第二章一维随机变量及其分布

第一节 随机变量

第二节 离散型随机变量及其分布

第三节 随机变量的分布函数

第四节 连续型随机变量及其分布

第五节 随机变量函数的分布

教学计划: 4次课-12学时

第二章一维随机变量及其分布

第一节 随机变量

第二节 离散型随机变量及其分布

一 第三节 随机变量的分布函数

第四节 连续型随机变量及其分布

第五节 随机变量函数的分布

教学计划: 4次课-12学时

第二章 一维随机变量及其分布

第三节 随机变量的分布函数

■ 离散型随机变量的分布函数

一. 随机变量的分布函数

引例 E: 在一批灯泡中任意抽取一只,测试其寿命。S = [0, T]

 $A = \{ 灯泡寿命大于100小时且不大于200小时 \} = (100, 200)$

非离散型

 $= \{ 100 < X \le 200 \}$

引入随机变量: X — 灯泡的寿命

 $P(A) = P\{100 < X \le 200\}$

将问题一般化:

$$\{x_{1} < X \le x_{2}\} = \{X \le x_{2}\} - \{X \le x_{1}\}$$
$$\{X \le x_{1}\} \subset \{X \le x_{2}\}$$

$$P\{x_1 < X \le x_2\} = P\{X \le x_2\} - P\{X \le x_1\}$$

某个实数左侧区间上的概率

1. 定义: 设 X 是一个随机变量, 对 $\forall x \in (-\infty, +\infty)$

$$F(x) = P(X \le x)$$

称为X的分布函数。

- 注: \triangleright 分布函数F(x)是定义在整个实数轴上的普通函数。
 - ▶如果将 X 看作数轴上随机点的坐标,则分布函数 F(x) 的值就表示 X 落在区间 $(-\infty, x]$ 上的概率。

 \rightarrow 分布函数的作用: 对任意的实数 x_1, x_2 $(x_1 < x_2)$

$$P\{x_1 < X \le x_2\} = P\{X \le x_2\} - P\{X \le x_1\} = F(x_2) - F(x_1)$$

非离散型随机变量:分布函数 -- 计算概率

一.随机变量的分布函数

引例

E: 在一批灯泡中任意抽取一只,测试其寿命。S = [0, T]

 $A = \{ \text{灯泡寿命 大于 } 100 \text{ 小时且不大于} 200 \text{小时} \} = \{ 100 < X \le 200 \}$

引入随机变量: X — 灯泡的寿命 $P(A) = P\{100 < X \le 200\}$

非离散型 若已知X的分布函数F(x),则:=F(200)-F(100)

2. 性质

$$F(x) = P(X \le x) (-\infty < x < +\infty)$$

性质1 F(x)是一个不减函数,即 $x_1 \le x_2$,则: $F(x_1) \le F(x_2)$

性质2
$$0 \le F(x) \le 1$$
 且
$$\begin{cases} F(-\infty) = \lim_{x \to -\infty} F(x) = 0 \\ F(+\infty) = \lim_{x \to +\infty} F(x) = 1 \end{cases}$$
 当 $x \to -\infty$, 则 $\{X \le x\} \to \Phi$
$$F(x) = P\{X \le x\} \to P(\Phi) = 0$$
 当 $x \to +\infty$, 则 $\{X \le x\} \to S$
$$F(x) = P\{X \le x\} \to P(S) = 1$$

性质3 F(x)是右连续函数,即 $\lim_{x\to x_0^+} F(x) = F(x_0)$

第二章 一维随机变量及其分布

第三节 随机变量的分布函数

■ 随机变量的分布函数

二. 离散型随机变量的分布函数

若离散型随机变量 X 的分布律为: $X \mid x_0 \mid x_1 \mid x_2 \cdots \mid x_n \cdots$ $P(X = x_k) = p_k, \quad k = 1, 2, \cdots$ $P_k \mid p_0 \mid p_1 \mid p_2 \cdots \mid p_n \cdots$

