

廣東工業大學

本科毕业设计

某八层住宅楼给排水工程设计

学上木与交通工程学院专业建筑环境与能源应用工程年级班别2015 级(1)班学号3115003295学生姓名刘程指导老师李斌

2019 年 4 月

目 录

1	建筑	概况 …		1
2	系统	设计方	案······	2
	2.1	生活给	永系统	2
	2.2	生活排	*水系统	2
	2.3	雨水排	水系统	2
3	管道	的选材	与安装	2
	3.1	生活给	永系统	2
	3.2	生活排	水系统	2
	3.3	雨水排	水系统	2
4	管道	的布置	与敷设	3
	4.1	生活给	永系统	3
	4.2	生活排	水系统	3
	4.3	雨水排	水系统	4
5	管道	冰力计	算	5
	5.1	生活给	永系统水力计算	5
		5.1.1	室内给水系统计算	5
		5.1.2	压力校核计算 · · · · · · · · · · · · · · · · · · ·	6
		5.1.3	入户压力分布 ·····	7
	5.2	生活排	水系统水力计算	8
		5.2.1	室内外排水系统计算	8
		5.2.2	污废水检查井	10
	5.3	雨水排	水系统水力计算	11
		5.3.1	暴雨强度计算 · · · · · · · · · · · · · · · · · · ·	11
		5.3.2	屋面雨水设计流量	11
		5.3.3	阳台雨水设计流量	11
		5.3.4	室外雨水管管径选择	11
		5.3.5	雨水检查井	12
参	考文献	獃		13

1 建筑概况

某八层住宅楼座落于广州市,采用钢筋混凝土框架结构,地面共八层,每层层高为 3.00m。该楼位于城区内,地形平坦。工程地质条件良好。室外地面标高-0.30m。该楼的四周距墙 3 米处有小区给水管,管径 DN150mm,管中心标高为-1.30m,能提供常年最小水压为 0.45Mpa,供水量充足。热水由家用热水器供给,室内污废水合流排出,该楼的四周距墙 6m 处有小区污水管,管径为 300mm,最小埋深 1.5m。

2 系统设计方案

2.1 生活给水系统

该建筑层数为八层,层高为 3m,因为层高未超过 3.5m,因此该建筑所需的水压 H 估算为: $H = 120 + (8 - 2) \times 40 = 280 Kpa$,据资料显示外网水压为 450 Kpa,远大于建筑所需的水压,所以采用直接给水的方式。

2.2 生活排水系统

根据资料可知,该建筑的室内污废水合流排出,采用单立管排水系统。其中,来自厨房和洗衣机的废水从小区上部排到小区污水网;来自厕所的合流污水通过小区下部排到化粪池,经化粪池处理后再排到小区排水管。

2.3 雨水排水系统

采用重力排水系统,屋面雨水经管道收集后排至城市雨水管网,屋面雨水经过雨水斗和雨水立管,直接排到室外雨水井,阳台雨水在连接到雨水井之前先连接到雨水口,实现间接排水。设计重现期取2年。

3 管道的选材与安装

3.1 生活给水系统

给水立管采用聚乙烯管(PE),热熔接,其管径按塑料管产品规格说明书标注。室外埋地给水管采用衬里的铸铁给水管,法兰连接,管径按公称直径标注;管道穿楼板时设钢套管;每户设一水表,水表后设截止阀,一层水表井设一总表,总表后设止回阀。根据《全国民用建筑工程设计技术规范 2009》(给排水篇),对于给水管道直径 $\leq 200mm$ 的室外给水管,距建筑物基础要求 $\geq 1.0m$ 。根据《室外排水设计规范》有水表井距建筑物基础 >1.0m。

3.2 生活排水系统

排水立管采用硬聚氯乙烯塑料管 (PVC-U), 承插粘接, 其管径按塑料管产品规格说明书标注, 室外污废水横干管采用铸铁管, 其管径按公称直径标注。坡度均按照《建筑给水排水设计规范》选取;

