Predicting Severe Traffic Outcomes - City of Seattle

September 2020

Opportunity exists for city governments to save lives and benefit society by focusing effort on the key drivers of severe accidents

- Reducing severe traffic accidents can provide tangible benefits to individuals, families, and society
- Negative impact of severe accidents is profound. In the US, over the course of 2019 alone:
 - ~39K lost their lives to car crashes
 - 4.4M *seriously* injured in traffic accidents
- City governments should endeavor to keep their streets safe. They benefit from reducing traffic accidents in their jurisdictions.
- However, government resources are often limited.
 Understanding where to focus time and money to drive the most impact can help!

A data set provided by the City of Seattle was cleaned and used to understand key factors that contribute to severe accidents

- The City of Seattle and it's Department of Transportation (SDOT)
 maintain a database of historical accidents and associated severity
- The data set contains rich detail on ~220,000 accidents that occurred between 2004 and September 2020
- Data was appropriately cleaned and incomplete records were purged before sampling data for analysis
- Target variable defined as Major / Severe Accidents defined as accidents resulting in either death or serious injury
- Given the desire to reliably predict relatively less frequent, severe accidents, data leveraged for analysis was balanced

While major / severe accidents decreased in Seattle between 2006 and 2011, the city has not materially reduced accident severity in recent years

- The number of severe accidents in Seattle peaked in 2006, when 321 fatal and/or severe injury accidents were reported
- Between 2006 and 2011, the city saw an average annual reduction of severe accidents of 15%
- However, between 2011 and 2019, the city has not been able to significantly drive further reductions in severe accidents (severe accidents increased ~3% per year)
- Additional, new strategies may be needed to drive a decrease in severe accident incidence in Seattle

Number of Major / Severe Accidents per Year 2004 – YTD 2020

Initial data exploration suggested that variables like *speeding* and *under* the influence might be useful in predicting accident severity

Relationship between Speeding and Severity Chi-Square Score = 426; p-value <.00001

speeding:

Relationship between Under the Influence and Severity Chi-Square Score = 550; p-value <.00001

^{*}Note: Similar analysis was conducted for many other categorical variables in the SDOT data; however, only a few representative examples are provided

Additionally, collision type and time of day might be helpful in predicting accident severity in the Seattle area

Relationship between Collision Type and Severity

Relationship between Time of Day and Severity

^{*}Note: Similar analysis was conducted for many other categorical variables in the SDOT data; however, only a few representative examples are provided

Four machine learning models were created and evaluated to predict accident severity for the Seattle data

- Models all generated roughly similar levels of accuracy on the balanced dataset (i.e., accuracy ranged from 0.70-0.75 depending on the model)
- The decision tree and logistic regression models provide the most interpretable results
 - Both models provide increased understanding of the specific variables that are most associated with severe accidents

Accident Severity Model Results

Model	Jaccard Similarity Score	F1-Score
K-Nearest Neighbors (n=6)	0.74	0.74
Support Vector Machines (kernel = 'rbf')	0.75	0.75
Decision Tree (max depth = 3)	0.70	0.70
Logistic Regression	0.74	0.74

The decision-tree model suggests that pedestrian involvement, cycle involvement, and speeding are highly associated with severe accidents

Accident Severity Decision Tree Model (max-depth = 3)

Similarly, the logistic regression model coefficients provide context on variables that are heavily associated with severe vs. minor accidents

Logistic Regression - Top 6 Most Negative Coefficients

The logistic and decision tree machine learning models provide insight on potential areas of focus to reduce severe accidents going forward

Potenti Focus A		Description	Sa	mple Ideas*
	strian / Cycle vement.	Given that accidents involving pedestrians and cycles are much more likely to be severe (all else equal), the city may want to consider prioritizing efforts aimed at protecting pedestrians / cyclists	•	Limiting traffic in select high risk areas Building out barrier protected bike lanes in high risk areas Funding enforcement of bicycle and pedestrian safety rules (e.g., helmet laws / jaywalking fines)
Speed	ding.	Speeding is highly associated with severe accident outcomes. Consequently, the city may want to consider prioritizing efforts aimed at reducing excess speeding	•	Reduce speed limits in high risk areas Better communicate existing speed limits in high risk areas
Unde Drivii	r the Influence ng.	Programs aimed at reducing the likelihood that drivers will get behind the wheel when under the influence of alcohol or drugs may be helpful	•	Support and/or fund programs to provide free or at cost rides to under the influence individuals at key times of the day (e.g., 11pm - 2am)
Head	on Collisions.	Head-on-collisions are associated with more severe accident outcomes. Lowering risk of head-on collisions may be beneficial in mitigating accident severity	•	Double down on efforts to install median barriers, reflectors, etc. in high risk areas

Thanks!