PYL113/EPL103, Mathematical Physics, Minor 1, Physics Department (IIT, Delhi)

All questions are compulsory, maximum marks for each question are given in **bold** numericals. Symbols carry usual meaning unless otherwise stated.

- (Q1) (a) (3 marks) Consider an analytic function f(z) = u(x, y) + iv(x, y). Show that $f^*(z^*)$ is also analytic.
 - (b) (2 marks) If f(z) is analytic. Show explicitly that the derivative of f(z) with respect to z^* exists only when f(z) is constant.

Hint:- * operation implies complex conjugate.

- (Q2) (2 marks) Expand $f(z) = \frac{1}{1-z}$ in Taylor series about z = i and find the radius of convergence.
 - (b) (3 marks) Find the Laurent series expansion of $f(z) = e^z/(z+1)$ such that $0 < |z+1| < \infty$. What is the residue (meaning coefficient b_1)? Now use Cauchy's integral formula to evaluate:

$$I = \frac{1}{2\pi i} \oint_C \frac{e^z}{(z+1)} dz$$

where C is a positively oriented contour encircling z = -1. Show that the answer matches with the one obtained using residue b_1 from Laurent series expansion above.

- (2 marks) Evaluate $I = \frac{1}{2\pi i} \oint_C \pi \cot(\pi z) dz$ where C is a negatively oriented contour enclosing singularity at z = 0 only.
- (Q4) (3 marks) Consider a set of orthonormal basis vectors $\{|e_1\rangle, |e_2\rangle, |e_3\rangle, \dots, |e_n\rangle\}$. Show that the projection operator defined as $\hat{P}_m = \sum_{j=1}^m |e_j\rangle\langle e_j|$, over a subset of $m \leq n$ vectors is idempotent that is $\hat{P}_m^2 = \hat{P}_m$. Hence show that the eigenvalues of \hat{P}_m are 0 or 1.
 - (b) (2 marks) Consider a real vector space of dimension 3 formed by column vectors. For this vector space write down a set of orthonormal basis vectors. Prove the completeness that is $\hat{P}_3 = \sum_{j=1}^3 |e_j\rangle\langle e_j| = I$, where I is an identity matrix.
 - (c) (3 marks) Show that any real 3×3 matrix B can be written as a linear combination of entities of the form $|e_i\rangle\langle e_j|$, with i, j = 1, 2, 3 and $|e_i\rangle$'s are the basis vectors found in (b) above.

Some useful formulae

- Cauchy-Riemann (CR) conditions $u_x = v_y$ and $u_y = -v_x$.
- Taylor expansion of $e^z = \sum_{n=0}^{\infty} z^n/n!$.
- $1/(1-z) = \sum_{n=0}^{\infty} z^n$ for |z| < 1.
- · Cauchy's integral formula

$$I = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)} dz = \begin{cases} f(z_0), & \text{if } C \text{ includes } z_0. \\ 0, & \text{otherwise} \end{cases}$$

• Laurent series expansion in the neighbourhood of point z_0 , of a function f(z), analytic in an annular region is:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n}$$

with

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(z) dz}{(z - z_0)^n}$$
 and $b_n = \frac{1}{2\pi i} \oint_C \frac{f(z) dz}{(z - z_0)^{-n+1}}$