3.3 雨水排水系统

屋面雨水内排水系统由雨水斗、连接管、悬吊管、排水立管、排出管以及埋地管组成。室内雨水排水管以及出户横支管均采用硬聚氯乙烯塑料管(PVC-U),

其管径按规格说明书标注,室外雨水横干管采用铸铁管,其管径按公称直径标注。其管径和坡度均按照《建筑给水排水设计规范》选取。

4 管道的布置与敷设

4.1 生活给水系统

- 1. 室外给水管道与污水管道交叉时,给水管道应敷设在上面,且接口不应重叠。
- 2. 因为一层有车库,即小区周围道路为行车道,因此室外给水管道的覆土深度取 0.7m。
- 3. 根据资料可知,该楼的四周距墙 3 米处有小区给水管,考虑到应该尽量减少弯头,因此从小区给水管笔直布置给水入户管,并在经过楼梯间的位置布置给水立管。
- 4. 从立管接入每层住户的给水管,在每层的楼梯间安装水表、阀门,入户后的管道敷设在厨侧大样图上表示。
- 5. 给水横管埋地暗敷,给水立管埋墙暗敷,水表所在管段除外。
- 6. 建筑物内埋地敷设的生活给水管与排水管之间的最小净距,平行埋设时不 官小于 0.50m: 交叉埋设时不应小于 0.15m, 且给水管应在排水管的上面。

4.2 生活排水系统

- 1. 根据资料可知,该楼的四周距墙 6 米处有小区污水管。用户的厨房和洗衣 机排出的废水直接从小区上部排出到小区污水管;而厕所排出的污水则通 过排水管排出到位于小区下方的化粪池,经过微生物处理后再排到小区污 水管。
- 2. 排水管与小区排水管连接处设置检查井,检查井至建筑物距离为 4m,检查 井直径为 0.7m。
- 3. 室外排水管与给水引入管水平间距为 1.5m 以上,垂直距离 0.4m 以上;与雨水管水平间距 1m 以上,垂直距离 0.1m 以上。
- 4. 排水立管上应设置检查口,检查口距离地面 1m; 因为 2 到 8 层均设有卫生器具,因此在首层和第八层设置检查口,其他楼层每隔 3 层设置一个。
- 5. 生活排水管道的立管顶端,应设置伸顶通气管,伸顶通气管高出屋面 2m。

- 6. 室内排水立管埋墙暗敷。排水横干管埋地暗敷。
- 7. 到达首层的排水立管若靠墙则直接引下埋地连接小区排水管,若未靠墙,则从首层楼板明敷到最近的墙体或柱子,然后靠墙引下埋地连接小区排水管。
- 8. 设计排水管的覆土深度为 1.2m。

4.3 雨水排水系统

- 1. 雨水排水系统采用外排水系统、单斗雨水排水系统。屋面雨水系统经过立 管直接与雨水井相连,而为了防止雨水回流,阳台雨水先经过室外雨水口 再接入雨水检查井中。
- 2. 因为雨水排水管在给水管下,且与给水管垂直敷设,因此雨水排水管与给水管的垂直间距要大于 0.15*m*,所以设计覆土深度为 1*m*。

5 管道水力计算

5.1 生活给水系统水力计算

5.1.1 室内给水系统计算

根据资料可知,该建筑属 类普通住宅,共八层,每层各有四户。根据《广东省用水定额 DB44T1461-2014》,取用水定额 $q_L = 200 \text{ } + (\text{人} \cdot \text{日})$,小时变化系数 $K_h = 2.5$,设每户有 3.5 人,共计 98 人,用水时间为 24h。各卫生器具的给水当量:洗涤盆、洗脸盆(0.75)、大便器(0.50)、淋浴器(0.50),洗衣机水嘴(1.00)。接着给最不利环路的管段标号,如下图:

对每段管段, 按以下方法求解:

- 1. 计算各管段当量 N_q ;
- 2. 根据以下公式计算各管段平均出流概率 U_o :

$$U_o = \frac{100q_L m K_h}{0.2 \cdot N_g \cdot T \cdot 3600} (\%) \tag{1}$$

3. 根据以下公式计算各管段同时出流概率 U:

$$U = 100 \frac{1 + \alpha_c (N_g - 1)^{0.49}}{\sqrt{N_g}} (\%)$$
 (2)