则其分布函数为:

$$F(x) = P(X \le x) = \sum_{x_k \le x} P(X = x_k) \quad --- x 左侧区间的概率和$$

例1. 设离散型随机变量 X 的分布律为:

$$F(x) = P(X \le x)$$

\boldsymbol{X}	0	1	2
P_{k}	1	1	1
K	3	6	2

求: (1) X的分布函数F(x)

- 1)分布函数定义在整个实数 轴上;
- 2) 用离散点分区间;
- 3) 分区间求分布函数值。

(2)
$$P(X \le \frac{1}{2}), P(1 < X \le \frac{3}{2}), P(1 \le X \le \frac{3}{2})$$

解:

当
$$x < 0$$
时, $\{X \le x\} = \Phi$, $F(x) = 0$

$$F(x) = P(X \le x)$$

当 $0 \le x < 1$ 时

X	0	1	2	
P_k	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{2}$	

$$0 \quad x \quad 1 \quad 2$$

$$F(x) = P(X \le x) = P(X = 0) = \frac{1}{3}$$

当
$$1 \le x < 2$$
 时

$$F(x) = P(X = 0) + P(X = 1) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$$

$F(x) = P(X \le x)$

X	0	1	2	
P_k	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{2}$	

当 $x \ge 2$ 时

$$0$$
 1 2 x

$$F(x) = P(X = 0) + P(X = 1) + P(X = 2) = 1$$

故得:
$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{3} & 0 \le x < 1 \\ \frac{1}{2} & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$

求分布函数:

- 1)分布函数定义在整个实数 轴上;
- 2) 用离散点分区间;
- 3) 分区间求分布函数值。

$$F(x) = \begin{cases} 0, & x < 0 \\ 1/3, & 0 \le x < 1 \\ 1/2, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

性质1 F(x)是一个不减函数

性质2 $0 \le F(x) \le 1$ 且

 $\lim F(x) = F(0) = 1/3$

$$\lim_{x \to -\infty} F(x) = 0, \lim_{x \to +\infty} F(x) = 1$$

性质3 F(x)是古连续函数

分布函数图:

 $x \rightarrow 0^+$

例1. 设离散型随机变量X的分布律为:

\boldsymbol{X}	0	1	2	
P_k	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{2}$	

求: (1) X的分布函数F(x)

(2)
$$P(X \le \frac{1}{2}), P(1 < X \le \frac{3}{2}), P(1 \le X \le \frac{3}{2})$$

(2) 计算概率

方法1: 用分布函数计算概率

$$P(X \le \frac{1}{2}) = F(\frac{1}{2}) = \frac{1}{3}$$

$$P(1 < X \le \frac{3}{2}) = F(\frac{3}{2}) - F(1) = \frac{1}{2} - \frac{1}{2} = 0 \qquad F(x) = \begin{cases} 0, & x < 0 \\ 1/3, & 0 \le x < 1 \\ 1/2, & 1 \le x < 2 \end{cases}$$

$$P(1 < X \le \frac{3}{2}) = P(1 < X \le \frac{3}{2}) + P(X = 1)$$

$$P(1 \le X \le \frac{3}{2}) = P(1 < X \le \frac{3}{2}) + P(X = 1)$$
$$= 0 + P(X = 1) = \frac{1}{6}$$

$$\{1 \le X \le \frac{3}{2}\} = \{1 < X \le \frac{3}{2}\} \cup \{X = 1\}$$
 $F(x) = P(X \le x)$

$$F(x) = P(X \le x)$$

$$P\{x_1 < X \le x_2\} = F(x_2) - F(x_1)$$

(2) 计算概率

方法2: 用分布律计算概率

$$P(X \le \frac{1}{2}) = P(X = 0) = \frac{1}{3}$$

$$P(1 < X \le \frac{3}{2}) = 0$$

$$P(1 \le X \le \frac{3}{2}) = P(X = 1) = \frac{1}{6}$$

注释: 分布律 ^{课堂教学} 分布函数

第二章 一维随机变量及其分布

第三节 随机变量的分布函数

- ✔ 随机变量的分布函数
- ✔ 离散型随机变量的分布函数

第二章一维随机变量及其分布

第一节 随机变量 第二节 离散型随机变量及其分布 第三节 随机变量的分布函数 第四节 连续型随机变量及其分布 第五节 随机变量函数的分布

第二章 一维随机变量及其分布

第四节 连续型随机变量及其分布

■ 几种常见的连续型随机变量的分布

一. 连续型随机变量的概率密度

1. 定义 若对于随机变量 X 的分布函数 F(x), 存在非负函数 f(x), 使得对于任意实数 x 有:

