МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра биомедицинской информатики

Малыщик Аким Андреевич

Изучение методов описания химических соединений для примемения в алгоритмах машинного обучения

Курсовой проект

Научный руководитель: Тузиков Александр Васильевич профессор кафедры БМИ

Допущен	I К З8	щит	е		
«»				2021	Г.
Орлович	Юрі	ий Л	еони	дович	I
заведуюі	ций н	кавел	i udgi	БМИ	

РЕФЕРАТ

Курсовой проект, 20 стр., 5 иллюстр., 9 источников.

Ключевые слова: ДЕСКРИПТОРЫ, МОЛЕКУЛЯРНЫЕ ФИНГЕР-ПРИНТЫ, SMILES.

Объекты исследования — дескрипторы химических соединений, алгоритмы машинного обучения на основе дескрипторов.

Цель исследования — изучение существующих молекулярных дескрипторов и алгоритмов на их основе.

 ${f Metoды}$ исследования — системный подход, изучение соответствующей литературы и электронных источников.

В результате исследования изучены графовые структуры, молекулярные фингерпринты и SMILES, исследованы алгоритмы обработки дескрипторов, рассмотрены архитектуры нейросетей на основе SMILES-описаний.

Области применения — хемоинформатика, медицина, фармацевтика.

Содержание

Bı	веден	ние	4
1	Гра	фы структур	5
	$1.\overline{1}$	Матрица смежности	5
	1.2	Матрица расстояний	
	1.3	Матрица инцидентности	
	1.4	Матрица связей	
	1.5	Применение графов соединений в машинном обучении	
2	Mo.	лекулярные фингерпринты	8
	2.1	Алгоритм генерации фингерпринтов	8
	2.2	Фолдинг фингерпринтов	
	2.3	Сравнение фингерпринтов	9
	2.4	Распространённые виды фингерпринтов	11
		2.4.1 Фингерпринты Моргана	
		2.4.2 Структурные ключи MACCS	12
		2.4.3 Другие виды фингерпринтов	12
	2.5	Применение фингерпринтов в машинном обучении	12
3	SM	ILES	13
	3.1	Правила кодирования SMILES	13
	3.2	Применение SMILES в машинном обучении	16
		3.2.1 Предварительная обработка SMILES-датасета	17
		3.2.2 Архитектуры нейросетей на основе SMILES	17
За	клю	учение	19
Cı	писо	к использованных источников	20

Введение

Компьютерное моделирование лекарств — относительно быстро развивающаяся и достаточно перспективная отрасль IT-индустрии, в которой активно используются алгоритмы машинного обучения. Генеративные нейронные сети применяются для получения новых соединений, которые потенциально могут стать основой для лекарственных средств. Основная проблема такого подхода в том, что на данный момент не существует универсального метода кодирования химических соединений, который был бы лучше всех остальных в любой ситуации. Таким образом, задачи данного курсового проекта:

- 1. Изучить существующие на данный момент методы описания (дескрипторы) химических соединений
- 2. Исследовать их преимущества и недостатки
- 3. Рассмотреть алгоритмы генерации молекул на основе существующих дескрипторов.

Цель проекта – сбор теоретической базы для дальнейших исследований. В дальнейшем работу над проектом можно будет продолжить, проведя сравнительный анализ дескрипторов на конкретной мишени, и сделать выводы касательно наиболее удачного способа описания молекул веществ в конкретной ситуации.

Способов описать химическое соединение существует достаточно много. В рамках данного проекта все они рассмотрены не будут, предпочтение будет отдано тем методам, которые потенциально перспективны для использования в области машинного обучения. Основные способы представить химическое соединение в памяти компьютера:

- 1. Графы структур соединений
- 2. Бинарные векторы свойств (молекулярные фингерпринты)
- 3. Линейные представления (SMILES, IChI)

В данном проекте рассмотрены перечисленные методы, изучены их преимущества и недостатки, а также исследованы области их применения.

