3. 공개키 암호 시스템

담당교수: 차 영욱

ywcha@andong.ac.kr

목 차

- □ 공개키 암호 시스템의 개요
- □ 공개키 암호 시스템의 아이디어
- □ 기본 정리
- □ RSA 공개키 암호 시스템
- □ Diffie-Hellman 키 교환
- □ 대칭키 암호 시스템과 공개키 암호 시스템 비교

대칭키 암호 시스템

- □ 암호화와 복호화에 동일한 키 사용
- □ <mark>암호키 분배</mark>: 송신자와 수신자는 안전한 채널을 통해서 암호 키가 먼 저 교환되어야 함
- □ 암호키 관리: N 명의 상호 통신을 위하여 요구되는 암호 키의 개수 (N*(N-1)/2)가 많이 요구됨
 - N=5 \Rightarrow 5*(5-1)/2=10 개
 - N=10 \Rightarrow 10*(10-1)/2=45 ^{H}
 - N=20 \Rightarrow 20*(20-1)/2=190 $^{\circ}$ 1

공개키 암호 시스템 개요

- □ 암호화 및 복호화
 - 영심이는 네트워크에 공개되어 있는 경태의 공개키로 문서를 암호화
 - 경태는 비밀리에 보관하고 있는 개인키로 암호화된 문서를 복호화

- □ N 명의 암호 통신을 위하여 요구되는 암호 키의 개수는 2N
 - N=5 ⇒ 10 개
 - N=10 ⇒ 20 개

공개키 기법과 암호 시스템

공개키 암호 시스템의 아이디어(1/2)

□ 일방향 함수

- 입력 x에 대하여 출력 y=f(x)의 계산은 용이,
- 출력 y에 대하여 역으로 입력 x=f⁻¹(y)를 구하는 것이 불가능한 함수

□ 일방향 함수의 예

- 큰 소수 p와 q에 대하여 두 수의 곱인 y = p*q의 계산은 쉬움
- 출력 y가 주어지더라도 두 수 p와 q의 분해는 매우 어려운 작업

공개키 암호 시스템의 아이디어(2/2)

- □ 비밀통로 일방향 함수
 - 추가적인 정보를 이용하면 쉽게 역 연산이 가능
- □ 비밀통로 일방향 함수의 적용 예
 - 암호문 = 암호 알고리즘(평문) ☞ 암호 알고리즘은 일방향 함수
 - 평문 = 복호 알고리즘(암호문) ☞ 개인키는 암호문에서 평문을 유도하는 비밀통로 일방향 함수 역할

기본 정리-소수 구하기

- □ 소수(Prime Number): 1과 그 수 자신으로만 나누어 떨어지는 수(예, 2, 3, 5, 7, 11, 13, ...)
- □ 그리스의 수학자 에라토스테네스(BC 276년~194년)의 체를 이용한 소수 구하기
 - 1을 제거
 - 2를 남기고 2의 배수를 모두 제거
 - 3을 남기고 3의 배수를 모두 제거
 - 5를 남기고 5의 배수를 모두 제거
 - 이와 같이 계속하여 체로 걸러진 수들이 소수 임

1	2	3	4	5	6	7	8	9	748
11	12	13	14	715	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

기본 정리-모듈러 연산과 최대공약수[1/2]

- □ 법 연산: a mod n = r
 - 양의 정수 a를 n으로 나누었을 때의 나머지 값 r
 - 25 mod 3 = 1 ☞ 25를 3으로 나눈 나머지 값 1
 - 33 mod 9 = 6 ☞ 33을 9로 나눈 나머지 값 6
- □ 정수들의 집합, Z={···, -2, -1, 0, 1, 2, ···}
 - 임의의 두 정수 a, b∈Z 에 대해 a를 b≥1로 나눈 나머지가 r, 몫이 q이면 a=b*q + r, 0≤r<b/li>
 - r=0 이면 b는 a의 약수(divisor) 또는 인수(factor)이며, bla 로 표시
 - 임의의 정수 a, b, c∈Z 에 대해 cla, clb 이면 c를 a와 b의 공약수(common divisor)
 - gcd(a,b) ☞ a,b의 공약수 중에서 가장 큰 양의 정수
 - gcd(a,b) = 1 이면 정수 a와 b는 서로 소(relatively prime)의 관계
 - 11과 15의 최대공약수, 11 = 1 * 11, 15 = 1 * 15 ☞ 1 ☞ 11과 15 는 서로 소
 - 임의의 정수 p≥2 에 대한 약수가 1과 p밖에 없다면 p는 소수