$$F(\mathbf{x}) = P(X \le \mathbf{x}) = \int_{-\infty}^{\mathbf{x}} f(t) dt$$

则称 X 为连续型随机变量, f(x)为 X 的概率密度函数。

注: > f(x) 定义在整个实数轴上,即: $x \in (-\infty, +\infty)$

- F(x)在 $(-\infty, +\infty)$ 上连续。 (高数)
- ▶几何意义:

2. 概率密度函数的性质

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$

性质1 $f(x) \ge 0$

性质2
$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$$

这两条性质是判定一个函数 f(x)是否为某随机变量 X 的概率密度函数的充要条件.

证明:

$$\int_{-\infty}^{\infty} f(x) dx = F(+\infty) = 1$$

面积为1

2. 概率密度函数的性质

性质2
$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$$

例:
$$f(x) = \frac{1}{2}e^{-|x|}, (-\infty < x < +\infty)$$
 例: $f(x) = \begin{cases} \frac{1}{x}, x \ge 1 \\ 0, x < 1 \end{cases}$

例:
$$f(x) = \begin{cases} \frac{1}{x}, x \ge 1 \\ 0, x < 1 \end{cases}$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{1} f(x)dx + \int_{1}^{\infty} f(x)dx$$
$$= \int_{1}^{\infty} \frac{1}{x} dx = \ln x \Big|_{1}^{\infty} = \infty$$

f(x)<mark>不是</mark>概率密度函数

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(t) dt$$

性质3
$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(t) dt$$

证明: :
$$F(x_2) - F(x_1) = \int_{-\infty}^{x_2} f(t) dt - \int_{-\infty}^{x_1} f(t) dt = \int_{x_1}^{x_2} f(t) dt$$

几何意义: X 落在区间 $(x_1, x_2]$ 的概率等于区间 $(x_1, x_2]$ 上曲线 f(x) 之下的曲边梯形的面积。

性质4 若f(x)在x处连续,则有:F'(x) = f(x) (高数)

注: 理解概率密度的意义:

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$

$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$$

f(x)描述了连续型随机变量的概率分布情况。即直观地给出了概率1在X取值的每个小区间上概率分布情况。

小结

随机变量

分布函数
$F(x) = P(X \le x)$

x左侧区间上的概率和

不直观

概率分布

概率1分布 情况,直观

离散型随机变量

 $F(x) = \sum_{x_k \le x} p_k$ 右连续

连续型随机变量

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

连续

分布律:

$$\sum p_k = 1 \quad \text{概率密度:} \quad \int_{-\infty}^{+\infty} f(t) dt = 1$$

$$P(x_1 < X \le x_2) = \sum_{x_1 < x_k \le x_2} p_k$$
$$= F(x_2) - F(x_1)$$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$
$$= F(x_2) - F(x_1)$$

结论:
$$A = \Phi$$
 示字 $P(A) = 0$

例: 若X是连续型随机变量,则 $P\{X=a\}=0$,但 $\{X=a\}\neq \Phi$

当
$$\Delta \rightarrow 0$$
 时, $X \rightarrow a$

$$P\{a < X \le a + \Delta\} \rightarrow P\{X = a\} = 0$$

$a < X \le a + \Delta$

这个结论的意义:

连续型随机量 X 在某区间上取值的概率只与区间长度有关, 而与区间是闭, 开, 半开半闭无关, 既有:

$$P(x_1 \le X < x_2) = P(x_1 < X \le x_2) = P(x_1 \le X \le x_2)$$

$$= P(x_1 < X < x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

例1. 证明: 函数
$$f(x) = \frac{1}{2}e^{-|x|}$$
 $(-\infty < x < +\infty)$

是一个连续型随机变量的概率密度函数.

