In [1]:	Se importa las librerías
	import statsmodels.formula.api as smf import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as st import numpy as np
In [2]:	<pre>import scipy.stats as ss from itertools import combinations import re ## preguntar por las funciones de la librería sm y smf ## https://yuasaavedraco.github.io/Docs/Regresi%C3%B3n_Lineal_Simple_con_Python.html ## https://localcoder.org/stepwise-regression-in-python</pre>
	Pregunta 1: Describa los datos, entregando gráficos y tablas que muestren las principales características de la base de datos. Ayuda: puede emplear el método .hist(bins=n_bins, figsize = (ancho, alto)) para graficar un resu- men de histogramas de los datos.
In [3]:	Se hace una transformación al archivo original para que pase a ser un csv df=pd.read_csv('/Users/milan/crime_usa.csv',sep=';') df.shape (50, 7)
	Se revisa las correlaciones iniciales de las columnas del dataset
Out[4]:	$\Xi = 1$ 0.76 0.53 0.14 0.32 0.18 0.29 0.26 -0.75
	X - 0.53 0.51 1 0.12 0.31 -0.28 0.12 -0.25 X - 0.14 -0.18 0.12 1 -0.54 0.18 0.68 -0.00
	≥ -0.18 -0.2 -0.28 0.18 -0.63 1 0.59 -0.75 ≥ -0.026 -0.046 0.12 0.68 -0.51 0.59 1
	• Se muestra que las opciones X2,X3 y X5 tienen una correlación relativamente importante, por tanto estimo que serán significativas más adelante en el ejercicio Se hace un modelo de regresión linear múltiple sin una limpieza previa para ver sus resultados generales
In [5]:	y= df['X1'] regressor_OLS = sm.OLS(y,x_corr).fit() regressor_OLS.summary()
Out[5]:	C:\Users\milan\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only x = pd.concat(x[::order], 1) OLS Regression Results Dep. Variable: X1 R-squared: 0.613 Model: OLS Adj. R-squared: 0.559 Method: Least Squares F-statistic: 11.36
	Date: Sat, 14 May 2022 Prob (F-statistic): 1.42e-07 Time: 00:45:32 Log-Likelihood: -330.87 No. Observations: 50 AIC: 675.7 Df Residuals: 43 BIC: 689.1
	Df Model: 6 Covariance Type: nonrobust coef std err t P> t [0.025 0.975] const 100.3936 370.693 0.271 0.788 -647.180 847.968 X2 0.3323 0.060 5.574 0.000 0.212 0.453
	X3 3.9982 2.682 1.490 0.143 -1.412 9.408 X4 1.8579 5.241 0.355 0.725 -8.711 12.427 X5 7.8389 7.760 1.010 0.318 -7.810 23.488 X6 2.5588 3.427 0.747 0.459 -4.352 9.470
	X7 -3.2312 10.715 -0.302 0.764 -24.841 18.378 Omnibus: 23.696
	Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.13e+04. This might indicate that there are
	strong multicollinearity or other numerical problems. • Se obtiene que la R2 0.559 para la formula X1~X2+X3+X4+X5+X7 Se crea función para plotear rápidamente las columnas
In [6]:	<pre>def graficas_plot(nom,x): data_plt=x fig = plt.figure(figsize=(16, 6)) fig.suptitle(nom) ax1 = fig.add_subplot(221) ax1.set_title('Gatito')</pre>
	<pre>ax1.boxplot(x, flierprops=dict(markerfacecolor='red', marker='o'), showmeans=True); ax2 = fig.add_subplot(222) ax2.hist(data_plt, density=True, bins=8, label="Data") mn = data_plt.min() mx = data_plt.max() rv = ss.norm(np.mean(data_plt), np.std(data_plt)) x = np.linspace(mn,mx)</pre>
In [7]:	ax2.set_title('Distribución') ax2.plot(x, rv.pdf(x), lw=2, color="blue"); Se valida los valores de las columnas
	<pre>graficas_plot("X2",df['X2']) graficas_plot("X3",df['X3']) graficas_plot("X4",df['X4']) graficas_plot("X5",df['X5']) graficas_plot("X6",df['X6']) graficas_plot("X7",df['X7'])</pre> X1
