Interpolare polinomială

4. Metoda lui Aitken (R. Trîmbiţaş, 2005, Analiza numerica. Presa Universitară Clujeană)

În multe situații gradul necesar pentru a atinge precizia dorită în interpolarea polinomială este necunoscut. El se poate determina din expresia restului, dar pentru aceasta este necesar să cunoaștem $||f^{(m+1)}||_{\infty}$. Vom nota cu $P_{m_1,m_2,...,m_k}$ polinomul de interpolare Lagrange având nodurile x_{m_1},\ldots,x_{m_k} .

Propoziția

Dacă f este definită în $x_0, \ldots, x_k, x_j \neq x_i, 0 \leq i, j \leq k$, atunci

$$P_{0,1,...,k} = \frac{(x-x_j)P_{0,1,...,j-1,j+1,...,k}(x) - (x-x_i)P_{0,1,...,i-1,i+1,...,k}(x)}{x_i - x_j} = \frac{1}{x_i - x_j} \begin{vmatrix} x - x_j & P_{0,1,...,i-1,i+1,...,k}(x) \\ x - x_i & P_{0,1,...,j-1,j+1,...,k}(x) \end{vmatrix}$$

În acest mod am stabilit o relație de recurență între un polinom de interpolare Lagrange de gradul k și două polinoame de interpolare Lagrange de gradul k-1. Calculele pot fi așezate în formă tabelară

Să presupunem că în acest moment $P_{0,1,2,3,4}$ nu ne asigură precizia dorită. Se poate selecta un nou nod și adăuga o nouă linie tabelei

$$x_5$$
 P_5 $P_{4,5}$ $P_{3,4,5}$ $P_{2,3,4,5}$ $P_{1,2,3,4,5}$ $P_{0,1,2,3,4,5}$

iar elementele vecine de pe linie, coloană sau diagonală se pot compara pentru a vedea dacă s-a obținut precizia dorită.

Metoda de mai sus se numește *metoda lui Neville* .

Exemplu (J. Stoer, R. Burlich (eds.), Introduction to Numerical Analysis, Springer, 2010.)

$$k=0$$
 1 2 3
 x_0 $f_0=P_0(x)$ $P_{01}(x)$
 x_1 $f_1=P_1(x)$ $P_{012}(x)$ $P_{0123}(x)$
 x_2 $f_2=P_2(x)$ $P_{23}(x)$ $P_{123}(x)$
 $P_{23}(x)$

$$P_{123}(x) = \frac{(x-x_1)P_{23}(x) - (x-x_3)P_{12}(x)}{x_3 - x_1}$$
.

(Burden, Richard L.; Faires, J. Douglas: Numerical Analysis, 8th ed., ISBN 0534392008.)

Example. Given for n=2:

$$\begin{array}{c|cccc} x_i & 0 & 1 & 3 \\ \hline f_i & 1 & 3 & 2 \end{array}$$

Wanted: P(2), where $P \in \Pi_2$, $P(x_i) = f_i$ for i = 0, 1, 2.

$$P_{01}(2) = \frac{(2-0)\cdot 3 - (2-1)\cdot 1}{1-0} = 5,$$

$$P_{12}(2) = \frac{(2-1)\cdot 2 - (2-3)\cdot 3}{3-1} = \frac{5}{2},$$

$$P_{012}(2) = \frac{(2-0)\cdot 5/2 - (2-3)\cdot 5}{3-0} = \frac{10}{3}.$$

Notațiile pot fi simplificate

$$Q_{i,j} := P_{i-j,i-j+1,\dots,i-1,i},$$

$$Q_{i,j-1} = P_{i-j+1,\dots,i-1,i},$$

$$Q_{i-1,j-1} := P_{i-j,i-j+1,\dots,i-1}.$$

$$Q_{i,j} = \frac{(x - x_{i-j})Q_{i,j-1} - (x - x_i)Q_{i-1,j-1}}{x_i - x_{i-j}},$$

