

Introduction Lab Humanoid RoboCup: Final Presentation

Supervisor: Mohsen Kaboli

Institute for Cognitive SystemsTechnical University of Munich

Munich, July 24th, 2017

Yellow Team

Minkai Hu Fabian Kreutmayr Jingjie Jiang

Tianming Qiu Zhiyi Li Yao Rong

What is the RoboCup?

- RoboCup is robotics competition
- The World Cup takes place every year
- Participants are research team from all over the world
- 2016's champion is "BHuman" from the University of Bremen
- 2017's tournament is taking place from 27th to 30th July in Nagoya,
 Japan

What are the objectives?

- Push development in several research fields:
 - Humanoid locomotion
 - Computer vision
 - Machine learning
 - And much more
- Strengthen connections and exchange between universities and other research centers
- **The vision:** By 2050, a team of fully autonomous robots should beat the Soccer World Champions

Semester Projects

Improvement of Kicking Process

- Kick Methods
- Foot Selection
- Alignment to Goal
- Area-based Alignment

Improvement of Localization

- Penalty Mark Perception
- Vertical Line Perception
- Visual Odometry

Semester Projects

Improvement of Kicking Process

- Kick Methods
- Foot Selection
- Alignment to Goal
- Area-based Alignment

Kick Methods - Ground Truth

Kick Methods

Why improve the kick?

Current state:

- NAO aligns behind the ball and kicks the ball weakly to the goal
- No variability
- Easy to intercept

- Nao
- Ball position
- Previous ball position
- Current kick

Kick Methods

Improvements:

- Adding different kicking methods
 - -Stronger/weaker kick
 - -Angled kick
- Advantage:
 - Stronger kick increases chances to score
 - Angled kick is more difficult to defend against

- Nao
- Ball position
- Previous ball position
- 1 New kicks

Kick Methods - Video

Semester Projects

Improvement of Kicking Process

- Kick Methods
- Foot Selection
- Alignment to Goal
- Area-based Alignment

Foot Selection - Ground Truth

Foot Selection - Ground Truth

Problem:

 NAO kicks ball always with the left foot → needs long time for aligning behind the ball

Solution:

- Introduce a method where NAO decides to kick with left or right foot
- Choose foot that is closer to the ball

Advantage:

Save time during alignment process → NAO is more competitive

Foot Selection - State Machine

Foot Selection - Flow Chart

Foot Selection - Video

Semester Projects

Improvement of Kicking Process

- Kick Methods
- Foot Selection
- Alignment to Goal
- Area-based Alignment

Alignment to Goal- State Maschine

Alignment to Goal – State of the Art

- Problem when robot is between ball and goal
 - Kick to own goal
 - Unable to score

Align to goal

Ball

Robot

Proposed Solution

- Advantage
 - Guarantee for kicking to goal

Improved Alignment to Goal – Video

Semester Projects

Improvement of Kicking Process

- Kick Methods
- Foot Selection
- Alignment to Goal
- Area-based Alignment

Area-based Alignment – State of the Art

Adapted from [1]

- Problem in field corner
 - Low possibility of scoring

Proposed Solution

- Advantage
 - Higher possibility of scoring
 - Foundation of passing strategy

Area-based Alignment – Video

Semester Projects

Improvement of Localization

- Penalty Mark Perception
- Vertical Line Perception
- Visual Odometry

Localization: Problem Statement

What is RoboCup localization problem?

- Given?
 - Map of field (with landmark coordinate)
 - Sequence of camera measurements

Localization: Problem Statement

What is RoboCup localization problem?

Given?

- Map of field
- Sequence of camera measurements

Wanted?

- Robot 2D location and pose: $(x, y, \theta)^T$

Localization: Problem Statement

What is RoboCup localization problem?

Given?

- Map of field
- Sequence of camera measurements

Wanted?

- Robot 2D location and pose: $(x, y, \theta)^T$

Method?

- Unscented Kalman Filter + Particle filter

Localization: Motivation

Localization: Current Problems

Feature detection

Ignore the good penalty mark

Poor vertical line perception

Visual odometry

 Inaccurate pose calculation caused by ignoring robot's walking noise

Semester Projects

Improvement of Localization

- Penalty Mark Perception
- Vertical Line Perception
- Visual Odometry

Penalty Mark Perception

Motivation

- 1. What is the Penalty Mark?
 - Appearance: cross
 - Location: in front of each penalty area
- 1. Why using the Penalty Mark?
 - special feature

Penalty Mark Perception Current Method

Criterion 1: distance from observer

Criterion 2: distance from field border

Criterion 3: variance

Criterion 4: size

Criterion 5: enough green area around

Penalty Mark Perception <u>Current Problem</u>

Good penalty mark cannot be selected!

Test No.	1	2	3	4	5	6	7
Variance	-0.33697	-0.661187	12.9169	-0.69982	44.29901	-0.485818	0.190308

Negative variance!

Penalty Mark Perception Method

Welford's method [2]

$$M_n = M_{n-1} + (x_n - \bar{x}_{n-1})(x_n - \bar{x}_n)$$
 with $\sum_{i=1}^n (x_i - \bar{x}_n)^2 = M_n$
Variance $= \frac{M_n}{n-1}$

Achievement and evaluation

Test No.	1	2	3	4	5	6	7
Current Variance	-0.33697	-0.661187	12.9169	-0.69982	44.29901	-0.485818	0.190308
Standard Variance	0.10183	0.103699	18.0895	6.03105	19.0168	12.2954	0.101453
Improved Variance	0.2572	0.2486	0.2526	0.251778	0.3914	0.3966	0.24897

Penalty Area Perception

Poor vertical line perception!

Semester Projects

Improvement of Localization

- Penalty Mark Perception
- Vertical Line Perception
- Visual Odometry

increase the scanning rate to get more segments

red: potential line spots

blue: line edges

set the threshold for the distance between two edges → potential line spot

potential line from abandoned line spots.

RANSAC potential line from abandoned line spots.

connect the first and last spot in the same cluster

Results:

- 1. Extended line perception range: <u>large slope</u>
- 2. Detected line spots increased about <u>2 times</u> (experimental value)
- 3. The best time consume to finish self-localization: <u>1'40"</u>

Result

Test day: July 14th, 2017; 17:00-18:00 pm; Cloudy.

Semester Projects

Improvement of Localization

- Penalty Mark Perception
- Vertical Line Perception
- Visual Odometry

Visual Odometry: current method

Visual Odometry: Current Problem

Visual Odometry: PnP Pose Estimation^[3]

Which we can calculate

Known

Which we want to know

Visual Odometry: PnP Pose Estimation^[3]

$$\boldsymbol{T}_{robot_field} = \begin{bmatrix} \boldsymbol{R} & \boldsymbol{T} \end{bmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha & 0 & T_x \\ -\sin \alpha & \cos \alpha & 0 & T_y \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- 4 unkowns
- 2 pairs of correspondences $(u, v, 1)^T \leftrightarrow (X, Y, 0, 1)^T$
- P2P Estimation

Visual Odometry: Result

Visual Odometry: Evaluation

	Advantages	Disadvantages
Current method	Quick, easyOnly need one pair correspondence	Walking noise
PnP estimate method	More accurate	Complex calculation

Conclusions & Future Work:

Kicking Process

Achievements:

- Advanced kicking methods
- Kicking with both feet
- More improved alignment process

Future Work:

- Add more kicking methods
- Introduce strategies for passing and dribbling

Localization

Achievements:

- More robust penalty mark and line perception
- Eliminate pose estimation approximation error

Future Work:

- Scan grid in both vertical and horizontal directions
- Get a more adequate noise model