ASEN 6060 ADVANCED ASTRODYNAMICS Week 7 Discussion, Part 1

Objectives:

• Gain intuition that will be useful for creating, debugging, and assessing implementation of numerical corrections algorithms

Your colleague has created a script to numerically compute an L_2 Lyapunov orbit via a single-shooting corrections scheme

Note: use more labels on the vertical and horizontal axes in your homework!

Question 1: Do you think that their corrections scheme could be implemented correctly? What information would you ask for to assess this further or help them identify any issues, if applicable, and why?

Group Brainstorming:

- Implemented correctly (likely)
- Qs:
 - What is the initial guess?
 - Error in the DF matrix?
 - What is the corrected solution? (Does it converge to a very different periodic orbit?)
- The corrections scheme requires a few iteration to reduce norm(F) enough before quadratic(-ish) convergence observed. A better initial guess can reduce the number of iterations required

Using a poor initial guess

After 3 iterations

After 6 iterations

After 8 iterations

After 11 iterations

Using a better initial guess but the same implementation

After 2 iterations

After 5 iterations

Example 2: Computing an L_1 Lyapunov Orbit

Your colleague has created a script to numerically compute an L₁ Lyapunov orbit via single-shooting

Question 2: What information would you ask for to determine whether they have implemented their corrections algorithm correctly or help them identify any issues, if applicable, and why?

Group Brainstorming:

- What is the initial guess? Newton's method assumes that it is sufficiently close to the solution. In that case, divergence could occur
- Error in the DF matrix
- How is the STM/DF matrix being calculated?
- What is the formulation of the corrections problem? Are there any assumptions that influence quality of the initial guess?
- Reason: poor initial guess, but correct implementation!

Example 3: Computing an L_1 Lyapunov Orbit

Two colleagues have independently implemented single shooting schemes to compute an L_1 Lyapunov orbit. They used the same trajectory to generate an initial guess but get two different results:

Question 3: Create a list of possible reasons that they are producing different results

Group Brainstorming:

- Initial guesses are different (look at norm(F)), producing different behavior
- Constraint formulations might be different. What specific constraints did they apply?
- Did they construct initial guesses in a manner that matches the corrections problem formulation?
- Did they numerically integrate the trajectory correctly/accurately?
- Did one person have an error?
- What is the tolerance and/or other termination conditions?
- Reason: different formulations of the corrections problem!

Correcting for periodicity over full period

Correcting using mirror theorem

Example 4: Computing an L₂ Halo Orbit

Your colleague has created a script to numerically compute an L_2 halo orbit via single-shooting

Question 4: What information would you ask for to determine whether they have implemented their corrections algorithm correctly or help them identify any issues, if applicable, and why?

Group Brainstorming:

- Missing consistent quadratic convergence as norm(F) gets small
- Likely an error?
- Is there a bifurcation in this family, challenging corrections (we will cover this next week)
- How would we describe this convergence behavior?
- Look at properties of the DF matrix?

Reason: an error in the DF matrix!

Example 4: Computing an L₂ Halo Orbit

After 2 iterations

After 11 iterations

Initial Guess Solution