pentru $j = 1, 2, 3, \dots, i = j + 1, j + 2, \dots$

x_0	$P_0=Q_{0,0}$				
\boldsymbol{x}_1	$P_1=Q_{1,0}$	$P_{0,1}=Q_{1,1}$			
x_2	$P_2=Q_{2,0}$	$P_{1,2}=Q_{2,1}$	$P_{0,1,2}=Q_{2,2}$		
x_3	$P_3=Q_{3,0}$	$P_{2,3}=Q_{3,1}$	$P_{1,2,3}=Q_{3,2}$	$P_{0,1,2,3}=Q_{3,3}$	
<i>x</i> ₄	$P_4=Q_{4,0}$	$P_{3,4}=Q_{4,1}$	$P_{2,3,4}=Q_{4,2}$	$P_{1,2,3,4}=Q_{4,3}$	$P_{0,1,2,3,4}=Q_{4,4}$

În plus, $Q_{i,0} = f(x_i)$. Obținem tabelul

Dacă procedeul de interpolare converge, atunci șirul $Q_{i,i}$ converge și el și s-ar putea lua drept criteriu de oprire

$$|Q_{i,i} - Q_{i-1,i-1}| < \varepsilon.$$

Pentru a rapidiza algoritmul nodurile se vor ordona crescător după valorile $|x_i - x|$.

Exemplu (Burden, Richard L.; Faires, J. Douglas: Numerical Analysis, 8th ed., ISBN 0534392008.)

Values of various interpolating polynomials at x = 1.5 were obtained in Example 3 using the data shown in the first two columns of Table 3.4. In this example, we approximate f(1.5) using the result in Theorem 3.5. If $x_0 = 1.0$, $x_1 = 1.3$, $x_2 = 1.6$, $x_3 = 1.9$, and $x_4 = 2.2$, then $Q_{0,0} = f(1.0)$, $Q_{1,0} = f(1.3)$, $Q_{2,0} = f(1.6)$, $Q_{3,0} = f(1.9)$, and $Q_{4,0} = f(2.2)$. These are the five polynomials of degree zero (constants) that approximate f(1.5).

x	f(x)	$Q_{1,1}(1.5) = \frac{(x - x_0)Q_{1,0} - (x - x_1)Q_{0,0}}{(x - x_0)Q_{1,0} - (x - x_1)Q_{0,0}}$
1.0	0.7651977	$x_1 - x_0$
1.3	0.6200860	$(1.5-1.0)Q_{10}-(1.5-1.3)Q_{00}$
1.6	0.4554022	$=\frac{(1.5-1.0)Q_{1,0}-(1.5-1.3)Q_{0,0}}{1.3-1.0}$
1.9	0.2818186	1.3 - 1.0
2.2	0.1103623	$= \frac{0.5(0.6200860) - 0.2(0.7651977)}{0.5233449} = 0.5233449$
		= 0.5233449
	$O_{2,1}(1.5)$	$=\frac{(1.5-1.3)(0.4554022)-(1.5-1.6)(0.600860)}{1.6-1.3}=0.5102968,$
	22,1 (===)	1.6 - 1.3
	$Q_{3,1}(1.5)$	$= 0.5132634$, and $Q_{4,1}(1.5) = 0.5104270$.

The best linear approximation is expected to be $Q_{2,1}$ since 1.5 is between $x_1 = 1.3$ and $x_2 = 1.6$.

In a similar manner, approximations using higher-degree polynomials are given by

$$Q_{2,2}(1.5) = \frac{(1.5 - 1.0)(0.5102968) - (1.5 - 1.6)(0.5233449)}{1.6 - 1.0} = 0.5124715,$$

 $Q_{3,2}(1.5) = 0.5112857$, and $Q_{4,2}(1.5) = 0.5137361$.

1.0	0.7651977				
1.3	0.6200860	0.5233449			
1.6	0.4554022	0.5102968	0.5124715		
1.9	0.2818186	0.5132634	0.5112857	0.5118127	
2.2	0.1103623	0.5104270	0.5137361	0.5118302	0.5118200

Exemplu (Burden, Richard L.; Faires, J. Douglas: Numerical Analysis, 8th ed., ISBN 0534392008, pp. 117)

Table 3.5 lists the values of $f(x) = \ln x$ accurate to the places given.