Глава 1 Графы структур

С точки зрения математики, графом G(V, E) называется совокупность непустого множества V и множества E неупорядоченных пар различных элементов множества V. Множество V называется "множеством вершин", множество E называется "множеством рёбер".

$$G(V, E) = \langle V, E \rangle, \quad V \neq \varnothing, \quad E \subseteq V \times V, \quad \{v, v\} \notin E, \quad v \in V.$$

Поскольку молекулы состоят из атомов и связей между ними, идея представить химическое соединение в виде графа его структуры кажется вполне естественной. Существует несколько способов представления графов в памяти компьютера:

- 1. Матрица смежности
- 2. Матрица расстояний
- 3. Матрица инцидентности
- 4. Матрица связей

Рассмотрим каждый из них.

1.1 Матрица смежности

При таком способе хранения соединения заводится матрица размера N^*N , где N — число атомов в соединении. Матрица заполняется нулями, если связь между атомами отсутствует и единицами, если связь есть. Поскольку матрица смежности симметрична, расход памяти, занимаемой матрицой, можно уменьшить, если хранить только её треугольную форму. Также для большей эффективности представления и экономии памяти из соединения можно исключить связи с атомами водорода, ведь их можно будет при необходимости восстановить по правилам валентности. Недостатком матрицы смежности является то, что в ней не содержится информации о типах связей между атомами в молекуле. Таким образом, информация, которую содержит такая матрица, позволяет построить граф молекулы, однако по ней невозможно восстановить полную структуру соединения.

1.2 Матрица расстояний

Матрица расстояний, как и матрица смежности, симметрична, и её размер (NxN) также зависит только от числа атомов в соединении. Матрица содержит расстояния между соответствующими атомами в молекуле. К матрице расстояний применимы те же оптимизации по расходу памяти, что и к матрице смежности.

Расстояния между атомами можно задавать двумя способами. Первый с помощью евклидовой метрики:

$$d(a,b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2}.$$

В таком случае расстояния выражаются в ангстремах или нанометрах. Второй способ — топологическое расстояние (минимальное количество связей в графе соединения между атомами А и В).

Таким образом, матрицы расстояний имеют те же проблемы, что и матрицы смежности: информации в них недостаточно для полного восстановления структуры соединения. Однако, они позволяют воссоздать расположение атомов в трёхмерном пространстве.

1.3 Матрица инцидентности

Матрица инцидентности, в отличие от остальных матриц, представляет собой прямоугольную матрицу MxN, её размеры зависят от числа атомов и числа связей в молекуле. Как и матрица смежности, матрица инцидентности показывает лишь наличие либо отсутствие какой-либо связи, без указания её типа. Размеры матрицы инцидентности можно уменьшить, если не рассматривать атомы водорода.

1.4 Матрица связей

Матрица связей решает проблему всех рассмотренных выше матриц. Как и матрица смежности, она представляет собой квадратную матрицу NxN. Но эта матрица не является бинарной, она хранит порядки связей между атомами, а не только нули и единицы. Порядок связи для несвязанных между собой атомов формально полагается равным 0. Соответственно, двойная связь обозначается числом 2, тройная — числом 3, и т.д.

К матрице связей можно применить те же методы сокращения расхода памяти, что и к матрице смежности (удаление атомов водорода, симметричной части). Данная матрица содержит достаточно информации для полного восстановления структуры соединения. Однако, в случае наличия в соединении ароматических связей, для которых нет конкретного значения порядка связи,

представление молекулы с помощью данной матрицы будет неоднозначным, и необходимы дополнительные соглашения касательно того, как обозначать такие связи.