4. 根据以下公式计算各管段设计秒流量 q_q :

$$q_q = 0.2 \cdot U \cdot N_q \tag{3}$$

5. 根据计算所得的各管段设计秒流量 q_g ,通过《给水塑料管水力计算表》和《生活管道水流速度》选择各管段的管径、流速和水力坡度,按公式 $h=i\cdot L$ 计算沿程水头损失。

具	体计	·算结	果	<i>†</i> Π¯	下表:
	rt vi	THU	1/15	$^{\mathcal{H}}$	^レ 、・

管段	当量 N_g	$lpha_c$	平均出 流概率 U _o (%)	同时出 流概率 <i>U</i> (%)	设计秒 流量 q_g (L/s)	管径 DN (mm)	流速 v (m/s)	水力 坡降 i (kPa/m)	管长 L (m)	沿程水 头损失 $h_y(kPa)$
1-2	0.50			100.00	0.10	15.00	0.50	0.275	1.04	0.29
2-3	1.00	0.06489	10.13	100.00	0.20	15.00	0.99	0.940	2.62	2.46
3-4	1.75	0.04629	5.79	78.63	0.28	20.00	0.79	0.422	3.47	1.46
4-5	3.50	0.01939	2.89	55.08	0.39	25.00	0.61	0.188	1.21	0.23
5-6	4.50	0.01512	2.25	48.46	0.44	25.00	0.61	0.188	2.83	0.53
6-7	5.25	0.01097	1.93	44.62	0.47	25.00	0.76	0.279	7.11	1.98
7-8	10.50	0.01097	1.93	31.88	0.67	32.00	0.69	0.181	3.00	0.54
8-9	15.75	0.01097	1.93	26.23	0.83	32.00	0.79	0.229	3.00	0.69
9-10	21.00	0.01097	1.93	22.86	0.96	32.00	0.98	0.340	3.00	1.02
10-11	26.25	0.01097	1.93	20.56	1.08	32.00	0.98	0.340	3.00	1.02
11-12	31.50	0.01097	1.93	18.86	1.19	32.00	0.98	0.340	3.00	1.02
12-13	36.75	0.01097	1.93	17.54	1.29	40.00	0.90	0.217	2.80	0.61
13-14	73.50	0.01097	1.93	12.71	1.87	40.00	1.20	0.361	5.05	1.82
14-15	110.25	0.01097	1.93	10.57	2.33	50.00	0.95	0.517	17.75	9.18
15-16	147.00	0.01097	1.93	9.29	2.73	50.00	1.14	0.245	2.25	0.55
16-17	148.25	0.01097	1.93	9.25	2.74	50.00	1.14	0.245	11.97	2.93

通过上表计算可得引入管起点至最不利配水点的总沿程水头损失:h = 26.34kPa。

5.1.2 压力校核计算

已知室外给水引入管埋深 1m,楼高 3m,最不利配水点与楼板高差 1m,则由最不利配水点与引入管起点的高程差产生的静压差为: $H_1 = 1 + 3 \times 7 + 1 = 23.00m = 230.00kPa$ 。

由上述计算已知引入管起点至最不利配水点的总水头损失 H_2 ,局部损失按沿程损失 30%计,则总水头损失 $H_2 = 26.34 \times 1.3 = 34.24kPa$;

对于通过水表产生的水头损失,可根据以下公式计算:

$$h = \frac{100 \times q_g^2}{q_{\text{max}}^2} \tag{4}$$

- ① 入户水表装在 6-7 管段上,该管段设计秒流量 $q_g = 0.47L/s = 1.69m^3/h$,通过查表选用 LXS-20C 旋翼湿式水表,公称口径为 20mm,最大流量为 $5m^3/h$,常用流量为 $2.5m^3h$ 。则用上述公式计算得水流经过水表的水头损失为 11.42kPa;
- ② 引入管水表装在 16-17 管段上,该管段设计秒流量 $q_g = 2.74L/s = 9.86m^3h$,通过查表选用 LXS-40C 旋翼湿式水表,公称直径为 40mm,最大流量为 $20m^3/h$,常用流量 $10m^3/h$,则用上述公式计算得水流经过水表的水头损失为 24.30kPa。