证明: (1) 显然, $f(x) \ge 0$ $(-\infty < x < \infty)$

(2)
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} \frac{1}{2} e^{-|x|} dx$$

$$=2\times\frac{1}{2}\int_0^{+\infty}e^{-x}\mathrm{d}x=1$$

$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$$

例1. 证明: 函数
$$f(x) = \frac{1}{2}e^{-|x|}$$
 $(-\infty < x < +\infty)$

是一个连续型随机变量的概率密度函数.

证明: (1) 显然,
$$f(x) \ge 0$$

$$(2)\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} \frac{1}{2} e^{-|x|} dx$$

$$= \frac{1}{2} \int_{-\infty}^{0} e^{x} dx + \frac{1}{2} \int_{0}^{+\infty} e^{-x} dx$$

$$\int_{-\infty}^{+\infty} de^{-x} dx$$

$$= \frac{1}{2} \int_{-\infty}^{0} de^{x} - \frac{1}{2} \int_{0}^{+\infty} e^{-x} d(-x)$$

$$= \frac{1}{2}e^{x} \Big|_{-\infty}^{0} - \frac{1}{2}e^{-x} \Big|_{0}^{+\infty} = \frac{1}{2}(e^{0} - e^{-\infty}) - \frac{1}{2}(e^{-\infty} - e^{0})$$
$$= \frac{1}{2}(1 - 0) - \frac{1}{2}(0 - 1) = \frac{1}{2} + \frac{1}{2} = 1$$

 $|x| = \begin{cases} -x, & x < 0 \\ x, & x > 0 \end{cases}$

$$f(x) \ge 0$$

$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$$

例2. 设某计算机的寿命(单位:小时)是一个连续型随机变量X, 其概率密度为:

$$f(x) = \begin{cases} \lambda e^{-\frac{x}{100}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

求: (1) *礼*的值;

- (2) 这台计算机的寿命在50到150小时的概率;
- (3) 寿命少于100小时的概率. P(X < 100)

解:
$$(1)$$

$$\int e^{y} dy = \int de^{y} = e^{y}$$

$$\therefore 1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx$$

$$=0+\int_{0}^{+\infty}\lambda e^{-\frac{x}{100}}dx=-100\lambda\int_{0}^{+\infty}e^{-\frac{x}{100}}d(-\frac{x}{100})$$

$$= -100\lambda e^{-\frac{x}{100}}\Big|_{0}^{+\infty} = -100\lambda(0-1) = 100\lambda$$

$$f(x) = \begin{cases} \lambda e^{-\frac{x}{100}}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

- (1) a 的值.
- (2) 50 到 150 小时
- (3) 少于100小时

$$\therefore \lambda = \frac{1}{100}$$

$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(x) dx$$

解: (2)

$$P(50 < X < 150) = \int_{50}^{150} f(x) dx = \int_{50}^{150} \frac{1}{100} e^{-\frac{x}{100}} dx$$

$$\int_b^a e^y dy = e^y \Big|_b^a = e^a - e^b$$

$$f(x) = \begin{cases} \lambda e^{-\frac{x}{100}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

- (1) λ 的值. $\lambda = \frac{1}{100}$ (2) 50 到 150 小时
- (3) 少于100小时

$$= -\int_{50}^{150} e^{-\frac{x}{100}} d(-\frac{x}{100})$$

$$= -e^{-\frac{x}{100}} \Big|_{50}^{150}$$

$$= -(e^{-\frac{150}{100}} - e^{-\frac{50}{100}})$$

$$= e^{-0.5} - e^{-1.5}$$

$$= 0.384$$

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} f(t) dt$$

(3)
$$P(X < 100) = \int_{-\infty}^{100} f(x) dx$$

$$= \int_{-\infty}^{0} f(x) dx + \int_{0}^{100} f(x) dx$$

$$= 0 + \int_{0}^{100} \frac{1}{100} e^{-\frac{x}{100}} dx$$

$$= -\int_0^{100} e^{-\frac{x}{100}} d(-\frac{x}{100}) = -e^{-\frac{x}{100}} \Big|_0^{100}$$

$$f(x) = \begin{cases} \lambda e^{-\frac{x}{100}}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