	Gatito Distribución 1750
	750
	3000 - 2000 - 1000 -
	0.0002
	60 - 40 - 20 - 0.01
	1 20 30 40 50 60 70 80 X4 Gatito Distribución 0.04 0.03
	60 - 0.02 - 0.01 - 0.00 - 45 50 55 60 65 70 75 80
	Satito Gatito Distribución 0.08 0.06 0.04 0.04
	0.02 - 0.00 - 5 10 15 20 25 30 35 X6 Gatito Distribución
	80 -
	Gatito Distribución 0.00 10 20 30 40 50 60 70 80 X7
	0.08 20 15 10 10 10 10 10 10 10 10 10 10 10 10 10
	• Se presenta que la mayoría de las variables predictoras estudiados tienen a tener OUTLINER con número excesimante grandes a diferencia de otras variables, esto se debe expresar a que el crimen y la consecuente lucha que se lleva contra ellas en ciertas ciudades de estados unidos se encuentra disparada. Se eliminó una sección del código donde validaba si era conveniente eliminar outliner, se llega a la conclusión de que quitar las outliner empeorá la calidad del modelo, esto puede estar causado por la poca cantidad de variables del modelo
In [8]: Out[8]:	
	• Por ejemplo, validando este registro con un OUTLINER en la columna "X2 - Crimen violento cada 100K" (Máximo APROX esperado:1700 / Valor real 3545), podemos ver que también presenta OUTLINER en "X1 - Crimen reportado cada 1M" (Máximo APROX esperado:1000 / Valor real 1740) y "X3 - " Pregunta 2: Efectúe un análisis de regresión lineal múltiple que explique la tasa de crímenes reportados totales por cada 1 millón de habitantes. Para esto, implemente la metodología de stepwise hacia atrás o hacia adelante, para encontrar la mejor combinación de variables explicatorias. Puede emplear
	cualquier métrica de desempeño de modelo: RMSE, R2, AIC, o BIC. Ayuda: Todas las métricas, parámetros, y otros resultados relevantes pueden ser revisados a partir del objeto "model", en donde quedan almacenados al crear algún modelo de regresión • Modelo de regresión sin parametros (M0), en esta parte no sabía si el modelo nulo debía ser X1 ~ PromedioY o X1 ~ 1+PromedioY, los intentos al usar esto dieron R2 0 o 1 dependiendo de la librería. por lo mismo la descarté de la conclusión que debía obtener
Out[9]:	m0 = sm.OLS(y,df['y_mean']).fit() m0.summary() OLS Regression Results Dep. Variable: X1 R-squared: 0.000 Model: OLS Adj. R-squared: 0.000
	Method:Least SquaresF-statistic:nanDate:Sat, 14 May 2022Prob (F-statistic):nanTime:00:45:33Log-Likelihood:-354.61No. Observations:50AIC:711.2Df Residuals:49BIC:733.1
	Df Model: 0 Covariance Type: nonrobust coef std err t P> t [0.025] 0.975] y_mean 1.0000 0.058 17.271 0.000 0.884 1.116
	Omnibus: 21.722 Durbin-Watson: 1.178 Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.319 Skew: 1.483 Prob(JB): 1.58e-07 Kurtosis: 5.498 Cond. No. 1.00
	Omnibus: 21.722 Durbin-Watson: 1.178 Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.319 Skew: 1.483 Prob(JB): 1.58e-07 Kurtosis: 5.498 Cond. No. 1.00 Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
In [10]:	Omnibus: 21.722 Durbin-Watson: 1.178 Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.319 Skew: 1.483 Prob(JB): 1.58e-07 Kurtosis: 5.498 Cond. No. 1.00 Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. mo_1 = sm.0.15(y,sm.add_constant(df['y_mean'])).fit() mo_1.sumary() C:\Users\milan\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only x = pd.concat(x[::order], 1)