因此设计流量通过水表时产生的水头损失 $H_3 = 11.42 + 24.30 = 35.72kPa$ 。而对于最不利点配水附件所需最低工作压力 H_4 ,取 $H_4 = 100kPa$;

综上所述,可得 $H=H_1+H_2+H_3+H_4=399.96Kpa<450kPa$,符合当前小区管道直接供水的方案。

5.1.3 入户压力分布

首先对最不利环路的入户压力进行计算,确认是否需要装设减压阀:

楼层	静水压 (kPa)	总水头损失 (kPa)	进户压力 (kPa)
一层	24	34.04	391.96
二层	54	43.92	352.08
三层	84	52.95	313.05

通过上表可知,一层入户和二层入户压力都超过了 350kPa,因此都要设置 减压阀;同时再计算三层进户压力最大处压力为 328.14kPa,因此三层无需设置 减压阀。

5.2 生活排水系统水力计算

5.2.1 室内外排水系统计算

根据规范可知,室内排水设计秒流量计算公式为:

$$q_p = 0.12 \cdot \alpha \cdot \sqrt{N_p} + q_{\text{max}} \tag{5}$$

其中 α 取 1.5, q_{max} 是计算管段上排水量最大的一个卫生器具的排水流量。 室内排水管段标注如下所示:

首先,根据《建筑给水排水设计规范》可确定排水接户管管径为 DN160,最小设计坡度为 0.005;排水干管管径为 DN200,最小设计坡度为 0.004。

卫生器具排水管管径确定 根据《建筑给水排水设计规范》可得所需卫生器具的排水当量、排水流量以及排水管径:

卫生器具	排水当量	排水流量 (L/s)	排水管径 (mm)
洗脸盆	0.75	0.25	32
洗涤盆	1	0.33	50
淋浴器	0.45	0.15	50
大便器	4.5	1.5	100
洗衣机	1.5	0.5	50

厨房排水管管径确定 厨房排水横支管,连接洗涤盆,选用管径 50mm,通用坡度 0.025。排水立管的当量总数为 7.00,计算得立管最下部管段排水设计秒流量 $q_g = 0.12 \times 1.5 \times \sqrt{7} + 0.33 = 0.80L/s$ 。流量不超过排水塑料管最大允许排水流量 0.8L/s,故可采用伸顶通气。立管底部与排出管放大一号管径,故取管径 De75mm。

管段	当量 N_g	$q_g(L/s)$	管径 De(mm)	坡度 i	管长 L(m)	坡降 (m)
1-2	1.00	0.80	50	0.025	1.32	0.033

洗衣房排水管管径确定 洗衣房排水横支管,连接洗衣机,选用管径 50mm,通用坡度 0.025。排水立管的当量总数为 10.50,计算得立管最下部管段排水设计秒流量 $q_g = 0.12 \times 1.5 \times \sqrt{10.5} + 0.5 = 1.08 L/s$ 。查表可得,立管管径选用 De50mm,流量接近排水塑料管最大允许排水流量 1.0L/s,故可采用伸顶通气。立管底部与排出管放大一号管径,故取管径 De75mm。

管段	当量 N_g	$q_g(L/s)$	管径 De(mm)	坡度 i	管长 L(m)	坡降 (m)
1-2	1.50	1.08	50	0.025	1.33	0.033

主卧室厕所排水管管径确定 主卧室厕所排水支管,由于连接大便器,因此选用最小管径 De100mm,通用坡度 0.025;排水立管的当量总数为 39.90,计算得立管最下部管段排水设计秒流量 $q_g=5.64L/s$ 。查表可得,立管管径选用 De100mm,流量小于排水塑料管最大允许排水流量 3.2L/s,故可采用伸顶通气。立管底部与排出管放大一号管径,故取管径 De110mm。