Table 3.5

i	x_i	$\ln x_i$
0	2.0	0.6931
1	2.2	0.7885
2	2.3	0.8329

We will use Neville's method to approximate $f(2.1) = \ln 2.1$. Completing the table gives the entries in Table 3.6.

Table 3.6

i	x_i	$x - x_i$	Qio	Q_{i1}	Q_{i2}
0	2.0	0.1	0.6931		
1	2.2	-0.1	0.7885	0.7410	
2	2.3	-0.2	0.8329	0.7441	0.7420

Thus, $P_2(2.1) = Q_{22} = 0.7420$. Since $f(2.1) = \ln 2.1 = 0.7419$ to four decimal places, the absolute error is

$$|f(2.1) - P_2(2.1)| = |0.7419 - 0.7420|$$

= 10^{-4} .

However, f'(x) = 1/x, $f''(x) = -1/x^2$, and $f'''(x) = 2/x^3$, so the Lagrange error formula (3.3) gives an error bound

$$|f(2.1) - P_2(2.1)| = \left| \frac{f'''(\xi)}{3!} (x - x_0)(x - x_1)(x - x_2) \right|$$
$$= \left| \frac{1}{3\xi^3} (0.1)(-0.1)(-0.2) \right| \le 8.\overline{3} \times 10^{-5}.$$

Notice that the actual error, 10^{-4} , exceeds the error bound, $8.\overline{3} \times 10^{-5}$. This apparent contradiction is a consequence of finite-digit computations. We used four-digit approximations, and the Lagrange error formula (3.3) assumes infinite-digit arithmetic. This caused our actual errors to exceed the theoretical error estimate.

Metoda lui Aitken este similară cu metoda lui Neville. Ea construiește tabelul

Pentru a calcula o nouă valoare se utilizează valoarea din vârful coloanei precedente și valoarea din aceeași linie, coloana precedentă.

$$\mathbf{Q}_{0,1,\ldots,j-1,j,i} = \frac{1}{\mathbf{x}_i - \mathbf{x}_j} \begin{bmatrix} \mathbf{Q}_{0,1,\ldots,j-1,j} & \mathbf{x}_j - \mathbf{x} \\ \mathbf{Q}_{0,1,\ldots,j-1,i} & \mathbf{x}_i - \mathbf{x} \end{bmatrix}$$

(http://math.fullerton.edu/mathews/n2003/NevilleAlgorithmMod.html)

```
function y = nev(xx, n, x, Q)
% Neville's algorithm as a function (save as "nev.m")
응
% inputs:
     n = order of interpolation (n+1 = # of points)
 x(1), \ldots, x(n+1) x coords
   Q(1), \ldots, Q(n+1) y coords
     xx=evaluation point for interpolating polynomial p
90
% output: p(xx)
for i = n:-1:1
   for j = 1:i
      Q(j) = (xx-x(j))*Q(j+1) - (xx-x(j+n+1-i))*Q(j);
      Q(j) = Q(j) / (x(j+n+1-i)-x(j));
   end
end
y = Q(1);
```

5. Diferențe divizate (R. Trîmbiţaş, 2005, Analiza numerica. Presa Universitară Clujeană)

Vom nota cu $L_k f$ polinomul de interpolare Lagrange cu nodurile x_0, x_1, \ldots, x_k pentru $k = 0, 1, \ldots, n$. Vom construi L_m prin recurență. Avem

$$(L_0 f)(x) = f(x_0).$$

Pentru $k \ge 1$ polinomul $L_k - L_{k-1}$ este de grad k, se anulează în punctele x_0, x_1, \ldots, x_k și deci este de forma:

$$(L_k f)(x) = (L_{k-1} f)(x) + f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}),$$

unde $f[x_0, x_1, \dots, x_k]$ desemnează coeficientul lui x^k din $(L_k f)(x)$. Se deduce expresia polinomului de interpolare $L_m f$ cu nodurile x_0, x_1, \dots, x_n

$$(L_m f)(x) = f(x_0) + \sum_{k=1}^m f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1}),$$

numită forma Newton — a polinomului de interpolare Lagrange.

