ABSTRACT OF THE DISCLOSURE

5

10

A method of manufacturing a semiconductor device is provided that can suppress impurity concentration reduction in a doped channel region arising from formation of a gate insulating film. With a silicon oxide film (20) and a silicon nitride film (21) being formed, p-type impurity ions (23₁, 23₂) are implanted in a Y direction from diagonally above. As for an implant angle α of the ion implantation, an implant angle is adopted that satisfies the relationship $\tan^{-1}(W2/T) < \alpha \le \tan^{-1}(W1/T)$, where W1 is an interval between a first portion (21₁) and a fourth portion (21₄) and an interval between a third portion (21₃) and a sixth portion (21₆); W2 is an interval between a second portion (21₂) and a fifth portion (21₅); T is a total film thickness of the silicon oxide film (20) and the silicon nitride film (21). When the implant angle α is controlled within that range, impurity ions (23₁, 23₂) are implanted into a second side surface (10A₂) and a fifth side surface (10A₅) through a silicon oxide film (13).