- (1) λ 的值. $\lambda = \frac{1}{100}$ (2) 50 到 150 小时
- (3) 少于100小时

$$= -(e^{-\frac{100}{100}} - e^{-\frac{0}{100}})$$

$$= 1 - e^{-1}$$

$$= 0.633$$

$$\int_b^a e^y dy = e^y \Big|_b^a = e^a - e^b -$$

$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$

例3.

设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{其它} \end{cases}$

求: (1) X 的分布函数;

(2)
$$P(0.3 < X < 0.7)$$

$$\int_{-\infty}^{\infty} f(x) \mathrm{d}x = 1$$

$$\int_{b}^{a} y^{\mu} dy = \frac{y^{\mu+1}}{\mu+1} \Big|_{b}^{a} = \frac{a^{\mu+1}}{\mu+1} - \frac{b^{\mu+1}}{\mu+1}$$
又P进机文里 A FYMY 百万万 $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & 其它 \end{cases}$

求: (1) X 的分布函数;

解:
$$F(x) = \int_{-\infty}^{x} f(t) dt$$

当
$$x < 0$$
 时, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$

当
$$x \ge 1$$
时, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} 0 \cdot dt + \int_{0}^{1} 2t dt + \int_{1}^{x} 0 \cdot dt = t^{2} \Big|_{0}^{1} = 1$

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

求分布函数:

- 1) 分布函数定义在整个实数 轴上:
- 2) 用分断点分区间;
- 3) 分区间求分布函数值。

$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & \text{其它} \end{cases}$

求: (2) P(0.3 < X < 0.7)

解:
$$P(0.3 < X < 0.7) = F(0.7) - F(0.3) = 0.7^2 - 0.3^2 = 0.4$$

$$= \int_{0.3}^{0.7} f(x) dx = \int_{0.3}^{0.7} 2x dx = x^2 \Big|_{0.3}^{0.7}$$
$$= 0.7^2 - 0.3^2 = 0.4$$

课堂教学 **注释:** 概率密度 →→ 分布函数

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

例4. 设
$$f(x) = \begin{cases} \frac{x}{a}e^{-\frac{x^2}{2a}} & x \ge 0 \\ 0 & x < 0 \end{cases}$$
 $(a > 0)$

求: (1) X 的分布函数 (2) $P(0 \le X < 1)$

例4. 设
$$f(x) = \begin{cases} \frac{x}{a}e^{-\frac{x^2}{2a}} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

求: (1) X 的分布函数

解: 由
$$F(x) = \int_{-\infty}^{x} f(x) dx$$

求分布函数:

- 1)分布函数定义在整个实数轴上;
- 2) 用分断点分区间;
- 3) 分区间求分布函数值

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\frac{x^2}{2a}} & x \ge 0 \end{cases}$$

当
$$x < 0$$
 时, $x < 0$ 时,

$$F(x) = \int_{-\infty}^{x} 0 \cdot dx = 0$$

当
$$x \ge 0$$
 时,

$$F(x) = \int_{-\infty}^{0} 0 \cdot dx + \int_{0}^{x} \frac{2x}{2a} e^{-\frac{x^{2}}{2a}} dx = -\int_{0}^{x} e^{-\frac{x^{2}}{2a}} d(-\frac{x^{2}}{2a}) = [-e^{-\frac{x^{2}}{2a}}]_{0}^{x}$$

例4. 设
$$f(x) = \begin{cases} \frac{x}{a}e^{-\frac{x^2}{2a}} & x \ge 0 \\ 0 & x < 0 \end{cases}$$
 $(a > 0)$

求: (2)
$$P(0 \le X < 1)$$

解:
$$P(0 \le X < 1) = F(1) - F(0) = 1 - e^{-\frac{1}{2a}}$$

$$= \int_0^1 f(x) dx = \int_0^1 \frac{x}{a} e^{-\frac{x^2}{2a}} dx$$

$$= \left[-e^{-\frac{x^2}{2a}} \right]_0^1 = 1 - e^{-\frac{1}{2a}}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\frac{x^2}{2a}} & x \ge 0 \end{cases}$$

例4.