기본 정리-모듈러 연산과 최대공약수[2/2]

- □ 유클리드 알고리즘: 두 정수 a, b의 최대 공약수를 구하는 알고리즘
 - 12와 15의 최대공약수, 12 = 3 * 4, 15 = 3 * 5 ☞ 3
 - a=252와 b=198의 최대 공약수(18) 구하기
 - **1** 252 mod 198 \rightarrow 54;
 - 2 198 mod 54 \rightarrow 36;
 - $\bigcirc 3$ 54 mod 36 \rightarrow 18;
 - 4 36 mod 18 \rightarrow 0;

- 1 s←a; t←b;
- while(t>0)
- 3 {r \leftarrow s mod t; s \leftarrow t; t \leftarrow r;}
- 4 return(s);

RSA 공개키 암호 시스템

- □ 1978년 MIT의 Rivest, Shamir, 그리고 Adleman에 의해 개발된 최초의 공개키 암호 시스템
- □ RSA 공개키 암호 시스템 기반의 통신
 - 두 소수의 곱: N
 - 어버의 공개刊: K_▶
 - 서버의 개인키: K_S
 - 암호화 알고리즘: 평문(P)을 공개키로 멱승한 후 N으로 나눈 나머지 값
 - C=P^{Kp} mod N
 - 복호화 알고리즘: 암호문(C)을 개인키로 멱승한 후 N으로 나눈 나머지 값
 - P=CKs mod N

RSA 암호 시스템의 공개키 및 비밀키 생성

- □ 비밀로 유지하는 값: 비밀키, 두 개의 소수 p, q
- □ 공개되는 값: 공개키, N

- ① 두 개의 소수 p = 7, q = 17 선택
- 2 N = p * q = 7 *17 = 119
- 3 Φ (n)= (p-1) * (q-1) = 96
- ④ $\Phi(n)$ 에 서로 소인 공개키 K_p 를 선택, $K_p = 5$
- $(K_p * K_s) \mod \Phi(n) = 1 인 K_s 선택$ $5 * 77 = 385 = 4 * 96 + 1 이므로 K_s = 77$

RSA 암호 시스템의 실행 예

□ 공개키: 5

□ 비밀키: 77

□ 두 개의 소수 p와 q의 곱, N: 119

RSA의 안전성91/2]

- □ 큰 두 소수의 곱인 N을 소인수 분해하는 문제의 어려움에 기반
 - 60=2*2*3*5 과 같은 작은 수의 소인수 분해는 간단
 - 2¹¹³-1 = 3391*23279*1868569*1066818132868207과 같은 큰 수의 소인 수 분해는 상당히 많은 시간 요구
- □ 서버
 - 두 소수 p, q로 부터 N, 공개키(Kp), 개인키(Ks)의 계산은 간단
- □ 공격자
 - N과 서버의 공개키 정보를 획득하더라도 ☞ N에서 p와 q를 분해하기 어려움 ☞ 서버의 개인키(Ks)를 생성하는 것이 상당히 어려움

RSA의 안전성[2/2]

- □ 1999년에 네트워크에 연결된 292개 컴퓨터들의 협동 작업으로 512비트의 N 값에 대한 소인수분해에 5.2 개월 소요
 - 참고: 50 비트의 2진수 최대값은 약 1000조(2⁵⁰)
- □ RSA 암호 시스템의 안전성을 보장하기 위하여 적어도 1024비트 길이의 N 값 사용
- □ RSA의 1024 비트 공개키

Diffie-Hellman의 키 교환

- □ 1976년에 최초로 발표된 공개키 암호 기법
- □ 공개키를 교환하여 상호간에 사용할 비밀키 생성
- □ 비밀키는 암호문의 생성 및 평문의 복구를 위한 암호 및 복호 키로 사용

