EE23BTECH11024 - G.Karthik Yadav*

11.9.5.14

1. Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that $P^2R^n=S^n$.

Solution:

from table I

Symbol	Parameters	Г
$u\left(n\right)$	unit step function	
r	common ratio of GP	
$x\left(n\right)$	general term in a GP	Г
$y\left(n\right)$	general term of reciprocal terms in a GP	

TABLE I INPUT PARAMETERS

Fig. 1. Stem Plot of $x(n) = (2) 3^n, x(0) = 2$ and r = 3

$$x(n) = x(0) r^n \tag{1}$$

Using (??),

$$S = x(0) \left(\frac{r^{n+1} - 1}{r - 1} \right) u(n)$$
 (2)

$$y(n) = \frac{1}{x(0)}r^{-n} \tag{3}$$

Using (??) and setting the first term as $\frac{1}{x(0)}$ and common ratio as r^{-1} ,

$$R = \frac{1}{x(0)} \left(\frac{1 - r^{-(n+1)}}{1 - r^{-1}} \right) \tag{4}$$

$$P = (x(0))^{n+1} r^{n(n+1)}$$
 (5)

by using eq (2), eq (4) and eq (5) $P^2R^n = S^n$.

Fig. 2. Stem Plot of $y(n) = (0.5) 3^{-n}, x(0) = 2$ and r = 3