15	15
14	14	19	14	14	5	13	3	17	6	14	15	9	2	19	0	0
15	15	0	15	15	6	18	17	$_4$	7	15	9	10	3	14	16	16
16	16	1	16	16	7	19	4	5	19	9	10	(11)	11	15	17	17
17	17	2	18	17	9	1	5	6	1	10	12	12	12	0	1	1
18	18	3	19	18	10	2	6	7	2	12	13	13	13	16	9	9
19	19	17	17	19	16	3	7	$\overline{(19)}$	3	13	8	8	8	(17)	10	10

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	.0.	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
			/	\											
\mathbf{z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1

pre_e = 6 at 7 pre_e = 8 pre_e = 13 at 11 at 13

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	0	0	1	1
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	1	0	0	1
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
															_
\mathbf{z}	0	1	0	0	1	0]	1	0	0	0	1	[1]	1	0	1]

New Idea I

Let's take a step back and get closer to Durbin's original idea.

At the moment we save:

- the position of every head of a run
- a boolean to mark if the first run is composed by zeros or ones
- the c value of the column
- \blacksquare a single value for u and v (that are as in Durbin)
- the whole divergence array, actually the LCP array, (WIP)

New Idea I

```
column: 5
start with 0? yes, c: 15
0
    0
   5
0 5 4 1 3 5 5 5 5 5 5 0 5 5 5 2 5 1 5 5
```

Figura: Example, column 5: 0010111100000000000

New Idea II

uv values trick

Values u and v increase alternately in the biallelic case so we save every time the only value that increase at the head of a run.

The, with a simple If/Else selection based on the first element of the column and the index of the run and on being even or odd of the index we can extract both u and v values. Infact the two values are, alternatively, saved in the current index and in the previous one.

$w(i,\sigma)$ function

We can use the same *LF-mapping* as in Durbin but we have to consider every time an *offset* between the position of the head of the run, that's *i*, which contains the "virtual" index, and the index itself.

$$w(i,\sigma) = \begin{cases} u[i] + offset & \text{if } \sigma = 0\\ c + v[i] + offset & \text{if } \sigma = 1 \end{cases}$$

New Idea III

External haplotype matches

Than we proceed as in Durbin, updating f and g using $w(i, \sigma)$.

Every time we "virtually" use indexes over the whole column but actually run heads plus offsets are used.

In case we update e using f and the divergence/LCP array (**WIP**). In order to update e we should in theory follow the line indicated in i+1 by f in the original panel which we have not memorized. So, at most at a cost of O(r) for every column, we proceed to reverse te use of u and v to move backwards between the columns virtually following a row of the original panel.

Than we use the divergence/LCP array (**WIP**) to update f and g depending on the case.

After detect a match, we can know the cardinality of the lines that match but not what they are,

New Idea IV

WIP

At the moment *divergence array* is saved as an sdsl::int_vector<> on which it's used sdsl::util::bit_compress() in order to save space. The original idea of thresholds seems to me absolutely not applicable but maybe we can think of storing only a subset of the *divergence/LCP array* and I'm thinking how to do it.

In order to not save the *divergence/LCP array* we could make two *RLPBWT*, one for the normal order and one for the reverse order.

Instead of use the divergence/LCP array to retrieve matches that are overlapped in the panel we look for non overlapped matches only. To do this when we find a match we continue the search updating f and g based only on c and h, the total number of haplotypes in the panel:

$$(f,g) = \begin{cases} (0,c) & \text{if } \sigma = 0 \\ (c,h) & \text{if } \sigma = 1 \end{cases}$$

We query in this way the first one with the haplotype and the second one with the reverse of the haplotype. Than we intersect the results.