기본정리-원시근[1/2]

- □ 법 n에 대한 유한한 정수들의 집합 Z_n = {0, 1, 2, ···, n-1} 에서
 - b의 곱셈상의 역원(multiplicative inverse)이 존재한다면 b*b⁻¹ mod n = 1을 만족하여야 함.
 - 즉, b*b⁻¹ ≡ 1 (mod n)
- □ 법 n과 b가 서로 소(relatively prime)의 관계에 있을 경우에만 b의 곱셈상 의 역원이 존재
 - Z₁₅의 원소: {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14}
 - 15에 서로 소인 수: 1, 2, 7, 11, 13, 14
 - 1^{-1} = 1, 2^{-1} = 8, 7^{-1} = 13, 11^{-1} = 11, 13^{-1} = 7, 14^{-1} = 14
 - $2*2^{-1} = 2*8 = 16 \equiv 1 \pmod{15}$
 - $14*14^{-1} = 14*14 = 196 \equiv 1 \pmod{15}$
- \Box 유한체(finite field) $Z_{p^*} = \{0, 1, 2, 3, \dots, p-1\}$
 - 체에 있는 0을 제외한 모든 수들은 곱셈 상의 역원을 갖는다.
 - 체의 모든 원소들이 소수 p와 서로 소

기본정리-원시근[2/2]

- 생성원 g를 임의의 $a(0 \le a \le p-2)$ 로 멱승하여 modular 연산을 하면 모든 원소들이 만들어 짐
- 생성원 g: 법(modulo) p에 대한 원시근(primitive root)
- 소수 7에 대한 유한체 Z_{7*}: {1,2,3,4,5,6}
 - 곱셈상의 역원 => 1-1 = 1, 2-1 = 4, 3-1 = 5, 4-1 = 2, 5-1 = 3, 6-1 = 6
 - 3^0 mod 7=1, 3^2 mod 7=2, 3^1 mod 7=3,
 - 3^4 mod 7=4, 3^5 mod 7=5, 3^3 mod 7=6
 - 모든 원소는 3에 대한 임의의 a(0≤a≤5) 멱승으로 생성, → 3은 법 7 상의 원시근
- 소수 13에 대한 유한체 Z_{13*} : {1,2,3,4,5,6,7,8,9,10,11,12}
 - 모든 원소들은 2를 임의의 a 멱승하여 만들어짐, 0≤a≤11
 - 2⁰ mod 13=1, 2¹ mod 13=2, 2⁴ mod 13=3, 2² mod 13=4,
 - 2^9 mod 13=5, 2^5 mod 13=6, 2^11 mod 13=7, 2^3 mod 13=8,
 - 2^8 mod 13=9, 2^10 mod 13=10, 2^7 mod 13=11, 2^6 mod 13=12
 - 모든 원소는 2에 대한 임의의 a(0≤a≤11) 멱승으로 생성, → 2는 법 13 상의 원시근

Diffie-Hellman의 키 교환 절차(1/2)

- □ 안전성: 공개키 y_A, y_B 로 부터 공격자가 비밀 정수(A, B)를 구하는 것이 계산적으로 불가능하다는 이산대수문제(discrete logarithm problem)를 이용
 - 즉, $y_A=r^A \mod p$ 를 계산해서 y_A 를 구하기는 쉬우나, 반대로 y_A 를 알고 있다고 해도 $A=\log_r y_A$ 를 통해 A를 구하기 어려움

Diffie-Hellman의 키 교환 절차(2/2)

중간자 공격

□ Diffie-Hellman 키 교환의 중간자 공격에 대한 취약성

- 영심이가 생성한 공개키(y_A)를 공격자는 y_{AA}로 변조하여 경태에게 전달
- 경태는 영심이와 사용할 비밀키를 공격자의 공개키인 y_{AA}를 이용하여 생성
- 경태가 생성한 공개키(y_B)를 공격자는 y_{BB}로 변조하여 영심이에게 전달
- 영심이는 경태와 사용할 비밀키를 공격자의 공개키인 y_{RR}를 이용하여 생성
- 결과적으로 영심이와 경태는 서로 다른 비밀키를 생성하며, 공격자를 경유한 통신이 수행됨.
- □ 중간자 공격의 해결책 ☞ 인증된 Diffie-Hellman 키 교환 사용