Рисунок 1.1 — Представление молекулы нитрометана матрицей смежности (1), матрицей инцидентности (2), матрицей связей (3)

1.5 Применение графов соединений в машинном обучении

Графовые структуры данных могут быть полезными для предварительной обработки данных о соединениях, закодированных другими способами. К примеру, особенностью SMILES-описаний химических соединений является их неуникальность. Чтобы избежать проблемы дублирования соединений, сгенерированные нейросетью SMILES-молекулы можно канонизировать, после чего удалить явные дубликаты. Впоследствии это позволит ускорить процедуру докинга, поскольку провести его будет нужно для меньшего числа соединений. Алгоритм канонизации SMILES-описаний основан на алгоритме канонизации графа, то есть для его работы необходимо преобразовать соединение из SMILES в какое-нибудь из матричных представлений, и произвести процедуру канонизации помеченного графа.

Тем не менее, разрабатывать нейронные сети на основе графов соединений практического смысла не имеет. Во-первых, большинство матричных структур не позволяет хранить достаточно информации о свойствах соединения, а значит, нейросеть не сможет выявить закономерности, необходимые для генерации соединений с аналогичными свойствами. Во-вторых, из матричного представления не всегда возможно однозначно восстановить закодированное соединение, что делает мало полезным генерацию веществ в таком виде и заставляет задуматься о применении других способов описания молекул.

Глава 2 Молекулярные фингерпринты

Молекулярные фингерпринты – достаточно известный способ векторизации молекулярных данных, он часто используется при обучении с учителем, а также для поиска соединений со схожими свойствами.

Молекулярные фингерпринты — это битовые строки, в которых каждый бит отвечает за наличие или отсутствия какого-либо фрагмента в соединении. При этом не существует универсальных меток для каждого бита. Молекулярный фингерпринт, как правило, генерируется из самой молекулы.

2.1 Алгоритм генерации фингерпринтов

Алгоритов генерации молекулярных опечатков существует несколько. Рассмотрим алгоритм, используемый компанией Daylight. Этот алгоритм исследует молекулу и генерирует признаки для следующих паттернов (подструктур):

- паттерн для каждого атома
- паттерн, представляющий каждый атом и его ближайших соседей (а также связи между ними)
- паттерн, представляющий каждую группу атомов, соединённых путями длиной до 2 связей
- паттерн, представляющий каждую группу атомов, соединённых путями длиной до 3 связей
- и т.д.

К примеру, для молекулы $\mathbf{OC} = \mathbf{CN}$ алгоритм бы сгенерировал следующие паттерны:

Таблица 2.1 — Список сгенерированных паттернов

Длина пути 3: OC=CN

Список полученных паттернов исчерпывающий: таблица содержит все подструктуры исходной молекулы. Очевидно, на практике количество паттернов, необходимых для описания больших соединений может быть просто огромным. При этом, чтобы производить какие-либо операции над фингерпринтами, требуется фиксированная длина отпечатка для всех молекул в датасете. Но тогда, если использовать вектор слишком большой длины для маленьких соединений, большая часть вектора будет заполнена нулями. И наоборот, при использовании слишком маленьких фингерпринтов для больших соединений весь фингерпринт будет заполнен единицами (и, возможно, будет при этом хранить не всю информацию о соединении). Чтобы избавиться от этих проблем, фингерпринты подвергают процедуре фолдинга.

2.2 Фолдинг фингерпринтов

Процесс фолдинга начинается с фиксированного размера фингерпринта, достаточно большого для полного представления структуры молекулы. Далее фингерпринт сворачивается (англ. fold): происходит его разделение на две части, которые складываются при помощи логического оператора OR. На выходе получается более короткий фингерпринт с более высокой плотностью информации на бит. Процесс фолдинга можно повторить несколько раз, пока не будет достигнута желаемая плотность информации.

Однако, таким образом может быть потеряна часть информации. Рассмотрим фингерпринты подструктуры P и молекулы M. Если все биты подструктуры P изначально находятся в молекуле M, то это будет справедливо и после фолдинга. С другой стороны, если хотя бы один бит из P изначально не в M, то после фолдинга может оказаться, что подструктура P содержится в M. Это может привести к тому, что при виртуальном скрининге найдётся больше соединений с подструктурой P, чем нужно. С каждой процедурой фолдинга будет увеличиваться вероятность найти "лишние" молекулы, однако фингерпринт будет занимать в два раза меньше пространства.

