Math 645: Homework 3

- 1. Continuous dependence on parameters. Consider the IVP $x' = f(t, x, \mu), x(t_0) = x_0$ where $f: V \to \mathbf{R}^n$ ($V \subset \mathbf{R} \times \mathbf{R}^n \times \mathbf{R}^k$ an open set). We denote by $x(t, \mu)$ the solution of the IVP (we have suppressed the dependence on (t_0, x_0)). Let us assume
 - f is a continuous function on V.
 - f(t,x,c) satisfies a local Lipschitz condition in the following sense: Given $(c_0,t_0,x_0) \in V$ and positive constants a,b,c such that $A \equiv \{(t,x,\mu) ; |t-t_0| \leq a, ||x-x_0|| \leq b, ||\mu-\mu_0|| \leq c\} \subset V$ then there exists a constant L such that $||f(t,x,\mu)-f(t,y,\mu)|| \leq L||x-y||$ for all $(t,x,\mu),(t,y,\mu) \in A$.

Show that $x(t, \mu)$ depends continuously on μ for t in some interval J containing t_0 .

2. If $A \in \mathcal{L}(\mathbf{K}^n)$ the spectral radius of A, $\rho(A)$, is defined by

$$\rho(A) = \max\{|\lambda|; \lambda \text{ eigenvalue of } A\}. \tag{1}$$

(a) Let

$$A = \begin{pmatrix} 0.999 & 1000 \\ 0 & 0.999 \end{pmatrix} \tag{2}$$

Compute the spectral radius of A as well as $||A||_1$, $||A||_2$, and $||A||_{\infty}$. Find a norm on \mathbb{R}^n such that $||A|| \leq 1$.

- (b) Show that for any norm on \mathbf{K}^n we have the inequality $\rho(A) \leq ||A||$.
- (c) Show that if A is symmetric $(A^* = A)$ then we have the equality $||A||_2 = \rho(A)$.
- (d) Show that for any A and any $\epsilon > 0$, there exists a norm such that $||A|| \leq \rho(A) + \epsilon$. Hint: You may use (without proof) the fact that there exists a matrix D such that DAD^{-1} is upper triangular (or maybe even in Jordan normal form). Consider the diagonal matrix S with entries $1, \mu^{-1}, \dots, \mu^{1-n}$. Set $||x||_{\mu} = ||SDx||$ where $||\cdot||$ is any norm on \mathbb{R}^n .
- 3. We have shown in class, using the binomial theorem, that if the matrices A and B commute then $e^{A+B}=e^Ae^B$. Here you will show, using a different method based on uniqueness of solutions for ODE that $e^{A+B}=e^Ae^B$ if and only if AB=BA.
 - (a) Let $F(t) = Be^{tA}$ and $G(t) = e^{tA}B$. Show that if A and B commute then F(t) and G(t) satisfies the same ODE and thus must be equal.
 - (b) Let $\Phi(t) = e^{tA}e^{tB}$ and $\Psi(t) = e^{t(A+B)}$. Show that if A and B commute, then $\Phi(t)$ and $\Psi(t)$ satisfies the same ODE and thus must be equal.
 - (c) Show that if $\Phi(t) = \Psi(t)$ then A and B commute.
- 4. Show that if A(t) is antisymmetric, i.e., $A^T = -A$, then the resolvant of x' = A(t)x is orthogonal. *Hint:* Show that the scalar product of two solutions is constant.
- 5. (D'Alembert reduction method). Consider the ODE x' = A(t)x where A(t) is a $n \times n$ matrix and assume that we know one non-trivial solution x(t). Show that one can reduce the equation x' = A(t)x to the problem z' = B(t)z where $z \in \mathbb{R}^{n-1}$ and B(t) is a

 $(n-1) \times (n-1)$ matrix. Hint: Without loss of generality you may assume that the n^{th} component of x(t), $x_n(t) \neq 0$. Look for solutions of the form $y(t) = \phi(t)x(t) + z(t)$, where $\phi(t)$ is a scalar function and z has the form $z = (z_1, \dots, z_{n-1}, 0)^T$.

6. (a) Using the previous problem, compute the resolvent R(t,1) of

$$x' = \begin{pmatrix} \frac{1}{t} & -1\\ \frac{1}{t^2} & \frac{2}{t} \end{pmatrix} x, \tag{3}$$

using the fact that $x(t) = (t^2, -t)^T$ is a solution. Hint: The solution is

$$\begin{pmatrix} t^2(1-\log t) & -t^2\log t \\ t\log t & t(1+\log t) \end{pmatrix}$$
 (4)

(b) Compute the solution of

$$x' = \begin{pmatrix} \frac{1}{t} & -1\\ \frac{1}{t^2} & \frac{2}{t} \end{pmatrix} x + \begin{pmatrix} t\\ -t^2 \end{pmatrix}, \tag{5}$$

with initial condition $x(1) = (0,0)^T$.

7. Compute the resolvant e^{At} for the equations x' = Ax with

(a)
$$A = \begin{pmatrix} -1 & -2 \\ 4 & 3 \end{pmatrix}. \tag{6}$$

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}. \tag{7}$$

(c)
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix}. \tag{8}$$

(d)
$$A = \frac{1}{9} \begin{pmatrix} 14 & 4 & 2 \\ -2 & 20 & 1 \\ -4 & 4 & 20 \end{pmatrix}$$
 (9)

Hint: All eigenvalues are equal to 2.

8. The equation of motion of two coupled harmonic oscillators is

$$x_1'' = -\alpha x_1 - \kappa (x_1 - x_2),$$

$$x_2'' = -\alpha x_2 - \kappa (x_2 - x_1).$$
(10)

This system is a Hamiltonian system. Find the Hamiltonian function. Find a fundamental matrix for this system. You can either write it as a first order system and compute the characteristic polynomial or, better, stare at the equation long enough until you make a clever Ansatz. Discuss the solution in the case where $x_1(0) = 0$, $x'_1(0) = 1$, $x_2(0) = 0$, $x'_2(0) = 0$.

9. Consider the linear differential equation

$$x' = A(t)x, \quad A(t) = S(t)^{-1}BS(t)$$
 (11)

where

$$B = \begin{pmatrix} -1 & 0 \\ 4 & -1 \end{pmatrix}, \quad S(t) = \begin{pmatrix} \cos(at) & -\sin(at) \\ \sin(at) & \cos(at) \end{pmatrix}$$
 (12)

- (a) Show that, for any t, all eigenvalues of A(t) have a negative real part.
- (b) Show, that for a suitable choice of a, the differential equation (11) has solutions x(t) which satisfy $\lim_{t\to\infty} \|x(t)\| = \infty$. Hint: Set y(t) = S(t)x(t).