인증된 Diffie-Hellman 키 교환

- ① 영심이는 공개키를 생성하여 전자 서명한 후 경태에게 전송
- ② 경태는 공개된 검증 알고리즘으로 수신한 서명이 영심이에 의하여 생성된 것인지 검증
- ③ 경태도 공개키를 생성하여 전자 서명한 후 영심에게 전송
- ④ 영심이는 공개된 검증 알고리즘으로 수신한 서명이 경태에 의하여 생성된 것인지 검증

공개키와 대칭키 암호 시스템의 비교

□ 대칭키 암호 시스템

- 기본 연산을 주로 이용하므로 계산 시간이 빠름
 - 고속의 처리를 요구하는 IP 보안 프로토콜(IPSec)에 사용
- 암호키 관리: 네트워크에서 소요되는 전체 키의 개수가 많음
- 암호키 분배: 사전에 비밀키가 안전하게 분배되어 있어야 함

□ 공개키 암호 시스템

- 대칭키 암호 시스템의 단점인 암호 키의 관리와 분배 문제 해결
- 큰 정수와 연관된 멱승 연산이 포함되어 계산 시간이 많이 소요
 - 전자상거래 및 인터넷 뱅킹과 같은 응용에 사용

요점 정리[1/2]

- □ 공개키 암호 시스템
 - 송신자는 수신자의 공개키로 문서를 암호화
 - 수신자는 비밀리에 보관하고 있는 개인키로 암호화된 문서를 복호화
 - N 명의 암호 통신을 위하여 요구되는 암호 키(공개키+개인키)의 개수는 2N
- □ 일방향 함수
 - 입력 x에 대하여 출력 y=f(x)의 계산은 용이,
 - 출력 y에 대하여 역으로 입력 x=f⁻¹(y)를 구하는 것이 불가능한 함수
- □ 비밀통로 일방향 함수
 - 추가적인 정보를 이용하면 쉽게 일방향 함수의 역 연산이 가능
 - 암호문 = 암호 알고리즘(평문) ☞ 암호 알고리즘은 일방향 함수
 - 평문 = 복호 알고리즘(암호문) ☞ 개인키는 암호문에서 평문을 유도하는 비밀통로 일방향 함수 역할
- □ RSA 암호 시스템
 - 1978년 MIT에서 발표된 최초의 공개키 암호 시스템
 - 비밀로 유지하는 값: 비밀키, 두 개의 소수 p, q
 - 공개되는 값: 공개키, 두 소수의 곱(N)

요점 정리[2/2]

- Diffie-Hellman 키 교환
 - 1976년에 최초로 발표된 공개키 암호 기법
 - 공개키를 교환하여 상호간에 사용할 비밀키 생성
 - 비밀키는 암호문의 생성 및 평문의 복구를 위한 암호 및 복호 키로 사용
 - 중간자 공격의 취약성 ☞ 인증된 Diffie-Hellman 키 교환 사용
 - 공격자에 의한 공개키의 변조를 방지하기 위하여 전자 서명된 공개키를 상호 교환

□ 암호 시스템의 비교

- 대칭키 암호 시스템: 암호화 키 = 복호화 키
 - 고속의 처리를 요구하는 IP 보안 프로토콜(IPSec)에 사용
 - 네트워크에서 소요되는 전체 키의 개수가 많음(N*(N-1)/2)
 - 사전에 비밀키가 안전하게 분배되어 있어야 함
- 공개키 암호 시스템: 암호화 키 ★ 복호화 키
 - 대칭키 암호 시스템의 단점인 암호 키의 관리와 분배 문제 해결
 - 큰 정수와 연관된 멱승 연산이 포함되어 계산 시간이 많이 소요(전자상거래 및 인터넷 뱅킹과 같은 응용에 사용)