MATH-578A: Homework # 1

Due on Tuesday, March 10, 2015

Saket Choudhary 2170058637

Contents

Question # 1	 			 																	3
Question #2	 			 																	4
Question # 3	 			 							 										5

Question # 1

Definition: $SP(i) = \max k < i \text{ such that } P[1..k] = P[i-k+1..i]$

String: CACGCAACGA

NOTE: Iteration indexed at 0. So SP[0] = 0 (By Definition) and hence the loop iterations start from 1 and

go till n-1=9;

Iteration	SP[i]	All other SP values examined	# of times inner while loop executed
1	0	-	0
2	1	-	0
3	0	SP[0]	1
4	1	-	0
5	2	-	0
6	1	SP[0]	1
7	1	-	0
8	1	SP[0]	1
9	0	-	0

Question #2

S = CACGGCACGG

NOTE: Indexing starts from 0. By definition Z[0] = |S| = 10

The 'cases' are choosen out of:

Case 1. k > r. The index for which Z value is being calculated is greater than the right most ending of all the previous(till k-1) Z boxes calculated. Since this is as good as having no pre-calculated Z scores, this case leads to explicit character comparison(starting at k) till a mismatch occurs.

Case 2. $k \leq r$ The current position k is inside one of the previously calculated Z boxes. Hence there exists a corresponding position k' = k - l + 1 where l is the left ending of the Z box with it's right ending at r, such that S[k'] = S[k]. There is a corresponding one to one match for S[k'..r - l + 1] with S[k..r] and we define this to be another box β with $\beta = r - k + 1$ and hence Z[k] can be caculated utilising this information.

The following three cases arise:

Case 2a. $Z'_k < |\beta|$ So starting at k' the length of largest substring that matches the prefix of S is less than size of that β box starting at k'. Since this β box appears starting from k too and $Z'_k < |\beta|$ implies $Z_k = Z'_k$. Total comparisons:

- 1. Comparison: $k \leq r$
- 2. Assignment/Calculation: k' = k l + 1
- 3. Lookup: Z'_k
- 4. Assignment/Caculation: $|\beta| = r k + 1$
- 5. Comparison: $Z'_k < |\beta|$
- 6. Assignment: $Z_k = Z'_k$

No character comparisons are involved.

Case 2b. $Z'_k > |\beta|$ So the substring starting at k' matches a prefix of S and has length equal to the β box. If we call the box with it's leftmost end=l and rightmost end=r as α , then we know that $S[r+1] \neq S[|\alpha|+1]$ otherwise α would not have been the largest such box. Thus, $Z_k = \beta$ Thus no character comparisons involved in this case too.

The comparisons involved:

- 1. Comparison: $k \leq r$
- 2. Assignment/Calculation: k' = k l + 1
- 3. Lookup: Z'_k
- 4. Assignment/Caculation: $|\beta| = r k + 1$
- 5. Comparison: $Z'_k > |\beta|$
- 6. Assignment: $Z_k = Z'_k$

Case 2c. $Z'_k = |\beta|$

The substring starting at k might have a matching prefix in S, and hence explicit character comparions are required from r+1 to $q \ge r+1$ till the first mismatch occurs. These iterations are bound by O(|S|) since the maximum possible mismatches are O(|S|).

The comparisons involved:

- 1. Comparison: $k \leq r$
- 2. Assignment/Calculation: k' = k l + 1 [Question #2] continued on next page...
 - 3. Lookup: Z'_k
 - 4. Assignment/Caculation: $|\beta| = r k + 1$

Question # 3

Algorithm 1 Calculate $y = x^n$

Input: r
Output: f =0