Lema

$$\forall k \ge 1 \quad f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0}$$

şi

$$f[x_i] = f(x_i), \quad i = 0, 1, \dots, k.$$

Definiția Cantitatea $f[x_0, x_1, \dots, x_k]$ se numește diferență divizată de ordinul k a lui f în punctele x_0, x_1, \dots, x_k .

Altă notație utilizată este $[x_0, \ldots, x_k; f]$.

Din definiție rezultă că $f[x_0, x_1, \ldots, x_k]$ este independentă de ordinea punctelor x_i și ea poate fi calculată în funcție de $f(x_0), \ldots, f(x_m)$. Într-adevăr PIL de grad $\leq m$ relativ la punctele x_0, \ldots, x_m se scrie

$$(L_m f)(x) = \sum_{i=0}^m \ell_i f(x_i)$$

și coeficientul lui x^m este

$$f[x_0, \dots, x_m] = \sum_{i=0}^m \frac{f(x_i)}{\prod_{\substack{j=0 \ j \neq i}}^m (x_i - x_j)}.$$

Tabela de calcul a diferențelor divizate:

	First	Second	Third		
x f(x)	divided differences	divided differences	divided differences		
$x_0 f[x_0]$					
f	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$				
$x_1 f[x_1]$	$x_1 - x_0$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	1		
	$f[x_2] - f[x_1]$		$f[x_1, x_2, x_3] - f[x_0, x_1, x_2]$		
f	$[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$		$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$		
$x_2 f[x_2]$		$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_2 - x_1}$	1		
f	$f(x_1, x_2) = \frac{f(x_3) - f(x_2)}{f(x_3)}$	$x_3 - x_1$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$		
	$x_3 - x_2$		24 27		
$x_3 f[x_3]$	Cf = 1	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	f(
f	$[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$		$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$		
$x_4 f[x_4]$	24 - 23	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_2}$			
	$f[x_5] - f[x_4]$	~5 ~5	•		
	$[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$				
$x_5 f[x_5]$					

Exemplu (Burden, Richard L.; Faires, J. Douglas: Numerical Analysis, 8th ed., ISBN 0534392008.) Calculți f(1.5) folosind forma Newton a polinomului de interpolare Lagrange pentru nodurile:

x	f(x)
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

i	x_i	$f[x_i]$	$f[x_{i-1},x_i]$	$f[x_{i-2},x_{i-1},x_i]$	$f[x_{i-3},\ldots,x_i]$	$f[x_{i-4},\ldots,x_i]$
0	1.0	0.7651977				
			-0.4837057			
1	1.3	0.6200860		-0.1087339		
			-0.5489460		0.0658784	
2	1.6	0.4554022		-0.0494433		0.0018251
			-0.5786120		0.0680685	
3	1.9	0.2818186		0.0118183		
			-0.5715210			
4	2.2	0.1103623				

```
P_4(x) = 0.7651977 - 0.4837057(x - 1.0) - 0.1087339(x - 1.0)(x - 1.3)+ 0.0658784(x - 1.0)(x - 1.3)(x - 1.6)+ 0.0018251(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9).
```

(R. Trîmbiţaş, 2005, Analiza numerica. Presa Universitară Clujeană)

Sursa MATLAB Generarea tabelei diferențelor divizate

```
function td=difdiv(x,f);
%DIFDIV - obtine tabela diferentelor divizate
%apel td=difdiv(x,f);
%x - nodurile
%f- valorile functiei
%td - tabela diferentelor divizate

lx=length(x);
td=zeros(lx,lx);
td(:,1)=f';
for j=2:lx
    td(1:lx-j+1,j)=diff(td(1:lx-j+2,j-1))./...
    (x(j:lx)-x(1:lx-j+1))';
end
```