Таким образом, генерировать фингерпринты фиксированной длины необязательно, достаточно сгенерировать фингерпринт любой длины, представляющий полную структуру соединения, и с помощью фолдинга привести его к необходимому фиксированному размеру.

2.3 Сравнение фингерпринтов

Для сравнения двух молекулярных отпечатков соединений достаточно сравнить их побитово. Рассмотрим фингерпринты A и B. При их сравнении возможны 4 ситуации, представленные в таблице 2.2.

Таблица 2.2 — Побитовое сравнение фингерпринтов А и В

	0	1	Сумма
0	d	b	b + d
1	a	c	a + c
Сумма	a + d	b + c	n

где:

- а количество битов, равных единице в фингерпринте А и нулю в В.
- b количество битов, равных единице в фингерпринте В и нулю в А.
- с количество битов, равных единице в обоих фингерпринтах.
- d количество битов, равных нулю в обоих фингерпринтах.

На основе данных показателей существует множество метрик для сравнения двух соединений. Некоторые из них представлены в таблице 2.3.

Таблица 2.3 — Метрики для сравнения фингерпринтов

Метрика	Область значений	Формула
Дайс	[0, 1]	$\frac{2c}{(a+c)+(b+c)}$
Евклид	[0,1]	$\sqrt{\frac{c+d}{a+b+c+d}}$
Манхэттен	[1,0]	$\frac{a+b}{a+b+c+d}$
Танимото	[0,1]	$\frac{c}{a+b+c}$
Симпсон	[0,1]	$\frac{c}{min((a+c),(b+c))}$

```
from rdkit.Chem import MolFromSmiles

>>> from rdkit.Chem.AllChem import GetMorganFingerprint

>>> from rdkit.DataStructs import DiceSimilarity

>>> molecule_1 = MolFromSmiles('Cc1cccc1')

>>> molecule_2 = MolFromSmiles('Cc1ncccc1')

>>> fingerpint_1 = GetMorganFingerprint(molecule_1, 2)

>>> fingerpint_2 = GetMorganFingerprint(molecule_2, 2)

>>> DiceSimilarity(fingerpint_1, fingerpint_2)

0.55...
```

Листинг 2.1: Использование метрики Дайса и библиотеки RDKit для сравнения двух фингерпринтов Моргана

2.4 Распространённые виды фингерпринтов

2.4.1 Фингерпринты Моргана

Моргановские фингерпринты — это 2048-битные векторы, названные в честь ученого, который предложил алгоритм их генерации. Алгоритм Моргана генерации молекулярных фингерпринтов работает следующим образом: Для каждого атома в соединении вычисляются следующие показатели:

- 1. количество ближайших соседей (кроме атомов водорода)
- 2. количество связей у атома (без учета связей с атомами водорода)
- 3. атомный номер
- 4. атомная масса
- 5. количество связей с атомами водорода
- 6. принадлежит атом циклу (1) или нет (0)?

Данные показатели хэшируются. Таким образом у каждого атома появляется его идентификатор (хэш-значение). Первая итерация завершена.

Далее для каждого атома заводится массив его соседей и связей между ними, отсортированный по хэш-значениям атомов. Этот массив также хэшируется, а полученное значение становится новым идентификатором атома. Таким образом, на первой итерации алгоритма произойдёт хэширование отдельных атомов, на второй – хэширование атомов с их соседями диаметра 1, на третьей – с соседями диаметра 2 и т.д. После завершения итерационного процесса производят конкатенацию хэш-значений всех атомов, и с помощью фолдинга полученный вектор переводят в бинарный вектор длины 2048 бит.

