MC-6: Удаление выбросов и NA_Квантили. Основные распределения статистики

- 1. a) В MS Excel и Python для ряда А из файла «Удаление NA_Out.xlsx»:
 - найти и удалить NA
 - найти и удалить выбросы. Визуализировать с помощью диаграммы ящик с усами «до» и «после».
 - б) В MS Excel и Python из файла «Удаление NA Out.xlsx» для ряда F
 - найти и удалить NA

построить гистограмму

- 2. Основные распределения в математической статистике и нахождение их квантилей (Нормальное, Стьюдента, Хи-квадрат и Фишера).
- 3. (Из математического анализа) Гамма функция определяется выражением $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx \,, \quad s>0.$
 - а) Построить в Python график функции $\Gamma(s)$.
 - b) Вычислить в Python $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ (1.77245385090552).

Домашнее задание

- 1. В Python из файла «Удаление NA Out.xlsx»:
 - Выполнить аналогичные семинару 1 а) задания для ряда С.
 - Выполнить аналогичные семинару 1 б) задания для ряда Е.
- 2. Привести необходимую теоретическую справку (например, плотность распределения, разные интересные свойства (можно использовать любые источники) для распределений \mathcal{X}^2 для n=2,3,5,10, Стьюдента (t-распределения) для n=1,2,4, Фишера n=2,5,20 и m=10. Построить все необходимые функции для различных степеней свободы и сравнить с графиками ниже.

График плотности \mathcal{X}^2 -распределения для n=2,3,5,10 степеней свободы:

График плотности распределения Стьюдента (t-распределение) для n=1,2,4 степеней свободы:

График плотности распределения Фишера для n=2,5,20 и m=10 степенями свободы:

- 3. Вычислить:
- а) вероятности:

$$P(\chi_{20}^2 > 10.9), P(\chi_{20}^2 < 28.9);$$

 $P(t_{10} < 2.23), P(|t_{10}| < 2.23);$
 $P(F_{35.100} > 1.3);$

б) процентные точки
$$\chi^2_{0,1}(5)$$
, $\chi^2_{0,99}(80)$;

$$t_{0,005}(33), t_{0,005}(100);$$

$$F_{0,05}(3;7), F_{0,025}(5;20).$$

- **4.** Для Гамма функции $\Gamma(s) = \int_0^\infty x^{s-1} e^{-x} dx$, s > 0:
- а) доказать, что $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ (1.77245385090552) (аналитически);
- б) найти минимум в **Python**

$$(\mathbf{s}_{min}=1.4616321449683623413; \Gamma(\mathbf{s}_{min})=0.885603194410888700278815$$