Incorporating Low-Rank Adaptation (LoRA) in DreamBooth Stable Diffusion Models

Monil Lodha

November 6, 2024

Abstract

This report explores the integration of Low-Rank Adaptation (LoRA) into all four primary components of the DreamBooth Stable Diffusion model—Variational Autoencoder (VAE), U-Net, text encoder, and tokenizer. By leveraging LoRA's efficient parameterization, we aim to achieve improved memory efficiency and faster fine-tuning while maintaining the model's capacity for detailed image generation. A mathematical formulation and proof of LoRA's optimization potential in this context are provided, along with expected performance gains.

1 Introduction

DreamBooth, especially when used with Stable Diffusion, fine-tunes large text-to-image models to generate customized images based on a few reference images. However, this customization is computationally expensive, particularly when applied to multiple submodels (VAE, U-Net, text encoder, tokenizer) that require significant memory during training. To address this, we propose incorporating Low-Rank Adaptation (LoRA), a technique that reduces the number of trainable parameters by constraining weight updates to low-rank matrices. This approach not only reduces memory usage but also improves training efficiency.

2 Mathematical Foundation of Low-Rank Adaptation (LoRA)

LoRA introduces a low-rank approximation of weight updates to optimize memory efficiency without significantly altering model structure. Given a pretrained model with parameters θ , the adapted parameters θ' after LoRA training are:

$$\theta' = \theta + \Delta\theta,\tag{1}$$

where $\Delta\theta$ represents the learned adjustment and is defined by:

$$\Delta \theta = A \cdot B,\tag{2}$$

where $A \in \mathbb{R}^{d \times r}$ and $B \in \mathbb{R}^{r \times k}$ with $r \ll \min(d, k)$. Here, A and B are trainable matrices of reduced rank, enabling us to efficiently model $\Delta \theta$ with fewer parameters.

2.1 Parameter Efficiency Proof

In a standard adaptation, updating $\theta \in \mathbb{R}^{d \times k}$ would require $d \times k$ parameters. By decomposing $\Delta \theta$ into A and B matrices, the parameter count is reduced to $d \times r + r \times k$, which is significantly smaller when $r \ll d, k$. We define the parameter reduction ratio as follows:

Reduction Ratio =
$$\frac{d \times k}{d \times r + r \times k}$$
. (3)

Assuming large values of d and k, the ratio approximates to:

Reduction Ratio
$$\approx \frac{d \cdot k}{r(d+k)}$$
.

For example, if $r = \frac{1}{10} \min(d, k)$, we achieve roughly a $10 \times$ reduction in parameters.

2.2 Matrix Decomposition Intuition and Stability Analysis

In the LoRA framework, the low-rank decomposition stabilizes training by limiting the degrees of freedom in parameter updates. This is formally grounded in matrix theory, as any matrix $M \in \mathbb{R}^{d \times k}$ can be decomposed into lower-rank matrices, which act as a form of regularization, improving generalization by preventing overfitting.

In terms of gradient dynamics, let $\nabla_{\theta}L$ represent the gradient of the loss L with respect to θ . With the LoRA update, we have:

$$\nabla_{\Delta\theta} L = \nabla_A L \cdot B + A \cdot \nabla_B L,$$

where $\nabla_A L \in \mathbb{R}^{d \times r}$ and $\nabla_B L \in \mathbb{R}^{r \times k}$. This formulation reduces the gradient dimension, which can enhance training stability by constraining updates to a lower-dimensional subspace. The rank constraint thus offers both computational efficiency and stability, allowing LoRA to capture essential transformations with minimal risk of overfitting.

2.3 Impact on Convergence and Learning Dynamics

LoRA's low-rank structure impacts convergence by restricting updates to principal component directions in weight space. This can be mathematically represented by considering the spectral decomposition of $\Delta\theta$:

$$\Delta \theta = U \Sigma V^T,$$

where $U \in \mathbb{R}^{d \times r}$, $\Sigma \in \mathbb{R}^{r \times r}$, and $V \in \mathbb{R}^{k \times r}$. By limiting updates to dominant spectral directions, LoRA converges faster in high-dimensional models, as it minimizes redundant adjustments in less informative dimensions.

3 Application of LoRA in DreamBooth Stable Diffusion

We apply LoRA to each component of the DreamBooth Stable Diffusion model as follows:

3.1 Variational Autoencoder (VAE)

In the VAE encoder-decoder framework, LoRA efficiently captures latent distributions with low-rank weight updates, thus preserving image fidelity while reducing parameter load in the VAE latent space.

3.2 U-Net

The U-Net, critical in Stable Diffusion, transforms noisy images through multiple layers. LoRA constrains these transformations to a lower-dimensional space, preserving pretrained mappings and focusing on subject-specific updates. This ensures efficient fine-tuning with minimal memory overhead.

3.3 Text Encoder and Tokenizer

Applying LoRA to the text encoder and tokenizer enhances text-image alignment by learning subject-specific transformations in a low-rank format, allowing the model to incorporate unique prompts without large memory increases.

4 Expected Improvements and Analysis

Incorporating LoRA into DreamBooth Stable Diffusion yields:

- **Memory Efficiency**: LoRA reduces the parameter size significantly, as shown in the reduction ratio proof.
- Faster Convergence: By updating parameters in principal directions, LoRA accelerates convergence, making it suitable for complex models like Stable Diffusion.
- Improved Generalization: The low-rank constraint reduces overfitting risks, enabling DreamBooth to generalize across various prompts while retaining specificity.

5 Conclusion

The integration of Low-Rank Adaptation (LoRA) into DreamBooth Stable Diffusion proves to be a viable approach for enhancing computational efficiency. Through low-rank constraints, we optimize memory usage and training speed while preserving the model's ability to generate complex, high-quality images.

References

- [1] Hu, E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, L., & Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Language Models. arXiv preprint arXiv:2106.09685. Retrieved from https://arxiv.org/abs/2106.09685
- [2] Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., & Freeman, W. T. (2022). DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. arXiv preprint arXiv:2208.12242. Retrieved from https://arxiv.org/abs/2208.12242