2.4.2 Структурные ключи МАССЅ

Структурные ключи отличаются от обычных фингерпринтов тем, что в них заранее определено, за что отвечает каждый бит. Ключи MACCS (Molecular ACCess System), также известные как ключи MDL, названы так в честь разработавшей их компании. Существует две разновидности ключей MACCS (одна содержит 960 ключей, другая — её подмножество из 166 ключей). Краткое описание каждого из ключей можно найти в репозитории компании.

2.4.3 Другие виды фингерпринтов

Помимо двух вышеописанных, существуют, например, фингерпринты PubChem (длины 881 бит, применяются для поиска по одноименной базе данных). Также иногда имеет смысл заменить хэш-функции в алгоритме создания фингерпринта на дифференцируемые функции, что позволит "обучать" фингерпринт вместе с нейросетью, оптимизируя таким образом фингерпринт под конкретную задачу и достигая больших успехов, чем при работе со стандартными фингерпринтами [7].

2.5 Применение фингерпринтов в машинном обучении

Молекулярные фингерпринты получили широкое применение в машинном обучении. На их основе создают модели для предсказания токсичности молекул [6], растворимости веществ [7], и прочих показателей, расчет которых экспериментальным путем потребовал бы гораздо больших финансовых затрат.

Тем не менее, молекулярные фингерпринты имеют один большой недостаток: простого универсального метода восстановления изначальной структуры соединения, которое представлено в виде фингерпринта, не существует. А восстановление структуры оказывается особенно важным при работе с соединениями, которые сгенерированы с помощью искусственного интеллекта, и которые при этом необязательно могут быть найдены в базах данных существующих молекул. Этого недостатка лишены линейные методы представления соединений, такие как SMILES-описания.

Глава 3 SMILES

SMILES (Simplified Molecular Input Line Entry System) — линейная нотация для ввода и представления молекул и реакций. SMILES содержит ту же информацию, что и расширенные матрицы связей. Основная причина, по которой SMILES полезнее матрицы связей, в том, что SMILES скорее языковая структура, чем структура данных. При этом алфавит и количество правил SMILES-кодирования невелико, что позволяет, во-первых, легко кодировать и декодировать соединения вручную, а во-вторых, позволяет без проблем применять к SMILES те же методы машинного обучения, что и к естественным языкам. Еще одним преимуществом языка SMILES является компактность записи соединений с его помощью (относительно других линейных нотаций и прочих методов описания соединений).

Таблица 3.1 — Сравнение представлений SMILES и InChI

Формула	Код SMILES	Код InChI
CH_3CH_2OH	CCO	InChI = 1S/C2H60/c1-2-3/h3H, 2H2, 1H3
$CH_3CH = O$	CC=O	InChI = 1S/C2H4O/c1 - 2 - 3/h2H, 1H3
CH_3COOH	CC(O)=O	InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4)

Из таблицы видно, что для кодирования с помощью SMILES, как правило, требуется в разы меньше символов, чем для кодирования с помощью международного химического идентификатора InChI. Также соединения в виде SMILES занимают в памяти компьютера на 50-70% меньше пространства, чем те же соединения, представленные в виде матриц связей их атомов.

3.1 Правила кодирования SMILES

SMILES нотация представляет собой не разделенную пробелами последовательность символов. Запись SMILES получается в результате обхода в глубину вершин молекулярного графа. Как правило, SMILES не включает в себя атомы водорода (связи С-H, N-H, O-H, S-H), поскольку их можно восстановить по правилам валентности.

Таблица 3.2 — Примеры молекул без атомов водорода в SMILES

С	метан	CH_4
Р	фосфин	PH_3
N	аммиак	NH_3
S	сероводород	H_2S
О	вода	H_2O
Cl	соляная кислота	HCl

Циклы в графах соединений разъединяются, места разъединения обозначаются числами, показывающими наличие связей в исходной структуре соединения.

Рисунок 3.1 — Разъединение циклов в SMILES

Точки ветвления обозначаются круглыми скобками.

