Finding the Right Optimization for Mixture-of-Experts

Zeynep Tandogan Supervisor: Alexander Hägele – Martin Jaggi

LLMs Are Transforming the World

> The Need for Scale and Its Growing Costs

Language models are huge and getting bigger — but why?

- Bigger models understand language better, solve harder tasks.
- Emergent abilities (reasoning, coding, multi-step logic) appear with scale

What about challenges?

Mixture of Experts: Massive AI with Minimal Compute

> Can We Have Bigger Models Without Paying the Full Price?

Mixture of Experts: Massive AI with Minimal Compute

> Can We Have Bigger Models Without Paying the Full Price?

Mixture of Experts: Massive AI with Minimal Compute

> Can We Have Bigger Models Without Paying the Full Price?

Two main components:

- 1) Expert Layers
- 2) Gating Network (Router)

- **Sparse Activation:** Only *k* experts fire per token
- **Efficient Scaling:** Grow to billions or trillions of parameters without a matching rise in compute budget
- Specialized Expertise: Experts specialize in niche skills, boosting accuracy on diverse tasks

MoE Trade-Offs: Complexity Under the Hood

What New Bottlenecks Come with Sparse Scaling?

- Uneven data exposure per expert under-/over-utilization
- Fluctuating expert batches
- Loss of expressivity in seldom-activated experts
- Trade-off between load balancing and overall performance

OUR GOAL:

Ablate and understand optimization dynamics for MoE models to find better recipes for large scale training of MoEs.

Experimental Setup

Core Hyperparameters

Model

• LLaMA-style decoder-only Transformer

Data

• Fineweb Edu sample 10Bt

• **Training tokens:** 9.95 B (≈ 9 949 090 040)

Validation tokens: 4.90 M (4 899 304)

Component	Value
Layers	24 (decoder-only)
Hidden size	` 768
FFN dim (dense)	2048
Experts per layer	8 (Top-2 routing)
Expert FFN dim	2048
Sequence length	512
Training steps	50,000
Batch size	40 sequences (20 480 tokens/update)
Optimizer	AdamW $(\beta_1 = 0.9, \beta_2 = 0.95)$
weight decay	0.1
LR schedule	Cosine decay with 300-step warmup
Gradient clipping	1.0

Exploring Optimization Strategies in Mixture-of-Experts Training

- 1 Learning Rate Strategies for Experts vs. Non-Experts
 - 2 Effect of Auxiliary Loss Coefficients and Aux-Free-Loss Reproduction
 - Integration and Evaluation of the Shampoo Optimizer
 - 4 Load Based Learning Rate Updates for Experts
 - 5 Extending Experiments with Megatron LM

Why experts may need their own LRs?

$$p = \frac{k}{E} \implies B_{\text{expert}} = p \times B_{\text{global}}$$

Experts see a smaller batch.

In Top-k routing (E experts, k per token), each expert is active only with probability

Signal-to-Noise Ratio of the Gradient

$$\begin{split} \mathbb{E}[\hat{g}] &= \nabla L, & \text{(true gradient / signal)} \\ \|\mathbb{E}[\hat{g}]\| &= \|\nabla L\|, & \text{(signal magnitude)} \\ \text{Var}(\hat{g}) &= \frac{\sigma^2}{B}, & \text{(variance } 1/B) \\ \text{Std}(\hat{g}) &= \frac{\sigma}{\sqrt{B}}, & \text{(noise magnitude)} \\ \text{SNR} &= \frac{\|\mathbb{E}[\hat{g}]\|}{\text{Std}(\hat{g})} &= \frac{\|\nabla L\|}{\sigma/\sqrt{B}} \propto \sqrt{B}. & \text{(signal-to-noise ratio)} \end{split}$$

• Each expert's effective batch is smaller, its SNR is lower—so its gradient updates are much noisier.

Component	Learning Rates
Non-Experts	0.0005, 0.001, 0.002
Experts	0.0001, 0.0005, 0.001, 0.002

Goal:

Component	Learning Rates
Non-Experts	0.0005, 0.001, 0.002
Experts	0.0001, 0.0005, 0.001, 0.002

Goal:

Component	Learning Rates
Non-Experts	0.0005, 0.001, 0.002
Experts	0.0001, 0.0005, 0.001, 0.002

Goal:

Component	Learning Rates
Non-Experts	0.0005, 0.001, 0.002
Experts	0.0001, 0.0005, 0.001, 0.002

Goal:

Component	Learning Rates
Non-Experts	0.0005, 0.001, 0.002
Experts	0.0001, 0.0005, 0.001, 0.002

Goal:

Component	Learning Rates
Non-Experts	0.0005, 0.001, 0.002
Experts	0.0001, 0.0005, 0.001, 0.002

Goal:

- What should be different in terms of loss in MoEs?
 - Problem: Expert Imbalance
 Some experts get most tokens; others are barely used.
 - Solution: Add auxiliary loss

