Aprendizaje por refuerzo

Verónica E. Arriola-Rios

Inteligencia Artificial

21 de agosto de 2021

Antecedentes: Psicología

$\c {\sf Conductismo?}$

Figura: Asociación de estímulos

Reforzadores positivos y negativos

Figura: Izquierda: reforzador negativo. Derecha: reforzador positivo.

Aprendizaje por refuerzo

• Cada vez que un agente realiza una acción α en su ambiente, un entrenador le otorga un *premio* o un *castigo* $r(s,\alpha)$ para indicar lo deseable que es el estado resultante.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \cdots$$

- El objetivo del agente es aprender a elegir secuencias de acciones que produzcan la recompensa más alta, a partir de esta recompensa indirecta y postergada.
- Se busca aprender una política de control

$$\pi: S \to A \tag{1}$$

que indique la acción $a \in A$ que se debe realizar, en el estado actual $s \in S$.

Se puede hacer una analogía con aprender a reconocer por instinto la acción más conveniente dado un estado.

- Entonces se tienen:
 - Una función de transición:

$$\gamma: S \times A \to S = \gamma(s, a) \to s'$$
 (2)

 Una función de recompensa que otorga el ambiente (o entrenador).

$$r: S \times A \to \mathbb{R} = r(s, a)$$
 (3)

Figura: En el juego Assault, se ganan puntos por acertar disparos a los enemigos y se pierde vida cuando los enemigos aciertan o tocan a la nave.

Ejemplo

• El robot recibirá una recompensa de 100 cuando ejecute aquella acción que le permita llegar a su cargador.

- Pero no recibe ninguna recompensa para ninguna otra acción.
- ¿Qué secuencia de acciones debe realizar para alcanzar la recompensa?

Recompensa acumulada descontada

- Se desea que la recompensa sea alcanzada en el menor tiempo posible.
- Sea $V^{\pi}(s_t)$ el *valor acumulado* alcanzado por la política π desde algún estado s_t :

$$V^{\pi}(s_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ... \tag{4} \label{eq:4}$$

$$\equiv \sum_{i=0}^{\infty} \gamma^{i} r_{t+i} \tag{5}$$

con $0 \le \gamma < 1$.

¿Qué quiere aprender el agente?

El agente busca aprender cuál es la política π que maximiza $V^\pi(s)$ para todos los estados s.

$$\pi^* \equiv \operatorname{argmax}_{\pi} V^{\pi}(s), (\forall s)$$
 (6)

Recompensa acumulada en el caso óptimo

π				
S	a			
1	\rightarrow			
2	\rightarrow			
3	\uparrow			
4	\rightarrow			
5	\rightarrow			
6	Fin			

•
$$\gamma = 0.9$$

Aprendizaje Q

El algoritmo se basa en la definición de la función Q como:

$$Q(s, \alpha) = r(s, \alpha) + \gamma V^*(\gamma(s, \alpha))$$
(7)
= $r(s, \alpha) + \gamma \max_{\alpha'} Q(\gamma(s, \alpha), \alpha')$ (8)

- El robot realiza un recorrido, buscando su cargador.
- En cada paso actualiza la tabla de la aproximación a la función Q, Q utilizando:

$$\hat{Q}(s_t, a_t) \leftarrow r_t + \gamma \max_{\alpha_{t+1}} \hat{Q}(s_{t+1}, \alpha_{t+1}) \tag{9}$$

$\hat{Q}(a_t, s_t)$							
s	a	Q					
1	\rightarrow						
1	\uparrow						
2	\leftarrow						
2	\rightarrow						
2	\uparrow						
3	\leftarrow						
3	\uparrow						
4	\rightarrow						
1	1						

Fin

$\hat{Q}(a_t, s_t)$		$\hat{Q}(a_t, s_t)$				
S	a	Q		s	a	Q
1	\rightarrow	0		1	\rightarrow	
1	\uparrow	0		1	\uparrow	
2	\leftarrow	0		2	\leftarrow	
2	\rightarrow	0		2	\rightarrow	
2	\uparrow	0		2	\uparrow	
2 2 2 3 3	\leftarrow	0 =	\Rightarrow	3	\leftarrow	
3	\uparrow	0		3	\uparrow	
4	\rightarrow	0		4	\rightarrow	
4	\downarrow	0		4	\downarrow	
5	\leftarrow	0		5	\leftarrow	
5	\rightarrow	0		5	\rightarrow	
5	\downarrow	0		5	\downarrow	
6	Fin	0		6	Fin	

Referencias I

Mitchell, Tom M. (1997). Machine Learning. McGrawHill.