Рисунок 3.2 — Примеры соединений с точками ветвления Двойную связь обозначают символом =, тройную – символом #.

Таблица 3.3 — Примеры соединений с двойными и тройными связями

C=O	Формальдегид	CH_2O
C=C	Этен	$CH_2 = CH_2$
O=C=O	Углекислый газ	CO_2
C#N	Цианид	HCN

Для обозначения конфигурации асимметрического тетраэдрического атома углерода используются символы @ (против часовой стрелки) и @@ (по часовой стрелке). Для обозначения конфигурации следует смотреть на хиральный центр со стороны заместителя, стоящего в строке SMILES перед этим центром. В полном соответствии с последовательностью в строке SMILES трёх других заместителей определяется часовое направление, которое указывается как @ или @@ возле асимметрического атома углерода, заключаемого в квадратные скобки.

Атом водорода в конфигурационных кодах указывается обязательно и, если помещается в строке SMILES сразу после хирального центра, то может вместе с ним заключаться в квадратные скобки.

Рисунок 3.3— Разные конфигурации одних и тех же структур Символами / \ обозначается конфигурация относительно двойной связи.

Рисунок 3.4 — Примеры кодирования цис- и транс- изомеров

Изотопы обозначаются числами перед атомами.

Таблица 3.4 — Примеры кодирования изомеров в SMILES

	Код SMILES	Название
ĺ	[12C]	Углерод-12
	[13C]	Углерод-13
	[13CH4]	С-13 метан

Ионизация обозначается символами + и - с указанием числа ионов, если оно не равно единице.

Таблица 3.5 — Примеры кодирования катионов и анионов в SMILES

[H+]	протон
[Fe++2]	катион железа (II)
[OH-]	гидроксильный анион
[Fe++]	катион железа (II)
[NH4+]	катион аммония

3.2 Применение SMILES в машинном обучении

Как уже было отмечено, использование представления химических соединений с помощью языка SMILES позволяет применять к соединениям те же подходы, что и, например, при работе с текстовой информацией. Это значит, что для генерации соединений подойдут те же архитектуры нейронных сетей, что и для генерации текстов. На данный момент существует множество гене-

раторов соединений, основанных на рекуррентных нейронных сетях и LSTM (Long Short Term Memory), а также на автоэнкодерах и гетероэнкодерах.

3.2.1 Предварительная обработка SMILES-датасета

В ходе проведённых исследований [3] было выяснено, что из входных данных имеет смысл исключать следующие соединения:

- 1. Не валидные SMILES-представления
- 2. Соединения без атомов углерода
- 3. Соединения с атомами, не входящими в состав потенциальных лекарств (отличными от H, C, N, O, P, S, F, Cl, Br, I)
- 4. Соединения длиной более 120 символов
- 5. Соединения с молекулярной массой > 1000 а.е.м.

После фильтрации имеет смысл избавиться от дубликатов по названиям соединений, а также по SMILES (можно удалить как явные дубликаты, так и сравнить канонические SMILES-представления и удалить совпадающие).

Далее закодированные в SMILES соединения с помощью one-hot кодирования переводят в бинарные вектора размера (максимальная длина SMILES)х(количество уникальных символов в SMILES), после чего датасет можно использовать для обучения моделей нейронных сетей.

3.2.2 Архитектуры нейросетей на основе SMILES

Ещё одним преимуществом SMILES по сравнению с фингерпринтами является то, что SMILES представления последовательны. В отличие от фингерпринтов, которые содержат информацию об отдельных фрагментах структуры молекулы, SMILES описания позволяют анализировать всю структуру целиком. Последовательность SMILES делает возможным использовать данные представления в рекуррентных нейронных сетях в целом и в LSTM-сетях в частности. LSTM-слои позволяют нейросетям находить закономерности в SMILES-представлениях в контексте всей их структуры, а не только отдельно взятых её фрагментов.