Prevent expert collapse: stop the router from sending almost all tokens to a few experts

Improve stability: keep router logits from growing too large

1

Learning Rate Strategies for Experts vs. Non-Experts

- Setup: Fixed non-expert LR at 0.001
- A strong aux-loss weight (0.1) consistently boosts performance
- With aux weight = 0.1, expert LRs from 5 × 10⁻⁴ to 2 × 10⁻³ all achieve nearly identical results
- Lowering expert LR to 1 × 10⁻⁴ causes a clear decline

Exploring Optimization Strategies in Mixture-of-Experts Training

- 1 Learning Rate Strategies for Experts vs. Non-Experts
 - 2 Effect of Auxiliary Loss Coefficients and Aux-Free-Loss Reproduction
 - Integration and Evaluation of the Shampoo Optimizer
 - 4 Load Based Learning Rate Updates for Experts
 - 5 Extending Experiments with Megatron LM

- How does the aux loss coefficient's impact change as we scale up the number of experts?
 - Setup: 8 and 16 experts with LR 0.0005
 - Higher aux-loss factor (0.1) gives better baseline performance and scales effectively with more experts

Aux-Free-Loss Reproduction

Problem: Performance Loss

 A large aux "load-balancing" loss injects extra gradients that compete with the main objective, hurting final performance

Solution: Aux-Free Balancing

Algorithm 1: Adjusting the per-expert bias b_i during training

Input: MoE model θ , training batch iterator B, bias update rate u.

1. Initialize $b_i = 0$ for each expert;

for a batch $\{(\mathbf{x}_k, \mathbf{y}_k)\}_k$ in B do

- 2. Train MoE model θ on the batch data $\{(\mathbf{x}_k, \mathbf{y}_k)\}_k$, with gating scores calculated according to Eq. (3);
- 3. Count the number of assigned tokens c_i for each expert, and the average number $\overline{c_i}$;
- 4. Calculate the load violation error $e_i = \overline{c_i} c_i$;
- 4. Update \mathbf{b}_i by $b_i = b_i + u * \operatorname{sign}(e_i)$;

end

Output: trained model θ , corresponding bias \mathbf{b}_i

Figure 1: Loss-Free Balancing selects experts according to a "biased gating score" in each training step and updates this expert-wise bias after each training step.

➤ Aux-Free-Loss Reproduction

 Loss Free vs Aux 0.1: equivalent performance across all metrics.

Up to which aux loss coefficient do we still observe performance improvements?

- Swept the aux-loss weight from **0.1 up to 0.6** to identify stability limits.
- No degradation in any metric for coefficients up to 0.2.

Aux-Free-Loss Reproduction

Maximal Violation (MaxVio) Analysis

- 1) MaxVio Global
- 2) MaxVio Batch

$$MaxVio = \frac{\max_{i} Load_{i} - \overline{Load_{i}}}{\overline{Load_{i}}}$$

 Loss-Free reduces both Global and Batch MaxVio below those of aux=0.1-0.2, confirming its superior load balance.

Exploring Optimization Strategies in Mixture-of-Experts Training

- 1 Learning Rate Strategies for Experts vs. Non-Experts
 - 2 Effect of Auxiliary Loss Coefficients and Aux-Free-Loss Reproduction
 - Integration and Evaluation of the Shampoo Optimizer
 - 4 Load Based Learning Rate Updates for Experts
 - 5 Extending Experiments with Megatron LM

Integration and Evaluation of the Shampoo Optimizer

> Can using the Shampoo optimizer naturally lead to more balanced expert selection?

Until now: AdamW

New optimizer: Meta's Distributed Shampoo

- Fall back to AdamW on very large matrices every step
- Shampoo in each 100 steps

Integration and Evaluation of the Shampoo Optimizer

 Shampoo optimizer achieves slightly lower MaxVio in both batch and global settings, indicating improved load balance.

However,

using Shampoo takes longer training times...

Wall-clock time for 50 K steps: AdamW vs. Shampoo.

Optimizer	Wall-clock Time	Relative Cost
AdamW	1 d 16 h (40 h)	1×
Shampoo	2 d 2 h (50 h)	$1.25 \times$

- moe_aux_loss_factor: 0 shampoo runs - moe_aux_loss_factor: 0.1 shampoo runs - moe_aux_loss_factor: 0.1 comparison run with batch 30 adamw 2.5 1 0.5 Step

200k

100k

train/maxviobatch

Exploring Optimization Strategies in Mixture-of-Experts Training

- 1 Learning Rate Strategies for Experts vs. Non-Experts
 - 2 Effect of Auxiliary Loss Coefficients and Aux-Free-Loss Reproduction
 - Integration and Evaluation of the Shampoo Optimizer
 - 4 Load Based Learning Rate Updates for Experts
 - 5 Extending Experiments with Megatron LM

