Bioinformatic approaches to regulatory genomics and epigenomics

376-1347-00L - 2022 | week 11

Pierre-Luc Germain

Plan for today

• Debriefing on the assignment

• Theory:

Chromatin conformation & related technologies

Practice:

Using long-range interactions to annotate distal sites

Debriefing on the assignment: strings and objects as arguments

```
> promoterRegions <- readRDS("data_practical/promoterRegions.rds")</pre>
> getMeth(bsseqEx, regions="promoterRegions", type="smooth", what="perRegion")
> getMeth(bssegEx, regions=promoterRegions, type="smooth", what="perRegion")
> ?getMeth
Usage
getMeth(BSseq, regions = NULL, type = c("smooth", "raw").
 what = c("perBase", "perRegion"), confint = FALSE, alpha = 0.95,
 withDimnames = TRUE)
Arguments
          An object of class BSseq.
BSseq
          An optional data.frame or GenomicRanges object specifying a number of genomic regions.
regions
          This returns either smoothed or raw estimates of the methylation level.
type
          The type of return object, see details.
what
```

Debriefing on the assignment: getting the signals

```
# For each sample, we extract the methylation scores of CpGs in our regions of interest:
metRaw <- bsseq::getMeth(bsseqOb, regions=dmrRanges, type="raw", what="perRegion")</pre>
metRawFbRep1 <- GRanges(seqnames=seqnames(dmrRanges),</pre>
                         ranges=ranges(dmrRanges),
                         strand=strand(dmrRanges).
                         score=metRaw[,"E13_5_rep1.bed"])
# we then give the list of objects to signal2Matrix:
tracks <- list("forbrain_rep1"=metRawFbRep1,
               "forbrain_rep2"=metRawFbRep2,
               "liver_rep1"=metRawLiverRep1,
               "liver_rep2"=metRawLiverRep2)
signal2Matrix(tracks, dmrRanges, extend=0, w=20, type="scale")
# then we plot...
```

Debriefing on the assignment: result

3D organization of the genome

The nucleus is organized into chromosome territories

Chromosomes are split into active (A) and inactive (B) compartments

(Adapted from Goel and Hansen 2020)

Chromosomes are organized into topologically associated domains (TADs)

...that are rather stable across cell types

(Fraser et al., 2015)

TADs rearrangement across cell types

TAD boundaries are defined by very stable point interactions...

...which represent CTCF binding sites

(Adapted from McCord, Kaplan and Giorgetti, Mol Cell 2020)

CTCF forms **convergent** dimers at loops

(Adapted from de Wit et al., Mol Cell 2015)

The loop extrusion model

CTCF dimers form loops by blocking Cohesin

(Adapted from Rowley and Corces, Nat Rev Gen 2018)

CTCF depletion disrupts especially TAD-internal structures

e.g. including promoter-enhancer loops

(Adapted from Rowley and Corces, Nat Rev Gen 2018)

Changes in chromatin contact occur within stable TADs/subTADs

Here an example driven by the circadian rhythm (mouse liver, ZT22=5am ZT10=5pm)

(Kim et al., Science 2018)

Data analysis - some references

Assignment

- Choose a transcription factor (e.g. p300), and obtain peaks from ENCODE
 - make sure it's the same cell line, i.e. A549, or that Hi-C interactions are available for your cellular context!
- Isolate the peaks that are:
 - Between 2.5kb and 10kb from a TSS
 - More than 10kb from a TSS
- For each set of peaks, identify those that are in contact with a TSS using long-range interactions from ENCODE
- For each set, what proportion of the interactions are with the nearest gene?
- Hint 1: you can use the annotateRegions function, as we did in week 4, to get the gene nearest to each peak
- Hint 2: beware not to count, when calculating proportions, peaks that don't have interactions with any TSS!
- Expected for of the answer:
 - o "Of the genes that are between 2.5 and 10kb from the nearest TSS, XX % form an interaction with that nearest gene. Of the genes that are more than 10kb away from the nearest TSS, XX % form an interaction with that nearest gene."