管段	当量 N_g	$q_g(L/s)$	管径 De(mm)	坡度 i	管长 L(m)	坡降 (m)
1-4	0.75	0.25	32.00	0.025	0.79	0.02
3-4	0.45	0.15	50.00	0.025	2.03	0.05
4-5	5.70	1.90	100.00	0.025	0.77	0.02

餐厅厕所排水管管径确定 餐厅排水横支管,由于连接大便器,因此选用最小管径 De100mm,通用坡度 0.025;排水立管的当量总数为 39.90,计算得立管最下部管段排水设计秒流量 $q_g = 5.64L/s$ 。查表可得,立管管径选用 De100mm,流量小于排水塑料管最大允许排水流量 3.2L/s,故可采用伸顶通气。立管底部与排出管放大一号管径,故取管径 De110mm。

管段	当量 N_g	$q_g(L/s)$	管径 De(mm)	坡度 i	管长 L(m)	坡降 (m)
1-4	0.75	0.25	32.00	0.025	2.33	0.06
3-4	0.45	0.15	50.00	0.025	1.02	0.03
4-5	5.70	1.90	100.00	0.025	0.36	0.01

值班室排水管管径确定 值班室排水横干管,2-3 管段由于连接大便器,因此选用最小管径 De100mm,通用坡度 0.025; 1-2 管段连接洗脸盆,可知排水流量为 0.25L/s,排水管径选 32mm。

5.2.2 污废水检查井

因为污废水排水管覆土深度为 1.2m,因此可知污废水检查井初始井底标高为: H = -(1.2m + De +管段坡降),采用内径为 0.7m 的检查井。这之后的每个检查井的井底标高即井前排水管的管底标高。

编号	管径 (m)	坡度	管长 (m)	起点管底 标高 (m)	终点管底 标高 (m)	坡降 (m)	检查井 井底标高 (m)
W1	0.16	0.005	5.87	-1.368	-1.397	0.029	-1.397
W2	0.20	0.004	11.50	-1.397	-1.443	0.046	-1.443
W3	0.20	0.004	6.55	-1.443	-1.469	0.026	-1.469
W4	0.20	0.004	3.37	-1.469	-1.483	0.013	-1.483
W5	0.20	0.004	12.34	-1.483	-1.532	0.049	-1.532
W6	0.20	0.004	3.37	-1.532	-1.545	0.013	-1.545
W7	0.20	0.004	0.92	-1.545	-1.549	0.004	-1.549
W8	0.20	0.004	3.37	-1.549	-1.562	0.013	-1.562
W9	0.20	0.004	12.34	-1.562	-1.611	0.049	-1.611
W10	0.20	0.004	3.37	-1.611	-1.624	0.013	-1.624
W11	0.16	0.005	5.92	-1.368	-1.398	0.030	-1.398
W12	0.20	0.004	4.87	-1.398	-1.417	0.019	-1.417
W13	0.20	0.004	3.34	-1.417	-1.430	0.013	-1.430
W14	0.20	0.004	4.88	-1.430	-1.450	0.020	-1.450
W15	0.20	0.004	6.90	-1.450	-1.478	0.028	-1.478
W16	0.20	0.004	4.87	-1.478	-1.497	0.019	-1.497
W17	0.20	0.004	3.34	-1.497	-1.510	0.013	-1.510
W18	0.20	0.004	4.88	-1.510	-1.530	0.020	-1.530

5.3 雨水排水系统水力计算

5.3.1 暴雨强度计算

广州市暴雨强度公式为:

$$q = \frac{3618.427(1 + 0.438 \lg P)}{(t + 11.259)^{0.750}} (L/s \cdot 10^4 m^2)$$
 (6)