Load Based Learning Rate Updates for Experts

Batch-fraction load ratio

$$r_i = rac{L_i}{T},$$
 $\sum_i L_i = k \, T \implies \sum_i r_i = k,$ $r_i \in [0,1].$

- Always scales each expert's learning rate downward relative to the base
- Lightly loaded experts experience the largest LR reduction

> Ideal-Normalized load ratio

$$r_i = rac{L_i}{ar{L}},$$
 $ar{L} = rac{\sum_i L_i}{E} = rac{k \, T}{E}.$

- Bounded below by 0; no fixed upper bound.
- Overloaded experts receive an LR boost, underloaded ones are dampened
- Mean scaling remains exactly 1 across all experts

Load Based Learning Rate Updates for Experts

- **Setup:** 8 experts with LR 0.001, top-k 2
- Both batch-fraction and ideal-normalized methods **underperform** relative to the aux-loss 0.1 and aux-free approaches.

Underfitting risk in batch fraction?

Load Based Learning Rate Updates for Experts

 Ideal-normalized most closely matches the aux-free MaxVio trend, followed by batch-fraction, with aux-loss 0.1 trailing behind.

Exploring Optimization Strategies in Mixture-of-Experts Training

- 1 Learning Rate Strategies for Experts vs. Non-Experts
 - 2 Effect of Auxiliary Loss Coefficients and Aux-Free-Loss Reproduction
 - Integration and Evaluation of the Shampoo Optimizer
 - 4 Load Based Learning Rate Updates for Experts
 - 5 Extending Experiments with Megatron LM

Extending Experiments with Megatron LM

Setup: Fixed learning rate at 0.001; compared **sigmoid and softmax** gating with **different bias update rates**.

- With softmax aux-free and a bias update rate of 1×10^{-3} , maxvio stayed around 1.5—significantly higher than the sigmoid variant.
- Increasing the bias update rate to 1×10^{-2} was necessary to bring softmax's maxvio down to acceptable levels.

Configuration	lm loss	maxvio	$z_{ m loss}$
0.001-lr, sigmoid e-3, loss free 0.001-lr, sigmoid e-2, loss free 0.001-lr, softmax e-3, loss free 0.001-lr, softmax e-2, loss free	2.871 2.893 3.068 2.890	0.086 0.313 1.574 0.081	0.003 0.003 0.003 0.003
0.001-lr, sigmoid aux 0.1 0.001-lr, softmax aux 0.1	$3.223 \\ 2.896$	0.072 0.032	$0.010 \\ 0.002$

Extending Experiments with Megatron LM

> How does expert learning rates impact MoE performance as we scale up the number of experts?

Configuration	lm loss	maxvio	z_{-loss}
0.001 expert lr, 0.0005 expert lr	2.896 2.960	0.032 0.041	$0.002 \\ 0.003$

Average loss metrics for 8-expert configurations (non expert LR 0.001 with softmax aux coefficient 0.1)

Configuration	lm loss	maxvio	loadbalancing	z_{-loss}
0.0005 expert lr 0.001 expert lr	3.090 3.109	0.587 0.439	0.999 0.998	0.007 0.007

Average loss metrics for 128-expert configurations (non expert LR 0.001)

8-Expert Setup: Matched LRs boost both accuracy and balance over a lower expert LR.

128-Expert Setup: Lower expert LR yields minor accuracy gains but worsens load balance.

Note: 128-expert runs use 12 layers & 1024-dim FFNs (down from 24/2048).

Summary of Our Findings

Hyper-parameter	Recommended Setting	Rationale
Base LR (non-experts)	0.001	Stable across model & expert counts.
Expert LR	0.0005-0.001	Clear U-shape (minimum at 5×10^{-4}); avoid 1×10^{-4} ; up to 2×10^{-3} safe when aux-loss = 0.1; splitting schedules yields no gain.
ancing traffic;		Boosts accuracy, perplexity & MaxVio by balancing traffic; plateaus beyond 0.2 and reverses if it dominates.
Gating	Sigmoid, top- $k = 2$	Encourages balance with aux-loss 0.1; soft-max needs $10 \times$ higher bias update rate to match.
Load-balance regularizer	Aux-free (or ideal-normalized with clipping)	Yields lowest MaxVio ; batch-fraction under-fits , ideal-normalized can be unstable w/o clipping.
Load-based LR scaling	Not recommended	Underperforms both aux-based ,and aux-free: batch-fraction under-fits ; ideal-normalized risks instability .
# Experts	8–16 (128 if FFN dims $↓$)	Aux-loss 0.1 scales effectively; impact of aux coef grows with more experts; lower expert LR gives minor accuracy gains at 128 but worsens balance.
Optimizer	AdamW (Distributed Shampoo optional)	Shampoo lowers loss/perplexity & MaxVio but adds ≈25% training time—use when balance is critical.

Thanks for listening! Any questions?

