

UNIVERSIDAD SIMÓN BOLÍVAR Vicerrectorado Académico

1 .Departamento: Cómputo Científico y Estadística

2. Asignatura: Introducción a las Redes Neuronales Artificiales y sus aplicaciones

3. Código de la asignatura: CO6612

No. de unidades-crédito: 4

No. de horas semanales: Teoría 4 Práctica 1 Laboratorio

4. Fecha de entrada en vigencia de este programa: Enero 2005

5. OBJETIVO GENERAL:

Se desea que el estudiante conozca técnicas alternativas a la estadística convencional como las redes neuronales y sea capaz de aplicarlas en situaciones reales donde las técnicas estadísticas pudieran tener limitaciones importantes.

El curso está diseñado para que el estudiante domine los conceptos y las técnicas asociadas a los diversos paradigmas neuronales que se estudian, así como para que sea capaz de emplear un software para su aplicación o implementar sus propias rutinas y utilizarlas. De esta manera, los conocimientos teóricos obtenidos son afianzados mediante la aplicación inmediata de los mismos a problemas reales de interés.

El curso hace énfasis en las diversas configuraciones de redes neuronales que se pueden obtener y los diversos algoritmos de entrenamiento que se pueden utilizar, de acuerdo al problema que se está intentando resolver.

- 6. OBJETIVOS ESPECÍFICOS: El estudiante será capaz de:
 - 1. Entender y aplicar conceptos y técnicas de redes neuronales, selección apropiada de los conjuntos de entrenamiento y validación para estas, detectar patrones y realizar aproximaciones utilizando paradigmas neuronales.
 - 2. Escribir software para la aplicación de las técnicas estudiadas a conjuntos de datos en diferentes áreas, e interpretar los resultados obtenidos en el marco del problema analizado.

7. CONTENIDOS:

- 1. Introducción a MATLAB. Construcción y manipulación de vectores, aritmética básica, variables lógicas., lectura de datos, estructuras de datos: matrices, arreglos, hojas de datos, listas. Gráficos (1 semana)
- 1. Introducción. Motivación. Analogía entre las redes neuronales artificiales y biológicas. (1 semana)
- 2. Redes de una capa. Técnicas de optimización como algoritmos de aprendizaje. Filtros lineales de mínimos cuadrados. Algoritmos. Curvas de entrenamiento. Teorema de convergencia de perceptrones. Limitaciones. (3 semanas)
- 3. Redes multicapa. Algoritmo de retropropagación (backpropagation). Representación de salida y reglas de decisión. Retropropagación y diferenciación. Validación cruzada. Técnicas de simplificación de redes. Convergencia del algoritmo de retropropagación. Mejoras y limitaciones al algoritmo de retropropagación. Ejemplos: detección de características, aproximación, XOR, experimentos numéricos. (3 semanas)
- 4. Redes de funciones de bases radiales. Teorema de Cover. Teoria de regularización, redes regularizadas. Estimación de parámetros de regularización. Comparación con redes multicapa. Estrategias de aprendizaje. Ejemplos: problemas de interpolación, XOR, experimentos numéricos.(1 semana)
- 5. Redes no supervisadas. Motivación y definición. Redes no supervisadas de Kohonen. Algoritmo de entrenamiento. Mapa de características autoorganizadas. Ejemplos. (2 semana)

8. ESTRATEGIAS METODOLÓGICAS, DIDACTICAS

Las clases se dictan en un aula computarizada con apoyo audiovisual (retroproyector o proyector para computadora). El profesor expondrá la teoría correspondiente a cada uno de los temas del curso, y presentará ejemplos que serán analizados por cada estudiante. Se discutirán los resultados obtenidos y las ventajas y desventajas de cada método, estimulando la participación del estudiante. En cada clase se asignará trabajo práctico que complemente el contenido de la clase.

9. ESTRATEGIAS DE EVALUACIÓN: La evaluación consiste en dos (2) quizes, uno aproximadamente a la mitad del trimestre y otro al final, corresponden al 30% de la nota final. Dos (2) proyectos, elaborados en equipos de dos estudiantes, cubren el 50% de la evaluación. Finalmente, un 20% de la nota final se evaluará mediante las asignaciones de clase.

• 10. FUENTES DE INFORMACIÓN:

- Simon Haykin, "Neural Networks, a comprehensive foundation", segunda edición Prentice Hall 1999.
- Manual de usuario del toolbox de Redes Neurales de Matlab, (disponible via internet), http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/
- Sergios Theodoridis and Konstantinos Koutroumbas ,"Pattern Recognition", segunda edición.
 Elseiver Academic Press. 2003
- Christopher Bishop, "Neural Networks for pattern recognition", Oxford press, 1995