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00		, 1	0 ,		1	0	0	0	1	0	0	1	1	1	1
01	1	1	0	1	1	0	0	0	1	0	0	1	1	1	1
02	1 /	1	0 '-	, 1	1	1	0	0	0	1	1	1	0	1	1
03	1	1	0	1	1	0	0	0	1	0	0	1	1	0	1
04	0		0	['] 1	0	1	0	0	1	0	0	1	1	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0 >	\bigcirc	0 >	1	0	0	0	0	0	1	0	0	0
07	0	1	0	1 ,	1	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	1	0	0	0	1	0	1
09	0	1	0	1	0	0	0	0	1 🤌	0	, 0	0	0	0	1
10	0	1	0	1	1	0	0	0 >	0	0	0	1	1 /	0	1
11	0	1	0	0		0	1	1	0	0	0	1	0 ;	~ 0	1
12	0	1	0	0	1	0	0	1	0	0	0	0	0	· 0	1
13	0	1	0	0	0	0	0	1	0	0	, 0	0	0	0	1
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
15	0	0	0	0 >	0	0	0	0	0	0	0	0	0	0	1
16	0	0	0	1	0	0	0 👌	0	0	0		D ;	0	0	1
17	1 /	0		0	0	0	0 ?	0	0	0 ,		1	0	0	\bigcirc
18	0	0 ,	1	0	0	0	0	0	0	0	1	1	0	0	1
19	0 ,	1	0	0	0	0	@	0	0	0	1		0	0	1
							\bigcirc	,							
\mathbf{z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00		0	0	1	0	0	0	1	0	1	1	1	0	$\langle 1 \rangle$	1
01		O	, 1	1	0	0	1	0	1	1	0	1	0	11;	1
02	1	1	0	1	0	0	1	0	0	1	0	1	0 ,-	1 '	-, 1
03	1	0	0	1	0	0	0	1	0	1	1	1	1;	1	; 1
04	1	0	0	1	0	0	1	1	0	0	1	0	0 >	1	·′ 0
05	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0
06	1	0	; 0	1	0	0	0	0	0	0	0	1	0	1	1
07	1	0 :	′ 1	1	1	0	0	0	0	1	0	1		0	0
08	1	0	0	1	0	0	0	0	0	0	0 >	\bigcirc	1	1	0
09	1	0 ;	0	1	0	0	0 >	\odot	0	0	1 >	\bigcirc	-'0	1	0
10	1	1	0	0	0	0	0	\bigcirc	; 0	0	1	0	0	1	0
11	0	1	1	0	0	0	0	0	0	0	1	0	0	1	0
12	1	0	1	0	0	0 >	\bigcirc	0 ,	0	0	1	0	0	1	0
13	1	0 >	(1)	\cdot , 1	1	0 ¦	\bigcirc	0;	; 0	0	1	0	0	1 ?	0
14	1	0	1	0	1	0	0	0	0 3	\bigcirc	$\langle 1 \rangle$	0	0	1	0
15	1	0	0 ,	- 0	1	0 }	0	0	0 1	0	0	0	0	0 ;	0
16	1	0	1	0	\bigcirc	0	0	0 ;	0	0	<i>i</i> 0 ¦	1	0	0	¦ 0
17	1 2	\odot	, O 🤅	(1)	· (0	1	1	0;	0	0 #	0	1	0	0	0
18	1	0	, 0	1 .	, 0	0	1	0	0	0	0	. 1	0	\bigcirc	. 0
19	1	0 (0	0 (0	0	0	0	\bigcirc	0	\bigcirc	0	0	1	0
		, ,	\bigcirc	\bigcirc	\bigcirc	•		(\bigcirc	>	\bigcirc				
\mathbf{z}	1	0	1	1	1	0	0	0	1	0	1	0	0	1	1

X	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14
00	1	0	0	1	0	0	0	0	0	0	0	1	1	0	1
01	1	0	0	1	1	0	0	1	0	0	0	U	U	1	I
02	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
03	1	0	0	1	1	0	0	1	0	0	0	1	0	0	1
04	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
05	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
06	0	1	0	1	0	1	0	0	0	0	0	1	0	0	1
07	0	1	0	1	0	1	0	0	0	0	0	0	1	0	1
08	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1
09	0	1	0	1	0	0	0	0	1	0	0	0	0	1	1
10	0	11	0	1	0	0	0	0	1	0	0	0	0	1	1
11	0	1	0	0	1	0	0	0	0	0	1	1	0	0	0
12	0	1	0	0	1	0	0	0	1	0	1	1	0	0	1
13	0	1	0	0	1	0	0	0	1	0	1	_1	0	0	_1
14	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
15	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1
16	0	1	0	1	0	0	0	0	0	0	0	1	1	0	1
17	1	1	0	0	0	1	0	0	0	0	0	1	1	0	1
18	0	1	1	0	1	0	0	0	0	0	0	I	0	U	I
19	0	1	1	0	1	0	1	0	0	0	0	0	1	0	1
\mathbf{Z}	0	1	0	0	1	0	1	0	0	0	1	1	1	0	1
		_					_								
	Mate	ch	Forw	ard	Ba	ckwar	d								