0.5

0.45 0.4

0.35 0.3

0.25 0.2

0.15

0.1

0.05 0

0

f(x)

 $F(2) = 1 - e^{-1}$

1

2

a=2

3

没
$$f(x) = \begin{cases} \frac{x}{a}e^{-\frac{x^2}{2a}} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\frac{x^2}{2a}} & x \ge 0 \end{cases}$$

性质1 F(x)是一个不减函数 性质2 $0 \le F(x) \le 1$ 且 $\lim_{x \to -\infty} F(x) = 0, \lim_{x \to +\infty} F(x) = 1$ 性质3 F(x)是连续函数

$$F(2) = \int_{-\infty}^{2} f(x) \mathrm{d}x$$

$$F(x) = \int_{-\infty}^{x} f(x) dx$$

6

5

4

$$a=2$$
 连续且单调增

$$M5$$
. 设随机变量 X 的分布函数为

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

- (1) 求*X* 在区间(**0.3,0.7**) 取值的概率.
- (2) 求X 的概率密度.

解: (1)
$$P(0.3 < X < 0.7) = F(0.7) - F(0.3) = 0.7^2 - 0.3^2 = 0.4$$

$$(2) f(x) = F'(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \not\exists \ \dot{\Xi} \end{cases}$$

$$M5$$
. 设随机变量 X 的分布函数为

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$$F(x) = \begin{cases} 0, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

- (1) 求*X* 在区间(0.3,0.7) 取值的概率.
- (2) 求X 的概率密度.

解: (1)
$$P(0.3 < X < 0.7) = F(0.7) - F(0.3) = 0.7^2 - 0.3^2 = 0.4$$

$$(2) f(x) = F'(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \not\exists \ \dot{\mathbf{r}} \end{cases}$$

注: F(x) 在1处导数不存在,由于改变被积函数 f(x) 在个别点处的值不影响积分结果,可以在F'(x) 没意义的点处,任意规定 F'(x) 的值.

归纳题目类型:

- $\uparrow (1) \quad f(x) \longrightarrow F(x) \qquad F(x) = \int_{-\infty}^{x} f(x) dx$
 - F(x)定义在整个实数轴上。
 - \rightarrow 一般f(x)是分段函数,因此积分时要分区间。
 - (2) $F(x) \longrightarrow f(x)$ f(x) = F'(x)
 - ightharpoons 在 f(x) = F'(x) 没意义的点处可以任意规定一个值。
- *\(\psi \) (3) $f(x) \ \ext{if } F(x) \ \ext{ } P\{x_1 < X \le x_2\} = \int_{x_1}^{x_2} f(x) \ \ext{d} x = F(x_2) F(x_1)$
 - (4) 判断f(x)是否是某个X 的概率密度 $f(x) \ge 0$ $\int_{-\infty}^{\infty} f(x) dx = 1$
 - (5) 判断 F(x)是否是某个X 的分布函数 F(x)的性质

第二章 一维随机变量及其分布

第四节 连续型随机变量及其分布

- ✓ 连续型随机变量的概率密度
- → 几种常见的连续型随机变量的分布
 - ■均匀分布
 - ■指数分布
 - 正态分布
 - 正态分布的分位点

作业

授课内容	习题二
2.2 离散型随机变量及其分布律	2(1),3分布律, 6,7二项分布, 12,泊松分布
2.3 随机变量的分布函数	17(1)(2),19
2.4 连续型随机变量概率密度	20,21, 23,概率密度
	24指数分布,26,27,29正态分布
2.5 随机变量函数的分布	33离散, 34(1), 35(1)(2)(3)连续

