11 SMRF

- Joint Shear
- Anchorage
- Column Shear
- ullet $\sum M_{nc} \geq rac{6}{5} \sum M_{nb}$ (Check one floor below roof)

Columns

SEE JOINT SECTION

Beams

Shear

$$V_u=f(M_p r)$$

 $V_c=0$ in plastic hinge regions.

12 Walls

 δ_c Wall displacement capacity at top of wall

13.1

13.2

13.3

13.4 Behavioral Observations

Slender vs Squat

Flexural Response

Lateral stability

$$\lambda_c = rac{c}{b} rac{l_w}{b} > 40$$

 $b \geq \sqrt{0.025 c l_w}$ for SBEs.

Dynamic response

13.6 Resistance Factors

Axial/Moment:

$$\phi = 0.65 - 0.9$$

Shear:

 $\phi=0.75$, For V_u amplified by Ω_v

$$\phi = 0.60$$
 if $V_n < V(M_n)$

for squat walls, take $\phi=0.6$

Coupling beam shear:

 $\phi=0.85$ diagonally reinforced

 $\phi=0.75$ otherwise

13.7.1 Preliminary Proportioning for V_b

assume $l_{be}=0.2l_w$

long. bar fracture:

$$A_s f_y \geq A_{be} f_r \mathrel{{.}\,{.}\,{.}}
ho_l \geq 6 \sqrt{f_c'}/f_y$$

13.8 Slender Walls w/ C. Section

Moment

SBE

Required if

$$c \geq rac{l_w}{900(\delta_u/h_w)} \quad ext{or} \quad \sigma \geq rac{f_c'}{5}$$

use given graph to determine \emph{c} .

for min. height of $h_{be} = \max(l_w, rac{M_{u,cs}}{4V_{u,cs}})$

$$ullet$$
 $A_{sh} \geq 0.09 sb_c rac{f_c'}{f_y} \geq 0.3 \left(rac{A_g}{A_{ch}}-1
ight) sb_c rac{f_c'}{f_y}$

•

13.9 Walls w/o C. Section

13.10.1 Conventional Squat Walls

13.16 - Openings

Tie region: $A_s = T_u/\phi f_y$ Strut region: $P_u \leq \phi P_o$

 $\phi=0.65$ in wall piers

 $\phi=0.60$ for wall shear

 $\phi=0.75$ otherwise

13.12 Coupled Walls

Coupling beams

$$V_n = 2 A_{vd} f_y \sin lpha \leq 10 \sqrt{f_c'} A_{cw}$$

Each group of diagonal bars shall consist of a minimum of four bars provided in two or more layers.

13 Gravity Framing

Columns

Confinement

if $P_u \geq 0.35 A_g f_c'$:

- ullet Support all bars with 135^o hook.
- $ullet rac{A_{sh}}{sb_c} \geq 0.3..., 0.09..., 0.2...$

Shear

$$V_u = f(M_{pr}(P_u))$$
, often $rac{2M_{pr}}{l_w}$

Beams

FIGURE FROM NOTES PAGE 200

Slabs

$$V_n=4\lambda_s\sqrt{f_c'}b_od$$

DRIFT CAPACITY

14 Diaphragms

Moment

$$M_u=rac{wl^2}{8}\leq \phi M_n=0.9(A_sf_y0.9d)$$

$$T_u = C_u = rac{M_u}{jd}$$

$$T_u \leq Tn = 0.9 A_s fy$$

$$C_u \leq \phi lpha P_{no} = (0.65)(0.8)(A_s f_y + 0.85 A_c f_c')$$

Collectors

Shear friction

$$\Omega_o V_u \leq \underbrace{\phi}_{0.75} \underbrace{\mu}_{1.4} A_{sf} f_y$$

ullet Give A_{sf} as in^2/ft

Openings

Comp. Zone

• Confine if