

Plausibility of Poisson Distribution

We focus on the one-parameter Poisson distribution for f(k) because

- The simple one-parameter Poisson form fits almost as well as a seven-parameter model (with frequencies f(k) up to k = 7)—allowing each f(k) to be independent results in less than a 1 percent decrease in log likelihood—in four of the five data sets we examined.
- •The Poisson model is also easier to compute and estimate, and easier to work with theoretically.

Implications

Implications

A1 \rightarrow Poisson distribution with mean and variance = τ $f(k) = e^{-\tau} \cdot \frac{\tau^k}{k!}$ A1,A2 \rightarrow Poisson, τ =1.618... (golden ratio Φ) $\tau = (\sqrt{5} + 1)/2 \approx 1.618$

The variables N(t) and $A_i^i(t)$ begin with some prior values, N(0) and $A_i^i(0)$. These prior values can be thought of as reflecting pregame experience, either due to learning transferred from different games or due to introspection. (Then N(0) can be interpreted as the number of periods of actual experience, which is equivalent in attraction impact to the pregame thinking.)

• Use latent class to estimate parameters.

() () ()

	ML	EE	stim	ates	Con	me T&.	
	INEVPERIE	INEXPERIENCED SUBJECTS			EXPERIENCED SUBJECTS		
	Sophisticated	Adaptive	ORE ¹	Sophisticated	Adaptive	QRE	
	EWA	EWA		EWA	EWA		
φ	0.44	0.00	-	0.29	0.22		
	$(0.05)^2$	(0.00)	-	(0.03)	(0.03)		
δ	0.78	0.90		0.67	0.99		
	(0.08)	(0.05)	-	(0.05)	(0.02)		
ρ	0.00	0.00		0.01	0.00		
	(0.00)	(0.00)	-	(0.00)	(0.00)		
α	0.24	0.00	1.00	0.77	0.00	1.00	
	(0.04)	(0.00)	(0.00)	(0.02)	(0.00)	(0.00)	
o/	0.00	0.00	-	0.41	0.00		
	(0.00)	(0.00)		(0.03)	(0.00)		
d	0.16	0.13	0.04	0.15	0.11	0.04	
	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)	
LL							
(in sample)	-2095.32	-2155.09	-2471.50	-1908.48	-2128.88	- 2141.45	
(out of sampl	le) -968.24	-992.47	-1129.25	-710.28	-925.09	- 851.31	
Avg. Prob.							
(in sample)	6%	5%	3%	7%	5%	5%	
(out of sampl	le) 7%	7%	4%	13%	9%	9%	