In [10]:	Omnibuse 21.722 Durbin-Watson: 1.178 Prob(Omnibus): 0.000 Jarque-Bera (JB): 31.319 Skew: 1.483 Prob(B): 1.58e-07 Kurtosk: 5.498 Cond. Mo. 1.00 Notes: (1) Standard Errors assume that the covariance matrix of the errors is correctly specified. Notes: (2) Standard Errors assume that the covariance matrix of the errors is correctly specified. Notes: (3) Standard Errors assume that the covariance matrix of the errors is correctly specified. No.1 = sm. 0.5 (y, sm. add_constant(df['y_mean'])).fit() no.2.1 = sm. 0.5 (y, sm. add_constant(df['y_mean'])).fit() Collusers/witalan/anacondas/\lib/site-packages/statsmodels/tsa\tsatosls.py:142: FutureNarning: In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only X = pd.concat(cf[:torder], 1) Olds Regression Results Dep. Variable: X1 Requared: 0.000 Model: 0.15 Adj. Requared: 0.000 Method: Least Squares F-statistic nan Date: Sat [14 May 2022 Prob If-statistic nan Time: 0.045:33 Log-Likelimood: -354.61
In [10]:	Omnibus: 21,722 Durbin-Watson: 1,178 Prob(Omnibus): 0,000 Jarque-Bera (JB): 31,319 Skew: 1,483 Prob(JB): 1,58e-07 Kurtosis: 5,498 Cond. No. 1,00 Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. mo_1 = sn. 0,15 (yy, sn. add_constant(df['y_mean'])) .fit() mo_1. summary() Ct\u00e4\u00e4 Loss Squares needle \u00e4 No. 1 = future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only x = pd.concat(gi:orderly, i) OLS Regression Results Dep. Variable: XI R-squared: 0,000 Method: Loss Squares F-statistic: nan Date: Sat, 14 May 2022 Prob (F-statistic): nan
In [10]:	Proble Community 1.75 1.
In [10]: Out[10]:	Problems 2172
In [10]: Out[10]:	Owndoor 17.72 Dutlie-Waters 17.75 Check 17.
In [10]: Out[10]:	Oronkee 27.27 Brain-Water 1.07 June
In [10]: Out[10]:	Outside 21-22 Outside Water Bourd St. 21-22 Outside Water St. 21-22 Outside Gross seams that the source marks of the eres is consequently good feet. Districted Gross seams that the source marks of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the source of the eres is consequently good feet. The consequently of the consequently good feet. The public good feet on a sequently good feet. The consequently of the consequently good feet. The consequently of the consequently good feet. The consequently of the consequence marks of the eres is consequently good feet. Set that do have story sequently of the consequently good feet. Set that do have story the consequently good feet. Set that do have story the consequently good feet. The consequently of the consequently feet and section. The consequently good feet decided by good feet the consequently good feet. The consequently good feet decided by good feet decided by good feet the consequently good feet. The consequently good feet decided by good feet the consequently good feet. The consequently good feet
In [10]: Out[10]:	Outside 2722 Voids Winner 1019 Another 1029 See Perceion 1019 Another 1029 Anothe
In [10]: Out[10]:	Marchand 1/10
In [10]: Out[10]:	Marie 200
In [10]: Out[10]:	Martial Mart
In [10]: Out[10]:	Marchand
In [10]: Out[10]:	Marie 10 10 10 10 10 10 10 1
In [10]: Out[10]:	Marie Mari
In [10]: Out[10]:	Marian 10
In [10]: Out[10]:	### 10
In []: In []:	Process Company Comp
In []: In []:	The content of the
In [10]: In []:	Marked M
In [10]: In []:	Marie Mari
In [10]: In []:	Part