Sursa MATLAB Calculul formei Newton a polinomului de interpolare Lagrange

6. Diferențe divizate cu noduri multiple

(R. Trîmbiţaş, 2005, Analiza numerica. Presa Universitară Clujeană)

Teorema: Are loc

$$f[x_0,\ldots,x_m] = \frac{(Wf)(x_0,\ldots,x_m)}{V(x_0,\ldots,x_m)}$$

unde

$$(Wf)(x_0,\ldots,x_n) = \begin{vmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{m-1} & f(x_0) \\ 1 & x_1 & x_1^2 & \dots & x_1^{m-1} & f(x_1) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^{m-1} & f(x_m) \end{vmatrix},$$

iar $V(x_0, \ldots, x_m)$ este determinantul Vandermonde.

Introducem diferența divizată cu un nod multiplu:

$$[\underbrace{\alpha, \dots, \alpha}_{m+1}; f] = \frac{1}{m!} f^{(m)}(\alpha).$$

Reprezentând aceasta ca pe un cât de doi determinanți se obține

$$(Wf)\left(\underbrace{\alpha,\dots,\alpha}_{m+1}\right) = \begin{vmatrix} 1 & \alpha & \alpha^2 & \dots & \alpha^{m-1} & f(\alpha) \\ 0 & 1 & 2\alpha & \dots & (m-1)\alpha^{m-2} & f'(\alpha) \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & (m-1)! & f^{(m-1)}(\alpha) \end{vmatrix}$$

şi

$$V\left(\underbrace{\alpha,\ldots,\alpha}_{m+1}\right) = \begin{vmatrix} 1 & \alpha & \alpha^2 & \ldots & \alpha^m \\ 0 & 1 & 2\alpha & \ldots & m\alpha^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & m! \end{vmatrix},$$

adică cei doi determinanți sunt constituiți din linia relativă la nodul α și derivatele succesive ale acesteia până la ordinul m în raport cu α .

Definiția Fie $r_k \in \mathbb{N}$, $k = \overline{0, m}$, $n = r_0 + \cdots + r_m$. Presupunem că există $f^{(j)}(x_k)$, $k = \overline{0, m}$, $j = \overline{0, r_k - 1}$. Mărimea

$$[\underbrace{x_0,\ldots,x_0}_{r_0},\underbrace{x_1,\ldots,x_1}_{r_1},\ldots,\underbrace{x_m,\ldots,x_m}_{r_m};f] = \frac{(Wf)(x_0,\ldots,x_0,\ldots,x_m,\ldots,x_m)}{V(x_0,\ldots,x_0,\ldots,x_m,\ldots,x_m)}$$

unde

$$(Wf)(x_0,\ldots,x_0,\ldots,x_m,\ldots,x_m) =$$

$$= \begin{bmatrix} 1 & x_0 & \dots & x_0^{r_0-1} & \dots & x_0^{n-1} & f(x_0) \\ 0 & 1 & \dots & (r_0-1)x_0^{r_0-2} & \dots & (n-1)x_0^{n-2} & f'(x_0) \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & (r_0-1)! & \dots & \prod_{p=1}^{r_{0-1}} (n-p)x_0^{n-r_0} & f^{(r_0-1)}(x_0) \\ 1 & x_m & \dots & x_m^{r_m-1} & \dots & x_m^{n-1} & f(x_m) \\ 0 & 1 & \dots & (r_m-1)x_m^{r_m-2} & \dots & (n-1)x_m^{n-2} & f'(x_m) \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & (r_m-1)! & \dots & \prod_{p=1}^{r_{m-1}} (n-p)x_m^{n-r_m} & f^{(r_n-1)}(x_n) \end{bmatrix}$$

iar $V(x_0,\ldots,x_0,\ldots,x_m,\ldots,x_m)$ este ca mai sus, exceptând ultima coloană care este

$$(x_0^n, nx_0^{n-1}, \dots, \prod_{p=0}^{r_0-2} (n-p)x_0^{n-r_0+1}, \dots, x_m^n, nx_m^{n-1}, \dots, \prod_{p=0}^{r_m-2} x_m^{n-r_m+1})^T$$

se numește diferență divizată cu nodurile multiple x_k , $k = \overline{0, m}$ și ordinele de multiplicitate r_k , $k = \overline{0, m}$.