Другой перспективной архитектурой для генерации SMILES-описаний являются автокодировщики (англ. autoencoders). Составными частями данной архитектуры являются кодировщик (энкодер) и декодировщик (декодер). Энкодер сжимает входные данные и добавлет к ним случайный шум. Декодер отвечает за генерацию новых соединений путём восстановления их из сжатых энкодером данных. При реализации кодировщиков используют, в том числе,

упомянутые LSTM-слои. Автоэнкодеры можно использовать как для обучения без учителя, так и для обучения с частичным подключением учителя (к примеру, в скрытое пространство сети можно добавить нейрон с желаемой энергей связи, не связанный с кодировщиком, что позволит получить на выходе соединения с заданным свойством [3]).

Дальнейшей идеей развития архитектуры автоэнкодеров являются гетероэнкодеры. Данная архитектура содержит в себе несколько энкодеров и декодеров, что позволяет, во-первых, оптимизировать вычисления (можно использовать относительно простые энкодеры и декодеры), а, во-вторых, получать на выходе соединения разных типов (каждый декодер будет генерировать соединения своим особым образом). К примеру, можно воспользоваться неуникальностью SMILES представлений, и в качестве входных данных в разные энкодеры подать все возможные SMILES-представления одного и того же соединения [9]. Тогда на выходе из разных декодеров можно будет получить разные представления одного и того же соединения (при идеальных кодировщике и декодировщике), либо несколько соединений с похожими структурой и свойствами.

Таким образом, многие архитектуры нейронных сетей, подходящие для работы с естественными языками, можно успешно применять и для генерации потенциальных лекарственных соединений.

Заключение

В ходе проекта были:

- 1. Исследованы такие методы описания химических соединений, как графы, фингерпринты и SMILES
- 2. Изучены алгоритмы для работы с данными методами (канонизация, фолдинг и др.)
- 3. Рассмотрены архитектуры нейронных сетей, в которых применимы данные методы
- 4. Изучены варианты предварительной обработки SMILES-датасета
- 5. Изучена библиотека RDKit.

Список использованных источников

- 1. Введение в хемоинформатику: Компьютерное представление химических структур: учеб. пособие / Т.И. Маджидов, И.И. Баскин, И.С. Антипин, А.А. Варнек. Казань, Москва, Страсбург, 2020 176 с.
- 2. Чумаков А.А., Слижов Ю.Г. Система SMILES-кодирования молекулярных структур и её применение для решения научно-исследовательских задач. Национальный исследовательский Томский государственный университет, Электронное методическое пособие, 2017.—18 с.
- 3. M.A. Shuldau et al. Development of molecular autoencoders as generators of protein inhibitors: Application for prediction of potential drugs against coronavirus SARS-CoV-2 //Proceedings of the 15th Ibterbational Conference on Pattern Recognition and Information Processing (PRIP'2021), Sep. 21-24, 2021, Minsk, Belarus, 2021.
- 4. Fingerprints Screening and Similarity. 2019. 1 с. URL: https://www.daylight.com/dayhtml/doc/theory/theory.finger.html (дата обращения: 24.10.2021, 18:31)
- 5. A Practical Introduction to the Use of Molecular Fingerprints in Drug Discovery. 2019. 1 с. URL: https://towardsdatascience.com/a-practical-introduction-to-the-use-of-molecular-fingerprints-in-drug-discovery-7f15021be2b1 (дата обращения: 02.11.2021, 15:28)
- 6. Mayr A. et al. DeepTox: toxicity prediction using deep learning //Frontiers in Environmental Science. 2016. 80 c.
- 7. Convolutional Networks on Graphs for Learning Molecular Fingerprints / David Duvenaud [и др.] // Harvard University, 2015 9 с.
- 8. SMILES A Simplified Chemical Language. 2019. 1 с. URL: https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html (дата обращения: 15.11.2021, 22:03)
- 9. Bjerrum, E.J.; Sattarov, B. Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders. 2018. 131 c. https://doi.org/10.3390/biom8040131