其中暴雨重现期 P 取 2 年,降雨历时 t 取 5min,则通过该公式计算可得 $q = 505.8L/s \cdot 10^4 m^2$ 。

5.3.2 屋面雨水设计流量

屋面汇水总面积约为 $400m^2$, 总共有 8 个雨水斗, 因此每个汇水面积为 $50m^2$, 屋面径流系数 $\Phi = 0.9$ 。根据以下公式计算雨水设计流量:

$$q_y = \frac{q_j \psi F_w}{10000} (L/s) \tag{7}$$

因此根据上述公式解得 $q_y = 2.28L/s$, 即单根立管雨水量为 2.28L/s。

根据上述计算值,查屋面雨水斗的最大泄流量得重力流排水时,采用 87 式雨水斗,口径为 75mm,最大排水能力为 8L/s,大于设计排水量 1.76L/s 以及 2.93L/s,符合要求。根据《给水排水设计手册》第二册,选用管径 75mm 的立管,其最大排水量为 10L/s,符合要求。悬吊管管径与立管管径相同。立管底部与排出管放大一号管径,故取管径 100mm。

5.3.3 阳台雨水设计流量

根据《给水排水设计手册》第二册,阳台的汇水面积由阳台面积加上侧墙面积的一半,卧室阳台计算结果为 8.96*m*²,客厅阳台计算结果为 13.5*m*²。

暴雨强度和雨水量计算方法同上,代入公式计算得出卧室阳台单根立管雨水量为 0.41L/s; 客厅阳台单根立管雨水量为 0.61L/s。

根据《给水排水设计手册》第二册,卧室阳台每根立管雨水量为 0.41L/s,选用管径 75mm 的立管,其最大排水量为 10L/s;客厅阳台每根立管雨水量为 0.61L/s,选用管径 75mm 的立管,其最大排水量为 10L/s。立管底部与排出管放大一号管径,故取管径 110mm。

5.3.4 室外雨水管管径选择

根据《建筑给水排水设计规范》,小区建筑物周围的雨水接户管最小管径为200mm,横管最小设计坡度为0.003;小区道路下的干管最小管径为300mm,最小设计坡度为0.0015。

5.3.5 雨水检查井

因为雨水排水管覆土深度为 1m,所以雨水检查井初始井底标高为: H-(1.0m+De+管段坡降),采用内径为 0.7m 的检查井。这之后的每个检查井的井底标高即井前雨水管的管底标高。

编号	管径 (m)	坡度	管长 (m)	起点管底 标高 (m)	终点管底 标高 (m)	坡降 (m)	检查井 井底标高 (m)
Y1	0.20	0.0030	2.11	-1.368	-1.374	0.006	-1.374
Y2	0.30	0.0015	5.87	-1.374	-1.383	0.009	-1.383
Y3	0.30	0.0015	14.13	-1.383	-1.404	0.021	-1.404
Y4	0.30	0.0015	5.87	-1.404	-1.413	0.009	-1.413
Y5	0.20	0.0030	4.60	-1.413	-1.427	0.014	-1.427
Y6	0.30	0.0015	1.81	-1.427	-1.430	0.003	-1.430
Y7	0.30	0.0015	5.20	-1.430	-1.438	0.008	-1.438
Y8	0.30	0.0015	12.99	-1.438	-1.457	0.019	-1.457
Y9	0.30	0.0015	3.73	-1.457	-1.463	0.006	-1.463
Y10	0.30	0.0015	3.28	-1.463	-1.468	0.005	-1.468

参考文献

- [1] GB/T50106-2010,建筑给水排水制图标准 [S]. 北京:中国建筑工业出版社, 2010。
- [2] GB/T50001-2010,房屋建筑制图统一标准[S]. 北京:中国计划出版社,2011。
- [3] 住房和城乡建设部. 建筑工程设计文件编制深度规定 (2016 年版)[Z]. 北京: 中国计划出版社, 2016。
- [4] GB50015-2003, 建筑给水排水设计规范(2009年版)[S]. 北京: 中国计划出版社,2010。
- [5] 王增长主编. 建筑给水排水工程(第七版)[M]. 北京: 中国建筑工业出版社, 2017。
- [6] 给水排水国家标准图集 (S1~S6). 北京:中国建筑工业出版社。
- [7] 全国民用建筑工程设计技术措施-给水排水(第二版)2008[M]. 北京:中国建筑工业出版社,2008。
- [8] 张智主编. 给排水科学与工程专业毕业设计指南(第二版)[M]. 北京: 中国水利水电出版社,2008。
- [9] 其他设计资料、产品样本、设计手册、期刊论文等。