Folosind diferențele divizate pentru noduri multiple putem scrie polinomul de interpolare Hermite într-o formă asemănatoare formei newton a polinomului de interpolare Lagrange. În cazul nodurilor duble acesta este:

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x-z_0)(x-z_1) \cdots (x-z_{k-1}).$$

Tabela de diferențe divizate cu noduri duble se poate calcula astfel:

z	f(z)	First divided differences	Second divided differences	
$\overline{z_0 = x_0}$	$f[z_0] = f(x_0)$	f(1) = f'(x)		
7 Y.	$f[z_1] = f(x_0)$	$f[z_0,z_1]=f'(x_0)$	$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_2 - z_0}$	
$z_1 = x_0$	$f(z_1) - f(x_0)$	$f[z_2] - f[z_1]$	$z_2 - z_0$	
		$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	$f[z_2, z_2] - f[z_1, z_2]$	
$z_2=x_1$	$f[z_2] = f(x_1)$		$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_3 - z_1}$	
		$f[z_2,z_3]=f'(x_1)$	$f[z_3, z_4] - f[z_2, z_3]$	
$z_3 = x_1$	$f[z_3] = f(x_1)$	$f(\sigma_n) = f(\sigma_n)$	$f[z_2, z_3, z_4] = \frac{f[z_3, z_4] - f[z_2, z_3]}{z_4 - z_2}$	
		$f[z_3, z_4] = \frac{f[z_4] - f[z_3]}{z_4 - z_3}$		
$z_4=x_2$	$f[z_4] = f(x_2)$		$f[z_3, z_4, z_5] = \frac{f[z_4, z_5] - f[z_3, z_4]}{z_5 - z_3}$	
		$f[z_4, z_5] = f'(x_2)$	45 43	
$z_5=x_2$	$f[z_5] = f(x_2)$			

Exemplu. Pentru datele date în tabel sa se calculeze diferențele divizate cu noduri duble și f(1.5). Datele subliniate sunt datele cunoscute.

1.3	0.6200860					
	0.6200960	-0.5220232	0.0907427			
1.3	0.6200860	-0.5489460	-0.0897427	0.0663657		
1.6	0.4554022		-0.0698330		0.0026663	
		-0.5698959		0.0679655		-0.0027738
1.6	0.4554022		-0.0290537		0.0010020	
		-0.5786120		0.0685667		
1.9	0.2818186		-0.0084837			
		-0.5811571				
1.9	0.2818186					

$$H_5(1.5) = 0.6200860 + (1.5 - 1.3)(-0.5220232) + (1.5 - 1.3)^2(-0.0897427)$$

$$+ (1.5 - 1.3)^2(1.5 - 1.6)(0.0663657) + (1.5 - 1.3)^2(1.5 - 1.6)^2(0.0026663)$$

$$+ (1.5 - 1.3)^2(1.5 - 1.6)^2(1.5 - 1.9)(-0.0027738)$$

$$= 0.5118277.$$

Sursa MATLAB Generarea tabelei de diferențe divizate cu noduri duble

```
function [z,td]=difdivnd(x,f,fd);
%DIFDIVND - tabela diferentelor divizate cu noduri duble
%apel td=difdivnd(x,f,fd)
%x -nodurile
%f - valorile functiei in noduri
%fd - valorile derivatei in noduri
%z - nodurile dublate
%td - tabela de diferente
z=zeros(1,2*length(x));
lz=length(z);
z(1:2:1z-1)=x;
z(2:2:1z)=x;
td=zeros(lz,lz);
td(1:2:1z-1,1)=f';
td(2:2:1z,1)=f';
td(1:2:1z-1,2)=fd';
td(2:2:1z-2,2) = (diff(f)./diff(x))';
for j=3:1z
   td(1:1z-j+1,j)=diff(td(1:1z-j+2,j-1))./...
      (z(j:lz)-z(1:lz-j+1))';
end
```